Familiarization: The Digital Storage Oscilloscope (DSO) and Arbitrary/Function Generator (AFG)*

Before we begin

The chapter 2 of the main manual discusses the features of TDS200 series DSO. But for this lab session, we will be using TDS1002B series DSO (Figure 1¹). Please note the following differences between the two.

Figure 1: TDS1001/2B DSO

^{*}Refer to the Chapter 2 of the manual.

 $^{^1\}mathrm{Image}$ credits: http://ferria.ru/published/publicdata/ABCTOOL/attachments/SC/products_pictures/TDS1001_0oq_enl.jpg

- The cursors discussed in section 2.5 of the manual are moved using the knob ① in Figure 1
- There is an extra button in TDS1002B (②) for *Single* sequence triggering (discussed in section 2.3 of the manual)

Lab work

- 1. Carry out the steps mentioned in section 2.1.1 of the lab manual to test the basic functionality of the probe and DSO.
- 2. Follow the steps in section 2.3 and understand the concept of triggering.
 - Try out auto and normal triggering and state the difference between the two.
- 3. Make the connections as given in Figure 2.3 and follow the instructions in the sections 2.4-2.7.
- 4. Take the pictures of the DSO screen with the input and output waveforms of the circuit for sine, square and ramp inputs².
- 5. Vary the frequency (1kHz, 2kHz, 5kHz and 10kHz) of the input sine wave and note the following.
 - Amplitude of the output waveform.
 - Phase shift³ in the output waveform (compared to the input) 4 .

 $^{^{2}}$ Use 5V, 1kHz waveforms.

³Measure the phase shift in time domain. You may use either zero-crossing points or the peaks of the input and output.

⁴Prepare a table with three columns: Frequency, O/P amplitude, phase shift.