Agrégation interne de Mathématiques

(et CAERPA)

Session 2008

Deuxième épreuve écrite

Introduction et notations

Dans ce problème, on note N l'ensemble des nombres entiers, R le corps des nombres réels.

On dit qu'un endomorphisme T d'un espace vectoriel est nilpotent s'il existe un nombre entier $s \ge 0$ tel que $T^s = 0$.

Si f est une fonction de classe C^{∞} de la variable réelle x et n un entier $\geqslant 0$, on note $f^{(n)}$ ou $\frac{d^n f}{dx^n}$ la dérivée n-ième de la fonction f.

Si g est une fonction de classe C^{∞} de la variable $x=(x_1,\ldots,x_n)$ définie dans une partie ouverte de \mathbf{R}^n , on note $\frac{\partial g}{\partial x_i}$ la dérivée partielle de g par rapport à la variable x_i , pour $1 \leq i \leq n$.

Pour des entiers p et n tels que $0 \le p \le n$, on définit les coefficients binomiaux par

$$\binom{n}{p} = \frac{n!}{p! (n-p)!} = \frac{n (n-1) \dots (n-p+1)}{p!} \quad \text{pour} \quad 0$$

L'un des objets de ce problème est la démonstration et l'application de la formule de réversion de Lagrange qui permet de calculer, dans certains cas, la dérivée n-ième d'une fonction réciproque.

On étudie d'abord la suite $(u_n)_{n\geqslant 1}$ dont le terme général est l'unique solution $\geqslant 0$ de l'équation

$$(\mathbf{E}_n) x^n + x^{n-1} + \dots + x - 1 = 0.$$

Dans un premier temps, on établit directement une expression explicite de u_n comme somme d'une série convergente (parties I et II).

On établit ensuite la formule de réversion de Lagrange (partie III).

On applique enfin cette formule pour obtenir une autre démonstration de l'expression de u_n (partie IV).

On rappelle les résultats suivants qui pourront être utilisés sans démonstration :

A) Lorsque l'entier n tend vers $+\infty$, on a l'équivalence (formule de Stirling):

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
.

B) Pour tout entier $q \ge 1$, la série entière

$$\sum_{n\geqslant 0} (-1)^n \binom{n+q-1}{n} x^n$$

a un rayon de convergence égal à 1 et, pour -1 < x < 1, sa somme est égale à $1/(1+x)^q$.

C) Le théorème des fonctions implicites pour une fonction F de classe C^{∞} , définie sur \mathbf{R}^3 , peut s'énoncer ainsi :

On suppose qu'en un point (x_0, y_0, z_0) de \mathbb{R}^3 , on a

$$F(x_0, y_0, z_0) = 0$$
 et $\frac{\partial F}{\partial z}(x_0, y_0, z_0) \neq 0$.

Il existe alors un voisinage ouvert U de (x_0, y_0) dans \mathbf{R}^2 , un voisinage ouvert V de z_0 dans \mathbf{R} et une fonction $\varphi: \mathbf{U} \to \mathbf{V}$ caractérisée par la condition

$$\forall (x,y) \in \mathcal{U}, \ \forall z \in \mathcal{V}, \ (\mathcal{F}(x,y,z) = 0 \iff z = \varphi(x,y)).$$

La fonction φ est de classe \mathcal{C}^{∞} sur \mathcal{U} et pour tout point (a,b) de \mathcal{U} , on a

$$\mathcal{F}(a,b,\varphi(a,b))=0\,,$$

ainsi que les relations

$$\frac{\partial \varphi}{\partial x}(a,b) = -\frac{\frac{\partial \mathbf{F}}{\partial x}(a,b,\varphi(a,b))}{\frac{\partial \mathbf{F}}{\partial z}(a,b,\varphi(a,b))}\;, \qquad \frac{\partial \varphi}{\partial y}(a,b) = -\frac{\frac{\partial \mathbf{F}}{\partial y}(a,b,\varphi(a,b))}{\frac{\partial \mathbf{F}}{\partial z}(a,b,\varphi(a,b))}\;.$$

On dit que la fonction φ est définie implicitement sur U par la relation F(x,y,z)=0.

