Sensory Processing Sensitivity

- 2 and the Association with
- 3 Attention-Deficit/ Hyperactivity
- ⁴ Disorder (ADHD) Traits, and
- 5 ADHD-Related Strengths in the
- 6 General Population
- 7 L.M. Schippers^{1,2}, M. Hoogman^{1,3}, C.U. Greven^{3,2}*
- 8 ¹Radboud University Medical Centre, Donders Institute for Brain, Cognition and
- 9 Behaviour, Department of Psychiatry
- 10 ²Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
- 11 ³Radboud University Medical Centre, Donders Institute for Brain, Cognition and
- 12 Behaviour, Department of Cognitive Neuroscience
- 13 * Corresponding author
- 14 Contact information for the corresponding author
- 15 Prof. C.U. Greven, corina.greven@donders.ru.nl

17 Abstract

- 18 Sensory processing sensitivity (SPS) is a normally distributed personality
- 19 trait reflecting sensitivity to stimuli. However, despite societal interest, it
- 20 is unclear how SPS relates to Attention-deficit/hyperactivity disorder

21	(ADHD). Here we aimed to 1) explore the relation between SPS and
22	ADHD traits, and their respective subdimensions, 2) compare people with
23	and without an ADHD diagnosis on SPS subdimensions, 3) assess
24	relations between SPS and several ADHD-related strengths. 496 adults
25	were recruited from the general population via the online platform
26	Prolific. Participants filled in questionnaires on SPS (Highly Sensitive
27	Person Scale with subdimensions: ease of excitation, low sensory
28	threshold, aesthetic sensitivity), ADHD traits (Adult ADHD Self Report
29	scale with subdimensions: inventiveness, hyperactivity-impulsivity), and
30	nine questionnaires on ADHD-related strengths. We performed
31	correlation and case-control analysis. SPS and subdimensions correlated
32	positively with ADHD traits and subdimensions. Furthermore, people with
33	an ADHD diagnosis scored higher on SPS than those without. SPS
34	correlated positively with the ADHD-related strengths of hyperfocus and
35	cognitive flexibility, and the SPS aesthetic sensitivity subdimension
36	additionally with curiosity, humour, and empathy; these associations
37	remained significant correcting for ADHD traits. Concluding, SPS and
38	ADHD positively associated, using continuous and case-control analyses.
39	SPS also positively correlated with several strengths.

41 Keywords

- 42 Sensory processing sensitivity, attention-deficit/hyperactivity
- 43 disorder, positive psychology, hyperfocus, cognitive flexibility,
- 44 aesthetic sensitivity

45 Lay abstract

46 Sensory processing sensitivity (SPS) is a personality trait that reflects 47 differences between people in sensitivity and reactivity to environments. 48 About 20% of the population can be considered high SPS: "highly 49 sensitive", experiencing their sensitivity as both positive and negative. In 50 previous qualitative research, people with ADHD, a condition 51 characterised by inattentiveness and/or hyperactivity/impulsivity, 52 reported to experience SPS as a positive aspect of their ADHD. However, 53 very little is known about the relations between SPS and ADHD. Because 54 of the interest of people with ADHD in SPS, we wanted to answer two 55 questions: first, how SPS relates to ADHD; and second, if and how SPS relates to several strengths related to ADHD in previous research. Almost 56 57 500 people filled out online questionnaires on SPS, ADHD, and strengths. 58 For the first question, we confirmed that people who score higher on SPS, 59 also had more ADHD traits. We also showed that people with an ADHD 60 diagnosis, score higher on SPS than people without an ADHD diagnosis. 61 For the second question, we found that people who score higher on SPS, 62 had greater cognitive flexibility and hyperfocus, two of the nine strengths 63 we investigated. People who score higher on certain aspects of SPS 64 related to the positive SPS subscale, also scored higher on curiosity, 65 empathy, and humour. Future research might highlight the importance for 66 practitioners to be alert of the co-occurrence of ADHD and high SPS. Moreover, it might lead to changing ADHD interventions to the needs of 67 68 people with ADHD and high SPS.

