CSC 461

Machine Learning (Fall 2024) Lecture 01: Course Logistics

Prof. Marco Alvarez, University of Rhode Island

What is this course about?

- Understand how ML algorithms work
 - the learning problem and limitations
 - theoretical foundations of major techniques
- Be able to develop ML applications
 - · problem design, algorithm/platform choice
- Be able to read current papers

Should I take this class?

- Requires more math than traditional CS courses
- Programming experience is required
- Less emphasis on 'how to use this library'
 - · more focus on understanding major algorithms
- High grades require high effort
 - · long and challenging assignments/exams

consider taking this course a later time if necessary

Course Organization

Course website

- URL
 - https://homepage.cs.uri.edu/~malvarez/teaching/csc-461
 - Syllabus
 - Schedule
 - Resources
 - · Projects/Workshop

Course information

- Lectures
 - MWF 2-2:50p
- ▶ Team
 - · Marco Alvarez, Instructor
 - Jacob Dauphinais
 - Calvin Higgins
- Office Hours
 - TBA

Recommended textbooks

Grading

- Homework assignments (15%)
 - programming and problem sets
- ► Midterm exam (30%)
 - Oct 11th
- Final exam (30%)
 - · Dec 16th
- Final project (25%)
 - · Last week of classes

Coursework

- Homework assignments
 - · discussions and collaboration are allowed
 - · you must write your own code and solutions
 - late submissions NOT accepted
 - ample time given to complete (6-9 days)
 - start and submit early, leaving plenty of time for updates
- ► Exams
 - · in-person, open-book (printed materials only)
 - no electronic devices allowed during exams

Coursework

- Final project
 - team work (2-3 members) on real-world machine learning problems
 - deliverables
 - · progress report (mid October)
 - · final report (end of semester)
 - live presentation (ML Workshop end of semester)
 - outstanding projects will receive extra credit

Academic integrity

- Assignments and projects
 - · collaborative discussions encouraged
 - sharing solutions, copying work, or using <u>uncredited</u> Algenerated content <u>prohibited</u>
- Al and LLMs
 - Al tools (e.g., ChatGPT, Gemini, Claude, Copilot) allowed as learning aids
 - · proper citation required for Al-assisted work
 - students responsible for understanding and verifying Algenerated content

Support tools

Ed Discussion: Academic discussions, polls, quizzes.

Gradescope: Assignment submission and grading.

Zoom: Virtual office hours and remote collaboration.

How to succeed?

- Attend all lectures
 - · lectures run synchronously and are not being recorded
 - · attendance usually correlates with higher grades
- Participate and think critically
 - · no laptops, no cellphones, unless taking notes
 - · use the online forum (Ed Discussion)
 - · use office hours regularly
- Work hard
 - · read textbooks and papers (schedule is ambitious)
 - work on your assignments (focus on excellence rather than just "getting a good grade")
 - · start working on assignments early
 - · this class is about developing highly-sought skills and competencies