Ohjelmistotuotanto Syksy 2015

Vastuuhenkilö Matti Luukkainen

assistentteina: Pihla Toivanen & Verna Koskinen

Aloitusluento

1.9.2015

THAT MEANS NO MORE PLANNING AND NO MORE DOCUMENTATION. JUST START WRITING CODE AND COMPLAINING.

I'M GLAD THAT UNAS IN THAT WAS IN THAT WAS IN TRAINING.

Scott Adams, Inc./Dist. by UFS, Inc.

Kurssin tavoite

 Primäärinen tavoite on antaa osallistujille riittävät käsitteelliset ja tekniset valmiudet toimia Ohjelmistotuotantoprojektissa

- Suoritettuaan kurssin opiskelija
 - Tuntee ohjelmistoprosessin, erityisesti ketterän prosessin vaiheet
 - Tietää miten vaatimuksia hallitaan ketterässä ohjelmistotuotantoprosessissa
 - Ymmärtää suunnittelun, toteutuksen ja testauksen vastuut ja luonteen ketterässä ohjelmistotuotannossa
 - Ymmärtää ohjelmiston laadunhallinnan perusteet
 - Osaa toimia ympäristössä, jossa ohjelmistokehitys tapahtuu hallitusti ja toistettavalla tavalla
- Oppimismatriisi ei ole tällä hetkellä ajan tasalla, päivitetään kurssin aikana
- Aihepiirin hallitseville ihmisille suuri tarve, ks:
 - http://www.projectmanagement.com/blog/Agility-and-Project-Leadership/ 6293/

Sisältö ja kurssimateriaali

Sisältö ks kurssisivu

https://github.com/hy-ohtu/ohtu2015

- "teoria" perustuu mm. seuraaviin lähteisiin
 - Henrik Kniberg: Scrum and XP from the trenches (ilmainen pdf)
 - James Shore: The Art of Agile development (osittain online)
 - Jonathan Rasmusson: The Agile Samurai
- Oleelliset luvut tullaan listaamaan kurssisivulla
- Näiden lisäksi paljon web-lähteitä, jotka myös tullaan mainitsemaan kurssisivulla
- Teoria-asiaa tulee myös laskaritehtävien yhteydessä
- HUOM: pelkästään luentokalvoja lukemalla ei esim. kurssikokeessa tule pärjäämään kovin hyvin

Opetus ja suoritustapa

- Luentoja vain tämä aloitusluento
- Laskarit:
 - Ohjelmointi/versionhallinta/konfigurointitehtäviä
 - Laskareista yhteensä 10 kurssipistettä
- Miniprojekti viikoilla 4-6
 - Tehdään 3-5 hengen ryhmissä
 - yhteensä 10 kurssipistettä
- Koe yhteensä 20 kurssipistettä
- Läpipääsyyn vaaditaan hyväksytty miniprojekti, puolet koepistemäärästä ja puolet koko kurssin pistemäärästä

Laskarit

- Viikon tehtävien deadline maanantai klo 23.59
- Ohjausajat kurssisivulla
- Tehtävien palautus: ks. ensimmäinen laskarin lopusta. Tehdyt tehtävät merkataan ohtustats -järjestelmään jonne linkki laskareissa.

Haastavat laskarit - täh?

- Tänä vuonna laskareista on sekä tavalliset että haastavammat versiot. Joka viikolle ilmestyy siis sivuille Laskari 1 perus & Laskari 1 haastava.
- Haastavissa laskareissa opeteltavia ylimääräisiä aiheita esim.
 Travis, WireMock sekä joukko gitin hienouksia.
- Molemmissa sama määrä tehtäviä. Haastavat laskarit sopivat niille jotka ovat jo aiemmin esimerkiksi työskennelleet ohjelmistoalalla, sillä niissä sivuutetaan perusasiat nopeammin ja siirrytään aiheisiin joita ei peruslaskareissa käsitellä.
- Jos olet motivoitunut käyttämään enemmän aikaa laskareihin ja oppimaan enemmän, kannattaa tehdä haastavia laskareita vaikket olisikaan erityisen kokenut.
- Haastavissa laskareissa käydään nimittäin samat asiat kuin peruslaskareissa mutta edetään nopeammin.

