SI01-3 Du cours au programme Python 11-2021

Méthode 1 : passer de la base 2 à la base 10

Que vaut (11101)₂?

Chiffre binaire	1	1	1	0	1
Valeur	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

$$(11101)_2 = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 16 + 8 + 4 + 1
= 29

Exercice 1

Écrire une fonction methode1 qui

- en entrée prend un **str** composé de 0 et de 1 qui est l'écriture binaire d'un entier;
- renvoie un **int** qui est cet entier (en décimal, donc).

Tester la fonction.

Méthode 2 : passer de la base 10 à la base 2

$$203 = 128 + 64 + 8 + 2 + 1$$

$$= 2^{7} + 2^{6} + 2^{3} + 2^{1} + 2^{0}$$

$$= 1 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= (11001011)_{2}$$

Exercice 2

Écrire une fonction methode2 qui :

- en entrée prend un entier positif;
- renvoie l'écriture en binaire de cet entier dans un **str** en utilisant la méthode 2.

Tester la fonction.

Méthode 3 : les divisions successives

Voici comment on trouve les chiffres de l'écriture binaire de 203 :

En définitive, 203 = $(11001011)_2$.

Exercice 3

Écrire une fonction methode3 qui :

- en entrée prend un entier positif;
- renvoie l'écriture en binaire de cet entier dans un **str** en utilisant la méthode 3.

Tester la fonction.