

Александр Сергиенко

СИГНАЛЫ И СИСТЕМЫ ДИСКРЕТНОГО ВРЕМЕНИ

1.1.6 Дискретный гармонический сигнал: возможная непериодичность

Дискретный гармонический сигнал: возможная непериодичность

Дискретный гармонический сигнал

не всегда периодичен:

не всегда периодичен:

$$\chi(k) = \chi(k+N)$$
 $\chi(k) = \chi(k+N)$
 $\chi(k$

Дискретный гармонический сигнал: возможная непериодичность

□ Дискретный гармонический сигнал не всегда периодичен:

$$x(k) = x(k+N)$$

$$Ae^{j\tilde{\omega}k} = Ae^{j\tilde{\omega}(k+N)} = Ae^{j\tilde{\omega}k}e^{j\tilde{\omega}N}$$

$$e^{j\tilde{\omega}N} = \exp\left(j2\pi\frac{\tilde{\omega}}{2\pi}N\right) = 1$$

$$\frac{2}{2\pi} = \frac{P}{q}$$

$$N = q$$

$$= \frac{2}{2\pi} = P$$

$$\frac{2}{2\pi} = P$$

Дискретный гармонический сигнал: возможная непериодичность

□ Дискретный гармонический сигнал не всегда периодичен:

П Отношение $\widetilde{\omega}/(2\pi)$ должно быть рациональной дробью:

$$x(k) = x(k+N)$$

$$Ae^{j\tilde{\omega}k} = Ae^{j\tilde{\omega}(k+N)} = Ae^{j\tilde{\omega}k}e^{j\tilde{\omega}N}$$

$$e^{j\tilde{\omega}N} = \exp\left(j2\pi\frac{\tilde{\omega}}{2\pi}N\right) = 1$$

$$\frac{\tilde{\omega}}{2\pi} = \frac{p}{q},$$

р и *q* — целые числа

Непериодичность дискретного гармонического сигнала: иллюстрация

 $\tilde{\omega}$ = 0.5 рад/отсчет

Отношение $\widetilde{\omega}/(2\pi)$ *не является* рациональной дробью

Периодичность дискретного гармонического сигнала: иллюстрация

$$\tilde{\omega} = \frac{4\pi}{25} \approx 0.5027$$
 рад/отсчет

Отношение $\widetilde{\omega}/(2\pi) = 2/25$ *является* рациональной дробью

