Mathematics For Data Science

Brian J. Mann

Feb 10-11, 2016

Who am I?

- PhD from University of Utah in 2014 (Geometric Group Theory)
- Worked for Amazon Web Services doing supply chain optimization and forecasting
- Now a Data Scientist at Galvanize
- Email: brian.mann@galvanize.com
- Github: brianmanngalvanize

Objectives

- Learn some fun mathematics
 - Kernel trick for support vector machines
 - VC Generalization Bound (why machine learning works!)
- See how understanding how machine learning is working "under the hood" can improve your intuition about model selection and hyper-parameter choice

Support Vector Machines (SVM)

- ▶ Idea: try to separate classes by an optimal hyperplane
- Here optimal means that the minimum distance from the hyperplane to any of the training points (the margin) is maximal.

Figure 1:Maximal Margin

Ok, that sounds great. What's the problem?

Figure 2:0h.

The solution

► Map our data to a higher dimensional space where it's (almost) linearly separable

Figure 3:Yay!

Issue 1: Memory

- Even for polynomial transformations, the numbers of dimensions (features) in the target space can grow very quickly
- lacktriangle Consider the transformation $\phi:\mathbb{R}^2 o\mathbb{R}^5$ given by

$$(x_1, x_2) \mapsto (x_1^2, x_1 x_2, x_2^2, x_1, x_2, 1)$$

- ▶ More generally, a mapping $\phi_d: \mathbb{R}^N \to \mathbb{R}^{\binom{N+d}{d}}$ that maps a vector to the vector of all monomial terms in N variables of degree $\leq d$
- $\binom{N+d}{d}$ grows *very* quickly as N, d >> 0

Issue 2: Computation

▶ The optimal hyperplane for the transformed data is

$$f(x) = \sum_{i} a_{i} \cdot \langle \phi(x_{i}), \phi(x) \rangle + b = 0$$

► Need to compute the dot product of high-dimensional vectors (in fact, sometimes they might be infinite dimensional!)

A solution

- ▶ What if there was a way to compute $\langle \phi(x), \phi(y) \rangle$ directly without ever computing $\phi(x)$ or $\phi(y)$?
- ► There is!
- ▶ This is what *kernel functions* do for us

What is a kernel function?

A kernel function is a continuous function

$$K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

which satisfies

- 1. K(x,y) = K(y,x) (symmetric)
- 2. *K* is positive-semidefinite i.e.

$$\sum_{i}\sum_{j}K(x_{i},x_{j})c_{i}c_{j}>0$$

for all finite sequences x_1,\ldots,x_n and all $c_i,c_j\in\mathbb{R}$

This definition is a little opaque, but the idea is that a kernel function generalizes the idea of an inner product (also known as a linear kernel).

Mercer's Theorem

Mercer's Theorem says that if $K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ is a kernel function, then there exists a vector space with an inner product (a *Hilbert space*) V and a mapping $\phi: \mathbb{R}^N \to V$ so that

$$K(x,y) = \langle \phi(x), \phi(y) \rangle$$

- ▶ In English, if K is a kernel function, it consists of a transformation followed by an inner product in some higher dimensional space, V.
- ▶ Kernels allow us to compute high-dimensional (sometimes infinite!) inner products in V in terms of our original inputs in \mathbb{R}^N .

Example: Polynomial kernel

- $K(x,y) = (\langle x,y \rangle + c)^d$
- c and d are chosen a priori by the user, not trained
- Find c and d by cross-validation
- ▶ Comes from the polynomial transformation ϕ_d (ignoring some constants)

Figure 4:Polynomial Kernel

Example: RBF (Gaussian) kernel

- $K(x, y) = e^{-\gamma ||x-y||^2}$
- $ightharpoonup \gamma$ is chosen *a priori* by the user
- ► Largest when x and y are close, decays exponentially
- With the RBF kernel, SVM looks for clusters of similarly labeled points
- \blacktriangleright Can learn much more complicated decision boundaries compared to polynomial or linear kernels (watch for overfitting, adjust $\gamma)$

More RBF kernel

Figure 5:RBF Kernel

More RBF kernel

What are ϕ and the dimension of V in this case?

• Let $\gamma = 1/2$ for ease of computation, then

$$K(x,y) = \sum_{j=0}^{\infty} \frac{\langle x, y \rangle^{j}}{j!} \exp(\frac{-||x||^{2}}{2}) \exp(\frac{-||y||^{2}}{2})$$

With a little algebra one gets

$$\phi(x) = \left(\frac{e^{-\frac{||x||^2}{2j}}}{\sqrt{j!}!^{1/j}} \binom{j}{n_1, \dots, n_k}^{1/2}\right)_{j=0,\dots,\infty,\sum_{i=1}^k n_i = j}$$

▶ V is infinite dimensional ($V = I^2$ the space of square-summable sequences)

Overview

- Understand how the kernel trick works
- ► Pick the right kernel for what you think the decision boundary might look like
- Questions?

