ТЕХНОЛОГИЯ LoRa КАК СРЕДСТВО ЦИФРОВОЙ РАДИОТЕЛЕМЕТРИИ ДЛЯ ІоТ УСТРОЙСТВ

Карманов А.А., Савостин А.А.

(СКУ им. М. Козыбаева)

Термин IoT, (Интернет вещей), подразумевает коллективную сеть, которая обеспечивает связь устройств с Интернетом, а также устройств друг с другом [1]. Благодаря разнообразию современных цифровых микросхем, датчиков и исполнительных устройств существуют десятки миллиардов устройств, подключенных к сети Интернет.

Взаимодействие этих устройств друг с другом и с сетью Интернет было бы невозможным без цифровых средств радиотелеметрии, комплексному обзору одного из которых посвящена настоящая статья.

Анализ технических возможностей современных технологий беспроводной связи (LTE-M, NB-IoT, EC-GSM-IoT, LoRa, Symphony Link, Sigfox и др.) позволяет сделать вывод, что с точки зрения оптимального баланса между энергопотреблением, скоростью обмена, используемым спектром частот, бюджетом канала связи и доступностью аппаратных решений, наиболее предпочтительным средством радиотелеметрии для IoT устройств является технология LoRa. Ниже изложены аргументы в пользу заявленного утверждения

На сегодняшний день LoRa является одной из самых универсальных технологий, принадлежащей к категории несотовых стандартов. Технология поддерживается консорциумом LoRa Alliance, состоящим более чем из 500 компаний, включая Cisco, IBM, SK Telecom и др., что обеспечивает разработчику средств радиотелеметрии широкий выбор доступных аппаратных решений, реализующих технологию, а также её непрерывное развитие и совершенствование [2].

Технология LoRa базируется на методе модуляции с широкополосным расширением и различных вариациях линейной частотной модуляции (CSS), с прямой коррекцией ошибок (FEC), что значительно улучшает чувствительность приемника. Как и у других методов расширенной модуляции, LoRa использует широкую пропускания канала, что делает его устойчивым к канальным помехам и невосприимчивым к смещениям, вызванным неточностью настройки частот при использовании бюждетных источников тактирования [3].

Технология LoRa позволяет демодулировать сигналы с уровнями на 21 дБ ниже уровня шума, а для большинства систем с частотной манипуляцией (FSK) необходима мощность сигнала на 8-10 дБ выше уровня шума для корректной демодуляции.

LoRa определяет физический уровень (PHY), используемый с различными протоколами и сетевыми архитектурами, такими как сеть, звезда и точка-точка [2].

Радиоинтерфейс LoRa характеризуются шириной спектра радиосигнала BW, значительно превышающей скорость передачи данных Rb (BW >> Rb), а также корреляционной функцией, которая существенно отличается от корреляционной функции узкополосного радиосигнала.

Высокая устойчивость к помехам и точность временной синхронизации радиосигнала достигается за счёт его частотной избыточности и узкой корреляционной функции. Для передачи данных в системе LoRa используются методы расширенного спектра сигнала, такие как ЛЧМ и CSS (расширение частоты сигнала посредством chirpмодуляции), где CSS радиосигнал может как возрастать (up-chirp), так и уменьшаться (down-chirp).

Значение коэффициента расширения спектра (SF) определяет длину символа данных в битах, передаваемого через радиоинтерфейс за время, необходимое для передачи одного такого символа (Tsym).

На Рисунке 1 показано, как ЛЧМ-сигнал выглядит во временной области, а на Рисунках 2 и 3 показан спектр этого сигнала с шириной полосы равной 125 кГц и коэффициентом расширения спектра равным 128 (SF=7) и 4096 (SF=12) соответственно [4].

Рисунок 1. – Сигнал ЛЧМ

Рисунок 2. — ЛЧМ спектр при SF = 7

Рисунок 3. — ЛЧМ спектр при SF = 12

Синхронизация передатчика и приёмника определяет границы передачи-приёма целых блоков данных и отдельных символов. Технология передачи LoRa использует асинхронный режим, в котором передатчик может начать отправку радиосигнала в любой момент времени. Для обнаружения активности передатчика и выполнения символьной синхронизации приёмник использует преамбулу, содержащую последовательность символов.

Длина преамбулы должна быть не менее T1 + 2•T2, где T1 определяет максимальное время "сна" приёмника, а T2 - время поиска преамбулы. После преамбулы следует слово синхронизации (Sync Word) и блок данных физического уровня.

Длина слова синхронизации может быть настроена в диапазоне от 1 до 8 байт. Значения Sync Word определены в спецификации LoRa. Высокая помехоустойчивость радиоканала LoRa является его основным преимуществом. Функционирование детектора сигнала LoRa в условиях аддитивного белого гауссовского шума показано на Рисунках 4 и 5.