69

70 Main text

71

Introduction

72 Sensory processing sensitivity (SPS) is a personality trait that describes 73 inter-individual differences in sensitivity and responsivity to internal and 74 external stimuli. The trait is normally distributed in the population, with 75 about 20-30% of the population found at the higher end of the spectrum 76 (Aron & Aron, 1997; Lionetti et al., 2018). SPS is typically assessed with 77 the Highly Sensitive Person (HSP) scale (Aron & Aron, 1997) that can be 78 divided into three subdimensions: ease of excitation (EOE), low sensory 79 threshold (LST), and aesthetic sensitivity (AES) (Smolewska et al., 2006). 80 Much research has focused on associations of the HSP scale with 81 internalising symptoms, such as burnout, stress, depressive symptoms, 82 anxiety, and negative affect (Kenemore et al., 2023; Lionetti et al., 2019; 83 Pérez-Chacón et al., 2021; Redfearn et al., 2020). Especially the EOE and 84 LST subdimensions of the HSP scale tend to correlate with such 85 internalising symptoms. In contrast, the AES subscale tends to associate 86 with positive outcomes, such as entrepreneurial intention, imagination, 87 artistic interest, openness and enhanced intervention response (Harms et 88 al., 2019; Lionetti et al., 2024; Pluess & Boniwell, 2015; Pluess et al., 2023; Smolewska et al., 2006; Verheul et al., 2024). Overall, however, 89 90 there is scarce evidence on how SPS relates to mental health beyond 91 internalising symptoms, and how it relates to positive traits or strengths. 92 In this study, we therefore address these literature shortcomings.

93	Little is known about how SPS relates to or differs from
94	neurodevelopmental traits such as attention-deficit/hyperactivity disorder
95	(ADHD), despite such questions arising from ADHD organisations
96	(Schippers et al., 2022). ADHD is a common neurodevelopmental
97	condition characterised by inattentiveness and/or
98	hyperactivity/impulsivity (Diagnostic and statistical manual of mental
99	disorders: DSM-5 $^{\text{\tiny TM}}$, 5th ed, 2013). About 5.9% of children and 2.5% of
100	adults live with ADHD (Faraone et al., 2021). Two studies showed that
101	ADHD traits positively correlated with HSP scale total scores in the
102	general population, without examining HSP subdimensions (Panagiotidi
103	et al., 2018, 2020). Another study replicated the SPS-ADHD trait
104	association in students for the total HSP scale score, and combined EOE
105	and LST subdimensions, but found no significant association with the AES
106	subscale (Turjeman-Levi & Kluger, 2022). These findings should be
107	replicated in a non-student sample and separating HSP subdimensions.
108	Additionally, to our knowledge, all previous research focused on
109	continuous ADHD traits rather than comparing people with and without
110	ADHD. Hence, it remains unknown whether SPS may be elevated in those
111	with an ADHD diagnosis.
112	In the present study, we make use of data collected by (Schippers et
113	al., 2024) with the original purpose to shed light on the relations between
114	ADHD and potential ADHD-related strengths. People with an ADHD
115	diagnosis had self-attributed SPS and several other traits as ADHD-
116	related strengths in qualitative research (Schippers et al., 2022), and
117	Schippers at al. (2024) subsequently confirmed the association of ADHD

118 traits with SPS and other ADHD-related strengths quantitatively in a 119 population-based sample. However, the studies did not examine whether 120 HSP subscale levels are elevated in those with a diagnosis of ADHD. 121 Furthermore, given that several of the ADHD-related strengths could also 122 be relevant for SPS, and given the scarcity of research on strengths 123 associated with SPS, the sample provides a unique opportunity to study 124 such associations. 125 Therefore, we conduct secondary analyses on the Schippers at al. 126 (2024) data with three main aims. First, we aimed to explore the relation 127 between SPS and ADHD traits, and their respective subdimensions. 128 Second, we aimed to compare people with and without an ADHD 129 diagnosis on SPS subdimensions. Third, we aimed to assess relations 130 between SPS and several ADHD-related strengths, with and without 131 correction for ADHD traits. Studying positive traits might help people 132 make better use of the positive potential of the SPS trait. Methods 133 134 Here secondary analyses are presented on a dataset for which main 135 analyses were preregistered (Schippers & Hoogman, 2021). Detailed 136 methods are described elsewhere (Schippers et al., 2024). 137 **Participants** 138 We collected data using the online platform Prolific. Participants filled out 139 questionnaires in two waves, between November and December 2021. 140 Inclusion criteria were: age between 18-60 years, English as first 141 language, current residence in the UK, UK nationality, and no literacy

