

FACULDADE DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE DE COIMBRA DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

2015/2016 2^{Ω} Semestre

INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL TRABALHO PRÁTICO 1 $BRAITENBERG\ VEHICLES$

Ana Inês Mesquita Fidalgo – 2013134819 – aimf@student.dei.uc.pt – PL6 Andreia Filipa Palma Gonçalves – 2007018949 - andreiag@student.dei.uc.pt – PL4 Pedro Filipe Matos Godinho Gabriel Coelho – 2009116949 - pfcoelho@student.dei.uc.pt – PL2

ÍNDICE

Introdução	3
Veículos	4
Inteligente	4
Apanha-bolas	4
Afasta-cilindros	5
Vai e Repele Próximos	5
Vai e Repele Afastados	5
• Tolo	5
• Oito	6
• Elipse	6
Implementação das funções de activação	7
Limites e limiares	8
Conclusão	9

INTRODUÇÃO

No âmbito da unidade curricular de Introdução à Inteligência Artificial foi-nos proposta a realização do primeiro trabalho prático sobre agentes reactivos. Através da implementação de veículos de Braitenberg, deveremos adquirir e consolidar os conceitos de agentes reactivos, ambientes, percepções e acções.

O trabalho foi realizado no motor de jogos Unity com recurso à linguagem de programação C#. A partir do ficheiro fornecidos pelos docentes, no qual o veículo apenas tinha um tipo de sensor – fotosensor, foram implementados novos, com diversos comportamentos. No presente relatório são descritas as funcionalidades implementadas, os veículos e seus comportamentos.

VEÍCULOS

O primeiro veículo, fornecido pelos docentes, apenas tinha um tipo de sensor – fotosensor – e um tipo de objecto – fonte de luz. A partir deste, foram criados vários cenários, nos quais outros veículos têm sensores que detectam luz e proximidade, respondendo, respectivamente, a fontes de luz e obstáculos existentes no ambiente. Assim, foram implementados os seguintes tipos de veiculo:

- Inteligente;
- Apanha-bolas;
- Afasta-cilindros;
- Vai e Repele Próximos;
- Vai e Repele Afastados;
- Tolo;
- Oito;
- Elipse.

Inteligente

Este veículo desvia-se de todos os objectos existentes no ambiente: luzes e blocos.

No script CarBehaviourBlocoScript são obtidos os valores dos quatro sensores: dois do tipo WallDetector e dois LightDetector, respectivamente, detectam blocos e fontes de luz. De seguida, o valor da velocidade das rodas de cada lado será a multiplicação do MaxSpeed com a soma dos respectivos sensores esquerdos e direitos.

Os sensores WallDetector funcionam através da obtenção das posições de todos os cubos, sendo que depois é calculada a distância entre o veículo e cada um deles. Quanto aos sensores LightDetector, aplicou-se a mesma lógica, isto é, calculam-se as distâncias entre o veículo e a fonte de luz.

Apanha-bolas

No ambiente encontram-se várias esferas, sendo que uma delas pode ser controlada pelo utilizador através do teclado. Os sensores do veículo detectam as esferas e ele vai contra elas empurrando-as segundo uma lógica física.

Em CarBehaviourJogoScript temos dois sensores WallDetector2Script. Se o valor do output do sensor esquerdo for superior ao direito, irá aplicar à roda esquerda a multiplicação do sensor direito com MaxSpeed e à direita, a multiplicação do sensor esquerdo com MaxSpeed e 3/2. Caso contrário, atribui à roda esquerda a multiplicação do sensor direito com 3/2 e MaxSpeed.

Os sensores conseguem procurar as esferas, da mesma forma que localizam os cubos, ou seja, com base nas distâncias. O facto de termos uma esfera que se move consoante as indicações do utilizador, em nada interfere com o comportamento do veículo, ele detecta-a da mesma forma que as outras e vai contra ela.

Afasta-cilindros

Para além de esferas, o ambiente também tem cilindros. O veículo deve afastarse destes e ir até às esferas. Novamente, existe uma esfera diferente controlada pelo utilizador através de teclado.

Este script tem dois sensores WallDetector que pesquisam os objectos do ambiente que tenham a tag "dominó". Os outros sensores WallDetector2Script vão procurar todos os objectos com a tag "esferas".

Vai e Repele Próximos

No ambiente apenas existe um tipo de objectos - fontes de luz. Os sensores do veículo detectam a que se encontra mais próxima. Ao aproximar-se dela, desvia-se novamente.

