

MĚŘENÍ NA ELEKTROCHEMICKÉM AKUMULÁTORU

Jan Ezr, Robin Chocholoušek

Revize 2

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM <u>TUL</u>

Obsah

1 Zadání	3
1.1 Identifikace článků a jeho klíčových parametrů	3
1.2 Praktický příklad 1	
1.3 Praktický příklad 2	
1.4 Praktický příklad 3	5
1.5 Praktický příklad 4	5
1.6 Seznam použitých přístrojů a zařízení	5
2 Měření a zpracování dat	
2.1 Identifikace článků a jeho klíčových parametrů	6
2.2 Vliv absence čtyřvodičové metody na měření	
2.2.1 Nabíjení	
2.2.2 Vybíjení	
2.3 Přesnost měření a kalibrace přístroje	8
2.3.1 Nabíjení	8
2.3.2 Vybíjení	8
2.4 Ověření měrné hustoty energie (VED, GED)	
2.5 Měření vnitřního odporu metodou ACIR a DCIR	
3 Závěr	
3.1 Identifikace článků a jeho klíčových parametrů	
3.2 Vliv absence čtyřvodičové metody na měření	
3.3 Přesnost měření a kalibrace přístroje	
3.4 Ověření měrné hustoty energie (VED, GED)	
3.5 Měření vnitřního odporu metodou ACIR a DCIR	
Seznam literatury	
Seznam tabulek	_
Historie revizí	1/

1 Zadání

1.1 Identifikace článků a jeho klíčových parametrů

- Určete model vzorku článku z popisu na jeho obalu
- Pokuste se vyhledat dokumentaci k vašemu vzorku článku
- V datasheetu najděte napěťové limity pro nabíjení a vybíjení
- V datasheetu najděte předpis testu nominální kapacity
- V MSDS zkuste najít složení aktivního materiálu elektrod
- V UN38.3 reportu ověřte výsledek testů bezpečnosti
- Vyhodnocení:
- Jaké informace jsou obvykle uvedeny na pouzdře článku?
- Které bezpečností testy jsou předepsány dle UN38.3?

1.2 Praktický příklad 1

- Připojte tester EBC-A20 k softwarové aplikaci ZKETECH
- Připojte tester EBC-A20 k univerzálnímu 4W držáku cylindrických článků
- Změřte a zaznamenejte hodnoty napětí vždy pro 2W a 4W metodu
- Vyhodnocení:
- Zhodnoťte chybu měření při použití 2W metody a její důsledky

Obrázek 1: Schéma zapojení 2W metody

Obrázek 2: Schéma zapojení 4W metody

1.3 Praktický příklad 2

- Do zapojení z předchozí úlohy připojte "přesný" ampérmetr do Load obvodu
- Změřte a zaznamenejte hodnoty proudu z aplikace a ampérmetru
- Vyhodnocení:
- Zhodnoťte přesnost měření přístroje EBC-A20 a jeho důsledky

Obrázek 3: Schéma zapojení 4W metody s ampérmetrem

1.4 Praktický příklad 3

- Změřte rozměry a hmotnost vašeho vzorku cylindrického článku
- Naprogramujte test nominální kapacity / energie článku v aplikaci ZKETECH
- Hodnoty nominální kapacity / energie vyčtete ze složky "Datasety vzorků" na elearningu (obvykle 5. nebo 6. řádek CC Discharge)
- Vyhodnocení:
- Určete VED [Wh/l] a GED [Wh/kg] vašeho vzorku cylindrického článku
- Uveďte v protokolu předpis (tabulkou) testu nominální kapacity vzorku

1.5 Praktický příklad 4

- Změřte ACIR 1 kHz vzorku cylindrického článku předloženým ACIR metrem
- Naprogramujte test DCIR10s v aplikaci ZKETECH
- Hodnoty naměřené DCIR10s vyčtete ze složky "Datasety vzorků" na elearningu (řádek DCIR_1 Discharge)
- Vyhodnocení:
- Určete hodnoty ACIR a DCIR10s
- Porovnejte zjištěné hodnoty s datasheetem

1.6 Seznam použitých přístrojů a zařízení

Tabulka 1: Seznam použitých přístrojů

Přístroj	Model
Elektrochemický článek	N21700CG-50 BAK A01
Ampérmetr	UNI-T UT71B
Posuvné měřítko	Carbon fiber composite Digital caliper
Váha	Kern EMB1200-1
Battery tester	EBC-A20
BATTERY FIXTURE	BF-2A
ACIR metr	RC3563

