

23MAT204

MATHEMATICS FOR INTELLIGENT SYSTEMS-3

Dr. Sarada Jayan 9448455760 6364333760

How do we find x in Ax=b?

- 1. Use Gauss Elimination and solve Ax=b
- 2.Use Gauss Jacobi/Gauss Siedel Iterative methods to solve Ax=b
- 3. Solve original optimization problem using steepest descent method / gradient direction method
- 4.Use CGM to solve original optimization problem.
- 5.Use GMRES to solve original optimization problem.

Direction of Descent

- A direction of descent at a point $x^{(k)}$ is a direction d along which the value of the function f(x) decreases from $x^{(k)}$.
- Steepest descent direction:

The direction $d^{(k)}$ along which the function f(x) decreases rapidly from the point $x^{(k)}$ is called steepest descent direction. Steepest descent direction is along the direction of $-\nabla f(x^{(k)})$.

Coradient of
$$f(x_1, -x_n)$$
 is $\nabla f(x) = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} + ---$

Application of gred $\rightarrow \nabla f$ gives the dism. of man, increase

$$f = x_1 + y_1 \qquad \text{(with } f(x_1, x_2) = \nabla f_{(x_1, x_2)} = \nabla$$

Steepest Descent Algorithm

- The iterative formula for method of steepest descent is $x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$
- The descent direction $d^{(k)}$ is along the steepest descent direction, $d^{(k)} = -\nabla f(x^{(k)})$
- The step length $\alpha^{(k)}$ is obtained by performing a unidirectional search from $x^{(k)}$ along the direction $d^{(k)}$ i.e., by minimizing,

$$\varphi(\alpha^{(k)}) = f(\mathbf{x}^{(k)} + \alpha^{(k)}\mathbf{d}^{(k)})$$

$$(\varphi'(\alpha^{(k)}) = 0, \varphi''(\alpha^{(k)}) > 0)$$

Algorithm:

Step 1: Chose an initial starting point $x^{(0)}$ and a termination parameter ε .

Step 2: Compute steepest descent, $d^{(0)} = -\nabla f(x^{(0)})$

Step 3: Compute the step length, $\alpha^{(0)}$ [using unidirectional search from $x^{(0)}$ along $d^{(0)}$].

Step 4: Evaluate $x^{(1)} = x^{(0)} + \alpha^{(0)}d^{(0)}$

Step 5: Compute $\|\nabla f(x^{(1)})\|$. If $\|\nabla f(x^{(1)})\| < \varepsilon$, stop and mention $x^{(1)}$ is minimum, Else go to step 2 with $x^{(0)} = x^{(1)}$.

[While manually solving these problems gradients in step 2 can be directly found. But while coding the numerical formula to evaluate gradients need to be used.]

1. Find a minimum for the function, $f(x,y) = (x-1)^2 + (y-2)^2$ starting from the point (10,-1), using steepest descent method. Choose the termination parameter $\varepsilon = 0.1$

1. Find a minimum for the function, $f(x,y) = (x-1)^2 + (y-2)^2$ starting from the point (10,-1), using steepest descent method. Choose the termination parameter $\varepsilon = 0.1$

$$f(n,y) = (n-1)^{2} + (g-2)^{2}, \quad \overline{n}^{(0)} = (10,-1), \quad \varepsilon = 0,1$$

$$\nabla f = [2(n-1), 2(g-2)]$$

$$\nabla f (10,-1) = [18,-6]$$

$$T^{(0)} = -\nabla f(\overline{n}^{(0)}) = [-18,6]$$
Unidirectional search from $\overline{n}^{(0)}$ along $\overline{d}^{(0)}$.
$$s(\cancel{k}) = \overline{n}^{(0)} + \sqrt{\overline{d}^{(0)}} = (10,-1) + \sqrt{(-18,6)}$$

$$= [10-18x, -1+6x]$$

$$f(s(x)) = [10-18x-1]^{2} + [-1+6x-2]^{2}$$

$$\varphi(\cancel{k}) = (9-18x)^{2} + (6x-3)^{2}$$

$$\phi(x) = (9 - 18x)^{2} + (6x - 3)^{2}$$
Minimum of $\phi(x) \rightarrow \phi'(x) = 0$

$$\Rightarrow 2(9 - 18x)(-18) + 2(6x - 3)(6) = 0$$

$$\Rightarrow -324 + 648x + 72x - 36 = 0$$

$$\Rightarrow x = \frac{360}{720} = \frac{1}{2}$$

$$\forall x = \frac{360}{720} = \frac{1}{2}$$

$$\Rightarrow \sqrt{1 + 3} = \frac{3}{2}$$

$$\Rightarrow \sqrt$$

2. Apply three iterations of steepest descent method to find a minimum for the function, $f(x,y) = 2x^2 - 2xy + y^2$ starting from the point (1,2).

