CHEM E 457 Principles of Molecular Engineering

Counting and Probability

| Counting

Description	Equations
Total possible events if each event \boldsymbol{E}_i can occur in \boldsymbol{n}_i ways	$\prod n_i$
	$P(n,r) = \frac{n!}{(n-r)!}$
$ \label{eq:decomposition} \textbf{Distinguishable permutations} \text{ of } n \text{ objects, with } n_i \text{ are alike of one } \\ \text{kind} $	$\frac{n!}{n_1!n_2!\cdots n_k!}$
$ \textbf{Combination} \ \text{of} \ n \ \text{elements taken} \ r \ \text{at a time} $	$C(n,r)=inom{n!}{r}=rac{n!}{r!(n-r)!}$
Stirling's approximation	$x! pprox \left(rac{x}{e} ight)^x$
Stirling's approximation	$\ln(x!) = x \ln(x) - x$

| Probability

Description	Equations
Probability	$\mathbf{P}(A) = rac{n_A}{N}$
Addition rule of mutually exclusive outcomes	$\mathbf{P}\left(igcup A_i ight) = \sum \mathbf{P}(A_i)$
Multiplication rule of independent outcomes	$\mathbf{P}\left(igcap A_i ight)=\prod \mathbf{P}(A_i)$
General addition rule	$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$
Conditional probability	$\mathbf{P}(A B) \equiv rac{\mathbf{P}(A\cap B)}{\mathbf{P}(B)}$
Bayes' rule	$\mathbf{P}(A B) = rac{\mathbf{P}(A)\mathbf{P}(B A)}{\mathbf{P}(B)}$
Total probability theorem	$\mathbf{P}(B) = \mathbf{P}(A)\mathbf{P}(B A) + \mathbf{P}(A^c)\mathbf{P}(B A^c)$
Degree of correlation	$g = rac{\mathbf{P}(B A)}{\mathbf{P}(B)} = rac{\mathbf{P}(A\cap B)}{\mathbf{P}(A)\mathbf{P}(B)}$

| Continuous probability distribution

Description	Equations
Normalization condition of probability distribution function	$\int_a^b P(x) dx = 1$
Binomial distribution	$P(n,N) = rac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$
Multinomial distribution	$P(n_1,n_2,\ldots,n_t,N) = rac{N!}{\prod n_i!} \prod p_i^{n_i}$
Average	$\langle x angle = \int_a^b x P(x) dx$
Average of a function	$\langle f(x) angle = \int_a^b f(x) P(x) dx$

Description	Equations
nth moment	$\langle x^n angle = \int_a^b x^n P(x) dx$
Variance	$\sigma^2 = \langle x^2 angle - \langle x angle^2$

Extremum Principles Predicts Equilibria

Physical Description	Math Description	Equations
Equilibrium	Critical point	f'(x)=0
Stable equilibrium	Minimum	$f^{\prime}(x)=0,f^{\prime\prime}(x)>0$
Unstable equilibrium	Maximum	$f^{\prime}(x)=0,f^{\prime\prime}(x)<0$
Metastable equilibrium	Local minimum	$f^{\prime}(x)=0,f^{\prime\prime}(x)>0$ in some dx
Neutral equilibrium	Constant	$f^{\prime}(x)=0$ for all x

- · Extremum principles
 - Minimization of energy
 - Maximization of entropy (multiplicity)

Description	Equations
	$ abla f(\mathbf{x}) = \lambda abla g(\mathbf{x})$

Entropy and Boltzmann Law

- Ground state state of lowest energy
- · Excited state states of higher energy
- Microstate microscopic configuration
- Macrostate collection of microstate

| General applications

Equations
$S = k \ln(W)$
$S = -k \sum p_i \ln(p_i)$
$p_i = rac{1}{t}$
$p_i = rac{e^{-etaarepsilon_i}}{\sum e^{-etaarepsilon_i}} = rac{e^{-etaarepsilon_i}}{q}$
$q=\sum e^{-etaarepsilon_i}$
$\langle arepsilon angle = \sum arepsilon_i p_i$

| Molecular distributions

Description	Boltzmann Distribution Law	Partition Function	
System with energy levels	$p_i = rac{\exp(-E_i/kT)}{Q}$	$Q=\sum \exp\left(-E_i/kT ight)$	•
System with energy differences	$p_i = rac{\exp(-(E_i - E_j)/kT)}{Q}$	$Q = \sum \exp\left(-(E_i - E_j)/kT ight)$	
System with degenerate energy levels	$p_i = rac{W(E_l) \exp(-E_l/kT)}{Q}$	$Q = \sum W(E_l) \exp(-E_l/kT)$	

Description	Equations
Thermodynamic beta	$eta = rac{1}{kT}$
Relative populations of particles in energy level i and j at equilibrium	$rac{p_i}{p_j} = \exp\left(-rac{E_i - E_j}{kT} ight)$
Partition function of subsystem of independent distinguishable particles (solid)	$Q=\prod_i^N q_i=q^N$
Partition function of subsystem of independent indistinguishable particles (gas)	$Q=rac{q^N}{N!}$
Internal energy	$U = kT^2 \left(rac{\partial \ln Q}{\partial T} ight)_{V,N}$
Average particle energy	$\langle arepsilon angle = rac{U}{N} = rac{kT^2}{N} \left(rac{\partial \ln Q}{\partial T} ight)_{V,N}$
Entropy	$S = k \ln Q + rac{U}{T}$
Helmholtz free energy	$F=U-TS=-kT\ln Q$
Chemical potential	$\mu = \left(rac{\partial F}{\partial N} ight)_{T,V} = -kT \left(rac{\partial \ln Q}{\partial N} ight)_{T,V}$
Pressure	$p = -\left(rac{\partial F}{\partial V} ight)_{T,N} = kT\left(rac{\partial \ln Q}{\partial N} ight)_{T,N}$

| Ensembles

- controlled set of variables
- collection of all the possible microstates

Description	Equations
Canonical ensemble	(T,V,N)
Microcanonical ensemble	(U,V,N)
Isobaric-isothermal ensemble	(T,P,N)
Grand canonical ensemble	(T,V,μ)

Ch 13 Chemical Equilibrium

| Multicomponent reactions

Description	Equations
Multicomponent gas phase reaction ★ No intermolecular interactions	$a\mathrm{A} + b\mathrm{B} \longrightarrow c\mathrm{C} + d\mathrm{D}$

Description	Equations
Difference in ground state energy	$\Delta arepsilon_0 = darepsilon_{0D} + carepsilon_{0C} - barepsilon_{0B} - aarepsilon_{0A}$
Difference in Dissociation energy	$\Delta D = dD_D + cD_C - bD_B - aD_A$
Dissociation energy	$D=-arepsilon_0 \ \Delta D=-\Delta arepsilon_0$
Equilibrium constant	$K = rac{N_C^c N_D^d}{N_A^a N_B^b} = rac{q_C^c q_D^d}{q_A^a q_B^b} \exp\left(rac{\Delta D}{kT} ight)$
Pressure-based equilibrium constant	$K_p = rac{p_C^c p_D^d}{p_A^a p_B^b} = \left(rac{kT}{V} ight)^{(c+d)-(a+b)} rac{q_C^c q_D^d}{q_A^a q_B^b} \exp\left(rac{\Delta D}{kT} ight)$
Chemical potential	$\mu = kT \ln \left(rac{p}{p_{int}^{\circ}} ight) = \mu^{\circ} + kT \ln p$
Internal pressure	$p_{int}^{\circ}=q_0'kT$

$\,|\,T,P\ \text{dependence of equilibrium}$

Description	Equations
	$\ln K_p = -rac{\Delta \mu^\circ}{kT}$
vant's Hoff equation $\bigstar \Delta h^\circ eq \Delta h^\circ(T)$	$rac{\partial (\ln K_p)}{\partial T} = rac{\Delta h^\circ}{kT^2}$
vant's Hoff plot $igstar$ $\Delta h^\circ eq \Delta h^\circ(T)$	$rac{\partial (\ln K_p)}{\partial (1/T)} = -rac{\Delta h^\circ}{k}$
vant's Hoff equation extrapolation $\bigstar \Delta h^\circ eq \Delta h^\circ(T)$	$\ln\left(rac{K_{p2}}{K_{p1}} ight) = -rac{\Delta h^{\circ}}{k}\left(rac{1}{T_2} - rac{1}{T_1} ight)$
Gibbs-Helmholtz equation	$rac{\partial}{\partial T}\left(rac{G}{T} ight) = -rac{H}{T^2}$
Gibbs-Helmholtz equation	$rac{\partial}{\partial T}\left(rac{F}{T} ight) = -rac{U}{T^2}$
Pressure dependence of equilibrium constant	$rac{\partial (\ln K)}{\partial p} = -rac{\Delta v^{\circ}}{kT}$

Ch 14 Physical Equilibrium

Description	Equations
Equilibrium condition	$\mu_{ ext{vapor}} = \mu_{ ext{condensed}}$
Chemical potential of vapor	$\mu_{ ext{vapor}} = kT \ln \left(rac{p}{p_{int}^{\circ}} ight)$
Entropy of condensed phase	$\Delta S_{ m condensed} = 0$
Internal energy of condensed phase	$\Delta U_{ m condensed} = rac{1}{2} Nzw_{AA}$
Free energy of condensed phase	$\Delta F_{ m condensed} = rac{1}{2} Nzw_{AA}$
Chemical potential of condensed phase	$\mu_{ ext{condensed}} = \left(rac{\partial F}{\partial N} ight)_{T,V} = rac{1}{2}zw_{AA}$
Description	Equations
Equilibrium vapor pressure	$p = p_{int}^{\circ} \exp\left(\frac{zw_{AA}}{z}\right)$

Description Clausius Clapyeron equation	$\frac{\text{Equations}}{\ln \binom{p_2^{\text{sat}}}{p_1^{\text{sat}}}} = \frac{\Delta h}{R} \begin{pmatrix} 1 & 1 \\ T_2 & T_1 \end{pmatrix}$
Enthalpy of vaporization	$\Delta h_{ ext{vap}} = -rac{1}{2}zw_{AA}$
Internal energy to close a cavity	$\Delta U = rac{1}{2} z w_{AA}$
Internal energy to open a cavity	$\Delta U = -rac{1}{2}zw_{AA}$
Surface tension	$\sigma = -rac{w_{AA}}{2a}$
Free energy of adsorption	$F_{ m ads} = \sigma a = -rac{w_{AA}}{2a}$

Ch 15 Mixtures

| Ideal solutions

Description	Equations
Entropy of solution for binary systems	$\Delta S_{ m soln} = -Nk(x_A \ln x_A + x_B \ln x_B)$
Entropy of solution for multicomponent systems	$\Delta S_{ m soln} = -Nk\sum x_i \ln x_i$
Internal energy of solution	$\Delta U_{ m soln}=0$
Free energy of solution	$\Delta F_{ m soln} = -T\Delta S_{ m soln}$

| Regular solutions

Description	Equations
Exchange parameter (dimensionless free energy)	$\chi_{AB} = rac{z}{kT}(w_{AB} - rac{1}{2}\left(w_{AA} + w_{BB} ight))$
Exchange parameter	$\chi_{AB} = - \ln K_{ m exch}$
Exchange parameter interpretation	$\chi_{AB}>0$, mixing unfavorable $\chi_{AB}<0$, mixing favorable
Exchange energy	$RT\chi_{AB}$
Constant	$egin{aligned} c_1 &= \chi_{AB} T \ &= rac{z}{k} (w_{AB} - rac{1}{2} \left(w_{AA} + w_{BB} ight)) \end{aligned}$
Entropy of solution for binary systems	$\Delta S_{ m soln} = -Nk(x_A \ln x_A + x_B \ln x_B)$
Entropy of solution for multicomponent systems	$\Delta S_{ m soln} = -Nk\sum x_i \ln x_i$
Internal energy of solution of binary systems	$\Delta U_{ m soln} = NkT\chi_{AB}x_Ax_B$
Internal energy of solution of multicomponent systems	$\Delta U_{ m soln} = NkT \sum \chi_{ij} x_i x_j$
Free energy of solution	$\Delta F_{ m soln} = \Delta U_{ m soln} - T \Delta S_{ m soln}$
Free energy of solution of binary systems	$\Delta F_{ m soln} = NkT(x_A \ln x_A + x_B \ln x_B + \chi_{AB} x_A x_B)$
Free energy of solution of multicomponent systems	$\Delta F_{ m soln} = NkT(\sum x_i \ln x_i + \sum \chi_{ij} x_i x_j)$
Chemical potentials of binary systems	$egin{align} \mu_A &= \ln x_A + rac{zw_{AA}}{2kT} + \chi_{AB}x_B^2 \ \ \mu_B &= \ln x_B + rac{zw_{BB}}{2kT} + \chi_{AB}x_A^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Description	Equations
Chemical potentials of multicomponent systems	$egin{aligned} \mu_i &= \ln x_i + rac{zw_{ii}}{kT} + \chi_{ij}(1-x_i)^2 \ &= \mu^\circ + kT \ln(\gamma x) \end{aligned}$

| Surface tension

Description	Equations
Interfacial tension	$egin{aligned} \sigma_{AB} &= rac{1}{a}(w_{AB} - rac{1}{2}\left(w_{AA} + w_{BB} ight)) \ &= rac{kT}{za}\chi_{AB} \end{aligned}$
Free energy of adsorption	$F_{ m ads} = \sigma a = rac{kT}{z} \chi_{AB}$

Ch 16 Solvation and Phase Transfer

| Lewis/Randall rule

Description	Equations
Notation $igstar$ Solvent, pure limit $x_B o 1$	A - non-volatile solute (e.g. $NaCl$) B - volatile solvent (e.g. H_2O)
Lewis/Randall rule reference state	$egin{aligned} p_B &= p_{B,int}^\circ x_B \exp\left(\chi_{AB} x_A^2 + rac{z w_{BB}}{2kT} ight) \ &= p_B^\circ x_B \exp\left(\chi_{AB} x_A^2 ight) \end{aligned}$
$\begin{array}{c} {\bf Raoult's\ law} \\ \bigstar \ {\bf Ideal\ solution}\ \chi_{AB} = 0 \end{array}$	$p_B=p_B^\circ x_B$
Vapor pressure of B	$p_B^\circ = p_{B,int}^\circ \exp\left(rac{zw_{BB}}{2kT} ight)$

| Henry's law

Description	Equations
Notation $igstar$ Solute, dilute limit $x_B o 0$	A - non-volatile solvent (e.g. H_2O) B - volatile solute (e.g. CO_2)
Henry's law reference state	$egin{aligned} p_B &= p_{B,int}^\circ x_B \exp\left(\chi_{AB} + rac{aw_{BB}}{2kT} ight) \ &= p_{B,int}^\circ x_B \exp\left(w_{AB} - rac{w_{AA}}{2} ight) \ &= \mathcal{H}_B x_B \end{aligned}$
Henry's constant	$egin{aligned} \mathcal{H}_B &= p_{B,int}^\circ \exp\left(rac{z}{kT}w_{AB} - rac{w_{AA}}{2} ight) \ &= p_{B,int}^\circ \exp\left(rac{\Delta h_{\mathrm{soln}}^\circ}{kT} ight) \end{aligned}$
Enthalpy of solution	$\Delta h_{ m soln}^{\circ} = z \left(w_{AB} - rac{w_{AA}}{2} ight)$

| Activity coefficient

Description	Equations
Standard state chemical potential	$\Delta\mu_B^\circ = \mu_B^\circ(ext{liquid}) - \mu_B^\circ(ext{gas})$
Activity coefficient	$\gamma_B = rac{p_B}{x_B} \exp\left(-rac{\Delta \mu_B^\circ}{kT} ight)$
Activity coefficient in Lewis/Randall solvent convection	$\gamma_B = \exp[\chi_{AB}(1-x_B)^2]$
Activity coefficient in Henry's solute convection	$\gamma_B = \exp[\chi_{AB} x_B (x_B - 2)]$

| Colligative properties

Description	Equations
Boiling point elevation	$\Delta T_b = rac{R T_b^2 x_A}{\Delta h_{ m vap}^\circ}$
Freezing point depression	$\Delta T_f = rac{RT_f^2 x_A}{\Delta h_{ m fus}^\circ}$
Osmotic pressure	$\pi = rac{RTx_A}{v_B} = RTc_A$

| Solute partition

Description	Equations
Notation	A - immiscible solvent B - immiscible solvent s - solute
Partition coefficient from solvent A to B	$K_A^B = rac{x_{sB}}{x_{sA}}$
Free energy of transfer	$\Delta \mu^{\circ} = \mu_s^{\circ}(B) - \mu_s^{\circ}(A)$
Statistical mechanical interpretation	$\ln K_A^B = \chi_{sA} (1-x_{sA})^2 - \chi_{sB} (1-x_{sB})^2$
Thermodynamical interpretation	$\ln K_A^B = -rac{\mu_s^\circ(B) - \mu_s^\circ(A)}{kT} - \ln\left(rac{\gamma_{sB}}{\gamma_{sA}} ight)$
Partition coefficient at infinite dilution \bigstar Infinite dilution of solute in both phases $x_{sa}\ll 1$, $x_{sB}\ll 1$, $\gamma_{sa}\to 1$, $\gamma_{sB}\to 1$	$egin{aligned} \ln K_A^B &= -rac{\mu_s^\circ(B) - \mu_s^\circ(A)}{kT} \ &= \chi_{sA} - \chi_{sB} \end{aligned}$

Ch 25 Phase Transitions

Description	Equations
Fractions	$f^lpha = rac{n^lpha}{n}$
Lever rule	$f' = rac{x'' - x_0}{x'' - x'} \ f'' = rac{x_0 - x'}{x'' - x'}$
Lever rule	$v_A = f^lpha v_A^lpha + f^eta v_A^eta$
Binodal curve	$rac{\partial (\Delta F_{ m mix})}{\partial x} = 0 = NkT \left[\ln \left(rac{x}{1-x} ight) + \chi_{AB} \left(1 - 2x ight) ight]$
Binodal curve $igstar$ Dilute solute $x'\ll 1$, large χ_{AB}	$\chi_{AB} = -\ln x'$

Description	Equations
Spinodal curve	$rac{\partial^2 F}{\partial x^2} = 0 = NkT\left[rac{1}{x} + rac{1}{1-x} - 2\chi_{AB} ight]$
Spinodal curve $igstar$ Dilute solute $x'\ll 1$, large χ_{AB}	$x'=rac{1}{2\chi_{AB}-1}$
Critical point	$rac{\partial^3 F}{\partial x^2}=0$
Critical composition	$x_c=rac{1}{2}$
Critical exchange parameter	$\chi_c=2$
Critical exchange temperature	$T_c=rac{c_1}{2}$
van der Waals EOS	$\left(p+rac{a}{v^2} ight)(v-b)=RT$
Reduced form of van der Waals EOS	$\left(p_r+rac{3}{v_r^2} ight)\left(v_r-rac{1}{3} ight)=rac{8}{3}T_r$