

Time

...is measured by looking at concentration changes over time.

...depends on a reactions mechanism.

...can be altered by changing temperature.

...can be altered by the use of a catalyst.

The following pages are titled with respect to the learning objectives that their content relates to.

Learning Objectives

Qualitatively *describe* what the speed of a reaction depends upon.

Generate plots of concentration versus time for the chemical species of a reaction.

Determine the instantaneous and average rate of reaction from experimental data.

Relate reactant concentration to instantaneous reaction rates using rate laws.

Given experimental data, quantitatively *determine* the components of a rate law (k and order), using the method of initial rates.

Use integrated laws to determine the amount of product produced (or reactant remaining) at any given point rate within a reaction and determine the half-life of a reaction.

Determine the rate law given the mechanism of a reaction, and vice versa – for reactions with a slow first step only.

Draw and *interpret* a reaction energy diagram for a given reaction.

Determine the effect of changing temperature on rate and activation energy.

Explain how reaction speed can be modified using a catalyst.

Qualitatively describe what the speed of a reaction depends upon.

What is needed for a reaction to occur?

Generate plots of concentration versus time for the chemical species of a reaction. e.g. $2 \text{ NO}_2(g) \longrightarrow \text{N}_2\text{O}_4(g)$

What is embedded in the plot below?

How does the plot relate to what is also known about the reaction?

Determine the instantaneous (d) and average (Δ) rate of reaction from experimental data. e.g. 2 H₂O₂ (aq) \longrightarrow 2 H₂O(I) + O₂ (g)

Relate reactant concentration to instantaneous reaction rates using rate laws. e.g. $2 \text{ NO}_2(g) \longrightarrow \text{N}_2\text{O}_4(g)$

How is the generic form of the rate law generated for a reaction?

Relate reactant concentration to instantaneous reaction rates using rate laws. e.g. $2 H_2O_2$ (aq) \longrightarrow $2 H_2O(l) + O_2$ (g)

Modification Figure 14.7

Given experimental data, quantitatively *determine* the components of a rate law (k and order), using the method of initial rates.

e.g. $2 \text{ NO}_2(g) \longrightarrow 2 \text{NO}(g) + O_2(g)$

Expt	Initial rate (M /s)	[NO ₂]
1	1. 1 X 10 ⁻²	0.15 M
2	4.5 X 10 ⁻²	0.30 M
3	1.8 X 10 ⁻¹	0.60 M
4	4.0 X 10 ⁻¹³	0.90 M

Given experimental data, quantitatively *determine* the components of a rate law (k and order), using the method of initial rates.

e.g.
$$2 \text{ NO}(g) + \text{Cl}_2(g) \longrightarrow 2 \text{ NOCl}(g)$$

Expt	Initial rate (M/s)	[NO] _o	$[Cl_2]_o$
1	2.86 x 10 ⁻⁶	0.250 M	0.500 M
2	11.4 x 10 ⁻⁶	0.500 M	0.500 M
3	5.72 x 10 ⁻⁶	0.500 M	0.250 M

Use integrated rate laws to determine the amount of product produced (or reactant remaining) at any given point within a reaction or the half-life of a reaction.

What is an integrated rate law?

Use integrated rate laws to determine the amount of product produced (or reactant remaining) at any given point within a reaction or the half-life of a reaction.

How is it used to determine the amount of product produced?

Use integrated rate laws to determine the amount of product produced (or reactant remaining) at any given point within a reaction or the half-life of a reaction.

How is it used to determine the half-life of a reaction?

Determine the rate law given the mechanism of a reaction.

What is a mechanism?

Draw and interpret a reaction diagram.

How is a mechanism visualized?

e.g. $BrCH_3 + OH^- \longrightarrow Br^- + CH_3OH$

One step

Draw and *interpret* a reaction diagram.

How will you decide how to draw one given a reaction? One step *Draw* and *interpret* a reaction diagram.

How will you decide how to draw one given a reaction? *Multi-step*

Determine the effect of changing temperature on rate and activation energy

What exactly is a change in temperature affecting?

Determine the effect of changing temperature on rate and activation energy

How is the affect of temperature on k quantitatively examined?

Explain how reaction speed can be modified using a catalyst What does a catalyst do?

Reaction progress

Explain how reaction speed can be modified using a catalyst What is homogeneous catalysis?

Homogeneous catalysts are in the same phase as the reactant(s)/product(s) of a reaction

Explain how reaction speed can be modified using a catalyst

What is heterogeneous catalysis?

e.g. Hydrogenation of Ethylene

Ho adsorbs to metal surface.

Rate-limiting step is H—H bond breakage.

After C2H4 adsorbs, one C-H forms.

Another C—H bond forms; C2H6 leaves surface.

FIGURE 14.25 The metal-catalyzed hydrogenation of ethene