Ceng 302 Database Management Systems

Relational Model and Algebra

Prof. Dr. Adnan YAZICI

Department of Computer Engineering,
Middle East Technical University
Ankara
(Fall 2021)

Relational Data Model

- Structure of Relational Data Model
- Constraints of the model (keys)
- Fundamental Relational-Algebra-Operations
- Additional Relational-Algebra-Operations
- Extended Relational-Algebra-Operations
- Null Values

Relational Database: Definitions

- > Relational database: a set of relations
- ➤ **Relation:** made up of 2 parts:
 - Instance: a table, with rows and columns.
 #Rows = cardinality, #fields = degree (arity).
 - Schema: specifies name of relation, plus name and type of each column.
 - E.g. Students (sid: string, name: string, login: string, age: integer, gpa: real).
- We can think of a relation as a *set* of *rows* or *tuples* (i.e., all rows are distinct).

Basic Structure

Formally, given sets D₁, D₂, D_n a **relation** r is a subset of
 D₁ x D₂ x ... x D_n
 Thus, a relation is a set of n-tuples (a₁, a₂, ..., a_n) where each a_i ∈ D_i

- Example: If
 - customer_name = {Jones, Smith, Curry, Lindsay,...} /*set of all customers*/
 - customer_street = {Main, North, Park, ...} /* set of all street names */
 - customer_city = {Harrison, Rye, Pittsfield, ...} /*set of all city names*/

Then $r = \{(Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield)\}$ is a relation over

customer_name x customer_street x customer_city

Attribute Types

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the **domain** of the attribute
- Attribute values are (normally) required to be **atomic**; that is, indivisible
 - E.g. the value of an attribute can be an account number,
 but cannot be a set of account numbers
- Domain is said to be atomic if all its members are atomic
- The special value *null* is a member of every domain
- The null value causes complications in the definition of many operations

Relation Schema

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema **Example:**

Customer_schema = (customer_name, customer_street, customer_city)

r(R) denotes a relation r on the relation schema R
 Example:

customer (Customer_schema)

Relation Instance

- The current values (*relation instance*) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

Example Instance of Students Relation

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

- ➤ Cardinality = 3, degree = 5, all rows distinct
- ➤ Do all columns in a relation instance have to be distinct?

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information

account: stores information about accounts

depositor: stores information about which customer owns which account

customer: stores information about customers

- Storing all information as a single relation such as bank (account_number, balance, customer_name, ..) results in
 - repetition of information
 - the need for null values
- Normalization theory deals with how to design relational schemas

Relational Query Languages

- > A major strength of the relational model:
 - supports simple, powerful querying of data.
- ➤ Queries can be written intuitively, and the DBMS is responsible for efficient evaluation.
 - Precise semantics for relational queries.
 - Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change.

The SQL Query Language

- Developed by IBM (system R) in the 1970s
- ➤ Need for a standard since it is used by many vendors
- >Standards:
 - SQL-86
 - SQL-89 (minor revision)
 - SQL-92 (major revision, current standard)
 - SQL-99 (major extensions)

Creating Relations in SQL

Creates the Students relation. Observe that the type (domain) of each field is specified and enforced by the DBMS whenever tuples are added or modified.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

As another example, the Enrolled table holds information about courses that students take.

CREATE TABLE Enrolled (sid: CHAR(20), cid: CHAR(20), grade: CHAR(2))

Adding and Deleting Tuples

> Can insert a single tuple using:

```
INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, 'Smith', 'smith@ee', 18, 3.2)
```

Can delete all tuples satisfying some condition (e.g., name = Smith):

```
DELETE
FROM Students S
WHERE S.name = 'Smith'
```

* Powerful variants of these commands are available.

