Билеты по квантовой механике

Авторы заметок: Хоружий Кирилл Примак Евгений

От: 21 декабря 2021 г.

То, что остаётся после всех этих абстракций, не следует ли... считать тем реальным и неизменным содержанием, которое навязывается существам всех видов с одинаковой необходимостью, потому что оно не зависит ни от индивида, ни от момента времени, ни от точки зрения?

В. И. Ленин

Содержание

1	Первое задание
	Упражнения
	T1
	T2
	T3
	T4
	T5
	T6
	T7
	T8
	T9
	T10

1 Первое задание

Упражнения

У1

В общем и целом нужно найти A^{\dagger} и A^{-1} для заданного A.

а) Оператор инверсии. И так, что же такое оператор инверсии, а это $I\psi(x)=\psi(-x)$. Обратный оператор должен по определению

$$I^{-1}I\psi(x) = \psi(x) \qquad \stackrel{x \mapsto -x}{\Longrightarrow} \qquad I^{-1}\psi(x) = \psi(-x) \qquad \Rightarrow \qquad I^{-1} = I.$$

По определению сопряженного оператора $(\langle \Phi | I\Psi \rangle)^\dagger = \langle \Psi | I^\dagger \Phi \rangle^1$. Напомним $[I\Psi](x) = \Psi(-x)$, что означает уже для состояний $\langle x | I\Psi \rangle = \langle -x | \Psi \rangle$, с этим знанием

$$\langle \Phi | I\Psi \rangle = \int_{\mathbb{R}} \langle \Phi | x \rangle \langle x | I\Psi \rangle dx = \int_{\mathbb{R}} \langle \Phi | x \rangle \langle -x | \Psi \rangle dx = \left/ x \mapsto -x \right/ = \int_{\mathbb{R}} \langle \Phi | -x \rangle \langle x | \Psi \rangle dx = \left< I\Phi | \Psi \right> = \langle \Phi | I^\dagger \Psi \rangle \qquad \Rightarrow \qquad I^* = I.$$

То есть получили, что оператор инверсии унитарен $II^{\dagger} = \mathbb{E}$ (единичный оператор).

б) Оператор трансляции. Оператор трансляции работает $\hat{T}_a |x\rangle = |x+a\rangle$ или так $\langle x|T_a\Psi\rangle = \Psi(x+a)$.

Вполне тривиально, что обратный к оператору трансляции это просто T_{-a} . Сопряженный же пойдём искать по той же схеме

$$\langle \Phi | T_a \Psi \rangle = \int_{\mathbb{R}} \langle \Phi | x \rangle \langle x + a | \Psi \rangle dx = /x \mapsto x - a / = \int_{\mathbb{R}} \langle \Phi | x - a \rangle \langle x | \Psi \rangle dx = \langle T_a^* \Phi | \Psi \rangle = \int_{\mathbb{R}} \langle T_a^* \Phi | x \rangle \langle x | \Psi \rangle dx.$$

Где предпоследние равенство взято просто по определению сопряженного оператора, а последнее неравенство просто по представлению средней величины, тогда видим, что получается следующее

$$\langle x|T_a^{\dagger}\Phi\rangle = \Phi(x-a)$$
 \Rightarrow $T_a^{\dagger} = T_{-a} = T_a^{-1}.$

Мы вновь получили, что $T_a^\dagger T_a = \mathbb{E}$ – унитарный оператор.

 y_2

Теперь будем искать собственные значения и собственные числа для операторов, изученных в предыдущей задаче.

Очень удобно совпала, что и оператор трансляции и оператор инверсии являются унитарными. А для унитарного оператора \hat{A} и его собственного состояния $\hat{A} | \lambda \rangle = \lambda | \lambda \rangle$ легко показать, что

$$\langle A\lambda | A\lambda \rangle = \langle \lambda | A^{\dagger} A\lambda \rangle = \langle \lambda | \lambda \rangle,$$

но в то же время, учитывая предыдущую выкладку

$$\langle A\lambda | A\lambda \rangle = \lambda \lambda^* \langle \lambda | \lambda \rangle \qquad \Rightarrow \qquad \langle \lambda | \lambda \rangle = 1 = \lambda \lambda^*.$$

Тогда имеем $\lambda = e^{i\varphi}$, что приводит к самому виду оператора $\hat{A} = e^{i\hat{\varphi}}$.

*а) Оператор инверсии. И так, когда мы поняли, что $\hat{I}=e^{i\hat{\varphi}}$, то уже всё просто

$$I\psi(x) = \psi(-x) = \lambda\psi(x).$$

Угадаем собственные функции, которые удовлетворяют соотношению выше

$$\begin{cases} \psi(x) = \psi(-x) \\ \lambda = 1 \end{cases} \qquad \begin{cases} -\psi(x) = \psi(-x) \\ \lambda = -1 \end{cases}$$

*6) Оператор трансляции. И так, оператор трансляции у нас тоже в виде $\hat{T}_a = e^{i\hat{\varphi}}$, и оператор фазы записывают в виде $\hat{\varphi} = \frac{1}{\hbar} a \cdot \hat{k}$, где \hat{k} – оператор квазиимпульса.

Собственные же волновые функции для \hat{T}_a выразим в координатном представлении

$$\hat{T}_a \ket{\Psi} = e^{rac{i}{\hbar}a \cdot k} \ket{\Psi} \qquad \Rightarrow \qquad \langle r | T_a | \Psi \rangle = e^{rac{i}{\hbar}a \cdot k} \ket{\Psi}.$$

Они удовлетворяют уравнению

$$\Psi(r+a) = e^{\frac{i}{\hbar}a \cdot k} \Psi(r) \qquad \Rightarrow \qquad \Psi(r) = e^{\frac{i}{\hbar}r \cdot k} \Phi(r), \quad \Phi(r+a) = \Phi(r).$$

В конце мы представили эти функции в таком периодическом виде, они называются функциями Блоха, и позже мы ещё встретим их в действии.

Собственные значения значит выражаются в виде $\lambda = e^{\frac{i}{\hbar}a \cdot k}$.

 $^{^{1}}$ тут можно стать свидетелем замены строчной пси на заглавную

y_3

Посмотрим на дейтсвие на волновую функцию оператора, вида $e^{i\hat{I}\varphi}$:

$$e^{i\hat{I}\varphi}\psi(x) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(i\hat{I}\varphi \right)^k \psi(x) = \sum_{k=1}^{\infty} \frac{1}{(2k+1)!} \varphi^{2k+1} i^{2k} \psi(-x) + \sum_{k=1}^{\infty} \frac{1}{(2k)!} \varphi^{2k} i^{2k} \psi(x) = i \sin(\varphi) \psi(-x) + \cos(\varphi) \psi(x).$$

Откуда, в операторном смысле, можем записать равенство

$$e^{i\hat{I}\varphi} = i\sin(\varphi)\hat{I} + \cos(\varphi)\mathbb{1}$$

y_4

Покажем, что $\hat{A}\hat{A}^{\dagger}$ – эрмитов оператор:

$$\langle \psi | \hat{A} \hat{A}^{\dagger} | \Phi \rangle = \langle \hat{A}^{\dagger} \Psi | \hat{A}^{\dagger} | \Phi \rangle = \langle \Phi | \hat{A} | \hat{A}^{\dagger} \Psi \rangle^{\dagger} = \langle \Phi | \hat{A} \hat{A}^{\dagger} | \Psi \rangle^{\dagger} = \langle \Psi | (\hat{A} \hat{A}^{\dagger})^{\dagger} | \Phi \rangle.$$

Теперь покажем, что оператор оказывается положительно определен. Предположем противное, в частности, что существует отризательное собственное значние:

$$\langle \Psi | \hat{A} \hat{A}^{\dagger} | \Psi \rangle = -\lambda, \quad \Rightarrow \quad \langle \hat{A}^{\dagger} \Psi | \hat{A}^{\dagger} \Psi \rangle = -\lambda,$$

что противоречит идеям скалярного произведения.

У5

Покажем равенство коммутаторов:

$$[A, BC] = [A, B]C + A[B, C].$$

Возможно, здесь была опечатка, так как

$$[A, BC] = ABC - BCA = ABC - BAC + BAC - BCA = [A, B]C + B[A, C].$$

У6

В этом упражнении казалось бы раскладываем экспоненты в ряд и радуемся жизни. При чем ну ладно даже до третьего члена, всё перемножаем, находим коммутаторы и радуемся жизни. Ведь никогда дальше второго члена всё равно раскладывать не будем 2

$$e^{\xi A}Be^{-i\xi} = \left(1 + \xi A + \frac{\xi^2 A^2}{2} + \frac{\xi^3 A^3}{6} + \dots\right) \cdot B \cdot \left(1 - \xi A + \frac{\xi^2 A^2}{2} - \frac{\xi^3 A^3}{6} + \dots\right) =$$

$$= B + \underbrace{\xi AB - \xi BA}_{\xi[A,B]} + \underbrace{\frac{\xi^2}{2}A^2B + \frac{\xi^2}{2}BA^2 - \xi^2 ABA}_{\xi[A,B]} + \dots = B + \xi[A,B] + \frac{\xi^2}{2!}[A,[A,B]] + \dots$$

Что и хотелось показать.

Теперь докажем это формальнее, если вдруг очень надо.

Во первых сразу сформулируем общую формулу, которую будем доказывать

$$e^A B e^{-A} = B + \sum_n \underbrace{[A, [A, \dots [A, B] \dots]]}_n.$$

Начнем с вычисления производных от $F(\lambda) = e^{\lambda A} B e^{-\lambda A}$

$$\frac{d^n}{d\lambda^n} F(\lambda) \bigg|_{\lambda=0} = \sum_{k=0}^n C_n^k A^k e^{\lambda A} B e^{-\lambda A} A^{n-k} (-1)^{n-k} \bigg|_{\lambda=0} = \sum_{k=0}^n C_n^k A^k B A^{n-k} (-1)^{n-k},$$

Получив удобное представление разложим требуемое соотношение в ряд Тейлора

$$e^{A}Be^{-A} = F(1) = \sum_{n} \frac{1}{n!} \sum_{k=0}^{n} C_{n}^{k} A^{k} B A^{n-k} (-1)^{n-k}.$$

Проверим, что мы всё ещё получаем что-то разумное сравнив с тем, что мы в лоб раскрывали выше, например

 $^{^{2}}$ При чем не только в рамках этого курса, но и весьма вероятно по жизни в принципе.

при n=0

$$\sum_{k=0}^{0} A^k B A^{0-k} (-1)^{n-k} = B.$$

Действительно. Теперь осталось доказать, следующее утверждение с коммутатором

$$\sum_{k=0}^{n} C_{n}^{k} A^{k} B A^{n-k} (-1)^{n-k} = \underbrace{[A, [A, \dots [A, B] \dots]]}_{n}.$$

Сделаем это по индукции, так для n=1

$$\sum_{k=0}^{1} C_1^k A^k B A^{1-k} (-1)^{1-k} = -BA + AB = [A, B].$$

Тогда пусть для $n=m\geqslant 1$ тоже выполнено, что

$$\sum_{k=0}^{m} C_{m}^{k} A^{k} B A^{m-k} (-1)^{m-k} = \underbrace{[A, [A, \dots [A, B] \dots]]}_{m},$$

тогда при следующем n = m + 1

$$\sum_{k=0}^{m+1} C_{m+1}^k A^k B A^{m+1-k} (-1)^{m+1-k} = \frac{3}{2} \sum_{k=0}^m C_m^k A^k B A^{m+1-k} (-1)^{m+1-k} + \sum_{k=0}^{m+1} C_n^{k-1} A^k B A^{m-(k-1)} (-1)^{m-(k-1)} =$$

$$= -\left(\sum_{k=0}^m C_m^k A^k B A^{m-k} (-1)^{m+1-k}\right) A + A \left(\sum_{k=1}^{m+1} C_m^{k-1} A^k B A^{m-(k-1)} (-1)^{m-(k-1)}\right) =$$

$$[A, \underbrace{[A, [A, \dots, [A, B] \dots]]]}_{m} = \underbrace{[A, [A, \dots, [A, B] \dots]]}_{m+1}.$$

Что и требовалось теперь уже доказать.

