Метрика и норма в векторном пространстве. Квадратичные формы.

Верещагин Антон Сергеевич д-р. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

QR-код презентации

27 февраля 2024 г.

Аннотация

Метрические пространства. Нормы вектора и оператора. Квадратичные формы. Приведение формы к сумме квадратов. Условие положительной определенности квадратичной формы.

Определение Π усть \mathbb{R}^n — n-мерное векторное пространство.

Определение

Пусть R^n — n-мерное векторное пространство. Расстоянием между векторами \vec{x} и \vec{y} называется неотрицательная скалярная функция $\rho(\vec{x}, \vec{y}) \geq 0$,

Определение

Пусть R^n — n-мерное векторное пространство. Расстоянием между векторами \vec{x} и \vec{y} называется неотрицательная скалярная функция $\rho(\vec{x}, \vec{y}) \geq 0$, удовлетворяющая аксиомам:

 $ho(ec{x},ec{y})=0$ тогда и только тогда, когда $ec{x}=ec{y}$;

Определение

Пусть R^n — n-мерное векторное пространство. Расстоянием между векторами \vec{x} и \vec{y} называется неотрицательная скалярная функция $\rho(\vec{x}, \vec{y}) \geq 0$, удовлетворяющая аксиомам:

$$ho(\vec{x}, \vec{y}) = 0$$
 тогда и только тогда, когда $\vec{x} = \vec{y}$; $ho(\vec{x}, \vec{y}) =
ho(\vec{y}, \vec{x})$ (аксиома симметрии);

Определение

Пусть R^n — n-мерное векторное пространство. Расстоянием между векторами \vec{x} и \vec{y} называется неотрицательная скалярная функция $\rho(\vec{x}, \vec{y}) \geq 0$, удовлетворяющая аксиомам:

$$ho(\vec{x}, \vec{y}) = 0$$
 тогда и только тогда, когда $\vec{x} = \vec{y}$; $ho(\vec{x}, \vec{y}) =
ho(\vec{y}, \vec{x})$ (аксиома симметрии); $ho(\vec{x}, \vec{z}) \leq
ho(\vec{x}, \vec{y}) +
ho(\vec{y}, \vec{z})$ (аксиома треугольника).

Определение

Пусть R^n — n-мерное векторное пространство. Расстоянием между векторами \vec{x} и \vec{y} называется неотрицательная скалярная функция $\rho(\vec{x}, \vec{y}) \geq 0$, удовлетворяющая аксиомам:

$$ho(\vec{x}, \vec{y}) = 0$$
 тогда и только тогда, когда $\vec{x} = \vec{y}$; $ho(\vec{x}, \vec{y}) =
ho(\vec{y}, \vec{x})$ (аксиома симметрии); $ho(\vec{x}, \vec{z}) \leq
ho(\vec{x}, \vec{y}) +
ho(\vec{y}, \vec{z})$ (аксиома треугольника).

Если в пространстве определено расстояние между векторами, то говорят, что определена *метрика*.

Метрические пространства

Определение

Векторное пространство R^n с введенной метрикой называется метрическим пространством.

Метрические пространства

Определение

Векторное пространство R^n с введенной метрикой называется метрическим пространством.

Примеры метрик в \mathbb{R}^n :

$$\rho(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i|,$$

Метрические пространства

Определение

Векторное пространство R^n с введенной метрикой называется метрическим пространством.

Примеры метрик в \mathbb{R}^n :

$$\rho(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i|,$$

$$\rho(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Определение

Нормой вектора $||\vec{x}||$ в n-мерном векторном пространстве

Определение

Нормой вектора $||\vec{x}||$ в *п-мерном векторном пространстве называется неотрицательная скалярная функция от вектора* \vec{x} ,

Определение

Нормой вектора $||\vec{x}||$ в *п*-мерном векторном пространстве называется неотрицательная скалярная функция от вектора \vec{x} , удовлетворяющая следующим аксиомам:

Определение

Нормой вектора $||\vec{x}||$ в n-мерном векторном пространстве называется неотрицательная скалярная функция от вектора \vec{x} , удовлетворяющая следующим аксиомам:

 $||\vec{x}||=0$ тогда и только тогда, когда $\vec{x}=0$;

Определение

Нормой вектора $||\vec{x}||$ в n-мерном векторном пространстве называется неотрицательная скалярная функция от вектора \vec{x} , удовлетворяющая следующим аксиомам:

```
||\vec{x}|| = 0 тогда и только тогда, когда \vec{x} = 0; ||\alpha \vec{x}|| = |\alpha|||\vec{x}||, где \alpha – произвольное число;
```

Определение

Нормой вектора $||\vec{x}||$ в n-мерном векторном пространстве называется неотрицательная скалярная функция от вектора \vec{x} , удовлетворяющая следующим аксиомам:

```
||\vec{x}||=0 тогда и только тогда, когда \vec{x}=0; ||\alpha\vec{x}||=|\alpha|||\vec{x}||, где \alpha – произвольное число; ||\vec{x}+\vec{y}||\leq ||\vec{x}||+||\vec{y}|| (неравенство треугольника).
```

Определение

Векторное пространство R^n с введенной на нем нормой называется нормированным векторным пространством.

