Fereshteh Baradaran

Assignment #2

Introduction

This documentation outlines the development and functionality of a Python program designed to minimize various error norms in the context of linear regression. Linear regression is a fundamental statistical and machine learning technique used to model the relationship between a dependent variable and one or more independent variables. In this specific case, the program tackles a linear regression problem where the goal is to find the best fit line through a set of data points. The fit is evaluated based on different error norms, providing a comprehensive view of model accuracy.

Implementation

The implementation of this assignment is carried out in Python. The complete source code is available in a GitHub repository that can be accessed at the following <u>link</u>.

The program performs the following key tasks:

• Data Generation

The dataset is generated using the *numpy* library. A linear relationship is simulated with added Gaussian noise to mimic real-world data variability:

• Linear Model and Error Calculation

The linear model is defined as a function, calculatePredicted_Y, which calculates \hat{y} based on input x, and model parameters α and β . The signed error is then calculated for each data point.

• Error Norm Minimization

Four different error norms are minimized:

- L0 Norm: Counts the number of non-zero errors.
- L1 Norm: Sum of absolute values of errors, leading to median regression.
- L2 Norm: Sum of squares of errors, equivalent to ordinary least squares regression.
- Infinity Norm: Maximum absolute error.

The scipy.optimize.minimize function is used for minimization, employing the Sequential Least Squares Programming (SLSQP) method.

* Sequential Least Squares Programming (SLSQP) is an optimization algorithm that is particularly well-suited for constrained optimization problems. SLSQP works by approximating the objective function locally as a quadratic and the constraints linearly, solving this approximate problem, and then iteratively updating the solution.

It's a good general-purpose optimizer that can efficiently handle the different types of norms (L0, L1, L2, Infinity) which can vary greatly in their behavior.

Visualization

The dataset and the resulting regression lines for each error norm are visualized using matplotlib.pyplot