Chapitre 1

Conditionnement

1-1 Espace de probabilité

Soit Ω l'ensemble des résultats possibles d'une expérience aléatoire. Un élément de Ω est appelé "réalisation". Un ensemble $A \subset \Omega$ est appelé "évènement". Si $w \in \Omega$, le singleton $\{w\}$ est un évènement élémentaire, Ω est l'évènement certain, \emptyset est l'évènement impossible.

- Si A et B sont deux évènements, \bar{A} est l'évènement contraire.
- Deux évènements A et B sont incompatibles ou disjoints si et seulement si $A \cap B = \emptyset$.
- Une suite $(A_i)_{1 \le i \le n}$ est un système complet d'évènements si $\forall i \ne j$, $A_i \cap A_j = \emptyset$ et $\bigcup_{i=1}^n A_i = \Omega$

Un sous ensemble \mathcal{F} de Ω est appelé tribu ou σ - algèbre sur Ω si

- i- \emptyset et $\Omega \in \mathcal{F}$
- Si $A \in \mathcal{F}$ alors $\bar{A} \in \mathcal{F}$
- Si $(A_i)_{i\geq 1}$ est une suite d'évènements de $\mathcal F$ alors $\bigcup_{i=1}^\infty A_i\in\mathcal F$ iii-

1-1-1 Probabilité

On appelle probabilité sur (Ω, \mathcal{F}) une application P de \mathcal{F} dans [0,1] vérifiant les deux propriétés suivantes :

i-
$$P(\Omega) = 1$$

ii- Pour toute suite $(A_i)_{i\geq 1}$ d'évènements de $\mathcal F$ deux à deux incompatibles on a

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} A_i$$

Le triplet (Ω, \mathcal{F}, P) est appelé espace de probabilité.

Propriétés:

- i- $P(\emptyset) = 0$
- ii- $P(\bar{A}) = 1 P(A)$
- iii- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- iv- Si A et B sont incompatibles, alors $P(A \cup B) = P(A) + P(B)$
- v- Pour toute famille $A_1, A_2, ..., A_n$ d'évènements deux à deux incompatibles

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

Equiprobabilité et probabilité uniforme

Soit Ω un ensemble fini. On dit qu'il y a équiprobabilité lorsque les probabilités de tous les évènements élémentaires sont égales. Dans ce cas, P est la probabilité uniforme. S'il y a équiprobabilité, pour tout évènement A, on a

$$P(A) = \frac{Card A}{Card \Omega} = \frac{nombre de cas favorables}{nombre de cas possibles}$$

1-1-2 Probabilités conditionnelles

Soient A et B deux évènements tel que P(B) > 0. La probabilité conditionnelle de A sachant B est

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

<u>Propriétés</u> pour trois évènements A, B et C, on a

- $i- P(\bar{B}/A) = 1 P(B|A)$
- ii- $P(A \cup B|C) = P(A|C) + P(B|C) P(A \cap B|C)$
- iii- Si A et B sont incompatibles alors $P(A \cup B|C) = P(A|C) + P(B|C)$

Formule des probabilités composées : Soient A_1, \ldots, A_n des évènements tel que $P(A_1 \cap \ldots \cap A_n) \neq 0$ on a

$$P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) ... P(A_n|A_1 \cap A_2...A_{n-1}).$$

Formule des probabilités totales : Soient B_1, \ldots, B_n un système complet d'évènements de probabilités toutes non nulles. Pour tout évènement A on a

$$P(A) = \sum_{i=1}^{n} P(B_i)P(A|B_i)$$

Formule de Bayes : Soient B_1, \ldots, B_n un système complet d'évènements de probabilités toutes non nulles. Pour tout évènement A tel que P(A)>0, On a

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)}$$

Exemple 1 On effectue un test dans un grand élevage de bovins pour dépister une maladie. Ce test a permis de déceler 1.8% de cas atteints chez les mâles et 1.2% chez les femelles. Cet élevage contient 65% de femelles et 35% de mâles.

- 1- Quelle est la probabilité qu'un animal choisi au hasard dans cet élevage soit atteint de cette maladie?
- 2- L'animal choisi est atteint de cette maladie, quelle est la probabilité qu'il soit une femelle ?

