MA 450: Honors Abstract Algebra Notes

Lecturer: Linquan Ma Transcribed by Josh Park

Fall 2024

Contents

10 Group Homomorphisms	2
11 Fundamental Theorem of Finite Abelian Groups	4
24 Sylow's Theorem	9

Lecture 24 (10/21)

10 Group Homomorphisms

Definition 10.1 (homomorphism). A homomorphism $\phi: G \to \bar{G}$ between two groups is a mapping that preserves the group operation:

$$\phi(ab) = \phi(a)\phi(b) \quad \forall a, b \in G.$$

Definition 10.2 (kernel). The kernel of a homomorphism $\phi: G \to \bar{G}$ is the set

$$\ker(\phi) = \{ x \in G \mid \phi(x) = \bar{e} \}.$$

Example 10.1. Any isomorphism is a homomorphism with ker $\phi = \{e\}$.

Examples. • $\phi: \mathrm{GL}(2,\mathbb{R}) \to (\mathbb{R}^*,\cdot)$ where $A \mapsto \det(A)$.

Then $\phi(AB) = \det(AB) = \det(A) \det(B) = \phi(A)\phi(B)$ and $\ker \phi = \mathrm{SL}(2, \mathbb{R})$.

• $\phi: \mathbb{Z} \to \mathbb{Z}_n$ where $x \mapsto x \mod n$.

Then $\ker \phi = \langle n \rangle = n\mathbb{Z}$

• $\phi: (\mathbb{R}^*, \cdot) \to (\mathbb{R}^*, \cdot)$ where $x \mapsto x^2$.

Then $\phi(xy) = (xy)^2 = x^2y^2 = \phi(x)\phi(y)$ and $\ker \phi = \{-1, 1\}$

Non-Examples. • $\phi: (\mathbb{R}, +) \to (\mathbb{R}, +)$ where $x \mapsto x^2$. Notice that

$$\phi(x+y) = (x+y)^2$$

$$\neq \phi(x) + \phi(y) = x^2 + y^2$$

so ϕ is not a homomorphism.

• $\phi: \mathbb{Z}_3 \to \mathbb{Z}_6$ where $x \mapsto 3x \mod 6$

$$\phi(x+y) = [3(x+y \mod 3)] \mod 6$$

$$\phi(x) + \phi(y) = [(3x \mod 6) + (3y \mod 6)] \mod 6$$

Now let x = 1 and y = 2. Then $\phi(1+2) = 0$ but $\phi(x) + \phi(y) = (3+0) \mod 6 = 3$. Thus ϕ is <u>not</u> a homomorphism

Theorem 10.1 (Properties of elements under homomorphism). Let $\phi: G \to \bar{G}$ be a homomorphism. Then

- 1. $\phi(e) = \bar{e}$
- 2. $\phi(g^n) = \phi(g)^n \quad \forall g \in G$
- 3. |g| finite $\Longrightarrow |\phi(g)| |g|$
- 4. $\ker \phi \leq G$
- 5. $\phi(a) = \phi(b) \iff a \cdot \ker \phi = b \cdot \ker \phi$
- 6. $\phi(g) = g' \implies \phi^{-1}(g') = \{x \in G \mid \phi(x) = g'\} = g \cdot \ker \phi$

Example 10.2. Any homomorphism $\phi_i : \mathbb{Z}_3 \to \mathbb{Z}_6$ is determined by $\phi(1)$.

Note that $|\phi(1)| | |1| = 3 \implies |\phi(1)| = 1 \text{ or } |\phi(1)| = 3$

$$|\phi(1)| = 1 \implies \phi(1) = 0 \implies \phi(x) = 0 \ \forall x \ \text{(i.e. } \phi \text{ is the trivial homomorphism)}$$

$$|\phi(1)| = 3 \implies \phi(1) = 2 \text{ or } \phi(1) = 4$$

$$\phi(1) = 2 \implies \phi(x) = 2x \mod 6$$

$$\phi(1) = 4 \implies \phi(x) = 4x \mod 6$$

Example 10.3. Any homomorphism $\phi_i : \mathbb{Z}_m \to \mathbb{Z}_n$ is determined by $\phi(1)$.

$$\left. \begin{array}{c|c} |\phi(1)| & m \\ |\phi(1)| & n \end{array} \right\} \implies |\phi(1)| \mid \gcd(m,n)$$

Exercise. For all $g \in \mathbb{Z}_n$ with $|y| \mid \gcd(m, n)$, $\exists \text{hom. } \phi : \mathbb{Z}_m \to \mathbb{Z}_n \text{ sending } 1 \text{ to } y \text{ (so, } \phi(x) = xy \text{ mod } n).$

Theorem 10.2 (Properties of sgps under homomorphisms). Let $\phi: G \to \bar{G}$ be a homomorphism and $H \leq G$. Then

- 1. $\phi(H) = {\phi(h) \mid h \in H}$ is a sgp of \bar{G}
- 2. H cyclic $\Longrightarrow \phi(H)$ cyclic
- 3. H abelian $\implies \phi(H)$ abelian
- 4. H normal $\implies \phi(H) \triangleleft \phi(G)$
- 5. $|\ker \phi| = n \implies \phi$ is an n-to-1 mapping from G onto $\phi(G)$
- 6. $|H| = n \implies |\phi(H)| \mid n$
- 7. $\overline{K} \leq \overline{G} \implies \phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\} \leq G$
- 8. $\overline{K} \lhd \overline{G} \implies \phi^{-1}(\overline{K}) \lhd G$ (\implies Cor: $\ker \phi = \phi^{-1}(\overline{e}) \lhd G$)
- 9. ϕ is injective \iff $\ker \phi = \{e\}$ ϕ is an isomorphism \iff ϕ is onto and $\ker \phi = \{e\}$

Examples. • $\phi: \mathbb{Z}_3 \to \mathbb{Z}_6$, $\phi(1) = 4 \implies \phi(2) = 2$, $\phi(0) = 0 \implies \ker \phi = \{0\}$. ϕ is 1-1 but not onto.

