

WHAT IS CLAIMED IS:

1. A sapogenin according to the formula:

wherein R_1 is H, glc or $glc^{1-2} glc$, R_2 is H or OH, R_3 is H or OH; and when R_1 , R_2 and R_3 are H, there are double bonds at positions 20(21) and 24(25); and when R_1 is H, R_2 is OH and R_3 is OH, there are double bonds at positions 20(22) and 25(26); and when R_1 is H, R_2 is OH and R_3 is H, there are double bonds at positions 20(22) and 24(25); and when R_1 is glc, R_2 is H and R_3 is H, there are double bonds at positions 20(21) and 24(25); and when R_1 is $glc^{1-2} glc$, R_2 is H and R_3 is H, there are double bonds at positions 20(22) and 24(25); and pharmaceutically acceptable compositions incorporating said sapogenins.

2. A sapogenin as claimed in claim 1 wherein R_1 , R_2 and R_3 are H, and there are double bonds at 20(21) and 24(25).

3. A sapogenin as claimed in claim 1 wherein R_1 is H, R_2 and R_3 are OH, and there are double bonds at 20(22) and 25(26).

4. A sapogenin as claimed in claim 1 wherein R_1 is H, R_2 is OH and R_3 is H, and there are double bonds at 20(22) and 24(25).

5. A sapogenin as claimed in claim 1 wherein R_1 is glc, R_2 and R_3 are H, and there are double bonds at 20(21) and 24(25).

6. A sapogenin as claimed in claim 1 wherein R1 is $\text{glc}^{1-2}\text{glc}$, R2 and R3 are H, and there are double bonds at 20(22) and 24(25).

7. The use of a sapogenin according to the formula recited in claim 1 in treating cancer cells in a human being suffering from cancer, comprising killing cancer cells, inducing apoptosis in cancer cells, or inhibiting multiplication of cancer cells, or any combination thereof.

8. The use of a sapogenin according to the formula recited in claim 1 in 10 treating multi-drug resistant cancer cells (MDR) in a human being suffering from cancer, comprising using the sapogenins either singly, or in combination with one another, or in combination with other chemotherapy agents.

9. A sapogenin according to the formula:

15

10. A sapogenin according to the formula:

20

11. A sapogenin according to the formula:

5

12. A sapogenin according to the formula:

10 13. A sapogenin according to the formula:

Suff C P
5
14. A method of treating cancer in human beings or other animals suffering from cancer comprising administering to said human beings a therapeutically effective amount of a composition comprising one or more of PAM-120, PBM-100 and PBM-110.

15. A method of treating cancer in human beings or other animals suffering from cancer comprising administering to said human beings a therapeutically effective amount of a composition comprising one or more of PAN-20 and PAN-

10 30.

Suff C P 2
15
16. The cancer-treatment method of claim 14 comprising a pharmaceutically effective amount of PAM-120, PAM-100 and PBM-110 with or without one or more pharmaceutically acceptable carriers, and one or more chemotherapeutic agents.

17. The cancer-treatment method of claim 14, wherein the active ingredient is administered in a dosage of between 5 micrograms to 50 grams per kg body weight per day.

20

18. The cancer-treatment method of claim 14, wherein the active ingredient is administered in a dosage of between 50 micrograms to 5 grams per kg body weight per day.

25

19. The cancer-treatment method of claim 17, wherein the form of the composition is selected from the group consisting of an orally administrable form, an injectable form, and a topically applicable form.

30

20. The cancer-treatment method of claim 19, wherein the orally administrable form is selected from the group consisting of a tablet, a powder, a suspension, an emulsion, a capsule, a granule, a troche, a pill, a liquid, a spirit, a syrup and a lemonade.

35

21. The cancer-treatment method of claim 19, wherein the injectable form is selected from the group consisting of a liquid, a suspension and a solution.

22. The cancer-treatment method of claim 19, wherein the topically applicable

form is selected from the group consisting of a drop, a paste, an ointment, a liquid, a powder, a plaster, a suppository, an aerosol, a liniment, a lotion, an enema and an emulsion.

