

Rapport du suivi de l'APP – Composante Télécommunications – Connexion longue portée

Ilan Abitbol

Raphael Haenning

Pierre Guezennec

Corentin Poilleux

Clement Radolanirina

Sommaire

Table des matières

I - Technologie utilisé pour la communication :	4
II – Diagramme de rayonnement des antennes et mobile et leur débit maximal :	4
III – Station de base proche de NDL :	6
IV. Vérification empirique des propriétés des antennes impliquées dans les communications entre l'utilisateur le serveur web :	7
V. Rayon de la zone de sécurité :	9
VI. Modèle Okumura Hata	9
I . Indiquer le débit total à transférer tenant compte de la TNT, des accès à internet de l'habitation, de la téléphonie, des données générées par les objets connectés, etc. :	10
II. On compare maintenant la bande passante de fibres optiques de types mono-mode et mul mode avec la bande passante d'un câble coaxial :	
III. Longueur d'onde optique sur laquelle opère une fibre optique :	11
IV. Affaiblissement typique d'une fibre optique et d'un cable :	11
V. Portée fibre optique et câble	12

Introduction

Nous avons réalisé lors de cette semaine 3 de la composante Télécommunication, la dernière partie de cette composante qui est dédiée aux connexions longue portée, filaires et sans fil. Ces communications interviennent entre la passerelle HAG et notre serveur contenant les informations de nos clients et entre l'utilisateur humain et le serveur web.

Reférent llan Hybride Pierre J Hybride Pierre G Hybride Corentin Hybride Corentin

A- Connexion entre l'Admin/Client avec le serveur web

I - Technologie utilisé pour la communication :

Nous avons décidé de communiquer avec notre serveur via le réseau cellulaire 3G ou bien 4G. Ainsi, l'administrateur et le client pourront se connecter au réseau mondial et contrôler les installations domotiques de Domisep.

Standard	Génération	Bande de fréquence (MHz)	Débit théorique	Débit pratique
UMTS	3G	900 – [1900 ,2100]	0.144-2 Mbits/s	384 Kb/s
LTE	4G	2600Mhz et 800Mhz	10-300Mbits/s	5-75 Mbits/s

Les deux technologies permettent le transfert simultanés de voix et de données numériques à haut débit

II – Diagramme de rayonnement des antennes et mobile et leur débit maximal :

Les émetteurs mobiles et fixes ont une puissance maximale de l'ordre d'une dizaine de Watts et une débit maximal de 2Mbits/s. On représente graphiquement la répartition dans

l'espace du rayonnement d'une antenne radioélectrique par un diagramme de rayonnement.

Le diagramme dépend de la directivité de l'antenne, son gain en dBi et son angle d'ouverture en degré.

Voici un exemple de diagramme de rayonnement, pour une antenne directionnelle extérieure avec un gain de 24 dbi et un angle d'ouverture de 8° :

second exemple pour une antenne omni-directionnelle :

III – Station de base proche de NDL :

Capture satellite des antennes émettrices de réseaux cellulaire.

Les stations qui couvrent le réseau aux alentours de notre géolocalisation sont, d'après la

capture d'écran ci-dessus :

Adresse	Opérateur(s)	Technologies diffusées
	Bouygues Telecom	2G/3G/4G
35 RUE ERNEST RENAN	Free	3G/4G
	Orange	3G/4G
11 R DE L'ABBÉ DERRY	SFR	2G/3G/4G
13 B R AUGUSTE	Orange	2G/3G/4G
GERVAIS		
51 R CHEVALIER DE LA BARRE	Bouygues Telecom	2G/3G/4G

IV. Vérification empirique des propriétés des antennes impliquées dans les communications entre l'utilisateur le serveur web :

Ici, nous devons vérifier nos données théoriques sur la 3G/4G que nous avons recueillies en les comparants avec les données empiriques que nous livrent $\underline{\text{http://www.cartoradio.fr/}}$.

