CPE301 – SPRING 2019

Design Assignment DA2C

Student Name: Jett Guerrero Student #: 5002377713

Student Email: guerrj1@unlv.nevada.edu

Primary Github address: https://github.com/guerrj1/Submission_DA.git
Directory: DA2C - https://github.com/guerrj1/Submission_DA/tree/master/DA2C

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- -ATMega328p
- -Arduino Shield
- -Micro-USB Cable

PB2 and PC2 PINS were used on the Atmega328P and Arduino Shield

2. DEVELOPED CODE OF TASK 1 C CODE

Task 1 Part 1

```
//DA2CT1 1.c
#define F_CPU 16000000L
#include <avr/io.h>
int main()
{
       uint8_t OVFCount = 0;
                                             //overflow flag counter
       DDRB |= (1<<2);
                                             //set pb2 as output
       PORTB |= (1<<2);
                                             //led output
       TCNT0 = 0x1D;
                                             //starting counter
       TCCR0B = (1<<CS02) | (1 << CS00);
                                             //sets prescaler to 1024
       while(1)
       {
              while((TIFR0 & 0x01) == 0);
                                           //while flag is 0
                      TCNT0 = 0x1D;
                                                   //starting counter for tcnt0
                      TIFR0 = 0x01;
                                                   //resets the overflow flag
                      //OVFCount++;
                      if(OVFCount == 19 )
                                                   //overflow counter counts up to this
                      {
                             PORTB ^= (1<<2);
                                                      //turns led off
                      else if(OVFCount == 49)
                                                   //overflow counter counts up to this
                               PORTB ^= (1<<2);
                                                      //keeps led on
                               OVFCount = 0;
                                                      //resets the overflow count
                      OVFCount++;
                                                        //increment overflow count
       return 0;
}
```

Task 1 Part 2

```
// DA2CT1_2.c
#define F_CPU 1600000UL
                                      //sets CPU clock speed
#include <avr/io.h>
#include <util/delay.h>
int main(void)
       DDRB = (1 << 2);
                                         //sets pb2 as input
       PORTB |= (1<<2);
                                          //sets pb2 to high for LED
       DDRC &= (0 << 2);
                                          //sets PC2 to input
       PORTC \mid = (0 << 2);
                                          //sets PC2 to low 0
       TCCR0A = 0;
       TCCR0B = (1<<CS02) | (1<<CS00); //sets prescaler to 1024
       int OVFCount = 0;
       while (1)
       {
              if (!(PINC & (1<<PINC2))) //checks if the pushbutton is pressed</pre>
                      OVFCount = 0;
                      TCNT0 = 0;
              }
              while ((TIFR0 & 0x01) == 0);
                      TCNT0 = 0x05;
                                                   //starts at this value to count from
                      TIFR0 = 0x01;
                                                   //rests the overflow flag
                      OVFCount++;
                                                      //overflow flag counter increment
              if (OVFCount <= 78)</pre>
                                             //when overflow counter is less than or equal
to 78
              {
                      PORTB = (0 << 2);
                                             //then portb2 led is on
              }
              else
              PORTB = (1 << 2);
                               //then portb2 led is off
              }
       }
       return 0;
}
```

3. DEVELOPED CODE FOR TASK 2 C CODE

Task 2 Part 1

```
//DA2CT2 1.c
#define F_CPU 1600000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
int main(void)
{
       DDRB |= (1 << 2);
                                           //sets pb2 as output
       PORTB |= (1<<2);
                                           //sets pb2 led
       //TCNT0 = 0x1D;
       TCNT0 = 0;
       TCCR0A = 0;
       TCCR0B = (1<<CS02) | (1 << CS00); //sets prescaler to 1024
       TIMSK0 |= (1<< TOIE0);
                                           //enables interrupt
                                           //enables interrupt
       sei();
       while(1)
       {
       }
}
ISR(TIMER0_OVF_vect)
       uint8_t OVFCount = 0;
       while(1)
       {
              while((TIFR0 & 0x01) == 0);  //while flag is 0
              TCNT0 = 0x1D;
                                           //starting counter for tcnt0
              TIFR0 = 0x01;
                                           //resets the overflow flag
              //OVFCount++;
              if(OVFCount == 19 )
                                           //overflow counter counts up to this
              {
                      PORTB ^= (1<<2);
                                              //turns led off
              else if(OVFCount == 49)
                                           //overflow counter counts up to this
                      PORTB ^= (1<<2);
                                            //keeps led on
                      OVFCount = 0;
                                            //resets the overflow count
              OVFCount++;
                                                //increment overflow count
       }
}
```

Task 2 Part 2

```
// DA2CT2_2.c
#define F CPU 16000000UL
#include <avr/interrupt.h>
#include <avr/io.h>
int main(void)
{
       DDRB |= (1 << 2);
                                          //sets pb2 as output
       PORTB |= (1<<2);
                                         //sets pb2 led
       //TCNT0 = 0x1D;
       TCNT0 = 0;
       TCCR0A = 0;
       TCCR0B = (1<<CS02) | (1 << CS00); //sets prescaler to 1024
       TIMSK0 |= (1<< TOIE0);
                                           //enables interrupt
       sei();
                                           //enables interrupt
       while(1)
       {
       }
}
ISR(TIMER0_OVF_vect)
       int OVFCount = 0;
       while (1)
       {
               if (!(PINC & (1<<PINC2))) //checks if the pushbutton is pressed</pre>
               {
                      OVFCount = 0;
                      TCNT0 = 0;
              }
              while ((TIFR0 & 0x01) == 0);
                      TCNT0 = 0x05;
                                                    //starts at this value to count from
                      TIFR0 = 0x01;
                                                    //rests the overflow flag
                      OVFCount++;
                                                       //overflow flag counter increment
              if (OVFCount <= 78)</pre>
                                               //when overflow counter is less than or equal
to 78
              {
                      PORTB = (0 << 2);
                                             //then portb2 led is on
              }
              else
              PORTB = (1 << 2);
                                     //then portb2 led is off
       }
}
```

