Enteros sin signo

Multiplicación binaria sin signo

- Enteros sin signo **✓ Producto**
 - ✓ División con reestablecimiento
 - ✓ División sin reestablecimiento
- Enteros con signo ✓ Producto: Recodificación de Booth

Inicialización de los registros:

A =
$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$

B = $b_{n-1} b_{n-2} \dots b_2 b_1 b_0$
P = 0

2. Repetir **n** veces:

$$\triangleright$$
 Si a_0 = 1 entonces

$$P = P + B$$
;

P = P + B; $c \leftarrow acarreo$

Si no

$$P = P + 0$$
;

➤ Desplazar 1 bit a la derecha (c, P, A):

P (n bits)

A (n bits)

 $p_{n-1} p_{n-2} \dots p_1 p_0$

 $a_{n-1} a_{n-2} \dots a_1 a_0$

Se pierde el bit menos significativo de A

 $c p_{n-1} ... p_2 p_1$

 $p_0 | a_{n-1} | ... | a_2 | a_1$

(c, P, A) >> 1

3. Resultado del **producto** (2n bits):

Α

<u>Enteros sin signo</u>

División binaria sin signo

- ✓ Producto
- ✓ División con reestablecimiento
- ✓ División sin reestablecimiento

Enteros con signo

✓ Producto:

Recodificación de Booth

1. Inicialización de los registros:

$$A = a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

$$B = b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

P = 0 (registro de **n+1** bits)

Con reestablecimiento

Repetir **n** veces:

- ➤ Desplazar 1 bit a la izquierda (P, A) (P, A) << 1
- \triangleright P = P B;
- ➤ Si (P < 0) entonces

$$a_0 = 0;$$

P = P + B:

$$A = a_{n-1} a_{n-2} \dots a_2 a_1 0$$

Si no

$$a_0 = 1$$
;

$$A = a_{n-1} a_{n-2} \dots a_2 a_1 1$$

Cociente (n bits):

Resto (n bits):

P

<u>Enteros sin signo</u>

Enteros sin signo

- ✓ Producto
- ✓ División con reestablecimiento
- ✓ División sin reestablecimiento
- Enteros con signo

 ✓ Producto:

 Recodificación de

 Booth

División binaria sin signo

1. Inicialización de los registros:

$$A = a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$

 $B = b_{n-1} b_{n-2} \dots b_2 b_1 b_0$

P = 0 (registro de n+1 bits)

Sin reestablecimiento

(P, A) << 1

(P, A) << 1

Repetir n veces:

➤ Si (P < 0) entonces

Desplazar 1 bit a la izquierda (P, A)

$$P = P + B$$
:

Si no

Desplazar 1 bit a la izquierda (P, A)

$$P = P - B$$
:

 \triangleright Si (P < 0) entonces $a_0 = 0$;

Si no
$$a_0 = 1$$
;

<u>Enteros con signo</u>

Enteros sin signo

- ✓ Producto
- ✓ División con reestablecimiento
- ✓ División sin reestablecimiento

Enteros con signo √Producto: Recodificación de Booth

Recodificación de Booth

1. Inicialización de los registros:

A =
$$a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

B = $b_{n-1} b_{n-2} ... b_2 b_1 b_0$

Repetir **n** veces:

P = 0

$$>$$
 Si $a_{-1} = 1$ entonces

$$P = P + B$$
;

Si no

$$P = P + 0;$$

➤ Desplazar **aritméticamente** 1 bit a la derecha (P, A, a₋₁):

$$\frac{P (n bits)}{p_{n-1}p_{n-1} \dots p_2 p_1}$$

A (n bits)
$$a_{-1}$$
 (1 bit) $p_0 | a_{n-1} | \dots | a_2 | a_1 | a_0$

3. Si
$$a_{-1} = 1$$
 entonces $P = P - B$;

- **4.** Desplazar **aritméticamente** 1 bit a la derecha (P, A, a₋₁)
- **5.** Resultado del **producto** (2n bits)

