Recursion and Induction

Problem 1

Prove by induction that

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1$$
 for $n > 1$

Problem 2

Let $\Sigma = \{1, 2, 3\}$.

- (a) Give a recursive definition for the function sum : $\Sigma^* \to \mathbb{N}$ which, when given a word over Σ returns the sum of the digits. For example $\mathsf{sum}(1232) = 8$, $\mathsf{sum}(222) = 6$, and $\mathsf{sum}(1) = 1$. You should assume $\mathsf{sum}(\lambda) = 0$.
- (b) For $w \in \Sigma^*$, let P(w) be the proposition that for all words $v \in \Sigma^*$, sum(wv) = sum(w) + sum(v). Prove that P(w) holds for all $w \in \Sigma^*$.
- (c) Consder the function rev : $\Sigma^* \to \Sigma^*$ defined recursively as follows:
 - $rev(\lambda) = \lambda$
 - For $w \in \Sigma^*$ and $a \in \Sigma$, rev(aw) = rev(w)a

Prove that for all words $w \in \Sigma^*$, sum(rev(w)) = sum(w)

Problem 3

Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ recursively as follows: f(m,0) = 0 for all $m \in \mathbb{N}$ and f(m,n+1) = m + f(m,n).

- (a) Let P(n) be the proposition that f(0,n) = f(n,0). Prove that P(n) holds for all $n \in \mathbb{N}$.
- *(b) Let Q(m) be the proposition $\forall n, f(m,n) = f(n,m)$. Prove that Q(m) holds for all $m \in \mathbb{N}$.

Problem 4^{\dagger} (20T2)

Let $\Sigma = \{a, b\}$ and define $f : \Sigma^* \to \mathbb{R}$ recursively as follows:

- $f(\lambda) = 0$,
- $f(aw) = \frac{1}{2} + \frac{1}{2}f(w)$ for $w \in \Sigma^*$, and
- $f(bw) = -\frac{1}{2} + \frac{1}{2}f(w)$ for $w \in \Sigma^*$.
- (a) What is f(abba)?

[†] indicates a previous exam question

^{*} indicates a difficult/advanced question.

- (b) Prove that $f(w) \in (-1,1)$ for all $w \in \Sigma^*$
- (c) Prove, or give a counterexample to disprove:
 - (i) f is injective
 - (ii) Im(f) = (-1,1)

Problem 5

Let $\Sigma = \{0, 1\}$

- (a) Recursively define a function str2num : $\Sigma^+ \to \mathbb{N}$ that converts a non-empty word over Σ to the number that one obtains by viewing the word as a binary number. For example str2num(1100) = 12, str2num(0111) = 7, str2num(0000) = 0.
- (b) Recursively define a function num2str : $\mathbb{N} \to \Sigma^+$ that converts a number to its (shortest) binary representation. *Hint: you may want to use* div *and* %.
- (c) Writing your functions as code in the natural way,
 - (i) Give an asymptotic upper bound in terms of length(()w) on the running time to compute str2num(w).
 - (ii) Give an asymptotic upper bound in terms of n on the running time to compute num2str(n).