

### AKCELEROMETRY

prof. Ing. Miroslav Husák, CSc. Přednášející:

husak@fel.cvut.cz

http://micro.feld.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.

Ing. Tomáš Teplý









#### **Akcelerometr:**

#### Akcelerometr - senzor pro měření:

- dynamické zrychlení síla vzniklá změnou rychlosti pohybujícího se předmětu (senzoru)
- statické zrychlení síla vzniklá působením zemské gravitace

(Pozn.: Při měření dynamického zrychlení je nutné přítomnou statickou složku filtrovat)

#### Měření náklonu (úhlu)

Detekce změny náklonu měřením zemské gravitace (statické zrychlení).



#### Měření setrvačných sil

Měření rychlosti, vzdálenosti nebo síly - zrychlení integrované přes čas se rovná rychlosti objektu a rychlost integrovaná přes čas je rovná vzdálenosti.



Použití - airbag aut, navigační systémy, řízení výtahů apod.

#### Měření otřesů (nárazu) nebo vibrací

Měření vibrací (např. stroje nebo zemětřesení), kontrola "správného" chodu stroje (predikce zadření ložisek apod.)





#### Accelerometers Measure "g"

To sell accelerometers, it is important to understand the concept of "g", the unit that measures the earth's gravitational pull. Resolution is the minimum amount of g's a device can measure. Here's a brief guide to some relative g measurements.

| 1 <i>g</i> | The acceleration exerted by the   |
|------------|-----------------------------------|
|            | Earth's gravity on an object (for |
|            | example, a laptop sitting on      |
|            | your desk experiences 1 $g$ of    |
|            | acceleration)                     |

- 0-2 g The acceleration range experienced when a human moves, for example, walking
- 5-30 **g** The acceleration experienced by the driver in a typical car crash
- 100-2000 g The acceleration your laptop
  would experience if you
  dropped it from 3 feet high onto
  a concrete floor
- 10,000 g The acceleration your laptop would experience if you shot it from a cannon

1 g  $\approx$  9,82 m.s<sup>-2</sup>



- <u>Měření absolutního zrychlení</u> měření zrychlení vůči zemi, např. zemská přitažlivost
- <u>Měření relativního zrychlení</u> měření zrychlení hmoty vůči pohybujícímu se předmětu

#### Relativní / absolutní senzory

- absolutní senzory využívají vztažný bod vytvořený uvnitř senzoru
- poloha vůči tomuto bodu se pak měří relativním senzorem umístěným uvnitř absolutního senzoru

#### Akcelerometr se skládá z:

- základna pevně spojená s měřeným objektem (M)
- pružně (k) uložena setrvačná hmota (m), jejíž výchylka vůči základně je vyhodnocována
- tlumení (viskózní) (b) reprezentováno jak fyzickými tlumiči, tak např. prouděním
   vzduchu při pohybu hmoty

#### Model absolutního akcelerometru



? Akcelerometr: Nakreslete a vysvětlete princip činnosti, co je to seismická hmota, napište základní rovnici popisující pohyb hmoty u jednoosého akcelerometru.

### **Akcelerometr: Princip činnosti**



#### Pohybová rovnice pro mechanickou soustavu

při vztažném bodu A, vůči kterému měříme kmity objektu y(t) - mechanická soustava je popsána rovnováhou setrvačné hmoty. Direktivní a tlumící síly, tj. pohybovou rovnicí:

$$m\frac{d^2z}{dt^2} + b\frac{dx}{dt} + ky = 0$$

Pro časově proměnné složky (základní rovnice):

$$z(t) = x(t) + y(t)$$



Akcelerometr: Nakreslete a vysvětlete princip činnosti, co je to seismická hmota, napište základní rovnici popisující pohyb hmoty u jednoosého akcelerometru.



