

Trabajo Practico 1 - Especificacion

Especificacion de Elecciones Nacionales

17 de septiembre de 2023

Algoritmos y Estructura de Datos

Alias: KBRBTMZSQLHZMHGIXKDS

Integrante	LU	Correo electrónico
Palomino, Leonardo	418/21	lpalomino2300@gmail.com
Medina Herrera, Facundo	1308/21	facundomehe@gmail.com
Seirgalea, Tobías Ezequiel	078/23	tobyseirgalea@gmail.com
Gutierrez Cruz, Cristian	226/21	cristiangutierrezcruz8@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

 $\label{eq:TelFax: (++54 +11) 4576-3300} $$ $$ $$ http://www.exactas.uba.ar$

1. Definicion de Tipos

```
type escrutinio = seq\langle \mathbb{Z} \rangle

type cant\ bancas = \mathbb{Z}

type dHondt = seq\langle seq\langle \mathsf{Bool} \rangle \rangle

type listas = seq\langle seq\langle dni : \mathbb{Z} \times genero : \mathbb{Z} \rangle \rangle
```

2. Problemas

2.1. Ejercicio 1

```
proc hayBallotage (escrutinio : seq\langle\mathbb{Z}\rangle) : Bool requiere \{escrutinioValido(escrutinio)\} asegura \{\neg(\exists i:\mathbb{Z})(0\leq i<|escrutinio|\land porcentajeVotos(escrutinio[i])>45)\land \neg(\exists i:\mathbb{Z})(0\leq i<|escrutinio|\land porcentajeVotos(escrutinio[i])>40)\land diferenciaMayorA10(escrutinio[i],i)\} aux porcentajeDeVotos (e: escrutinio, i: \mathbb{Z}) : \mathbb{Z}=\frac{e[i]*100}{\sum_{i=0}^{|e|-1}e[i]}; pred diferenciaMayorA10 (e: escrutinio: \mathbb{Z}) { \neg(\exists a:\mathbb{Z})(0\leq a<|escrutinio|\land h_L|porcentajeDeVotos(e[i])-porcentajeDeVotos(e[a]))>10|} }  pred escrutinioValido (e: escrutinio: \mathbb{Z}) { |escrutinio|>1\land h_L|(\exists i:\mathbb{Z})(0\leq i<|escrutinio|-1\land h_L|porcentajeDeVotos(e[i])>3)\land h_L|\neg(\exists i,j:\mathbb{Z})(0\leq i,j<|escrutinio|-1\land h_L|i\neq j\land e[i]==e[j])} }  2.2. Ejercicio 2 proc hayFraude (in escrutinio-presidencial :seq\langle\mathbb{Z}\rangle, in escrutinio-senadores :seq\langle\mathbb{Z}\rangle, in escrutinio-diputados :seq\langle\mathbb{Z}\rangle) : Bool
```

```
 \begin{array}{l} \texttt{proc hayFraude (in escrutinio\_presidencial} : seq\langle\mathbb{Z}\rangle, \texttt{in escrutinio\_senadores} : seq\langle\mathbb{Z}\rangle, \texttt{in escrutinio\_diputados} : seq\langle\mathbb{Z}\rangle) : \texttt{Bool requiere } \{escrutinioValido(escrutinio\_presidencial) \land escrutinioValido(escrutinio\_senadores) \land escrutinioValido(escrutinio\_diputados)\} \\ \texttt{asegura } \{res = (cantidadVotos(escrutinio\_presidencial) \neq cantidadVotos(escrutinio\_senadores)) \lor \\ (cantidadVotos(escrutinio\_senadores) \neq cantidadVotos(escrutinio\_diputados)) \lor \\ (cantidadVotos(escrutinio\_diputados) \neq cantidadVotos(escrutinio\_presidencial))\} \\ \texttt{aux cantidadVotos} (\texttt{in escrutinio} : seq\langle\mathbb{Z}\rangle) : \mathbb{Z} = \sum_{i=0}^{|escrutinio|-1} escrutinio[i] ; \end{aligned}
```

2.3. Ejercicio 3

```
\label{eq:continio} \begin{split} &\operatorname{proc\ obtenerSenadoresEnProvincia\ (in\ escrutinio:seq\langle\mathbb{Z}\rangle):\mathbb{Z}\times\mathbb{Z}}\\ &\operatorname{requiere\ }\{escrutinioValido(escrutinio)\}\\ &\operatorname{asegura\ }\{(masVotado(escrutinio),masVotado(setAt(escrutinio,masVotado(escrutinio),0)))=res\}\\ &\operatorname{aux\ } \operatorname{masVotado\ (in\ escrutinio:seq\langle\mathbb{Z}\rangle):\mathbb{Z}=(\forall i:\mathbb{Z})\ (\\ &0\leq i<|escrutinio|\longrightarrow escrutinio[i]<escrutinio[res]\\ )\ ; \end{split}
```

2.4. Ejercicio 4

```
proc calcularDHondtEnProvincia (in cant_bancas, in escrutinio : seq\langle\mathbb{Z}\rangle) : seq\langle seq\langle\mathbb{Z}\rangle\rangle requiere \{escrutinioValido(escrutinio) \land cant\_bancas > 0\} asegura \{(\forall i: \mathbb{Z})(\forall bancas: \mathbb{Z})(0 \leq i < |escrutinio| - 1 \land 0 \leq bancas < cant\_bancas) \longrightarrow_L res[i][bancas] = \frac{escrutinio[i]}{bancas+1}\}
```