У7

Давайте посчитаем коммутаторы, в координатном представлении: $\hat{x} = x$ и $\hat{p}_x = -i\hbar\partial_x$, тогда $\hat{p}_x^2 = -\hbar^2\partial_x^2$.

0) Начнём с нулевого примера, чтобы убедиться, что правильно смотрим на мир:

$$[\hat{x}, \, \hat{p}]\psi(x) = x(-i\hbar)\partial_x\psi - (-i\hbar)\partial_x(x\psi) = i\hbar\psi + i\hbar x\partial_x\psi - i\hbar x\partial_x\psi = i\hbar\psi,$$

$$\Rightarrow [\hat{x}, \, \hat{p}] = i\hbar.$$

а) Аналогично, в смысле операторного равенства,

$$\begin{split} [\hat{x},\,\hat{p}^2]\psi(x) &= x(-i\hbar)^2\partial_x^2\psi - (-i\hbar)^2\partial_x^2(x\psi) = -\hbar^2x\partial_x^2\psi + \hbar^2\partial_x(\psi + x\partial_x\psi) = \\ &= -\hbar^2x\partial_x^2\psi + \hbar^2\partial_x\psi + \hbar^2\partial_x\psi + \hbar^2x\partial_x^2\psi = 2i\hbar\hat{p}\psi, \\ \Rightarrow [\hat{x},\,\hat{p}^2] &= 2i\hbar\hat{p}. \end{split}$$

б) Теперь найдём коммутатор с некоторой функцией U(x):

$$\begin{split} &[U(\hat{x}),\,\hat{p}]\psi(x) = U(x)(-i\hbar\partial_x\psi) + i\hbar\partial_x(U\psi) = U(-i\hbar\partial_x\psi) + i\hbar(\psi\partial_xU + U\partial_x\psi) = i\hbar(\partial_xU)\psi,\\ \Rightarrow &[U(\hat{x}),\,\hat{p}] = 2i\hbar\hat{p}. \end{split}$$

в) Наконец,

$$\begin{split} [U(\hat{x}),\,\hat{p}^2]\psi(x) &= U(-\hbar^2)\partial_x^2\psi + \hbar^2\partial_x^2U\psi = U(-\hbar^2)\psi'' + \hbar^2(\psi U'' + 2U'\psi' + \psi''U) = \\ &= \hbar^2(\psi U'' + 2U'\psi') = (\hbar^2U'' + \hbar 2iU'\hat{p})\psi, \\ \Rightarrow [U(\hat{x}),\,\hat{p}^2] &= \hbar^2U'' + 2i\hbar U'\hat{p}. \end{split}$$

y_8

Докажем соотношение Фейнмана-Гелмана:

$$\partial_{\lambda} f_n(\lambda) = \langle n | \partial_{\lambda} \hat{f}(\lambda) | n \rangle,$$

где f_n – собственное значение $\hat{f}|n\rangle = f_n|n\rangle$, то есть $f_n = \langle n|\hat{f}|n\rangle$.

 $[\]overline{^3}$ Тут использовали $C_{m+1}^k=C_m^k+C_m^{k-1},$ оговорив, что при k=m+1 положим $C_m^{m+1}=0$ и при k=0 положим $C_m^{-1}=0.$

По формуле Лейбница:

$$\partial_{\lambda} f_{n} = \langle n | \partial_{\lambda} \hat{f} | n \rangle + \langle \partial_{\lambda} n | \hat{f} | n \rangle + \langle n | \hat{f} | \partial_{\lambda} n \rangle = \langle n | \partial_{\lambda} \hat{f} | n \rangle + \langle \partial_{\lambda} n | n \rangle f_{n} + \langle n | \partial_{\lambda} n \rangle f_{n} =$$

$$= \langle n | \partial_{\lambda} \hat{f} | n \rangle + f_{n} \partial_{\lambda} \langle n | n \rangle = \langle n | \partial_{\lambda} \hat{f} | n \rangle,$$

что и требовалось доказать.

y_9

Вспомним, что оператор трансляции нам в принципе задавался как

$$\hat{T}_a = e^{\frac{i}{\hbar} \mathbf{a} \cdot \hat{\mathbf{p}}}$$

Мы в таком случае в этом упражнении имеем просто оператор трансляции слева и обратной трансляции справа

$$e^{\frac{i}{\hbar}a\cdot\hat{p}}U(r)e^{-\frac{i}{\hbar}a\cdot\hat{p}} \qquad \stackrel{\cdot \Psi(r)}{\Longrightarrow} \qquad \hat{T}_{\alpha}U(r)\hat{T}_{-a}\Psi(r) = \hat{T}_{\alpha}[U(r)\Psi(r-a)] = U(r+a)\Psi(r).$$

Получили такую же домноженну на просто пси штуку, а значит есть соответсвие

$$\hat{T}_{\alpha}U(\mathbf{r})\hat{T}_{-a}=U(\mathbf{r}+\mathbf{a}).$$

У10

Для операторов рождения и уничтожения $([\hat{a}, \hat{a}^{\dagger}] \bigoplus 1)$ найдём коммутатор вида

$$[\hat{a}, f(\hat{a}^{\dagger})] = \hat{a}f(\hat{a}^{\dagger}) - f(\hat{a}^{\dagger})\hat{a}.$$

Глубоко. Допустим аналитичность f, и воспользуемся разложением по Тейлору $f(\hat{a}^\dagger) = \sum_{n=0}^\infty c_n (\hat{a}^\dagger)^n$:

что достаточно забавно.

У11

Выразим оператор координаты и импульса через операторы рождения и уничтожения:

$$\begin{cases} \hat{q} = \frac{q_0}{\sqrt{2}} (\hat{a}^{\dagger} + \hat{a}), \\ \hat{p} = \frac{ip_0}{\sqrt{2}} (\hat{a}^{\dagger} - \hat{a}) \end{cases} q_0 = \sqrt{\frac{\hbar}{m\omega}}, \quad p_0 = \sqrt{m\omega\hbar}.$$

Для операторов \hat{a} , \hat{a}^{\dagger} верно, что

$$\hat{a}\left|n\right\rangle = \sqrt{n}\left|n-1\right\rangle m \quad \ \hat{a}^{\dagger}\left|n\right\rangle = \sqrt{n+1}\left|n+1\right\rangle.$$

Для начала квадрат координаты:

$$\hat{q}^2 = \frac{q_0^2}{2} \left(\hat{a}^{\dagger 2} + \hat{a}^2 + \hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right) = \frac{\hbar}{m \omega} \left(n + \frac{1}{2} \right) = \frac{E_n}{m \omega^2}.$$

Стоит заметить, что все «несбалансированные» \hat{a} и \hat{a}^{\dagger} не дадут вклада, так как $\langle n|m\rangle=\delta_{nm}$. Поэтому нечетные степени $\langle q^{2k+1}\rangle=\langle p^{2k+1}\rangle=0$, так как все оператору будут «несбалансированы».

Четвертая степень координаты:

$$\langle q^4 \rangle = \frac{q_0^4}{4} \left(\hat{a}^{\dagger 2} + \hat{a}^2 + \hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right)^2 = \dots = \frac{1}{4} \left(\frac{\hbar}{m\omega} \right)^2 \left(6n^2 + 6n + 3 \right).$$

Аналогично, находим квадрат импульса

$$\langle \hat{p}^2 \rangle = \frac{p_0^2}{2} (2n+2) = p_0^2 \left(n + \frac{1}{2} \right) = mE_n$$

И его четвертую степень:

$$\langle \hat{p}^4 \rangle = \frac{p_0^2}{4} (6n^2 + 6n + 3) = \frac{(m\omega\hbar)^2}{4} (6n^2 + 6n + 3),$$

что объясняется ненулевым вкладом только слагаемых с $(-a^{\dagger})^{4/2}$.

Полиномы. Если вдруг будет интересно $F_k(n) = \langle n | (\hat{a} \pm \hat{a}^{\dagger})^k | n \rangle$, то ниже приведены посчитанные значения для первых нескольких k:

$$F_4(n) = 6n^2 + 6n + 3;$$

$$F_6(n) = 20n^3 + 30n^2 + 40n + 15;$$

$$F_8(n) = 70n^4 + 140n^3 + 350n^2 + 280n + 105;$$

Можно, конечно, продолжить..

$$F_{10}(n) = 252n^5 + 630n^4 + 2520n^3 + 3150n^2 + 2898n + 945;$$

$$F_{12}(n) = 924n^6 + 2772n^5 + 16170n^4 + 27720n^3 + 45276n^2 + 31878n + 10395;$$

$$F_{14}(n) = 3432n^7 + 12012n^6 + 96096n^5 + 210210n^4 + 528528n^3 + 588588n^2 + 453024n + 135135,$$

в общем, да.

Соотношение неопределенностей. Обсудим величину

$$\sqrt{\langle x^2 \rangle \langle p^2 \rangle} = q_0 p_0 \left(n + \frac{1}{2} \right) = \hbar \left(n + \frac{1}{2} \right) \geqslant \frac{\hbar}{2},$$

что полностью соответсвует принципу неопределенности Гейзенберга.

У12

Найдём операторы рождения и уничтожения для гармонического осцилляора в представлении Гейзенберга. Запишем уравнение Гейзенберга

$$i\hbar\frac{\hat{d}f}{dt} = i\hbar\frac{\partial\hat{f}}{\partial t} + \left[\hat{f},\,\hat{H}\right].$$

Запищем гамильтониан системы

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right),$$

тогда можем найти

$$i\hbar\frac{\hat{d}a}{dt} = \hbar\omega\left[\hat{a},\,\hat{a}^{\dagger}\hat{a}\right] = \hbar\omega\left(\hat{a}\hat{a}^{\dagger}\hat{a} - \hat{a}^{\dagger}\hat{a}\hat{a}\right) = \hbar\omega\left(\left[\hat{a},\,\hat{a}^{\dagger}\right]\hat{a}\right) = \hbar\omega\hat{a},$$

и, решая диффур, находим

$$i\hbar \frac{\hat{d}a}{dt} = \hbar\omega \hat{a}, \quad \Rightarrow \quad \begin{cases} \hat{a}(t) = e^{-i\omega t}\hat{a}, \\ \hat{a}^{\dagger}(t) = e^{i\omega t}\hat{a}^{\dagger}. \end{cases}$$

Или, можно было напрямую, воспользоваться

$$\hat{U}(t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right), \quad \Rightarrow \quad \hat{a}(t) = \hat{a} + (i\omega t)[\hat{a}^{\dagger}\hat{a}, \, \hat{a}] + (i\omega t)^{2}[\hat{a}^{\dagger}\hat{a}, \, -\hat{a}] + \dots = \exp(-i\omega t)\hat{a},$$

где мы воспользовались равенством, доказанным в У6.

T1

Собственные функции. Рассмотрим частицу в очень глубокой потенциальной одномерной яме:

$$U(x) = \begin{cases} \infty, & x \notin [0, a]; \\ 0, & x \in [0, a]; \end{cases} \quad H(x, -i\hbar\partial_x)\psi(x) = E\psi(x), \quad \Rightarrow \quad \psi''(x) + \frac{2mE}{\hbar^2}\psi(x) = 0.$$

Тогда решение может быть найдено в виде

$$\psi(x) = A\sin(kx) + B\cos(kx), \qquad k^2 = \frac{2m}{\hbar^2}E,$$

но в силу требования $\psi(x)|_{x\in\{0,a\}}=0$, сразу получаем B=0, и условие на k:

$$k = k_n = \frac{\pi n}{a}, \quad \Rightarrow \quad E_n = \frac{\hbar^2}{2ma^2} \pi^2 n^2,$$

то есть спектр дискретный.

