Topología – 2° cuatrimestre 2015

Clasificación de revestimientos

Ejercicio para entregar: Sea B un espacio topológico arcoconexo, localmente arcoconexo y semilocalmente simplemente conexo. Dado un revestimiento $p:E\to B$, se dice que p es abeliano si es normal y su grupo de transformaciones deck G_E es abeliano. Se dice que p es universalmente abeliano si es abeliano y para todo revestimiento $p':E'\to B$ abeliano, existe una función continua $\varphi:E\to E'$ tal que $p=p'\circ\varphi$. Probar que B admite un revestimiento universalmente abeliano.

Demostración Como B es arco-conexo, localmente arco-conexo y semi localmente simplemente conexo entonces $\psi: [p: E \to B] \mapsto Fix_p(e)$ es biyectiva. Sea $H = [\pi_1(B,b), \pi_1(B,b)]$ el conmutador de $\pi_1(B,b)$, entonces $\exists r: E \to B$ revestimiento tal que $Fix_r(e) = H$; como $H \triangleright \pi_1(B,b)$ entonces r es normal y entonces por el ejercicio 11 de la práctica tenemos que $\pi_1(B,b) / H \simeq Deck_r(E,B)$. Entonces r es abeliano pues es normal y su grupo de transformaciones Deck es claramente abeliano!

Recordemos la propiedad universal del grupo X / [X,X]: Sea $f:X\to A$ abeliano, entonces $\exists g:X/[X,X]\to A$ tal que el siguiente diagrama conmute:

Sea entonces $p': E' \to B$ otro revestimiento abeliano, por lo que $\pi_1(B,b) / Fix_{p'}(e')$ es abeliano, entonces por 1 tenemos que $\exists \phi: \pi_1(B,b)/H \to \pi_1(B,b) / Fix_{p'}(e')$ morfismo de grupos tal que $q_H = q_{Fix_{p'}(e)}\phi$ por lo que $H \leq Fix_{p'}(e)$, pero entonces tenemos el siguiente diagrama!

$$E'$$

$$p' \downarrow$$

$$E \xrightarrow{r} B$$

Por el lema del levantamiento $\exists p: E \to E'$ tal que rp = p'. Entonces r es un revestimiento universalmente abeliano de B

- 1. a) Pruebe que si n > 1, entonces toda función continua $S^n \to S^1$ es null-homotópica.
 - b) Pruebe que toda función continua $P^2 \to S^1$ es null-homotópica.
 - c) Exhiba una función $S^1 \times S^1 \to S^1$ que no sea null-homotópica.

Demostración a) Como S^n es simplemente conexo para n > 1, entonces $1_{S^n} \simeq C_{s_0}$, por lo que por la práctica 6 tenemos que $f = f1_{S^n} \simeq C_{f(s_0)}$, por lo que f es null-homotópica

b) Sea el revestimiento universal de S^1 por \mathbb{R} , por lo que tenemos el siguiente diagrama:

$$P^2 \xrightarrow{f} S^1$$

Veamos que $f_*(\pi_1(P^2)) = 0!$

En efecto como $f: P^2 \to S^1$, entonces $f_*: \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$, pero entonces $0 = f_*(0) = 2 * f_*(\overline{1})$ y como $Tor(\mathbb{Z}) = 0$ entonces $f_* = 0$.

Por ende tenemos a P^2 que es arco-conexo y localmente arco-conexo, y $f_*(\pi_1(P^2)) = 0 \subset p_*(\pi_1(\mathbb{R})) = 0$, entonces por el lema del levantamiento $\exists \widetilde{f} : \mathbb{R} \to P^2$ tal que:

Pero como $\mathbb R$ es contráctil tanto $\widetilde f$ como p son null-homotópicas, por ende $p\widetilde f=f$ es null-homotópica.

- c) Sea $f: T \to S^1$ dado por $f(\theta, \phi) = \theta^2 * \phi^3$ entonces como el producto es de números complejos, f está bien definida, y como $f_* = 2n + 3m$ es claro que $f_* \neq 0$ y por ende f no es null-homotópica
- 2. Pruebe que si X es arcoconexo y localmente arcoconexo y $\pi_1(X)$ es finito, entonces toda función $X \to S^1$ es null-homotópica.

