Introduction to Hodge theory Part 2 - Lecture 6

10/06/2021

Oxford

Lest time:

- Complex tori are Kähler
- H" (x) = N'(L:ex) & Nor (L:ex)
- Cat. of complex equiv. torsian-free Holge tori H1 etr of ut -1
- 5) Complex tois and abelian varieties (cont.)

Det An abelien voriety (our C) is a connected smooth projective group voriety our C.

If \times is an abelian variety, then \times^{an} is a complex torus. By GAGA a complex torus is (the analytification of) an abelian voiety iff it embeds in some \mathbb{P}^{N} .

Ex Ency complex torus of $\lim_{z \to \infty} |z|$ is an abelian variety: $\mathbb{C}/L \hookrightarrow \mathbb{P}^2$, $z \mapsto || [P_L(z): P_L(z): P_L(z): 1]$, $z \in L$

 $E_{\times} \times = C^{2}/L$, where $L = Z(1+J_{-2}, J_{-3}) + Z(J_{-17}, J_{-19}) + Z(J_{-17}, J_{-19})$ isn't projective!

Back to general theory ...

Recoll: Fubini - Study metric on PN (C)

~~ wes & A" (P" (C))

Restriction to Uo = C" C P"(C):

Lemma Under the de Rhom isomosphism $H_{2R}^{2}(|P^{N}(C)|)$ $\simeq |H^{2}(|P^{N}(C), \mathbb{Z}) \otimes C$, we have $[w_{FS}] \in H^{2}(|P^{N}(C), \mathbb{Z}|)$.

Proof: $1+_{2}(P^{N}(C), Z) = Z J$, J = fundomental classof $1 \in \mathbb{Z}_{0}: Z_{0}: 0: \dots: 0 \subseteq \mathbb{P}^{N}(C) \mid \mathbb{Z}_{0}: Z_{0} \subseteq \mathbb{P}^{1}(C) \mid C \subseteq \mathbb{P}^{1}(C)$ we have: $\int_{C} w_{FJ} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\infty} \frac{u_{F} \cdot J_{F}}{(1+F^{2})^{2}} = 1$

If i: M c, PN(G), Hen w:= i*(wfs) is a kähler form st [w] & H²(M, Z)

Thm (Kodeira) A compet complex monifold

M is projective if one only if it admits a Kähler form w st. [w] & H²(M, Z). []

Back to complex fori... \times By Kolaira, a complex forus Vis (the enalytification of) on abelian variety iff there is a Kähler form $w \in A^{1/1}(X)$ st $[w] \in H^2(X, \mathbb{Z})$.

Note:

$$|A^{2}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A^{1}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A_{mn}(|A_{1}(\times, \mathbb{Z}), \mathbb{Z})|$$

$$|A^{2}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A^{1}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A_{mn}(|A_{1}(\times, \mathbb{Z}), \mathbb{C})|$$

$$|A^{2}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A^{1}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A_{mn}(|A_{1}(\times, \mathbb{Z}), \mathbb{C})|$$

$$|A^{2}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A_{1}(\times, \mathbb{Z})|$$

$$|A^{2}(\times, \mathbb{Z})| \stackrel{?}{=} \wedge^{2} |A_{1$$

So that w corresponds to a Riemmon form on the lattice $H_1(X,T) \subset Lie X$.

Def Given $L \subset V$, a Riemann form is a Humitian product $H: V \times V \rightarrow \mathbb{C}$ so the symplectic point $E = Im H: V \times V \rightarrow \mathbb{R}$ solvative $E(L, L) \subset \mathbb{Z}$.

Ex $Z \in \mathcal{H}_g = \{ M \in M_{gag}(C) \mid M^T = M, Im(M) > 0 \}$ $L_Z = \mathcal{I}_g + Z\mathcal{I}_g \subset C_g \text{ lattice}$ $I_{\mathcal{I}_g}(Z, w) = Z(Im_Z)^{-1}\overline{w} \text{ Rismenn form on } L_Z$ $mo C_g/L_Z \text{ is an abelian variety.}$

Rk Hz is principal: Ez intres Lz ~ Lz. Exercise Show that every complex torus with a principal Riemann form is isomorphic to some (CE/Lz, Hz) ond z, z' & f & define isomorphic tori (with Riemann bom) if and only if I go Spag(I) st z'= 12 $\begin{bmatrix} \gamma = \begin{pmatrix} A & B \\ c & D \end{pmatrix}, \quad \gamma z = (A_{z+B})((z+D)^{-1}) \end{bmatrix}$ Note: Lin 1/8 = g(g+1) (Lin "spece of toi" = g2) Det A polerization of a Hodge structure It of wt k is a morphism of Holge structure Q: 14 @ H -> Z(-2) (whene 72(-2) = (211i) = 2 cois a 145 of w4 22 with Z(-2) = C) st wil operator:

11R @ 11R -> 1R noy -, (2m) Q(n, Cy)

is symmetric and positive definite.

[x | H Riemann burn on a complex borno x Hun Q:= liti ImH: $H_1(x, \mathbb{Z}) \oplus H_1(x, \mathbb{Z}) \rightarrow liti \mathbb{Z}$ is a polarization on $H_1(x)$.

Thm The functor $A \mapsto 1 + (A^{am})$ is on equivalence between the category of abelian varieties and the category of palarizable torsin-free 1-lodge structure of wt - 1. D