

Machine Learning Methods in Vulnerable Communities Classification

 Carlos Gomes de Oliveira DBA and Data Engineer

Linkedin.com/in/CarlosOliveira

Applying Machine Learning Methods in People Classification

Carlos Gomes de Oliveira*, Eduardo Terra Morelli[†], and Raul Senna Ferre Instituto INFNET

Escola Superior da Tecnologia da Informação

Rio de Janeiro, RJ

Email: *czgrqg@gmail.com, †emorelli1966@gmail.com, ‡raul.ferreira@prof.infnet.e

Abstract—The missing people database offers several challenges regarding its analysis. The database may be incomplete since usually there is not a commitment from the authorities to keep consolidated and detailed information on missing persons. There are many apparent uncorrelated attributes, as different persons have different attribute groups. Many of these records contain attributes with incorrect and missing information.

This paper intends to demonstrate the use of machine learning

community represented by the data, the tics that distinguish them. This can be machine learning methods.

II. RELATED WO

Machine learning algorithms are wide for example, Cornel and Mirela us

Machine Learning Algorithms Cheat Sheet

Objective

- Identify risk communities in a community using machine learning methods
 - Decision Trees
 - Random Forests
 - XGBoost
 - Logistic Regression

Machine Learning

Basic equation: $Obj(\theta) = L(\theta) + \Omega(\theta)$

• L – Training Loss

• Ω – Regularization

Ex: Linear regression, Logistic Regression, Decision Trees

Decision Trees

Random Forests

$$) = 2 + 0.9 = 2.9$$

$$f($$
 $= 2 + 0.9 = 2.9 f($ $= -1 - 0.9 = -1.9$

Gradient Boosting (XGBoost)

Instance index

gradient statistics

1

g1, h1

2

g2, h2

3

g3, h3

g4, h4

5

g5, h5

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

g1, h1

g4, h4

$$G_L = g_1 + g_4$$

g2, h2

g5, h5 g3, h3

$$G_R = g_2 + g_3 + g_5$$

FEATURES USED IN MODEL

Feature Name	Feature Type		
Days Missing	Quantitative		
Height	Quantitative		
Weight	Quantitative		
Age	Quantitative		
Physical Type	Categorical		
Skin Color	Categorical		
Eye Color	Categorical		
Sex	Categorical		
Hair Color	Categorical		
Mental Impairment	Categorical		

MODEL ACCURACY

Algorithm	Test#1	Test#2	Test#3	Test#4
Decision Trees	69.82%	68.39%	68.68%	67.24%
Random Forest	80.46%	79.02%	81.32%	77.58%
Logistic Regression	75.86%	72.70%	75.29%	71.55%
XGBoost	81.03%	79.02%	79.31%	77.59%

The state of the s

Decision Tree Classifier 69%

The state of the s

LogisticRegression 73%

Atributos

A THE TOTAL PROPERTY OF THE PARTY OF THE PAR

RandomForestClassifier 77%

A TOTO IN THE TOTAL TOTA

XGBClassifier 79%

OTHER PROJECTS

QUESTIONS?