

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) An encryption method for dividing a first plaintext bit stream of length $2n$ into first and second sub-bit streams of length n , dividing a second plaintext bit stream of length $2n$ into third and fourth sub-bit streams of length n , and generating a ciphertext bit stream of length $2n$ from the first, second, third and fourth sub-bit streams using 2-rounds of encryption, the method comprising the steps of:

performing a first-round of encryption by encrypting the received the first and second sub-bit streams with predetermined first encryption codes an odd number of times, and outputting the second ciphertext bit stream ~~having been once more encrypted again~~ with a predetermined time delay right after the first ciphertext bit streams of length n are outputted;

generating a first operated ciphertext bit stream by performing a logical exclusive-OR-operation on the first ciphertext bit stream and the third sub-bit stream at the same time of performing encryption of the second ciphertext bit stream;

generating a second operated ciphertext bit stream by performing a logical exclusive-OR operation on the second ciphertext bit stream and the fourth sub-bit stream; and

performing a second-round of encryption by encrypting the received—the first operated ciphertext bit stream and the second operated ciphertext bit stream, ~~having comprising~~ the predetermined time delay, with predetermined second encryption codes an odd number of times, and concurrently outputting the third and fourth ciphertext bit streams of length n after ~~once more~~ encrypting the first operated ciphertext bit stream ~~again~~ with predetermined second encryption codes.

2. (Currently Amended) The encryption apparatus of claim 1, wherein the predetermined ~~second~~ first encryption codes comprises at least one of $KO_{1,1}$, $KO_{1,2}$, $KO_{1,3}$, $KI_{1,1}$, $KI_{1,2}$, and $KI_{1,3}$.

3. (Currently Amended) The encryption apparatus of claim 1, wherein the ~~first~~ predetermined second encryption codes comprises at least one of KO_{2,1}, KO_{2,2}, KO_{2,3}, KI_{2,1}, KI_{2,2}, and KI_{2,3}.

4. (Currently Amended) The encryption method of claim 2, wherein the first-round encryption step comprises the steps of:

generating a first signal by performing a logical exclusive-OR operation on the first sub-bit stream and the first encryption code KO_{1,1} to provide a first exclusive-OR operated bitstream, encrypting the first exclusive-OR-operated bit stream with the first encryption code KI_{1,1} to provide a first encrypted signal, and performing a logical exclusive-OR operation on the first encrypted signal and the second sub-bit stream delayed by time required for the encryption;

generating the first operated ciphertext bit stream by performing a logical exclusive-OR-operation on the second sub-bit stream and the first encryption code KO_{1,2}, to provide a second exclusive-OR operated bitstream[[,]] encrypting the second exclusive-OR-operated bit stream with the first encryption code KI_{1,2}, to provide a second encrypted signal, and performing a logical exclusive-OR-operation on the second encrypted signal and the first signal;

generating the second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the first signal and the first encryption code KO_{1,3} to provide a third exclusive-OR operated bitstream, encrypting the third exclusive-OR-operated bit stream with the first encryption code KI_{1,3}, and performing a logical exclusive-OR-operation on the encrypted signal with the first sub-bit stream delayed by time required for the encryption.

5. (Currently Amended) The encryption method of claim 3, wherein the second-round encryption step comprises the steps of:

generating a second signal by performing a logical exclusive-OR-operation on the first operated ciphertext bit stream and the second encryption code KO_{2,1} to provide a fourth

exclusive-OR operated bitstream, encrypting the fourth exclusive-OR-operated bit stream with the second encryption code $KI_{2,1}$ to provide a third encrypted signal, performing a logical exclusive-OR-operation on the third encrypted signal and the second operated ciphertext bit stream to provide a fifth exclusive-OR operated bitstream;

| generating the third operated ciphertext bit stream by performing a logical exclusive-OR-operation on the second operated ciphertext bit stream and the second encryption code $KO_{2,2}$, encrypting the fifth exclusive-OR-operated bit stream with the second encryption code $KI_{2,2}$ to provide a fourth encrypted signal, and performing a logical exclusive-OR-operation on the fifth encrypted signal and the second signal delayed by time required for the encryption; and

| generating the fourth ciphertext bit stream by performing a logical exclusive-OR-operation on the second signal and the second encryption code $KO_{2,3}$ encrypting the sixth exclusive-OR-operated bit stream with the second encryption code $KI_{2,3}$, and performing a logical exclusive-OR-operation on the encrypted signal with the third operated ciphertext bit stream.

6. (Original) The encryption method of claim 5, wherein each of the encryptions includes first and second sub-encryptions, and outputs from the first and second sub-encryptions are stored and simultaneously retrieved according to an external clock signal.

7. (Original) The encryption method of claim 5, wherein a 16-bit input bit stream is divided into a 9-bit stream and a 7-bit stream, a 9-bit ciphertext bit stream is generated from the 9-bit stream using a first equation, and a 7-bit ciphertext bit stream is generated from the 7-bit stream using a second equation in each of the sub-encryptions, wherein said first equation comprises

$y_0 = (x_0x_2) \oplus x_3 \oplus (x_2x_5) \oplus (x_5x_6) \oplus (x_0x_7) \oplus (x_1x_7) \oplus (x_2x_7) \oplus (x_4x_8) \oplus (x_5x_9) \oplus (x_7x_8) \oplus '1';$
 $y_1 = x_1 \oplus (x_0x_1) \oplus (x_2x_3) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_3x_5) \oplus x_6 \oplus (x_1x_7) \oplus (x_2x_7) \oplus (x_5x_8) \oplus '1';$
 $y_2 = x_1 \oplus (x_0x_3) \oplus (x_3x_4) \oplus (x_0x_5) \oplus (x_2x_6) \oplus (x_3x_6) \oplus (x_5x_6) \oplus (x_4x_7) \oplus (x_5x_7) \oplus (x_6x_7) \oplus x_8 \oplus (x_0x_8) \oplus '1';$
 $y_3 = x_0 \oplus (x_1x_2) \oplus (x_0x_3) \oplus (x_2x_4) \oplus x_5 \oplus (x_0x_6) \oplus (x_1x_6) \oplus (x_4x_7) \oplus (x_0x_8) \oplus (x_1x_8) \oplus (x_7x_8);$
 $y_4 = (x_0x_1) \oplus (x_1x_3) \oplus x_4 \oplus (x_0x_5) \oplus (x_3x_6) \oplus (x_0x_7) \oplus (x_5x_7) \oplus (x_1x_8) \oplus (x_2x_8) \oplus (x_3x_8);$
 $y_5 = x_2 \oplus (x_1x_4) \oplus (x_4x_5) \oplus (x_0x_6) \oplus (x_1x_6) \oplus (x_3x_7) \oplus (x_4x_7) \oplus (x_6x_8) \oplus (x_5x_9) \oplus (x_6x_9) \oplus (x_7x_8) \oplus '1';$
 $y_6 = x_0 \oplus (x_2x_3) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_4x_5) \oplus (x_3x_6) \oplus (x_4x_6) \oplus (x_5x_6) \oplus x_7 \oplus (x_1x_8) \oplus (x_3x_8) \oplus (x_5x_8) \oplus (x_7x_8);$
 $y_7 = (x_0x_1) \oplus (x_0x_2) \oplus (x_1x_2) \oplus x_3 \oplus (x_0x_3) \oplus (x_2x_3) \oplus (x_4x_5) \oplus (x_2x_6) \oplus (x_3x_6) \oplus (x_2x_7) \oplus (x_5x_7) \oplus x_8 \oplus '1';$
 $y_8 = (x_0x_1) \oplus x_2 \oplus (x_1x_2) \oplus (x_3x_4) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_1x_6) \oplus (x_4x_6) \oplus x_7 \oplus (x_2x_8) \oplus (x_3x_8);$

and said second equation comprises

$y_0 = (x_1x_2) \oplus x_3 \oplus (x_0x_1x_3) \oplus x_4 \oplus (x_2x_5) \oplus (x_0x_7) \oplus (x_1x_7) \oplus (x_2x_7) \oplus (x_4x_8) \oplus (x_5x_9) \oplus (x_7x_8) \oplus '1';$
 $y_1 = (x_0x_1) \oplus (x_1x_2) \oplus (x_2x_3) \oplus x_5 \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_3x_5) \oplus (x_4x_5) \oplus (x_5x_5) \oplus (x_6x_5) \oplus (x_7x_5) \oplus '1';$
 $y_2 = x_1 \oplus (x_0x_3) \oplus (x_1x_4) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_3x_5) \oplus (x_4x_5) \oplus (x_5x_5) \oplus (x_6x_5) \oplus (x_7x_5) \oplus '1';$
 $y_3 = x_1 \oplus (x_0x_2x_3) \oplus (x_1x_2) \oplus (x_0x_3) \oplus (x_1x_3) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_3x_5) \oplus (x_4x_5) \oplus (x_5x_5) \oplus (x_6x_5) \oplus (x_7x_5) \oplus '1';$
 $y_4 = (x_0x_1) \oplus x_2 \oplus (x_1x_2) \oplus (x_3x_4) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_1x_6) \oplus (x_4x_6) \oplus (x_5x_6) \oplus (x_1x_7) \oplus (x_5x_7) \oplus x_8 \oplus '1';$
 $y_5 = (x_0x_1) \oplus (x_1x_2) \oplus (x_1x_3) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_3x_5) \oplus (x_4x_5) \oplus (x_5x_5) \oplus (x_6x_5) \oplus (x_7x_5) \oplus '1';$
 $y_6 = (x_0x_1) \oplus (x_1x_2) \oplus (x_1x_3) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_3x_5) \oplus (x_4x_5) \oplus (x_5x_5) \oplus (x_6x_5) \oplus (x_7x_5) \oplus '1';$
 $y_7 = (x_0x_1) \oplus (x_1x_2) \oplus (x_1x_3) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_3x_5) \oplus (x_4x_5) \oplus (x_5x_5) \oplus (x_6x_5) \oplus (x_7x_5) \oplus '1';$
 $y_8 = (x_0x_1) \oplus (x_1x_2) \oplus (x_1x_3) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_1x_6) \oplus (x_4x_6) \oplus (x_5x_6) \oplus (x_1x_7) \oplus (x_5x_7) \oplus x_8 \oplus '1';$

8. (Currently Amended) An encryption apparatus for dividing a first plaintext bit stream of length $2n$ into first and second sub-bit streams of length n , dividing a second plaintext bit stream of length $2n$ into third and fourth sub-bit streams of length n , and generating a ciphertext bit stream of length $2n$ from the first, second, third and fourth sub-bit streams using 2-rounds of encryption, the apparatus comprising:

a first ciphering unit for receiving the first and second sub-bit streams, and generating first and second ciphertext bit streams of length n by encrypting the first and second sub-bit streams with predetermined first encryption codes $KO_{1,1}$, $KO_{1,2}$, $KO_{1,3}$, $KI_{1,1}$, $KI_{1,2}$, and $KI_{1,3}$ an odd number of times, and the second ciphertext bit stream having been once more

encrypted again with a predetermined time delay after the first ciphertext bit streams of length n are outputted;

an operating unit for generating a first operated ciphertext bit stream by performing a logical exclusive-OR-operation on the first ciphertext bit stream and the third sub-bit stream at the same time of performing the first-round of encryption, and generating a second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the second ciphertext bit stream with the fourth sub-bit stream; and

a second ciphering unit for receiving the first operated ciphertext bit stream and the second operated ciphertext bit stream ~~having comprising~~ the predetermined time delay, generating third and fourth ciphertext bit streams of length n by encrypting the first operated ciphertext bit stream and the second operated ciphertext bit stream with predetermined second encryption codes KO_{2,1}, KO_{2,2}, KO_{2,3}, KI_{2,1}, KI_{2,2}, and KI_{2,3} an odd number of times, and concurrently outputting the third and fourth ciphertext bit streams after ~~once more~~ encrypting the first operated ciphertext bit stream again with predetermined second encryption codes.

9. (Currently Amended) The encryption apparatus of claim 8, wherein the first ciphering unit comprises:

a first block ~~having comprising~~ a first exclusive-OR operator for performing a logical exclusive-OR operation on the first sub-bit stream and the first encryption code KO_{1,1}, a first sub-cipher for encrypting the exclusive-OR-operated bit stream with the first encryption code KI_{1,1}, and a second exclusive-OR operator for generating a first signal by performing a logical exclusive-OR operation on the encrypted signal with the second sub-bit stream being delayed to provide time for the encryption;

a second block ~~having comprising~~ a third exclusive-OR operator for performing a logical exclusive-OR operation on the second sub-bit stream and the first encryption code KO_{1,2}, a second sub-cipher for encrypting the exclusive-OR-operated bit stream with the first encryption code KI_{1,2}, and a fourth exclusive-OR operator for generating the first operated

ciphertext bit stream by performing a logical exclusive-OR operation on the encrypted signal and the first signal; and

a third block ~~having comprising~~ a fifth exclusive-OR operator for performing a logical exclusive-OR operation on the first signal and the first encryption code KO_{1,3}, a third sub-cipher for encrypting the exclusive-OR-operated bit stream with the first encryption code KI_{1,3}, and a sixth exclusive-OR operator for generating the second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the encrypted signal and the first sub-bit stream delayed by time required for the encryption.

10. (Currently Amended) The encryption apparatus of claim 8, wherein the second ciphering unit comprises:

a fourth block ~~having comprising~~ a seventh exclusive-OR operator for exclusive-OR-operating the first operated ciphertext bit stream with the second encryption code KO_{2,1}, a fourth sub-cipher for encrypting the exclusive-OR-operated bit stream with the second encryption code KI_{2,1}, and an eighth exclusive-OR operator for generating a second signal by performing a logical exclusive-OR-operation on the encrypted signal and the second operated ciphertext bit stream;

a fifth block ~~having comprising~~ a ninth exclusive-OR operator for exclusive-OR-operating the second operated ciphertext bit stream with the second encryption code KO_{2,2}, a fifth sub-cipher for encrypting the exclusive-OR-operated bit stream with the second encryption code KI_{2,2}, and a tenth exclusive-OR operator for generating the third ciphertext bit stream by performing a logical exclusive-OR-operation on the encrypted signal and the second signal delayed by time required for the encryption; and

a sixth ~~book having~~ block ~~comprising~~ an eleventh exclusive-OR operator for performing a logical exclusive-OR operation on the second signal with the second encryption code KO_{2,3}, a sixth sub-cipher for encrypting the exclusive-OR-operated bit stream with the second encryption code KI_{2,3}, and a twelfth exclusive-OR operator for generating the fourth

ciphertext bit stream by performing a logical exclusive-OR operation on the encrypted signal and the third ciphertext bit stream.

11. (Currently Amended) The encryption apparatus of claim 10, wherein each of the first to sixth sub-ciphers includes first and second sub-ciphering units, and a register for storing the outputs of the first and second sub-ciphering units and simultaneously ~~retrieve retrieving~~ the outputs according to an external clock signal.

12. (Original) The encryption apparatus of claim 11, wherein each of the first and second sub-ciphering units divides a 16-bit input bit stream into a 9-bit stream and a 7-bit stream, and generates a 9-bit ciphertext bit stream from the 9-bit stream using a third equation, and a 7-bit ciphertext bit stream from the 7-bit stream using a fourth equation, said third equation comprising

$$\begin{aligned}y_0 &= (x_0x_2) \oplus x_3 \oplus (x_2x_5) \oplus (x_5x_6) \oplus (x_0x_7) \oplus (x_2x_7) \oplus (x_4x_8) \oplus (x_5x_8) \oplus (x_7x_8) \oplus '1'; \\y_1 &= x_1 \oplus (x_0x_1) \oplus (x_2x_5) \oplus (x_0x_4) \oplus (x_1x_4) \oplus (x_0x_5) \oplus (x_3x_5) \oplus x_6 \oplus (x_1x_7) \oplus (x_2x_7) \oplus (x_5x_8) \oplus '1'; \\y_2 &= x_1 \oplus (x_0x_3) \oplus (x_3x_4) \oplus (x_0x_5) \oplus (x_2x_6) \oplus (x_3x_6) \oplus (x_5x_6) \oplus (x_4x_7) \oplus (x_5x_7) \oplus (x_6x_7) \oplus x_8 \oplus (x_0x_8) \oplus '1'; \\y_3 &= x_0 \oplus (x_1x_2) \oplus (x_0x_3) \oplus (x_2x_4) \oplus x_5 \oplus (x_0x_6) \oplus (x_1x_6) \oplus (x_4x_7) \oplus (x_0x_8) \oplus (x_1x_8) \oplus (x_7x_8); \\y_4 &= (x_0x_1) \oplus (x_1x_3) \oplus x_4 \oplus (x_0x_5) \oplus (x_3x_6) \oplus (x_0x_7) \oplus (x_6x_7) \oplus (x_1x_8) \oplus (x_2x_8) \oplus (x_3x_8); \\y_5 &= x_2 \oplus (x_1x_4) \oplus (x_4x_5) \oplus (x_0x_6) \oplus (x_1x_6) \oplus (x_3x_7) \oplus (x_4x_7) \oplus (x_6x_7) \oplus (x_5x_8) \oplus (x_6x_8) \oplus (x_7x_8) \oplus '1'; \\y_6 &= x_0 \oplus (x_2x_3) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_4x_5) \oplus (x_3x_6) \oplus (x_4x_6) \oplus (x_5x_6) \oplus x_7 \oplus (x_1x_8) \oplus (x_3x_8) \oplus (x_5x_8) \oplus (x_7x_8); \\y_7 &= (x_0x_1) \oplus (x_0x_2) \oplus (x_1x_2) \oplus x_3 \oplus (x_0x_3) \oplus (x_2x_3) \oplus (x_4x_5) \oplus (x_2x_6) \oplus (x_3x_6) \oplus (x_2x_7) \oplus (x_5x_7) \oplus x_8 \oplus '1'; \\y_8 &= (x_0x_1) \oplus x_2 \oplus (x_1x_2) \oplus (x_3x_4) \oplus (x_1x_5) \oplus (x_2x_5) \oplus (x_1x_6) \oplus (x_4x_6) \oplus x_7 \oplus (x_2x_8) \oplus (x_3x_8);\end{aligned}$$

and said fourth equation comprising

y₁=x₁ (1) + x₂ (1) + x₃ (1) + x₄ (1) + x₅ (1) + x₆ (1) + x₇ (1) + x₈ (1) + x₉ (1);
 y₂=x₁ (2) + x₂ (2) + x₃ (2) + x₄ (2) + x₅ (2) + x₆ (2) + x₇ (2) + x₈ (2) + x₉ (2);
 y₃=x₁ (3) + x₂ (3) + x₃ (3) + x₄ (3) + x₅ (3) + x₆ (3) + x₇ (3) + x₈ (3) + x₉ (3);
 y₄=x₁ (4) + x₂ (4) + x₃ (4) + x₄ (4) + x₅ (4) + x₆ (4) + x₇ (4) + x₈ (4) + x₉ (4);
 y₅=x₁ (5) + x₂ (5) + x₃ (5) + x₄ (5) + x₅ (5) + x₆ (5) + x₇ (5) + x₈ (5) + x₉ (5);
 y₆=x₁ (6) + x₂ (6) + x₃ (6) + x₄ (6) + x₅ (6) + x₆ (6) + x₇ (6) + x₈ (6) + x₉ (6);
 y₇=x₁ (7) + x₂ (7) + x₃ (7) + x₄ (7) + x₅ (7) + x₆ (7) + x₇ (7) + x₈ (7) + x₉ (7);
 y₈=x₁ (8) + x₂ (8) + x₃ (8) + x₄ (8) + x₅ (8) + x₆ (8) + x₇ (8) + x₈ (8) + x₉ (8);
 y₉=x₁ (9) + x₂ (9) + x₃ (9) + x₄ (9) + x₅ (9) + x₆ (9) + x₇ (9) + x₈ (9) + x₉ (9);