Multi-Modal Logistics Parks -India

IGSA UW-Madison SUPPLY CHAIN HACKATHON

Adhokshaja Achar Budihal Prasad

About Me

- in /adhokshaja
- /adhokshaja

Adhokshaja Achar Budihal Prasad

MBA Student – University of South Florida

- ♦ Hometown: Bengaluru, India
- ♦ Current City: Tampa, FL
- Interests: Web Application Development, Data Analytics, Project Management

Problem Statement

India is trying to find the optimal transport network for freight from ports to cities through a network of Multi-Modal Logistics Parks

11 Ports – Source of Freight

20 Cities – Destination for Freight

Optimize the cost of transportation of freight from Ports to Cities.

Sources - Ports

Destinations - Cities

Problem Formulation

Objective

Reduce the Sum of transportation costs associated with movement of freight across the network

Constraints

Supply at a port is limited.

Total Freight out of a port cannot exceed the available supply

Demand at cities should be met.

Total Freight into a city cannot be lower than the demand.

Mathematical Formulation of the problem

Cost of freight from a port to a city

= Distance between port & city * Number of pieces of freight moved(Flow) * Cost of transportation/piece of freight/km

Unit cost = ₹35/km

Objective:
$$min\left(\sum_{Ports}\sum_{Cities}C_{Port,City}\right)$$

$$C_{pc} = Dist_{pc} \times Flowpc \times UnitCost$$

Supply Constraint:
$$\sum_{Cities} Flow_{Port,City} \leq Supply_{Port}$$

Demand Constraint:
$$\sum_{Ports} Flow_{Port,City} \ge Demand_{City}$$

Solving the problem

Assumptions

- Freight can be easily moved from a Port to City
- Movement between ports and cities is absent
- ♦ There is no time component to the supply i.e.
 Freight is readily available for transport.
- ♦ There are no intermediary hubs
- ♦ There is no cost associated with the storage
- Storage space is not limited by demand (i.e. cities can store more freight than their demand)
- ♦ The cost incurred between different modes of transport is uniform (Rs. 35/km)

Approach

- ♦ Consider all routes from Ports to Cities
- ♦ Set the Flow as a variable parameter
- Set the Objective function as discussed
- Set the Supply and Demand Constraints
- Optimize network by varying the Flow, and minimizing the objective while obeying the constraints

Solving the problem

- ♦ Problem approached as a linear programming problem.
 - Methods/ Algorithms to solve this type of problem already exist and can be leveraged
 - ♦ This problem is simple enough to not require a lot of computation power

- Problem Solved using Python
 - ♦ Used package "pyomo" to define problem
 - ♦ Used solver "GLPK" to find the optimal network

Solution

OPTIMAL NETWORK FOUND.

₹4,46,85,000 OR \$638,354

How is the demand met

Port

Chennai

JNPTKochiKolkata

Chidambaram

■ DeenDayal ■ Haldia

MangaloreMormugaon

ParadeepVizag

Future Work – Additional Considerations

- Adding a time component to the supply and demand
- ♦ Using cities and ports as hubs Consider movement of freight from port-port and city-city
- Consider warehousing and other costs associated with the storage of freight at locations
- Consider the variety of freight being moved
- Consider the differences in cost associated with different modes of transport

Questions?