Foundations of Computing

Lecture 18 – Exam Review

Arkady Yerukhimovich

March 28, 2023

Outline

- 1 Lecture 17 Review
- 2 Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Lecture 17 Review

- Review of Reductioms
- Types of Reductions Mapping reductions, Turing reductions
- A brief intro into Kolmogorov complexity

Outline

- Lecture 17 Review
- 2 Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Key Differences:

A TM can read and write to its tape

- A TM can read and write to its tape
- The read/write head can move to the right and to the left

- A TM can read and write to its tape
- The read/write head can move to the right and to the left
- No separate input tape, input written onto memory tape at start

- A TM can read and write to its tape
- The read/write head can move to the right and to the left
- No separate input tape, input written onto memory tape at start
- The memory tape is infinite

- A TM can read and write to its tape
- The read/write head can move to the right and to the left
- No separate input tape, input written onto memory tape at start
- The memory tape is infinite
- Control FA has accept and reject states that are immediately output if entered

An Algorithm for M:
On input string s (written on the tape):

An Algorithm for *M*:

On input string s (written on the tape):

Scan the input to check that it contains exactly one # symbol, if not reject.

An Algorithm for M:

On input string s (written on the tape):

- Scan the input to check that it contains exactly one # symbol, if not reject.
- 2 Zigzag to corresponding positions on each side of the # and see if they contain same symbol. If not, reject. Cross off symbols as they are checked

An Algorithm for *M*:

On input string s (written on the tape):

- Scan the input to check that it contains exactly one # symbol, if not reject.
- Zigzag to corresponding positions on each side of the # and see if they contain same symbol. If not, reject. Cross off symbols as they are checked
- When all symbols to the left of # have been crossed off, check that no uncrossed-off symbols remain to the right of #. If any symbols remain, reject, otherwise accept.

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

- While unproven, all modern computers satisfy Church-Turing thesis
- To prove that some problem cannot be solved by an algorithm, enough to reason about Turing Machines

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

- While unproven, all modern computers satisfy Church-Turing thesis
- To prove that some problem cannot be solved by an algorithm, enough to reason about Turing Machines
- This means that Turing Machines give an abstraction to capture "feasible computation"

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

- While unproven, all modern computers satisfy Church-Turing thesis
- To prove that some problem cannot be solved by an algorithm, enough to reason about Turing Machines
- This means that Turing Machines give an abstraction to capture "feasible computation"

A Turing machine is a 7-tuple:

 \bigcirc Q – set of states

- \bigcirc Q set of states

- \bigcirc Q set of states
- **③** Γ tape alphabet, where \sqcup ∈ Γ and Σ \subseteq Γ

- \bigcirc Q set of states
- $\textbf{ 0} \quad \Gamma \mathsf{tape} \ \mathsf{alphabet}, \ \mathsf{where} \ \sqcup \in \Gamma \ \mathsf{and} \ \Sigma \subseteq \Gamma$
- **1** $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ transition function

A Turing machine is a 7-tuple:

- Q set of states
- $\textbf{ 3} \ \Gamma tape \ alphabet, \ where \ \sqcup \in \Gamma \ and \ \Sigma \subseteq \Gamma$
- $\bullet \ \delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \text{transition function}$
- $oldsymbol{0}$ $q_0 \in Q$ start state
- **o** q_{accept} ∈ Q − accept state
- $q_{reject} \in Q$ reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

A Turing machine is a 7-tuple:

- Q set of states
- $\textbf{ 3} \ \Gamma tape \ alphabet, \ where \ \sqcup \in \Gamma \ and \ \Sigma \subseteq \Gamma$
- $\bullet \ \delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \text{transition function}$
- $oldsymbol{0} q_0 \in Q$ start state
- **o** q_{accept} ∈ Q − accept state
- $oldsymbol{0}$ $q_{reject} \in Q$ reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ On state q and tape input γ :

A Turing machine is a 7-tuple:

- Q set of states
- $\textbf{ 0} \quad \Gamma \mathsf{tape} \ \mathsf{alphabet}, \ \mathsf{where} \ \sqcup \in \Gamma \ \mathsf{and} \ \Sigma \subseteq \Gamma$
- $\bullet \ \delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \text{transition function}$
- $oldsymbol{0} q_0 \in Q$ start state
- $oldsymbol{0}$ $q_{reject} \in Q$ reject state

Transition function: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

On state q and tape input γ :

• move control to state q',

A Turing machine is a 7-tuple:

