# Abgabe Meilenstein 1

## 4. Oktober 2024

## Inhaltsverzeichnis

| 1 | Organigram                   | 2    |  |  |  |  |  |
|---|------------------------------|------|--|--|--|--|--|
| 2 | 2 Aufgabenstellung           |      |  |  |  |  |  |
| 3 | Funktionszerlegung           | 4    |  |  |  |  |  |
| 4 | Anforderungsliste            | 5    |  |  |  |  |  |
|   | 4.1 Allgemeine Anforderungen | . 5  |  |  |  |  |  |
|   | 4.2 Gerät                    | . 6  |  |  |  |  |  |
|   | 4.3 Parcours                 | . 8  |  |  |  |  |  |
|   | 4.4 Simulation               | . 9  |  |  |  |  |  |
|   | 4.5 Herstellungsressourcen   | . 10 |  |  |  |  |  |
|   | 4.6 Abbildungen              | . 11 |  |  |  |  |  |
| 5 | Technologierecherche         | 12   |  |  |  |  |  |
|   | 5.1 Quellen                  | . 12 |  |  |  |  |  |

## 1 Organigram



## 2 Aufgabenstellung

## 3 Funktionszerlegung

## 4 Anforderungsliste

#### Legende

 ${\bf F} = {\bf Festan for derung}$ 

 $\mathbf{M} = \mathbf{Mindestanforderung}$ 

W = Wunschanforderung

#### 4.1 Allgemeine Anforderungen

|     | $\mathbf{F}$ |                   | Daten                                                    |  |  |  |
|-----|--------------|-------------------|----------------------------------------------------------|--|--|--|
| Nr. | $\mathbf{M}$ | Bezeichnung       | Werte                                                    |  |  |  |
|     | $\mathbf{W}$ |                   | Erläuterungen                                            |  |  |  |
| 1.1 | W            | Wettbewerb        | Team 10 wird im Wettbewerb einen Podestplatz erreichen.  |  |  |  |
| 1.2 | F            | Wettbewerbsort    | Vorraussichtlich wird der Wettbewerb im Foyer der        |  |  |  |
|     |              |                   | Mensa durchgeführt.                                      |  |  |  |
| 1.3 | F            | Projektabgabe     | Der PREN 1 Schlussbericht ist bis zum 10. Januar 2025    |  |  |  |
|     |              | PREN 1            | abzugeben.                                               |  |  |  |
| 1.4 | F            | Eigenkonstruktion | Einzelne Systemkomponenten wie z.B. Räder, Servos,       |  |  |  |
|     |              |                   | Motoren, Mikrocontroller, Kamera, etc. dürfen zugekauft  |  |  |  |
|     |              |                   | und eingesetzt werden. Das zu realisierende Fahrzeug     |  |  |  |
|     |              |                   | als Grosses und Ganzes muss jedoch zwingend eine         |  |  |  |
|     |              |                   | Eigenkonstruktion sein.                                  |  |  |  |
| 1.5 | F            | Software          | Es dürfen Software-Komponenten und Software-Services     |  |  |  |
|     |              |                   | von Fremd-Herstellern verwendet werden.                  |  |  |  |
| 1.6 | F            | Eingriffe         | Ein Eingreifen auf das Fahrzeug ist nach dem Start nicht |  |  |  |
|     |              |                   | mehr erlaubt.                                            |  |  |  |
| 1.7 | F            | Sicherheit        | Das Team ist während sämtlichen Betriebs- und            |  |  |  |
|     |              |                   | Test-Phasen verantwortlich für die Sicherheit des        |  |  |  |
|     |              |                   | Fahrzeuges und den Schutz der Personen.                  |  |  |  |
| 1.8 | W            | Nachhaltigkeit    | Bei Projektentscheiden soll die Nachhaltigkeit           |  |  |  |
|     |              |                   | berücksichtigt und auch entsprechend dokumentiert        |  |  |  |
|     |              |                   | werden.                                                  |  |  |  |

