and then observing that the canonical function of Y writes as $k(x) = \lambda e^{Ax-B|x|}$, implying $\tau_+^{-A} = \tau_-^A = \lambda \delta_B$. The Dirac integration to which (5.25) reduces, produces

$$k_{\rho}(x) = \lambda e^{(A^2 - B^2)x/2} = \lambda e^{-\theta + \theta - x/2}.$$
 (5.27)

Therefore, the bilateral gamma process can be represented in law as $Y_t = W_{T_t} + (\theta_- - \theta_+)t/2$ where $\mathcal{L}(T_1) \sim \Gamma(\lambda, \theta_+ \theta_-/2)$. This has been known and used at least since Madan et al. (1998).

Example 10. Subordinated representation of CTS_{α} processes. Madan and Yor (2008) through a series of propositions covering a substantial part of the article, explain how to represent a $CTS_{\alpha}(\mathbb{R})$ process as a subordinated Brownian motion with drift. Based on the discussion so far, the main Proposition 2 therein trivialize. First of all notice that the assumptions in Theorem 6 are met also in the case of $CTS_{\alpha}(\mathbb{R})$ processes with symmetric spherical part. Namely, assuming $\lambda_{+} = \lambda_{-}$ and letting again $A = (\theta_{-} - \theta_{+})/2$, $B = (\theta_{-} + \theta_{-})/2$, leads to $k(x) = x^{-\alpha}e^{Ax-B|x|}$, so that using the Thorin measure found in Subsection 4.3 we deduce the required density relationship $\tau_{+}^{-A}(y) = \tau_{-}^{A}(y) = \lambda(y - B)^{\alpha-1}(\Gamma(\alpha))^{-1}\mathbb{1}_{\{y \geq B\}}$. It then follows from Corollary 6, and with the substitution $w = (s - B)\sqrt{x}$, that

$$k_{\rho}(x) = \lambda \frac{e^{xA^{2}/2}}{\Gamma(\alpha)} \int_{B}^{\infty} e^{-\frac{s^{2}x}{2}} (s - B)^{\alpha - 1} ds = \lambda \frac{e^{(A^{2} - B^{2})x/2}}{\Gamma(\alpha)x^{\alpha/2}} \int_{0}^{\infty} e^{-\frac{w^{2}}{2} - wB\sqrt{x}} w^{\alpha - 1} dw$$
$$= \lambda \frac{e^{-\theta + \theta - x/2}}{x^{\alpha/2}} H_{-\alpha} \left(\frac{\theta_{+} + \theta_{-}}{2} \sqrt{x} \right)$$
(5.28)

where H_a , a < 0, is the Hermite function, given by

$$H_a(z) = \frac{1}{\Gamma(-a)} \int_0^\infty e^{-x^2/2 - xz} x^{-a-1} dx, \qquad z > 0.$$
 (5.29)

The corresponding Lévy density coincides with that determined in Madan and Yor (2008), Proposition 2.

Example 11. Subordinated representation of generalized-z processes. Let $\mu \in \mathrm{GZD}_G(\mathbb{R})$ with Lévy measure of the form (4.20), i.e. $c(\pm 1) = c_{\pm} > 0$, $\sigma(\pm) = \sigma > 0$ and $\lambda(du) = \lambda(\delta_1(du) + \delta_{-1}(du))$, $\lambda > 0$. We can rewrite again $k(x) = e^{Ax/\sigma - B|x|/\sigma}/(1 - e^{-|x|/\sigma})$, $A = (c_- - c_+)/2$, $B = (c_- + c_+)/2$ so we are under the assumption of Theorem 6. Based on (4.22) and (5.25), integrating term by term the series results in

$$k_{\rho}(x) = \lambda e^{\frac{A^{2}x}{2\sigma^{2}}} \sum_{k=0}^{\infty} \exp\left(-x \frac{(k+B)^{2}}{2\sigma^{2}}\right) = \lambda \sum_{k=0}^{\infty} \exp\left(-x \frac{k^{2}+2Bk+B^{2}-A^{2}}{2\sigma^{2}}\right)$$
$$= \lambda \sum_{k=0}^{\infty} \exp\left(-x \frac{(k+c_{+})(k+c_{-})}{2\sigma^{2}}\right). \tag{5.30}$$

The subordinator is then of the form of an infinite GGC convolution of gamma processes $G^k = (G_t^k)_{t\geq 0}, \ k\geq 0, \ \mathcal{L}(G_1^k) \sim \Gamma\left(\lambda, \frac{(k+c_+)(k+c_-)}{2\sigma^2}\right)$ whose limit in law is not otherwise known.