Numerical Optimal Control Lecture 4: Shooting Methods

Sébastien Gros

ITK NTNU

NTNU PhD course

Survival map of Direct Optimal Control

Survival map of Direct Optimal Control

One way of going from OCP to NLP

Outline

Single-Shooting

Multiple-Shooting

3 NLP from shooting methods

Outline

Single-Shooting

2 Multiple-Shooting

3 NLP from shooting methods

Problem:

$$\begin{aligned} & \min \quad \phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} \quad \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & \quad \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & \quad \mathbf{x}\left(t_{0}\right) = \mathbf{x}_{0} \end{aligned}$$

First discretize...

Problem:

min
$$\phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \mathbf{x}_0$

First discretize...

Problem:

$$\begin{aligned} & \min \quad \phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} \quad \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & \quad \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & \quad \mathbf{x}\left(t_0\right) = \mathbf{x}_0 \end{aligned}$$

First discretize...

Usually zero-order hold

$$\mathbf{u}\left(t\in\left[t_{k},t_{k+1}\right]\right)=\mathbf{u}_{k}$$

over a time grid $t_0, ..., t_N$

Problem:

min
$$\phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \mathbf{x}_0$

First discretize...

Usually zero-order hold

$$\mathbf{u}\left(t\in\left[t_{k},t_{k+1}\right]\right)=\mathbf{u}_{k}$$

over a time grid $t_0, ..., t_N$

• See $\mathbf{x}(.)$ as a function \mathbf{f} of $\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}, \ \mathbf{x}_0 \ \text{and} \ t$: $\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) : \ \mathbf{w}, \mathbf{x}_0, t \mapsto \mathbf{x}(t)$

Problem:

$$\begin{aligned} & \min \quad \phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} \quad \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & \quad \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & \quad \mathbf{x}\left(t_{0}\right) = \mathbf{x}_{0} \end{aligned}$$

First discretize...

Usually zero-order hold

$$\mathbf{u}\left(t\in\left[t_{k},t_{k+1}\right]\right)=\mathbf{u}_{k}$$

over a time grid $t_0, ..., t_N$

• See x(.) as a function f of $\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}, \mathbf{x}_0 \text{ and } t:$ $\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) : \mathbf{w}, \mathbf{x}_0, t \mapsto \mathbf{x}(t)$

$$\frac{\partial}{\partial t} \mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) = \mathbf{F}(\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t), \mathbf{u}_k),$$
$$\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t_0) = \mathbf{x}_0$$

Problem:

min
$$\phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \mathbf{x}_0$

First discretize...

Usually zero-order hold

$$\mathbf{u}\left(t\in\left[t_{k},t_{k+1}\right]\right)=\mathbf{u}_{k}$$

over a time grid $t_0, ..., t_N$

• See x(.) as a function f of $\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}, \mathbf{x}_0 \text{ and } t:$ $\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) : \mathbf{w}, \mathbf{x}_0, t \mapsto \mathbf{x}(t)$

given by:

$$\frac{\partial}{\partial t} \mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) = \mathbf{F}(\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t), \mathbf{u}_k),$$
$$\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t_0) = \mathbf{x}_0$$

...then optimize: NLP

$$\min_{\mathbf{w}} \quad \phi\left(\mathbf{f}\left(\mathbf{w}, \mathbf{x}_{0}, .\right), \mathbf{w}\right)$$
s.t.
$$\mathbf{h}\left(\mathbf{f}\left(\mathbf{w}, \mathbf{x}_{0}, t_{k}\right), \mathbf{w}_{k}, t_{k}\right) \leq 0$$

$$\mathbf{f}\left(\mathbf{w}, \mathbf{x}_{0}, t_{r}\right) = \mathbf{x}_{f}$$

Problem:

min
$$\phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \mathbf{x}_0$

First discretize...

Usually zero-order hold

$$\mathbf{u}\left(t\in\left[t_{k},t_{k+1}\right]\right)=\mathbf{u}_{k}$$

over a time grid $t_0, ..., t_N$

• See x(.) as a function f of $\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}, \ \mathbf{x}_0 \ \text{and} \ t:$ $\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) : \ \mathbf{w}, \mathbf{x}_0, t \mapsto \mathbf{x}(t)$

given by:

$$\frac{\partial}{\partial t} \mathbf{f}(\mathbf{w}, \mathbf{x}_0, t) = \mathbf{F}(\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t), \mathbf{u}_k),$$
$$\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t_0) = \mathbf{x}_0$$

...then optimize: NLP, checkpoints t_k for \mathbf{h} min $\phi(\mathbf{f}(\mathbf{w}, \mathbf{x}_0, .), \mathbf{w})$

s.t.
$$\mathbf{h}(\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t_k), \mathbf{w}_k, t_k) \leq 0$$

 $\mathbf{f}(\mathbf{w}, \mathbf{x}_0, t_f) = \mathbf{x}_f$

OCP

$$\begin{aligned} \min_{u_0,\dots,u_{N-1}} & & \sum_{k=0}^N u_k^2 \\ \text{s.t.} & & \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x},u_k\right), \quad \forall t \in [t_k,t_{k+1}] \\ & & -20 \leq u_k \leq 20 \\ & & \mathbf{x}(0) \equiv \mathbf{x}_0 = \begin{bmatrix} & 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}\left(t_f\right) = 0 \end{aligned}$$

OCP

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N} u_k^2$$
s.t. $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, u_k), \quad \forall t \in [t_k, t_{k+1}]$

$$-20 \le u_k \le 20$$

$$\mathbf{x}(0) \equiv \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(t_f) = 0$$

 $\begin{array}{c|c} M \\ L \\ \downarrow \\ u \\ \hline \\ H_{X} \end{array}$

Integrator function provides $\mathbf{x}(t) = \mathbf{f}\left(\mathbf{u}_0,...,\mathbf{u}_{N-1},\mathbf{x}_0,t\right)$

OCP

$$\min_{u_0,\dots,u_{N-1}} \quad \sum_{k=0}^{N} u_k^2$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, u_k), \quad \forall t \in [t_k, t_{k+1}]$$

$$-20 \le u_k \le 20$$

$$\mathbf{x}(0) \equiv \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(t_f) = 0$$

Integrator function provides $\mathbf{x}(t) = \mathbf{f}(\mathbf{u}_0, ..., \mathbf{u}_{N-1}, \mathbf{x}_0, t)$

An integrator is a function in the most rigorous sense of the term. E.g.

$$\frac{\partial \mathbf{f}}{\partial \mathbf{u}_k} (\mathbf{u}_0,...,\mathbf{u}_{N-1},\mathbf{x}_0,t)$$

is well defined and computable

OCP

$$\begin{aligned} \min_{u_0,\dots,u_{N-1}} & & \sum_{k=0}^N u_k^2 \\ \text{s.t.} & & \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x},u_k\right), \quad \forall t \in [t_k,t_{k+1}] \\ & & -20 \leq u_k \leq 20 \\ & & \mathbf{x}(0) \equiv \mathbf{x}_0 = \begin{bmatrix} & 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}\left(t_f\right) = 0 \end{aligned}$$

Integrator function provides $\mathbf{x}(t) = \mathbf{f}\left(\mathbf{u}_0,...,\mathbf{u}_{N-1},\mathbf{x}_0,t\right)$

NLP from single shooting

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

An integrator is a function in the most rigorous sense of the term. E.g.

$$rac{\partial \mathbf{f}}{\partial \mathbf{u}_k} \left(\mathbf{u}_0, ..., \mathbf{u}_{N-1}, \mathbf{x}_0, t
ight)$$

is well defined and computable

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},\mathbf{x}_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$\mathbf{f}(u_0,...,u_{N-1},\mathbf{x}_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$\mathbf{f}(u_0,...,u_{N-1},\mathbf{x}_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},\mathbf{x}_0,t_f) = 0$$

$$\min_{u_0, \dots, u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$\mathbf{f}(u_0, \dots, u_{N-1}, \mathbf{x}_0, t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0, \dots, u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$\mathbf{f}(u_0, \dots, u_{N-1}, \mathbf{x}_0, t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},x_0,t_f) = 0$$

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$
s.t. $-20 \le u_k \le 20$

$$f(u_0,...,u_{N-1},\mathbf{x}_0,t_f) = 0$$

Nonlinearity propagation: integrator function f

$$\mathbf{f}\left(\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},\mathit{t}\right)\colon\thinspace\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},\mathit{t}\longmapsto\mathbf{x}(\mathit{t})$$

tends to become highly nonlinear for large t.