Определение

Векторное пространство R^n с введенной на нем нормой называется нормированным векторным пространством.

Примеры норм в \mathbb{R}^n :

$$||\vec{x}|| = \sum_{i=1}^{n} |x_i|,$$

Определение

Векторное пространство R^n с введенной на нем нормой называется нормированным векторным пространством.

Примеры норм в \mathbb{R}^n :

$$||\vec{x}|| = \sum_{i=1}^{n} |x_i|,$$

$$||\vec{x}|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Определение

Векторное пространство R^n с введенной на нем нормой называется нормированным векторным пространством.

Примеры норм в \mathbb{R}^n :

$$||\vec{x}|| = \sum_{i=1}^{n} |x_i|,$$

$$||\vec{x}|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Определение

Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n

Определение

Нормой линейного оператора A в нормированном пространстве R^n называется наименьшее из чисел C таких,

Определение

Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наименьшее из чисел C таких, что $\forall \vec{x} \in \mathbb{R}^n$

$$||\mathcal{A}\vec{x}|| \le C||\vec{x}||$$

Определение

Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наименьшее из чисел C таких, что $\forall \vec{x} \in \mathbb{R}^n$

$$||\mathcal{A}\vec{x}|| \le C||\vec{x}||$$

и обозначается $||\mathcal{A}||$,

Определение

Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наименьшее из чисел C таких, что $\forall \vec{x} \in \mathbb{R}^n$

$$||\mathcal{A}\vec{x}|| \le C||\vec{x}||$$

и обозначается ||A||, или, по-другому,

$$||\mathcal{A}|| = \inf\{C : \forall \vec{x} \in \mathbb{R}^n \quad ||\mathcal{A}\vec{x}|| \le C||\vec{x}||\}.$$

Пусть A – линейный оператор в \mathbb{R}^n ,

Пусть \mathcal{A} — линейный оператор в \mathbb{R}^n , \vec{x} — произвольный вектор из \mathbb{R}^n .

Пусть \mathcal{A} — линейный оператор в \mathbb{R}^n , \vec{x} — произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} =$$

Пусть \mathcal{A} — линейный оператор в \mathbb{R}^n , \vec{x} — произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| =$$

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| =$$

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

где
$$\vec{y} = \vec{x}/||\vec{x}||$$
,

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

$$||\vec{y}|| =$$

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

$$||\vec{y}|| = \left| \left| \frac{\vec{x}}{||\vec{x}||} \right| \right| =$$

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

$$||\vec{y}|| = \left| \left| \frac{\vec{x}}{||\vec{x}||} \right| \right| = \frac{||\vec{x}||}{||\vec{x}||} =$$

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

$$||\vec{y}|| = \left| \left| \frac{\vec{x}}{||\vec{x}||} \right| \right| = \frac{||\vec{x}||}{||\vec{x}||} = 1.$$

Связь между различными определениями нормы линейного оператора

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

где $\vec{y} = \vec{x}/||\vec{x}||$, причем

$$||\vec{y}|| = \left| \left| \frac{\vec{x}}{||\vec{x}||} \right| \right| = \frac{||\vec{x}||}{||\vec{x}||} = 1.$$

Таким образом,

Связь между различными определениями нормы линейного оператора

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

где $\vec{y} = \vec{x}/||\vec{x}||$, причем

$$||\vec{y}|| = \left| \left| \frac{\vec{x}}{||\vec{x}||} \right| \right| = \frac{||\vec{x}||}{||\vec{x}||} = 1.$$

Таким образом, $\vec{y} \in \mathbb{R}^n$ – произвольный вектор,

Связь между различными определениями нормы линейного оператора

Пусть \mathcal{A} – линейный оператор в \mathbb{R}^n , \vec{x} – произвольный вектор из \mathbb{R}^n . Рассмотрим

$$\frac{||\mathcal{A}\vec{x}||}{||\vec{x}||} = ||\frac{1}{||\vec{x}||}\mathcal{A}\vec{x}|| = \left|\left|\mathcal{A}\left(\frac{\vec{x}}{||\vec{x}||}\right)\right|\right| = ||\mathcal{A}\vec{y}|| \leq C,$$

где $\vec{y} = \vec{x}/||\vec{x}||$, причем

$$||\vec{y}|| = \left| \left| \frac{\vec{x}}{||\vec{x}||} \right| \right| = \frac{||\vec{x}||}{||\vec{x}||} = 1.$$

Таким образом, $\vec{y} \in \mathbb{R}^n$ – произвольный вектор, такой что $||\vec{y}|| = 1$.

