Promotion: 2024-2025

Note: /

Sujet 1:

1)a) La formule du rotationnel est donné par
$$\overrightarrow{rot} = \begin{pmatrix} \frac{\partial z}{\partial y} - \frac{\partial y}{\partial z} \\ \frac{\partial x}{\partial z} - \frac{\partial z}{\partial x} \\ \frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} \end{pmatrix}$$

b) On sait alors que
$$\frac{\partial z}{\partial y} = 1$$
; $\frac{\partial y}{\partial z} = 1$; $\frac{\partial x}{\partial z} = 0$; $\frac{\partial z}{\partial x} = 0$; $\frac{\partial y}{\partial x} = 1$; $\frac{\partial x}{\partial y} = 1$

$$\overrightarrow{rot}(V) = \begin{pmatrix} 1 - 1 \\ 0 - 0 \\ 1 - 1 \end{pmatrix} \Longrightarrow \overrightarrow{rot}(V) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \overrightarrow{rot}(V) = 0$$

2)a) La formule du gradient est donné par
$$\overrightarrow{grad} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

b) On retrouve alors
$$\frac{\partial f}{\partial x} = y$$

$$\frac{\partial f}{\partial y} = x + z$$

$$\frac{\partial f}{\partial z} = y + 2z$$

3) Afin de trouver la fonction, il nous faut simplement intégré les dérivée partielle précédente et cela nous donne :

$$\int x \, dx = \int xy + c$$

$$\int x + z \, dy = \int xy + zy + c$$

$$\int y + 2z \, dz = \int xy + z^2 + c$$

On retrouve bien la fonction $f(x, y, z) = xy + zy + z^2 + c$

Sujet 2:

- 1) On peut exprimer le volume de la piscine avec V = xyz
- 2) a) On peut exprimer la surface intérieur totale de la piscine en fonction de x,y,z avec : S = xy + 2xz + 2yz

b)On exprime :
$$S = xy + 2z(x + y) \Rightarrow S - xy = 2z(x + y) \Rightarrow \frac{S - xy}{2(x + y)}$$

$$V = xy \times \frac{S - xy}{2(x+y)}$$
 avec S = 12

On retrouve donc $V = xy \times \frac{12 - xy}{2(x+y)}$

3) On sait que
$$\overrightarrow{grad} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\frac{\partial f}{\partial x} = u \times v$$

$$u = xy u' = y$$

$$v = \frac{S - xy}{2(x + y)} v' = \frac{u}{v} donc \frac{u'v - uv'}{v^2}$$

Calculons donc v' avec u = S - xy u' = -y

$$v = 2x + 2y$$
 $v' = 2$

$$\frac{-y(2x+2y)-2(S-xy)}{(2x+2y)^2} = \frac{-2xy-2y^2+2xy-2S}{(2x+2y)^2} = \frac{-2y^2-2S}{(2x+2y)^2}$$

On a donc:

$$u = xy$$
 $u' = y$
 $v = \frac{S - xy}{2(x + y)}$ $v' = \frac{-2y^2 - 2S}{(2x + 2y)^2}$

Calculons donc
$$\frac{\partial f}{\partial x}$$
: $u'v + uv' = y\left(\frac{S-xy}{2(x+y)}\right) + xy\left(\frac{-2y^2-2S}{(2x+2y)^2}\right)$

Par la suite, on intègre par rapport à y :

$$\frac{\partial f}{\partial y} = u \times v$$

$$u = xy u' = x$$

$$v = \frac{S - xy}{2(x + y)} v' = \frac{u}{v} donc \frac{u'v - uv'}{v^2}$$

Calculons donc v' avec u = S - xy u' = -x

$$v = 2x + 2y \quad v' = 2$$

$$\frac{-x(2x + 2y) - 2(S - xy)}{(2x + 2y)^2} = \frac{-2xy - 2x^2 + 2xy - 2S}{(2x + 2y)^2} = \frac{-2x^2 - 2S}{(2x + 2y)^2}$$

On a donc:

$$u = xy$$
 $u' = x$
 $v = \frac{S - xy}{2(x + y)}$ $v' = \frac{-2x^2 - 2S}{(2x + 2y)^2}$

Calculons donc $\frac{\partial f}{\partial y}$: $u'v + uv' = x\left(\frac{S-xy}{2(x+y)}\right) + xy\left(\frac{-2x^2-2S}{(2x+2y)^2}\right)$

Pour
$$\overrightarrow{grad}V = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} y\left(\frac{s-xy}{2(x+y)}\right) + xy\left(\frac{-2y^2-2S}{(2x+2y)^2}\right) \\ x\left(\frac{s-xy}{2(x+y)}\right) + xy\left(\frac{-2x^2-2S}{(2x+2y)^2}\right) \end{pmatrix}$$

4) Afin de montrer que (0,0) et (2,2) sont des points critiques il suffit de remplacer x et y par 0. On sait en effet qu'un point critique est définir par : $\frac{\partial f}{\partial x} = 0$ et $\frac{\partial f}{\partial y} = 0$

Pour (0,0):

On pose donc : $0\left(\frac{S-0}{2(0)}\right) + 0\left(\frac{-0-2S}{(0+0)^2}\right) = 0$

$$0\left(\frac{S-0}{2(0)}\right) + 0\left(\frac{-0-2S}{(0+0)^2}\right) = 0$$

Le point (0,0) est donc est un point critique de cette fonction.

Pour le point (2,2):

On pose donc:
$$2\left(\frac{12-2\times2}{2(2+2)}\right) + 2\times2\left(\frac{-2\times2^2-2\times12}{(2\times2+2\times2)^2}\right) = 2-2=0$$

$$2\left(\frac{12-2\times 2}{2(2+2)}\right) + 2\times 2\left(\frac{-2\times 2^2 - 2\times 12}{(2\times 2 + 2\times 2)^2}\right) = 2 - 2 = 0$$

Le point (2,2) est donc lui aussi un point critique de cette fonction.

5) On sait que les formules de Monge rt – s²

Avec
$$r = \frac{\partial f^2}{\partial x^2}$$

$$t = \frac{\partial f^2}{\partial y^2}$$

$$s = \frac{\partial f^2}{\partial xy}$$

Grâce à elles il sera possible de déterminer que le point (2,2) est un maximum local si et seulement si rt – $s^2 > 0$ et que r < 0.

Le volume maximal de la piscine est alors 4 m³ pour V(2,2) car $2 \times 2 \times \frac{12-2\times2}{2(2+2)} = 4 \times \frac{8}{8} = 4m^3$