Solution

Soient les évènements suivants :

A: L'animal choisi est atteint de cette maladie

F: L'animal choisi est une femelle

M: L'animal choisi est un mâle

1- On a par la formule des probabilities totales :

$$P(A) = P(A|F)P(F) + P(A|M)P(M) = (0.012)(0.65) + (0.018)(0.35) = 0.0141$$

2- On cherche
$$P(F|A) = \frac{P(A|F)P(F)}{P(A)} = \frac{(0.012). (0.65)}{0.0141} = 0.553$$

Département de Mathématiques

1-1-3 Indépendance

Deux évènements A et B sont indépendants si et seulement si $P(A \cap B) = P(A)P(B)$

Si A et B sont indépendants, A et \overline{B} le sont aussi.

Des évènements $A_1, ... A_n$ sont mutuellement indépendants si $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2)...P(A_n)$

Si $A_1, ... A_n$ sont mutuellement indépendants, alors ils sont indépendants deux à deux, la réciproque est fausse.

Exemple 2 On lance une pièce de monnaie deux fois de suites et on considère les évènements :

A: obtenir pile au premier lancer

B : obtenir le même résultat dans les deux lancers

C: obtenir pile dans les deux lancers

- 1- Les évènements A et B sont-ils indépendants ?
- 2- Les évènements A et C sont-ils indépendants ?

Solution

1- Les évènements A et B sont indépendants car

$$P(A \cap B) = \frac{1}{4} = \frac{1}{2} \frac{1}{2} = P(A)P(B)$$

2- Les évènements A et C ne sont pas indépendants car

$$P(A \cap C) = \frac{1}{4} \neq \frac{1}{2} \frac{1}{4} = P(A)P(C)$$

1-2- Variable aléatoire discrète

Définition 1 Une variable aléatoire (v. a) X est une fonction allant de Ω dans E.

$$X: \Omega \longrightarrow E$$

 $w \mapsto X(w) = x$

Définition 2 Une variable aléatoire réelle (v.a.r) X est une fonction allant de Ω dans un ensemble $E \subset \mathbb{R}$.

Définition 3 Une variable aléatoire réelle (v.a.r) X est une fonction allant de Ω dans un ensemble discret $E \subset \mathbb{R}$.

1-2-1 Loi de probabilité d'une variable aléatoire discrète

On appelle distribution ou loi de probabilité de la v.a X, l'ensemble des couples (x, p) telle que

$$\forall x \in X(\Omega), \ P_X(x) = P(X = x)$$

Avec
$$P(X=x) \geq 0$$
 , $\forall x \in X(\Omega)$ et $\sum_{x \in X(\Omega)} P(X=x)$ = 1

La loi de probabilité d'une v.a discrète est souvent présentée sous forme d'un tableau.

Définition 4 (Fonction de répartition)

On appelle fonction de répartition de la v.a X, la fonction définie pour tout $x \in \mathbb{R}$ par $F_X(x) = P(X \le x)$

Propriétés:

i-
$$\lim_{x \to -\infty} F_X(x) = 0$$
 , $\lim_{x \to +\infty} F_X(x) = 1$

ii- La fonction F_X est croissante et continue à droite

iii- Pour tous réels a et b, $P(a < X \le b) = F_X(b) - F_X(a)$

La fonction de répartition d'une variable aléatoire discrète est une fonction en escalier. Si la variable aléatoire prend les valeurs x_k , k=1,2,..., supposées rangées par ordre croissant, alors la fonction de répartition F_X prend les valeurs :

$$F_X(x) = \begin{cases} 0 & \text{pour } x < x_1 \\ P[X = x_1] & \text{pour } x \in [x_1, x_2[\\ \vdots & \vdots \\ P[X = x_1] + \dots + P[X = x_k] & \text{pour } x \in [x_k, x_{k+1}[\\ \vdots & \vdots \end{cases}$$

1-2-2 Moments d'une v.a discrète

1- Espérance mathématique

l'espérance mathématique d'une variable aléatoire discrète X est la quantité , si elle existe

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x)$$

Proposition 1 pour toute fonction g,

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x) P(X = x)$$

Définition 5

i- On appelle moment centré d'ordre $r \in \mathbb{N}^*$ d'une v.a X, la quantité, si elle existe

$$\mu_r = E((X - E(X))^r) = \sum_{x \in X(\Omega)} (x - E(X))^r P(X = x)$$

ii- On appelle moment d'ordre $r \in \mathbb{N}^*$ d'une v.a X, la quantité, lorsqu'elle existe :

$$m_r = E(X^r) = \sum_{x \in X(\Omega)} x^r P(X = x)$$

2- Variance et Ecart-type

La variance d'une v. a discrète X est le réel positif

$$Var(X) = E(X - E(X))^2 = \sum_{x \in X(\Omega)} (x - E(X))^2 P(X = x) = E(X^2) - E^2(X)$$

