Lecture Notes by Jonathan Alcaraz (UCR)

Complex Analysis

Math 210A Fall 2017

Based on Lectures by

Dr. Wee Lang Gan University of California, Riverside

Lecture 1 29 Sep 2017

THE TOPOLOGY OF THE COMPLEX PLANE

Definition 1.1 Given $a \in \mathbb{C}$, r > 0, define an *open ball* by

$$B(a,r) = \{ z \in \mathbb{C} : |z - a| < r \}$$

and a closed ball by

$$\overline{B}(a,r) = \{ z \in \mathbb{C} : |z - a| \le r \}$$

Definition 1.2 Take sets $A \subseteq G \subseteq \mathbb{C}$. A is said to be *open in* G if for any $a \in A$, there is some r > 0 such that $B(a, r) \cap G \subseteq A$. A is said to be closed in G if $G \setminus A$ is open in G.

Definition 1.3 A subset $G \subseteq \mathbb{C}$ is said to be *connected* if it has either of the following properties:

- If $G = A \cup B$ where A, B are open and disjoint, the $A = \emptyset$ or $B = \emptyset$.
- If $A \subseteq G$ is both open in G and closed in G, then $A = \emptyset$ or A = G.

Definition 1.4 A segment between complex numbers z and w, denoted [z,w] is the set $\{tw+(1-t)z:t\in[0,1]\}.$

Definition 1.5 A polygon from a to b is a set $[a, z_1] \cup [z_1, z_2] \cup \cdots \cup [z_n, b]$.

Theorem 1.6 An open set G is connected if and only if, for every $a, b \in G$ there is a polygon from a to b.