Growth and Yield Model – Gaussian Form with Tempered Peaks

Ryan Smith

2025-08-06

Growth and Yield Model Form

Context & Data

- Source: SILC strategic planning dataset (periodic grow-only yield tables).
- Growth metric: Annualized yield, filtered to:
 - Total volume: 3–48 cords/acre
 - Growth: 0.25-0.75 cords/acre/year (to exclude outliers)
- Species groups:
 - Hardwood (HW): H, HS
 - Softwood (SW): S, SH, OS, C

Model Form: Gaussian Growth Curve

We use a species-specific Gaussian model to estimate growth as a function of current volume:

$$\operatorname{growth}_{w}(V_{w}) = a_{w} \cdot \exp\left(-\frac{1}{2}\left(\frac{V_{w} - \mu_{w}}{\sigma_{w}}\right)^{2}\right)$$

Where: - V_w : volume of wood type w - a_w : peak growth rate - μ_w : volume at which peak occurs - σ_w : spread controlling the decline from the peak

Total growth is computed as a weighted average:

$$\mathrm{growth_{total}} = \frac{V_{\mathrm{HW}}}{V} \cdot \mathrm{growth_{HW}} + \frac{V_{\mathrm{SW}}}{V} \cdot \mathrm{growth_{SW}}, \quad V = V_{\mathrm{HW}} + V_{\mathrm{SW}}$$

Fitted Parameters (Original, Unadjusted)

Table 1: Original Gaussian Parameters (Unadjusted)

unit	wood	a	mu	sigma
RY	HW	0.552	27.3	22.3
RY	SW	0.629	29.1	20.2
SP	$_{ m HW}$	0.554	29.5	25.0
SP	SW	0.583	25.5	22.0
AE	$_{ m HW}$	0.553	28.4	23.7
AE	SW	0.606	27.5	21.1
AW	$_{ m HW}$	0.553	28.4	23.7
AW	SW	0.606	27.5	21.1

Tempered Parameters (90% of Original Peak)

Although the original model fits had strong empirical performance, the peak ${\tt a}$ values exceeded known growth limits for similar stand types in Maine. A uniform ${\tt 0.9}$ scaling was applied to all peak values a to temper projections while preserving shape and relative differences across species and site types.

Table 2: Tempered Gaussian Parameters (Peak a \times 0.9)

unit	wood	a	mu	sigma
RY	HW	0.497	27.3	22.3
RY	SW	0.566	29.1	20.2
SP	$_{ m HW}$	0.499	29.5	25.0
SP	SW	0.525	25.5	22.0
AE	$_{ m HW}$	0.498	28.4	23.7
AE	SW	0.545	27.5	21.1
AW	$_{ m HW}$	0.498	28.4	23.7
AW	sw	0.545	27.5	21.1

Visual Comparison of Growth Curves

Tempered vs Original Gaussian Growth Curves Solid = Tempered, Dashed = Original

Justification for Tempering

The original fitted curves estimated peak softwood growth rates in excess of **0.65 cords/acre/year**, which was deemed inconsistent with field observations and long-term plot trends across Maine.

The revised curves:

- Retain the empirical form and relative differences.
- Reduce over-optimism in high-productivity scenarios.
- Improve alignment with stand-level outcomes for both inventory and planning use.

This tempering reflects a **judicious compromise** between statistical fit and field-informed expectation, and is now the preferred default for AAC and projection modeling.