Из нормировки ψ можем найти

$$\langle \psi | \psi \rangle = \int_0^a dx |\psi(x)|^2 = \frac{|A|^2}{2} a = 1, \quad \Rightarrow \quad A = \sqrt{\frac{2}{a}}.$$

Тогда искомая волнавая функция стационарных состояний и соответсвующие уровни энергии

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi n}{a}x\right), \quad E_n = \frac{\hbar^2}{2ma^2} \pi^2 n^2.$$

Средние значения. Найдём среднее значение для координаты

$$\langle x \rangle = \int_0^a x |\psi_n(x)|^2 dx = \frac{2}{a} \int_0^a x \sin^(k_n x) dx = \frac{2}{a} \left(\frac{a^2}{4} - \frac{1}{4k_n} \frac{1}{2k_n} \cos(2k_n x) \Big|_0^a \right) = \frac{a}{2}.$$

Аналогично можем найти среднее значение импульса

$$\langle p \rangle = \int_0^a dx \psi^* \hat{p} \psi = -i\hbar k_n \frac{2}{a} \int_0^a \sin(k_n x) \cos(k_n x) dx = -\frac{i\hbar k_n}{a} \int_0^a \sin(2k_n x) = 0,$$

в силу интегрирования по периоду.

Теперь можем посчитать дисперсию величин

$$(\Delta x)^2 = \langle \psi | (\hat{x} - \bar{x})^2 | \psi \rangle = \langle \psi | x^2 | \psi \rangle - \bar{x}^2,$$

и аналогично с \hat{p} . Для координаты среднее квадрата

$$\langle x^2 \rangle = \frac{2}{a} x^2 \sin^2(k_n x) \, dx = \frac{a^2}{3} + \frac{1}{ak_n} \int_0^a \sin(2k_n x) x \, dx = \frac{a^2}{3} - \frac{1}{2ak_n^2} x \cos(2k_n x) \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2 n^2},$$

а соответсвующая дисперсия

$$(\delta x)^2 = a^2 \left(\frac{1}{12} - \frac{1}{2\pi^2 n^2} \right).$$

Теперь для импульса

$$(\Delta p)^2 = \langle p^2 \rangle = \int_0^a dx \psi^* \left(-\hbar^2 \partial_x^2 \right) \psi = \frac{2k_n^2 \hbar^2}{2a} \int_0^a dx \left(1 = \cos(2k_n x) \right) = \frac{\pi^2 \hbar^2 n^2}{a^2}.$$

Сравним с классикой. Понятно, что частица равновероятно может находиться в любой части ящика (в классическом случае), тогда

$$\int_0^a P(x) \, dx = 1, \quad \Rightarrow \quad P(x) = \frac{1}{a}, \quad \Rightarrow \quad \langle x \rangle^{\text{\tiny KJ}} = \int_0^a P(x) x \, dx = \frac{a}{2} = \langle x \rangle.$$

Теперь для импульса, $p \in \{-p_0, p_0\}$, где $P(p_0) = P(-p_0) = 1/2$, тогда

$$\langle p \rangle^{\text{KJ}} = P(p_0)p_0 + P(-p_0)(-p_0) = 0 = \langle p \rangle.$$

Аналогично с квадратом координаты

$$\langle x^2 \rangle^{\text{\tiny KJI}} = \int_0^a \frac{1}{a} x^2 \, dx = \frac{a^2}{3} = \lim_{n \to \infty} \langle x^2 \rangle,$$

что прекрасно сходится с принципом соответствия.

T2

а) Неглубокая симметричная яма. Задан потенциал, с учетом которого мы получаем оператор Гамильтона для нашей задачи:

$$U(x) = \begin{cases} -U_0 , |x| \leqslant a \\ 0, |x| \geqslant a \end{cases} \Rightarrow \hat{H} = \begin{cases} \frac{p^2}{2m} - U_0 , & |x| \leqslant a \\ \frac{p^2}{2m} , & |x| \geqslant a \end{cases}$$

Тогда решаем уравнение Шредингера $\hat{H}\psi=E\psi$ вне и снаружи ямы, помня что $\hat{p}=-i\hbar\frac{\partial}{\partial x}$

$$\frac{-\hbar^2}{2m}\psi + (\hat{U} - E) = 0 \quad \Rightarrow \quad \begin{cases} \psi'' + \frac{2m}{\hbar^2}(U_0 + E)\psi = 0\\ \psi'' + \frac{2m}{\hbar^2}E\psi = 0 \end{cases}$$

Посмотрим теперь на движение частицы в неглубокой потенциальной яме

$$U(x) = \{-U_0, |x| < a; \quad 0, |x| \ge a.$$
 $\hat{H} = \frac{\hat{p}^2}{2m} + \hat{U}(x).$

Так как речь идёт про связанные состояния, то будем считать E < 0, тогда, для удобства, переобозначим $E \to -E$. Запишем стационарное уравнение Шредингера, сразу раскрывая U(r), выделяем две области:

$$\begin{cases} \psi'' + k^2 \psi = 0, & |x| < a; \\ \psi'' - \varkappa^2 \psi = 0, & |x| > a; \end{cases} \qquad k^2 = \frac{2m}{\hbar^2} (U_0 - E), \qquad \varkappa^2 = \frac{2m}{\hbar^2} E,$$

В силу симметричности потенциала ($[\hat{I}, \hat{H}] = 0$), решения могут быть найдены, как собственные функции оператора инверсии, то есть в виде четных и нечетных функций. Тогда сразу можем выделить два решения:

$$\psi^{+}(x) = \begin{cases} A\cos(kx), & |x| < a; \\ Be^{-\varkappa|x|}, & |x| > a; \end{cases} \qquad \psi^{-}(x) = \begin{cases} A\sin(kx), & |x| < a; \\ B\operatorname{sign}(x)e^{-\varkappa|x|}, & |x| > a; \end{cases}$$

где сразу воспользовались L_2 интегрируемостью ψ и выбросили решение вида $e^{\varkappa x}$.

Осталось воспользоваться гладкостью $\psi(x)$, удобнее будет проверить непрерывность логарифмической производной

$$(\ln \psi)' = \frac{\psi'}{\psi}, \quad \Rightarrow \quad \frac{\psi'(a-\varepsilon)}{\psi(a-\varepsilon)} = \frac{\psi'(a+\varepsilon)}{\psi(a+\varepsilon)}, \quad \Rightarrow \quad \varkappa = k \tan(ka), \quad \Leftrightarrow \quad |\cos(ka)| = \frac{ka}{k_0 a},$$

где ввели $k_0^2 = \varkappa^2 + k^2$. Получили трансцендентное уравнение на уровни энергии, анализ которого удобнее всего произвести графически (рис. 1). Ясно, что спектр не просто дискретен, но и ограничен. Четное состояние существует при $k_0a > 0$, N четных существует при $k_0a \geqslant (N-1)\pi$. Важно, что решения существуют только при $\log ka > 0$.

Аналогично, через логарифмическую производную нахожим условие на уровни энергии нечетных решений.

Рис. 1: Трансцендентное уравнение (для четного и нечетного решения) на уровни энергии к задаче Т2

T3

а) Задан потенциал $U(x) = -\frac{\hbar^2}{m}\varkappa_0\delta(x)$, который представляет собой дельта-яму. Прежде чем как всегда решать стационарное уравнение шредингера сделаем замечание, что E < 0, тогда получим

$$\hat{H}\psi = -|E|\psi, \qquad \varkappa^2 := \frac{2m|E|}{\hbar}.$$

С такой заменой получим вполне красивый диффур второго порядка

$$-\frac{\hbar^2}{2m}\psi'' - \frac{\hbar^2}{m}\varkappa_0\delta(x)\psi + |E|\psi = 0 \qquad \Rightarrow \qquad \psi'' - (\varkappa - 2\varkappa_0\delta(x))\psi = 0.$$

Мы ожидаем непрерывности от волной функции на границах областей, а именно в точке дельта-ямы, то есть одним из граничных условий будет $\psi(-0) = \psi(+0)$.

Потребовав непрерывности ψ , из-за дельта функции, мы получаем разрыв для первой производной

$$\psi'' - (\varkappa - 2\varkappa_0 \delta(x))\psi = 0 \qquad \stackrel{\int_{-\varepsilon}^{+\varepsilon}}{\Longrightarrow} \qquad \psi'(+0) - \psi'(-0) = -2\varkappa_0 \psi(0).$$

Вне ямы будем наблюдать спад по экспоненте, сама же яма – по сути точечна, значит такое же поведение будем ожидать и в связном состоянии, таким образом ищем волновую функцию как

$$\psi = \begin{cases} C_1 e^{-\varkappa x} , x > 0 \\ C_2 e^{\varkappa x} , x < 0 \end{cases}$$

Из непрерывности получим автоматически, что

$$\psi(-0) = \psi(+0) \qquad \Rightarrow \qquad C_2 = C_1 = C.$$

Разрыв же первой производной позволит нам найти

$$\psi'(+0) - \psi'(-0) = -2\varkappa_0\psi(0) \qquad \Rightarrow \qquad -2\varkappa_0C = C(-\varkappa - \varkappa) \qquad \Rightarrow \qquad \varkappa = \varkappa_0.$$

Таким образом энергия связного состояния:

$$E = -\frac{\hbar^2 \varkappa_0^2}{2m}$$

Теперь, осталось проверить нормировку нашей волновой функции

$$\int_{\mathbb{R}} \psi \psi^* dx = 1 \quad \Rightarrow \quad C^2 \int_{-\infty}^{+\infty} e^{-2\varkappa_0 |x|} dx = \frac{C^2}{\varkappa_0} \int_0^{+\infty} e^{-2\varkappa_0 x} d2\varkappa_0 x = \frac{C^2}{\varkappa_0} = 1 \quad \Rightarrow \quad \varkappa_0 = C^2.$$

Таким образом собирая всё вместе получаем волновую функцию вида:

$$\psi(x) = \sqrt{\varkappa_0} e^{-\varkappa_0|x|}$$

Мы получили волновую функцию в координатном представлении для уровня энергии ноль $\psi(x) = \langle x|0\rangle$.

$$\psi(p) = \langle p|0\rangle = \int_{\mathbb{R}} dx \langle p|x\rangle \langle x|0\rangle = \left/\langle p|x\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}px}\right/ = \frac{\sqrt{\varkappa_0}}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} e^{-\varkappa_0 x - \frac{i}{\hbar}px} dx = \frac{\sqrt{\varkappa_0}}{\sqrt{2\pi\hbar}} \cdot \frac{2\varkappa_0}{\varkappa_0^2 + (p/\hbar)^2} = \sqrt{\frac{2}{\pi}} \frac{(\varkappa_0 \hbar)^{3/2}}{(\varkappa_0 \hbar)^2 + p^2} dx$$

Дальше будет менее широко, честно, а ведь это ещё опущено наше любимое интегрирование по частям.

$$\langle 0|\hat{p}|0\rangle = 0$$
, $\langle 0|\hat{x}|0\rangle = 0$.

 $\boxed{\langle 0|\hat{p}|0\rangle=0}, \qquad \boxed{\langle 0|\hat{x}|0\rangle=0}$ По тому же определению теперь будем получать нечто сложнее чем но

$$\langle 0|\hat{x}^2|0\rangle = \int_{\mathbb{R}} \varkappa e^{-2\varkappa_0|x|} \hat{x}^2 dx = \underbrace{2\varkappa_0}_{0} \int_{0}^{+\infty} e^{-2\varkappa_0 x} x^2 dx = \alpha \frac{d^2}{d\alpha^2} \int_{0}^{+\infty} e^{-\alpha x} dx = \frac{2}{\alpha^2} = \boxed{\frac{1}{2\varkappa_0^2}}.$$

Красиво продифференцировали под знаком интеграла и получили ответ, осталось ещё немного, не зря же мы $\psi(p)$ считали, стоит, кстати, обратить внимание, что теперь именно по α^2 дифференцируем:

$$\langle 0|\hat{p}^2|0\rangle = \int_{\mathbb{R}} dp \ p^2 \frac{2}{\pi} \frac{(\varkappa_0 \hbar)^3}{((\hbar \varkappa_0)^2 + p^2)^2} = \frac{2}{\pi} (\varkappa_0 \hbar)^3 (-\frac{d}{d\alpha^2}) \int_{\mathbb{R}} \frac{p^2}{\alpha^2 p^2} dp = \frac{2}{\pi} (\varkappa_0 \hbar)^3 (-\frac{d}{d\alpha^2}) \frac{2\pi i (i\alpha)^2}{2i\alpha} \big|_{\alpha = \varkappa_0 \hbar} = \boxed{(\varkappa_0 \hbar)^2}.$$

Из-за того, что средние от координаты и импульса нулевые – дисперсии совпадают с средними квадратами.

