Полу-определённое программирование Полиномиальная оптимизация

Roland Hildebrand

LJK, Université Grenoble Alpes / CNRS

Методы оптимизации, ФУПМ МФТИ, апрель 2021 г.

Задача нахождения максимального разреза (MaxCut)

пусть задан граф с неотрицательными весами w_{ii} на рёбрах требуется разбить множество вершин V графа на два непересекающихся подмножества S, T так, что максимизируется вес разреза

$$\sum_{(i,j)\in(S\times T)}w_{ij}$$

граф с n = 10 вершинами и единичными весами на 27 рёбрах

Формализация проблемы

представим разрез в виде вектора $x \in \{-1, +1\}^n$ веса рёбер соберём в симметрической матрице W

тогда вес разреза запишется в виде

$$\frac{1}{4} \left(\mathbf{1}^T W \mathbf{1} - x^T W x \right)$$

заменим вектор x на симметрическую одноранговую матрицу $X=xx^T$, тогда проблема запишется в виде

$$\max_{X} \frac{1}{4} \langle W, \mathbf{1} - X \rangle$$

с ограничениями

$$X \succeq 0$$
, diag $(X) = 1$, rk $X = 1$

Полу-определённая релаксация

релаксацию получаем отбрасыванием невыпуклого ограничения на ранг:

$$\max_{X \in \mathcal{S}_+^n} rac{1}{4} \langle W, \mathbf{1} - X
angle : \mathsf{diag}(X) = \mathbf{1}$$

обозначим оптимальные значения исходной проблемы МС и её релаксации SR через

$$c_{MC}^{opt} \leq c_{SR}^{opt}$$

оптимальное решение X^* релаксации SR соответствует оптимальному решению x^* исходной задачи MC только если rk $X^*=1$

тогда оптимальный разрез восстанавливается из факторизации $X^* = xx^T$

Построение суб-оптимальных решений

пусть X^* — оптимальное решение SR произвольного ранга k тогда факторизация $X^* = FF^T$ даст нам фактор F размера $n \times k$

пусть $\xi \sim \mathcal{N}(0,X^*)$ — гауссовый случайный вектор с ковариацией X^*

тогда $x=\operatorname{sgn}\,\xi$ определяет *случайный разрез* со значением c_ξ

рассмотрим эквивалентную конструкцию:

пусть $\psi \sim (0,I)$ — стандартный гауссовый случайный вектор в \mathbb{R}^k , и $\xi = F\psi$

пусть $f_1, \ldots, f_n \in \mathbb{R}^k$ строки фактора F (на единичной сфере) тогда $x_i = \operatorname{sgn} \xi_i = \operatorname{sgn} \langle f_i, \psi \rangle$

$$\mathbb{E}\xi\xi^{T} = X^{*} = FF^{T} = F\left(\mathbb{E}\psi\psi^{T}\right)F^{T} = \mathbb{E}(F\psi)(F\psi)^{T}$$

каждая строка $f_i \in \mathbb{R}^k$ соответствует вершине графа случайный разрез определяется разбиением векторов f_i на два подмножества с помощью случайной гиперплоскости ψ^\perp

Построение случайных разрезов

слева: n=10 векторов $f_i \in \mathbb{R}^2$ справа: различных разбиений векторов f_i случайными гиперплоскостями

Вероятность разделения двух данных векторов

вычислим вероятность того, что вершины i,j окажутся в разных подмножествах

$$\mathbb{P}(x_i x_j = -1) = \mathbb{P}(\operatorname{sgn}\langle f_i, \psi \rangle = -\operatorname{sgn}\langle f_j, \psi \rangle) = \frac{\phi(f_i, f_j)}{\pi} = \frac{\operatorname{arccos} X_{ij}^*}{\pi}$$