#### 4.2 Gerät

|      | F            |                      | Daten                                                   |
|------|--------------|----------------------|---------------------------------------------------------|
| Nr.  | $\mathbf{M}$ | Bezeichnung          | Werte                                                   |
| 111. | W            | Bezeiemang           | Erläuterungen                                           |
| 2.1  | F            | Autonomität          | Das Fahrzeug muss den vorgegebenen Parcours von Start   |
|      |              |                      | bis Ziel ohne Zugriff von aussen absolvieren können.    |
| 2.2  | F            | Hardware-            | Alle zum Betrieb benötigten Hardware-Komponenten wie    |
|      |              | Komponenten          | z.B. Sensoren, Aktoren, Steuergeräte, Kamera, etc.      |
|      |              |                      | müssen sich im oder auf dem Fahrzeug befinden.          |
| 2.3  | M            | Betriebsbereitschaft | Das Fahrzeug muss innerhalb von maximal einer Minute    |
|      |              |                      | im Startbereich platziert, aufgebaut und betriebsbereit |
|      |              |                      | sein konnen.                                            |
| 2.4  | F            | Gesperrte Wegpunkte  | Die gesperrten Wegpunkte müssen vom Fahrzeug erkannt    |
|      |              |                      | werden.                                                 |
| 2.5  | F            | Hindernis auf        | Mögliche Hindernisse müssen vom Fahrzeug erkannt        |
|      |              | Strecke              | werden.                                                 |
| 2.6  | F            | Hindernisbewältigung | Befährt das Fahrzeug eine Strecke mit einem Hindernis,  |
|      |              |                      | so muss dieses erkannt und aktiv von der Strecke        |
|      |              |                      | aufgenommen werden. Sobald das Fahrzeug die besagte     |
|      |              |                      | Stelle passiert hat, muss das Hindernis wieder an die   |
|      |              |                      | Ursprungsposition zurückgestellt werden. Die            |
|      |              |                      | Toleranzzone beim zurückstellen des Hindernis beträgt   |
|      |              |                      | 20 mm (umlaufend).                                      |
| 2.7  | F            | Zielposition         | Die Zielposition (1, 2 oder 3) muss am Fahrzeug mittels |
|      |              |                      | einem Wahlschalter ausgewählt werden können.            |
| 2.8  | F            | Startbefehl          | Der Startbefehl wird mittels einem Schalter oder Taster |
|      |              |                      | am Fahrzeug erteilt. (Gleichzeitig wird die Sicht auf   |
|      |              |                      | die Strecke freigegeben und die Zeitmessung gestartet)  |
| 2.9  | F            | Leitlinien           | Das Fahrzeug muss sich während dem gesamten Parcours    |
|      |              |                      | auf den vorgegebenen Leitlinien bewegen.                |
| 2.10 | F            | Not-Aus              | Das Fahrzeug muss über einen leicht zugänglichen        |
|      |              |                      | Not-Aus-Knopf oder -Schalter verfügen, der alle         |
|      |              |                      | mechanisch-dynamische Prozesse sofort unterbricht.      |
| 2.11 | M            | Gewicht              | Das Fahrzeug darf das Maximalgewicht von 2kg nicht      |
|      |              |                      | überschreiten.                                          |

