МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Построение и анализ алгоритмов»

Тема: Алгоритм Ахо-Корасик

Студент гр. 3388	 Дубровин Д.Н.
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург 2025

Задание

Вариант 1. На месте джокера может быть любой символ, за исключением заданного.

Вход:

Первая строка содержит текст T (1< |T|< 100000).

Вторая строка содержит число n (1< n< 3000). Каждая следующая из n строк содержит шаблон из набора $P = \{ p_1, ldots, p_n \} (1 < |p_i| < 75).$

Все строки содержат символы из алфавита { A, C, G, T, N }.

Выход:

Все вхождения образцов из Р в Т.

Каждое вхождение образца в текст представить в виде двух чисел - і р.

Где і - позиция в тексте (нумерация начинается с 1), с которой начинается вхождение образца с номером р (нумерация образцов начинается с 1).

Строки выхода должны быть отсортированы по возрастанию, сначала по номеру позиции, затем по номеру шаблона.

Задача:

Используя реализацию точного множественного поиска, решите задачу точного поиска для одного образца с джокером.

В шаблоне встречается специальный символ, именуемый джокером (wild card), который "совпадает" с любым символом. По заданному содержащему шаблоны образцу (P) необходимо найти все вхождения (P) в текст (T).

Например, образец (ab??c?c) с джокером ? встречается дважды в тексте *zabuccbababcax*.

Символ джокер не входит в алфавит, символы которого используются в (Т). Каждый джокер соответствует одному символу, а не подстроке неопределённой длины. В шаблон входит хотя бы один символ не джокер, т.е. шаблоны вида ??? недопустимы. Все строки содержат символы из алфавита ({A, C, G, T, N}).

Вход:

- Tekct(T)((1 < |T| < 100000))
- Шаблон (P) ((1< |P|< 40))
- Символ джокера

Выход:

- Строки с номерами позиций вхождений шаблона (каждая строка содержит только один номер).
- Номера должны выводиться в порядке возрастания.

Выполнение работы

Для выполнения заданий был использован алгоритм Ахо-Корасик. Алгоритм реализует поиск подстрок при помощи реализации конечного автомата на боре.

Были реализованы следующие структуры и методы на языке программирования Go:

Структуры:

Node — структура реализующая узел.

Trie — структура реализующая бор.

Методы и функции:

NewNode — Создаёт новую вершину с заданным значением и родителем.

addChild — Добавляет дочернюю вершину с указанным символом.

setEnd — Помечает вершину как конец шаблона.

getPath — Возвращает строку пути от вершины до корня.

String — Форматирует информацию о вершине для вывода.

NewTrie — Создаёт новый бор с корневой вершиной.

addWord — Добавляет слово в бор, создавая новые вершины при необходимости.

genSuffixLinks — Генерирует суффиксные и терминальные ссылки для автомата.

generateTrie — Создаёт бор из списка шаблонов.

findMatchesOnTrie — Ищет совпадения шаблонов в тексте, используя бор.

FindAllEntries — Находит все вхождения шаблонов в текст.

isValidWildcardMatch — Проверяет, допустимо ли совпадение с учётом wildcard и запрещённого символа.

FindEntriesWithWildcard — Ищет вхождения шаблона с wildcard, исключая запрещённый символ.

Анализ сложности алгоритма

Временная сложность:

- ullet Добавление паттернов в бор происходит за $\mathrm{O}(\mathrm{L})$, L суммарная длина паттернов.
- Итерация по тексту, на каждом шаге проверяется наличия вхождения патерна. Количество детей у каждой вершины бора не превышает длины алфавита k. Следовательно вычисление ссылок займет O(L*k).
- Поиск в тексте займет O(N+t), N длина текста, t количество всех возможных вхождений паттернов в текст.
- Итоговая сложность O(L*k + N + t).

Сложность по памяти:

• O(L*k)

Тестирование:

Input	Output
banana	2 1
2	2 2
an	4 1
ana	4 2
NTAG	2 2
3	2 3
TAGT	
TAG	
T	

Таблица 1. Тестирование решения задания 1

Input	Output
ACTANCA	1
A\$\$A\$	
\$	
abobaboobab	4
ba#	9
#	

Таблица 2. Тестирование решения задания 2

Input	Output
engineering	4
in&	
&	
g	
abcvbcfv bc*	2
bc*	
*	
f	

Таблица 3. Тестирование решения задания 3

Выводы:

В ходе работы был разработан и протестирован алгоритм для поиска вхождений шаблона с джокером, без джокера, с ограниченным джокером в тексте. Алгоритм использует автомат Ахо-Корасик для эффективного поиска подстрок. Тестирование показало, что реализация алгоритма верна.