

1

The Microbial World and You

MasteringMICROBIOLOGY™

Visualize microbiology and check your understanding with a pre-test at www.masteringmicrobiology.com.

The overall theme of this textbook is the relationship between microbes (very small organisms that usually require a microscope to be seen) and our lives. This relationship involves not only the familiar harmful effects of certain microorganisms, such as disease and food spoilage, but also their many beneficial effects. In this chapter we introduce you to some of the many ways microbes affect our lives. Microbes have been fruitful subjects of study for many years. We begin by introducing you to how organisms are named and classified, followed by a short history of microbiology that reveals how much we have learned in just a few hundred years. We then discuss the incredible diversity of microorganisms and their ecological importance, noting how they maintain balance in the environment by recycling chemical elements such as carbon and nitrogen among the soil, organisms, and the atmosphere. We also examine how microbes are used in commercial and industrial applications to produce foods, chemicals, and drugs (such as antibiotics); and to treat sewage, control pests, and clean up pollutants. We will discuss microbes as the cause of such diseases as avian (bird) flu, West Nile encephalitis, mad cow disease, diarrhea, hemorrhagic fever, and AIDS. We will also examine the growing public health problem of antibiotic-resistant bacteria. *Staphylococcus aureus* bacteria on human nasal epithelial cells are shown in the photograph. These bacteria live harmlessly on skin or inside the nose. Misuse of antibiotics allows the survival of bacteria with antibiotic-resistant genes such as methicillin-resistant *S. aureus* (MRSA). As illustrated in the Clinical Case, an infection caused by these bacteria is resistant to antibiotic treatment.

Microbes in Our Lives

LEARNING OBJECTIVE

1-1 List several ways in which microbes affect our lives.

For many people, the words *germ* and *microbe* bring to mind a group of tiny creatures that do not quite fit into any of the categories in that old question, “Is it animal, vegetable, or mineral?” **Microbes**, also called **microorganisms**, are minute living things that individually are usually too small to be seen with the unaided eye. The group includes bacteria (Chapter 11), fungi (yeasts and molds), protozoa, and microscopic algae (Chapter 12). It also includes viruses, those noncellular entities sometimes regarded as straddling the border between life and nonlife (Chapter 13). You will be introduced to each of these groups of microbes shortly.

We tend to associate these small organisms only with major diseases such as AIDS, uncomfortable infections, or such common inconveniences as spoiled food. However, the majority of microorganisms actually help maintain the balance of living organisms and chemicals in our environment. Marine and freshwater microorganisms form the basis of the food chain in oceans, lakes, and rivers. Soil microbes help break down wastes and incorporate nitrogen gas from the air into organic compounds, thereby recycling chemical elements between the soil, water, life, and air. Certain microbes play important roles in *photosynthesis*, a food- and oxygen-generating process that is critical to life on Earth. Humans and many other animals depend on the microbes in their intestines for digestion and the synthesis of some vitamins that their bodies require, including some B vitamins for metabolism and vitamin K for blood clotting.

Microorganisms also have many commercial applications. They are used in the synthesis of such chemical products as

Clinical Case: A Simple Spider Bite?

Andrea is a normally healthy 22-year-old college student who lives at home with her mother and younger sister, a high school gymnast. She is trying to work on a paper for her psychology class but is having a hard time because a red, swollen sore on her right wrist is making typing difficult. “Why won’t this spider bite heal?” she wonders. “It’s been there for days!” She makes an appointment with her doctor so she can show him the painful lesion. Although Andrea does not have a fever, she does have an elevated white blood cell count that indicates a bacterial infection. Andrea’s doctor suspects that this isn’t a spider bite at all, but a staph infection. He prescribes a β -lactam antibiotic, cephalosporin. Learn more about the development of Andrea’s illness on the following pages.

What is staph? Read on to find out.

2 17 19 20 21

vitamins, organic acids, enzymes, alcohols, and many drugs. For example, microbes are used to produce acetone and butanol, and the vitamins B₂ (riboflavin) and B₁₂ (cobalamin) are made biochemically. The process by which microbes produce acetone and butanol was discovered in 1914 by Chaim Weizmann, a Russian-born chemist working in England. With the outbreak of World War I in August of that year, the production of acetone became very important for making cordite (a smokeless form of gunpowder used in munitions). Weizmann’s discovery played a significant role in determining the outcome of the war.

The food industry also uses microbes in producing, for example, vinegar, sauerkraut, pickles, soy sauce, cheese, yogurt, bread, and alcoholic beverages. In addition, enzymes from microbes can now be manipulated to cause the microbes to produce substances they normally do not synthesize, including cellulose, digestive aids, and drain cleaner, plus important therapeutic substances such as insulin. Microbial enzymes may even have helped produce your favorite pair of jeans (see the box on page 3).

Though only a minority of microorganisms are **pathogenic** (disease-producing), practical knowledge of microbes is necessary for medicine and the related health sciences. For example, hospital workers must be able to protect patients from common microbes that are normally harmless but pose a threat to the sick and injured.

Today we understand that microorganisms are found almost everywhere. Yet not long ago, before the invention of the microscope, microbes were unknown to scientists. Thousands of people died in devastating epidemics, the causes of which were not understood. Entire families died because vaccinations and antibiotics were not available to fight infections.

We can get an idea of how our current concepts of microbiology developed by looking at a few historic milestones in microbiology that have changed our lives. First, however, we will look at the major groups of microbes and how they are named and classified.

CHECK YOUR UNDERSTANDING

- ✓ Describe some of the destructive and beneficial actions of microbes. 1-1*

Naming and Classifying Microorganisms

LEARNING OBJECTIVES

- 1-2 Recognize the system of scientific nomenclature that uses two names: a genus and a specific epithet.
1-3 Differentiate the major characteristics of each group of microorganisms.
1-4 List the three domains.

* The numbers following Check Your Understanding questions refer to the corresponding Learning Objectives.

APPLICATIONS OF MICROBIOLOGY

3

Designer Jeans: Made by Microbes?

Denim blue jeans have become increasingly popular ever since Levi Strauss and Jacob Davis first made them for California gold miners in 1873. Now, companies that manufacture blue jeans are turning to microbiology to develop environmentally sound production methods that minimize toxic wastes and the associated costs.

Stone Washing?

A softer denim, called "stone-washed," was introduced in the 1980s. Enzymes, called cellulases, from *Trichoderma* fungus are used to digest some of the cellulose in the cotton, thereby softening it and giving the stone-washed appearance. Unlike many chemical reactions, enzymes usually operate at safe temperatures and pH. Moreover, enzymes are proteins, so they are readily degraded for removal from wastewater.

Fabric

Cotton production requires large tracts of land, pesticides, and fertilizer, and the crop yield depends on the weather. However, bacteria can produce both cotton and polyester with less environmental impact. *Gluconacetobacter xylinus* bacteria make cellulose by attaching glucose units to simple chains in the outer membrane of the bacterial cell wall. The cellulose microfibrils are extruded through pores in the outer

membrane, and bundles of microfibrils then twist into ribbons.

Bleaching

Peroxide is a safer bleaching agent than chlorine and can be easily removed from fabric and wastewater by enzymes. Researchers at Novo Nordisk Biotech cloned a mushroom peroxidase gene in yeast and grew the yeasts in washing machine conditions. The yeast that survived the washing machine were selected as the peroxidase producers.

Indigo

Chemical synthesis of indigo requires a high pH and produces waste that explodes in contact with air. However, a California biotechnology company, Genencor, has developed a method to produce indigo by using bacteria. Researchers identified a gene from a soil bacterium, *Pseudomonas putida*, for conversion of the bacterial by-product indole to indigo. This gene was put into *Escherichia coli* bacteria, which then turned blue.

Bioplastic

Microbes can even make plastic zippers and packaging

material for the jeans. Over 25 bacteria make polyhydroxyalcanoate (PHA) inclusion granules as a food reserve. PHAs are similar to common plastics, and because they are made by bacteria, they are also readily degraded by many bacteria. PHAs could provide a biodegradable alternative to conventional plastic, which is made from petroleum.

E. coli bacteria produce indigo from tryptophan.

Indigo-producing
E. coli bacteria.

0.3 μm
TEM

Nomenclature

The system of nomenclature (naming) for organisms in use today was established in 1735 by Carolus Linnaeus. Scientific names are latinized because Latin was the language traditionally used by scholars. Scientific nomenclature assigns each organism two names—the **genus** (plural: *genera*) is the first name and is always capitalized; the **specific epithet** (*species* name) follows and is not capitalized. The organism is referred to by both the genus and the specific epithet, and both names are underlined or italicized. By custom, after a scientific name has been mentioned once, it can be abbreviated with the initial of the genus followed by the specific epithet.

Scientific names can, among other things, describe an organism, honor a researcher, or identify the habitat of a species. For example, consider *Staphylococcus aureus* (staf-i-lō-kok'kus ô'rē-us), a bacterium commonly found on human skin. *Staphylo-* describes the clustered arrangement of the cells; *coccus* indicates that they

are shaped like spheres. The specific epithet, *aureus*, is Latin for golden, the color of many colonies of this bacterium. The genus of the bacterium *Escherichia coli* (esh-ĕ-rik'-ĕ-ă kō'li or kō'lē) is named for a scientist, Theodor Escherich, whereas its specific epithet, *coli*, reminds us that *E. coli* live in the colon, or large intestine. **Table 1.1** contains more examples.

CHECK YOUR UNDERSTANDING

- ✓ Distinguish a genus from a specific epithet. **1-2**

Types of Microorganisms

The classification and identification of microorganisms is discussed in Chapter 10. Here is an overview of the major groups.

Bacteria

Bacteria (singular: **bacterium**) are relatively simple, single-celled (unicellular) organisms. Because their genetic material is not

TABLE 1.1 Making Scientific Names Familiar

Use the word roots guide in Appendix E to find out what the name means. The name will not seem so strange if you translate it. When you encounter a new name, practice saying it out loud. The exact pronunciation is not as important as the familiarity you will gain. Guidelines for pronunciation are given in Appendix D.

Following are some examples of microbial names you may encounter in the popular press as well as in the lab.

	Pronunciation	Source of Genus Name	Source of Specific Epithet
<i>Salmonella enterica</i> (bacterium)	sal-món-el'lä en-ter'i-kä	Honors public health microbiologist Daniel Salmon	Found in the intestines (<i>entero-</i>)
<i>Streptococcus pyogenes</i> (bacterium)	strep-tō-kok'kus pī-äj'en-éz	Appearance of cells in chains (<i>strepto-</i>)	Forms pus (<i>pyo-</i>)
<i>Saccharomyces cerevisiae</i> (yeast)	sak-ä-rō-mī'ses se-ri-vis'ē-ē	Fungus (- <i>myces</i>) that uses sugar (<i>saccharo-</i>)	Makes beer (<i>cerevisia</i>)
<i>Penicillium chrysogenum</i> (fungus)	pen-i-sil'lē-um kri-so'jen-um	Tuftlike or paintbrush (<i>penicill-</i>) appearance microscopically	Produces a yellow (<i>chryso-</i>) pigment
<i>Trypanosoma cruzi</i> (protozoan)	tri-pa-nō-sō'mä krüz'ē	Corkscrew- (<i>trypano-</i> , borer; <i>soma-</i> , body)	Honors epidemiologist Oswaldo Cruz

enclosed in a special nuclear membrane, bacterial cells are called **prokaryotes** (prō-kar'ē-ōts), from Greek words meaning prenucleus. Prokaryotes include both bacteria and archaea.

Bacterial cells generally appear in one of several shapes. *Bacillus* (bä-sil'lus) (rodlike), illustrated in **Figure 1.1a**, *coccus* (kok'kus) (spherical or ovoid), and *spiral* (corkscrew or curved) are among the most common shapes, but some bacteria are star-shaped or square (see Figures 4.1 through 4.5, pages 77–78). Individual bacteria may form pairs, chains, clusters, or other groupings; such formations are usually characteristic of a particular genus or species of bacteria.

Bacteria are enclosed in cell walls that are largely composed of a carbohydrate and protein complex called *peptidoglycan*. (By contrast, cellulose is the main substance of plant and algal cell walls.) Bacteria generally reproduce by dividing into two equal cells; this process is called *binary fission*. For nutrition, most bacteria use organic chemicals, which in nature can be derived from either dead or living organisms. Some bacteria can manufacture their own food by photosynthesis, and some can derive nutrition from inorganic substances. Many bacteria can “swim” by using moving appendages called *flagella*. (For a complete discussion of bacteria, see Chapter 11.)

Archaea

Like bacteria, **archaea** (är'kē-ä) consist of prokaryotic cells, but if they have cell walls, the walls lack peptidoglycan. Archaea, often found in extreme environments, are divided into three main groups. The *methanogens* produce methane as a waste product from respiration. The *extreme halophiles* (*halo* = salt; *philic* = loving) live in extremely salty environments such as the Great Salt Lake and the Dead Sea. The *extreme thermophiles*

(*therm* = heat) live in hot sulfurous water, such as hot springs at Yellowstone National Park. Archaea are not known to cause disease in humans.

Fungi

Fungi (singular: **fungus**) are **eukaryotes** (yū-kar'ē-ōts), organisms whose cells have a distinct nucleus containing the cell's genetic material (DNA), surrounded by a special envelope called the nuclear membrane. Organisms in the Kingdom Fungi may be unicellular or multicellular (see Chapter 12, page 331). Large multicellular fungi, such as mushrooms, may look somewhat like plants, but unlike most plants, fungi cannot carry out photosynthesis. True fungi have cell walls composed primarily of a substance called *chitin*. The unicellular forms of fungi, *yeasts*, are oval microorganisms that are larger than bacteria. The most typical fungi are *molds* (**Figure 1.1b**). Molds form visible masses called *mycelia*, which are composed of long filaments (*hyphae*) that branch and intertwine. The cottony growths sometimes found on bread and fruit are mold mycelia. Fungi can reproduce sexually or asexually. They obtain nourishment by absorbing solutions of organic material from their environment—whether soil, seawater, freshwater, or an animal or plant host. Organisms called *slime molds* have characteristics of both fungi and amoebas. They are discussed in detail in Chapter 12.

Protozoa

Protozoa (singular: **protozoan**) are unicellular eukaryotic microbes (see Chapter 12, page 348). Protozoa move by pseudopods, flagella, or cilia. Amebae (**Figure 1.1c**) move by using extensions of their cytoplasm called *pseudopods* (false feet). Other protozoa have long *flagella* or numerous shorter appendages for locomotion

Figure 1.1 Types of microorganisms.

NOTE: Throughout the book, a red icon under a micrograph indicates that the micrograph has been artificially colored. (a) The rod-shaped bacterium *Haemophilus influenzae*, one of the bacterial causes of pneumonia. (b) *Mucor*, a

common bread mold, is a type of fungus. When released from sporangia, spores that land on a favorable surface germinate into a network of hyphae (filaments) that absorb nutrients. (c) An amoeba, a protozoan, approaching a food particle. (d) The pond alga *Volvox*. (e) Several human

immunodeficiency viruses (HIVs), the causative agent of AIDS, budding from a CD4⁺ T cell.

Q How are bacteria, archaea, fungi, protozoa, algae, and viruses distinguished on the basis of cellular structure?

called *cilia*. Protozoa have a variety of shapes and live either as free entities or as *parasites* (organisms that derive nutrients from living hosts) that absorb or ingest organic compounds from their environment. Some protozoa, such as *Euglena*, are photosynthetic. They use light as a source of energy and carbon dioxide as their chief source of carbon to produce sugars. Protozoa can reproduce sexually or asexually.

Algae

Algae (singular: *alga*) are photosynthetic eukaryotes with a wide variety of shapes and both sexual and asexual reproductive forms (Figure 1.1d). The algae of interest to microbiologists are usually unicellular (see Chapter 12, page 343). The cell walls of many algae, are composed of a carbohydrate called *cellulose*. Algae are abundant in freshwater and salt water, in soil, and in association with plants. As photosynthesizers, algae need light, water, and carbon dioxide for food production and growth, but they do not generally require organic compounds from the environment. As a result of photosynthesis, algae produce oxygen and carbohydrates that are then utilized by other organisms, including animals. Thus, they play an important role in the balance of nature.

Viruses

Viruses (Figure 1.1e) are very different from the other microbial groups mentioned here. They are so small that most can be seen only with an electron microscope, and they are acellular (not cellular). Structurally very simple, a virus particle contains a core made of only one type of nucleic acid, either DNA or RNA. This core is surrounded by a protein coat, which is sometimes encased by a lipid membrane called an envelope. All living cells have RNA and DNA, can carry out chemical reactions, and can reproduce as self-sufficient units. Viruses can reproduce only by using the cellular machinery of other organisms. Thus, on the one hand, viruses are considered to be living only when they multiply within host cells they infect. In this sense, viruses are parasites of other forms of life. On the other hand, viruses are not considered to be living because they are inert outside living hosts. (Viruses will be discussed in detail in Chapter 13.)

Multicellular Animal Parasites

Although multicellular animal parasites are not strictly microorganisms, they are of medical importance and therefore will be

discussed in this text. Animal parasites are eukaryotes. The two major groups of parasitic worms are the flatworms and the round-worms, collectively called **helminths** (see Chapter 12, page 354). During some stages of their life cycle, helminths are microscopic in size. Laboratory identification of these organisms includes many of the same techniques used for identifying microbes.

CHECK YOUR UNDERSTANDING

- ✓ Which groups of microbes are prokaryotes? Which are eukaryotes? **1-3**

Classification of Microorganisms

Before the existence of microbes was known, all organisms were grouped into either the animal kingdom or the plant kingdom. When microscopic organisms with characteristics of animals and plants were discovered late in the seventeenth century, a new system of classification was needed. Still, biologists could not agree on the criteria for classifying these new organisms until the late 1970s.

In 1978, Carl Woese devised a system of classification based on the cellular organization of organisms. It groups all organisms in three domains as follows:

1. Bacteria (cell walls contain a protein–carbohydrate complex called peptidoglycan)
2. Archaea (cell walls, if present, lack peptidoglycan)
3. Eukarya, which includes the following:
 - Protists (slime molds, protozoa, and algae)
 - Fungi (unicellular yeasts, multicellular molds, and mushrooms)
 - Plants (mosses, ferns, conifers, and flowering plants)
 - Animals (sponges, worms, insects, and vertebrates)

Classification will be discussed in more detail in Chapters 10 through 12.

CHECK YOUR UNDERSTANDING

- ✓ What are the three domains? **1-4**

A Brief History of Microbiology

LEARNING OBJECTIVES

- 1-5 Explain the importance of observations made by Hooke and van Leeuwenhoek.
- 1-6 Compare spontaneous generation and biogenesis.
- 1-7 Identify the contributions to microbiology made by Needham, Spallanzani, Virchow, and Pasteur.
- 1-8 Explain how Pasteur's work influenced Lister and Koch.
- 1-9 Identify the importance of Koch's postulates.
- 1-10 Identify the importance of Jenner's work.
- 1-11 Identify the contributions to microbiology made by Ehrlich and Fleming.

- 1-12** Define *bacteriology, mycology, parasitology, immunology, and virology*.

- 1-13** Explain the importance of microbial genetics and molecular biology.

The science of microbiology dates back only 200 years, yet the recent discovery of *Mycobacterium tuberculosis* (mī-kō-bak-ti'rē-um tū-bér-ku-lō'sis) DNA in 3000-year-old Egyptian mummies reminds us that microorganisms have been around for much longer. In fact, bacterial ancestors were the first living cells to appear on Earth. Although we know relatively little about what earlier people thought about the causes, transmission, and treatment of disease, we know more about the history of the past few hundred years. Let's look now at some key developments in microbiology that have spurred the field to its current technological state.

The First Observations

One of the most important discoveries in biology occurred in 1665. After observing a thin slice of cork through a relatively crude microscope, an Englishman, Robert Hooke, reported to the world that life's smallest structural units were "little boxes," or "cells," as he called them. Using his improved version of a compound microscope (one that uses two sets of lenses), Hooke was able to see individual cells. Hooke's discovery marked the beginning of the **cell theory**—the theory that *all living things are composed of cells*. Subsequent investigations into the structure and function of cells were based on this theory.

Though Hooke's microscope was capable of showing large cells, it lacked the resolution that would have allowed him to see microbes clearly. The Dutch merchant and amateur scientist Anton van Leeuwenhoek was probably the first actually to observe live microorganisms through the magnifying lenses of more than 400 microscopes he constructed. Between 1673 and 1723, he wrote a series of letters to the Royal Society of London describing the "animalcules" he saw through his simple, single-lens microscope. Van Leeuwenhoek made detailed drawings of "animalcules" he found in rainwater, in his own feces, and in material scraped from his teeth. These drawings have since been identified as representations of bacteria and protozoa (**Figure 1.2**).

CHECK YOUR UNDERSTANDING

- ✓ What is the cell theory? **1-5**

The Debate over Spontaneous Generation

After van Leeuwenhoek discovered the previously "invisible" world of microorganisms, the scientific community of the time became interested in the origins of these tiny living things. Until the second half of the nineteenth century, many scientists and philosophers believed that some forms of life could arise spontaneously from nonliving matter; they called this hypothetical process **spontaneous generation**. Not much more than 100 years ago, people commonly believed that toads, snakes, and mice could be born of moist soil; that flies could emerge from manure;

(a) Van Leeuwenhoek using his microscope

(b) Microscope replica

(c) Drawings of bacteria

and that maggots (which we now know are the larvae of flies) could arise from decaying corpses.

Evidence Pro and Con

A strong opponent of spontaneous generation, the Italian physician Francesco Redi set out in 1668 to demonstrate that maggots did not arise spontaneously from decaying meat. Redi filled two jars with decaying meat. The first was left unsealed; the flies laid their eggs on the meat, and the eggs developed into larvae. The second jar was sealed, and because the flies could not lay their eggs on the meat, no maggots appeared. Still, Redi's antagonists were not convinced; they claimed that fresh air was needed for spontaneous generation. So Redi set up a second experiment, in which he covered a jar with a fine net instead of sealing it. No larvae appeared in the gauze-covered jar, even though air was present. Maggots appeared only when flies were allowed to leave their eggs on the meat.

Redi's results were a serious blow to the long-held belief that large forms of life could arise from nonlife. However, many scientists still believed that small organisms, such as

van Leeuwenhoek's "animalcules," were simple enough to be generated from nonliving materials.

The case for spontaneous generation of microorganisms seemed to be strengthened in 1745, when John Needham, an Englishman, found that even after he heated nutrient fluids (chicken broth and corn broth) before pouring them into covered flasks, the cooled solutions were soon teeming with microorganisms. Needham claimed that microbes developed spontaneously from the fluids. Twenty years later, Lazzaro Spallanzani, an Italian scientist, suggested that microorganisms from the air probably had entered Needham's solutions after they were boiled. Spallanzani showed that nutrient fluids heated *after* being sealed in a flask did not develop microbial growth. Needham responded by claiming the "vital force" necessary for spontaneous generation had been destroyed by the heat and was kept out of the flasks by the seals.

This intangible "vital force" was given all the more credence shortly after Spallanzani's experiment, when Anton Laurent Lavoisier showed the importance of oxygen to life. Spallanzani's observations were criticized on the grounds that there was not enough oxygen in the sealed flasks to support microbial life.

The Theory of Biogenesis

The issue was still unresolved in 1858, when the German scientist Rudolf Virchow challenged the case for spontaneous generation with the concept of **biogenesis**, the claim that living cells can arise only from preexisting living cells. Because he could offer no scientific proof, arguments about spontaneous generation continued until 1861, when the issue was finally resolved by the French scientist Louis Pasteur.

With a series of ingenious and persuasive experiments, Pasteur demonstrated that microorganisms are present in the air and can contaminate sterile solutions, but that air itself does not create microbes. He filled several short-necked flasks with beef broth and then boiled their contents. Some were then left open and allowed to cool. In a few days, these flasks were found to be contaminated with microbes. The other flasks, sealed after boiling, were free of microorganisms. From these results, Pasteur reasoned that microbes in the air were the agents responsible for contaminating nonliving matter.

Pasteur next placed broth in open-ended, long-necked flasks and bent the necks into S-shaped curves (**Figure 1.3**). The contents of these flasks were then boiled and cooled. The broth in the flasks did not decay and showed no signs of life, even after months. Pasteur's unique design allowed air to pass into the flask, but the curved neck trapped any airborne microorganisms that might contaminate the broth. (Some of these original vessels are still on display at the Pasteur Institute in Paris. They have been sealed but, like the flask shown in Figure 1.3, show no sign of contamination more than 100 years later.)

Pasteur showed that microorganisms can be present in nonliving matter—on solids, in liquids, and in the air. Furthermore, he demonstrated conclusively that microbial life can be destroyed by heat and that methods can be devised to block the access of airborne microorganisms to nutrient environments. These discoveries form the basis of **aseptic techniques**, techniques that prevent contamination by unwanted microorganisms, which are now the standard practice in laboratory and many medical procedures. Modern aseptic techniques are among the first and most important concepts that a beginning microbiologist learns.

Pasteur's work provided evidence that microorganisms cannot originate from mystical forces present in nonliving materials. Rather, any appearance of "spontaneous" life in nonliving solutions can be attributed to microorganisms that were already present in the air or in the fluids themselves. Scientists now believe that a form of spontaneous generation probably did occur on the primitive Earth when life first began, but they agree that this does not happen under today's environmental conditions.

CHECK YOUR UNDERSTANDING

- ✓ What evidence supported spontaneous generation? **1-6**
- ✓ How was spontaneous generation disproved? **1-7**

The Golden Age of Microbiology

The work that began with Pasteur started an explosion of discoveries in microbiology. The period from 1857 to 1914 has been appropriately named the Golden Age of Microbiology. During this period, rapid advances, spearheaded mainly by Pasteur and Robert Koch, led to the establishment of microbiology as a science. Discoveries during these years included both the agents of many diseases and the role of immunity in preventing and curing disease. During this productive period, microbiologists studied the chemical activities of microorganisms, improved the techniques for performing microscopy and culturing microorganisms, and developed vaccines and surgical techniques. Some of the major events that occurred during the Golden Age of Microbiology are listed in **Figure 1.4**.

Fermentation and Pasteurization

One of the key steps that established the relationship between microorganisms and disease occurred when a group of French merchants asked Pasteur to find out why wine and beer soured. They hoped to develop a method that would prevent spoilage when those beverages were shipped long distances. At the time, many scientists believed that air converted the sugars in these fluids into alcohol. Pasteur found instead that microorganisms called yeasts convert the sugars to alcohol in the absence of air. This process, called **fermentation** (see Chapter 5, page 130), is used to make wine and beer. Souring and spoilage are caused by different microorganisms called bacteria. In the presence of air, bacteria change the alcohol into vinegar (acetic acid).

Pasteur's solution to the spoilage problem was to heat the beer and wine just enough to kill most of the bacteria that caused the spoilage. The process, called **pasteurization**, is now commonly used to reduce spoilage and kill potentially harmful bacteria in milk as well as in some alcoholic drinks. Showing the connection between food spoilage and microorganisms was a major step toward establishing the relationship between disease and microbes.

The Germ Theory of Disease

As we have seen, the fact that many kinds of diseases are related to microorganisms was unknown until relatively recently. Before the time of Pasteur, effective treatments for many diseases were discovered by trial and error, but the causes of the diseases were unknown.

The realization that yeasts play a crucial role in fermentation was the first link between the activity of a microorganism and physical and chemical changes in organic materials. This discovery alerted scientists to the possibility that microorganisms might have similar relationships with plants and animals—specifically, that microorganisms might cause disease. This idea was known as the **germ theory of disease**.

FOUNDATION FIGURE 1.3

Disproving the Theory of Spontaneous Generation

According to the theory of spontaneous generation, life can arise spontaneously from nonliving matter, such as dead corpses and soil. Pasteur's experiment, described below, demonstrated that microbes are present in nonliving matter—air, liquids, and solids.

- 1 Pasteur first poured beef broth into a long-necked flask.

- 2 Next he heated the neck of the flask and bent it into an S-shape; then he boiled the broth for several minutes.

- 3 Microorganisms did not appear in the cooled solution, even after long periods.

KEY CONCEPTS

- Pasteur demonstrated that microbes are responsible for food spoilage, leading researchers to the connection between microbes and disease.
- His experiments and observations provided the basis of aseptic techniques, which are used to prevent microbial contamination, as shown in the photo at right.

The germ theory was a difficult concept for many people to accept at that time because for centuries disease was believed to be punishment for an individual's crimes or misdeeds. When the inhabitants of an entire village became ill, people often blamed the disease on demons appearing as foul odors from sewage or on poisonous vapors from swamps. Most people born in Pasteur's time found it inconceivable that "invisible" microbes could travel through the air to infect plants and animals or remain on clothing and bedding to be transmitted from one person to another. Despite these doubts scientists gradually accumulated the information needed to support the new germ theory.

In 1865, Pasteur was called upon to help fight silkworm disease, which was ruining the silk industry throughout Europe.

Years earlier, in 1835, Agostino Bassi, an amateur microscopist, had proved that another silkworm disease was caused by a fungus. Using data provided by Bassi, Pasteur found that the more recent infection was caused by a protozoan, and he developed a method for recognizing afflicted silkworm moths.

In the 1860s, Joseph Lister, an English surgeon, applied the germ theory to medical procedures. Lister was aware that in the 1840s, the Hungarian physician Ignaz Semmelweis had demonstrated that physicians, who at the time did not disinfect their hands, routinely transmitted infections (puerperal, or child-birth, fever) from one obstetrical patient to another. Lister had also heard of Pasteur's work connecting microbes to animal diseases. Disinfectants were not used at the time, but Lister knew

Louis Pasteur (1822–1895)
Demonstrated that life did not arise spontaneously from nonliving matter.

Robert Koch (1843–1910)
Established experimental steps for directly linking a specific microbe to a specific disease.

Joseph Lister (1827–1912)
Performed surgery under antiseptic conditions using phenol. Proved that microbes caused surgical wound infections.

Rebecca C. Lancefield (1895–1981)
Classified streptococci according to serotypes (variants within a species)

Figure 1.4 Milestones in microbiology, highlighting those that occurred during the Golden Age of Microbiology. An asterisk (*) indicates a Nobel laureate.

Q Why do you think the Golden Age of Microbiology occurred when it did?

that phenol (carbolic acid) kills bacteria, so he began treating surgical wounds with a phenol solution. The practice so reduced the incidence of infections and deaths that other surgeons quickly adopted it. Lister's technique was one of the earliest medical attempts to control infections caused by microorganisms. In fact, his findings proved that microorganisms cause surgical wound infections.

The first proof that bacteria actually cause disease came from Robert Koch in 1876. Koch, a German physician, was Pasteur's young rival in the race to discover the cause of anthrax, a disease that was destroying cattle and sheep in Europe. Koch discovered rod-shaped bacteria now known as *Bacillus anthracis* (bä-sil'lus an-thrä'sis) in the blood of cattle that had died of anthrax. He cultured the bacteria on nutrients and then injected samples of the culture into healthy animals. When these animals became sick and died, Koch isolated the bacteria in their blood and compared them with the originally isolated bacteria. He found that the two sets of blood cultures contained the same bacteria.

Koch thus established **Koch's postulates**, a sequence of experimental steps for directly relating a specific microbe to a specific disease (see Figure 14.3, page 407). During the past 100 years, these same criteria have been invaluable in investigations proving that specific microorganisms cause many diseases. Koch's postulates, their limitations, and their application to disease will be discussed in greater detail in Chapter 14.

Vaccination

Often a treatment or preventive procedure is developed before scientists know why it works. The smallpox vaccine is an example. On May 4, 1796, almost 70 years before Koch established that a specific microorganism causes anthrax, Edward Jenner, a young British physician, embarked on an experiment to find a way to protect people from smallpox.

Smallpox epidemics were greatly feared. The disease periodically swept through Europe, killing thousands, and it wiped out 90% of the American Indians on the East Coast when European settlers first brought the infection to the New World.

When a young milkmaid informed Jenner that she couldn't get smallpox because she already had been sick from cowpox—a much milder disease—he decided to put the girl's story to the test. First Jenner collected scrapings from cowpox blisters. Then he inoculated a healthy 8-year-old volunteer with the cowpox material by scratching the person's arm with a pox-contaminated needle. The scratch turned into a raised bump. In a few days, the volunteer became mildly sick but recovered and never again contracted either cowpox or smallpox. The process was called *vaccination*, from the Latin word *vacca*, meaning cow. Pasteur gave it this name in honor of Jenner's work. The protection from disease provided by vaccination (or by recovery from the disease

itself) is called **immunity**. We will discuss the mechanisms of immunity in Chapter 17.

Years after Jenner's experiment, in about 1880, Pasteur discovered why vaccinations work. He found that the bacterium that causes fowl cholera lost its ability to cause disease (lost its *virulence*, or became *avirulent*) after it was grown in the laboratory for long periods. However, it—and other microorganisms with decreased virulence—was able to induce immunity against subsequent infections by its virulent counterparts. The discovery of this phenomenon provided a clue to Jenner's successful experiment with cowpox. Both cowpox and smallpox are caused by viruses. Even though cowpox virus is not a laboratory-produced derivative of smallpox virus, it is so closely related to the smallpox virus that it can induce immunity to both viruses. Pasteur used the term *vaccine* for cultures of avirulent microorganisms used for preventive inoculation.

Jenner's experiment marked the first time in a Western culture that a living viral agent—the cowpox virus—was used to produce immunity. Physicians in China had immunized patients from smallpox by removing scales from drying pustules of a person suffering from a mild case of smallpox, grinding the scales to a fine powder, and inserting the powder into the nose of the person to be protected.

Some vaccines are still produced from avirulent microbial strains that stimulate immunity to the related virulent strain. Other vaccines are made from killed virulent microbes, from isolated components of virulent microorganisms, or by genetic engineering techniques.

CHECK YOUR UNDERSTANDING

- ✓ Summarize in your own words the germ theory of disease. **1-8**
- ✓ What is the importance of Koch's postulates? **1-9**
- ✓ What is the significance of Jenner's discovery? **1-10**

The Birth of Modern Chemotherapy: Dreams of a “Magic Bullet”

After the relationship between microorganisms and disease was established, medical microbiologists next focused on the search for substances that could destroy pathogenic microorganisms without damaging the infected animal or human. Treatment of disease by using chemical substances is called **chemotherapy**. (The term also commonly refers to chemical treatment of non-infectious diseases, such as cancer.) Chemicals produced naturally by bacteria and fungi to act against other microorganisms are called **antibiotics**. Chemotherapeutic agents prepared from chemicals in the laboratory are called **synthetic drugs**. The success of chemotherapy is based on the fact that some chemicals are more poisonous to microorganisms than to the hosts infected by the microbes. Antimicrobial therapy will be discussed in further detail in Chapter 20.

Figure 1.5 The discovery of penicillin. Alexander Fleming took this photograph in 1928. The colony of *Penicillium* mold accidentally contaminated the plate and inhibited nearby bacterial growth.

Q Why do you think penicillin is no longer as effective as it once was?

The First Synthetic Drugs

Paul Ehrlich, a German physician, was the imaginative thinker who fired the first shot in the chemotherapy revolution. As a medical student, Ehrlich speculated about a “magic bullet” that could hunt down and destroy a pathogen without harming the infected host. He then launched a search for such a bullet. In 1910, after testing hundreds of substances, he found a chemotherapeutic agent called *salvarsan*, an arsenic derivative effective against syphilis. The agent was named *salvarsan* because it was considered to offer salvation from syphilis and it contained arsenic. Before this discovery, the only known chemical in Europe’s medical arsenal was an extract from the bark of a South American tree, *quinine*, which had been used by Spanish conquistadors to treat malaria.

By the late 1930s, researchers had developed several other synthetic drugs that could destroy microorganisms. Most of these drugs were derivatives of dyes. This came about because the dyes synthesized and manufactured for fabrics were routinely tested for antimicrobial qualities by microbiologists looking for a “magic bullet.” In addition, *sulfonamides* (sulfa drugs) were synthesized at about the same time.

A Fortunate Accident—Antibiotics

In contrast to the sulfa drugs, which were deliberately developed from a series of industrial chemicals, the first antibiotic was discovered by accident. Alexander Fleming, a Scottish physician and bacteriologist, almost tossed out some culture plates that had been contaminated by mold. Fortunately, he took a second look at the curious pattern of growth on the contaminated plates. Around the mold was a clear area where bacterial growth had been inhibited (Figure 1.5). Fleming was looking at a mold that

could inhibit the growth of a bacterium. The mold was later identified as *Penicillium notatum* (pen-i-sil’lē-um nō-tā’tūm), later renamed *Penicillium chrysogenum* (krī-so’jen-um), and in 1928 Fleming named the mold’s active inhibitor *penicillin*. Thus, penicillin is an antibiotic produced by a fungus. The enormous usefulness of penicillin was not apparent until the 1940s, when it was finally tested clinically and mass produced.

Since these early discoveries, thousands of other antibiotics have been discovered. Unfortunately, antibiotics and other chemotherapeutic drugs are not without problems. Many antimicrobial chemicals are too toxic to humans for practical use; they kill the pathogenic microbes, but they also damage the infected host. For reasons we will discuss later, toxicity to humans is a particular problem in the development of drugs for treating viral diseases. Viral growth depends on life processes of normal host cells. Thus, there are very few successful antiviral drugs, because a drug that would interfere with viral reproduction would also likely affect uninfected cells of the body.

Another major problem associated with antimicrobial drugs is the emergence and spread of new strains of microorganisms that are resistant to antibiotics. Over the years, more and more microbes have developed resistance to antibiotics that at one time were very effective against them. Drug resistance results from genetic changes in microbes that enables them to tolerate a certain amount of an antibiotic that would normally inhibit them (see the box in Chapter 26, page 757). For example a microbe might produce chemicals (enzymes) that inactivate antibiotics, or a microbe might undergo changes to its surface that prevent an antibiotic from attaching to it or entering it.

The recent appearance of vancomycin-resistant *Staphylococcus aureus* and *Enterococcus faecalis* (en-te-rō-kok’kus fe-kā’lis) has alarmed health care professionals because it indicates that some previously treatable bacterial infections may soon be impossible to treat with antibiotics.

CHECK YOUR UNDERSTANDING

✓ What was Ehrlich’s “magic bullet”? **1-11**

Modern Developments in Microbiology

The quest to solve drug resistance, identify viruses, and develop vaccines requires sophisticated research techniques and correlated studies that were never dreamed of in the days of Koch and Pasteur.

The groundwork laid during the Golden Age of Microbiology provided the basis for several monumental achievements during the twentieth century (Table 1.2). New branches of microbiology were developed, including immunology and virology. Most recently, the development of a set of new methods called recombinant DNA technology has revolutionized research and practical applications in all areas of microbiology.

Bacteriology, Mycology, and Parasitology

Bacteriology, the study of bacteria, began with van Leeuwenhoek’s first examination of tooth scrapings. New pathogenic

TABLE 1.2 Selected Nobel Prizes Awarded for Research in Microbiology

Nobel Laureates	Year of Presentation	Country of Birth	Contribution
Ronald Ross	1902	England	Discovered how malaria is transmitted
Selman A. Waksman	1952	Ukraine	Discovered streptomycin
Hans A. Krebs	1953	Germany	Discovered chemical steps of the Krebs cycle in carbohydrate metabolism
John F. Enders, Thomas H. Weller, and Frederick C. Robbins	1954	United States	Cultured poliovirus in cell cultures
Joshua Lederberg, George Beadle, and Edward Tatum	1958	United States	Described genetic control of biochemical reactions
Frank Macfarlane Burnet and Peter Brian Medawar	1960	Australia Great Britain	Discovered acquired immune tolerance
César Milstein, Georges J. F. Köhler, and Niels Kai Jerne	1984	Argentina Germany Denmark	Developed a technique for producing monoclonal antibodies (single pure antibodies)
Susumu Tonegawa	1987	Japan	Described the genetics of antibody production
J. Michael Bishop and Harold E. Varmus	1989	United States	Discovered cancer-causing genes called oncogenes
Joseph E. Murray and E. Donnall Thomas	1990	United States	Performed the first successful organ transplants by using immunosuppressive agents
Edmond H. Fisher and Edwin G. Krebs	1992	United States	Discovered protein kinases, enzymes that regulate cell growth
Richard J. Roberts and Phillip A. Sharp	1993	Great Britain United States	Discovered that a gene can be separated onto different segments of DNA
Kary B. Mullis	1993	United States	Discovered the polymerase chain reaction to amplify (make multiple copies of) DNA
Peter C. Doherty and Rolf M. Zinkernagel	1996	Australia Switzerland	Discovered how cytotoxic T cells recognize virus-infected cells prior to destroying them
Peter Agre and Roderick MacKinnon	2003	United States	Discovered water and ion channels in plasma membranes
Aaron Ciechanover, Avram Hershko, and Irwin Rose	2004	Israel Israel United States	Discovered how cells dispose of unwanted proteins in proteasomes
Barry Marshall and J. Robin Warren	2005	Australia	Discovered that <i>Helicobacter pylori</i> causes peptic ulcers
Andrew Fire and Craig Mello	2006	United States	Discovered RNA interference (RNAi), or gene silencing, by double-stranded RNA
Harald zur Hausen	2008	Germany	Discovered that human papilloma viruses cause cervical cancer
Françoise Barré-Sinoussi and Luc Montagnier	2008	France	Discovered human immunodeficiency virus (HIV)
Venkatraman Ramakrishnan, Thomas A. Steitz, and Ada E. Yonath	2010	India United States Israel	Detailed study of the structure and function of ribosomes

(a) Rod of Asclepius, symbol of the medical profession.

(b) A parasitic guinea worm (*Dracunculus medinensis*) is removed from the subcutaneous tissue of a patient by winding it onto a stick. This procedure may have been used for the design of the symbol in part (a).

Figure 1.6 Parasitology: the study of protozoa and parasitic worms.

Q How do you think parasitic worms survive and live off a human host?

bacteria are still discovered regularly. Many bacteriologists, like Pasteur, look at the roles of bacteria in food and the environment. One intriguing discovery came in 1997, when Heide Schulz discovered a bacterium large enough to be seen with the unaided eye (0.2 mm wide). This bacterium, named *Thiomargarita namibiensis* (thi'ō-mä-gär-e-tä na'mib-ē-në-sis), lives in the mud on the African coast. *Thiomargarita* is unusual because of its size and its ecological niche. The bacterium consumes hydrogen sulfide, which would be toxic to mud-dwelling animals (Figure 11.28, page 327).

Mycology, the study of fungi, includes medical, agricultural, and ecological branches. Recall that Bassi's work leading up to the germ theory of disease focused on a fungal pathogen. Fungal infection rates have been rising during the past decade, accounting for 10% of hospital-acquired infections. Climatic and environmental changes (severe drought) are thought to account for the tenfold increase in *Coccidioides immitis* (kok-sid-ē-oi'dēz im'mi-tis) infections in California. New techniques for diagnosing and treating fungal infections are currently being investigated.

Parasitology is the study of protozoa and parasitic worms. Because many parasitic worms are large enough to be seen with the unaided eye, they have been known for thousands of years. It has been speculated that the medical symbol, the rod of Asclepius, represents the removal of parasitic guinea worms (Figure 1.6). Asclepius was a Greek physician who practiced about 1200 B.C. and was deified as the god of medicine.

The clearing of rain forests has exposed laborers to previously undiscovered parasites. Previously unknown parasitic diseases are also being found in patients whose immune systems have been suppressed by organ transplants, cancer chemotherapy, or AIDS.

Bacteriology, mycology, and parasitology are currently going through a "golden age" of classification. Recent advances in **genomics**, the study of all of an organism's genes, have allowed

scientists to classify bacteria and fungi according to their genetic relationships with other bacteria, fungi, and protozoa. These microorganisms were originally classified according to a limited number of visible characteristics.

Immunology

Immunology, the study of immunity, dates back in Western culture to Jenner's first vaccine in 1796. Since then, knowledge about the immune system has accumulated steadily and expanded rapidly. Vaccines are now available for numerous diseases, including measles, rubella (German measles), mumps, chickenpox, pneumococcal pneumonia, tetanus, tuberculosis, influenza, whooping cough, polio, and hepatitis B. The smallpox vaccine was so effective that the disease has been eliminated. Public health officials estimate that polio will be eradicated within a few years because of the polio vaccine.

A major advance in immunology occurred in 1933, when Rebecca Lancefield proposed that streptococci be classified according to serotypes (variants within a species) based on certain components in the cell walls of the bacteria. Streptococci are responsible for a variety of diseases, such as sore throat (strep throat), streptococcal toxic shock, and septicemia (blood poisoning). Her research permits the rapid identification of specific pathogenic streptococci based on immunological techniques.

In 1960, interferons, substances generated by the body's own immune system, were discovered. Interferons inhibit replication of viruses and have triggered considerable research related to the treatment of viral diseases and cancer. One of today's biggest challenges for immunologists is learning how the immune system might be stimulated to ward off the virus responsible for AIDS, a disease that destroys the immune system.

Virology

The study of viruses, **virology**, originated during the Golden Age of Microbiology. In 1892, Dmitri Iwanowski reported that the organism that caused mosaic disease of tobacco was so small that it passed through filters fine enough to stop all known bacteria. At the time, Iwanowski was not aware that the organism in question was a virus. In 1935, Wendell Stanley demonstrated that the organism, called tobacco mosaic virus (TMV), was fundamentally different from other microbes and so simple and homogeneous that it could be crystallized like a chemical compound. Stanley's work facilitated the study of viral structure and chemistry. Since the development of the electron microscope in the 1940s, microbiologists have been able to observe the structure of viruses in detail, and today much is known about their structure and activity.

Recombinant DNA Technology

Microorganisms can now be genetically modified to manufacture large amounts of human hormones and other urgently needed medical substances. In the late 1960s, Paul Berg showed that fragments of human or animal DNA (genes) that code for important proteins can be attached to bacterial DNA. The resulting hybrid was the

first example of **recombinant DNA**. When recombinant DNA is inserted into bacteria (or other microbes), it can be used to make large quantities of the desired protein. The technology that developed from this technique is called **recombinant DNA technology**. Its origins can be found in two related fields. The first, **microbial genetics**, studies the mechanisms by which microorganisms inherit traits. The second, **molecular biology**, specifically studies how genetic information is carried in molecules of DNA and how DNA directs the synthesis of proteins.

Although molecular biology encompasses all organisms, much of our knowledge of how genes determine specific traits has been revealed through experiments with bacteria. Through the 1930s, all genetic research was based on the study of plant and animal cells. But in the 1940s, scientists turned to unicellular organisms, primarily bacteria, which have several advantages for genetic and biochemical research. For one thing, bacteria are less complex than plants and animals. For another, the life cycles of many bacteria last less than an hour, so scientists can cultivate very large numbers of bacteria for study in a relatively short time.

Once science turned to the study of unicellular life, rapid progress was made in genetics. In 1941, George W. Beadle and Edward L. Tatum demonstrated the relationship between genes and enzymes. DNA was established as the hereditary material in 1944 by Oswald Avery, Colin MacLeod, and Maclyn McCarty. In 1946, Joshua Lederberg and Edward L. Tatum discovered that genetic material could be transferred from one bacterium to another by a process called conjugation. Then, in 1953, James Watson and Francis Crick proposed a model for the structure and replication of DNA. The early 1960s witnessed a further explosion of discoveries relating to the way DNA controls protein synthesis. In 1961, François Jacob and Jacques Monod discovered messenger RNA (ribonucleic acid), a chemical involved in protein synthesis, and later they made the first major discoveries about the regulation of gene function in bacteria. During the same period, scientists were able to break the genetic code and thus understand how the information for protein synthesis in messenger RNA is translated into the amino acid sequence for making proteins.

CHECK YOUR UNDERSTANDING

- ✓ Define *bacteriology, mycology, parasitology, immunology, and virology*. **1-12**
- ✓ Differentiate microbial genetics from molecular biology. **1-13**

Microbes and Human Welfare

LEARNING OBJECTIVES

- 1-14** List at least four beneficial activities of microorganisms.
- 1-15** Name two examples of biotechnology that use recombinant DNA technology and two examples that do not.

As mentioned earlier, only a minority of all microorganisms are pathogenic. Microbes that cause food spoilage, such as soft spots on fruits and vegetables, decomposition of meats, and rancidity

of fats and oils, are also a minority. The vast majority of microbes benefit humans, other animals, and plants in many ways. For example, microbes produce methane and ethanol that can be used as alternative fuels to generate electricity and power vehicles. Biotechnology companies are using bacterial enzymes to break down plant cellulose so that yeast can metabolize the resulting simple sugars and produce ethanol. The following sections outline some of these beneficial activities. In later chapters, we will discuss these activities in greater detail.

Recycling Vital Elements

Discoveries made by two microbiologists in the 1880s have formed the basis for today's understanding of the biogeochemical cycles that support life on Earth. Martinus Beijerinck and Sergei Winogradsky were the first to show how bacteria help recycle vital elements between the soil and the atmosphere. **Microbial ecology**, the study of the relationship between microorganisms and their environment, originated with the work of these scientists. Today, microbial ecology has branched out and includes the study of how microbial populations interact with plants and animals in various environments. Among the concerns of microbial ecologists are water pollution and toxic chemicals in the environment.

The chemical elements carbon, nitrogen, oxygen, sulfur, and phosphorus are essential for life and abundant, but not necessarily in forms that organisms can use. Microorganisms are primarily responsible for converting these elements into forms that plants and animals can use. Microorganisms, primarily bacteria and fungi, return carbon dioxide to the atmosphere when they decompose organic wastes and dead plants and animals. Algae, cyanobacteria, and higher plants use the carbon dioxide during photosynthesis to produce carbohydrates for animals, fungi, and bacteria. Nitrogen is abundant in the atmosphere but in that form is not usable by plants and animals. Only bacteria can naturally convert atmospheric nitrogen to a form available to plants and animals.

Sewage Treatment: Using Microbes to Recycle Water

Our society's growing awareness of the need to preserve the environment has made people more conscious of the responsibility to recycle precious water and prevent the pollution of rivers and oceans. One major pollutant is sewage, which consists of human excrement, waste water, industrial wastes, and surface runoff. Sewage is about 99.9% water, with a few hundredths of 1% suspended solids. The remainder is a variety of dissolved materials.

Sewage treatment plants remove the undesirable materials and harmful microorganisms. Treatments combine various physical processes with the action of beneficial microbes. Large solids such as paper, wood, glass, gravel, and plastic are removed from sewage; left behind are liquid and organic materials that bacteria convert into such by-products as carbon dioxide, nitrates, phosphates, sulfates, ammonia, hydrogen sulfide, and methane. (We will discuss sewage treatment in detail in Chapter 27.)

Bioremediation: Using Microbes to Clean Up Pollutants

In 1988, scientists began using microbes to clean up pollutants and toxic wastes produced by various industrial processes. For example, some bacteria can actually use pollutants as energy sources; others produce enzymes that break down toxins into less harmful substances. By using bacteria in these ways—a process known as **bioremediation**—toxins can be removed from underground wells, chemical spills, toxic waste sites, and oil spills, such as the massive oil spill from an offshore drilling rig in the Gulf of Mexico on April 20, 2010 (see also the box in Chapter 2, page 32). In addition, bacterial enzymes are used in drain cleaners to remove clogs without adding harmful chemicals to the environment. In some cases, microorganisms indigenous to the environment are used; in others, genetically modified microbes are used. Among the most commonly used microbes are certain species of bacteria of the genera *Pseudomonas* (sū-dō-mō'nas) and *Bacillus* (bä-sil'lus). *Bacillus* enzymes are also used in household detergents to remove spots from clothing.

Insect Pest Control by Microorganisms

Besides spreading diseases, insects can cause devastating crop damage. Insect pest control is therefore important for both agriculture and the prevention of human disease.

The bacterium *Bacillus thuringiensis* (thür-in-jē-en'sis) has been used extensively in the United States to control such pests as alfalfa caterpillars, bollworms, corn borers, cabbageworms, tobacco budworms, and fruit tree leaf rollers. It is incorporated into a dusting powder that is applied to the crops these insects eat. The bacteria produce protein crystals that are toxic to the digestive systems of the insects. The toxin gene also has been inserted into some plants to make them insect resistant.

By using microbial rather than chemical insect control, farmers can avoid harming the environment. Many chemical insecticides, such as DDT, remain in the soil as toxic pollutants and are eventually incorporated into the food chain.

Modern Biotechnology and Recombinant DNA Technology

Earlier, we touched on the commercial use of microorganisms to produce some common foods and chemicals. Such practical applications of microbiology are called **biotechnology**. Although biotechnology has been used in some form for centuries, techniques have become much more sophisticated in the past few decades. In the last several years, biotechnology has undergone a revolution through the advent of recombinant DNA technology to expand the potential of bacteria, viruses, and yeast cells and other fungi as miniature biochemical factories. Cultured plant and animal cells, as well as intact plants and animals, are also used as recombinant cells and organisms.

The applications of recombinant DNA technology are increasing with each passing year. Recombinant DNA techniques have been used thus far to produce a number of natural proteins, vaccines, and enzymes. Such substances have great potential for medical use; some of them are described in Table 9.1 on page 248.

A very exciting and important outcome of recombinant DNA techniques is **gene therapy**—inserting a missing gene or replacing a defective one in human cells. This technique uses a harmless virus to carry the missing or new gene into certain host cells, where the gene is picked up and inserted into the appropriate chromosome. Since 1990, gene therapy has been used to treat patients with adenosine deaminase (ADA) deficiency, a cause of severe combined immunodeficiency disease (SCID), in which cells of the immune system are inactive or missing; Duchenne's muscular dystrophy, a muscle-destroying disease; cystic fibrosis, a disease of the secreting portions of the respiratory passages, pancreas, salivary glands, and sweat glands; and LDL-receptor deficiency, a condition in which low-density lipoprotein (LDL) receptors are defective and LDL cannot enter cells. The LDL remains in the blood in high concentrations and increases the risk of atherosclerosis and coronary artery disease because it leads to fatty plaque formation in blood vessels. Results are still being evaluated. Other genetic diseases may also be treatable by gene therapy in the future, including hemophilia, an inability of the blood to clot normally; diabetes, elevated blood sugar levels; sickle cell disease, an abnormal kind of hemoglobin; and one type of hypercholesterolemia, high blood cholesterol.

Beyond medical applications, recombinant DNA techniques have also been applied to agriculture. For example, genetically altered strains of bacteria have been developed to protect fruit against frost damage, and bacteria are being modified to control insects that damage crops. Recombinant DNA has also been used to improve the appearance, flavor, and shelf life of fruits and vegetables. Potential agricultural uses of recombinant DNA include drought resistance, resistance to insects and microbial diseases, and increased temperature tolerance in crops.

CHECK YOUR UNDERSTANDING

- ✓ Name two beneficial uses of bacteria. **1-14**
- ✓ Differentiate biotechnology from recombinant DNA technology. **1-15**

Microbes and Human Disease

LEARNING OBJECTIVES

- 1-16** Define *normal microbiota* and *resistance*.
- 1-17** Define *biofilm*.
- 1-18** Define *emerging infectious disease*.

Normal Microbiota

We all live from birth until death in a world filled with microbes, and we all have a variety of microorganisms on and inside our

bodies. These microorganisms make up our **normal microbiota**, or *flora** (Figure 1.7). The normal microbiota not only do us no harm, but also in some cases can actually benefit us. For example, some normal microbiota protect us against disease by preventing the overgrowth of harmful microbes, and others produce useful substances such as vitamin K and some B vitamins. Unfortunately, under some circumstances normal microbiota can make us sick or infect people we contact. For instance, when some normal microbiota leave their habitat, they can cause disease.

When is a microbe a welcome part of a healthy human, and when is it a harbinger of disease? The distinction between health and disease is in large part a balance between the natural defenses of the body and the disease-producing properties of microorganisms. Whether our bodies overcome the offensive tactics of a particular microbe depends on our **resistance**—the ability to ward off diseases. Important resistance is provided by the barrier of the skin, mucous membranes, cilia, stomach acid, and antimicrobial chemicals such as interferons. Microbes can be destroyed by white blood cells, by the inflammatory response, by fever, and by specific responses of our immune system. Sometimes, when our natural defenses are not strong enough to overcome an invader, they have to be supplemented by antibiotics or other drugs.

Clinical Case

Staph is the common name for *Staphylococcus aureus* bacteria, which are carried on the skin of about 30% of the human population. Although Andrea is diligent about taking her antibiotic as prescribed, she doesn't seem to be improving. After 3 days, the lesion on her wrist is even larger than before and is now draining yellow pus. Andrea also develops a fever. Her mother insists that she call her doctor to tell him about the latest developments.

Why does Andrea's infection persist after treatment?

2 17 19 20 21

Biofilms

In nature, microorganisms may exist as single cells that float or swim independently in a liquid, or they may attach to each other and/or some usually solid surface. This latter mode of behavior is called a **biofilm**, a complex aggregation of microbes. The slime covering a rock in a lake is a biofilm. Use your tongue to feel the biofilm on your teeth. Biofilms can be beneficial. They protect your mucous membranes from harmful microbes, and biofilms in lakes are an important food for aquatic animals. Biofilms can also be harmful. They can clog water pipes, and on medical implants

* At one time, bacteria and fungi were thought to be plants, and thus the term *flora* was used.

SEM 2 μm

Figure 1.7 Several types of bacteria found as part of the normal microbiota on the surface of the human tongue.

Q How do we benefit from the production of vitamin K by microbes?

such as joint prostheses and catheters (Figure 1.8), they can cause such infections as endocarditis (inflammation of the heart). Bacteria in biofilms are often resistant to antibiotics because the biofilm offers a protective barrier. See the box in Chapter 3 on page 56. Biofilms will be discussed in Chapter 6.

Infectious Diseases

An **infectious disease** is a disease in which pathogens invade a susceptible host, such as a human or an animal. In the process, the pathogen carries out at least part of its life cycle inside the host, and disease frequently results. By the end of World War II, many people believed that infectious diseases were under control. They thought malaria would be eradicated through the use of the insecticide DDT to kill mosquitoes, that a vaccine would prevent diphtheria, and that improved sanitation measures would help prevent cholera transmission. Malaria is far from eliminated. Since 1986, local outbreaks have been identified in New Jersey, California, Florida, New York, and Texas, and the disease infects 300 million people worldwide. In 1994, diphtheria appeared in the United States, brought by travelers from the newly independent states of the former Soviet Union, which were experiencing a massive diphtheria epidemic. The epidemic was brought under control in 1998. Cholera outbreaks still occur in less-developed parts of the world.

Emerging Infectious Diseases

These recent outbreaks point to the fact that infectious diseases are not disappearing, but rather seem to be reemerging and increasing. In addition, a number of new diseases—**emerging infectious diseases (EIDs)**—have cropped up in recent years. These are diseases that are new or changing and are increasing

Figure 1.8 Biofilm on a catheter. *Staphylococcus* bacteria stick to solid surfaces, forming a slimy layer. Bacteria that break away from this biofilm can cause infections.

Q How does a biofilm's protective barrier make it resistant to antibiotics?

or have the potential to increase in incidence in the near future. Some of the factors that have contributed to the development of EIDs are evolutionary changes in existing organisms (e.g., *Vibrio cholerae*; vib'-rē-ō kol'-er-ē); the spread of known diseases to new geographic regions or populations by modern transportation (e.g., West Nile virus); and increased human exposure to new, unusual infectious agents in areas that are undergoing ecologic changes such as deforestation and construction (e.g., Venezuelan hemorrhagic virus). EIDs also develop as a result of antimicrobial resistance (e.g., vancomycin-resistant *S. aureus*). An increasing number of incidents in recent years highlights the extent of the problem.

H1N1 influenza (flu), also known as *swine flu*, is a type of influenza caused by a new virus called *influenza H1N1*. H1N1 was first detected in the United States in April 2009. In June 2009, the World Health Organization declared H1N1 flu to be a *global pandemic disease* (a disease that affects large numbers of individuals in a short period of time and occurs worldwide).

Avian influenza A (H5N1), or bird flu, caught the attention of the public in 2003, when it killed millions of poultry and 24 people in eight countries in southeast Asia. Avian influenza viruses occur in birds worldwide. Certain wild birds, particularly waterfowl, do not get sick but carry the virus in their intestines and shed it in saliva, nasal secretions, and feces. Most often, the wild birds spread influenza to domesticated birds, in which the virus causes death.

Influenza A viruses are found in many different animals, including ducks, chickens, pigs, whales, horses, and seals. Normally, each subtype of influenza A virus is specific to certain species. However, influenza A viruses normally seen in one species sometimes can cross over and cause illness in another species, and all subtypes of influenza A virus can infect pigs. Although

it is unusual for people to get influenza infections directly from animals, sporadic human infections and outbreaks caused by certain avian influenza A viruses and pig influenza viruses have been reported. As of 2008, avian influenza had sickened 242 people, and about half of them died. Fortunately, the virus has not yet evolved to be transmitted successfully among humans.

Human infections with avian influenza viruses detected since 1997 have not resulted in sustained human-to-human transmission. However, because influenza viruses have the potential to change and gain the ability to spread easily between people, monitoring for human infection and person-to-person transmission is important (see the box in Chapter 13 on page 374). The U.S. Food and Drug Administration (FDA) approved a human vaccine against the avian influenza virus in April 2007.

Antibiotics are critical in treating bacterial infections. However, years of overuse and misuse of these drugs have created environments in which antibiotic-resistant bacteria thrive. Random mutations in bacterial genes can make a bacterium resistant to an antibiotic. In the presence of that antibiotic, this bacterium has an advantage over other, susceptible bacteria and is able to proliferate. Antibiotic-resistant bacteria have become a global health crisis.

Staphylococcus aureus causes a wide range of human infections from pimples and boils to pneumonia, food poisoning, and surgical wound infections, and it is a significant cause of hospital-associated infections. After penicillin's initial success in treating *S. aureus* infection, penicillin-resistant *S. aureus* became a major threat in hospitals in the 1950s, requiring the use of methicillin. In the 1980s, **methicillin-resistant *S. aureus***, called **MRSA**, emerged and became endemic in many hospitals, leading to increasing use of vancomycin. In the late 1990s, *S. aureus* infections that were less sensitive to vancomycin (**vancomycin-intermediate *S. aureus***, or VISA) were reported. In 2002, an infection caused by **vancomycin-resistant *S. aureus*** (VRSA) in a patient in the United States was reported.

In March 2010, the World Health Organization (WHO) reported that in some parts of the world (such as northwestern Russia) about 28% of all individuals with tuberculosis (TB) had the multidrug-resistant form of the disease (MDR-TB). Multidrug-resistant TB is caused by bacteria that are resistant to at least the antibiotics isoniazid and rifampicin, the most effective drugs against tuberculosis.

The antibacterial substances added to various household cleaning products are similar to antibiotics in many ways. When used correctly, they inhibit bacterial growth. However, wiping every household surface with these antibacterial agents creates an environment in which the resistant bacteria survive. Unfortunately, when you really need to disinfect your homes and hands—for example, when a family member comes home from a hospital and is still vulnerable to infection—you may encounter mainly resistant bacteria.

Routine housecleaning and handwashing are necessary, but standard soaps and detergents (without added antibacterials) are fine for these tasks. In addition, quickly evaporating chemicals, such as chlorine bleach, alcohol, ammonia, and hydrogen peroxide, remove potentially pathogenic bacteria but do not leave residues that encourage the growth of resistant bacteria.

Clinical Case

The *S. aureus* bacterium responsible for Andrea's infection is resistant to the β -lactam antibiotic prescribed by Andrea's doctor. Concerned about what his patient is telling him, Andrea's doctor calls the local hospital to let them know he is sending a patient over. In the emergency department, a nurse swabs Andrea's wound and sends it to the hospital lab for culturing. The culture shows that Andrea's infection is caused by methicillin-resistant *Staphylococcus aureus* (MRSA). MRSA produces β -lactamase, an enzyme that destroys β -lactam antibiotics. The attending physician surgically drains the pus from the sore on Andrea's wrist.

How does antibiotic resistance develop?

2 17 19 20 21

West Nile encephalitis (WNE) is inflammation of the brain caused by West Nile virus (see Chapter 8). WNE was first diagnosed in the West Nile region of Uganda in 1937. In 1999 the virus made its first North American appearance in humans in New York City. In 2007, West Nile virus infected over 3600 people in 43 states. West Nile virus is now established in non-migratory birds in 48 states. The virus, which is carried by birds, is transmitted between birds—and to horses and humans—by mosquitoes. West Nile virus may have arrived in the United States in an infected traveler or in migratory birds.

In 1996, countries worldwide were refusing to import beef from the United Kingdom, where hundreds of thousands of cattle born after 1988 had to be killed because of an epidemic of **bovine spongiform encephalopathy** (en-sef-a-lap'a-thē), also called **BSE** or **mad cow disease**. BSE first came to the attention of microbiologists in 1986 as one of a handful of diseases caused by an infectious protein called a *prion*. Studies suggest that the source of disease was cattle feed prepared from sheep infected with their own version of the disease. Cattle are herbivores (plant-eaters), but adding protein to their feed improves their growth and health. **Creutzfeldt-Jakob disease** (kroits'felt yā'kōb), or **CJD**, is a human disease also caused by a prion. The incidence of CJD in the United Kingdom is similar to the incidence in other countries. However, by 2005 the United Kingdom reported 154 human cases of CJD caused by a new variant related to the bovine disease (see Chapter 22).

Escherichia coli is a normal inhabitant of the large intestine of vertebrates, including humans, and its presence is beneficial

because it helps produce certain vitamins and breaks down otherwise undigestible foodstuffs (see Chapter 25). However, a strain called *E. coli* O157:H7 causes bloody diarrhea when it grows in the intestines. This strain was first recognized in 1982 and since then has emerged as a public health problem. It is now one of the leading causes of diarrhea worldwide. In 1996, some 9000 people in Japan became ill, and 7 died, as a result of infection by *E. coli* O157:H7. The recent outbreaks of *E. coli* O157:H7 in the United States, associated with contamination of undercooked meat and unpasteurized beverages, have led public health officials to call for the development of new methods of testing for bacteria in food.

In 1995, infections of so-called **flesh-eating bacteria** were reported on the front pages of major newspapers. The bacteria are more correctly named invasive group A *Streptococcus* (strep-tō-kok'kus), or IGAS. Rates of IGAS in the United States, Scandinavia, England, and Wales have been increasing.

In 1995, a hospital laboratory technician in Democratic Republic of Congo (DROC) who had fever and bloody diarrhea underwent surgery for a suspected perforated bowel. Afterward he started hemorrhaging, and his blood began clotting in his blood vessels. A few days later, health care workers in the hospital where he was staying developed similar symptoms. One of them was transferred to a hospital in a different city; personnel in the second hospital who cared for this patient also developed symptoms. By the time the epidemic was over, 315 people had contracted **Ebola hemorrhagic fever** (hem-ōr-raj'ik), or **EHF**, and over 75% of them died. The epidemic was controlled when microbiologists instituted training on the use of protective equipment and educational measures in the community. Close personal contact with infectious blood or other body fluids or tissue (see Chapter 23) leads to human-to-human transmission.

Microbiologists first isolated Ebola viruses from humans during earlier outbreaks in DROC in 1976. (The virus is named after Congo's Ebola River.) In 2008, an Ebola virus outbreak occurred in Uganda with 149 cases. In 1989 and 1996, outbreaks among monkeys imported into the United States from the Philippines were caused by another Ebola virus but were not associated with human disease.

Recorded cases of **Marburg virus**, another hemorrhagic fever virus, are rare. The first cases were laboratory workers in Europe who handled African green monkeys from Uganda. Four outbreaks were identified in Africa between 1975 and 1998, involving 2 to 154 people with 56% mortality. In 2004, an outbreak killed 227 people. Microbiologists have been studying many animals but have not yet discovered the natural reservoir (source) of EHF and Marburg viruses.

In 1993, an outbreak of **cryptosporidiosis** (krip-tō-spō-ridē-ō'sis) transmitted through the public water supply in Milwaukee, Wisconsin, resulted in diarrheal illness in an estimated 403,000 persons. The microorganism responsible for this outbreak was the protozoan *Cryptosporidium* (krip-tō-spō-ri'dē-um). First

reported as a cause of human disease in 1976, it is responsible for up to 30% of the diarrheal illness in developing countries. In the United States, transmission has occurred via drinking water, swimming pools, and contaminated hospital supplies.

AIDS (acquired immunodeficiency syndrome) first came to public attention in 1981 with reports from Los Angeles that a few young homosexual men had died of a previously rare type of pneumonia known as *Pneumocystis* (nū-mō-sis'tis) pneumonia. These men had experienced a severe weakening of the immune system, which normally fights infectious diseases. Soon these cases were correlated with an unusual number of occurrences of a rare form of cancer, Kaposi's sarcoma, among young homosexual men. Similar increases in such rare diseases were found among hemophiliacs and intravenous drug users.

Researchers quickly discovered that the cause of AIDS was a previously unknown virus (see Figure 1.1e). The virus, now called **human immunodeficiency virus (HIV)**, destroys CD4⁺ T cells, one type of white blood cell important to immune system defenses. Sickness and death result from microorganisms or cancerous cells that might otherwise have been defeated by the body's natural defenses. So far, the disease has been inevitably fatal once symptoms develop.

By studying disease patterns, medical researchers found that HIV could be spread through sexual intercourse, by contaminated needles, from infected mothers to their newborns via breast milk, and by blood transfusions—in short, by the transmission of body fluids from one person to another. Since

Clinical Case

Mutations develop randomly in bacteria: some mutations are lethal, some have no effect, and some may be beneficial. Once these mutations develop, the offspring of the mutated parent cells also carry the same mutation. Because they have an advantage in the presence of the antibiotic, bacteria that are resistant to antibiotics soon outnumber those that are susceptible to antibiotic therapy. The widespread use of antibiotics selectively allows the resistant bacteria to grow, whereas the susceptible bacteria are killed. Eventually, almost the entire population of bacteria is resistant to the antibiotic.

The emergency department physician prescribes a different antibiotic, vancomycin, which will kill the MRSA in Andrea's wrist. She also explains to Andrea what MRSA is and why it's important they find out where Andrea acquired the potentially lethal bacteria.

What can the emergency department physician tell Andrea about MRSA?

2 17 19

20 21

1985, blood used for transfusions has been carefully checked for the presence of HIV, and it is now quite unlikely that the virus can be spread by this means.

By the end of 2010, over 1 million people in the United States are living with AIDS. Over 50,000 Americans become infected and 18,000 die each year. As of 2010, health officials estimated that 1.3 million Americans have HIV infection. In 2009, the World Health Organization (WHO) estimated that over 33 million people worldwide are living with HIV/AIDS and that 7500 new infections occur every day.

Since 1994, new treatments have extended the life span of people with AIDS; however, approximately 40,000 new cases occur annually in the United States. The majority of individuals with AIDS are in the sexually active age group. Because heterosexual partners of AIDS sufferers are at high risk of infection, public health officials are concerned that even more women and minorities will contract AIDS. In 1997, HIV diagnoses began increasing among women and minorities. Among the AIDS cases reported in 2009, 26% were women, and 49% were African American.

In the months and years to come, scientists will continue to apply microbiological techniques to help them learn more about the structure of the deadly HIV, how it is transmitted, how it grows in cells and causes disease, how drugs can be directed against it, and whether an effective vaccine can be developed. Public health officials have also focused on prevention through education.

AIDS poses one of this century's most formidable health threats, but it is not the first serious epidemic of a sexually transmitted disease. Syphilis was also once a fatal epidemic disease. As recently as 1941, syphilis caused an estimated 14,000 deaths per year in the United States. With few drugs available for treatment and no vaccines to prevent it, efforts to control the disease focused mainly on altering sexual behavior and on the use of condoms. The eventual development of drugs to treat syphilis contributed significantly to preventing the spread of the disease. According to the Centers for Disease Control and Prevention (CDC), reported cases of syphilis dropped from a record high of 575,000 in 1943 to an all-time low of 5979 cases in 2004. Since then, however, the number of cases has been increasing.

Just as microbiological techniques helped researchers in the fight against syphilis and smallpox, they will help scientists discover the causes of new emerging infectious diseases in the twenty-first century. Undoubtedly there will be new diseases. Ebola virus and *Influenzavirus* are examples of viruses that may be changing their abilities to infect different host species. Emerging infectious diseases will be discussed further in Chapter 14 on page 417.

Infectious diseases may reemerge because of antibiotic resistance (see the box in Chapter 26 on page 757) and through the use of microorganisms as weapons. (See the box in Chapter 23 on page 651.) The breakdown of public health measures for previously controlled infections has resulted in unexpected cases of tuberculosis, whooping cough, and diphtheria (see Chapter 24).

CHECK YOUR UNDERSTANDING

- ✓ Differentiate normal microbiota and infectious disease. **1-16**
 - ✓ Why are biofilms important? **1-17**
 - ✓ What factors contribute to the emergence of an infectious disease? **1-18**
- * * *

The diseases we have mentioned are caused by viruses, bacteria, protozoa, and prions—types of microorganisms. This book introduces you to the enormous variety of microscopic organisms. It shows you how microbiologists use specific techniques and procedures to study the microbes that cause such diseases as AIDS and diarrhea—and diseases that have yet to be discovered. You will also learn how the body responds to microbial infection and how certain drugs combat microbial diseases. Finally, you will learn about the many beneficial roles that microbes play in the world around us.

Clinical Case Resolved

The first MRSA was health care–associated MRSA (HA-MRSA), transmitted between staff and patients in health care settings. In the 1990s, infections by a genetically different strain, community-associated MRSA

(CA-MRSA), emerged as a major cause of skin disease in the United States. CA-MRSA enters skin abrasions from environmental surfaces or other people. Andrea has never been hospitalized before now, so they are able to rule out the hospital as the source of infection. Her college courses are all online, so she didn't contract MRSA at the university, either. The local health department sends someone to her family home to swab for the bacteria there.

MRSA is isolated from Andrea's living room sofa, but how did it get there? After speaking with the family, the representative from the health department, knowing that clusters of CA-MRSA infections have been seen among athletes suggests swabbing the mats used by the gymnasts at the school Andrea's sister attends. The cultures come back positive for MRSA. Andrea's sister, although not infected, transferred the bacteria from her skin to the sofa, where Andrea laid her arm. (A person can carry MRSA on the skin without becoming infected.) The bacteria entered through a scratch on Andrea's wrist.

2 17 19 20 21

Study Outline

Test your understanding with quizzes, microbe review, and a chapter post-test at www.masteringmicrobiology.com.

Microbes in Our Lives (p. 2)

1. Living things too small to be seen with the unaided eye are called microorganisms.
2. Microorganisms are important in maintaining Earth's ecological balance.
3. Some microorganisms live in humans and other animals and are needed to maintain good health.
4. Some microorganisms are used to produce foods and chemicals.
5. Some microorganisms cause disease.

Naming and Classifying Microorganisms (pp. 2–6)

Nomenclature (p. 3)

1. In a nomenclature system designed by Carolus Linnaeus (1735), each living organism is assigned two names.
2. The two names consist of a genus and a specific epithet, both of which are underlined or italicized.

Types of Microorganisms (pp. 3–6)

3. Bacteria are unicellular organisms. Because they have no nucleus, the cells are described as prokaryotic.

4. The three major basic shapes of bacteria are bacillus, coccus, and spiral.
5. Most bacteria have a peptidoglycan cell wall; they divide by binary fission, and they may possess flagella.
6. Bacteria can use a wide range of chemical substances for their nutrition.
7. Archaea consist of prokaryotic cells; they lack peptidoglycan in their cell walls.
8. Archaea include methanogens, extreme halophiles, and extreme thermophiles.
9. Fungi (mushrooms, molds, and yeasts) have eukaryotic cells (cells with a true nucleus). Most fungi are multicellular.
10. Fungi obtain nutrients by absorbing organic material from their environment.
11. Protozoa are unicellular eukaryotes.
12. Protozoa obtain nourishment by absorption or ingestion through specialized structures.
13. Algae are unicellular or multicellular eukaryotes that obtain nourishment by photosynthesis.
14. Algae produce oxygen and carbohydrates that are used by other organisms.
15. Viruses are noncellular entities that are parasites of cells.
16. Viruses consist of a nucleic acid core (DNA or RNA) surrounded by a protein coat. An envelope may surround the coat.
17. The principal groups of multicellular animal parasites are flatworms and roundworms, collectively called helminths.
18. The microscopic stages in the life cycle of helminths are identified by traditional microbiological procedures.

Classification of Microorganisms (p. 6)

19. All organisms are classified into Bacteria, Archaea, and Eukarya. Eukarya include protists, fungi, plants, and animals.

A Brief History of Microbiology (pp. 6–15)**The First Observations** (p. 6)

1. Robert Hooke observed that cork was composed of “little boxes”; he introduced the term *cell* (1665).
2. Hooke’s observations laid the groundwork for development of the cell theory, the concept that all living things are composed of cells.
3. Anton van Leeuwenhoek, using a simple microscope, was the first to observe microorganisms (1673).

The Debate over Spontaneous Generation (pp. 6–8)

4. Until the mid-1880s, many people believed in spontaneous generation, the idea that living organisms could arise from nonliving matter.
5. Francesco Redi demonstrated that maggots appear on decaying meat only when flies are able to lay eggs on the meat (1668).
6. John Needham claimed that microorganisms could arise spontaneously from heated nutrient broth (1745).
7. Lazzaro Spallanzani repeated Needham’s experiments and suggested that Needham’s results were due to microorganisms in the air entering his broth (1765).
8. Rudolf Virchow introduced the concept of biogenesis: living cells can arise only from preexisting cells (1858).
9. Louis Pasteur demonstrated that microorganisms are in the air everywhere and offered proof of biogenesis (1861).
10. Pasteur’s discoveries led to the development of aseptic techniques used in laboratory and medical procedures to prevent contamination by microorganisms.

The Golden Age of Microbiology (pp. 8–11)

11. The science of microbiology advanced rapidly between 1857 and 1914.
12. Pasteur found that yeasts ferment sugars to alcohol and that bacteria can oxidize the alcohol to acetic acid.
13. A heating process called pasteurization is used to kill bacteria in some alcoholic beverages and milk.
14. Agostino Bassi (1835) and Pasteur (1865) showed a causal relationship between microorganisms and disease.
15. Joseph Lister introduced the use of a disinfectant to clean surgical wounds in order to control infections in humans (1860s).
16. Robert Koch proved that microorganisms cause disease. He used a sequence of procedures, now called Koch’s postulates (1876), that are used today to prove that a particular microorganism causes a particular disease.
17. In a vaccination, immunity (resistance to a particular disease) is conferred by inoculation with a vaccine.
18. In 1798, Edward Jenner demonstrated that inoculation with cowpox material provides humans with immunity to smallpox.
19. About 1880, Pasteur discovered that avirulent bacteria could be used as a vaccine for fowl cholera; he coined the word *vaccine*.
20. Modern vaccines are prepared from living avirulent microorganisms or killed pathogens, from isolated components of pathogens, and by recombinant DNA techniques.

The Birth of Modern Chemotherapy:**Dreams of a “Magic Bullet”** (pp. 11–12)

21. Chemotherapy is the chemical treatment of a disease.

22. Two types of chemotherapeutic agents are synthetic drugs (chemically prepared in the laboratory) and antibiotics (substances produced naturally by bacteria and fungi to inhibit the growth of other microorganisms).

23. Paul Ehrlich introduced an arsenic-containing chemical called salvarsan to treat syphilis (1910).

24. Alexander Fleming observed that the *Penicillium* fungus inhibited the growth of a bacterial culture. He named the active ingredient penicillin (1928).

25. Penicillin has been used clinically as an antibiotic since the 1940s.

26. Researchers are tackling the problem of drug-resistant microbes.

Modern Developments in Microbiology (pp. 12–15)

27. Bacteriology is the study of bacteria, mycology is the study of fungi, and parasitology is the study of parasitic protozoa and worms.
28. Microbiologists are using genomics, the study of all of an organism’s genes, to classify bacteria, fungi, and protozoa.
29. The study of AIDS, analysis of the action of interferons, and the development of new vaccines are among the current research interests in immunology.
30. New techniques in molecular biology and electron microscopy have provided tools for advancing our knowledge of virology.
31. The development of recombinant DNA technology has helped advance all areas of microbiology.

Microbes and Human Welfare (pp. 15–16)

1. Microorganisms degrade dead plants and animals and recycle chemical elements to be used by living plants and animals.
2. Bacteria are used to decompose organic matter in sewage.
3. Bioremediation processes use bacteria to clean up toxic wastes.
4. Bacteria that cause diseases in insects are being used as biological controls of insect pests. Biological controls are specific for the pest and do not harm the environment.
5. Using microbes to make products such as foods and chemicals is called biotechnology.
6. Using recombinant DNA, bacteria can produce important substances such as proteins, vaccines, and enzymes.
7. In gene therapy, viruses are used to carry replacements for defective or missing genes into human cells.
8. Genetically modified bacteria are used in agriculture to protect plants from frost and insects and to improve the shelf life of produce.

Microbes and Human Disease (pp. 16–21)

1. Everyone has microorganisms in and on the body; these make up the normal microbiota, or flora.
2. The disease-producing properties of a species of microbe and the host’s resistance are important factors in determining whether a person will contract a disease.
3. Bacterial communities that form slimy layers on surfaces are called biofilms.
4. An infectious disease is one in which pathogens invade a susceptible host.
5. An emerging infectious disease (EID) is a new or changing disease showing an increase in incidence in the recent past or a potential to increase in the near future.

Study Questions

Answers to the Review and Multiple Choice questions can be found by turning to the Answers tab at the back of the textbook.

Review

- How did the idea of spontaneous generation come about?
- Briefly state the role microorganisms play in each of the following:
 - biological control of pests
 - recycling of elements
 - normal microbiota
 - sewage treatment
 - human insulin production
 - vaccine production
 - biofilms
- Into which field of microbiology would the following scientists best fit?

Researcher Who	Field
_____ a. Studies biodegradation of toxic wastes	1. Biotechnology
_____ b. Studies the causative agent of Ebola hemorrhagic fever	2. Immunology
_____ c. Studies the production of human proteins by bacteria	3. Microbial ecology
_____ d. Studies the symptoms of AIDS	4. Microbial genetics
_____ e. Studies the production of toxin by <i>E. coli</i>	5. Microbial physiology
_____ f. Studies the life cycle of <i>Cryptosporidium</i>	6. Molecular biology
_____ g. Develops gene therapy for a disease	7. Mycology
_____ h. Studies the fungus <i>Candida albicans</i>	8. Virology

- Match the microorganisms in column A to their descriptions in column B.

Column A	Column B
_____ a. Archaea	1. Not composed of cells
_____ b. Algae	2. Cell wall made of chitin
_____ c. Bacteria	3. Cell wall made of peptidoglycan
_____ d. Fungi	4. Cell wall made of cellulose; photosynthetic
_____ e. Helminths	5. Unicellular, complex cell structure lacking a cell wall
_____ f. Protozoa	6. Multicellular animals
_____ g. Viruses	7. Prokaryote without peptidoglycan cell wall

- Match the people in column A to their contribution toward the advancement of microbiology, in column B.

Column A	Column B
_____ a. Avery, MacLeod, and McCarty	1. Developed vaccine against smallpox
_____ b. Beadle and Tatum	2. Discovered how DNA controls protein synthesis in a cell
_____ c. Berg	3. Discovered penicillin

- _____ d. Ehrlich
- _____ e. Fleming
- _____ f. Hooke
- _____ g. Iwanowski
- _____ h. Jacob and Monod
- _____ i. Jenner
- _____ j. Koch
- _____ k. Lancefield
- _____ l. Lederberg and Tatum
- _____ m. Lister
- _____ n. Pasteur
- _____ o. Stanley
- _____ p. van Leeuwenhoek
- _____ q. Virchow
- _____ r. Weizmann
- Discovered that DNA can be transferred from one bacterium to another
- Disproved spontaneous generation
- First to characterize a virus
- First to use disinfectants in surgical procedures
- First to observe bacteria
- First to observe cells in plant material and name them
- Observed that viruses are filterable
- Proved that DNA is the hereditary material
- Proved that microorganisms can cause disease
- Said living cells arise from preexisting living cells
- Showed that genes code for enzymes
- Spliced animal DNA to bacterial DNA
- Used bacteria to produce acetone
- Used the first synthetic chemotherapeutic agent
- Proposed a classification system for streptococci based on antigens in their cell walls
- The genus name of a bacterium is “erwinia,” and the specific epithet is “amylovora.” Write the scientific name of this organism correctly. Using this name as an example, explain how scientific names are chosen.
- It is possible to purchase the following microorganisms in a retail store. Provide a reason for buying each.
 - Bacillus thuringiensis*
 - Saccharomyces*
- DRAW IT** Show where airborne microbes ended up in Pasteur’s experiment.

- NAME IT** What type of microorganism has a peptidoglycan cell wall, has DNA that is not contained in a nucleus, and has flagella?

Multiple Choice

1. Which of the following is a scientific name?
 - a. *Mycobacterium tuberculosis*
 - b. Tubercle bacillus
2. Which of the following is *not* a characteristic of bacteria?
 - a. are prokaryotic
 - b. have peptidoglycan cell walls
 - c. have the same shape
 - d. grow by binary fission
 - e. have the ability to move
3. Which of the following is the most important element of Koch's germ theory of disease? The animal shows disease symptoms when
 - a. the animal has been in contact with a sick animal.
 - b. the animal has a lowered resistance.
 - c. a microorganism is observed in the animal.
 - d. a microorganism is inoculated into the animal.
 - e. microorganisms can be cultured from the animal.
4. Recombinant DNA is
 - a. DNA in bacteria.
 - b. the study of how genes work.
 - c. the DNA resulting when genes of two different organisms are mixed.
 - d. the use of bacteria in the production of foods.
 - e. the production of proteins by genes.
5. Which of the following statements is the best definition of *biogenesis*?
 - a. Nonliving matter gives rise to living organisms.
 - b. Living cells can only arise from preexisting cells.
 - c. A vital force is necessary for life.
 - d. Air is necessary for living organisms.
 - e. Microorganisms can be generated from nonliving matter.
6. Which of the following is a beneficial activity of microorganisms?
 - a. Some microorganisms are used as food for humans.
 - b. Some microorganisms use carbon dioxide.
 - c. Some microorganisms provide nitrogen for plant growth.
 - d. Some microorganisms are used in sewage treatment processes.
 - e. all of the above
7. It has been said that bacteria are essential for the existence of life on Earth. Which of the following is the essential function performed by bacteria?
 - a. control insect populations
 - b. directly provide food for humans
 - c. decompose organic material and recycle elements
 - d. cause disease
 - e. produce human hormones such as insulin
8. Which of the following is an example of bioremediation?
 - a. application of oil-degrading bacteria to an oil spill
 - b. application of bacteria to a crop to prevent frost damage
 - c. fixation of gaseous nitrogen into usable nitrogen
 - d. production by bacteria of a human protein such as interferon
 - e. all of the above

9. Spallanzani's conclusion about spontaneous generation was challenged because Lavoisier had just shown that oxygen was the vital component of air. Which of the following statements is true?
 - a. All life requires air.
 - b. Only disease-causing organisms require air.
 - c. Some microbes do not require air.
 - d. Pasteur kept air out of his biogenesis experiments.
 - e. Lavoisier was mistaken.
10. Which of the following statements about *E. coli* is *false*?
 - a. *E. coli* was the first disease-causing bacterium identified by Koch.
 - b. *E. coli* is part of the normal microbiota of humans.
 - c. *E. coli* is beneficial in human intestines.
 - d. A disease-causing strain of *E. coli* causes bloody diarrhea.
 - e. none of the above

Critical Thinking

1. How did the theory of biogenesis lead the way for the germ theory of disease?
2. Even though the germ theory of disease was not demonstrated until 1876, why did Semmelweis (1840) and Lister (1867) argue for the use of aseptic techniques?
3. Find at least three supermarket products made by microorganisms. (*Hint:* The label will state the scientific name of the organism or include the word *culture*, *fermented*, or *brewed*.)
4. People once believed all microbial diseases would be controlled by the twenty-first century. Name one emerging infectious disease. List three reasons why we are identifying new diseases now.

Clinical Applications

1. The prevalence of arthritis in the United States is 1 in 100,000 children. However, 1 in 10 children in Lyme, Connecticut, developed arthritis between June and September 1973. Allen Steere, a rheumatologist at Yale University, investigated the cases in Lyme and found that 25% of the patients remembered having a skin rash during their arthritic episode and that the disease was treatable with penicillin. Steere concluded that this was a new infectious disease and did not have an environmental, genetic, or immunologic cause.
 - a. What was the factor that caused Steere to reach his conclusion?
 - b. What is the disease?
 - c. Why was the disease more prevalent between June and September?
2. In 1864, Lister observed that patients recovered completely from simple fractures, but that compound fractures had "disastrous consequences." He knew that the application of phenol (carbolic acid) to fields in the town of Carlisle prevented cattle disease. Lister treated compound fractures with phenol, and his patients recovered without complications. How was Lister influenced by Pasteur's work? Why was Koch's work still needed?

2

Chemical Principles

Mastering MICROBIOLOGY™

Visualize microbiology and check your understanding with a pre-test at www.masteringmicrobiology.com.

We can see a tree rot and smell milk going sour, but we might not realize what is happening on a microscopic level. In both cases, microbes are conducting chemical operations. The tree rots when microorganisms decompose the wood. Milk turns sour from the production of lactic acid by bacteria. Most of the activities of microorganisms are the result of a series of chemical reactions.

Like all organisms, microorganisms use nutrients to make chemical building blocks for growth and other functions essential to life. For most microorganisms, synthesizing these building blocks requires them to break down nutrient substances and use the energy released to assemble the resulting molecular fragments into new substances.

The chemistry of microbes is one of the most important concerns of microbiologists. Knowledge of chemistry is essential to understanding what roles microorganisms play in nature, how they cause disease, how methods for diagnosing disease are developed, how the body's defenses combat infection, and how antibiotics and vaccines are produced to combat the harmful effects of microbes. The *Bacillus anthracis* bacteria in the photograph make a capsule that is not readily digested by animal cells. As discussed in the Clinical Case, these bacteria can grow in mammals by avoiding host defenses. Researchers are investigating ways to identify unique chemicals made by *B. anthracis* and other potential biological weapons in order to detect bioterrorism. To understand the changes that occur in microorganisms and the changes microbes make in the world around us, we need to know how molecules are formed and how they interact.

The Structure of Atoms

LEARNING OBJECTIVE

- 2-1** Describe the structure of an atom and its relation to the physical properties of elements.

All matter—whether air, rock, or a living organism—is made up of small units called atoms. An **atom** is the smallest component of a pure substance that exhibits physical and chemical properties of that substance; an atom cannot be subdivided into smaller substances without losing its properties. Atoms interact with each other in certain combinations to form **molecules**. Living cells are made up of molecules, some of which are very complex. The science of the interaction between atoms and molecules is called **chemistry**.

Atoms are the smallest units of matter that enter into chemical reactions. Every atom has a centrally located **nucleus** and particles called **electrons** that move around the nucleus in regions called electron shells (Figure 2.1). The nuclei of most atoms are stable—that is, they do not change spontaneously—and nuclei do not participate in chemical reactions. The nucleus is made up of positively (+) charged particles called **protons** and uncharged (neutral) particles called **neutrons**. The nucleus, therefore, bears a net positive charge. A **charge** is a property of some subatomic particles that produces an attractive or repulsive force between them; particles of opposite charge attract each other, and particles of the same charge

Figure 2.1 The structure of an atom. In this simplified diagram of a carbon atom, note the central location of the nucleus. The nucleus contains six neutrons and six protons, although not all the protons are visible in this view. The six electrons move about the nucleus in regions called electron shells, shown here as circles.

Q What is the atomic number of this atom?

repel each other. Neutrons and protons have approximately the same weight, which is about 1840 times that of an electron. The charge on electrons is negative (−), and in all atoms the number of electrons is equal to the number of protons. Because the total positive charge of the nucleus equals the total negative charge of the electrons, each atom is electrically neutral.

The number of protons in an atomic nucleus ranges from one (in a hydrogen atom) to more than 100 (in the largest atoms known). Atoms are often listed by their **atomic number**, the number of protons in the nucleus. The total number of protons and neutrons in an atom is its approximate **atomic weight**.

Clinical Case: Drumming Up Dust

Jonathan, a 52-year-old drummer, is doing his best to ignore the cold sweat that is breaking out all over his body. He and his bandmates are performing in a local Philadelphia nightclub, and they are just about finished with the second set of the evening. Jonathan hasn't been feeling well for a while, actually; he has been feeling weak and short of breath for the last 3 days or so. Jonathan makes it to the end of the song, but the noise from the clapping and cheering audience seems to come from far away. He stands up to bow and collapses. Jonathan is admitted to a local emergency department with a mild fever and severe shaking. He is able to tell the admitting nurse that he also has had a dry cough for the last few days. The attending physician orders a chest X-ray exam and sputum culture. Jonathan is diagnosed with bilateral pneumonia caused by *Bacillus anthracis*. The attending physician is astonished by this diagnosis.

How did Jonathan become infected by *B. anthracis*?
Read on to find out.

26

43 44 48

Chemical Elements

All atoms with the same number of protons behave the same way chemically and are classified as the same **chemical element**. Each element has its own name and a one- or two-letter symbol, usually derived from the English or Latin name for the element. For example, the symbol for the element hydrogen is H, and the symbol for carbon is C. The symbol for sodium is Na—the first two letters of its Latin name, *natrium*—to distinguish it from nitrogen, N, and from sulfur, S. There are 92 naturally occurring elements. However, only about 26 elements are commonly found in living things. Table 2.1 lists some of the chemical elements found in living organisms.

Most elements have several **isotopes**—atoms with different numbers of neutrons in their nuclei. All isotopes of an element have the same number of protons in their nuclei, but their atomic weights differ because of the difference in the number of neutrons. For example, in a natural sample of oxygen, all the atoms contain eight protons. However, 99.76% of the atoms have eight neutrons, 0.04% contain nine neutrons, and the remaining 0.2% contain ten neutrons. Therefore, the three isotopes composing a natural sample of oxygen have atomic weights of 16, 17, and 18, although all will have the atomic number 8. Atomic numbers are written as a subscript to the left of an element's chemical

Critical Thinking

1. Here are the formulas of two detergents that have been manufactured:

Which of these would be resistant, and which would be readily degraded by microorganisms? (*Hint:* Refer to the degradation of fatty acids in Chapter 5.)

2. Explain the effect of dumping untreated sewage into a pond on the eutrophication of the pond. The effect of sewage that has primary treatment? The effect of sewage that has secondary treatment? Contrast your previous answers with the effect of each type of sewage on a fast-moving river.

Clinical Applications

- Flooding after two weeks of heavy rainfall in Tooele, Utah, preceded a high rate of diarrheal illness. *G. lamblia* was isolated from 25% of the patients. A comparison study of a town 65 miles away revealed that there was diarrheal illness in 2.9% of the 103 people interviewed. Tooele has a municipal water system and a municipal sewage treatment plant. Explain the probable cause of this epidemic and method(s) of stopping it. What would a fecal coliform test have shown?
- The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil contaminated by petroleum. The pipes are used to add nitrates, phosphates, oxygen, or water. Why are each of these added? Why is it not always necessary to add bacteria?