Demostración Notemos que como X cumple las hipótesis del lema del levantamiento, sólo nos bastará probar que $f_*(\pi_1(X)) = 0$ si $\pi_1(X)$ es finito; en cuyo caso por el item 1.b) tendríamos que f es null-homotópica.

Sea $[\alpha] \in \pi_1(X)$ un lazo no nulo, como $\pi_1(X)$ es finito $\exists m \in \mathbb{N}$ tal que $[\alpha^{*m}] = 0$ por la existencia de característica. Entonces $0 = f_*([\alpha^{*m}]) = f_*([\alpha])^{*m} \in \pi_1(S^1)$, pero $\pi_1(S^1) = \mathbb{Z}$, y $Tor(\mathbb{Z}) = 0$ por lo que $f_*([\alpha]) = 0$. Como $[\alpha]$ era arbitrario, tenemos que $f_* = 0$.

- 3. Sea $T = S^1 \times S^1$ el toro. Considerando el isomorfismo $\pi_1(T, (b_0, b_0)) \cong \mathbb{Z} \times \mathbb{Z}$ dado por las proyecciones, describa los revestimientos de T asociados a los subgrupos
 - a) $\mathbb{Z} \times 0 \subset \mathbb{Z} \times \mathbb{Z}$;
 - b) el subgrupo generado por $(1,1) \in \mathbb{Z} \times \mathbb{Z}$;
 - c) $\{(2n, 2m) : n, m \in \mathbb{Z}\}.$

Demostración Hagamoslo de dos maneras!

Sabiendo que $p: S^1 \times S^1 \to T$ dado por $p(z, w) = (z^n, w^m)$ es revestimientos $\forall n, m \in \mathbb{N} \times \mathbb{N}$

 $a) \mathbb{Z} \times \{0\}$

Notemos que $\mathbb{Z} \times \{0\} = \langle (1,0) \rangle$ y entonces yo quiero un revestimiento que la fibra en una coordenada tenga cardinal 1 y la fibra en al otra sea 0. Sea entonces $p: S^1 \times \mathbb{R} \to T$ dado por $(z,y) \mapsto (z,e^{2\pi iy})!$ Como $\pi_1(S^1 \times \mathbb{R}) = \mathbb{Z}$ tomemos el lazo $\alpha = (e^{2\pi it},0) = (z,0)$ que genera $\pi_1(S^1 \times \mathbb{R})$, entonces $[p(\alpha)] = [(z,1)]$ y $\langle [(z,1)] \rangle = \mathbb{Z} \times 0$ por lo que $p_*(\pi_1(S^1 \times \mathbb{R})) = \mathbb{Z} \times \{0\}$ y p es el revestimiento buscado.

b) < (1,1) >

Siguiendo el espíritu anterior, notemos que al tener 1 generador, el espacio que reviste debe ser $S^1 \times \mathbb{R}$, por lo que sea el revestimiento $p: S^1 \times \mathbb{R} \to T$ dado por $p(z,y) = (z,ze^{2\pi iy})$ que es claro que es revestimiento. Sea $\alpha = (e^{2\pi it},0) = (z,0)$ el generador de $\pi_1(S^1 \times \mathbb{R})$, entonces $p_*([\alpha]) = [p(\alpha)] = [(z,z)]$ y $\langle (z,z) \rangle = \langle (1,1) \rangle$ por lo que $p_*(\pi_1(S^1) \times \mathbb{R}) = \langle (1,1) \rangle$

c) $\langle (2,0),(0,2)\rangle = \langle (2n,2m), n,m \in \mathbb{N}\rangle$

Ahora al tener dos generadores, necesitamos dos S^1 ! entonces sea $p: S^1 \times S^1 \to T$ dado por $p(z,w)=(z^2,w^2)$ que es revestimiento por ser producto de revestimientos!. Entonces ahora tenemos dos lazos generadores! Sea $\alpha=(e^{2\pi it},1)=(z,1)$ y $\beta=(1,e^{2\pi it})=(1,w)$ que son los dos generadores de $\pi_1(S^1\times S^1)$, entonces tenemos que $p_*([\alpha])=[p(\alpha)]=[(z^2,1)]=[(z,1)*(z,1)]=2*[(z,1)]=2*[(z,1)]+0*[(1,w)]$ y por ende $p_*([\alpha])=\langle (2,0)\rangle$. Similarmente se ve que $p_*([\beta])=\langle (0,2)\rangle$ y por ende $p_*(\pi_1(S^1\times S^1))=\langle (2,0),(0,2)\rangle$

Afirmación Si $H = \langle (p,q), (r,s) \rangle$, entonces $p(z,w) = (z^p w^r, z^q w^s)$ cumple que $Fix_p(e_0) = H$

Demostración Idem item anterior donde reemplazamos numeritos.

