EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

08060307

PUBLICATION DATE

05-03-96

APPLICATION DATE

23-08-94

APPLICATION NUMBER

06198217

APPLICANT: SUMITOMO METAL IND LTD:

INVENTOR: FURUKATA MUNEKATSU;

INT.CL.

: C22C 38/00 C22C 38/44 C23C 8/18 H01L 21/02

TITLE

: STAINLESS STEEL TUBE FOR HIGH PURITY GAS

ABSTRACT :

PURPOSE: To produce a stainless steel tube for high purity gas, excellent in moisture liberating property, corrosion resistance to corrosive gases such as chlorine gas, and non-catalytic property to chemically unstable special gases such as silane gas.

CONSTITUTION: This steel tube is an austenitic stainless steel tube which has a composition containing, by weight, 10-45% Ni, 15-30% Cr, and 0-7% Mo and in which maximum surface roughness of internal surface is regulated to Rmax 3μ or below and also surface hardness is regulated to ≥250 by Vickers hardness. By this method, the stainless steel tube can be inexpensively produced without using particular plastic working means.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-60307

(43)公開日 平成8年(1996)3月5日

(51) Int.Cl. ⁶	識別配号 庁内整理	番号 FI	技術表示箇所
C 2 2 C 38/0	00 302 Z		
38/4	14		
C 2 3 C 8/1	8		
H01L 21/0	2 Z		
		審査請求	未請求 請求項の数2 OL (全 6 頁)
(21)出顯番号	特顏平6-198217	(71)出願人	000002118
			住友金属工業株式会社
(22)出願日	平成6年(1994)8月23日		大阪府大阪市中央区北浜 4 丁目 5 番33号
		(72)発明者	東 茂樹
			大阪府大阪市中央区北浜 4 丁目 5 番33号住
			友金属工業株式会社内
		(72)発明者	本地 雅宏
			大阪府大阪市中央区北浜 4 丁目 5 番33号住
			友金属工業株式会社内
		(72)発明者	古堅 宗勝
			大阪府大阪市中央区北浜 4 丁目 5 番33号住
			友金属工業株式会社内
		(74)代理人	弁理士 森 道雄 (外1名)

(54) 【発明の名称】 高純度ガス用ステンレス鋼管

(57)【要約】

【目的】水分放出性、塩素ガス等の腐食性ガスに対する耐食性およびシランガス等の化学的に不安定な特殊ガスに対する非触媒性がともに優れる高純度ガス用ステンレス鋼管を提供する。

【構成】内面の表面最大粗さをRmax 3μ m以下、表面硬さをピッカース硬度で250以上にしたNi: $10\sim45$ 取量%、 $Cr:15\sim30$ 重量%、 $Mo:0\sim7$ 取量%を含有するオーステナイト系ステンレス鋼管。

1

【特許請求の範囲】

【 請求項 1 】 収量%で、Ni:10~45%、Cr:15~30%、Mo:0~7%を含有するオーステナイト系ステンレス鋼からなり、内面の表面最大粗さ (Rmax)が3 μ m以下で、且つ表面硬さがピッカース硬度 (Hv 25g)で250以上であることを特徴とする高純度ガス用ステンレス鋼管。

【 請求項2】その内表面に、酸化皮膜を生成形成させたことを特徴とする請求項1に記載の高純度ガス用ステンレス鋼管。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体製造装置などの 高純度ガス配管等に使用されるステンレス鋼管に関す る。

[0002]

【従来の技術】半導体及び液晶製造分野においては、近年、高集積化が進み、超LSIと称されるディバイスでは1μm以下の微細パターンの加工が必要とされている。

【0003】このような超LSI製造プロセスでは、極微少な廃や微量不純物ガス等が配線パターンに付着、吸着すると回路不良の原因となって製品の歩留まりが低下するため、使用する反応ガスおよびキャリヤーガスとしては、いずれも高純度ガス、ずなわちガス中に微粒子および不純物ガスの少ないガスが必要とされる。

