

Automotive Door Control System Design

DYNAMIC DESIGN

Nora Elhennawy | EGYFWD | 4-10-22

ECU₁

STATE MACHINE DIAGRAM

Speed Sensor Monitor

Light SW Monitor

Door Sensor Monitor

ECU1 SEQUENCE DIAGRAM

ECU₁ CPU LOAD

The system has 4 tasks:

Door_Sensor_Monitor: exec time 15 us, period=10 ms

Speed_Sensor_Monitor : exec time 15us , period=5ms

Light_SW_Monitor : exec time 15 us, period=20 ms

Send_Status_Task: exec time 18 us, period=5ms

HyperPeriod =20 ms.

CPU Load = ((0.015*2+0.015*4+0.015+0.018*4)/20) x 100 = 0.885 %

System Control Car_Stopped & Light SWPressed Car Moving&Light Sw Pressed Iniitial status Buzzer Off Buzzer ON Buzzer OFF Car Stopped & Door Open Light OFF Light Off Light ON Door Open & Car Moving Door Closed Delay 3 seconds

ECU2 Sequence Diagram

ECU₂ CPU LOAD

The system has two tasks:

RecvStatus_task: Exe time= 18 us, period =5ms

SystemCntrl: exe time =15 us, period =5ms

Hyper period =5ms

CPU Load = ((0.015+0.018)/5)x100 = 0.66 %

NOTE: task exe time was assumed according to real exec time for similar tasks from the RTOS project.

SYSTEM BUS LOAD

Speed Sensor Status (5ms)=200 messages/second

Door Sensor Status(10ms)=100 message/second

Light Sw Status(20ms) = 50 message /second

Total messages on bus = 350 message/second.

Assuming simple can protocol with a 125-bit frame length at a speed of 500kbit/s:

Bus Load= ((350*250)/(1000*1000))*100=8.75%