• $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$, $\phi(1) = 3 \implies \phi(x) = 3x \mod 12$ $\implies \ker \phi = \{0, 4, 8\} \implies \phi \text{ is 3-to-1 mapping e.g.}$

$$\phi(2) = 6 \implies \phi^{-1}(6) = 2 + \{0, 4, 8\}$$

$$= \{2, 6, 10\}$$

$$\phi^{-1}(\langle 6 \rangle) = \phi^{-1}(\{0, 6\}) = \{0, 2, 4, 6, 8, 10\}$$

$$= \langle 2 \rangle \leq \mathbb{Z}_{12}$$

Theorem 10.3 (First Isomorphism Theorem). Let $\phi: G \to \overline{G}$ be a group homomorphism. Then, the mapping $G/\ker \phi \mapsto \phi(G)$ where $g \cdot \ker \phi \mapsto \phi(g)$ is an isomorphism. That is, $G/\ker \phi \cong \phi(G)$.

Lecture 25 (10/23)

Example 10.4 (N/C Theorem). Let $H \leq G$. Recall the normalizer of H in G and the centralizer of H in G,

$$N(H) = \{ x \in G \mid xHx^{-1} = H \}$$

$$C(H) = \{ x \in G \mid xhx^{-1} \in H, \ \forall h \in H \}$$

(Note: $H \triangleleft G \implies N(H) = G \implies H \triangleleft N(H)$).

Consider the map $\phi: N(H) \to \operatorname{Aut}(H)$ given by $g \mapsto \phi_g$, where ϕ_g is the inner automorphism of H induced by g. That is, $\phi_g(h) = ghg^{-1}$ for all $h \in H$.

Exercise. Check ϕ_g is an automorphism of H and check ϕ is a homomorphism (i.e. $\phi_{g_1g_2} = \phi_{g_1} \circ \phi_{g_2}$).

Then, $\ker \phi = \{g \in N(H) \mid \phi_g = id_H\} = \{g \in N(H) \mid ghg^{-1} = h, \forall h \in H\} = C(H)$. Note that elements of C(H) commute with all elements of H. Thus by Thm 10.3, N(H)/C(H) is isomorphic to a sgp of $\operatorname{Aut}(G)$.

Theorem 10.4. Every normal sgp of a group G is the kernel of a homomorphism of G. That is,

$$N \triangleleft G \implies N = \ker(\phi : G \rightarrow G/N)$$

Example 10.5. Let $G = D_4$. Recall that $Z(D_4) = \{R_0, R_{180}\} \triangleleft D_4$. Define

$$\phi: D_4 \to D_4/Z(D_4) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

$$\{R_0, R_{180}\} \mapsto (0, 0)$$

$$\{R_{90}, R_{270}\} \mapsto (1, 0)$$

$$\{F_0, F_{90}\} \mapsto (0, 1)$$

$$\{F_{45}, F_{135}\} \mapsto (1, 1)$$

Thus $\ker \phi = Z(D_4)$.

11 Fundamental Theorem of Finite Abelian Groups

Theorem 11.1 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian group is isomorphic to a direct product of cyclic groups of prime-power order. Moreover, the number of terms in the product and the order of the cyclic groups are uniquely determined by the group. That is, for some group $G \cong \mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$ where the p_i 's are (not necessarily distinct) primes, the prime powers $p_1^{n_1}, p_2^{n_2}, \ldots, p_k^{n_k}$ are uniquely determined by G.

Theorem 11.2 (Abelian groups of order p^k). There is <u>one</u> abelian group of order p^k for each set of positive integers whose sum is k (called a partition of k)

Example 11.1. Let k=2. The abelian groups of order p^2 are \mathbb{Z}_{p^2} (2=2) and $\mathbb{Z}_p \oplus \mathbb{Z}_p$ (2 = 1+1)

	$\overline{\text{order of } G}$	partitions of k	possible direct products for G
	order or d	partitions of n	
Example 11.2.	p	1	\mathbb{Z}_p
	p^2	2	\mathbb{Z}_{p^2}
		1 + 1	$\mathbb{Z}_p \stackrel{\cdot}{\oplus} \mathbb{Z}_p$
	p^3	3	\mathbb{Z}_{p^3}
		2 + 1	$\mathbb{Z}_{p^2}\oplus \mathbb{Z}_p$
		1 + 1 + 1	$\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$
	p^3	4	\mathbb{Z}_{p^4}
		3 + 1	$\mathbb{Z}_{p^3}\oplus\mathbb{Z}_p$
		2 + 2	$\mathbb{Z}_{p^2}\oplus \mathbb{Z}_{p^2}$
		2 + 1 + 1	$\mathbb{Z}_{p^2}\oplus\mathbb{Z}_p\oplus\mathbb{Z}_p$
		1+1+1+1	$\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$
		1+1+1+1	$\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$

Example 11.3. How many abelian groups are there of order $1176 = 7^2 \cdot 3 \cdot 2^3$?

