01418231 Data Structure

AVL Tree

Agenda

- ► What's AVL tree?
- ► What's the balance methods?
- ▶ How to rotate AVL tree?
- Summary

AVL tree

The AVL tree is named after its two <u>Soviet</u> inventors, <u>Georgy Adelson-Velsky</u> and <u>Evgenii</u> <u>Landis</u>, who published it in their 1962 paper "An algorithm for the organization of information".

Adelson-Velsky in Moscow 1980

Evgenii Landis at conference on potential theory in Prague, 1987

https://en.wikipedia.org/wiki/AVL_tree

01418231: Data Structure By: Jirawan Charoensuk

What's AVL tree?

Binary Search trees

- **BST** maintain a reasonablee balanced tree all the time.
- Key idea: if insertion or deletion get the tree out of balance then fix it immediately
- All operations insert, delete can be done on an AVL tree

What 's the balance methods?

AVL TREES (Adelson-Velskii and Landis 1962)

AVL Tree Property: It is a BST in which the heights of the left and right subtrees of the root differ by at most 1 and in which the right and left subtrees are also AVL trees

$$|H_{Left} - H_{Right}| \le 1$$

[-1, 0, +1]

Height: length of the longest path from the root to a leaf

Balanced of AVL Tree

01418231: Data Structure

An example of an AVL tree where the heights are shown next to the nodes:

An example of an AVL tree where the heights are shown next to the nodes:

An example of an AVL tree where the heights are shown next to the nodes:

Operator

Insert, Delete

Example: AVL Tree for Airports

- Consider inserting sequentially:
 - ► ORY, JFK, BRU, DUS, ZRX, MEX, ORD, NRT, ARN, GLA, GCM
- Build a binary-search tree
- Build a AVL tree.

Binary Search Tree for Airport

Names

How does the AVL tree work?

- After insertion and deletion we will examine the tree structure and see if any node violates the AVL tree property
 - If the AVL property is violated, it means the heights of left(x) and right(x) differ by exactly 2
 - If it does violate the property we can modify the tree structure using "rotations" to restore the AVL tree property

01418231: Data Structure By: Jirawan Charoensuk 19

Imbalance of AVL tree

Type of AVL Rotations

Type of AVL Rotations

- Left rotation
- Right rotation
- Left-Right rotation
- Right-Left rotation
- Remark
 https://www.tutorialspoint.com/data_structures_algorithm.htm
- http://btechsmartclass.com/DS/U5_T2.html

Example 1

Right rotation

01418231: Data Structure

Left rotation

01418231: Data Structure

Left-Right rotation

01418231: Data Structure

Right-Left rotation

01418231: Data Structure

Example 2

Left rotation

01418231: Data Structure

By: Jirawan Charoensuk

Right rotation

insert 3, 2 and 1

RR Rotation which moves

nodes one position to right

01418231: Data Structure

because node 3 has balance factor 2

By: Jirawan Charoensuk

Tree is Balanced

Left-Right rotation

State	Action
1 A B	A node has been inserted into the right subtree of the left subtree. This makes C an unbalanced node. These scenarios cause AVL tree to perform left-right rotation.
A B	We first perform the left rotation on the left subtree of C . This makes A , the left subtree of B .
O A	Node C is still unbalanced, however now, it is because of the left-subtree of the left-subtree.
B	We shall now right-rotate the tree, making B the new root node of this subtree. C now becomes the right subtree of its own left subtree.
O B C O	The tree is now balanced.

Right-Left rotation

Example 3

Construct an AVL Tree by inserting numbers from 1 to 8.

Inserting numbers from 1 to 8

01418231: Data Structure

Example 4

An AVL Tree for Airport Names

After insertion of ORY, JFK and BRU

Not AVL balanced

41

An AVL Tree for Airport Names

After insertion of JFK, MEX and ORD:

Not AVL balanced

42

An AVL Tree for Airport Names (conto

After insertion of DUS, After insertion of NRT? ZRH, MEX and ORD JFK BRU ORY **BRU** ORY DUS MEX DUS MEX ZRH ORD Still AVL Balanced By: Jirawan Charoensuk

An AVL Tree

Not AVL Balanced

An AVL Tree...

NOT AVL BALANCED

01418231: Data Structure

An AVL Tree...

By: Jirawan Charoensuk 47

Example 5

40 30 85 20 10 35 25 70 78 60

49

40 30 85 20 10 35 25 70 78 60

Question

