Представление данных в вычислительных системах

0122495343014654958537105079227968925892354201995612212902196086403441815981362977477130996051877211349999999
372978049951059973179281609631859952445945534690830264222230825334468503526193118817131000313783875288658733320
838142061717766914730359825349604287554645845314595826238233537859375195778185778053217122680661300192785766111959
99216420199938095257201065485883278865936153381827968220331952035331.85296995773022599413391249721775283479131
515374837242454155695950825933311666172785588997509838175463746493931.9255060400327701671139009848520128553610
56370766010471018194295559559189946767837449448525379774726847410404753446462080466442590699419293136770289891571
047521620569660244058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219
243863150302681682974555706749238565494588858626995690272210759930299532116634498720275596023403991298
2438631503026816829745557067492385654945888562699956902722107599302995321166344987202755960234609498666549911998
2438631503026816829745557067492385654945888586269995779727938000816470600161452491921732172147723501414419735683
481613611573525521334757418499468438323339077974784877702416862518981569488562099219221184727255025485687671
970499460165346680498866723237917860857849848949414333454776241686251898156948856209921922118472255025425687671
970499460165346680498866723279178608578498494433454776241686251898159855629931922211847278502541848686254950424196528525022106611863067442786620391949450471237137869605651643719172876677646575739624138908658326
459586139390478627559009946675467789512694683983525957099258282625224894077261947826848626014769900926401363394457
45590508820349625245174939955143142980919055925093722169646151570988387410597888999772978498930161753928466813
42686838689427744555991835995243049979526486865558484063534420722228884864815845602850616842739452267467
45899528213855254995466672782398645659611635488665558484063534420722228884864815845602850616842739452267467
4589952821385525499546667278239864565961163548866355744866853

Характеристики данных

Форматы целочисленных данных

Представление целочисленных данных

Представление символьных данных беззнаковыми числами

Символ	10й код	2й код	Символ	10й код	2й код	Символ	10й код	2й код	Символ	10й код	2й код
	32	00100000	8	56	00111000	P	80	01010000	h	104	01101000
!	33	00100001	9	57	00111001	Q	81	01010001	i	105	01101001
11	34	00100010	:	58	00111010	R	82	01010010	j	106	01101010
#	35	00100011	;	59	00111011	S	83	01010011	k	107	01101011
\$	36	00100100	~	60	00111100	T	84	01010100	l	108	01101100
%	37	00100101	=	61	00111101	U	85	01010101	m	109	01101101
&	38	00100110	>	62	00111110	V	86	01010110	n	110	01101110
	39	00100111	?	63	00111111	W	87	01010111	0	111	01101111
(40	00101000	@	64	01000000	X	88	01011000	р	112	01110000
)	41	00101001	Α	65	01000001	Y	89	01011001	q	113	01110001
*	42	00101010	В	66	01000010	Z	90	01011010	r	114	01110010
+	43	00101011	С	67	01000011	[91	01011011	S	115	01110011
,	44	00101100	D	68	01000100	\	92	01011100	t	116	01110100
-	45	00101101	Е	69	01000101]	93	01011101	u	117	01110101
	46	00101110	F	70	01000110	۸	94	01011110	v	118	01110110
/	47	00101111	G	71	01000111	_	95	01011111	w	119	01110111
0	48	00110000	Н	72	01001000	`	96	01100000	X	120	01111000
1	49	00110001	I	73	01001001	a	97	01100001	y	121	01111001
2	50	00110010	J	74	01001010	b	98	01100010	Z	122	01111010
3	51	00110011	K	75	01001011	С	99	01100011	{	123	01111011
4	52	00110100	L	76	01001100	d	100	01100100		124	01111100
5	53	00110101	M	77	01001101	е	101	01100101	}	125	01111101
6	54	00110110	N	78	01001110	f	102	01100110	~	126	01111110
7	55	00110111	0	79	01001111	g	103	01100111		127	01111111


```
python
Python 3.10.6 (main, Aug 3 2022, 17:39:45) [GCC 12.1.1 20220730] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 0.1 + 0.2
0.300000000000000004
>>> quit()
          node
Welcome to Node.js v16.16.0.
Type ".help" for more information.
> 0.1 + 0.2
0.300000000000000004
```

```
#include <stdio.h>

int main() {
   printf("0.1 + 0.2 = %.17f\n", 0.1 + 0.2);
   return 0;
}
```

```
#include <iostream>
 #include <iomanip>
▼ int main() {
    std::cout << "0.1 + 0.2 = "
              << std::fixed << std::setprecision(17)</pre>
              << 0.1 + 0.2 << "\n";
    return 0;
```