Usando transformaciones Deck

- a) $\mathbb{Z} \times \{0\}$ Clase de Xime que no recuerdo...
- 4. a) Pruebe que todo isomorfismo de $\pi_1(T, x_0)$ está inducido por algún homeomorfismo $T \to T$ que deja quieto a x_0 .
 - b) Pruebe que si E es un revestimiento conexo de T, entonces E es homeomorfo a \mathbb{R}^2 , $S^1 \times \mathbb{R}$ ó T. Sugerencia: si F es un grupo abeliano libre de rango 2 y N es un subgrupo no trivial, entonces existe una base $\{a_1, a_2\}$ de F tal que $\{na_1\}$ es base de N para algún n o bien $\{na_1, ma_2\}$ es base de N para ciertos n, m.
 - **Demostración** a) Recordemos que $\pi_1(T, x_0) \simeq \mathbb{Z} \times \mathbb{Z}$ y por ende un isomorfismo ϕ de $\mathbb{Z} \times \mathbb{Z}$ es simplemente $\phi := M * (x, y)$ con $M \in GL_2(\mathbb{Z})$. Ahora entonces si hacemos la identificación $T = S^1 \times S^1 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ afirmo que $h(\overline{x}, \overline{y}) = M * (\overline{x}, \overline{y})$ cumple lo pedido! En efecto, como ϕ es iso entonces $\phi(e_{x_0}) = e_{x_0}$ y entonces, si llamamos $\psi : \pi_1(T, x_0) \to \mathbb{Z} \times \mathbb{Z}$ a la identificación del $\pi_1(T, x_0)$, esto dice que $M * (\psi^{-1}(z_0, z_1)) = \psi^{-1}(z_0, z_1)$ y como $\psi^{-1}(z_0, z_1) = q(x_0)$ entonces tenemos que $h(x_0) = x_0$. Por otro lado como M baja bien al cociente tenemos que $h_* \cong \phi$
 - b) ???
- 5. Sea G un grupo topológico arcoconexo y localmente arcoconexo con elemento neutro e, y sea $p: \tilde{G} \to G$ un revestimiento con \tilde{G} arcoconexo y $\tilde{e} \in p^{-1}(e)$. Pruebe que la multiplicación $\mu: G \times G \to G$ y la función $\nu: G \to G$, $\nu(x) = x^{-1}$ se levantan a funciones $\tilde{\mu}: \tilde{G} \times \tilde{G} \to \tilde{G}$ y $\tilde{\nu}: \tilde{G} \to \tilde{G}$ que hacen de \tilde{G} un grupo topológico con neutro \tilde{e} . Pruebe además que p es un morfismo.

Demostración ???

6. Pruebe que si B admite un revestimiento universal, entonces B es semilocalmente simplemente conexo.

Demostración Sea $b \in B$, entonces como $\exists p : E \to B$ revestimiento universal, $\exists U \ni b$ entorno abierto parejamente cubierto. Por ende el siguiente diagrama conmuta:

$$U \xrightarrow{p^{-1}} B$$

$$U \xrightarrow{i} B$$

Pero entonces como $\pi_1(E) = 0$ entonces por el lema del levantamiento $i_*(\pi_1(U)) = 0$

7. Sea $p: \tilde{X} \to X$ un revestimiento simplemente conexo de X, y sea $A \subseteq X$ un subespacio arcoconexo y localmente arcoconexo, con $\tilde{A} \subseteq \tilde{X}$ una componente arcoconexa de $p^{-1}(A)$. Muestre que $p: \tilde{A} \to A$ es el revestimiento correspondiente al núcleo del morfismo $i_*: \pi_1(A) \to \pi_1(X)$.

