

www.ieee.org

943874659

Introducción a la serie C2000 real-time de Texas Instruments

Sanchez H. Godo

► Telf: 943874659

Correo: gssanchezh@ieee.org

Contenido

- ▶ Microcontrolador Real Time
- ► Herramientas de Desarrollo
- Caracteristicas de la serie C2000
- ► Aplicaciones de la serie C2000
- **►** Ejemplos

¿Qué tiene en común?

Telf: 943874659

mart Electronics

A Student Chapter of the IEEE Circuits and Systems Society

Todos necesitan la potencia de un Microcontrolador de Tiempo Real, para un control avanzando de los sistemas y conversión de potencia digital

¿Que es un uC en tiempo real?

Telf: 943874659

Microcontrolador Real-Time

Cadenas de Señales en Tiempo Real

Telf: 943874659

Ecosystem C200

Telf: 943874659

Niveles dentro del Ecosistema

Entry Level

Intermediate Level

Advanced Level

Telf: 943874659

Herramientas de Hardware

1.- LaunchPad

5.- Application Kit

2.- BoosterPack

3.-ControlCARD

<u>link</u>

4.-Experimenter Kit

7.- Custom Design

link

Telf: 943874659

Software de Desarrollo

ControlSUITE

Simulink

SOFTWARE DEVELOPMENT KIT (SDK)

C2000WARE-DIGITALPOWER-SDK -

Telf: 943874659

Universidad Privada del Norte - Lima Norte IEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

Microcontroladores C2000 (memoria flash VS rendimiento)

Telf: 943874659

C2000 – Características Generales

- Sense:
 - ✓ ADC 12-16 bits
 - ✓ Quadrature Encoder
 - ✓ Capture Logic
 - ✓ Comparadores Analogicos
 - ✓ DAC
- Control:
 - ✓ PWM de resolución de 150pS
 - ✓ Alta frecuencia de Conmutación
 - ✓ Habilitando dispositivos de SiC & GaN

Processing:

- Arquitectura de Múltiples
 Núcleos
- ✓ optimizado para el control matemático
- ✓ DSP de punto flotante

- Interface:
 - ✓ CAN, CAN-FD,LIN, FSI, UART, SPI, I2C, PMBus, 10/100 Ethernet MAC, EtherCAT, EMIF

Telf: 943874659

C2000- LAUNCHXL F28379D

F28379D LaunchPad

Universidad Privada del Norte - Lima NorteIEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

F28x7x Piccolo / Delfino Comparison

F2807x / F2837xS / F2837xD Comparison

	F2807x	F2837xS	F2837xD
C28x CPUs	1	1	2
Clock	120 MHz	200 MHz	200 MHz
Flash / RAM / OTP	256Kw / 50Kw / 2Kw	512Kw / 82Kw / 2Kw	512Kw / 102Kw / 2Kw
On-chip Oscillators	1	1	1
Watchdog Timer	1	1	1
ADC	Three 12-bit	Four 12/16-bit	Four 12/16-bit
Buffered DAC	3	3	3
Analog COMP w/DAC	1	1	1
FPU	1	1	✓ (each CPU)
6-Channel DMA	1	1	✓ (each CPU)
CLA	1	1	✓ (each CPU)
VCU / TMU	-1⊀	111	✓ / ✓ (each CPU)
ePWM / HRPWM	111	111	414
eCAP / HRCAP	√ 1-	√ 1-	√ 1-
eQEP	1	✓	4
SCI / SPI / I2C	41414	41414	41414
CAN / McBSP / USB	41414	41414	41414
UPP	-	✓	4
EMIF	1	2	2

F2806x / F2833x / F2837xD Comparison

	•			
	F2806x	F2833x	F2837xD	
C28x CPUs	1	1	2	
Clock	90 MHz	150 MHz	200 MHz	
Flash / RAM / OTP	128Kw / 50Kw / 1Kw	256Kw / 34Kw / 1Kw	512Kw / 102Kw / 2Kw	
On-chip Oscillators	✓		✓	
Watchdog Timer	✓	✓	✓	
ADC	One 12-bit (SOC)	One 12-bit (SEQ)	Four 12/16-bit (SOC)	
Buffered DAC			3	
Analog COMP w/DAC	✓		1	
FPU	✓	✓	✓ (each CPU)	
6-Channel DMA	✓	1	√ (each CPU)	
CLA	✓		√ (each CPU)	
VCU / TMU	√ 1-	-1-	✓ / ✓ (each CPU)	
ePWM / HRPWM	414	414	414	
eCAP / HRCAP	414	√ 1-	√ 1-	
eQEP	1	1	1	
SCI / SPI / I2C	41414	41414	41414	
CAN / McBSP / USB	41414	VIVI-	41414	
UPP		-	1	
EMIF	-	1	2	

