Fondamenti dell'Informatica

1 semestre

Prova scritta di esame del 9-7-2018

Prof. Giorgio Gambosi

a.a. 2017-2018

Ad ogni quesito proposto è associato il numero di punti ottenuti in caso di risposta corretta ed esaustiva. Risposte parziali possono portare all'attribuzione di una frazione di tale punteggio. Spiegare in modo chiaro ed esauriente i passaggi effettuati.

Il punteggio finale della prova risulta come somma dei punteggi acquisiti per i vari quesiti.

Quesito 1 (8 punti): Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L = \{a^r b^s c^t | t = r + s\}.$

Soluzione: L'automa può essere derivato portando dapprima la grammatica precedente in forma normale di Greibach, applicando poi la costruzione standard di un NPDA che riconosca lo stesso linguaggio. La presenza di ε in L può essere non considerata nella costruzione dell'automa, introducendo poi la possibilità per l'automa stesso di riconoscere la stringa vuota.

Il linguaggio L è generato dalla grammatica

$$\begin{array}{ccc} S & \to & aSc|bUc|\varepsilon \\ U & \to & bUc|\varepsilon \end{array}$$

Eliminando le ε -transizioni, e non considerando la produzione $S \to \varepsilon$, di cui terremo conto nella definizione dell'automa, otteniamo

$$\begin{array}{ccc} S & \rightarrow & aSc|bUc|bc|ac \\ U & \rightarrow & bUc|bc \end{array}$$

che risulta in forma ridotta. Portandola in CNF si ottiene

da cui deriva immediatamente la grammatica equivalente in GNF

L'automa a pila che accetta il linguaggio $L-\{\varepsilon\}$ per pila vuota deriva semplicemente per costruzione ponendo $\Sigma=\{a,b,c\}$, $\Gamma=\{S,U'X'Y'A'B'C\}$, $Z_0=S$, $Q=\{q_0\}$, $q_F=\emptyset$ e in cui la funzione di transizione è tale che $(q_0,X)\in \delta_N(q_0,a,A)$ se e solo se $A\to aX\in P$. Ne deriva che

$$\begin{split} &\delta_N(q_0,a,S) = \{(q_0,SC),(q_0,C)\} \\ &\delta_N(q_0,b,S) = \{(q_0,UC),(q_0,C)\} \\ &\delta_N(q_0,a,X) = \{(q_0,S)\} \\ &\delta_N(q_0,b,Y) = \{(q_0,U)\} \\ &\delta_N(q_0,a,A) = \{(q_0,\varepsilon)\} \\ &\delta_N(q_0,b,B) = \{(q_0,\varepsilon)\} \\ &\delta_N(q_0,c,C) = \{(q_0,\varepsilon)\} \end{split}$$

Per accettare il linguaggio L, e quindi anche la stringa vuota, è sufficiente considerare un ulteriore simbolo iniziale di pila $Z \in \Gamma$ con $Z_0 = Z$ ed aggiungere a δ_N le transizioni $\delta_N(q_0, \varepsilon, Z) = \{(q_0, \varepsilon), (q_0, S)\}$.

Quesito 2 (8 punti): Si definisca una grammatica in Forma Normale di Chomsky che generi il linguaggio su $\Sigma = \{0,1,2\}$

$$L = \{w = 0^r 1^s 2^t | t = |r - s| \}$$

Soluzione: Il linguaggio L è l'unione dei due linguaggi $L_1 = \{w = 0^r 1^s 2^t | t = r - s\}$ e $L_2 = \{w = 0^r 1^s 2^t | t = s - r\}$.

Una grammatica che generi $L_1 = \{w = 0^r 1^s 2^t | r = s + t\}$ è data da

$$\begin{array}{ccc} U & \to & 0U2|X|\varepsilon \\ X & \to & 0X1|\varepsilon \end{array}$$

Una grammatica che generi $L_2 = \{w = 0^r 1^s 2^t | s = r + t\}$ è data da

$$\begin{array}{ccc} V & \rightarrow & YZ \\ Y & \rightarrow & 0Y1|\varepsilon \\ Z & \rightarrow & 1Z2|\varepsilon \end{array}$$

Una grammatica che genera L risulta allora per composizione delle precedenti come:

$$\begin{array}{ccc} S & \rightarrow & U|V \\ U & \rightarrow & 0U2|X|\varepsilon \\ X & \rightarrow & 0X1|\varepsilon \\ V & \rightarrow & YZ \\ Y & \rightarrow & 0Y1|\varepsilon \\ Z & \rightarrow & 1Z2|\varepsilon \end{array}$$

