A NOTE ON MARKOV DIFFUSION

RUIHAN XU

1. Markov Semigroup

A semigroup $\mathbf{P} = (P_t)_{t \geq 0}$ is a family of operators acting on some suitable function space with the semigroup property $P_t \circ P_s = P_{t+s}, P_0 = Id$. We can define a **Markov semigroup** on a measurable state space (E, \mathcal{F}) and Markov process $\{X_t\}_{t>0}$ by

$$P_t f(x) = \mathbb{E}[f(X_t)|X_0 = x].$$

Given transition function $p_t(x, y)$, which can also be interpreted as the probability density at y at time t when $X_0 = x$, we have

$$P_t f(x) = \int_E f(y) p_t(x, y) dy.$$

By duality, the semigroup also act on the set of measure ν via

$$\int_{E} P_{t} f d\nu = \int_{E} f d(P_{t}^{*} \nu),$$

where $P_t^*\nu$ is the law of X_t if ν is the law of X_0 . μ is called an **invariant measure** if $P_t^*\mu = \mu$ for every $t \geq 0$.

By Jensen's inequality, for every convex function ϕ $t \geq 0$ and measurable function f on E, we have

$$P_t(\phi(f)) \ge \phi(P_t f).$$

2. Infinitesimal Generators and Carré du Champ Operators

2.1. Infinitesimal Generators. Considering a family of bounded linear operators $(P_t)_{t\geq 0}$ on a Banach space \mathcal{B} with semigroup properties and continuity $P_t f \to f$ for every f and $t \to 0$, the Hille-Yosida theory indicates that there is a dense linear subspace of \mathcal{B} , called the domain \mathcal{D} of the semigroup $(P_t)_{t\geq 0}$, on which the derivative at t=0 of P_t exists in \mathcal{B} . The operator that maps $f \in \mathcal{D}$ to this derivative $Lf \in \mathcal{B}$ of $P_t f$ at t=0 is a linear (usually unbounded) operator, called the **infinitesimal generator** of the semigroup $(P_t)_{t\geq 0}$, denoted L. Applied to a Markov semigroup $\mathbf{P} = (P_t)_{t\geq 0}$ with state space (E, \mathcal{F}) and invariant measure μ , The infinitesimal generator L of \mathbf{P} in $\mathcal{B} = \mathbb{L}^2(\mu)$ is called the Markov generator of the semigroup $\mathbf{P} = (P_t)_{t\geq 0}$ with $\mathbb{L}^2(\mu)$ -domain $\mathcal{D}(L)$.

The linearity of the operators P_t , together with the semigroup property, shows that L is the derivative of P_t at any time t > 0:

$$\frac{1}{s} [P_{t+s} - P_t] = P_t \left(\frac{1}{s} [P_s - \text{Id}] \right) = \left(\frac{1}{s} [P_s - \text{Id}] \right) P_t,$$
$$\partial_t P_t = L P_t = P_t L \quad \text{by letting } s \to 0.$$

Note that replacing L with cL for some c > 0 amount to the time change $t \to ct$.

2 RUIHAN XU

Recall that $L = \lim_{t\to 0^+} \frac{P_t - \mathrm{Id}}{t}$. For convex function ϕ , if $f \in \mathcal{D}(L)$ and $\phi(f) \in \mathcal{D}(L)$, we have

$$L\phi(f) \ge \phi'(P_0 f) Lf = \phi'(f) Lf.$$

Note that if μ is the invariant measure, then $\int_E P_t f d\mu = \int_E f d\mu$, thus Lf = 0.

Example 2.1 (jump Markov process). Let X_t be a jump Markov process on \mathcal{X} with rate kernel $\lambda(x, dy)$, then it's holding rate at state x is

$$\Lambda(x) = \int_{\mathcal{X}} \lambda(x, dy),$$

which means its holding time at state x is exponentially distributed with rate $\Lambda(x)$ and the density that it chooses y as next state is $\frac{\lambda(x,dy)}{\Lambda(x)}$.

