Best-Effort Synthesis for MDPs work in progress

Marco Faella Laurent Doyen

Università di Napoli "Federico II", Italy

LSV, ENS Cachan & CNRS, France

September 19th, 2013

- Different ways of producing the same product
- Cost of a path is the maximum # of workers along the path
- What's the best production plan?

What is the best plan if...

...I can hire workers by the day minimum expected number of workers

plan	expected	
a,c	3.15	
a,d	3.38	
b	4	

What is the best plan if...

...I can hire workers by the day minimum expected number of workers

plan	expected	
a,c	3.15	
a,d	3.38	
b	4	

- ...I can hire workers by the day minimum expected number of workers
- ...I must hire for the whole year minimum worst-case number of workers

plan	expected	worst	
a,c	3.15	4	
a,d	3.38	5	
b	4	4	

- ...I can hire workers by the day minimum expected number of workers
- ...I must hire for the whole year minimum worst-case number of workers

plan	expected	worst	
a,c	3.15	4	
a,d	3.38	5	
b	4	4	

- ...I can hire workers by the day minimum expected number of workers
- ...I must hire for the whole year minimum worst-case number of workers
- ...today I have only two workers minimum best-case number of workers

plan	expected	worst	best
a,c	3.15	4	2
a,d	3.38	5	2
b	4	4	4

- ...I can hire workers by the day minimum expected number of workers
- ...I must hire for the whole year minimum worst-case number of workers
- ...today I have only two workers minimum best-case number of workers

plan	expected	worst	best
a,c	3.15	4	2
a,d	3.38	5	2
b	4	4	4

Key Idea

Resolve ties by lexicographically combining different semantics

The 3 Basic Solution Concepts

- w for worst case two-player game
- e for expected case standard criterion for MDPs
- **b** for **b**est case one-player game, i.e., graph

- Optimal strategies exist
- For w and b, deterministic and memoryless optimal strategies exist

Composite Solution Concepts

- Basic solution concepts (SCs) can be lexicographically composed
- For instance, SC "we":
 first optimize worst-case, then optimize expected case

A Taxonomy of Solution Concepts

An arrow from α to β signifies that α -optimal implies β -optimal.

Fact

All pairs of distinct SCs induce distinct notions of optimality.

Interesting Problems

For an SC α :

- What is the complexity of computing the α -value of a state?
- Do α -optimal strategies always exist?
- If they do, are they deterministic and how much memory do they need?

Existence of Optimal Strategies: SC "web"

Goal: **maximize** the maximum payoff over trace

Value of strategy b^{ω} : (0,2,2) \downarrow improved by

Value of strategy a: (1,1,1) \downarrow improved by

Value of strategy $b^{n}a$: $(1,2-\frac{1}{2^{n}},2)$

Strategies get arbitrarily close to (1,2,2)No **web**-optimal strategy exists!

Notion of Value of a State

• What's the web-value of the previous game?

- Strategies can achieve $(1, 2 \varepsilon, 2)$ for all $\varepsilon > 0$
- Classic notion of value of a state: $val(s) = \sup_{\sigma}^{lex} val(s, \sigma)$
- Here: $val(s_0) = (1, 2, -\infty)$
- However, (1,2,2) would be a more interesting "value"
- We need a different notion of value...

Principles of Best-Effort Control

Find a strategy that is as "smart" as possible.

- As specific as possible
 - i.e., resolves as many ties as possible
- Exploits environment's "errors"
 - i.e., takes advantage of non strictly adversarial environment
 - a.k.a. subgame-perfection, sequential rationality

Other Applications

Compute smarter strategies for standard 2-player games.

Given a 2-player game (no probabilities), compute a **web**-optimal strategy, assuming uniform transition probabilities from all states

Conclusions

Working Hypothesis

Computing value is in **PTIME** for all solution concepts.

stay tuned...