SOAL RESPONSI UTS ELMAG

1.) Diketahui Vektor $\vec{A} = 3ar - 7a\theta + 2a\beta$ memiliki titik pangkal poda titik (1, $\frac{\pi}{2}$, 0)

Pada koordinat bola dan Vektor $\vec{B} = -2ar - 4a\theta + 2a\phi$ dengan titik pangkal

Poda titik (3, $\frac{\pi}{2}$, $\frac{\pi}{2}$). Tentukan $\vec{A} - \vec{B}$.

Jawab:

* Untuk menjawah soat ini dapat menggunakan Caro ~> Transformasi koordinat hola menjadi Kartesian.

Vektor A

 \vec{A} r, θ , ϕ = $3a_{T}$ - $7a_{\theta}$ + $2a_{\theta}$ dengan little pangkal (1, $\frac{\pi}{2}$, 0)

Mara $\theta = \frac{\pi}{2}$; $\phi = 0$, sehingga

Ax = Ar sin & coup + Ab coub coup - Ap sinp

 $\vec{A}_{x} = 3 \sin \frac{\pi}{2} \cos 0 - 7 \cos \frac{\pi}{2} \cos 0 - 2 \sin 0$

Ax = 3.1.1 - 7.0.1 - 2.0

7x = 3

Ay = Ar sine sing + Ae cose sing + Acoso

 $\overline{Ay} = 3 \sin \frac{\pi}{2} \sin 0 - 7 \cos \frac{\pi}{2} \sin 0 + 2 \cos 0$

Ay = 3.1.0 - 7.0.0 + 2.1

Ay = 2

Az = Ar cose - Aesine

 $\overline{Az} = 3 \cos \frac{\pi}{2} + 7 \sin \frac{\pi}{2}$

Az = 3.0+7.1

Az = 7

Sehingga didapat Axiy, z = 3ax + 2ay + 7az

Vektor B

$$\vec{B}$$
 r, θ , ϕ = -2ar - 4a θ + 2a ϕ dengan titik pangka $(3, \frac{\pi}{2}, \frac{\pi}{2})$
Mara $\theta = \frac{\pi}{2}$; $\phi = \frac{\pi}{2}$, Sehinga

$$\overrightarrow{Bx} = -2 \sin \frac{\pi}{2} \cos \frac{\pi}{2} - 4 \cos \frac{\pi}{2} \cos \frac{\pi}{2} - 2 \sin \frac{\pi}{2}$$

$$\vec{B}_{4} = -2 \sin \frac{\pi}{2} \sin \frac{\pi}{2} - 4 \cos \frac{\pi}{2} \sin \frac{\pi}{2} + 2 \cos \frac{\pi}{2}$$

Sehingga
$$\vec{A} - \vec{B} = (3 - (-21)) \alpha x + (2 - (-21)) \alpha y + (74) \alpha z$$

 $\vec{A} - \vec{B} = 5 \alpha x + 4 \alpha y + 3 \alpha z$

LABORATGRIUM

I wis = Town A complete

2. Pada sebuah ruang terdapat 2 buah muatan listrik. Huatan listrik pertama berupa muatan titik Q1, 10 nc terletak pada tikik (2,2,2) dan muatan listrik Kedua berupa muatan garis yang terdistribusi merata sebesar snc/m, dengan panjang tak hinoga yang terletak sepanjang sumbu y. Hitungsah besarnya intensitas medan listrik total pada titik P (0,3,2)!

$$R = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

$$\frac{E_1 \cdot k \cdot Q_1}{R^2}$$

$$\frac{9 \times 10^9 \cdot 10 \times 10^{-9}}{(\sqrt{5})^2} \cdot \left(\frac{-2 \vec{a} \cdot \vec{x} + \vec{a} \cdot \vec{y}}{\sqrt{5}}\right)$$

Type text here

3 Diketahui Vektor B pada kortesian B = (2x+4)ax + (4-y)ay + 5z azHitunglah jumlah vektor B yang menembus keluar permuhaan dengan batas $0 \le x \le 4$, $0 \le y \le 4$, $0 \le z \le 4$