 \mathbb{Z}_3 \mathbb{Z}_8 or $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

Thus groups of order 1176 are

 $\mathbb{Z}_{49} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_8$

 $\mathbb{Z}_{49} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2$

 $\mathbb{Z}_{49} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

 $\mathbb{Z}_7 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_8$

 $\mathbb{Z}_7 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2$

 $\mathbb{Z}_7 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

so there are 6 possible abelian groups of order 1176.

Thus $\mathbb{Z}_{1176} \cong \mathbb{Z}_{49} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_8$

Lecture 26 (10/25)

If |G| = 8, how do we know whether it is \mathbb{Z}_8 or $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$?

We can use the algorithm for determining an abelian group of order p^n .

- Step 1. Compute the orders of all elements of G
- Step 2. Select an element a_1 of maximum order. Define $G_1 = \langle a_1 \rangle$ and set i = 1.
- Step 3. If $|G| = |G_i|$, we can stop. Otherwise, increment i.
- Step 4. Select an element a_i of maximum order p^k , such that $p^k \leq \frac{|G|}{|G_{i-1}|}$ and none of $a_i, a_i^p, a_i^{p^2}, \dots, a_i^{p^k-1}$ are in G_{i-1} (This guarantees a_iG_{i-1} has order p^k in G/G_{i-1}). Define $G_i = G_{i-1} \times \langle a_i \rangle$

Step 5. Return to step 3.

Eventually,

$$G = \underbrace{\langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_{i-1} \rangle \times \langle a_i \rangle}_{G_i} \times \cdots \times \langle a_s \rangle$$

Note. Observe that $|a_1| \ge |a_2| \ge \cdots \ge |a_s|$

Example 11.4. Consider the group $U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}.$

Since $|U(30)| = 8 = 2^3$, possibilities are \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, and $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Step 1.
$$\langle 7 \rangle = \{1, 7, 19, 13\} \implies |7| = |13| = 4, \quad |19| = 2$$

 $\langle 23 \rangle = \{1, 23, 19, 17\} \implies |23| = |17| = 4, \quad |11| = 2, \quad |29| = 2$

Step 2.
$$a_1 = 7$$
, $G_1 = \langle a_1 \rangle = \langle 7 \rangle$

Step 3.
$$|G_1| = 4 < 8$$
, $i = 1 \leadsto i = 2$

chark 7) Step 4. Pick some a_2 such that $|a_2| \leq \frac{|U(30)|}{|G_1|} = 2$ and a_2 is not contained in $G_1 = \langle 7 \rangle$ Set $a_2 = 11$ and define $G_2 = g_1 \times \langle a_2 \rangle = \langle 7 \rangle \times \langle 11 \rangle$

Step 5.
$$|G_2| = 4 \cdot 2 = 8 = |U(30)|$$

$$\implies U(30) = \langle 7 \rangle \times \langle 11 \rangle \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2 \quad \Box$$

We can use concrete examples to simplify the identification process

Example 11.5. |U(30)| = 8

We know it has (4 elements of order 4), (3 elements of order 2), and (1 element of order 1).

Our options are \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

We can rule out \mathbb{Z}_8 as we do not have an element of order 8.

We can rule out $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ as all elements here have order 2 (excl. e).

Thus the structure must be $\mathbb{Z}_4 \oplus \mathbb{Z}_2$.

Example 11.6. If an abelian group G has order $16 = 2^4$

Suppose G has (12 elements of order 4), (3 elements of order 2), (1 elements of order 41)

Our options are \mathbb{Z}_{16} , $\mathbb{Z}_8 \oplus \mathbb{Z}_2$, $\mathbb{Z}_4 \oplus \mathbb{Z}_4$, $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

We don't have any elements of order 16 or 8, so can easily eliminate \mathbb{Z}_{16} and $\mathbb{Z}_8 \oplus \mathbb{Z}_2$

Not $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, as it has too many elements of order 2.

Not $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, as it has 8 elements of order 4 (and 7 elements of order 2).

Thus $G \cong \mathbb{Z}_4 \oplus \mathbb{Z}_4$

Corollary 11.1. Let G be a finite abelian group. If $m \mid |G|$, then G has a subgroup of order m.

So, the converse of Lagrange's Theorem holds for finite abelian groups.

Remark. This cor. does not hold if G is not abelian (e.g. A_4 does not have any subgroups of order 6).

Proof of Corollary. By FTFAG,

$$G\cong \mathbb{Z}_{p_1^{n_1}}\oplus \mathbb{Z}_{p_2^{n_2}}\oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}} \implies |G|=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$$

Now,

$$m \mid |G| \implies m = p_{i_1}^{n_{i_1}} p_{i_2}^{n_{i_2}} \cdots p_{i_k}^{n_{i_k}} \quad \text{where} \quad p_{i_1}^{r_{i_1}} \mid p_{i_1}^{n_{i_1}} \quad \text{(i.e. } r_{i_j} \le n_{i_j})$$

 \implies by FTCG, \exists subgroup $\mathbb{Z}_{p_{i_j}^{n_{i_j}}}$ with order $p_{i_j}^{r_{i_j}}$

 \implies Take their direct product. This yields a subgroup of G of order m.

Example 11.7. Let $|G| = 72 = 3^2 \cdot 2^3$. Find a subgroup of order $12 = 3^1 \cdot 2^2$.

