Informatique - DM n°2 - Pour le dimanche 3 janvier 2021 !, par mail

Boucles, fonctions, listes, chaînes de caractères

Faire apparaître dans votre code votre NOM et votre prénom.

Exercice 1.

Modélisation d'une épidémie par la méthode SIR

La méthode SIR (pour *Sains-Infectés-Remis*) est l'une des modélisations les plus simples de la propagation d'une épidémie. Dans cette modélisation, on ne s'intéresse qu'à la propagation de l'épidémie, et le groupe des individus *Remis* comprend en fait les individus guéris aussi bien que ceux décédés de la maladie.

Le but de cet exercice est d'en donner une des variantes.

Modélisation avec immunité permanente

1) On modélise l'épidémie par trois suites $(S_n)_{n\in\mathbb{N}}$, $(I_n)_{n\in\mathbb{N}}$ et $(R_n)_{n\in\mathbb{N}}$ donnant respectivement le nombre d'individus **sains**, **infectés** et **remis** lors de la semaine n°n.

Ces trois suites sont définies par les relations de récurrence suivantes :

$$\begin{cases} S_0 = 67.10^6 & I_0 = 1 \\ S_{n+1} = S_n - \{\alpha S_n I_n\} \\ I_{n+1} = \{\alpha S_n I_n\} \\ R_{n+1} = R_n + I_n \end{cases}$$

où $\alpha = 2,2389.10^{-8}$ et

où $\{r\}$ désigne l'entier le plus proche de r. En Python, la fonction round (r) permet d'obtenir cet entier.

Écrire une fonction suites (n) qui, étant donné le numéro n de la semaine, renvoie **les trois listes** constituées des termes $S_0, S_1, ..., S_n, I_0, I_1, ..., I_n$ et $R_0, R_1, ..., R_n$ respectivement.

- 2) Pour tracer une représentation graphique,
 - on importe le module matplotlib.pyplot : import matplotlib.pyplot as plt
 - puis on utilise la fonction plot de ce module qui permet de tracer une représentation graphique en fournissant la liste des abscisses et la liste des ordonnées de ses points : plt.plot(X,Y)

Tracer les trois représentations graphiques constituées des points

- d'abscisses [0; 60] et d'ordonnées $\{S_0; S_1; ...; S_{60}\}$;
- d'abscisses [0; 60] et d'ordonnées $\{I_0; I_1; ...; I_{60}\}$;
- d'abscisses [0; 60] et d'ordonnées $\{R_0; R_1; ...; R_{60}\}$.

Ces représentations graphiques devraient ressembler au graphe donné au verso.

3) Finir cette première partie par la ligne suivante :

plt.figure()

qui fait apparaître une nouvelle représentation graphique vide.

Modélisation avec immunité temporaire

1) Pour tenir compte du fait que l'immunité pourrait ne pas être permanente, on modifie les relations de récurrence de la façon suivante :

$$\begin{cases} S_0 &= 67.10^6 & I_0 = 1 & R_0 = 0 \\ S_{n+1} &= \begin{cases} S_n - \{\alpha S_n I_n\} & \text{si } n < 10 \\ S_n - \{\alpha S_n I_n\} + \{\beta R_{n-10}\} & \text{si } n \ge 10 \end{cases} \\ I_{n+1} &= \{\alpha S_n I_n\} \\ R_{n+1} &= \begin{cases} R_n + I_n & \text{si } n < 10 \\ R_n + I_n - \{\beta R_{n-10}\} & \text{si } n \ge 10 \end{cases} \end{cases}$$

où $\beta = 0,03$.

Écrire une fonction suites2(n) qui, étant donné le numéro n de la semaine, renvoie **les** trois listes constituées des termes $S_0, S_1, ..., S_n, I_0, I_1, ..., I_n$ et $R_0, R_1, ..., R_n$ ainsi modifiées.

- 2) Tracer les trois représentations graphiques constituées des points
 - d'abscisses [0; 520] et d'ordonnées $\{S_0; S_1; ...; S_{520}\}$;
 - d'abscisses [0; 520] et d'ordonnées $\{I_0; I_1; ...; I_{520}\};$
 - d'abscisses [0; 520] et d'ordonnées $\{R_0; R_1; ...; R_{520}\}$.
- 3) On répondra aux questions ci-dessous par des commentaires dans le fichier Python
 - a) À quel intervalle de temps correspondent ces trois représentations graphiques?
 - b) Quel nouveau phénomène apparaît lorsque l'immunité est temporaire et non pas permanente?
 - c) D'après les relations de récurrence, à partir de combien de temps l'immunité s'atténuet-elle dans cette nouvelle modélisation?
 - d) Pouvez-vous donner une explication simple au phénomène observé?