D) Soit $(a_{n,k})_{(n,k)\in\mathbb{N}\times\mathbb{N}}$ une suite double de nombres réels. Si la somme $\sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} |a_{n,k}|\right)$ est finie, alors les trois expressions

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{n,k}\right) \,, \quad \sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{n,k}\right) \,, \quad \sum_{q=0}^{\infty} \left(\sum_{n+k=q} a_{n,k}\right) \,,$$

ont un sens et sont égales. Leur valeur commune est notée $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n,k}$.

E) Soit R un nombre réel > 0. Si les fonctions f et g sont sommes de séries entières convergentes dans l'intervalle]-R,R[, leur somme f+g et leur produit fg sont aussi sommes de séries entières convergentes dans le même intervalle.

I. La suite (u_n)

1) Démontrer, pour tout entier $n \ge 1$, l'existence d'une unique solution réelle ≥ 0 de l'équation

$$(\mathbf{E}_n) x^n + x^{n-1} + \dots + x - 1 = 0.$$

Cette solution est notée u_n . Démontrer que l'on a $0 \leqslant u_n \leqslant 1$.

- 2) Démontrer que la suite $(u_n)_{n\geqslant 1}$ est strictement décroissante.
- 3) Démontrer que, pour tout entier $n \ge 1$, on a

$$u_n^{n+1} - 2u_n + 1 = 0.$$

- 4) a) Calculer u_2 .
 - b) Démontrer que la suite $(u_n)_{n\geqslant 1}$ tend vers $\frac{1}{2}$.
- 5) Pour $n \geqslant 1$, on pose $\varepsilon_n = u_n \frac{1}{2}$. Démontrer que $n \varepsilon_n$ tend vers 0 lorsque n tend vers $+\infty$.
- 6) En déduire, à l'aide de la question (I.3), le développement asymptotique suivant de u_n , pour n tendant vers $+\infty$:

$$u_n = \frac{1}{2} + \frac{1}{4 \cdot 2^n} + o\left(\frac{1}{2^n}\right).$$

7) a) Déterminer le plus petit entier $s \ge 1$ pour lequel on a

$$0 < u_s - \frac{1}{2} < 10^{-2}$$
.

Pour cela, on pourra déterminer, avec une calculatrice, le signe de $f_n\left(\frac{1}{2} + \frac{1}{100}\right)$ pour $n = 2, 3, \ldots$, où f_n est la fonction définie par

$$f_n(x) = x^n + x^{n-1} + \dots + x - 1.$$

b) Écrire en français une procédure qui, pour un entier $p\geqslant 1\,$ donné, permet de déterminer le plus petit entier s pour lequel on a

$$0 < u_s - \frac{1}{2} \leqslant 10^{-p}.$$

On pourra utiliser les fonctions g_n définies par

$$g_n(x) = (x-1) f_n(x).$$

8) On se propose de démontrer l'inégalité suivante, valable pour tout entier $n \ge 1$:

$$(1) u_n \leqslant \frac{1}{2} + \frac{1}{2n}.$$

a) En utilisant la fonction g_n définie dans la question (I.7), démontrer que l'inégalité (1) est équivalente à l'inégalité suivante :

(2)
$$\frac{1}{2^{n+1}} \leqslant \frac{n^n}{(n+1)^{n+1}}.$$

b) Pour x > 0, on pose

$$\psi(x) = (x+1)\ln(x+1) - x\ln(x) - (x+1)\ln(2).$$

Étudier la variation de la fonction ψ et en déduire l'inégalité (2).

- 9) a) Démontrer l'inégalité $\frac{1}{2} < u_4 < \frac{6}{11}$.
 - b) En déduire que l'on a, pour tout entier $n \ge 4$, l'inégalité

$$\frac{u_n}{2(1-u_n)} < \frac{n^{\frac{n}{n+1}}}{n+1} \cdot$$

II. Expression de u_n comme somme d'une série

Dans cette partie, on se propose d'établir, lorsque l'entier p est assez grand, l'expression suivante de u_p comme somme d'une série convergente :

$$u_p = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{n \, 2^{n(p+1)+1}} \, \binom{n(p+1)}{n-1} \, .$$

