Adam Frenkel

The Iterative Algorithm

The Recurrence:

$$z = 1 \rightarrow T(z) = O(1)$$

 $z > 1 \rightarrow T(z) = T(z - 1) + O(zn)$

Justification:

The recurrence is accurate because when z = 1, no order n work is done.

Finally, when z > 1, one must first merge 2 arrays with a total size of 2n, then 2 arrays with a total size of 3n, then 4n ... zn. This is represented by the recurrence, as first one does zn then ... 4n, then 3n, then 2n of work.

Solving The Recurrence:

$$z > 1 \to T(z) = T(z-1) + O(zn)$$

$$= T(z-2) + O((z-1)n) + O(zn)$$

$$= T(2n + \cdots O((z-1)n) + O(zn)$$

$$= O(\sum_{i=2}^{z} i(n))$$

$$= O(n \sum_{i=2}^{z} i)$$

$$= O(n(\frac{z(z+1)}{2}) - 1)$$

$$= O(nz^{2})$$

$$= O(z^{2})$$

Closed Form:

$$\overline{z=1} \rightarrow T(z) = O(1)$$

$$z > 1 \rightarrow T(z) = O(z^2)$$

Divide & Conquer Algorithm

The Solution:

My algorithm is simply the combining part of the standard merge sort algorithm.

The Recurrence:

$$z = 1 \rightarrow T(z) = O(1)$$

$$z > 1 \rightarrow T(z) = zn + 2T(z/2)$$

Justification:

When z = 1, no order n work is necessary.

When z > 1, you have to combine every pair of arrays (zn). After doing so, you must combine those arrays which will be half the amount of those original arrays T(z/2). Because these arrays are twice the size though it will come out to 2T(z/2). Giving a total work of zn + 2T(z/2).

Solving the Recurrence:

```
z > 1 \rightarrow T(z) = zn + 2T(z/2)
                zn + 2((zn/2) + 2T(z/4))
         Plug
        Chug
               zn + zn + 4T(z/4)
         Plug
                zn + zn + 4((zn/4) + 2T(z/8))
                zn + zn + zn + 8T(z/8)
        Chug
         Plug
                zn + zn + zn + 8((zn/8) + 2T(z/16))
                zn + zn + zn + zn + 16T(z/16)
        Chug
      Pattern
                T(z) = 2T(z/2) + 4T(z/4) ... + xT(z/x), where (z/x) = 1
Equivalent to
                 T(z) = zn + zn ... + zn, log(z) times
Equivalent to
                 T(z) = \log(z) \times zn
```

Closed Form:

```
z = 1 \rightarrow T(z) = O(1)
 z > 1 \rightarrow T(z) = \log(z) \times zn
```