Thumbs Up? Sentiment Classification using Machine Learning Techniques

Pang, Lee, Vaithyanathan - EMNLP 2002

Slides by: Dor Cohen, Itai Gat

IE @ Technion

October 16, 2018

Agenda

- Introduction
 - Topic classification
 - Sentiment analysis
- 2 Problem
 - Problem definition
 - Data
 - Human baseline
- Methods
 - Bag of words
 - Naive bayes
 - Maximum entropy
 - SVM
- Results
 - Results
- Reproduce results
- 6 Conclusions

Introduction

Topic classification

- Recent (2002) works sort documents according to their subject
 - e.g., sports vs. politics

Topic classification

- Recent (2002) works sort documents according to their subject
 - e.g., sports vs. politics
- Yet crucial part of online posted articles is their sentiment
 - provide useful insights for readers automatically
 - e.g., product review is negative or positive

Topic classification

Current (2002) techniques for non-topic text categorization

- Source style with features as stylistic variation (Biber, 1988)
 - e.g., author, publisher (NY times vs. Daily News)
- Genre of text (Finn et al., 2002)
 - e.g., editorial 'subjective' genre
- Is subjective language used? (Wiebe et al., 2001)
- Does text contains opinion expressing?

- This work: apply topic classification techniques on sentiment analysis
 - Q: What are our expected challenges?

- This work: apply topic classification techniques on sentiment analysis
 - ▶ Q: What are our expected challenges?
 - ► A: Topics are identifiable by key words alone, while sentiment requires more **understanding**

- This work: apply topic classification techniques on sentiment analysis
 - Q: What are our expected challenges?
 - ► A: Topics are identifiable by key words alone, while sentiment requires more **understanding**
- e.g., "How could anyone sit through this movie?"
 - Can you mark any negative word?

- This work: apply topic classification techniques on sentiment analysis
 - Q: What are our expected challenges?
 - ► A: Topics are identifiable by key words alone, while sentiment requires more **understanding**
- e.g., "How could anyone sit through this movie?"
 - Can you mark any negative word?
- Previous (2002) techniques:
 - Cognitive linguistic models (Sack, 1994)
 - Discriminant word lexicons (Tong, 2001)
 - Semantic orientation of words (Turney and Littman, 2002)

Problem

• Find a mapping from text document to binary label

- Find a mapping from text document to binary label
 - Supervised learning

- Find a mapping from text document to binary label
 - Supervised learning
- For *m* numeric features we define the mapping as:

- Find a mapping from text document to binary label
 - Supervised learning
- For *m* numeric features we define the mapping as:

Definition (Binary classifier)

$$f: X
ightarrow y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

- Find a mapping from text document to binary label
 - Supervised learning
- For *m* numeric features we define the mapping as:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

Evaluating the mapping is done by loss function

- Find a mapping from text document to binary label
 - Supervised learning
- For *m* numeric features we define the mapping as:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

- Evaluating the mapping is done by loss function
- e.g., Zero-one loss: $L(x, y, f_w) = \mathbf{1}\{f_w(x) \neq y\}$
 - w denotes learned parameters

Data: IMDB Movie Reviews

- Lucky for us: user rating provides us supervised learning
- Converted into three categories (or topics):
 - Positive, negative, (and neutral not used)
- Avoid bias issues:
 - ▶ 20 reviews per author per sentiment
 - ▶ 752 negative vs 1301 positive
 - total of 144 reviewers

• In contrast to topics, detecting sentiment is easier for us (why?)

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ► Topics can be related, while with opinions people tend to express strong feelings

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ► Topics can be related, while with opinions people tend to express strong feelings
- Hypothesis: certain words indicate on sentiment type

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ► Topics can be related, while with opinions people tend to express strong feelings
- Hypothesis: certain words indicate on sentiment type
- Test: decision procedure count positive vs. negative words

- In contrast to topics, detecting sentiment is easier for us (why?)
 - ► Topics can be related, while with opinions people tend to express strong feelings
- Hypothesis: certain words indicate on sentiment type
- Test: decision procedure count positive vs. negative words

Human	Proposed words	Accuracy	Ties ¹
1	positive (5): dazzling, brilliant negative (5): suck, terrible	58%	75%
2	positive (11): gripping, spectacular negative (6): cliched, boring	64%	39%

Table: Baseline results for human word lists, data is balanced (700 vs. 700)

¹Documents percentage where sentiments rated equally

Should we worry about high rate of ties?