|      | $\mathbf{F}$ |                     | Daten                                                               |  |  |  |
|------|--------------|---------------------|---------------------------------------------------------------------|--|--|--|
| Nr.  | $\mathbf{M}$ | Bezeichnung         | Werte                                                               |  |  |  |
|      | $\mathbf{W}$ |                     | Erläuterungen                                                       |  |  |  |
| 2.12 | Μ            | Dimensionen         | Das Fahrzeug darf die Dimensionen des Startbereichs                 |  |  |  |
|      |              |                     | $(30 \times 30 \text{ cm})$ nicht überschreiten. Zudem ist die Höhe |  |  |  |
|      |              |                     | des Fahrzeugs (oder allfälliger Anbauteile) auf maximal             |  |  |  |
|      |              |                     | 80 cm beschränkt.                                                   |  |  |  |
| 2.13 | F            | Zielposition        | Das Erreichen der Zielposition muss vom Fahrzeug in                 |  |  |  |
|      |              |                     | einer passenden Form visuell oder akustisch angezeigt               |  |  |  |
|      |              |                     | werden. Zudem muss das Fahrzeug innerhalb eines                     |  |  |  |
|      |              |                     | Kreises von 30 cm Durchmesser um den Zielpunkt zum                  |  |  |  |
|      |              |                     | Stehen kommen.                                                      |  |  |  |
| 2.14 | W            | Energieversorgung   | Die Energieversorgung soll mit einem Akku realisiert                |  |  |  |
|      |              |                     | werden, der über eine USB-Schnittstelle wieder                      |  |  |  |
|      |              |                     | aufgeladen werden kann.                                             |  |  |  |
| 2.15 | W            | Akkulaufzeit        | Im aktiven Betrieb des Fahrzeugs soll eine Akkulaufzeit             |  |  |  |
|      |              |                     | von mindestens 25 Minuten gewährleistet sein.                       |  |  |  |
| 2.16 | W            | Debug-Schnittstelle | Die Elektronik des Fahrzeugs soll über eine Debug-                  |  |  |  |
|      |              |                     | Schnittstelle verfügen, die es ermöglicht aktuelle                  |  |  |  |
|      |              |                     | Zustände und Signale auszulesen.                                    |  |  |  |

#### 4.3 Parcours

|      | F            |                     | Daten                                                      |
|------|--------------|---------------------|------------------------------------------------------------|
| Nr.  | $\mathbf{M}$ | Bezeichnung         | Werte                                                      |
|      | $\mathbf{W}$ | _                   | Erläuterungen                                              |
| 3.1  | F            | Wege-Netzwerk       | Das Wege-Netzwerk und der Startpunkt sind bekannt.         |
|      |              |                     | (Figure 1)                                                 |
| 3.2  | F            | Zielpunkte          | Die möglichen Zielpunkte sind bekannt, doch der            |
|      |              |                     | definitive Zielpunkt wird erst unmittelbar vor dem Start   |
|      |              |                     | des Parcours bekannt gegeben. (Figure 1)                   |
| 3.3  | F            | Wegpunkte           | Insgesamt gibt es acht Wegpunkte. Die Wegpunkte sind       |
|      |              |                     | aufgeklebte Vollkreise (weiss) mit einem Durchmesser       |
|      |              |                     | von 7 bis 12 cm. (Figure 2)                                |
| 3.4  | F            | Untergrund          | Der Untergrund entspricht dem Bodenbelag des Foyers        |
|      |              |                     | der Mensa auf dem Campus der Hochschule Luzern für         |
|      |              |                     | Technik und Architektur in Horw. (Figure 3)                |
| 3.5  | F            | Leitlinien          | Die Wegpunkte sind mit hellen Leitlinien (aufgeklebtes     |
|      |              |                     | Klebeband) verbunden. Die Breite der Leitlinien beträgt    |
|      |              |                     | ca. 20 mm.                                                 |
| 3.6  | F            | Abmessungen         | Der Abstand der Wegpunkte ist variabel zwischen            |
|      |              |                     | 0.5 bis 2.0 m. Die Gesamtfläche des Wege-Netzwerkes        |
|      |              |                     | beträgt ca. $4.5 \times 4.5 \text{ m}$ .                   |
| 3.7  | F            | Gesperrte Wegpunkte | Die gesperrten Wegpunkte dürfen nicht befahren werden.     |
|      |              |                     | Sie sind bis zum Start unbekannt und mittels einem         |
|      |              |                     | Leitkegel gekennzeichnet.                                  |
| 3.8  | F            | Hindernis auf       | Die Strecke darf befahren werden, doch das Hindernis       |
|      |              | Strecke             | muss aktiv von der Strecke aufgenommen und am              |
|      |              |                     | gleichen Ort wieder zurückgestellt werden.                 |
| 3.9  | F            | Nicht vorhandene    | Leitlinien können aus dem Wege-Netzwerk entfernt           |
|      |              | Teilstrecken        | werden. Die entsprechenden Verbindungen können nicht       |
|      |              |                     | befahren werden.                                           |
| 3.10 | F            | Streckenbedingungen | Die Streckenbedingungen (Sperrung, Hindernisse, nicht      |
|      |              |                     | vorhandene Teilstrecke) sind bis zum Start unbekannt.      |
| 3.11 | F            | Startbereich        | Die Grösse des Startbereichs beträgt 30 x 30 cm. Das       |
|      | _            | ~                   | Fahrzeug darf diese Dimensionen nicht überschreiten.       |
| 3.12 | F            | Start               | Sobald die Sicht auf die Strecke freigegeben wird, beginnt |
|      |              |                     | ebenfalls die Zeitmessung.                                 |
| 3.13 | M            | Parcours-Laufzeit   | Die Laufzeit von Start bis Ziel darf maximal vier          |
|      |              |                     | Minuten betragen. Wird das Ziel innert vier Minuten        |
|      |              |                     | nicht erreicht, ist der Lauf ungültig.                     |