Мат-ожидание веса разреза

мат-ожидание веса случайного разреза задаётся выражением

$$\mathbb{E}_{\xi} c_{\xi} = \frac{1}{4} \langle W, \mathbf{1} - \mathbb{E}_{\xi} x x^{T} \rangle$$

$$= \frac{1}{2} \sum_{i < j} w_{ij} \mathbb{E}_{\xi} (1 - x_{i} x_{j})$$

$$= \sum_{i < j} w_{ij} \mathbb{P} (x_{i} x_{j} = -1)$$

$$= \sum_{i < j} w_{ij} \frac{\arccos X_{ij}^{*}}{\pi} = \frac{1}{2\pi} \langle W, \arccos X^{*} \rangle$$

$$\geq \alpha \cdot \frac{1}{4} \langle W, \mathbf{1} - X^{*} \rangle = \alpha \cdot c_{SR}^{opt}$$

где
$$\alpha = \min_{x \in [-1,1]} \frac{\frac{1}{2\pi} \arccos x}{\frac{1}{4}(1-x)} = \min_{x \in [-1,1]} \frac{2\arccos x}{\pi(1-x)} \approx 0.87856$$

Теорема Гёманса-Виллиамсона

Teopeмa (Goemans, Williamson 1995)

Пусть c_{MC}^{opt} , c_{SR}^{opt} — оптимальные значения исходной проблемы максимизации веса разреза и её полу-определённой релаксации. Пусть c_{ξ} — вес случайного разреза, генерированного с помощью оптимального решения X^* релаксации. Тогда имеем

$$\alpha \cdot c_{SR}^{opt} \leq \mathbb{E} c_{\xi} \leq c_{MC}^{opt} \leq c_{SR}^{opt},$$

где
$$\alpha = \min_{x \in [-1,1]} \frac{2\arccos x}{\pi(1-x)}$$
.

Политоп максимальных разрезов

релаксацию можно интерпретировать следующим образом: определим политоп максимальных разрезов (MaxCut polytope)

$$\mathcal{MC} = \mathsf{conv}\left\{ \mathbf{x}\mathbf{x}^T \mid \mathbf{x} \in \{-1, +1\}^n \right\}$$

и полу-определённое множество

$$\mathcal{SR} = \{X \in \mathcal{S}^n_+ \mid \mathsf{diag}(X) = \mathbf{1}\}$$

 \mathcal{SR} — вычислительно доступное надмножество сложного политопа \mathcal{MC}

оптимальные значения представятся в виде

$$c_{MC}^{opt} = \max_{X \in \mathcal{MC}} \frac{1}{4} \langle W, \mathbf{1} - X \rangle$$

$$c_{SR}^{opt} = \max_{X \in \mathcal{SR}} \frac{1}{4} \langle W, \mathbf{1} - X \rangle$$

Максимизация выпуклой формы на кубе

пусть $Q \in \mathcal{S}^n_+$ — выпуклая квадратичная форма на \mathbb{R}^n проблему максимизации

$$\max_{x \in [-1,1]^n} x^T Q x$$

можно записать в виде

$$\max_{X \in \mathcal{MC}} \langle Q, X \rangle$$

поскольку выпуклая функция достигает максимума на политопе в вершине

заменой \mathcal{MC} на \mathcal{SR} получаем релаксацию

$$\max_{X \in \mathcal{SR}} \left\langle Q, X \right\rangle = \max_{X \in \mathcal{S}_+^n} \left\langle Q, X \right\rangle : \ \mathsf{diag}(X) = 1$$

Построение субоптимальных решений

пусть X^* — оптимальное решение релаксации пусть $\xi \sim \mathcal{N}(0,X^*)$ случайный гауссовый вектор, и x= sgn ξ , $X=xx^T$

тогда $X \in \mathcal{MC}$ является (случайным) субоптимальным решением исходной задачи

