

A Topological-Attention ConvLSTM Network and Its Application to EM Images

J. Yang¹*, X. Hu²*, C. Chen² and C. Tsai¹

1. Graduate Center, CUNY 2. Stony Brook University

ABSTRACT

We propose a novel Topological-Attention ConvLSTM Network (TACLNet) for 3D anisotropic image segmentation with high structural accuracy. We adopt ConvLSTM to leverage contextual information from adjacent slices while achieving high efficiency. We propose a Spatial Topological-Attention (STA) and an Iterative Topological-Attention (ITA) module to effectively transfer more stable topologically critical information across slices. Our proposed method outperforms various baselines in terms of topology-aware evaluation metrics.

INTRODUCTION

Motivation: Most existing methods mainly focus on per-pixel accuracy and are prone to structural errors; Differentiable topological methods have their limitation when applied to 3D images.

Contributions:

- Spatial Topological-Attention: Spatial topological information across adjacent slices.
- Iterative Topological-Attention: Improve the stability of the topologically critical maps
- **Topological-Attention with ConvLSTM:** Better performance on 3D image segmentation

METHOD

- Our method treats a 3D image as 2D slices stacked along the Z-dimension to capture the inter-slice information.
- l consecutive slices (l = 3) are fed into ConvLSTM
- Three probabilistic maps are fed into the Topological-Attention module after ConvLSTM
- The segmentation result is returned after the attention module

Fig. 2. Overview of the proposed framework

ConvLSTM:

- ConvLSTM is an extension of FC-LSTM, which has the convolutional operators in LSTM gates instead.
- Inputs: $\{S^{i-1}, S^i, S^{i+1}\} \in R^{H \times W}$, and the output $\{P^{i-1}, P^i, P^{i+1}\} \in R^{H \times W}$
- Each is the probabilistic map P^i of the corresponding input slice S^i

Spatial Topological-Attention (STA) Module:

 STA module finds the correlation between the topologically critical information of adjacent slices, without introducing extra parameters.

$$CP^{i} = Gaussian(PH(P^{i})).$$

$$o_{n}^{i} = \sum_{m=1}^{N} (P^{i}_{m}SM_{nm})$$

$$\hat{P}_{n}^{i} = \alpha o_{n}^{i} + P_{n}^{i}$$

Fig. 3. Illustration of the Spatial Topological-Attention (STA) module

- $PH(\cdot)$ generates isolated critical points and $Gaussian(\cdot)$ is a Gaussian operation.
- Combine the critical maps $CP^{i-1}, CP^i, CP^{i+1} \in \mathbb{R}^{H \times W}$ into one single $k \in \mathbb{R}^{C \times H \times W}$ (C = 3)
- Expand the CP^i into $q \in R^{C \times H \times W}$, the similarity map is obtained by matrix operation and a SoftMax $SM \in R^{N \times N}$
- · Obtain normalized topological attention map o_n^i for target slice
- \cdot Perform a weighted element-wise sum operation on original probabilistic map P^i

Iterative Topological-Attention (ITA) Module:

- · Improve the robustness to obtain stable attention map
- ITA module explores the relationships between the attention maps of different epochs

$$o_t = \beta o_{t-1} + (1 - \beta) o_t$$
.

• o is the attention described in STA, β is a parameter and t denotes different training epochs.

Fig. 1. Illustration of Iterative Topological-Attention (ITA) module. p_T and o_T are the probabilistic map and the output of attention map at T epoch.

