BIBA: Business Intelligence and Big Data

2018-10-03

Jens Ulrik Hansen

Correlation and Causation

Today's program

- Recap from last time
 - Feedback on the synopsis hand-in
- Correlation and causation
- Modeling
- Linear regression
- Marketing Mix Modeling (application of linear regression)

Recap from last time

- Plotting in R (ggplot2 package), the pipe operator "%>%" in R
- Exploratory Data Analysis
 - Understand your data
 - The format and data type of you variables
 - The mean of your variables
 - Missing values and outliers
 - Summarizing your data
 - Basic descriptive statistics: Counts, range, mean, median, variance, standard deviation, ...
 - Visualizing the distributions of your variables
 - Histograms, boxplots, bar plots
 - Visualizing and quantifying the pairwise relationship between your variables
 - Boxplots, mosaic plots, scatterplots
 - Correlation coefficient

Feedback on the synopsis hand-in

- In general, good hand-ins
- The size of this hand-in varies a lot depending on
 - The complexity of the chosen data
 - The effort put into it
- I see a lot of different plots and different ways of creating the same plots
 - This is all good, it might just be because you have googled your way to a plot
- Please add a little bit of descriptive text
- The purpose of this hand-in was to get your hands dirty working with R and for you to get to know your data – for your own sake!

Correlation and causation

Correlation

- Correlation: When two variables varies together, i.e.:
 - There is a tendency that the second goes up when the first one goes up, and there is a tendency that the second goes down when the first one goes down (positive correlation)
 - There is a tendency that the second goes down when the first one goes up, and there is a tendency that the second goes up when the first one goes down (negative correlation)
 - Examples of correlation: height and weight, engagement and sales:

How to detect correlation

- Visualizing correlation?
 - Scatter plots/x-y-plots
- Quantifying correlation?
 - (Pearson's) Correlation coefficient
 - A number between -1 and 1. 1 is perfect positive correlation, -1 is perfect negative correlation, and 0 is no correlation.
 - Only quantifies linear correlation

SCATTER PLOT EXAMPLES

Types of correlations (in scatter plots)

• See: https://www.youtube.com/watch?v=PE BpXTyKCE

Direction

- Positive
- negative

Shape

- Linear
- non-linear

Strength

- Weak
- Moderate
- strong
- Outliers

Correlation and causation

- Just because two variables correlates, it does not mean that there is a causal relationship between them
- Spurious Correlations
 - (http://www.tylervigen.c om/spuriouscorrelations)
- There can be multiple explanations...

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

Correlation and causation

Hvis A korrelerer med B, så kan det være fordi...

... en statistisk tilfældighed

- If A correlates with B it can be because of...
- Examples:
 - Grades in high-school and in college
 - Rain and sun
 - Height and weight
 - Engaged users and Purchased completed

Why causation?

- If X causes Y
 - We may be able to predict Y based on X
 - If the weather causes our sales of ice cream, we can predict our ice cream sales if we know the weather forecast (we are not in control of the weather)
 - We can "control" Y by manipulating X
 - If our unhappy costumers are caused by the long waiting time in our customer service, we can lover the waiting time in our customer service and thereby decrease happiness
 - If marketing spend causes sales numbers, we can increase our sales by increasing our marketing spend
- If X and Y just correlates
 - We might still be able to predict Y based on X,
 - but we might not be able to control Y by manipulating X

Correlation and predictions

- Can we find the a formula for the line representing correlation?
 - Yes, that's is exactly what linear regression is about!
- Can this approach be generalized?
 - Yes, we can talk about predictive modeling in general, or statistical modeling or machine learning modeling
 - We can do all sorts of predictive modeling beyond linear regression of one variable (Y) on one other variable (X)

Correlation exercises

• Please do the correlation exercises in the notebook "Correlation exercises.ipynb" in the BIBA-2018 Library on Azure notebooks.

Modeling

Predictive modeling

- A model in general
 - A function that takes a variable value as input (a value of X) and produces a
 value of another variable (Y): f(X) = Y
 - If we have such a function, we can always predict Y from any value of Y (this is the definition of a function!)
 - There can be more than one input variable: f(X_1, X_2, ..., X_n) = Y
- Business examples of predictions
 - Predicting house prices
 - Predicting sales or new costumers based on media etc.
 - Predicting churn
 - Predicting retention of employees
 - Predicting credit score

Modeling in general

- Modeling is about building models (functions f such that f(X)=Y)
- However modeling in a very broad sense is:
 - As soon as you try to describe a natural phenomenon with mathematics
 - As soon as you try to conceptualize a "natural phenomenon" in a structured way
- Modeling can serve multiple purposes
 - Provide insight into particular phenomena or data
 - Discover patters in data
 - Predict future effects and event
 - . . . etc.
- Models partition data into patterns and residuals

Three steps to modeling

- 1. Define *a family of models*. A class of models you want to consider for your data.
 - Example, $y = a + b * x_1 + c * x_2$ (a, b, and c are unknown constants/parameters)
 - Each specific combination of values for a, b, and c give rise to one model
- 2. Fit a model to data. Find the model from the family that is closest to your data
 - Example: find specific values for a, b, and c that make you model ($y = a * x_1 + b * x_2 + c$) "closest" to your data
 - What does "closest" mean? (one option is "root-mean-square-error")

3. Evaluate your model

- Just because you have found the model closest to your data coming from your family of models, does not mean that your model is true or even good.
- You could have chosen the wrong family of models to start with (y might not be a linear function of x_1 and x_2)
- Your data could be so noisy that it is hard to judge whether a model is close to it
- Thus, it is important to proper evaluate your model
 - However: "all models are wrong, but some are useful" (George Box)

Linear regression

Linear regression

- Linear regression is the easiest regression model to use and understand
- Linear regression (and its extensions) is good enough for many business intelligence problems

- Linear regression models and predictions based on them can be explained and easily communicated
- Linear regression provides a baseline to which more advanced and sophisticated prediction modeling techniques can be compared

Linear regression

• See the notebook: "Linear Regression.ipynb"

Marketing Mix Modelling

Marketing Mix Modelling

See the notebook: "Marketing Mix Modeling.ipynb"

Exercise

 Try to fit a linear regression to some of you data for your business case