Лабораторная работа 3.4.1. Диа- и парамагнетики

Вехов Владимир

27 ноября 2024 г.

Краткие теоретические сведения

Измерение магнитной восприимчивости материалов будем проводить с помощью расчета силы, действующей на магнетик в магнитном поле. При смещении образца на расстояние Δl внутрь магнитного поля магнитная сила, действующая на него, равна

$$F = \left(\frac{\Delta W_m}{\Delta l}\right)_I,\tag{1}$$

где ΔW_m — изменение магнитной энергии системы при постоянном токе в обмотке электромагнита и, следовательно, при постоянной величине магнитного поля в зазоре. Магнитная энергия рассчитывается по формуле:

$$W_m = \frac{1}{2} \int (\mathbf{HB}) dV = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV,$$

Рис. 1: Перемещение магнетика

При смещении образца магнитная энергия меняется только в области зазора (в объёме площади S и высоты Δl), а около верхнего конца стержня остаётся неизменной, поскольку магнитного поля там практически нет. Тогда изменение магнитной энергии будет:

$$\Delta W_m = \frac{1}{2\mu_0} \frac{(\mu B)^2}{\mu} S\Delta l - \frac{1}{2\mu_0} B^2 S\Delta l = (\mu - 1) \frac{B^2}{2\mu_0} S\Delta l$$

Следовательно, на образец действует сила

$$F = (\mu - 1)\frac{B^2}{2\mu_0}S = \chi \frac{B^2}{2\mu_0}S$$

Знак силы, действующей на образец, зависит от знака χ : образцы из парамагнитных материалов ($\chi>0$) втягиваются в зазор электромагнита, а диамагнитные образцы ($\chi<0$) выталкиваются из него.

Экспериментальная установка

Магнитное поле создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником питания GPR и измеряется амперметром , встроенным в источник питания. Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре электромагнита и силой тока I в его обмотках) производится при помощи милливеберметра либо тесламетра.

Сила, действующая на образец со стороны магнитного поля измеряется в помощью весов: смотрится разность веса образца вне поля и в поле.

Ход работы

В работе мы использовали метод Гюи (со стержнем), помещали его в элетромагнит и записывлаи показания весов

Рис. 2: Схема экспериментальной установки.

Таб	лица 1:	: Медь
I, A	U, B	М, г
0	0	83,063
1,1	108	83,03
1	97,8	83,034
0,8	78,3	83, 043
0,6	59,1	83,05
0,5	48,5	83,055
0,3	29,3	83,059
0,2	19,7	83,06
0,1	9,5	83,061

Таблиі	ца 2: Ал	тюминий
I, A	U, B	М, г
0	0	$25,\!256$
1,1	108,2	83,03
0,9	88,2	83,038
0,8	78,3	83,043
0,6	59,1	83,05
0,5	49,1	25,243
0,3	29,3	$25,\!233$
0,1	9,6	25,227

Таблица 3: Магнитная индукция

I, A	Ф, мВб	В, мТл	
1,1	7,3	0,101	
1	6,8	0,094	
0,9	6,3	0,087	
0,8	5,7	0,079	
0,6	$4,\!4$	0,061	
0,5	3,7	0,051	
0,4	2,95	0,041	
0,3	2,2	0,03	
0,1	0,8	0,011	

Рис. 3: B(I)

Рис. 4: $\Delta P(B^2)$

Расчёт магнитной восприимчивости

- 1. Для меди это $\chi = \alpha * 2\mu_0/S = -9, 5*10^{-6}$ 2 Для алюминия это $\chi = \alpha * 2\mu_0/S = 2*10^{-5}$

$$\chi = \alpha * 2\mu_0 / S = 2 * 10^{-5}$$