мат-ожидание элементов X равно

$$\begin{split} \mathbb{E}_{\xi} X_{ij} &= \mathbb{P}(x_i x_j = 1) - \mathbb{P}(x_i x_j = -1) = 1 - 2\mathbb{P}(x_i x_j = -1) \\ &= 1 - 2\frac{\mathsf{arccos}\, X_{ij}^*}{\pi} = \frac{2}{\pi}\,\mathsf{arcsin}\, X_{ij}^* \end{split}$$

отсюда мат-ожидание цены

$$\mathbb{E}_{\xi}\langle Q,X
angle = rac{2}{\pi}\langle Q, \operatorname{arcsin} X^*
angle$$

где arcsin применяется по-элементно

$\frac{\pi}{2}$ -теорема Нестерова

Теорема

Пусть $Q \in \mathcal{S}^n_+$. Тогда

$$\frac{2}{\pi} \max_{X \in \mathcal{SR}} \langle Q, X \rangle \leq \max_{x \in [-1,1]^n} x^T Q x \leq \max_{X \in \mathcal{SR}} \langle Q, X \rangle.$$

док-во:

$$\begin{split} \frac{2}{\pi} \langle Q, X^* \rangle & \leq \frac{2}{\pi} \langle Q, \arcsin X^* \rangle = \mathbb{E}_{\xi} \langle Q, X \rangle \leq \\ & \leq \max_{x \in [-1,1]^n} x^T Q x \leq \max_{X \in \mathcal{SR}} \langle Q, X \rangle \end{split}$$

 \leq поскольку arcsin $X=X+rac{X^3}{6}+rac{3X^5}{40}+rac{5X^7}{112}+\cdots$ с положительными коэффициентами

Задача о максимальной клике (MaxClique)

Определение

Кликой графа G называют подмножество S вершин такое, что любые две вершины из S соединены ребром. Максимальной кликой называется клика, которая перестаёт быть кликой при добавлении любой дополнительной вершины. Кликовым числом $\alpha(G)$ графа G называется мощность наибольшей клики.

верхней оценкой кликового числа является ϑ -функция Ловаша, которую можно вычислить полу-определённой программой

$$\max_{X \succeq 0} \left\langle X, \mathbf{1} \right\rangle \colon \ X \bullet A_{\bar{G}} = 0, \ \mathrm{tr} \ X = 1$$

или двойственной к ней

min
$$\lambda_{\mathsf{max}}(Y+1)$$
: $Y \bullet A_G = 0$, diag $Y = 0$

Задача о максимальной клике

пусть $S\subset V$ — наибольшая клика графа G, и k — её мощность определим матрицу $X=(X_{ij})$:

$$X_{ij} = \left\{ egin{array}{ll} rac{1}{k}, & i,j \in \mathcal{S}, \\ 0, & \{i,j\} \not\subset \mathcal{S}. \end{array}
ight.$$

тогда

$$\operatorname{tr} X = 1, \quad X \succeq 0, \quad X \bullet A_{\bar{G}} = 0, \quad \langle X, \mathbf{1} \rangle = k$$

отсюда

$$k \leq \vartheta(G)$$

Вершинное число независимости

Определение

Подмножество вершин S графа G называется независимым, если любые его два элемента несмежные. Мощность самого большого независимого множество называется вершинным числом независимости.

независимые множества G соответствуют кликам \bar{G} , и вершинное число независимости G равно кликовому числу \bar{G} ϑ -функция Ловаша даёт верхнюю границу

Условия неотрицательности в полиномиальной оптимизации

Определение

Обозначим через $P_{n,d}$ множество неотрицательных на \mathbb{R}^n однородных полиномов $p:\mathbb{R}^n \to \mathbb{R}$ степени d.

для чётных d множество $P_{n,d}$ является регулярным выпуклым конусом

условия вида $p \in P_{n,d}$ можно интерпретировать как конические ограничения на вектор коэффициентов полинома p

неотрицательность полинома p в общем случае трудно проверить, поэтому релаксируем условием представимости в виде суммы квадратов (СК, sum of squares – SOS)

Суммы квадратов

Определение

Обозначим через $\Sigma_{n,d}$ множество однородных полиномов $p: \mathbb{R}^n \to \mathbb{R}$ степени d, представимых в виде конечной суммы $p(x) = \sum_k q_k^2(x)$, где $q_k(x)$ — однородные полиномы степени d/2.