Telf: 943874659

Telf: 943874659

Universidad Privada del Norte - Lima Norte IEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

C2000 - Core

- ► El MCU real time C2000 utiliza el núcleo C28x DSP como unidad principal de procesamiento.
- Los componentes adicionales de este subsistema se describen a continuación:
 - Control Law Accelerator (CLA): un coprocesador de coma flotante de 32 bits basado en una máquina de estado capaz de ejecución de código independiente del núcleo principal C28x DSP
 - Instrucciones ampliadas de C28x:
 - Unidad de punto flotante (FPU): Admite operaciones de punto flotante de 32 bits y en dispositivos seleccionados admite 64 bits punto flotante.
 - Unidad matemática trigonométrica (TMU):
 Proporciona instrucciones intrínsecas para respaldar las matemáticas trigonométricas que se encuentran comúnmente en .
 - Unidad Viterbi y CRC (VCU): reducción del recuento de ciclos tanto para Viterbi como para la verificación de redundancia cíclica (CRC) operaciones que se encuentran en ecuaciones matemáticas complejas.

$\begin{array}{c} \textbf{Park} & \begin{bmatrix} i_d \\ i_q \\ i_o \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} X \begin{bmatrix} i_a \\ i_\beta \\ i_o \end{bmatrix}$

TMS320F28x7x Core Block Diagram

<u>link</u>

Telf: 943874659

C2000 - Trigonometric Math Unit (TMU)

Agrega instrucciones al FPU para calcular mediante operaciones trigonométricas

Operation	Instruction		Exe Cycles	Result Latency	FPU Cycles w/o TMU
Z = Y/X	DIVF32	Rz,Ry,Rx	1	5	~24
Y = sqrt(X)	SQRTF32	Ry,Rx	1	5	~26
Y = sin(X/2pi)	SINPUF32	Ry,Rx	1	4	~33
Y = cos(X/2pi)	COSPUF32	Ry,Rx	1	4	~33
Y = atan(X)/2pi	ATANPUF32	Ry,Rx	1	4	~53
Instruction To	QUADF32	Rw,Rz,Ry,Rx	3	11	~90
Support ATAN2	ATANPUF32	Ra, Rz			
Calculation	ADDF32	Rb, Ra, Rw			
Y = X * 2pi	MPY2PIF32	Ry,Rx	1	2	~4
Y = X * 1/2pi	DIV2PIF32	Ry,Rx	1	2	~4

Soporte natural en C y C++.

Impacto significativo en el rendimiento de algoritmos como:

- Estacionamiento / Estacionamiento inverso
- Transformada DQ0 e inversa DQ0
- Space Vector GEN
- FFT Magnitud y cálculos de fase

Telf: 943874659

C2000 - Viterbi / Complex Math Unit (VCU)

- Operaciones de Viterbi
- ► Decodificar Comunicaciones
- Matemática Compleja
- ► FFT de punto fijo de 16 bits
- Filtros Complejos
- ► Aplicaciones de Radar

Telf: 943874659

C2000 - Control Law Accelerator (CLA)

• El Acelerador de Ley de Control (CLA) Tipo-1 es un dispositivo de coma flotante de 32 bits independiente y completamente programable. La latencia de interrupción baja del CLA le permite leer muestras de ADC "justo a tiempo". Mediante el uso de CLA para dar servicio bucles de control de tiempo crítico, la CPU principal está libre para realizar otras tareas del sistema, como comunicaciones y diagnósticos

Telf: 943874659

C2000 - Buffered Digital to Analog Converter (DAC)

- El módulo DAC con búfer consta de un DAC interno de 12 bits y un búfer de salida analógica que puede de conducir una carga externa. Una resistencia pull-down integrada en la salida DAC ayuda a proporcionar un conocido voltaje del pin cuando el búfer de salida está deshabilitado. Esta resistencia desplegable no se puede desactivar y permanece como un componente pasivo en el pin, incluso para otras funciones pinmux compartidas.
- DAC interno programable de 12 bits
- Fuente de voltaje de referencia seleccionable
- Resistencia pull-down en salida
- Capacidad para sincronizar con EPWMSYNCPER

Telf:

Correo: gssanchezh@ieee.org

943874659

C2000 - Sigma Delta Filter Module (SDFM)

