AED2 - Aula 15 Ordenação por contagem (counting sort)

Ordenação por contagem

Este método é especializado na ordenação de

- vetores de inteiros pequenos
- e não é baseado na comparação entre elementos do vetor,
 - por isso pode vencer o limitante inferior Omega (n lg n) visto na última aula.

Para desenvolvermos a ideia do algoritmo

- vamos supor que no vetor v de tamanho n
 - o só existem inteiros entre 0 e R 1.

Para simplificar,

• primeiro vamos supor que não existem elementos repetidos.

Neste caso, podemos alocar um vetor auxiliar f

- inicializar f com 0
- percorrer v com um índice i
 - o marcando f[v[i]] = 1
- limpar o vetor v
- percorrer f da esquerda para a direita com um índice r
 - o colocando r na próxima posição livre de v
 - se v[r] = 1

Exemplo:


```
// versao do counting sort que nao trata repeticoes
void countingSortErrado1(int v[], int n, int R)
{
    int *f, r, i;
    f = malloc(R * sizeof(int));
    for (r = 0; r < R; r++)
        f[r] = 0;
    for (i = 0; i < n; i++)
        f[v[i]] = 1;
    i = 0;
    for (r = 0; r < R; r++)
        if (f[r] == 1)
            v[i++] = r;
    free(f);
}</pre>
```

Agora vamos considerar que podem existir elementos repetidos.

• Para tanto, vamos usar o conceito de frequência de um elemento.

Nesta nova abordagem, vamos alocar um vetor auxiliar f

- inicializar f com 0
- percorrer v com um índice i
 - o fazendo f[v[i]] += 1
 - o Assim, f[r] possui o número de ocorrências de r
- limpar o vetor v
- percorrer f da esquerda para a direita com um índice r
 - o colocando v[r] cópias de r nas próximas posições livres de v

Exemplo:


```
void countingSortErrado2(int v[], int n, int R)
{
   int *f = malloc(R * sizeof(int));
   for (int r = 0; r < R; ++r)
       f[r] = 0;
   for (int i = 0; i < n; ++i)
       f[v[i]] += 1;
   int i = 0;
   for (int r = 0; r < R; ++r)
       for (int k = 0; k < f[r]; ++k)
       v[i++] = r;
   free(f);
}</pre>
```

Apesar de aparentar estar correto

- este último algoritmo
 - o assim como o primeiro
- apresenta um erro fundamental
 - ele não está ordenando os elementos originais,
 - mas apenas criando cópias das chaves destes
- Esse é um problema grave quando
 - o as chaves sendo ordenadas
 - são parte de elementos que possuem outras informações
 - registros ou ponteiros, por exemplo
 - ou ainda quando são partes de uma chave maior
 - como veremos na aplicação do counting sort
 - o para o LSD radix sort
- Para resolver esse problema
 - o u seja, para copiar os elementos originais e manter estabilidade
 - é preciso saber a quantidade de elementos
 - que aparece antes de cada chave.
- Para isso, vamos calcular a frequência dos predecessores
 - usando a frequência de cada chave.
 - Sendo f[r] a o número de ocorrência da chave r
 - a frequência dos predecessores de r é

•
$$fp[r] = f[0] + ... + f[r - 1]$$

- Podemos usar uma definição recursiva
 - fp[r] = fp[r-1] + f[r-1], se r > 0
 - = fp[0] = 0
- Esta definição deriva da seguinte observação
 - fp[r] = f[0] + ... + f[r 2] + f[r 1]
 - \blacksquare fp[r 1] = f[0] + ... + f[r 2]
 - Portanto,
 - fp[r] = (f[0] + ... + f[r 2]) + f[r 1] = fp[r 1] + f[r 1]

- Também precisaremos de um vetor auxiliar
 - o aux[0 .. n 1]
 - o para podermos copiar um elemento de uma posição em v
 - para uma posição diferente em aux
 - sem corromper elementos ainda não copiados de v.

