

第二章 固体结合

原子通过化学键结合成固体。固体结合的基本形式与固体材料的结构和物理化学性质有密切关系。本章介绍固体结合的主要化学键形式。

根据晶体结合键的类型,晶体的结合类型可以分为五大类: 离子晶体(NaCI)、共价键晶体(金刚石)、金属晶体(Cu、AI)、 分子晶体(Ar)和氢键晶体(冰)。

一、离子晶体

1. 离子晶体的结合力

静电库仑力一库仑吸引力作用。

典型材料:

碱金属元素(Li、Na、K、Rb、Cs)与卤族元素(F、Cl、Br、I)结合为离子晶体: NaCl、CsCl, ...

(1) NaCl型—NaCl、KCl、AgBr、PbS、MgO 两套面心立方套构而成。配位数为6。

(2) CsCl型一两套简立方套构而成。配位数为8。

(3) ZnS型-两套面心立方套构而成。配位数为4。

3. 离子晶体的特点

- (1)构成晶体的基本单元是离子;电子分布高度局域在离子实的附近,形成稳定的球对称性的电子壳层结构;
- (2)晶体的结合力是靠正负离子间的静电库仑力;
- (3)离子晶体是复式格子,配位数不超过8;
- (4)结构稳定,结合能约为800kJ/mol;
- (5)导电性差、熔点高、硬度高、膨胀系数小、容易沿解理面劈裂;
- (6)一般对可见光透明,在远红外区有一特征吸收峰。

晶体的结合能(Cohesive energy)是指將晶体拆分成相距无限远的中性自由静止原子所耗费的能量:

$$E_b = \sum_{i=1}^{N} E_i (\text{atom}) - E(\text{crystal})$$

结合能反映了构成晶体的原子间成键的强弱,是晶体稳定程度的度量。晶体的融点与结合能直接相关。

晶体结合能的大小取决于粒子种类和结构。常用单位有:

kJ/mol, kcal/mol, eV/atom。

离子晶体的结合能:

以 NaCI 晶体为例,将 Na⁺、CI⁻离子看成点电荷。首先考虑它们之间的库伦能。每个原胞的平均库伦能为:

$$U_{c} = \sum_{n_{1},n_{2},n_{3}} \frac{q^{2}}{4\pi\varepsilon_{0}} \frac{(-1)^{n_{1}+n_{2}+n_{3}}}{\left(n_{1}^{2} + n_{2}^{2} + n_{3}^{2}\right)^{1/2} r}$$

$$= \frac{q^{2}}{4\pi\varepsilon_{0}r} \sum_{n_{1},n_{2},n_{3}} \frac{(-1)^{n_{1}+n_{2}+n_{3}}}{\left(n_{1}^{2} + n_{2}^{2} + n_{3}^{2}\right)^{1/2}} = -\frac{\alpha q^{2}}{4\pi\varepsilon_{0}r}$$

其中α是马德隆常数。

几种常见离子晶体的马德隆常数:

NaCl: 1.747565; CsCl: 1.762675; ZnS: 1.6381

排斥能:来源于泡利不相容原理。当电子云重叠加大时,动能显著增加,表现出强烈排斥作用。

唯象的排斥势能形式:

$$be^{-r/r_0}$$
 或 br^{-n}

总内能:

$$U = N \left[-\frac{A}{r} + \frac{B}{r^n} \right] \qquad \sharp \, \dot{\Phi} \qquad A = \frac{\alpha q^2}{4\pi \varepsilon_0}, \quad B = 6b$$

r₀:平衡位置

$$\frac{dU}{dr} = 0$$

弹性模量:

$$K = \left(V \frac{d^2 U}{dV^2}\right)_{V_0}$$

二、共价键晶体

1. 共价键晶体的结合力

相邻的原子各出一个(或数个)电子,组成公用电子对,从而在最外层形成公用的封闭电子壳层。此种原子键合称为共价键。

- 2. 原子晶体的类型
- (1) Ⅳ 族元素。金刚石、硅、锗等是典型的共价晶体,其结构为金刚石结构。配位数为4。
- (2) InSb近似为原子晶体。

- 3.共价键晶体的特点
- (1)原子结合力是共价键;
- (2)共价键具有饱和性、方向性;
- (3)原子晶体为复式格子;
- (4)结构稳定,结合能约为800kJ/mol;
- (5)低温导电性差,为绝缘体或半导体,熔点高、硬度高;
- (6)能透射红外线。

共价键的数目满足 8-N 规则, 其中N 指为价电子的数目。

共价键的强弱由形成共价键的两个电子轨道的相互交叠的程度决定。 因此一个原子是在价电子波函数最大的方向形成共价键。

图 2-3 成键态和反键态

不同元素组成共价晶体时,共价键含有离子键成分。怎么讨 论电荷的分布情况?

有效电荷的概念: 以 GaAs 为例,它们的离子实分别带 +3和 +5 电荷

成键态的波函数 $\psi = c(\varphi_A + \lambda \varphi_B)$

电子在 A (As) 原子上的几率

电子在 B (Ga) 原子上的几率

 $P_A = \frac{1}{1 + \lambda^2}$

$$P_B = \frac{\lambda^2}{1 + \lambda^2}$$

B (Ga) 原子有效电荷:
$$q_B = \left(3 - 8 \frac{\lambda^2}{1 + \lambda^2}\right)$$

A (As) 原子有效电荷:
$$q_A = \left(5 - 8\frac{1}{1 + \lambda^2}\right)$$

$$\lambda = 0$$
 完全离子晶体

$$q_B = +3 \qquad q_A = -3$$

$$\lambda = 1$$
 完全共价晶体

$$q_B = -1 \qquad q_A = +1$$

通常引入电离度来描述共价结合中的离子性成分 (卡 尔森 Coulson):

