R. S. Jessuf 9-11-5-3

NATIONAL BUREAU OF STANDARDS REPORT

2611

THERMODYNAMIC PROPERTIES OF MOLECULAR OXYGEN

Harold W. Woolley
Thermodynamics Section
Division of Heat and Power

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.

Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.

Ordnance Development.

Electromechanical Ordnance.
Ordnance Electronics.

Ordnance Electronics.

These three divisions are engaged in a broad program of research and development in advanced ordnance. Activities include basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

Office of Basic Instrumentation

• Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

0302-50-2606

June 30, 1953

2611

THERMODYNAMIC PROPERTIES OF MOLECULAR OXYCEN

by

Marold W. Woolley
Thermodynamics Section
Division of Heat and Power

Sponsored in part by National Advisory Committee for Aeronautics Order No. W-5594

The publication, r unless permission 25. D. C. Such prepared if that Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015

In part, is prohibited tandards, Washington has been specifically port for its own use.

FOREWORD

This is one of a series of reports on the thermodynamic properties of gases compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It has been the purpose of the project on thermal properties of gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. The work was conducted under the supervision of Mr. Joseph Hilsenrath by members of the Thermodynamics Section. Division of Heat and Power.

Chul W/Sechief
C. W. Beckett, Chief
Thermodynamics Section

R.E. Wilson

R. E. Wilson, Acting Chief Division of Heat and Power

		TABLE OF CONTENTS	Page
Fore	vord	•••••••••••••••••	ii
Table	of Con	tents	iii
Summa	ry	••••••	1
I	Introdu	ction	3
II	Symbols		6
III	The exp	erimental data of state for oxygen	11
IV	Compari	son of derived quantities with the experimental data	13
Λ	The cal	culation of the tables	18
VI	Conclus	ion	19
VII	Referen	ces	20
Figur	e 1 - P	VT data for oxygen	23
Figur	e 2 - H	eat of vaporization of liquid oxygen	24
Table	9.01 -	Entropy of oxygen vapor at boiling point	25
		<u>Appendices</u>	
Table	9.10	Specific heat enthalpy and entropy of molecular organ in the ideal gas state.	
Table Table	, ,	Free energy of molecular oxygen in the ideal gas state.	
Table Table	-	Free energy of atomic oxygen in the ideal gas state. Density of molecular oxygen.	
Table		•	
Table			
Table			
Table			
Table	9.32	Sound velocity in molecular oxygen.	
Table	9.39	Viscosity of oxygen.	
Table			
Table			
Table		Vapor pressure of oxygen.	
Table		Conversion factors.	
Tempe	rature:	interconversion table.	

The tables of thermal properties of molecular oxygen prepared for the NBS-NACA series are grouped together here for convenience in use. These tables include thermodynamic functions for the gas. both real and in the hypothetical ideal gas state, the transport properties of the gas, and the vapor pressure of the liquid. The ideal gas properties are given in tables 9.10 and 9.11. These include specific heat at constant pressure, enthalpy, entropy and the free energy function. For possible use with them, tables 10.10 and 10.11, giving the same properties for atomic oxygen, are also included. The real gas thermodynamic properties for molecular oxygen are given in tables 9.18 to 9.32 and include density, the compressibility factor or PV/RT, entropy, enthalpy, specific heat at constant pressure, the ratio of specific heats or $C_{\rm p}/C_{\rm v}$, and the velocity of sound at very low frequency. For tables 9.18 to 9.32, the tabular entries correspond to pressures of 0.01, .1, .4, .7, 1, 4, 7, 10, 40, 70 and 100 atmospheres. The temperature range covered is from 100°K or slightly higher, up to 3000°K. The method of correlation of the PVT data allows the calculation of approximate values for temperatures much higher than used in obtaining the experimental data. This is due to the determination of a reasonable representation of interaction energies between molecules, based on an over-all fitting of the available data.

The vapor pressure for liquid oxygen is given in table 9.50 with values at every 5 degrees from 55°K to 150°K for rapid use for these temperatures or when rough interpolated values are adequate. In a second part of the table, values of log10P are tabulated more closely with uniformly spaced values of 1/T, permitting very accurate interpolation.

The viscosity, thermal conductivity and Prandtl number are given in tables 9.39, 9.42, and 9.44 respectively. The viscosity is tabulated for atmospheric pressure over the temperature range 100°K to 2000°K using the treatment of Hirschfelder, Bird and Spotz [17] for the Lennard-Jones 6-12 potential with the parameters s/k = 100°K and $b_0 = 54.1$ cm³ mole⁻¹chosen to fit the experimental data approximately over their entire range. The thermal conductivity was calculated from a purely empirical equation fitted to the experimental data, and the Prandtl number was computed in a straight-forward manner from these and the specific heat values.

I INTRODUCTION

This set of mutually consistent tables of thermodynamic properties of gaseous oxygen has been computed with the data of state represented by a pressure series whose temperature dependent coefficients and their derivatives were used to calculate the derived thermodynamic properties. As the experimental PVT data are more abundant than other relevant data, cover a wider range of temperature and pressure, and are usually dependable, the equation of state forms an appropriate starting point for the calculation of the entire field of thermodynamic properties.

In the representation of the PVT data for the MBS-MACA Tables, the objective was taken of covering adequately the limited range of pressure from zero to a maximum of 100 atmospheres and of temperature from a minimum of 100°K upward through the atmospheric and experimental range with a suitable extrapolation to high temperatures, but omitting the effect of dissociation. A discussion of the effects of dissociation is given in an earlier report [33]. As the tables were to be tabulated in terms of pressure for convenience of use, it seemed appropriate to make the correlation directly in terms of pressure. For most of the range of pressure and temperature desired, the simple equation

$$Z = PV/RT = 1 + B_1P + C_1P^2 + D_1P^3$$

appeared to be adequate. Here the coefficients B₁, C₁, and D₁, are functions of the temperature and are related to the virial coefficients in the analogous equation in powers of reciprocal

volume. As the equation was found not to fit as well as desired at the lowest temperatures for elevated pressures, the table entries have been limited to low pressures at low temperatures.

The pressure corrections to the various thermodynamic properties were determined theoretically from the correlation of the data of state. These were combined with values of properties for the ideal gas to obtain the complete real gas properties as given in tables 9.22 to 9.32. Many details concerning the actual computations will be found in later sections of this report and in the discussions of tables 9.20 to 9.32. Details concerning the calculation of the thermodynamic functions for the ideal gas will be found in the references given in tables 9.10 and 9.11.

The tables are given in dimensionless form and conversion factors to some frequently used units are given at the end of each table. The pressure intervals were chosen to facilitate Lagrangian interpolation of the tables. When linear interpolation in pressure is strictly valid, values for intermediate pressures have in some cases been omitted. Deviation plots have been included which indicate the agreement or discordance of the experimental data. The plots are also useful for showing the range and abundance or paucity of the experimental data for oxygen.

The tables were prepared in loose-leaf form to permit their prompt distribution to research workers. Close proximity between the tables and related conversion factors, text material and

deviation plots was sought. For convenience in preparation and use the existing loose leaf tables are brought together as the concluding portion of this report. The body of the report contains a general review of the experimental data and additional miscellaneous tables and charts pertaining to the correlation procedure and the final quality of the representation.

II SYMBOLS

Symbols	Definitions	Units and Dimensions
A	Abbreviation for Angstrom, unit of length	10 ⁻⁸ cm
a	Sound velocity at low frequency	m sec-1, ft sec-1
^a O	Sound velocity at standard conditions	314.82 m sec-1 1032.9 ft sec-1
В	Second virial coefficient in the 1/V series - a function of temperature	cm ³ mole-1
Β ⁽⁰⁾ (τ)	Second virial coefficient function = B/b _o	Dimensionless
B ₁	Coefficient of P in the pressure series for PV/RT	atm-l
Biand Bii	TdB/dT and T^2d^2B/dT^2	cm ³ mole ⁻¹
ро	Characteristic parameter of the Lennard-Jones interaction potential	cm ³ mole ⁻¹
b ₂	b for pairs alone as distinct from pairs in larger clusters	54.7 cm ³ mole ⁻¹
b3	bo for pairs within a cluster of three	48.18 cm ³ mole ⁻¹
С	Third virial coefficient in the l/V series, a function of temperature	$(cm^3 mole^{-1})^2$
c ⁽⁰⁾ (7)	Third virial coefficient function = C/b ₀ ² in simple theory	Timensionless
CJ	Coefficient of P ² in the pressure series for PV/RT	atm ⁻²
c^b	Heat capacity at constant pressure	various

Symbols	Definitions Uni	ts and Dimensions
$c_{\mathbf{o}}^{\mathrm{b}}$	Heat capacity at constant pressure for the ideal gas	various
C _v	Heat capacity at constant volume	various
$\mathtt{C}_{oldsymbol{o}}^{A}$	Heat capacity at constant volume for the ideal gas	various
D	Fourth virial coefficient in the 1/V series, a function of temperature	$(cm^3 \text{ mole}^{-1})^3$
Dl	Coefficient of P ³ in the pressure series for PV/RT	atm ⁻³
E	Internal energy for one mole of gas [E is also used for the fifth virial coefficient]	various
EO	Internal energy for one mole of gas in standard ideal gas state at 0°K. Same as H ₀ , the enthalpy for the same condition.	various
$\Delta \mathrm{E}_\mathrm{O}^\mathrm{o}$	The heat of formation for one mole of a substance in the standard state from its constituents in their standard states at 0°K. For atomic oxygen, equals half the dissociation energy for diatomic oxygen.	various ,
F	Free energy per mole	various
Fo	Free energy per mole in standard state [Ideal gas at one atmosphere for gaseous substances]	various
H	Enthalpy per mole	various
Ho	Enthalpy per mole in standard state [Ideal gas at one atmos-phere for gaseous substances]	various

Symbols	Definitions	Units and Dimensions
H8	Enthalpy per mole in standard ideal gas state. Same as E_0° .	various
K	Equilibrium constant for a chemical reaction	(atm) ⁿ
K	Symbol for degrees Kelvin	
k	Boltzmann constant for proportionality of energy to temperature	•38048 X 10 ⁻¹⁶ erg deg
k	Thermal conductivity	cal cm ^{-l} sec ^{-l} °C ^{-l}
^k 0	Thermal conductivity at 273.16°K and one atmos- phere pressure	5.867X10 ⁻⁵ cal cm ⁻¹ sec ⁻¹ °C ⁻¹
М	Molecular weight	32 gm mole-1
И	Avogadro's number	6.02283 X 10 ²³ mole-1
0	Symbol for (one atom of, or atomic) oxygen	
P	Pressure .	atm, dyne cm ⁻²
Po	Atmospheric pressure	l atm; 1013250 dynes cm ⁻²
р	Subscript indicating constant pressure	
R	Gas constant per mole	82.0567 cm ³ atm °K ⁻¹ mole ⁻¹ 1.98718 cal deg ⁻¹ mole ⁻¹ 8.31439 abs joule deg ⁻¹ mole ⁻¹
r _o	Classical distance of closest intermolecular approach at zero energy according to Lennard-Jones potential	3.51 A from B 3.499 A from M
S	Entropy for one mole	various

Symbols	Definitions	Units and Dimensions
S ^o	Entropy for one mole in standard state [Ideal gas at one atmosphere for gaseous substances]	various
Т	Absolute temperature	degrees K degrees R
T _O	Temperature at standard conditions	273.16°K
Λ	Volume per mole	cm ³ mole-l
V	Function in theory of viscosity	Dimens ionless
v	Subscript indicating constant volume	
W	Function in theory of viscosity	Dimensionless
x	Mole fraction	Dimensionless
Z	Compressibility factor	Dimensionless
Z _O	Compressibility factor at 273.16°K and one atmosphere	.99905
œ	Isentropic expansion coefficient, $\frac{-V}{P} \left(\frac{dP}{dV}\right)_{S} = \frac{-V}{P} \left(\frac{dP}{dV}\right)_{T} \chi$	Dimensionless
8	Ratio of specific heats, $C_{ m p}/C_{ m v}$	Dimensionless
ε	Maximum energy of binding between molecules with a Lennard-Jones potential	ergs
ε/k	Characteristic parameter of the Lennard-Jones interaction potential	deg K
ε ₂ /k	ε/k for pairs alone	116°K
ε ₂ /k ε ₃ /k	ε/k for pairs within a cluster of three	124 . 7°K

Symbols	Definitions	Units and Dimensions
η	Viscosity	poises gm sec'l cm-l
η_0	Viscosity at 273.16°K and one atmosphere	1919.2 X 10 ⁻⁷ poises
ν	Kinematic viscosity, η/ ho	cm ² sec ⁻¹
νΟ	Kinematic viscosity at 273.16°K and one atmosphere	.13430 cm ² sec ⁻¹
ρ	Density	mole cm ⁻³ , gm cm ⁻³ also Amagat units, etc.
ρ _O	Density at 273.16°K and one atmosphere	4.46564X10-5mole cm-3 1.42900X10-3g cm-3
τ	A reduced temperature, kT/s	Dimensionless

III THE EXPERIMENTAL DATA OF STATE FOR OXYGEN

The experimental PVT data for oxygen extending to elevated pressure are indicated in Figure 1. The direct experimental values of Z are represented in the form of V(Z=1) plotted as a function of density, with temperatures in degrees Kelvin indicated adjacent to the plotted points. The deviations of the present correlation from the experimental points are evident by simple inspection of the graph.

The procedure used in the present correlation in representing the second and third virial coefficients, related to B₁ and C₁ in the pressure series, has been outlined in Ref. [32]. The method is so arranged as to permit use of such data as are available on the pressure dependence of internal energy, enthalpy, specific heat and sound velocity for the fitting of the second virial coefficient and has been arranged to permit fitting of Joule-Thomson data and PVT data for both second and third virial coefficients.

The data for oxygen at the ice point and room temperature seem quite dependable with measurements by Amagat [2], Holborn and Otto [18], Kuypers and Kamerlingh Onnes [22,25], and van Urk and Nijhoff [29]. The data of Amagat had their present usefulness mainly as an indication of the general trend toward higher pressure. The data of Holborn and Otto, as indicated by Cragoe [7], are subject to correction for the effect of stretching of the container at elevated pressure and for individual pressures and temperatures occurring in

their evaluation of the amount of substance present for individual measurements. The points as plotted in figure 1 are thus corrected and differ slightly from their reported numbers.

The adjustments made in selecting the Lennard-Jones parameters for pairs and clusters of three included some adjustment of the C₁ for failure to achieve the best possible low temperature fit of the B₁. The limitation to low pressure values at the low temperatures arises partly from this imperfection of representation. The primary objective in the present correlation was to represent the higher and intermediate temperature data for extrapolation to much higher temperatures. The present choice of parameters was a result of these requirements. A set of parameters more appropriate for the low temperature region by itself could similarly be arrived at.

In terms of the virial coefficients for 6-12 Lennard-Jones potentials as tabulated in the dimensionless form $B^{(0)}(\Upsilon)$ and $C^{(0)}(\Upsilon)$ by Bird, Spotz and Hirschfelder [4], the coefficients B_1 and C_1 were represented by

$$B_1 = b_2 B^{(0)}(T_2)/RT$$

227

$$C_1 = b_3^2 [C^{(0)}(\tau_3) - 4 (B^{(0)}(\tau_3))^2]/(RT)^2 + 3 B_1^2$$

where $\mathcal{T}_2 = kT/\epsilon_2$ and $\mathcal{T}_3 = kT/\epsilon_3$

with $\epsilon_2/k = 116^{\circ}K$, $b_2 = 54.7 \text{ cm}^3 \text{ mole}^{-1}$

and $\epsilon_3/k = 124.7^{\circ}K$, and $b_3 = 46.18 \text{ cm}^3 \text{ mole}^{-1}$.

D₇ was represented empirically as

$$D_1 = -483.037 \text{ T}^{-4} + 251430 \text{ T}^{-5} - 24.618 \text{ X} 10^6 \text{ T}^{-6} - 38.426 \text{X} 10^{-5} \text{ T}^{-3} \text{e}^{1380/\text{T}}$$

PVT data in the low temperature region have been represented with a density series using B and C only, by Claitor and Crawford [5] and by Hall and Tbele [15]. The density is intrinsically more suitable as a variable in this temperature region, as the pressure becomes particularly inappropriate near the critical point.

IV COMPARISON OF DERIVED QUANTITIES WITH THE EXPERIMENTAL DATA

Experimental data on heat capacity, entropy, enthalpy, sound velocity, etc., are too limited in extent to provide a tabulation of these properties directly. The tabulated values for these quantities are based on the correlation of the data of state and on the properties for the ideal gas. Thermodynamic properties thus calculated from good PVT data can be expected to agree well with good direct experimental data for the various quantities. This section presents a comparison of derived thermodynamic quantities with corresponding experimental data.

One single determination of the dependence of the internal energy of gaseous oxygen upon the pressure is given in the work of Rossini and Frandsen [26] for the pressure range zero to 40 atmospheres at 28°C. Their value was -6.51 joules atm⁻¹ mole⁻¹. The corresponding theoretical value for the dependence at zero pressure according to the present correlation is -6.41₅ joule atm⁻¹ mole⁻¹. The average value over the range zero to 40 atmospheres obtained by combining

values in Tables 9.10, 9.20 and 9.22 is approximately -6.55 joules atm⁻¹ mole⁻¹. The average value as obtained by Meyers [23] based on his correlation of PVT data for oxygen is-6.47 joules atm⁻¹ mole⁻¹.

The specific heat at constant pressure near atmospheric pressure was measured by Henry [16] using a flow method involving measurement of the lack of symmetry of temperature along a uniformly heated flow tube. He claimed an accuracy of no more than one percent except at 20°C where an accuracy of 1/2 percent was suggested. His results, given as specific heat at constant volume, have been read from his graph and are shown in Figure 1 of Table 9.24 as departures from the table values after reconversion to give the measured specific heat at constant pressure. His smoothed table of values has similarly been used to compute values for constant pressure which are shown in this graph by the dashed curve.

Values for the specific heat of gaseous oxygen were reported by Eucken and v. Lüde [10], obtained with the method of Lummer and Pringsheim based on the isentropic cooling during expansion. In this procedure, the formula

 $C_p = R [Z + T (\partial Z/\partial T)_p]$ (d ln P/d ln T)_S applies. Eucken and v. Lude used PVT data of Holborn and Otto to evaluate the linear dependence on pressure of $Z + T (\partial Z/\partial T)_p$. Points indicating their reported values of C_p at one atmosphere and 302.6°K, 381.2°K and 478.9°K are shown in Figure 1 of Table 9.24.

Values for the specific heat of oxygen obtained by Wacker, Cheney and Scott [30] with a flow calorimeter at -30°C, 40.04°C and 90°C are also shown in this figure.

Values for the specific heat of oxygen computed from the sound velocities observed by Shilling and Partington [27] have also been included. These show large departures from theoretical values at elevated temperatures.

Measurements of the specific heat of gaseous oxygen at constant pressure were reported by Workman [34] for 26°C and 60°C for pressures from 10 kg/cm² to 130 kg/cm², or from 9.68 atm to 125.8 atm. In figure 2 of Table 9.24 his results are shown converted to the form of the ratio of specific heat observed to the specific heat of the ideal gas. The curves adjacent to the experimental points are the corresponding theoretical values based on the present correlation of the PVT data.

Measurements on the velocity of sound in gaseous oxygen in the temperature range 77°K to 90°K have been reported on by Keesom, van Itterbeek and van Iammeren [20] and by van Iammeren [28]. While the theoretical values agree fairly well with their results, the comparison is omitted from the present report on the basis that the PVT data on which the present tables are based are for higher temperatures.

Values for the velocity of sound in oxygen were obtained by Shilling and Partington [27] and by King and Partington [21] using a Kundt's tube. Their results are shown in Figure 1 of Table 9.32 as percent departures from the table, using sound velocity (a) directly

as measured and (b) relative to the velocity of sound in air, with the plotted points based on this observed ratio combined with the velocity in air at one atmosphere as given in Table 2.32 of the present series of NBS-NACA tables. It may be seen that the departures from the theoretical values are reduced somewhat by making the comparison on the basis of the ratio of the velocity of sound in oxygen to that in air.

The heat of vaporization of liquid oxygen is shown in figure 2, taken from the report by Furukawa and McCoskey [13] on air, oxygen, and nitrogen. Their new measurements as adjusted to the nearest tenth of degree in temperature, using the thermochemical calorie, give the values:

68.40°K	7418.2 abs j :	mole-1	1773.0	cal mole
76.00°K	7228.2 abs j		1727.6	cal mole
84.10°K	7004.9 abs j	mole -	1674.2	cal mole
91.30°K	6790.4 abs j		1622.9	cal mole

and at the boiling point of 90.19°K, 6824.8 abs j mole⁻¹, or 1631.2 cal mole⁻¹ by interpolation.

A comparison of the calorimetrically determined entropy for gaseous oxygen at the boiling point with the entropy as calculated statistically from spectroscopic data is shown in table 9.01. The calorimetric data are from Giauque and Johnston [14], with the adjustment to the newer values of boiling point and latent heat shown for the calorimetric value and with the entropy based on the values of table 9.10. The estimated correction for non-ideality

at the boiling point on the basis of the extrapolation of the present P and P² coefficients is also given. Although the previous comparison of calorimetric and spectroscopic entropy was fairly satisfactory, in that the discrepancy was only .06 entropy units with an uncertainty given as 0.1 entropy units, the new comparison gives an even closer agreement, to about .02 entropy units.

V CALCULATION OF THE TABLES

The thermodynamic quantities tabulated in this report were computed numerically from the coefficients of the equation of state. The following formulas were used:

$$Z = PV/RT = 1 + B_{1}P + C_{1}P^{2} + D_{1}P^{3}$$

$$S/R = S^{\circ}/R - k \ln P - (B_{1} + TdB_{1}/dT)P - 1/2 (C_{1} + TdC_{1}/dT)P^{2}$$

$$- 1/3 (D_{1} + TdD_{1}/dT)P^{3}$$

$$H/RT = H^{\circ}/RT - T (dB_{1}/cT)P - 1/2 T (dC_{1}/dT)P^{2}$$

$$- 1/3 T (dD_{1}/dT)P^{3}$$

$$C_{p}/R = C_{p}^{\circ}/R - [2TdB_{1}/dT + T^{2}d^{2}B_{1}/dT^{2}]P$$

$$- 1/2 [2TdC_{1}/dT + T^{2}d^{2}C_{1}/dT^{2}]P^{2}$$

$$- 1/3 [2TdD_{1}/dT + T^{2}d^{2}D_{1}/dT^{2}]P^{3}$$

$$\frac{C_{p}-C_{v}}{R} = \frac{[Z + T (\partial Z/\partial T)_{p}]^{2}}{[Z - P (\partial Z/\partial P)_{T}]}$$

$$= \frac{[1 + (B_{1}+TdB_{1}/dT) P + (C_{1}+TdC_{1}/dT)F^{2} + (D_{1}+TdD_{1}/dt)P^{3}]^{2}}{RT\delta}$$

$$= \sqrt{RT \propto Z/M} = Z\sqrt{\frac{RT \delta}{M[Z - P(\partial Z/\partial P)_{T}]}}$$

VI CONCLUSION

The uncertainty of the tabulated density and compressibility and of the various derived properties for oxygen is discussed in the text adjacent to each table. The region in which the data are most dependable is probably near room temperature. The extensive data below room temperature are thought to be nearly as dependable. For the higher temperatures there is some lack of agreement between the results of Holborn and Otto and of Amagat for oxygen, so that this region may be regarded as particularly less certain. region immediately above and below the ice point the correlation is fitted fairly closely to the data, with an uncertainty probably not exceeding 0.1 percent in PV/RT or about 10 percent of the difference between real and ideal values. The uncertainty is larger at both higher and lower temperatures due to imperfections of theory and data. The derived pressure corrections to thermodynamic properties are in general less accurate, because in the differentiation process errors are propagated with a large increase. The corresponding experimental determinations are frequently inaccurate. The knowledge of the properties of oxygen can be improved by better experimental measurements, increase of the experimental range, and by improvement of applicable theory.

VII REFERENCES

- [1] H. Alt, Über die Verdampfungswarmendes flüssigen Sauerstoffs und flüssigen Stickstoffs und deren Anderung mit der Temperatur, Ann. Physik 19, 739(1906).
- [2] E. H. Amagat, Memoires sur l'élasticité et la dilatabilité des fluides jusqu'aux très hautes pressions, Ann. chim. phys. 29, 68(1893).
- [3] H. Barschall, Über die Verdampfungswarme des Sauerstoffes, Z. Elektrochem. <u>17</u>, 345(1911).
- [4] R. B. Bird, E. L. Spotz and J. O. Hirschfelder, The Third Virial Coefficient for Non-Polar Gases, J. Chem. Phys. <u>18</u>, 1395(1950).
- [5] L. C. Claitor and D. B. Crawford, Thermodynamic Properties of Oxygen, Nitrogen and Air, Preprint American Society of Mechanical Engineers, Towne Scientific School, University of Pennsylvania, p. 3, Nov. 19 (1948).
- [6] K. Clusius and F. Konnertz, Ergebnisse der Tieftemperaturforschung VI. Kalorimetrische Messungen der Verdampfungswarme
 des Sauerstoffs bei normalem Druck sowie des Aethylens und
 Propylens unterhalb und oberhalb vom Atmosphärendruck,
 Z. Naturforsch, 44, 117(1949).
- [7] C. S. Cragoe, Slopes of pv Isotherms of He, Ne, A, H2, N2 and O2 at O°C, J. Research Nat. Bur. Standards 26, 495(1941) RP-1393.
- [8] L. I. Dana, The Latent Heat of Vaporization of Liquid Oxygen-Nitrogen Mixtures, Proc. Am. Acad. Arts Sci. 60, 241(1925).
- [9] J. Dewar, Studies with the Liquid Hydrogen and Air Calorimeters, Proc. Roy. Soc. (London), 76A, 325(1905).
- [10] A. Eucken and K. v. Lude, Die spezifische Warme der Gase bei mittleren und hohen Temperaturen. I. Die spezifische Warme der Gase: Luft, Stickstoff, Sauerstoff, Kohlenowyd, Kohlensäure, Stickowydul und Methan zwischen O' und 220°C. Z. physik. Chem. B5, 413(1929).
- [11] A. Eucken, Uber das thermische Verhalten einiger Komprimierter und Kondensierter Gase bei tiefen Temperaturen, Verhandl. deut. physik. Ges. 18, 4(1916).

- [12] A. Frank and K. Clusius, Prazisionsmessungen der Verdampfungswarme der Gase O2, H2S, PH3, A, COS, CH4 und CH3D, Z. physik. Chem. B42, 395(1937).
- [13] G. T. Furukawa and R. E. McCoskey, The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen, Technical Report to National Advisory Committee For Aeronautics, Report 1775, National Bureau of Standards (1952).
- [14] W. F. Giauque and H. L. Johnston, The Heat Capacity of Caygen from 12°K to its Boiling Point and its Heat of Vaporization. The Entropy from Spectroscopic Data. J. Am. Chem. Soc. 51, 2300(1929).
- [15] N. A. Hall and W. E. Tbele, Thermodynamic Properties of Air,
 Nitrogen and Oxygen as Imperfect Cases, Technical Paper of the
 University of Minnesota Institute of Technology, Engineering
 Experiment Station, Technical Paper No. 85, December (1951).
- [16] P. S. H. Henry, The Specific Heats of Air, Oxygen, Nitrogen from 20°C to 370°C, Proc. Roy. Soc. (London) Al33, 492(1931).
- [17] J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, Viscosity and other physical properties of gases and gas mixtures. Trans. ASME 48, 921(1949).
- [18] L. Holborn and J. Otto, Uber die Isothermen einiger Gase zwischen 400° und -183°, Z. Physik 33, 1(1925).
- [19] W. H. Keesom, The Heat of Vaporization of Hydrogen, Commun. Phys. Lab. Univ. Leiden, No. 137e (1914).
- [20] W. H. Keesom, A. van Itterbeek, and J. A. van Lammeren, Measurements about the velocity of sound in oxygen gas, Proc. Acad. Sci. Amsterdam 34, 996(1931); Leiden Comm. 216 d.
- [21] F. E. King and J. R. Partington, Measurements of Sound Velocities in Air, Oxygen, and Carbon Dioxide at Temperatures from 900°C to 1200°C with Special Reference to the Temperature Coefficients of Molecular Heats, Phil. Mag. 2, 1020(1930).
- [22] H. A. Kuypers and H. Kamerlingh Onnes, Isothermes de substances diatomiques et de leurs melanges binaires XXII. Isothermes de l'oxygene à 0° et 20°C. Leiden Comm. No. 165a (1923). Also see ref. [25].

- [23] C. H. Meyers, Pressure-Volume-Temperature Data for Oxygen, J. Research Nat. Bur. Standards 40, 457(1948) RP-1891.
- [24] G. P.Nijhoff and W. H. Keesom, Isotherms of di-atomic substances and their binary mixtures XXXIII. Isotherms of oxygen between -40°C and -152.5°C and pressures from 3 to 9 atmospheres. Leiden Comm. No. 179b (1925).
- [25] H. K. Cnnes and H. A. Kuypers, Isotherms of diatomic substances and their binary mixtures. XXV. On the isotherms of oxygen at low temperatures. Leiden Comm. No. 169a (1924).
- [26] F. D. Rossini and M. Frandsen, The Calorimetric Determination of the Intrinsic Energy of Gases as a Function of the Pressure. Data on Oxygen and its Mixtures with Carbon Dioxide to 40 Atmospheres at 28°C, J. Research Nat. Bur. Standards 9, 733(1932) RP-503.
- [27] W. G. Shilling and J. R. Partington, Measurements of the Velocity of Sound in Air, Nitrogen and Oxygen, with Special Reference to the Temperature Coefficients of the Molecular Heats, Phil. Mag. 6, 920(1928).
- [28] J. A. van Lammeren, Second virial coefficient and specific heats of oxygen, Leiden Comm. Supplement No. 77b, also Physica 2, 833(1935).
- [29] A. Th. van Urk and G. P.Nijhoff, Isotherms of diatomic substances and their binary mixtures. XXVII. On the isotherms of oxygen at 20°, 15.6° and 0°C. Leiden Comm. 169c (1925).
- [30] P. F. Wacker, R. K. Cheney and R. B. Scott, Heat Capacities of Gaseous Oxygen, Isobutane, and 1-butene from -30° to 90°.

 J. Research Natl. Bur. Standards 38, 651-9(1947) RP-1804.
- [31] G. Witt, Über die Verdampfungswärme flüssiger Luft, Arkiv Mat. Astron. Fysik 7, No. 32(1912).
- [32] H. W. Woolley, The Representation of Gas Properties in Terms of Molecular Clusters, J. Chem. Phys. 21, 236(1953).
- [33] H. W. Woolley, The Effect of Dissociation on the Thermodynamic properties of Pure Diatomic Gases, Report 1884, National Bureau of Standards, (1952).
- [34] E. J. Workman, The Variation of the Specific Heats (Cp) of Oxygen, Nitrogen and Hydrogen with Pressure, Phys. Rev. 37, 1345(1931).

24

TABLE 9.01 Entropy of Oxygen Vapor at Boiling Point

Calculation Using 90.13°K as Boiling Point (
S for liquid at 90.13°K	22.498 E. U.	,	(1)			
ΔS _{ap} at 90.13°K = 1628.8/90.13	18.07		(1)			
S for vap.	40.57		(1)			
S° spect.for gas	40.679	S°-S =1	E. U.			
Calculation Using 90,19°K as Boiling	e Point		(2)			
S for liquid at 90.13°K	22.49C E. U.		(1)			
(S _{90.19°K} - S _{90.13}) for liquid	•009	from 12.96X.06 90.15	(1)			
S for liquid at 90.19°K	22.507					
ΔG _{ap} at 90.19°K = 1631.2/90.19	18.086		(3)			
S for vap.	40.593					
So spect.for gas	40.684	°-S = .091	E. U.			

Berthelot correction, So-S = .17 T. U.

Entropy correction using P and P2 terms of present correlation $(S^{\circ}-S)_{90.19^{\circ}K} = .100 P + .0048 P^{2} \text{ or .105 E. U. for } P = 1 \text{ atm}$

- (1) Giauque and Johnston
 (2) Hoge, Table 9.50
 (3) Furukawa and McCoskey

NATIONAL BUREAU OF STANDARDS

E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.10 Molecular Oxygen (Ideal Gas State)

July 1949

Specific Heat, Enthalpy, Entropy C_p°/R , $(H^{\circ}-E_0^{\circ})/RT_0$, S°/R

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to *Joseph Hilsenrath*, Heat and Power Division, National Bureau of Standards. This table is also available on IBM punched cards.

						1	/		
°K	C°p	$\left(H_{\circ}^{-}E_{\circ}^{\circ}\right)$	_s°	°R	٥K	C°	$\left(H_{\circ} - E_{\circ}^{0} \right)$	s°	°R
K	R	RTo	R			R	RT_0	R	
10 20 30 40	Δ 3.5423 ₋₂₇₈ 3.5145 ₋₆₈ 3.5077 ₋₃₃ 3.5044 ₋₁₅	0.1222 ₁₂₉₁ 0.2513 ₁₂₈₅ 0.3798 ₁₂₈₃ 0.5081 ₁₂₈₃	12.7490 24447 15.1937 14043 16.5980 10276 7860	18 36 54 72	400 410 420 430 440	3.6212 116 3.6322 113 3.6435 115 3.6550 118 3.6668 119	5.1542 1327 5.2869 1332 5.4201 1336 5.5537 1340 5.6877 1345	25.7140 896 25.8036 876 25.8912 859 25.9771 841 26.0612 826	720 738 756 774 792
50 60 70 80 90	3,5029 6 3,5023 4 3,5019 3 3,5016 1 3,5015 1	0.6364 0.7646 1282 0.8928 1.0210 1282 1.1492 1282	18.4116 19.0461 19.5837 20.0535 20.4656 3692	90 108 126 144 162	450 460 470 480 490	3.6787 120 3.6907 122 3.7029 122 3.7151 123 3.7274 122	5.8222 ₁₃₄₉ 5.9571 ₁₃₅₃ 6.0924 ₁₃₅₈ 6.2282 ₁₃₆₂ 6.3644 ₁₃₆₇	26.1438 810 26.2248 795 26.3043 780 26.3823 768 26.4591 754	810 828 846 864 882
100 110 120 130 140	3,5014 - 1 3,5013 - 0 3,5013 - 1 3,5012 + 1 3,5013 - 0	1.2774 1.4056 1.5337 1.6619 1.7901 1.282	20.8348 3336 21.1684 3048 21.4732 2802 21.7534 2595 22.0129 2416	180 198 216 234 252	500 510 520 530 540	3.7396 ₁₂₄ 3.7520 ₁₂₃ 3.7643 ₁₂₂ 3.7765 ₁₂₂ 3.7887 ₁₂₁	6.5011 1371 6.6382 1376 6.7758 1380 6.9138 1385 7.0523 1389	26.5345 26.6087 26.6817 718 26.7535 707 26.8242 696	900 918 936 954 972
150 160 170 180 190	3.5013+ 2 3.5015 2 3.5017 3 3.5020 5 3.5025 7	1.9183 2.0464 2.1746 2.3028 2.3028 2.4310 1282 1282	22.2545 22.4804 22.6927 22.8929 23.0823 22.9929 23.0823	270 288 306 324 342	550 560 570 580 590	3.8008 121 3.8129 119 3.8248 118 3.8366 117 3.8483 116	7.1912 ₁₃₉₄ 7.3306 ₁₃₉₈ 7.4704 ₁₄₀₂ 7.6106 ₁₄₀₇ 7.7513 ₁₄₁₁	26.8938 26.9624 27.0300 666 27.0966 657 27.1623 648	990 1008 1026 1044 1062
200 210 220 230 240	3.5032 10 3.5042 14 3.5056 17 3.5073 22 3.5095 27	2.5593 2.6875 2.8158 2.9442 3.0726 1284 1284	23.2619 1710 23.4329 1630 23.5959 1559 23.7518 1493 23.9011 1433	360 378 396 414 432	600 610 620 630 640	3.8599 114 3.8713 113 3.8826 111 3.8937 110 3.9047 108	7.8924 1415 8.0339 1419 8.1758 1423 8.3181 1428 8.4609 1431	27.2271 639 27.2910 630 27.3540 622 27.4162 614 27.4776 607	1080° 1098 1116 1134 1152
250 260 270 280 290	3.5122 3.5155 3.5193 3.5193 45 3.5238 50 3.5288 56	3.2012 ₁₂₈₆ 3.3298 ₁₂₈₈ 3.4586 ₁₂₈₉ 3.5875 ₁₂₉₁ 3.7166 ₁₂₉₃	24.0444 1378 24.1822 1328 24.3150 1280 24.4430 1238 24.5668 1197	450 468 486 504 522	650 660 670 680 690	3.9155 107 3.9262 105 3.9367 103 3.9470 101 3.9571 101	8.6040 1436 8.7476 1439 8.8915 1443 9.0358 1447 9.1805 1450	27.5383 598 27.5981 591 27.6572 584 27.7156 577 27.7733 570	1170 1188 1206 1224 1242
300 310 320 330 340	3.5344 3.5407 3.5476 75 3.5551 3.5631 80	3.8459 1295 3.9754 1297 4.1051 1300 4.2351 1303 4.3654 1306	24.6865 1160 24.8025 1125 24.9150 1093 25.0243 1062 25.1305 1035	540 558 576 594 612	700 710 720 730 740	3.9672 3.9770 3.9866 3.9961 4.0054 91	9.3255 9.4709 1458 9.6167 9.7628 1461 9.9093 1468	27.8303 27.8867 27.9424 27.9974 28.0519 564 550 545 538	1260 1278 1296 1314 1332
350 360 370 380 390	3.5717 90 3.5807 95 3.5902 100 3.6002 103 3.6105 107	4.4960 ₁₃₀₉ 4.6269 ₁₃₁₃ 4.7582 ₁₃₁₆ 4.8898 ₁₃₂₀ 5.0218 ₁₃₂₄	25.2340 1007 25.3347 982 25.4329 959 25.5288 936 25.6224 916	630 648 666 684 702	750 760 770 780 790	4.0145 4.0235 88 4.0323 4.0409 4.0494 83	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	28.1057 28.1589 28.2116 28.2637 28.3152 510 510	1350 1368 1386 1404 1422
400	3.6212	5.1542	25.7140	720	800	4.0577	10.7950	28,3662	1440

CONVERSION FACTORS

To Convert Tabulated Values of	To The Dimensions Indicated Below	Multiply By
$\frac{C_p^o}{R} \cdot \frac{s^o}{R}$	cal mole-1 OK-1(orOC-1)	1.98719
RRR	cal g ⁻¹ °K ⁻¹ (or°C ⁻¹)	0.0620996
	joules $g^{-1} \circ K^{-1}(or^{\circ}C^{-1})$	0.259825
	Btu (lb mole) -1 OR-1 (or OF-1)	1.98588
	Btu lb ⁻¹ °R ⁻¹ (or°F ⁻¹)	0.0620587

°K	$\frac{C_p^{\circ}}{R}$	$\frac{\left(\mathrm{H}^{\circ}\mathrm{E}_{\mathrm{o}}^{\circ}\right)}{\mathrm{RT}_{\mathrm{o}}}$, S° R	°R	°K	Cp R	$\frac{\left(\mathrm{H}^{\circ}\!\!-\mathrm{E}_{\mathrm{o}}^{\circ}\right)}{\mathrm{RT}_{\mathrm{o}}}$	S° R	°R
800 850 900 950 1000	4.0577 Δ 4.0970 393 4.1327 325 4.1652 296 4.1948 271	10.7950 $\stackrel{\triangle}{_{7464}}$ 11.5414 $\stackrel{7532}{_{7595}}$ 12.2946 $\stackrel{7595}{_{7703}}$ 13.0541 $\stackrel{7652}{_{7703}}$	28,3662	1440 1530 1620 1710 1800	2900 2950 3000 3050 3100	4.7824 Δ 4.7944 118 4.8062 115 4.8177 114 4.8291 111	45.2601 A 46.1366 8786 47.0152 8809 47.8961 8829 48.7790 8850	34,0470 A 34,1289 807 34,2096 795 34,2891 784 34,3675 774	5220 5310 5400 5490 5580
1050 1100 1150 1200 1250	4.2219 250 4.2469 229 4.2698 214 4.2912 200 4.3112 188	14.5896 7751 15.3647 7795 16.1442 7836 16.9278 7873 17.7151 7908	29.4927 1970 29.6897 1893 29.8790 1821 30.0611 1756 30.2367 1695	1890 1980 2070 2160 2250	3150 3200 3250 3300 3350	4.8402 110 4.8512 107 4.8619 105 4.8724 103 4.8827 102	49.6640 50.5509 51.4398 8899 52.3307 8929 53.2236	34.4449 34.5212 753 34.5965 743 34.6708 734 34.7442 724	5670 5760 5850 5940 6030
1300 1350 1400 1450 1500	4,3300 179 4,3479 172 4,3651 164 4,3815 160 4,3975 155	18.5059 7943 19.3002 7974 20.0976 8005 20.8981 8035 21.7016 8064	30.4062 30.5700 1584 30.7284 30.8819 31.0307 1488 1444	2340 2430 2520 2610 2700	3400 3450 3500 3550 3600	4.8929 99 4.9028 97 4.9125 95 4.9220 92 4.9312 91	54.1183 55.0148 8982 55.9130 9002 56.8132 9018 57.7150 9033	34.8166 34.8881 706 34.9587 698 35.0285 689 35.0974 680	6120 6210 6300 6390 6480
1550 1600 1650 1700 1750	4.4130 152 4.4282 149 4.4431 147 4.4578 146 4.4724 144	22.5080 8091 23.3171 8119 24.1290 8147 24.9437 8172 25.7609 8200	31.1751 1404 31.3155 1364 31.4519 1329 31.5848 1294 31.7142 1262	2790 2880 2970 3060 3150	3650 3700 3750 3800 3850	4.9403 4.9491 4.9578 4.9662 4.9744 81	58.6183 9050 59.5233 9068 60.4301 9083 61.3384 9098 62.2482 9112	35.1654 35.2327 35.2327 665 35.2992 657 35.3649 650 35.4299	6570 6660 6750 6840 6930
1800 1850 1900 1950 2000	4.4868 143 4.5011 142 4.5153 142 4.5295 141 4.5436 140	26.5809 8227 27.4036 8252 28.2288 8277 29.0565 8304 29.8869 8329	31,8404 31,9636 32,0838 32,2013 32,3161 1148 1124	3240 3330 3420 3510 3600	3900 3950 4000 4050 4100	4.9825 78 4.9903 76 4.9979 75 5.0054 72 5.0126 71	63.1594 64.0721 9141 64.9862 9160 65.9022 9171 66.8193	35.4941 35.5576 35.6204 35.6826 35.7441 608	7020 7110 7200 7290 7380
2050 2100 2150 2200 2250	4.5576 139 4.5715 139 4.5854 139 4.5993 137 4.6130 137	30.7198 31.5554 32.3935 33.2341 34.0771 8456	32.4285 1100 32.5385 1077 32.6462 1056 32.7518 1035 32.8553 1015	3690 3780 3870 3960 4050	4150 4200 4250 4300 4350	5.0197 5.0265 5.0332 5.0397 5.0460 61	67.7371 9190 68.6561 9204 69.5765 9218 70.4983 9234 71.4217 9244	35.8049 35.8650 35.9245 35.9245 35.9835 36.0418 577	7470 7560 7650 7740 7830
2300 2350 2400 2450 2500	4.6267 4.6404 136 4.6540 134 4.6674 134 4.6808	34.9227 35.7709 36.6217 37.4747 38.3302 8555 8580	32,9568 997 33,0565 978 33,1543 961 33,2504 945 33,3449 928	4140 4230 4320 4410 4500	4400 4450 4500 4550 4600	5.0521 5.0580 5.0638 5.0693 5.0746 51	72.3461 9254 73.2715 9261 74.1976 9270 75.1246 9282 76.0528 9299	36.0995 36.1566 36.2132 36.2691 36.3246 559 36.3246	7920 8010 8100 8190 8280
2550 2600 2650 2700 2750	4.6940 131 4.7071 129 4.7200 128 4.7328 126 4.7454 125	39.1882 40.0487 40.9114 41.7765 42.6440 8651 8675 42.6440	33.4377 33.5289 33.6187 33.7071 869 33.7940 856	4590 4680 4770 4860 4950	4650 4700 4750 4800 4850	5.0797 5.0847 5.0896 47 5.0943 44 5.0987	76.9827 9308 77.9135 9310 78.8445 9315 79.7760 9326 80.7086 9337	36.3794 36.4338 36.4876 36.5410 36.5938 528 523	8370 8460 8550 8640 8730
2800 2850 2900	4.7579 4.7703 121 4.7824	43.5138 ₈₇₂₀ 44.3858 ₈₇₄₃ 45.2601	33.8796 33.9640 34.0470	5040 5130 5220	4900 4950 5000	5.1028 40 5.1068 41 5.1109	81.6423 82.5770 9352 83.5122	36.6461 519 36.6980 513	8820 8910 9000

CONVERSION FACTORS

To Convert Tabulated Values of	To The Dimensions Indicated Below	Multiply By
H° - E°	cal mole ⁻¹	542.821
RT ₀	cal g ⁻¹	16.9632
	joules g ⁻¹	70.9742
	Btu (lb mole) -1	976.437
	Btu 1b-1	30.5137

MOLECULAR OXYGEN

THE PROPERTIES TABULATED

The thermodynamic properties (Specific Heat, Entropy, and Enthalpy) of molecular oxygen in the ideal gas state are given in dimensionless form. The properties C_p°/R , $(H^\circ-E_0^\circ)/RT_0^\circ$, and S°/R are tabulated as functions of temperature, which is given in degrees K and in degrees R. The values are based on the tables given by Woolley [1] and are for the normal isotopic mixture.

