

BM40A1500 DATA STRUCTURES AND ALGORITHMS

BINARY TREES

2024

RECURSION

- The process of solving a large problem by reducing it to sub-problems.
 - Subproblems are identical in structure to the original problem and simpler to solve.
 - Solved using functions that call themselves.
- ❖A recursive algorithm has two parts:
 - * The base case, which handles a simple input that can be solved.
 - * The recursive part which contains one or more recursive calls to the algorithm.
 - In every recursive call, the parameters must be in some sense "closer" to the base case than those of the original call.

RECURSION

- Example:
 - Multiplication of two numbers

```
def multiply(x,y):
    if x == 1:
        return y
    else:
        return y + multiply(x - 1, y)
```


- Data structure consisting of nodes.
- Each node has at most two children.
- Terminology:
 - Root
 - Subtree
 - Children parent (ancestor and descendant)
 - Leaf

- Data structure consisting of nodes.
- Each node has at most two children.
- Terminology:
 - Root
 - Subtree
 - Children parent (ancestor and descendant)
 - Leaf
 - Path (length)
 - Depth of a node
 - The length of the path from the root to the node
 - Height of the tree
 - The depth of the deepest node

- Recursive structure
 - (Left and right) subtrees are also binary trees
 - Many of the operations can be performed recursively.
- Example: the sum of key values

Left subtree

Right subtree

- Tree traversal
 - Visiting all nodes of the tree
 - Preorder traversal
 - ❖ visit any given node before we visit its children.

```
procedure preorder(node):
    visit(node)
    preorder(node->left)
    preorder(node->right)
```


9 5 7 2 4

BINARY TREE 5 2 9 4 7

- Tree traversal
 - Postorder traversal
 - ❖ visit each node only after we visit its children

```
procedure postorder(node):
    postorder(node->left)
    postorder(node->right)
    visit(node)
```

- Inorder traversal
 - first visit the left child, then the node, and finally the right child

```
procedure inorder(node):
    inorder(node->left)
    visit(node)
    inorder(node->right)
```


Left subtree Right subtree

5 9 7 1 2 4

BINARY SEARCH TREE (BST)

- ❖All nodes stored in the left subtree of a node whose key value is K have key values less than to K.
- Basic operations can be implemented efficiently using recursion.
 - Search
 - Insert
 - Remove

BINARY SEARCH TREE (BST)

- Insert operation
 - A new key is always inserted at the leaf while maintaining the property of the BST.

BINARY SEARCH TREE (BST)

- Remove operation
 - ❖ If the node (being removed) is a leaf node it can be removed without further operations.
 - ❖ If the node has only one child, we can substitute the removed node with the child.
 - ❖ If the node has two children, we have 2 options:
 - substitute the node with the one having the largest key value in the left subtree, or
 - * substitute the node with the one having the smallest key value in the right subtree.

IMPLEMENTING BST IN PYTHON

```
class Node:
    def __init__(self, key: int):
        self.key = key
        self.left = None
        self.right = None
class BST:
   def __init__(self):
        self.root = None
    def search(self, key):
        return self.search_help(self.root, key)
   def search_help(self, node, key):
        if not node: # The node is not in the tree
            return False
        elif node.key > key:
            return self.search help(node.left, key)
        elif node.key < key:</pre>
            return self.search_help(node.right, key)
        return True # The node stores the key
```


BALANCED AND UNBALANCED BST

- Efficiency of the basic operations depend on the height of the tree
- *Example: Insert the following keys to a BST:
 - 1. 5, 3, 7, 1, 6, 8, 4
 - 2. 1, 2, 3, 4, 5, 6, 7

