

Problem Set 5:
Will be posted this week

posted toggy

the next tri

Class 12: Finite Automata, Regular Expression

University of Virginia cs3120: DMT2 Wei-Kai Lin

Recap: Functions with Infinite Domains That is, {0,1}*

 $f: \{0,1\}^* \rightarrow \{0,1\}$ with **one bit** of output is called a **Boolean** function.

 $\{0,1\}^* = \{\epsilon, 0,1,00,01,10,11, \dots\}$ is an **infinite set**, but it **does not** contain any **infinitely long input**.

Terminology: "Language"

Definition (Language).

A Boolean function $f: \{0,1\}^* \to \{0,1\}$ defines a corresponding set $L_f = \{x \mid f(x) = 1\} \subseteq \{0,1\}^*$, also called a **language**.

So,
$$f(x) = 1 \iff "x \text{ belongs to language } L_f"$$

Deterministic Finite Automata

A simple computing model

Fixed constant-size memory

Reading input $x = x_1 ... x_n$ as a stream of bits (once)

Decide if f(x) = 1 or not at the end

The same "automata" works for all input length n

What's Automata?

automaton noun

```
au·tom·a·ton (o-'tä-mə-tən ◄)) -mə-ˌtän

plural automatons or automata (o-'tä-mə-tə ◄)) -mə-ˌtä
```

- 1 : a mechanism that is relatively self-operating
 - especially: ROBOT
- a machine or control mechanism designed to follow automatically a predetermined
 sequence of operations or respond to encoded instructions

Machine

Example: XOR

For
$$x = x_1 \dots x_n$$
 let $XOR(x) = x_1 \oplus x_2 \dots \oplus x_n$

As we read through the bits, we only need one bit of memory b that determines the XOR so far.

Formal Definition of FA

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the **states**,
- **2.** Σ is a finite set called the *alphabet*,
 - 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
 - **4.** $q_0 \in Q$ is the **start state**, and
 - **5.** $F \subseteq Q$ is the **set of accept states.**

Formal definition of FAs accepting inputs

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states r_0, r_1, \dots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and

Constant-size memory: only needs r_i Efficient: read each w_i only once

Accepts strings containing 001

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

4. is the start state, and

$$\mathbf{5.} F = \mathbf{601}$$

Example: prefix and suffix

Alphabet $\Sigma = \{0,1\}$. All strings with:

Prefix: 01

Suffix:

00 [0

Another example: set of even numbers

Example: Set of multiples of 3 in basis 10:

$$\Sigma = \{0, ..., 9\}$$
 0901 = 901
Lema: Sumado digits is multiple 3.
3,6,9,0 21 14,7 Sum dit ... di
mad 3
3,6,9,0 3,6,9,8

Recap the objects + terminology

Let M be a FA Let f be the function: f(x) = 1 iff M accepts xWe say that M "computes" or "decides" f

Let L be the language $x \in L$ iff f(x) = 1We might say M "recognizes" (or "decides") the language L (or function f)

f, L ignore the computation's details, but M cares about it

Complexity class: DFA-Comp

 $DFA-Comp = \{f \mid f \text{ is computed by some DFA } M\}$

More generally "Complexity class" for **set of algorithms** X: = all languages/functions computable with an algorithm in the set X.

DFA-Comp = Complexity class of "FAs"

Recall $SIZE_n$ = complexity class for functions computable by size-s circuits.

Regular expressions

A (seemingly) completely different way of dealing with infinite languages (i.e., functions on infinite input sets)

Motivation and example

Suppose we want to describe key-words for search

Simple examples: "book" or "February" or "a" or "10"

Intense example: a sorted sequence of integers

Maybe crazy: a very large integer that is prime

Can we support all above?

Do we want to support all?

Motivation: simple rules

How about <u>patterns</u> with simple rules.

