Лекция. Степенные, показательные, логарифмические функции, их свойства и графики.

Степенная функция. Степенная функция — это функция вида $y = x^{\alpha}$ где α — действительное число. Она определена при всех значениях x, если α — натуральное число; при всех x, не равных нулю, если α — целое отрицательное число, и при всех x > 0, если α — произвольное действительное число.

График функции $y = x^1 = x - это прямая,$

график, где степень – положительное натуральное число представлен ниже

Рисунок 2. График функции $f\left(x
ight)=x^{2n}$

Например,
$$y = x^2$$

Рисунок 3. График функции $f\left(x
ight)=x^{2n-1}$

Hапример,
$$y = x^3$$

При отрицательном показателе

При нечетном показателе

Например,
$$y = \frac{1}{x^3}$$

При четном показателе

Например,
$$y = \frac{1}{x^2}$$

Графики степенных функций с положительными дробными показателями

В зависимости от того, каким числом является показатель степенной функции и определяется ее дальнейшее поведение и ее основные свойства: область определения, монотонность, экстремумы.

Более подробно Вы можете посмотреть в видеоуроке.

Степенная функция

https://www.youtube.com/watch?v=VaaQnS3fTRs&feature=emb_rel_pause

Показательная функция

2. Свойства и графики показательной функции $y = a^x$:

- область определения: множество всех действительных чисел R;
- монотонность: при a > 1 функция $y = a^x$ возрастает, при 0 < a < 1 убывает;
- положительность: значения функции $y = a^x$ положительны;
- область значений: все положительные числа, т. е. интервал $(0, +\infty)$.

1. Монотонность показательной функции. Возьмем основание a > 1. Докажем, что $x_1 < x_2 \Rightarrow a^{x_1} < a^{x_2}$. Сначала заметим, что $a^x > 1$ при $a^x > 0$ (подумайте, почему).

Далее выполним преобразование: $a^{x_2} - a^{x_1} = a^{x_1}(a^{x_2-x_1}-1)$. Оба множителя в этом произведении положительны, поэтому $a^{x_2} > a^{x_1}$.

Заменяя a на $\frac{1}{a}$, получим доказательство того, что $y=a^x$ при 0 < a < 1 убывает на всей числовой оси.

Касательная к графику функции $y = e^x$ в точке (0; 1) наклонена к оси абсцисс под углом 45° . Это свойство определяет число e.

Видеоурок показательная функция

https://www.youtube.com/watch?v=dUWirzg6cro

Логарифмическая функция

3. Свойства и график логарифмической функции $y = \log_a x$:

- область определения: x > 0;
- промежутки постоянного знака:

```
— при a > 1
y = 0 при x = 1;
y < 0 при 0 < x < 1;</li>
y > 0 при x > 1;
— при 0 < a < 1</li>
y < 0 при x > 1;
y > 0 при 0 < x < 1;</li>
```

- монотонность: функция $y = \log_a x$ при a > 1 возрастает на всей области определения, при 0 < a < 1 убывает;
- область значений: множество всех действительных чисел **R**.

2. Монотонность логарифмической функции. Пусть a > 1.

Докажем, что $0 < x_1 < x_2 \Rightarrow \log_a x_1 < \log_a x_2$. Сначала заметим, что $\log_a x > 0$ при x > 1 (подумайте, почему).

Выполним преобразование: $\log_a x_2 - \log_a x_1 = \log_a \frac{x_2}{x_1} > 0$, так как $0 < x_1 < x_2 \Rightarrow \frac{x_2}{x_1} > 1$.

Заменим a на $\frac{1}{a}$, тогда $0 < \frac{1}{a} < 1$; $\log_{\frac{1}{a}} x_2 - \log_{\frac{1}{a}} x_1 = \log_{\frac{1}{a}} \frac{x_2}{x_1} = \log_{a} \frac{x_1}{x_2} < 0$, так как $\frac{x_1}{x_2} < 1$. Таким образом мы доказали, что функция $y = \log_a x$ при 0 < a < 1 убывает на всей области определения.

Видеоурок логарифмическая функция

https://www.youtube.com/watch?v=FnEEydWzeoQ

3. Симметрия графиков функций $y = a^x$ и $y = \log_a x$. Графики этих функций симметричны друг другу относительно прямой y = x.

Возьмем точку P(c; d) на графике функции $y = a^x$. По условию $d = a^c$. Тогда $c = \log_a d$ и точка Q(d; c) лежит на графике функции $y = \log_a x$. Точки P и Q симметричны друг другу относительно прямой y = x.

Решение заданий к главе «Графики и функции» на образовательной платформе «Академия-Медиа»

Схема исследования функций, задание 9, 10.

Глава 7 «Графики и функции», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М. : ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://spravochnick.ru/
- 3. https://23.edu-reg.ru/