图神经网络与组合优化读书会

An Introduction to Neural Algorithmic Reasoning

报告人: 刘佳玮

北京邮电大学博士生

- 动机
 - 为什么要做神经算法推理?
- 核心思想
 - 什么是神经算法推理?
 - 什么样的神经网络适合做神经算法推理?
- 代表性工作
 - Neural execution of graph algorithms. ICLR 2020.
 - The CLRS algorithmic reasoning benchmark. ICML 2022.
 - A generalist neural algorithmic learner. LoG 2022.
- 总结与展望

动机

为什么要做神经算法推理?

- 算法很容易推广到任意大小的输入,并且可以通过可解释的逐步操作进行验证或证明是正确的。它们的缺点是输入必须符合特定的算法规范,并且查看单独的任务通常需要提出全新的算法。[2]
- 神经网络更加灵活,可以适应和概括原始输入,自动 提取适当的特征,但神经网络依赖于大量的训练数据, 而且泛化性能较差。[2]

神经模型是否可以继承一些积极的算法属性,从而在解决具有挑战性的现实世界问题(数据高维、嘈杂、多变)时更具有泛化性?

^[1] Veličković P, Blundell C. **Neural algorithmic reasoning**[J]. Patterns, 2021, 2(7): 100273.

^[2] Veličković P, Badia A P, Budden D, et al. **The CLRS algorithmic reasoning benchmark**[C]//ICML. PMLR, 2022: 22084-22102.

- 动机
 - 为什么要做神经算法推理?
- 核心思想
 - 什么是神经算法推理?
 - 什么样的神经网络适合做神经算法推理?
- 代表性工作
 - Neural execution of graph algorithms. ICLR 2020.
 - The CLRS algorithmic reasoning benchmark. ICML 2022.
 - A generalist neural algorithmic learner. LoG 2022.
- 总结与展望

核心思想

- 什么是神经算法推理?
 - 通过学习执行经典算法来训练神经网络来展示一定程度的算法推理。[1]
- 神经算法推理的基本步骤 [1]
 - 学习处理器的参数: 为算法A设计一个编码器f, 处理器P和解码器g, 训练P让 $g(P(f(\bar{x}))) \approx A(\bar{x})$
 - 学习编解码器的参数:设计一个神经 网络编码器f和g,并替换f和g,冻结 处理器P的参数,让g(P(f(x̄)))≈y, y是真实标签。

神经算法推理示意图 [1]

神经算法推理示意图 [2]

^[1] Veličković P, Blundell C. **Neural algorithmic reasoning**[J]. Patterns, 2021, 2(7): 100273.

^[2] Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. Learning to simulate complex physics with graph networks[C]//ICML.2020

核心思想

什么样的神经网络适合做神经算法推理?

- 算法对齐: 学习模型和目标算法之间必须有一个"对齐", 便于优化。
 - 针对不同任务,应该选择和此任务解决算法保持一致的神经网络作为处理器P,使神经网络更好的学习此任务。
- 观察: GNN在和DP(动态规划)问题的算法有很高的相似性,因此能够有效地学习这些任务。
 - 举例:对于Bellman-Ford算法,GNN中只需要MLP去学习一个简单的推理步骤,二者的计算结构就基本相似。
- 实验:对于动态规划任务,只有GNN在足够多的迭代次数下能泛化。[1]

[1] Keyulu Xu, Jingling Li, Mozhi Zhang, et al. **What can neural networks reason about?** In ICLR 2020. [2] Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. **Neural execution of graph algorithms**. In ICLR 2020.

Bellman-Ford算法和GNN的关系[1][2]

GNN与其他模型在动态规划任务上的表现

- 动机
 - 为什么要做神经算法推理?
- 核心思想
 - 什么是神经算法推理?
 - 什么样的神经网络适合做神经算法推理?
- 代表性工作
 - Neural execution of graph algorithms. ICLR 2020.
 - The CLRS algorithmic reasoning benchmark. ICML 2022.
 - A generalist neural algorithmic learner. LoG 2022.
- 总结与展望

基础信息

- 作者基础信息
 - Petar Veličković (Deepmind)
- 主要研究兴趣
 - Geometric Deep Learning
 - Graph Representation Learning
 - Graph Neural Networks
 - Algorithmic Reasoning
 - Computational Biology

