

Doc. Number :					
☐ Tentative Specification					
☐ Preliminary Specification					
Approval Specification					

MODEL NO.: R213TFE SUFFIX: L53

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
yuhsiang.chang	aston.yy.chen	aston.yy.chen
(張喻翔/514-10922)	(陳彥宇/514-10914)	(陳彥宇/514-10914)
2013-12-12	2013-12-10	2013-12-09
12:01:15 CST	08:46:52 CST	16:51:30 CST

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	6
3.2.1 TFT LCD MODULE	6
3.2.2 BACKLIGHT UNIT	7
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INPUT INTERFACE CONNECTIONS	8
4.2.1 J1 (MASTER) : LEFT SIDE(FRONT VIEW)	
4.2.2 J2 (SLAVE): RIGHT SIDE(FRONT VIEW)	
4.2.3 DC INPUT PIN ASSIGNMENT	11
4.3 ELECTRICAL CHARACTERISTICS	11
4.3.1 LCD ELETRONICS SPECIFICATION	11
4.3.2 Vcc Power Dip Condition	13
4.3.3 BACKLIGHT UNIT	
4.3.4 CONVERTER ELECTRICAL CHARATERISTICS	14
4.3.5 CONVERTER INPUT CONNECTOR PIN ASSIGNMENT	16
4.4 LVDS INPUT SIGNAL SPECIFICATIONS	
4.4.1 LVDS DATA INPUT DATA ORDER (VESA Mode)	17
4.4.2 LVDS DATA INPUT DAT ORDER (JEITA Mode)	17
4.4.3 PIXEL FORMAT IMAGE	
4.4.4 COLOR DATA INPUT ASSIGNMENT	19
4.5 DISPLAY TIMING SPECIFICATIONS	20
4.6 POWER ON/OFF SEQUENCE	22
5. OPTICAL CHARACTERISTICS	23
5.1 TEST CONDITIONS	23
5.2 OPTICAL SPECIFICATIONS	23
6. RELIABILITY TEST ITEM	
7. PACKING	28
7.1 PACKING SPECIFICATIONS	28

7.2 PACKING METHOD	28
7.3 PALLET	29
7.4 UN-PACKING METHOD	30
8. INX MODULE LABEL	31
9. PRECAUTIONS	32
9.1 ASSEMBLY AND HANDLING PRECAUTIONS	32
9.2 STORAGE PRECAUTIONS	32
9.3 OPERATION PRECAUTIONS	32
9.4 SAFETY PRECAUTIONS	32
9.5 SAFETY STANDARDS	33
9.6 OTHER	33
Appendix. OUTLINE DRAWING	33

REVISION HISTORY

Version	Date	Page	Description
3.0	Oct 29,2013	all	Spec Ver.3.0 was first issued.
3.1	Dec 6, 2013	5	Section 2 modify product weight (3368g to 3460)
		6	Section 3.1 Note(1) (a) & (b) Ta<40 °C
		28	Section 7.2 modify carton weight (16.472kg to 16.9kg)

1. GENERAL DESCRIPTION

1.1 OVERVIEW

R213TFE-L53 is a 21.3" TFT Liquid Crystal Display module with LED Backlight unit and two 41-pin LVDS port, each port has 2ch-LVDS interface. This module supports 2560 x 2048 QSXGA screen and can display monochrome driven by 10bit drivers. The LCD module includes built-in converter for Backlight.

1.2 FEATURES

This specification applies to the Type 21.3" Mono TFT LCD Module, Model R213TFE-L53. This module includes an converter card for the LED backlight unit.

