Free and not so free

Dialect variation and quantity-quality interactions in Welsh vowels

Pavel Iosad Prifysgol Caeredin pavel.iosad@ed.ac.uk

22ain Seminar Ieithyddiaeth y Gymraeg Plas Gregynog 7fed Gorffennaf 2015

1 Length and quality in Welsh vowels

1.1 The old problem

The received view

- · Descriptions: two classes of vowels
- · Mutually predictable distribution of length and quality
 - Long vowels = tense [iː uː eː oː]
 - Short vowels = lax [ə ɪ ʊ ε ɔ]
 - Disagreement about [a]/[aː]

For discussion, see Watkins (1967), G. E. Jones (1984), Awbery (1986), Ball & Williams (2001), Wmffre (2003), Mayr & Davies (2011)

The evidence: quality is phonemic

- · English borrowings like ['brɔːn] brawn: length does not predictably lead to tenseness
 - Unclear status in the grammar
 - Not empirically shown that borrowed [ϵ : δ :] qualitatively identical to native [ϵ δ]
 - □ Unclear if [a]/[a:] are distinct qualitatively, maybe dialect variation?
- · Difficult to account for patterning

The evidence: quantity is phonemic

- · Predictable distribution within 'short-long' or 'lax-tense' pairs (Awbery 1984)
 - Long before [b d g f $\theta \chi v \delta$]
 - Short before (most) clusters (but always predictable in any case)

- Short before [p t k s ∫ l m η]
- [ə] is always short
- Lexical contrast before [n l r]
- (1) South Welsh

a. $['t^hone]$ tonau 'tunes' b. $['t^hone]$ tonnau 'waves'

Dialect variation in length

- · All dialects: long and short vowels in stressed monosyllables
- $ton \text{ 'wave' } [thon'] \neq t\hat{o}n [thon] \text{ 'tune'}$
 - · South Welsh: long and short vowels in stressed penults
- $['t^hone]$ tonnau 'waves' $\neq ['t^hone]$ tonau 'tunes'
 - · North Welsh: only short vowels in penults
- ['thona] tonnau = ['thona] tonau
 - · Mid Welsh and NE (Awbery 1984): 'free variation' in penults
 - · Partially predictable distribution of quantity driven by quality of surrounding vowels: mix of coerced and distinctive weight (Morén 2001)
 - · Analysis: general bimoraicity requirement moderated by lexical moraicity and constraints on what can and can't acquire a mora

(2) North Welsh: all vowels short, no lengthening: undominated DepLink- μ [V]

			DepLink-μ [V]	STRESS-TO-WEIGHT	DepLink-μ [C]
/łian/	a. 🖾	₹ [ˈŧiμan]		*	
	b.	[ˈɬiːˌµan]	*!		
/agor/	c.	[ˈa _µ gor]		*!	
	d.	[ˈaːˌµgor]	*!		
	e. 🖾	F['a _µ g _µ or]			*
/thekha/	f.	$['t^{h}\epsilon_{\mu}k^{h}a]$		*!	
	g.	[ˈtʰe:ˌµkʰa]	*!		
	h. 🖪	$['t^{h}\epsilon_{\mu}k^{h}_{\mu}a]$			*
/thona/	i.	[ˈtʰɔˌμna]		*!	
	j.	[ˈtʰo:ˌµna]	*!		
	k. 🖽	$['t^h o_\mu n_\mu a]$			*
/thon _µ a/	l.	['thɔµna]		*!	
	m. 🖾	$['t^h o_\mu n_\mu a]$			*

(3) Harlech Welsh (Rees 2013): vowel lengthening only if consonant is unavailable

			Stress-to-Weight	DepLink-μ [V]	DepLink-μ [C]
/łɨan/	a.	[ˈɬɨˌan]	*!		
	b. ¤∃	ិ [ˈɬɨːˌμan]		*!	
/agor/	c.	[ˈa _µ gor]	*!		
	d.	[ˈaːˌµgor]		*!	
	e. 🖽	₹ [ˈaµgµor]			*
/thekha/	f.	$[{}^{\scriptscriptstyle h}t^{\scriptscriptstyle h}\epsilon_{\scriptscriptstyle \mu}k^{\scriptscriptstyle h}a]$	*!		
	g.	$['t^he:_{\mu\mu}k^ha]$		*!	
	h. 🕫	${\mathbb F}\left[{}^{{}^{{}^{{}^{{}^{{}^{{}^{{}^{{}^{{}^$			*
/thona/	i.	$[{}^{\scriptscriptstyle }t^h {\mathfrak d}_\mu ne]$	*!		
	j.	[ˈtʰo:ˌµna]		*!	
	k. 🕫	$['t^h o_\mu n_\mu a]$			*
$/t^{h}on_{\mu}a/$	l.	$[{}^{\scriptscriptstyle h} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	*!		
	m. 🖾	ະ [ˈtʰɔˌˌnˌa]			*

