数理社会I 第7回 性比

2014年5月23-30日

金曜日1-2時限

担当:中丸麻由子

前期授業スケジュール・予定

回	日にち	講義内容	
1	4/11	ガイダンス	
2	4/18	進化生態学基礎	
3	4/25	進化ゲーム	
4	5/2	進化ゲーム	
5	5/9	進化ゲーム・採餌行動	
6	5/23	採餌行動、性比	
7	5/30	性比、性転換	進化生態学の基本
8	6/6	性選択	+人への適用例
9	6/13	血縁淘汰	
10	6/20	人の性選択・人の血縁淘汰	
11	6/27	協力の進化	
12	7/4	協力の進化	
13	7/11	遺伝と多様性	
14	7/18	予備日・テスト範囲説明	
15	7/25	テスト日	

講義の参考文献

- 酒井聡樹、高田壮則、近雅博(1999)「生き物 の進化ゲーム」共立出版
- 酒井聡樹、高田壮則、東樹宏和(2012)「生き物の進化ゲーム 大改訂版」共立出版
- 長谷川寿一、長谷川真理子(2000)「進化と人間行動」東大出版会
- 巌佐庸(1990)「数理生物学入門」共立出版
- 石川統、他編(2006)シリーズ進化「行動・生態の進化」岩波書店

性

- 無性生殖
 - 親と同じ遺伝子のコピーを受け継ぐ
 - ・ 突然変異が生じるので100%同じではない
 - 細胞分裂で個体を増やすバクテリア
 - これもたまに他の個体と遺伝子の交換を行っている
 - 無性生殖と有性生殖を使い分けている生物もある: 竹
- 有性生殖
 - 両親(♀と♂)の遺伝子を受け継ぐ
 - 性2つある
 - ・ なぜ2つ性のある生物がほとんど? →面白い問題
 - 性比は1:1で当たり前と思うかもしれないが、進化的に1:1になる条件がある。この条件以外では性比は偏る→今回のテーマ

前ふり

- みは早に比べて子供を作るコストが低い
 - 例: 人では女性は9ヶ月間妊娠期間
- →みより早が多いと、子供の数が多くなる
- → みパイアスになった方がよいのでは?
- →実際はほぼ1:1
 - 人の場合: 男の子の赤ちゃんの生存率が低いため、出生時の性比は若干オスが多い
- ・性比が1:1となることの、進化ゲーム的説明

フィッシャーの性比理論

- ・ メスの産む子供の数を一定と仮定(n)
 - 野生型(W):性比(♂:♀)=n-f:fで産む
 - 突然変異型(M):性比(♂:♀)=n-f':f'で産む
- ・どんな性比でも、子供の数はnなので、進化 に何も影響ないのでは!

フィッシャーは孫の数に着目した

A型(♂: ♀=1:3)の集団へ B型(3:1)が侵入すると••(n = 4)

つまり、B型はA型の占める集団へ侵入可能

「生き物の進化ゲーム」より

B型(♂: ♀=3:1)の集団へ A型(1:3)が侵入すると・・ (n = 4)

つまり、A型はB型の占める集団へ侵入可能

「生き物の進化ゲーム」より

フィッシャーの性比理論

メスの産む子供の数を一定と仮定(n)

野生型(W):性比(♂:♀)=n-f: f で産む

突然変異型(M):性比(♂:♀)=n-f':f'で産む

野生型の孫の数:

$$\phi(W,W) = \underbrace{nf}_{f} + \underbrace{rn(n-f)}_{g}$$

娘 (f) の産む子の数 息子 $(n-f)$ の子の数

r:オスが交配できるメスの期待値 = f/(n - f)

突然変異型の孫の数:

$$\phi(M,W) = nf' + rn(n - f')$$

r = f/(n - f) ←突然変異型は少数なので無視しても良い

フィッシャーの性比理論の続き

 $\phi(W,W) - \phi(M,W) = n(r-1)(f'-f)$

r>1の時:f' < fであれば負 \rightarrow 集団が \mathcal{L} に偏った性比の時は \mathcal{L} を多く 産むと進化的に侵入可能

r<1の時:f' > fであれば負

→集団が♂に偏った性比の時は♀を多く 産むと進化的に侵入可能

性比が1:1(r=1)の時に進化的に安定となる。

ほとんどの生物で性比が1:1となることの究極要因である

1:1から性比のずれた場合

- 例) 一個体の寄主に複数の卵を産む寄生蜂
 - メスに偏った性比で子を産む
- Hamilton: 局所的配偶者競争に着目した
 - フィッシャーの性比理論のようにランダム交配を 仮定するのではなく、寄主内でしか交配できない と仮定

説明は本文参照.