The possibilities are

$$\begin{array}{lll} \mathbb{Z}_8 \oplus \mathbb{Z}_9 & \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_9 & \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_9 \\ \mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 & \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 & \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \end{array}$$

In $\mathbb{Z}_9 \oplus \mathbb{Z}_8$, a subgroup of order 12 would be the direct product of two subgroups of orders 3 and 4. Thus one subgroup of order 12 is: $\langle 3 \rangle \oplus \langle 2 \rangle$.

In $\mathbb{Z}_9 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2$,

Similarly for $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$,

Lecture 27 (10/28)

Recall the Fundamental Theorem of Finite Abelian Groups:

Theorem 11.3. Let G be a finite abelian group. Then,

$$G \cong \mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the p_i 's are (not necessarily distinct) primes.

Lemma 11.1. Let G be a finite abelian group of order $p^n m$ where gcd(p, m) = 1. Then $G = H \times K$ where

$$H = \{x \in G \mid x^{p^n} = e\} \qquad \qquad K = \{x \in G \mid x^m = e\}$$

Moreover, $|H| = p^n$ and |K| = m.

Proof of Lemma 1. $H \triangleleft G$ and $K \triangleleft G$ (e.g. $x^{p^n} = e = y^{p^n} \implies (xy)^{p^n} = x^{p^n}y^{p^n} = e$).

To show $G = H \times K$, ETS

- $\bullet \ H \cap K = \{e\}$
- G = HK

If $x \in H \cap K$ then $x^{p^n} = e$, $x^m = e$.

Since $gcd(p^n, m) = 1$, $\exists a, b \in \mathbb{Z}$ such that $ap^n + bm = 1$.

$$x = x^{ap^n + bm} = x^{ap^n} \cdot x^{bm} = e.$$

For any $y \in G$ we can write $y = y^{ap^n + bm} = y^{ap^n} \cdot y^{bm}$.

Then $y^{ap^n} \in K$ because $(y^a)^{p^n m} = e$ because $|G| = p^n m$ and similarly, $y^{bm} \in H$.

Thus we have shown $G = H \times K$.

Finally, $p^n m = |G| = |H| \cdot |K|$ but $p \nmid |K|$ (if $p \mid |K| \xrightarrow{\text{Cauchy}} \exists$ an element of K of order p)

Similarly, we have $m \nmid |H| \implies |H| = p^n$ and |K| = m

Lemma 11.2. Let G be an abelian group such that $|G| = p^n$ and $a \in G$ be an element of maximal order. Then $G = \langle a \rangle \times K$ for some group K.

Proof of Lemma 2. We can show this by induction. If n=1, then |G|=p, then $G=\langle a\rangle=\langle a\rangle\times\langle e\rangle$.

Assume we have proved the lemma for all p^k such that k < n.

Choose $a \in G$ which has maximal order, say p^m for some $m \le n$. Then $x^{p^m} = e$ for all $x \in G$.

If m = n then $G = \langle a \rangle = \langle a \rangle \times \langle e \rangle$ and we are done. So assume $m \neq n$.

Pick b of smallest order such that $b \notin \langle a \rangle$.

Claim 1. $\langle a \rangle \cap \langle b \rangle = \{e\}$

Proof of claim. $|b^p| < |b|$ so by our choice $b^p \in \langle a \rangle$ say $b^p = a^i$.

Then $e = b^{p^m} = (b^p)^{p^{m-1}} = (a^i)^{p^{m-1}}$ so $|a^i| \le p^{m-1} \implies a_i$ is not a generator for $\langle a \rangle$.

 $\implies \gcd(p^m, i) \neq 1 \implies p \mid i \text{ and we can write } i = pj \text{ for some } j.$

Then $b^p = a^i = a^{pj}$, set $c = a^{-j}b$.

Then $c \notin \langle a \rangle$ (because if $c \in \langle a \rangle$, then $b \in \langle a \rangle$ since $b = a^j c$) and $c^p = a^{-jp}b^p = e$.

Thus we have found an element c of order p such that $c \notin \langle a \rangle$.

Since b has the smallest order such that $b \notin \langle a \rangle \implies |b| \leq p$, but then |b| = p.

Then $\langle a \rangle \cap \langle b \rangle = \{e\}$ since otherwise elements in this intersection would generate $\langle b \rangle$ so $b \in \langle a \rangle$ ($\Rightarrow \Leftarrow$)

Next, consider the group $\overline{G}=G/\langle b \rangle$ and use \bar{x} to denote $x\langle b \rangle \in \overline{G}.$

$$\text{If } |\overline{a}| < |a| = p^m \text{ then } \overline{a}^{p^{m-1}} = \overline{e} \implies (a\langle b \rangle)^{p^{m-1}} = a^{p^{m-1}} \langle b \rangle = \langle b \rangle \text{ so } a^{p^{m-1}} \in \langle a \rangle \cap \langle b \rangle = \{e\} \ (\Longrightarrow)$$

Thus $|\overline{a}| = p^m \implies \overline{a}$ is an element with maximal order in \overline{G} .

By induction, $\overline{G} = \langle \overline{a} \rangle \times \overline{K}$ for some $\overline{K} \lhd \overline{G}$.

