Group Meeting #7

Hao-Yang Yen

NTHU

2024/8/9

1/6

Renormalization Group and Matrix Product State

• The density matrix renormalization group (DMRG) algorithm can be implemented in two formulations:

Physical: Renormalization group (RG)

Mathematical: Matrix product state (MPS)

→ variational matrix product state (VMPS)

These two formulations are mathematically equivalent, but VMPS is more concise and easier to implement.

Catarina, G., and Bruno Murta. The European Physical Journal B 96.8 (2023): 111.

 VMPS can be utilized to find the non-equilibrium steady state (NESS) of the SIS model.

Merbis, Wout, Clélia de Mulatier, and Philippe Corboz. arXiv preprint arXiv:2305.06815 (2023).

So does DMRG.

Henkel, Malte. Non-equilibrium phase transitions. Springer, 2008.

VMPS Algorithms for the Transverse Ising Model

 Utilizing the VMPS algorithm to find the ground state of the transverse Ising model

Hamiltonian: $\hat{H} = -J \sum_{i} \sigma_{i}^{x} \otimes \sigma_{i+1}^{x} - h \sum_{i} \sigma_{i}^{z}$

Critical point: J = h

Ground state energy: $\inf_{|\Psi\rangle} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$.

Optimization: $\min_i \lambda_i(\hat{H})$

 \hat{H} hermitian \rightarrow Lanczos algorithm

 $\verb|https://kikiyenhaoyang.github.io/kikiyen/Web/TN.html|$

VMPS for the SIS Model

• The Hamiltonian of the SIS model:

Hamiltonian:

$$\hat{W} = \lambda \sum_{i=1}^{N-1} (\hat{n}_i \hat{w}_{i+1}^{0 \to 1} + \hat{w}_i^{0 \to 1} \hat{n}_{i+1}) + \sum_{i=1}^{N-1} \hat{w}_i^{1 \to 0} + \hat{W}_{driv}(\alpha)$$

Diagonalizability:

Master equation: $\partial_t |P(t)\rangle = \hat{W} |P(t)\rangle$ The state: $|P(t)\rangle = e^{t\hat{W}} |P(0)\rangle$ Write \hat{W} in its Jordan form

- $ightarrow \hat{W}$ is diagonalizable. • The spectrum:
 - \hat{W} is diagonalizable
 - \rightarrow The eigenvalues are **negative or zero** .
- NESS:

Entries of \hat{W} are $e^{\lambda_i t}$ goes to zero as $t o \infty$ if $\lambda_i <$

- ightarrow the only important entry is $e^{0t}=1$
- \rightarrow the NESS is the **eigenvector of** \hat{W} **with** $\lambda = 0$

4/6

VMPS for the SIS Model

 Utilizing the VMPS algorithm to find the non-equilibrium steady state (NESS) of the SIS model

Eigenvalue of the NESS: $\sup_{|\Psi\rangle} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

Optimization: $\max_{i} \lambda_{i}(\hat{H})$

 \hat{H} not hermitian \rightarrow **Arnolid algorithm**

→More unstable

https://kikiyenhaoyang.github.io/kikiyen/Web/TN.html

VMPS for the SIS Model

• Two diagonalization may result in different results

The instability may increase

https://kikiyenhaoyang.github.io/kikiyen/Web/TN.html

6/6