Rappelons nos résultats :

Technologie	Bande en MHz	
3G	900 – [1900 ,2100]	
4G	2600Mhz et 800Mhz	

Propriétés des antennes analysées :

Adresse	Opérateur(s)	Technologies diffusées	Bandes en MHz	Hauteur de l'antenne
	Bouygues Telecom	3G	1910,1 à 2169,7	31,8 m
35 RUE ERNEST RENAN		4G	2525 - 2655	
	Free	3G	900 - 2150	35,5 m
		4G	2515 - 2655	
	Orange	3G	1910 - 2169	31,8 m
		4G	2515 - 2690	
11 R DE L'ABBÉ	SFR	2G	905 – 960	21,1 m
DERRY		3G	1915 – 2155	
		4G	2500 - 2635	

Nous pouvons ainsi constater une cohérence entre les bandes théoriques proposées et les données empiriques des antennes des différents opérateurs présents dans notre secteur. On remarque également que $Taille\ \alpha\ \lambda$. Avec Taille : taille de l'antenne.

V. Rayon de la zone de sécurité :

Il faut trouver d tel que : $\sum_{fi} (\frac{Ei}{El(fi)})^2 \le 1$

Or, nous avons dans notre milieu urbain, des champs électriques émis pour les fréquences 900-1800 MHZ et 2.1 GHz.

$$\sqrt{\frac{PeGeZo}{4\pi}}^{2} * \left(\frac{1}{41^{2}} + \frac{1}{58^{2}} + \frac{1}{61^{2}}\right) \le 1 \iff d \ge 8m$$

VI. Modèle Okumura Hata

Puissance du signal expérimental : Avec l'application GSM Field Test, on obtient : RSSI = -122 dBm

Puissance du signal théorique : Pr (dBm) = Pbs (dBm) + Gbs (dB) - Att (dB)

 $Pm = 21 dBm (\sim 125 mW) Gm = 0 dB$

Pbs = $46 \text{ dBm Gbs} = 17 - \min (12 * \theta^2 / 70^2, 20) = 14.80 \text{ dB}$

 $\theta = 30^{\circ}$

Modèle d'Okumura Hata : A(dB) = 69.55 + 26.16 Log(f) + 13.82 Log(Hb) - Ch + [44.9 - 6.55 Log(Hb)] Log d

Hb = 30 m

Hm = 1.5 m

fLTE = 2600 MHz

 $d = 0.16 \text{ Km Ch} = 0.8 + (\log(1.54 \text{Hm}))^2 - 1.56 \log(f) = -4.4$

Application numérique : Att = 155 dB

Donc on obtient : Pr = 46 + 14.8 - 155 = -94 dBm

Le modèle théorique ne tient pas compte des murs traversés. La puissance reçue est en réalité plus atténuée, soit environ -120 dBm.

B – Fibres optique et câbles

On se place ici au niveau de la passerelle HAG située au domicile du client, et on souhaite étudier les différentes options de connexion filaires haut débit qui s'offrent à nous pour communiquer avec le serveur de Domisep.

I . Indiquer le débit total à transférer tenant compte de la TNT, des accès à internet de l'habitation, de la téléphonie, des données générées par les objets connectés, etc. :

Utilisation	Débit moyen théorique
TNT	7,1 Mbps
Accès Internet	8,1 Mbps
Téléphonie	105 kbps
Capteur de température	200 kbps
Capteur de fenêtre	40 kbps
Capteur d'humidité	100 kbps
Capteur de luminosité	120 kbps
Capteur de fumée	2 kbps
Caméra	3 Mbps
Total	18,77 Mbps

II. On compare maintenant la bande passante de fibres optiques de types mono-mode et multi-mode avec la bande passante d'un câble coaxial :

Support	Bande passante	Débit
Câble coaxial	12 - 60 MHz	5,8 Mbit/s
Fibre mono-mode	> 1,5 GHz	>1Gbits/s
Fibre multi-mode	200 – 600 MHz	>0.5Gbits/s

On peut remarquer que la fibre mono-mode, plus onéreuse à produire (et donc à installer) autorise une bande passante bien plus importante que les autres supports de transmission.

