

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Mu-Ruei Tseng, Harshavardhana Srinivasan

Diffusion Model

A generative model that create data from noise

Ex: a linear noise schedule $lpha_t=1-rac{t}{T}$, $ar{lpha}_t=\prod_{i=1}^{\iota}lpha_i$

Reverse Process (inferencing)

Start with pure noise x_T

For each timestep
$$t = T, T - 1, \dots 1$$

Calculate
$$\hat{x}_0 = rac{x_t - \sqrt{1 - ar{lpha}_t} imes \epsilon_{ heta}(x_t, t)}{\sqrt{ar{lpha}_t}}$$

compute
$$x_{t-1} = \sqrt{lpha_{t-1}} \hat{x}_0 + \sqrt{1-lpha_{t-1}} imes \epsilon$$

Denoising process for a single image

The reverse process aims to estimate and follow a complex nonlinear curved path

At each stage

- Predict the tangent direction
- Take a small step along the direction
- Can lead to suboptimal result due to the accumulated error

Contribution

Introduce Rectified Flow for Noise Addition

 Reformulate the forward process as straight-line paths between the data and noise distributions

Contribution

Design Tailored SNR Samplers

Emphasize the importance of focusing on intermediate timesteps in the diffusion process

Novel Transformer-Based Architecture

- A bidirectional transformer architecture with separate streams for image and text tokens
- Outperform SOTA models like DALL-E 3 and SDXL

Comprehensive Experiments on Noise Methods

 Conduct large-scale experiments comparing different noise-adding methods and sampling techniques

Methodology - Flow Based Method

• Proposed Flow Based Generative model, which is used to map samples from a noise distribution p_1 to data distribution p_0 through an ODE equation

$$dy_t = v_{\Theta}(y_t, t) dt$$

 The vector field u, maps the data to noise through intermediate steps as defined in the forward process as follows:

$$z_t = a_t x_0 + b_t \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, I)$

• A typical solution to the above equation involves solving the marginal vector field $u_t(z|\epsilon)$ that averages across all noise samples, which becomes costly in computation.

$$\psi_t(\cdot|\epsilon): x_0 \mapsto a_t x_0 + b_t \epsilon$$

$$u_t(z|\epsilon) \coloneqq \psi_t'(\psi_t^{-1}(z|\epsilon)|\epsilon)$$

Methodology - Objective Function

Objective Function

- The objective function trains the model to predict the velocity field v(z,t), which describes how samples move along the trajectory from data (p_0) to noise (p_1) over time t
- The model minimizes the difference between the predicted velocity v(z,t) (output of the neural network) and the target velocity u(z,t). For example: $||v_{\theta}(z,t) u_{t}(z)||_{2}^{2}$. The original loss function computes this difference, averaged over all timesteps and noise samples.

velocity field

Methodology - Objective Function

Instead of learning $||v_{\theta}(z,t) - u_t(z)||_2^2$, reform the loss to minimize the noise added at each timestamp:

- Simpler and more direct to predict
- Aligns more naturally with the reverse process (as the forward process explicitly adds noise at each step)

The final objective incorporates weights derived from the signal-to-noise ratio (SNR) and timestep density

Ensure that the model prioritizes important timesteps for improved performance.

$$\mathcal{L}_w(x_0) = -\frac{1}{2} \mathbb{E}_{t \sim \mathcal{U}(t), \epsilon \sim \mathcal{N}(0, I)} \left[w_t \lambda_t' \| \epsilon_{\Theta}(z_t, t) - \epsilon \|^2 \right]$$

Weighted Loss Function:

where
$$w_t = -\frac{1}{2}\lambda_t'b_t^2$$
 corresponds to \mathcal{L}_{CFM} .

Methodology - Flow Trajectories

Rectified Flow: Defines a forward process as straight paths between the data distribution and a standard normal distribution as $z_t = (1-t)x_0 + t\epsilon$

EDM: Uses the forward process of the form $z_t = x_0 + b_t \epsilon$ where $b_t = \exp F_N^{-1}(t|P_m, P_s^2)$

Cosine: Has the forward process of the form $z_t = \cos(\frac{\pi}{2}t)x_0 + \sin(\frac{\pi}{2}t)\epsilon$

LDM (Linear): Uses a modification of the DDPM schedule. Both are variance preserving schedules given by $b_t = \sqrt{1 - a_t^2}$

The diffusion coefficients of at and bt: $a_t = (\prod_{s=0}^t (1-\beta_s))^{\frac{1}{2}}$ and $(\sqrt{\beta_0} + \frac{t}{T-1}(\sqrt{\beta_{T-1}} - \sqrt{\beta_0}))^2$

Methodology - Tailored SNR Samplers

Intuitively, the error in the intermediate timestamp is harder to learn

- Involves a more complex balance between signal and noise
- The model should focus more in the intermediate timesteps

Tailored SNR Sampler (logit-normal sampling, mode sampling)

- Sample intermediate timesteps with higher frequency (opposed to uniform distribution)
- Outperform uniform sampling and diffusion baselines like EDM and LDM-Linear.