Ylimääräiset opintopisteet

- Versionhallinta 1 op: jos et ole tehnyt kurssia, saat kurssin suoritetuksi tekemällä kaikki ohtun versiohallintatehtävät ja suorittamalla hyväksytysti miniprojektin
- Tekemällä 90% kurssin muista kuin versionhallintaa käsittelevistä laskaritehtävistä, saat kurssista normaalin viiden opintopisteen sijaan kuusi opintopistettä

Miniprojekti

- Viikolta 4 alkaen kurssilla siis "miniprojekti"
- Kurssin läpäisyn edellytyksenä on hyväksytysti suoritettu miniprojekti
- miniprojektissa ohjelmoidaan hiukan, mutta pääosassa on ohjelmistoprosessin kurinalainen noudattaminen
- Projekti tehdään 3-5 hengen ryhmissä. Projekti tapaa asiakkaan viikoilla 4, 5 ja 6.
 - Kaikkien ryhmäläisten tulee olla asiakastapaamisissa (30-60 min) paikalla
- Viimeisellä viikolla miniprojektien demotilaisuus (2h)
- Lisää miniprojektista muutaman viikon päästä
- Miniprojektiin osallistuminen ei ole välttämätöntä jos täytät työkokemuksen perusteella tapahtuvan Ohjelmistotuotantoprojektin hyväksiluvun edellyttävät kriteerit ks. kohta "Laaja suoritus" sivulta http://www.cs.helsinki.fi/opiskelu/tietotekniikka-alan-ty-kokemus-opintosuor ituksena
 - jos "hyväksiluet" miniprojektin työkokemuksella, kerro asiasta välittömästi emailitse

Ohjelmistotuotanto engl. Software engineering

- The IEEE Computer Society defines software engineering as:
 "The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software".
- Lähde IEEE:n julkaisema SWEBOK eli Guide to the Software Engineering Body of Knowledge http://www.swebok.org
- Mikä on SWEBOK:
 - Ison komitean yritys määritellä mitä ohjelmistotuotannolla tarkoitetaan ja mitä osa-alueita siihen kuuluu
 - Uusin versio vuodelta 2004 eli paikoin jo vanhentunut

Ohjelmistotuotannon osa-alueet

- SWEBOK:in mukaan ohjelmistotuotanto jakautuu seuraaviin osa-alueisiin:
 - Ohjelmiston vaatimukset
 - Ohjelmiston suunnittelu
 - Ohjelmiston valmistus
 - Ohjelmiston testaus
 - Ohjelmiston ylläpito
 - Rautapuolen hallinta
 - Ohjelmistotuotannon hallinta
 - Ohjelmistotuotantoprosessi
 - Ohjelmistotuotannon työkalut ja metodit
 - Ohjelmiston laatu
- Näiden osa-alueiden eritasoinen läpikäynti on myöskin tämän kurssin tavoite

Ohjelmiston elinkaari (software lifecycle)

- Riippumatta tyylistä ja tavasta, jolla ohjelmisto tehdään, käy ohjelmisto läpi seuraavat vaiheet
 - Vaatimusten analysointi ja määrittely
 - Suunnittelu
 - Toteutus
 - Testaus
 - Ohjelmiston ylläpito ja evoluutio
- Eri vaiheiden sisältöön palaamme myöhemmin tarkemmin, jos asia on unohtunut, kertaa esim. OTM:n materiaalista

