

Proximal-Langevin samplers for nonsmooth composite posteriors:

Application to the estimation of Covid19 reproduction number

P. Abry¹, G. Fort^{2,‡}, <u>B. Pascal^{3,‡}</u>, N. Pustelnik¹ EUSIPCO 2023, Helsinki, Finland

- 1. CNRS, ENS de Lyon, Laboratoire de Physique, France,
- 2. CNRS, Institut de Mathématiques de Toulouse, France,
- 3. CNRS, LS2N, Nantes, France
- J. CIVING, EGZIV, Maintes, France

[‡] Partly funded by Fondation Simone et Cino Del Duca, Institut de France

Main challenges of epidemic surveillance

Daily counts of new infection cases

data collected by Johns Hopkins University from Public Health Agencies

Main challenges of epidemic surveillance

Daily counts of new infection cases

data collected by Johns Hopkins University from Public Health Agencies

Design of adapted sanitary measures and impact evaluation requires:

- ightarrow efficient monitoring tools
- ightarrow robustness to low quality of the data
- ightarrow reliable confidence levels

epidemiological model, handle outlier values, credibility intervals.

Main challenges of epidemic surveillance

Daily counts of new infection cases

data collected by Johns Hopkins University from Public Health Agencies

Design of adapted sanitary measures and impact evaluation requires:

- \rightarrow efficient monitoring tools
- ightarrow robustness to low quality of the data
- \rightarrow reliable confidence levels

epidemiological model,

handle outlier values,

credibility intervals.

Key indicator: reproduction number R₀

(Liu et al., 2018, PNAS)

"averaged number of secondary cases generated by a typical contagious individual"

 \Longrightarrow relaxed into an **effective time-varying reproduction number** R_t at day t

(Cori et al., 2013, Am Journal of Epidemiology)

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-1},\mathsf{Z}_{t-2},\ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- Φ : serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_{\mathcal{T}})$ reproduction numbers at day $t = 1, \ldots, \mathcal{T}$
- $\mathbf{0} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \ldots, T$

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-1},\mathsf{Z}_{t-2},\ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- Φ: serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (R_1, \dots, R_T)$ reproduction numbers at day $t = 1, \dots, T$
- $-\mathbf{0} = (O_1, \cdots, O_T)$ errors at day $t = 1, \dots, T$
- $m{\theta} = (R, \mathbf{0})$ to be estimated from $\mathbf{Z} = (Z_1, \dots, Z_T)$ conditionally to Z_0, Z_{-1}, \dots

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-1},\mathsf{Z}_{t-2},\ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- Φ: serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \ldots, T$
- $\mathbf{O} = (O_1, \cdots, O_T)$ errors at day $t = 1, \dots, T$
- $m{\theta} = (\mathbf{R}, \mathbf{O})$ to be estimated from $\mathbf{Z} = (\mathsf{Z}_1, \dots, \mathsf{Z}_T)$ conditionally to $\mathsf{Z}_0, \mathsf{Z}_{-1}, \dots$

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-f(\boldsymbol{\theta}) - g(\mathsf{A}\boldsymbol{\theta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-1},\mathsf{Z}_{t-2},\ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \underset{t}{\mathsf{R}_t} \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \underset{t}{\mathsf{O}_t}$$

- Φ: serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \ldots, T$
- $\mathbf{O} = (O_1, \cdots, O_T)$ errors at day $t = 1, \dots, T$
- $m{\theta} = (\mathbf{R}, \mathbf{O})$ to be estimated from $\mathbf{Z} = (\mathsf{Z}_1, \dots, \mathsf{Z}_T)$ conditionally to $\mathsf{Z}_0, \mathsf{Z}_{-1}, \dots$

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbb{1}_{\mathcal{D}}(oldsymbol{ heta})$$

•
$$\mathcal{D} = \{\theta \mid \forall t \colon \mathsf{R}_t \geq 0 \text{ and, if } \mathsf{Z}_t > 0, \mathsf{p}_t(\theta) > 0; \text{ else if } \mathsf{Z}_t = 0, \mathsf{p}_t(\theta) \geq 0\}$$

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-1},\mathsf{Z}_{t-2},\ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \underset{t}{\mathsf{R}_t} \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \underset{t}{\mathsf{O}_t}$$

- Φ: serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_{\mathcal{T}})$ reproduction numbers at day $t = 1, \ldots, \mathcal{T}$
- $\mathbf{O} = (O_1, \cdots, O_T)$ errors at day $t = 1, \dots, T$
- $\theta = (R, 0)$ to be estimated from $\mathbf{Z} = (Z_1, \dots, Z_T)$ conditionally to Z_0, Z_{-1}, \dots