Для интереса теперь ещё посмотрим на соотношение неопределенности

$$\langle (\Delta \hat{x})^2 \rangle \langle (\Delta \hat{p})^2 \rangle = \frac{1}{2\varkappa_0^2} \varkappa_0^2 \hbar^2 = \frac{\hbar^2}{2},$$

что больше абсолютного минимума для когерентного состояния осциллятора $= h^2/4$.

6) И казалось бы всё хорошо, всё изучили в связном состоянии, но теперь в той же задаче мы будем смотреть на области непрерывного спектра и решать задачу о рассеянии волны на потенциале.

Запишем тогда наиболее общую волновую функцию, в которой на нижней строчки стоят (условно) волны распространяющиеся левее ямы, а точнее подошедшая из $-\infty$ с амплитудой C, и ушедшая в $-\infty$ с амплитудой D. Аналогично правее потенциала будет ушедшая в $+\infty$ с амплитудой A и пришедшая из $+\infty$ с амплитудой B.

$$\psi = \begin{cases} Ae^{i\varkappa x} + Be^{-i\varkappa x} \ , \ x > 0 \\ Ce^{i\varkappa x} + De^{-i\varkappa x} \ , \ x < 0 \end{cases} \qquad \Rightarrow \qquad \psi = \begin{cases} Ae^{i\varkappa x} \ , \ x > 0 \\ Ce^{i\varkappa x} + De^{-i\varkappa x} \ , \ x < 0 \end{cases}$$

Мы сразу выберем, что волна падала слева, значит B=0, и пусть она это делала с C=1, так как в вопросах рассеивания нас будут интересовать относительные величины.

Тем не менее у нас всё так же должно быть непрерывно для волновой функции и скачкообразно для её производной в нуле:

$$A+B=C+D \\ i\varkappa(A-B)-i\varkappa(C-D)=-2\varkappa_0\psi(0) \\ \Rightarrow i\varkappa[(C-D)-(A-B)]=2\varkappa_0(A+B)$$

Теперь подставим наши допущения (B=0, C=0) и выразим каппу

$$\varkappa = 2i\varkappa_0\frac{A+B}{(A-B)-(C-D)} = 2i\varkappa_0\frac{A}{A-(1-D)} = i\varkappa_0\frac{A}{A-1}.$$

Тут последнее равенство последовало из непрерывности в нуле: A+0=1+D. И чтобы научиться сравнивать амплитуды возьмём и выразим их все через \varkappa и \varkappa_0 , что мы уже можем сделать:

$$A = \frac{\varkappa}{\varkappa - i\varkappa_0}, \qquad D = \frac{i\varkappa_0}{\varkappa - i\varkappa_0}.$$

Теперь введем такое понятие как плотность потока вероятности, что, если грубо обобщать, является отголоском уравнения непрерывности из какой-нибудь механики сплошной среды или теории поля. И так по определению

$$j(x) = -\frac{i\hbar}{2m}(\psi'\psi^* - \psi\psi'^*).$$

А так же коэффициенты прохождения и отражения соответственно

$$T_u = \left| \frac{j_{\text{out}}}{j_{\text{in}}} \right|, \qquad R_u = \left| \frac{j_{\text{back}}}{j_{\text{in}}} \right|.$$

 Γ де подписи in, out, back соответствуют пришедшей, прошедшей, отразившейся волне, а в нашем случае коэффициентам потокам вероятности от волновой функции с коэффициентами C, A, D соответственно.

ероятности от волновой функции с коэффициентами
$$C$$
, A , D соог $j_{in}=j[e^{i\varkappa x}]$ $=-\frac{i\hbar}{2m}(i\varkappa+i\varkappa)$ $=\frac{\hbar\varkappa}{m}$ $j_{out}=j[Ae^{i\varkappa x}]$ $=-\frac{i\hbar}{2m}|A|^2(i\varkappa+i\varkappa)$ $=\frac{\hbar\varkappa}{m\left(\left(\frac{\varkappa}{\varkappa_0}\right)^2+1\right)}$ $j_{back}=j[De^{-i\varkappa x}]$ $=-\frac{i\hbar}{2m}|D|^2(-i\varkappa-i\varkappa)$ $=-\frac{\hbar\varkappa}{m\left(\left(\frac{\varkappa}{\varkappa_0}\right)^2+1\right)}$

И тогда

$$T = \left| \frac{j_{\text{out}}}{j_{\text{in}}} \right| = \frac{\varkappa^2}{\varkappa^2 + \varkappa_0^2}$$

$$R = \left| \frac{j_{\text{back}}}{j_{\text{in}}} \right| = \frac{\varkappa_0^2}{\varkappa^2 + \varkappa_0^2}$$

в) Честно, трудно понять, что автор задания имеет в виду под вероятностью "ионизации". Самое правдоподобное — вылет электрона из ямы при таком её резком изменении, что по аналогии с отрыванием электрона от атома её ионизует.

То есть при резком изменении параметра глубины ямы, у нас также резко изменится собственная волная функция, состояния наших электронов, тогда, вероятность того, что из ямы что-то вылетит это просто

$$W = 1 - |\langle \psi_1 | \psi_0 \rangle|^2 = 1 - \frac{4\varkappa_0 \varkappa_1}{(\varkappa_0 + \varkappa_1)^2} = \left(\frac{\varkappa_0 - \varkappa_1}{\varkappa_0 + \varkappa_1}\right)^2.$$

T4

б) потенциальная яма

И так, зададим потенциальную яму и эволюцию нашей системы

$$U(x) = \begin{cases} -U_0 \ , \ |x| < a/2 \\ 0 \ , \ |x| > a/2 \end{cases} \Rightarrow \frac{\frac{\hbar^2}{2m} \psi''(x) + (U_0 + E)\psi(x) = 0 \ , \quad |x| < a/2 \\ \frac{\hbar^2}{2m} \psi''(x) + E\psi(x) = 0 \ , \quad |x| > a/2 \end{cases}$$

Мы смотрим на энергию в несвязном состоянии, то есть E>0, получаем волновую функцию

$$\psi(x) = \begin{cases} 1 \cdot e^{ik_1 x} + Ae^{-ik_1 x}, & x < a/2 \\ Be^{ik_2 x} + Ce^{-ik_2 x}, & |x| < a/2 \\ De^{ik_1 x} + 0 \cdot e^{-ik_1 x}, & x > a/2 \end{cases} \qquad k_1^2 = \frac{2mE}{\hbar^2}, \quad k_2^2 = \frac{2m(E + U_0)^2}{\hbar^2}.$$

Где аналогично Т3, мы выбираем волну падающую из $-\infty$ с единичной амплитудой, и соответсвенно из $+\infty$ к нам ничего не приходит.

Теперь на каждой границе нам нужно взять граничные условия

$$\begin{cases} \psi(\frac{a}{2} - \varepsilon) = \psi(\frac{a}{2} + \varepsilon) \\ \psi(-\frac{a}{2} - \varepsilon) = \psi(-\frac{a}{2} + \varepsilon) \\ \psi'(\frac{a}{2} - \varepsilon) = \psi'(\frac{a}{2} + \varepsilon) \\ \psi'(-\frac{a}{2} - \varepsilon) = \psi'(-\frac{a}{2} + \varepsilon) \end{cases} \Rightarrow \begin{cases} Be^{ik_2a/2} + Ce^{-ik_2a/2} = De^{ik_1a/2} \\ e^{-ik_1a/2} + Ae^{ik_1a/2} = Be^{ik_2a/2} + Ce^{ik_2a/2} \\ k_1e^{-ik_1a/2} - k_1Ae^{ik_1a/2} = k_2Be^{-ik_2a/2} - k_2Ce^{ik_2a/2} \\ k_1De^{ik_1a/2} = k_2Be^{ik_2a/2} - k_2Ce^{-iak_2a/2} \end{cases}$$

В этот раз мы покажаем какие-то алгебраические выкладки, которые ведут к свету, но на самом деле Wolfram Mathematica нам в помощь. Удобно заменить экспоненты в степенях k_1 и k_2 на соответсвующие α_i , тогда какимнибудь Гауссом, система решиться. Здесь приведем просто, что досчитать это реально

$$\begin{cases} B\alpha_2 + \frac{C}{\alpha_2} = D\alpha_1 \\ \frac{1}{\alpha_1} + A\alpha_1 = \frac{B}{\alpha_2} + C\alpha_2 \\ \frac{k_1}{\alpha_1} - Ak_1\alpha_1 = \frac{k_2B}{\alpha_2} - k_2C\alpha_2 \\ D\alpha_1k_1 = B\alpha_2k_2 - \frac{Ck_2}{\alpha_2} \end{cases}$$
 \Rightarrow ... (мы в вас верим)

Куда полезней, сейчас понять, что если помучиться и решить данную систему, то мы по сути и найдём ответ на задачу, вель

$$j_{\rm in}[e^{ik_1x}] = -\frac{i\hbar}{2m}(ik_1 + ik_1) = \frac{\hbar k_1}{m}, \qquad j_{\rm out}[De^{ik_1x}] = |D|^2 \frac{\hbar k_1}{m}, \qquad j_{\rm back}[Ae^{-ik_1x}] = |A|^2 \frac{-\hbar k_1}{m},$$

То есть in – падающая волна, амплитуду которой мы выбрали единицей, out – ушедшая в $+\infty$ с амплитудой D и back отразившаяся обратно в $-\infty$.

Коэффициенты из той системы получаются и соответственно

$$R = \left| \frac{j_{\text{back}}}{j_{\text{in}}} \right| = |A|^2 = \frac{(k_1^2 - k_2^2)^2 \sin k_1 a}{4k_2^2 k_1^2 + (k_1^2 + k_2^2)^2 \sin^2 k_1 a},$$

$$T = \left| \frac{j_{\text{out}}}{j_{\text{in}}} \right| = |D|^2 = \frac{4k_1^2 k_2^2}{4k_1^2 k_2^2 + (k_1^2 - k_2^2)^2 \sin^2 k_1 a}.$$

а) потенциальный барьер

Всё остаётся почти таким же, только сейчас проследим за сменой знаков кое-где

$$U(x) = \begin{cases} U_0, & |x| < a/2 \\ 0, & |x| > a/2 \end{cases} \Rightarrow \frac{\frac{\hbar^2}{2m}\psi''(x) + (E - U_0)\psi(x) = 0, & |x| < a/2 \\ \frac{\hbar^2}{2m}\psi''(x) + E\psi(x) = 0, & |x| > a/2 \end{cases}$$

Теперь если аналогично предыдущему пункту начать решать задачу, то заметим, что нужно лишь заменить одну! переменную $k_1 \mapsto \varkappa_1 = \frac{2m}{\hbar^2}(U_0 - E)$. При чем, $0 < E < U_0$. И тогда по аналогии $k_1 = i\varkappa_1$ получаем:

$$R = \frac{(\varkappa_1^2 + k_2^2)^2 sh^2 \varkappa_1 a}{4\varkappa_1^2 k_2^2 + (\varkappa_1 + k_2^2)^2 sh^2 \varkappa_1 a}, \qquad T = \frac{4\varkappa_1^2 k_2^2}{4\varkappa_1^2 k_2^2 + (\varkappa_1^2 + k_2^2)^2 sh^2 \varkappa_1 a}.$$

И главное что в прошлом пункте, что сейчас мы получаем сумму R+T=1 что и ожидается.