Demostración Por definición $p: \widetilde{A} \to A$ es el revestimiento correspondiente al núcleo del morfismo $i_*: \pi_1(A) \to \pi_1(X)$ sii $Fix_p(\widetilde{a_0}) = Ker(i_*)$ sii $\{\omega \in \Omega(A, a_0) \ / \ \omega \simeq C_{x_0}, \ x_0 \in X\} = \{\omega \in \Omega(A, a_0) \ / \ \widetilde{\omega} \in \Omega(\widetilde{A}, \ \widetilde{a_0})\}$. Veamoslo!

- Sea $\omega \in \Omega(A, a_0)$ tal que $\omega \simeq C_{x_0}$ con $x_0 \in X$, entonces por el levantamiento único de homotopías tenemos que $\widetilde{\omega}^{\widetilde{a_0}} \simeq \widetilde{C_{x_0}}^{p^{-1}(x_0)}$ con $\widetilde{a_0} \in p^{-1}(a_0) \subset \widetilde{A}$. Ahora si llamamos \widetilde{H} a la homotopía levantada, tenemos que $\widetilde{H_{\widetilde{a_0}}}$ es un camino entre $\widetilde{a_0}$ y $p^{-1}(x_0)$ y por ende como \widetilde{A} es una componente arcoconexa, $\exists \widetilde{a_1} \in \widetilde{A} / \widetilde{a_1} \in p^{-1}(x_0)$. Ahora, es claro que $\widetilde{C_{x_0}}^{\widetilde{a_1}} = C_{\widetilde{a_1}}$, pero como $\widetilde{\omega}^{\widetilde{a_0}} \simeq \widetilde{C_{x_0}}^{\widetilde{a_1}}$ tenemos finalmente que $\widetilde{a_1} = \widetilde{a_0}$ pues son dos caminos homotópicos y tienen que empezar en el mismo lugar! Además tenemos entonces (pues la homotopía de caminos es relativa a $\{0,1\}$) que $\widetilde{\omega}^{\widetilde{a_0}}(1) = \widetilde{a_0}$, por lo que $\omega \in \{\omega \in \Omega(A, a_0) / \widetilde{\omega} \in \Omega(\widetilde{A}, \widetilde{a_0})\}$
- Sea $\omega \in \Omega(A, a_0)$ tal que $\widetilde{\omega}^{\widetilde{a_0}} \in \Omega(\widetilde{A}, \widetilde{a_0})$, entonces como p es simplemente conexo, tenemos que $\pi_1(A) = 0$ pues es subespacio arcoconexo y simplemente conexo de \widetilde{X} , por ende $\widetilde{\omega}^{\widetilde{a_0}} \simeq C_{\widetilde{a_0}}$ (\widetilde{H}) y entonces $\omega \simeq C_{x_0}$ ($p\widetilde{H}$), con lo que $i_*([\omega]) = 0$.
- 8. Sea $H = \bigcup_{n>1} \partial B_{1/n}(1/n,0) \subset \mathbb{R}^2$ el arito Hawaiano.
 - a) Pruebe que H no es semilocalmente simplemente conexo.
 - b) Sea C(H) el cono de H, que consiste en el subespacio de \mathbb{R}^3 formado por la unión de todos los segmentos que unen un punto de $H \subset \mathbb{R}^2 \times \{0\}$ con el punto (0,0,1). Pruebe que C(H) es semilocalmente simplemente conexo pero no localmente simplemente conexo.
 - **Demostración** a) Sea $(0,0) \in H$ y $U \ni (0,0)$ un entorno abierto, entonces como H tiene la topología subespacio de \mathbb{R}^2 sabemos que $\exists N \in \mathbb{N}$ tal que $\partial B_{\frac{1}{N}}(\frac{1}{N},0) \subset U$ y por ende $\omega = \frac{1}{N}e^{2\pi it} + (\frac{1}{N},0)$ cumple que $i_*([\omega]) \neq 0$. Por ende encontramos $h \in H$ tal que $\forall U \ni h$ entornos abiertos tenemos que $i_*(U) \neq 0$, por ende H no es semilocalmente simplemente conexo.
 - b) Vamos por partes!
 - C(H) es semi localmente simplemente conexo Es claro pues C(H) es un cono de un espacio topológico y por ende es contráctil. Entonces dado $x \in C(H)$ y $U \ni x$ todo $\omega \in \Omega(U, x)$ cumple que $\omega \simeq C_{(0,0,1)}$. Por ende $i_*(U) = 0$
 - C(H) no es localmente simplemente conexo Tambien es claro pues el (0,0,0) no tiene una base de entornos contráctiles por el item a).
- 9. Sean X, Y, Z espacios arcoconexos y localmente arcoconexos y sean $q: X \to Y, r: Y \to Z$ funciones continuas. Sea $p = r \circ q$.
 - a) Pruebe que si p y r son revestimientos, también lo es q. Pruebe que q es normal si p lo es.
 - b) Pruebe que si p y q son revestimientos, también lo es r.
 - c) Pruebe que si q y r son revestimientos y el espacio Z admite un revestimiento universal, entonces p también es un revestimiento.

