MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelo de regressão múltipla com variáveis transformadas e com modelo logístico - Exercícios

O QUE VOU ESTUDAR HOJE?

Exemplo aplicando transformação de variáveis

Exemplo aplicando modelo logístico

O artigo "The influence of honing process parameterson surface quality, productivity, cuttingangle, and coefficient offriction" (Industrial Lubrication and Tribology, 2012: 77-83) incluiu os seguintes dados sobre x_1 = velocidade de corte (m/s), x_2 = pressão específica do processo de préafilamento (N/mm²), x_3 = pressão específica do processo de conclusão do afilamento, e y = produtividade no processo de afilamento (mm³/s para uma determinada ferramenta; a produtividade é o volume do material cortado em um segundo).

O artigo propôs um modelo de potência multivariado

O modelo de regressão linear implicado envolve regressar ln(y) em relação aos três preditores ln(x1), ln(x2) e ln(x3). A função de regressão de potência estimada correspondente apareceu no artigo mencionado.

Conjunto de dados

x_1	x_2	x_3	у	x_1	x_2	x_3	У
0.93	1.00	0.20	32.95	0.93	1.40	0.50	33.67
1.11	1.00	0.20	38.72	1.11	1.40	0.50	38.72
0.93	1.00	0.50	35.20	1.02	1.18	0.31	35.20
1.11	1.00	0.50	38.72	1.02	1.18	0.31	33.67
0.93	1.40	0.20	32.27	1.02	1.18	0.31	36.02
1.11	1.40	0.20	39.71	1.02	1.18	0.31	32.27

a) Variáveis originais $Y = ax_1^{\beta_1}x_2^{\beta_2}x_3^{\beta_3}\varepsilon$

	x1	x2	х3	y
0	0.93	1.00	0.20	32.95
1	1.11	1.00	0.20	38.72
2	0.93	1.00	0.50	35.20
3	1.11	1.00	0.50	38.72
4	0.93	1.40	0.20	32.27
5	1.11	1.40	0.20	39.71
6	0.93	1.40	0.50	33.67
7	1.11	1.40	0.50	38.72
8	1.02	1.18	0.31	35.20
9	1.02	1.18	0.31	33.67
10	1.02	1.18	0.31	36.02
11	1.02	1.18	0.31	32.27

a) Variáveis transformadas

$$Y = ax_1^{\beta_1} x_2^{\beta_2} x_3^{\beta_3} \varepsilon$$

$$\ln(y) = \ln(\alpha) + \beta_1 \ln(x_1) + \beta_2 \ln(x_2) + \beta_3 \ln(x_3) + \ln(\varepsilon)$$

$$y' = \beta_0' + \beta_1 x_1' + \beta_2 x_2' + \beta_3 x_3' + \varepsilon'$$

	lnx1	lnx2	lnx3	lny
0	-0.072571	0.000000	-1.609438	3.494991
1	0.104360	0.000000	-1.609438	3.656356
2	-0.072571	0.000000	-0.693147	3.561046
3	0.104360	0.000000	-0.693147	3.656356
4	-0.072571	0.336472	-1.609438	3.474138
5	0.104360	0.336472	-1.609438	3.681603
6	-0.072571	0.336472	-0.693147	3.516607
7	0.104360	0.336472	-0.693147	3.656356
8	0.019803	0.165514	-1.171183	3.561046
9	0.019803	0.165514	-1.171183	3.516607
10	0.019803	0.165514	-1.171183	3.584074
11	0.019803	0.165514	-1.171183	3.474138

b) Realizando o ajuste

```
1 #regressão com a fórmula import statsmodels.formula.api as smf
2 regmul = smf.ols('lny ~ lnx1 + lnx2 + lnx3', data = dft)
3 #Realizar o processo de modelagem
4 res = regmul.fit()

1 #Resultado detalhado
2 print(res.summary())
```