L'écart-type de X est la quantité définie par $\sigma(X) = \sqrt{Var(X)}$

1-2-3 Fonction génératrice

Définition 6: On appelle fonction génératrice de la variable aléatoire discrète X à valeurs dans \mathbb{N} , la série entière

$$G_X(s) = \sum_{k=0}^{+\infty} s^k P(X = k) = E(s^X)$$
, $s \in [-1, 1]$

Théorème 1 : Soit X à valeurs dans \mathbb{N} , alors

- X admet une espérance si et seulement si $G'_X(1) = E(X)$
- X admet une variance si et seulement si G_X est deux fois dérivables en 1.

$$Var(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$$

- Si X et Y ont la même fonction génératrice, elles ont même loi .
- Si X et Y sont deux v.a indépendantes, alors $G_{X+Y}(s) = G_X(s)G_Y(s)$

Remarque 1

Si X une variable aléatoire réelle telle que $E(X)=\mu$ et $(X)=\sigma^2$, alors la variable $Y=\frac{(X-\mu)}{\sigma}$ est d'espérance nulle et de variance 1. On dit que la variable aléatoire Y est centré (d'espérance nulle) et réduite (de variance 1).

Exemple 3 On lance deux fois une pièce de monnaie. Soit X le nombre de piles sur les deux lancers.

- 1- Donner la loi de probabilité
- 2- Déterminer la fonction de répartition
- 3- Calculer l'espérance et la variance de X.
- 4- Trouver la fonction génératrice et en déduire E(X) et Var(X)

Solution

1- Loi de probabilité:

х	0	1	2	total
P(X=x)	1	1	1	1
	4	$\frac{\overline{2}}{2}$	4	

2- La fonction de répartition est

$$F_X(x) = \begin{cases} 0 & si & x < 0 \\ \frac{1}{4} & si & 0 \le x < 1 \\ \frac{3}{4} & si & 1 \le x < 2 \\ 1 & si & x \ge 2 \end{cases}$$

3- Nous avons:

$$E(X) = \sum_{k=0}^{2} k P(X = k) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1$$

$$Var(X) = E(X^2) - E^2(X) = \sum_{k=0}^{3} k^2 P(X = k) - E^2(X) = \frac{1}{2}$$

4- La fonction génératrice :

$$G_X(s) = \sum_{k=0}^{2} s^k P(X=k) = P(X=0) + s \quad P(X=1) + s^2 P(X=2)$$
$$= \frac{1}{4} + \frac{s}{2} + \frac{s^2}{4}$$

La première et la seconde dérivée sont données respectivement par

$$G'_X(s) = \frac{1}{2} + \frac{s}{2}$$
 et $G''_X(s) = \frac{1}{2}$

On peut calculer l'espérance et la variance à partir de la fonction génératrice

$$E(X) = G'_X(1) = 1$$

$$Var(X) = Var(X) = G''_X(1) + G'_X(1) - (G'_X(1))^2 = \frac{1}{2}$$

1-2-4 Lois usuelles discrètes

Dans les tableaux ci- après sont présentées les propriétés de quelques lois discrètes

Lois deX	P(X = k)	Esperance	Variance
Bernoulli $\mathfrak{B}(p)$	$p \operatorname{si} k = 1, 1 - p \operatorname{si} = 0,$	р	p(1-p)
Binomiale $\mathfrak{B}(n,p)$	$C_n^k p^k (1-p)^{n-k}$, $k \in \{0, n\}$,	np	np(1-p)
Poisson $\mathcal{P}(\lambda)$	$rac{\lambda^k}{k!}e^{-\lambda}$, $k\in\mathbb{N}$, $\lambda>0$	λ	λ
Géométrique $G(p)$	$(1-p)^k p$, $k \in \mathbb{N}$	1-p	1-p
		\overline{p}	p^2
Géométrique $G^*(p)$	$(1-p)^{k-1}p$, $k\in\mathbb{N}^*$	1	1-p
		\overline{p}	p^2

1-3 Variable aléatoire continue

Définition 7 Une v.a continue est une fonction X, allant de Ω dans \mathbb{R} .

Définition 8 Soit X une v.a continue. On appelle densité de probabilité de X, une application positive et intégrable $f: \mathbb{R} \to \mathbb{R}^+$, vérifiant :

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

1-3-1 Loi de probabilité d'une v.a continue

La loi de probabilité d'une v.a continue est déterminée par la fonction de répartition F définie pour tout réel x par :

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt$$

La fonction F_X est continue , elle est dérivable aux points de continuité de f_X avec $f_X(x) = F_X'(x)$.

