РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра теории вероятностей и кибербезопасности

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

дисциплина: Сетевые технологии

Студент: Бансимба Клодели Дьегра

Студ. билет № 1032215651

Группа: НПИбд-02-22

МОСКВА

2024 г.

Цель работы:

Целью данной работы является изучение посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP.

Выполнение работы:

С помощью команды ipconfig выведем информацию о текущем сетевом соединении (Рис. 1.1):

```
PS C:\Users\bansi> ipconfig
Настройка протокола IP для Windows
Неизвестный адаптер Подключение по локальной сети:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер Ethernet Ethernet:
  DNS-суффикс подключения . . . . :
Локальный IPv6-адрес канала . . : fe80::6913:a1e4:1fca:fd04%5
IPv4-адрес . . . . . . . . : 192.168.56.1
Маска подсети . . . . . . . : 255.255.255.0
Основной шлюз . . . . . . :
Адаптер беспроводной локальной сети Подключение по локальной сети* 1
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Подключение по локальной сети* 1
   Состояние среды. . . . . . . . Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Беспроводная сеть:
   DNS-суффикс подключения . . . . : rudn.ru
   Локальный IPv6-адрес канала . . . : fe80::cde2:1581:c9f:eefc%8
   Адаптер Ethernet Сетевое подключение Bluetooth:
   Состояние среды. . . . . . . Среда передачи недоступна.
```

Рис. 1.1. Вывод информации о текущем сетевом соединении.

Теперь используем разные опции команды (Рис. 1.2-1.5):

```
Состояние среды. . . . . . . . Среда передачи недоступна.
  DNS-суффикс подключения . . . . :
PS C:\Users\bansi>
PS C:\Users\bansi> ipconfig /all
Настройка протокола IP для Windows
  Имя компьютера . . . . . . . : Claudely
  Основной DNS-суффикс . . . . . :
  Тип узла. . . . . . . . . . : Гибридный
  IP-маршрутизация включена . . . : Нет
  WINS-прокси включен . . . . . . . Нет
  Порядок просмотра суффиксов DNS . : rudn.ru
Неизвестный адаптер Подключение по локальной сети:
  Состояние среды. . . . . . . Среда передачи недоступна.
  DNS-суффикс подключения . . . . :
  Описание. . . . . . . . . . . . . . TAP-Windows Adapter V9
  Физический адрес. . . . . . . . : 00-FF-E5-B7-8A-10
  DHCP включен. . . . . . . . . . . . . . . .
  Автонастройка включена. . . . . : Да
Адаптер Ethernet Ethernet:
  DNS-суффикс подключения . . . . :
  Описание. . . . . . . . . . . . . . VirtualBox Host-Only Ethernet
Adapter
  DHCP включен. . . . . . . . . . . . . . . .
  Автонастройка включена. . . . . : Да
  Локальный IPv6-адрес канала . . . : fe80::6913:a1e4:1fca:fd04%5(0
сновной)
  Маска подсети . . . . . . . . . . . 255.255.255.0
  Основной шлюз. . . . . . . . :
  IAID DHCPv6 . . . . . . . . . . . . . . . . 587857959
  -8A-EA-63-AC
  NetBios через TCP/IP. . . . . . : Включен
Адаптер беспроводной локальной сети Подключение по локальной сети* 1
  Состояние среды. . . . . . . . Среда передачи недоступна.
```

Рис. 1.2. Отображение полной конфигурации TCP/IP для всех адаптеров.

```
PS C:\Users\bansi> ipconfig /displaydns
Hастройка протокола IP для Windows
    edgedl.me.gvt1.com
   Имя записи. . . . . : edgedl.me.gvt1.com
   Тип записи. . . . .
   Срок жизни. . . . . : 265
   Длина данных. . . . : 4
   Раздел. . . . . . : Ответ
   А-запись (узла) . . . : 34.104.35.123
   1.240.30.172.in-addr.arpa
   Имя записи. . . . . : 1.240.30.172.in-addr.arpa.
   Тип записи. . . . . : 12
   Срок жизни. . . . . : 518878
   Длина данных. . . . : 8
   Раздел. . . . . . : Ответ
   PTR-запись. . . . . : DESKTOP-PATH1A1.mshome.net
   desktop-path1a1.mshome.net
   Нет записей типа АААА
   desktop-path1a1.mshome.net
   Имя записи. . . . . : DESKTOP-PATH1A1.mshome.net
   Тип записи. . . . .
                         : 1
   Срок жизни. . . . . : 518878
   Длина данных. . . . . . 4
   Раздел. . . . . . . . Ответ
   А-запись (узла) . . . : 172.30.240.1
```

