3. Gyűjtemények I.

1. Zsák típus

Valósítsuk meg egy adott halmaz (E) elemeit tartalmazó zsák típusát úgy, hogy nincs felső korlát a zsákba bekerülő elemek számára. A szokásos (üres-e, betesz, kivesz, hányszor van benn egy szám) műveletek mellett szükségünk lesz a leggyakoribb elemet lekérdező műveletre is.

Bag

azon zsákok halmaza,	I := Empty(b)	b : Bag, I : L	// üres-e zsák
amelyek elemei (E)	c:= Multipl(b, e)	b : Bag, e : E, c : \mathbb{N}	// multiplicitás
rendezhetőek	m:= Max(b)	b : Bag, m : E	// leggyakoribb
	b := SetEmpty(b)	b : Bag	// kiüríti a zsákot
	b := Insert(b, e)	b : Bag, e : E	// elemet tesz be
	b:= Remove(b, e)	b : Bag, e : E	// elemet vesz ki

Egy zsák reprezentálására (elemeinek tárolására) több lehetőség is van:

- elemek sorozata (ugyanaz az elem többször is előfordulhat): rendezett vagy rendezetlen
- elem és előfordulása által alkotott párok sorozata: elem szerint rendezett vagy rendezetlen

Kitérő: Elem keresése egy elem és darabszám párokból álló rendezett sorozatban Logaritmikus keresés

```
 A = (seq : Pair^*, e : E, I : \mathbb{L}, ind : \mathbb{N}) \qquad Pair = rec(data: E, count: \mathbb{N})   Ef = (seq = seq_0 \land e = e_0 \land \forall i \in [1 ... | seq|-1] : seq[i].data \leq seq[i+1].data )   Uf = (Ef \land I = \exists i \in [1 ... | seq|] : seq[i].data = e \land   ( I \rightarrow ind \in [1 ... | seq|] \land seq[ind].data = e ) \land   (\neg I \rightarrow \forall i \in [1...ind-1] : seq[i].data < e \land \forall i \in [ind... | seq|] : seq[i].data > e) )
```

I, ind := LogSearch (seq, e)

seq : Pair*
maxind : N
ahol
 Pair = rec(data: E, count: N)
Inv:

 a seq-ben az elemeket tartalmuk (data) szerint rendezetten tároljuk

seq⁷_{data}

 a maxind a nem üres seq sorozat legnagyobb count értékű elemének indexe

 $|seq|>0 \rightarrow$

 $(_, maxind) = MAX seq[i].data$

max, maxind :=

 $MAX_{i=1..|seq|}$ (seq[i].count)

Osztály:

```
I, ind := LogSearch(e)
                                                                Pair
              if I then return seq[ind].count
                                                         + data : E
              else return 0
                                                         + count : nat
              endif
                 Bag
                                             if |seq|>0 then return seq[maxind].data else error endif
- seq : Pair[]
                     return |seq|=0
- maxind: nat
                                             I, ind := LogSearch(e)
+ Empty() : bool {query}
                                             if | then
+ Multipl(e: E): int {query} o
                                               ++seq[ind].count
+ Max() : E {query} o
                                               if seq[ind].count > seq[maxind].count then maxind := ind endif
+ SetEmpty()
                    •-- seq := <> `
+ Insert(e: E)
                                               seq.Insert(ind, (e,1))
+ Remove(e: E)
                                               if |seq|=1 then maxind := 1
- LogSearch(e:E) : (bool, int) {query}
                                               elsif maxind>ind then ++maxind
                                               endif
I, ah, fh := false, 1, |seq|
                                             endif
while not I and ah ≤ fh loop
                                             I, ind := LogSearch(e)
  ind := (ah + fh) / 2
                                             if | then
       seq[ind].data > e then fh := ind-1
                                               if seq[ind].count > 1 then -- seq[ind].count
  elsif seq[ind].data = e then | l := true
                                               elsif seq[ind].count = 1 then seq.Remove(ind)
  elsif seq[ind].data < e then ah := ind+1
endloop
                                               if |seq|>0 then max, maxind := MAX_{i=1..|seq|} (seq[i].count) endif
if not I then ind := ah endif
                                             endif
return (l, ind)
```

2. Diagonális mátrix

Valósítsuk meg a diagonális mátrix típust (az ilyen mátrixoknak csak a főátlójukban lehetnek nullától eltérő elemek)! Ilyenkor elegendő csak a főátlóbeli elemeket tárolni egy sorozatban. Implementáljuk a mátrix i-edik sorának j-edik elemét lekérdező, illetve megváltoztató műveleteket, valamint két mátrix összegét és szorzatát kiszámoló műveleteket!

Diag

// dim(a) ~ egy 'a' mátrix sorainak száma, dim(a)≥ 1

olyan négyzetes mátrixok, amelyek a főátlójukon kívül csak nullákat tárolnak	e := a[i,j]	(a : Diag, i,j : [1 dim(a)], $e:\mathbb{R}$)		
	a[i,j] := e	(a : Diag, i,j : [1 dim(a)], $e:\mathbb{R}$) // i=j		
	c := a + b	(a, b, c : Diag)	// dim(a)=dim(b)=dim(c)	
	c := a · b	(a, b, c : Diag)	// dim(a)=dim(b)=dim(c)	
$\mathbf{x}: \mathbb{R}^n$	if i=j then e := a.x[i] else e := 0.0 endif			
Invariáns: n ≥ 1	if i=j then a.x[i] := e elseif e≠0.0 then error endif			
	if not (a.n = b.n = c.n) then error endif			
	for i=1 a.n loop c.x[i]:=a.x[i]+b.x[i] endloop			
	if not (a.n = b.n = c.n) then error endif			
	for i=1 a.n loop c.x[i]:=a.x[i]·b.x[i] endloop			

A kódolásnál:

- bevezethetünk más konstruktorokat is
- · a Get() és Set() helyett használjuk a C# "indexer"-ét

3. Prímek halmazai. Ábrázoljuk a pozitív prím számokból álló halmazokat a bennük levő számok szorzatával; az üres halmazt az 1-gyel.

PrimSet

prímszámok véges	l := p ∈ h	(h : PrimSet, p : ℙ, l : և)	
halmazai	h := h ∪ p	(h : PrimSet, p : ℙ)	
	// ha p∈h, akkor hatástalan		
	h := h \ p	(h : PrimSet, p : ℙ)	
	// ha p∉h, akkor hatástalan		
	l := h = Ø	(h : Prim Set , I : \mathbb{L})	
	h := Ø	(h : PrimSet)	
	c := h	(h : PrimSet, $c : \mathbb{N}$)	
n : N	I := (n mod p=0)		
ahol az n számnak a	if n mod p ≠ 0 then n := n·p endif		
prímtényezős	if $n \mod p = 0$ then $n := n/p$ endif		
felbontásában a prímek egyszeresen fordulnak elő	l := (n=1)		
	n := 1		
	lásd külön		