2.5. Ejercicio 5

```
proc obtenerDiputadosEnProvincia (in cant_bancas, in escrutinio: seq\langle\mathbb{Z}\rangle, in d: dHondt ): seq\langle\mathbb{Z}\rangle requiere \{cant\_bancas>0\} asegura \{(\forall i:\mathbb{Z})(0\leq i<|res|\longrightarrow_L res[i]=cantBancasObtenidas(d,i)\} aux cantBancasObtenidas (in d: dHondt, in partido:\mathbb{Z}): \mathbb{Z}=\sum_{j=0}^{|d|} if d[partido][j]\in numerosMaximosDeMatriz(d) then 1 else 0 fi; aux numerosDeMatriz (in d: dHondt, in cant_bancas: \mathbb{Z}): seq\langle\mathbb{Z}\rangle=(\forall i:\mathbb{Z})(0\leq i<|d|\land_L superaElUmbral(d,i)\longrightarrow_L concat(numerosDeMatriz,dHont[i]); aux ordenarSecuencia (in s: seq\langle\mathbb{Z}\rangle): seq\langle\mathbb{Z}\rangle=(\forall i:\mathbb{Z})(0\leq i<|s|-1\longrightarrow_L \text{ if } s[i]\geq [i+1] \text{ then } concat(ordenarSecuencia(s),s[i]) \text{ else } skip \text{ fi}; aux numerosMayoresDeMatriz (in s: seq\langle\mathbb{Z}\rangle, in cant_bancas: \mathbb{Z}): seq\langle\mathbb{Z}\rangle=(\forall i:\mathbb{Z})(0\leq i< cant\_bancas\longrightarrow_L concat(numerosDeMatriz), cant\_bancas),s[i]); aux porcentajeDeVotosMatriz (d: dHondt, partido: \mathbb{Z}): \mathbb{Z}=\frac{d[partido][0]*100}{\sum_{partido=0}^{|d|}d[partido][0]}; pred superaElUmbral (d: dHondt, partido: \mathbb{Z}) { porcentajeDeVotosMatriz(d, partido)>3 }
```

2.6. Ejercicio 6

```
 \begin{array}{l} \operatorname{proc\ validarListasDiputadosEnProvincia\ (in\ cant\_bancas: \mathbb{Z},\ in\ listas: seq\langle seq\langle dni: \mathbb{Z} \times genero: \mathbb{Z}\rangle\rangle): \\ \operatorname{requiere\ } \{cant\_bancas > 0 \land (\forall i: \mathbb{Z})(|listas[i]| > 1\} \\ \operatorname{asegura\ } \{((\forall i: \mathbb{Z})(0 \leq i < |listas|) \rightarrow ((|listas[i]| = cant\_bancas) \land (respetaAlternancia(listas[i])))\} \\ \operatorname{pred\ } \operatorname{respetaAlternancia\ } (\operatorname{in\ listaPartido}: seq\langle dni: \mathbb{Z} \times genero: \mathbb{Z}\rangle)\ \{ \\ \operatorname{res} = ((\forall j: \mathbb{Z})(0 \leq j < |listaPartido| - 1) \longrightarrow_L (((listaPartido[j]_1 = 1) \land (listaPartido[j + 1]_2 = 2)) \lor \\ ((lista[j]_1 = 2) \land (lista[j + 1]_2 = 1)) \\ \} \end{array}
```

3. Algoritmos

```
res := True;
   i \: := \: 1;
   segundo := escrutinio[0];
   primero := escrutinio[0];
   cantidadVotos := 0;
   while (i < escrutinio.size()) do
       cantidadVotos := cantidadVotos + escrutinio[i];
       if (escrutinio[i] > primero && i != (escrutinio.size()-1))
           segundo := primero;
9
           primero := escrutinio[i];
10
       else
11
           skip;
12
13
       if (escrutinio[i] < primero && escrutinio[i] > segundo && (i != (escrutinio.size()-1)))
           segundo := escrutinio[i];
15
       else
16
           skip;
17
       endif
       i := i + 1;
19
   endwhile
20
   if ((((primero * 100)/cantidadVotos)) > 45)
21
            res := False;
   endif
23
   if (((((primero * 100)/cantidadVotos))) > 40 \&\& (|primero - segundo| * (100/cantidadVotos)) > 10)
```

```
res := False;
endif
```

i := 0; j := 0;k := 0;