Определение (альтернативное определение) *Нормой линейного оператора* ${\cal A}$

Определение (альтернативное определение) *Нормой линейного оператора* \mathcal{A} в нормированном пространстве \mathbb{R}^n

Определение (альтернативное определение) *Нормой линейного оператора* \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наибольшее значение.

Определение (альтернативное определение) Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наибольшее значение, принимаемое функцией $||\mathcal{A}\vec{x}|| \ \forall \vec{x} \in \mathbb{R}^n$,

Определение (альтернативное определение) *Нормой линейного оператора* \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наибольшее значение, принимаемое функцией $||\mathcal{A}\vec{x}|| \ \forall \vec{x} \in \mathbb{R}^n$, таких, что $||\vec{x}|| = 1$,

Определение (альтернативное определение) *Нормой линейного оператора* \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наибольшее значение, принимаемое функцией

 $||\mathcal{A}\vec{x}|| \ \forall \vec{x} \in \mathbb{R}^n$, таких, что $||\vec{x}|| = 1$, или, по-другому,

Определение (альтернативное определение)

Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наибольшее значение, принимаемое функцией $||\mathcal{A}\vec{x}|| \ \forall \vec{x} \in \mathbb{R}^n$, таких, что $||\vec{x}|| = 1$, или, по-другому,

$$||\mathcal{A}|| =$$

Определение (альтернативное определение)

Нормой линейного оператора \mathcal{A} в нормированном пространстве \mathbb{R}^n называется наибольшее значение, принимаемое функцией $||\mathcal{A}\vec{x}|| \ \forall \vec{x} \in \mathbb{R}^n$, таких, что $||\vec{x}|| = 1$, или, по-другому,

$$||\mathcal{A}|| = \sup\{||\mathcal{A}\vec{x}|| : \forall \vec{x} \in \mathbb{R}^n \quad ||\vec{x}|| = 1\}.$$

Пример: проекция вектора на плоскость

Рассмотрите оператор проектирования вектора на плоскость и посчитайте норму такого линейного оператора.

Определение Квадратичной формой называется однородный многочлен второй степени

Определение

Квадратичной формой называется однородный многочлен второй степени относительно n переменных $x_1, x_2, ..., x_n$:

Определение

Квадратичной формой называется однородный многочлен второй степени относительно n переменных $x_1, x_2, ..., x_n$:

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}).$$

Определение

Квадратичной формой называется однородный многочлен второй степени относительно n переменных $x_1, x_2, ..., x_n$:

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}).$$

$$n = 1$$
: $A_1(x, x) = a_{11}x_1^2$,

Определение

Квадратичной формой называется однородный многочлен второй степени относительно n переменных $x_1, x_2, ..., x_n$:

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}).$$

$$n = 1$$
: $A_1(x, x) = a_{11}x_1^2$,
 $n = 2$: $A_2(x, x) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$,

Определение

Квадратичной формой называется однородный многочлен второй степени относительно n переменных $x_1, x_2, ..., x_n$:

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}).$$

$$n = 1: A_1(x, x) = a_{11}x_1^2,$$

$$n = 2: A_2(x, x) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2,$$

$$n = 3: A_3(x, x) = x_1^2 + 2x_1x_2 + x_2^2 + x_2x_3.$$

Определение

Квадратичной формой называется однородный многочлен второй степени относительно n переменных $x_1, x_2, ..., x_n$:

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}).$$

$$n = 1: A_1(x, x) = a_{11}x_1^2,$$

$$n = 2: A_2(x, x) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2,$$

$$n = 3: A_3(x, x) = x_1^2 + 2x_1x_2 + x_2^2 + x_2x_3.$$

$$n = 3: A_4(x, x) = x_1^2 + x_2^2 - x_3^2.$$

Из коэффициентов квадратичной формы

Из коэффициентов квадратичной формы можно составить квадратную симметричную матрицу A:

Из коэффициентов квадратичной формы можно составить квадратную симметричную матрицу A:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}, \quad A = A^{t}.$$

Из коэффициентов квадратичной формы можно составить квадратную симметричную матрицу A:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}, \quad A = A^{t}.$$

С помощью матрицы A квадратичную форму A(x,x)

Из коэффициентов квадратичной формы можно составить квадратную симметричную матрицу A:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}, \quad A = A^{t}.$$

С помощью матрицы A квадратичную форму A(x,x) можно переписать в виде:

$$A(x,x) = x^{t}Ax,$$

Из коэффициентов квадратичной формы можно составить квадратную симметричную матрицу A:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}, \quad A = A^{t}.$$

С помощью матрицы A квадратичную форму A(x,x) можно переписать в виде:

$$A(x,x) = x^{t}Ax,$$

где $x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}$ – вектор столбец из переменных x_i ($i = \overline{1,n}$).