для чётных d множество $\Sigma_{n,d}$ является регулярным выпуклым конусом, и $\Sigma_{n,d}\subset P_{n,d}$

в релаксациях типа сумм квадратов условие $p \in P_{n,d}$ релаксируется более сильным условием $p \in \Sigma_{n,d}$

Точность СК-релаксаций

для чётного d равенство $P_{n,d} = \Sigma_{n,d}$ выполняется тогда и только тогда, когда [Гильберт 1888]

- d = 2 (квадрики)
- $n \le 2$ (n = 1: скаляры, n = 2: полиномы на $\mathbb{R})$
- n = 3, d = 4

во всех других случаях не только имеет место *строгое* включение $\Sigma_{n,d}\subset P_{n,d}$, но даже не существует полу-определённого представления конуса $P_{n,d}$

пример: полином Моцкина

$$p(x, y, z) = x^4y^2 + x^2y^4 + z^6 - 3x^2y^2z^2$$

является элементом разницы $P_{3,6} \setminus \Sigma_{3,6}$

Полиномы на $\mathbb R$

полином $p \in P_{2,d}$ эквивалентен неоднородному полиному $ilde{p}(x) = p(x,1)$ степени не больше d

покажем, что любой неотрицательный полином $p:\mathbb{R} o \mathbb{R}$ степени d представляется в виде суммы квадратов

- d чётное
- ullet $p(x) = a \prod_{j=1}^d (x x_j)$, где $a = (\sqrt{a})^2 > 0$
- вещественные корни имеют чётную кратность \Rightarrow получаем множитель $(x-x_j)^2$
- комплексные корни возникают в сопряжённых парах $a \pm ib$ \Rightarrow получаем множитель $(x-a)^2 + b^2$
- произведение сумм квадратов является суммой квадратов

$$p(x) = x^6 - x^4 - 2x^3 + 2x^2$$

корни и значения на $\mathbb R$ полинома p(x)

$$p(x) = ((x+1)^2 + 1)x^2(x-1)^2 = (x(x^2-1))^2 + (x(x-1))^2$$

Полу-определённая представимость условия СК

пусть $\mathbf{x}=(x^{\alpha})_{|\alpha|=d}$ — вектор всех N мономов степени d здесь $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n$ — мульти-индекс, $x^{\alpha}=\prod_{j=1}^n x_j^{\alpha_j}$, $|\alpha|=\sum_{j=1}^n \alpha_j$

тогда любой однородный полином q_j степени d записывается в виде

$$q_j(x) = \sum_{|\alpha|=d} q_{j,\alpha} x^{\alpha} = \langle \mathbf{q}_j, \mathbf{x} \rangle$$

где ${f q}_j=(q_{j,lpha})_{|lpha|=d}$ — его вектор коэффициентов однородный полином p степени 2d записывается в виде

$$p(x) = \mathbf{x}^T P \mathbf{x}$$

для некоторой матрицы $P \in \mathcal{S}^N$, поскольку любой моном степени 2d является произведением двух мономов степени d

Полу-определённая представимость условия СК

сумму квадратов $p \in \Sigma_{n,2d}$ можно записать в виде

$$p(x) = \sum_{j=1}^{m} q_j(x)^2 = \sum_{j=1}^{m} \langle \mathbf{q}_j, \mathbf{x} \rangle^2 = \mathbf{x}^T P \mathbf{x}$$