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbb{1}_{\mathcal{D}}(oldsymbol{ heta})$$

- $\mathcal{D} = \{\theta \mid \forall t \colon \mathsf{R}_t \geq 0 \text{ and, if } \mathsf{Z}_t > 0, \mathsf{p}_t(\theta) > 0; \text{ else if } \mathsf{Z}_t = 0, \mathsf{p}_t(\theta) \geq 0\}$
- $f(\theta) := \begin{cases} \sum_{t=1}^{T} (-\mathsf{Z}_t \ln \mathsf{p}_t(\theta) + \mathsf{p}_t(\theta)) & \text{if } \theta \in \mathcal{D}, \text{ with } 0 \cdot \ln(0) \stackrel{!}{=} 0 \\ \infty & \text{else} \end{cases}$

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-1},\mathsf{Z}_{t-2},\ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \underset{t}{\mathsf{R}_t} \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \underset{t}{\mathsf{O}_t}$$

- Φ : serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \ldots, T$
- $\mathbf{O} = (O_1, \dots, O_T)$ errors at day $t = 1, \dots, T$
- \blacktriangleright $\theta = (R, O)$ to be estimated from $\mathbf{Z} = (Z_1, \dots, Z_T)$ conditionally to Z_0, Z_{-1}, \dots

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(oldsymbol{ heta})$$

- $\mathcal{D} = \{\theta \mid \forall t \colon \mathsf{R}_t \geq 0 \text{ and, if } \mathsf{Z}_t > 0, \mathsf{p}_t(\theta) > 0; \text{ else if } \mathsf{Z}_t = 0, \mathsf{p}_t(\theta) \geq 0\}$
- $f(\theta) := \begin{cases} \sum_{t=1}^{T} (-\mathsf{Z}_t \ln \mathsf{p}_t(\theta) + \mathsf{p}_t(\theta)) & \text{if } \theta \in \mathcal{D}, \text{ with } 0 \cdot \ln(0) \stackrel{!}{=} 0 \\ \infty & \text{else} \end{cases}$
- $g(A\theta) = \lambda_R \|D_2 \mathbf{R}\|_1 + \lambda_0 \|\mathbf{O}\|_1$, $D_2 \in \mathbb{R}^{(T-2) \times T}$: discrete Laplacian matrix

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Pandemic monitoring

Two quantities of interest:

- reproduction number $\mathbf{R} = (R_1, \dots, R_T)$
- corrected number of new infections $\mathbf{Z}^{(D)} = \mathbf{Z} \mathbf{O} = (Z_1 O_1, \dots, Z_T O_T)$

Pandemic monitoring

Two quantities of interest:

- reproduction number $\mathbf{R} = (R_1, \dots, R_T)$
- corrected number of new infections $\mathbf{Z}^{(D)} = \mathbf{Z} \mathbf{O} = (Z_1 O_1, \dots, Z_T O_T)$

Level of confidence required to support high impact sanitary decisions:

⇒ estimate credibility intervals at level 95% under the statistical model

$$m{ heta} = (\mathbf{R}, \mathbf{O}) \sim \pi, \quad ext{with} \quad \pi(m{ heta}) \propto \exp\left(-f(m{ heta}) - g(\mathbf{A}m{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(m{ heta})$$

Pandemic monitoring

Two quantities of interest:

- reproduction number $\mathbf{R} = (R_1, \dots, R_T)$
- corrected number of new infections $\mathbf{Z}^{(D)} = \mathbf{Z} \mathbf{O} = (Z_1 O_1, \dots, Z_T O_T)$

Level of confidence required to support high impact sanitary decisions:

⇒ estimate credibility intervals at level 95% under the statistical model

$$m{ heta} = (\mathbf{R}, \mathbf{O}) \sim \pi, \quad ext{with} \quad \pi(m{ heta}) \propto \exp\left(-f(m{ heta}) - g(\mathbf{A}m{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(m{ heta})$$

 $R_T \in [1.05, 1.08] \implies R_T \ge 1$ with probability at least 0.95

Credibility interval estimation of

 $heta \equiv \mathsf{sample} \; \mathsf{from} \; \mathsf{a} \; \mathsf{distribution}^\dagger \; \mathsf{of} \; \mathsf{the} \; \mathsf{form} :$

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(oldsymbol{ heta})$$

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $\theta \equiv \mathsf{sample} \; \mathsf{from} \; \mathsf{a} \; \mathsf{distribution}^\dagger \; \mathsf{of} \; \mathsf{the} \; \mathsf{form}$:

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

• $\theta \in \mathbb{R}^d$ vector of parameters,

• g convex, non-smooth,

• f differentiable.