RESULTS

Table 1. Experiment results for different models on CREMI dataset

Datasets	Models	DICE	ARI	VOI	Betti Error
CREMI	DIVE	0.9542 ± 0.0037	0.6532 ± 0.0247	2.513 ± 0.047	4.378 ± 0.152
	U-Net	0.9523 ± 0.0049	0.6723 ± 0.0312	2.346 ± 0.105	3.016 ± 0.253
	Mosin.	0.9489 ± 0.0053	0.7853 ± 0.0281	1.623 ± 0.083	1.973 ± 0.310
	TopoLoss	0.9596 ± 0.0029	0.8083 ± 0.0104	1.462 ± 0.028	1.113 ± 0.224
	TACLNet	0.9665 ± 0.0008	0.8126 ± 0.0153	1.317 ± 0.165	0.853 ± 0.183
	DIVE	0.9709 ± 0.0029	0.9434 ± 0.0087	1.235 ± 0.025	3.187 ± 0.307
	U-Net	0.9699 ± 0.0048	0.9338 ± 0.0072	1.367 ± 0.031	2.785 ± 0.269
ISBI12	Mosin.	0.9716 ± 0.0022	0.9312 ± 0.0052	0.983 ± 0.035	1.238 ± 0.251
	TopoLoss	0.9755 ± 0.0041	0.9444 ± 0.0076	0.782 ± 0.019	0.429 ± 0.104
	TACLNet	0.9576 ± 0.0047	0.9417 ± 0.0045	0.771 ± 0.027	0.417 ± 0.117
	DIVE	0.9658 ± 0.0020	0.6923 ± 0.0134	2.790 ± 0.025	3.875 ± 0.326
	U-Net	0.9649 ± 0.0057	0.7031 ± 0.0256	2.583 ± 0.078	3.463 ± 0.435
ISBI13	Mosin.	0.9623 ± 0.0047	0.7483 ± 0.0367	1.534 ± 0.063	2.952 ± 0.379
	TopoLoss	0.9689 ± 0.0026	0.8064 ± 0.0112	1.436 ± 0.008	1.253 ± 0.172
	TACLNet	0.9510 ± 0.0022	0.7943 ± 0.0127	$ig 1.305\pm0.016$	1.175 ± 0.108

Fig. 4. An illustration of structural accuracy. From left to right: a sample patch, the ground truth, results of UNet, TopoLoss, ConvLSTM and the proposed TACLNet.

Table 2. Ablation study results for TACLNet on CREMI dataset

Models	DICE	ARI	VOI	Betti Error
ConvLSTM	0.9667 ± 0.0007	0.7627 ± 0.0132	1.753 ± 0.212	1.785 ± 0.254
ConvLSTM+STA	0.9663 ± 0.0004	0.7957 ± 0.0144	1.496 ± 0.156	0.873 ± 0.212
Our TACLNet	0.9665 ± 0.0008	0.8126 ± 0.0153	1.317 ± 0.165	$\boldsymbol{0.853\pm0.183}$

Table 3. Ablation study results for number of input slices on CREMI

Number	ARI	VOI	Betti Error	Time
	0.7813 ± 0.0141			
3s	0.8126 ± 0.0153	$\boldsymbol{1.317\pm0.165}$	$\boldsymbol{0.853\pm0.183}$	1.20 h/epoch
5s	0.8076 ± 0.0107	1.461 ± 0.125	0.967 ± 0.098	2.78h/epoch

Fig. 5. Illustration of the proposed Topological-Attention. From left to right: original images S^i , the smooth critical points of CP^i , final attention map o^i , and the final probability map \hat{P}^i with o^i superimposed in red (Zoom in and best viewed in color).

- Datasets: 3D Electron Microscopic Images ISBI12, ISBI13, and CREMI
- **Ablation Study 1:** ConvLSTM, with Spatial Topological-Attention, and with Iterative Topological-Attention (our TACLNet)
- Ablation Study 2: Number of input adjacent slices with their evaluation and running time

CONCLUSIONS

- We proposed a novel Topological-Attention Module with ConvLSTM, named TACLNet, for 3D EM image segmentation.
- Being validated with three EM anisotropic datasets, our method outperforms baselines in terms of topology-aware metrics.
- For the future work, we will apply TACLNet to other medical datasets to prove its efficacy in a broader domain.

ACKNOWLEDGEMENTS

This work was partially supported by grants NSF IIS-1909038, CCF-1855760,NCI 1R01CA253368-01 and PSC-CUNY Research Award 64450-00-52.