Código 1: Algoritmo para hayBallotage

```
res := False;
   votosPresidenciales := 0;
   votosSenadores := 0;
   votosDiputados := 0;
   while (i < escrutinio_presidencial.size()) do
        votosPresidenciales := votosPresidenciales + escrutinio_presidencial[i]
10
        i := i + 1
11
   endwhile
12
13
   while (j < escrutinio_senadores.size()) do
        votosSenadores := votosSenadores + escrutinio_senadores[i]
        j := j + 1
16
   endwhile
17
18
   while (k < escrutinio_Diputados.size()) do
        votosDiputados := votosDiputados + escrutinio_diputados[i]
21
   endwhile
22
   if(votosPresidenciales != votosSenadores)
24
        res = True
25
   \mathbf{else}
26
       skip
27
   endif
28
29
   if(votosPresidenciales != votosDiputados)
        res = True
31
   \mathbf{else}
32
       skip
33
   endif
34
   if(votosSenadores != votosDiputados)
36
       res = True
37
   else
        skip
39
   endif
40
                                           Código 2: Algoritmo para hayFraude
   i := 1;
   segundo := escrutinio[0];
   primero := escrutinio[0];
   indiceGanador := 0;
        while (i < escrutinio.size()) do
5
           if (escrutinio[i] > primero && i != (escrutinio.size() - 1))
                primero := escrutinio[i];
                indiceGanador := \ i \, ;
            else
                skip;
10
            endif
11
            i := i + 1;
        endwhile
13
        i := 1:
14
        while (i < escrutinio.size()) do
        if (escrutinio[i] > segundo && i != (escrutinio.size() - 1) && i != indiceGanador)
16
```

```
segundo := escrutinio[i];
18
                else
                     skip;
19
          endif
20
          i := i + 1;
21
          endwhile
22
    res := (primero, segundo);
                                            Código 3: Algoritmo para obtenerSenadoresEnProvincia
    i := 0;
    j := 0;
    res := True;
    while (i < listas.size()) do
          if (listas[i].size() = cant\_bancas)
5
                while (j < listas[i].size() - 1)
                     if (\operatorname{listas}[i][j]1 != \operatorname{listas}[i][j+1]1)
                     else
9
                           res := False;
10
11
                     endif
               i := i + 1;
12
               endwhile
13
          else
14
               res = False;
15
          endif
16
          i := i + 1;
17
    endwhile
                                        Código 4: Algoritmo para validarListasDiputadosEnProvincia
         Correctitud
4.
          Correctitud del algoritmo ObtenerSenadoresEnProvincia
    P_c \longrightarrow I
P_c \equiv (indiceGanador = 0, i = 1, primero = escrutinio[0], segundo = escrutinio[0])
I \equiv (0 \le i \le |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
Para probar P_c \longrightarrow I asumimos como cierta P_c y reemplazamos en el invariante para ver si llegamos a algo True.
P_c \longrightarrow I \equiv (0 \le 1 \le |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < 1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
            \equiv (True \land (\forall k : \mathbb{Z}) \ (k = 0) \longrightarrow_L (escrutinio[k] \leq segundo \leq primero)
            \equiv (True \land (\forall k : \mathbb{Z}) \ (k = 0) \longrightarrow_L (escrutinio[0] \leq escrutinio[0]) \leq escrutinio[0])
            \equiv (True \wedge True \wedge True)
Por lo tanto P_c \longrightarrow I.
(I \wedge \neg B) \longrightarrow Q_c
Q_c \equiv (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio|k| \le segundo \le primero)
I \land \neg B \equiv (0 \le i \le |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio|k] \le segundo \le primero) \land i \ge |escrutinio|
         \equiv (i = |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
Separo en casos k = i, k \neq i
         \equiv (i = |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio| \land i = k) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
             \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio| \land i \ne k) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
         \equiv (i = |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio| \land i = k) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
            \land \ (\forall k: \mathbb{Z}) \ (0 \leq k < |escrutinio|) \longrightarrow_L (escrutinio[k] \leq segundo \leq primero)
```

 $Luego (I \land \neg B) \longrightarrow Q_c$

Por lo tanto la implicación es válida.

 $Pero Q_c \equiv (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo \le primero) \ Que \ coincide \ con \ el \ caso \ k \ne i.$

```
I \equiv (0 \le i+1 \le |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
I \equiv (-1 \le i \le |escrutinio| - 1 \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
               if (escrutinio[i] > primero && i != (escrutinio.size() - 1))
                                primero := escrutinio[i];
                                indiceGanador := i;
               else
                                skip;
               endif
def(B) \equiv def(escrutinio[i] > primero \land i \neq |escrutinio|) \equiv (0 \le i < |escrutinio|)
B \land wp(primero := escrutinio[i], indiceGanador := i, I)
\equiv (escrutinio[i] > primero \land i \neq |escrutinio|) \land (primero := escrutinio[i], wp(indiceGanador := i,
    (-1 \le i \le |escrutinio| - 1)) \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv (escrutinio[i] > primero \land i \neq |escrutinio|) \land (primero := escrutinio[i], (-1 \le i \le |escrutinio| - 1))
     \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero) \land indiceGanador = i;
\equiv (escrutinio[i] > primero \land i \neq |escrutinio|) \land (primero := escrutinio[i], (-1 \le i \le |escrutinio| - 1))
     \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero) \land indiceGanador = i;
\equiv (escrutinio[i] > primero \land i \neq |escrutinio|) \land (-1 \leq i \leq |escrutinio| - 1)) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i + 1) \longrightarrow_L
   (escrutinio[k] \le segundo \le escrutinio[i]) \land indiceGanador = i;
    Ahora calculo \neg B \land WP(skip, I):
\equiv \neg(escrutinio[i] > primero \land i \neq |escrutinio|) \land (-1 \leq i \leq |escrutinio| - 1)
     \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
    Distribuvo def(B)
    \operatorname{def}(B) \wedge_L ((B \wedge (s1, Q)) \vee (\neg B \wedge (s2, Q)) \equiv (\operatorname{def}(B) \wedge_L B \wedge (s1, Q)) \vee (\operatorname{def}(B) \wedge_L \neg B \wedge (s2, Q))
    Desarrollamos (def(B) \land B \land (s1, Q))
\equiv (escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1))
   \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le escrutinio[i]) \land indiceGanador = i;
    Ahora desarrollamos (def(B) \land ((\neg B \land (s2, Q))
    \equiv \neg(escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1)
         \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
    Llegamos a que
    \equiv (escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1))
        \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le escrutinio[i]) \land indiceGanador = i;
        \neg(escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1)
        \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
     \equiv ((escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1))
       \wedge (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le escrutinio[i]) \wedge indiceGanador = i))
      \neg(escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1)
       \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
    \equiv ((escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1))
       \wedge \ (\forall k: \mathbb{Z}) \ (0 \leq k < i+1) \longrightarrow_L (escrutinio[k] \leq segundo \leq escrutinio[i]) \ \wedge \ indiceGanador = i))
      \neg(escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \le i \le |escrutinio| - 1)
       \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
    Dividimos los casos k=i, k \neq i
    \equiv ((escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1))
       \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1 \land k \ne i) \longrightarrow_L escrutinio[k] \le segundo \le escrutinio[i] \land indiceGanador = i)
```

```
\wedge \left( \forall k : \mathbb{Z} \right) \ (0 \leq k < i+1 \land k=i) \longrightarrow_L \left( escrutinio[k] \leq segundo \leq escrutinio[i] \right) \land indiceGanador=i))
 \neg(escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1),
  \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1 \land k = i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
  \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1 \land k \ne i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv ((escrutinio[i] > primero \land i \neq |escrutinio|) \land (0 \leq i \leq |escrutinio| - 1))
  \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L escrutinio[k] \le segundo \le escrutinio[i] \land Indice = i))
  \land (\forall k : \mathbb{Z}) \ (True) \longrightarrow_L escrutinio[k] \le segundo \le escrutinio[i] \land indiceGanador = i)
 \neg(escrutinio[i] > primero \land i \neq |escrutinio|)
  \land (\forall k : \mathbb{Z}) \ (0 \le k \le |escrutinio| - 1) \longrightarrow_L escrutinio[k] \le segundo \le primero
  \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L escrutinio[k] \le segundo \le primero
```