Then infinitesimal generator L of jump Markov process X_t is

$$(Lf)(x) = \int_{\mathcal{X}} (f(y) - f(x))\lambda(x, dy).$$

2.2. Carré du Champ Operators. Assume that we are given a vector subspace \mathcal{A} of the domain $\mathcal{D}(L)$ such that for every pair (f,g) of functions in \mathcal{A} , the product fg is in the domain $\mathcal{D}(L)$ (\mathcal{A} is an algebra). Then the bilinear map

$$\Gamma(f,g) = \frac{1}{2} \left[L(fg) - fLg - gLf \right]$$

defined for every $(f, g) \in \mathcal{A} \times \mathcal{A}$ is called the **carré du champ operator** of the Markov generator L. To lighten the notation, we set $\Gamma(f) = \Gamma(f, f)$.

Example 2.2. The Laplacian $L = \Delta$ on \mathbb{R}^n gives rise to the standard carré du champ operator $\Gamma(f,g) = \nabla f \cdot \nabla g$ (the usual scalar product of the gradients of f and g) for smooth functions f,g on \mathbb{R}^n .

Note that $\phi(x) = x^2$ is convex, thus in the limit as $t \to 0$ $L(f^2) \ge 2fLf$. It follows that the carré du champ operator is positive on \mathcal{A} in the sense that

$$\Gamma(f, f) \ge 0.$$

By Cauchy-Schwarz inequality it immediately yields

$$\Gamma(f,g)^2 \le \Gamma(f)\Gamma(g), \quad (f,g) \in \mathcal{A} \times \mathcal{A}.$$

3. Fokker-Planck Equations

Recall that given a Markov semigroup $\mathbf{P} = (P_t)_{t\geq 0}$ with infinitesimal generator L, there might exist a density kernel $p_t(x,y)$ with respect to some measure m, such that

$$P_t f(x) = \int_E f(y) p_t(x, t) dm(y).$$

Then $p_t(x,y)$ is the solution of the heat equation

$$\partial_t p_t(x,y) = L_x p_t(x,y), \quad p_0(x,y) dm(y) = \delta_x,$$

where L_x denotes the operator L acting on the x variables. This expresses that

$$\partial_t P_f = L P_t f.$$

SHORT TITLE

3

One may also consider the dual equation, called the **Fokker-Planck equation** (or Kolmogorov forward equation)

$$\partial_t p_t(x,y) = L_y^* p_t(x,y),$$

where L^* is the adjoint of L with respect to the reference measure m in the sense that

$$\int_{E} fL^{*}gdm = \int_{E} gLfdm.$$

Proposition 3.1. Consider infinitesimal generator L on a diffusion process $\{X_t\}_t \geq 0 \in$, $X_t \in \mathbb{R}^n$

$$dX_t = m(t, X_t)dt + \sigma(t, X_t)dW_t$$

where W_t is standard Brownian motion in \mathbb{R}^n . Define $\Sigma = \sigma \sigma^{\top}$ Then we have

$$Lf = \sum_{i=1}^{n} m_i(x,t)\partial_{x_i} f + \frac{1}{2} \sum_{i,j} \Sigma_{ij}(x,t) \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$= m(x,t) \cdot \nabla f + \frac{1}{2} Tr(\Sigma(x,t) \nabla^2 f),$$

$$L^* p = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} (m_i(x,t) p(x)) + \frac{1}{2} \sum_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} (\Sigma_{ij}(x,t) p(x))$$

$$= -\nabla \cdot (m(x,t) p(x)) + \frac{1}{2} \nabla \cdot (\Sigma(x,t) \nabla p(x)).$$

