Automates finis et expressions rationnelles

Feuille de travaux dirigés nº2

- 1. Construisez, en utilisant la méthode de la preuve du théorème de Kleene, des automates non-déterministes pour reconnaître les langages représentés par les expressions rationnelles suivantes vu en cours (pour le même langage) :
- a) $(a+b)^*ab(a+b)^*$
- b) $(b^*a^*)^*ab(a+b)^*$
- 2. Déterminisez les automates obtenus en exercice 1.
- **3.** Soit A l'automate défini sur l'alphabet $\Sigma = \{0, 1\}$:

En utilisant la méthode des $R_{i,j}^k$, trouvez une expression rationnelle décrivant le langage reconnu par A.

4. Soit l'alphabet $\Sigma=\{a,b\}$ et l'automate $A=\langle \Sigma,Q=\{1,2,3,4\},I=\{1\},T=\{1\},\delta\rangle$, où δ est définie par :

δ	$\mid a \mid$	$\mid b \mid$
1	2	3
2	1	4
3	4	1
4	3	2

En utilisant les systèmes d'équations gauche, trouvez une expression rationnelle décrivant L(A).

- **5.** Optionnel Donnez un automate fini déterministe reconnaissant les entiers écrits en base 2 qui sont congrus à 0 modulo 3.
- **6.** Optionnel Donnez un automate fini déterministe reconnaissant l'ensemble des mots qui n'ont pas trois a consécutifs
- 7. Optionnel Prenez les deux premier lettres de votre nom. Construisez un automate fini (détérministe) qui reconnaît les mots sur un alphabet à trois lettres ayant le mot obtenu de votre nom comme suffixe. En utilisant la méthode des $R_{i,j}^k$, trouvez une expression rationnelle décrivant le langage reconnu par votre automate. Il suffit de détailler les calculs pour $r_{i,j}^k$ avec $k \ge 1$.