CONTACT INFORMATION

J. Yang: jyang2@gradcenter.cuny.edu

X. Hu: xiaolhu@cs.stonybrook.edu

ABSTRACT

We propose a novel Topological-Attention ConvLSTM Network (TACLNet) for 3D anisotropic image segmentation with high structural accuracy. We adopt ConvLSTM to leverage contextual information from adjacent slices while achieving high efficiency. We propose a Spatial Topological-Attention (STA) and an Iterative Topological-Attention (ITA) module to effectively transfer more stable topologically critical information across slices. Our proposed method outperforms various baselines in terms of topology-aware evaluation metrics.

INTRODUCTION

Motivation: Most existing methods mainly focus on per-pixel accuracy and are prone to structural errors; Differentiable topological methods have their limitation when applied to 3D images.

Contributions:

- Spatial Topological-Attention: Spatial topological information across adjacent slices.
- Iterative Topological-Attention: Improve the stability of the topologically critical maps
- Topological-Attention with ConvLSTM: Better performance on 3D image segmentation

METHOD

- Our method treats a 3D image as 2D slices stacked along the Z-dimension to capture the inter-slice information.
- l consecutive slices (l = 3) are fed into ConvLSTM
- Three probabilistic maps are fed into the Topological-Attention module after ConvLSTM
- The segmentation result is returned after the attention module

Fig. 2. Overview of the proposed framework

ConvLSTM:

- ConvLSTM is an extension of FC-LSTM, which has the convolutional operators in LSTM gates instead.
- Inputs: $\{S^{i-1}, S^i, S^{i+1}\} \in R^{H \times W}$, and the output $\{P^{i-1}, P^i, P^{i+1}\} \in R^{H \times W}$
- Each is the probabilistic map P^i of the corresponding input slice S^i

Spatial Topological-Attention (STA) Module:

 STA module finds the correlation between the topologically critical information of adjacent slices, without introducing extra parameters.

$$CP^{i} = Gaussian(PH(P^{i})).$$

$$o_{n}^{i} = \sum_{m=1}^{N} (P_{m}^{i} SM_{nm})$$

$$\hat{P}_{n}^{i} = \alpha o_{n}^{i} + P_{n}^{i}$$

Fig. 3. Illustration of the Spatial Topological-Attention (STA) module

- $PH(\cdot)$ generates isolated critical points and $Gaussian(\cdot)$ is a Gaussian operation.
- Combine the critical maps $CP^{i-1}, CP^i, CP^{i+1} \in R^{H \times W}$ into one single $k \in R^{C \times H \times W}$ (C = 3)
- Expand the CP^i into $q \in R^{C imes H imes W}$, the similarity map is obtained by matrix operation and a SoftMax $SM \in R^{N imes N}$
- · Obtain normalized topological attention map o_n^i for target slice
- · Perform a weighted element-wise sum operation on original probabilistic map P^i

Iterative Topological-Attention (ITA) Module:

- · Improve the robustness to obtain stable attention map
- ITA module explores the relationships between the attention maps of different epochs

$$o_t = \beta o_{t-1} + (1 - \beta) o_t$$
.

 o is the attention described in STA, β is a parameter and t denotes different training epochs.

Fig. 1. Illustration of Iterative Topological-Attention (ITA) module. p_T and o_T are the probabilistic map and the output of attention map at T epoch.

