

présenté par Hamadi Camara

Choisis ton champion...

MORNING QUIZ

(1) Principes des lois de kirchhoff?

(2) Qu'est-ce que le transistor?

(3) sert à stabiliser une alimentation électrique (il se décharge lors des chutes de tension et se charge lors des pics).

(4) Quelle la différence entre un condensateur et une résistance ? spécifier les unités.

AGENDA

- X Introduction à l'arduino
- X Interfaces de communication
- Séance de Travaux Dirigés (TD)
- Point synchro: Projet IoT

Analogique - Numérique - Capteur

X La petite histoire

L'Arduino est à l'origine un projet d'étudiants de l'école de Design d'Interaction d'Ivrea en Italie. Au début des années 2000, les outils de conception de projets dans le domaine du design d'interaction étaient onéreux, proches d'une centaine d'euros.

V Une philosophie

- Le matériel est « open source » :
 - On peut le copier,
 - le fabriquer
 - et le modifier librement
- Le logiciel est libre :
 - On peut l'utiliser
 - et le modifier librement
- Sur l'Internet, on trouve :
 - Une communauté d'utilisateurs
 - Des guides d'utilisation
 - Des exemples
 - Des forums d'entraide

X Modèles

Électroniques numériques : Microcontrôleur

Le Microcontrôleur (en notation abrégée µc, ou uc ou encore MCU en anglais) est un Circuit programmable capable d'exécuter un programme et qui possède des circuits d'interface intégrés avec le monde extérieur.

X Une carte électronique

- Micro contrôleur : ATmega328
- Tension d'alimentation interne = 5V
- Tension d'alimentation (recommandée)= 7 à 12V. limites = 6 à 20 V
- Entrées/sorties numériques : 14 dont 6 sorties PWM
- Entrées analogiques = 6 (avec une résolution de 10 bits => 1024 valeurs différentes)
- Courant max par broches E/S = 40 mA
- Courant max sur sortie 3,3V = 50mA
- Mémoire Flash 32 KB dont 0.5 KB utilisée par le bootloader *
- Mémoire SRAM 2 KB
- mémoire EEPROM 1 KB
- Fréquence horloge = 16 MHz
- Dimensions = 68.6mm x 53.3mm

X Un outil

https://www.tinkercad.com

Une carte programmable

- Le langage Arduino est basé sur le C/C++
- Un programme Arduino est aussi appelé un sketch
- Programmable également en Javascript

```
Déclaration
et
initialisation

Fonction setup
void setup()

Fonction loop
void loop()

Déclaration des constantes;
Déclaration des variables globales;
Intégration des bibliothèques externes.

Configuration des broches;
Initialisation des variables.
```

```
int main() {
      //fonction d'initialisation de la
      carte
      void setup() {
           //contenu de l'initialisation
      // fonction principale qui se
      répète (s'exécute) à l'infini
      void loop() {
           //contenu du programme
```


INTERFACES DE COMMUNICATION

UART - I2C - SPI

PROTOCOLES DE COMMUNICATION

TABLEAU DE COMPARAISON I2C ET SPI

	I2C ou IIC	SPI	Conclusion
Vitesse	(100K, 400K, 1M, 3.4M) Hz	Jusqu'à 25 MHz	SPI est plus rapide que I2C
Scalabilité	Jusqu'à 127, 255, 1024 devices	Difficilement passable à l' échelle	I2C est plus scalable que SPI
Longueur des bus	Jusqu'à 1 mètre pour 100kHz	Adapter pour les distances courtes	I2C est plus adapté sur des distances longues

TRAVAUX DIRIGÉS

Électronique numérique combinatoire

X Règles de l'algèbre de Boole

Loi	Opérateur ET	Opérateur OU
Identité	1. A=A	0+A=A
Nullité	0. A=0	1+A=1
Associativité	(A.B).C=A. (B.C)	(A+B)+C=A+ (B+C)
Commutativité	A.B=B.A	A+B=B+A
Distributivité	A. (B+C)=A.B+A.C	
Idempotence	A.A=A	A+A=A
Inversion	A.Ā=0	A+A=1
Absorption	A. (A+B)=A	A+A.B=A
Loi de Morgan (A.B)=A+B		(A+B)=A.B

Électronique numérique combinatoire

X Exercices : réduire les équations suivantes

$$F_{1} = a.(a+b)$$

$$F_{2} = (a+b).(a+b)$$

$$F_{3} = a.b + c + c.(a+b)$$

$$F_{4} = (x.y+z).(x+y).z$$

$$F_{5} = (x+y).z + x.(y+z) + y$$

$$F_{6} = (a+b+c).(a+b+c) + a.b + b.c$$

$$F_{7} = a + a.b.c + a.b.c + a.b + a.d + a.d$$

$$F_{8} = a + a.b + a.b.c + a.b.c.d + a.b.c.d.e$$

$$F_{9} = (a+b).(a+b.c) + a.b + a.c$$

Exercice 2

Soit le circuit suivant :

On donne: R_1 = 1k Ω , R_2 = 2k Ω , R_3 = 4k Ω , R_4 = R_5 =3k Ω ; a tension aux bornes de la résistance R_2 , U_{R2} = 4v , et le courant I_3 = 4mA . Calculer E et R

TRAVAUX PRATIQUES

MONTAGE À RÉALISER 1/2


```
void setup()
 pinMode(5, OUTPUT);
void loop()
 digitalWrite(5, HIGH);
 delay(1000);
 digitalWrite(5, LOW);
 delay(1000);
```


Feu tricolore (montage, sketch)

Montage Bluetooth Low Energy

Introduction composants électroniques

X BLE: montage

Introduction composants électroniques

X BLE: Sketch & Resultat

```
#include <SoftwareSerial.h>
SoftwareSerial BleSerial(2, 3); // RX, TX
void setup()
 Serial.begin(115200);
 while (!Serial) {; }
 BleSerial.begin(9600);
void loop() {
 if (BleSerial.available())
  Serial.write(BleSerial.read()); }
```

#NRF connect#

Montage Oled LCD

Introduction composants électroniques

X Oled LCD: montage

Introduction composants électroniques

Oled LCD: Sketch & Resultat

```
#include "U8glib.h"
U8GLIB SH1106 128X64 u8g(U8G I2C OPT NONE);
void dessiner(void) {
 u8g.setFont(u8g_font_profont12);
 u8q.setPrintPos(0, 10);
 u8q.print("Ecole Hexagone");
 u8g.setPrintPos(0, 25);
 u8q.print("Team A");
 u8q.setPrintPos(0, 40);
 u8q.print("Team B");
void setup(void) {
void loop(void) {
 u8q.firstPage();
 do {
  dessiner();
 } while (u8g.nextPage() );
 delay(3500);
```


PROJET IOT

Point synchro...

Team A: 17h00 - 17h10

Team B: 17h10 - 17h20

Team C: 17h20 - 17h30

des questions?

hamadi.camara@outlook.com