Assignment 1

Yang David Zhou, ID 260517397

Tuesday 20th January, 2015

Problem 1. Proofs.

Solution. (a)

Proof. The Pythagorean theorem states that in a right triangle where c is the length of the hypotenuse and a, b are the lengths of the other two sides, the formula $c^2 = a^2 + b^2$ is true.

In general, any non-right triangle can be divided into two right angled triangles by dropping a vertical from a vertex that is perpendicular to the opposite edge, like in the diagram below.

Define b = b' + b'' (1).

Which can be rearranged, b'' = (b - b') (2).

By trigonometry we have $b' = a \cos \theta$ (3).

By the Pythagorean we have $a^2=d^2+(b^\prime)^2$ (4) and $c^2=d^2+(b^{\prime\prime})^2$ (5).

Rearrange (4) and (5) for d^2 then set them equal,

$$c^{2} - (b'')^{2} = a^{2} - (b')^{2}$$

$$c^{2} = a^{2} - (b')^{2} + (b'')^{2}$$

$$= a^{2} - (b')^{2} + (b - b')^{2} \quad \text{By (2)}$$

$$= a^{2} - (a\cos\theta)^{2} + (b - a\cos\theta)^{2} \quad \text{By (3)}$$

$$= a^{2} - a^{2}\cos^{2}\theta + b^{2} - 2ab\cos\theta + a^{2}\cos^{2}\theta$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\theta$$

And we are done.

(b)

Proof. Geometrically, v and w form a plane and u = v - w is a vector on that plane. Together, u, v, w form a triangle. So we apply the Law of Cosines.

Define θ to be the angle opposite u = v - w. By definition of the angle between two vectors, $\cos \theta = \frac{v \cdot w}{\|v\| \|v\|}$.

$$\begin{split} \|v-w\|^2 &= \|v\|^2 + \|w\|^2 - 2\|v\|\|w\| \cos\theta \\ \|v-w\|^2 &= \|v\|^2 + \|w\|^2 - 2\|v\|\|w\| \left(\frac{v\cdot w}{\|v\|\|w\|}\right) \quad \text{By definition} \\ \|v-w\|^2 &= \|v\|^2 + \|w\|^2 - 2v\cdot w \\ &2v\cdot w = \|v\|^2 + \|w\|^2 - \|v-w\|^2 \\ &2v\cdot w = \|v\|^2 + \|w\|^2 - (\|v\|^2 + \|w\|^2 - 2\|v\|\|w\| \cos\theta) \\ &2v\cdot w = 2\|v\|\|w\| \cos\theta \\ &v\cdot w = \|v\|\|w\| \cos\theta \end{split}$$

And we are done.

Problem 2. Complex numbers.

Solution. (a)

$$\frac{1}{2}(z + \tilde{z}) = \frac{1}{2}((a + bi) + (a - bi))$$

$$= \frac{1}{2}(a + a + bi - bi)$$

$$= \frac{1}{2}(2a)$$

$$= a$$

$$\frac{1}{2i}(z - \tilde{z}) = \frac{1}{2i}((a + bi) - (a - bi))$$

$$= \frac{1}{2i}(a + bi - a + bi)$$

$$= \frac{1}{2i}(2bi)$$

$$= b$$

(c)

Case
$$z = 0$$
:

Case
$$w = 0$$
:

$$zw = 0$$

$$z = \frac{0}{(a+bi)}$$

$$= 0$$

$$zw = 0$$

$$w = \frac{0}{(a+bi)}$$

$$= 0$$

Problem 3. Matrix multiplication.

Solution. In order for the product of two matrices M=AB to be valid, the number of columns in A must equal the number of rows in B. Otherwise the product is not well defined.

Only ABC, BCA, CAB will yield valid products.

$$ABC = \begin{bmatrix} 1 & 0 & -i \\ -1 & i & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \\ 1 & 0 \end{bmatrix} C = \begin{bmatrix} (i+0-i) & (0+0+0) \\ (-i+0+0) & (0+1+0) \\ (0+0+1) & (0+0+0) \end{bmatrix} C$$

$$= \begin{bmatrix} 0 & 0 \\ -i & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 \\ i & 2i & i \end{bmatrix} = \begin{bmatrix} (0+0) & (0+0) & (0+0) \\ (-i+i) & (i+2i) & (2i+i) \\ (-1+0) & (1+0) & (2+0) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3i & 3i \\ -1 & 1 & 2 \end{bmatrix}$$

$$BCA = \begin{bmatrix} i & 0 \\ 0 & -i \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 \\ i & 2i & i \end{bmatrix} A = \begin{bmatrix} (-i+0) & (i+0) & (2i+0) \\ (0+1) & (0+2) & (0+1) \\ (-1+0) & (1+0) & (2+0) \end{bmatrix} A$$

$$= \begin{bmatrix} -i & i & 2i \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -i \\ -1 & i & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} (-i-i+0) & (0-1+0) & (-1+0+2i) \\ (1-2+0) & (0+2i+0) & (-i+0+1) \\ (-1-1+0) & (0+i+0) & (i+0+2) \end{bmatrix}$$