11 12

difficulties. 694 participants completed wave one questionnaires, and were invited to participate in wave two. For wave two, we aimed to recruit 500 participants on a first come, first serve basis. This led to full datasets of 496 participants in wave two. Suspected ADHD was based on self-report of having been diagnosed either in childhood or adulthood, or to be in the process of receiving a diagnosis. See Table S1 for an overview of participant characteristics.

149

150

142

143

144

145

146

147

148

Questionnaires

151 The first wave contained a questionnaire on SPS, ADHD traits, a question 152 on ADHD diagnosis and four questionnaires on potential ADHD-related 153 strengths. The second wave contained five questionnaires on potential 154 ADHD-related strengths. To assess SPS, the Highly Sensitive Person Scale 155 (HSP Scale) was used, which contains 27 questions divided into three 156 subdimensions: aesthetic sensitivity (AES), ease of excitation (EOE) and 157 low sensory threshold (LST) (Aron & Aron, 1997; Smolewska et al., 2006) 158 (Table S2). To assess ADHD traits, the well-validated Adult ADHD Self 159 Report scale (ASRS) was used. It contains eighteen questions that relate 160 to DSM-5 ADHD symptoms, distributed in two subdimensions: 161 inattentiveness, and hyperactivity/impulsivity (Kessler et al., 2005). For 162 the other questionnaires, see Table S3.

163 Analyses

Only the Grit scale passed the Shapiro-Wilk test for normality. Therefore, we performed non-parametric tests. To address aim one, we first 166 performed Kendall's tau correlation analyses between SPS and ADHD

13 14

164

questionnaire scores, and their respective subdimensions. We used 167 168 effective number of tests (Meff) method (Li & Ji, 2005) to correct for 169 multiple testing. Given the interest in disentangling associations between 170 ADHD and SPS, we included ADHD subdimensions and SPS 171 subdimensions, but for the other questionnaires used only total scores. 172 This resulted in twelve independent variables, and a p-value threshold for 173 significance of p < 0.004. Despite gender differences in both ADHD traits 174 and SPS traits, no previous study has studied the role of gender effects in 175 these associations (Faraone et al., 2024; Trå et al., 2022). We therefore 176 performed the analyses in aim one separately for the total sample, and 177 exploratorily for men and women separately. To address aim two, we 178 compared people with and without a self-reported ADHD diagnosis on 179 total and subscale scores of the HSP scale. We used Hedge's g to 180 estimate effect size. To address aim three, we performed Kendall's tau 181 correlation analyses between SPS total scores and subdimensions, and 182 strengths and their subdimensions. We performed the correlation 183 analyses with and without correcting for ADHD traits, to explore the 184 influence of ADHD traits on the relation between SPS and ADHD-related 185 strengths. Lastly, we performed a network analysis, identical to the one in 186 Schippers et al. (2024), now visualising the ASRS and HSP subdimensions 187 by depicting their subdimensions in different colours. We included age as 188 covariate for all aims, and sex in analyses not separated for sex.