28

Applied and Industrial Microbiology

MasteringMICROBIOLOGY™

Visualize microbiology and check your understanding with a pre-test at www.masteringmicrobiology.com.

In Chapter 27, we saw that microbes are an essential factor in many natural phenomena that make life possible on Earth. In this chapter we will look at how microorganisms are harnessed in such useful applications as the making of food and industrial products. Many of these processes—especially baking, winemaking, brewing, and cheesemaking—have origins long lost in history.

Modern civilization, with its large urban populations, could not be supported without methods of preserving food. In fact, civilization arose only after agriculture produced a year-round, stable food supply so that people were able to give up a nomadic hunting-and-gathering way of life.

In Chapter 9, we discussed industrial applications of genetically modified microorganisms that are at the cutting edge of our knowledge of molecular biology. Many of these applications are now essential to modern industry. (See the box in Chapter 1, page 3.) In this chapter we will explore the microbial production of foods, drugs, and chemicals. The Clinical Case shows the role of microbiologists in ensuring that pathogens such as *Salmonella* (in the photo) are not in foods.

Food Microbiology

LEARNING OBJECTIVES

- 28-1** Describe thermophilic anaerobic spoilage and flat sour spoilage by mesophilic bacteria.
- 28-2** Compare and contrast food preservation by industrial food canning, aseptic packaging, radiation, and high pressure.
- 28-3** Name four beneficial activities of microorganisms.

Many of the methods of food preservation used today were probably discovered by chance in centuries past. People in early cultures observed that dried meat and salted fish resisted decay. Nomads must have noticed that soured animal milk resisted further decomposition and was still palatable. Moreover, if the curd of the soured milk was pressed to remove moisture and allowed to ripen (in effect, cheesemaking), it was even more effectively preserved and tasted better. Farmers soon learned that if grains were kept dry, they did not become moldy.

Foods and Disease

As more food products are being prepared at central facilities and widely distributed, it is becoming more likely that food, like municipal water supplies, might be a source of widespread disease outbreaks. To minimize the potential for disease outbreaks, communities have established local agencies whose role is to inspect dairies and restaurants. The United States Food and Drug Administration (FDA) and Department of Agriculture (USDA) also maintain a system of inspectors at ports and central processing locations. A recent development in this field has been the introduction of the **Hazard Analysis and Critical Control Point (HACCP)** system, which is intended to safeguard food “from farm to fork.” Before the introduction of the HACCP system, the primary role of governmental agencies was to conduct sampling to identify contaminated foods. Such sampling to identify contamination will still have its place, but the HACCP system is designed to prevent contamination by identifying points at which foods are most likely to be contaminated with harmful microbes. Monitoring of these control points can prevent such microbes from being introduced or, if they are

Clinical Case: Dr. Chang and the Chocolate Factory

Dr. Derrick Chang of the CDC is alerted by PulseNet, the national molecular subtyping network for foodborne disease surveillance. PulseNet has identified an increase of genetically identical *Salmonella typhimurium* in the United States. This increase shows 120 isolates from 23 states in the last 60 days.

What is causing this outbreak? Read on to find out.

800 802 807 811 813 815

present, arrest their proliferation. For example, the HACCP system can identify steps during processing at which meats are likely to become contaminated by the animal’s intestinal contents. The HACCP system also requires monitoring of adequate temperatures to kill pathogens during processing and adequate storage temperatures to prevent their reproduction.

Industrial Food Canning

In Chapter 7, you learned that preserving foods by heating a properly sealed container, as in home canning, is not difficult. The challenge in commercial canning is to use the right amount of heat necessary to kill spoilage organisms and dangerous microbes, such as the endospore-forming *Clostridium botulinum*, without degrading the appearance and palatability of food. Thus, much research is applied to determining the exact minimum heat treatment that will accomplish both these goals.

Industrial food canning is much more technically sophisticated than home canning (Figure 28.1). Industrially canned goods undergo **commercial sterilization** by steam under pressure in a large **retort** (Figure 28.2), which operates on the same principle as an autoclave (see Figure 7.2, page 186). Commercial sterilization is intended to destroy *C. botulinum* endospores and is not as rigorous as complete sterilization. The reasoning is that if *C. botulinum* endospores are destroyed, then any other significant spoilage or pathogenic bacteria will also be destroyed.

To ensure commercial sterilization, enough heat is applied for the **12D treatment** (12-decimal reductions, or *botulinal cook*), by which a theoretical population of *C. botulinum* endospores would be decreased by 12 logarithmic cycles. (See Figure 7.1 and Table 7.2, page 183.) What this means is that if there were 10^{12} (1,000,000,000,000) endospores in a can, after treatment there would be only one survivor. Because 10^{12} is an improbably large population, this treatment is considered quite safe. Certain thermophilic endospore-forming bacteria have endospores that are more resistant to heat treatment than those of *C. botulinum*. However, these bacteria are obligate thermophiles and generally remain dormant at temperatures lower than about 45°C. Therefore, they are not a spoilage problem at normal storage temperatures.

Spoilage of Canned Food

If canned foods are incubated at high temperatures, such as in a truck in the hot sun or next to a steam radiator, the thermophilic bacteria that often survive commercial sterilization can germinate and grow. **Thermophilic anaerobic spoilage** is therefore a fairly common cause of spoilage in low-acid canned foods. The can usually swells from gas, and the contents have a lowered pH and a sour odor. A number of thermophilic species of *Clostridium* can cause this type of spoilage. When thermophilic spoilage occurs but the can is not swollen by gas production, the spoilage is termed **flat sour spoilage**. This type

Figure 28.1 The commercial sterilization process in industrial canning.

Q How does commercial sterilization differ from complete sterilization?

of spoilage is caused by thermophilic organisms such as *Geobacillus stearothermophilus* (ste-rō-thér-mä' fil-us), which is found in the starch and sugars used in food preparation. Many industries have standards for the numbers of such thermophilic bacteria permitted in raw materials. Both types of spoilage occur only when the cans are stored at higher than normal temperatures, which permits the growth of bacteria whose endospores are not destroyed by normal processing.

Mesophilic bacteria can spoil canned foods if the food is underprocessed or if the can leaks. Underprocessing is more likely to result in spoilage by endospore formers; the presence of non-endospore-forming bacteria strongly suggests that the can leaks. Leaking cans are often contaminated during the cooling of cans after processing by heat. The hot cans are sprayed with cooling water or passed through a trough filled with water. As the can cools, a vacuum is formed inside, and external water can be sucked through a leak past the heat-softened sealant in the crimped lid (Figure 28.3). Contaminating bacteria in the cooling water are drawn into the can with the water. Spoilage from underprocessing or can leakage is likely to produce odors of putrefaction, at least in high-protein foods, and occurs at normal storage temperatures. In such types of spoilage, there is always the potential that botulinal bacteria will be present.

Some acidic foods, such as tomatoes or preserved fruits, are preserved by processing temperatures of 100°C or lower. The reasoning is that the only spoilage organisms that will grow in such acidic foods are easily killed by even 100°C temperatures. Primarily, these would be molds, yeasts, and certain vegetative bacteria.

Occasional problems in acidic foods develop from a few microorganisms that are both heat-resistant and acid-tolerant.

Examples of heat-resistant fungi are the mold *Byssochlamys fulva* (bis-sō-kläm' is ful' vä), which produces a *heat-resistant ascospore*, and a few molds, especially species of *Aspergillus*, that sometimes produce specialized resistant bodies called *sclerotia*. A spore-forming bacterium, *Bacillus coagulans* (kö-ag' ü-lanz), is unusual in that it is capable of growth at a pH of almost 4.0. Table 28.1 lists types of spoilage in low- and medium-acid foods.

Aseptic Packaging

The use of **aseptic packaging** to preserve food has been increasing. Packages are usually made of some material that cannot

Figure 28.2 Commercial canning retorts. These are much larger than the sterilizing autoclaves used in most microbiology laboratories or hospitals.

Q Is there any difference in principle between a canning retort and a hospital autoclave?

Figure 28.3 The construction of a metal can. Notice the seam construction, which was introduced about 1904. During cooling after sterilization (see Figure 28.1, step 6), the vacuum formed in the can may actually force contaminating organisms into the can along with water.

Q Why isn't the can sealed before it is placed in the steam box?

tolerate conventional heat treatment, such as laminated paper or plastic. The packaging materials come in continuous rolls that are fed into a machine that sterilizes the material with a hot hydrogen peroxide solution, sometimes aided by ultraviolet (UV) light (**Figure 28.4**). Metal containers can be sterilized with superheated steam or other high-temperature methods. High-energy electron

beams can also be used to sterilize the packaging materials. While still in the sterile environment, the material is formed into packages, which are then filled with liquid foods that have been conventionally sterilized by heat. The filled package is not sterilized after it is sealed.

Figure 28.4 Aseptic packaging. Rolls of packaging material in foreground, filled packages at right center.

Q Why has the use of this procedure been increasing in recent years?

Clinical Case

Dr. Chang initiates a case-control study with representatives of the state health departments that had reported *S. typhimurium* infections. Fifteen items, suspected as possible vehicles of infection on the basis of the individual case investigations, are listed. State officials determine whether each suspect item was used or consumed by the infected person within the 3 days before onset of illness. The family of each patient identifies two neighborhood controls, of the same age and gender as the patient. Controls were asked the same questions as patients, except that they were questioned about the use or consumption of the 15 suspect items during the previous month. Some of the data collected are shown in the table.

Foil-Wrapped Chocolate Balls	Cases	Controls
Ate	38	12
Did not eat	7	79

Calculate the relative risk for this food item.
(Hint: See page 721)

800 802 807 811 813 815

TABLE 28.1 Common Types of Spoilage in Low-Acid and Medium-Acid Canned Foods (pH above 4.5)

Type of Spoilage	Indications of Spoilage	
	Appearance of Can	Contents of Can
Flat sour (<i>Geobacillus stearothermophilus</i>)	Can not swollen	Appearance not usually altered; pH markedly lowered; sour; may have slightly abnormal odor; sometimes cloudy liquid
Thermophilic anaerobic (<i>Thermoanaerobacterium thermosaccharolyticum</i>)	Swollen	Fermented, sour, cheesy, or butyric acid odor
Putrefactive anaerobic (<i>Clostridium sporogenes</i> ; possibly <i>C. botulinum</i>)	Swollen	May be partially digested; pH slightly above normal; typical putrid odor

Radiation and Industrial Food Preservation

It has long been recognized that irradiation is lethal to microorganisms; in fact, a patent was issued in Great Britain in 1905 for the use of ionizing radiation to improve the condition of food-stuffs. X rays were specifically suggested in 1921 as a way to inactivate the larvae in pork that are the cause of trichinellosis. Ionizing irradiation inhibits DNA synthesis and effectively prevents microorganisms, insects, and plants from reproducing. The ionizing irradiation is usually X rays or the gamma rays produced by radioactive cobalt-60. Up to certain energy levels, high energy electrons produced by electron accelerators are also used. The main practical difference is in penetration capabilities. These sources inactivate the target organisms and do *not* induce radioactivity in the food or packaging material. The relative doses of radiation needed to kill various organisms are presented in **Table 28.2**. Radiation is measured in *Grays*, named for an early radiologist—often in terms of thousands of Grays, abbreviated as kGy.

- *Low doses of irradiation (less than 1 kGy)* are used for killing insects (disinfestation) and inhibiting sprouting, as in stored potatoes. Similarly, it can delay ripening of fruits during storage.

- *Pasteurizing doses (1 to 10 kGy)* can be used on meats and poultry to eliminate or critically reduce the numbers of specific bacterial pathogens.

- *High doses (more than 10 kGy)* are used to sterilize, or at least greatly lower, the bacterial populations in many spices. Spices are often contaminated with 1 million or more bacteria per gram, although these are not considered to be normally hazardous to health.

A specialized use of irradiation has been to sterilize meats eaten by American astronauts, and a few health facilities have selectively used irradiation to sterilize foods ingested by immunocompromised patients. Millions of implanted medical devices, such as pacemakers, have been irradiated. Irradiated food is marked in the United States with a radura symbol (**Figure 28.5**) and a printed notice. Unfortunately, this symbol has often been interpreted as a warning rather than the description of an approved processing treatment or preservative. In fact, irradiated foods are not radioactive; consider that the X-ray table in a hospital does not become radioactive from repeated daily exposure to ionizing radiation. Recently, the FDA has allowed, upon special approval, substitution of language such as “pasteurization” rather than “irradiation.”

When deep penetration is a requirement, the preferred method for irradiation is gamma rays produced by cobalt-60.

TABLE 28.2 Approximate Doses of Radiation Needed to Kill Various Organisms (Prions Are Not Affected)

Organisms	Dose (kGy)*
Higher animals (whole body)	0.005–0.1
Insects	0.01–1
Non-endospore-forming bacteria	0.5–10
Bacterial endospores	10–50
Viruses	10–200

*Gray is a measure of ionizing irradiation; kGy is 1000 Grays.

Source: J. Farkas, "Physical Methods of Food Preservation," in *Food Microbiology: Fundamentals and Frontiers*, 2d ed., M.P. Doyle et al. (eds) (Washington, DC: ASM Press, 2001).

Figure 28.5 Irradiation logo. This logo, the international radura symbol, indicates that a food has received irradiation treatment.

Q Is irradiation the same as a chemical additive?

(a) An irradiation facility, showing the path of the material to be irradiated

(b) The irradiation source is submerged in the storage pool. The blue glow is Cerenkov radiation caused by charged particles exceeding the speed of light in water.

Figure 28.6 A gamma-ray irradiation facility.

Q Can microwaves be used to sterilize foods?

Figure 28.7 Electron-beam accelerator. These machines generate an electron stream that is accelerated down a long tube by electromagnets of the opposite charge. In the drawing, the electron beam is bent by a "bending magnet." This serves to filter out electrons of unwanted energy levels, providing a beam of uniform energy. The vertical beam is swept back and forth over the target as it is moved past the beam. The penetrating power of the beam is limited: if the target substance is expressed as an equivalent thickness of water, the maximum is about 3.9 cm (1.5 in). In contrast, X rays will penetrate about 23 cm (9 in).

Q Are high-energy electrons ionizing radiation?

However, this type of treatment requires several hours of exposure in isolation behind protective walls (**Figure 28.6**).

High-energy electron accelerators (**Figure 28.7**) are much faster and sterilize in a few seconds, but this treatment has low penetrating power and is suitable only for sliced meats, bacon, or similar thin products. Also, plasticware used in microbiology is usually sterilized in this way. Another recent application is to irradiate mail to kill possible bioterrorism agents that it might contain, such as anthrax endospores.

High-Pressure Food Preservation

A recent development in food preservation (pascalation) has been the use of a high-pressure processing technique. Prewrapped foods such as fruits, deli meats, and precooked chicken strips are submerged into tanks of pressurized water. The pressure can reach 87,000 pounds per square inch (psi)—which has been compared to the equivalent of about three elephants standing on a dime. This process kills many bacteria, such as *Salmonella*, *Listeria*, and pathogenic strains of *E. coli*, by disrupting many cellular functions. It also kills nonpathogenic microorganisms that tend to shorten the shelf life of such products.

Because the process does not require additives, it does not require regulatory approval. It has the advantage of preserving colors and tastes of foods better than many other methods and does not provoke the concerns of irradiation.

GLOSSARY

9 + 2 array Attachment of microtubules in eukaryotic flagella and cilia; 9 pairs of microtubules plus two microtubules.

12D treatment A sterilization process that would result in a decrease of the number of *Clostridium botulinum* endospores by 12 logarithmic cycles.

ABO blood group system The classification of red blood cells based on the presence or absence of A and B carbohydrate antigens.

abscess A localized accumulation of pus.

A-B toxin Bacterial exotoxins consisting of two polypeptides.

acellular vaccine A vaccine consisting of antigenic parts of cells.

acid A substance that dissociates into one or more hydrogen ions (H^+) and one or more negative ions.

acid-fast stain A differential stain used to identify bacteria that are not decolorized by acid-alcohol.

acidic dye A salt in which the color is in the negative ion; used for negative staining.

acidophile A bacterium that grows below pH 4.

acquired immunodeficiency The inability, obtained during the life of an individual, to produce specific antibodies or T cells, due to drugs or disease.

activated macrophage A macrophage that has increased phagocytic ability and other functions after exposure to mediators released by T cells after stimulation by antigens.

activated sludge system A process used in secondary sewage treatment in which batches of sewage are held in highly aerated tanks; to ensure the presence of microbes efficient in degrading sewage, each batch is inoculated with portions of sludge from a previous batch.

activation energy The minimum collision energy required for a chemical reaction to occur.

active site A region on an enzyme that interacts with the substrate.

active transport Net movement of a substance across a membrane against a concentration gradient; requires the cell to expend energy.

acute disease A disease in which symptoms develop rapidly but last for only a short time.

acute-phase proteins Serum proteins whose concentration changes by at least 25% during inflammation.

adaptive immunity The ability, obtained during the life of the individual, to produce specific antibodies and T cells.

adenosarcoma Cancer of glandular epithelial tissue.

adenosine diphosphate (ADP) The substance formed when ATP is hydrolyzed and energy is released.

adenosine triphosphate (ATP) An important intracellular energy source.

adherence Attachment of a microbe or phagocyte to another's plasma membrane or other surface.

adhesin A carbohydrate-specific binding protein that projects from prokaryotic cells; used for adherence, also called a ligand.

adjuvant A substance added to a vaccine to increase its effectiveness.

aerobe An organism requiring molecular oxygen (O_2) for growth.

aerobic respiration Respiration in which the final electron acceptor in the electron transport chain is molecular oxygen (O_2).

aerotolerant anaerobe An organism that does not use molecular oxygen (O_2) but is not affected by its presence.

aflatoxin A carcinogenic toxin produced by *Aspergillus flavus*.

agar A complex polysaccharide derived from a marine alga and used as a solidifying agent in culture media.

agglutination A joining together or clumping of cells.

agranulocyte A leukocyte without visible granules in the cytoplasm; includes monocytes and lymphocytes.

alarmone A chemical signal that promotes a cell's response to environmental stress.

alcohol An organic molecule with the functional group—OH.

alcohol fermentation A catabolic process, beginning with glycolysis, that produces ethyl alcohol to reoxidize NADH.

aldehyde An organic molecule with the functional group

alga (plural: *algae*) A photosynthetic eukaryote; may be unicellular, filamentous, or multicellular but lack the tissues found in plants.

algal bloom An abundant growth of microscopic algae producing visible colonies in nature.

algin A sodium salt of mannuronic acid ($\text{C}_6\text{H}_8\text{O}_6$); found in brown algae.

allergen An antigen that evokes a hypersensitivity response.

allergy See hypersensitivity.

allograft A tissue graft that is not from a genetically identical donor (i.e., not from self or an identical twin).

allosteric inhibition The process in which an enzyme's activity is changed because of binding to the allosteric site.

allosteric site The site on an enzyme at which a noncompetitive inhibitor binds.

allylamines Antifungal agents that interfere with sterol synthesis.

amanitin A polypeptide toxin produced by *Amanita* spp., inhibits RNA polymerase.

Ames test A procedure using bacteria to identify potential carcinogens.

amination The addition of an amino group.

amino acid An organic acid containing an amino group and a carboxyl group. In alpha-amino acids the amino and carboxyl groups are attached to the same carbon atom called the alpha-carbon.

aminoglycoside An antibiotic consisting of amino sugars and an aminocyclitol ring; for example, streptomycin.

amino group $-\text{NH}_2$.

ammonification The release of ammonia from nitrogen-containing organic matter by the action of microorganisms.

amphibolic pathway A pathway that is both anabolic and catabolic.

amphotrichous Having flagella at both ends of a cell.

anabolism All synthesis reactions in a living organism; the building of complex organic molecules from simpler ones.

anaerobe An organism that does not require molecular oxygen (O_2) for growth.

anaerobic respiration Respiration in which the final electron acceptor in the electron transport chain is an inorganic molecule other than molecular oxygen (O_2); for example, a nitrate ion or CO_2 .

anaerobic sludge digester Anaerobic digestion used in secondary sewage treatment.

anal pore A site in certain protozoa for elimination of waste.

analytical epidemiology Comparison of a diseased group and a healthy group to determine the cause of the disease.

anamnestic response See memory response.

anamorph Ascomycete fungi that have lost the ability to reproduce sexually; the asexual stage of a fungus.

anaphylaxis A hypersensitivity reaction involving IgE antibodies, mast cells, and basophils.

Angstrom (\AA) A unit of measurement equal to 10^{-10} m, or 0.1 nm.

Animalia The kingdom composed of multicellular eukaryotes lacking cell walls.

anion An ion with a negative charge.

anoxygenic Not producing molecular oxygen; typical of cyclic photophosphorylation.

antagonism Active opposition; (1) When two drugs are less effective than either one alone. (2) Competition among microbes.

- antibiogram** Report of antibiotic susceptibility of a bacterium.
- antibiotic** An antimicrobial agent, usually produced naturally by a bacterium or fungus.
- antibody** A protein produced by the body in response to an antigen, and capable of combining specifically with that antigen.
- antibody-dependent cell-mediated cytotoxicity (ADCC)** The killing of antibody-coated cells by natural killer cells and leukocytes.
- antibody titer** The amount of antibody in serum.
- anticodon** The three nucleotides by which a tRNA recognizes an mRNA codon.
- antigen** Any substance that causes antibody formation; also called immunogen.
- antigen–antibody complex** The combination of an antigen with the antibody that is specific for it; the basis of immune protection and many diagnostic tests.
- antigen-binding sites** A site on an antibody that binds to an antigenic determinant.
- antigenic determinant** A specific region on the surface of an antigen against which antibodies are formed; also called epitope.
- antigenic drift** A minor variation in the antigenic makeup of influenza viruses that occurs with time.
- antigenic shift** A major genetic change in influenza viruses causing changes in H and N antigens.
- antigenic variation** Changes in surface antigens that occur in a microbial population.
- antigen-presenting cell (APC)** A macrophage, dendritic cell, or B cell that engulfs an antigen and presents fragments to T cells.
- anti-human immune serum globulin (anti-HISG)** An antibody that reacts specifically with human antibodies.
- antimetabolite** A competitive inhibitor.
- antimicrobial peptide** An antibiotic that is bactericidal and has a broad spectrum of activity; see bacteriocin.
- antisense DNA** DNA that is complementary to the DNA encoding a protein; the antisense RNA transcript will hybridize with the mRNA encoding the protein and inhibit synthesis of the protein.
- antisense strand (– strand)** Viral RNA that cannot act as mRNA.
- antisepsis** A chemical method for disinfection of the skin or mucous membranes; the chemical is called an antiseptic.
- antiserum** A blood-derived fluid containing antibodies.
- antitoxin** A specific antibody produced by the body in response to a bacterial exotoxin or its toxoid.
- antiviral protein (AVP)** A protein made in response to interferon that blocks viral multiplication.
- apoenzyme** The protein portion of an enzyme, which requires activation by a coenzyme.
- apoptosis** The natural programmed death of a cell; the residual fragments are disposed of by phagocytosis.
- aquatic microbiology** The study of microorganisms and their activities in natural waters.
- arbuscule** Fungal mycelia in plant root cells.
- archaea** Domain of prokaryotic cells lacking peptidoglycan; one of the three domains.
- arthroconidia** An asexual fungal spore formed by fragmentation of a septate hypha.
- Arthus reaction** Inflammation and necrosis at the site of injection of foreign serum, due to immune complex formation.
- artificially acquired active immunity** The production of antibodies by the body in response to a vaccination.
- artificially acquired passive immunity** The transfer of humoral antibodies formed by one individual to a susceptible individual, accomplished by the injection of antiserum.
- artificial selection** Choosing one organism from a population to grow because of its desirable traits.
- ascospore** A sexual fungal spore produced in an ascus, formed by the ascomycetes.
- ascus** A saclike structure containing ascospores; found in the ascomycetes.
- asepsis** The absence of contamination by unwanted organisms.
- aseptic packaging** Commercial food preservation by filling sterile containers with sterile food.
- aseptic surgery** Techniques used in surgery to prevent microbial contamination of the patient.
- aseptic techniques** Laboratory techniques used to minimize contamination.
- asexual spore** A reproductive cell produced by mitosis and cell division (eukaryotes) or binary fission (actinomycetes).
- atom** The smallest unit of matter that can enter into a chemical reaction.
- atomic force microscopy** See scanned-probe microscopy.
- atomic number** The number of protons in the nucleus of an atom.
- atomic weight** The total number of protons and neutrons in the nucleus of an atom.
- atrichous** Bacteria that lack flagella.
- attenuated vaccine** A vaccine containing live, attenuated (weakened) microorganisms.
- autoclave** Equipment for sterilization by steam under pressure, usually operated at 15 psi and 121°C.
- autograft** A tissue graft from one's self.
- autoimmune disease** Damage to one's own organs due to action of the immune system.
- autotroph** An organism that uses carbon dioxide (CO_2) as its principal carbon source. chemoautotroph, photoautotroph.
- auxotroph** A mutant microorganism with a nutritional requirement that is absent in the parent.
- axial filament** The structure for motility found in spirochetes; also called endoflagellum.
- azole** Antifungal agents that interfere with sterol synthesis.
- bacillus** (plural: **bacilli**) (1) Any rod-shaped bacterium. (2) When written as a genus (*Bacillus*) refers to rod-shaped, endospore-forming, facultatively anaerobic, gram-positive bacteria.
- bacteremia** A condition in which there are bacteria in the blood.
- bacteria** Domain of prokaryotic organisms, characterized by peptidoglycan cell walls; **bacterium** (singular) when referring to a single organism.
- bacterial growth curve** A graph indicating the growth of a bacterial population over time.
- bactericide** A substance capable of killing bacteria.
- bacteriocin** An antimicrobial peptide produced by bacteria that kills other bacteria.
- bacteriochlorophyll** A photosynthetic pigment that transfers electrons for photophosphorylation; found in anoxygenic photosynthetic bacteria.
- bacteriology** The scientific study of prokaryotes, including bacteria and archaea.
- bacteriophage (phage)** A virus that infects bacterial cells.
- bacteriostasis** A treatment capable of inhibiting bacterial growth.
- base** A substance that dissociates into one or more hydroxide ions (OH^-) and one or more positive ions.
- base pairs** The arrangement of nitrogenous bases in nucleic acids based on hydrogen bonding; in DNA, base pairs are A-T and G-C; in RNA, base pairs are A-U and G-C.
- base substitution** The replacement of a single base in DNA by another base, causing a mutation; also called point mutation.
- basic dye** A salt in which the color is in the positive ion; used for bacterial stains.
- basidiospore** A sexual fungal spore produced in a basidium, characteristic of the basidiomycetes.
- basidium** A pedestal that produces basidiospores; found in the basidiomycetes.
- basophil** A granulocyte (leukocyte) that readily takes up basic dye and is not phagocytic; has receptors for IgE Fc regions.
- batch production** An industrial process in which cells are grown for a period of time after which the product is collected.
- B cell** A type of lymphocyte; differentiates into antibody-secreting plasma cells and memory cells.
- BCG vaccine** A live, attenuated strain of *Mycobacterium bovis* used to provide immunity to tuberculosis.
- beer** Alcoholic beverage produced by fermentation of starch.
- benthic zone** The sediment at the bottom of a body of water.
- Bergey's Manual** *Bergey's Manual of Systematic Bacteriology*, the standard taxonomic reference on bacteria; also refers to *Bergey's Manual of Determinative Bacteriology*, the standard laboratory identification reference on bacteria.

purple sulfur bacteria Gammaproteobacteria; strictly anaerobic and phototrophic; use reduced sulfur compounds as electron donors for CO_2 fixation.

pus An accumulation of dead phagocytes, dead bacterial cells, and fluid.

pustule A small pus-filled elevation of skin.

pyocyanin A blue-green pigment produced by *Pseudomonas aeruginosa*.

pyrimidines The class of nucleic acid bases that includes uracil, thymine, and cytosine.

quaternary ammonium compound (quat) A cationic detergent with four organic groups attached to a central nitrogen atom; used as a disinfectant.

quorum sensing The ability of bacteria to communicate and coordinate behavior via signaling molecules.

R Used to represent nonfunctional groups of a molecule. *See also* resistance factor.

rapid diagnostic test (RDT) A test that allows diagnosis of a disease within a few minutes.

rapid identification methods Bacterial identification tools that perform several biochemical tests simultaneously.

rapid plasma reagent (RPR) test A serological test for syphilis.

r-determinant A group of genes for antibiotic resistance carried on R factors.

RecA Catalyzes joining of DNA strands, facilitates recombination of DNA.

receptor An attachment for a pathogen on a host cell.

receptor-mediated endocytosis A type of pinocytosis in which molecules bound to proteins on the plasma membrane are taken in by infolding of the membrane.

recipient cell A cell that receives DNA from a donor cell during genetic recombination.

recombinant DNA (rDNA) A DNA molecule produced by combining DNA from two different sources.

recombinant DNA (rDNA) technology Manufacturing and manipulating genetic material in vitro; also called genetic engineering.

recombinant vaccine A vaccine made by recombinant DNA techniques.

redia A trematode larval stage that reproduces asexually to produce cercariae.

redox reaction *See* oxidation-reduction.

red tide A bloom of planktonic dinoflagellates.

reducing medium A culture medium containing ingredients that will remove dissolved oxygen from the medium to allow the growth of anaerobes.

reduction The addition of electrons to a molecule.

refractive index The relative velocity with which light passes through a substance.

relative risk A comparison of the risk of disease in two groups.

rennin An enzyme that forms curds as part of any dairy fermentation product; originally from calves' stomachs, now produced by molds and bacteria.

replica plating A method of inoculating a number of solid minimal culture media from an original plate to produce the same pattern of colonies on each plate.

replication fork The point where DNA strands separate and new strands will be synthesized.

repression The process by which a repressor protein can stop the synthesis of a protein.

repressor A protein that binds to the operator site to prevent transcription.

reservoir of infection A continual source of infection.

resistance The ability to ward off diseases through innate and adaptive immunity.

resistance (R) factor A bacterial plasmid carrying genes that determine resistance to antibiotics.

resistance transfer factor (RTF) A group of genes for replication and conjugation on the R factor.

resolution The ability to distinguish fine detail with a magnifying instrument; also called resolving power.

respiration A series of redox reactions in a membrane that generates ATP; the final electron acceptor is usually an inorganic molecule.

restriction enzyme An enzyme that cuts double-stranded DNA at specific sites between nucleotides.

reticulate body The intracellular growing stage of chlamydiae.

reticuloendothelial system *See* mononuclear phagocytic system.

retort A device for commercially sterilizing canned food by using steam under pressure; operates on the same principle as an autoclave but is much larger.

reverse genetics Genetic analysis that begins with a piece of DNA and proceeds to find out what it does.

reverse transcriptase An RNA-dependent DNA polymerase; an enzyme that synthesizes a complementary DNA from an RNA template.

reversible reaction A chemical reaction in which the end-products can readily revert to the original molecules.

RFLP Restriction fragment length polymorphism; a fragment resulting from restriction-enzyme digestion of DNA.

Rh factor An antigen on red blood cells of rhesus monkeys and most humans; possession makes the cells Rh^+ .

rhizine A rootlike hypha that anchors a fungus to a surface.

ribonucleic acid (RNA) The class of nucleic acids that comprises messenger RNA, ribosomal RNA, and transfer RNA.

ribose A five-carbon sugar that is part of ribonucleotide molecules and RNA.

ribosomal RNA (rRNA) The type of RNA molecule that forms ribosomes.

ribosomal RNA (rRNA) sequencing Determination of the order of nucleotide bases in rRNA.

ribosome The site of protein synthesis in a cell, composed of RNA and protein.

ribotyping Classification or identification of bacteria based on rRNA genes.

ribozyme An enzyme consisting of RNA that specifically acts on strands of RNA to remove introns and splice together the remaining exons.

ring stage A young *Plasmodium* trophozoite that looks like a ring in a red blood cell.

RNAi RNA interference; stops gene expression at transcription by using a short interfering RNA to make double-stranded RNA.

RNA-induced silencing complex (RISC) A complex consisting of a protein and siRNA or miRNA that binds complementary mRNA, preventing transcription of the mRNA.

RNA primer A short strand of RNA used to start synthesis of the lagging strand of DNA, and to start the polymerase chain reaction.

root nodule A tumorlike growth on the roots of certain plants containing symbiotic nitrogen-fixing bacteria.

rotating biological contactor A method of secondary sewage treatment in which large disks are rotated while partially submerged in a sewage tank exposing sewage to microorganisms and aerobic conditions.

rough ER Endoplasmic reticulum with ribosomes on its surface.

roundworm An animal belonging to the phylum Nematoda.

S (Svedberg unit) Notes the relative rate of sedimentation during ultra-high speed centrifugation.

salt A substance that dissolves in water to cations and anions, neither of which is H^+ or OH^- .

sanitization The removal of microbes from eating utensils and food preparation areas.

saprophyte An organism that obtains its nutrients from dead organic matter.

sarcina (plural: sarcinae) (1) A group of eight bacteria that remain in a packet after dividing. (2) When written as a genus, refers to gram-positive, anaerobic cocci.

saturation (1) The condition in which the active site on an enzyme is occupied by the substrate or product at all times. (2) In a fatty acid, having no double bonds.

saxitoxin A neurotoxin produced by some dinoflagellates.

scanned-probe microscopy Microscopic technique used to obtain images of molecular shapes, to characterize chemical properties, and to determine temperature variations within a specimen.

scanning acoustic microscope (SAM) A microscope that uses high-frequency ultrasound waves to penetrate surfaces.

scanning electron microscope (SEM) An electron microscope that provides three-dimensional views of the specimen magnified 1000–10,000 \times .

scanning tunneling microscopy *See* scanned-probe microscopy.

schizogony The process of multiple fission, in which one organism divides to produce many daughter cells.

scientific nomenclature *See* binomial nomenclature.

sclerotia The compact mass of hardened mycelia of the fungus *Claviceps purpurea* that fills infected rye flowers; produces the toxin ergot.

- scolex** The head of a tapeworm, containing suckers and possibly hooks.
- secondary infection** An infection caused by an opportunistic microbe after a primary infection has weakened the host's defenses.
- secondary metabolite** A product of an industrial cell population produced after the microorganism has largely completed its period of rapid growth and is in a stationary phase of the growth cycle. *See also* primary metabolite.
- secondary response** *See* memory response.
- secondary sewage treatment** Biological degradation of the organic matter in wastewater following primary treatment.
- secretory vesicle** A membrane-enclosed sac produced by the ER; transports synthesized material into cytoplasm.
- selective medium** A culture medium designed to suppress the growth of unwanted microorganisms and encourage the growth of desired ones.
- selective permeability** The property of a plasma membrane to allow certain molecules and ions to move through the membrane while restricting others.
- selective toxicity** The property of some antimicrobial agents to be toxic for a microorganism and nontoxic for the host.
- self** Host tissue.
- semiconservative replication** The process of DNA replication in which each double-stranded DNA molecule contains one original strand and one new strand.
- sense codon** A codon that codes for an amino acid.
- sense strand (+ strand)** Viral RNA that can act as mRNA.
- sensitivity** Percentage of positive samples correctly detected by a diagnostic test.
- sentinel animal** An organism in which changes can be measured to assess the extent of environmental contamination and its implication for human health.
- sepsis** The presence of a toxin or pathogenic organism in blood and tissue.
- septate hypha** A hypha consisting of uninucleate cell-like units.
- septicemia** The proliferation of pathogens in the blood, accompanied by fever; sometimes causes organ damage.
- septic shock** A sudden drop in blood pressure induced by bacterial toxins.
- septum** A cross-wall in a fungal hypha.
- serial dilution** The process of diluting a sample several times.
- seroconversion** A change in a person's response to an antigen in a serological test.
- serological testing** Techniques for identifying a microorganism based on its reaction with antibodies.
- serology** The branch of immunology that studies blood serum and antigen–antibody reactions in vitro.
- serotype** *See* serovar.
- serovar** A variation within a species; also called serotype.
- serum** The liquid remaining after blood plasma is clotted; contains antibodies (immunoglobulins).
- sexual dimorphism** The distinctly different appearance of adult male and female organisms.
- sexual spore** A spore formed by sexual reproduction.
- Shiga toxin** An exotoxin produced by *Shigella dysenteriae* and enterohemorrhagic *E. coli*.
- shock** Any life-threatening loss of blood pressure. *See also* septic shock.
- short tandem repeats (STRs)** Repeating sequences of 2- to 5-nucleotides.
- shotgun sequencing** A technique for determining the nucleotide sequence in an organism's genome.
- shuttle vector** A plasmid that can exist in several different species; used in genetic engineering.
- siderophore** Bacterial iron-binding proteins.
- sign** A change due to a disease that a person can observe and measure.
- simple stain** A method of staining microorganisms with a single basic dye.
- singlet oxygen** Highly reactive molecular oxygen (O_2^-).
- siRNA** Small interfering RNA; An intermediate in the RNAi process in which the long double-stranded RNA has been cut up into short (~21 nucleotides) double-stranded RNA.
- site-directed mutagenesis** Techniques used to modify a gene in a specific location to produce the desired polypeptide.
- slide agglutination test** A method of identifying an antigen by combining it with a specific antibody on a slide.
- slime layer** A glyocalyx that is unorganized and loosely attached to the cell wall.
- sludge** Solid matter obtained from sewage.
- smear** A thin film of material containing microorganisms, spread over the surface of a slide.
- smooth ER** Endoplasmic reticulum without ribosomes.
- SNP** Single nucleotide polymorphism (pronounced "snip"). Single base-pair variations in the genomes of a population, found in at least 1% of the population.
- snRNP** Small nuclear ribonucleoprotein (pronounced "snurp"). Short RNA transcript plus protein that combines with pre-mRNA to remove introns and join exons together.
- solute** A substance dissolved in another substance.
- solvent** A dissolving medium.
- Southern blotting** A technique that uses DNA probes to detect the presence of specific DNA in restriction fragments separated by electrophoresis.
- specialized transduction** The process of transferring a piece of cell DNA adjacent to a prophage to another cell.
- species** The most specific level in the taxonomic hierarchy. *See also* bacterial species; eukaryotic species; viral species.
- specific epithet** The second or species name in a scientific binomial. *See also* species.
- specificity** Percentage of false positive results given by a diagnostic test.
- spectrum of microbial activity** The range of distinctly different types of microorganisms affected by an antimicrobial drug; a wide range is referred to as a broad spectrum of activity.
- spheroplast** A gram-negative bacterium treated to damage the cell wall, resulting in a spherical cell.
- spicule** One of two external structures on the male roundworm used to guide sperm.
- spike** A carbohydrate-protein complex that projects from the surface of certain viruses.
- spiral** *See* spirillum and spirochete.
- spirillum** (plural: **spirilla**) (1) A helical or corkscrew-shaped bacterium. (2) When written as a genus, refers to aerobic, helical bacteria with clumps of polar flagella.
- spirochete** A corkscrew-shaped bacterium with axial filaments.
- spontaneous generation** The idea that life could arise spontaneously from nonliving matter.
- spontaneous mutation** A mutation that occurs without a mutagen.
- sporadic disease** A disease that occurs occasionally in a population.
- sporangiophore** An aerial hypha supporting a sporangium.
- sporangiospore** An asexual fungal spore formed within a sporangium.
- sporangium** A sac containing one or more spores.
- spore** A reproductive structure formed by fungi and actinomycetes. *See also* endospore.
- sporogenesis** *See* sporulation.
- sporozoite** A trophozoite of *Plasmodium* found in mosquitoes, infective for humans.
- sporulation** The process of spore and endospore formation; also called sporogenesis.
- spread plate method** A plate count method in which inoculum is spread over the surface of a solid culture medium.
- staining** Colorizing a sample with a dye to view through a microscope or to visualize specific structures.
- staphylococci** (singular: **staphylococcus**) Cocci in a grapelike cluster or broad sheet.
- stationary phase** The period in a bacterial growth curve when the number of cells dividing equals the number dying.
- stem cell** An undifferentiated cell that gives rise to a variety of specialized cells.
- stereoisomers** Two molecules consisting of the same atoms, arranged in the same manner but differing in their relative positions; mirror images; also called D-isomer and L-isomer.
- sterile** Free of microorganisms.
- sterilization** The removal of all microorganisms, including endospores.
- steroid** A specific group of lipids, including cholesterol and hormones.
- stipe** A stemlike supporting structure of multicellular algae and basidiomycetes.
- storage vesicle** Organelles that form from the Golgi complex; contain proteins made in the rough ER and processed in the Golgi complex.
- strain** Genetically different cells within a clone. *See* serovar.

- streak plate method** A method of isolating a culture by spreading microorganisms over the surface of a solid culture medium.
- streptobacilli** (singular: *streptobacillus*) Rods that remain attached in chains after cell division.
- streptococci** (singular: *streptococcus*) (1) Cocci that remain attached in chains after cell division. (2) When written as a genus, refers to gram-positive, catalase-negative bacteria.
- streptokinase** A blood-clot dissolving enzyme, produced by beta-hemolytic streptococci.
- streptolysin** A hemolytic enzyme, produced by streptococci.
- structural gene** A gene that determines the amino acid sequence of a protein.
- subacute disease** A disease with symptoms that are intermediate between acute and chronic.
- subclinical infection** An infection that does not cause a noticeable illness; also called inapparent infection.
- subcutaneous mycosis** A fungal infection of tissue beneath the skin.
- substrate** Any compound with which an enzyme reacts.
- substrate-level phosphorylation** The synthesis of ATP by direct transfer of a high-energy phosphate group from an intermediate metabolic compound to ADP.
- subunit vaccine** A vaccine consisting of an antigenic fragment.
- sulfhydryl group** —SH.
- sulfur cycle** The various oxidation and reduction stages of sulfur in the environment, mostly due to the action of microorganisms.
- sulfur granule** See inclusion.
- superantigen** An antigen that activates many different T cells, thereby eliciting a large immune response.
- superbug** Bacterium resistant to a large number of antibiotics.
- superficial mycosis** A fungal infection localized in surface epidermal cells and along hair shafts.
- superinfection** The growth of a pathogen that has developed resistance to an antimicrobial drug being used; the growth of an opportunistic pathogen.
- superoxide dismutase (SOD)** An enzyme that destroys superoxide: $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$
- superoxide radical** A toxic anion (O_2^-) with an unpaired electron.
- surface-active agent** Any compound that decreases the tension between molecules lying on the surface of a liquid; also called surfactant.
- susceptibility** The lack of resistance to a disease.
- symbiosis** The living together of two different organisms or populations.
- symptom** A change in body function that is felt by a patient as a result of a disease.
- syncytium** A multinucleated giant cell resulting from certain viral infections.
- syndrome** A specific group of signs or symptoms that accompany a disease.
- synergism** The principle whereby the effectiveness of two drugs used simultaneously is greater than that of either drug used alone.
- synthesis reaction** A chemical reaction in which two or more atoms combine to form a new, larger molecule.
- synthetic drug** A chemotherapeutic agent that is prepared from chemicals in a laboratory.
- systematics** The science organizing groups of organisms into a hierarchy.
- systemic anaphylaxis** A hypersensitivity reaction causing vasodilation and resulting in shock; also called anaphylactic shock.
- systemic (generalized) infection** An infection throughout the body.
- systemic mycosis** A fungal infection in deep tissues.
- tachyzoite** A rapidly growing trophozoite form of a protozoan.
- T antigen** An antigen in the nucleus of a tumor cell.
- tapeworm** A flatworm belonging to the class Cestoda.
- target cell** An infected body cell to which defensive cells of the immune system bind.
- taxa** Subdivisions used to classify organisms, e.g., domain, kingdom, phylum.
- taxis** Movement in response to an environmental stimulus.
- taxonomy** The science of the classification of organisms.
- T cell** A type of lymphocyte, which develops from a stem cell processed in the thymus gland, that is responsible for cell-mediated immunity. *See also* T cytotoxic cells, T helper cells, T regulatory cells.
- TCRs (T cell receptors)** Molecules on T cells that recognize antigens.
- T cytotoxic (T_C) cells** A precursor to a cytotoxic T lymphocyte.
- T helper (T_H) cell** A specialized T cell that often interacts with an antigen before B cells interact with the antigen.
- T regulatory (T_{reg}) cells** Lymphocytes that appear to suppress other T cells.
- T-dependent antigen** An antigen that will stimulate the formation of antibodies only with the assistance of T helper cells. *See also* T-independent antigen.
- teichoic acid** A polysaccharide found in gram-positive cell walls.
- telomere** Noncoding regions of DNA at the ends of eukaryotic chromosomes.
- teleomorph** The sexual stage in the life cycle of a fungus; also refers to a fungus that produces both sexual and asexual spores.
- temperate phage** A phage capable of lysogeny.
- temperature abuse** Improper food storage at a temperature that allows bacteria to grow.
- terminator** The site on a DNA strand at which transcription ends.
- tertiary sewage treatment** A method of waste treatment that follows conventional secondary sewage treatment; nonbiodegradable pollutants and mineral nutrients are removed, usually by chemical or physical means.
- tetrad** A group of four cocci.
- thallus** The entire vegetative structure or body of a fungus, lichen, or alga.
- thermal death point (TDP)** The temperature required to kill all the bacteria in a liquid culture in 10 minutes.
- thermal death time (TDT)** The length of time required to kill all bacteria in a liquid culture at a given temperature.
- thermoduric** Heat resistant.
- thermophile** An organism whose optimum growth temperature is between 50°C and 60°C; a heat loving microbe.
- thermophilic anaerobic spoilage** Spoilage of canned foods due to the growth of thermophilic bacteria.
- thylakoid** A chlorophyll-containing membrane in a chloroplast. A bacterial thylakoid is also known as a chromatophore.
- thymus** A mammalian organ responsible for maturation of the immune system.
- thymic selection** Elimination of T cells that don't recognize self antigens (major histocompatibility complex).
- tincture** A solution in aqueous alcohol.
- T-independent antigen** An antigen that will stimulate the formation of antibodies without the assistance of T helper cells. *See also* T-dependent antigen.
- tinea** Fungal infection of hair, skin, or nails.
- Ti plasmid** A tumor-inducing plasmid that can be incorporated into a host plant chromosome; found in *Agrobacterium*.
- titer** An estimate of the amount of antibodies or viruses in a solution; determined by serial dilution and expressed as the reciprocal of the dilution.
- TLR (Toll-like receptor)** Transmembrane protein of immune cells that recognizes pathogens and activates an immune response directed against those pathogens.
- topoisomerase** Enzyme that relaxes supercoiling of DNA ahead of replication fork; separates DNA circles at the end of DNA replication.
- total magnification** The magnification of a microscopic specimen, determined by multiplying the ocular lens magnification by the objective lens magnification.
- toxemia** The presence of toxins in the blood.
- toxicogenicity** The capacity of a microorganism to produce a toxin.
- toxin** Any poisonous substance produced by a microorganism.
- toxoid** An inactivated toxin.
- T plasmid** An *Agrobacterium* plasmid carrying genes for tumor induction in plants.
- trace element** A chemical element required in small amounts for growth.
- trans** Hydrogen atoms on opposite side across a double bond in a fatty acid. *See cis.*
- transamination** The transfer of an amino group from an amino acid to another organic acid.
- transcription** The process of synthesizing RNA from a DNA template.
- transduction** The transfer of DNA from one cell to another by a bacteriophage. *See also* generalized transduction; specialized transduction.
- transferrin** One of several human iron-binding proteins that reduce iron available to a pathogen.
- transfer RNA (tRNA)** The type of RNA molecule that brings amino acids to the ribosomal site where they are incorporated into proteins.

- transfer vesicle** Membrane-bound sacs that move proteins from the Golgi complex to specific areas in the cell.
- transformation** (1) The process in which genes are transferred from one bacterium to another as “naked” DNA in solution. (2) The changing of a normal cell into a cancerous cell.
- transient microbiota** The microorganisms that are present in an animal for a short time without causing a disease.
- translation** The use of mRNA as a template in the synthesis of protein.
- transmission electron microscope (TEM)** An electron microscope that provides high magnifications (10,000–100,000 \times) of thin sections of a specimen.
- transport media** Media used to keep microorganisms alive between sample collection and laboratory testing; usually used for clinical samples.
- transport vesicle** Membrane-bound sacs that move proteins from the rough ER to the Golgi complex.
- transporter protein** A carrier protein in the plasma membrane.
- transposon** A small piece of DNA that can move from one DNA molecule to another.
- trickling filter** A method of secondary sewage treatment in which sewage is sprayed out of rotating arms onto a bed of rocks or similar materials, exposing the sewage to highly aerobic conditions and microorganisms.
- triglyceride** A simple lipid consisting of glycerol and three fatty acids.
- triplex agent** A short segment of DNA that binds to a target area on a double strand of DNA blocking transcription.
- trophophase** The period in the production curve of an industrial cell population in which the primary metabolites are formed; a period of rapid, logarithmic growth. *See also* idiophase.
- trophozoite** The vegetative form of a protozoan.
- tuberculin skin test** A skin test used to detect the presence of antibodies to *Mycobacterium tuberculosis*.
- tumor necrosis factor (TNF)** A polypeptide released by phagocytes in response to bacterial endotoxins.
- tumor-specific transplantation antigen (TSTA)** A viral antigen on the surface of a transformed cell.
- turbidity** The cloudiness of a suspension.
- turnover number** The number of substrate molecules acted on per enzyme molecule per second.
- two-photon microscope** A light microscope that uses fluorescent stains and long wavelength light.
- ubiquinone** A low-molecular weight, nonprotein carrier in an electron transport chain; also called coenzyme Q.
- ultra-high-temperature (UHT) treatment** A method of treating food with high temperatures (140–150°C) for very short times to make the food sterile so that it can be stored at room temperature.
- uncoating** The separation of viral nucleic acid from its protein coat.
- undulating membrane** A highly modified flagellum on some protozoa.
- unsaturated** A fatty acid with one or more double bonds.
- use-dilution test** A method of determining the effectiveness of a disinfectant using serial dilutions.
- vaccination** The process of conferring immunity by administering a vaccine; also called immunization.
- vaccine** A preparation of killed, inactivated, or attenuated microorganisms or toxoids to induce artificially acquired active immunity.
- vacuole** An intracellular inclusion, in eukaryotic cells, surrounded by a plasma membrane; in prokaryotic cells, surrounded by a proteinaceous membrane.
- valence** The combining capacity of an atom or a molecule.
- vancomycin** An antibiotic that inhibits cell wall synthesis.
- variolation** An early method of vaccination using infected material from a patient.
- vasodilation** Dilation or enlargement of blood vessels.
- VDRL test** A rapid screening test to detect the presence of antibodies against *Treponema pallidum*. (VDRL stands for Venereal Disease Research Laboratory.)
- vector** (1) A plasmid or virus used in genetic engineering to insert genes into a cell. (2) An arthropod that carries disease-causing organisms from one host to another.
- vegetative** Referring to cells involved with obtaining nutrients, as opposed to reproduction.
- vehicle transmission** The transmission of a pathogen by an inanimate reservoir.
- vertical gene transfer** Transfer of genes from an organism or cell to its offspring.
- vesicle** (1) A small serum-filled elevation of the skin. (2) Smooth oval bodies formed in plant roots by mycorrhizae.
- V factor** NAD⁺ or NADP⁺.
- vibrio** (1) A curved or comma-shaped bacterium. (2) When written as a genus (*Vibrio*), a gram-negative, motile, facultatively anaerobic curved rod.
- viral hemagglutination** The ability of certain viruses to cause the clumping of red blood cells in vitro.
- viral hemagglutination inhibition test** A neutralization test in which antibodies against particular viruses prevent the viruses from clumping red blood cells in vitro.
- viral species** A group of viruses sharing the same genetic information and ecological niche.
- viremia** The presence of viruses in the blood.
- virion** A complete, fully developed viral particle.
- viroid** Infectious RNA.
- virology** The scientific study of viruses.
- virulence** The degree of pathogenicity of a microorganism.
- virus** A submicroscopic, parasitic, filterable agent consisting of a nucleic acid surrounded by a protein coat.
- volutin** Stored inorganic phosphate in a prokaryotic cell. *See also* metachromatic granule.
- Western blotting** A technique that uses antibodies to detect the presence of specific proteins separated by electrophoresis.
- whey** The fluid portion of milk that separates from curd.
- xenobiotics** Synthetic chemicals that are not readily degraded by microorganisms.
- xenodiagnosis** A method of diagnosis based on exposing a parasite-free normal host to the parasite and then examining the host for parasites.
- xenotransplantation product** A tissue graft from another species; also called xenograft.
- X factor** Substances from the heme fraction of blood hemoglobin.
- yeast** Nonfilamentous, unicellular fungi.
- yeast infection** Disease caused by growth of certain yeasts in a susceptible host.
- zone of inhibition** The area of no bacterial growth around an antimicrobial agent in the disk-diffusion method.
- zoonosis** A disease that occurs primarily in wild and domestic animals but can be transmitted to humans.
- zoospore** An asexual algal spore; has two flagella.
- zygospore** A sexual fungal spore characteristic of the zygomycetes.
- zygote** A diploid cell produced by the fusion of two haploid gametes.

CREDITS

Text and Illustration Credits

All text credits are on page unless otherwise noted.

All illustrations by Precision Graphics unless otherwise noted.

2.1, 2.3, 2.9, 2.12, 2.14, 2.15: Figures 2.1, 2.4, 2.6, 2.12, 2.13, 2.14 from *Principles of Anatomy & Physiology*, 8th ed., by G. J. Tortora and S. R. Grabowski. Copyright © 1996. Reprinted with permission of John Wiley & Sons, Inc.

4.22, 4.24, 4.25, 4.26: Figures 3.1, 3.25, 3.20, 3.21 from *Principles of Anatomy and Physiology*, 9th ed., by Tortora & Grabowski. Copyright © 2000. Reprinted by permission of John Wiley & Sons, Inc.

5.1: Figure 25.1 from *Principles of Anatomy & Physiology*, 8th ed., by G. J. Tortora and S. R. Grabowski. Copyright © 1996. Reprinted with permission of John Wiley & Sons, Inc.

Table 6.3: Table 4.2, p. 89 from *Biology of Microorganisms* 13th ed., by Michael T. Madigan, John M. Martinko, David A. Stahl and David P. Clark. Copyright © 2012. Printed and electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.

8.7: Figure 3.1 from *Dealing with Genes* by Paul Berg & Maxine Singer. Copyright © 1992. Reprinted by permission of University Science Books.

Table 13.2: Derived from material in *Archives of Virology*: Supplementum 2: Classification and Nomenclature of Viruses, Fifth Report of the International Committee on Taxonomy of Viruses ed. by R. I. B. Franki et al., 1991, Springer-Verlag AND *Virus Taxonomy*: Classification and Nomenclature of Viruses, 8th Report of the International Committee on Taxonomy of Viruses by C. Fauquet, et al., 2005, Elsevier.

16.5: Figures 22.1 and 22.10 from *Principles of Anatomy and Physiology*, 7th ed., by Tortora and Grabowski. Copyright © 1992. Reprinted by permission of John Wiley & Sons, Inc.

19.14, 19.15: Redrawn from "Immunopathogenesis of HIV Infection" by P.D. Greenberg, illustrated by Ilil Arbel, Hospital Practice, 27(2): 109–117, 121, 124 (February 15, 1992). **19.17:** UNAIDS REPORT ON THE GLOBAL AIDS EPIDEMIC 2010 and World Health Organization.

20.21: Figure 11.30, p. 428 in *Biology of Microorganisms*, 7th ed., by Thomas D. Brock, Michael Madigan, John Martinko, and Jack Parker. Copyright © 1994. Printed and electronically reproduced by permission of Pearson Education Inc., Upper Saddle River, NJ 07458.

22.11, 22.13, 22.14: CDC 2010. **22.12:** Redrawn and adapted from *Textbook of Human Virology*, 2nd edition by R. B. Belshe (ed.), 1991, Mosby.

25.20: "The worldwide prevalence of human infections with selected intestinal helminths" from <http://www.who.int/whr/en/>. Reprinted by permission of World Health Organization.

Photo Credits

Chapter 1. Opener, 1.1a: Juergen Berger/Photo Researchers. **1.1b:** Biophoto Associates/Photo Researchers. **1.1c:** Andrew Syred/Photo Researchers. **1.1d:** Stephen Durr. **1.1e:** NIBSC/Photo Researchers. **1.2a:** Pfizer. **1.2b:** Christine Case. **1.3:** TEK Image/SPL/Alamy. **1.4.1:** Images from the History of Medicine (NLM). **1.4.2:** KRUUF, Paul de. Mikrobenjäger. Orell Füssli, Zürich, 1927. **1.4.3:** Performing an 1871 surgery in the Lister Surgery Theatre, Edinburgh, Scotland. **1.4.4:** Rockefeller Archive Center. **1.5:** St. Mary's Hospital Medical School/Photo Researchers. **1.6a:** Melian/Erin Silversmith/Rama. **1.6b:** Biophoto Associates/Photo Researchers. **1.7:** SciMAT/Photo Researchers. **1.8:** Rodney M. Donlan and Janice Carr, CDC. **1.AM:** Sascha Drewlo.

Chapter 2. Opener: Scott Camazine/Photo Researchers.

Chapter 3. Opener: Juergen Berger/Photo Researchers. **3.1a:** Leica Microsystems. **3.2.1:** The Scanning Probe Microscopy Unit/University of Bristol, UK. **3.2.2:** Eye of Science/Photo Researchers. **3.2.3:** Scimat/Photo Researchers. **3.2.4:** Mae Melvin, CDC. **3.2.5:** Tom Murray/BugGuide.net. **3.4, 3.14a, 3.T2.1–3:** L. Brent Selinger, Pearson Science. **3.5, 3.T2.4:** M. I. Walker/Photo Researchers. **3.6b, 3.T2.5:** CDC. **3.7, 3.8, 3.T2.6–7:** Anne Aubusson-Fleury, Centre de Génétique Moléculaire, CNRS. **3.9, 3.T2.8:** Good, MS; Wend, CF; Bond, LJ; McLean, JS; Panetta, PD; Ahmed, S; Crawford, SL; Daly, DS. "An estimate of biofilm properties using an acoustic microscope." *Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions*, Volume 53, Issue 9, Sept. 2006 Page(s):1637–1648. Figure 5B, page 1642. © 2006

IEEE. **3.10a, 3.T2.9:** Douglas Bray, Pearson Science. **3.10b, 3.T2.10:** Andrew Syred/Photo Researchers. **3.11a, 3.T2.11:** M. Amrein et al., "Scanning Tunneling Microscopy of recA-DNA Complexes Coated with a Conducting Film," *Science*, 1988 Apr 22; 240(4851):514–6. Reprinted with permission. ©1988 AAAS. **3.11b, 3.T2.12:** Reprinted by permission from Macmillan Publishers, Ltd. D. M. Czajkowsky, et al., "Vertical Collapse of a Cytolysin Prepore Moves its Transmembrane Beta-hairpins to the Membrane," *EMBO*, 2004 Aug 18; 23(16):3206. **3.12b:** CC-BY-SA image: Y tambe. **3.13:** Rich Robison, Pearson Science. **3.14b:** Joseph W. Duris and Silvia Rossbach, Western Michigan University. **3.14c:** Eric Graves/Photo Researchers.

3AM.1: Eshel Ben-Jacob, School of Physics and Astronomy, Tel Aviv U., Israel. **3AM.2:** Sebastian Vilain. **3AM.3:** Heinrich Lünsdorf, Helmholtz Center for Infection Research, Germany. **3.CC1:** From: "Discovery by Jaworski of Helicobacter pylori and its pathogenetic role in peptic ulcer, gastritis and gastric cancer." JW Konturek. *J Physiol Pharmacol*. 2003 Dec;54 Suppl 3:23–41. **3.CC2:** From: Helicobacter—The Ease and Difficulty of a New Discovery, Nobel Lecture by J. Robin Warren, December 8, 2005. © The Nobel Foundation 2005. **3CC3:** Barry Marshall and Alfred Tay, The University of Western Australia. **3.SQ:** Biophoto Associates/Science Source/Photo Researchers.

Chapter 4. Opener: Scimat/Photo Researchers. **4.1a.1:** Oliver Meckes and Nicole Ottawa/Photo Researchers. **4.1a.2:** Eye of Science/Photo Researchers. **4.1b:** Gopal Murti/Photo Researchers. **4.1c:** From: "Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin." P. Giesbrecht, T. Kersten, H. Maidhof, and J. Wecke. *Microbiol Mol Biol Rev*. 1998 Dec;62(4):1371–414; Figure 2a. **4.1d:** David McCarthy/Photo Researchers. **4.2ab:** Manfred Kage/Peter Arnold/Photolibrary. **4.2c:** CNRI/Photo Researchers. **4.2d, 4.4b:** Gary Gauger/Photo Researchers. **4.3:** N.H. Mendelson and J.J. Thwaites, *ASM News* 59: 25, 1993. F2 Reprinted by permission. **4.4a:** London School of Hygiene/Photo Researchers. **4.4c:** Stem Jems/Photo Researchers. **4.5a:** Horst Volker and Heinz Schlesner, Institut für Allgemeine Mikrobiologie, Kiel/Michael Thomm. **4.5b:** H. W. Jannasch, Woods Hole Oceanographic Institution. **4.6:** Stanley C. Holt, University of Texas Health Center/Biological Photo Service. **4.7a:** Science Source/Photo Researchers. **4.7b:** Kwangshin Kim/Photo Researchers. **4.7c:** Biomedical Imaging Unit, Southampton General Hospital/SPL/Photo Researchers. **4.7d:** Ed Reschke/Peter Arnold/Photolibrary. **4.9b:** Lee D. Simon/Science Source/Photo Researchers. **4.10a:** Custom Medical Stock Photo. **4.11:** Kwangshin Kim/Photo Researchers. **4.14a:** T. J. Beveridge/Biological Photo Service. **4.15:** H. S. Pankratz and R. L. Uffen, Michigan State U./Biological Photo Service. **4.16b:** Christine Case. **4.20:** R. B. Frankel. **4.21b:** Tony Brain/Photo Researchers. **4.22b.1:** Biophoto Associates/Photo Researchers. **4.22b.2:** D.W. Fawcett/Photo Researchers. **4.23a:** David M. Phillips/Photo Researchers. **4.23b:** Aaron J. Bell/Photo Researchers. **4.24c:** CNRI/SPL/Photo Researchers. **4.25b:** R. Bolender and D. Fawcett/Photo Researchers. **4.26b:** Biophoto Associates/Photo Researchers. **4.27b:** Keith Porter/Photo Researchers. **4.28b:** Electron micrograph by Wm. P. Wergin, courtesy of E. H. Newcomb, University of Wisconsin. **4.AM:** Dean Soulia and Lynn Margulies/University of Massachusetts **4.T1:** L. Brent Selinger, Pearson Science.

Chapter 5. Opener: SPL/Photolibrary. **5.4b:** T.A. Steitz, Yale University. **5.11:** Jovan Nikolic/Shutterstock. **5.22, 5.23, 5.24, 5.CF:** Christine Case. **5.AM:** moodboard/Fotolia.

Chapter 6. Opener: Scimat/Photo Researchers. **6.7:** Anaerobe Systems (www.anaerobesystems.com). **6.8:** Jim Gathany, CDC. **6.9, 6.10, 6.11b, 6.16, 6.18b, 6.CC:** Christine Case. **6.12b:** Lee D. Simon/Photo Researchers. **6.15:** Patrick Polito, Life Sciences Division, Ethox International, A Moog Company. **6.18a:** From: "Bismuth dimercaptopropanol (BiBAL) inhibits the expression of extracellular polysaccharides and proteins by *Brevundimonas diminuta*: implications for membrane microfiltration." A.R. Badireddy, S. Chellam, S. Yanina, P. Gassman, K.M. Rosso, *Biotechnol Bioeng*. 2008 Feb 15;99(3):634–43. **6.AM:** Al Giddings/Al Giddings Images.

Chapter 7. Opener: Charles D. Humphrey, CDC. **7.1.1:** oksana2010/Shutterstock. **7.1.2:** donatas1205/Shutterstock. **7.3, 7.6, 7.CF:** Christine Case. **7.8:** CDC.

Chapter 8. Opener, 8.1a, 8.30a: Gopal Murti/Photo Researchers. **8.6a:** From: *Molecular Biology of the Cell*. 4th edition. B. Alberts, et al. New York: Garland Science; 2002, Figure 5–6. Copyright © 2002. **8.7:** M. Guthold (Wake Forest University) & C. Bustamante (University of California, Berkeley). **8.10:** E.V. Kiseleva. **8.27a:** Charles C. Brinton, Jr., University of Pittsburgh. **8.27b:** Omikron/Photo Researchers. **8.CC:** L. Brent Selinger, Pearson Science. **8.CF:** Linda Stannard, UCT/Photo Researchers.

- Chapter 9. Opener:** Chris Bjornberg/Photo Researchers. **9.1.1:** Pixtal/age fotostock. **9.1.2:** Exactstock/SuperStock. **9.1.3:** GraÃ§a Victoria/Shutterstock. **9.1.4:** Timothy Tadder/Spirit/Corbis. **9.5b:** From D. Cheney and B. Metz, unpublished. **9.6:** Reproduced by permission from D'Arcy, C. J., D. M. Eastburn, and G. L. Schumann. 2001. *Illustrated Glossary of Plant Pathology. The Plant Health Instructor*. DOI: 10.1094/PHI-I-2001-0219-01. **9.7:** Claude Cortier/age fotostock. **9.10:** Matt Meadows/Peter Arnold/Photolibrary. **9.13:** Secchi-Lecaque/Roussel-UCLL/SPL/Photo Researchers. **9.16:** Kenneth Rosen. **9.17:** CDC. **9.18:** R. S. Oremland et al., "Structural and Spectral Features of Selenium Nanoparticles Produced by Se-respiring Bacteria." *Applied Environmental Microbiology*, 2004 Jan; 70(1):52-60, F1A. © 2004, American Society for Microbiology. **9.19:** Holt Studios International Ltd./Alamy. **9.CC01:** From: "Diagnostic analysis of the Rubinstein-Taybi syndrome: five cosmid should be used for microdeletion detection and low number of protein truncating mutations." F. Petrij et al. *J Med Genet*. 2000 Mar;37(3):1. **9.CF0b:** Parshionikar, S.U.; Willian-True, S.; Fout, G.S.; Robbins, D.E.; Seyns, S.A.; Cassady, J.D.; and Harris, R. "Waterborne Outbreak of Gastroenteritis Associated with a Norovirus." *Applied and Environmental Microbiology*, September 2003, p. 5263-5268, Vol. 69, No. 9, Fig. 2. **9.SQ2:** Christine Case. **9.SQ3:** Mike Zeller, Office of Biotechnology, Iowa State Univ.
- Chapter 10. Opener:** A. Barry Dowsett/Photo Researchers. **10.3:** Jerome Pickett-Heaps/Photo Researchers. **10.4a:** Georgette Douwma/Nature Picture Library. **10.4b:** **10.9, 10.10:** Christine Case. **10.4c:** S. M. Awramik, U. of California/Biological Photo Service. **10.11:** L. Brent Selinger, Pearson Science. **10.12:** CDC. **10.13:** Chris Jones, University of Leeds. **10.14:** State Laboratories Division, Hawaii Department of Health. **10.17a:** Volker Steger/SPL/Photo Researchers. **10.17d:** Jonathan Frye, U.S. Department of Agriculture. **10.18:** V. A. Kempf, K. Trebesius, I. B. Autenrieth, "Fluorescent In Situ Hybridization Allows Rapid Identification of Microorganisms in Blood Cultures," *Journal of Clinical Microbiology*, 2000 Feb; 38(2):830-8, F1. © 2000, American Society for Microbiology. **10.AM:** Darryl W. Bush, Marine World/Africa USA, Vallejo, CA. **10.CC:** Canada Communicable Disease Report (CCDR) 2005: Volume 31. Public Health Agency of Canada. **10.T1.1:** Oliver Meckes/Nicole Ottawa/Photo Researchers. **10.T1.2:** Scimat/Photo Researchers. **10.T1.3:** Center for Microscopy and Imaging, Smith College, Northampton, MA.
- Chapter 11. Opener, 11.16:** Eye of Science/Photo Researchers. **11.1:** USDA/APHIS Animal And Plant Health Inspection Service. **11.2b:** Yves Brun. **11.3:** R. L. Moore/Biological Photo Service. **11.4:** Eric V. Grave/Photo Researchers. **11.5:** From: "Studies on the filamentous sheathed iron bacterium *Sphaerotilus natans*." J. L. Stokes. *J Bacteriol*. 1954 Mar;67(3):278-91. **11.6:** From: "Type IV Pilus Structure by Cryo-Electron Microscopy and Crystallography: Implications for Pilus Assembly and Functions." L. Craig, et al. *Mol Cell*. 2006 Sep 1;23(5):651-62. **11.7:** Linda Stannard, U. of Cape Town/Photo Researchers. **11.8:** London School of Hygiene & Tropical Medicine/Photo Researchers. **11.9a:** A. Barry Dowsett/Photo Researchers. **11.9b:** Pablo Zunino, Laboratorio de Microbiologia, Instituto de Investigaciones Biológicas Clemente Estable. **11.10:** S. Rendulic, J. Berger, and S. Schuster, Max-Planck-Institute. **11.11b:** Heinrich Lünsdorf, Helmholtz Center for Infection Research, Germany. **11.12:** B. Dowsett, CAMR/Photo Researchers. **11.13:** Custom Medical Stock Photo. **11.14:** Esther R. Angert. **11.15a:** From Hannay and Fitz James, Canadian Journal of Microbiology 1, 1955/National Research Council of Canada. **11.15b:** From: R.E. Strange and J.R. Hunter, in G.W. Gould and A. Hurst (eds) *The Bacterial Spore*, 1969, p.461, figure 4. (Orlando, FL: Academic Press, 1969). **11.17:** SciMAT/Photo Researchers. **11.18a:** From D. C. Krause and D. Taylor-Robinson, 1992. Mycoplasmas which Infect Humans, F1. in J. Maniloff et al., eds., *Mycoplasmas: Molecular Biology and Pathogenesis*. Reproduced by permission of the American Society for Microbiology. **11.18b:** Michael Gabridge/Custom Medical Stock Photo. **11.19b:** Kitasato University. **11.20:** From: *Scanning Electron Micrographs and Gram Stains of Selected Anaerobic Pathogens*, by A.S. Klainer, J.L. LeFrock. Copyright ©: 1976. The Upjohn Company, Kalamazoo, Michigan, USA. **11.21:** L. Brent Selinger, Pearson Science. **11.22:** Kurt Reed, Marshfield Medical Research Foundation. **11.23:** Jenny Wang, Cheryl Jenkins, Richard I. Webb, and John A. Fuerst. "Isolation of Gemmata-Like and Isosphaera-Like Planctomycete Bacteria from Soil and Freshwater." *Applied and Environmental Microbiology*, January 2002, p. 417-422, Vol. 68, No. 1, Fig. 1c. **11.24:** Chris Bjornberg/Photo Researchers, Inc. **11.25:** Paul Johnson/Biological Photo Service. **11.26:** J. A. Breznak and H. S. Pankratz/Biological Photo Service. **11.27:** Karl O. Stetter. **11.28:** National Library of Medicine. **11.AM:** University of Bath. **11.CC1:** The Clinical Chemistry and Hematology Laboratory, Wadsworth Center, NY State Department of Health (www.wadsworth.org). **11.CC2:** Hardy Diagnostics (www.HardyDiagnostics.com).
- Chapter 12. Opener:** E. Gueho/CNRI/Photo Researchers. **12.1.1, 12.1.5, 12.6b, 12.8, 12.10.1:** Biophoto Associates/Photo Researchers. **12.1.2, 12.31:** James Gathany, CDC. **12.1.3:** Eye of Science/Photo Researchers. **12.1.4:** Sarah Spaulding, U.S. Geological Survey. **12.3, 12.5, 12.10, 12.11, 12.12, 12.23:** Christine Case. **12.4:** SPL/Photo Researchers. **12.6a:** BSIP/Photo Researchers. **12.6cd, 12.18b:** David M. Phillips/Photo Researchers. **12.6e, 12.7.2:** Jeremy Burgess/Photo Researchers.
- 12.7.1:** Ed Reschke/Peter Arnold Images/Photolibrary. **12.9.1:** Dijksterhuis, J (2007). "Heat resistant ascospores," in J. Dijksterhuis and R.A. Samson (eds), *Food Mycology: A multifaceted look at fungi and food*. Taylor and Francis, Boca Raton, Florida, USA, pp.101-117. CRCpress. **12.9.2:** Dijksterhuis, J; Nijssse, J; Hoekstra, FA; Golovina, EA. "High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress-resistant spores." *Eukaryot Cell*. 2007 Feb;6(2):157-70. Epub 2006 Nov 10, Fig. 7. **12.13a:** Dean Janiak. **12.14a:** Steve Gschmeissner/SPL/Photo Researchers. **12.16.1:** Chad Bischoff (Funguy10). **12.16.2:** Felicia McCaulley. **12.16.3:** Yuuji Tsukii, Hosei University, Japan. **12.17:** Michael Abbey/Photo Researchers. **12.18c:** Mary Anne Harrington, TML/MSH Shared Microbiology Service. **12.18d, 12.CF:** Melanie Moser, CDC/DPDx. **12.18e:** Eric Graves/Photo Researchers. **12.19b:** From: "Alteration of isoenzyme patterns of a cloned culture of non pathogenic Entamoeba histolytica upon changes in growth conditions." D. Mirelman, et al. *Arch Invest Med (Mex)*. 1986;17 Suppl 1:187-93. Copyright Elsevier 1986. **12.21b:** Frank Fox/Photo Researchers. **12.22:** From: "The cover of the Journal of Cell Science." Image by M. J. Grimson and R. L. Blanton, Texas Tech University, Lubbock, TX. *J Cell Sci*. 2001 Dec;114(24). **12.24:** D. O. Rosenberry, 2001, "Malformed Frogs in Minnesota: An Update: USGS Water Fact Sheet" FS-043-01. Photo by David Hoppe. **12.25b,** **12.28.2:** Steve J. Upton, Parasitology Research, Division of Biology, Kansas State Univ. **12.26.1:** drbimages/iStockphoto. **12.26.2:** Masalski Maksim/Shutterstock. **12.26.3, 12.SQ1.2:** lauriek/iStockphoto. **12.27:** Andrew Syred/Photo Researchers. **12.28.1:** M. B. Hildreth, M. D. Johnson, K. R. Kazacos, *Echinococcus Multilocularis*: A Zoonosis of Increasing Concern in the United States, Compendium on Continuing Education for the Practicing Veterinarian, 1991 May; 13 (5): 727-41. **12.28.3:** Maxim Kulko/Shutterstock. **12.28.4:** James Pierce/Shutterstock. **12.28.5:** michaeljung/Shutterstock. **12.29a:** Steve Gschmeissner/Photo Researchers. **12.30:** Atkins, C.E.: "Heartworm Caval Syndrome." *Sem. Vet. Med. Surg.* 2:64-71, 1987. **12.32:** Tom Murray/BugGuide.Net. **12.CC1:** Lucille K. Georg, CDC. **12.CC2:** Connie Nichols, Duke University Medical Center. **12.SQ1.1:** SeDmi/Shutterstock. **12.SQ2:** Libero Ajello, CDC. **12.SQ3:** Ray Wilson Bird and Wildlife Photography.
- Chapter 13. Opener:** Alfred Pasieka/Photo Researchers. **13.2b:** R. C. Valentine and H. G. Pereira, Journal of Molecular Biology/Biological Photo Service. **13.3b:** Hazel Appleton, Health Protection Agency Centre for Infections/Photo Researchers. **13.4b:** Frederick A. Murphy, CDC. **13.5:** Eye of Science/Photo Researchers. **13.6:** Christine Case. **13.9:** From: "A novel cytotoxin from *Clostridium difficile* serogroup F is a functional hybrid between two other large clostridial cytotoxins." E. Chaves-Olarte, et al. *J Biol Chem*. 1999 Apr 16;274(16):11046-52. **13.14a:** From: *Medical Virology*, 4th ed. D. O. White and F. J. Fenner. Academic Press California (1994). **13.14b.1:** Chris Bjornberg/Photo Researchers. **13.16a:** C. Garon and J. Rose, CDC. **13.16b,** **13.18b:** Linda Stannard, U. of Cape Town/Photo Researchers. **13.18a:** Frederick A. Murphy, Univ. of Texas Medical Branch, Galveston. **13.20b:** NIBSC/Photo Researchers. **13.23:** USDA/Agricultural Research Service Honey Breeding.
- Chapter 14. Opener:** SciMAT/Photo Researchers. **14.1a:** Juergen Berger/Photo Researchers. **14.1b:** SPL/Photo Researchers. **14.1c:** Stephanie Schuller/Photo Researchers. **14.2.1:** Eye of Science/Photo Researchers. **14.2.2:** P.M. Motta & F. Carpinio/Univ. "La Sapienza"/Photo Researchers. **14.2.3:** NIBSC/Photo Researchers. **14.6a:** Monkey Business Images/Shutterstock. **14.6b:** Levent Konuk/Shutterstock. **14.6c:** Stockbyte Platinum/Alamy. **14.6d:** Andrew Davihazy, Photo Arts and Sciences at Rochester Institute of Technology. **14.7, 14.CF1.2:** iStockphoto. **14.8:** Imagebroker/Alamy. **14.CF1.1:** Christine Case.
- Chapter 15. Opener:** Eye of Science/Photo Researchers. **15.1b:** SPL/Photo Researchers. **15.1c:** Gillette Corporation/Photo Researchers. **15.2:** Reproduced by permission from C. Giocino, S. Olmstead, C. Wells, and J. E. Galan, "Contact with Epithelial Cells Induces the Formation of Surface Appendages on *Salmonella Typhimurium*." *CELL*, 1994 Feb 25; 76(4):717-24. Copyright © 1994 by Elsevier Science Ltd. **15.4.1:** Gary Gaugler/Photo Researchers. **15.4.2:** Janice Haney Carr, CDC. **15.7a:** Frederick A. Murphy, School of Veterinary Medicine, U. of California Davis. **15.7b:** Diana Hardie, U. of Cape Town Medical School, South Africa. **15.8:** John P. Bader/Biological Photo Service. **15.9.1:** C. S. Goldsmith and A. Balish, CDC. **15.9.2:** Biophoto Associates/Photo Researchers. **15.9.3:** Cecil H. Fox/Photo Researchers. **15.AM.1:** Zephyr/Photo Researchers. **15.AM.2:** From: Necrotizing fasciitis in a newborn infant: a case report. V.I. Krebs, et al. *Rev Hosp Clin Fac Med Sao Paulo*. 2001 Mar-Apr;56(2):59-62. **15.CC1:** National Eye Institute, National Institutes of Health. **15.CC4.1:** Janice Carr, CDC. **15.CC4.2:** Jason D. Pimentel.
- Chapter 16. Opener:** SPL/Photo Researchers. **16.2:** Ed Reschke/Peter Arnold/Photolibrary. **16.4:** Anatomical Travelogue/Photo Researchers. **16.6, 16.7:** Eye of Science/Photo Researchers. **16.10:** R.D. Schreiber, D.C. Morrison, E.R. Podack and H.J. Muller-Eberhard, "Bactericidal activity of the alternative complement pathway generated from 11 isolated plasma proteins." *Journal of Experimental Medicine*. 1979; 149:870-82. Copyright © 1979 by Rockefeller University Press. **16.T1.1-6, 10:** Barbara Safiejko-Mroczka and Paul B. Bell Jr./Dept. of Zoology, U. of Oklahoma. **16.T1.7:** Nivaldo Medeiros, www.hematologyatlas.com. **16.T1.8:** Giuseppe Bigi/www.giuseppebigi.it. **16.T1.9, 11:** Copyright American Society of Hematology. All rights reserved.

- Chapter 17. Opener:** Eye of Science/Photo Researchers. **17.3c:** Zhipeng Shao, University of Virginia. **17.9a:** Kato, T. & Owen, R. L. (2005) in *Mucosal Immunology*, eds. Mestecky, J., Lamm, M. E., Strober, W., Bienenstock, J. & McGhee, J. R., Mayer, L. (Elsevier Academic Press, San Diego), pp. 131–151.
- 17.13:** Gopal Murti/Photo Researchers. **17.14:** Marion Schneider and Andreas Haueise, Sektion Experimentelle Anästhesiologie Universitätsklinikum Ulm, Germany (www.uni-ulm.de/exppane). **17.15:** Lennart Nilsson, Albert Bonniers Forlag AB. **17.16b:** Anthony Butterworth. **17AM.1:** Crystal structure of IL-12 as published in the Protein Data Bank (PDB: 1F45) Rendered with Pymol by Ramin Herati. **17AM.2:** AGStockUSA/Alamy. **17.CC:** Billie Ruth Bird, CDC.
- Chapter 18. Opener:** NIBSC/Photo Researchers. **18.1:** Greg Knobloch and Taronna Maines, CDC. **18.4b:** Christine Case. **18.6a:** Biological Photo Service. **18.11a:** Michael Abbey/Photo Researchers. **18.13:** Laurent/Photo Researchers. **18CF:** P. Marazzi/Photo Researchers.
- Chapter 19. Opener:** Steve Gschmeissner/Photo Researchers. **19.1b, 19.11:** Lennart Nilsson, Albert Bonniers Forlag AB. **19.2a:** Thomas Moninger, Central Microscopy Research Facility, University of Iowa. **19.2b:** Andrew Syred/Photo Researchers. **19.3:** James King-Holmes/Photo Researchers. **19.7:** Jim W. Grace/Photo Researchers. **19.8:** Harvard Medical School. **19.12:** J. Krahenbuhl, National Hansen's Disease Laboratory, Baton Rouge, LA. **19.16:** MedicalRF/Photo Researchers. **19CF:** P. Marazzi/Photo Researchers.
- Chapter 20. Opener:** Juergen Berger/Photo Researchers. **20.1:** Michael T. Madigan. **20.3:** Lennart Nilsson, Albert Bonniers Forlag AB. **20.5:** Madeline Bastide, Laboratoire D'Immunologie et Parasitologie, Université de Montpellier, France. **20.17:** Christine Case. **20.18:** AB Biodisk. **20.19:** National Library of Medicine. **20.20:** vichie81/Shutterstock. **20.22:** Arco Images/Alamy. **20.23:** Eddy Vercauteren. **20.CF:** Poppe, C; Martin, LC; Gyles, CL; Reid-Smith, R; Boerlin, P; McEwen, SA; Prescott, JE; and Forward, KR. "Acquisition of Resistance to Extended-Spectrum Cephalosporins by *Salmonella enterica* subsp. *enterica* Serovar Newport and *Escherichia coli* in the Turkey Poult Intestinal Tract." *Applied and Environmental Microbiology*, March 2005, Vol. 71, No. 3, p. 1184–1192, Fig. 1.
- Chapter 21. Opener:** Kwangshin Kim/Photo Researchers. **21.3:** From M. E. Olson, I. Ruseska, and J. W. Costerton, "Colonization of n-butyl-2-cyanoacrylate Tissue Adhesive by *Staphylococcus Epidermidis*," *Journal of Biomedical Materials* 22:485–495. © 1988 by Wiley. Reproduced by permission. **21.4, 21.DF4:** SPL/Photo Researchers. **21.5:** Used with permission of the American Academy of Pediatrics from Red Book Online, 2011. **21.6:** P. P. Cleary, U. of Minnesota School of Medicine/Biological Photo Service. **21.7:** Cavallini/Custom Medical Stock Photo. **21.8:** Ben Barankin, Dermatlas; <http://www.dermatlas.org>. **21.9, 21.17b:** Biophoto Associates/Photo Researchers. **21.10:** Custom Medical Stock Photo. **21.11a:** Peter Usbeck/Alamy. **21.11b, 21.12, 21.DF3:** P. Marazzi/Photo Researchers. **21.14:** Lowell Georgia/Photo Researchers. **21.15:** Franceschini/CNRI/Photo Researchers. **21.16a:** CNRI/Photo Researchers. **21.16b:** Jane Shemilt/Photo Researchers. **21.17a, 21.18, 21.19b:** Eye of Science/Photo Researchers. **21.19a:** BSIP/PIR/Photo Researchers. **21.20:** World Health Organization—Prevention of Blindness and Deafness. **21.CC, 21.CFb, c:** Christine Case. **21.CFa:** Stephen Tristram, School of Human Life Science, Tasmania. **21.DF1:** CDC. **21.DF2:** Natrow Images/Alamy
- Chapter 22. Opener:** London School of Hygiene & Tropical Medicine/Photo Researchers. **22.3:** D. S. Stephens, Emory U. School of Medicine. **22.5:** L. Tilney, P. S. Connelly, and D. A. Portnoy. **22.6:** C. Bell, London, 1865, Images from the History of Medicine (NLM). **22.7:** C. E. Dolman, "Botulism as a World Health Problem," in *Botulism: Proceedings of a Symposium*, edited by K. H. Lewis and K. Cassel, American Public Health Service Publication No. 999-FP-1, 1964. **22.8:** FDA. **22.9a:** Biophoto Associates/Photo Researchers. **22.9b:** Medicimage/Photolibrary. **22.10:** March of Dimes Birth Defects Foundation. **22.15:** Edward J. Bottone, Mount Sinai School of Medicine. **22.17:** D. T. John, T. B. Cole Jr, and F. M. Marciano-Cabral, "Sucker-like Structures on the Pathogenic Amoeba Naegleria fowleri," *Applied Environmental Microbiology*, 1984 Jan; 47(1):12–4, F7.14. **22.18a:** Vla/Photo Researchers. **22.18b:** Ralph Eagle Jr./Photo Researchers. **22.CC3:** A Wilson, Custom Medical Stock Photo. **22.CC4:** © Johan F. De Jonckheere. **22.CF1:** Frederick A Murphy/University of Texas Medical Branch, Galveston. **22.CF2:** Bureau of Land Management. **22.DF1:** Brodsky, CDC. **22.DF2.1:** Jim Gathany, CDC. **22.DF3:** CDC.
- Chapter 23. Opener:** London School of Hygiene & Tropical Medicine/Photo Researchers. **23.3:** SPL/Photo Researchers. **23.4:** Edward P. Ewing, CDC. **23.5:** National Museum of Health and Medicine/Armed Forces Institute of Pathology. **23.7:** Science Source/Photo Researchers. **23.8:** P. Marazzi/Photo Researchers. **23.9:** Gregory G. Dimijian/Photo Researchers. **23.10:** Kordick, DL and Breitschwerdt, EB, "Intraerythrocytic presence of *Bartonella henselae*." *J Clin Microbiol*. 1995 June; 33(6): 1655–1656, Fig. 3. **23.11, 23.DF4:** CDC. **23.14.1:** James Pierce/Shutterstock. **23.14.2:** Eric Isselée/Shutterstock. **23.14.3:** bonzodog/Shutterstock. **23.14.4:** Jessica Peterson/age fotostock. **23.14c:** Scott Camazine/Photo Researchers. **23.15:** James Gathany, CDC. **23.17.1:** Zhukov Oleg/Shutterstock. **23.17.2:** EDHAR/Shutterstock. **23.18:** Custom Medical Stock Photo. **23.19:** M. A. Ansary/Photo Researchers. **23.21:** From: Infectious mononucleosis. K. Luzuriaga, et al. *N Engl J Med*. 2010 May 27;362(21):1993–2000. Image by Adair Seager and Hongbo Yu. **23.22:** T. Geisbert, USAMRIID. **23.23:** Oliver Meckes/Photo Researchers. **23.24.1:** Radius Images/Alamy. **23.24.2:** Eric Isselée/Shutterstock. **23.24.3:** John Foxx/Stockbyte/Thinkstock. **23.24.4:** Composite, Catherine Murray/Karen H. Ilagan/Shutterstock. **23.24.5:** Yurchyk/Dreamstime.com. **23.24.6:** Original photo by A. Kimbal from A Pictorial Presentation of Parasites edited by Herman Zaiman. **23.24.7:** Silvia Botera Kleiven, Smittskyddsinstitutet. **23.26a:** Eye of Science/Photo Researchers. **23.26b:** DPDx: CDC's website for parasitology identification; www.dpd.cdc.gov/dpdx. **23.27:** Walter Reed Army Institute of Research. **23.28.1:** lauriek/iStockphoto. **23.28.2:** EcoView/Fotolia. **23.28b:** NIH/Science Source/Photo Researchers. **23.29:** Original photo by M. Voge from A Pictorial Presentation of Parasites edited by Herman Zaiman. **23.AM:** Georgia Tech Photo: Gary Meek. **23.CF:** Larry Stauffer, Oregon State Public Health Laboratory, CDC. **23.DF1:** Ann Smith/Reproduced with permission of the ASM MicrobeLibrary (<http://www.microbelibrary.org>). **23.DF2:** Sellers/Emory U., CDC. **23.DF3:** A. J. Sulzer, CDC. **23.DF5:** Biophoto Associates/Photo Researchers.
- Chapter 24. Opener:** Kari Lounataa/Photo Researchers. **24.3:** P. Marazzi/Photo Researchers. **24.4:** P. B. Smith, CDC. **24.5:** BSIP/Photo Researchers. **24.6:** Tony Wright, Institute of Laryngology and Otology/SPL/Photo Researchers. **24.7:** J. A. Edwards, N. A. Groathouse, and S. Boitano, "Bordetella Bronchiseptica Adherence to Cilia Is Mediated by Multiple Adhesin Factors and Blocked by Surfactant Protein A," *Infectious Immunology*, 2005 Jun; 73(6):3618–26. Cover Image. © 2005, American Society for Microbiology. **24.8:** Biophoto Associates/Photo Researchers. **24.10:** Dept. of Pediatrics, Princess Margaret Hospital. **24.12:** From: "Relationship between cell surface carbohydrates and intraintrain variation on opsonophagocytosis of *Streptococcus pneumoniae*." J. O. Kim, et al. *JN. Infect Immun*. 1999 May;67(5):2327–33. **24.13:** *Journal of Medical Microbiology*, June 2010; 59 (6). Cover photo, Esaki Muthu Shankar and Ramachandran Vignesh, YRG CARE, VHS Hospital Campus, and Usha Anand Rao, Alm Pgibms, University of Madras, Taramani, Chennai, India. **24.14a:** Moreduin Animal Health Ltd./SPL/Photo Researchers. **24.14b:** National Museum of Health and Medicine/Armed Forces Institute of Pathology. **24.16a:** Libero Ajello, CDC. **24.16b, 24.CF:** CDC. **24.20.1:** A. B. Dowsett/Photo Researchers. **24.20.2:** L. L. Pifer, W. T. Hughes, M. J. Murphy Jr., "Propagation of *Pneumocystis carinii* in Vitro," *Pediatric Research*, 1977 Apr; 11(4):305–16. **24.DF1:** Edgar O. Ledbetter, Visual Red Book on CD-ROM 2001, ©AAP. Used with permission of the American Academy of Pediatrics. **24.DF2:** Christine Case. **24.DF3:** Lenore Haley, CDC.
- Chapter 25. Opener, 25.13:** SPL/Photo Researchers. **25.3:** Hutton D. Slade, *Microbiology Review*, 44:331–384, 1980, F5, ASM News. **25.7:** From B. B. Finlay and P. Cossart, *Science* 276:718–25 (1997). Reproduced by permission of the American Assoc. for the Advancement of Science. **25.11:** London School of Hygiene & Tropical Medicine/Photo Researchers. **25.12:** I. Rosenshine et al., "A Pathogenic Bacterium Triggers Epithelial Signals to Form a Functional Bacterial Receptor That Mediates Actin Pseudopod Formation," *The EMBO Journal*, 1996 June 3; 15(11):2613–24, cover. **25.14:** P. Marazzi/Photo Researchers. **25.15:** Linda Stanard, UCT/Photo Researchers. **25.16:** James Cavallini/Photo Researchers. **25.17:** From Robert Owen et al., "Ultrastructural Observations of Giardiasis in a Murin Model," *Gastroenterology* 76:757–769. ©1979 by the American Gastroenterological Assoc. **25.18:** EM Unit, London School of Hygiene and Tropical Medicine, London, UK. **25.19, 25.22:** Armed Force Institute of Pathology. **25.21:** Original photo by A. Kimball from A Pictorial Presentation of Parasites edited by Herman Zaiman. **25.23:** R. Bungiro and M. Cappello, Yale University. **25.24:** Sinclair Stammers/Photo Researchers. **25.25a:** Mae Melvin, CDC. **25.26.1:** KariDesign/Shutterstock and Ugurhan Betin/iStockphoto. **25.26.2:** Eric Isselée/Shutterstock. **25.26.3, 4:** Dickson Despommier, Mailman School of Public Health, Columbia University (www.trichinella.org). **25.AM.1:** Addison N., Scurlock Collection, Archives Center, National Museum of American History, Smithsonian Institution. **25.CF:** CDC. **25.DF1:** Laura Ahonen. **25.DF2:** Mauro Rodrigues/Shutterstock. **25.DF3.1:** Southern Illinois U./Photo Researchers. **25.DF3.2:** Custom Medical Stock Photo. **25.DF4:** E. L. Palmer, CDC. **25.DF5:** Melanie Moser, CDC/DPDx.
- Chapter 26. Opener, 26.4:** Janice Haney Carr, CDC. **26.6, 26.11c:** CDC. **26.7:** Gary E. Kaiser, <http://student.ccbcmd.edu/~gkaiser/>. **26.8:** David Soper. **26.9:** Michael Abbey/Photo Researchers. **26.11a, 26.15:** Biophoto Associates/Photo Researchers. **26.11b:** Martin M. Rotker/Photo Researchers. **26.12:** Seattle STD/HIV Prevention Training Center at the University of Washington. **26.14:** Michael Remington, U. of Washington Viral Disease Clinic. **26.16:** D. Petrin et al., "Clinical and Microbiological Aspects of *Trichomonas vaginalis*," *Clinical Microbiology Review*, 1998 Apr;11(2):300–17, F1. **26.DF1:** Christine Case. **26.DF2:** M. Rein, CDC. **26.DF3:** Renelle Woodall, CDC.
- Chapter 27. Opener:** Eye of Science/Photo Researchers. **27.1a:** M. F. Brown/Biological Photo Service. **27.1b:** R. L. Peterson/Biological Photo Service. **27.2a:** Mycorrhizal Application, www.mycorrhizae.com. **27.2b:** luca manieri/Fotolia. **27.5:** Holt Studios Int'l. Ltd./Alamy. **27.6:** The Dale A. Zimmerman Herbarium, Western New Mexico University. **27.9:** George Skene/Orlando Sentinel. **27.10:**

Nancy Pierce/Photo Researchers. **27.11:** Peter Herring/imagequestmarine.com. **27.13:** Balance/Photoshot/age fotostock. **27.14:** Courtesy of IDEXX Laboratories. **27.16:** Ron Hendrickson, Water Treatment Plants, City of Fargo, ND. **27.18b:** Virgil Paulson/Biological Photo Service. **27.19:** Environmental Leverage, www.EnvironmentalLeverage.com. **27.20a:** Douglas Munnecke/Biological Photo Service. **27.21a, 27.21b:** Christine Case. **27.SQ02:** Randall Von Wedel, CytoCulture Int'l. **Chapter 28. Opener:** Science Source/Photo Researchers. **28.2:** Packaging Technologies & Inspection, Tuckahoe, NY. **28.4:** International Paper. **28.6b:** The

National Physical Laboratory, UK. **28.8ab:** David M. Frazier/Photo Researchers. **28.8c:** Junebug Clark/Photo Researchers. **28.10b:** From the collection of the North Carolina Biotechnology Center. **28.12:** Manfred Kage/Peter Arnold/Photolibrary. **28.15:** Capstone Microturbines, www.microturbine.com. **28.16a:** Solix Biofuels. **28.16b:** Keith Cooksey/Montana State University. **28.20:** Reproduced by permission of Kelco Biopolymers, San Diego.