Veamos si implica al Invariante inicial. Escribimos Invariante inicial, asumimos Invariante post ciclo como cierto y reemplazamos en el inicial hasta llegar a algo que sea True.

```
I \equiv (0 \le i \le |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv (True \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv (True \wedge True)
```

Por lo tanto se preserva el Invariante a lo largo del primer ciclo y este es correcto.

Estudiamos 2do ciclo

```
I \equiv (0 \le i \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo)
P_c \equiv i = 1 \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le escrutinio[indiceGanador])
Q_c \equiv (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo)
          P_c \longrightarrow I
```

Probamos $P_c \longrightarrow I$: Asumiendo como True Pc y reemplazando en I para ver si llegamos a algo cierto. $I \equiv (0 \le 1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < 1) \longrightarrow_L (escrutinio[k] \le segundo)$ $I \equiv (True) \land (\forall k : \mathbb{Z}) \ (k = 0) \longrightarrow_L (escrutinio[0] \le segundo)$ $I \equiv (\forall k : \mathbb{Z}) \ (k = 0) \longrightarrow_L (True)$ $I \equiv True$

$$(I \wedge \neg B) \longrightarrow Q_c$$

Vemos si $(I \wedge \neg B) \longrightarrow Q_c$, con el mismo método de antes. $I \equiv (0 \le i \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo) \land i \ge |escrutinio|$ $I \equiv (i = |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo)$ $I \equiv (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo) \equiv Q_c$ Por lo tanto se cumple.

$${I \wedge B}S{I}$$

 $\{I \wedge B\}S\{I\}$ Vemos si el Invariante vale durante el ciclo con $\{I \wedge B\}S\}$:

```
i := i + 1;
I \equiv (0 \le i+1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
             if (escrutinio[i] > primero && i != (escrutinio.size() - 1))
                           primero := escrutinio[i];
                           indiceGanador := i;
             else
                           skip;
             endif
```

Aplicando $wp(if\ B\ then\ s1\ else\ s2\ fi) \equiv def(B) \wedge_L (B \wedge wp(s1,I)) \vee (\neg B \wedge wp(s2,I))$ $def(B) \equiv def(escrutinio[i] > segundo \land i \neq |escrutinio| \land i \neq indiceGanador) \equiv (0 \le i \le |escrutinio|)$

 $B \wedge wp(segundo := escrutinio[i], I)$

```
\equiv (escrutinio[i] > segundo \land i \neq |escrutinio| \land i \neq indiceGanador) \land wp(segundo := escrutinio[i], I)
\equiv (escrutinio[i] > segundo \land i \neq |escrutinio| \land i \neq indiceGanador) \land (0 \leq i \leq |escrutinio|)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le escrutinio[i])
\equiv (i \neq indiceGanador) \land (0 \leq i \leq |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i) \longrightarrow_L (escrutinio[k] < escrutinio[i])
\neg B \land wp(skip, I) \equiv \neg B \land I \equiv \neg (escrutinio[i] > segundo \land i \neq |escrutinio| \land i \neq indiceGanador)
       \land (0 \le i + 1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1) \longrightarrow_L (escrutinio|k| \le segundo)
\equiv \neg(escrutinio[i] > segundo) \lor \neg(i \neq |escrutinio|) \lor \neg(i \neq indiceGanador)) \land (0 \leq i + 1 \leq |escrutinio|)
       \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
\equiv (escrutinio[i] \leq segundo) \lor (i = |escrutinio|) \lor (i = indiceGanador)) \land (0 \leq i + 1 \leq |escrutinio|)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
\equiv (escrutinio[i] \leq segundo) \lor (i = |escrutinio|) \lor (i = indiceGanador)) \land (-1 \leq i \leq |escrutinio| - 1)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
\equiv (escrutinio[i] \leq segundo) \lor (False) \lor (i = indiceGanador)) \land (-1 \leq i \leq |escrutinio| - 1)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
\equiv (escrutinio[i] \leq segundo) \lor (i = indiceGanador)) \land (-1 \leq i \leq |escrutinio| - 1)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
Uso\ propiedad\ distributiva\ del \land_L\ con\ def(B)\ \land_L (B \land wp(s1,I)) \lor (\neg B \land wp(s2,I)) \equiv def(B) \land_L (B \land wp(s1,I) \lor (def(B) \land_L (B \land wp(s1,I)) \lor (def(B) \land_L (B \land_L (B \land wp(s1,I)) \lor (def(B) \land_L (B \land
\neg B \land wp(s2, I))
Obteniendo que
\equiv (i \neq indiceGanador) \land (0 \leq i < |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i) \longrightarrow_L (escrutinio[k] < escrutinio[i])
    (escrutinio[i] \le segundo) \lor (i = indiceGanador)) \land (0 \le i \le |escrutinio| - 1)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
\equiv (i \neq indiceGanador) \land (0 \leq i < |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i) \longrightarrow_L (escrutinio[k] < escrutinio[i])
    (escrutinio[i] \le segundo) \lor (i = indiceGanador)) \land (0 \le i \le |escrutinio| - 1)
      \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo)
I_{inicial} \equiv I(0 \le i \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio|k| \le segundo)
Observamos lo siguiente el Invariante modificado es un caso particular del inicial:
(i \neq indiceGanador) \land (0 \leq i < |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i) \longrightarrow_L (escrutinio[k] < escrutinio[i])
Por lo tanto \{I \land B\} \longrightarrow I. Luego el ciclo es parcialmente correcto.
Ahora verificamos si el ciclo finaliza con el teorema de terminación.
              {I \wedge B \wedge fv = v_0}S{fv < v_0}
\{I \land B \land fv = v_0\} \equiv (0 \le i \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i \longrightarrow_L (escrutinio[k] \le segundo \le primero))
                                                \land (i < |escrutinio|) \land (|escrutinio| - i = v_0)
                        i := i + 1;
\equiv (0 \le i+1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
      \land (i+1 < |escrutinio|) \land (|escrutinio| - (i+1) = v_0)
\equiv (0 \leq i+1 \leq |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i+1 \longrightarrow_L (escrutinio[k] \leq segundo \leq primero))
      \land (i+1 < |escrutinio|) \land (|escrutinio| - i - 1 < v_0)
\equiv (0 \le i+1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i+1) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
      \land (i+1 < |escrutinio|) \land (|escrutinio| - i - 1 < |escrutinio| - i)
Basta ver que:
|escrutinio| - i - 1 < |escrutinio| - i \equiv True.
              (I \wedge fv < 0) \longrightarrow \neg B
I \land fv \leq 0 \equiv (0 \leq i \leq |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \leq k < i \longrightarrow_L (escrutinio|k) \leq segundo \leq primero)) \land |escrutinio| - i \leq 0
\equiv (0 \le i \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo \le primero) \land (|escrutinio| \le i)
\equiv (i = |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
```

