

Transmissão sem fios

REDES E SERVIÇOS DE COMUNICAÇÕES MÓVEIS

MESTRADO EM COMPUTAÇÃO MÓVEL Escola Superior de Tecnologia e Gestão | Instituto Politécnico da Guarda

Sumário

- Frequências
- Sinais
- Antenas
- Propagação de sinal
- Acesso múltiplo
- Espectro espalhado
- Modulação
- Sistemas celulares

VLF = Very Low Frequency

LF = Low Frequency

MF = Medium Frequency

HF = High Frequency

VHF = Very High Frequency

UHF = Ultra High Frequency

SHF = Super High Frequency

EHF = Extra High Frequency

IR = Infrared Light UV = Ultraviolet Light

VHF/ UHF- bandas para rádio móvel

- Antena simples e pequena, para automóveis
- Características de propagação quase-determinísticas, ligações fiáveis
- http://tdt.telecom.pt/empresas_profissionais/?code=XzX6D&a=1452143#a1452143 A TDT opera nas frequências 750-758 MHz do UHF

SHF e frequências superiores para feixes hertzianos e comunicação por satélite

- Antena pequena, directividade elevada
- Grande largura de banda disponível
- A telefonia móvel opera nas frequências 800, 900, 1800, 2100 e 2800 MHz

WLANs utilizam frequências em UHF e SHF

- Alguns sistemas planeados até EHF (ondas milimétricas)
- Limitações devidas à absorção pelas moléculas de água e de oxigénio (frequências de ressonância)
- Desvanecimento dependente das condições atmosféricas, perda de sinal causada por precipitação intensa,

Frequências utilizadas nas comunicações móveis

	Europa	NSA	Japão
Telefones Móveis	NMT 453-457MHz, 463-467 MHz; GSM 890-915 MHz, 935-960 MHz; 1710-1785 MHz, 1805-1880 MHz	AMPS, TDMA, CDMA 824-849 MHz, 869-894 MHz; TDMA, CDMA, GSM 1850-1910 MHz, 1930-1990 MHz;	PDC 810-826 MHz, 940-956 MHz; 1429-1465 MHz, 1477-1513 MHz
Telefones sem fios	CT1+ 885-887 MHz, 930-932 MHz; CT2 864-868 MHz DECT 1880-1900 MHz	PACS 1850-1910 MHz, 1930-1990 MHz PACS-UB 1910-1930 MHz	PHS 1895-1918 MHz JCT 254-380 MHz
WLANs	IEEE 802.11 2400-2483 MHz HIPERLAN 1 5176-5270 MHz	IEEE 802.11 2400-2483 MHz	IEEE 802.11 2471-2497 MHz

Sinais

- Representação física de informação (analógica ou digital)
- Funções do tempo e do espaço
- Parâmetros de sinal: parâmetros que representam valores da informação
- Classificação
- Tempo contínuo / tempo discreto
- Valores contínuos / valores discretos
- Informação analógica = tempo contínuo e valores contínuos
- Informação digital = tempo discreto e valores discretos
- Sinal analógico = tempo contínuo e informação analógica
- Sinal discreto = tempo contínuo e informação digital

Sinais (cont.)

Parâmetros de sinais periódicos:

período T,

• frequência f=1/T ,

amplitude A,

desvio de fase (φ)

• Onda sinusoidal como caso especial de sinal periódico usado como portadora:

• $s(t) = A t \sin(2\pi f_t t + \varphi_t)$

- Diferentes representações de sinais
- Temporal (domínio do tempo)
- Espectral (domínio da frequência)
- Diagrama de estados (amplitude M e fase ϕ em coordenadas polares)

Sinais (cont.)

- A informação digital necessita de:
- Largura de banda infinita para transmissão perfeita
- Modulação de uma portadora sinusoidal para transmissão (sinal analógico!)

Antenas: radiador isotrópico

- Radiação e recepção de ondas electromagnéticas; acoplamento de linhas de transmissão à atmosfera para transmissão
- Radiador isotrópico: radiação uniforme em todas as direcções (espaço tridimensional) – antena de referência teórica
- As antenas reais possuem sempre características direccionais (vertical e/ou horizontalmente)
- Diagrama de radiação: gráfico da intensidade de radiação no espaço envolvente de uma antena

Antenas: monopólos e dipólos simples

usadas em tejadilhos de automóveis; os dipolos de $\lambda/2$ (meia onda) • As antenas do tipo monopólo com comprimento de $\lambda/4$ são muito são mais usados em agregados de antenas

Antenas: monopólos e dipólos simples (cont.)

