GRAPH THEORY PRESENTATION

Mathematics (582)

Central Department of mathematics.

October 2, 2020

Presenter Name lists

- 1 Durga Pokharel
- 2.Kamala Lm Magar
- 3.Sadhna Limbu
- 4.Lekhak chand
- 5. Jaylal shah
- 6.Dinesh Khanel
- 7.Shefequr Rehman
- 8.Krishna Chaudhary
- 9.Dipesh Gurung

Contents

- Graph
- Vertex
- Arc
- Oirected graph
- Undirected graph
- Obligation
 Degree of digraph
- Weighted Graphs
- Isomorphism, Cartesian Product, Union

Graph

A graph is defined as G = (V, A). Where V is the set of vertices and

A is the set of arcs.

Vertex

The set of vertices or node is denoted by V(D).

In above figure vertices are,

$$V = \{P, Q, R, S\}$$

Note:-Number of vertex are called degree of digraph.

Arcs

The set of arcs are denoted by A(D).

The arcs of above figure are,

$$A = \{(P, Q), (P, S), (S, R), (R, S)\}$$

Note: In above figure we can take any node as incident node as well as end node.

Note:-Number of arcs exists are called size of digraph.

Directed graph

A graph is digraph if the arc(edge) are directed.

- 1. Tail.
- 2. Head.
- 3. End-nodes.
- 4. Adjacent arc.
- 5. Dominated vertex.

In figure PQRS tails are $\{P,Q,R,S\}$ and head are $\{Q,R,S,P\}$.

Undirected Graph

If the arcs are not directed the graph is undirected graph.

In above figure no arcs are directed from one vertex to another.

Types of Digraph

- Simple Digraph
- Parallel Digraph
- Multi Digraph
- Pseudo Digraph

1. Simple Digraph

2. Parallel

- 1. Loop.
- 2. Multiple arc.

3. Multi Digraph

4. Pseudo Digraph.

1. Directed multi pseudograph.

Degree of Digraph

- 1. Out-Degree
- 2. In-Degree

Degree

- i. Minimum Simi-Degree
- ii. Maximum Simi-Degree
- iii. Regular Graph

Regular Digraph

In above figure in-degree and out-degree are equal so it is example of regular digraph.

Isomorphism

Cartesian Product

Following are two figures first (A) and second figure is (B)

Cartesian Product of figure(A) and (B) are displayed below.

Power of Digraph

If we take p = 2 then we see following figure.

Union of Two Digraph

Digraph L.

Union of H and L displayed below.