Nonlinearity propagation: integrator function f

$$\mathbf{f}\left(\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\right)\colon\,\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\longmapsto\mathbf{x}(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
Input: $u(.)$

Nonlinearity propagation: integrator function \mathbf{f}

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

s

Input: $u(.)$

States as a function of u (constant) at time t, for a fixed \mathbf{x}_0

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 $\overset{\textcircled{1}}{\otimes}$

Input: u(.)

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Input: $u(.)$

10 20 25 30 35

States as a function of u (constant) at time t, for a fixed x_0

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$
Input: $\mathbf{u}(.)$

States as a function of \emph{u} (constant) at time \emph{t} , for a fixed \emph{x}_0

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
Input: $u(.)$

States as a function of \emph{u} (constant) at time \emph{t} , for a fixed \emph{x}_0

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Input: $u(.)$

States as a function of u (constant) at time t, for a fixed \mathbf{x}_0

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{array}{c} \underbrace{}^{5}_{0} \\ \underbrace{}^{5}_{0} \\ \underbrace{}^{5}_{0} \end{array}$$

Input: u(.)

States as a function of u (constant) at time t, for a fixed x_0

Nonlinearity propagation: integrator function f

$$f(u_0,...,u_{N-1},x_0,t): u_0,...,u_{N-1},x_0,t \longmapsto x(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 $\overset{\text{(1)}}{\approx}$

Input: u(.)

States as a function of $\it u$ (constant) at time $\it t$, for a fixed $\it x_0$

Nonlinearity propagation: integrator function f

$$\mathbf{f}\left(\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\right)\colon\,\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\longmapsto\mathbf{x}(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 in Figure 1.

States as a function of \emph{u} (constant) at time \emph{t} , for a fixed \emph{x}_0

What's this crazy system btw ?!?

Nonlinearity propagation: integrator function f

$$\mathbf{f}\left(\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\right)\colon\,\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\longmapsto\mathbf{x}(t)$$

Lorentz attractor (u = 28) stable but chaotic

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Input: u(.)

Nonlinearity propagation: integrator function f

$$\mathbf{f}\left(\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\right)\colon\,\mathbf{u}_{0},...,\mathbf{u}_{N-1},\mathbf{x}_{0},t\longmapsto\mathbf{x}(t)$$

tends to become highly nonlinear for large t.

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

State:
$$\mathbf{x}(.) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
Input: $u(.)$

In optimal control, don't simulate a nonlinear/unstable system over a *long* time horizon **Lorentz attractor** (u = 28) stable but chaotic

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$\mathbf{f}(\mathbf{x},t):\mathbf{x},t\mapsto\mathbf{x}(t)$$

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Remarks:

• Here we omit the input, but $\dot{x} = F(x)$ is still general. Indeed, one can rewrite $\dot{x} = F(x, \mathbf{u})$ (for \mathbf{u} constant) as:

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix}, \qquad \dot{\mathbf{z}} = \begin{bmatrix} \mathbf{F}(\mathbf{z}) \\ \mathbf{0} \end{bmatrix}$$

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Remarks:

• Here we omit the input, but $\dot{x} = F(x)$ is still general. Indeed, one can rewrite $\dot{x} = F(x, u)$ (for u constant) as:

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix}, \qquad \dot{\mathbf{z}} = \begin{bmatrix} \mathbf{F}(\mathbf{z}) \\ \mathbf{0} \end{bmatrix}$$

• How to measure the nonlinearity of f(x, t) in x?

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Remarks:

• Here we omit the input, but $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ is still general. Indeed, one can rewrite $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u})$ (for \mathbf{u} constant) as:

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix}, \qquad \dot{\mathbf{z}} = \begin{bmatrix} \mathbf{F}(\mathbf{z}) \\ \mathbf{0} \end{bmatrix}$$

• How to measure the nonlinearity of f(x, t) in x? What about:

$$\left\| \frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial \mathbf{x}} - \frac{\partial \mathbf{f}(\mathbf{y},t)}{\partial \mathbf{y}} \right\| \le L \|\mathbf{x} - \mathbf{y}\|$$

If f(x, t) is affine in x, i.e. f(x, t) = A(t)x + b(t), then L = 0... If L large, then f(x, t) is very nonlinear...

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Proposition

Assume:

- Lipschitz ODE: $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})\| \le L_0 \|\mathbf{x} \mathbf{y}\|$
- ullet Lipschitz sensitivity of the dynamics: $\left\|rac{\partial F(x)}{\partial x} rac{\partial F(y)}{\partial y}
 ight\| \leq L_1 \left\|x y
 ight\|$
- \bullet Bounded sensitivity of the dynamics: $\left\|\frac{\partial F(x)}{\partial x}\right\| \leq \beta$ for all x

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Proposition

Assume:

- Lipschitz ODE: $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})\| \le L_0 \|\mathbf{x} \mathbf{y}\|$
- ullet Lipschitz sensitivity of the dynamics: $\left\| rac{\partial F(x)}{\partial x} rac{\partial F(y)}{\partial y}
 ight\| \leq L_1 \left\| x y
 ight\|$
- ullet Bounded sensitivity of the dynamics: $\left\| \frac{\partial F(x)}{\partial x} \right\| \leq \beta$ for all x

Then the following holds:

• Bounded divergence of the solutions: $\|\mathbf{f}(\mathbf{x},t) - \mathbf{f}(\mathbf{y},t)\| \le e^{L_0 t} \|\mathbf{x} - \mathbf{y}\|$

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Proposition

Assume:

- Lipschitz ODE: $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})\| \le L_0 \|\mathbf{x} \mathbf{y}\|$
- ullet Lipschitz sensitivity of the dynamics: $\left\| rac{\partial F(x)}{\partial x} rac{\partial F(y)}{\partial y}
 ight\| \leq L_1 \left\| x y
 ight\|$
- ullet Bounded sensitivity of the dynamics: $\left\| \frac{\partial F(x)}{\partial x} \right\| \leq \beta$ for all x

Then the following holds:

- Bounded divergence of the solutions: $\|\mathbf{f}(\mathbf{x},t) \mathbf{f}(\mathbf{y},t)\| \le e^{L_0 t} \|\mathbf{x} \mathbf{y}\|$
- ullet Bounded sensitivity: $\left\| rac{\partial \mathbf{f}(\mathbf{x},t)}{\partial \mathbf{x}}
 ight\| \leq e^{eta t}$

Consider the dynamics $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ and the corresponding **integrator function** $\mathbf{f}(\mathbf{x},t)$ that maps the initial conditions $\mathbf{x} \in \mathbb{R}^n$ onto a trajectory $\mathbf{x}(t) \in \mathbb{R}^n$, i.e.

$$f(x,t):x,t\mapsto x(t)$$

Proposition

Assume:

- Lipschitz ODE: $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})\| \le L_0 \|\mathbf{x} \mathbf{y}\|$
- Lipschitz sensitivity of the dynamics: $\left\| \frac{\partial F(x)}{\partial x} \frac{\partial F(y)}{\partial y} \right\| \leq L_1 \left\| x y \right\|$
- ullet Bounded sensitivity of the dynamics: $\left\| \frac{\partial F(x)}{\partial x} \right\| \leq \beta$ for all x

Then the following holds:

- Bounded divergence of the solutions: $\|\mathbf{f}(\mathbf{x},t) \mathbf{f}(\mathbf{y},t)\| \le e^{L_0 t} \|\mathbf{x} \mathbf{y}\|$
- Bounded sensitivity: $\left\| \frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial \mathbf{x}} \right\| \leq e^{\beta t}$
- $\qquad \text{Bounded nonlinearity: } \left\| \frac{\partial f(x,t)}{\partial x} \frac{\partial f(y,t)}{\partial y} \right\| \leq \frac{L_1}{L_0} e^{\beta t} \left(e^{L_0 t} 1 \right) \|x y\|$

Two useful mathematical tricks:

The inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{a}\| \le \|\dot{\mathbf{a}}\|$$

holds on any vector space equipped with a (almost everywhere) differentiable norm $\|.\|$ (e.g. 2-norm, Frobenius).

