

Visualização de Dados

01

Criando Representações Visuais

PADRÕES ANALÍTICOS

- Tendência
- Variabilidade
- Taxa de Mudança
- Covariação
- Ciclos
- Exceções

TENDÊNCIA

Capacidade de uma série de dados em crescer, decrescer ou permanecer estável, durante um dado período tempo.

TENDÊNCIA

- Gráficos de Linhas são ideais para visualizar tendências;
- Se houver muita variabilidade, utilize linhas de tendências para evidenciar o padrão visual;

Grau médio de variação em um dado período tempo.

VARIABILIDADE

Grau médio de variação em um dado período tempo.

VARIABILIDADE

Alta Variabilidade

Baixa Variabilidade

TAXA DE MUDANÇA

Percentual de diferença entre valores em diferentes períodos de tempo

Padrões repetidos em intervalos regulares

EXCEÇÕES

Dados que saem fora da faixa de valores normais ou esperados

LINHAS

Ideal para exibir valores quantitativos que variam durante períodos contínuos de tempo.

LINHAS

A combinação de pontos e linhas deve ser usada para comparar valores individuais

BARRAS

- O comprimento das barras, permitem a comparação precisa entre os valores que elas representam;
- Não permitem a comparação do comportamento geral da série;

PONTOS

Devem ser usados, quando os dados não são igualmente espaçados; No exemplo abaixo, as transições suaves (linhas) podem ser irreais;

PONTOS

Os gráficos de pontos, desencorajam o pensamento incorreto de que há uma continuidade entre os valores

RADAR (COORDENADAS POLARES)

A forma circular dos gráficos de radar, podem ser usadas para representar a natureza cíclica dos dados

RADAR (COORDENADAS POLARES)

A forma circular dos gráficos de radar, podem ser usadas para representar a natureza cíclica dos dados

RADAR (COORDENADAS POLARES)

Quando há muitas séries de dados gráficos de linhas e radares, se tornam confusos;

MAPAS DE CALOR (HEATMAP)

- Devem ser usados para representar dados cíclicos, porém, sem o problema de sobreposição de itens;
- Cores são usadas para representar variações quantitativas;

SOBRE AS CORES

Três armadilhas clássicas das cores

- 1. Espectros
- 2. Significado
- 3. Escolha da paleta

Cores não são ordenadas naturalmente!

O que é maior, azul ou vermelho?

CORES

Danyel Fisher added 2 new photos.

2 hrs · @

Random thought on visualization that I stumbled into the other day.

Sometimes, it is immediately obvious that 'red' is the low value. Because in finance (for example) red is a loss, green or black is a gain.

Other times, it's obvious that 'red' is the high value. When you heat something up, it turns red; when you cool it down, we connote that by blue.

Which mostly suggests ... don't use a one-end-red colormap by default.

Nem todo mundo enxerga da mesma maneira

Green-blind

CORES

O que suas cores significam para o seu público?

Tom, Saturação e Luminância

Paletas de Cores: Monocromáticas

Paletas de Cores: Monocromáticas

Paletas de Cores: Complementares

Paletas de Cores: Divisão Complementar

Tipos de Paletas

- Categóricas: separar itens em diferentes grupos
- Sequenciais: codificar diferenças quantitativas do baixo para o alto;
- Divergentes: codificar diferenças quantitativas usando dois tons diferentes;

BIBLIOGRAFIA PRINCIPAL

Yau, Nathan. Visualize this: the Flowing Data guide to design, visualization, and statistics. John Wiley & Sons, 2011.

BIBLIOGRAFIA PRINCIPAL

Knaflic, Cole Nussbaumer. Storytelling with data: A data visualization guide for business professionals. John Wiley & Sons, 2015.

Tufte, Edward R. The visual display of quantitative information. Vol. 2. Cheshire, CT: Graphics press, 2001.

Tufte, Edward R., et al. "Visual explanations: Images and quantities, evidence and narrative." (1998): 146-148.

Tufte, Edward R., Nora Hillman Goeler, and Richard Benson. Envisioning information. Vol. 126. Cheshire, CT: Graphics press, 1990.

11

BIBLIOGRAFIA PRINCIPAL

Ware, Colin. Information visualization: perception for design. Elsevier, 2012.

Few, Stephen. "Show me the numbers." Analytics Pres (2004).

Few, Stephen. Now you see it: simple visualization techniques for quantitative analysis. Analytics Press, 2009.

Few, Stephen.
"Information dashboard design." (2006).

diaugustobarros@gmail.com

diegoaugustobarros.com

@diegoaugustobarros

@profdiegoaugusto

Prof. Diego Augusto

Diego Augusto Barros é bacharel em Sistemas de Informação pela Pontifícia Universidade Católica de Minas Gerais (2012) e mestre em Ciência da Computação pela Universidade Federal de Minas Gerais (2015). Sua pesquisa concentra-se nas áreas de Visualização de Dados e Interação Humano-computador, e investiga fatores cognitivos e perceptivos envolvidos na análise de grandes conjuntos de dados, que resultam em novos sistemas interativos para comunicação e análise visual. Seus principais interesses nas áreas são: visualização de informação, Visual Analytics, métodos de avaliação de interfaces, interação com sistemas, tecnologias web, sistemas de informação, engenharia de software e informática na educação.

LICENÇA

Esta obra está licenciada sob a Licença Internacional Creative Commons Attribution-NonCommercial-ShareAlike 4.0. Para ver uma cópia desta licença, visite:

http://creativecommons.org/licenses/by-nc-sa/4.0/ ou envie uma carta para a Creative Commons, PO Box 1866, Mountain View, CA 94042, EUA.