Определения

Число с плавающей запятой (или число с плавающей точкой) — экспоненциальная форма представления вещественных (действительных) чисел, в которой число хранится в виде мантиссы и порядка (показателя степени). Имеет фиксированную относительную точность и изменяющуюся абсолютную. Наиболее часто представление утверждено в стандарте IEEE 754.

Определения

IEEE 754 (IEC 60559) — широко используемый стандарт IEEE, описывающий формат представления чисел с плавающей точкой. Используется в программных и аппаратных реализациях математических операций.

Стандарт описывает:

- формат чисел с плавающей точкой: мантиссу, экспоненту (показатель), знак числа;
- представление положительного и отрицательного нуля, положительной и отрицательной бесконечностей, а также нечисла́ (англ. Not-a-Number, NaN);
- методы, используемые для преобразования числа при выполнении математических операций;
- исключительные ситуации: деление на ноль, переполнение, потерю значимости, работа с денормализованными числами и другие;
- операции: арифметические и другие.

Стандарт IEEE 754

Для float (32 бит):

Для double (64 бит):

		3	Há	ж																												
	Порядо					к (8	би	IT)		Мантисса (23+1 бита)																					
0	1	0	0	0	0	0	0	0	0	1,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	:	30)					- 2	23		2	2																				0

Порядок со знаком

записан	н в смещённом коде	Из мантиссы записываются только 23
128	11111111	цифры дробной части (целая часть
127	11111110	числа всегда равна 1, её хранить
		незачем!)
2	10000001	
1	10000000	Знак числа: 0 – плюс, 1 – минус
0	01111111	
-1	01111110	
-2	01111101	
		Максимальное число
-126	0000001	$2^{128} = 3,4028234 \times 10^{38}$
-127	00000000	2 3, 1020201 10

Сдвиг порядка = 1023

Сдвиг порядка = 16383

Сдвиг порядка = 15

Форматы Intel 8086

1. Нормализованное представление

 $s \neq 0 \text{ and } \neq 255$

2. Ненормализованное представление

За. Бесконечность

3b. NaN (не число)

https://www.lua.org/

Двоично-десятичное представление

'*' — тетрада, из которой был перенос в старшую тетраду

'**' — тетрада с запрещённой комбинацией битов

Двоично-десятичный формат (Binary Coded Decimal - BCD) → → →

Используемые источники

- 1. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб.: Изд. Питер, 2017. 816 с.
- 2. Гагарина Л. Г., Кононова А. И. Архитектура вычислительных систем и Ассемблер с приложением методических указаний к лабораторным работам. Учебное пособие. М.: СОЛОН-Пресс, 2019. 368 с.

Википедия

Стандарт IEEE 754-2008: https://ru.wikipedia.org/wiki/IEEE 754-2008

Число с плавающей запятой: https://ru.wikipedia.org/wiki/Число_с_плавающей_запятой

Двоично-десятичный код: https://ru.wikipedia.org/wiki/Двоично-десятичный_код

Интернет

Что нужно знать про арифметику с плавающей запятой: https://habr.com/ru/post/112953/

Всё, точка, приплыли! Учимся работать с числами с плавающей точкой и разрабатываем альтернативу с фиксированной точностью десятичной дроби: https://habr.com/ru/company/xakep/blog/257897/

18