#### 1. Resumo

O objetivo deste projeto é treinar um algoritmo de *Machine Learning* para identificar pessoas que tiveram envolvimento com o escândalo de fraude e corrupção da Enron, chamaremos estas pessoas de POIs (*Person of Interest* ou Pessoa de Interesse). Utilizaremos uma base de dados pré-processados fornecidos pela Udacity com informações financeiras e relativas a emails das pessoas.

# 2. Exploração dos dados

Na base de dados, possuímos 146 registros, onde 18 são marcados como sendo POI e 128 sendo não-POI. Cada um desses registros, possui 21 atributos, relacionados as finanças da pessoa, aos seus emails e um atributo que define se ela é ou não uma POI. Os atributos possuem muitos valores nulos, o que dificulta a avaliação, segue uma visualização abaixo da quantidade de dados faltantes por atributo da base de dados.



### 3. Investigação dos Outliers

Ao ordenar os dados em em relação ao salário, foi possível identificar o registro de TOTAL, que não é uma entrada válida na tabela, já que não representa uma pessoa, mas sim o somatório de todas elas.

| Nome               | Salário  |  |
|--------------------|----------|--|
| TOTAL              | 26704229 |  |
| SKILLING JEFFREY K | 1111258  |  |
| LAY KENNETH L      | 1072321  |  |
| FREVERT MARK       | 1060932  |  |
| PICKERING MAR R    | 655037   |  |
|                    |          |  |

Removemos também o registro de LOCKHART EUGENE E, pois todos atributos (fora poi, que é falso) relativos a ele são vazios, portanto, ele não tem dados pertinentes para a análise.

| Nome              | Quantidade de Atributos nulos |
|-------------------|-------------------------------|
| LOCKHART EUGENE E | 20                            |
| GRAMM WENDY       | 18                            |

| THE TRAVEL AGENCY IN THE PARK | 18 |  |
|-------------------------------|----|--|
| WROBEL BRUCE                  | 18 |  |
| WHALEY DAVID A                | 18 |  |
|                               |    |  |

Ao verificar a listagem de nomes, também identificamos o registro inválido de THE TRAVEL AGENCY IN THE PARK que deve ser removido pois não representa uma pessoa.

## 4. Criação de Novas Features

Primeiramente traçamos um gráfico para checar se os atributos from\_poi\_to\_this\_person e from this person to poi tinham alguma significância visual para diferenciar POIs de não-POIs.



Como não apresentaram nenhuma divisão visual clara, criamos então dois novos atributos chamados from\_poi\_rate e to\_poi\_rate, que nada mais são que a proporção de from\_poi\_to\_this\_person, e from\_this\_person\_to\_poi pelo todo, to\_messages e from\_messages respectivamente.



Aparentemente os novos atributos também não possuem um poder representativo para diferenciar os POIs de não-POIs, mas eles serão removidos dos atributos durante a seleção de features caso o algoritmo detecte que não são relevantes.

Executamos o tester.py para ambos os modelos afinados com todas as features levadas em consideração, com e sem os novos atributos.

|                                  | F1 Score | Precisão | Abrangência |
|----------------------------------|----------|----------|-------------|
| Random Forest com novas Features | 0.27001  | 0.49599  | 0.18550     |
| Random Forest sem novas Features | 0.17692  | 0.29419  | 0.12650     |
| Decision Tree com novas Features | 0.30054  | 0.34454  | 0.26650     |
| Decision Tree sem novas Features | 0.21522  | 0.23789  | 0.19650     |

Em um âmbito geral, considerando todas as features, o incremento das novas features teve impacto positivo nos resultados.

# 5. Seleção de features feita de forma inteligente

Utilizamos o SelectKBest primeiramente para fazer o afinamento dos dois modelos utilizados juntamente com a variação dos parâmetros.

