I.	Answer all the questions by selecting the most suitable alternative. $(5 \times 1 = 5M)$
1)	Among the following, the number of aromatic compounds are:
ä	a) 3 b) 6 c) 5 d) 2
1 1 1	When 2-butyne is treated with H_2 / Lindlar's catalyst, compound X is produced as the major product and when treated with H_2 / Na, liqNH ₃ it produces Y as the major product. Which of the following statement is correct? a) Y will have higher dipole moment and higher boiling point than X b) Y will have higher dipole moment and lower boiling point than X c) X will have lower dipole moment and lower boiling point than Y d)X will have higher dipole moment and higher boiling point than Y
	A compound on ozonolysis yields ethanal and methanal as the major products. The compound
(can be:
	1. Prop-1-ene b) Pent-1-ene c) But-1-ene d) Ethene
4)	Given the electrode potentials of $K^+/K = -2.93 \text{ V}$, $Ag^+/Ag = 0.80 \text{ V}$
	$Mg^{2+}/Mg = -2.37 \text{ V}$, $Co^{+2}/Co^{+3} = 1.81 \text{ V}$; which of these metals is a strong reducing agent?
	a) Ag b) K c) Mg d) Co
	The units of molar conductivity is
	a) Ω^{-1} b) S m ⁻¹ mol ⁻¹ c) m ² mol ⁻¹ d) S m ² mol ⁻¹
**\	
11)	Answer any <u>TWO</u> of the following questions $(2 \times 5 = 10M)$
2) i. 3)	Define Markovnikov and Anti-Markovnikov's rules. Explain and give mechanism of addition of HBr to 1-hexene in presence of benzoyl peroxide (5M) a) Explain the following with example (3M) Wurtz reaction ii. Kolbe's electrolysis iii. Sulphonation of Benzene b. Calculate the standard Gibbs energy and equilibrium constant of the following cell reaction 2Fe ³⁺ +2Γ → 2Fe ²⁺ + I ₂ has E ⁰ cell = 0.236v and at 298K. (2M) a) What are galvanic cells? Explain the working of a galvanic cell with a neat sketch taking Daniel cell as example. (2M) b) What is Nernst equation? Write the Nernst equation and calculate the EMF of the cell consisting the following half cells (3M) Al/Al ⁺³ (0.001M), Ni/Ni ⁺² (0.50M). Given that E ⁰ _{Ni} (2+) _{Ni} = -0.25V E ⁰ _{Al} (3+) _{Al} = -1.66V (log 8×10 ⁻⁶ = -5.0969)