Random Forests MAS DSE-220 Natasha Balac, Ph.D.

Definition

- Random forest (or random forests) is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees
- Leo Breiman and Adele Cutler and "Random Forests" is their trademark
- The method combines Breiman's "bagging" idea and the random selection of features

- Divide and conquer
 - Partition data one variable at a time
 - Recursive over same variable to get highly non-linear combinations of features

- Decision Node: split data depending on value of the attribute
- Leaf Node: label data (or estimate data) according to most likely class (value)

- Model:
 - Y=fleaf (X) for decisions on X lead to that leaf partition
- Objective: minimize error/misclassifications
- Algorithm:

initialize a ROOT node

for each node

search all xi for possible partitions

choose best xi

until leafs are pure or tree is deep enough

Parameters:

1.criterion for splitting a node

choose best xi with regards to the objective function

2.criterion to stop splitting

choose a minimum number of data points that fall to each leaf

choose a maximum tree depth require a minimal improvement

3.prune tree activate

• Issue: deeper tree => less points fall to a leaf

too few data points => unreliable partition

too many => another split could improve model

Solution: Cross Validation helps determine depth

Solution: Pruning helps avoid overfitting

Issue: Decision boundaries are sharp and perpendicular to input dimensions

Solution: take more than 1 variable at time

Better: bootstrap and aggregate

Decision Trees

Simple dataset with two predictors

TI	PE	Response
1.0	M2	good
2.0	M1	bad
4.5	M5	?

Greedy, recursive partitioning along

Divide and Conquer

Where to split so for classification or regression?

ERA

Number of Team HRs

A Classification Tree on WL%

Decision Tree Issues

 non-linear decision boundary, but with sharp corners (can't take diagonal partitions)

blue=>point classified as WL% < .50

red=>point classified as WL% > .50

Classification Tree With Bootstrapping

10 samples of data used for 10 trees

average classification at each grid point,

make counter plot of average

Number of Team HRs

Classification With Bootstraps

100 samples => softer boundary

average classification at each grid point

make counter plot of average

Number of Team HRs

Random Forest

 "Bagging"=bootstrap & aggregate samples, gives soft and highly flexible boundary

Number of Team HRs 2012

Construction of Random Forest

- Over and above recursive partitioning do:
 - Take Bootstrap samples of observations (ntree)
 - Fit a regression/classification tree to each sample
 - During construction, choose the best split only from a subset of features (mtry)
 - Result: an ensemble of diverse trees

Aggregating over an ensemble reduces prediction variance

Random Forest Algorithm

- Each tree is constructed using the following algorithm:
 - Let the number of training cases be N, and the number of variables in the classifier be M
 - We are told the number m of input variables to be used to determine the decision at a node of the tree; m should be much less than M
 - Choose a training set for this tree by choosing n times with replacement from all N available training cases (i.e. take a bootstrap sample)
 - Use the rest of the cases to estimate the error of the tree, by predicting their classes
 - For each node of the tree, randomly choose m variables on which to base the decision at that node. Calculate the best split based on these m variables in the training set
 - Each tree is fully grown and not pruned (as may be done in constructing a normal tree classifier)

Random Forest Prediction

- For prediction a new sample is pushed down the tree
- It is assigned the label of the training sample in the terminal node it ends up in
- This procedure is iterated over all trees in the ensemble
- The average vote of all trees is reported as random forest prediction

Random Forest Flow Chart

Practical Consideration

- Splits are chosen according to a purity measure:
 - E.g. squared error (regression), Gini index (classification)
- How to select N?
 - Build trees until the error no longer decreases
- How to select M?
 - Try to recommend defaults, half of them and twice of them and pick the best

New Control Parameter N

- Ntree, n_estimator (number of trees)
 - 1 tree per bootstrap sample
 - Larger is better, but at some point useless
 - Helps avoid overfitting
 - Alleviates need for pruning trees through bagging

New Control Parameter M

- Mtrys, max_feature (size of variable subsets) control diversity
 - As M decreases -> trees are less correlated
 - (different splits, but not all node interactions)
 - As M increases -> trees are more correlated
 - (similar splits, more possible interactions)
 - Essentially, trade off in bias and variance
 - Defaults: M=√P for classification
 - M= P/3 for regression

A Tree or a Forest

- Same as Classification/Regression Tree:
 - Need to find splits, build tree
- Different than Tree
 - In principle new parameters maybe easy to set:
 - ntree, can just get large
 - node size (ie bucket size), can just be set low
 - mtry, not obvious but sqrt(P) or P/3 seems good
 - Variable importance is new measure
 - Performance less sensitive to particular points (lower decision thresholds

variance), smoother

- More computation
- Less interpretable (no final tree to visualize!)
- Aggregating over an ensemble reduces prediction variance

In R: randomForest

In Python

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None)

 http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomFores tClassifier.html

Features and Advantages

The advantages of random forest are:

- It is one of the most accurate learning algorithms available
 - For many data sets, it produces a highly accurate classifier
- It runs efficiently on large databases
- It can handle thousands of input variables without variable deletion
- It gives estimates of what variables are important in the classification
- It generates an internal unbiased estimate of the generalization error as the forest building progresses
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing

Disadvantages

- Random forests have been observed to overfit for some datasets with noisy classification or regression tasks
- For data including categorical variables with different number of levels, random forests are biased in favor of those attributes with more levels
 - Therefore, the variable importance scores from random forest are not reliable for this type of data

Additional information

Estimating the test error:

- While growing forest, estimate test error from training samples
- For each tree grown, 33-36% of samples are not selected in bootstrap, called out of bootstrap (OOB) samples
- Using OOB samples as input to the corresponding tree, predictions are made as if they were novel test samples
- Through book-keeping, majority vote (classification), average (regression) is computed for all OOB samples from all trees
- Such estimated test error is very accurate in practice, with reasonable N

Summary

- Extremely fast
 - Fast to build even faster to predict
 - Practically speaking, not requiring cross-validation alone for model selection significantly speeds training by 10x-100x or more
 - Fully parallelizable
- Automatic predictor selection from large number of candidates
- Resistance to over training
- Ability to handle data without preprocessing
 - data does not need to be rescaled, transformed, or modified
 - resistant to outliers
 - automatic handling of missing values
- Cluster identification can be used to generate tree-based clusters through sample proximity

New Measures of Variable Importance

- Bootstrap samples leave out some data points
- Use these OOB (out of bag) points for testing
 - For each node in each tree:
 - record OOB predictions
 - permute values and record OOB prediction

$$VI_i$$
 = AVE_{trees} (%correct before permuting – %correct after permuting

Note: node importance calculated during tree construction is related to first term

