Lecture 8: Hashing I

Lecture Overview

- Dictionaries and Python
- Motivation
- Prehashing
- Hashing
- Chaining
- Simple uniform hashing
- "Good" hash functions

Dictionary Problem

Abstract Data Type (ADT) — maintain a set of items, each with a key, subject to

- insert(item): add item to set
- delete(item): remove item from set
- search(key): return item with key if it exists

We assume items have distinct keys (or that inserting new one clobbers old).

Balanced BSTs solve in $O(\lg n)$ time per op. (in addition to inexact searches like next-largest).

Goal: O(1) time per operation.

Python Dictionaries:

Items are (key, value) pairs e.g. $d = \{\text{`algorithms': 5, 'cool': 42}\}$

```
\begin{array}{lll} \text{d.items()} & \rightarrow & \text{[('algorithms', 5), ('cool', 5)]} \\ \text{d['cool']} & \rightarrow & 42 \\ \text{d[42]} & \rightarrow & \text{KeyError} \\ \text{'cool' in d} & \rightarrow & \text{True} \\ 42 \text{ in d} & \rightarrow & \text{False} \end{array}
```

Python set is really dict where items are keys (no values)

Motivation

Dictionaries are perhaps the most popular data structure in CS

- built into most modern programming languages (Python, Perl, Ruby, JavaScript, Java, C++, C#, ...)
- e.g. best docdist code: word counts & inner product
- implement databases: (DB_HASH in Berkeley DB)
 - English word \rightarrow definition (literal dict.)
 - English words: for spelling correction
 - word \rightarrow all webpages containing that word
 - username \rightarrow account object
- compilers & interpreters: names \rightarrow variables
- network routers: IP address \rightarrow wire
- network server: port number \rightarrow socket/app.
- virtual memory: virtual address \rightarrow physical

Less obvious, using hashing techniques:

- substring search (grep, Google) [L9]
- string commonalities (DNA) [PS4]
- file or directory synchronization (rsync)
- cryptography: file transfer & identification [L10]

How do we solve the dictionary problem?

Simple Approach: Direct Access Table

This means items would need to be stored in an array, indexed by key (random access)

Figure 1: Direct-access table

Problems:

- 1. keys must be nonnegative integers (or using two arrays, integers)
- 2. large key range \implies large space e.g. one key of 2^{256} is bad news.

2 Solutions:

Solution to 1: "prehash" keys to integers.

- In theory, possible because keys are finite \implies set of keys is countable
- In Python: <u>hash(object)</u> (actually hash is misnomer should be "prehash") where object is a number, string, tuple, etc. or object implementing _hash_ (default = id = memory address)
- In theory, $x = y \Leftrightarrow hash(x) = hash(y)$
- Python applies some heuristics for practicality: for example, $hash('\setminus 0B') = 64 = hash('\setminus 0\setminus 0C')$
- Object's key should not change while in table (else cannot find it anymore)
- No mutable objects like lists

Solution to 2: hashing (verb from French 'hache' = hatchet, & Old High German 'happja' = scythe)

- Reduce universe \mathcal{U} of all keys (say, integers) down to reasonable size m for table
- idea: $m \approx n = \#$ keys stored in dictionary
- hash function h: $\mathcal{U} \to \{0, 1, \dots, m-1\}$

Figure 2: Mapping keys to a table

• two keys $k_i, k_j \in K$ collide if $h(k_i) = h(k_j)$

How do we deal with collisions?

We will see two ways

1. Chaining: TODAY

2. Open addressing: L10

Chaining

Linked list of colliding elements in each slot of table

Figure 3: Chaining in a Hash Table

- Search must go through whole list T[h(key)]
- Worst case: all n keys hash to same slot $\implies \Theta(n)$ per operation

Simple Uniform Hashing:

An assumption (cheating): Each key is equally likely to be hashed to any slot of table, independent of where other keys are hashed.

let n = # keys stored in table

m = # slots in table

 $\underline{\text{load factor}} \alpha = n/m = \text{expected } \# \text{ keys per slot} = \text{expected length of a chain}$

Performance

This implies that expected running time for search is $\Theta(1+\alpha)$ — the 1 comes from applying the hash function and random access to the slot whereas the α comes from searching the list. This is equal to O(1) if $\alpha = O(1)$, i.e., $m = \Omega(n)$.

Hash Functions

We cover three methods to achieve the above performance:

Division Method:

$$h(k) = k \mod m$$

This is practical when m is prime but not too close to power of 2 or 10 (then just depending on low bits/digits).

But it is inconvenient to find a prime number, and division is slow.

Multiplication Method:

$$h(k) = [(a \cdot k) \mod 2^w] \gg (w - r)$$

where a is random, k is w bits, and $m = 2^r$.

This is practical when a is odd & $2^{w-1} < a < 2^w$ & a not too close to 2^{w-1} or 2^w .

Multiplication and bit extraction are faster than division.

Figure 4: Multiplication Method

Universal Hashing

[6.046; CLRS 11.3.3]

For example: $h(k) = [(ak+b) \mod p] \mod m$ where a and b are random $\in \{0, 1, \dots p-1\}$, and p is a large prime $(> |\mathcal{U}|)$.

This implies that for worst case keys $k_1 \neq k_2$, (and for a, b choice of h):

$$Pr_{a,b}\{\text{event } X_{k_1k_2}\} = Pr_{a,b}\{h(k_1) = h(k_2)\} = \frac{1}{m}$$

This lemma not proved here

This implies that:

$$E_{a,b}[\# \text{ collisions with } k_1] = E[\sum_{k_2} X_{k_1 k_2}]$$

$$= \sum_{k_2} E[X_{k_1 k_2}]$$

$$= \sum_{k_2} \underbrace{Pr\{X_{k_1 k_2} = 1\}}_{\frac{1}{m}}$$

$$= \frac{n}{m} = \alpha$$

This is just as good as above!

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.