Workshop G2 TP2

Alvarez, Martha Roa, Fernando Tasat, Kevin

Objetivo

Entrenar un modelo que pueda predecir el precio de una propiedad a partir del dataset de Properatti el cual contiene una serie de inmuebles ubicados en diferentes estados de Argentina y se suministran algunas características geográficas y propias de tales inmuebles.

Metodología

1

Entender la data a través de un análisis exploratorio calculando estadísticas y mediante la visualización de variables que a priori consideramos puedan tener un poder de predicción importante.

2

Realizar una limpieza del dataset, imputando registros cuando se considere pertinente y en otros casos omitiendo registros por considerarlos incompletos, además de buscar la consistencia en los datos. También se realizará un análisis de valores extremos.

3

Finalmente, con la data resultante, fijar un objetivo en cuanto al tipo de propiedad y/o localizaciones para entrenar modelos de regresión lineal con y sin regularización.

Análisis Exploratorio

Análisis exploratorio de la información

Tamaño del dataset

data.shape

(121220, 26)

Eliminamos 'Unnamed: 0','properati_url','image_thumbnail'

Eliminamos duplicados

data.shape

(116140, 23)

price

place_with_parent_names

currency price aprox local currency

price usd per m2

price per m2

floor

rooms

title

expenses description

operation

property_type

country name

state name

lat-lon

lat lon

geonames id

place name

price aprox usd surface total in m2 surface covered in m2

108481 69941

cant_nulos porcentaje_nulos

0.000000

0.000000

0.000198

0.000000

0.000000

0.000000

0.156535

0.415783

0.415783

0.415783

0.151162

0.151171

0.151162

0.151162

0.330446

0.162330

0.424393

0

0

23

0

0

0

18180

48289

48289

48289

17556

17557

17556

17556

102055

2

0

0.262123 0.934054

0.602213 0.878724 0.000017

0.000000

Distribución de Tipo de Propiedad 30000 Distribución de Estados TH 15000

Distribución de Barrios | Localidades

Limpieza

Imputación

operation property_type place_name place_with_parent_names country_name state_name geonames_id lat-lon lat lon price currency price_aprox_local_currency price_aprox_usd surface_total_in_m2	0 0 23 0 0 0 18180 48289 48289	0.000000 0.000000 0.000198 0.000000 0.000000 0.000000 0.156535 0.415783 0.415783	0 0 0 0 0 0 1910 48289 48289	0.000000 0.000000 0.000198 0.000000 0.000000 0.000000 0.156535 0.415783 0.415783	0 0 23 0 0 0 16270 0
place_name place_with_parent_names country_name state_name geonames_id lat-lon lat lon price currency price_aprox_local_currency price_aprox_usd	23 0 0 0 18180 48289 48289	0.000198 0.000000 0.000000 0.000000 0.156535 0.415783 0.415783	0 0 0 0 1910 48289 48289	0.000198 0.000000 0.000000 0.000000 0.156535 0.415783 0.415783	23 0 0 0 16270 0
place_with_parent_names	0 0 0 18180 48289 48289	0.000000 0.000000 0.000000 0.156535 0.415783	0 0 0 1910 48289 48289	0.000000 0.000000 0.000000 0.156535 0.415783	0 0 0 16270 0
country_name state_name geonames_id lat-lon lat lon price currency price_aprox_local_currency price_aprox_usd	0 0 18180 48289 48289	0.000000 0.000000 0.156535 0.415783 0.415783	0 0 1910 48289 48289	0.000000 0.000000 0.156535 0.415783 0.415783	0 0 16270 0
state_name geonames_id lat-lon lat lon price currency price_aprox_local_currency price_aprox_usd	0 18180 48289 48289	0.000000 0.156535 0.415783 0.415783	0 1910 48289 48289	0.000000 0.156535 0.415783 0.415783	0 16270 0 0
geonames_id lat-lon lat lon price currency price_aprox_local_currency price_aprox_usd	18180 48289 48289	0.156535 0.415783 0.415783	1910 48289 48289	0.156535 0.415783 0.415783	16270 0 0
lat-Ion lat lon price currency price_aprox_local_currency price_aprox_usd	48289 48289	0.415783 0.415783	48289 48289	0.415783 0.415783	0
lat lon price currency price_aprox_local_currency price_aprox_usd	48289	0.415783	48289	0.415783	0
lon price currency price_aprox_local_currency price_aprox_usd					
price currency price_aprox_local_currency price_aprox_usd	48289	0.415783	48289	0.415783	0
currency price_aprox_local_currency price_aprox_usd			10203	0.413703	U
price_aprox_local_currency price_aprox_usd	17556	0.151162	14845	0.151162	2711
price_aprox_usd	17557	0.151171	14847	0.151171	2710
	17556	0.151162	17185	0.151162	371
surface_total_in_m2	17556	0.151162	15217	0.151162	2339
	38378	0.330446	11641	0.330446	26737
surface_covered_in_m2	18853	0.162330	11641	0.162330	7212
price_usd_per_m2	49289	0.424393	49289	0.424393	0
price_per_m2	30443	0.262123	30443	0.262123	0
floor	108481	0.934054	108481	0.934054	0
rooms	100-101				0

Análisis y Limpieza de Valores Extremos

Modelo: Regresión Lineal Simple

¿Cómo es el dataset con el que entrenaremos?