Рис. 1.3. Отображение содержимого кэша сопоставителя DNS-клиента, включающее как записи, предварительно загруженные из локального файла

Hosts, так и все недавно полученные записи ресурсов для запросов имен, разрешенных компьютером.

```
PS C:\Users\bansi>
PS C:\Users\bansi> ipconfig /registerdns
Запрошенная операция требует повышения.
PS C:\Users\bansi>
```

Рис. 1.4. Инициализация динамической регистрации вручную для DNS-имен и IP-адресов, настроенных на компьютере.

```
PS C:\Users\bansi> ipconfig /setclassid
Ошибка: неопознанная или неполная командная строка.
использование:
    ipconfig [/allcompartments] [/? | /all |
                                  /renew [adapter] | /release [adapter] |
/renew6 [adapter] | /release6 [adapter] |
                                  /flushdns | /displaydns | /registerdns |
                                  /showclassid adapter |
                                  /setclassid adapter [classid] |
                                  /showclassid6 adapter |
                                  /setclassid6 adapter [classid] ]
где
    adapter
                         Имя подключения
                        (допускаются подстановочные знаки * и ?, см. примеры)
    Параметры:
                         Вывод справки по использованию
       /all
                         Отображение полных сведений о конфигурации.
       /release
                         Освобождение IPv4-адреса для указанного адаптера.
       /release6
                         Освобождение IPv6-адреса для указанного адаптера.
                      Освобождение IPv4-адреса для указанного адаптера.
       /renew
       /renew6
                        Освобождение IPv6-адреса для указанного адаптера.
       /flushdns
                         Очищает кэш сопоставителя DNS.
       /registerdns
                         Обновляет все аренды DHCP и повторно регистрирует DNS-име
       /displaydns
                         Отображение содержимого кэша сопоставителя DNS.
       /showclassid
                         Отображает все ИД класса DHCP, разрешенные для адаптеров.
       /setclassid
                         Изменяет ИД класса DHCP.
                         Отображает все ИД класса DHCP IPv6, разрешенные для адапт
       /showclassid6
еров.
```

Рис. 1.5. Отображение идентификатора класса DHCP для указанного адаптера.

Определим MAC-адреса сетевых интерфейсов на нашем компьютере с помощью команды GETMAC. (Рис. 1.6).

Рис. 1.6. Определение MAC-адреса сетевых интерфейсов на нашем компьютере.

Установим на нашем устройстве Wireshark (Рис. 2.1).

Рис. 2.1. Установка на нашем устройстве Wireshark.

Запустим Wireshark. Выберем активный на нашем устройстве сетевой интерфейс и убедимся, что начался процесс захвата трафика (Рис. 2.2).

3axı	ват из Беспроводна	я сеть				_		×
Файл	Правка Вид 3	Запуск Захват Анализ	Статистика Телефония	Беспроводна	я связь	Инструменты	ы Спра	авка
		🔀 🕝 🤇 👄 👄 😤 🖔	<u>}</u> <u>↓</u> ≡ <u>=</u> •, •, •, •,	1 2 3				
При	имените фильтр ото	бражения <ctrl-></ctrl->						+
No.	Time	Source	Destination	Protocol L	engtł In	ıfo		
	1 0.000000	192.168.169.37	108.177.14.188	TCP	55 53	3448 → 5228	[ACK]	Seq=
	2 0.000521	192.168.169.37	108.177.14.188	TCP	55 53	3447 → 5228	[ACK]	Seq=
Ĺ	3 0.017888	108.177.14.188	192.168.169.37	TCP	66 52	228 → 53448	[ACK]	Seq=
	4 0.018426	108.177.14.188	192.168.169.37	TCP	66 52	228 → 53447	[ACK]	Seq=
-	5 1.636233	192.168.169.37	77.88.55.88	TCP	55 53	3880 → 443	[ACK] S	eq=1
	6 1.647610	77.88.55.88	192.168.169.37	TCP	66 44	13 → 53880	[ACK] S	eq=1

Рис. 2.2. Запуск Wireshark. Выбор активного сетевого интерфейса.