【0004】高純度ガス用配管およびパルブ、ベローズ、エルボ等の配管用部材には、管内面から放出される微粒子、不純物ガスおよび水分等の極力少ないことが要求され、これは上配ガス配管用部材に限らず、ウェハー 30上に微細加工を行うエッチング装置等の各種加工装置の材料にも同様の性能が要求されている。

【0005】一方、半導体製造用ガスとしては、窒素、アルゴン等の不活性ガスの他、いわゆる特殊材料ガスと呼ばれる塩素ガス、塩化水素ガス、臭化水素ガス、シランガスおよびジボランガス等が使用され、これらの特殊材料ガス用の配管材料としては、塩素ガス、塩化水素ガス、臭化水素ガス等の腐食性ガスに対する耐食性は勿論、シランガス等の化学的に不安定なガスに対する非触媒性を有することが必要とされる。

【0006】材料としては、一般に、オーステナイト系ステンレス網、中でもSUS316Lが主として用いられ、その鋼管は、通常、冷間抽伸仕上げまたは電解研磨して管内表面を平滑化したものが使用されているが、上配要求を十分に満足するものでないため種々の提案がなされている。

【0007】例えば、特開昭63-161145号公報には、鋼中のMn、S1、A1、O等の不純物元素の含有量を規制して非金属介在物を低減することによって管内面から発生するパーティクルの低減を図ったクリーン

ルーム用鋼管、特開平1-198463号公報には、S US316L鋼管の内面に電解研磨を施した後に所定露 点温度域の酸化性ガス雰囲気中で加熱処理してその表面 に特定元素濃度、厚さの酸化被膜を形成させて耐水分放 出性を改善する方法、および特開平5-59524号公 報には、特定の成分組成を有するステンレス鋼に所定の 酸素分圧、温度域中で加熱処理を施してその表面にCr2 Os を主体とする所定原さの酸化被膜を形成させて水分 を含む耐ガス放出性を改善する方法が提案されている 10 が、これ等の方法では、いずれも耐水分放出性あるいは 耐ガス放出性についてはある程度の効果はあるものの、 腐食性ガスに対する耐食性および化学的に不安定なシラ ンガス等に対する非触媒性に劣るという問題があった。 【0008】また、上記特殊ガスに対する耐食性あるい は非触媒性を改善する方法としては、表層が微細結晶粒 組織のときには母材からのCrの拡散が促進されて耐食 性に優れる酸化皮膜が形成されるとした上で、SICペ ーパによる粗表面研磨処理後のSUS316Lステンレ ス鋼に高温酸化処理を施してその鋼表面にCr酸化物層 を形成させることによって塩素ガスに対する耐食性を向 上させる方法(腐食防食 '93 講演集、29ページ:社 いは上記と同様の理由から、特殊研磨後のステンレス鋼

2

[0009]

【発明が解決しようとする課題】本発明の目的は、上記の実状に鑑み成されたもので、特殊な機械的研磨手段を採用することなく製造でき、且つ耐発塵性および耐水分放出性は勿論、特殊ガスに対する耐食性および非触媒性に優れる高純度ガス用ステンレス鋼管を提供することにある。

[0010]

【課題を解決するための手段】本発明は、下記の知見に基づいてなされたものであり、その要旨は、次の (1)および(2) にある。

【0011】(1) 重量%で、Ni:10~45%、Cr:15~30%、Mo:0~7%を含有するオーステ

50

ナイト系ステンレス鋼からなり、内面の表面最大粗さ (Rmax) が 3μ m以下で、且つ表面硬度がピッカース硬度 (Hv 25g) で 250 以上であることを特徴とする高純度ガス用ステンレス鋼管。

【0012】(2) その内表面に、酸化皮膜を生成形成させたことを特徴とする上記 (1)に記載の高純度ガス用ステンレス鋼管。

【0013】発明者等は、熱処理による高Cr濃度のCr酸化皮膜の生成には、母材ステンレス鋼から酸化反応が起こる管内面へのCrの拡散速度が重要であり、前配 10 従来方法での機械的手段による粗研磨の効果が微細結晶粒組織化によるのではなく、管内面に所定量の歪を与えることによって内面近傍でのCrの拡散加速が増す結果、その後の酸化熱処理時において容易に高Cr濃度のCr酸化皮膜が生成するのではないかと考えた。