Eliminando le ε -produzioni otteniamo:

$$\begin{array}{cccc} S & \rightarrow & U|V|\varepsilon \\ U & \rightarrow & 0U2|X|02 \\ X & \rightarrow & 0X1|01 \\ V & \rightarrow & YZ|Y|Z \\ Y & \rightarrow & 0Y1|01 \\ Z & \rightarrow & 1Z2|12 \end{array}$$

Ignorando la produzione $S \to \varepsilon$, che sarà reintrodotta alla fine, ed eliminando le produzioni unitarie,

 $S \rightarrow 0U2|0X1|01|02|YZ|0Y1|01|1Z2|12$

 $U \rightarrow 0U2|0X1|01|02$

 $X \rightarrow 0X1|01$

 $V \rightarrow YZ|0Y1|01|1Z2|12$

 $Y \rightarrow 0Y1|01$

 $Z \rightarrow 1Z2|12$

e in CNF (riaggiungendo la produzione $S \to \varepsilon$)

 $S \rightarrow AP|AQ|AB|AC|YZ|AR|AB|BT|BC|\varepsilon$

 $U \rightarrow AP|AQ|AB|AC$

 $X \rightarrow AQ|AB$

 $V \rightarrow YZ|AR|AB|BT|BC$

 $Y \rightarrow AR|AB$

 $Z \rightarrow BT|BC$

 $P \rightarrow UC$

 $Q \rightarrow XB$

 $R \rightarrow YB$

 $T \rightarrow ZC$

 $A \rightarrow 0$

 $B \rightarrow 1$

 $C \rightarrow 2$

Quesito 3 (6 punti): Sia $\mathcal G$ una grammatica in CNF (Forma Normale di Chomsky). Mostrare che per ogni stringa $w\in L(\mathcal G)$ tutte le derivazioni di w in $\mathcal G$ hanno la stessa lunghezza. Derivare inoltre la relazione tra la lunghezza di una derivazione e $\mid w\mid$.

Soluzione: In una grammatica in CNF le produzioni sono del tipo $A \to BC$ o $A \to a$. Se consideriamo una stringa w di lunghezza n = |w| generate dalla grammatica ossrviamo che ogni derivazione inizia da una forma di frase di lunghezza 1 (l'assioma) e comprende una sequenza di passi di cui quelli corrispondenti a produzioni $A \to BC$ incrementano di 1 la lunghezza della forma di frase e quelli di tipo $A \to a$ trasformano un non terminale della forma di frase in un terminale. Di conseguenza, per ottenere una stringa di lunghezza n sono necessarie n-1 applicazioni di produzioni del primo tipo, mentre per ottenere gli n terminali della stringa sono necessarie n applicazioni di produzioni del secondo tipo. Ne deriva che la lunghezza della derivazione è esattamente 2n-1.

Quesito 4 (7 punti): Si considerino i linguaggi $L_1 = \{w = a^n b^m | n + m > 3\}$ e $L_2 = \{w = a^n b^m | n - m > 3\}$. Si collochino i due linguaggi all'interno della gerarchia di Chomsky.

Soluzione

 L_1 è regolare, in quanto riconosciuto dal seguente ASFD

Per quanto riguarda L_2 , questo linguaggio è context free, in quanto generato dalla grammatica

$$\begin{array}{ccc} S & \rightarrow & XY \\ X & \rightarrow & aX|aaa \\ Y & \rightarrow & aYb|\varepsilon \end{array}$$

Il linguaggio è inoltre strettamente context free, quindi non regolare, come mostrato applicando il pumping lemma per i linguaggi regolari e considerando ad esempio la stringa $\sigma=a^{n+3}b^n\in L_2$. Una qualunque decomposizione $\sigma=uvw$ con |uv|< n e $|v|\geq 1$ avrà necessariamente che $v=a^h$ per qualche $h\geq 1$. Di conseguenza la stringa $\sigma'=uw=a^{n+3-h}b^n$ non appartiene a L_2 , mostrando la non regolarità del linguaggio.

Quesito 5 (4 punti): Sia dato l'ASFND $\mathcal A$ con $\Sigma=\{0,1\}$, $Q=\{q_0,q_1,q_2,q_3\}$, $F=\{q_3\}$, δ_N definita come

Derivare un ASFD con funzione di transizione totale equivalente a A.

Soluzione: Riportiamo il grafo di transizione dell'automa ε -ASFND dato:

Eliminando le ε -transizioni otteniamo l'ASFND

E da questo l'ASFD

La funzione di transizione risulta completa.