Benjamin Ayton MIT aytonb@mit.edu

Work supported by IBM-Watson AI Laboratory and Woodside

Masataro Asai

MIT-IBM Watson AI Lab masataro.asai@mit.edu

Motivation

Policy learning in Atari games results in high gameplay performance but requires 10⁷+ interactions with the environment. To develop decision making suitable for novel environments with lower data requirements, we introduce **Olive**, based on **width-based planning** methods and incorporating **online and active learning**.

Overview

Olive performs online learning without the full complexity of policy learning. We use width based planning, making use of a latent screen representation derived from a variational autoencoder [1]. Our innovations are:

- Active screen collection
- Bandit-based action selection

Active Screen Collection

A variational autoencoder (VAE) determines features from screens. During gameplay, screens are pruned from a search tree if they do not have a **novel feature** [2].

The VAE can only assign meaningful features for screens similar to its dataset. To capture features for later levels only reached by a performant agent, we **train the VAE online** through multiple playthroughs.

To train an effective VAE with limited data, we apply uncertainty sampling and select screens with minimum evidence lower bound (ELBO).

Bandit Based Action Selection

Rewards of each action are modeled with a normal inverse chi-squared prior. During planning, actions are explored according to **Top Two Thompson Sampling (TTTS)** [3], based on **best-arm identification** problems in multi-armed bandits. TTTS assists in finding high reward actions more rapidly.

Results

Olive with active screen selection (ActiveOlive) outperforms width based planning with a VAE trained offline (VAE-IW) [1].

ActiveOlive 32 wins - 20 wins VAE-IW

ActiveOlive (10^5 interactions) outperforms policy learning methods π -IW [4] and deep Q networks (DQN, 10^7 + interactions) [5], and EfficientZero, (10^5 interactions) [6].

ActiveOlive 30 wins – 22 wins π -IW

ActiveOlive 31 wins – 17 wins DQN

ActiveOlive 18 wins - 7 wins EfficientZero

^[1] Dittadi, A.; Drachmann, F. K.; and Bolander, T. 2021. Planning from Pixels in Atari with Learned Symbolic Representations. In AAAI, volume 35, 4941—4949.

^[2] Lipovetzky, N.; and Geffner, H. 2012. Width and Serialization of Classical Planning Problems In ECAI, 540–545.

^[3] Russo, D. 2020. Simple Bayesian Algorithms for Best-Arm Identification. Operations Research, 68(6): 1625–1647.

^[4] Junyent, M.; Jonsson, A.; and Gomez, V. 2019. Deep Policies for Width-Based Planning in Pixel Domains. In ICAPS, volume 29, 646–654.

^[5] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-Level Control through Deep Reinforcement Learning. Nature, 518(7540): 529–533.

^[6] Ye, W.; Liu, S.; Kurutach, T.; Abbeel, P.; and Gao, Y. 2021. Mas tering atari games with limited data. Neurips, 34.