2. Apply three iterations of steepest descent method to find a minimum for the function, $f(x,y) = 2x^2 - 2xy + y^2$ starting from the point (1,2).

$$\nabla f = \begin{pmatrix} 4\pi - 2y \\ -2\pi + 2y \end{pmatrix}$$

$$\nabla h = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad d^{(2)} = -\nabla f(\frac{1}{2}) = \begin{pmatrix} 0 \\ -2 \end{pmatrix} \times d^{(1)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \times d^{(2)} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

(1,2).

$$\lambda = /4, f''(x) = 1670$$
 $\Rightarrow \chi^{(2)} = (/2), \forall f(\pi^{(1)}) = (0)$
 $\chi^{(2)} = (/2), \forall f(\pi^{(2)}) = (0)$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (\frac{1}{2})$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (\frac{1}{2})$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (\frac{1}{2})$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (1-\chi)$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (1-\chi)$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (1-\chi)$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (\chi_2)$
 $\chi^{(3)} = \chi^{(2)} + \chi d^{(2)} = (\chi_2)$

3. Apply 4 iterations of steepest descent method to find the minimum of the function, $f(x_1, x_2) = 3x_1^2 - 4 x_1 x_2 + 2x_2^2 + 4 x_1 + 6$ starting from the origin. [Evaluate the gradients in each iteration analytically].

Ans:

k	$\mathbf{X}^{(\mathbf{k})}$	$\nabla f(\mathbf{X}^{(\mathbf{k})})$	d ^(k)	$lpha_{ m k}$
1	(0,0)	(4,0)	(-4,0)	1/6
2	(-2/3,0)	(0,8/3)	(0,-8/3)	1/4
3	(-2/3,-2/3)	(8/3,0)	(-8/3,0)	1/6
4	(-10/9,-2/3)	(0,16/9)	(0,-16/9)	1/4

Steepest Descent method

- This method is also called as the gradient descent method as it uses the negative gradient as the search direction in each iteration.
- The method produces successive directions that are perpendicular to each other.
- When the point is away from the optimum, the method makes good progress towards the optimum.
- Near the optimum due to zigzagging, the convergence becomes very slow.

- 4. Consider the $f(x, y) = \sin x + 4x^2 + y^3 3y + 2$.
- (a)Is (1,1) or (2,-1) a descent direction from (0,0)?
- (b) Find the steepest descent direction for f(x, y) from (0,0).

Steepest descent direction for
$$f(x, y)$$
 from $(0,0)$.

(a) $\nabla f = (\cos m + 8m)$; $\partial f(0,0) = (-3)$

(b) $\nabla f \cdot (1) = (-3) \cdot (1) = -2 \cdot 0$

(c) $\nabla f \cdot (1) = (-3) \cdot (1) = -2 \cdot 0$

(d) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(e) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(f) is a descent dim.

(g) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

(h) $\nabla f \cdot (2) = (-3) \cdot (-1) \cdot 5 \cdot 70$

5. Find the steepest descent direction for the function, $f(x, y) = 5x^3 + e^{-3y}$ from (1,1).

Ans: Steepest Descent = $-\nabla f$

$$\nabla f = \begin{pmatrix} 15x^2 \\ -3e^{-3y} \end{pmatrix}$$

Steepest Descent = $-\nabla f$ at $(1,1) = \begin{pmatrix} 15 \\ -3e^{-3} \end{pmatrix}$

Solve original optimization problem using gradient direction. It is an iterative method

Let
$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$
, $x \in \mathbb{R}^{n}$, $A = A^{T}$, $c \in \mathbb{R}$

Start with arbitrary x_0

$$\nabla f(x) = Ax - b \Rightarrow Gradient \ at \ x = x_0 \ is \ Ax_0 - b$$

We denote this as $g(x_0)$ Negative gradient is $r_0=b-Ax_0$. r_0 is called residual

New updated x is $x_1 = x_0 - \alpha g(x_0)$

What is a good α ?

The one obtained using unidirectional search.

$$f(n_1, n_2, \dots, n_n)$$

$$\nabla f(n_k)$$

$$S \text{ texpal-descal divn.} = -\nabla f(n_k)$$

$$f(k_1) = -\nabla f(n_k)$$

$$f(k_1) = f(k_1) + d_k f(k_1)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_1) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_2) = f(k_2) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_2) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_2) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

$$f(k_1) = f(k_2) + d_k f(k_2)$$

$$f(k_2) = f(k_1) + d_k f(k_2)$$

Solve original optimization problem using gradient direction. It is an iterative method

Let
$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$
, $x \in \mathbb{R}^{n}, A = A^{T}, c \in \mathbb{R}$

Start with arbitrary x_0

$$\nabla f(x) = Ax - b \Rightarrow Gradient \ at \ x = x_0 \ is \ Ax_0 - b$$

We denote this as $g(x_0)$

Negative gradient is $r_0=b-Ax_0$. r_0 is called residual

New updated x is $x_1 = x_0 - \alpha g(x_0)$

What is a good α ?