Определение

Если матрица А есть вещественная симметричная матрица,

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Oпределитель матрицы |A|

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Oпределитель матрицы |A| называется дискриминантом квадратичной формы.

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Определитель матрицы |A| называется дискриминантом квадратичной формы. Если |A|=0, то квадратичная форма сингулярна,

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Определитель матрицы |A| называется дискриминантом квадратичной формы. Если |A|=0, то квадратичная форма сингулярна, иначе регулярна.

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Определитель матрицы |A| называется дискриминантом квадратичной формы. Если |A|=0, то квадратичная форма сингулярна, иначе регулярна.

Определение

Ранг матрицы А, отвечающей квадратичной форме,

Определение

Если матрица A есть вещественная симметричная матрица, то соответствующая ей квадратичная форма называется вещественной формой.

Определение

Определитель матрицы |A| называется дискриминантом квадратичной формы. Если |A|=0, то квадратичная форма сингулярна, иначе регулярна.

Определение

Ранг матрицы A, отвечающей квадратичной форме, есть ранг квадратичной формы.

Замена переменных

Рассмотрим линейную замену переменных

Замена переменных

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

Замена переменных

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^t, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^t,$$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

$$A(x,x) =$$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

$$A(x,x) = x^{t}Ax =$$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

$$A(x,x) = x^{t}Ax = (T\xi)^{t}AT\xi =$$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

$$A(x,x) = x^{\mathsf{t}} A x = (T\xi)^{\mathsf{t}} A T \xi = \xi^{\mathsf{t}} \left(T^{\mathsf{t}} A T \right) \xi =$$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

$$A(x,x) = x^{t}Ax = (T\xi)^{t}AT\xi = \xi^{t} (T^{t}AT) \xi = \xi^{t} \hat{A}\xi = \hat{A}(\xi,\xi),$$

Рассмотрим линейную замену переменных

$$x_i = \sum_{k=1}^n t_{ik} \xi_k \quad (i = 1, 2, \dots, n),$$

что в матричном форме можно записать как

$$x = T\xi$$
,

$$x = \{x_1, x_2, \dots, x_n\}^{\mathsf{t}}, \quad \xi = \{\xi_1, \xi_2, \dots, \xi_n\}^{\mathsf{t}},$$

 $T = (t_{ij})_{1 \le i, j \le n}, \quad |T| \ne 0.$

$$A(x,x) = x^{\mathsf{t}} A x = (T\xi)^{\mathsf{t}} A T \xi = \xi^{\mathsf{t}} \left(T^{\mathsf{t}} A T \right) \xi = \xi^{\mathsf{t}} \hat{A} \xi = \hat{A}(\xi,\xi),$$

гле
$$\hat{A} = T^{t}AT$$
.

$$\hat{A}^{t} =$$

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} =$$

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} ,

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} , связанные равенством

$$\hat{A} = T^{t}AT,$$

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} , связанные равенством

$$\hat{A} = T^{\mathsf{t}} A T,$$

называются конгруэнтными,

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} , связанные равенством

$$\hat{A} = T^{\mathsf{t}} A T,$$

называются конгруэнтными, где T – неособенная матрица.

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} , связанные равенством

$$\hat{A} = T^{\mathsf{t}} A T$$

называются конгруэнтными, где T – неособенная матрица.

Ранг \hat{A} :

Так как $|T| \neq 0$,

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} , связанные равенством

$$\hat{A} = T^{\mathsf{t}} A T$$

называются конгруэнтными, где T – неособенная матрица.

Ранг \hat{A} :

Так как $|T| \neq 0$, то по теореме о ранге

Симметричность \hat{A} :

$$\hat{A}^{\mathsf{t}} = (T^{\mathsf{t}}AT)^{\mathsf{t}} = T^{\mathsf{t}}AT = \hat{A}.$$

Определение

Две симметрические матрицы A и \hat{A} , связанные равенством

$$\hat{A} = T^{\mathsf{t}} A T$$

называются конгруэнтными, где T – неособенная матрица.

Ранг \hat{A} :

Так как $|T| \neq 0$, то по теореме о ранге ранг A равен рангу матрицы \hat{A} .

Теорема

Ранг диагональной матрицы

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D.

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \dots, a_{i_r}$.