Let K be the pre-image of \overline{K} under $\begin{array}{c} G \to \overline{G} \\ K \to \overline{K} \end{array}$ (i.e. $K = \{x \in G \mid \bar{x} \in \overline{K}\}$)

Claim 2. $\langle a \rangle \cap K = \{e\}$

Proof. If
$$x \in \langle a \rangle \cap K$$
 then $\bar{x} \in \langle \bar{a} \rangle \cap \overline{K} = \{\bar{e}\} \implies x \in \langle b \rangle \implies x \in \langle a \rangle \cap \langle b \rangle = \{e\}$ by previous claim.

It remains to show that $\langle a \rangle K = G$.

$$|\langle a \rangle K| = |\langle a \rangle| |K| = |\langle \overline{a} \rangle| |\overline{K}| \cdot p = |\overline{G}| \cdot p = |G|$$

Note that $G \to \overline{G}$ is p-to-1 since $|\ker| = p$. Thus, $\langle a \rangle K = G$. Therefore $G = \langle a \rangle \times K$

Lecture 28 (10/30)

To recap last lecture, the Fundamental Theorem of Finite Abelian Groups states:

G finite abelian group $\implies |G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$

By **Lemma 1**, $G = G(p_1) \times G(p_2) \times \cdots \times G(p_k)$ where each $G(p_i)$ has order $p_i^{n_i}$.

By **Lemma 2**, each $G(p_i)$ = internal direct product of cyclic groups, each has order of some power of p_i

24 Sylow's Theorem

Definition 24.1 (Conjugate class of a). $a, b \in G$ are called <u>conjugate</u> in G if $b = xax^{-1}$ for some $x \in G$. The conjugate class of a is the set $cl(a) = \{xax^{-1} \mid x \in G\}$.

Remark. Conjugacy is an equivalence relation on G.

Example 24.1. $D_4 = \{R_0, R_{90}, R_{180}, R_{270}, F_0, F_{45}, F_{90}, F_{135}\}$ $cl(R_0) = \{R_0\} \qquad cl(R_{90}) = \{R_{90}, R_{270}\} = cl(R_{270}) \qquad cl(R_{180}) = \{R_{180}\}$ $cl(F_0) = \{F_0, F_{90}\} = cl(R_{90}) \qquad cl(F_{45}) = \{F_{45}, F_{135}\}$

Theorem 24.1 (24.1). Let G be a finite group and $a \in G$. Then, $|\operatorname{cl}(a)| = [G : C(a)]$.

Proof of Theorem 24.1. Recall $C(a) = \{h \in G \mid ha = ah\}$ is the <u>centralizer of a in G</u> and $C(a) \leq G$.

 $\begin{array}{ll} \text{Consider} & \begin{array}{ll} G \to \operatorname{cl}(a) \\ x \mapsto xax^{-1} \end{array} & \text{induces a map } T: & \begin{array}{ll} \{\text{left cosets of } C(a)\} \to \operatorname{cl}(a) \\ xC(a) \mapsto xax^{-1}. \end{array}$

 \bullet T is well-defined if

$$xC(a) = yC(a) \iff x = yh \text{ for some } h \in Ca$$

 $\implies xax^{-1} = yhah^{-1}y^{-1} = yay^{-1}$

- T is onto (obvious)
- *T* is 1-1:

$$xax^{-1} = yay^{-1} \implies (y^{-1}x)a = a(y^{-1}x)$$

 $\implies y^{-1}x \in C(a)$
 $\implies xC(a) = yC(a)$

Since T is a 1-1 correspondence, we know that

$$|\operatorname{cl}(a)| = \#$$
 of left cosets of $\operatorname{C}(a) = [G : C(a)] = \frac{|G|}{|C(a)|}$

Corollary 24.1. $|\operatorname{cl}(a)| \mid |G|$ for any $a \in G$

Proof of Corollary. $|\operatorname{cl}(a)| = \frac{|G|}{|C(a)|} |G|$

Corollary 24.2. For any finite group G,

$$|G| = \sum [G:C(a)]$$

where the sum runs over one element a from each conjugacy class of G.

Proof of Corollary.

$$|G| = \sum_{a} |\operatorname{cl}(a)|$$
 (sum runs over)
= $\sum_{a} [G:C(a)]$

Theorem 24.2. Let G be a finite group such that $|G| = p^n$ where $n \ge 1$. Then Z(G) has more than one element.

Proof of Theorem 24.2. Notice that $a \in Z(G) \iff \operatorname{cl}(a) = \{a\}$

Thus we have that

$$|G| = |Z(G)| + \sum [G : C(a)] = \sum |\operatorname{cl}(a)|$$

where the above sum runs over representatives of all conjugacy classes with more than one element

$$[G:C(a)] = \frac{|G|}{|C(a)|} = p^k \text{ with } k \ge 1$$

$$\implies |Z(G)| = |G| - \sum [G:C(a)] = p^n - \sum p^k \text{ divisible by p}$$

$$\implies |Z(G)| \ne 1$$

Corollary 24.3. If $|G| = p^2$ where p prime, then G abelian.

Proof of Corollary. $|Z(G)| |p^2 \text{ and } |Z(G)| \neq 1 \text{ (by Thm)} \implies |Z(G)| = p \text{ or } p^2$

$$\begin{split} \text{If } & |Z(G)| = p^2 \implies G = Z(G) \\ & \implies G \text{ abelian} \\ & \text{If } & |Z(G)| = p \implies |G/Z(G)| = p \\ & \implies G/Z(G) \text{ cyclic} \\ & \implies G \text{ abelian } \implies Z(G) = G \quad (\ggg) \end{split}$$

Theorem 24.3 (Sylow's First Theorem). Let G be a finite group and let p be a prime. If $p^k \mid |G|$ then G has at least one subgroup of order p^k .

