2020 辽宁省 ACM 省赛 **大连大学** 名额赛 (正式赛)

主办单位: **大连大学**程序设计工作室 承办单位: **大连大学** ACM 校队

2020年10月3日

Problem A. Find Your Mikull

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

经过了各种维度的 Miku 寻找后,Miku 还是没有被找到。不过好消息是,这次我们又锁定了 Miku 的大概方位。

你的任务很简单,只需要破译出一段密码。已知密码可以被看作一个正整数 **X** ,且满足以下条件:

- 1. $X \in [39^3, 39^9]_{\circ}$
- 2. X 的**各个**数位既不为数字 3 , 也不为数字 9, 如数字 18885, 10, 77421。
- 3. 对于集合 $S = \{Y \times X \mid Y \in (3,9), Y \in \mathbb{Z}\}$,集合内**仅有一个元素的各个**数位仅为数字 3 或者数字 9,如数字 33333,999,39339,99993。而集合内**其他**元素的**各个**数位既不为数字 3 ,也不为数字 9。
- 4. 若符合上述条件的数字有多个,则真正的 X 为其中最小的一个。

Input

本题没有输入。

Output

输出符合条件的正整数 X。

Explanation

数位,指一个数中每一个数字所占的位置。对于数字 397527 ,它的数位分别为:个位为 7,十位为 2,百位为 5,千位为 7,万位为 9,十万位为 3。

Z为整数集合。

Problem B. The question posed by Hirasawa Yui

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

今天由于佐和子老师临时有事需要外出,琴吹䌷原本准备给佐和子老师的蛋糕多了出来。平泽唯想得到这块多出来的蛋糕,但是轻音部的其他成员为了帮助她通过数学期末考试,给她出了一道题,只有答出这道题才能得到这块多出来的蛋糕,你能帮帮可爱的平泽唯解决这个问题吗?

问题是这样的:给出一个长度为 n 且只包含非负整数的数列 a 和一个数字 m,找出 k 个长度不超过 m 的互不相同的子数组,使得这 k 个不相同子数组的和的加和最大。

子数组是数组中一些连续的数字组成的数组,如对于数组 $\{3,6,8,8,10\}$,有 $\{3\}$ 、 $\{6,8,8\}$ 、 $\{3,6,8,8,10\}$ 都是它的子数组,但 $\{3,8\}$ 、 $\{6,8,10\}$ 则不是它的子数组。所以每个子数组都可以用取到的原数组的左右端点下标 $\{L,R\}$ 表示,如 $\{6,8,8\}$ 可以用 [2,4] 表示。对于两个子数组 [L1,R1],[L2,R2],当且仅当 L1=L2且 R1=R2 时,即取到的左右端点下标完全相同时,认为两个子数组相同。

Input

输入第一行包含 3 个正整数 $n(1 \le n \le 10^6)$, $m(1 \le m \le n)$, $k(1 \le k \le 2)$, 分别代表数组长度,子数组最大长度以及需要找的子数组个数。

第二行给出数组 a, 其中数组的第 i 项 a_i ($1 \le a_i \le 10^9$)。

Output

输出k个子数组的和的最大加和。

Examples

standard input	standard output
5 2 1	10
1 2 8 1 3	
standard input	standard output
7 3 2	23
1 2 8 1 3 2 2	

Explanation

第一个样例,取到子数组 [2,3] 时,有子数组最大和 10。

第二个样例,取到子数组 [2,4] 以及子数组 [3,5] 时,有子数组最大加和 11+12=23。

Problem C. Name

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

本次比赛的出题人是谁?很抱歉,不能直接告诉你。

不过可以给你一点提示: 出题人的名字是一个**仅由英文大小写字母组成的字符串**,且将各字母依次转为 ASCII 码后,再将对应的 ASCII 码依次转化为二进制,可以得到一个仅包含 01 的字符串。

现在,转化后的01字符串是已知的,你能否正确将其解码并输出出题人的名字?