- Este capítulo describe el módulo de filtro sigma delta (SDFM). El SDFM es un filtro digital de cuatro canales diseñado específicamente para la medición de corriente y la decodificación de la posición del resolver en el control de motores aplicaciones.
- Cada canal de entrada puede recibir un flujo de bits modulador delta-sigma ($\Delta\Sigma$) independiente. El
- Los flujos de bits se procesan mediante cuatro filtros de diezmado digital programables individualmente.
- El conjunto de filtros incluye un comparador rápido (filtro secundario) para comparaciones de umbrales digitales inmediatas para sobrecorriente y supervisión de subcorriente y detección de cruce de ceros

Telf:

943874659

C2000 - Enhanced Pulse Width Modulator (EPWM)

Cada módulo ePWM admite las siguientes características:

- Contador de base de tiempo dedicado de 16 bits con control de período y frecuencia
- Dos salidas PWM (EPWMxA y EPWMxB) que se pueden utilizar en las siguientes configuraciones:
- Dos salidas PWM independientes con operación de un solo borde
- Dos salidas PWM independientes con operación simétrica de doble borde
- Una salida PWM independiente con operación asimétrica de doble borde
- Soporte de control de fase programable para funcionamiento con retraso o adelanto en relación con otros módulos ePWM.
- Generación de banda muerta con control de retardo de flanco ascendente y descendente independiente.
- Asignación de zona de disparo programable de disparo ciclo por ciclo y disparo único en condiciones de falla.
- Una condición de disparo puede forzar niveles lógicos de estado de impedancia alta, baja o alta en las salidas PWM.
- Todos los eventos pueden desencadenar interrupciones de la CPU y el inicio de conversión (SOC) de ADC

Telf: 943874659

C2000 - Enhanced Quadrature Encoder Pulse (eQEP)

Un disco codificador incremental se modela con una pista de ranuras a lo largo de su periferia, Estas ranuras crean un patrón alterno de líneas oscuras y claras. El recuento de discos se define como el número

de pares de líneas claras y oscuras que se producen por revolución (líneas por revolución). Como regla, una segunda pista es

agregado para generar una señal que ocurre una vez por revolución (señal de índice: QEPI), que se puede utilizar para indicar una posición absoluta. Lo

Telf: 943874659

C2000 - Analog-to-Digital Converter (ADC)

Cada ADC tiene las siguientes características:

- Resolución seleccionable de 12 bits o 16 bits
- Referencia externa radiométrica establecida por los pines VREFHI y VREFLO
- Conversiones de señales diferenciales (solo modo de 16 bits)
- Conversiones de señales de un solo extremo (solo modo de 12 bits)
- Multiplexor de entrada con hasta 16 canales (unipolar)
 u 8 canales (diferencial)
- 16 SOC configurables
- 16 registros de resultados direccionables individualmente
- Varias fuentes de activación
- S / W software de inicio inmediato
- Todos los ePWM ADCSOC A o B
- Temporizadores de CPU 0/1/2 (de cada núcleo C28x presente)
- Cuatro interrupciones PIE flexibles
- Modo de ráfaga
- Cuatro bloques de posprocesamiento, cada uno con:
- Calibración de compensación de saturación
- Error en el cálculo del punto de ajuste
- Comparación alto, bajo y de cruce por cero, con capacidad de interrupción y disparo ePWM
- Captura de retardo de disparo a muestra

Telf: 943874659

C2000 - Aplicaciones

- Radar de medio / corto alcance
- Control del motor del inversor de tracción
- Control de motores comerciales grandes de HVAC
 Control de motor e inversor
- Equipo de clasificación automatizado
- Control CNC
- Estación de carga de CA (pila)
- Estación de carga de CC (pila)
- Módulo de potencia de la estación de carga de vehículos eléctricos
- Sistema de conversión de energía de almacenamiento de energía (PCS)

- Optimizador de energía solar
- Inversor de cadena
- Cargador integrado (OBC) e inalámbrico
- Controlador de segmento de motor lineal
- Módulo de control de servodrive
- Accionamiento de motor BLDC con entrada de CA
- Accionamiento de motor BLDC con entrada de CC
- AC-DC industrial
- SAI trifásico

Telf: 943874659

Universidad Privada del Norte - Lima Norte IEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

Telf: 943874659

C2000 – Matlab Code Generator

Tienen que tener instalados:

- Code Composer
- ControlSUITE
- Matlab

Embedded Coder Support Package for Texas Instruments C2000 Processors by MathWorks Embedded Coder Team STAFF

Generate code optimized for C2000 MCU.

Embedded Coder® Support Package for **Texas** Instruments C2000™ Processors enables you to run Simulink® models on TI C2000 MCUs. Embedded Coder automatically generates C code for your algorithms and

Hardware Support

Telf: 943874659

Telf: 943874659

Correo: gssanchezh@ieee.org

Github: /GodoSanchezH