Modifying Tuples

Can modify the column values in an existing row using:

```
UPDATE Students S

SET S.age = S.age + 1, S.gpa = S.gpa - 1

WHERE S.sid = 53688
```

```
UPDATE Students S

SET S.gpa = S.gpa - 0.1

WHERE S.gpa >= 3.3
```

Integrity Constraints (ICs)

- > IC: condition that must be true for *any* instance of the database; e.g., *domain constraints*.
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.
- A *legal* instance of a relation is one that satisfies all specified ICs.
 - DBMS should not allow illegal instances.
- ➤ If the DBMS checks ICs, stored data is more faithful to real-world meaning.
 - IC Integrity constraints ensure that the data insertion, updating, and other processes have to be performed in such a way that data integrity is not affected.
 - ICs are used to guard against accidental damage to the database.
 - ICs mainly avoid data entry errors.

Keys

- Let $K \subseteq R$
- K is a **superkey** of R if values for K are sufficient to identify a unique tuple of each relation r(R).
 - - are both superkeys of the *Customer* relation, if no two customers can possibly have the same name.
 - In real life, an attribute such as customer_id would be used instead of customer_name to uniquely identify customers.

Keys (Cont.)

- *K* is a **candidate key** if *K* is minimal **Example**: {*customer_name*} is a candidate key for *Customer*, since it is a superkey and no subset of it is a superkey.
- **Primary key:** a candidate key is chosen as the principal means of identifying tuples within a relation
 - Should we choose an attribute whose value never, or very rarely, changes.
 - E.g. *email address* is unique, but it may change

Examples:

- *sid* is a *key* for Students. (What about *name*?)
- *email* is also a candidate key for students.
- The set { sid, gpa} is a superkey.

Primary and Candidate Keys in SQL

- ➤ Possibly many candidate keys (specified using UNIQUE), one of which is chosen as the *primary key*.
- "For a given student and course, there is a single grade."

sid	cid	grade
53666	COP4	A
53666	COP4	B-
53666	CDA3	A

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

Primary and Candidate Keys in SQL

- ➤ Possibly many *candidate keys* (specified using UNIQUE), one of which is chosen as the *primary key*.
- "Students can take only one course and receive a single grade for that course; further, no two students in a course receive the same grade."

sid	cid	grade
53666	COP4	A
53666	CDA3	В-
53444	COP4	A

```
CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid), UNIQUE (cid, grade))
```

Foreign Keys, Referential Integrity

Foreign Key (FK): Set of fields in one relation that is used to 'refer' to a tuple in another relation. (FK must correspond to primary key of the second relation.) Like a 'logical pointer'.

- ➤ E.g. *sid* in the *Enrolled* relation is a foreign key referring to *Students*:
 - Enrolled(sid: string, cid: string, grade: string)
 - If all foreign key constraints are enforced, referential integrity is achieved, i.e., no dangling references.

Foreign Keys

- A relation schema may have an attribute (X) that corresponds to the **primary key** of another relation. This attribute X is called a **foreign key**.
 - E.g. customer_name and account_number attributes of depositor are foreign keys to customer and account respectively.
 - Only values occurring in the primary key attribute of the referenced relation (customer) may occur as the foreign key attribute of the referencing relation (depositor).
- Schema diagram

Foreign Keys in SQL

• Only students listed in the Students relation should be allowed to enroll for courses. This is called the referencial integrity constraint.

```
CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students)
```

Enrolled

sid cid grade		Students							
53	3666	Carnatic 101			sid	name	login	age	gpa
		Reggae203	В -		53666	Jones	jones@cs	18	3.4
		Topology112	A _		53688	Smith	smith@eecs	18	3.2
		History105	B /		53650	Smith	smith@math	19	3.8
		1110001 1 00							

 C_1 1 .

Enforcing Referential Integrity

- Consider *Students* and *Enrolled*; *sid* in *Enrolled* is a foreign key that references *Students*.
- ➤ What should be done if an *Enrolled* tuple with a non-existent *student id* is inserted? (*Reject it!*)
- ➤ What should be done if a *Students* tuple is deleted?
 - Also delete all *Enrolled* tuples that refer to it.
 - Disallow deletion of a *Students* tuple that is referred to.
 - Set sid in Enrolled tuples that refer to it to a default sid.
 - (In SQL, also: Set *sid* in *Enrolled* tuples that refer to it to a special value *null*, denoting `*unknown*' or `*inapplicable*'.)
- Similar if primary key of *Students* tuple is updated.