Propriétés

i-
$$0 \le F(x) \le 1$$
 avec $\lim_{x \to -\infty} F_X(x) = 0$ et avec $\lim_{x \to +\infty} F_X(x) = 1$

ii-La fonction F est croissante et continue à droite

iii- Pour tout $a \in \mathbb{R}$, P(X = a) = 0

iv- Pour tous réels a et b tels que a < b on a $P(a < X < b) = P(a \le X \le b) = \int_a^b f_X(t) \, dt$

1-3-2 Moments d'une v.a continue

1- Espérance mathématique

On appelle espérance mathématique de la variable aléatoire discrète X la quantité, si elle existe

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$$

Définition 9

Le moment d'ordre $(r \ge 1)$ de X est la quantité (si elle existe)

$$E(X^r) = \int_{-\infty}^{+\infty} x^r f_X(x) dx$$

Le moment centré d'ordre $(r \ge 1)$ est

$$E(X - E(X))^{r} = \int_{-\infty}^{+\infty} (x - E(X))^{r} f_{X}(x) dx$$

2- Variance et écart-type

La variance de X est la quantité (si elle existe) notée Var(X) définie par

$$Var(X) = E(X - E(X))^2 = \int_{-\infty}^{+\infty} (x - E(X))^2 f_X(x) dx = E(X^2) - E^2(X)$$

L'écart-type, notée σ_X est la racine carrée de la variance de X

<u>Propriétés</u> Soit X une variable aléatoire (discrète ou continue), On a

- Pour tout $\alpha, \beta \in \mathbb{R}$, $E[\alpha X + \beta] = \alpha E(X) + \beta$
- Pour tout $a \in \mathbb{R}$, $Var(aX) = a^2Var(X)$ ii-
- Pour tout $a \in \mathbb{R}$, Var(X + a) = Var(X)

1-3-3 Fonction génératrice des moments

La fonction génératrice des moments de la variable aléatoire X est définie par

$$M_X(t) = E(e^{tX})$$

Le moment d'ordre r de X est donnée par :

$$E[X^r] = M_X^{(r)}(0)$$
 où $M_X^{(r)}(0)$ est la dérivée d'ordre r de M_X

Exemple 4 Soit *X* une variable aléatoire continue de densité de probabilité :

$$f_{x}(x) = 2e^{-2x} \quad , \quad x \ge 0$$

- 1- Donner la fonction de répartition de X
- 2- Trouver l'espérance , le moment d'ordre 2 de X et la variance de X
- 3- Déterminer la fonction génératrice des moments de X. En déduire E(X) et Var(X)

Solution

1-
$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

si
$$x < 0$$
, on a $F_X(x) = \int_{-\infty}^0 f_X(t) dt = 0$

si
$$x \ge 0$$
, $F_X(x) = \int_{-\infty}^0 f_X(t) dt + \int_0^x f_X(t) dt = 0 + 2 \int_0^x e^{-2t} dt = 1 - e^{-2x}$

On a donc
$$F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-2x} & \text{si } x \ge 0 \end{cases}$$

2-
$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{-\infty}^{0} x f_X(x) dx + \int_{0}^{+\infty} x f_X(x) dx$$

Comme
$$\int_{-\infty}^{0} x f_X(x) = 0$$
 , on aura $E(X) = 2 \int_{0}^{+\infty} x e^{-2x} dx$

On procède par intégration par parties, on obtient

$$E(X) = \frac{1}{2}$$
 , $E(X^2) = \frac{1}{2}$ et donc $Var(X) = E(X^2) - E^2(X) = \frac{1}{4}$

La fonction génératrice des moments est

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{+\infty} e^{tx} f_X(x) dx = 2 \int_{0}^{+\infty} e^{tx} e^{-2x} dx = \lambda \int_{0}^{+\infty} e^{-x(2-t)} dx = \frac{2}{2-t}$$
 On a $E(X) = M_X'(0) = \frac{1}{2}$, $E(X^2) = M_X''(0) = \frac{1}{2}$ ainsi $Var(X) = \frac{1}{4}$.

