0	Calculating bias
	Bias = Ex[Bias(x)]
	$= \operatorname{Ex} \left[\left(\overline{g}(x) - f(x) \right)^{2} \right]$
	= $E_X[(0-x^2)^2]$ Since $g(X) = 0$ from PaxtA
	$= \operatorname{Ex} \left[x^{4} \right]$
	$ = \frac{1}{2} \left(\frac{x^4}{x^4} dx = \frac{1}{2} \left(\frac{x^5}{5} \right)^{\frac{1}{4}} - \frac{1}{5} \right) $
	:. Bias = 1. 5.
	Variance = Ex[var(x)]
	$= \mathbb{E}_{\mathbf{X}} \Big[\mathbb{E}_{\mathbf{D}} \Big[(\mathbf{g}^{(\mathbf{D})}(\mathbf{x}) - \bar{\mathbf{g}}(\mathbf{x}))^2 \Big] \Big]$
	$g^{(D)}(x)$ has the form $ax+b$ and $g(x)=0$
0	1. Variance = $Ex[ED[(ax+b)^2]]$ = $Ex[ED[(a^2x^2+b^2+2abx)]$
	$= E_{0} \left[\frac{1}{4} \left(\frac{a^{2}x^{2} + b^{2} + 2abx}{4} \right) \right]$
	$= E_D \left[\frac{1}{2} \left[\frac{a^2 \times 2}{3} + \frac{2b^2}{3} \right] \right]$
	$= E_{D} \left[\frac{a^{2}}{3} + b^{2} \right] = E_{D} \left[\frac{1}{3} (x_{1}^{2} + x_{2}^{2} + 2x_{1}x_{2}) + x_{1}^{2} x_{2}^{2} \right]$
	$= \frac{1}{4} \iint \frac{(x_1^2 + x_2^2 + 2x_1x_2) + x_1^2 x_2^2}{3} dx_1 dx_2$
	$= \frac{1}{4} \int_{-1}^{1} \left[\frac{2}{3} + \frac{2x_2^2}{3} \right] + \frac{2}{3} \frac{x_2^2}{3} dx_2$
0	$-\frac{1}{4}\int_{-1}^{2}\frac{2}{9}+\frac{2}{3}\frac{2z^{2}}{3}+\frac{2}{3}z^{2}$

Variance = 1 $= \frac{1}{4} \left[\frac{4}{9} + \frac{4}{3} \times \frac{2}{3} \right]$ $\frac{1}{3}$. Vaniance = $\frac{1}{3}$.