 Miten ja kenen toimesta vaiheet on suoritettu, on vaihdellut aikojen saatossa

Alussa (ja osin edelleen) code'n'fix

- Tietokoneiden historian alkuaikoina laitteet maksoivat paljon, ohjelmat olivat laitteistoihin nähden "triviaaleja"
 - Ohjelmointi konekielellä
 - Usein sovelluksen käyttäjä ohjelmoi itse ohjelmansa
- Vähitellen ohjelmistot alkavat kasvaa ja kehitettiin korkeamman tason ohjelmointikieliä (Fortran, Cobol, Algol)
- Pikkuhiljaa homma alkaa karata käsistä:
 - Projektit menivät yli budjetin
 - Projektit kestivät yli sovitun ajan
 - Ohjelmistot olivat tehottomia
 - Ohjelmistojen laatu huono
 - Ohjelmistot eivät täyttäneet vaatimuksia
 - Projekteja oli vaikea hallita ja ylläpitää
 - Projektit eivät koskaan valmistuneet

Kriisi

• Termi **Software crisis** lanseerataan kesällä 1968

• Termiä käytettiin kuvaamaan 'kriisiä', joka syntyi kun tietokoneiden teho kasvoi nopeasti joten ongelmatkin monimutkaistuivat ohjelmistotuotannossa. Oikeita asioita tekevien, ymmärrettävien ja varmistettavissa olevien ohjelmien tekeminen muuttui vaikeaksi.

Edsger Dijkstra:

- The major cause of the software crisis is that the machines have become several orders of magnitude more powerful! To put it quite bluntly: as long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a mild problem, and now we have gigantic computers, programming has become an equally gigantic problem.
- http://en.wikipedia.org/wiki/Software_crisis

Software development as Engineering

- Termi Software engineering määritellään ensimmäistä kertaa 1968:
 - The establishment and use of <u>sound</u> engineering principles in order to obtain <u>economically</u> software that is <u>reliable</u> and works <u>efficiently</u> on <u>real machines</u>.
- Syntyy idea siitä, että ohjelmistojen tekemisen tulisi olla kuin mikä tahansa muu insinöörityö
- Eli kuten esim. siltojen rakentamisessa, tulee ensin rakennettava artefakti määritellä (requirements) ja suunnitella (design) aukottomasti, tämän jälkeen rakentaminen (construction) on triviaali vaihe

Vesiputousmalli eli lineaarinen malli eli Plan based process tai Big Design Up Front

- Winston W. Royce: Management of the development of Large Software, 1970
 - www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
- Artikkelin sivulla 2 Royce esittelee yksinkertaisen prosessimallin (eli ohjeiston työvaiheiden jaksottamiseen), jossa ohjelmiston elinkaaren vaiheet suoritetaan lineaarisesti peräkkäin:

Vesiputousmalli eli lineaarinen malli eli Plan based process tai Big Design Up Front

- Paradoksaalista kyllä, Royce ei suosittele artikkelissaan suoraviivaisen lineaarisen mallin käyttöä, vaan esittelee mallin, jossa järjestelmästä tehdään ensin prototyyppi ja lopullinen määrittelu ja suunnittelu tehdään vasta prototyyppiin perustuen
- Suoraviivainen lineaarinen malli, jota ruvettiin kutsumaan vesiputousmalliksi, saavutti nopeasti suosiota
 - Taustalla osittain se, että Yhdysvaltain puolustusministerö rupesi vaatimaan kaikilta alihankkijoiltaan prosessin noudattamista (Standardi DoD STD 2167)
 - Muutkin ohjelmistoja tuottaneet tahot ajattelivat, että koska DoD vaatii vesiputousmallia, on se hyvä asia ja tapa kannattaa omaksua itselleen

Vesiputousmalli eli lineaarinen malli eli Plan based process tai Big Design Up Front

