Unlike discrete variables, continuous numerical variables can take on any real number value within some range. Between any two values of a continuous variable, an infinite number of other values are possible. We describe a continuous probability distribution with a curve whose height is **probability density**. A probability density allows us to describe the probability of any range of values for a random variable X.

Because a continuous probability distribution covers an infinite number of possible outcomes, the probability of obtaining any specific outcome is infinitesimally small and therefore zero.

The probability of obtaining a value of Y within some range is indicated by the area under the curve.

Let X: weight of school-going child, that is X is a continuous random variable. For example, $14 \text{ kg} \le X \le 28 \text{ kg}$.

How to calculate the probability of P(X=16 kg)?

Then

$$\sum_{\forall x_i} p(X = x_i) = 1$$

It implies that

$$p(X=x_i)=0$$

$$p(X=16kg)=0$$

A continuous random distribution does not have a PMF, rather it has Probability Density Function (PDF).

$$p(a \le X \le b) = ?$$

$$e. g. p(17 \le X \le 19) = ?$$

Let $f_x(x)$: is a Probability Density Function, then

$$p(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

where $f_X(x)$ satisfies

$$f_X(x) \ge 0 \qquad \qquad \int\limits_m^n f_X(x) \, \mathrm{d}x =$$

Area under curve

$$p(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

It is to be noted that the value $f_X(x)$ is not a probability. It is probability density function. In fact, $f_X(x)$ is probability/interval range. The area under the curve gives the probability of a random variable between a and b.

Normal Distribution

Probability distribution function (PDF) of a random variable X which follows a Normal Distribution depends on two parameters, i.e., $X \sim N(\mu, \sigma)$, where is μ mean, and σ is standard deviation.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad -\infty \le x \le +\infty$$

We can draw Normal distribution for various types of data that include,

- Distribution of height of people
- Distribution of errors in any measurement
- Distribution of blood pressure of any patient, etc.

Normal Distribution

Normal Distribution

Normal Distribution

Given the PDF of Normal Distribution (25, 5), how to calculate the probability of a random variable X, e.g.

$$P(20 \le X \le 30) = ?$$

$$P(20 \le X \le 30) = \int_{20}^{30} f_X(x) \, dx \qquad \text{where} \qquad f_X(x) = \frac{1}{5\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-25}{5}\right)^2}$$

Similarly, given the PDF of Normal Distribution (25, 5), how to calculate the probability of a random variable X, e.g.

$$P(X \ge 30) = \int_{30}^{+\infty} f_X(x) \, dx \qquad \text{where} \qquad f_X(x) = \frac{1}{5\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-25}{5})^2}$$

Normal Distribution

Empirical rule of standard deviation (std.)

- ~68% of the data fall within one std. of the mean, i.e. ($\mu \pm 1\sigma$)
- ~95% of the data fall within two std. of the mean, i.e. ($\mu \pm 2\sigma$)
- ~99.7% of the data fall within a third std. of the mean, i.e. ($\mu \pm 3\sigma$)

Standard Normal Distribution

Standard Normal Distribution $\sim N(0, 1)$. It is also called **z-distribution**.

$$f_X(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

Normal Distribution Z Table: The table shows the area from 0 to Z.

Z-Value	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0	0.004	0.008	0.012	0.016	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.091	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.148	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.17	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.195	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.219	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.258	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.291	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.334	0.3365	0.3389
1	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.377	0.379	0.381	0.383
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.398	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.437	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.475	0.4756	0.4761	0.4767
2	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817

Example 1:

Find the probability density function of the normal distribution of the following data. X = 2, $\mu = 3$ and $\sigma = 4$.

Given, Variable (X) = 2, Mean = 3, Standard Deviation = 4

Using the formula of the probability density of normal distribution

$$f(x,\mu,\sigma) = \frac{1}{\sqrt[\sigma]{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Simplifying we get the answer as, f(2, 3, 4) = 0.09666703

Example 2:

If the value of the random variable is 4, the mean is 4 and the standard deviation is 3, then find the probability density function of the Gaussian distribution.

Given, Variable (X) = 4, Mean = 4, Standard Deviation = 3

Using the formula of the probability density of normal distribution

$$f(x,\mu,\sigma) = \frac{1}{\sqrt[\sigma]{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Simplifying we get the answer as,

$$f(4, 4, 3) = 1/(3\sqrt{2\pi})e^0$$

$$f(4, 4, 3) = 0.13301$$

Uniform Distribution

Suppose, we have a number line as follows

Such that (b - a) = (q - p) = L

Let X be random variable such that $m \le X \le n$ and if

$$P(a \le X \le b) = P(p \le X \le q)$$

Then, we say that $X \sim U(m, n)$. The PDF of X is given as

$$f_X(x) = \begin{cases} \frac{1}{n-m} & \text{if } m \le X \le n \\ 0 & \text{otherwise} \end{cases}$$

Mean of uniform distribution

$$Mean = (m + n) / 2$$

Variance of uniform distribution

Variance =
$$(n - m)^2 / 12$$

Median of uniform distribution

Median =
$$(m + n) / 2$$

Example 3:

A random variable X has a uniform distribution over (-2, 2),

- (i) find k for which P(X>k) = 1/2 (ii) Evaluate P(X<1) (iii) P[|X-1|<1]
- (i) $f_X(x) = 1/n-m = 1/(2+2) = \frac{1}{4}$ $P(X > k) = 1 - P(X \le k)$ $=> 1 - \int_{-2}^{k} f_X(x) dx = 1 - \frac{1}{4} \int_{-2}^{k} dx = 1 - \frac{1}{4} [k + 2] = 1 - \frac{k}{4} - \frac{1}{2}$ => for k = 0, P(X > k) = 1/2

(ii)
$$P(X < 1) = \int_{-2}^{1} f_X(x) dx = \frac{1}{4} [1+2] = \frac{3}{4}$$

(iii) P(|X-1| < 1) = P(0 < X < 2) =
$$\int_0^1 f_X(x) dx = \frac{1}{4}[1-0] = \frac{1}{4}$$

Exponential Distribution

If a random variable X follows Exponential distribution, $X\sim E(\lambda)$ with PDF

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Mean of exponential distribution

Mean =
$$1/\lambda$$

Variance of exponential distribution

Variance =
$$1/\lambda^2$$

Median of exponential distribution

Median =
$$ln(2)/\lambda$$

Cumulative Distribution Function (CDF)

If X is a continuous random variable such that $m \le X \le n$,

Then, $P(X \le z) = ?$

$$P(X \le z) = \int_{m}^{z} f_X(x) \, \mathrm{d}x$$

It is called cumulative distribution function (CDF), $F_X(z) = P(X \le z)$.

Similarly, cumulative distribution function (CDF) for discrete random variable is $F_X(k) = P(X \le k)$, where

$$p(X \le k) = \sum_{i=a}^{k} P(X = i)$$