Verifico finalización del segundo ciclo

 $\equiv (i = |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo \le primero)$

Asumimos $I \wedge fv \leq 0$ como cierto, reemplazamos en $\neg B$ y vemos si llegamos a algo True.

Ahora queremos ver si $(I \land fv \leq 0) \longrightarrow \neg B$

 $Pero i = |escrutinio| \longrightarrow i \ge |escrutinio|$

 $\neg B \equiv i \ge |escrutinio|$

Por lo tanto el primer ciclo cumple con correctitud pues satisface teorema invariante y teorema de terminación.

```
while (i < escrutinio.size()) do
                                                       if (escrutinio[i] > segundo && i != (escrutinio.size() - 1) && i != indiceGanador)
                                                                       segundo := escrutinio[i];
                                                       else
                                                                       skip;
                                                       endif
                                        i := i + 1;
                                        endwhile
I \wedge B \wedge fv = v_0  S\{fv < v_0\}
fv \equiv |escrutinio| - i
Calculamos wp(S, fv \mid v_0):
\{I \land B \land fv = v_0\} \equiv (0 \le i \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio|k| \le segundo)
                                                 \land \ i < |escrutinio| \land |escrutinio| - i = v_0
i := i + 1;
\equiv (0 \le i + 1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1) \longrightarrow_L (escrutinio[k] \le segundo)
       \land (i+1 < |escrutinio|) \ \land (|escrutinio| - (i+1) = v_0)
\equiv (0 \le i + 1 \le |escrutinio|) \land (\forall k : \mathbb{Z}) \ (0 \le k < i + 1) \longrightarrow_L (escrutinio[k] \le segundo)
       \land (i+1 < |escrutinio| \land |escrutinio| - i - 1 = v_0)
Pero recordemos que v_0 = -escrutinio- - i
Basta ver que
|escrutinio| - (i+1) < v_0 \equiv |escrutinio| - i - 1 < |escrutinio| - i \equiv True.
             Vemos si I \land 0 \leq fv \longrightarrow \neg B
I \land 0 \leq fv \equiv 0 \leq i \leq |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \leq k < i) \longrightarrow_L escrutinio[k] \leq segundo \land 0 \geq |escrutinio| - i \leq segundo \land 0 \leq |escrutinio| = i \leq segundo \land 0 \leq segun
I \land 0 \leq fv \equiv 0 \leq i \leq |escrutinio| \land (\forall k : \mathbb{Z}) \ (0 \leq k < i) \longrightarrow_L escrutinio[k] \leq segundo \land i \geq |escrutinio|
I \land 0 \le fv \equiv (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L escrutinio[k] \le segundo \land i = |escrutinio|
Esto implica \neg B, pues i = |escrutinio| \longrightarrow i \ge |escrutinio| que es \neg B.
Concluyendo que el ciclo es correcto.
Para poder afirmar la correctitud del programa debemos demostrar las siguientes implicaciones:
                 \text{Pre} \longrightarrow \text{wp}(\text{codigo previo al primer ciclo}, P_c del primer ciclo})
                  P_c 1er ciclo \longrightarrow wp(1er ciclo, Q_c del primer ciclo) Ya demostrado con el Invariante.
                   Q_c \ 1er \ ciclo \longrightarrow \ wp(i:=0,\ P_c \ 2do \ ciclo)
                  P_c 2do ciclo \longrightarrow wp(2do\ ciclo,Q_c\ del\ segundo\ ciclo) Y a demostrado con el Invariante.
                   Q_c \ 2do \ ciclo \longrightarrow \ wp(res := (primero, segundo), \ Post)
Q_c 2do ciclo \equiv (\forall k : \mathbb{Z}) \ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo)
wp(res := (primero, sequndo), res = (masVotado(escrutinio), masVotado(setAt(escrutinio, masVotado(escrutinio), 0)))
\equiv (primero, segundo) = (masVotado(escrutinio), masVotado(setAt(escrutinio, masVotado(escrutinio), 0)))
\equiv (\forall i : \mathbb{Z}) \ (0 \le i < |escrutinio| \longrightarrow (escrutinio[i] < escrutinio[primero])) \land ((\forall j : \mathbb{Z}) \ (0 \le j < |escrutinio|))
       \land i \neq j \longrightarrow escrutinio[j] < escrutinio[segundo]))
Vemos\ que\ (\forall k:\mathbb{Z})\ (0 \le k < i) \longrightarrow_L (escrutinio[k] \le segundo)
Es un caso particular de wp(res := (primero, segundo), res =
