Program: Master of Computer Applications (MCA)					Semester: I		
Course: Operating Systems					Code: 703CO1C002		
Teaching Scheme					Evaluation Scheme		
Lecture	Practical	Tutorial		Internal			
(Hours	(Hours	(Hours	Credit	Continuous		Term End	
per	per	per		Assessment (ICA)		Examinations	
week)	week)	week)		(marks -50)		(TEE) (marks -100)	
2	2	0	3	Marks Sc	aled to 50	Marks Scaled to 50	

Prerequisite: Programming, Computer Organization and Architecture, Data Structures and Algorithms

Course Objective

The objective of this course is to provide an introduction to functions of the computer operating system.

Course Outcomes

After completion of the course, students will be able to -

- 1. Describe the fundamental concepts of Operating system
- 2. Apply process management strategies
- 3. Simulate memory management, I/O management and file management strategies.

Detailed Syllabus

Unit	Description	Duration
1	Operating System Overview: Operating system objectives and	02
	functions, evolution of operating system, basic concepts:	
	Processes, Files, System Calls, Layered structure v/s Monolithic	
	structure of OS	
2	Process and Process Scheduling: Process Description, Process	06
	Control Block (PCB), Threads, Thread management, comparison	
	between Processes and threads, Process Scheduling: Types, study	
	and comparison of various scheduling algorithms	
3	Process Concurrency: Principles of Concurrency, Mutual	06
	Exclusion-Hardware Approaches, Semaphores, Monitors,	
	Message Passing, Classical IPC Problems: Reader's / Writer's	
	Problem, Producer / Consumer Problem	
4	Deadlock: Principles of Deadlock, Deadlock Prevention, Deadlock	05
	Avoidance: Banker's algorithm, Deadlock detection and Recovery,	
	Dining Philosopher Problem	
5	Memory Management: Memory Management Requirements,	06
	Memory Partitioning, Paging, Segmentation, Page Replacement	
	algorithms	

Signature

6	I/O Management and Disk Scheduling: I/O devices, organization	03
	of I/O function, I/O buffering, Disk structure, Disk scheduling	
	algorithms	
7	File Management: Overview, File Organization, File Directories,	02
	File Sharing	
	Total	30

Text Books

- 1. Silberschatz A. Galvin, Operating Systems Principles, 10th Ed., Global Editions, 2023.
- 2. William Stallings, *Operating Systems: Internals and Design Principles*, 9th Edition, Pearson Education, 2018.

Reference Books

1. Andrew S. Tannenbaum, *Modern Operating System*, 4th Edition, Pearson Education, 2016.

Laboratory Work:

Program: M	aster of Compu	ıter Applicatio	Semester	r : I	
Course: Data	abase Managem	ent Systems	Code: 703AI0C003		
Teaching Scheme				Evaluation Scheme	
Lecture	Practical	Tutorial		Internal Continuous	Term End
(Hours per	(Hours per	(Hours per	Credit	Assessment (ICA)	Examinations (TEE)
week)	week)	week)		(Marks - 50)	(Marks - 100)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Nil

Course Objective

The objective of the course is to provide a comprehensive introduction to the fundamental concepts for design and development of database systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from a database management system

Course Outcomes

After completion of the course, students will be able to -

- 1. Describe core concepts of database and model a database management system through ER modelling
- 2. Apply knowledge of relational algebra and structured query language to retrieve and manage data from relational database
- 3. Demonstrate the use of normalization for database design
- 4. Demonstrate the concept of transactions and use modern database techniques such as NoSQL

Detailed Syllabus

Unit	Description	Duration
1.	Introduction Database System Applications, Purpose of Database Systems, View of Data, Database Languages, Data Models, Database Users and Administrator	03
2.	Database Design and the E-R Model Overview of the Design Process, The Entity-Relationship Model, Constraints, Entity Relationship Diagrams, Reduction to Relational Schemas, Schema Diagrams, Entity- Relationship Design Issues, Extended ER features	05
3.	Introduction to the Relational Model Structure of Relational Databases, Database Schema, Keys, Relational Algebra, Basic operators of Relational Algebra,	03
4.	Structured Query Language Overview of the SQL Query Language, SQL Data Definition, SQL Constraints, Basic Structure of SQL Queries, Additional Basic Operations, DML operations, Set operations, Aggregate Functions, Nested Sub-queries, Joins, views	06

