Solution:

The complementary equation y'' + 3y' + 2y = 0 has general solution $y_c(t) = c_1 e^{-2t} + c_2 e^{-t}$. An annihilating operator for $2e^t$ is $A_1 = (D-1)$. We demand that $L[c_3 e^t] = 2e^t$ where $L = D^2 + 3D + 2 = (D+2)(D+1)$ is our principal operator. This gives $c_3 = \frac{1}{3}$ and $y_{p_1} = \frac{1}{3}e^t$ is a particular solution to $y'' + 3y' + 2y = 2e^t$.

An annihilating operator for te^t is $(D-1)^2$ and we demand that $L[c_4e^t+c_5te^t]=te^t$ for our principal operator L. This gives us the requirements $6c_4+5c_5=0$ and $6c_5=1$, so that $c_5=\frac{1}{6}$ and $c_4=-\frac{5}{36}$. Thus $y_{p_2}=-\frac{5}{36}e^t+\frac{1}{6}te^t$ is a particular solution to the DE $y''+3y'+2y=te^t$.

The general solution to $y'' + 3y' + 2y = (2+t)e^t$ is $y_c + y_{p_1} + y_{p_2}$, or $c_1e^{-2t} + c_2e^{-t} + \frac{7}{36}e^t + \frac{1}{6}te^t$.

2.

Find the general solution to the following equations using annihilating operators.

- (a) y''' 4y' = t.
- (b) $y''' 4y' = 3\cos t$.
- (c) $y''' 4y' = t + 3\cos t$. (Use your work in the previous two parts; no new computations needed!)

Solution:

First note for all three parts of this problem that the equation y''' - 4y' = 0 has solution $y_c(t) = c_1 + c_2e^{2t} + c_3e^{-2t}$.

(a) An annihilating operator for t is D^2 . The general solution to the DE $D^2(D^3-4D)[y]=0$ is $c_1+c_2e^{2t}+c_3e^{-2t}+c_4t+c_5t^2$. We demand that $L[c_4t+c_5t^2]=t$ where $L=D^3-4D$. This says

$$-4c_4 - 8c_5t = t$$

which forces $c_4=0$ and $c_5=-\frac{1}{8}$. Thus $y_p(t)=-\frac{1}{8}t^2$ and the general solution to y'''-4y'=t is $y(t)=-\frac{1}{8}t^2+c_1+c_2e^{2t}+c_3e^{-2t}$.

(b) An annihilating operator for $3\cos t$ is D^2+1 . The general solution to the DE $(D^2+1)(D^3-4D)[y]=0$ is $c_1+c_2e^{2t}+c_3e^{-2t}+c_4\cos t+c_5\sin t$. We demand that $L[c_4\cos t+c_5\sin t]=3\cos t$ where $L=D^3-4D$. This says

$$c_4 \sin t - c_5 \cos t - 4(-c_4 \sin t + c_5 \cos t) = 3 \cos t$$

which forces $c_4 = 0$ and $c_5 = -\frac{3}{5}$. Thus $y_p(t) = -\frac{3}{5} \sin t$ and the general solution to $y''' - 4y' = 3 \cos t$ is $y(t) = -\frac{3}{5} \sin t + c_1 + c_2 e^{2t} + c_3 e^{-2t}$.

(c) A particular solution to $y'''-4y'=t+3\cos t$ is $y_p=-\frac{1}{8}t^2-\frac{3}{5}\sin t$. The general solution is $y(t)=-\frac{1}{8}t^2-\frac{3}{5}\sin t+c_1+c_2e^{2t}+c_3e^{-2t}$.

3.

Solve $y'' + 3y' + 2y = \cos t$ by first solving $y'' + 3y' + 2y = e^{it}$ using an annihilating operator with complex coefficients, and then extracting the desired solution from your result.

Solution:

The equation y'' + 3y' + 2y = 0 has solution $y_c(t) = c_1e^{-2t} + c_2e^{-t}$. An annihilating operator for e^{it} is D-i. We demand that $L[c_3e^{it}] = e^{it}$, where $L = D^2 + 3D + 2$. This gives $-c_3e^{it} + 3ic_3e^{it} + 2c_3e^{it} = e^{it}$ so that

$$c_3 = \frac{1}{1+3i} = \frac{1-3i}{10}.$$

A particular solution to $y'' + 3y' + 2y = \cos t$ is

$$\operatorname{Re}\left(\frac{1-3i}{10}e^{it}\right) = \operatorname{Re}\left(\frac{1-3i}{10}(\cos t + i\sin t)\right) = \frac{1}{10}\cos t + \frac{3}{10}\sin t.$$

The general solution to this DE is $y = c_1 e^{-2t} + c_2 e^{-t} + \frac{1}{10} \cos t + \frac{3}{10} \sin t$.

$$my'' + ky = F_0 \cos \omega t$$
,

Resonanace when

$$\omega = \omega_0$$
.

Beats when

$$\omega \neq \omega_0$$

4.

True or False? If m, c and k are positive, then all solutions to

$$my'' + cy' + ky = 2t$$

are unbounded as $t \to \infty$.

Solution:

(c) True. The general solution looks like $y=y_c+y_p$ where y_c is the general solution to my''+cy'+ky=0 and y_p is a particular solution to my''+cy'+ky=2t. We know that when m,c, and k are all positive, $y_c(t)\to 0$ as $t\to\infty$. (see Section ATTN). To find y_p we use the demand step $(mD^2+cD+k)[c_3+c_4t]=2t$.

This will give $c_4 = 2/k$, so that in particular c_4 is not 0. Thus $y_p(t)$ will tend to infinity as $t \to \infty$, and all solutions to my'' + cy' + ky = 2t are unbounded as $t \to \infty$.