• $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

• $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $heta \equiv \mathsf{sample} \; \mathsf{from} \; \mathsf{a} \; \mathsf{distribution}^\dagger \; \mathsf{of} \; \mathsf{the} \; \mathsf{form} :$

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

• $\theta \in \mathbb{R}^d$ vector of parameters.

• g convex, non-smooth,

• f differentiable.

• $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

• $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Markov Chain Monte Carlo method

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $heta \equiv \mathsf{sample} \; \mathsf{from} \; \mathsf{a} \; \mathsf{distribution}^\dagger \; \mathsf{of} \; \mathsf{the} \; \mathsf{form} :$

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

• $\theta \in \mathbb{R}^d$ vector of parameters,

• g convex, non-smooth,

• f differentiable,

• $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

• $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Markov Chain Monte Carlo method

- 1) generate a Markov chain $\{\boldsymbol{\theta}^n, n \in \mathbb{N}\}$ such that
 - θ^{n+1} depends only on θ^n ,
 - at convergence, i.e., as $n \to \infty$, $\theta^n \stackrel{\text{(in law)}}{\longrightarrow} \pi$,

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $\theta \equiv \mathsf{sample} \; \mathsf{from} \; \mathsf{a} \; \mathsf{distribution}^\dagger \; \mathsf{of} \; \mathsf{the} \; \mathsf{form}$:

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-f(\boldsymbol{\theta}) - g(\mathsf{A}\boldsymbol{\theta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$

• $\theta \in \mathbb{R}^d$ vector of parameters.

• g convex, non-smooth,

• f differentiable,

• $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

• $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Markov Chain Monte Carlo method

- 1) generate a Markov chain $\{\boldsymbol{\theta}^n, n \in \mathbb{N}\}$ such that
 - θ^{n+1} depends only on θ^n .
 - at convergence, i.e., as $n \to \infty$, $\theta^n \stackrel{\text{(in law)}}{\longrightarrow} \pi$,
- 2) compute credibility interval estimates from samples $\{\theta^n, n \geq N\}$ for $N \gg 1$.

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

 $\textbf{Hastings-Metropolis type algorithm} \qquad \mathsf{C} \in \mathbb{R}^{d \times d} \text{ symmetric positive definite; } \gamma > 0$

1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C})$;

freed from the constraint $oldsymbol{ heta} \in \mathcal{D}$;

 $\textbf{Hastings-Metropolis type algorithm} \qquad \mathsf{C} \in \mathbb{R}^{d \times d} \text{ symmetric positive definite; } \gamma > 0$

- 1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C});$ freed from the constraint $\theta \in \mathcal{D};$
- freed from the constraint $\theta \in \mathcal{D}$;

 2) <u>accept-reject:</u> if $\theta^{n+\frac{1}{2}} \notin \mathcal{D}$, $\theta^{n+1} = \theta^n$ (systematic reject); else $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability depending on $\theta^{n+\frac{1}{2}}$ and θ^n , $\theta^{n+1} = \theta^n$ otherwise. (Kent, 1978, Adv Appl Probab)

Hastings-Metropolis type algorithm $C \in \mathbb{R}^{d \times d}$ symmetric positive definite; $\gamma > 0$

- 1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C})$; freed from the constraint $\theta \in \mathcal{D}$;
- 2) accept-reject: if $\theta^{n+\frac{1}{2}} \notin \mathcal{D}$, $\theta^{n+1} = \theta^n$ (systematic reject); else $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability depending on $\theta^{n+\frac{1}{2}}$ and θ^n , $\theta^{n+1} = \theta^n$ otherwise. (Kent, 1978, Adv Appl Probab)

Case of smooth
$$\pi$$
: Tempered Langevin dynamics (Roberts & Tweedie, 1996, *Bernoulli*)
$$\mu(\theta) = \theta + \gamma \sqrt{C} \nabla \ln \pi(\theta)$$

⇒ move toward regions of high probability

Hastings-Metropolis type algorithm $C \in \mathbb{R}^{d \times d}$ symmetric positive definite; $\gamma > 0$

1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C});$ freed from the constraint $\theta \in \mathcal{D}$;

2) accept-reject: if $\theta^{n+\frac{1}{2}} \notin \mathcal{D}$, $\theta^{n+1} = \theta^n$ (systematic reject); else $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability depending on $\theta^{n+\frac{1}{2}}$ and θ^n , $\theta^{n+1} = \theta^n$ otherwise.