电离度
$$f_i = \frac{P_A - P_B}{P_A + P_B} = \frac{1 - \lambda^2}{1 + \lambda^2}$$

$$f_i = 1$$
 完全离子晶体

$$f_i = 0$$
 完全共价晶体

泡令 (Pauling) 根据原子的负电性定义了另一种电离度:

$$f_i = 1 - \exp\left[-\left(x_A - x_B\right)^2 / 4\right]$$

三、金属晶体

1. 金属晶体的结合力

原子实和公有化的电子云(价电子形成的电子云)之间的静电力。

2. 金属晶体的类型

大多数金属晶体都是面心立方、六角密积结构。配位数为12;少数为体心立方结构,配位数为8。

fcc—Cu, Ag, Au, Al;

hcp─Mg, Zn, Be;

bcc—Li, Na, K, Mo, W;

- 3. 金属晶体的特点
- (1)采取密堆积的形式;
- (2)结合能较高。约为200kJ/mol;
- (3) 导电性好、热导率高、密度大、延展性好;
- (4) 对红外线和可见光反射能力强,不透明,能透紫外线。

四、分子晶体

分子晶体由分子组成。分子内部由强的共价键组成,而不同分子间由 弱的氢键,范德华力结合成晶体。

例子:惰性气体分子晶体; O_2 ,CO, CH_4 等在低温下形成分子晶体。

极性分子晶体:分子间的电偶极相互作用,氢键

非极性分子晶体是靠范德瓦尔斯结合的。对于非极性分子,由于瞬时的正、负电子的中心不重合,呈现出瞬时的偶极矩,使其它原子间产生感应偶极矩,由此而产生范德瓦尔斯力。

1. 氢键结合力

以氢键结合的晶体,结合力主要依靠氢原子与电负性很大而原子半径 较小的两个原子结合成X—H····Y形式。氢键晶体的结合能一般比较低、 氢键具有饱和性。

- 2. 氢键晶体的特点
- (1)饱和性——只能形成一个氢键;
- (2) 氢键较弱;
- (3)结合能较低,约为20kJ/mol;
- (4) 熔点低、沸点低、硬度小、导电性差。

非极性分子晶体: 范德瓦尔斯力

非极性分子晶体是靠范德瓦尔斯结合的。对于非极性分子,由于瞬时的正、负电子的中心不重合,呈现出瞬时的偶极矩,使其它原子间产生感应偶极矩,由此而产生范德瓦尔斯力。

Lennard-Jones 势 $u(r) = 4\varepsilon \left| \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right|$

表 2-6 惰性气体的勒纳-琼斯势参数

	Ne	Ar	Kr	Xe
€ (eV)	0.0031	0.0104	0.0140	0.0200
σ (Å)	2.74	3.40	3.65	3.98

数据摘自, N. Bernards, Phys. Rev., 112 1534(1958).

平衡健长

$$\frac{du}{dr}\Big|_{r_0} = -4\varepsilon \left[\frac{12\sigma^{12}}{r^{13}} - \frac{6\sigma^6}{r^7} \right] = 0$$

$$r_0 = (2)^{1/6} \sigma$$

分子晶体的特点

- (1) fcc结构; 惰性元素具有球对称, 结合时排列最紧密以使势能最低;
- (2)结合能较低,约为几kJ/mol,结合力弱;
- (3) 熔点低、沸点低、绝缘体、硬度小、易压缩;
- (4)能透射从红外到远紫外。

晶体	Ne	Ar	Kr	Xe
熔点(K)	24	84	117	161

晶体结合的规律

Mulliken 负电性

负电性=0.18(电离能+亲和能) (in eV)

Li 的负电性为 1

负电性强:易得电子

负电性弱: 易失电子

IV 到VI族的元素具有较强的负电性, 易形成共价键, 满足8-N规则

hydrogen 1	Periodic table														helium 2			
H		i criodic tabic														He		
1.0079 lithium	beryllium	boron carbon nitrogen oxygen fluorine														4.0026 neon		
3																10		
LI	Be														Ne			
6.941	9.0122															20.180		
sodium 11	magnesium 12		aluminium silicon phosphorus sulfur chlorine argo 13 14 15 16 17 18													argon 18		
Na	Mg														Ar			
22.990	24.305													39.948				
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
1			v				_									_	33	
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	∣ Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	57-70	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	_56		71	72	_73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	∣ Rn ∣
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
1									'									
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	uun	Uuu	auu		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]]			

*	La	nt	ha	nic	de	se	ri	е	S

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dν	Но	Er	Tm	Yb
-1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ı	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
-1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	qИ	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
l	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

表 2~10 负 电 性

I.A	IIA	111 <i>B</i>	IV <i>B</i>	VB	VIB	VIIB
Li	Be	В	C	N	o	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Na	Mg	Αi	Si	P	s	C1
0.9	1.2	1.5	1.8	2.1	2.5	3.0
ĸ	Ca	Ga	Ge	As	Se	Br
C.8	1.0	1.5	1.8	2.0	2.4	2.8

负电性降低

负电性增强

Ⅳ 族元素,四个共价键,形成金刚石结构,

V 族元素, 三个共价键, 形成层状结构,

VI族元素,二个共价键,形成环状结构,

∨Ⅱ族元素,一个共价键,双原子分子,

- IV族元素是最典型的共价晶体。按C, Si, Ge, Sn, Pb 的顺序,负电性不断减弱。负电性最强的金刚石具有最强的共价键,是绝缘体。负电性最弱的是Pb,是金属。中间的Si, Ge是典型的半导体。
- I-VII族元素负电性差别最大,形成最典型的离子晶体。随着元素间负电性差别变小,逐渐过渡到共价键晶体:如III-V族材料。