GPU Programming

(in Cuda)

Julian Gutierrez

NUCAR

Session 11

Outline

- Applications
 - Parallel Reduction
 - Prefix Sum (Scan)
 - Histogram
 - Convolution

- •A popular class of computation
- Goal: To master the concept of control divergence through reduction trees (how to be work efficient).

- Example
- Calculate Max Value from vector:

- Example
- Calculate Max Value from vector:
- A parallel reduction tree algorithm performs N-1 operations in log(N) steps

- A commonly used strategy for processing large input data sets
 - There is no required order of processing elements in a data set (associative and commutative)
 - Partition the data set into smaller chunks
 - Have each thread to process a chunk
 - Use a reduction tree to summarize the results from each chunk into the final answer
- Google and Hadoop MapReduce frameworks are examples of this pattern
- We will focus on the reduction tree step for now.

- Example: Handling privatization
 - Multiple threads write into an output location
 - Replicate the output location so that each thread has a private output location
 - Use a reduction tree to combine the values of private locations into the original output location

- Use: Summarize a set of input values into one value using a "reduction operation"
 - Max
 - Min
 - Sum
 - Product

- You need to initialize the result as an identity value for the reduction operation
 - Smallest possible value for max reduction
 - Largest possible value for min reduction
 - 0 for sum reduction
 - 1 for product reduction

- For N input values, the reduction tree performs:
 - (1/2)N + (1/4)N + (1/8)N + ... (1/N) = N-1 operations
 - In log(N) steps 1 000 000 input values take 20 steps
 - Assuming that we have enough execution resources
 - Average parallelism (N-1)/log(N)
 - For N = 1000000 average parallelism is 50000
 - However, peak resource requirement is 500 000!
- This is a work-efficient parallel algorithm
 - The amount of work done is comparable to sequential
 - · Many parallel algorithms are not work efficient

• An example

- An example
 - Each thread block takes 2*BlockDim input elements
 - Each threads loads 2 elements into shared memory

```
__ shared __ float partialSum[2*BLOCK _ SIZE];
unsigned int t = threadIdx.x;
Unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
```

```
for (unsigned int stride = 1;
    stride <= blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % stride == 0)
       partialSum[2*t]+= partialSum[2*t+stride];
}</pre>
```

• Why do we need syncthreads()?

- THREAD 0 IN EACH THREAD BLOCK WRITE THE SUM OF THE THREAD BLOCK IN PARTIALSUM[0] INTO A VECTOR INDEXED BY THE BLOCKIDX.X
- THERE CAN BE A LARGE NUMBER OF SUCH SUMS IF THE ORIGINAL VECTOR IS VERY LARGE
 - THE HOST CODE MAY ITERATE AND LAUNCH ANOTHER KERNEL
- IF THERE ARE ONLY A SMALL NUMBER OF SUMS, THE HOST CAN SIMPLY TRANSFER THE DATA BACK AND ADD THEM TOGETHER

Parallel Reduction: Interleaved Addressing

New Problem: Shared Memory Bank Conflicts

• A better reduction?

Parallel Reduction: Sequential Addressing

• There's a problem

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

- There's a problem
 - Idle threads!
 - Half of the threads are idle on first loop iteration!
 - This is wasteful....

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

• Halve the number of blocks, and replace single load:

```
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];
__syncthreads();
```

With two loads and first add of the reduction:

```
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

- Unrolling the last warp
 - As reduction proceeds, # "active" threads decreases
 - When $s \le 32$, we have only one warp left
 - Instructions are SIMD synchronous within a warp
 - That means when $s \le 32$:
 - We don't need to __syncthreads()
 - We don't need "if (tid < s)" because it doesn't save any work
 - Lets unroll the last 6 iterations of the inner loop

Note: This saves useless work in all warps, not just the last one!

• Without unrolling, all warps execute every iteration of the for loop and if

statement

```
__device__ void warpReduce(volatile int* sdata, int tid) {
    sdata[tid] += sdata[tid + 32];
    sdata[tid] += sdata[tid + 16];
    sdata[tid] += sdata[tid + 8];
    sdata[tid] += sdata[tid + 4];
    sdata[tid] += sdata[tid + 2];
    sdata[tid] += sdata[tid + 1];
}

MPORTANT:
For this to be correct,
    we must use the
    "volatile" keyword!
}
```

```
// later...