- Vesiputousmalli perustuu vahvasti siihen että eri vaiheet ovat erillisten tuotantotiimien tekemiä
 - Tämän takia kunkin vaiheen tulokset dokumentoidaan tarkoin
 - Ohjelmisto suunnitellaan tyhjentävästi ennen ohjelmointivaiheen aloittamista eli tehdään "Big Design Up Front" (BDUF)
- Vesiputousmallin mukainen ohjelmistoprosessi on yleensä tarkkaan etukäteen suunniteltu, resursoitu ja aikataulutettu
 - tästä johtuu joskus käytetty nimike plan based process
- Vesiputousmallin mukainen ohjelmistotuotanto ei ole osoittautunut erityisen onnistuneeksi
- Jo vesiputousmallin "isä" Royce suositteli artikkelissaan ohjelmien tekemistä kahdessa iteraatiossa
 - Roycen mukaan ensin kannattaa tehdä prototyyppi ja vasta siitä saatujen kokemusten valossa suunnitellaan ja toteutetaan lopullinen ohjelmisto

Esimerkki erillisistä tuotantotiimeistä

- Kevään 2004 Koski -ohjelmistotuotantoprojekti laitokseltamme
- Jokaiselle osallistujalle valittu oma vastuullinen työvaihe, esim. projektipäällikkönä Sini, vaatimusanalyysi Antin vastuulla
- http://www.cs.helsinki.fi/group/koski/

Lineaarisen mallin ongelmia

- Lineaarinen malli olettaa että ohjelmistotuotannon vaiheet tapahtuvat peräkkäin ja jokainen vaihe ainakin isoissa projekteissa eri ihmisten toimesta
- Muuttuvat vaatimukset
 - Asiakas ei tiedä mitä haluaa/tarvitsee
 - Asiakkaan tarve muuttuu projektin kuluessa
 - Asiakas alkaa haluta muutoksia kun näkee lopputuotteen
- Vaatimusmäärittelyn ja suunnittelun ja toteutuksen erottaminen mahdotonta
 - Valittu arkkitehtuuri ja käytössä olevattoteutusteknologiat vaikuttavat suuresti määriteltyjen ominaisuuksien hintaan
 - Ohjelmaa on mahdotonta suunnitella siten, että toteutus on suoraviivaista, osa suunnittelusta tapahtuu vasta ohjelmointivaiheessa
- Vasta lopussa tapahtuva laadunhallinta paljastaa ongelmat liian myöhään
 - Vikojen korjaaminen tulee todella kalliiksi sillä testaus voi paljastaa ongelmia jotka pakottavat muuttamaan ohjelmiston vaatimuksia
- Martin Fowlerin artikkeli The New Methodology käsittelee laajalti lineaarisen mallin ongelmia
 - ks. http://martinfowler.com/articles/newMethodology.html

Lineaarisen mallin ongelmia

- Kuten jo mainittiin, ohjelmistotuotannon takana on pitkälti analogia muihin insinööritieteisiin:
 - rakennettava artefakti tulee ensin määritellä ja suunnitella (design) aukottomasti, tämän jälkeen rakentaminen (construction) on triviaali vaihe
- Perinteisesti ohjelmointi on rinnastettu triviaalina pidettyyn "rakentamisvaiheeseen" ja kaiken haasteen on ajateltu olevan määrittelyssä ja suunnittelussa
 - Tätä rinnastusta on kuitenkin ruvettu kritisoimaan, sillä ohjelmistojen suunnittelu sillä tarkkuudella että suunnitelma voidaan muuttaa suoraviivaisesti koodiksi on osoittautunut mahdottomaksi
- Onkin esitetty että perinteisen insinööritiedeanalogian triviaali
 rakennusvaihe ei ohjelmistoprosessissa olekaan ohjelmointi, vaan
 ohjelmakoodin kääntäminen eli että ohjelmakoodi on itseasiassa
 ohjelmiston lopullinen suunnitelma siinä mielessä kuin insinööritieteet
 käsittävät suunnittelun (design)
 - ks.
 http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm

Iteratiiviset prosessimallit

- Lineaarisen mallin ongelmiin reagoinut iteratiivinen tapa tehdä ohjelmistoja alkoi yleistyä 90-luvulla (mm. spiraalimalli, prototyyppimalli ja IBM:n luoma Rational Unified process)
- Iteratiivisissa prosessimalleissa ohjelmistoja tehdään yleensä myös inkrementaalisesti, eli jokaisen iteraation aikana ohjelmistoon lisätään uusia ominaisuuksia

