## UPPSALA UNIVERSITY Department of Mathematics Stephan Wagner

Probability and Martingales
1MS045
12 January 2023

(1)

Each problem counts 5 points. Grades are awarded according to the following scale: 0–17 grade U; 18–24 grade 3; 25–31 grade 4; 32–40 grade 5. Allowed tools: pen, paper, calculator. All solutions should be clearly explained.

Note: if not specified otherwise, all random variables are finite and real-valued, with the usual  $\sigma$ -algebra of Borel sets.

- 1. (a) State the first and the second Borel-Cantelli lemma. (2)
  - (b) For every  $n \ge 1$ , let  $X_n, Y_n, Z_n$  be three integers in  $\{1, 2, ..., n\}$ , each taken uniformly at random. These random variables are all mutually independent. Prove: with probability 1,  $X_n = Y_n$  occurs for infinitely many n, but  $X_n = Y_n = Z_n$  only occurs for finitely many n.
- 2. Let  $X_1, X_2, ...$  be independent random variables with  $P(X_i = -1) = P(X_i = 1) = \frac{1}{2}$  for all i. Use the Markov inequality to prove: if c < 2, then the probability that there are n identical consecutive values  $X_i = X_{i+1} = \cdots = X_{i+n-1}$  somewhere among the first  $N = \lfloor c^n \rfloor$  values  $X_1, X_2, ..., X_N$  goes to 0 as  $n \to \infty$ . Show also that this probability tends to 1 if c > 2. (Note:  $\lfloor x \rfloor$  denotes the greatest integer  $\leq x$ .)
- 3. State and prove Kolmogorov's 0-1-law. (5)
- 4. Let  $X_1, X_2, ...$  be independent random variables with  $P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$  for all i, and set  $S_n = X_1 + X_2 + \cdots + X_n$  (with  $S_0 = 0$ ).
  - (a) Define *stopping time*. Which of the following is a stopping time with respect to the natural filtration? (2)
    - $\tau_1 = \inf\{n : S_n = 10\},\$
    - $\tau_2 = \sup\{n : S_n = 10\},\$
    - $\tau_3 = 1 + \sup\{n : S_n = n\}.$
  - (b) State the optional stopping theorem.
  - (c) Show that  $S_n^2 n$  is a martingale. Use the optional stopping theorem to determine the expected value of  $\tau = \inf\{n : |S_n| = 10\}$ . (2)
- 5. A sequence of random variables  $X_0, X_1, \ldots$  is defined recursively. We set  $X_0 = 1$ , and for n > 0,  $X_n$  is a uniformly random number in the interval  $[X_{n-1}, 2X_{n-1}]$ .
  - (a) For which values of c > 0 is  $c^n X_n$  a martingale, supermartingale or submartingale respectively (with respect to the natural filtration)? (2)
  - (b) Prove that there is a constant  $c_0$  such that the following holds: if  $c > c_0$ , then  $c^n X_n \to \infty$  almost surely as  $n \to \infty$ , and if  $0 < c < c_0$ , then  $c^n X_n \to 0$  almost surely as  $n \to \infty$ . Determine this constant.

- 6. (a) Define upcrossings, and state Doob's upcrossing lemma.
  - (b) State and prove *Doob's convergence theorem*. You may use the upcrossing lemma without proof. (3)

(2)

- 7. (a) State the first fundamental theorem of asset pricing (for finite market models). (1)
  - (b) State the second fundamental theorem of asset pricing (for finite market models). (1)
  - (c) Consider a simple market model with a single asset  $S_t$  and two time steps as indicated in the following diagram: (3)



The riskless bond is assumed to be  $S_t^0 = 1$ . Determine all equivalent martingale measures. Is this model viable? Is it complete?

8. Explain how the *Black-Scholes model* can be obtained as a limit of the *binomial model*. In particular, describe the steps leading to the following formula for the fair price of a European call option under the Black-Scholes model:

(5)

$$\int_{-\infty}^{\infty} \left( S_0 e^{-\frac{1}{2}\sigma^2 T + \sigma\sqrt{T}x} - e^{-rT} K \right)^{+} \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} dx.$$

Explain the meaning of all quantities involved in this formula  $(S_0, \sigma, T, r, K)$ .