Results 189

- 190 SPS and ADHD traits 191 SPS correlated positively with ADHD traits for the SPS total score (r =192 .36, p < .001) and all three subdimensions (r = .21 - .34, p < .001). 193 Similarly, positive correlations were found between the SPS total score 194 and ADHD subdimensions, inattentiveness, and hyperactivity/impulsivity 195 (r = .32 - .33, p < .001), and SPS subdimensions and ADHD 196 subdimensions (Table 1). Correlations were significant both for men and 197 women and were similar in strength. 198 199 SPS and ADHD diagnosis 200 People with ADHD diagnosis (n=20) scored significantly higher than 201 people without ADHD diagnosis (n = 674) on total SPS score (p < .001, 202 Hedge's g = -1.05) and on the SPS subdimensions (LST and EOE p < 203 .001, Hedges g = -1.09 and -0.77 respectively, AES p = .002 Hedge's g = -1.09204 0.79). 205 206 SPS and strengths 207 Overall, associations between SPS and ADHD-related strengths were
- 208 similar with (Table 2) and without (Table S4) correction for ADHD traits.
- 209 Here we discuss the results with correction for ADHD traits. We found
- 210 significant positive correlations between total SPS and hyperfocus and
- 211 cognitive flexibility (r = .14 - .22, p < .001), and negative correlations
- 212 between total SPS and sociability, enthusiasm, up for anything and

213 perseverance (r = -.09- -.30, p < .001). The correlations for the LST and

214 EOE subdimensions were similar in direction as for total SPS, except for a

215 negative correlation of EOE with curiosity (r = -.15, p < .001). However,

216 for the AES subscale, the correlation with cognitive flexibility was not

significant, but there were additional positive correlations with empathy,

humour, and curiosity (r = .12 - .16, p < .001). The negative correlations

with enthusiasm, sociability and perseverance were not significant, and

correlations with up for anything and flexibility were weaker than for

221 total SPS (r = -.05, p = .05, and r = -.08, p = .009, respectively).

Network analysis (Figure 1) revealed that although ADHD and SPS

are close, they form separate clusters, suggesting separate constructs.

224 Moreover, EOE and LST cluster closely together, while AES forms a more

225 separate cluster.

217

218

219

220

226 Discussion

- 227 In the current study, we investigated the relations of SPS with ADHD
- traits, ADHD diagnosis, and with ADHD-related strengths in a population-
- 229 based sample. Regarding our first aim, we found small positive
- 230 associations between SPS and continuous ADHD trait scores, in line with
- 231 previous studies (Panagiotidi et al., 2018, 2020; Turjeman-Levi & Kluger,
- 232 2022). In contrast to previous research (Turjeman-Levi & Kluger, 2022),
- 233 we found that SPS and ADHD traits were associated across all SPS
- 234 subdimensions and ADHD dimensions, including the AES subscale.
- 235 Associations of ADHD traits with AES were small, and those with the EOE

and LST modest. Additionally, results were similar for both men and women.

Regarding our second aim, we showed for the first time that people with a self-reported ADHD diagnosis scored higher on all SPS subdimensions than people without an ADHD diagnosis, with large effect sizes. Future studies should investigate whether high SPS might be a stratification marker for ADHD (an extension to diagnosis clarifying for instance the course or severity), indicate a mechanistic marker (reflect underlying process), or act as a transdiagnostic trait (a mechanism found across conditions, acting for example as a risk or maintaining factor) (Buitelaar et al., 2022). Such research might lead to adapting ADHD interventions to the needs of people with ADHD and high SPS, and have implications for practitioners to be alert of the co-occurrence of ADHD and high SPS.

Regarding our third aim concerning associations with strengths associated with ADHD in previous research, we found a positive association of SPS with hyperfocus and cognitive flexibility, not described in literature before. However, correlations with sociability, enthusiasm, up for anything, and perseverance were negative. However, we measured sociability as the opposite of shyness, and up for anything as the opposite of intolerance of uncertainty, which have been negatively associated with SPS before (Aron et al., 2005; Attary & Ghazizadeh, 2021; Panchyshyn et al., 2023; Uljarević et al., 2016). Most correlations between SPS and ADHD-related strengths became somewhat weaker, but remained significant, after correction for ADHD traits, suggesting that SPS shows

associations with these variables independently of ADHD traits. Further supported by network analysis results, this suggests that high SPS and ADHD are related, but separate constructs. Lastly, correlations between SPS and the included strengths differed for the SPS subdimensions, with AES having the most positive correlations.