(4) South Welsh: vowel lengthening depending on the ranking of the relevant Deplink- $\mu\left[C\right]$ constraint

		SWP	DepLink-μ [bdgnlr]	DepLink-μ [V]	DepLink-μ [phthkh]
/łien/	a. [ˈɬiှen]	*!			
	b. ☞ [ˈɬiːμμen]			*!	
/agor/	c. [ˈa _µ gor]	*!			
	d. ☞ [ˈaːμμgor]			安	
	e. $[a_{\mu}g_{\mu}or]$		*!		
/thekha/	$f. \left[{}^{\shortmid} t^h \epsilon_{\mu} k^h a \right]$	*!			
	$g. \left[{}^{\shortmid}t^{h}e;_{\mu\mu}k^{h}a\right]$			*!	
	$h. \mathbb{F} \left[[{}^t t^h \epsilon_\mu k^h_{\mu} a] \right.$				*
/thone/	$i. \left[{}^{\shortmid}t^{h}\sigma_{\mu}n\epsilon\right]$	*!			
	j. $^{\text{\tiny LSS}}$ $['t^ho:_{\mu\mu}n\epsilon]$			*	
	$k. \left[{}^{\scriptscriptstyle }t^h {}_{\scriptscriptstyle \mu} n_\mu \epsilon \right]$		*!		
$/t^{h}on_{\mu}a/$	l. $['t^h o_\mu n\epsilon]$	*!			
	$[3_{\mu}n_{\mu}c^{d}t^{'}] ~^{\text{\tiny EP}}.m$				

Unstressed vowels

- · Always short
- · Quality depends on position in syllable structure: Pembrokeshire (Awbery 1986)
 - Always tense [i u e o] in hiatus

- Post-tonic open:
 - * Only tense [i u]
 - * Free variation for $[e/\epsilon o/\delta]$
 - Wmffre (2013, p. 36) claims [e o] in final open syllables is a wrong transcription, but no details
- Post-tonic closed: free variation
- Pretonic non-hiatus: free variation

1.2 South-West Welsh

A different pattern

- · South-West Wales: Pembrokeshire, western Carmarthenshire, (southern) Cardiganshire (Awbery 1986, C. Jones & Thorne 1992, Wmffre 2003)
- · Description: mid long vowels are lax before a high vowel

(5)	a.	[ˈeːdɛ]	edau	'thread'
	b.	[ˈoːgɔv]	ogof	'cave'
(6)	a.	[ˈtʰɛːbɪg]	tebyg	ʻsimilar'
	b.	[ˈkʰɔːdi]	codi	ʻrise'

- (7) Alternations [' k^h o:do \tilde{d}] cododd '((s)he) rose'
 - · This could be construed along the same lines as the borrowing argument
 - · But the distribution is still predictable!

Outline of argument

- · Are there criteria we can use beyond surface predictability?
- ™ Yes: modularity
- If a distinction participates in a pattern that involves proprietary phonological information, it should be phonological
 - · 'Tenseness' is likely phonologized both in SW Welsh and other varieties

2 Dialect variation

2.1 South-West Welsh

Acoustic study

- · 8 speakers in study: 6 show the system described for the south-west
- · Carmarthen, rural W Carmarthenshire, Pembrokeshire

Figure 1: Duration and vowel quality for south-western speakers

- $\boldsymbol{\cdot}$ 149 items \times 3 repetitions, controlled for consonantal context, vowel length, height of following vowel
- · Carrier phrase *Glywes i'r gair _ ddoe* 'I heard the word _ yesterday'
- · Basically: descriptions are correct

To play with the data

```
library(devtools)
devtools::install_github('anghyflawn/llafaR')
library(llafaR)
data(vowels)
```