Two useful mathematical tricks:

The inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{a}\| \le \|\dot{\mathbf{a}}\|$$

holds on any vector space equipped with a (almost everywhere) differentiable norm $\|.\|$ (e.g. 2-norm, Frobenius).

Gronwall Lemma: if

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{a}(t)\| \le \alpha(t) \|\mathbf{a}(t)\| + \beta(t)$$

Two useful mathematical tricks:

The inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{a}\| \le \|\dot{\mathbf{a}}\|$$

holds on any vector space equipped with a (almost everywhere) differentiable norm $\|.\|$ (e.g. 2-norm, Frobenius).

Gronwall Lemma: if

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{a}(t)\| \le \alpha(t) \|\mathbf{a}(t)\| + \beta(t)$$

then

$$\|\mathbf{a}(t)\| \leq \|\mathbf{a}(0)\| e^{\int_0^t \alpha(s)\mathrm{d}s} + \int_0^t e^{\int_s^t \alpha(s)} \beta(s)\mathrm{d}s$$

holds for all t.

Bounded divergence of solutions: let e(x, y, t) = f(x, t) - f(y, t), then:

$$\|\dot{\mathbf{e}}\| = \|\mathbf{F}\left(\mathbf{f}\left(\mathbf{x},t\right)\right) - \mathbf{F}\left(\mathbf{f}\left(\mathbf{y},t\right)\right)\| \leq L_0 \left\|\mathbf{f}\left(\mathbf{x},t\right) - \mathbf{f}\left(\mathbf{y},t\right)\right\| = L_0 \|\mathbf{e}\|$$

hence

$$\frac{\mathrm{d}}{\mathrm{d}t}\|\mathbf{e}\| \leq L_0\|\mathbf{e}\|$$

Using e(x, y, 0) = x - y, **Gronwall Lemma** ensures that

$$\|\mathbf{e}(\mathbf{x}, \mathbf{y}, t)\| \le e^{L_0 t} \|\mathbf{x} - \mathbf{y}\|$$

i.e.:

$$\|\mathbf{f}(\mathbf{x},t) - \mathbf{f}(\mathbf{y},t)\| \le e^{L_0 t} \|\mathbf{x} - \mathbf{y}\|$$

Let us write $\frac{\partial f(x,t)}{\partial x}=A\left(x,t\right)$. Here we will use the fact that $A\left(x,t\right)$ is given by

$$\dot{A}(\mathbf{x},t) = \frac{\partial \mathbf{F}(\mathbf{f}(\mathbf{x},t))}{\partial \mathbf{x}} A(\mathbf{x},t)$$

Bounded sensitivities: we use the Frobenius matrix norm and observe that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| A(\mathbf{x},t) \right\| \leq \left\| \dot{A}(\mathbf{x},t) \right\| = \left\| \frac{\partial \mathbf{F} \left(\mathbf{f} \left(\mathbf{x},t \right) \right)}{\partial \mathbf{x}} A(\mathbf{x},t) \right\| \leq \left\| \frac{\partial \mathbf{F} \left(\mathbf{f} \left(\mathbf{x},t \right) \right)}{\partial \mathbf{x}} \right\| \left\| A(\mathbf{x},t) \right\|$$

such that

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A(\mathbf{x},t)\| \leq \beta \|A(\mathbf{x},t)\|$$

Using A(x,0) = I, the **Gronwall Lemma** then ensures that:

$$||A(\mathbf{x},t)|| \leq e^{\beta t}$$

Bounded nonlinearity: let us write E(x, y, t) = A(x, t) - A(y, t) then

$$\frac{\mathrm{d}}{\mathrm{d}t} \|E\| \leq \left\| \dot{E} \right\| = \left\| \frac{\partial \mathbf{F} \left(\mathbf{f} \left(\mathbf{x}, t \right) \right)}{\partial \mathbf{x}} A \left(\mathbf{x}, t \right) - \frac{\partial \mathbf{F} \left(\mathbf{f} \left(\mathbf{y}, t \right) \right)}{\partial \mathbf{y}} A \left(\mathbf{y}, t \right) \right\|$$

Let us use the short notation $\xi_{\cdot} = \frac{\partial F(f(\cdot,t))}{\partial \cdot}$. Then:

$$\begin{aligned} \left\| \dot{E} \right\| &= \left\| \xi_{x} \left(A(\mathbf{x}, t) - A(\mathbf{y}, t) \right) + \left(\xi_{x} - \xi_{y} \right) A(\mathbf{y}, t) \right\| \leq \\ &\| \xi_{x} \| \left\| A(\mathbf{x}, t) - A(\mathbf{y}, t) \right\| + \left\| \xi_{x} - \xi_{y} \right\| \left\| A(\mathbf{y}, t) \right\| \leq \beta \left\| E \right\| + \left\| \xi_{x} - \xi_{y} \right\| e^{\beta t} \end{aligned}$$

Then we observe that:

$$\|\xi_{x} - \xi_{y}\| \le L_{1} \|\mathbf{f}(\mathbf{x}, t) - \mathbf{f}(\mathbf{y}, t)\| \le L_{1} e^{L_{0}t} \|\mathbf{x} - \mathbf{y}\|$$

We use E(x, y, 0) = 0 and the **Gronwall Lemma** to conclude that:

$$\begin{split} \|E\left(\mathbf{x},\mathbf{y},t\right)\| & \leq \int_{0}^{t} e^{\int_{s}^{t} \beta} L_{1} \left\|\mathbf{x}-\mathbf{y}\right\| e^{(\beta+L_{0})s} \mathrm{d}s = \int_{0}^{t} e^{\beta(t-s)} L_{1} \left\|\mathbf{x}-\mathbf{y}\right\| e^{(\beta+L_{0})s} \mathrm{d}s = \\ e^{\beta t} L_{1} \left\|\mathbf{x}-\mathbf{y}\right\| \int_{0}^{t} e^{L_{0}s} \mathrm{d}s = \frac{L_{1}}{L_{0}} e^{\beta t} \left\|\mathbf{x}-\mathbf{y}\right\| e^{L_{0}s} \bigg|_{0}^{t} = \frac{L_{1}}{L_{0}} e^{\beta t} \left\|\mathbf{x}-\mathbf{y}\right\| \left(e^{L_{0}t}-1\right) \end{split}$$

Outline

Single-Shooting

Multiple-Shooting

3 NLP from shooting methods

Example

$$\dot{x}=10\,(y-x)$$

$$\dot{y} = x(u-z) - y$$

$$\dot{z} = xy - 3z$$

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x(u-z) - y$$

$$\dot{z} = xy - 3z$$

Example

$$\dot{x}=10\left(y-x\right)$$

$$\dot{y} = x(u-z) - y$$

$$\dot{z} = xy - 3z$$

Example

$$\dot{x}=10\,(y-x)$$

$$\dot{y} = x(u-z) - y$$

$$\dot{z} = xy - 3z$$

Example

$$\dot{x} = 10 (y - x)$$

$$\dot{y} = x (u - z) - y$$

$$\dot{z} = xy - 3z$$

Example

States as a function of *u* at time t

The integration function can be made "arbitrarily linear" by reducing the integration time

Example

$\dot{x} = 10 (y - x)$

$$\dot{y} = x(u-z) - y$$

$$\dot{z} = xy - 3z$$

States as a function of u at time t

The integration function can be made "arbitrarily linear" by reducing the integration time

Multiple-shooting breaks down the system integration into short time intervals !!

