Ultra-Low Power PLL for Wake-up Receiver Applications

Specialization Project Progress - 5th Week

Cole Nielsen
Department of Electronic Systems, NTNU
27 September 2019 (Week 39)

Autumn Timeline

Week Number	Dates	Tasks	Outcomes	
36	2.9 - 8.9	Review PLL Design	Refreshed Knowledge	
37	9.9 - 15.9	Modeling/simulation (set up)	-	
38	16.9 - 22.9	Modeling/simulation	TDC/DCO Requirements	
39	23.9 - 29.9	Modeling/simulation	Loop Filter/Digital Algorithms	
40	30.9 - 6.10	Modeling/simulation	Loop filter, Ideal implementation in Cadence	
41	7.10 - 13.10	Circuit Research	DCO/Divider topologies	
42	14.10 - 20.10	Circuit Research	TDC/other topologies	
43	21.10 - 27.10	Circuit Implementation	Digital logic (schematic)	
44	28.10 - 3.11	Circuit Implementation	DCO (schematic)	
45	4.11 - 10.11	Circuit Implementation	Divider/other (schematic)	
46	11.11 - 17.11	Circuit Implementation (TDC)		
47	18.11 - 24.11	Circuit Implementation (TDC)	TDC (schematic)	
48	25.11 - 1.12	Full Circuit testing	Testbenches, find bugs, design fixes	
49	2.12 - 8.12	Full Circuit testing	Design Fixes/iteration	
50	9.12 - 15.12	-	-	

Legend: Done Current Revised

Timeline Tasks

This week

- Primary: Loop analysis, requirements definition
 - Design open loop filter design to meet closed loop requirements.
 - Dependent on DCO properties (k_{DCO} , f_0 , tuning range).
 - Difference equation implementing discrete time 2nd order IIR filter.
 - Datapath requirements (fixed-point resolution)

Next week - Revised

- Primary: Ideal component PLL implementation in Cadence, continue loop filter work.
 - Ideal component PLL implementation is not a lot of work.
 - Loop filter very critical, spend more time on this.
 - Need to make Verilog description of loop filter for simulation in Cadence.

Original Attempt

- Started with simple PLL loop with proportional-phase fed into loop filter (LF).
 - Not stable at large frequency offset, due to frequency wrapping. At the TDC:

$$\Delta \phi = \frac{2\pi \Delta fT}{N} \to T_{wrap} = \frac{N}{\Delta f} \tag{1}$$

- Upon cold start, Δf is expected to be up to 100 MHz, N=150 \rightarrow $T_{wrap} = 1.5~\mu s$ $f_{wrap} \sim 600$ kHz, this is unstable with a loop bandwidth of 100 kHz.
- Must opt for alternate loop structure.

New Approach

- Two-fold approach: utilize propotional-phase and coarse frequency offset estimation in feedback.
 - Coarse frequency estimator to handle high frequency offset (e.g. cold start-up).
 - Proportional-phase for near steady state. Acts like fine frequency estimator.
- Offset estimates are summed with previous oscillator tuning word (OTW, also f_{ctrl} here), then low passed filtered to yield new OTW.
 - Low pass filter loop keeps steady state.

Coarse frequency offset estimation

— Coarse frequency estimation: Given M-step TDC, outputting phase error signal $e_{\phi}[n]$, and a divider modulus N

$$\Delta\phi_{DCO}[n;q] = N \cdot \Delta\phi_{REF}[n] = 2\pi \frac{N}{M} \left(e_{\phi}[n] - e_{\phi}[n-q] \right), \qquad \Delta\phi_{DCO}[n;q] = \Delta\omega_{DCO}[n]qT_{ref} = 2\pi q \frac{\Delta f_{DCO}}{f_{ref}}$$

$$\Delta f_{DCO} = \frac{f_{ref}}{2\pi} \frac{N}{M} \left(e_{\phi}[n] - e_{\phi}[n-q] \right) \tag{3}$$

- Is a discrete differentiator, with gain coeficient to convert $d\phi/dt$ to frequency.
 - Design logic to handle phase wrapping.
 - Useful in coarse frequency range calibration. Can detect fast if frequency offset too large.
 - Delay q is used to increase frequency resolution.

Coarse frequency offset estimation - continued

— Given DCO gain K_{DCO} , the gain K_d of the filter is:

$$K_{d} = \frac{f_{ref}}{qK_{DCO}} \frac{N}{M} \left(e_{\phi}[n] - e_{\phi}[n-q] \right) \tag{4}$$

- Disable the coarse estimator off if $e_{\phi}[n] e_{\phi}[n-q]$ < some threshold:
 - Offset small enough, allow to run as classical phase-detector mode.

