```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

In [2]: df=pd.read_csv('advertising.csv')

In [3]: # First five rows of the dataset
df.head()

Out[3]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [25]: # Last five rows of the dataset
df.tail()

Out[25]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

In [26]: # Shape of the dataset
df.shape

Out[26]: (200, 4)

In [27]: # Columns present in the dataset
df.columns

Out[27]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')

```
In [28]: # A concise summary of the dataset
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

Column Non-Null Count Dtype
--- --- 200 non-null float64
1 Radio 200 non-null float64
2 Newspaper 200 non-null float64
3 Sales 200 non-null float64

dtypes: float64(4)
memory usage: 6.4 KB

In [29]: # Checking missing values df.isna().sum()

Out[29]: TV 0 Radio 0 Newspaper 0

Sales dtype: int64

In [30]: # Generating descriptive statistics summary df.describe().round()

Out[30]:

	TV	Radio	Newspaper	Sales
count	200.0	200.0	200.0	200.0
mean	147.0	23.0	31.0	15.0
std	86.0	15.0	22.0	5.0
min	1.0	0.0	0.0	2.0
25%	74.0	10.0	13.0	11.0
50%	150.0	23.0	26.0	16.0
75%	219.0	37.0	45.0	19.0
max	296.0	50.0	114.0	27.0

```
In [32]: sns.pairplot(df, x_vars=['TV', 'Radio','Newspaper'], y_vars='Sales', kind='
plt.show()
```

C:\Users\kumar\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

In [33]: df['TV'].plot.hist(bins=10)

Out[33]: <Axes: ylabel='Frequency'>


```
In [34]: df['Radio'].plot.hist(bins=10, color="green", xlabel="Radio")
```

Out[34]: <Axes: xlabel='Radio', ylabel='Frequency'>


```
In [50]: df['Newspaper'].plot.hist(bins=10,color="yellow", xlabel="newspaper")
```

Out[50]: <Axes: xlabel='newspaper', ylabel='Frequency'>


```
In [36]: sns.heatmap(df.corr(),annot = True)
plt.show()
```



```
In [37]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df[['TV']], df[['Sales'])
```

In [38]:

```
print(X_train)
```

```
TV
     265.2
131
96
     197.6
181
     218.5
     147.3
19
153
     171.3
67
     139.3
192
      17.2
117
      76.4
47
     239.9
172
      19.6
```

[140 rows x 1 columns]

```
In [39]:
    print(y_train)
```

```
Sales
131
      17.7
96
      16.7
181
      17.2
19
      14.6
153
      16.0
       . . .
. .
67
      13.4
192
       5.9
117
      9.4
47
      23.2
172
       7.6
[140 rows x 1 columns]
```

In [40]: print(X_test)

	TV
18	69.2
170	50.0
107	90.4
98	289.7
177	170.2
182	56.2
5	8.7
146	240.1
12	23.8
152	197.6
	261.3
61 125	
125	87.2
180	156.6
154	187.8
80	76.4
7	120.2
33	265.6
130	0.7
37	74.7
74	213.4
183	287.6
145	140.3
45	175.1
159	131.7
60	53.5
123	123.1
179	165.6
185	205.0
122	224.0
44	25.1
16	67.8
55	198.9
150	280.7
111	241.7
22	13.2
189	18.7
129	59.6
4	180.8
83	68.4
106	25.0
134	36.9
66	31.5
26	142.9
113	209.6
168	215.4
63	102.7
8	8.6
75	16.9
118	125.7
143	104.6
71	109.8
124	229.5
184	253.8
97	184.9
149	44.7
24	62.3
24 30	292.9
160	172.5

40 202.5 56 7.3 In [41]:
 print(y_test)

	c 1
10	Sales 11.3
18 170	8.4
107	12.0
98	25.4
177	16.7
182	8.7
5	7.2
146	18.2
12	9.2
152	16.6
61	24.2
125	10.6
180	15.5
154	20.6
80 7	11.8 13.2
33	17.4
130	1.6
37	14.7
74	17.0
183	26.2
145	10.3
45	16.1
159	12.9
60	8.1
123	15.2
179	17.6
185	22.6
122	16.6
44 16	8.5 12.5
55	23.7
150	16.1
111	21.8
22	5.6
189	6.7
129	9.7
4	17.9
83	13.6
106	7.2
134	10.8
66	11.0
26 113	15.0
168	20.9 17.1
63	14.0
8	4.8
75	8.7
118	15.9
143	10.4
71	12.4
124	19.7
184	17.6
97	20.5
149	10.1
24 30	9.7 21.4
36 160	21.4 16.4
100	10.4

40 16.6 56 5.5

```
In [42]: from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
```

Out[42]:
• LinearRegression

LinearRegression()

In [43]: res= model.predict(X_test)
print(res)

- [[10.93127621]
 - [9.88042193]
 - [12.09159447]
 - [22.99968079]
 - [16.45920756]
 - [10.21976029]
 - [7.6199906]

 - [20.28497391]
 - [8.4464437]
 - [17.95886418]
 - [21.44529217]
 - [11.91645209]
 - [15.71485245]
 - [17.42249065]
 - [11.32534656]
 - [13.72260788]

 - [21.68063975]
 - [7.18213465]
 - [11.23230217]
 - [18.82362968]
 - [22.88474361]
 - [14.82272095]
 - [16.72739433]
 - [14.35202581]
- [10.07198391]
- [13.88133066]
- [16.20744039]
- [18.36388094]
- [19.40378881]
- [8.51759529]
- [10.85465142]
- [18.03001578]
- [22.50709285]
- [20.3725451]
- [7.86628457]
- [8.16731053]
- [10.40584907]
- [17.03936669]
- [10.88749061]
- [8.51212209]
- [9.16343282]
- [8.86788005]
- [14.96502414]
- [18.61564811]
- [18.93309367]
- [12.76479799]
- [7.6145174]
- [8.06879294]
- [14.02363385]
- [12.86878878]
- [13.15339515]
- [19.70481478]
- [21.03480222]
- [17.26376787]
- [9.59034237]
- [10.55362545]
- [23.17482317] [16.58509115]
- [18.22705095]
- [7.54336581]]

```
In [44]:
    model.coef_
Out[44]: array([[0.05473199]])
In [45]:    model.intercept_
Out[45]: array([7.14382225])
In [46]:    0.05473199* 69.2 + 7.14382225
Out[46]:    10.931275958
In [47]: plt.plot(res)
```

Out[47]: [<matplotlib.lines.Line2D at 0x2190cfccb90>]


```
In [48]: plt.scatter(X_test, y_test)
    plt.plot(X_test, 7.14382225 + 0.05473199 * X_test, 'r')
    plt.show()
```