(masVotado(escrutinio), masVotado(setAt(escrutinio, masVotado(escrutinio), 0))
Por lo tanto Q_c 2do ciclo \longrightarrowwp(res:= (primero, segundo), res =
(masVotado(escrutinio), masVotado(setAt(escrutinio, masVotado(escrutinio), 0)))
P_c 2do ciclo \equiv i = 1 \land (\forall k : \mathbb{Z}) \ (0 \le < |escrutinio|) \longrightarrow_L (escrutinio[k] \le escrutinio[indiceGanador])
\operatorname{wp}(i:=1, P_c \text{ 2do ciclo}) \equiv 1 = 1 \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le escrutinio[indiceGanador])
\equiv True \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le escrutinio[indiceGanador])
```

```
\equiv (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le escrutinio[indiceGanador])
        ¿Es cierto que Q_c primer ciclo \longrightarrowwp(i:=1, P_c 2do ciclo)?
Asumimos wp(i:=1, P_c 2do ciclo) como True y reemplazando en Q_c primer ciclo vemos si llegamos a algo cierto.
Q_c primer ciclo \equiv (cantidadVotos = (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv True \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv (\forall k : \mathbb{Z}) \ (0 \leq k < |escrutinio|) \longrightarrow_L (escrutinio[k] \leq segundo \leq primero)
Pero\ escrutinio[indiceGanador] = primero,
por lo tanto nuestra wp(i := 1, P_c \text{ 2do ciclo}) \equiv (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le primero)
Volviendo\ a\ Q_c\ del\ primer\ ciclo...
\equiv True \land (\forall k : \mathbb{Z}) \ (0 \le k < |escrutinio|) \longrightarrow_L (escrutinio[k] \le segundo \le primero)
\equiv (\forall k : \mathbb{Z}) \ (0 \leq k < |escrutinio|) \longrightarrow_L (escrutinio[k] \leq segundo \leq primero)
Vemos\ que\ Q_c es un caso particular de wp(i:=1, P_c 2do ciclo), por lo tanto Q_c \longrightarrow wp(i:=1, P_c 2do ciclo).
Ahora probemos que Pre \longrightarrowwp(codigo previo al ciclo, P_c del primer ciclo).
Pc \equiv (escrutinioValido(escrutinio), indiceGanador = 0, i = 0, primero = escrutinio[0], segundo = escrutinio[0], segundo
wp(indiceGanador := 0, primero := escrutinio[0], segundo := escrutinio[0], i := 0, P_c)
wp(indiceGanador := 0, wp(primero := escrutinio[0], wp(segundo := escrutinio[0], i := 0, P_c))))
\equiv (escrutinioValido(escrutinio), indiceGanador = 0, i = 0, primero = escrutinio[0], segundo = escrutinio[0])
Pero se ve que
(\text{escrutinioValido}(\text{escrutinio}) \longrightarrow (\text{escrutinioValido}(\text{escrutinio}), \text{indiceGanador} = 0, i = 0, \text{primero} = \text{escrutinio}[0], \text{segundo} = 0)
escrutinio[0])
```

Tras haber probado:

- Pre \longrightarrow wp(codigo previo al primer ciclo, P_c del primer ciclo)
- P_c 1er ciclo \longrightarrow wp(1er ciclo, Q_c del primer ciclo) Ya demostrado con el Invariante.
- Q_c 1er ciclo \longrightarrow wp(i:=0, P_c 2do ciclo)
- P_c 2do ciclo \longrightarrow wp(2do ciclo, Q_c del segundo ciclo) Ya demostrado con el Invariante.
- Q_c 2do ciclo \longrightarrow wp(res:= (primero, segundo), Post)

El algoritmo obtener Senadores En
Provincia es correcto respecto a su especificación, dado que al probar estas implicaciones, por corolario de monotonia sabemos que Pre —>wp(programa completo,Post)

4.2. Correctitud del algoritmo hayFraude

```
\begin{array}{l} P_c \equiv \mathrm{i} = 0, \, \mathrm{votos} = 0, \, \mathrm{escrutinioValido(escrutinio)} \\ Q_c \equiv i = |escrutinio| \wedge \, votos = \sum_{j=0}^{|escrutinio|-1} esc[j] \\ \mathrm{I} \equiv 0 \leq i \leq |escrutinio| \wedge votos = \sum_{j=0}^{i-1} esc[j] \\ P_c \longrightarrow \mathrm{I} \quad \mathrm{Asumo} \, P_c \, \mathrm{como} \, \mathrm{True}. \, \mathrm{Reemplazo} \, \mathrm{en} \, \mathrm{I} \, \mathrm{y} \, \mathrm{veo} \, \mathrm{si} \, \mathrm{llega} \, \mathrm{a} \, \mathrm{True} \\ \equiv 0 \leq i \leq |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \\ \equiv 0 \leq 0 \leq |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \\ \equiv votos = 0 \\ \equiv True \\ & \left(I \wedge \neg B\right) \longrightarrow Qc \\ B \equiv i < |escrutinio| \longrightarrow \neg B \equiv i \geq |escrutinio| \end{array}
```