T5

I. Найдём уровни энергии и волновые функции связанных состояний (E < 0) частицы в поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \left(\delta(x+a) + \delta(x-a) \right).$$

Гамильтониан системы и стационарное уравнение Шрёдингера:

$$H = -\frac{\hbar^2 \partial_x^2}{2m} + U(x), \qquad -\frac{\hbar^2 \partial_x^2}{2m} \psi(x) + U(x) \psi(x) = -|E| \psi(x),$$

далее считая E=-E, будем решать уравнение

$$\psi''(x) - \frac{2m}{\hbar^2}(U(x) + E)\psi(x) = 0.$$

В местах, где не происходит скачков производной подходит в качестве решения экспонента, так что будем искать решение в виде

$$\psi(x) = \begin{cases} Ae^{\varkappa(x+a)}, & x < -a \\ Be^{-\varkappa(x+a)} + Ce^{\varkappa(x-a)}, & |x| < a \\ De^{-\varkappa(x-a)}, & x > a. \end{cases}$$

где введено $\varkappa^2 = 2mE/\hbar^2$.

Внимательно приглядевшись к виду $\psi(x)$ понимаем, что $e^{\varkappa a}$ можно спокойно закинуть в константы, что немного упростит вид уравнений:

$$\psi(x) = \begin{cases} Ae^{\varkappa x}, & x < -a \\ Be^{-\varkappa x} + Ce^{\varkappa x}, & |x| < a \\ De^{-\varkappa x}, & x > a. \end{cases}$$

Можно было бы заметить, что потенциал симметричен, а значит можно искать решение уравнения Шредингера, как собственные функции оператора инверсии: четные и нечетные решения (A = D, B = C) и A = -D, B = -C, но мы пойдём другим путём, чтобы посмотреть, как из уравнений вылезет симметрия задачи.

Чтобы найти $\psi(x)$ запишем условия непрерывности и, интегрируя стационарное уравнение Шредингера, уравнение на скачок производной:

$$\psi(-a+\varepsilon) = \psi(-a-\varepsilon),$$

$$\psi(a+\varepsilon) = \psi(a-\varepsilon),$$

$$\psi'(-a+\varepsilon) - \psi'(-a-\varepsilon) = -2\varkappa_0\psi(-a)$$

$$\psi'(a+\varepsilon) - \psi'(a-\varepsilon) = -2\varkappa_0\psi(a)$$

$$\Rightarrow A-C-Be^{2a\varkappa} = 0$$

$$B-D+Ce^{2a\varkappa} = 0$$

$$-A+C-Be^{2a\varkappa} + 2A\varkappa_0/\varkappa = 0$$

$$B-D-Ce^{2a\varkappa} + 2d\varkappa_0/\varkappa = 0$$

Для удобства введем $X=e^{2a\varkappa}$, и выразив из первого уравнения A, из второго B, из третьего C подставим и получим уравнение вида

$$\frac{D\varkappa(\varkappa-\varkappa_0)}{(\varkappa-\varkappa_0)+\varkappa_0X^{-2}}=d\varkappa_0, \quad \Rightarrow \quad \varkappa^2-2\varkappa\varkappa_0+\varkappa_0^2-\frac{\varkappa_0^2}{X^2}=0, \quad \Rightarrow \quad \boxed{\varkappa_\pm=(1\pm e^{-2a\varkappa})\varkappa_0}, \tag{1}$$

что составляет условие совместности полученной СЛУ,

Забавный факт: составим матричку для СЛУ и найдём определитель

$$M = \begin{pmatrix} 1 & -X & -1 & 0 \\ 0 & 1 & X & -1 \\ \varkappa - 2\varkappa_0 & \varkappa X & -\varkappa & 0 \\ 0 & \varkappa & -\varkappa X & 2\varkappa_0 - \varkappa \end{pmatrix}, \qquad \det M = 4(X^2(\varkappa - \varkappa_0)^2 - \varkappa_0^2).$$

Решение уравнения $\det M = 0$ относительно \varkappa приводит к тем же корням, что и уравнение (1): $\varkappa = (1 \pm e^{-2A\varkappa})\varkappa_0$, таким образом СЛУ будет совместна, если вырождена.

Стоит заметить, что $\operatorname{rg} M(\varkappa_{\pm}) = 3$, тогда, решая уравнение относительно A, B, C, находим

$$\varkappa_+$$
: $A=D,\;B=C=rac{A}{1+e^{2aarkappa}},$ четное решение \varkappa_- : $A=-D,\;B=-C=-rac{A}{-1+e^{2aarkappa}},$ нечетное решение

Для наглядности можем их построить⁴.

 $^{^4}$ Само собой зависимость $\psi(x)$ от x.

Рис. 2: Четное и нечётное решение к Т5

Нормировка. Для нахождения волновой функции, найдём коэффициент A из нормируемости на 1:

$$\int_{-\infty}^{+\infty} |\psi_{+}(x)|^{2} dx = 1, \quad \Rightarrow \quad A_{+}^{2} = \frac{\varkappa}{2} \frac{(1 + e^{2a\varkappa})^{2}}{1 + e^{2a\varkappa} + 2a\varkappa}$$

$$\int_{-\infty}^{+\infty} |\psi_{-}(x)|^{2} dx = 1, \quad \Rightarrow \quad A_{-}^{2} = \frac{\varkappa}{2} \frac{(-1 + e^{2a\varkappa})^{2}}{-1 + e^{2a\varkappa} - 2a\varkappa}$$

Таким образом нашли собственные функции к этой задаче.

Стоит вспомнить, что уравнение (1) – трансцендентное уравнение, где $\varkappa = \varkappa(E)$, то есть уравнение на уровни энергии. Как мы показали, \varkappa_+ соответствует четному решению и \varkappa_- нечётному, из достаточно убедительного рисунка⁵ №3 видно, что $E^+ > E^-$.

Рис. 3: Решение трансцендентного уравнения к Т5

Далекие ямы. Рассмотрим предельный случай $\varkappa_0 a \gg 1$, соответствующий достаточно далёким ямам, тогда $\varkappa_+ \approx \varkappa_- \approx \varkappa_0$, то есть система вырождается по энергии.

Вероятность перехода. В силу существования чётного и нечётного решения, можем построить состояния, соответствующие нахождению в правой (ψ_a) и левой (ψ_{-a}) ямах:

$$\begin{cases} \psi_{a} = \frac{1}{\sqrt{2}} (\psi_{+} + \psi_{-}); \\ \psi_{-a} = \frac{1}{\sqrt{2}} (\psi_{+} - \psi_{-}); \end{cases} \Rightarrow \begin{cases} \psi_{+} = \frac{1}{\sqrt{2}} (\psi_{a} + \psi_{-a}); \\ \psi_{-} = \frac{1}{\sqrt{2}} (\psi_{a} - \psi_{-a}). \end{cases}$$

Теперь, из уравнения Шрёдингера, найдём эволюцию во времени для собственных состояний:

$$i\hbar\partial_t\psi=\hat{H}\psi=-E\psi,\quad\Rightarrow\quad\psi_+(x,t)=e^{-\frac{i}{\hbar}E_+t}\psi_+(x),\quad\psi_-(x,t)=e^{-\frac{i}{\hbar}E_-t}\psi_-(x)$$

Для состояния ψ_a найдём зависимость от времени в базисе $\psi_a,\,\psi_{-a}$:

$$\psi_{a}(x,t) = \frac{1}{\sqrt{2}}(\psi_{+}(x,t) + \psi_{-}(x,t)) = \frac{1}{2}\left(\psi_{a}(x)\left(e^{-iE^{+}t/\hbar} + e^{-iE^{-}t/\hbar}\right) + \psi_{-a}(x)\left(e^{-iE^{+}t/\hbar} - e^{-iE^{-}t/\hbar}\right)\right).$$

Вероятность перехода можем найти, как

$$P = |\langle \psi_a(x,t) | \psi_{-a}(x) \rangle|^2 = \left| \frac{1}{2} \underbrace{\left(\int |\psi_{-a}|^2 dx \right)}_{=1} \left(e^{-iE^+t/\hbar} - e^{-iE^-t/\hbar} \right) \right|^2 = \sin^2 \left(\frac{E^+ - E^-}{2\hbar} t \right).$$

Можем чуть более явно найти вероятность, считая $\varkappa_0 a \gg 1$, тогда

$$\varkappa_+^2 \approx \varkappa_0^2 + \frac{2\varkappa_0^2}{e^{2\varkappa_0 a}}, \quad \varkappa_-^2 \approx \varkappa_0^2 - \frac{2\varkappa_0^2}{e^{2\varkappa_0 a}}, \quad \Rightarrow \quad P = \sin^2\left(\frac{\varkappa_0^2 \hbar}{m} e^{-2\varkappa_0 a} t\right).$$

 $^{^5}$ Где по Ох отложена $\varkappa \sim \sqrt{E},$ оси действительно полезно подписывать.

T6

Возьмём операторы импульса $\hat{p} = -i\hbar\partial/\partial x$ и координаты \hat{x} . Сразу найдём их средние и коммутатор

$$\bar{x} = \langle \psi | \hat{x} | \psi \rangle, \qquad \bar{p} = \langle \psi | \hat{p} | \psi \rangle, \qquad [\hat{x}, \hat{p}] = i\hbar \mathbb{E}.$$

Если сейчас ввести такие величины, у которых ещё и оказывается коммутатор тот же

$$\hat{\varkappa} = \hat{x} - \bar{x}, \qquad \hat{\varpi} = \hat{p} - \bar{p} \qquad [\hat{\varkappa}, \hat{\varpi}] = i\hbar \mathbb{E}.$$

Это ещё что $\bar{\omega} = \bar{\varkappa} = 0$, так ещё

$$(\Delta \varkappa)^2 = \langle \psi | (\hat{\varkappa} - \bar{\varkappa}) | \psi \rangle = \langle \psi | (\hat{x} - \bar{x}) | \psi \rangle = (\Delta x)^2, \qquad (\Delta \varpi)^2 = (\Delta p)^2.$$

Теперь введем функции по методу Вейля

$$|\Phi\rangle = (\hat{\varkappa} - i\gamma\hat{\varpi}) |\Psi\rangle$$
.

И так как по определению нормы $\langle \Phi | \Phi \rangle \geqslant 0$ получим

$$\langle \psi | (\hat{\varkappa} - i\gamma\hat{\varpi})^{\dagger} (\hat{\varkappa} - i\gamma\hat{\varpi}) | \psi \rangle = \langle \psi | \hat{\varkappa}^2 - i\gamma(\hat{\varkappa}\hat{\varpi} - \hat{\varpi}\hat{\varkappa}) + \gamma^2 \hat{\varpi}^2 | \psi \rangle \geqslant 0.$$

А значит неотрицательной должно быть и выражение

$$(\Delta x)^2 + \hbar \gamma \langle \mathbb{E} \rangle + \gamma^2 (\Delta p)^2 \geqslant 0 \qquad \Rightarrow \qquad \hbar^2 - 4(\Delta p)^2 (\Delta x)^2 \leqslant 0,$$

что получилось просто из условия на дискриминант для квадратного уравнения на γ , тогда минимум достигнется просто при нулевом дискриминанте

$$(\Delta p)^2 (\Delta x)^2 = \frac{\hbar}{4}, \qquad \gamma = -2 \frac{(\Delta x)^2}{\hbar}.$$

Таким образом и нашли волновую функцию, которая удовлетворяет минимизации соотношения неопределенности, что мы четко и показали

$$|\Phi\rangle = [\hat{x} - \bar{x} + i\frac{2}{\hbar}(\Delta x)^2(\hat{p} - \bar{p})] |\Psi\rangle.$$

T7

Рассмотрим движение в потенциальном поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \sum_{n=-\infty}^{\infty} \delta(x - na).$$

Запишем стационарное уравнение Шрёдингера

$$\hat{H} = -\frac{\hbar^2}{2m}\partial_x^2 + U(x), \qquad \hat{H}\psi(x) = E\psi(x).$$

Подставляя, находим

$$\psi''(x) - \frac{2m}{\hbar^2} (U(x) - E) \psi(x) = 0, \quad \Rightarrow \quad \psi(x) = \begin{cases} \alpha_1 e^{ikx} + \beta_1 e^{-ikx}, & x \in [0, a]; \\ \alpha_2 e^{ik(x-a)} + \beta_2 e^{-ik(x-a)}, & x \in [a, 2a]; \end{cases}$$

где рассмотрели решение на двух областях: [0,a] и [a,2a], и ввели $k^2=\frac{2m}{\hbar^2}E$.