Ketterien menetelmien synty

- 1980- ja 1990-luvun prosessimalleissa korostettiin huolellista projektisuunnittelua, formaalia laadunvalvontaa, yksityiskohtaisia analyysi- ja suunnittelumenetelmiä ja täsmällistä, tarkasti ohjattua ohjelmistoprosessia
- Prosessimallit tukivat erityisesti laajojen, pitkäikäisten ohjelmistojen kehitystyötä, mutta pienten ja keskisuurten ohjelmistojen tekoon ne osoittautuivat usein turhan jäykiksi
- Perinteisissä prosessimalleissa on pyritty työtä tekevän yksilön merkityksen minimoimiseen
 - yksilö on tehdastyöläinen, joka voidaan helposti korvata toisella ja tällä ei ole ohjelmistoprosessin etenemiselle mitään vaikutusta
- Ristiriidan seurauksena syntyi joukko *ketteriä prosessimalleja* (agile process models), jotka korostivat itse ohjelmistoa yksityiskohtaisen suunnittelun ja dokumentaation sijaan

Agile manifesto 2001

- http://agilemanifesto.org/
- Tuomme esiin parempia tapoja kehittää ohjelmistoja tekemällä ja auttamalla muita. Työmme lopputuloksena tulee olemaan:
 - Yksilöitä ja vuorovaikutusta enemmän kuin prosesseja ja työkaluja
 - Toimiva ohjelmisto laajan dokumentaation yläpuolella
 - Asiakasyhteistyötä enemmän kuin sopimusneuvotteluja
 - Reagoimista muutoksiin enemmän kuin suunnitelman seuraamista
- Manifestin laativat ja allekirjoittivat 17 ketterien menetelmien varhaista pioneeria, mm:
 - Kent Beck, Robert Martin, Ken Schwaber ja Martin Fowler
- Manifesti sisältää yllä olevan lisäksi 12 ketterää periaatetta, jotka on lueteltu seuraavilla sivuilla

Ketterät periaatteet, osa 1

- Korkein prioriteettimme on tehdä asiakas tyytyväiseksi aikaisella ja jatkuvalla softan toimituksella
- Tervetuloa muuttuvat vaatimukset, myös kehityksen loppuvaiheessa.
 Ketterät menetelmät antavat asiakkaalle kilpailuedun
- Toimita toimivaa softaa säännöllisesti, kerran parista viikosta muutamaan kuukauteen. Mieluummin lyhyempi toimitusaika kuin pidempi
- Bisneshenkilöiden ja ohjelmistokehittäjien täytyy työskennellä yhdessä päivittäin koko projektin ajan
- Tee projekteja motivoituneiden yksilöiden kanssa. Anna heille hyvä ympäristö ja kaikki tuki mitä he tarvitsevat, ja luota että he saavat työn tehtyä.
- Kaikista tehokkain ja vaikuttavin informaationvaihtokanava ohjelmistokehitystiimissä on kasvokkain keskustelu.

Ketterät periaatteet, osa 2

- Toimiva ohjelmisto on edistymisen päämittari.
- Ketterät menetelmät edistävät kestävää kehitystä. Rahoittajat, kehittäjät ja käyttäjät ylläpitävät jatkuvaa vauhtia työssä.
- Jatkuva huomio tekniseen hyvyyteen sekä hyvään softan 'muotoiluun'
- Yksinkertaisuus yritetään maksimoida työ jotai ei koskaan tulla tekemään.
- Parhaat arkkitehtuurit, vaatimukset ja toteutukset tulevat itseorganisoituvilta tiimeiltä.
- Säännöllisin väliajoin tiimi miettii miten tulla tehokkaammaksi, sitten muuttaa toimintaa sopivasti.