Proof of Sylow's First Theorem. Use induction on |G|. When |G| = 1 it is trivial.

Assume the statement holds for all groups or order less than |G|.

If H < G and $p^k \mid |H|$ then we are done by induction.

Assume p^k does not divide the order of any proper subgroup of G.

Consider $|G| = |Z(G)| + \sum [G : C(a)]$, where we sum over a representative of each conjugacy class cl(a) with $a \notin Z(G)$

By FTFAG (or Cauchy's theorem for abelian groups), $\exists x \in Z(G)$ with |x| = p

Since
$$x \in Z(G) \implies \langle x \rangle \lhd Z(G) \lhd G \implies \langle x \rangle \lhd G$$

So, we can formulate $G/\langle x \rangle$

10

Since
$$|G/\langle x\rangle| = \frac{|G|}{|\langle x\rangle|} = \frac{|G|}{p} \implies p^{k-1} \mid |G/\langle G\rangle|$$

Note that $(G \to G/\langle x \rangle \text{ is } p\text{-to-1})$

Then by induction \exists subgroup of order p^{k-1} of $G/\langle x \rangle$ and such a subgroup has form $H/\langle x \rangle$ where $H \leq G$.

But now
$$|H|/\langle x \rangle = p^{k-1}$$
 and $|\langle x \rangle| = p$ so $|H| = p^k \ (\Rightarrow \leftarrow)$.

Lecture 29 (11/01)

Definition 24.2 (Sylow *p*-subgroup). Let G be a finite group and let p be a prime. A subgroup $H \leq G$ is called a *Sylow p*-subgroup of G if $|H| = p^k$ and $p^k \mid |G|$ but $p^{k+1} \nmid |G|$.

Example 24.2. $|G| = 2^3 \cdot 3^2 \cdot 5^4 \cdot 7 \implies \exists \text{ subgroups of order:}$

2, 4, 8 (Sylow 2-gp), 3, 9 (sylow 3-gp), 5, 25, 125 (sylow 5-gp), 7 (sylow 7-sgp).

Corollary 24.4 (Cauchy's Thm). Let G be a finite group and let p be a prime. If $p \mid |G|$ then G has an element of order p.

Corollary 24.5. The converse of Lagrange's theorem holds for finite abelian groups and all finite gps of prime power order (if $|G| = p^k$, then for any $m \le k \exists H \le G \text{ st } |H| = p^m$).

Fact. A_4 does not have any subgroup of order 6 ($|A_4| = 12 = 2^2 \cdot 3$)

Theorem 24.4 (Sylow's Second Theorem). Let G be a finite group and let p be a prime. If $H \leq G$ and $|H| = p^k$ then H is contained in some Sylow p-subgroup of G.

Theorem 24.5 (Sylow's Third Theorem). Let $|G| = p^k m$ where p prime and $p \nmid m$. Then the number of Sylow p-subgroups of G is congruent to 1 modulo p and divides m. Furthermore, any two Sylow p-subgroups of G are conjugate to each other.

Corollary 24.6. A Sylow p-subgroup of a finite group G is normal iff it is the only SPSGP of G.

Example 24.3. $S_3 = \{(1), (12), (13), (23), (123), (132)\}$

Sylow 2-sgp: $\{(1), (12)\}, \{(1), (13)\}, \{(1), (23)\}$

 $(13)\{(1),(12)\}(13)^{-1} = \{(1),(23)\}$

 $(23)\{(1),(12)\}(23)^{-1}=\{(1),(13)\}$

Sylow 3-sgp: $\{(1), (123), (132)\} \triangleleft S_3$

Example 24.4. Recall that the group $A_4 = \{\text{even permutations of } S_4\}.$

$$|A_4| = |S_4|/2 = 12 = 2^2 \cdot 3$$

Then $\{(1), (12)(34), (13)(24), (14)(23)\}$ is the unique Sylow 2-sgp of A_4 and is thus normal by cor.

Sylow p-subgroup of order 2: $\{(1), (12)(34)\}, \{(1), (13)(24)\}, \{(1), (14)(23)\}$

Theorem 24.6 (24.6). |G| = pq, p, q prime st p < q and $p \nmid (q-1)$. Then G is cyclic and $G \cong \mathbb{Z}_{pq}$.

Example 24.5. Any finite group of order 15 is cyclic (i.e. $\cong \mathbb{Z}_{15}$)

Proof of Theorem 24.6. Let H be the Sylow p-subgroup of G. Let K be the Sylow q-subgroup of G.

By Sylow's Third Theorem, # of Sylow p-subgroups of G divides q and $\equiv 1 \pmod{p}$.

Since $p \nmid (q-1)$, H is the only Sylow p-subgroup of G.

Similarly K is the only Sylow q-subgroup of G.

Thus $H \triangleleft G$ and $K \triangleleft G$.

Let $H = \langle x \rangle$ and $K = \langle y \rangle$.

$$\implies |x| = p, |y| = q, H \cap K = \{e\}, |HK| = \frac{|H||K|}{|H \cap K|} = pq = |G|.$$

$$\implies H \cap K = \{e\} \text{ and } HK = G$$

$$\Longrightarrow G = H \times K \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq}$$

Example 24.6. Determine *G* with $|G| = 99 = 3^2 \cdot 11$.