1-3-4 Lois usuelles Continues

Lois	Densité	Esperance	Variance
Uniforme U ([α ; β])	$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \le x \le b\\ 0 & \text{sinon} \end{cases}$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
Exponentielle $\mathcal{E}(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normale $N(\mu; \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2
Gamma $\Gamma(\lambda,a)$	$f(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}, x > 0, a > 0, \lambda > 0$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^2}$
bêta $B(a,b)$	$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}, 0 < x < 1$	$\frac{a}{a+b}$	$\frac{ab}{(a+b+1)(a+b)^2}$

Fonction Gamma : $\Gamma(x) = \int_0^{+\infty} x^{a-1} e^{-x} dx$, x > 0,

$$\Gamma(a)=(a-1)\;\Gamma(a-1)\quad\forall a>0,\;\;\Gamma(n)=(n-1)!\quad\forall n\in\mathbb{N}^*,\quad\Gamma\left(\frac{1}{2}\right)=\sqrt{2\pi}\quad,\;\;\Gamma(1)=1$$

Fonction bêta : $\mathrm{B}(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$, a>0 , b>0

1-4 Couple de variables aléatoires discrètes

La loi d'un couple de v.a discrètes (X,Y) est définie par l'ensemble des valeurs possibles $(X,Y)(\Omega) = \{(x,y), x \in X(\Omega), y \in Y(\Omega)\}$ et par les probabilités associées :

$$P_{X,Y}(x,y) = P(X=x,Y=y)$$
 avec $\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} P_{X,Y}(x,y) = 1$

1-4-1 Lois marginales

Les lois marginales sont les lois de chacune des variables du couple (X,Y). Elles sont définies par

$$P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y)$$
 et $P(Y=y) = \sum_{x \in X(\Omega)} P(X=x, Y=y)$

Les variables aléatoires X et Y sont indépendantes si et seulement si

$$\forall (x,y) \in X(\Omega) \times Y(\Omega)$$
, $P(X=x,Y=y) = P(X=x)P(Y=y)$

1-4-2 Moments associés à un couple discret

Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une application continue , elle définie une v.a réelle . L'espérance mathématique de h(X,Y) est définie par

$$E(h(X,Y)) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} h(x,y) P(X = x, Y = y)$$

Dans le cas où h(X,Y) = (X - E(X))(Y - E(Y)) on définit la covariance de X et Y par

$$Cov(X,Y) = E\left(\left(X - E(X)\right)\left(Y - E(Y)\right)\right) = E(XY) - E(X)E(Y)$$

Où

$$E(XY) = \sum_{x \in X(\Omega)} \sum_{e \in Y(\Omega)} xy P(X = x, Y = y)$$

La variance et la covariance sont reliées par l'égalité :

$$Var(X + Y) + Var(X) + Var(Y) + 2COV(X,Y)$$

<u>Propriétés</u>

i- Cov(X,X) = Var(X) et Cov(X,Y) = Cov(Y,X)

ii- Si X et Y sont indépendantes alors Cov(X,Y) = 0. La réciproque est fausse.

iii- Si X et Y sont indépendantes alors Var(X + Y) = Var(X) + Var(Y)

1-4-3- Somme de deux variables aléatoires discrètes

Soient X et Y des variables aléatoires discètes . La loi de S = X + Y est définie par

$$\forall s \in (X+Y)(\Omega) \ , P(X+Y=n) = \sum_{n=x+y} P(X=x,Y=y) = \sum_{x \in X(\Omega)} P(X=x,Y=n-x)$$

Si X et Y sont indépendantes alors

$$P(X+Y=n) = \sum_{x} P(X=x)P(Y=n-x)$$

1-4-4 Lois conditionnelles

Définition 10 Soit (X,Y) un couple de variables aléatoires discrètes, et soit $x \in X(\Omega)$ tel que $P(X=x) \neq 0$. La loi conditionnelle de Y sachant X=x est définie par :

$$P(Y = y/X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

1-4 -5 Espérances conditionnelles

Soit (X,Y) un couple aléatoire discret. L'espérance conditionnelle de Y sachant X=x est définie par

$$\forall x \in X(\Omega)$$
, $E(Y|X=x) = \sum_{y \in Y(\Omega)} y P(Y=y/X=x)$

Théorème 2 (Théorème de l'espérance totale)

Soit X et Y deux v.a.r. discrètes définies sur le même espace telles que $E(|Y|) < \infty$. Alors la v.a.r. discrète E(Y|X) admet une espérance et

$$E(E(Y|X)) = \sum_{x \in X(\Omega)} E(Y|X=x) P(X=x) = E(Y)$$

Exemple 5 Soit(X,Y) un couple de variables aléatoires dont la loi est définie par le tableau suivant