## Akcelerometr: Nejpoužívanější principy

| Accelerometer             | Delphi Delco Electronics SensoNor                                  |           |                         |
|---------------------------|--------------------------------------------------------------------|-----------|-------------------------|
| Acceletometer             | Analog Devices                                                     | Honeywell | Silicon Sensing Systems |
| Competing technologies    | Bosch                                                              | Memsic    | VTI Hamlin              |
|                           | Main characteristics                                               | Motorola  | Xfab                    |
|                           | Most widely used principle                                         |           |                         |
| Piezo-resistor principle  | Use of silicon material                                            |           |                         |
| an a managa • a • an • an | Sensitive to temperature and stress                                |           |                         |
|                           | Large measurement range                                            |           |                         |
| Capacitive principle      | Low sensitivity to temperature                                     |           |                         |
|                           | Sensitive to electromagnetic interference                          |           |                         |
| Thermal principle         | Usually used for low-frequency tilt measurement                    |           |                         |
|                           | Use of quartz material                                             |           |                         |
| Resonating principle      | <ul> <li>Good performance but sensitive to temperature,</li> </ul> |           |                         |
|                           | vibration and shocks                                               |           |                         |
|                           | Use of quartz materia                                              | ıl        |                         |
| Piezoelectric principle   | • High performance (suitable for harsh environment)                |           |                         |
| 875 STE                   | Relatively high cost                                               |           |                         |



#### **Akcelerometr: Piezoodporový**

Zkou ška

- Princip zjišťování mechanického napětí v piezoodporové struktuře
- Piezoodporový akcelerometr ...
- Nejjednodušší princip tzv. vetknutého (kmitajícího) nosníku

#### **Princip:**

Pohybem hmoty dochází k prodlužování nebo zkracování piezoodporového elementu- princip tenzometru (změna ohmického odporu). Změna je úměrná výchylce hmoty.

#### Použití:

Od stejnosměrných hodnot zrychlení asi do 13 kHz.

? Akcelerometr s principem piezoodporovým: Nakreslete zjednodušeně základní strukturu a popište princip činnosti akcelerometru



#### Součásti:

- vetknutý nosník
- •seismická hmota
- snímací prvky v místě deformace (vetknutí) nosníku (obvykle odporové tenzometry)



### Akcelerometr: Piezoodporový (MEMS)



Integrovaný piezoodporový akcelerometr s ohybovým nosníkem







### Akcelerometr: Piezoelektrický



#### **Princip**

- Měří se poloha seismické hmotnosti vůči pouzdru senzoru piezoelektrické napětí
- Využití kompresní nebo především smykové deformace

#### **8** Nevýhoda

Piezoelektrický akcelerometr nelze použít pro měření statického zrychlení - vzniklý náboj se vybíjí přes vnitřní odpor a svody





Akcelerometr s principem piezoelektrickým: Nakreslete zjednodušeně základní strukturu a popište princip činnosti akcelerometru



#### **Akcelerometr: Tepelný**





#### **Princip:**

Seismická hmota umístěna na tenkém nosníku a umístěna v blízkosti tepelné komory nebo mezi dvěmi komorami. Hmota i nosník jsou vyrobeny mikroobráběním. Prostor mezi těmito komponenty je vyplněn teplotně vodivým plynem. Hmota je ohřívána na povrchu nebo zabudovaným ohřívačem na teplotu  $T_1$ . Pokud nepůsobí akcelerační zrychlení, potom je teplotní rovnováha mezi hmotou a ohřívanými komorami. Množství tepla  $Q_1$  a  $Q_2$  vedené od hmoty do komor přes plyn je funkcí vzdáleností  $x_1$  a  $x_2$ . Měření teploty na nosníku teplotním senzorem.

- Nevýhoda: Citlivost akcelerometru je (1% změny výstupního signálu)/g, je mnohem menší než u kapacitních nebo piezoelektrických.
- **② Výhoda**: menší náchylnost k elektromagnetickému nebo elektrostatickému rušení.



