Hörmander's L^2 -estimate in dimension one

Following original work by Lars Hörmander we establish a result about the $\bar{\partial}$ -operator in planar domains. Thus we restrict the attention to \mathbf{C} where z = x + iy is the complex coordinate.

Remark. The full strength of L^2 -estimates appears in dimension $n \geq 2$ where one works with plurisubharmonic functions and impose conditions on strictly pesudo-convex subsets of \mathbb{C}^n where one seeks solutions of inhomogeneous $\bar{\partial}$ -equations for differential forms of every bi-degree (p,q) where $0 \leq p, q \leq n$. See Hörmander's text-boook in several complex variables for details.

The Cauchy-Riemann operator sends a differentiable function f into

$$\bar{\partial}(f) = \frac{1}{2}(\partial_x(f) + i \cdot \partial_y(f))$$

The Hilbert space $\mathcal{H}_{\phi}(\Omega)$. Let Ω be an open set in \mathbf{C} . A real-valued continuous and non-negative function ϕ on Ω gives the Hilbert space \mathcal{H}_{ϕ} whose elements are complex-valued Lebesgue measurable functions f in Ω such that

$$\int_{\Omega} |f|^2 \cdot e^{-\phi} \, dx dy < \infty$$

The square root yields norm denoted by $||f||_{\phi}$. Let ψ be another continuous and non-negative function which gives the Hilbert space \mathcal{H}_{ψ} where the norm of an element g is denoted by $||g||_{\psi}$. We consider the $\bar{\partial}$ -operator which sends a function $f \in \mathcal{H}_{\phi}$ to $\bar{\partial}(f) = df/d\bar{z}$ and study the equation

(2)
$$\bar{\partial}(f) = g : g \in H_{\psi}$$

One seeks conditions for the pair (ϕ, ψ) in order that there exists a constant C such that (2) has a solution f for every g where

$$(3) ||f||_{\phi} \le C \cdot ||g||_{\psi}$$

Notice that (2) does not have a unique solution since f can be replaced by f + a(z) where a is a holomorphic function which belongs to \mathcal{H}_{ϕ} . For example, non-uniqueness fails when Ω is a bounded open set and the function $e^{-\phi}$ is bounded in Ω . For then f can be replaced by f + p for an arbitrary polynomial p(z). We shall find a sufficient condition in order that (2-3) above hold.

Hörmander's condition. The pair ϕ, ψ satisfies the Hörmander condition if ψ is a C^2 -function and ϕ is at least a C^1 -function, and there exists a positive constant c_0 such that the following pointwise inequality holds in Ω :

(*)
$$\Delta(\psi) - 2 \cdot |\nabla(\psi)|^2 + \psi_x \phi_x + \psi_y \phi_y \ge 2 \cdot c_0^2 \cdot e^{\psi(z) - \phi(z)}$$

where we have put $|\nabla(\psi)|^2 = \psi_x^2 + \psi_y^2$.

Main Theorem. If the pair (ϕ, ψ) satisfies (*) the equation $\bar{\partial}(f) = g$ has a solution for every $g \in \mathcal{H}_{\psi}$ where

$$||f||_{\phi} \leq \frac{1}{c_0} \cdot ||q||_{\psi}$$

Before the proof starts we recall some facts shout linear operators between Hilbert spaces. In general, let \mathcal{H}_0 and \mathcal{H}_1 be a pair of complex Hilbert spaces and $T \colon \mathcal{H}_0 \to \mathcal{H}_1$ is a densely defined linear operator. Following Torsten Carlemsn's famous monograph about unbounded operators on Hilbert spaces published by Uppsala university in 1923, we recall the construction of an adjoint. Namely, a vector $y \in \mathcal{H}_1$ belongs to the domain of definition for the adjoint operator T^* if and only if there exists a constant C such that

(i)
$$\left| \langle Tx, y \rangle_1 \right| \le C \cdot |x|_0 \quad : x \in \mathcal{D}(T)$$

where $|x|_0$ is the norm of the vector x taken in \mathcal{H}_0 , and in the left hand side we considered the hermitiain inner product on \mathcal{H}_1 . Since $\mathcal{D}(T)$ is dense and Hilbert spaces are self-dual, each y for which (i) holds yields a unique vector $T^*(y) \in \mathcal{H}_0$ such that

(ii)
$$\langle Tx, y \rangle_1 = \langle x, T^*y \rangle_0$$

In general $\mathcal{D}(T^*)$ is not a dense subspace of \mathcal{H}_1 . But let us add this as an hypothesis on T. Moreover, assume that the two densely defined operators T and T^* both are closed, i.e. their graphs are closed in the product of the two Hilbert spaces.

