Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2016

Tecnologia industrial

Sèrie 1

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

En un motor asíncron de corrent altern de quatre parells de pols, que està connectat a la xarxa de tensió $U=230\,\mathrm{V}$ i freqüència $f=50\,\mathrm{Hz}$, la velocitat de sincronisme és

- a) $750 \,\mathrm{min^{-1}}$.
- **b**) 1 800 min⁻¹.
- c) $1500 \,\mathrm{min^{-1}}$.
- d) 3 000 min⁻¹.

Qüestió 2

La fabricació d'una peça es duu a terme en dos processos: el primer en una fresadora i el segon en una rectificadora. Després de cada procés, es controla la qualitat de les peces i es desestimen les que no són correctes. D'un total inicial de 1 500 peces, se n'han desestimat 75 després del fresatge i 6 després de la rectificació. Quina és la taxa de rebuig del procés de rectificació?

- a) 8%
- **b**) 0,42 %
- c) 0,40 %
- d) 5,4 %

Qüestió 3

Un aliatge de coure, que s'utilitza per a elèctrodes de soldadura, conté un 96,9 % de coure (Cu), un 2,5 % de cobalt (Co) i un 0,6 % de beril·li (Be). Amb 500 kg de coure, quina quantitat de cobalt cal per a obtenir aquest aliatge?

- *a*) 96,9 kg
- **b**) 12,50 kg
- *c*) 12,90 kg
- d) 2,5 kg

Qüestió 4

En un plànol s'acoten les mides L_1 , L_2 i L_3 . Si es vol que la tolerància de l'amplària s sigui de \pm 150 μ m, quina tolerància general cal indicar?

- a) $\pm 50 \,\mu\text{m}$
- **b**) $\pm 150 \, \mu m$
- c) $\pm 300 \, \mu m$
- $d) \pm 100 \, \mu \text{m}$

Qüestió 5

Es mesura diverses vegades el temps que tarda un tren a recórrer un tram de 10 km i s'obtenen els temps següents: 11,23 min, 9,61 min, 10,47 min i 9,86 min. Seria correcte dir que el temps obtingut en el procés de mesurament ha estat de 10,29 min?

- a) No, el resultat hauria de ser el valor més baix obtingut.
- b) Sí, ja que és el valor mitjà de les mesures.
- *c*) Sí, ja que es troba entre els marges dels valors obtinguts.
- d) No, caldria donar el resultat amb menys xifres decimals.

Exercici 2

[2,5 punts en total]

Un climatitzador automàtic posa en marxa el mode «aire condicionat» si la temperatura interior del vehicle és superior a la temperatura de consigna $T_{\rm c}$, sempre que la temperatura de consigna sigui més de 3 °C inferior a la temperatura exterior del vehicle. El sistema també té un sensor que apaga l'aire condicionat si detecta que hi ha alguna finestra oberta. Responeu a les qüestions que hi ha a continuació utilitzant les variables d'estat següents:

temperatura interior:
$$i = \begin{cases} 1: \text{ si } T_{\text{interior}} > T_{\text{c}} \\ 0: \text{ si } T_{\text{interior}} \le T_{\text{c}} \end{cases}$$
; temperatura exterior: $e = \begin{cases} 1: \text{ si } T_{\text{c}} \ge T_{\text{exterior}} - 3 \text{ °C} \\ 0: \text{ si } T_{\text{c}} < T_{\text{exterior}} - 3 \text{ °C} \end{cases}$;

finestres:
$$f = \begin{cases} 1 \text{: obertes} \\ 0 \text{: tancades} \end{cases}$$
; aire condicionat: $ac = \begin{cases} 1 \text{: engegat} \\ 0 \text{: apagat} \end{cases}$

a) Escriviu la taula de veritat del sistema.

[1 punt]

- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de portes lògiques equivalent.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

Es vol construir una estrella com la de la figura a partir d'un tauler de fusta. La botiga en calcula el cost segons l'expressió $c = c_1 s + c_2 p$, en què s és la superfície de fusta utilitzada i p és el perímetre de les peces tallades. El primer coeficient de cost és $c_1 = 10 \, \text{e/m}^2$ i l'altre coeficient de cost és $c_2 = 0.5 \, \text{e/m}$ si el perfil és senzill (com, per exemple, un triangle) o és $c_2 = 1.3 \, \text{e/m}$ si el perfil és complex (com, per exemple, una estrella). Determineu:

a) La superfície *s* de fusta utilitzada.

[0,5 punts]

[0,5 punts]

- **b**) El perímetre tallat p_1 si es construeix a partir de triangles com els de la figura. [1 punt]
- c) El perímetre tallat p_2 si es construeix tallant el perfil exterior de l'estrella. [0,5 punts]
- d) El cost de cadascuna de les opcions. Quina és la més econòmica?

Exercici 4

[2,5 punts en total]

Els llums antiboira d'un automòbil consumeixen un corrent $I_{\rm b}=10,22\,{\rm A}$ quan s'alimenten directament a 12 V. La bateria i els llums es connecten amb un cable bipolar que té una longitud $L=3\,{\rm m}$ i és de coure de resistivitat $\rho=1,7\times10^{-8}\,{\rm \Omega}$ m. El circuit s'alimenta amb una bateria de tensió $U=12\,{\rm V}$. Si es vol que la caiguda de tensió en el cable no sigui superior al 3 %, determineu:

a) La secció mínima que ha de tenir el cable.

[1 punt]

Si s'utilitza un cable de secció $S = 4 \text{ mm}^2$, determineu:

b) La resistència del cable R_{cable} .

[0,5 punts]

c) La potència que consumeixen conjuntament el cable i els llums.

[1 punt]

OPCIÓ B

Exercici 3

[2,5 punts en total]

El sistema de la figura s'utilitza per a fer pujar un bloc de massa $m=50\,\mathrm{kg}$. La relació entre la variació d'altura Δh del bloc i l'angle girat pel motor φ_{motor} és:

$$\Delta h = \varphi_{\text{motor}} \frac{(r_1 - r_2)r_3}{2r_1}$$

El cable utilitzat és de secció circular, amb un diàmetre d = 5 mm, i té un mòdul d'elasticitat E = 130 GPa.

Quan el bloc puja a velocitat constant, determineu:

- a) La tensió $σ_n$ i la deformació ε normals del cable indicat en la figura. [1 punt]
- **b)** L'allargament del cable ΔL , si la llargària lliure del cable sense el bloc penjat és $L = 2\,000$ mm.

[0,5 punts]

c) El parell Γ que desenvolupa el motor. [1 punt]

Exercici 4

[2.5 punts en total]

El parell motor Γ d'un motor de corrent continu i la intensitat I del corrent que hi circula són donats per les expressions següents, en què U és la tensió d'alimentació, ω és la velocitat angular de l'eix, $R = 0.03 \Omega$ i c = 0.02 N m/A.

$$\Gamma = c I$$

$$I = \frac{U - c \,\omega}{R}$$

Quan la intensitat I és de 50 A, la potència que consumeix el motor és de 600 W. Determineu:

a) La tensió d'alimentació U del motor quan I = 50 A.

[0,5 punts]

Si el motor s'alimenta amb la tensió obtinguda en l'apartat anterior:

b) Determineu la velocitat angular ω de l'eix del motor quan I = 100 A. [1 punt]

c) Dibuixeu, d'una manera aproximada i indicant les escales, la corba del rendiment en funció de la velocitat de gir per a $0 \le \omega \le 600 \,\text{rad/s}$. [1 punt]