【0014】そこで、上記従来方法の機械的な研磨手段以外の方法であって、対象を小径長尺の網管とし、その管内面に所定量の歪を均一に与える塑性加工方法について検討した結果、網管の製造に通常用いられる冷間抽伸法で、加工度(断面減少率)を変えることによって管内20面の硬度を種々変化させた網管を対象にして酸化熱処理を施したところ、冷間抽伸加工後の管内面硬度がビッカース硬度(Hv25g)で250以上の硬度である場合には良好なCr酸化皮膜が生成することを見いだした。これは、前述したように、酸化熱処理時における母材から酸化反応の起こる管内面へのCrの拡散速度が増すのに必要な付与すべき加工歪が表面硬度で評価できることを意味している。

[0015]

【作用】以下、本発明の限定理由について説明する。

【0016】まず、本発明におけるオーステナイト系ステンレス網の成分組成を、上記範囲に限定した理由について述べる。なお、以下、「%」は重量%を意味する。

【0017】Ni:Niは、安定なオーステナイト組織を得るためには10%以上が必要である。しかし、45%超では高価となり、配管用等の構造部材として経済的でない。よって、その含有量を10~45%とした。好ましくは、13~40%である。

【0018】Cr:Crは、ステンレス網としての耐食性を確保するためには15%以上が必要であり、Cr酸 40化皮膜を容易に生成させるという点からも高い方好ましい。

【0019】しかし、30%超ではシグマ相等の金属間化合物の折出により熱間加工性および初性が劣化する。よって、その含有量を $15\sim30%$ とした。好ましくは、 $20\sim28%$ である。

【0020】Mo:Moは、Crと同様、耐食性向上の効果が大きく、ステンレス鋼としての耐食性を向上させるとともに、Cr酸化皮膜による特殊ガスに対する耐食性を向上させるのに有効であり、必要に応じて添加する

ことができる。しかし、その効果を得るには1%以上の 添加が必要であるが、7%を超えるとシグマ相等の金属 間化合物が析出して熱間加工性および靭性が劣化する。 よって、添加する場合の含有量は1~7%とする。好ま しくは、2~7%である。

【0021】次に、管内面粗さと表面硬さを、上配範囲に限定した理由について述べる。

【0022】管内面粗さ:管内面粗さが、最大粗さ(R max)が3μm超では製管後に行われる洗浄での潤滑剤に含まれる有機物等の異物除去が不十分となり、使用時における発塵量が増加するので、たとえCr酸化皮膜が良好に生成していても、高純度ガス配管としては適用できない。よって、管内面の粗さは、最大粗さ(Rmax)が3μm以下とした。好ましくは、1.5μm以下である。

【0023】管内面硬さ:管内面の表面硬さが、ビッカース硬度(Hv 25g)で250未満ではCrの拡散速度が不十分で良好な高Cr濃度、具体的には酸化皮膜中の全金属元素に対するCr濃度の最高値が原子%で90%超であって、且つその皮膜厚さが100オングストローム以上のCr酸化皮膜が得られない。よって、管内面の表面硬さは、ビッカース硬度(Hv 25g)で250以上とする。好ましくは、ビッカース硬度(Hv 25g)で300以上である。

【0024】なお、管内面の表面硬さは、本発明の主たる目的の一つである優れた耐食性を確保するための高Cr濃度のCr酸化皮膜を生成させる点からは高硬度であればあるほどよく、特にその上限値を規定する必要はない。しかし、表面硬さがピッカース硬度(Hv 25g)で500を超えると、Cr酸化皮膜の生成処理後に曲げ加工を施して使用する場合、その曲げ部のCr酸化皮膜に亀裂損傷が生じ易くなるので、望ましくは500以下とするのがよい。また、酸化処理時に生成形成させる皮膜厚さは、同様の理由から、1000オングストローム以下とするのが望ましい。

【0025】本発明では、鋼管の塑性加工方法については特に規定するものでなく、鋼管の製造で通常用いられているプラグ使用の冷間抽伸法、マンドレル使用の冷間圧延法が適用でき、その一例を図1に示す。図1は、フローティングプラグ方式による冷間抽伸法であって、母管1はダイス2とフローティングプラグ3とによってその外径と肉厚が縮径・減肉されて製品管4に冷間仕上げされる