5.	Relational Database Design Features of Good Relational Designs, Problems with bad design, Decomposition using concept of functional dependencies, Armstrong's axioms, Closure of functional dependency, Closure of attribute, Introduction to process of Normalization and de-normalization, Normal Forms- 1NF, 2NF, 3NF, BCNF	05
6.	Transactions What is Transactions? Properties of transaction, Transaction states, Issues with concurrent executions, Schedules, Serializability- Conflict and View	04
7.	Introduction to NoSQL Overview of NoSQL, characteristics of NoSQL, Storage types of NoSQL, Implementing NoSQL in MongoDB - Managing Databases and Collections from the MongoDB shell, Finding Documents in MongoDB collection from the MongoDB shell.	04
	Total	30

Text Books

- 1. Hennery Korth and Abraham Silberschatz, *Database System Concepts*, 7th Edition, McGraw Hill, 2019.
- 2. Elmarsi and Navathe, Fundamentals of Database Design, 7th Edition, Addison Wesley, 2019.
- 3. A Phaltankar, J. Ahsan, M. Harrison, L. Nevdov, MondoDB Fundamental, Packt Publishing, 2020.

Reference Books

- 1. Bob Bryla, Kevin Loney *Oracle Database 12C The Complete Reference*, 1st Edition, Tata McGraw Hill, 2017.
- 2. Marko Aleksendric, Arek Borucki, Mastering MongoDB 7.0, Packt Publishing, 2024.

Laboratory Work

Program: Mas	ster of Comput	S	Semester: I			
Course: Com	puter Network	s	C	Code: 703AI0C004		
	Teaching S	cheme		Evaluation Scheme		
Lecture	Practical	Tutorial		Internal Continuo	ous Term End	
(Hours	(Hours	(Hours	Credit	Assessment (ICA	A) Examinations (TEE)	
per week)	per week)	per week)		(Marks - 50) (Marks - 10		
2	2	0	3	Marks Scaled to 5	Marks Scaled to 50	

Prerequisite: NA

Course Objective

This course provides the fundamental knowledge of computer networks through understanding each layer of computer network architecture, and transmission systems to network applications. It also focuses on congestion control techniques, protocols, and application layer functions.

Course Outcomes

After completion of the course, students will be able to -

- 1. Explain the concepts of computer networks, topologies and data communication
- 2. Analyze the various error detection and correction and medium access techniques
- 3. Apply network layer addressing and routing techniques to different network topologies
- 4. Analyze the different protocols of the layered architecture of computer networks

Detailed Syllabus

Unit	Description	Duration
1.	Introduction Computer Network, Peer-to-peer and client-server communication, Classifications of computer networks, Network Topologies.	02
2.	Physical Layer Introduction to OSI and TCP/IP model, Transmission Media.	02
3.	Data Link Layer and Medium Access Sub Layer Fundamentals of Error Detection and Error Correction, Block coding, Hamming Distance, Flow Control and Error control; error control mechanism - CRC; flow control protocols - Stop and Wait ARQ, Go-back–N ARQ, Selective Repeat ARQ, Multiple access protocols - Random Access - Pure ALOHA, Slotted ALOHA, CSMA/CD, CDMA/CA.	07
4.	Network Layer Switching techniques, IPV4 addressing, subnet mask, classless inter-domain routing (CIDR), IPV6; Address mapping – ARP, RARP, and DHCP, shortest path algorithm- RIP, Bellman-ford algorithm, link state routing, Dijkstra's algorithm, Open shortest path first protocol (OSPF).	09

	Transport Layer		
	Process to Process Communication, User Datagram Protocol (UDP)- services,		
	operation; Transmission Control Protocol (TCP) - features, 3-way handshaking, comparison of UDP and TCP, SCTP, Congestion Control - open loop and close-		
5.	comparison of UDP and TCP, SCTP, Congestion Control - open loop and close-		
	loop; Quality of Service (QoS), QoS improving techniques - Leaky Bucket and		
	Token Bucket algorithms.		
-	Application Layer	04	
6.	HTTP, DNS, FTP, SMTP.	04	
	Total	30	

Text Books

- 1. A. S. Tanenbaum, *Computer Networks*, 5th Edition, Pearson Prentice Hall, 2018.
- 2. Behrouz A. Forouzan, *Data Communications and Networking*, 5th Edition, McGraw-Hill Higher Education, 2017.