⇒ move toward regions of high probability

Purpose: compare different proximal design of the drift μ .

Case of non-smooth
$$\pi$$
: proximal Langevin

$$\pi \propto \exp\left(-f - g(\mathsf{A} \cdot)\right) \mathbb{1}_{\mathcal{D}}$$

(Kent, 1978, Adv Appl Probab)

- f differentiable with gradient ∇f .
- g non-smooth, convex, with closed-form proximal operator $\operatorname{prox}_{\rho\sigma} = (I + \rho \partial g)^{-1}$, $\rho > 0$.

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma \mathsf{g}(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma \mathsf{g}(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Primal methods:
$$\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0,1)$$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Primal methods:

$$oldsymbol{ heta}^{n+rac{1}{2}} = \mu(oldsymbol{ heta}^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, oldsymbol{\mathsf{I}})$$

Moreau drift: smooth approximation of g by its Moreau envelop

$$\boldsymbol{\mu}^{\mathtt{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathbf{A}^{\top} (\mathbf{I} - \mathsf{prox}_{\rho g}) \mathbf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et al., 2018, SIAM J Imaging Sci; Luu et al., 2020, Methodol Comput Appl Probab)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Primal methods:

$$\boldsymbol{\theta}^{n+\frac{1}{2}} = \mu(\boldsymbol{\theta}^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \boldsymbol{\mathsf{I}})$$

Moreau drift: smooth approximation of g by its Moreau envelop

$$\boldsymbol{\mu}^{\text{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathbf{A}^{\top} (\mathbf{I} - \mathsf{prox}_{\rho g}) \mathbf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et al., 2018, SIAM J Imaging Sci; Luu et al., 2020, Methodol Comput Appl Probab)

• <u>PGdec drift:</u> if $AA^{\top} = \nu I$, with $\nu > 0 \Longrightarrow$ closed-form expression of $\text{prox}_{\gamma g(A \cdot)}$

$$\mu^{\text{PGdec}}(\boldsymbol{\theta}) = \text{prox}_{\gamma g(A \cdot)} (\boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}))$$

extended to
$$g(A \cdot) = \sum_{i=1}^{I} g_i(A_i \cdot)$$
, with $A_i A_i^{\top} = \nu_i I$, $\nu_i > 0$

(Fort et al., 2023, IEEE Trans Sig Process)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Primal methods:

$$\boldsymbol{\theta}^{n+\frac{1}{2}} = \mu(\boldsymbol{\theta}^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \boldsymbol{\mathsf{I}})$$

Moreau drift: smooth approximation of g by its Moreau envelop

$$\boldsymbol{\mu}^{\mathbb{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathbf{A}^{\top} (\mathbf{I} - \mathsf{prox}_{\rho \mathsf{g}}) \mathbf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et al., 2018, SIAM J Imaging Sci; Luu et al., 2020, Methodol Comput Appl Probab)

• <u>PGdec drift:</u> if $AA^{\top} = \nu I$, with $\nu > 0 \Longrightarrow$ closed-form expression of $\text{prox}_{\gamma g(A \cdot)}$

$$\mu^{\mathtt{PGdec}}(\boldsymbol{ heta}) = \mathsf{prox}_{\gamma_{oldsymbol{g}}(\mathtt{A}\cdot)}\left(\boldsymbol{ heta} - \gamma \,
abla f(oldsymbol{ heta})
ight)$$

extended to
$$g(A_i) = \sum_{i=1}^{I} g_i(A_{ii})$$
, with $A_i A_i^{\top} = \nu_i I$, $\nu_i > 0$

(Fort et al., 2023, IEEE Trans Sig Process)

• Random Walk drift: $\mu^{\text{RM}}(\theta) = \theta$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$A \in \mathbb{R}^{d \times d}$$
 invertible

dual drift term
$$\tilde{\mu}(\tilde{\boldsymbol{\theta}})$$
, $\tilde{\boldsymbol{\theta}} = A\boldsymbol{\theta}$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is **full rank**, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

(Artigas, 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$A \in \mathbb{R}^{d \times d}$$
 invertible

dual drift term
$$\tilde{\mu}(\tilde{\theta})$$
, $\tilde{\theta} = A\theta$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is **full rank**, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