【0026】なお、管内面の硬さがビッカース硬度(Hv 25g)で250以上となるように冷間仕上げするには、母管の材質および製品寸法に応じて最終仕上げ加工時の加工度を適宜定めて行えばよい。

[0027]

るとともに、Cr酸化皮膜による特殊ガスに対する耐食 【実施例】表1の成分組成を有するオーステナイト系ス 性を向上させるのに有効であり、必要に応じて添加する 50 テンレス網を溶製した網塊を熱間鍛造してビレットとな A CONTRACTOR OF THE CONTRACTOR

5

し、このビレットを熱間押出し製管して素管を得、この 素管に冷間圧延および冷間抽件を施して表2に示す種々の外径、肉厚を有する鋼管と成した後、水素雰囲気中で 1100℃に5分間加熱保持後水冷する焼鈍熱処理を施して母管を得た。次いで、これらの母管に、前述の図1に示すフローティングプラグ方式の冷間抽伸法を用いて外径6.4mm、肉厚1.0mmの製品管に冷間仕上げした。また、一部の製品管については、さらに、前述の母管に施したと同様の焼鈍熱処理または/および管内面に電解研磨処理を施した。引き続いて、得られた製品管 10の内面を、鈍度99.999%のArガスを流通させつつ150℃に昇温して乾燥し、この洗浄・乾燥処理後の*

*製品管から長さ1mの試験片を複数本採取し、この試験 片を水分100ppmを含有する水素穿出気中で500 ℃に2時間保持して酸化処理を施し、これを各種試験に 供してその性能を評価した。

【0028】その結果を、表2および表3に示す。なお、表2には母管の内表面硬度、処理区分、母管寸法および最終冷間仕上げ加工度を示し、表3には酸化処理前の製品管の内表面硬度、酸化処理前の内表面粗さ、酸化皮膜の厚さと皮膜中のCr濃度および各種性能を示してある。

[0029]

【表1】

麥 1

供試鋼	成分組成(重量)6)										
	С	Si	Mn	P	S	Ni	Cr	Но	N		
A	0.007	0.02	0.04	0. 0[3	0.001	14.6	17. 3	2.64	_		
В	0.011	0.04	0.02	0. 017	0.002	22. 6	25. 2	Q 23	-		
С	0.021	0. 45	0.85	0. 015	0. 001	36.8	28. 3	3. 25	0. LI		
D	0.018	Q . 51	0.79	Q 018	0.002	18. 2	20.6	6. 13	0. 21		
E	O. OOB	0. 25	0. 45	0.019	0.002	0.12	14.3	0. 52	-		

[0030]

【表2】

8

表 2

験	母管寸	法(m)		A144()
			処理方法	抽伸仕上 げ加工度
	外径	肉厚	观星刀伝	(%)
1 A 136	10	1. 1	抽伸	45
2 A 140	11	1. 2	抽伸	54
3 A 138	11	1. 3	抽伸一電解研磨	57
4 A 138 1	10	1. 2	抽伸一電解研磨	49
5 A 139	9	1. 2	抽伸→電解研磨	42
6 B 156	8	1. 2	抽伸一電解研磨	42
7 C 164	8.6	1. 2	抽伸一電解研磨	39
8 D 183	8.6	1.2	抽伸→電解研磨	39
9 A 136 1	10	1. 1	抽伸一烷纯	45
10 A 138 1	.0	1.1	抽伸一烷的一電解研磨	45
11 A 136	8.4	1.0	抽伸一電解研磨	27
12 A 138	8. 4	l. 1	抽伸一電解研磨	33
13 E 182	9	1.2	抽伸→電解研磨	42

[0031]