Referential Integrity in SQL/92

- > SQL/92 supports all 4 options on deletes and updates.
 - Default is NO ACTION(delete/update is rejected)
 - CASCADE (also delete all tuples that refer to deleted tuple)
 - SET NULL / SET DEFAULT
 (sets foreign key value of referencing tuple)

```
CREATE TABLE Enrolled
(sid CHAR(20) DEFAULT '9999',
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students
ON DELETE CASCADE
ON UPDATE NO ACTION)
```

Query Languages

- Language in which user requests information from the database.
- Categories of languages
 - Procedural
 - Non-procedural, or declarative
- "Pure" languages:
 - Relational algebra
 - Tuple relational calculus
 - Domain relational calculus
- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- The Relational Algebra is procedural; you tell it how to construct the result
- It consists of a set of **operators** which, when applied to relations, yield relations (closed algebra)

```
R \cup S
                  union, R UNION S
R \cap S
                  intersection, R INTERSECT S
R \setminus S
                  set difference, R MINUS S
R \times S
                  Cartesian product, R JOIN S (no shared attributes)
                  projection, R[A1, A2, ..., An]
\pi_{A1, A2, ..., An}(R)
                  selection, R WHERE EXPRESSION
\sigma_{\text{expression}}(R)
                  natural join, R JOIN S (no shared attributes)
                  theta-join, via selection from ×
                  divideby, R DIVIDEBY S
ρ [A1 B1,.., An Bn] rename, R[A1 B1,.., An Bn]
```

Relational Algebra

Basic operations:

- <u>Selection</u> (σ) Selects a subset of rows from relation.
- <u>Projection</u> (π) Deletes unwanted columns from relation.
- <u>Cross-product</u> (\times) Allows us to combine two relations.
- <u>Set-difference</u> () Tuples in reln. 1, but not in reln. 2.
- <u>Union</u> (\cup) Tuples in reln. 1 and in reln. 2. or
- Intersect (∩) Tuples in reln. 1 and in reln. 2.

Additional operations:

- Intersection (or union), <u>join</u>, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Select Operation – Example

Relation r:

A	В	C	D
α	α	1	7
α	ß	5	7
ß	β	<i>12</i>	3
β	β	<i>23</i>	<i>10</i>

$$\sigma_{A=B \land D > 5}(r)$$
:

A	B	C	D	
α	α	1	7	
β	β	<i>23</i>	<i>10</i>	

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by \wedge (and), \vee (or), \neg (not)

Each **term** is one of:

\$\$op\$\$
 \\$op\\$ \\\$op\\\$ \\\\$op\\\\$ is one of: =, \\\\$\neq\\\\$, >, \\\\$\geq\\\\$. <. \\\\$\leq\\\\$

Example of selection:

$$\sigma_{branch_name = "Perryridge"}(account)$$

Project Operation – Example

Relation r:

$$\prod_{A,C} (r)$$
:

Project Operation

Notation:

$$\prod_{A_1,A_2,\ldots,A_k}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the branch_name attribute of account

$$\prod_{account\ number,\ balance}$$
 (account)

Union Operation – Example

Relations r, s:

 $r \cup s$:

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid, they must be **union compatiple**, which means;
 - 1. r, s must have the same arity (same number of attributes)
 - 2. The attribute domains must be compatible

Example: 2^{nd} column of r deals with the same type of values as does the 2^{nd} column of s)

Example: to find all customers with either an account or a loan

$$\prod_{customer_name}$$
 (depositor) $\cup \prod_{customer_name}$ (borrower)

Set-Intersection Operation – Example

Relation r, s:

Notation: $r \cap s$

Defined as:

 $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$

Assume:

r, s are union compatible

Note: $r \cap s = r - (r - s)$

Set Difference Operation – Example

Relations *r*, *s*:

A	В	
α	2	
β	3	
S		

r - s:

Set Difference Operation

- Notation r-s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

• Set differences must also be union compatible relations.