$X \setminus Y$	0	1	Loi de X
0	2/7	2/7	4/7
1	2/7	1/7	3/7
Loi de Y	4/7	3/7	1

- 1- Les v.a *X* et *Y* sont-elles indépendantes ?
- 2- Calculer E(X), E(Y) et Cov(X,Y)
- 3- Déterminer la loi conditionnelle de Y sachant X=0 puis son espérance E(Y|X=0)
- 4- Déterminer la loi conditionnelle de Y sachant X = 1 puis son espérance E(Y|X = 1)
- 5- En déduire la loi de E(Y|X) puis son espérance E(E(Y|X))

.Solution

- 1- Les v.a X et Y ne sont pas indépendantes puisque par exemple, $P(X=0,Y=1)=\frac{2}{7}$ alors que $P(X=0)P(Y=1)=\frac{16}{49}\neq\frac{2}{7}$
- 2- On a

$$E(X) = \sum_{x=0}^{1} x P(X = x) = 0 \times \frac{4}{7} + 1 \times \frac{3}{7} = \frac{3}{7} \text{ et } E(Y) = \sum_{y=0}^{1} y P(Y = y) = 0 \times \frac{4}{7} + 1 \times \frac{3}{7} = \frac{3}{7},$$

$$E(XY) = \sum_{x=0}^{1} \sum_{y=0}^{1} xy P(X = x, Y = y) = (0 \times \frac{2}{7} \times 0) + (0 \times \frac{2}{7} \times 1) + (1 \times \frac{2}{7} \times 0) + (1 \times \frac{1}{7} \times 1) = \frac{1}{7}$$

Département de Mathématiques Introduction aux processus aléatoires 3LM :Proba-Stat D'où
$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{7} - \frac{9}{49} = -\frac{2}{49}$$

La probabilité conditionnelle de Y sachant X=0 est $P(Y=y|X=0)=\frac{P(X=0,Y=y)}{P(X=0)}$ ce qui conduit au tableau suivant :

$$\begin{array}{c|cccc} y & 0 & 1 \\ P(Y = y | X = 0) & \frac{2/7}{4/7} = 1/2 & \frac{2/7}{4/7} = 1/2 \end{array}$$

On calcule
$$E(Y|X=0) = \sum_{y=0}^{1} yP(Y=y|X=0) = 0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}$$

De la même manière on calcule $P(Y = y | X = 1) = \frac{P(X=1, Y=y)}{P(X=1)}$

у	0	1
P(Y = y X = 1)	2/7	$\frac{1/7}{3/7} = 1/3$
	$\frac{277}{3/7} = 2/3$	$\frac{1}{3/7} = 1/3$

on obtient $E(Y|X=1) = \sum_{y=0}^{1} yP(Y=y|X=1) = \frac{1}{3}$ et on en déduit la loi de E(Y|X)

Ε	E(Y X)	E(Y X=0) = 1/2	E(Y X=1)=1/3
<i>P</i> ((X=x)	4/7	3/7

et puis

$$E(E(Y|X)) = \frac{1}{2} \times \frac{4}{7} + \frac{1}{3} \times \frac{3}{7} = \frac{3}{7} = E(Y)$$

Couple de variables aléatoires continues

Si X et Y sont deux v.a réelles continues , La loi du couple(X,Y) est déterminée par sa fonction de répartition $F_{X,Y}$. Si cette fonction est deux fois dérivables par rapport aux deux variables , alors la loi de (X,Y) est dite absolument continue , de densité $f_{X,Y}$ définie par :

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

et
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

Vérifiant pour tout $(x,y) \in \mathbb{R}^2$ $f(x,y) \ge 0$ et $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$

1-5-1 Lois marginales

Les densités marginales de X et Y sont définies par

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
 et $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$

Deux variables aléatoires absolument continues X et Y sont indépendantes si et seulement si :

$$\forall (x, y) \in \mathbb{R}^2, \quad f(x, y) = f_X(x) f_Y(y)$$

1-5-2 Moments associés à un couple continu

Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une application continue, l'espérance mathématique de h(X,Y) est définie par

$$E(h(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y)f(x,y)dxdy$$

La covariance de X et Y est définie par

$$Cov(X,Y) = E\left(\left(X - E(X)\right)\left(Y - E(Y)\right)\right) = E(XY) - E(X)E(Y)$$

Où;
$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x,y)dxdy$$

Les propriétés de la variance et de la covariance sont identiques au cas discret

1-5-3 Somme de deux variables aléatoires continues

Soit (X,Y) un couple de v .a absolument continues . La variable Z=X+Y est une v.a absolument continue de densité

$$g_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) \, dx$$

Si X et Y sont indépendantes alors

$$g_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) \, dx$$

La fonction g_Z est appelée le produit de convolution de f_X et f_Y .