The one obtained using unidirectional search.

Solution

Let
$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$
, $x \in \mathbb{R}^{n}$, $A = A^{T}$, $c \in \mathbb{R}$

Start with arbitrary x_0 (position vector)

$$\nabla f(x) = Ax - b \implies Gradient \ at \ x = x_0 \ \text{is } g(x_0) = Ax_0 - b$$

Note: Never forget that g(.) is a vector (displacement vector)

Let $x_1 = x_0 - \alpha \ g(x_0)$. We do not know α to compute x_1

Let us find it through optimization.

$$f(x_{0} - \alpha g(x_{0})) = \frac{1}{2} \underbrace{\left(x_{0} - \alpha g(x_{0})\right)^{T} A(x_{0} - \alpha g(x_{0})) - b^{T}(x_{0} - \alpha g(x_{0})) + c}^{4} + c$$

$$= -\alpha x_{0}^{T} Ag(x_{0}) + \frac{\alpha^{2}}{2} \left(g(x_{0})\right)^{T} Ag(x_{0}) + \alpha b^{T} g(x_{0}) + K, \text{ where K is constant}$$

$$\frac{df}{d\alpha} = -x_0^T Ag(x_0) + b^T g(x_0) + \alpha (g(x_0))^T Ag(x_0)$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T (Ax_0 - b)}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T g(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T (Ax_0 - b)}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T g(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T (Ax_0 - b)}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T Ag(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T (Ax_0 - b)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T (Ax_0 - b)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T Ag(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T Ag(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T Ag(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T Ag(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T Ag(x_0)}{(g(x_0))^T Ag(x_0)}$$

$$g(n_{\partial}) = A n_{\partial} - b$$

$$d_{\partial} = g(n_{\partial})^{T} g(n_{\partial})$$

$$g(n_{\partial})^{T} A g(n_{\partial})$$

$$\eta_{1} = \gamma_{1} - \gamma_{2} g(\gamma_{1})$$

$$g(\gamma_{1}) = A \gamma_{1} - b$$

$$d_{1} = g(\gamma_{1})^{T} A g(\gamma_{1})$$

$$\eta_{2} = \gamma_{1} - \gamma_{2} g(\gamma_{1})$$

Sarada Jayan

Solution

Let
$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$
, $x \in \mathbb{R}^{n}$, $A = A^{T}$, $c \in \mathbb{R}$

Start with arbitrary x_0 (position vector)

$$\nabla f(x) = Ax - b \implies Gradient \ at \ x = x_0 \ is \ g(x_0) = Ax_0 - b$$

Note: Never forget that g(.) is a vector (displacement vector)

Let $x_1 = x_0 - \alpha \ g(x_0)$. We do not know α to compute x_1

Let us find it through optimization.

$$f(x_0 - \alpha g(x_0)) = \frac{1}{2} (x_0 - \alpha g(x_0))^T A(x_0 - \alpha g(x_0)) - b^T (x_0 - \alpha g(x_0)) + c$$

$$= -\alpha x_0^T Ag(x_0) + \frac{\alpha^2}{2} (g(x_0))^T Ag(x_0) + \alpha b^T g(x_0) + K, \text{ where K is constant}$$

$$\frac{df}{d\alpha} = -x_0^T Ag(x_0) + b^T g(x_0) + \alpha (g(x_0))^T Ag(x_0)$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{(g(x_0))^T (Ax_0) - (g(x_0))^T b}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T (Ax_0 - b)}{(g(x_0))^T Ag(x_0)} = \frac{(g(x_0))^T g(x_0)}{(g(x_0))^T Ag(x_0)}$$

