

"Simulation of Urban MObility" - SUMO Eine freie Verkehrssimulation

Michael Behrisch, Daniel Krajzewicz Institut für Verkehrssystemtechnik

Verkehrssimulation als Open Source

Anwendungen für eine Verkehrssimulation

- Reproduzierbare Untersuchungen von
 - realen, existierenden Straßennetzen
 - Neuen Konzepten für
 - → Signalschaltungen
 - → Lageerfassung
 - → Verkehrsprognose
 - → Verkehrsmanagement
 - dynamische Routenwahl
 - Fahrzeug-Fahrzeug und Fahrzeug-Infrastruktur -Kommunikation
- Planung

Verkehrssimulation als Open Source Komponenten

Straßennetz

Fahrzeuge / Fluss

Lichtsignalanlagen

Verkehrssimulation als Open Source

Warum eine freie (open source) Simulation?

Normales Vorgehen

- → Eine (akademische) Institution entwickelt ein neues Verfahren und möchte es testen
- Terstellt eine eigene Verkehrssimulation und braucht:
 - Eine Repräsentation des Straßennetzes (Anzahl Spuren, Vorfahrtsbeziehungen, etc.)
 - Eine Repräsentation der Fahrzeuge (ihre Routen, Parameter, etc.)
 - → Eine Repräsentation der Leitsysteme (Ampeln z. B.)

... führt zu

Vielen (unvollständigen) Simulationen, die nicht vergleichbar sind

→ Lösung: eine erweiterbare Simulation als Basis für eigene Entwicklungen

Verkehrssimulationen

Dynamik des Verkehrs (eine von)

Fundamentaldiagram des Verkehrs (mit Induktionsschleifen gemessen)

Interpretation nach Kerner

Interpretation nach Kim und Keller

Verkehrssimulationen

Klassen

Verkehrssimulationen – Mikroskopische Modelle Einleitung

Zumeist:

- フ zeitdiskret
- → "Fahrzeugfolgemodelle":

die Geschwindigkeit des simulierten Fahrzeugs hängt von der Geschwindigkeit des voraus fahrenden und dem Abstand zwischen beiden ab

$$d(v_l) + g \ge d(v_f) + v_f \tau$$

Verkehrssimulationen – Mikroskopische Modelle

Das Krauß - Fahrzeugfolgemodell* in SUMO

Features:

- Ortskontinuierlich
- → Zeitdiskret
- → Unfallfrei
- → Stochastische Komp.

Parameter:

- eg Beschleunigung a
- eg Bremsvermögen b
- eg max. Geschw. v_{max}
- eg Fahrerunvermögen ϵ

$$v_{safe}(t) = v_l(t) + \frac{g(t) - v_l(t)\tau}{\frac{\overline{v}}{b(\overline{v})} + \tau}$$

$$v_{des}(t) = min\{v_{safe}(t), v(t-1) + a, v_{max}\}$$

$$v(t) = max\{0, rand[v_{des}(t) - \epsilon a, v_{des}(t)]\}$$

[*] "Microscopic Modelling of Traffic Flow: Investigation of Collision Free Vehicle Dynamics", S. Krauß,
DLR (Hauptabteilung Mobilität und Systemtechnik), 1998, ISSN 1434-8454

Verkehrssimulationen – Straßennetze Beispiele für komplexe Straßennetze

Verkehrssimulationen – Straßennetze Einleitung

- Wünsche:
 - > Benutzung realer Straßennetze beliebiger Städte oder Landstriche
 - → Möglichst einfache und schnelle Umsetzung in die Simulation
- → Quellen:
 - Digitale Straßennetze, z.B. von NavTeq
- フ Probleme:
 - → Straßennetze können sehr komplex sein
 - Viele benötigte Informationen sind nicht verfügbar
 - Beziehungen zwischen Spuren
 - Positionen von Lichtsignalanlagen

Verkehrssimulationen – Straßennetze

Umsetzung in SUMO

Verkehrssimulationen – Nachfrage Benötigte Informationen

Jedes Fahrzeug wird explizit modelliert

benötigte Attribute:

- → ID (Name)
- → Fahrzeugtyp (referenziert Krauß-Parameter)
- Die komplette Route durch das Netz
- → Losfahrzeit

optionale Attribute:

フ Halte

Verkehrssimulationen – Nachfrage Mögliche Datenquellen

- Messungen an Induktionsschleifen
 - Genau, aber nur selten verfügbar
 - Keine Information über die Route, nur wie viele Fahrzeuge einen Punkt passiert haben
- Handzählungen an Kreuzungen
 - Ungenauer als Induktionsschleifen und ebenfalls nur für einige Stellen (Hauptkreuzungen) vorhanden
 - Information über Abbiegeanteile
- → (Geschätzte) O/D-Matrizen
 - > Noch ungenauer, aber ein ganzes Gebiet beschreibend