1) Soit p un entier $\geqslant 1$. On note S_p la série entière définie par

$$S_p(x) = \sum_{n \geqslant 1} \frac{1}{2n} \binom{n(p+1)}{n-1} x^n.$$

a) Démontrer que le rayon de convergence $\,\rho_p\,$ de la série entière $\,{\bf S}_p\,$ est donné par

$$\rho_p = \frac{p^p}{(p+1)^{p+1}}.$$

- b) Démontrer que, pour $p \geqslant 2$, la série du second membre de la relation (T_p) est convergente. [On utilisera la question (I.8).]
- 2) a) Démontrer, par récurrence sur l'entier $n\geqslant 1$, l'égalité

$$\sum_{k=1}^{n} \frac{1}{k \, 2^{2k+1}} \binom{2k}{k-1} = \frac{1}{2} - \frac{2(n+2)}{(n+1) \, 2^{2n+3}} \binom{2(n+1)}{n}.$$

- b) En déduire la relation (T_1) .
- 3) On a admis dans les Préliminaires que, pour tout entier $q \geqslant 1$, la série entière

$$\sum_{n\geqslant 0} (-1)^n \binom{n+q-1}{n} x^n$$

a un rayon de convergence égal à 1, et que, pour $x \in]-1,1[$, sa somme est égale à $1/(1+x)^q$.

En déduire, pour $\, n \geqslant 1 \, , \, \, p \geqslant 1 \,$ et $\, x \in \,]-1,1[\, , \, l \, {\rm \acute{e}galit\acute{e}} \,$

$$\frac{x^n}{(1+x)^{n(p+1)}} = \sum_{k=0}^{\infty} (-1)^k \binom{n(p+1)+k-1}{k} x^{n+k}.$$

4) Pour $p \ge 1$, on pose

$$v_p = 2u_p - 1.$$

a) Démontrer que l'on a

$$\frac{v_p}{(1+v_p)^{p+1}} = \frac{1}{2^{p+1}}.$$

b) Déduire de ce qui précède que l'on a, pour $p\geqslant 2$ et $n\geqslant 1$, l'égalité

$$\frac{1}{2^{n(p+1)}} = \sum_{k=0}^{\infty} (-1)^k \binom{n(p+1)+k-1}{k} v_p^{n+k}.$$

5) Dans toute la fin de cette deuxième partie, on fixe l'entier $p \geqslant 4$, et on pose

$$a_{n,k} = \frac{(-1)^k}{2n} \binom{n(p+1) + k - 1}{k} \binom{n(p+1)}{n-1} v_p^{n+k}.$$

a) Démontrer la relation

$$(\mathbf{U}_p) \qquad \sum_{n=1}^{\infty} \frac{1}{n \, 2^{n(p+1)+1}} \binom{n(p+1)}{n-1} = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{\infty} a_{n,k} \right).$$

- b) Démontrer que, pour tout $n\geqslant 1$, la série $\sum_{k\geqslant 0}|a_{n,k}|$ est convergente et déterminer sa somme.
- c) En utilisant les questions (I.9) et (II.1), démontrer que la série $\sum_{n=1}^{\infty} \left(\sum_{k=0}^{\infty} |a_{n,k}| \right)$ est convergente.

- 6) Soient q un entier $\geqslant 2$ et $\mathbf{R}_{q-1}[X]$ le \mathbf{R} -espace vectoriel des polynômes à coefficients réels dont le degré est $\leqslant q-1$. On note Δ_q l'application qui, à un polynôme $\mathrm{P}(\mathrm{X})$ de degré $\leqslant q-1$, associe le polynôme $\mathrm{P}(\mathrm{X}+1)-\mathrm{P}(\mathrm{X})$.
 - a) Démontrer que Δ_q est un endomorphisme nilpotent de $\mathbf{R}_{q-1}[X]$.
 - b) En déduire que, si P est un polynôme de degré $\leq q-1$, on a

$$\sum_{j=0}^{q} (-1)^{q-j} {q \choose j} P(X+j) = 0.$$

- 7) a) Soit toujours q un entier ≥ 2 . En utilisant la question précédente, démontrer que la somme $\sum a_{n,k}$ étendue aux indices (n,k) tels que $n \geq 1$, $k \geq 0$ et n+k=q+1, est nulle.
 - b) En déduire la relation (T_p) pour $p \ge 4$.
- 8) On fixe toujours l'entier $p \ge 4$. Pour tout entier $n \ge 1$, on pose

$$\lambda_n = \frac{1}{n \cdot 2^{n(p+1)+1}} \binom{n(p+1)}{n-1}.$$

- a) Démontrer l'existence d'un nombre réel μ_p appartenant à l'intervalle]0,1[tel que l'on ait $\lambda_{n+1} \sim \mu_p \lambda_n$ lorsque n tend vers $+\infty$.
- b) Démontrer que la série $\sum_{n\geqslant 1}\lambda_n$ est convergente et que son reste

$$R_p(n) = \sum_{k=n+1}^{\infty} \frac{1}{k \cdot 2^{k(p+1)+1}} \binom{k(p+1)}{k-1}$$

satisfait à l'équivalence $R_p(n) \sim \frac{\mu_p}{1-\mu_p} \lambda_n$ lorsque n tend vers $+\infty$.

