IFT 615 – Intelligence Artificielle

Matière pour le final

Hugo Larochelle

Département d'informatique

Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

L'examen final est récapitulatif

Contenu avant l'intra

- Agents intelligents
- Recherche heuristique
- Recherche locale
- Recherche pour jeux à deux adversaires
- Satisfaction de contraintes
- Logique du premier ordre
- Raisonnement probabiliste
- Réseaux bayésiens

Contenu après l'intra

- Réseaux bayésiens dynamiques
- Processus de décision markoviens
- Apprentissage automatique
- Apprentissage par renforcement
- Traitement automatique de la langue
- Vision par ordinateur

Agents intelligents

- Concept d'agent (modèle PEAS)
- Types (caractéristiques) d'environnement

Recherche heuristique

- Algorithme A*
 - savoir le simuler
 - connaître ses propriétés théoriques
- Concept d'heuristique (admissible, cohérente/monotone)

Recherche locale

- Algorithmes de recherche locale
 - hill climbing
 - simulated annealing
 - tabu-search
 - algorithmes génétiques
- Savoir simuler ces algorithmes
- Connaître leurs propriétés (avantages vs. désavantages)

Recherche pour jeux à deux adversaires

- Algorithme minimax
 - savoir le simuler
 - connaître ses propriétés
- Algorithme d'élagage alpha-beta
 - savoir le simuler
- Approche générale pour traiter le cas en temps réel

Satisfaction de contraintes

- Savoir formuler un problème sous forme d'un problème de satisfaction de contraintes (variables, domaines, contraintes)
- Algorithme backtracking-search
 - savoir le simuler
 - connaître les différentes façon de l'améliorer
- Comment résoudre un CSP avec la recherche locale

Logique du premier ordre

- Savoir comment écrire des formules en logique de premier ordre
 - connaître la syntaxe
- Comment traduire une assertion sous forme de logique
- Comment faire une preuve par résolution
 - concept de substitution
 - concept d'unification et d'UPG
 - forme normale conjonctive

Raisonnement probabiliste

- Maîtriser les concepts de probabilité de base
 - probabilité vs. distribution
 - probabilité conjointe vs. conditionnelle
 - indépendance, indépendance conditionnelle
 - règle de chaînage
- Étant donnée une table de probabilités
 - comment calculer la probabilité d'une proposition
 - comment calculer une probabilité marginale, conjointe, conditionnelle
 - comment déterminer si des variables sont (conditionnellement) indépendantes

Réseaux bayésiens

- Savoir ce qu'est un réseau bayésien
 - qu'est-ce que la topologie représente
 - quelle est la distribution conjointe associée à un réseau bayésien
- Étant donné un réseau bayésien
 - savoir calculer une probabilité conjointe, marginale, conditionnelle
 - savoir dire si deux variables sont (conditionnellement) indépendantes

Réseaux bayésiens dynamique

- Savoir distinguer les différents types d'inférence
 - distribution de filtrage
 - distribution de prédiction
 - distribution de lissage
 - explication la plus plausible
- Savoir ce qu'est un modèle de Markov caché
 - \diamond connaître les définitions des tableaux α , β , π et α^* (que calcule ces tableaux?)
 - \diamond savoir utiliser des tableaux α , β , π et α^* pré-calculés

Processus de décision markoviens

- Connaître la définition d'un processus de décision markovien
- Savoir simuler value iteration
- Être capable d'expliquer le fonctionnement de *policy iteration*

Apprentissage automatique

- Savoir simuler les algorithmes vus
 - k plus proches voisins
 - Perceptron
 - régression logistique
 - réseau de neurones
- Savoir faire une dérivée partielle
- Savoir comment développer et évaluer (de façon non-biasée) un système basé sur un algorithme d'apprentissage automatique
- Comprendre les notions de sous-apprentissage et surapprentissage
- Savoir ce qu'est un hyper-paramètre

Apprentissage par renforcement

- Savoir quand est-ce qu'on a besoin d'apprentissage par renforcement (et value iteration/policy iteration ne sont pas applicables)
- Connaître la différence entre l'apprentissage passif vs. actif
- Savoir simuler les algorithmes
 - estimation directe
 - différence temporelle (TD)
 - Q-learning
- Savoir décrire
 - programmation dynamique adaptative (PDA), actif ou passif
 - recherche de plan/politique
- Savoir ce qu'est le dilemme exploration vs. exploitation, et comment on le traite
- Savoir ce qu'est l'approximation de fonction et à quoi ça sert

Traitement automatique de la langue

- Savoir faire de la classification de documents
 - simuler la classification à l'aide du modèle bayésien naïf multinomial
 - comprendre les hypothèses faites par ce modèle
 - comprendre l'impact du prétraitement des données
- Savoir ce qu'est un modèle de langage
 - savoir ce qu'est un modèle n-gramme
 - connaître les techniques de lissage et à quoi elles servent
 - savoir à quoi peut servir un modèle de langage
- Étiquetage syntaxique et extraction d'information
 - savoir comment on peut résoudre ces problèmes à l'aide d'un modèle de Markov caché

Vision par ordinateur

- Savoir calculer une convolution
- Savoir décrire globalement ce qu'est un contour et comment on peut les détecter
- Savoir décrire ce qu'est un gradient d'image et connaître ses propriétés (norme vs. orientation)
- Savoir décrire l'extraction de caractéristiques HoG d'une image et la classification d'images à partir de ces caractéristiques
- Savoir ce qui distingue un réseau de neurones à convolution d'autres sortes de réseaux de neurones

Lors de l'examen

- Le livre de référence et deux feuilles manuscrites sont autorisés
- Vous avez droit (et aurez besoin) d'une calculatrice
- Tout appareil muni d'un moyen de communication est interdit
- Utilisez un bon français