Dual methods:
$$\theta^{n+\frac{1}{2}} = \mathsf{A}^{-1} \tilde{\mu}(\tilde{\boldsymbol{\theta}}^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathsf{A}^{-1} \mathsf{A}^{-\top})$$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$A \in \mathbb{R}^{d \times d}$$
 invertible

dual drift term
$$\tilde{\mu}(\tilde{\boldsymbol{\theta}})$$
, $\tilde{\boldsymbol{\theta}} = A\boldsymbol{\theta}$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right)\mathbbm{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is **full rank**, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

Dual methods:
$$\theta^{n+\frac{1}{2}} = \mathsf{A}^{-1} \tilde{\mu} (\tilde{\boldsymbol{\theta}}^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathsf{A}^{-1} \mathsf{A}^{-\top})$$

• Dual Moreau drift:

$$\tilde{\boldsymbol{\mu}}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \mathbf{A}^{-\top} \nabla f(\mathbf{A}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathbf{I} - \mathsf{prox}_{\rho g}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma$$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $A \in \mathbb{R}^{d \times d}$ invertible

dual drift term
$$\tilde{\mu}(\tilde{\boldsymbol{\theta}})$$
, $\tilde{\boldsymbol{\theta}} = A\boldsymbol{\theta}$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right)\mathbbm{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is **full rank**, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

$$\boldsymbol{\theta}^{n+\frac{1}{2}} = \mathsf{A}^{-1} \tilde{\boldsymbol{\mu}} (\tilde{\boldsymbol{\theta}}^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathsf{A}^{-1} \mathsf{A}^{-\top})$$

• Dual Moreau drift:

$$\tilde{\boldsymbol{\mu}}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \mathbf{A}^{-\top} \nabla f(\mathbf{A}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathbf{I} - \mathsf{prox}_{\rho g}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma$$

PGdual drift:

$$\tilde{\mu}^{\text{PG}}(\tilde{\boldsymbol{\theta}}) = \text{prox}_{\gamma g} \left(\tilde{\boldsymbol{\theta}} - \gamma \, \mathsf{A}^{-\top} \nabla f(\mathsf{A}^{-1} \tilde{\boldsymbol{\theta}}) \right)$$
(Artigas, 2022, *EUSIPCO*; Fort et al., 2023, IEEE Trans Sig Process)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $A \in \mathbb{R}^{d \times d}$ invertible

dual drift term
$$\tilde{\mu}(\tilde{\boldsymbol{\theta}})$$
, $\tilde{\boldsymbol{\theta}} = A\boldsymbol{\theta}$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right)\mathbbm{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is **full rank**, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

$$\boldsymbol{\theta}^{n+\frac{1}{2}} = \mathsf{A}^{-1} \tilde{\mu}(\tilde{\boldsymbol{\theta}}^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathsf{A}^{-1} \mathsf{A}^{-\top})$$

• Dual Moreau drift:

$$\tilde{\boldsymbol{\mu}}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \mathbf{A}^{-\top} \nabla f(\mathbf{A}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathbf{I} - \mathsf{prox}_{\rho \mathsf{g}}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma$$

PGdual drift:

$$\tilde{\boldsymbol{\mu}}^{\mathrm{PG}}(\tilde{\boldsymbol{\theta}}) = \mathrm{prox}_{\gamma \mathbf{g}} \left(\tilde{\boldsymbol{\theta}} - \gamma \, \mathbf{A}^{-\top} \nabla f(\mathbf{A}^{-1} \tilde{\boldsymbol{\theta}}) \right)$$

(Artigas, 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

ullet Dual Random Walk drift: $ilde{\mu}^{ exttt{RM}}(ilde{ heta}) = ilde{ heta}$

 $\mathsf{Y}_i \sim \mathsf{Bernoulli}\left((1+\mathsf{exp}(-(\mathsf{X}oldsymbol{ heta}^*)_j))^{-1}
ight), \quad \mathsf{independent}.$

 $\textbf{Model} \quad \bullet \quad \mathsf{X} \in \mathbb{R}^{\textit{N} \times \textit{d}} \quad : \mathsf{covariates} \ \mathsf{matrix},$

 $\begin{array}{ll} \bullet & \boldsymbol{\theta}^* \in \mathbb{R}^d & : \text{ piecewise constant regression vector,} \\ \bullet & \mathsf{Y} \in \{0,1\}^N & : \text{ binary response vector} \end{array}$

$$Y_j \sim \text{Bernoulli}\left(\left(1 + \exp(-(X\theta^*)_j)\right)^{-1}\right), \quad \text{independent.}$$