Example: we want a string of zeros only or ones only of length at least 2

We denote them as: $(00(0^*)|11(1^*))$

- -00 simply means string 00
- -0^* means repeating 0 zero, or one, or two, or ... times.
- | means OR

Regular Expression is Widely Used

Examples:

* pdf: any string ends with '.pdf'
? pdf: any string ends with '.pdf' that is exactly 5 chars

Wildcards is a subset of regular expressions.

Writing "regular expressions" using "regular operations"

Definition 6.6 (Regular expression)

A regular expression e over an alphabet Σ is a string over $\Sigma \cup \{(,),|,*,\emptyset,""\}$ that has one of the following forms:

1.
$$e = \sigma$$
 where $\sigma \in \Sigma$

2. e=(e'|e'') where e',e'' are regular expressions.

3. e = (e')(e'') where e', e'' are regular expressions. (We often drop the parentheses when there is no danger of confusion and so write this as e' e''.)

4. $e = (e')^*$ where e' is a regular expression.

Finally we also allow the following "edge cases": $e = \emptyset$ and e = "". These are the regular expressions corresponding to accepting no strings, and accepting only the empty string respectively.

Example: prefix and suffix

Alphabet $\Sigma = \{0,1\}$. All strings with:

Prefix: 01 Suffix: 00

$$2 = (01)(0)1)^{*}(00)$$

$$(0)^{4}$$

Example: XOR

For
$$x = x_1 \dots x_n$$
 let $XOR(x) = x_1 \oplus x_2 \dots \oplus x_n$

Observation: there are **odd** number of '1's

Parenthesis and Precedence

Drop parentheses when inferred from context

- highest precedence to *, then concatenation, and then OR
- (00) | 11 instead of $((0)(0^*))$ | ((1)(1))

Regular Expressions as Functions

For every regular expression e, there is a corresponding function Φ_e : $\{0,1\}^* \to \{0,1\}$ Such that $\Phi_e(x) = 1$ if x matches e.

Defining Φ_e defines the evaluation of e.

Recursive definition, but cumbersome.

Definition 6.6 (Regular expression)

A regular expression e over an alphabet Σ is a string over $\Sigma \cup \{(,),|,*,\emptyset,""\}$ that has one of the following forms:

0.
$$e = \emptyset$$
 or $e = ""$

1.
$$e = \sigma \in \Sigma$$

2.
$$e = (e'|e'')$$

3.
$$e = (e')(e'')$$

4.
$$e = (e')^*$$

 e', e'' are regular expressions

Definition 6.7 (Matching a regular expression)

Let e be a regular expression over the alphabet Σ . The function $\Phi_e: \Sigma^* \to \{0,1\}$ is defined as follows:

- 1. If $e = \sigma$ then $\Phi_e(x) = 1$ iff $x = \sigma$.
- 2. If e=(e'|e'') then $\Phi_e(x)=\Phi_{e'}(x)\vee\Phi_{e''}(x)$ where \vee is the OR operator.
- 3. If e=(e')(e'') then $\Phi_e(x)=1$ iff there is some $x',x''\in \Sigma^*$ such that x is the concatenation of x' and x'' and $\Phi_{e'}(x')=\Phi_{e''}(x'')=1$.
 - 4. If e=(e')* then $\Phi_e(x)=1$ iff there is some $k\in\mathbb{N}$ and some $x_0,\ldots,x_{k-1}\in\Sigma^*$ such that x is the concatenation $x_0\cdots x_{k-1}$ and $\Phi_{e'}(x_i)=1$ for every $i\in[k]$.
 - 5. Finally, for the edge cases Φ_{\emptyset} is the constant zero function, and $\Phi_{""}$ is the function that only outputs 1 on the empty string "".

We say that a regular expression e over Σ matches a string $x \in \Sigma^*$ if $\Phi_e(x) = 1$.

An (Python) algorithm evaluates regular expression

Charge

Deterministic Finite Automata Regular Expressions

PRR 6: will be release later today, due next Monday, 10pm

PS5: due next Friday, Feb 28, 10pm