называется **скоростью кода**. Величина $1 - R_c$ - **избыточность**.

Блок из k информационных бит отображается в кодовое слово длины n, выбираемое из набора $M=2^k$ кодовых слов. Каждое кодовое слово состоит из k информационных бит и n-k проверочных.

Вес кода $w_i(i=1,2,..,M)$ — число ненулевых элементов слова, является одной из важных характеристик кода. Для двоичных кодов вес - это количество единиц в кодовом слове. Каждое кодовое слово имеет свой вес. Набор всех весов кода $\{w_i\}$ образует **распределение весов кода**. Если все M кодовых слов имеют одинаковый вес, тогда код называется кодом с **постоянным весом**.

Функции кодирования и декодирования включают арифметические операции сложения и умножения, выполненные над кодовыми словами. Эти операции соответствуют соотношениям и правилам для алгебраического поля с q элементами. Если q=2, то имеем символы $\{0;1\}$. В общем поле F состоит из q элементов $\{0;1;....,q-1\}$. Операции сложения и умножения удовлетворяют следующим аксиомам.

Сложение.

- 1. Поле *F* замкнуто относительно сложения: если $a,b \in F$, то $a+b \in F$.
- 2. Ассоциативность: если $a,b,c \in F$, то a+(b+c)=(a+b)+c.
- 3. Коммутативность: $a, b \in F \Rightarrow a + b = b + a$.
- 4. Поле F содержит **нулевой элемент** 0 такой, что a + 0 = a.
- 5. Каждый элемент поля F имеет свой **отрицательный элемент**, т.е., если $b \in F \Rightarrow -b \in F$ его отрицательный элемент. Вычитание a-b определено как a+(-b).

Умножение.

- 1. Поле *F* замкнуто относительно умножения: если $a,b \in F$, то $ab \in F$.
- 2. Ассоциативность: если $a,b,c \in F$, то a(bc) = (ab)c.
- 3. Коммутативность: $a, b \in F \Rightarrow ab = ba$.
- 4. Поле *F* содержит единичный элемент 1 такой, что $a \cdot 1 = a$.
- 5. Каждый элемент поля F, исключая нулевой элемент, имеет **обратный**. Если $b \in F, b \neq 0 \Rightarrow b^{-1}$ его обратный элемент и $b \cdot b^{-1} = 1$. Деление $\frac{a}{b}$ определено как ab^{-1} .