Proposed words list is relatively short (effect is 0 vs. 0 ties)

Should we worry about high rate of ties?

- Proposed words list is relatively short (effect is 0 vs. 0 ties)
 - Not necessarily the reason for low accuracy!

Should we worry about high rate of ties?

- Proposed words list is relatively short (effect is 0 vs. 0 ties)
 - Not necessarily the reason for low accuracy!
- Authors propose their own list of words
 - ► Backed up with preliminary data analysis (including test set)

Should we worry about high rate of ties?

- Proposed words list is relatively short (effect is 0 vs. 0 ties)
 - Not necessarily the reason for low accuracy!
- Authors propose their own list of words
 - Backed up with preliminary data analysis (including test set)

Human	Proposed words	Accuracy	Ties
3+Stats	positive (7): love, wonderful negative (7): bad, worst, '?', '!',	69%	16%

Table: Results where words (total 14) were chosen based on data statistics

Should we worry about high rate of ties?

- Proposed words list is relatively short (effect is 0 vs. 0 ties)
 - Not necessarily the reason for low accuracy!
- Authors propose their own list of words
 - Backed up with preliminary data analysis (including test set)

Human	Proposed words	Accuracy	Ties
3+Stats	positive (7): love, wonderful negative (7): bad, worst, '?', '!',	69%	16%

Table: Results where words (total 14) were chosen based on data statistics

(2018) Reproduce data analysis, feature occurrences binarized:

•
$$P(love|\widehat{d=positive}) = 0.1796$$
, $P(love|\widehat{d=negative}) = 0.1334$

Should we worry about high rate of ties?

- Proposed words list is relatively short (effect is 0 vs. 0 ties)
 - Not necessarily the reason for low accuracy!
- Authors propose their own list of words
 - Backed up with preliminary data analysis (including test set)

Human	Proposed words	Accuracy	Ties
3+Stats	positive (7): love, wonderful negative (7): bad, worst, '?', '!',	69%	16%

Table: Results where words (total 14) were chosen based on data statistics

(2018) Reproduce data analysis, feature occurrences binarized:

- $P(love|\widehat{d=positive}) = 0.1796$, $P(love|\widehat{d=negative}) = 0.1334$
- P(worst|d = positive) = 0.0252, P(worst|d = negative) = 0.0937

Methods

• d₁: "The audio quality really stinks."

- d₁: "The audio quality really stinks."
- Extract features:
 - ▶ Unigrams: {the,audio,.. }
 - ▶ Bigrams: {the audio, audio quality, really stinks,...}
 - ► N-gram!

- d₁: "The audio quality really stinks."
- Extract features:
 - ▶ Unigrams: {the,audio,.. }
 - ▶ Bigrams: {the audio, audio quality, really stinks,.. }
 - ► N-gram!

Definition (Bag of words framework)

Let $\{f_1,..f_m\}$ denote set of m features that can appear in document.

Let $n_i(d)$ be the number of times f_i occurs in document d.

Then each document d is represented by $\overrightarrow{d} := (n_1(d), ..., n_m(d))$.

- d₁: "The audio quality really stinks."
- Extract features:
 - Unigrams: {the,audio,.. }
 - ▶ Bigrams: {the audio, audio quality, really stinks,.. }
 - ► N-gram!

Definition (Bag of words framework)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document.

Let $n_i(d)$ be the number of times f_i occurs in document d.

Then each document d is represented by $\overrightarrow{d} := (n_1(d), ..., n_m(d))$.

Unigram example

• $\overrightarrow{d_1} = (The: 1, audio: 1, quality: 1, really: 1, stinks: 1)$

- d₁: "The audio quality really stinks."
- Extract features:
 - ► Unigrams: {the,audio,.. }
 - ▶ Bigrams: {the audio, audio quality, really stinks,.. }
 - ► N-gram!

