Consider the function $f(x) = x^2$ on the interval [-1, 3]

1. Find the slope of the secant line of the graph of f(x) from x = -1 to x = 3.

2. Find a value of x in [-1,3] where f'(x) equals the value you found in problem 1.

3. Make a sketch of the graph of f(x) and add to it the secant line from problem 1 and the tangent line at the location found in problem 2. What property do the secant line and tangent line have?

4. Repeat the exercise of problems 1-3 with g(x) = 1/x on [1,5].

5. Repeat the exercise of problems 1-3 with sin(x) on $[0, 2\pi]$.

Mean Value Theorem. If f is a continuous function on an interval [a, b] that has a derivative at every point in (a, b), then there is a point c in (a, b) where

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Picture from the board goes here:

6. What is the geometric meaning of the value $\frac{f(b)-f(a)}{b-a}$?

7. Suppose a car is traveling down the road and in 30 minutes it travels 32.7 miles. What does the Mean Value Theorem have to say about this?

8. Draw the graph of f(x) = |x| on the interval [-1,1]. Since f(-1) = f(1), the Mean Value Theorem should say there is a c where f'(c) = 0. Is there such a choice of c? Why doesn't this violate the Mean Value Theorem?

Rolle's Lemma (Baby Mean Value Theorem). If f is a continuous function on an interval [a, b] that has a derivative at every point in (a, b), and if f(a) = f(b), then there is a point c in (a, b) where

$$f'(c)=0.$$

9. Why is this a special case of the Mean Value Theorem?

10. Draw a picture that illustrates Rolle's Lemma.

Proof of Rolle's Lemma:

11. Suppose f is a continuous function on [a,b] and $f'(x) \le 0$ for every x in (a,b). How do f(a) and f(b) compare?

12. Suppose f is a continuous function on [a,b] and f'(x) = 0 for every x in (a,b). How do f(a) and f(b) compare?

13. Suppose on some interval (a, b) that f(x) = C for some constant C. What can you say about f'(x) on (a, b)?

14. Suppose f'(x) = 0 on an interval (a, b). Then there is a constant C such that f(x) = C for all x in (a, b). Why?

15. Suppose f'(x) = g'(x) on an interval (a, b). Then there is a constant C where g(x) = f(x) + C. Why?

Proof of Mean Value Theorem