EN201 - Correction du TD n°3

Bertrand LE GAL Christophe JEGO Yannick BORNAT

[bertrand.legal@ims-bordeaux.fr]

Fílière Electronique - 2^{ème} année ENSEIRB-MATMECA - Bordeaux INP Talence, France

Introduction - LUTs & calculs arithmétiques

Introduction - le 1/2 additionneur binaire

A_k	B_k	S_k	C_k
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Question n°1 - Additionneur binaire complet

Donnez les équations de la somme S_k et la retenue sortante C_k en fonction de A_k , B_k et C_{k-1} .

Question n°1 - Additionneur binaire complet

Donnez les équations de la somme S_k et la retenue sortante C_k en fonction de A_k , B_k et C_{k-1} .

$$Sk = Ck-1 \oplus Ak \oplus Bk$$

Question n°1 - Additionneur binaire complet

Donnez les équations de la somme S_k et la retenue sortante C_k en fonction de A_k , B_k et C_{k-1} .

$$Sk = Ck-1 \oplus Ak \oplus Bk$$

$$C_k = A_k B_k + C_{k-1} B_k + C_{k-1} A_k$$

 $C_k = A_k B_k + C_{k-1} (A_k + B_k)$

Mais on peut remarquer que :

$$C_k = C_{k-1} A_k B_k + C_{k-1} A_k B_k + C_{k-1} A_k B_k + C_{k-1} A_k B_k$$
 $C_k = A_k B_k (C_{k-1} + C_{k-1}) + C_{k-1} (A_k B_k + A_k B_k)$
 $C_k = A_k B_k + C_{k-1} (A_k \oplus B_k)$

Question n°2 - dessiner un schéma à base de LUT4

Question n°3 - Schéma de l'add. binaire complet

Question n°4 - Identification de la fonction g

Question n°5 - Mapping de l'additionneur complet

2021 - 2022

Question n°6 - Additionneur N bits

13

Question n°7 - Additionneur / soustracteur

