$$x_{ij}^k = \begin{cases} 1, & \text{if edge } (i,j) \text{ from graph } G_k \text{ is selected,} \\ 0, & \text{otherwise.} \end{cases}$$

$$\text{minimize } f = \sum_{k=1}^2 \sum_{(i,j) \in E_k} w_{ij}^k x_{ij}^k$$

$$\sum_{k=1}^2 \sum_{j \in V} x_{ij}^k = 2, \quad orall i \in V$$

$$\sum_{(i,j) \in S \times (V \setminus S)} x_{ij}^k \ge 2, \quad \forall S \subset V, S \neq \emptyset, S \neq V, k \in \{1,2\} \tag{1}$$

$$\sum_{(i,j)\in E_1} x_{ij}^1 \leq N_1 \quad \text{and} \quad \sum_{(i,j)\in E_2} x_{ij}^2 \leq N_2, \quad \forall i,j \in V$$

$$w_{ij}^k = \alpha \cdot \mathrm{cost}_{ij}^k + \beta \cdot \mathrm{time}_{ij}^k, \quad where \quad \alpha + \beta = 1$$

$$ext{minimize } f = \sum_{k=1}^2 \sum_{(i,j) \in E_k} (lpha \cdot \operatorname{cost}_{ij}^k + eta \cdot \operatorname{time}_{ij}^k) x_{ij}^k$$

Segment	Transportation Mode	Cost (¥)	Time (hours)
$London \rightarrow Copenhagen$	Airplane	669.0	2.0
$Copenhagen \rightarrow Barcelona$	${f Airplane}$	1214.0	3.0
$\mathrm{Barcelona} o \mathrm{Rome}$	${f Airplane}$	634.0	2.0
$\mathrm{Rome} \to \mathrm{Budapest}$	${f Airplane}$	489.0	1.67
$\mathrm{Budapest} o \mathrm{Vienna}$	Train	175.0	2.63
${f Vienna} ightarrow {f Zurich}$	Train	630.0	8.0
$\mathbf{Zurich} o \mathbf{Berlin}$	Train	$\boldsymbol{455.0}$	9.0
$\operatorname{Berlin} o \operatorname{Amsterdam}$	Train	599.0	6.3
$\mathbf{Amsterdam} \to \mathbf{Paris}$	Train	697.0	3.5
$\mathbf{Paris} \to \mathbf{London}$	Train	1148.0	2.0
Total		6710.0	40.3

Table 1:
$$\alpha = 0.3, \beta = 0.7, N_1 = 4, N_2 = 10$$

Parameters	Cost (Y)	Time (hours)
$lpha = 0, eta = 1, N_1 = N_2 = 10$	7241.0	13.33
$\alpha=1,\beta=0,N_1=N_2=10$	4203.0	57.66
$lpha = 0.3, eta = 0.7, N_1 = N_2 = 10$	5952.0	13.65
$lpha = 0.3, eta = 0.7, N_1 = 4, N_2 = 10$	6710.0	40.3

Table 2: Summary of Total Costs and Time for Different Parameters