$$\begin{split} B &\equiv i < |escrutinio| \longrightarrow \neg B \equiv i \geq |escrutinio| \\ I \land \neg B \equiv 0 \leq i \leq |escrutinio| \land votos = \sum_{j=0}^{i-1} escrutinio[j] \land i \geq |escrutinio| \\ &\equiv i = |escrutinio| \land votos = \sum_{j=0}^{i-1} escrutinio[j] \\ &\equiv votos = \sum_{j=0}^{|escrutinio|-1} escrutinio[j] \land i = |escrutinio| \end{split}$$

```
¿Es cierto I \wedge \neg B \longrightarrow Q_c? Asumo I \wedge \neg B como cierto, reemplazo en Q_c y veo si llego a True
```

$$Q_c \equiv i = |escrutinio| \land votos = \sum_{j=0}^{|escrutinio|-1} esc[j] \equiv I \land \neg B$$
 CIERTO
$$\{I \land B\}S\{I\}$$

```
\begin{split} I \wedge B &\equiv 0 \leq i < |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \\ &\equiv def(i+1) \wedge wp(i=i+1,I) \\ &\equiv 0 \leq i+1 < |escrutinio| \wedge votos = \sum_{j=0}^{i} escrutinio[j] \\ &\equiv -1 \leq i < |escrutinio| - 1 \wedge votos = \sum_{j=0}^{i} escrutinio[j] \\ &\equiv -1 \leq i \leq |escrutinio| - 2 \wedge votos = \sum_{j=0}^{i} escrutinio[j] \\ &\equiv def(votos)votos + escrutinio[i]) \wedge wp(votos = votos + escrutinio[i],I) \\ &\equiv 0 \leq i < |escrutinio| \wedge -1 \leq i \leq |escrutinio| - 2 \wedge votos + escrutinio[i] \\ &I_2 \equiv 0 \leq i \leq |escrutinio| - 2 \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \end{split}
```

 $i_2I_2\longrightarrow I$? Asumo como True I_2 . Reemplazo en I y veo si llego a True

$$\begin{split} I_2 &\equiv 0 \leq i \leq |escrutinio| - 2 \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \\ I &\equiv 0 \leq i \leq |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \\ I &\equiv 0 \leq i \leq |escrutinio| \wedge True \\ &\equiv 0 \leq i \leq |escrutinio| \end{split}$$

$$0 \leq i \leq |escrutinio| - 2 \longrightarrow 0 \leq i \leq |escrutinio| \equiv \text{True } \{I \land B\}S\{I\}$$

Prueba Terminacion

$$\{I \land fv \leq 0 \longrightarrow \neg B\}$$

```
\begin{split} I \wedge fv &\leq 0 \equiv 0 \leq i \leq |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \wedge |escrutinio| - i \leq 0 \\ &\equiv 0 \leq i \leq |escrutinio| \wedge votos \sum_{j=0}^{i-1} escrutinio[j] \wedge |escrutinio| \leq i \equiv i = |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \wedge |escrutinio| \leq i \\ &\equiv i = |escrutinio| \wedge votos = \sum_{j=0}^{i-1} escrutinio[j] \\ &\equiv votos = \sum_{j=0}^{|escrutinio|-i} escrutinio[j] \wedge i = |escrutinio| \end{split} Observar que
```

```
Observar que i = |escrutinio| \longrightarrow \neg B i = |escrutinio| \longrightarrow i \ge |escrutinio| True
```

El ciclo es correcto y finaliza

Debemos probar las siguientes implicaciones para poder afirmar que el programa es correcto respecto a su especificacion:

- Pre →wp(codigo previo al primer ciclo, Pc del primer ciclo)
- Pc 1er ciclo →wp(1er ciclo,Qc del primer ciclo) Ya demostrado con el Invariante.
- Qc 1er ciclo → Pc 2do ciclo
- Pc 2do ciclo →wp(2do ciclo,Qc del segundo ciclo) Ya demostrado con el Invariante.
- \blacksquare Qc 2do ciclo \longrightarrow Pc 3er ciclo

- Pc 3er ciclo →wp(3er ciclo, Qc del tercer ciclo) Ya demostrado con el Invariante.
- Qc 3er ciclo →wp(codigo post ciclo, postcondicion)

Qc 3er ciclo \(\to\)wp(codigo post ciclo, postcondicion)

```
Qc \ 3er \ ciclo \equiv i = |escrutinio\_presidencial| \ \land j = |escrutinio\_senadores| \ \land k = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = False \land (\forall l: l) \ \land l = |escrutinio_diputados| \ \land res = |escrutinio_di
 \mathbb{Z}) \ (0 \leq l < |escrutinio|) \longrightarrow_L (votosPresidenciales = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]) \wedge (\forall m : \mathbb{Z}) \ (0 \leq m < |escrutinio|) \longrightarrow_L (votosSenadores = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]) \wedge (\forall n : \mathbb{Z}) \ (0 \leq m < |escrutinio|) \longrightarrow_L (votosDiputados = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]) \wedge (\forall n : \mathbb{Z}) \ (0 \leq n < |escrutinio|) \longrightarrow_L (votosDiputados = \sum_{j=0}^{|escrutinio|-1} escrutinio[j])
```