VC Dimension and the VC Generalization Bound

Question: Why should you expect that your training error tells you anything about the error of your model on new data? In other words, why/how do you know that your model will generalize at all?

We need to start somewhere

Theorem (Hoeffding Inequality)

Suppose X_1, \ldots, X_n are iid random variables and let

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_N}{N}$$

then

$$\mathbb{P}(|\bar{X} - \mathbb{E}(\bar{X})| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

In English

- ▶ For any threshold value ϵ , if you sample a random variable enough times, the probability that the sample mean differs from the true mean by more than ϵ is nearly 0.
- ▶ i.e. If you flip a fair coin enough times, you expect the ratio of heads to tails get arbitrarily close to 1:1 with high probability.

Assumptions

- ► For the purposes of this talk, we'll focus on binary classification problems
- All of this can be extended to other supervised learning problems
- ightharpoonup Positive and negative classes will be represented as +1 and -1

What does this have to do with machine learning?

- ▶ Suppose h is some hypothesis (a function that classifies observations as either +1 or -1)
- $ightharpoonup E_{train}(h) = \text{error rate on your training set}$
- $E_{gen}(h) = \text{true error rate of } h$

 $E_{gen}(h)$ and $E_{train}(h)$ are random variables that satisfy the hypotheses of the Hoeffding Inequality so

$$\mathbb{P}(|E_{train}(h) - E_{gen}(h)| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

Naive error generalization bound

Suppose:

- 1. We have a finite hypothesis set $\{h_1, \ldots, h_M\}$
- 2. Given some training data, we apply some learning procedure to find the optimal hypothesis g

It is NOT TRUE that

$$\mathbb{P}(|E_{train}(g) - E_{gen}(g)| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

since g is chosen after the data is generated

Naive error generalization bound

However, the event

$$|E_{train}(g) - E_{gen}(g)| > \epsilon$$

is in the union of the events

$$|E_{train}(h_i) - E_{gen}(h_i)| > \epsilon$$

so

$$\mathbb{P}(|E_{train}(g) - E_{gen}(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$$

Problem with this naive bound

The bound

$$\mathbb{P}(|E_{train}(g) - E_{gen}(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$$

only works for finite hypothesis sets

▶ Not really useful for any real-world examples

Can we do better?

► Even with finitely many hypothesis functions the bound is still quite bad since the events

$$|E_{train}(h_i) - E_{gen}(h_i)| > \epsilon$$

probably have large overlaps

▶ In fact, they overlap enough to allow us to work with infinite hypothesis sets (i.e. hyperplanes in \mathbb{R}^N)

Shattering

- ▶ Let \mathcal{H} be our hypotheses set
 - $ightharpoonup \mathcal{H}$ might be all separating hyperplanes in \mathbb{R}^N
 - or the set of all of the possible decision functions you can get with a neural network of some fixed topology
- ▶ A *dichotomy* is a choice of label +1 or -1 for each point in a data set
- ▶ For any finite data set $\{x_1, ..., x_N\}$, each $h \in \mathcal{H}$ gives a dichotomy $h(x_1), ..., h(x_N) \in \{+1, -1\}^N$
- Define

$$m_{\mathcal{H}(N)} = \max_{x_1,\ldots,x_N} |\{h(x_1),\ldots,h(x_N)|h\in\mathcal{H}\}|$$

Shattering

- ▶ $m_{\mathcal{H}}(N) \leq 2^N$
- ▶ \mathcal{H} shatters x_1, \ldots, x_N if $|\{h(x_1), \ldots, h(x_N)|h \in \mathcal{H}\}| = 2^N$
- ▶ In this case $m_{\mathcal{H}}(N) = 2^N$
- ▶ In other words, \mathcal{H} shatters a set of points if it could obtain zero training error on that set

Examples

ightharpoonup Linear decision boundaries shatter 3 points in \mathbb{R}^2

- ightharpoonup Convex polgons in \mathbb{R}^2 shatter arbitrarily many points
 - ► Choose *N* points on the unit circle
 - ▶ Take the convex hull of the +1's

Non-example

lacktriangle Linear decision boundaries do not shatter any 4 points in \mathbb{R}^2