где
$$P = \sum_{j=1}^m \mathbf{q}_j \mathbf{q}_j^T \succeq \mathbf{0}$$

теперь положим $P=QQ^T\succeq 0$ с $Q=(\mathbf{q}_1,\ldots,\mathbf{q}_m)$ отсюда

$$p(x) = \mathbf{x}^T P \mathbf{x} = (Q^T \mathbf{x})^T (Q^T \mathbf{x}) = \sum_{j=1}^m \langle \mathbf{q}_j, \mathbf{x} \rangle^2 = \sum_{j=1}^m q_j(x)^2$$

записывается в виде СК полиномов $q_j(x) = \langle \mathbf{q}_j, \mathbf{x}
angle$

условие $p \in \Sigma_{n,2d}$ эквивалентно полу-определённому условию

$$\exists P \in \mathcal{S}_{+}^{N}: \quad p(x) = \mathbf{x}^{T} P \mathbf{x}$$

Минимизация полинома на $\mathbb R$

рассмотрим задачу

$$\min_{x \in \mathbb{R}} p(x)$$

где p — полином степени 2d

задача эквивалентна

$$\max \ t: \ p(x) - t \geq 0 \quad orall \ x \in \mathbb{R}$$
 $\Leftrightarrow \max \ t: \ p(x) - t \quad$ является СК

пусть $\mathbf{x}=(1,x,\dots,x^d)^T$, с индексацией от 0 до d тогда p(x)-t является СК $\Leftrightarrow \exists \ P\in \mathcal{S}^{d+1}_+\colon p(x)-t=\mathbf{x}^TP\mathbf{x}$ сравним коэффициенты при степенях x получаем полу-определённую программу

$$\max_{t,P\succeq 0} t: \quad p_k = \sum_{i+j=k} P_{ij}, \ k = 1,\ldots,2d; \ p_0 - t = P_{00}$$

V словие неотрицательности: полиномы на $\mathbb R$

полином $p:\mathbb{R} \to \mathbb{R}$ степени 2d является неотрицательным тогда и только тогда, когда существует $P \in \mathcal{S}^{d+1}_+$ такая, что суммы элементов P по косым диагоналям равны коэффициентам полинома p

Интерпретация

минимизация полинома общего вида на \mathbb{R} — невыпуклая задача

минимизируем линейный функционал не на моментной кривой

$$\{(1,x,\ldots,x^d)\mid x\in\mathbb{R}\}$$

а на её выпуклой оболочке оболочка имеет полу-определённое представление

Условие неотрицательности: квартики на \mathbb{R}^2

рассмотрим квартику

$$p(x,y) = p_{00} + p_{10}x + p_{01}y + \cdots + p_{40}x^4 + p_{04}y^4$$

имеем $p(x,y) \geq 0$ тогда и только тогда, когда существует $P \in \mathcal{S}^6_+$ такое, что представленные ниже суммы элементов P равны коэффициентам p

здесь
$$\mathbf{x} = (x^2, y^2, 1, y, x, xy)^T$$

Коположительные матрицы

Определение

Матрица $A \in \mathcal{S}^n$ называется коположительной если $x^T A x \geq 0$ для всех $x \in \mathbb{R}^n_+$. Множество коположительных матриц образует коположительный конус \mathcal{COP}^n .

коположительность A эквивалентна неотрицательности квартики

$$p_A(x) = \sum_{i,j=1}^n A_{ij} x_i^2 x_j^2$$

достаточным условием является представимость p_A в виде СК: $p_A \in \Sigma_{n,4}$ оно эквивалентно существованию разложения A=P+N на

 $P \in \mathcal{S}^n_+, \ N \geq 0$

это условие также необходимо при $n \leq 4$

Задача о максимальной клике

кликовое число графа G можно представить в виде оптимального значения коположительной программы

$$\min_{Z \in \mathcal{COP}^n} \alpha : \quad Z = \alpha (I + A_{\bar{G}}) - 1 = (\alpha - 1)1 - \alpha A_G$$