Запишем условие на непрерывность $\psi(x)$ и скачок первой производной

$$\psi(a+\varepsilon) = \psi(a-\varepsilon),
\psi'(a+\varepsilon) - \psi'(a-\varepsilon) = -2\varkappa_0\psi(a), \qquad \Rightarrow \qquad \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = A \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}, \qquad A = \begin{pmatrix} e^{ika} \left(1 - \frac{\varkappa_0}{ik}\right) & -e^{-ika} \frac{\varkappa_0}{ik} \\ e^{ika} \frac{\varkappa_0}{ik} & e^{-ika} \left(1 + \frac{\varkappa_0}{ik}\right) \end{pmatrix}$$

3десь, для удобства, ввели связь коэффициентов через матрицу A.

В силу периодичности потенциала, $[\hat{H}, \hat{T}_a] = 0$, и решение может быть найдено в виде функций Блоха⁷

$$U(x+a) = U(x), \quad \Rightarrow \quad \psi(x+a) = e^{iKa}\psi(x).$$

Тогда, подставляя предполагаемое решение, находим

$$\begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = e^{iKa} \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}.$$

 $^{^6}$ это \varpi, классно выглядит же

⁷Действительно, $\psi(x) = e^{Ka} F(x)$, где F(x+a) = F(x), тогда $\psi(x+a) = e^{iKa} \psi(x)$.

Получается, матрица A должна быть скалярна, чего можем добиться дополнительными условиями на α и β :

$$\lambda^2 - (\operatorname{tr} A)\lambda + \det(A) = 0, \quad \operatorname{tr} A = e^{ika} \left(1 - \frac{\varkappa_0}{ik} \right) + e^{-ika} \left(1 + \frac{\varkappa_0}{ik} \right) \stackrel{\text{def}}{=} 2\rho, \quad \det A = 1.$$

Подставляя условие из $[\hat{H}, \hat{T}_a] = 0$, находим

$$\lambda_{1,2} = e^{\pm iKa} = \rho \pm i\sqrt{1 - \rho^2},$$

что, вроде, носит гордое имя дисперсионного соотношения. Подставляя 8 ρ находим выражение для K:

$$\cos(Ka) = \cos(ka) - \frac{\varkappa_0}{k}\sin(ka).$$

Так как $Ka \in \mathbb{R}$, то дисперсионное соотношение становится условием на допустимые значения энергии и, из уравнения и достаточно убедительного рисунка, можем сделать вывод о разрешенных зонах. Действительно, для того, чтобы зона была разрешенной необходимо, чтобы

$$|\cos(k[E]a) - \frac{\varkappa_0}{k[E]}\sin(k[E]a)| < 1, \tag{2}$$

на что чуть подробнее посмотрим в предельных случаях.

Построим $|\cos(k[E]a) - \frac{\varkappa_0}{k[E]}\sin(k[E]a)|$ для $\varkappa_0 a \ll 1$ (слабая связь) и $\varkappa_0 a \gg 1$ (сильная связь). Видно, что слабой связи соответствует почти непрерывный спектр $\cos(Ka) \approx \cos(ka)$ и $K \approx k + \frac{2\pi n}{a}$, а сильная связб приводит к почти дискретному спектру с $ka \approx \pi n$.

Рис. 4: Слабая и сильная связь в задаче Т7

По определению, эффективной массой частицы называется

$$m^* \stackrel{\text{def}}{=} \hbar^2 \left(\frac{d^2 E}{dK^2} \right)^{-1},$$

где $\hbar K$ – квазиимпульс.

Считая k малым, находим

$$\frac{1}{6}k^2\left(a^3\varkappa_0 - 3a^2\right) - a\varkappa_0 + 1 = \cos(aK), \quad \Rightarrow \quad E(K) = \frac{\hbar^2}{2m}k^2 = \frac{\hbar^2}{2m}\frac{6}{a^2}\frac{1 - \cos(Ka) - a\varkappa_0}{3 - \varkappa_0 a}$$

Тогда эффективная масса система равна

$$E_{KK}^{\prime\prime} = \frac{3\hbar^2\cos(aK)}{m\left(3 - a\varkappa_0\right)}, \quad \Rightarrow \quad m^* = m\frac{1 - a\varkappa_0/3}{\cos(aK)},$$

которое $a\varkappa_0\ll 1$ и $aK\ll 1$ переходит в классический случай!

T8

Рассмотрим связанное сферически симметричное состояние частицы в сфрически симметричной потенциальной яме, вида

$$U(r) = \begin{cases} -U_0, & r < r_0, \\ 0, & r \geqslant r_0, \end{cases}$$

в частности случаи $\dim \in \{1, 2, 3\}$.

⁸Имеет смысл выразить $\rho = \cos(ak) - \frac{\varkappa_0}{k}\sin(ak)$.

Как обычно, запищем стационарное уравнение Шрёдингера, в силу связного состояния (E < 0) переобозначим $E \to -E$:

$$\hat{H}\psi = \left(\frac{\hat{p}^2}{2m} + U\right)\psi = -E\psi, \quad \Rightarrow \quad \triangle\psi - \frac{2m}{\hbar^2}(U+E)\psi = 0.$$

Раскрывая U(r), выделяем две области:

$$\begin{cases} \triangle \psi + k^2 \psi = 0, & r < r_0; \\ \triangle \psi - \varkappa^2 \psi = 0, & r > r_0; \end{cases} \qquad k^2 = \frac{2m}{\hbar^2} (U_0 - E), \qquad \varkappa^2 = \frac{2m}{\hbar^2} E.$$

Осталось раскрыть лапласиан, считая $\psi \equiv \psi(r)$ (сферически симметричное состояние)

$$\triangle|_{\text{dim}=1} = \partial_r^2, \quad \triangle|_{\text{dim}=2} = \frac{1}{r}\partial_r + \partial_r^2, \quad \triangle|_{\text{dim}=3} = \frac{2}{r}\partial_r + \partial_r^2.$$

Одномерный случай. Подробно разобран в T2, здесь ограничимся только указанием итоговой охапки диффуров и ответа:

$$\begin{cases} \psi'' + k^2 \psi = 0, & r < r_0; \\ \psi'' - \varkappa^2 \psi = 0, & r > r_0; \end{cases} \Rightarrow \psi^+(r) = \begin{cases} A\cos(kr), & r < r_0; \\ Be^{-\varkappa r}, & r > r_0; \end{cases} \qquad \psi^-(r) = \begin{cases} A\sin(kr), & r < r_0; \\ Be^{-\varkappa r}, & r > r_0; \end{cases}$$

где ψ^+ и ψ^- – четное и нечетное решение (в силу симметричности потенциала), а A и B известны из условий нормировки, непрерывности и гладкости.

Двухмерный случай. Дифференциальное уравнение на $\psi(r)$ примет вид

$$\begin{cases} \psi'' + \frac{1}{r}\psi' + k^2\psi = 0, \\ \psi'' + \frac{1}{r}\psi' - \varkappa^2\psi = 0. \end{cases}$$

В силу сферической симметрии задачи, решение может быть найден в виде функций Бесселя J_n и Y_n :

$$\psi(r) = \begin{cases} A_1 J_0(kr) + B_1 Y_0(kr), & r < r_0; \\ A_2 J_0(i\varkappa r) + B_2 Y_0(-i\varkappa r), & r > r_0. \end{cases}$$

В силу нормируемости ψ должно выполняться равенство $B_2 = A_2/i$.

Дальше вспоминаем, что $\psi(r\leqslant r_0)|_{r=r_0}=\psi(r\geqslant r_0)|_{r=r_0}$, также $\psi(r\leqslant r_0)'|_{r=r_0}=\psi(r\geqslant r_0)'|_{r=r_0}$, плюс $\int |\psi(r)|^2 dr=1$, что даёт нам три уравнения, на три коэффициента. Однако ожидается дискретность спектра, так что необходимо дополнительное условие, чтобы прийти к уравнению на E.

Можно также сказать, что волновой функции ненормально уходить в бесконечность (даже оставаясь L_2 интегрируемой), тогда $B_1=0$, и мы получаем дискретный спектр.

Трёхмерный случай. Попробуем найти решение в виде $\psi(r) = \mu(r)\nu(r)$, где $\mu(r) = \exp\left(-\int \frac{f(r)}{2}\,dr\right)$, иногда это помогает диффурах вида F'' + f(r)F' + F = 0:

$$\begin{cases} \psi'' + \frac{2}{r}\psi' + k^2\psi = 0, & r < r_0; \\ \psi'' + \frac{2}{r}\psi' - \varkappa^2\psi = 0, & r > r_0; \end{cases} \qquad \nu(r) = e^{-\ln r} = \frac{1}{r}, \quad \Rightarrow \quad \begin{cases} \nu'' + k^2\nu = 0, & r < r_0; \\ \nu'' - \varkappa^2\nu = 0, & r > r_0. \end{cases}$$

А такое уравнение на $\nu(r)$ уже решается, итого находим

$$\psi(r) = \begin{cases} \frac{A_1}{r} e^{-ikr} + \frac{B_1}{r} e^{ikr}, & r < r_0; \\ \frac{A_2}{r} e^{-\varkappa r} + \frac{B_2}{r} e^{\varkappa r}, & r > r_0. \end{cases}$$

Осталось наполнить это физическим смыслом: при $r > r_0$ требование нормировки приведет к $B_2 = 0$, при $r < r_0$ для наглядности перепишем в тригонометрических функциях:

$$\psi(r < r_0) = -\frac{iA_1 \sin(kr)}{r} + \frac{A_1 \cos(kr)}{r} + \frac{iB_1 \sin(kr)}{r} + \frac{B_1 \cos(kr)}{r}, \quad \Rightarrow \quad B_1 = -A_1,$$

из того же требования нормируемости функции.

Из непрерывности в $r = r_0$ находим:

$$|\psi(r \leqslant r_0)|_{r=r_0} = |\psi(r \geqslant r_0)|_{r=r_0}, \quad \Rightarrow \quad A_2 = -2iA_1e^{r_0\varkappa}\sin(kr_0).$$

Выразив все коэффициенты через A_1 , подставим их в условие глакзкости $\psi(r)$:

$$\psi(r \leqslant r_0)'|_{r=r_0} = \psi(r \geqslant r_0)'|_{r=r_0}, \quad \Rightarrow \quad k\cos(kr_0) + \varkappa\sin(kr_0) = 0, \quad \Rightarrow \quad \boxed{k[E] = -\varkappa[E] \cdot \operatorname{tg}(k[E]r_0)}$$

это трансцендентное уравнение на E имеет решения, соответсвенно выделяет дискретный спектр уровней энергии.