Jawas :

$$\oint \vec{B} \cdot \vec{ds} = \int \vec{B} \cdot \vec{ds} + \int \vec$$

atas =
$$\int \vec{B} \cdot ds$$
 = $\int_{0}^{4} \int_{0}^{4} 3z \, dx \, dy$
= $\int_{0}^{4} 3x \, 2 \, \int_{0}^{4} \, dy$
= $\int_{0}^{4} 3z \, (4) - 3z \, (0) \, dy$
= $\int_{0}^{4} 12z \, dy$
= $12yz + \int_{0}^{4}$
= $12z \, (4) - 12z \, (0)$
= $48z$
= $48(4)$
= 192

depan =
$$\int \vec{B} d\vec{s} = \int_{0}^{4} \int_{0}^{4} 2x + 4 dy dz$$

= $\int_{0}^{4} 2xy + 4y \Big|_{0}^{4} dz$
= $\int_{0}^{4} (2x(4) + 4(4)) - (2x(0) + 4(0)) dz$
= $\int_{0}^{4} 8x + 16 dz$
= $8xz + 16z \Big|_{0}^{4}$
= $(8x(4) + 16(4)) - (8x(0) + 16(0))$
= $32x + 64 = 32(4) + 64 = 192$

kanan =
$$\int_{B}^{3} ds = \int_{0}^{4} \int_{0}^{4} 4 - y \, dx \, dz$$

= $\int_{0}^{4} (4x - yx) \int_{0}^{4} dz$
= $\int_{0}^{4} 4 (4 - 0) - y (4 - 0) \, dz$
= $\int_{0}^{4} 16 - 4y \, dz$
= $16z - 4yz \int_{0}^{4}$
= $16(4 - 0) - 4y(4 - 0)$
= $64 - 16y$
= $64 - 16(4)$

maka

$$\oint \vec{B} \cdot \vec{ds} = 192 + 192 + 0$$
= 384

jadi jumlah vehtor B adalah 384

4. Kuat medan listrik Statis dinyatakan dalam bentuk vektor É=2ar+3a0+4aø
Pada koordinat bola. Tentukan rapat muatan volume yang terkait dengan
Medan listrik tersebut pada titik (1, 17, 17)

Jawas :

1) Persamaan maxwell 1 bentuk diverensial

1D Secara umum:

$$\nabla \cdot \vec{E} = \left(\frac{1}{h_1 \cdot h_2 \cdot h_3} \left(\left(\frac{\partial (E_1 \cdot h_2 \cdot h_3)}{\partial u_1} \right) + \left(\frac{\partial (h_1 \cdot E_2 \cdot h_3)}{\partial u_2} \right) + \left(\frac{\partial (h_1 \cdot h_2 \cdot E_3)}{\partial u_3} \right) \right)$$

koordinat	U1. U2.U3	h1, h2, h3
Kartesian	x, y, 2	li ti l
Silinder	P. Ø. Z	1. P.1
Bola	r, 0, 0	1. r. r sin 0

.. Jadi, rapat muatan volume (Pv) adalah

Hukum Maxwell dalam bentuk Diferensial

· Gradien

Jika diketahui fungsi skalar f. maka gradien.

-Kartesian:
$$\nabla f = \frac{\partial f}{\partial x} ax + \frac{\partial f}{\partial y} ay + \frac{\partial f}{\partial z} az$$

- Silinder :
$$\nabla f = \frac{\partial f}{\partial \rho} a_{\rho} + \frac{\partial f}{\partial \theta} a_{\theta} + \frac{\partial f}{\partial z} a_{z}$$

-Bola :
$$\nabla f = \frac{\partial f}{\partial r} a_r + \frac{1}{r} \frac{\partial f}{\partial \theta} a_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} a_\theta$$

· Divergensi

Jika diketahui medan vektor. A = Alait Azaz + Azaz. Divergensi A

- Kartesian:
$$\nabla \cdot A = \frac{\partial}{\partial x} A_1 + \frac{\partial}{\partial y} A_2 + \frac{\partial}{\partial z} A_3$$

-Bola :
$$\nabla f = \frac{\partial f}{\partial r} a_r + \frac{1}{r} \frac{\partial f}{\partial \theta} a_{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} a_{\theta}$$

· Curl

Jika diketahui medan vektor A= A121+ A222+ A223

-Kartesian:
$$\nabla X A = \begin{vmatrix} \partial_x & \partial_y & \partial_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\begin{vmatrix} A_1 & A_2 & A_3 \end{vmatrix}$$

- Silinder:
$$\nabla \times A = \begin{vmatrix} \frac{2r}{r^2 \sin \theta} & \frac{2\theta}{r \sin \theta} & \frac{2\alpha}{r} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial V} \\ A_1 & r. A_2 & r. \sin \theta . A_3 \end{vmatrix}$$

$$-Bola : \nabla \times A = \begin{vmatrix} \frac{\partial r}{r^2 sin\theta} & \frac{\partial \theta}{r sin\theta} & \frac{\partial \varphi}{r} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_1 & r. A_2 & r. sin\theta . A_3 \end{vmatrix}$$

· Hukum Maxwell dalam bentuk diferensial

- Dalam kunteks medan statis,
$$\frac{\partial}{\partial t} = 0$$

$$-\nabla \times \frac{B}{40} = J + \frac{\partial(\varepsilon, \mathbf{E})}{\partial t}$$