Exemplo: diagrama de radiação de um dipólo de Hertz

intensidade de radiação que seria produzida por um radiador isotrópico ideal, para a Ganho: razão entre a intensidade de radiação máxima produzida pela antena e a mesma potência transmitida (fornecida pelo transmissor à antena)

Antenas: directivas

 São utilizadas frequentemente em ligações por microondas (feixes hertzianos) e em estações de base para telefonia móvel (para cobertura de um vale, por exemplo)

Antenas: sectorizada

Plano Horizontal, 6 sectores

Alcance da propagação de sinal

- Comunicação possível
- Taxa de erros baixa
- Alcance de detecção
- Detecção do sinal possível

transmissor

ransmissão

- Comunicação impossível
- Alcance de interferência

distância

interferência

detecção

- O sinal não pode ser detectado
- O sinal adiciona-se ao ruído de fundo

Propagação de sinal

- A propagação em espaço livre obedece às leis de Maxwell
- A potência recebida é proporcional a $1/d^2$ (d = distância entre transmissor e receptor)
- A potência recebida é influenciada por:
- Desvanecimento (dependente da frequência)
- Sombreamento
- Reflexão em grandes obstáculos
- Difusão por pequenos obstáculos
- Difracção em obstáculos

Propagação de sinal (cont.)

reflexão

sombreamento

difracção

difusão

Propagação com percurso múltiplo

 O sinal pode tomar muitos percursos diferentes entre o transmissor e o receptor, devido a reflexão, difusão ou difracção.

Dispersão temporal: o sinal é "espalhado" no tempo O sinal recebido atinge o receptor distorcido

Efeitos da mobilidade

As características do canal variam no tempo e com a localização

Os percursos das componentes do sinal alteram-se

Variações diferentes dos atrasos de componentes distintas do sinal

Variações de fase distintas das componentes do sinal

Variações rápidas da potência recebida (desvanecimento rápido)

Multi-canalização (Multiplexing) para Acesso Múltiplo

Multi-canalização em 4 dimensões

- espaço (s_i)
- tempo (t)
- frequência (f)
- código (c)

Multi-canalização espectral (FDMA)

Divisão da banda disponível em bandas de frequência mais estreitas Cada canal ocupa uma determinada banda de frequências durante todo o tempo

Multi-canalização espectral (FDMA)

Vantagens

- Coordenação dinâmica desnecessária
- · Aplicável com sinais analógicos

Desvantagens:

- Desperdício de largura de banda, se o tráfego não for uniformemente distribuído
- Inflexível

Multi-canalização temporal (TDMA)

ada canal utiliza toda a banda isponível durante um determinado itervalo de tempo

Multi-canalização temporal (TDMA)

/antagens

- Apenas uma portadora no meio, em qualquer momento
- Eficiência de transmissão elevada, mesmo com muitos utilizadores

)esvantagens:

Necessita de sincronização precisa

Multi-canalização temporal e espectra (TDMA/FDMA)

Combinação de dois métodos temporal e espectral

Cada canal ocupa uma determinada banda de frequência durante um determinado intervalo de tempo

Exemplo usado no GSM

Multi-canalização temporal e espectra (TDMA/FDMA)

Vantagens:

- Melhor protecção contra intrusão
- Protecção contra interferência selectiva em frequência
- comparação com a multi-canalização Débitos mais elevados, em codificada

Desvantagem

 Necessita de uma coordenação precisa

Multi-canalização codificada (CDMA)

Cada canal possui um código único

Todos os canais usam a mesma banda simultaneamente Implementada com tecnologia de espectro espalhado

Vantagens:

- Melhor protecção contra intrusão
- Protecção contra interferência

Multi-canalização codificada (CDMA)

Vantagens:

- Eficiência espectral
- Coordenação e sincronização desnecessárias
- Boa protecção contra interferência e intrusão

Desvantagem

- Débitos de utilização mais baixos
- Regeneração de sinal mais complexa