Simple Linear Regression: Estimation

EC 320: Introduction to Econometrics

Emmett Saulnier Spring 2022

Prologue

Housekeeping

- Midterm is next Thursday (4/28).
 - Test will be in person in the same classroom as we usually are in
 - Content will cover anything that we've talked about through the end of lecture on Thursday (4/21).
 - Similar style as the analytical problem sets (no R on the test)
- We'll have a review session on Tuesday (4/26).
 - I will talk for about half of the time, reviewing important concepts
 - I will answer any questions you have for the rest of the time

We considered a simple linear regression of Y_i on X_i :

$$Y_i = \beta_1 + \beta_2 X_i + u_i.$$

- β_1 and β_2 are **population parameters** that describe the "true" relationship between X_i and Y_i .
- **Problem:** We don't know the population parameters. The best we can do is to estimate them.

We derived the OLS estimator by picking estimates that minimize $\sum_{i=1}^n \hat{u}_i^2$.

• Intercept:

$$\hat{eta}_1 = ar{Y} - \hat{eta}_2 ar{X}.$$

• Slope:

$${\hat eta}_2 = rac{\sum_{i=1}^n (Y_i - ar{Y})(X_i - ar{X})}{\sum_{i=1}^n (X_i - ar{X})^2}.$$

We used these formulas to obtain estimates of the parameters β_1 and β_2 in a regression of Y_i on X_i .

With the OLS estimates of the population parameters, we constructed a regression line:

$$\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i.$$

- \hat{Y}_i are predicted or **fitted** values of Y_i .
- You can think of \hat{Y}_i as an estimate of the average value of Y_i given a particular of X_i .

OLS still produces prediction errors: $\hat{u}_i = Y_i - \hat{Y}_i$.

• Put differently, there is a part of Y_i we can explain and a part we cannot: $Y_i = \hat{Y}_i + \hat{u}_i$.

Review

What is the equation for the regression model estimated below?

Review

The estimated **intercept** is -10.45. What does this tell us?

Review

The estimated **slope** is 2.27. How do we interpret it?

Today

Agenda

- 1. Highlight important properties of OLS.
- 2. Discuss goodness of fit: how well does one variable explain another?
- 3. Units of measurement.

OLS Properties

OLS Properties

The way we selected OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ gives us three important properties:

- 1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.
- 2. The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^{n} X_i \hat{u}_i = 0$.
- 3. The point (\bar{X}, \bar{Y}) is always on the regression line.

You will **prove** (i) and (ii) in the upcoming problem set.

OLS Regression Line

The point (\bar{X}, \bar{Y}) is always on the regression line.

- Start with the regression line: $\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i$.
- $ullet \hat{Y}_i = ar{Y} \hat{eta}_2 ar{X} + \hat{eta}_2 X_i.$
- Plug \bar{X} into X_i :

$$egin{aligned} \hat{Y}_i &= ar{Y} - \hat{eta}_2 ar{X} + \hat{eta}_2 ar{X} \ &= ar{Y}. \end{aligned}$$

Regression 1 vs. **Regression 2**

- Same slope.
- Same intercept.

Q: Which fitted regression line "explains" the data better?

^{*} Explains = fits.

Regression 1 vs. Regression 2

The **coefficient of determination** \mathbb{R}^2 is the fraction of the variation in Y_i "explained" by X_i in a linear regression.

- $R^2=1 \implies X_i$ explains all of the variation in Y_i .
- $R^2=0 \implies X_i$ explains *none* of the variation in Y_i .

$$R^2 = 0.76$$

$$R^2 = 0.06$$

Explained and Unexplained Variation

Residuals remind us that there are parts of Y_i we can't explain.

$$Y_i = \hat{Y}_i + \hat{u}_i$$

• Sum the above, divide by n, and use the fact that OLS residuals sum to zero to get $\hat{u}=0 \implies \bar{Y}=\hat{Y}$.

Total Sum of Squares (TSS) measures variation in Y_i :

$$ext{TSS} \equiv \sum_{i=1}^n (Y_i - ar{Y})^2.$$

• We will decompose this variation into explained and unexplained parts.

Explained and Unexplained Variation

Explained Sum of Squares (ESS) measures the variation in \hat{Y}_i :

$$ext{ESS} \equiv \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2.$$

Residual Sum of Squares (RSS) measures the variation in \hat{u}_i :

$$ext{RSS} \equiv \sum_{i=1}^n \hat{u}_i^2.$$

Goal: Show that TSS = ESS + RSS.