for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
        if (tid < s)
            sdata[tid] += sdata[tid + s];
            __syncthreads();
    }

if (tid < 32) warpReduce(sdata, tid);
```

```
template <unsigned int blockSize>
 _device__ void warpReduce(volatile int *sdata, unsigned int tid) {
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
                                                           Final Optimized Kernel
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
template <unsigned int blockSize>
 global void reduce6(int *g idata, int *g odata, unsigned int n) {
  extern __shared__ int sdata[];
  unsigned int tid = threadldx.x:
  unsigned int i = blockldx.x*(blockSize*2) + tid;
  unsigned int gridSize = blockSize*2*gridDim.x;
  sdata[tid] = 0;
  while (i < n) { sdata[tid] += g idata[i] + g idata[i+blockSize]; i += gridSize; }
  _syncthreads();
  if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
  if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
  if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }
  if (tid < 32) warpReduce(sdata, tid);
  if (tid == 0) g odata[blockldx.x] = sdata[0];
                                                                                        35
```

Definition

- Prefix sum, cumulative sum, inclusive scan, or simply scan of a sequence of numbers x0, x1, x2, ... Gives a second sequence of numbers y0, y1, y2, ..., the sums of prefixes (running totals) of the input sequence.
- Any binary operation (not just the addition operation).

Example

- If (+) is addition, then scan on the set: [3 1 7 0 4 1 6 3]
 - Returns the set: [0 3 4 11 11 15 16 22]

Note: Exclusive scan: last input element is not included in the result

- A Naïve inclusive parallel Scan
 - Assign one thread to calculate each y element
 - Have every thread add up all x elements needed for the y element

$$y0 = x0$$
$$y1 = x0 + x1$$
$$y2 = x0 + x1 + x2$$

- A Naïve inclusive parallel Scan
 - Assign one thread to calculate each y element
 - Have every thread add up all x elements needed for the y element

$$y0 = x0$$
$$y1 = x0 + x1$$
$$y2 = x0 + x1 + x2$$

• Note: Parallel programming is easy as long as you do not care about performance

- Compared to naïve version, a slight better version – Hillis Steele Scan.
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared memory arrays)

- Compared to naïve version, a slight better version – Hillis Steele Scan.
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared memory arrays)
- This scan algorithm is not that work efficient
 - Sequential scan algorithm does n-1 adds
 - How many does this one do?
 - What happens if the # of elements is 10^6?

- Even better one: Blelloch Scan.
- Reduces in log(n), downsweeps in log(n).
- Total steps: 2 log(n)
- This scan algorithm is work efficient

- Useful in implementation of several parallel algorithms:
 - Radix sort
 - Quicksort
 - String comparison
 - Lexical analysis
 - Stream compaction
 - Polynomial evaluation
 - Solving recurrences
 - Tree operations
 - histograms

- Examples
 - Assigning camp slots
 - Assigning farmer market space
 - Allocating memory to parallel threads
 - Allocating memory buffer for communication channels

- A histogram is a graphical representation of the distribution of numerical data.
- Bar Graph

- A histogram is a graphical representation of the distribution of numerical data.
- Bar Graph
- Serial Algorithm

```
For (i=0; I < BIN_COUNT; i++)
    result[i]=0;

For (i=0; I < measurements.size(); i++)
    result[computeBin(measurements[i])]++;</pre>
```

```
Travel time, minutes
```

Naïve implementation:

```
__global__ void naive_histo(int *d_bins, const int *d_in, const int BIN_COUNT)
{
    int myId = threadIdx.x + blockDim.x * blockIdx.x;
    int myItem = d_in[myId];
    int myBin = myItem % BIN_COUNT;
    d_bins[myBin]++;
}
```

Naïve implementation:

```
__global__ void naive_histo(int *d_bins, const int *d_in, const int BIN_COUNT)
   int myId = threadIdx.x + blockDim.x * blockIdx.x;
   int myItem = d_in[myId];
   int myBin = myItem % BIN_COUNT;
                                         WHY THE ODVIOUS METHOD DOESN'T WORK
   d_bins[myBin]++;
                                                                            BIN
                                                                             THREAD
                                             THREAD
```

- Naïve implementation using atomic operations (Method 1):
 - This will avoid RAW hazards.

```
__global__ void simple_histo(int *d_bins, const int *c
{
   int myId = threadIdx.x + blockDim.x * blockIdx.x;
   int myItem = d_in[myId];
   int myBin = myItem % BIN_COUNT;
   atomicAdd(&(d_bins[myBin]), 1);
}
```

- Naïve implementation using atomic operations (Method 1):
 - This will avoid RAW hazards.