	OLS Regression Results									
Dep. Variable:	lny	R-sq	uared:		0.706					
Model:	OLS	Adj.	R-squared:		0.595					
Method:	Least Squares	F-st	atistic:		6.398					
Date:	Tue, 05 Apr 2022	Prob	(F-statistic):		0.0161					
Time:	17:02:54	Log-	Likelihood:		21.634					
No. Observations:	12	AIC:			-35.27					
Df Residuals:	8	BIC:			-33.33					
Df Model:	3									
Covariance Type:	nonrobust									
	coef std err	t	P> t	[0.025	0.9751					
					,					

	coef	std err		P> t	[0.025	0.975]
Intercept	3.5880	0.049	73.095	0.000	3.475	3.701
lnx1	0.8439	0.195	4.324	0.003	0.394	1.294
lnx2	-0.0288	0.103	-0.272	0.792	-0.265	0.209
lnx3	0.0245	0.038	0.650	0.534	-0.062	0.111

b) Realizando o ajuste

$$\ln(y) = \ln(\alpha) + \beta_1 \ln(x_1) + \beta_2 \ln(x_2) + \beta_3 \ln(x_3) + \ln(\varepsilon)$$

$$y' = 3,5880 + 0,8439x'_1 - 0,0280x'_2 + 0,0245x'_3 + \varepsilon'$$

		OLS Re	gression Re	SUITS		
Dep. Variab	======= le:		lny R-squared:			0.706
Model:		(DLS Adj.	R-squared:		0.595
Method:		Least Squar	res F-sta	tistic:		6.398
Date:	T	ue, 05 Apr 20	822 Prob	(F-statistic	:):	0.0161
Time:		17:02	:54 Log-L	ikelihood:		21.634
No. Observa	tions:		12 AIC:	AIC:		
Df Residual:	s:		8 BIC:	BIC:		
Df Model:			3			
Covariance '	Type:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	3.5880	0.049	73.095	0.000	3.475	3.701
lnx1	0.8439	0.195	4.324	0.003	0.394	1.294
lnx2	-0.0280	0.103	-0.272	0.792	-0.265	0.209
7						

b) Testar utilidade do modelo

$$f = \frac{R^2/k}{(1 - R^2)/[n - (k+1)]}$$

Com n=12, k=3 e $R^2 = 0,706 \rightarrow f = 6,403$

OLS Regression Results								
Dep. Variable: lny				R-squ	ared:		0.706	
Model: OLS			Adj.	Adj. R-squared: 0.595				
Method: Least Squares			F-sta	tistic:		6.398		
Date: Tue, 05 Apr 2022				Prob	(F-statistic)	:	0.0161	
Time: 17:02:54				Log-L	ikelihood:		21.634	
No. Observations: 12				AIC: -35.27				
Df Residuals:			8	BIC:			-33.33	
Df Model:			3					
Covariance Typ	e:	nonrot	ust					
	coef	std err		t	P> t	[0.025	0.975]	
Intercept	3.5880	0.049	7:	3.095	0.000	3.475	3.701	
lnx1	0.8439	0.195	4	1.324	0.003	0.394	1.294	
lnx2	-0.0280	0.103	-6	3.272	0.792	-0.265	8.209	
lnx3	0.0245	0.038	(0.650	0.534	-0.062	0.111	

b) Testar utilidade do modelo

$$f = \frac{R^2/k}{(1 - R^2)/[n - (k+1)]}$$

Com n=12, k=3 e $R^2 = 0.706 \rightarrow f = 6.403$

```
OLS Regression Results
Dep. Variable:
                                        R-squared:
                                                                         0.706
Model:
                                       Adj. R-squared:
                                                                         0.595
                                  OLS
                        Least Squares F-statistic:
                                                                         6.398
Method:
                     Tue, 05 Apr 2022
                                       Prob (F-statistic):
                                                                        0.0161
Date:
Time:
                                                                        21.634
```

```
1 import scipy.stats
2 F-res.fvalue
3 k-res.df_model # grau do modelo
4 n=res.nobs # num. amostras
5 dfn=k
6 dfd-n-(k+1)
7 alpha = 0.05 #nível de confiança.
8 F_critico=scipy.stats.f.ppf(1-alpha, dfn, dfd)
9 print("F_crit=",F_critico) #tabela = 01st
F crit= 4.06618055135116
```

$$F_{k,n-(k+1)} \rightarrow F_{3,8}$$

 $\rightarrow F_{crit}$

 $f \ge F_{crit}$ rejeitar H_0 6,403 \ge 4,066 ?? SIM, portanto, rejeitar H_0

c) O grande valor-p correspondente à proporção t, para $ln(x_2)$ e $ln(x_3)$, sugere que estes preditores podem ser eliminados do modelo?