III. Réversion de Lagrange

Dans cette partie f et Φ désignent deux fonctions de classe C^{∞} définies sur \mathbf{R} et à valeurs réelles. Pour $x,\ t$ et $y\in\mathbf{R}$, on pose

$$F(x,t,y) = t - y + x \Phi(y).$$

- 1) a) En utilisant les rappels du Préliminaire, démontrer qu'il existe un voisinage U de (0,0) dans \mathbf{R}^2 et une fonction $\varphi: \mathbb{U} \to \mathbf{R}$ de classe \mathbb{C}^{∞} , telle que $\varphi(0,0) = 0$, et $F(x,t,\varphi(x,t)) = 0$ pour $(x,t) \in \mathbb{U}$.
 - b) Démontrer que l'on a dans U l'égalité

$$\frac{\partial \varphi}{\partial x} = \left(\Phi \circ \varphi\right) \frac{\partial \varphi}{\partial t} \cdot$$

- 2) On définit la fonction u dans U par $u = f \circ \varphi$.
 - a) Vérifier que la fonction u est de classe C^{∞} et satisfait à l'égalité

$$\frac{\partial u}{\partial x} = (\Phi \circ \varphi) \, \frac{\partial u}{\partial t}.$$

b) Plus généralement, démontrer, par récurrence sur l'entier $n \ge 1$, que l'on a

$$\frac{\partial^n u}{\partial x^n} = \frac{\partial^{n-1}}{\partial t^{n-1}} \Big((\Phi \circ \varphi)^n \, \frac{\partial u}{\partial t} \Big) \, .$$

c) En déduire que l'on a, pour tout entier $n\geqslant 1$ et pour $(0,t)\in \mathcal{U}$, l'égalité

$$\frac{\partial^n u}{\partial x^n}(0,t) = \frac{d^{\,n-1}}{dt^{n-1}}(\Phi(t)^n\,f'(t)).$$

- 3) Soit $g: \mathbf{R} \to \mathbf{R}$ une fonction de classe C^{∞} telle que g(0) = 0 et $g'(0) \neq 0$.
 - a) Justifier que l'on peut définir une fonction σ dans un voisinage de 0 dans ${\bf R}$ par

$$\sigma(s) = \frac{s}{g(s)} \quad \text{si} \quad s \neq 0,$$

$$\sigma(0) = \frac{1}{g'(0)}.$$

- b) Démontrer que la fonction σ est de classe C^1 au voisinage de 0.
- c) Plus précisément, démontrer que la fonction σ est de classe C^{∞} au voisinage de 0 dans \mathbf{R} . [Pour cela, on pourra calculer et utiliser l'intégrale $\int_0^1 g'(st) dt$.]
- 4) Dans la fin de cette partie du problème, on conserve la fonction g de la question (III.3). Expliquer l'existence d'un intervalle J, voisinage de 0 dans \mathbf{R} , et d'une fonction h, de classe \mathbf{C}^{∞} sur $g(\mathbf{J})$, qui soit réciproque de la restriction $g|\mathbf{J}$.
- 5) Les résultats des questions (III.1) et (III.2) restent valables lorsque la fonction Φ n'est définie que dans un voisinage de 0 dans $\mathbf R$ car d'emblée on n'a utilisé que des propriétés locales de la fonction Φ . On pourra utiliser ces résultats dans ce cadre plus étendu.

Dans cette question, on prend pour fonction f la fonction identique (caractérisée par f(x) = x) et pour fonction Φ la fonction σ définie dans la question (III.3).