здесь 1 — матрица, состоящая из единиц

верхняя оценка на $lpha(\mathcal{G})$ получается полу-определённой релаксацией

$$\min_{Z\succeq 0} \lambda: \quad Z \leq \lambda(I+A_{\bar{G}})-1=(\lambda-1)1-\lambda A_G$$

она получается заменой \mathcal{COP}^n на $\mathcal{S}^n_+ + \mathcal{N}^n$ здесь \mathcal{N}^n — конус по-элементно неотрицательных симметрических матриц

сложнее и сильнее, чем ϑ -функция Ловаша

Полиномиальная оптимизация

рассмотрим проблему полиномиальной оптимизации

$$\min_{x \in K} f_0(x)$$

где

$$K = \{x \mid f_i(x) = 0, \ g_j(x) \le 0\}$$

базовое полу-алгебраическое множество все функции f_i,g_j — полиномы

пусть $P_{K,d}$ — конус полиномов степени, не превосходящей d, неотрицательных на K

проблема запишется в виде конической программы над конусом $P_{K,d}$

$$\max \tau: \quad f_0(x) - \tau \in P_{K,d}$$

здесь $d \geq \deg f_0$

Конус СК $\Sigma_{K,d}$

необходимо аппроксимировать конус $P_{K,d}$ полу-определённо представимым конусом

пусть $\Sigma_{K,d}$ — множество всех полиномов степени, не превосходящей d, представимых в виде конечной суммы

$$p(x) = \sigma_0(x) + \sum_i p_i(x)f_i(x) - \sum_j \sigma_j(x)g_j(x)$$

где σ_i — СК, а p_i — произвольные полиномы

можно усилить релаксацию, работая с представлениями вида

$$p(x) = \sigma_0(x) + \sum_i p_i(x)f_i(x) - \sum_j \sigma_j(x)g_j(x) + \sum_{i,j} \sigma_{i,j}(x)g_i(x)g_j(x)$$

и т.д.

Релаксация СК

имеем $\Sigma_{K,d}\subset P_{K,d}$, поэтому значение au_d полу-определённой программы

$$\max \tau: f_0(x) - \tau \in \Sigma_{K,d}$$

не больше значения au^* исходной проблемы

последовательность au_d возрастает с d

Teopeмa (Putinar 1993, Lasserre 2001)

Пусть K — компакт. Тогда $\lim_{d\to\infty} \tau_d = \tau^*$.

Пример

минимизируем полином p(x,y) на квадрате $[-1,1]^2$

СК релаксация запишется в виде

 $\max \tau$:

$$p(x,y) - \tau = \sigma_0(x,y) - \sigma_1(x,y) \cdot (x-1) - \sigma_2(x,y) \cdot (-x-1) - \sigma_3(x,y) \cdot (y-1) - \sigma_4(x,y) \cdot (-y-1)$$

где
$$\sigma_0,\ldots,\sigma_4$$
 — СК

Дальнейшие релаксации

сложность СК релаксаций быстро возрастает с n и d

условие неотрицательной определённости $A\succeq 0$ можно заменить более сильными, простыми условиями

- DSOS (diagonally dominant sum of squares): диагональный элемент доминирует 1-норму строки, SDP ightarrow LP
- SDSOS (scaled diagonally dominant sum of squares): матрица A является суммой положительно определённых 2×2 подматриц, SDP \to SOCP

Программное обеспечение

релаксации типа сумм СК можно строить и решать с помощью пакета <mark>SOStools</mark> (A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P.A. Parrilo) http://www.cds.caltech.edu/sostools/

другие пакеты

- Sparse-BSOS (разреженные проблемы большой размерности, Т. Weisser, J.-B. Lasserre, K.-C. Toh)
- SOSOPT (представимость в виде СК и оптимизация, P. Seiler)
- SPOT (наподобие SOStools, A. Megretski)
- SPOTless (DSOS, SDSOS, A. Megretski, M. Tobenkin, F. Permenter, A. Majumdar)

Спасибо за внимание