... discretised on the time grid $\{t_0, t_1, ..., t_N\}$

...integration on the time intervals $[\textit{t}_{\textit{k}},\,\textit{t}_{\textit{k}+1}]$

... discretised on the time grid $\{t_0, t_1, ..., t_N\}$

... discretised on the time grid $\{t_0, t_1, ..., t_N\}$

...integration on the time intervals $[t_k, t_{k+1}]$

ullet short integrations starting from given x_k

... discretised on the time grid $\{t_0, t_1, ..., t_N\}$

...integration on the time intervals $[t_k, t_{k+1}]$

- ullet short integrations starting from given x_k
- function $f(\mathbf{x}_k, \mathbf{u}_k)$ can be made "as linear as we want" by reducing $t_{k+1} t_k$

... discretised on the time grid $\{t_0, t_1, ..., t_N\}$

...integration on the time intervals $[t_k, t_{k+1}]$

- \bullet short integrations starting from given x_k
- function $f(\mathbf{x}_k, \mathbf{u}_k)$ can be made "as linear as we want" by reducing $t_{k+1} t_k$
- the trajectory is physically meaningful when the shooting gaps are closed, i.e.

$$f(x_k, u_k) - x_{k+1} = 0, k = 0, ..., N-1$$

Multiple-Shooting - key idea

... discretised on the time grid $\{t_0, t_1, ..., t_N\}$

- The x_k will become decision variables in the NLP
- The shooting gaps will be constraints in the NLP

...integration on the time intervals $[t_k, t_{k+1}]$

- ullet short integrations starting from given x_k
- function $f(\mathbf{x}_k, \mathbf{u}_k)$ can be made "as linear as we want" by reducing $t_{k+1} t_k$
- the trajectory is physically meaningful when the shooting gaps are closed, i.e.

$$f(x_k, u_k) - x_{k+1} = 0, k = 0, ..., N-1$$

$$\min_{u,\mathbf{x}} \quad \sum_{k=0}^{N} u_k^2$$
s.t.
$$\mathbf{f}(\mathbf{x}_k, \mathbf{u}_k) - \mathbf{x}_{k+1} = 0$$

$$-20 \le u_k \le 20$$

$$\mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}_N = 0$$

$$\min_{u,\mathbf{x}} \quad \sum_{k=0}^{N} u_k^2$$
s.t.
$$\mathbf{f}(\mathbf{x}_k, \mathbf{u}_k) - \mathbf{x}_{k+1} = 0$$

$$-20 \le u_k \le 20$$

$$\mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}_N = 0$$

$$\min_{u,\mathbf{x}} \quad \sum_{k=0}^{N} u_k^2$$
s.t.
$$\mathbf{f}(\mathbf{x}_k, \mathbf{u}_k) - \mathbf{x}_{k+1} = 0$$

$$-20 \le u_k \le 20$$

$$\mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}_N = 0$$

 $f(\mathbf{x}_k,\mathbf{u}_k)$ integrates the dynamics over the time interval $[t_k,t_{k+1}]$

Note: one can provide a guess for the state trajectories in the form of the $x_{0,...,N}$!!

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \underset{u,\mathbf{x}}{\text{min}} & & \sum_{k=0}^{N} u_k^2 \\ & \text{s.t.} & & \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \mathbf{x}_{k+1} = 0 \\ & & & -20 \leq u_k \leq 20 \\ & & & \mathbf{x}_0 = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, & \mathbf{x}_N = 0 \end{aligned}$$

$$\begin{aligned} & \min_{u} & \sum_{k=0}^{N} u_{k}^{2} \\ & \text{s.t.} & \dot{\mathbf{x}} = f\left(\mathbf{x}, u\right) \\ & & -20 \leq u \leq 20 \\ & & \mathbf{x}(0) = \begin{bmatrix} & 0 & \pi & 0 & 0 & \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0 \end{aligned}$$

An example

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

0.5

Time [s]

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

An example

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

Time [s]

0.5

Time [s]

1.5

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

$$\min_{u} \quad \sum_{k=0}^{N} u_{k}^{2}$$

s.t.
$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

 $-20 \le u \le 20$
 $\mathbf{x}(0) = \begin{bmatrix} 0 & \pi & 0 & 0 \end{bmatrix}, \quad \mathbf{x}(T_{\mathrm{f}}) = 0$

Cost and constraints discretisation in Multiple-shooting

OCP:

$$\begin{aligned} & \min \quad \mathcal{T}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) + \int_{0}^{t_{\mathrm{f}}} L\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) dt \\ & \text{s.t.} \quad \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right) \\ & \quad \mathbf{h}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \leq 0 \end{aligned}$$

• Inequality constraints: $h(x(t), u(t)) \le 0$ are enforced on the shooting nodes:

$$\mathbf{h}(\mathbf{x}_{k}, t_{k}, \mathbf{u}_{k}) \leq 0, \quad \forall k = 0, ..., N-1$$

• Cost function often approximated as (rectangular quadrature):

$$T\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \left(t_{k+1} - t_{k}\right) L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\left(t\right)\right)$$

ullet Alternatively, integral cost function $L(\mathbf{x},\mathbf{u})$ can be implemented via a dynamic extension:

$$\frac{d}{dt}\begin{bmatrix} \mathbf{x} \\ \rho \end{bmatrix} = \begin{bmatrix} \mathbf{F}(\mathbf{x}, \mathbf{u}) \\ L(\mathbf{x}, \mathbf{u}) \end{bmatrix}, \quad \Phi(\mathbf{w}) = T(\mathbf{x}_N) + \rho_N$$

Outline

Single-Shooting

2 Multiple-Shooting

3 NLP from shooting methods

OCP:

$$\begin{aligned} & \text{min} & & \Phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} & & \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & & & \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & & & & \mathbf{x}\left(t_0\right) = \mathbf{x}_0 \end{aligned}$$

with
$$\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}$$

OCP:

$$\begin{aligned} & \text{min} & & \Phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} & & \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & & & & \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & & & & & & \mathbf{x}\left(t_0\right) = \mathbf{x}_0 \end{aligned}$$

NLP:

with $\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}$

OCP:

min
$$\Phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \mathbf{x}_0$

with
$$\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}$$

OCP:

$$\begin{aligned} & \text{min} & & \Phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} & & \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & & & \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & & & & \mathbf{x}\left(t_{0}\right) = \mathbf{x}_{0} \end{aligned}$$

with
$$\mathbf{w} = \{\mathbf{u}_0, ..., \mathbf{u}_{N-1}\}$$

OCP:

min
$$\Phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \mathbf{x}_0$

$$\label{eq:problem} \begin{aligned} & \underset{w}{\text{min}} \quad \Phi\left(\mathbf{f}\left(\mathbf{w},\mathbf{x}_{0}.\right),\mathbf{w}\right) \\ & \text{s.t.} \quad \mathbf{h}\left(\mathbf{f}\left(\mathbf{w},\mathbf{x}_{0},t_{k}\right),\mathbf{w}_{k},t_{k}\right) \leq 0 \\ \end{aligned}$$
 with $\mathbf{w} = \left\{\mathbf{u}_{0},...,\mathbf{u}_{N-1}\right\}$

NLP from Multiple-Shooting

OCP:

min
$$\Phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \leq 0$
 $\mathbf{x}(t_0) = \bar{\mathbf{x}}_0$

 $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

NLP from Multiple-Shooting

OCP:

$$\begin{aligned} & \min & & \Phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} & & \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & & & \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & & & & \mathbf{x}\left(t_{0}\right) = \mathbf{\bar{x}}_{0} \end{aligned}$$

 $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

NLP with $\mathbf{w} = \{ \underbrace{x_0}, u_0, ..., \underbrace{x_{N-1}}, u_{N-1}, \underbrace{x_N} \}$ min $\Phi\left(\mathbf{w}\right)$

s.t.