Exemplo:


```
// Rearranja v[0..n-1] em ordem crescente
// supondo que os elementos do vetor
// pertencem ao universo 0..R-1.
void countingSort(int v[], int n, int R)
{
  int r, i;
  int *f, *fp, *aux;
  f = malloc(R * sizeof(int));
  fp = malloc(R * sizeof(int));
  aux = malloc(n * sizeof(int));
```

```
for (r = 0; r < R; ++r)
      f[r] = 0;
  for (int i = 0; i < n; ++i)
      f[v[i]] += 1;
  // agora f[r] é a frequência de r
  fp[0] = 0;
  for (r = 1; r < R; ++r)
      fp[r] = f[r - 1] + fp[r - 1];
  // fp[r] é a freq dos predecessores de r
  // logo, a carreira de elementos iguais a r
  // deve começar no índice fp[r]
  for (i = 0; i < n; ++i)
      r = v[i];
      aux[fp[r]] = v[i];
      fp[r]++; // *
  }
  // aux[0..n-1] está em ordem crescente
  for (i = 0; i < n; ++i)
      v[i] = aux[i];
  free(f);
  free(fp);
  free(aux);
}
```

Esta última versão do counting sort está correta

- no entanto, ela desperdiça memória por alocar espaço para f e para fp.
 - Observe que só usamos f para calcular os valores de fp.
- Assim, uma melhoria envolve alocar um único vetor fp,
 - o usá-lo inicialmente para armazenar a frequência das chaves,
 - o e reaproveitá-lo para armazenar a frequência dos predecessores.
- Isso é possível,
 - mas exigirá algumas mudanças sutis.
 - o Em particular, vamos armazenar a frequência da chave r
 - em fp[r + 1]
 - Com isso, a princípio
 - a posição fp[r] terá a frequência de r 1
 - Lembrando que
 - \blacksquare fp[r] = fp[r 1] + f[r 1], se r > 0
 - Para que fp[r] passe a armazenar a frequência dos predecessores
 - basta somar a ele fp[r 1]
 - já que a frequência de r 1 (f[r 1]) já está lá.

Exemplo:


```
// Rearranja v[0..n-1] em ordem crescente
// supondo que os elementos do vetor
// pertencem ao universo 0..R-1.
void countingSort2(int v[], int n, int R)
{
   int r;
   int *fp, *aux;
   fp = malloc((R + 1) * sizeof(int));
   aux = malloc(n * sizeof(int));

   for (r = 0; r <= R; ++r)
        fp[r] = 0;</pre>
```

```
for (int i = 0; i < n; ++i)
      r = v[i];
      fp[r + 1] += 1;
   }
  // agora fp[r] é a frequência de r-1
  for (r = 1; r \le R; ++r)
      fp[r] += fp[r - 1];
  // agora fp[r] é a freq dos predecessores de r
  // logo, a carreira de elementos iguais a r
  // deve começar no indice fp[r]
  for (int i = 0; i < n; ++i)
      r = v[i];
      aux[fp[r]] = v[i];
      fp[r]++; // *
  }
  // aux[0..n-1] está em ordem crescente
  for (int i = 0; i < n; ++i)
      v[i] = aux[i];
  free(fp);
  free(aux);
}
```

Curiosidade:

- Note que, fp foi alocado com uma posição a mais,
 - o mas o único motivo para tanto é evitar que, no segundo laço
 - seja acessada uma posição de memória inválida,
 - **quando** r = v[i] = R 1 e fp[r + 1] recebe um incremento.

Eficiência de tempo:

- countingsort leva tempo da ordem de n + R.
 - o se R é pequeno (da ordem de n no pior caso),
 - isso é melhor que a eficiência O(n log n) de algoritmos como
 - mergeSort, quickSort e heapSort.

Estabilidade:

- countingsort é estável.
- Essa propriedade é a base da aplicação do countingsort para o LSD radix.