Step 1: Plug $Y_i = \hat{Y}_i + \hat{u}_i$ into TSS.

TSS

$$egin{aligned} &= \sum_{i=1}^n (Y_i - ar{Y})^2 \ &= \sum_{i=1}^n ([\hat{Y}_i + \hat{u}_i] - [ar{\hat{Y}} + ar{\hat{u}}])^2 \end{aligned}$$

Step 2: Recall that $\bar{\hat{u}}=0$ and $ar{Y}=ar{\hat{Y}}$.

TSS

$$egin{aligned} &= \sum_{i=1}^n \left([\hat{Y}_i - ar{Y}] + \hat{u}_i
ight)^2 \ &= \sum_{i=1}^n \left([\hat{Y}_i - ar{Y}] + \hat{u}_i
ight) \left([\hat{Y}_i - ar{Y}] + \hat{u}_i
ight) \ &= \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2 + \sum_{i=1}^n \hat{u}_i^2 + 2 \sum_{i=1}^n \left((\hat{Y}_i - ar{Y}) \hat{u}_i
ight) \end{aligned}$$

Step 3: Notice ESS and RSS.

TSS

$$= \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2} + \sum_{i=1}^{n} \hat{u}_{i}^{2} + 2 \sum_{i=1}^{n} \left((\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

$$= \text{ESS} + \text{RSS} + 2 \sum_{i=1}^{n} \left((\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

Step 4: Simplify.

TSS

$$egin{aligned} &= \mathrm{ESS} + \mathrm{RSS} + 2 \sum_{i=1}^n \left((\hat{Y}_i - ar{Y}) \hat{u}_i
ight) \ &= \mathrm{ESS} + \mathrm{RSS} + 2 \sum_{i=1}^n \hat{Y}_i \hat{u}_i - 2 ar{Y} \sum_{i=1}^n \hat{u}_i \end{aligned}$$

Step 5: Shut down the last two terms. Notice that

$$\begin{split} \sum_{i=1}^{n} \hat{Y}_{i} \hat{u}_{i} \\ &= \sum_{i=1}^{n} (\hat{\beta}_{1} + \hat{\beta}_{2} X_{i}) \hat{u}_{i} \\ &= \hat{\beta}_{1} \sum_{i=1}^{n} \hat{u}_{i} + \hat{\beta}_{2} \sum_{i=1}^{n} X_{i} \hat{u}_{i} \\ &= 0 \end{split}$$

As previously highlighted, these two terms will be equal to zero, as you will all prove in the upcoming assignment.

What percentage of the variation in our Y_i is apparently explained by our model? The \mathbb{R}^2 term represents this percentage.

Total variation is represented by **TSS** and our model is capturing the 'explained' sum of squares, **ESS**.

Taking a simple ratio reveals how much variation our model explains.

- $R^2=rac{ ext{ESS}}{ ext{TSS}}$ varies between 0 and 1
- $R^2=1-rac{
 m RSS}{
 m TSS}$, 100% less the unexplained variation

 R^2 is related to the correlation between the actual values of Y and the fitted values of Y. Can show that $R^2=(r_{Y,\hat{Y}})^2$.

So what?

In the social sciences, low \mathbb{R}^2 values are common.

Low \mathbb{R}^2 doesn't mean that an estimated regression is useless.

• In a randomized control trial, \mathbb{R}^2 is usually less than 0.1

High \mathbb{R}^2 doesn't necessarily mean you have a "good" regression.

- Worries about selection bias and omitted variables still apply
- Some 'powerfully high' R^2 values are the result of simple accounting exercises, and tell us nothing about causality (e.g. Y=C+I+G+X-M)

Units of Measurement

We ran a regression of crimes per 1000 students on police per 1000 students. We found that $\hat{\beta}_1$ = 18.41 and $\hat{\beta}_2$ = 1.76.

What if we had run a regression of crimes per student on police per 1000 students? What would happen to the slope?

$$\hat{\beta}_2 = 0.001756.$$

Demeaning

Practice problem

Suppose that, before running a regression of Y_i on X_i , you decided to demean each variable by subtracting off the mean from each observation. This gave you $\tilde{Y}_i = Y_i - \bar{Y}$ and $\tilde{X}_i = X_i - \bar{X}$.

Then you decide to estimate

$${ ilde Y}_i=eta_1+eta_2{ ilde X}_i+u_i.$$

What will you get for your intercept estimate $\hat{\beta}_1$?