A posteriori log-distribution

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
: discrete gradient

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \exp((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \|\mathsf{D}_{1} \boldsymbol{\theta}\|_{1}$$

 $\textbf{Model} \quad \bullet \quad \mathsf{X} \in \mathbb{R}^{N \times d} \qquad : \ \mathsf{covariates} \ \mathsf{matrix},$

 $\begin{array}{ll} \bullet & \boldsymbol{\theta}^* \in \mathbb{R}^d & : \text{ piecewise constant regression vector,} \\ \bullet & \mathsf{Y} \in \{0,1\}^N & : \text{ binary response vector} \end{array}$

$$Y_j \sim \text{Bernoulli}\left(\left(1 + \exp(-(X\theta^*)_j)\right)^{-1}\right), \quad \text{independent.}$$

A posteriori log-distribution

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
: discrete gradient

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \exp((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \|\mathsf{D}_{1} \boldsymbol{\theta}\|_{1}$$

PGdec:
$$\|D_1\theta\|_1 = \frac{\|D_{1,e}\theta\|_1}{\text{even rows}} + \frac{\|D_{1,o}\theta\|_1}{\text{odd rows}}$$

$$D_{1,e}D_{1,e}^{\top} = D_{1,o}D_{1,o}^{\top} = I;$$

$$Y_j \sim \text{Bernoulli}\left(\left(1 + \exp(-(X\theta^*)_j)\right)^{-1}\right), \quad \text{independent.}$$

A posteriori log-distribution

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
: discrete gradient

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \exp((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \| \mathsf{D}_{1} \boldsymbol{\theta} \|_{1}$$

$$\begin{aligned} & \text{PGdec}: \quad \|D_1\theta\|_1 = \underbrace{\|D_{1,e}\theta\|_1}_{\text{even rows}} + \underbrace{\|D_{1,o}\theta\|_1}_{\text{odd rows}}, & D_{1,e}D_{1,e}^\top = D_{1,o}D_{1,o}^\top = I; \\ \\ & *\text{dual}: \quad \overline{D}_1 = \begin{pmatrix} -1 & 0 \dots 0 \\ 0 \\ \vdots & D_1 \\ 0 \end{pmatrix} \Longrightarrow \text{invertible extension of } D_1. \end{aligned}$$

 $\mathsf{Y}_i \sim \mathsf{Bernoulli}\left((1+\mathsf{exp}(-(\mathsf{X} \pmb{\theta}^*)_j))^{-1}\right), \quad \mathsf{independent}.$

A posteriori log-distribution

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
: discrete gradient

$$\ln \pi_{\mathsf{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \mathsf{exp}((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \| \mathsf{D}_{1} \boldsymbol{\theta} \|_{1}$$

$$\begin{aligned} & \text{PGdec}: \quad \|D_1\theta\|_1 = \underbrace{\|D_{1,e}\theta\|_1}_{\text{even rows}} + \underbrace{\|D_{1,o}\theta\|_1}_{\text{odd rows}}, & D_{1,e}D_{1,e}^\top = D_{1,o}D_{1,o}^\top = I; \\ \\ & *\text{dual}: \quad \overline{D}_1 = \begin{pmatrix} -1 & 0 \dots 0 \\ 0 & & \\ \vdots & D_1 \\ 0 & & \end{pmatrix} \Longrightarrow \text{invertible extension of } D_1. \end{aligned}$$

Data
$$N = 2.10^3$$
, $d = 20$

X: independent Rademacher r.v., rows normalized to 1.

Toy example: Markov chain speed of convergence

Convergence indicator:

$$\operatorname{Log} \pi = \frac{\ln \pi_t(\boldsymbol{\theta}^n) - \ln \pi_t^*}{\ln \pi_t(\boldsymbol{\theta}^1) - \ln \pi_t^*}, \quad \ln \pi_t^* = \max_{\boldsymbol{\theta} \in \mathbb{R}} \ln \pi_t(\boldsymbol{\theta}) \qquad \qquad \textit{high probability regions}$$

Comparaison of the MCMC samplers

primal	dual
dashed lines	solid lines
RW	RWdual
M	Mdual
PGdec	PGdual

- gain to use 1st order information vs. RW;
- primal samplers: the fastest at small λ ;
- dual samplers: the fastest for medium to large λ , good for small λ .

