

Network Models & Protocol Architectures

Lecture 1 | CSE₄₂₁ – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

BRAC UNIVERSITY

Inspiring Excellence

- Layering in communication
- Protocols
- Standards
- Protocol Suites
 - OSI Model
 - TCP/IP Model
- Addressing

Tasks of communication are broken up into layers

Benefits of using a layered model

- Fosters competition.
- Technology changes in one layer do not affect other layers.
- Each layer have defined functions that they act upon.

Protocols

Protocols

- All communications are governed by protocols
- Protocols are the rules that communications will follow.
- These rules will vary depending on the protocol.

Conf	tent layer	Where is the Café?
Conversation Protocol Suite 1. Use a Common Language 2. Wait Your Turn 3. Signal When Finished	Rule	es layer
	Physical layer	

Protocols

- Protocols must account for the following requirements:
 - An identified sender and receiver
 - Common language and grammar
 - Speed and timing of delivery
 - Confirmation or acknowledgment requirements
- Common computer protocols must agree in:
 - Message encoding
 - Message formatting and encapsulation
 - Message size, timing, delivery option.

Standards

Standards

- Standards
- Standards Organizations
- Internet Standards

Standards

- Endorsed by the networking industry and approved by a standards organization.
- Benefits:
 - Create and maintain an open and competitive market.
 - Ensured greater compatibility and interoperability.
- Categories
 - De facto TCP/IP Protocol Model
 - De jure OSI Reference Model

Open Standards

- Open standards encourage:
 - Interoperability
 - Competition
 - Innovation
- Standards organizations are:
 - vendor-neutral
 - non-profit organizations
 - established to develop and promote the concept of open standards.

Internet Standards

- Internet Society (ISOC) Promotes the open development and evolution of internet
- Internet Architecture Board (IAB) -Responsible for management and development of internet standards
- Internet Engineering Task Force (IETF) Develops, updates, and maintains internet and TCP/IP technologies
- Internet Research Task Force (IRTF) Focused on long-term research related to internet and TCP/IP protocols

Internet Standards (Continued)

Standards organizations involved with the development and support of TCP/IP

- Internet Corporation for Assigned Names and Numbers (ICANN) - Coordinates IP address allocation, the management of domain names, and assignment of other information
- Internet Assigned Numbers Authority
 (IANA) Oversees and manages IP address
 allocation, domain name management, and
 protocol identifiers for ICANN

Internet Standards (Continued)

• Formalized regulations and specifications

for the Internet by IETF.

- Internet Draft
 - No official status
 - 6 month lifetime
- Request for comment (RFC)
 - Upon recommendation from Internet authorities
 - Different maturity levels
 - Example: Internet Protocol RFC : 791

Electronic and Communications Standards

- Institute of Electrical and Electronics Engineers (IEEE, pronounced "I-triple-E") dedicated to creating standards in power and energy, healthcare,
 telecommunications, and networking
- Electronic Industries Alliance (EIA) develops standards relating to electrical wiring, connectors, and the 19-inch racks used to mount networking equipment
- Telecommunications Industry Association (TIA) develops communication standards in radio equipment, cellular towers, Voice over IP (VoIP) devices, satellite communications, and more
- International Telecommunications Union-Telecommunication Standardization Sector (ITU-T) - defines standards for video compression, Internet Protocol Television (IPTV), and broadband communications, such as a digital subscriber line (DSL)

Technology Independent Protocols

Protocols are not dependent upon any specific technology.

• They describe what must be done to communicate but not how its is to be carried

out.

Protocol Suites

Protocol Suites

- TCP/IP Protocol Model
 - Open De Facto Standard
 - Governed by IETF Working Groups
- OSI Reference model
 - De Jure Standard

OSI Model

De Jure Standard

	Layers			
7	Application			
6	Presentation			
5	Session			
4	Transport			
3	Network			
2	Data Link			
1	Physical			

OSI Model

- Open Systems Interconnection (OSI)
 - Seven layers
 - A theoretical system delivered too late!
 - TCP/IP is the de facto standard

• Develor Organiz 1984.

ISO is the **organization**. OSI is the **model**.

	CAC
Inspiring	Excellence

Primary Concern	Layers		Cisco
Communications between applications	7	Application	All
	6	Presentation	People
	5	Session	Seem
	4	Transport	То
	3	Network	Need
Moving raw data across the network	2	Data Link	Data
	1	Physical	Processing

Primary Concern	Layers		Cisco
Communications between applications	7	Application	All
	6	Presentation	People
	5	Session	Seem
	4	Transport	То
	3	Network	Need
Moving raw data across the network	2	Data Link	Data
	1	Physical	Processing

An exchange using the OSI Model

Transmission medium

Application Layer

- The 7th Layer of OSI Model

Applications

BRAC UNIVERSITY

- The Interface Between Human and Data Networks
- Responsible for providing services to the user.

Browsers

Examples: Application Layer Protocols

Application Layer	Name System	Host Config	Email	File Transfer	Web
	DNS	ВООТР	SMTP	FTP	HTTP
		DHCP	POP	TFTP	HTTPS
			IMAP		

Presentation Layer

- The 6th Layer of OSI Model

Presentation Layer

- The presentation layer is responsible for translation, compression, and encryption. i.e. the three primary functions
- Presentation layer implementations are not typically associated with a particular protocol stack.

