Devoir

Processus stochastique

Durée: 1H30.

Documents et calculatrices interdits. Les réponses doivent être justifiées. La qualité de la rédaction sera prise en compte.

Exercice 1

1- Soit Z une variable aléatoire de loi exponentielle de paramètre 1. On pose:

$$Y = \left\{ \begin{array}{ll} 1 & \text{si } 1 \leq Z \leq 2 \\ 0 & \text{sinon} \end{array} \right..$$

Calculer E(Z/Y) et E(Y/Z).

2- Si A et B sont deux évènements, calculer $E(\mathbf{1}_A/\mathbf{1}_B)$.

3- Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On pose $Y_n=\sum_{k=1}^n X_k, n\geq 1$.

3-1- On suppose que les variables X_n sont intégrables. Montrer que $\left(Y_n - \sum_{k=1}^{n} E(X_k)\right)_{n \ge 1}$ est une martingale.

3-2- On suppose que les variables X_n sont centrées et de carré intégrable. Montrer que $\left(Y_n^2 - \sum_{i=1}^n E(X_k^2)\right)$ est une martingale.

Exercice 2

Soient $(Y_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et même loi de Bernoulli de paramètre $p\in]0,1[$ et $X_0=0,\,X_n=Y_1+\ldots+Y_n$

1- Montrer que $\lim_{n\to+\infty} X_n = +\infty$ P.p.s.

Ind: On pourra utiliser la loi forte des grands nombres.

2- Pour tout $y \in \mathbb{N}$, on pose $T_y = \inf\{n \ge 0 \mid X_n = y\}$.

2-a- Vérifier que T_y est un temps d'arrêt par rapport à la filtration $(\mathcal{F}_n)_{n\geq 1}$, $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$ $n\geq 1$ et $\mathcal{F}_0=\{\emptyset,\Omega\}$.

2-b- Montrer que $P(T_y < +\infty) = 1$.

3- Vérifier que $M_n = X_n - np$ est une martingale par rapport à la filtration $(\mathcal{F}_n)_{n \geq 0}$.

4-En utilisant la martingale arrêtée $(M_{n \wedge T_y})_{n \geq 0}$, montrer que $E(T_y) = \frac{y}{p}$.

Exercice 3

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ un espace de probabilité filtré sur lequel on considère une martingale réelle $(M_n)_{n\geq 0}$ telle que pour tout $n\geq 0$, $|M_n|\leq K$, où K est constante strictement positive. On pose:

$$X_n = \sum_{k=1}^n \frac{1}{k} (M_k - M_{k-1}), \ n \ge 1.$$

1- Montrer que $(X_n)_{n\geq 1}$ est une martingale.

2- Vérifier que $(X_n)_{n\geq 1}$ converge presque surement et dans $\mathbf{L}^2(P)$.