2 Měření a zpracování dat

2.1 Identifikace článků a jeho klíčových parametrů

- Formát: Cylindrický 21700
- Chemické složení: Lithium-iontová technologie katoda typu NCM (nikl-kobalt-manganmangan), anoda z grafitu
- Jmenovitá kapacita: 5000 mAh
- Jmenovité napětí: 3,6 V
- Rozsah pracovního napětí: 2,5 V až 4,2 V

Testovací podmínky a standardy

Pro ověření elektrických parametrů se využívá následující standardizovaný nabíjecí a vybíjecí režim:

- **Nabíjení:** Konstantní proud 5,0 A (1C), přepnutí na konstantní napětí 4,2 V s odpojením při poklesu proudu pod 100 mA
- **Vybíjení**: Konstantní proud 15,0 A (3C) do napětí 2,5 V
- Teplota prostředí během testu: 25 ±2 °C
- Doporučená doba odpočinku mezi cykly: minimálně 10 minut

Konstrukční a materiálové vlastnosti

- Anodový materiál: Uhlíkový grafit
- Katodový materiál: Sloučenina na bázi oxidu niklu, kobaltu a manganu (NCM)
- Maximální trvalý vybíjecí proud: 10 A
- Doporučený nabíjecí proud: 2,5 A
- Maximální nabíjecí proud (rychlé nabíjení): 5 A

Soulad s bezpečnostními normami

Článek je navržen pro splnění požadavků bezpečnostních zkoušek dle normy **UN38.3** (potvrzení musí být doloženo odpovídající certifikací). Mezi typické testy této normy patří:

- Vibrace (Vibration)
- Mechanické poškození (Drop test, Crush test)
- Přetížení a nucené vybíjení (Overcharge, Forced Discharge)
- Tepelná zátěž (130°C hot oven)
- Simulace výškového letu (Altitude Simulation)

• Krátkodobé zkraty (External Short Circuit)

Informace typicky uváděné na označení článku

- Kód a typové označení článku
- Výrobce a výrobní šarže
- Rozměry a elektrické parametry
- Bezpečnostní symboly a označení
- Sériové číslo nebo QR kód pro sledovatelnost

2.2 Vliv absence čtyřvodičové metody na měření

Dvouvodičová metoda měření zahrnuje do výsledku nejen odpor měřeného prvku, ale i odpor přívodních vodičů a kontaktů. To vede k významné chybě, zejména při měření nízkých odporů v řádu miliohmů. Pro přesná měření nízkých odporů je čtyřvodičová metoda jednoznačně doporučovaná, protože eliminuje vliv vodičů a kontaktů.

2.2.1 Nabíjení

Tabulka 2: Napětí při nabíjení

I[A](C-CV)	0	0.1	0.5	1	5
U2w[V]	3.536	3.544	3.548	3.638	3.987
U4w[V]	3.536	3.536	3.543	3.579	3.755

2.2.2 Vybíjení

Tabulka 3: Napětí při vybíjení

I[A](D-CC)	0	0.1	0.5	1	5
U2w[V]	3.514	3.507	3.491	3.463	3.242
U4w[V]	3.514	3.514	3.507	3.499	3.253

Pozn.: Hodnota napětí měřeného čtyřvodičovou metodou, při proudu 5A není správná, z důvodu nepřepnutí přepínače na měřícím přístroji.

2.3 Přesnost měření a kalibrace přístroje

2.3.1 Nabíjení

Tabulka 4: Porovnání metod měření při nabíjení

I[A](C-CV)	0	0.1	0.5	1	5
I[A](aplikace)	0	0.1	0.5	1	5
Chyba zketetech [A]	0	±0.0105	±0.0125	±0.015	±0.035
I[A](ampérmetr)	0	0.106	0.507	1.007	5.015
Chyba amp [A]	0	±0.030742	±0.033549	±0.037049	±0.065105

2.3.2 Vybíjení

Tabulka 5: Porovnání metod měření při vybíjení

I[A](D-CC)	0	0.1	0.5	1	5
I[A](aplikace)	0	0.1	0.5	1	5
Chyba zketetech [A]	0	±0.0105	±0.0125	±0.015	±0.035
I[A](ampérmetr)	0	0.078	0.48	0.98	4.99
Chyba amp [A]	0	±0.030546	±0.03336	±0.03686	±0.06493

2.4 Ověření měrné hustoty energie (VED, GED)

Tabulka 6: Parametry elektrochemického článku

Veličina	Hodnota
Výška [mm]	70.5
Průměr [mm]	21.2
Váha [g]	68.2
$E_{nom}[Wh]$	17.55
VED [Wh/l]	705
GED [Wh/kg]	257

$$VED = \frac{E_{nom}}{v} \left[\frac{Wh}{l} \right] GED = \frac{E_{nom}}{\dot{m}} \left[\frac{Wh}{kg} \right]$$