Reference Books

- 1. W. Stallings, *Data and Computer Communications*, 10th Edition, Pearson Prentice Hall, 2018.
- 2. Behrouz A. Forouzan and Sophia Chung Fegan, TCP/IP Protocol Suite, 4th Edition, McGraw-Hill Higher Education, 2019 (Re-print).
- 3. Alberto Leon-Garcia and Indra Widjaja, *Communication Networks: Fundamental Concepts and Key Architectures*, 2nd Edition, McGraw-Hill, 2004 (Classic).
- 4. James F. Kurose and Keith W. Ross, *Computer Networking A Top-down Approach*, 8th Edition, Pearson, 2018 (Re-print).

Laboratory Work

Program: Master of Computer Applications (MCA)					Semester: I	
Course: Data Structures and Algorithms					Code: 703CO0C006	
Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Conti Assessment ((Marks - 5	ICA)	Term End Examinations (TEE) (Marks- 100)
3	2	0	4	Marks Scaled	to 50	Marks Scaled to 50

Prerequisite: Programming for Problem Solving

Course Objective

This course imparts knowledge of data structures and algorithms so as to identify and implement appropriate data structure and determine the computational complexity of the given application.

Course Outcomes

After completion of the course, students will be able to -

- 1. Understand the concept of data structures and computational complexity
- 2. Identify and implement appropriate linear data structure for the given problem.
- 3. Identify and implement appropriate non-linear data structure for the given problem.
- 4. Differentiate various searching and sorting algorithms.

Detailed Syllabus

Unit	Description	Duration					
1	Introduction	04					
	Introduction to data structure and its importance, Classification of data structures,						
	Basic operations., Abstract data type, Performance analysis- time and space						
	complexity, Asymptotic Notations.						
2	Linear Data Structure I	10					
	Representation of arrays in memory, Operations on arrays -Traversal, Insertion,						
	Deletion. Introduction to Stacks, Operations on Stacks, Applications of stacks -						
	Expression conversion and evaluation (Polish notation), Balanced parenthesis						
	checker, Recursion, Introduction to Queue,						
	Operation on Queues, Linear queue Circular queue, Priority queue, Application						
	of Queues.						
3	Linear Data Structure II	07					
	Introduction to linked list, Representation of linked list in memory, Singly linked						
	list and its operations, Introduction to Doubly Linked list Linked list						
	representation of Stack and Queues, Applications of linked list - Polynomial						
	Addition						
4	Non-Linear Data Structures - I	10					

Signature

	Introduction, Binary tree terminologies, Representation of Binary trees in						
	memory, Binary Tree traversal algorithms, Construction of Binary Tree from						
	traversals, Binary Search Tree: Insertion, Deletion, Applications of tree data						
	structure: Expression trees, Huffman trees.						
5	Non- Linear Data Structures - II	06					
	Introduction, Graph theory terminology, Representation of graph: Adjacency						
	Matrix, Adjacency List, Graph Traversal: Breadth first search, Depth first search,						
	Applications of Graphs (Problem Solving): Shortest path (Dijkstra's algorithm),						
	Minimum Spanning Tree.						
6	Searching and Sorting	08					
	Linear Search, Binary Search, Selection Sort, Insertion sort, Merge sort,						
	Introduction to Hashing						
	Total	45					

Text Books

- 1. Seymour Lipschutz, "Data structures with C", Schaum's Outlines, 1st Edition, 2017. ISBN-13: 978-0070701984.
- 2. Reema Thareja, "Data Structures using C", Oxford University Press, 3rd Edition, 2023.
- 3. Y. Langsam, M.J. Augenstein, A.M. Tenenbaum, "Data Structures using C and C++", PHI 2nd Edition, Pearson Education, 2015. ISBN 9789332549319

Reference Books

- 1. Richard F. Gillberg, Behrouz A. Forouzen, "Data Structures A Pseudo Approach with C", Cengage Publication, 2nd Edition 2004. (Classic)
- 2. Mark Allen Weiss, "Data Structures and Algorithm analysis in C++", PHI, 4th Edition, 2013. ISBN-13: 9780132847377 Data Structures and Algorithm Analysis in C++ (pearson.com)
- 3. Thomas, H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", MIT Press, 3rd Edition 2009.