The acoustic data coming soon at http://datashare.is.ed.ac.uk

- Figure 1a: robust durational distinction, as expected for South Welsh
- · Figure 1b: clearly bimodal pattern in the mid long vowels but not in high vowels
- · 'Lax' long vowels seem fairly similar to short vowels
- · Quantitative results: generalized additive hierarchical models using R package mgcv (Wood 2006), speaker and word as random effects
- · Improved fit with three-way interaction between vowel quality, vowel length and height of following vowel
- · In this model, the height of the following vowel has a significant effect (95% CI excludes zero) only on long /e: o:/, again as expected from descriptions

Figure 2: Normalized vowel quality, by final syllable type, south-western speakers

Analysis

- The 'tense-lax' distinction in *mid* vowels is sensitive to the 'high-nonhigh' distinction among *all* vowels
- · The height specification of vowels is a proprietary phonological feature
- Hence, the 'tense-lax' distinction in mid vowels is phonological
 - · Emergent/substance-free feature theory (e. g. Mielke 2007, Morén 2007): these two distinctions pattern together, so they are encoded by the same feature

Unstressed vowels

- · Tense-lax alternations in high vowels depending on syllable type
- No sign of variation in mid vowels: $[\epsilon \, j]$ only
- · Not an undershoot effect (flat regression line even when coda presence is controlled for!)
- · Parallel Structures Model of feature geometry (e. g. Morén 2003, 2006, 2007, Youssef 2010)
- · Different implementation of 'tenseness' in high and mid vowels

Figure 3: Contrastive hierarchy for South-West Welsh

	V-place			V-manner	
Segment	[coronal]	[labial]	[dorsal]	[open]	[closed]
	√				\checkmark
/1/	\checkmark		\checkmark		\checkmark
/u/					\checkmark
/ʊ/			\checkmark		\checkmark
/ə/			\checkmark		
/e/	\checkmark			\checkmark	\checkmark
/ε/	\checkmark			\checkmark	
/o/		\checkmark			\checkmark
/c/		\checkmark			
/a/				\checkmark	

Table 1: Featural specifications for vowels: South-West Welsh

Figure 4: Duration and vowel quality for Sp1

- High vowels: 'lax' [10] are more marked
 - * Pattern with [ə]: this is the class of vowels that can never be long
 - * Tense [i u] can be short
 - * Laxness appears in a relatively marked context: closed syllables
- Mid vowels: 'tense' [e o] are more marked
 - * Only [ε ɔ] in post-tonic syllables
 - * Tense [e o] phonologically active: targeted by dissimilation process
 - * The feature V-manner[closed] covers both high vowels and tense mid vowels
 - * Dissimilation within the final disyllabic domain responsible for alternations

Phonologization in South-West Welsh

- · The 'tenseness' distinction shows signs of *phonologization* (Hyman 1976, 2013) or *stabilization* (Bermúdez-Otero & Trousdale 2012, Bermúdez-Otero 2015, Ramsammy 2015): reference to phonological information
 - Distribution in high vowels is sensitive to the presence of a coda
 - Distribution in mid vowels is sensitive to contrastive phonological specification
- · Most speakers consistently show unexpected [E:] in *ffenestr* ['fe:nest] 'window'
- · Phonemicization: contrastive by any criterion

2.2 Standard system

· This system is exemplified in the data by a single speaker

Figure 5: Effect of duration on F1, Sp1

Figure 6: Contrastive hierarchy for the standard system

- · Figure 4a: robust distinction in duration
- · Figure 4b: 'tense' when long and 'lax' when short
- · Similar to findings for monosyllables in Mayr & Davies (2011)
- · Figure 5: longer duration gives higher vowels: undershoot towards a high ('tenser') target
- · Post-tonic syllables: same picture as in SW!
- · Overall distribution:
 - High vowels: lax in closed syllables (unstressed or short before moraic coda), tense in open syllables
 - Mid vowels: lax when monomoraic, tense when bimoraic
- · High vowels: lax member is marked
- · Mid vowels: tense member is marked
- The specifications in table 2 basically overlay this on the analysis for Welsh vowels in Iosad (2012)

Summary on standard system

- · 'Tenseness' probably phonologized: sensitive to phonological information
 - High vowels: presence of codas
 - Mid vowels: moraic structure
 - Not a duration effect
- · The features used for the 'tenseness' distinction do not interact with anything else or with each other
- · No evidence this is the same feature in high and mid vowels