- a) Démontrer que l'on a alors $\, \varphi(x,0) = h(x)\,$ pour $\, x\,$ voisin de $\, 0\,$.
- b) Démontrer que, pour tout entier $n\geqslant 1$, les fonctions $\frac{d^nh}{dx^n}$ et $\frac{d^{n-1}(\sigma^n)}{dt^{n-1}}$ prennent la même valeur au point 0, c'est-à-dire

$$\frac{d^n h}{dx^n}(0) = \frac{d^{n-1}(\sigma^n)}{dt^{n-1}}(0).$$

Cette relation constitue la formule de réversion de Lagrange.

6) Plus généralement, démontrer, pour tout entier $n \ge 1$ et pour toute fonction f de classe C^{∞} sur \mathbf{R} , la relation

$$\frac{d^{n}(f \circ h)}{dx^{n}}(0) = \frac{d^{n-1}(\sigma^{n}f')}{dt^{n-1}}(0).$$

IV . Application à la suite (u_n)

1) Pour $p \geqslant 1$ et $x \in \mathbf{R}$, $x \neq -1$, on pose

$$\tau_p(x) = \frac{x}{(1+x)^{p+1}} \cdot$$

Rappelons que ρ_p désigne le rayon de convergence de la série entière S_p calculé dans la question (II.1).

Démontrer que la fonction τ_p réalise un homéomorphisme de l'intervalle $\left[0,\frac{1}{p}\right]$ sur l'intervalle $\left[0,\rho_p\right]$, et un difféomorphisme de classe C^{∞} de l'intervalle $\left[0,\frac{1}{p}\right[$ sur l'intervalle $\left[0,\rho_p\right[$,

2) Pour $p \geqslant 1$, on note $w_p : [0, \rho_p] \to \mathbf{R}$ la fonction réciproque de la restriction de la fonction τ_p à l'intervalle $\left[0, \frac{1}{p}\right]$. Démontrer, à l'aide de la formule de réversion de Lagrange, que l'on a, pour tout entier $n \geqslant 1$,

$$\frac{w_p^{(n)}(0)}{n!} = \frac{1}{n} \binom{n(p+1)}{n-1}.$$

3) Soit $\sum_{n \ge 1} a_n$ une série à termes > 0. On suppose qu'il existe un nombre réel $\alpha > 1$ tel que l'on ait

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right).$$

On se propose de démontrer que la série $\sum_{n\geqslant 1}a_n$ est convergente. Pour cela, on choisit un nombre réel β tel que $1<\beta<\alpha$, et on considère la série de terme général $b_n=1/n^\beta$.

- a) Dire pourquoi la série $\sum_{n\geq 1} b_n$ est convergente.
- b) En déduire que la série $\sum_{n\geq 1} a_n$ est convergente.
- 4) On a introduit dans la question (II.1) la série entière $\, {\bf S}_p \,$ définie par

$$S_p(x) = \sum_{n \geqslant 1} \frac{1}{2n} \binom{n(p+1)}{n-1} x^n,$$

et on a calculé son rayon de convergence ρ_p .

Démontrer que cette série entière est convergente sur tout l'intervalle $[-\rho_p,\rho_p]$.

- 5) On se propose de démontrer l'égalité $\,w_p=2\,{\rm S}_p\,$ sur l'intervalle $\,[0,\rho_p]\,.$
- a) Démontrer que les fonctions $x \mapsto 2 S_p(x) x (1 + 2 S_p(x))^{p+1}$ et $x \mapsto w_p(x) x (1 + w_p(x))^{p+1}$ ont mêmes développements limités à tous ordres, au voisinage de 0.
 - b) En déduire que, pour tout $x \in [0, \rho_p]$, on a $2 \operatorname{S}_p(x) x (1 + 2 \operatorname{S}_p(x))^{p+1} = 0$.
 - c) En déduire que l'on a $w_p = 2 \, \mathrm{S}_p \,$ sur l'intervalle $[0, \rho_p]$.
- 6) a) Vérifier que le nombre réel v_p défini dans la question (II.4) appartient à l'intervalle $\left[0,\frac{1}{p}\right]$ pour $p \geqslant 1$.
 - b) Déduire de ce qui précède une autre démonstration, pour $p \ge 1$, de la relation

$$u_p = \frac{1}{2} + \sum_{r=1}^{\infty} \frac{1}{n \, 2^{n(p+1)+1}} \, \binom{n(p+1)}{n-1} \, .$$

de la partie II de l'énoncé.