Verkehrssimulationen – Nachfrage

Import unterschiedlicher Quellen der Verkehrsnachfrage

Messungen an Induktionsschleifen

Handzählungen an Kreuzungen

→ (Geschätzte) O/D-Matrizen

SUMO – Simulation of Urban Mobility Enthaltene Applikationen

- SUMO: Simulation ohne grafische Ausgabe
- → GUISIM: Simulation mit einer grafischen Oberfläche
- → NETCONVERT: Importer für Straßennetze
- OD2TRIPS: Importer für O/D-Matrizen
- JTRROUTER: Router anhand von Abbiegebeiziehungen
- DUAROUTER: Router zur Errechnung des Benutzergleichgewichts
- DFROUTER: Router anhand von Indunktionsschleifendaten

SUMO

Umsetzungsziele und -methoden

- Portabilität
 - → Standard C++ (STL)
 - → portable Bibliotheken
 - → Xerces für XML-Verarbeitung
 - > FOX-Toolkit und openGL für die grafische Oberfläche
 - → GDAL und PROJ für Konvertierung von Geokoordinaten
- Hohe Ausführungsgeschwindigkeit
- Keine programmgebundenen Einschränkungen der Kanten-, Knoten- und Fahrzeuganzahl
- Open Source (GPL-Lizenz)
 - Quellen, Binaries, Bug-Tracker, Wiki auf http://sumo.sourceforge.net

SUMO-Projekte am DLR

2002-2006

フ INVENT

Implementation und Verifikation von Verkehrsmanagementstrategien für großstädtische Ballungsräume

フ OIS

Verifikation der Vorteile neuer optischer Sensoren

→ Traffic Tower

Virtuelle Verkehrsmanagementumgebung

WJT2005 / Soccer2006

Integration von Induktionsschleifen- und Luftbilddaten in ein Verkehrsportal mit Vorhersagefunktionalität

→ TrafficOnline

Verkehrsüberwachung mittels mitgeführter GSM Mobiltelefone

Projekte – OIS Das Szenario

Vergleich des Verkehrsflusses innerhalb eines Netzes ohne (links) und mit (rechts) OIS

Projekte – OIS Ergebnisse

Projekte – Weltjugendtag 2005Das Szenario

WJT2005 / Soccer2006 → DELPHI

Beschreibung

Eingesetzt in Köln während

- → Des Papstbesuches (Weltjugendtag 2005)
- → Der FIFA-Fußballweltmeisterschaft (2006)

Verkehrserfassung mittels

- Induktionsschleifen auf den Autobahnen
- Induktionsschleifen der Stadt
- → Eines luftgestützten Erfassungssystems (an einem Zeppelin)

Verkehrslagedarstellung

- → Integration und Darstellung der gesammelten Daten
- Präsentation für die Polizeieinsatzkräfte

Vorhersage der Verkehrslage

→ Die Simulation errechnete den zukünftigen Straßenzustand in 30 min

WJT2005 / Soccer2006 → DELPHI

Visualisierung

Projekte 2007

C2C - Diplom Danilot Tete Boyom

- Modell des Informationsaustausches zwischen Fahrzeugen sowie darauf basierendem Routing
- Schnelles Kommunikationsmodell
- → Ziel: Feststellen, ob C2C-Kommunikation Staus mindert

■ ausgestattete Fahrzeuge □ alle Fahrzeuge □ nicht ausgestattete Fahrzeuge

■ ausgestattete Fahrzeuge □ alle Fahrzeuge □ nicht ausgestattete Fahrzeuge

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Projekte und Erweiterungen TrafficOnline

- Modell des Telefonierens in Fahrzeugen
- Importierte GSM-Infrastruktur
- Ziel: Modell anhand dessen die Performanz eines Verfahrens zur Bestimmung der Straßenlage bemessen werden konnte

SUMO

Verfügbarkeit

Beteiligte:

Institut für Verkehrssystemtechnik / DLR

Aktuelle Version: Version 0.9.8

Webseite / Download: http://sumo.sourceforge.net

Daniel.Krajzewicz@dlr.de Kontakt:

Michael.Behrisch@dlr.de

sumo-user@lists.sourceforge.net

Studien-/Diplomarbeiten:

http://sumo.sourceforge.net/wiki/index.php/DiplomStudArb

