Stroke Prediction

Metis ML Classification

Background

- A stroke is when a blood vessel connected to the brain is either blocked or bursts
- Strokes impact ~800,000
 people (in the US) each year, and kill ~140,000
 people

Stroke Risk Factors

- Can we re-affirm the assumption that these are stroke risk factors?
- Which of these risk factors are most predictive?
- Can we identify any other potential risk factors?

Classification Goal

Predict whether or not individuals have had a stroke in the past, given their current health status

Secondary: Can that give us insights into which factors may put individuals at high risk for future stroke?

- National Health and Nutrition Examination Survey
 - Conducted by the CDC
 - Retrieved on Kaggle
- Comprehensive dataset on health & nutritional status of US citizens
- Includes info on:
 - Demographics (education level, income)
 - Diet
 - A live medical examination (blood pressure, muscle strength, etc)
 - Lifestyle questionnaire (exercise, drug use, etc)
 - Previous medical history
- Overall, 10k survey participants with ~2k features

Feature Selection & Data Cleaning

- Target column: "Have you had a stroke before?"
- Selected a subset of ~30 features
 - Some known to be correlated with stroke
 - Some other potential features
- Restricted to adults
- Data imputation
 - o "Mean" for numerical data
 - "Most frequent" for binary or categorical data
- Created dummy variables for categorical data
- Oversampling
 - Target class "had_stroke" has only 200 positives out of 5000
 - o SMOTENC oversampling for both numerical & categorical data

Classification Metrics

Given the rarity of the positive class, we want to prioritize **recall**

 Ensure that we are successfully predicting as many positives as possible

Model Training & Comparison

Random Forest

max_depth: 6

n_estimators: 200

Metrics for Random Forest

- Accuracy: 0.8102059086839749

- Recall: 0.4634146341463415

- Precision: 0.09090909090909091

- F1 Score: 0.152

- AUC: 0.6434173542478919

XGBoost

- max_depth:1
- n_estimators: 70

Metrics for XGBoost

- Accuracy: 0.8290062667860341
- Recall: 0.6097560975609756
- Precision: 0.125
- F1 Score: 0.2074688796680498
- AUC: 0.7235583461782574

Logistic Regression

 Using all our features available to us!

Metrics for Logistic Regression

- Accuracy: 0.7869292748433303
- Recall: 0.5609756097560976
- Precision: 0.09465020576131687
- F1 Score: 0.1619718309859155
- AUC: 0.6782573216066733

Logistic Regression - "most important features"

Metrics for LogReg using best features we could find

- Accuracy: 0.6982990152193375

- Recall: 0.7804878048780488

- Precision: 0.088888888888888889 - F1 Score: 0.1596009975062344

- AUC: 0.7378275455617009

What if we don't know anything about health?

Metrics for Logistic Regression

- Accuracy: 0.7170993733213966

- Recall: 0.6829268292682927

- Precision: 0.08459214501510574 - F1 Score: 0.15053763440860216

- AUC: 0.7006641581285702

Conclusions

- Logistic Regression
 using only the highest
 performing features
 yielded the most
 accurate (and
 interpretable results)
- Demographic features taken independently still have somewhat predictive power