Turing Machines, part II

Complexity Theory

Computability Theory

Automata Theory

In last lecture, we saw...

- Informal description of TM
- Formal definition of TM
- How TM computes
 - Changes in configurations
- Turing recognizable and Turing decidable languages

-

Formal definition of TM

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}), where$$

- 1. Q is the set of states
- Σ is the input alphabet not containing the blank symbol \square
- 3. Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- δ: $Q \times \Gamma \rightarrow Q \times T \times \{L,R\}$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. $q_{accept} \in Q$ is the accept state
- 7. $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$

Formalization of how TM computes

- The **start configuration** of M on input w is the configuration q₀w
- In an accepting configuration, the state of the configuration is q_{accept}
- In a rejecting configuration, the state of the configuration is q_{reject}
- Accepting and rejecting configurations are halting configurations
- A TM M accepts input w if a sequence of configurations C₁, C₂, ...,
 C_k exists, where
- 1. C₁ is the start configuration of M on input w,
- Each C_i yields C_{i+1} , and
- C_k is an accepting configuration

Turing recognizable and Turing decidable languages

- The collection of strings that M accepts is the language of M, or the language recognized by M, denoted by L(M)
- A language is called **Turing-recognizable** if some Turing machine recognizes it
 - Aka Recursively enumerable language
- When we start a TM on an input, three outcomes are possible:
 - accept
 - reject
 - loop (does not halt)
- A TM M can fail to accept an input by entering the q_{reject} state and rejecting, or by looping.
- Sometimes distinguishing a machine that is looping from one that is merely taking a long time is difficult.
- For this reason, we may prefer TMs that halt on all inputs; such machines never loop. These machines are called deciders.
- A language is called Turing-decidable if some language decides it.
 - Aka recursive language

Language of Turing Machines

Today, we will look at

Examples of Turing Machines

Note:

We will mostly work with only higher-level descriptions, which are essentially a "shorthand" for formal (state diagram-based) descriptions.

Example 1: (is the length a power of two?)

■ Turing machine M₂ that decides

$$A = \{0^{2^n} \mid n \ge 0\},$$

the language consisting of all strings of 0s whose length is a power of 2.

First a high-level description of M₂

 M_2 = "On input string w:

- Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, accept.
- If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.
- 4. Return the head to the left-hand end of the tape.
- 5. Go to stage 1."

Each iteration of stage 1 cuts the number of 0s in half

Formal description of M₂

- $M_2 = (Q, \Sigma, \Gamma, \delta, q_{1,} q_{accept}, q_{reject})$
 - $Q = \{q_1, \dots, q_5, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0\}$
 - $\Gamma = \{0, x, \bot\}$
 - δ (described with a state diagram in next slide)
 - The start, accept, and reject states are q₁, q_{accept}, and q_{reject}.

State diagram of M₂

This machine begins by writing a blank symbol over the leftmost 0 on the tape so that it can find the left-hand end of the tape in stage 4.

Sample run of M₂ on input 0000

1	q_1 0000	ப $q_5 \mathbf{x} 0 \mathbf{x}$ ப	$\sqcup \mathbf{x} q_5 \mathbf{x} \mathbf{x} \sqcup$
	$\sqcup q_2$ 000	q_5 ப \mathbf{x} 0 \mathbf{x} ப	$\sqcup q_5 \mathtt{xxx} \sqcup$
	$\sqcup \mathbf{x} q_3$ 00	$\sqcup q_2 \mathbf{x} 0 \mathbf{x} \sqcup$	q_5 ப $\mathbf{x}\mathbf{x}\mathbf{x}$ ப
	$\sqcup \mathtt{x} \mathtt{0} q_4 \mathtt{0}$	ப $\mathbf{x}q_2$ 0 \mathbf{x} ப	$\sqcup q_2 { t x { t x x}} \sqcup$
	ப ${ t x}{ t 0}{ t x}q_3$ ப	ப $\mathbf{x}\mathbf{x}q_3\mathbf{x}$ ப	$\sqcup \mathtt{x} q_2 \mathtt{x} \mathtt{x} \sqcup$
	ப \mathbf{x} 0 $q_5\mathbf{x}$ ப	ப $\mathbf{x}\mathbf{x}\mathbf{x}q_3$ ப	$\sqcup \mathbf{x} \mathbf{x} q_2 \mathbf{x} \sqcup$
	ப $\mathbf{x}q_5$ 0 \mathbf{x} ப	$\sqcup \mathbf{x}\mathbf{x}q_{5}\mathbf{x}\sqcup$	$\sqcup \mathtt{xxx} q_2 \sqcup$
			\sqcup xxx $\sqcup q_{ m accept}$
			_

Example 2: (the example from last lecture: is the left the same as the right?)

■ Turing Machine M₁ for testing membership in the language

```
B = \{w \# w \mid w \in \{0,1\}^*\}
```


Recall the high-level description of M₁

M_1 = "on input string w:

- Zig Zag across the tape to corresponding positions on either side of # to check whether the inner positions contain the same symbol. If they don't, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- When all symbols to the left of # have been crossed off, check for any remaining symbols on the right of #. If any symbols remain, reject; otherwise accept."

Formal description of M₁

- $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$
 - $Q = \{q_1, \dots q_8, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0,1,\#\}$, and $T = \{0,1,\#,x,\sqcup\}$
 - δ (described with a state diagram in next slide)
 - The start, accept, and reject states are q_{1,} q_{accept}, and q_{reject}.

State diagram of M₁

Example 3: (let us do some arithmetic)

Turing machine M₃ that decides the language

$$C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$$

High-level description of M₃

 M_3 = "On input string w:

- Scan the input from left to right to determine whether it is a member of a+b+c+ and reject if it isn't.
- 2. Return the head of the left-hand end of the tape.
- Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off one of each until all b's are gone. If all c's have been crossed off and some b's remain, reject.
- 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's have been crossed off. If yes, accept; otherwise reject."

Some notes on M₃

- Stage 1
 - Operates much like a FA
 - No writing necessary as head moves from left to right
 - Keeps track by using its states to determine whether the input is in the proper form
- Stage 2
 - One subtle issue here is how to find the left-hand end of the input tape
 - One solution is to use a special symbol to mark (e.g. the blank symbol was used in M₂)
 - Another solution is to take advantage of the definition of TM (prevent left move when it is on the "cliff")
- Stages 3 and 4
 - Have straightforward implementation and
 - use several states each

Example 4:

(let us solve the *element distinctness problem*)

 Given a list of strings over {0,1} separated by #s, design a Turning machine M₄ that would accept if all the strings are different. The language is

```
E = \{ \#x_1 \#x_2 \# ... \#x_l \mid each x_i \in \{0,1\}^* and x_i \neq x_j for each i \neq j \}
```

• Machine M₄ works by comparing x₁ with x₂ through x₁, then by comparing x₂ with x₃ through x₁, and so on.

High-level description of M₄

M_4 = "On input w:

- Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a #, continue with the next stage. Otherwise, reject.
- Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only x_1 was present, so accept.
- By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, reject.
- Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all the strings have been compared, so accept.
- 5. Go to stage 3."

Notes on M₄

- M₄ illustrates the technique of marking tape symbols
 - In stage 2, the machine places a mark above the symbol #
 - In the actual implementation, the machine has two different symbols, # and #`, in its tape alphabet.
 - In general, we may want to place marks over various symbols on the tape. To do so, we merely include versions of all these tape symbols with dots in the tape alphabet.