Vapnik-Chervonenkis (VC) Dimension

- ▶ The VC Dimension d_{VC} of \mathcal{H} is defined to be the largest N for which $m_{\mathcal{H}}(N) = 2^N$
- Said another way

$$d_{VC} \geq N$$

there exists a data set of size N such that \mathcal{H} shatters it

▶ The VC Dimension gives a polynomial upper bound on $m_{\mathcal{H}}(N)$

$$m_{\mathcal{H}(N)} \leq N^{d_{VC}} + 1$$

VC Dimension is a measure of complexity of a hypothesis

Examples

- ▶ For linear decision boundaries in \mathbb{R}^2 , $d_{VC} = 3$
- ▶ For linear decision boundaries in \mathbb{R}^N , $d_{VC} = N + 1$
 - ightharpoonup Choose N+1 points which do not live on the same hyperplane
 - ▶ Can get any dichotomy on these points, so $d_{VC} \ge N + 1$
 - ▶ With N + 2 points, can find hyperplane through N points with the remaining two points on either side
 - ▶ Labelling points on this hyperplane -1, others $+1 \Rightarrow$ impossible dichotomy
 - ▶ $d_{VC} = N + 1$
- Convex polygons in \mathbb{R}^2 have $d_{VC}=\infty$

The VC Bound

The VC generalization bound states that for any $\delta>0$

$$E_{gen}(g) \leq E_{train}(g) + \sqrt{rac{8}{N}} \ln rac{4m_{\mathcal{H}}(2N)}{\delta}$$

with probability $1-\delta$

What does this tell us?

1. Since $m_{\mathcal{H}}(N)$ is bounded by a polynomial of degree d_{VC} in N, the RHS of

$$E_{gen}(g) \leq E_{train}(g) + \sqrt{rac{8}{N} \ln rac{4m_{\mathcal{H}}(2N)}{\delta}}$$

- $\rightarrow E_{train}(g)$ as the size of the training set increases
- 2. Since $m_{\mathcal{H}}(N)$ or d_{VC} is a measure of model complexity, more complicated models make the bound worse (overfitting!!!!)

Examples

Suppose we want $E_{gen}(g)$ to be within 10% of $E_{train}(g)$ with 90% confidence for a model with $d_{VC}=3$. How much data do we need?

From the VC Bound

$$\sqrt{\frac{8}{\textit{N}}\ln\frac{4m_{\mathcal{H}}(2\textit{N})}{0.1}} \leq 0.1$$

So

$$N \ge \frac{8}{0.1^2} \ln \left(\frac{4(2N)^3 + 4}{0.1} \right)$$

- ► $N \sim 30,000$
- ▶ In general, $N \sim 10,000 \times d_{VC}$
- ightharpoonup Empirically, $N\sim 10 imes d_{VC}$ (VC bound badly overestimates)

Conclusion

- ► The VC Generalization Bound is the theorem that tells you machine learning actually works!
- Obtain statistical guarantees about how well your model generalizes
- Extremely slack bound, but better than nothing

Sketch of Proof (optional)

Theorem (VC Generalization Bound)

$$\mathbb{P}\left(\sup_{h}|E_{train}(h)-E_{gen}(h)|>\epsilon\right)\leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}$$

Proof

1. Instead of working with the space of all possible observations, pick a second test set the same size as the training set

$$\mathbb{P}\left(\sup_{h}|E_{train}(h)-E_{gen}(h)|>\epsilon/2
ight)\leq$$
 $2\mathbb{P}\left(\sup_{h}|E_{train}(h)-E_{test}(h)|>\epsilon/2
ight)$

Sketch Part 2

 Replace the infinite hypothesis set with the number of dichotomies that the hypothesis set can have on a finite set S giving

$$\mathbb{P}\left(\sup_{h}|E_{train}(h) - E_{test}(h)| > \epsilon/2\right) \le m_{\mathcal{H}}(2N) \times \sup_{S} \sup_{h} \mathbb{P}\left(|E_{train}(h) - E_{test}(h)| > \epsilon/2|S\right)$$

Sketch Part 3

3. Use the Hoeffding bound to show

$$\mathbb{P}\left(|E_{train}(h) - E_{test}(h)| > \epsilon/2|S\right) \le 2e^{-\frac{1}{8}\epsilon^2 N}$$

Conclusion

- Obtain statistical guarantees about how well your model generalizes
- Extremely slack bound, but better than nothing

References

Books

- Y. S. Abu-Mostafa, M. Magdon-Ismail, H.-T. Lin *Learning* From Data: A Short Course
- ▶ V. Vapnik, The Nature of Statistical Learning Theory

Papers

- V. Vapnik and A. Y. Chervonenkis, On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities
- Eduardo Sontag, VC Dimension of Neural Networks, http://www.mit.edu/~esontag/FTP_DIR/vc-expo.pdf

Images

http://www.svms.org/vc-dimension/