NLP from Multiple-Shooting

OCP:

$$\begin{aligned} & \min \quad \Phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} \quad \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & \quad \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & \quad \mathbf{x}\left(t_{0}\right) = \bar{\mathbf{x}}_{0} \end{aligned}$$

 $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

$$\begin{aligned} & \text{NLP with } \mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\} \\ & \underset{\mathbf{w}}{\text{min}} \quad \Phi\left(\mathbf{w}\right) \\ & \text{s.t.} \quad \mathbf{g}\left(\mathbf{w}\right) = \begin{bmatrix} \mathbf{\bar{x}}_0 - \mathbf{x}_0 \\ f\left(\mathbf{x}_0, \mathbf{u}_0\right) - \mathbf{x}_1 \\ ... \\ f\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_N \end{bmatrix} = \mathbf{0} \end{aligned}$$

NLP from Multiple-Shooting

OCP:

$$\begin{aligned} & \min & & \Phi\left(\mathbf{x}(.), \mathbf{u}(.)\right) \\ & \text{s.t.} & & \dot{\mathbf{x}}\left(t\right) = \mathbf{F}\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right) \\ & & & \mathbf{h}\left(\mathbf{x}(t), \mathbf{u}(t), t\right) \leq 0 \\ & & & & \mathbf{x}\left(t_{0}\right) = \bar{\mathbf{x}}_{0} \end{aligned}$$

 $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

NLP with
$$\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\}$$

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$\mathbf{g}(\mathbf{w}) = \begin{bmatrix} \bar{\mathbf{x}}_0 - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = 0$$

$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \le 0$$

NLP:

$$\min_{w} \quad \Phi\left(w\right)$$

$$\begin{aligned} \text{s.t.} \quad \mathbf{g}\left(\mathbf{w}\right) &= \left[\begin{array}{c} \overline{\mathbf{x}}_0 - \mathbf{x}_0 \\ f\left(\mathbf{x}_0, \mathbf{u}_0\right) - \mathbf{x}_1 \\ \dots \\ f\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_N \end{array} \right] = \mathbf{0} \\ h\left(\mathbf{w}\right) &= \left[\begin{array}{c} h\left(\mathbf{x}_0, \mathbf{u}_0\right) \\ \dots \\ h\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) \\ h\left(\mathbf{x}_N\right) \end{array} \right] \leq \mathbf{0} \end{aligned}$$

NLP:

 $\min_{w} \quad \Phi\left(w\right)$

s.t.
$$\mathbf{g}(\mathbf{w}) = \begin{bmatrix} \mathbf{\bar{x}}_0 - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = 0$$
$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \le 0$$

Lagrange function:

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\top}\mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\top}\mathbf{h}\left(\mathbf{w}\right)$$

NLP:

 $\min_{w} \quad \Phi\left(w\right)$

s.t.
$$\mathbf{g}(\mathbf{w}) = \begin{bmatrix} \mathbf{\bar{x}}_0 - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = \mathbf{0}$$
$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \le \mathbf{0}$$

Then write:

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \underbrace{T(\mathbf{x}_{\mathsf{N}}) + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k})}_{\Phi(\mathbf{w})}$$

Lagrange function:

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\top}\mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\top}\mathbf{h}\left(\mathbf{w}\right)$$

NLP:

Lagrange function:

 $\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\top} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\top} \mathbf{h}(\mathbf{w})$

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

$$\begin{aligned} \text{s.t.} \quad & \mathbf{g}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{\bar{x}}_0 - \mathbf{x}_0 \\ f\left(\mathbf{x}_0, \mathbf{u}_0\right) - \mathbf{x}_1 \\ & \dots \\ f\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_N \end{array} \right] = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{h}\left(\mathbf{x}_0, \mathbf{u}_0\right) \\ & \dots \\ \mathbf{h}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) \\ & \mathbf{h}\left(\mathbf{x}_N\right) \end{array} \right] \leq \mathbf{0} \end{aligned}$$

Then write:

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \underbrace{\mathcal{T}\left(\mathbf{x}_{\text{N}}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{\text{k}}, \mathbf{u}_{k}\right)}_{\Phi\left(\mathbf{w}\right)} + \underbrace{\boldsymbol{\lambda}_{0}^{\top}\left(\bar{\mathbf{x}}_{0} - \mathbf{x}_{0}\right) + \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top}\left(f\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) - \mathbf{x}_{k+1}\right)}_{\boldsymbol{\lambda}^{\top}g\left(\mathbf{w}\right)}$$

NLP:

Lagrange function:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

$$\begin{aligned} & \mathcal{L}(\mathbf{w}, \lambda, \mu) = \Phi(\mathbf{w}) + \lambda^{\top} \mathbf{g}(\mathbf{w}) + \mu^{\top} \mathbf{h}(\mathbf{w}) \\ & \text{s.t.} \quad \mathbf{g}(\mathbf{w}) = \begin{bmatrix} & \bar{\mathbf{x}}_0 - \mathbf{x}_0 \\ & \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ & \dots \\ & \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = \mathbf{0} \\ & \mathbf{h}(\mathbf{w}) = \begin{bmatrix} & \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ & \dots \\ & & \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ & & \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \leq \mathbf{0} \end{aligned}$$

Then write:

$$\begin{split} \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) &= \underbrace{\mathcal{T}\left(\mathbf{x}_{\textit{N}}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)}_{\Phi\left(\mathbf{w}\right)} + \underbrace{\boldsymbol{\lambda}_{0}^{\top}\left(\bar{\mathbf{x}}_{0} - \mathbf{x}_{0}\right) + \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top}\left(f\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) - \mathbf{x}_{k+1}\right)}_{\boldsymbol{\lambda}^{\top}\mathbf{g}\left(\mathbf{w}\right)} \\ &+ \underbrace{\boldsymbol{\mu}_{\textit{N}}^{\top}\mathbf{h}\left(\mathbf{x}_{\textit{N}}\right) + \sum_{k=0}^{N-1} \boldsymbol{\mu}_{k}^{\top}\mathbf{h}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)}_{\boldsymbol{\mu}^{\top}\mathbf{h}\left(\mathbf{w}\right)} \end{split}$$

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \underbrace{T\left(\mathbf{x}_{\boldsymbol{N}}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{\boldsymbol{k}}, \mathbf{u}_{k}\right) + \lambda_{0}^{\top} \left(\bar{\mathbf{x}}_{0} - \mathbf{x}_{0}\right) + \sum_{k=0}^{N-1} \lambda_{k+1}^{\top} \left(f\left(\mathbf{x}_{\boldsymbol{k}}, \mathbf{u}_{k}\right) - \mathbf{x}_{k+1}\right)}_{\boldsymbol{\lambda}^{\top} \mathbf{g}(\mathbf{w})} + \underbrace{\mu_{N}^{\top} \mathbf{h}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mu_{k}^{\top} \mathbf{h}\left(\mathbf{x}_{\boldsymbol{k}}, \mathbf{u}_{k}\right)}_{\boldsymbol{\mu}^{\top} \mathbf{h}(\mathbf{w})}$$