RELIABILITY OF THE TABLES

The calculations for O_2 are based in general on rather precise spectroscopic data, except for some of the high energy states, so that the tabulated values should be reliable to the next to the last digit given except at temperatures near $5000^{\circ}K$, where the uncertainties may approach 0.003 in C_0°/R , 0.0005 in S°/R , and 0.005 in $(H^{\circ}-E_0^{\circ})/RT_0$.

The values of the thermodynamic properties given in this table should not be used for the actual gas at those elevated temperatures and lowered pressures at which an appreciable part of the gas is dissociated. At a pressure of one atmosphere and a temperature of $3500\,^{\circ}$ K the enthalpy of the actual partially dissociated oxygen is approximately twice as great as that of the pure molecular form tabulated. At 0.01 atmosphere a similar condition is attained at $2800\,^{\circ}$ K. More extensive information on the thermodynamic properties of partially dissociated oxygen will be found in table 9.2 of this series.

INTERPOLATION

The validity of linear interpolation varies throughout this table The error does not exceed one eighth of the second difference which can be obtained by inspection from the first differences tabulated. Where more precise interpolated values are desired, a four point Lagrangian interpolation may be used [2].

CONVERSION FACTORS

The functions in this table have been expressed in dimensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the most often used units. For values of R and RT $_0$ not listed in this table and for other conversion factors see Tables 1.20 and 1.30 of this series. The symbol R denotes the gas constant and T $_0$ is 273.16° Kelvin. The calorie used in the conversion factors is the thermochemical calorie and unless otherwise specified, the mole is the gram - mole.

REFERENCES:

- [1]. H. W. Woolley, Thermodynamic functions of molecular oxygen in the ideal gas state, J. Research NBS 40, 163 (1948) RP1864.
- [2]. Tables of Lagrangian Interpolation Coefficients (Columbia University Press, New York, N.Y., 1944).

NATIONAL BUREAU OF STANDARDS E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.11 Molecular Oxygen

July 1950

Free Energy

 $-(F^{\circ}-E_{0}^{\circ})/RT$

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards. This table is also available on IBM punched cards.

rabie	9.11 Molec	ular Oxy	5 · · ·			Tree Energy
°K	$ \frac{-\left(F^{\circ}-E_{0}^{\circ}\right)}{RT} $	$^{\circ}R$		°K	$\frac{-\left(F^{\circ}-E_{0}^{\circ}\right)}{RT}$	°R
10 20 3 0 40	9.411 2350 11.761 1379 13.140 1016 779	18 36 54 72		400 410 420 430 440	22.194 $\frac{\Delta}{87}$ 22.281 $\frac{\Delta}{85}$ 22.366 $\frac{\Delta}{83}$ 22.449 $\frac{\Delta}{81}$ 22.530 $\frac{\Delta}{80}$	720 738 756 774 792
50 60 70 80 90	14.935 15.565 16.100 16.567 16.978 368	90 108 126 144 162		450 460 470 480 490	22.610 ₇₇ 22.687 ₇₇ 22.764 ₇₄ 22.838 ₇₃ 22.911 ₇₂	810 828 846 864 882
100 110 120 130 140	17.346 17.678 304 17.982 18.261 259 18.520 241	180 198 216 234 252		500 510 520 530 540	22.983 70 23.053 69 23.122 68 23.190 67 23.257 65	900 918 936 954 972
150 160 170 180 190	18.761 226 18.987 212 19.199 199 19.398 189 19.587 179	270 288 306 324 342		550 560 570 580 590	23,322 23,387 23,450 23,512 23,574 60	990 1008 1026 1044 1062
200 210 220 230 240	19.766 19.937 163 20.100 155 20.255 149 20.404 143	360 378 396 414 432		600 610 620 630 640	23.634 23.693 23.752 23.810 56 23.866 57	1080 1098 1116 1134 1152
250 260 270 280 290	20.547 20.684 20.816 20.943 21.066 119	450 468 486 504 522		650 660 670 680 690	23.923 55 23.978 54 24.032 54 24.086 53 24.139 52	1170 1188 1206 1224 1242
300 310 320 330 340	21.185 21.300 111 21.411 108 21.519 104 21.623 102	540 558 576 594 612		700 710 720 7 3 0 7 4 0	24.191 52 24.243 51 24.294 50 24.344 50 24.394 49	1260 1278 1296 1314 1332
350 360 370 380 390	21.725 21.824 21.920 22.014 22.014 91 22.105 89	630 648 666 684 702		750 760 770 780 790	24.443 24.492 48 24.540 47 24.587 47 24.634	1350 1368 1386 1404 1422
400	22.194	720		800	24.680	1440

°K		$\frac{-\left(F^{\circ}-E_{0}^{\circ}\right)}{RT}$	°R	0	К -	$\frac{-(F^{\circ} - E_0^{\circ})}{R T}$	$rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{$
	800 850 900 950	24.680 224 24.904 213 25.117 202 25.319 194 25.513 184	1440 1530 1620 1710 1800		3000 3050 3100 3150 3200	29.929 71 30.000 69 30.138 68 30.206 67	5400 5490 5580 5670 5760
11 11 12	050 100 150 200 250	25.697 25.874 170 26.044 164 26.208 158 26.366	1890 1980 2070 2160 -2250		3250 3300 3350 3400 3450	30.273 30.339 30.404 530.469 30.532 63	5850 5940 6030 6120 6210
13 14 14	300 350 400 450 500	26.518 147 26.665 142 26.807 138 26.945 134 27.079 130	2340 2430 2520 2610 2700		3500 3550 3600 3650 3700	30.595 62 30.657 61 30.718 61 30.779 59 30.838 59	6300 6390 6480 6570 6660
16 16 17	550 500 550 700 750	27.209 27.335 27.457 27.577 116 27.693	2790 2880 2970 3060 3150		3750 3800 3850 3900 3950	30.897 .30.956 31.013 57 31.070 57 31.127	6750 6840 6930 7020 7110
18 19 19	300 350 900 950	27.807 110 27.917 108 28.025 106 28.131 103 28.234 101	3240 3330 3420 3510 3600	2	1000 1050 1100 1150 1200	31.183 55 31.238 54 31.292 54 31.346 54 31.400 53	7200 7290 7380 7470 7560
21 21 22	050 .00 .50 .50	28.335 99 28.434 97 28.531 94 28.625 93 28.718 91	3690 3780 3870 3960 4050	4	1250 4300 4350 1400 1450	31.453 52 31.505 52 31.557 51 31.608 51 31.659 50	7650 7740 7830 7920 8010
23 24 24	50 100 150 150	28.809 90 28.899 87 28.986 86 29.072 85 29.157 83	4140 4230 4320 4410 4500	2	1500 1550 1600 1650 1700	31.709 50 31.759 49 31.808 49 31.857 49 31.906 48	8100 8190 8280 8370 8460
26 26 27	550 500 550 700 750	29.240 81 29.321 81 29.402 79 29.481 77 29.558 77	4590 4680 4770 4860 4950	4	1750 1800 1850 1900 1950	31.954 32.001 32.048 47 32.095 46 32.141	8550 8640 8730 8820 8910
28 29 29	300 350 900 950	29.635 29.710 74 29.784 73 29.857 72 29.929	5040 5130 5220 5310 5400	-	5000	32.187	9000

TABLE 9.11 MOLECULAR OXYGEN: FREE ENERGY FUNCTION

THE PROPERTY TABULATED

In this table a function of the Gibbs free energy, F° , that is convenient in the calculation of chemical equilibrium is presented for molecular oxygen in the ideal gas state. The function is the dimensionless quantity $-(F^{\circ} - E_{0}^{\circ})/RT$, where E_{0}° is the energy of the ideal gas at $0^{\circ}K$, R is the universal gas constant and T is the absolute temperature. The negative free energy function is tabulated as a function of the temperature which is given in degrees Kelvin and degrees Rankine. The values are consistent with the values of enthalpy and entropy given in Table 9.10 of this series, and with those of reference [1], according to the definition of Gibbs free energy, F = H - TS.

RELIABILITY OF THE TABLE

The values given are considered to be very reliable, being uncertain by less than one unit in the third decimal place up to the highest temperatures.

INTERPOLATION

The validity of linear interpolation varies throughout this table depending upon the number of figures desired. The error produced by linear interpolation does not exceed one-eighth of the second difference. Where more precise values are desired, a four-point Lagrangian interpolation may be used [2].

CONVERSION FACTORS, CONSTANTS, AND DEFINITIONS OF SYMBOLS

The function in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, conversion factors are listed for the frequently used units. The following constants have been used in this compilation; the universal gas constant R = 1.98719 cal mole⁻¹ deg⁻¹; the molecular weight of oxygen = 32.000; the thermochemical calorie = 4.1840 abs. joules. Unless otherwise specified the mole is the gram-mole. For other conversion factors, constants, and definitions see Table 1.30 of this series.

CONVERSION FACTORS

To Convert Tabulated Value of	То	Having the Dimensions Indicated Below	Multiply By
- (F° - E°)/RT	-(F° - E°0)/T	cal mole ⁻¹ °K ⁻¹ (or °C ⁻¹)	1.98719
		cal $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	0.0620996
		joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	0.259825
		Btu (lb mole) ⁻¹ ${}^{\circ}R^{-1}$ (or ${}^{\circ}F^{-1}$)	1.98588
		Btu lb ⁻¹ °R ⁻¹ (or °F ⁻¹)	0.0620587

REFERENCES

- [1] Harold W. Woolley, Thermodynamic functions for molecular oxygen in the ideal gas state, J. Research NBS 40, 163 (1948) RP1864.
- [7] "Tables of Lagrangian Interpolation Coefficients", Columbia University Press, New York, 1944.

NATIONAL BUREAU OF STANDARDS E. U Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 10.10 Atomic Oxygen (Ideal Gas State)

July 1950

Specific Heat, Enthalpy, Entropy

 C_p°/R , $(H^{\circ}-E_0^{\circ})/RT_0$, S°/R

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of 'accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to *Joseph Hilsenrath*, Heat and Power Division, National Bureau of Standards. This table is also available on IBM punched cards.

Table 10.10 Atomic Oxygen (Ideal Gas State)

\circ_K	C°p	$\left(H_{\circ} - E_{\circ}^{0} \right)$	s°	\circ_R	°K	C°	$\frac{\left(\mathrm{H}^{\circ}-\mathrm{E}_{\mathrm{o}}^{\circ}\right)}{\left(\mathrm{H}^{\circ}-\mathrm{E}_{\mathrm{o}}^{\circ}\right)}$	S° R	°R
l v	R	RTo	R			R	RTo	ı K	
10 20 30 40	2.5000 9 2.5009 171 2.5180 512 2.5692 726	0.09152 9153 0.18305 9177 0.27482 9302 0.36784 9536	10,3601 17330 12,0931 10162 13,1093 7306 13,8399 5810	18 36 54 72	400 410 420 430 440	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9330 A 4.0275 945 4.1219 943 4.2162 941 4.3103 941	20,1246 638 20,1884 621 20,2505 605 20,3110 592 20,3702 578	720 738 756 774 792
50 60 70 80 90	2.6418 724 2.7142 589 2.7731 414 2.8145 250 2.8395 115	0.46320 9806 0.56126 10049 0.66175 10233 0.76408 10354 0.86762 10420	14.4209 4881 14.9090 4231 15.3321 3732 15.7053 3331 16.0384 2998	90 108 126 144 162	450 460 470 480 490	2,5681 - 26 2,5655 - 25 2,5630 - 23 2,5607 - 22 2,5585 - 20	4.4044 4.4983 4.5922 4.6860 4.7798 936	20.4280 20.4843 20.5396 20.5935 20.6464 516	810 828 846 864 882
100 110 120 130 140	2.8510 13 2.8523 - 54 2.8469 -100 2.8369 -131 2.8238 -148	0.97182 ₁₀₄₄ 1.0762 ₁₀₄₄ 1.1806 ₁₀₄₀ 1.2846 ₁₀₃₆ 1.3882 ₁₀₃₂	16.3382 2719 16.6101 2480 16.8581 2275 17.0856 2098 17.2954 1943	180 198 216 234 252	500 510 520 530 540	2,5565 - 20 2,5545 - 18 2,5527 - 18 2,5509 - 17 2,5492 - 16	4.8734 4.9670 5.0605 5.1539 5.2472 933	20.6980 20.7487 20.7982 20.8469 20.8945 467	900 918 936 954 972
150 160 170 180 190	2.8090 -156 2.7934 -157 2.7777 -153 2.7624 -146 2.7478 -138	1.4914 1.5939 1020 1.6959 1014 1.7973 1008 1.8981 1004	17.4897 1808 17.6705 1689 17.8394 1583 17.9977 1490 18.1467 1406	270 288 306 324 342	550 560 570 580 590	2.5476 - 15 2.5461 - 15 2.5446 - 14 2.5432 - 13 2.5419 - 13	5.3405 932 5.4337 932 5.5269 931 5.6200 931 5.7131 930	20.9412 20.9871 21.0322 442 21.0764 21.1199 426	990 1008 1026 1044 1062
200 210 220 230 240	2.7340 -134 2.7206 -125 2.7081 -117 2.6964 -109 2.6855 -102	1.9985 999 2.0984 994 2.1978 989 2.2967 985 2.3952 981	18.2873 18.4200 18.5462 18.5462 1202 18.6664 1147 18.7811	360 378 396 414 432	600 610 620 630 640	2.5406 - 12 2.5394 - 12 2.5382 - 11 2.5371 - 11 2.5360 - 10	5.8061 5.8991 5.9921 6.0850 6.1778 928	21.1625 21.2045 21.2457 21.2863 21.3262 399 21.3262	1113/
250 260 270 280 290	2.6753 _ 95 2.6658 _ 89 2.6569 _ 83 2.6486 _ 77 2.6409 _ 71	2.4933 978 2.5911 974 2.6885 971 2.7856 968 2.8824 965	18.8907 1046 18.9953 1004 19.0957 966 19.1923 928 19.2851 895	450 468 486 504 522	650 660 670 680 690	2.5350 - 10 2.5340 - 9 2.5331 - 10 2.5321 - 9 2.5312 - 8	6.2706 6.3634 6.4562 6.5489 6.6416 927	21,3656 21,4043 381 21,4424 21,4799 21,5169 365	
300 310 320 330 340	2.6338 - 67 2.6271 - 22 2.6209 - 58 2.6151 - 54 2.6097 - 51	2.9789 963 3.0752 961 3.1713 958 3.2671 957 3.3628 954	19.3746 19.4607 833 19.5440 806 19.6246 780 19.7026 756	540 558 576 594 612	700 710 720 730 740	2.5304 - 8 2.5296 - 8 2.5288 - 7 2.5281 - 7 2.5274 - 7	6.7343 6.8269 926 6.9195 925 7.0120 926 7.1046 925	21.5534 21.5893 21.6246 349 21.6595 21.6939 339	1314
350 360 370 380 390	2.6046 - 48 2.5998 - 44 2.5954 - 42 2.5912 - 39 2.5873 - 37	3.4582 3.5535 3.6486 3.7435 3.8383 947	19.7782 733 19.8515 712 19.9227 691 19.9918 674 20.0592 654	630 648 666 684 702	750 760 770 780 790	2.5267 - 6 2.5261 - 7 2.5254 - 6 2.5248 - 6 2.5242 - 5	7.1971 7.2895 925 7.3820 924 7.4744 924 7.5668 924	21.7278 21.7613 330 21.7943 21.8269 21.8590 318	1386
400	2,5836	3.9330	20.1246	720	800	2,5237	7.6592	21.8908	1440

CONVERSION FACTORS

o Convert Tabulated Value of	То	Having the Dimensions Indicated Below	Multiply By
C°/R, S°/R	C°, S°	cal $mole^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	1.98719
		cal $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	0.124199
		joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	0.519650
		Btu (lb mole) $^{-1}$ $^{\circ}$ R 1 (or $^{\circ}$ F $^{-1}$)	1.98588
		Btu lb ⁻¹ °R ⁻¹ (or °F ⁻¹)	0.124118

	1	1 .			1		1		1	
°K	C _p ° R	$\frac{\left(\mathrm{H}^{\circ}\!\!-\mathrm{E}_{\mathrm{o}}^{\circ}\right)}{\mathrm{RT}_{\mathrm{o}}}$	S° R	°R		°K	C ^o _p R	$\frac{\left(\text{H}^{\circ}\text{-}\text{E}_{\text{o}}^{\circ}\right)}{\text{RT}_{\text{o}}}$	$\frac{S^{\circ}}{R}$	°R
800 850 900 950 1000	2.5237 - 26 2.5211 - 22 2.5189 - 18 2.5171 - 16 2.5155 - 14	7.6592 4618 8.1210 4614 8.5824 4608 9.0432 4605 9.5037 4603	21.8908	1440 1530 1620 1710 1800		3000 3050 3100 3150 3200	2.5182	28.7931 29.2548 4620	25,2091 417 25,2508 410 25,2918 403 25,3321 398 25,3719 392	5400 5490 5580 5670 5760
1050 1100 1150 1200 1250	2.5141 - 12 2.5129 - 11 2.5118 - 10 2.5108 - 8 2.5100 - 7	9.9640 4601 10.4241 4599 10.8840 4597 11.3437 4595 11.8032 4594	22.5756 22.6925 1117 22.8042 22.9111 23.0136 985	1890 1980 2070 2160 2250		3250 3300 3350 3400 3450	2,5265 19 2,5284 20 2,5304 21 2,5325 21 2,5346 22	30.1792 30.6418 31.1047 4633 31.5680 32.0316 4640	25.4111 386 25.4497 380 25.4877 375 25.5252 369 25.5621 365	5850 5940 6030 6120 6210
1300 1350 1400 1450 1500	2.5093 _ 7 2.5086 _ 6 2.5080 _ 6 2.5074 _ 4 2.5070 _ 4	12.2626 12.7219 4592 13.1811 13.6402 14.0991 4588	23.1121 947 23.2068 912 23.2980 880 23.3860 850 23.4710 822	2340 2430 2520 2610 2700		3500 3550 3600 3650 3700	2.5368 2.5391 2.5414 2.5438 2.5463 2.5463	32.4956 32.9601 33.4251 4650 33.8906 4659 34.3565 4664	25.5986 25.6346 355 25.6701 351 25.7052 346 25.7398	6300 6390 6480 6570 6660
1550 1600 1650 1700 1750	2.5066 _ 3 2.5063 _ 3 2.5060 _ 3 2.5057 _ 3 2.5054 _ 2	14,5579 4588 15,0167 4588 15,4755 4587 15,9342 4585 16,3927 4585	23.5532 797 23.6329 772 23.7101 748 23.7849 726 23.8575 706	2790 2880 2970 3060 3150		3750 3800 3850 3900 3950	2.5488 25 2.5513 26 2.5539 27 2.5566 27 2.5593 28	34.8229 4668 35.2897 4672 35.7569 4677 36.2246 4681 36.6927 4687	25.7740 25.8078 333 25.8411 330 25.8741 25.9067 322	6750 6840 6930 7020 7110
1800 1850 1900 1950 2000	2.5052 - 1 2.5051 - 2 2.5049 0 2.5049 - 1 2.5048 1	16.8512 4585 17.3097 4586 17.7683 4585 18.2268 4585 18.6853 4584	23.9281 23.9967 24.0635 24.1286 24.1286 634 24.1920 618	3240 3330 3420 3510 3600		4000 4050 4100 4150 4200	2.5621 28 2.5649 28 2.5677 29 2.5706 29 -2.5735 29	37.1614 4692 37.6306 4698 38.1004 4703 38.5707 4709 39.0416 4714	25.9389 25.9708 26.0022 26.0334 26.0642 308	7200 7290 7380 7470 7560
2050 2100 2150 2200 2250	2.5049 2.5049 2.5051 2.5053 2.5055 3	19.1437 19.6022 4586 20.0608 4587 20.5195 4587 20.9782 4587	24.2538 24.3142 24.3731 24.4307 24.4870 563 24.4870	3690 3780 3870 3960 4050		4250 4300 4350 4400 4450	2.5764 2.5794 2.5824 2.5853 2.5883 30	39.5130 4719 39.9849 4724 40.4573 4730 40.9303 4735 41.4038 4741	26.0947 26.1249 26.1547 26.1842 26.2135 289	7650 7740 7830 7920 8010
2300 2350 2400 2450 2500	2.5058 2.5062 2.5067 2.5072 2.5078 6	21.4369 21.8956 4587 22.3543 22.8131 23.2719 4588 4591	24.5421 539 24.5960 528 24.6488 517 24.7005 506 24.7511 497	4140 4230 4320 4410 4500		4500 4550 4600 4650 4700	2.5913 2.5944 30 2.5974 31 2.6005 31 2.6036	41.8779 42.3526 42.8278 43.3036 43.7800 4769	26,2424 26,2710 284 26,2994 281 26,3275 278 26,3553 276	8100 8190 8280 8370 8460
2550 2600 2650 2700 2750	2,5084 8 2,5092 8 2,5100 9 2,5109 10 2,5119 11	23.7310 24.1902 24.6495 25.1091 25.5688 4599	24.8008 24.8495 24.8973 24.9442 24.9903 461 453	4590 4680 4770 4860 4950		4750 4800 4850 4900 4950	2.6066 2.6097 2.6128 2.6158 2.6189 30	44.2569 4774 44.7343 4780 45.2123 4784 45.6907 4789 46.1696 4793	26.3829 26.4102 26.4373 26.4641 26.4907 263	8550 8640 8730 8820 8910
2800 2850 2900 2950 3000	2.5130 12 2.5142 13 2.5155 13 2.5168 14 2.5182	26.0287 26.4888 26.9491 27.4097 27.8705	25.0356 25.0800 438 25.1238 430 25.1668 423 25.2091	5040 5130 5220 5310 5400		5000	2,6219	46.6489	26.5170	9000

CONVERSION FACTORS

To Convert Tabulated Value of	То	Having the Dimensions Indicated Below	Multiply By
(H° - E°)/RT ₀	(H° - E°)	cal mole ⁻¹	542.821
		$cal g^{-1}$	33.9263
		joules g ⁻¹	141.948
		Btu (lb mole) ⁻¹	976.437
		Btu lb-1	61.0273

THE PROPERTIES TABULATED

These tables give in dimensionless form as functions of temperature in degrees Kelvin and degrees Rankine, the following thermodynamic properties of atomic oxygen in the ideal gas state: the specific heat at constant pressure, C_p° ; the enthalpy, H° ; and the entropy, S° . The zero reference point of the enthalpy is taken as the ideal gas internal energy, E_0° , at absolute zero. The tabulated quantities are made dimensionless by dividing by R or RT $_0$, where R is the universal gas constant and T_0 is the absolute temperature of the ice point. The tables are based on those given in reference 1 with some extension and subtabulation.

RELIABILITY OF THE TABLE

The values in this table are considered to be very reliable. It appears probable that any inaccuracies introduced in the subtabulation would be of the order of 0.0001.

INTERPOLATION

The validity of linear interpolation varies throughout this table depending upon the number of figures desired. The error produced by linear interpolation does not exceed one-eighth of the second difference. Where more precise values are desired a four-point Lagrangian interpolation may be used [2].

CONVERSION FACTORS, CONSTANTS, AND DEFINITIONS OF SYMBOLS

The functions in this table have been expressed in dimensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the frequently used units. The following constants have been used in this compilation: the gas constant R = 1.98719 cal mole⁻¹ deg⁻¹; the atomic weight of oxygen = 16.0000; R = 273.16 K; the thermochemical calorie = 4.1840 abs. joules. Unless otherwise specified the mole is the gram-mole. For other conversion factors, constants, and definitions see table 1.30 of this series.

REFERENCES

- [1] "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards.
- [2] "Tables of Lagrangian Interpolation Coefficients," (Columbia University Press, New York, N.Y., 1944).

NATIONAL BUREAU OF STANDARDS E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 10.11 Atomic Oxygen

July 1950

Free Energy

 $-(F^{\circ}-E_{0}^{\circ})/RT$

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards. This table is also available on IBM punched cards.

		Composite to the	1				
°K	$\frac{-\left(F^{\circ}-E_{0}^{\circ}\right)}{RT}$	°R		°K	$\frac{-\left(F^{\circ}-E\right)}{RT}$	0)	°R
10 20 30 40	Δ 7,8601 17329 9,5930 10140 10,6070 7209 11,3279 5624	18 36 54 72		400 410 420 430 440	17.4388 17.5051 17.5697 17.6327 17.6943	△ 663 646 630 616 601	720 738 756 774 792
50 60 70 80 90	11.8903 12.3538 12.7497 12.7497 3466 13.0963 13.4050 2786	90 108 126 144 162		450 460 470 480 490	17.7544 17.8131 17.8706 17.9267 17.9818	587 575 561 551 538	810 828 846 864 882
100 110 120 130 140	13.6836 13.9375 2332 14.1707 2156 14.3863 2004 14.5867 1871	180 198 216 234 252		500 510 520 530 540	18.0356 18.0883 18.1399 18.1906 18.2402	527 516 507 496 486	900 918 936 954 972
150 160 170 180 190	14.7738 14.9492 15.1143 15.2702 15.4177 1400	270 288 306 324 342		550 560 570 580 590	18.2888 18.3366 18.3835 18.4295 18.4748	478 469 460 453 444	990 1008 1026 1044 1062
200 210 220 230 240	15.5577 15.6905 15.8174 15.9388 16.0550 1114	360 378 396 414 432		600 610 620 630 640	18.5192 18.5628 18.6058 18.6480 18.6895	436 430 422 415 408	1080 1098 1116 1134 1152
250 260 270 280 290	16.1664 16.2732 16.3759 16.4748 16.5702 920	450 468 486 504 522		650 660 670 680 690	18.7303 18.7706 18.8102 18.8492 18.8876	403 396 390 384 379	1170 1188 1206 1224 1242
300 310 320 330 340	16.6622 888 16.7510 859 16.8369 833 16.9202 807 17.0009 783	540 558 576 594 612	The state of the s	700 710 720 730 740	18.9255 18.9627 18.9995 19.0356 19.0713	372 368 361 357 352	1260 1278 1296 1314 1332
350 360 370 380 390	17.0792 760 17.1552 739 17.2291 718 17.3009 699 17.3708 680	630 648 666 684 702		750 760 770 780 790	19.1065 19.1412 19.1755 19.2092 19.2426	347 343 337 334 329	1350 1368 1386 1404 1422
400	17.4388	720	Section of the least of the lea	800	19.2755		1440
			1				

	1	-					
°K	$\frac{-\left(F^{\circ}-E\right)}{RT}$	$\left(\frac{z_0^{\circ}}{z_0}\right)$	°R	°K	$\left \frac{-\left(F^{\circ} - F \right)}{R T} \right $	$\left(\frac{\overline{c}_0^{\circ}}{c} \right)$	°R
800 850 900 950 1000	19.2755 19.4339 19.5830 19.7237 19.8569	1584 1491 1407 1332 1266	1440 1530 1620 1710 1800	3000 3050 3100 3150 3200	22.6714 22.7133 22.7546 22.7952 22.8352	∆ 419 413 406 400 393	5400 5490 5580 5670 5760
1050	19.9835	1205	1890	3250	22.8745	387	5850
1100	20.1040	1150	1980	3300	22.9132	382	5940
1150	20.2190	1099	2070	3350	22.9514	376	6030
1200	20.3289	1054	2160	3400	22.9890	370	6120
1250	20.4343	1011	2250	3450	23.0260	365	6210
1300	20.5354	972	2340	3500	23.0625	360	6300
1350	20.6326	934	2430	3550	23.0985	354	6390
1400	20.7260	904	2520	3600	23.1339	350	6480
1450	20.8164	870	2610	3650	23.1689	345	6570
1500	20.9034	842	2700	3700	23.2034	340	6660
1550	20.9876	816	2790	3750	23.2374	336	6750
1600	21.0692	789	2880	3800	23.2710	332	6840
1650	21.1481	764	2970	3850	23.3042	327	6930
1700	21.2245	742	3060	3900	23.3369	324	7020
1750	21.2987	721	3150	3950	23.3693	319	7110
1800	21,3708	701	3240	4000	23.4012	315	7200
1850	21,4409	681	3330	4050	23.4327	312	7290
1900	21,5090	664	3420	4100	23.4639	308	7380
1950	21,5754	646	3510	4150	23.4947	304	7470
2000	21,6400	630	3600	4200	23.5251	300	7560
2050	21.7030	614	3690	4250	23.5551	297	7650
2100	21.7644	600	3780	4300	23.5848	294	7740
2150	21.8244	586	3870	4350	23.6142	290	7830
2200	21.8830	572	3960	4400	23.6432	287	7920
2250	21.9402	560	4050	4450	23.6719	284	8010
2300	21.9962	547	4140	4500	23.7003	281	8100
2350	22.0509	536	4230	4550	23.7284	278	8190
2400	22.1045	524	4320	4600	23.7562	275	8280
2450	22.1569	514	4410	4650	23.7837	272	8370
2500	22.2083	503	4500	4700	23.8109	269	8460
2550	22,2586	494	4590	4750	23.8378	267	8550
2600	22,3080	484	4680	4800	23.8645	263	8640
2650	22,3564	475	4770	4850	23.8908	262	8730
2700	22,4039	466	4860	4900	23.9170	259	8820
2750	22,4505	458	4950	4950	23.9429	256	8910
2800 2850 2900 2950 3000	22.4963 22.5412 22.5853 22.6287 22.6714	449 441 434 427	5040 5130 5220 5310 5400	5000	23.9685		9000

TABLE 10.11 ATOMIC OXYGEN: FREE ENERGY FUNCTION

THE PROPERTY TABULATED

In this table a function of the Gibbs free energy, F° , that is convenient in the calculation of chemical equilibrium is presented for atomic oxygen in the ideal gas state. The function is the dimensionless quantity $-(F^{\circ}-E^{\circ}_{0})/RT$, where E°_{0} is the energy of the ideal gas at $0^{\circ}K$, R is the universal gas constant and T is the absolute temperature. The negative free energy function is tabulated as a function of the temperature which is given in degrees Kelvin and degrees Rankine. The values are consistent with the values of enthalpy and entropy given in Table 10.10 of this series, according to the definition of Gibbs free energy, F = H - TS. For use with these tables the recommended value of E°_{0} for atomic oxygen, referred to the standard state of gaseous molecular oxygen at $0^{\circ}K$ is 58.586 kcal/mole. This is based on the value for the heat of formation of atomic oxygen at $0^{\circ}K$ [1].

RELIABILITY OF THE TABLE

The tabulated values are thought to be very reliable, probably within 2 units in the last decimal place.

INTERPOLATION

The validity of linear interpolation varies throughout this table depending upon the number of figures desired. The error produced by linear interpolation does not exceed one-eighth of the second difference. Where more precise values are desired, a four-point Lagrangian interpolation may be used [2].

CONVERSION FACTORS, CONSTANTS, AND DEFINITIONS OF SYMBOLS

The function in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, conversion factors are listed for the frequently used units. The following constants have been used in this compilation: the gas constant R = 1.98719 cal mole⁻¹ deg⁻¹; the atomic weight of oxygen = 16.000; the thermochemical calorie = 4.1840 abs. joules. Unless otherwise specified the mole is the gram-mole. For other conversion factors, constants, and definitions see Table 1.30 of this series.

CONVERSION FACTORS

To Convert Tabulated Value of	То	Having the Dimensions Indicated Below	Multiply By
- (F° - E°0)/RT	-(F° - E°)/T	cal mole ⁻¹ ${}^{\circ}K^{-1}$ (or ${}^{\circ}C^{-1}$)	1.98719
		cal $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	0.124199
		joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$)	0.519650
		Btu (lb mole) $^{-1}$ $^{\circ}R^{-1}$ (or $^{\circ}F^{-1}$)	1.98588
		Btu 1b ⁻¹ °R ⁻¹ (or °F ⁻¹)	0.124118

REFERENCES

- [1] "Selected Values of Chemical Thermodynamic Properties", National Bureau of Standards.
- [2] "Tables of Lagrangian Interpolation Coefficients". Columbia University Press, New York, 1944.

The NBS-NACA Tables of Thermal Properties of Gases

Table 9.18 Density of Molecular Oxygen ρ/ρ_0

by

Harold W. Woolley

	Pressure									
m	.01 atm	•1 atm	.4 atm	.7 atm	(m					
$oldsymbol{\circ}_{ ext{K}}^{ ext{T}}$					$\circ^{\mathrm{T}}_{\mathrm{R}}$					
100 110 120 130 140	.02730 -249 .02481 207 .02274 175 .02099 150 .01949 130	.27350 - 2499 .24851 - 2079 .22772 1757 .21015 1505 .19510 1304	1.10136 -10220 .99916 8461 .91455 7125 .84330 6087 .78243 5261	1.94076 1.75770 -18306 1.60701 15069 1.48059 12642 1.37287 10772 9293	180 198 216 234 252					
150 160 170 180 190	.01819 .01706 101 .01605 89 .01516 80 .01436 71	•18206 •17066 1140 •16061 1005 •15167 894 •14368 799 •14368 719	.72982 .68387 4595 .64339 4048 .60745 3594 .57534 2888	1.27994 1.19891 7130 1.12761 6323 1.06438 5648 1.00790 5648	270 288 306 324 342					
200 210 220 230 240	.01365 .01300 60 .01240 53 .01187 50 .01137 45	•13649 •12999 650 •12407 592 •11867 540 •11373 494 •155	•54646 •52034 2612 •49662 2372 •47496 2166 •45513 1883 •825	•95715 •91129 4586 •86964 4165 •83165 3799 •79685 3480 •79685 3199	360 378 396 414 432					
250 260 270 280 290	.01092 .01050 42 .01011 39 .00975 36 .00941 34	.10918 .10497 389 .10108 361 .09411 336 .09411 314	•43688 •42004 •40446 •38999 •37652 •37652 •1256	.76486 .73534 2952 .70802 2732 .68266 2536 .65906 2360 .2202	450 468 486 504 522					
300 310 320 330 340	.00910 .00880 27 .00853 26 .00827 24 .00803 24	.09097 .08804 293 .08528 276 .08270 258 .08027 243 230	•36396 •35220 1176 •34118 1034 •33084 974 •32110 919	.63704 .61644 2060 .59714 1930 .57902 1812 .56196 1608	540 558 576 594 612					
350 360 3 7 0 380 390	.00780 .00758 20 .00738 20 .00718 18 .00700 18	.07797 .07581 216 .07376 205 .07182 194 .06997 185	•31191 •30324 820 •29504 777 •28727 737 •27990 730	•54588 •53070 1436 •51634 1361 •50273 1290 •48983 1226	630 648 666 684 702					
400 410 420 430 440	.00682 .00666 16 .00650 15 .00635 15 .00620 15	.06823 .06656 .06498 .06346 .06202 144 138	.27290 .26624 666 .25990 605 .25385 577 .24808 577	•47757 •46591 1110 •45481 1058 •44423 1010 •43413 966	720 738 756 774 792					
450	.00606	.06064	•24,256	•42447	810					

Pressure .Ol atm .l atm .7 atm .4 atm $\mathbf{o}_{\mathrm{K}}^{\mathbf{T}}$ - A. o_R 810 450 .00606 .06064 .24256 .42447 -527 13 -131 -923 828 460 .41524 .00593 .05933 .23729 884 12 127 505 846 470 .40640 .00581 .05806 .23224 12 847 121 484 864 .39793 480 .00569 .5685 .22740 12 116 813 464 882 .38980 490 .00557 .05569 .22276 11 111 446 780 500 .00546 900 .05458 .21830 .38200 428 749 11 107 918 510 .21402 .37451 .00535 .05351 10 103 412 721 936 .36730 520 .00525 .05248 .20990 693 10 99 396 530 .00515 .05149 .20594 .36037 954 667 10 95 381 540 .00505 .05054 .20213 .35370 972 92 368 643 550 .00496 .04962 .19845 990 .34727 9 89 621 354 560 .00487 1008 .4873 .19491 .34106 342 8 85 598 1026 570 .00479 .04788 .19149 **.**33508 8 83 330 578 580 .00471 .04705 .18819 .32930 1044 ਲੇ 08 319 558 590 .00463 .04625 1062 .18500 .32372 8 77 309 540 600 .00455 .04548 1080 .18191 ,31832 8 298 522 74 610 .17893 .00447 .04474 1098 .31310 77 73 289 505 620 .00440 .04401 .17604 .30805 1116 69 279 489 630 .00433 .04332 .17325 .30316 1134 76 68 271 474 640 .00426 .04264 .17054 .29842 1152 66 262 459 650 .00420 .04198 .16792 .29383 1170 76 63 255 445 660 .16537 .00413 .04135 .28938 1188 246 62 432 670 .16291 .00407 .04073 1206 .28506 6 60 240 419 680 .00401 .16051 .04013 .28087 1224 6 58 233 408 690 .00395 .03955 .15818 .27679 1242 5 226 57 395 700 .00390 .03898 .15592 .27284 1260 6 54 219 384 710 .00384 .03844 .15373 .26900 1278 5555 54 214 374 720 .00379 .03790 .15159 .26526 1296 52 207 363 730 .00374 .03738 .14952 .26163 1314 50 202 354 740 .00369 .03688 .14750 .25809 1332 49 197 344 750 .00364 .03639 .14553 .25465 1350 5 48 192 335 760 .00359 .03591 .14361 .25130 1368 54 186 47 326 770 .00354 .03544 .14175 .24804 1386 182 45 318 780 .00350 .03499 .13993 .24486 1404 54 45 177 310 790 .00345 .03454 .13816 .24176 1422 43 173 302 800 .00341 .03411 .13643 .23874 1440

Pressure

	Pressure									
	.OI atm	.I atm	.4 atm	.7 atm						
$\circ_{\mathrm{K}}^{\mathbf{T}}$					$\circ^{\rm T}_{\rm R}$					
800	.00341 -20	.03411 -200	.13643 -802	.23874 -1405	1440					
850	.00321 18	.03211 179	.12841 714	.22469 1248	1530					
900	.00303 16	.03032 159	.12127 638	.21221 1117	1620					
950	.00287 14	.02873 144	.11489 574	.20104 1005	1710					
1000	.00273 13	.02729 130	.10915 520	.19099 909	1800					
1050 1100 1150 1200 1250	.00260 .00248 11 .00237 10 .00227 9 .00218 8	.02599 118 .02481 108 .02373 99 .02274 91 .02183 84	.10395 .09923 .09491 .09096 .08732 .364 .336	.18190 .17363 755 .16608 692 .15916 636 .15280 588	1890 1980 2070 2160 2250					
1300	.00210 8	.02099 78	.08396 311	.14692 544	2340					
1350	.00202 7	.02021 72	.08085 289	.14148 505	2430					
1400	.00195 7	.01949 67	.07796 268	.13643 471	2520					
1450	.00188 6	.01882 63	.07528 251	.13172 439	2610					
1500	.00182 6	.01819 58	.07277 235	.12733 410	2700					
1550	.00176	.01761 55	.07042 220	.12323 385	2790					
1600	.00171 6	.01706 52	.06822 207	.11938 362	2880					
1650	.00165 4	.01654 49	.06615 194	.11576 340	2970					
1700	.00161 5	.01605 46	.06421 184	.11236 321	3060					
1750	.00156 4	.01559 43	.06237 173	.10915 304	3150					
1800	.00152 4	•01516 41	.06064 164	.10611 286	3240					
1850	.00148 4	•01475 39	.05900 155	.10325 272	3330					
1900	.00144 4	•01436 37	.05745 147	.10053 258	3420					
1950	.00140 4	•01399 35	.05598 140	.09795 245	3510					
2000	.00136 3	•01364 33	.05458 134	.09550 233	3600					
2050	.00133 3	.01331 31	.05324 126	.09317 221	3690					
2100	.00130 3	.01300 31	.05198 121	.09096 212	3780					
2150	.00127 3	.01269 29	.05077 115	.08884 202	3870					
2200	.00124 3	.01240 27	.04962 111	.08682 193	3960					
2250	.00121 2	.01213 27	.04851 105	.08489 184	4050					
2300	.00119	.01186	.04746	.08305	4140					

	Pressure										
(T)	.Ol atm	.l atm	.4 atm	.7 atm	(II)						
$\circ_{\mathrm{K}}^{\mathrm{T}}$					$\circ_{\mathrm{K}}^{\mathrm{T}}$						
2300 2350 2400 2450 2500	.00119 - 3 .00116 - 2 .00114 3 .00111 2 .00109 2	.01186 .01161 -25 .01137 23 .01114 22 .01092 22	.04746 .04645 97 .04548 93 .04455 89 .04366 85	.08305 -177 .08128 169 .07959 163 .07796 156 .07640 149	4140 4230 4320 4410 4500						
2550 2600 2650 2700 2750	.00107 2 .00105 2 .00103 2 .00101 2 .00099 2	.01070 .01050 20 .01030 19 .01011 19 .00992 17	.04281 .04198 79 .04119 76 .04043 74 .03969 71	.07491 144 .07347 139 .07208 133 .07075 129 .06946 124	4590 4680 4770 4860 4950						
2800 2850 2900 2950 3000	.00097 .00096 2 .00094 2 .00092 1	.00975 .00958 .00941 .00925 .00910	.03898 68 .03830 66 .03764 64 .03700 62 .03638	.06822 120 .06702 115 .06587 112 .06475 108	5040 5130 5220 5310 5400						