1-5-4 Loi conditionnelle

Soit (X,Y) un couple de v.a absolument continues . Pour tout $x \in \mathbb{R}$ tel que $f_X(x) \neq 0$,la loi conditionnelle de Y sachant X=x est donnée par

$$f_{Y|X}(y|x) = f(y|x) = \frac{f(x,y)}{f_X(x)}$$

1-5-5 Esperance conditionnelle

Soit (X,Y) un couple aléatoire absolument continu. L'espérance conditionnelle de Y sachant X=x est définie par

$$E(Y|X=x) = \int_{-\infty}^{+\infty} y \ f(y|x) dy$$

Théorème 3 Soit X et Y deux v.a.r. absolument continues définies sur le même espace telles que $E(|Y|) < \infty$. Alors la v.a.r. continue E(Y|X) admet une espérance et

$$E(E(Y|X)) = \int_{-\infty}^{+\infty} E(Y|X=x) f_X(x) dx = E(Y)$$

Exemple 6 Soit un couple aléatoire (X, Y) de densité

$$f(x,y) = \begin{cases} e^{-x-y} & \text{si } x > 0 \text{ , } y > 0 \\ 0 & \text{sinon} \end{cases}$$

- 1- Déterminer les lois marginales de X et Y. Les variables X et Y sont-elles indépendantes ?
- 2- Calculer la covariance
- 3- Déterminer f(y|x) et E(Y|X=x)

Solution

1- Densités marginales de X et de Y:

$$f(x) = \int_0^{+\infty} f(x, y) dy = \int_0^{+\infty} e^{-x-y} dy = e^{-x} \quad \text{si } x > 0 \text{ et nulle ailleurs}$$

$$f(y) = \int_0^{+\infty} f(x, y) dx = \int_0^{\infty} e^{-x-y} dx = e^{-y} \quad \text{si } y > 0 \text{ et nulle ailleurs}$$

Les v.a X et Y sont indépendantes puisque $f(x,y) = f_X(x)f_Y(y)$

2- On a
$$E(X) = \int_0^{+\infty} x f_X(x) dx = \int_0^{+\infty} x e^{-x} dx = 1$$
 , $E(Y) = \int_0^{+\infty} y f_Y(y) dy = \int_0^{+\infty} y e^{-y} dy = 1$ et

$$E(XY) = \int_{0}^{+\infty} \int_{0}^{+\infty} xy \, f(x, y) dx dy = \int_{0}^{+\infty} xe^{-x} (\int_{0}^{+\infty} ye^{-y} dy) dx = 1$$

On obtient Cov(X,Y) = E(XY) - E(X)(Y) = 0

3- La loi conditionnelle de Y sachant X = x

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{e^{-x-y}}{e^{-x}} = e^{-y}$$

L'espérance conditionnelle de Y sachant X = x est

$$E(Y|X = x) = \int_{0}^{+\infty} yf(y|x)dy = \int_{0}^{+\infty} ye^{-y}dy = 1$$

Propriétés des espérances conditionnelles et variances conditionnelles

Soit (X,Y) un couple aléatoire. Soit ϕ , φ deux fonctions de $\mathbb R$ dans $\mathbb R$ et soit h une fonction de $\mathbb R^2$ dans $\mathbb R$. Sous réserve d'intégrabilité des variables aléatoires , on a les propriétés suivantes :

- i- Si X et Y sont indépendantes , alors $E(\varphi(Y)|X) = E(\varphi(Y))$. En particulier, E(Y|X) = E(Y).
- ii- On a $E(\varphi(X)|X) = \varphi(X)$. En particulier on a E(X|X) = X

iii-
$$\forall a \in \mathbb{R}$$
, $\forall b \in \mathbb{R}$, $E(a\varphi(X) + b\varphi(Y) \mid X) = aE(\varphi(X)|X) + bE(\varphi(Y)|X) = a\varphi(X) + bE(\varphi(Y)|X)$

iv-
$$E(h(X,Y)|X=x) = E(h(x,Y)|X=x)$$

Département de Mathématiques v-
$$E(\varphi(Y)) = E(E(\varphi(Y))|X)$$

La variance conditionnelle de Y sachant X = x est donnée par

$$Var(Y|X = x) = E(Y^2|X = x) + E^2(Y|X = x)$$

Notons que Var(Y|X) est une variable aléatoire donc on peut calculer son espérance et on a

$$Var(Y) = E(Var(Y|X) + Var(E(Y|X))$$

Exercices

<u>Exercice 1</u> Une école prestigieuse exige de ces candidats de passer un test avant d'accepter leurs candidature. Un bon candidat a 85% de chance de réussir le test alors qu'un candidat faible, n'a que 15% de chance de réussir le test. Des études statistiques ont montré qu'il y a en moyenne 40% de bon candidats.