This study has several general strengths and limitations outlined in (Schippers et al., 2024). A specific limitation is that because the study was originally focussed on strengths in ADHD, we chose strengths previously related in literature to ADHD and not SPS. This has however led to surprising findings that we might not have found setting up this study from an SPS lens, such as associations with hyperfocus. Future research should replicate results using clinical assessments of ADHD diagnosis, and objective measures of strengths.

274 Conclusion

266

267

268

269

270

271

272

273

275 SPS showed small associations with continuous ADHD scores, and a large 276 effect size in a case-control comparisons. Moreover, SPS was associated 277 with several variables previously identified to be ADHD-related strengths 278 even after correcting for ADHD traits.

Acknowledgments section

280 We thank study participants for taking part in our study.

281 Declaration of conflicting interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. MH received a

23

284	speaker fee from Medice.
285	Funding statement
286	MH is supported by personal Veni & Vidi grants from the Netherlands
287	Organization for Scientific Research (NWO) (grant numbers 91619115,
288	and 09150172210069). CG is supported by an Aspasia grant from the
289	NWO (grant number 015.015.070).
290	Ethical approval and informed consent statements
291	Ethical considerations
292	This study was marked as exempt for ethical review by our local medical
293	ethical committee (METC, Nijmegen, The Netherlands, file number: 2021
294	13,211).
295	Consent to participate
296	All participants gave written informed consent to participate before
297	starting the questionnaires.
298	Consent for publication
299	All participants gave written informed consent for publication before
300	starting the questionnaires.
301	Data availability statement
302	Data will be made available on the OSF preregistration page.
303	
304	References
305 306 307 308 309	Aron, E. N., & Aron, A. (1997). Sensory-Processing Sensitivity and Its Relation to Introversion and Emotionality. <i>Journal of Personality and Social Psychology</i> , <i>73</i> (2), 345-368. https://www.mendeley.com/catalogue/d40e8c55-b903-34d0-9872-7fa47f39bda1/

```
310 Aron, E. N., Aron, A., & Davies, K. M. (2005). Adult shyness: The interaction of temperamental sensitivity and an adverse childhood environment. 
312 Personality and Social Psychology Bulletin, 31(2), 181-197.
```

