JEET KIRAN PAWANI.
ECE-6255 ASSIGNMENT-5 GTW-903397407
OIGITAL SPEECH PROLESSING
1) Remoine formula for ninimum phase signal
Stal
change to 22 cm
Complex construm is given by-
$\hat{a}(n)$ (2) = $(og(x(2))$
· · · · · · · · · · · · · · · · · · ·
on difformating $\frac{dx^{2}}{dz} = \frac{d}{dz} \left[\log \left(x(z) \right) \right] = \frac{x'(z)}{x(z)}$
dxl2) = q [log [xc2]
· · · · · · · · · · · · · · · · · · ·
$\Rightarrow d\hat{x}(z) (x(z)) = x'(z)$
axes (xes) dz muttiplying both indes by -z,
mulupulum
$-z d\hat{x}(z) (xcz) = -z x'(z)$
dz Tonform
Taking word 2. Transform
(2(n) = (n-k) k (opening convolution)
$(\mathcal{A}(\mathcal{A}))$
$\chi(n) = \frac{2}{2} \hat{\chi}(k) \chi(n-k) \left(\frac{k}{n}\right)$
6=-0 la la company al la compa
CSinécathis with minimum phase system à (n) = 0 for all n 20 CamScanner

$$\frac{1}{2} \times (n) = \frac{2}{2} \cdot \frac{2}{2} \cdot (k) \cdot \frac{1}{2} \cdot (n-k) \cdot (k)$$

$$\frac{1}{2} \cdot (n) = \frac{2}{2} \cdot \frac{2}{2} \cdot (k) \cdot \frac{1}{2} \cdot (n-k) \cdot (n-k)$$

CamScanner

$$\frac{3}{1} + (e^{i\theta}) = (n \pi_{1}^{G}, (1 - Sq e^{i\theta} e^{-j\omega}) (1 - Sq e^{-j\theta} e^{-j\omega}) (2)$$

$$\frac{1}{1} + (1 - rp e^{i\theta} e^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (H(e^{i\omega}))$$

$$= \log (H(e^{i\omega}))$$

$$= \log (H(e^{i\omega}))$$

$$= \log (G + \pi_{2}^{G}, (1 - Sq e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - Sq e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + \pi_{2}^{G}, (1 - rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + rp e^{i\theta} re^{-j\omega}) (1 - rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + rp e^{i\theta} re^{j\omega})$$

$$= \log (G + rp e^{i\theta} re^{-j\omega})$$

$$= \log (G + rp e^{i\theta} re^{$$

$$\frac{1}{2}(n) = \log (G_1) \text{ when } n = 0$$

$$\frac{1}{2}(n) = \frac{1}{2}(-1)^{n-1} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$+ \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} + e^{-\frac{1}{2}} \right)^{n}$$

$$= \frac{1}{2}(-1)^{n} \left(-\frac{1}{2}\right)^{n} \left(e^{\frac{1}{2}} + e^{-\frac{1}{2}} +$$

CS Scanned with CamScanner

From post (a) we have

$$\delta(n) = \sum_{k=0}^{\infty} q^{k} (n+n)$$

From post (a) we have
$$\delta(n) = \sum_{k=0}^{\infty} (-1)^{k} x^{k} d(n-knp)$$

$$\Rightarrow q^{n}(n) = \sum_{k=0}^{\infty} (-1)^{k} x^{k} d(n+n-knp)$$

$$\int_{n+n}^{\infty} (n) = \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} k d(n-knp) = 0$$

$$\int_{n+n}^{\infty} (n) = \int_{n+n}^{\infty} (-1)^{n} d(n+n-knp) = 0$$

$$\int_{n+n}^{\infty} (n) = \int_{n+n}^{\infty} (n+n-knp) = 0$$

$$\int_{n+n}^{\infty} (n+n-knp) = 1 \text{ and } when nessen n$$

The same will be the could for N=6Np. Due to aliasing the amplitudes of the Samply will noeage. => q(0) will be a non zero tem. N:62p $Q(n) = - \left(\frac{0.85^{\circ}}{6} + \frac{1.0.85^{\circ}}{12} + \dots \right)$ = -0.04941 $= 0.8 + (0.8)^{7} + ... = 0.8299_{N=NP} = NP = 6-+1.$ $= -\left[\frac{(0.8)^2}{2} + \frac{(0.8)^8}{8} + \dots\right] = -0.360$ $= \left(\frac{0.83}{3} + \frac{(0.8)^{9}}{9} + \dots \right) \quad \lambda = 3Np = 6-43$ $= \frac{(0.8)^5}{5} + \frac{(0.8)^{11}}{(1)^{11}} = \frac{5ND}{1} = \frac{6.5}{1}$ (m) 0.8299 Scanned with

50 Now, when N is not dissible by NP (5)

Syy, N=7 NP, then due to aliening,
additional samples will affect with repetition

Last than NP:

$$N = 7 NP$$
 $N = 7 NP$
 $N = 2 NP - 2 NP$
 $N = 2$

S

(a)
$$y_1[n] = \delta[n] - 0.85\delta[n-99], \quad 0 \le n \le 400$$
;

(b)
$$y_2[n] = \sin(0.02\pi n), \quad 0 \le n \le 100$$
;

(c)
$$H(z) = 9(1-3z^{-1}), h[n] = ???, \hat{h}[n] = ???, 0 \le n \le 400;$$

2)

a) 1st plot is plotted using the recursive function in question 1.

2nd plot is using the inbuilt matlab cceps function.

3rd plot is using fft first. log(abs(h)) + sqrt(-1)*unwrap(angle(h));

1st plot is plotted using the formula to plot real Cepstrum from complex

2nd plot is using the inbuilt matlab rceps function.

3rd plot is plotted using the formula to plot real Cepstrum from complex

b)

 $\mathbf{1}^{\text{st}}$ plot is using the recursive function in question 1.

2nd plot is using cceps function.

1st plot is using formula to convert from complex to real.

2nd plot is using rceps function.

c)

1st plot is plotted using the recursive function in question 1.

2nd plot is using the inbuilt matlab cceps function.

3rd plot is using fft first. log(abs(h)) + sqrt(-1)*unwrap(angle(h));

1st plot is plotted using the formula to plot real Cepstrum from complex

2nd plot is using the inbuilt matlab rceps function.

 3^{rd} plot is plotted using the formula to plot real Cepstrum from complex

6) The results obtained are very similar to the ones obtained in the class(unit 8).

WE have kept the lifter value as 20 in this case and the magnitudes of complex Cepstrum and low pass liftered values are clearly distinguishable.

The matlab code has been attached with the email.

As seen in the plots attached below. In the first figure I have basically put together all frames and then plotted the outputs.

In plot 2, it is a combined plots of all both complex cepstra and low pass liftered cepstra.

In plot 3, it is a plot of first 10 frames of all both complex cepstra and low pass liftered cepstra.

The recording used is also attached along with matlab codes.

It matches with the teaching done in class.

Plot for all frames. 92 in total. FFT size is 1024

Plot of Complex Ceptra and Low pass liftered ceptra all 92 frames put together.

Plot of Complex spectra and Low pass liftered spectra all 92 frames put together.

Zoomed in version

7) The expectation maximization algo has been coded out. WE have plotted for 2,3,4,5 distributions. We can see that the distribution 2 converges very fast as that's what is clearly seen from histogram. In distributions 3,4,5 convergences occurs late but that is not the ideal distributions.

Setting k as 2 distributions to be found

Number of iterations break at around 50-60 so there is a fall to 0.

3 distributions to be found

4 distributions to be found

5 distributions to be found

