Simulation of the drift chamber for the FCCee-IDEA detector concept within FCCSW

Niloufar Alipour Tehrani

Common detector technology: Common software

FCC Week 2018 Amsterdam, the Netherlands

12 April 2018

Introduction

- 1. FCC experiment and FCCSW
- 2. IDEA detector concept
- 3. Drift chamber
- 4. Geometry implementation
- 5. Segmentation and validation
- 6. Simulation
- 7. Material budget scan
- 8. Background studies

FCC Software

- Common software for all FCC experiments
 - ee, hh & eh
- Detector and physics studies
 - ► Fast & full simulations
 - One software stack from event generation to physics analysis
- Collaborative approach
 - ► LHC: Gaudi
 - ► CLIC: DD4hep

FCCee: IDEA detector concept

Ultimate Goal

- Vertex detector: MAPS
- Ultra-light drift chamber with PID
- Pre-shower counter
- Double read-out calorimetry
- 2 T solenoidal magnetic field
- Instrumented return yoke
- ➤ Surrounded by large tracking volume (R~8 m) for very weakly coupled (long-lived) particles

Implementation in FCCSW

- Beam-pipe and interaction region (IR) taken from the CLD concept.
- Vertex detector also taken from the CLD concept.
- The drift chamber implemented from scratch in FCCSW.

Vertex Detector

Geometry

- ► Barrel: 3 double-sided layers
- ► Endcap: 3 double-sided disks

Drift Chamber

Parameters

Length 4500 mm Inner radius 345 mm Outer radius 2000 mm Nb. layers 112

Cell size 12 mm to 14.7 mm

Total nb. of sensitive wires 56448
Total nb. of field wires 282240
Total nb. of wires 338688

Gas GasHe_90lsob_10
Wire material Aluminum

Single cell resolution 0.1 mm

Geometry implementation in DD4hep

Segmentation

- Information on the location of the wires
- Associates a unique wire ID (cellID) to the wires
- Different granularity for different layers in the DCH
- ► The segmentation information is created while building geometry
 - ⇒ Accessible in every step of the simulation

- ► First layer of the DCH
- Hits having the same wire ID are shown by the same color
- Validates the segmentation

Simulation of the DCH

- Stepping in the gas with a step length of 2 mm
- Reject ionisation acts with:
 - ► E_{dep} < 10 eV
 - ▶ G4Step length $< 5\mu m$
- ▶ Drift the E_{dep} to the nearest wire
 - Distance of the closest approach
 - Assume a constant drift velocity of 2 cm/ μ s
 - Calculate drift time
- For each wire, merge the E_{dep} with a drift time smaller than the maximum drift time in the cell

Number of layers vs. θ

- Number of layers hit by 100 GeV $\mu-$
 - $\theta = 0^{\circ}$: very forward direction
 - $\theta = 90^{\circ}$: in the barrel
 - Averaged over ϕ

VXD

DCH

Material Budget Scan: work in progress

Background studies

- ▶ The effect of incoherent e + e pairs on the interaction region (IR)
- \triangleright E_{cm} = 365 GeV
- ▶ Total nb. of particles: ~ 6200

Momentum distribution

Background studies for the VXD: work in progress

z [mm]

Vertex Barrel

Vertex Endcap

Detector	Total nb. of hits
Hits in the VXD barrel	2737
Hits in the VXD endcap	2537

- The trend is as expected
- More investigation & tuning on the hit reconstruction and cuts in Geant4 simulations is needed

Background studies for the DCH: work in progress

- Number of wires with different IDs recorded a signal
 - ► Average: 3345.7 wires

- Number of hits recorded per wire in the first BX
- ► Mostly 1-hit per wire
- Several hits per wire: pile-up or same

- ► To be investigated further: merging hits belonging to the same wire and having a drift time smaller than the maximum drift time in a cell.
- Occupancy as a function of the cell/voxel

Background studies for the DCH: number of hits per layer

Summary & Outlook

- FCCee-detector concept simulation with FCCSW
 - Implementation of the geometry
 - Simulation
 - Validation
- Study of beam-induced backgrounds: e+e- incoherent pairs
 - Estimation of the occupancy in the VXD and DCH