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$. Очевидно, что главный минор $M \neq 0$, где

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$. Очевидно, что главный минор $M \neq 0$, где

$$D = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix},$$

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$. Очевидно, что главный минор $M \neq 0$, где

$$D = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}, \quad M = D \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} \neq 0.$$

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$. Очевидно, что главный минор $M \neq 0$, где

$$D = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}, \quad M = D \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} \neq 0.$$

Все остальные миноры большего размера будут равны 0,

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$. Очевидно, что главный минор $M \neq 0$, где

$$D = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}, \quad M = D \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} \neq 0.$$

Все остальные миноры большего размера будут равны 0, т.к. определитель будет считаться от треугольной матрицы с нулями на диагонали.

Теорема

Ранг диагональной матрицы равен количеству ненулевых элементов на диагонали.

Доказательство.

Рассмотрим диагональную матрицу D. Пусть в матрице r ненулевых диагональных элементов $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$. Очевидно, что главный минор $M \neq 0$, где

$$D = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}, \quad M = D \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix} \neq 0.$$

Все остальные миноры большего размера будут равны 0, т.к. определитель будет считаться от треугольной матрицы с нулями на диагонали. Следовательно, ранг матрицы D равен r.

Теорема

Любую квадратичную форму

Теорема

Любую квадратичную форму с помощью линейной замены переменных

Теорема

Любую квадратичную форму с помощью линейной замены переменных можно привести к виду

$$A(x,x) = \sum_{i=1}^{r} a_i X_i^2,$$

Теорема

Любую квадратичную форму с помощью линейной замены переменных можно привести к виду

$$A(x,x) = \sum_{i=1}^{r} a_i X_i^2,$$

где
$$X_i = \sum_{k=1}^n \alpha_{ik} x_k$$
 и $r \leq n$.

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений A;

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\ Q$ — ортогональная матрица

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов,

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

$$\hat{A} =$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

$$\hat{A} = T^{t}AT =$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

$$\hat{A} = T^{t}AT = Q^{t}AQ =$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

$$\hat{A} = T^{t}AT = Q^{t}AQ = Q^{-1}QDQ^{-1}Q =$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

$$\hat{A} = T^{t}AT = Q^{t}AQ = Q^{-1}QDQ^{-1}Q = D.$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

$$\hat{A} = T^{t}AT = Q^{t}AQ = Q^{-1}QDQ^{-1}Q = D.$$

Пусть
$$r = r(D) = r(A)$$

Доказательство.

По теореме о собственных значениях симметричной матрицы

$$A = QDQ^{-1},$$

где D — диагональная матрица, составленная из собственных значений $A;\,Q$ — ортогональная матрица ($Q^{\rm t}=Q^{-1}$) из собственных векторов, образующих ортонормированный базис.

Это означает, что если в качестве матрицы для замены переменных положить T=Q, тогда

$$\hat{A} = T^{\mathsf{t}}AT = Q^{\mathsf{t}}AQ = Q^{-1}QDQ^{-1}Q = D.$$

Пусть r = r(D) = r(A) и равно количеству ненулевых элементов на диагонали матрицы D.

Доказательство. Рассмотрим

$$\hat{A}(\xi,\xi) = \xi^{t}D\xi =$$

$$= (\xi_{1}, \dots, \xi_{r}, \xi_{r+1}, \dots, \xi_{n}) \begin{pmatrix} \lambda_{1} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \dots & \lambda_{r} & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \vdots \\ \xi_{r} \\ \xi_{r+1} \\ \vdots \\ \xi_{n} \end{pmatrix} =$$

$$=\lambda_1\xi_1^2+\lambda_2\xi_2^2+\ldots+\lambda_r\xi_r^2.$$

Теорема (закон инерции квадратичных форм) При представлении квадратичной формы в виде суммы независи-

мых квадратов,

Теорема (закон инерции квадратичных форм)

При представлении квадратичной формы в виде суммы независимых квадратов, указанном выше, число положительных и отрицательных коэффициентов перед квадратами

Теорема (закон инерции квадратичных форм)

При представлении квадратичной формы в виде суммы независимых квадратов, указанном выше, число положительных и отрицательных коэффициентов перед квадратами переменных не зависит от представления.

Доказательство.

Пусть A(x,x) – квадратичная форма,

Доказательство.

Пусть A(x,x) – квадратичная форма, приведена к сумме квадратов с помощью двух преобразований $x=T\xi, x=Q\eta$:

Доказательство.

Пусть A(x,x) – квадратичная форма, приведена к сумме квадратов с помощью двух преобразований $x=T\xi, x=Q\eta$:

$$A(\xi,\xi) = \sum_{i=1}^{r} a_i \xi_i^2, \quad A(\eta,\eta) = \sum_{i=1}^{r} b_i \eta_i^2,$$

Доказательство.