Session Layer

- The 5th Layer of OSI Model

Session Layer

- The session layer is responsible for dialog control and synchronization.
- It handles the exchange of information
 - to initiate dialogs
 - keep them active, and
 - to restart sessions that are disrupted or idle for a long period of time
- Most applications, like web browsers or e-mail clients, incorporate functionality of the OSI layers 5, 6 and 7.

Transport Layer

- The 4th Layer of OSI Model

- The transport layer is responsible for the delivery of a message from one process (sender) to another (receiver).
- Transport Layer PDU is called Segments
- Functions:
 - Segmentation and Reassembly
 - Adds Port Address and Sequence Number.
 - Connection Control
 - Flow and Error Control
 - Multiplexing

Functions – Segmentation/Reassembly

- Segments data received from application layer into small parts
- Steps (Sender):
 - Segments into small parts
 - Add a number to identify the application
 - Add a number sequence the segmented parts
- What do you think will happen at the Receiver end?
 - Uses the sequence number to order them sequentially, merges them and sends to the upper layer

Function – Identification Using Port Address

- Port Numbers/Addresses are used to identify different applications/processes running in a computer
- 16-bit in length
 - Represented as one single decimal number
 - e.g. 8o Web; 23 TCP;

Function – Connection Control

Establishes secure connection (TCP – Three Way Handshake)

Function – Flow Control

Establishes secure connection (TCP – Three Way Handshake)

At this point, this host has too many packets to process. Hence, the **buffer** to store incoming packets overflows.

Function – Error Control

Establishes secure connection (TCP – Three Way Handshake)

Function – Multiplexing

Network Layer

- The 3rd Layer of OSI Model

Network Layer

- Network Layer PDU is called Packet.
- The network layer is responsible for the delivery of individual packets from the **source host** to the **destination host**.
- Common Network Layer Protocol is called Internet Protocol (IP)
- Functions :
 - Adds an address (Logical Address) to identify sender and receiver hosts.
 - Decides which path to take (Routing).

Network Layer – Logical Address

- Universal address, each host uniquely defined.
- 32-bit address also known as IP Address.
 - The bits are written in dotted decimal notation. Each decimal represented by 8 bits.
 - Example: 192.168.10.1
- Independent of underlying physical networks.

Network Layer - Example

BRAC UNIVERSITY

Inspiring Excellence

- A,B,C,D,E and F are Logical addresses
- Packet to be delivered from A to F

Network Layer – Another Example

Data Link Layer

- The 2nd Layer of OSI Model

Data Link Layer Layer

- Data Link Layer PDU is called Frame.
- The data link layer is responsible for moving frames from one hop (node) to the next.
- Protocols on this layer varies.
- Functions :
 - Framing
 - Physical Addressing
 - Flow Control
 - Error Control

Hop-to-Hop Delivery

Data Link Layer – Physical Address

- Also known as MAC (Media Access Control) Address
- Every interface/port/device has an unique identifying number.
 - Given by manufacturer.
- 48 bits long, represented by 12 hexadecimal digits grouped in pairs and separated by '-' or ':'.
 - Example: 07:01:02:01:2C:4B

Physical Layer

- The 1st Layer of OSI Model

Physical Layer

• The physical layer is responsible for movements of individual bits from one

Standards allow different companies to make cables and NICs, knowing they will work together.

hop (node) to the next.

Functions

Physical Characteristics of interfaces and medium.

- Representation of bits
- Data Rate
- Synchronization of bits

- Physical Topology
 - Example: Bus, ring, etc.

- Transmission Modes
 - Simplex
 - Half Duplex

Full Duplex

Summary of OSI Layers

TCP/IP Model

De Facto Standard

	OSI Model	TCP/IP Model		
7	Application			
6	Presentation	Application		
5	Session			
4	Transport	Transport		
3	Network	Internet		
2	Data Link	Network Access		
1	Physical			

TCP/IP Model

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet.
- Also known as De Facto Standard.

	OSI Model	TCP/IP Model		
7	Application			
6	Presentation	Application		
5	Session			
4	Transport	Transport		
3	Network	Internet		
2	Data Link	Network Access		
1	Physical			

TCP/IP Encapsulation and PDU

TCP/IP and Other Models

Layer Name	TCP/IP	ISO	AppleTalk	Novell Netware			
Application	HTTP DNS DHCP FTP	ACSE ROSE TRSE SESE	AFP	NDS			
Transport	TCP UDP	TP0 TP1 TP2 TP3 TP4	ATP AEP NBP RTMP	SPX			
Internet	IPv4 IPv6 ICMPv4 ICMPv6	CONP/CMNS CLNP/CLNS	AARP	IPX			
Network Access Ethernet PPP Frame Relay ATM WLAN							

Addressing in Networking

Addressing - Summary

Four levels of addresses are used in an internet employing the TCP/IP

Relationship of layers and address in TCP/IP

Addresses

- Specific Address
 - Applications having user friendly addresses.
 - Email addresses or URLs.
 - john@gmail.com or www.bracu.ac.bd
 - Theses are converted into corresponding port and logical addresses by the sending computer.
- The other addresses are already discussed in the earlier slides! Can you identify them?

Logical and Physical Address – Same Network

Legend:

• IP Addresses – **Numbers**

BRAC UNIVERSITY

• MAC Address – **Alphabets**

Port, Logical & Physical Address – Different Network

 Although physical addresses change from hop to hop, logical and port addresses remain the same from the source to destination.

The End

References

- [1] Chapter 2, The McGraw-Hill Companies, Inc.
- [2] Chapter 3, The McGraw-Hill Companies, Inc.
- [3] CCNA 1, CISCO.