1 (B6-B2)

L6.2. 1 punkt Sformułuj i udowodnij algorytm Clenshawa obliczania wartości wielomianu

$$w(x) = \frac{1}{2}c_0T_0(x) + c_1T_1(x) + c_2T_2(x) + ... + c_nT_n(x)$$

w punkcie x, gdzie c_0, c_1, \ldots, c_n są dane, a T_n oznacza n-ty wielomiany Czebyszewa.

$$\begin{split} & \int_{\Omega} (x) = \sum_{k=0}^{n} c_k T_k(x) \\ & B_{0+1} = B_{0+2} = O \\ & B_{1k} = 2x B_{144} - B_{k+2} + C_k \\ & S_{n}(x) = \sum_{k=0}^{n} (B_{1k} - 2x B_{k+1} + B_{k+2}) T_k(x) = \\ & \frac{1}{2} b_{0} T_{0} + b_{0} T_{1} - x B_{1} T_{0}(x) + \sum_{k=2}^{n} (B_{1k} T_{1} - \sum_{k=2}^{n-1} (A_{1k} B_{1} T_{1} + \sum_{k=1}^{n-1} (A_{1k} B_{1} T_{1} + \sum_{k=2}^{n-1} (A_{1k$$

Algorytm Clenshawa^[1] – rekurencyjna metoda obliczania liniowej kombinacji wielomianów Czebyszewa. Stosuje się go do dowolnej klasy funkcji definiowalnych za pomocą trójtermowego równania rekurencyjnego^[2].

Algorytm Clenshawa [edytuj|edytuj|kod]

Niech ciąg $\phi_k,\;k=0,1,\ldots$ spełnia liniową relację rekurencyjną

$$\phi_{k+1}(x) + \alpha_k(x) \phi_k(x) + \beta_k(x) \phi_{k-1}(x) = 0,$$

gdzie współczynniki α_k i β_k są znane. Dla dowolnego, skończonego ciągu c_0,\dots,c_n , definiujemy funkcje b_k przez "odwrócony" wzór rekurencyjny

$$b_{n+1}(x) = b_{n+2}(x) = 0,$$

$$b_k(x) = c_k - \alpha_k(x) \, b_{k+1}(x) - \beta_{k+1}(x) \, b_{k+2}(x).$$

Kombinacja liniowa ϕ_k spełnia:

$$\sum_{k=0}^n c_k \phi_k(x) = b_0(x) \phi_0(x) + b_1(x) \left[\phi_1(x) + lpha_0(x) \phi_0(x)
ight].$$

Specjalny przypadek dla ciągu wielomianów Czebyszewa [edytuj edytuj kod]

Rozważmy kombinację liniową wielomianów Czebyszewa

$$p_n(x) = \frac{a_0}{2} + a_1 T_1(x) + a_2 T_2(x) + \ldots + a_n T_n(x).$$

Współczynniki w postaci rekurencyjnej dla wielomianów Czebyszewa to

$$\alpha_k(x) = -2x, \quad \beta_k = 1.$$

Korzystając z zależności

$$T_0(x) = 1, \quad T_1(x) = xT_0(x),$$

$$b_0(x) = a_0 + 2xb_1(x) - b_2(x),$$

algorytm Clenshawa redukuje się do

$$p_n(x) = \frac{1}{2} \left[b_0(x) - b_2(x) \right].$$

Wielomiany Czebyszewa pierwszego rodzaju [edytuj edytuj kod]

Definicja rekurencyjna [edytuj | edytuj kod]

Wielomiany te spełniają zależność [1]:

$$T_0(x) = 1$$

$$T_1(x) = 3$$

$$T_k(x)=2x\cdot T_{k-1}(x)-T_{k-2}(x)$$

Postać jawna [edytuj | edytuj kod]

Rozwiązaniem powyższej rekurencji jest

$$T_k(x) = rac{(x+\sqrt{x^2-1})^k + (x-\sqrt{x^2-1})^k}{2}$$

Parzystość wielomianów Czebyszewa [edytuj | edytuj kod]

 ${\it Z~definicji~wynika, 2e~dla~k~parzystego~wielomian~Czebyszewa~k-tego~stopnia~jest~parzysty,~dla~nieparzystego~k-nieparzysty}$

$$T_k(-x) = (-1)^k T_k(x).$$

Postać trygonometryczna [edytuj | edytuj kod]

Dla $x \in [-1;1]$ podstawiając za $x = \cos\,t$, dla $k = 0,1,2,\ldots$

$$T_k(\cos t) = rac{(\cos t + \sqrt{\cos^2 t - 1})^k + (\cos t - \sqrt{\cos^2 t - 1})^k}{2} \ = rac{(\cos t + \sqrt{-\sin^2 t})^k + (\cos t - \sqrt{-\sin^2 t})^k}{2} \ = rac{(\cos t + i \cdot \sin t)^k + (\cos t - i \cdot \sin t)^k}{2}$$