LEC5 Linear Sorting

https://github.com/GUMI-21/MIT6.006_note 3.19

Last Lec Review

- Comparison model $\Omega(\log(n))$ time to search
- Do faster using RAM and direct access array
- Soace O(u), reduce space via hash h(k): U->N
- Expected O(1) time dictionary ops.

	Operations $O(\cdot)$				
	Container	Static	Dynamic	Order	
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)
			delete(k)	find_max()	find_next(k)
Array	n	n	n	n	n
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$
Direct Access Array	u	1	1	u	u
Hash Table	$n_{(e)}$	$1_{(e)}$	$1_{(a)(e)}$	n	n

Sorting Alogrithms

today we back to sort

Sorting Algorithms							
Algorithm	Time $O(\cdot)$	In-place?	Stable?	Comments			
Insertion Sort	n^2	Y	Y	O(nk) for k -proximate			
Selection Sort	n^2	Y	N	O(n) swaps			
Merge Sort	$n \log n$	N	Y	stable, optimal comparison			

Comparsion Model

Sorting [], there are n! permutations of n.

n!=1*2*3...*n, take half of the sequence which bigger than n/2, $(>n/2)!>=(n/2)^{(n/2)}=\Omega(n\log(n)),$

so the *merge sort* is the best way we can do. we can't do better in comparison model.

DAA(direct access array) Sort

u is the upper bound of array.

n is the numbers of sorted items.

Direct store by sort keys

[0 k u-1]

- 1.make DAA O(u)
- 2.Store items x in index x.key O(n)
- 3.walk down direct access array, and return items seen in order
- 4.needs: O(n + u) when u is small & keys are unique. it means can be written in one word length.

WHEN $u < n^2$

written $k=>(a,b),\; a=k//n,\; b=k\%n,\; k=an+b$

k is more sensitive about a than b

- EX: n = 5 [17, 3, 24, 22, 12] to [(3,2), (0,3), (4,4), (4,2), (2,2)]
- Tuple Sort 1 by significant first
 [03 22 32 42 44] sort by a (significant thing)

[22 32 42 03 44] then sort by b it doesn't run the way.

most significant first bad!

Tuple Sort 2 by significant second
 [32 42 22 03 44] sort by b
 [03 22 32 44->42 42->44] sort by a stable.

-> if 44 & 42 's orders are stable we called *stable sorting algorithm*, if it doesn't stable, then we can't take 42 be front of 44 stably.

Counting Sort

A array of space u. Sort in-place with k and a pointer to a Sequence datastruct.

the example of upper.

runtime: O(n + u). Beacuse instantiate a array size of u & store O(1) for n items. Just sure the order of items come in order if they are collide.

• If [03 22 32 42 44] are 10 base, the sort is counting sort. If numbers are 5 base, the sort is the core of Radix Sort

Radix Sort

break up integers max size u into a base and tuple. Use counting sort to store in daa

- number of digital log_nU .
- tuple sort on digits using counting sort from least to most significant.

• runtime: O(n init of array + $n(\log_n U)$ sort of digital). if $u < n^c$ ->linear time C*n

Algorithm	Time $O(\cdot)$	In-place?	Stable?	Comments
Insertion Sort	n^2	Y	Y	O(nk) for k -proximate
Selection Sort	n^2	Y	N	O(n) swaps
	$n \log n$	N	Y	stable, optimal comparison
Merge Sort		N	Y	$O(n)$ when $\aleph = O(n)$
Counting Sort	n+u	N	Y	$O(n)$ when $u = O(n^c)$
Radix Sort	$n + n \log_n(u)$			

Comparsion model And DAA can't be compared

- Comparsion Model can take in any input, DAA need digital in a limit array.
- CM mainly care abut operation times & DAA mainly care about the cost of space and access times.s