P	property_type	state_name	place_name	lat	Ion	surface_total_in_m2	price_aprox_usd
0	PH	Capital Federal	Mataderos	-34.661824	-58.508839	55.000000	62000.000000
1	apartment	Capital Federal	Mataderos	-34.652262	-58.522982	55.000000	72000.000000
2	apartment	Buenos Aires Costa Atlántica	Centro	-38.002626	-57.549447	35.000000	64000.000000

La variable target es 'price_aprox_usd'.

Las **features** que consideramos que tienen un alto poder de predicción del precio total de un inmueble son:

- property_type.
- state_name.
- place_name.
- lat.
- Ion.
- surface_total_in_m2.

Nuestro dataset contendrá únicamente el **tipo de propiedad** predominante que es **apartamentos** y el **state_name** predominante en el dataset que es **Capital Federal**.

Shape: (14402, 6)

Análisis de Correlación

Se observa una **buena correlación** de las variables de **ubicación espacial y** de **superficie total con** la **variable target precio total**. Se construirá un modelo simple con cada variable mencionada

Regresión Precio vs Superficie

OLS Regression Results

```
Dep. Variable:
                    price aprox usd
                                     R-squared:
                                                                    0.600
                                     Adj. R-squared:
Model:
                                                                   0.600
Method:
                   Least Squares
                                     F-statistic:
                                                                2.162e+04
                Wed, 16 Mar 2022
                                    Prob (F-statistic):
                                                                    0.00
Date:
                                     Log-Likelihood: -1.8018e+05
Time:
                          22:27:57
No. Observations:
                             14402
                                     AIC:
                                                                3.604e+05
Df Residuals:
                             14400
                                     BTC:
                                                                3.604e+05
Df Model:
Covariance Type:
                         nonrobust
               coef
                       std err
                                             P> t
                                                       [0.025
                                                                   0.975]
                    1311.032 -8.221 0.000 -1.33e+04
          -1.078e+04
                                                                -8208.284
const
                       18.705 147.035
                                             0.000
           2750.2320
                                                   2713.569
                                                                 2786.895
Omnibus:
                          9448.446
                                    Durbin-Watson:
                                                                   1.717
Prob(Omnibus):
                             0.000
                                    Jarque-Bera (JB):
                                                              304705.373
                                    Prob(JB):
Skew:
                             2.678
                                                                    0.00
                            24.888
Kurtosis:
                                     Cond. No.
                                                                    168.
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

- Obtenemos un R2 de 0.600, el cual nos indica la proporción de la variabilidad que es explicada por la variable surface_total_in_m2, respecto al modelo base que sería el precio promedio de los apartamentos en Capital Federal.
- Con un p-value de 0.000 podemos decir que la relación entre la variable surface_total_in_m2 y price_aprox_usd no es producto del azar.
- Por cada m2 que aumenta el área total, el precio total aumenta en 2750.23 dólares.

Regresión Precio vs Superficie

Se observa una **buena correlación** de las variables de **ubicación espacial y** de **superficie total con** la **variable target precio total**. Se construirá un modelo simple con cada variable mencionada

Modelo: Regresión Lineal Múltiple

	OLS Regres	sion F	Results				
Dep. Variable:	price aprox usd	R-sc	uared:		0.78	== 30	
Model:	OLS	Adj.	R-squared:		0.77	79	
Method:	Least Squares	F-st	atistic:		1029).	
Date:	Wed, 16 Mar 2022	Prob	(F-statist	ic):	0.6	90	
Time:	22:27:58	Log-	Likelihood:		-1.3204e+6	95	
No. Observations:	10801	AIC:			2.642e+6	95	
Df Residuals:	10763	BIC:			2.644e+6	95	
Df Model:	37						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975]
const	1.635	 e+05	478,249	341.890	0.000	1.63e+05	1.64e+05
lat	2.085	e+04	1715.774	12.150	0.000	1.75e+04	2.42e+04