De par sa composition différente (un cœur bien plus fin, et mieux isolé), la fibre mono-mode permet une diffusion du signal largement supérieur à celle des autres supports. Ajouté à sa très large bande passante, cela fait de la fibre mono-mode le support de transmission le plus adapté à des liaisons longues distances.

III. Longueur d'onde optique sur laquelle opère une fibre optique :

Les longueurs d'onde utilisées, et donc pour lesquelles des sources lumineuses ont été développées sont 850 nm (nanomètres) et 1300 nm en multimode, et 1310 nm et 1550 nm en monomode. Pour des liaisons longues distances, il vaut mieux privilégier la fibre à saut d'indice. En effet, le débit y est 100 fois plus important alors même que l'affaiblissement et la portée sont équivalentes (respectivement 10dB/km et 2km).

IV. Affaiblissement typique d'une fibre optique et d'un cable :

Tout signal transmis subit une atténuation, qui varie selon le support de transmission :

Support	Atténuation
Câble coaxial	11 dB/km
Fibre mono-mode	0,25 – 0,4 dB/km
Fibre multi-mode	1 - 3 dB/km
Ligne ADSL	15,0 dB/km

Rapport signal à bruit théorique nécessaire pour garantir le débit trouvé plus haut :

$$D = Blog_2(1 + SINR) \Leftrightarrow SINR_{dB} = -2.3 dB$$

On en déduit :

$$RSSI(W) = SINR * Pbruit(W) = SINR * N(W)$$
$$= 0.58 * 10^{\frac{-174 + 10 \log(1.5 * 10^{9})}{10}}$$
$$= 3.46 * 10^{-9}W$$

V. Portée fibres optiques et câbles

type de fibre/câble	atténuation	seuil	portée	Débit
Multimode à gradient d'indice	10 dB/km	20 dB	2 km	1 Gbits/s
Monomode	0.5 dB/km	50 dBm	100 km	> 1 Gbits/s
multimode à saut d'indice	10 dB/km	20 dB	2 km	> 100 Mbits/s
câble coaxial	19 dB/100m	100 dB	500 m	5,8Mbits/s

Nous considérons que le serveur se trouve à Notre-Dame des champs à Paris, soit à 5 km de notre position. Si on utilise de la fibre multimode à gradient d'indice ou à saut d'indice, il faut 2 répéteurs intermédiaires. Si on utilise un câble coaxial, il faut 10 répéteurs. Si on veut utiliser aucun répéteur, il faut mettre en place une fibre monomode.

Conclusion

Dans cette partie de télécom nous avons pu étudier les différents moyens pour communiquer au serveur de Domisep (via internet) pour ce faire nous avons choisi :

- La communication bluetooth pour les courte distance (entre les capteurs et les HAGis) qui à pour avantage un coût faible mais qui possède une courte portée.
- Pour relier les HAGis au HAG nous allons utiliser la Wi-Fi car le coût n'est pas important. Les avantages de cette technologie sont une portée suffisante pour un foyer, un débit convenable et c'est une technologie sans fil.

Il faut être sur des différents canaux afin de limiter les interférences

-Pour se connecter à internet nous avons étudié différentes technologies:

Dans le cas où l'on est à domicile					
type de technologies	coût	avantages	limites		
Fibre multimode à gradient d'indice	moyen	bon débit bonne portée atténuation moyenne	atténuation moyenne		
Fibre monomode	Elevé	Très bon débit, portée élevée et atténuation faible	Prix élevé		
Fibre multimode à saut d'indice	Moyen	Bon débit et bonne portée	Atténuation moyenne		
Câble coaxial	Faible	Peu onéreuse	Débit moyen, faible portée et forte atténuation		
	Dans le cas où l'o	n est à l'extérieur			
Type de technologies	coût	avantages	limites		
3G	Variant de faible à moyen	Bon débit, disponible sur l'ensemble du territoire	Technologie qui devient vieillissante par rapport à la 4G		
4G	De moyen à chère	Très bon débit et stable	Disponibilité relativement limité par rapport à la 3G		