Petar Veličković

Staff Research Scientist, Google DeepMind | Affiliated Lecturer, University of Cambridge 在 deepmind.com 的电子邮件经过验证 - <u>首页</u>

Geometric Deep Learning Graph Representation Lear... Graph Neural Networks Algorithmic Reasoning Computational Biology

<u>标题</u>	引用次数	年份
Graph Attention Networks P Veličković, G Cucurull, A Casanova, A Romero, P Liò, Y Bengio 6th International Conference on Learning Representations (ICLR 2018)	13821 *	2018
Deep Graph Infomax P Veličković, W Fedus, WL Hamilton, P Liò, Y Bengio, RD Hjelm 7th International Conference on Learning Representations (ICLR 2019)	1545 *	2019
Geometric deep learning: Grids, groups, graphs, geodesics, and gauges MM Bronstein, J Bruna, T Cohen, P Veličković arXiv preprint arXiv:2104.13478	671	2021
Principal neighbourhood aggregation for graph nets G Corso*, L Cavalleri*, D Beaini, P Liò, P Veličković Advances in Neural Information Processing Systems 33	371	2020
Towards Sparse Hierarchical Graph Classifiers C Cangea*, P Veličković*, N Jovanović, T Kipf, P Liò arXiv preprint arXiv:1811.01287	221 *	2018

代表性工作

- 动机: 能否用 GNN 架构来模仿经典图算 法的各个步骤?
- 核心思想:将算法操作作为操作和查询节点的一部分,使用图神经网络来学习如何执行这些操作。
 - P是GNN, f_A, g_A, T_A 都是线性变换
- 主要结论:
 - 可以使用图神经网络通过学习算法的中间 步骤来逐步得到最终解。
 - 多任务学习有优势,因为许多经典算法共享相关的子程序。

GNN

encoder
$$ec{z}_i^{(t)} = f_A(ec{x}_i^{(t)}, ec{h}_i^{(t-1)})$$
 processor $\mathbf{H}^{(t)} = P(\mathbf{Z}^{(t)}, \mathbf{E}^{(t)})$ decoder $ec{y}_i^{(t)} = g_A(ec{z}_i^{(t)}, ec{h}_i^{(t)})$ termination $au^{(t)} = \sigma(T_A(\mathbf{H}^{(t)}, \overline{\mathbf{H}^{(t)}}))$

Bellman-Ford

$$x_i^{(1)} = \begin{cases} 0 & i = s \\ +\infty & i \neq s \end{cases}$$

$$x_i^{(t+1)} = \min\left(\vec{x}_i^{(t)}, \min_{(j,i) \in E} x_j^{(t)} + e_{ji}^{(t)}\right)$$

$$p_i^{(t)} = \begin{cases} i & i = s \\ \operatorname*{argmin}_{j;(j,i) \in E} x_j^{(t)} + e_{ji}^{(t)} & i \neq s \end{cases}$$

$$\vec{y}_i^{(t)} = p_i^{(t)} ||x_i^{(t+1)}||$$

	Predecessor (mean step accuracy / last-step accuracy)			
Model	20 nodes	50 nodes	100 nodes	
LSTM (Hochreiter & Schmidhuber, 1997)	47.20% / 47.04%	36.34% / 35.24%	27.59% / 27.31%	
GAT* (Veličković et al., 2018)	64.77% / 60.37%	52.20% / 49.71%	47.23% / 44.90%	
GAT-full* (Vaswani et al., 2017)	67.31% / 63.99%	50.54% / 48.51%	43.12% / 41.80%	
MPNN-mean (Gilmer et al., 2017)	93.83% / 93.20%	58.60% / 58.02%	44.24% / 43.93%	
MPNN-sum (Gilmer et al., 2017)	82.46% / 80.49%	54.78% / 52.06%	37.97% / 37.32%	
MPNN-max (Gilmer et al., 2017)	97.13% / 96.84%	94.71% / 93.88%	90.91% / 88.79%	
MPNN-max (curriculum)	95.88% / 95.54%	91.00% / 88.74%	84.18% / 83.16%	
MPNN-max (no-reach)	82.40% / 78.29%	78.79% / 77.53%	81.04% / 81.06%	
MPNN-max (no-algo)	78.97% / 95.56%	83.82% / 85.87%	79.77% / 78.84%	

Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. **Neural execution of graph algorithms**. In ICLR 2020.

代表性工作

- 动机: 能否对现有的神经算法推理器进行 统一评估?
- 核心思想:提出CLRS基准测试,支持30 个算法。
- 主要结论:
 - GNN 模型优于 Deep Sets 和 Memory Nets 等模型。PGN 整体效果最好,但在需要 远程展开(例如 DFS)或递归推理(如 Quicksort)的任务上表现困难。
 - 可能需要更专业的归纳偏差和训练方案来 处理字符串匹配算法。

Table \mathbb{I} . Average test micro- F_1 score of all models on all algorithm classes. The full test results for all 30 algorithms, along with a breakdown of the "win/tie/loss" metric, are given in Appendix C.

Algorithm	Deep Sets	GAT	Memnet	MPNN	PGN
Divide & Conquer	$12.48\% \pm 0.67$	$24.43\% \pm 0.74$	$13.05\% \pm 0.00$	$20.30\% \pm 0.85$	$\mathbf{65.23\%} \pm 4.44$
Dynamic Prog.	$66.05\% \pm 7.79$	$67.19\% \pm 5.33$	$67.94\% \pm 7.75$	$65.10\% \pm 6.44$	$\mathbf{70.58\%} \pm 6.48$
Geometry	$64.08\% \pm 6.60$	$73.27\% \pm 11.18$	$45.14\% \pm 11.65$	$73.11\% \pm 17.19$	$61.19\% \pm 7.01$
Graphs	$37.65\% \pm 8.09$	$46.80\% \pm 8.66$	$24.12\% \pm 5.20$	$\mathbf{62.79\%} \pm 8.75$	$60.25\% \pm 8.42$
Greedy	$75.47\% \pm 6.81$	$78.96\% \pm 4.59$	$53.42\% \pm 20.73$	$82.39\% \pm 3.01$	$75.84\% \pm 6.59$
Search	$43.79\% \pm 18.29$	$37.35\% \pm 19.81$	$34.35\% \pm 21.67$	$41.20\% \pm 19.87$	$56.11\% \pm 21.56$
Sorting	$39.60\% \pm 7.19$	$14.35\% \pm 4.64$	$71.53\% \pm 1.09$	$11.83\% \pm 2.78$	$15.45\% \pm 8.46$
Strings	$2.64\% \pm 0.68$	$3.02\% \pm 1.08$	$1.51\% \pm 0.21$	$3.21\% \pm 0.94$	$2.04\% \pm 0.20$
Overall average	42.72%	43.17%	38.88%	44.99%	50.84%
Win/Tie/Loss counts	0/3/27	1/5/24	4/2/24	8/3/19	8/6/16

实验设置:

- 算法:从CLRS教科书中的算法中筛选出30个算法,包括排序、搜索、 分治、贪心、动态规划、图算法、字符串算法和几何算法。
- 模型:由处理器、编码器和解码器组成。CLRS提供了以下GNN基线 处理器: Deep Sets, Memory Networks, GAT, GATv2, MPNN, PGN。

Veličković P, Badia A P, Budden D, et al. **The CLRS algorithmic reasoning benchmark**[C]//ICML. PMLR, 2022: 22084-22102.

代表性工作

- 动机: 能否设计一个通用的神经算法推理器?
- 核心思想:
 - 处理器:门控机制、三元组推理
 - 编码器、解码器改进:随机化位置标量、置换解码器和Sinkhorn算子
 - 数据集和训练策略改进:去除教师强制、增强训练数据、软提示传播、静态提示消除、通过编码器初始化和梯度裁剪提高训练稳定性

• 主要结论:

- 可以以多任务的方式学习不同的算法,但需要注意 (G)NN的学习动态和稳定性。
- 如果修改(对 GNN 架构、数据管道或损失函数)在 通用性的右侧进行,则可以一次提高大组算法的算法 执行性能。

门控机制 $\mathbf{g}_i^{(t)} = f_g\left(\mathbf{z}_i^{(t)}, \mathbf{m}_i^{(t)}\right)$ $\hat{\mathbf{h}}_i^{(t)} = \mathbf{g}_i^{(t)} \odot \mathbf{h}_i^{(t)} + (1 - \mathbf{g}_i^{(t)}) \odot \mathbf{h}_i^{(t-1)}$ $\mathbf{z}^{(t)} = \mathbf{x}_i^{(t)} \|\hat{\mathbf{h}}_i^{(t-1)}$

三元组推理 $\mathbf{t}_{ijk} = \psi_t(\mathbf{h}_i, \mathbf{h}_j, \mathbf{h}_k, \mathbf{e}_{ij}, \mathbf{e}_{ik}, \mathbf{e}_{kj}, \mathbf{g})$ $\mathbf{h}_{ij} = \phi_t(\max_k \mathbf{t}_{ijk})$

Alg. Type	Memnet [5]	MPNN [5]	PGN [5]	Triplet-GMPNN (ours)
Div. & C.	$13.05\% \pm 0.14$	$20.30\% \pm 0.85$	$65.23\% \pm 4.44$	$76.36\% \pm 1.34$
DP	$67.94\% \pm 8.20$	$65.10\% \pm 6.44$	$70.58\% \pm 6.48$	$81.99\% \pm 4.98$
Geometry	$45.14\% \pm 11.95$	$73.11\% \pm 17.19$	$61.19\% \pm 7.01$	$\mathbf{94.09\%} \pm 2.30$
Graphs	$24.12\% \pm 5.30$	$62.79\% \pm 8.75$	$60.25\% \pm 8.42$	$\mathbf{81.41\% \pm 6.21}$
Greedy	$53.42\% \pm 20.82$	$82.39\% \pm 3.01$	$75.84\% \pm 6.59$	$\mathbf{91.21\% \pm 2.95}$
Search	$34.35\% \pm 21.67$	$41.20\% \pm 19.87$	$56.11\% \pm 21.56$	$\mathbf{58.61\%} \pm 24.34$
Sorting	$71.53\% \pm 1.41$	$11.83\% \pm 2.78$	$15.45\% \pm 8.46$	$60.37\% \pm 12.16$
Strings	$1.51\% \pm 0.46$	$3.21\% \pm 0.94$	$2.04\% \pm 0.20$	$49.09\% \pm 23.49$
Overall avg.	38.88%	44.99%	50.84%	74.14%
> 90%	0/30	6/30	3/30	11/30
> 80%	3/30	9/30	7/30	17/30
> 60%	10/30	14/30	15/30	24/30

Ibarz B, Kurin V, Papamakarios G, et al. A generalist neural algorithmic learner[C]//Learning on Graphs Conference. PMLR, 2022: 2: 1-2: 23.

- 动机
 - 为什么要做神经算法推理?
- 核心思想
 - 什么是神经算法推理?
 - 什么样的神经网络适合做神经算法推理?
- 代表性工作
 - Neural execution of graph algorithms. ICLR 2020.
 - The CLRS algorithmic reasoning benchmark. ICML 2022.
 - A generalist neural algorithmic learner. LoG 2022.
- 总结与展望

总结与展望

- 本次分享基于范长俊老师推荐的论文列表,为大家回顾了神经算法推理的动机、核心思想和代表性工作。潜在的未来研究方向如下:
 - 如何提高神经算法推理器的对齐能力、泛化能力?
 - 改进图神经网络[1]
 - 改进对齐过程:考虑问题的对偶性[2]、因果性[3]
 - 能否将神经算法推理与图预训练模型结合?
 - 基于知识蒸馏[4]把预训练模型的知识注入到神经算法推理器
 - 基于工具学习[5]让预训练模型与外部推理器交互

^[1] Dudzik A J, Veličković P. Graph neural networks are dynamic programmers[J]. Advances in Neural Information Processing Systems, 2022, 35: 20635-20647.

^[2] Numeroso D, Bacciu D, Veličković P. **Dual Algorithmic Reasoning**[J] ICLR 2023.

^[3] Bevilacqua B, Nikiforou K, Ibarz B, et al. Neural Algorithmic Reasoning with Causal Regularisation[J]. arXiv preprint arXiv:2302.10258, 2023.

^[4] Yang Cheng, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and go beyond it: An effective knowledge distillation framework. WWW 2021.

^[5] Zhang J. Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT[J]. arXiv preprint arXiv:2304.11116, 2023.