Demostración a) Sea $x_0 \in X, y_{=} := q(x_0) \in Y$ y $z_0 := p(x_0) \in Z$

Veamos primero que q es sobre!

Sea $y \in Y$ y sea α un camino de y_0 a y, entonces $r\alpha := \beta$ es un camino en Z empezando en z_0 , sea $\gamma := \widetilde{\beta}^{x_0}$ el levantado en X, entonces $q\gamma$ es un camino levantado de β empezando en y_0 ; por unicidad de levantamiento de caminos tenemos que $\alpha = q\gamma$ y entonces $y = \alpha(1) = q\gamma(1) = q(\gamma(1))$ y por ende $y \in Im(q)$, por lo tanto q es sobre.

Ahora si veamos que es revestimiento!

Sea $y \in Y$ y $z = r(y) \in Z$, entonces como p y r son revestimientos $\exists U \ni z$ entorno abierto parejamente cubierto por p y r. Sea $V \subset r^{-1}(U)$ tal que $y \in V$, y veamos que esta parejamente cubierto por q! Sea $p^{-1}(U) = \coprod_i (X_i)$, entonces notemos que $q(X_i) \subset r^{-1}(U)$ y como X_i son conexos, si llamamos $r^{-1}(U) = \coprod_j Y_j$ entonces $q(X_i) \subset Y_j$, por lo que $q^{-1}(V) = \coprod_i \widetilde{X_i}$ donde $\widetilde{X_i}$ es tal que $q(\widetilde{X_i}) \subset V$. Ahora sea el diagrama:

Como por definición conmuta, y $p|_{\widetilde{X_i}}, r|_V$ son homeomorfismos, entonces $q_{\widetilde{X_i}}$ lo es

10. Sea $p:\tilde{E}\to B$ revestimiento universal. Dado un revestimiento $r:E\to B$, pruebe que existe un revestimiento $q:\tilde{E}\to E$ tal que $r\circ q=p$.

Demostración Notemos que tenemos el siguiente diagrama:

Entonces, como $p_*(\pi_1(\tilde{E})) = 0 \subseteq r_*(\pi_1(E))$ pues p es universal, y ademas \tilde{E} es arco-conexo y localmente arco-conexo tenemos entonces por el lema del levantamiento que $\exists q: \tilde{E} \to E$ tal que $p = r \circ q$. Ahora por el ejercicio 9.b tenemos que, como p y r son revestimiento, q es revestimiento.

- 11. Sean E, B arcoconexos y localmente arcoconexos, y sea $p: E \to B$ un revestimiento, $b_0 \in B$, $e_0 \in p^{-1}(b_0)$. Una transformación deck es un homeomorfismo $h: E \to E$ tal que ph = p. El conjunto de transformaciones deck Deck(p) forman un grupo con la operación dada por la composición.
 - a) Se dice que $p: E \to B$ es normal si para todo $b_0 \in B$ y $e_0, e_1 \in p^{-1}(b_0)$, existe una transformación deck tal que $h(e_0) = e_1$. Pruebe que p es normal si y sólo si $H = p_*(\pi_1(E, e_0))$ es un subgrupo normal de $\pi_1(B, b_0)$.
 - b) Pruebe que si p es normal, Deck(p) es isomorfo al grupo cociente $\pi_1(B, b_0)/H$.

- c) Concluya que si $p: E \to B$ es un revestimiento universal de B, entonces $\pi_1(B, b_0)$ es isomorfo al grupo de transformaciones deck.
- **Demostración** a) Sean $e_1, e_2 \in p^{-1}(b)$ entonces $\exists h \in Deck(E, B) / h(e_1) = e_2 \iff Fix(e_1) = Fix(e_2)$. Donde la última igualdad es por el lema del levantamiento al diagrama:

Pero entonces $Fix(e_1) = Fix(e_2) \iff |\overline{\{Fix(e), e \in p^{-1}(b)\}}| = 1$ donde es tomar la clase de conjugación, pero esto último pasa sii $Fix(e_1) \triangleright \pi_1(B,b)$

- b) Sea $\alpha \in \pi_1(B,b)$ y $e_1 \in p^{-1}(b)$, entonces sea $e_2 = g.e_1$ donde la acción es la de la práctica 7; entonces como p es normal $\exists! \phi_g \in Deck(E,B)$ tal que $\phi(e_1) = e_2$. Por lo tanto tenemos un morfismo $\chi : \pi_1(B.b) \to Deck(B,E)$ dado por $g \mapsto \phi_g$. Veamos que es el que nos sirve!
 - χ está bien definida Eso es porque la existencia deriva que p es normal, mientras que la unicidad deriva de que p es revestimiento y por ende todo levantado es único.
 - Es morfismo de grupos En efecto, por un lado $\chi(\alpha * \beta)$ es la transformación deck que $e_1 \mapsto e_1.(\alpha * \beta)$ mientras que $\chi(\alpha) \circ \chi(\beta)$ es la transformación Deck que $e_1 \mapsto (e_1.\alpha).(\beta)$; pero como la acción es transitiva tenemos que $e_1.(\alpha * \beta) = (e_1.\alpha).\beta$, finalmente como $\chi(\alpha * \beta)(e_1) = \chi(\alpha) \circ \chi(\beta)(e_1)$ tenemos (pues son transformaciones Deck) que $\chi(\alpha * \beta) = \chi(\alpha) \circ \chi(\beta)$
 - Es epimorfismo Sea $h \in Deck(E, B)$ y sea α el camino entre e_1 y $h(e_1)$, entonces $p\alpha \in \Omega(B, b)$ que cumple que $h = \chi(p\alpha)$.
 - $Ker(\chi) = p_*(\pi_1(E, e_1))$ Es claro que $\chi(\alpha) = 1_E \iff \alpha.e_1 = e_1 \iff \alpha \in stab(e_1) = p_*(E, e_1)$ pues p es normal. Por ende por el primer teorema de isomorfismo tenemos que $\pi_1(B, b) / \pi_1(E, e) \simeq Deck(E, B)$
- c) Es claro que si p es universal entonces $p_*(\pi_1(E, e_1)) = 0$ y entonces $\pi_1(B, b) \simeq Deck(E, B)$
- 12. Describa el grupo de transformaciones deck del revestimiento usual $p: \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$.

Demostración Notemos por un lado que si ph = p entonces $p_1h = p_1$ donde p_1 es la primer coordenada del revestimiento universal de T, ie p_1 es el revestimiento universal de S^1 , por ende $h_n(x,y) = (x+n,y)$ son transformaciones Deck. Análogo con la segunda coordenada tenemos que $\{(x,y) \mapsto (x+n,y+m) \ , \ n,m \in \mathbb{N}\} \subseteq Deck(\mathbb{R}^2,T)$. Por el otro lado si $h \in Deck(\mathbb{R}^2,T)$ entonces $e^{2\pi i h(t)} = e^{2\pi i t}$ y por ende h(t) = t+n por lo tanto $Deck(\mathbb{R}^2,T) = \{(x,y) \mapsto (x+n,y+m) \ , \ n,m \in \mathbb{N}\} \simeq \mathbb{Z} \times \mathbb{Z}$

- 13. Sea E un espacio topológico, y G un grupo que actúa en E de manera propiamente discontinua. Sea $p:E\to B$ es un revestimiento. Pruebe que:
 - a) La proyección al cociente $q: E \to E/G$ es un revestimiento normal.
 - b) Si E es arcoconexo, entonces G es el grupo de transformaciones deck de q.
 - c) Existe un revestimiento $r: E/G \to B$ tal que $r \circ q = p$.
 - d) Todo subgrupo H de Deck(p) actúa en E de manera propiamente discontinua, es decir, para todo $e \in E$, existe un abierto $U \ni e$ tal que $h(U) \cap U = \emptyset$ para todo $h \in H$.