【表3】

表 3

* 0										
試験	智内面	管内面 変 さ	Cr融化皮膜		水分 放出 性 ※2	耐食性※3	触 蝶 性 ※4	総合評価		
Ro Roman (um)	Rmax	最高Cr機度 (原子%)	皮膜厚さ (※1)	岩						
1	2.1	271	93	125	0	0	0	0		
2	1.8	294	97	135	0	0	0	0		
3	0.6	316	96	140	0	0	0	0		
4	0.7	284	100	155	0	0	0	0	*	
5	0.4	284	100	125	0	0	0	0	兒	
В	0.5	278	94	165	0	0	0	0	明	
7	0.8	321	96	140	0	0	0	0	94	
8	0.7	348	97	130	0	0	0	Ø		
9	2.2	141	72	55	×	×	×	×		
10	0.5	135	84	50	0	×	0	×	lt.	
11	0.7	216	90	55	0	×	0	×	較	
12	0.8	236	88	70	0	×	0	×	81	
13	0. 9	218	58	80	×	×	×	×		

性)※1:オングストローム。 ※2:③:水分1mかまで8h未満、〇:同6h以上12h未満、×:同12h以上。 ※3:〇: 腐食なし、×:腐食あり。 ※4:〇:シラン分解温度400℃以上、×:同400℃未満。

ANTO CONTROL - A CONTROL - CONTROL CONTROL - A CONTROL CONTROL

9

【0032】なお、管内面の表面硬度は、母管および製品管ともに、管縦断面の内表面から 20μ m深さの位置におけるマイクロビッカース硬度(荷里25g)である。また、酸化処理された網管の高純度ガス配管としての各種の性能は、次のように評価した。

【0033】酸化皮膜の厚さと皮膜中のCr 濃度は、管を縦半割りし、その内面の深さ方向のCr 濃度分布をN 1 イオンスパッタを併用した 2 次イオン質量分析により測定し、厚さについてはそのCr 濃化層の厚さを、また Cr 濃度については酸化皮膜中の全金属元素に対する 10 Cr の濃度の最高値を示してある。

【0034】水分放出特性は、温度25℃、温度80%の恒温恒温雰囲気に管を24時間放置した後、管内に水分1ppb未満の高純度Arガスを1リットル/分で流通しつつ管出側で水分濃度の減衰挙動を大気圧イオン化質量分析計で測定し、測定開始から出側での水分濃度が1ppbに低下するまでの所要時間を測定することにより評価した。なお、この所要時間が短いほど水分放出特性に優れる。

【0035】耐食性は、管内に塩化水素ガスを5気圧で 20 封入し、湿度80℃に100時間保持した後、管内面の 腐食による変化を走査型電子顕微鏡で観察し、腐食の有 無で評価した。

【0036】非触媒性(表3中の触媒性)は、管内に設度100ppmのモノシラン(SiH $_{\ell}$)を含むArガスを2リットル/分で流通し、管出側でガスクロマトグラフによりモノシランの分解によって生ずる水素(H:) 濃度を測定することとし、この際、各供試管に

ついて温度を種々変化させ、モノシランの分解が観測される最低温度を求めて評価した。なお、この最低温度が 高いほど非触媒性に優れる。

10

【0037】表2および表3から明らかなように、管内面の表面硬度が高い本発明例の網管は、高Cr濃度で、且つ厚い酸化皮膜が生成しており、水分放出特性、耐食性および非触媒性のいずれにも優れている。特に、冷間抽伸仕上げ後に電解研磨処理を施したもの(No. 3~No. 8)は、冷間抽伸仕上げままのもの(No. 1及びNo.

2) に比べて表面粗さがより平滑であるので、水分放出性が一段と向上している。これに対し、管内面の表面硬度が低い比較例の網管は、水分放出特性および非触媒性については優れるもの(No. 10~No. 12) もあるが、塩素ガスに対する耐食性が全て劣っている。

[0038]

【発明の効果】本発明によれば、水分放出特性、耐食性および非触媒性のいずれにも優れた Cr酸化皮膜が容易に生成形成する、あるいは生成形成させたステンレス網管を、特別の塑性加工手段を採用することなく安価に製造できるので、産業上の意義は大きい。

【図面の簡単な説明】

【図1】本発明の鋼管を製造するのに用いられる冷間抽 仲法の一例を示す図である。

【符号の説明】

- 1 母管
- 2 ダイス
- 3 フローティングプラグ
- 4 製品管

【図1】