Table 9.18 Density of Oxygen

	Pressure										
Т	l at	m	4 atm	1	7 a	tm	10 8	atm •	Т		
o _K									$o_{\mathrm{R}}^{\mathrm{T}}$		
100 110 120 130	2.79257 2.52441 2.30525 2.12207	26816 21916 18318	10.755 - 9.649 8.789	800	- 17.86	-1851 /	24.0	1	180 198 216 234		
140	1.96644	15563 13398	8.087	702 591	14.588	1421	21.56	-24 186	252		
150	1.83246	11665	7.496	506	13.438	964	19.70	152	270		
160	1.71581	10252	6.990	438	12.474	823	18.18	126	288		
170	1.61329	9082	6.552	384	11.651	713	16.92	108	306		
180	1.52247	8108	6.168	340	10.938	626	15.84	94	324		
190	1.44139	7279	5.828	3035	10.312	5536	14.90	827	342		
200	1.36860	6575	5.5245	2727	9.7584	4949	14.073	734	360		
210	1.30285	5968	5.2518	2463	9.2635	4450	13.339	656	378		
220	1.24317	5443	5.0055	2237	8.8185	4026	12.683	592	396		
230	1.18874	4984	4.7818	2042	8.4159	3662	12.091	536	414		
240	1.13890	4581	4.5776	1872	8.0497	3347	11.555	488	432		
250	1.09309	4224	4.3904	1723	7.7150	3072	11.067	447	450		
260	1.05085	3909	4.2181	1590	7.4078	2830	10.620	412	468		
270	1.01176	3628	4.0591	1473	7.1248	2617	10.208	379	486		
280	.97548	3376	3.9118	1369	6.8631	2428	9.829	352	504		
290	.94172	3149	3.7749	1275	6.6203	22575	9.477	326	522		
300	.91023	2946	3.6474	1190	6.39455	21063	9.151	304	540		
310	.88077	2760	3.5284	1115	6.18392	19697	8.847	284	558		
320	.85317	2592	3.4169	1046	5.98695	18456	8.563	266	576		
330	.82725	2438	3.3123	983	5.80239	17343	8.297	250	594		
340	.80287	2299	3.2140	926	5.62896	16318	8.047	235	612		
350	•77988	2170	3.12143	8738	5.46578	15385	7.812	221	630		
360	•75818	2053	3.03405	8256	5.31193	14532	7.591	209	648		
370	•73765	1945	2.95149	7816	5.16661	13747	7.382	197	666		
380	•71820	1844	2.87333	7412	5.02914	13028	7.185	187	684		
390	•69976	1751	2.79921	7036	4.89886	12367	6.998	177	702		
400	.68225	1666	2.72885	6688	4.77519	11749	6.8212	1684	720		
410	.66559	1587	2.66197	6369	4.65770	11176	6.6528	1603	738		
420	.64972	1513	2.59828	6068	4.54594	10652	6.4925	1525	756		
430	.63459	1443	2.53760	5790	4.43942	10159	6.3400	1456	774		
440	.62016	1380	2.47970	5530	4.33783	9699	6.1944	1388	792		
450	.60636		2.42440		4.24084		- 6.0556		810		

Pressure

	Pressure										
	l at	m	4 at	m	7 atm	10 atm					
$\circ_{\mathrm{K}}^{\mathrm{T}}$							$\circ_{\mathrm{R}}^{\mathrm{T}}$				
450 460 470 480 490	•59317 1 •58054 1 •56844 1	319 263 210 161 115	2.42440 2.37151 2.32091 2.27243 2.22592	-5289 5060 4848 4651 4463	4.24084 9273 4.14811 8874 4.05937 8497 3.97440 8150 3.89290 7816	5.9228 12 5.7959 12 5.6743 11	810 828 828 846 846 864 864 882				
500 510 520 530 540	•53498 •52468 •51478	070 030 990 953 920	2.18129 2.13843 2.09722 2.05759 2.01941	4286 4121 3963 3818 3678	3.81474 7510 3.73964 7217 3.66747 6941 3.59806 6685 3.53121 6437	5.2354 9 5.1361 9	900 918 931 936 936 954 954 972				
550 560 570 580 590	.48719 .47864 .47039	886 855 825 798 771	1.98263 1.94719 1.91299 1.87997 1.84807	3544 3420 3302 3190 3084	3.46684 6205 3.40479 5986 3.34493 5781 3.28712 5581 3.23131 5395	4.8599 4.7744 4.6918	990 1008 1026 1026 1044 197 1062				
600 610 620 630 640	.44,003 .43305	745 722 698 677 656	1.81723 1.78742 1.75856 1.73063 1.70357	2981 2886 2793 2706 2623	3.17736 3.12521 5047 3.07474 4886 3.02588 4734 2.97854 4588	4.3885	1080 1098 1116 1134 1152				
650 660 670 680 690	.40719 .40720	636 617 599 581 565	1.67734 1.65193 1.62726 1.60333 1.58008	2541 2467 2393 2325 2258	2.93266 2.88819 4447 2.84506 4187 2.80319 4062 2.76257 3950	4.0606	1170 1188 1206 1224 1242				
700 710 720 730 740	.37891 .37372	549 534 519 505 491	1.55750 1.53557 1.51422 1.49348 1.47330	2193 2135 2074 2018 1965	2.72307 2.68472 3835 2.64741 3627 2.61114 3627 2.57585 3434	3.7784 3.7267 3.7267	1260 1278 1278 1296 1314 1332				
750 760 770 780 790	•35097 •35431 •34976	479 466 455 442 432	1.45365 1.43453 1.41590 1.39775 1.38005	1912 1863 1815 1770 1723	2.54151 2.50807 3344 2.47550 3257 2.44378 3093 2.41285 3016	3.5331 3.4878 4	1350 1368 1368 1386 1404 1422				
800	.34102		1.36282		2.38269	3.4006	1440				

Pressure 10 atm 1 atm 4 atm 7 atm T $o_{\mathbb{R}}^{-}$ o_K 1.36282 800 .34102 2.38269 3.4006 1440 -1999 -2006 -8016 -14,009 .32096 1,28266 2,24260 3,2007 850 1530 1783 7123 1776 12451 .30313 2,11809 1620 900 1.21143 3.0231 1595 6373 11139 1590 .28718 2.00670 2.8641 950 1.14770 1710 1436 5735 10024 1430 1.90646 1000 .27282 1.09035 2.7211 1800 1299 5189 9070 1294 .25983 1050 1.03846 1890 1.81576 2.5917 1181 4717 8245 1176 .99129 1100 .24802 1980 1.73331 2.4741 1078 4308 7527 1074 1.65804 2.3667 2070 1150 .23724 .94821 988 3949 6901 9842 1200 .22736 .90872 1.58903 2.26828 2160 909 6348 3632 9058 1250 .21827 .87240 1.52555 2,17770 2250 5861 840 3353 8361 1300 .20987 .83887 2.09409 2340. 1.1,6694 777 3105 5426 7742 1350 .20210 .80782 1,41268 2.01667 2430 722 2883 5040 7191 1400 .19488 .77899 1.36228 1.94476 2520 672 6695 2684 4692 .18816 1450 .75215 1.31536 1.87781 2610 627 2505 4379 6248 1500 .18189 .72710 1.27157 1.81533 2700 586 2344 4097 5847 1550 .17603 •70366 1.23060 1.75686 2790 550 2198 3841 5480 1.70206 1600 .68168 1.19219 2880 .17053 517 2064 3608 5150 1650 .16536 .66104 1.15611 1.65056 2970 486 1943 4846 3397 1700 .16050 1.60210 .64161 1.12214; 3060 459 1832 3202 4570 1750 .15591 .62329 1.09012 1.55640 3150 433 1730 3025 4316 1800 .15158 .60599 1,05987 1.51324 3240 1637 409 2861 4084 1850 .14749 .58962 1.03126 1.47240 3330 388 1550 2711 3867 1900 3420 .14361 1.00415 1.43373 .57412 1472 2572 369 3671 1950 .13992 .55940 .97843 1.39702 3510 2443 349 1397 3487 2000 .13643 1.36215 3600 •54543 .95400 3319 333 1330 2325 3690 2050 .13310 1.32896 .53213 .93075 317 1266 2213 3159 2100 .12993 1.29737 3780 .51947 。90862 1208 2112 302 3012 .12691 2150 .50739 .88750 1.26725 3870 288 1152 2014 2876 2200 .12403 .86736 1.23849 3960 .49587 276 1101 1926 2749 2250 .12127 .48486 .84810 1,21100 4050 264 1054 1842 2627 2300 .11863 82968 4140 .47432 1.18473

Table 9.18 Density of Oxygen

	Pressure										
	l atm	4 atm	7 atm	10 atm	-						
o'K					$o_{\mathrm{R}}^{\mathrm{T}}$						
2300 2350 2400 2450 2500	.11863 -252 .11611 242 .11369 232 .11137 222 .10915 215	.47432 -1009 .46423 966 .45457 927 .44530 890 .43640 856	.82968 -1763 .81205 1690 .79515 1621 .77894 1557 .76337 1496	1.18473 -2518 1.15955 2412 1.13543 2314 1.11229 2222 1.09007 2135	4140 4230 4320 4410 4500						
2550 2600 2650 2700 2750	.01700 205 .10495 198 .10297 191 .10106 184 .09922 177	.42784 822 .41962 791 .41171 762 .40409 735 .39674 708	.74841 1437 .73404 1384 .72020 1332 .70688 1285 .69403 1238	1.06872 2052 1.04820 1975 1.02845 1902 1.00943 1833 .99110 1768	4590 4680 4770 4860 4950						
2800 2850 2900 2950 3000	.09745 171 .09574 165 .09409 159 .09250 154	.38966 683 .38283 660 .37623 637 .36986 616 .36370	.68165 1195 .66970 1153 .65817 1115 .64702 1077	.97342 1706 .95636 1647 .93989 1590 .92399 1538 .90861	5040 5130 5220 5310 5400						

Table 9.18 Density of Oxygen

	Pressure											
_	10 at	m	40 atı	m	70 at	m	100 atm		_			
$\circ_{\mathbb{K}}^{\mathbb{T}}$									$o^{\mathtt{T}}_{\mathtt{R}}$			
150 160 170 180 190	19.70 - 18.18 16.92 15.84 14.90	126 108 94 327	98.0 83.9 74.7 67.8	-14.1 52 69 54	214.0 165.0 139.4	490 -256 164	335° 241°	-94 42	270 288 306 324 342			
200	14.073	734	62.4	43	123.0	117	198.6	257	360			
210	13.339	656	58.1	37	111.3	90	172.9	175	378			
220	12.683	592	54.4	31	102.3	73	155.4	131	396			
230	12.091	536	51.3	274	95.0	60	142.3	104	414			
240	11.555	488	48.56	242	89.0	511	131.9	849	432			
250	11.067	447	46.14	216	83.89	446	123.41	722	450			
260	10.620	412	43.98	193	79.43	3905	116.19	622	468			
270	10.208	379	42.05	176	75.525	3490	109.97	547	486			
280	9.829	352	40.29	160	72.035	3124	104.50	483	504			
290	9.477	326	38.69	1459	68.911	2829	99.67	433	522			
300	9.151	304	37.231	1347	66.082	2567	95.34	391	540			
310	8.847	284	35.884	1245	63.515	2357	91.43	356	558			
320	8.563	266	34.639	1154	61.158	2161	87.87	3252	576			
330	8.297	250	33.485	1075	58.997	2003	84.618	2999	594			
340	8.047	235	32.410	1002	56.994	1852	81.619	2757	612			
350	7.812	221	31.408	938	55.142	1726	78.862	2553	630			
360	7.591	209	30.470	880	53.416	1605	76.309	2375	648			
370	7.382	197	29.590	828	51.811	1510	73.934	2219	666			
380	7.185	187	28.762	780	50.301	1412	71.715	2082	684			
390	6.998	177	27.982	736	48.889	1332	69.633	1943	702			
400	6.8212	1684	27,246	696	47.557	1252	67.690	1827	720			
410	6.6528	1603	26,550	661	46.305	1183	65.863	1721	738			
420	6.4925	1525	25,889	626	45.122	1124	64.142	1634	756			
430	6.3400	1456	25,263	596	43.998	1059	62.508	1534	774			
440	6.1944	1388	24,667	567	42.939	1008	60.974	1461	792			
450	6.0556		24.100		41.931		59.513		810			

	Pressure											
	10 atm	40	atm	70 atm	100 atm							
$\circ_{\mathrm{K}}^{\mathtt{T}}$					*	$\circ^{\mathrm{T}}_{\mathrm{R}}$						
450 460 470 480 490	6.0556 -132 5.9228 126 5.7959 121 5.6743 116 5.5577 111	23.560 23.044 22.551 22.000	-540 516 493 471 452	41.931 _960 40.971 915 40.056 870 39.186 833 38.353 797	59.513 -1379 58.134 1326 56.808 1249 55.559 1192 54.367 1150	810 828 846 864 882						
500 510 520 530 540	5.4459 107 5.3385 103 5.2354 90 5.1361 95 5.0406 92	31 20.780 20.780 20.381	433 415 399 383 3686	37.556 36.798 36.065 35.368 697 34.696 645	53.217 1089 52.128 1042 51.086 998 50.088 966 49.122 917	900 918 936 954 972						
550 560 570 580 590	4.9486 4.8599 4.7744 4.6918 4.6121	19.274 18.932 18.602	3 3421 2 3299 3 3182	34.051 624 33.427 596 32.831 576 32.255 553 31.702 537	48.205 47.317 46.469 45.646 44.859 787	990 1008 1026 1044 1062						
600 610 620 630 640	4.5351 4.4605 72 4.3885 4.3187 4.2511	17.6798 17.3929 17.1148	2909 2873 2877 2777	31.165 30.648 500 30.148 485 29.663 469 29.194 449	44.098 43.359 42.643 41.958 656 41.302 635	1080 1098 1116 1134 1152						
650 660 670 680 690	4.1856 4.1221 4.0606 4.0008 3.9428 58	15 16.0889 15.8510	2447	28.745 28.307 27.881 27.471 400 27.071 387	40.667 40.047 39.441 38.857 38.294 563 547	1170 1188 1206 1224 1242						
700 710 720 730 740	3.8864 3.8316 3.7784 51 3.7267 3.6763	32 14.9700 17 14.764'	2109 2053	26.684 26.308 365 25.943 356 25.587 346 25.241 334	37.747 37.216 36.699 36.196 35.707 489 473	1260 1278 1296 1314 1332						
750 760 770 780 790	3.6273 3.5796 3.5331 3.4878 4437 43	13.9981 13.8191 13.6141	1838 1790	24.907 24.580 327 24.263 317 23.952 303 23.649 294	35.234 34.771 34.326 33.886 440 429 412	1350 1368 1386 1404 1422						
800	3.4006	13.474	5	23.355	33.045	1440						

	10 atm		40 atm		70 atm		100 atm		
$\circ_{\mathrm{K}}^{\mathrm{T}}$			·		·				$\circ^{\mathbb{T}}_{\mathbb{R}}$
800	3.4006	-1999	13.4746	-7904	23.355	-1367	33.045	-1929	1440
850	3.2007	1776	12.6842	7019	21.988	1212	31.116	1712	1530
900	3.0231	1590	11.9823	6276	20.776	1084	29.404	1526	1620
950	2.8641	1430	11.3547	5646	19.692	975	27.878	1373	1710
1000	2.7211	1294	10.7901	5108	18.717	881	26.505	1242	1800
1050	2.5917	1176	10.2793	4643	17.836	.802	25.263	1132	1890
1100	2.4741	1074	9.8150	4239	17.034	733	24.131	1032	1980
1150	2.3667	9842	9.3911	3887	16.301	670	23.099	945	2070
1200	2.26828	9058	9.0024	3576	15.631	619	22.154	872	2160
1250	2.17770	8361	8.6448	3303	15.012	569	21.282	802	2250
1300	2.09409	7742	8.3145	3058	14.443	528	20.480	745	2340
1350	2.01667	7191	8.0087	2840	13.915	492	19.735	694	2430
1400	1.94476	6695	7.7247	2646	13.423	458	19.041	646	2520
1450	1.87781	6248	7.4601	2470	12.965	426	18.395	601	2610
1500	1.81533	5847	7.2131	2311	12.539	399	17.794	565	2700
1550	1.75686	5480	6.9820	2167	12.140	376	17.229	529	2790
1600	1.70206	5150	6.7653	2036	11.764	352	16.700	496	2880
1650	1.65056	4846	6.5617	1917	11.412	332	16.204	469	2970
1700	1.60210	4570	6.3700	1808	11.080	313	15.735	442	3060
1750	1.55640	4316	6.1892	1708	10.767	295	15.293	419	3150
1800	1.51324	4084	6.0184	1616	10.472	280	14.874	395	3240
1850	1.47240	3867	5.8568	1531	10.192	265	14.479	374	3330
1900	1.43373	3671	5.7037	1453	9.927	252	14.105	357	3420
1950	1.39702	3487	5.5584	1382	9.675	239	13.748	338	3510
2000	1.36215	3319	5.4202	1314	9.436	228	13.410	322	3600
2050	1.32896	3159	5.2888	1251	9.208	217	13.088	307	3690
2100	1.29737	3012	5.1637	1194	8.991	206	12.781	293	3780
2150	1.26725	2876	5.0443	1140	8.785	198	12.488	280	3870
2200	1.23849	2749	4.9303	1089	8.587	190	12.208	267	3960
2250	1.21100	2627	4.8214	1041	8.397	180	11.941	255	4050
2300	1.18473		4.7173		8.217		11,686	1	4140

Table 9.18 Density of Oxygen

	Pressure											
-	10 at	m	40 a	tm	70 a	tm	100	atm				
$\circ_{\mathrm{K}}^{\mathrm{T}}$									$\circ^{\mathrm{T}}_{\mathrm{R}}$			
2300 2350 2400 2450 2500	1.18473 1.15955 1.13543 1.11229 1.09007	-2518 2412 2314 2222 2135	4.7173 4.6175 4.5218 4.4300 4.3419	-998 957 918 881 847	8.217 8.044 7.878 7.719 7.566	- 173 166 159 153 147	11.686 11.441 11.206 10.980 10.763	245 235 226 217 208	4140 4230 4320 4410 4500			
2550 2600 2650 2700 2750	1.06872 1.04820 1.02845 1.00943 .99110	2052 1975 1902 1833 1768	4.2572 4.1758 4.0974 4.0219 3.9491	814 784 755 728 701	7.419 7.278 7.142 7.010 6.884	141 136 132 126 122	10.555 10.355 10.161 9.976 9.797	200 194 185 179 173	4590 4680 4770 4860 4950			
2800 2850 2900 2950 3000	.97342 .95636 .93989 .92399 .90861	1706 1647 1590 1538	3.8790 3.8112 3.7458 3.6827 3.6216	678 654 631 611	6.762 6.645 6.531 6.421 6.315	117 11/ ₄ 110 106	9.624 9.457 9.296 9.141 8.990	167 161 155 151	5040 5130 5220 5310 5400			

Table 9.18 Density of Molecular Oxygen

The Property Tabulated

The density relative to standard conditions, ρ/ρ_0 , of molecular oxygen is tabulated as a function of temperature in degrees Kelvin and Rankine and as a function of pressure in standard atmospheres. Standard conditions are one atmosphere of pressure and $0^{\circ}C(273.16^{\circ}K)$. The densities tabulated herein were computed from the equation

$$\rho/\rho_{O} = \frac{T_{O}Z_{O}P}{P_{O}TZ}$$

where P is the pressure in atmospheres, T is the Kelvin temperature, Z is the compressibility factor given in Table 9.20 of this series and $T_0Z_0/P_0=272.901$ °K atm⁻¹.

Reliability of the Table

The values presented in this table are derived from the values of compressibility in Table 9.20 and have identical errors when expressed relative to the values tabulated. On the basis of the estimated errors for that table, this table has entries that may be in error by 6 in the next to the last place but many entries are more precise. At low pressures and high temperatures, the values are subject to considerable change due to dissociation.

Interpolation

The error produced by linear interpolation does not in general exceed one eighth of the second difference. If greater accuracy is desired four or five point Lagrangian interpolation may be used. An alternative method is to interpolate in the table of compressibility to obtain Z at the desired temperature and pressure and then to calculate ρ/ρ_{0} by the above formula.

Conversion Factors

The function in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, values of $\rho_{\mbox{\scriptsize 0}}$ are listed for frequently used units. For conversion factors not listed here see Table 1.30 of this series.

To convert tabu- lated value of	То	Having the dimensions indicated below	Multiply by
ρ/ρ ₀	ρ	g cm ⁻³ mole cm ⁻³ g liter ⁻¹ lb in ⁻³ lb ft ⁻³	1.42900 x 10 ⁻³ 4.46564 x 10 ⁻⁵ 1.42904 5.16262 x 10 ⁻⁵ .0892101

The NBS-NACA Tables of Thermal Properties of Gases

Table 9.20 Compressibility Factor for Molecular Oxygen Z=PV/RT

by

Harold W. Woolley

	Pressure										
di.	.01 atm	.1 atm	.4 atı	m.	•7 at	m	l atm	1	T		
$\circ_{\mathrm{K}}^{\mathrm{T}}$									o_{R}^{1}		
100 110 120 130 140	•99978 •99983 4 •99987 2 •99989 2 •99991 2	•99781 50 •99831 36 •99867 26 •99893 20 •99913 16	99320	206 146 107 80 62	.98431 .98802 .99061 .99249 .99391	371 259 188 142 109	•97724 •98277 •98652 •98924 •99128	553 375 272 204 156	180 198 216 234 252		
150 160 170 180 190	•99993 •99994 •99995 •99996 •99996	•99929 12 •99941 10 •99951 8 •99959 6 •99965 5	9971599764998039983499859	49 39 31 25 21	•99500 •99586 •99654 •99709 •99754	86 68 55 45 37	•99284 •99407 •99505 •99583 •99648	123 98 78 65 53	270 288 306 324 342		
200 210 220 230 240	•99997 •99997 •99998 •99998 •99998	•99970 •99975 •99978 •99981 •99984 2	.99880 .99898 .99913 .99926 .99936	18 15 13 10 9	•99791 •99822 •99848 •99870 •99888	31 26 22 18 16	.99701 .99745 .99782 .99814 .99841	44 37 32 27 23	360 378 396 414 432		
250 260 270 280 290	•99999 •99999 •99999 •99999	•99986 •99988 •99990 •99992 •99993	•99945 •99953 •99960 •99966 •99971	8 7 6 5 5	•99904 •99918 •99930 •99941 •99950	14 12 11 9 8	•99864 •99883 •99900 •99915 •99928	19 17 15 13	450 468 486 504 522		
300 310 320 330 340	•99999 •99999 1.00000 1.00000	• 99994 • 99995 • 99996 • 99997 • 99997	•99976 •99980 •99983 •99986 •99989	4 3 3 3 3	•99958 •99965 •99971 •99976 •99981	7 6 5 5 4	•99939 •99949 •99958 •99966 •99973	10 9 8 7 6	540 558 576 594 612		
350 360 370 380 390	1.00000 1.00000 1.00000 1.00000	•99998 •99998 •99999 •99999	•99992 •99994 •99996 •99998 •99999		•99985 •99989 •99993 •9996 •99998		•99979 •99984 •99989 •99994 •99998	5 5 5 4 3	630 648 666 684 702		
400 410 420 430 440	1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00001 1.00001 1.00001	1.00000 1.00002 1.00003 1.00004 1.00005		1.00001 1.00003 1.00005 1.00007 1.00008		1.00001 1.00004 1.00007 1.00010 1.00012		720 738 756 774 792		
450	1.00000	1.00002	1.00006		1.00010		1.00014		810		

	Pressure					
	.Ol atm	.l atm	.4 atm	.17 atm	l atm	
$\circ_{\mathbb{K}}^{\mathbb{T}}$						$\circ^{\mathbb{T}}_{\mathbb{R}}$
450 460 470 480 490	1.00000 1.00000 1.00000 1.00000	1.00002 1.00002 1.00002 1.00002 1.00002	1.00006 1.00006 1.00007 1.00008 1.00008	1.00010 1.00011 1.00012 1.00013 1.00014	1.00014 1.00016 1.00018 1.00019 1.00020	810 828 846 864 882
500 510 520 530 540	1.00000 1.00000 1.00000 1.00000	1.00002 1.00002 1.00002 1.00002	1.00009 1.00009 1.00010 1.00010	1.00015 1.00016 1.00017 1.00017	1.00022 1.00023 1.00024 1.00025 1.00025	900 918 936 954 972
550 560 570 580 590	1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003	1.00010 1.00010 1.00011 1.00011	1.00018 1.00019 1.00019 1.00020 1.00020	1.00026 1.00027 1.00027 1.00028 1.00028	990 1008 1026 1044 1062
600 610 620 630 640	1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003	1.00012 1.00012 1.00012 1.00012 1.00012	1.00020 1.00020 1.00021 1.00021 1.00021	1.00029 1.00029 1.00030 1.00030	1080 1098 1 116 1134 1152
650 660 670 680 690	1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003	1.00012 1.00012 1.00012 1.00012 1.00012	1.00021 1.00021 1.00021 1.00021 1.00022	1.00030 1.00030 1.00031 1.00031	1170 1188 1206 1224 1242
700 710 720 730 740	1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003	1.00012 1.00012 1.00012 1.00012	1.00022 1.00022 1.00022 1.00022 1.00022	1.00031 1.00031 1.00031 1.00031	1260 1278 1296 1314 1332
750 760 770 780 790	1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003	1.00012 1.00012 1.00012 1.00012	1.00022 1.00022 1.00022 1.00022 1.00022	1.00031 1.00031 1.00031 1.00031	1350 1368 1386 1404 1422
800	1.00000	1.00003	1.00012	1.00022	1.00031	1440

			Pressure			
	.Ol atm	.l atm	.4 atm	.7 atm	l atm	
$\circ_{\mathrm{K}}^{\mathrm{T}}$						$\circ^{\mathrm{T}}_{\mathrm{R}}$
800	1.00000	1.00003	1.00012	1.00022	1.00031	1440
850	1.00000	1.00003	1.00012	1.00021	1.00031	1530
900	1.00000	1.00003	1.00012	1.00021	1.00030	1620
950	1.00000	1.00003	1.00012	1.00021	1.00029	1710
1000	1.00000	1.00003	1.00012	1.00020	1.00029	1800
1050	1.00000	1.00003	1.00011	1.00020	1.00028	1890
1100	1.00000	1.00003	1.00011	1.00019	1.00027	1980
1150	1.00000	1.00003	1.00011	1.00019	1.00027	2070
1200	1.00000	1.00003	1.00010	1.00018	1.00026	2160
1250	1.00000	1.00003	1.00010	1.00018	1.00025	2250
1300	1.00000	1.00002	1.00010	1.00017	1.00025	2340
1350	1.00000	1.00002	1.00010	1.00017	1.00024	2430
1400	1.00000	1.00002	1.00009	1.00016	1.00023	2520
1450	1.00000	1.00002	1.00009	1.00016	1.00023	2610
1500	1.00000	1.00002	1.00009	1.00015	1.00022	2700
1550	1.00000	1.00002	1.00009	1.00015	1.00022	2790
1600	1.00000	1.00002	1.00008	1.00015	1.00021	2880
1650	1.00000	1.00002	1.00008	1.00014	1.00020	2970
1700	1.00000	1.00002	1.00008	1.00014	1.00020	3060
1750	1.00000	1.00002	1.00008	1.00014	1.00020	3150
1800	1.00000	1.00002	1.00008	1.00013	1.00019	3240
1850	1.00000	1.00002	1.00007	1.00013	1.00019	3330
1900	1.00000	1.00002	1.00007	1.00013	1.00018	3420
1950	1.00000	1.00002	1.00007	1.00012	1.00018	3510
2000	1,00000	1.00002	1.00007	1.00012	1.00017	3600
2050	1.00000	1.00002	1.00007	1.00012	1.00017	3690
2100	1.00000	1.00002	1.00007	1.00012	1.00017	3780
2150	1.00000	1.00002	1.00006	1.00011	1.00016	3870
2200	1.00000	1.00002	1.00006	1.00011	1.00016	3960
2250	1.00000	1.00002	1.00006	1.00011	1.00016	4050
2300	1.00000	1.00002	1.00006	1.00011	1.00015	4140

	Pressure					
	.Ol atm	.l atm	.4 atm	.7 atm	1 atm	
$\circ_{\mathrm{K}}^{\mathrm{T}}$						$\circ^{\mathtt{T}}_{\mathtt{R}}$
2300 2350 2400 2450 2500	1.00000 1.00000 1.00000 1.00000 1.00000	1.00002 1.00001 1.00001 1.00001	1.00006 1.00006 1.00006 1.00006	1.00010 1.00010 1.00010 1.00010	1.00015 1.00015 1.00015 1.00014 1.00014	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	1.00000 1.00000 1.00000 1.00000 1.00000	1.00001 1.00001 1.00001 1.00001	1.00005 1.00005 1.00005 1.00005 1.00005	1.00010 1.00009 1.00009 1.00009	1.00014 1.00014 1.00013 1.00013	4590 4680 4770 4860 4950
2800 2850 2900 2950 3000	1.00000 1.00000 1.00000 1.00000 1.00000	1.00001 1.00001 1.00001 1.00001	1.00005 1.00005 1.00005 1.00005 1.00005	1.00009 1.00009 1.00009 1.00008	1.00013 1.00012 1.00012 1.00012	5040 5130 5220 5310 5400

	l atn	l atm 4 atm				7 atm		10 atm		
$\circ_{\mathrm{K}}^{\mathrm{T}}$						•				$\circ^{\mathrm{T}}_{\mathrm{R}}$
100 110 120 130 140	•97724 •98277 •98652 •98924 •99128	553 375 272 204 156	•9227 •9427 •9553 •9642	200 126 89 66		.891 .9179 .9353	27 174 124	.876 .9043	28 193	180 198 216 234 252
150 160 170 180 190	•99284 •99407 •99505 •99583 •99648	123 98 78 65 53	•9 08 •9759 •9799 •9832 •9858	51 40 33 26 21		•94,77 •9571 •9644 •9702 •9749	94 73 58 47 39	•9236 •9377 •9486 •9571 •9640	141 109 85 69 56	270 288 306 324 342
200 210 220 230 240	•99701 •99745 •99782 •99814 •99841	44 37 32 27 23	•98796 •98976 •99126 •99253 •99361	180 150 127 108 92		.97880 .98199 .98465 .98690 .98880	319 266 225 190 163	.96956 .97417 .97801 .98125 .98399	461 384 324 274 234	360 378 396 414 432
250 260 270 280 290	.99864 .99883 .99900 .99915 .99928	19 17 15 13	•99453 •99533 •99602 •99661 •99713	80 69 59 52 46		•99043 •99183 •99304 •99408 •99500	140 121 104 92 80	.98633 .98833 .99006 .99157 .99288	200 173 151 131 114	450 468 486 504 522
300 310 320 330 340	• 99939 • 99949 • 99958 • 99966 • 99973	10 9 8 7 6	•99759 •99799 •99834 •99865 •99893	40 35 31 28 25		.99580 .99650 .99712 .99766 .99815	70 62 54 49 43	•99402 •99502 •99590 •99668 •99738	100 88 78 70 61	540 558 576 594 612
350 360 370 380 390	•99979 •99984 •99989 •99994 •99998	5 5 5 5 4 3	•99918 •99940 •99959 •99976 •99992	22 19 17 16 14		•99858 •99896 •99930 •99960 •99987	38 34 30 27 25	•99799 •99853 •99902 •99945 •99984	54 49 43 39 35	630 648 666 684 702
400 410 420 430 440	1.00001 1.00004 1.00007 1.00010 1.00012	3 3 3 2 2	1.00006 1.00018 1.00030 1.00040 1.00049	12 12 10 9 8	•	1.00012 1.00034 1.00053 1.00071 1.00087	22 19 18 16 14	1.00019 1.00050 1.00078 1.00103 1.00126	31 28 25 23 20	720 738 756 774 792
450	1.00014		1.00057			1.00101		1.00146		810

	Pres				ssure			
	l atm	4 atm		7 atm		10 atm		
$\circ_{\mathrm{K}}^{\mathrm{T}}$	· ·						•	$\mathbf{o}_{\mathrm{R}}^{\mathbf{T}}$
450 460 470 480 490	1.00014 1.00016 1.00018 1.00019 1.00020	1.00057 1.00065 1:00071 1.00077 1.00083	866665	1.00101 1.00114 1.00126 1.00136 1.00146	13 12 10 10	1.00146 1.00165 1.00181 1.00196 1.00210	19 16 15 14 12	810 828 846 864 882
500 510 520 530 540	1.00022 1.00023 1.00024 1.00025	1.00088 1.00092 1.00096 1.00099 1.00103	•	1.00154 1.00162 1.00169 1.00175 1.00181	8 7 6 6 5	1.00222 1.00233 1.00242 1.00251 1.00259	11 9 9 8 7	900 918 936 954 972
550 560 570 580 590	1.00026 1.00027 1.00027 1.00028 1.00028	1.00106 1.00108 1.00110 1.00112 1.0011/4		1.00186 1.00190 1.00194 1.00198 1.00201		1.00266 1.00273 1.00279 1.00284 1.00288	76 54 4	990 1008 1026 1044 1062
600 610 620 630 640	1.00029 1.00029 1.00030 1.00030 1.00030	1.00116 1.00117 1.00119 1.00120 1.00121		1.00204 1.00206 1.00208 1.00210 1.00212		1.00292 1.00296 1.00299 1.00302 1.00304		1080 1098 1116 1134 1152
650 660 670 680 690	1.00030 1.00030 1.00031 1.00031	1.00122 1.00122 1.00123 1.00123 1.00124		1.00214 1.00215 1.00216 1.00217 1.00217		1.00306 1.00308 1.00309 1.00310 1.00311		1170 1188 1206 1224 1242
700 710 720 730 740	1.00031 1.00031 1.00031 1.00031	1.00124 1.00124 1.00125 1.00125	:	1.00218 1.00218 1.00219 1.00219		1.00312 1.00313 1.00313 1.00313		1260 1278 1296 1314 1332
750 760 770 780 790	1.00031 1.00031 1.00031 1.00031	1.00125 1.00125 1.00125 1.00125		1.00219 1.00219 1.00219 1.00218 1.00218		1.00313 1.00313 1.00313 1.00313 1.00312		1350 1368 1386 1404 1422
800	1.00031	1.00124		1.00218		1.00311		1440

Table 9.20 Compressibility Factor for Oxygen

	Pressure						
$\circ_{\mathrm{K}}^{\mathrm{T}}$	l atm	4 atm	7 atm	10 atm	$\circ^{\rm T}_{\rm R}$		
800 850 900 950 1000	1.00031 1.00031 1.00030 1.00029 1.00029	1.00124 1.00123 1.00121 1.00118 1.00115	1.00218 1.00215 1.00211 1.00207 1.00202	1.00311 1.00307 1.00302 1.00295 1.00288	1440 1530 1620 1710 1800		
1050 1100 1150 1200 1250	1.00028 1.00027 1.00027 1.00026 1.00025	1.00112 1.00109 1.00107 1.00104 1.00101	1.00197 1.00192 1.00187 1.00182 1.00177	1.00281 1.00274 1.00267 1.00260 1.00253	1890 1980 2070 2160 2250		
1300 1350 1400 1450 1500	1.00025 1.00024 1.00023 1.00023 1.00022	1.00098 1.00096 1.00093 1.00091 1.00088	1.00172 1.00167 1.00163 1.00159 1.00155	1.00246 1.00239 1.00233 1.00227 1.00221	2340 2430 2520 2610 2700		
1550 1600 1650 1700 1750	1.00022 1.00021 1.00020 1.00020	1.00086 1.00084 1.00082 1.00080 1.00078	1.00151 1.00147 1.00143 1.00140 1.00136	1.00216 1.00210 1.00205 1.00200 1.00195	2790 2880 2970 3060 5150		
1800 1850 1900 1950 2000	1.00019 1.00019 1.00018 1.00018	1.00076 1.00074 1.00072 1.00071 1.00069	1.00133 1.00130 1.00127 1.00124 1.00121	1.00190 1.00186 1.00181 1.00177 1.00173	3240 3330 3420 3510 3600		
2050 2100 2150 2200 2250	1.00017 1.00017 1.00016 1.00016	1.00068 1.00066 1.00065 1.00063 1.00062	1.00119 1.00116 1.00114 1.00111 1.00109	1.00170 1.00166 1.00162 1.00159 1.00156	3690 3780 3870 3960 4050		
2300	1.00015	1.00061	1.00107	1.00152	4140		

Table 9.20 Compressibility Factor for Oxygen

	1 atm	4 atm	7 atm	10 atm	
$\circ_{\mathrm{K}}^{\mathrm{T}}$	2 4				o _R
2300 2350 2400 2450 2500	1.00015 1.00015 1.00015 1.00014 1.00014	1.00061 1.00060 1.00058 1.00057 1.00056	1.00107 1.00104 1.00102 1.00100 1.00098	1.00152 1.00149 1.00146 1.00143 1.00141	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	1.00014 1.00014 1.00013 1.00013	1.00055 1.00054 1.00053 1.00052 1.00051	1.00097 1.00095 1.00093 1.00091 1.00090	1.00138 1.00135 1.00133 1.00130 1.00128	4 5 90 4680 4770 4860 4950
2800 2850 2900 2950 3000	1.00013 1.00012 1.00012 1.00012 1.00012	1.00050 1.00049 1.00049 1.00048 1.00047	1.00088 1.00087 1.00085 1.00084 1.00082	1.00126 1.00124 1.00122 1.00119 1.00117	5040 5130 5220 5310 5400

	Pressure								
T OK 100 110 120 130 140	10 at	cm	40 at	tm	7 0 a	tm	100	atm	T OR 180 198 216 234 252
150 160 170 180 190	•9236 •9377 • 948 6 •9571 •9640	141 109 85 69 56	.696 . 765 .812 .847	69 47 35 26	•525 •643 •721	118 78 55	•452 •595	143 92	270 288 306 324 342
200	.96956	461	•8734	209	•7764	408	.6871	641	360
210	.97417	384	•8943	169	•8172	315	.7512	468	378
220	.97801	324	•9112	138	•8487	250	.7980	357	396
230	.98125	274	•9250	115	•8737	203	.8337	280	414
240	.98399	234	•9365	97	•8940	168	.8617	228	432
250	•98633	200	.9462	822	.9108	141	.8845	188	450
260	•98833	173	.95442	703	.9249	119	.9033	158	468
270	•99006	151	.96145	606	.9368	103	. 91 91	135	486
280	•99157	131	.96751	524	.9471	88	.9326	115	504
290	•99288	114	.97275	45 6	.9559	77	.9441	100	522
300	9940299502995909966899738	100	•97731	398	.9636	66	.9541	87	540
310		88	•98129	350	.9702	59	.9628	77	558
320		78	•98479	308	.9761	51	.9705	68	576
330		70	•98787	272	.9812	46	.9773	61	594
340		61	•99059	241	.9858	40	.9834	53	612
350	•99799	54	•99300	213	•9898	36	.9887	47	630
360	•99853	49	•99513	189	•9934	31	.9934	42	648
370	•99902	43	•99702	171	•9965	29	.9976	38	666
380	•99945	39	•99873	153	•9994	25	1.0014	35	684
390	•99984	35	1•00026	135	1.0019	23	1.0049	30	702
400	1.00019	31	1.00161	119	1.0042	20	1.0079	27	720
410	1.00050	28	1.00280	109	1.0062	18	1.0106	24	738
420	1.00078	25	1.00389	98	1.0080	17	1.0130	23	756
430	1.00103	23	1.00487	87	1.0097	14	1.0153	19	774
440	1.00126	20	1.00574	78	1.0111	13	1.0172	18	792
450	1.00146		1.00652		1.0124		1.0190		810

	Pressure									
m	10 atm	•	40 atm		70 at:	m	100 a	.tm	'	ф
$\circ_{\mathrm{K}}^{\mathrm{T}}$										$\circ^{\mathbb{T}}_{\mathbb{R}}$
450 460 470 480 490	1.00146 1.00165 1.00181 1.00196 1.00210	19 16 15 14 12	1.00652 1.00723 1.00786 1.00843 1.00894	71 63 57 51 48	1.0124 1.0136 1.0147 1.0156 1.0165	12 11 9 9	1.0190 1.0205 1.0221 1.0233 1.0244	15 16 12 11 12		\$10 \$28 846 864 882
500 510 520 530 540	1.00222 1.00233 1.00242 1.00251 1.00259	11 9 9 8 7	1.00942 1.00983 1.01019 1.01052 1.01083	41 36 33 31 27	1.0173 1.0179 1.0186 1.0191 1.0196	6 7 5 5 4	1.0256 1.0265 1.0273 1.0280 1.0288	9 · 7 8 5		900 918 936 954 972
550 560 570 580 590	1.00266 1.00273 1.00279 1.00284 1.00288	7 6 5 4 4	1.01110 1.01134 1.01155 1.01174 1.01190	24 21 19 16 15	1.0200 1.0205 1.0208 1.0211 1.0213	5 3 3 2 3	1.0293 1.0299 1.0303 1.0308 1.0311	6 4 5 3		990 1008 1026 1044 1062
600 610 620 630 640	1.00292 1.00296 1.00299 1.00302 1.00304		1.01205 1.01218 1.01230 1.01240 1.01248	13 12 10 8 6	1.0216 1.0218 1.0220 1.0222 1.0224		1.0314 1.0318 1.0322 1.0324 1.0324			1080 1098 1116 1134 1152
650 660 670 680 690	1.00306 1.00308 1.00309 1.00310 1.00311		1.01254 1.01260 1.01266 1.01270 1.01273	6 6 4 3 2	1.0224 1.0225 1.0226 1.0226 1.0227		1.0324 1.0325 1.0327 1.0328 1.0328			1170 1188 1206 1224 1242
700 710 720 730 740	1.00312 1.00313 1.00313 1.00313		1.01275 1.01276 1.01277 1.01278 1.01278		1.0227 1.0227 1.0227 1.0227 10.227		1.0328 1.0328 1.0328 1.0328 1.0328			1260 1278 1296 1314 1332
750 760 770 780 790	1.00313 1.00313 1.00313 1.00313		1.01277 1.01276 1.01273 1.01270 1.01269		1.0226 1.0226 1.0225 1.0225 1.0225		1.0327 1.0327 1.0325 1.0325			1350 1368 1386 1404 1422
800	1.00311		1.01265		1.0224		1.0323			1440

Table 9.20 Compressibility Factor for Oxygen

	Pressure							
T	10 atm	40 atm	70 atm	100 atm	T			
$\circ^{\mathrm{T}}_{\mathrm{K}}$					$\circ_{\mathbb{R}}^{-}$			
\$00 \$50 900 950 1000	1.00311 -4 1.00307 -5 1.00302 -7 1.00295 -7	1.01265 -18 1.01247 -24 1.01223 -27 1.01196 -29 1.01167 -30	1.0224 1.0221 1.0216 1.0211 1.0206	1.0323 -5 1.0318 -6 1.0312 -8 1.0304 -8 1.0296 -8	1440 1530 1620 1710 1800			
1050 1160 1150 1200 1250	1.00281 -7 1.00274 -7 1.00267 -7 1.00260 -7 1.00253 -7	1.01137 -30 1.01107 -31 1.01076 -29 1.01047 -29 1.01018 -27	1.0200 1.0195 -5 1.0190 -6 1.0184 -4 1.0180	1.0288 -7 1.0281 -8 1.0273 -8 1.0265 -7 1.0258 -7	1890 1980 2070 2160 2250			
1300 1350 1400 1450 1500	1.00246 -7 1.00239 -6 1.00233 -6 1.00227 -6 1.00221 -5	1.00991 -27 1.00964 -26 1.00938 -24 1.00914 -24 1.00890 -23	1.0174 1.0169 1.0165 1.0161 1.0156	1.0250 1.0243 -6 1.0237 -6 1.0231 -7 1.0224 -5	2340 2430 2520 2610 2700			
1550 1600 1650 1700 1750	1.00216 -6 1.00210 -5 1.00205 -5 1.00200 -5 1.00195 -5	1,00867 -22 1,00845 -22 1,00823 -20 1,00803 -20 1,00783 -18	1.0152 1.0149 -4 1.0145 -4 1.0141 -3 1.0138 -4	1.0219 -6 1.0213 -6 1.0207 -5 1.0202 -5 1.0197 -4	2790 2880 2970 3060 3150			
1800 1850 1900 1950 2000	1.00190 -4 1.00186 -5 1.00181 -4 1.00177 -4 1.00173 -3	1.00765 1.00747 1.00747 1.00728 1.00711 1.00696	1.0134 -3 1.0131 -3 1.0128 -3 1.0125 -3 1.0122 -3	1.0193 1.0188 -5 1.0183 -5 1.0179 -4 1.0175 -4	3240 3330 3420 3510 3600			
2050 2100 2150 2200 2250	1.00170 -4 1.00166 -4 1.00162 -3 1.00159 -3 1.00156 -4	1.00681 -15 1.00666 -14 1.00652 -14 1.00638 -14 1.00624 -14	1.0119 -2 1.0117 -3 1.0114 -2 1.0112 -2 1.0110 -3	1.0171 1.0167 -4 1.0164 -3 1.0161 -4 1.0157 -4	3690 3780 3870 3960 4050			
2300	1.00152	1.00610	1.0107	1.0153	4140			

Table 9.20 Compressibility Factor for Oxygen

	Pressure Pressure							
$\circ_{\mathrm{K}}^{\mathrm{T}}$	10 atm	40 atm	70 atm	100 atm	$\circ^{\mathbb{T}}_{\mathbb{R}}$			
2300	1.00152	1.00610	1.0107	1.0153 -3	4140			
2350	1.00149 -3	1.00598 -12	1.0105 -2	1.0150 -3	4230			
· 2400	1.00146 -3	1.00586 -11	1.0103 -2	1.0147 -3	4320			
2450	1.00143 -3	1.00575 -11	1.0101 -2	1.0144 -3	4410			
2500	1.00141 -2	1.00564 -11	1.0099 -2	1.0142 -2	4500			
2550	1.00138	1.00553	1.0097	1.0139	4590			
2600	1.00135 -3	1.00543 -10	1.0095 -2	1.0136 -3	4680			
2650	1.00133 -2	1.00533 -10	1.0093 -1	1.0134 -3	4770			
2700	1.00130 -3	1.00523 - 9	1.0092 -2	1.0131 -3	4860			
2750	1.00128 -2	1.00514 - 9	1.0090 -1	1.0129 -2	4950			
2800	1.00126	1.00505	1.0089	1.0127	5040			
2850	1.00124 -2	1.00496 - 9	1.0087 -2	1.0125 -2	5130			
2900	1.00122 -3	1.00488 - 8	1.0086 -1	1.0122 -3	5220			
2950	1.00119 -3	1.00479 - 9	1.0084 -2	1.0120 -2	5310			
3000	1.00117	1.00471 - 8	1.0083	1.0118	5400			

Table 9.20 Compressibility Factor for Molecular Oxygen

The Property Tabulated

The dimensionless compressibility factor, Z = PV/RT, for molecular oxygen is tabulated in terms of temperature in degrees Kelvin and Rankine. The values are those which would exist if there were no dissociation within the range covered. The effect of dissociation can be estimated using formulas discussed in reference [9]. The tables are computed from the virial equation:

$$Z = 1 + BP + CP^2 + DP^3$$

The coefficients B and C were calculated from the Lennard-Jones potential, using intermolecular force constants as parameters.

