Apellidos, Nombre:	
DNI:	

Examen PED enero 2010 <u>Modalidad 0</u>

Normas: • La entrega del test \underline{no} corre convocatoria.

- Tiempo para efectuar el test: 15 minutos.
- Una pregunta mal contestada elimina una correcta.
- Las soluciones al examen se dejarán en el campus virtual.
- Una vez empezado el examen no se puede salir del aula hasta finalizarlo.

 En la hoja de contestaciones el verdadero se corresponderá con la A, y el falso con la B. 				
	\mathbf{V}	\mathbf{F}		
En C++, el valor de la variable q al finalizar este fragmento de código es 11:			1	V
int q = 0;		Ч		
int k = 5;				
do {				
q += k;				
$\hat{k}++;$				
$\}$ while $(q < 7)$;				
La complejidad temporal (en su caso mejor) del siguiente fragmento de código es $\Omega(n)$			2	V
	_	_		
int i, length, n, i1, i2, k;				
for $(i = 0, length = 1; i < n-1; i++) {$				
for $(i1 = i2 = k = i; k < n-1 & a[k] < a[k+1]; k++, i2++);$				
if (length < i2 - i1 + 1) length = i2 - i1 + 1;				
La semántica de la operación insertar del tipo lista vista en clase es la siguiente:			3	F
	–	_		
VAR L1: lista; x,y: item; p: posicion;				
insertar(crear(), p, x) = crear()				
$si\ p == primera(inscabeza(L1, x))$ entonces				
insertar(inscabeza(L1, x), p, y) = inscabeza(inscabeza(L1, x), y)				
si no insertar(inscabeza($L1$, x), p , y) = inscabeza(insertar($L1$, p , y), x)				
El grado de un árbol es el grado mínimo de todos los nodos de ese árbol			4	F
F1. 2. 2. 4. 1. 1. 1. 1. 2. 4. 1. 2		_	_	
El siguiente árbol es binario de búsqueda			5	F
<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>				
(f) (k)				
Dada la siguiente representación secuencial del árbol binario A, 148 195			6	V
el elemento 5 es el hijo izquierda del elemento 8		Ч		
En el algoritmo de borrado de un elemento de un árbol AVL, tenemos que actualizar los factores de			7	V
equilibrio de todos los nodos que han intervenido en la búsqueda del elemento a borrar	_	ш		
En el algoritmo del borrado de un elemento en un árbol 2-3-4 siempre que q sea 2-nodo hay que			8	V
hacer una reestructuración.	_	Ч		
El árbol 2-3-4 no vacío tiene como mínimo dos claves en cada nodo			9	F
		J		
La operación <i>BorrarItem</i> , que borra todas las ocurrencias del item <i>i</i> que se encuentren en la lista,			10	V
tiene la siguiente sintaxis y semántica:		_		
BorrarItem: LISTA, ITEM -> LISTA				
BorrarItem(Crear, i) = Crear				
$D_{\text{consort}}(\mathbf{IC}(\mathbf{I}, \mathbf{I}, \mathbf{I})) = \mathbf{c}(\mathbf{I}, \mathbf{I}, \mathbf{I}) + \mathbf{c}(\mathbf{I}, \mathbf{I}, \mathbf{I})$	1			
BorrarItem($IC(L1,j)$, $i) = si (i == j)$ entonces BorrarItem (L1, i) sino IC (BorrarItem (L1, i), j)				