Contents

1	Problem Set 1	2
2	Problem Set 2	3
3	Problem Set 3	4
4	Problem Set 4	5
5	Problem Set 5	6
6	Problem Set 6	7

- **Exercise 1.1.** Let R be an integral domain, and let T be an integral domain such that $R \subset T \subset \operatorname{Frac} R$. Show that $\operatorname{Frac} R = \operatorname{Frac} T$.
- **Exercise 1.2.** Let R be an integral domain, and $S \subset R$ a multiplicative subset that does not contain 0. Show that if R is a PID, then so is $S^{-1}R$.
- **Exercise 1.3.** Let R be a commutative unital ring, $S \subset R$ a multiplicative subset, and $I \subset R$ an ideal. Show that $S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$ (Recall that $\sqrt{I} = \{x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N}\}$).
- **Exercise 1.4.** Let R be a commutative unital ring. Show that R is local if and only if whenever r + s = 1, then either $r \in R^*$ or $s \in R^*$
- Exercise 1.5. Show that every nonzero homomorphic image of a local ring is local.

Exercise 2.1. Let R be a commutative unital ring. Show that

$$M_n = \{ p \in R[x] \mid \deg p < n \}$$

is a submodule of R[x].

Exercise 2.2. Let M be an R-module, and $I \subset R$ an ideal.

- 1. Show that $IM = \{\sum_{i=1}^n r_i m_i \mid n \in \mathbb{N}, r_i \in I, m_i \in M\}$ is a submodule of M.
- 2. Show that M/IM is an R/I module, with multiplication given by

$$(r+I)(m+IM) = rm + IM$$
 for all $r+I \in R/I, m+IM \in M/IM$.

Exercise 2.3. Prove the Five Lemma: Let

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \qquad \downarrow^{\alpha_{4}} \qquad \downarrow^{\alpha_{5}}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

be a commutative diagram of R-module homomorphisms with each row exact.

- (a) Show that if α_1 is surjective, and α_2 and α_4 are injective, then α_3 is also injective.
- (b) Show that if α_5 is injective, and α_2 and α_4 are surjective, then α_3 is also surjective.

Exercise 2.4. Let $f: A \to A$ be an R-module homomorphism. Show that if ff = f, then $A \cong \ker f \oplus \operatorname{Im} f$.

Exercise 2.5. Let $f: A \to B$ and $g: B \to A$ be R-module homomorphisms. Show that if $gf = \operatorname{id}$, then $B \cong \operatorname{Im} f \oplus \ker g$.

Exercise 3.1. Let R be a ring, and M an abelian group. Define

 $\operatorname{Hom}_{\mathbb{Z}}(R,M) = \{ f : R \to M \mid f \text{ is a } \mathbb{Z}\text{-module homomorphism} \}.$

Show that $\operatorname{Hom}_{\mathbb{Z}}(R, M)$ is an R-module with multiplication (rf)(x) = rf(x) for any $r \in R$, $f \in \operatorname{Hom}_{\mathbb{Z}}(R, M)$, and $x \in R$.

Exercise 3.2. Show that \mathbb{Q} is not a projective \mathbb{Z} -module.

Exercise 3.3. Show that every projective abelian group is free.

Exercise 3.4. Show that a direct product of R-modules $\prod_{i \in I} J_i$ is injective if and only if each J_i is injective.

Exercise 3.5. Let R be a commutative, unital ring. Show that the following are equivalent.

- (i) Every R-module is projective.
- (ii) Every R-module is injective.
- (iii) Every short exact sequence of R-modules is split exact.

Exercise 4.1. If A is a finite abelian group, show that $A \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.

Exercise 4.2. Show that $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \cong \mathbb{Z}_d$, where d = (m, n). **Hint:** Write d = am + bn for some integers a, b.

Exercise 4.3. Let M be an R-module, and $I \subset R$ an ideal. Show that $R/I) \otimes_R M \cong M/IM$.

Exercise 4.4. Let R be commutative, and $I, J \subset R$ ideals. Show that $R/I \otimes_R R/J \cong R/(I+J)$.

Exercise 4.5. Let R be commutative. An R-module is called *flat* if tensoring with that module is left exact. Show that every projective R-module is flat.

Exercise 5.1. Let R be a PID, and $I \subset R$ an ideal. Show that R/I is both Noetherian and Artinian.

Exercise 5.2. Let R be Noetherian, and $P \subset R$ a prime ideal. Show that R_P is Noetherian.

Exercise 5.3. Let R be an Artinian ring. Show that every prime ideal of R is maximal.

Exercise 5.4. Let R be a ring, $S \subset R$ a multiplicative set, and $I \subset R$ an ideal. Show that $S^{-1}(\operatorname{rad} I) = \operatorname{rad}(S^{-1}I)$.

Exercise 5.5. Let R be Noetherian, and $I, J \subset R$ ideals with $J \subset \operatorname{rad} I$. Show that there exists $n \in \mathbb{N}$ with $J^n \subset I$.

Exercise 6.1. Let R be a ring in which every maximal ideal is of the form cR for some $c \in R$ satisfying $c^2 = c$. Show that R is Noetherian (**Hint:** Show that every prime ideal is maximal).

Exercise 6.2. Let (R, \mathfrak{M}) be a Noetherian local ring. Suppose that $\mathfrak{M}/\mathfrak{M}^2$ is generated by the set $\{a_1+\mathfrak{M}^2,\ldots,a_n+\mathfrak{M}^2\}$. Show that $\mathfrak{M}=a_1R+\cdots+a_nR$.

Exercise 6.3. Let $R \subset S$ be an integral extension, and suppose that R and S are both integral domains. Show that R is a field if and only if S is a field.

Exercise 6.4. Show that if $R \subset S$ is an integral extension, then $S[x_1, \ldots, x_n]$ is integral over $R[x_1, \ldots, x_n]$.

Exercise 6.5. Let R be an integral domain with fractional field k. Show that if R is integrally closed and t is transcendental over k, then R[t] is integrally closed.

Acknowledgements