Exercise 3.1

$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}$$

Exercise 3.2

- a) 0100 1011
- b) $\{e_1, e_2, e_3, e_5, e_6\}$
- c) Intersection \rightarrow AND Union \rightarrow OR Negation \rightarrow NOT

Exercise 3.3

We assume $A = \mathbb{N}_0$ and $B = \mathbb{Z}_- = \{-1, -2, ...\}$. Then $|A| = |\mathbb{N}_0|$ and $|A \cup B| = |\mathbb{Z}| = |\mathbb{N}_0|$ by Exercise 3.4. So $|A| = |A \cup B|$.

Exercise 3.4

```
\begin{array}{l} 0 \mapsto 0 \\ 1 \mapsto 1 \\ 2 \mapsto -1 \\ 3 \mapsto 2 \\ 4 \mapsto -2 \\ \vdots \end{array}
```

In the image we only have elements from \mathbb{Z} and we map to every element of \mathbb{Z} just once.

Exercise 3.5

Proof. We can use the same Proof idea as in the slides for the proof that \mathbb{Q}_+ is countably infinite and just prepend a minus sign in front of every fraction in order to proof that \mathbb{Q}_- is also countably infinite. By the theorem proven in the lecture we know that the union of \mathbb{Q}_- , \mathbb{Q}_+ and $\{0\}$ is countable.

Exercise 3.6

TBS: The set of tarradiddles T is countable.

Remark: We will use 1, 2, 3 instead of the Taradiddle symbols.

Proof. We define a first set containing just the elementary symbols: $\Sigma_1 = \{1, 2, 3\}$. Then we define a set containing all possible combinations of element tuples: $\Sigma_2 = \{11, 12, 13, 21, 22, 23, 31, 32, 33\}$, analogously also the sets Σ_3 , Σ_4 and so forth. Those sets are countable since they are finite. The set $\bigcup_{i=1}^{\infty} \Sigma_i$ is countable by the lectures theorem and so is the subset T of tarradiddles.