ENSAE AS1 (2023/2024) CONTROLE 2 D'ANALYSE 1 - DURÉE = 3H

Exercice 1 (4pts = 1 + 1,5 + 1,5) Les questions (1),(2) et (3) sont indépendantes

- (1) Soit $a \in \mathbb{R}^{*+}$. Calculer $\lim_{x \to a} \frac{x^a a^x}{x^x a^a}$
- (2) Déterminer le $DL_3(0)$ de $f(x) = [\ln x \ln(1 e^{-x})] \frac{e^{-x}}{x}$
- (3) Montrer que [Arctan(Arcsin(x)) Arcsin(Arctan(x))] admet, au voisinage de 0, une partie principale d'ordre p = 7 que l'on précisera.

Exercice 2(5pts = 2 + 1 + 2)

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = (x - \frac{1}{2})e^{\frac{1}{x^2 - x}}, \forall x \in]0, 1[, \text{ et } f(x) = 0, \forall x \in \mathbb{R} \setminus]0, 1[$$

- (1) Montrer que f est de classe C^1 sur \mathbb{R} , et préciser les valeurs de f'(0) et f'(1)
- (2) Montrer que f est de classe C^{∞} sur]0,1[et donner, sur cet intervalle, la forme de l'expression de $f^{(k)}$, dérivée d'ordre k de f.
- (3) En déduire que f est de C^{∞} sur \mathbb{R} , et préciser les valeurs de $f^k(0)$ et $f^k(1)$

Exercice 3 (13pts = (1,5+1,5+1) + (1,5+1+1) + 1,5+1 - (1+1+1))On considère la fonction f telle :

 $f(x) = e^{\overline{x}} \sqrt{1 + x + x^2}$. On note par C_f sa courbe représentative dans un repère cartésien du plan, et par D_f , son ensemble de définition.

- (1) (a) Déterminer \mathcal{D}_f et préciser les limites de f aux bornes de \mathcal{D}_f .
 - (b) On suppose que $x \to \infty$ et on pose : $X = \frac{1}{x}$ et $g(X) = f(\frac{1}{X})$. Déterminer le $DL_2(0)$ de g(X).
 - (c) En déduire que C_f admet deux asymptotes obliques Δ et Δ' dont on précisera les équations ainsi que leurs propositions par rapport à C_f .
- (2) (a) Jutifier la dérivabilité de f sur \mathcal{D}_f . Calculer la dérivée de f et prouver que $f'(x) = (2x^3 x^2 2x 2) \frac{e^{\frac{1}{x}}}{\sqrt[2]{1 + x + x^2}}, \forall x \in \mathcal{D}_f$
 - (b) Montrer qu'il existe unique $\alpha \in \mathbb{R}$ tel que $1 < \alpha < 2$ et $f(\alpha) = 0$.
 - (c) Montrer que la fonction f admet un prolongement par continuité à gauche en 0 et que ce prolongement admet une demi-tangente dont on précisera la pente. (Voir verso)

- (3) Etudier le sens de variation de f , puis dreser son tableau de variations
- (4) Construire, avec soin, la courbe C_f . On donne $\alpha \simeq 1,55$ et $f(\alpha) \simeq 4,2$
- (5) Soit $n \in \mathbb{N}, n \geq 5$.
 - (a) Montrer que l'équation f(x)=n admet deux solutions distinctes u_n et v_n sur \mathbb{R}^{*+} vérifiant $u_n<\alpha$ et $v_n>\alpha$
 - (b) Montrer que les suites $(u_n)_{n\geq 5}$ et $(v_n)_{n\geq 5}$ sont monotones et que $\lim_{n\to +\infty} u_n = 0$, $\lim_{n\to +\infty} v_n = +\infty$
 - (c) En utilisant l'équation $f(u_n) = n$ (respectivement $f(v_n) = n$), déterminer un équivalent simple de u_n (respectivement de v_n).