 \Longrightarrow Mdual and PGdual fast convergence; robust to the choice of λ

Covid19 propagation model: $\theta = (\mathsf{R}, \mathsf{O})$ of probability distribution

$$\begin{split} \pi(\boldsymbol{\theta}) &\propto \text{exp}\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_{t} \ln \mathsf{p}_{t}(\boldsymbol{\theta}) + \mathsf{p}_{t}(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_{2} \mathbf{R}\|_{1} + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta}) \\ \mathsf{D}_{2} &\in \mathbb{R}^{(T-2) \times T} \text{ full rank} \quad \Longrightarrow \quad \overline{\mathsf{D}}_{2} \in \mathbb{R}^{T \times T} \text{ invertible extension} \end{split}$$

Covid19 propagation model: $\theta = (R, O)$ of probability distribution

$$\begin{split} \pi(\boldsymbol{\theta}) &\propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) + \mathsf{p}_t(\boldsymbol{\theta})\right) - \lambda_\mathsf{R} \|\mathsf{D}_2 \mathsf{R}\|_1 + \lambda_\mathsf{O} \|\mathbf{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta}) \\ \mathsf{D}_2 &\in \mathbb{R}^{(T-2) \times T} \text{ full rank} \quad \Longrightarrow \quad \overline{\mathsf{D}}_2 \in \mathbb{R}^{T \times T} \text{ invertible extension} \end{split}$$

MCMC dual complete: [Dildual] random walk in the dual anace

MCMC dual samplers: [RWdual] random walk in the dual space

[Mdual] Moreau drift in the dual space

[PGdual] proximal-gradient type drift in the dual space

$$\mathbf{R}^{n+\frac{1}{2}} = \left\{ \begin{array}{c} \mathbf{R}^{n} \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \end{array} \right. + \sqrt{2\gamma_{\mathsf{R}}} \boldsymbol{\xi}_{\mathsf{R}}^{n+1}; \quad \mathbf{O}^{n+\frac{1}{2}} = \left\{ \begin{array}{c} \mathbf{O}^{n} \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{PC}}(\tilde{\boldsymbol{\theta}}^{n}) \end{array} \right. + \sqrt{2\gamma_{\mathsf{O}}} \boldsymbol{\xi}_{\mathsf{O}}^{n+1}.$$

Covid19 propagation model: $\theta = (R, O)$ of probability distribution

$$\begin{split} \pi(\boldsymbol{\theta}) &\propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_{t} \ln \mathsf{p}_{t}(\boldsymbol{\theta}) + \mathsf{p}_{t}(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_{2} \mathsf{R}\|_{1} + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta}) \\ \mathsf{D}_{2} &\in \mathbb{R}^{(T-2) \times T} \text{ full rank} \quad \Longrightarrow \quad \overline{\mathsf{D}}_{2} \in \mathbb{R}^{T \times T} \text{ invertible extension} \end{split}$$

MCMC dual samplers:

[RWdual] random walk in the dual space [Mdual] Moreau drift in the dual space

[PGdual] proximal-gradient type drift in the dual space

$$\mathbf{R}^{n+\frac{1}{2}} = \left\{ \begin{array}{c} \mathbf{R}^{n} \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \end{array} \right. + \sqrt{2\gamma_{\mathsf{R}}} \boldsymbol{\xi}_{\mathsf{R}}^{n+1}; \quad \mathbf{O}^{n+\frac{1}{2}} = \left\{ \begin{array}{c} \mathbf{O}^{n} \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{P}}(\tilde{\boldsymbol{\theta}}^{n}) \end{array} \right. + \sqrt{2\gamma_{\mathsf{O}}} \boldsymbol{\xi}_{\mathsf{O}}^{n+1}.$$

$$-\xi_{\mathsf{R}}^{n+1} \sim \mathcal{N}(0, \overline{\mathsf{D}}_{2}^{-1} \overline{\mathsf{D}}_{2}^{-\top}), \\ -\xi_{\mathsf{O}}^{n+1} \sim \mathcal{N}(\mathsf{0}, \mathsf{I});$$

Hyperparameters:

$$-(\lambda_{\mathsf{R}}, \lambda_{\mathsf{O}}) = (3.5 \,\sigma_{\mathsf{Z}} \sqrt{6}/4, 0.05),$$

$$-\gamma_{\mathsf{O}} = \gamma (\lambda_{\mathsf{R}}/\lambda_{\mathsf{O}})^2,$$

– γ adjusted to reach 25% acceptance rate.