A implementação está no script *CarBehaviourFar*, no qual existem dois sensores *LightDetectorFarScript*. Este script é semelhante ao *LightDetector*, no entanto, depois de calculadas as distâncias, ele dirige-se para a fonte de luz mais próxima, afastando-se segundo a mesma lógica do veículo já fornecido pelos docentes.

Vai e Repele Afastados

Este veículo encontra-se no mesmo ambiente que o anterior. Também detecta as luzes e depois repele-as, mas ao contrário do primeiro, procura a que se encontra mais afastada.

Apesar de todos os esforços, não conseguimos concretizar o comportamento deste veículo.

Tolo

Novamente com apenas fontes de luz no ambiente, ao detectar uma, este veículo dirige-se para ela, mas ao contrário dos anteriores, não a repele e fica a girar eternamente no local.

O script CarBehaviourVai é semelhante ao CarBehaviourJogoScript, no entanto, os sensores são do tipo LightDetectorScript. Quanto aos cálculos, caso o output do sensor direito seja superior ao esquerdo, o valor da velocidade da roda esquerda será a multiplicação de duas vezes o MaxSpeed pelo sensor direito e, na roda direita, será aplicado o resultado da multiplicação do sensor esquerdo por MaxSpeed. Caso seja inferior, fará o contrário, o dobro da multiplicação do sensor esquerdo pela variável será o valor atribuído à roda direita.

Oito

Com apenas duas fontes de luz existentes no ambiente, o veículo contorna-as, num circuito em forma de oito.

Em CarBehaviourToLight, os sensores são LightDetectorScript. O valor da velocidade da roda direita é a multiplicação de MaxSpeed com o sensor esquerdo subtraindo-se o output do sensor direito. Na roda esquerda, multiplica-se o sensor direito e retira-se o valor do output do sensor esquerdo.

Depois de algumas tentativas falhadas a tentar elaborar este veículo, pesquisámos sobre o trabalho de Braitenberg e descobrimos que cada sensor pode estar ligado às duas rodas, logo foi a partir desta possibilidade que implementámos este comportamento.

Elipse

No mesmo ambiente com apenas duas fontes de luz, este veículo deverá ficar no meio das duas a rodar.

No script roda, os sensores são do tipo LightDetectorScript. Às rodas são aplicados os valores da multiplicação de MaxSpeed pelo sensor do mesmo lado.

IMPLEMENTAÇÃO DAS FUNÇÕES DE ACTIVAÇÃO

No enunciado, foi-nos pedido que aplicássemos funções de activação ao cálculo de output dos sensores de todos os veículos, das quais já nos foi fornecida uma função linear. Foi-nos ainda pedida, a implementação de uma função de activação gaussiana, sobre a qual pesquisámos a sua fórmula:

$$f(x) = a \cdot e^{-\frac{(x-b)^2}{2c^2}}$$

Esta permite que o output dependa das seguintes variáveis: y máximo pretendido, média da energia das fontes de luz que incidem nos sensores e o desvio padrão. Os valores foram obtidos através de tentativa-erro, de modo a obter o comportamento esperado do veículo.

LIMITES E LIMIARES

Para além das funções de activação, os docentes pediram-nos a definição de limites na distancia máxima e mínima a ser vista e na energia máxima e mínima recebida pelos sensores de luz.

Isto foi definido através de variáveis chamadas limite máximo, limite mínimo, limiar máximo e limiar mínimo. Servem para que na aplicação da função gaussiana, dada a forma em "sino", os valores de output nunca cheguem a zero de modo a não anularem a velocidade do veículo.

CONCLUSÃO

Com a realização deste trabalho prático, conseguimos consolidar os conhecimentos gerais sobre agentes reactivos e, especificamente, sobre o trabalho desenvolvido por Valentino Braitenberg.

Quanto ao Unity, foram sentidas algumas dificuldades no início, pois nenhum dos elementos do grupo tinha trabalhado anteriormente com esta ferramenta. Com o desenrolar do trabalho, a utilização deste motor de jogos foi-se tornando mais fácil e intuitiva, sendo que podemos considerar que a aquisição de aptidões foi bem sucedida.

Relativamente à implementação dos diversos veículos, obviamente, uns foram implementados rapidamente, com código-fonte bastante simples, sendo que noutros sentimos algumas dificuldades, não conseguindo compreender de que forma deveríamos modificar os sensores, para que o veículo tivesse o comportamento compreendido. Apesar de não termos conseguido implementar algumas funcionalidades que pensámos inicialmente, acabámos por desenvolver outras que surgiram ao longo do trabalho.

Em suma, consideramos que conseguimos atingir a maioria dos objectivos propostos pelos docentes.