Fonctions de référence - Spé maths 1ère

Fonction valeur absolue:

Définition:

La fonction valeur absolue est définie sur R par f(x) = |x| on a donc $f(x) = x \operatorname{si} x > (\operatorname{ou} \operatorname{égal}) 0$ et $f(x) = -x \operatorname{si} x < 0$

Sa représentation graphique :

On remarque que sa représentation graphique est symétrique par rapport à l'axe des ordonnées on a donc f(-x) = f(x)

Sens de variation :

La fonction valeur absolue est décroissante sur] - ∞ ; 0] et croissante sur [0; + ∞ [

Son minimum est 0 pour x = 0:

Fonction polynôme du second degré:

Définition:

Une fonction polynôme du second degré est définie sur R par une expression de la forme ax^2 + bx + c avec a ; b et c des réel et a différent de 0

Sa représentation graphique est une parabole :

Lorsque a < 0 la parabole est orienté vers la haut :

Lorsque a > 0 la parabole est orienté vers le bas :

Le point le plus haut (a < 0) ou le point la plus bas (a > 0) est appelé sommet S de la parabole.

Expressions de la fonction :

Une fonction polynôme du second degré admet 3 expression :

Une forme développé de la forme : ax^2 + bx +c

Une forme factorisée de la forme : a (x - x1) (x - x2)

Une forme canonique de la forme : a $(x - \alpha)^2 + \beta$

Plusieurs de ces éléments peuvent être retrouvés graphiquement :

Le point d'intersection entre la parabole et l'axe des ordonnée (s'il y en a un) est c, ici c = 5

Les coordonnées du sommet de la parabole sont (α; β)

<u>Les deux points d'intersections entre la parabole et l'axe des abscisses (ici A et B) (si ils existent) sont</u> x1 et x2, ici x1 = -1 et x2 = 3

Etude de la fonction :

Sens de variation :

Pour déterminer le sens de variation on utilise la forme canonique,

Si a < 0, f est croissante] - ∞ ; α] et décroissante sur [α ; + ∞ [

Si a > 0, f est décroissante] - ∞ ; α] et croissante sur [α ; + ∞ [

	$\operatorname{Si} a > 0$					$\mathrm{Si}\; a < 0$				
x	$-\infty$		α		$+\infty$	$-\infty$		α		$+\infty$
	$+\infty$				$+\infty$			β		
Variations de f		>		7			7		>	
			β			$-\infty$				$-\infty$

Signe d'une fonction polynôme du second degré :

Pour déterminer le signe d'une fonction polynôme du second degré on utilise sa forme factorisé et on dresse un tableau de signe ou plus simple on calcule delta à partir de la forme développée :

$$\Delta = b^2 - 4ac$$

Si $\Delta = 0$ on calcule x0 = -b / 2a

Si $\Delta > 0$ on calcule x1 = -b - $\sqrt{\Delta}$ / 2a et x2 = -b + $\sqrt{\Delta}$ / 2a

Résolution d'équations :

On est en mesure de savoir α et β si nécessaire à partir de la formule développée :

$$\alpha = -b/2a$$
 et $\beta = -\Delta/4a^2$

Pour résoudre un équation de la forme : $ax^2 + bx + c = 0$

On calcule $\Delta = b^2 - 4ac$

Si Δ < 0 alors il n'y a pas de solutions réelles à cette équation

Si $\Delta = 0$ on calcule l'unique solution $\mathbf{x0} = -\mathbf{b} / 2\mathbf{a}$

Si $\Delta > 0$ on calcule les deux solutions $x1 = -b - \sqrt{\Delta}/2a$ et $x2 = -b + \sqrt{\Delta}/2a$

A partir de ces résultat on peut factoriser la fonction :

Si Δ < 0 alors on ne peut pas factoriser

Si $\Delta = 0$ on calcule l'unique solution x0 = -b / 2a et on écrit la fonction : $f(x) = a (x + x0)^2$

Si $\Delta > 0$ on calcule les deux solutions $x1 = -b - \sqrt{\Delta} / 2a$ et $x2 = -b + \sqrt{\Delta} / 2a$ et on écrit la fonction f(x) = a (x-x1) (x-x2)

Propriétés supplémentaires :

Si on a une fonction $ax^2 + bx + c$ qui admet deux solutions (racines) x1 et x2 alors la somme x1 + x2 = -b / a et le produit x1*x2 = c/a

On a déjà établi que α = - b / 2a et β = - Δ / 4a^2 donc les coordonnées du sommet S de la parabole sont : (- b / 2a ; - Δ / 4a^2)