

Collective Operations with Notified Communication in Shared Windows

Muhammed Abdullah Al Ahad, Christian Simmendinger, Roman lakymchuk, Erwin Laure and Stefano Markidis

Notified communication in shared memory

Context: Extension of GASPI notified communication for shared memory.

Collectives as testbed for evaluating programmability and performance.

- Allreduce
 - Pipelined ring
 - Dissemination
- AllgatherV

Synchronisation with Notifications

- Designated communication areas in GASPI are called memory segments.
- Segments are freely configurable.
- GASPI uses notified write and read (weak synchronization).
- GASPI also supports bundled write and notify as a single call: write_notify (and read_notify)
- GASPI is interoperable with MPI and allows incremental porting

Synchronisation with Notifications

Q: How can we extend notified communication for shared segments?
 A: Use local notifications in shared data segments and share remote notifications across local ranks.

Testbed – Collectives in Shared Windows

Testbed for notified communication - Collectives.

Allreduce with GASPI shared segments

- Pipelined Ring for large message sizes
 - 2-stage pipelined process, reduce + broadcast
 - Highly parallel pipeline for fast ramp-up (latency ~2(n-1))
 - Shared memory for node internal communication
 - Leverage available bandwidth / compute for reduce

Allreduce / Allgather(V) - Pipelined Ring

Allreduce / Allgather(V) - Load Distribution across Local Ranks

All ranks

participate in

reducing and

forwarding data

at any point in

time

Allreduce - Pipelined Ring

Allreduce - Pipelined Ring

#int - 1000000

Testbed – Collectives in Shared Windows

Testbed for notified communication - Collectives.

Allreduce with GASPI shared segments

- Dissemination algorithm
 - Log2(m) dissemination steps, where m <= 2^n.
 - Hide communication of additionally required dissemination steps for m != 2^n
 - Decompose number of ranks as

$$n = \sum_{k=l}^{0} c_k 2^k$$
, with $c_k \in \{0, 1\}$

• In step j, rank i writes additional out of band msg to target t where

$$t = (i + \sum_{k=l}^{j+1} c_k 2^k)$$

Allreduce - Dissemination

Allgather(V)

Testbed for notified communication - Collectives.

Allgather(V) with GASPI shared segments

- Irregular data distribution
- Pipelined ring with dynamic load distribution

Allgather(V): Performance results

Data distribution

Regular, linear decreasing, broadcast

Questions?

Thank you for your attention