$$\begin{split} \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = & \mathcal{T}\left(\mathbf{x}_{\mathcal{N}}\right) + \sum_{k=0}^{\mathcal{N}-1} L\left(\mathbf{x}_{\boldsymbol{k}}, \mathbf{u}_{k}\right) + \boldsymbol{\lambda}_{0}^{\top}\left(\bar{\mathbf{x}}_{0} - \mathbf{x}_{0}\right) + \sum_{k=0}^{\mathcal{N}-1} \boldsymbol{\lambda}_{k+1}^{\top}\left(\mathbf{f}\left(\mathbf{x}_{\boldsymbol{k}}, \mathbf{u}_{k}\right) - \mathbf{x}_{k+1}\right) \\ & + \boldsymbol{\mu}_{\mathcal{N}}^{\top}\mathbf{h}\left(\mathbf{x}_{\mathcal{N}}\right) + \sum_{k=0}^{\mathcal{N}-1} \boldsymbol{\mu}_{k}^{\top}\mathbf{h}\left(\mathbf{x}_{\boldsymbol{k}}, \mathbf{u}_{k}\right) \end{split}$$

$$\begin{split} \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = & \mathcal{T}\left(\mathbf{x}_{\textit{N}}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{\textit{k}}, \mathbf{u}_{\textit{k}}\right) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{0}^{\top} \mathbf{x}_{0} + \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}\left(\mathbf{x}_{\textit{k}}, \mathbf{u}_{\textit{k}}\right) - \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{x}_{\textit{k}+1} \\ & + \boldsymbol{\mu}_{\textit{N}}^{\top} \mathbf{h}\left(\mathbf{x}_{\textit{N}}\right) + \sum_{k=0}^{N-1} \boldsymbol{\mu}_{\textit{k}}^{\top} \mathbf{h}\left(\mathbf{x}_{\textit{k}}, \mathbf{u}_{\textit{k}}\right) \end{split}$$

$$\mathcal{L}(\mathbf{w}, \lambda, \mu) = T(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \lambda_{0}^{\top} \bar{\mathbf{x}}_{0} - \lambda_{0}^{\top} \mathbf{x}_{0} + \sum_{k=0}^{N-1} \lambda_{k+1}^{\top} f(\mathbf{x}_{k}, \mathbf{u}_{k}) - \sum_{k=0}^{N-1} \lambda_{k+1}^{\top} \mathbf{x}_{k+1}$$

$$+ \mu_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \mu_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) =$$

$$T(\mathbf{x}_{N}) + \mu_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \lambda_{0}^{\top} \bar{\mathbf{x}}_{0} - \lambda_{N}^{\top} \mathbf{x}_{N}$$

$$+ \sum_{k=0}^{N-1} \left(L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \lambda_{k+1}^{\top} f(\mathbf{x}_{k}, \mathbf{u}_{k}) - \lambda_{k}^{\top} \mathbf{x}_{k} + \mu_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) \right)$$

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathcal{T}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{0}^{\top} \mathbf{x}_{0} + \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{x}_{k+1}$$

$$+ \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) =$$

$$\mathcal{T}(\mathbf{x}_{N}) + \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{N}^{\top} \mathbf{x}_{N}$$

$$+ \sum_{k=0}^{N-1} \left(L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \boldsymbol{\lambda}_{k}^{\top} \mathbf{x}_{k} + \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) \right)$$

Define:

$$\mathcal{L}_{k}\left(\mathbf{w}_{k}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = L\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) + \boldsymbol{\lambda}_{k+1}^{\top} f\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) - \boldsymbol{\lambda}_{k}^{\top} \mathbf{x}_{k} + \boldsymbol{\mu}_{k}^{\top} h\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right), \qquad k = 1, ..., N-1$$

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = T(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \lambda_{0}^{\top} \bar{\mathbf{x}}_{0} - \lambda_{0}^{\top} \mathbf{x}_{0} + \sum_{k=0}^{N-1} \lambda_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \sum_{k=0}^{N-1} \lambda_{k+1}^{\top} \mathbf{x}_{k+1}$$

$$+ \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) =$$

$$T(\mathbf{x}_{N}) + \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \lambda_{0}^{\top} \bar{\mathbf{x}}_{0} - \lambda_{N}^{\top} \mathbf{x}_{N}$$

$$+ \sum_{k=0}^{N-1} \left(L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \lambda_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \lambda_{k}^{\top} \mathbf{x}_{k} + \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) \right)$$

Define:

$$\begin{split} \mathcal{L}_k\left(\mathbf{w}_k, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) &= L\left(\mathbf{x}_k, \mathbf{u}_k\right) + \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \boldsymbol{\lambda}_k^{\top} \mathbf{x}_k + \boldsymbol{\mu}_k^{\top} \mathbf{h}\left(\mathbf{x}_k, \mathbf{u}_k\right), & k = 1, ..., N-1 \\ \mathcal{L}_0\left(\mathbf{w}_0, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) &= L\left(\mathbf{x}_0, \mathbf{u}_0\right) + \boldsymbol{\lambda}_1^{\top} \mathbf{f}\left(\mathbf{x}_0, \mathbf{u}_0\right) - \boldsymbol{\lambda}_0^{\top} \mathbf{x}_0 + \boldsymbol{\mu}_0^{\top} \mathbf{h}\left(\mathbf{x}_0, \mathbf{u}_0\right) + \boldsymbol{\lambda}_0^{\top} \bar{\mathbf{x}}_0 \end{split}$$

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathcal{T}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{0}^{\top} \mathbf{x}_{0} + \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{x}_{k+1}$$

$$+ \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) =$$

$$\mathcal{T}(\mathbf{x}_{N}) + \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{N}^{\top} \mathbf{x}_{N}$$

$$+ \sum_{k=0}^{N-1} \left(L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \boldsymbol{\lambda}_{k}^{\top} \mathbf{x}_{k} + \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) \right)$$

Define:

$$\begin{split} \mathcal{L}_{k}\left(\mathbf{w}_{k},\boldsymbol{\lambda},\boldsymbol{\mu}\right) &= L\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) + \boldsymbol{\lambda}_{k+1}^{\top}\mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) - \boldsymbol{\lambda}_{k}^{\top}\mathbf{x}_{k} + \boldsymbol{\mu}_{k}^{\top}\mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), & k = 1,...,N-1 \\ \mathcal{L}_{0}\left(\mathbf{w}_{0},\boldsymbol{\lambda},\boldsymbol{\mu}\right) &= L\left(\mathbf{x}_{0},\mathbf{u}_{0}\right) + \boldsymbol{\lambda}_{1}^{\top}\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}_{0}\right) - \boldsymbol{\lambda}_{0}^{\top}\mathbf{x}_{0} + \boldsymbol{\mu}_{0}^{\top}\mathbf{h}\left(\mathbf{x}_{0},\mathbf{u}_{0}\right) + \boldsymbol{\lambda}_{0}^{\top}\bar{\mathbf{x}}_{0} \\ \mathcal{L}_{N}\left(\mathbf{w}_{N},\boldsymbol{\lambda},\boldsymbol{\mu}\right) &= \mathcal{T}\left(\mathbf{x}_{N}\right) - \boldsymbol{\lambda}_{N}^{\top}\mathbf{x}_{N} + \boldsymbol{\mu}_{N}^{\top}\mathbf{h}\left(\mathbf{x}_{N}\right) \end{split}$$

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathcal{T}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{0}^{\top} \mathbf{x}_{0} + \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{x}_{k+1}$$

$$+ \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) =$$

$$\mathcal{T}(\mathbf{x}_{N}) + \boldsymbol{\mu}_{N}^{\top} \mathbf{h}(\mathbf{x}_{N}) + \boldsymbol{\lambda}_{0}^{\top} \bar{\mathbf{x}}_{0} - \boldsymbol{\lambda}_{N}^{\top} \mathbf{x}_{N}$$

$$+ \sum_{k=0}^{N-1} \left(L(\mathbf{x}_{k}, \mathbf{u}_{k}) + \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}) - \boldsymbol{\lambda}_{k}^{\top} \mathbf{x}_{k} + \boldsymbol{\mu}_{k}^{\top} \mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) \right)$$