Пусть A(x,x) – квадратичная форма, приведена к сумме квадратов с помощью двух преобразований $x=T\xi, x=Q\eta$:

$$A(\xi,\xi) = \sum_{i=1}^{r} a_i \xi_i^2, \quad A(\eta,\eta) = \sum_{i=1}^{r} b_i \eta_i^2,$$

где Q, T – квадратные неособенные матрицы.

Доказательство.

Пусть A(x,x) – квадратичная форма, приведена к сумме квадратов с помощью двух преобразований $x=T\xi, x=Q\eta$:

$$A(\xi,\xi) = \sum_{i=1}^{r} a_i \xi_i^2, \quad A(\eta,\eta) = \sum_{i=1}^{r} b_i \eta_i^2,$$

где Q, T – квадратные неособенные матрицы. Пусть среди коэффициентов a_i и b_j

Доказательство.

Пусть A(x,x) – квадратичная форма, приведена к сумме квадратов с помощью двух преобразований $x=T\xi, x=Q\eta$:

$$A(\xi,\xi) = \sum_{i=1}^{r} a_i \xi_i^2, \quad A(\eta,\eta) = \sum_{i=1}^{r} b_i \eta_i^2,$$

где Q, T – квадратные неособенные матрицы. Пусть среди коэффициентов a_i и b_j различное число положительных и отрицательных слагаемых:

Доказательство.

Пусть A(x,x) – квадратичная форма, приведена к сумме квадратов с помощью двух преобразований $x=T\xi, x=Q\eta$:

$$A(\xi,\xi) = \sum_{i=1}^{r} a_i \xi_i^2, \quad A(\eta,\eta) = \sum_{i=1}^{r} b_i \eta_i^2,$$

где Q, T – квадратные неособенные матрицы. Пусть среди коэффициентов a_i и b_j различное число положительных и отрицательных слагаемых:

$$\underbrace{a_{1}, a_{2}, \dots, a_{h}}^{>0}, \underbrace{a_{h+1}, \dots, a_{g}, a_{g+1}, \dots, a_{r}}_{b_{1}, b_{2}, \dots, b_{h}, b_{h+1}, \dots, b_{g}}, \underbrace{b_{g+1}, \dots, b_{r}}_{<0} \quad (h < g \le r).$$

Доказательство.

Рассмотрим равенство

$$A(x,x) = \sum_{i=1}^{h} a_i \xi_i^2 + \sum_{i=h+1}^{r} a_i \xi_i^2 = \sum_{i=1}^{g} b_i \eta_i^2 + \sum_{i=g+1}^{r} b_i \eta_i^2,$$

Доказательство.

Рассмотрим равенство

$$A(x,x) = \sum_{i=1}^{h} a_i \xi_i^2 + \sum_{i=h+1}^{r} a_i \xi_i^2 = \sum_{i=1}^{g} b_i \eta_i^2 + \sum_{i=g+1}^{r} b_i \eta_i^2,$$

где
$$x = T\xi = Q\eta$$
.

Доказательство.

Рассмотрим равенство

$$A(x,x) = \sum_{i=1}^{h} a_i \xi_i^2 + \sum_{i=h+1}^{f} a_i \xi_i^2 = \sum_{i=1}^{g} b_i \eta_i^2 + \sum_{i=g+1}^{f} b_i \eta_i^2,$$

где $x=T\xi=Q\eta$. Выберем такой набор x_j , чтобы

$$\xi_1 = \xi_2 = \ldots = \xi_h = 0, \quad \eta_{g+1} = \eta_{g+2} = \ldots = \eta_r = 0,$$
 $\xi_j \neq 0$ для некоторого $j \ (h < j \leq r).$

Доказательство.

Рассмотрим равенство

$$A(x,x) = \sum_{i=1}^{h} a_i \xi_i^2 + \sum_{i=h+1}^{f} a_i \xi_i^2 = \sum_{i=1}^{g} b_i \eta_i^2 + \sum_{i=g+1}^{f} b_i \eta_i^2,$$

где $x=T\xi=Q\eta$. Выберем такой набор x_j , чтобы

$$\xi_1 = \xi_2 = \ldots = \xi_h = 0, \quad \eta_{g+1} = \eta_{g+2} = \ldots = \eta_r = 0,$$
 $\xi_j \neq 0$ для некоторого $j \ (h < j \leq r).$

Тогда в верхнем равенстве с одной стороны получится, что A(x,x)<0, а с другой $A(x,x)\geq 0$, чего не может быть, значит h=g.

Доказательство.

