Prof.: Anahí Gajardo

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Listado 1

- 1. Exprese las siguientes afirmaciones en lenguaje matemático y determine su valor de verdad.
 - a) Todo conjunto que se puede escribir como unión de otros dos conjuntos no vacíos es no vacío.
 - b) Existen números naturales que se pueden expresar como multiplicación de otros tres.
 - c) Si multiplico un número natural por otro, no nulo, obtengo un número mayor o a lo más igual.
 - d) A es el conjunto de todos los números que son múltiplos de 3 y divisores de 84.
 - e) A es el conjunto de todos los números naturales que dividen a todos los números enteros.
 - f) A es el conjunto de todos los conjuntos cuyos elementos son números naturales.
 - g) A es el conjunto de todos los números que se pueden escribir como resta de dos números naturales.
 - h) Existe un único conjunto cuyos elementos no están en él.
- 2. Determine cual(es) de las siguientes expresiones tiene errores sintácticos, justifique.
 - a) $(\forall x \in A)(\exists b \in A) \land (\exists n \in \mathbb{N}) b^n = x.$
 - b) $(\exists a \in A)(\exists b \in A) \ a + b \in A$.
 - c) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) \ x \land y \in \mathbb{N}.$
 - d) $(\forall x > n)(\exists n \in \mathbb{Z}) \ x + n < 0.$
 - $e) (\exists n \in \mathbb{Z})(\forall x > n) x + n < 0.$
 - f) $(\exists n \in \mathbb{Z})(\forall n < x) \ x + n < 0.$
- 3. Demuestre que las siguientes proposiciones son verdaderas.
 - a) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(\forall z \in \mathbb{N}) \ yz > x$.
 - b) $(\forall x \in \mathbb{R}) [x > 1 \rightarrow x^2 > x].$
 - c) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})[x < y \to x^2 < y^2].$

- 4. Demuestre que las siguientes proposiciones son falsas.
 - a) $(\forall y \in \mathbb{N})(\forall z \in \mathbb{N})(\exists x \in \mathbb{N}) |z y| > x$.
 - b) $(\forall x \in \mathbb{R}) \ x^2 > x$.
 - c) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}) \ x^2 < y + 1.$
- 5. Para cada una de las siquientes expresiones: escriba en castellano, niegue, determine sus variables libres y si no las tiene, determine su valor de verdad (justifique).
 - a) $(\forall n \in \mathbb{N}) \ n^2 + 2n \text{ es par }.$
 - b) $(\exists x \in \mathbb{R}) \ x^2 x 6 = 0.$
 - c) $(\exists x \in \mathbb{R}) \ x^2 \ge 0.$
 - d) $(\exists n \in \mathbb{N})(\forall \epsilon > 1) \ (n \le \epsilon \to \frac{1}{n} + 1 < \epsilon).$
 - e) $(\forall \epsilon > 1)(\exists n \in \mathbb{N})(n \le \epsilon \to \frac{1}{n} + 1 < \epsilon).$
 - $f) \ (\forall \epsilon > 0)(\exists m \in \mathbb{N}) \left(\frac{1}{m} \le \epsilon \longrightarrow \frac{1}{m} + 1 < \epsilon\right).$
 - $g) \ (\forall n \in \mathbb{N}) \ (n \text{ es par } \rightarrow n^2 + n + 19 \text{ es primo }).$
 - $h) \ (\exists x \in \mathbb{R}) \ \frac{1}{x^2+1} > 1.$
 - $i) \ (\forall x \in \mathbb{R}) \ (x^2 < y^2 \to x < y).$
 - $j) \ (\forall x \in \mathbb{R}) \ (\forall y \in \mathbb{R}) \ [x + y \ge 2 \to (x \ge 1 \lor y \ge 1)].$

6. A continuación damos diversas definiciones, el objetivo es que usted aprenda a interpretarlas. Para ello le pediremos una serie de ejercicios simples.

Definición 1. Dados dos conjuntos $A,B \subseteq U$ se define:

$$A \boxplus B = \{a + b : a \in A \land b \in B\}$$

Definición 2. Dados dos conjuntos $A,B \subseteq U$ y dados $\bot, \top \notin U$ se define:

$$A \sqcup B = (\{\bot\} \times A) \cup (\{\top\} \times B)$$

Definición 3. Dada una familia de conjuntos $\mathcal{F} = \{B_i\}_{i=1}^n$ de U, se define:

$$\nu(\mathcal{F}) = \{ A \in \mathcal{P}(U) : \exists i \in \{1, ..., n\} \ B_i \subseteq A \}$$

Definición 4. Dada una familia de conjuntos $\mathcal{F} = \{B_i\}_{i=1}^n$ de U, se define:

$$\mu(\mathcal{F}) = \{ A \in \mathcal{P}(U) : \forall i \in \{1, ..., n\} \ B_i \subseteq A \}$$

Parte 0. Sintaxis. Complete la siguiente tabla:

Definición Nro	objeto	tipo de objeto (número, conjunto, familia de Conj. o función)
1	$A \boxplus B$	
2	$A \sqcup B$	
3	$\nu(\mathcal{F})$	
4	$\tau(\mathcal{F})$	

Parte I. Interpretación de conjuntos, ejemplos individuales. En los siguientes ejercicios considere $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{3, 7, 8, 9\}$ y $B = \{6, 7\}$ y $\mathcal{F} = \{B_i\}_{i=1}^3$, con $B_1 = \{0, 1, 3, 5, 6, 7, 8\}$, $B_2 = \{0, 1, 2, 3, 5, 6, 7, 8\}$ y $B_3 = \{0, 1, 3, 4, 5, 6, 7, 8\}$. Calcule:

a) $A \boxplus B$.

 $e) B \sqcup B.$

 $i) \ \nu(\{\phi\}).$

 $b) B \boxplus B.$

 $f) A \sqcup \phi.$

 $j) \ \mu(\{U\}).$

 $c) A \boxplus \phi$.

 $g) \ \nu(\mathcal{F}).$

 $k) \ \nu(\nu(\mathcal{F})).$

 $d) A \sqcup B.$

 $h) \mu(\mathcal{F}).$

 $l) \mu(\nu(\mathcal{F})).$

Ejemplo. $\{1,2\} \sqcup \{1,2,4\} = \{(\bot,1),(\bot,2),(\top,1),(\top,2),(\top,4)\}.$