Answers. AN12.8.1: SeDmi/Shutterstock. AN12.8.2: lauriek/iStockphoto

INDEX

Note: a *t* following a page number indicates tabular material, an *f* following a page number indicates a figure or illustration, a *b* indicates a boxed feature, and a page number in **boldface** indicates a definition.

A

A-B toxins, 438–439, 438*f*, 441*t*, 442*t*
ALV (*Australian bat lyssavirus*), 630
ABO blood group system, 532–533, 532*t*
IgM antibody and, 483, 526
transfusions and, 532–533
abortions
gas gangrene and, 646
spontaneous, *Campylobacter fetus* and, 313
abscess, 465, 593
in inflammatory response, 464*f*, 465
absorbance (optical density/OD), 175, 176*f*
absorption processes in digestion, 712
Acanthamoeba, 351, 356*t*, 635
Acanthamoeba keratitis, 605
accelerators (chemical), allergic reactions and, 531
accessory glands, of male reproductive system, 745, 745*f*
accidental inoculation, 406
Accutane (isotretinoin), 455, 600
acetaldehyde, 133, 133*f*
acetaminophen, 440
acetate kinase, 115*t*
acetic acid
acetobacter and, 134*t*, 300*t*, 304
bacteria that produce, 300*t*
fermentation and, 132*f*, 134*t*
industrial/commercial use, 134*t*
Acetobacter genus/spp., 134*t*, 137, 300*t*, 304, 806
Acetobacter xylinum, 263
acetoin, 132*f*, 282*b*, 284*f*, 285*f*, 286
acetone, 2
biotechnology and, 244
fermentation and, 132*f*, 134*t*
acetyl CoA (acetyl coenzyme A), 122, 123*f*, 125
in amino acids biosynthesis, 144–145, 145*f*
Krebs cycle and, 125–127, 126*f*
in lipid biosynthesis, 144, 145*f*
in lipid catabolism, 136*f*
in nucleotide biosynthesis, 145–146, 146*f*
acetyl-CoA synthetase, 115*t*
acetyl group, 125, 127
acetylcholine, rabies virus can mimic, 443
acid-anionic surface sanitizers, 196, 202*t*
acid-base balance, 34–36, 35*f*
acid-fast bacteria, 69, 70*f*, 71*t*, 87–88

acid-fast stain, 69, 70*f*, 71*t*, 284
mycolic acid and, 88
acid fuchsin dye, 67
acid precipitation, lichens and, 342
acid-tolerant microbes, 35, 326
acidic dyes, 67
acidic solutions, 34*f*, 35, 35*f*
alkaline *vs.*, 35, 35*f*
microbial growth and, 35, 156
acidophiles, 156
acidophilic archaea, 326
acidophilic inclusion bodies, 443, 445*f*
acidosis, fever and, 466
acids *vs.* bases, 34–36, 34*f*, 35*f*
Acinetobacter baumannii
antibiotic resistance and, 309, 571
as superbug, 580
Acinetobacter genus/spp., 309
genetic transformation naturally occurring in, 233
as normal microbiota of skin, 404*t*, 591
nosocomial infections and, 416*f*
acne, 455, 597*b*, 599–600, 600*f*
bacterial, 319, 597*b*
clindamycin to treat, 570
acoustic microscopy, scanning (SAM), 61, 62*f*, 66*t*
acquired immunity. *See also* adaptive immunity
active *vs.* passive, 494–495, 494*f*
natural *vs.* artificial, 494–495, 494*f*
acquired immunodeficiencies, 544, 544*t*
acquired immunodeficiency syndrome (AIDS). *See AIDS*
acridine dyes, 227
Actimmune (beta interferon), to treat osteoporosis, 473
actin
Listeria uses to self-propel, 435
rearranged by invasions, 435
Actinobacteria, 302*t*, 318–320, 319*f*, 320*f*
as high G + C gram-positive bacteria, 280*f*, 302*t*, 318
Actinomyces genus/spp., 301*t*, 302*t*, 320, 320*f*
actinomycetes informal name for, 318–319
fimbriae of, adherence and, 432
as normal microbiota of mouth, throat, 320, 404*t*
Streptococcus mutans, dextran, and dental plaque, 432, 441, 713
Actinomyces israelii, actinomycosis caused by, 320
Actinomycetales, 302*t*
actinomycetes, 318–319
antibiotics produced by, 550*t*
estimating number of, 177
G + C ratio of, 314
morphology of, 320
reproductive methods, 168

actinomycosis, 320
activated macrophages, 495, 495*f*, 496*f*
activated sludge system, 790–791, 791*f*
activation energy, 113, 114*f*
activation of complement system, 488, 488*f*
active immunity, 498, 498*f*
artificially acquired, 495, 498*f*
naturally acquired, 498, 498*f*
active site of enzymes, 113, 115, 116*f*, 118*f*
active transport processes, 91, 93, 144
ACTs (artemisinin-based combination therapies), 577, 671
acute bacterial endocarditis, 648, 649*b*
acute disease, 409
acute hepatitis B, 730
acute inflammation, 463
acute necrotizing ulcerative gingivitis (trench mouth), 716, 716*f*
acute-phase proteins, 463
acyclovir, 562*t*, 566*t*, 575, 576*f*
to treat herpes encephalitis, 603
to treat shingles, 602
ADA (adenosine deaminase)
deficiency, 16
adapalene (Differin), 599
adaptive immunity, 435, 452, 452*f*, 478–503
active
artificially acquired, 498, 498*f*
naturally acquired, 498, 498*f*
antigens, 481, 481*f*
blood's role in, 643, 644, 645*f*
cellular, 480, 485–487
dual nature of, 479–480, 500*f*
humoral, 479–480, 500*f*
B cells in, 482–486
lymph's role in, 644–645, 645*f*
memory component of, 452, 479, 497, 497*f*
nonself *vs.* self and, 477, 497, 500*f*
passive
artificially acquired, 498, 498*f*
naturally acquired, 498, 498*f*
specificity of, 452
summary, 500*f*
as third line of defense, 452, 452*f*
types of, 497–499, 498*f*
ADCC. *See* antibody-dependent cell-mediated cytotoxicity
Addison's disease, 539*t*
adefovir dipivoxil (Hepsera), 566*t*
to treat hepatitis B, 575
adenine (A), 46*f*, 47, 48*f*, 208
in DNA replication, 210–215, 211*f*–214*f*
exposed to mutagenic nitrous acid, 226, 226*f*
in translation, 215*f*, 216, 216–217*f*
adenine nucleotide, 46*f*, 47
adenocarcinomas (virus-induced), 392
adenosine, 47, 48*f*

adenosine deaminase (ADA)
deficiency, 16
adenosine diphosphate (ADP), 47–48, 48*f*
anabolic reactions and, 112, 112*f*
adenosine diphosphoglucose (ADPG), 144, 144*f*
adenosine monophosphate/AMP, 46*f*, 47
adenosine triphosphate (ATP), 47. *See also* ATP
Adenoviridae, 377*t*, 386
Mastadenovirus, 372*f*, 388*f*
as an oncogenic DNA virus, 393
adenoviruses, 372*f*, 373, 386, 388*f*
conjunctivitis and, 609
cytopathic effects of, 445*t*
as opportunistic pathogens, 405
size of, 372*f*
used in gene therapy, 249, 258
adherence (pathogenic), 432–433, 432*f*, 447*f*
adhesins (ligands), 432–433, 432*f*
virulence factors and, 441–442
adjuvants to antigens, 506
ADP (adenosine diphosphate), 47–48, 48*f*
in Calvin-Benson cycle, 140*f*
in generation of ATP, 120–121
in photosynthesis, 138, 139*f*
ADPG (adenosine diphosphoglucose), 144, 144*f*
adsorption (attachment) stage in viral multiplication, 381, 382*f*, 385, 385*t*, 387*f*
adult stem cells (ASCs), 540
Aedes aegypti (mosquito), 413*t*, 675*b*
Aedes albopictus (mosquito), 668
Aedes (mosquito), 364*t*
California encephalitis transmitted by, 628*b*
chikungunya fever transmitted by, 658
dengue fever/yellow fever/heartworm transmitted by, 364*t*, 413*t*, 658
eastern equine encephalitis transmitted by, 628*b*
heartworm disease and, 362
aerial hyphae, 333, 333*f*, 336*f*
aerobes, 125
culture media and, 161–166
fungi as, 332
obligate, 159, 159*t*
vs. anaerobes, 125, 130
aerobic respiration, 125–130
anaerobic respiration *vs.*, 135*t*
ATP yields and, 130, 130*f*, 135*t*
chemiosmosis and, 128–130, 129*f*
effect of oxygen on bacterial growth, 159, 159*t*
electron transport chain and, 127–130, 127*f*, 129*f*

fermentation *vs.*, 135t
final electron acceptor in, 135t, 141f
growth conditions and, 135t
Krebs cycle, 125–127, 126f
phosphorylation used to generate ATP, 135t
summary, 129–130, 131f
Aeromonas hydrophilia, 282b
aerotolerant anaerobes, 159t, 160
affinity, in antigen-antibody complex, 487
aflatoxin, 445, 735
as frameshift mutagen, 227
poisoning, 735, 740b
produced by *Aspergillus flavus* mold, 227, 445, 735
AFM (atomic force microscope), 58f, 64f, 67t
African sleeping sickness (trypanosomiasis), 219, 330, 350, 356t, 364t, 413t, 414t, 435, 446, 633, 638b
agar, 162
algae-derived, 346
bismuth sulfite, 165
blood, 165, 165f
MacConkey's, 746, 748f
mannitol salt, 165, 166f
nutrient, 163
peptone iron, 137f
properties of, 162
Sabouraud's dextrose, 165
salt concentration and, 158
temperature and, 162
agarose gel, 261, 262f
Agent Orange, decomposition rate, 775, 775f
agglutination, 487, 488f, 515
epitopes of antigens and, 481, 481f
IgG antibodies and, 483t, 484–485
IgM antibody and, 480
slide agglutination test, 286, 286f
agglutination reactions, 515–517, 515f, 516f
direct, 515–516, 516f
hemagglutination, 517, 517f
indirect (passive), 516–517, 516f
latex, 511–512, 511f
aging
immune system's gradual decline and, 465
phagocyte's progressive inefficiency and, 465
agranulocytes, 456, 457t
dendritic cells, 456, 457t
lymphocytes, 457t, 458
monocytes, 456, 457t
agranulocytosis, 534
Agre, Peter, 13t
agriculture. *See also* soil
antibiotic overuse/misuse and, 237
bacteria important to, 304–305
DNA technology applications in, 263–264, 264f, 266, 267t
fungi's beneficial and undesirable effects for, 339
microbial insect control, 16, 263–264, 266, 267t
wastes of, fermentation and, 134t
Agrobacterium genus/spp., 300t, 304–305

Entner-Doudoroff pathway and, 125 as rDNA vehicle, 237, 263–264, 264f, 305
Agrobacterium tumefaciens, 305
crown gall disease and, 263, 264f, 305
Ti plasmid rDNA technology and, 263–264, 264f, 305
AIDS, 5f, 20, 544t, 545–554. *See also* HIV; HIV infection
as a pandemic disease, 409
CD4+ T cells and, 5f, 443, 544t, 545–550, 546f, 548f
chemotherapy for, 548
chimpanzee, 379
clinical definition of, 549
deaths from, worldwide, 551, 552f
diagnostic methods, 550–551
diseases commonly associated with, 550t
distribution of cases, worldwide, 551, 552t
earliest documented case of, 545
ELISA test to detect HIV antibodies, 286, 287f, 521, 523f, 550
as emerging infectious disease, 419t
as an epidemic disease, 408, 408f, 546, 547f, 548
feline, 379
as final stage of HIV infection, 549
gene therapy research and, 549
genetics and, 549
in health care settings, compromised hosts and, 416
historical aspects, 545
importance of basic scientific research in, 554
incubation period, 431t
microsporidia infections and, 337
opportunistic infections and, 405
fungal infections, 340–341, 340t
origins of, 545
persistant viral infections and, 396t
persistent viral infections and, 396t
Pneumocystis pneumonia as leading cause of death, 330
portals of entry, 431t
prevention of, 551–553
progression from initial HIV infection to, 547–549, 548f
reported cases in United States 1979–2006, 408f
as sexually transmitted infection, 765
simian, 379
toxoplasmosis of brain and, 549, 550t, 662–663
transmission routes, 447, 551
treatment regimens for, 553, 571
vaccine development and, 379, 509, 547, 552–553
air, spontaneous generation theory, microbes and, 8–9, 11
air conditioning systems, *Legionella* and, 309
air pollutants, lichens used to determine, 342
airborne microorganisms
chlamydias and, 322
Coxiella burnetii and, 309
early theories of, 7, 8–9, 9f, 11
in health care facilities, 416, 417

- allylamine antifungal antibiotics, 566*t*, 574
alpha-amino acids, 41, 41*f*
alpha-carbon, 41
alpha-glucosidase, 259*t*
alpha-hemolytic streptococci, 317
alpha interferon, 259*t*, 471–473, 471*f*, 566
as an antiviral drug, 566*t*
to treat viral hepatitis, 575
alpha-ketoglutaric acid, 126*f*, 145*f*, 147*f*
alphaproteobacteria, 299, 300*t*, 303–306, 304*f*, 305*f*
important genera/special features, 300*t*
Alphavirus, 413*t*
causing dengue fever, 413*t*
alphaviruses, 377, 388
alternative pathway of complement activation, 467, 468*f*, 470*f*
alum, as adjuvant to antigen effectiveness, 506
alveolar macrophages, 460, 681
alveoli, 681, 682*f*
Alzheimer disease, complement proteins implicated in, 470
Amanita phalloides (deathcap mushroom), 445
amanitin, 445
amantadine, 566*t*
Amebae, 4, 5*f*, 350–351, 351*f*, 356*t*
position in evolutionary tree, 274*f*
quats effective against, 196
slime molds and, 4, 353–354, 354*f*, 355*f*
amebiasis. See amebic dysentery
amebic dysentery (amebiasis), 330, 351, 351*f*, 356*f*, 738, 738*f*, 740*b*
diiodohydroxyquin (iodoquinol) to treat, 571, 738
metronidazole to treat, 571, 738
portal of entry, 430
portal of exit, 446
amebic encephalitis, granulomatous, 623*b*
amebic meningoencephalitis, primary, 623*b*, 634–635, 635*f*
American Academy of Microbiology, 263
American leishmaniasis, 666
American trypanosomiasis. *See Chagas' disease*
Ames test, 230–231, 230*f*, 232*b*
amination, 145, 145*f*
amines, aromatic, formed in high-heat cooking, 231*b*, 232*b*
amino acids, 41–44, 41*f*, 42*f*
amphibolic pathways and, 146, 147*f*
biochemical tests and, 136–137, 137*f*
biochemical tests of, 136–137, 137*f*
biosynthesis of, 144–145, 145*f*
D-amino acid configuration, 41, 80
found in proteins, 42*t*
metabolism, coenzyme in, 115*t*
mutation and their effects on, 223–224, 225*f*
peptide bonds of, 43, 44*f*
porins and, 86
in protein biosynthesis, 144–145, 145*f*
in protein catabolism, 136*f*
protein structure and, 43–44, 45*f*
structure of, 41, 41*f*, 42*f*
in translation (protein synthesis), 215–218, 216–217*f*, 218*f*
amino functional group, 36*t*, 37, 41, 41*f*, 42*f*, 43
in deamination conversion, 136
para-aminobenzoic acid (PABA), 118, 573
aminoglycosides, 565*t*, 570
ammonia
in chloramines, 194
as an energy source, 139, 141*f*, 143
ammonification, 776–777, 776*f*
ammonium ion, 135
in quats, 196, 196*f*
Amoeba proteus, 351*f*
amoxicillin, 564*t*, 568
AMP/adenosine monophosphate (adenine nucleotide), 46*f*, 47
amphibolic pathways, 146, 147*f*
amphitrichous flagella, 80*f*, 81
amphotericin B, 342*b*, 566*t*, 574, 574*f*, 639*b*
produced by *Streptomyces nodosus*, 560*t*
ampicillin, 564*t*, 567*f*, 568
ampicillin resistance gene (*amp^R*), 249, 249*f*, 255, 255*f*
amplified DNA, 245, 249–251, 250*f*, 290
Ampligen, 633
amp^R (ampicillin-resistance gene), 249, 249*f*, 255, 255*f*
AMPs. *See* antimicrobial peptides
amylases, 38, 246*f*
Anabaena azollae, 776*f*
Anabaena genus/spp., 302*t*, 321*t*
anabolic chemical reactions. *See* anabolism
anabolism, 32, 112, 112*f*, 144–147, 144*f*–147*f*
amphibolic pathways and, 146, 147*f*
anaerobes
aerotolerant, 159*t*, 160
facultative, 159, 159*t*
growth media for, 163, 164*f*
vs. aerobes, 130, 159
anaerobic chambers, 163, 164*f*
anaerobic respiration, 125, 130, 159
aerobic respiration vs., 125, 135*t*
ATP yields and, 135*t*
fermentation vs., 135*t*
final electron acceptor in, 135*t*, 141*f*
growth conditions and, 135*t*
phosphorylation used to generate ATP, 135*t*
anaerobic sludge digesters, 792–793, 797*f*
anal gonorrhea, 756
anal pore, 349, 353*f*
analytical epidemiology, 421
anamnestic response, memory (secondary response), 497, 497*f*
anamorphs, 338, 340*t*
anaphylactic reactions, 528–531, 528*t*, 529*f*
IgE antibodies and, 481, 528–531, 528*f*
inherited complement deficiencies and, 470
localized, 528, 530–531, 530*f*
preventing, 531
skin tests to identify antigens, 531, 531*f*
systemic, 528, 529–530
as Type I hypersensitivity, 528*t*
anaphylactic shock (systemic anaphylaxis), 528, 529–530
anaphylaxis, 528, 529*f*
localized, 530–531, 530*f*
systemic, 528, 529–530, 529*f*
Anaplasma, as obligately intracellular human pathogen, 300*t*
Anaplasma phagocytophilum, 654
aplasmosis caused by, 654
Ixodes scapularis as tick vector, 654
anaplasmosis, 290, 656*b*
as notifiable infectious disease, 424*t*
ancestors, universal, 274*f*, 275, 275*f*, 277
ancestral relationships, classification systems and, 273, 274*f*
Ancylostoma duodenale, 361, 364*t*, 740*b*, 741, 741*f*
anemia
Babesia microti causing, 352
genetically modified erythropoietin to treat, 259*t*
hemolytic, 534
human parvovirus B19, 377*t*
anesthesia, compromised hosts and, 416
Angstrom (Å), 55
animal bite infections
bat, 628–630, 630*footnote*, 631*b*, 631*f*, 667*b*
cat, 312, 653–654, 655*b*
dog, 312, 630*f*, 653, 655*b*
rat, 654–655, 655*b*. *See also* rodents
animal dander, allergic reactions to, 525
Angstrom (Å), 55
animal feed antibiotics, 559, 562*t*, 565, 575, 583*b*
avoparcin, 583*b*
fluoroquinolones, 583*b*
human disease linked to, and safety of, 575, 583*b*
livestock, 554, 562*t*, 565, 575, 583*b*
tetracyclines, 562*t*, 565
vancomycin, 583*b*
animal hides, *B. anthracis* infections and, 43*b*, 44*b*, 48*b*
animal husbandry
animal feed antibiotics and, 559, 562*t*, 565, 575, 583*b*
bovine growth hormone (bGH) and, 266, 267*t*
porcine growth hormone (pGH), 267*t*
rDNA products important to, 266, 267*t*
animal reservoirs, 411, 413*t*
animal viruses
cultivation of, 379–380, 379*f*, 380*f*, 406, 504
in embryonated eggs, 379, 379*f*, 406, 504
genetic modification of, 257
multiplication of, 385–392, 385*f*, 388*t*
biosynthesis and of DNA viruses, 385–388, 385*f*, 387*f*, 388*t*
of RNA viruses, 385*t*, 388–391, 388*f*, 389*f*
entry methods, 385, 386*f*
stages in, 385–386, 385*f*
uncoating and, 385–386
vs. in bacteriophages, 385
“animalcules”, 6, 7*f*
Animalia (kingdom)
energy source, 281
in Linnaeus's classification system, 273
organisms included in, 281
animals
cell structure (eukaryotic), 75, 97–106, 98*f*
cells used to produce viral vaccines, 245
as chemoheterotrophs, 141, 141*f*, 143
DNA vaccines approved for, 503
intestinal tract bacteria of, 310
as kingdom in Domain Eukarya, 6, 274*f*
microinjecting foreign DNA into, 252, 253*f*
mud-dwelling, 14
nutritional classification of, 141, 141*f*
parasites of, 5–6. *See also* parasites
position in evolutionary tree, 274*f*
as reservoirs, 411, 413*t*
spontaneous abortion, *Campylobacter fetus* and, 313
transgenic, 258, 259*f*, 267*t*
wild, veterinary microbiologists and, 282*b*
animicrobial agents, usnic acid from *Usnea lichen*, 342
anionic detergents, 88*t*
gram-negative vs. gram-positive bacteria and, 88*t*
anions, 30, 34
superoxide, 159–160
anisakiasis (sashimi worms), 364*t*
anisakines, 362, 364*t*
Anopheles (mosquito), as malaria vector, 351–352, 352*f*, 356*f*, 362–363, 364*t*, 413*t*, 414*t*, 663
anoxygenic photosynthetic bacteria, 95, 141*f*, 142, 143, 302, 321*t*, 323–326, 325*f*
antagonism
in combination antibiotics, 584
microbial, normal microbiota and, 403–405
antheridial hyphae, 345*f*
anthrax, 441*t*, 650–652, 651*f*, 655*b*
as a biological weapon, 315, 652, 654*b*
causative agent discovered, 11, 406, 650
caused by *Bacillus anthracis*, 11, 80, 235, 315, 406, 413*t*, 419*t*, 431, 432, 441*t*
chlorine dioxide gas to fumigate, 198
Cipro (ciprofloxacin) to treat, 572, 646
cutaneous, 432, 651, 651*f*, 655*b*
disease reservoirs for, 413*t*

DNA fingerprinting, biologic weapons and, 261
as emerging infectious disease, 419t
endospores of, 95–97, 96f, 650
gastrointestinal, 432, 651–652, 655b
inhalational (pulmonary), 432, 652, 654b, 655b
as notifiable infectious disease, 424t
portals of entry and, 431, 432, 650–652
stain used to diagnose, 59
transmission due to, 413t
vaccination of livestock and, 652
vaccine for humans, 652
virulence of, 80, 432, 433, 650–652
as zoonotic disease, 413t
antibiograms, 579
antibiosis, laboratory observation of, 559, 559f
antibiotic resistance, 12, 18, 19, 20, 558, 579–584
Acinetobacter baumannii and, 309
animal feed antibiotics and, 559, 562t, 565, 582, 583b
bacterial mutations and horizontal gene transfer, 581, 582f, 583b
biofilms and, 17, 161
cost of, 582
development of during antibiotic therapy, 581, 582f
to disinfectant triclosan, 192–193, 201f
future solutions proposed, 584–585
as global health crisis, 18, 581, 582f
gonorrhreal therapies and, 756b
health care-associated infections and, 415, 581
infectious disease reemergence and, 20
mechanisms of, 579–581, 580f
cell wall porins and, 309
misuse of antibiotics and, 18, 19, 415, 581–582, 582f, 583b
MRSA and, 18, 560–561. *See also* MRSA
mutation and, 207, 231, 580–581, 582f
of *neisseria gonorrhoeae*, 751b
new approaches to solving, 584–585
nosocomial infections and, 415, 581
plasmid vector used for cloning, 249f
plasmids and, 95, 441–442, 574. *See also* also plasmids
pneumococcal diseases and, 614
prevention of, 582
of pseudomonads, 594
R factors in bacteria and, 235–237, 238f, 308, 308f, 414, 441–442, 574, 583b
resistant mutants and, 581, 582f
sex pili, enterics and, 310
superbugs and, 580
transferred between different genera and, 235–237, 580
transposons and, 580
antibiotics, 11–12, 69, 559. *See also* antimicrobial drugs
in animal feeds, 559, 562t, 565, 582, 583b
antagonism in combinations, 584

antibacterial, 564–565t, 567–573
antibiosis and, 559, 559f
antifungal, 566t, 573–575
antihelminthic, 566t, 577
antimycobacterial, 564t, 569
antiprotozoan, 12, 528, 529f, 566t, 577
antiviral, 566t, 575–577
bacterial mutants developed during therapy, 581, 582f
blood-brain barrier and, 611
broad-spectrum, 560, 562t
normal microbiota altered by, 403–405, 555, 561–562
opportunistic fungal infections and, 340–341
superinfections and, 561
combination drugs, synergism and, 571, 573f, 584, 584f
commonly used against fungi/viruses/protozoans/helminths, 566t
arranged by mode of action, 564–565t
derived from microbes, 245, 247, 302t, 317, 320, 341, 559, 560t, 563
diarrhea associated with, 441t
discovery of, 12, 12f, 244, 558, 559, 560
endotoxins and, 440
enzymatic inactivation of, 580–581, 580f
future of, 584–585
gram-negative bacteria and, 88, 562t
gram-positive bacteria and, 70, 562t
intestinal microbiota altered by, 314, 403–405, 555, 561–562
microbial susceptibility tests, 572–573, 572f, 573f
misuse/overuse, 18, 19, 237, 415, 581–582, 582f, 583b
as factor in emerging infectious diseases, 418
modes of action of commonly used, 561f, 564–565t
narrow-spectrum, 560–561, 562t
normal microbiota and, 403–405, 555, 561–562
rashes induced by, 537b
resistance to, 12, 18–19. *See also* antibiotic resistance
nosocomial infections and, 422b
with ribosomal activity, 94, 101, 563, 565–566
safety issues, 583b, 584
sensitivity tests, 572–573, 572f, 573f
sterilization (by filtration), 188
Streptomyces species produces many, 320, 560, 560t
superinfections and, 555
susceptibility testing, 195, 196f, 577–579, 751b
susceptibility to (Archaea/Bacteria/Eukarya compared), 276t
synergism in combinations of, 571, 573f, 583, 583f
therapeutic index and, 584
for use in foods as antimicrobials, 197
viral insensitivity to, 370t
antibodies (immunoglobulins), 59, 61f, 286, 480, 481–485, 482f, 483t
antibody titer, 497, 510, 511f
antigen-binding sites, 482, 487–488, 488f
antigenic variation and, 435
antisera and, 286
antitoxins (against exotoxins) produced by, 438
in artificially acquired passive immunity, 494f, 495
B cells (B lymphocytes) and, 485, 486f
blood's role in, 637–638, 639f
classes of, 483–485, 483t. *See also* immunoglobulins
cytotoxicity and, 487, 488, 488f, 495, 500f
diversity of, 487
early discoveries about, 479
endotoxins and, 441, 442t
first ones produced in infection, 483t, 497, 497f
fully human antibodies, 514
as globulin proteins, 41, 479
half-life of an injected antibody, 495
humanized, 514
humoral immunity and, 480. *See also* also humoral immunity IgA proteases enzymes and, 435
intracellular antigens and, 486
monoclonal, 259t, 512–514, 513f
neutralization and, 487, 488, 488f
opsonization and, 487, 488, 488f
placental transfer of, 494–495
primary response to an antigen, 493
serological testing and, 286–287, 287f, 288f
specificity of, 484
structure of, 482, 482f, 483t
T-dependent antigens and, 482, 482f
as third line of defense, 452f
viruses and, 373, 379
antibody-dependent cell-mediated cytotoxicity (ADCC), 487, 488, 488f, 495, 496f, 529
antibody titer, 497, 510, 511f
anticancer drugs nucleoside analogs and, 226–227, 227f
taxol produced by *Taxomyces* fungus, 341
anticodon, 216f, 217
antifungal drugs, 445, 566t, 573–575, 574f
antigen, tumor-specific transplantation (TSTA), 393
antigen-antibody complex, 467, 487–489, 488f
antigen-antibody reactions complement activation classical pathway and, 467, 468f, 469f
fluorescent-antibody (FA) technique to identify, 59
antigen-binding sites, 482, 482f
results of binding with antibodies, 487–488, 488f
antigen-presenting cells (APCs), 485, 489, 490f, 494–495, 494f, 495f
activated macrophages as, 490, 490f
dendritic cells as, 476f, 490, 490f
antigenic determinants (epitopes), 481, 481f, 487, 487f
antigenic drift, 693–694
antigenic shift, 374–375b, 693
bird flu and, 374b, 693, 693t
influenza virus and, 374–375b, 375f, 693, 693t
antigenic variation, 435
gonorrhea and, 435, 749
HIV and, 541–542
Opa-encoding gene and, 435
as pathogenic mechanism, 435, 447f
used by *Giardia* protozoa, 446
used by *Trypanosoma*, 435, 446
used by trypanosomes, 435, 446, 629, 629f
vaccine development and, 509, 511
antigens, 59, 480, 481, 481f
allergens and, 523
antibody-antigen binding results, 487–488, 488f
antigenic variation and, 435
binding sites, 479, 479f, 480f
cytotoxicity and, 487, 488, 488f
early discoveries about, 480
endogenous, 493
epitopes and, 481, 481f, 484
extracellular (free), B cell activation and, 482, 482f
fluorescence microscopy and, 59
free (extracellular), 482
H antigen, 82
haptenes and, 481, 481f
histocompatibility complex and, 482, 482f, 500f, 533–534
neutralization by antibodies, 487, 488f
number recognized by human immune system, 484
O polysaccharide functioning as, 86
opsonization by antibodies, 484, 485, 485f
primary immune response to, 497, 497f
secondary immune response to, 497, 497f
superantigens, 439, 441t, 492, 527
T antigen, 393
T-cell receptors and, 480
T-dependent, 482, 482f
T-independent, 484, 484f, 503
as vaccines, 495
antihelminthic drugs, 564t, 571–572
antihuman immune serum globulin (anti-HISG), 518, 520f
antimetabolites, 561f, 563–564, 565t, 573
antimicrobial agents, 192–202
alcohols, 194–195, 194t, 201t, 202t
aldehydes, 197, 202t
antibiotic resistance, triclosan and, 192
biguanides, 193, 201t
biofilms and, 161
bisphenols, 192–193, 193f, 201t
cellular proteins damaged by, 184
Cepacol, 196, 202t
chemical food preservatives, 197, 202t
chemical sterilization, 198–199, 202t
chlorhexidine, 193, 201t

- chlorine, 193–194, 193f, 202t
 copper, 195–196, 195f, 202t
 death rates and, 183, 183t, 184f
 detergents, 196, 196f, 202t
 drawbacks of, 12
 effectiveness of, factors influencing, 183
 ethylene oxide, 198, 202t
 evaluating, 195, 196f
 glutaraldehyde, 197, 201t, 202t
 halogens, 193–194, 202t
 heavy metals, 195–196, 195f, 202t
 hexachlorophene, 192, 193f, 201f
 in household cleaning products, 18, 196–197
 hydrogen peroxide, 202
 iodine, 193–194, 201t, 202t
 mechanisms of action, 183–184
 mercury, 195, 202t
 microbial exponential death rate and, 183, 183t
 microbial death curve, 184f
 nitrates/nitrites, 197, 202t
 ozone, 199, 202t
 peracetic acid, 199, 202t
 peroxygens, 199, 202t
 phenol/phenolics, 192, 193f, 201t
 plasma membrane damaged by, 90, 183–184
 plasma sterilization, 198–199, 202f
 quats, 90, 193f, 196–197, 196f, 200, 201t, 202t
 resistance to biocides, 202–203, 203f, 203t
 biofilms and, 17, 18f
 emerging infectious diseases (EIDs) and, 18–20
 misuse/overuse of, 18, 19, 415, 575–578, 576f, 583b
 porins and, 202
 silver, 195–196, 195f, 202t
 silver nitrate, 195, 202t
 silver-sulfadiazine, 195, 202t
 soaps, 196, 196f, 202t
 summary (agent/mechanism of action/preferred use), 201t–202t
 supercritical fluids, 199, 202t
 surface-active, 192, 193f, 196–197, 196f, 201t, 202t
 Surfacine, 195
 terminology of, 182, 183t
 triclosan, 192–193, 193f, 201t, 566
 Zephiran, 195, 196, 196f, 198b, 202t
 zinc, 196
- antimicrobial drugs, 197, 558–588. *See also* antibiotics
 bactericidal vs. bacteriostatic, 555
 commonly used, 564–565t, 566f
 future of, 578–579
 history of, 559–560
 microbes that produce, 245, 247, 317, 320, 341, 559, 560t, 563
 modes of action, 561f–564f, 562t–564, 564–565t
 spectrum of activity and, 560–561, 562t
 susceptibility/sensitivity tests, 572, 572–573, 573f
 antimicrobial peptides (AMPs), 473–474, 474t, 585
 antimicrobial resistance. *See* antibiotic resistance
 antimicrobial substances of innate immunity, 466–473
 antimicrobial peptides, 473–474, 474t, 578–579
 complement system, 466–470, 474t
 interferons, 471–473, 474t
 iron-binding proteins, 473, 474t
 as second line of defense, 452, 452f, 466
 antimycobacterial antibiotics, 564t, 569
 antiprotozoan drugs, 12, 528, 529f, 564t, 577
 antiretroviral drugs, 553, 575
 antisense agents, 579
 antisense DNA, explored as gene therapy, 258
 antisense DNA technology, MacGregor tomatoes, 267, 267t
 antisense drugs, 658
 antisense strand (- strand), 388, 389f
 antisepsis, 182, 183t
 antisepsics, 190–201
 alcohols, 194–195, 194t, 201t, 202t
 alexidine, 193
 bacitracin, 560t, 563, 566–567
 bacteria able to grow in, 196–197, 196f
 biguanides, 193, 201t
 bisphenols, 192–193, 193f, 201t
 Cepacol, 196, 202t
 chloramines, 194
 chlorhexidine, 193, 201t
 chlorine dioxide, 194, 198
 chlorine gas, 194
 copper, 195–196, 202t
 effectiveness of various, 196, 196f
 halogens, 193–194, 202t
 heavy metals, 195–196, 195f, 202t
 hexachlorophene, 192, 193f
 iodine, 193–194, 201t, 202t
 iodophors, 193
 isopropanol, 195
 Lysol, 192
 mercuric chloride, 195
 mercury, 195, 202t
 phenols/phenolics, 192, 193f, 201t
 pHisoHex, 196
 Purell, 195
 quats, 90, 193f, 196–197, 196f, 200, 201t, 202t
 silver, 195–196, 195f
 silver-sulfadiazine, 195, 202t
 soap and, 196
 Surfacine, 195
 triclosan, 192–193, 193f, 201t, 566
 vs. disinfectants, 182
 Zephiran, 195, 196, 196f, 198b, 202t
 zinc, 199
- antisera, 286, 498, 498f, 616
 antitoxins, 438, 479, 508, 517
 neutralization tests and, 517, 518f
 antitrypsin, 259t
 antitumor activity of oncolytic viruses, 371
 antitumor drugs, nucleoside analogs as, 226–227, 227f
 antitumor (oncolytic) viruses, 371
 antiviral drugs, 566t, 575–577, 576f
 acyclovir, 562t, 569, 570f
 AZT and, 227
 interferons and, 471–473, 471f, 566t
 nucleoside/nucleotide analogs and, 226–227, 227f, 575
 antiviral proteins (AVPs), 471–473, 471f
 ants
 fire, 348
 fungi-farming, 332
 APCs. *See* antigen-presenting cells
 aphids
 cauliflower mosaic virus transmitted by, 396t
 potato yellow dwarf virus transmitted by, 396t
 Apicomplexa, 351–353, 352f, 356t
 fire ant egg production and, 348
 oocysts of, 352
 aplastic anemia, chloramphenicol causing, 565
 apoenzyme portion of enzymes, 114, 114f
 apoptosis, 457t, 493, 493f, 494f
 apple juice, contaminated, DNA fingerprinting to track, 261, 263f
Approved Lists of Bacterial Names, 283
 APTIMA assay, 551
Aquaspirillum serpens, plasma membrane of, 89f
 aquatic environments
 algae's importance to, 348
 bacteria found in, 304, 305f, 309, 312
 aquatic microbiology, 782–795
 aquatic microbes, 782–784
 sewage treatment, 789–795
 water quality and, 784–787
 water treatment, 788–789
 aquatic microorganisms, 782–784
 freshwater, 782–783
 seawater, 783
 aqueous solutions
 of ethanol, 194–195
 ethanol and water, 195
 formalin, 197
 vs. tinctures as antiseptics, 193–194, 194f
 Zephiran and water, 195
 aquaporins, 91f, 92
 Arachnida (class), 363, 364t
 arachnoid mater, 616, 617f
 arboviral disease, as nationally notifiable infectious disease, 424t
 arboviral encephalitis, 364t, 630–632, 632f
Culex mosquito as vector, 364t, 413t
 eastern equine encephalitis in humans, 625
 horses affected by, 625
 St. Louis encephalitis (SLE), 625–626
 symptoms, 625
 types of, 628b
 western equine encephalitis in humans, 625
 arboviruses, 220b, 388, 634b
 encephalitis caused by, 630–632, 632f, 634b
 arbuscules, 773, 774f
Arcanobacterium phocae, found in wounded seals, 282b
 archaea, 4, 274–275, 274f, 276t, 302t, 326, 326f
 acidophilic, 326
 cell walls of, 4, 87, 274, 276t, 326
 evolution and, 275, 275f, 277, 277f, 280f
 extremophiles of, 326. *See also* extreme halophiles; extreme thermophiles
 Gram staining and, 87
 halophilic, 78
 morphology of, 87, 326, 326f
 nitrifying, 326
 nutritional requirements of, 4, 326
 origins of, 275, 275f, 277, 277f, 280f
 thermophilic, optimum growth temperature and, 156, 326
 Archaea (domain), 4, 274–275, 274f, 276t, 300, 302t, 326, 326f
 Bacteria Domain *vs.*, 276t
 Eukarya Domain *vs.*, 276t
 extreme halophiles of, 4, 274, 274f, 280f, 326
 extreme thermophiles of, 4, 156, 274, 274f, 280f, 302t, 326, 326f
 gram-negative genera, 302t
 gram-positive genera, 302t
 methanogens, 4, 274, 274f, 280f, 302t, 326
 phylogenetic relationships, 274f, 280f
 Archaezoa, position in evolutionary tree, 274f
 Arenaviridae, 378t
Arenavirus, 354b, 378t, 659–660
 Argentine hemorrhagic fever, 666
 Arginine (Arg), 421
 arithmetic death curves, *vs.* logarithmic calculations, 184f
 armadillos as disease reservoir, 667 used to culture *M. leprae*, 163, 619
 aromatic amines, formed in high-heat cooking, 231b, 232b
 arsenic/arsenic derivatives, 12, 117, 118
 arsenic, as an enzyme poison, 118
 artemisinin, 577, 671
 artemisinin-based combination therapies (ACTs), 577, 671
 artery plaque, acoustic microscopy to study, 61, 62f, 66t
 arthritis
 gonorrheal, 755
 psoriatic, 538
 rheumatoid, 463, 492, 499b, 512, 532, 533
 septic, *Haemophilus influenzae* causing, 312
 arthroconidia, 334–335, 335f, 340t in *Coccidioides immitis*, 334f, 335
Arthroderra (Trichophyton), 340t
 arthropods, 330, 331f, 363, 364t
Alphavirus transmitted by, 377t
 lice and pediculosis, 608–609, 608f
 mites and scabies, 597b, 607–608, 608f
 mosquitos and West Nile virus, 19, 212, 220b, 220f, 626
 as vectors, 331f, 363, 363f, 364t

diseases they transmit/causative agent, 413^t
transmission methods, 413–414, 414^f
viruses that can replicate in, 378^t
arthroscopic surgical instruments, sterilizing, 198–199
Arthus reactions, 528^t
artifacts
mesosomes as, 90
specimen preparation and, 63
artificial blood, genetically modified pigs and, 258
artificial blood vessels, 263
artificial selection, 247
artificially acquired immunity active, 494^f, 495. See also vaccination passive, 494^f, 495
ascariasis, 364^t, 738^f, 740^b, 741, 742^f
Ascaris, 360
Ascaris lumbricoides, 360, 364^t, 738^f, 741, 742^f
Asclepius, 14, 14^f
ascomycetes, 337, 338^f
Ascomycota (sac fungi), 279^f, 337–338, 338^f, 340^t
ascorbic acid (vitamin C), fermentation and, 134^t
ascospores, 338, 338^f
ASCs (adult stem cells), 540
ascus, 338, 338^f
asepsis, 182
aseptic encephalitis, 220^b
aseptic packaging, hydrogen peroxide and, 199, 801–802, 802^f
aseptic techniques, 8, 9^f, 182, 415, 417
asexual reproduction
in algae, 344, 345^f
in diatoms, 345^f
in *Plasmodium vivax*, 351, 352^f
asexual spores, 334–335, 335^f, 336f–339f, 340^t
of prokaryotic actinomycetes, 320
Asian liver fluke (*Clonorchis sinensis*), 357, 358^f
asparagine (Asn), structural formula/characteristic R group, 42^t
aspartic acid (Asp)
structural formula/characteristic R group, 42^t
in transamination, 145^f
aspergillosis, 341, 569, 704
Aspergillus flavus, aflatoxin produced by, 227, 445
Aspergillus fumigatus, 704
Aspergillus genus/spp., 334, 335^f, 340^t, 341, 452^b
caspofungin (Cancidas) to treat, 574
fermentation and, 134^t
food processing temperatures, sclerotia and, 795
pneumonia caused by, 452^b
triazole antifungals to treat, 574
used in production of sake, 800
Aspergillus niger, 333^f, 335^f
genetically modified rennin and, 267^t
used to produce citric acid for food/beverages, 341
aspirin, 440, 465

asthma, 528, 528^t
as an allergic reaction, 530
hygiene hypothesis and increase in, 530
leukotrienes and, 529
atazanavir, 553, 576
atherosclerosis, 16
athlete's foot (tinea pedis), 568, 575, 560, 606^f
Atlantic coast horseshoe crab, 441
atmospheric oxygen levels
photosynthetic cyanobacteria and, 320–321
photosynthetic planktonic algae and, 348
atomic force microscope (AFM), 58^f, 64^f, 67^t
antibody molecules shown by, 482^f
atomic number, 26
of common elements, 27^t
atomic weight, 26
of common elements, 27^t
atoms, 26–27, 27^f
chemical elements and, 26–27, 27^t
molecule formation by, 27–31
structure of, 26, 26^f
ATP
in active membrane transport processes, 91, 93
anabolic reactions and, 112, 112^f
breakdown of, 112, 112^f
in Calvin-Benson cycle, 138, 140^f
catabolic pathways and, 112, 112^f, 119, 121
chemiosmotic generation of, 129–130, 129^f
distributions/concentration of, confocal microscopy and, 60
generation of, 120–121
glycolysis and, 122–125, 123^f
high energy bonds of, 119, 120
metabolic pathways and, 121
microbial uses for, 144
mitochondria's role in production of, 103
oxidation-reduction reactions and, 120, 120^f, 121^f
photophosphorylation and, 123
in photosynthesis, 138, 139^f
requirements for production of, 139, 141^f
structure of, 47–48, 48^f
synthesis of, 112, 112^f
synthesis of, 112, 112^f
nitrogen requirements, 158
phosphorus requirements, 158
viruses and, 370, 370^t
volutin to synthesize, 95
yield in fermentation, 132^f, 133^f, 135^t
yields from aerobic respiration, 130^t, 131^f, 135^t
yields from anaerobic respiration, 130, 135^t
ATP synthase, 128, 128^f, 129^f
atriochous bacteria, 81
Atripala, 553, 575
attachment (adsorption) stage in viral multiplication
in animal viruses, 385, 389^f
in bacteriophages, 381, 382^f, 385^t
attenuated killed vaccines, 507
attractants (chemotactic signals), 82
atypical pneumonia, 692, 693
AUG codon as start codon, 216
Augmentin, 568
auramine O, 59
Aureomycin (chlortetracycline), 565
mode of action/spectrum of activity, 562^f
produced by Streptomyces *aureofaciens*, 560^t
Australian bat lyssavirus (ABLV), 630
autism, MMR vaccine and, 506, 507^t, 511, 598
autoclaves/autoclaving, 185–187, 191^t
container size and effectiveness of, 185, 186^t
endotoxins and, 442^b, 442^t, 444^b, 446^b
prions not inactivated by, 200
sterilization indicators, 187, 187^f
temperature/pressure relationships in, 185, 186^t
autografts, 540
autoimmune diseases, 536–538. See also specific disease
cell-mediated, 538
cytotoxic, 537
immune complex reactions, 537
self-tolerance loss and, 537
autoinoculation, 593
autotrophs (lithotrophs), 140–141, 141^f, 144
auxotroph mutants, 229–230, 229^f
Avery, Oswald T., 10^f, 15, 47, 232
avian influenza A H5N1 (bird flu), 18, 374–375^b, 700, 700^t
emerging infectious diseases and, 18, 418, 419^t
genetic recombination and, 418, 693
recent human cases, by subtype/location, 374^t
vaccines and, 18
avian influenza A (H5N1) virus
emerging infectious diseases and, 18, 418, 419^t
genetic recombination and, 418, 693
avian sarcoma viruses, 393
avirulent microbial strains
defined, 11
vaccines produced from, immunity and, 11
avoparcin, 583^b
AVPs (antiviral proteins), 471–473, 471^f
axial filaments (endoflagella), 82, 83^f, 325, 325^f
azelaic acid (Azelex), 599
azidothymidine (AZT), as nucleoside analog, 227
azithromycin, 565^t, 571, 610
azlocillin, 568
azole antibiotics, 566^t, 574, 574^f
Azolla-cyanobacteria symbiosis, 779, 779^f
Azomonas genus/spp., 301^t, 309
Azospirillum genus/spp., 300^t, 303–304
Azotobacter genus/spp., 95, 301^t, 309
AZT (azidothymidine), as nucleoside analog, 227
aztreonam, 564^t, 569
B
β-1, 4 linkage, 85^f
B cells, 458, 478, 478^f, 480, 486^f
activation of, 485, 486^f
cancerous, 512, 513^f
clonal selection and, 485, 486^f
in compromised hosts, 416
differentiation of, 485, 486^f
humoral immunity and, 485–487, 486^f, 487^f
IgD antibodies and, 483^t, 484
IgM antibodies and, 485
lymph node location of, 458, 638, 639^f
as memory cells, 485, 486^f, 497, 497^f
monoclonal antibodies and, 512, 513^f, 514
as plasma cells, 485, 486^f, 494
processes of, 478^f
spleen and, 494^b
T-dependent antigen and, 485, 500^f
as third line of defense, 452^f
β-galactosidase, 219–222, 221^f, 222^f
β-galactosidase (*lacZ*) gene, 221^f, 223^f, 249, 249^f, 255, 255^f
encoding as marker gene, 249^f
β-lactam antibiotics, gram-negative bacteria susceptibility and, 88^b
B lymphocytes. See B cells
B vitamins, complex culture media and, 163
Babesia genus/spp., 330
Babesia microti, 352, 356^t, 673
babesiosis, 356^t, 364^t, 656^b, 673
BAC (bacterial artificial chromosome), 260^f
Bacillariophyta, 345^t
Bacillales, 301^t, 315–316, 315^f
bacillary dysentery. See shigellosis
Bacillus amyloliquefaciens, BamHI restriction enzyme in rDNA technology, 248^t
Bacillus anthracis, 25^f, 315, 441^t, 650–652
as biological weapon, 315, 652, 654^b, 654^f
capsule of, 43^b, 80, 433
Clinical Case, 26^b, 43^b, 44^b, 48^b
emerging infectious diseases and, 419^t
fluorescein isothiocyanate to stain, 59
Koch's experiments with, 11, 406, 650
portals of entry and, 431, 432
reservoirs/transmission method, 413^t
toxins of, 235, 441^t, 650
virulence and, 80, 432, 433, 650–652
bacillus/bacilli, 77, 77^f, 106^b, 315–316, 315^f
Bacillus Calmette-Guérin (BCG) vaccine, 626, 685
Bacillus cereus, 315, 315^f
endospore staining and, 70^f
gastroenteritis caused by, 315, 726–727, 728^b
refrigerator temperature and growth of, 156^f
Bacillus coagulans, capable of growth in canned foods, 795

- Bacillus* genus/spp., 78, 78f, 301t, 315–318, 315f
 anaerobic respiration and, 130
 antibiotics produced by, 315
 calcium propionate active against, 197
 endospores and, 95–97, 96f, 301t
 enzymes of
 bioremediation and, 16
 in household detergents, 16
 fermentation and, 132f
 in fossilized amber, PCR and, 290
 genetic transformation natural occurring in, 233
 as gram-variable bacteria, 86
 lipid inclusions of, 95
 selenium toxicity and
 nanotechnology, 263, 263f
Bacillus licheniformis, binary fission in, 168f
Bacillus sphaericus, survived in fossilized amber for millions of years, 277
Bacillus subtilis, 78f
 bacitracin derived from, 560t
 genetic engineering and, 256
 pentose phosphate pathway and, 125
Bacillus thuringiensis, 315–316, 315f
 BT toxin and, 264, 266, 267t, 315–316, 315f, 806
 human allergic reactions to, 266
 monarch butterflies and, 266
Pseudomonas fluorescens modified to produce BT toxin, 266, 267t
 sold industrially, 806
 bacitracin, 561f, 564t, 569
 bactericidal antimicrobial drugs, 561
 bacteremia, 409
 as emerging infectious disease, 419t
 methicillin-resistant *Staphylococcus aureus* and, 419t
 nosocomial, 417t
 epidemiological analysis of, 423b
 vancomycin-resistant enterococci and, 419t
 vancomycin-resistant *Staphylococcus aureus* and, 419t
bacteria/bacterium, 2, 3–4, 5f, 75–97, 299–326
 acetic-acid producers, 300t
 acid-fast, 69, 70f, 71t, 87–88
 staining and, 69, 70f, 71t
 Ames test uses to identify genotoxins, 230–231, 230f, 232b
 anatomy, 3–4, 79f
 atypical, 87–88
 cell walls, 84–88, 85f
 damage to, 88
 size/shape/arrangement, 76–78, 79f
 structures inside cell wall, 79f, 88–97
 structures outside cell wall, 78–84, 79f
 antibiotic resistance. *See* antibiotic resistance
 beneficial activities of, 15–16
 biochemical tests and, 135–137, 137f, 284–287
 biofilms, percentage existing in, 77.
 See also biofilms
 bioremediation and, 16, 32b
 as carbon recyclers, 15
 as carcinogen indicators, 230–231, 230f
 as chemoheterotrophs, 141f, 143
 classification of, 278–280, 279f
 cotton production and, 3b, 38
 as domain, 6, 274, 274f, 276t
 as domain in three-domain system, 273
 early representations, 6, 7f
 emerging infectious diseases caused by, 419t
 endospores formed by. *See* endospores
 evolution of, 274, 274f, 276t, 277, 277f
 fermentation and, 8, 123f, 130–133, 134t
 first used in genetic research, 15
 flagella of. *See under* flagella
 food spoiled by, vs. by molds, 341
 in foodstuffs, radiation doses needed to kill, 797t
 fungi vs., 332, 333f
 genetic recombination in, 231–239
 genetic transformation in, 232–233, 233f, 234f
 germ theory of disease and, 8, 11, 477
 giant, 301t, 314–315, 315f, 326
 glycocalyx of, 79f, 80
 gram-negative, 68f, 69, 85f, 86, 87t
 gram-positive, 68f, 69, 84, 85f, 86, 87t
 gram stain mechanism and, 86
 identification methods, 281–294
 by cell morphology, 284
 by differential staining, 284
 by rapid identification methods, 285–286, 285f
 by serology, 286–287, 286f, 287f, 288f
 L forms of, 88
 metabolism, 111–152. *See also* metabolism (microbial)
 monomorphic, 78
 movements of, 81–82, 82f
 mutations in, 20b
 as nitrogen recyclers, 15
 nutritional classification of, 4, 140–143, 141f
 oil-eating, 32b
 origin of, 274, 274f, 276t, 277, 277f
 osmotic solutions and, 92–93, 92f
 parasitic, 403
 pasteurization process and, 8
 as pest controllers, 16
 pH of, 67
 pH range and growth of, 156
 photosynthetic. *See* photosynthetic bacteria
 plasma (cytoplasmic) membrane, 89–91, 89f
 pleomorphic, 78
 quorum sensing and, 56b, 160, 161
 rapid identification tests for, 285–286, 285f
 reproduction in, 4, 168, 168f
 resistance to chemical biocides, 200, 200f
 scientific nomenclature and, 278
 shapes of, 4, 5f, 77–78, 77f, 78f
 genetics and, 78
 shrinkage/collapse of, 93
 size of, 14, 77, 100t
 specimen preparation for
 microscopy, 64, 67
 staining of, 67–71, 71t
 strains of, 280
 symbiotic, 106, 106b, 266, 300t
 in taxonomic hierarchy, 279, 279f
 thermoduric, 187
 thermophilic, 182
 used experimentally to identify mutants, 228–230, 229f, 230f
 virulence of, 70, 80
 viruses compared to, 370, 370t
Bacteria (domain), 274f, 279–280, 279f, 280f, 300
 Archaea Domain vs., 276t
 Eukarya Domain vs., 276t
 phylogenetic relationships and, 273–277
 prokaryote classification and, 278–280
 selected phylums/genera/special features, 300t–302t
 bacterial artificial chromosome (BAC), 260f
 bacterial biosensors, 780b
 bacterial chromosomes, 94
 maps, 212, 212f
 bacterial cultures (growth of)
 bacterial division, 168, 168f
 generation times, 168–169, 169f
 growth curves, 170–171, 170f
 obtaining pure, 167, 167f
 phases of growth, 170–171, 170f
 preserving, 167–168
 bacterial diseases
 of cardiovascular system, 645–662
 of digestive system, 713–727
 of eyes, 609–611
 of lymphatic system, 645–662
 of nervous system, 617–626
 of reproductive system, 747–756, 759b, 761b
 of respiratory system, 683–685, 687–698
 of skin, 591–600
 of urinary system, 746–747, 748b
 bacterial endospores, vs. other spores, 97
 bacterial enzymes
 bioremediation and, 16
 as restriction enzymes in rDNA technology, 247, 248f
 bacterial growth curve, 169f, 170–171, 170f
 bacterial meningitis, 617–619, 623b
 Clinical Case, 300b, 317b, 318b, 320b, 324b
 Hib vaccine and, 613, 614
 bacterial morphology, genetics and, 78
 bacterial pneumonias, 692–697. *See also* specific pneumonia
 atypical vs. typical pneumonia, 692, 693
 bandages, quat antiseptics neutralized by, 199, 201b
 Bang, Olaf, 392
 Barr, Yvonne, 10f, 393
 Barré-Sinoussi, Françoise, 13t
Bartonella genus/spp., 300t, 305

- Bartonella henselae*, 305
cat-scratch disease and, 305, 413t, 419t, 653–654, 653f, 655b
disease reservoir for, 413t
transmission due to, 413t
- basal body
eukaryotic cell, 98f
of flagella, 81, 81f
- base pairs, 208
- base sequences of chromosomes, 209
- base substitutions (point mutations), 224–225, 224f
- basement membrane, 590
- baseplate, of a T-even bacteriophage, 374f, 382f
- bases
changes in sequencing of, 223. *See also* mutations
complementary, 46f, 47, 208
in nucleotides, 46f, 47
- bases vs. acids, 34–36, 34f, 35f
- basic dyes, 67
- basidiomycetes, 338, 339f
- Basidiomycota (club fungi), 338, 339f, 340f
- basidiospores, 338, 339f
- basidium, 338, 339f
- basiliximab, 542
- basophilic inclusion bodies, 443, 445t
- basophils, 456, 457t, 529
histamine present in, 464
in hypersensitivity reactions, 529, 529f
IgE antibodies and, 481
staining and, 456
- Bassi, Agostino, 9, 10f
- bathrooms, fungi capable of growing in, 336
- bats, 628–630, 631b, 631f
as disease reservoirs, 413t, 630^{footnote}
- fruit, possibly transmitting hemorrhagic fevers, 667b
- histoplasmosis and, 695–696
- rabies case report, 631b, 631f
- rabies virus variant found in, 630, 631b, 631f
- Baylisascaris procyonis*, 360, 364t, 419t
- BCG (Bacillus Calmette-Guérin)
vaccine, 626, 685, 691
- Bdellovibrio*, 301t, 312, 312f
- Bdellovibionales*, 301t
- Beadle, George W., 10f, 13t, 15
- bears, as disease reservoirs, 413t
- Becton Dickinson's Enterotube II, 286f
- bee stings
anaphylaxis and, 523–524
desensitization success and, 526
- beef products
infected with mad cow disease, 19
tapeworms and, 358–359, 364t
- beer, 806
fermentation and, 8, 134t, 135b
microbes used in production of, 806
pasteurization of, 8, 187
pasteurization time/temperature and, 187
souring/spoilage, pasteurization and, 8
- Beggiaota alba*, 307, 772
- Beggiaota* genus/spp. 143, 301t, 307, 312, 772
- Beijerinck, Martinus, 15
- Beijerinckia* genus/spp., 300t
- benthic zone, 782
- BenzaClin, 599
- benzalkonium chloride. *See* Zephiran
- Benzamycin, 599
- benzathine penicillin, 567, 568f
- benzoic acid, 202t
- benzopyrene, as frameshift mutagen, 227
- benzoyl peroxide, 160, 199
- Berg, Paul, 14
- Bergey, David, 281
- Bergey's Manual of Determinative Bacteriology*, 281
- Bergey's Manual of Systematic Bacteriology*, 278–279, 281^{footnote}
- description of strains and, 285
- phylogenetic system as basis for, 299
- rRNA sequencing and basis for, 299
- selected prokaryotes from, 300–302t
- beta-hemolysin, 165, 165f
- beta-hemolytic streptococci, 165f, 317, 320b, 594–595
- group A (GAS), 317, 594–595, 595f, 640
- group B (GBS), 317, 320b, 324b, 640
- beta interferon (IFN- β), 259t, 471–473, 471f
- to treat multiple sclerosis (Betaferon), 473
- to treat osteoporosis (Actimmune), 473
- beta-lactam antibiotics, 567–569, 567f, 569f
- resistance to, 581
- beta-lactam ring in penicillins, 567, 567f
- beta-lactamases (penicillinases), 567, 568, 568f
- antibiotic inactivation and, 19b, 567, 568, 568f
- beta-oxidation
in lipid catabolism, 134, 135f
of petroleum/oil spills, 32b, 134
- Betadine, 193, 194
- Betaferon, to treat multiple sclerosis, 473
- betamethasone, 201b
- betaproteobacteria, 300–301t, 303, 305, 306–307, 306f, 307f, 308b
- important general/special features, 300–301t
- beverage industry, *Aspergillus niger* used in, 341
- bGH (bovine growth hormone), 266, 267t
- Bifidobacterium* genus/spp., as normal microbiota of large intestine, 404t
- biguanides, 193, 201t
- bile, most microbes destroyed by, 430
- bile salts, gram-negative bacteria and, 86
- binary fission, 4, 76, 100t, 168, 168f, 276t
- of cyanobacteria, 321, 321f
- Rickettsia* and, 304
- viruses and, 370t
- binomial nomenclature, 278
- bioaugmentation, 781
- biochemical oxygen demand (BOD), in sewage treatment, 789
- biochemical reactions, metabolic, 111–152. *See also* chemical reactions
- biochemical tests, 135–137, 137f, 142b, 282b
- human pathogens isolated from marine mammals, 282b
- to identify microbes, 284–287, 284f–287f
- importance of, with enterics, 310
- biocides, 182. *See also* antimicrobial agents
- biofilms and, 183
- bioconversion, 813
- bioenhancers, uses in bioremediation, 32b
- biofilms, 17, 18f, 56b, 160–161, 161f, 432
- adherence and, 432–433
- antibiotic resistance and, 433
- antimicrobial resistance and, 183
- autoclaving, endotoxins and, 442b, 444b
- bacterial growth/survival and, 153, 598
- Burkholderia* genus/spp. and, 444b, 689
- catheters and, 17, 18f, 154b, 161, 166b, 175b, 177b, 433, 586, 587f
- cystic fibrosis and, 161
- deep-sea hydrothermal vents and, 157b
- dental plaque as, 80, 432
- endocarditis and, 641f
- examples of, 432–433
- fimbriae's role in forming, 83
- gliding motility and, 83
- glycocalyx and, 80, 431–432
- group behavior in, 56b
- heart valves and, 161, 433, 641, 641f
- in hospital water supplies, 75
- inducer (signaling chemical) and, 56b
- Legionella*, hospital water lines and, 689
- medical implants and, 17, 18f, 80, 537b
- P. aeruginosa* can grow in, 462, 593
- P. fluorescens* and indwelling catheters, 177b
- pathogenicity and, 432–433
- percentage of bacteria existing in, 76
- phagocyt evasion and, 462
- quorum sensing and, 56b
- resistance to antimicrobial agents and, 183, 433
- scanning acoustic microscopy and, 61, 62f, 66t
- in sewage treatment, 791, 792f
- that lead to disease, 56b, 433
- biofuels, 814–815, 814f
- biogenesis theory, 8
- biogeochemical cycles, 775–782
carbon cycle, 775–776, 775f
- life without sunshine, 779–780
- microbial benefits to, 15
- nitrogen cycle, 776–779, 776f
- phosphorus cycle, 780
- sulfur cycle, 779, 780f
- synthetic chemicals and, 780–782
- bioinformatics, 261
- biological oxidation, 120, 121f. *See also* redox reaction
- biological transmission of disease (by arthropods), 414, 414t
- biological weapons, 261, 654b, 654f
Bacillus anthracis as possible, 315
- bioweapons detectors, 190, 654b
- Brucella* as possible, 650
- list of potential bioweapons (bacteria/viruses), 654b
- nanotechnology and, 263, 263f
- smallpox and, 601
- tularemia as possible, 654
- biology, molecular, 15
- bioluminescence, 783, 784f
chemical pathway of, 56b
- bioluminescent bacteria, *Aliivibrio fischeri*, 56b
- biomass, 813
- Bioquell, 199
- bioreactors
algal, that could produce biofuels, 808, 814f
in industrial fermentation, 808–809, 809f
- bioremediation, 16, 781, 781f
oil spills, 32b, 781
- biosafety level 4 (BSL-4) labs, 164–165, 165f
- biosensors (bacterial), 801
to detect pollutants/pathogens, 786b
- biosolids, 787
- biosynthesis, 144–146, 144f–147f
metabolic pathway integration and, 146, 147f
speed of, in eukaryotes vs. prokaryotes, 144
- biosynthesis stage in viral multiplication, 381–383, 382f, 385t
- in DNA viruses, 385t, 386–388, 387f, 388t
- in RNA viruses, 385t, 388–391, 388t, 389f
- biosynthetic chemical reactions. *See also* anabolism
- biotechnology, 16, 244–271, 245, 808. *See also* recombinant (rDNA) DNA technology
- ethical issues, 266–267
- safety issues, 266–267
- tools of, 247–251
artificial selection, 247
- polymerase chain reaction (PCR), 249–251, 250f
- restriction enzymes, 247–248, 248f, 248t
- site-directed mutagenesis, 247
- vectors, 248–249, 249f. *See also* vectors
- bioterrorism, 654b. *See also* biological weapons
- bioweapons detectors, 190, 654b
- list of potential biological weapons, 654b

- biotin, 115*t*, 158
 biovars (biotypes), 286, 311
 bioweapons, 261, 654*b*, 654*f*
 detectors, 190, 654*b*, 654*f*
 potential pathogens list (bacteria/viruses), 654*b*
 bird flu (avian influenza A/H5N1 influenza), 18, 374–375*b*
 as emerging infectious disease, 18, 418, 419*t*
 genetic recombination and, 418
 vaccines and, 18, 374*b*
 birds
 as disease reservoirs, 340*t*, 413*t*
 influenza A virus subtypes and, 18, 374–375*b*
 pet cockatiels and *Chlamydophila psittaci*, 699*b*, 701*b*, 705*b*
 as West Nile virus disease reservoirs, 19, 220*b*, 413*t*
 Bishop, J. Michael, 13*t*, 393
 bismuth, *H. pylori* and, 69*b*
 bismuth sulfite agar, 165, 286*b*, 287*b*
 bisphenols, 192–193, 193*f*, 201*t*
 endospores, mycobacteria and, 201*t*
 bites
 animal. See animal bites
 insect. See insect bites
 Black Death, 311. See also plague
 blades of algae, 344, 344*f*
 blastoconidia, 335, 335*f*
Blastomyces (Ajellomyces dermititidis), 340*t*
Blastomyces dermatitidis, blastomycosis caused by, 704
 blastomycosis, 704, 706*b*
 airborne transmission and, 412*f*, 413
 amphotericin B to treat, 568
 blastomycosis (North American blastomycosis), 704, 706*b*
 bleach (household)
 to disinfect drinking water, 194
 to disinfect norovirus, 201*b*
 mechanism of action, 462
 bleaching agents
 as disinfectants, 194
 safer, microbes and, 3*b*
 blebs/blebbing, 493, 494*f*
 blindness
Acanthamoeba causing, 351
 herpetic keratitis causing, 605
 ophthalmia neonatorum causing, 610, 748
 trachoma causing, 322, 604–605, 605*f*
 blood, 456, 644, 645*f*
 artificial, genetically modified pigs and, 258
 circulation of, 644, 645*f*
 components
 formed elements, 456–458, 457*t*, 638
 plasma, 456
 filtration by kidney glomeruli, 529
 sepsis and, 646–647, 647*f*
 blood agar, 165, 165*f*
 blood banks
 hepatitis C and, 732–733
 safe blood supplies, 733*b*
 blood-brain barrier, 616, 617*f*, 627
 blood capillaries, relation to lymphatic capillaries, tissue cells, 459*f*
 blood clotting
 fibrinogen and, 463
 in inflammatory response, 464*f*
 platelets' function as, 457*t*
 blood-clotting proteins, activated by endotoxins, 440
 blood diseases, 409
 blood-feeding insects, 330, 350, 667*f*, 668*b*
 arthropods, 19, 220*b*
 blood flukes, 356
Schistosoma, 358, 364*t*, 666, 667*f*
 blood parasites (hemoflagellates), 330, 350, 667*f*, 668*b*
 blood plasma, 201, 456, 472*b*, 638 substitute, dextran as, 38
 blood platelets
 histamine present in, 464
 quinine and, 528, 529*f*
 thrombocytopenic purpura and, 528, 529*f*
 blood poisoning. See septicemia
 blood transfusions
 DiGeorge syndrome and, 554*t*
 hepatitis C and, 731*b*, 732–733
 HIV transmission and, 546
 reactions, 528*t*, 532–533, 532*t*, 533*f*, 544*b*
 Rh incompatibility, 532–533, 533*f*
 blood types, 532–533, 532*t*
 blood vessels
 artificial, 263
 in inflammatory response, 464*f*
 bloodborne parasites, 330
 bloodstream infections
 nosocomial infections and, 417*t*
P. fluorescens (Clinical Case), 154*b*, 166*b*, 175*b*, 177*b*
 blooms, algal, 348, 785, 785*f*
 Blue cheese, ripened by *Penicillium* molds, 799
 blue-green algae, cyanobacteria misnomer, 320
 blue-white screening, 255, 255*f*
 blunt ends of cut DNA strands, 247, 248*f*
 body defenses, 18. See also host defenses; immunity
 adaptive immunity, 435, 452, 452*f*, 478–503
 adaptive vs. innate, 452, 452*f*
 complement system, 466–470
 first line of defense, 452*f*, 453–456, 474*f*
 innate immunity, 451–477, 452, 452*f*, 478
 overview, 452*f*
 second line of defense, 452*f*, 456–472, 474*f*
 antimicrobial substances, 466–474
 fever, 466
 inflammation, 463–466
 phagocytes, 460–463
 third line of defense, 452*f*
 body piercing, bacterial endocarditis and, 641
 body temperature
 fever and, 466
 high, intensifies interferon's effects, 471
 boil (furuncle), 463, 465, 593
 boiling water, to control microbial growth, 185, 191*t*
 boils, 465
 acute inflammation of, 463
 Bolivian hemorrhagic fevers, 666
 bonds, chemical. See chemical bonds
 bone marrow
 red, 458, 459*f*
 lymphocyte maturation and, 480
 bone marrow transplants, 541
 bone morphogenic proteins, 259*t*
 booster immunizations, 418, 506*t*, 507, 508, 616
 Bordeaux mixture, 196
Bordetella bronchiseptica, 282*b*
Bordetella genus/spp., 300*t*, 307
Bordetella pertussis, 307, 504*f*, 687 Clinical Case, 505*b*, 509*b*, 511*b*, 514*b*, 519*b*, 522*b*
 complement system evasion by, 470
 emerging infectious diseases and, 419*t*
 incubation period, 431*t*
 portals of entry, 431*t*
 vaccine, 506*t*, 507*t*, 687
 whooping cough caused by, 307, 419*t*, 424*t*, 431*t*, 687–688, 687*f*, 706*b*
Borrelia burgdorferi
 Lyme disease caused by, 287, 288*f*, 413*t*, 419*t*, 656*b*, 658–660
 reservoirs/transmission method, 413*t*
Borrelia genus/spp., 302*t*, 325 causing relapsing fever, 413*t* transmitted by *Ornithodoros* (tick), 413*t*
 Botox, 618–619
 bottlenose dolphins, 282*b*
 botulinum cook (12D treatment), 800
 botulinum toxin, 439, 616–617
 as A-B neurotoxin, 439, 441*t*
 bacteriophage genes and, 442
 botulism caused by, 441*t*, 622–625
 as an exotoxin, 442*t*
 glycoproteins, plasma membranes and, 90
 naming of, 438
 potency of, 432, 439, 442*t*
 serotypes of, 623–624
 symptoms induced by, 439, 441*t*, 622
 therapeutic uses (Botox), 624–625
 botulism, 441*t*, 622–625, 638*b*. See also *Clostridium botulinum*
 diagnosis of, 624, 624*f*
 found in soil, 411, 622
 home canning methods and, 187, 622
 incidence of, 624
 infant, 624
 as nationally notifiable infectious disease, 424*t*
 nitrites active against, 197, 202*t*
 refrigeration and, 618
 as special case of intoxication, 717
 symptoms, 439, 441*t*, 616–617
 treatment of, 624
 wound, 624
 bovine growth hormone (bGH), 266, 267*t*
 bovine spongiform encephalopathy (BSE), 19, 200, 395, 419*t*, 636*f*, 637
 bovine tuberculosis, 688
Bradyrhizobium genus/spp., 300*t*, 304–305
 as symbiotic nitrogen fixers, 300*t*
 bradyzoites, in toxoplasmosis, 661, 662*f*
 brain, 611, 611*f*
 as immunologically privileged site, 534
 blood-brain barrier and, 611, 616*t*, 617*f*, 627
 parasitic helminths and, 364*t*
 pathogenic invasion routes to, 611
 prions and, 630–632, 630*f*
 brain abscess, caused by *Balamuthia*, 351, 356*t*, 623*b*, 629
 bread dough, what makes it rise, 133
 bread molds, 5*f*, 197, 335*f*, 337
 bread (rye), fermentation and, 134*t*
 breakbone fever, 665
 breakthrough varicella, 597
 breast cancer
 genetic screening and, 261
 monoclonal antibodies (Herceptin) to treat, 543
 breast milk, IgA antibodies in, 480, 481
 breathing, cellular respiration and, 122
Brevibacterium, as normal microbiota of skin, 404*t*
 brightfield illumination, 57, 60*f*, 65*t*
 broad-spectrum antibiotics, 560–561, 562*t*
 normal microbiota destroyed by, 555, 560
 bronchopneumonia, streptococcal, 409
 bronchiolitis, 687
 bronchitis, 687
Haemophilus influenzae as cause of, 312
 bronchopneumonia, 693
 broth dilution tests, 578–579, 579*b*, 579*f*
 brown algae (kelp), 345–346, 345*f*
Brucella abortus, 644, 650
Brucella genus/spp., 300*t*, 305 adept at evading phagocytes, 462, 644
 portals of entry, 431*t*
 as potential biological weapon, 644, 650, 654*b*
 reservoirs/transmission method, 413*t*
Brucella melitensis, 644, 650
Brucella suis, 644, 650
 brucellosis (undulant fever), 305, 649–650, 655*b*
 direct agglutination test to diagnose, 510
 disease reservoirs, 413*t*
 incubation period, 431*t*
 as notifiable infectious disease, 424*t*
 portal of entry, 431*t*
 portal of exit, 447

- transmission due to, 413t
vaccine for animals, 644
as zoonotic disease, 413t, 643
- Bruton's agammaglobulinemia*, 544t
- BSE (bovine spongiform encephalopathy), 19, 200, 395, 419t, 636f, 637
- BSL-1 to BSL-3 (biosafety level 1 to 3) labs, 165
- BSL-4 (biosafety level 4) labs, 164–165, 165f
- Bt (*Bacillus thuringiensis*-derived insecticidal toxin), 264, 266, 267t, 315–316, 315f, 813
- corn/cotton plants, 267t
- buboes, 644
of bubonic plague, 657, 657f
- bubonic plague, 656b, 657, 657f
- budding bacteria, 168, 304, 305f
Hyphomicrobium and, 300t, 304, 305f
- planctomycetes and, 322
- budding viruses, 392, 392f
- budding yeasts, 333, 334f
- buffers (chemical), 35, 156
pH, 35
temperature, water and, 34
- bugs
kissing, 350, 356t, 363f, 364t, 413t, 661
true, 364t
- bulking in sewage treatment, 791
- Sphaerotilus* bacteria and, 306, 306f, 791
- bullae (lesions), 591, 592f
- bullous impetigo, 593, 593f
- Bunyaviridae, 378t
- Bunyavirus, 378t, 660, 667b
- Bunyavirus/CE virus (California encephalitis), 378t, 626, 626f
- Burkholderia cepacia*, hospital equipment, disinfectants and, 306–307
- Burkholderia* genus/spp., 300t, 306–307, 429f
biofilms and, 444b, 444f
cystic fibrosis and, 306, 309
formerly grouped with *Pseudomonas*, 278, 306
grow in disinfectants, 202, 306
resistance to chemical biocides and, 200, 306
- Burkholderia pseudomallei*, 306–307, 697
- Burkholderia (Pseudomonas) pseudomallei*, 278, 306, 690
- Burkholderiales, 300t
- Burkitt, Denis, 662
- Burkitt's lymphoma, 377t, 393, 649b, 662–663, 663f
- burn patients
genetically modified epidermal growth factor to heal, 259t
nosocomial infection susceptibility and, 416
- Pseudomonas* infections and, 308
silver-sulfadiazine to treat, 567
- Burnet, Frank Macfarlane, 13t
- burning, as method of microbial control, 188, 191t
- bursa of Fabricius, 480
- buruli ulcer, 597b, 599
identified as global health threat, 599
- butanediol, 132f
- butanol, 2, 132f, 134t
- butter, 806
- butterflies, Monarch, 266
- butyric acid, 132f
- by-products, metabolic pathways and, 121
- Byssochlamys fulva*, produces heat-resistant ascospores, 795
- C
- C-reactive protein, 463
- C1 to C9 complement proteins, 466–470, 468f, 469f, 470f
- CA-MRSA (community-associated MRSA) infections, 21b, 581
- cabbage
fermentation and, 134t
lactic acid fermentation and, 134f
- cachectin, 437. *See also* tumor necrosis factor
- cadherin, 435
- calcium, enzyme inhibition and, 118
calcium (Ca)
atomic number/atomic weight, 27t
as cofactor, 115
microbial growth requirements, 158
- calcium chloride solution, in genetic engineering, 251
- calcium hypochlorite (chloride of lime), 181, 194
- calcium ion, confocal microscopy to observe distributions/concentration of, 60
- calcium propionate, 197, 202t
- Caliciviridae, 377t
- California encephalitis (CE virus/*Bunyavirus*), 378t, 626, 626f, 628b
- California sea otters, toxoplasmosis deaths, 282b, 662
- calves, colostrum and, 494–495
- Calvin-Benson cycle, 138, 140f, 143, 144
- cAMP (cyclic AMP), 221–222, 222f, 223f
ameba-produced, 353, 354f
- camphor, bacteria that use as energy/carbon source, 235
- Campylobacter fetus*, 313
- Campylobacter* genus/spp., 301t, 313
culturing, 164
- Campylobacter jejuni*, 313, 583b, 583f
gastroenteritis caused by, 724, 728b
- Campylobacterales, 301t
- canarypox virus, carrying feline leukemia virus genes, 259t
- canarypox virus, carrying canine distemper virus genes, 259t
- cancer. *See also* carcinogens
acoustic microscopy to study, 61, 62f, 66t
activated macrophages destroy, 533f
- adenocarcinomas, 392
- AIDS-associated, 550t
- antisense DNA explored as gene therapy, 258
- breast, 261, 543
- carcinogenic mutagens and, 230, 232b
- cell transformation and proliferation, 393, 542–543
- cervical. *See* cervical cancers
- colorectal (Clinical Case), 208b, 226b, 231b, 232b
- cytotoxic T lymphocytes (CTLs) destroy, 542, 543f
- DNA mutations and, 226b
- Epstein-Barr (EB) virus causing, 393
- hepatitis B virus (HBV) causing, 393
- immune system response to, 542–543, 543, 543f
- immunotherapy for, 542–543
- interferons' discovery and, 14
- interferons to treat, 472
- interleukin-12 and, 499b
- interleukins to treat, 259t
- Kaposi's sarcoma, 20, 387, 472–473, 539, 542, 550t
- liver, 393, 396t, 543
- monoclonal antibodies to treat, 512
- ovarian, 259t
- p53 gene and, 258
- Papillomavirus* and, 387
- percentage known to be virus-induced, 393
- prostate, vaccine and, 543
- RNA interference (RNAi) and, 258
- sarcoma, 392
- skin, exposure to UV light and, 228
- stomach, 313, 719
- tumor cell transformation, 393, 542–543
- vaccines, 543
- viral therapy and, 371
- viruses and, 377t, 384, 392–394
- Cancidas (caspofungin), 566t, 574
- Candida albicans*, 333, 335, 335f, 340t, 607f
antibiotics and overgrowth of, 403, 555
as budding yeast, 333, 601f
candidiasis caused by, 341, 606–607, 607f, 758–759, 759b
- in diabetics, 601–602
- in HIV/AIDS patients, 549, 550t, 601–602
- incubation period, 431t
- normal microbiota as defense against, 456
- as normal microbiota of vagina, 404t, 751
- nosocomial infections and, 416t
- portals of entry, 431t
- skin infections caused by, 445
- Candida* genus/spp.
biofilms and, 161
- as normal microbiota of large intestine, 404t, 758
- as normal microbiota of mouth, 404t, 758
- as normal microbiota of skin, 404t
- as normal microbiota of vagina, 404t, 751
- Candida krusei*, 606
- Candida tropicalis*, 606
- candidiasis (yeast infection), 341, 606–607, 607f, 765–766, 766b
- Candida albicans* causing, 341, 606, 606f, 765
- caspofungin (Cancidas) to treat, 574
- fluconazole to treat, 606
- incubation period, 431t
- miconazole to treat, 606
- oral (thrush), 341, 601, 601f, 765
- portals of entry, 431t
- rash caused by, 594b
- vulvovaginal, 341, 765
- candle jars, 164
- canine distemper vaccine, 259t
- canker sores, 603
- canned foods
commercial sterilization and, 182, 183t, 594f, 800–801, 801f, 802f
- heat-preserved, 185
- home "canning", 185, 187
- metal can construction, 802f
- types of spoilage in, 800, 803t
- cannibalism, kuru and, 637
- Cano, Raul, 277, 290
- CAP (catabolic activator protein), 221–222, 222f, 223f
- Capnocytophaga canimorsus*, 479b, 480b, 484b, 487b, 490b, 494b
- Capnocytophaga* genus/spp., 302t
- capnophiles, 164
- capsids (viral), 371, 372f, 373f, 376f, 382f
- capsomeres, viral, 371, 372f, 373f
- capsules (bacterial), 79f, 80, 100t, 433
antibodies and, 433
of *Bacillus anthracis*, 433
- complement activation prevented by, 470
- as examples of T-independent antigens, 484, 484f
- of *Haemophilus influenzae*, 433
- of *Klebsiella pneumoniae*, 433
- of *Neisseria gonorrhoeae*, 307f
- pathogenicity and, 433, 447f
- phagocytosis and, 433
- staining of, 70, 70f, 71t, 80
- of *Streptococcus pneumoniae*, 232–233, 233f, 433, 462, 508
- vaccines that target, 508
- virulence of pathogens and, 80, 232, 433, 462
- of *Yersinia pestis*, 433
- carbapenem-resistant *Klebsiella pneumoniae*, 207
- carbapenems, 562t, 569, 585b
penicillin allergy and, 530
- carbenicillin, 568
- carbohydrate catabolism, 122–133, 123f
cellular respiration, 123f, 125–130
- fermentation, 123f, 130–133
- gas formation and, 136, 137f
- glycolysis, 122–125
- carbohydrates, 37–38
amphibolic pathways and, 146, 147f
- microbes, photosynthesis and, 15
- carbolfuchsin stain, 68, 71, 71t, 88
- carboxlic acid. *See* phenol
- carbon (C)
atomic number/atomic weight, 27t
- bacterial recyclers of, 15
- chemoheterotrophs and, 158
- electron configuration, 28t
- in methane formation, 30, 30f
- microbial growth and, 158
- in organic compounds, 36

- source of, microbes classified by, 139–140, 141f
 structure of, 27f
 uniqueness of, 34
- carbon cycle, 775–776, 775f
Pelagibacter ubique role in, 303
- carbon dioxide, 34
 in Calvin-Benson cycle, 138, 140f
 capnophiles and, 164
 catabolic processes and, 134t, 136f
 chemoautotrophs and, 158, 305
 crosses plasma membrane by simple diffusion, 91
 culturing microbes and, 164
 as fermentation end-product, 132f, 134t
 “fixed”, 138–139
- incubators, 164
- Krebs cycle and, 126f, 127, 138
 made by yeasts, 134t, 334
- photoautotrophs and, 158
 in photosynthesis, 138, 139f
 photosynthetic bacteria and, 95
 supercritical, 199, 202t
- carbon fixation, 115t, 138–139, 140f, 143
- carbon monoxide, as energy source, 143
- carbon skeleton, 36
- carbonate, anaerobic respiration and, 130
- carboxyl functional group, 36t, 37, 41, 41f, 42t, 43
 dipicolinic acid and, 48b
 in fatty acids, 39, 39f
- carboxysomes, 95
- carbuncle, 593
- carcinogens, 230
 Ames test and, 230–231, 230f, 232b
 frameshift mutagens as, 227
Helicobacter pylori and, 301t, 313, 314f
 identifying chemical, 230–231, 230f
 nitrosamines, 197
- cardiac muscle, regeneration capacity of, 465
- cardiotoxins, 438
- cardiovascular syphilis, 761
- cardiovascular system, 643–645, 644f
 lymphatic system in relationship with, 644–645, 645f
 microbial diseases of, 643–679
 bacterial, 645–662
 helminthic, 673–675
 protozoan, 666–673
 vector-borne, 655–662
 viral, 662–666
 structure/function, 637–638, 638f
- caribou, lichens and, 342
- carotene, 345f
- carotenoids, 144
- carageenan, 346
- carriers of infectious disease, 411
Carsenella ruddii, 327
- cascade of complement proteins, 467
- case control method, in analytical epidemiology, 421
- case reporting
 CDC's *MMWR* and, 422
 uses in establishing chain of transmission, 422
- casein, 798
- caspofungin (*Cancidas*), 566t, 574
- catabolic activator protein (CAP), 221–222, 222f
- catabolic chemical reactions. *See* catabolism
- catabolism, 32, 112, 112f, 113
 amphibolic pathways and, 146, 147f
 carbohydrate, 122–133, 122–133, 136f. *See also* carbohydrate catabolism
 lipid, 133–135, 135f, 136f
 protein, 134–135, 136f
- catabolite repression (glucose effect), 222
- catalase, 104, 159t, 160
 hydrogen peroxide and, 104, 199
- catalysts, 113
- cataract surgery (Clinical Case), 430b, 436b, 442b, 444b, 446b
- cathelicidins, produced by neutrophils/macrophages/epithelium, 473
- catheterization
 intravenous, 417t
 urinary, 417t
- catheters
 biofilms and, 17, 18f, 161, 433, 586, 587f
 nosocomial infections and, 161, 417t, 423b
Staphylococcus epidermidis and, 591–592, 592f
- cationic detergents, as antimicrobial agents, 196, 202t
- cationic peptides, 578. *See also* antimicrobial peptides
- cations, 30, 34
- cats
 bites, *Pasteurella* and, 312
Capnocytophaga canimorsus and, 484b
 cat-scratch disease, 305, 413t, 419f, 419t, 653–654, 653f, 655b
 as disease reservoirs, 413t, 650b
 feline AIDS and, 379
 feline leukemia vaccine, 259t
 feline leukemia virus (FeLV), 393
 heartworm in, 362, 364t
 litter box contents flushed, sea otter deaths and, 662
 plague transmitted by, 657, 658
 reported cases of rabies in, 630f
- ringworm and, 605
- sarcoma viruses in, 393
- Toxocara cati* and, 360, 364t
- Toxoplasma gondii* and, 352, 661–662, 662f
- tularemia pathogen and, 656b
- vaccinated against leptospirosis, 325
- cattle
 anthrax and, 315
 bovine tuberculosis, 688
 bovine growth hormone and, 266, 267t
 reported cases of rabies in, 630f
Salmonella in intestinal tract of, 310
- sepsis caused by *Pasteurella* bacteria, 312
- Shiga toxin-producing *E. coli* and, 724
- tapeworm and, 358–359, 364t
- ticks, 690
- cauliflower mosaic virus, 396t
- Caulobacter* genus/spp., 300t, 304, 305f, 776, 777
- Caulobacterales, 300t
- CCR5 (chemokine coreceptors), 545, 553, 571
- CD (clusters of differentiation) of T cells, 490
- CD4⁺ T cells (T helper cells), 5f, 20, 443, 490–492, 491f
 in gonorrhea, 749
 in HIV infection, 20, 545–550, 546f, 548f
 normal count vs. in AIDS patients, 547, 549
- CD8⁺ T cells (T cytotoxic cells), 490, 493, 494f
- CD46 measles virus receptor, 443–444
- CD59 regulatory protein, 470
- CDC (Centers for Disease Control and Prevention), 422
 hospital infection control recommendations, 417
 nosocomial infection estimates by, 415, 416t, 417t
 priorities for emerging infectious diseases, 418
 Universal Precautions for Health Care Personnel, 546t
- cDNA (complementary DNA), 252–253, 254f
 library, 253
- CE virus/Bunyavirus (California encephalitis), 378t, 626, 626f
- cefaclor, 565t
- cefamazole, 565t
- cefeprime, 565t
- cefixime, 565t, 654t
- ceftazidime, 565t
- ceftriaxone, 402b, 423b
- cell arrangements
 in algae, 345t
 in prokaryotes, 75, 76, 77–79, 78f, 79f, 100t, 333t
- cell-cell fusion of HIV to evade immune system, 547
- cell counters, 175, 175f
- cell cultures (viral), 379–380, 380f
 for vaccine development, 504, 506
- cell division
 bacterial growth curves, 170–171, 170f
 DNA complementary structure and, 208
 in eukaryotes vs. prokaryotes, 76
 in prokaryotic vs. eukaryotic cells, 100t
- cell growth, anabolic reactions and, 112, 112f
- cell lines (viral), 379–380, 380f
- cell theory, 6
- cell-to-cell chemical communication. *See* quorum sensing
- cell-to-cell interactions
 glycocalyx's role in, 99
 proteins involved in, 90
- cell walls
 of algae, 84, 98, 345t
 of archaea, 87, 100t, 276t
- ticks, 690
- atypical, 87–88
- of bacteria, 40, 69, 84–88, 85f, 100t, 276t, 320, 333t
- eukaryotic, 76, 84, 98f, 99–100, 100t, 333t
- of fungi, 38, 84, 333t, 564t, 569
- Gram stain mechanism and, 86, 87t
- inserting foreign DNA through, 251–252, 252f
- pathogenicity and, 433, 447f
- of plants, 84
- prokaryotic, 76, 79f, 81, 81f, 84–88, 100t
- structures internal to, 79f, 88–97
- synthesis inhibitors (antimicrobial), 561–562, 562f, 564t, 565t, 566t
- of T-even bacteriophage, 381–383, 382f
- of yeasts, 99
- cellular immunity, 480, 489–494, 500f
 activated macrophages, 490, 490f, 496t
 antibody-dependent cell-mediated cytotoxicity, 487, 488, 488f, 491, 492f
- antigen-presenting cells, 489–490
- congenitally absent thymus gland and, 538
- cytokines and, 491–492
- dendritic cells, 494, 494f
- interleukin-12 activates, 499b
- intracellular antigens, 486, 500f
- natural killer (NK) cells, 495
- principal cells that function in, 496t
- T cells, 489–494
 cytotoxic cells, 488–489, 489f
 helper cells, 487–488, 488f
 regulatory cells, 489
- cellular metabolism, rate of, 146
- cellular oxidations, 120, 120f, 121f
- cellular respiration (respiration), 122, 123f, 125–130
 aerobic, 127–130, 130f, 131f
 Krebs cycle, 122, 125–127, 126f
- anaerobic, 127
- glycolysis in, 122, 123f
- location of, 103
- overview figure, 123f
- cellular slime molds, 4, 6, 353–354, 354f
- cellulases, 3b, 38, 341
- genetically modified, 246f, 267t
- cellulitis, MRSA causing, 598b
- cellulose, 2, 3b, 38, 101
 algal cell wall, 4, 5, 99, 251–252, 252f, 345t, 346
- Cytophaga* degrades, 322
- termites and, 106b
- Centers for Disease Control and Prevention (CDC), 422
 hospital infection control recommendations, 417
 nosocomial infection estimates by, 415, 416t, 417t
 priorities for emerging infectious diseases, 418
- Universal Precautions for Health Care Personnel, 546t
- centimeter (cm), 54t
- central nervous system (CNS), 616, 616f

centrifugation, in serum collection, 472^b
 centrioles, 98^f, 104
 centrosome, 98^f, 104–105
 Cepacol (cetylpyridinium chloride), 196, 202^t
 cephalosporins, 561^f, 564^f, 569, 721
 cell wall synthesis inhibited by, 561^f, 564^f, 569
 gram-positive bacteria and, 70
 grouped by generation, 565^t
 penicillin allergy history and, 531^b
 peptidoglycan and, 100
 structure of, compared to penicillin, 569^f
 to treat meningitis, 623^t
 to treat staph infection, 2^b
Cephalosporium, 560, 560^t
 cephalothin, 531^b, 565, 569
 produced by *Cephalosporium*, 560, 560^t
Ceratocystis ulmi, 335^f
 Dutch elm disease caused by, 341–342
 cercariae, swimmer's itch in reaction to, 667
 cerebrospinal fluid (CSF), 615, 616, 617^f, 621^b
 has low levels of defensive cells, 616
 spinal tap (lumbar puncture) and, 619, 620^f
 cervical cancers
 HPV vaccine (Gardasil), 259^t, 393, 506^t, 543, 758
 human papillomavirus (HPV) causing, 387, 393, 396^t
 cervical dysplasia, in AIDS patients, 550^t
 cervical mucus, antimicrobial activity of, 455
 cervix, 750, 751^f
 cestodes, 358–360, 364^t. *See also* tapeworms
 cetacean morbillivirus (CM), marine mammal deaths and, 282^b
 cetylpyridinium chloride (Cepacol), 196, 202^t
 CF. *See* cystic fibrosis
 CF (confocal microscopy), 59–60, 62^f, 66^t
Paramyces multimicronucleatum micrograph, 62^f, 66^t
 CFS (chronic fatigue syndrome), 638–639
 CFU (colony-forming units), 171
 CGD (chronic granulomatous disease), 466^b
 gamma interferon to treat, 473^b
 Chagas, Carlos, 10^f, 284, 667
 Chagas' disease (American trypanosomiasis), 350, 356^t, 364^t, 414^f, 462, 656^b, 666–668, 667^f
 as emerging infectious disease, 419^t
 Chain, Ernst, 10^f, 559
 chain of transmission, case reporting procedure and, 422
 chancre, 760, 760^f
 chancroid (soft chancre), 762, 767^b