На нашем устройстве в консоли определим с помощью команды ipconfig IP-адрес устройства и шлюз по умолчанию (Рис. 2.3).

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . . . : rudn.ru
Локальный IPv6-адрес канала . . . : fe80::cde2:1581:c9f:eefc%8
IPv4-адрес. . . . . . . . . . . . : 192.168.169.37
Маска подсети . . . . . . . . . . : 255.255.224.0
Основной шлюз. . . . . . . . . : 192.168.160.1
```

Рис. 2.3. Определение IP-адреса устройства и шлюза по умолчанию.

На нашем устройстве в консоли с помощью команды ping 192.168.160.1 пропингуем шлюз по умолчанию (Рис. 2.4).

```
PS C:\Users\bansi> ping 192.168.160.1

Обмен пакетами с 192.168.160.1 по с 32 байтами данных:
Ответ от 192.168.160.1: число байт=32 время=7мс TTL=254
Ответ от 192.168.160.1: число байт=32 время=8мс TTL=254
Ответ от 192.168.160.1: число байт=32 время=15мс TTL=254
Ответ от 192.168.160.1: число байт=32 время=3мс TTL=254

Статистика Ping для 192.168.160.1:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 3мсек, Максимальное = 15 мсек, Среднее = 8 мсек
PS C:\Users\bansi>
```

Рис. 2.4. Пинг шлюза по умолчанию.

В Wireshark остановим захват трафика. В строке фильтра пропишем фильтр arp or icmp и убедимся, что в списке пакетов отобразились только пакеты ARP или ICMP, в частности пакеты, которые были сгенерированы с помощью команды ping, отправленной с нашего устройства на шлюз по умолчанию (Рис. 2.5).

icmp								+	
No.	Time	Source	Destination	Protocol	Lengtl	Info			
\rightarrow	207 154.095952	192.168.169.37	192.168.160.1	ICMP	74	Echo	(ping) requ	est id=0x0001,	seq=276/5121
←	208 154.103471	192.168.160.1	192.168.169.37	ICMP	74	Echo	(ping) repl	y id=0x0001,	seq=276/5121
	209 155.110420	192.168.169.37	192.168.160.1	ICMP	74	Echo	(ping) requ	est id=0x0001,	seq=277/5377
	210 155.118331	192.168.160.1	192.168.169.37	ICMP	74	Echo	(ping) repl	y id=0x0001,	seq=277/5377
	211 156.126983	192.168.169.37	192.168.160.1	ICMP	74	Echo	(ping) requ	est id=0x0001,	seq=278/5633
	212 156.142603	192.168.160.1	192.168.169.37	ICMP	74	Echo	(ping) repl	y id=0x0001,	seq=278/5633
	213 157.139294	192.168.169.37	192.168.160.1	ICMP	74	Echo	(ping) requ	est id=0x0001,	seq=279/5889
	214 157.142663	192.168.160.1	192.168.169.37	ICMP	74	Echo	(ping) repl	y id=0x0001,	seq=279/5889

Рис. 2.5. Остановка захвата трафика. Фильтр arp or icmp.

Изучим эхо-запрос и эхо-ответ ICMP в программе Wireshark:

- На панели списка пакетов выберем первый указанный кадр ICMP эхозапрос. 770:18:a7:60:9c:fb - MAC-адрес. Globally unique address, individual address (Рис. 2.6).
- На панели списка пакетов выберем второй указанный кадр ICMP эхоответ. d4:e9:8a:ea:63:ac MAC-адрес. Globally unique address, individual address (Рис. 2.7).

Рис. 2.6. Кадр ІСМР — эхо-запрос.

Рис. 2.7. Кадр ICMP — эхо-ответ.

Изучим кадры данных протокола ARP и данные в полях заголовка Ethernet II (Рис. 2.8).

Рис. 2.8. Изучение кадров данных протокола ARP и данных в полях заголовка Ethernet II.

Начнём новый процесс захвата трафика в Wireshark. На нашем устройстве в консоли пропингуем по имени адрес ping www.yandex.ru (Рис. 2.9).

