Dr. I. Gleason SS 2024

Dr. J. Anschütz

Algebraic Geometry II

7. Exercise sheet

Exercise 1 (4 points):

Let X be a scheme. For a line bundle $\mathcal{L} \in \text{Pic}(X)$ we define $\underline{\text{Isom}}(\mathcal{O}_X, \mathcal{L})$ as the sheaf of sets

$$V \subset X \longmapsto \mathrm{Isom}(\mathcal{O}_V, \mathcal{L}_{|V})$$

- 1) Prove that $\underline{\mathrm{Isom}}(\mathcal{O}_X, \mathcal{L})$ is a \mathcal{O}_X^{\times} -torsor, where $\mathcal{O}_X^{\times} \subset \mathcal{O}_X$ denotes the sheaf of units.
- 2) Prove that sending \mathcal{L} to $\underline{\mathrm{Isom}}(\mathcal{O}_X, \mathcal{L})$ defines a bijection $\mathrm{Pic}(X) \cong H^1(X, \mathcal{O}_X^{\times})$.

Exercise 2 (4 points):

Let X be a topological space and let $1 \to N \to G \to Q \to 1$ be a short exact sequence of sheaves of groups on X (i.e., for every $x \in X$ the morphism $G_x \to Q_x$ is surjective with kernel N_x). Prove that there is a natural short exact sequence of pointed sets

$$1 \to N(X) \to G(X) \to Q(X) \to H^1(X,N) \to H^1(X,G) \to H^1(X,Q),$$

i.e., the image of each morphism is exactly the preimage of the distinguished point under the next morphism.

Exercise 3 (4 points):

Let k be a field and let X be a smooth curve over k. Let $x_1, \ldots, x_n \in X$ be closed points and set $U := X \setminus \{x_1, \ldots, x_n\}$.

- 1) Show that there is a short exact sequence $\mathbb{Z}^n \to \operatorname{Pic}(X) \to \operatorname{Pic}(U) \to 0$.
- 2) If $\operatorname{Pic}(X)$ is an infinitely generated abelian group, show that a product $\prod_{i \in I} \mathcal{L}_i$ of \mathcal{O}_X^{\times} -torsors is in general not a $\prod_{i \in I} \mathcal{O}_X^{\times}$ -torsor.

Hint/Remark: Use the exact sequence $k(U)^{\times} \to \operatorname{Div}_{U}^{1} \to \operatorname{Pic}(U) \to 0$ and its analog for X. If k is algebraically closed and X separated, then $\operatorname{Pic}(X)$ is infinitely generated unless X is isomorphic to an open subset of \mathbb{P}^{1}_{k} .

Exercise 4 (4 points):

Let k be a field and let X be a smooth, separated curve over k.

- 1) Assume that \mathcal{M} is a coherent \mathcal{O}_X -module, which is torsion, i.e., for $U = \operatorname{Spec}(A) \subseteq X$ affine and open, $\mathcal{M}(U)$ is a torsion A-module. Show that $H^1(X, \mathcal{M}) = 0$.
- 2) Assume that $X = \mathbb{P}^1_k$ and that $x, y \in X$ are two different closed points. Let $\mathcal{I} \subseteq \mathcal{O}_X$ be the ideal sheaf of the (reduced) closed subscheme $\{x,y\} \subseteq X$. Show that $H^1(X,\mathcal{I}) \neq 0$.

Hint: For 1) pick some open affine U containing the support of \mathcal{M} and argue that it is sufficient to split a short exact sequence $0 \to \mathcal{M} \to \mathcal{F} \to \mathcal{O}_X \to 0$ over U.

To be handed in on: Thursday, 06.06.2024 (during the lecture or via eCampus).