- Q set of states
- **③** Γ tape alphabet, where \sqcup ∈ Γ and Σ \subseteq Γ
- **③** $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ − transition function
- $oldsymbol{0} q_0 \in Q$ start state
- $oldsymbol{0}$ $q_{reject} \in Q$ reject state

Transition function: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

On state q and tape input γ :

- move control to state q',
- write γ' to the tape,

A Turing machine is a 7-tuple:

- Q set of states
- **③** Γ tape alphabet, where \sqcup ∈ Γ and Σ \subseteq Γ
- $\bullet \ \delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \text{transition function}$
- $oldsymbol{0} q_0 \in Q$ start state
- $oldsymbol{0}$ $q_{reject} \in Q$ reject state

Transition function: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

On state q and tape input γ :

- move control to state q',
- ullet write γ' to the tape,
- and move the tape head one spot to either Left or Right

Configuration of a TM

Configuration of a TM

• Describes the state of a TM computation

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01q₃10

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01q₃10

Definitions:

• Configuration C_1 yields C_2 , if M can go from C_1 to C_2 in a single step

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01*q*₃10

Definitions:

- Configuration C_1 yields C_2 , if M can go from C_1 to C_2 in a single step
- start configuration of M on input s configuration q_0s

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01q₃10

- Configuration C_1 yields C_2 , if M can go from C_1 to C_2 in a single step
- start configuration of M on input s configuration q_0s
- ullet accepting configuration any config with state q_{accept}

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01q₃10

- Configuration C_1 yields C_2 , if M can go from C_1 to C_2 in a single step
- start configuration of M on input s configuration q_0s
- ullet accepting configuration any config with state q_{accept}
- ullet rejecting configuration any config with state q_{reject}

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01q₃10

- Configuration C_1 yields C_2 , if M can go from C_1 to C_2 in a single step
- start configuration of M on input s configuration q_0s
- ullet accepting configuration any config with state q_{accept}
- rejecting configuration any config with state q_{reject}
- halting configuration accepting or rejecting configs

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: 01q₃10

- Configuration C_1 yields C_2 , if M can go from C_1 to C_2 in a single step
- start configuration of M on input s configuration q_0s
- ullet accepting configuration any config with state q_{accept}
- rejecting configuration any config with state q_{reject}
- halting configuration accepting or rejecting configs

Full Specification: Running M on w = 0000

Outline

- Lecture 17 Review
- 2 Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Definition: Recursively enumerable languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

M halts and accepts all strings in L

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L does not necessarily have to reject

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L does not necessarily have to reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L does not necessarily have to reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or Turing-recognizable by designing a TM algorithm.

- TM always takes a string as input
 - Sometimes we want to talk about a TM taking another type of input (e.g., a graph, a FA, a TM)
 - To do so, we must serialize the object into a string
 - Notation: $\langle G \rangle$

- TM always takes a string as input
 - Sometimes we want to talk about a TM taking another type of input (e.g., a graph, a FA, a TM)
 - To do so, we must serialize the object into a string
 - Notation: ⟨G⟩
- We can "mark" cells on the tape
 - Notation: \dot{x}
 - Technically, this is adding a symbol to Γ

- TM always takes a string as input
 - Sometimes we want to talk about a TM taking another type of input (e.g., a graph, a FA, a TM)
 - To do so, we must serialize the object into a string
 - Notation: ⟨G⟩
- We can "mark" cells on the tape
 - Notation: \dot{x}
 - Technically, this is adding a symbol to Γ
- Can use multiple tapes if it's useful

- TM always takes a string as input
 - Sometimes we want to talk about a TM taking another type of input (e.g., a graph, a FA, a TM)
 - To do so, we must serialize the object into a string
 - Notation: ⟨G⟩
- We can "mark" cells on the tape
 - Notation: \dot{x}
 - Technically, this is adding a symbol to Γ
- Can use multiple tapes if it's useful
- Can give a machine as an input to another machine
 - All machines we have seen can be written as finite tuples, e.g. $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
 - So, we can write this as a string and pass it to a TM
 - TM can then run the machine from this description

- TM always takes a string as input
 - Sometimes we want to talk about a TM taking another type of input (e.g., a graph, a FA, a TM)
 - To do so, we must serialize the object into a string
 - Notation: ⟨G⟩
- We can "mark" cells on the tape
 - Notation: \dot{x}
 - Technically, this is adding a symbol to Γ
- Can use multiple tapes if it's useful
- Can give a machine as an input to another machine
 - All machines we have seen can be written as finite tuples, e.g. $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
 - So, we can write this as a string and pass it to a TM
 - TM can then run the machine from this description
 - A TM that accepts any TM and runs it is called a *universal TM*