Рассмотрим систему из n линейных уравнений от 2n неизвестных ξ_i и η_i ($i = \overline{1,n}$)

Доказательство.

Рассмотрим систему из n линейных уравнений от 2n неизвестных ξ_i и η_i ($i = \overline{1,n}$)

$$T\xi - Q\eta = 0$$

и h+r-g дополнительных линейных соотношений

$$\xi_1 = \xi_2 = \ldots = \xi_h = 0, \quad \eta_{g+1} = \eta_{g+2} = \ldots = \eta_r = 0.$$

Доказательство.

Рассмотрим систему из n линейных уравнений от 2n неизвестных ξ_i и η_i ($i = \overline{1,n}$)

$$T\xi - Q\eta = 0$$

и h+r-g дополнительных линейных соотношений

$$\xi_1 = \xi_2 = \ldots = \xi_h = 0, \quad \eta_{g+1} = \eta_{g+2} = \ldots = \eta_r = 0.$$

Так как r-(g-h) < n, то ранг матрицы суммарной системы с дополнительными соотношениями меньше числа неизвестных, поэтому существует нетривиальное решение, позволяющее считать $\xi_j \neq 0$ для некоторого j $(h < j \leq r)$.

При выделении квадратов в квадратичной форм возможны два случая:

При выделении квадратов в квадратичной форм возможны два случая:

1) Для некоторого $g \le n \, a_{gg} \ne 0$, тогда исключаем x_g по формуле

При выделении квадратов в квадратичной форм возможны два случая:

1) Для некоторого $g \le n \, a_{gg} \ne 0$, тогда исключаем x_g по формуле

$$A(x,x) = \frac{1}{a_{gg}} \left(\sum_{k=1}^{n} a_{gk} x_k \right)^2 + A_1(x,x).$$

При выделении квадратов в квадратичной форм возможны два случая:

1) Для некоторого $g \le n \, a_{gg} \ne 0$, тогда исключаем x_g по формуле

$$A(x,x) = \frac{1}{a_{gg}} \left(\sum_{k=1}^{n} a_{gk} x_k \right)^2 + A_1(x,x).$$

2) Пусть $a_{gg} = u \ a_{hh} = 0$, но $a_{gh} = a_{hg} \neq 0$,

При выделении квадратов в квадратичной форм возможны два случая:

1) Для некоторого $g \le n \, a_{gg} \ne 0$, тогда исключаем x_g по формуле

$$A(x,x) = \frac{1}{a_{gg}} \left(\sum_{k=1}^{n} a_{gk} x_k \right)^2 + A_1(x,x).$$

2) Пусть $a_{gg}=$ и $a_{hh}=0$, но $a_{gh}=a_{hg}\neq 0$, тогда

$$A(x,x) = \frac{1}{2a_{hg}} \left[\sum_{k=1}^{n} (a_{gk} + a_{hk}) x_k \right]^2 - \frac{1}{2a_{hg}} \left[\sum_{k=1}^{n} (a_{gk} - a_{hk}) x_k \right]^2 + A_2(x,x).$$

Теорема Якоби

Теорема (Теорема Якоби) Пусть квадратичная форма имеет вид

Теорема Якоби

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}),$$

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}),$$

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}),$$

$$D_1 = a_{11}$$
,

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}),$$

$$D_1=a_{11},\quad D_2=\begin{pmatrix}1&2\\1&2\end{pmatrix},$$

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k \quad (a_{ik} = a_{ki}),$$

$$D_1 = a_{11}, \quad D_2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \dots, D_n = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik}x_{i}x_{k} \quad (a_{ik} = a_{ki}),$$

и пусть главные миноры соответствующей ей матрицы A

$$D_1 = a_{11}, \quad D_2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \dots, D_n = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

все отличны от нуля.

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik}x_{i}x_{k} \quad (a_{ik} = a_{ki}),$$

и пусть главные миноры соответствующей ей матрицы A

$$D_1 = a_{11}, \quad D_2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \dots, D_n = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

все отличны от нуля. Тогда существуют линейные формы $\xi_i = \sum\limits_{k=1}^n \alpha_{ik} x_k,$

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik}x_{i}x_{k} \quad (a_{ik} = a_{ki}),$$

и пусть главные миноры соответствующей ей матрицы A

$$D_1 = a_{11}, \quad D_2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \dots, D_n = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

все отличны от нуля. Тогда существуют линейные формы $\xi_i = \sum\limits_{k=1}^n \alpha_{ik} x_k$, для которых квадратичная форма запишется в виде

Теорема (Теорема Якоби)

Пусть квадратичная форма имеет вид

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik}x_{i}x_{k} \quad (a_{ik} = a_{ki}),$$