- Attary, T., & Ghazizadeh, A. (2021). Localizing sensory processing sensitivity and its subdomains within its relevant trait space: a data-driven approach. *Scientific Reports*, *11*(1), 20343. https://doi.org/10.1038/s41598-021-99686-y
- 317 Buitelaar, J., Bölte, S., Brandeis, D., Caye, A., Christmann, N., Cortese, S.,
 318 Coghill, D., Faraone, S. V., Franke, B., Gleitz, M., Greven, C. U., Kooij,
 319 S., Leffa, D. T., Rommelse, N., Newcorn, J. H., Polanczyk, G. V., Rohde,
 320 L. A., Simonoff, E., Stein, M., . . . Banaschewski, T. (2022). Toward
 321 Precision Medicine in ADHD [Review]. Frontiers in Behavioral
 322 Neuroscience, 16. https://doi.org/10.3389/fnbeh.2022.900981
- Diagnostic and statistical manual of mental disorders: DSM-5[™], 5th ed.
 (2013). [doi:10.1176/appi.books.9780890425596]. American
 Psychiatric Publishing, Inc.
 https://doi.org/10.1176/appi.books.9780890425596
 - Epskamp, S., Costantini, G., Haslbeck, J., Isvoranu, A., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2022). *qgraph:* Graph Plotting Methods, Psychometric Data Visualization and Graphical Model Estimation. In https://CRAN.R-project.org/package=ggraph
- 331 332 Faraone, S. V., Banaschewski, T., Coghill, D., Zheng, Y., Biederman, J., 333 Bellgrove, M. A., Newcorn, J. H., Gignac, M., Al Saud, N. M., Manor, I., 334 Rohde, L. A., Yang, L., Cortese, S., Almagor, D., Stein, M. A., Albatti, T. 335 H., Aljoudi, H. F., Algahtani, M. M. J., Asherson, P., . . . Wang, Y. 336 (2021). The World Federation of ADHD International Consensus 337 Statement: 208 Evidence-based conclusions about the disorder. 338 Neuroscience and Biobehavioral Reviews, 128, 789-818. 339 https://doi.org/10.1016/j.neubiorev.2021.01.022
 - Faraone, S. V., Bellgrove, M. A., Brikell, I., Cortese, S., Hartman, C. A., Hollis, C., Newcorn, J. H., Philipsen, A., Polanczyk, G. V., Rubia, K., Sibley, M. H., & Buitelaar, J. K. (2024). Attention-deficit/hyperactivity disorder. *Nature Reviews Disease Primers*, *10*(1), 11. https://doi.org/10.1038/s41572-024-00495-0
 - Harms, R., Hatak, I., & Chang, M. (2019). Sensory processing sensitivity and entrepreneurial intention: The strength of a weak trait. *Journal of Business Venturing Insights*, *12*, e00132. https://doi.org/10.1016/j.jbvi.2019.e00132
 - Kenemore, J., Chavez, J., & Benham, G. (2023). The pathway from sensory processing sensitivity to physical health: Stress as a mediator. *Stress and Health*.
- 351 and Health.
 352 Kessler, R. C., Adler, L., Ames, M., Demler, O., Faraone, S., Hiripi, E.,
 353 Howes, M. J., Jin, R., Secnik, K., Spencer, T., Ustun, T. B., & Walters, E.
 354 E. (2005). The World Health Organization Adult ADHD Self-Report
 355 Scale (ASRS): a short screening scale for use in the general
 356 population. Psychological Medicine, 35(2), 245-256.
 357 https://doi.org/10.1017/s0033291704002892
- Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. *Heredity*, *95*(3), 221-227.

327

328

329

330

340

341

342

343

344

345

346

347

348

349

- 360 <u>https://doi.org/10.1038/sj.hdy.6800717</u>
- Lionetti, F., Aron, A., Aron, E. N., Burns, G. L., Jagiellowicz, J., & Pluess, M. (2018). Dandelions, tulips and orchids: evidence for the existence of low-sensitive, medium-sensitive and high-sensitive individuals.

 Translational Psychiatry, 8(1), 24. https://doi.org/10.1038/s41398-017-0090-6
 - Lionetti, F., Dumpfrey, R. S. C., Richetin, J., Fasolo, M., Nocentini, A., Penolazzi, B., Pluess, M., Santona, A., Spinelli, M., & Preti, E. (2024). Is environmental sensitivity a unique trait? A multi-sample study on the association between sensitivity, personality, and psychological adjustment. *Personality and Individual Differences*, 217, 112463. https://doi.org/https://doi.org/10.1016/j.paid.2023.112463
 - Lionetti, F., Pastore, M., Moscardino, U., Nocentini, A., Pluess, K., & Pluess, M. (2019). Sensory processing sensitivity and its association with personality traits and affect: A meta-analysis. *Journal of research in personality*, 81, 138-152.
 - Panagiotidi, M., Overton, P. G., & Stafford, T. (2018). The relationship between ADHD traits and sensory sensitivity in the general population. *Comprehensive Psychiatry*, 80, 179-185. https://doi.org/10.1016/j.comppsych.2017.10.008
 - Panagiotidi, M., Overton, P. G., & Stafford, T. (2020). The relationship between sensory processing sensitivity and attention deficit hyperactivity disorder traits: A spectrum approach. *Psychiatry Research*, *293*, 113477. https://doi.org/10.1016/j.psychres.2020.113477
 - Panchyshyn, V., Tekok-Kilic, A., Frijters, J. C., & Tardif-Williams, C. (2023). Sensory sensitivity, intolerance of uncertainty and sex differences predicting anxiety in emerging adults. *Heliyon*, *9*(3), e14071. https://doi.org/https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e14071
 - Pérez-Chacón, M., Chacón, A., Borda-Mas, M., & Avargues-Navarro, M. L. (2021). Sensory processing sensitivity and compassion satisfaction as risk/protective factors from burnout and compassion fatigue in healthcare and education professionals. *International journal of environmental research and public health*, 18(2), 611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828252/pdf/ijerph-18-00611.pdf
 - Pluess, M., & Boniwell, I. (2015). Sensory-processing sensitivity predicts treatment response to a school-based depression prevention program: Evidence of vantage sensitivity. *Personality and Individual Differences*, 82, 40-45.
 - Pluess, M., Lionetti, F., Aron, E. N., & Aron, A. (2023). People differ in their sensitivity to the environment: An integrated theory, measurement and empirical evidence. *Journal of research in personality, 104*, 104377. https://doi.org/https://doi.org/10.1016/j.jrp.2023.104377
 - Redfearn, R. A., van Ittersum, K. W., & Stenmark, C. K. (2020). The impact of sensory processing sensitivity on stress and burnout in nurses. *International Journal of Stress Management*, *27*(4), 370.
 - Schippers, L. M., Greven, C. U., & Hoogman, M. (2024). Associations between ADHD traits and self-reported strengths in the general