♂は♀と交尾し、そして宿主を旅立つ

酒井ら「生き物の進化ゲーム」44ページ

局所的配偶競争のモデルの仮定

- パッチ上に x 個体のメスが産卵
- パッチは沢山ある(寄主が沢山いる)
- 交尾は同一パッチでしか起こらない
 - 兄弟同士でのメスを巡る競争が生じる
 - 交尾相手のメスは、自分の姉妹の可能性も高い
- 受精後はメスが新たな産卵場所を探して移動 する

局所的配偶者競争 イメージ図

酒井ら「生き物の進化ゲーム 大改訂版」48ページ

局所配偶競争のモデル

x: パッチ上のメス親の個体数 [←] 突然変異型のメス: 1個体 野生型のメス: x - 1 個体

n:メス親の産む子供の数(一定)

野生型(W)の性比 *n-f*: f

野生型のみのオスの交尾期待値 $r_1 = f/(n - f)$

突然変異型(M)の性比 *n-f* ': f'

集団サイズ x が有限→オスの交尾期待値は突然変異型の影響は無視できない

オスの交尾期待値 $r_2 = ((x-1)f+f')/((x-1)(n-f)+(n-f'))$

野生型の親 x-1匹の娘、息子の数 突然変異型の親1匹の娘、息子の数

局所配偶競争のモデル

野生型の適応度(孫の数)

$$\phi(W, W) = nf + r_1 n(n - f) = 2nf$$

突然変異型の適応度

$$\phi(M,W) = nf' + r_2 n(n - f')$$

$$| \partial \phi(M,W)/\partial f' |_{f=f'=f^*} = 0$$

局所的配偶競争

進化的に安定な集団でのオスの割合:

$$(n-f^*)/n = (x-1)/2x$$

 $x\to\infty$ $(x-1)/2x\to 0.5:$ フィッシャー性比と一致 有限サイズ $(x<\infty)$ では、 メスに偏った性比となることを示す

キョウソヤドリコバチの性比: 実測値と理論値の比較

図 4.6 キョウソヤドリコバチにおける、1 つの寄主に産卵する母バチの数と息子の割合の関係

酒井ら「生き物の進化ゲーム」

酒井ら「生き物の進化ゲーム 大改訂版」

- ・メス親は葉に卵を産み 付ける
- 同じ葉で産まれた雌雄 が交配グループ

この特長を生かし、局所的配偶競争の予測を検証するため、人工飼育実験を行った

酒井ら「生き物の進化ゲーム 大改訂版」

実験3:大きな交配グループが1つある場合

1世代目:400cm²の葉にメス100匹が産卵

葉の卵が孵化し、産まれた子が成熟して交配

密度調整はしない (100匹以上になる) 葉は新しい物に差し替え

図 4.9 一枚の葉あたりの産卵雌親数に依存した平均性比(雄数/個体数)

一枚の葉に産卵する雌親の数を、1 個体・10 個体・100 個体以上の3 段階にして、54 世代飼育した(100 個体以上という処理については14 世代). そして性比を調べた. 各処理について、3 回の繰り返し実験を行なっている. ただし性比は成体のものである(幼体は、雌雄が判別不能のため). 卵からの生存率に雌雄差はないので、成体の性比で問題ないとしている. [Macke, E. et al.: Science 334,1127-1129,(2011) より]

人間社会への適用例

Ranta et al., 2000. Spatial dynamics of adaptive sex ratios. Ecology Letters 3:30-34.

1769-1850年フィンランドの21の教会区のデータ(産業化前の時代)

子供の性比の時間変化

親の性比と子の性比の関係

Pre-industrial human populations in Finland

子供の性比が0.5 (=♀/(♀+♂))の周りを振動

Ranta et al., 2000の続き

理論的には性比は1:1($\mathfrak{P}/(\mathfrak{P}+\mathfrak{P})=0.5$)となるが、場所ごとではそうではない。

空間的自己相関をはかると → 隣接集団との影響がある

- 1:隣接と似ている
- o:ランダム配置
- -1:隣接と似てない

シミュレーションによって隣接集団との影響をみる

格子モデル

各円の黒白の比= 各集団での性比

白:♀、黒:♂

自分と隣接の8集団での 性比の平均値を計算

Fig1Aの関係より、 1-(平均値) を自分の子の性比とする

Ranta et al., 2000の続き シミュレーション結果

各集団の性比の時間変化

Realization of a Fisherian cellular automaton

空間的自己相関