Covid19 propagation model: $\theta = (R, O)$ of probability distribution

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_{t} \ln \mathsf{p}_{t}(\boldsymbol{\theta}) + \mathsf{p}_{t}(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_{2} \mathbf{R}\|_{1} + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$

$$\mathsf{D}_{2} \in \mathbb{R}^{(T-2) \times T} \text{ full rank } \implies \overline{\mathsf{D}}_{2} \in \mathbb{R}^{T \times T} \text{ invertible extension}$$

MCMC dual samplers:

[RWdual] random walk in the dual space

[Mdual] Moreau drift in the dual space

[PGdual] proximal-gradient type drift in the dual space
$$\begin{array}{c}
\mathbf{R}^{n} \\
\mathbf{D}^{n+\frac{1}{2}}
\end{array}$$

$$\begin{array}{c}
\mathbf{R}^{n} \\
\mathbf{D}^{-1} \approx \mathbf{M} (\tilde{\mathbf{Q}}^{n}) + \sqrt{2 \cdots c^{n+1}}, \quad \mathbf{Q}^{n+\frac{1}{2}}
\end{array}$$

$$\mathbf{R}^{n+\frac{1}{2}} = \left\{ \begin{array}{l} \mathbf{R}^{n} \\ \overline{\mathbf{D}}_{2}^{-1} \widetilde{\mu}_{\mathsf{R}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \overline{\mathbf{D}}_{2}^{-1} \widetilde{\mu}_{\mathsf{R}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{array} \right. + \sqrt{2\gamma_{\mathsf{R}}} \xi_{\mathsf{R}}^{n+1}; \quad \mathbf{O}^{n+\frac{1}{2}} = \left\{ \begin{array}{l} \mathbf{O}^{n} \\ \widetilde{\mu}_{\mathsf{O}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \widetilde{\mu}_{\mathsf{O}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{array} \right. + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}.$$

Gaussian perturbation:

$$\begin{split} &-\xi_{\mathsf{R}}^{n+1} \sim \mathcal{N}(0,\overline{\mathsf{D}}_{2}^{-1}\overline{\mathsf{D}}_{2}^{-\top}),\\ &-\xi_{\mathsf{O}}^{n+1} \sim \mathcal{N}(\mathsf{0},\mathsf{I}); \end{split}$$

Hyperparameters:

$$-(\lambda_{R}, \lambda_{O}) = (3.5 \,\sigma_{Z} \sqrt{6}/4, 0.05),$$

$$-\gamma_{O} = \gamma(\lambda_{R}/\lambda_{O})^{2},$$

– γ adjusted to reach 25% acceptance rate.

Convergence of the Markov chains

Conclusion

Take home messages:

MCMC samplers for composite distributions with constrained support

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

- Comparison on a toy example: faster convergence when
 - taking into account 1 order information on π
 - using adequate covariance in the Gaussian proposal
- CI estimates of R_t and $Z^{(D)}$ published daily for 200+ countries

https://perso.ens-lyon.fr/patrice.abry/

https://perso.math.univ-toulouse.fr/gfort/project/opsimore-2/

Perspectives

Ongoing work:

▶ Generation of realistic synthetic data to assess estimation performance.

Research directions:

- ▶ New epidemiological models for low quality data, possibly graph data;
- ▶ Automated and data-driven selection of hyperparameters $\gamma_{R/O}$, $\lambda_{R/O}$

$$\begin{split} \pi(\boldsymbol{\theta}) &\propto \text{exp}\left(-\sum_{t=1}^{\mathcal{T}} \left(-Z_t \ln p_t(\boldsymbol{\theta}) + p_t(\boldsymbol{\theta})\right) - \frac{1}{\lambda_R} \|D_2 \boldsymbol{R}\|_1 + \frac{1}{\lambda_O} \|\boldsymbol{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta}); \\ \boldsymbol{R}^{n+\frac{1}{2}} &= \overline{D}_2^{-\frac{1}{2}} \widetilde{\mu}_R(\boldsymbol{\tilde{\theta}}^n) + \sqrt{2\gamma_R} \xi_R^{n+1}, \quad \boldsymbol{O}^{n+\frac{1}{2}} &= \widetilde{\mu}_O(\boldsymbol{\tilde{\theta}}^n) + \sqrt{2\gamma_O} \xi_O^{n+1}. \end{split}$$

Two-year postdoc position available in LS2N, Nantes, France barbara.pascal@cnrs.fr