 H_3 : Sylow 3-sgp H_{11} : Sylow 11-sgp of G

$$n_3 = \#$$
 of Sylow 3-sgps $\implies n_3 \mid 11$ and $n_3 \equiv 1 \mod 3$
 $\implies n_3 = 1 \implies H_3 \triangleleft G$
 $n_{11} = \#$ of Sylow 11-sgps $\implies n_{11} \mid 9$ and $n_{11} \equiv 1 \mod 11$
 $\implies n_{11} = 1 \implies H_{11} \triangleleft G$
 $H_3 \cap H_{11} = \{e\} \implies |H_3H_{11}| = \frac{|H_3| |H_{11}|}{|H_3 \cap H_{11}|} = 99 \implies H_3H_{11} = G$

So, we have $H_3 \triangleleft G$, $H_{11} \triangleleft G$, $H_3 \cap H_{11} = \{e\}$, $H_3H_{11} = G$

$$\implies G = H_3 \times H_{11} \cong H_3 \oplus H_{11}$$

$$|H_{11}| = 11 \implies H_{11} \cong \mathbb{Z}_{11}$$
 $|H_3| = 3^2 = 9 \implies H_3 \cong \mathbb{Z}_9 \text{ or } \mathbb{Z}_3 \oplus \mathbb{Z}_3$

$$\implies G \cong \mathbb{Z}_9 \oplus \mathbb{Z}_{11} \text{ or } G \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{11}$$

Lecture 30 (11/04)

Recall

1. If G is a finite group of permutations on a set S and $i \in S$, then

$$\operatorname{orb}_{G}(i) = \{\phi(i) \mid \phi \in G\} \subseteq S$$

$$\operatorname{stab}_{G}(i) = \{\phi \in G \mid \phi(i) = i\} \leq G$$

$$[G : \operatorname{stab}_{G}(i)] = |\operatorname{orb}_{G}(i)|$$

2. (N/C Theorem) Let $H \leq G$. Recall the normalizer of H in G and the centralizer of H in G,

$$N_G(H) = \{ x \in G \mid xHx^{-1} = H \}$$

 $C_G(H) = \{ x \in G \mid xhx^{-1} \in H, \ \forall h \in H \}$
 $N_G(H) / C_G(H) \le \text{Aut}(H)$

Proof of Sylow's Second Theorem. Let $H \leq G$, $|H| = p^k$, $p^k \mid |G|$

Let K be a Sylow p-subgroup of G.

Let $C = \{K_1 = K, K_2, \dots, K_n\}$ be the set of conjugates of K by elements of G (i.e. $K_i = g_i K g_i^{-1}$ for some $g_i \in G$)

Then $|C| = [G: N_G(K)]$

Then the mapping $G \to C$ where $g \mapsto gKg^{-1}$ is surjective.

$$g$$
 and h have the same image $\iff gKg^{-1} = hKh^{-1}$
 $\iff (h^{-1}g)K(h^{-1}g)^{-1} = K$
 $\iff h^{-1}g \in N_G(K)$
 $\iff gN_g(K) = hN_G(K)$
 $\iff 1\text{-1 correspondence between elements of } C \text{ and left coests of } N_G(K)$
 $\implies |C| = [G:N_G(K)]$

Consider the action of H on C given by h acts on K_i by hK_ih^{-1}

Then $|\operatorname{orb}_H(K_i)| = [H : \operatorname{stab}_H(K_i)]$ is a power of p and

$$|\operatorname{orb}_H(K_i)| = 1 \iff \operatorname{stab}_H(K_i) = H$$

 $\iff H \le N_G(K_i)$

Claim 3. $H \leq N_G(K_i) \iff H \leq K_i$

Proof of claim. " $\Leftarrow=$ " obvious.

" \Longrightarrow " $\forall x \in H, |x|$ is a power of p (since $|x| \mid |H| = p^k$)

$$\forall y \in N_G(K_i) \le K_i \quad |yK_i| \mid |N_G(K_i) / K_i|$$

But $|N_G/K_i| = \frac{|N_G(K_i)|}{|K_i|} |\frac{|G|}{|K_i|} \leftarrow \text{this is rel prime to p since } K_i = \text{sylow p-sgp}$

$$\implies p \nmid |yK_i| \text{ and } |yK_i| \neq 1$$

$$\implies |y|$$
 is not a power of p because $|yK_i| |y|$

Summing up, we see that if $|\operatorname{orb}_H(K_i)| = 1$ then $H \leq K_i$.

Now,
$$|C| = [G:N_G(K)] = \frac{|G|}{|N_G(K_i)|} = \underbrace{\frac{|G|}{|K|}}_{\text{this is not divisible by } n}.$$

If no orbit of C under H has size 1, then p divides the size of each orbit

then
$$p$$
 divides $|C| (\Longrightarrow)$
 $(\Longrightarrow \exists K_i \text{ s.t. } |\text{orb}_H(K_i)| = 1)$

Proof of Sylow's Third Theorem. Let $|G| = p^k m$ and $K \leq G$ be a Sylow p-subgroup Let $C = \{K_1 = K, K_2, \dots, K_n\}$ be the set of conjugates of K in G.

Consider the action of K on G by conjugation.

