Vibration Suppression Design for Virtual Compliance Control in Bilateral Teleoperation

Edoardo Ghini, Gianluca Cerilli, Giuseppe L'Erario

La Sapienza University

Table of contents

- 1. Introduction
- 2. System Modeling
- 3. System Analysis
- 4. Vibration Suppression Design
- 5. Results
- 6. Conclusion

Introduction

Problem statement

Application of one degree of freedom inertia-spring-damper system for **vibration suppression** in a bilateral control system.

System compliance for different input frequency controlled by the value of virtual elements (based on the cut-off frequencies and stiffness of the virtual spring).

Motivation

- 1. **Stability** of the closed loop system irrespective to the behaviour of the human and the environment
- 2. **Transparency** of the teleoperation task: same forces and displacements on the two sides of the system

System Modeling

Inertia-Spring-Damper System

Position error based torque reflection to the operator at the master side.

• Real inertias: J_m, J_s

 \circ Virtual inertias: J_{mv}, J_{sv}

 \circ Virtual damper and spring: B_{ν}, K_{ν}

4

Bilateral Control Scheme

Dynamics equations in frequency domain:

$$(J_m + J_{mv})s^2\theta_m + (B_v s + K_v)(\theta_m - \theta_s) = \tau_m$$
$$(J_s + J_{sv})s^2\theta_s + (B_v s + K_v)(\theta_s - \theta_m) = -\tau_s$$

5

System Analysis

Bilateral Controller

External torques as action and reaction torque of human and environment impedance, Z_h and Z_{env} :

$$J_m s^2 \theta_m = \tau_m - (B_v s + K_v)(\theta_m - \theta_s) - J_{mv} s^2 \theta_m$$

$$J_s s^2 \theta_s = -\tau_s - (B_v s + K_v)(\theta_s - \theta_m) - J_{sv} s^2 \theta_s$$

System represented by 2×2 hybrid matrix as:

$$\begin{bmatrix} \tau_m \\ \theta_s \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} \theta_m \\ -\tau_s \end{bmatrix}$$

6

Bilateral Controller

Hybrid parameters H_{ij} :

$$H_{11} = \frac{1}{Z_s} [Z_m Z_s - (B_v s + K_v)^2]$$

$$H_{12} = -\frac{1}{Z_s} [B_v s + K_v]$$

$$H_{21} = \frac{1}{Z_s} [B_v s + K_v]$$

$$H_{22} = \frac{1}{Z_s}$$

where:

$$Z_m = (J_m + J_{mv})s^2 + B_v s + K_v$$

 $Z_s = (J_s + J_{sv})s^2 + B_v s + K_v$

Bilateral Controller

Condition of transparency: Trasmitted impedance Z_t transferred to the operator should be equal to environment impedance Z_{env} :

$$rac{ au_m}{ heta_m} = Z_t = Z_{env} = rac{ au_s}{ heta_s}$$

Relationship between Z_t and Z_{env} :

$$Z_t = \left(rac{-H_{12}H_{21}}{1 + H_{22}Z_{env}}
ight) Z_{env} + H_{11}$$

Hybrid parameters for the perfect transparency condition, derived as:

$$\begin{bmatrix} \tau_m \\ \theta_s \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \theta_m \\ -\tau_s \end{bmatrix}$$

8

Vibration Suppression Design

Parameters Selection and Design

Assume system disturbed by environment vibration noise.

Inspect H_{22} for the relationship of position response θ^{res} and external torque input τ_{ext} :

$$\frac{\theta_s}{\tau_{ext}} = \frac{1}{(J_s + J_{sv})s^2 + B_v s + K_v}$$

Virtual parameters J_{ν} , B_{ν} and K_{ν} determined from the second-order characteristic equation:

$$s^2 + (g_1 + g_2)s + (g_1 * g_2) = 0$$

established from two poles g_1 and g_2 , representing the desired cut-off frequencies of the system for disturbance suppression.

Parameters Selection and Design

Spring stiffness K_{ν} influences the behaviour of the system.

It regulates the *compliance* of this, achieving **rigid coupling** (high spring stiffness) or **spring coupling** (low spring stiffness).

Virtual parameters B_{ν} and J_{ν} computed according to K_{ν} :

$$B_{\nu} = \left(\frac{g_1 + g_2}{g_1 * g_2}\right) K_{\nu}$$

and

$$J_{sv} = \left(\frac{1}{g_1 * g_2}\right) K_v - J_s$$

Vibration Suppression Performance Analysis

Results

Simulation Setup

Simulation Scenario and Results

Simulation Scenario and Results

VIDEO

Conclusion

Summary

Thank you for your attention!