#### 4.4 Simulation

|     | F            |                    | Daten                                                      |
|-----|--------------|--------------------|------------------------------------------------------------|
| Nr. | $\mathbf{M}$ | Bezeichnung        | Werte                                                      |
|     | $\mathbf{W}$ |                    | Erläuterungen                                              |
| 4.1 | W            | Betriebssystem     | Die Simulation soll auf Linux und auch Windows             |
|     |              |                    | ausführbar sein.                                           |
| 4.2 | W            | Benutzeroberfläche | Die Benutzeroberfläche soll beliebig editierbar sein. Die  |
|     |              |                    | Die gesamte Simulation wird jedoch nur 2-dimensional       |
|     |              |                    | realisiert.                                                |
| 4.3 | W            | Pfadfindungs-      | In der Simulation sollen verschiedene Pfadfindungs-        |
|     |              | algorithmen        | algorithmen (z.B. Dijkstra, A*-Algorithmus, etc.)          |
|     |              |                    | implementiert werden für eine direkte Gegenüberstellung.   |
| 4.4 | W            | Zeitauswertung     | In der Simulation soll eine approximierte                  |
|     |              |                    | Zeitauswertung, basierend auf heuristischen Abschätzungen, |
|     |              |                    | möglich sein.                                              |
| 4.5 | W            | Echtzeit-          | Der simulierte Pfad soll in Echtzeit visualisiert werden,  |
|     |              | Visualisierung     | um das Verhalten des Fahrzeugs besser nachvollziehen       |
|     |              | des Pfades         | zu können.                                                 |
| 4.6 | W            | Hindernistypen     | Verschiedene Arten von Hindernissen (beweglich und         |
|     |              |                    | stationär) sollen simuliert werden können.                 |
| 4.7 | W            | Fahrzeugparameter  | Fahrzeugparameter (Geschwindigkeit, Wendekreis,            |
|     |              |                    | Sensorreichweite, etc.) sollen editierbar sein.            |
| 4.8 | W            | Datenexport        | Die Daten, welche während der Simulation generiert         |
|     |              |                    | werden, sollen exportierbar sein. (z.B. Log-File)          |
| 4.9 | W            | Error-Handling     | Der Simulator muss robust auf Fehler reagieren und         |
|     |              |                    | darf keinesfalls abstürzen. Zudem sollen Fehlerzustände    |
|     |              |                    | abgefangen und klar dokumentiert werden.                   |