Laboratory Work

SVKM's Narsee Monjee Institute of Management Studies Mukesh Patel School of Technology Management & Engineering

Program: Master of Computer Applications (MCA)					Semester: I	
Course: Java Programming					Code: 703CO0C018	
Teaching Scheme					Evaluatio	n Scheme
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Ass	nal Continuous essment (ICA) Marks - 50)	Term End Examinations (TEE) (Marks - 100)
2	4	0	4	Mar	ks Scaled to 50	Marks Scaled to 50

Prerequisite: NA

Course Objective

This course will impart knowledge of object-oriented programming, building graphical user interface and database connectivity using Java.

Course Outcomes

After completion of the course, students will be able to -

- 1. Implement programs using object oriented programming paradigm
- 2. Implement programs using collection and generics concepts
- 3. Develop GUI application with database connectivity

Detailed Syllabus:

Unit	Description	Duration
1	Java Fundamentals	
	Overview of Java, Using Blocks of code, Lexical Issues, Java Class	00
	Libraries, Data Types, Variables and Arrays, Operators, Control	02
	Statements, Command Line Arguments.	
2	Classes and Methods	
	Class fundamentals, Declaring Objects, Constructors, Methods,	04
	Overloading of methods, Access control, Static and final variables.	
3	Inheritance	
	Inheritance Basics, method overriding, using abstract classes, using final	04
	with inheritance.	
4	Packages and Interfaces	03
	Packages, Access Protection, importing packages, , Interfaces: Defining	
	an Interface, Implementing Interfaces, Applying Interfaces, Variables	
	in Interfaces.	
5	Exception Handling	02
	Exception handling fundamentals, exception types, uncaught	
	exceptions, using try and catch, throw, throws, finally, Java's built-in	
	exceptions, creating your own exceptions.	

SVKM's Narsee Monjee Institute of Management Studies Mukesh Patel School of Technology Management & Engineering

6	Programs using String Handling	02
	String Constructors, Special String operators, Character Extraction,	
	String Comparison, Searching Strings and Modifying Strings, Buffer	
	class and its methods.	
7	Generics and Collections	05
	Generics: Introduction, A Generic class with Type Parameters, General	
	Form of a Generic class, Bounded Types, Using wildcard arguments,	
	Creating a Generic Method, Generic class Hierarchies,	
	Collection: Collection Framework, ArrayList class, List Iterator	
	interface, Linked List class, TreeSet class	
8	GUI design and Event Handling using Java FX	05
	Introduction, JavaFX Architecture, application structure, JavaFX, Text,	
	Effect, Anim, UI controls. Types of Events, Processing Events in JavaFX,	
	Event Delivery Process, Event Handlers.	
9	Java and Database Programming	03
	JDBC Architecture, Types of Drivers, JDBC components, JDBC classes	
	and Interfaces, steps for querying the database with JDBC, Database	
	connection, querying and updating database tables, passing parameters	
	to a statement.	
	Total	30

Text Books:

- 1. Herbert Schildt, Java The Complete Reference, 11th Edition, Oracle Press, 2020.
- 2. Sergey Grinev, *Mastering JavaFX10*, Packt Publishing, 2018.

Reference Books:

- 1. Cay Horstmann, Core Java Volume I- Fundamentals, Pearson Education Inc., 2020.
- 2. Carl Dea, Gerrit Grunwald, José Pereda, Sean Phillips, Mark Heckler, *JavaFX 9 by Example*, 3rd Edition, Apress, 2017.

Laboratory / Tutorial work:

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering

Program: Master of Computer Applications (MCA)	Semester: I
Course: Web Technologies	Code: 703CO1C001

Teaching Scheme				Evaluation Scheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks - 50)
2	4	0	4	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Basic Programming knowledge

Course Objective

This course is designed to enable students to develop front end and back end with database of real time web applications using technologies like HTML, CSS, Javascript, PHP.