Para traçar um comparativo, executamos em 100 amostras, treinamentos e previsões calculando o f1\_score com os modelos afinados, o resultado mostrado no gráfico abaixo é a média destes valores. O ponto mais alto do gráfico está no tamanho de K igual a 3 e em relação ao modelo de RandomForest, portanto utilizaremos esta combinação para exportar o modelo.

Pela seleção dos 3 melhores atributos com SelectKBest (sendo K = 3), iremos utilizar os atributos 'bonus', 'exercised\_stock\_options' e 'total\_stock\_value' para compor a lista de atributos, mesmo que pelo afinamento obtivemos K = 4 para RandomForest, por esta situação foi possibilitado avaliar mais casos para validar o melhor K.



### 6. Ajuste de escala das características feito corretamente

Não foi necessário ajuste de escala, o ajuste não afeta o desempenho dos algoritmos DecisionTree e RandomForest.

## 7. Escolha um algoritmo

Foram escolhidos os algoritmos RandomForest e DecisionTree, ao executar tester.py (Os classificadores foram gerados com o único parâmetro random\_state=42), obtivemos os seguintes resultados:

| Modelo        | Acurácia | Precisão | Abrangência | F1 Score |
|---------------|----------|----------|-------------|----------|
| Random Forest | 0.86133  | 0.43421  | 0.13200     | 0.20245  |
| Decision Tree | 0.81760  | 0.31320  | 0.30850     | 0.31083  |

Observando estes resultados, Decision Tree teve uma performance melhor, inclusive já satisfazendo o requisito mínimo de ter a precisão e a abrangência maiores que 0.3.

## 8. Discussão da afinação de parâmetros e a performance deles

É necessário fazer o afinamento pois muitas das vezes as configurações definidas por padrão dos classificadores, não nos apresentam o melhor cenário de decisões, e para que consigamos gerar as respostas mais precisas possíveis fazemos a afinação dos parâmetros que podem melhorar a acurácia do nosso modelo, para que se adapte a situação, permitindo que as decisões feitas sejam mais efetivas.

# 9. Afinação (tuning) do algoritmo

Para afinar os modelos, submetemos cada um deles a 10 amostras, em que em cada amostra testamos todas as combinações dos parâmetros para cada quantidade de melhores atributos selecionados.

Para o RandomForest ao final da afinação obtivemos os seguintes parâmetros e lista melhores atributos:

melhor parâmetro: {'max\_features': 'auto', 'min\_samples\_split': 2, 'bootstrap': False, 'min\_samples\_leaf': 1}

melhor lista de atributos: ['poi', 'bonus', 'exercised\_stock\_options', 'salary', 'total\_stock\_value']

Já para DecisionTree, após o afinamento obtivemos a seguinte relação:

melhor parâmetro: {'min\_samples\_split': 10, 'criterion': 'gini', 'max\_depth': 10}

melhor lista de atributos: ['poi', 'bonus', 'exercised\_stock\_options', 'total\_stock\_value']

Então aplicando novamente o código de tester.py, obtivemos os setuintes resultados com nossos modelos afinados:

| Modelo        | Acurácia | Precisão | Abrangência | F1 Score |
|---------------|----------|----------|-------------|----------|
| Random Forest | 0.83715  | 0.45830  | 0.32150     | 0.37790  |
| Decision Tree | 0.81685  | 0.38761  | 0.32850     | 0.35562  |

Podemos verificar uma melhora significativa no desempenho de ambos os modelos, os atributos Precisão, Abrangência e F1 Score melhoraram para os 2 casos, já a acurácia abaixou, na próxima sessão abordaremos a justificativa do porquê abaixar a acurácia foi um fenômeno positivo.

### 10. Métricas utilizadas

Durante o processo de afinamento as métricas utilizadas foram relativas à abrangência e à precisão, como foram repetidos 10 amostras para cada possível combinação de parâmetros e K melhores atributos, para cada uma das amostras que satisfazia a condição de possuir abrangência e precisão maiores que 0.3, a combinação ganhava um ponto, isso garantiria que a combinação teria uma probabilidade mais alta de satisfazer a condição para qualquer conjunto de dados. Na combinação selecionada de RandomForest, 8 das 10 amostras satisfizeram a condição, e o mesmo ocorreu para DecisionTree.