Рисунок 4. – Исходный сигнал в условиях белого гаусовского шума

Рисунок 5. – Функция принятия решения

В ходе сравнительного анализа доступных аппаратных решений для реализации LoRa радиолинии рассмотрены наиболее распространённые микросхемы от ведущих производитлей: «Analog Device», «Maxim», «Microchip», «RF Monolithics Inc.», «Semtech».

В результате сделан вывод о том, что наиболее оптимальными по критерию отношения цена/функционал являются микросхемы приёмопередатчиков компании «Semtech» и их аналоги, построенные с использованием гибридных технологий и имеющие в своём составе модем и встроенный усилитель мощности.

Эти микросхемы имеют большую базу данных программного обеспечения с открытым исходным кодом для разработки приложений. Диапазон рабочих частот

включает частоты 137 - 175 М Γ ц, 410 - 525 М Γ ц, 862 - 1020 М Γ ц. Имеется возможность выбора видов модуляции и кодовых конструкций. Используются стандартные типы последовательных интерфейсов.

Экспериментальные радиолинии испытаны на микросхемах SX1276 с параметрами, рассчитанными с использованием фирменного ПО производителя SX1276 «Semtech Calculator» для оптимальных значений выходной мощности, вида модуляции, ширины полосы пропускания и скорости передачи данных (Таблица 1).

Таблица 1. – Расчётные параметры экспериментальной радиолинии

	Значение				
Параметр SX1276	для диапазона 137 – 175 МГц	для диапазонов 410-525 и 862-1020 МГц			
Spreading Factor (SF)	7	9			
Bandwidth (BW)	125 кГц	500 кГц			
Coding Rate (CR)	2				
Payload Length	32				
Low Data Rate Optimize (DE)	0				
Preamble Length (PL)	10 (total 14.25)				
Implicit Header Mode On (IH)	0				
	0 – широковещательный ID				
Sync Word	151; 53255 – избирательный ID				
	52 – зарезервирован производителем				
CRC On Payload	1				
Rx Payload CRC On	1				
Рассчитанные выходные результаты (на основе вышеуказанных настроек):					
Техническая скорость	~ 4,55729 кбит/с	~ 5,85938 кбит/с			
Информационная скорость	~ 3,278 кбит/с	~ 3,891 кбит/с			
Чувствительность приёмника	минус 123 дБ				
Бюджет канала связи (при	1	50 πE			
мощности 1 Вт)	~150 дБ				

В Таблице 2 приведены результаты работы детектора экспериментальной радиолинии при различных отношениях сигнал/шум (SNR) и коэффициентах расширения спектра (SF).

Таблица 2. – Результаты обнаружения ошибок детектирования сигнала

ОСШ (SNR), дБ	Коэффициент расширения (Spread Factor), %						
	7	8	9	10	11	12	
0	0.9	0.5	0.2	0.1	0.1	0.0	
Минус 3,0	0.9	0.6	0.2	0.1	0.1	0.0	
Минус 6,0	2.0	0.6	0.2	0.1	0.0	0.0	
Минус 9,0	6.9	1.5	0.2	0.1	0.1	0.0	
Минус 12,0	18.0	5.8	1.3	0.1	0.0	0.0	
Минус 15,0	42.2	17.6	5.4	0.6	0.1	0.0	
Минус 18,0	68.9	44.2	18.0	5.1	1.1	0.1	
Минус 21,0	87.5	73.7	49.3	18.9	5.2	0.8	

Вышеприведённые данные обмена тестовым трафиком при коэффициенте расширения спектра SF=12 свидетельствуют о возможности корректного демодулирования сигнала, принимаемого на 21 дБ ниже уровня шума (уровень полезного сигнала более чем в 100 ниже уровня шума).

Подобным результатом не может похвастаться ни одна из других, существующих на сегодняшний день технологий беспроводной передачи данных.

Литература

- 1. Литвинов, А. В. (2018). Интернет вещей. Новосибирск: Новосибирский государственный университет.
- 2. Марков, А. А. (2020). Применение LoRaWAN технологии в Интернете вещей. Красноярск: Сибирский федеральный университет.
- 3. Карташов, С. В., Гуржий, А. С., & Смирнов, М. В. (2017). Исследование технологий беспроводной связи в системах Интернета вещей. Сборник трудов Международной конференции "Управление развитием сложных систем", 168-173.
- 4. Литвинов, А. В. (2019). Моделирование и анализ алгоритмов модуляции и коррекции ошибок в системах радиотелеметрии Интернета вещей. Вестник Новосибирского государственного университета. Серия: Информационные технологии, 17(2), 89-95.