Definition (Bag of words framework)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document. Let $n_i(d)$ be the number of times f_i occurs in document d.

Then each document d is represented by $\overrightarrow{d} := (n_1(d), ..., n_m(d))$.

Unigram example

- $\overrightarrow{d_1} = (The: 1, audio: 1, quality: 1, really: 1, stinks: 1)$
- d_2 : "Stinking quality, really stinks". Question: $\overrightarrow{d_2} = ?$

- d₁: "The audio quality really stinks."
- Extract features:
 - ▶ Unigrams: {the,audio,.. }
 - ▶ Bigrams: {the audio, audio quality, really stinks,.. }
 - N-gram!

Definition (Bag of words framework)

Let $\{f_1, ... f_m\}$ denote set of m features that can appear in document. Let $n_i(d)$ be the number of times f_i occurs in document d.

Then each document d is represented by $\overrightarrow{d} := (n_1(d), ..., n_m(d))$.

Unigram example

- $\overrightarrow{d_1} = (The: 1, audio: 1, quality: 1, really: 1, stinks: 1)$
- d_2 : "Stinking quality, really stinks". Question: $\overrightarrow{d_2} = ?$
- $\overrightarrow{d_2} = (0, 0, 1, 1, 2)$

• Assign class which maximizes probability: $c^* = argmax_c P(c|d)$

- Assign class which maximizes probability: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- Assign class which maximizes probability: $c^* = argmax_c P(c|d)$
- Recap:

Definition (Bayes theorem)

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

• In practice to estimate P(d|c), we **naively** assume f_i are conditionally independent.

- Assign class which maximizes probability: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- In practice to estimate P(d|c), we **naively** assume f_i are conditionally independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$

- Assign class which maximizes probability: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- In practice to estimate P(d|c), we **naively** assume f_i are conditionally independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- Q: Any numeric issues you can think about?

- Assign class which maximizes probability: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- In practice to estimate P(d|c), we **naively** assume f_i are conditionally independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- Q: Any numeric issues you can think about?
- A_1 : Some estimates are zero, can smooth (e.g., add-one smoothing)

- Assign class which maximizes probability: $c^* = argmax_c P(c|d)$
- Recap:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- In practice to estimate P(d|c), we **naively** assume f_i are conditionally independent.
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- Q: Any numeric issues you can think about?
- A_1 : Some estimates are zero, can smooth (e.g., add-one smoothing)
- A₂: Short documents vs. long documents (propose: tf-idf)

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

aka logistic regression

Definition (MaxEnt estimator)

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

• Z(d) - normalization function

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function
 - ▶ Defined: $F_{i,c}(d,c') = 1$ if feature i appears on document d and its estimated class is c, o.w. $F_{i,c}(d,c) = 0$

aka logistic regression

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function
 - ▶ Defined: $F_{i,c}(d,c') = 1$ if feature i appears on document d and its estimated class is c, o.w. $F_{i,c}(d,c) = 0$
- $\lambda_{i,c}$ feature-weight parameters
 - ▶ large values imply f_i is a strong indicator for class c

aka logistic regression

Definition (MaxEnt estimator)

$$P(c|d) = \frac{1}{Z(d)} exp(\sum_{i} \lambda_{i,c} F_{i,c}(d,c))$$

- Z(d) normalization function
- $F_{i,c}$ is a feature/class function
 - ▶ Defined: $F_{i,c}(d,c') = 1$ if feature *i* appears on document *d* and its estimated class is c, o.w. $F_{i,c}(d,c) = 0$
- $\lambda_{i,c}$ feature-weight parameters
 - \blacktriangleright large values imply f_i is a strong indicator for class c

Fit procedure

- Training data used to estimate distribution F
- ullet λ 's are set to maximize entropy of induced distribution

Support vector machines

• Goal: Find hyperplane w which separates classes with margin large as possible

Support vector machines

- Goal: Find hyperplane w which separates classes with margin large as possible
- In this setting we define w as:

Definition (SVM hyperplane)

Let $c_j \in \{1, -1\}$ be the class of document d_j then:

$$w := \sum_{j} \alpha_{j} c_{j} \overrightarrow{d_{j}}, \ \alpha_{j} \geq 0$$

• α_i are obtained by solving dual optimization problem.