Ketterät menetelmät ja uusi metafora

- Ketterät menetelmät on sateenvarjotermi useille ketterille prosessimalleille
- Näistä tunnetuimpia ovat:
 - Extreme programming eli XP
 - Scrum
- Molempiin, erityisesti Scrumiin tutustutaan kurssin aikana
- Viime aikoina on puhuttu paljon siitä, että ohjelmistojen tekemisen rinnastaminen perinteiseen insinöörityöhön eli koko termi Software engineering on metaforana väärä
- Ohjelmistojen tekemistä on alettu rinnastamaan käsityöläisyyteen ja on syntynyt ns. Software craftsmanship "liike", jolla on jopa oma manifestinsä, ks.
 - http://manifesto.softwarecraftsmanship.org/
 - http://ofps.oreilly.com/titles/9780596518387/introduction.html

Ohjelmistokehityksen työkalut

- Nyt on aika siirtyä teoriasta käytäntöön ja tarkastella alustavasti muutamaa ohjelmistokehityksen käytännön työkalua
 - Versionhallinta: git
 - Testaus: JUnit
 - Projektin riippuvuuksienhallinta ja kääntäminen: Maven
 - CI- ja Build-palvelinohjelmisto: Jenkins

Versionhallinta – Git

- Versionhallinta välttämätön oikeastaan kaikissa projekteissa:
 - Koodi, dokumentaatio ym. löytyvät yksiselitteisestä paikasta, projektin "repositorystä"
 - Mahdollistaa tiedostojen rinnakkaisen editoinnin
 - Rinnakkainen editointi voi toki aiheuttaa konflikteja jos tiedoston samaa kohtaa editoidaan samaan aikaan usealta koneelta
 - Mahdollisuus palata historiassa taaksepäin
 - voidaan palauttaa tiedostosta sen edellisen päivän tilanne
 - Ohjelmistosta voi olla olemassa useita versiota yhtä aikaa
 - Voi olla esim. tarve tehdä bugikorjauksia johonkin ohjelman jo aiemmin julkaistuun versioon
- Oikeastaan yhden hengen pieniäkään ohjelmointiprojekteja ei ole järkevää tehdä ilman versionhallintaa
- Mitä versionhallintaan talletetaan?
 - Jos mahdollista, kaikki ohjelmistoon liittyvä: ohjelmakoodi, dokumentit, kirjastot, konfiguraatiotiedostot, jopa työkalut
- ks. http://jamesshore.com/Agile-Book/version_control.html

Versionhallinta – Git

- Kurssilla käytössä Git
 - Linus Torvaldsin kehittämä hajautettu versionhallinta
 - Tämän hetken eniten käytetty versionhallinta, syrjäyttänyt jo vuosia sitten vanhan ykkösen SVN:n
- Repositoriot talletetaan pääosin Github:iin
 - Internetissä oleva "sosiaalinen" ohjelmistojen talletuspaikka
 - Ilmaiset repositoriot ovat koko maailmalle julkisia
 - Akateemisen ohjelman kautta mahdollista saada maksuttomia privaattirepositorioita
- Tutustumme Git:iin pikkuhiljaa laskareissa, muutama hyvä lähtökohta
 - https://we.riseup.net/debian/git-development-howto
 - http://www.ralfebert.de/tutorials/git/
 - http://progit.org/book/
- Git saattaa tuntua aluksi sekavalta. Peruskäyttö on kuitenkin hetken totuttelun jälkeen helppoa

Testaus – JUnit

- Ohjelmiston kehittämisessä lähes tärkein vaihe on laadunvarmistus, laadunvarmistuksen tärkein keino taas on testaaminen
- Testaus on syytä automatisoida mahdollisimman pitkälle, sillä ohjelmistoja joudutaan testaamaan paljon, ja samat testit on erityisesti iteratiivisessa/ketterässä ohjelmistokehityksessä suoritettava uudelleen aina ohjelman muuttuessa
- xUnit-testauskehys on useille kielille saatavissa oleva lähinnä yksikkötestien automatisointiin tarkoitettu työkalu
 - Java-versio kehyksestä on nimeltään JUnit
- Tulemme tekemään automatisoitua testausta kurssin aikana paljon. Jos JUnit ei ole entuudestaan tuttu, kannattaa tutustuminen aloittaa välittömästi
 - https://github.com/mluukkai/OTM2013/wiki/Ohje-JUnit: in-k%C3%A4ytt%C3%B6%C3%B6n