и пусть главные миноры соответствующей ей матрицы A

$$D_1 = a_{11}, \quad D_2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \dots, D_n = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

все отличны от нуля. Тогда существуют линейные формы $\xi_i = \sum\limits_{k=1}^n \alpha_{ik} x_k$, для которых квадратичная форма запишется в виде

$$A(\xi,\xi) = \frac{D_0}{D_1}\xi_1^2 + \frac{D_1}{D_2}\xi_2^2 + \dots + \frac{D_{n-1}}{D_n}\xi_n^2, \quad D_0 = 1.$$

(без доказательства)

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной,

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной, если для любых значений переменных x_1, \ldots, x_n ,

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной, если для любых значений переменных x_1, \ldots, x_n , не равных одновременно 0,

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной, если для любых значений переменных x_1, \ldots, x_n , не равных одновременно 0, она принимает только положительные значения

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной, если для любых значений переменных x_1, \ldots, x_n , не равных одновременно 0, она принимает только положительные значения.

Теорема

Если положительно определенная квадратичная форма приведена к сумме квадратов,

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной, если для любых значений переменных x_1, \ldots, x_n , не равных одновременно 0, она принимает только положительные значения.

Теорема

Если положительно определенная квадратичная форма приведена к сумме квадратов, то все коэффициенты перед квадратами всегда больше 0

Определение

Вещественная квадратичная форма A(x,x) называется положительно определенной, если для любых значений переменных x_1, \ldots, x_n , не равных одновременно 0, она принимает только положительные значения.

Теорема

Если положительно определенная квадратичная форма приведена к сумме квадратов, то все коэффициенты перед квадратами всегда больше 0 и количество квадратов равно количеству переменных.

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x = T\xi$,

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x=T\xi$, тогда

$$A(x,x) = A(\xi,\xi) = \sum_{i=1}^{n} a_i \xi_i^2.$$

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x=T\xi$, тогда

$$A(x,x) = A(\xi,\xi) = \sum_{i=1}^{n} a_i \xi_i^2.$$

Предположим, что $a_j \le 0$ при некотором j.

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x=T\xi$, тогда

$$A(x,x) = A(\xi,\xi) = \sum_{i=1}^{n} a_i \xi_i^2.$$

Предположим, что $a_j \leq 0$ при некотором j. Тогда рассмотрим вектор $\xi^0 = \{0,\dots,0,\underbrace{1}_{\text{j-e место}},0,\dots,0\}$

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x=T\xi$, тогда

$$A(x,x) = A(\xi,\xi) = \sum_{i=1}^{n} a_i \xi_i^2.$$

Предположим, что $a_j \leq 0$ при некотором j. Тогда рассмотрим вектор $\xi^0 = \{0,\dots,0,\underbrace{1}_{\text{j-e место}},0,\dots,0\}$ и $x^0 = T\xi^0 \neq 0$.

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x=T\xi$, тогда

$$A(x,x) = A(\xi,\xi) = \sum_{i=1}^{n} a_i \xi_i^2.$$

Предположим, что $a_j \leq 0$ при некотором j. Тогда рассмотрим вектор $\xi^0 = \{0,\dots,0,\underbrace{1}_{\text{j-e место}},0,\dots,0\}$ и $x^0 = T\xi^0 \neq 0$. С одной сторо-

ны $A(x^0, x^0) > 0$, т.к. форма положительно определена,

Доказательство.

Предположим, положительно определенная квадратичная форма A(x,x) приведена к сумме квадратов с помощью линейного преобразования $x=T\xi$, тогда

$$A(x,x) = A(\xi,\xi) = \sum_{i=1}^{n} a_i \xi_i^2.$$

Предположим, что $a_j \leq 0$ при некотором j. Тогда рассмотрим вектор $\xi^0 = \{0,\dots,0,\underbrace{1}_{\text{j-е место}},0,\dots,0\}$ и $x^0 = T\xi^0 \neq 0$. С одной сторо-

ны $A(x^0,x^0)>0$, т.к. форма положительно определена, с другой $A(\xi^0,\xi^0)\leq 0$ из за выбора ξ_0 .

Критерий Сильвестера

Теорема (критерий Сильвестера) Для того чтобы квадратичная форма

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k$$

Критерий Сильвестера

Теорема (критерий Сильвестера) Для того чтобы квадратичная форма

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k$$

была положительно определенной,

Критерий Сильвестера

Теорема (критерий Сильвестера)

Для того чтобы квадратичная форма

$$A(x,x) = \sum_{i,k=1}^{n} a_{ik} x_i x_k$$

была положительно определенной, необходимо и достаточно, чтобы все главные миноры формы были положительные. (Доказательство вытекает из теоремы Якоби.)