```
PS C:\Users\bansi> ping www.yandex.ru

Oбмен пакетами с www.yandex.ru [77.88.55.88] с 32 байтами данных:

Oтвет от 77.88.55.88: число байт=32 время=8мс TTL=54

Oтвет от 77.88.55.88: число байт=32 время=10мс TTL=54

Oтвет от 77.88.55.88: число байт=32 время=11мс TTL=54

Oтвет от 77.88.55.88: число байт=32 время=29мс TTL=54

Cтатистика Ping для 77.88.55.88:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приема-передачи в мс:

Минимальное = 8мсек, Максимальное = 29 мсек, Среднее = 14 мсек

PS C:\Users\bansi>
```

Рис. 2.9. Пингуем по имени адрес vk.com.

B Wireshark остановим захват трафика. Изучим запросы и ответы протоколов ARP и ICMP.

d4:e9:8a:ea:63:ac - MAC-адрес источника, Globally unique address, individual address (Рис. 2.10).

70:18:a7:60:9c:fb - MAC-адрес получателя, Globally unique address, individual address (Рис. 2.11).

o 3	Вахват из Беспроводная	і сеть						_		×
Фай	л Правка Вид За	апуск Захват Анализ	Статистика Телефония	Беспровод	ная связь Инструменты Спр	авка				
		₹ 🐻 🔍 👄 ⇒ 😎 👍	J 💂 📃 🗨 Q Q	1 2 2						
	rp or icmp							F	X → ·	+ [-
No.	Time	Source	Destination	Protocol	Lengtl Info					
	8 6.618345	Cisco_63:d8:60	Broadcast	ARP	42 Gratuitous ARP for	192.168.17	7.25 (Reply)			
	139 78.063246	Cisco_63:d8:60	Broadcast	ARP	42 Gratuitous ARP for	192.168.17	2.27 (Reply)			
→	207 154.095952	192.168.169.37	192.168.160.1	ICMP	74 Echo (ping) reques	t id=0x000	1, seq=276/5121,	ttl=12	8 (repl	у.
—	208 154.103471	192.168.160.1	192.168.169.37	ICMP	74 Echo (ping) reply	id=0x000	1, seq=276/5121,	ttl=25	4 (requ	es.
	209 155.110420	192.168.169.37	192.168.160.1	ICMP	74 Echo (ping) reques	t id=0x000	1, seq=277/5377,	ttl=12	8 (repl	у
	210 155.118331	192.168.160.1	192.168.169.37	ICMP	74 Echo (ping) reply	id=0x000	1, seq=277/5377,	ttl=25	4 (requ	es
										ı
> F	rame 207: 74 bytes	on wire (592 bits),	74 bytes captured (59	92 bits) o	on interface \Device\NPF_	0000 7	0 18 a7 60 9c fb	d4 e9	8a ea	63
∨ E	thernet II, Src: I	<pre>Intel_ea:63:ac (d4:e9</pre>	:8a:ea:63:ac), Dst: Ci	isco_60:9	::fb (70:18:a7:60:9c:fb)		0 3c 2b d7 00 00			c0
,	✓ Destination: Cis	co_60:9c:fb (70:18:a	7:60:9c:fb)				0 01 08 00 4c 47 7 68 69 6a 6b 6c		01 14 6f 70	
	0	= L0	bit: Globally unique	address	(factory default)		7 61 62 63 64 65		68 69	/1
0										
,	Source: Intel_ea	:63:ac (d4:e9:8a:ea:	53:ac)							
	0	= L0	bit: Globally unique	address	(factory default)					
	a	- T(hit: Individual addr	ess (unic	act)					

Рис. 2.10. МАС-адрес источника.

Рис. 2.11. МАС-адрес получателя.

Запустим Wireshark. Выберем активный на нашем устройстве сетевой интерфейс и убедимся, что начался процесс захвата трафика (Рис. 3.1).

a 3	ахват из Беспроводная	я сеть				_	□ ×	
Фай.	л Правка Вид 3а	апуск Захват Анализ	Статистика Телефония	Беспровод	ная связ	ь Инструменты	Справка	
		X 🕝 9 👄 👄 🗟	<u> </u>	1 2 3				
	Примените фильтр отображения <ctrl-></ctrl-> → +							
No.	Time	Source	Destination	Protocol	Lengtl	Info		
	1 0.000000	192.168.169.37	87.250.251.15	TCP	55	53722 → 443 [AC	CK] Seq=1	
L	2 0.005775	87.250.251.15	192.168.169.37	TCP	66	443 → 53722 [AC	CK] Seq=1	