409 410	population. <i>Comprehensive Psychiatry</i> , 130, 152461. https://doi.org/https://doi.org/10.1016/j.comppsych.2024.152461
411	Schippers, L. M., & Hoogman, M. (2021). New Phenotypes of ADHD. OSF.
412	<i>November, 16</i> . osf.io/hvfq4
413	Schippers, L. M., Horstman, L. I., van de Velde, H., Pereira, R. R., Zinkstok,
414	J., Mostert, J. C., Greven, C. U., & Hoogman, M. (2022). A qualitative
415	and quantitative study of self-reported positive characteristics of
416	individuals with ADHD. <i>Front Psychiatry, 13</i> , 922788.
417	https://doi.org/10.3389/fpsyt.2022.922788
418	Smolewska, K. A., McCabe, S. B., & Woody, E. Z. (2006). A psychometric
419	evaluation of the Highly Sensitive Person Scale: The components of
420	sensory-processing sensitivity and their relation to the BIS/BAS and
421	"Big Five". Personality and Individual Differences, 40(6), 1269-1279.
422	https://doi.org/https://doi.org/10.1016/j.paid.2005.09.022
423	Trå, H. V., Volden, F., & Watten, R. G. (2022). High Sensitivity: Factor
424	structure of the highly sensitive person scale and personality traits
425	in a high and low sensitivity group. Two gender—Matched studies.
426	Nordic Psychology, 75(4), 328-350.
427	Turjeman-Levi, Y., & Kluger, A. N. (2022). Sensory-processing sensitivity
428	versus the sensory-processing theory: Convergence and divergence
429	[Original Research]. <i>Frontiers in Psychology, 13</i> .
430	https://doi.org/10.3389/fpsyg.2022.1010836
431	Uljarević, M., Carrington, S., & Leekam, S. (2016). Brief Report: Effects of
432	Sensory Sensitivity and Intolerance of Uncertainty on Anxiety in
433	Mothers of Children with Autism Spectrum Disorder. Journal of
434	Autism and Developmental Disorders, 46(1), 315-319.
435	https://doi.org/10.1007/s10803-015-2557-8
436	Verheul, I., Vos, I., & Greven, C. U. (2024). IS THERE A LINK BETWEEN
437	SENSORY PROCESSING SENSITIVITY AND ENTREPRENEURSHIP?
438	EVIDENCE FROM THREE PERSPECTIVES. Emrald Publishing.
439	

Table 1.Kendall's correlation coefficients between SPS and ADHD scores

	Total SPS score			EOE			LST		AES			
	Total	Men	Wome	Total	Men	Wome	Total	Men	Wome	Total	Men	Wome
			n			п			n			n
Total ADHD	.36**	.33**	.39**	.31**	.28**	.34**	.34**	.31**	.38**	.21**	.20**	.21**
Inattentivenes s	.33**	.29**	.38**	.32**	.27**	.36**	.32**	.28**	.37**	.16**	.14**	.18**
Hyperactivity/ impulsivity	.32**	.26**	.34**	.25**	.23**	.27**	.31**	.28**	.33**	.22**	.22**	.22**