Methodology - Tailored SNR Samplers

Figure 11. The mode (left) and logit-normal (right) distributions that we explore for biasing the sampling of training timesteps.

Methodology - Text-to-Image Model

T5 XXL

Caption

CLIP-L/14

CLIP-G/14

Similar to the Latent Diffusion Model

Training the diffusion model in the latent space

(a) Overview of all components.

Methodology - Text-to-Image Model

T5 XXL

channel

MM-DiT-Block 1

MM-DiT-Block 2

MM-DiT-Block d

Modulation

Linear

Unpatching

Output

Positional

Embedding

Noised Latent

Patching

Linear

Caption

CLIP-L/14

77 + 77 tokens

Linear

CLIP-G/14

MI.P

MLP

Sinusoidal Encoding

Timesten

Text embedding

- Uses pretrained text encoders to obtain high-quality text embeddings
 - Uses multiple text encoders and create a unified text representation (like ensemble)
 - A 46.3% dropout rate is applied to the text embeddings during training (more flexible)

CLIP-G/14 CLIP-L/14 T5 XXL

Token-Level Embeddings: multiple vectors (154 x 4096), captures fine-grained token-specific details

Pooling: creates a single, compact embedding that summarizes the entire text ex: mean pooling (avg the tokens)

(a) Overview of all covers

(a) Overview of all components.

CSCE 689: Special Topics in Programming Large Language Model

Methodology - Text-to-Image Model

MMDiT Block

- Unlike DiT, MMDiT uses separate weights for two modalities
 - Like having two transformers but share the attention operation
 - Intuition: Both representation can work in their own space while taking the other into account (during the attention part)
- Model Scaling:
 - Ensures a balanced architecture as the model grows deeper.
 - Depth: d
 - Hidden size: 64 x dMLP size: 4 x 64 x d
 - Attention heads: d

Evaluation Metric

CLIP score

- Measures how well a generated image aligns with a given text prompt
- Calculate the similarity between text and image embeddings

$$ext{CLIP score} = cos(z_{ ext{text}}, z_{ ext{image}}) = rac{z_{ ext{text}} \cdot z_{ ext{image}}}{||z_{ ext{text}}|| imes ||z_{ ext{image}}||}$$

FID (Fréchet Inception Distance)

- Evaluates the quality and diversity of generated images by comparing their distribution to a reference distribution
- In this paper, they use CLIP features instead of features generated from Inception-v3

Evaluation Metric

Public Benchmarks (T2I-CompBench, GenEval)

Human Ratings

- Prompt following:
 - Which image looks more representative to the provided text?
- Visual Aesthetic:
 - Given the prompt, which image is of higher-quality and aesthetically more pleasing?
- Typography:
 - Which image more accurately shows the text specified in the description?

Results

The paper shares extensive results covering two areas primarily

- Different samplers and trajectories
 - Employs global ranking and selective ranking from the best samplers
- Model architecture scaling
 - Comparison across different architecture and the performances

Results - Global Ranking of Variants

	rank averaged over					
variant	all	5 steps	50 steps			
rf/lognorm(0.00, 1.00)	1.54	1.25	1.50			
rf/lognorm(1.00, 0.60)	2.08	3.50	2.00			
rf/lognorm(0.50, 0.60)	2.71	8.50	1.00			
rf/mode(1.29)	2.75	3.25	3.00			
rf/lognorm(0.50, 1.00)	2.83	1.50	2.50			
eps/linear	2.88	4.25	2.75			
rf/mode(1.75)	3.33	2.75	2.75			
rf/cosmap	4.13	3.75	4.00			
edm(0.00, 0.60)	5.63	13.25	3.25			
rf	5.67	6.50	5.75			
v/linear	6.83	5.75	7.75			
edm(0.60, 1.20)	9.00	13.00	9.00			
v/cos	9.17	12.25	8.75			
edm/cos	11.04	14.25	11.25			
edm/rf	13.04	15.25	13.25			
edm(-1.20, 1.20)	15.58	20.25	15.00			

 Ranks 61 variants based on their overall performance across datasets (ImageNet, CC12M), sampling steps (5 and 50), and sampler settings.

 Uses Pareto- based global ranking derived from averaged ranks over CLIP and FID scores across various configurations.

