Building Random Forest at Scale

Michal Malohlava

@mmalohlava

@hexadata

Who am I?

Background

- PhD in CS from Charles University in Prague, 2012
- 1 year PostDoc at Purdue University experimenting with algos for large computation
- 1 year at 0xdata helping to develop H₂O engine for big data computation

Experience with domain-specific languages, distributed system, software engineering, and big data.

Overview

1. A little bit of theory

2. Random Forest observations

3. Scaling & distribution of Random Forest

4. Q&A

Tree Planting

What is a model for this data?

- Training sample of points covering area $[0,3] \times [0,3]$
- Two possible colors of points

What is a model for this data?

The model should be able to predict a color of a new point

Decision tree

How to grow a decision tree?

Split rows in a given node into two sets with respect to impurity measure

- The smaller, the more skewed is distribution
- Compare impurity of parent with impurity of children

- A. Possible impurity measures
 - Gini, entropy, RSS
- B. Respect type of feature nominal, ordinal, continuous

When to stop growing the tree?

1. Build full tree or

- 2. Apply stopping criterion limit on:
 - Tree depth, or
 - Minimum number of points in a leaf

How to assign leaf value?

The leaf value is

 If leaf contains only one point then its color represents leaf value

 Else majority color is picked, or color distribution is stored

Decision tree

Tree covered whole area by rectangles predicting a point color

Decision tree scoring

The model can predict a point color based on its coordinates.

Oxdata

Overfitting

Tree perfectly represents training data (0% training error), but also learned about noise!

Overfitting

And hence poorly predicts a new point!

Handle overfitting

"Model should have low training error but also generalization error!"

Pre-pruning via stopping criterion

Post-pruning: decreases complexity of model but helps with model generalization

Random Forest idea

Randomize tree building and combine trees together

Randomize #1
Bagging

Prepare bootstrap sample for each tree by sampling with replacement

Randomize #1 Bagging

Randomize #1 Bagging

Each tree sees only sample of training data and captures only a part of the information.

Build multiple weak trees which vote together to give resulting prediction

voting is based on majority vote, or weighted average

Randomize #2 Feature selection

Randomized split selection

- Select randomly subset of features of size sqrt(#features)
- Select the best split only using the subset

Out of bag points and validation

Each tree is built over a sample of training points.

Remaining points are called "out-of-bag" (OOB).

These points are used for validation as a good approximation for generalization error. Almost identical as N-fold cross validation.

Advantages of Random Forest

Independent trees which can be built in parallel

The model does not overfit easily

Produces reasonable accuracy

Brings more features to analyze data - variable importance, proximities, missing values imputation

A Few Observations

Covtype dataset

Dataset	Features	Predictor	${\rm Instances}\ ({\rm train/test})$	${\bf Imbalanced}$	Missing observations
Iris	4	3 classes	100/50	NO	0
Vehicle	18	4 classes	564/282	NO	0
Stego	163	3 classes	3,000/4,500	NO	0
Spam	57	2 classes	3,067/1,534	YES	0
Credit	10	2 classes	100,000/50,000	YES	29,731
Intrusion	41	2 classes	125,973/22,544	NO	0
Covtype	54	7 classes	387,342/193,672	YES	0

Sampling rate impact

Number of split features

Oxdata

Variable importance

Building Forests with H₂O

H₂O platform

Challenges

Parallelize and distribute Random Forest algorithm

- Preserve computation with data
- Minimize data transfers

Preserve Random Forest properties

- Split nodes in an efficient way
- Sample and preserve track of OOB samples

Handle large trees

Build independent trees per machine local data

- RVotes approach
- Each node builds a subset of forest

Oxdata

Chawla, N., & Hall, L. (2004). Learning ensembles from bites: A scalable and accurate approach. The Journal of Machine Learning Research, 5, p421-451.

✓ Fast - trees are independent and can be built in parallel

O Data have to fit into memory

O Possible accuracy decrease if each node can see only subset of data

Build a distributed tree over all data

Each data point has assigned a tree node

Each data point has in/out of bag flag

Tree is built per layer

Tree is built per layer

- Exact solution no decrease of accuracy
- Elegant solution merging tree building and OOB scoring

More data transfers to exchange histograms

O Can produce huge trees (since tree size depends on data)

Tree representation

Internally stored in compressed format as a byte array

But it can be pretty huge (>10MB)

Externally can be stored as code

Lesson learned

☑ Preserving deterministic computation is crucial!

Trees need to be sent around the cloud for validation which can be expensive!

Tracking out-of-bag points can be tricky!

Clever data binning is a key trick to decrease memory consumption

Thank you!

Time for questions

Thank you!

Learn more about H₂O at Oxdata.com

or

git clone https://github.com/0xdata/h2o

Follow us at @hexadata

References

- Oxdata, H₂O: https://github.com/0xdata/h2o/
- Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning, Vol 36. Kluwer, p85–103.
- Breiman, L. (2001). Random forests. Machine Learning, 5–32. Retrieved from http://link.springer.com/article/10.1023/A:1010933404324
- Breiman, L., Cutler, A. Random Forest. http://www.stat.berkeley.edu/ <u>breiman/RandomForests/cc_home.htm</u>
- Chawla, N., & Hall, L. (2004). Learning ensembles from bites: A scalable and accurate approach. The Journal of Machine Learning Research, 5, p421-451.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. cs.yale.edu. Retrieved from http://link.springer.com/content/pdf/10.1007/978-0-387-84858-7.pdf