

Thesis 2021

Australia's Global University

Faculty of Engineering

School of Electrical Engineering and Telecommunications

End-to-End Deep Learning Automated Insomnia Diagnosis

Author: Arthur Sze

Supervisor: Beena Ahmed; Co-Supervisor: Mostafa Shahin

1. Background and Motivation

- The **EEG** (electroencephalography) signal can determine if a patient is insomniac.
- Clinical diagnosis is time consuming, requires expertise, and suffers from a lack of objective benchmark.
- Machine learning models have been used, but require complex and hand-crafted feature engineering.
- End-to-end deep learning models can learn abstract features and don't require domain specific knowledge.

2. Thesis Aims

Investigate the performance of end-to-end deep learning models for insomnia classification.

- 1. Investigate the use of a 1D CNN.
- 2. Investigate the use of a spectrogram with 2D CNN.
- 3. Compare different train and test splitting methodologies.
- 4. Explore whether data augmentation techniques lead to improved model performance.

Figure 1: System diagram comparison between machine learning and end-to-end approaches

3. Pre-Processing

- 0.5-40Hz bandpass FIR filter Hamming window
- 128Hz resampling Division into 30s frames
- 3840 samples per frame

• > $250\mu V$ artefact

- removal for DC Adjusted
- offset Frame insomnia/control labelling

EGG from a night of sleep

Figure 2: Pre and post-processed EEG

4. Multitaper Spectrogram

A low bias and low variance estimator of the spectral content, providing high-resolution EEG spectrograms compared to the single-taper spectrogram. The orthogonality property of DPSS tapers enables uncorrelated single-taper spectral estimates to be averaged to produce the multitaper spectrogram.

5. Data Augmentation

Offline data augmentation expands the existing dataset with additional samples.

Online data augmentation replaces the existing dataset with random augmentations.

Together this leads to improved generalisability.

Figure 4: Methods of data augmentation

6. Train Test Split

Inter-patient dataset splitting ensures generalisability for unseen patients.

Figure 5: Intra vs inter-patient split

7. Model Architecture

AlexNet 2D is a 2D CNN that embeds a 227 x 227 spectrogram image as input. AlexNet 1D is a variant of AlexNet 2D that embeds the 3840 time-series EEG data as input. Dropout and regularisation techniques are employed to reduce overfitting.

Figure 6: AlexNet 2D architecture

8. Results

Both models were trained on SWS sleep stage frames, utilising 9-fold cross-validation, maximum 150 training epochs, early stopping, and output class balancing.

Figure 7: Parameters and average test accuracy of model instances

0.604967

Figure 8: Training and validation accuracies between intra and inter-patient split for highlighted model instances in Figure 7

Figure 9: Confusion matrix between intra (left) and interpatient (right) split for highlighted model instances in Figure 7

9. Conclusion

AlexNet 1D is capable of achieving state-of-the-art performance (>95% acc) with intra-patient splitting, with or without data augmentation.

None

0.514509

- Splitting: models tend to learn patient-specific features rather than insomnia-related features, therefore has trouble in generalising to unseen patients.
- Model: A 1D CNN with time-series input performs better than a 2D CNN with spectrogram input Offline augmentation: improves performance across all model instances.
- Online augmentation: yields none or slightly improved performance for poorly performing models (50-70% acc); degrades performance on well-performing models (> 80% acc).

- Train on alternative sleep stages (N1, N2, REM); incorporate multiple datasets.
- Expand model to include patient-level classification.
- Explore advanced data augmentation techniques (GANs, frequency shifting).
- Test on other types of end-to-end networks (LSTMs) and ensemble methods.

• Implement alternative CNNs (ResNet, VGGNet, EEGNet).

Experiment with multitaper spectrogram parameters. Evaluate model suitability for other EEG classification problems (motor imagery BCI, other mental disorders, sleep stage classification).

10. Future Work