Then

•
$$|\operatorname{orb}_K(K_i)| = [K : \operatorname{stab}_K(K_i)] \text{ divides } |K| = p^k$$

$$|\operatorname{orb}_K(K_i)| = 1 \iff \operatorname{stab}_K(K_1) = K$$

$$\iff K \le N_G(K_i) \stackrel{claim}{\iff} K \le K_i \iff K = K_i$$

 $\implies n = |C|$ is equal to 1 modulo p

RTS that any Sylow p-subgroup is one of the K_i (i.e. conjugate to K)

If K' is another Sylow p-subgroup of G and $K' \notin C$, then consider the action of K' on C by conjugation.

Then the size of each orbit is greater than 1 (since $\operatorname{orb}_{K'}(K_i) = 1 \iff K' = K_i$ which is impossible)

- \implies summing up, $|C| \equiv 0 \mod p$ contradicting $|C| \equiv 1 \mod p$
- \implies any Sylow p-subgroup is a conjugate of K we started with.

Finally, $|C| = \frac{|G|}{|N_G(K)|}$ divides $|G| = p^r m$ and $|C| \equiv 1 \mod p$.

Since $gcd(p, m) = 1 \implies |C| \mid m$

Lecture 31 (11/06)

Applications of Sylow's Theorems

Example 24.7. Any group of order 66 contains a subgroup isomorphic to \mathbb{Z}_{33} (66 = $2 \cdot 3 \cdot 11$)

 $H_p = \text{Sylow p-sgp}, n_p = \# \text{ of Sylow } p\text{-subgroups}$

Then $n_{11} \mid 6$ and $n_{11} \equiv 1 \mod 11$ (by Sylow's Theorem)

 $\implies n_{11} \implies H_{11}$ is a normal subgroup

Now, $H_3H_{11} = H_{11}H_3$ is a subgroup (since H_{11} is normal)

 $H_3 \cap H_{11} = \{e\} \implies |H_3 H_{11}| = \frac{|H_3||H_{11}|}{|H_3 \cap H_{11}|} = 3 \cdot 11 = 33 \implies H_3 H_{11} \text{ is a subgroup of order } 33. \qquad \Box$

Note. Any group of order 33 is isomorphic to \mathbb{Z}_{33} (pq such that $p \leq q$ and $p \nmid (q-1)$)

In fact, we can completely classify all groups of order 66 (Example 7 on pg 420)

There are exactly 4 such groups (up to \cong)

- \mathbb{Z}_{66} $\langle 2 \rangle \leq \mathbb{Z}_{66}$ subgroup of order 33
- D_{33} {rotations} $\leq D_{33}$ ""
- $D_{11} \oplus \mathbb{Z}_3$ $\mathbb{Z}_{11} \oplus \mathbb{Z}_3 \leq D_{11} \oplus \mathbb{Z}_3$ ""
- $\mathbb{Z}_{11} \oplus D_3$ $\mathbb{Z}_{11} \oplus \mathbb{Z}_3 \leq \mathbb{Z}_{11} \oplus D_3$ " "

Example 24.8. Let G be a group of order $20 = 2^2 \cdot 5$ that is not abelian, then G has 5 Sylow 2-sgps.

By Sylow's Theorem,
$$n_5 \mid 4$$
 and $n_5 \equiv 1 \mod 5 \implies n_5 = 1$

$$n_2 \mid 5 \text{ and } n_2 \equiv 1 \mod 2 \implies n_2 = 1 \text{ or } n_2 = 5$$

Suppose $n_2 = 1$, then $H_2 \triangleleft G$ and $H_5 \triangleleft G$

Also
$$H_2 \cap H_5 = \{e\}$$
 $|H_2 H_5| = \frac{|H_2||H_5|}{|H_2 \cap H_5|} = 4 \cdot 5 = 20$

$$\begin{array}{c} \Longrightarrow G = H_2 \times H_5 \cong H_2 \oplus H_5 \\ \text{but } |H_2| = 4 \implies H_2 \cong \mathbb{Z}_4 \text{ or } \mathbb{Z}_2 \oplus \mathbb{Z}_2 \\ |H_5| = 5 \implies H_5 \cong \mathbb{Z}_5 \end{array} \right\} \implies \underbrace{G = \text{abelian}}_{(\Longrightarrow \leftarrow)}$$

Therefore $n_2 = 5$.

Example 24.9. Classify groups of order $255 = 3 \cdot 5 \cdot 17$

 $n_{17} \mid 15$ and $n_{17} \equiv 1 \mod 17$ (Sylow's Theorem)

$$\implies n_{17} = 1 \implies \mathbb{Z}_{17} \cong H_{17} \lhd G \implies N(H_{17}) = G$$

By N / C Theorem,

$$N(H_{17}) / C(H_{17}) \le \text{Aut}(H_{17})$$

 $| G / C(H_{17}) | | | \text{Aut}(H_{17})| = |U(17)| = 16$
 $| G / C(H_{17}) | | |G| = 255 = 3 \cdot 5 \cdot 7$
 $\implies | G / C(H_{17}) | | \gcd(16, 255) = 1$
 $\implies C(H_{17}) = G \text{ i.e. elts of } G \text{ comm. with any elt in } H_{17}$
 $\implies H_{17} \le Z(G) \implies 17 | |Z(G)|$

But any group of order 15, 5, 3, or 1 is cyclic $(15 = pq \text{ such that } p \leq q \text{ and } p \nmid (q-1))$.

Recall if G / Z(G) cyclic, then G abelian, so G is abelian.

Now by FTFAG, $G \cong \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{17} (\cong \mathbb{Z}_{255})$.