Singer Identity Representation Learning using **Self-Supervised Techniques**

Bernardo Torres¹, Stefan Lattner², Gael Richard¹

¹LTCI, Telecom Paris, Institut Polytechnique de Paris. ²Sony Computer Science Laboratories Paris

Introduction Goal: obtain time-invariant identity representations from singing voice Train identity extraction encoders Existing models from speech literature Lack of large labelled singing voice datasets How well do models trained Can we train better models using on speech generalize to **Self-supervised Learning (SSL)?** singing voice?

Overview and training

Self-supervised techniques

Common idea: representations from the same recording should be close

We trained models with the following SSL techniques:

Evaluation

Singer identification

Linear classifier

Trained on embedding space (frozen encoder) Test accuracy of N-fold cross validation

Singer similarity

Equal Error Rate (EER)

same/different binary classification

Mean Normalized Rank (MNR)
(Lattner, 2022) Rank ground-truth match Query by similarity with query

Evaluation on out-of-domain public datasets

Corpus	Language	#Hours	#Singers	Type	
VCTK	English	44	110	Speech	Yamagish
NUS-48E	English	1.91	12	Speech/Singing	Duan et.a
VocalSet	English	10.1	20	Singing	Wilkins e
M4Singer	Chinese	29.77	20	Singing	Zhang et.

hi et. al, 2019 al, 2013 et al., 2018 . al, 2022

Baselines

Supervised speaker verification Pre-trained, publicly available speech models General purpose SSL

Model	#Params	SR	Dim.	Backbone	
GE2E	1.4M	16	256	LSTM	— Wan et. al, 2018
F-ResNet	1.4M	16	512	ResNet-34	Chung et.al, 2020
H/ASP	8.0M	16	512	ResNet-34	Kwon et al., 2022
Wav2Vec-base	95M	16	12X768	Wav2Vec 2.0	Baevski et. al, 2020
XLSR-53	300M	16	24X1024	Wav2Vec 2.0	Conneau et. al, 202
Ours	5.0M	44.1	1000	EfficientNet-B0	

Results

Speech baselines on singing voice

- , compared to speech data.
- Still work reasonably well; except for VocalSet
- SSL baselines: performed bad on similarity, well on identification

Trained SSL identity encoders

Left: Average similarity score between singers over 100 4s clip draws for each singer (M4Singer dataset) Right: T-SNE visualization for the same embeddings in 3D (original dimensionality is 1000)

The trained SSL models were comparable or superior to baselines

Comparison of SSL techniques

Best on out-of-domain: BYOL Best In-domain: Contrastive

Conclusion

- Trained identity encoders using Self-Supervised Learning (SSL)
- Dataset: large unlabeled singing voice isolated recordings
- **Comparison** with publicly available pre-trained speech models
- **Evaluation** on singer identification and similarity tasks
- A big gap still exists for challenging datasets
- Release of code and trained models

Augment
Random noise, gain, time mask,
formant preserving pitch shifting
Generic encoder: EfficientNet-B0 (Tan and Lee, 2019)
Linear layer + nonlinearity

Compute N similarities

Order by similarity

Get position

Retrieval

Mean Normalized Rank (MNR)

Identification Similarity

Big drop on singing voice

Supervised SSL Still work reasonably well

Well Not well

Comparable or superior

Main results for singing voice

- compared to evaluation on speech data
- They still work reasonably well; except for VocalSet
- SSL baselines: performed well on identification, bad on similarity
- The trained SSL models were comparable or superior to baselines
- A big gap still exists for challenging datasets

- Trained identity encoders using Self-Supervised Learning (SSL)
- Dataset: large unlabeled singing voice isolated recordings
- Evaluation on singer identification and similarity tasks
- Comparison with publicly available pre-trained speech baselines
- Release of code and trained models

Singer Identity Representation Learning using Self-Supervised Techniques

Bernardo Torres¹, Stefan Lattner², Gael Richard¹

¹LTCI, Telecom Paris, Institut Polytechnique de Paris. ²Sony Computer Science Laboratories Paris

Motivation