## 4.5 Herstellungsressourcen

|     | F            |                     | Daten                                                  |
|-----|--------------|---------------------|--------------------------------------------------------|
| Nr. | $\mathbf{M}$ | Bezeichnung         | Werte                                                  |
|     | $\mathbf{W}$ |                     | Erläuterungen                                          |
| 5.1 | W            | Materialbeschaffung | Materialien und Komponenten sollen vorzugsweise von    |
|     |              |                     | folgenden Lieferanten bestellt werden:                 |
|     |              |                     | - Conrad Electronic                                    |
|     |              |                     | - Distrelec                                            |
|     |              |                     | - Mädler                                               |
|     |              |                     | - Farnell                                              |
| 5.2 | F            | Budget              | Für die Realisierung des Projekts stehen dem Team      |
|     |              |                     | insgesamt 500 CHF zur Verfügung. Davon dürfen maximal  |
|     |              |                     | 200 CHF in PREN 1 ausgegeben werden.                   |
| 5.3 | F            | Normteile ab HSLU   | Normteile (Schrauben, Lager, Rohmaterial, Widerstände, |
|     |              | Lagerbestand        | Kondensatoren, etc.) aus dem HSLU Lagerbestand         |
|     |              |                     | dürfen kostenlos verwendet werden.                     |
| 5.4 | F            | Persönlicher        | Wird für das Projekt ein persönlicher 3D-Drucker       |
|     |              | 3D-Drucker          | verwendet, so muss die verarbeitete Menge              |
|     |              |                     | ausgewiesen werden.                                    |
| 5.5 | F            | Herstellungs-       | Dem Team stehen für die Umsetzung des Projekts         |
|     |              | ressourcen der      | (PREN 1 und PREN 2) die folgenden Ressourcen der       |
|     |              | HSLU                | HSLU zur Verfügung:                                    |
|     |              |                     | - maximal 25 h Maschinenlaufzeit der 3D-Drucker        |
|     |              |                     | - maximal 1 h Maschinenlaufzeit des Lasergeräts        |
|     |              |                     | - maximal 10 Arbeitsstunden des Werkstattpersonals     |
|     |              |                     | Elektrotechnik                                         |
|     |              |                     | - maximal 10 Arbeitsstunden des Werkstattpersonals     |
|     |              |                     | Maschinentechnik                                       |

#### 4.6 Abbildungen

Folgend sind sämtliche Abbildungen aufgeführt, auf die in der Anforderungsliste referenziert wurde.



Abbildung 1: Vorgegebenes Wege-Netzwerk mit Start- und Zielpositionen A-B-C



Abbildung 2: Typischer aufgeklebter Wegpunkt



Abbildung 3: Fliesenboden im Foyer der Mensa

## 5 Technologierecherche

Die nachfolgende Quellensammlung in Tabelle 1 dient als Übersicht zur Technologierecherche und wird im Laufe des Projekts weitergeführt, um die verwendeten Quellen im Ausblick auf die Schlussdokumentation zu sammeln. Die unter Grade aufgeführten Werte dienen zur Bewertung der Relevanz der Quellen für das Projekt und deren weiterführende Benutzung.

#### 5.1 Quellen

| Thema     | Stichwort                                  | Grade | Quelle | Beschreibung                                                                                |
|-----------|--------------------------------------------|-------|--------|---------------------------------------------------------------------------------------------|
| Simulator | Pfadfindung                                | 2     | Link   | Visualisierung verschiedener<br>Pfadfindungsalgorithmen.                                    |
| Simulator | Pfadfindung                                | 5     | Link   | Performance Evaluation von Pfadfindungsalgorithmen.                                         |
| Simulator | Graph                                      | 3     | Link   | Erstellung von 2D Graphen.                                                                  |
| Simulator | 2D-Simulation<br>für autonome<br>Fahrzeuge | 4     | Link   | Simulationstool für Visualisierung.                                                         |
| Simulator | Sensoren und KI                            | 4     | Link   | Programmierung von Sensoren und neuronalen Netzen in Javascript.                            |
| Simulator | Physik Auto                                | 4     | Link   | Simulation eines realistischen Fahrverhaltens.                                              |
| Simulator | Editierbare<br>Benutzerober-<br>flächen    | 5     | Link   | Benutzerfreundliche Oberfläche.                                                             |
| Simulator | Pfadfindung,<br>Berechenbarkeit            | 8     | Link   | Übersicht und Visualisierung<br>verschiedener fortgeschrittener<br>Pfadfindungsalgorithmen. |
| Simulator | Pfadfindung                                | 6     | Link   | State Space Exploration:<br>Grundlagen der<br>Graphenexploration.                           |
| Simulator | Pfadfindung                                | 5     | Link   | Übersicht über Model Predictive<br>Path Integral (MPPI).                                    |