Define:

$$\begin{split} \mathcal{L}_k\left(\mathbf{w}_k, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) &= L\left(\mathbf{x}_k, \mathbf{u}_k\right) + \boldsymbol{\lambda}_{k+1}^{\top} \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right) - \boldsymbol{\lambda}_k^{\top} \mathbf{x}_k + \boldsymbol{\mu}_k^{\top} \mathbf{h}\left(\mathbf{x}_k, \mathbf{u}_k\right), & k = 1, ..., N-1 \\ \mathcal{L}_0\left(\mathbf{w}_0, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) &= L\left(\mathbf{x}_0, \mathbf{u}_0\right) + \boldsymbol{\lambda}_1^{\top} \mathbf{f}\left(\mathbf{x}_0, \mathbf{u}_0\right) - \boldsymbol{\lambda}_0^{\top} \mathbf{x}_0 + \boldsymbol{\mu}_0^{\top} \mathbf{h}\left(\mathbf{x}_0, \mathbf{u}_0\right) + \boldsymbol{\lambda}_0^{\top} \bar{\mathbf{x}}_0 \\ \mathcal{L}_N\left(\mathbf{w}_N, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) &= T\left(\mathbf{x}_N\right) - \boldsymbol{\lambda}_N^{\top} \mathbf{x}_N + \boldsymbol{\mu}_N^{\top} \mathbf{h}\left(\mathbf{x}_N\right) \end{split}$$

Then use $\mathbf{w}_k = \{\mathbf{x}_k, \mathbf{u}_k\}$ for k = 0, ..., N-1, and $\mathbf{w}_N \equiv \mathbf{x}_N$, so that

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \sum_{k=0}^{N} \mathcal{L}_k\left(\mathbf{w}_k, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)$$

QP structure from Multiple-Shooting

NLP:

$$\min_{\mathbf{w}} \phi(\mathbf{w})$$

$$\begin{aligned} \text{s.t.} \quad & \mathbf{g}\left(\mathbf{w}\right) = \begin{bmatrix} & \overline{\mathbf{x}}_0 - \mathbf{x}_0 \\ & \mathbf{f}\left(\mathbf{x}_0, \mathbf{u}_0\right) - \mathbf{x}_1 \\ & \dots \\ & \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_N \end{bmatrix} = 0 & \text{SQP recursively solves the QPs:} \\ & \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^\top H \Delta \mathbf{w} + \nabla \Phi^\top \Delta \mathbf{w} \\ & \text{s.t.} & \nabla \mathbf{g}^\top \Delta \mathbf{w} + \mathbf{g} = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) = \begin{bmatrix} & \mathbf{h}\left(\mathbf{x}_0, \mathbf{u}_0\right) \\ & \dots \\ & \mathbf{h}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) \\ & \mathbf{h}\left(\mathbf{x}_N\right) \end{bmatrix} \leq 0 & \nabla \mathbf{h}^\top \Delta \mathbf{w} + \mathbf{h} \leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\top} H \Delta \mathbf{w} + \nabla \Phi^{\top} \Delta \mathbf{v} \\ \text{s.t.} \quad & \nabla \mathbf{g}^{\top} \Delta \mathbf{w} + \mathbf{g} = 0 \\ & \nabla \mathbf{h}^{\top} \Delta \mathbf{w} + \mathbf{h} \leq 0 \end{aligned}$$

QP structure from Multiple-Shooting

NLP:

$$\min_{\mathbf{w}} \phi(\mathbf{w})$$

$$\begin{aligned} \text{s.t.} \quad g\left(w\right) &= \left[\begin{array}{c} \overline{x}_0 - x_0 \\ f\left(x_0, u_0\right) - x_1 \\ \dots \\ f\left(x_{N-1}, u_{N-1}\right) - x_N \end{array} \right] = 0 & \text{SQP recursively solves the QPs:} \\ & \min_{\Delta w} \quad \frac{1}{2} \Delta w^\top H \Delta w + \nabla \Phi^\top \Delta w \\ \text{s.t.} \quad \nabla g^\top \Delta w + g = 0 \\ & \nabla h^\top \Delta w + h \leq 0 \end{aligned}$$

$$h\left(w\right) &= \left[\begin{array}{c} h\left(x_0, u_0\right) \\ \dots \\ h\left(x_{N-1}, u_{N-1}\right) \\ h\left(x_N\right) \end{array} \right] \leq 0$$

min
$$\frac{1}{2}\Delta \mathbf{w}^{\top} H \Delta \mathbf{w} + \nabla \Phi^{\top} \Delta \mathbf{w}$$

s.t. $\nabla \mathbf{g}^{\top} \Delta \mathbf{w} + \mathbf{g} = 0$
 $\nabla \mathbf{h}^{\top} \Delta \mathbf{w} + \mathbf{h} \leq 0$

Let's have a look at matrices H, $\nabla \mathbf{g}^{\top}$ and $\nabla \mathbf{h}^{\top}$ for this specific type of NLP

Constraints Jacobian - Dynamics

$$\text{Constraints:} \quad g\left(w\right) = \left[\begin{array}{c} c\left(x_{0}\right) \\ f\left(x_{0}, u_{0}\right) - x_{1} \\ f\left(x_{1}, u_{1}\right) - x_{2} \\ f\left(x_{2}, u_{2}\right) - x_{3} \\ f\left(x_{3}, u_{3}\right) - x_{4} \\ f\left(x_{4}, u_{4}\right) - x_{5} \end{array} \right] \qquad \text{with} \quad w = \left[\begin{array}{c} u_{0} \\ u_{1} \\ u_{1} \\ x_{2} \\ u_{2} \\ x_{3} \\ u_{3} \\ x_{4} \\ u_{4} \\ x_{5} \end{array} \right]$$

Constraints Jacobian - Dynamics

constraints:
$$\mathbf{g}(\mathbf{w}) = \begin{bmatrix} \mathbf{c}(\mathbf{x}_0) \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \mathbf{f}(\mathbf{x}_1, \mathbf{u}_1) - \mathbf{x}_2 \\ \mathbf{f}(\mathbf{x}_2, \mathbf{u}_2) - \mathbf{x}_3 \\ \mathbf{f}(\mathbf{x}_3, \mathbf{u}_3) - \mathbf{x}_4 \\ \mathbf{f}(\mathbf{x}_4, \mathbf{u}_4) - \mathbf{x}_5 \end{bmatrix} \quad \text{with} \quad \mathbf{w} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{u}_0 \\ \mathbf{x}_1 \\ \mathbf{u}_1 \\ \mathbf{x}_2 \\ \mathbf{u}_2 \\ \mathbf{x}_3 \\ \mathbf{u}_3 \\ \mathbf{x}_4 \\ \mathbf{u}_4 \\ \mathbf{x}_5 \end{bmatrix}$$

Let's denote $f_k = f(x_k, u_k)$, then the constraints derivative reads as:

Constraints Jacobian - Dynamics

$$\text{Constraints:} \quad g\left(w\right) = \left[\begin{array}{c} c\left(x_{0}\right) \\ f\left(x_{0}, u_{0}\right) - x_{1} \\ f\left(x_{1}, u_{1}\right) - x_{2} \\ f\left(x_{2}, u_{2}\right) - x_{3} \\ f\left(x_{3}, u_{3}\right) - x_{4} \\ f\left(x_{4}, u_{4}\right) - x_{5} \end{array} \right] \qquad \text{with} \quad w = \left[\begin{array}{c} u_{0} \\ x_{1} \\ u_{1} \\ x_{2} \\ u_{2} \\ x_{3} \\ u_{3} \\ x_{4} \\ u_{4} \\ x_{5} \end{array} \right]$$

Let's denote $f_k = f(x_k, u_k)$, then the constraints derivative reads as:

Observe the **banded** structure of the **Jacobian** $\nabla \mathbf{g}(\mathbf{w})^{\mathrm{T}}$. Note that this structure hinges on the ordering in \mathbf{w} and \mathbf{g} !!!