4. DEVELOPED CODE FOR TASK 3 C CODE

Task 3 Part 1

```
//DA2CT3_1.c
#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
int main(void)
       DDRB = (1 << 2);
                                         //sets pb2 as output
       PORTB |= (1<<2);
                                         //sets for pb2 led
       //TCNT0 = 0x1D;
       TCNT0 = 0;
       TCCR0A = (1 < < WGM01);
                                         //sets CTC mode
       TCCR0B = (1<<CS02) | (1 << CS00); //sets prescaler to 2014
       TIMSK0 |= (1<<OCIE0A);
                                          //sets interrupt compare match
       sei();
                                          //enables interrupt
       while(1)
       {
       }
}
ISR(TIMER0_COMPA_vect)
       uint8 t OVFCount = 0;
       while(1)
              while((TIFR0 & 0x01) == 0);  //while flag is 0
                                          //starting counter for tcnt0
              TCNT0 = 0x1D;
              TIFR0 = 0x01;
                                          //resets the overflow flag
              //OVFCount++;
              if(OVFCount == 19 )
                                       //overflow counter counts up to this
              {
                     PORTB ^= (1<<2);
                                             //turns led off
              else if(OVFCount == 49)
                                          //overflow counter counts up to this
                     PORTB ^= (1<<2);
                                           //keeps led on
                     OVFCount = 0;
                                           //resets the overflow count
              OVFCount++;
                                               //increment overflow count
       }
}
```

Task 3 Part 2

```
//DA2CT3_2.c
#define F_CPU 1600000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
int main(void)
{
       DDRB |= (1<<2);
                                           //sets pb2 as output
       PORTB |= (1<<2);
                                           //sets pb2 led
       //TCNT0 = 0x1D;
       TCNT0 = 0;
       TCCR0A = (1 << WGM01);
                                           //sets ctc mode
       TCCR0B = (1<<CS02) | (1 << CS00); //sets prescaler to 1024
       TIMSK0 |= (1<<0CIE0A);
                                            //sets interrupt on compare match
                                            //enables interrupt
       sei();
       while(1)
       {
       }
}
ISR(TIMERO_COMPA_vect)
{
       int OVFCount = 0;
       while (1)
       {
              if (!(PINC & (1<<PINC2))) //checks if the pushbutton is pressed</pre>
               {
                      OVFCount = 0;
                      TCNT0 = 0;
              }
              while ((TIFR0 & 0x01) == 0);
              TCNT0 = 0x05;
                                            //starts at this value to count from
              TIFR0 = 0x01;
                                            //rests the overflow flag
              OVFCount++;
                                               //overflow flag counter increment
              if (OVFCount <= 78)</pre>
                                               //when overflow counter is less than or equal
to 78
               {
                      PORTB = (0 << 2);
                                               //then portb2 led is on
              }
              else
               {
                                               //then portb2 led is off
                      PORTB = (1 << 2);
              }
       }
}
```

5. SCHEMATICS

Breadboard Schematic using Fritzing

6. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Duty Cycle and Period Verification for Task 1-3 Part 1

60% Duty Cycle 434.95ms ≈ 0.435s

Total Period 724.87ms ≈ 0.725s

Name	Value
rogram Counter	0x00000050
Stack Pointer	0x08FD
X Register	0x0000
Y Register	0x08FF
Z Register	0x0084
Status Register	OTHSVNZC
Cycle Counter	4638744
Frequency	16.000 MHz
Stop Watch	289.92 ms

40% Duty Cycle 289.92ms ≈ 0.29s ms ≈ 0.29s

Processor Status		
Name	Value	
Program Counter	0x00000050	
Stack Pointer	0x08FD	
X Register	0x0000	
Y Register	0x08FF	
Z Register	0x0000	
Status Register	THSVNZC	
Cycle Counter	4648987	
Frequency	16.000 MHz	
Stop Watch	290,561.69 μs	

40% Duty Cycle 290.56

Delay Verification for Task 1-3 Part 2

Processor Status Simulation for 1.25 sec Delay

Processor Status	
Name	Value
Program Counter	0x00000048
Stack Pointer	0x08FD
X Register	0x0000
Y Register	0x08FF
Z Register	0x0000
Status Register	OTHSVNZC
Cycle Counter	20000028
Frequency	16.000 MHz
Stop Watch	1,250.00 ms

Processor Status Simulation for 1.25 sec Delay

7. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Task 1-3 Part 1

LED OFF LED ON

Task 1-3 Part 2

LED OFF

LED Turns OFF After Push Button is Pressed

LED Stays ON for the 1.250s

8. VIDEO LINKS OF EACH DEMO

Task 1: Part 1 & Part 2 C Code Demo

https://youtu.be/Jo5-k52JTmM

Task 2: Part 1 & Part 2 C Code Demo

https://youtu.be/h_VvDzXfMnA

Task 3: Part 1 & Part 2 C Code Demo

https://youtu.be/ZZFKP8Zk034

9. GITHUB LINK OF THIS DA

https://github.com/guerrj1/Submission DA/tree/master/DA2C

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Jett Guerrero