

FIG. 1D

FIG. 1E

FIG. 1F

FIG. 1G

FIG. 1H

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

FIG. 2E

FIG. 2F

FIG. 3A

FIG. 3B

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 7

702

800

STAGE 1	STAGE 2
EIGHT 2x2 NODES	TWO 8x8 NODES

FIG. 8

FIG. 9

901

FIG. 10

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

2000

FIG. 20

2101 X(3 2 1)

FIG. 21A

2102 X(1 2 3)

FIG. 21B

2103 X(3 1)

FIG. 21C

2104 X(1 4)(2 3)

FIG. 21D

FIG. 22

FIG. 23

2400

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28A

FIG. 28B

FIG. 29

FIG. 30A

FIG. 30B

3100

3110

FIG. 31

FIG. 32A

FIG. 32B

FIG. 32C

FIG. 32D

FIG. 33A

FIG. 33B

FIG. 33C

FIG. 33D

FIG. 33E

FIG. 33F

FIG. 34

FIG. 35A

FIG. 35B

FIG. 35C

FIG. 35D

FIG. 35E

FIG. 35F

FIG. 35G

FIG. 35H

FIG. 35I

FIG. 35K

FIG. 35L

FIG. 35M

FIG. 35N

FIG. 35P

FIG. 35Q

FIG. 36A

FIG. 36B

FIG. 36C

FIG. 36D

FIG. 36E

FIG. 36F

FIG. 36G

FIG. 36H

FIG. 36I

FIG. 36J

FIG. 36K

FIG. 36L

FIG. 36M

FIG. 36N

FIG. 36O

FIG. 36P

FIG. 37A

FIG. 37C

FIG. 37D

FIG. 37E

FIG. 37F

FIG. 37G

FIG. 37J

FIG. 37K

FIG. 37L

FIG. 37M

FIG. 37P

FIG. 38A

FIG.38B

3900

FIG. 39

FIG. 40

4100

Preservation of the (1) compressor,
(2) upturned compressor and
(3) UC nonblocking properties of a switch

4110

Preservation of the (4) decompressor,
(5) upturned decompressor,
(6) CU nonblocking,
(7) expander,
(8) upturned expander and
(9) circular expander properties of a switch

FIG. 41

4301

FIG. 43

4302

4500

Equivalence requiring the
match of I/O exchanges
(\Leftrightarrow common trace and guide
among the networks)

FIG. 45

4600

Equivalence without
rearranging I/O nodes
(\Leftrightarrow common trace and
guide among the networks)

Equivalence without
rearranging input nodes
(\Leftrightarrow common trace
among the networks)

Equivalence without
rearranging output nodes
(\Leftrightarrow common guide
among the networks)

Equivalence where I/O
nodes can be rearranged
(unconditional)

FIG. 46

4700

Equivalence without
rearranging I/O nodes
(\Leftrightarrow common trace and
guide among the networks)

Equivalence without
rearranging input nodes
(\Leftrightarrow common trace
among the networks)

Equivalence without
rearranging output nodes
(\Leftrightarrow common guide
among the networks)

Equivalence among
banyan-type
networks
in stronger
sense

Equivalence where I/O
nodes can be rearranged
(unconditional)

FIG. 47

4800

Equivalence without
rearranging I/O nodes
(\iff common trace and
guide among the networks)

Equivalence without
rearranging input nodes
(\iff common trace
among the networks)

Equivalence without
rearranging output nodes
(\iff common guide
among the networks)

Equivalence where I/O nodes can be
rearranged
(\iff trace and guide of one network can be
respectively changed to that of the other
network by a permutation)

FIG. 48

FIG. 49A

FIG. 49B

FIG. 49C

FIG. 49D

FIG. 49E

FIG. 50A

FIG. 50B

FIG. 50C

FIG. 50D

FIG. 50E

5100

FIG. 51

5200

FIG. 52

FIG. 53

5300

5400

FIG. 54

5500

FIG. 55

FIG. 56A

FIG. 56B

FIG. 56C

FIG. 56D

FIG. 57

FIG. 58

5801
5802

FIG. 59

6000

FIG. 60

FIG. 61

FIG. 62A

FIG. 62B

FIG. 63A

FIG. 63B

FIG. 64A

FIG. 64B

FIG. 65A

FIG. 65B

FIG. 65C

FIG. 65D

FIG. 65E

FIG. 66A

ROUTING TAG DATA 6601

FIG. 66B

FIG. 66C

FIG. 66D

6650 ~ DATA PACKET

FIG. 67A

FIG. 67B

FIG. 67C

6700

$1d_1 p_1 p_2 d_2 d_3 \dots$
 $(=11001d_3\dots)$

6751

FIG. 67D

6700 → 6730 → 6701 → 6731 → 6702 → 6732

FIG. 67F

6700

$1d_1 p_1 d_2 d_3 \dots$
 $(=11001d_3\dots)$

6751

6730

Shift register

Input 0

6730-1

6730-2

Output 0

6721

Frame clock

AUTOMATA

Connection state
register
BAR

6702

Latch status register
LATCHED

6703

Clock count
register
CLOCK_COUNT = 5

6701

Bit clock

6710

6731-1

6752

$1d_1 p_1 p_2 d_2 d_3 \dots$
 $(=11010d_3\dots)$

Input 1

6731-2

6731-3

6711

Mux

6712

Mux

6731

Shift register

FIG. 68

FIG. 69
6904
6901
6902
6903
6905

FIG. 70A

FIG. 70B

FIG. 71A

7100

FIG. 71B

7200

FIG. 72A

7200

FIG. 72B

FIG. 73A

FIG. 73B

FIG. 75A

FIG. 75B

FIG. 75C — 20061