$$= \begin{bmatrix} -2i & -1 & (-1+2i) \\ -1 & 2i & (1-i) \\ -2 & i & (2+i) \end{bmatrix}$$

$$CAB = \begin{bmatrix} -1 & 1 & 2 \\ i & 2i & i \end{bmatrix} \begin{bmatrix} 1 & 0 & -i \\ -1 & i & 0 \\ 0 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} (-1-1+0) & (0+i+0) & (i+0+2) \\ (i-2i+0) & (0-2+0) & (1+0+i) \end{bmatrix} B$$

$$= \begin{bmatrix} -2 & i & (2+i) \\ -i & -2 & (1+i) \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} (-2i+0+(2+i)) & (0+1+0) \\ (1+0+(1+i)) & (0+2i+0) \end{bmatrix}$$

$$= \begin{bmatrix} (2-i) & 1 \\ (2+i) & 2i \end{bmatrix}$$

Problem 4. Row-reduced echelon form.

Solution. My work for this is attached. Shown below is only the final result.

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & 3 & 0 & 1 \\ 1 & 1 & -3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -9 & 5 \\ 0 & 1 & 6 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 & 1 & 3 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 5. Inverting matrices.

Solution. My work for this is attached. Shown below is only the final result.

$$A^{-1} = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & -4 & -3 & 4 \\ 0 & 1 & 1 & -1 \\ 0 & -2 & -3 & 3 \end{bmatrix}$$

Problem 6. Linear combinations in a vector space.

Solution. $M_{2,2}$ is clearly a vector space and a subspace of a vector space is also a vector space. This subspace must then be closed under addition and multiplication so a linear combination of any two vectors in the space is also in this space.

 I^2 can be shown to be a linear combination as follows,

$$I^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = -2 \begin{bmatrix} 2 & 10 \\ 10 & 12 \end{bmatrix} + 5 \begin{bmatrix} 1 & 4 \\ 4 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} -4 & -20 \\ -20 & -24 \end{bmatrix} + \begin{bmatrix} 5 & 20 \\ 20 & 25 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

I arrived at this solution by guessing and checking multiples of 10 and 4 that add up to 0.

Problem 7. Validity of subspace.

Solution. W is clearly a subset of \mathbb{R}^3 .

The zero vector (0,0,0) is in W. So, a=0,b=0,c=0.

a)
$$0 = 3(0)$$

b)
$$0 \le 0 \le 0$$

c)
$$(0)(0) = 0$$

d)
$$0 = (0)^2$$

 $u, v \in W \quad a, b \in \mathbb{R}$

$$u = (u_1, u_2, u_3)$$
 with

$$v = (v_1, v_2, v_3)$$
 with

a)
$$u_1 = 3u_2$$

a)
$$v_1 = 3v_2$$

b)
$$u_1 \le u_2 \le u_3$$

b)
$$v_1 \le v_2 \le v_3$$

c)
$$u_1 u_2 = 0$$

c)
$$v_1v_2 = 0$$

d)
$$u_2 = u_1^2$$

d)
$$v_2 = v_1^2$$

$$z = (z_1, z_2, z_3) = au + bv$$

= $(au_1 + bv_1, au_2 + bv_2, au_3 + bv_3)$

(a) is a valid vector space constraint. The argument for (a) is that both $u_1 = 3u_2$ and $v_1 = 3v_2$. So for any $u, v, z \in W$,

$$z_1 = au_1 + bv_1$$

$$= a(3u_2) + b(3v_2)$$

$$= 3(au_2 + bv_2)$$

$$= 3z_2$$

And so (a) holds for addition and scalar multiplication.

(b) is not a valid vector space constraint.

The argument for (b) is that if $u_1 \leq u_2$ then $au_1 \leq au_2$.

Similarly, $bv_1 \leq bv_2$.

But if a < 0 and $b \ge 0$ then $|a|u_1 \ge |a|u_2$.

Then there is no guarantee that $au_1 + bv_2 \le au_2 + bv_2$ is true.

The case where b < 0 and $a \ge 0$ is true by symmetry.

A simple counter example would be (0,0,0) + (-1)(0,0,1) = (0,0,-1). Clearly $(0,0,-1) \notin W$.

And so W is not closed under addition and scalar multiplication. Therefore W is not a vector space.

Problem 8. The union of two subspaces.

Solution. Proof. Take the contrapositive to show that if neither $U \subseteq W$ nor $W \subseteq U$ then $U \cup W$ is not a subspace.

Choose two vectors u, w such that $u \in U, u \notin W$ and $w \in W, w \notin U$. So, $u, w \in U \cup W$. Assume $U \cup W$ is a subspace. So, $z = au + bw, z \in U \cup W$ which means $z \in U$ or $z \in W$.

Case $z \in U$:

U is a vector space so if $u \in U$, then $(-a)u \in U$. So, z + (-a)u should also be in U.

$$z + (-a)u = au + bw - au$$
$$= bw$$

But $w \notin U$ so $bw \notin U$. Contradiction.

The case where $z \in W$ is true by symmetry.