Haemophilus ducreyi cause of, 312, 762
 as notifiable infectious disease, 424^t
 charge of subatomic particles, 26
 Chatton, Edouard, 273
 cheese
 fermentation and, 134^t
 microbes used in making of, 805, 805^f
 nisin added to inhibit bacteria, 197
 pH and spoilage, 156
 preservatives added to, 197
 chemical agents
 antimicrobial. *See* antimicrobial agents
 carcinogenic, 230–231, 230^f
 genotoxicity and, 230–231, 230^f, 232^b
 mutagenic, 228
 chemical bonds, 27–31
 covalent, 30, 30^f
 high-energy, 119, 120
 ionic, 29–30, 29^f
 chemical elements, 26–27, 27^t
 chemical energy, 31
 ATP and, 47–48, 48^f
 chemical food preservatives, 197, 202^t
 chemical messengers, 480
 chemical methods of microbial control, 190–200
 chemical mutagens, 226–227, 226^f
 causing frameshift mutations, 227
 chemical pesticides, safety issues, 266–267
 chemical principles, importance to microbiologists, 25
 chemical reactions, 31–33
 anabolic, 112, 112^f. *See also* anabolism
 catabolic, 112, 112^f. *See also* catabolism
 collision theory and, 113
 coupled, importance of, 112, 120
 energy requirements of, 31, 113, 114^f
 enzymes and, 113, 113^f. *See also* enzymes
 heat and reaction rate, 113
 reversibility of, 33, 38^f
 chemical signals
 alarm signals (alarmone), 221, 223^f
 biofilms and, 56b, 161
 chemical spills. *See* bioremediation
 chemical sterilization, 198–199, 202^t
 by ethylene oxide, 198, 202^t
 by plasma sterilization, 198–199, 202^t
 by supercritical fluids, 199, 202^t
 chemically defined culture media, 162, 162^t, 167^t
 chemiosmosis, 121, 123^f, 128–130, 128^f, 129^f, 136^f
 chemistry, 25–52, 26
 atoms, 26–27, 27^f
 chemical bonds, 27–31
 chemical reactions, 31–33
 elements, 26–27, 27^t
 importance to microbiologists, 25
 molecules, 26, 27–31
 chemoautotrophs, 141, 141^f, 143, 305
 carbon requirements for growth, 158
 culture media for, 169^t
 deep-sea hydrothermal vents and, 157^b
 pH ranges and, 156
 chemoheterotrophs, 141, 141^f, 143
 carbon requirements for growth, 158
 chemically defined medium for growing, 162^t
 culture media for, 169^t
 fungi as, 331^f, 332
 green sulfur bacteria as, 314^t
 helminths as, 331^f
 proteobacteria as, 300–301t, 303–313
 chemokine coreceptors, CCR5 and CXCR4, 545
 chemokines, 492
 chemosterilants (gaseous), 199, 202^t
 chemotaxis, 82
 as first phase in phagocytosis, 460, 461^f
 kinins and, 464
 neutrophils attracted to, 465
 chemotherapeutic drugs. *See also* antibiotics; antimicrobial drugs
 future of, 578–579
 major modes of action (overview), 561^f
 salvarsan (antisiphilitic), 12
 spectrum of activity of, 555, 562^t
 synthetic drugs, 12
 toxicity to humans and, 11
 chemotherapy, 11, 259^t, 558
 history of, 559–560
 selective toxicity and, 553
 tests for microbial susceptibility/sensitivity, 572–573, 572^f, 573^f
 chemotrophs, 140, 141^f
 Chernobyl nuclear disaster, lichens and, 342
 chestnut trees, fungal blight by *Cryphonectria parasitica*, 341
 chick embryos, viruses for vaccines grown in, 379, 379^f, 504
 chickenpox (varicella), 377^t, 387, 596^b, 601–602, 602^{ff}
 breakthrough varicella, 602
herpesvirus varicella-zoster and, 601
human herpesvirus 3 and, 601
 incubation period, 431^t, 596
 as notifiable infectious disease, 424^t
 portal of entry, 431^t, 596
 portal of exit, 446
 rash caused by, 596^b
 Reye syndrome complication of, 601
 vaccine, 14, 503^t, 602
 chickens
 antibiotics in chicken feed, 583^b
 cholera in (fowl cholera), 312
 influenza A viruses and, 18
 leukemia in, 392
 sarcoma and, 392
 viral-induced sarcoma in, 392
 chikungunya fever, 656^b, 664–665
 childbirth, genetically modified relaxin and, 259^t
 childhood fever (puerperal sepsis), 11, 194, 420, 647, 649^b
 childhood immunizations, 505, 507^t
 chills and fever, 466
Chilomastix, 350^f
 chimeric monoclonal antibodies, 514
 as immunosuppressives, 542
 chitin, 4, 38, 100^t
 in algal cell walls, 99
Cytophaga degrades, 322
Chlamydia genus/spp., 302^t, 322, 323^f
 antimicrobial drugs that inhibit, 562^t, 751
 can survive in phagocytes, 462
 classification changes and, 278, 304
 culture media and, 164, 322
 elementary body of, 322, 323^f, 372^f, 689
 as gram-negative coccoid bacteria, 322
 pathogenic species of, 322
 phylogenetic relationships, 280^f
 pneumonia caused by, 322, 695^b, 696
 portals of entry, 431, 431^t
 taxonomic changes in, 299
 transmission routes, 322
 viruses compared to, 370, 370^t
Chlamydia trachomatis, 322, 757–758, 767^b
 gonorrhea coinfections and, 757
 inclusion conjunctivitis caused by, 609^b, 610
 incubation period, 431^t
 lymphogranuloma venereum caused by, 322, 462, 762
 as notifiable infectious disease, 424^t
 pelvic inflammatory disease caused by, 758
 portals of entry, 431, 431^t
 toxin produced by, 261
 trachoma caused by, 322, 609^b, 610, 610^f
 urethritis (nonspecific) caused by, 431^t, 757–758, 767^b
Chlamydiae, 302^t, 322
 important general/special features, 302^t
 chlamydial pneumonia, 695^b, 696
 chlamydoconidium, 335, 335^f, 340^t
Chlamydomonas (green alga), 345^f
Chlamydophila genus/spp., 302^t, 322, 323^f
 classification changes and, 278
Chlamydophila pneumoniae, 322, 695^b, 696
Chlamydophila psittaci, 322, 323^f, 680^f
 as potential biological weapon, 654^b
 psittacosis (ornithosis) caused by, 694–696, 695^b
 reservoirs/transmission method, 413^t
 Chlor-Floc tablets, to disinfect water, 194
 chloramines, as disinfectants, 194, 202^t
 chloramphenicol, 561^f, 565^t, 570, 570^f, 721
 blood-brain barrier and, 611
 produced by *Streptomyces venezuelae*, 560^t

- protein synthesis inhibited by, 94, 561^f, 565^t, 570, 570^f
resistance genes to, 236, 238^f
susceptibility of gram-negative vs. gram-positive bacteria to, 87^t
chlorhexidine, 193, 201^t
chloride ion (Cl^-), in table salt, dissolved in water, 34, 34^f
chloride of lime (calcium hypochlorite), 181, 194
chlorination
chlorine dioxide gas and, 194
of drinking water, 194
ozone as supplement to, 202, 205^t
chlorine (Cl)
atomic number/atomic weight, 27^t
as disinfectant, 193–194, 193^f, 201^t, 202^t
gaseous, to disinfect water, 194, 202^t
as ion, 29, 29^f
peroxide vs., 3^b
chlorine dioxide, 194, 198
Chlorobi, 302^t, 321, 323
Chlorobium genus/spp., 142, 302^t, 321, 323
chlorobium vesicles (chlorosomes), 142
Chloroflexi, 302^t, 321, 323
Chloroflexus genus/spp., 143, 302^t, 321, 323
chlorophyll a, 138, 143, 143^t
in red algae, 345^t
chlorophyll b, in green algae, 345, 345^t
chlorophyll c, in brown algae, 345^t
chlorophyll d, in red algae, 345^t
chlorophylls, 103, 138, 139^f, 143, 143^t, 144
Chlorophyta, characteristics of green algae, 345^t
chloroplasts, 98^f, 101, 103–104, 105^f, 138, 143^t
of *Euglena*, 351^f
origins of, 274^f
chloroquine, 566^t, 577, 585
chlorosomes (chlorobium vesicles), 143, 143^t
chlortetracycline (Aureomycin), 565^t, 570
produced by produced by *Streptomyces aureofaciens*, 560^t
chocolate, fermented before eating, 806
cholera, 17, 310, 441^t, 722–723, 722^f. See also *Vibrio cholerae*
in chickens (fowl cholera), 312, 507
convalescence and disease spread, 410
as emerging infectious disease, 419^t
epidemic of 1848 (London) and discovery of source, 420
exotoxins causing, 439, 441^t
glycoproteins, plasma membranes and, 90
incubation period, 431^t
modern transportation and spread of, 418
new strains of, 722
noncholera vibrios, 723
as notifiable infectious disease, 424^t
portal of exit, 446
portals of entry, 431, 431^f
symptoms, 441^t
vaccine, 505–506, 508, 509
waterborne transmission and, 411
- cholesterol
structure of, 41, 41^f
synthesis of, 144
Chromatiales, 301^t
chromatin, 101–102, 102^f
Chromatium genus/spp., 301^t, 321^t, 324, 325^f
as anoxygenic photoautotrophs, 142, 143^t
chromatophores (thylakoids)
of bacteria, 90, 90^f, 138, 143, 143^t
of eukaryotes, 103, 104^f, 143^t
chromophore, 67
chromosomes, 102, 208
bacterial, 94, 100^t, 103
base sequences and, 209
DNA and, 79^f, 94, 208–209, 209^f
of *Escherichia coli*, 209, 209^f
eukaryotic, 100^t, 102
maps of, 209, 209^f
prokaryotic, 94, 100^t, 209, 209^f
chronic disease, 409
chronic fatigue syndrome (CFS), 638–639
chronic granulomatous disease (CGD), 466^b
gamma interferon to treat, 473^b
chronic hepatitis B, 730–732
chronic inflammation/inflammatory response, 463
chronic viral infections, 394, 394^f, 396^t
chronic wasting disease, prion disease affecting wild deer/elk, 636
Chrysops (deer fly), as vector
transmitting tularemia, 363^f, 364, 648, 656^b
chymogen, 267^t
Cidex (glutaraldehyde), 197, 198, 201^t, 202^t
cidofovir, 566^t, 575
Ciechanover, Aaron, 13^t
ciguatera, 347, 356^t
cilastatin, 569
cilia/cilium, 99, 99^f
of eukaryotic cells, 99, 99^f
origins of, 105
of human respiratory tract, 99, 454
as defense against pathogens, 454, 474^t
of mucous membranes, 590
of *Paramecium*, 349^f, 353^f
of protozoa, 4, 5, 99, 99^f
of *Tetrahymena*, 99, 99^f
ciliary escalator, 454, 454^f, 686
ciliated cells, 454^f
ciliates, 353, 353^f, 356^t
position in evolutionary tree, 274^f
Ciliophora. See ciliates
ciprofloxacin (Cipro), 402^b, 565^t, 572
cis fatty acid, 39^f, 40
cisternae, 102, 103^f, 104^f
citric acid, 125, 126^f, 147^f
Aspergillus niger fungus used to produce, 341
biotechnology and, 244
enteric bacteria and, 284^f
fermentation and, 134^t
- citric acid cycle. See Krebs cycle
Citrobacter genus/spp., 301^t
as enteric bacteria, 284, 284^f
as normal microbiota of large intestine, 404^t
nosocomial infections and, 416^t
CJD (Creutzfeldt-Jakob disease), 19, 395, 636–637, 636^f, 637^t, 638^b
clades, 220^b, 280
of HIV, 54^t
cladograms, 293–294, 294^f
examples of, 274^f, 280^f
clams
paralytic shellfish poisoning (PSP) and, 344, 356^t, 446^f
unicellular algae symbionts in giant *Tridacna*, 345
clarithromycin, 69^b, 565, 571
bacterial resistance to, 71^b
class switching, 485, 486^f
class (taxonomic), defined, 278, 279^f
classical pathway of complement activation, 467, 468^f, 469^f
classification of microorganisms, 6, 272–298
of eukaryotes, 6, 274^f, 280–281
of infectious diseases caused by, 408–409
major groups of (overview), 3–6, 5^f
methods, 281, 283–294. See also identification of microorganisms
natural, reflecting phylogenetic relationships, 273, 277
of prokaryotes, 274^f, 278–280, 280^f
study of phylogenetic relationships, 273–277
hierarchies, 275, 277
taxonomic hierarchies and, 278, 279^f
three-domain system, 6, 273–277, 274^f
of viruses, 371, 373–374, 377–378^t
Claviceps purpurea, 445
clavulanic acid (potassium clavulanate), 568, 581
Clear light system, to treat acne, 599–600
climate, incidence of infectious diseases and, 410
clindamycin, 570, 599
Bacteroides fragilis resistant to, 238^f
to treat *Clostridium difficile* diarrhea, 565
clofazimine, to treat leprosy, 626, 632^b
clonal deletion, 485
clonal expansion of B cells, 485, 486^f
clonal selection of B cells, 485, 486^f
clones/cloning, 245, 280
applications, 257–266
agricultural, 263–266, 267^t
scientific, 260–263
therapeutic, 257–258, 259^t
making a gene product, 156^f, 255–257
of plant cells, 263–266, 266^t
selecting, 255, 255^f, 256^f
vectors and, 245, 246^f, 248–249, 249^f
cloning vectors, 245, 246^f, 248–249, 249^f
- Clonorchis sinensis* (Asian liver fluke), 357, 358^f
Clorox (sodium hypochlorite), 193^f, 194
clostridia. See *Clostridium*
clostridiales, 301^t, 314–315, 314^f
Clostridium acetobutylicum, fermentation and, 134^t
Clostridium botulinum, 314.
botulism caused by, 616. See also botulism
commercial sterilization to destroy, 182, 794–795, 794^f, 795^f
gastric juice unable to destroy, 455
grows at refrigerator temperatures, 618
lysogenic phages and, 384
neurotoxin produced by, 439. See also botulinum toxin
nitrites active against, 197, 202^t
as obligate anaerobe, 159, 314, 616
as potential biological weapon, 654^b in soil, 409, 616
Clostridium difficile, 314, 314^f, 401^f, 404
antibiotic therapy and, 314, 404, 417^b, 441^t, 570
Clinical Case, 402^b, 415^b, 417^b, 418^b, 422^b
diarrhea-associated, 314, 402^b, 404, 415^b, 417^b, 418^b, 422^b, 441^t, 720^b, 726, 728^b
epidemiological study of outbreak, 418^b
health care-associated/nosocomial, 401, 401^f, 416^t, 417^b
normal microbiota, antibiotic therapy and, 314, 404
as nosocomial infection, 417^b, 418^b, 422^b
resistant to hand sanitizers, 195
toxin similar to that of *Chlamydia trachomatis*, 261
Clostridium genus/spp., 301^t, 314, 314^f, 777
as anaerobic human pathogen, 159, 301^t
canned food spoilage by, 795, 796^t
endospores of, 95–97, 182, 301^t, 314, 314^f, 800
fermentation and, 132^f
as gram-variable bacteria, 86
low G + C content and, 314
as normal microbiota of vagina, 404^t
Clostridium perfringens
foodborne diarrhea and, 314
gas gangrene caused by, 314, 431^t, 673^b
gastroenteritis caused by, 726, 728^t
incubation period, 431^t
O toxin produced by, 64^f, 67^t
portals of entry, 431^t
Clostridium tetani, 314, 447^f
incubation period, 431^t
neurotoxin of, 235, 439, 441^t, 615
portals of entry, 431^t
in soil, 409
tetanus caused by, 314, 406, 621–622, 621^f, 638^b
vaccine, 506^t, 507^t
- Index

clotrimazole, 566*t*, 574, 606
 club fungi. *See* Basidiomycota
 clue cells, of bacterial vaginosis, 762*f*, 763
 clumping of cells/viruses, IgM antibodies and, 480, 484
 clusters of differentiation (CD) in T cells, 490
 cm (centimeter), 54*t*
 CM (cetacean morbillivirus) virus, marine mammal deaths and, 282*b*
 CMV. *See* cytomegalovirus
 CNS (central nervous system), 616, 616*f*
 CoA (coenzyme A), 114, 125, 126*f*
 coagulase-negative staphylococci, 414, 414*f*, 591–592, 592*f*
 coagulase-positive staphylococci, 423*b*, 423*f*, 592
 coagulases, 434, 586 virulence factors and, 441–442
 coal mines, 156
 coal tar, phenolics derived from, 192
 Coartem, 671
 cobalamin. *See* vitamin B12
 cobalt, as cofactor, 115
 cocarboxylase, vitamin B₁ and, 115*t*
Coccidioides immitis, 335, 340*t*, 703, 703*f*
 coccidioidomycosis caused by, 418, 703, 706*b*
 emerging infectious diseases and, 342*b*, 419*t*
 increasing rates of infections caused by, 14, 418
 coccidioidomycosis, 339, 703, 703*f*, 704*f*, 706*b*
 airborne transmission and, 412*f*, 413
 amphotericin B effective against, 568 as emerging infectious disease, 419*t*
 epidemic area for, 703, 704*f*
 incidence increase following natural disaster, 418
 as notifiable infectious disease, 424*t*
 Valley fever/San Joaquin fever synonyms for, 703
 coccobacilli, 77, 77*f*, 304, 305
 coccus/cocci, 77, 77*f*
 cocoa fermentation used in production of, 806
Phytophthora infestans infects, 347–348
 codeine, as genetically modified product, 257
 codons, 209, 215–218, 215*f*, 216–217*f* nonsense (stop), 209, 215*f*, 216–218, 216–217*f* sense, 216 start, 209, 215*f*, 216–217*f*
 coenocytic hyphae, 332, 332*f*
 coenzyme A (CoA), 114, 115*t*
 coenzyme Q (ubiquinones), 127, 127*f*
 coenzymes, 114, 114*f*, 115*t*
 cofactors of enzymes, 114–115, 114*f*, 158
 coffee, fermentation used in production of, 806
 cohort groups/cohort method in analytical epidemiology, 421

cold-loving microbes (psychrophiles), 154, 154*f*
 cold sores (fever blisters), 387, 394, 396*t*, 603, 603*f*, 767*b*
 herpes simplex virus type 1 (HSV-1) causing, 387, 394, 603, 757 latent state in nerve cells, 394, 396*t*, 603*f*
 cold temperatures, to control microbial growth, 154–156, 154*f*–156*f*, 167–168, 188–189, 191*t*
 cold virus. *See* common cold colds. *See* common cold *Coronavirus* and, 378*t* *Rhinovirus* and, 377*f*
 Coley, William B., 542
 Coley's toxins, 542
 coliforms, 786–787 counting methods, 172, 174*f*, 786 as indicator organisms, 786, 787*f*
 colitis fatal, 404 hemorrhagic, 718
 collagen vascular disorders, 470
 collagenase, 435
 collision theory, 113
 colony/colonies, 153, 167 colony-forming units (CFU), 171
E. coli, fimbriae's role in forming, 83, 83*f*
 mutant, replica plating to identify, 229, 229*f*
Proteus and, 81, 82*f*, 285*f*, 311, 311*f* streak plates and, 167, 167*f*
 colony-forming units (CFU), 171
 colony hybridization, 255, 256*f*
 colony-stimulating factor (CSF), 497 genetically modified, 257, 259*t*
 Colorado tick fever, 378*t*
 colorectal cancer, Clinical Case, 208*b*, 226*b*, 231*b*, 232*b*
 colorimeter, to measure turbidity, 175, 176*f*
 colostrum, 498 gastrointestinal infections and, 484 IgA's presence in, 484
 comedonal (mild) acne, 599–600
 commensalism, 405, 405*f*, 456
 commercial sterilization, 182, 183*t*, 594*f*, 800–801
 12D treatment (*botulinal cook*), 800
 canning retorts, 800, 801*f* in industrial canning, 800–801, 801*f*, 802*f*
 common cold, 685–686, 686*b* adenoviruses causing, 386 antibody protection against, 480–481 *Coronavirus* causing, 378*t*, 685 *Rhinovirus* causing, 377*t*, 685 portals of entry, 430 transmission of, 685–686 treatments for, 686
 common variable hypogammaglobulinemia, 544*t*
 communicable diseases, 408 control methods, 505
 community-acquired infections, 596, 598–599, 599*b*, 605*b*
 community-associated MRSA infections, 21*b*, 581
 competence (genetic), 233 transformation and, 232–233, 233*f*, 251 making *Escherichia coli* competent, 251
 competitive exclusion (microbial antagonism), 403–405
 competitive inhibitors of enzymes, 118, 118*f* of essential metabolite synthesis, 558, 561*f*, 562*f*, 567, 568*f*
 complement, 466, 479. *See also* complement system deficiency of, 467, 472*b*, 473*b* early discoveries about, 479 Fc regions of antibodies and, 469*f*, 482 testing serum for levels of, 472*b*
 complement fixation tests, 467, 472*b*
 complement system, 466–470, 474*t* activation of, 467, 468*f*, 469*f* alternative pathway, 467, 468*f*, 470*f* by antibodies, 487, 488, 488*f* classical pathway, 467, 468*f*, 469*f* lectin pathway, 467–468, 468*f*, 470*f* in transfusion reactions, 528*t*, 532–533 cascading action of, 467 diseases caused by, 470 evasion by microbes, 470 functions of, 466–467 inherited deficiencies of, 470 outcomes of activation (overview), 468*f* protein numbering system, 467 regulatory proteins of, 469–470 role in host defenses, 474*t* testing for levels of, 472*b*
 complementary base pairs, 47, 48*f*, 208 DNA replication and, 210–215, 211–214*f* sticky ends of DNA strands and, 247–248, 248*f*
 complementary DNA (cDNA), 252–253, 254*f*
 complex culture media, 162–163, 163*t*, 167*t*
 complex lipids, 40, 40*f*
 complex viruses, 374, 376*f*
 composting, 782 thermophiles and, 156, 782, 782*f*
 compound light microscope, 55–57, 55*f*, 59*f*, 60*f* magnification and, 58*f*
 compound microscope, 6, 7*f*. *See also* compound light microscope early versions of, 54–55
 compounds, 27 inorganic, 33–36 organic, 33, 36–48
 compromised hosts, 415*f*, 416, 417*t* concentration gradient, 91–93, 91*f*, 92*f*
 condensation reaction, 37, 38*f*
 condenser lens of microscope, 55, 55*f*, 59*f*, 60*f*
 condidiospore (conidium/conidia), 168, 334–335, 335*f*, 338, 340*t*
condylomata acuminata. *See* genital warts
 confocal microscopy (CF), 59–60, 62*f*, 66*t*
 biofilm study improved by, 160 *Paramecium multimicronucleatum* micrograph, 62*f*, 66*t*
 congenital immunodeficiencies, 543, 544*t*
 congenital rubella syndrome, 604–605
 congenital syphilis, 761 as notifiable infectious disease, 424*t*
 congenital toxoplasmosis, 352, 356*t*
 congestive heart failure, from heartworm disease, 362
 conidia/conidium (condidiospores), 168, 334–335, 335*f*, 338, 340*t*
 conidiospores (conidium/conidia), of *Streptomyces*, 319*f*, 320
 conidium. *See* conidia/conidium (condidiospores)
 conifers, as eukaryon, 6
Coniothyrium minitans, 341 conjugated proteins, 44 conjugated vaccines, 508 conjugation fungi. *See* Zygomycota conjugation in bacteria, 15, 234, 235*f*, 236*f* biofilms and, 161 in *E. coli*, 234, 236*f* as means to map gene location, 209*f*, 234 plasmids and, 234, 235–237, 238*f* sex pili and, 84, 234, 235, 235*f* vs. transformation, 234 conjugation in protozoa, 348–349, 349*f* conjugation (sex) pili, 84, 234, 235, 235*f*
 conjunctive plasmids, 235, 236*f*
 conjunctiva of eyes normal microbiota of, 404*t* as portal of entry, 430, 431*t*, 447*f*, 603 conjunctivitis, 337, 356*t*, 431, 609–610, 609*b* inclusion, 609*b*, 610 swimming pool, 604 connective tissue, histamine present in, 464 constant (C) regions of antibodies, 482, 482*f*, 483*f*, 487 contact dermatitis, allergic, 528*t*, 535, 536*f*, 537*b* lichens causing, 342 contact inhibition, 444, 444*f* contact lenses biofilms colonizing, 433 conjunctivitis and, 609–610 hydrogen peroxide as disinfectant, 202, 610 contact transmission, 411, 412*f* contagious diseases, 408 *contagium vivum fluidum* (“contagious fluid”), virus first described as, 370 continuous cell lines, 380 control of microbial growth, 181–206 by altering plasma membrane, 186 chemical methods, 190–201

- summary (agent/mechanism of action/preferred use), 201–202^t
- microbial characteristics and, 200–201, 200^f
- physical methods, 185–190
- summary (methods/mechanism of action/preferred use), 191^t
- rate of death and, 183, 183^t, 184^f
- terminology of, 182, 183^t
- convalescent home infections. *See also* nosocomial infections
- convalescent period (recovery) stage, 410
- copper, 35
- as an antiseptic, 195–196, 196^f, 202^t
- as cofactor, 115
- copper 8-hydroxyquinoline, 195
- copper sulfate as algicide, 195–196, 202^t
- ore extraction by leaching, 806, 807^f
- in Xgel hand sanitizer, 196
- cordite, 2
- core polysaccharide, 85^f, 86
- corepressors, 221, 222^f
- corn borer, European, 266
- corn plants, transposons discovered in, 237
- cornea
- Acanthamoeba* keratitis of, 605
 - herpetic keratitis of, 605
 - transplants (Clinical Case), 559^b, 570^b, 579^b, 581^b, 584^b, 585^b
- coronary artery disease, 16
- streptokinase to treat blocked, 434^t
- Coronaviridae, 378^t
- Coronavirus*
- common cold caused by, 378^t, 685
 - SARS-associated, 369, 378^t, 419^t
- cortex, of lichen, 342, 343^f
- corticosteroids, to treat psoriasis, 538
- Corynebacterium diphtheriae*, 319, 678^f
- diphtheria caused by, 235, 319, 384, 439, 441^t, 442^t, 684, 684^f
- emerging infectious diseases and, 419^t
- metachromatic granules of, 95
- phage conversion and, 384
- Corynebacterium* genus/spp., 302^t, 318, 319
- G + C content and, 314
 - as normal microbiota of eye, 404^t
 - as normal microbiota of mouth, 404^t
 - as normal microbiota of skin, 404^t, 591
 - as pleomorphic bacteria, 78
- Corynebacterium xerosis*, as normal microbiota of skin, 591
- cosmetics and allergic contact dermatitis, 530
- cotton balls, quat antisepsics neutralized by, 197, 198^b
- cotton plants, insect toxin genetically modified into, 266
- cotton production, microbes used in, 3b, 38
- Coulter counters (electronic cell counters), 175
- counterstains, 68^f, 69, 71
- coupled chemical reactions. *See under* chemical reactions
- covalent bonds, 30, 30^f, 31^t
- cowpox vaccine, 505
- cowpox virus, 11, 505
- caused by Poxviridae, 387
- cows
- bovine tuberculosis, 688
 - dairy, bovine growth hormone and milk production, 266, 267^t
 - livestock
 - animal feed antibiotics, 554, 562^t, 565, 575, 583^b
 - bovine growth hormone and, 266, 267^t
 - Pasteurella*-caused sepsis in cattle, 312
 - Salmonella* in intestinal tract of, 310
- Coxiella burnetii*, 309
- endospore-like structures formed by, 96
 - as potential biological weapon, 654^b
 - Q fever caused by, 309, 696–697, 696^f
 - replicates inside phagolysosomes, 462
- Coxiella* genus/spp., 301^t, 304, 309
- coxsackievirus, 377^t
- coyotes, tapeworm *Echinococcus granulosus* in, 359–360, 361^f, 364^t
- CPE (cytopathic effect), in cell cultures, 379, 380^f
- cranberry juice, prevents *E. coli* from adhering to cells, 746
- crayfish, lung flukes and, 357–358, 359^f, 364^t
- Crenarchaeota, 302^t, 778
- gram-negative archaea, 302^t
- cresols, 192, 193^f
- Creutzfeldt-Jakob disease (CJD), 19, 19, 395, 636–637, 636^f, 637^t, 638^b
- variant CJD, compared, 637^t
- crevicular fluid, 714
- Crick, Frances H. C., 10^f, 15, 44, 47
- crisis phase of fever, 466
- cristae/crista, 103, 104^f
- Crohn's disease, 463
- interleukin-12 and, 499^b
 - monoclonal antibodies to treat, 512
- crop plants
- genetic modification and, 263–264, 266–267, 267^t
 - MacGregor tomatoes, 267, 267^t
- cross-bridge amino acid, 84, 85^f
- crossing over, 231–232, 231^f
- in bacteria, 231–232, 231^f
 - in eukaryotic cells, 231
- crown gall disease, 263, 264^f, 305
- Crustacea (class), 363, 364^t
- crustaceans, chitin exoskeleton of, 99
- crustose lichens, 342, 343^f
- Cruz, Oswaldo, 4t
- Cryphonectria parasitica*, chestnut tree blight caused by, 341
- Cryptococcus gattii*, 330, 330^f, 332^b, 339^b, 341^b, 342^b, 623^b, 632
- Cryptococcus grubii*, 623^b, 632
- cryptococcosis, 623^b, 632–633, 632^f
- Cryptococcus (Filobasidiella)*, 335, 340t, 341
- Cryptococcus grubii*, 632
- Cryptococcus neoformans*, 632–633, 632^f
- in AIDS patients, 550^t
 - pathogenic properties, 340t, 445
- cryptosporidiosis, 19–20, 737, 737^f, 740^b
- as emerging infectious disease, 19–20, 419^t
 - as notifiable infectious disease, 424^t
- Cryptosporidium*, 352–353, 356t, 737, 737^f
- chlorine-resistance and, 357^b
 - diarrhea outbreaks and, 19–20, 330, 352–353, 357^b
 - emerging infectious diseases and, 19–20, 419^t
 - interleukin-12 and, 499^b
 - preventing outbreaks, 357^b
 - transmission routes, 357^b
- Cryptosporidium hominis*
- AIDS-associated, 550^t
 - diarrhea caused by, nitazoxanide to treat, 571
 - interleukin-12 to treat, 499^b
- crystal violet-iodine (CV-I) complex, 69, 86
- crystal violet stain, 67, 68, 68^f, 71t, 86, 87
- CSF (cerebrospinal fluid), 615, 616, 617^f, 621^b
- spinal tap (lumbar puncture), 614, 614^f
- CSF (colony-stimulating factor), 497
- genetically modified, 257, 259^t
- CTL (cytotoxic T lymphocyte), 490, 493^f, 529, 542, 542^f
- cucumbers, lactic acid fermentation and, 134^t
- Culex* (mosquito)
- as vector for arboviral encephalitis, 364^t, 413^t, 628^b
 - as vector for St. Louis encephalitis, 628^b
- Culiseta* (mosquito), as vector for eastern equine encephalitis, 628^b
- culture media, 161–166
- agar, 137^f, 158, 162, 343
 - alternative methods to, 406
 - for anaerobic microbes, 163, 164^f
 - bacterial growth in, 168–177
 - bacterial division, 168, 168^f
 - cell division and, 153, 168–169, 169^f
 - direct measurements, 171–175
 - estimating numbers, 175–177
 - generation time, 168–169, 169^f
 - logarithmic representations, 169–171
 - phases of growth, 170–171
- chemically defined, 162, 162^t, 167^t
- complex, 162, 163^t, 167^t
- differential, 137, 137^f, 165–166, 165^f, 166^f, 167^t
- enrichment, 165–166, 167^t
- filtration and, 188
- for growing bacteriophages, 376, 376^f
- Haemophilus* bacteria special requirements and, 312
- nutrient broth/nutrient agar for, 163, 163^t
- reducing media, 163, 167^t
- salt concentration and, 158
- selective, 165, 167^t, 284, 285
- solidifying agents, 165. *See also* agar
- special techniques, 163–165, 164^f, 165^f
- sterilization of, 162, 188
- summary, by type/purpose, 167^t
- trace elements and, 158
- transport, 283
- viruses and, 164, 376, 377–380
- culture plates/petri plates, 162
- cultures, 162
- bacterial growth in, 168–177. *See also under* culture media
- Cupriavidus*, 143
- curd, in cheese production, 805, 805^f
- cutaneous anthrax, 651, 651^f, 655^b
- virulence of, 432
- cutaneous diphtheria, 684
- cutaneous mycoses (dermatomycoses), 340, 340^t, 605–607, 606^f
- ketoconazole to treat, 568
- cuticles
- of flukes, 356
 - of tapeworms, 358
- CV-I (crystal violet-iodine) complex, 69, 86
- CXCR4 (chemokine coreceptors), 545
- cyanide, 118
- as an enzyme poison, 118
- cyanobacteria, 302^t, 320–322, 321^f, 321^t
- alkaline habitats and, 35
 - environmental role of, 321
 - evolutionary contributions of, 321
 - fossil evidence and, 277, 321
 - gas vacuoles and, 95, 321
 - habitat and, 341^f
 - important genera/special features, 302^t
 - lichens and, 342
 - as nitrogen fixers, 15, 158, 321
 - pH ranges and, 35
 - as photoautotrophs, 141–143, 141^f, 302^t
- photosynthesis and, 138, 141–143, 141^f, 143^t, 158, 320–322, 321^t
- phylogenetic relationships, 280f, 320
- position in evolutionary tree, 274^f
- selected characteristics, compared, 321^t
- cyanocobalamin (vitamin B₁₂), 115^t
- Cyanophora paradoxa*, 275^f
- cyclic AMP (cAMP), 221–222, 222^f, 223^f
- cyclic photophosphorylation, 138, 139^f
- cyclic side group of amino acids, 41, 41f, 42t
- Cyclospora cayetanensis*, 353, 356t, 419t, 737–738, 740b
- Cyclospora* diarrheal infection, 356t, 737–738, 740b
- cyclosporine, 541–542, 554b
- cysteine (cys)
- disulfide bridges of, 44, 45f
 - structural formula/characteristic R group, 42t
- cystic acne, 455

cystic fibrosis (CF), 16
 biofilm-forming *P.aeruginosa* in, 56b, 161
 biofilms and, 56b, 161
Burkholderia infections and, 306, 309
 DNA sequencing and, 261, 261f
 genetically modified enzyme used to treat, 259t
Pseudomonas infections and, 56b, 308, 309, 570
 tobramycin to treat, 570
 cysticerci, 358
 cysticercosis, 358, 739
 cystitis, 752, 753b
 cysts of protozoa, 331f, 349, 351, 352 of *Chilomastix*, 350f
 chlorine dioxide activity against, 194
 of cryptosporidiosis, 737
 of *Giardia*, 349, 350f, 736–737
 resistance to chemical biocides, 200, 200f
 cyt (cytochromes), 129–130, 129f
 cytochrome c oxidase, 137
 cytochrome oxidase, 115t
 cytochromes (cyt), 127–128, 127f
 cytoidal effects of viruses, vs.
 noncytoidal effects, 443
 cytokine storm, 497, 527
 of 1918 influenza pandemic, 694
 cytokines, 439, 440f, 452, 464, 495–497, 500f
 in B cell activation, 484, 484f
 in cellular immunity, 496–497, 500f
 as chemical messengers, 496
 chemokines, 496
 fever and, 466
 hematopoietic, 497
 in humoral immunity, 469, 484f, 485, 496, 500f
 inflammatory response and, 464, 464f, 465
 interferons as, 471, 496
 interleukin-1 (IL-1), 440, 466
 interleukin-12 (IL-12) as “magic bullet”, 499b
 overproduction (cytokine storm), 497
 phagocytosis and, 460
 symptoms induced by, 439
 T cell secretion of, 480
 as therapeutic agents, 492, 499b
 in tissue repair, 465
 toxic at high concentrations, 440
 tumor necrosis factor and, 440, 440f, 496–497
 cytology, 457f, 458
 by complement activation, 467, 469f
 cytomegalovirus (CMV), 649b, 664
 AIDS-associated, 549, 550t, 664
 cytomegalic inclusion disease (CID), 664
 cytopathic effects of, 445t
 eye infections, 542, 575, 664
 inclusion bodies of, 387, 664
 pregnancy and, 664
 U.S. prevalence of antibodies against, 663f
Cytomegalovirus (HHV-5), 377t, 649b
 cytomegalovirus retinitis, 542, 575, 664

cytopathic effects (CPE)
 in cell cultures, 379, 380f
 of viruses, 443–444, 444f, 445f
Cytophaga genus/spp., 302t, 322, 777
 cytoplasm
 eukaryotic cell, 98f, 100–101, 100t
 prokaryotic cell, 79f, 94, 100t
 cytoplasmic membrane. *See also* plasma membrane
 cytoplasmic streaming, 100t, 101, 354, 355f
 cytosine (C), 46f, 47, 48f, 208
 in DNA replication, 210–215, 211f–214f
 in translation, 216, 216–217f, 218f
 cytoskeleton, 100t, 101, 435
 cytosol, 101
 cytosome, 349
 of ciliates, 353f
 of euglenoids, 349, 351f
 cytotoxic reactions (Type II hypersensitivity), 528t, 532–534
 drug-induced reactions, 533–534, 534f
 transfusion reactions, 532–533, 532t, 533f
 cytotoxic T lymphocyte (CTL), 490, 493f, 496t, 542, 542f
 cytotoxins, 438
D
 D-amino acids, 41, 43f, 84, 85f
 D-glucose, 41
 D value/DRT (decimal reduction time), 185
 dairies, disinfectants used in, 194
 dairy cows, bovine growth hormone and milk production, 266, 267t
 dairy equipment, chloramines to sanitize, 194, 201t
 dairy products
 butter/buttermilk, 806
 cheese. *See* cheese
 cultured sour cream, 806
 estimating bacterial populations in, 173, 175f
 genetically modified rennin and, 267t
Listeria and, 317
Listeria monocytogenes and, 317
 microbes used in producing, 317, 806
 pasteurization of, 187–188
 phosphatase test and, 187
 streptococci important to production of, 317
 yogurt, 806
 dalfoxipristin, 565t, 571
 dandruff, 591
 dapson, to treat leprosy, 626, 632b
 dapтомycin, 565t, 572
 darkfield microscopy, 57, 60f, 66t
 Darwin, Charles, 272
 daughter cells
 in DNA replication, 210–215, 211f–214f, 224f
 in flow of genetic information, 209, 210f
 mutation and, 224f
 DDT, 16, 17, 781
 deamination, 135, 776–777, 776f
 death (human), fever and, 466
 death (microbial)
 exponential rates of, with antimicrobial treatments, 183, 183t
 logarithmic decline phase of bacterial growth and, 170f, 171
 microbial death curve (Foundation Figure), 184f
 deathcap mushroom (*Amanita phalloides*), 445
 debridement, 622
 decarboxylation, 125, 126, 126f, 135, 136, 137f
 biochemical test for, 136, 137f
 decimal reduction time (DRT/D value), 185
 decimeter (dm), 54t
 decolorizing agents, 68, 68f
 decomposers
 fungi as, 332
 oomycetes as, 347, 347f
 water molds as, 344
 decomposition reactions, 32
 deep, in relation to culture dishes, 162
 deep-freezing
 to control microbial growth, 194t
 to preserve bacterial cultures, 168
 deep-sea hydrothermal vents, 156, 157b
 deer
 chronic wasting disease (prion-caused), 636
 as disease reservoirs, 360, 361f, 413t, 656b
 deer fly (*Chrysops*), as vector for tularemia, 363f, 364t, 648, 656b
 deer fly fever, 642
 deer fly/rabbit fever. *See* tularemia
 deer mice, as disease reservoirs, 413t
 defecation, 455, 474t
 defenses of human body. *See* immunity
 defensins, 473, 579, 589, 713
 defensive cells of innate immunity, 474f
 natural killer (NK) cells, 457t, 458, 474f, 495, 496t
 phagocytes, 452f, 457t, 460–463, 474t
 definitive host, 351, 364t
 of *Echinococcus granulosus*, 359–360, 361f, 364t
 of *Plasmodium vivax*, 351–352, 352f
 of selected parasitic helminths, 364t
 of *Taenia saginata*, 358, 364t
 of *Taenia solium*, 359, 364t
 degeneracy of genetic code, 216, 224, 254
 degenerative evolution, 318
 degerning/degermination, 182, 183t, 196, 202t
 alcohol swabs as, 194, 202t
 soaps as, 196, 196f, 202t
 degradation of synthetic chemicals
 bioremediation, 775, 776f
 composting, 782
 solid municipal waste, 781–782
 degradative chemical reactions. *See* catabolism
 degranulation, 529, 529f
 dehydration, fever and, 466
 dehydration synthesis, 37, 38f, 43, 44f, 112
 dehydrogenase enzymes, 114, 115t
 dehydrogenation, 120, 121f, 135.
See also redox reaction
 biochemical test for, 136, 137f
 deinococci, 326
Deinococcus genus/spp., 302t, 326
Deinococcus radiodurans, 326
Deinococcus-Thermus, 302t
 delayed (Type IV) hypersensitivity reactions, 528, 528t, 535, 536f, 537b
 Delbrück, Max, 10f
 delirium, fever and, 466
 delta hepatitis. *See* hepatitis D
 deltaproteobacteria, 301t, 303, 312–313
 Deltaviridae, 378t
 denaturation of proteins, 44, 117, 117f
 by heat treatments, 185–188, 186f, 191t
 dendritic cells (DCs), 457t, 458, 490, 494, 494b, 494f
 as antigen-presenting cells, 494, 494f
 antimicrobial proteins (AMPs) and, 473
 in second line of defense, 452, 452f
 dengue fever, 377t, 419t, 643, 667, 667b
Aedes mosquito as vector, 364t, 414t
 Clinical Case, 644b, 662b, 665b, 668b, 675b
 as emerging infectious disease, 419t
 as nationally notifiable infectious disease, 424t
 dengue hemorrhagic fever (DHF), 364t, 643f, 667, 667b
 as emerging infectious disease, 419t
 denim blue jeans, made by microbes, 3b
 denitrification, 776f, 777
 dental caries (tooth decay), 713–715, 714f, 716b
Bacteroides and, 322
Fusobacterium and, 322, 324f
Streptococcus mutans and, 80, 135b, 137b, 317, 432, 441, 713–715, 714f
 dental plaque, 111f, 713
 as biofilm, 80, 161, 432, 713
 dextran, *Actinomyces*, *Streptococcus mutans* and, 431, 441
 dental work, medical implants, biofilms and, 537b
 deoxyribonucleotides (dNTPs), 250f
 deoxyribonucleases, 595
 deoxyribonucleic acid. *See* DNA
 deoxyribose, 37, 46f, 47, 208
 in DNA replication, 211f–214f
Dermacentor andersoni (wood tick)
 Rocky Mountain spotted fever transmitted by, 364t, 661
 as vector of *Rickettsia rickettsii*, 413t
Dermacentor spp., 364t
Dermacentor variabilis (dog tick),
 Rocky Mountain spotted fever transmitted by, 661
 dermatitis, *Pseudomonas*, 591, 593–594

- dermatomycoses (cutaneous mycoses), 340, 340t, 605–607, 606f
 ketoconazole to treat, 568
- dermatophytes, 340, 605
 dermatomycoses (cutaneous mycoses) caused by, 340, 340t
 keratinase enzyme secreted by, 340, 600
- dermicidin, 473
- dermis, 453, 453f, 590, 590f
- descriptive epidemiology, 420–421
- desensitization to antigens, 531
 to penicillin allergy, 530
- desiccation, 189, 191t
- designer jeans, made by microbes, 3b
- Desulfovibrio* genus/spp., 301t, 312, 777
 anaerobic respiration and, 130
 as sulfate reducers, 301t
- Desulfobivionales, 301t, 312
- Desulfuroccales, 302t
- detergent (SDS), 256f
- detergents and soap, 196, 196f, 202t
 acid-anionic sanitizers, 196
 cationic, 196–197, 202t
 gram-negative bacteria and, 86, 87t
- Deuteromycota*, 338
- developing countries, parasitic diseases and, 330
- devescovinids, 106b
- dextran, 38, 713
 Actinomyces, *Streptococcus mutans* and dental plaque, 432, 441, 713–714
- dextranase, produced by *Streptococcus mutans*, 441
- DHAP (dihydroxyacetone phosphate), 122, 124f
- diabetes mellitus, 538
 gene therapy and, 16
- insulin produced by rDNA technology, 2, 245, 254, 257, 259t
 mucormycosis and, 341
- diagnostic immunology, 511–523. *See also* diagnostic tests
- diagnostic tests
 agglutination reactions, 510–512, 510f, 511f
 complement-fixation reactions, 512–513, 514f
 DNA probes and, 517. *See also* DNA probes
 ELISA test, 286, 286, 287f, 519–521, 523f
 enzyme-linked immunosorbent assay (ELISA), 519–521, 523f
 fluorescent-antibody (FA) tests, 513–514, 515f
 for HIV detection, 545
 monoclonal antibodies, 512–514, 513f
 neutralization reactions, 512, 513f
 precipitation reactions, 514–515, 514f, 515f
 rDNA technology and, 261
 sensitivity and, 512
 specificity and, 512
 for viral RNA, 545
 Western blotting, 286–287, 288f, 380, 510, 521
- dialysis patients, at risk for gram-positive sepsis, 640
- diapedesis, 464f, 465
- diarrhea, 356t, 717
 antibiotic-associated, 441t
 cholera and, 310, 439, 441t
 Clinical Case, 402b, 415b, 417t, 418b, 422b
 Clostridium difficile-associated, 415b, 417b, 418b, 422b, 441t, 720, 720b
 cryptosporidiosis and, 19–20, 356t
 Cryptosporidium causing, 356t
 Cyclospora cayetanensis causing, 356t, 419t
 Escherichia coli 0157:H7 and, 19, 83, 419t
 hemorrhagic, 419t
 infant, 235
 infant mortality and, 717
 microsporidia causing, 337, 337f, 340t
 nosocomial/health-care-associated, 415b, 416t, 417b, 418b, 422b
 persistent, in HIV/AIDS patients, 549, 550t
 traveler's, 235, 310, 441t, 724
 waterborne (recreational), 352–353, 357b
- diarylquinoline, experimental anti-TB drug, 684
- diatoms, 345t, 346, 346f
 neurologic disease outbreak from ingesting, 346
- DIC (differential interference contrast) microscopy, 59, 61f, 65t
- DIC (disseminated intravascular coagulation), 440
- Dicer (enzyme), 258
- dichotomous keys, 293
 examples of, 282b, 284, 303
- Dictyostelium*, 354f
- differential culture media, 137, 137f, 165–166, 165f, 166f, 167t
 to identify pathogenic *Escherichia coli*, 136, 137f, 162t, 165
- differential interference contrast (DIC) microscopy, 59, 61f, 65t
- differential stains, 68–69, 68f, 70f, 71t, 284
- differential white blood cell count, 457t, 458
- Differin (adapalene), 599
- diffraction of light rays, 60, 60f
- diffusion
 chemiosmosis and, 128, 128f, 129f
 facilitated, 91–92, 91f
 simple, 91, 91f
- diffusion methods (to evaluate antibiotic sensitivity)
 disk-diffusion method, 195, 196f, 572, 572f
 E test, 572, 573f
- DiGeorge's syndrome, 541b, 543, 544t
- digestion phase of phagocytosis, 461f, 462
- digestive enzymes, lysosomes and, 103
- digestive system, 711–748
 fecal-oral cycle and, 711
 immune system's interrelationship with, 712
- infections in, vs. intoxication, 716
- microbial diseases
 bacterial, 713–727, 728b
 fungal, 735–736, 740b
 helminthic, 738–744, 740b
 protozoan, 736–738, 740b
 viral, 390, 727–735, 736b
 normal microbiota of, 712–713
 ruminant, microbes in biofilms and, 161
 structure/function, 712, 712f
- digestive system infections, *Reoviridae* and, 390
- dihydroxyacetone phosphate
 in biosynthesis of lipids, 147f
 in lipid catabolism, 135f
- dihydroxyacetone phosphate (DHAP), 122, 124f
- diiodohydroxyquin (iodoquinol), 577
- dilation, of blood vessels (vasodilation), 464, 464f
- diiodohydroxyquin, mode of action/uses, 564t
- dilution tests of antibiotics, 572–573, 573f
- dimers
 secretory IgA and, 484
 unrepaired, and skin cancers, 228
- dimethicone, 608
- dimorphic fungi, 334, 334f, 340t
- dimorphism, 334, 334f
 sexual, 360
- Dinoflagellata, 345t, 356t
 dinoflagellates (plankton), 345t, 346–347, 346f, 356t
 blooms and polluted water, 348
 photosynthesis of, and Earth's oxygen supply, 348
- planktonic bacteria, biofilms and, 161, 161f
- dioecious helminths, 356
- dipeptide, 43, 44f
- diphosphoglyceric acid, 140f
- diphtheria, 17, 95, 235, 441t, 684–685, 684f, 686b
 1990's epidemic, adult vaccination booster and, 418
- Corynebacterium diphtheriae* causing, 319, 384, 441t, 684, 684f
 cutaneous diphtheria, 684
 as emerging infectious disease, 419t
 membrane in throat characteristic of, 684, 684f
 as notifiable infectious disease, 424t
 symptoms of, 407, 441t, 684
 toxin causing, *See* diphtheria toxin vaccine, 506t, 507t, 684
 diphtheria toxin, 438, 438f, 439, 441t, 442
 mechanism of action, 438f
 produced by *Corynebacterium diphtheriae*, 235, 438f, 439, 441t
 vaccine produced from purified toxoid, 506t, 508t
- diphtheroids
 as normal microbiota of eye, 404t
 as normal microbiota of nose, 404t
 as normal microbiota of skin, 591
 as normal microbiota of urethra, 404t
- Diphyllobothrium latum fish tapeworm, 739
- dipicolinic acid (DPA), 44b, 48b, 97
- diplobacilli, 77, 77f
- diplococci, 77, 77f
- diploid cell lines, 379–380
- Diplomonads, 356t
- direct agglutination tests, 515–516, 516f
- direct contact transmission, 411, 412f, 413t
 in nosocomial infections, 414–417
- direct ELISA tests, 514, 520–521, 523f
- direct FA tests, 518, 520f
- direct flaming sterilization, 188, 191t
- direct microscopic count of bacteria, 173, 175, 175f
- direct (positive) selection method to identify mutations, 229
- Dirofilaria immitis*, 361–362, 362f
 Wolbachia bacteria essential to, 362
- disaccharides, 38, 38f, 86
- disease principles, 401–428
 acute disease and, 409
 chronic disease and, 409
 classification and, 408–409
 Clinical Case, 402b, 415b, 417b, 418b, 422b
 communicable disease and, 409
 contagious disease and, 409
 cooperation among microbes and, 406
 degenerative, vs. infectious disease, 406
 diagnosis of, 408
 antibody presence (IgM) and, 480
 duration or severity of, 409
 endemic disease and, 408
 epidemic disease and, 408
 etiology determination and, 406–408, 407f
 germ theory of, 8–9, 11, 406–408, 407f, 477
- health care-associated infections and, 414–417. *See also* nosocomial infections
- incidence and, 406
- infection, vs. disease, 402
- infectious disease and, 17, 406–410.
See also infectious diseases
- inherited (genetic), vs. infectious disease and, 406
- noncommunicable disease and, 408
- normal microbiota/microbiota and, 402–405, 403f, 404t
- occurrence of disease and, 408–409, 408f
- pandemic disease and, 409
- pathogenesis and, 402
- pathology as study of, 402
- patterns of, 409–410
- predisposing factors, 410
- prevalence, 406
- self-limiting, 676
- severity or duration of, 409
- signs and symptoms, 406
- sporadic disease and, 408
- spread of infection, 411–414, 446
- stages of disease development, 410, 410f
- syndromes, 406

transmission routes and, 411–414.
See also transmission of disease
 vaccinations and, 505–511
 vs. infection, 402

disease reservoirs, 411
 animal and human, 411, 413t
 nonliving (soil/water), 411
 of zoonoses/with transmission methods, 413t

disinfectants
 alcohols, 194–195, 194t, 201t, 202t
 aldehydes, 197, 202t
 antibiotics as, 197
 bacteria that can grow in, 196f, 202
 bacterial plasma membrane damaged by, 90
 biguanides, 193, 201t
 bisphenols, 192–193, 193f, 201t
 Cepacol, 196, 202t
 chemical food preservatives, 197, 202t
 chemical sterilization, 198–199, 202t
 chlorhexidine, 193, 201t
 chlorine, 193–194, 193f, 202t
 choosing effective, 192
 copper, 195–196, 195f
 detergents, 196, 196–197, 196f, 202t
 disk-diffusion method to evaluate, 192, 193f
 early uses of, 9, 11
 evaluating effectiveness of, 192, 193f
 formaldehyde, 197
 glutaraldehyde, 197, 201t, 202t
 halogens, 193–194, 202t
 heavy metals, 195–196, 195f, 202t
 hexachlorophene, 192, 193f
 hydrogen peroxide, 202
 iodine, 193–194, 201t, 202t
 mercury, 195, 202t
 nitrates/nitrites, 197, 202t
 peroxygens, 202
 phenol, 11, 192, 193f, 201t
 phenolics, 192, 193f, 201t
 plasma sterilization, 201
 quats, 90, 193f, 196–197, 196f, 200, 201t, 202t
 silver, 195–196, 195f
 silver-sulfadiazine, 195, 202t
 soaps, 196, 196f, 202t
 sulfur dioxide, 197
 supercritical fluids, 199, 202t
 surface-active agents/surfactants, 192, 193f, 196–197, 196f, 201f, 202t
 Surfacine, 195
 temperature and effectiveness of, 183
 triclosan, 192–193, 193f, 201t, 566
 types of, 192–199
 use-dilution tests to evaluate, 192
 vs. antiseptics, 182
 zinc, 195

disinfection, 182, 183t. *See also* disinfectants
 evaluating effectiveness of, 192, 193f
 principles of, 192
 water treatment, 782f, 788, 789f
 disinfection and release in sewage treatment, 790f, 792
 disk-diffusion assays/tests, 192, 193f

to evaluate antibiotic sensitivity (Kirby-Bauer test), 578, 578f
 to evaluate disinfectants, 192, 193f, 198b

disseminated intravascular coagulation (DIC), 440, 479b

dissimilation, 779, 780f

dissimilatory plasmids, 235

dissimilatory metabolism, 312

dissociation (ionization), 34, 34f

distilled water, microbial growth and, 158

disulfide bridges, 44, 45f
 of antibodies, 479, 480f
 antimicrobial agents and, 184

diversity
 genetic, 231, 239
 microbial, 327–328, 767

dm (decimeter), 54t

DNA, 37, 44, 46f, 47
 amplification of, 245
 antimicrobial agents and, 184
 of bacterial cells, 79f, 94
 base pairs, 208
 in binary fission, 168f
 bullets via gene guns, 251–252, 252f
 complementary (cDNA), 252–253, 254f
 complementary strands, 208
 conjugation, 15, 84
 DNA bar code proposed, 290
 double helix, 46f, 47, 58f, 208
 enzymes of replication process, 210–215, 211f
 in eukaryotic cells, 101–102, 276t
 extraction from mummies/extinct plants/animals, 263
 location in eukaryotic cells, 101
 mitochondrial, 103
 mutagenic agents and, 226–231
 mutation and, 223–231. *See also* mutations
 “naked,” transformation process and, 232, 251
 probes, 255, 256f
 in prokaryotic cells, 79f, 276t, 945
 protein involved in repair of, 64f
 protein synthesis and, 146
 radiation damage to, 189–190, 191t
 recombinant, 15
 replication, 210–215. *See also* DNA replication
 RNA compared to, 48t
 STM microscopes to view, 64, 64f
 structure of, 46f, 47, 208–209, 209f, 211f–212f, 212–213
 sugar-phosphate backbone of, 208, 214f, 215t, 248, 248f
 supercoiled strands of, 209, 209f
 synthesis of from nucleotides, 146
 synthetic, 253–254, 254f
 transcription and, 210f, 214f, 215
 translation and, 210f, 215–218, 216–217f, 218f

DNA reverse transcriptase viruses, 388t

DNA sequencing
 bioinformatics and, 261
 in cystic fibrosis research, 261, 261f
 fungi placed closer to animals than plants, 273
 reverse genetics and, 261
 shotgun sequencing and, 260, 260f

DNA strands
 blunt ends, 247, 248f
 sticky ends, 215t, 238f, 247–248, 248f

DNA synthesis
 antibiotics that inhibit, 567
 nitrogen requirements, 158

from nucleosides with deoxyribose, 214

DNA technology
 agricultural applications, 263–264, 264f, 266, 267t
 genome projects, 260, 261
 recombinant, 15, 245. *See also* recombinant DNA (rDNA) technology
 scientific applications, 260–263
 therapeutic applications, 257–258, 259t

DNA vaccines, 258, 508

DNA vectors (gene-cloning vectors/cloning vectors), 245, 246f, 248–249, 249f

DNA viruses, 377t, 385t, 386–388, 387f, 388f, 388t, 392b

dogs
 bites, *Pasteurella multocida* and, 312, 653
 canine distemper vaccine, 259t
Capnocytophaga canimorsus and, 479b, 480b, 484b, 487, 490b, 494b
 as disease reservoirs, 413t
 heartworm in, 361–362, 362f
 raccoon roundworm and, 360
 reported cases of rabies in, 630f
 ringworm and, 605
 tapeworm *Echinococcus granulosus* in, 359–360, 361f, 364t
Toxocara canis and, 360, 364t
 vaccinated against leptospirosis, 325

Doherty, Peter C., 13t

dolphins, bottlenose, 282b, 282f

Domain Archaea, 75, 76, 274–275, 274f, 276f, 300, 302t, 326, 326f
 members of, 274–275, 274f
 position in evolutionary tree, 274f
 position in taxonomic hierarchy, 279f

Domain Bacteria, 274, 274f, 276t, 303–326. *See also* bacteria; prokaryotes
 gram-positive bacteria of, 314–320.
See also gram-positive bacteria
 nonproteobacteria gram-negative bacteria of, 320–322
 position in evolutionary tree, 274f
 position in taxonomic hierarchy, 279f
 proteobacteria of, 303–314. *See also* proteobacteria
 summary of selected prokaryotes, 300–302t

Domain Eukarya, 274, 274f, 276t. *See also* eukaryotes
 Kingdoms in, 274f
 position in evolutionary tree, 274f
 position in taxonomic hierarchy, 279f

domain (taxonomic)
 defined, 278, 279f
 of three-domain system, 6, 273–275, 274f, 276f

domoic acid intoxication, 346

donor cells in gene transfers, 231f, 232–233, 234f

doripenem, 569, 585b

double helix, DNA, 47, 48f, 208

- double-stranded DNA viruses, 388t
enveloped viruses, 377t, 388f
nonenveloped viruses, 377t
double-stranded RNA viruses, 388f, 388t
nonenveloped viruses, 378t
doxycycline, 571, 646
DPA (dipicolinic acid), 44b, 48b, 97
Dracunculus medinensis (guinea worm), 14, 14f
drain cleaners, 2, 16
drinking water
chlorine gas to disinfect, 194
fecal contamination and, 356t
parasitic protozoa and, 356t
droplet transmission, 411–412, 412f
drotrecogin alfa (Xigris), 646
DRT/D value (decimal reduction time), 185
drug-induced cytotoxic reactions, 528, 529f
drug resistance, 12. *See also* antibiotic resistance
drugs
antibiotic, 11–12, 12f. *See also* antibiotics
antimicrobial, 553–583. *See also* antimicrobial drugs
synthetic, 11–12
dry heat sterilization, 188
dry weight, as measure of bacterial numbers, 176–177
drying, resistance to by gram-negative vs. gram-positive bacteria, 87t
DTaP vaccine, 621, 684
recommended schedule, 507t
Duchenne's muscular dystrophy, 16
ducks, influenza A viruses and, 18
ducts, of male reproductive system, 750, 751f
Dulbecco, Renato, 10f
dura mater, 616, 617f
dust mites, 530, 530f
Dutch elm disease, 341–342
dye derivatives, as antimicrobial agents, 12
dyes
acidic, 67
basic, 67, 86, 87t
inhibition in gram-negative vs. gram-positive bacteria, 87t
dysentery, 717
amebic. *See* amebic dysentery
bacillary. *See* shigellosis
balantidial, 356t
Balantidium coli causing, 353, 356t
epidemics, antibiotic resistance and, 235
Shigella causing, 311
dysuria, 746
E
EAEC (enteroaggregative *E. coli*), 724, 728b
earache (otitis media), 312, 685, 685f, 686b
Earth's carbon cycle, *Pelagibacter ubique* role in, 303
earwax, 455
eastern equine encephalitis (EEE/Togavirus), 377t, 630, 634b
eating utensils, calcium hypochlorite (chloride of lime) to disinfect, 194, 201t
EB virus. *See* Epstein-Barr (EB) virus
EBLV (*European bat lyssavirus*), 630
Ebola hemorrhagic fever (EHF), 19, 666, 667b
as emerging infectious disease, 19, 20, 419t, 666
Ebola virus, 659f, 666, 667b
emerging infectious diseases and, 19, 20, 419t, 666
as filovirus, 373f, 378t
as helical virus, 373, 373f
as potential biological weapon, 654b
size of, 372f
echinocandin antifungal drugs, 566t, 574
Echinococcus granulosus, 359–360, 361f, 364f
Echinococcus multilocularis, 361f
echoviruses, 377t, 396t
as opportunistic pathogens, 405
eclipse period in viral multiplication, 381f, 383, 385
ecological niche (host range), viral species and, 375
ecology, microbial, 15
EcoRI restriction enzyme, 248t, 249f
ecosystems, without sunlight, 779–780
ectomycorrhizae, 773, 774f
ectopic pregnancies, pelvic inflammatory disease and, 752
ectosymbiosis, 106b
Edelman, Gerald M., 10f
edema, of inflammation, 466
edema toxin, of *Bacillus anthracis*, 650
EDTA (ethylenediaminetetraacetic acid), 88
EEE/Togavirus (eastern equine encephalitis), 377t, 630, 634b
efavirenz, 553, 575
eflornithine, to treat African sleeping sickness, 633
EGF (epidermal growth factor), 259t
eggs
embryonated, to grow viruses, 379, 379f, 504
food allergies and, 525
raw, *Salmonella Tennessee* outbreak and, 294b
EHEC (enterohemorrhagic *E. coli*), 723f, 724, 728b
EHF (Ebola hemorrhagic fever), 19, 419t, 659
Ehrlich, Paul, 10f, 12, 479, 480, 559
Ehrlichia chaffeensis
ehrlichiosis caused by, 290, 654
Lone Star tick as vector, 654
PCR used to identify, 290, 654
Ehrlichia genus/spp., 300t, 304
arthropod vectors that transmit, 413t
ehrlichiosis and, 290, 304, 364t, 413t, 654, 656b
reservoirs/transmission method, 413t
ehrlichiosis, 290, 304, 364t, 413t, 414t, 656b, 660
disease reservoirs for, 413t
human granulocytic, 290, 660
human granulocytic anaplasmosis, 290, 424t, 656b, 660
Ixodes spp. tick as arthropod vector, 414t
as notifiable infectious disease, 424t
transmission due to, 413t
EIA (enzyme immunoassay), 519, 683, 761
EIDs. *See* emerging infectious diseases
EIEC (enteroinvasive *E. coli*), 723, 728b
80S ribosomes, 94, 100t
electrolyte imbalances, fever and, 466
electromagnetic fields, in plasma sterilization, 201, 205t
electromagnetic lenses, used in electron microscopes, 61–64, 63f
electron acceptors, 29, 29f
final, 131, 139, 141f
electron-beam accelerator (in food preservation), 804, 804f
electron carriers, in energy production, 139, 141f
electron donors, 29, 29f
in energy production, 141f, 147
electron microscopes/microscopy, 14, 61–64, 63f, 66t
to diagnose *H. pylori* peptic ulcer disease, 64b
viral sizes and, 14, 370, 372f
electron shells, 26f, 27, 28t
electron transport chain (system), 121, 127–130, 127f, 129f
ATP synthesis/yields and, 128–130, 128f, 129f, 130t
catabolism and, 136f
in cellular respiration, 123f
in eukaryotic cells, 127, 129f
mitochondrial, 127, 127f, 129
oxidative phosphorylation and, 120–121, 127f
in photosynthesis, 138, 139f
in prokaryotic cells, 127, 129f
electronic cell counters (Coulter counters), 175
electronic configurations, 27, 28f, 28t
electrons, 26f
in cellular oxidations, 120, 120f, 121f
chemical bonds and, 27–31
of electron microscopes, 61–64, 63f
in ionizing radiation, mutagens and, 227
electrophoresis. *See* gel electrophoresis
electroporation, 251
elementary bodies, *Chlamydophila psittaci* and, 322, 323f, 372f, 695
elements
trace, activating enzymes and, 115
trace, microbial requirements, 158
elements (chemical), 26–27, 27t
common to organic compounds, 36
isotopes, 26–27
elephantiasis, 446
ELISA (enzyme-linked immunosorbent assay), 286, 287f, 519–522, 523f
HIV antibodies detected by, 521, 523f, 545
for syphilis, 755
Toxoplasma gondii detected by, 352
elk, chronic wasting disease (prion-caused), 636
Ellerman, Wilhelm, 392
elm trees, Dutch elm disease and *Ceratostoma ulmi* fungus, 341–342
embalming chemicals, 197
Emden-Meyerhof pathway, 122. *See also* glycolysis
embryonated eggs
to culture animal viruses, 379, 379f
influenza viruses grown in to make vaccine, 508f
embryonic stem cells (ESCs), 540, 540f
emerging infectious diseases (EIDs), 17–20, 330, 417–419, 418, 419t
criteria for identifying, 418
factors contributing to, 18, 207, 418
genetics and, 207
by microbe/year/disease, 419t
vaccine development and, 506
Emerging Infectious Diseases (scientific journal), 418
emerging viral hemorrhagic fevers, 637, 659–660, 667b
emphysema, antitrypsin and, 259t
emtricitabine, 553, 575
emulsification, 196
enanthem rashes, 591
encephalitis, 356t, 616, 623b, 634b
AIDS-associated, 550t
arboviral, 630–632, 632f, 634b
aseptic, 220b
Balamuthia causing, 351, 356t
California encephalitis serogroup, 378t, 631, 631f, 634b
eastern equine encephalitis (EEE), 377t, 630, 634b
fatal, from rabies, 629
granulomatous amebic, 623b, 635
Hendra virus causing, 419t
Japanese, 631–632
Lyssavirus related, 630
Nipah virus causing, 419t
as potential biological weapon, 654b
progressive, 396t
raccoon roundworm causing (*Baylisascaris procyonis*), 419t
spongiform encephalopathies and, 395
St. Louis encephalitis (SLE), 377t, 630, 634b
subacute sclerosing panencephalitis (SSPE), 394, 396t
West Nile, 19, 220b, 220f, 631, 634b
western equine encephalitis (WEE), 377t, 630, 634b
Encephalitozoon intestinalis, 337f
encephalopathies, spongiform, 395
encystment in protozoa, 349
end-product, defined, 118
end-product inhibition (feedback inhibition), 118–119, 119f
end-products of fermentation, 132–133, 132f, 134t
industrial/commercial uses, 134t
endemic disease, 406
endemic murine typhus, 304, 364t, 413t
causative agent/arthropod vector, 413t

Rickettsia typhi causing, 304
Xenopsylla (rat flea) as vector transmitting, 364t
 endergonic reactions, 31, 112
 Enders, John F., 13t
 endo medium, for enumerating coliforms, 177f
 endocarditis, 647–648, 647f, 649b
 acute bacterial, 648, 649b
 gonorrhreal, 755
 subacute bacterial, 647–648, 647f, 649b
 vancomycin-resistant enterococci and, 419t
 endocardium, 647
 endocytosis, 100, 385, 385t
 receptor-mediated, 100–101
 endoflagella (axial filaments), 82, 83f, 325, 325f
 endogenous antigens, 493
 endogenous pyrogen. See interleukin-1
 endoliths, 779–780
 endomycorrhizae (vesicular-arbuscular mycorrhizae), 767, 768f, 769f
 endonucleases, 211t, 227, 228f
 endoplasmic reticulum (ER), 102, 103f
 rough, 98f, 102, 103f
 smooth, 102, 103f
 endoscopes, peracetic acid and, 201
 endospore suspensions, to test for successful sterilization, 187
 endospores, 70–71, 70f, 71t, 95–97, 96f, 314f, 315f
 alcohols' effectiveness against, 194, 202t
 antimicrobials effective against, 201t
 autoclaving and, 185, 187
 of *Bacillus*, 43b, 44b, 48b, 301t, 314, 315–316, 315f
 boiling water survival time and, 97, 185
 chemical antimicrobials activity against, 203, 203t
 chlorine dioxide activity against, 194, 198
 of *Clostridium*, 301t, 314, 314f
 desiccation resistance and, 189
 effects of high pressure on, 189
 equivalent treatments to destroy, 188
 ethylene oxide and, 198
 in foodstuffs, radiation doses needed to kill, 797t
 fungal spores vs., 333t, 334
 heating to destroy, 182, 185
 iodine and, 193
 plasma sterilization and, 199
 quats ineffective against, 196
 resistance to chemical biocides, 200f, 200t
 staining of, 70–71, 70f, 71t
 of thermophilic bacteria, 97, 156
 endosymbiosis/endosymbiotic theory, 105, 106b, 275, 275f, 276t
 Wolbachia and, 306, 308b
 endothelial cells, 453
 endotoxic shock (gram-negative sepsis), 440, 464
 endotoxins, 87t, 95b, 437f, 439–441, 440f, 442t
 antitoxins and, 442t

autoclaving and, 441, 442b, 442t, 444b
 blood-clotting proteins activated by, 440
 exotoxins vs., 437f, 442t
 fever and, 88b, 440f, 442t
 gram-negative bacteria and, 440, 442t
 as immunotherapy for cancer patients, 542
 lethal dose and, 442t
 lipid A as, 88b, 440, 442t
 as lipopolysaccharides, 440, 442t
 mechanisms of action, 437f, 442t
 as pathogenicity mechanism, 447f
 properties of, 442t
 symptoms induced by, 95b, 440, 442t
 testing for presence of, 441, 442b, 444b
 toxicity of, 442t
 ultrasound baths to detect, 442b, 444b
 energy (chemical), 31
 activation, 113, 114f, 115, 115f
 anabolism and, 112, 112f. See also anabolism
 ATP and, 47–49, 49f. See also ATP catabolism and, 112, 112f. See also catabolism
 collision theory and, 113
 electrons and energy levels, 27
 endergonic vs. exergonic, 31
 organisms classified by their source of, 140–143, 141f
 potential, 120, 139
 production of. See energy production mechanisms
 radian, 190, 190f
 requirements
 for chemical reactions, 113, 114f
 microbes classified by source of, 140, 141f
 sources, 37, 139–140, 141f
 storage of, 144, 147
 supply in DNA replication, 213
 energy production mechanisms, 119–121
 aerobic respiration, 127–130, 131f, 139, 141f
 anaerobic respiration, 127, 130, 135f, 139, 141f
 ATP yields and, 130t, 131f, 132f, 133f, 135t
 carbohydrate catabolism and, 122, 123f. See also carbohydrate metabolism
 comparison of, 135t
 fermentation, 122, 123f. See also fermentation
 lipid catabolism and, 133–135, 135f, 136f
 metabolic pathways and, 121
 oxidation-reduction reactions, 115t, 120, 120f, 139, 141f
 photosynthesis, 138, 139f
 protein catabolism and, 134–135, 136f
 summary of, 139–140, 141f
 enzuvirtide, 553, 576–577
 enrichment culture media, 165–166, 167t
Entamoeba, 351
Entamoeba dispar, 351, 356t
Entamoeba histolytica, 350–351, 351f, 356t, 738, 738f, 740b
 enterics, 310–312. See also Enterobacteriales
 bacteriocins produced by, 310, 403
 biochemical tests to identify, 284–286, 284f, 285f, 286f, 310–312
 clinical importance of, 310
 specialized sex pili and, 235f, 310
 enteritis, giardial, 356t
 enteroaggregative *E. coli* (EAEC), 724, 728b
Enterobacter aerogenes, 312
Enterobacter cloacae, 312
Enterobacter genus/spp., 301t, 312
 biochemical tests to identify, 284, 284f, 285–286, 285f
 fermentation and, 132f, 310
 as normal microbiota of large intestine, 310, 404t
 nosocomial infections and, 312, 416t
 as superbugs, 580
Enterobacteriaceae (family), 279f, 284
 Enterobacteriales, 279, 301t, 310–312
 biochemical tests to identify, 284, 284f, 285–286, 285f
 important genera/special features, 301t
 enterobactin, 436f
Enterobius vermicularis, 361, 362f, 364t, 740b, 741
 enterococci, 317, 640
 causing septic shock, 649b
 natural resistance to penicillin, 640
 nosocomial infections and, 415, 416t
 vancomycin-resistant (VRE), 419t, 563, 583b, 640
Enterococcus faecalis, 317
 classification changes and, 278
 indwelling catheters and, 317
 nosocomial infections and, 317, 416t, 647
 penose phosphate pathway and, 125
 as superbug, 580
 surgical wound infections and, 317, 647
 urinary tract infections and, 317, 647
 vancomycin-resistant, 12, 647
 transferred to *Staphylococcus aureus* via Tn1546 transposon, 237, 239
Enterococcus faecium, 317
 classification changes and, 278
 nosocomial infections and, 647
 sepsis and, 647
Enterococcus genus/spp., 301t, 314, 317
 classification changes and, 278
 as normal microbiota of large intestine, 404t
 as normal microbiota of urethra, 404t
 nosocomial infections and, 415, 416t
 enterohemorrhagic *E. coli* (EHEC), 723f, 724, 728b
 enteroinvasive *E. coli* (EIEC), 723, 728b
 enteropathogenic *E. coli* (EPEC), 723, 728b
 enteropathogenic strains of *E. coli*, 442, 723
 enterotoxicosis, staphylococcal, 717–718, 717f, 728b
 enterotoxigenic *E. coli* (ETEC), 441t, 724, 728b
 enterotoxins, 438
 Clostridium difficile producing, 441t
 diseases caused by, 441t
 Escherichia coli producing, 439, 441t
 produced by *E. coli*, 310
 Staphylococcus aureus producing, 316, 439, 593
 traveler's diarrhea and, 441t, 724
 Vibrio cholerae producing, 440, 441t
 Enterotube II, 285f
Enterovirus, 377t
 cytopathic effects of, 445t
 pregnancy and, 760
 enterovirus infection, persistent, 396t
 Entner-Doudoroff pathway, 125
 in purine/pyrimidine biosynthesis, 145–146, 146f
Entomophaga, as pest control, 341
 entry inhibitors, 576
 entry stage in viral multiplication, 385, 385t, 386f, 389f
 envelope, viral, 371, 373f
 enveloped viruses, 373, 373f
 alcohol-based disinfectants and, 194, 202t
 biguanide disinfectants and, 193
 biocidal resistance and, 203, 203f
 budding of, 392, 392f
 double-stranded DNA, 377t, 388f, 392b
 double-stranded RNA, 378t
 entry stage in, 385, 386f
 helical, 373, 373f
 hepatitis B, 392b
 hepatitis C, 392b
 HIV as, 545, 546f
 maturation stage in, 391–392
 polyhedral, 373
 quats active against, 196, 202t
 single-stranded RNA, 375–378t, 388f
 environmental microbiology, 772–798
 aquatic, 782–795
 biogeochemical cycles, 774–782. See also specific cycles
 biotechnology ethical/safety issues, 266–267
 microbial diversity and, 327–328, 773
Pseudomonas species possibilities in, 235
 soil, 774–782
 symbiosis and, 773–774
 enzyme immunoassay (EIA), 519, 683, 761
 enzyme-linked immunosorbent assay (ELISA), 286, 287f, 519–521, 522f, 523f
 direct ELISA tests, 286, 514, 520, 523f
 indirect ELISA tests, 514, 521, 523f

- enzyme poisons, 118
 enzyme-substrate complex, 113, 114f, 115, 116f
 enzymes, 41, 113–119, 433–435
 amylases, 38
 in bacterial plasma membranes, 90, 92
 biochemical tests to detect, 135–137, 137f
 as catalysts, 113, 114, 115t
 classification of, 114, 115t
 coagulases, 434
 cofactors, 116, 116f, 158
 collagenase, 435
 collision theory and, 113
 components of, 114–115, 114f, 115t
 controls on synthesis of induction, 219, 221f, 222f
 repression, 219, 221f, 222f
 denaturation of, 117, 117f
 digestive, lysosomes and, 103
 in DNA replication, 210–215, 211t
 efficiency of, 116
 enzyme poisons, 118
 extracellular, 92, 320, 433–435
 factors influencing, 116–118, 117f
 filtration used to sterilize, 188
 genetics and, 113
 heat and, 113, 116–117, 117f
 hyaluronidase, 435
 inactivation of antibiotics by, 580–581, 581f
 inducible, 219–221, 221f
 inhibitors of, 118–119, 118f, 119f
 kinases, 434
 light-repair (photolyases), 211t, 227–228, 228f
 mechanism of action, 115–116, 116f
 metabolic pathways and, 113, 121
 microbial, used in stone-washed jeans production, 2, 3b
 naming of, 114, 115t
 pathogenicity and, 433–435, 447f
 phage lysozyme, 381
 photolyases, 211t, 227–228, 228f
 of prokaryotes, vs eukaryotes, 101
 regulation of, 218–223
 restriction. *See* restriction enzymes
 role in coordinating anabolic/catabolic reactions, 146
 specificity of, 113–114, 116
 streptococci-produced, and tissue destruction, 286, 317
streptomyces-produced, to utilize soil proteins, 320
 substrates and, 113, 117, 117f. *See also* substrates
 synthesis of, 222
 temperature and, 113, 116–117, 117f
 turnover number and, 116
 virulence of pathogens and, 433–435
 viruses and, 381, 383, 385
 eosin dye, 67
 eosinophils, 456, 457t
 adhering to parasitic fluke larvae, 495, 496f
 in allergic reactions, 529
 histamine released by, 456
 produce toxins against parasites, 456
 as second line of defense, 452f
 staining and, 456
 EPEC (enteropathogenic *E. coli*), 723, 728b
 epidemic disease, 406
 epidemic typhus. *See* typhus
 epidemics, emerging infectious diseases and, 17–20
 epidemiologists, role in hospital infection control, 422
 epidemiology, 419–422, 421f
 analytical, 421
 case reporting, 422
 descriptive, 420–421
 early efforts of Nightingale, Semmelweis, Snow, 419
 epidemiological graphs (examples), 420, 421f
 experimental, 422
 information sources in, 422
MMWR's importance to, 422
 morbidity rate/mortality rate and, 422
 notifiable infectious diseases reports, 422
 public health departments, state and federal, 420
 topics of study, 419–222
 epidermal growth factor (EGF), 259t
 epidermis, 453, 453f, 590, 590f
 cutaneous mycoses and, 340, 340t, 605–607
 fungal infections, 340, 340t
 as physical barrier to microbes, 453, 474f, 589
Epidermophyton, 340t, 597b, 605–606
 reservoirs/transmission method, 413t
 epididymitis, 755
 Epiduo, 599
 epigenetic inheritance, 222
 epiglottis, 454–455, 474t, 681f, 683
Haemophilus influenzae type b and, 312, 613, 683
 epinephrine, anaphylactic shock and, 524
 epithelial cells
 of mucous membranes, 451
 of skin, 451
 epithelium
 cathelicidins produced by, 473
 defensins produced by, 473
 epitopes (antigenic determinants), 481, 481f, 487, 487f
 EPO (erythropoietin), 259t
 EPS (extracellular polymeric substance), 80
 epsilonproteobacteria, 301t, 303, 313
 Epstein-Barr virus (EB virus/*Lymphocryptovirus*)
 Burkitt's lymphoma associated with, 393, 649b, 662–663, 663f
 cancer and, 393
 complement receptors and, 470
 diseases possibly associated with, 664
 incubation period, 431t
 infectious mononucleosis caused by, 431t, 649b
 portals of entry, 431t
 pregnancy and, 760
 reactivated in HIV/AIDS patients, 549
 U.S. prevalence of antibodies against, 662–663, 663f
 Epstein, Michael, 10f, 392
Epulopiscium fishelsoni, 315, 315f
Epulopiscium genus/spp., 301t, 314–315, 315f, 327
 equilibrium, in simple diffusion process, 91, 91f
 equivalent treatments, 188
 ER (endoplasmic reticulum), 102, 103f
 ergot poisoning, 735, 740b
 ergot toxin, 445, 735
 as natural source LSD (lysergic acid diethylamide), 445
 ergotism, 445
Erwinia genus/spp., 301t, 311–312
 erysipelas, 317, 406, 595, 595f, 597b
Erysipelothrix rhusiopathiae, 282b
 erythema infectiosum. *See* fifth disease
 erythroblastosis fetalis. *See* hemolytic disease of newborn
 erythrocytes (red blood cells), 457t
 agglutination by envelope spikes of influenza viruses, 378t
 blood agar and, 165, 165f
 in inflammatory response, 464f
 parasites, *Plasmodium vivax*, 351, 352f
 erythrogenic toxins, 439, 442, 442t, 683
Streptococcus pyogenes, 235, 439, 442t
 erythrolitin, dye extracted from lichens, 342
 erythromycin, 561f, 565t, 571, 571f
 produced by *Saccharopolyspora erythraea*, 560t
 protein synthesis inhibited by, 94, 565, 571
 erythropoietin (EPO), 259t
 Escherich, Theodor, 3, 10f
Escherichia coli, 3f, 58f, 310, 405f
 adhesins on fimbriae, *Shigella* and, 431f, 433
 agriculturally important products genetically modified in, 267t
 aztreonam effective against, 569
 bacteriocins produced by, 310, 403
 bacteriophage lambda, lysogenic cycle and, 383–385, 383f
 beneficial activities of, 19
 biochemical tests to identify, 136, 137f, 284–285, 284f, 285f
 as causing nosocomial infections, 414, 414t
 biochemical tests to identify, 136, 137f, 284–285, 284f, 285f
 as causing nosocomial infections, 414, 414t
 cephalosporin resistance transferred to *Salmonella enterica* by, 583b
 chemically defined culture media recipe, 162, 162t
 chemically defined medium for growing, 162t
 chromosome of, 209, 209f
 competency for modification and, 251
 conjugation in, 234, 236f
 cystitis caused by, 746
 directly damaging host cells, 436
 disinfectants and, 193f
 DNA of, 209, 209f
 DNA replication in, 213–214, 213f
E. coli O157:H7 strain, 19, 310
 DNA fingerprinting tracks outbreak, 261, 263f
 as an emerging infectious disease, 19, 418, 419t
 fimbriae and, 82
 genetic recombination and, 418
 H antigens and, 82
 hemolytic uremic syndrome (HUS) and, 718
 lipopolysaccharides and, 86
 naming of, 311footnote
 Shiga toxin gene and, 207, 442
 sorbitol fermentation and, 136
 tomatoes and, 310, 714, 715b
 EcoRI restriction enzyme used in rDNA technology, 248t
 endotoxins produced by, 255, 310
 enteroaggregative (EAEC), 724, 728b
 enterohemorrhagic (EHEC), 724, 728b
 enteroinvasive (EIEC), 723, 728b
 enteropathogenic (EPEC), 723, 728b
 enteropathogenic strains, 440, 441t, 442, 723–724, 728b
 enterotoxigenic (ETEC), 724, 728b
 enzymes and feedback inhibition, 119, 119f
 as facultative anaerobe, 159
 feedback inhibition in, 119, 119f
 fimbriae of, 83, 83f
 gastroenteritis caused by, 723–724, 723f, 728b
 genome mapped for, 261
 growth rate on glucose and lactose, 221–222, 222f
 as important biological research tool, 310
 lactose metabolism in, 219, 221–222, 221f, 222f
 mutualistic symbiotic relationships of, 405, 405f
 as normal microbiota of large intestine, 402, 404t
 nosocomial infections and, 415, 416t
 as an opportunistic pathogen, 405, 416t
 pentose phosphate pathway and, 125
 plasmid vector pUC19 used for cloning, 249f
 plasmids that code for pathogenic toxins, 235
 pyelonephritis caused by, 746, 752
 R factor from, 238f
 RecA protein of, 64f, 67t
 recombinant colony-stimulating factor (CSF) produced by, 259t
 epidermal growth factor (EGF) produced by, 259t
 gamma interferon produced by, 255–256, 256f
 human growth hormone and, 247, 259t
 interferons and, 259t
 to produce gene products, 255–257, 257f

- to produce pharmaceutical products, 259^t
streptokinase produced by, 434^b
- Salmonella* strains, and host's plasma membrane, 435, 435^f
- scanning electron microscope micrograph, 58^f
- serovars and, 82
- Shiga toxin-producing (STEC), 207, 235, 384, 442, 711, 711^f, 724, 728^b
Clinical Case, 712^b, 723^b, 727^b, 734^b, 742^b
as notifiable infectious disease, 424^t
- size of, 372^f
- sorbitol fermentation by and, 136 in taxonomic hierarchy, 279^f
transduction in, 234–235, 237^f
traveler's diarrhea enterotoxins and, 439, 441^t, 724
- twitching motility of, 83
- urinary tract infections caused by, 752
- used in indigo production, 3^b, 3^f
- Escherichia* genus/spp., 279^f, 301^t, 310 biochemical tests to identify, 136, 137^f, 284–285, 284^f, 285^f
as an enteric, 284, 301^t, 310
fermentation tests and, 136–137, 137^f
resistance plasmid R100 and, 236–237, 238^f
- ESCs (embryonic stem cells), 540, 540^f
- ester functional group, 36^t
- ester linkage, 39, 39^f
- ETEC (enterotoxigenic *E. coli*), 724, 728^b
- ethambutol, 564^t, 569
- ethanol, 37
as a biofuel, 814
Acetobacter and, 137, 304
biotechnology and, 244
as disinfectant, 194–195, 194^t, 202^t
fermentation and, 132^f, 133, 133^f, 134^t, 332
Gluconobacter and, 304
as primary metabolite of industrial fermentation, 809, 810^f
- ethanol produced by yeasts, 137, 334
- ether functional group, 36^t
- ethical issues, of genetic modification, 266–267
- ethylene oxide gas, 183^t, 198
vs. hydrogen peroxide gas, 199
- ethylenediaminetetraacetic acid (EDTA), 88
- etiology of disease, 402
- Eucalyptus* trees infected by *Phytophthora cinnamonii*, 348
- Euglena*, 5, 99, 99^f, 350^f
- Euglenoids, 344^f, 349–350, 350^f
- Euglenozoa, 349–350, 350^f, 356^t
position in evolutionary tree, 274^f
- Eukarya (domain), 6, 274, 274^f
algae of, 343–348. *See also* algae
animals of, 274, 274^f. *See also* animals
Archaea domain vs., 274^f, 276^t
- Bacteria domain vs., 276^t
- fungi of, 331–342. *See also* fungi helminths of, 354–362. *See also* helminths kingdoms in, 274^f, 280–281 plants of, 274, 274^f. *See also* plants protozoa of, 345–351. *See also* protozoa taxonomic hierarchy of, 278, 279^f vs. other domains, 276^t
- eukaryotes/eukaryotic cells, 4, 75, 76, 97–106, 98^f
active transport processes used by, 93
ancestral, 105
arthropods as vectors and, 363, 363^f, 364^f
- cell division in, 76, 100^t
characteristics that distinguish, 76 classification of, 274^f, 279^f, 280–281 cloning genes from, 253, 254^f
DNA arrangement of, 76, 100^t
evolution, 101, 105, 274^f, 275–277, 275^f
Cyanophora paradoxa as modern example of, 275, 275^f
genetic recombination in, 231 mutation identification and, 231 nucleus, and prokaryotic *Gemmata obscuriglobus*, 322, 322^f
origin of, 101, 105, 274^f, 275–277, 276^f, 277^f, 322
pathogenic, 330
photosynthesis in, compared to prokaryotes, 143^t
plasmids and, 238
prokaryotes vs., 76, 81, 82, 100^t, 274, 276^f, 277^f
prokaryotic cells vs., 100^t, 105 protein synthesis in, 218, 219^f
ribosomal differences, 93 size of, 76, 100^t
species of, vs. prokaryotic species, 278, 280
structure cell wall, 76, 79^f, 81, 98^f, 99–100, 100^t
cytoplasm, 98^f, 100–101, 100^t
flagella/cilia, 98^f, 99, 99^f, 100^t
glycocalyx, 99–100, 100^t
organelles, 76, 100^t, 101–105, 276^f
as vehicles for expressing genetically modified genes, 256–257
- Eunotia*, 346^f
- European bat lyssavirus* (EBLV), 630
- European corn borer, 266
- Euryarchaeota, 302^t
- eutrophication, 785
- evaporated milk, 343
- evaporating ponds, extreme halophiles found in, 326
- evolution, 101, 105
Carsonella ruddii's small genome and, 326
- cladograms to map, 293–294, 294^f
- cyanobacteria fossil evidence, 320–321
- definition of, 273
- degenerative, 318
- EIDs and, 18
- endosymbiotic theory and, 105
- of eukaryotes, 101, 105
genetic recombination and, 231 genetically modified crops and, 266–267
microbial pathogenicity, virulence and, 429
molecular clock and, 277
mutation rates and, 228
natural selection and, 273 phylogeny and, 273 prokaryotes and, 105 ribosomes and, 101 systematics and, 273 of the three domains, 273–275, 274^f, 276^f
- transposons as powerful mediator in, 239 universal ancestors and, 274^f, 275, 275^f, 277
Wolbachia and, 308^b
- evolutionary relationships cladograms to map, 293–294, 294^f rRNA sequencing/ribotyping to trace, 292 study of, 273–277
- evolutionary tree *Thermotoga* and, 277 the three-domain system, 274, 274^f
- exanthem rashes, 591
- Excavata superkingdom, 349, 350^f
- exchange chemical reactions, 32, 37 exchange reactions, 37 exergonic chemical reactions, 31, 112, 213 hydrolysis, 213
- exfoliation, 593, 593^f
- exfoliative toxins, 235, 593 exoenzymes (extracellular enzymes), virulence and, 433–435 exons, 211^t, 218, 219^f, 253, 254^f exonucleases, 211^t
- exotoxins, 41, 87^t, 437–439, 437^f, 438^f, 441^t, 442^t
- A, 596 altered (inactivated) as toxoids, 438, 442^t
- diseases caused by, 441^t, 442^t
- endotoxins vs., 442^t
- as enzymes, 437
- lethal dose and, 438, 442^t
- mechanism of action, 437, 437^f
- naming of, 438
- as pathogenicity mechanism, 447^f
- properties of, 442^t
- symptoms induced by, 437, 441^t, 442^t
- toxicity of, 442^t
- types of, 438–439
- experimental epidemiology, 422 exponential growth phase (log phase), in bacterial growth, 170, 170^f
- expression, gene, 208, 210^f, 218–223 extensively drug-resistant (XDR) strains of tuberculosis, 691
- extinct plants/animals, DNA extraction and, 263
- extracellular antigens, in humoral immunity, 485, 486^f, 496^f, 500^f
- extracellular enzymes (exoenzymes) in facilitated diffusion, 91, 92
- lipases and, 134, 135^f
- peptidases, 134–135
- proteases, 134–135
- virulence and, 433–435
- extracellular polymeric substance (EPS), 80
- extrachromosomal genetic elements (plasmids), 94
- extreme acidophiles, 326
- extreme halophiles, 4, 158, 274, 274^f, 280^f, 326^f
- extreme thermophiles (hyperthermophiles), 4, 156, 157^b, 274, 274^f, 280^f, 302^t, 326, 326^f
- extremophiles, 326, 773. *See also under* extreme extremozymes, 773
- Exxon Valdez* oil spill (1989), bacterial cleanup of, 32, 781
- eyelids, 454, 454^f
- eyepiece (ocular lens), 55, 55^f
- eyes infections
Moraxella bacteria and, 309 TASS, 430^b, 436^b, 442^b, 444^b, 446^b
- lacrimal apparatus/tears produced by, 454–455, 454^f
- microbial diseases of, 609–611, 609^b
- normal microbiota of, 404^t
- toxic anterior segment syndrome (TASS), 436^b
- eyespot of euglenoids, 349, 351^f of green algae, 345^f
- F**
- F cells. *See F factor*
- F factor (fertility factor), 234, 236^f
as conjugative plasmid, 235 F⁺/F⁻ cells, 84, 94, 234, 236^f
- FA tests. *See fluorescent-antibody (FA) tests*
- facilitated diffusion, 91–92, 91^f
- FACS (fluorescence-activated cell sorter), 518, 521^f
- factor B complement protein, 467, 468^f, 470^f
- factor D complement protein, 467, 468^f, 470^f
- factor P (properdin) complement protein, 467, 468^f, 470^f
- Factor VII, 259^t
- Factor VIII, 259^t
- facultative anaerobes, 159, 159^t
fungi as, 332, 333^t
- facultative halophiles, 158
- FAD (flavin adenine dinucleotide), 114 as electron carrier, 141^f in electron transport chain, 129–130, 129^f
- in Krebs cycle, 125, 126^f
- oxidative phosphorylation and, 120–121
- FADH₂ in electron transport chain, 129–130, 129^f
- in Krebs cycle, 122, 126, 126^f, 127
- fallopian (uterine) tubes, 750, 750^f
- famciclovir, 575, 602