- 1- Quelle est la probabilité qu'un candidat choisis au hasard, réussi le test ?
- 2- Un candidat a échoué au test, quelle est la probabilité qu'il soit bon ?
- 3- Quelle est la proportion des bon candidats qui ont réussi au test ?

Exercice 2 On suppose que 100 personnes voyageant par train à un instant donné, il y a en moyenne 1 médecin . Soit X la v.a représentant le nombre de médecins dans le train. La v.a X suit une loi de Poisson de paramètre 1.

- 1- Quelle est la probabilité de trouver :
 - i- Aucun médecin
 - ii- Entre 2 et 4 médecins
 - iii- AU moins deux médecins
- 2- Calculer la fonction génératrice, l'espérance et la variance de la variable X.

Exercice 3 Soit X une v.a continue de densité

$$f_X(x) = \frac{k}{x+1}$$
 si $0 \le x \le e-1$ et 0 sinon

- 1- Calculer *k* pour que *f* soit une densité de probabilité.
- 2- Calculer E(X) et Var(X) si elles existent
- 3- Déterminer la fonction de répartition F de X.
- 4- Déterminer la loi de la v.a Y = Ln(1 + X)

Exercice 4 Soit un couple de variables aléatoires (X,Y) tel que $X(\Omega) = \{-2,0,1\}$ et $Y(\Omega) = \{-1,1,2\}$ dont la loi jointe est donnée par le tableau suivant :

$X \setminus Y$	-1	1	2
-2	0.2	0.2	α
0	0.1	0.1	0.05
1	0.2	0	0.1

- 1- Donner l'unique valeur possible pour α .
- 2- Calculer les lois marginales de *X* et de *Y*.
- 3- Montrer que X et Y ne sont pas indépendants
- 4- Calculer la loi conditionnelle de X sachant Y = 1. En déduire E(X|Y = 1)
- 5- Calculer la loi conditionnelle de X sachant $Y \neq 2$.
- 6- Calculer E(XY) et en déduire Cov(X,Y)
- 7- On pose Z = X + Y. Calculer la loi de Z.

Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On suppose que $X \hookrightarrow \mathcal{P}(\lambda)$, Exercice 5 loi de Poisson de paramètre $\lambda > 0$. On suppose que, pour tout entier n > 0, la loi de Y sachant X = n est la loi binomiale $\mathfrak{B}(n,p)$, et que Y = 0 si X = 0.

- 1- Donner la loi jointe du couple aléatoire (X, Y).
- 2- Montrer que Y suit une loi de Poisson de paramètre $p\lambda$.
- 3- Montrer que : $\forall n \ge k$ $P(X = n | Y = k) = e^{-(1-p)\lambda} \frac{((1-p)\lambda)^{n-k}}{(n-k)!}$ En déduire E(X|Y=k) et E(X|Y)

Exercice 6 Soit (X,Y) un couple aléatoire de densité jointe :

$$f(x,y) = cx(y-x)e^{-y}1_{\{0 \le x \le y\}}$$

- 1- Déterminer c pour que f soit une densité.
- 2- Calculer f(x|y), densité conditionnelle de X sachant Y=y
- 3- En déduire que $E(X|Y) = \frac{Y}{2}$
- 4- Calculer f(y|x), densité conditionnelle de Y sachant X = x
- 5- En déduire que E(Y|X) = X + 2
- 6- Déduire de la question 3 la quantité E(X)

Exercice 7 Un couple (X, Y) de variables aléatoires admet pour densité

$$f(x,y) = \begin{cases} \frac{4y}{x^3} & si \ 0 < x < 1, 0 < y < x^2 \\ 0 & sinon \end{cases}$$

- 1- Vérifier que f est bien une densité puis calculer la densité marginale de X
- 2- Calculer f(y|x) et E(Y|X)

Exercice 8 Soient X, Y deux v.a réelles avec

$$f_Y(y) = \frac{1}{v^2} \mathbb{1}_{[1,+\infty[}$$
 , $f_{X|Y}(x|y) = xy^2 e^{-xy} \mathbb{1}_{\mathbb{R}^+}(x)$

- 1- Donner la loi du couple (*X*, *Y*)
- 2- En déduire la loi marginale de X
- 3- Calculer f(y|x). En déduire E(Y|X)