 $wp(if(votosPresidenciales \neq votosSenadores) \lor (votosPresidenciales \neq votosDiputados) \lor$ $(votosSenadores \neq votosDiputados)$ then res:= True else skip, postcondicion)

```
\equiv def(B) \wedge_L (B \wedge wp(res := True, postcondiction)) \vee (\neg B \wedge wp(skip, postcondiction))
def((votosPresidenciales \neq votosSenadores) \lor (votosPresidenciales \neq votosDiputados) \lor
(votosSenadores \neq votosDiputados) \equiv True
```

Entonces $def(B) \wedge_L (B \wedge wp(res := True, postcondicion)) \vee (\neg B \wedge wp(skip, postcondicion))$

- $\equiv True \wedge_L (B \wedge wp(res := True, postcondicion)) \vee (\neg B \wedge wp(skip, postcondicion))$
- $\equiv (B \land wp(res := True, postcondicion)) \lor (\neg B \land wp(skip, postcondicion))$
- $\equiv (B \land True = (cantidadVotos(escrutinio_presidencial) \neq cantidadVotos(escrutinio_senadores)) \lor$ $(cantidadVotos(escrutinio_senadores) \neq cantidadVotos(escrutinio_diputados)) \lor$ $(cantidadVotos(escrutinio_diputados) \neq cantidadVotos(escrutinio_presidencial)))$

```
\equiv ((cantidadVotos(escrutinio\_presidencial) \neq cantidadVotos(escrutinio\_senadores)) \lor
(cantidadVotos(escrutinio\_senadores) \neq cantidadVotos(escrutinio\_diputados)) \lor
(cantidadVotos(escrutinio\_diputados) \neq cantidadVotos(escrutinio\_presidencial))) \land
True = (cantidadVotos(escrutinio\_presidencial) \neq cantidadVotos(escrutinio\_senadores)) \lor
(cantidadVotos(escrutinio\_senadores) \neq cantidadVotos(escrutinio\_diputados)) \lor
(cantidadVotos(escrutinio\_diputados) \neq cantidadVotos(escrutinio\_presidencial)))
\equiv True
```

Entonces solo quedaria True $\vee (\neg B \wedge wp(skip, postcondicion)) \equiv True$. $Pero\ Qc\ 3er\ ciclo \longrightarrow\ True.$

Podemos pensar a Qc 3er ciclo como...

```
i = |escrutinio\_presidencial| \land j = |escrutinio\_senadores| \land k = |escrutinio\_diputados| \land lescrutinio\_diputados| \land lesc
 res = False \land (\forall l : \mathbb{Z}) \ (0 \le l < |escrutinio|) \longrightarrow_L votos Presidenciales = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]
```

Asi queda mas claro que Qc 3er ciclo →wp(codigo post ciclo, postcondicion).

Ahora queremos ver que Qc 2do ciclo \longrightarrow Pc 3er ciclo):

Basta ver que Qc 2do ciclo \longrightarrow Pc 3er ciclo: Q_c 2do ciclo $\equiv i = |escrutinio_presidencial| \land j = |escrutinio_senadores| \land k = 0 \land res = False$ $\land (\forall l: \mathbb{Z}) \ (0 \le l < |escrutinio|) \longrightarrow_L votos Presidenciales = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]$ $\land (\forall m: \mathbb{Z}) \ (0 \le m < |escrutinio|) \longrightarrow_L (votos Senadores = \sum_{j=0}^{|escrutinio|-1} escrutinio[j])$ $P_c \ 3er \ ciclo \equiv i = |escrutinio_presidencial| \land j = |escrutinio_enadores| \land k = 0 \land res = False$

 $\land (\forall l : \mathbb{Z}) \ (0 \le l < |escrutinio|) \longrightarrow_L votos Presidenciales = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]$ $\land (\forall m : \mathbb{Z}) \ (0 \le m < |escrutinio|) \longrightarrow_L (votos Senadores = \sum_{j=0}^{|escrutinio|-1} escrutinio[j])$

Son equivalentes, entonces la implicación es valida.

 Q_c 1er ciclo $\longrightarrow P_c$ 2do ciclo:

 $\begin{array}{c} Q_c \text{ 1er ciclo} \equiv i = |escrutinio_presidencial| \land j = 0 \land k = 0 \land res = False \land \\ & (\forall l: \mathbb{Z}) \; ((0 \leq l < |escrutinio|) \longrightarrow_L \; (votosPresidenciales = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]) \; \;) \\ P_c \; \text{2do ciclo} \equiv i = |escrutinio_presidencial| \land j = 0 \land k = 0 \land res = False \land \\ \end{array}$

 $(\forall l: \mathbb{Z}) \; ((0 \leq l < |escrutinio|) \longrightarrow_{L} (votosPresidenciales = \sum_{j=0}^{|escrutinio|-1} escrutinio[j]) \;)$

Son equivalentes por lo tanto la implicacion es válida. Elegimos los Qc y Pc de forma conveniente para evitar pasos extra. Dado que no hay otras instrucciones entre el final de un ciclo y el inicio del otro, podemos concluir que en ambos instantes de la ejecución se conoce la misma información.

Solo queda probar que Pre \longrightarrow wp(codigo previo al primer ciclo, Pc del primer ciclo): wp(codigo previo al primer ciclo, P_c del primer ciclo)

 $\equiv wp(i:=0, j:=0, k:=0, res:=False, votosPresidenciales:=0, votosSenadores:=0, votosDiputados:=0, P_c$ primer ciclo)

 $\equiv (i := 0, j := 0, k := 0, res := False, votos Presidenciales := 0, votos Senadores := 0, votos Diputados := 0, P_c \text{ primer ciclo}, i = 0 \land j = 0 \land k = 0 \land votos Diputados = 0 \land votos Senadores = 0 \land votos Presidenciales = 0 \land res = False)$

 $\equiv True$

Debemos ver que $Pre \longrightarrow True$ pero como podemos asumir lo declarado en pre como True, entonces la implicacion es valida.