	3 0.466298	192.168.169.37	5.255.255.77	TCP	55	53715 → 443 [AC	CK] Seq=1	
	4 0.471649	5.255.255.77	192.168.169.37	TCP	66	443 → 53715 [AC	CK] Seq=1	
	5 3.727257	192.168.169.37	152.199.19.161	TCP	54	54040 → 443 [RS	ST, ACK]	
	6 3.727258	192.168.169.37	139.45.207.59	TCP	54	54028 → 443 [RS	ST, ACK]	
	7 5.527143	192.168.169.37	192.168.80.63	DNS	83	Standard query	0x597f A	
	8 5.529054	192.168.80.63	192.168.169.37	DNS	227	Standard query	response	
	9 5.530230	192.168.169.37	88.221.132.19	TCP	66	54289 → 80 [SYN	I] Seq=0	
	10 5.533390	88.221.132.19	192.168.169.37	TCP	66	80 → 54289 [SYN	N, ACK] S	

Рис. 3.1. Запуск Wireshark. Выбор активного сетевого интерфейса.

На устройстве в браузере перейдём на сайт, работающий по протоколу HTTP (http://info.cern.ch/) и поперемещаемся по ссылкам и разделам сайта в браузере (Рис. 3.2).

http://info.cern.ch - home of the first website

From here you can:

- Browse the first website
- Browse the first website using the line-mode browser simulator
- Learn about the birth of the web
- Learn about CERN, the physics laboratory where the web was born

Рис. 3.2. Открытие в браузере сайта CERN.

В Wireshark в строке фильтра укажем http и проанализируем информацию по протоколу TCP в случае запросов и ответов (Рис. 3.3).

Рис. 3.3. Анализ информации по протоколу ТСР.

В Wireshark в строке фильтра укажем dns и проанализируем информацию по протоколу UDP в случае запросов и ответов (Рис. 3.4).

Рис. 3.4. Анализ информации по протоколу UDP.

В Wireshark в строке фильтра укажем quic и проанализируем информацию по протоколу quic в случае запросов и ответов (Рис. 3.5).

Рис. 3.5. Анализ информации по протоколу QUIC.

Запустим Wireshark. Выберем активный на нашем устройстве сетевой интерфейс и убедимся, что начался процесс захвата трафика (Рис. 4.1).

Рис. 4.1. Запуск Wireshark. Выбор активного сетевого интерфейса.

На устройстве используем соединение по HTTP с сайтом CERN для захвата в Wireshark пакетов TCP (Рис. 4.2).

http://info.cern.ch - home of the first website

From here you can:

- Browse the first website
- Browse the first website using the line-mode browser simulator
- Learn about the birth of the web
- Learn about CERN, the physics laboratory where the web was born

Рис. 4.2. Использование соединения по HTTP с сайтом CERN.

В Wireshark проанализируем handshake протокола TCP (Рис. 4.3).

Файл	Правк	а Вид За	пуск Захват Анализ	Статистика Телефония	Беспровод	цная связ	ь Инструменты Справка	
	€		ù 🙋 │ ९ 👄 ⇒ 簦 🗿	<u>. 4 = </u>	1 2 3			
tcp	tcp							
No.	Tin	ne	Source	Destination	Protocol	Lengtł	Info	
62	201 238	36.929102	192.168.169.37	157.240.205.60	TCP	54	52908 \rightarrow 443 [FIN, ACK] Seq=775 Ack=724 Win=261376 L	
62	202 238	36.936390	192.168.169.37	157.240.205.61	TCP	66	52924 → 5222 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 W	
62	203 238	36.971292	157.240.205.61	192.168.169.37	TCP	66	5222 → 52924 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0	
62	204 238	36.971576	192.168.169.37	157.240.205.61	TCP	54	52924 → 5222 [ACK] Seq=1 Ack=1 Win=132096 Len=0	