 It identifies the top-performing variants globally, considering a wide range of scenarios (e.g., rf/lognorm(0, 1), rf/lognorm(1, 0.6), and others).

CSCE 689: Special Topics in Programming Large Language Model

Results - Effective Samplers

variant	Ima	geNet	CC12M		
	CLIP	FID	CLIP	FID	
rf	0.247	49.70	0.217	94.90	
edm(-1.20, 1.20)	0.236	63.12	0.200	116.60	
eps/linear	0.245	48.42	0.222	90.34	
v/cos	0.244	50.74	0.209	97.87	
v/linear	0.246	51.68	0.217	100.76	
rf/lognorm(0.50, 0.60)	0.256	80.41	0.233	120.84	
rf/mode(1.75)	0.253	44.39	0.218	94.06	
rf/lognorm(1.00, 0.60)	0.254	114.26	0.234	147.69	
rf/lognorm(-0.50, 1.00)	0.248	45.64	0.219	89.70	
rf/lognorm(0.00, 1.00)	0.250	45.78	0.224	89.91	

Shows how individual variants, like
 rf/lognorm(0.50, 0.60) or rf/lognorm(0, 1),
 perform on ImageNet and CC12M in terms of
 direct evaluation metrics.

Results - Samplers vs Training Steps

- Rectified Flows (RF) are highly sample-efficient, performing better than other formulations when the number of sampling steps is fewer than 25.
- For 25 or more steps, rf/lognorm(0.00, 1.00)
 continues to perform competitively, matching
 or surpassing eps/linear, showcasing its
 robustness across varying step counts.

Results - Samplers vs Training Steps

Results - Human Preference vs Closed And Open Model Evaluation

The 8B model performs favorably against current SOTA text-to-image models in human evaluations on the Parti-prompts, excelling in **visual quality**, **prompt adherence**, and **typography generation**.

Results - Scalability and Performance of MM-DiT Across Image and Video Generation

Objects						Color	
Model	Overall	Single	Two	Counting	Colors	Position	Attribution
minDALL-E	0.23	0.73	0.11	0.12	0.37	0.02	0.01
SD v1.5	0.43	0.97	0.38	0.35	0.76	0.04	0.06
PixArt-alpha	0.48	0.98	0.50	0.44	0.80	0.08	0.07
SD v2.1	0.50	0.98	0.51	0.44	0.85	0.07	0.17
DALL-E 2	0.52	0.94	0.66	0.49	0.77	0.10	0.19
SDXL	0.55	0.98	0.74	0.39	0.85	0.15	0.23
SDXL Turbo	0.55	1.00	0.72	0.49	0.80	0.10	0.18
IF-XL	0.61	0.97	0.74	0.66	0.81	0.13	0.35
DALL-E 3	0.67	0.96	0.87	0.47	0.83	0.43	0.45
Ours (depth=18), 512 ²	0.58	0.97	0.72	0.52	0.78	0.16	0.34
Ours (depth=24), 512^2	0.62	0.98	0.74	0.63	0.67	0.34	0.36
Ours (depth=30), 512^2	0.64	0.96	0.80	0.65	0.73	0.33	0.37
Ours (depth=38), 512^2	0.68	0.98	0.84	0.66	0.74	0.40	0.43
Ours (depth=38), 512 ² w/DPO	0.71	0.98	0.89	0.73	0.83	0.34	0.47
Ours (depth=38), 1024 ² w/DPO	0.74	0.99	0.94	0.72	0.89	0.33	0.60

- MM-DiT models improve validation loss with larger sizes and more training steps, aligning with evaluation metrics and human preferences.
- Larger models outperform SOTA models in prompt comprehension and overall quality

Discussion

Key Contributions

- Rectified Flow
 - Resolves curved forward paths, improving reverse process efficiency and accuracy
- Tailored SNR Sampler (during training)
 - Focuses on intermediate timesteps as their errors are more difficult to model
- MM-DiT architecture
 - Multimodal transformer with separate weights for text and image modalities improves integration

Strengths

- Outperforms SOTA models (e.g., SDXL, DALL-E 3) on CLIP, FID, and human preferences
- Comprehensive evaluation

Discussion

Limitation

- Performance Degradation with limited steps
 - Effectiveness of the model decreases significantly when the number of training steps is reduced
- Multi-Modal beyond text-image
 - The study focuses on high-resolution text-to-image tasks, with limited exploration of audio-text and video-text applications

Future Directions

- Exploring other multi-modal capabilities beyond text-to-image, such as text-to-video or audio-to-text
- Investigating efficient scaling methods to significantly reduce computational overhead while maintaining performance

References

- The paradox of diffusion distillation
- An Introduction to Diffusion Models and Stable Diffusion
- Stable Diffusion 3