Constraints Jacobian - Bounds

$$\text{Bounds:} \quad \mathbf{h}\left(\mathbf{w}\right) = \begin{bmatrix} \mathbf{h}_{0}\left(x_{0}, \mathbf{u}_{0}\right) \\ \mathbf{h}_{1}\left(x_{1}, \mathbf{u}_{1}\right) \\ \mathbf{h}_{2}\left(x_{2}, \mathbf{u}_{2}\right) \\ \mathbf{h}_{3}\left(x_{3}, \mathbf{u}_{3}\right) \\ \mathbf{h}_{4}\left(x_{4}, \mathbf{u}_{4}\right) \\ \mathbf{h}_{5}\left(x_{5}\right) \end{bmatrix} \quad \text{with} \quad \mathbf{w} = \begin{bmatrix} x_{0} \\ \mathbf{u}_{0} \\ x_{1} \\ \mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \mathbf{u}_{2} \\ \mathbf{x}_{3} \\ \mathbf{u}_{3} \\ \mathbf{u}_{4} \\ \mathbf{u}_{4} \\ \mathbf{x}_{5} \end{bmatrix}$$

Constraints Jacobian - Bounds

$$\text{Bounds:} \quad \mathbf{h}\left(\mathbf{w}\right) = \left[\begin{array}{c} h_{0}\left(x_{0}, u_{0}\right) \\ h_{1}\left(x_{1}, u_{1}\right) \\ h_{2}\left(x_{2}, u_{2}\right) \\ h_{3}\left(x_{3}, u_{3}\right) \\ h_{4}\left(x_{4}, u_{4}\right) \\ h_{5}\left(x_{5}\right) \end{array}\right] \qquad \text{with} \quad \mathbf{w} = \left[\begin{array}{c} u_{0} \\ x_{1} \\ u_{1} \\ x_{2} \\ u_{2} \\ x_{3} \\ u_{3} \\ x_{4} \\ u_{4} \\ x_{5} \end{array}\right]$$

Then:

 \mathbf{x}_0

Constraints Jacobian - Bounds

$$\text{Bounds:} \quad \mathbf{h}\left(\mathbf{w}\right) = \begin{bmatrix} h_{0}\left(x_{0}, u_{0}\right) \\ h_{1}\left(x_{1}, u_{1}\right) \\ h_{2}\left(x_{2}, u_{2}\right) \\ h_{3}\left(x_{3}, u_{3}\right) \\ h_{4}\left(x_{4}, u_{4}\right) \\ h_{5}\left(x_{5}\right) \end{bmatrix} \qquad \text{with} \quad \mathbf{w} = \begin{bmatrix} u_{0} \\ x_{1} \\ u_{1} \\ x_{2} \\ u_{2} \\ x_{3} \\ u_{3} \\ x_{4} \\ u_{4} \\ x_{5} \end{bmatrix}$$

Then:

 \mathbf{x}_0

Observe the **banded** structure of the **Jacobian** $\nabla \mathbf{h}(\mathbf{w})^{\mathrm{T}}$. Note that this structure hinges on the ordering in \mathbf{w} and \mathbf{g} !!!

Constraints Jacobian sparsity pattern - Illustration

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} B \Delta \mathbf{w} + \nabla \Phi^{\top} \Delta \mathbf{w} \\ & \text{s.t.} & & \mathbf{\nabla} \mathbf{g}^{\top} \Delta \mathbf{w} + \mathbf{g} = \mathbf{0} \\ & & & \nabla \mathbf{h}^{\top} \Delta \mathbf{w} + \mathbf{h} \leq \mathbf{0} \end{aligned}$$

Separability of the Lagrange function

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \sum_{k=0}^{N} \mathcal{L}_k\left(\mathbf{w}_k, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)$$

where $\mathbf{w}_k = \{\mathbf{x}_k, \mathbf{u}_k\}$ for k = 0, ..., N - 1, and $\mathbf{w}_N \equiv \mathbf{x}_N$.

Separability of the Lagrange function

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \sum_{k=0}^{N} \mathcal{L}_k\left(\mathbf{w}_k, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)$$

where $\mathbf{w}_k = \{\mathbf{x}_k, \mathbf{u}_k\}$ for k = 0, ..., N - 1, and $\mathbf{w}_N \equiv \mathbf{x}_N$. Hence:

$$\frac{\partial^{2} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu})}{\partial \mathbf{w}_{i} \partial \mathbf{w}_{j}} = \sum_{k=0}^{N} \frac{\partial^{2} \mathcal{L}_{k}(\mathbf{w}_{k}, \boldsymbol{\lambda}, \boldsymbol{\mu})}{\partial \mathbf{w}_{i} \partial \mathbf{w}_{j}} = 0, \quad \forall i \neq j$$

Separability of the Lagrange function

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \sum_{k=0}^{N} \mathcal{L}_k\left(\mathbf{w}_k, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)$$

where $\mathbf{w}_k = \{\mathbf{x}_k, \mathbf{u}_k\}$ for k = 0, ..., N - 1, and $\mathbf{w}_N \equiv \mathbf{x}_N$. Hence:

$$\frac{\partial^{2} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu})}{\partial \mathbf{w}_{i} \partial \mathbf{w}_{j}} = \sum_{k=0}^{N} \frac{\partial^{2} \mathcal{L}_{k}(\mathbf{w}_{k}, \boldsymbol{\lambda}, \boldsymbol{\mu})}{\partial \mathbf{w}_{i} \partial \mathbf{w}_{j}} = 0, \quad \forall i \neq j$$

Hence the Hessian is **block diagonal**, i.e.

$$\nabla^2_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \left[\begin{array}{cccc} \nabla^2_{\mathbf{w}_0}\mathcal{L}_0\left(\mathbf{w}_0, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & 0 & 0 & 0 \\ 0 & \nabla^2_{\mathbf{w}_1}\mathcal{L}_1\left(\mathbf{w}_1, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \nabla^2_{\mathbf{w}_N}\mathcal{L}_N\left(\mathbf{w}_N, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \end{array} \right]$$

Separability of the Lagrange function

$$\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \sum_{k=0}^{N} \mathcal{L}_{k}\left(\mathbf{w}_{k}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)$$

where $\mathbf{w}_k = \{\mathbf{x}_k, \mathbf{u}_k\}$ for k = 0, ..., N-1, and $\mathbf{w}_N \equiv \mathbf{x}_N$. Hence:

$$\frac{\partial^{2} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu})}{\partial \mathbf{w}_{i} \partial \mathbf{w}_{j}} = \sum_{k=0}^{N} \frac{\partial^{2} \mathcal{L}_{k}(\mathbf{w}_{k}, \boldsymbol{\lambda}, \boldsymbol{\mu})}{\partial \mathbf{w}_{i} \partial \mathbf{w}_{j}} = 0, \quad \forall i \neq j$$

Hence the Hessian is **block diagonal**, i.e.

$$\nabla^2_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \left[\begin{array}{cccc} \nabla^2_{\mathbf{w}_0}\mathcal{L}_0\left(\mathbf{w}_0, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & 0 & 0 & 0 \\ 0 & \nabla^2_{\mathbf{w}_1}\mathcal{L}_1\left(\mathbf{w}_1, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \nabla^2_{\mathbf{w}_N}\mathcal{L}_N\left(\mathbf{w}_N, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \end{array} \right]$$

Careful: I assumed ϕ and \mathbf{h} are stage-wise

Sparsity pattern - Illustration

$$\label{eq:loss_equation} \underset{\Delta w}{\text{min}} \quad \frac{1}{2} \Delta w^\top {}_{}^{} \mathcal{B} \Delta w + \nabla \Phi^\top \Delta w$$

s.t.
$$\nabla \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \mathbf{g} = 0$$
$$\nabla \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \mathbf{h} \le 0$$

$$\mathbf{B} \equiv \nabla_{\mathbf{w}}^2 \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}\right)$$