Input

输入包含 $q(1 \le q \le 100)$ 组测试样例,第一行为测试样例组数 q。

对于每组测试样例,第一行为 $n, m(1 \le (n+m) \le 2000, 7|(n+m))$,分别代表数组 z 和数组 o 的长度。第二行为数组 z ,表示所有 0 在 01 字符串中出现的位置下标(1-indexed),第三行为数组 o,表示所有 1 在 01 字符串中出现的位置下标(1-indexed)。

输入保证合法,每个字母转换后的二进制只有七位,且一定有解。

Output

输出应包含 q 行,每行为出题人名字。

Examples

standard input	standard output		
2	Pgg		
9 12	jy0		
2 4 5 6 7 10 11 17 18			
1 3 8 9 12 13 14 15 16 19 20 21			
7 14			
3 5 7 12 13 16 17			
1 2 4 6 8 9 10 11 14 15 18 19 20 21			

Explanation

第一个例子中, Pgg 的加密过程如下:

Pgg

ASCII 码: 80 103 103

01 字符串: 1010000 1100111 1100111

拼凑可得字符串: 101000011001111100111

下标从1开始,则有:

z 数组={2,4,5,6,7,10,11,17,18}

o 数组={1,3,8,9,12,13,14,15,16,19,20,21}

(下页还有内容)

附表: ASCII 可显示字符

ASCII可显示字符

二进制	十进制	十六进制	图形	二进制	十进制	十六进制	图形	二进制	十进制	十六进制	图形
0010 0000	32	20	(空格) (4)	0100 0000	64	40	@	0110 0000	96	60	*
0010 0001	33	21	1	0100 0001	65	41	Α	0110 0001	97	61	a
0010 0010	34	22	**	0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	S	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	Е	0110 0101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f
0010 0111	39	27	*	0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	i
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	2B	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0010 1100	44	2C	,	0100 1100	76	4C	L	0110 1100	108	6C	1
0010 1101	45	2D	(5)	0100 1101	77	4D	M	0110 1101	109	6D	m
0010 1110	46	2E	190	0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	s
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0011 0110	54	36	6	0101 0110	86	56	٧	0111 0110	118	76	v
0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	W
0011 1000	56	38	8	0101 1000	88	58	Х	0111 1000	120	78	х
0011 1001	57	39	9	0101 1001	89	59	Υ	0111 1001	121	79	у
0011 1010	58	3A	(2)	0101 1010	90	5A	Z	0111 1010	122	7A	z
0011 1011	59	3B	;	0101 1011	91	5B]	0111 1011	123	7B	{
0011 1100	60	3C	<	0101 1100	92	5C	١	0111 1100	124	7C	1
0011 1101	61	3D	=	0101 1101	93	5D	1	0111 1101	125	7D	}
0011 1110	62	3E	>	0101 1110	94	5E	٨	0111 1110	126	7E	~
0011 1111	63	3F	?	0101 1111	95	SF()	V/OIO	1	0		

Problem D. Black piano key (easy version)

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

注意: 此题为 Black piano key 的简单版本,简单版本和困难版本唯一的区别是 n 和 m 的取值范围以及时间限制。

一般的钢琴上, 五个黑键和一些白键算做一组, 但是天才钢琴少女 Maki 发明了一架每组为 n 个黑键加上(n+1)个黑键的钢琴。

这架钢琴一共有10100个黑白键, 所以钢琴的俯视图可以抽象为下图:

其中橙色方框框选的就是一组,显然一组内包含 2n+1 个黑键和 2 个白键。

现在,给定你两种操作:操作一为将某一组的2个白键染黑,操作二是一个询问,询问内容为当前某一个黑键在第几组。你需要回答所有询问。

Input

输入第一行包含两个正整数 $n, m(1 \le n, m \le 10^3)$,分别表示每一组有 2n+1 个黑键以及 m 个操作。接下来 m 行,每一行包含一个操作:

- 1. 0i , 表示将第 i 组的 2 个白键染黑。 $(1 \le i \le 10^9)$
- 2. 1j , 表示询问第 j 个黑键所在组。 $(1 \le j \le 10^{12})$

数据保证所有的 i 不重复,即不会重复将同一个白键染黑两次。

Output

对于每个询问,输出一行,表示第 j 个黑键所在组。

Examples

standard input	standard output
2 10	2
1 6	2
1 7	2
0 1	1
1 8	3
1 7	3
1 15	2
0 2	2
1 15	
1 14	
1 9	

Explanation

对于第一个询问和第二个询问,都输出2,也就是第6个和第7个黑键都在第2组。

接下来将第一组的 2 个白键染黑后,第 8 个黑键就在第 2 组,而第 7 个黑键就在第 1 组了,因为现在 第 1 组全是黑键,即 7 个黑键。

之后的操作同理。

Problem E. Enterdawn's hotpot

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

喜大普奔,DLU 终于解封了!于是 enterdawn 决定去海**吃火锅。海**有很多 enterdawn 爱吃的菜,但是 enterdawn 的食量有限,吃下的食物的热量总和最多不能超过 X。又由于到了月底,enterdawn 的钱也不多了,所以在不超过他的热量摄入上限 X 的前提下,他想花**尽可能少的钱摄入尽可能多的热量**。所以,请聪明的你编程帮助 enterdawn 计算他最小的花费。

enterdawn 每道菜最多点一份,且 enterdawn 非常节俭,不会浪费,因此会把点的食物吃完(即摄入该食物所有的热量)。

Input

输入第一行为一个正整数 $X(1 \le X \le 2 \times 10^3)$,表示 enterdawn 能够摄入的热量上限。 第二行为一个正整数 $n(1 \le n \le 20)$,表示菜品的个数。

接下来 n 行,第 $i(1 \le i \le n)$ 行包含两个正整数 $a,b(1 \le a,b \le 10^2)$,分别表示第 i 个菜品的价格和热量。

Output

输出一个正整数,代表**摄入的热量总和尽可能多,且不超过热量上限 X 的前提下**的最小花费。

Examples

	standard input	standard output	
10		10	
5			
6 2			
3 2			
5 5			
4 6			
6 4			

Explanation

点最后两个菜品,可以获得最大的热量总和 10,且没有超过热量上限,此时有花费 4+6=10,可以证明在获得热量总和为 10 的前提下,不可能找到花费比 10 更小的方案。

Problem F. Solitary number

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

"……它们历来都是数学界的宠儿,是数学里神秘的谜团,有关它们的话题总能引发热<mark>议,其缘由可</mark>能就在于它那孤独又高冷的一面,常常让人可望而不可及……"

小明走在放学回家的路上,脑中还回响着今天数学课上老师的谆谆教诲。回家后他查阅了相关资料, 发现课上讲的这些"孤独的数"被广泛应用在密码学,汽车变速箱齿轮上,甚至自然界中也存在这些"孤独的数"。

若一个数是大于 1 的正整数,且只能被 1 和它本身整除,则它就是一个"孤独的数"。现在你的任务是,给你一段闭区间 [L,R],请你输出区间内"孤独的数"的数量以及最大的"孤独的数"。

Input

输入第一行包含 2个正整数,代表闭区间左端点 L 和闭区间右端点 $R(1 \le L \le R \le 10^5)$ 。

Output

你应该输出两个数字,第一个数字为闭区间 [L,R] 内孤独的数的数量,第二个数字为闭区间 [L,R] 内最大的孤独的数,**若给定的闭区间内不存在神奇的数字,请输出"do not exist"(不包含双引号)**,注意换行。

Examples

standard input	standard output		
9 98	21		
	97		
standard input	standard output		
998 1008	0		
	do not exist		

Explanation

第一个样例中,显然有孤独的数: 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 一共有 21 个,且最大的孤独的数为 97。