- As might noticed, Difference, Union and Intersect operations must be union-compatible;
 - Same number of fields.
 - Attribute domains of *r* and *s* must be compatible, that is `Corresponding' fields have the same type.

Cartesian-Product Operation – Example

Relations *r*, *s*:

С	D	E
$\begin{bmatrix} \alpha \\ \beta \\ \beta \\ \gamma \end{bmatrix}$	10 10 20 10	a a b b

S

rxs:

A	В	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. That is, $R \cap S = \emptyset$.
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Composition of Operations

• Can build expressions using multiple operations

• Example: $\sigma_{A=C}(r x s)$

• r x s

A	В	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

• $\sigma_{A=C}(r x s)$

A	В	C	D	E
$egin{array}{c} lpha \ eta \ eta \end{array}$	1 2 2	$\begin{array}{c c} \alpha \\ \beta \\ \beta \end{array}$	10 10 20	a a b

Natural-Join Operation

Notation: $r \bowtie s$

- Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s
- Example:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Result schema = (*A*, *B*, *C*, *D*, *E*)
- $r \bowtie s$ is defined as:

$$\prod_{r,A, r,B, r,C, r,D, s,E} (\sigma_{r,B=s,B} \wedge_{r,D=s,D} (r \times s))$$

Natural Join Operation – Example

• Relations r, s:

$$r \bowtie \, s$$

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
8	2	β	b	8

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B=s.B} \wedge_{r.D=s.D} (r \times s))$$

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.
- Example:

$$\rho_X(E)$$

returns the expression E under the name X

• If a relational-algebra expression E has arity n, then

$$\rho_{x(A_1,A_2,\ldots,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A_1 , A_2 ,, A_n .

Division Operation

- Notation: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where
 - $R = (A_1, ..., A_m, B_1, ..., B_n)$
 - $S = (B_1, ..., B_n)$

The result of $\mathbf{r} \div \mathbf{s}$ is a relation on schema

$$R - S = (A_1, ..., A_m)$$

 $r \div s = \{ t \mid t \in \prod_{R - S} (r) \land \forall u \in S (tu \in r) \}$

where tu means the concatenation of tuples t and u to produce a single tuple.

r ÷ s contains all t tuples such that for every u tuple in s, there is a tu tuple in r. Or if the set of u values associated with a t value in r contains all u values in s, the t value is in r ÷ s.

Division Operation – Example

Relations *r*, *s*:

$$r \div s$$
:
$$\begin{array}{c} A \\ \alpha \\ \beta \end{array}$$

$$R - S = (A_1, ..., A_m)$$

$$r \div s = \{ t \mid t \in \prod_{R-S} (r) \land \forall u \in s (tu \in r) \}$$

Examples of Division R/Si

sno	pno	pno	pno	pno
s1	p1	n2	p2	p1
s1	p2	-	$\mathfrak{p}4$	p2
s1	p2 p3 p4	S_1	S_2	$\mathfrak{p}4$
s1	p4		5 2	C
s2		sno		S_3
s2 s2 s3 s4	p1 p2 p2	s1		
s3	p2	s2	sno	
s4	p2	s3	s1	sno
s4	p4	s4	s4	s1
	R	R/S_1	R/S_2	R/S3

Another Division Example

Relations *r*, *s*:

r

$$R - S = (A_1, ..., A_m)$$

$$r \div s = \{ t \mid t \in \prod_{R-S} (r) \}$$

$$\wedge \forall u \in s (tu \in r) \}$$

Division Operation (Cont.)

Property

- Let $q = r \div s$
- Then q is the largest relation satisfying $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let $S \subseteq R$ $r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r))$
 - $\prod_{R-S,S}(r)$ simply reorders attributes of r
 - $\prod_{R-S} (\prod_{R-S} (r) \times s) \prod_{R-S,S} (r)$) gives those tuples t in $\prod_{R-S} (r)$ such that for some tuple $u \in s$, $tu \notin r$.

Division Operation (Cont.)