2.5 Měření vnitřního odporu metodou ACIR a DCIR

Tabulka 7: OCV a ACIR 1kHz

Veličina	Hodnota
OCV [V]	3.54
ACIR 1kHz [mΩ]	12.89
Datasheet internal	≤30
resistence [m Ω]	

Tabulka 8: DCIR_{10s}

Veličina	Hodnota
$U_0[V]$	3.51
U _{10s} [V]	3.342
I _{load} [A]	2.5
$DCIR_{10s}[m\Omega]$	67.2
Dataset DCIR[$m\Omega$]	30.1625

$$DCIR_{10} = \frac{U_0 - U_{10s}}{I_{load}} [\Omega]$$

Pozn.: Test DCIR $_{108}$ nevyšel správně z důvodu nepřepnutí přepínače na měřícím přístroji ze **dvouvodičového** zapojení na **čtyřvodičové** zapojení. Hodnota napětí U_{108} odpovídá dvouvodičovému zapojení.

3 Závěr

3.1 Identifikace článků a jeho klíčových parametrů

Na základě údajů z obalu a výrobní dokumentace byl testovaný článek identifikován jako N21700CG 50 od firmy Zhengzhou BAK Battery. Z datasheetu byly získány klíčové parametry – maximální napětí, nominální napětí, maximální nabíjecí a vybíjecí proud a metodika měření kapacity. V souladu s bezpečnostní dokumentací UN38.3 článek úspěšně prošel požadovanými testy.

3.2 Vliv absence čtyřvodičové metody na měření

Byl porovnán vliv 2W a 4W zapojení při měření napětí. 4W zapojení poskytlo přesnější výsledky díky eliminaci úbytku napětí na vodičích, zejména při vyšší zátěži. 2W zapojení vykazovalo větší odchylky.

Hodnota napětí měřeného **čtyřvodičovou** metodou, při proudu 5A nebyla správná, z důvodu nepřepnutí přepínače ze **dvouvodičového** zapojení na **čtyřvodičové** zapojení.

3.3 Přesnost měření a kalibrace přístroje

Přístroj EBC-A20 byl vyhodnocen jako dostatečně přesný pro běžné aplikace. Při nízkých proudech byly odchylky vyšší, ale při vyšších proudech byly rozdíly zanedbatelné.

3.4 Ověření měrné hustoty energie (VED, GED)

Z geometrických a hmotnostních dat článku byla spočítána objemová a hmotnostní energetická hustota.

3.5 Měření vnitřního odporu metodou ACIR a DCIR

Pomocí ACIR metru byla změřena impedance při 1 kHz: 12.89 m Ω . Z desetisekundového vybíjení byl následně vypočten DCIR10s = 67.2 m Ω .

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM <u>TUL</u>

Bohužel test DCIR_{10s} nevyšel správně z důvodu nepřepnutí přepínače ze **dvouvodičového** zapojení na **čtyřvodičové** zapojení.

Seznam literatury

Specification For Lithium ion Rechargeable Cell. Online. Zhengzhou BAK Battery Co., 2021. Dostupné z: https://elearning.tul.cz/pluginfile.php/1125895/mod_folder/content/o/BAK%20N21700CG– 50/BAK%20N21700CG – datasheet.pdf?forcedownload=1. [cit. 2025-04-16].

LITHIUM ION BATTERY SAFETY TESTING REPORT. Online. CVC, 2021. Dostupné z: https://elearning.tul.cz/pluginfile.php/1125895/mod_folder/content/0/BAK%20N21700CG-50_UN38.3.pdf?forcedownload=1. [cit. 2025-04-16].

LABORATOŘ BATERIOVÝCH SYSTÉMŮ A EMOBILITY FM <u>TUL</u>

Seznam tabulek

Tabulka 1: Seznam použitých přístrojů	5
Tabulka 2: Napětí při nabíjení	7
Tabulka 3: Napětí při vybíjení	7
Tabulka 4: Porovnání metod měření při nabíjení	8
Tabulka 5: Porovnání metod měření při vybíjení	8
Tabulka 6: Parametry elektrochemického článku	8
Tabulka 7: OCV a ACIR 1kHz	9
Tabulka 8: DCIR _{10s}	9

Historie revizí

Tabulka 1: Historie revizí dokumentu

Revize	Datum	Popis změn	Autor
1	16.4.2025	Úvodní vydání	Jan Ezr
2	23.4.2025	Oprava	Jan Ezr