The parameter values for the second virial coefficients, B, were obtained by a graphical method which permits the simultaneous fit of data on the Joule-Thomson coefficient and on the pressure dependence of PV/RT, [1] - [6], internal energy, specific heat, and velocity of sound. The experimental third virials, C, were fitted using the second virial coefficient parameters only for a cluster of two and graphically determined values of the parameters for a cluster of three, according with the fact that the equilibrium constant for the formation of a cluster of three is $K_2 = (2B^2 - C/2)/(RT)^2$. The modification of the usual Lennard-Jones [7] treatment was undertaken in an effort to provide a more applicable model for oxygen, than is afforded by the unmodified theory.

Reliability of the table

The compressibility values tabulated herein are considered reliable to approximately one unit in next to the last place tabulated for most entries. Below 300°K the reliability decreases to about 3 units in the next to the last tabulated place. Figures 1 and 2 show the departures of experimental compressibilities from the tabulated values.

Interpolation

The validity of linear interpolation in both temperature and pressure varies throughout the table. The error produced thereby does not, in general, exceed one-eighth of the second difference. First differences in the temperature direction are given for assistance in interpolation where they seem helpful. The pressure intervals have been chosen to facilitate three and four point Lagrangian interpolation [8] in each decade. Use of this method is recommended when errors produced by linear interpolation approach the uncertainty of the table.

Conversion Factors

The compressibility factor is dimensionless. Values of the gas constant R are listed for frequently used units in order to facilitate the use of this table in calculating, by means of the equation Z = PV/RT, the pressure P, the specific volume V, (or the denisyt $\rho = 1/V$), or the temperature T, when any two of these are known. The values given below are based on a molecular weight of 32.000.

Values of R for Oxygen

For temperatures in degrees Kelvin

P	atm	Kg/cm ²	mm Hg	lb/in ²
g/cm ³	2.55427	2.64948	1948.85	37.6847
mole/cm3	82.0567	84.7832	62363.1	1205.91
mole/liter	0.0820544	0.0847809	62.3613	1.20587
lb/ft ³	0.0410756	0.0424403	31.2175	0.603647
lb mole/ft ³	1.31442	1.35809	998.959	19.3167

For temperatures in degrees Rankine

P	atm	Kg/cm ²	mm Hg	lb/in ²
g/cm ³	1.42459	1.47193	1082.69	20.9358
mole/cm ³	45.5870	47.1017	34646.1	669.947
mole/liter	0.0455857	0,0471004	34.6451	0.669928
lb/ft ³	0.0228197	0.0235780	17.3430	0,335359
lb mole/ft ³	0.730231	0.754495	554.976	10.7315

REFERENCES

- [1] G. P. Baxter and H. W. Starkweather, The density of oxygen and its compressibility below one atmosphere, Proc. Nat. Acad. Sci. 12, 699-703(1926).
- [2] W. Heuse and J. Otto, Uber eine Neubestimmung des Grenzwertes der Ausdehnungs-und Spannungskoeffizienten von Helium, Wasserstoff, und Stickstoff, Ann. Physik, series 2, 5, 1012(1929).
- [3] L. Holborn and J. Otto, Uber die Isothermen einiger Gase zwischen 400° und -183°, Z. Physik, 33, 1(1925).
- [4] H. Kammerlingh Omnes and H. A. Kuypers, Isotherms of Oxygen at low temperatures, Commun. Lab. Leiden No. 169a (1925).
- [5] G. P. Nijhoff and W. H. Keesom, Isotherms of diatomic substances and their binary mixtures, XXXIII, Isotherms of oxygen between -40° and -152.5° and pressures from 3 to 9 atmospheres, Commun. Lab. Leiden No. 179b (1925).
- [6] A. Th. van Urk and G. P. Nijhoff, Isotherms of oxygen at 20°, 15.6°, and 0°, Commun. Lab. Leiden No. 169c (1925).
- [7] R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, The third virial coefficient for non-polar gases, J. Chem. Phys. <u>18</u>, 1395-1402 (1950).
- [8] "Tables of Lagrangian Interpolation Coefficients", Columbia University Press, New York, N. Y. (1944).
- [9] H. W. Woolley, "The effect of dissociation on the thermodynamic properties of pure diatomic gases", Report No. 1884, National Bureau of Standards, October 15, 1952.

The NBS - NACA Tables of Thermal Properties of Gases

Table 9.22 Enthalpy and Entropy of Oxygen $(H - E_0^0)/RT_0$, S/R

by

Harold W. Woolley

		- Name (con E	Pressure			Ü
	01 atm	. 1 atm	4 atm	7 atm	1 atm	\mathbf{T}
T						
°K						$^{\mathrm{o}}\mathrm{R}$
100	1. 2772 1282	1.27521285	1. 2687 1294	1.2625	1. 254 132	180
110 120	1. 4054 1281 1. 5335 1282	1. 4037 1284	1. 3981 1292	1. 3925 1298	1. 3865 1310 1. 5175 1300	198 216
130	1 6610 1400	1. 5321 1284 1. 6605 1303	$\begin{array}{c} 1.5273 & 1290 \\ 1.6563 & 1200 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 6477 1302	234
140	$\begin{array}{c} 1.0018 \\ 1.7900 \\ 1282 \end{array}$	$\begin{array}{c} 1.0803 & 1283 \\ 1.7888 & 1284 \end{array}$	$\begin{array}{c} 1.0303 \\ 1.7851 \\ 1287 \end{array}$	$\begin{array}{c} 1.0519 \\ 1.7812 \\ 1293 \end{array}$	$1.7775 \frac{1298}{1295}$	252
150	1 0100	1 0150	1.9138 1286	1.9105 1288	1.9070 1292	270
160	2. 0463 1282	2.0454_{1283}	2.0424 1285	2.0393 ₁₂₈₉	2. 0362 1209	288
170 180	2. 1745 1282 2. 3027 1282	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1709 1286	$\frac{2.1682}{0.000}$ 1288	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$306 \\ 324$
190	$\frac{2.3027}{2.4309} \frac{1282}{1283}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342
200	2.5592	9 5506	2. 5565	2.5544	2.5523	360
210	2. 6874 1202	2. 6868 1204	2. 6849 1284	2.6829_{1287}^{1483}	2. 6810 1200	378
$\begin{array}{c} 220 \\ 230 \end{array}$	2 9441 1284	2 9436 1284	2 9420 1286	2 9403 1287	2 9386 1288	$\begin{array}{c} 396 \\ 414 \end{array}$
240	$\frac{1284}{3.0725}$	$\frac{2}{3.0721}$ $\frac{1285}{1286}$	$\frac{1}{3}.0705 \frac{1285}{1288}$	$\frac{1287}{3.0690}$	$3.0674 {1288 \atop 1289}$	432
250	3 2012	3 9007	3 1993	2 1078	2 1062	450
260	3. 3298 1200	$3.3293 \frac{1280}{1200}$	3. 3280 1200	3.3266_{1200}^{1400}	$3.3253 \begin{array}{c} 1290 \\ 1201 \end{array}$	468
270 280	3 5275 1289	3.4582 1289	3 5250 1290	3 5847 1291	3 5835 1291	486 504
290	$\frac{3}{3}$, $\frac{7}{166}$ $\frac{129}{1293}$	$3.7162 \begin{array}{c} 1291 \\ 1293 \end{array}$	$3.7151 \begin{array}{c} 1292 \\ 1294 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.7129 \begin{array}{c} 1294 \\ 1295 \end{array}$	522
300	3,8459 1295	3.8455	3.8445	3.8434 1297	3.8424	540
$\frac{310}{320}$	3. 9754 1297 4. 1051 1300	3.97511297 4.10481297	3. 9741 1298 4. 1039 1298	3.97311298 4.10291298	3.97211299 4.10201299	558 576
330	1 2251 1300	4 9348 TOO	4 9230 1300	1 2221 1302	4. 2322 1304	594
340	4. 3654 1303 1306	4. 3651 1303 1306	4. 3643 1304	$\begin{array}{c} 4.3635 & 1304 \\ 4.3635 & 1307 \end{array}$	4. 3626 1304	612
350	4. 4960 4. 6269 1309	4. 4957 4. 6267 1310	4. 4950 4. 6259 1309	4.4942 4.6252 1310	4. 4934 4. 6245	630
360 370	4. 6269 1313 4. 7582 1313	4. 6267 1313 4. 7580 1313	1 7573 1314	1 7566 1014	1 7550 1314	648 666
380	4.8898 1310	1 0006 1010	4.8889	4. 8883 1317	$4.8876 \frac{1317}{1221}$	684
390	$5.0218 \stackrel{1320}{1324}$	$5.0216 \begin{array}{c} 1320 \\ 1324 \end{array}$	5. 0210 1321	$5.0204 \begin{array}{c} 1321 \\ 1324 \end{array}$	$5.0197 \begin{array}{c} 1321 \\ 1326 \end{array}$	702
400	5. 1542 1327	5. 1540 1327	5. 1534 1328	5. 1528 1328	5. 1523 1328	720
$\frac{410}{420}$	5. 2869 1332	5. 2867 1332	5 2862 1332	5. 2850 1333	5. 2851 1333 5. 4184 1337	738 756
430	5. 5537 1340	5. 5535 1340	5. 5530 1341	5, 5526 1340	5. 5521 1941	774
440	5. 6877 1345	5. 6875 1346	5. 6871 1345	5.6866_{1346}	5. 6862 1346	792
450	5. 8222	5.8221	5.8216	5.8212	5.8208	810

		•	Pressure		
	.01 atm	. 1 atm	. 4 atm	.7 atm	1 atm '
${f T}$					Т
\circ_{K}					\circ_{R}
800 850 900 9 50 1000	10.7950 7464 11.5414 7532 12.2946 7595 13.0541 7652 13.8193 7703	$10.7950 \\ 7464 \\ 11.5414 \\ 7532 \\ 12.2946 \\ 7595 \\ 13.0541 \\ 7653 \\ 7703$	$10.7951 \begin{array}{c} 7464 \\ 11.5415 \\ 7531 \\ 12.2946 \\ 7597 \\ 13.0543 \\ 7652 \\ 13.8195 \\ 7703 \end{array}$	10.7951 7465 $11.5416 7531$ $12.2947 7597$ $13.0544 7653$ $13.8197 7703$	$ \begin{array}{ccccccccccccccccccccccccccccccc$
1050 1100 1150 1200 1250		14.5897 15.3648 7795 16.1443 7836 16.9279 7873 7908	14.5898 7752 15.3650 7795 16.1445 7836 16.9281 7873 17.7154 7908	$14.5900 7751 \\ 15.3651 7796 \\ 16.1447 7836 \\ 16.9283 7873 \\ 17.7156 7909$	
1300 1350 1400 1450 1500	18.5059 19.3002 7974 20.0976 8005 20.8981 21.7016 8035 8064	$\begin{array}{c} 18.5060 \\ 19.3003 \\ 20.0977 \\ 20.8982 \\ 21.7017 \\ 8064 \end{array}$	$18.5062 \\ 7943 \\ 19.3005 \\ 7975 \\ 20.0980 \\ 8005 \\ 20.8985 \\ 8035 \\ 8064$	$\begin{array}{c} 18.5065 \\ 19.3008 \\ 7974 \\ 20.0982 \\ 20.8987 \\ 21.7023 \\ 8064 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1550 1600 1650 1700 1750	22.5080 23.3171 24.1290 8117 24.9437 25.7609 8200	22.5081 23.3172 8119 24.1291 8147 24.9438 8172 25.7610 8200	22.5084 23.3175 24.1294 8119 24.9441 25.7613 8200	22.5087 23.3178 24.1297 24.9444 25.7616 8201	$\begin{array}{c} 22.5090 \\ 23.3181 \\ 24.1300 \\ 24.9447 \\ 25.7620 \\ 8200 \\ \end{array} \begin{array}{c} 2790 \\ 2880 \\ 2970 \\ 3060 \\ 3150 \\ \end{array}$
1800 1850 1900 1950 2000	26.5809 27.4036 28.2288 29.0565 29.8869 8329	26.5810 27.4037 28.2289 8252 29.0566 29.8870 8304 8329	26.5813 27.4040 28.2292 29.0570 29.8874 8329	26.5817 27.4044 8252 28.2296 8277 29.0573 8304 29.8877 8329	26.5820 8227 3240 27.4047 8252 3330 28.2299 8277 3420 29.0576 8304 3510 29.8880 8330 3600
2050 2100 2150 2200 2250	30.7198 31.5554 32.3935 33.2341 34.0771 8430 8456	30.7199 31.5555 32.3936 33.2342 34.0772 8430 8456	30.7203 31.5559 32.3940 33.2346 34.0776 8430 8456	30.7206 31.5562 32.3943 33.2349 34.0779 8430 8456	30.7210 8356 3690 31.5566 8381 3870 32.3947 8406 3960 34.0783 8456 4050
2300	34.9227	34.9228	34.9232	34.9235	34.9239 4140

Table 9.22/1 Enthalpy of Molecular Oxygen

			Pressure			
	. 01 atm	. 1 atm	. 4 atm	.7 atm	1atm	
Т	•	1				Т
_						
\circ_{K}						$\circ_{ m R}$
2300	34.9227 8482	34.9228 8482	34.9232 8482	34.9235 8483	34.9239 8482	4140
2350	35.7709_{9508}	35.7710 osoo	35.7714_{9509}	35.7718_{0500}	35.7721_{0500}	4230
2400	36.6217 0520	36.6218 osan	36.6222 0520	36,6226 g530	36.6229_{8530}	4320
2450	37.4747 osss	37.4748 osss	37.4752_{0555}	37.4756 g555	37.4759_{9555}	4410
2500	38.3302 8580	38.3303 8580	38.3307 8580	38.3311 8580	38.3314 ₈₅₈₀	4500
2550	39.1882 8605	39 1883 _	39.1887 8605	39.1891 8605	39.1894 8606	4590
2600	40.0487 8627	39.1883 40.0488 8627	$40.0492 \begin{array}{l} 8605 \\ 40.0492 \end{array}$	40.0496 8627	40.0500_{8627}	4680
2650,	40.9114 8651	40.9115 0051	40.9119 0651	40.9123 0651	40.9127 8651	4770
2700	41.7765 0675	41.//00 0675	41.7770 0675	41.7774 0075	41.7778_{9675}	4860
2750	42.6440 8698	42.6441 8698	42.6445_{8698}	42.6449 8698	42.64538698	4950
2800	43.5138 8720	43.5139 8720	43.5143 8720	43.5147 8720	43.51518720	5040
2850	44.3858 8743	44.3859_{9749}	44.3863 8743	44.3867 8743	44.38718743	5130
2900 2950	45.2601 8765	45.2602 8765	45.2606 8765	45.2610 8765	45.26148765	5220 5310
3000	46.1366 47.0152	46.1367 8786 47.0153	46.1371 8786 47.0157	46.1375 8786 47.0161	46.1379 8786 47.0165	5400
5000	11,0102	11.0100	11.0101	11,0101	11.0100	2100

		Pre	ssure		
	1 atm	4 atm	7 atm	10 atm	
Т					T
$^{\mathrm{o}}\mathrm{K}$					$^{\rm o}{ m R}$
100 110 120 130 140	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1.315 148 1.4628 1393 1.6021 1360 1.7381 1340	1.394 156 1.5505 1449 1.6954 1400	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	180 198 216 234 252
150 160 170 180 190	$egin{array}{c} 1.9070_{1292} \ 2.0362_{1292} \ 2.1654_{1290} \ 2.2944_{1289} \ 2.4233_{1290} \ \end{array}$	$\begin{array}{c} 1.\ 8721\ 1329\\ 2.\ 0050\ 1324\\ 2.\ 1374\ 1315\\ 2.\ 2689\ 1311\\ 2.\ 4000\ 1308 \end{array}$	$\begin{array}{c} 1.\ 8354\ 1373\\ 1.\ 9727\ 1356\\ 2.\ 1083\ 1344\\ 2.\ 2427\ 1335\\ 2.\ 3762\ 1329 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	270 288 306 324 342
200 210 220 230 240	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2. 5308 2. 6613 1302 2. 7915 1302 2. 9217 1300 3. 0517 1300	$ \begin{array}{c} 2.\ 5091 \\ 2.\ 6413 \\ 1319 \\ 2.\ 7732 \\ 1315 \\ 2.\ 9047 \\ 1312 \\ 3.\ 0359 \\ 1310 \\ \end{array} $	$\begin{array}{c} 2.\ 4871 \\ 2.\ 6211 \\ 1334 \\ 2.\ 7545 \\ 1329 \\ 2.\ 8874 \\ 1325 \\ 3.\ 0199 \\ 1323 \end{array}$	360 378 396 414 432
250 260 270 280 290	$3.19631290 \ 3.32531291 \ 3.45441291 \ 3.58351294 \ 3.71291295$	$3.1817_{1299} \\ 3.3116_{1299} \\ 3.4415_{1301} \\ 3.5716_{1301} \\ 3.7017_{1302}$	3.1669 1310 $3.2979 1308$ $3.4287 1309$ $3.5596 1308$ $3.6904 1309$	3.15221319 3.28411318 3.41591315 3.54741317 3.67911317	450 468 486 504 522
300 310 320 330 340	$3.84241297 \ 3.97211299 \ 4.10201302 \ 4.23221304 \ 4.36261308$	3.8319 1303 3.9622 1305 4.0927 1307 4.2234 1310 4.3544 1312	3. 8213 1309 3. 9522 1312 4. 0834 1313 4. 2147 1314 4. 3461 1317	$egin{array}{cccccccccccccccccccccccccccccccccccc$	540 558 576 594 612
350 360 370 380 390	$\begin{array}{c} 4.4934 \\ 4.6245 \\ 1314 \\ 4.7559 \\ 1317 \\ 4.8876 \\ 1321 \\ 5.0197 \\ 1326 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.\ 4701 \\ 4.\ 6024 \\ 1327 \\ 4.\ 7351 \\ 1329 \\ 4.\ 8680 \\ 1332 \\ 5.\ 0012 \\ 1337 \end{array}$	630 648 666 684 702
400 410 420 430 440	5. 1523 1328 5. 2851 1333 5. 4184 1337 5. 5521 1341 5. 6862 1346	5. 1464 1332 5. 2796 1336 5. 4132 1340 5. 5472 1344 5. 6816 1348	5. 1406 1335 5. 2741 1339 5. 4080 1343 5. 5423 1346 5. 6769 1352	5.13491338 5.26871342 5.40291346 5.53751349 5.67241354	720 738 756 774 792
450	5.8208	5.8164	5.8121	5.8078	810

Pressure						
	1 atm	4 atm	7 atm	10 atm		
T					T	
$^{\circ}$ K					$^{\rm o}{ m R}$	
450 460 470 480 490	5.8208 1349 5.9557 1354 6.0911 1359 6.2270 1363 6.3633 1367	$\begin{array}{c} 5.8164 & 1352 \\ 5.9516 & 1357 \\ 6.0873 & 1361 \\ 6.2234 & 1365 \\ 6.3599 & 1369 \end{array}$	5.8121 1354 5.9475 1359 6.0834 1363 6.2197 1367 6.3564 1372	5.8078 1357 $5.9435 1361$ $6.0796 1366$ $6.2162 1369$ $6.3531 1374$	810 828 846 864 882	
500 510 520 530 540	$\begin{array}{c} 6.5000 \ 1372 \\ 6.6372 \ 1377 \\ 6.7749 \ 1380 \\ 6.9129 \ 1386 \\ 7.0515 \ 1389 \end{array}$	$\begin{array}{c} 6.\ 4968\ 1374\\ 6.\ 6342\ 1378\\ 6.\ 7720\ 1383\\ 6.\ 9103\ 1387\\ 7.\ 0490\ 1391 \end{array}$	$\begin{array}{c} 6.4936 \ 1376 \\ 6.6312 \ 1380 \\ 6.7692 \ 1385 \\ 6.9077 \ 1389 \\ 7.0466 \ 1393 \end{array}$	$\begin{array}{c} 6.4905 \ 1378 \\ 6.6283 \ 1382 \\ 6.7665 \ 1386 \\ 6.9051 \ 1391 \\ 7.0442 \ 1395 \end{array}$	900 918 936 954 972	
550 560 570 580 590	7.1904 7.3299 1395 7.4697 1403 7.6100 1407 7.7507 1412	7.1881 7.3278 1400 7.4678 1404 7.6082 1409 7.7491 1412	7.1859 7.3256 1402 7.4658 1405 7.6063 1411 7.7474 1414	$\begin{array}{c} 7.1837 \\ 7.3236 \\ 1403 \\ 7.4639 \\ 1407 \\ 7.6046 \\ 1412 \\ 1415 \end{array}$	990 1008 1026 1044 1062	
600 610 620 630 640	7.8919 8.0334 1415 8.1754 1420 8.3177 1423 8.4606 1431	$\begin{array}{c} 7.8903 \\ 8.0320 \\ 1421 \\ 8.1741 \\ 1425 \\ 8.3166 \\ 1429 \\ 8.4595 \\ 1433 \end{array}$	7.8888 8.0306 1418 8.1728 1422 8.3154 1431 8.4585 1433	$\begin{array}{c} 7.\ 8873 \\ 8.\ 0293 \\ 1423 \\ 8.\ 1716 \\ 1427 \\ 8.\ 3143 \\ 1432 \\ 1435 \end{array}$	1080 1098 1116 1134 1152	
650 660 670 680 690	$8.6037 1436 \\ 8.7473 1440 \\ 8.8913 1443 \\ 9.0356 1447 \\ 9.1803 1451$	$8.6028 1437 \\ 8.7465 1441 \\ 8.8906 1444 \\ 9.0350 1448 \\ 9.1798 1452$	$8.6018 1439 \\ 8.7457 1441 \\ 8.8898 1446 \\ 9.0344 1449 \\ 9.1793 1452$	$8.6010 \ 1440 \ 8.7450 \ 1442 \ 8.8892 \ 1447 \ 9.0339 \ 1450 \ 9.1789 \ 1453$	1170 1188 1206 1224 1242	
700 710 720 730 740	$\begin{array}{c} 9.\ 3254 \\ 9.\ 4708 \\ 1458 \\ 9.\ 6166 \\ 1462 \\ 9.\ 7628 \\ 1465 \\ 9.\ 9093 \\ 1468 \end{array}$	9.3250 9.4705 1455 9.6164 1462 9.7626 1466 9.9092 1469	$9.3245 1457 \\ 9.4702 1460 \\ 9.6162 1463 \\ 9.7625 1467 \\ 9.9092 1470$	$9.3242 \ 1457 \ 9.4699 \ 1461 \ 9.6160 \ 1464 \ 9.7624 \ 1468 \ 9.9092 \ 1471$	1260 1278 1296 1314 1332	
750 760 770 780 790	$ \begin{array}{c} 10.0561 \\ 10.2032 \\ 1476 \\ 10.3508 \\ 1478 \\ 10.4986 \\ 1481 \\ 10.6467 \\ 1484 \\ \end{array} $	$ \begin{array}{c} 10.0561 \\ 10.2034 \\ 1476 \\ 10.3510 \\ 1479 \\ 10.4989 \\ 1482 \\ 10.6471 \\ 1485 \\ \end{array} $	$ \begin{array}{c} 10.\ 0562 \\ 10.\ 2035 \\ 1477 \\ 10.\ 3512 \\ 1479 \\ 10.\ 4991 \\ 10.\ 6474 \\ 1483 \\ 1486 \end{array} $	$ \begin{array}{c} 10.0563 \\ 10.2037 \\ 1477 \\ 10.3514 \\ 1481 \\ 10.4995 \\ 1483 \\ 10.6478 \\ \end{array} $	1350 1368 1386 1404 1422	
800 .	10.7951	10.7956	10.7960	10.7965	1440	

Table 9.22/1 Enthalpy of Molecular Oxygen

Pressure

		Pres	ssure		
	1 atm	4 atm	7 atm	10 atm	
T					T
°К					$^{\mathrm{o}}\mathrm{_{R}}$
800	10.7951 7465	10.7956 7468	10.7960 7471	10.7965 7475	1440
850	11, 5416	11.5424 7536	11.5431 7530	11.5440 7541	1530
900	12. 2949 7506	12. 2960 ₇₅₉₈	12. 2970 7601	12. 2981 7602	1620
950 1000	13.0040 7050	13. 0558 7655 13. 8213 7706	13. 0571 7657 13. 8228 7708	13. 0584 7659	1710 1800
1000	$13.8198 \frac{7653}{7704}$	13.8213 7706	13.8228 7708	13.8243 7710	1000
1050	14. 5902 7751	14. 5919 7753	14. 5936 7755	14. 5953 7757	1890
1100	15. 3653 7796	15. 3672 ₇₇₉₇	15. 3691 7799	15. 3710 7801	1980
1150 1200	16. 1449 7836 16. 9285 7874	16. 1469 7838 16. 9307 7875	16. 1490 7839 16. 9329 7876	16. 1511 7840 16. 9351 7879	2070 2160
1250	15 5150 1014	15 5100 (010	1 = = 0 = (010	15 5000 1010	2250
	7. 7.00	1010	1911	(J L 2	•
1300	18.5067	18. 5092 7944	18.5116 7946	18.5141 7947	2340
1350 1400	19. 3011 7974 20. 0985 2005	19. 3036 7976 20. 1012 2006	19. 3062 7976 20. 1038 2007	19. 3088 7977	2430
1450	20 8990 8005	20 2018 8006	20 9045 8007	20. 1065 8008 20. 9073 8038	2520 2610
1500	01 5005 8035	01 7054 0030	31 700 8037	010 7111 0000	2700
	0000	0005	0000	Q 00 8	
1550	22.5090	22. 5119	22.5148	22.5178	2790
1600 1650	23. 3181 8091 24. 1300 8119	23. 3211 8092 24. 1331 8120	23. 3241 8093 24. 1362 8121	23. 3271 8093 24. 1392 8121	2880 2970
1700	24. 9447 8147	24. 9479 8148	24. 9510 8148	24. 9541 8149	3060
1750	25 7620 8173	25 7652 8173	25 7683 8173	95 7715 8174	3150
	8200	8200	8202	8202	
1800 1850	26. 5820 27. 4047. 8227	26. 5852	26. 5885 27. 411.2 8228	26. 5917 97. 4146 8229	3240
1900	27. 4047 8227 28. 2299 8252	27. 4080 8228 28. 2333 8253	27. 4113 8228 28. 2366 8253	27. 4146 8229 28. 2399 8253	3330 3420
1950	29. 0576 8277	29. 0610 8277	29. 0644 8278	29. 0678 8279	3510
2000	29 8880 8304	20 8015 8305	29 8949 8305	20 8083 8305	3600
	8330	8329	8330	8331	
$2050 \\ 2100$	30. 7210 31. 5566 8356	$30.7244 \\ 31.5601 $	30.7279 31.5636 8357	30. 7314 31. 5671 8357	3690 3780
2150	32. 3947 8381	32. 3982 8381	32. 4017 8381	32. 4053 8382	3870
2200	33. 2353 8406	33, 2389 8407	33. 2424 8407	33, 2460 ⁸⁴⁰⁷	3960
2250	34. 0783 8430 8456	34. 0819 8430 8456	34. 0855 8431 8457	34. 0891 8431 8457	4050
2200					4140
2300	34.9239	34. 9275	34.9312	34. 9348	4140

Table 9.22/1 Enthalpy of Molecular Oxygen

	Pressure						
	1 atm	4 atm	7 a	ıtm	10 atm		
\mathbf{T}							T
$^{\rm o}{ m K}$							$^{\rm o}{ m R}$
2300 2350 2400 2450 2500	35. 7721 36. 6229 85 37. 4759 85	35.7758 36.6266 37.4796 38.3352	8508 35. 8530 36. 8556 37.	9312 7794 8509 6303 8530 4833 8556 3389 8580	35. 7831 36. 6340 37. 4870	8509 4 8530 4 8556 4	140 230 320 410 500
2550 2600 2650 2700 2750	$40.0500 \\ 40.9127 \\ 86 \\ 41.7778 \\ 86 \\ 42.6452$	40. 0537 40. 9164 41. 7816 42. 6491	8627 40. 8652 40. 8675 41.	1969 8606 0575 8627 9202 8652 7854 8675 6529 8698	40. 0613 40. 9240 41. 7892	8627 4 8652 4 8675	590 680 770 860 950
2800 2850 2900 2950 3000	44. 3871 45. 2614 87	743 44. 3909 765 45. 2653	8744 44. 8765 45. 8786 46.	5227 3948 8721 3948 8743 2691 8766 1457 8786	44. 3986 45. 2730	8744 5 8765 5 8787 5	040 130 220 310 400

Table 9. 22/1 Enthalpy of Molecular Oxygen

	A MANAGEMENT OF THE PROPERTY O	1	Pressure		
\mathbf{T}	10 atm	40 atm	70 atm	100 atm	Т
°K					$^{\rm o}{ m R}$
130 140	$egin{array}{ccc} 1.505 & 144 \ 1.649 & 147 \end{array}$				234 252
150 160 170 180 190	1.7963 1.9390 2.0785 2.2160 2.3520 136	5 1. 48 23 5 1. 711 194 0 2. 082 177	$\begin{array}{cccc} 1. & 16 & 33 \\ 1. & 490 & 261 \\ 1. & 751 & 221 \end{array}$	$^{.94}_{1.346}$ $^{41}_{313}$	270 288 306 324 342
200 210 220 230 240	2. 4871 2. 6211 133 2. 7545 133 2. 8874 132 3. 0199 132	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. 552 172 2. 524 165	$\begin{array}{c} 1.659 \\ 1.916 \\ 222 \\ 2.138 \\ 202 \\ 2.340 \\ 186 \\ 2.526 \\ 177 \end{array}$	360 378 396 414 432
250 260 270 280 290	3. 1522 3. 2841 131 3. 4159 131 3. 5474 131 3. 6791 131	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.005 \\ 3.157 \\ 3.307 \\ \end{array}$	2.703 169 2.872 163 3.035 160 3.195 156 3.351 154	450 468 486 504 522
300 310 320 330 340	3.8108 3.9424 131 4.0740 131 4.2059 131 4.3379 132	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} \cdot 3.602 \\ 3.747 \\ 144 \\ 3.891 \\ 4.034 \\ 142 \\ 4.176 \\ 142 \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	540 558 576 594 612
350 360 370 380 390	4. 4701 132 4. 6024 132 4. 7351 132 4. 8680 133 5. 0012 133	$egin{array}{ccccc} 4.530 & 137 \ 9 & 4.667 & 137 \ 2 & 4.804 & 137 \ \end{array}$	4. 318 142 4. 460 141 4. 601 141 4. 742 140 4. 882 141	4. 248 146 4. 394 145 4. 539 144 4. 683 144 4. 827 144	630 648 666 684 702
400 410 420 430 440	5. 1349 133 5. 2687 134 5. 4029 134 5. 5375 134 5. 6724 135	$egin{array}{ccccc} 2 & 5.215 & 137 \ 6 & 5.352 & 138 \ 9 & 5.490 & 138 \ \end{array}$	5. 304 140 5. 444 141	4.971 143 5.114 143 5.257 143 5.400 143 5.543 144	720 738 756 774 792
450	5.8078	5.766	5.725	5.687	810

Pressure						
	10 atm	Opening rest; or season legger to with the leaves (if the second of	40 atm	70 atm	100 atm	
T						T
$^{\rm o}{ m K}$						$^{\rm o}{ m R}$
450	5. 8078	1357	5.766	$5.725_{-0.02}$ $141_{-0.02}$	5.687 143	810
$\frac{460}{470}$		1361	5. 904 138 6. 042 139	5.866141 6.007141	5.830 143 5.973 143	828 846
480	6.2162	1366 1369	6. 181 139	6.148_{141}^{141}	6. 116 $\frac{140}{142}$	864
490		1374	6. 320_{140}^{130}	6. 289_{142}^{141}	6. 259 $^{143}_{144}$	882
500	6.4905	1378	6.460	6.431	6.403	900
510 520		1382	6. 600 140 6. 740 140	6 714 142	6 600 144	918 936
530	6 9051	1386	6 880 ¹⁴⁰	6 856 ¹⁴²	6 834 144	954
540		1391 1395	$7.021 \begin{array}{c} 141 \\ 141 \end{array}$	$\begin{array}{c} 6.999 & 143 \\ 6.999 & 143 \end{array}$	$6.978 \frac{144}{144}$	972
550	7. 1837	1399	7.162	$\frac{7.142}{7.295}$ 143	$\frac{7.122}{7.267}$ 145	990
560 570	7.3230	1403	$7.303141 \\ 7.445142$	7 428 143	7 412 145	1008 1026
580	7.6046	1407	7.588 $\frac{143}{140}$	7.572_{144}^{144}	7. 557_{145}^{145}	1044
590		1412 1415	$7.730 \begin{array}{c} 142 \\ 143 \end{array}$	$7.716 \begin{array}{c} 144 \\ 144 \end{array}$	$7.702 145 \\ 146$	1062
600	7.8873	1420	7.873	7.860	7.848	1080
610 620		1423	8. 016 144 8. 160 144	8. 004 145 8. 149 145	7.994 146 8.140 146	1098 1116
630	8 3143	1427	8 304 144	8 294 145	2 226 ¹⁴⁰	1134
640		1432 1435	8. 448 144 145	$8.440 \begin{array}{c} 146 \\ 146 \end{array}$	8. 433 147 146	1152
650	8.6010	1440	8.593 145	8.586 146	8.579 148	1170
660 670	8. 7450	1442	8. 738 145	$\frac{8.732}{0.70}$ 146	8.727_{-147}	$1188 \\ 1206$
680	0 0000	1447 1450	8. 883 146 9. 029 146	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1224
690	0 1700	1450	9. 175 146 9. 175 146	$9.172 \frac{147}{147}$	9.169_{149}^{141}	1242
700	9.3242	1457	9. 321 147	9.319 148	9.318 148	1260
710 720	9.4699	1461	9.468	9.467	9.466	1278 1296
730	9.7624	1464	9 762 147	9 763 148	9 764 149	1314
740		1468 1471	$9.910 \begin{array}{c} 148 \\ 148 \end{array}$	$9.911 \begin{array}{c} 148 \\ 149 \end{array}$	$9.913 \begin{array}{c} 149 \\ 150 \end{array}$	1332
750	10.0563	1474	10.058 148	10.060 149	10.063 149	1350
760 770	10. 2037	1477	10. 206 148	10. 209 149	10. 212 150	1368 1386
780	10 4005		10.354_{149} 10.503_{149}	10. 358 149 10. 507 150	10. 362 151 10. 513 150	1404
790	10 6470		$10.652 \begin{array}{c} 149 \\ 150 \end{array}$	$10.657 \begin{array}{c} 150 \\ 150 \end{array}$	10.663 151	1422
800	10.7965	:	10. 802	10.807	10.814	1440

Pressure						
	10 atm	40 atm	70 atm	100 atm		
\mathbf{T}					${ m T}$	
°K					$^{\mathrm{o}}\mathrm{R}$	
800	10.797	10.802	10.807	10.814	1440	
900	12. 298 1501	12. 309 1507	12. 321 1514	12. 333 1519	1620	
1000	13. 824 1526 15. 871 1547	13. 840 1531 15. 201 1551	13. 857 1536	13. 874 1541 15. 421 1557	1800	
1100	15.371	15. 391	15.411	15, 431	1980	
1200	16. 935 1504 1579	16. 958 1581	16. 981 1570 1584	17. 004 1573 1587	2160	
1300	18.514	18.539	18.565	18.591	2340	
1400	20. 107 1593	20. 134 1595	20, 161 1596	20, 189 1598	2520	
1500	21.711 1604	21.740 1606	21.769 1608	21. 799 1610	2700	
1600	23. 327 1616	23. 358 1618	23. 388 1619	23. 419 1620	2880	
1700	24.954	24. 986 1628 1639	$25.018 \frac{1630}{1640}$	25. 050 1631 1641	3060	
1800	26. 592	26. 625	26.658	26. 691	3240	
1900	28. 240 1648	28. 274 1649	28. 308 1650	28. 342 1651	3420	
2000	29.898 1658	29. 933 1659	29. 968 1660	30. 003 1661	3600	
2100	31. 567 1669 32. 246 1679	31. 602 1669 32. 202 1680	31. 638 1670	31. 674 1671 22. 255 1681	3780	
2200	$33.246 \begin{array}{c} 1679 \\ 1689 \end{array}$	33. 282 1680	$33.318 \begin{array}{c} 1680 \\ 1690 \end{array}$	$33.355 \frac{1001}{1690}$	3960	
2300	34. 935	34.971	35. 008 700 1700	35. 045	4140	
2400	30.034	36.671	36.708	36.745	4320	
2500	38. 343 ₁₇₁₀	38. 380	38.418	38. 455	4500	
2600 2700	40. 061 1718 41. 789 1728	40.099	40.137	40. 175 1720	4680 4860	
2100	1738	41. 827 1738	41. 866 1729	1739	4000	
2800	43. 527	43.565	43.604	43.643	5040	
2900	45. 273 1746 47. 038 1755	45. 312 1747 47. 067 1755	45. 351 1747 47. 107. 1756	45, 390	5220	
3000	47. 028 1755	47.067 1755	47. 107 1756	47. 146 1756	5400	

Table 9.22/2 Entropy of Molecular Oxygen

	Pressure					
	. 01 atm	. 1 atm	. 4 atm	.7 atm	1 atm	
${f T}$					T	
$^{\circ}K$			·		°R	
100 110 120 130 140	25. 4396 3337 25. 7733 3049 26. 0782 2802 26. 3584 2595 26. 6179 2417	23. 1336 3345 23. 4681 3054 23. 7735 2806 24. 0541 2598 24. 3139 2419	$\begin{array}{c} 21.73573372 \\ 22.07293072 \\ 22.38012821 \\ 22.66222607 \\ 22.92292426 \end{array}$	21.16383404 21.50423092 21.81342833 22.09672618 22.35852433	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
150 160 170 180 190	26. 8596 27. 0855 2123 27. 2978 2002 27. 4980 1894 27. 6874 1796	$\begin{array}{c} 24.5558 \\ 24.7819 \\ 2124 \\ 24.9943 \\ 25.1946 \\ 2003 \\ 25.3842 \\ 1796 \end{array}$	23.1655 2267 23.3922 2129 23.6051 2007 23.8058 1898 1799	22. 6018 2274 22. 8292 2134 23. 0426 2010 23. 2436 1902 23. 4338 1802	$\begin{array}{c} 22.\ 2411 \\ 22.\ 4690 \\ 2138 \\ 22.\ 6828 \\ 2016 \\ 22.\ 8844 \\ 2016 \\ 23.\ 0748 \\ 1805 \\ \end{array} \begin{array}{c} 270 \\ 288 \\ 306 \\ 324 \\ 342 \\ \end{array}$	
200 210 220 230 240	27. 8670 1710 28. 0380 1631 28. 2011 1559 28. 3570 1493 28. 5063 1433	25. 5638 1711 25. 7349 1631 25. 8980 1559 26. 0539 1494 26. 2033 1433	24. 1755 1713 24. 3468 1633 24. 5101 1561 24. 6662 1495 24. 8157 1434	23. 6140 1715 23. 7855 1634 23. 9489 1563 24. 1052 1496 24. 2548 1435	$23. 2553 1717 360 \\ 23. 4270 1636 378 \\ 23. 5906 1564 396 \\ 23. 7470 1498 414 \\ 23. 8968 1437 432$	
250 260 270 280 290	28, 6496 1378 28, 7874 1328 28, 9202 1280 29, 0482 1238 29, 1720 1197	26. 3466 1378 26. 4844 1329 26. 6173 1280 26. 7453 1238 26. 8691 1198	$\begin{array}{c} 24.\ 9591\ 1380\\ 25.\ 0971\ 1329\\ 25.\ 2300\ 1281\\ 25.\ 3581\ 1239\\ 25.\ 4820\ 1198\\ \end{array}$	24. 3983 1381 24. 5364 1330 24. 6694 1282 24. 7976 1239 24. 9215 1239	24. 0405 1381 450 24. 1786 1331 468 24. 3117 1283 486 24. 4400 1240 504 24. 5640 1199 522	
300 310 320 330 340	29. 2917 1160 29. 4077 1125 29. 5202 1093 29. 6295 1062 29. 7357 1062	26. 9889 27. 1049 1125 27. 2174 1093 27. 3267 1062 27. 4329 1035	25. 6018 1160 25. 7178 1126 25. 8304 1094 25. 9398 1062 26. 0460 1036	25. 0414 1161 25. 1575 1126 25. 2701 1094 25. 3795 1063 25. 4858 1036	$\begin{array}{c} 24.\ 6839 \\ 24.\ 8001 \\ 1127 \\ 558 \\ 24.\ 9128 \\ 1094 \\ 55.\ 0222 \\ 1064 \\ 25.\ 1286 \\ 1036 \\ \end{array}$	
350 360 370 380 390	$\begin{array}{c} 29.8392 \\ 29.9399 \\ 30.0381 \\ 30.1340 \\ 30.2276 \\ 916 \end{array}$	$\begin{array}{c} 27.5364 \\ 27.6371 \\ 982 \\ 27.7353 \\ 959 \\ 27.8312 \\ 937 \\ 27.9249 \\ 916 \end{array}$	$\begin{array}{c} \textbf{.26.1496} \\ \textbf{26.2503} \\ \textbf{26.3486} \\ \textbf{26.3445} \\ \textbf{26.5381} \\ \textbf{917} \end{array}$	25. 5894 25. 6902 983 25. 7885 959 25. 8844 937 25. 9781 917	25. 2322 1008 630 25. 3330 983 648 25. 4313 960 666 25. 5273 937 684 25. 6210 917	
400 410 420 430 440	30. 3192 30. 4088 30. 4964 30. 5823 30. 6664 826	28. 0165 28. 1061 28. 1937 28. 2796 28. 3637 826	26.6298 26.7194 26.8070 26.8929 26.8929 26.9771 826	26. 0698 26. 1594 26. 2471 26. 2471 26. 3330 841 26. 4171 827	25. 7127 25. 8023 25. 8900 25. 9760 25. 9760 860 774 26. 0601 827	
450	30.7490	28. 4463	27.0597	26. 4998	26.1428 810	

		- 0	* 5		·	
		to de marco de la companya de la co	Pressure	a sana sana da kana da kana kana da ka		
	. 01 atm	. l atm	. 4 atm	. 7 atm	1 atm	
T						T
$^{\rm o}{ m K}$						$^{\rm o}{}_{\rm R}$
450 460	30.7490 810 30.8300 795	28. 4463 810 28. 5273 795	27. 0597 810 27. 1407 795	26. 4998 810 26. 5808 796	26. 1428 810 26. 2238 796	810 828
470 480 490	30. 9095 780 30. 9875 768 31. 0643 754	28. 6068 780 28. 6848 769 28. 7617 754	27. 2202 780 27. 2982 769 27. 3751 754	26. 6604 780 26. 7384 768 26. 8152 754	26. 3034 780 26. 3814 769 26. 4583 754	846 864 882
500 510 520 530 540	31. 1397 742 31. 2139 730 31. 2869 718 31. 3587 707 31. 4294 696	28. 8371 742 28. 9113 730 28. 9843 718 29. 0561 707 29. 1268 696	27. 4505 742 27. 5247 730 27. 5977 718 27. 6695 707 27. 7402 696	26. 8906 743 26. 9649 730 27. 0379 718 27. 1097 707 27. 1804 697	26. 5337 742 26. 6079 731 26. 6810 718 26. 7528 707 26. 8235 697	900 918 936 954 972
550	31.4990 686	29. 1964 686	27.8098 687	27. 2501 ₆₈₆	26. 8932 686	990
560 570 580 590	31. 5676 676 31. 6352 666 31. 7018 657 31. 7675 648	29. 2650 676 29. 3326 666 29. 3992 657 29. 4649 648	27. 8785 676 27. 9461 666 28. 0127 657 28. 0784 648	27. 3187 676 27. 3863 666 27. 4529 657 27. 5186 648	26.9618 676 27.0294 666 27.0960 658 27.1618 648	1008 1026 1044 1062
600 610 620 630 640	31. 8323 639 31. 8962 630 31. 9592 622 32. 0214 614 32. 0828 607	29. 5297 639 29. 5936 630 29. 6566 622 29. 7188 614 29. 7802 607	28. 1432 639 28. 2071 630 28. 2701 622 28. 3323 614 28. 3937 607	27. 5834 639 27. 6473 631 27. 7104 622 27. 7726 614 27. 8340 607	27. 2266 639 27. 2905 630 27. 3535 622 27. 4157 615 27. 4772 607	1080 1098 1116 1134 1152
650 660 670 680 690	32. 1435 598 32. 2033 591 32. 2624 584 32. 3208 577 32. 3785 570	29. 8409 598 29. 9007 591 29. 9598 584 30. 0182 577 30. 0759 570	28. 4544 598 28. 5142 591 28. 5733 584 28. 6317 577 28. 6894 571	27. 8947 598 27. 9545 591 28. 0136 584 28. 0720 577 28. 1297 570	27. 5379 598 27. 5977 591 27. 6568 584 27. 7152 577 27. 7729 570	1170 1188 1206 1224 1242
700 710 720 730 740	32. 4355 564 32. 4919 557 32. 5476 550 32. 6026 545 32. 6571 538	30. 1329 564 30. 1893 557 30. 2450 550 30. 3000 545 30. 3545 538	28. 7465 564 28. 8029 557 28. 8586 550 28. 9136 545 28. 9681 545 538	28. 1867 565 28. 2432 557 28. 2989 550 28. 3539 545 28. 4084 538	27.8299 564 27.8863 558 27.9421 550 27.9971 545 28.0516 538	1260 1278 1296 1314 1332
750 760 770 780 790	32.7109 32.7641 532 32.8168 527 32.8689 521 32.9204 515 510	30. 4083 30. 4615 532 30. 5142 527 30. 5663 521 30. 6178 515 510	29. 0219 29. 0751 532 29. 1278 527 29. 1799 521 29. 2314 515 510	28. 4622 28. 5154 28. 5681 28. 6202 521 28. 6717 515 510	28. 1054 532 28. 1586 527 28. 2113 527 28. 2634 521 28. 3149 515 510	1350 1368 1386 1404 1422
800	32.9714	30.6688	29.2824	28.7227	28.3659	1440

Table 9.22/2 Entropy of Molecular Oxygen

	1. <u>1. 1.</u>	Pressure		
. 01 atm	. 1 atm	. 4 atm	.7 atm	1 atm
T				
oK				\circ_{R}
800 32.9714 850 33.2186 2472 900 33.4538 2352 950 33.6781 2243 1000 33.8926 2145 2053	$\begin{array}{c} 30.6688 \\ 30.9160 \\ 2472 \\ 31.1512 \\ 2352 \\ 31.3755 \\ 2243 \\ 31.5900 \\ 2145 \\ 2053 \end{array}$	29. 2824 29. 5296 2472 29. 7648 2352 29. 9891 2243 30. 2036 2145 2053	$\begin{array}{c} 28.7227 \\ 28.9699 2472 \\ 29.2052 2353 \\ 29.4295 2243 \\ 29.6440 2145 \\ 2053 \end{array}$	28.3659 28.6132 2473 1530 28.8484 2352 1620 29.0727 2243 1710 29.2872 2145 1800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$31.7953 1970 \\ 31.9923 1893 \\ 32.1816 1821 \\ 32.3637 1756 \\ 32.5393 1695$	$\begin{array}{c} 30.4089 \\ 30.6060 \\ 1893 \\ 30.7953 \\ 1821 \\ 30.9774 \\ 1756 \\ 31.1530 \\ 1695 \end{array}$	29.84931970 30.04631893 30.23561821 30.41771756 30.59331695	$\begin{array}{c} 29.\ 4926_{1970} & 1890 \\ 29.\ 6896_{1893} & 1980 \\ 29.\ 8789_{1821} & 2070 \\ 30.\ 0610_{1756} & 2160 \\ 30.\ 2366_{1695} & 2250 \end{array}$
1300 35.0114 1638 1350 35.1752 1584 1400 35.3336 1535 1450 35.4871 1488 1500 35.6359 1444	32.7088 32.8726 1584 33.0310 1535 33.1845 1488 33.333 1444	31.32251638 31.48631584 31.64471535 31.79821488 31.94701444	$30.7628 1639 \\ 30.9267 1584 \\ 31.0851 1535 \\ 31.2386 1488 \\ 31.3874 1444$	30.406116382340 30.569915842430 30.728315352520 30.881814892610 31.030714442700
1550 35.7803 1404 1600 35.9207 1364 1650 36.0571 1329 1700 36.1900 1294 1750 36.3194 1262	33.4777 33.6181 1364 33.7545 1329 33.8874 1294 34.0168 1262	$\begin{array}{c} 32.\ 0914 \\ 32.\ 2318 \\ 1364 \\ 32.\ 3682 \\ 1329 \\ 32.\ 5011 \\ 1294 \\ 32.\ 6305 \\ 1262 \end{array}$	$\begin{array}{c} 31.\ 5318 \\ 31.\ 6722 \\ 1364 \\ 31.\ 8086 \\ 1329 \\ 31.\ 9415 \\ 1294 \\ 32.\ 0709 \\ 1262 \end{array}$	$31.1751_{1404} 2790 \\ 31.3155_{1364} 2880 \\ 31.4519_{1329} 2970 \\ 31.5848_{1294} 3060 \\ 31.7142_{1262} 3150$
1800 36.4456 1232 1850 36.5688 1202 1900 36.6890 1175 1950 36.8065 1148 2000 36.9213 1124	34.1430 34.2662 1232 34.3864 1175 34.5039 1148 1124	32.7567 32.8799 1232 33.0001 1175 33.1176 1148 1124	32.19711232 32.32031202 32.44051175 32.55801148 32.67281124	31.840412323240 31.963612023330 32.083811753420 32.201311483510 32.316111243600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$34.7311 \\ 34.8411 \\ 1077 \\ 34.9488 \\ 1056 \\ 35.0544 \\ 1035 \\ 1015$	33. 3448 33. 4548 1100 33. 5625 1056 33. 6681 1035 33. 7716 1015	$\begin{array}{c} 32.7852 \\ 32.8952 \\ 1077 \\ 33.0029 \\ 1056 \\ 33.1085 \\ 1035 \\ 1015 \end{array}$	32. 4285 1100 3690 32. 5385 1077 3780 32. 6462 1056 3870 32. 7518 1035 3960 32. 8553 1015 4050
2300 37.5620	35.25 94	33.8731	33. 3135	32.9568 4140

Table 9.22/2 Entropy of Molecular Oxygen

S/R

			Pressure			
	. 01 atm	. 1 atm	. 4 atm	. 7 atm	1 atm	
T						${ m T}$
$^{\rm o}{ m K}$						$^{\mathrm{o}}\mathrm{R}$
**						10
2200	27 5620	05.0504	00.0701	00 0105	00 0500	4140
2300	37.5620 997	35.2594 997	33.8731 997	33.3135 997	32.9568 997	4140
2350	37.6617 978	35.3591 978	33.9728 978	33.4132 978	33.0565 978	4230
2400	37.7595 961	35.4569 961	34.0706 961	33.5110 961	33.1543 961	4320
2450	37.8556 945	35.5530 945	34.1667 945	33.6071 945	33.2504 945	4410
2500	37.9501 928	$35.6475 \begin{array}{l} 343 \\ 928 \end{array}$	$34.2612 \begin{array}{l} 34.\\ 928 \end{array}$	$33.7016 \begin{array}{l} 34.5 \\ 928 \end{array}$	33.3449 928	4500
2550	38.0429	35.7403	34.3540	33.7944	33.4377	4590
2600	38 13/1 914	35 8315 ⁹¹²	24 4452 914	33 8856 914	33 5380 814	4680
2650	38 2239 888	35 9213 ⁶⁹⁶	3/ 5350 090	33 9754 090	33 6187 ⁰³⁶	4770
2700	38 3193 004	36 0097 884	24 6234 004	24 0638 004	22 7071 004	4860
2750	38 3002 608	36 0966 868	24 7102 008	34 1507 809	22 7040 009	4950
	856	856	856	34.130. 856	856	
2800	38.4848	36.1822 844	34.7959 844	34.2363	33.8796	5040
2850	38.5692 830	36.2666 830	34.8803 830	34.3207 830	33.9640 830	5130
2900	38.6522 819	36.3496 819	34.9633 819	34.4037 819	34.0470 819	5220
2950	38.7341 807	36.4315 807	35.0452 807	34.4856 807	34.1289 807	5310
3000	38.8148	36.5122	35.1259	34.5663	34.2096	5400

	Pressure						
	1 atm	4 atm	7 atm	10 atm			
o _K	,				T O _R		
100 · · · · · · · · · · · · · · · · · ·	20.794 344 21.1381 3113 21.4494 2848 21.7342 2627 21.9969 2442	19. 981 304 20. 2851 2751 20. 5602 2529	19.651 294 19.9448 2639	19.525	180 198 216 234 279 252		
150 160 170 180 190	22. 2411 2279 22. 4690 2138 22. 6828 2016 22. 8844 1904 23. 0748 1805	20. 8131 2345 21. 0476 2188 21. 2664 2055 21. 4719 1937 21. 6656 1832	20. 2087 2421 20. 4508 2246 20. 6754 2099 20. 8853 1973 21. 0826 1860	20. 0550 20. 2860 20. 5008	2514 270 2310 288 2148 306 2010 324 1890 342		
200 210 220 230 240	23. 2553 1717 23. 4270 1636 23. 5906 1564 23. 7470 1498 23. 8968 1437	21. 8488 1739 22. 0227 1655 22. 1882 1580 22. 3462 1512 22. 4974 1449	21. 2686 1763 21. 4449 1674 21. 6123 1597 21. 7720 1525 21. 9245 1461	21. 0696 21. 2391 21. 4005	1788 360 1695 378 1614 396 1540 414 1473 432		
250 260 270 280 290	24. 0405 1381 24. 1786 1331 24. 3117 1283 24. 4400 1240 24. 5640 1199	22. 6423 1391 22. 7814 1340 22. 9154 1292 23. 0446 1247 23. 1693 1206	22. 0706 1403 22. 2109 1349 22. 3458 1300 22. 4758 1254 22. 6012 1212	21. 8433 21. 9792 22. 1098	1415 450 1359 468 1306 486 1263 504 1218 522		
300 310 320 330 340	24: 6839 1162 24: 8001 1127 24: 9128 1094 25: 0222 1064 25: 1286 1036	23. 2899 1167 23. 4066 1132 23. 5198 1099 23. 6297 1067 23. 7364 1040	22. 7224 1173 22. 8397 1138 22. 9535 1104 23. 0639 1071 23. 1710 1044	22. 4758 22. 5900 22. 7008	1179 540 1142 558 1108 576 1076 594 1048 612		
350 360 370 380 390	25. 2322 25. 3330 1008 25. 4313 983 25. 5273 960 25. 6210 937 917	23. 8404 23. 9416 1012 24. 0402 986 24. 1365 963 24. 2304 939 920	23. 2754 23. 3769 989 23. 4758 966 23. 5724 942 23. 6666 942	22. 9132 23. 0151 23. 1143 23. 2112 23. 3056	1019 630 992 648 969 666 944 702		
400 410 420 430 440	25. 7127 25. 8023 877 25. 8900 860 25. 9760 841 26. 0601 827	24. 3224 898 24. 4122 879 24. 5001 862 24. 5863 843 24. 6706 828	23.7587 902 23.8489 880 23.9369 864 24.0233 845 24.1078 830	23. 3980 23. 4884 23. 5766 23. 6632 23. 7479	904 720 882 738 866 756 847 792		
450	26.1428	24.7534	24. 1908	23.8310	810		

Pressure.							
	1 atm	4 atm	7 atm	10 atm			
T					\mathbf{T}		
oK					$^{\rm o}{ m R}$		
450	26. 1428 810	24.7534 812	24. 1908 813	23.8310 815	810		
460 470	26. 2238 796 26. 3034 780	24. 8346 797 24. 9143 782	24. 2721 798	23. 9125 800 23. 9925 784	828 846		
480	26. 3814 769	24. 9925 769	24. 4302 771	24. 0709 772	864		
490	26. 4583 754	25. 0694 756	24. 5073 757	24.1481 758	882		
500	26. 5337 742	25. 1450 743	24. 5830 744	24. 2239 746	900		
510 520	26.6079 731 26.6810 719	25. 2193 732 25. 2925 710	24. 65/4 733	24. 2985 733	918 936		
530	26.7528 707	25. 3644 700	24. 8027 720 24. 8027 709	24. 3116 721 24. 4439 710	954		
540	26.8235 697	25. 4352 ₆₉₇	24. 8736 698	24. 5149 699	972		
550	26.8932 686	25. 5049 687	24. 9434 688	24. 5848 689	990		
560 570	25. 9618 676	25. 5736 677 25. 6413 667	25. 0122 678 25. 0800 667	24. 6537 678	1008 1026		
580	27. 0960 650	25. 7080 657	25. 1467 650	24. 7883 660	1044		
590	27. 1618 648	25. 7738 649	25. 2126 649	24. 8543 650	1062		
600	27. 2266 639	25. 8387 640	25. 2775 641	24.9193 641	1080		
610 620	27. 2905 630	25.9027 631	25 4047 631	24. 9834 632 25. 0466 632	1098 1116		
630	27. 4157 615	26. 0280 64Z	25. 4670 616	25. 1089 623	1134		
640	27. 4772 607	26. 0895 608	25. 5286 608	25. 1705 609	1152		
650	27.5379 598	26. 1503 598	25. 5894 ₅₉₉	25. 2314 599	1170		
660 670	27. 5977 591 27. 6568 584	26. 2101 592 26. 2693 584	25.6493 592 25.7085 585	25. 2913 593 25. 3506 585	$\frac{1188}{1206}$		
680	27.7152 577	26. 3277 578	25. 7670 578	25. 4091 578	1224		
690	27.7729 570	26. 3855 ₅₇₀	25. 8248 571	26.4669 572	1242		
700 710	27. 8299 27. 8863 550	26. 4425 565	25.8819 564	25. 5241 25. 5806 550	$\frac{1260}{1278}$		
720	27 0421 556	26. 4990 557 26. 5547 551	25. 9383 558 25. 9941 551	9E 6964 999	1296		
730	27. 9971 530	26.6098 545	26. 0492 546	25. 6915 531	1314		
7.40	28. 0516 538	26. 6643 539	26. 1038 538	25.7461 539	1332		
750	28. 1054 532	26.7182 532	26. 1576 533	25.8000	1350		
760 770	28, 2113 527	26. 8241 527	26. 2637 528	25, 9061 528	1368 1386		
780	28. 2634 521	26. 8763 ⁵²²	26. 3158 ⁵²¹	$25.9583 \begin{array}{c} 522 \\ 513 \end{array}$	1404		
790	$28.3149 \begin{array}{c} 515 \\ 510 \end{array}$	26. 9278 515 510	26. 3674 516 511	26. 0099 516 511	1422		
800	28. 3659	26.9788	26.4185	26.0610	1440		

Table 9.22/2 Entropy of Molecular Oxygen

Pressure								
	1 atm	4 atm	7 atm	10 atm	_			
${ m T}$					T			
° K					$^{\rm o}{ m R}$			
800 850 900 950 1000	28. 3659 28. 6132 2352 28. 8484 2243 29. 0727 2145 29. 2872 2054	26. 9788 27. 2262 2353 27. 4615 27. 6859 27. 9005 2054	26. 4185 2474 26. 6659 2354 26. 9013 2245 27. 1258 2146 27. 3404 2055	26. 0610 2475 26. 3085 2355 26. 5440 2246 26. 7686 2147 26. 9833 2055	1440 1530 1620 1710 1800			
1050 1100 1150 1200 1250	$\begin{array}{c} 29.4926 \\ 29.6896 \\ 1893 \\ 29.8789 \\ 1821 \\ 30.0610 \\ 1756 \\ 30.2366 \\ 1695 \end{array}$	28.1059 28.3029 1894 28.4923 1821 28.6744 1757 1695	$\begin{array}{c} 27.5459 \\ 27.7430 \\ 1894 \\ 27.9324 \\ 1822 \\ 28.1146 \\ 28.2902 \\ 1696 \end{array}$	$\begin{array}{c} 27.\ 1888 \\ 1971 \\ 27.\ 3859 \\ 1895 \\ 27.\ 5754 \\ 1822 \\ 27.\ 7576 \\ 27.\ 9333 \\ 1696 \end{array}$	1890 1980 2070 2160 2250			
1300 1350 1400 1450 1500	30.4061 30.5699 1584 30.7283 1535 30.8818 1489 31.0307 1444	29. 0196 1638 29. 1834 1585 29. 3419 1535 29. 4954 1488 29. 6442 1444	28.45981638 28.62361585 28.78211535 28.93561489 29.08451444	28. 1029 1638 28. 2667 1585 28. 4252 1536 28. 5788 1488 28. 7276 1445	2340 2430 2520 2610 2700			
1550 1600 1650 1700 1750	31. 1751 31. 3155 1364 31. 4519 1329 31. 5848 1294 31. 7142	29. 7886 29. 9290 30. 0655 30. 1984 30. 3279 1261	29.2289 29.3693 1365 29.5058 1329 29.6387 1294 1262	28. 8721 1404 29. 0125 1364 29. 1489 1330 29. 2819 1294 29. 4113 1262	2790 2880 2970 3060 3150			
1800 1850 1900 1950 2000	31.8404 31.9636 1202 32.0838 1175 32.2013 1148 32.3161 1124	30.4540 30.5772 1232 30.6974 1175 30.8149 1148 1124	$\begin{array}{c} 29.8943 \\ 30.0175 \\ 30.1377 \\ 30.2553 \\ 30.3701 \\ 1124 \end{array}$	29. 5375 1233 29. 6608 1202 29. 7810 1175 29. 8985 1148 30. 0133 1124	3240 3330 3420 3510 3600			
2050 2100 2150 2200 2250	32. 4285 32. 5385 32. 6462 32. 7518 32. 8553 1015	31.0421 31.1521 1077 31.2598 1057 31.3655 1035 31.4690 1015	30.4825 30.5925 1077 30.7002 1056 30.8058 1035 30.9093 1015	30. 1257 30. 2358 1077 30. 3435 30. 4491 30. 5526 1015	3690 3780 3870 3960 4050			
2300	32. 9568	31. 5705	31. 0108	30. 6541	4140			

Pressure									
Т	1 atm		4 atm		7 atm		10 atm	7	Т
o _K									$^{\rm o}$ R
2300 2350 2400 2450 2500	32. 9568 33. 0565 33. 1543 33. 2504 33. 3449	997 978 961 945 928	31. 5705 31. 6702 31. 7680 31. 8641 31. 9586	997 978 961 945 928	31. 0108 31. 1105 31. 2083 31. 3045 31. 3990	997 978 962 945 928	30. 6541 30. 7538 30. 8516 30. 9477 31. 0422	997 978 961 945 929	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	33. 4377 33. 5289 33. 6187 33. 7071 33. 7940	912 898 884 869 856	32. 0514 32. 1426 32. 2324 32. 3208 32. 4077	912 898 884 869 856	31. 4918 31. 5830 31. 6728 31. 7612 31. 8481	912 898 884 869 856	31. 1351 31. 2263 31. 3161 31. 4045 31. 4914	912 898 884 869 856	4590 4680 4770 4860 4950
2800 2850 2900 2950 3000	33. 8796 33. 9640 34. 0470 34. 1289 34. 2096	844 830 819 807	32. 4933 32. 5777 32. 6607 32. 7426 32. 8233	844 830 819 807	31. 9337 32. 0181 32. 1011 32. 1830 32. 2637	844 830 819 807	31. 5770 31. 6614 31. 7444 31. 8263 31. 9070	844 830 819 807	5040 5130 5220 5310 5400

Table 9.22/2 Entropy of Molecular Oxygen

	Pressure									
	10 atm	Post (In Capital America) of Capital American (In C	40 atm	of a polynomicality returned updates of conscious or	70 atm	THE RESERVE OF THE PROPERTY OF THE PROPERTY OF THE	100 a	atm	T.	
T										T
oК										$^{\circ}$ R
		• •								
140	19.525	279								252
150	19.8036	2514								270
160	20.0550	2310	18.10	37	17 0					288
170 180	20. 2860 20. 5008	2148	18. 474 18. 778	304	17.2 17.74	5: 38	16.7		6	$306 \\ 324$
190	20.7018	1890	10 0000	261 2320	18. 121	310	17. 3	_	o 44	342
200	20.8908	1700	19.2709	0115	18. 431	0.00	17.7	4	0.4	360
210	21.0696	1788 1695	19.4822	2113 1949	18.694	263 232	18.0	84	$\frac{34}{282}$	378
220 230	21. 2391	1614	19.6771 19.8591	1820	18. 9 2 6 19. 135	209	18.3 18.6	66	245	396 414
$\frac{230}{240}$		1540 1473	20. 0298	1707 1616	19. 133	192 178	18.8	20	217	432
		14/3		1010		1 4 0			196	
250 260	21. 7018 21. 8433	1415	20. 1914 20. 3445	1531	19.505 19.672	167	19.0 19.2	06	182	450 468
270	21.9792	1359	20.4906	1461	19.829	157	19.3	75	169	486
280	ವಿವಿ. IUUU .	1306 1263	20.0002	1396 1339	19.978	$149 \\ 142$	19.5	UU	158 150	504
290		1218	20.7641	1287	20. 120	136	19.6		142	522
300	22. 3579	1179	20.8928	1239	20. 2555		19.8		136	540
310 320	22.4758	1142	21. 0167 21. 1362	1195	20. 3855 20. 5103	1248	19.9 20.0	0 I	130	558 576
330	22.7008	1108 1076	21. 2518	1156 1119	20. 6307	1204 1161	20. 2	16	125 119	594
340	99 0004	1048	21. 3637	1087	20.7468	1126	20.3		117	612
350	22.9132	1010	21.4724	1053	20.8594	1087	20.4	516	1120	630
360	23. UI3I	992	21.0111	1025	20.9681		20.5	636	1005	648
370 380	23. 1143 23. 2112	969	21. 6802 21. 7799	997	21. 0736 21. 1763	1027	20.6 20.7	773	1052	666 684
390	23. 3056	$944 \\ 924$	21.8771	$972 \\ 948$	21. 2760		20.8		1021 995	702
400	23. 3980		21.9719		21. 3733		20.9	789		720
410	23.4884	$904 \\ 882$	22.0645	926 904	21.4680		21.0	756	$967 \\ 943$	738
420 430	23. 5766	866	22. 1549	883	21. 5604	903	21. 1 21. 2		920	756 774
440	23. 6632 23. 7479	847	22. 2432 22. 3296	864	21. 6507 21. 7387	880	21. 2		898	792
4.5.0		831		849		864			878	
450	23.8310		22. 4145		21.8251		21.4	395		810

			Pres	ssure				
	10 atm	40 atm		70 atm	100	0 atm		
T								${ m T}$
$^{o_{\mathrm{K}}}$								$^{\rm o}{ m R}$
450	23. 8310	815 22. 414		21.8251	846 21.	4395	860	810
460 470	23. 9125	$800 \begin{array}{c} 22.4973 \\ 0.00077 \end{array}$	813	21. 9097	$827 \frac{21}{21}$	5255	840	828
480	04 0700	784 22.5786 $772 22.6585$					823 80 7	846 864
490	04 1401	758 22.7370	769	00 1 = 50		TTOE '	792	882
500	24. 2239	746 22.8139		22. 2311		8517	777	900
510 520		$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , ,,,,,,		100		763	918 936
530	24. 4439 ·	$\frac{710}{710}$ 23.0369	719	22. 4571	728 22.	0805	748 736	954
540		699 23.1088	708		715 22.		724	972
550 560		689 23. 1796	, 000		OT		712	990
570		678 23. 2492 668 23. 3178					699 689	$1008 \\ 1026$
580	24. 7883	660 23.3854	665	22.8094	672 22.	4365	679	1044
590	24.8543	650 23. 4519	657	22. 8766	663 ²² .	5044	668	1062
600	24. 9193	641 23.5176		22.9429		5712	659	1080
610 620	25 0466	632 23.3043 23.6460	637	23.0001	$643 \frac{22}{22}$	7019	348	1098 1116
630	25. 1089	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030	23.1359	$\frac{635}{636}$ $\frac{22}{2}$	7658	639 631	1134
640		609 23.7710	614		618		623	1152
650	25. 2314	599 23.8324		23. 2603		8912	313	1170
660 670	25. 2513 25. 2506	$593 \frac{23.8928}{23.0526}$	597	23.3411	601 23	. 90 <i>2</i> 0 . 0130	305	1188 1206
680	25. 4091	$\frac{565}{578}$ 24. 0114	502	23. 4406	$\frac{594}{597}$ 23.	0727	597 591	1224
690		570 24.0697	575		578 ²³ .		582	1242
700	25. 5241	565 24. 1272		23. 5571		1900	576	1260
710 720	25 6364	$558 \qquad \begin{array}{c} 24.1840 \\ 24.2401 \end{array}$	561	23. 6708	$564 \begin{array}{cc} 43. \\ 23. \end{array}$	2044	568	$1278 \\ 1296$
730	25.6915	24. 2956	540	23.7265	55 <i>i</i> 23.	3605	561 555	1314
740		540 539 24. 3505	542		545 ²³ .		548	1332
750		533 24.4047	11.10		000		542	1350
760 770		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	JUL		002		536	1368 1386
780	25.9583	516 24. 5638	519	23.9962	$\frac{520}{520}$ $\frac{23}{5}$	6316	530 523	1404
790		$\frac{24.6157}{511}$	513		517 ²³ .		518	1422
800	26.0610	24.6670)	24.0999	23.	7357		1440

Table 9.22/2 Entropy of Molecular Oxygen

	Pressure					
	10 atm	40 atm	70 atm	100 atm		
\mathbf{T}					T	
$^{\rm o}{ m K}$					\circ_{R}	
800 850 9 00 950 1000	26. 0610 26. 3085 26. 5440 26. 7686 26. 9833 2055	24. 6670 24. 9157 25. 1521 25. 3773 25. 5926 25. 5926	24.0999 24.3495 24.5869 24.8127 25.0287 2496 2374 2258 2160 2065	$\begin{array}{c} 23.7357 \\ 23.9864 \\ 24.2246 \\ 24.4513 \\ 24.6678 \\ 2070 \end{array}$	1440 1530 1620 1710 1800	
1050 1100 1150 1200 1250	27. 1888 27. 3859 1971 27. 5754 1895 27. 7576 1822 27. 9333 1696	25. 7986 25. 9963 1977 26. 1861 1898 26. 3685 1761 26. 5446 1698	25. 2352 25. 4334 1982 25. 6236 1902 25. 8064 1763 25. 9827 1700	24. 8748 25. 0733 1985 25. 2640 1907 25. 4471 1766 25. 6237 1702	1890 1980 2070 2160 2250	
1300 1350 1400 1450 1500	28.1029 1638 $28.2667 1585$ $28.4252 1536$ $28.5788 1488$ $28.7276 1445$	26.7144 1641 26.8785 1587 27.0372 1538 27.1910 1489 27.3399 1446	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25. 7939 1646 25. 9585 1591 26. 1176 1540 26. 2716 1493 26. 4209 1450	2340 2430 2520 2610 2700	
1550 1600 1650 1700 1750	28. 8721 29. 0125 1364 29. 1489 1330 29. 2819 1294 29. 4113 1262	$\begin{array}{c} 27.\ 4845 \\ 27.\ 6250 \\ 1366 \\ 27.\ 7616 \\ 27.\ 8946 \\ 28.\ 0241 \\ 1295 \\ 1264 \end{array}$	$ \begin{array}{c} 26.9237 \\ 27.0644 \\ 27.2011 \\ 27.3342 \\ 27.4638 \\ 1264 \end{array} $	26. 5659 26. 7067 1367 26. 8434 26. 9766 1297 27. 1063	2790 2880 2970 3060 3150	
1800 1850 1900 1950 2000	29.5375 29.6608 1233 29.7810 1175 29.8985 1148 30.0133 1124	28.1505 28.2738 1233 28.3941 1175 28.5116 1149 1125	27. 5902 27. 7136 1203 27. 8339 1176 27. 9515 1149 1125	$\begin{array}{c} 27.\ 2328 \\ 27.\ 3563 \\ 1204 \\ 27.\ 4767 \\ 1177 \\ 27.\ 5944 \\ 1150 \\ 1125 \end{array}$	3240 3330 3420 3510 3600	
2050 2100 2150 2200 2250	30.1257 30.2358 1077 30.3435 1056 30.4491 1035 30.5526 1015	28. 7390 1100 28. 8490 1078 28. 9568 1057 29. 0625 1035 29. 1660 1015	28. 1789 1101 $28. 2890 1079$ $28. 3969 1056$ $28. 5025 1036$ $28. 6061 1016$	$\begin{array}{c} 27.8219 & 1101 \\ 27.9320 & 1079 \\ 28.0399 & 1057 \\ 28.1456 & 1036 \\ 28.2492 & 1016 \end{array}$	3690 3780 3870 3960 4050	
2300	30.6541	29. 2675	28.7077	28. 3508	4140	

Table 9. 22/2 Entropy of Molecular Oxygen

S/R

				Pressu	are				
T ,	10 atm		40 atm	and the second s	70 atm		100 atm		Т
oK.									$^{\rm o}{ m R}$
2300 2350 2400 2450 2500	30. 6541 30. 7538 30. 8516 30. 9477 31. 0422	997 978 961 945 929	29. 2675 29. 3673 29. 4651 29. 5613 29. 6558	998 978 962 945 928	28. 7077 28. 8074 28. 9053 29. 0015 29. 0960	997 979 962 945 929	28. 3508 28. 4506 28. 5485 28. 6447 28. 7393	998 979 962 946 929	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	31. 1351 31. 2263 31. 3161 31. 4045 31. 4914	912 898 884 869 856	29. 7486 29. 8399 29. 9297 30. 0181 30. 1050	913 898 884 869 857	29. 1889 29. 2802 29. 3700 29. 4585 29. 5454	913 898 885 869 856	28. 8322 28. 9235 29. 0133 29. 1018 29. 1887	913 898 885 869 857	4590 4680 4770 4860 4950
2800 2850 2900 2950 3000	31.5770 31.6614 31.7444 31.8263 31.9070	844 830 819 807	30. 1907 30. 2751 30. 3581 30. 4400 30. 5207	844 830 819 807	29.6310 29.7154 29.7985 29.8805 29.9612	844 831 820 807	29. 2744 29. 3588 29. 4419 29. 5239 29. 6047	844 831 820 808	5040 5130 5220 5310 5400

Table 9.22 Enthalpy and Entropy of Oxygen

The Property Tabulated

The enthalpy and entropy of oxygen are tabulated in the dimensionless forms $(H-E_0^0)/RT_0$ and S/R as functions of temperature in ${}^{\rm O}{\rm K}$ and ${}^{\rm O}{\rm R}$ and of pressure in atmospheres. T_0 is the temperature of the ice point, 273.16 ${}^{\rm O}{\rm K}$, and E_0^0 is the enthalpy of the ideal gas at ${}^{\rm O}{\rm K}$.

The values tabulated were obtained by combining values for the ideal gas from Table 9.10 of this series with differences between the real and the ideal gas based on thermodynamic formulas and the virial coefficients used for Table 9.20 of this series.

The effect of dissociation is not included in this table, but its magnitude may be estimated using formulas given in reference 1. Graphs are included with this table showing the general magnitude of the effect of dissociation. If other constituents containing oxygen are present, the effects are more complicated.

Reliability of the Tables

The accuracy of the tabulated values varies with temperature and pressure. Disregarding the neglected effect of dissociation at the elevated temperatures, the error in the difference between real and ideal properties is thought to be somewhat less than 5% in the range of moderate pressure, but may be as great as 10% at the highest pressure.

Interpolation

Linear interpolation between successive tabulated temperatures at the same pressure is in general adequate for both entropy and enthalpy. Linear interpolation in the pressure direction is similarly valid in the enthalpy table. Linear interpolation is also in general adequate in the entropy table, provided the independent variable is the logarithm of the pressure rather than the pressure itself. The entries have, however, been spaced to permit Lagrangian interpolation directly in pressure.

Conversion Factors

The functions in this table have been expressed in dimensionless form. In order that they may be easily converted to any system of units, conversion factors are listed for the frequently used units.

Conversion Factors

To convert tabulated value of	To Enthalpy with the Dimensions Indicated Below	Multiply by
(H - E ₀ ^o)/RT ₀	cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹	542.821 19.3754 81.0669 976.437 34.8528

To convert tabu-	To the Dimensions	Multiply
lated value of	Indicated Below	by
S/R	cal mole ^{-1 o} K ⁻¹ (or oC ⁻¹)	1.98719
	cal g ⁻¹ oK ⁻¹ (or oC ⁻¹)	0.0620996
	joules g ⁻¹ oK ⁻¹ (or oC ⁻¹)	0.259825
Management of the control of the con	Btu (lb mole) ^{-loR-l} (or ^o F ^{-l})	1.98588
	Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹)	0.0620587

REFERENCE

[1] H. W. Woolley, The Effect of Dissociation on the Thermodynamic Properties of Pure Diatomic Gases, Report No. 1884, National Bureau of Standards, October 15, 1952.

The NBS - NACA Tables of Thermal Properties of Gases Table 9.24 Specific Heat of Molecular Oxygen Cp/R

by

Harold W. Woolley

Pressure						
	. 01 atm	. 1 atm	. 4 atm	. 7 atm	1 atm	
T						T
						0
οK						OR
1.00	2 5024	0 5117	2 5450			100
100 110	3. 5024 -3 3. 5021 -2	3. 5117 ₋₂₇ 3. 5090 ₋₁₇	3. 5459 - 126 3. 5333 - 74	3. 5597 -145		180 19 8 .
120	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 5073 ₋₁₇ 3. 5073 ₋₁₃		3. 5452 _94	3.566_15	216
130	3. 5017 -0	3. 5060 _8	3. 5259 -52 3. 5207 -34	3.5358 -63	3. 5513 -94	234
140	3. 5017 -1	3.5052 -6	3.5173 -28	3.5295 -50	3. 5419 -72	252
	-1	-0	- 20	00	. 2	
150	3.5016 +2	3.5046 -3	3.5145 -19	3. 5245 -34	3. 5347 _ 52	270
160	3. 5018 1	3.5043 -2	3. 5126 -14	3. 5211 -27	3. 5295 _{- 39}	288
170	3. 5019	3.5041 -1	3. 5112 210	3.5184 -20	3. 5256 _ 30	306
180	3. 5022 ₅	3.5040 +3	3.5102 -6	3.5164 -13	3. 5226 -21	324
190	3. 5027 ₇	3.5043 5	3.5096 -1	3.5151 -8	3. 5205 -15	342
200	3.5034 ₉	3.5048 8	3. 5095 ₊₃	3.5143 -4	3.5190 58	360
210	3. 5043	3. 5056 12	3. 5098	3.5139	3.5182 -1	378
220	3. 5057	3.5068 16	3. 5106 ₁₁	3.5143 ₈	3. 5181	396
230	3.5074	3.5084 21	3. 5117	3. 5151	3. 5185 11	414
240	3. 5096 27	3.5105 26			3. 5196 18	432
250	3. 5123	3.5131 32			3. 5214 24	450
260	3.5156 38	$3.5163 \begin{array}{c} 32 \\ 38 \end{array}$			3. 5238 31	468
270	3.5194 45	3. 5201 44			3. 5269 38	486
280	3. 5239 50	3.5245 49			3.5307 ₄₅	504
290	-3. 5289 ₅₆	3.5294 56			$3.5352 \frac{1}{51}$	522
300	2 5245	3. 5350			3.5403 ₅₉	540
310	3. 5408 69	3. 5413 68			3. 5462 65	558
320	3. 5477 75	3. 5481 75			$3.5527 \frac{03}{72}$	576
330	3.5552 79	3.5556 79			3.5599 76	594
340	3. 5631 86	3.5635 86			3. 5675 84	612
350	3.5717 90	3. 5721 90			3.5759 87	630
360	3.5807 95	3. 5811 95			3, 5846 93	648
370	3.5902 100	3.5906			3 5939 97	666 684
380 390	$\begin{array}{c} 3.6002 & 100 \\ 3.6105 & 103 \\ 3.6105 & 107 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3. 6036 101 3. 6137 106	702
					100	
400	3.6212 110	3.6215 110			3.6243 108	720 738
$\begin{array}{c} 410 \\ 420 \end{array}$	3. 6322 113 3. 6435 115	3. 6325 113 3. 6438 115			3. 6351 111 3. 6462 114	756
430	3. 6550 ₁₁₈	3.6553 117			3.6576 117	774
440	3. 6668 119	3.6670_{119}^{117}		V	3.6693_{118}^{117}	792
450	3. 6787	3. 6789			3.6811	810

			-		
_	. 01 atm	. 1 atm	1 atm	10 atm	<i>m</i>
T ^o K					o _R
450 460 470 480 490	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.\ 6811\ 118\\ 3.\ 6929\ 121\\ 3.\ 7050\ 121\\ 3.\ 7171\ 122\\ 3.\ 7293\ 122 \end{array}$	$\begin{array}{cccc} 3.7022 & 108 \\ 3.7130 & 112 \\ 3.7242 & 112 \\ 3.7354 & 114 \\ 3.7468 & 114 \end{array}$	810 828 846 864 882
500 510 520 530 540	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7398124 3.7522123 3.7645122 3.7767122 3.7889121	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7582 115 3.7697 115 3.7812 115 3.7927 116 3.8043 114	900 918 936 954 972
550 560 570 580 590	3.8008 121 3.8129 119 3.8248 118 3.8366 117 3.8483 116	3.8010 120 3.8130 119 3.8249 118 3.8367 117 3.8484 116	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3.8157 115 3.8272 114 3.8386 113 3.8499 112 3.8611 111	990 1008 1026 1044 1062
600 610 620 630 640	3. 8599 114 3. 8713 113 3. 8826 111 3. 8937 110 3. 9047 108	3.8600 114 3.8714 113 3.8827 111 3.8938 110 3.9048 108	$3.8611 \ 114 \ 3.8725 \ 112 \ 3.8837 \ 111 \ 3.8948 \ 110 \ 3 \ 9058 \ 107$	3.8722 109 3.8831 109 3.8940 107 3.9047 106 3.9153 104	1080 1098 1116 1134 1152
650 660 670 680 690	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$3.9165 \ 107$ $3.9272 \ 105$ $3.9377 \ 102$ $3.9479 \ 101$ $3.9580 \ 101$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1170 1188 1206 1224 1242
700 710 720 730 740	3.9672 98 3.9770 96 3.9866 95 3.9961 93 4.0054 91	3.9673 98 3.9771 95 3.9866 96 3.9962 93 4.0055 91	3.9681 97 3.9778 96 3.9874 95 3.9969 93 4.0062 90	3 9759 95 3 9854 94 3 9948 92 4 0040 91 4 0131 88	1260 1278 1296 1314 1332
750 760 770 780 790	4. 0145 90 4. 0235 88 4. 0323 86 4. 0409 85 4. 0494 83	4. 0146 90 4. 0236 87 4. 0323 87 4. 0410 85 4. 0495 83	$egin{array}{cccc} 4.\ 0152 & 90 \ 4.\ 0242 & 88 \ 4.\ 0330 & 86 \ 4.\ 0416 & 85 \ 4.\ 0501 & 82 \ \end{array}$	4. 0219 4. 0307 4. 0393 4. 0477 4. 0560 81	1350 1368 1386 1404 1422
800	4. 0577	4.0578	4. 0583	4.0641	1440

		Pres	sure		
T OK	. 01 atm	. 1 atm	1 atm	10 atm	T o _R
800	4. 0577 393	4. 0578 393	4. 0583 392	4. 0641 385	1440
850	4. 0970 357	4. 0971 356	4. 0975 357	4. 1026 350	1530
900	4. 1327 325	4. 1327 325	4. 1332 324	4. 1376 320	1620
950	4. 1652 296	4. 1652 296	4. 1656 296	4. 1696 291	1710
1000	4. 1948 271	4. 1948 271	4. 1952 270	4. 1987 267	1800
1050	4. 2219 250	4. 2219 250	4. 2222 250	4. 2254 246	1890
1100	4. 2469 229	4. 2469 229	4. 2472 229	4. 2500 226	1980
1150	4. 2698 214	4. 2698 214	4. 2701 214	4. 2726 211	2070
1200	4. 2912 200	4. 2912 200	4. 2915 199	4. 2937 198	2160
1250	4. 3112 188	4. 3112 188	4. 3114 188	4. 3135 186	2250
1300	4. 3300 179	4. 3300 179	4. 3302 179	4. 3321 177	2340
1350	4. 3479 172	4. 3479 172	4. 3481 172	4. 3498 171	2430
1400	4. 3651 164	4. 3651 164	4. 3653 164	4. 3669 162	2520
1450	4. 3815 160	4. 3815 160	4. 3817 159	4. 3831 159	2610
1500	4. 3975 155	4. 3975 155	4. 3976 155	4. 3990 154	2700
1550	4. 4130 152	4. 4130 152	4. 4131 152	4. 4144 151	2790
1600	4. 4282 149	4. 4282 149	4. 4283 149	4. 4295 148	2880
1650	4. 4431 147	4. 4431 147	4. 4432 147	4. 4443 146	2970
1700	4. 4578 146	4. 4578 146	4. 4579 146	4. 4589 145	3060
1750	4. 4724 144	4. 4724 144	4. 4725 144	4. 4734 144	3150
1800	4. 4868 143	4. 4868 143	4. 4869 143	4. 4878 142	3240
1850	4. 5011 142	4. 5011 142	4. 5012 142	4. 5020 141	3330
1900	4. 5153 142	4. 5153 142	4. 5154 142	4. 5161 142	3420
1950	4. 5295 141	4. 5295 141	4. 5296 141	4. 5303 140	3510
2000	4. 5436 140	4. 5436 140	4. 5437 140	4. 5443 140	3600
2050 2100 2150 2200 2250	4. 5576 139 4. 5715 139 4. 5854 139 4. 5993 137 4 6130 137	4. 5576 4. 5715 139 4. 5854 139 4. 5993 137 4. 6130 137	4.5577 139 4.5716 139 4.5855 138 4.5993 137 4.6130 138	4.5583 138 4.5721 139 4.5860 139 4.5999 136 4.6135 137	3690 3780 3870 3960 4050
2300	4.6267	4. 6267	4.6268	4.6272	4140

Table 9.24 Specific Heat of Molecular Oxygen

 C_p/R

	Pressure						
	. 01 atm	. 1 atm	1 atm	10 atm			
${f T}$					\mathbf{T}		
° K					$^{\rm o}$ R		
2300 2350 2400 2450 2500	$\begin{array}{c} 4.\ 6267 \\ 4.\ 6404 \\ 136 \\ 4.\ 6540 \\ 4.\ 6674 \\ 4.\ 6808 \\ 132 \end{array}$	4. 6267 4. 6404 136 4. 6540 134 4. 6674 134 4. 6808	4. 6268 136 4. 6404 136 4. 6540 134 4. 6674 134 4. 6808 132	4. 6272 4. 6409 135 4. 6544 134 4. 6678 134 4. 6812 132	4140 4230 4320 4410 4500		
2550 2600 2650 2700 2750	$\begin{array}{c} 4.\ 6940 \\ 4.\ 7071 \\ 129 \\ 4.\ 7200 \\ 128 \\ 4.\ 7328 \\ 4.\ 7454 \\ 125 \end{array}$	$\begin{array}{c} 4.6940 \\ 4.7071 \\ 129 \\ 4.7200 \\ 128 \\ 4.7328 \\ 126 \\ 4.7454 \\ 125 \end{array}$	$\begin{array}{c} 4.\ 6940 \\ 4.\ 7071 \\ 129 \\ 4.\ 7200 \\ 128 \\ 4.\ 7328 \\ 126 \\ 4.\ 7454 \\ 125 \end{array}$	$\begin{array}{c} 4.\ 6944 \\ 4.\ 7074 \\ 129 \\ 4.\ 7203 \\ 128 \\ 4.\ 7331 \\ 126 \\ 4.\ 7457 \\ 125 \end{array}$	4590 4680 4770 4860 4950		
2800 2850 2900 2950 3000	$\begin{array}{ccccc} 4.7579 & 124 \\ 4.7703 & 121 \\ 4.7824 & 120 \\ 4.7944 & 118 \\ 4.8062 & \end{array}$	$\begin{array}{ccccc} 4.7579 & 124 \\ 4.7703 & 121 \\ 4.7824 & 120 \\ 4.7944 & 118 \\ 4.8062 & \end{array}$	$\begin{array}{ccccc} 4.7579 & 124 \\ 4.7703 & 121 \\ 4.7824 & 120 \\ 4.7944 & 118 \\ 4.8062 & \end{array}$	$\begin{array}{ccccc} 4.7582 & 124 \\ 4.7706 & 120 \\ 4.7826 & 120 \\ 4.7946 & 118 \\ 4.8064 & \end{array}$	5040 5130 5220 5310 5400		

	Pressure					
	1 atm	.4 atm	7 atm	10 atm		
\mathbf{T}				٠.	${f T}$	
oK					$^{\mathrm{o}}\mathrm{R}$	
1,849						
	e =					
120	3. 566 _{−15}				216	
130	3. 5513 _94	*F.***	25		234	
140	3.5419_{-72}	3.684 - 38			252	
150	3.5347 -52	3. 6461-255	3. 781 -56	3.951-104	270	
160	3. 5295 _{- 39}	3. 6206 ₋₁₈₈	3. 7252 ₋₃₈₉	3.847	288	
170	3. 5256 - 30	3.6018 149	3.6863_201	3. 780 -46	306 324	
180 190	$ \begin{array}{r} 3.5226 \\ -21 \\ 3.5205 \\ -15 \end{array} $	3. 5875 -109 3. 5766 -85	3. 6579 ₋₂₁₆ 3. 6363 ₋₁₆₇	3. 7343-342 3. 7001 -262	342	
100	3. 5205 ₋₁₅	0.000 -85	0. 0000-167	0. 1001 -262	0.1=	
200	3. 5190 - 18	3. 5681 -68	3.6196 -132	3. 6739 -205	360	
210	3.6182 -1	3. 5613 -48	3.6064 -102	3. 6534 -160	378	
220 230	3.5181 + 4 $3.5185 + 11$	3.5565 ₋₃₉ 3.5526 ₋₂₂	3. 5962 -80 3. 5882 -61	3. 6374 ₋₁₂₈ 3. 6246 ₋₁₀₀	$\frac{396}{414}$	
240	3. 5196 18	3. 5504 -16	3. 5821 ₋₄₃	3.6146 -75	432	
050		-10		, ,	450	
250 260	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3.5488}{3.5491} + \frac{3}{10}$	$\begin{array}{c} 3.5778 \\ 3.5751 \end{array}$	3. 6071 3. 6016 - 55	450 468	
270	3 5260 ³¹	3 5501 10	3 5736 ⁻¹⁰	3 5977 - 39	486	
280	$3.5307 \frac{36}{45}$	3. 5520 19 3. 5547 27	$3.5735 \begin{array}{c} -1 \\ 10 \end{array}$	$3.5955 \begin{array}{c} -22 \\ -9 \end{array}$	504	
290	3.5352 51	$3.5547 \frac{21}{37}$	$3.5745 \begin{array}{c} 10 \\ 21 \end{array}$	3.5947 + 4	522	
300	3.5403 50	3. 5584	3. 5766	3. 5951	540	
310	3 5462 65	3. 5629 45	3. 5797 31 3. 5797 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	558	
320	3. 5527 ₇₉	3. 5681 61	3.5838 ₄₀	3. 5996 30	576	
330 340	3. 5599 76	3.5742 68	3 5887 58	3.0035 47	594 612	
340	3. 3073 84	3. 3010 74	3. 3343 65	5.0082 56	012	
350	3. 5759 87	3. 5884 80	3.6010 72	3.6138 63	630	
360	3.5846 93 3.5939 97	3. 5964 85	3. 6082 78	3. 6201 70 3. 6271 78	648 666	
370 380	0 0000	3.6049 91 3.6140 95	3. 6160 84 3. 6244 89	0 0040	684	
390	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6140 95 3.6235 ₁₀₀ .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 6349 83 3. 6432 88	702	
400	3 6243	2 6225	2 6427	3 6520	720	
410	3. 6351 108	$3.6438 \begin{array}{c} 103 \\ 107 \end{array}$	3. 6526 ₁₀₂	3. 6614 96	738	
420	3.6462_{114}^{111}	3.6545_{109}^{100}	3. 6628 104	3. 6710 ₁₀₁	756	
430	3. 6576 117	$\frac{3.6654}{0.000}$ 113	3. 6732 109	3. 6811 105	774 792	
440	3. 6693 118	3. 6767 114	3. 6841 110	3. 6916 106	194	
450	3. 6811	3. 6881	3.6951	3.7022	810	

Pressure					
$_{o_{K}}^{T}$	10 atm	40 atm	70 atm	100 atm	T o _R
150 160	3. 951 ₋₁₀₄ 3. 847 ₋₆₇				270
170 180 190	3. 780 -46 3. 7343 -342 3. 7001 -262	5.7 -7 5.03 -38 4.65 -23	6.5 _8		306 324 342
200	3.6739_205	4.415-162	5. 66 -50	7.6 -11	360
210 220	$\frac{3.6534}{3.6374}$	4.253_{-116} 4.137_{-88}	5. 16 -33 4. 831 ₋₂₃₇	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	378 396
230 240	3. 6246 ₋₁₀₀ 3. 6146 ₋₇₅	$\begin{array}{r} 4.049 \\ -67 \\ 3.982 \\ -52 \end{array}$	4. 594 -168 4. 426 -125	5. 27 -32 4. 95 -24	414 432
2 50 260	3. 6071 3. 6016	3. 9296 3. 8874 -422	4. 301 4. 204 -97	4.710 4.537 -173	450 468
270 280	3. 5977 -39 3. 5955 -22	3. 8535 -339 3. 8263 -272 3. 8263 -232	4. 129 -75 4. 069 -60	$\begin{array}{cccc} 4. & 407 & -130 \\ 4. & 307 & -100 \\ 4. & 307 & 70 \end{array}$	486 504
290	3.5947 + 4	3. 8041 ₋₁₇₉	4. 020 -49	4. 229 -78 -64	522
300 310	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 7862 ₋₁₄₁ 3. 7721 ₋₁₁₁	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4. 165 4. 113 -52 -41	540 558
320 . 330	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7610_{-84} 3.7526_{-60}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	576 594
340	3.6082 56	3 7466 -41	3.884 -15	4.009 -23	612
350 360	$ \begin{array}{cccc} 3.6138 & 63 \\ 3.6201 & 70 \end{array} $	$ \begin{array}{rrr} 3.7425 & -22 \\ 3.7403 & -7 \end{array} $	3. 869 -11 3. 858 -8	3. 986 3. 967 -15	630 648
370 380	3. 6271 78 3. 6349 83	$ \begin{array}{c} 3.7396 \\ 37404 \\ \hline 18 \end{array} $	3. 850 -6 3. 844 -5	3. 952 3. 939 -10	666 684
390 .	3.6432 88	3.7422 31	3. 839 -3	3. 929 _8	702
400 410	$\begin{array}{ccc} 3.6520 & 94 \\ 3.6614 & 96 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 921 -5 3. 916 -5	$\begin{array}{c} 720 \\ 738 \end{array}$
420 430	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7540 56 3.7596 64	3. 835 + 2 3. 837 2	3. 911 3. 909 -1	756 774
440	3.6916 106	3.7660 69	3.839 3	3. 908 0	792
450	3.7022	3. 7729	3.842	3. 908	810

Table 9.24 Specific Heat of Molecular Oxygen

		Press	ure		b,
Т	10 atm	40 atm	70 atm	100 atm	m
o _K					o _R
450 460 470 480 490	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 7729 73 3. 7802 79 3. 7881 81 3. 7962 86 3. 8048 86	3. 8420 38 3. 8458 47 3. 8505 53 3. 8558 57 3. 8615 62	3.908 0 3.908 2 3.910 3 3.913 3 3.916 4	810 828 846 864 882
500 510 520 530 540	$3.7582 115 \ 3.7697 115 \ 3.7812 115 \ 3.7927 116 \ 3.8043 114$	3. 8134 91 3. 8225 93 3. 8318 93 3. 8411 96 3. 8507 95	3. 8677 3. 8744 70 3. 8814 72 3. 8886 76 3. 8962 76	3. 920 4 3. 924 5 3. 929 5 3. 934 6 3. 940 6	900 918 936 954 972
550 560 570 580 590	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3.8602 97 3.8699 97 3.8796 96 3.8892 97 3.8989 98	3. 9038 3. 9118 3. 9198 3. 9280 3. 9362 82	3. 946 6 3. 952 8 3. 960 7 3. 967 6 3. 973 7	990 1008 1026 1044 1062
600 610 620 630 640	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3. 9087 3. 9183 95 3. 9278 96 3. 9374 94 3. 9468 94	3. 9445 3. 9528 3. 9611 3. 9694 3. 9778 83	3.980 6 3.986 8 3.994 7 4.001 8 4.009 7	1080 1098 1116 1134 1152
650 660 670 680 690	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3.9562 93 3.9655 92 3.9747 90 3.9837 89 3.9926 90	3. 9861 83 3. 9944 82 4. 0026 81 4. 0107 80 4. 0187 79	4. 016 8 4. 024 7 4. 031 7 4. 038 7 4. 045 7	1170 1188 1206 1224 1242
700 710 720 730 740	$egin{array}{cccccccccccccccccccccccccccccccccccc$	4. 0016 4. 0103 4. 0188 4. 0273 4. 0357 84	4. 0266 4. 0344 78 4. 0422 78 4. 0500 76 4. 0576	4. 052 7 4. 059 7 4. 066 7 4. 073 7 4. 080 6	1260 1278 1296 1314 1332
750 760 770 780 790	4. 0219 4. 0307 4. 0393 4. 0477 83 4. 0560 81	4. 0439 4. 0520 80 4. 0600 77 4. 0677 78 4. 0755	$\begin{array}{cccc} 4.\ 0651 & 75 \\ 4.\ 0726 & 74 \\ 4.\ 0800 & 72 \\ 4.\ 0872 & 71 \\ 4.\ 0943 & 74 \end{array}$	4. 086 4. 094 7 4. 101 6 4. 107 7 4. 114 6	1350 1368 1386 1404 1422
800	4. 0641	4. 0830	. 4. 1017	4.120	1440

	Pressure					
m	10 atm	40 atm	70 atm	100 atm	Т	
T						
o K					OR	
800	4. 0641	4. 0830	4. 1017	4. 120	1440	
850	4. 1026	4.1190	4.1354	4. 151 29	1530	
900	4.1376	4. 1041 302	4. 1004	4. 180 27	1620 1710	
950 1000	4.1696 291 4.1987 267	$4.1823 \begin{array}{c} 302 \\ 278 \\ 4.2101 \begin{array}{c} 278 \\ 254 \end{array}$	$4.1950 \begin{array}{l} 263 \\ 4.2213 \begin{array}{l} 263 \\ 242 \end{array}$	4.207 25 4.232 25	1800	
	4. 1987 267	4. 2101 254	4. 2213 242	23		
1050	4. 2254	4. 2355	4. 2455	4. 255	1890	
1100 11 5 0	4.2500^{240} 4.2726^{226}	4.2591 217 4.2808 217	$4.2681 \begin{array}{c} 220 \\ 208 \\ 4.2889 \end{array}$	$4.277 \begin{array}{c} 22 \\ 4.297 \end{array}$	1980 2070	
1200	4.2937^{-211}	4.3012^{-204}	4, 3085 196	4.316	2160	
1250	$4.3135 \begin{array}{c} 198 \\ 186 \end{array}$	$4.3202 \begin{array}{c} 190 \\ 180 \end{array}$	$4.\ 3270\ {}^{185}_{172}$	4. 334 18	2250	
1.000					0040	
1300 1350	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.3382_{173} 4.3555_{166}	$\frac{4.3442}{4.3608}$ $\frac{166}{162}$	$\begin{array}{cccc} 4.350 & 16 \\ 4.366 & 16 \end{array}$	2340 2430	
1400	4 2660 111	4 2721	4 2771	4 222	2520	
1450	4. 3831 159	4. 3879 155	4. 3925 151	4. 397 15	2610	
1500	4. 3990_{154}^{139}	$4.\ 4034 \ 150$	$4.4076\frac{131}{148}$	4. 412 13	2700	
1550	4.4144	4.4184	4. 4224	4. 426	2790	
1600	4, 4295 151	4, 4332 148	4, 4369 145	4. 440 14	2880	
1650	4. 4443 146	4. 4477 144	4.4511142	$4.454 \begin{array}{c} 14 \\ 4.460 \end{array}$	2970	
1700	4.4589	4. 4621	4. 4652	4.408	3060	
1750	4.4734_{144}^{143}	4.4764141	4.4794139	4.48214	3150	
1800	4. 4878	4. 4905	4. 4933	4.496	3240	
1850	$4.5020_{-1.41}$	4. 5047	4. 5071	4.510	3330	
1900 1950	$4.5161 \frac{141}{142}$ $4.5303 \frac{142}{142}$	4. 5185	4. 5209 138 4. 5347 138	4.023	3420	
2000	4. 5443 140	4. 5325 140 4. 5464 139	4. 5347	$4.537 \begin{array}{c} 14 \\ 4.551 \end{array}$	3510 3600	
	140	138	137	13		
2050	$\frac{4.5583}{4.5721}$ 138	$\frac{4.5602}{4.5730}$ 137	4.5622	4.564	3690	
$2100 \\ 2150$	4.5721 139 4.5860 139	4. 5739 137 4. 5878 139	4, 5758 136 4, 5896 138	4. 578 13 4. 591 13	3780 3870	
2200	4, 5999 139	4, 6016 138	4.6032^{-136}	4 605 14	3960	
2250	$4.6135 \begin{array}{c} 136 \\ 137 \end{array}$	$4.6151 \frac{135}{136}$	$4.6166 \frac{134}{135}$	$\frac{1.668}{4.618} \frac{13}{13}$	4050	
2300	4.6272	4. 6287	4.6301	4. 631	4140	

Table 9.24 Specific Heat of Molecular Oxygen C_D/R

Table 3. 24 Specific fleat of Molecular Oxygen							
	Pressure						
	10 atm	40 atm	70 atm	100 atm			
T					T		
°K					$^{\circ}{ m R}$		
2300	4.6272_{137}	4.6287 ₁₃₆	4.6301 135	4.631 ₁₄	4140		
2350	4. 6409 135	4.6423_{135}^{130}	4.6436_{134}^{133}	4.645_{13}^{14}	4230		
2400	4. 6544 134	4.6558_{133}^{133}	4.6570_{132}^{131}	4.658_{13}^{13}	4320		
2450	4. 6678 134	4. 6691 133	4.6702_{133}^{132}	4.67114	4410		
2500	4. 6812 132	4. 6824 131	4. 6835 130	4.685 13	4500		
2550	4. 6944	4. 6955	4.6965 130	4.698 12	4590		
2600	4. 6944 130 4. 7074 129	4. 7085 128	4.7095_{197}	4.698_{12} 4.710_{13}	4680		
2650	4. 7203 128	$4.7213 \stackrel{120}{128}$	$4.7222_{1.97}$	4.723_{13}^{13}	4770		
2700	4. 7331	$4.7341 \stackrel{120}{125}$	4.7349	4.736_{12}^{13}	4860		
2750	$4.7457 \frac{126}{125}$	$4.7466 \begin{array}{c} 123 \\ 124 \end{array}$	$4.7474 \begin{array}{c} 125 \\ 124 \end{array}$	$4.748 \overset{12}{13}$	4950		
2800	4. 7582 124	4.7590 124	4.7598 123	4.761	5040		
2850	4.7706	4.7714	4. 7721 120	4.77312	5130		
2900	4. 7826 120	4 7834	4. 7841 119	4.785	5220		
2950	4. 7946 118	4. 7954 118 4. 8072	4. 7960 117	4. 797 11	5310		
3000	4.8064	4.8072^{-110}	4. 8077	4.808	5400		

Table 9.24 Specific Heat at Constant Pressure of Oxygen

The Property Tabulated

The specific heat of oxygen at constant pressure is tabulated in the dimensionless form Cp/R as a function of temperature in ^OK and ^OR, and of pressure in atmospheres. Values for .4, .7, 4 and 7 atmospheres have been omitted for temperatures at which the values may be obtained by linear interpolation between lower and higher pressures.

The specific heat values were obtained by combining the ideal gas specific heat values from Table 9.10 of this series with differences between real and ideal based on thermodynamic formulas and the virial coefficients used for Table 9.20 of this series.

The effect of dissociation is not included in this table but its magnitude may be estimated with the formulas given in reference [5].

Reliability of the Tables

The accuracy of the tabulated values varies with temperature and pressure. Disregarding the considerable deviation due to dissociation at elevated temperature and low and moderate pressure, the error in Cp - Cp is thought to be somewhat less than 5% in the range of moderate pressure but may be as great as 10% at the highest pressure. Figure 1 gives a comparison between experimental values for the specific heat [1 - 4] and this table. Figure 2 shows the data of Workman [6] for the dependence of specific heat upon pressure at $26^{\circ}C$ and $60^{\circ}C$, with the indications of the present correlation shown as curves for comparison.

Interpolation

The error produced by linear interpolation varies throughout the table but does not in general exceed one eighth of the second difference, so that for most of the table linear interpolation is adequate.

Conversion Factors

The function in the table has been expressed in dimensionless form. In order that it may be easily converted to any system of units, conversion factors are listed for the frequently used units. For other conversion factors see Table 1.30 of this series.

\sim					T-3	
	On	MA	rc	10n	H. 5	ctors
\sim	$\mathbf{v}_{\mathbf{I}}$		10	1011	_ u	

To convert tab - ulated value of	To the dimensions indicated below	Multiply by
C _p /R	cal mole ⁻¹ OK ⁻¹ (or OC ⁻¹)	1.98719
	cal g ⁻¹ OK ⁻¹ (or OC ⁻¹)	0.0620996
Towns and the second se	joules g ⁻¹ oK ⁻¹ (or oC ⁻¹)	0.259825
	Btu (lb mole) ⁻¹ OR ⁻¹ (or OF ⁻¹)	1.98588
	Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹)	0.0620587

REFERENCES

- [1] A. Eucken and K. v. Lüde, Die spezifische Wärme der Gase bei mittleren und hohen Temperaturen. I. Die spezifische Wärme der Gase: Luft, Stickstoff, Sauerstoff, Kohlenoxyd, Kohlensäure, Stickoxydul, und Methan zwischen 0° und 220°C, Z. physik. Chem. B5, 413 (1929).
- [2] P. S. H. Henry, The specific heat of Air, Oxygen, Nitrogen from 20° to 370°C, Proc. Roy. Soc. (London) A. 133, 492(1931).
- [3] W. G. Shilling and J. R. Partington, Measurements of the velocity of sound in air, nitrogen and oxygen with special reference to the temperature coefficients of the molecular heats, Phil. Mag., 6, 920 (1928).
- [4] P. F. Wacker, R. K. Cheney and R. B. Scott, Heat capacities of gaseous oxygen, isobutane and 1-butane from -30° to 90°, J. Research, Nat. Bureau of Standards, 38, 651 (1947). R.P. 1804.

- [5] H. W. Woolley, The effect of dissociation on the thermodynamic properties of pure diatomic gases, Report No. 1884, National Bureau of Standards, Oct. 15, 1952.
- [6] E. J. Workman, The variation of the specific heats(C_p) of oxygen, nitrogen and hydrogen with pressure, Phys. Rev., 37, 1345 (1931).

FIG.I. DEPARTURE OF EXPERIMENTAL SPECIFIC HEAT FROM TABLE 9.24

FIG. 2. DEPENDENCE OF SPECIFIC HEAT UPON PRESSURE

NBS-NACA Tables of Thermal Properties of Gases

Table 9.26 Specific Heat Ratios of Molecular Oxygen

γ

by

Harold W. Woolley

	Pressure						
m	.01 atm	. l atm	1 atm	4 atm	7 atm	10 atm	m
T							Т
°К							$^{\mathrm{o}}\mathrm{R}$
100 120 140 160 180	1.400 1.400 1.400 1.400 1.400	1.402 1.401 1.401 1.401 1.400	1.417 -6 1.411 -3 1.408 -2 1.406	1.450 -15 1.435 - 9 1.426 - 6	1.466 1.448 -18	1.500 1.471 - 29	180 216 252 288 324
200 220 240 260 280	1.400 1.399 1.399 1.398 1.396	1.400 1.400 1.399 1.398 1.396	1.404 1.403 1.402 1.400 1.398	1.420 1.415 1.412 1.408 1.405	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	360 396 432 468 504
300 320 340 360 380	1. 395 1. 393 1. 390 1. 388 1. 385	1.395 1.393 1.390 1.388 1.385	1.396 1.394 1.392 1.389 1.386	1.402 1.399 1.396 1.392 1.389	1.408 1.404 1.400 1.396 1.392	1.414 - 5 1.409 - 4 1.405 - 5 1.400 - 4 1.396 - 5	540 576 612 648 684
400 420 440 460 480	1.382 1.378 1.375 1.372 1.368	1.382 1.378 1.375 1.372 1.368	1.382 1.379 1.376 1.372 1.369	1.385 1.382 1.378 1.374 1.371	1.388 1.384 1.380 1.376 1.373	1.391 1.387 1.383 1.378 1.374	720 756 792 828 864
500 520 540 560 580	1. 365 1. 362 1. 359 1. 356 1. 353	1.365 1.362 1.359 1.355 1.353	1.366 1.362 1.359 1.356 1.353	1.367 1.364 1.360 1.357 1.354	1.369 1.365 1.362 1.358 1.355	1.371 1.367 1.363 1.360 1.356	900 936 972 1008 1044
600 620 640 660 680	1.350 1.347 1.344 1.342 1.339	1. 350 1. 347 1. 344 1. 342 1. 339	1. 350 1. 347 1. 344 1. 342 1. 340	1.351 1.348 1.345 1.343 1.340	1.352 1.349 1.346 1.344 1.341	1.353 1.350 1.347 1.344 1.342	1080 1116 1152 1188 1224
700 720 740 760 780	1.337 1.335 1.333 1.331 1.329	1.337 1.335 1.333 1.331 1.329	1. 337 1. 335 1. 333 1. 331 1. 329	1.338 1.336 1.334 1.332 1.330	1.339 1.336 1.334 1.332 1.330	1.339 1.337 1.335 1.333	1260 1296 1332 1368 1404
800	1.327	1.327	1.327	1.328	1.328	1.329	1440

Pressure							
	01 atm	. l atm	1 atm	4 atm	7 atm	10 atm	
T							Т
$^{\rm o}{ m K}$							$^{\circ}\mathrm{R}$
800 900	1.327 1.319	1.327 1.319	1.327 1.319	1.328 1.320	1.328 1.320	1.329 1.320	1440 1620
1000	1.313	1.313	1.313	1.313	1.314	1.314	1800
1100 1200	1.308 1.304	1.308 1.304	1.308 1.304	1.308 1.304	1.308 1.304	1.309 1.304	1980 2160
1300 1400	1.300 1.297	1.300 1.297	1.300 1.297	1.300 1.297	1.301 1.297	1.301 1.297	2340 2520
1500	1.294	1.294	1.294	1.294	1.294	1.295	2700
1600 1700	1. 292 1. 289	1.292 1.289	1. 292 1. 289	1.292 1.289	1.292 1.289	1.292 1.289	2880 3060
1800 1900 2000 2100 2200	1. 287 1. 285 1. 282 1. 280 1. 278	1. 287 1. 285 1. 282 1. 280 1. 278	1.287 1.284 1.282 1.280 1.278	1. 287 1. 284 1. 282 1. 280 1. 278	1. 287 1. 284 1. 282 1. 280 1. 278	1.287 1.285 1.282 1.280 1.278	3240 3420 3600 3780 3960
2300 2400 2500 2600 2700	1. 276 1. 274 1. 272 1. 270 1. 268	1.276 1.274 1.272 1.270 1.268	1. 276 1. 274 1. 272 1. 270 1. 268	1.276 1.274 1.272 1.270 1.268	1. 276 1. 274 1. 272 1. 270 1. 268	1.276 1.274 1.272 1.270 1.268	4140 4320 4500 4680 4860
2800 2900 3000	1.266 1.264 1.263	1.266 1.264 1.263	1.266 1.264 1.263	1.266 1.264 1.263	1.266 1.264 1.263	1.266 1.264 1.263	5040 5220 5400

Table 9.26 Specific Heat Ratios of Molecular Oxygen

	Pressure					
	10 atm	40 atm	70 atm	100 atm	(T)	
T .					T	
°К					\circ_{R}	
120 140 160 180	1.500 ₋₂₉ 1.471 ₋₁₈	1.84 -16			216 252 288 324	
200 220 240 260 280	$\begin{array}{ccccc} 1.453 & -12 \\ 1.441 & -9 \\ 1.432 & -7 \\ 1.425 & -5 \\ 1.420 & -6 \end{array}$	1. 683 -81 1. 602 -49 1. 553 -33 1. 520 -24 1. 496 -18		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	360 396 432 468 504	
300 320 340 360 380	1.414 -5 1.409 -4 1.405 -5 1.400 -4 1.396 -5	$\begin{array}{c} 1.478 - 15 \\ 1.463 - 13 \\ 1.450 - 11 \\ 1.439 - 10 \\ 1.429 - 8 \end{array}$	$\begin{array}{cccc} 1.542 & -24 \\ 1.518 & -23 \\ 1.495 & -17 \\ 1.478 & -15 \\ 1.463 & -13 \end{array}$	1.599 -35 1.564 -27 1.537 -23 1.514 -19 1.495 -17	540 576 612 648 684	
400 420 440 460 480	1.391 1.387 1.383 1.378 1.374	1.421 -8 1.413 -7 1.406 -7 1.399 -6 1.393 -6	1.450 -11 1.439 -10 1.429 -10 1.419 -8 1.411 -7	$\begin{array}{cccc} 1.478 & -14 \\ 1.464 & -13 \\ 1.451 & -12 \\ 1.439 & -10 \\ 1.429 & -9 \end{array}$	720 756 792 828 864	
500 520 540 560 580	1.371 1.367 1.363 1.360 1.356	1.387 1.382 1.377 -5 1.372 -4 1.368	1.404 1.397 -7 1.390 -6 1.384 -6 1.378 -5	$\begin{array}{ccccc} 1.420 & -9 \\ 1.411 & -8 \\ 1.403 & -7 \\ 1.396 & -7 \\ 1.389 & -6 \end{array}$	900 936 972 1008 1044	
600 620 640 660 680	1.353 1.350 1.347 1.344 1.342	1.363 1.360 1.356 1.352 1.349	1. 373 1. 369 1. 364 1. 364 1. 360 1. 356 3	1.383 -5 1.378 -5 1.373 -5 1.368 -5 1.363 -4	1080 1116 1152 1188 1224	
700 720 740 760 780	1.339 1.337 1.335 1.333	1.346 1.343 1.341 1.338 1.336	1.353 1.349 1.346 1.343 1.340	1.359 1.355 1.352 1.349 1.345	1260 1296 1332 1368 1404	
800	1.329	1.333	1.338	1.342	1440	

Table 9.26 Specific Heat Ratios of Molecular Oxygen

Pressure						
	10 atm	40 atm	70 atm	100 atm		
\mathbf{T}					${f T}$	
$^{o}\mathrm{_{K}}$					$^{\mathrm{o}}\mathrm{R}$	
800	1.329 -9	1.333_9	1.338 _ 11	1.342_{-12}	1440	
900	1.320 -6	1. 324 -8	$\begin{array}{c} 1.338 \\ 1.327 \\ -8 \end{array}$	1.330 -9	1620	
1000	1.314 -5	1. 316 -6	1.319 $^{-6}_{-7}$	1. $321 \frac{-9}{-7}$	1800	
1100	1.309 -5	1.310 -4	1.312 -5	1.314 -6	1980	
1200	1.304_{-3}^{-3}	1. 306_{-4}^{-4}	1.307 -4	1.308 -4	2160	
1000		1 000		1 004	9940	
1300	1. 301	1. 302	1.303	1.304	2340	
1400	1.297	1.298	1. 299	1.300 1.297	2520 2700	
1500 1600	1.295 1.292	1.295 1.292	1.296 1.293	1.293	2880	
1700	1. 289	1.292	1. 290	1.290	3060	
1100	1. 200	1.200	1. 250	1.200	9000	
1800	1.287	1.287	1.287	1.288	3240	
1900	1.285	1.285	1.285	1.285	3420	
2000	1.282	1.282	1.283	1.283	3600	
2100	1.280	1.280	1.280	1.280	3780	
2200	1.278	1.278	1.278	1.278	3960	
9000	1 07.6	1 07.0	1 070	1 070	4140	
2300	1. 276	1. 276	1.276	1.276	4140	
2400	1.274	1.274	1. 274	1.274	4320	
2500	1.272	1.272	1.272	1.272	4500	
2600	1.270	1.270	1.270	1.270	4680	
2700	1.268	1.268	1.268	1.268	4860	
2800	1.266	1.266	1.266	1.266	5040	
2900	1.264	1.264	1.264	1.264	5220	
3000	1.263	1.263	1.263	1.263	5400	

Table 9.26 Specific Heat Ratio for Oxygen

The Property Tabulated

The specific heat ratio γ = Cp/Cv of oxygen is tabulated as a function of temperature in degrees Kelvin and Rankine and of pressure in atmospheres. The effect of dissociation is not included in this table.

To obtain the values of γ for this table, values of C_p/R as given in Table 9.24 of this series were combined with

$$\frac{C_{p} - C_{v}}{R} = \frac{\left[Z + T(\partial Z/\partial T)_{P}\right]^{2}}{\left[Z - P(\partial Z/\partial P)_{T}\right]}$$

in which the values of Z and its derivatives are consistent with Table 9.20.

Reliability of the Table

One the basis of the reliabilities estimated for specific heats and compressibilities, Tables 9.24 and 9.20, respectively, the values of γ are considered to be reliable to within 5% of their departures from ideal values at pressures below 40 atmospheres and possibly only within 10% of this difference at the highest pressure of 100 atmospheres.

NBS - NACA Tables of Thermal Properties of Gases

Table 9.32 Sound Velocity in Molecular Oxygen

 a/a_0

by

Harold W. Woolley

Table 9.32 Sound Velocity in Molecular Oxygen

 a/a_0

			Pres	sure			
T	. 01 atm	. l atm	1 atm	4 atm	7 atm	10 atm	Т
٥K							°R
100 120 140 160 180	. 606 . 664 . 53 . 717 . 49 . 766 . 47 . 813 . 44	. 605 . 663 . 717 . 766 . 813 . 44	.659 .713 .764 .811 .47	.703 54 .757 50 .807 46	.750 .802 47	.743 .797 49	180 216 252 288 324
200 220 240 260 280	.857 $.898$ $.938$ $.976$ $.36$ $.012$ $.36$	$\begin{array}{c} .857 \\ .898 \\ .40 \\ .938 \\ .976 \\ .36 \\ 1.012 \\ .36 \\ \end{array}$.856 42 .898 40 .938 38 .976 36 1.012 35	$\begin{array}{c} .853 \\ .896 \\ .41 \\ .937 \\ .975 \\ .975 \\ .37 \\ 1.012 \\ .36 \end{array}$.849 $.894$ $.935$ $.975$ $.975$ $.975$ $.975$ $.975$.846 $.892$ $.934$ $.974$ $.974$ $.973$ $.013$ $.974$	360 396 432 468 504
300 320 340 360 380	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1. 048 33 1. 081 32 1. 113 32 1. 145 30 1. 175 29	$\begin{array}{cccc} 1.047 & 34 \\ 1.081 & 33 \\ 1.114 & 31 \\ 1.145 & 30 \\ 1.175 & 29 \end{array}$	$\begin{array}{cccc} 1.048 & 34 \\ 1.082 & 32 \\ 1.114 & 32 \\ 1.146 & 30 \\ 1.176 & 29 \end{array}$	$\begin{array}{cccc} 1.048 & 34 \\ 1.082 & 33 \\ 1.115 & 32 \\ 1.147 & 30 \\ 1.177 & 30 \end{array}$	1.048 35 1.083 33 1.116 32 1.148 31 1.179 29	540 576 612 648 684
400 420 440 460 480	$egin{array}{c} 1.\ 204\ 28\ 1.\ 232\ 28\ 1.\ 260\ 26\ 1.\ 312\ 26\ \end{array}$	1.204 28 1.232 28 1.260 26 1.286 26 1.312 26	1. 204 28 1. 232 28 1. 260 27 1. 287 26 1. 313 26	1. 205 29 1. 234 28 1. 262 26 1. 288 27 1. 315 25	1.207 28 1.235 28 1.263 27 1.290 26 1.316 26	1.208 29 1.237 28 1.265 26 1.291 27 1.318 26	720 756 792 828 864
500 520 540 560 580	$egin{array}{c} 1.\ 338\ 25\ 1.\ 363\ 24\ 1.\ 387\ 24\ 1.\ 411\ 24\ 1.\ 435\ 22 \end{array}$	1. 338 25 1. 363 24 1. 387 24 1. 411 24 1. 435 22	1.339 24 1.363 25 1.388 23 1.411 24 1.435 23	1.340 25 1.365 24 1.389 24 1.413 24 1.437 23	$\begin{array}{ccccc} 1.342 & 25 \\ 1.367 & 24 \\ 1.391 & 24 \\ 1.415 & 23 \\ 1.438 & 23 \end{array}$	1.344 25 1.369 24 1.393 24 1.417 23 1.440 23	900 936 972 1008 1044
600 620 640 660 680	$\begin{array}{c} 1.45723\\ 1.48022\\ 1.50222\\ 1.52421\\ 1.54522 \end{array}$	$\begin{array}{cccc} 1.457 & 23 \\ 1.480 & 22 \\ 1.502 & 22 \\ 1.524 & 21 \\ 1.545 & 22 \end{array}$	$\begin{array}{cccc} 1.458 & 22 \\ 1.480 & 22 \\ 1.502 & 22 \\ 1.524 & 22 \\ 1.546 & 21 \end{array}$	$\begin{array}{cccc} 1.460 & 22 \\ 1.482 & 22 \\ 1.504 & 22 \\ 1.526 & 22 \\ 1.548 & 21 \end{array}$	$\begin{array}{cccc} 1.461 & 23 \\ 1.484 & 22 \\ 1.506 & 22 \\ 1.528 & 22 \\ 1.550 & 21 \end{array}$	1.463 23 1.486 22 1.508 22 1.530 22 1.552 21	1080 1116 1152 1188 1224
700 720 740 760 780	$\begin{array}{c} 1.567 \\ 1.58820 \\ 1.60821 \\ 1.62921 \\ 1.64920 \\ 1.9 \end{array}$	1.567 1.588 20 1.608 21 1.629 21 1.649 20	$\begin{array}{cccc} 1.567 & 21 \\ 1.588 & 21 \\ 1.609 & 20 \\ 1.629 & 20 \\ 1.649 & 20 \end{array}$	1.569 1.590 21 1.611 20 1.631 20 1.651 20	$\begin{array}{cccc} 1.571 & 21 \\ 1.592 & 20 \\ 1.612 & 20 \\ 1.633 & 21 \\ 1.653 & 20 \\ \end{array}$	1.573 1.594 21 1.615 20 1.635 20 20	1260 1296 1332 1368 1404
800	1.668	1.669 = 314 82 m	1.669	1.671 1032.9 ft se	1.673	1.675	1440
	a ₀	017.04 II	1 25	LOUE. VIL SE			

Table 9.32 Sound Velocity in Molecular Oxygen

	The state of the s	and the forest property of the state of the	Press	sure			
	. 01 atm	. 1 atm	1 atm	4 atm	7 atm	10 atm	
\mathbf{T}							T
$^{\rm o}{ m K}$				•			°R
800 900 1000 1100 1200	1.668 96 1.764 92 1.856 86 1.942 84 2.026 79	1.669 95 1.764 92 1.856 86 1.942 84 2.026 79	1.669 96 1.765 91 1.856 87 1.943 83 2.026 80	1.671 96 1.767 91 1.858 87 1.945 83 2.028 79	1.673 96 1.769 91 1.860 86 1.946 83 2.029 80	1.675 95 1.770 92 1.862 86 1.948 83 2.031 79	1440 1620 1800 1980 2160
1300 1400 1500 1600 1700	2.105 77 2.182 74 2.256 72 2.328 69 2.397 68	2.105 77 2.182 74 2.256 72 2.328 69 2.397 68	2. 106 77 2. 183 74 2. 257 72 2. 329 69 2. 398 67	2. 107 77 2. 184 74 2. 258 72 2. 330 69 2. 399 68	2.109 77 2.186 74 2.260 72 2.332 68 2.400 68	2.110 77 2.187 75 2.262 71 2.333 69 2.402 67	2340 2520 2700 2880 3060
1800 1900 2000 2100 2200	2. 465 65 2. 530 63 2. 593 62 2. 655 60 2. 715 59	2. 465 65 2. 530 63 2. 593 62 2. 655 60 2. 715 59	2. 465 65 2. 530 63 2. 593 62 2. 655 61 2. 716 59	2. 467 64 2. 531 64 2. 595 62 2. 657 60 2. 717 59	2. 468 65 2. 533 63 2. 596 62 2. 658 60 2. 718 59	2. 469 66 2. 535 62 2. 597 62 2. 659 61 2. 720 58	3240 3420 3600 3780 3960
2300 2400 2500 2600 2700	2.774 58 2.832 56 2.888 55 2.943 53 2.996 53	2. 774 58 2. 832 56 2. 888 55 2. 943 53 2. 996 53	2.775 57 2.832 56 2.888 55 2.943 54 2.997 52	2. 776 57 2. 833 56 2. 889 55 2. 944 54 2. 998 52	2.777 57 2.834 57 2.891 54 2.945 54 2.999 53	2.778 58 2.836 56 2.892 55 2.947 53 3.000 53	4140 4320 4500 4680 4860
2800 2900 3000	3. 049 51 3. 100 52 3. 152	3. 049 51 3. 100 52 3. 152	3. 049 3. 101 3. 152 51	3.050 52 3.102 52 3.154	3. 052 51 3. 103 52 3. 155	3. 053 51 3. 104 52 3. 156	5040 5220 5400

 $a_0 = 314.82 \text{ m sec}^{-1} = 1032.9 \text{ ft sec}^{-1}$

Table 9.32 Sound Velocity in Molecular Oxygen

a/a₀

		Pr	essure		
an a	10 atm	40 atm	70 atm	100 atm	m
Т					Т
oK					o_{R}
160	.743 54				288
180	.797 49	.749 70			324
200	. 846	. 819 57	.812 64		360
220 240	. 892	. 876 ₅₁	. 876 55	. 911 45	396
260	$.934 \stackrel{13}{40} \\ .974 \stackrel{20}{30}$	$.927 \frac{31}{46}$	$.931 \frac{49}{49}$	$.956 \frac{10}{44}$ $1.000 \frac{40}{40}$	432 468
280	$1.013 \frac{39}{35}$	1. 015 $\frac{42}{40}$	1. 025 $\frac{45}{41}$	$\begin{array}{c} 1.000 \\ 42 \\ 1.042 \\ 41 \end{array}$	504
300	1.048 35	1.055 37	1.066 39	1.083 39	540
320	1.083 ₂₃	1.092 35	1.105 36	1.122 $_{37}$	576
340 360	1.116 32	1.127 34	1. 141 35	1.159 35	612
380	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.161_{32} 1.193_{20}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	648 684
	49	30	9.T	26	
400 420	$\frac{1.208}{1.237}$ 29	$\frac{1.223}{1.252}$ 30	$\begin{smallmatrix}1.&240\\&31\end{smallmatrix}$	$\frac{1.259}{1.200}$ $\frac{31}{1.200}$	720 756
440	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.271_{29}^{-1} 1.300_{27}^{-1}	1.290_{29}^{-1} 1.319_{29}^{-1}	792
460	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 200 4	1 207 40	1. 313 28 1. 347 27	828
480	$1.318 \begin{array}{l} 27 \\ 26 \end{array}$	1. $336 \begin{array}{c} 27 \\ 26 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.374 \frac{27}{27}$	864
500	1.344	1.362 05	1.381 26	1.401 26	900
520	1.369 $\frac{25}{24}$	1. 387 25	1.407_{-24}^{-26}	$1.427 \frac{26}{25}$	936
540	1.393_{-24}	1.412 24	1. 431 25	1.452_{-24}	972
560	1.417 23	1.436 24	1. 456_{23}	1.476 24	1008
580	1.440 $\frac{23}{23}$	1.460_{23}	1.479_{23}	1.500 23	1044
600	1.463	1.483 23	1.502 23	1.523 23	1080
620 640	1.486 22	1.506 22	1.525 23	1.546 $\frac{22}{22}$ 1.568 $\frac{22}{22}$	1116 1152
660	1 530 44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 500 41	1 500 64	1188
680	$\begin{array}{c} 1.550 \\ 22 \\ 1.552 \\ 21 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.569_{22} 1.591_{21}	$\begin{array}{c} 1.590 \\ 2.611 \\ 21 \end{array}$	1224
700	1.573	1.592	1.612	1.632	1260
720	$1.594 \begin{array}{c} 21 \\ 21 \end{array}$	1.613 $\frac{21}{21}$	1.633	1.653_{21}^{21}	1296
740	1.019 90	1.034	1.000	1.074	1332
760 780	1.655 20	1.674 20	1 602 19	1 712 19	$1368 \\ 1404$
	20	20	20	& O	
800	1.675	1.694	1.713	1.733	1440
	^a 0 ³	= 314,82 m	$\sec^{-1} = 1032.$	9 ft sec 1	

Table 9.32 Sound Velocity in Molecular Oxygen

 a/a_0

		Pre	ssure		
æ.	10 atm	40 atm	70 atm	100 atm	Т
T					1.
\circ_{K}					OR
800 900 1000 1100 1200	1. 675 95 1. 770 92 1. 862 86 1. 948 83 2. 031 79	1. 694 95 1. 789 91 1. 880 86 1. 966 83 2. 049 79	1.713 95 1.808 90 1.898 86 1.984 82 2.066 78	1.733 95 1.828 89 1.917 85 2.002 81 2.083 79	1440 1620 1800 1980 2160
1300 1400 1500 1600 1700	2. 110 77 2. 187 75 2. 262 71 2. 333 69 2. 402 67	2. 128 76 2. 204 73 2. 277 71 2. 348 69 2. 417 67	2. 144 76 2. 220 73 2. 293 71 2. 364 68 2. 432 66	2. 162 75 2. 237 73 2. 310 69 2. 379 68 2. 447 67	2340 2520 2700 2880 3060
1800 1900 2000 2100 2200	2. 469 66 2. 535 62 2. 597 62 2. 659 61 2. 720 58	2. 484 65 2. 549 62 2. 611 62 2. 673 60 2. 733 58	2. 498 65 2. 563 63 2. 626 60 2. 686 60 2. 746 58	2. 514 63 2. 577 63 2. 640 60 2. 700 59 2. 759 58	3240 3420 3600 3780 3960
2300 2400 2500 2600 2700	2.778 58 2.836 56 2.892 55 2.947 53 3.000 53	2.791 57 2.848 56 2.904 55 2.959 53 3.012 52	2.804 57 2.861 55 2.916 55 2.971 53 3.024 52	2.817 57 2.874 55 2.929 54 2.983 53 3.036 52	4140 4320 4500 4680 4860
2800 2900 3000	$3.053 51 \\ 3.104 52 \\ 3.156$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 076 3. 127 51 3. 178	3. 088 50 3. 138 51 3. 189	5040 5220 5400

 $a_0 = 314.82 \text{ m sec}^{-1} = 1032.9 \text{ ft sec}^{-1}$

The Property Tabulated

The relative sound velocity, a/a_0 , for a sound of low frequency in oxygen is tabulated as a function of temperature in degrees Kelvin and Rankine and of pressure in atmospheres. The sound velocity is represented by a, while a_0 represents the value of a at the standard conditions of 0° C and one atmosphere pressure. The values for the velocity are calculated from ratios of specific heats, γ , the density, ρ , and the compressibility and its derivatives for which reference may be made to Tables 9.26, 9.18, and 9.20. The values are obtained from the theoretical relation

$$a = Z \sqrt{\frac{RT \gamma}{M[Z - P(\partial Z/\partial P)_T]}}$$

R is the gas constant in appropriate units and M is the molecular weight, 32.000. The values tabulated are for equilibrium conditions as far as equalization of vibrational and rotational energies are concerned and thus do not apply at very high frequencies. The effect of dissociation has not been included, so that the values are not strictly for equilibrium conditions at elevated temperature and low and moderate pressure.

Reliability of the Table

The accuracy of the values tabulated varies with temperature and pressure. Numerically, the reliability is roughly that indicated for values of γ in terms of departures from ideal gas values. At $200^{\rm O}{\rm K}$, the values are believed to be reliable within about .003 at 10 atm, .014 at 40 atm, .05 at 70 atm and .14 at 100 atm. At $400^{\rm O}{\rm K}$, the values may have uncertainties of about one tenth as much, becoming still less at higher temperatures where the gas is more nearly ideal. The uncertainties, disregarding dissociation, may be as small as .004 at 100 atm for the higher temperatures.

A considerable effect due to dissociation occurs at the highest temperatures, particularly for the low pressures. Its magnitude may be estimated with formulas discussed in reference [1].

Interpolation

Linear interpolation is valid in this table.

Conversion Factors

The tabulated quantity has been expressed in dimensionless form. Conversion factors are listed at the bottom of each page in ft sec⁻¹ and meter sec⁻¹. For conversions to other units see Table 1.30 of this series.

REFERENCE

[1] H. W. Woolley, The effect of dissociation on the thermodynamic properties of pure diatomic gases, Report No. 1884, National Bureau of Standards, October 15, 1952.

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.39 Molecular Oxygen

Preliminary Issue

July 1950

Coefficient of Viscosity

 η/η_0

Compiled by R. L. Powell

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards.

T°K η/η₀ Δ T°R T°K η/η₀ Δ T°R T°R T°R T°R T°R 1440 1.3316 299 720 800 2.1447 177 1440 1.4404 1.3555 236 36 810 2.1624 175 14458 175 1476 1458 2.20 2.1799 175 14476 14458 2.23 774 830 2.1624 175 1476 14476 14476 14484 226 810 850 2.1624 175 14476 14476 14484 226 810 850 2.2321 173 1530 1512 1515 216 870 2.2321 173 1530 1518 151 1517 218 828 850 2.2321 173 1530 1530 1537 216 820 1530 1531 1440 15157 216 870 2.3351 169 150 850 1531 1444 15157 216												
100	Т°К	η/η。	Δ	T°R	Т°К	η/η ₀	Δ	T°R	т°К	η/η_{o}	Δ.	T°R
100					400	1.3316	0.00	720	800	2.1447	177	1440
100					1 1				1 1			1458
100)				
100												
150	1						231	1 1	1		174	
					440	1.4255	229	792	840	2.2148	173	1512
100					450	1.4484	226	810	850	2.2321	173	1530
100					460	1.4710		828	860	2.2394		1548
100					470	1.4935		846	870	2:2666		1566
100	1				1 1			1 1	880	2.2838		1584
100	1								1	l		
110					430	1.5577	218	002	000	2.0010	171	1002
110	100	.4050	แกล	180	500	1.5595	216	900	900		170	1
120	110	. 4453		198	510	1.5811		918	910	2.3351		1638
130	1 1	.4849		1	1 1	1.6025		936	920	1		1656
140	: (i)				1 1	1	í		
150	i I				i I			1 1	1	J.		
160	140	.5020	373	232	340	1.0777	209	3,2	340	2.0057	167	1002
160	150	.5993	266	270	550	1.6656	208	990	950	2.4024	166	1710
170	! I			1 1	1 1			1	1	2.4190		
180				1				1 1	1			1
190	1 !				1			1 1	1	1		
200	: 1			1				i I		1		
210	150	./410	333	342	590	1.7479	20	1002	990	2.4004	163	1702
210	200	.7743	328	360	600	1.7680	200	1080	1000	2.485	17	1800
220	210	.807I		378	610	1.7880		1098	1010	2.502		1818
230	220	.8392		396	620	1.8078		1116	1020	2.518		1836
240 .9016 304 432 640 1.8470 194 1152 1040 2.550 16 1872 250 .9320 297 450 650 1.8664 193 1170 1050 2.566 16 1890 260 .9617 292 468 660 1.8857 192 1188 1060 2.582 16 1908 270 .9909 285 486 670 1.9049 192 1206 1070 2.598 16 1926 280 1.0194 281 504 680 1.9241 191 1224 1080 2.614 17 1944 290 1.0475 276 522 690 1.9432 190 1242 1090 2.631 17 1962 300 1.0751 274 540 700 1.9622 188 1260 1100 2.648 16 1998 310 1.1025 269	230	.8707		414	630	1.8275		1134	1030	2.534		1854
250	240	.9016		432	640	1.8470		1152	1040	2.550		1872
260 .9617 292 468 660 1.8857 192 1188 1060 2.582 16 1908 270 .9909 285 486 670 1.9049 192 1206 1070 2.598 16 1926 280 1.0194 281 504 680 1.9241 191 1224 1080 2.614 17 1944 290 1.0475 276 522 690 1.9432 190 1242 1090 2.631 17 1962 300 1.0751 274 540 700 1.9622 188 1260 1100 2.648 16 1980 310 1.1025 269 558 710 1.9810 186 1278 1110 2.644 16 1998 320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1818 258	050	0000		1150	250	1 00011		1170	1050	0.500		
270 .9909 285 486 670 1.9049 192 1206 1070 2.598 16 1926 280 1.0194 281 504 680 1.9241 191 1224 1080 2.614 17 1944 290 1.0475 276 522 690 1.9432 190 1242 1090 2.631 17 1962 300 1.0751 274 540 700 1.9622 188 1260 1100 2.648 16 1980 310 1.1025 269 558 710 1.9810 186 1278 1110 2.664 16 1998 320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.1818 258 612 740 2.0365 182 1332 1140 2.712 15 <td< td=""><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td>1 1</td><td>11</td><td>1</td><td>16</td><td></td></td<>				1 1				1 1	11	1	16	
270 .9909 285 486 670 1.9049 192 1206 1070 2.598 16 1926 280 1.0194 281 504 680 1.9241 191 1224 1080 2.614 17 1944 290 1.0475 276 522 690 1.9432 190 1242 1090 2.631 17 1962 300 1.0751 274 540 700 1.9622 188 1260 1100 2.648 16 1980 310 1.1025 269 558 710 1.9810 186 1278 1110 2.664 16 1998 320 1.1294 264 576 720 1.9810 186 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 <td< td=""><td>1 1</td><td></td><td>292</td><td>1</td><td>1</td><td></td><td>192</td><td>1</td><td>1.4</td><td>1</td><td>16</td><td></td></td<>	1 1		292	1	1		192	1	1.4	1	16	
280 1.0194 281 504 680 1.9241 191 1224 1080 2.614 17 1944 290 1.0475 276 522 690 1.9432 190 1242 1080 2.614 17 1944 300 1.0751 274 540 700 1.9622 188 1260 1100 2.648 16 1980 310 1.1025 269 558 710 1.9810 186 1278 1110 2.664 16 1998 320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 130 2.696 16 2034 340 1.1818 258 612 740 2.0547 181 1350 1150 2.727 15 2052 350 1.2076 255	,		285					1	11			1926
290 1.0475 276 522 690 1.9432 190 1242 1090 2.631 17 1962 300 1.0751 274 540 700 1.9622 188 1260 1100 2.648 16 1980 310 1.1025 269 558 710 1.9810 186 1278 1110 2.664 16 1998 320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.1818 258 612 740 2.0365 182 1332 1140 2.712 15 2052 350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251	1 1			1 1	1	1.9241		1 1	1080	2.614		1944
310 1.1025 269 558 710 1.9810 186 1278 1110 2.664 16 1998 320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.1818 258 612 740 2.0365 182 1332 1140 2.712 15 2052 350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241	290	1.0475		522	690	1.9432		1242	1090	2.631		1962
310 1.1025 269 558 710 1.9810 186 1278 1110 2.664 16 1998 320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.1818 258 612 740 2.0365 182 1332 1140 2.712 15 2052 350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241	300	1.0751	p. ==	540	700	1-9622	1.5	1260	1100	2.648		1980
320 1.1294 264 576 720 1.9996 185 1296 1120 2.680 16 2016 330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.1818 258 612 740 2.0365 182 1332 1140 2.712 15 2052 350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 2106 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241								1	11	{		4
330 1.1558 260 594 730 2.0181 184 1314 1130 2.696 16 2034 340 1.1818 258 612 740 2.0365 182 1314 1130 2.696 16 2034 350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 2106 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15 2142						l .			11			
340 1.1818 258 612 740 2.0365 182 1332 1140 2.712 15 2052 350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 2106 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15 2142	ł			1	1	1		1	H			
350 1.2076 255 630 750 2.0547 181 1350 1150 2.727 15 2070 360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 2106 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15 2142	1			1 1		1	184	1	11	1	16	
360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 2088 370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 2106 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15 2142	340	1.1818	258	612	740	2.0365	182	1332	1140	2.712	15	2052
360 1.2331 251 648 760 2.0728 181 1368 1160 2.742 16 370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15	1	1.2076	255	630	750	2.0547	181	1350	1150	2.727	15	2070
370 1.2582 248 666 770 2.0909 180 1386 1170 2.758 15 2106 380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15 2142	360	1.2331		648	760	2.0728		1368	1160	2.742		2088
380 1.2830 245 684 780 2.1089 179 1404 1180 2.773 15 2124 2142	370	1.2582		666	770	1		1	11	1		
390 1.3075 241 702 790 2.1268 179 1422 1190 2.788 15 2142	F	1		1	1 (1		1	11	1		li .
179	1				11	1		1	11	1		
400 1.3316 720 800 2.1447 1440 1200 2.803 2160			241				1/9				15	
	400	1.3316		720	800	2.1447		1440	1200	2.803		2160

Т°К	7/70	Δ	T°R	Т°К	η/η ο	Δ	T°R			
1200	2.803	15	2160	1600	3.374	14	2880			
1210	2.818		2178	1610	3.388		2898			
1220	2.833	15	2196	1620	3.402	14	2916			
1230	2.848	. 15	2214	1630	3.415	13	2934			
1240	2.863	15	2232	1640	3.429	14	2952			
1240	2.003	14	2232	1040	3.723	13	2332			
1250	2.877	15	2250	1650	3.442.	14	2970			
1260	2.892	15	2268	1660	3.456	13	2988			
1270	2.907	15	2286	1670	3.469	14	3006			
1280	2.922	15	2304	1680	3.483	13	3024			
1290	2.937	14	2322	1690	3.496	13	3042			
1300	2.951	10	2340	1700	3.509	10	3060			
1310	2.966	15	2358	1710	3.522	13	3078			
1320	2.981	15	2376	1720	3.536	14	3096			
1330	2.996	15	2394	1730	3.549	13	3114			
1340	3.011	15	2412	1740	3.563	14	3132		•	
10.0		15	2712	1740	0.500	13	0102			
1350	3.026	14	2430	1750	3.576	13	3150			
1360	3.040	14	2448	1760	3.589	13	3168			
1370	3.054	14	2466	1770	3.602	13	3186			
1380	3.068	14	2484	1780	3.615	12	3204			
1390	3.082	14	2502	1790	3.627	13	3222	1		
		17				13				
1400	3.096	14	2520	1800	3.640	13	3240			
1410	3.110	14	2538	1810	3.653	13	3258		1	
1420	3.124	14	2556	1820	3.666	13	3276			
1430	3.138	14	2574	1830	3.679	13	3294			İ
1440	3.152	15	2592	1840	3.692	13	3312			
1450	3.167	14	2610	1850	3.705	13	3330			
1460	3.181	14	2628	1860	3.718	13	3348			
1470		14	2646	1870	3.731	13	3366			
1480	3.209	14	2664	1880	3.744	13	3384			
1490	3.223	14	2682	1890	3.757	13	3402			
LEGG	0.007		0700	1000	0.770		211.00			
1500	3.237	13	2700	1900	3.770	12	3420			
1510	3.250	14	2718	1910	3.782	13	3438			
1520	3.264	14	2736	1920	3.795	13	3456			
1530	3.278	14	2754	1930	3.808	13	3474			
1540	3.292	14	2772	1940	3.821	13	3492			
1550	3.306	14	2790	1950	3.834	13	3510			
1560	3.320	14	2808	1960	3.847	12	3528		1	
1570	3.334	13	2826	1970	3.859	13	3546			
1580	3.347	14	2844	1980	3.872	13	3564			
1590	3.361	13	2862	1990	3.885	12	3582			
1600	3.374		2880	2000	3.897		3600			
L	 						L	L		

The Property Tabulated

The viscosity of gaseous oxygen is given in this table for temperatures from 80 °K to 2000 °K (144°R to 3600°R) at one atmosphere pressure. This viscosity is given in the dimensionless form η/η_0 by dividing the absolute viscosity at a given temperature by the viscosity at 273.16°K and one atmosphere pressure, which is assumed to be 1919.2 x 10⁻⁷ poises. This value is in close agreement with the determination by Johnston and McCloskey [4], who found the viscosity to be 1918.4 x 10⁻⁷ poises at 273.16°K, based on the value 1833.0 x 10⁻⁷ poises as the viscosity of dry air at 296.1°K.

The viscosities were calculated using the Lennard-Jones potential, as applied by Hirschfelder, Bird, and Spotz [2], in which the potential energy of interaction between the two molecules is given by

$$\epsilon(\mathbf{r}) = 4\epsilon_{\mathsf{m}} \left[\left(\frac{\mathbf{r}_{\mathsf{o}}}{\mathbf{r}} \right)^{12} - \left(\frac{\mathbf{r}_{\mathsf{o}}}{\mathbf{r}} \right)^{6} \right]$$

where $\epsilon_{\rm m}$ is the maximum energy of attraction and ${\bf r}_{\rm o}$ is the low velocity collision diameter. The coefficient of viscosity for a single gas is given by

$$\eta \times 10^7 = \frac{266.93 \text{ V}}{r_0^2 \text{ W}^{(2)}(2)} \sqrt{\text{MT}}$$

where M is the molecular weight, T is the temperature in degrees Kelvin, and V and W⁽²⁾(2) are functions of kT/ϵ . Hirschfelder, et al [2], have calculated the collision integrals needed for the computation of the transport properties, and have suggested the parameters for 45 gases. For this table the characteristic parameters

$$\epsilon/k = 100$$
 and $\frac{1}{r_0^2} \sqrt{\frac{M\epsilon}{k}} = 4.621$

were redetermined by fitting to the data of Johnston and McCloskey and Trautz and Zink in the ranges 90°K to 300°K and 300°K to 1100°K respectively. For ease in computation, Bromley's adaptation [1] of Hirschfelder's tables was used.

There is little experimental evidence of any significant variation of viscosity with pressure at moderate pressures [3].

Reliability of the Table

A graphical comparison of the tabulated values and the experimental results of six authors (4, 6, 9, 10, 11, 14) is given in Figure 1. The viscosity table is reliable within 1% below 1000°K. The extrapolated values to 2000°K are reliable within 2%.

Interpolation

Linear interpolation is valid above 200°K, below that temperature Lagrangian interpolation is recommended.

Conversion Factors

The viscosity of oxygen has been expressed in dimensionless form. Conversion factors for the more frequently used units are given. For conversion factors not listed here, see table 1.30 of this series.

To convert tabulated value of—	То—	Having the dimensions indicated below	Multiply by—		
η/η ο	η	poise or $g(M)$ sec^{-1} cm^{-1} $Kg(M)$ hr^{-1} m^{-1} $lb(F)$ sec ft^{-2} $lb(M)$ sec^{-1} ft^{-1} $lb(M)$ hr^{-1} ft^{-1}	1919.2 × 10 ⁻⁷ 6.9091 × 10 ⁻² 4.0084 × 10 ⁻⁷ 1.2896 × 10 ⁻⁵ 4.6427 × 10 ⁻²		

REFERENCES

- [1] LeRoy A. Bromley, "Calculation of gas viscosity as a function of temperature," U. S. Atomic Energy Comm., UCRL-525 (1949).
- [2] J. O. Hirschfelder, R. B. Bird, E. L. Spotz, Viscosity and other physical properties of gases and gas mixtures, Trans. ASME, 48,921 (1949).
- [3] A. Van Itterbeek, W. H. Keesom, Measurements on the viscosity of oxygen gas, Physica, 2, 97 (1935).
- [4] H. L. Johnston, K. E. McCloskey, Viscosities of gases, J. Phys. Chem., 44, 1038 (1940).
- [5] H. Markowski, Die innere Reibung von Sauerstoff, Wasserstoff, chemischem und atmosphärischem Stickstoff und ihre Änderung mit der Temperatur, Ann. Physik, 4-14, 742 (1904).
- [6] P. J. Rigden, The viscosity of air, oxygen, and nitrogen, Phil. Mag., 7-25, 961 (1938).
- [7] E. Thomson, Über die innere Reibung von Gasgemischen, Ann. Physik, 4-36, 815 (1911).
- [8] M. Trautz, R. Heberling, Die Reibung von NH₃ und seinen Gemischen mit H₂, N₂, O₂, C_2H_H , Ann. Physik, 5-10, 155 (1931).
- L9] M. Trautz, A. Melster, Die Reibung von H₂, N₂, CO, C₂H₄, O₂, und ihren binaren Gemlschen, Ann. Physik, 5-7, 409 (1930).
- [10] M. Trautz, R. Zink. Gasreibung bei höheren Temperaturen, Ann. Physik, 5-7, 427
- [II] H. Vogel, 'Viskosität einiger Gase, Ann. Physik, 4-43, 1235 (1914).
- [12] E. Völker, Über den Koëffizienten der inneren Reibung von Sauerstoff und Wasserstoff bei niederen Temperaturen, Diss., Halle, 1910.
- [13] K. Yen, Determination of the coefficient of viscosity of hydrogen, nitrogen and oxygen, Phil. Mag., 6-38, 582 (1919).
- [14] R. Wobser, F. Müller, Die innere Reibung von Gasen und Dampfen und ihre Messung Im Höppler-Viskosimeter, Kolloid Beihefte, 52, 165 (1941).

FIGURE I. DEPARTURES OF EXPERIMENTAL VISCOSITIES FROM TABLE 9.39

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.42 Molecular Oxygen

July 195

Thermal Conductivity

 k/k_0

Compiled by R. L. Nuttall

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards.

Table 9.42 Thermal Conductivity of Molecular Oxygen

			 1		1	
T	k/k A	T	T	k/k ₀	Δ	T
οK		•R	۰K			°R
80 90	.293 .331 38	144 162				
100 110 120 130 140	.368 .406 .444 .482 .520 .38	180 198 216 234 252	350 360 370 380 390	1.25 1.28 1.32 1.35 1.38	3 4 3 3 3	630 648 666 684 702
150 160 170 180 190	.557 .595 38 .632 37 .669 37 .706 37	270 288 306 324 342	400 410 420 430 440	1.41 1.44 1.47 1.50 1.53	3 3 3 3	720 738 756 774 792
200 210 220 230 240	.743 .779 36 .815 36 .850 35 .885 35	360 378 396 414 432	450 460 470 480 490	1.56 1.59 1.62 1.64 1.67	3 3 2 3 3	810 828 846 864 882
250 260 270 280 290	.920 .954 34 .989 35 1.02 4 1.06 3	450 468 486 504 522	500 510 520 530 540	1.70 1.73 1.76 1.78 1.81	3 3 2 3 3	900 918 936 954 972
300 310 320 330 340	1.06 1.12 3 1.16 4 1.19 3 1.22 3	540 558 576 594 612	550 560 570 580 590	1.84 1.86 1.89 1.92 1.94	2 3 3 2 3	990 1008 1026 1044 1062
350	1.25	630	600	1.97		1080

CONVERSION FACTORS

To Convert Tabulated		Having the Dimensions	Multiply
Value of	То	Indicated Below	ъу
k/k _O	k	cal cm ⁻¹ sec ⁻¹ °K ⁻¹	5.867 x 10 ⁻⁵
		Btu ft-l hr-l OR-l	1.419 x 10 ⁻²
		watts cm ^{-l o} K-l	2.455 x 10 ⁻⁴

THE PROPERTY TABULATED

This table gives in dimensionless form as a function of temperature in degrees Kelvin and degrees Rankine, the thermal conductivity, k/k_0 , of molecular oxygen. The values were calculated from the equation

$$k = \frac{c_0 T^{1/2}}{1 + \frac{c_1}{T} 10^{-c_2/T}}$$

$$c_0 = 0.6726 \times 10^{-5}$$

$$c_1 = 265.9$$

$$c_2 = 10$$

The symbol k is the thermal conductivity in cal cm⁻¹ sec⁻¹ oC⁻¹ and T is the temperature in degrees Kelvin. The tabulated quantities have been made dimensionless by dividing by $k_0 = 5.867 \times 10^{-5}$ cal cm⁻¹ sec⁻¹ oC⁻¹ which is the thermal conductivity of oxygen at 0°C and 1 atmosphere. These values apply at low to moderate pressures.

RELIABILITY OF THE TABLE

The experimental data covers the range from 86° to 376°K. The accuracy of the table in this range is of the order of 2%. The accompanying graph shows the deviations of the tabulated values from experimental data.

INTERPOLATION

Linear interpolation is valid in this table.

CONVERSION FACTORS

The function in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, conversion factors are listed for the frequently used units. For conversion factors not listed here see Table 1.30 of this series.

REFERENCES

- [1] A. Eucken, Über die Temperaturabhängigkeit der Wärmeleitfähigkeit einiger Gase, Physik. Z. 12, 1101 (1911).
- [2] S. Weber, Untersuchungen über die Wärmeleitfähigkeit der Gase, Ann. Physik <u>54</u>, 437 (1917).
- [3] H. Gregory and S. Marshall, The thermal conductivities of oxygen and nitrogen, Proc. Roy. Soc. (London) All8, 594 (1928).
- [4] B. G. Dickens, The effect of accommodation on heat conduction through gases, Proc. Roy. Soc. (London) A143, 517 (1934).
- [5] W. G. Kannuluik and L. H. Martin, The thermal conductivity of some gases at O°C, Proc. Roy. Soc. (London) A144, 496 (1934).
- [6] W. Northdurft, Zur Absolutemessung des Wärmeleitvermögens von Gasen, Ann. Physik 28, 137 (1937).
- [7] H. L. Johnston and E. R. Grilly, An improved hot-wire cell for accurate measurements of thermal conductivities of gases over a wide temperature range, J. Chem. Phys. 14, 219 (1946).

FIGURE I. DEPARTURES OF EXPERIMENTAL THERMAL CONDUCTIVITIES FROM TABLE 9.42

THE NBS - NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.44 Prandtl Number of Oxygen

$$N_{pr} = 7/C_p/k$$

by

F. Donald Queen

June 1953

Table	e 9.44	Prandtl N	umber of Oxyg		N =	C _p /k
T		$\mathtt{N}_{\mathtt{Pr}}$	$\left[N_{\text{Pr}}\right]^{\frac{2}{3}}$	$\left[N_{\mathbf{Pr}}\right]^{\frac{1}{3}}$	N_{Pr}	T
*K					×	*R
100 110 120 130 140		.815 .800 .791 .784	.873 .862 .855 .850 .846	.934 .928 .925 .922 .920	.903 .894 .889 .885 .882	180 198 216 234 252
150 160 170 180 190		•773 •766 •761 •756 •751	.842 .837 .834 .830 .826	.918 .915 .913 .911 .909	.879 .875 .872 .869 .867	270 288 306 324 342
200 210 220 230 210		.745 .740 .736 .732 .728	.822 .818 .815 .812 .809	.907 .905 .903 .901 .900	.863 .860 .858 .856 .853	360 378 396 414 432
250 260 270 280 290		.725 .722 .718 .717 .710	.807 .805 .802 .801 .796	.898 .897 .895 .895 .892	.851 .850 .847 .847 .843	450 468 486 504 522
300 310 320 330 340		.709 .709 .703 .702	•795 •795 •791 •790 •7 9 0	.892 .892 .889 .889	. 842 . 842 . 838 . 838 . 838	540 558 576 594 612
350 360 370 380 390		.702 .701 .696 .696	.790 .789 .785 .785	.889 .888 .886 .886	. 838 . 837 . 834 . 834 . 834	630 648 666 684 702
400 410 420 430 440		.695 .695 .695 .695	• 785 • 785 • 785 • 785 • 784	.886 .886 .886 .886 .885	.834 .834 .834 .834 .833	720 738 756 774 792
450		•694	.784	.885	.833	810

Table 9.44	Prandtl N	umber of Oxyg	en	N _{Pr} = 1	Cp/k
T	N Pr	$\begin{bmatrix} N_{\mathbf{Pr}} \end{bmatrix}^3$	$\left[N_{\rm Pr}\right]^{\frac{1}{3}}$	$\left[N_{\rm Pr}\right]^{\frac{1}{2}}$	T
° K ∘					°R
450 460 470 480 490	.694 .694 .695 .697	.784 .784 .785 .786	.885 .885 .886 .887 .887	.833 .833 .834 .835	810 828 846 864 882
500 510 520 530 540	.697 .697 .697 .700	•786 •786 •786 •788 •788	.887 .887 .887 .888 .888	.835 .835 .835 .837 .837	900 918 936 954 972
550 560 5 7 0 580 590	.700 .701 .702 .702 .704	•788 •789 •790 •790	.888 .888 .889 .889	.837 .837 .838 .838	990 1008 1026 1044 1062
600	.704	•791	.890	.839	1080

1/2

The Property Tabulated

The Prandtl number $N_{pr} = \eta C_p/k$ and some of its fractional powers are listed for molecular oxygen at one atmosphere. The table was computed from values of viscosity, η , specific heat, C_p , and thermal conductivity, k, given respectively in tables 9.39, 9.24 and 9.42 of this series. The ratio $\eta C_p/k$ is dimensionless when ηC_p and k are in a consistent set of units. A few frequently used powers are tabulated for convenience. Other fractional powers may be obtained from the alignment chart in figure 1.

The uncertainty in this table results from the uncertainty of thermal conductivity and viscosity, on the basis of which the Prandtl number may be reliable to about 2 per cent.

Na .995 .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 85 80 75 70 65 60 45 40 35 30 25 20

Figure I.

NATIONAL BUREAU OF STANDARDS E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.50 Vapor Pressure of Oxygen

December 1949

by Harold J. Hoge

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available. This table is also available on IBM punched cards.

The tables should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to *Joseph Hilsenrath*, Heat and Power Division, National Bureau of Standards.

SOURCE OF THE DATA

These tables are based on a recently completed experimental investigation of the vapor pressure of liquid oxygen at the National Bureau of Standards. Figure 1 shows the experimental data plotted as deviations from the tables. A comparison with the results of other observers is given in the complete report [1].

USE OF THE TABLES

Table 9.50/l is to be used when accurate interpolated values are required. This table gives $\log_{10} P$ at uniform intervals of 1/T, the argument being 2/T at first; then changing to 1/T and finally back to 2/T again to give a progressively closer spacing of entries. The values of T given in table 9.50/l are only for convenience in locating the part of the table to be used. Interpolations must be made in terms of 1/T or 2/T (1.8/T or 3.6/T on the Ramkine scale) rather than in terms of T for greatest convenience and accuracy. When this is done, linear interpolation will introduce no significant error below about 130°K (1/T°K = 3.6/T°R = 0.0142). Above this temperature slight errors may be introduced, which however do not exceed 4 mm Hg and reach this value only in the immediate neighborhood of the critical point. Table 9.50/2 gives P at temperature intervals of $5^{\circ}K(9^{\circ}R)$. This table is for ready reference when values at these particular temperatures are adequate.

RELIABILITY

Below a pressure of about 1.4 m Hg the tables are based on mercury manometry and are accurate to about ± 0.2 mm Hg. Above about 1.4 m Hg the uncertainty increases to ± 1 or 2 mm Hg, and then gradually increases further at higher pressures, reaching a value of perhaps ± 10 mm Hg at the critical point. In these estimates no allowance has been made for possible disagreement between the temperature scales used and the thermodynamic scale. The International Temperature Scale was used down to 90.19° K and the NBS provisional scale at lower temperatures.

VAPOR PRESSURE OF ROLLD OXYGEN

The only data [2] for solid oxygen do not appear to be very reliable, and hence the tabulation has not been extended below the triple point. Since the solid must have allower vapor pressure than the hypothetical supercooled liquid, extrapolation of table 9.50/l gives a rough upper limit for the vapor pressure of the solid. This procedure gives an upper limit of 0.020 mm Hg at 43.8°K, which is the temperature of the higher of the two solid-solid transitions of oxygen. At this temperature Aoyama and Kanda [2] found 0.0111. The true vapor pressure here is almost certainly less than 0.015 mm Hg.

REFERENCES

- [1] Harold J. Hoge, Vapor pressure and fixed points of oxygen and heat capacity in the critical region. J. Research NBS 44(1950) (in press).
- [2] Shinichi Aoyama and Eizo Kanda. The vapor tensions of oxygen and nitrogen in the solid state. Sci. Repts. Tohoku Imp. Univ. Sendai 24, 107-15 (1935).

	TABLE 3-3072 VALUE TRESSURE OF GATGER (NOT FOR THIERPULATION)										
Remarks	T	mm Hg	atm	psia	P	TP	mm Hg	ctm	psia	РТ	
_	°K				°F	°K				°R	
Triple pt	54.363	1.14	0.00150	.022	97.853	95	1223.3	1.6096	23.65	171	
Boiling pt	90.190	760.0	1.	14.696	162.342	100	1905.0	2.5066	36.84	180	
Critical pt	154.78	38109	50.14	736.9	278.6 ₀	105	2838.2	3.7345	54.88	189	
						110	4072.9	5.3591	78.76	198	
	55	1.38	0.00182	0.027	99	115	5661.6	7.4495	109.48	207	
	60	5.44	0.00716	0.105	108	120	7658.6	10.077	148.09	216	
	65	17.4	0.0229	0,34	117	125	10120	13.316	195.7	225	
	70	46.8	0.0616	0.90	126	130	13102	17.239	253.4	234	
	75	108.7	0.1430	2.10	135	135	16670	21.934	322.3	243	
	80	225.3	0.2964	4.36	144	140	20892	27.489	404.0	252	
	85	425.4	0.5597	8.23	153	145	25843	34.004	499.7	261	
	90	745.0	0.9803	14.41	162	150	31631	41.620	611.6	270	

TABLE 9.50/2 VAPOR PRESSURE OF OXYGEN (NOT FOR INTERPOLATION)

TABLE 9.50/I VAPOR PRESSURE OF OXYGEN (FOR INTERPOLATION)

2 T	T	log _{io} p		T	3.6 T	<u> </u>	T	log _{io} p			T	1.8 T		
0K-1	٥K	mm Hg	atm	psia	o'R	°R ⁻¹	оК_,	°K	mm Hg	atm	psia	Δ	°R	°R ⁻ '
0.037 0.036 0.035 0.034 0.033	54.054 55.556 57.143 58.824 60.606	0.014 0.211 -0.408 0.605 0.802	7.133* 7.330 7.527 7.724 7.921	8.497 8.694 8.891	97.297 100.000 102.857 105.882 97 109.091	0.035	0.0100 0.0099 0.0098 0.0097 0.0096	100.000 101.010 102.041 103.093 104.167	3,27989 3,31630 3,35269 3,38905 3,42539	0,39908 0,43549 0,47188 0,50824 0,54458	1.60268	3636	180.000 181.818 183.673 185.567 187.500	0.0100 0.0099 0.0098 0.0097 0.0096
0.032 0.031 0.030 0.029 0.028	62.500 64.516 66.667 68.966 71.429	0.999 1.196 1.392 1.587 1.781	8.118 8.315 8.511 8.706 8.900	9.482	97 96 116.129 120.000 124.138 94 128,571	0.031	0.0094 0.0093 0.0092	105.263 106.383 107.527 108.696 109.890	3.46169 3.49796 3.53419 3.57041 3.60661		1.78434 1.82057 1.85679	3627 3623 3622 3620 3620	189.474 191.489 193.548 195.652 197.802	0.0095 0.0094 0.0093 0.0092 0.0091
1 7 0.0140	71,429	1.7807	8,8999	0.0671	oc 128.571	1.8 T 0.0140	0.0089 0.0088 0.0087	111.111 112.360 113.636 114.943 116.279	3.64281 3.67900 3.71518 3.75137 3.78756	0.76200 0.79819 0.83437 0.87056 0.90675	1.96538 2.00156 2.03775	3619 3618 3619 3619 3621	200.000 202.247 204.545 206.896 209.302	0.0090 0.0089 0.0088 0.0087 0.0086
0.0139 0.0138 0.0137 0.0136	71.942 72.464 72.993 73.529	1.8192 1.8576 1.8959 1.9342	8.9384 8.9768 9.0151 9.0534	0.1056 0.1440 0.1823 0.2206	129.496 130.435 131.387 132.353	0.0139 0.0138 0.0137 0.0136	0.0085 0.0084 0.0083 0.0082 0.0081	117.647 119.048 120.482 121.951 123.457	3.82377 3.85999 3.89623 3.93249 3.96880	0.94296 0.97918 1.01542 1.05168 1.08799	2.14637 2.18261 2.21887	3622 3624 3626 3631 3636	211.765 214.286 216.867 219.512 222.222	0.0085 0.0084 0.0083 0.0082 0.0081
0.0135 0.0134 0.0133 0.0132 0.0131	74.074 74.627 75.188 75.758 76.336	1.9724 2.0106 2.0488 2.0869 2.1250	9.0916 9.1298 9.1680 9.2061 9.2442	0.2970 0.3352 0.3733 3	82 133.333 134.328 81 135.338 136.364 81 137.404	0.0135 0.0134 0.0133 0.0132 0.0131		125.000 126.582 128.205	4.00516 4.04156 4.07802	1.12435 1.16075 1.19721	2.29154	3640 i 3646	225.000 227.848 230.769	0.0080 0.0079 0.0078
0.0130 0.0129 0.0128 0.0127 0.0126	76.923 77.519 78.125 78.740 79.365	2.1631 2.2012 2.2392 2.2772 2.3150	9,2823 9,3204 9,3584 9,3964 9,4342	0.4876 0.5256 0.5636 3	138.462 139.535 140.625 141.732 77 142.857	0.0130 0.0129 0.0128 0.0127 0.0126	2							3.6 T
0.0125 0.0124 0.0123 0.0122 0.0121	80.000 80.645 81.301 81.967 82.645	2.3527 2.3904 2.4280 2.4656 2.5031	9.4719 9.5096 9.5472 9.5848 9.6223	0.6768 0.7144 0.7520 0.7895	144.000 145.161 146.341 147.541 148.760	0.0125 0.0124 0.0123 0.0122 0.0121	0.0156 0.0155 0.0154 0.0153	128,2051 129,0323 129,8701 130,7190 131,5789	4.09628 4.11454 4.13283	1.19721 1.21547 1.23373 1.25202 1.27034	2,38266 2,40092 2,41921	1826 1826 1829 1832 1834	230.769 232,258 233,766 235,294 236,842	0.0156 0.0155 0.0154 0.0153 0.0152
0.0120 0.0119 0.0118 2.0117 0.0116	83.333 84.034 84.746 85.470 86.207	2.5406 2.5781 2.6156 2.6530 2.6904	9.6598 9.6973 9.7348 9.7722 9.8096	0.8645 0.9020 0.9394 3	150.000 151.260 152.542 153.846 155.172	0.0120 0.0119 0.0118 0.0117 0.0116	0.0151 0.0150 0.0149 0.0148 0.0147	132.4503 133.3333 134.2282 135.1351 136.0544	4.16949 4.18785 4.20625 4.22467 4.24313	1.28868 1.30704 1.32544 1.34386 1.36232	2.47423 2.49263 2.51105	1836 1840 1842 1846 1849	238,410 240,000 241,611 243,243 244,898	0.0151 0.0150 0.0149 0.0148 0.0147
0.0115	86.957	2.7277	9.8469	1.0141	156.522	0.0115	0.0146 0.0145	136,9863 137,9310	4.26162 4.28015	1.38081 1.39934	2.56653	1853 1856	246.575 248.276	0.0146 0.0145
0.0115 0.0114 0.0113 0.0112 0.0111	86.957 87.719 88.496 89.286 90.090	2.72767 2.76492 2.80210 2.83922 2.87626	9.84686 9.88411 9.92129 9.95841 9.99545	1.01405 37 1.05130 37 1.08848 37 1.12560 37 1.16264 37	157.895 159.292 160.714	0.0115 0.0114 0.0113 0.0112 0.0111	0.0141	138.8889 139.8601 140.8451 141.8440 142.8571	4.29871 4.31731 4.33595 4.35464 4.37339	1.41790 1.43650 1.45514 1.47383 1.49258	2.58509 2.60369 2.62233 2.64102	1860 1864 1869 1875 1880	250.000 251.748 253.521 255.319 257.143	0.0144 0.0143 0.0142 0.0141 0.0140
0.0110 0.0109 0.0108 0.0107	90.909 91.743 92.593 93.458	2.91323 2.95013 2.98698 3.02377	0.03242 0.06932 0.10617 0.14296	1.19961 36 1.23651 36 1.27336 36 1.31015 36	163.636 165.138 166.667 168.224	0.0110 0.0109 0.0108 0.0107	0.0139 0.0138 0.0137	143.8849 144.9275 145.9854 147.0588	4.39219 4.41105 4.42998 4.44898	1.51138 1.53024 1.54917 1.56817 1.58726	2.67857 2.69743 2.71636 2.73536	1886 1893 1900	258.993 260.870 262.774 264.706 266.667	0.0139 0.0138 0.0137 0.0136 0.0135
0.0106 0.0105 0.0104 0.0103 0.0102	94,340 95,238 96,154 97,087 98,039	3.06051 3.09720 3.13383 3.17042 3.20696		1.34689 ₃₆ 1.38358 1.42021 ₃₆ 1.45680 ₃₆	171.428 173.077 174.757	0.0106 0.0105 0.0104 0.0103 0.0102		148.1481 149.2537 150.3759 151.5152	4.46807 4.48726 4.50656 4.52598	1.60645 1.62575 1.64517	2,77364 2,79294 2,81236 2,83192	1930 1942 1956	268.657 270.677 272.727 274.809	0.0134 0.0133 0.0132 0.0131
0.0101	99.010	3.24345	0.36264	1.52983 36 1.56627	17 [170 210	0.0101	0.0130 0.0129 0.0128	153.8462 155.0388 156.2500	4.56531 4.58539 4.60589	1.68450 1.70458 1.72508	2.85169	2008	276.923	0.0130 0.0129

^{*}Logarithms have been increased by 10 wherever necessary to avoid negative mantissas.

THE NBS - NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 1.30 Conversion Factors

Table 1.30/ a CONVERSION FACTORS FOR UNITS OF LENGTH

Multiply by approxriate entry to obtain	cm	mm	ſα	m _{J2}	Å
1 Centimeter (cm)	1	10	104	107	108
l Millimeter (mm)	10-1	1	103	10 ⁶	107
l Micron (μ)	10-4	10-3	1	103	104
l Millimicron (mp)	10-7	10-6	10 ⁻³	1	10
l Angstrom Unit (Å)	10-8	10-7	10-4	10-1	1

Table 1.30/b CONVERSION FACTORS FOR UNITS OF LENGTH

Multiply by appropriate entry to obtain	cm	m	in	ft	yd
l em	1	0.01	0.3937	0.032808333	0.010936111
l m	100.	1	39.37	3.2808333	1.0936111
l in	2.5400051	0.025400051	1	0.083333333	0.027777778
1 ft	30.480061	0.30480061	12.	1	0.33333333
l yd °	91.440183	0.91440183	36.	3。	1

^{*} The conversion factors in Tables 1.30/a - 1.30/k are reproduced from "Selected Values of Properties of Hydrocarbons", NBS Circular C461, November, 1947.

Table 1.30//c CONVERSION FACTORS FOR UNITS OF AREA

Multiply by appropriate entry to obtain	cm ²	m ²	sq in≨	sq ft	sq yd
1 cm ²	. 1	10-4	0,15499969	1.0763867 x10 ⁻³	1.1959853 x10 ⁻⁴
1 m ²	104	1	1549.9969	10.763867	1.1959853
l sq in	6.4516258	6.4516258 x10 ⁻⁴	1	6.9444444 x10 ⁻³	7.7160494 x10 ⁻⁴
l sq f t	929.03412	0.092903412	144.	1	0.11111111
l sq yd	8361.3070	0.83613070	1296.	9.	1

Table 1.30/d CONVERSION FACTORS FOR UNITS OF VOLUME

Multiply by appropriate entry to obtain	ml	liter	gal
1 cm ³	0.9999720	0.9999720 x 10 ⁻³	2.6417047 x 10 ⁻⁴
l cu in	16.38670	1.638670 x 10 ⁻²	4.3290043 x 10 ⁻³
l cu. ft.	28316.22	28,31622	7.4805195
l ml	1	0.001	2.641779 x 10 ⁻⁴
l liter	1000.	1	0.2641779
l gal	3785.329	3.785329	1

Table 1.30/Ad CONVERSION FACTORS FOR UNITS OF VOLUME (Continued)

Multiply by appropriate entry to obtain	cm ³	cu in	cu ft
1 cm ³	1	0.061023378	3.5314455 x 10 ⁻⁵
l cu in	16.387162	1	5.7870370 x 10 ⁻⁴
1 cu ft	28317.017	1728.	1
l ml	1.000028	0.06102509	3.531544 x 10 ⁻⁵
l liter	1000,028	61.02509	0.03531544
l gal	3785.4345	231.	0,13368056

Table 1.30/4e CONVERSION FACTORS FOR UNITS OF MASS

Multiply by appropriate entry to obtain	Ø	kg	lb	metric ton	ton
l g	1	1.0 ⁻³	2,2046223 x10 ⁻³	1.0**6	1,1023112 x10 ⁻⁶
. l kg	10 ³	1	2,2046223	10 ⁻³	1,1023112 xlo ⁻³
1 lb	453。59243	0.45359243	1	4.5359243 x10 ⁻⁴	0.0005
l metric ton	106	10 ³	2204.6223	1	1,1023112
1 ton	907184 .8 6	907。18486	2000。	0.90718486	1

Table 1.30/4f CONVERSION FACTORS FOR UNITS OF DENSITY

Multiply by appropriate entry to obtain	g/cm ³	g/ml	lb/cu in	lb/cu.ft	lb/gal
1 g/cm ³	1	1,000028	0.036127504	62.428327	8.3454535
l g/ml	0.9999720	1	0.03612649	62。42658	8.345220
l lb/cu in	27.679742	27.68052	1	1728.	231.
l lb/cu ft	0.016018369	0.01601882	5.7870370 x10 ⁻⁴	1	0,13368056
l lb/gal	0.11982572	0,1198291	4.3290043 x10 ⁻³	7.4805195	1

Table 1.30/ng CONVERSION FACTORS FOR UNITS OF PRESSURE

Multiply by appropriate entry to obtain	dyne/cm ²	bar	atm	kg(wt)/cm ²
l dyne/cm ²	1	10 ⁻⁶	0.9869233 x10 ⁻⁶	1.0197162 x10 ⁻⁶
l bar	10 ⁶	1	0,9869233	1.0197162
l atm	1013250。	1,013250	1	1.0332275
1 kg(wt)/cm ²	980665。	0,980665	0.9678411	1
1 mm Hg	1333.2237	1.3332237 x10 ⁻³	1.3157895 x10 ⁻³	1.3595098 x10 ⁻³
l in Hg	33863 . 95	0.03386395	0.03342112	0.03453162
l lb(wt)/sq in	68947.31	0.06894731	0,06804570	0.07030669

Table 1.30/g CONVERSION FACTORS FOR UNITS OF PRESSURE (continued)

Multiply by appropriate entry to obtain	mm Hg	in: Hg	lb(wt)/sq in,
1 dyne/cm ²	7.500617 x10 ⁻⁴	2.952993 x10 ⁻⁵	1.4503830 x10 ⁻⁵
l bar	750,0617	29.52993	14.503830
l atm	760.	29.92120	14.696006
1 kg(wt)/cm ²	735,5592	28.95897	14.223398
1 mm Hg	1	0.03937	0,019336850
l in Hg	25.40005	1	0.4911570
l lb(wt)/sq in	5171473	2.036009	1

Table 1.30/.h CONVERSION FACTORS FOR UNITS OF ENERGY

Multiply by appropriate entry to obtain	g mass (energy equiv)	abs.joule	int.joule	cal
l g mass(energy equiv)	1.	8.98656 x10 ¹³	8.98508 x10 ¹³	2,14784 x10 ¹³
l abs.joule	1.112772 x10 ⁻¹⁴	1	0.999835	0.239006
l int.joule	1.112956 x10 ⁻¹⁴	1.000165	ı	0.239045
l cal	4.65584 x10 ⁻¹⁴	4.1840	4.1833	1
l I.T. cal	4.65888 x10 ⁻¹⁴	4,18674	4.18605	1.000654
1 BTU	1.174019 x10 ⁻¹¹	1055,040	1054.866	252.161
l int.kilowatt-hr	4.00664 x10-8	3,600,594。	3,600,000.	860,563.
l horsepower-hr	2.98727 x10 ⁻⁸	2,684,525。	2,684,082.	641,617.
l ft-lb(wt)	1.508720 x10 ⁻¹¹⁴	1.355821	1.355597	0.324049
l cu ft - lb(wt)/sq in	2.17256 x10 ⁻¹²	195.2382	195.2060	46.6630
l liter-atm	1,127548 x10 ⁻¹²	101.3278	101.3111	24.2179

	1			
Multiply by appropriate entry to obtain	I.T. cal	BTU	int.kilowatt -hr	horsepower -hr
l g mass(energy equiv)	2.14644 x10 ¹³	8.51775 x10 ¹⁰	2,49586 x10 ⁷	3.34754 x10 ⁷
l abs.joule	0,238849	0.947831 x10 ⁻³	2.77732 x10 ⁻⁷	3.72505 xlo ⁻⁷
l int.joule	0.238889	0.947988 x10 ⁻³	2.777778 x10 ⁻⁷	3.72567 xlo ⁻⁷
l cal	0.999346	3.96573 **10 ⁻³	1.162030 x10 ⁻⁶	1.558562 x10 ⁻⁶
l I.T. cal	1	3.96832 x10 ⁻³	1.162791 x10 ⁻⁶	1.559582 x10 ⁻⁶
1 BTU	251.996	1	2.93018 x10 ⁻⁴	3.93008 xlo ⁻⁴
l int.kilowatt-hr	860,000.	3412.76	1	1.341241
l horsepower-hr	641,197.	2544.48	0.745578	1
l ft-lb(wt)	0.323837	1.285089 x10 ⁻³	3.76555 x10 ⁻⁷	5,05051 x10 ⁻⁷
l cu ft ← lb(wt)/sq in	46.6325	0.1850529	5.42239 x10 ⁻⁵	7.27273 x10 ⁻⁵
l liter-atm	24.2021	0.0960417	2.81420 x10	3.77452 x10 ⁻⁵

Table 1.30/h CONVERSION FACTORS FOR UNITS OF ENERGY (continued)

Multiply by appropriate entry to obtain	ft-lb(wt)	cu ft- lb(wt)/sq in	liter-atm
l g mass(energy equiv)	6.62814 x10 ¹³	4.60287 xl0 ^{ll}	8.86880 xlo ^{ll}
l abs.joule	0,737561	5.12195 x10 ⁻³	9.86896 x10 ⁻³
l int. joule	0.737682	5.12279 x10 ⁻³	9.87058 x10 ⁻³
l cal	3.08595	2.14302 x10 ⁻²	4.12917 x10 ⁻²
l I.T. cal	3,08797	2.14443 x10 ⁻²	4.13187 x10 ⁻²
1 BTU	778.156	5.40386	10.41215
l int.kilowatt-hr	2,655,656。	18442 06	35534.1
l horsepower-hr	1,980,000.	13750。	26493.5
l ft-lb(wt)	1	6.94444 x10 ⁻³	1.338054 x10 ⁻²
1 cu ft - lb(wt)sq in	144.	1	1.926797
l liter-atm	74.7354	5.18996	1

Table 1.30/1 CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY

Multiply by appropriate entry to obtain	erg/molecule	abs.joule/mole	int.joule/mole
l erg/molecule	1	6.02283 x10 ¹⁶	6.02184 x10
l abs.joule/mole	1.660349 x10 ⁻¹⁷	1	0. 9 99835
· l int.joule/mole	1.660623 x10 ⁻¹⁷	1.000165	1
l cal/mole	6.94690 x10 ⁻¹⁷	4.18400	4.1833
l abs.electron-volt/ molecule	1,601992 x10 ⁻¹²	96485.3	96469.4
l int.electron-volt/ molecule	1.602521 x10 ⁻¹²	96517.1	96501.2
1 wave no.(cm ⁻¹)	1.985776 x10 ⁻¹⁶	11.95999	11.95802

Table 1.30/i CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY (continued)

Multiply by appropriate entry to obtain	cal/mole	abs.electron- volt/molecule	int.electron- volt/molecule	wave no. (cm-1)
l erg/molecule	1.439491 ×10 ¹⁶	6,24222 x10 ¹¹	6.24017 x10 ¹¹	5.03581 x10 ¹⁵
l abs.joule/mole	0,239006	1.036427 x10 ⁻⁵	1.036086 x10 ⁻⁵	8.36121 x10 ⁻²
l int.joule/mole	0.239046	1.036599 x10 ⁻⁵	1.036257 x10 ⁻⁵	8.36259 x10 ⁻²
l cal/mole	1	4.33641 x10 ⁻⁵	4.33498 x10 ⁻⁵	0.349833
l abs.electron-volt/ molecule	23060.5	1	0.999670	8067.34
l int.electron-volt/ molecule	23068.1	1,000330	1	8070.00
l wave no.(cm ⁻¹)	2.85851	1.239567 x10 ⁻⁴	1.239158 x10 ⁻⁴	1

Table 1.30/6j CONVERSION FACTORS FOR UNITS OF SPECIFIC ENERGY

Multiply by appropriate entry to obtain	abs.joule/g	int joule/g	cal/g	I.T. cal/g	BTU/1b
l abs.joule/g	1	0.999835	0.239006	0.238849	0.429929
l int.joule/g	1.000165	1	0.239045	0.238889	0,430000
l cal/g	4.1840	4.1833	1	0.999346	1.798823
l I.T. cal/g	4.18674	4.18605	1.000654	1.	1.8
l BTU/lb	2.32597	2.32558	0.555919	0.555556	1

Table 1.30/ k CONVERSION FACTORS FOR UNITS OF SPECIFIC ENERGY PER DEGREE

Multiply by appropriate entry to obtain	abs.joule/ g deg C	int.joule/ g deg C	cal/ g deg C	I.T. cal/ g deg C	BTU/ lb deg F
l abs.joule/g deg C	1	0.999835	0.239006	0.238849	0.238849
l int.joule/g deg C	1.000165	1	C. 239045	0.238889	0,238889
l cal/g deg C	4.1840	4.1833	1	0.999346	0.999346
l I.T. cal/g deg C	4.18674	4.18605	1.000654	1	1
l BTU/lb deg F	4.18674	4.18605	1.000654	1	1

Table 1.30/% CONVERSION FACTORS FOR UNITS OF VISCOSITY *

Multiply	by appropriate entry to obtain	Centipoise	Poise	g _F sec cm ⁻²	lb sec in 2
	Centipoise	1	1x10 ⁻²	1.0197x10 ⁻⁵	1.4504x10 ⁻⁷
	Poise	1.x10 ²	1	1.0197x10 ⁻³	1.4504x10 ⁻⁵
	g _F sec cm ⁻²	9.8067x10 ⁴	9.8067x10 ²	1	1.4224x10 ⁻²
	lb _F sec in ⁻²	6.8947x10 ⁶	6.8947x10 ⁴	7.0305x10 ¹	1
	lb _F sec ft ⁻²	4.7880x10 ⁴	4.7880x10 ²	4.8823x10 ⁻¹	6.9445x10 ⁻³
	lb _F hr in ⁻²	2.4821x10 ¹⁰	2.4821x10 ⁸	2.5310x10 ⁵	3.6000x10 ³
	lb _F hr ft ⁻²	1.7237x10 ⁸	1.723 7 x10 ⁶	1.7577x10 ³¹	2.5001x10 ¹
	g _M sec ⁻¹ cm ⁻¹	lx10 ²	1	1.0197x10 ⁻³	1.4504x10 ⁻⁵
	lb _M sec-l in-l	1.7858x10 ⁴	1.7858x10 ²	1.8210x10 ⁻¹	2.5901x10 ⁻³
	lb _M sec-l ft-l	1.4882x10 ³	1.4882x10 ¹	1.5175x10 ⁻²	2.1585x10 ⁻⁴
	lb _M hr in -1	4.9605	4.9605x10 ⁻²	5.0582x10 ⁻⁵	7.1947x10 ⁻⁷
	lb _M hr ⁻¹ ft ⁻¹	4.1338x10 ⁻¹	4.1338x10 ⁻³	4.2152x10 ⁻⁶	5.9957x10 ⁻⁸

^{*} Based on G. A. Hawkins, H. L. Solberg, and W. L. Sibbitt. Units and conversion factors for absolute viscosity. Power Plant Eng. Nov. 1941.

J 7 3

Table 1.30/& CONVERSION FACTORS FOR UNITS OF VISCOSITY (continued)

				1
Multiply by appropriate entry to obtain	lbF sec ft-2	lb _F hr in ⁻²	lb _F hr ft ⁻²	g _M sec-1 cm-1
Centipoise	2.0886x10 ⁻⁵	4.0289x10 ⁻¹¹	5.8016x10 ⁻⁹	1x10 ⁻²
Poise	2.0886x10 ⁻³	4.0289x10 ⁻⁹	5.8016x10 ⁻⁷	1
g _F sec cm ⁻²	2,0482	3.9510x10 ⁻⁶	5.6895x10 ⁻⁴	9.8067x10 ²
lb _F sec in ⁻²	1.4400x10 ²	2.7778x10 ⁻⁴	4.0000x10 ⁻²	6.8947x10 ⁴
lb _F sec ft ⁻²	1	1.9290x10 ⁻⁶	2.7778x10 ⁻⁴	4.7880x10 ²
lb _F hr in ⁻²	5.1841x10 ⁵	1	1.4400x10 ²	2.4821x10 ⁸
lb _F hr ?t ^{−2}	3.6001x10 ³	6.9446x10 ⁻³	1	1.7237x10 ⁶
g _M sec ^{-l} cm ^{-l}	2.0886x10 ⁻³	4.0289x10 ⁻⁹	5.8016x10 ⁻⁷	1
lb _M sec ^{-l} in ^{-l}	3.7298x10 ⁻¹	7.1948x10 ⁻⁷	1,0360x10 ⁻⁴	1.7858x10 ²
lb _M sec ^{-l} ft ^{-l}	3.1083x10 ⁻²	5.9958x10 ⁻⁸	8.6339x10 ⁻⁶	1.4882x10 ¹
lb _M hr ^{-l} in ^{-l}	1.0361x10 ⁻⁴	1.9985x10 ⁻¹⁰	2.8779x10 ⁻⁸	4.9605x10 ⁻²
lb _M hr ⁻¹ ft ⁻¹	8.6339x10 ⁻⁶	1.6655x10 ⁻¹¹	2.3983x10 ⁻⁹	4.1336x10 ⁻³

Table 1.30/ CONVERSION FACTORS FOR UNITS OF VISCOSITY (continued)

Multiply By Appropriate Entry To Obtain	lb _M sec ^{-l} in ^{-l}	lb _M hr ^{-l} 2t ^{-l}	Slug sec ^{-l} in ^{-l}	Slug hr ^{-l} ft ^{-l}
Centipoise	5.5998x10 ⁻⁵	2 _¢ 4191	1.7405x10 ⁻⁶	7.5188x10 ⁻²
Poise	5,5998x10	2,4191x10 ²	1.7405x10 ⁻⁴	7.5188
g _F sec cm ⁼²	5,4916	2.3723x10 ⁵	1.7068x10 ⁻¹	7.3733x10 ³
lb _F sec in ⁻²	3.8609x10 ²	1.6679x10 ⁷	1.2000x10 ¹	5.1840x10 ⁵
lb _F sec ft ⁻²	2.6812	1.1583x10 ⁵	8.3335x10 ⁻²	3.6000x10 ³
lb _F hr in ⁻²	1.3899x10 ⁶	6.0044x10 ¹⁰	4.3199x10 ⁴	1.8662x10 ⁹
lb _F hr ft ⁻²	9.6524x10 ³	4.1698x10 ⁸	3.0000x10 ²	1.2960x10 ⁷
g _M sec-l cm-l	5.5998x10 ⁻³	2,4191x10 ²	1.7405x10 ⁻⁴	7.5188
lb _M sec ^{-l} in ^{-l}	1	4.3200x10 ⁴	3.1081x10 ⁻²	1.3427x10 ³
lb _M sec ^{-l} ft ^{-l}	8.3333x10 ⁻²	3.6000x10 ³	2.5902x10 ⁻³	1.1189x10 ²
lb _M hr ⁻¹ in ⁻¹	2.7778x10 ⁻⁴	1.2000x10 ¹	8.6337x10 ⁻⁶	3.7297x10 ⁻¹
lb _M h'r ⁻¹ ft ⁻¹	2.3148x10 ⁻⁵	1	7.1946x10 ⁻⁷	3.1081x10 ⁻²

				Γ	g,	9 F		1.8	ر د د د	ı,	7.2	0.6	10. g	12.6	14.4	7.01	18.0		J.0	4	ာ့		0.58	1. 67	:	2. 22	3 33	;	3.88	4.4	3	5.56	6.11		7.22	7,78	8. 33	8.89	8.44	10.00]			
				-	o _K	ွ	Ī		01 0	,	41 1	o 4	0	-		,	10	-	- n	:	o.F		٦ ،	3 07		4,1	ი თ	•	-	œ a	,	2 :	15	}	13	4. 1	13	18	17	18				
	O.R	720.	729.69	730	739.69	740.	743.69	750	756.00	759.69	760.	769.69	770.	774.00	779.69	780.	700	792.00	797. 69	798.68	800°	808.68	810.	818 68	820.	828.00	829. 68	930,	839.69	840.	846.00	849.89	851.69	858.88	860.	864.00	868.88	879.68	880.	882.00	888.69	890.	889.69	
	o F	260.31	270.	270.31	280.	280.31	284.00	290.31	296, 31	300.	300.31	302.00	310, 31	314.31	320,	320.31	330.	332.31	338. 00	340.	340.31	350.	350.31	350.00	360. 31	368.31	370.	370.31	380	380. 31	386. 31	390	392, 00	400	400.31	404.31	410.	420.31	420.31	422. 31	428.00	430.31	440.31	
	၁့	126.84	132.22	132.40	137.78	137.95	140.	143 51	146,84	148.89	149.06	150.	154.62	156.84	160.	160.17	165.56	166 84	170,	171, 11	171.28	176.66	176.84	100°	182, 40	186.84	187.78	187.95	193.33	193.51	196.84	198.89	200.	204.44	204.62	206.84	210,	215.58	215.73	216.84	220,	221.28	228.87	
	×	400.	405.38	405.56	410.94	411.11	413.16	416.41	420.01	422. 05	422. 22	423.16	427.78	430	433.16	433.33	438.72	436.00	443, 16	444.27	444. 44	448.83	450	453.19	455, 56	460.	460.94	481.11	466 49	466.67	470.	472.05	473.16	477.60	477.78	480.	483.16	488.72	488.89	490	493.16	484. 44	498.83	
	o _R	540.	549.69	550	559, 69	560.	583.69	500.00	576.00	579.69	580.	581.69	388.09 500.	594.00	683.88	•009	609.69	612 00	617, 69	619, 69	620.	629.69	630.	635.69	640.03	648.00	649.69	650	653.03	660	668.00	863.69	871.89	679.68	680.	684.00	688.68	690.69	700.	702.00	707, 60	710,	719, 89	
6	9 o	80.31	86. UO	90.33	100,	100.31	104.00	110 31	116.31	120	120.31	122.00	130.31	134.31	140.	140.31	150	150.31	158.00	160,	160.31	170.	170.31	176.00	180.31	188.31	190.	180.31	200	200.31	206.31	210.	212.00	220	220.31	224. 31	.230	230.31	240.31	242.31	248.00 250	250.31	260,	
TABLE	၁့	26.84	32. 22	32. 40	37.78	37.95	40.	43.33	43. 31	48.89	49.06	2	54.44	58.84	.09	60.17	85, 56	60.13	70.	71.11	71, 28	76.87	76.84	80.	82. 22	86.84	87.78	87.95	900	93. 51	96.84	98.89	100.0p	104.44	104.62	106.84	110,	110, 17	115.73	118.84	120	121. 28	126.67 126.84	
ERSION	o _K	300.	305.38	305, 56	310.94	311.11	313.16	316.41	316.67	322, 05	322. 22	323. 16	327.60	330.	333.16	333, 33	338.72	338.89	340.	344. 27	344.44	348.83	350.	353.16	355.56	360.	360.94	361.11	363. 16	366.67	370.	372.05	372.22	377, 80	377.78	380.	383. 16	383.33	338.89	390.	383.18	394.44	389.83 400.	
ERCONY	oR .	360.	369. 69	370.	379, 68	380.	383. 69	389. 69	396.00	399. 69	400.	401. 69	409.69	414.00	419, 69	420.	429.69	430.	437.68	438.69	440.	149.88	450.	165.68	460.	168.00	69.69	470.	78 80	480.	188.00	69 .68	490.	188.69	200	904. 00-	89.68	OTO.	220.	22. 00	90 68	30.	638.89	-
RE INT		~ .	_		_	_	_				_	_				_					_			_																			80, 31	
PERATU			_						_																																		28.67 26.84	
TEMI	Å												_																														299.83	
	e B		_	_	_						_		_	_		_						-	_			-					_	_		_	_		_	_					359. 69 2	-
																																											-100, 35 -99.69 36	
	್ಯ	73.16 -2	57.78 -2	57.60 -2	32.20 -2	32.052	.0°.	2- 07 0.00	53.16 -2	51.11 -2	50.94 -2	0.0	5.38 -2	3.16 -2	.0.	19.83 -2	24 44 -2	13 16 -2	0. 10	8.89 -2	8.62 -1	3.33 -1	3. 16 -1	0,0	7.60 -1	3.16 -1'	2. 22 -1	2.05 -19	L	6.49 -1	3.16 -1	1.11 -L	0.04	5.56 -14	5.38 -1;	3.16 -1	0°	4. 44 -12	4.27 -1	3.16 -11	0. 80 -11	8.72 -10	-73.33 -10 -73.16 -9	
	×																																											
							_	_	_							_																											199.83	_
	o _R																																										179.89 9 180.	
	4 _o																																										3 -280.	
	ಎಂ																																										-173.33	
	o ^K	.0	5.38	10.0	10.94	11.11	16.49	16.67	20.	22.05	22. 22	27 60	27.78	30.	33.16	. 33. 33	38.62	40.0	43.16	44.27	44.44	49.83	50.	55.38	55, 58	.09	60.94	63 16	66.49	66.67	70.	72 22	73.16	77.60	77.78	00.	83 33	88.72	88.89	90.	94.27	94.44	99.83	

Prepared by the Thermal Tables Project, Thermodynamics Section, National Bureau of Standards and reprinted from Report 1192: "Density and Compressibility of Air" by W. S. Benedict and Joseph Hilsenrath.

5700. 228.84 444.01 900. 660. 338.84 620.31 120.0 700. 428.84 800.31 126.0 120.5 120.5 120.5 200.31 220.0 200.31 200.0 120.5 200.0 200.31 220.0 200.0	
440. 31 900. 600. 326. 84 520. 31 1080. 700. 426. 84 800. 31 440. 995. 86 603. 16 337. 22 630. 1985. 87 705. 38 432. 80 800. 450. 31 910. 605. 56 332. 40 530. 31 1098. 00 715. 448. 48 810. 31 450. 919. 89 605. 56 332. 40 530. 31 1098. 00 710. 428. 48 810. 31 450. 919. 89 610. 94 337. 78 640. 31 1099. 00 710. 443. 77 8 282. 440. 470. 31 930. 610. 61. 61. 61. 34. 34. 650. 31 1099. 00 710. 716. 11 443. 33 530. 31 470. 31 930. 616. 67 343. 51 650. 31 1110. 00 716. 17 443. 31 330. 31 470. 31 930. 622. 0 346. 40 620. 31 1110. 00 716. 17 443. 31 330. 31 470. 31 930. 622. 0 346. 84 660. 31 1120. 89 716. 443. 51 830. 31 470. 31 930. 622. 0 346. 84 660. 31 1120. 89 716. 443. 51 830. 31 470. 31 930. 622. 0 346. 84 660. 31 1120. 89 716. 443. 51 830. 31 470. 31 950. 622. 0 346. 84 660. 31 1120. 89 716. 443. 51 830. 31 470. 31 950. 622. 0 346. 84 660. 31 1120. 89 716. 443. 51 830. 31 470. 31 950. 622. 0 346. 84 660. 31 1120. 89 716. 443. 51 830. 31 470. 31 950. 622. 0 346. 84 670. 11120. 89 7122. 52 449. 68 830. 31 470. 31 950. 622. 0 346. 84 670. 11120. 89 7122. 52 449. 68 830. 31 570. 31 950. 633. 1 350. 662. 0 1122. 69 7222. 54 90. 830. 31 570. 940. 822. 1 350. 662. 1 1122. 69 7222. 449. 68 830. 31 570. 940. 822. 1 350. 662. 1 1122. 69 7222. 449. 68 830. 31 570. 940. 822. 1 320. 640. 444. 471. 1 850. 31 570. 940. 840. 840. 840. 840. 840. 840. 840. 8	°C
900. 600. 326.84 620.31 1060. 700. 426.84 800.31 905.69 603.33 332.22 530. 1083.69 703.16 43.0. 806.00 909.69 605.38 332.24 530. 1083.69 703.16 43.0. 806.00 910.65 605.38 332.24 530. 1083.69 703.16 43.24 818.31 918.00 610.5 332.40 630.31 10990. 710.5 436.84 818.31 918.00 610.5 332.40 630.31 10990. 710.5 436.84 818.31 918.00 610.4 337.78 640.31 1099.69 710.5 440.33 320.30 923.69 613.16 340.3 650.31 1116.00 711.11 437.59 820.31 934.64 635.31 1116.00 722.0 448.80 820.31 934.64 652.0 1124.89 722.16 440.0 822.0 944.65 627.6 334.42 670.31 1120. 722.0 448.80 840.31 934.60 620.3 120.0 1123.69 722.16 440.0 842.0 950.0 620.3 336.44 670.3 1129.0 722.0 448.80 840.31 934.60 620.3 120.0 123.69 722.16 440.0 842.0 950.0 620.3 336.44 670.3 1120.0 722.0 448.80 840.31 936.0 627.6 334.42 670.3 1124.0 733.1 440.1 850.3 193.6 620.3 120.0 123.6 722.2 449.0 842.0 123.6 970.0 633.3 330.1 120.0 722.0 448.80 840.3 1950.0 970.6 633.1 330.6 660.31 1120.0 730.7 445.5 850.3 1972.0 638.80 357.7 809.1 1149.6 722.1 445.5 850.3 1972.0 644.4 371.1 800.3 1125.0 733.1 440.1 800.3 1972.0 644.4 871.1 800.3 1125.0 733.1 440.1 800.3 1972.0 644.4 871.1 800.3 1125.0 733.1 440.1 800.3 1972.0 644.4 871.1 800.3 1125.0 733.1 440.1 800.3 1972.0 644.4 871.1 800.3 1125.0 730.0 640.0 386.84 770.0 31 1150.0 730.7 445.5 850.0 1150.0 640.0 386.84 770.0 31 1150.0 730.7 442.4 471.1 800.3 1100.0 660.0 380.2 770.0 1150.6 730.4 447.1 800.3 1100.0 660.0 380.2 770.0 1150.6 730.4 447.1 800.3 1100.0 660.0 388.89 770.0 31 1150.0 730.4 447.1 800.3 1100.0 660.0 380.8 37.7 870.3 1180.0 750.4 447.1 800.3 1100.0 660.0 380.2 770.0 1150.6 730.4 447.1 800.3 1100.0 660.0 430.3 390.0 730.3 1180.0 750.4 447.1 800.3 1100.0 660.0 380.8 37.7 870.3 1180.0 750.4 447.1 800.3 1100.0 660.0 380.8 37.7 870.3 1180.0 750.4 447.1 800.3 1100.0 660.0 480.4 740.3 1190.6 750.4 447.1 800.3 1100.0 660.0 380.8 37.7 870.3 1180.0 750.4 447.1 800.3 1100.0 670.0 448.8 930.3 1100.0 670.0 448.8 930.3 1100.0 670.0 448.8 930.3 1100.0 670.0 448.8 930.3 1100.0 670.0 448.8 930.3 1100.0 670.0 448.8 930.3 1100.0 770.0	o F
600. 328.84 620.31 1080. 700. 428.84 800.31 603.8 330. 626.00 1085.69 703.18 430.8 806.00 665.86 332.40 630.31 1090. 710.56 432.40 810.31 610.94 337.78 640.3 1099.69 705.56 432.40 810.31 610.94 337.78 640.3 1099.69 710.94 437.78 820.31 613.11 337.95 640.31 1100.0 710.4 437.8 820.31 613.11 337.95 640.31 1110.0 710.4 437.8 820.31 830.31 620.3 348.89 660. 1119.69 710.4 433.3 830.31 620.3 348.89 660. 1119.69 710.4 433.3 830.31 620.3 348.89 660. 1119.69 720. 448.84 836.31 1100.0 720. 448.89 840.31 620.3 348.89 660. 1119.69 720. 448.89 840.31 620.3 348.89 660. 1119.69 720. 448.89 854.31 633.3 360.17 680.31 1120. 722.2 449.0 840.3 850.31 633.1 360.7 680.31 1120. 722.2 449.0 840.3 850.31 633.1 360.7 680.31 1120. 722.2 449.0 840.3 850.31 633.1 360.7 680.31 1140. 722.0 448.89 854.31 633.0 360.4 670. 1129.69 722.0 448.89 854.31 633.0 360.4 670. 1129.69 722.0 448.89 854.31 633.0 360.4 670. 1129.69 722.0 448.89 854.31 633.0 360.4 670. 1129.69 722.0 448.89 854.31 633.0 360.4 670. 1129.69 722.0 448.89 854.31 633.0 360.4 670. 1129.69 722.0 448.89 854.31 630.3 1140. 633.1 320.0 722.0 448.89 854.31 630.3 1140. 633.1 320.0 722.0 448.89 854.31 630.3 1140. 633.1 320.0 722.0 448.89 854.31 630.3 1140. 633.1 320.0 722.0 448.89 854.31 630.3 1140. 633.1 320.0 722.0 448.89 854.31 630.3 1140. 633.1 320.0 730. 448.89 445.73 870.3 1140. 640.3 370. 650.3 1140. 650.0 1175.69 743.1 447.2 880.3 1140. 640.3 370. 640.3 370. 670.0 1175.69 743.1 447.2 880.3 1140. 650.0 744.2 444.4 471.28 800.3 1140. 650.0 1175.69 743.1 447.9 900.3 1150.0 740. 448.4 471.28 800.3 1150.0 740. 448.89 447.7 800.3 1150.0 750. 448.89 490.3 30.0 1150.0 750. 448.89 490.3 30.0 1150.0 750. 448.89 490.3 30.0 1150.0 750. 448.89 900.3 1150.0 750. 448.89 900.3 1150.0 750. 448.89 900.3 1150.0 750. 448.89 900.3 1150.0 750. 448.89 900.3 1150.0 750. 448.89 900.3 1150.0 750. 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.89 900.3 1150.0 750.0 448.8	o _R
328.84 620.31 1030. 700. 428.84 800.31 330. 628.00 1085.69 705.38 432.22 810.33 332.40 630.31 1090.00 705.58 432.40 810.31 333.84 638.31 1090.00 705.56 432.40 810.31 337.78 640.31 11090.00 705.56 432.40 810.31 337.78 640.31 11090.00 710.94 437.78 820.31 340.00 640.31 1110.00 710.44 443.33 830.30 343.33 650.31 1110.00 716.41 443.33 830.31 340.00 660.31 1120.00 716.41 443.33 830.31 340.00 660.31 1120.00 722.02 448.84 836.31 350.00 662.00 1121.69 722.02 448.96 840.31 350.00 662.00 1121.69 722.02 449.06 840.31 350.00 662.00 1121.69 722.02 449.08 840.31 350.00 662.00 1121.69 722.02 449.08 840.31 350.00 662.00 1121.69 722.00 448.84 836.31 360.01 690.31 1140.00 722.01 444.44 850.31 360.17 680.31 1140.00 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 733.31 440.00 862.00 1147.69 744.24 471.28 80.31 370.00 1139.69 744.27 471.11 880.3 370.00 1139.69 744.27 471.11 880.3 380.00 1147.69 755.31 450.00 900.31 360.00 93	No.
620. 31 1080. 700. 428. 84 800. 31 628. 01 1085. 69 703.18 432. 810. 00 630. 0185. 69 703.18 432. 810. 31 628. 01 1085. 69 705. 56 432. 40 810. 31 640. 1199. 69 710. 94 437. 78 820. 31 640. 1199. 69 710. 94 437. 78 820. 31 650. 31 1110. 00 720. 448. 64 834. 33 830. 650. 31 11120. 720. 720. 448. 64 834. 31 660. 31 11220. 720. 720. 448. 64 834. 31 660. 31 1120. 720. 720. 448. 64 834. 31 660. 31 1120. 720. 720. 448. 64 834. 31 660. 31 1120. 720. 720. 448. 64 834. 31 660. 31 1120. 720. 720. 448. 64 834. 31 660. 31 1134. 00 720. 720. 448. 64 834. 31 660. 31 1134. 00 720. 720. 448. 64 850. 31 660. 31 1140. 720. 720. 448. 64 850. 31 660. 31 1140. 720. 720. 448. 64 850. 31 660. 31 1140. 720. 720. 448. 64 850. 31 660. 31 1140. 720. 720. 448. 65 870. 31 660. 31 1140. 720. 720. 448. 65 870. 31 660. 31 1140. 720. 720. 448. 64 872. 31 60. 31 1150. 00 1155. 69 744. 47 471. 18 880. 31 720. 31 1160. 69 773. 16 450. 488. 64 872. 31 720. 31 1160. 69 775. 31 480. 470. 480. 48 800. 31 720. 31 1180. 60 775. 31 480. 470. 480. 48 800. 31 720. 31 1180. 60 775. 31 480. 470. 480. 48 800. 31 720. 31 1180. 60 775. 31 480. 480. 20 900. 31 720. 31 1180. 60 775. 31 480. 32 900. 31 720. 31 1180. 60 775. 31 480. 32 900. 31 720. 31 1200. 60 775. 31 480. 32 900. 31 720. 31 1200. 60 775. 31 480. 32 900. 31 720. 31 1200. 60 775. 490. 490. 490. 31 920. 31 744. 31 1224. 60 776. 490. 490. 490. 31 920. 31 744. 31 1224. 60 776. 490. 490. 490. 31 920. 31 740. 31 1224. 60 776. 490. 490. 490. 31 920. 31 740. 31 1224. 60 776. 490. 490. 490. 30 30 30 30 776. 776. 780. 31 1224. 60 776. 780. 31 1224. 60 776. 50 444. 444. 31 1224. 60 776. 50 444. 444. 31 1224. 60 776. 490. 490. 490. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 490. 31 920. 31 770. 31 1224. 60 776. 50 440. 490. 31 920. 31 770. 50	°C
1080. 700. 426.84 800.31 1085.89 705.36 432.40 810.31 1099.69 710.56 432.40 810.31 1099.69 710.56 432.40 810.31 1099.69 710.56 432.40 810.31 1099.69 710.56 432.40 810.31 1109.69 710.94 437.78 820.31 1109.69 716.41 443.33 830.31 1116.00 720. 446.84 836.31 1115.00 722.2 445.06 840.31 1120.69 7127.60 445.44 850.31 1120.69 7127.78 454.62 850.31 1134.00 730. 456.84 856.31 1149.69 733.16 450. 465.84 850.31 1149.69 733.16 450. 465.84 870.31 1149.69 738.72 465.84 870.31 1149.69 738.72 465.84 870.31 1149.69 738.73 465.66 890.31 1157.69 743.16 470. 466.84 870.31 1157.69 743.16 470. 466.84 870.31 1157.69 745.31 4470. 468.84 890.31 1157.69 745.34 470. 487.59 910.31 1159.69 745.42 470. 487.59 910.31 1159.69 745.44 471.28 880.31 1159.69 745.44 471.28 880.31 1159.69 746.44 471.28 890.31 1159.69 775.55 482.22 900.0. 486.84 990.31 1159.69 746.44 471.28 890.31 1159.69 776.44 487.95 910.31 1159.69 776.54 488.84 990.31 1159.69 776.54 488.84 990.31 1159.69 776.54 489.33 900.31 1159.69 777.76 548.84 993.39 30.31 1224.00 777.76 548.89 932.00 31 1224.00 777.76 50.44 494.31 920.31 1224.00 790.8 151.73 900.31 1224.00 790.8 151.73	4º
700. 426.84 800.31 703.16 430.28 810.31 710.34 437.28 810.31 710.56 432.40 810.31 710.94 437.78 820.31 711.11 437.95 820.31 713.16 440.33 830.31 712.05 448.89 840.31 722.05 448.89 840.31 722.16 450.49 850.31 723.16 450.49 850.31 723.33 460.17 850.31 733.34 460.17 850.31 733.38 460.17 850.31 733.39 465.73 870.31 744.44 47 471.11 880.31 744.16 470.49 810.31 745.31 450.49 890.31 746.67 487.95 910.31 755.36 482.22 900.3 755.36 482.22 900.3 756.17 490.39 910.31 760.49 487.75 911.31 760.94 487.75 911.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.94 487.95 910.31 760.95 490.96 930.31 777.76 50 490.96 930.31 777.76 50 490.96 930.31 777.76 50 490.96 930.31 777.77 50 504.44 940.31 777.78 504.49 940.31 777.79 505.84 940.31 779.48 75 521.11 970.31 799.48 521.28 970.31 799.48 521.28 970.31 799.48 521.28 970.31 799.87 521.11 970.3	o _R
426. 84 800. 31 430. 22 810. 31 432. 28 810. 31 432. 20 810. 31 437. 78 820. 31 440. 48 437. 78 820. 31 444. 98 443. 33 830. 444. 89 444. 89 444. 89 444. 89 445. 84 850. 31 446. 84 854. 31 450. 88 854. 31 460. 88 870. 31 461. 88 880. 31 470. 88 880. 31 470. 88 880. 31 470. 88 890. 31 471. 88 890. 31 470. 88 890. 31 471. 89 890. 31 480. 89 890. 31 490. 89 890. 31 490. 89 890. 31 490. 89 890. 31 490. 89 890. 31 500. 89 500. 31 500. 89 500. 31 500. 89 500. 31 500. 89 500. 31 500. 89 500. 31 500. 89 500. 31	No.
84 800 31 22 810. 23 810. 24 816.31 25 810.31 26 820.31 27 820.31 28 820.31 28 820.31 28 820.31 28 820.31 28 820.31 28 820.31 28 820.31 28 820.31 28 820.31 28 820.31 29 820.31 20 920.31	APER
	1
72260. 72265.69 72265.69 72270.00 72270.00 72280	INTER
	o _F o _R o _K
800. 803.16 805.56 805.56 811.0. 811.11 813.16 814.11 817.76 866.57 866.67 867.20 872.05 887.06 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76 887.76	
528. 84 530. 2 532. 40 532. 40 537. 84 537. 95 543. 33 548. 88 548. 88 558. 84 658. 84 658. 87 66. 84 664. 44 680. 88 677. 88 682. 22 686. 84 690. 64 690. 44 690. 68	TABLE (Continued)
980, 31 980, 31 980, 31 990, 31 1000, 30 1000, 30	ontinued)
1.440. 1.445.69 1.445.69 1.450.00 1.458.69 1.460.69 1.470.00 1.480.69 1.480.69 1.480.69 1.480.69 1.580	o _R
900.6 900.5 38 905.56 910.94 911.11 913.16 915.2 22 922.05 922.22 923.16 927.78 924.27 926.6 927.78 924.27 926.6 927.78 924.27 926.6 927.78 924.27 926.6 927.78 924.27 926.6 927.78 924.27 926.6 927.2 928.6 927.2 928.6 927.2 928.6 927.2 928.6 927.2 928.6 928.2	o _K
626. 84 630. 26 637. 78 637. 78 637. 78 643. 33 643. 33 643. 33 643. 62 650. 64 650. 66 650. 66 650. 66 670. 66 670. 66 671. 12 671. 1	°C
1160.31 1170.30 1170.31 1170.31 1180.31 1180.31 1190.31 1190.31 1200.31	o _F
1620 1623.69 1623.69 1630.0 1633.69 1640.1 1643.69 1655.69 1655.69 1655.69 1656.0 1656.0 1657.69 1677.0 1779.0	o _R
OR OC	
OR O	

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Burcau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

.