- FAME (fatty acid methyl ester) profiles, 287
- familial disorders, 395
- family (taxonomic), defined, 278, 279^f
- farm animals antibiotics in animal feed, 559, 562^t, 565, 575, 583^b antibiotic resistance and, 583^b linked to human disease, 583^b antihelminthic (ivermectin) to treat, 571 as disease reservoirs, 413^t
- farmers/gardeners, sporotrichosis and, 340
- Fasigyn (tinidazole), 571
- fastidious microorganisms, 162 chemically defined media to grow, 162, 163^f transport media for pathogenic, 283
- fatal colitis, 404
- fatal familial insomnia, 395
- fats (triglycerides), 39–40, 39^f in lipid catabolism, 133–135, 135^f, 136^f synthesis of, 144, 145^f
- fatty acid profiles (FAME), 287
- fatty acids, 39, 39^f bacteria, petroleum products and, 134 cis fatty acids, 39–40, 39^f in lipid catabolism, 134, 135^f, 136^f in lipids biosynthesis, 144, 145^f in plasma membrane, 89, 89^f saturated, 39–40, 39^f synthesis, biotin and, 115^t trans fatty acids, 40 unsaturated, 39–40, 39^f
- Fc region of antibodies, 482, 482^f, 523–524, 524^f
- fecal contamination coliform bacteria enumeration and, 172, 174^f norovirus and, 182^b, 197^b, 199^b, 201^b
- fecal contamination of drinking water, 356^t
- fecal-oral cycle, 711
- fecal-oral route of viral transmission, hepatitis A, 392^b
- fecal samples differential media and, 286^b, 287^b, 290^b, 293^b, 294^b enrichment media and, 166, 286^b, 287^b enterococci and, 317 stool DNA test, 208^b
- feces, 706, 712 *Bacteroides* plentiful in, 322 phenolics to disinfect, 192 as portal of exit, 446
- feedback inhibition (end-product inhibition), 118–119, 119^f in regulation of amino acid production, 119 in regulation of gene expression, 218–223
- feeding grooves, 349
- feline AIDS, 379
- feline leukemia virus (FeLV), 393 vaccine, 259^t, 543
- female reproductive system, 750, 751^f bacterial diseases of, 754–766, 766^b, 767^b
- fermentation, 8, 122, 130–133, 132^f, 134^b aerobic respiration vs., 135^t alcohol, 133, 133^f, 134^t anaerobic respiration vs., 135^t ATP yields and, 132^f, 133^f, 135^t end-products of, 132^f, 134^t final electron acceptor in, 135^t, 141^f growth conditions and, 135^t identifying bacteria and, 284, 284^f industrial uses for, 134^t, 808–810 lactic acid, 132–133, 133^f, 134^t of mannitol, 165, 166^f of milk products, 798–799, 799^f overview, 123^f phosphorylation used to generate ATP, 135^t types of, 132–133, 133^f
- fermentation test, 136, 137^f
- ferns, as eukarya, 6
- ferritin, 436, 473
- ferrous iron, as energy source, 143
- fertility factor. *See* F factor
- fetal calf serum, 495
- fetus genetic screening and, 261 group B streptococcal infections and, 320^b, 324^b IgG antibodies and, 483^t immune system tolerance of, 534–535 rejection as nonself and, 534–535
- fever, 452^f, 466, 474^t *Babesia microti* causing, 352 complications of, 466 crisis stage in, 466 cytokines and, 440, 440^f, 466 death and, 466 *Plasmodium vivax* causing, 351–352 prostaglandin synthesis and, 440, 440^f as response to endotoxins, 440, 440^f, 441, 466 as second line of defense, 452^f, 466, 474^t shivering and, 466
- Streptococcus pyogenes* causing, 406 tumor necrosis factor alpha and, 466
- fever blisters, 394, 396^t. *See also* cold sores
- fibrinogen, 463
- fibrinolysis (streptokinase), 434, 434^b, 590, 677
- fibrosis, in forming scar tissue, 465
- fibrous proteins, shape/structure of, 44, 45^f
- fifth disease (erythema infectiosum), 377^t, 385, 531^b, 594^b, 605 human parvovirus B19 causing, 594^b, 605 macular rash caused by, 594^b
- 50S ribosomes, 94, 94^f
- filament of flagella, 81, 81^f
- filamentous bacteria, 302^t, 319, 319^f, 320, 320^f
- plate counts and, 177 as reproductive method, 168, 320 as soil inhabitants, 319–320
- filamentous fungi, advantages of, 320
- filamentous streamers, biofilms and, 161
- Filoviridae, 378^t
- Filovirus*, 373^f, 378^t Ebola virus as, 373, 373^f
- filterable agents, 369, 370
- filterable viruses, 188
- filters HEPA, 188 membrane filters, 188, 188^f
- filtration to control microbial growth, 174^f, 188, 188^f, 191^t to count/sterilize bacteria, 172, 174^f, 188, 188^f
- HEPA filters and, 188 sterilizing liquids or gases by, 182 water treatment, 788, 788^f
- fimbriae/fimbria, 82–83, 83^f, 433 of enterics, 310 of *Neisseria gonorrhoeae*, 433 of prokaryotic cells, 79^f, 307^f of uterine (fallopian) tubes, 751^f virulence factors and, 442
- final electron acceptor, 131, 135^t, 141^f
- fingernails, cutaneous mycoses and, 340
- Fire, Andrew, 13^t
- fire ants, 348
- Firmicutes (low G + C ratios), 3, 301^t, 314–318 important genera/special features, 301^t
- fish *anisakines* roundworms and, 362, 364^t food allergies and, 525 *Gambierdiscus toxicus* and, 347 *Karenia brevis* and, 346 killed by toxic marine algae, 344 *Pfiesteria* and, 347 red tides and, 346–347 tapeworm infection, 739
- FISH (fluorescent in situ hybridization), 282^b, 292, 293^f, 707
- Fisher, Edmond H., 13^t
- fission yeasts, 333–334
- FITC (fluorescein isothiocyanate), 59
- FITC (fluorescein isothiocyanate), 59
- five-kingdom system, Whittaker's proposal of, 273
- 5' ⇒ 3' direction, 211^f, 212–213, 212^f, 217
- 5-bromouracil, 226–227, 227^f
- fixed macrophages (histiocytes), 460, 638, 639^f
- fixed specimens, 67 electron microscopes and, 62
- fixing specimens. *See* fixed specimens
- FK506 (Tacrolimus), 542
- flaccid paralysis, caused by botulinum toxin, 439, 622
- flagella/flagellum, 4, 70^f, 71, 81, 99 of alga, 99, 99^f, 345^f, 346^f of animal cells, 98^f, 99
- bacterial, 4, 70^f, 71, 79^f, 81–82, 81^f, 82^f, 87^t
- of *Burkholderia*, 306–307
- of *Campylobacter*, 313
- of *Chilomastix*, 350^f
- of dinoflagellates, 344^f
- energy use and, 82
- of *Euglena*, 99, 99^f, 350, 351^f
- of eukaryotes vs. prokaryotes, 81, 99, 100^t
- evolutionary aspects, 105
- of giant bacteria *Euplospadium fishelsoni*, 315
- of *Helicobacter*, 313, 314^f
- motility and, 81–82, 82^f, 99, 100^t
- of oomycete spores (zoospores), 344, 345^f
- preemergent, of *Euglena*, 349, 350^f
- of *Proteus mirabilis*, 311, 311^f
- of protozoa, 99, 99^f, 106^b, 349, 350^f
- staining of, 62, 70^f, 71, 71^t
- of *T. sphaerica*, 106^b
- of *Trichomonas vaginalis*, 349, 350^f
- flagellin, 81
- Flagyl (metronidazole), to treat vaginitis caused by *Trichomonas vaginalis*, 571
- flaming (dry heat sterilization), 188, 191^t
- flat sour spoilage, of canned foods, 800–801
- flatus, 712
- flatworms, 6, 355, 356–358, 358^f–361^f, 364^t
- flavin adenine dinucleotide (FAD), 114 in electron transport chain, 129–130, 129^f
- oxidative phosphorylation and, 120, 121^f
- flavin coenzymes, 114, 129
- flavin mononucleotide (FMN), 114 in electron transport chain, 129–130, 129^f
- Flaviviridae, 377^t, 390^b
- Flavivirus*, 377^t, 667^b reservoirs/transmission method, 413^t
- St. Louis encephalitis caused by, 377^t, 625–626, 628^b
- West Nile virus tracking and, 220^b
- flavoproteins, 115^t, 127, 127^f
- flavoring, fermentation end-products and, 134^t
- fleas, 363, 363^f, 364^t diseases transmitted by, 304, 311, 364^t, 413^t *Rickettsia typhi* and, 304 rat (*Xenopsylla*), 363^f as vectors, 363^f, 364^t, 413^t, 648
- Fleming, Alexander, 10^f, 12, 12^f, 455, 559
- flesh-eating bacteria, 19, 287, 317, 320, 423^b, 595, 595^f
- flies deer (*Chrysops*), 363^f diseases transmitted by, 356^t, 363 sand, 356^t true, 364^t tsetse, 350, 356^t, 364^t, 413^t, 627–628 as vectors, 363^f, 364^t
- floc formation in activated sludge systems, 161, 790, 791^f
- flocculating agents, 194

flocculation, 788
flora. See normal microbiota
 Florey, Howard, 10f, 559
 flow cytometry/cytometer, 287–289, 519, 521f
 flu. See influenza
 fluconazole, 332b, 574
 flucytosine, 342b, 566t, 574, 633
 fluid mosaic model, 90
 flukes (trematodes), 356–358, 358f, 359f, 364t, 738f
 immune system attack on, 495, 496f
 praziquantel to treat, 562t
 fluorescein isothiocyanate (FITC), 59
 fluorescence, 59
 fluorescence-activated cell sorter (FACS), 518, 521f
 fluorescence microscopy, 59, 61f, 65t
 fluorescent-antibody (FA) technique, 59, 61f, 65t, 352, 518–519, 520f
 fluorescent in situ hybridization (FISH), 282b, 292, 293f, 707
 fluorescent treponemal antibody absorption (FTA-ABS) test, 61f, 761–762
 fluoride
 calcium and, 118
 as an enzyme poison, 118
 magnesium and, 118
 fluorochromes (fluorescent dyes), 59, 61f
 fluoroquinolones (FQ), 423b, 565t, 572, 583b
 in chicken feed, 583b
 Neisseria gonorrhoeae resistant, 750, 751b
 resistant *Campylobacter jejuni* and, 583b
 FMN (flavin mononucleotide), 114
 in electron transport chain, 129–130, 129f
 focal infection, 409
 folic acid, 115t
 synthesis of, 118
 foliose lichens, 342, 343f
 follicular helper T cells (T_{FH}), 492
 folliculitis, 588, 593, 597b
 fomites, 411, 412f, 413t, 416, 447
 fomivirsen, 579, 658
 food acquisition methods
 of algae, 331f, 344–345
 of amebae, 350
 of animals, 280, 333
 of archaea, 326
 of flukes, 356
 of fungi, 280, 331f, 332, 333f
 of helminths, 331f, 354, 356
 of plants, 280
 of protozoa, 331f, 349
 of viruses, 280
 food allergies, 528t, 530–531
 food-associated infections, phage typing to trace, 287, 289f
 food canning
 home, 185, 187
 industrial, 800–801, 801f
 food industry. See food production
 food poisoning, 441t. *See also* gastroenteritis
 algae responsible for, 343

botulism. *See* botulism
Clostridium perfringens and, 441t
 endospores and, 96
 exotoxins causing, 441t
 mushrooms, 735, 740b
Salmonella and. *See* salmonellosis
 shellfish, 344, 356t, 446
 staphylococcal, 316, 441t, 717–717, 717f, 721b, 728b
 symptoms, 441t
 vectors transmitting bacteria that cause, 413–414
 food preservation
 by adding antibiotics, 197
 by aseptic packaging, 801–802, 802f
 by chemical additives, 197, 202t
 by commercial sterilization, 182, 183t, 185, 594f, 800–801, 801f, 802f
 HACCP system to prevent contamination in, 800
 by heat, 182, 183t, 185–188, 191t
 by high-pressure processing, 804
 home canning and, 185, 187
 by irradiation, 803–804, 804ff, 804t
 by osmotic pressure, 156, 157f, 158, 189
 pH and, 156
 temperatures and, 154–156, 155f, 156f
 food production
 Aspergillus niger in citric acid production, 341
 disinfectants used in, 194
 endospore-forming bacteria problems in, 97
 endospores problematic to, 97
 genetically modified products, 267t
 inspection agencies, 800
 microbes used in, 2, 805–807
 food spoilage
 acidic foods and, 801
 bacterial vs. mold damage, 341
 of canned foods, 800, 803t
 flat sour, 800–801, 803t
 thermophilic anaerobic, 800, 803t
 Clostridium bacteria and, 618, 800
 commercial sterilization to prevent, 182, 183t, 800–801, 801f, 802f
 fermentation and, 8, 133, 134b
 lactic acid and, 133
 pasteurization to prevent, 8, 187–188, 191t
 pH and, 156
 Pseudomonas bacteria and, 309
 refrigeration and, 155f, 188–189, 309, 317, 620
 relationship between microbes and, 8, 800
 Salmonella bacteria and, 310
 temperature and, 154–156, 154f–156f
 thermophilic anaerobic spoilage, 800, 803t
 food thickeners
 algin (from brown algae), 345–346
 carrageenan (from red algae), 346
 xanthan (from *Xanthomonas campestris*), 801b
 food vacuoles
 of *Amoeba proteus*, 351f
 Chilomastix and, 350f
 in digestive system of protozoa, 349, 351f
 of *Paramecium*, 353f
 foodborne illness
 Campylobacter jejuni and, 313
 Clostridium perfringens and, 314
 E. coli enterotoxins causing, 310
 epidemics, *E. coli* O157:H7, 19, 82
 hemolytic uremic syndrome (HUS), 718
 hepatitis A virus and, 369
 incidence in U.S., 717
 Listeria monocytogenes and, 619–621, 620f
 Salmonella typhi and, 311
 salmonellosis, 311, 715b
 Staphylococcus aureus and, 316, 441t, 717–718, 717f, 728b
 transmission of disease and, 412f, 413–414, 413t
 foods
 freeze-dried, 189
 microbes used in production of, 245
 forensic medicine, DNA fingerprinting and, 261, 263f
 forensic microbiology, 244, 261, 263
 criminal convictions and, 261
 DNA fingerprinting and, 261, 263f
 forespore, 96f, 97
 formaldehyde, 197, 202t
 formalin, 197
 formic acid, 132f
 formylmethionine, 216, 276t
 fossils, 275, 277
 Bacillus sphaericus survived embedded in, 277
 cladograms and, 293
 cyanobacteria and atmospheric oxygen, 320–321
 cyanobacteria-like, 275, 275f
 DNA studies and, 261, 263
 oldest known, 275, 277
 phylogeny and, 275, 275f
 of prokaryotes, 275, 277, 277f
 rRNA sequencing and, 293
 fowl cholera, 312, 507
 foxes
 as disease reservoirs, 413t
 reported cases of rabies in, 630f
 FQ. *See* fluoroquinolones
 fractures, genetically modified therapy for, 259t
 frameshift mutagens, 227
 carcinogens and, 227
 frameshift mutations, 225, 225f
Francisella genus/spp., 301t, 307
Francisella tularensis, 307
 can remain dormant within phagocytes, 462, 643
 as potential biological weapon, 642, 642f, 654b
 tularemia caused by, 307, 648, 656b, 656b
Frankia genus/spp., 302t, 318, 319
 actinomycetes informal name for, 318–319
 Franklin, Rosalind, 47
 free (extracellular) antigens
 B cell activation and, 482, 482f
 in humoral immunity, 482, 482f, 500f
 free radicals, 201, 227, 259t
 free ribosomes, 101
 free (wandering) macrophages, 460
 freeze-drying (lyophilization), 168, 191t
 desiccation and, 189
 freeze-thaw cycle, vegetative bacteria and, 189
 freezing temperatures
 bacteria and, 189
 food spoilage and, 155, 155f, 189
 freshwater microbiota, 2, 301t, 304, 305f, 306, 306f, 309, 782–783
 frogs, deformed, 358f
 fructose, 38, 38f, 144, 144f
 microbes in manufacture of, 244
 plasma membrane crossings and, 91, 91f
 in polysaccharides biosynthesis, 144, 144f
 fruit flies, *Wolbachia* bacteria and, 308b
 fruit juices
 fermentation and, 134t
 high pressure techniques to preserve, 189
 fruiting bacteria, 56b, 56f, 313, 313f
 fruits and vegetables
 genetically modified MacGregor tomatoes, 267, 267t
 PAA for washing/disinfecting, 202
 fruticose lichens, 342, 343f
 FTA-ABS tests, 61f, 761–762
 fuel products
 deep-sea hydrothermal vents and, 157b
 fermentation and, 134t
 fully human antibodies, 514
 fulminating disease, 606
 fumaric acid, 126f, 147f
 functional groups, 36–37, 36t
 fungal blights on trees, 341–342
 fungal diseases, 331–332. *See also* fungal infections
 antifungal drugs to treat, 558
 of digestive system, 735–736, 740b
 of nervous system, 623b, 632–633, 632f
 of reproductive systems, 758–759, 759b
 of respiratory system, 702–706
 of skin, 594b, 605–607, 606f
 fungal infections (mycoses), 331–332, 339–341, 340t
 Clinical Case, 332b, 339b, 341b, 342b
 cutaneous, 340–341, 340t, 568, 605–607, 606f
 emerging (*Cryptococcus gattii*), 342b
 increasing rates of, 14
 opportunistic, 340–341
 systemic, 339
 fungal zoonoses, 413t
 fungi-farming ants, 332
 fungi/fungus, 2, 4, 280, 330, 331–342, 331f, 333t

- alcohols effective against, 194–195, 202*t*
 anamorphic, 335, 341
 anamorphs, 338
 antibiotics derived from, 12, 12*f*, 247, 560*t*
 antimicrobial drugs that inhibit, 562*t*
 asexual spores and, 331*f*, 334–335, 335*f*, 336*f*, 340*t*
 bacteria *vs.*, 332, 333*t*, 334
 beneficial activities of, 332, 341
 biofilms and, 161
 as biological controls of pests, 341
 biotechnology uses for, 341
 as carbon recyclers, 15, 332
 cell structure, 4, 5*f*
 cellulases produced by, 38
 characteristics of, 331–335, 331*f*, 332*f*
 as chemoheterotrophs, 141*f*, 143, 331*f*
 chitin in cell wall, 38
 dimorphic, 334, 334*f*, 340*t*
 as disease reservoirs in soil, 411
 diseases caused by, 339–341, 340*t*
 economic effects of, 341
 emerging infectious diseases caused by, 419*t*
 as eukaryotes, 4, 6, 75, 280, 330, 331*f*
 filamentous, 320
 fleshy, 331, 331*f*
 human uses of, 332
 identification by microscope, 281
 identification methods for, 331
 iodine active against, 193
 ketoconazole to treat, 562*t*
 as Kingdom in domain Eukarya, 4, 6, 274*f*, 280–281, 331–342
 lichens and, 342, 343*f*
 life cycle of, 334–335, 336*f*–339*f*
 low-moisture environments, growth and, 332
 medically important, 337–338, 340*t*
 metabolism of, 333*t*, 336
 moist heat sterilization to kill, 185
mucor, 5*f*
 mycology as study of, 14, 332
 nutritional adaptations, 336
 nutritional classification of, 141, 141*f*
 nutritional requirements, 4
 pathogenic, 331–332, 339–341, 340*t*, 443. See also fungal diseases
 penicillin produced by, 12, 12*f*
Penicillium, rDNA technology and, 247
 pH ranges tolerated by, 35, 336
Pneumocystis classification and, 284
 rapid identification tests for, 285
 reproduction in, 4, 331*f*, 334–335, 335*f*, 336*f*, 337*f*, 338*f*, 339*f*
 aerial hyphae and, 331, 331*f*
 resistance to chemical biocides, 200, 200*f*
 rules for naming and, 278
 silkworm disease and, 11
 skin's keratin no obstacle to, 430
 spores of, 331*f*, 332*f*, 334–335, 334*f*
 allergic reactions to, 530
 resistance to chemical biocides, 203*f*
 sterols found in, 41
 teleomorphs, 338
 toxin-producing, 341, 445
 vegetative structures of, 331–335, 331*f*
 Fungi (kingdom), 4, 6, 273, 274, 274*f*, 280–281, 331–342, 331*f*
 characteristics of, 331*f*, 332–336
 energy sources of, 281
 lichens and, 342, 343*f*
 medically important, 337–338, 340*t*
 nutritional needs of, 281, 331*f*, 336
 organisms included in, 281
 position in evolutionary tree, 274*f*
 in taxonomic hierarchy, 279*f*
 fungicides, 182, 196
 fungists, calcium propionate, 197
 fungus. See fungi/fungus
 furious rabies (in animals), 623
 furuncle (boil), 593
Fusarium, toxin of, 445
 fusiform bacteria, 322, 324*f*
 fusion, in viral multiplication, 385, 385*f*, 386*f*
 fusion inhibitors, 576–577
 to treat HIV infection, 548
Fusobacteria, 302*t*
Fusobacteriales, 302*t*
Fusobacterium genus/spp., 302*t*, 322, 324*f*
 in gingival crevices, 322
 as normal microbiota of mouth, 404*t*
G
 G + C ratios, high, 280*f*, 302*t*, 318–320
 G-CSF (granulocyte–colony stimulating factor), 497
 GAE (granulomatous amebic encephalitis), 623*b*, 635
 Gajdusek, Carleton, 637
gal gene, in specialized transduction, 384, 384*f*
 galactose, 38, 91, 91*f*
 specialized transduction and, 384, 384*f*
 GALT (gut-associated lymphoid tissue), 712
Gambierdiscus toxicus, ciguatera disease and, 347
 gametes (gametocytes)
 in life cycle of *Rhizopus*, 336*f*
 of plasmoidal slime mold, 355*f*
 in protozoan conjugation, 349
 gamma globulin, 498–499
 gamma interferon, 259*f*, 471
E. coli genetically modified to produce, 255–256, 256*f*
 gamma radiation, provirus expression and, 391
 gamma rays, 189, 190*f*
 in food irradiation, 797–798, 798*f*
 as mutagens, 227
 gammaproteobacteria, 279*f*, 301*t*, 303, 307–312
 important genera/special features, 301*t*
 ganciclovir, 566*t*, 575
 gangrene, 96, 652–653, 652*f*, 673*b*
Clostridium perfringens causing, 652–653, 652*f*, 673*b*
 gas, 314, 431*t*, 435, 441*t*, 442*t*, 652–653
 hyperbaric chamber to treat, 653, 653*f*
 penicillin to treat, 653
 portals of entry, 430, 431*t*
 Gardasil (HPV vaccine), 259*t*, 393, 506*t*, 543, 758
Gardnerella genus/spp., 302*t*, 318, 319
Gardnerella vaginalis, 319, 756, 756*f*
 gas formation
 in carbohydrate catabolism, 136, 137*f*
 by *Streptomyces*, soil odor and, 320
 gas gangrene, 314, 431*t*, 435, 441*t*, 442*t*, 652–653
Clostridium perfringens causing, 314, 431*t*, 441*t*, 652–653
 exotoxin causing, 441*t*, 652
 hyperbaric chambers to treat, 653, 653*f*
 incubation period, 431*t*
 symptoms, 431*t*, 441*t*
 GAS (group A streptococci), 317, 594–595, 594*f*, 640
 gas vacuoles, 95, 321
 gas vesicles, 95
 gaseous chemosterilants, 198–199, 202*t*
 gastric juice
 as chemical defense against pathogens, 455, 474*t*
 pH of, 455
 toxins not destroyed by, 455
 gastritis, *Helicobacter pylori* and, 455
 gastroenteritis, 717
Bacillus cereus, 726–727, 728*b*
Campylobacter, 724, 728*b*
Clostridium perfringens, 726, 728*t*
Escherichia coli, 723–724, 723*f*, 728*b*
 traveler's diarrhea, 724, 728*b*
 genomics used to track outbreak, 261, 265*b*
 hepatitis E virus and, 377*t*
 norovirus-associated, 261, 265*b*, 728–729, 729*b*
 recreational water-associated outbreaks, 357*b*
 rotavirus-associated, 728, 729*b*
Salmonella, 310–311, 413*t*, 719–720, 719*f*, 720*f*, 728*b*
Vibrio parahaemolyticus and, 310, 723
 viral, 734–735, 736*b*
Yersinia, 726, 728*b*
 gastrointestinal anthrax, 432, 651–652, 655*b*
 gastrointestinal (GI) tract, 452, 712.
 See also digestive system
 parasitic helminths and, 364*t*
 as portal of entry, 430, 431*t*, 432, 447*f*
 as portal of exit, 446
 gatifloxacin, 565*t*, 572
 gauze, quat antiseptics neutralized by, 197
 GB virus, 728
 GBS (group B streptococci), 317, 320*b*, 324*b*, 647
 neonatal sepsis caused by, 317, 320*b*, 324*b*, 647
 gel electrophoresis, 261
 pulsed-field (PGE), 718
 to separate serum proteins, 498, 498*f*
 in Southern blotting, 261, 262*f*
 to view amplified DNA, 251, 290
 gemifloxacin, 572
Gemmata genus/spp., 302*t*, 322, 324*f*
 nucleus and, 275, 302*t*, 322, 324*f*
Gemmata obscuriglobus, eukaryotic nucleus and, 322, 324*f*
 GenBank, 261
 gender, as predisposing factor, 410
 gene-cloning vectors/cloning vectors, 245, 246*f*, 248–249, 249*f*
 gene expression, 208, 210*f*, 218–223.
 See also transcription;
 translation
 enzymes important in, 210, 211*t*
 regulation of, 218–223
 epigenetic inheritance and, 222
 induction, 219, 221*f*
 operon model, 219–221, 221*f*, 222*f*
 positive regulation, 221–222, 222*f*
 repression, 219, 222*f*
 silencing of, 258
 gene gun, 251–252, 252*f*
 to inject vaccines, 508
 gene library. See genomic library
 gene mapping
 bioinformatics and, 261
 by conjugation, 234
 of *E. coli* chromosome, 209*f*
 Human Genome Project and, 260
 proteomics and, 261
 of resistance plasmid R100, 236, 238*f*
 gene silencing, 258, 258*f*
 as natural process occurring in organisms, 258
 reverse genetics and, 261
 gene therapy, 16, 258
 viral DNA and, 249
 viral DNA as vectors, 249, 258
 gene transfers
 in bacteria *vs.* in plants/animals, 232
 by conjugation, 234, 235*f*
 by crossing over, 231, 231*f*
 horizontal, 213*f*, 232, 275, 583*b*
 by transduction, 234, 237*f*
 transformation and, 232–233, 233*f*, 234*f*
 by transposition (transposons), 237, 238*f*, 239
 vertical, 213*f*, 232
 Genencor, 3*b*
 genera. See Genus/genera
 generalized infection (systemic infection), 409
 generalized transduction in bacteria, 234–235, 237*f*
 generation time, 168–169, 169*f*
 genes, 15, 44, 208. See also DNA
 antibiotic-resistant, in intestinal microbiota, 405
 antibody diversity and, 482*f*, 487
 antigen recognition requirements and, 487
 artificial, 253–254, 254*f*

cancer-inducing, viruses and, 393–394
 chemically synthesized, 254
 cloning and, 245, 246f, 255–257, 256f
 eukaryotic
 cDNA method for obtaining, 253, 254f
 transcription and, 215, 218, 219f
 evolution and, 239
 expression of, 208. *See also* gene expression
 genetic transfers/transformation. *See also* genetic transformation
 inducible, 219–221, 221f
 libraries of, 253, 253f
 minimum necessary for free-living existence, 318, 326
 mutation and, 223–231
 mutation rates, 231
 in plasmids, 94
 as products, 255–257, 256f. *See also* genetic modification
 prokaryotic
 in chromosome of *E. coli*, 209f
 in protein synthesis, 215–218, 216–217f, 218f
 transcription, 214f, 215, 218
 repressible, 219–221, 222f
 sources for rRNA products, 252–254, 253f
 structural, 220–221, 221f, 222f
 synthetic, 253–254, 254f
 genetic change, plasmids/transposons as mechanisms of, 235–237, 239
 genetic code, 208, 215, 215f
 amino acids in proteins and, 42t, 215f
 degeneracy and, 216, 224, 254
 genetic counseling, ethical issues, 261, 267
 genetic diseases
 familial disorders and, 395
 gene therapy and, 16, 259
 testing/screening for, 261
 genetic diversity, 231, 239
 evolution and, 239
 genetic engineering. *See* genetic modification
 genetic information
 flow of from one generation to next, 209, 210f
 location in bacterial cell, 79f, 94
 transcription of, 214f, 215, 218
 translation of, 215–218, 216–217f, 218
 of viruses, classification and, 394b
 genetic material
 changes in (mutation), 223–231
 chemicals that damage (genotoxins), 232b
 DNA and chromosomes, 209, 209f
 DNA replication processes, 210–215, 211f–214f
 genotype and, 208–209
 information flow and, 209, 210f
 phenotype and, 208–209
 protein synthesis and, 215–218, 216–217f

recombination processes, 231–239.
See also genetic recombination
 RNA and protein synthesis, 215–218, 216–217f
 structure/function of, 208–218
 genetic modification, 245. *See also* recombinant DNA (rDNA) technology
 of agricultural products, 263–264, 266, 267t
 of animal husbandry products, 266, 267t
 of food production products, 267t
 of pharmaceutical products, 258–259, 259f
 techniques, 251–257
 clone selection, 255, 255f
 complementary DNA (cDNA), 252–253, 254f
 electroporation, 251
 gene gun, 251–252, 252f
 genomic libraries, 253, 253f
 inserting foreign DNA into cells, 251–252, 252f, 263–264, 264f
 making a gene product, 255–257, 256f
 microinjection, 252, 253f
 obtaining DNA for, 252–254
 protoplast fusion, 251, 252f
 synthetic DNA, 253–254
 transformation, 251. *See also* transformation
 typical procedure, 246f
 therapeutic products, 258–259, 259f
 transgenic animals, 258, 259t, 267t
 genetic recombination, 231–239.
See also recombinant DNA (rDNA) technology
 avian influenza (H5N1) and, 418, 693
 beneficial aspects of, 231
 conjugation, 234, 235f
 by crossing over, 231–232, 231f
E. coli 0157:H7 and, 418
 emerging infectious diseases and, 418
 by gene transfers, 231–232
 naturally occurring, 233
 plasmids, 235–237, 238f
 reassortment and antigenic shifts of flu virus, 693
 transduction, 234–235, 237f
 transformation and, 232–233, 233f, 234f, 251
 transposons, 237, 238f, 239
 genetic testing/screening, 261, 267
 genetic transformation, 232–233, 233f, 234f, 251
 genetically modified plants, 257, 263–264, 264f, 266, 267t
 genetics, 208
 genetics, microbial, 15, 207–243
 evolution and, 239
 flow of information in, 209, 210f
 gene expression, 218–223
 genetic material's structure/function, 208–218
 genetic transfer/recombination, 231–239
 mutations, 223–231
 genital herpes (herpes simplex virus type 2/HSV-2), 763, 763f, 764f, 767b
 acyclovir to treat, 570f, 575, 764
 alpha interferon to treat, 473
 incidence, 567f, 763f
 latent state in nerve cells, 764
 genital infections
 Chlamydia trachomatis and, 424t
 Trichomonas vaginalis and, 349, 350f
 genital warts, 430, 764–765, 765f, 767b
 human papillomavirus causing, 377t, 387
 imiquimod to treat, 575
 vaccines and, 765
 genitourinary tract
 as portal of entry, 430, 431t, 447f
 as portal of exit, 446–447
 genome, 208
 of flavivirus, 220b
 libraries, 252–253, 253f
 minimum genetic requirements, 318, 327
 projects, 260, 261
 sequencing and, 260, 260f, 261
 short tandem repeats (STRs) and, 209, 260
 viral, 261, 393, 394b
 genomic libraries, 252–253, 253f
 genomics, 14, 209
 GenBank, 261
 infectious diseases and, 261
 as mainstay of infectious disease monitoring, 261
 metagenomics and, 260
 in norovirus tracking, 261, 265b
 projects, 260, 261
 in West Nile virus tracking, 209, 220b, 220f
 genotoxic chemicals, 231b, 232b
 Ames test and, 230–231, 230f, 231b, 232b
 genotype, 208–209
 changes in, 223–224. *See also* mutations
 ways bacteria acquire new, 235
 gentamicin, 559b, 565t, 570, 570b
 broth dilution assay, 579b
 corneal transplants and, 559b, 570b, 579b, 581b, 584b, 585b
 produced by *Micromonospora purpurea*, 560t, 565
 protein synthesis inhibited by, 94, 562t, 564t, 570
 genus/genera (taxonomic), defined, 3, 278, 279f
Geobacillus stearothermophilus, causing food spoilage, 795, 796t
 geosmin, gas produced by *Streptomyces*, 320
 germ theory of disease, 8–9, 11, 406–408, 479
 Germ-X hand sanitizer, 195
 German measles. *See* rubella
 germfree mammals, without normal microbiota, research and, 403
 germicidal (UV) lamps, 190, 191t
 germicides, 182
 germination, 97
 germs, 2. *See also* microbes/microorganisms
 Gerstmann–Sträussler–Scheinker syndrome, 395
 giant bacteria
 Epulopiscium, 301t, 314–315, 315f, 326
 Thiomargarita namibiensis, 301t, 326
 giant clam (*Tridacna*), symbiotic host to dinoflagellate algae, 348
Giardia, 349, 350f
 antigenic variation and, 446
 lack of mitochondria in, 103, 349
 parasitic species, 349, 350f, 356f
 pathogenic mechanisms of, 446
Giardia duodenalis, 349, 350f
Giardia intestinalis, 349, 350f
Giardia lamblia, 349, 350f, 356t, 736–737, 740b
 pathogenic mechanisms of, 446
 giardiasis, 349, 736–737, 737f, 740b
 metronidazole to treat, 571, 737
 as notifiable infectious disease, 424t
 portal of entry, 431
 quinacrine to treat, 577, 737
 gingival bacteria
Bacteroides, 322
 Fusobacterium, 322, 324f
 gingivitis, 715, 716b
 gliding motility, 83, 301t
 of cyanobacteria, 321
 of *Cytophaga*, 322
 of *Myxococcus*, 313, 313f
 global warming, 776
 emerging infectious diseases, 418
 globular proteins
 enzymes as, 113
 flagellin, 81
 shape/structure of, 44, 45f
 globulin proteins, antibodies as, 479
Gloeocapsa genus/spp., 302t, 321f
 glomerulonephritis, 535
Glossina (tsetse fly), African trypanosomiasis transmitted by, 356t, 364t, 413t, 633, 638b
 glucans, 99, 333t
Gluconacetobacter xylinus, 3b
Gluconobacter genus/spp., 3b, 134t, 300t, 304, 800
 glucose
 ATP yield, in eukaryotes/prokaryotes, 130t, 131f, 132f, 133f, 135t
 in Calvin–Benson cycle, 140f
 in chemically defined media, 162, 162t
 in dehydration synthesis, 38f
 E. coli lactose metabolism and, 219–221, 221f, 223f
 as an energy source, 37, 38f, 120, 139, 141f
 fermentation and, 130, 133f
 in genetic control mechanisms and, 219–221, 221f
 glycolysis and, 122, 123, 123f, 124f, 125
 in hydrolysis, 38f
 in lipids biosynthesis, 144, 145f

- in nucleotide biosynthesis, 145–146, 146f
oxidation of, 120, 123, 123f, 124f, 125, 125f
plasma membrane crossings and, 91, 91f, 93
in polysaccharides synthesis, 144, 144f
synthesis of, 144
transport by group translocation, 93
glucose 6-phosphate
enzyme specificity and, 118
in glycogen synthesis, 144, 144f
in nucleotide synthesis, 145–146, 146f
glucose effect (catabolite repression), 222
glucose-phosphate isomerase, 115t
glucosyltransferase, produced by *Streptococcus mutans*, 432
glutamic acid (Glu)
structural formula/characteristic R group, 42t
in transamination, 145f
glutamine (Gln)
in biosynthesis of nucleotides, 146f
structural formula/characteristic R group, 42t
glutaraldehyde (Cidex), 197, 198, 201t, 202t
glyceraldehyde 3-phosphate (GP), 124
in biosynthesis of lipids, 147f
in Calvin-Benson cycle, 140f
in lipid catabolism, 135f
glycerol, 39–40, 39f, 89
in fat molecule formation, 39, 39f
as fermentation end-product, 134t
in lipid catabolism, 134, 135f, 136f
in lipids biosynthesis, 144, 145f
glycine (Gly), structural formula/characteristic R group, 42t
glycocalyx
eukaryotic cell, 98f, 99–100, 100t
prokaryotic cell, 75, 79f, 80
as slime layer, 80, 97b
glycogen, 38
synthesis of, 144, 144f
glycogen granules, in presence of iodine, 95
glycolipids, 90
glycolysis, 122–125, 123f, 124f
alternatives to, 123, 125
ATP yield and, 124, 130t
fermentation and, 123f, 130–133, 133f
in lipid catabolism, 136f
in nucleotide biosynthesis, 145–146, 146f
in synthesis of new cell components, 144–146, 144f–147f
glycoproteins, 44, 90
as adhesins (ligands) of pathogens, 432
glycylalanine, 44f
glycyclines, 571t
glyphosate (herbicide)
insecticidal toxin (Bt toxin) and, 264
resistance and, 264, 267t
goblet cells, of ciliary escalator, 454f
gold
used in staining of specimens, 62
used with gene guns, 252, 252f
Golgi complex, 98f, 102–103, 104f
gonorrhea, 307, 754–756. *See also Neisseria gonorrhoeae*
antibiotic resistance and, 756, 756b
antigenic variation and, 435, 756
arthritis as complication of, 755
Chlamydia trachomatis and, 756
desiccation and bacterium causing, 189
diagnosis of, 756, 756f
endocarditis as complication of, 755
as epidemic disease, 406, 755f
incidence and distribution, 754, 755f
incubation period, 431t, 754–755
meningitis as complication, 755
as notifiable infectious disease, 424t
ophthalmia neonatorum and, 195, 202t, 430, 603–604, 609b, 755–756
pelvic inflammatory disease and, 755
portals of entry, 430, 431t, 754
pregnancy and, 755–756
tetracyclines to treat, 565, 756
GP (glyceraldehyde 3-phosphate), 122
gp120 spikes of HIV, 545, 546f, 553
Gracilaria, 346
graft-versus-host (GVH) disease, 497, 541, 544b
grafts, 540–541
Graham sticky-tape method, 358
grains
aflatoxin and, 227
ergot toxin and, 445
fermentation and, 134t
molds and spoilage of, 189, 230
Gram, Hans Christian, 10f, 68
gram-negative archaea, 302t
gram-negative bacteria, 68f, 69, 300–301t, 303–314
antimicrobial drugs that inhibit, 562t
cell walls, 84, 85f, 86
Gram stain mechanism and, 86, 87t
hypotonic solutions and, 93
characteristics of, 87t, 202
colonizing water pipes, laboratory containers, 440b, 440f
conjugation in, 234
cytolysis susceptibility and, 467
disinfectants effective against, 196, 196f
endotoxic shock caused by, 440
Enter-Doudoroff pathway and, 125
fimbriae of, 82–83, 83f
flagella of, 81, 81f
lipid A and, 86
lipopolysaccharide (LPS) of, 69, 85f, 86, 440, 452
nonproteobacteria genera, 302t, 320–322, 321f, 321t
nosocomial infections and, 415, 416t
proteobacteria genera as, 300–301t, 303–314. *See also* proteobacteria
resistance to chemical biocides, 200, 200f
vs. gram-positive bacteria, 69, 81, 86, 87t
gram-negative shock (endotoxic shock), 440, 646
gram-positive archaea, 302t
gram-positive bacteria, 68f, 69, 301–302t, 314–320
actinobacteria, 302t, 318–320
antibiotics derived from, 560t
antimicrobial drugs that inhibit, 562t
cell walls, 84, 85f
Gram stain mechanism and, 86, 87t
characteristics of, 87t
conjugation in, 234
cytolysis resistance and, 467
disinfectants effective against, 196, 196f
endospores and, 95–97, 96f
firmicutes, 301t, 314–318
flagella of, 81, 81f
high G + C ratio, 280f, 302t, 318–320
low G + C ratio, 280f, 301t, 314–320
nosocomial infections and, 415, 416t
phylogenetic relationships, 280f
position in evolutionary tree, 274f
resistance to chemical biocides, 200, 200f
resistance to physical disruption, 87t
vs. gram-negative bacteria, 69, 81, 86, 87t
gram-positive sepsis, 646–647
Gram stain, 68–69, 68f, 71t, 86, 87t
Archaea and, 87
bacteria (gram-negative vs. gram-positive) reaction to, 87t
stool sample, 273b, 286b, 287b
gram-variable bacteria, 86
granddaughter DNA, altered, 223–224, 224f, 226f
granules
metachromatic, 95
polysaccharide, 95
granulocyte-colony stimulating factor (G-CSF), 497
granulocytes, 456
granulomas, of schistosomiasis, 674, 675f
granulomatous amebic encephalitis (GAE), 623b, 635
caused by *Acanthamoeba*, 623b, 635
caused by *Balamuthia*, 351, 356t, 623b, 629
granulomatous disease, chronic, 259t
granum/grana, 103, 105f
granzymes, 458, 493
grapes, fermentation and, 134t
graphs, microbial death curve, 183, 184f
grappling hook model of twitching motility, 83
grasshoppers, protozoa *Nosema locustae* as insecticide against, 348
Graves' disease, 537
HLA typing to determine susceptibility, 539t
Grays, as radiation measurement, 796
Great Salt Lake, extreme halophiles (archaea) found in, 326
green algae, 345f, 345t, 346
terrestrial plants may have arisen from, 346
green bacteria, 141, 141f, 142, 143t
green monkey virus. *See Marburg virus*
green monkeys, AIDS and, 379
green nonsulfur bacteria, 141f, 143, 143t, 321t, 323, 324
phylogenetic relationships, 280f
green photosynthetic bacteria, 302t
green plants, as photoautotrophs, 141–143, 141f
green scum in ponds, formed by filamentous green algae, 343
green sulfur bacteria, 143, 321t, 323, 324, 777
characteristics, compared, 321t
chlorobium vesicles of, 143
phylogenetic relationships, 280f
Griffith, Frederick, 10f, 232–233, 233f
griseofulvin, 566t, 575, 606
produced by *Penicillium griseofulvin*, 560t, 569
group A streptococci (GAS), 317, 594–596, 595f, 640, 683
group B streptococci (GBS), 317, 320b, 324b, 647
neonatal sepsis caused by, 317, 320b, 324b, 647
group translocation, 93, 100
growth (human), childhood deficiencies, human growth hormone to treat, 259t
growth (microbial), 153–180. *See also* control of microbial growth
carbon requirements, 158
Clinical Case, 154b, 166b, 175b, 177b
in cultures, 168–177
cell division and, 153, 168–169, 169f
direct measurements, 171–175
estimating numbers, 175–177
generation time, 168–169, 169f
growth curves, 169f, 170–171, 170f
logarithmic representations, 169–171
measurement methods, 153, 171–177, 172f–177f
medius for, 153, 161–166
phases of growth, 170–171, 170f
nitrogen requirements, 158
osmotic pressure and, 156, 157f, 158
oxygen requirements, 158–160, 159t
pH and, 156
phases of, 153, 170–171, 170f
phosphorus requirements, 158
in prokaryotic cell/eukaryotic cell/eukaryotic organelles, 276f
refrigeration and, 155–156, 155f, 156f
requirements for
chemical, 153, 158–160, 159t
physical, 154–158
salt concentration and, 158
sulfur requirements, 158
temperature and, 154–156, 154f–156f
trace elements required for, 158

GTP (guanosine triphosphate), 126, 126f
 guanine (G), 46f, 47, 208
 in DNA replication, 210–215, 211f–214f
 in transcription, 214f, 215
 in translation, 215–218, 216–217f
 guanosine triphosphate (GTP), 126, 126f
 guinea pigs, culturing viruses in, 379, 406
 guinea worm (*Dracunculus medinensis*) infection, 14, 14f
 Gulf oil spill (2010), bioremediation and, 16, 781
 gummas, 760f, 761
 gummatous syphilis, 760f, 761
 gut-associated lymphoid tissue (GALT), 712
 GVH (graft-versus-host) disease, 492, 541, 544b
Gymnodinium breve (dinoflagellate), neurotoxin (saxitoxins) produced by, 344
 gypsy moths, *Entomophaga* to control, 341
 gyrase (DNA), 210, 211t

H

H antigen, 82
E. coli, 82
 H1N1 influenza virus, 18, 374–375b, 405f, 447f, 700–701, 700t real-time PCR to identify, 290
 H1N2 influenza virus, 374–375b, 700, 700t
 H2N2 influenza virus, 374t, 700, 700t
 H3N2 influenza virus, 374–375b, 700, 700t
 H5N1 influenza, 374–375b, 700
 H7N1 influenza, 374b
 HA (hemagglutinin) proteins spikes of influenza virus, 692–693, 692f
 subtypes of influenza A viruses, 374–375b
 HAART (highly active antiretroviral therapy), 553, 575
 habitats, of pathogenic fungi, 340t
 HACCP (Hazard Analysis and Critical Control Point) system, 800
 Haeckel, Ernst, 273
HaeIII restriction enzyme, 248t
Haemophilus aegyptius, in rDNA technology, 248t
Haemophilus ducreyi, chancroid caused by, 312, 762, 767b
Haemophilus genus/spp., 301t, 312 blood required to culture, 312 genetic transformation naturally occurring in, 233 as normal microbiota of mouth, 404t nosocomial infections and, 416t
Haemophilus influenzae, 5f, 312 complement system evasion by, 470 conjunctivitis and, 609 genome has been sequenced, 260 *HindIII* restriction enzyme used in rDNA technology, 248t

meningitis and, 312, 433, 612, 613, 623b as normal microbiota of throat, 404t as notifiable infectious disease, 424t otitis media caused by, 312, 685 phagocytes and, 433 type b evasion of phagocytosis and, 462 meningitis caused by, 433, 618, 623b septic shock and, 439 vaccine, 506t, 507t, 508, 618 virulence and capsule of, 433
Haemophilus influenzae pneumonia, 312, 433, 613, 693, 695b
 HAI. See health care-associated infections hair cutaneous mycoses and, 340, 340t sebum and, 455 hair follicles, 590, 590f hairs, of nasal mucous membrane, 454, 474t hairy leukoplakia, in AIDS patients, 550t half-life, of injected antibodies, 495
Halocarcula genus, 78, 78f
Halobacteriales, 302t
Halobacterium genus/spp., 95, 302t, 326
Halococcus genus/spp., 302t, 326 halogens chlorine, 193–194, 202t iodine, 193–194, 201t, 202t halophiles, extreme, 4, 158, 274, 274f, 280f, 326 facultative, 158 obligate, 158 halophilic archaea, 78 hamsters, tularemia and, 656b hand sanitizers, 195, 196, 735 handwashing effective technique for, 195 as most important infection control measure, 417 Hansen's disease. See leprosy
Hantavirus, 378t as a biological weapon, 654b PCR to identify, 290 reservoirs/transmission method, 413t
Hantavirus pulmonary syndrome, 378t, 413t, 666, 667b emerging infectious diseases and, 418, 419t global warming and, 418 as notifiable infectious disease, 424t reservoirs/transmission due to, 413t haptan-carrier conjugate, 479f haptens, 481, 481f allergic contact dermatitis and, 530 Hartmut, Michel, 10f Haverhill fever, 655 hay fever, 528, 528t, 530 IgA antibodies and, 484–485 Hazard Analysis and Critical Control Point (HACCP) system, 800
HDCV (human diploid cell vaccine) for rabies, 629

HDNB (hemolytic disease of newborn), 533, 533f head lice, ivermectin effective against, 572 health care-associated infections (HAI), 401, 415
Acinetobacter baumannii and, 309
Clostridium difficile and, 401 compromised hosts and, 416, 417t cost of, 582 hospitals and, 414–417, 415f. See also nosocomial infections infection following steroid injection, 198b MRSA and. See MRSA norovirus outbreak and, 182b, 197b, 199b, 201b pseudomonads responsible for one in ten, 309 rates of, 415, 416t, 417t schools and, 182b, 197b, 199b, 201b treatments in, resulting in compromised hosts, 416 health care facilities, infections. See nosocomial infections health care personnel antibiotic resistance and, 576 hospital-acquired infections and. See nosocomial infections Universal Precautions for (CDC), 546t hearing loss, caused by aminoglycoside antibiotics, 565 heart, 644, 644f, 649b endocarditis, 647 acute, 648, 649b subacute, 647–648, 647f, 649b pericarditis, 648 rheumatic fever, 317, 648, 649b heart attacks genetically modified products to treat, 259t streptokinase to treat, 434b heart transplant patients, impaired innate defenses of, 465 heart valves abnormal, endocarditis risks and, 647 biofilms colonizing, 161, 433, 647, 647f as privileged tissue, 535 rheumatic fever and, 648, 649b heartworm (*Dirofilaria immitis*), 361–362, 362f, 364t *Aedes* mosquito as vector, 362, 364t *Wolbachia* bacteria essential to, 362 heat anabolic/catabolic reaction and release of, 112–113, 112f high-heat cooking, amines that form, 231b of inflammation, 460 lost in energy production, 144 reaction rates and, 113 stains/staining and, 67, 69, 71 heat-labile enterotoxins, 440 produced by *E. coli* strains, 439 heat-loving microbes (thermophiles), 154, 154f endospores of, 97

heat-resistant (thermoduric) bacteria, pasteurization and, 187 heat treatments in microbial control, 185–188, 191t dry heat, 188 enzyme denaturation and, 185, 191t equivalent treatments and, 188 factors influencing effectiveness, 188 flaming, 188 hot-air, 188 mechanism of action, 185, 188 moist heat, 185–187 pasteurization, 187–188 to remove *Clostridium botulinum* endospores, 182, 183t resistance to, 185 summary (method/mechanism of action/uses), 191t heavy chains of antibodies, 482, 482f, 483t heavy metals as disinfectants, 195–196, 195f, 202t gram-negative bacteria and, 87 R factors that confer resistance to, 236 used in staining of specimens, 62 HeLa cell line, 380 helical virus, 373, 373f helical viruses, 373, 373f enveloped, 373, 373f helicase, 210, 211t helices of protein structure, 44, 45f *Helicobacter* genus/spp., 301t, 313, 314f
Helicobacter pylori, 53f, 313, 314f Clinical Case, 54b, 64b, 69b, 71b peptic ulcer disease, 54b, 64b, 313, 314f, 725–726, 725f stomach acid and, 455 helium, used with gene guns, 252, 252f helminthic diseases of cardiovascular/lymphatic systems, 673–675 of digestive system, 738–744 helminthic zoonoses, 413t helminths, 6, 331f, 354–363, 355, 364t antimicrobial drugs that inhibit, 562t emerging infectious diseases caused by, 419t parasitic, 330, 354–363, 364t characteristics of, 355–356 habitat, 354–355 life cycle, 356 reproduction in, 356 pathogenic mechanisms of, 446 helper T cells. See T helper cells hemagglutination, 371, 517 spikes, influenza viruses and, 371, 373f viral, 517, 517f hemagglutinin (HA) proteins, 371 influenza A virus subtypes and, 374–375b *Influenzavirus* and, 692–693, 692f hematologic disorders, sickle cell disease, 225 hematopoietic cytokines, 497 hematopoietic stem cells (HSCs), 540 bone marrow transplants and, 541

- Hemiascomycetes, in taxonomic hierarchy, 279*f*
- hemodialysis
antibiotic resistance developing from, 423*b*
disinfectants used in, 194
patients at risk for gram-positive sepsis, 640
- hemoflagellates (blood parasites), 330, 350, 667*f*, 668*b*
- hemoglobin, 436, 473
- hemolysins, 439, 473, 594
- hemolysis
in complement testing, 472*b*
gas gangrene and, 441*t*
- hemolytic anemia, 534
- hemolytic disease of newborn (HDNB), 533, 533*f*
- hemolytic streptococci, 317, 589–590
- hemolytic uremic syndrome (HUS)
E. coli O157:H7 and, 724
as notifiable infectious disease, 424*t*
- hemophilia, 16
- hemophilia B, gene therapy to treat, 258
- hemorrhagic colitis, 724
- hemorrhagic fever viruses, 19, 290, 378*t*, 665–666, 667*b*
emerging, 637, 666, 667*b*
as potential biological weapon, 654*b*
- hemorrhagic fever with renal syndrome (*Hantavirus* pulmonary syndrome), 666
- Hendra virus, emerging infectious diseases and, 419*t*
- HEPA (high-efficiency particulate air) filters, 164, 188
- Hepadnaviridae, 377*t*, 387–388, 388*t*, 390*b*
biosynthesis of, 388*t*
as DNA virus, 388*t*
as an oncogenic virus, 393
synthesizes DNA using reverse transcriptase, 388
- Hepadnavirus*
hepatitis B and, 377*t*, 387, 431*t*
hepatitis D and, 378*t*
incubation period, 431*t*
portals of entry, 431*t*
- heparin IV solutions, *P. fluorescens* (Clinical Case), 154*b*, 166*b*, 175*b*, 177*b*
- hepatitis, 729–734
alpha interferon to treat, 259*t*, 575
antisense DNA explored as gene therapy, 258
blood banking supplies and, 727*b*
Clinical Case, 370*b*, 390*b*, 392*b*, 393*b*, 394*b*
as emerging infectious disease, 419*t*
- hepatitis A, 729, 731*b*
Clinical Case, 370*b*, 390*b*, 392*b*, 393*b*, 394*b*
incubation period, 431*t*
as notifiable infectious disease, 424*t*
- hepatitis A virus (HAV), 369, 377*t*, 409, 729, 731*b*
immunoglobulin, 394*b*, 729
incubation period, 729, 731*b*
portals of entry, 430, 431*t*, 729
- as RNA virus, 387, 729
transmission route, 392*b*, 393*b*, 729
vaccine, 394*b*, 506*t*, 507*t*, 729
- hepatitis B, 729–732, 730*f*, 731*b*
acute, 730
adefovir dipivoxil (Hepsera) to treat, 575, 732
alpha interferon to treat, 473, 732
chronic, 409, 730–732
contaminated needles and, 447
incubation period, 431*t*, 731*b*
lamivudine to treat, 575
as notifiable infectious disease, 424*t*
portals of entry, 431*t*
pregnancy and, 760
treatments for, 732
vaccine, 14, 245, 257, 259*t*, 341, 506*t*, 507*t*, 543, 732
- hepatitis B virus (HBV), 369, 729–732, 730*f*, 731*b*
as cancer-causing virus, 393
gene silencing and, 258, 259*f*
Hepadnaviridae and, 387
Hepadnavirus, 377*t*, 387, 431*t*
incubation period, 431*b*, 431*t*
portals of entry, 431*t*
transmission route, 392*b*, 447, 729–730
- hepatitis C, 419*t*, 731*b*, 732–733, 733*b*
alpha interferon to treat, 473
blood bank supply and, 733*b*
as notifiable infectious disease, 424*t*
- hepatitis C virus (HCV), 369, 377*t*, 419*t*, 731*b*, 732–733
as RNA virus, 387
- hepatitis D (delta hepatitis), 378*t*, 731*b*, 733
dependent on coinfection with hepadnavirus, 378*t*
as RNA virus, 387
- hepatitis E, 419*t*, 731*b*, 734
- hepatitis E virus (HEV), 377*t*, 419*t*, 727–729, 731*b*
as RNA virus, 387
- hepatitis F virus (HFV), 734
as RNA virus, 387
- hepatitis G virus (HGV), 734
as RNA virus, 387
- hepatotoxins, 438
- Hepsera (adefovir dipivoxil), 566*t*, 575
- heptoses, 37
- HER2 gene, 261
- herbicide resistance, genetically modified crop plants and, 264, 267*t*
- herbicides
decomposition rate of Agent Orange, 775, 775*f*
glyphosate resistance and, 264, 266 RoundUp (glyphosate), 264, 267*t*
- Herceptin (trastuzumab), 261, 514, 543
- herd immunity, 409, 505, 598, 612
- hereditary traits, determination of, 15, 47
- heredity, science of. See genetics
- heredity. See genetics
- hermaphroditic helminths, 356
- herpes encephalitis, 603
- herpes gladiatorum, 603
- herpes simplex, 596*b*, 603
See also varicella-zoster virus
- herpes simplex viruses
AIDS-associated, 550*t*
latent infections and, 394, 396*t*
neonatal herpes and, 764
portals of entry/incubation period, 431*t*
pregnancy and, 764
skin rash and, 447, 596*b*, 603
type 1 (HSV⁻¹), 387, 388*f*, 596*b*, 603, 603*f*, 757
type 2 (HSV⁻²), 387, 603, 763, 763*f*, 767*b*
- herpes-zoster (shingles), 377*t*, 394, 396*t*, 409, 596*b*, 601–602
as a latent varicella-zoster virus disease, 409, 596
in HIV/AIDS patients, 549, 550*t*
rash caused by, 394, 596*b*, 602*f*
vaccine, 506*f*, 602
- Herpesviridae, 377*t*, 387, 388*f*, 388*t*
biosynthesis in, 386–387, 388*t*
as DNA virus, 387
as an oncogenic virus, 393
vaccine, 503*t*
- herpesviruses (HHV), 387, 388*f*. See also HHV-1 to HHV-8
acridine dyes and, 227
acyclovir to treat, 569, 570*f*
biosynthesis in, 386, 388*f*, 388*t*
cancer, contaminated red bone marrow transplant and, 406, 408
incubation period, 431*t*
latent infections and, 394, 394*f*, 396*t*
portals of entry, 430, 431*t*
species (HHV-1 to HHV-8), 387
used to insert corrective genes into human cells, 249
- herpetic keratitis, 605
- herpetic whitlow, 603
- Hershey, Alfred D., 10*f*
- Hershko, Avram, 13*t*
- heterocysts, 321, 321*f*, 778
- heterofermentative (heterolactic) microbes, 133
- heterolactic (heterofermentative) microbes, 133
- heterotrophs (organotrophs), 140–141, 141*f*, 144
complex medium for growing, 163*t*
- hexachlorophene, 192, 193*f*
- hexose monophosphate shunt. See pentose phosphate pathway
- hexoses, 37
- Hfr cell (high frequency of recombination), 234, 236*f*, 238*f*
- HGA (human granulocytic anaplasmosis), 290, 424*t*, 654*b*, 656*b*
- hGH (human growth hormone), produced by genetically modified *E. coli*, 247, 259*t*
- HHV-1 simplexvirus, 387, 596*b*, 603, 603*f*, 757
- HHV-2 simplexvirus, 387, 596*b*, 603, 757, 757*f*, 761*b*
- HHV-3 Varicellovirus, 385, 596*b*, 601. See also varicella-zoster virus
- HHV-4 (*Lymphocryptovirus*/Epstein-Barr virus), 377*t*, 662. See also *Lymphocryptovirus*
- HHV-5 (*Cytomegalovirus*), 664
- HHV-6 Roseolovirus, 387, 594*b*, 605
- HHV-7 Roseolovirus, 387, 594*b*, 605
- HHV-8 Kaposi's sarcoma. See Kaposi's sarcoma
- HHV-8 Rhadinovirus, 387
- HHV (human herpes virus), 387, 388*f*, 601–603. See also herpesviruses
- Hib. See *Haemophilus influenzae*, type B
- high cholesterol, antisense DNA and, 259*t*
- high-efficiency particulate air (HEPA) filters, 164, 188
- high-energy bond, 119, 120
- high-energy electron beams, 189
- high frequency of recombination (Hfr) cell, 234, 236*f*, 238*f*
- high G + C gram-positive bacteria, 280*f*, 302*t*, 318–320
- high pressure treatments, to control microbial growth, 189, 191*t*
- high-temperature short time (HTST) pasteurization, 187
- high-temperature short-time (HTST) pasteurization, 187
- high-throughput screening methods of soil samples, 560
- highly active antiretroviral therapy (HAART), 553
- HindIII restriction enzyme, 248*t*, 249*f*
- hinge region of antibodies, 482, 482*f*
- hip replacement components, biofilms colonizing, 433
- histamine, 424, 464, 464*f*, 524
in allergic reactions, 484, 529, 529*f*
complement system and, 468*f*, 469*f*
released by eosinophils, 456
- histidine (his)
Ames test and, 230–231, 230*f*, 232*b*
relica plating technique and, 229–230, 229*f*
structural formula/characteristic R group, 42*t*
- histiocytes (fixed macrophages), 457, 460, 638, 639*f*
- histocompatibility antigens, 482, 538
major histocompatibility complex (MHC) and, 482, 482*f*, 500*f*, 533–534
tissue rejection and, 482
- histones, 76, 100*t*, 101, 276*t*
- Histoplasma*, interleukin-12 and, 499*b*
- Histoplasma (Ajellomyces) capsulatum*, 340*t*
- Histoplasma (Ajellomyces) dermatitidis*, 340*t*
- Histoplasma capsulatum*
AIDS-associated, 550*t*
histoplasmosis caused by, 431*t*, 702–703, 702*f*, 706*b*
- histoplasmosis, 339, 431*t*, 702–703, 702*f*, 706*b*
airborne transmission and, 412*f*, 413
amphotericin B effective against, 568
incubation period, 431*t*
portals of entry, 431*t*

- I-30** INDEX
- HIV, 5*f*, 20, 545
 as a provirus, 390, 546*f*, 547
 as a retrovirus, 378*t*, 390, 390*f*, 545
 antigenic variation in, 547
 clades (subtypes) of, 547
 cytopathic effects of, 445*f*
 DNA technology to track, 244*f*
 early understanding of, 369, 545
 emerging infectious diseases and, 419*t*
 entry method of, 385, 386*f*, 545,
 546*f*, 547
 evading immune defenses, 443, 445*t*,
 462, 547
 fusion and, 385, 386*f*, 546*f*, 547
 genetics and, 207
 gp120 glycoprotein spikes and, 545,
 546*f*
 HIV-1, HIV-2 subtypes and, 378*t*,
 387, 390, 545, 547, 571
 incubation period, 431*t*
 infection. *See* HIV infection
 macrophages and, 545, 547*f*
 mechanisms for attacking immune
 system directly, 443
 as mutation of simian
 immunodeficiency virus, 545
 pathogenicity of, 545–547, 546*f*
 portals of entry, 430, 431*t*
 resistance to, 549
 reverse transcriptase enzyme and,
 387, 390, 545, 546*f*, 547
 structure of, 545–547, 546*f*
 survive in phagocytes, 462
 transmission of, 245*b*, 251*b*, 254*b*,
 257*b*, 258*b*, 551
 vaccine development and, 258, 547
 HIV infection, 545–550
 active, 546*f*, 547, 547*f*
 antiviral drugs to treat, 575–577
 antivirals to treat, 575–577
 APTIMA assay to detect, 545
 blood banking and, 727*b*
 CD4+ T cells and, 5*f*, 443, 545–550,
 546*f*, 548*f*
 cell counts during stages of, 547*f*,
 548–549
 chemotherapy and, 553, 575–577
 Clinical Case, 245*b*, 251*b*, 254*b*,
 257*b*, 258*b*
 diagnostic methods, 550–551
 distribution of cases, worldwide,
 551, 552*f*
 ELISA test to detect, 286, 287*f*, 521,
 523*f*, 550
 first known cases of, 369, 545
 infants born to HIV-positive
 mothers and, 544
 latent, 546*f*, 547, 547*f*
 long-term nonprogressors and, 545
 long-term survivors, 549–550
 as notifiable infectious disease, 424*t*
 persistent viral infection and, 396*t*
 phases of, 547–549, 548*f*
 progression of, 547–549, 548*f*
 resistance to, 549
 survival with, 544*t*, 549
 transmission of, 245*b*, 251*b*, 254*b*,
 257*b*, 258*b*, 551
 treatment regimens, 553, 575–577
 alpha interferon and, 473

- cell entry inhibitors and, 553
 chemotherapy, 553
 colony-stimulating factor and,
 259*t*
 fusion inhibitors and, 553, 571
 integrase inhibitors and, 553, 571
 interleukin-12 (IL-12) and, 499*b*
 maturation inhibitors and, 553
 protease inhibitors and, 553, 575
 reverse transcriptase inhibitors
 and, 553, 575
 vaccine development and, 258,
 547–548
 Western blotting to confirm, 286–
 287, 288*f*, 521, 550
 hives, 528, 530–531
 HLA (human leukocyte antigen)
 complex, 482, 538–539, 538/
 538*t*
 grafts and, 541
 HLA typing, 538, 539*t*
 HME (human monocytotropic
 ehrlichiosis). *See* ehrlichiosis
 Hodgkin's disease
 as acquired immunodeficiency,
 544
 Epstein-Barr virus and, 664
 HLA typing to determine
 susceptibility, 539*t*
 holdfasts of algae, 343–344
 holdfasts of lichen, 342
 Holmes, Oliver Wendell, 647
 holoenzyme, 114, 114*f*
 home canning of foods, 185, 187
 home pregnancy test, 520, 522*f*
Homo sapiens, 278
 homolactic (homofermentative)
 bacteria, 133
 hook of flagella, 81, 81*f*
 Hooke, Robert, 6, 10*f*, 55
 hookworms, 330, 360, 361, 364*t*, 738*f*,
 740*b*, 741, 741*f*
 larvae bore through intact skin, 430
 horizontal gene transfer, 213*f*, 232,
 275, 583*b*
 antibiotic resistance and, 575, 583*b*
Wolbachia and, 308*b*
 hormones, proteins as, 41
 hormones (genetically modified)
 bovine growth hormone (bGH),
 266, 267*t*
 human growth hormone (hGH),
 247, 259*t*
 insulin, 2, 245, 247, 254, 257, 259*t*,
 802
 porcine growth hormone (pGH),
 267*t*
 somatostatin, 257
 horsepox (extinct), 505
 horses
 anthrax and, 315
 as disease reservoir, 413*t*
 DNA vaccine against West Nile
 virus approved for, 508
 eastern equine encephalitis in, 630,
 634*b*
 influenza A virus subtypes and, 18,
 374–375*bb*
 reported cases of rabies in, 630/
 western equine encephalitis in, 377*t*,
 630, 634*b*
- hospital-acquired infections. *See*
 nosocomial infections
 hospital nurseries, outbreaks of
 impetigo (pemphigus
 neonatorum) in, 588
 hospitals
 control of nosocomial infections
 in, 417
 decontamination techniques, 199
 intensive care units, epidemic
 nosocomial infections and,
 416
Serratia marcescens and, 311
 Universal Precautions for health
 care workers (CDC), 546*t*
 UV lamps to control microbes, 190
 ventilation systems, nosocomial
 infections and, 416
 water supply
K. pneumoniae and, 76*b*, 86*b*, 88*b*,
 95*b*, 97*b*
Legionella and, 689
 water supply lines in, *Legionella*
 and, 309
 workers, resistance of to antibiotics,
 576
 host range (viral), 370–371
 ecological niches and, 374
 species barrier crossings, 370–371,
 374–375*b*
 hosts
 compromised, 415*f*, 416, 417*t*
 defenses
 how pathogens penetrate, 431,
 431*t*, 433–435, 435*f*, 447*f*
 how viruses evade, 443–444, 444*f*,
 445*f*
 IgA antibodies and, 435
 innate immunity and, 451–475,
 476. *See also* innate immunity
 phagocytosis, bacterial capsules
 and, 433
 virulence and, 432–433
 definitive, 351. *See also* definitive
 host
 environments for parasitic
 helminths, 354, 355
 how bacterial pathogens damage
 cells, 433–443
 how pathogens enter, 430–433, 431*t*
 how pathogens penetrate, 431, 431*t*,
 433–435, 435*f*, 447*f*
 interactions, and viral phage
 therapy, 371, 579
 interactions of, emerging infectious
 diseases and, 418
 intermediate, 351. *See also*
 intermediate host
 viral (mammalian cells in culture),
 256–257
 hot-air sterilization, 188, 191*t*
 hot environments, archaea found
 growing in, 274, 274*f*, 326, 326*f*
 hot springs, microbes associated with,
 156, 326
 hot tubs/saunas, rashes and, 597
 hot zone labs, 164–165, 165*f*
 houseflies, as vectors, 365
 household cleaning products
 bacterial resistance and, 18–19
 bleach, to disinfect norovirus, 201*b*
- HPV (human papillomavirus), 387,
 393
 cervical cancers caused by, 387, 393
 HPV-16, 393
 vaccine, 259*t*, 393, 503*t*
 HPV vaccine (*Gardasil*), 259*t*, 393,
 506*t*, 543, 758
 HSCs (hematopoietic stem cells), 540
 HSV-1. *See* herpes simplex viruses
 HSV-2. *See* genital herpes
 HTLV-1 and HTLV-2 (human T-cell
 leukemia virus), 393, 396*t*
 HTST (high-temperature short-time)
 pasteurization, 187
 HTST pasteurization, 187
 Huber, Robert, 10*f*
 human activated protein C, 646
 human cells, microRNAs and gene
 expression, 222–223, 223*f*
 human diploid cell vaccine (HDCV)
 for rabies, 629
 human diploid culture vaccine, 380
 Human Genome Project, 260
 human granulocytic anaplasmosis/
 HGA, 290, 424*f*, 654, 656*b*
 human granulocytic ehrlichiosis, 290
 human growth hormone (hGH)
 industrial fermentation used to
 produce, 802
 produced by genetically modified
E. coli, 247, 259*t*
 human herpesviruses (HHV), 387,
 594*b*, 596, 597–598, 598*f*. *See*
 also HHV-1 to HHV-8
 latent infections and, 392, 394, 396*t*
 human immunodeficiency virus. *See*
 HIV
 human insulin. *See* insulin (human)
 human leukocyte antigen (HLA)
 complex, 482, 538–539, 538/
 539*t*
 bone marrow transplants and, 541
 diseases related to, 539*t*
 grafts and, 541
 stem cells and, 540, 540*f*
 tissue typing, 538–530, 538*f*
 transplantation reactions and,
 539–541
 using PCR in matching donors, 539
 Human Microbiome Project, 402
 human monocytotropic ehrlichiosis
 (HME). *See* ehrlichiosis
 human papillomavirus (HPV), 377,
 387, 393
 cervical cancers caused by, 387, 393
 vaccine, 259*t*, 393, 503*t*, 506*t*, 543,
 758
 warts caused by, 377*t*, 387, 388*f*,
 597*b*
 genital warts, 758, 758*f*, 761*b*
 human parvovirus B19, 377*t*
 Human Proteome Project, 260
 human rabies immune globulin (RIG),
 629
 human reservoirs, 411
 human T-cell leukemia viruses
 (HTLV-1 and HTLV-2), 393,
 396*t*
 human-to-human transmission
 of avian influenza viruses, 18
 of Ebola hemorrhagic fever, 19

humanized antibodies, 514
humidifiers, as disease reservoirs, 417
humoral immunity, 479–480, 485–487
 500f. *See also* Antibodies
 antibody titer and, 497, 497f, 510,
 511f
 B cells and, 485–487, 486f, 487f
 immunological memory and, 497
 primary response, 497, 497f
 secondary response, 497, 497f
 spleen removal decreases, 494b, 543
humors (body fluids), 480
Huntington's disease, 225, 225f
HUS. *See* hemolytic uremic syndrome
HVP (hydrolyzed vegetable protein),
 Salmonella tennessee outbreak
 and, 294b
hyaluronidase, 435, 595
 therapeutic uses, 435
hybridization reaction studies
 colony, 255, 256f
 evolutionary relationships and, 277
fluorescent *in situ* (FISH), 292, 293f
forensic microbiology and, 261, 263f
nucleic acid, 290, 291f, 292
Southern blotting and, 261, 262f,
 290, 291f, 292
hybridomas, 512, 513f
hydatid cyst disease, 360, 361f, 364t,
 739, 740b, 741, 741f
hydatidosis. *See* hydatid cyst disease
hydrocarbons
 bacteria that use as energy/carbon
 source, 235
 formed by diatoms, early planktonic
 algae, 348
hydrochloric acid (HCl), 34f
 most microbes destroyed by, 430
hydrogel, biofilm as, 160
hydrogen bonds, 30–31, 31f, 31t,
 45f, 46f
hydrogen (H)
 as a biofuel, microbes and, 815
 acids and, 34, 34f
 atomic number/atomic weight, 27t
 bases and, 34, 34f
 in biological oxidations, 120, 121f
 electronic configuration, 28t
 an energy source, 139, 141f, 143,
 143t
 as fermentation end-product, 132f
 green bacteria and, 142, 143t
 in methane formation, 30, 30f
 molecule formation, 30, 30f
 in organic compounds, 36
 salts and, 34, 34f
 water molecules and, 33–34
hydrogen ions, acid-base balance and,
 34–35, 34f
hydrogen peroxide
 as antiseptic, 199, 202t
 for aseptic packaging, 199, 202t
 catalase and, 104, 162, 199
 as disinfectant, 199, 202t
 magnetosomes can decompose, 95
 NADPH and, 463b, 466b, 472b
 peroxisome enzymes and, 104
 in plasma sterilization, 199, 202t
 toxicity and, 104, 160, 199, 462
hydrogen sulfide
 anaerobic respiration and, 130

biochemical tests to identify, 137,
 137f
Desulfovibrionales genera and, 312
 as energy source for bacteria, 14,
 143, 306, 307
 green bacteria and, 142, 143t
Hydrogenomonas, 143
Hydrogenophilales, 300t
hydrolase enzymes, 115t
hydrolysis, 38, 38f, 115t
 in DNA replication, 212f, 213
hydrolytic reactions, 112
hydrolyzed vegetable protein (HVP),
 Salmonella tennessee outbreak
 and, 294b
hydrophilic molecules, 40, 40f
 phospholipids, 40, 40f, 89, 89f
hydrophobia, rabies and, 629
hydrophobic molecules, 40, 40f, 44,
 45f, 89, 89f
hydrothermal vents, deep-sea, 156,
 157b, 326
hydroxide ion, 34
hydroxyl functional group, 36, 37,
 41, 42t
 of alcohols, 36
 in fatty acids, 39, 39f
hydroxyl radical, 160, 462
 ionizing radiation and, 189
hygiene hypothesis, 525
hyperacute rejection, 541
hyperbaric chamber, to treat gas
 gangrene, 653, 653f
hypercholesterolemia, gene therapy,
 16
hypersensitivity (allergy), 528–531,
 528t
 anaphylactic (Type I), 528. *See also*
 anaphylactic reactions
 cytotoxic (Type II), 528t, 532–534,
 532t, 533f, 534f
 delayed (Type IV), 535, 536f
 desensitization to prevent, 531
 eosinophils increase during, 456
 IgE antibodies and, 481, 528–531,
 528t, 529f
 immune complex (Type III), 528t,
 534–535, 534f
 to penicillin, 481, 530, 537b
hyperthermophiles (extreme
 thermophiles), 4, 156, 157b,
 274, 274f, 280f, 302t, 326, 326f
hypertonic solution, 92f, 93
 microbial growth and, 156, 157f
hyphae, 4, 5f, 281, 332–333, 332f, 333f,
 340t
 of *Candida albicans*, 334f
 fragmentation and, 333
 lichen and, 342, 343f
 of *Mucor*, 5f
 of *Talaromyces*, 336f
Hyphomicrobium genus/spp., 300t,
 304, 305f, 777
hypochlorous acid, 192, 462
hypotension, endotoxic shock and,
 440
hypothalamus, as body's thermostat,
 466
hypotonic environments, microbial
 growth and, 158
hypotonic solution, 92f, 93

I
I gene, 221, 221f, 222f
iamivudine, mode of action/uses, 564t
ibritumomab (Zevalin), 509
ibuprofen, 465
ice cream
 algae-produced thickeners used
 in, 346
 pasteurization time/temperature
 and, 187
ice formation, *Pseudomonas syringae*
 and genetically modified plants,
 267t
icosahedron-shaped viruses, 372f, 373
ICTV (International Committee on
 Taxonomy of Viruses), 281,
 374
identification of microorganisms, by
 nutritional patterns, 140–143,
 141f
identification of microorganisms,
 281–294
 biochemical tests, 284–287,
 284f–287f
 cladograms and, 274f, 280f, 293–294,
 294f
 dichotomous keys and, 285f, 293
 differential staining, 284
 DNA base composition, 289
 DNA fingerprinting, 289–290, 289f
 enzymatic activity tests, 284, 284f
 fatty acid profiles (FAME tests), 287
 flow cytometry, 287–289
 lab report form (example), 283, 283f
 metabolic characteristics, 284–287,
 284f
 metabolic reaction tests, 281, 284,
 284f
 microscopic examination, 281, 284
 morphological characteristics, 284
 nucleic acid amplification tests
 (NAATs), 290
 nucleic acid hybridization, 290,
 291f, 292
 phage typing, 287, 289f
 polymerase chain reaction (PCR),
 290
 of prokaryotes, 281, 284–294
 rapid identification methods,
 285–286, 285f
 relationship of taxonomy to, 272
 serological tests, 286–287, 286f, 287f,
 288f
 slide agglutination tests, 286, 286f
 by Western blotting, 286–287, 288f
idiophase, 803
iodoquinol (diiodohydroxyquin), 577
IFNs (interferons), 471–473. *See also*
 interferons
IgA, 483, 483f, 483t, 484, 489, 681
IgA proteases, 435, 479, 480–481,
 483t, 486
 serum IgA, 480
IGAS (invasive group A *Streptococcus*),
 19, 595–596
IgD, 483, 483f, 483t, 484
 activation of B cells to produce
 antibodies and, 484, 484f
IgE, 483, 483f, 483t, 484–485
 allergic reactions and, 484–485,
 528–529, 528t, 529f

IgG, 483, 483f, 483t, 488, 493, 494f,
 514–515
desensitization process and, 531
immune complex reactions and,
 534, 534f
maternal, passive immunity to fetus
 and, 483, 498
IgM, 415f, 483, 483f, 483t, 487b, 488,
 493, 494f, 514–515, 516, 531
IL-1. *See* interleukin-1
IL-12. *See* interleukin-12
illuminator, of compound light
 microscope, 55, 55f
imidazoles, 574, 574f
imipenem, 88b, 95b, 564t, 569
imipenem-resistant gram-negative
 infections, 95b
imiquimod, 575
immersion oil, 57, 59f
 refractive index and, 57, 59f
immortal cell lines, 380
immune adherence. *See* opsonization
immune complex autoimmune
 diseases, 537
 complement deficiency and, 472b
immune complex (Type II)
 hypersensitivity reactions, 528t,
 534–535, 534f
immune deficiency diseases, 544t
immune surveillance, 542
immune system
 adaptive immunity, 478–503
 aging and decline of, 465, 527
 biofilms and, 161
 complement system's role in,
 466–470
 diagnostic immunology, 511–523
 disorders, 527–554
 AIDS, 545–554
 autoimmune diseases, 536–538
 cancer, 542–543
 Clinical Case, 528b, 531b, 541b,
 544b, 554b
 HLA complex reactions, 538–542
 hypersensitivity, 528–531
 immunodeficiencies, 543–545
 extracellular killing by, 491
 innate immunity, 451–477
 opportunistic pathogenic fungi and,
 340–341
 self vs. nonself recognition and, 477,
 482, 485, 486, 492–493, 494,
 500f, 532–536
 suppressed
 to prevent transplant rejection,
 527
 susceptibility to nosocomial
 infections, 415, 416
 vaccinations, 498, 505–511
immunity, 11, 451
 activation mechanisms, 452
 active, naturally or artificially
 acquired, 498, 498f
 adaptive, 452, 452f, 478–503. *See*
 also adaptive immunity
 cellular, 480, 489–494, 500f. *See also*
 cellular immunity
 discovery of, 11
 first line of defense, 452f, 453–456,
 474f
 chemical factors, 455, 474t

- normal microbiota, 455–456
 physical factors, 453–455, 453f,
 454f, 474t
 skin and mucous membranes,
 452f, 453–456, 474t
 herd, 409, 505, 598, 612
 humoral, 477, 482–486
 innate, 451–477, 452, 452f
 vs. adaptive, 452, 452f
 non-specific host defenses,
 451–475
 overview, 452, 452f
 passive, naturally or artificially
 acquired, 494–495, 494f
 of population, disease spread and,
 409
 second line of defense, 452f,
 456–474
 antimicrobial substances, 466–474
 fever, 466
 inflammation, 463–466
 phagocytes, 460–463
 as something that can be acquired,
 477
 third line of defense, 452f
 vaccination rates and, 409, 510b
 immunization, 498, 498f. *See also*
 vaccination
 immunoblotting (Western blotting),
 286–287, 288f, 380, 521
 immunocompromised patients
 human parvovirus B19 and, 377t
 nosocomial infection susceptibility
 and, 415, 416
 immunodeficiencies, 543–545, 544f,
 544t
 acquired, 544, 544t
 congenital, 543, 544f
 immunodiffusion tests, 515
 immunoelectrophoresis, 515
 immunofluorescence, 59, 61f. *See also*
 fluorescent-antibody (FA)
 technique
 immunogens, 481. *See also* antigens
 immunoglobulins (Ig), 481–485. *See*
 also antibodies
 classes of, 483–485, 483t
 complement fixation and, 483t
 functions of, 483t
 IgA, 483t, 484
 IgD, 483f, 483t, 484
 IgE, 483f, 483t, 484–485
 IgG, 483f, 483t, 493, 494f, 509
 IgM, 483, 483f, 483t, 493, 494f, 509
 location in body, 483t
 molecular weight of, 483t
 placental transfer of, 494–495
 summary table, 483t
 immunological memory, 497, 497f
 immunologically privileged sites/
 tissues, transplant rejection
 and, 534–535
 immunology, 14, 16
 diagnostic, 511–523. *See also*
 diagnostic tools
 early history, 479, 505, 512
 future of, 521–522
 golden age of, 509
 practical applications
 diagnostic tools, 511–523
 vaccines, 498, 504, 505–511
 immunosuppression, in transplant
 surgery, 527, 541–542
 immunosuppressive drugs, 541–542
 opportunistic mycoses and, 340–341
 immunotherapy, 542–543
 for allergies, 526, 526f
 immunotoxin, 543
 impetigo, 317, 447, 593, 593f, 596b
 impetigo of newborn (pemphigus
 neonatorum), 593
 implants (medical)
 bacterial colonization on, 531b
 supercritical carbon dioxide to
 decontaminate, 199
 in-phase light rays, 57
 inactivated killed vaccines, 507–508
 inapparent infections (subclinical
 infections), 409, 494
 incidence of disease, 408
 incineration, sterilization and, 188
 inclusion bodies (viral), 443, 444f
 cytomegalic inclusion disease, 387,
 658
 inclusion conjunctivitis, 609b, 610
 inclusions of prokaryotic cells, 79, 94
 incubation period in infectious
 diseases, 410, 410f, 431t
 incubators, carbon dioxide, 164
 India ink, in capsule staining, 70, 70f
 indicator organisms in water purity
 tests, 786
 indicators, sterilization, 187, 187f
 indigo, produced by bacteria, 3b
 indinavir, 553, 576
 indirect contact transmission, 411,
 412f
 in nosocomial infections, 414–417
 indirect ELISA tests, 519, 521, 523f
 indirect FA tests, 518–519, 520f
 indirect (negative) selection to identify
 mutant cells, 229–230, 230f
 indirect (passive) agglutination tests,
 516–517, 516f
 indole, 3b
 induced pluripotent stem cells (iPS),
 540
 inducer genes, 219, 221f, 222f
 quorum sensing, biofilms and, 56b,
 161
 inducible enzymes, 219, 221f
 inducible operons, 221, 221f
 inducible promoters, 255
 induction, 219–221, 221f, 222f
 industrial applications of
 microbiology, 807–815
 alternative energy sources, 813–815
 amino acids products, 810–811
 antibiotics, 800
 microbes used to produce, 245,
 247, 320, 341, 559–550, 560t,
 563, 805
 biofuels, 807–808, 808f
 biotechnology, 808. *See also*
 biotechnology
 chemical detection microbes, 801b,
 806
 citric acid products, 805
 commercial microbial products,
 804–806
 copper production, 812, 813f
 enzyme products, 810, 811–812
 fermentation technology, 808–810
 food preservation, 800–807
 future of, 808
 microbes as industrial products,
 812–813
 pharmaceuticals, 812, 812f
 renewable energy sources, 813–815
 vaccines, 812. *See also* vaccines
 vitamins, 812
 industrial fermentation, 808–810
 primary metabolite produced by,
 809, 810f
 secondary metabolite produced by,
 809, 810f
 industrially important bacteria
 lactobacilli, 316
 mining industry microbes, 245
 indwelling catheters
 biofilms and, 17, 18f, 161, 433, 586,
 587f
 Enterococcus faecalis, *Enterococcus*
 faecium and, 317
 silver incorporated into, 195
 inert gases, 27
 infant botulism, 624
 infant diarrhea, pathogenic *E. coli*
 and, 235
 infants, ophthalmia neonatorum, silver
 nitrate and, 195
 infants born to HIV-positive mothers,
 549
 infection, 402
 disease vs., 402
 focal, 409
 intoxication vs., 437
 local, 409
 systemic (generalized), 409
 infection control
 early methods of, 9, 11
 hand-washing as single most
 important activity, 417
 in hospitals, 417
 infections
 in digestive tract, vs. intoxication,
 716
 drug-resistant, 12
 fungal, 339–341, 340t
 germ theory of disease and, 8, 11,
 404–406, 477
 hospital-acquired. *See* nosocomial
 infections
 incubation periods and, 410, 410f,
 431t, 442b
 local, 409
 nosocomial, 414–417. *See also*
 nosocomial infections
 primary, 409
 secondary, 409
 spread of, 411–414, 413t, 414f, 446
 disease reservoirs, 411
 transmission, 411–414, 413t, 414f,
 414t
 subclinical (inapparent), 409, 494
 WBC types during initial/middle/
 late stages of, 457t
 infectious diseases, 17, 406. *See also*
 microbial diseases
 acute disease and, 406
 carriers of, 411
 chronic disease and, 409
 classification and, 408–409
 climate and, 410
 communicable disease and, 408
 contagious, 406
 control methods, 501. *See also*
 vaccines
 diagnosis of, 408
 DNA fingerprinting and, 261, 263,
 263f, 289, 289f
 duration or severity of, 409
 emerging (EIDs), 17–21. *See also*
 emerging infectious diseases
 endemic disease and, 406
 epidemic disease and, 408–409, 408f
 etiology determination and,
 406–408, 407f
 experimental inoculations, ethics of,
 407–408
 frequency of occurrence and, 406
 genomics of pathogens and, 261
 incidence of, 406
 incubation periods, 410, 410f, 431t
 Koch's postulates and, 404–406,
 405f
 noncommunicable diseases, 406
 norovirus outbreak (Clinical Focus),
 261, 265b
 norovirus outbreak recurrence,
 197b, 199b, 201b
 occurrence of, 406
 pandemic disease, 406
 patterns of, 409–410
 predisposing factors, 410
 prevalence and, 406
 reservoirs of infection, 411
 severity or duration of, 409
 signs, vs. symptoms in, 406
 sporadic diseases NS, 406
 spread of, 411–414
 disease reservoirs and, 411
 transmission, 411–414, 413t, 414t
 stages/sequence of events during,
 410, 410f
 syndromes and, 406
 transmission
 by contact (direct or indirect),
 411, 412f
 by droplets, 411, 412f
 by vehicle, 412–413, 412f
 vaccination rates, herd immunity
 and, 409, 505, 598, 612
 weather and, 410
 zoonoses, 411, 413t
 infectious mononucleosis, 377t, 387,
 649b, 663, 664f
 caused by Epstein-Barr virus, 431t,
 663
 as chronic disease, 409
 hemagglutination test to diagnose,
 512
 incubation period, 431t
 portal of exit, 446
 portals of entry, 431t
 infectious proteins. *See* prions
 infertility, from pelvic inflammatory
 disease, 752, 761b
 inflammation, 452f, 463–466, 464f,
 474t
 acute/chronic, 463
 chemokines important in, 492
 complement activation and, 467,
 468f, 469f, 488, 488f

- monoclonal antibodies to treat, 509
phagocyte migration/phagocytosis
in, 464f, 465
scar tissue and, 465
as second line of defense, 452f, 463,
464f
signs/symptoms, 463
stages of, 463–465, 464f
inflammatory acne, 455, 594
Inflammatory (moderate) acne,
599–600
inflammatory response, 464f
of autoimmune diseases, 537
of tuberculosis, 463
infliximab (Remicade), 512
influenza (flu), 699–701, 699f, 700t,
706b
1918–1919 pandemic, 700, 700t,
701
antigenic drift and, 700, 700t
antigenic shift and, 374–375b, 375f,
700, 700t
antigenic variation and, 435
cytokine storm and, 497, 701
diagnosis of, 701
epidemiology of, 700
as pandemic disease, 406, 693
pediatric mortality, as notifiable
infectious disease, 424t
portal of exit, 446
portals of entry, 430, 431t
transmission methods, 411, 413t
treatment of, 701
vaccine, 14, 506f, 507t, 700–701
as zoonotic disease, 413t
influenza H1N1 virus (swine flu), 18,
374–375b, 405f, 700–701, 700t,
692f, 693t
antigenic drift and, 693–694
antigenic shift and, 374–375b,
375f, 693
antigenic variation and, 509, 511
bird flu (avian influenza A H5N1),
18, 374–375b, 693
recent human cases, 374t
genome of, antigenic shifts and,
374–375b
glycoproteins, plasma membranes
and, 90
hemagglutination and, 371, 373f
incubation period, 431t
influenza A viruses, 374–375b, 378t
animal species found in, 18, 370b
avian influenza A H5N1 (bird
flu), 18, 374–375b, 374f, 693
crossing species barrier, 374–375b
Influenzavirus A2, 373, 373f
pandemics, 374–375b, 374t
as potential biological weapon,
654b
subtypes of, 373f, 375b, 378t
portals of entry, 430, 431t
as potential biological weapon,
654b
subtypes of, 374–375b, 517
vaccines, 14, 506t, 507t, 509,
511, 694
avian influenza virus, 18, 374b
DNA vaccines and, 258
genetically modified, 259f
Influenzavirus, 20, 692–693, 692f, 693t
antigenic shifts and, 374–375b,
435
hemagglutinin (HA) spikes,
692–693, 692f
incubation period, 431t
neuraminidase (NA) spikes,
692–693, 692f
portals of entry, 431t
reservoirs/transmission method,
413t
Influenzavirus A2, 373, 373f
information storage, biological, 211.
See also genetics
ingestion phase of phagocytosis,
461f, 462
INH (isoniazid), 18, 562t, 564f, 569,
684
inhalation of fungal pathogens,
336, 339
inhalation of pathogens, 7. See also
under airborne
inhalational (pulmonary) anthrax, 652,
654b, 655b
virulence of, 432
inheritance, epigenetic, 222
inherited disorders
complement deficiencies, 470
familial insomnia (fatal), 395
Huntington's disease, 225
sickle cell disease, 225
xeroderma pigmentosum, 231
inherited traits. See genetics
inhibition by basic dyes, by gram-
negative vs. gram-positive
bacteria, 87t
inhibition of enzymes, 118–119,
118f, 119f
injection site, microbial controls and,
182, 183t
innate immunity, 451–475, 452, 452f,
478. See also immunity
antimicrobial substances, 466–474,
474t
antimicrobial peptides, 473–474,
578
complement system, 466–470
interferons, 471–473, 471f
iron-binding proteins, 473
blood's role in, 456–458, 457t,
637–638, 639f
chemical factors, 452f, 455
Clinical Case, 452b, 458b, 463b,
466b, 472b, 473b
fever, 466
first line of defense, 452f, 453–456,
474t
inflammation, 463–466, 464f
lymphatic system's role in, 458–459,
459f
lymph's role in, 637–638, 639f
mucous membranes and, 452f,
453–456
normal microbiota and, 452f,
455–456
overview, 452, 452f
phagocytes, 460–463, 461f, 637–638,
639f
physical factors, 451–542, 451f
second line of defense, 452f,
456–474, 474t
skin and, 452f, 453–456, 453f
summary, by component/functions,
474t
inner membrane. See plasma
(cytoplasmic) membrane
inoculating loop sterilization, 188, 191t
inoculation of embryonated eggs with
animal viruses, 379, 379f, 504
inoculum, 162
inorganic compounds, 33–36
acids/bases/salts, 34–35, 34f
water, 31f, 33–34, 34f. See also water
insect bites
flea, 304, 311, 364t, 413t, 648
Rickettsia and, 304
sand fly, leishmaniasis and, 356t,
665
insect venom
anaphylaxis and, 528, 528t, 529
desensitization success and, 531
Insecta (class), 363, 364t
insecticides
allergic reactions to *Bacillus*
thuringiensis (BT) toxin, 266
fire ants and, 348
protozoa *Nosema locustae* to kill
grasshoppers, 348
insects
as arthropods, 331f
Bacillus thuringiensis toxin and,
315–316, 315f
blood-feeding, 350
chitin exoskeleton of, 99
diseases transmitted by, 362,
364t, 447
as eukarya, 6
evolutionary influence of *Wolbachia*
bacteria, 308b
in food stuffs, radiation doses needed
to kill, 797t
plant resistance to, and genetic
engineering, 16
plant viruses that can multiply
inside, 395
symbiotic relationships, 106b
that are vectors, 364t
as vectors, 362, 364t
Wolbachia as symbionts of, 300t,
306, 308b
insertion sequences (IS), 237, 238f
insomnia, fatal familial, 395
instruments, surgical. See surgical
instruments
insulin-dependent diabetes
mellitus, 538
insulin (human), 257
chemically synthesized genes
and, 254
E. coli bacteria used to produce, 245,
257, 259t
genetically modified, 257, 259t
industrial fermentation to
produce, 808
microbial enzymes used to produce, 2
produced by rDNA technology,
257
integral proteins, 89f, 90. See also
transporter proteins
of plasma membrane, 89f, 90, 91
role in facilitated diffusion, 91–92, 91f
as transmembrane proteins, 90
as transporter proteins (permeases),
91, 91f, 92
integrase inhibitors, 571
to treat HIV infection, 548, 576
interference (relative darkness), in phase-
contrast microscopy, 57, 60f
interferons (IFNs), 14, 444, 471–473,
471f, 474t, 496, 570
alpha. See alpha interferon
as antiviral drugs, 471–473, 471f,
564t, 575
beta. See beta interferon
chemically synthesized genes and
production of, 254
as cytokines, 471, 496
discovery of, 14, 16
gamma. See gamma interferon
human types of, 471
as potential anticancer agents, 472
as rDNA products, 259t, 472
in second line of host defenses, 474t
side effects of, 471
toxicity and, 471
viral sensitivity to, 370t
interleukin-1 (IL-1), 440
fever and, 466
interleukin-12 (IL-12), 499b
HIV and, 499b
humoral response and, 499b
measles virus and, 499b
as promising “magic bullet”
therapy, 499b
psoriasis treatment success and,
499b
interleukins, 496, 499b
genetically modified, 259t
intermediate bodies, *Chlamydophila*
psittaci and, 323f
intermediate filaments, 101
intermediate host, 351, 364t
of *Echinococcus granulosus*, 360,
361f, 364t
of *Paragonimus kellicotti*,
357–358, 359f
of *Plasmodium vivax*, 351, 352f
of selected parasitic helminths,
364t
*International Code of Botanical
Nomenclature*, 278
*International Code of Zoological
Nomenclature*, 278
International Committee on
Systematics of Prokaryotes, 279
International Committee on
Taxonomy of Viruses (ICTV),
282, 375
*International Journal of Systematic and
Evolutionary Microbiology*, 278
interstitial fluid, 458, 459f, 644, 645f
interstitial spaces, 644
intestinal bacteria
antibiotic-resistant genes in, 405
ecological balance and, 310
normal, 301t, 310–312, 404t
intestinal parasites, 330, 364t
flatworms, 356–358, 358f–361f, 364t
protozoa, 356t
roundworms, 360–362, 361f,
362f, 364t
tapeworms, 358–360, 358f–361f,
364t

intestines, normal microbiota of, 301t, 310–312, 326, 404t
intoxication, 437
 botulism as special case of, 717
 in digestive tract, 716–717
domoic acid, 346
infection vs., 331f, 437, 716–717
 staphylococcal, 717–718, 717f
intracellular antigens
 cellular immunity and, 486, 500f
 humoral immunity and, 486
intracellular growth, as pathogenic mechanism, 435, 447f
intracellular parasites, 300t, 302t, 303
 viruses as, 281, 370, 370t
intracellular pathogens, obligate, 300t, 301t
intravenous (IV) catheters
 nosocomial bacteremia and, 416, 417t, 423b
 P. fluorescens (Clinical Case), 154b, 166b, 175b, 177b
introns, 211t, 218, 219f, 253, 254f, 260
 viroids and, 397
intubation devices, as disease reservoirs, 416
invasins, 435, 447f
invasive group A *Streptococcus* (IGAS/"flesh-eating bacteria"), 19
iodine (I)
 atomic number/atomic weight, 27t
 as disinfectant, 193–194, 201t, 202t
glycogen/starch granules and, 95
in Gram stain mechanism, 86
as mordant, 68f, 86
in water treatment, 194, 202t
iodophors, 193–194, 202t
ionic bonds, 29–30, 29f, 31t
ionization (dissociation), 34, 34f
ionizing radiation, 189–190, 190f, 191t
 as mutagenic, 227
ions, 29, 29f
Iospora bellii (protozoa), AIDS-associated, 550t
iPS (induced pluripotent stem cells), 535
Ireland's potato blight, caused by *Phytophthora infestans*, 344
Irish moss, 343
iron-binding proteins, 473
 siderophores and, 436, 436f, 473
iron (Fe)
 atomic number/atomic weight, 27t
 biofilms and, 161
 as cofactor, 115
 cyanide and, 118
 enzyme inhibition and, 118
 human requirements for, 473
lactoferrin and, 161, 436
oxide, in magnetosomes, 95
as requirement for bacterial growth, 436, 473, 639
siderophores and, 436, 436f, 473
irradiation of foodstuffs, 796–797
 doses needed to kill various organisms, 796t
 electron-beam accelerators used in, 797, 798f
gamma ray processing, 797, 798f
irradiation logo, 797f

iS (insertion sequences), 237, 238f
ischemia, 646
isocitrate lyase, 115t
isocitric acid, 125, 126f, 147f
isografts, 540
isoleucine (Ile)
 E. coli and synthesis of, 119, 119f
 structural formula/characteristic R group, 42t
isomerase enzymes, 115t
isomers, 38
 of amino acids, 41, 43f
isoniazid (INH), 18, 562t, 564t, 569, 572, 684
isoprenoids, as genetically modified product, 257
isopropanol (rubbing alcohol), 37
 as disinfectant, 195, 202t
isopropyl alcohol, 132f
Isospora bellii, AIDS-associated, 550t
isotonic solutions, 92f, 93, 156, 157f
isotopes, 26–27
isotretinoin (Accutane), 455, 600
Isthmia nervosa (diatom), 343f
itraconazole, 574, 606
IV catheters. *See* intravenous (IV) catheters
ivermectin, 566t, 577
 produced by *Streptomyces avermitellus*, 577
 to treat lice, 603
 veterinary applications, 577
Iwanowski, Dimitri, 14, 369
Ixodes
 as vector for babesiosis, 352, 364t
 as vector for ehrlichiosis, 364t, 413t, 413f, 658
 life cycle of, 657f
Ixodes pacificus (tick), Lyme disease vector on Pacific coast, 364f, 413t, 658, 659f
Ixodes scapularis
 as vector for *Babesia microti*, 352, 364t
 as vector for Lyme disease, 658, 659f
Ixodes spp., 364t
J
j (joining) chain, 483, 483t
Jacob, François, 10f, 15, 219
Janssen, Zaccharias, 55
Japanese encephalitis, 631–632
jeans (designer "stone-washed"),
 microbes and, 3b
Jenner, Edward, 10f
 smallpox vaccine and, 11, 505
Jerne, Niels Kai, 13t, 512
"Jesuit's powder", 577
jock itch (tinea cruris), 605
joints, artificial, biofilms and, 17, 18f
K
kanamycin resistance, 238f
Kaposi's sarcoma, 20, 377t, 387, 550t
 in AIDS patients, 549, 550t
 alpha interferon to treat, 472–473
 early recognition of HIV connection, 20, 545
Karenia brevis, 346
karyogamy, 335, 336f, 338f
Kauffmann-White scheme, 310–311
Kefir (fermented milk beverage), 806
kelp (brown algae), 345–346, 345t
keratin, 340, 340t, 453, 453f, 590
 dermatophytes degrade, 340, 340t
fungi and, 340, 340t, 430
 as resistant barrier of skin, 404t, 453, 453f, 584, 590
keratinase, 340
keratitis, 356t, 605
 Acanthamoeba, 605
 herpetic, 605
keratoconjunctivitis, 337, 340t, 356t
Ketek (telithromycin), 565t, 571
ketoconazole, 566t, 574, 591
ketolides, 571
ketone functional group, 36t
kidney dialysis
 antibiotic resistance developing from, 423b
 disinfectants used in, 194
 patients at risk for gram-positive sepsis, 640
kidney diseases
 hemolytic uremic syndrome, 424t, 718
 leptospirosis, 746–747, 747f, 748b
 pyelonephritis, 746, 748b
kidney transplant patients, impaired innate body defenses and, 465
kidneys, 750, 750f
 glomeruli, 529
kilometer (km), 54t
kinases, 434
kinetic energy, heat absorption by molecules and, 34
Kingdom Monera (Prokaryotae), 273
Kingdom Protista, Haeckel's proposal, 273
kingdom (taxonomic), defined, 278, 279f
kinins, 464, 464f
Kirby-Bauer test (disk-diffusion method), 578, 578f
kissing bug (*Triatoma*), 350, 356t, 363f, 364t, 413t, 661
Kitasato, Shibasaburo, 10f
Klebsiella genus/spp., 301t, 311
 capsule of and virulence, 80, 433
 as normal microbiota of large intestine, 404t
 as normal microbiota of urethra, 404t
 resistance plasmid R100 and, 236–237
Klebsiella pneumoniae, 282b, 311
 capsule staining to identify, 70f
carbapenem-resistant, 207
Clinical Case, 76b, 86b, 88b, 95b, 97b
endotoxin lipid A and, 88b
nosocomial infections and, 76b, 86b, 88b, 95b, 97b, 416t
as superbug, 580
virulence and, 80, 433
Klug, Aaron, 10
km (kilometer), metric/U.S. equivalent, 54t
Koch, Robert, 8, 10f, 11, 406–408, 407f, 512, 650
Koch's postulates, 11, 406–408, 407f
Köhler, Georges J. F., 13t, 512
Komagataelia pastoris (yeast), genetically modified superoxide dismutase produced by, 259t
Koplik's spots, 604
Korean hemorrhagic fever, 378t
Krebs cycle, 122, 123f, 125–130, 126f
 amino acid biosynthesis and, 145
anaerobic conditions and, 130
ATP yields and, 130t
in carbohydrate catabolism, 122
catabolism of various food molecules and, 136f
in cellular respiration, 123f, 125–130
in integration of metabolic pathways, 146, 147f
lipid biosynthesis and, 144, 145f
in lipid catabolism, 135, 135f
nucleotide biosynthesis and, 145–146, 146f
in protein catabolism, 135
Krebs, Edwin G., 13t
Krebs, Hans A., 13t
kumis (fermented milk beverage), 806
Kupffer's cells, 460
kuru, 395, 637, 638b
L
L-amino acids, 41, 43f
L forms of bacteria, 88
L-isomers, 41
LAB (lactic acid bacteria), 301t, 456
lab report form (example), 283, 283f
laboratory tests. *See* biochemical tests
lac operon, 220–222, 222f, 257, 384
lac repressor, 221, 223f, 384
lac structural genes, 220
lacrimal apparatus, 454, 454f
 tears and innate immunity defenses, 451, 474t
lacrimal canals, 454, 454f
lacrimal glands, 454, 454f
lactate dehydrogenase, 115t
lactic acid
 aerotolerant anaerobes and, 160
 in amphibolic pathways, 147f
bacteria used in winemaking, 806, 807f
fermentation and, 132–133, 132f, 133f, 134f
industrial/commercial uses for, 134t
Streptococcus and, 134t
lactic acid bacteria (LAB), 133, 301t, 316, 456
lactic acid fermentation, 132–133, 132f, 133f, 134t
Lactobacillales, 301t, 316–317, 316f
lactobacilli
 as normal microbiota of newborn's intestine, 402
 as normal microbiota of vagina, 404t, 455, 751, 763
 used in acidic-fermented foods, 160
Lactobacillus acidophilus, 455
Lactobacillus delbrueckii, 134t
Lactobacillus delbrueckii bulgaricus, used to make yogurt, 799
Lactobacillus genus/spp., 301t, 314, 316
 316
 as a fastidious microbe, 162
fermentation and, 132f, 133, 134t
industrial importance of, 134t, 316