contd

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

| Thema                        | Stichwort                               | $\mathbf{Grade}$ | Quelle            | Beschreibung                                                                                                                                       |
|------------------------------|-----------------------------------------|------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Simulator                    | Pfadfindung,<br>Optimierungen           | 7                | Link 1,<br>Link 2 | Markov Decision Processes (MDP): Modellierungen von Entscheidungen bei ungewissem Ausgang, welcher Weg ist wahrscheinlich der schnellste im Graph. |
| Simulator                    | Pfadfindung                             | 7                | Link              | Detaillierte Beschreibung des D*Lite Algorithmus.                                                                                                  |
| Simulator                    | Pfadfindung                             | 4                | Link              | Euclidean Distance Transform für<br>heuristische Entscheidungen bei<br>Graphenproblemen.                                                           |
| Sensorik                     | Raumwahrnehmung<br>Image<br>Processing  | , 5              | Link              | Depth Perception: Grundlagen für<br>Raumwahrnehmung bei der<br>Bildverarbeitung.                                                                   |
| Sensorik                     | Homographie,<br>Image<br>Processing     | 5                | Link              | Informationen, um verzerrte Bilder<br>in verschiedene Perspektiven zu<br>transformieren.                                                           |
| Sensorik                     | Kantenerkennung,<br>Image<br>Processing | 9                | Link 1,<br>Link 2 | Erkennung von Kanten in Bildern,<br>ermöglicht rudimentäre<br>Kollisionserkennung.                                                                 |
| Sensorik                     | Image<br>Processing                     | 8                | Link              | Analyse von mehreren SLAM Algorithmen.                                                                                                             |
| Elektrotechnik - Antriebe    | BLDC<br>Grundlagen                      | 10               | Link              | Application Note: Grundlagen BLDC Motoren.                                                                                                         |
| Elektrotechnik<br>- Antriebe | BLDC<br>Grundlagen                      | 6                | Link              | Application Note: Grundlagen BLDC Motoren.                                                                                                         |
| Elektrotechnik - Antriebe    | Brushless DC<br>Motor<br>Fundamentals   | 7                | Link              | Application Note: Grundlagen BLDC Motoren.                                                                                                         |
| Elektrotechnik<br>- Antriebe | Stepping Motors<br>Fundamentals         | 10               | Link              | Application Note: Grundlagen Schrittmotoren.                                                                                                       |
| Elektrotechnik - Antriebe    | Stepping Motors<br>Fundamentals         | 7                | Link              | Application Note: Grundlagen Schrittmotoren.                                                                                                       |

 ${\rm contd}$ 

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

|                                      |                                                 |       | 1010500 |                                                                  |
|--------------------------------------|-------------------------------------------------|-------|---------|------------------------------------------------------------------|
| Thema                                | Stichwort                                       | Grade | Quelle  | Beschreibung                                                     |
| Elektrotechnik<br>- Antriebe         | Stepper Motor<br>Reference                      | 7     | Link    | Application Note:<br>Grundschaltungen Schrittmotoren.            |
| Elektrotechnik - Energiema- nagement | Li-Ion Batterie                                 | 5     | Link    | Buch: Lithium-Ionen Batterien.                                   |
| Elektrotechnik - Energiema- nagement | Li-Ion Basics                                   | 8     | Link    | Buch: Batterietypen.                                             |
| Elektrotechnik - Energiema- nagement | Recycling Li-Ion;<br>Li-Ion                     | /     | Link    | Buch: Recycling.                                                 |
| Elektrotechnik - Energiema- nagement | Li-Ion Battery                                  | 10    | Link    | Buch: Verschiedene Batterietypen.                                |
| Elektrotechnik - Energiema- nagement | NiCad Battery<br>Charge                         | 5     | Link    | Beschreibung: NiCad vs. NiMH Batterien.                          |
| Elektrotechnik - Energiema- nagement | NiCad Battery<br>Basics                         | 10    | Link    | Buch: Grundlagen<br>Nickel-Batterien, Ladevorgänge.              |
| Elektrotechnik - Energiema- nagement | Lead Acid Batteries; Batteries; Ni-Cd Batteries | 10    | Link    | Buch: Verschiedene Batterietypen sowie Ladeverfahren.            |
| Elektrotechnik - Energiema- nagement | Lead Acid<br>Battery                            | 6     | Link    | Research Paper über<br>Blei-Akkumulatoren.                       |
| Elektrotechnik - Energiema- nagement | Lead Acid<br>Battery Charge                     | 4     | Link    | Application Note über<br>Ladeverfahren zu<br>Blei-Akkumulatoren. |
| Elektrotechnik - Energiema- nagement | Lead Acid<br>Battery                            | 2     | Link    | Research Paper zu<br>Blei-Akkumulatoren.                         |

