ARP

Address Resolution Protocol

SECURITY

Communication in packet networks rely on several layers, with different identifiers:

- Applications use TCP/UDP ports
- Hosts use IP addresses
- Interface Cards use MAC addresses

Communication is typically made between applications using touples <IP_Address:Port> and a protocol (e.g. TCP or UDP).

When a packet is to be routed, two situations may occur:

- The packet is sent to the destination host, which is in the same IP network.
- The packet must be sent to a next hop (gateway), until it reaches the destination IP network.

In both cases, packet is transmitted between physical interfaces

IP addresses do not change between source and destination

MAC addresses are valid for a single network segment

 When packet is routed, MAC address of next hop must be found

IP to MAC mapping

Static configuration

- MAC entries of all hosts configured statically
 - All hosts "know" the MAC address of all interfaces of all other hosts
- Does not scale!
 - Changing a single interface requires updating all other hosts

Dynamic configuration: ARP

Address Resolution Protocol RFC 826

ARP: find MAC address of an Interface which is in a host with IP address

RARP: find IP address of host having an interface with the given MAC

Address Resolution Protocol

Who has 10.0.0.3?

Send ARP Request using broadcast.

Address Resolution Protocol

Reply using ARP Response using unicast

Address Resolution Protocol

Every packet sent requires two MAC address

- Source Address is known
- Destination Address must be determined

ARP Cache increases performance

- Caches both known and unknown entries
- Avoid repeating the discovery process per packet
- Entries have a large lifetime (2 minutes)

ARP Cache

```
security@security:~$ arp -a

fog.av.it.pt (193.136.92.154) at 00:1e:8c:3e:6a:a6 [ether] on eth0

atnog.av.it.pt (193.136.92.123) at 00:15:17:e6:6f:67 [ether] on eth0

guarani.av.it.pt (193.136.92.134) at 00:0c:6e:da:19:87 [ether] on eth0

aeolus.av.it.pt (193.136.92.136) at bc:ae:c5:1d:c6:53 [ether] on eth0
```

ARP Spoofing

MAC addresses can be modified

ifconfig eth0 hw ether 00:11:22:33:44:55

Using a colliding MAC address will allow reception of network traffic for other hosts

Some switches limit MAC addresses to single ports

Sending ARP packets with spoofed addressed may poison the cache of other stations

ARP Poisoning

ARP Poisoning

Hosts cache information directly from ARP packets

No other verification is done

New information will replace existing entries

- Great for allowing network dynamism
- Very bad for security

Possible to send specially crafted packets to create specific entries in remote hosts

ARP Poisoning

When receiving an ARP Request:

10.0.0.2 will send an ARP Reply

But... 10.0.0.2 will also "learn" that 10.0.0.3 is at e0:f8:47:1b:1f:42

ARP Poisoning

When receiving an ARP Reply

```
Frame 123: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0

Ethernet II, Src: Tp-LinkT_f2:77:62 (90:f6:52:f2:77:62), Dst: Apple_lb:lf:42 (e0:f8:47:lb:lf:42)

Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol type: IP (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: reply (2)

Sender MAC address: Tp-LinkT_f2:77:62 (90:f6:52:f2:77:62)

Sender IP address: 10.0.0.246 (10.0.0.246)

Target MAC address: Apple_lb:lf:42 (e0:f8:47:lb:lf:42)

Target IP address: 10.0.0.3 (10.0.0.3)
```

10.0.0.3 will learn that 10.0.0.246 is at 90:f6:52:f2:77:62

.... even if no matching request as made...

ARP Poisoning: Consequences

Hosts can be isolated from the network

Create fake entries for all other hosts

Alice will use 44:44:44:44:44 when talking to Bob

ARP Poisoning: Consequences

Hosts can be denied communication with the outside world

ARP Poisoning: Consequences

Traffic between two hosts can be intercepted (MitM)

Then Eve will forward traffic

ARP Poisoning: Avoidance

Use static entries

- No resolution process is triggered
- Colliding Information from ARP packets is discarded

Behavior detection

- Detect ARP Replies without Request
- Detect repeated Requests from same host.

ARP Poisoning: Avoidance

Use monitoring software

- Software watches for MAC changes
 - Network administrator is notified
- ARP Poison is not actually avoided!

Port based packet filtering at switch ingress

- Spoofed ARP packets are dropped
- Only possible in static scenarios