Note. SPS, sensory processing sensitivity, EOE, ease of excitation, LST, low

sensory threshold, AES aesthetic sensitivity. Covariate: age. ** p < .001

446

447 **Table 2.**

448 Kendall's correlation coefficients between SPS and SPS subdimensions and

449 strengths

Strengths	HSP scale subdimensions						
	N	Total SPS r (p-	Ease of	Low sensory			
		value)	excitation r (p-value)	threshold r (p-value)	sensitivity r (p- value)		
Empathy (TEQ)		.06 (0.03)	.07 (.008)	04 (.14)	.15 (<.001)		
Sociability (CBSS)	69	23 (<.001)	30 (<.001)	18 (<.001)	02 (.30)		
Hyperfocus (AHQ)	4	.22 (<.001)	.28 (<.001)	.16 (<.001)	.18 (<.001)		
Humor (MSHS)		.00 (0.87)	02 (0.38)	05 (.03)	.12 (<.001)		
Curiosity (CEI)		07 (0.03)	-0.15 (<.001)	06 (0.06)	.16 (<.001)		
Enthusiasm (BFAS)	49	11 (<.001)	14 (<.001)	13 (<.001)	.05 (0.09)		
Up for anything (IUS)	6	30 (<.001)	36 (<.001)	23 (<.001)	05 (.05)		
Flexibility (CFS)		.14 (<.001)	.21 (<.001)	.16 (<.001)	08 (0.008)		
Perseverance (Grit)		09 (.002)	12 (<.001)	07 (.01)	.01 (0.85)		
Subdimensions							
MSHS Production and		.00 (0.86)	04 (0.07)	02 (.26)	.10 (<.001)		
Social Use of Humor							
MSHS Adaptive Humor		0.07 (.004)	.05 (.04)	. 01 (.70)	.15 (<.001)		
MSHS Negation to use		05 (0.05)	.00 (0.98)	14 (<.001)	.01 (0.55)		
Humor	694	1					
MSHS Attitude toward		03 (0.21)	03 (0.29)	09 (<.001)	.04 (0.12)		
Humor							
MSHS Appreciation of		.03 (0.25)	.05 (.04)	06 (0.008)	.09 (0.001)		
Humor							
Grit consistency of		08 (.006)	12 (<.001)	08 (.006)	.08 (0.006)		
interest	49						
Grit perseverance of	6	07 (.02)	07 (.02)	04 (.20)	06 (.04)		
effort							
CEI stretching		01 (0.70)	09 (.001)	03 (0.28)	.20 (<.001)		

	CEI embracing	11 (<.001)	19 (<.001)	09 (0.002)	0.11 (<.001)			
451	Note. TEQ, Toronto Emp	athy Question	naire, CBSS, C	Cheek and Bu	ss Shyness			
452	Scale, HSP, Highly Sensitive Person Scale, AHQ, Adult Hyperfocus							
453	Questionnaire, MSHS, Multidimensional Sense of Humor Scale, CEI, Curiosity							
454	and Exploration Inventory, BFAS, Big Five Aspects Scale, IUS, Intolerance of							
455	Uncertainty Scale, CFS, Cognitive Flexibility Scale, GRIT, Grit scale. Covariates:							
456	age, sex, ADHD traits.							

Fig. 1. Network representing all questionnaire items. Each node (circle) represents one questionnaire item. Edges (lines) represent correlations. Red edges represent negative correlations, green edges represent positive correlations. Thicker

edges represent stronger correlations. The network is visualised using multidimensional scaling using the qrgap package in R (Epskamp et al., 2022). For the network estimation, we used a Graphical Least Absolute Shrinkage Operator (GLASSO), with a gamma of 0.5. We calculated item redundancy using the goldbricker function from the R package Networktool, planning to combine items with >95% overlap, but this did not lead to the combination of any items.