Evaluating a Hypothesis

Evaluating a Learning Algorithm

Advice for Applying Machine Learning

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

How to plot too many features?

Fails to generalize to new examples not in training set.

 $x_1 =$ size of house $x_2 =$ no. of bedrooms

 $x_3 = \text{ no. of floors}$

 $x_4 = age of house$

 $x_5 =$ average income in neighborhood

 $x_6 = \text{kitchen size}$

Dataset:

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

Dataset:

	C:	D	
,	Size	Price	
	2104	400	· ·
	1600	330	Training set
	2400	369	,
	1416	232	
	3000	540	
	1985	300	
	1534	315 -)
	1427	199 *	
	1380	212	
	1494	243	

Dataset:

Size	Price	
2104	400	
1600	330	raining set
2400	369	,,,
1416	232	
3000	540	
1985	300	
1534	315	
1427	199 7	
1380	212	est Set
1494	243	Set

Dataset:

_	Size	Price
	2104	400
	1600	330 Training set
20%	2400	369
	1416	232
	3000	540
	1985	300
	1534	315
	1427	199 7
30:1.	1380	212 Test 213 Set
	1494	243 Se+

Dataset:

_	Size	Price	
20%	2104	400	$(x^{(1)}, y^{(1)})$
	1600	330 Training set	$(x^{(2)}, y^{(2)})$
	2400	369	<u>:</u>
	1416	232	→ :
	3000	540	$(x^{(m)}, y^{(m)})$
	1985	300	
	1534	315	
	1427	199 7	$(x_{test}^{(1)}, y_{test}^{(1)})$ $M_{test} = no.$
30.1.	1380	212 Test	(2) (2)
	1494	243 J Se+	$(x_{test}^{(2)}, y_{test}^{(2)})$ Windows u etkinleştirmek için Ayarlar'a gidin.
			$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Andrew Ng

Dataset:

_	Size	Price
	2104	400 $(x^{(1)}, y^{(1)})$
	1600	330 Training Set $(x^{(2)}, y^{(2)})$
	2400	369
70%	1416	232
	3000	540 $(x^{(m)}, y^{(m)})$
	1985	300
	1534	315
	1427	($x_{test}^{(1)}, y_{test}^{(1)}$) $M_{test} = no.$
30.1.	1380	$(x_{test}^{(1)}, y_{test}^{(1)})$ $(x_{test}^{(2)}, y_{test}^{(2)})$ $(x_{test}^{(2)}, y_{test}^{(2)})$ $(x_{test}^{(2)}, y_{test}^{(2)})$ Windows'u Extractir example
30 .	1494	Windows u etkinleştirmek için Ayarlar'a gidin.
		lest lest /
		Andrew

w Ng

Exercise

- Suppose an implementation of linear regression (without regularization) is badly overfitting the training set. In this case, we would expect:
 - The training error $J(\theta)$ to be **low** and the test error $J_{test}(\theta)$ to be **high**
 - The training error $J(\theta)$ to be **low** and the test error $J_{test}(\theta)$ to be **low**
 - The training error $J(\theta)$ to be **high** and the test error $J_{test}(\theta)$ to be **low**
 - The training error $J(\theta)$ to be **high** and the test error $J_{test}(\theta)$ to be **high**

•

Procedure

- Trainint/testing procedure for linear regression
 - Learn parameter θ from training data by minimizing the training error $J(\theta)$
 - Compute the test error:
 - $A = \pi r^2$

$$J_{\text{test}}(\Theta) = \frac{1}{2m_{\text{test}}} \left(\frac{h_{\Theta}(x_{\text{test}}) - y_{\text{test}}}{h_{\Theta}(x_{\text{test}})} \right)^{2}$$

 \Rightarrow - Learn parameter θ from training data

Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

 \Longrightarrow - Learn parameter heta from training data

Compute test set error:

- Misclassification error (0/1 misclassification error):

 \Longrightarrow - Learn parameter heta from training data

Compute test set error:

- Misclassification error (0/1 misclassification error):

err
$$(ho(x), y) = \{ 1 \text{ if } ho(x) > 0.5, y = 0 \} \text{ error}$$
or if $ho(x) < 0.5, y = 1 \}$ error

O otherwise

 \Longrightarrow - Learn parameter heta from training data

Compute test set error:

- Misclassification error (0/1 misclassification error):

err (ho(x), y) = { | if ho(x) > 0.5, y = 0 } error or if ho(x) < 0.5, y = 1 } error or if ho(x) < 0.5, y = 1 } error =
$$\frac{1}{M + est}$$
 | $\frac{1}{1 + est}$ |