 $\operatorname{contd}$ 

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

| -                                    |                                          |       | 1010500 |                                                                                |
|--------------------------------------|------------------------------------------|-------|---------|--------------------------------------------------------------------------------|
| Thema                                | Stichwort                                | Grade | Quelle  | Beschreibung                                                                   |
| Elektrotechnik - Energiema- nagement | Battery<br>Management;<br>Li-Ion Battery | 8     | Link    | Buch über<br>Batteriemanagementsysteme für<br>Li-Ion Akkus.                    |
| Elektrotechnik - Energiema- nagement | Battery<br>Management;<br>Li-Ion Battery | 7     | Link    | Buch über Batteriemanagement und Li-Ion Akkus.                                 |
| Elektrotechnik - Energiema- nagement | Battery<br>Management;<br>Li-Ion Battery | 6     | Link    | Buch über Batteriemanagement und Li-Ion Akkus.                                 |
| Elektrotechnik<br>- Sensoren         | LiDAR und<br>Ultraschall                 | 3     | Link    | Unterschied von LiDAR und Radar für Abstandsmessung.                           |
| Elektrotechnik<br>- Sensoren         | Abstandsmessung                          | 4     | Link    | Möglicher LiDAR Sensor mit Time-of-Flight.                                     |
| Elektrotechnik<br>- Sensoren         | Abstandsmessung                          | 4     | Link    | Möglicher Ultraschallsensor.                                                   |
| Elektrotechnik - Sensoren            | Pfadfindung                              | 5     | Link    | Verschiedene Sensoren für die Pfadfindung.                                     |
| Elektrotechnik<br>- Sensoren         | Pfadfindung                              | 4     | Link    | Möglicher Infrarotsensor für die Pfadfindung.                                  |
| Elektrotechnik - Sensoren            | Pfadfindung                              | 3     | Link    | Geschwindigkeit und Strecke<br>berechnen mit Hallsensor.                       |
| Elektrotechnik - Sensoren            | Streckenerkennung                        | 8     |         |                                                                                |
| Maschinenbau                         | Mecanum<br>Wheels Overview               | 5     | Link    | Überblick über Mecanumräder und<br>deren Verwendungszweck in der<br>Industrie. |
| Maschinenbau                         | Räder                                    | 7     | Link    | Überblick und Auswahl<br>verschiedener Rädertypen für einen<br>Roboter.        |
| Maschinenbau                         | Greifer                                  | 7     | Link    | Funktionsweise von verschiedenen Greifermechanismen.                           |
| Maschinenbau                         | Greifer                                  | 4     | Link    | Auswahl an Greifern und<br>Linearführungen.                                    |

 ${\rm contd}$ 

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

| Thema        | Stichwort        | Grade | Quelle | Beschreibung                                                         |
|--------------|------------------|-------|--------|----------------------------------------------------------------------|
| Maschinenbau | Greifer          | 6     | Link   | Funktionsweise von verschiedenen Greifermechanismen.                 |
| Maschinenbau | Linearführung    | 5     | Link   | Überblick an Linearführungen.                                        |
| Maschinenbau | Material         | 2     | Link   | Materialauswahl für Chassis.                                         |
| Maschinenbau | Roboterkinematik | 7     | Link   | Roboterkinematik für fahrende<br>Systeme inklusive Linienverfolgung. |
| Maschinenbau | Bewegungsarten   | 5     | Link   | Verschiedene Bewegungsarten für Roboter.                             |
| Maschinenbau | Robotik          | 6     | Link   | Grundlagen der Robotik.                                              |

Tabelle 1: Quellensammlung