A definição das métricas abrangência e precisão para este cenário são as seguintes:

Caso a previsão tenha sido de que a pessoa é POI, a precisão é a taxa de confiabilidade de que ela realmente seja uma POI.

Caso a pessoa seja uma POI, a abrangência é a confiabilidade de que o modelo irá prever esta pessoa como POI.

Devido a este fato, se tivermos uma abrangência e precisão nulas, mesmo que a acurácia seja alta, ela não conseguirá prever POIs na base. Um fator curioso de se ressaltar é que caso o modelo treinado assuma que todas as entradas sejam não-POIs, sua acurácia poderá ser alta, pois possuímos um número muito maior de não-POIs do que de POIs em nossa base, porém a abrangência e precisão seriam nulas, impedindo a previsão de qualquer pessoa como POI, isso justifica que mesmo com a acurácia mais baixa e os demais parâmetros mais altos, tivemos um ganho no afinamento dos modelos.

### 11. Validação

A validação é o processo que utilizamos para garantir que nosso modelo seja o mais livre possível de um enviesamento por ter sido treinado em uma amostra da base de dados com características que não representam a base como um todo . Um exemplo disso seria que caso obtivessem uma amostra que possuiria apenas não-POIs, o treinamento seria feito e todas as classificações treinadas seriam de não-POIs, se a parcela da amostra de teste também fosse completamente composta de não-POIs, obteríamos uma acurácia de 1, que é o melhor caso, porém nosso modelo não estaria devidamente treinado para a representação da base como um todo.

Em nosso projeto fizemos a validação durante o processo de alinhamento dos modelos, em que coletamos 10 amostras diferentes para que o treinamento fosse realizado, e ao comparar ambos os algoritmos e selecionar a quantidade de features mais importantes para o modelo final, geramos 100 amostras para realizar os testes e obter uma média dos resultados, garantindo assim que pela quantidade de amostras estaríamos nos distanciando da possibilidade de um enviesamento.

Todas amostras foram geradas utilizando o método train\_test\_split de cross\_validation da sklearn, variando no atributo random state.

### 12. tester.py

O tester.py utiliza o StratifiedShuffleSplit de sklearn.model\_selection, ele é um cross validator que assim como outros fornece dados de treinamento e teste para o conjunto de dados, para validar o modelo persistido em my classifier.pkl, com os dados de my dataset.pkl utilizando as features de my feature list.pkl.

O cross\_validator está dividindo e reembaralhando 100 vezes (passado como parâmetro) o conjunto de dados para garantir a validação do modelo e testá-lo em casos que representam de fato a base como um todo.

Como saída ele apresenta o classificador utilizado junto aos seus parâmetros e os resultados do modelo, apresentando a acurácia, abrangência, precisão, f1 score, f2 score, total de predições, número de verdadeiros positivos, falsos positivos, falsos negativos e verdadeiros negativos.

#### 13. Performance do Modelo

O modelo final selecionado foi uma RandomForest com os seguintes parâmetros encontrados no afinamento:

melhor parâmetro: {'max\_features': 'auto', 'min\_samples\_split': 2, 'bootstrap': False, 'min\_samples\_leaf': 1}

E utilizando a seguinte lista de features, decididas a partir do gráfico apresentado na seção 5, onde se deveria selecionar os 3 melhores atributos com SelectKBest (note que 'poi' não conta como um atributo, ele entra na lista e é o primeiro parâmetro pois é o target do modelo):

melhor lista de atributos: ['poi', 'bonus', 'exercised\_stock\_options', 'total\_stock\_value']

Ao executar tester.py, obtivemos os seguintes resultados:

| Modelo        | Acurácia | Precisão | Abrangência | F1 Score |
|---------------|----------|----------|-------------|----------|
| Random Forest | 0.85808  | 0.54946  | 0.43050     | 0.48276  |