- as normal microbiota of large intestine, 404t
as normal microbiota of mouth, 404t
as normal microbiota of urethra, 404t
as normal microbiota of vagina, 404t
Lactobacillus plantarum, sauerkraut and, 134t
lactoferrin, 161, 436, 473
lactose (milk sugar), 38
 fermentation by enteric bacteria and, 284f
intolerance and, 530
lac operon and, 22f, 220–222, 257, 384
lac repressor, 384
lac structural genes, 220
lacZ gene, 221f, 251f
metabolism in *E. coli*, 219, 221f, 222f, 223f
lactose operon regulation, 219–222, 221f, 222f, 223f
lacZ gene, 221f, 223f, 249, 249f, 255, 255f
lag phase, in bacterial growth, 170, 170f
lagging strand in DNA replication, 212f
lake bacteria, 304, 776. *See also* freshwater microbiota
LAL (limulus amoebocyte lysate) assay, 441, 442b, 444b
Laminaria japonica, 346
lamivudine, 566t, 575
Lancefield, Rebecca C., 10f, 14, 286
landfills
 bacterial biosensors to detect pathogens/pollutants, 786b
 degradation of synthetic chemicals in, 780–781
Landsteiner, Karl, 532
Langerhans cells/Langerhans DC, 494
laparoscopic surgical instruments, sterilizing, 198–199, 201
large intestine, 459f
 microbial antagonism in, 403–404
 normal microbiota of, 404t
 parasitic helminths and, 364t
Lariam (mefloquine), 562t, 577, 664
larva migrans infection, 360
laryngitis, 682
Lassa fever, 378t, 666, 667b
 as potential biological weapon, 654b
latency, 385t
 viral, 383, 384, 394, 394f, 396t
latent disease, 409
latent infections (viral), 394, 394f, 396t
 examples, 396t
 HIV infection, 396t, 547, 547f, 548f, 553
 provirus and, 391, 547, 547f, 548f
latent virions in HIV, 547, 547f
latex agglutination tests, 511–512, 511f, 677
latex allergy, 535, 536f
lattices, 514
Lavoisier, Anton Laurent, 7
LD₅₀, to express potency of toxins, 432
LDL-receptor deficiency, 16
- lead, used in staining of specimens, 62
leading strand in DNA replication, 212f
leafhoppers
 potato yellow dwarf virus transmitted by, 396t
wound tumor virus transmitted by, 396t
lectin pathway of complement activation, 467, 470f
lectins, 467, 469, 470f
 binding of, 351
 mannose-binding lectin (MBL), 469, 470f
Lederberg, Joshua, 10f, 13t, 15
Legionella genus/spp., 301t, 309
 colonize hospital warm-water lines/air conditioning systems, 309
Legionella pneumophila
 Legionnaires' disease caused by, 309, 406, 419t, 689
 phosphoprotein synthesis by bacteria and, 44
Legionellales, 301t, 309
legionellosis (Legionnaires' disease), 309, 406, 419t, 694, 695b
 erythromycin effective against, 566
 as notifiable infectious disease, 424t
 outbreak (case study), 698b
Leishmania brasiliensis, 665, 666
Leishmania donovani, visceral leishmaniasis caused by, 656b, 665
Leishmania (protozoa), 356t, 665
 can survive in phagocytes, 462
 interleukin-12 and, 499b
leishmaniasis, 356t, 462, 656b, 672–673, 672f
 American, 673
 cutaneous, 665b, 672, 672f
 mucocutaneous, 656b, 672–673
 visceral (*kala azar*), 656b, 672
length, metric measurement units of, 54, 54t
lenses of microscopes
 early, 7f, 54–55
 electromagnetic, 61–64, 63f
 in electron microscope, 61, 63f
 light, 55–57, 55f, 59f, 60f
Lentivirus HIV, 378t
 budding of, 392, 392f
 as retrovirus, 378t, 390
lepromatous (progressive) form of leprosy, 619, 620f
leprosy (Hansen's disease), 318, 319, 406, 625–626, 625f, 632b
 antibiotics to treat, 572, 626, 632b
 culturing leprosy bacillus, 544f, 626
diagnosis of, 70, 626
Mycobacterium leprae causing, 319, 625
 as notifiable infectious disease, 424t
types of, 625, 625f
 vaccines useful for, 626
Leptospira genus/spp., 83f, 302t, 325
 as human pathogen, 302t, 325, 748f
reservoirs/transmission method, 413t
Leptospira interrogans, 748b, 749, 749f, 752, 753f
- leptospirosis, 325, 413t, 749, 749f, 752–754, 753b, 753f
 Clinical Case, 750b, 754b, 756b, 763b
disease reservoirs for, 413t
pulmonary hemorrhagic syndrome form of, 753–754
transmission due to, 413t
waterborne transmission and, 411, 413t
- lesions, skin, 591, 592f
lethal dose, 432, 442t
lettuce, norovirus infection outbreak, 265b
leucine (Leu), structural formula/characteristic R group, 42t
Leuconostoc mesenteroides
 culture media recipe, 162, 163t
pentose phosphate pathway and, 125
leukemia, 378t, 393
 bone marrow transplants and, 541
 chicken, 392
 feline, 393
 genetically modified CSF therapy for, 259t
 human T-cell viruses (HTLV-1, HTLV-2) and, 393, 396t
 as latent viral infection, 396t
 patients, mucormycosis and, 341
leukocidin toxin, 423b
 produced by *S. aureus*, 76f, 423b, 581
leukocidins, 439, 462
leukocyte esterase, 746
leukocytes (white blood cells), 456, 457t, 463b
 decreases/increases in, 458
 differential white blood cell count, 457t, 458
 eosinophils, 456, 457t
 granulocytes, 456, 457t
 polymorphs, 456
leukocytosis, 463b
leukoplakia, oral, in HIV infection, 549, 550t
leukotoxins, 438
leukotrienes, 464, 464f, 529
Level 4 labs, 164–165, 165f
LGV (lymphogranuloma venereum), 322, 462, 762, 767b
libraries
 cDNA, 253
 genomic, 252–253, 253f
 phage library, 253f
 plasmid, 253f
lice (pediculosis), 363, 363f, 364t, 365, 597b, 608–609, 608f
head, ivermectin effective against, 572, 608
Lyme disease and, 325
Pediculus and, 363f, 364t, 602
sucking, 364t
 treatments for, 608–609
typhus (epidemic) and, 304
LiceMD (lice therapy), 608
lichens, 342, 343f, 779
 air quality testers and, 342
 as major food for tundra herbivores, 342
- lidocaine, 201b
Leishmania genus/spp., 330
life, definition of, 370
life-support processes. *See* metabolism
ligands (adhesins), 432–433, 432f
 in receptor-mediated endocytosis, 100–101
ligase (DNA), 111t, 215t
light chains of antibodies, 482, 483t
light-dependent (light) chemical reactions, 138, 139f
light-independent (dark) chemical reactions, 138, 139f
light microscopy (LM), 55–60, 55f, 58f, 59f, 60f, 65t
 brightfield, 57, 60f, 65t
 compound light, 55–57, 55f
 confocal, 59–60, 62f, 66t
 darkfield, 57, 60f, 65t
 differential interference contrast, 59, 61f, 65t
 fluorescence, 59, 61f, 65t
 magnification/specimen sizes and, 58f
 phase-contrast, 57, 60f, 65t
 preparing specimens for, 64, 67–71
 resolution and, 56–57
 summary of (features/typical image/uses), 65t–67t
 tick image, 58f
light-repair enzyme (photolyase), 211t, 227–228, 228f
light (visible)
 as energy source, 121, 138, 139f, 141f. *See also* photosynthesis
 in microscopy, 55–60
 ultraviolet. *See* ultraviolet light lime
 chloride of, 181, 194
 copper sulfate mixed with as fungicide, 196
limnetic zone, 782–783
limulus amoebocyte lysate (LAL) assay, 441, 442b, 444b
Limulus polyphemus (crab), endotoxin testing and, 441
lindane, 602, 603
linezolid (Zyvox), 565t, 572
Linnaeus, Carolus, 3, 10f, 273, 279
lipases, in lipid catabolism, 134, 135f
lipid A, 85f, 86, 440, 470
 antimicrobial proteins (AMPs) and, 473
lipid bilayer, 89, 89f
 osmosis through, 91f, 92–93, 92f
 simple diffusion through, 91, 91f
lipid-carbohydrate complex,
 alternative pathway of complement activation and, 466–467, 466f
lipid catabolism, 133–135, 135f, 136f
lipid inclusions, 95
lipids, 38–40, 39f, 40f
 catabolism of, 133–135, 135f, 136f
 coenzymes and, 115t
 complex, 40, 40f
 fats (triglycerides), 39–40, 39f
 in gram-negative vs. gram-positive bacteria, 87t

in lipoproteins, 44
phospholipids, 40, 40f
simple, 39–40, 39f
synthesis of, 144, 145f
lipopeptides, 565t, 572
lipophilic viruses, biocidal resistance and, 200
lipopolysaccharide (LPS), 85f, 86
complement system evasion and, 470
endotoxins and, 440
in gram-negative vs. gram-positive bacteria, 87t
Gram staining and, 69
immunity and, 452
selective toxicity of antibiotics and, 555
lipoproteins, 44
as adhesins (ligands), 432–433
in gram-negative vs. gram-positive bacteria, 87t, 440
lipoteichoic acid, 84, 85f
Lister, Joseph, 9, 10f, 11, 181, 194, 415
Lister, Joseph Jackson, compound microscope and, 55
Listeria genus/spp., 301t, 317
actin of host used to self-propel, 435
in milk, flow cytometry to detect, 288–289
Listeria monocytogenes, 317, 619–621, 620f, 623b
adhesin production in, 433
can grow at refrigerator temperatures, 317, 620
can survive in phagocytes, 462, 620
membrane attack complexes produced by, 462
meningitis caused by, 619–621, 620f, 623b
pregnancy dangers and, 317, 619
sepsis caused by, 620
listeriosis, 189, 462, 619–621, 620f, 623b
cell-to-cell spread of, 619, 620f
as foodborne infection, 619, 623b
as notifiable infectious disease, 424t
lithotrophs (autotrophs), 140–141, 141f
litmus paper, extracted from lichens, 342
littoral zone, 782
algal habitats, 344f
live attenuated vaccines, 507
liver, parasitic helminths and, 364t
liver cancer
hepatitis B virus and, 393, 396t
vaccine and, 543
liver flukes, 356, 357, 358f, 364t
liver transplantation, HLA typing and, 541
liver tumors, caused by hepatitis B virus, 377t
livestock
animal feed antibiotics, 554, 562t, 565, 575, 583b
antihelminthic (ivermectin) to treat, 571
bovine growth hormone and, 266, 267t
as disease reservoirs, 413t

Pasteurella-caused sepsis in cattle, 312
lizards, 311
LM. See light microscopy
lobar pneumonia, 693
local infection, 409
localized anaphylaxis, 528, 530–531, 530f
lockjaw, 439, 662. *See also* tetanus toxin
log phase (exponential growth phase), in bacterial growth, 170, 170f
logarithmic representations of bacterial populations, 169–171
growth phase, 170–171, 170f
lophotrichous flagella, 80f, 81
low-density lipoprotein (LDL) deficiency, 16
low G + C gram-positive bacteria, 280f, 301f, 314–320
LPS. *See* lipopolysaccharide
LSD (lysergic acid diethylamide), 445
luciferase enzyme, bioluminescence and, 56b, 778
lumbar puncture (spinal tap), 619, 620f
lung flukes, 356–358, 358f, 359f, 364t
Luria, Salvador E., 10f
lux operon, bacterial biosensors and, 786b
lyase enzymes, 115t
Lyme borreliosis. *See* Lyme disease
Lyme disease, 364t, 411, 413t, 656b, 658–660, 659f, 660f. *See also* *Borrelia burgdorferi*
Borrelia and, 325, 658
causative agent/arthropod vector, 414t
diagnosis of, 660
disease reservoirs for, 413t, 658–658, 659f
as emerging infectious disease, 419t
increases in, and animal control measures, 418
as notifiable infectious disease, 424t
reported cases 1992–2007, by year, 424f
reported cases 2007, by month, 424t
reported cases by county, 2008, 658f
symptoms, 656b, 658–659, 660f
tick (*Ixodes*) as vector, 363, 363f, 364t, 365, 414t, 652–653, 653f
transmission due to, 413t
Western blotting to diagnose, 287, 288f
lymph, 458, 459f, 644, 645f
lymph capillaries, 644, 645f
lymph nodes, 458, 459f, 490b, 644–645, 645f
site of activation of T cells, B cells, 458, 459f, 638
swollen (buboies), 638, 648f
lymphangitis, 646, 646f
lymphatic capillaries, 458, 459f, 644–645, 645f
relation to tissue cells, blood capillaries, 459f
lymphatic ducts, 458, 459f
lymphatic system, 458–459, 459f, 643–645, 645f

cardiovascular system's relationship with, 643–645, 645f
microbial diseases of, 637–673
bacterial, 638–655, 649b, 650b, 656b
helminthic, 666–667, 668b
protozoan, 650b, 656b, 660–666
vector-borne, 648, 652–655, 656b
viral, 649b, 655–660
structure/function, 459f, 644–645, 645f
lymphatic vessels/lymphatics, 458, 459f, 644, 645f
Lymphocryptovirus (HHV-4/Epstein-Barr virus), 377t, 387
Burkitt's lymphoma associated with, 393, 649b, 662–663, 663f
cancer and, 393
incubation period, 431t
infectious mononucleosis caused by, 431t, 649b
portals of entry, 431t
pregnancy and, 760
reactivated in HIV/AIDS patients, 549
typical U.S. prevalence of antibodies against, 567, 567f
lymphocytes, 457t, 458
B. See B cells
functions of, 480
gamma interferon produced by, 471
natural killer (NK) cells and, 457t, 458, 474t, 495, 496t
T. See T cells
as third line of defense, 452f
lymphocytic choriomeningitis, 378t
lymphogranuloma venereum (LGV), 322, 462, 762, 767b
lymphoid tissue, 458–459, 459f, 490b
lymphocytes of, 458
lymphoma
Burkitt's, 377t, 393, 649b, 655–656, 657f
human, 393
lyophilization (freeze-drying), 168, 191t
desiccation and, 189
lysergic acid diethylamide (LSD), 445
lysine (lys)
allergic contact dermatitis and, 530
structural formula/characteristic R group, 42t
lysis, 84, 93, 381, 382f, 383
osmotic, 88, 93
lysogenic conversion, 442, 447f
lysogenic cycle of viral multiplication, 381, 383–385, 383f, 385t
lysogenic phages (temperate phages), 383–384, 383f
toxin production and, 384
of *Vibrio cholerae*, 442
lysogeny, 383–385, 383f
pathogenicity and, 441–442
phage conversion and, 384, 442
prophages, 383f, 384, 442
specialized transduction and, 384, 384f
Lysol, 192, 193f
lysosomes, 98f, 103
in phagocytosis, 461f, 462

toxic oxygen products produced by, 462
lysozyme, 87t, 88, 455, 713
cell wall damage done by, 88, 88t, 93, 455
gram-positive bacteria and, 88, 88t
immunity functions of, 455, 474t
in perspiration, 590
in perspiration, 455
phage, 381, 383
in phagocytosis, 462
in tears, 88, 455
Lyssavirus, 378t, 630. *See also* rabies; rabies virus
lytic cycle, 381–383, 382f
M
M cells (microfold cells), 489, 490f, 716
enteroinvasive *E. coli* and, 723
Shiga toxin and, 718, 718f
m (meter), metric/U.S. equivalent, 54t
M protein, 433
microbial evasion of phagocytosis and, 462
rheumatic fever and, 648
Streptococcus pyogenes and, 317, 432, 462, 595, 595f
Mab-CD3 (muromonab-CD3), 259t, 544b, 554b
mabs. *See* monoclonal antibodies
MAC (membrane attack complex), 438f, 462, 467, 468f
MAC-resistant bacteria, 467
MacConkey's agar, 746, 748f
MacGregor tomatoes, 266, 267t
MacKinnon, Roderick, 13t
MacLeod, Colin M., 10f, 15, 47, 232
Macrocystis pyrifera (brown algae), 344f
macrolides, 565t, 571, 571f
macromolecules, 33, 37
polysaccharides as, 38
macronucleus, of *Paramecium*, 349f, 353f
macrophages, 456, 457t, 458, 460f, 494–495, 495f
activated, 495, 495f
in adaptive cellular immunity, 463, 487, 494–495, 495f
as antigen-presenting cells, 494, 494f
cathelicidins produced by, 473
defensins produced by, 473
fixed, 460, 638, 639f
free (wandering), 460
gamma interferon and, 471
HIV in, 545, 547f
HIV infection and, 545, 546f, 547
in inflammatory response, 464f
in innate immunity, 494
mononuclear phagocytic (reticuloendothelial) system and, 460
as phagocytes, 456, 457t, 494, 568
as second line of defense, 452, 452f
macular rashes, diseases that cause, 594b
macules, 591, 592f
mad cow disease (bovine spongiform encephalopathy), 19, 200, 395, 419t, 636f, 637
magainins, 585

- "magic bullet" chemotherapies, 11–12, 499*b*, 559
 magnesium
 as cofactor, 115
 enzyme inhibition and, 118
 fluoride and, 118
 magnesium (Mg)
 atomic number/atomic weight, 27*t*
 electron configuration, 28*t*
 microbial requirements, 158
 magnesium (Mg^{2+}), 115
 magnet-like
 inclusions(magnetosomes), 95, 95*f*
 magnetosomes, 95
magnetospirillum magnetobacterium, magnetosomes of, 95, 95*f*
 magnification
 total, calculation of, 55–56
 by various microscopes, 58*f*
 major histocompatibility complex (MHC), 484*f*, 485, 500*f*, 538–539
 malachite green stain, 67, 70–71, 71*t*
 malaise, sense of, 408
 malaria, 17, 330, 348, 351–352, 352*f*, 356*t*, 364*t*, 413*t*, 447, 462, 656*b*, 668–672, 670*f*, 671*f*
Anopheles mosquito as vector, 351–352*f*, 364*f*, 414*f*, 669
 artemisinin to treat, 577
 chloroquine to treat, 577, 671
 disease reservoirs for, 413*t*
 DNA vaccines and, 258
 global warming and, 418
 incidence in U.S., 669–670, 671*f*
 incubation period, 431*t*
 Malaria to treat, 671
 "malignant," *P. falciparum* and, 670
 mefloquine (Lariam) to prevent, 571, 671
 mefloquine (Lariam) to treat, 562*t*
 as notifiable infectious disease, 424*t*
Plasmodium causing, 351–352, 352*f*, 356*t*, 656*b*, 669
 portals of entry, 431*t*
 prevention and, 672
 prophylaxis for, 571, 671
 quinine to treat, 12, 571, 671
 red blood cells in, 670, 671*f*
 sickle cell disease and, 410
 transmission due to, 413*t*, 669
 treatments for, 671
 vaccine development and, 351, 509, 670–671
Malassezia, 340*t*, 404*t*, 591
Malassezia furfur, as normal microbiota of skin, 404*t*, 591
 malathion (Ovide), 608
 male reproductive system, 750, 751*f*
 malic acid, 126*f*, 147*f*
 malignant melanoma, alpha interferon to treat, 473
 malactic fermentation, 806
 malt, 806
 malt extract, fermentation and, 134*t*
 malting, 806
 mammalian cells in culture
 advantages for making foreign gene products, 256–257
 cystic fibrosis and, 259*t*
 genetically modified colony-stimulating factor (CSF) and, 257
 genetically modified erythropoietin (EPO) and, 259*t*
 genetically modified interferons and, 259*t*
 genetically modified monoclonal antibodies and, 259*t*
 genetically modified to host viruses, 256–257
 mammals, domestic or wild, as disease reservoirs, 413*t*
 manganese, as cofactor, 115
 mannan, 99
Mannheimia haemolytica, 282*b*
 mannitol, biochemical tests and, 137, 137*f*
 mannitol-salt agar, 165, 166*f*, 423*b*
 mannose, as receptor on host cells, 432
 mannose-binding lectin (MBL), 460, 469, 470*f*
 Mantoux test for tuberculosis, 690
 mapping of genes. *See* gene mapping
 maraviroc, 553, 576
 Marburg virus (green monkey virus), 19, 666, 667*b*
 as filovirus, 378*t*, 390*f*
 as potential biological weapon, 654*b*
 Marek's disease vaccine, 543
 margination, 464*f*, 465
 Margulis, Lynn, 10*f*, 105
 marine algae, toxic, 346–347
 marine mammals
 cetacean morbillivirus (CM) and, 282*b*
 killed by toxic algae, 344
 mortality rates and veterinary microbiology, 282*b*
 marine microbiota, 2, 303
 fluorescent in situ studies and, 292, 303
 marker genes
 in blue-white screening technique, 255, 255*f*
 uses for, 249, 249*f*
 Marshall, Barry, 13*t*
 mast cells
 in complement activation, 467, 468*f*
 in hypersensitivity reactions, 529, 529*f*
 IgE antibodies and, 481
 recruited by antimicrobial proteins (AMPs), 473
Mastadenovirus, 372*f*, 377*t*, 387*f*, 445*t*
 cytopathic effects of, 445*t*
 matrix, mitochondrial, 103, 104*f*
 mattress sterilization, 201
 maturation inhibitors, 553
 maturation stage in viral multiplication, 382*f*, 383, 387*f*, 389*f*, 391–392, 392*f*
 maximum growth temperature, 154, 154*f*
 Mayer, Adolf, 369
 MBC (minimal bactericidal concentration), 578, 578*f*
 MBL (mannose-binding lectin), 460, 469, 470*f*
 McCarty, Maclyn, 10*f*, 15, 47, 232
 McClintock, Barbara, 10*f*, 237
 MDR-TB (multi-drug resistant tuberculosis), 18, 691
 ME (myalgic encephalomyelitis), 639
 measles, German. *See* rubella
 Measles Initiative, 510*b*
 measles (rubeola), 594*b*, 603–604, 604*f*
 as a world health problem, 510*b*
 incubation period, 431*t*
 macular rash caused by, 594*b*
 mortality rates, vaccination and, 510*b*
 as notifiable infectious disease, 424*t*
 as persistent viral infection, 394, 396*t*
 portals of entry, 430, 431*t*
 portals of exit, 446
 vaccine, 14, 506*t*, 507*t*, 510*b*, 603–604
 measles virus (*Morbillivirus*), 378*t*, 603
 airborne transmission and, 413, 430, 431*t*
 causing subacute sclerosing panencephalitis (SSPE), 394, 396*t*
 cytopathic effects of, 445*t*
 incubation period, 431*t*
 portals of entry, 430, 431*t*
 as potential biological weapon, 654*b*
 vaccine, 14, 506*t*, 507*t*, 510*b*, 603–604
 "measly" beef, 357
 measurement of microorganisms, 54
 metric units of length/U.S. equivalents, 54*t*
 meat extracts, in complex culture media, 162, 163*t*
 meat products, fermentation and, 134*t*
 mebendazole, 566*t*, 577
 mechanical transmission of disease, by arthropods, 414, 414*f*, 414*t*
 Medawar, Peter Brian, 13*t*
 mediators (chemical), in allergic reactions, 523–524, 524*f*
 medical discoveries, accidental, 12
 medical implants
 bacterial colonization on, 537*b*
 biofilms and, 17, 18*f*, 537*b*
 supercritical carbon dioxide to decontaminate, 199
 medical microbiology, 70, 283, 314
 medicine
 antibiotics overuse/misuse and, 237
 importance of rDNA technology to, 258–259, 258*f*, 259*t*
 medium, light-bending ability of, 58
 medulla, of lichen, 342, 343*f*
 mefloquine (Lariam), 562*t*, 577, 664
 megacolon, 668
 megaesophagus, 668
 meiosis, 100, 102
 in algae, 345*f*
 fungal, 335, 338*f*, 339*f*
 in plasmodial slime mold, 355*f*
 melanin, genetically modified, 257
 melanoma
 genetically modified interferons to treat, 259*t*
 malignant, alpha interferon to treat, 473
 melarsoprol, to treat African trypanosomiasis, 633
 melioidosis, 278, 307, 697, 706*b*
 Mello, Craig, 13*t*
 membrane attack complex (MAC), 438*f*, 462, 467, 468*f*, 470
 MAC-resistant bacteria, 467
 membrane-bound ribosomes, 101
 membrane-disrupting toxins, 438–439, 441*t*
 membrane-enclosed organelles, in eukaryotes/eukaryotic cells *vs.* prokaryotes, 76
 membrane filters, 188, 188*f*
 membrane, inner. *See* plasma (cytoplasmic) membrane
 membrane, outer, 85*f*, 87*t*, 88, 89*f*
 membrane ruffling, 435, 435*f*
 memory (anamnestic) response (secondary response), 497, 497*f*
 memory cells, 485, 486*f*, 505
 of B cells, 485, 486*f*, 497, 497*f*
 delayed hypersensitivity reactions and, 535
 immunological, 497, 497*f*
 of T cells, 489
 meninges, 616, 617*f*
 inflammation of. *See* meningitis
 meningitis, 616, 623*b*
 in AIDS patients, 626–627
 bacterial, 617–621, 623*b*
 Haemophilus influenzae (HiB), 312, 433, 618
 Listeria monocytogenes, 619–621.
 See also *Listeria monocytogenes*
 Neisseria meningitidis, 618–619.
 See also meningococcal meningitis
 Streptococcus pneumoniae, 619
 Clinical Case, 300*b*, 317*b*, 318*b*, 320*b*, 324*b*
 cryptococcosis and, 626–627
 Cryptococcus neoformans causing, 445
 diagnosis of, 300*b*, 619, 620*f*, 623*b*
 gonorrheal, 748
 method of transmission, 623*b*
 respiratory tract as portal of entry, 623*b*
 treatments for, 619, 623*b*
 vaccine, 506*t*, 507*t*, 612, 623*b*
 viral, 617–618
 meningococcal meningitis, 618–619, 618*f*, 623*b*
 endotoxins and, 439, 442*t*, 613
 Neisseria meningitidis causing, 307, 404, 424*t*, 433, 441, 442*t*, 618–619, 618*f*, 623*b*
 as notifiable infectious disease, 424*t*
 portal of entry, 618
 portal of exit, 446
 vaccine, 506*t*, 507*t*
 Xigris to treat, 640
 meningococcus, 613
 serotypes of, 613
 meningoencephalitis, 356*t*, 616
 Clinical Case, 616*b*, 621*b*, 622*b*, 635*b*, 637*b*, 639*b*
 primary amebic, 623*b*, 629, 629*f*

menopause, normal microbiota of reproductive tract and, 745
mercuric chloride, 195
mercury
as disinfectant, 195
endospores, mycobacteria not destroyed by, 201t
as an enzyme poison, 118
genes for resistance to, 236, 238f
water pollution and, 778–779
merozoites, 351, 352f
mesophiles, 154, 154f, 155
mesosomes, 90
messenger RNA (mRNA), 15, 47, 208, 215, 216f, 218
codons and, 215, 215f, 216–217f
in eukaryotic RNA processing, 218, 219f
in induction, 219, 221f
in RNA viruses, 388, 389f
transcription and, 215, 218, 218f
in translation, 215–218, 216–217f
viral RNA and reverse-transcription PCR, 251
West Nile virus tracking and, 220b
metabolic activity, as measure of bacterial numbers, 176
metabolic pathways, 113
amphibolic, 146, 147f
Calvin-Benson cycle, 138, 140f
diversity and, 140–143, 141f
Entner-Doudoroff pathway, 127
enzymes and, 113, 123
feedback inhibition and, 113, 118–119, 119f
genetics and, 113
Krebs cycle, 122, 123f, 125–130, 126f, 146, 147f
pentose phosphate pathway, 127
metabolic rate, increased, with fever, 466
metabolism (microbial), 111–152
anabolic reactions, 112, 112f
in bacteria vs. fungi, 333t
biochemical tests and, 135–137
biosynthetic processes, 144–147, 144f–147f
carbohydrate catabolism, 122–133
catabolic reactions, 112, 112f
diversity and, 140–143, 141f
energy production mechanisms, 119–121. *See also* energy production mechanisms
enzyme role in, 113, 113–119
fermentation, 8. *See also* fermentation
genetic machinery's integration in, 218
integration of, 146, 147f
lipid biosynthesis, 144, 145f
lipid catabolism, 133–135, 135f, 136f
photosynthesis, 138, 139f
polysaccharide biosynthesis, 144, 144f
protein biosynthesis, 144–145, 145f
protein catabolism, 134–135, 136f
metabolite synthesis inhibition by antimicrobials, 561f, 563–564, 565t, 573
metachromatic granules, 95

metagenomics, 260
metal atoms, in metalloproteins, 44
metal ions, as cofactors, 115
metalloproteins, 44
metals, heavy, used in staining of specimens, 62
Metchnikoff, Elie, 10f
meter (m), 54t
methane
anaerobic respiration and, 130
as energy source produced from bioconversion, 807f, 813–814, 814f
as fermentation end-product, 134t
formation of, 30, 30f
landfills and, 781–782
methanogens and, 4, 274, 274f
Methanobacteriales, 302t
Methanobacterium genus/spp., 302t
methanogens, 4, 274, 302t, 326
phylogenetic relationships, 274f, 280f
methanol, 37
Methanosarcina, fermentation and, 134t
methicillin, 18, 568
methicillin-resistant *Staphylococcus aureus*. *See MRSAs*
methionine (Met)
in protein synthesis, 216, 216–217f, 276t
structural formula/characteristic R group, 42t
methods of microbial control, physical, 185–188, 191t
methotrexate, to treat psoriasis, 538
methyl cyanocobalamide, 115f
methyl functional group, 36f, 211t, 247
methylases, 211t, 227
methylene blue stain, 67, 68, 71t
metric measurements, 54, 54t
metronidazole (Flagyl), 566t, 570, 577
to treat *Clostridium difficile* diarrhea, 417b
to treat *H. pylori* peptic ulcer disease, 71b
to treat *Trichomonas vaginalis* vaginitis, 577
mezlocillin, 568
MF59 adjuvant, 506
MHC (major histocompatibility complex), 484f, 485, 496f, 533–534
MIC (minimal inhibitory concentration), 283f, 578–579, 579f
mice
culturing viruses in, 379
deer, as disease reservoirs, 413t
field, as disease reservoirs, 413t
genetically modified to make human-murine hybrid, 514
as model for studying viral replication, 379
monoclonal antibodies and, 512, 513f, 514
nude (hairless), transplant research and, 543, 544f
miconazole, 564f, 566t, 574, 574f, 606

microaerophiles/microaerophilic bacteria, 159t, 160, 164, 313
microarray (DNA chip/PCR microarray), 261, 292, 292f, 521–522
microbes/microorganisms, 2
antagonism (competitive exclusion) and, 403–405
beneficial activities of, 2, 15–16
as biofilms, 17, 18f
biotechnology and, 244–271
chemistry of, 25–52
classification by nutritional patterns, 140–143, 141f
classification of, 2–6, 5f. *See also* classification of microorganisms
commercial applications of, 2, 3b
cooperation among, 404
culture media for growing, 161–166
fastidious, 162
germ theory and, 8–9, 11, 406–408, 407f, 477
growth and, 153–180. *See also* growth (microbial)
in hospitals, 415–417. *See also* nosocomial infections
hot zone labs for handling, 164–165, 165f
infectious diseases caused by, 404
Koch's postulates and, 11, 406–408, 407f
metabolism of, 111–152. *See also* metabolism (microbial)
microscopes to view. *See* microscopes/microscopy
naming of (nomenclature), 2–3, 4t
normal microbiota in humans, 17, 17f, 402–405, 403f, 404f
nosocomial infections and, 414–417. *See also* nosocomial infections opportunistic, 405–406
pathogenic, 2. *See also* pathogenicity under pathogenic pathogenicity mechanisms and, 429–450. *See also* pathogenicity portals of entry, 430, 431t
preparing specimens for microscopy, 64, 67–71
recombinant DNA technology and, 244–271
as recyclers of vital elements, 15
symbiosis and, 405, 405f
types of, 3–6, 5f
used as genetic engineering “factories”, 245
used in production of foodstuffs, 805–807
virulence and, 70
as weapons, 190, 261, 654b, 654f
microbial antagonism (competitive exclusion), 403–405
microbial diseases
of cardiovascular system, 647–679
of digestive system, 711–748
of eyes, 609–611
of lymphatic system, 647–679
of nervous system, 615–642
of reproductive systems, 754–768
of respiratory system, 680–710
of skin, 591–609
of urinary system, 752–753
microbial diversity
in genome size, 327–328
in habitats, 767
symbiosis and, 327, 767
microbial ecology, 15
microbial genetics. *See* genetics, microbial
microbial growth. *See* growth (microbial)
microbiological assays, 162, 167t, 176
microbiology
applications of (examples), 3b, 32b
branches of, 12, 14, 261, 282b, 283
environmental. *See* environmental microbiology
forensic, 244, 261, 263
Golden Age of, 8–11, 10f
history, 6–15, 7f, 9f, 10f, 12f
industrial. *See* industrial applications of microbiology
laboratory report form example, 283, 283f
medical, 282. *See also* pathogens
Nobel prizes awarded in, 13t
soil. *See* soil microbiology
veterinary, 282b
microbiomes, 402
microbiota/flora
normal, 402. *See also* normal microbiota/flora
transient, 402
Microcladia (red algae), 344f
Micrococcus
as normal microbiota of eye, 404t
as normal microbiota of skin, 404t
Micrococcus genus/spp., as normal microbiota of urethra, 404t
microfilaments, 98f, 101
microfold cells. *See* M cells
microglial cells, 460
microinjection (of foreign DNA), 252, 253f
micrometer (μm), 54, 54t
Micromonospora purpurea, gentamicin derived from, 560t
micronucleus, of *Paramecium*, 349f, 353f
microorganisms. *See* microbes/microorganisms
microRNAs (miRNAs), 222–223, 223f, 258
microscopes/microscopy, 2, 53–64, 58f
atomic force (AFM), 64, 64f, 67t
early versions of, 6, 7f, 54–55
electron, 14, 61–64, 63f, 66t
scanning (SEM), 64–65, 64f, 67t
transmission electron (TEM), 62–63, 63f, 66t
in identification of microorganisms, 281
light (LM), 55–60, 55f, 58f, 59f, 60f, 65t, 66t
brightfield, 57, 60f, 66t
compound light, 55–57, 55f, 58f, 59f, 60f
confocal, 62, 62f, 67t
darkfield, 57, 60f, 66t

- differential interference contrast, 59, 61f, 65t
 fluorescence, 59, 61f, 65t
 phase-contrast, 57, 60f, 66t
 magnification ranges (Foundation Figure), 58f
 path of light in, 55, 55f, 59f, 60f
 scanned-probe, 58f, 64, 64f, 67t
 scanning acoustic (SAM), 63, 63f, 67t
 scanning tunneling (STM), 64, 64f, 67t
 specimen size and, 58f
 summary table (features/typical image/uses), 65t–67t
 two-photon (TPM), 60, 62f, 67t
 ultraviolet light and, 59, 61f, 65t
 units of measurements for, 54, 54t
 to view inside cells/specimens, 6, 62f, 63f, 64, 65t, 66t
 microscopic count of bacteria, 173, 175, 175f
Microspora, 275f
Microsporidia, 337, 337f
 microsporidiosis, 337f
Microsporum, 340t
 cutaneous mycosis and, 597b, 605–606
 reservoirs/transmission method, 413t
 microtiter plates, 515, 516f, 520, 523f
 microtubules, 98f, 99, 99f, 100t, 101
 of centrioles, 104–105
 microsporidian protozoa and, 348
 microwaves, 190
 mildew
 copper compounds to prevent, 195–196
 damp shower curtains and, 189
 mercurials to control in paints, 195
 milk
 breast, IgA antibodies in, 480, 481
 contaminated, *Coxiella burnetii* and, 309
 counting number of bacteria in, 173, 175f
 dairy cow, bovine growth hormone and, 266, 267f
 fermentation and, 134t
 food allergies and, 525
 lactic acid fermentation and, 135t
Listeria in, flow cytometry to detect, 288–289
 pasteurization and, 8, 187–188, 191t
 millimeter (mm), 54t
 Milstein, César, 13t, 512
 minimal bactericidal concentration (MBC), 578–579, 579f
 Minimal Genome Project, 261
 minimal inhibitory concentration (MIC), 283f, 578, 579f
 minimum growth temperature, 154, 154f
 mining industry, microbes used in, 245
 minocycline, 571
 miRNAs (microRNAs), 222–223, 223f, 258, 260
 miscarriage, induced by endotoxins, 440
 missense mutation, 225, 225f
- Mitchell, Peter, 10f
 mites, 364t
 ivermectin effective against, 572
 mitochondria/mitochondrion, 98f, 101, 103, 104f
 electron transport chain (system) and, 129
 eukaryotes that lack, 337
 origin of, 274f, 326
 mitosis, 100t, 102, 276t
 in algae, 342, 345f
 in diatoms, 343f
 fungal, 336f
 mitotic spindle, 105
Mixotrichia (protozoan), that lives in termite hindgut, 106b
 µm (micrometer), 54
 metric/U.S. equivalent, 54t
 mm (millimeter), metric/U.S. equivalent, 54t
 MMR vaccine, 506, 507t, 511, 598
MMWR (Morbidity and Mortality Weekly Report), 422
 moderate-temperature-loving microbes (mesophiles), 154, 154f
 moist heat sterilization, 185–187, 186f, 191t
 molasses, fermentation and, 134t
 molds, 2, 4, 5f, 332–333, 332f
 acidic conditions and growth of, 189, 341
 actinomycetes and, 319
 as aerobic organisms, 333
 bacterial food spoilage vs. damage done by, 341
 bread, 5f, 197, 335f, 337
 chemical food preservatives and, 197, 202t
 as eukaryotes, 6, 75
 filamentous, plate counts and, 176–177
 growing in homes, allergic responses and, 445
 included in Kingdom Fungi, 280
 low moisture and growth of, 189, 341
mucor, 5f
 osmotic pressure and growth of, 189
 penicillin discovery and, 12
 pH and growth of, 156
 saprophytic, 337
 slime, 4. See also slime molds
 mole (unit of measure), 31
 molecular biology, 15
 molecular clock, 277
 molecular genetics
 cloning procedures of, 247
 ethical issues and, 267
 molecular oxygen (O_2), 33, 135t
 molecular weight, 31
 molecules, 26
 covalent bonds and, 30, 30f
 heat absorption by, 34
 how atoms form, 27–31
 hydrogen bonds and, 30–31, 31f, 31t
 important biological, 33–48. See also specific molecules
 inorganic, 33–36
 ionic bonds and, 29–30, 29f
 macromolecules, 34, 38
 nonpolar, of lipids, 38–39
 organic, 36–48
 polar, 33–34
Molluscipoxvirus, 377t
 mollusks
 domoic acid intoxication and, 346
 paralytic shellfish poisoning (PSP) and, 346, 356t, 446
 red tides and, 446
 Monarch butterflies, 266
 monkeypox, 596b, 601
 as orthopoxvirus, 596
 as potential biological weapons, 654b
 rash caused by, 596b
 transmission from animals to humans and, 601
monkeypox virus, 596b, 601
 monkeys
 as disease reservoirs, 413t, 659, 667b
 green, AIDS in, 377
 simian immunodeficiency virus and, 545
 monobactam antibiotics, 562t, 569
 monoclonal antibodies (Mabs), 512–514, 513f, 522
 chimeric, 514
 in diagnostics/medical therapies, 259t, 512, 513f, 514, 522
 discovery of, 512
 fully human, 514
 in home pregnancy tests, 520, 522t
 humanized, 514
 hybridoma and, 512, 513f
 industrial fermentation used in making, 802
 as tool for delivering cancer therapies, 522, 543
 to treat arthritis, 538
 to treat immunological tissue rejection, 544b
 to treat viral infection, 385
 monocytes, 456, 457t
 developing into phagocytic macrophages, 456, 460
 in inflammatory response, 461f
 Monod, Jacques, 10f, 15, 219
 monoecious helminths, 356
 monomers, 37
 antibody, 482, 482f, 483t
 monomorphic bacteria, 78
 mononuclear phagocytic (reticuloendothelial) system, 460, 644
 mononucleosis, infectious, 377t
 monosaccharides, 37
 monotrichous flagella, 80f, 81
 Montagnier, Luc, 13t
 Montagu, Mary, 505
Moraxella catarrhalis, otitis media caused by, 685
Moraxella genus/spp., 301t, 309
Moraxella lacunata, conjunctivitis and, 309
Morbidity and Mortality Weekly Report (MMWR), 422
 morbidity rate, 422
Morbillivirus (measles virus), 378t
 persistent viral infections and, 394
- mordant, 68, 71t, 86
 morphology of bacteria, 77–78, 77f, 78f
 in identification/classification, 284
 mortality, influenza-associated pediatric, as notifiable infectious disease, 424t
 mortality rate, 422
 mosaic disease of cauliflower, 396f
 mosaic disease of tobacco, 14, 369, 370
 mosquitos, 356t, 363f, 364t
 as arthropods, 331f, 363f, 364t
Culex, transmitting West Nile virus, 631
 diseases transmitted by, 356t, 364t, 413t
 encephalitis caused by, 630–632, 632f
 as vectors, 363, 364t, 365
 viruses transmitted by. See arboviruses
 mosses, as eukarya, 6
 most probable number (MPN)
 method, 172, 174f
 motility, 81
 of bacteria, 81–82, 82f
 gliding, 83
 pili and, 83–84
 of spirochetes, 82–83, 83f, 325, 325f
 twitching, 83
 mouse cells, genetically modified products produced in, 259t
 mouse mammary tumor virus, 392
 mouth diseases
 dental caries (tooth decay), 713–715, 713f, 714f, 716b
 gingivitis, 709, 710b
Haemophilus and, 312
 normal microbiota of, 17f, 312, 326, 404t
 periodontal disease, 709, 709f, 710b
 periodontitis, 709
 mouthwashes, 196
 movement, proteins and, 41
 movement patterns of bacteria, 81–82, 82f
 moxifloxacin, 572
 MPN (most probable number)
 method, 172, 174f
 mRNA. See messenger RNA
 MRSA (methicillin-resistant *Staphylococcus aureus*), 1, 18, 568
 cellulitis caused by, 598b
 Clinical Case, 2b, 17b, 19b, 20b, 21b
 community-associated strains, 21b, 581, 598b
 daptomycin to treat, 572
 emerging infectious diseases and, 18, 419t
 health-care associated strains and, 423b, 581, 597b
 hemolysis patients and, 423b
 linezolid to treat, 572
 mortality rate for, 581
 nosocomial infections and, 423b, 581
 PCR testing to rapidly isolate, 423b, 581
 platenimycin developed in response to, 566

professional athletes and, 598b
superantigens and, 593
superbugs and, 580
tigecycline (Tygacil) developed in response to, 565
USA 100, USA 300 strains, 423b
vancomycin and, 569, 598b
MS. See multiple sclerosis
mucocutaneous mycoses, 340t
Mucor, 5f, 340t, 341
Mucor indicus, 334f
mucormycosis, 341
mucosa-associated lymphoid tissue, 490b
mucous membranes (mucosa), 453–455, 590
as barrier to pathogens, 453, 474t, 590
broken, susceptibility to infections, 416, 417t, 451
ciliated, of lower respiratory tract, 675, 676f
as first line of defense, 452f, 453–455, 474t
of gastrointestinal tract, 453, 454
of genitourinary tract, 453, 455
Haemophilus normal occupants of, 312
IgA antibodies and, 483t
of nose, 453
as portals of entry, 430, 431t, 447f
as portals of exit, 446–447, 447f
of respiratory tract, 453, 454
structure of, 590
Treponema pallidum and, 453–454
mucus, 453, 454
cervical, 455
cervical, antimicrobial activity of, 455
ciliary escalator and, 454, 454f
IgA antibodies in, 480
lysozyme in, 88, 455
mules, reported cases of rabies in, 630f
Mullis, Kary B., 13t
multi-drug resistant tuberculosis (MDR-TB), 18, 691
multicellular animal parasites, 5–6
multiple sclerosis (MS), 259t, 470, 538
beta interferon (Betaferon) to treat, 473
Epstein-Barr virus and, 533, 664
HLA typing to determine susceptibility, 539t
interleukin-12 to treat, 499b
monoclonal antibodies to treat, 522
multiplication of viruses. *See viral multiplication*
mummies, DNA extraction and, 263
mumps, 727–728, 727f, 736b
mumps virus (*Rubulavirus*), 378t
incubation period, 431t
as notifiable infectious disease, 424t
portals of entry, 431t
portals of exit, 446
vaccine, 14, 506t, 507t, 721
municipal chlorination, household bleach equivalent in emergencies, 194
municipal waste (garbage), 781–782, 782f

municipal water treatment systems, chloramines to disinfect, 194
murein. *See peptidoglycan*
murine leukemia virus-related viruses (MLV), 639
murine (mouse) cells, 513f, 514
muromonab-CD3 (Mab-CD3), 259t, 544b
Murray, Joseph E., 13t
Murray, Robert G.E., 273
muscle contraction, proteins and, 41
muscle contractions, uncontrollable, tetanus toxin causing, 439
muscles, parasitic helminths and, 364t
muscular dystrophy, Duchenne's, 16
mushrooms, 4
as eukarya, 6
included in Kingdom Fungi, 280
produced by Basidiomycota fungi, 338
toxins produced by, 445
mussels
diatoms, neurologic disease outbreak and, 346
paralytic shellfish poisoning (PSP) and, 344, 356f
mutagenesis, site-directed, 247
mutagens, 226–228
Ames test and, 230–231, 230f
as carcinogens, 230–231
chemical, 226–227, 226f, 232
experimental uses of, 228
identifying, 228–231, 228f, 229f
radiation, 227–228, 228f
spontaneous rate of mutation and, 231
mutations, 223–231
acquired by West Nile virus, 220b
antibiotic resistance and, 225, 228, 574, 577t
beneficial, 223, 228
Clinical case, 208b, 226b, 231b, 232b
disadvantageous, 223–224
evolution and, 228
frameshift, 225, 225f
frequency of, 228
genotoxic chemicals, 231b, 232b
HIV and, 545, 547
horizontal gene transfers to other bacteria, 574, 577f, 583b
identifying chemical carcinogens, 230–231, 230f, 232b
identifying mutants, 228–230, 229f, 230f
lethal, 223–224
missense, 225, 225f
molecular clock and, 277
nonsense, 225, 225f
point (base substitution), 224–225, 224f
positive (direct) selection to identify, 231
radiation and, 227
random, 231, 429
rate of, 228
repair of, 227, 228f
retroviruses and, 547
selection methods to identify mutations, 229–230, 229f
silent (neutral), 224
spontaneous, 225
types of, 224–225, 225f
mutilin, 565t, 572
mutualism, in lichens, 342
mutualism in symbiotic relationships, 405, 405f
myalgic encephalomyelitis (ME), 639
myasthenia gravis, 537
mycelia/mycelium, 4, 333, 333f, 335f, 336f, 337f
mycelium. *See mycelia/mycelium*
mycetoma, 320
mycobacteria
as aerobic, non-endospore-forming rods, 319
antibiotics that inhibit, 562t, 569–570
antimicrobials effective against, 201t
filamentous growth and, 319
mycolic acid in cell walls of, 88, 319, 433, 563
pathogenicity of, 319
quats ineffective against, 196
rapidly-growing, 201b
resistance to chemical biocides, 196, 198b, 200, 200f, 319
slow-growing, 198b, 319
identification tests, 142b, 203
Mycobacterium abscessus infection (Clinical Focus), 198b
Mycobacterium avium, 142b
interleukin-12 to treat, 499b
Mycobacterium avium-intracellulare, 550t, 685
Mycobacterium bovis, 70f, 142b, 685
Mycobacterium genus/spp., 302t, 319
antibiotics that inhibit, 562t, 569–570
antimicrobials effective against, 201t
cell walls of, 40, 69, 70f, 87–88, 302t, 319
diseases caused by, 319
G + C content and, 314
lipid inclusions of, 95
Mycobacterium intracellulare, 447f
Mycobacterium leprae
acid-fast stain to identify, 69
armadillos used to culture, 163, 625
cultivation and, 163, 406
grows in peripheral nervous system, skin cells, 625
leprosy caused by, 406, 625–626, 632b
as slow growing mycobacteria, 201b
Mycobacterium tuberculosis, 682–685, 682f, 683f
acid-fast stain to identify, 69
AIDS-associated, 550t
antibiotics to treat, 563, 690–691
biocidal effectiveness tests especially developed for, 200
can survive/multiply in phagocytes, 433, 462
desiccation resistance and, 189
diseases caused by (other than TB), 407
disinfectants and, 202
fluorochrome auramine O to stain, 59
found in Egyptian mummies, 6
incubation period, 431t
Koch's experiments with, 406
lipid-rich cell wall of, 40
pathogenesis of, 688–690, 689f
portals of entry, 430, 431t
qPCR test to rapidly detect, 251
resistance to chemical biocides and, 200
skin test for, 535, 690
as slow growing mycobacteria, 198b
urease test to identify, 142b
virulence and, 433
Mycobacterium ulcerans, Buruli ulcer caused by, 594, 597b, 599
mycolactone toxin, 599
mycolic acid (waxy lipid), 88, 319, 433
antibiotics that inhibit synthesis of, 563
of *Mycobacterium tuberculosis*, virulence and, 433
mycology, 14, 332
mycophenolate, 542
Mycoplasma capricolum, 261
Mycoplasma genus/spp., 87, 301t, 317–318, 318f
culture media and, 318
degenerative evolution and, 318
G + C content of, 314
plasma membrane uniqueness, 87, 89
viruses and, 87, 318
Mycoplasma hominis, 758
Mycoplasma mycoides, 261
Mycoplasma pneumoniae, 318, 318f
mycoplasmal pneumonia, 318, 318f, 565, 693–694, 694f, 695b
tetracyclines to treat, 565
mycoplasmas, 319–320, 319f
G + C ratio of, 314
sterols in plasma membrane of, 41, 87, 89
Mycoplasmatales, 301t, 317–318
mycorrhizae (symbiotic fungi), 332, 773, 774f
mycoses (fungal infections), 339–341, 340t, 605
Clinical Case, 332b, 339b, 341b, 342b
cutaneous, 340–341, 340t, 605–607, 606f
emerging (*Cryptococcus gattii*), 342b
increasing rates of, 14
opportunistic, 340–341
subcutaneous, 606
systemic, 339
mycosis, 339, 605. *See also mycoses*
mycotoxins, 445, 735
myeloma cells, in monoclonal antibody production, 513f
myelomas, 512
myxobacteria, 313
fruiting body of, 56b, 56f, 313, 313f
gliding motility of, 56b, 83, 313, 313f
Myxococcales, 301t, 313, 313f
Myxococcus fulvus, 313, 313f
Myxococcus genus/spp., 301t, 313, 313f
Myxococcus xanthus, 56b, 56f, 313, 313f
myxospores, 313, 313f
N
N-acetylglucosamine (NAG), 84, 84f, 85f
chitin and, 99

- N-acetylmuramic acid (NAM), 84, 84f, 85f
 N-acetyltaulosaminuronate, 87
 NA (neuraminidase) proteins, 371
 spikes of influenza virus, 692–693, 692f
 subtypes of influenza A viruses, 374–375b
 NAATs (nucleic acid amplification tests), 290
 NAD⁺, 114, 115t
 in biological oxidation, 120, 121f
 as electron carrier, 141f
 in electron transport chain, 121, 127, 127f
 in fermentation, 130–133, 133f
 in Krebs Cycle, 125, 126f
 in oxidative phosphorylation, 120–121
 NADH
 in alcohol fermentation, 131, 133, 133f
 in biological oxidation, 120, 121f
 in electron transport chain, 120, 127, 127f
 in Krebs cycle, 125–127, 126f
 in photosynthesis, 138, 139f
 redox reaction and, 120, 121f
 NADP⁺, 114
 in Calvin-Benson cycle, 140f
 as coenzyme in cellular metabolism, 114
 as electron carrier, 141f
 in photosynthesis, 138, 139f
 NADPH
 in Calvin-Benson cycle, 140f
 in fermentation, 131
 in neutrophils (Clinical Case), 463b, 466b, 472b, 473b
 in photophosphorylation, 121, 138, 139f
 in photosynthesis, 138, 139f
Naegleria fowleri (amoeba), 356t, 615f, 623b, 634–635, 635b, 635f
 naftifine, 566t, 574
 NAG (N-acetylglucosamine), 84, 84f, 85f
 chitin and, 99
 nails (finger/toe), cutaneous mycoses and, 340
 naked DNA
 transformation process and, 232, 251
 vaccines and, 503
 naked RNA, viroids and, 396–397
 nalidixic acid, 565t, 572, 585
 NAM (N-acetylmuramic acid), 84, 84f, 85f, 87
 names for living organisms. See scientific nomenclature
 nanobacteria, 326
 nanometer (nm), 54, 54t
 nanons, 327
 nanospheres, 263, 263f
 nanotechnology, 263, 263f
 naphthoquinones, 115t
 narrow spectrum antibiotics, 560–561, 562t
 nasal passages
 normal microbiota of, 1, 1f, 165, 404t, 588
 secretions, staphylococci in, 316, 588
 nasal spray for influenza vaccine, 506
 nasolacrimal ducts, 454f
 nasopharyngeal cancer, Epstein-Barr virus and, 664
 Natamycin (pimaricin), 197
 Nathans, Daniel, 10f
 National Institute of Allergy and Infectious Diseases (NIAID), interleukin-12 research by, 499b
 natural classification systems, 273, 277
 natural killer (NK) cells, 457t, 458, 474f, 495, 496t
 natural penicillins, 564t, 567, 567f
 natural recombination of DNA in microbes
 competence and, 233, 251
 conjugation and, 236, 251
 occurrence of, 245
 transformation and, in genetic engineering, 251
 natural selection, 239
 antibiotic resistance and, 583b
 artificial selection vs., 247
 Charles Darwin and, 273
 coevolution and, 429
 definition of, 430
 evolution and, 239, 273, 429
 horizontal gene transfer and, 232, 583b
 resistance factors of bacteria and, 235–237
Necator americanus, 361, 364t, 740b, 741
 necrosis, 646
 necrotizing fasciitis, 286, 317, 423b, 434b, 595–596, 595f, 597b
 due to leukocidin toxin MRSA infection, 423b
 rash caused by, 59b, 434f, 597b
streptococcus pyogenes streptokinase causing, 434b, 597b
 Needham, John, 7
 needles
 AIDS, hepatitis B transmitted by, 447
 nosocomial infections and, 416
 negative (indirect) selection identify mutant cells, 229–230, 230f
 negative staining, 67, 70, 70f, 71t
 bacterial capsules and, 70, 70f, 71t, 80
 bacterial flagella and, 70f, 71t
 electron microscopes and, 62 of *Mastadenovirus*, 387f
 Neisser, Max, 10f
Neisseria genus/spp., 300t, 307
 antibiotic resistance, susceptibility testing, 751b
 genetic transformation natural occurring in, 233
 as normal microbiota of mouth, throat, 404t
 penicillinase-producing plasmid acquired from *Streptococcus*, 237
Neisseria gonorrhoeae, 307, 307f, 747–750, 750f
 adhesins to host cells and, 433
 antigenic variation in, 435, 749
 complement system evasion by, 470
 desiccation resistance and, 189
 directly damaging host cells, 436
 fimbriae, colonization, and disease, 83
 fluoroquinolone-resistant, 750, 751b
 gonorrhea caused by, 307, 747. See also gonorrhea
 grows inside human epithelial cells, leukocytes, 433
 IgA proteases and, 435
 incubation period, 431t, 748
 inherited susceptibility to, 470
 ophthalmia neonatorum and, 610, 748–749
 oxidase test to identify, 137
 pelvic inflammatory disease caused by, 758
 portals of entry, 430, 431t, 749
 twitching motility of, 83
Neisseria meningitidis, 307
 as endotoxin producer, 441
 IgA proteases and, 435
 inherited susceptibility to, 470
 iron source for, 473
 meningitis caused by, 307, 424t, 433, 441, 442t, 612, 613, 613f, 623b
 as opportunistic pathogen, 405–406
 vaccine, 506t
Neisseria meningitidis. See meningococcal meningitis
Neisseria meningitis. See meningococcal meningitis
Neisseria meningitidis, 300t
Nematoda, 189, 355, 360–363, 364t. See also nematodes
 nematodes (roundworms), 189, 355, 360–363, 362f, 364t
 freezing temperatures and, 189
 ivermectin effective against, 572
 neomycin, 565t, 570
 produced by *Streptomyces fradiae*, 560t
 neonatal herpes, 764
 neonatal sepsis, *Streptococcus agalactiae* and, 317, 320b, 324b, 647
 nephritis, 407
 nervous system
 blood-brain barrier and, 616, 617f
 microbial diseases, 615–642
 bacterial, 617–626, 623b
 fungal, 623b, 632–633
 prions, 632b, 636–637
 protozoan, 623b, 629f, 633–635
 viral, 623b, 626–632, 628b, 632b
 pathogenic invasion routes, 616, 617f
 structure/function of, 616–617, 616f, 617f
 neuraminidase (N) proteins
 influenza A virus subtypes and, 374–375b
 to treat influenza, 570
 neuraminidase (NA) spikes of *Influenzavirus*, 692–693, 692f
 neurocysticercosis, 361t, 364t, 739
 neurological diseases, 225, 225f, 343, 395
 caused by diatoms, 343
 prions causing, 395
 spongiform encephalopathies, 200, 395, 630f
 neurosyphilis, 761
 neurotoxins, 435, 439, 440, 443
 algae produced, 343, 344, 346, 446
 fungi produced, 445
 plankton produced, 346–347
 plasmids and *Clostridium tetani*, 235
 neutral (silent) mutations, 226–227
 neutralization, 517
 neutralization reactions, 487, 488, 488f, 517, 518f
 cytopathic effects of viruses and, 443, 512
 viral hemagglutination inhibition test, 517, 518f
 neutrons, 26, 26f
 neutrophils, 456, 457t, 463b
 antimicrobial peptides and, 473
 cathelicidins produced by, 473
 defensins produced by, 473
 in fungal infections, 463b, 466b, 472b, 473b
 gamma interferon and, 471
 in inflammatory response, 464f
 oxidase-related genetic mutation, 466b
 as second line of defense, 452f
 staining and, 456
 nevirapine, 575
 newborn diseases
 candidiasis occurring in, 341
 IgG antibodies and, 483t
 neonatal sepsis, 317, 320b, 324b, 647
 silver nitrate solutions and, 195, 202t
 skin infections in, 196, 196f
 Newcastle disease in chickens, 378t, 705b
 NGU. See nongonococcal urethritis
 niacin (nicotinic acid), 115t
 NIAID (National Institute of Allergy and Infectious Diseases), interleukin-12 research by, 499b
 nickel allergy, 530
 niclosamide, 562t, 566t, 577
 nicotinamide adenine dinucleotide. See NAD⁺
 nicotinamide adenine dinucleotide phosphate. See NADP⁺
 nicotinic acid (niacin), 115t
 Nightingale, Florence, 420
 nigrosin dye, 67
 NIH (National Institutes of Health), priorities (re: emerging infectious diseases), 418
 9 + 0 array microtubules, 104–105
 9 + 2 array microtubules, 99, 99f
 Nipah virus
 as a biological weapon, 654b
 emerging infectious diseases and, 419t
 nisin, 197, 578
 nitazoxanide, 566t, 577, 737
 nitrate, 197, 202t. See also nitrite
 anaerobic respiration and, 130, 135t
 as food preservatives, 197, 202t
 importance to agriculture, 305
Pseudomonas bacteria and nitrogen fertilizers, 309
 nitrate reduction test, 142b
 nitric oxide, 462
 nitrification, 305, 776f, 777
 nitrifying archaea, 326
 nitrifying bacteria, 95, 300t, 301t, 305, 771
 nitrile gloves, 531
 nitrite, 197, 202t. See also nitrate
 anaerobic respiration and, 130, 135t
 as energy source, 143, 305
 as food preservatives, 197, 202t

Nitrobacter genus/spp., 143, 300t, 305, 770f, 771
nitroblue tetrazolium (NBT) test, 463b
nitrocellulose filters, 256f, 263f
nitrogen cycle, 776–779, 776f
 anaerobic respiration and, 130
nitrogen fixation, 158, 776, 776f
 alpha proteobacteria and, 300t, 303–304
Azotobacter and *Azomonas* used to demonstrate, 309
genetically modified plants and, 266, 267t
nitrogen-fixing bacteria, 300t, 303–304, 305, 309, 314, 314f, 320–321, 777–778
 symbiotic, 777–779
nitrogen (N)
 anaerobic respiration and, 130, 135t
 atmospheric, life and, 304
 cyanobacteria and, 15, 158
 electronic configuration, 28t
 microbial growth requirements, 158
 in organic compounds, 36
 soil pseudomonads and, 309
 sources of, 158
 symbol/atomic number/atomic weight, 27t
nitrogenous bases
 changes in, 223–224. *See also* mutations
 normal, vs. nucleoside analogs, 226–227, 227f
nitrosamines, 197
Nitrosomonadales, 301t
Nitrosomonas genus/spp., 143, 301t, 305
nitrous acid, as mutagenic chemical, 226, 226f
nitrous oxide, anaerobic respiration and, 130
Nix (lice remedy), 608
NK cells. *See* natural killer (NK) cells
nm (nanometer), 54
 metric/U.S. equivalent, 54t
Nobel prizes in microbiology, 13t
 first prize awarded, 477
Nocardia asteroides, pulmonary infection caused by, 320
Nocardia genus/spp., 302t, 318, 320
 acid-fast stains to identify, 69, 88
 actinomycetes informal name for, 318–319
 mycolic acid in cell walls of, 88
nodular cystic acne, 594, 595f
nodular cystic (severe) acne, 600, 600f
nofloxacin, 565t, 572
nomenclature
 binomial, 278
 scientific, 2–3, 4t, 278
non-nucleoside agents, 575
non-nucleoside reverse transcriptase inhibitors, 548
nonbullous impetigo, 593
noncommunicable diseases, 408
noncompetitive inhibitors of enzymes, 118, 118f
noncyclic photophosphorylation, 138, 139f
noncytoidal effects of viruses, vs.
 cytoidal effects, 443

nonenveloped viruses, 371, 372f, 373, 377t, 378t, 388t
 alcohol-based disinfectants and, 195, 202t
 biocidal resistance and, 197b, 200, 200f
 double-stranded RNA, 378t
 hepatitis A, 392b
 maturation stage in, 392
 release stage in, 392
 single-stranded RNA, 377t, 378t, 388t
nongonococcal urethritis (NGU), 322, 462, 757–758, 767f
nonionizing radiation, 190, 190f, 191f
nonpolar molecules of lipids, 38–39
nonpolar tails of phospholipids, 40, 40f, 89, 89f
nonproteobacteria gram-negative bacteria, 302t, 320–322
nonself vs. self recognition, 479, 492–493, 494, 500f
 autoimmune diseases and, 536–538
 hyperacute rejection and, 536
 immune system tolerance of fetus and, 534–535
 major histocompatibility complex (MHC) and, 485, 486, 533–534
 thymic selection and, 486, 532
 transplant rejection and, 534–535
nonsense codons (stop codons), 209, 215f, 216–218, 216–217f
nonsense mutation, 225, 225f
nonspecific urethritis (NSU), 750–751, 761f
nonsulfur bacteria, defined, 324
nontyphoidal salmonellae, 719
norfloxacin, 572
normal microbiota/flora, 16–17, 17f, 402–405, 403f, 404t, 455–456
 antibiotics and, 403–405, 555
 by body region, 404t
 digestive, 712–713
 reproductive, 751
 respiratory, 682
 skin, 452f, 455–456, 590
 tongue, 17f
 urinary, 751
 body's defenses and, 402–403, 452f, 455–456
 factors that affect, 402–403
 host relationships with, 403–405, 403f
 innate immunity and, 452f, 455
 protozoa part of, 348
 symbiotic relationships and, 405, 405f
 transient, 402
Norovirus, 377t
noroviruses, 735, 736b
 outbreak recurrence (Clinical Case), 182b, 197b, 199b, 201b
 outbreak traced via genomics (Clinical Focus), 261, 265b
North American blastomycosis (blastomycosis), 697, 699b
Norwalk virus, 735
nose, normal microbiota of, 1, 1f, 165, 404t, 588
Nosema, 340t
Nosema locustae, 348
nosocomial infections, 414–417, 415f, 423b
Acinetobacter baumannii and, 309
antibiotic Primaxin active against, 561
antibiotic-resistant pathogens and, 414
before aseptic surgery, 181
biofilms and, 17, 18f, 161
case history reports
 bacteremia, 423b
 infection following steroid injection, 198b
causes of, 414, 414f
chain of transmission and, 414f, 416
childbirth fever of mid-1800's, 11, 420
compromised hosts and, 414f, 416, 417t
control measures to prevent, 417
cost of, 582
DNA fingerprinting to determine source, 289, 289f
Enterobacter and, 312
Enterococcus faecalis and, 317
Enterococcus faecium and, 317
gram-negative microbes and, 415, 416t, 640
gram-positive microbes and, 415, 416t
immune systems responses to, 416
invasive procedures/devices risks, 17, 18f, 416
microbes involved in, 415, 416t
opportunistic pathogens and, 405–406, 415, 416t
principal body sites affected by, 416, 417t
Pseudomonas bacteria responsible for one in ten, 309
rates of, 415, 416t, 417t
secondary infections and, 415
sepsis as, 639–641, 649b
Serratia marcescens and, 311
Staphylococcus aureus and, 18, 316
vancomycin-resistant enterococci (VRE) and, 419t, 563, 583b, 640
Notifiable Infectious Diseases (U.S. Public Health Service), 422
Novo Nordisk Biotech, 3b
Noxafil (posaconazole), 574
NRTIs (nucleoside reverse transcriptase inhibitors), 553
NSU (nonspecific urethritis), 750–751, 761b
“nubiotics”, 579
nuclear envelope, 101, 102f, 103f
 of *Gemmata obscuriglobus*, 322f
nuclear membrane, 100t
nuclear pores, 101, 102f
nucleic acid amplification tests (NAATs), 290
nucleic acid hybridization studies, 290, 291f, 292
 DNA chip technology, 292, 292f
 DNA probes, 255, 256f, 290, 291f, 292, 517
 fluorescent in situ hybridization, 292, 293f
 in HIV testing, 545
 ribotyping/rRNA sequencing, 292
Southern blotting and, 261, 262f, 290, 291f, 292
nucleic acid sequencing, West Nile virus tracking and, 220b
nucleic acids, 44, 46f, 47
 antimicrobial agents and, 184, 558, 558f, 561f, 562t, 567
 in definition of life, 370
 DNA, 46f, 47. *See also* DNA
 gram-positive bacteria and, 314–320
 RNA, 47, 47f. *See also* RNA
 synthesis inhibition
 by antimicrobial agents, 184
 by antimicrobial drugs, 561f, 563, 565f, 572
 vaccines, 508
 of viruses, 370, 371
nucleobases (adenine/thymine/cytosine/guanine), 47, 48f, 49f, 208
nucleoid
 of bacterial cells, 94
 of *Gemmata obscuriglobus*, 322f
 of prokaryotic cells, 79f, 94
nucleoli/nucleolus, 98f, 101, 102f
nucleoplasm, evolution and, 274f, 275, 277
nucleoproteins, 44
nucleoside analogs, 226–227, 227f, 575
 AZT (azidothymidine) as, 227
 zidovudine to treat HIV/AIDS, 575
nucleoside reverse transcriptase inhibitors (NRTIs), 553
nucleosides, 47
 nucleoside analogs and, 226–227, 227f
 nucleoside triphosphates, 212f, 213
nucleosome, 101
nucleotide analogs, tenofovir to treat HIV/AIDS, 575
nucleotide excision repair, 227, 228f
 defect, and inherited xeroderma pigmentosum, 228
nucleotides, 46f, 47, 208
 biosynthesis of, 145–146, 146f
 in DNA replication, 210–215, 211f, 212f
 mutations and, 223–231. *See also* mutations
 nucleobases (adenine/thymine/cytosine/guanine) and, 208
 nucleoside analogs and, 226–227, 227f
 porins and, 86
 RNA, 214f, 215
nucleus
 of atoms, 26, 26f
 of eukaryotic cells, 76, 98f, 100t, 101–102, 102f
 as site of transcription, 220
 in *Gemmata obscuriglobus* bacteria, 277, 322, 324f
 prokaryotic cells and, 100t
nude mice
 to culture leprosy bacillus, 544f, 619
 transplant research and, 543, 544f
numerical identification, 285, 285f
nurseries (hospital), effective disinfectants for, 196, 196f
nursing home infections. *See* nosocomial infections
nutrient agar, 163, 163t
nutrient broth, 163
nutrients, glucose's value as, 120
nutritional requirements

- of algae, 5
of archaea, 4
of bacteria, 4
of fungi, 4, 331f, 336
microbes classified by patterns of, 140–143, 141f
of parasitic helminths, 355
of protozoa, 5, 349
nuts (tree-grown), food allergies and, 525
- O**
O-phenylphenol, 192, 193f
O polysaccharide, 85f, 86, 470
oak trees, *Phytophthora ramorum* infected by, 348
objective lens of microscopes, 55–56, 55f, 60f
obligate aerobes, 159, 159t
obligate anaerobes, 159, 159t, 162 culture media for, 167
obligate halophiles, 158
obligate intracellular bacteria, culture media and, 167
obligate intracellular parasites, viruses as, 281
obligately intracellular human pathogens, 300t, 301t
obligatory intracellular parasites, viruses as, 281, 370
ocular lens (eyepiece) of microscopes, 55–56, 55f, 60f
OD (optical density)/absorbance, 175, 176f
oil, stored by diatoms, 345t, 348
oil glands of skin antimicrobial properties, 404t sebum secreted by, 455, 474f, 590
oil immersion objective lens, 56, 57, 59f
oil spills bacteria that degrade, 32b, 134 bioremediation of, 16, 326, 781
Okazaki fragments, 211t, 212f
Old World flavivirus, introduced into New World, 220b
oleic acid, 39f
oligoadenylate synthetase, 471
oligodynamic action, 195, 195f
olives, fermentation used in production of, 806
omalizumab (Xolair), 530
oncogenes, 393, 442
oncogenic viruses (oncoviruses), 378t, 393 among DNA viruses, 393 among RNA viruses, 393–394 latent infection and, 394, 394f, 396t retroviruses as, 390
oncolytic viruses, 371
oncoviruses. *See* oncogenic viruses one-step growth curve (viral), 381, 381f
onychomycosis (tinea unguium), 606
oocysts, 352 of *Cryptosporidium*, 357b, 357f of *Toxoplasma gondii*, 352
Oomycota (water molds), 345t, 347–348, 347f
oomycetes, 347–348 as decomposers in fresh water, 347, 347f
as plant parasites, 347–348 position in evolutionary tree, 275f
OPA (ortho-phthalaldehyde), 197
Opa (protein), 433 gonococcal bacteria and, 749 *Neisseria gonorrhoeae* and, 435
open-reading frames, 209
operator, 221, 221f, 222f
operon, 221, 221f, 222f operon model of gene expression, 219–221, 221f, 222f
operons inducible, 221, 221f repressible, 221, 222f
ophthalmia neonatorum, 195, 202t, 430, 609b, 610, 755–756
ophthalmic cysticercosis, 739, 739f
opisthotonus, 621, 621f
opossums, as disease reservoirs, 656b, 667
opportunistic pathogens, 300t, 301t, 302t, 405–406 commensal microbiota and, 456 found in dolphins, 282b fungal infections, 340–341, 340t
opsonins, 462
opsonization (immune adherence) in antigen-antibody binding, 487–488, 488f in complement activation pathways, 467, 468f microbial evasion of, 473 phagocytosis and, 460, 462
ophthalmic cysticercosis, 733, 733f
optical density/OD (absorbance), 175, 176f optimum growth temperature, 154, 154f
oral candidiasis (thrush), 341, 601, 601f, 759
oral cavity bacteria, 302t, 713–714 *Bacteroides*, 322
Fusobacterium, 322, 324f spirochetes, 325, 325f
Streptococcus mutans, 80, 135b, 137b, 317, 432, 441, 713–715, 714f
oral groove of *Chilomastix*, 350f
oral rehydration therapy, for diarrhea, 717
OraQuick test for HIV, 550
orchitis, 727
order (taxonomic), defined, 278, 279f
ore, bacteria used to extract, 245
organelles, 98f, 101–105. *See also* specific structures of apicomplexans, 351 prokaryotic cells and, 100t, 276t
organic compounds, 34, 36–48 chemistry of, 36–38, 36t most common elements found in, 27t, 36 structure of, 36–38, 36t
organic growth factors, 160, 162
organic molecules. *See* organic compounds
organisms, 272. *See also* microbes/ microorganisms classification of, 277–281 methods, 281–294 evolutionary relationships among, 273–275, 274f, 280f
identification of, 281–294 scientific nomenclature for, 2–3, 4t, 278
organotrophs (heterotrophs), 140–141, 141f complex medium for growing, 163t
Ornithodoros (tick), as vector for relapsing fever, 364t
ornithosis (psittacosis), 322, 413t, 694, 695b Clinical Case, 681b, 696b, 697b, 699b, 701b, 705b as notifiable infectious disease, 424t reservoirs/transmission methods, 413t
orphan viruses, 390
ortho-phthalaldehyde (OPA), 197
orthoclone OKT3, 259t
Orthomyxoviridae, 378t
orthomyxoviruses, 391
Orthopoxvirus, 376f, 377t
oseltamivir (Tamiflu), 566t, 575, 701
osmium, used in staining of specimens, 62
osmosis, 91f, 92–93, 92f
osmotic lysis, 88, 93
osmotic pressure, 92f, 93 to control microbial growth, 189, 191t microbial growth and, 156, 157f, 158 most fungi resistant to, 336 to preserve foods, 189
osteoporosis, beta interferon (Actimmune) to treat, 473
otitis externa (swimmer's ear), 597b, 598
otitis media, 685, 685f, 686b *Haemophilus influenzae* causing, 613, 685
Moraxella catarrhalis causing, 685
Streptococcal pneumoniae causing, 614, 685
Streptococcal pyogenes caused by, 685
out-of-phase light rays, 57
outer membrane, 85f, 87t, 88, 89f
ovarian cancer, genetically modified Taxol used to treat, 259t
ovaries, 750, 750f
Ovide (malathion), 608
oxacillin, 564t, 567f, 568
oxalate decarboxylase, 115t
oxaloacetic acid, 145f, 147f in Krebs cycle, 126f
oxazolidinones, 565t, 572, 585 vancomycin resistance and, 572
oxidase enzymes, 114, 115t
oxidase test, 137
oxidation ponds, in sewage treatment, 794
oxidation reaction, 120, 120f, 121f in hot-air sterilization, 188, 191t
oxidation-reduction reaction (redox reaction), 115t, 120, 120f in Krebs cycle, 125–126, 126f
oxidative burst, 462 NADPH and, 463b
toxic oxygen products of, 462
oxidative phosphorylation, 120–121, 127f aerobic respiration and, 135t anaerobic respiration and, 135t ATP yield and, 130t, 135t
oxidizing agents, 199, 202t
oxidoreductase enzyme, 114, 115t
oxygen (O_2) atomic number/atomic weight, 27t bacterial growth and, 158–160, 159t crosses plasma membrane by simple diffusion, 91
electronic configuration, 28t as final electron acceptor, 135t, 141f as inorganic compound, 33 microbial growth and, 158–160, 159t in organic compounds, 36 photosynthetic cyanobacteria and, 320–322
photosynthetic planktonic algae and, 348
photosynthetic processes and, 138, 139f, 143, 143t, 344 planktonic algae and, 348 as poisonous gas, 158, 159–160 reducing media to grow anaerobes, 163, 164f singlet, 60, 159 spontaneous generation theory and, 7, 8, 9f toxic forms of, 158, 159–160, 462 oxygenic photosynthetic bacteria, 141, 141f, 143t, 320–322, 321f, 321t OxyPlate petri plates, 163 oxytetracycline (Terramycin), 565t, 570 ozone, 160 as disinfectant, 199, 202t in water treatment plants, 788, 788f, 789 ozone layer in atmosphere, UV light and, 227 ozone layer of atmosphere, UV light and, 227
P
P antigen, 385
p53 gene, 258
PAA/peroxyacetic acid (peracetic acid), 199, 202t
PABA (*para*-aminobenzoic acid), 563–564 sulfonamides and, 118, 563–564 TMP-SMZ mode of action and, 573, 573f
packaging materials, bioplastic, 3b. *See also* aseptic packaging
Paecilomyces fumosoroseus, 341
Paenibacillus, exhibiting bacterial pack behavior, 56b, 56f
Paenibacillus polymyxa, Polymyxin derived from, 560t
pain of inflammation, 463 prostaglandins role in, 465
paints, copper, mercury added to prevent mildew, 195
palivizumab (Synagis), 692
palmitic acid, 39f
PAMPs. *See* pathogen-associated molecular patterns
pandemic disease, 18, 409
Paneth cells, 713 defensins released by, 579, 713
pantothenic acid, 115t
paper products, microbes in manufacture of, 244
Papillomavirus, 377t. *See also* human papillomavirus (HPV)
Papovaviridae, 377t, 387, 388t, 445t

- cauliflower mosaic virus caused by, 396t
as DNA virus, 387
multiplication of, 387f, 388t
as an oncogenic virus, 393
- papovavirus, 387, 387f, 388t
cytopathic effects of, 445t
papules (lesions), 591, 592f
para-aminobenzoic acid (PABA), 563–564
sulfonamides and, 118, 563–564
- Parabasalids, 356t
- parabens, 202t
- paragonimiasis, 364t
- Paragonimus kellicotti*, 357–358, 359f
- Paragonimus* spp., 364t
- parainfluenza disease, 378t
- paralysis
- flaccid, caused by botulinum toxin, 439, 616
 - polio and, 627, 632b
- paralytic rabies (in animals), 623
- paralytic shellfish poisoning (PSP), 346, 356t, 446
- Paramecium*, 60f, 61f, 62f, 63f, 65t, 66t, 348–349, 349f, 353f
- Paramecium multimicronucleatum*, 62f
- Paramyxoviridae, 378t
- Paramyxoivirus*, 378t, 391
- parasites, 5–6, 143
- animal, 5–6
 - of bacteria (*Bdellovibrio*), 301t
 - biological transmission of disease and, 414, 414t
 - blood, 330, 350, 667f, 668b
 - coevolution between host and, 429
 - human, 348–353
 - intestinal, 330, 349, 350f, 356–362, 356t, 358f–361f, 364t
 - intracellular, 300t, 302t, 303
 - major groups of, 6
 - natural killer (NK) cells can attack, 495
 - pathogenic mechanisms of, 446
 - plant, oomycotes as, 347
 - protozoa, 5, 349. *See also* parasitic protozoa
 - vectors and, 363, 364t
 - viruses as, 281, 370, 370t
 - worms (helminths), 6
- parasitic bacteria
- Brucella*, 305
 - Rickettsias*, 304
- parasitic helminths, 6, 14, 14f, 189, 330, 331f, 355–363, 364t
- antibody-dependent cell-mediated cytotoxicity and, 491, 492f
- flatworms, 6, 353, 356–358, 356f–361f, 364t
- flukes, 356–357, 358f, 364t
- identification by microscope, 281
- roundworms, 6, 330, 360–362, 362f, 364t, 446
- parasitic infections
- IgE increases during, 481
 - of skin, 607–609, 608f
 - as top 20 causes of death, 330
- parasitic protozoa
- antibody-dependent cell-mediated cytotoxicity and, 491, 492f
- cauliflower mosaic virus caused by, 396t
as DNA virus, 387
multiplication of, 387f, 388t
as an oncogenic virus, 393
- papovavirus, 387, 387f, 388t
cytopathic effects of, 445t
papules (lesions), 591, 592f
para-aminobenzoic acid (PABA), 563–564
sulfonamides and, 118, 563–564
- Parabasalids, 356t
- parabens, 202t
- paragonimiasis, 364t
- Paragonimus kellicotti*, 357–358, 359f
- Paragonimus* spp., 364t
- parainfluenza disease, 378t
- paralysis
- flaccid, caused by botulinum toxin, 439, 616
 - polio and, 627, 632b
- paralytic rabies (in animals), 623
- paralytic shellfish poisoning (PSP), 346, 356t, 446
- Paramecium*, 60f, 61f, 62f, 63f, 65t, 66t, 348–349, 349f, 353f
- Paramecium multimicronucleatum*, 62f
- Paramyxoviridae, 378t
- Paramyxoivirus*, 378t, 391
- parasites, 5–6, 143
- animal, 5–6
 - of bacteria (*Bdellovibrio*), 301t
 - biological transmission of disease and, 414, 414t
 - blood, 330, 350, 667f, 668b
 - coevolution between host and, 429
 - human, 348–353
 - intestinal, 330, 349, 350f, 356–362, 356t, 358f–361f, 364t
 - intracellular, 300t, 302t, 303
 - major groups of, 6
 - natural killer (NK) cells can attack, 495
 - pathogenic mechanisms of, 446
 - plant, oomycotes as, 347
 - protozoa, 5, 349. *See also* parasitic protozoa
 - vectors and, 363, 364t
 - viruses as, 281, 370, 370t
 - worms (helminths), 6
- parasitic bacteria
- Brucella*, 305
 - Rickettsias*, 304
- parasitic helminths, 6, 14, 14f, 189, 330, 331f, 355–363, 364t
- antibody-dependent cell-mediated cytotoxicity and, 491, 492f
- flatworms, 6, 353, 356–358, 356f–361f, 364t
- flukes, 356–357, 358f, 364t
- identification by microscope, 281
- roundworms, 6, 330, 360–362, 362f, 364t, 446
- parasitic infections
- IgE increases during, 481
 - of skin, 607–609, 608f
 - as top 20 causes of death, 330
- parasitic protozoa
- antibody-dependent cell-mediated cytotoxicity and, 491, 492f
- encystment and survival outside host, 349
- features/diseases caused by/source of infection, 356t
- Giardia lamblia*, 349, 350f
- Plasmodium vivax*, 351–352, 352f, 446
- Trichomonas vaginalis*, 349, 350f
- parasitic water molds, 345t, 347–348
- parasitic worm infections, eosinophils increase during, 456
- parasitic worms
- IgE antibodies and, 485
 - immune system attacks on, 491, 492f
- parasitism, 405. *See also* parasites
- parasitology, 14
- parenchyma, in tissue repair, 465
- parent cells, parental DNA strands, 210–215, 211f–213f
- parenteral route of entry/exit, 392b, 430, 431t, 447, 447f
- parrots, as disease reservoirs, 413t
- parthenogenesis, 308b
- Parvoviridae, 377t, 387, 388t
- parvovirus B19, P antigen and, 385
- parvoviruses, DNA and, 48t
- passive immunity
- acquired, 498, 498f
 - gamma globulin most often used to transfer, 498
 - natural (at birth), 498, 498f
- passive transport processes, 91–93, 91f
- facilitated diffusion, 91–92, 91f
 - osmosis, 91f, 92–93, 92f
 - simple diffusion, 91, 91f
- Pasteur, Louis, 8, 9, 9f, 10f, 11, 181, 187, 479, 507
- Pasteurella* genus/spp., 301t, 312
- Pasteurella multocida*, 282b, 312, 507
- Pasteurellales, 301t, 312
- pasteurization, 8, 187–188, 191t
- patch test to determine cause of dermatitis, 533
- pathogen-associated molecular patterns (PAMPs), 452, 460, 461f
- pathogenic amebae, 350–351, 351f
- pathogenic bacteria (human), 300t, 301t, 302t. *See also specific bacterium*
- plasmids coding for proteins that enhance, 235
 - refrigerator temperatures and, 156, 156f, 189
- pathogenic bacteria (plants), 300t, 301t. *See also specific bacterium*
- pathogenic fungi, 339–341, 340t
- summary of, 340t
- pathogenic microbes/microorganisms, 2
- modern chemotherapy and, 12, 12f
 - vegetative, disinfection to control, 182, 183t
 - virulence determination, 70
- pathogenic prokaryotes, included in Domain Bacteria, 274
- pathogenicity mechanisms, 402, 429–450, 447f
- of algae, 446
 - altered, 228. *See also* mutations
 - Clinical Case, 430b, 436b, 442b, 444b, 446b
 - damaging host cells, 436–443, 447f
 - by producing toxins, 436–443, 437f, 438f, 440f, 441t, 442t
- entering the host, 430–433, 431t
- of fungi, 445
- of helminths, 446
- lysogeny and, 441–442
- number of invading microbes and, 432, 447f
- penetrating host defenses, 433–435, 435f
- plasmids and, 441–442
- portals of entry, 430–431, 431t
- portals of exit, 446
- prophages and, 441
- of protozoa, 445–446
- virulence and, 429, 432, 447f
- of viruses, 443–444, 444f, 447t
- pathogens, 401
- bacterial biosensors to detect, 786b
 - first line of defense against, 452f, 453–456, 474t. *See also* immunity
 - second line of host defenses, 452f, 456–474, 474t. *See also* immunity
 - that can cause multiple diseases, 406
 - third line of defense against, 452f
- pathology (science of), 402
- objectives/areas of study, 402
 - paucibacillary leprosy, 619
 - PCR. *See* polymerase chain reaction
 - peanut butter, aflatoxin and, 445
 - peanuts
 - aflatoxin and, 227, 445
 - food allergies and, 531 - peas, food allergies and, 525
 - pectin, 266, 267t
 - in cell walls of diatoms, 345t, 346
- pediculosis (lice), 363, 364t, 597b, 608–609, 609f
- head, ivermectin effective against, 572
 - Lyme disease and, 325
 - Pediculus* and, 363f, 364t, 597b, 608
 - sucking, 364t
 - treatments for, 608–609
 - typhus transmitted by, 304
- Pediculus humanus capitis* (head louse), 608, 608f
- Pediculus humanus corporis* (human louse), 364t, 608
- transmits typhus, relapsing fever, 363f, 364t, 413t
- Pediococcus*, summer sausage and, 134t
- Pelagibacter* genus/spp., 292, 303, 327
- Pelagibacter ubique*, 303, 327, 778
- FISH studies and, 292, 303
- pellicles
- of euglenoids, 349, 350f
 - of protozoa, 99, 349
- pelvic inflammatory disease (PID), 758, 758f, 767b
- Chlamydia trachomatis* causing, 758
- ectopic pregnancies and, 752
- Neisseria gonorrhoeae* causing, 758
- possible infertility resulting from, 752
- pemphigus neonatorum (impetigo of newborn), 593
- penetration stage in viral multiplication, 382f, 383, 385, 385t, 387f
- penicillin, 12, 12f, 561f, 567–568, 567f
- as a hapten, 481, 524
 - allergic reactions to, 481, 530, 537b
 - desensitization and, 530
 - blood-brain barrier and, 616
 - cephalosporin structure compared to, 569f
 - discovery of, 12, 12f, 558
 - gram-negative bacteria and, 86, 87t, 88
 - gram-positive bacteria and, 69, 87t, 88, 559
 - mode of action, 84, 85f, 88, 561–562, 561f, 567
 - natural, 567, 567f
 - penicillinase-resistant, 567, 568, 568f
 - peptidoglycan and, 87t, 88, 100, 556
 - produced by *Penicillium* mold, rDNA techniques and, 247
 - resistance to, 18, 316, 568, 568f
 - retention of, 567, 568f
 - as secondary metabolite of industrial fermentation, 809, 810f
 - semisynthetic, 567–568, 567f
 - spectrum of activity and, 567–568
 - penicillin G, 564t, 567–568, 567f, 568ft
 - penicillin V, 564t, 567, 567f
 - penicillinas-resistant penicillins, 567, 568, 568f
 - penicillinas (*β-lactamases*), 567, 568, 568f
 - Penicillium chrysogenum*, antibiotic penicillin derived from, 4t, 12, 12f, 560, 560t
 - Penicillium* genus/spp., 338, 341
 - semisynthetic penicillin and, 568 used to ripen cheeses, 799
 - Penicillium griseofulvum*, antibiotic griseofulvin derived from, 560t
 - Penicillium notatum*, 12, 12f, 559
 - penis, 751, 751f
 - pentamidine, to treat African sleeping sickness, 633
 - pentamidine isethionate, to treat *Pneumocystis pneumonia*, 575
 - pentose phosphate pathway (hexose monophosphate shunt), 123, 125, 127, 133
 - NADPH and, 466b
 - in purine/pyrimidine biosynthesis, 145–146, 146f
 - pentoses, 37
 - PEP (phosphoenolpyruvic acid), 93
 - PEP (postexposure prophylaxis), rabies and, 629
 - peptic ulcer disease, *Helicobacter pylori* and, 64b, 313, 314f, 725–726, 725f
 - peptides, 134–135
 - peptidases. *See* antimicrobial peptides
 - peptide bonds, 43, 44f, 45f, 217, 217f
 - peptide cross-bridge, 84, 85f, 88
 - peptides, 43, 86
 - peptidoglycan (murein), 4, 38, 84, 85f, 89f
 - archaea cell walls and, 274, 326
 - in bacteria cell walls, 81f, 84, 85f, 86, 87t, 88, 333f, 439
 - gram-negative, 85f, 86, 87t
 - gram-positive, 69, 84, 85f, 87t, 452
 - biosynthesis of, 144, 144f