	coef	std err	t	P> t	[0.025	0.975]			
Intercept	3.5880	0.049	73.095	0.000	3.475	3.701			
lnx1	0.8439	0.195	4.324	0.003	0.394	1.294			
lnx2	-0.0280	0.103	-0.272	0.792	-0.265	0.209			
lnx3	0.0245	0.038	0.650	0.534	-0.062	0.111			

• Hipótese nula para os parâmetros $\beta_2 e \beta_3$

$$H_0$$
: $\beta_2 = \beta_3 = 0$

- Hipótese alternativa H_a pelo menos um $\beta_i \neq 0$
- Valor-p > α , portanto, NÃO REJEITAR H_0 , isto é $\beta_2 = \beta_3 = 0$
- O modelo pode ser reduzido a um modelo linear simples

$$Y = ax_1^{\beta_1} \text{ ou } \ln(y) = \beta_0 + \beta_1 \ln(x_1)$$

	lnx1	lny	1nyc	e	e*	e/e*
	IIIXI	Iny	Inyc			-/-
0	-0.072571	3.494991	3.493690	0.001301	0.032553	0.039971
1	0.104360	3.656356	3.642998	0.013358	0.332646	0.040157
2	-0.072571	3.561046	3.493690	0.067356	1.685111	0.039971
3	0.104360	3.656356	3.642998	0.013358	0.332646	0.040157
4	-0.072571	3.474138	3.493690	-0.019552	-0.489153	0.039971
5	0.104360	3.681603	3.642998	0.038605	0.961341	0.040157
6	-0.072571	3.516607	3.493690	0.022917	0.573341	0.039971
7	0.104360	3.656356	3.642998	0.013358	0.332646	0.040157
8	0.019803	3.561046	3.571642	-0.010596	-0.245800	0.043108
9	0.019803	3.516607	3.571642	-0.055035	-1.276683	0.043108
10	0.019803	3.584074	3.571642	0.012432	0.288405	0.043108
11	0.019803	3.474138	3.571642	-0.097504	-2.261875	0.043108

```
1 sns.scatterplot(x='lnx1', y='e*', data=dftab);plt.grid(True)
2 plt.xlabel('x= Velocidade de corte')
3 plt.ylabel('e*= Residuos padronizados')
4 plt.axhline(y=0, color='black', linestyle='--', linewidth=1)
5 plt.show()
```



```
1 #qqpolot vs. normal distribution
2 QQ = ProbPlot(influence.resid_studentized_internal)
3 plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C7280', lw=1)
4 plot_lm_2.axes[0].set_xlabel('Percentil')
5 plot_lm_2.axes[0].set_ylabel('Residuos padronizados')
6 plt.grid(True)
```


A estabilidade dos pilares é um fator muito importante para garantir condições seguras nas minas subterrâneas. Os autores do estudo "Developing coal pillar stability chart using logistic regression" (Intl. J. of Rock Mechanics & Mining Sci., 2013: 55-60) utilizaram um modelo de regressão logística para prever a estabilidade.

O artigo relatou os dados a seguir:

- x_1 = proporção entre altura e largura dos pilares,
- x_2 = proporção da resistência ao estresse dos pilares,
- y = situação de estabilidade para 29 pilares de carvão.
- a) Obtenha o modelo no python.
- b) Utilize o resultado com α = 0,1 para determinar se as duas variáveis do preditor parecem ter um impacto significativo na estabilidade dos pilares.
- c) Forneça interpretações para e2,774 e e5,668.

