

Comparison of T-Laser Scanning and Hemispherical Photography on Estimating Leaf Inclination Angle Distributions

Peng Huang

Chair for Forest Growth and Yield Science, Department of Ecology and Landscape Management, Technical University of Munich, Am Hochanger 13, D-85354 Freising, Germany

E-mail: Peng.Huang@lrz.tu-muenchen.de

Objectives

 Comparison of gap fraction measurement H-Photo Cal-Photo Laser

Feasibility of the algorithm

Profile of Leaf Inclination Angle

Topics

1 Method: How to meausre

2 Results: Camparision

3 Conclusions: Problems

Leaf Orientation

Difficult to be directly measured

Statistically described

Idealized leaf angle distribution functions

Idealized leaf angle distribution functions

Azimuth: Random distribution

Zenith: Ellipsoidal distribution

ALIA=
$$90(0.1+0.9e^{-0.5x})$$

(x bigger, more horizontal)

Coventional optical LIAD determination

Measurement:

Light penetration

Instrument:

Fisheye camera

LAI2000 Plant Canopy Analyser

Principle:

G-function values → x → ALIA

G-function

The average projected area of a unit leaf area onto a surface normal to the sun beam

$$L = -\ln P(\theta) \cdot \cos\theta / G(\theta)$$

- L_i effective leaf area index
- P gap fraction
- G extinction coefficient
- θ beam zenith angle

Why $cos(\theta)$?

$$L_{e}G(\theta) = -\ln P_{0}(\theta) \cdot \cos\theta$$

$$\int_{0}^{\pi/2} G(\theta) \sin\theta d\theta = 1/2$$

$$L_e = 2\int_0^{\pi/2} -\ln P_0(\theta) \cos\theta \sin\theta d\theta$$

$$L_e = 2\sum_{i=1}^{5} \frac{-\ln(P_{0i})}{S_i} W_i$$

$$G_n = -\ln P_{0n} \cos \theta_n / L_e$$

Non-linear Regression $G(n) \rightarrow G(\theta)$, adjust X

• $G(\theta) \approx (x^2 \cos^2 \theta + \sin^2 \theta)^{1/2} / (x + 1.774(x + 1.182)^{-0.733})$

Gap Fraction Measurements

$$P_{0n} = \frac{N_s}{N}$$

n From 1 to 18

18 rings span from 0 to 90 degree and each scope occupies an interval of 5 degrees

 $N_{\rm s}$ The number of non-intercept probes in the zenith scope

N The number of total probes in the same zenith scope

1 Hemispherical Photo

Segmentation by Winscanopy

Colored-2D view-Laser Data Cylinder projection

Photo by Cal-Camera

Segmentation by Winscanopy

2 Photo Gap + Closed Laser

3 Laser Gap Image Gap Foliage Invalid

4 Photo Adjusted Laser Gap Image Gap Foliage Invalid

Results: Gap Fraction Distributions Adjusted (255vs.80), Orthogonal (05vs.02)

Results: Gap Fraction Distributions 4 methods

Results: x and Le comparison (Starnberg, Beech, emperical x>3)

Position	НМ		FM+closed LS		LS 0-35m		Adjusted LS 0-35m	
	L_e	Х	L_e	X	L_e	X	L_e	х
Stn01005	5.29	2.02	7.18	1.49*	6.54	1.70	5.55	1.50
Stn03002	4.98	1.92**	9.07	1.31	6.42	1.87	5.62	1.76

*(2-14) **(1-16)

Results: x and Le comparison (Fürstenfeldbruck, Spruce, emperical x=1)

FFB0116001			5.58	1.35	6.97	1.91	4.21	0.75
FFB0242001			6.41	1.05	7.62	1.80	5.74	0.90
FFB0341001			6.06	0.96	7.12	1.23	4.43	0.89
Mean of FFB	5.45***	2.75***	6.02	1.12	7.24	1.65	4.79	0.85
ivicali oi FFD	3.43***	2.13	0.02	1.12	/.2 4	1.03	4./9	0.63

*** 10 positions

Laser Gap Image (19-25m)

Crown X Profiles Stn, Beech

X Profile Vs. LAD Profile

Stn, Beech

X Profile Vs. LAD Profile FFB, Spruce

FFB01001 FFB02001

X values in different height interval

Position	0-19		19-25		25-35		
	L_e	Х	L_e	х	L_e	х	
Stn01005 LS80	1.778	0.495	2.783	2.029	0.992	6.091	
Stn01005 LS255	1.791	0.506	3.072	2.086	1.674	5.629	
Stn03002 LS80	1.818	0.665	2.667	1.976	1.131	48.4	
Stn03002 LS255	1.825	0.668	2.862	1.930	1.734	8.628	

Conclusions

- Photo Gap Measurements can be heavily influnced by such factors: Light Ambient, Segementation threshold and methods; but work better for conifers
- Optical Leaf angle are plant angle, like LAI

Thanks!