```
__global__ void simple_histo(int *d_bins, const int *c
{
    int myId = threadIdx.x + blockDim.x * blockIdx.x;
    int myItem = d_in[myId];
    int myBin = myItem % BIN_COUNT;
    atomicAdd(&(d_bins[myBin]), 1);
}
```


• Redefining the method. Local histogram + reduction (Method 2)

• Redefining the method. Local histogram + reduction (Method 2)

• Redefining the method. Sort then reduce by key (Method 3)

Histogram

- Final thoughts on histogram:
 - Using Atomic operations
 - · Using per-thread histograms, and then reduce
 - Sort, then reduce by key

Question

- 256 threads, 8 bins. How many atomic adds are needed?
 - · Atomic Technique.
 - Processing 16 elements per thread with local histogram, and then atomics.

- Applications
 - A popular array operation that is used in various forms in signal processing, digital recording, image processing, video processing, and computer vision.
 - Convolution is often performed as a filter that transforms signals and pixels into more desirable values
 - Some filters smooth out the signal values so that one can see the big-picture trend
 - Others like Gaussian filters can be used to sharpen boundaries and edges of objects in images

- An array operation where each output data element is a weighted sum of a collection of neighboring input elements
- The weights used in the weighted sum calculation are defined by an input mask array, commonly referred to as the convolution kernel
 - We will refer to these mask arrays as convolution masks to avoid confusion.
 - The same convolution mask is typically used for all elements of the array.

- 1D Convolution example
 - Commonly used for audio processing
 - · Mask size is usually an odd number of elements for symmetry

Definition

• For a causal discrete-time FIR filter of order N, each value of the output sequence is a weighted sum of the most recent input values:

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_N x[n-N]$$
$$= \sum_{i=0}^{N} b_i \cdot x[n-i],$$

• Where:

- X[n] is the input signal
- Y[n] is the output signal,
- N is the filter order, an Nth-order filter has (N+1) terms on the right-hand side
- Bi is the value of the impulse response at the ith instance for 0<= I <= N of an Nth-order filter. If the filter is a direct form FIR filter then bi is also a coefficient of the filter.

- Calculation of output elements near the boundaries (beginning and end) of the input array need to deal with "ghost" elements
 - Different policies (0, replicates of boundary values, etc.)

• This kernel forces all elements outside the vector

```
range to 0
                  __global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
                   int Mask_Width, int Width) {
                   int i = blockIdx.x*blockDim.x + threadIdx.x:
                   float Pvalue = 0;
                   int N_start_point = i - (Mask_Width/2);
                   for (int j = 0; j < Mask_Width; j++) {
                    if (N_start_point + j >= 0 && N_start_point + j < Width) {
                     Pvalue += N[N_start_point + j]*M[j];
                   P[i] = Pvalue;
```

• 2D convolution

• 2D convolution – ghost cells

• Tiled Convolution for 1D

• Loading the left halo


```
int n = Mask_Width/2;
int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;
if (threadIdx.x >= blockDim.x - n) {
   N_ds[threadIdx.x - (blockDim.x - n)] =
   (halo_index_left < 0) ? 0 : N[halo_index_left];
}</pre>
```

• Loading the internals

 $N_{ds}[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];$

• Loading the right halo


```
int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if (threadIdx.x < n) {
   N_ds[n + blockDim.x + threadIdx.x] =
      (halo_index_right >= Width) ? 0 : N[halo_index_right];
}
```

```
__global__ void convolution_1D_basic_kernel(float *N, const float __restrict__ *M,
         float *P, int Mask_Width, int Width) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 __shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];
 int n = Mask_Width/2;
 int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;
 if (threadIdx.x >= blockDim.x - n) {
  N_ds[threadIdx.x - (blockDim.x - n)] =
  (halo_index_left < 0) ? 0 : N[halo_index_left];
 N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];
int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if (threadIdx.x < n) {
 N_ds[n + blockDim.x + threadIdx.x] =
  (halo_index_right >= Width) ? 0 : N[halo_index_right];
__syncthreads();
float Pvalue = 0;
for(int j = 0; j < Mask_Width; j++) {
 Pvalue += N_ds[threadIdx.x + j]*M[j];
P[i] = Pvalue;
```

Shared memory data reuse

Do we want to use Shared memory?

Shared memory data reuse

Element 2 is used by thread 4 (1X)

Element 3 is used by threads 4, 5 (2X)

Element 4 is used by threads 4, 5, 6 (3X)

Element 5 is used by threads 4, 5, 6, 7 (4X)

Element 6 is used by threads 4, 5, 6, 7 (4X)

Element 7 is used by threads 5, 6, 7 (3X)

Element 8 is used by threads 6, 7 (2X)

Element 9 is used by thread 7 (1X)

Do we want to use Shared memory?