- The screen format is intended to support QSXGA 2560(H) x 2048(V) resolution.
- Screen with sensor area (176(H) x 16(V)) at the top of the screen
- All input signals are LVDS (Low Voltage Differential Signaling) interface.
- This module is designed for a module with neutral white (0.294, 0.309) and DICOM gamma curve.
- This module is UL approved and RoHs compliant
- This module is 8/10bit compatible(default is 10bit)

1.3 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	21.3" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	2560(x3) x 2048	Pixel	-
Pixel Pitch	0.165 (H) x 0.165 (V)	Mm	-
Pixel Arrangement	Sub-pixel Vertical stripe	_	-
Display Colors	10-bit per1(one) sub-pixel, grayscale	-	-
Transmissive Mode	Dual domain IPS, Normally Black	-	-
Surface Treatment	Anti-glare	-	-
Luminance, White	1200	Cd/m2	-
Power Consumption	Total 46.2W (typ.) @ cell 16.2 W (typ.), BL 30W (typ	.)	(1)

Note (1) The specified power consumption: Total= cell (reference 4.3.1)+BL (reference 4.3.3)

2. MECHANICAL SPECIFICATIONS

It	Item		Тур.	Max.	Unit	Note
	Horizontal (H)	459.3	459.8	460.3	mm	
Module Size	Vertical (V)	374.8	375.3	375.8	mm	(1)
	Thickness (T)	29.5	30.0	30.5	mm	
Bezel Area	Horizontal	426.0	426.4	426.8	mm	
Dezei Alea	Vertical	344.11	344.51	344.91	mm	
Active Area	Horizontal	-	422.4	-	mm	
Active Alea	Vertical	-	337.92	-	mm	
We	eight	3410	3460	3510	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Storage Temperature	TST	-20	60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	

Note (1)

- (a) 90 %RH Max. (Ta < 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta < 40 °C).
- (c) No condensation.

Note (2)

The temperature of panel surface should be 0 °C min. and 60 °C max.

Relative Humidity (%RH)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note	
item	Cymbol	Min.	Max.	Offic	14010	
Power Supply Voltage	VCCS	-0.3	13.2	٧	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

3.2.2 BACKLIGHT UNIT

Item	Symbol		Value		Unit	Note	
Item	Cyrribor	Min.	Тур	Max.	O I II	Note	
LED Forward Current Per Input Pin	I _F	50	100	200	mA	(1), (2)	
LED Reverse Voltage Per Input Pin	V_R			60	V	Duty=100%	
LED Pulse Forward Current Per Input Pin	l _P			400	mA	(1), (2) Pulse Width≦10µsec. and Duty≦0.5%	

- Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.
- Note (2) Specified values are for input pin of LED light bar at Ta=25±2 $^{\circ}$ C (Refer to 4.3.3 and 4.3.4 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INPUT INTERFACE CONNECTIONS

4.2.1 J1 (MASTER) : LEFT SIDE(FRONT VIEW)

Pin	Name	Description
1	GND	LVDS Ground
2	MRXE0-	Negative LVDS differential data input. Channel E0 (even)
3	MRXE0+	Positive LVDS differential data input. Channel E0 (even)
4	MRXE1-	Negative LVDS differential data input. Channel E1 (even)
5	MRXE1+	Positive LVDS differential data input. Channel E1 (even)
6	MRXE2-	Negative LVDS differential data input. Channel E2 (even)
7	MRXE2+	Positive LVDS differential data input. Channel E2 (even)
8	GND	LVDS Ground
9	MRXEC-	Negative LVDS differential clock input. (even)
10	MRXEC+	Positive LVDS differential clock input. (even)
11	GND	LVDS Ground
12	MRXE3-	Negative LVDS differential data input. Channel E3 (even)
13	MRXE3+	Positive LVDS differential data input. Channel E3 (even)
14	MRXE4-	Negative LVDS differential data input. Channel E4 (even)
15	MRXE4+	Positive LVDS differential data input. Channel E4 (even)
16	GND	LVDS Ground
17	MRXO0-	Negative LVDS differential data input. Channel O0 (odd)
18	MRXO0+	Positive LVDS differential data input. Channel O0 (odd)
19	MRXO1-	Negative LVDS differential data input. Channel O1 (odd)
20	MRXO1+	Positive LVDS differential data input. Channel O1 (odd)
21	MRXO2-	Negative LVDS differential data input. Channel O2 (odd)
22	MRXO2+	Positive LVDS differential data input. Channel O2 (odd)
23	GND	LVDS Ground
24	MRXOC-	Negative LVDS differential clock input. (odd)
25	MRXOC+	Positive LVDS differential clock input. (odd)
26	GND	LVDS Ground
27	MRXO3-	Negative LVDS differential data input. Channel O3 (odd)
28	MRXO3+	Positive LVDS differential data input. Channel O3 (odd)
29	MRXO4-	Negative LVDS differential data input. Channel O4 (odd)
30	MRXO4+	Positive LVDS differential data input. Channel O4 (odd)
31	GND	LVDS Ground
32	GND	LVDS Ground
33	NC	Not connection, this pin should be open
34	NC	Not connection, this pin should be open
35	NC	Not connection, this pin should be open
36	NC	Not connection, this pin should be open
37	NC	Not connection, this pin should be open
38	NC	Not connection, this pin should be open
39	NC	Not connection, this pin should be open
40	NC	Not connection, this pin should be open
41	NC	Not connection, this pin should be open

4.2.2 J2 (SLAVE): RIGHT SIDE(FRONT VIEW)

Pin	Name	Description
1	GND	LVDS Ground
2	SRXE0-	Negative LVDS differential data input. Channel E0 (even)
3	SRXE0+	Positive LVDS differential data input. Channel E0 (even)
4	SRXE1-	Negative LVDS differential data input. Channel E1 (even)
5	SRXE1+	Positive LVDS differential data input. Channel E1 (even)
6	SRXE2-	Negative LVDS differential data input. Channel E2 (even)
7	SRXE2+	Positive LVDS differential data input. Channel E2 (even)
8	GND	LVDS Ground
9	SRXEC-	Negative LVDS differential clock input. (even)
10	SRXEC+	Positive LVDS differential clock input. (even)
11	GND	LVDS Ground
12	SRXE3-	Negative LVDS differential data input. Channel E3 (even)
13	SRXE3+	Positive LVDS differential data input. Channel E3 (even)
14	SRXE4-	Negative LVDS differential data input. Channel E4 (even)
15	SRXE4+	Positive LVDS differential data input. Channel E4 (even)
16	GND	LVDS Ground
17	SRXO0-	Negative LVDS differential data input. Channel O0 (odd)
18	SRXO0+	Positive LVDS differential data input. Channel O0 (odd)
19	SRXO1-	Negative LVDS differential data input. Channel O1 (odd)
20	SRXO1+	Positive LVDS differential data input. Channel O1 (odd)
21	SRXO2-	Negative LVDS differential data input. Channel O2 (odd)
22	SRXO2+	Positive LVDS differential data input. Channel O2 (odd)
23	GND	LVDS Ground
24	SRXOC-	Negative LVDS differential clock input. (odd)
25	SRXOC+	Positive LVDS differential clock input. (odd)
26	GND	LVDS Ground
27	SRXO3-	Negative LVDS differential data input. Channel O3 (odd)
28	SRXO3+	Positive LVDS differential data input. Channel O3 (odd)
29	SRXO4-	Negative LVDS differential data input. Channel O4 (odd)
30	SRXO4+	Positive LVDS differential data input. Channel O4 (odd)
31	GND	LVDS Ground
32	GND	LVDS Ground
33	BIT_SEL	Bit mode selection pin; 0: 10bit (default), 1: 8bit.
34	LVDS_SEL	LVDS Format mode selection pin; 0: VESA (default), 1:.JITA
35	NC	Not connection, this pin should be open
36	NC	Not connection, this pin should be open
37	NC	Not connection, this pin should be open
38	NC	Not connection, this pin should be open
39	NC	Not connection, this pin should be open
40	NC	Not connection, this pin should be open
41	NC	Not connection, this pin should be open

Note (1) the first pixel is even.

Note (2) Input signal of even and odd clock should be the same timing.

Note (3) the module uses a 100-ohm resistor between positive and negative data lines of each receiver input

Note (4) Control board front view

- J1: GS1341201421S-7H (Foxconn) or equivalent; LVDS input for LEFT half screen
- J2: GS1341201421S-7H (Foxconn) or equivalent; LVDS input for RIGHT half screen
- J3: IL-Z-8PL-SMTYE (JAE): Power input (+12V); Mating Connector: IL-Z-8S-S125C3 (JAE)

4.2.3 DC INPUT PIN ASSIGNMENT

Pin	Name	Description
1	GND	Ground for Vcc
2	GND	Ground for Vcc
3	GND	Ground for Vcc
4	GND	Ground for Vcc
5	Vcc	+12.0V Power Supply for Control board
6	Vcc	+12.0V Power Supply for Control board
7	Vcc	+12.0V Power Supply for Control board
8	Vcc	+12.0V Power Supply for Control board

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Parame	otor	Symbol		Value		Unit	Note
Falaille	Syllibol	Min.	Тур.	Max.	Offic	Note	
Power Supply	/ Voltage	Vcc	11.4	12	12.6	V	-
Ripple Vo	ltage	V_{RP}	-	-	300	mV	-
Rush Cu	rrent	I _{RUSH}	- ,	-	2	Α	(2)
	White		, - ,	1.35	1.5	Α	(3)a
Power Supply Current	Black		-	0.55	0.8	Α	(3)b
	Vertical Stripe		-	1.05	1.2	Α	(3)c
Power Cons	umption	PLCD	-	16.2	18	Watt	(4)
LVDS differential	Vid	200	•	600	mV		
LVDS common i	Vic	1.0	1.2	1.4	V		
Logic High Inp	VIH	2.31	-	3.3	V		
Logic Low Inp	ut Voltage	VIL	0	-	1	V	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Note (3) The specified power supply current is under the conditions at Vcc = 12.0 V, Ta = 25 ± 2 °C, Fr = 50Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

4.3.2 Vcc Power Dip Condition

4.3.3 BACKLIGHT UNIT

Parameter	Symbol		Value		Unit	Note	
i arameter	Syllibol	Min.	Тур.	Max.	Offic	Note	
LED Light Bar Input Voltage Per Input Pin	VPIN	33.6	38.4	43.2	V	(1), Duty=100%, IPIN=150mA	
LED Light Bar Current Per Input Pin	IPIN	0	100	200	mA	(1), (2) Duty=100%	
LED Life Time	LLED	50000			Hrs	(3)	
Power Consumption	PBL		28	32	W	(1) Duty=100%, IPIN=150mA	

- Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multi-meter as shown below:
- Note (2) PBL = IPIN × VPIN × input pins
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= (100) mA (per chip) until the brightness becomes \leq 50% of its original value.

4.3.4 CONVERTER ELECTRICAL CHARATERISTICS

Ta = 25 ± 2 °C

Parameter		Symbol		Value)	Unit	Note
1 drameter	Cymbol	Min.	Тур.	Max.	Offic	Note	
Converter Power Sup	ply Voltage	V_{i}	21.6	24.0	26.4	V	(Duty 100%)
Converter Power Sup	ply Current	l _i		1.2	1.5	Α	@ Vi = 24V
	. ,	'					(Duty 100%)
Input Power Consump	otion	Po		30	36	w	@ Vi = 24V
input i ower consump	Juon	. 0		0	00	• • • • • • • • • • • • • • • • • • • •	(Duty 100%)
BL Control Level	Backlight on	BLON	2	3.3	5.0	V	
BL Control Level	Backlight off	BLOIN	0	0	8.0	V	
	PWM High		2.0	3.3	5.0	V	
PWM Control Level	Level	E PWM	2.0	3.3	5.0	V	
F VVIVI COITII OI Level	PWM Low			0	0.8	V	
		0	U	0.6	V		
PWM Control Duty Ra	PWM Control Duty Ratio				100	%	
PWM Control Frequer	f_{PWM}	100	200	210	Hz		

Power sequence and control signal timing are shown in the following figure

Note: While system is turned ON or OFF, the power sequences must follow as below descriptions

Turn ON sequence: Vi(+24V) → BLON → E_PWM signal

Turn OFF sequence: E_PWM signal → BLON → Vi(+24V)

The definition of T_r : the time period of $10\%*V_i$ to $90\%*V_i$

The definition of T_f: the time period of 90%*V_i to 10%*V_i

The following chart is the BLU Dimming for your reference.

4.3.5 CONVERTER INPUT CONNECTOR PIN ASSIGNMENT

Connector: FCN JH2-D2-143N_D or equivalent

Pin №	Signal name	Feature
1		
2		
3	V_{BL}	+24 V
4	/	
5		
6		
7		
8	GND	GND
9		
10		
11	NC	NC
12	BLON	BL ON/OFF (ON:5V, OFF:0V)
13	NC	NC
14	E_PWM	External PWM Control (Hi Level: 5V, Lo Level: 0V)

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA INPUT DATA ORDER (VESA Mode)

VESA mode: LVDS_SEL= L (0V)

LVDS interface receiv	er required inpu	t data ma	oping table	Э				
LVDS Channel E0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
LVD3 Chamilei Eu	Data order	EB0	EA5	EA4	EA3	EA2	EA1	EA0
LVDS Channel E1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
LVD3 Chamilei ET	Data order	EC1	EC0	EB5	EB4	EB3	EB2	EB1
LVDS Channel E2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
LVD3 Chamilei Ez	Data order	DE	VS	HS	EC5	EC4	EC3	EC2
LVDS Channel E3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
LVD3 Chamile E3	Data order	NA	EC7	EC6	EB7	EB6	EA7	EA6
LVDS Channel E4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
LVD3 Chamilei L4	Data order	NA	EC9	EC8	EB9	EB8	EA9	EA8
LVDS Channel O0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
LVD3 Chamilei O0	Data order	OB0	OA5	OA4	OA3	OA2	OA1	OA0
LVDS Channel O1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
LVD3 Charmer O1	Data order	OC1	OC0	OB5	OB4	OB3	OB2	OB1
LVDS Channel O2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
LVD3 Chamilei O2	Data order	DE	VS	HS	OC5	OC4	OC3	OC2
LVDS Channel O3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
LVD3 Chamilei O3	Data order	NA	OC7	OC6	OB7	OB6	OA7	OA6
LVDS Channel O4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
LVD3 Chamilei O4	Data order	NA	OC9	OC8	OB9	OB8	OA9	OA8

4.4.2 LVDS DATA INPUT DAT ORDER (JEITA Mode)

JEITA mode: LVDS_SEL= H (3.3V)

LVDS interface receiv	er required inpu	t data map	ping table					
LVDS Channel E0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
LVD3 Charmer EU	Data order	EB4	EA9	EA8	EA7	EA6	EA5	EA4
LVDS Channel E1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
LVDG Grianner ET	Data order	EC5	EC4	EB9	EB8	EB7	EB6	EB5
LVDS Channel E2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
LVD3 Ghanner L2	Data order	DE	NA	NA	EC9	EC8	EC7	EC6
LVDS Channel E3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
LVD3 Charmer L3	Data order	NA	EC3	EC2	EB3	EB2	EA3	EA2
LVDS Channel E4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
LVDO Chariner L4	Data order	NA	EC1	EC0	EB1	EB0	EA1	EA0
LVDS Channel O0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0
LVD3 Charmer 00	Data order	OB4	OA9	OA8	OA7	OA6	OA5	OA4
LVDS Channel O1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0
LVD3 Charmer O1	Data order	OC5	OC4	OB9	OB8	OB7	OB6	OB5
LVDS Channel O2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0
LVD3 Charmer 02	Data order	DE	NA	NA	OC9	OC8	OC7	OC6
LVDS Channel O3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0
LVD3 Charmer 03	Data order	NA	OC3	OC2	OB3	OB2	OA3	OA2
LVDS Channel O4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0
LVD3 Channel 04	Data order	NA	OC1	OC0	OB1	OB0	OA1	OA0

4.4.3 PIXEL FORMAT IMAGE

4.4.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each sub-pixel is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

															Da	ata S	Sigr	ıal													
	Color				S	ubp	ixe	11							S	ubp	ixe	2							S	ubp	ixe	13			
		A 9	A8	Α7	A6	A5	Α4	А3	A2	A 1	A0	В9	B8	В7	В6	B5	B4	В3	B2	B1	B0	C9	C8	С7	C6	C 5	C4	C3	C2	C1	C0
Basic	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Colors	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Gray(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gray(1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Gray(2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale of												0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subpixel1												0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(Dark)	Gray(1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gray(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gray(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gray(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gray(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Gray(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale of	•	0	0	0	0	0	0	0	0	0	0											0	0	0	0	0	0	0	0	0	0
Subpixel2	•	0	0	0	0	0	0	0	0	0	0											0	0	0	0	0	0	0	0	0	0
(Dark)	Gray(1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
	Gray(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Gray(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Gray(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gray(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Gray(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale of		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				_		_				·
Subpixel3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0										Ŀ
(Dark)	Gray(1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
	Gray(1022)	0	Ò	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Gray(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _c	72.97	74	78.15	MHz	-
	Period	T _c	12.79	13.51	13.70	ns	
	Input cycle to cycle jitter	T _{rcl}			250	ns	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod			1.02*Fc	MHz	
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(2)
	High Time	T _{ch}		4/7		Tc	
	Low Time	T _{cl}		3/7		Tc	
LVDS data	Setup Time	T _{Ivs}	600			ps	(2)
LVD3 data	Hold Time	T_lvh	600			<u>ps</u>	(3)
	Frame Rate	Fr		50		Hz	
	Total	T_v	2075	2076	2134	Th	$T_v = T_{vd} + T_{vb}$
Vertical Display Term	Active Display	T_{vd}	2064	2064	2064	Th	
	Sensor Line/frame	K		16		Th	
	Blank	T_{vb}	T_{v} - T_{vd}	12	T_{v} - T_{vd}	Th	
	Total	T _h	703	712	732	Тс	$T_h = T_{hd} + T_{hb}$
Horizontal Display Term	Active Display	T_{hd}	640	640	640	Tc	
	Blank	T_hb	$T_h\text{-}T_hd$	72	T_h - T_{hd}	Тс	

Note: Because this module is operated by DE only mode, H_{sync} and V_{sync} input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameters		Units		
Farameters	Min	Тур.	Max	Offics
T1	0.5	-	10	ms
T2	0	-	50	ms
T3	450	-	-	ms
T4	90	-	-	ms
T5	0	-	50	ms
T6	5	-	100	ms
T7	500	-	-	ms

Note

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of V_{CC} = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T7 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) It is not guaranteed that products are damaged which is caused by not following the Power Sequence.
- (7) It is suggested that Vcc falling time follows T6 specification; else slight noise is likely to occur when LCD is turned off (even backlight is already off).

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5	V
Input Signal	Accordin	ng to typical value in "3. ELECTRICAL (CHARACTERISTICS"
LED Light Bar Input Current Per Input Pin	I _{PIN}	40 ± 1.2	mA_DC
PWM Duty Ratio	D	100	%

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
White Balance	White	W _x	θ _x =0°, θ _Y =0°	typical- 0.03	0.294	typical+ 0.03		(1), (5)
		W _y			0.309		-	
Center Luminance of White		L _C	CS-2000	1000	1200		cd/m ²	(4), (5)
Contrast Ratio		CR		1000	1200		1	(2), (5)
Response Time		T _R	θ _x =0°, θ _Y =0°		15	25	ms	(3)
		T _F			10	15	ms	
White Variation(adjacent)		δW_a	θ_x =0°, θ_Y =0° USB2000	80			ı	(5), (6)
White Variation(total)		δW_t	θ_x =0°, θ_Y =0° USB2000	70			-	(5), (6)
Viewing Angle		⊖ _{y+} ⊖ _{y-} ⊖ _{x+} ⊖ _{x-}	CR ≥ 20 USB2000	80	85		Deg.	(1), (5)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L1023 / L0

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (4).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point

$$L_{\rm C} = L (5)$$

L (x) is corresponding to the luminance of the point X at the following figure.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (6) There is the Uniformity Measurement below:

'L_{bright}' represents the Luminance of the point that is brighter than the other point to be compared.

'L_{dark}' represents the Luminance of the point that is darker than the other point to be compared.

Measuring points are shown in the following Fig.

When the backlight is on with all pixels in the white (maximum gray) level, the luminance uniformity is defined as follows;

Where:

L_{bright}: The luminance of the brightest part of the area

L_{dark}: The luminance of the darkest part of the area

1. Adjacent Area

$$Luminance Uniformity = \frac{L_{dark}}{L_{bright}} \ge 0.80$$

over a circular area of 10mm diameter placed anywhere on the screen.

2. Screen Total

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃ , 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50℃,240hours	
Low Temperature Operation (LTO)	Ta= 0°C , 240hours	
High Temperature Storage (HTS)	Ta= 60°C , 240hours	
Low Temperature Storage (LTS)	Ta= -20℃ , 240hours	
Vibration Test	Acceleration: 1.5 Grms Wave: Half-sine Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms	
Shock Test	Direction : ± X, ± Y, ± Z.(one time for each	
(Non-operation)	Axis)	
Thermal Shock Test (TST)	-20°C/30min , 60°C / 30min , 100 cycles	
On/Off Test	25°C ,On/10sec , Off /10sec , 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω) Air Discharge: ± 15KV, 150pF(330Ω) Operation:10,000 ft / 24hours	
Altitude Test	Non-Operation:30,000 ft / 24hours	
Carton packing Vibration	ISTA STANDARD Random, Frequency Range: 1 – 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	Non Operation
Carton Packing Dropping Test	1 Corner , 3 Edge, 6 Face, 61cm	Non Operation

- Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.
- Note (2) Evaluation should be tested after storage at room temperature for more than two hour
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

7. PACKING

7.1 PACKING SPECIFICATIONS

(1) 4 LCD modules / 1 Box

(2) Box dimensions: 532(L) * 283(W) * 488(H) mm

(3) Weight: approximately: 16.9kg (4 modules per box)

7.2 PACKING METHOD

Packaging method is shown as following figures.

Figure. 7-1 Packing method

7.3 PALLET

Sea / Land Transportation (40ft / 40ft HQ Container)

Air Transportation

Figure 7-2 Packing method

7.4 UN-PACKING METHOD

UN-packaging method is shown as following figures.

Figure 7-3 Un-packing method

8. INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: R213TFE-L53

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) INX barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	Innolux internal use	-
XX	Revision	Cover all the change
Х	Innolux internal use	-
XX	Innolux internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

9.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0°C to 35°C and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

9.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15°C Humidity: 65±20%

Display pattern : continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude ,display pattern or operation time etc...It is strongly recommended to contact CMO for application engineering advice. Otherwise, its reliability and function may not be guaranteed.

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

Appendix. OUTLINE DRAWING