Course Outcomes

After completion of the course, students will be able to -

- 1. Design responsive front end of the web applications
- 2. Develop business logic using server side scripting
- 3. Implement database connectivity

Detailed Syllabus:

	Lu Syllubus.	
Unit	Description	
1	HTML5	05
	Introduction to Hypertext Markup Language, Web Page Structure, Basic	
	Tags, attributes, heading, paragraphs, formatting, images, Links, Lists,	
	Frames, Tables, Forms, HTML5- new elements, Input Types, media.	
2	CSS3	04
	Introduction to styles, Syntax & Rules, External, Internal/Embedded,	
	Inline Style Sheets, conflicting styles, Property Value Forms, Font	
	Properties, List Properties, Color & Background Properties, Text	
	Properties, Image as bullets, Introduce different Box Model, CSS3-	
	Backgrounds, Text effects, 2D & 3D transforms, transitions, animations.	
	Responsive Websites design with HTML5 and CSS3.	
3	JavaScript and JQuery	06
	JavaScript Introduction, variables, operators, data types, functions, objects,	
	condition and looping structures, functions, string, arrays, Java Script	
	Objects, Events handling. Form validations using Java Script.	
	JQuery Introduction, Syntax, Selectors, Events, JQuery Effects.	
4	BootStrap4: Introduction, Grids, Tables, Images, Dropdowns, Jumbotrons.	03
5	PHP - Server Side Programming	08

Signature (Prepared by Concerned Faculty/HOD)

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering

	Introduction, variables, data types, constants, decision and control	
	statements, PHP functions, Arrays, Form Handling, form validations,	
	Pattern Matching, cookies, Session Tracking, Error handling.	
6.	Database Access with PHP	04
	Introduction to MySQL database system, PHP and MySQL database	
	connectivity (Create, connect, select, insert, update, delete, where clause,	
	group by clause, Order by clause).	
	Total	30

Text Books:

- 1. Kogent Learning Solutions Inc, *HTML 5 Black Book (Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP, jQuery)*, 2nd Edition, Dreamtech Press,2016.
- 2. Dayley Brad, Dayley Brendan, *AngularJS*, *JavaScript*, *and jQuery*,1st Edition, Pearson Education, 2016.
- 3. Jacob Lett, Bootstrap *4: Responsive Web Design and Development*, Bootstrap Creative, 1st Edition, Dream Tech Press, 2018.
- 4. Deane Barker, *Web Content Management Systems: Features and Practices*, 1st Edition,O'Reily Media Inc, 2016.

Reference Books:

1. Ben Frain, *Responsive Web Design with HTML5 and CSS*, Packt Publishing, 3rd Edition, 2020.

Laboratory / Tutorial work:

Program: Mas	ster of Compu	ter Application	Semester: I		
Course: Englis	sh Communic	ation	Code: 703BS0C006		
	Feaching Sche	eme	Evalu	ation Scheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examination (TEE)
0	2	0	1	Marks Scaled to 50	-

Pre-requisite: -

Course Objective

The objective of the course is to develop students' competency in the English language in relation to listening, speaking and reading.

Course Outcomes

After completion of the course, the students will be able to -

- 1. Use their knowledge of vocabulary and grammar to articulate their ideas effectively
- 2. Demonstrate effective listening and speaking skills in oral communication situations such asspeeches, conversations, power-presentations, etc
- 3. Apply different reading techniques as needed to read passages effectively

Detailed Syllabus

Unit	Description	Duration
1.	Vocabulary Building through Literature Introduction to root and affixes, Synonyms and antonyms, Idioms and phrasal verbs, Commonly confused words, Words: denotation, connotations and usage	06
2.	Useful Practices of Grammar Articles and Prepositions, Subject-verb agreement, noun-pronoun agreement, Personal Pronouns (First Person, Second Person, Third Person), Modifiers – Errors in Modifiers (Misplaced, Dangling, Squinting), Redundancies and clichés, Tenses, Parallelism, Punctuation, Sentences, clauses and phrases, Active and passive voice, direct and indirect speech	06
3.	Oral Communication Listening skills, Public speaking, impromptu speaking, Situational dialogues	06

4.	Comprehension through Short Fiction	06
	Fast Reading, Skimming, Scanning, Active Reading, Cloze Reading,	06
	SQ3R	
	Technique	
5.	Presentations	
	Planning – occasion, audience, purpose, Outlining – introduction, main	06
	body,conclusion, Visual slide design, Verbal, non-verbal	
	communication	
	Total	30

