Intervals, Transformations, and Slope Solution (version 1)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -3) \cup (3, 8)$
Negative	$(-8, -7) \cup (-3, 3)$
Increasing	$(-8, -6) \cup (0, 6)$
Decreasing	$(-6,0) \cup (6,8)$
Domain	(-8,8)
Range	(-8,8)

Intervals, Transformations, and Slope Solution (version 1)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=32$ and $x_2=95$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 32 & 74 \\ 47 & 32 \\ 74 & 95 \\ 95 & 47 \\ \hline \end{array}$$

$$\frac{g(95) - g(32)}{95 - 32} = \frac{47 - 74}{95 - 32} = \frac{-27}{63}$$

The greatest common factor of -27 and 63 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{7}$$

2