5 23. The cancer-treatment method of claims 14 or 15, wherein the composition
is administered to human beings who are receiving one or more other anti-cancer
treatments.

10 24. The cancer-treatment method in claims 14 or 15, wherein the composition
is formulated with one or more other anti-cancer agents, for additive treatment
effects, or synergistic treatment effects on multi-drug resistance cancers or any
other cancer type.

15 25. A process of preparing a sapogenin as claimed in claim 1 which comprises
producing a ginsenoside extract from plants selected from the group consisting of
panax ginseng, panax quinguefol and panax notoginseng, or a sapogenin source
from some other plant, and proceeding according to the following steps:

20 (a) mixing the ginsenoside extract with water;

25 (b) (i) mixing the ginsenoside extract and water with a short-chain
(1-5 carbon) alkali-metal alcoholate solution or a hydroxide-
ethanol solution to produce a mixture; and

30 (ii) placing the resultant mixture in a reaction tank so that the
resultant mixture can undergo chemical reactions under
required high temperature and high pressure; or

35 (c) (i) alternatively, mixing the ginsenosides extract with ethanol;
(ii) mixing the extract and ethanol with alkali-metal alcoholates
solution to produce a mixture, and

40 (iii) placing the resultant mixture in a reaction tank so that the
resultant mixture can undergo chemical reactions under
required high temperature and high pressure;

45 (d) after the reaction is completed, collecting an intermediate product
of a mix of gensenosides and sapogenins from the ethanol mixture;
and

50 (e) separating the desired sapogenins from the intermediate saponin-
sapogenin mixture by silica-gel-column chromatography.

55 26. A process as claimed in claim 25 wherein the alkali metal can be

potassium or sodium.

27. A process as claimed in claim 25 wherein the hydroxide can be sodium hydroxide or potassium hydroxide.

5

28. A process as claimed in claim 25 wherein the alkali-metal alcoholates solution or the concentration of hydroxide-ethanol solution is 5~50% (W/V).

10

29. A process as claimed in claim 25 wherein the ethanol has 1~5 carbon atoms.

30. The process as claimed in claim 25 wherein the temperature of the reaction tank is between 150~300°C and the reaction pressure is between 2.5~8.4 MPa.

15

31. A process of preparing a sapogenin as claimed in claim 1 which comprises producing a ginsenoside extract from plants selected from the group consisting of panax ginseng, panax quinguefol and panax notoginseng, and proceeding according to the following steps:

20

- (a) mixing the ginsenoside extract with water;
- (b) mixing the ginsenoside extract and water with a short-chain (1-5 carbon) alkali-metal alcoholate solution or a hydroxide-ethanol solution to produce a mixture; and
- (c) placing the resultant mixture in a reaction tank so that the resultant mixture can undergo chemical reactions under required high temperature and high pressure; or
- (d) after the reaction is completed, collecting an intermediate product of a mix of gensenosides and sapogenins from the ethanol mixture; and
- (e) separating the desired sapogenins from the intermediate saponin-sapogenin mixture by silica-gel-column chromatography.

25

32. A process of preparing a sapogenin as claimed in claim 1 which comprises producing a ginsenoside extract from plants selected from the group consisting of panax ginseng, panax quinguefol and panax notoginseng, and proceeding according to the following steps:

35

- (a) mixing the ginsenoside extract with water;
- (b) alternatively, mixing the ginsenosides extract with ethanol;

- (c) mixing the extract and ethanol with alkali-metal alcoholates solution to produce a mixture, and
- (d) placing the resultant mixture in a reaction tank so that the resultant mixture can undergo chemical reactions under required high temperature and high pressure;
- 5 (e) after the reaction is completed, collecting an intermediate product of a mix of gensenosides and saponins from the ethanol mixture; and
- (f) separating the desired saponins from the intermediate saponin-saponin mixture by silica-gel-column chromatography.

[Handwritten signature]
C10