

SUMMARY

2016.10.8

Knowledge

Fault&Experience

Plan

Finished Codes

Reduce Spatial Resolution

Image Interpolation

Arithmetic Operations

Set Operations

Geometric Spatial Transformations

a k

Fault&Experience

Create a new image

Traverse all pixels in new image

Assignment by calculating

After

Question

Image Interpolation

Image Interpolation

Nearest neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Nearest Neighbor Interpolation

Nearest Neighbor Interpolation

Code

Easy

Result

Poor

$$f(x,y) \approx \frac{(x_2 - x)(y_2 - y)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{11}) + \frac{(x - x_1)(y_2 - y)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{21}) + \frac{(x_2 - x)(y - y_1)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{12}) + \frac{(x - x_1)(y - y_1)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{22})$$

```
 \begin{aligned} & sum.val \llbracket 0 \rrbracket = (y2-y)*(m1.val \llbracket 0 \rrbracket *(x2-x) + m2.val \llbracket 0 \rrbracket *(x-x1)) + (y-y1)*(m3.val \llbracket 0 \rrbracket *(x2-x) + m4.val \llbracket 0 \rrbracket *(x-x1)); \\ & sum.val \llbracket 1 \rrbracket = (y2-y)*(m1.val \llbracket 1 \rrbracket *(x2-x) + m2.val \llbracket 1 \rrbracket *(x-x1)) + (y-y1)*(m3.val \llbracket 1 \rrbracket *(x2-x) + m4.val \llbracket 1 \rrbracket *(x-x1)); \\ & sum.val \llbracket 2 \rrbracket = (y2-y)*(m1.val \llbracket 2 \rrbracket *(x2-x) + m2.val \llbracket 2 \rrbracket *(x-x1)) + (y-y1)*(m3.val \llbracket 2 \rrbracket *(x2-x) + m4.val \llbracket 2 \rrbracket *(x-x1)); \\ & newimage.at < Vec3b > (X,Y) \llbracket 0 \rrbracket = sum.val \llbracket 0 \rrbracket / ((x2-x1)*(y2-y1)); \\ & newimage.at < Vec3b > (X,Y) \llbracket 1 \rrbracket = sum.val \llbracket 1 \rrbracket / ((x2-x1)*(y2-y1)); \\ & newimage.at < Vec3b > (X,Y) \llbracket 2 \rrbracket = sum.val \llbracket 2 \rrbracket / ((x2-x1)*(y2-y1)); \end{aligned}
```

Contrast

nearest

bilinar

Contrast

nearest bilinar

$$s(x,y) = f(x,y) + g(x,y)$$

$$d(x,y) = f(x,y) - g(x,y)$$

$$p(x,y) = f(x,y) \times g(x,y)$$

$$v(x,y) = f(x,y) \div g(x,y)$$

$$s(x,y) = f(x,y) + g(x,y)$$

Reduce the noise content

$$\bar{g}(x,y) = \frac{1}{K} \sum_{i=0}^{K} g_i(x,y)$$

$$d(x,y) = f(x,y) - g(x,y)$$

Enhance differences between images

$$p(x,y) = f(x,y) \times g(x,y)$$

Region of interest

Fault&Experience


```
Average.val[0] = shadow.at<Vec3b>(i,j)[0]/255;
Average.val[1] = shadow.at<Vec3b>(i,j)[1]/255;
Average.val[2] = shadow.at<Vec3b>(i,j)[2]/255;
```

Result

$$A = \{(x, y, z)\}$$

$$A^{c} = \{(x, y, K - z) | (x, y, z) \in A \}$$

A

$$A^{c} = \{(x, y, K - z) | (x, y, z) \in A \}$$

dst.at < Vec3b > (i,j)[0] = 255-inimage.at < Vec3b > (i,j)[0]; dst.at < Vec3b > (i,j)[1] = 255-inimage.at < Vec3b > (i,j)[1]; dst.at < Vec3b > (i,j)[2] = 255-inimage.at < Vec3b > (i,j)[2];

$$A \xrightarrow{3\sum f(x,y)} E$$

Result

$$A \cup B = \{ \max_{z} (a, b) \mid a \in A, b \in B \}$$

```
if (dst.at<Vec3b>(k,l)[0]>sumimage.at<Vec3b>(k,l)[0])
  fin.at<Vec3b>(k,l)[0]=inimage.at<Vec3b>(k,l)[0];
else fin.at<Vec3b>(k,l)[0]=sum.val[0];
if (dst.at<Vec3b>(k,l)[1]>sumimage.at<Vec3b>(k,l)[1])
  fin.at<Vec3b>(k,l)[1]=inimage.at<Vec3b>(k,l)[1];
else fin.at<Vec3b>(k,l)[1]=sum.val[1];
if (dst.at<Vec3b>(k,l)[2]>sumimage.at<Vec3b>(k,l)[2])
  fin.at<Vec3b>(k,l)[2]=inimage.at<Vec3b>(k,l)[2];
else fin.at<Vec3b>(k,l)[2]=sum.val[2];
```


Geometric Spatial Transformations

Geometric Spatial Transformations

transformation interpolation of coordinates

Geometric Spatial Transformations

$$(x,y) = T\{(v,w)\}$$

Rotation

$$T = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{cases} x = v\cos\theta - w\sin\theta \\ y = v\sin\theta + w\cos\theta \end{cases}$$

Rotation

Nearest neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Contrast

```
m1=reimage.at<Vec3b>(x1,y1);
m2=reimage.at<Vec3b>(x2,y1);
m3=reimage.at<Vec3b>(x1,y2);
m4=reimage.at<Vec3b>(x2,y2);
```

```
 \begin{array}{l} m1 = inimage.at < Vec3b> \\ ((int)(x1*cos(201)-y1*sin(201)), (int)(x1*sin(201)+y1*cos(201))); \\ m2 = inimage.at < Vec3b> \\ ((int)(x2*cos(201)-y1*sin(201)), (int)(x2*sin(201)+y1*cos(201))); \\ m3 = inimage.at < Vec3b> \\ ((int)(x1*cos(201)-y2*sin(201)), (int)(x1*sin(201)+y2*cos(201))); \\ m4 = inimage.at < Vec3b> \\ ((int)(x2*cos(201)-y2*sin(201)), (int)(x2*sin(201)+y2*cos(201))); \\ \end{array}
```

Result

initial

nearest

bilinear

Thank you