Exercise. Suppose that both T and T^* are closed with dense domains of definition. Assume in addition that there exists a positive constant c such that

$$|T^*y|_0 \ge |y|_1$$
 : $y \in \mathcal{D}(T^*)$

Show that this implies that the range $T^*(\mathcal{D}(T^*))$ is a closed subspace of \mathcal{H}_0 which is equal to the orthogonal complement of the nullspace $\mathrm{Ker}(T)$ Moreover, show that for each $y \in \mathcal{H}_1$ we can find $x \in \mathcal{D}(T)$ such that

$$Tx = y$$
 & $|x|_0 \le c^{-1} \cdot |y|_1$

Proof of the Main Theorem

Since $C_0^{\infty}(\Omega)$ is a dense subspace of \mathcal{H}_{ϕ} the linear operator $T\colon f\mapsto \bar{\partial}(f)$ from \mathcal{H}_{ϕ} to \mathcal{H}_{ψ} is densely defined and we leave as an exercise to the reader to check that T is closed. In fact, this relies upon a general fact about closedness of operators defined by differential operators. The reader may also check that Stokes Teorem entails that test-functions in Ω belong to $\mathcal{D}(T^*)$ and since $C_0^{\infty}(\Omega)$ is dense in the Hilbert space \mathcal{H}_{ψ} the adjoint is also densely defined. Let us then consider some $g \in \mathcal{D}(T^*)$. For each $f \in C_0^{\infty}(\Omega)$ Stokes theorem gives

(i)
$$\langle T(f), g \rangle = \int \bar{\partial}(f) \cdot \bar{g} \cdot e^{-\psi} \, dx dy = -\int f \cdot \left[\bar{\partial}(\bar{g}) - \bar{g} \cdot \bar{\partial}(\psi) \right] \cdot e^{-\psi} \, dx dy$$

Since ψ is real-valued, $\bar{\partial}(\bar{w}) - \bar{w} \cdot \bar{\partial}(\psi)$ is equal to the complex conjugate of $\partial(w) - w \cdot \partial(\psi)$. We conclude that (i) gives

(ii)
$$T^*(g) = -\left[\partial(g) - g \cdot \partial(\psi)\right] \cdot e^{\phi - \psi}$$

In particular T^* is defined via a differential operator and has therefore a closed graph. Taking the squared L^2 -norm in \mathcal{H}_{ϕ} we obtain

$$||T^*(g)||_{\phi}^2 = \int |\partial(g) - g \cdot \partial(\psi)|^2 \cdot e^{\phi - 2\psi} =$$

(iii)
$$\int \left(|\partial(g)|^2 + |g|^2 \cdot |\partial(\psi)|^2 \right) \cdot e^{\phi - 2\psi} - 2 \cdot \Re\left(\int \partial(g) \cdot \bar{g} \cdot \bar{\partial}(\psi) \cdot e^{\phi - 2\psi} \right)$$

By partial integration the last integral in (iii) is equal to

$$\text{(iv)} \qquad 2 \cdot \mathfrak{Re} \Big(\int g \cdot [\partial(\bar{w}) \cdot \bar{\partial}(\psi) + \bar{g} \cdot \partial \bar{\partial}(\psi) - 2\bar{w} \cdot \bar{\partial}(\psi) \cdot \partial(\psi) + \bar{g} \cdot \bar{\partial}(\psi) \cdot \partial(\phi) \Big] \cdot e^{\phi - 2\psi} \Big)$$

Next, the Cauchy-Schwarz inequality gives

(v)
$$|2 \cdot \int g \cdot \partial(\bar{g}) \cdot \bar{\partial}(\psi) \cdot e^{\phi - 2\psi} | \leq \int (|\partial(g)|^2 + |g|^2 \cdot |\partial(\psi)|^2) \cdot e^{\phi - 2\psi}$$

Together (iii-v) give

$$||T^*(g)||_\phi^2 \geq 2 \cdot \mathfrak{Re} \int |g|^2 \cdot \left[\, \partial \bar{\partial}(\psi) - 2 \cdot \bar{\partial}(\psi) \cdot \partial(\psi) + \bar{\partial}(\psi) \cdot \partial(\phi) \, \right] \cdot e^{\phi - 2\psi} = 0$$

(vi)
$$2 \cdot \mathfrak{Re} \int |g|^2 \cdot \frac{1}{4} \left[\Delta(\psi) - 2 \cdot |\nabla(\psi)|^2 + \psi_x \phi_x + \psi_y \phi_y \right] \cdot e^{\phi - 2\psi}$$

where the last equality follows since ϕ and ψ are real-valued. Funally, since (4.1) is assumed it follows that

(vi)
$$||T^*(g)||_{\phi}^2 \ge c_0^2 \cdot \int |g|^2 \cdot e^{\psi - \phi} \cdot e^{\phi - 2\psi} = c_0^2 \cdot ||g||_{\psi}^2$$

Now we apply the Exercise above and the proof of the Main Theorem is finished.

Remark. Let Ω be an open subset of a disc $\{|z| < r\}$ for somne r < 1 which is centered at the origin. Consider the function

$$\phi(z) = \log(1 - |z|^2) = \log(1 - x^2 - y^2)$$

Now we can take $\psi=\phi$ and Hörmander's condition (*) is valid. To see this we notice that

(i)
$$\Delta(\psi) = \frac{4}{(1 - x^2 - y^2)^2}$$

(ii)
$$\psi_x^2 + \psi_y^2 = \frac{4x^2 + 4y^2}{(1 - x^2 - y^2)^2}$$

Since $\phi = \psi$ we see that the right hand side in (*) becomes

(iii)
$$\frac{4}{(1-x^2-y^2)^2} - \frac{4x^2+4y^2}{(1-x^2-y^2)^2}$$

Inside the disc of radius r < 1 we notice that (iii) is

$$4 \cdot \frac{1 - r^2}{(1 - r^2)^2}$$

which can be taken as c_0 in the Main Theorem.