ID	x_1	x_2	Stable?	ID	x_1	x_2	Stable?
1	1.80	2.40	Y	16	0.80	1.37	N
2	1.65	2.54	Y	17	0.60	1.27	N
3	2.70	0.84	Y	18	1.30	0.87	N
4	3.67	1.68	Y	19	0.83	0.97	N
5	1.41	2.41	Y	20	0.57	0.94	N
6	1.76	1.93	Y	21	1.44	1.00	N
7	2.10	1.77	Y	22	2.08	0.78	N
8	2.10	1.50	Y	23	1.50	1.03	N
9	4.57	2.43	Y	24	1.38	0.82	N
10	3.59	5.55	Y	25	0.94	1.30	N
11	8.33	2.58	Y	26	1.58	0.83	N
12	2.86	2.00	Y	27	1.67	1.05	N
13	2.58	3.68	Y	28	3.00	1.19	N
14	2.90	1.13	Y	29	2.21	0.86	N
15	3.89	2.49	Y				

x₁ = proporção entre altura e largura dos pilares,
 x₂ = proporção da resistência ao estresse dos pilares,
 y = situação de estabilidade para 29 pilares de carvão.

Y= 1 estável Y= 0 não estável

a) Obtenha o modelo no python.

```
1 #adicionar uma constante preditora
2 x = sm.add_constant(x)
3 # Construir o modelo e ajustar os dados
4 model = sm.Logit(y, x).fit()
5 print(model.summary())
```

a) Obtenha o modelo no python.

$$\frac{p(x_1, \dots, x_k)}{1 - p(x_1, \dots, x_k)} = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2}$$

Optimization terminated successfully. Current function value: 0.151888 Iterations 10 Logit Regression Results								
		Logit K	egression	Results				
Dep. Variable: y No. Observation:				5:	29			
Model:			_	Residuals:		25		
Method: Date:			MLE Df	noaeı: udo R-squ.:	2 9.7897			
Time:	Tue	, 05 Apr 2 22:04		-L1kel1hood:		-4.4048		
converged:				LL-Null: -20.084				
Covariance Type:		nonrob		p-value:		1.551e-07		
	coef	std err	z	P> z	[0.025	0.975]		
const -13.	1457	5.184	-2.536	0.011	-23.306	-2.985		
x1 2.	7740	1.477	1.878	0.060	-0.122	5.670		
x2 5.	6682	2.642	2.145	0.032	0.490	10.847		
==========								

b) Teste de hipótese dos parâmetros com um nível de confiança de 90%.

	coef	std err	Z	P> z	[0.025	0.975]		
const	-13.1457	5.184	-2.536	0.011	-23.306	-2.985		
x1	2.7740	1.477	1.878	0.060	-0.122	5.670		
x2	5.6682	2.642	2.145	0.032	0.490	10.847		

Para 90% $\rightarrow \alpha = 0,1$

Todos os valores-p são menores do que 0,1, portanto, a hipótese nula se rejeita e o modelo mantém todos os parâmetros.

$$\frac{p(x_1, \dots, x_k)}{1 - p(x_1, \dots, x_k)} = e^{-13,1457 + 2,7740x_1 + 5.6682x_2}$$

$$\frac{p(x_1, \dots, x_k)}{1 - p(x_1, \dots, x_k)} = e^{-13,1457 + 2,7740x_1 + 5.6682x_2}$$

c) Razão das chances.

```
Upper CI
                   Lower CI
const -13.145657 -23.306390 -2.984923
X1
        2.774021 -0.121639
                            5.669680
x2
        5.668211
                  0.489678 10.846743
               OR
                      Lower CI
                                     Upper CI
        0.000002 7.553761e-11
                                    0.050543
const
\mathbf{x1}
        16.022926 8.854677e-01
                                   289.941871
       289.516064 1.631791e+00 51366.594509
x2
```

$$x_1 \rightarrow e^{2,7740} = 16,0226$$

 $x_2 \rightarrow e^{5,6682} = 289,512$

x₁ = proporção entre altura e largura dos pilares,
 x₂ = proporção da resistência ao estresse dos pilares,
 Y= 1 estável
 Y= 0 não estável

d) Comparação dos valores observados e previstos.

d) Comparação dos valores observados e previstos.

```
1 from sklearn.metrics import (confusion_matrix,accuracy_score)
2
3 # confusion matrix
4 cm = confusion_matrix(y, prediction)
5 print ("Confusion Matrix : \n", cm)
6
7 # accuracy score of the model
8 print('Test accuracy = ', accuracy_score(y, prediction))

Confusion Matrix :
[[13  1]
[ 1  14]]
Test accuracy = 0.9310344827586207
```

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelo de regressão múltipla com variáveis transformadas e com modelo logístico - Exercícios