4. DIRICHLET FORMS AND SPECTRAL DECOMPOSITION

4.1. Dirichlet Forms. We call a Markov semigroup $\mathbf{P} = (P_t)_{t\geq 0}$ a symmetric Markov semigroup with respect to the invariant μ (or reversible measure) if for all function $f, g \in \mathbb{L}^2(\mu)$ and $t \geq 0$ we have

$$\int_{E} f P_{t} g d\mu = \int_{E} g P_{t} f d\mu.$$

If the semigroup $\mathbf{P} = (P_t)_{t\geq 0}$ admits density kernels $p_t(x,y)$, then $p_t(x,y)$ is symmetric. Differentiating the equation leads to

$$\int_{E} f \, Lg d\mu = \int_{E} g \, Lf d\mu.$$

For a symmetric Markov semigroup $\mathbf{P} = (P_t)_{t \geq 0}$ with infinitesimal generator L, reversible measure μ and carré du champ operator Γ on a class \mathcal{A} of functions on E, consider the (symmetric) bilinear operator

$$\mathcal{E}(f,g) = \int_E \Gamma(f,g) \, d\mu, \quad (f,g) \in \mathcal{A} \times \mathcal{A}.$$

Note that since $\int_E \Gamma(f,g) d\mu = \frac{1}{2} \int_E L(fg) - f Lg - g Lf d\mu = -\int_E f Lg d\mu$, we have

$$\mathcal{E}(f,g) = \int_{E} \Gamma(f,g) \, d\mu = -\int_{E} f Lg \, d\mu$$

RUIHAN XU

A direct computation gives

$$\partial_t \int_E (P_t f)^2 d\mu = 2 \int_E P_t f \, L P_t f \, d\mu = -2\mathcal{E}(P_t f),$$

and thus

4

$$\int_{E} f^{2} d\mu - \int_{E} (P_{t}f)^{2} d\mu = 2 \int_{0}^{t} \mathcal{E}(P_{s}f) ds \ge 2t \mathcal{E}(P_{t}f).$$

The inequality is by noting that

$$\begin{split} \partial_t \mathcal{E}(P_t f) &= -\partial_t \int_E P_t f \, L P_t f \, d\mu \\ &= -\int_E (L P_t f)^2 d\mu - \int_E P_t f \, L^2 P_t f \, d\mu \\ &= -2 \int_E (L P_t f)^2 d\mu. \end{split}$$

Changing t into $\frac{t}{2}$ we have

$$\mathcal{E}(P_t f) = \frac{1}{t} \left[\int_E f^2 d\mu - \int_E (P_{t/2} f)^2 d\mu \right]$$

$$= \frac{1}{t} \left[\int_E f^2 d\mu - \int_E f P_{t/2} P_{t/2} f d\mu \right]$$

$$= \frac{1}{t} \left[\int_E f^2 d\mu - \int_E f P_t f d\mu \right]$$

$$= \frac{1}{t} \left[\int_E f (f - P_t f) d\mu \right].$$

4.2. **Spectral Decomposition.** For the generator of a symmetric semigroup, we can analyze it by conducting a spectral decomposition. Assume that $(e_k)_{k\in\mathbb{N}}$ is a Hilbertian basis of $\mathbb{L}_2(\mu)$ consisting of eigenfunctions of L with corresponding sequence of eigenvalues $(\lambda_k)_{k\in\mathbb{N}}$. Hence

$$-Le_k = \lambda_k e_k, \quad k \in \mathbb{N}.$$

The reason of negative sign can be justified by observing that

$$\mathcal{E}(e_k) = \int_E \Gamma(e_k, e_k) d\mu = -\int_E e_k L e_k d\mu = \lambda_k \int_E e_k^2 d\mu = \lambda_k,$$

where $\mathcal{E}(f)$ is sometimes interpreted as the energy of f.

Since $P_t = e^{tL}$, we can decompose a function $f = \sum_{k \in \mathbb{N}} f_k e_k$ and have

$$P_t f = \sum_{k \in \mathbb{N}} e^{-\lambda_k t} f_k e_k.$$

And the density kernel can represented as

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-\lambda_k t} e_k(x) e_k(y)$$

SHORT TITLE 5

5. Poincaré Inequality

The spectral decomposition shows that as time evolves, $P_t f$ will converge to a constant, which corresponds to eigenvalue $\lambda_0 = 0$. The speed of convergence is actually governed