62	205 238	36.972217	192.168.169.37	157.240.205.61	TCP	290	52924 → 5222 [PSH, ACK] Seq=1 Ack=1 Win=132096 Len=	
62	206 238	36.999875	157.240.205.61	192.168.169.37	TCP	54	5222 → 52924 [ACK] Seq=1 Ack=237 Win=66816 Len=0	
62	207 238	37.123407	157.240.205.61	192.168.169.37	TCP	111	$5222 \rightarrow 52924$ [PSH, ACK] Seq=1 Ack=237 Win=66816 Len	
62	208 238	37.123407	157.240.205.61	192.168.169.37	TCP	150	5222 \rightarrow 52924 [PSH, ACK] Seq=58 Ack=237 Win=66816 Le	
62	209 238	37.123680	192.168.169.37	157.240.205.61	TCP	54	$52924 \rightarrow 5222$ [ACK] Seq=237 Ack=154 Win=131840 Len=0	
62	210 238	37.134533	192.168.169.37	157.240.205.61	TCP	106	52924 → 5222 [PSH, ACK] Seq=237 Ack=154 Win=131840	
62	211 238	37.152677	157.240.205.61	192.168.169.37	TCP	54	5222 → 52924 [ACK] Seq=154 Ack=289 Win=66816 Len=0	
62	212 238	37.238765	192.168.169.37	87.229.142.100	TCP	54	[TCP Retransmission] 52907 → 443 [FIN, ACK] Seq=811	
62	213 238	37.238851	192.168.169.37	157.240.200.60	TCP	54	[TCP Retransmission] $52909 \rightarrow 443$ [FIN, ACK] Seq=797	
62	214 238	37.238866	192.168.169.37	157.240.205.60	TCP	54	[TCP Retransmission] 52906 \rightarrow 443 [FIN, ACK] Seq=982	
62	215 238	37.238879	192.168.169.37	157.240.205.60	TCP	54	[TCP Retransmission] 52908 → 443 [FIN, ACK] Seq=775	
62	216 238	37.272463	157.240.205.61	192.168.169.37	TCP	100	5222 \rightarrow 52924 [PSH, ACK] Seq=154 Ack=289 Win=66816 L	
62	217 238	37.272463	157.240.205.61	192.168.169.37	TCP	107	5222 \rightarrow 52924 [PSH, ACK] Seq=200 Ack=289 Win=66816 L	
63	218 238	37.272463	157.240.205.61	192.168.169.37	TCP	116	5222 → 52924 [PSH. ACK] Sea=253 Ack=289 Win=66816 L	

Рис. 4.3. Анализ handshake протокола ТСР.

 Wireshark · Поток · Беспроводная сеть 192.168.169.37 13.107.42.16 Время 172.205.25.163 629.008559 TCP: 443 → 52748 [ACK] Seq=4748 Ack=1582 Win=6576 Len= 629.017698 TCP: 443 → 52773 [ACK] Seq=3990 Ack=894 Win=64512 Len 52773 629.020721 TCP: 443 → 52763 [FIN, ACK] Seq=1 Ack=2 Win=27136 Len= 629.020851 TCP: 52763 → 443 [ACK] Seq=2 Ack=2 Win=131328 Len=0 52763 629.021052 TCP: 443 → 52769 [ACK] Seq=6513 Ack=983 Win=31188 Ler 629.374073 629.374151 629.374161 629.374169 TCP: [TCP Retransmission] 52625 → 443 [FIN, ACK] Seq=1 Ack. 629.374178 TCP: [TCP Retransmission] 52621 → 443 [FIN, ACK] Seq=1 Ack. 634.188979 TCP: [TCP Retransmission] 52623 → 443 [FIN, ACK] Seq=1 Ack 634.189072 TCP: [TCP Retransmission] 52624 → 443 [FIN, ACK] Seq=1 Ack 634.189086 TCP: [TCP Retransmission] 52622 → 443 [FIN, ACK] Seq=1 Ack. TCP: [TCP Retransmission] 52625 → 443 [FIN, ACK] Seq=1 Ack. 634.189098 TCP: [TCP Retransmission] 52621 → 443 [FIN, ACK] Seq=1 Ack. 634.189116 TCP: 443 → 52745 [FIN, ACK] Seg=4593 Ack=1256 Win=3504. 641.665286 641.665445 TCP: 52745 → 443 [ACK] Seg=1256 Ack=4594 Win=131328 Le 641.668667 TCP: 443 → 52745 [RST, ACK] Seq=4594 Ack=1256 Win=3504.

В Wireshark в меню «Статистика» выберем «График Потока» (Рис. 4.4).

Рис. 4.4. График потока.

Вывод:

В ходе выполнения лабораторной работы мы изучили посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP.