Accounting and profitability

Projects and investing

Production as a part of value chain

Production processes and production control

Production systems and organizations

Creating value

Production systems and organizations

Case-examples

Production system's capacity: Heathrow airport

- Heathrow airport
 - Production processes
 - Cycle time
 - Capacity
 - 4V-model
 - Utilization rate and throughput efficiency

- Heathrow airport
 - Production processes
 - Cycle time
 - Capacity
 - 4V-model
 - Utilization rate and throughput efficiency

Production processes

- Flow unit: airplanes and passengers
- Transformation: landings and takeoffs of the airplanes, exiting and boarding of passenger
- Necessary resources: airport facilities, air traffic control, customer service, aircraft maintenance, ...
- The value of an airport is smooth travel of people and the maintenance of the aircrafts

Production processes

- The airport is one of the busiest in the world
 - In 2018, it was world's seventh busiest
- The airport operates close to the theoretical maximum capacity
 - Heathrow runways operate at 99% capacity
 - At other major airports, the corresponding capacity is close to 70%
- Airplanes must wait for landing by flying near the airport
- Insufficient capacity leads to jams and flight delays

- Heathrow airport
 - Production processes
 - Cycle time
 - Capacity
 - 4V-model
 - Utilization rate and throughput efficiency

Cycle time

 A total of 1300 aircraft land or take off from runways daily. With an airport operating 24 hours a day, the average cycle time for runways is:

Cycle time =
$$\frac{\text{Time period}}{\text{Amount of flow units}} = \frac{24 * 60 \text{ min}}{1300} = 1,10 \dots \text{ min} \approx 66 \text{ s}$$

 That is, airplanes are required to take off or land at average intervals of 66 seconds

- Heathrow airport
 - Production processes
 - Cycle time
 - Capacity
 - 4V-model
 - Utilization rate and throughput efficiency

Production processes

- 33% of all flights at the airport are delayed by at least 15 minutes On average, other major European airports have a delay rate of 21-24%
- Even one factor that slows down the flow, is a reason for delay
 For example, weather conditions and machine failures
- In the worst cases, certain flights have had to be canceled in order to keep other flights on schedule
- Runways are bottlenecks in Heathrow's production system

- Heathrow airport
 - Production processes
 - Cycle time
 - Capacity
 - 4V-model
 - Utilization rate and throughput efficiency

4V-model

- High production volume
 - Requires a lot of manpower and equipment (capital)
 - Employees specialized in their tasks
- Low variability of products
 - Tasks are defined precisely
 - Standard process
 - Lower unit cost

4V-model

Low demand volatility

- Demand is known through flight scheduling
- High utilization of resources
- Lower unit cost

Customer involvement

- Customers (airplanes and passengers) have a short tolerance to delays
- Passenger satisfaction with services depends on production efficiency
- Efficient communication with customers is required

- Heathrow airport
 - Production processes
 - Cycle time
 - Capacity
 - 4V-model
 - Utilization rate and throughput efficiency

Utilization rate and throughput efficiency

- The runways operate at 99% capacity
 - High utilization rate
 - Even a small change causes a delay. The flow units must wait for the release of resources
 - Bad throughput efficiency
 - The capacity constraint are runways, that are already operating at almost full capacity

Utilization rate and variability in the time consumed by the process

- Number of units waiting is shown in y axis and utilization rate in x axis
- Point Y: low utilization rate, but high throughput efficiency
- Point X: high utilization rate, but low throughput efficiency

Utilization rate and changes in the duration of the process

- Point Z: Reduction in process variability
- High utilization rate and throughput efficiency

Utilization rate and changes in the duration of the process

- Point X represents Heathrow airport
 - A small change in the process time required, causes the flow units to queue
 - Almost theoretical capacity, which results in high resource utilization

A solution to the bottleneck

A third runway is planned for the airport to improve throughput efficiency

British Courts In Favour Of Third Runway At Heathrow

by Jay Singh · May 3, 2019 · □ One comment · ③ 2 minute read

London Heathrow is Britain's most well-known airport. For years, the airport has seen the number of free slots dwindle. Nowadays, coming across slots at Heathrow are next to impossible. Heathrow's solution was to build a third runway, however, some were opposed to this for various reasons. It seems now that the British Courts are siding with Heathrow and allowing the Heathrow Expansion Plan to continue.

A solution to the bottleneck

- A third runway will increase airport capacity
- More capacity will lead to better resistance against volatility
 - Better throughput efficiency
 - Surplus capacity decreases utilization rate