Specification of a Turing Machine

There are several levels of detail for specifying a TM

- Full specification
 - ullet Give full detail of transition function δ
 - This is very tedious

Specification of a Turing Machine

There are several levels of detail for specifying a TM

- Full specification
 - ullet Give full detail of transition function δ
 - This is very tedious
- Turing Machine Algorithm specification
 - Explain algorithmically what happens on the tape
 - ullet For example, scan the tape until you find a #, zig-zag on the tape, etc.
 - Don't bother specifying a DFA for the control state

Specification of a Turing Machine

There are several levels of detail for specifying a TM

- Full specification
 - ullet Give full detail of transition function δ
 - This is very tedious
- 2 Turing Machine Algorithm specification
 - Explain algorithmically what happens on the tape
 - ullet For example, scan the tape until you find a #, zig-zag on the tape, etc.
 - Don't bother specifying a DFA for the control state
- Algorithm specification
 - Give algorithm in pseudocode
 - Don't explicitly spell out what happens on the tape

Turing Machine Variants

- Multi-tape Turing Machine
- Nondeterministic Turing Machine

What You Need to Know

- Be able to explain what the variant is
- Know whether it is equivalent to standard TM
- Be able to explain why

Decidable Languages

We have seen many examples of decidable languages:

- Languages about strings
- Languages about DFAs/NFAs/PDAs/CFGs know which ones are decidable and which are not, why
- Be comfortable with TM's that take another machine as input

Relationships Among Language Classes

Outline

- Lecture 17 Review
- 2 Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

• An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3,\ldots$

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite
- A set that is not countable is uncountable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

ullet Assume that ${\cal R}$ is countable

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- ullet Assume that ${\cal R}$ is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- ullet Assume that ${\cal R}$ is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)
1	1.234
2	3.141
3	5.556
:	:

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- ullet Assume that ${\mathcal R}$ is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

• We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$

Real Numbers

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- ullet Assume that ${\mathcal R}$ is countable
- ullet Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

n	f(n)
1	1.234
2	3.141
3	5.556
:	:

- We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$
- Contradiction f is not mapping between \mathcal{R} and \mathcal{N}

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$

 $M_{L_{TM}}$: On input $\langle M, w \rangle$,

Run M on input w

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$

 $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

Correctness:

• For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- ② If M halts, halt and output what M outputs

Correctness:

- For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.
- Hence, $M_{L_{TM}}$, also halts and outputs 1

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- ② If M halts, halt and output what M outputs

Correctness:

- For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.
- Hence, $M_{L_{TM}}$, also halts and outputs 1
- ullet Thus, $M_{L_{TM}}$ accepts all inputs in L_{TM}

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- ② If M halts, halt and output what M outputs

Correctness:

- For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.
- Hence, $M_{L_{TM}}$, also halts and outputs 1
- Thus, $M_{L_{TM}}$ accepts all inputs in L_{TM}
- ullet Note that $M_{L_{TM}}$ may not halt on all inputs doesn't decide L_{TM}

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

$$L_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

Proof: By contradiction

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

 Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 - On Input $\langle M \rangle$, where M is a TM
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 - On Input $\langle M \rangle$, where M is a TM
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 - On Input $\langle M \rangle$, where M is a TM
 - **1** Run H on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• Now consider what happens if we run D on $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

How Is This a Diagonalization?

	$\langle \mathcal{M}_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		$\langle D angle$	• • •
M_1		reject			accept	
M_2	reject	reject	reject		accept	
M_3	accept	accept	accept		reject	
:		:		٠.		
D	reject	accept	reject		?	

- ullet We have defined D to do the opposite of what M_i does on input $\langle M_i
 angle$
- But what does D do on input $\langle D \rangle$??

Outline

- Lecture 17 Review
- Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Main Observation

Suppose that $A \leq B$, then:

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the machine for B as needed by the reduction

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: HALT is undecidable

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

• We show that $L_{TM} \leq HALT$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides HALT

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides HALT On input $\langle M, w \rangle$, S does the following:

• Run $R(\langle M, w \rangle)$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts
- Output whatever M output

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

● To show that a problem is decidable – give an algorithm that always terminates and outputs the answer

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

- To show that a problem is decidable give an algorithm that always terminates and outputs the answer
- To show that a problem is undecidable give an algorithm (a reduction) that shows that this problem can be used to solve one of the undecidable problems

What You Need to Know

You should be able to:

• Understand which direction a reduction should go

What You Need to Know

You should be able to:

- Understand which direction a reduction should go
- Understand implications of such a reduction

What You Need to Know

You should be able to:

- Understand which direction a reduction should go
- Understand implications of such a reduction
- Give a reduction between two related languages

Reduction Types

Know the difference between:

- Mapping reductions
- Turing reductions

Know what each one implies

Mapping Reductions

- If $A \leq_m B$
 - If B is decidable then A is decidable

- - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable
- ② If $A \leq_m B$
 - If B is Turing-recognizable then

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable
- - If B is Turing-recognizable then A is Turing-recognizable

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable
- ② If $A \leq_m B$
 - If B is Turing-recognizable then A is Turing-recognizable
 - If A is not Turing-recognizable than B is not Turing-recognizable

Turing Reductions

Definition

Language A is Turing reducible to language B $(A \leq_T B)$ if can use a decider for B to decide A.

Turing Reductions

Definition

Language A is Turing reducible to language B $(A \leq_T B)$ if can use a decider for B to decide A.

• The reduction may make multiple calls to decider for *B* and may not directly use the result.

Turing Reductions

Definition

Language A is Turing reducible to language B ($A \leq_T B$) if can use a decider for B to decide A.

- The reduction may make multiple calls to decider for B and may not directly use the result.
- For example, in the proof that $L_{TM} \leq L_{E_{TM}}$, we flipped the result of R deciding $L_{E_{TM}}$

Turing reductions are more general than mapping reductions:

Turing reductions are more general than mapping reductions:

• If $A \leq_m B$, then $A \leq_T B$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable
- If $A \leq_T B$
 - If B is Turing-recognizable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable
- If $A \leq_T B$
 - If B is Turing-recognizable A is not necessarily Turing-recognizable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable
- \bullet If $A <_{\tau} B$
 - If B is Turing-recognizable A is not necessarily Turing-recognizable
 - ullet If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Outline

- Lecture 17 Review
- 2 Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Definition

Consider $x \in \{0,1\}^*$.

Definition

Consider $x \in \{0,1\}^*$.

• The minimal description of x (d(x)) is the shortest string $\langle M, w \rangle$ such that TH M on input w halts with x on its tape

Definition

Consider $x \in \{0,1\}^*$.

- ① The minimal description of x (d(x)) is the shortest string $\langle M, w \rangle$ such that TH M on input w halts with x on its tape
- 2 The Kolmogorov complexity of x is

$$K(x) = |d(x)|$$

Definition

Consider $x \in \{0,1\}^*$.

- The minimal description of x (d(x)) is the shortest string $\langle M, w \rangle$ such that TH M on input w halts with x on its tape
- The Kolmogorov complexity of x is

$$K(x) = |d(x)|$$

• K(x) is the minimal description of x

Definition

Consider $x \in \{0, 1\}^*$.

- The minimal description of x(d(x)) is the shortest string $\langle M, w \rangle$ such that TH M on input w halts with x on its tape
- 2 The Kolmogorov complexity of x is

$$K(x) = |d(x)|$$

- K(x) is the minimal description of x
- This captures the "amount of information" in x

What You Need to Know

- Basic definition of Kolmogorov complexity
- Be able to find rough bounds on Kolmogorov complexity
- Don't need to be able to prove anything Arkady Yerukhimovich

Outline

- Lecture 17 Review
- 2 Turing Machines
- 3 Languages Recognized by TMs
- 4 Undecidable Languages
- Proofs by Reduction
- 6 Kolmogorov Complexity
- Practice Problems

Problem 1

Give a Turing-Machine Algorithm for deciding the following languages:

- **1** $L_1 = \{ w \mid w \in \{a, b, c\}^* \text{ and } n_a(w) \neq n_b(w) \neq n_c(w) \}$
- 2 $L_2 = \{0^n \mid n \text{ is not a prime number }\}$

Problem 2

Consider the TM below with input alphabet $\Sigma = \{0,1\}$ and tape alphabet $\Gamma = \{0,1,0^x,1^x\}$. Answer the following questions relative to this TM

- Give the sequence of configurations that this TM goes through if started in configuration q_00011 .
- What language does this TM accept?

Problem 3

For each of the following sets, answer whether it is countable. Prove your answer.

• The set of strings over the characters a, b, c

Problem 4a

Show that the following language is undecidable

Problem 4b

Show that the following language is undecidable

Problem 4c

Show that the following language is undecidable

① Given a TM M, a symbol $a \in \Gamma$ and a string $w \in \Sigma^*$, determine whether or not the symbol a is ever written to the tape when M is run on input w.