- in eukaryotes vs. prokaryotes, 76, 100, 100t
fungi and, 333t
lysozyme damage to, 87t, 88, 455
in prokaryotic cell walls, 76, 100t
peptone iron agar, to detect hydrogen sulfide production, 137, 137f
peptides, complex culture media and, 163
peracetic acid (peroxyacetic acid/PAA), 199, 202t
perforin, 458, 493
perfringolysin O toxin AFM micrograph, 64f, 67t
pericarditis, 647, 649b
pericentriolar material, 98f, 104
Peridinium, 344f
periodontal disease, 715–716, 716b
period of convalescence in infectious disease, 410, 413f
period of decline in infectious disease, 410, 410f
period of illness in infectious disease, 410, 410f
periodontitis, 715–716
peripheral nervous system (PNS), 616, 616f
leprosy pathogen and, 619–620, 620f
rabies virus and, 622
peripheral proteins, of plasma membrane, 89–90, 89f
periplasm, 86
periplasmic space, 87t
peristalsis, 455, 474t
in response to microbial toxins, 455
peritoneal macrophages, 460
peritoneal tuberculosis, 142b
peritonitis, 322, 407, 418
peritrichous flagella, 80f, 81
permeability
of blood vessels in inflammatory response, 464, 464f
selective, 90
permase, 221, 221f
permeases (transporter proteins), in facilitated diffusion, 91–92, 91f
peroxidase, 3b, 160
peroxide
as bleaching agent, chlorine vs., 3b
yeasts in production of, 3b
peroxide anion, 160
peroxisomes, 98f, 104
peroxyacetic acid/PAA (peracetic acid), 199, 202t
peroxygens, 199, 202t
persistent (chronic) viral infections, 394, 394f, 396t
person-to-person transmission
of avian influenza versus, 18
of Ebola hemorrhagic fever, 19
perspiration, 455, 590, 590f
pertussis (whooping cough), 307, 687–688, 688f, 706b
as emerging infectious disease, 419t
incubation period, 431t
as notifiable infectious disease, 424t
portal of entry, 431t
portal of exit, 446
spread by droplet transmission, 411–412, 412f
- treatment, 688
vaccine, 14, 506t, 507t, 508, 687
pest control
Bacillus thuringiensis, used in, 16, 315–316, 315f
fungi used for, 341
microorganisms used in, 16
pest resistance, modified into crop plants, 246f, 263–264
Pestivirus, 377t
Petri dishes, 162
Petri, Julius, 10f
Petri plates/culture plates, 162
Petroff-Hausser cell counter, 173, 175f
petroleum products
bacteria that can use as energy source, 235
beta-oxidation of, 134
formed from diatoms/planktonic organisms, 348
Peyer's patches, 459, 459f, 716
M cells and, 489, 490f, 716
Pfiesteria, 347, 356t
PFU (plaque-forming units), 376f, 379
PG (polygalacturonase), 266
pGH (porcine growth hormone), 267t
pH buffers, 35
pH scale, 35, 35f
pH values, 34–35, 35f
disinfectant activity and, 191
enzymatic activity and, 117, 117f
extreme, acidophilic archaea and, 326
microbial growth and, 37, 156
pH scale, 35f
PHA (polyhydroxyalkanoate), as biodegradable alternative to plastic, 3b
Phaeophyta (algae), brown algae characteristics, 345t
phage conversion, 384
phage DNA, 235, 247, 381–385, 382f, 383f, 384f
phage libraries, 253, 253f
phage lysozyme, 381, 383
phage therapy, 371, 585
phage typing, 287, 289f, 712
phages, 371. See also bacteriophages
phagocytes, 451f, 460–463, 461f
aging and progressive inefficiency of, 465
defective or nonfunctioning, 466b
fixed macrophages, 460
inability to produce and, 465
macrophages as, 456, 457t, 460, 460f, 490
microbes that survive inside, 462
migration and, 464t, 465
as second line of defense, 452f, 460, 474t
phagocytic vesicle (phagosome), 461f, 462
phagocytosis, 93, 100, 457t, 460–463, 461f
adaptive immunity's role in, 460, 487, 489–490, 490f, 500f
Bacillus anthracis capsule and, 43b, 44b
biofilms and, 462
Brucella able to survive, 305
capsule presence and, 80
capsules of pathogens impairs, 433
- cells that perform, 457t, 460, 460f, 461f, 474t
complement system proteins enhance, 467
IgG antibody and, 483t
in inflammatory response, 461f, 462
mechanism of, 460–463, 461f
migration and, 464f, 465
Streptococcus pneumoniae and, 232, 433
Streptococcus pyogenes and, 317
toxic forms of oxygen and, 160, 461f
phagolysosomes, 461f, 462
phagosome (phagocytic vesicle), 461f, 462
phalloidin, 445
pharmaceutical agents, algae-produced thickeners used in, 343
pharmaceutical products, genetically modified, 257–258, 259t
pharmaceutical uses for fermentation end-products, 134t
pharyngeal gonorrhea, 756
pharyngitis, streptococcal (strep throat), 317, 682, 683, 683f, 686b
phase-contrast microscopy, 57, 60f, 65t
phenol (carbolic acid), 192, 193f, 201t
early uses in surgery, 11, 192
enrichment mediums and, 166
phenolics, 192, 193f, 201t
endospores, mycobacteria and, 201t
phenotype, 208–209
changes in, 226. See also mutations identifying mutants, 228–229, 229f, 230f
reversions and, 230–231, 230f
phenylalanine (phe), 42t
pHisoHex, 192
Phlebotomus (sand fly), leishmaniasis and, 356t, 665
phocid distemper virus, found in seals, 282b
phosphatase test, pasteurization and, 187
phosphate
in DNA structure, 47, 48f
in RNA structure, 49f
phosphate functional group, 36, 36t
in DNA replication, 211f–214f
in nucleotides, 208
in phosphoproteins, 44
phosphate salts buffering effect of, 156
culture media and, 156
phosphoenolpyruvic acid (PEP), 93
phosphoglyceric acid, 140f, 146f
phospholipids, 40, 40f, 89, 89f
phosphoproteins, 44
phosphorus cycle, 780
phosphorus (P)
atomic number/atomic weight, 27t
electronic configuration, 28t
microbial growth requirements, 158
in organic compounds, 36
sources of, 158
phosphorylation, 120
type used to generate ATP, compared, 135t
phototrophs, 140, 141f
phycobiliproteins, 344f, 345t
phylogenetic relationships, 273–277
hierarchies, 275, 277, 277f
of prokaryotes, 280, 280f
rRNA sequencing/ribotyping to trace, 292
of the three Domains, 273–275, 274f, 276f
phylogeny (systematics), 273
phylum (taxonomic), defined, 278, 279f
phosphorus cycle, 774
Physarum, 355f
physical methods of microbial control, 185–188, 191t
Phytophthora, California oak trees “sudden oak death”, 348

Phytophthora cinnamomi, *Eucalyptus* trees infected by, 348
Phytophthora infestans, potato/soybean/cocoa crops infected by, 347–348
Phytophthora ramorum, oak, redwood trees infected by, 348
phytoplankton, 783
pia mater, 616, 617f
pica cravings, 741
pickles lactic acid fermentation and, 135t, 806 pH and, 156
Picornaviridae, 377t, 388, 388t, 389f, 390b
picometer, 54t
PID. See pelvic inflammatory disease pig influenza viruses, 18 pigeons, cryptococcosis and, 632 pigments bacterial, protection from sunlight and, 190 photosynthetic, 138, 141f, 143t of algae, 343, 345t
pigs bird flu and, 374–377b as disease reservoirs, 413t genetically modified, artificial blood and, 258 genetically modifying as organ donors, 536 heart valves of, 535 influenza A virus subtypes and, 18, 374–375b tapeworm in, 359, 364t
pili/pilus, 79f, 83–84 conjugation (sex) pili, 84, 234, 236f pilin, 83 pilot whales, CM virus and, 282b pimaricin (Natamycin), 197 pin, of T-even bacteriophage, 376f, 382f pink eye/red eye (conjunctivitis), 609–610, 609b pinocytosis, 93, 100 pinworm (*Enterobius vermicularis*), 361, 362f, 364t, 740b, 741
Pityrosporum, as normal microbiota of skin, 404t placebo, in experimental epidemiology, 422 placental transfer of immunoglobulins, 483t, 494 plague, 364f, 447, 655, 656b, 657–658, 657f as a biological weapon, 654b bacterial capsules, virulence and, 433 bubonic, 656b, 657, 657f causative agent/arthropod vector, 413t disease reservoirs for, 413t distribution of, in U.S., 657f as notifiable infectious disease, 424t pneumonic, 658 portals of entry, 430 rat flea (*Xenopsylla*) as vector, 364t, 413t, 414t, 648 septicemic, 656b, 657 transmission due to, 413t vaccine, 650, 652 *Yersinia pestis* causing, 311, 413t, 433, 648 as zoonotic disease, 413t

Planctomyces genus/spp., 302t, 322, 324f *Gemmata obscuriglobus* and origin of eukaryotic nucleus, 322, 324f
Planctomycetales, 302t
Planctomycetes, 302t, 322, 324f plankton (dinoflagellates), 345t, 346–347, 346f blooms and polluted water, 348 photosynthesis of and Earth's oxygen supply, 348 planktonic bacteria, biofilms and, 161, 161f plant alkaloids, genetically modified, 257
plant breeding, 263–264, 266, 267t plant cells genetic modified to produce valuable products, 257 Ti plasmids and, 264, 264f plant diseases, viroids causing, 396–397 plant pollens, allergic reactions and, 528, 528t, 530, 530f plant rot, *Erwinia* causing, 311–312 Plantae Kingdom, 281 energy source, 281 in Linnaeus' classification system, 273 organisms included in, 281 position in evolutionary tree, 274f plants applications of rDNA technology, 263–264, 264f, 266, 267t bacterial pathogens, 300t, 301t, 303–305, 311–312 cell structure (eukaryotic), 6, 75, 97–106, 98f cultured, for rDNA purposes, 257 genetically modified, 263–265, 264f, 266, 267t advantages of, 257 as "factories" for producing desirable chemicals, 245 introducing foreign DNA into, 251–252, 252f, 263, 264f Ti plasmid and, 264, 265f uses of bacteria in, 257, 263–264, 264f green as photoautotrophs, 141–142, 141f photosynthesis and, 138 as kingdom in Domain Eukarya, 6, 274, 274f, 281 oxygen-producing and cyanobacteria, 320–322 parasites, oomycetes as, 347 photosynthesis and, 143t as potential source for vaccines, 506 *Spiroplasma* and, 318 viruses of, 395–396, 396t plaque (tooth/dental), biofilms and, 161 plaques (prion), 395 plaques (viral), 376, 376f, 379 plaque-forming units (PFU), 379 plasma, blood, 201, 456, 472b plasma cells, 484f, 485, 494, 500f plasma membrane (cytoplasmic membrane), 89, 100 antifungals that damage, 564t antimicrobials that damage, 90, 186, 194, 196, 201, 202t, 561f, 562t, 563, 564f, 566–567 electron transport chain (system) and, 129 of eukaryotic cells, 98f, 100–101, 100t functions of, 90, 100 injury by antimicrobial drugs, 561f, 565t, 572 membrane ruffling and, 435, 435f movement of materials across, 91–93, 91f, 92f, 100, 134 penetration by invasins, 435 phospholipids of, 40, 40f, 89, 89f of prokaryotic cells, 40, 40f, 79f, 85f, 89–91, 89f, 100, 100t proteins of, 89–90, 89f selective permeability of, 90, 186 sterols and, 41, 41f, 87, 89, 558 structure of, 89–90, 89f of T-even bacteriophage, 381, 382f viruses lacking, 370t plasma sterilization, 198–199 plasma viral load (PVL), 551 plasmid library, 253f plasmids, 79f, 94, 207, 207f *Agrobacterium tumefaciens* and, 263, 264f, 305 antibiotic resistance and, 235–237, 238f bacteriocins and, 235 in cell's genome, 208 circular DNA as protective, 249 in cloning and, 248–249, 249f conjugative, 235, 236f dissimilation, 235 F factor and, 94, 234, 236f genetic modification techniques and, 237, 248–249, 249f, 258 pathogenicity and, 441–442 R factors and, 235–237, 238f, 249, 249f, 441–442 recombinant, 246f, 258 Ti plasmids and, 263, 264f in typical genetic modification procedure, 245, 246f as vectors, 248–249, 249f, 258, 305 acting as shuttle vectors, 249 for cloning, 248–249, 249f, 255, 255f, 305 Ti plasmids for plant genetic modification, 263–264, 264f virulence factors and, 441–442 yeasts and expression of foreign eukaryotic genes, 257 plasmodial slime molds, 353–354, 355f *Plasmodium falciparum*, 663 *Plasmodium* genus/spp., 330, 351–352, 352f *Anopheles* mosquito and, 365, 414t can survive in phagocytes, 462 pathogenic mechanism of, 446 vector requirements of, 365 *Plasmodium malariae*, 663 *Plasmodium ovale*, 663 plasmodium (slime mold), 353–354, 355f *Plasmodium vivax*, 351–352, 352f, 356f, 669, 670. *See also* malaria *Anopheles* mosquito as vector, 351–352, 352f, 362–363, 364t, 413t, 663 incubation period, 431t pathogenic mechanisms of, 446 portals of entry, 431t reservoirs for, 413t plasmogamy, 335, 338f plasmolysis, 93, 156, 157f, 191t plastic biodegradable alternative to, 3b made by microbes, 3b plate counts, 171, 172f, 173f platelets, 457t histamine present in, 464, 464f thrombocidin produced by, 473 platensimycin, 566 platinum, used in staining of specimens, 61 Platyhelminthes, 355, 356, 364t. *See also* flatworms pleated sheets protein structure, 44, 45f pleomorphic bacteria, 78 actinobacteria and, 318–320 pleura, 676f, 681 pleurisy, 693 pleuromutilins, 565t, 572 *Pleurotus mutillus* (mushroom), 572 pluripotent stem cells, 535 PMNs/polymorphs (polymorphonuclear leukocytes), 456 pneumato cyst of algae, 344, 344f pneumococcal meningitis, 614, 623b pneumococcal pneumonia vaccine, 14 *Pneumocystis*, 284, 340–341 as emerging eukaryotic pathogen, 330 as leading cause of death in AIDS patients, 330, 341 *Pneumocystis carinii*. *See Pneumocystis jirovecii* *Pneumocystis jirovecii*, 419t, 550t identification difficulties, 284 life cycle of, 705f as an opportunistic pathogen, 405 pneumonia, 20, 272f, 703–704, 705f, 706b *Pneumocystis pneumonia* in AIDS patients, 20, 330, 340–341, 405, 419t, 549, 550t, 703–704, 705f, 706b identification difficulties, 284 pentamidine isethionate to treat, 569 trimethoprim-sulfamethoxazole to treat, 697 pneumonia, 687 antibiotic resistant, as an emerging infectious disease, 419t atypical vs. typical, 692, 693 bacterial, 685–692, 687b bronchopneumonia, 685 chlamydial, 322, 687b, 689 compromised hosts and, 416 etiology determination and, 407 fluoroquinolones to treat, 567 fungal (*Aspergillus*), 452b *Haemophilus influenzae*, 312, 433, 613, 693, 695b incubation period, 431t *Klebsiella pneumoniae* causing, 5f, 282b, 310, 416t, 433 legionellosis (Legionnaires' disease), 694, 695b lobar, 685 methicillin-resistant *Staphylococcus aureus* and, 419t

- myoplasmal, 318, 318f, 565, 693–694, 694f, 695b
nosocomial, 416t, 417t
Pasteurella causing, 312
Pneumocystis jirovecii causing, 272f, 284, 405, 419t, 550t, 697, 698f
pneumonococcal. *See*
 pneumonococcal pneumonia
portal of entry, 430, 431t
portal of exit, 446
psittacosis (ornithosis), 694–696, 695b
Q fever and, 695b, 696–697, 696f
spread by droplet transmission, 411–412, 412f
Staphylococcus aureus causing, 416t
streptococcal bronchopneumonia
 post-influenza, 409
Streptococcus pneumoniae
 causing. *See* pneumonococcal pneumonia
typical vs. atypical, 692, 693
vaccine, 14, 693
vancomycin-resistant *Staphylococcus aureus* and, 419t
viral, 692
walking, 694
pneumonococcal plague, 648
pneumonococcal meningitis, 619, 623b
pneumonococcal pneumonia, 14, 31t, 431t, 433, 506t, 507–508, 507t, 693, 693f, 695t
PNS (peripheral nervous system), 616, 616f
point mutation (base substitution), 224–225, 224f
poison ivy reactions, 535, 536f
poisonous gases, oxygen as, 158, 159–160
poisons, enzyme, 118
polar flagella, 80f, 81
polar head of phospholipids, 40, 40f, 89, 89f
polar molecule, 33
 water as, 33–34
polio. *See* poliomyelitis
poliomyelitis (polio), 626–628, 626f, 627f, 632b
 diagnosis of, 626
 epidemiology/eradication efforts, 628
 incidence, worldwide, 627, 627f
 iron lung developed for, 626, 626f
 as notifiable infectious disease, 424t
poliovirus causing, 626. *See also*
 poliovirus
portals of entry, 430, 632b
portals of exit, 446
postpolio syndrome, 627
 vaccine, 14, 506t, 507t, 627–628, 632b
poliovirus, 377t, 406, 626–627
 cytopathic effects of, 445t
 GI tract as portal of entry, 430, 632b
 as an icosahedral virus, 373
 as potential biological weapon, 654b
 size of, 372f
 uncoating in, 386
 vaccine, 14, 506t, 507, 627–628, 632b
pollens, plant
 allergic reactions and, 528, 528t, 530, 530f
polysaccharides, 38
 as antigens, IgE antibodies and, 481, 528, 529f
 localized anaphylaxis and, 529, 530, 530f
pollution
 bacterial biosensors to detect, 786b
 bioremediation and, 16, 32b
 oil-spill/oil-eating bacteria to
 degrade, 32b
 water, 16, 32b, 778–779
poly-beta-hydroxybutyric acid, 95
polyene antibiotics, 566t, 568, 568f, 574, 574f
polyester manufacture, bacteria used
 in, 3b
polyethylene glycol, 251, 252f
polygalacturonase (PG), 266
polyhedral (icosahedral) virus, 372f
polyhedral viruses, 372f, 373
polyhydroxyalkanoates (PHA), 3b
polymerase chain reaction (PCR), 249–251, 250f
deep-sea hydrothermal vents
 and, 157b
 as diagnostic tool, 251, 522
DNA chips and, 261, 292, 292f, 522
DNA probes and, 261, 521–522
to identify microorganisms
 from ancient *Bacillus* bacteria, 290
 causing human granulocytic
 ehrlichiosis, 290
 H1N1 influenza virus, 290
 Hantavirus hemorrhagic fever
 outbreak, 290
 in norovirus outbreak, 265b
 rabies virus source, 290
 West Nile virus, 380
 of Whipple's disease, 290
to match donors in transplant
 surgery, 539
microarrays and, 261, 292, 292f, 517
MRSA strains differentiated by, 423b
nucleic acid amplification tests and,
 290–291
real-time PCR, 251, 290
reverse-transcription PCR, 251,
 251b, 265b
soil samples and, 326
to study extinct plants/animals, 264
Taq polymerase enzyme and, 326, 767
to track HIV infection transmission,
 258b
polymers, 37
polymorphonuclear leukocytes
 (PMNs/polymorphs), 456
polymorphs/PMNs
 (polymorphonuclear
 leukocytes), 456
polymyxin B, 561f, 565t, 572
 plasma membrane damaged by, 90,
 561f, 565t, 572
 to treat imipenem-resistant gram-
 negative infections, 95b
Polyomavirus, 377t
 cytopathic effects of, 445t
polypeptide antibiotics, 564t, 569
polypeptide chains, in DNA
 translation, 216–217f, 217
polypeptides, 43
 in bacterial cell walls, 84, 85f
polyribosomes, 101, 218f
pond algae
 scum formed by filamentous green
 algae, 346
 Volvox, 5f
Pontiac fever, 694
“popcorn” strain of *Wolbachia*, 308b
populations (bacterial)
 defined, 153
 logarithmic representations,
 169–171, 169f
porcine growth hormone (pGH), 267t
pores of integral proteins, 89f, 90
porins, 85f, 86, 200, 309, 555
pork tapeworm, 359, 364t, 413t
Porphyromonas, periodontitis and, 716
portals of entry, 430–431, 431t, 447f
portals of exit, 446–447, 447f
Porter, Rodney R., 10f
posaconazole (Noxafil), 574
positive (direct) selection to detect
 mutant cells, 229
positive regulation of *lac* operon,
 221–222, 223f
positive RNA, 220b
positive staining, electron microscopes
 and, 62
postexposure prophylaxis (PEP), rabies
 and, 629, 631b
postherpetic neuralgia, 602
postoperative infections, principal sites
 of, 417t
postpolio syndrome, 627
potassium clavulanate (clavulanic
 acid), 568
potassium hydroxide (KOH), to
 diagnose cutaneous mycoses, 601
potassium (K)
 atomic number/atomic weight, 27t
 microbial requirements, 158
potassium sorbate, 197
potato crops
 genetically modified to produce
 antigenic proteins, 509
 insect toxin genetically modified
 into, 266
 Ireland's great potato blight,
 347–348
Phytophthora infestans infecting,
 347–348
potato spindle tuber viroid (PSTV),
 396, 397f
potato spindle tuber viroid (PSTV),
 396, 397f
potential chemical energy, Krebs cycle
 and, 125–127, 126f
potential energy, 120, 139
Potyviridae, watermelon wilt caused
 by, 396t
poultry
 cephalosporin-resistance in *E. coli*
 transferred to *Salmonella enterica* in, 583b
as disease reservoirs, 413t
fowl cholera in caused by
 Pasteurella, 312
influenza A virus subtypes and,
 18, 374b
Salmonella bacteria in intestinal
 tract of, 310
pour plate method of plate counts,
 171, 173f
povidone-iodine, 194
Poxviridae, 377t, 385, 386, 388t
 as DNA virus, 386
poxviruses, 374, 376f, 386
prairie dogs
 monkeypox and, 601
 plague endemic to, 657
praziquantel, 562t, 566t, 577
prebiotics, 456
precipitation curve, 514f
precipitation reactions, 514–515,
 514f, 515f
precipitin ring test, 515, 515f
precursors in amino acid synthesis, 145
predatory bacteria (on other bacteria),
 312–313
predisposing factors, disease and, 410
prednisone, 446b
pregnancy
 chlamydial infections and, 750
 cytomegalovirus and, 760
 fetus as foreign tissue, rejection
 and, 539
 gonorrhea infection and, 748–749
group B *Streptococcus* (GBS)
 screening and, 324b
home tests, 520, 522f
immune system tolerance of fetus
 and, 534–535
Listeria monocytogenes and, 317, 620
neonatal herpes and, 757–758
normal microbiota of reproductive
 tract and, 751
pelvic inflammatory disease
 and, 752
rubella and, 424t, 599, 760
syphilis and, 760, 761
Toxoplasma gondii dangers to, 352
preemergent flagellum, of euglenoids,
 351, 351f
preparation of specimens, 64, 67–71.
 See also stains/staining
pressure cookers, 185, 187
prevalence of disease, 406
Prevotella genus/spp., 302t, 322
Prevotella intermedia, trench mouth
 and, 716, 716b
primary amebic meningoencephalitis,
 623b, 634–635, 635f
 Clinical Case, 616b, 621b, 635b,
 637b, 639b, 662b
primary cell lines, 379
primary immune response, 490b, 494b,
 497, 497f
 vaccines provoke, 505
primary infection, 409
primary sewage treatment, 789, 790f
primary stain, 68, 71
primary structure of proteins, 43, 45f
primase (RNA), 211t, 212f
Primaxin, 569

primers
nucleic acid, 251, 251f
in PCR microarrays, 261
PCR process and, 250f
RNA, 211t, 212f
prions, 19, 395, 395f, 636–637, 636f, 637t, 638b
emerging infectious diseases caused by, 19, 419t
how proteins become infectious, 395, 395f
irradiation of foodstuffs does not inactivate, 797t
mad cow disease and, 19, 200, 395, 419t, 636f, 637, 637t
resistance to chemical biocides, 200, 200f
resistance to sterilization methods, 183f, 630
sheep scrapie and, 636
size of, 372f
spongiform encephalopathies caused by, 395, 636–637, 636f, 637t, 638b
privileged sites/tissues, transplant rejection and, 539–540
probes, DNA, 255, 256f
to identify pathogens, 255
probiotics, 456
lactic acid bacteria used as therapy, 456
procaine penicillin, 567, 568f
processes, cell membrane, of B cells, 478f
Prochlorococcus, 777
prodromal period in infectious diseases, 410, 410f
produce DNA viruses, 378t
product, in chemical reactions, 32, 115, 116f, 119f
profundal zone, 783
proglottids, 358, 360f
programmed cell death (apoptosis), 489, 489f
progressive encephalitis, 396t
prokaryotes/prokaryotic cells, 4, 75, 76–97, 79f, 299–328
archaea included in, 4, 75, 76, 300.
See also archaea
bacteria included in, 4, 75, 76, 300.
See also bacteria
cell division in, 76, 100t
cell wall composition in, 76, 100t
classification of, 278–280, 279f, 280f
diversity among, 327–328
DNA arrangement in, 75, 76, 100t
eukaryotes vs., 76, 81, 82, 100t, 101, 273, 274, 276f
evolution and, 275, 275f
evolutionary relationships and, 280, 280f
flagella of, 81–82, 81f, 82f, 100t
genetics of, 208–210, 210f
DNA replication, 210–215
protein synthesis, 215–218
glycocalyx of, 100t
historical and current definitions of, 273
identifying difficulties, 281
mutation and, 223–231
identification techniques, 231

organelles absent in, 76, 100t
origins of, 273, 274f, 277, 277f
pH ranges and, 35
photosynthetic, 141–143, 143t, 321t
phylogenetic relationships and, 280, 280f
plasma membrane of, 89–90, 89f, 100t
protein synthesis in, 215–218, 216–217f
ribosomal differences, 95, 95f
rules for naming and, 278
shapes of, 77–78, 77f, 78f, 100t
sizes of, 77, 100t, 327
species of, vs. eukaryotic species, 278, 280
structures of, 78–97, 79f, 79f
external to cell wall, 78–84
internal to cell wall, 89–97
taxonomic classification of, 278–280, 280f
proline (pro), structural formula/
characteristic R group, 42t
promoter, 214f, 215, 220, 221f, 222f, 223f
inducible, 255
proofreading abilities of DNA polymerase, 214–215
properdin (factor P) complement protein, 467, 468f, 470f
phage, 383f, 384, 384f
lysogenic conversion and, 442
vs. provirus, 390
Propionibacterium acnes
bacterial acne caused by, 319, 599–600
as normal microbiota of skin, 591, 594
pH ranges and, 35
Propionibacterium freudenreichii, Swiss cheese and, 134t, 319
Propionibacterium genus/spp., 132f, 302t, 319
added to cheese in ripening process, 805
fermentation and, 132f, 137
lactic acid use of, 137
as normal microbiota of eye, 404t
as normal microbiota of skin, 404t
propionic acid
bacteria that produce, 302t
as fermentation end-product, 132f, 134t, 137
Propionibacterium genera able to produce, 319
prospective studies, 424
prostaglandins, 440, 440f, 464, 464f, 529
in allergic reactions, 529
aspirin, acetaminophen inhibit synthesis of, 440
fever and, 440, 440f, 466
prostate cancer vaccine, 543
prosthecae, 303
of *Caulobacter*, 304
of *Hyphomicrobium*, 304
protease enzymes, to inactivate
prions, 200
protease inhibitors, 548, 571, 576
proteases, 134–135
granzymes, 458, 489
protein denaturation
by antimicrobial agents, 184, 194, 201t, 202t
by pasteurization, 187–188, 191t
protein kinase, 471
protein synthesis, 215–218, 216–217f
early discoveries about, 15
evolutionary aspects, 105
genetic code and, 208, 219f
Golgi complex and, 102–103
inhibitors
antimicrobial agents, 194
antimicrobial drugs, 561f, 562–563, 563f, 565t, 570–572
nitrogen requirements for, 158
prokaryotic cells, 215–218,
216–217f, 218f
site of, 94, 101, 215
transcription and, 210f, 214f, 215, 218
vs. eukaryotic cell, 105, 218
regulation of, 218–223
ribosomes and, 101, 215–218,
216–217f
RNA and, 146, 208, 216–218,
216–217f
transcription and, 215, 218, 218f
translation and, 215–218,
216–217f, 218f
proteinaceous infectious particle (prion), 395, 395f
proteins, 41–44
amino acids found in, 41, 42t
as antigens, 481
antimicrobial agents and, 184
antiviral (AVPs), 47f, 471–473
biosynthesis of, 144–145, 145f
catabolism of, 134–135, 136f
complement, 466–470. See also complement system
in complex culture media, 162–163, 163t
conjugated, 44
denaturation of, 44, 117, 117f
by heat treatments, 185–188, 191t
DNA as blueprint for, 209, 210f
enzymatic activity of. See enzymes
enzymatic vs. structural, 209
flagellin, 81
functions of, 41
globular, flagellin, 81
Human Proteome Project and, 260
Human Proteome Project to map, 260
infectious (prions), 395, 395f
iron-binding, 473
negative staining in study of, 62
phenotypes and, 209
proteomics science and, 261
simple, 44
structural vs. enzymatic, 209
structure of, 43–44, 45f
synthesis of. See protein synthesis
three-dimensional shape of, 43, 44, 45f, 184
transporter, 41
proteobacteria, 279f, 300–301t, 303–313, 321t
important general/special features, 300–301t
photosynthetic bacteria of, 321t
phylogenetic relationships, 274f, 279f, 280f, 303
proteomics, 261
Human Proteome Project and, 260
Proteus genus/spp., 301t, 311, 311f
as endotoxin producer, 441
L forms of, 88
as normal intestinal bacteria, 404t
as normal urethral bacteria, 404t
swarming growth of, 81, 82f, 311, 311f
Proteus mirabilis, 311, 311f
rapid identification methods, 285f
Protista (Kingdom), 6, 273, 280
protists, 6, 273, 274f, 280
clades and, 280
fossils and, 277
Kingdom Protista and, 273, 280
proton acceptors, bases as, 34
proton donors, acids as, 34
proton motive force, 128
proton pumps, 128–129, 128f, 129f
protons, 26, 26f
in cellular oxidations, 120, 121f
in chemiosmosis, 128–129, 128f
protoplast fusion, 251–252, 252f
protoplasts, 88, 251, 252f
protoplast fusion, 251, 252f
protozoa/protozoan, 2, 4–5, 5f, 7, 7f, 330, 331f, 348–353
as aerobic heterotrophs, 349
AIDS-related diseases caused by, 550t
antimicrobial drugs that inhibit, 12, 528, 529f, 562t
cell structure, 5, 5f, 98f, 99, 349
characteristics of, 348–349
as chemoheterotrophs, 141f, 143
classification and, 349
conjugation in, 348–349, 349f
cysts, 349
antimicrobial agents and, 203, 203f
emerging infectious diseases caused by, 419f
as eukaryotes, 6, 76, 98f, 99, 348
habitat of, 348
identification by microscope, 281
immune system attacks on, 491, 492f
as insecticides, 348
life cycle of, 348–349
locomotion and, 5, 5f
medically important phyla, 349–353
nutritional requirements, 6, 141, 141f, 349
parasitic, 349–350, 356f
Pasteur's research on, 11
pathogenicity of, 445–446
photosynthetic, 5, 349–350, 350f
reproduction in, 5, 348–349
resistance to chemical biocides, 200, 200f
rules for naming and, 278
silkworm disease and, 11
protozoan diseases, 356f, 445–446
of cardiovascular system, 666–673
of digestive system, 736–738, 740b
of eyes, 605, 609b
of lymphatic system, 650b, 656b, 660–666
of nervous system, 623b, 633–635, 635f, 638b

- of reproductive system, 759*b*, 760–761, 761*b*
zoonotic, 413*t*
- prourokinase, genetically modified, used in anticoagulant therapy, 259*t*
- provirus, 390–391, 391*f*
HIV as, 547, 547*f*
- PrP^C (cellular prion protein), 395, 395*f*
- Prusiner, Stanley B., 10*f*, 395
- Pryadiictium* genus/spp., 302*t*
- pseudohypha, 333, 335*f*, 340*t*
- pseudomonad infections, 596, 598–599. *See also Pseudomonas aeruginosa*
- Pseudomonadales, 301*t*, 307–309, 307*f*
- Pseudomonas aeruginosa*, 308, 558, 558*f*, 589*f*
biofilm-forming, 56*b*, 56*f*, 462
carbenicillin effective against, 568, 569
Clinical Case
 corneal transplant, 559*b*, 570*b*, 579*b*, 581*b*, 584*b*, 585*b*
 swimming pool, 590*b*, 599*b*, 605*b*, 607*b*, 611*b*
disinfectants and, 193, 193*f*
doripenem effective against, 569
nosocomial infections and, 415, 416*t*
R factors and genes determining antibiotic resistance, 415
skin infections caused by, 596, 597*b*, 598–599
as superbug, 580
triclosan resistance and, 193, 193*f*
twitching motility in, 83
- Pseudomonas carboxydohydrogena*, 143
- Pseudomonas dermatitis*, 596, 597*b*, 598–599
- Pseudomonas fluorescens*
bloodstream infection (Clinical Case), 154*b*, 166*b*, 175*b*, 177*b*
genetically modified to produce *Bacillus* toxin, 266, 267*t*
indwelling catheters and, 309
- Pseudomonas* genus/spp., 301*t*, 307–309, 307*f*
ability to degrade/detoxify compounds and, 235
anaerobic respiration and, 130
antibiotic resistance and, 309
antibiotics effective against, 565
biochemical tests and, 137
bioremediation uses, 16, 32*b*
classification changes and, 278, 308
cystic fibrosis patients and, 309
dermatitis caused by, 596, 597*t*, 598–599
disinfectants and active growth in, 196–197
dissimilation plasmids and, 235
Enter-Doudoroff pathway and, 125
grow at refrigerator temperatures, 309
grow in quats, 196–197, 309
hospital-acquired infections and, 309, 598–599
nitrogen in fertilizers/soil lost due to, 309
as normal microbiota of urethra, 404*t*
as oil degraders, 32*b*
- quat compounds and, 196–197, 201*t*, 202*t*, 309
resistance to chemical biocides, 196, 196*f*, 200, 309
soil as common habitat, 307
urinary tract infections and, 752
Zephiran resistance and, 196, 201*b*
- Pseudomonas putida*, 3*b*
- Pseudomonas syringae*, 267*t*, 308
- pseudomurein, 87
- pseudopods, 4, 5*f*, 350, 351*f*, 461*f*, 462
 of amebae, 4, 5*f*, 350, 351*f*
 of *Amoeba proteus*, 351*f*
- psittacosis (ornithosis), 322, 413*t*, 694–696, 695*b*
 Clinical Case, 681*b*, 696*b*, 697*b*, 699*b*, 701*b*, 705*b*
 as notifiable infectious disease, 424*t*
 reservoirs/transmission methods, 413*t*
- psoriasis, 538
 interleukin-12 therapy to treat, 499*b*
- psoriatic arthritis, 538
- PSP (paralytic shellfish poisoning), 346, 356*t*, 446
- PSTV (potato spindle tuber viroid), 396, 397*f*
- psychrotrophs, 154, 154*f*, 158
 growth at refrigerator temperatures, 191–192
- psychrophiles, 154, 154*f*
- psychrotrophs, 154*f*, 155
- public health
 antibiotic-resistant bacteria, 18
 E. coli 0157:H7 outbreaks, 19
 emerging infectious diseases and, 17–20, 418
- public health issues
 measles vaccination, 510*b*
 West Nile virus, 220*b*, 631, 634*b*
- pUC19 plasmid vector, 249*f*
- puerperal fever. *See* puerperal sepsis
- puerperal sepsis (childbirth fever), 11, 197, 420, 647, 649*b*
- pulmonary (inhalational) anthrax, 432, 652, 654*b*, 655*b*
- pulmonary syndrome, *Hantavirus*, 378*t*, 413*t*, 416, 419*t*
- pulmonary tuberculosis, 142*b*
- Pulmozyme (rhDNase), genetically modified, 259*t*
- pulsed-field gel electrophoresis (PFGE), 724
- PulseNet, to track foodborne diseases, 261
- puncture wounds, fungal infections and, 340, 340*f*
- pure bacterial cultures, streak plate method for obtaining, 167, 167*f*
- Purell hand sanitizer, 195, 735
- purine nucleotides, 47
 biosynthesis of, 115*t*, 145–146, 146*f*
- purple bacteria, 141, 141*f*, 142, 143*t*
purple nonsulfur bacteria, 141, 141*f*, 143, 302*t*, 321*t*, 324*f*
- gamma-proteobacteria and, 324
 purple photosynthetic bacteria, 302*t*
 purple sulfur bacteria, 143, 302*t*, 315*f*, 321*t*, 324, 325*f*
 alphaproteobacteria and, 324
- pus, 465
 phenolics to disinfect, 192
- pustules (lesions), 587*f*, 591
 inflammatory response and, 465
- putrefaction spoilage, of canned foods, 795, 796*t*
- PVL (plasma viral load), 551
- pyantel pamoate, 566*t*
- pyelonephritis, 752, 753*b*
- pyocyanin, 598
- pyrimidine dimers, 211*t*
- pyrimidine nucleotides, 47
 biosynthesis of, 115*t*, 145–146, 146*f*
- Pyrococcus*, 157*b*
- Pyrococcus furiosus*, 157*b*
- Pyrodictium abyssi* (archaea), 326*f*
- Pyrodictium* (archaea), 302*t*
- pyrogenic response (fever), 452*f*, 466.
 See also fever
- endotoxins causing, 440, 440*f*
- pyrogenic toxin, 442
- pyruvic acid
 alcohol fermentation and, 133*f*
 coenzymes and, 115*t*
 fermentation and, 123*f*, 130, 131, 132, 132*f*, 133*f*
 glycolysis and, 123*f*, 124, 124*f*, 125
- Krebs cycle and, 125, 126*f*
lactic acid fermentation and, 133*f*
 in lipid biosynthesis, 145*f*
 in lipid catabolism, 136*f*
 in nucleotide biosynthesis, 146*f*
 in polysaccharide synthesis, 144*f*
- Q**
- Q fever, 95, 309, 462, 695*b*, 696–697, 696*f*
 as notifiable infectious disease, 424*t*
- qPCR (quantitative PCR), 251
- quadruple reassortant virus, 374–377*b*
- quantitative PCR (qPCR), 251
- quaternary ammonium compounds.
 See quats
- quaternary structure of proteins, 44, 45*f*
- quats (quaternary ammonium compounds), 90, 193*f*, 196–197, 202*t*
- chemical structure of, 196, 196*f*
 effectiveness against endospores, mycobacteria, 201*t*
 enveloped viruses and, 196, 199*b*, 202*t*
- Pseudomonas*, *Burkholderia* actively grow in, 200
- quinacrine, 577
- quinine, 12, 577
 to control malaria, 12, 577
 inducing cytotoxic reaction, 528, 529*f*
- quinolones, 561*f*, 565*t*, 572, 585, 721
- quinones, 115*t*
- quinupristin, 565*t*, 571
- quorum sensing, biofilms and, 56*b*, 160–161
- R**
- r-determinant gene of R factors, 236, 238*f*
- R factors (resistance factors), 235–237, 238*f*
- antibiotic resistance and, 235–237, 238*f*, 309, 415, 441–442, 580, 583*b*
- plasmids as vectors and, 249, 249*f*
- resistance transfer factor (RTF)
 genes and, 236, 238*f*
 transposons and, 237, 238*f*, 580
- R groups of organic compounds, 36*t*, 37
- R groups (side groups) of amino acids, 41, 41*f*, 42*t*
- R100 (resistance plasmid R100), 236, 238*f*
- rabbit fever/deer fly fever. *See* tularemia
- rabbits
 culturing viruses in, 379
 as disease reservoirs, 656*b*
 raccoon roundworm and, 360, 364*t*
 tularemia and, 648, 656*b*
- rabies, 628–630, 628*f*, 630*f*, 631*b*, 632*b*
 bat bites and, 631*b*, 631*f*
 diagnosis of, 62, 629, 631*b*
 disease reservoirs for, 413*t*
 distribution in wildlife, 629–630, 630*f*
 furious (classical) 629 type, 629
 hydrophobia and, 629
 immunofluorescence to diagnose, 59
 incidence, by animal species, 630, 630*f*
 incubation period, 431*t*, 628–629
 as notifiable infectious disease (animal/human), 424*t*
 paralytic (dumb or numb) type, 629
 portals of entry, 431*t*, 628, 628*f*
 portals of exit, 446
 postexposure prophylaxis for, 629
 prevention of, 629
 signs in animals, 629
 symptoms in humans, 629
 transmission due to, 413*t*
 treatment for, 629, 631*b*
 vaccines, 380, 629
 as zoonotic disease, 413*t*, 622, 625*b*
- rabies virus, 378*t*, 390, 390*f*. *See also* rabies
- as a *lyssavirus* member, 390, 630
- as a rhabdovirus, 390
- can mimic neurotransmitter acetylcholine, 443
- disease reservoirs, 413*t*
 bats as 628, 630, 630*footnote*
 silver-haired bat rabies variant, 631*b*, 631*f*
- encephalitis cases and, 629
- as helical virus, 373
- inclusion bodies produced by, 443, 444*f*
- incubation period, 431*t*, 628–629
- PCR used to identify source, 290
- portals of entry, 431*t*
- size of, 372*f*
- transmission due to, 413*t*
- vaccine for animals, 507
- vaccine for humans, 506*t*
- raccoons
 as disease reservoirs, 330, 413*t*, 419*t*
 reported cases of rabies in, 630*f*
- roundworm *Baylisascaris procyonis*, 360, 364*t*
- radiant energy spectrum, 189–190, 190*f*
- radiation
- Deinococcus radiodurans* resistant to, 326
- of foods (to preserve), 803–804, 803*f*, 803*t*, 804*f*

gamma, provirus expression and, 391
 ionizing, 189–190, 190f, 191t, 227
 to kill microbes in foods, 189,
 796–797, 797f, 798f
 mutagenic, 227–228
 nonionizing, 190, 190f, 191t
 sterilizing, 189–190, 190f, 191t
 radiation therapy, impaired innate
 defenses and, 465
 radicals
 hydroxyl, 162
 superoxide, 159–160
 radioactive cesium-137, lichen and, 342
 raltegravir, 553, 576
 Ramakrishnan, Venkatraman, 13t
 random mutations, 429
 Rapamune (sirolimus), 542
 rapid diagnostic tests (RDTs) for
 syphilis, 761
 rapid identification methods,
 285–286, 285f
 using DNA probes, 290, 291f, 292
 rapid immunohistochemical test
 (RIT), 629
 rapid plasma reagin (RPR) test, for
 syphilis, 761
 rapidly growing mycobacteria, 201b
 rashes, 591, 592f
 antibiotic-induced, 531b
 Clinical Case, 590b, 599b, 605b,
 607b, 611b
 delayed, 531b
 diseases that cause, 594b, 596b, 597b
 enanthem, 591
 exanthem, 591
 rat liver extract, 230–231, 230f
 rats
 plague and, 311
 rat bite fever, 654–655, 655b
 rat flea (*Xenopsylla*) transmitting
 plague, typhus, 304, 311, 363f,
 364f, 413t, 648
Yersinia pestis bacteria carried by,
 311, 413t
 RBCs. See red blood cells
 rDNA. See recombinant DNA (rDNA)
 technology
 RDTs (rapid diagnostic tests), for
 syphilis, 755
 reaction rate, 113
 reading frames, translational,
 frameshift mutations and, 225
 reagents in Gram staining, 86
 real-time PCR, 251
 RecA protein, 64f, 67t
 in *E. coli*, 64f, 67t
 in genetic transformation, 231f, 233
 receptor-mediated endocytosis,
 100–101
 as viral entry method, 385, 385t, 386f
 receptor sites, in viral multiplication, 385
 receptors for pathogens, 431f, 432
 recipient cells in gene transfers, 231f,
 232, 234f
 recognition sites, in transposition, 237
 recombinant DNA (rDNA)
 technology, 14–15, 16,
 244–271, 245, 246f
 advantages, 245, 257–258, 506
 applications, 16, 257–266
 agricultural, 263–264, 266, 267t

scientific, 260–263
 therapeutic, 16, 257–258, 259t
 biotechnology and, 16, 244–271,
 245. *See also* biotechnology
 enzymes produced by, 16, 247–248,
 248f, 248t
 ethical issues, 267
 gene therapy and, 16
 genetic modification techniques,
 251–257
 genetic recombination and,
 231–239. *See also* genetic
 recombination
 Human Genome Project and, 260
 Human Proteome Project and, 260
 overview, 245–247, 246f
 safety issues, 266
 vaccines produced by, 16, 245,
 508, 509
 recombinant interferons (rIFNs), 472
 recombinant plasmids, 246f, 258
 recombinant vaccines, 508, 509
 recombinants/recombinant cells,
 210f, 232
 reconstructive surgery, genetically
 modified morphogenic
 proteins, 259t
 recreational water-associated
 diarrhea, 357b
 rectangular-shaped bacteria, 79, 79f
 red algae, 344f, 345t, 346
 red blood cells (RBCs), 457t. *See also*
 erythrocytes
 ABO blood type and, 532–533, 532f
 compound light microscope
 micrograph, 58f
 size of, 372f
 red bone marrow, 458, 459f
 lymphocyte maturation and, 480,
 541b
 radiation therapy damage to, 465
 red eye/pink eye (conjunctivitis),
 609–610, 609b
 red tides, 346–347, 446, 785, 785f
 algal blooms and, 348
 paralytic shellfish poisoning and,
 446
 Redi, Francesco, 7
 redness, of inflammation, 466
 redox reaction (oxidation-reduction
 reaction), 115t, 120, 120f
 in Krebs cycle, 125–127, 126f
 reducing culture media, 163, 164f, 167t
 reduction, 120, 120f. *See also* redox
 (oxidation-reduction) reaction
 redwood trees, *Phytophthora ramorum*
 and, 348
 Reed, Walter, 659
 refractive index, 57, 59f
 refrigeration
 to control microbial growth, 155,
 155f, 156f, 188–189, 191t
 to preserve cultures, 167–168
 temperature and microbial growth
 in, 155, 155f, 156f, 188–189, 309
 refrigerators
Clostridium botulinum and, 618
Listeria monocytogenes and, 317, 620
 pathogenic bacteria and
 temperatures of, 156, 156f,
 188–189
 scientific, 260–263
 therapeutic, 16, 257–258, 259t
 biotechnology and, 16, 244–271,
 245. *See also* biotechnology
 enzymes produced by, 16, 247–248,
 248f, 248t
 ethical issues, 267
 gene therapy and, 16
 genetic modification techniques,
 251–257
 genetic recombination and,
 231–239. *See also* genetic
 recombination
 Human Genome Project and, 260
 Human Proteome Project and, 260
 overview, 245–247, 246f
 safety issues, 266
 vaccines produced by, 16, 245,
 508, 509
 relapsing fever, 325, 364f, 656b, 658
Borrelia and, 325, 658
 causative agent/arthropod vector,
 414t
Ornithodoros (tick) as vector, 364t,
 414t
 relative brightness (reinforcement),
 in phase-contrast microscopy,
 57, 60f
 relative darkness (interference), in
 phase-contrast microscopy,
 57, 60f
 relaxation pathway, tetanospasmin
 and, 439
 relaxin, genetically modified, 259t
 release stage in viral multiplication,
 382f, 383, 385t, 387f, 389f,
 391–392
 Relenza (zanamivir), 566t, 575, 701
 Remicade (infliximab), 512
 rennin
 in cheese making, 805
 genetically modified, 267t
Reoviridae, 378t
Reoviridae, 378t
Reoviridae, 388f, 388t, 390
Reoviridae, wound tumor virus (in
 plants), 396
 reoviruses, RNA strands and, 48t
 repellants (chemotactic signals), 82
 replica plating to identify mutation,
 229–230, 229f
 replication, semiconservative, 212
 replication enzymes (DNA), 210–215,
 211f–214f, 211t
 replication fork (DNA), 210, 211f
 in *E. coli* bacteria, 213, 213ff
 events at (summary), 212f
 replication of DNA. *See* DNA
 replication
 repressible genes, 219–221, 222f
 repressible operons, 221, 222f
 repression, 219–221, 221f, 222f
 repressor proteins, 219, 221, 221f,
 222f
 reproductive choices, genetic
 screening, ethics involved,
 261, 267
 reproductive methods
 of algae, 331f, 344, 345f, 345t
 of archaea, 326
 of bacteria, 4, 168, 168f, 304, 308b,
 315, 333t
 of fungi, 4, 331f, 334–335, 335f–339f
 of helminths, 355, 356
 parthenogenesis, 308b
 of protozoa, 5
 sporulation. *See* sporulation
 of viruses, 5
 reproductive systems, 749, 750, 751t
 bacterial diseases of, 754–763,
 766b, 767b
 fungal diseases of, 765–766,
 766b, 767b
 normal microbiota of, 404t
 protozoan diseases of, 766, 767b
 structure/function of, 750, 751f
 viral diseases of, 763–765, 767b
 reptiles, as disease reservoirs, 413t
 research, medical, importance of
 rDNA technology to,
 257–258, 259t
 reservoirs of disease, 411, 413t
 animal and human, 411, 413t, 414t
 bats as especially good, 628,
 630**footnote**
 nonliving (soil and water), 409
 of zoonoses/with transmission
 methods, 413t
 residual body formation in
 phagocytosis, 461f, 462
 resistance, 17, 451. *See also* immunity
 to antibiotic drugs, 12, 237. *See also*
 antibiotic resistance
 to drought, modified into crop
 plants, 264
 resistance factors in bacteria. *See*
 R factors
 resistance plasmid R100, 236, 238f
 resistance transfer factor (RTF),
 236–237, 238f
 resistant mutants, antibiotics and,
 581, 582f
 resolution (resolving power) of
 microscopes, 56–57, 58f
 resolving power (resolution), of
 microscopes, 56–57, 58f
 respiration
 breathing and, 122
 cellular, 125. *See also* cellular
 respiration
 respirators, as disease reservoirs, 417
 respiratory infections, *Serratia*
 and, 311
 respiratory syncytial virus (RSV),
 698–699, 706b
 respiratory system, 680–710, 681f, 682f
 bacterial diseases, 677–692,
 681b, 699b
 diseases commonly contracted via,
 430, 431t
 lower respiratory tract
 bacterial diseases, 687–697
 fungal diseases, 702–705
 structure/function of, 681, 682f
 viral diseases, 697–702
 microbial diseases of, 18, 56b, 80,
 680–710
 bacterial, 683–685, 687–698
 fungal, 695–698, 699b
 nosocomial, 416t, 417t
Reoviridae and, 378t, 390
 viral, 390, 679–680, 681b
 normal microbiota of, 312, 404t, 682f
 nosocomial infections and, 416,
 416t, 417, 417t
 physical defenses against microbes,
 452, 452f, 680, 681f, 682f
 structure/function, 681, 681f, 682f
 upper respiratory tract

- bacterial diseases of, 683–685, 686b
 IgA antibody protection and, 480–481
 as portal of entry, 430, 431t, 447f
 as portal of exit, 446
 structure/function of, 681, 681f
 viral diseases of, 312, 386, 390, 685–686, 686b
 respiratory tracts, lower/upper. *See under* respiratory system
 restaurant eating utensils, calcium hypochlorite to disinfect, 194
 restriction enzymes, 247–248, 248f, 249f
 blunt ends/sticky ends, 247, 248f
 used in rDNA technology, 248t
 restriction fragment length polymorphisms (RFLPs), 261, 289
 to identify viruses, 380
 reticular dysgenesis, 544t
 reticulat bodies, *Chlamydophila psittaci* and, 323f
 reticuloendothelial system
 brucellosis persists in, 644
 macrophages and, 460
 retorts, 185, 800, 801f
 retapamulin, 565t, 572
 retrospective studies, 424
 Retroviridae, 378t, 390–391, 391f
 biosynthesis of, 388t
 HIV as, 378t, 390, 545
 multiplication in, 390, 391f
 mutation rate high in, 547
 oncogenic, 391, 393–394
 provirus and, 390–391
 reverse transcriptase and, 390, 391f
 used as vectors in gene therapy, 249, 258
 retroviruses, 390–391, 391f
 high mutation rate of, 547
 HIV-1, HIV-2 as, 378t, 390, 545
 oncogenic, 391, 393–394
 reverse genetics, 261, 694
 reverse transcriptase, 253, 254f, 388, 388t, 390, 391f
Hepadnaviridae and, 388
 HIV and, 387, 390, 545, 546f, 547
 retroviruses and, 390, 390f, 392b, 393
 reverse-transcription PCR (RT-PCR), 251
 to track HIV infection, 251b
 used to confirm norovirus outbreak, 265b
 reversible chemical reactions, 33, 38f
 reversion rate, spontaneous, 230f, 231
 reversions/revertant bacteria, 230–231, 230f
 Reye syndrome, 601
 RFLPs (restriction fragment length polymorphisms), 258b, 261, 290
 DNA fingerprinting and, 261, 263f
 Rh blood group system, 532–533, 533f
 rH factor, 528t, 533, 533f
 Rhabdoviridae, 378t, 388t, 389f, 390, 390f
 cytopathic effects of, 445t
 potato yellow dwarf virus caused by, 394t
 rhabdoviruses, 389f, 390, 390f
 cytopathic effects of, 445t
 Rhabdoviridae, potato yellow dwarf virus and, 396t
 rhDNase (Pulmozyme), genetically modified, 259t
 rheumatic fever, 317, 648, 648f, 649b
 HLA typing to determine susceptibility, 539t
 rheumatoid arthritis (RA), 463, 537
 interleukin-12 to treat, 499b
 monoclonal antibodies to treat, 512
 testing for immune-complex diseases, 472b
 tumor necrosis factor and, 492, 512
 rheumatoid factors, 537
Rhinovirus, 372f, 377t, 685. *See also* common cold
 size of, 372f
 rhizines, 342, 343f
 rhizobia, 304–305
 Rhizobiales, 300t
Rhizobium genus/spp. (rhizobia), 300t, 304–305
 Entner-Doudoroff pathway and, 125
 as pleomorphic bacteria, 78
 sold industrially, 806
 as symbiotic nitrogen fixers, 300t
Rhizobium meliloti, genetically modified, 266, 267t
Rhizopus genus/spp., 335, 336f
Rhizopus stolonifer, 335f, 337
Rhodococcus bronchialis, DNA fingerprinting and, 289, 289f
Rhodococcus erythropolis, 143
Rhodocyclales, important genera of, 301t
Rhodophyta (algae), 345t
Rhodopseudomonas, 143
Rhodospirillales, 300t
Rhodospirillum genus/spp., 300t, 321t
Rhodospirillum rubrum, chromatophores of, 90, 90f
RhoGAM, 528
 ribavirin, 566t, 575
Ribeiroia, 358f
 riboflavin (vitamin B₂), 115t
 in cellular respiration, 127
 ribonucleic acid (RNA), 47, 47f
 ribose, 46f, 47
 ribosomal RNA (rRNA), 47, 94, 101, 208
 as basis for phylogenetic system in latest *Bergey's Manual*, 299
 ribotyping and, 292. *See also* rRNA sequencing
 sequencing techniques. *See* rRNA sequencing
 in study of evolutionary relationships, 273, 292
 ribosomes, 94, 94f, 98f, 101
 antibiotics and, 94, 563, 565–567
 chloroplasts and, 104
 eukaryotic, 100t, 101, 102f, 103f, 276t
 mitochondrial, 103
 phylogenetic relationships and, 273
 prokaryotic, 79f, 94, 94f, 100t, 276t, 557, 558f
 in translation, 216–218, 216–217f
 viruses and, 370t
 ribotyping, 292
 ribozymes, 119, 211t, 218
 ribulose 1, 5-diphosphate carboxylase, 95
 ribulose diphosphate, in Calvin-Benson cycle, 140f
Rickettsia genus/spp., 300t, 304, 304f
 antimicrobial drugs that inhibit, 562t
 can survive in phagocytes, 462
 culture media and, 164, 304
 diseases caused by, 304
 as parasites, 304, 462, 565
Pelagibacter (ocean bacterium) related to, 292
 taxonomic changes in, 299, 304
 tetracyclines effective against, 565
 viruses compared to, 370, 370t
Rickettsia prowazekii, 300t, 304, 654–655
 considered hazardous to culture, 655
 epidemic typhus and, 304, 413t, 654–655, 656b
 as potential biological weapon, 654b
Rickettsia rickettsii
 incubation period, 431t
 portals of entry, 431t
 reservoirs/transmission method, 413t
 Rocky Mountain spotted fever and, 304, 413t, 431t, 661–662, 661f
Rickettsia typhi
 endemic murine typhus and, 304, 413t
 reservoirs/transmission method, 413t
Rickettsiales, 300t
 Rid (lice remedy), 608
 rifampicin. *See* rifampin
 rifampin, 539b, 561f, 565t, 572
 multidrug-resistant TB and, 18
 to treat leprosy, 572, 626, 632b
 to treat tuberculosis, 572, 684
 rifamycins, 561f, 565t, 572
 rIFNs (recombinant interferons), 472
 RIG (human rabies immune globulin), 629
 right lymphatic duct, 458, 459f
 ring stage, 351, 352f
 ringworm, 413t, 447, 497b, 605–606, 606f
 athlete's foot (*tinea pedis*), 413t, 600, 600f
 disease reservoirs for, 413t
 jock itch (*tinea cruris*), 605
 nails (*tinea unguium*), 600–601
 of skin or scalp, 597b, 601f, 605
 griseofulvin to treat, 569, 605
 RISC (RNA-induced silencing complex), 258, 258f
 RIT (rapid immunohistochemical test), 629
 rituximab (Rituxan), 512
 rhizosphere, 771–772
 RNA-dependent RNA polymerase, 389f, 390
 RNA-induced silencing complex (RISC), 258, 258f
 RNA interference (RNAi), 258, 579
 RNA polymerase, 211t
 in eukaryotic transcription, 218, 219f
 in prokaryotic transcription, 214f, 215
 repressor proteins and, 221, 221f, 222f, 223f
 RNA primase, 211t, 212f
 RNA primers, 212f
 RNA (ribonucleic acid), 47, 47f
 antibiotics that inhibit, 563, 565–567
 antimicrobial agents and, 184
 DNA compared to, 48t
 in gene expression regulation, 218–223
 messenger, 15, 47, 208, 215, 216f
 microRNAs and, 222–223, 223f
 naked, viroids and, 396–397
 nucleotides, 214f, 215
 processing in eukaryotic cells, 218, 219f
 in protein synthesis, 146, 208, 215–218, 216–217f, 218f, 222–223
 ribosomal (rRNA), 47. *See also* ribosomal RNA
 ribozymes and, 119
 structure, 208
 transcription and, 214f, 215
 transfer (tRNA), 47
 of viruses, 5, 370, 371
 RNA-RNA hybridization reactions, 290
 RNA synthesis
 antibiotics that inhibit, 567
 nitrogen requirements, 158
 from nucleoside triphosphates with ribose, 214
 phosphorus requirements, 158
 RNA tumor viruses, 378t
 RNA viruses, 377–378t, 385t, 388–392, 388t, 389f, 392b
 DNA viruses compared to, 388t
 multiplication of, 385t, 388–392, 388t, 389f
 oncogenic viruses, 393–394
 reverse transcriptase viruses, 388t
 RNAi (RNA interference), 258, 259f, 260, 579
 Roaccutane, 600
 Robbins, Frederick C., 13t
 Roberts, Richard J., 13t
 rock-eating microorganisms, 143
 Rocky Mountain spotted fever, 364t, 413t, 462, 656b, 661–662, 661f
Dermacentor spp. as tick vector, 414t, 655, 661–662, 661f
 life cycle of, 656f
 disease reservoirs for, 413t
 distribution of, in U.S. (2008), 661f
 incubation period, 431t
 as notifiable infectious disease, 424t
 portals of entry, 431t
 rash caused by, 662, 662f
Rickettsia rickettsii and, 304, 413t, 414t, 661, 661f
 as tickborne typhus, 661
 transmission due to, 413t
 transovarian passage of bacteria and, 661, 661f

rod-shaped bacteria, 77, 77f, 106b
 rodents
 as disease reservoirs, 413t, 656b, 673
 ground squirrels
 plague and, 648, 650
 tularemia carried by, 648, 656b
Hantavirus pulmonary syndrome
 associated with, 378t
 as pets
 rat bite fever and, 647–648, 650b
 tularemia and, 656b
 prairie dogs and plague, 648, 650
 rats. *See* rats
 sarcoma viruses in, 393
 toxoplasmosis-infected, cats
 and, 661
 root nodules, 772, 773f
 Roquefort cheeses, ripened by
 Penicillium molds, 799
 Rose, Irwin, 13t
Roselovirus (HHV-6), 377t
 roseola, 387, 600
 herpesviruses 6 and 7 causing, 600
 rash caused by, 594b
 Ross, Ronald, 13t
 rot, plant, 311
 rotating biological contactor
 system, 791
Rotavirus, 378t, 734–735, 736b
 vaccine, 506, 507t, 511, 735
 rough ER, 98f, 102, 103f
 RoundUp herbicide, 264, 267t
 roundworms (nematodes), 6, 330,
 360–362, 362f, 364t
 freezing temperatures and, 189
 Rous, F. Peyton, 10f, 392
 Rous sarcoma virus, 445f
 RPR (rapid plasma reagin) test for
 syphilis, 755
 rRNA sequencing, 292
 of Archaea/Bacteria/Eukarya,
 compared, 276t
Chlamydia species and, 278, 299
 in fossilized materials, 277, 290
 to show evolutionary relationships,
 273, 275, 275f, 277, 290
 “signature” sequences within
 domains, phyla, 292
 RSV (respiratory syncytial virus),
 698, 706b
 RT-PCR. *See* reverse transcription PCR
 RTF (resistance transfer factor),
 236–237, 238f
 rubber, synthetic, 257
 rubber tires, 143, 346
 rubbing alcohol (isopropanol), 37
 as antiseptic/disinfectant, 195, 202t
 rubella (German measles), 594b,
 604–605, 609f
 congenital rubella syndrome,
 604–605
 as notifiable infectious
 disease, 424t
 incubation period, 431t
 macular rash caused by, 594b
 as notifiable infectious disease, 424t
 portals of entry, 431t
 pregnancy and, 424t, 760
Rubivirus causing, 377t, 396t, 431t
 vaccine, 14, 506t, 507f, 599–600

Rubella virus, 377t
 incubation period, 431t
 persistent viral infections and, 396t
 portals of entry, 431t
 transmission route, 377t
 vaccine, 14, 506t, 507t
rubella virus. *See* *Rubivirus*
rubeola. *See* measles
Rubulavirus (mumps virus)
 incubation period, 431t
 as notifiable infectious disease, 424t
 portals of entry, 431t
 vaccine, 14, 506t, 507t
 rust, white, 347
 rusts, 340t
 rye bread, fermentation and, 134t
S
 Sabin polio vaccine, 627
 Sabouraud’s dextrose agar, 165
 sac fungi (Ascomycota), 279f, 337–338,
 338f, 340t
 Talaromyces life cycle, 338f
Saccharomyces carlsbergensis, 800
Saccharomyces cerevisiae (baker’s
 yeast), 4t, 793f, 806
 as budding yeast, 333, 334f
 cervical cancer vaccine and, 259t
 colony-stimulating factor and, 259t
 fermentation and, 132f, 133, 134t
 genetic engineering and, 256,
 259t, 341
 hepatitis B vaccine and, 256, 341
 influenza vaccine and, 259t
 interferons and, 259t
 plasmids and, 235
 strains developed over centuries, 800
 in taxonomic hierarchy, 279f
 used to make bread, beer, wine,
 341, 800
Saccharomyces ellipsoideus, 800
Saccharomyces genus/spp.
 ethanol produced by for brewed
 beverages, 332
 in taxonomic hierarchy, 229f
Saccharomyces uvarum, 800
 Saccharomycetaceae, in taxonomic
 hierarchy, 279f
 Saccharomycetes, in taxonomic
 hierarchy, 279f
Saccharopolyspora erythraea,
 erythromycin derived
 from, 560t
 safety issues, in biotechnology, 266
 safranin stain, 67, 69, 71, 71f
 in capsule staining, 70, 70f, 71t
 in Gram staining, 68, 70, 86, 87t
 Saint Vitus’ dance (Sydenham’s
 chorea), 648
 sake, microbes used in production
 of, 806
 saliva, 454, 714
 as defense against pathogens,
 455, 474t
 IgA antibodies in, 480
 lysozyme in, 88, 455
 lysozymes of, 714
 pH of, 133b, 135b, 455
 phenolics to disinfect, 192
 as portal of exit, 446
 possible pathogens in, 446
 salivary amylase enzyme of, 455
 spirochete bacteria and, 325
 substances in that inhibit microbial
 growth, 455
 sucrose lowers pH of, 133b
 salivary amylase, of saliva, starch
 digestion and, 455
 salivary glands, 454
 Salk polio vaccine, 507, 627
 salmon, DNA vaccine approved
 for, 508
 Salmon, Daniel, 4t
Salmonella bongori, 287b, 311
Salmonella choleraesuis, 285f
Salmonella enterica, 4t, 310–311, 719
 antibiotic therapy, lactic acid
 bacteria and, 456
 cephalosporin-resistance transferred
 by *E. coli*, 583b
 incubation period, 431t
 phage typing to identify strain
 of, 289f
 portals of entry, 431t
 reservoirs/transmission
 method, 413t
 salmonellosis caused by, 431t,
 719–720, 719f, 720f, 728b
 serovars/serotypes of, 310
Salmonella genus/spp., 301t, 310–311
 Ames test and, 230–231, 230f, 232b
 biochemical tests to identify, 137,
 137f, 284, 284f, 285f, 310–311
 Bt toxin and, 264
 complement system evasion by, 470
 directly damaging host cells, 436
 DNA chips and, 261, 292, 292f
 DNA probes and, 290, 291f, 292
E. coli and, host’s plasma membrane
 and, 435, 435f
 as enteric bacteria, 284, 284f, 310
 fermentation and, 132f
 flagellar proteins of, genetic
 transfers and, 231–232
 Kauffmann-White scheme to
 differentiate, 310–311
 nomenclature and, 310
 resistance plasmid R100 and,
 236–237
 serovars (serotypes) and, 287b, 290b,
 310, 515
 tracking infection outbreaks, 273b,
 286b, 287b, 290b, 293b, 294b
Salmonella montevideo, 721b
Salmonella tennessee, serotyping, DNA
 fingerprinting, 290b, 293b, 294b
Salmonella typhi, 311
 culture medium and, 165
 as endotoxin producer, 441
 portals of entry, 431, 431t
 typhoid fever caused by, 272b, 310,
 720–722
 typhus caused by, 431t
Salmonella typhimurium, 719
 antigenic formula for, 310–311
 Clinical Case, 800b, 802b, 807b,
 811b, 813b, 815b
 membrane ruffling by invasins,
 435, 435f
 salmonellosis, 311, 413t, 719–720,
 719f, 720f, 728b
 disease reservoirs for, 413t
 incidence of, 714f
 incubation period, 431t
 as notifiable infectious disease, 424t
 outbreak (spices/salami), 721b
 portal of exit, 446
 portals of entry, 431t
 transmission due to, 413t
 salpingitis, 758, 758f
 salt. *See also* sodium chloride
 to preserve foods, 189
 salt crystals, formation of, 29, 29f
 salts, 34–36, 34f
 in food preservation, 156, 158, 192
 salty environments
 extreme halophiles and, 4, 158, 274,
 274f, 326
 microbial growth and, 158, 165, 166f
Staphylococcus aureus and, 165, 166f
 salvansan, 12
 SAM (scanning acoustic microscopy),
 61, 62f, 66t
 San Joaquin fever. *See*
 coccidioidomycosis
 sand fly bites, leishmaniasis and,
 356t, 665
 sanitization, 182, 183t
 sanitizers
 acid-anionic, 196, 202t
 hand, 195, 196
Saprolegnia ferax, 345f
 saprophytes, 143
 saprophytic molds, 337
 saquinavir, 553, 576
 SAR 11, 303
Sarcina genus/spp., 301t
 sarcinae, 77, 77f
 sarcoma, 392
 sarcoma viruses
 chicken/avian, 392, 393
 feline, 393
 as oncogenic retroviruses, 393–394
 rodent, 393
sarcopes scabiei (mite), 60f, 602
 Sargasso Sea, *Pelagibacter ubique*
 discovered in, 303
 Sargasso Sea brown algae, 343
Sargassum, 343
 SARS-CoV (severe acute respiratory
 syndrome-associated
 coronavirus), 424t
 SARS (severe acute respiratory
 syndrome)
 Coronavirus and, 369, 378t, 424t
 DNA vaccines and, 258
 as emerging infectious disease, 419t
 sashimi worms (anisakiasis), 362, 364t
 saturated fatty acids, 39, 39f, 40, 40f
 saturation in substrate concentration,
 117, 117f
 sauerkraut
 fermentation and, 134t, 806
 pH and, 156
 saunas/hot tubs, rashes and, 596–597
 sausage, fermentation and, 134t
 saxitoxins, 346, 446
 scab formation, in inflammatory
 response, 464f
 scabies, 363, 597b, 607–608, 608f
 ivermectin effective against, 572

- scalded skin syndrome, 441t, 593–594, 593f
 scanned-probe microscopy, 58f, 64, 64f, 67t
 atomic force microscope (AFM), 58f, 64, 64f, 67t
 scanning tunneling (STM), 64, 64f, 67t
 scanning acoustic microscopy (SAM), 61, 62f, 66t
 scanning electron micrograph, defined, 63
 scanning electron microscope (SEM), 63–64, 63f, 66t
E. coli micrograph, 58f
Paramecium micrograph, 63f, 66t
 specimen sizes and, 58f
 scanning tunneling microscopy (STM), 64, 64f, 67t
 RecA protein from *E. coli*
 micrograph, 64f, 67t
 scar tissue formation, 465
 scarlet fever, 317, 683–684, 686b
 exotoxin causing, 442t, 677
 portal of exit, 446
 rash of, 439
Streptococcus pyogenes causing, 317, 406, 439, 442t, 683
 Schaeffer-Fulton endospore stain, 70–71, 70f
Schistosoma (blood fluke), 358, 364t, 668b, 674f, 675, 738f
Schistosoma haematobium, 675
Schistosoma japonicum, 675
Schistosoma mansoni, 675
 schistosomiasis, 330, 358, 364t, 673b, 674–675, 674f, 675f
 praziquantel to treat, 577, 675
 schizogony, 348
 in *Plasmodium*, 351–352, 352f, 670
 trypanosomes and, 352, 661
Schizosaccharomyces, 333–334
 Schulz, Heide, 14
 SCID. See severe combined immunodeficiency disease
 scientific applications, of rDNA technology, 260–263
 scientific nomenclature, 2–3, 4t, 278
 sclerotia, 445
 scolex of tapeworms, 358, 360f
 scrapie disease in sheep, 395, 630
 mad cow disease and, 395
 screening, genetic, 261
 screening procedures for clone selection, 255, 255f
 scum, shower, biofilms and, 432
 sea otters, toxoplasmosis deaths, 282b, 662
 seafood allergies, 525
 seals
 influenza A viruses and, 18, 374b
 phocid distemper virus caused deaths in, 282b
 veterinary microbiology and, 282b
 seawater microbiota, 783
 sebaceous (oil) glands of skin, 455
 sebum, 455, 474t, 590
 secondary immune response, 497, 497f
 vaccines and subsequent antigen encounters, 505
 secondary infection, 409
 difficulty in treating in hospitalized patients, 415
 secondary sewage treatment, 789, 790f
 secondary structure of proteins, 43, 45f
 secretory component, IgA antibody and, 484
 secretory IgA, 484
 secretory vesicles, 102, 104f
 seizures, fever and, 466
 selection, 247
 artificial, 247
 of bacteria with resistance factors, 237
 of genetically desirable plants, 263
 natural. *See* natural selection
 selection methods to identify mutations, 229–230, 229f
 selective culture media, 165, 167f
 identification of microbes and, 284, 285
 selective IgA immunodeficiency, 544t
 selective permeability (semipermeability), 90
 selective toxicity principle, 558
 of antibiotics, 553, 555, 557, 558f
 tetracyclines, 565
 selenium, nanotechnology and reduced toxicity, 263, 263f
 self molecules of MHC, 482, 486, 538
 self-replication capability, DNA vectors and, 249
 self-tolerance loss in autoimmune diseases, 536
 self vs. nonself recognition, 477, 485, 497
 autoimmune diseases and, 536–538
 hyperacute rejection and, 542
 immune system tolerance of fetus and, 539
 major histocompatibility complex (MHC) and, 485, 486, 497, 538–539
 thymic selection and, 486, 536
 transplant rejection and, 539–540
 immune system tolerance of fetus and, 539
 major histocompatibility complex (MHC) and, 485, 486, 497, 538–539
 thymic selection and, 486, 536
 transplant rejection and, 539–540
 SEM (scanning electron microscope), 63–64, 63f, 66t
E. coli micrograph, 58f
Paramecium micrograph, 63f, 66t
 specimen sizes and, 58f
 semiconservative replication, 212
 semipermeability (selective permeability), 90
 semisynthetic penicillins, 564t, 567–568, 567f
 Semmelweis, Ignaz, 9, 10f, 181, 194, 415, 420, 647
 sense codons, 216
 sense strand (+ strand), 388, 388t, 389f
 sensitivity of diagnostic tests, 512
 sensitized individuals, 523
 sentinel animals, tested for arbovirus antibodies, 630
 sepsis, 182, 409, 416t, 646–647, 646f
 in cattle, *Pasteurella* and, 312
 cytokine storm and, 497
 endotoxin release with antibiotic therapy for, 640
 gram-negative (endotoxic shock), 646
 gram-positive, 646–647
 Listeria monocytogenes causing, 620
 lymphangitis and, 639, 640f
 neonatal, 647
Pseudomonas aeruginosa and, 308
 puerperal (childbirth fever), 647, 649f
 severe, 646
Staphylococcus aureus causing, 587.
See also nosocomial infections
Streptococcus pyogenes causing, 595
 septa, 332
 septate hyphae, 332, 332f, 340t
 septic arthritis, *Haemophilus influenzae* causing, 312
 septic shock, 440, 639–641, 640, 649b
 antimicrobial peptides (AMPs) and, 471
 Clinical Case, 479b, 480b, 484b, 487b, 490b, 494b
 septic tanks, 793, 794f
 septicemia, 14, 76b, 409, 646–647
 Clinical Case, 76b, 86b, 88b, 95b, 97b
 lymphangitis and, 646, 646f
 septicemic plague, 657
 sequencing, DNA, 261–262, 261f
 shotgun sequencing, 260, 260f
 serial dilution, 171, 172f
 serine (Ser), structural formula/characteristic R group, 42t
 seroconversion, 516, 543f, 545, 550
 serology/serological testing, 286–287, 286f, 287f, 288f, 310, 498
 ELISA test, 286, 287f
 slide agglutination test, 286, 286f
 tissue typing, 533–534, 533f
 virus typing, 512
 Western blotting, 286–287, 288f
 serotypes, 14, 286, 310
 of meningococcus, 613
 of *Salmonella enterica*, 310–311
 serovars, 82, 286, 310
 direct agglutination tests and, 510
 of *Salmonella enterica*, 287b, 310–311
 of *Vibrio cholerae* O139, evolution and, 418
Serratia genus/spp., 75f, 301t, 311
 found in catheters/sterile solutions, 311
Serratia marcescens, 301t, 310, 542
 biofilms and, 153, 153f
 serum, 472b
 antibody percentages, 479–481, 483t
 antibody titer, 493, 494f, 510, 511f
 antisera and, 286, 498, 498f, 616
 fetal calf, 495
 laboratory collection of, 472b
 separation of proteins by gel electrophoresis, 495, 495f
 serum concentration test, 579
 serum IgA, 484
 serum sickness, 528t, 624
 70S ribosomes, 79f, 94, 94f, 100t
 in chloroplasts, 104
 in mitochondria, 103
 severe acute respiratory syndrome-associated coronavirus (SARS-CoV), 424t
 severe acute respiratory syndrome (SARS)
 Coronavirus and, 369, 378t
 DNA vaccines and, 258
 as emerging infectious disease, 419t
 severe combined immunodeficiency disease (SCID), 16, 544t
 gene therapy to treat, 258
 severe sepsis, 646
 sewage
 bacteria found in, 301t, 306, 306f
 chlorine gas to disinfect, 194
 Enterobacter common to, 312
 sewage treatment, 789–795
 aquatic microorganisms and, 776–778
 archaea methanogens used in, 326, 787f
 biochemical oxygen demand (BOD), 789
 biofilms and, 161, 178f
 disinfection and release, 790f, 792
 oxidation ponds, 794
 primary, 789, 790f
 secondary, 785f, 789–790
 septic tanks, 787–788, 788f
 sludge digestion, 790f, 792, 793f
 Sphaerotilus and, 306, 306f
 tertiary, 794
 Zoogloea and, 301t
 sex (conjugation) pili, 84, 234, 235, 235f
 of enterics, 310
 sex pili (conjugation pili), 84, 234, 235, 235f
 sexual dimorphism, 360
 sexual recombination, in prokaryotic vs. eukaryotic cells, 100t
 sexual reproduction
 in algae, 344, 345f
 fungal, 334, 335, 336f, 338f, 339f
 in *Plasmodium vivax*, 351–352, 352f
 of protozoa, 349, 349f
 sexual spores, 334, 335, 336f, 338f, 339f
 sexually transmitted diseases (STDs), 322, 754. *See also* sexually transmitted infections
 sexually transmitted infections (STIs), 322, 754
 AIDS. *See AIDS*
 bacterial, 754–766, 766b, 767b
 chancroid (soft chancre), 312, 756, 761b
 biofilms and, 153, 153f
 chlamydia's, 322, 430, 431t, 750–751, 761b
 epidemics, 20
 genital herpes, 569, 570f, 740, 757, 757f, 761b
 genital warts, 377t, 387, 430, 758, 758f, 761b
 gonorrhea, 307, 754. *See also* gonorrhea
 HIV infection. *See HIV infection*
 lymphogranuloma venereum, 322, 462, 755, 761b
 pelvic inflammatory disease, 751–752, 752f, 761b
 portals of entry, 430, 431t, 447f
 portals of exit, 446–447, 447f
 syphilis, 323, 752. *See also* syphilis
 trichomoniasis, 759b, 760, 760f
 urethritis, nongonococcal, 322, 750–751, 761b
 vaginitis, 756, 756f, 759b
 vaginosis, 756, 756f, 759b

- shadow casting technique, 62
 TEM image, 79f
 shampoos, antidandruff, 196
 Sharp, Phillip A., 13t
 sheath, of T-even bacteriophage, 376f,
 382f
 sheathed bacteria, 306, 306f
 sheep
 anthrax and, 315
 genetically modified to produce
 therapeutic drugs, 258, 259t
 scrapie disease in, 395, 636
 sheep scrapie, 395, 636
 mad cow disease and, 637
 shellfish
 paralytic shellfish poisoning (PSP),
 346, 356t, 446
Vibrio parahaemolyticus and, 310
 Shiga, Kiyoshi, 10f
 Shiga toxin, 207, 235, 432
 lysogenic phages and, 384, 442
 shigellosis and, 718–719, 718f, 728b
 Shiga toxin-producing *E. coli* (STEC),
 207, 235, 384, 442, 711f,
 724, 728b
 Clinical Case, 712b, 727b, 728b,
 734b, 742b
 as notifiable infectious disease, 424t
Shigella genus/spp., 301t, 311,
 718f, 719f
 biochemical tests to identify, 137,
 284, 284f, 285–286, 285f
 can survive in phagocytes, 462
 directly damaging host cells, 436
E. coli 0157:H7
 adherence and pathogenicity, 433
 Shiga toxin and, 207, 235, 384,
 442, 711f, 723–724, 728b
 as enteric bacteria, 284, 284f, 311
 portals of entry, 431t
 as potential biological weapon, 654b
 shigellosis caused by, 311, 413, 424t,
 430, 431t, 718–719
 traveler's diarrhea and, 441t, 724
 uses actin to advantage, 435
 shigellosis (bacillary dysentery), 311,
 462, 718–719, 718f, 719f, 728b
 incubation period, 431t
 as notifiable infectious disease, 424t
 portals of entry, 430, 431t
 portals of exit, 446
Shigella bacteria causing, 310, 718.
 See also *Shigella*
 waterborne transmission and, 413
 shingles (herpes-zoster), 377t, 394,
 396t, 409, 596–597, 596b
 as a latent varicella-zoster virus
 disease, 394, 396t, 409, 596
 in HIV/AIDS patients, 542, 550t
 rash caused by, 394, 596b, 597f
 vaccine, 503t, 602
 shivering, 466
 shock, 440, 640
 anaphylactic, 524
 endotoxic, 440
 septic, 440, 471, 639–641, 640, 649b
 shoe leather, fungi capable of growing
 in, 333
 short tandem repeats (STRs), 209
 shotgun sequencing, 260, 260f
 shower door scum as biofilm, 432
 shuttle vectors, 249
 sialic acid, 470
 sickle cell disease, 410
 gene therapy and, 16
 missense mutation and, 225, 225f
 side chain amino acid (tetrapeptide
 side chain), 85, 85f
 side groups (R groups) of amino acids,
 41, 41f, 42t
 siderophores, 436, 436f, 447f
 enterobactin and, 436f
 iron-binding proteins and, 473
 signals (chemical)
 as alarm signals (alarmones),
 221, 222f
 biofilms and, 56b, 161
 signs, vs. symptoms, 408
 silencing, gene, 258, 258f
 silent (neutral) mutations, 224
 silica, in cell walls of diatoms, 345t, 346
 silkworm disease, Pasteur's work on, 9
 silver
 as an antiseptic, 195–196, 195f, 202t
 impregnated in dressings, indwelling
 catheters, 195
 silver-haired bats, rabies virus variant
 associated with, 628, 631b, 631f
 silver nitrate, 195, 202t, 610
 silver-sulfadiazine, 195, 202t, 567, 594
 simian AIDS, 379
 simian immunodeficiency virus
 (SIV), 545
 simple carbohydrates, 37
 simple diffusion, 91, 91f
 simple lipids, 39–40, 39f
 simple proteins, 44
 simple stains, 67–68, 71t
 simple sugars, 37
Simplexvirus (HHV-1, HHV-2), 377t,
 387, 394, 396t
 Sin Nombre hantavirus, 660, 667b
 single-stranded DNA nonenveloped
 viruses, 377t
 single-stranded DNA viruses, 388t
 single-stranded RNA, + strand
 enveloped viruses, 377t,
 378t, 388t
 single-stranded RNA, + strand
 nonenveloped viruses, 377t,
 378t, 388t
 singlet oxygen, 159, 462
 sunlight and, 190
 sinusitis, 682–683
 siRNAs (small interfering RNAs), 258,
 258f, 579
 sirolimus (Rapamune), 542
 SIRS (systemic inflammatory response
 syndrome), 646
 site-directed mutagenesis, 247
 SIV (simian immunodeficiency
 virus), 545
 sizes, of viruses, 372f
 skin, 453, 453f, 589–609
 acidity of, 453
 broken, susceptibility to infections,
 416, 417t, 451
 cancers, UV light and, 228
 chemicals that defend, 453, 474t, 589
 commensal microbes of, 453
 delayed hypersensitivity reactions
 and, 530–531, 530f, 531b, 532f
 dermis of, 451, 451f, 474t, 590, 590f
 epidermis of, 451, 451f, 474t,
 590, 590f
 as first line of defense, 452f, 453,
 474t, 489
 function of, 584, 590
 immune system and, 453–456, 474t
 infections transmitted from, 447
 keratin and, 340, 340t, 404t,
 451, 451f
 lesions, 587f, 591
 microbial diseases of, 589–609
 bacterial, 451, 591–600
 caused by *Streptococcus*
pyogenes, 406
 cutaneous mycoses and, 340,
 340t
 fungal, 605–607
 hookworm larvae and, 430
 nosocomial, 417t
 parasitic infestations of, 607–609
 staphylococcal, 2b, 17b, 19b, 20b,
 21b, 316, 591–594, 592f, 593f
 streptococcal, 594–596, 595f
 viral, 600–605
 normal microbiota of, 316, 404t, 591
 innate immunity and, 452f, 453,
 455–456
 perspiration flushes microbes from
 surface, 455
 pH of, 453, 591
 as physical barrier to pathogens,
 452f, 453–455, 453f, 474t, 584
 as portal of entry, 430, 431t, 447f
 as portal of exit, 446, 447, 447f
Propionibacterium bacteria on, 319
 rashes. See rashes
 regeneration capacity of, 465
 sebum and, 455, 590, 590f
 structure of, 590, 590f
 sweat glands and perspiration,
 455, 590f
 waterproofed by keratin, 590
 skin tests
 for antigen sensitivities, 531, 531f
 for food allergies, 531
 for leprosy, 620
 patch test for dermatitis cause, 535
 for penicillin sensitivity, 530
 for tuberculosis, 507, 535
 skunks
 as disease reservoirs, 413t
 reported cases of rabies in, 630f
 slants, defined, 162
 SLE (St. Louis encephalitis), 378t,
 630, 634b
 sleeping sickness. See trypanosomiasis
 slide agglutination test, 286, 286f
 slime
Beggioiota alba and, 307
 biofilms and, 17, 18f, 56b,
 160–161, 161f
Zoogloea and, 307
 slime layer, 80, 100t, 304f. See also
 biofilms
 catheters and, 18f, 586, 587f
 slime molds, 4, 6, 353–354, 354f, 355f
 position in evolutionary tree, 274f
 slime trails, *Myxococcus* bacteria and,
 56b, 313, 313f
 slow-growing mycobacteria,
 identification tests for, 142b
 sludge, 789–793
 sludge digestion in sewage treatment,
 326, 790f, 792–793, 793f
 small interfering RNAs (siRNAs), 258,
 258f, 579
 small intestine, 459f
 enzymes, most microbes destroyed
 by, 430
 parasitic helminths and, 364t
 small nuclear ribonucleoproteins
 (snRNPs), 211t, 218, 219f
 smallpox vaccine, 506t, 601
 cowpox virus and, 11, 505
 early experiments to develop, 11,
 406, 505
 as first vaccine, 477
 importance to science of
 immunology, 505
 variolation procedure and, 505
 smallpox (variola), 377t, 596b,
 600–601, 601f
 as a biological weapon, 596, 654b
 cidofovir may be effective against,
 575, 601
 early epidemics, 11, 505
 first disease for which vaccine was
 developed, 477
 mortality rate in 18th century, 505
 as notifiable infectious disease, 424t
 orthopoxvirus causing, 376f, 377t, 595
 portal of entry, 430
 portal of exit, 446
 Poxviridae causing, 387
 rash caused by, 596b
 vaccine. See smallpox vaccine
 vaccinia virus confers immunity
 to, 505
 variola major/minor forms of, 600
 smallpox (variola) virus. See smallpox
 (variola)
 smear (specimen), 67
 Smith, Hamilton, 10f, 227
 Smith, Theobald, 673
 smooth ER, 98f, 102, 103f
 Smoothbeam treatment, to treat
 acne, 600
 smuts, 340t
 snails, freshwater, 364t
 Snow, John, 420
 snRNPs (small nuclear
 ribonucleoproteins), 211t,
 218, 219f
 soaps and detergents, 196, 196f, 202t
 SOD (superoxide dismutase), 159,
 159f, 473b
 genetically modified, 259t
 sodium azide, resistance to by gram-
 negative vs. gram-positive
 bacteria, 87t
 sodium benzoate, 197, 202t
 sodium chloride (NaCl)
 dissociation of, 34, 34f
 formation of, 29, 29f
S. aureus and selective culture
 media, 165, 166f
 water acting as solvent for, 34, 34f

- sodium dichloroisocyanurate, 194
 sodium hydroxide (NaOH)
 as a base, 34, 34f
 autoclaving and, to destroy
 prions, 200
 colony hybridization and, 257f
 sodium hypochlorite (Clorox/chlorine compound), as disinfectant, 193f, 194
 sodium (Na)
 atomic number/atomic weight, 27t
 as ion, 29, 29f, 34, 34f
 sodium nitrate/nitrite
 as food preservatives, 197, 202t
 as meat preservative, 197
 sodium thioglycolate, in reducing media, 163
 sodoku (rat bite fever), 655
 soft chancre (chancroid), 756, 761b
 soft-rot diseases of plants, *Erwinia* bacteria as cause, 311
 soil
 as disease reservoirs, 306–307, 309, 311, 317–318, 319, 319f, 320, 322, 411, 646, 668b
 DNA probes to identify specific, 261
 pathogenic fungi in, 340–341, 340t, 342b
 protozoa inhabit, 348
 screening for antibiotic-producing microbes, 560
 soil bacteria
 actinomycetes, 318–320
 Azomonas and, 309
 Azospirillum, 303–304
 Azotobacter, 309
 Burkholderia pseudomallei, 306–307
 Enterobacter, 312
 Klebsiella, 311
 Pseudomonas, 307–309
 rhizobias and, 304–305
 streptomyces, 319–320, 319f
 soil microbiology
 biogeochemical cycles and, 775–782.
 See also specific cycles
 life without sunshine, 779–780
 synthetic chemicals and, 780–782
 soil microbiota
 beneficial, 2
 pathogenic fungi in, 340–341, 340t
 soil samples, enrichment mediums and, 166
 solar evaporating ponds, extreme halophiles (archaea) found in, 326
 solid municipal waste (garbage), 781–782
 solutes, 34
 solutions
 acidic vs. alkaline, 34, 35f
 hypertonic, 92f, 93, 156, 157f
 hypotonic, 92f, 93, 157f, 158
 isotonic, 92f, 93, 157f
 solvents, 34, 34f
 somatostatin
 chemically synthesized genes and, 254
 genetically modified *E. coli* and production of, 257
 sorbic acid, 197, 202t
 sorbitol
 fermentation and, 134t
 fermentation by *E. coli* and, 136, 137f
 sorbose, as fermentation end-product, 134t
 sore throat
 caused by *Streptococcus pyogenes*, 406
 Streptococcus pyogenes and, 317
 sound waves, scanning acoustic microscopy and, 61, 62f, 66t
 Southern blotting, 261, 262f, 290, 291f, 292
 soy products, food allergies and, 525
 soybeans
 Coniothyrium minitans and, 341
 Phytophythora infestans infests, 347–348
 Spallanzani, Lazzaro, 7
 special stains/staining, 69–71, 70f, 71t
 specialized transduction
 in bacteria, 235, 384
 lysogeny and, 384, 384f
 species barrier
 antigenic shift and, 374–375b
 influenza A virus crossing, 374–375b
 species name (specific epithet)
 defined, 3, 278
 eukaryotic vs. prokaryotic, 278–280
 viral, 281
 specific epithet (species name), defined, 3, 278, 279f
 specificity
 of antibodies, 487
 of enzymes, 113–114, 116
 specificity and diagnostic tests, 512
 specimen preparation, 53, 67. See also stains/staining
 artifacts and, 63
 size, microscope resolution and, 58f
 spectrophotometers
 endotoxin testing and, 441
 to measure turbidity, 175, 176f
 spectrums of antimicrobial activity, 560–561, 562t
Sphaerotilus genus/spp., 300t, 306, 306f
 as sheathed bacteria, 300t
Sphaerotilus natans, 306, 306f
 spherical-shaped bacteria, 77–78, 78f
 spheroplasts, 88
 spice-associated foodborne illnesses, 721b
 spicules of nematodes, 360, 362f
 spikes (viral), 371, 373, 373f
 gp120 glycoproteins on HIV, 545, 546f, 553
 Influenzavirus, 378t, 692–693, 692f
 spinal cord, 611, 611f
 spinal tap (lumbar puncture), 619, 620f, 621b
 spiral-shaped bacteria, 77, 78, 78f
 spirilla/spirillum, 78, 78f
 spirillar fever (rat bite fever), 655
Spirillum genus/spp., 95, 301t, 306, 306f
Spirillum minus, causing rat bite fever (spirillar fever), 555b, 655
Spirillum volutans, 306, 306f
 flagella staining of, 70, 71t
 Spirochaetales, 302t
 Spirochaetes, 302t
 spirochetes, 78, 78f, 106b, 325, 325f
 axial filaments (endoflagella) of, 82, 83f, 325, 325f
 Lyme disease and, 362
 motility of, 82, 83f, 325, 325f
 phylogenetic relationships, 280f
Spiroplasma genus/spp., 301t, 318
 spleen, 459, 459f
 immune response and, 490b, 494b
 in monoclonal antibody production, 508f
 spoilage
 alcoholic beverages and, 9
 food. See food spoilage
 sponges, as eukarya, 6
 spongiform encephalopathies, prions and, 200, 395, 630f
 spontaneous generation theory, 6–8
 disproving (Foundation Figure), 9f
 spontaneous mutations, 225
 frequency of, 228, 237
 sporadic disease, 406
 sporangia
 of *mucor*, 5f
 of plasmodial slime mold, 355f
 sporangiolas, 313f
 sporangiophores, 333
 sporangiospores, 335, 335f, 340t
 of *Rhizopus*, 335, 336f
 sporangium (spore sac), 335, 335f
 spore caps, of cellular slime molds, 353, 354f
 spore clusters, of *M. xanthus* cells, 56b, 56f
 spore coat, 96f, 97
 spore sac (sporangium), 335, 335f
 spore septum, 96f, 97
 spores (endospores), 70, 70f, 71f, 96, 332
 spores (fungal), 281, 331f, 332f, 333f, 334–335
 airborne transmission and, 339, 413
 asexual, 331f, 334–335, 335f, 336f, 337f, 338f, 339f
 chemical biocides resistance and, 203f
 endospores vs., 70, 332
 growth of hyphae from, 332, 332f
 reproductive, 331f, 332
 sexual, 331f, 334, 335, 336f, 338f, 339f
 in slime molds, 353, 354f, 355f
 systemic mycoses and, 339
 zygospores, 333, 335f
 sporidical agents, peracetic acid, 202
 sporicides
 glutaraldehyde, 197, 201t, 202t
 hydrogen peroxide, 202
Sporothrix schenckii, 340t, 597b, 606
 sporotrichosis, 340, 597b, 606
 sporozoite, 351, 352f
 Plasmodium and, 351, 352f
 in toxoplasmosis, 661, 662f
 sporulation/sporogenesis, 96–97, 96f
 evolutionary development, 315
 reproduction and, 97
 spotted fevers, 661. See also Rocky Mountain spotted fever
 as nationally notifiable infectious diseases, 424t
 ricketsiosis, 304
- spread plate method of plate counts, 172, 173f
 squalamine, 585
 squid, *anisakines* roundworms and, 362, 364t
 squirrels
 plague and, 657–658
 plague carried by, 311, 656b, 657–658
 tularemia carried by, 648, 656b
 src gene, cancer-causing, 393
 SSPE. See subacute sclerosing panencephalitis
 St. Louis encephalitis (SLE), 377t, 630, 634b
 as an arbovirus, 625, 628b
 Culex mosquito as vector, 628b
Stachybotrys, 340t, 341, 445
 stains/staining, 67–71, 71t
 counterstains, 68f, 69, 71
 decolorizing agents, 68f, 69
 differential, 68–69, 68f, 70f, 71t
 electron microscopes and, 62–63
 endospore, 70–71, 70f, 71t
 fixing specimen to slide, 67
 flagella, 62, 70f, 71, 71t
 Gram stain, 68–69, 68f, 71t, 86, 87t
 negative, 62, 69, 70, 71t
 positive, 62
 preparing specimen for, 67
 primary stain, 69
 refractive index and, 57
 simple, 67–68, 71t
 smears and, 67
 special, 69–71, 71f, 71t
 stalked-cell bacteria, 300t, 303, 304f
 Stanier, Roger, 273
 Stanley, Wendell, 14, 370
 staphylococcal enterotoxicosis, 717–718, 717f, 728b
 staphylococcal enterotoxin, 433, 439, 441t, 442
 staphylococcal skin infections, 2b, 17b, 19b, 20b, 21b, 591–594
 staphylococci, 77, 77f. See also *Staphylococcus* genus/spp.
 disinfectants effective against, 196, 196f
 most likely to cause skin infections, 451
 nosocomial infections and, 415, 416t, 423b
 pathogenic characteristics, 316
Staphylococcus aureus, 1, 1f, 316, 316f
 acute inflammation caused by, 463
 adherence mechanism resembles viral attachment, 433
 antibiotic resistance and, 18, 19b, 20, 20b, 316
 biochemical tests and, 137f, 282b
 biofilms and catheters, 17, 18f
 cellulitis caused by, 598b
 as coagulase-positive, 587
 culture media to identify, 165, 166f
 destroying a phagocyte, 76f
 disinfectants and, 193f
 endocarditis caused by, 647, 649b
 enterotoxins produced by, 316, 437, 441t