Projektin riippuvuuksienhallinta ja kääntäminen – Maven

- ks. http://jamesshore.com/Agile-Book/ten_minute_build.html
- Ohjelmistoprojektissa ohjelman kääntäminen, testaaminen, paketointi suorituskelpoiseksi ja jopa "deployaus" eli siirto testaus- tai tuotantoympäristöön tulee onnistua helposti
 - Kenen tahansa toimesta, miltä tahansa koneelta
 - "nappia painamalla" tai yksi skripti ajamalla
- Ohjelmiston kääntäminen edellyttää yleensä että ohjelman tarvitsemat kirjastot, eli ulkoiset riippuvuudet (Javassa yleensä Jar-tiedostoja) ovat käännösprosessin aikana saatavilla
- Riippuvuudet ja käännöksen suorittava skripti on käytännössä talletettava versionhallintaan ohjelmakoodin yhteyteen
- Hyvin toimivan käännös/testaus/paketointi-ympäristön konfigurointi ei ole välttämättä helppoa
- Aikojen saatossa on kehitetty asiaa helpottavia työkaluja
 - mm. make, Apache Ant
- Tällä kurssilla tutustumme Apache Maveniin

Projektin riippuvuuksienhallinta ja kääntäminen – Maven

- What Maven is:
 - The answer to this question depends on your own perspective. The great majority of Maven users are going to call Maven a "build tool": a tool used to build deployable artifacts from source code. Build engineers and project managers might refer to Maven as something more comprehensive: a project management tool. What is the difference? A build tool such as Ant is focused solely on preprocessing, compilation, packaging, testing, and distribution. A project management tool such as Maven provides a superset of features found in a build tool. In addition to providing build capabilities, Maven can also run reports, generate a web site, and facilitate communication among members of a working team.
- Maven on laaja ja pelottavakin työkalu, väärin konfiguroituna painajaismainen, mutta oikein konfiguroituna ohjelmistokehittäjän unelma!
 - Maven mm. hoitaa riippuvuuksien (eli Javassa jar-tiedostojen) lataamisen ohjelmoijan puolesta
- Tutustumme kurssin aikana maveniin pikkuhiljaa
- Lue esim:
 - https://www.ibm.com/developerworks/java/tutorials/j-mavenv2/

CI- ja Build-palvelinohjelmisto: Jenkins

- Käännöksen automatisoinin jälkeen seuraava askel on suorittaa käännösprosessi myös erillisillä käännöspalvelimella (build server)
- Ideana on, että ohjelmistokehittäjä noudattaa seuraavaa sykliä
 - Uusin versio koodista haetaan versionhallinnan keskitetystä repositoriosta ohjelmistokehittäjän työasemalle
 - Lisäykset ja niitä testaavat testit tehdään paikalliseen kopioon
 - Käännös ja testit ajetaan paikalliseen kopioon ohjelmistokehittäjän työasemalla
 - Jos kaikki on kunnossa, paikalliset muutokset lähetetään keskitettyyn repositorioon
 - Käännöspalvelin seuraa keskitettyä repositorioa ja kun siellä huomataan muutoksia, kääntää käännöspalvelin koodin ja suorittaa sille testit
 - Käännöspalvelin raportoi havaituista virheistä
- Erillisen käännöspalvelimen avulla varmistetaan, että ohjelmisto toimii muuallakin kuin muutokset tehneen ohjelmistokehittäjän koneella
- Kurssilla käytämme Jenkins-nimistä käännöspalvelinohjelmistoa
 - Keskitetyn build-palvelimen käyttöön liittyy käsite jatkuva integraatio (engl. Continuous integration), palaamme tähän tarkemmin myöhemmin kurssilla