### **Akcelerometr: Kapacitní**



#### Princip činnosti (Diferenciální uspořádání):

- Pevné elektrody tvoří vůči seismické hmotě 2 kapacity
- Při pohybu dochází ke změně vzdálenosti desek změna kapacit (1 roste, 2. klesá)
- Základ složitějších používaných uspořádání např. hřebenové



? Akcelerometr s principem kapacitním: Nakreslete a vysvětlete princip činnosti



#### Hřebenové uspořádání kapacitního akcelerometru

- Paralelně pospojované diferenční kapacitory desítky až stovky
- Část diferenčních kapacitorů může sloužit jako testovací-budicí (elektrostatický princip) –
  používáno např. v ADXL akcelerometrech fy Analog Devices, viz dále
- Seismická hmota s pohyblivými elektrodami je upevněna na pružných závěsech, při akceleraci dojde k pohybu oproti rovnovážnému stavu





? Akcelerometr s principem kapacitním s hřebenovým uspořádáním: Nakreslete a vysvětlete princip činnosti



#### Hřebenové uspořádání kapacitního akcelerometru











### **See World of Microsystems**







Detail senzorové části MEMS akcelerometru

- na okrajích senzoru 12 samotestovacích buňek (dif. kapacitorů)
- uprostřed 42 detekčních buněk
- vyrobeno technologií mikroobrábění Si
- seismická hmota je upevněna složenými pružinami (kotva)



## Hřebenové uspořádání kapacitního akcelerometru

- na okrajích senzoru 12 samotestovacích buňek (dif. kapacitorů)
- uprostřed 42 detekčních buněk
- vyrobeno technologií mikroobrábění Si
- seismická hmota je upevněna složenými pružinami (kotva), společné elektrody diferenčního kapacitoru vybíhají z této hmoty

MEMS akcelerometr s elektronickými obvody



### **Akcelerometr: Kapacitní 1D a 2D**

#### **Analog Devices ADXL:**

 výroba MEMS technologií, integrují v sobě elektromechanický akcelerometr + vyhodnocovací elektroniku → analogový signál úměrný zrychlení

Čip ADXL 150; strana 1,94mm oblast senzoru 753x657μm









XL250



### **Akcelerometr: Kapacitní 3D (osa z)**





### **Akcelerometr: Kapacitní 2D a 3D**



### Akcelerometr: Kapacitní - aplikace

# 3-osý akcelerometr a 3- osý magnetometr LSM303C od STMicroelectronics

Miniaturní čip, určený např. do smartphonů nebo "chytrých" hodinek pro měření akcelerace a magnetického pole s 16bitovým číslicovým výstupem ve spojitosti s pokročilými možnostmi navigace nebo též funkcemi, citlivými na pohyb.



- 3-osý magnetometr + 3-osý akcelerometr .
- pouzdro 2 mm x 2 mm
- akcelerometr volitelně ±2, ±4 či ±8 g.
- Magnetometr ±16 Gauss nebo ±1 600 μT
- 16bitový datový výstup s údaji ze 3 měřicích kanálů
- Nízká hladina šumu včetně minimální vlastní spotřeby
- pokročilé řízení napájení, teplotní kompenzace, dostatečně široký rozsah napájecího napětí analogové části, programovatelné generátory přerušení pro pohyb, volný pád a detekci magnetického pole







### Akcelerometr: Kapacitní - aplikace

- Digitální MEMS akcelerometr (3-osý akcelerometr) pro každý mobilní telefon.
- Pro Samsung a Sony Ericsson je vyrábí firma Bosch Sensortec.
- Akcelerometry od Bosch Sensortec: miniaturními rozměry a velmi nízká spotřeba
- Pouzdro 2 x 2 mm.



### Akcelerometr: Kapacitní - aplikace







### Otázky

- Akcelerometr: Nakreslete a vysvětlete princip činnosti, co je to seismická hmota, napište základní rovnici popisující pohyb hmoty u jednoosého akcelerometru
- 2. Akcelerometr s principem piezoelektrickým: Nakreslete zjednodušeně základní strukturu a popište princip činnosti akcelerometru
- 3. Akcelerometr s principem piezoodporovým: Nakreslete zjednodušeně základní strukturu a popište princip činnosti akcelerometru
- 4. Akcelerometr s principem kapacitním: Nakreslete a vysvětlete princip činnosti
- 5. Akcelerometr s principem kapacitním s hřebenovým uspořádáním: Nakreslete a vysvětlete princip činnosti