- fluorescent *in situ* hybridization and, 293f
food poisoning caused by, 316, 441t, 717–718, 717f, 728b
gastric juice unable to destroy, 455
health care-associated, 415, 416t
impetigo and, 593, 593f
methicillin-resistant, 207. *See also* MRSA
as most pathogenic staphylococci, 586–589
as normal microbiota of eye, 404t
as normal microbiota of nose, throat, 1, 1f, 404t, 592–593
as normal microbiota of skin, 17b, 404t
nosocomial infections and, 415, 416t, 423b
otitis media caused by, 685
penicillin resistance, 18, 316
postoperative eye infections and, 559b
scalded skin syndrome caused by, 441t, 593–594, 593f
skin infections and, 2b, 17b, 19b, 20b, 592–594, 593f, 594f, 596b, 597b
staphylokinase produced by, 434
superantigens produced by, 439
as superbug, 580
toxic shock syndrome and, 316, 439, 594, 597b
toxins produced by, 235, 316, 439, 441t
vancomycin-intermediate resistant (VISA), 18, 419t, 423b, 424t
vancomycin-resistant (VRSA), 12, 18, 207, 237, 419t, 423b, 424t, 563
Staphylococcus epidermidis, 405f
as a nosocomial pathogen, 592, 592f
catheters, biofilms, and, 592, 592f
in differential culture media, 165, 166f
fermentation test to detect, 137, 137f
as normal microbiota of eye, 404t
as normal microbiota of nose, throat, 404t
postoperative eye infections and, 559b
skin infections and, 591–592, 592f
symbiotic relationships (commensalism) of, 405, 405f
Staphylococcus genus/spp., 18, 301t, 314, 316, 316f
fermentation test to detect, 137, 137f
genetic transformation natural occurrence in, 23
leukocidins produced by kill phagocytes, 462
as normal microbiota of mouth, 404t
as normal microbiota of skin, 404t
as normal microbiota of urethra, 404t
Staphylococcus saprophyticus, cystitis caused by, 752
staphylokinase, produced by *Staphylococcus aureus*, 434
star-shaped bacteria, 78, 78f
starch granules, in presence of iodine, 95
starches, 38
as carbohydrates, 38
stored by green algae, 345t, 346
start codons, 209, 215f, 216f
stationary phase in bacterial growth, 170–171, 170f
STDs. *See* sexually transmitted diseases
steam heat, to control microbial growth, 185–187, 186f, 186t, 191t
stearic acid, 39f
STEC. *See* Shiga toxin-producing *E. coli*
Steitz, Thomas A., 13t
Stella genus, 78, 78f
stem cells
adult, 540
bone marrow, B cells, T cells originate from, 486, 486f
embryonic (ESCs), 540, 540f
as part of lymphatic system, 458
transplantation medicine and, 540
umbilical cord blood cells, 540
stents, cardiovascular
biofilms colonizing, 431
sirolimus (Rapamune) to prevent rejection, 542
stereoisomers, 41, 42f
sterilants, 182, 198
ethylene oxide, 198, 202t
glutaraldehyde, 197, 201t, 202t
hydrogen peroxide, 199, 202t
peracetic acid, 199, 202t
sterile culture media, 162
sterilization, 182, 183t. *See also* sterilants
autoclaves and, 185–187, 186f, 186t, 191t, 441, 442b, 444b
by boiling water, 185
calculating time necessary for, 185, 186t
chemical, 198–199, 202t
commercial, 182, 183t, 187, 794–795, 794f, 795f
endotoxins survival despite, 439, 444b
by flaming (dry heat), 188
of gases, 182
by gases, 183t
by hot-air, 188
indicators of successful, 187, 187f
of liquids, 182
of milk, by UHT treatments, 187
by moist heat, 185–187, 191t
plasma, 201
by radiation, 189–190, 190f, 191t
reliable temperatures for, 185
viruses and, 185
steroid injections, infection following (Clinical Focus), 198b
steroids, 41, 41f
synthesized from microbes, 806, 806f
sterols, 41, 41f, 87, 89, 100, 100t
antifungal drugs affecting, 564t, 574, 574f
in fungi plasma membrane, 333t, 558
in *Mycoplasma* plasma membrane, 41, 41f, 87, 89
Stewart, Sarah, 10f, 392
sticky ends of cut DNA strands, 247–248, 248f
replication and, 211t
transposase and, 238f
Stigmatella genus/spp., 301t
stipes of algae, 344, 344f
STIs. *See* sexually transmitted infections
STM (scanning tunneling microscopy), 65, 65f, 67t
E. coli RecA protein micrograph, 64f, 67t
specimen preparation and, 65
stomach
enzymes destroy most microbes (except some toxins), 430, 455
gastric juice, 455
stomach cancer, *Helicobacter pylori* and, 719
“stone-washed” denim jeans (Applications of Microbiology), 3b, 38
stool samples
differential media and, 273b, 286f, 287b, 290b, 293b, 294b
enrichment mediums and, 166, 286b, 287b
stool DNA test, 208b
stop codons (nonsense codons), 209, 215f, 216–218, 216–217f
storage materials, of algae, 345t
storage vesicles, 103
strains (bacterial)
of bacterial species, 280
Bergey's Manual and, 286
improvements, industrial
microbiology active in, 803
phage typing to distinguish, 287, 289f
serological testing to identify, 286
Stramenopila (kingdom), 346
- strand (antisense strand), 388, 389f
-strand, multiple strands of RNA viruses, 378t
-strand, one strand of RNA viruses, 378t
- strand RNA viruses, 388t
+ strand RNA viruses, 388t
- strand RNA viruses, 388t
+ strand RNA viruses, 388t
- strand RNA viruses, 389f
+ strand RNA viruses, 389f
- strand RNA viruses, 389f
+ strand (sense strand), 388, 388t, 389f
stratum corneum, 590, 590f
streak plate method, 167, 167f
strep throat (streptococcal pharyngitis), 165, 683, 683f, 686b
streptococcal M proteins, 591
streptobacillary rat bite fever, 655, 655b
streptobacilli, 77, 77f
Streptobacillus genus/spp., 302t
Streptobacillus moniliiformis, streptobacillary rat bite fever caused by, 655, 655b
streptococcal infections
of skin, 594–596, 595f
strep throat, 165, 683, 683b, 683f
sulfa drugs effective against during WWII, 559
streptococcal pharyngitis (strep throat), 165, 683, 683b, 683f
streptococci, 14, 77, 77f
alpha-hemolytic streptococci, 317
beta-hemolytic (group A, B), 317, 320b
dairy industry and, 317
disinfectants effective against, 196, 196f
enzymes produced by, tissue destruction and, 286, 317
group A (GAS), 317, 594–596, 595f, 640
invasive group A (IGAS), flesh-eating bacteria and, 19, 595–596
group B (GBS), 317, 320b, 324b, 647
identification via immunological techniques, 14, 286
lysogenic phages, toxic shock syndrome and, 384
M protein and, 317, 590–591, 591f
non-beta-hemolytic, 317
as normal microbiota of eye, 404t
serotypes of, 14, 286
streptolysin released by kills phagocytes, 462
viridans streptococci, 317
Streptococcus agalactiae, 299f, 317, 320b, 647
neonatal sepsis caused by, 317, 320b, 324b, 647
Streptococcus equisimilis H46A, 434b
Streptococcus faecalis, 279, 317
Streptococcus faecium, 279, 317
Streptococcus genus/spp., 301t, 314, 316–317, 316f
as chemoheterotroph, 143f
fermentation and, 132f, 133, 134t, 135b
genetic transformation natural occurring in, 233
as lactic acid bacteria, 133
low G + C content and, 314
as normal microbiota of mouth, 135b, 404t
as normal microbiota of vagina, 404t
penicillinase-producing plasmid and *Neisseria*, 237
Streptococcus mutans, 317, 432, 441
Actinomyces, dextran, and dental plaque, 432, 707
dental caries and, 80, 112b, 133b, 135b, 137b, 317, 713–714, 714f, 716b
glucosyltransferase produced by, 431
glycocalyx of, 80
Streptococcus pneumoniae
capsule of, virulence and, 232, 433, 442, 508
classification changes and, 278
DNA transformation process and, 232–233, 233f, 234f
drug-resistant, as notifiable infectious disease, 424t
emerging infectious diseases and, 419t
evasion of phagocytosis and, 462
Griffith's experiments with, 232–233, 233f
incubation period for, 431t

- meningitis (pneumococcal)
caused by, 317*b*, 612, **614**, 623*b*
nonencapsulated, avirulent strain of,
232, 433
as normal microbiota of nose,
throat, 404*t*
as notifiable infectious disease,
424*t*
as opportunistic pathogen, 406
otitis media caused by, 685
pneumococcal pneumonia caused
by, 14, 317, 431*t*, 433, **693**,
693*f*, 695*b*
portals of entry, 431*t*
post-influenza bronchopneumonia
caused by, 409
resistance to beta-lactam
antibiotics, 581
vaccine, 506*t*, 508, 614
virulence and, 80, 232–233, 233*f*,
433, 441
- Streptococcus pyogenes*, 4*t*, 317,
590–591, 591*f*
childbirth caused by, 420, 647, 649*b*
differential media to identify, 165,
166*f*, 317
diseases caused by, 317, 406, 407
erythrogenic toxin and, 235
ethanol effectiveness against, 194*t*
evasion of phagocytosis and, 462
as “flesh-eating” bacteria, 20, 286,
317, 321, 423*b*, 591, 591*f*
impetigo and, 593, 593*f*
iron source for, 473
M protein and, 317, 433, 462,
595, 595*f*
as most important beta-hemolytic
streptococci, 595
otitis media caused by, 685
pericarditis caused by, **647**, 649*b*
serotypes of, 286
strep throat caused by, 683,
683*f*, 686*b*
streptokinase produced by, 434,
434*b*, 590, 677
toxic shock syndrome and, 384,
419*t*, 424*t*
- Streptococcus salivarius*, 135*b*
Streptococcus sobrinus, 135
Streptococcus thermophilus, used to
make yogurt, 799
streptogramins, 565, **571**
streptokinase (fibrinolysin), 434, 434*b*,
595, 683
streptolysin O (SLO), 439
streptolysin S (SLS), 439
streptolysins, **439**, 462, 595, 683
Streptomyces venezuelae,
chloramphenicol derived
from, 560*t*
Streptomyces, vancomycin derived
from, 563
Streptomyces aureofaciens,
chlortetracycline, tetracycline
derived from, 560*t*
Streptomyces avermectinii, ivermectin
derived from, 566*t*, 577
Streptomyces fradiae, neomycin
derived from, 560*t*
Streptomyces genus/spp., 302*t*, 318,
319–320, 319*f*
- actinomycetes informal name for,
318–319
antibiotics derived from, 302*t*,
560*t*, 563
vancomycin, 563
antibiotics produced by, 320
G + C content of, 314
as pleomorphic bacteria, 320
reproductive asexual spores of, 320
used in production of steroids,
806, 806*f*
- Streptomyces griseus*, streptomycin
derived from, 560*t*
Streptomyces nodosus, amphotericin B
derived from, 560*t*
streptomycin, 561*f*, 562*t*, 565*f*, **570**
derived from *Streptomyces*
griseus, 560
protein synthesis inhibited by, 94,
556–557, 558*f*, 561*f*, 562*t*, 563*f*,
565*t*, 570
resistance factors and, 236, 238*f*
susceptibility of gram-negative vs.
gram-positive bacteria to, 87*t*
stroke, hemorrhagic, genetically
modified Factor VII to
treat, 259*t*
stroma, 465
stromatolites, 277, 277*f*
STRs (short tandem repeats), **209**
sty, **593**
subacute bacterial endocarditis, **647**,
647*f*, 649*b*
subacute disease, **409**
subacute sclerosing panencephalitis
(SSPE), 394, 396*t*, 409, **604**
subarachnoid space, 616, 617*f*
subclavian veins, 459*f*
subclinical infection (inapparent
infection), **409**
subcutaneous mycoses, 340–341, 340*t*,
601, **606**
sublimation, in preserving bacterial
cultures, 168
sublittoral zone, algal habitats, 344*f*
substrate, **113**, 114*f*
concentration of, 116, **117**, 117*f*
substrate-level phosphorylation, **120**,
124, 135*t*
aerobic respiration and, 135*t*
ATP yield, 130*t*
in Krebs cycle, 126, 126*f*
subunit vaccines, 257, **508**
subunits of ribosomes, 94, 94*f*, 101
succinic acid, 126*f*, 132*f*, 147*f*
succinyl CoA, 147*f*
sucking lice, 363, 364*t*
sucrase, 115*t*
sucrose (table sugar), 39, 39*f*
saliva pH decreased by, 133*b*
Sudan dyes, 95
sudden oak death, 348
sugar-phosphate backbone of DNA,
208, 214*f*, 215*t*, 248, 248*f*
sugar (table), fermentation and, 134*t*
sugars
as carbohydrates, 37–38
carbon dioxide in synthesis of,
138, 141*f*
deoxyribose, 46*f*, 47
milk (lactose), 38
- simple, 38
table (sucrose), 38, 38*f*
sulfa drugs. *See* sulfonamides
sulfadiazine, 195
sulfamethoxazole, 565*t*, 573, 573*f*
sulfanilamide, 558, 561*f*
as antimetabolite to PABA, 558,
563–564
as an enzyme inhibitor, 118
sulfate ion (SO_4^{2-}), 130, 158
sulfate-reducing bacteria,
Desulfovibrio, 301*t*
sulfhydryl functional group, 36, 36*t*, 41
sulfites, allergic reactions to, 531
Sulfolobales, 302*t*
Sulfolobus genus/spp., 302*t*, **326**
sulfonamides (sulfa drugs), 12, 553,
559, 567, 568*f*
bacterial resistance to, 236, 238*f*
as an enzyme inhibitor, 118
mode of action/spectrum of
activity, 563*t*
susceptibility of gram-negative vs.
gram-positive bacteria to, 87*t*
sulfone drugs, to treat leprosy, 626
sulfur bacteria, defined, 324
sulfur cycle, 779, 780*f*
anaerobic respiration and, 130
bacteria important to, 306,
312–313, 774*f*
deltaproteobacteria and, 312–313
sulfur dioxide, as food additive, 197
sulfur granules, **95**, 321*t*
sulfur-oxidizing bacteria, 300*t*, 301*t*, 306
sulfur-reducing bacteria, 312–313
sulfur (S)
acidophiles and, 156
atomic number/atomic weight, 27*t*
chemoautotrophic bacteria and, 156
in cysteine (amino acid), 42*t*, 45
deltaproteobacteria and, 312–313
electronic configuration, 28*t*
as an energy source for bacteria, 139,
141*f*, 143, 143*t*, 306
green bacteria and, 142, 143*t*
in methionine (amino acid), 42*t*
microbial growth requirements, 158
in organic compounds, 36
sources of, 158
Thiobacillus and, 35, 306
sulfuric acid
chemoautotrophic bacteria and, 156
Thiobacillus ferrooxidans and, 35
summer sausage, fermentation and, 134*t*
sunlight
antimicrobial effect of, 190
life without, 779–780
sunscreens, genetically modified
melanin in, 258
suntanning, skin cancers and, 227–228
superantigens, **439**, 441*t*, 497, 527, 589
erythrogenic toxins as, 439
superbugs, 580
supercritical carbon dioxide, 199, 202*t*
superficial mycoses, 340
superinfections, **561**
tetracyclines use often leads to, 571
superoxide anions, **159**
superoxide dismutase (SOD), **159**,
159*t*, 473*b*
genetically modified, 259*t*
- superoxide radicals, **159**, 462, 472*b*, 473*b*
suppressor T cells. *See* T regulatory cells
suramin, 627
surface-active agents (surfactants), as
antimicrobial agents, 192, 193*f*,
196–197, 196*f*, 201*t*, 202*t*
Surfacine, 195
surfactants. *See* surface-active agents
surgery
brown alga *Laminaria japonica*
and, 346
nosocomial infections and, 422*b*
surgical dressings, in nosocomial
infections, 416, 417
surgical gloves, latex allergy and,
530–531
surgical hand scrubs, 193, 201*t*
surgical infections
Bacteroides and, 322
phage typing to trace, 287, 289*f*
surgical instruments
endotoxins and, 442*b*, 444*b*
prion contamination, protease
enzymes to inactivate, 200
surgical wounds
aseptic techniques and, 181
body's normal defenses, sterilization
and, 182
early attempts to control infection
in, 11
infections
microbes causing, 416*t*
phage typing to tract, 287, 290*f*
Staphylococcus aureus and, 316
at surgical site, 417*t*
MRSA-infected patients post-
surgery, 423*b*
nosocomial infections and, 416*t*, 417*t*
susceptibility, **451**
susceptibility testing for antibiotics,
577–579, 751*b*
broth dilution test, 578–579, 579*f*
disk-diffusion method, 578, 578*f*
E test, 578, 578*f*
Svedberg units, 94
swarming, in bacterial motility, 81,
82*f*, 311*f*
swarming bacteria, *Proteus*, 82, 311, 311*f*
sweat glands, 590, 590*f*
dermicidin produced by, 473
sweat (perspiration), 455, 590, 590*f*
sweat/sweating
antimicrobial properties, 404*t*
fever and, 466
glands in skin, perspiration and, 455
swelling (edema), of inflammation, 463
swimmer's ear (otitis externa),
597*b*, **598**
swimmer's itch, **673b**, **675**
swimming pools
chlorine gas used to disinfect, 194
conjunctivitis from, 610
otitis externa and, **599**
rashes and, 596, 598–599, 599*b*,
605*b*, 607*b*, 611*b*
swine, as disease reservoirs, 377*b*, 413*t*
swine flu (H1N1 influenza virus), **18**,
374–375*b*, 405*f*
Swiss cheese
fermentation and, 134*t*, 137, 320, 799
how holes are formed, 137

- Sydenham's chorea (Saint Vitus' dance), **648**
 symbionts of insects, **300t**
 symbiosis, **105, 106b, 266, 405, 405f, 773**
 algae and giant clams, **348**
 mycorrhizae fungi and, **330**
 nitrogen fixation process and, **158**
 between normal microbiota and host, **405, 405f**
 ruminants and, **767**
 truffles and, **773, 774f**
 symbiotic bacteria, **266, 300t, 302t, 303**
 Carsonella ruddii, **327**
 genetically modified *Rhizobium* and, **266**
 rhizobias and, **304–305**
 Wolbachia and, **306, 308b**
 symbiotic fungi (mycorrhizae), **330**
 symptoms, vs. signs, **408**
 Synagis (palivizumab), **692**
 syncytium, **443, 444f, 692**
 syndrome, **408**
Synechococcus, **777**
 Synercid (dalforpristin), mode of action/spectrum of activity, **562t**
 Synercid, **565t, 571**
 synergism, **584, 584f**
 of antimicrobial peptides (AMPs), **473**
 in combination antibiotics, **571, 573f, 584, 584f**
 synthesis reactions, **32**
 synthetic DNA, **253–254, 254f**
 used to produce human insulin, **257**
 synthetic drugs, **11–12**
 synthetic genes. *See* synthetic DNA
 synthetic rubber, **257**
 syphilis, **20, 325, 325f, 758–762, 759f, 760f, 767b**. *See also* *Treponema pallidum*
 central nervous system affected by late-stage, **754**
 chancres of, **760, 760f**
 congenital, **424t, 761**
 culturing issues with, **164**
 culturing media and, **167, 406**
 diagnosis of, **57, 59, 61f, 66t, 761**
 gummas of, **760f, 761**
 incidence and distribution, **20, 759–760, 759f**
 incubation period, **431t, 760**
 latent period, **761**
 as notifiable infectious disease, **424t**
 portals of entry, **430, 431t, 770**
 pregnancy and, **760, 761**
 progression of
 primary stage, **760, 760f**
 secondary stage, **760, 760f**
 tertiary (late-stage), **760f, 761**
 rashes of, **760, 760f**
 treatments for, **559, 565, 762**
 salvarsan first used to treat, **12**
 syphilis, rashes of, **753, 754f**
 syringes, AIDS, hepatitis B transmitted by, **447**
 systematics (phylogeny), **273**
 systemic anaphylaxis (anaphylactic shock), **528, 529–530**
 systemic infection (generalized infection), **409**
- systemic inflammatory response syndrome (SIRS), **646**
 systemic lupus erythematosus, **472b, 537**
 systemic mycoses, **339, 340t**
T
 T antigen, **393**
 T-cell receptors (TCRs), **480**
 T cells, **458, 480, 489–494**
 cellular immunity and, **480, 486–489**
 classes of, **490**
 in compromised hosts, **416**
 cytotoxic, **490, 493, 493f**
 in delayed hypersensitivity reactions, **529–530, 530f, 531b**
 dendritic cells importance to, **490**
 diabetes mellitus and, **538**
 differentiation of, **489, 489f**
 DiGeorge syndrome and, **541b**
 helper. *See* T helper cells
 in HIV/AIDS, **545–550, 547f, 548f**
 HIV (*Lentivirus*) and destruction of, **445t**. *See also* HIV
 leukemia viruses and, **393**
 lymph node location of, **458, 645, 645f**
 memory cells and, **489**
 regulatory, **492–493, 500t**
 spleen and, **494b**
 superantigens stimulate proliferation of, **439**
 as third line of defense, **452f**
 thymus as maturation site, **459, 459f, 489, 541b**
 T cytotoxic cells (T_C), **490, 493, 493f**
 T-dependent antigen, **485, 485f**
 T-DNA, **263, 264f**
 T-even bacteriophages, **58f, 376f**
 viral multiplication and, **381–383, 382f**
 T helper cells ($CD4^+$ T cells), **490–492, 491f, 492f**
 follicular (T_{FH}), **492**
 T_H^1 cells, **491–492, 492f, 496t, 499b**
 T_H^2 cells, **491–492, 492f, 496t**
 T_H^{17} cells, **491–492, 492f**
 T helper cells (T_H), **490–492, 491f**
 in antibody production, **485, 485f**
 T-independent antigens, **485, 487b, 487f, 503**
 T lymphocytes. *See* T cells
 T regulatory cells, **492–493, 496t**
 T suppressor cells. *See* T regulatory cells
 table sugar (sucrose), **38, 38f**
 tachycardia, as complication of fever, **466**
 tachyzoites, **352**
 in toxoplasmosis, **661, 662f**
 Tacrolimus (FK506), **542**
Taenia saginata, **358–359, 364t**
Taenia solium, **359, 364t, 413t**
 Taeniasis, **739**
 tail, of T-even bacteriophage, **376f, 382f**
 tail fiber, of T-even bacteriophage, **376f, 382f**
Talaromyces, **338f**
 Tamiflu (oseltamivir), **566t, 575, 701**
 Tamm, Sid, **106b**
 tap water, *Acanthamoeba* grows in, **351**
- tapeworms (cestodes), **358–360, 360f, 361f, 364t, 738–739, 738f, 740b**
 beef (*Taenia saginata*), **358, 359, 364t, 739**
Echinococcus granulosus and, **359–360, 361f, 364t**
 foodborne transmission of, **413t**
 niclosamide to treat, **562t, 577**
 pork (*Taenia solium*), **359, 364t, 413t, 739**
- Taq polymerase enzyme, **326, 767**
 TASS (toxic anterior segment syndrome), **436b**
 Tatum, Edward L., **10f, 13t, 15**
 taxa/taxon, **273**
 taxis, **82**
 Taxol
 genetically modified, ovarian cancer therapy, **259t**
 produced by *Taxomyces*, **341**
 yew trees and, **341**
Taxomyces, **341**
 taxonomic hierarchy of organisms, **278, 279f**
 taxonomy, **272, 273**
 advances in, **263**
 of microbes, **272–298**. *See also* classification
 as tool for natural classification system, **275**
 of viruses, **374–375, 377–378t**
 tazarotene (Tazorac), **599**
 Tazorac (tazarotene), **599**
 TB. *See* tuberculosis
 TCRs (T-cell receptors), **480**
 TDP (thermal death point), **185**
 TDT (thermal death time), **185**
 tears
 IgA antibodies in, **480**
 lysozyme in, **88, 455**
 as protective mechanism, **452f, 454, 474t**
 teeth, biofilm formation as plaque, **161**
 "teflon pathogen" *Treponema pallidum*, **754**
 teichoic acids, **84, 85f, 86, 87t**
 telemorphs, **338**
 telithromycin (Ketek), **565t, 571**
 telomeres, **260**
 TEM (transmission electron microscope), **62–63, 63f, 66t**
Paramecium micrograph, **63f, 66t**
 specimen preparation and, **62–63**
 specimen size and, **58f**
 T-even bacteriophages (viruses)
 micrograph, **58f**
 Temin, Howard, **10f**
 temperate phages (lysogenic phages), **383–384, 383f**
 temperature
 agar and, **162**
 autoclaves and, **185–187, 186f, 186t, 191t, 441, 442t**
 disinfectants' effectiveness and, **186**
 enzymes and, **113, 116–117, 117f**
 extremes, archaea and, **4, 274, 274f**
 food preservation and, **155–156, 155f, 156f**
 highest on record for bacterial growth, **156**
- low, to control microbial growth, **188–189**
 microbial growth requirements and, **154–156, 154f–156f**
 optimum for pathogenic bacteria, **117, 155**
 pasteurization and, **187–188**
 steam heat and, **185–187, 186t, 191t**
 thermal death point and, **185**
 thermal death time and, **185**
 water as buffer for, **34**
- temperature abuse, food poisoning and, **717**
 template strand of DNA, **214f, 215**
 tenofovir, **553, 575**
 teratogenic drugs, **600**
 terbinafine, **566t, 574, 606**
 terminator (DNA strand site), **214f, 215**
 terminology
 of microbial control, **182, 183t**
 scientific nomenclature, **2–3, 4t, 278, 279f**
- termites
 as example of endosymbiosis, **106b**
 Paecilomyces fumosoroseus fungus as biocontrol, **341**
 spirochetes bacteria and, **325**
- Terramycin (oxytetracycline), **565t, 570**
 terrorism, biological weapons and, **190, 261, 654b**
 tertiary sewage treatment, **794**
 tertiary structure of proteins, **44, 45f**
 test tubes, culture media and, **162**
 testes, **750, 750f**
 tests for water purity, **785–787**
 tetanospasmin. *See* tetanus toxin
 tetanus, **96, 159, 441t, 442t, 621–622, 621f, 638b**
 from bacteria in soil, **409**
 caused by *Clostridium tetani*, **314, 441t, 621, 638b**
 incubation period, **431t**
 as notifiable infectious disease, **424t**
 portals of entry, **430, 431t**
 symptoms of, **407, 441t, 621**
 tetanospasmin toxin causing symptoms of, **439, 441t, 621**
 microscope, **62–63, 63f, 66t**
 vaccine, **14, 506t, 507t, 621**
 as a toxoid, **438, 506t, 507t, 508, 621**
 antitoxins/antisera as, **508, 522**
 tetanus immune globulin (TIG), **621**
 tetanus toxin (tetanospasmin), **439, 441t, 442t, 621**
 produced by *Clostridium tetani*, **235, 439, 441t, 621**
 vaccine made from purified, **506t, 508, 621**
 tetherins, **553**
 tetracyclines, **561f, 562t, 565t, 570–571, 571f**
 inhibition of protein synthesis by, **9, 561f, 563, 563f, 565t**
 produced by *Streptomyces aureofaciens*, **560t**
 resistance genes to, **236, 238f**
 selective toxicity and, **565**
 superinfections and, **571**

- susceptibility of gram-negative vs. gram-positive bacteria to, 87t
to treat *H. pylori* peptic ulcer disease, 71b
to treat inclusion conjunctivitis, 61t
to treat tularemia, 649
tetrads, 77, 77f
Tetrahymena (protozoan), cilia of, 99, 99f
tetrapetide side chain, in bacterial cell walls, 84, 85f
Tetraviridae, 396t
tetroses, 39
textiles, microbes in manufacture of, 244
thallus (body), 332, 333
 of algae, 343, 344
 of lichen, 342, 343f
thawing, of freeze-thaw cycle, 189
therapeutic index, antibiotics and, 576
ThermaClear, to treat acne, 600
thermal cyclers, 157b, 249, 251
thermal death point (TDP), 185
thermal death time (TDT), 185
Thermoactinomyces vulgaris,
 regerminated 7500-year-old endospores of, 96
Thermococcus litoralis, 157b
thermoduric bacteria
 acid-anion sanitizers and, 196
 pasteurization and, 187
thermophiles, 154, 155–156, 326. *See also* extreme thermophiles
thermophilic anaerobic spoilage, 800–801
thermophilic archaea, optimal growth temperatures, 156, 326
thermophilic bacteria
 food spoilage and, 182, 795, 796t
 Thermus aquaticus as, 251, 767
Thermotoga, 275, 280f
Thermovibrio ammonificans, 157b
Thermus aquaticus, 251, 326, 767
Thermus genus/spp., 302t
thiamine (vitamin B₁), 115t, 158
thickening agents
 agar, 346. *See also* agar
 algin, 345–346
 carageenan, 346
Thiobacillus ferrooxidans, 143
pH ranges and, 35
used in copper ore recovery, 806
Thiobacillus genus/spp., 300t, 306, 772
sulfur granules of, 95
as sulfur oxidizers, 143, 300t, 306, 772
Thiobacillus thiooxidans, 143
Thiomargarita genus/spp., 301t, 317
Thiomargarita namibiensis, 14, 299f, 327, 327f
Thiotrichales, important genera of, 301t
30S ribosomes, 94, 94f
Thomas, E. Donnall, 13t
thoracic (left lymphatic) duct, 458, 459f
three-dimensional images
 AFM microscope and, 65, 65f, 67t
 confocal microscope and, 62, 62f
 DIC microscope and, 59, 61f, 65t
 SEM microscopes and, 63–64, 63f
three-domain system
 274f, 276t
 evolutionary relationships, 273–275, 274f, 276t
threonine (Thr)
 E. coli and synthesis of, 119
 structural formula/characteristic R group, 42t
throat, normal microbiota of, 404t
thrombocidin, produced by platelets, 473
thrombocytes. *See* blood platelets
thrombocytopenic purpura, 533, 534f
thrush (oral candidiasis), 341, 606, 607f, 759
thylakoids (chromatophores)
 of bacteria, 90, 90f, 138, 143, 143t
 of eukaryotic cells, 103, 104f, 143t
thymic aplasia (DiGeorge syndrome), 543, 544t
thymic selection, 489, 532
thymine dimers
 nucleotide excision repair and, 227–228, 228f
 unrepaired, skin cancers and, 231
 UV light exposure and, 190, 227–228, 228f
thymine nucleotide, 46f
thymine (T), 46f, 47, 208
 in DNA replication, 210–215, 211f–214f
 exposure to UV light and, 227–228, 228f
 in translation, 216–218, 216–217f
thymus, 459, 459f, 480, 531b
 diabetes mellitus and, 538
 DiGeorge syndrome and, 541b
 T cells and, 459, 489, 490f. *See also* T cells
Ti plasmid, as vector for plant genetic modification, 263–264, 264f
ticarcillin, 568
tickborne diseases, 290, 304, 325, 362, 364t
ticks, 58f, 356t, 364t
 as arthropods, 331f
 cattle, 690
 compound light microscope micrograph, 58f
 Dermacentor species, 655, 656f
 as disease reservoirs, 413t, 656b
 Ehrlichia transmitted by, 304
ivermectin effective against, 572
Ixodes species, 352, 362f, 364t, 413t, 653
Lone Star, 654
Ornithodoros species, 364t
Rickettsia transmitted by, 304
 as vectors, 364t, 413t
TIG (tetanus immune globulin), 621
tigecycline (Tygacil), 565t, 571
time factors
 antimicrobial agents and, 186, 195
 ethylene oxide's antimicrobial action and, 198
 resistant microbes and, 186
tincture of iodine, 193, 202t
tincture of Zephiran, 196f
tinctures, 193
 effectiveness of, vs. aqueous solutions, 195, 196f
tinea capitis (ringworm), 605, 606f
 griseofulvin to treat, 569
tinea cruris (jock itch), 605
tinea pedis (athlete's foot), 568, 605, 606f
tinea unguium (onychomycosis), 606
tinidazole, 566t, 577
tissue cells, relation to lymphatic
 capillaries, blood
 capillaries, 456f
tissue cysts, 661–663, 662f
tissue-destroying diseases
 actinomycosis, 320
 mycetoma, 320
 necrotizing fasciitis, 19, 286, 317, 320, 423b, 595–596, 596f
tissue digester, to dispose of prion-infected animals, 631, 631f
tissue fluids, lysozyme in, 455
tissue plasminogen activator, 259t
tissue rejection
 histocompatibility antigens and, 482
 surgery-damaged cells and, 534
tissue repair, inflammatory response and, 464f, 465
tissue typing, 538, 538f
titer, 515–516, 516f
TLRs. *See* Toll-like receptors
TMD (tobacco mosaic disease). *See* tobacco mosaic virus
TMP-SMZ (trimethoprim-sulfamethoxazole), 565t, 573, 573f
TMV (tobacco mosaic virus), 14, 369, 369, 370
Tn5 transposon, 238f
Tn1546 transposon, 237, 239
TNF. *See* tumor necrosis factor
tobacco mosaic virus (TMV), 14, 369, 370, 372f
Tobamovirus, 396t
tobramycin, 570
toenails, cutaneous mycoses and, 340
Togaviridae, 377t, 388, 388t
Togavirus/EEE virus (eastern equine encephalitis), 377t, 625, 628b
Togavirus/WEE virus (western equine encephalitis), 377t, 625, 628b
Toll-like receptors (TLRs), 452, 460–462, 461f
 in activation of T helper cells, 491
 antimicrobial proteins (AMPs) and, 473
 as early warning system in adaptive immunity, 481, 579
 in inflammatory response, 463
tolnaftate, 566t, 575
toluene, bacteria that use as energy/carbon source, 235
tomatoes, salmonella outbreak, 715b
tomatoes (MacGregor variety), 266, 267t
Tonegawa, Susumu, 13t, 487
tongue, 681f
 normal microbiota of, 17f
tonoplast, 103
tonsillectomy, bacterial endocarditis and, 647
tonsillitis, 682
tonsils, 459, 459f

pore-forming, secreted by intracellular pathogens, 462 potency and, 432 produced by gram-negative vs. gram-positive bacteria, 87^t prophage genes and, 384 as proteins, 41 R factor plasmids that confer resistance to, 235 red algae and, 345t, 346 saxitoxins, 344 Shiga, 207, 235, 384 streptococcal, 384 trichothecenes, 445 *Toxocara canis*, 360, 364t *Toxocara cati*, 360, 364t toxocariasis, 364t toxoids (inactivated toxins), 438, 442t as vaccines, 438, 508, 621 *Toxoplasma* genus/spp., pathogenic mechanisms of, 446 *Toxoplasma gondii*, 352, 356t causing encephalitis in AIDS patients, 550t interleukin-12 to treat, 499b life cycle of, 669f pregnancy dangers and, 352 reservoirs/transmission method, 413t U.S. prevalence of antibodies against, 662, 663f toxoplasmosis, 356t, 413t, 655b, 668, 669f of brain, in AIDS patients, 542, 550t, 668 California sea otter deaths and, 282b, 668 cats infected with, 668, 669f disease reservoirs for, 413t pregnancy and, 760 *Toxoplasma gondii* causing, 356t, 668, 669f transmission due to, 413t U.S. prevalence of antibodies against, 663f TPM (two-photon microscopy), 60, 62f, 66t *Paramecium* micrograph, 62f, 66t trace elements, 158 activating enzymes and, 115 microbial growth and, 158 tracheotomy, compromised hosts and, 416 trachoma, 322, 430, 462, 609b, 610, 610f blindness and, 322, 610 trans fatty acid, 40 transacetylase, 219, 221f transamination, 145, 145f transcription, 210f, 214f, 215, 218, 218f control mechanisms on, 219–221, 221f, 222f DNA viruses and, 386, 388t in eukaryotic cells, 218, 219f RNA viruses and, 388, 389f translation and, 215, 217–218, 218f. See also translation transduction (bacterial), 234–235, 237f generalized, 234–235, 237f, 384 specialized, 235, 237f, 384, 384f

transfer RNA (tRNA), 47, 208, 216 in translation, 216–218, 216–217f, 218, 218f transfer vesicles, 102, 104f transferase enzymes, 115t transferrin, 434, 466, 473 high body temperature and, 466 transformation (genetic), 232–233, 233f, 234f, 251 in continuous cell lines, 380 as genetic engineering technique, 251 naturally occurring, 236 in tumor cells, 393, 542, 543f by viruses, 393, 443–444, 447f transfusion reactions, 528t, 532–533, 532t, 533f, 544t, 554b transgenic animals, 258, 259t, 267t transient microbiota, 402 translation, 210f, 215–218, 216–217f, 218, 218f DNA viruses and, 386, 388t in eukaryotic cells, 218, 219f transcription and, 215, 217–218, 218f translational reading frame, frameshift mutations and, 225 transmembrane proteins, 89, 90 transmissible spongiform encephalopathies (TSE), 636–637, 636f, 637t, 638b transmission electron micrograph, defined, 62 transmission electron microscope (TEM), 62–63, 63f, 66t *Paramecium* micrograph, 64f, 67t specimen preparation and, 62–63 specimen size and, 58f T-even bacteriophages (viruses) micrograph, 58f transmission of disease biological transmission and, 414 by direct contact, 411, 412f, 413t by droplets, 411–412, 412f by flea bites, 413t, 414t by fomites, 411, 412f, 413t, 416 by indirect contact, 411–412, 412f, 413t by ingestion, 413t mechanical transmission by arthropods and, 414 by mosquito bites, 414t in nosocomial infections, 415f, 416, 416f, 417t by tick bites, 413t, 414t by vectors, 413–414, 414t by vehicle (air/food/water), 412–413, 412f transplacental transfer of immunoglobulins, 483t, 498 transplant rejection cytotoxic T lymphocytes (CTLs) and, 493, 529 delayed (Type IV) hypersensitivity reaction and, 528t, 535, 537b genetically modified products to minimize, 259t immunologically privileged sites/privileged tissue, 534–535 impaired innate defenses and, 465 mechanisms of, 534–535 monoclonal antibodies to minimize, 514 transplant surgery HLA tissue typing, 533–534, 533f immunosuppression and, 541–542 using PCR in matching donors, 534 transplantation reactions, 539–541, 540f Type IV delayed-hypersensitivity reactions and, 535 transplants bone marrow, 536 corneal, 559b liver, 536 transport media, 283 transport vesicle, 102, 104f transporter proteins, 41 in active transport processes, 93 in facilitated diffusion, 91–92, 91f transposase, 211f, 237, 238f transposition, 237, 238f, 239 frequency of, 237 transposons, 235, 237 antibiotic resistance and, 237, 238f, 239, 580 complex, 237, 238f evolution and, 239, 275 gene silencing and, 258 human genome and, 260 trastuzumab (Herceptin), 514, 543 traveler's diarrhea, 441t, 724, 728b enterotoxigenic *E. coli* and, 235, 310, 724, 728b exotoxins causing, 235, 310, 441t trees ascomycete *Cryphonectria parasitica* and chestnut trees, 341 *Ceratocystis ulmi* causing Dutch elm disease, 342 chestnut, *Cryphonectria parasitica* and, 341 oak, *Phytophthora ramorum* and, 348 redwood, *Phytophthora ramorum* and, 348 that produce anticancer therapies, 341 Trematodes (flukes), 356–358, 358f, 359, 364t immune system attack on, 491, 492f praziquantel to treat, 562t, 577 trench mouth (acute necrotizing ulcerative gingivitis), 716, 716f *Treponema* genus/spp., 302t, 325, 325f as normal microbiota of mouth, 404t portals of entry, 430, 431t *Treponema pallidum pertenue*, 753 *Treponema pallidum*, 325, 325f, 758–759, 759f adherence method of, 433, 752 axial filaments of, 82, 83f, 325, 325f blood banks screen for, 727b cultivation of virulent strains and, 406 darkfield microscopy to detect, 57, 66t FTA-ABS test micrograph, 61f, 65t mucous membranes (moist) and, 453–454 portals of entry, 430, 431t syphilis caused by, 325, 325f. See also syphilis as “teflon pathogen”, 754 yaws caused by subspecies strains, 753 tretinooin, 599 triangular-shaped bacteria, 78 *Triatoma* (kissing bug), 350, 356t, 363f, 364t, 413t triazole antifungal antibiotics, 574, 661 *Tribonema vulgare* (algal cell), 98f tricarboxylic acid (TCA) cycle. See Krebs cycle trichiasis, 610, 610f *Trichinella spiralis*, 364t, 705f life cycle of, 743, 743f portals of entry, 431t reservoirs/transmission method, 413t trichinellosis caused by, 740b, 743–744 trichinellosis, 361, 364t, 413t, 705f, 740b, 743–744, 743f disease reservoirs for, 413t freezing temperatures and, 189 incubation period, 431t microwave ovens and, 190 as notifiable infectious disease, 424t transmission due to, 413t *Trichoderm*a, 3b, 38, 341 *Trichodesmium*, 777–778 *Trichomonas vaginalis*, 349, 350f, 356t, 767f metronidazole to treat, 571 as normal microbiota of vagina, 404t, 760 vaginitis caused by, 347, 756, 759b trichomoniasis, 766, 766b, 768, 768f TORCH panel of tests and, 768 *Trichonympha sphaerica*, 106b *Trichophyton* (*Arthroderma*), 340t, 445 cutaneous mycosis and, 597b, 605–606 reservoirs/transmission method, 413t trichothecenes, 445 *Trichuris trichiura*, 361, 364t, 740b, 742, 742f trickling filters, in sewage treatment, 791, 792f triclosan, 192–193, 193f, 201t *Tridacna* (giant clam), 348 trigeminal nerve ganglia, herpes simplex virus and, 597–598, 598f triglycerides (fats), 39–40, 39f, 135 trimethoprim, 565t, 573, 573f trimethoprim-sulfamethoxazole (TMP-SMZ), 565t, 573, 573f trioses, 39 tripeptide, 43 triple reassortment H1N2, 377b tRNA, of Archaea/Bacteria/Eukarya compared, 276t tRNA. See transfer RNA *Tropheryma whipplei*, 290 trophophase, 803, 804f

- trophozoites, 348
Balantidium coli, 353
Giardia, 350f
Toxoplasma gondii and, 352
true flies, as vectors of human diseases, 364t
truffles, 773–774, 774f
Truvada, 553
Trypanosoma, 350
antigenic variation used by, 435, 446, 629, 629f
regulation of gene expression and, 219
Trypanosoma brucei gambiense, 350, 356t, 414t
antigenic variation in, 435, 446, 629, 629f
trypanosomiasis caused by. *See* trypanosomiasis
tsetse fly as vector, 350, 356t, 364t, 414t, 633
Trypanosoma brucei rhodesiense, 356t, 414t, 633
Trypanosoma cruzi, 4t, 330, 350, 356t, 414t, 419t, 462, 656b, 666–667, 667f
blood banks screen for, 727b
Chagas' disease caused by, 656b, 666–667
trypanosomes
antigenic variation in, 435, 446, 633, 635f
in Chagas' disease, 350, 661, 661f
evasion of immune system by, 633, 635f
schizogony and, 350
trypanosomiasis
African, 219, 330, 350, 356t, 363, 364t, 413t, 435, 446, 633, 638b
American. *See* Chagas' disease
tryptophan (trp)
in indigo production, 3f
structural formula/characteristic R group, 42t
synthesis repression, 221, 222f
TSE (transmissible spongiform encephalopathies), 636–637, 636f, 637t, 638b
tsetse fly, as vector for African trypanosomiasis, 356t, 364t, 413t, 446, 633, 638b
TSS. *See* toxic shock syndrome
TSTA (tumor-specific transplantation antigen), 393
tuberculin skin test, 512, 530, 690, 690f
tuberculocidal agents
instruction labels and, 202
tests for effectiveness, 203
tuberculoid (neural) form of leprosy, 619, 620f
tuberculosis (TB), 688–692, 688f, 706b
acid-fast stain to identify, 70
in AIDS patients, 549, 550f
airborne transmission and, 413
antibiotics to treat, 569, 570, 572, 684, 690–691
biochemical tests to detect, 142b
bovine (*Mycobacterium bovis*), 688
cases reported 1948–2010, 424f
causative agent of, 142b, 319, 682f. *See also* *Mycobacterium tuberculosis*
as chronic disease, 409
chronic inflammation of, 460
desiccation resistance by bacterium causing, 189
diagnosis of, 690, 690f
extensively drug-resistant (XDR) strains of, 691
fluorescent dyes to identify, 61
incidence of, worldwide, 691, 692f
incubation period, 431t
multidrug-resistant (MDR-TB) strains and, 18, 691
as notifiable infectious disease, 424t
pathogenesis, 682–684, 683f
peritoneal, 142b
portal of exit, 446
portals of entry, 430, 431t
pulmonary, 142b
reported cases, 1948–2007, 424f
skin test, 512, 530, 690, 690f
susceptibility testing and, 691
treatments of, 690–691
vaccine, 14, 509, 691
worldwide incidence, 685, 686f
tubulin, 99
tularemia, 364t, 447, 647–649, 650f, 656b
Chrysops (deer fly) as vector transmitting, 364t
Francisella tularensis causing, 307, 462, 648, 656b
hamsters (Clinical Focus) case study, 656b
as notifiable infectious disease, 424t
number of cases in U.S. (1990–2000), 642, 642f
as potential biological weapon, 642, 654b
as zoonotic disease, 648
tumor cells
natural killer (NK) cells can destroy, 495
transformation and, 393, 542, 543f
tumor-destroying (oncolytic) viruses, 371
tumor necrosis factor alpha (TNF- α), 440, 440f
disorders leading from excessive production of, 463
in fever, 466
in inflammatory response, 463
psoriasis and, 538
tumor necrosis factor (TNF),
rheumatoid arthritis and, 512
tumor necrosis factor (TNF), 496–497
as cytokines, 496–497
endotoxic shock and, 440, 440f
genetically modified, 259t
tumor-specific transplantation antigen (TSTA), 393
tumors
interleukin-12 (IL-12) and, 499b
mammary gland (mice), 392
Mastadenovirus and, 377t
Papillomavirus and, 377t, 387
reverse transcriptase, proviruses and, 391f, 393–394
transformation in, 393
tungsten
used in staining of specimens, 63
used with gene guns, 252, 252f
turbidity, measuring, to estimate bacterial growth, 175, 176f
turkey farming, animal feed antibiotics and, 583b
turnover number of enzymes, 114
12D treatment (*botulinal cook*), in commercial sterilization, 800
twitching motility, 83
two-kingdom classification system, 273
two-photon microscopy (TPM), 60, 62f, 66t
Paramecium micrograph, 62f, 66t
2-aminofluorene (2-AF), 232b
2-aminopurine, 226–227, 227f
Tygacil (tygocycline), 565t, 571
tygocycline (Tygacil), 571
Type I hypersensitivity, 528–531, 528t
Type II hypersensitivity, 528t, 532–534
Type III hypersensitivity, 528t, 534–535
Type IV hypersensitivity, 528t, 535
typhoid fever, 311, 430, 720–772, 720f, 728b
culture medium and, 165
endotoxin causing, 442t
incidence of, 720, 720f
incubation period, 431t
infection still spread in convalescence, 410
as notifiable infectious disease, 424t
portal of exit, 446
portals of entry, 430–431, 431t
Salmonella typhi as cause of, 311, 431t
transmitted by contaminated water, 411
urine as portal of exit, 447
vaccine, 508, 722
Typhoid Mary, 411, 721
typhoidal salmonellae, 719–720
typhus, 462, 656b, 660–662
causative agent/arthropod vector, 413t
endemic murine, 310, 364t, 656b, 660
caused by *R. typhi*, 304, 413t
disease reservoir/transmission due to, 413t
Xenopsylla (rat flea) as vector, 364t, 414t
epidemic, 364t, 656b, 660
Nightingale's epidemiologic analysis of, 420
Pediculus humanus corporis (body louse) as vector, 304, 363f, 364t, 414t, 660
Rickettsia prowazekii and, 304, 413t, 414t, 660
tickborne, 661. *See also* Rocky Mountain spotted fever vaccine, 660
typical pneumonia, 692
tyrosine (tyr), 41, 41f
structural formula/characteristic R group, 42t
ubiquinones (coenzyme Q), 127, 127f
UDP-N-acetylglucosamine (UDPNAc), 144, 144f
UDPG (uridine diphosphoglucose), 144, 144f
UDPNAc (UDP-N-acetylglucosamine), 144, 144f
UHT (ultra-high-temperature) treatments, 187–188
ulcers
genetically modified epidermal growth factor to heal, 259f
Helicobacter pylori and, 455
ultra-high-temperature (UHT) pasteurization, 187–188
ultra-high-temperature (UHT) treatments, 187–188
ultrasonic baths, test for endotoxins, 442b, 444b
ultraviolet (UV) light
to control microbes, 190, 190f
in microscopy, 59, 61f, 65f
mutagenic, 227–228, 228f
viral multiplication and, 384
Ulva (green alga), 345f
umbilical cord blood, stem cells harvested from, 540, 541
uncoating in viral multiplication, 385–386, 385t, 387f, 389f
undecylenic acid, antifungal activity of, 575
undulant fever. *See* brucellosis
undulating membrane of *Trichomonas vaginalis*, 349, 350f
universal ancestors, 274f, 275, 277
Universal Precautions for Health Care Personnel (CDC), 546t, 551
unsaturated fatty acids, 39, 39f, 40, 40f
uracil (U), 47, 47f
in translation, 216–218, 216–217f
uranium, 35
used in staining of specimens, 63
Ureaplasma genus/spp., 301, 318
Ureaplasma urealyticum, 758
urease test, 142b, 144f
ureidopenicillin, 568
ureteritis, 746
ureters, 750, 750f
urethra, 750, 750f
urethritis, 356t, 752, 755
Chlamydia trachomatis causing, 322, 431t, 757–758, 767b
nongonococcal/nonspecific, 322, 431t, 462, 757–758, 767b
Trichomonas vaginalis causing, 356t
uridine diphosphoglucose (UDPG), 144, 144f
uridine triphosphate (UTP), 144, 144f
urinary bladder, 750, 750f
urinary catheters
nosocomial infections and, 416, 417t
number of MRSA-infected patients related to, 423b
urinary system, 750–754, 750f
bacterial diseases of, 752–753, 753b
normal microbiota of, 404t, 751
structure/function of, 750, 750f, 751f
urinary tract infections (UTIs), 402b, 752

E. coli causing, 310
as emerging infectious disease, 419t
endotoxin causing, 442t
Enterobacter and, 312
Enterococcus faecalis and, 317
Enterococcus faecium and, 317
fluoroquinolones to treat, 567
nosocomial, 416t, 417t, 752
Proteus causing, 311
Pseudomonas and, 308
sulfa drugs to treat, 567
tetracyclines to treat, 565
Trichomonas vaginalis causing, 349, 350f
Ureaplasma and, 318
vancomycin-resistant enterococci and, 419t
urine, 455
lysozyme in, antimicrobial activity and, 453, 474t
normal microbiota of urinary tract and, 745
pH of, 453
as portal of exit, 447
urinary catheters altering flow, infections and, 455
washes microbes from urethra, 455, 474t
U.S. Geological Survey research, nanotechnology and, 264
U.S. Postal Service, anthrax bioterrorism and, 646, 654b
U.S. Public Health Service, 420
USA100 MRSA strain, 423b
USA300 MRSA strain, 423b
use-dilution test, 192
Usnea, 342
usnic acid, from *Usnea* lichen, 342
uterine (fallopian) tubes, 477f, 750, 751f
infection (salpingitis), 752
uterus, 750, 751f
UTP (uridine triphosphate), 144, 144f
UV light. See ultraviolet (UV) light
V
V factor, *Haemophilus* bacteria and, 312
V-P (Voges-Proskauer) test, 282b, 285f, 286
Vancomycin, to treat meningitis, 619
vaccination (immunization), 11, 479, 498, 505–511
antigenic variation and, 509, 511
artificially acquired active immunity and, 498
booster, 418, 506t, 507, 508, 616
childhood, recommended schedule for, 507t
Clinical Case, 505b, 508b, 511b, 514b, 519b, 522b
development of new vaccines, 509, 511
emerging infectious diseases and, 418
herd immunity and, 409, 505, 598, 612
how it works, 409, 498, 505
Jenner's research and, 11, 505
rates of, 409
vaccines, 14, 498, 504–511, 505

adjuvants and, 511
against bacterial diseases, 506t
against viral diseases, 506t
attenuated (live), 507
boosters, 418, 506t, 507, 508, 616
cancer, 543
childhood, 507t, 621
conjugated, 508
development of new, 509, 511
DNA, 258, 508
filtration used to sterilize, 188, 191t
first, 11
gene guns to inject, 508
inactivated killed, 507–508
injection sites, dendritic cells and, 494
killed, 507–508
live attenuated, 507
microbes used in commercial production of, 245, 259t
nucleic acid (DNA vaccines), 508
oral, 509
patches (skin) as, 509
primary immune response provoked by, 505
as rDNA product, 258, 259t
recombinant, 508
recommendations for, 506t, 507t
safety of, 266, 511
secondary immune response and, 505
sources for recommended immunizations, 506
subunit, 259, 508
toxoids (inactivated toxins) as, 438, 508, 616
for travelers, 505–506
types of, 11, 507–508
UV light to disinfect, 190
viral, animal cells used to produce, 244
yeast genetically modified to produce, 245, 258, 259t
vaccinia virus, 377t
confers immunity to smallpox, 505
genetically modified, 257
size of, 371, 372f
vaccine, 505
vacuoles, 98f, 103
food, 346, 349, 350f, 351f
gas, 95
of protozoa, 349
vagina, 750, 751f
Haemophilus and, 312
normal microbiota of, 312, 326, 404t, 745
pH of, 745
vaginal infections. See vaginitis
vaginal secretions
as defense against pathogens, 455, 474t
pH of, 455
vaginal yeast infections, miconazole to treat, 568, 569f
vaginitis, 319, 356t, 762–763, 762f, 766b
Candida albicans and, 403, 606, 756, 762–763, 766b
Gardnerella vaginalis and, 312, 762–763, 766b
Trichomonas vaginalis and, 349, 356t, 571, 762, 766b
vaginosis, bacterial, 756, 756f, 759b
valacyclovir, 602
valence, 27, 28t
of antibodies, 479
valine (Val), structural formula/characteristic R group, 42t
Valley fever. See coccidioidomycosis
van Leeuwenhoek, Anton, 7, 7f, 10f, 13, 53, 54, 55, 325
vancomycin, 20b, 423b, 561f, 564t, 569
MRSA problem and its importance to, 569
resistance
antibiotics developed in response to, 566
by *S. aureus* (VISA), 18, 419t, 423b, 424t
by *S. aureus* (VRSA), 12, 18, 207, 237, 419t, 423b, 424t, 569
transposons and, 223f, 239
vancomycin-intermediate *Staphylococcus aureus* (VISA), 18, 423b
as nationally notifiable infectious disease, 424t
vancomycin-resistant enterococci (VRE), 419t, 569, 583b, 647
vancomycin-resistant *Staphylococcus aureus* (VRSA), 12, 18, 207, 237, 419t, 423b, 563
as nationally notifiable infectious disease, 424t
variable (V) regions, of antibodies, 482, 482f, 487
varicella (chickenpox), 377t, 387, 394, 596–597, 597f
breakthrough varicella, 597
incubation period, 431t, 596
as notifiable infectious disease, 424t
portals of entry, 431t, 596
rash caused by, 394, 596b
Reye syndrome complication of, 596
vaccine, 14, 506t, 507t, 596–597
varicella-zoster virus (*Varicellovirus*/HHV-3), 377t, 596–597. See also chickenpox
AIDS-associated, 550t
causing shingles, 377t, 596–597. See also shingles
incubation period, 431t
portals of entry, 431t
pregnancy and, 760
vaccine, 14, 506t, 507t, 596–597
Varicellovirus (chickenpox virus), 394, 396t
Varicellovirus/HHV-3. See varicella-zoster virus
variola major, 595
variola minor, 595
variola virus, 376f
variolation, 505
Varmus, Harold E., 13t, 393
vasodilation in inflammatory response, 464, 464f
VDRL test, for syphilis, 761
vectorborne diseases, by arthropod vector/disease, 364t
vectors, 248, 363, 365, 413–414
arthropods as, 363, 363f, 364f, 365, 413–414, 413t, 414t
biological transmission by, 414
DNA molecules as, 248–249, 249f
insects as, 413–414
mechanical transmission by, 414, 414f
shuttle, 251
viral DNA as, 251
vegetables and fruits, PAA for washing/disinfecting, 202
vegetative bacteria
desiccation and, 189
endospore-forming, 96–97, 96f, 332
freezing temperatures and, 188–189
high pressure to control, 189
vegetative cells
of myxobacteria, 313, 313f
resistance to desiccation and, 189
temperatures that kill, 97
vegetative hyphae, 332, 333, 333f, 347f, 348
vegetative pathogens
boiling water/flowing steam to kill, 185–188, 186f, 186t, 191t
disinfection to control, 182, 183t
microwave ovens and, 190
non-endospore-forming, disinfection to control, 182, 183t
vegetative structures
of algae, 343–344, 344f
of fungi, 332–335, 332f, 333f
of protozoa, 349
vehicle transmission of disease agents, 412–413, 412f
Veillonella genus/spp., as normal microbiota of mouth, 404t
veins, parasitic helminths and, 364t
Venezuelan hemorrhagic fever, 378t, 419t
as emerging infectious disease, 419t
Venezuelan hemorrhagic virus, 18, 419t
ventilation systems, hospital, nosocomial infections and, 416
ventilator-related procedures, MRSA-infected patients and, 423b
vents, deep-sea hydrothermal, 156, 157b
vertebrates, as eukarya, 6
vertical gene transfers, 232
vesicles, 773, 774f
of endoplasmic reticulum, 102–103, 104f
vesicles (lesions), 591, 592f
vesicular-arbuscular mycorrhizae (endomycorrhizae), 773, 774f
vesicular stomatitis virus (VSV), 378t, 380f, 390f
Vesiculovirus, 378t
veterinary microbiology
fungal infection (Clinical Case), 332b, 339b, 341b, 342b
marine mammal deaths, 282b
vaccines, 259t
West Nile virus, 220b, 220f, 503, 631, 634b
Vibrio cholerae, 76, 310, 310f

- A-B enterotoxin (cholera toxin)
produced by, 438, 439
- coevolution and, 429
- incubation period, 431t
- lysogenic phages and, 442
- noncholera vibrios, 723, 728b
- portals of entry, 430, 431t
- as potential biological weapon, 654b
- Vibrio cholerae*: 139, 722
Clinical Case, 773b, 784b, 787b,
792b, 793b, 795b
- emerging infectious diseases
and, 419t
- new serovar and evolutionary
changes, 18, 418, 419t
- terminology used in naming,
311footnote
- virulence and, 432
- Vibrio* enterotoxin (cholera toxin),
439
produced by *Vibrio cholerae*,
438, 439
- Vibrio* genus/spp., 78, 78f, 301t,
310, 310f
found in dolphins, 282b
- Vibrio parahaemolyticus*, 310, 723
- Vibrio vulnificus*, 723, 728b
- Vibrionales, 301t, 309–310
- vibrios, 78, 78f, 310
- vibriosis, as notifiable infectious
disease, 424t
- Vincent's disease (trench mouth),
716, 716f
- vinegar
fermentation and, 134t
microbes used in production of, 800
- viral agents, first used to produce
immunity, 11
- viral diseases
of cardiovascular system, 662–666
development of drugs to treat
and, 12
- of digestive system, 727–735
- of eyes, 605, 609b
- interferons' discovery and, 14
- of lymphatic system, 662–666
- of nervous system, 620–626
- of reproductive system,
757–758, 761b
- of respiratory system
lower, 697–702
upper, 685–686
- of skin, 600–605
rashes caused by, 594b, 596b, 597b
- viral DNA, as a vector, 251
- viral gastroenteritis, 734–735, 734f
- viral genome, 245
- viral genomes, 261
directing biosynthesis inside host
cell and, 281
- viral hemagglutination, 517, 517f
- viral hemagglutination inhibition test,
517, 518f
- viral hemorrhagic fevers, 665, 667b
emerging, 659–660, 667b
as nationally notifiable infectious
disease, 424t
- viral infections
attachment sites and drug
development, 385
- chronic, 394, 394f, 396t
- gene silencing and, 258
- latent, 394, 394f, 396t
modified into crop plants, 264
- persistent, 394, 394f, 396t
- viral meningitis, 617–618
- enteroviruses often causing,
377–378t
- viral multiplication, 381–392, 385t
in animal viruses, 385–392. *See also*
animal viruses
- in bacteriophages, 381–385
compared, 385t
drugs that interfere with, 370
- host range and, 370
- stages of, 381, 382f, 383–385,
385f, 387f
- viral pneumonia, 698
- viral protein, DNA vaccines and, 258
- viral proteins, produced by *S.
cerevisiae*, 259t
- viral RNA, reverse-transcription PCR
and, 251
- viral RNA testing, 551
- viral species, 281, 377
three-domain system and, 281
- viral therapy, safety of, 371
- viral vaccine preparations, egg proteins
and allergies to, 379
- viral zoonoses, 413t
- Virchow, Rudolf, 8
- viremia, 409
poliovirus causing, 621
- viridans streptococci*, 319
- virions, 371. *See also* viruses
latent, 547, 547f
viral multiplication and, 381, 383f
- viroids, 396–397, 397f
causing plant diseases, 396–397, 397f
introns and, 397
size of, 372f
- virology, 14
- virosomes, 506
- virstatin, 579
- virucides, 182, 196
- virulence, 70, 429
of algae, 446
antigenic variation and, 435
cell wall components and, 433
- early experiments in, 11
- enzymes' role in, 433–435
- fungal, 445
- genetic transformation and,
232–233, 233f
- glycocalyx, capsules, biofilm role in,
80, 432–433
- of helminths, 446
- host cell cytoskeleton and, 435, 435f
- LD₅₀ and, 432
- LD[U][A]50[u] and, 432
- lysogeny and, 441–442
- M protein and streptococci, 317, 433
- plasmid genes encoding for,
441–442
- of protozoa, 445–446
- of viruses, 443–444, 444f, 445t
- virus-host interactions, phage therapy
research and, 371, 579
- viruses, 5, 5f, 75, 369–400, 370
as acellular microbes, 5
- advantages of electron microscopes
to view, 61, 64
- alcohol-based disinfectants and,
194–195, 202t
- animal. *See animal viruses*
- antigenic changes induced by, 442
- antimicrobial drugs that inhibit,
370, 562t, 566t, 575–577, 576f.
See also antiviral drugs
- bacteria compared to, 370, 370t
- bacterial. *See bacteriophages*
- biocidal resistance and, 200, 203f
- boiling water/flowing steam to kill,
185–187, 186f, 191t
- cancer and, 392–394
- DNA oncogenic viruses, 393
- RNA oncogenic viruses, 393–394
transformation and, 393
- capsid of, 371, 372f, 373f
- capsomeres of, 371, 372f, 373f
- cell cultures, 379–380, 380f
characteristics of, 370–374,
370t, 372f
- chromosomal changes induced
by, 442
- classification of, 281, 371, 394b
- Clinical Case, 370b, 390b, 392b,
393b, 394b
- cultivation of, 376, 379–380,
379f, 380f
- bacteriophages and, 376, 376f, 379
- cytopathic effects of, 443–444, 444f,
445t, 447f
- desiccation resistance and, 189
- disinfectants effective against, 193,
194, 196
- distinguishing features, 370, 370t
- early descriptions of, 369, 370
- as emerging infectious diseases
(EIDs), 18, 419t
- enveloped, 371, 373f
alcohol-based disinfectants and,
194, 202t
- biguaniide disinfectants and, 193
- biocidal resistance and, 203, 203f
- budding, 392, 392f
- double-stranded DNA, 377t, 388f
- double-stranded RNA, 378t
- helical, 373, 373f
- polyhedral, 372f, 373, 388f
- quats active against, 196,
199b, 202t
- single-stranded RNA, 377t,
378t, 388f
- evolution of, 281
- filterable, 188, 369, 370
- in foodstuffs, radiation doses needed
to kill, 797t
- gene silencing as defense against, 258
- genetic information of, 261, 393, 394b
- genetically modified to infect tumor
cells, 371
- helical, 373, 373f
- host range and, 370–371
- host-virus interactions, phage
therapy and, 371, 579
- identification of, 379, 380
- IgG antibodies and, 483t
- interferons to counter, 471–473,
471f, 474t
- isolation of, 376, 379, 379f
- latent, 384, 394, 394f, 396t
- with lipid envelopes, resistance to
chemical biocides, 203, 203f
- mammalian cell cultures as hosts
for, 256–257, 380f
- mechanisms for evading host
defenses, 443–444, 444f, 445t
- molecular methods of
identifying, 379
- morphology of, 372f, 373–374, 373f
- multiplication in, 381–392. *See also*
viral multiplication
- natural killer (NK) cells can
destroy, 495
- negative staining of, 63, 388f
- nonenveloped, 371, 372f, 373,
377t, 378t
- alcohol-based disinfectants and,
195, 202t
- biocidal resistance and, 197b,
200, 200f
- norovirus outbreak, 182b, 197b,
199b, 201b
- single-stranded RNA, 377t, 378t
- as obligatory intracellular
parasites, 370
- Old World, introduced into New
World viruses, 220b
- oncogenic (oncoviruses), 378t,
392–394
- oncolytic, 371
- origins of, 281
- orphan, 390
- pathogenic properties of, 443–444,
444f, 445t
- peracetic acid effective against, 202
- plant, 395–396, 396t
- plaques and, 376, 376f, 395
- reproduction of, 5, 12
- resistance to chemical biocides,
200, 200f
- rickettsias/chlamydias compared to,
370, 370t
- size of, 5, 371, 372f
- spikes of, 371, 373, 373f
- structure of, 5, 5f, 371–374,
372f, 373f
- survival time in boiling water, 185
- taxonomy of, 374–375, 377–378t
viral species and, 375
- that infect bacteria, 234–235
- three-domain system and, 281
- tumor cells naturally infected
by, 371
- vaccines and, 505, 506f, 507t
- vaccines and animal cells used to
produce, 245
- viral enzymes and host enzymes, 379
- virions and, 371
- VISA (vancomycin-resistant *S.
aureus*), 18, 419t, 423b, 424t
- visible light. *See light (visible)*
- vitamin B1 (thiamine), 115t
- vitamin B2 (riboflavin), 2, 115t
- vitamin B6 (pyridoxine), 115t
- vitamin B12 (cobalamin), porins
and, 2, 86
- vitamin B12 (cyanocobalamin), 115t

- vitamin C (ascorbic acid),
fermentation and, 134*t*
- vitamin E, 115*t*
- vitamin K, 2, 115*t*
- vitamins
coenzymatic functions of
selected, 115*t*
in complex culture media, 163
how they cross plasma membrane,
91*f*
microbes used in commercial
production of, 245
microbiological assays and, 162
as organic growth factors, 162
- Voges-Proskauer (V-P) test, 282*b*,
285*f*, 286
- volutin, 95
- Volvox* (pond ala), 5*f*
- vomiting, to expel microbes, 455, 474*t*
- von Behring, Emil A., 10*f*, 479
- von Nägeli, Carl, 273
- voriconazole, 566*t*, 574
- Vorticella*, 353*f*
- VRE (vancomycin-resistant
enterococci), 419*t*, 569,
583*b*, 640
- VRSA (vancomycin-resistant
Staphylococcus aureus), 12, 18,
207, 237, 419*t*, 423*b*, 424*t*, 563
- VSV (vesicular stomatitis virus), 378*f*,
378*t*, 390*f*
- vulnerability to disease. *See*
susceptibility
- vulva, 745, 750*f*
- vulvovaginal candidiasis, 341, 759
- W**
- Waksman, Selman A., 13*t*
- walking pneumonia, 694
- wandering (free) macrophages, 460
- Warren, J. Robin, 13*t*
- warts (papillomas), 447, 597*b*, 600
genital, 430, 757, 758*f*, 761*b*
imiquimod to treat, 570
Papillomavirus causing, 377*t*, 387
- symptoms of, 597*b*
treatments for, 600
- Wassermann test, 513
- waste products, metabolic
pathway, 121
- wasting syndrome, caused by
Cyclospora cayetanensis, 419*t*
- water
as a solvent, 34
amebae living in, 350–351
boiling point, 33
in dehydration synthesis, 37, 38*f*
dissociation and, 34, 34*f*
distilled, microbial growth and, 158
how it crosses plasma membrane,
91, 92–93
- hydrogen bond formation in, 31, 31*f*
in hydrolysis, 38*f*
as an inorganic compound,
33–34, 34*f*
- microbial growth and, 156
- mole of, 31
- molecular weight, 31
as nonliving disease reservoirs, 411,
412*f*, 413
- polluted, algal blooms and, 348
- properties, 33–34, 34*f*
protozoa inhabit, 348
as reactant or product in chemical
reactions, 34
- recreational, protozoal infections
and, 356*t*, 357*b*
- structure, 31*f*, 33–34
as temperature buffer, 34
- water (drinking)
chloramines to disinfect, 194
household bleach to disinfect in
emergencies, 194
- water molds (*Oomycota*), 345*t*,
347–348, 347*f*
- as decomposers of dead algae,
animals, 344
- in kingdom Stramenopila, 343
- water molecules, hydrogen bond of,
31, 31*f*, 33
- water pipes
bacterial growth in, 97*b*
Burkholderia form biofilms in,
444*b*, 689
- Legionella* and, 309
- water pollution
bioremediation and, 16, 32*b*
blooms of dinoflagellate species as
indicators, 344
- chemicals, 784–785
- detergents, 779
- microbial ecology and, 15
- pathogenic organisms in, 412,
412*f*, 784
- typhoid fever and, 784, 784*f*
- water quality
chemicals in, 784–785
- pathogenic organisms in, 784, 784*f*
- purity tests, 785–787, 787*f*
- water treatment, 788–789, 788*f*
- chloramines to disinfect, 194
- chlorine dioxide and, 194, 198
- disinfection, 788, 788*f*
- filtration, 788, 788*f*
- flocculation, 788, 788*f*
- ozonators, 788, 788*f*
- waterborne diarrhea
Cryptosporidium causing, 357*b*
Cyclospora cayetanensis causing, 353
- Watson, James D., 10*f*, 15, 44, 47
- wavelengths of light, algae and,
344–345, 344*f*
- waxes, 144
- waxy lipid, 433. *See also* mycolic acid
- weapons, microbes as. *See* biological
weapons
- weather, infectious disease incidence
and, 410
- WEE virus/*Togavirus* (western equine
encephalitis), 377*t*, 634, 634*b*
- Weil's disease, 747, 754
- Weizmann, Chaim, 2
- Weller, Thomas H., 13*t*
- West Nile encephalitis (WNE), 19,
220*b*, 220*f*, 331*f*, 377*t*,
631, 634*b*
- as an arbovirus, 631, 634*b*
- disease reservoirs for, 413*t*
- as an emerging infectious disease,
19, 419*t*
- as *Flavivirus*, 377*t*, 628*b*
- transmission due to, 413*t*
- as zoonotic disease, 413*t*
- West Nile virus (WNV), 19, 220*b*, 220*f*,
378*t*, 631, 634*b*
- as an arbovirus, 631
- birds as disease reservoirs, 19, 220*b*,
413*t*, 631, 634*b*
- DNA vaccine for horses, 503, 508
- emerging infectious diseases and,
19, 419*t*
- horses protected by vaccine for, 508
- modern transportation and spread
of, 418
- mosquitos as vectors of, 363*f*, 365,
631, 634*b*
- PCR used to identify, 380
- Western blotting (immunoblotting),
286–287, 288*f*, 380, 521
- western equine encephalitis (WEE
virus/*Togavirus*), 377*t*,
630, 634*b*
- whales
Influenza A viruses and, 18, 374*b*
pilot, cetacean morbillivirus (CM)
and, 282*b*
- wheat, food allergies and, 525
- whey, 798
in cheese production, 798–799, 799*f*
as liquid waste by-product of dairy
industry, 801*b*
- used for xanthan production, 801*b*
- Xanthomonas campestris* used to
produce xanthan from, 808*b*
- Whipple's disease, PCR used to
identify cause, 290
- whipworm (*Trichuris trichiura*), 361,
364*t*, 472, 740*b*, 742
- white blood cells, 456, 457*t*. *See also*
leukocytes
- White Cliffs of Dover, as fossilized
colonies of marine protist, 277
- white rust, 347
- whiteflies, watermelon wilt transmitted
by, 396*f*
- Whitewater Arroyo virus, 666
- Whittaker, Robert H., 273
- WHO. *See* World Health Organization
- whooping cough (pertussis), 306,
687–688, 687*f*, 706*b*
- as emerging infectious disease, 419*t*
- incubation period, 431*t*
- as notifiable infectious disease, 424*t*
- portal of entry, 431*t*
- portal of exit, 446
- spread by droplet transmission,
411–412, 412*f*
- vaccine, 14, 506*t*, 507*t*, 687
- wildlife management, veterinary
microbiologists and, 282*b*
- Wilkins, Maurice A. F., 47
- wine
fermentation and, 134*b*, 134*t*,
806, 807*f*
- souring/spoilage, pasteurization
and, 8, 800
- steps in winemaking, 806, 807*f*
- sulfur dioxide as disinfectant,
196, 802*f*
- Winogradsky, Sergei, 10*f*, 15
- Wiskott-Aldrich syndrome, 544*t*
- WNE. *See* West Nile encephalitis
- WNV. *See* West Nile virus
- Woese, Carl R., 6, 10*f*, 274
- Wolbachia* genus/spp., 300*t*, 306,
308*b*, 308*f*
- as endosymbionts, 300*t*, 306,
308*b*, 308*f*
- evolutionary implications of, 308*b*
- heartworm life cycle and, 362
- wood-eating termites, 106*b*
- World Health Organization (WHO)
disease rankings by, 330
- global pandemic diseases and, 18
- priorities for emerging infectious
diseases, 418
- worms. *See* helminths
- wound botulism, 624
- wound infection, as portal of exit, 447
- wound tumor virus (plant virus), 396*t*
- wounds. *See also* surgical wounds
Acinetobacter and infections of, 309
- Bacteroides* and, 322
- botulism, 618
- Enterococcus faecalis* and, 317
- Enterococcus faecium* and, 317
- genetically modified epidermal
growth factor to heal, 259*t*
- Proteus* and infections of, 311
- Pseudomonas* and infections of, 308
- silver-impregnated dressings
and, 195
- Wuchereria bancrofti*, elephantiasis
caused by, 446
- X**
- X factor, *Haemophilus* bacteria
and, 312
- X-gal (culture medium), 255, 255*f*
- X-linked infantile (Bruton's)
agammaglobulinemia, 544*t*
- X ray crystallography, 373
- X rays, 189, 190*f*. *See also* radiation
as mutagens, 227–228
- xanthan (thickening agent), produced
from whey, 801*b*
- xanthins, 345*t*
- Xanthomonas campestris*, producing
xanthan, 808*b*
- xanthophylls, 345*t*
- XDR (extensively drug-resistant)
strains of tuberculosis, 691
- xenobiotics, 780–781
- xenografts, 541
- Xenopsylla* (rat flea), as vector, 363*f*,
364*f*, 413*f*, 648
- xenotransplantation products, 541
- xeroderma pigmentosum, 228
- Xgel hand sanitizer, 196
- Xigris (drotrecogin alfa), 646
- XMRV retrovirus, 639
- Xolair (omalizumab), 530
- xTAG respiratory panel, 698
- xylitol, *S. mutans* dental caries and,
135*b*, 137*b*
- Y**
- yaws, 447, 759
- yeast extracts, in complex culture
media, 163
- yeast infection, 341. *See also*
candidiasis
- yeasts, 2, 4, 5*f*, 280, 333–334, 334*f*

budding, 333, 334f
 cell wall of, 98
 as eukaryotes, 6, 75, 330, 331f
 fermentation and, 9. *See also*
 fermentation
 fission, 333–334
 genetically modified to produce
 vaccines, 245, 258
 high osmotic pressures and growth
 of, 189
 living, that are millions of years
 old, 277
 peroxidase production and, 3b
 pH and growth of, 156
 rapid identification tests for,
 285
 reproduction in, 304, 333–334,
 334f
 as workhorse of biotechnology,
 256, 258

yellow fever, 364t, 377t, 414t, 447,
 667, 667b
 filterable agents and, 369
 mosquito as vector, 363f, 364t, 414t,
 667, 667b
 as notifiable infectious disease, 424t
 as potential biological weapon, 654b
 vaccine, 505, 667
Yersinia enterocolitica, 282b, 726
Yersinia gastroenteritis (*yersiniosis*),
 726, 728b
Yersinia genus/spp., 301t, 311
Yersinia pestis
 as a biological weapon, 654b
 capsule of, virulence and, 433
 plague caused by, 311. *See also*
 plague
 portals of entry, 431
 reservoirs/transmission
 method, 413t
Yersinia pseudotuberculosis, 726

yersiniosis (*Yersinia gastroenteritis*),
 726, 728b
 yew trees, Taxol and, 341
 yogurt
 fermentation and, 134t
 microbes used to make, 799
 pasteurization time/temperature
 and, 187
 Yonath, Ada E., 13t
Z
 zanamivir (Relenza), 566t, 575, 701
 Zephiran (benzalkonium chloride),
 195, 196, 196f, 198b, 202t
 Zephiran-soaked cotton balls, *M.*
abscessus infection and, 198b
 zidovudine, 575
 zimantadine, 566t
 zinc
 as antimicrobial agent, 196
 as cofactor, 115
 zinc chloride, 196

zinc pyrithione, 196
 Zinkernagel, Rolf M., 13t
 zippers, made by microbes, 3b
 zone of inhibition, 578, 578f
Zoogloea genus/spp., 301t, 307
 in sewage treatment, 301t, 307,
 784, 786f
 zoonoses/zoonosis, 411, 413t, 648,
 649
 zoospores, 347, 347f
 zoster vaccine, 602
 zur Hausen, Harald, 13t
 zygomycetes, 336f
Zygomycota, 336f, 337, 340t
zygosporangium, 336f
zygospore, 336f, 337
 zygote
 in apicomplexan reproduction,
 349, 352f
 in life cycle of *Rhizopus*, 336f
 Zyvox (linezolid), 565t, 572

BRIEF CONTENTS

PART ONE Fundamentals of Microbiology

1 The Microbial World and You	1
2 Chemical Principles	25
3 Observing Microorganisms Through a Microscope	53
4 Functional Anatomy of Prokaryotic and Eukaryotic Cells	75
5 Microbial Metabolism	111
6 Microbial Growth	153
7 The Control of Microbial Growth	181
8 Microbial Genetics	207
9 Biotechnology and DNA Technology	244

PART TWO A Survey of the Microbial World

10 Classification of Microorganisms	272
11 The Prokaryotes: Domains Bacteria and Archaea	299
12 The Eukaryotes: Fungi, Algae, Protozoa, and Helminths	330
13 Viruses, Viroids, and Prions	369

PART THREE Interaction Between Microbe and Host

14 Principles of Disease and Epidemiology	401
15 Microbial Mechanisms of Pathogenicity	429
16 Innate Immunity: Nonspecific Defenses of the Host	451
17 Adaptive Immunity: Specific Defenses of the Host	478
18 Practical Applications of Immunology	504
19 Disorders Associated with the Immune System	527
20 Antimicrobial Drugs	558

PART FOUR Microorganisms and Human Disease

21 Microbial Diseases of the Skin and Eyes	589
22 Microbial Diseases of the Nervous System	615

23 Microbial Diseases of the Cardiovascular and Lymphatic Systems

643

24 Microbial Diseases of the Respiratory System

680

25 Microbial Diseases of the Digestive System

711

26 Microbial Diseases of the Urinary and Reproductive Systems

749

PART FIVE Environmental and Applied Microbiology

27 Environmental Microbiology	772
28 Applied and Industrial Microbiology	799

Answers to Review and Multiple Choice Study Questions

AN-1

Appendix A Metabolic Pathways

AP-1

Appendix B Exponents, Exponential Notation, Logarithms, and Generation Time

AP-7

Appendix C Methods for Taking Clinical Samples

AP-8

Appendix D Pronunciation of Scientific Names

AP-9

Appendix E Word Roots Used in Microbiology

AP-13

Appendix F Classification of Prokaryotes According to *Bergey's Manual*

AP-16

Glossary

G-1

Credits

C-1

Index

I-1

A photograph of two young people in a laboratory setting. On the left, a young woman with long dark hair, wearing a white tank top under a blue hoodie, smiles and holds a yellow pencil with a pink eraser. On the right, a young man with dark skin and short hair, wearing a yellow shirt, looks intently through the eyepiece of a white compound light microscope. The background shows laboratory equipment and fluorescent ceiling lights.

See the connection between
HUMAN HEALTH &
MICROBIOLOGY

TAXONOMIC GUIDE TO DISEASES

Bacteria and the Diseases They Cause

Alphaproteobacteria

Anaplasmosis	<i>Anaplasma phagocytophilum</i>	p. 660
Brucellosis	<i>Brucella</i> spp.	pp. 649–650
Cat-scratch disease	<i>Bartonella henselae</i>	pp. 653–654
Ehrlichiosis	<i>Ehrlichia</i> spp.	p. 660
Endemic murine typhus	<i>Rickettsia typhi</i>	pp. 660–661
Epidemic typhus	<i>R. prowazekii</i>	p. 660
Rocky Mountain spotted fever	<i>R. rickettsii</i>	pp. 661–662

Betaproteobacteria

Gonorrhea	<i>Neisseria gonorrhoeae</i>	pp. 754–756, 757
Melioidosis	<i>Burkholderia pseudomallei</i>	p. 697
Meningitis	<i>N. meningitidis</i>	pp. 618–619
Nosocomial infections	<i>Burkholderia</i> spp.	p. 430
Ophthalmia neonatorum	<i>N. gonorrhoeae</i>	pp. 610, 755
Pelvic inflammatory disease	<i>N. gonorrhoeae</i>	p. 758
Rat-bite fever	<i>Spirillum minor</i>	pp. 654–655
Whooping cough	<i>Bordetella pertussis</i>	pp. 505, 687–688

Gammaproteobacteria

Animal bites	<i>Pasteurella multocida</i>	p. 653
Bacillary dysentery	<i>Shigella</i> spp.	pp. 718–719
Chancroid	<i>Haemophilus ducreyi</i>	p. 762
Cholera	<i>Vibrio cholerae</i>	pp. 722–723, 773
Conjunctivitis	<i>H. influenzae</i>	pp. 609–610
Conjunctivitis	<i>Pseudomonas aeruginosa</i>	p. 559
Cystitis	<i>Escherichia coli</i>	p. 752
Dermatitis	<i>P. aeruginosa</i>	pp. 590, 596
Epiglottitis	<i>H. influenzae</i>	p. 683
Gastroenteritis	<i>E. coli</i>	pp. 712, 723–724
Gastroenteritis	<i>V. parahaemolyticus</i>	p. 723
Gastroenteritis	<i>V. vulnificus</i>	p. 723
Gastroenteritis	<i>Yersinia enterocolitica</i>	p. 726
Gastroenteritis	<i>Y. pseudotuberculosis</i>	p. 726
Legionellosis	<i>Legionella pneumophila</i>	pp. 694, 698
Meningitis	<i>H. influenzae</i>	p. 618
Otitis externa	<i>P. aeruginosa</i>	p. 598
Otitis media	<i>H. influenzae</i>	p. 685
Otitis media	<i>Moraxella catarrhalis</i>	p. 685
Plague	<i>Y. pestis</i>	pp. 655–658
Pneumonia	<i>H. influenzae</i>	p. 691
Pneumonia	<i>Klebsiella pneumoniae</i>	pp. 76, 311
Pyelonephritis	<i>E. coli</i>	p. 752
Q fever	<i>Coxiella burnetti</i>	pp. 696–697
Salmonellosis	<i>Salmonella enterica</i>	pp. 273, 719–720, 721, 800
Septicemia	<i>P. fluorescens</i>	pp. 154, 646
Tularemia	<i>Francisella tularensis</i>	pp. 648–649, 651
Typhoid fever	<i>S. typhi</i>	pp. 720–723

Epsilonproteobacteria

Gastritis, peptic ulcers	<i>Helicobacter pylori</i>	pp. 725–726
Gastroenteritis	<i>Campylobacter jejuni</i>	p. 724

Clostridia

Botulism	<i>Clostridium botulinum</i>	pp. 622–625
Gangrene	<i>C. perfringens</i>	pp. 652–653

TAXONOMIC GUIDE TO DISEASES (continued)

Clostridia (continued)

Gastroenteritis	<i>C. difficile</i>	pp. 402, 726
Gastroenteritis	<i>C. perfringens</i>	p. 726
Tetanus	<i>C. tetani</i>	pp. 621–622

Mollicutes

Pneumonia	<i>Mycoplasma pneumoniae</i>	pp. 691–692
Urethritis	<i>Mycoplasma, Ureaplasma</i>	p. 758

Bacilli

Anthrax	<i>Bacillus anthracis</i>	pp. 26, 650–652
Bacterial endocarditis	<i>Staphylococcus aureus</i>	p. 648
Cystitis	<i>S. saprophyticus</i>	p. 752
Dental caries	<i>Streptococcus mutans</i>	pp. 112, 713–715
Endocarditis	Alpha-hemolytic streptococci	pp. 647–648
Erysipelas	<i>Streptococcus pyogenes</i>	p. 595
Folliculitis	<i>Staphylococcus aureus</i>	p. 593
Food poisoning	<i>Staphylococcus aureus</i>	pp. 717–718
Gastroenteritis	<i>B. cereus</i>	pp. 726–727
Impetigo	<i>S. aureus</i>	p. 593
Listeriosis	<i>Listeria monocytogenes</i>	pp. 619–621
Meningitis	<i>Streptococcus agalactiae</i>	p. 300
Meningitis	<i>Streptococcus pneumoniae</i>	p. 619
MRSA infections	<i>Staphylococcus aureus</i>	pp. 423, 593, 598
Necrotizing fasciitis	<i>Streptococcus pyogenes</i>	p. 575
Otitis media	<i>S. pneumoniae</i>	p. 685
Pneumonia	<i>S. pneumoniae</i>	p. 691
Puerperal sepsis	<i>S. pyogenes</i>	p. 646
Rheumatic fever	<i>S. pyogenes</i>	p. 648
Scalded skin syndrome	<i>Staphylococcus aureus</i>	p. 593
Scarlet fever	<i>Streptococcus pyogenes</i>	p. 683
Sepsis	<i>Enterococcus</i> spp.	pp. 646–647
Sepsis	<i>Streptococcus agalactiae</i>	p. 647
Strep throat	<i>S. pyogenes</i>	p. 683
Toxic shock syndrome	<i>Staphylococcus aureus</i>	p. 594
Toxic shock syndrome	<i>Streptococcus pyogenes</i>	p. 595

Actinobacteria

Abscess	<i>Mycobacterium abscessus</i>	p. 198
Acne	<i>Propionibacterium acnes</i>	pp. 599–600
Buruli ulcer	<i>M. ulcerans</i>	p. 599
Diphtheria	<i>Corynebacterium diphtheriae</i>	pp. 684–685
Leprosy	<i>M. leprae</i>	pp. 625–626
Mycetoma	<i>Nocardia asteroides</i>	p. 320
Tuberculosis	<i>M. tuberculosis</i>	pp. 688–691
Tuberculosis	<i>M. bovis</i>	p. 142
Vaginosis	<i>Gardnerella vaginalis</i>	p. 762

Chlamydiae

Inclusion conjunctivitis	<i>Chlamydia trachomatis</i>	p. 610
Lymphogranuloma venereum	<i>C. trachomatis</i>	p. 762
Pelvic inflammatory disease	<i>C. trachomatis</i>	p. 758
Pneumonia	<i>Chlamydophila pneumoniae</i>	p. 696
Psittacosis	<i>C. psittaci</i>	pp. 681, 694–696
Trachoma	<i>Chlamydia trachomatis</i>	p. 610
Urethritis	<i>C. trachomatis</i>	pp. 757–758

TAXONOMIC GUIDE TO DISEASES (continued)

Spirochetes

Leptospirosis	<i>Leptospira interrogans</i>	pp. 750, 752–754
Lyme disease	<i>Borrelia burgdorferi</i>	pp. 658–660
Relapsing fever	<i>Borrelia</i> spp.	p. 658
Syphilis	<i>Treponema pallidum</i>	pp. 758–762

Bacteroidetes

Acute necrotizing gingivitis	<i>Prevotella intermedia</i>	p. 716
Periodontal disease	<i>Porphyromonas</i> spp.	pp. 715–716
Septic shock	<i>Capnocytophaga canimorsus</i>	p. 479

Fusobacteria

Rat-bite fever	<i>Streptobacillus moniliformis</i>	pp. 654–655
----------------	-------------------------------------	-------------

Fungi and the Diseases They Cause

Zygomycetes

Opportunistic infections	<i>Mucor, Rhizopus</i>	p. 704
--------------------------	------------------------	--------

Microsporidia

Opportunistic infections	<i>Encephalitozoon intestinalis</i>	p. 337
--------------------------	-------------------------------------	--------

Ascomycetes

Aspergillosis	<i>Aspergillus fumigatus</i>	pp. 452, 704
Blastomycosis	<i>Blastomyces dermatitidis</i>	p. 704
Candidiasis	<i>Candida albicans</i>	pp. 762, 765–766, 606
Coccidioidomycosis	<i>Coccidioides immitis</i>	p. 703
Histoplasmosis	<i>Histoplasma capsulatum</i>	pp. 702–703
Pneumonia	<i>Pneumocystis jirovecii</i>	pp. 703–704
Ringworm, Athlete's foot	<i>Microsporum, Trichophyton</i>	pp. 605–606
Sporotrichosis	<i>Sporothrix schenckii</i>	p. 606

Basidiomycetes

Dandruff	<i>Malassezia furfur</i>	p. 591
Meningitis	<i>Cryptococcus</i> spp.	pp. 332, 632–633
Mycotoxins		pp. 445, 735

Protozoa and the Diseases They Cause

Diplomonads

Giardiasis	<i>Giardia lamblia</i>	p. 591
------------	------------------------	--------

Parabasiliids

Trichomoniasis	<i>Trichomonas vaginalis</i>	pp. 762, 766–768
----------------	------------------------------	------------------

Euglenozoa

African trypanosomiasis	<i>Trypanosoma brucei</i>	p. 633
Chagas' disease	<i>T. cruzi</i>	pp. 666–668
Leishmaniasis	<i>Leishmania</i> spp.	p. 672–673
Meningoencephalitis	<i>Naegleria fowleri</i>	pp. 633–635, 616

Apicomplexa

Babesiosis	<i>Babesia microti</i>	p. 673
Cryptosporidiosis	<i>Cryptosporidium</i> spp.	pp. 357, 737
Cyclospora infection	<i>Cyclospora cayetanensis</i>	pp. 737–738
Malaria	<i>Plasmodium</i> spp.	pp. 668–672
Toxoplasmosis	<i>Toxoplasma gondii</i>	p. 668