8/21/2024 Sarada Jayan

a steepest descent direction

1. Solve the system: $2x_1-x_2=1$; $-x_1+2x_2=0$; using gradient descent

algorithm with initial vector as (0,0) $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}; \ \bar{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \ \bar{\chi}^{(a)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \ \bar{g}(x) = Ax - b$ Meeting(n(0)) = $An^{(0)}-b = \begin{pmatrix} -1\\0 \end{pmatrix}$ $\alpha_{o} = \frac{\langle g(n^{(o)}), g(n^{(o)}) \rangle}{\langle Ag(n^{(o)}), g(n^{(o)}) \rangle} = \frac{1}{\binom{2}{1} \cdot \binom{-1}{0}} = \frac{1}{\binom{2}{1} \cdot \binom{-1}{0}}$ $\chi^{(1)} = \chi^{(1)} - \chi_0 g(\chi^{(0)}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} \\
g(\chi^{(1)}) = A \chi^{(1)} - b = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}, \|g(\chi^{(1)})\| \neq 0$ $\chi^{(2)} = \frac{g(\chi^{(1)})}{g(\chi^{(1)})} \frac{1}{A} g(\chi^{(1)}) = \frac{1}{2} \frac{1}{A} = \frac{1}{2} \frac{1}{A} = 0.5$ $\chi^{(2)} = \chi^{(2)} \frac{1}{A} g(\chi^{(1)}) = \chi^{(2)} \frac{1}{A} g(\chi^{(1)}) = \chi^{(2)} \frac{1}{A} g(\chi^{(1)}) = \chi^{(2)} \frac{1}{A} g(\chi^{(1)}) = \chi^{(2)} \frac{1}{A} g(\chi^{(2)}) = \chi^$ $\chi^{(2)} = \chi^{(1)} - \chi_{1} g(\chi^{(1)}) = \begin{pmatrix} 0.5 \\ 0.25 \end{pmatrix}$ $g(x^{(2)}) = Ax^{(2)} - b = \begin{pmatrix} -0.25 \\ 0 \end{pmatrix}, \|g(x^{(2)})\| \neq 0$ Prevative $\chi = g(x^{(2)})^T g(x^{(2)}) = 0.5$ $\frac{g(x^{(1)})^{T}Ag(x^{(2)})}{\chi^{(3)} = \chi^{(2)} - \chi_{2}g(x^{(2)}) = \begin{pmatrix} 5/8 \\ 1/4 \end{pmatrix} = \begin{pmatrix} 0.625 \\ 0.25 \end{pmatrix}$

$$\frac{g(n^{\circ})^{T}g(n^{\omega})}{g(n^{\omega})^{T}Ag(n^{\omega})} = \langle g(n^{\circ}), g(n^{\omega}) \rangle \\
= \langle g(n^{\omega}), Ag(n^{\omega}) \rangle \\
= \langle Ag(n^{\circ}), g(n^{\circ}) \rangle$$

Direction selected in each iferation is I to the direction in the previous iteration

After 3 iterations the solution get is
$$\bar{x} = \begin{pmatrix} 0.625 \\ 0.25 \end{pmatrix}$$

```
A=[2,-1;-1,2]; b=[1;0];
xo=[0;0]; % starting point, column vector
xa=xo; % store in array
for i=1:10
g=A*xo-b;
alpha=g'*g/(g'*A*g);
xn=xo-alpha*g;
xa=[xa xn];
xo=xn;
errnorm=norm(A*xn-b,2);
if errnorm < 0.001
break;
end
end
hold on
plot(xa(1,:),xa(2,:))
hold on
plot(xa(1,:),xa(2,:),'*')
axis equal
xa
```


 $xa = 2 \times 11$ 0.5000 0.5000 0.6250 0.6250 0.6563 0.6563 0.6641 0.6641 0.6660 0.6660 0.3125 0.2500 0.2500 0.3125 0.3281 0.3281 0.3320 0.3320 0.3330 0

Find Minimizer of

Find Minimizer of
$$f(x_1, x_2) = 2x_1^2 + 1x_2^2 + 2x_1x_2 + x_1 - x_2 = \frac{1}{2} \left[x_1 - x_2 \right] \left[x_1 - x_2$$

OR Solve

 $4x_1+2x_2=-1$ $2x_1+2x_2=1$

x=-4:.25:3;y=-4:.25:7;[X1,X2] = meshgrid(x,y); $Z = 2*X1.^2+X2.^2+2*X1.*X2+X1-X2;$ contour (X1, X2, Z, 30);

The solution is $x^*=(-1,1.5)$


```
x1=-4:.25:3;
x2=-4:.25:7;
[X1,X2] = meshgrid(x1,x2);
Z = 2*X1.^2+X2.^2+2*X1.*X2+X1-X2;
contour (X1, X2, Z, 30);
xo=[-3;7]; % starting point, column vector
A = [4 \ 2; \ 2 \ 2]; b = [-1;1];
xa=xo; % store in array
for i=1:10
    q=A*xo-b;
    alpha=q'*q/(q'*A*q);
    xn=xo-alpha*g;
    xa=[xa xn];
    xo=xn;
    errnorm=norm (A*xn-b, 2);
    if errnorm < 0.001</pre>
         break;
    end
end
hold on
 plot(xa(1,:),xa(2,:))
 hold on
 plot (xa(1,:), xa(2,:), '*')
 axis equal
```


Starting point (3,-4)

Starting point (3,7)

https://www.bu.edu/tech/support/research/training-consulting/online-tutorials/visualization-withmatlab/

Starting point (2.25 4.25)

Observation

- 1. Number of steps required to converge for the gradient descent method depends on the starting point.
- 2. There is no way to predict the number of steps required.

If x is from Rⁿ, can we get convergence in n steps?.

Yes, we have to use a special direction called Conjugate direction.