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} [(\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r)]$$

- $\prod_{R-S,S}(r)$ simply reorders attributes of r
- $\prod_{R-S} (\prod_{R-S} (r) \times s) \prod_{R-S,S} (r)$) gives those tuples t in $\prod_{R-S} (r)$ such that for some tuple $u \in s$, $tu \notin r$.

Reserves

Example Instances

sid	bid	day
22	101	10/10/96
22	103	12/10/96
22	102	13/10/96

Sailors

 We will use these instances of the Sailors, Boats and Reserves relations in our examples.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

Query: "Find sailors who've reserved all boats."

<u>bid</u>	bname	color
101	Intertake	blue
102	Intertake	red
103	Clipper	green

Division in SQL

Query: Find sailors who've reserved all boats.

Let's do it without EXCEPT:

SELECT S.sname Sailors S such that ... FROM Sailors S

(SELECT B.bid WHERE NOT EXISTS

FROM Boats B

WHERE NOT EXISTS (SELECT R.bid

SELECT S.sname

FROM Sailors S

a Reserves tuple showing S reserved B

WHERE NOT EXISTS ((SELECT B.bid FROM Boats B) **EXCEPT** (SELECT R.bid Reserves R FROM WHERE R.sid=S.sid)) there is no boat B without FROM Reserves R

WHERE R.bid=B.bid

AND R.sid=S.sid))

or "Select each sailor such that there does not exist a boat that the sailor does not reserve it."

Querying using Relational Algebra

Query: Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

Alternative solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer can find this, given the first solution!

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.

Example: Write $r \div s$ as

$$temp1 \leftarrow \prod_{R-S} (r)$$

 $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$
 $result = temp1 - temp2$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow .
- May use variable in subsequent expressions.

Querying using Relational Algebra

Query: Find names of sailors who've reserved boat #103

Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

* Solution 2:
$$\rho$$
 (Templ, $\sigma_{bid=103}$ Reserves) ρ (Temp2, Temp1 \bowtie Sailors)

 π_{sname} (Temp2)

* Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate operation in relational algebra

$$_{G_1,G_2,...,G_n} \mathcal{G}_{F_1(A_1),F_2(A_2,...,F_n(A_n)}(E)$$

E is any relational-algebra expression

- G_1 , G_2 ..., G_n is a list of attributes on which to group (can be empty)
- Each **F**_i is an aggregate function
- Each A_i is an attribute name

Aggregate Operation – Example

Relation r:

 $\boldsymbol{g}_{\text{sum(c)}}(\mathbf{r})$

sum(C)

27

Aggregate Operation – Example

Relation *account* grouped by *branch-name*:

branch_name	account_number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

 $branch_name \ \mathcal{G}_{sum(balance)} \ (account)$

branch_name	sum(balance)
Perryridge	1300
Brighton	1500
Redwood	700

Aggregate Functions (Cont.)

Result of aggregation does not have a name

- Can use rename operation to give it a name
- For convenience, we permit renaming as part of aggregate operation

branch name **g** sum(balance) as sum balance (account)

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses *null* values:
 - null signifies that the value is unknown or does not exist
 - All comparisons involving *null* are (roughly speaking)
 false by definition.
 - We shall study precise meaning of comparisons with nulls later

Outer Join – Example

Relation *loan*

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

Relation borrower

customer_name	loan_number
Jones	L-170
Smith	L-230
Hayes	L-155

Outer Join – Example

loan

loan_number	branch_name	amount
L-170	Downtown	3000
	Redwood	4000
L-260	Perryridge	1700

borrower

customer_name	loan_number
	L-170
Smith	L-230
Hayes	L-155

Join

loan ⋈ *borrower*

loan_number	branch_name	amount	customer_name
	Downtown	3000	Jones
	Redwood	4000	Smith

Left Outer Join

loan \sum borrower

loan_number	branch_name	amount	customer_name
	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

Outer Join – Example

loan borrower

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

customer_name	loan_number
Jones	L-170
Smith	L-230
Hayes	L-155

Right Outer Join

loan ⋈ *borrower*

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

Full Outer Join

loan □ *borrower*

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Relational Model - Operations

Powerful set-oriented query languages:

• Relational Algebra: procedural; describes how to compute a query

Operators; Union, Select, Project, Cartesian Product, Difference, and

Intersect, Join, Division, Outer Join, Outer Union, etc.