Fine frequency offset estimation

- Proportional signal of phase error to estimate frequency error.
- Used in near-steady state. Loop will regulate to keep phase locked.
- Classical PLL operating mode.

Loop Filter Gain Coefficients

— When running in proportional-only feedback mode, the open loop gain A(f) is:

$$A(t) = K_{\rho} \frac{M}{N} \frac{K_{LPF}}{s + \omega_{LPF} - K_{LPF}} \frac{2\pi K_{DCO}}{s}$$
 (5)

— The closed loop gain is therefore (continuous):

$$G(f) = \frac{A(f)}{1 + A(f)} = \frac{2\pi M K_p K_{LPF} K_{DCO}/N}{s^2 + s(\omega_{LPF} - K_{LPE})/N + 2\pi M K_p K_{LPF} K_{DCO}/N}$$
(6)

Loop Filter Gain Coefficients

— The form of a second order low pass filter is, with natural frequency ω_n and damping coefficient ζ :

$$H_{LPF}(f) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{7}$$

— Setting $H_{LPF}(f) = G(f)$, equivalencies for ω_n and ζ are found:

$$\omega_{R} = \sqrt{2\pi M K_{P} K_{LPF} K_{DCO}/N}$$
 (8)

$$\zeta = \frac{\omega_{LPF} - K_{LPF}}{2\sqrt{2\pi MNK_p K_{LPF} K_{DCO}}} \tag{9}$$

- The Butterworth closed loop response with 100 kHz bandwidth, $\omega_n \sim 2\pi \cdot 100 \textit{Khz}$, $\zeta = 0.707$.
- Coefficients K_{LPF} , K_p , ω_n can be solved computationally.
- Need to reformulate in Z-domain.

Frequency Calibration

Coarse frequency calibration algorithm

- Ring oscillator DCO will have large variations in frequency due to PVT variation.
- Will have bank of coarse capacitance values to adjust range of oscillator.
- Utilize coarse frequency estimator in tuning.
- DCO is has a tuning range of Δf .

Coarse tuning state machine (as loop pseudo-code)

- 1. Set $C_{coarse} = 0$
- 2. Reset PLL
- 3. Estimate Frequency offset \rightarrow f_{offset}
- 4. If $f_{offset} > \Delta f/4$ and $f_{offset} \leq 3\Delta f/2$: break
- 5. $C_{coarse} += 1$
- 6. Goto 2

Specification (unchanged)

System Performance Targets

Parameter	Value	Unit	Notes	
Frequency	2.4-2.4835	GHz	2.4G ISM Band	
Ref. frequency	16	MHz	Yields 6 channels	
Power	≤ 100	μW		
Residual FM	≤ 107	kHz _{RMS}	BER \leq 1e-2, f_{dev} = \pm 250 KHz	
Initial Lock Time	≤ 50	μ S	Upon cold start	
Re-lock Time	≤ 5	μ S	Coming out of standby	
Bandwidth	100	kHz	(nominally), tunable	

Additionally: PLL output should support IQ sampling at LO frequency.

Specification (new)

PLL Component Performance Targets

Parameter	Value	Unit	Notes	
DCO LSB Resolution	≤ 50	kHz	Determined from quantization noise	
DCO DNL	< 1	LSB	Ensures monotonicity	
TDC Resolution	≤ 3.8	ns		
TDC Resolution (bits)	≥ 4.03	bits		

Architecture (unchanged)

Block Diagram

Power Targets

DCO	TDC	Divider	Other	SUM
70 μW	20 μW	10 μW	<< 1 μW	100 μW

Project Phases

Autumn 2019

- System modeling and simulation.
 - · Learn PLL theory in detail
 - Evaluate feasability of PLL architectures (counter, TDC-based)
 - Determine requirements for TDC/DCO/Divider/logic (bits of resolution, accuracy etc) to meet PLL performance specifications.
 - Determine digital logic for loop filter, validate stability and lock time performance.
- Research ultra-low power circuit topologies to implement system components that will meet determined requirements.
- Translate component-level specifications into schematic-level circuit designs.
 - Try, fail, try again until functional at schematic level.
 - I expect the TDC to be difficult.

Project Phases (continued)

Spring 2020

- Finalize schematic-level design.
- Estabilish thorough tests for PLL performance (automated?) to help in layout.
- Layout of PLL.
 - Design iteration until design specs met.
 - · Probably very time consuming.
- Full characterization/validation of design performance.
 - Comprehensive Corners/Monte-Carlo testing (time consuming??)
 - More design iteration if new issues crop up...
- Thesis paper writing.