Осталось найти A_1 из условия нормировки, к сожалению через элементарные функции у меня это условие не выражается, возможно выше была вычислительная ошибка, но система \pm физична. Для начала посчитаем

плотность вероятности

$$|\psi(r < r_0)|^2 = \frac{4A_1^2 \left(k \cos\left(k \left(r - r_0\right)\right) - \varkappa \sin\left(k \left(r - r_0\right)\right)\right)^2}{r^2 \left(\varkappa^2 + k^2\right)}, \qquad |\psi(r > r_0)|^2 = \frac{4A_1^2 k^2 e^{2\varkappa (r_0 - r)}}{r^2 \left(\varkappa^2 + k^2\right)}.$$

тогда условие нормировки:

$$\int_0^{r_0} |\psi(r < r_0)|^2 dr + \int_{r_0}^{\infty} |\psi(r > r_0)|^2 dr = 1, \quad \Rightarrow \quad A_1^{-2} = 8e^{2\varkappa r_0} \operatorname{Ei}(-2r_0\varkappa) \sin(kr_0)^2 + 4k \operatorname{Si}(2kr_0),$$

где Si – интегральный синус, Ei – интегральная экспонента, таким образом нашли волновую функцию и уровни энергии:

$$\psi(r) = 2A_1 \begin{cases} \sin(kr)/r, & r < r_0; \\ \sin(kr_0) e^{\varkappa(r_0 - r)}/r, & r > r_0. \end{cases}$$

T9

Найдём уровни энергии трёхмерного изотропного гармонического осциллятора в ПДСК. Запишем уравнение Шрёдингера примет вид

$$\hat{H}\psi = E\psi.$$

и перейдём к безразмерным величинам

$$\hat{\boldsymbol{Q}} = \frac{\hat{\boldsymbol{q}}}{q_0}, \quad \hat{\boldsymbol{P}} = \frac{\hat{\boldsymbol{p}}}{p_0} = -i\partial_{\boldsymbol{Q}}, \quad p_0 = \sqrt{m\omega\hbar}, \quad q_0 = \sqrt{\frac{\hbar}{m\omega}}, \quad \Rightarrow \quad \hat{H}_Q = \frac{1}{2}\left(Q^2 + \hat{P}^2\right) = \hat{H}/(\hbar\omega).$$

Для благоприятного разделения переменных 9 представим $\psi(x,y,z)=\psi_x(x)\psi_y(y)\psi_z(z),$ и $E=E_x+E_y+E_z$:

$$\frac{1}{2}\left(x^2+y^2+z^2-\left(\partial_x^2+\partial_y^2+\partial_z^2\right)\right)\psi_x\psi_y\psi_z=\frac{1}{\hbar\omega}(E_x+E_y+E_z)\psi_x\psi_y\psi_z.$$

Нетрудно получить

$$\left(x^2 - \frac{\psi_x''(x)}{\psi_x(x)} - \frac{2E_x}{\hbar\omega}\right)\psi_x\psi_y\psi_z + \dots \left(z^2 - \frac{\psi_z''(z)}{\psi_z(z)} - \frac{2E_z}{\hbar\omega}\right)\psi_x\psi_y\psi_z = 0,$$

таким образом переменные разделились и мы получили три независимых уравнения одномерных осцилляторов:

$$\begin{cases} \psi_x''(x) + \left(\frac{2E_x}{\hbar\omega} - x^2\right)\psi_x(x) = 0, \\ \psi_y''(y) + \left(\frac{2E_y}{\hbar\omega} - y^2\right)\psi_y(y) = 0, \quad \Rightarrow \quad E_i = \hbar\omega\left(\frac{1}{2} + n_i\right). \\ \psi_z''(z) + \left(\frac{2E_z}{\hbar\omega} - z^2\right)\psi_z(z) = 0. \end{cases}$$

Так приходим к выражению для энергии изотропного гармонического осциллятора через число квантов по каждой из осей:

$$E = E_x + E_y + E_z = \hbar\omega \left(\frac{3}{2} + n_x + n_y + n_z\right),$$

где явно видно вырождение уровней энергии, при $n_x + n_y + n_z = n$. Нетруно посчитать 10 , что

$$\#(n) = \operatorname{card} \{(n_x, n_y, n_z) \mid n_x + n_y + n_z = n\} = \frac{(n+1)(n+2)}{2},$$

что и является кратностью вырождения

Заметим, что #(0) = 1, #(1) = 3, #(2) = 6, тогда

$$2 \cdot (\#(0)) = 2,$$
$$2 \cdot (\#(0) + \#(1)) = 8,$$
$$2 \cdot (\#(0) + \#(1) + \#(2)) = 20,$$

что намекает на некоторую связь с магическими числами (ЛЛЗ, §118: модель оболочек).

T10

В нашем гармоническом осцилляторе посмотрим на коммутатор оператора уничтожения с гамильтонианом

$$[\hat{H}, \hat{a}] = [\hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right), \hat{a}] = \hbar\omega[\hat{a}^{\dagger}\hat{a}, \hat{a}] = -\hbar\omega[\hat{a}, \hat{a}^{\dagger}]\hat{a} = -\hbar\omega\hat{a}.$$

 $^{^{9}}$ Здесь и далее $oldsymbol{Q}=(x,\,y,\,z)^{\mathrm{T}}$ – обезразмеренные для удобства перменные.

Как видим, этот коммутатор не обращается в нуль, если собственное значение \hat{a} – не ноль. То есть энергия такого состояния $|\alpha\rangle$ флуктуирует вокруг своего среднего значения 11. Разложим это состояния по базису стационарных состояний

$$|\alpha\rangle = \sum_{n} C_n(\alpha) |n\rangle.$$

Найдём C_n из уравнения на собственные значения

$$C_n(\alpha) = \langle n | \alpha \rangle = \frac{1}{\alpha} \langle n | \hat{a} \alpha \rangle = \frac{1}{\alpha} \langle \hat{a}^{\dagger} n | \alpha \rangle$$

Сопряженный оператор уничтожения работает как

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle, \qquad (\hat{a}^{\dagger} | n \rangle)^{\dagger} = \langle n | \hat{a} = \langle \hat{a}^{\dagger} n |.$$

То есть получили рекурентную формулу с помощью которой C_n уже вычисляется

$$\alpha C_n(\alpha) = \sqrt{n+1} \langle n+1 | \alpha \rangle = \sqrt{n+1} C_{n+1}(\alpha) \qquad \Rightarrow \qquad C_n(\alpha) = \frac{\alpha^n}{\sqrt{n!}} C_0(\alpha).$$

Теперь посмотрим на вид нашего разложения

$$|\alpha\rangle = C_0(\alpha) \sum_n \frac{\alpha^n}{\sqrt{n!}} |n\rangle = C_0(\alpha) \sum_n \frac{(\alpha \hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle = C_0(\alpha) = e^{\alpha \hat{a}^{\dagger}} |0\rangle.$$

Теперь по условию единично нормировки находим $C_0(\alpha)$ и ликуем

$$\langle \alpha | \alpha \rangle = |C_0(\alpha)|^2 \langle 0| e^{\alpha^* \hat{a}} e^{\alpha \hat{a}^{\dagger}} |0\rangle = |C_0(\alpha)|^2 \sum_n \frac{(\alpha^* \alpha)^n}{n!} = 1,$$

и тут под суммой снова удобный ряд

$$|C_0(\alpha)|^2 e^{|\alpha|^2} = 1$$
 \Rightarrow $C_0(\alpha) = e^{-|\alpha|^2/2}.$

Окончательно получили

$$|\alpha\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}^{\dagger}} |0\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^2}{\sqrt{n!}} |n\rangle.$$

Теперь мы готовы искать распределение по числу квантов, ведь вероятность, что в $|\alpha\rangle$ найдётся n квантов это

$$P_n = |\langle n | \alpha \rangle|^2 = \frac{|\alpha|^{2n}}{n!} e^{-|\alpha|^2} = \frac{\langle N \rangle^n}{n!} e^{-\langle N \rangle}.$$

Получили распределение Пуассона для числа квантов со средним значением $\langle N \rangle$.

¹¹ Эта энергия определена как $\langle E \rangle = \hbar \omega (\langle N \rangle + 1/2)$. А вот $\langle N \rangle = |\alpha|^2$

Дополнение к Т10

І. Пусть есть некоторое состояние, которое соответствует

$$\alpha = \frac{1}{\sqrt{2}}(Q_0 + iP_0), \quad \hat{a} |\alpha\rangle = \alpha |\alpha\rangle.$$

В Т10 мы показали, что состояние $|\alpha\rangle$ можно разложить по базису собственных состояний \hat{N} : $\hat{N}|n\rangle = n|n\rangle$:

$$|\alpha\rangle = \exp\left(-\frac{|\alpha|^2}{2}\right) e^{\alpha \hat{a}^{\dagger}} |0\rangle = \exp\left(-\frac{|\alpha|^2}{2}\right) \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$

где воспользовались представлением

$$|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle.$$

Также можно переписать волновую функцию $|\psi\rangle$ в виде

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle = \sum_{n=0}^{\infty} c_n \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle = \left(\sum_{n=0}^{\infty} \frac{c_n}{\sqrt{n!}} (\hat{a}^{\dagger})^n\right) |0\rangle = f(\hat{a}^{\dagger}) |0\rangle.$$

To есть волновая функция может быть представлена, как действие $f(\hat{a}^{\dagger})$ на состояние $|0\rangle$, где f(x):

$$f(x) = \sum_{n=0}^{\infty} \frac{c_n}{\sqrt{n!}} x^n.$$

II. Посмотрим на действие операторов \hat{a}^{\dagger} и \hat{a} на $|\psi\rangle$ в новом представлении:

$$\hat{a} |\psi\rangle = \hat{a} f(\hat{a}^{\dagger}) |0\rangle = f(\hat{a}^{\dagger}) \underbrace{\hat{a} |0\rangle}_{=0} + f'(\hat{a}^{\dagger}) |0\rangle = f'(\hat{a}^{\dagger}) |0\rangle , \quad \Rightarrow \quad \boxed{\hat{a} \stackrel{*}{=} \partial_{\hat{a}^{\dagger}}, \quad \hat{a}^{\dagger} \stackrel{*}{=} \hat{a}^{\dagger}}$$

где воспользовались равенствами из У10

$$[\hat{a}, (\hat{a}^{\dagger})^n] = n(\hat{a}^{\dagger})^{n-1}, \qquad [\hat{a}, f(\hat{a}^{\dagger})] = f'(\hat{a}^{\dagger}).$$

Когерентные состояния. Перепишем в новых обозначениях уравнения для когерентного состояния:

$$\hat{a} |\alpha\rangle = \alpha |\alpha\rangle, \quad \Rightarrow \quad f' = \alpha f.$$

Нетрудно получить, что

$$f(x) = Ce^{\alpha x}, \quad \Rightarrow \quad |\alpha\rangle = Ce^{\alpha \hat{a}^{\dagger}} |0\rangle = C\sum_{n=0}^{\infty} \frac{\alpha^n}{n!} (\hat{a}^{\dagger})^n |0\rangle = C\sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$

где нужжно поправить нормировку:

$$\|\alpha\|^2 = |C|^2 \sum_{n=0}^{\infty} \frac{(\alpha \bar{\alpha})^n}{n!} = |C|^2 e^{|\alpha|^2}, \quad \Rightarrow \quad |\alpha\rangle = e^{-|\alpha|^2/2} \cdot e^{\alpha \hat{a}^{\dagger}} |0\rangle.$$

Смысл. Рассмотрим проекцию $|\psi\rangle = f(\hat{a}^{\dagger})|0\rangle$, на когерентное состояние $|\alpha\rangle$:

$$|\alpha\rangle = e^{-|\alpha|^2/2} \cdot e^{\alpha \, \hat{a}^\dagger} \, |0\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \, |n\rangle \,, \qquad |\psi\rangle = \sum_{n=0}^{\infty} c_n \frac{(\hat{a}^\dagger)^n}{\sqrt{n!}} \, |0\rangle = f(\hat{a}^\dagger) \, |0\rangle = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)|_{x=0}}{\sqrt{n!}} \, |n\rangle \,.$$

скалярно перемножая, находим:

$$\langle \alpha | \psi \rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{c_n \alpha^n}{\sqrt{n!}} = e^{-|\alpha|^2/2} \cdot f(\alpha).$$

Разбиение единицы. Вспомним, что

$$\alpha = \frac{Q_0 - i P_0}{\sqrt{2}}, \quad \hat{a}^\dagger = \frac{\hat{Q} - i \hat{P}}{\sqrt{2}}, \qquad |f\rangle = f(\hat{a}^\dagger) |0\rangle.$$

Посмотрим на скалярное произведение:

$$\langle f_2|f_1\rangle = \int_{\mathbb{C}} \bar{f}_2(\alpha) f_1(\alpha) e^{-|\alpha|^2} d\alpha d\bar{\alpha}, \qquad \psi(x) = \langle x|f(\hat{a}^{\dagger})|0\rangle \sim F(\alpha) = e^{-|\alpha|^2/2} f(\alpha).$$

В этих терминах и посмотрим на матричный элемент для \hat{a}^{\dagger} :

$$\langle F_2|\hat{a}^{\dagger}|F_1\rangle = \int_{\mathbb{C}} \bar{F}_2(\alpha) \,\alpha \,F_1(\alpha) \,d\alpha \,d\bar{\alpha},$$

и для \hat{a} :

$$\langle F_2|\hat{a}|F_1\rangle = \int_{\mathbb{C}} e^{-|\alpha|^2} \bar{f}_2(\alpha) \partial_{\alpha} f_1(\alpha) \, d\alpha \, d\bar{\alpha} = \left/ \text{по частям} \right/ = \int_{\mathbb{C}} \bar{F}_2(\alpha) \, \bar{\alpha} \, F_1(\alpha) \, d\alpha \, d\bar{\alpha}.$$

Сжатые состояния

Общее когерентное состояния для пары операторов координата-импульс должно удовлетворять уравнению

$$(\hat{x} + i\gamma\hat{p})|\psi\rangle = \alpha|\psi\rangle$$
,

в котором $\gamma = \frac{q_0}{p_0} = \frac{1}{m\omega}$ – когерентные состояния гармонического осциллятора.

