

Template Final Exam

#	Full Name	Group
1	Myrzakhanov Abylaykhan	CS-2127N
2	Tuleshev Turan	CS-2127N
3	Turan Miras	CS-2129N

Link to the repository: https://github.com/Futur1stXD/Final_OSC.git

Step-by-step task completion:

Task 1:

- 1. sudo su
- 2. useradd -m -s /bin/bash student
- 3. passwd student
- 4. login student
- 5. whoami
- 6. logout

Screenshots of the code compilation result:

Task 2:

First method: Direct IP connection to the Internet

- 1. sudo su
- 2. ifconfig

3. sudo nano /etc/netplan/*.yaml

- 4. sudo ifup /etc/netplan/*.yaml
- 5. ping google.com

Second method: Connection to NAT

- 1. if config
- 2. sudo nano /etc/netplan/*.yaml

3. Change in virtual machine setting connection to NAT

- 4. sudo iptables -t nat -A POSTROUTING -o <host_interface> -j
 MASQUERADE
- 5. ping google.com

Third method: Proxy

1. Search in browser: Free proxy servers. In my example I use this site: https://spys.one/en/

2. export http_proxy=http:// 199.5.133.194:80

Screenshots of the code compilation result:

Task 3:

1. At first we need install this packages

Package	Package description
git	Tracks and makes a record of all changes during development in the source code. It also allows reverting the changes.
fakeroot	Creates the fake root environment.
build-essential	Installs development tools such as C, C++, gcc, and g++.
ncurses-dev	Provides API for the text-based terminals.
xz-utils	Provides fast file compression and decompression.
libssl-dev	Supports SSL and TSL that encrypt data and make the internet connection secure.
bc (Basic Calculator)	Supports the interactive execution of statements.
flex (Fast Lexical Analyzer Generator)	Generates lexical analyzers that convert characters into tokens.
libelf-dev	Issues a shared library for managing ELF files (executable files, core dumps and object code)
bison	Converts grammar description to a C program.

2. After that we download from kernel.org latest version of kernel

3. Unzip this file with command: tar xvf linux-6.2.tar.xz or Archive

4. After that we open this file in Terminal and do make menuconfig

m 0 0 0 N N 0 V N 6 N

5. After that we write make and we're waiting for installing the kernel

6. After installing kernel, we need install the modules

7. After installing modules, we need install new this kernel

8. We need update GRUB sudo update-grub2

9. After that we restart our Linux and check the version of Kernel uname -r

10.Before writing basic Hello world we need install this packets

11. After we can start write Hello world.c with command vim hello.c

12. After we create file that will compile our code vim Makefile

13. Write make for find some errors

Now we will write code on kernel, that will accept our values from CMD line

Creating the compiler of this code

Conclusion:

We learned how to update and create our own kernel. They remembered how to install libraries on Linux OS and wrote their codes in C using the Linux Kernel. We think it was an unforgettable experience for us, thank you for such a wonderful course.