lon	1.771	e+04	1704.270	10.392	0.000	1.44e+04	2.11e+04
surface total in m2	7.135	e+04	485.178	147.058	0.000	7.04e+04	7.23e+04
place name Balvanera	-5418.	9528	611.240	-8.866	0.000	-6617.095	-4220.810
place name Barracas	-1305.	7192	630.352	-2.071	0.038	-2541.326	-70.113
place name Barrio Nor	te 5127.	5139	682.791	7.510	0.000	3789.118	6465.910
place name Belgrano	7768.	1997	1234.223	6.294	0.000	5348.895	1.02e+04
place_name_Boedo	65.	8297	550.514	0.120	0.905	-1013.280	1144.940
place_name_Caballito	9895.	7141	854.439	11.582	0.000	8220.857	1.16e+04
place_name_Capital Fe	deral 1300.	4718	618.873	2.101	0.036	87.367	2513.577
place_name_Centro / M	licrocentro -2412.	1924	506.664	-4.761	0.000	-3405.347	-1419.038
place name Chacarita	336.	0100	567.577	0.592	0.554	-776.545	1448.565
place_name_Coghlan	1023.	9599	661.073	1.549	0.121	-271.866	2319.786
place name Colegiales	1835.	1303	615.893	2.980	0.003	627.867	3042.394

Obtenemos un **R2 ajustado de 0.780**, los cual nos indica que el modelo obtenido explica una proporción significativa de la variabilidad.

Con un nivel de significación del 0.05, podemos decir que los coeficientes de variables como: place_name_Boedo, place_name_Chacarita, place_name_Coghlan, place_name_Parque Patricios, place_name_Parque Retiro y place_name_Parque Saavedra tienden a ser nulos, lo que en otras palabras significa que su aporte al modelo no es significativo.

Modelo: Regresión Lineal Múltiple Interacción entre variables

Realizamos un modelo de regresión lineal simplificado, considerando solamente variables de superficie, latitud y longitud sin interacción entre las mismas.

Luego, lo comparamos contra otro modelo con las mismas variables más su respectiva interacción entre ellas.

	Sin Interacción	Con Interacción	
Cantidad Variables	3	7*	
R2	0.643	0.665	
Valor de Significación	0.05	0.05	
Cantidad Variables Significativas	3	7	

^{*}Variables interacción: lat_x_lon; surface_cuad; lat_cuad; lon_cuad

Modelo: Regresión Lineal Múltiple Lasso & Ridge

	Lasso	Ridge
Cantidad Variables	Todas	Todas
Best Alpha	10	10
Intercepto	163497.95	163503.42
R2 entrenamiento	0.77955	0.77955
R2 pruebas	0.752155	0.752157
Overfitting	No	No
Variables Significativas	Beta>1500	Beta>1500

Modelo: Regresión Lineal Múltiple Comparación

La magnitud de los betas entre los 3 modelos entrenados es similar.

Para el modelo Lasso ningún coeficiente se vuelve 0. Sin embargo, algunos Betas son comparativamente bastante pequeños respecto a las otras variables, lo que nos muestra que el aporte de la variabilidad que explican es muy bajo.

Los betas de los modelos regularizados en general, tienden a ser un poco menores respecto a los betas del modelo sin regularización para variables con menor poder predictivo.

Variable	Beta_sin_regul	Beta_lasso	Beta_ridge
const	163508.432969	163497.953008	163503.422860
lat	20847.232153	20892.030098	20689.382513
lon	17710.659737	17132.410635	17399.957723
surface_total_in_m2	71349.333663	71352.371706	71294.877648
place_name_Balvanera	-5418.952753	-5420.443738	-5449.322368
place_name_Barracas	- <mark>1</mark> 305.719223	-1242.211207	-1319.760624
place_name_Barrio Norte	5127.513927	5103.814610	5108.081641
place_name_Belgrano	7768.199687	7472.069575	7660.336846
place_name_Boedo	65.829708	27.850523	18.928390
place_name_Caballito	9895.714111	9676.487851	9706.183903
place_name_Capital Federal	1300.471841	1223.591872	1240.945051
place_name_Centro / Microcentro	-2412.192371	-2376.985845	-2410.790362
place_name_Chacarita	336.009957	240.513718	285.641519
place_name_Chacarita	336.009957	240.513718	285.641519

Conclusión

Tomando un modelo simplificado, con superficie total, latitud, longitud y si el inmueble está en Palermo, Belgrano, Madero, Recoleta o Caballito, y dejando el resto de lugares clasificados como 'otro', seguramente tendríamos un modelo con buen rendimiento y mucho más sencillo.

Modelo: Prueba datos dummy

Predicciones

Introduzca las características del inmueble para predecir su precio en la siguiente celda:

Nota: Elegir un place_name entre 'Belgrano', 'Palermo', 'Flores', 'Boedo', 'Balvanera', 'Caballito', 'Nuñez', 'Barrio Norte', 'Villa Crespo', 'Puerto Madero', 'Constitución', 'Recoleta', 'Colegiales', 'Villa Urquiza', 'Saavedra', 'Barracas', 'Coghlan', 'Almagro', 'San Telmo', 'Monserrat', 'Villa Devoto', 'San Cristobal', 'Floresta', 'Retiro', 'Capital Federal', 'Chacarita', 'Congreso', 'Villa del Parque', 'Liniers', 'Centro / Microcentro', 'Parque Patricios', 'Once', 'San Nicolás', 'Villa Luro'

```
property_type = 'apartment' # Única opción
place_name = 'Saavedra'
lat = -34.556875
lon = -58.444444
surface_total_in_m2 = 70
```

La predicción de los modelos es: Modelo sin regularización: 241155.20361726292 Modelo lasso: 179244.2095991452

Modelo Ridge: 179482.1856565378

MUCHAS GRACIAS