• Relational Calculus: declarative; describes the desired result, Insert, delete, and update capabilities

e.g., SQL, QBE

Outer Union

Display all data values from Table df1 and table df4, but overlay common attributes.

	df1							Res	sult		
		Α	В	С	D		Α	В	С	D	F
	0	A0	BO	0	D0 D0	0	A0	BO	00	D0	NaN
	1	A1	B1	C	1 D1						
	2	A2	B2	C	2 D2	1	A1	B1	Cl	D1	NaN
	3	АЗ	В3	C	3 D3	2	A2	B2	В	D2	NaN
_	df4			3	A3	В3	СЗ	D3	NaN		
_		В		D	F	2	NaN	B2	NaN	D2	F2
	7	1	32	D2	F2	3	NaN	В3	NaN	D3	F3
	3	3	33	D3	F3	6	NaN	B6	NaN	D6	F6
	6	5 E	36	D6	F6						
	7	· [37	D7	F7	7	NaN	B7	NaN	D7	F7

Outer Union

Table ONE Table TWO

Х	A
1	a
1	a
1	b
2	С
3	v
4	е
6	g

X	В
1	x
2	У
3	z
3	v
5	W

select * from one outer union corr select * from two;

Final Results

X		В
1	a	
1	a	
1	b	
2	υ	
3	v	
4	e	
6	g	
1		x
2		У
		z
3		v
5		W

Relational Calculus

 The Relational Calculus is non-procedural. It allows you to express a result relation using a predicate on tuple variables (tuple calculus):

$$\{ t \mid P(t) \}$$
 or on domain variables (domain calculus):
$$\{ <\mathbf{x}_1,\,\mathbf{x}_2,\,...,\,\mathbf{x}_n > \mid P(<\mathbf{x}_1,\,\mathbf{x}_2,\,...,\,\mathbf{x}_n >) \ \}$$

 You tell the system which result you want, but not how to construct it.

Relational Calculus

FLT-WEEKDAY

flt#	weekday
------	---------

Query: Find FLT# for all flights scheduled for Mondays

Tuple calculus:

 $\{t.FLT\# \mid FLT-WEEKDAY(t) \land t.WEEKDAY = MO\}$

Domain calculus:

{<FLT#> | <FLT#, WEEKDAY> ∈ FLT-WEEKDAY ∧ WEEKDAY = MO}

Relational Calculus

Tuple and domain calculus for join operation: $\{t \mid P(t)\}$

FLT-WEEKDAY

```
flt# weekday
```

FLT-INSTANCE

flt# date plane#	#avail-seats
------------------	--------------

Query: Find and make a list with complete flight instance information Tuple Calculus:

```
{s.FLT#, s.WEEKDAY, t.DATE, t.PLANE#, t.#AVAIL-SEATS | FLT-WEEKDAY(s) \land FLT-INSTANCE(t) \land s.FLT# = t.FLT# }
```

Domain Calculus:

```
\{<FLT#, WEEKDAY, DATE, PLANE#, #AVAIL-SEATS > |<FLT#, WEEKDAY > \in FLT-WEEKDAY \wedge < FLT#, DATE, PLANE#, #AVAIL-SEATS > \in FLT-INSTANCE \wedge FLT# = FLT#\}
```

Null Values

- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is *null*.
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

Null Values

- Comparisons with null values return the special truth value: unknown
 - If false were used instead of unknown, then not (A < 5)
 would not be equivalent to A >= 5
- Three-valued logic using the truth value unknown:
 - OR: (unknown **or** true) = true, (unknown **or** false) = unknown (unknown **or** unknown) = unknown
 - AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
 - NOT: (not unknown) = unknown
- In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown