排列组合

离散数学一计数技术

南京大学计算机科学与技术系

引言-算法分析中的计数

- k:=0
- for i:=1 to m

$$k := k+1$$

• for j:=1 to n

$$k := k+1$$

- * k:=0
- * for i:=1 to m

for
$$j:=1$$
 to n

$$k := k+1$$

- * k:=0
- * for $i_1:=1$ to n

for
$$i_2$$
:=1 to i_1

for
$$i_3$$
:=1 to i_2

$$k := k+1$$

基本原则

* 乘法原则

- * 做一件事有两个步骤,第一步有n种完成方式,第二步 m种完成方式,则完成这件事情共有m×n种方法
- * 例:
 - * A是有限集合, |A|=n. A的幂集有几个元素? * p(A) = 2ⁿ.

* 加法原则

- * 一件事情有两种做法,第一种做法有n种方式,第二种做法有m种方式,则完成这件事情共有m+n种方法
- * 例:
 - * 在37位教师和83位学生中选一位校委会代表,多少种选择?

n个元素的r排列

- * 在n个元素的集合中,有序取出r个元素,元素不 重复,有多少种可能?
 - * P(n,r)=n(n-1)...(n-r+1)=n!/(n-r)! //P(n,0)=1

例题

- * 从52张扑克牌中发5张牌,如果考虑发牌次序, 共有多少种牌型?
- * 密码是字母开头8位长字母和数字串,总共可以设 计多少个密码?
- * 密码是字母开头8位长字母和数字串,如果不允许字母或者数字重复,总共可以设计多少个密码?
- * 将26个英文字母进行排列,有多少种排列以TXP 开头?
- * 将26个英文字母进行排列,有多少种排列中含有 TXP串?

r组合

- *考察有n个元素的集合,如果取r个元素出来, 共有多少种取法?
 - * 含有r个元素的子集的个数
 - * r组合: c(n,r)=P(n,r)/r!=n!/[r!(n-r)!]

用乘法原则来证明!

r组合: c(n,r)=c(n,n-r)

例

- * 从52张扑克牌中发47张牌,如果不考虑发牌次序, 共有多少种牌型?
- * 从5个妇女和15个男性中选出一个包含2名妇女的5 人委员会,有多少种可能?
- * 从5个妇女和15个男性中选出一个至少包含2名妇女的5人委员会,有多少种可能?

r组合

* n个元素的集合到{Y,N}的函数,共有2n个

园排列

* 从n个不同元素中,取r个不重复的元素排成一个圆圈,有P(n,r)/r种排列方法

有重复(不可区分)物体的排列

- * 把单词"mathematics"中的字母重新排列,可以得到 多少个不同的字符串(单词)?
- * 2\frac{1}{m}, 2\frac{1}{a}, 2\frac{1}{t}, 1\frac{1}{h}, 1\frac{1}{e}, 1\frac{1}{c}, 1\frac{1}{i}, 1\frac{1}{s}.
- * 11个位置(2+2+2+1+1+1+1),选2个放置a,...
- * 乘下的9个位置,选2个放置e,
- * ...
- * C(11, 2) C(9, 2) C(7, 2) C(5, 1) C(4, 1) C(3, 1) C(2, 1) C(1, 1)
- * 11!/(2! 2! 2! 1! 1! 1! 1! 1!)

有重复的排列

- * 在n个有不可区分项的对象集中,若有k类对象,各 类对象的数目分别为 $n_1, ..., n_k, n$ 排列的个数是:
- * $n!/(n_1! ...n_k!)$, 其中 $n=n_1+...+n_k$

有重复的组合

*厨房有三种水果,每样都足够多(超过4个)。从厨房取4个水果,有多少种取法?

一种取法对应于一个有4个0和2个1构成的0-1串, C(6,4)

n个元素集合中允许重复的r组合

- * C(r+n-1, r)
 - * 含r个0和(n-1)个1的0-1串,这种0-1串的个数
- * 例
 - * 甜点店4种面包,买6个面包的买法有几种?
 - * k:=0
 - * for i_1 :=1 to n for i_2 :=1 to i_1 for i_3 :=1 to i_2 k:=k+1

可重复地从 $\{1, ..., n\}$ 中选取3个数: $n \ge i_1 \ge i_2 \ge i_3 \ge 1$ C(n+2, 3)

n个元素集合中允许重复的r组合

- * x+y+z=11有多少组解? 其中x,y,z是非负整数
 - * 3种水果足够多,取11个水果的方案
- * 如果 $x \ge 1$, $y \ge 2$, $z \ge 3$ 时,上述方程有多少组解?
 - * (x'+1) + (y'+2) + (z'+3)=11, 其中x',y',z'是非负整数
 - * x'+y'+z'=5, 其中x',y', z'是非负整数

不同物体分配到不同盒子

* n个不同物体分配到k个不同的盒子中,使得第i个盒子包含 n_i 个物体(i=1,...,k),有多少种分配方案?

不同物体分配到不同盒子(示例)

- * 52张扑克牌发给4个人使得每人5张
 - * 意味着"第5人"拿到32张

相同物体分配到不同盒子

* n个相同物体分配到k个不同的盒子中,有多少种分配方案?

$$x_1 + ... + x_k = n$$
 的非负整数解

含n个0和(k-1)个1的0-1串, C(n+k-1, n)

不同物体分配到不可辨别的盒子

- * S(n, k): Stirling number of the second kind
 - * n个物体分配到k个不可辨别的盒子中,不允许空盒
 - * k-划分 (n≥k)
- * S(n+1, k) = k * S(n, k) + S(n, k-1), S(0, 0)=1

不同物体分配到不可辨别的盒子

* n个不同物体分配到k个不可辨别的盒子,允许空盒

*
$$\Sigma_{j=1..k}$$
 S(n,j)

- * n个元素上的等价关系
 - * $\mathbf{B_n} = \Sigma_{j=1..n} S(n,j) // Bell number$
 - $* B_0 = B_1 = 1$

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

相同物体分配到不可辨别的盒子

- * k个盒子,不允许空盒
 - * $x_1 + ... + x_k = n$ 的正整数解, $x_1 \ge ... \ge x_k \ge 1$
- * k个盒子,允许空盒
 - * $x_1+\ldots+x_j=n$ 的正整数解, $x_1\geq\ldots\geq x_j\geq 1$, $j\leq k$

Stirling number of the second kind

- * S(n, k), 或 $\begin{Bmatrix} n \\ k \end{Bmatrix}$
 - * n个不同物体分配到k个不可辨别的盒子,不允许空盒
 - * k-划分 (n≥k)
- * k! S(n, k): [1..n] > [1..k] 满射的个数

Stirling number of the second kind

- * [1..n] → [1..k] 满射的个数?
- * $U=\{f | f:[1..n] \rightarrow [1..k] \},$
- * $A_j = \{ f \in U \mid f(x) \neq j, x=1, ...n \}, j=1,...,k \}$
- * $k^n-C(k, 1) (k-1)^n+C(k, 2) (k-2)^n-.$

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^{n}.$$

作业

```
* 教材
```

```
* 5.3; 5.5;
```

* 作业

```
* P277: 8; 16; 20; 24; 30
```

* P292: 10; 14; 17