Support vector machines

- Goal: Find hyperplane w which separates classes with margin large as possible
- In this setting we define w as:

Definition (SVM hyperplane)

Let $c_j \in \{1, -1\}$ be the class of document d_j then:

$$w := \sum_{j} \alpha_{j} c_{j} \overrightarrow{d_{j}}, \ \alpha_{j} \geq 0$$

• α_i are obtained by solving dual optimization problem.

Alternative fitting procedure:

Definition (Gradient descent)

$$w = w - \alpha * \frac{\partial L(X,w)}{\partial w}$$
 , Update till convergence

Results

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165	freq	78.7%	NA	72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165	freq	78.7%	NA	72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

Table: 3-fold average accuracies, unigrams appear at least 4 times on corpus.

ullet Recall human baseline ranges between 50%-69%

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165		78.7%		72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- \bullet Topic-based classification reached 90%+ accuracy

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165		78.7%		72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- Topic-based classification reached 90%+ accuracy
 - Settings were multi-class
 - We conclude that sentiment analysis is harder

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165		78.7%		
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- Topic-based classification reached 90%+ accuracy
 - Settings were multi-class
 - We conclude that sentiment analysis is harder
- The frequency vs. presence of features seems to make the difference

ID	Features	count	freq/pres	NB	ME	SVM
1	unigrams	16165		78.7%		72.8%
2	unigrams	16165	pres	81.0%	80.4%	82.9%

- ullet Recall human baseline ranges between 50%-69%
- Topic-based classification reached 90%+ accuracy
 - Settings were multi-class
 - We conclude that sentiment analysis is harder
- The frequency vs. presence of features seems to make the difference
 - ► Hence from this point authors use presence (binarized occurrences)

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams		80.6%		82.7%
4	bigrams	16165	77.3%	77.4%	77.1%

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Table: 3-fold average accuracies, bigrams appear at least 7 times on corpus.

• Adding bigrams doesn't improve results; Bigrams alone is worse

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

- Adding bigrams doesn't improve results; Bigrams alone is worse
- Part-of-speech: "I love this movie" vs. "This is a love story"

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

- Adding bigrams doesn't improve results; Bigrams alone is worse
- Part-of-speech: "I love this movie" vs. "This is a love story"
- Position based on dividing text into quarters.

Reproduce results

Reproduce results (2018)

 We have tried to reproduce the experiment for the best setting reported

Features	count	NB	ME	SVM	MLP
unigrams	16165	81.0%	80.4%	82.9%	NA

Reproduce results (2018)

 We have tried to reproduce the experiment for the best setting reported

Features	count	NB	ME	SVM	MLP
unigrams unigrams	16165	81.0%	80.4%	82.9%	NA
unigrams	16165	77.48%	81.52%	48.19%	82.75%

Table: Original vs. our results

Reproduce results (2018)

 We have tried to reproduce the experiment for the best setting reported

Features	count	NB	ME	SVM	MLP
unigrams unigrams	16165	81.0%	80.4%	82.9%	NA
unigrams	16165	77.48%	81.52%	48.19%	82.75%

Table: Original vs. our results

- MLP is 2-layer neural network with 100 Relu neurons
- No tuning was used (sklearn 0.19.2 default parameters)
 - Plus not all described processing steps applied
- Notebook is available here

Classifier comparison (2018)

• Let's observe our classifiers decision boundaries for some toy datasets

Classifier comparison (2018)

• Let's observe our classifiers decision boundaries for some toy datasets

Accuracy is reported

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

• Difficult for bag-of-words classifiers.

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

- Difficult for bag-of-words classifiers.
- Authors suggest determining the focus of each sentence, if is on/off topic.

Thank you for participating! Questions?