Text Books

- 1. Meenakshi Raman and Sangeeta Sharma, *Technical Communication: Principles and Practice*, 3rd ed. Oxford University Press, 2015
- 2. Mark Lester and Larry Beason, *The McGraw-Hill Education Handbook of English Grammar and Usage*, 3rd ed. McGraw Hill, 2019

Reference Books

- 1. Bovee Courtland and John Thill, *Business Communication Today*, Pearson Education, 14th Ed. 2017
- 2. John Seely, Oxford Guide to Effective Writing and Speaking, Oxford University Press, 3rd Ed. 2013
- 3. Michael Swan, Practical English Usage, Oxford University Press, 4th Ed. 1995
- 4. F.T Wood, Remedial English Grammar. Macmillan. 2007

Laboratory Work

8 to 10 experiments based on the syllabus.

Program: Master of Computer Applications (MCA)				Semester: I	
Course: Des	ign Thinking		Code: 703BS0C007		
	Teachir	ng Scheme	Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks -50)	Term End Examinations (TEE)
2	0	0	0	Marks Scaled to 50	

Pre-requisite: -

Course Objective

The objective of this course is to understand the concept of Design thinking through engaging the students in projects/ assignments that illustrate the various pillars of Design thinking. Imbibe the higher order skill of Design thinking which they will be able to apply in various projects during their course, to create new products & services.

Course Outcomes

After completion of the course, students will be able to-

- 1. Develop a human-centric approach towards problem solving
- 2. Apply design thinking principles to come up with innovative solutions to problems and challenges

Detailed Syllabus

Unit	Descriptions	Duration
1.	Introduction to Design Thinking -Design Thinking as 'Experience Innovation' - Concepts of Customer Desirability, Technological Feasibility, Business Viability and their significance	02
2.	Case Study: Discussion on HBR article Design Thinking by Tim Brown (Pre-Read based analysis of all four case studies covered in article)	02
3.	Mindset Creation - Growth Mindset vs. Fixed Mindset - Essential elements of Design Thinking Mindset - Case Study: Jeff Bezos-Amazon's approach of being Customer Obsessed	02
4.	- Pillars of Design Thinking	02

	- Introduction to Stages of Design Thinking based on Stanford d. School	
5.	Case Study for Application of Design Thinking IDEO Shopping Cart (Case Video followed by debrief/class discussion)	02
6.	Empathy [A]	02
	-Introduction to empathy	-
	-Decoding Customer Behaviour using DT (using case study method)	
7.	Empathy [B]	
	-Tools:Understanding Consumer's Unmet Needs & Pain Points:	
	(Observation, Focused Interviews, Shadowing, Journey Mapping)	04
	- Rules and tips for each specific tool	
	(Class activity based learning for each	
	tool)	
8.	Empathy [C]	
	Debrief of Class Activity for Journey Mapping	02
	Empathy Case Study: 'Embrace- Infant Incubator'	
9.	Define	
	-Analysis of data gathered from Empathy stage through tools like	
	Clustering & Affinity Diagrams	02
	-Building Problem Statements & understanding POV	
	-Tools: Framing problems as 'How Might We?' questions	
10.	Ideate	
	-Concept of Semi-structured approach to Ideation in DT	02
	-Rules of Ideation	02
	-Tools: Brainstorming, Brainwriting, Dot Voting	
11.	Ideate	
	-Class Activity to demonstrate Brainstorming & Dot Voting	02
	- Case Study for Out of the Box Idea Generation: Steelcase	
12.	Prototype	
	-Introduction to concept of prototyping & basic techniques of rapid	
	prototyping	02
	-Introduction to Low fidelity vs. High fidelity prototypes and	
	their significance in the Design Thinking process -General	
İ	information on user testing & MVPs	
	- Case Study for Prototyping & User Testing: Nordstorm Innovation Lab	

13.	Term End Group Project Analysis of Design Thinking success stories from across various domains – Students are expected to build a presentation based on the design thinking led success story of their chosen company/organization	04
	Total	30
Textbook and Reference Books 1. Idris Mootee , Design Thinking for Strategic Innovation, Wily, 2014.		