Problem G. Black piano key (hard version)

Input file: standard input
Output file: standard output

Time limit: 2 seconds

 ${\bf Memory\ limit:}\qquad 256\ {\bf megabytes}$

注意: 此题为 Black piano key 的困难版本,简单版本和困难版本唯一的区别是 n 和 m 的取值范围以及时间限制。

一般的钢琴上, 五个黑键和一些白键算做一组, 但是天才钢琴少女 Maki 发明了一架每组为 n 个黑键加上(n+1)个黑键的钢琴。

这架钢琴一共有10100个黑白键,所以钢琴的俯视图可以抽象为下图:

其中橙色方框框选的就是一组,显然一组内包含 2n+1 个黑键和 2 个白键。

现在,给定你两种操作:操作一为将某一组的2个白键染黑,操作二是一个询问,询问内容为当前某一个黑键在第几组。你需要回答所有询问。

Input

输入第一行包含两个正整数 $n, m(1 \le n, m \le 10^5)$,分别表示每一组有 2n+1 个黑键以及 m 个操作。接下来 m 行,每一行包含一个操作:

- 1. 0i , 表示将第 i 组的 2 个白键染黑。 $(1 \le i \le 10^9)$
- 2. 1j , 表示询问第 j 个黑键所在组。 $(1 \le j \le 10^{12})$

数据保证所有的 i 不重复,即不会重复将同一个白键染黑两次。

Output

对于每个询问,输出一行,表示第 j 个黑键所在组。

Examples

standard input	standard output
2 10	2
1 6	2
1 7	2
0 1	1
1 8	3
1 7	3
1 15	2
0 2	2
1 15	
1 14	
1 9	

Explanation

对于第一个询问和第二个询问,都输出2,也就是第6个和第7个黑键都在第2组。

接下来将第一组的 2 个白键染黑后,第 8 个黑键就在第 2 组,而第 7 个黑键就在第 1 组了,因为现在第 1 组全是黑键,即 7 个黑键。

之后的操作同理。

Problem H. The easiest problem in this contest

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

作为本场比赛最简单的一道题,没有那么多弯弯绕的题面。

在本题中,我们会提供给你一个等差数列的首项 a_1 ,末项 a_n 和公差 d,你只需要做一件事,就是输出等差数列的和。

忘记了怎么算前 n 项和? 没关系,这里有:

$$a_n = a_1 + (n-1) \times d$$

$$S_n = na_1 + \frac{n(n-1)}{2}d, n \in n^*$$

Input

输入第一行包含 1 个正整数 $t(1 \le t \le 10^3)$,代表该测试样例有 t 个测试数据。

接下来 t 行,每一行有三个整数 $a_1(-10^3 \le a_1 \le 10^3)$, $a_n(-10^5 \le a_n \le 10^5)$, $d(0 < |d| \le 10^2)$,分别表示一个等差数列的首项、末项及公差。

数据保证合法,即有且仅有一个等差数列满足数据输入。

Output

输出应包含 t 行,每行一个整数表示该等差数列的和。

Examples

standard input	standard output			
3	25			
1 9 2	-30			
-10 0 2	5050			
1 100 1				

Explanation

第一个数据中,首项为 1,末项为 9,公差为 2,可通过给出的公式得到该等差数列为 $\{1,3,5,7,9\}$,所以和为 1+3+5+7+9=25,另外两个数据同理。

Problem I. ii Genn ki

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

当你的同学被高年级老大哥训斥后,你发现事情不妙——因为你忘了你的名字。但庆幸的是你记得你的名字是两个整数 a 和 b 的和。

Input

输入第一行包含一个整数 $N(1 \le N \le 100)$, 表示一共有 N 组测试数据。接下来 N 行,每行包含两个整数 a,b ($|a| \le 1000, |b| \le 1000$)。

Output

输出应包含 N 行,每行输出一个整数表示 a 与 b 的和。

Examples

standard input	standard output
2	6
1 5	30
10 20	