

54F/74F245 Octal Bidirectional Transceiver with TRI-STATE® Outputs

General Description

The 'F245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA (20 mA Mil) at the A ports and 64 mA (48 mA Mil) at the B ports. The Transmit/Receive (T/ $\overline{\rm R}$) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports; Receive (active LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a High Z condition.

Features

- Non-inverting buffers
- Bidirectional data path
- A outputs sink 24 mA (20 mA Mil)
- B outputs sink 64 mA (48 mA Mil)
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description		
74F245PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line		
	54F245DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line		
74F245SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC		
74F245SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ		
74F245MSA (Note 1)		MSA20	20-Lead Molded Shrink Small Outline, EIAJ Type II		
	54F245FM (Note 2)	W20A	20-Lead Cerpack		
	54F245LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Note 1: Devices also available in 13" reel. Use suffix = SCX, SJX and MSAX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

TL/F/9503-4

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Connection Diagrams

Pin Assignment for DIP, SOIC, SSOP and Flatpak

TL/F/9503-1

TL/F/9503-2

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
ŌĒ	Output Enable Input (Active LOW)	1.0/2.0	20 μA/-1.2 mA			
T/R	Transmit/Receive Input	1.0/2.0	20 μA/ – 1.2 mA			
A ₀ -A ₇	Side A Inputs or	3.5/1.083	70 μA/ – 0.65 mA			
	TRI-STATE Outputs	150/40(38.3)	-3 mA/24 mA (20 mA)			
B ₀ -B ₇	Side B Inputs or	3.5/1.083	70 μA/ - 0.65 mA			
	TRI-STATE Outputs	600/106.6(80)	-12 mA/64 mA (48 mA)			

Truth Table

Inp	outs	Output				
ŌĒ	T/R	Catput				
L	L	Bus B Data to Bus A				
L	Н	Bus A Data to Bus B				
Н	X	High Z State				

 $\begin{array}{ll} H = \mbox{HIGH Voltage Level} \\ L = \mbox{LOW Voltage Level} \\ X = \mbox{Immaterial} \end{array}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Storage Temperature} & -65^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \text{Ambient Temperature under Bias} & -55^{\circ}\text{C to} + 125^{\circ}\text{C} \\ \text{Junction Temperature under Bias} & -55^{\circ}\text{C to} + 175^{\circ}\text{C} \\ \text{Plastic} & -55^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5 V to +7.0 VInput Voltage (Note 2) -0.5 V to +7.0 V

Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 Current Applied to Output

in LOW State (Max) twice the rated I $_{\rm OL}$ (mA) ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V _{CC}	Conditions	
Syllibol			Min	Тур	Max	Oilles	VCC	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode \	/oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH 54F 10% V _{CC} Voltage 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}		2.4 2.0 2.4 2.0 2.7			V Min		$\begin{split} I_{OH} &= -3 \text{ mA } (A_n) \\ I_{OH} &= -12 \text{ mA } (B_n) \\ I_{OH} &= -3 \text{ mA } (A_n) \\ I_{OH} &= -15 \text{ mA } (B_n) \\ I_{OH} &= -3 \text{ mA } (A_n) \end{split}$	
V _{OL}	Output LOW 54F 10% V _{CC} Voltage 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC}				0.5 0.55 0.5 0.55	V Min		$I_{OL} = 20 \text{ mA } (A_n)$ $I_{OL} = 48 \text{ mA } (B_n)$ $I_{OL} = 24 \text{ mA } (A_n)$ $I_{OL} = 64 \text{ mA } (B_n)$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$	
I _{BVIT}	Input HIGH Current Breakdown (I/O)	54F 74F			1.0 0.5	mA	Max	$V_{IN} = 5.5 \text{ V (A}_n, B_n)$	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n)$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V (T/\overline{R}, \overline{OE})$	
I _{IH} + I _{OZH}	Output Leakage Current				70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$	
I _{IL} + I _{OZL}	Output Leakage Cur			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$		

DC Electrical Characteristics (Continued)

Symbol	Parameter	54F/74F			Units	V _{CC}	Conditions	
	i didilictei	Min	Тур	Max	Omis	•66	25	
los	Output Short-Circuit Current	-60 -100		−150 −225	mA	Max	$V_{OUT} = 0V (A_n)$ $V_{OUT} = 0V (B_n)$	
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	$V_{OUT} = 5.25V(A_n, B_n)$	
Icch	Power Supply Current		70	90	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current		95	120	mA	Max	$V_O = LOW$	
I _{CCZ}	Power Supply Current		85	110	mA	Max	V _O = HIGH Z	

AC Electrical Characteristics

					54F T _A , V _{CC} = Mil C _L = 50 pF		$74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units
Symbol	Parameter								
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay A _n to B _n or B _n to A _n	2.5 2.5	4.2 4.2	6.0 6.0	2.0 2.0	7.5 7.5	2.0 2.0	7.0 7.0	ns
t _{PZH}	Output Enable Time	3.0 3.5	5.3 6.0	7.0 8.0	2.5 3.0	9.0 10.0	2.5 3.0	8.0 9.0	ns
t _{PHZ}	Output Disable Time	2.0 2.0	5.0 5.0	6.5 6.5	2.0 2.0	9.0 10.0	2.0 2.0	7.5 7.5	113

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

20-Lead Molded Shrink Small Outline Package, EIAJ, Type II (MSA) NS Package Number MSA20

20-Lead Molded (0.300" Wide) Dual-In-Line Package (P) NS Package Number N20A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9999 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.