RESULTS

Table 1. Experiment results for different models on CREMI dataset

Datasets	Models	DICE	ARI	VOI	Betti Error
CREMI	DIVE	0.9542 ± 0.0037	0.6532 ± 0.0247	2.513 ± 0.047	4.378 ± 0.152
	U-Net	0.9523 ± 0.0049	0.6723 ± 0.0312	2.346 ± 0.105	3.016 ± 0.253
	Mosin.	0.9489 ± 0.0053	0.7853 ± 0.0281	1.623 ± 0.083	1.973 ± 0.310
	TopoLoss	0.9596 ± 0.0029	0.8083 ± 0.0104	1.462 ± 0.028	1.113 ± 0.224
	TACLNet	0.9665 ± 0.0008	0.8126 ± 0.0153	$\textbf{1.317}\pm\textbf{0.165}$	$\textbf{0.853}\pm\textbf{0.183}$
	DIVE	0.9709 ± 0.0029	0.9434 ± 0.0087	1.235 ± 0.025	3.187 ± 0.307
	U-Net	0.9699 ± 0.0048	0.9338 ± 0.0072	1.367 ± 0.031	2.785 ± 0.269
ISBI12	Mosin.	0.9716 ± 0.0022	0.9312 ± 0.0052	0.983 ± 0.035	1.238 ± 0.251
	TopoLoss	0.9755 ± 0.0041	$\textbf{0.9444}\pm\textbf{0.0076}$	0.782 ± 0.019	0.429 ± 0.104
	TACLNet	0.9576 ± 0.0047	0.9417 ± 0.0045	0.771 ± 0.027	0.417 ± 0.117
	DIVE	0.9658 ± 0.0020	0.6923 ± 0.0134	2.790 ± 0.025	3.875 ± 0.326
	U-Net	0.9649 ± 0.0057	0.7031 ± 0.0256	2.583 ± 0.078	3.463 ± 0.435
ISBI13	Mosin.	0.9623 ± 0.0047	0.7483 ± 0.0367	1.534 ± 0.063	2.952 ± 0.379
-2.22000 2000 2000	TopoLoss	0.9689 ± 0.0026	$\textbf{0.8064}\pm\textbf{0.0112}$	1.436 ± 0.008	1.253 ± 0.172
	TACLNet	0.9510 ± 0.0022	0.7943 ± 0.0127	$\textbf{1.305}\pm\textbf{0.016}$	1.175 ± 0.108

Y	V ~~~		
SY SY			

Fig. 4. An illustration of structural accuracy. From left to right: a sample patch, the ground truth, results of UNet, TopoLoss, ConvLSTM and the proposed TACLNet.

Table 2. Ablation study results for TACLNet on CREMI dataset

Models	DICE	ARI	VOI	Betti Error
ConvLSTM	0.9667 ± 0.0007	0.7627 ± 0.0132	1.753 ± 0.212	1.785 ± 0.254
ConvLSTM + STA	0.9663 ± 0.0004	0.7957 ± 0.0144	1.496 ± 0.156	0.873 ± 0.212
Our TACLNet	0.9665 ± 0.0008	0.8126 ± 0.0153	$\bf 1.317\pm0.165$	$\textbf{0.853}\pm\textbf{0.183}$

Table 3. Ablation study results for number of input slices on CREMI

Number	ARI		VOI		Betti Error			Time	
1s									0.99h/epoch
3s	$\textbf{0.8126}\ \pm$	0.0153	1.317	\pm	0.165	0.853	\pm	0.183	1.20h/epoch
5s	$0.8076 \pm$	0.0107	1.461	\pm	0.125	0.967	\pm	0.098	2.78h/epoch

Fig. 5. Illustration of the proposed Topological-Attention. From left to right: original images S^i , the smooth critical points of CP^i , final attention map o^i , and the final probability map \hat{P}^i with o^i superimposed in red (Zoom in and best viewed in color).

- Datasets: 3D Electron Microscopic Images ISBI12, ISBI13, and CREMI
- Ablation Study 1: ConvLSTM, with Spatial Topological-Attention, and with Iterative Topological-Attention (our TACLNet)
- Ablation Study 2: Number of input adjacent slices with their evaluation and running time

CONCLUSIONS

- We proposed a novel Topological-Attention Module with ConvLSTM, named TACLNet, for 3D EM image segmentation.
- Being validated with three EM anisotropic datasets, our method outperforms baselines in terms of topology-aware metrics.
- For the future work, we will apply TACLNet to other medical datasets to prove its efficacy in a broader domain.

ACKNOWLEDGEMENTS

This work was partially supported by grants NSF IIS-1909038, CCF-1855760,NCI 1R01CA253368-01 and PSC-CUNY Research Award 64450-00-52.

CONTACT INFORMATION

J. Yang: jyang2@gradcenter.cuny.edu

X. Hu: xiaolhu@cs.stonybrook.edu

