

Comparison of classifier Algorithms on bank marketing Dataset

Presented by : Arwa AlBassam & Nouf Alsaeed

OUTLINE

0	1	Introduction		02	Workflow
0	3	Dataset Description		04	EDA
0	5	Baseline Model		06	Pre-processing
0	7	Modelling		08	Results
0	9	Conclusion	K	10	Future work

Introduction

The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit (variable y).

Workflow

Dataset Description

From UCI 45211 Rows X 17 Columns

Feature	Description			
Age	Age of clints			
Job	Type of job			
Marital	Marital status			
Education	(Categorical: "unknown", "secondary", "primary", "tertiary")			
Balance	Average yearly balance, in euros (numeric)			
Housing	Has housing loan? (Binary: "yes", "no")			
Loan	Has personal loan? (Binary: "yes", "no")			
Poutcome	Outcome of the previous marketing campaign			
Y	Has the client subscribed to a term deposit? (Binary: "yes","no")			

EDAVisualizations

EDA (Cont.)

Dataset statistics

Number of variables	17
Number of observations	45211
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	29.2 MiB
Average record size in memory	677.2 B

EDA (Cont.)

Visualizations

Base Model (Linear Regression)

Data Preprocessing

Creating Dummy Variables.

Balance Data.

Feature Scaling.

Data Preprocessing (cont.)

Memory size

Balancing the Model

353.3 KiB

Data Preprocessing (cont.)

Balancing the Model

```
5289
5289
```

Name: y, dtype: int64

Modelling

Models Evaluation

Accuracy After Balancing The Data

Models Evaluation

Recall Before Balancing The Data

Recall After Balancing The Data

Models Evaluation

Model Comparison

Ensemble Methods

Stacking Ensemble Family

Ensemble Methods Evaluation

Ensamble Methods Evaluation

Ensemble Methods Evaluation

Model Comparison

Best model for our project (Random Forest)

ACCURACY: 86.8%

Final results (Model Optimization)

Model Comparison

Conclusion

The result is not that much different after optimizing the model using GridSearchCV which can mean that we hit our limit with this model.

Future Work

Try to use other balancing techniques.

Try to work with Deep Learning models.

Increase number of observations.

Feature engineering.

Thank you!