Можем посмотреть на друние γ , которым соответствуют более/менее широкие гауссовы распределения, чем для основного состояния осциллятора – *сжатые состояния осциллятора*, которые получим изменением масштаба по координате.

Построим оператор сжатия: сжатие по x – сдвиг по $\ln |x|$, а значит генератор преобразования имеет вид

$$\hat{G}_0 = -i\hbar \partial_{\ln|x|} = -i\hbar x \partial_x = \hat{x}\hat{p},$$

что достаточно забавно, хотя оператор и не эрмитов, но при этом:

$$\exp\left(\frac{i}{\hbar}k\hat{G}_0\right)\psi(x) = \psi(e^kx).$$

Квадрат нормы при этом тоже уменьшается, так что добавим константу так, чтобы новый оператор оказался эрмитовым:

$$\hat{G} = -i\hbar \left(x \partial_x + \frac{1}{2} \right) = \hat{x}\hat{p} - \frac{i\hbar}{2} = \frac{1}{2} \left(\hat{x}\hat{p} + \hat{p}\hat{x} \right) = -i\hbar \frac{\hat{a}^2 - (\hat{a}^{\dagger})^2}{2},$$

с автоматически унитарной экспонентой:

$$\hat{D}_k = \exp\left(\frac{i}{\hbar}k\hat{G}\right) = \exp\left(\frac{k}{2}\left(\hat{a}^2 - (\hat{a}^\dagger)^2\right)\right), \qquad \hat{D}_k\psi(x) = e^{k/2}\psi(e^kx).$$

Теперь удобно проследить за эволюцией сжатого состояния:

$$|\psi_k\rangle = \hat{D}_k |\psi\rangle$$
, $|\psi_k(t)\rangle = \hat{U}_t \hat{D}_k \hat{U}_t^{-1} \hat{U}_t |\psi\rangle = \hat{D}_k^{\mathrm{H}}(-t) |\psi(t)\rangle$,

где можем найти явный вид оператора сжатия в представлении Гейзенберга:

$$\hat{D}_k^{\mathrm{H}}(-t) = \exp\left(\frac{k}{2}\hat{a}_{\mathrm{H}}^2(-t) - \frac{k}{2}\hat{a}_{\mathrm{H}}^{\dagger\,2}(-t)\right) = \exp\left(\frac{k}{2}e^{2i\omega t}\hat{a}^2 - \frac{k}{2}e^{-2i\omega t}(\hat{a}^\dagger)^2\right).$$

Итого, сжатое состояние со временем оказывается не когерентным для \hat{P}, \hat{Q} , но когерентным для

$$\hat{Q}_{\rm H}(t) = \cos(\omega t)\hat{Q} + \sin(\omega t)\hat{P},$$

$$\hat{P}_{H}(t) = \cos(\omega t)\hat{P} - \sin(\omega t)\hat{Q}.$$

Матричный элемент оператора эволюции. Дейстительно, в представлении когерентных состояний:

$$\langle \beta | \hat{U} | \alpha \rangle = \exp \left(\bar{\beta} \alpha e^{i\omega t} \right).$$

Чуть хуже в координатном предсталении:

$$\langle x|\hat{U}|y\rangle = \int_{\mathbb{C}^2} \frac{d\alpha \, d\bar{\alpha}}{2\pi i} \frac{d\beta \, d\bar{\beta}}{2\pi i} \exp\left(-\alpha\bar{\alpha} - \beta\bar{\beta} - \frac{x^2}{2} + \sqrt{2}\beta x - \frac{\beta^2}{2} - \frac{y^2}{2} + \sqrt{2}\bar{\alpha}y - \frac{\bar{\alpha}^2}{2} + \bar{\beta}\alpha e^{i\varphi}\right) = \frac{1}{8} \frac{\exp\left(-i\frac{(x^2+y^2)\cos\varphi - 2xy}{2\sin\varphi}\right)}{|\sin\varphi|}$$

Атом водорода

А. Волновая функция водорода имеет вид

$$\psi_{nlm}(r,\theta,\varphi) = \sqrt{\frac{(n-l-1)!}{2n\cdot(n+l)!}} \left(\frac{2}{na_0}\right)^{3/2} \exp\left(-\frac{r}{na_0}\right) \left(\frac{2r}{na_0}\right)^l L_{n-l-1}^{2l+1} \left[\frac{2r}{na_0}\right] \times Y_{l,m}(\theta,\varphi),$$

где сферические функции

$$Y_{l,m} = \frac{1}{\sqrt{2\pi}} e^{im\varphi} \Theta_{l,m}(\theta), \qquad \Theta(\theta)_{l,m} = \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m[\cos \theta],$$

где P_l^m – присоединенные многочлены Лежандра

$$P_n(x) = \frac{1}{2^n n!} \partial_x^n (x^2 - 1)^n.$$

В. Вспоминаем вид лестничных операторов

$$\hat{l}_{\pm} = e^{\pm i\varphi} \left(\pm \partial_{\theta} + i \operatorname{ctg} \theta \partial_{\varphi} \right).$$

A также $Y_{l,l}$:

$$Y_{l,l}(\theta,\varphi) = (-1)^l \sqrt{\frac{(2l+1)!}{4\pi}} \frac{1}{2^l l!} \sin^l \theta e^{il\varphi}.$$

Применяем несколько раз \hat{l}_{-} :

$$\hat{l}_{-}^{l}Y_{l,l}(\theta,\varphi) = \partial_{\cos\theta}^{l}\sin^{l}\theta Y_{l,l}(\theta), \quad \Rightarrow \quad Y_{l,0}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi}}\frac{(-1)^{l}}{2^{l}l!}\partial_{\cos\theta}^{l}\sin^{2l}\theta,$$

что удобно переписать в терминах полиномов Лежандра:

$$P_n(x) = \frac{1}{2^n n!} \partial_x^n (x^2 - 1)^n, \qquad Y_{l,0}(\theta, \varphi) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos \theta).$$

Также можем пойти назад, через \hat{l}_{+} :

$$\hat{l}_{+}Y_{l,m}(\theta,\varphi) = \sqrt{l(l+1) - m(m+1)}Y_{l,m+1}(\theta,\varphi),$$

а значит

$$Y_{l,m}(\theta,\varphi) = e^{im\varphi}(-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l,m}(\cos\theta), \qquad 0 \leqslant m \leqslant l,$$

с присоединенными полиномами Лежандра:

$$P_{l,m}(x) = (1 - x^2)^{m/2} \partial_x^m P_l(x).$$

С. Для начала

$$\hat{l}_- \left| l,m \right> = \sqrt{(l+m)(l-m+1)} \left| l,m-1 \right>, \quad \ \, \hat{l}_- \left| l,l \right> = \sqrt{2l} \left| l,l-1 \right>.$$

Подсталяя дифференциальное представление \hat{l}_{-} , находим

$$Y_{1,0} = \frac{\hat{l}_{-}Y_{1,1}}{\sqrt{2}}, \quad \Rightarrow \quad Y_{1,0} = \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta.$$

Теперь

$$Y_{2,0}(\theta,\varphi) = \sqrt{\frac{5}{4\pi}} P_2(\cos\theta),$$

где P_2 можем найти, как

$$P_2(x) = \frac{3xP_1(x) - P_0(x)}{2} = \frac{3x^2 - 1}{2},$$

а значит

$$Y_{2,0} = \frac{1}{4} \sqrt{\frac{5}{\pi}} (3\cos\theta^2 - 1) = \frac{1}{8} \sqrt{\frac{5}{\pi}} (3\cos(2\theta) + 1).$$

Теперь с помощью \hat{l}_{+} , находим

$$\hat{l}_{+}Y_{l,m}(\theta,\varphi) = \sqrt{l(l+1) - m(m+1)}Y_{l,m+1}(\theta,\varphi), \quad \Rightarrow \quad Y_{2,1} = \frac{\hat{l}_{+}Y_{2,0}}{\sqrt{6}} = -\frac{1}{4}\sqrt{\frac{15}{2\pi}}e^{i\varphi}\sin(2\theta),$$

$$Y_{2,2} = \frac{\hat{l}_{+}Y_{2,1}}{2} = \frac{1}{4}\sqrt{\frac{15}{\pi}}e^{2i\varphi}\sin^{2}(\theta).$$

Полиномы Лежандра в атоме водорода

Хоружий Кирилл

Intro. Вспоминаем вид лестничных операторов

$$\hat{l}_{+} = e^{\pm i\varphi} \left(\pm \partial_{\theta} + i \operatorname{ctg} \theta \partial_{\varphi} \right).$$

A также $Y_{l,l}$:

$$Y_{l,l}(\theta,\varphi) = (-1)^l \sqrt{\frac{(2l+1)!}{4\pi}} \frac{1}{2^l l!} \sin^l \theta e^{il\varphi}.$$

Применяем несколько раз \hat{l}_{-} :

$$\hat{l}_{-}^{l}Y_{l,l}(\theta,\varphi) = \partial_{\cos\theta}^{l}\sin^{l}\theta Y_{l,l}(\theta), \quad \Rightarrow \quad Y_{l,0}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi}}\frac{(-1)^{l}}{2^{l}l!}\partial_{\cos\theta}^{l}\sin^{2l}\theta,$$

что удобно переписать в терминах полиномов Лежандра:

$$P_n(x) = \frac{1}{2^n n!} \partial_x^n (x^2 - 1)^n, \qquad Y_{l,0}(\theta, \varphi) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos \theta).$$

Решение. Для начала

$$\hat{l}_{-}\left|l,m\right\rangle = \sqrt{(l+m)(l-m+1)}\left|l,m-1\right\rangle, \qquad \hat{l}_{-}\left|l,l\right\rangle = \sqrt{2l}\left|l,l-1\right\rangle.$$

Подсталяя дифференциальное представление \hat{l}_- , находим

$$Y_{1,0} = \frac{\hat{l}_- Y_{1,1}}{\sqrt{2}}, \quad \Rightarrow \quad Y_{1,0} = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta.$$

Теперь

$$Y_{2,0}(\theta,\varphi) = \sqrt{\frac{5}{4\pi}} P_2(\cos\theta),$$

где P_2 можем найти, как

$$P_2(x) = \frac{3xP_1(x) - P_0(x)}{2} = \frac{3x^2 - 1}{2},$$

а значит

$$Y_{2,0} = \frac{1}{4} \sqrt{\frac{5}{\pi}} (3\cos\theta^2 - 1) = \frac{1}{8} \sqrt{\frac{5}{\pi}} (3\cos(2\theta) + 1).$$

Теперь с помощью \hat{l}_+ , находим

$$\hat{l}_{+}Y_{l,m}(\theta,\varphi) = \sqrt{l(l+1) - m(m+1)}Y_{l,m+1}(\theta,\varphi), \quad \Rightarrow \quad Y_{2,1} = \frac{\hat{l}_{+}Y_{2,0}}{\sqrt{6}} = -\frac{1}{4}\sqrt{\frac{15}{2\pi}}e^{i\varphi}\sin(2\theta),$$

$$Y_{2,2} = \frac{\hat{l}_{+}Y_{2,1}}{2} = \frac{1}{4}\sqrt{\frac{15}{\pi}}e^{2i\varphi}\sin^{2}(\theta).$$