2.3 The non-enhanced system

· Single speaker from Aberystwyth

	V-manner				V-place	
Segment	[closed]	[open]	[tense]	[lax]	[labial]	[coronal]
						√
/1/				\checkmark		\checkmark
/ə/	\checkmark					\checkmark
/u/					\checkmark	
/ʊ/				\checkmark	\checkmark	
/e/		\checkmark	\checkmark			\checkmark
/ε/		\checkmark				\checkmark
/o/	\checkmark		\checkmark			
/c/	\checkmark					
/a/		✓				

Table 2: Featural representations for the standard system

- · Figure 7a: small but robust difference in duration by vowel category
- This contradicts the descriptions claiming 'free variation between "short" and "long" vowels'
 - Figure 7b: no difference in formant values by length category: all stressed vowels are 'lax'
 - · Figure 8: shorter vowels are higher: undershoot towards a low target!
- No free variation in sight!
 - · Same post-tonic system as elsewhere

Summary for non-enhanced system

- · No evidence for a phonological 'tenseness' distinction in mid vowels
- Some evidence for a distinction in high vowels sensitive to codas, but only apparent wordfinally
- Note the broader domain of the requirement compared to the standard system
 - · No analysis here due to lack of data from stressed monosyllables
 - · Potentially: 'free variation' in quantity really means '(some) continuous variation in quality'

3 Phonologization across dialects

3.1 Diachronic interpretation

- · Suggested diachronic interpretation for stressed vowels
 - o. No difference in quality within vowel categories pprox non-enhanced system
 - 1. Length is enhanced by (continuous) tensing (Stevens & Keyser 1989, 2010, Keyser & Stevens 2006) \approx traces in standard system
 - 2. All short-long pairs are interpreted as featurally distinct, but the features are inert otherwise \approx standard system

Figure 7: Duration and vowel quality for Sp8

Figure 8: Effect of vowel duration on F1, $\ensuremath{\mathsf{Sp8}}$

- 3. Features used for the tenseness distinction participate in alternations involving other segments \approx south-western system
- 4. Tenseness becomes phonemicized
- · Rees (2013): the trajectory is tensing to lengthening in penults
 - Common North Welsh $[\epsilon] \to \text{Tywyn} \ [\epsilon \sim e] \to [e \sim e'] \to \text{common South Welsh} \ [e']$
 - Not the case in the non-enhanced system: $[\varepsilon]$ vs. $[\varepsilon]$, lengthening precedes tensing
 - Consonant durations confirm that the qualitative distinction is real
- · Wmffre (2003): lax vowels in penults in Mid Wales come from lowering and shortening
- · Common Mid Welsh ['kerven] \rightarrow innovative ['kerven] \rightarrow ['keven]
 - No evidence of any tense mid vowels in the non-enhanced system
 - Unclear durational implications of the transcriptions (['keven]?)
- · Arguably we expect originally lax quality in penults, as these were short before stress shift

3.2 Rule scattering in South-West Welsh

The origin of height dissimilation

- · Height dissimilation: phonologization of a trade-off in inherent length
- · Irish: synchronically (Munster; Ó Sé 1989) and diachronically (Connacht; Ó Sé 1984) \Rightarrow categorical (?)
- · East Slavic: categorical (Crosswhite 2000) or continuous (Kasatkina & Ščigel' 1996, Kniazev & Shaulskiy 2007), potentially coexisting
- · Kera: continuous? (Pearce 2007)
- The following model was used to estimate the effect of post-tonic vowel duration on the ratio between the duration of the stressed and post-tonic vowel

```
fit <- gam(v1h.v2h.ratio ~ s(v2h.dur, by=v1, k=5) +
    v1 + v1.is.long + s(speaker, bs='re') + s(word, bs='re'),
    data=sw.data)</pre>
```

- · Figure 9 shows that the relationship is consistent with the existence of a trade-off
- The coexistence of a continuous pattern and its categorical congener in the grammar is major prediction of the theory of the life cycle: *rule scattering*
- · South-West Welsh is an interesting example of rule scattering, since the cognate processes are rather different in nature (unlike t/d-deletion, [1]-darkening etc.)

Figure 9: Effect of post-tonic vowel duration on V1/V2 duration ratio, by stressed vowel, south-western speakers

Summary

- · Theory
 - Predictability is a less useful criterion for phonological analysis
 - Key to being phonologized is participation in the phonological grammar
- · Data
 - More targeted work needed on vowel quality and quantity
 - Transcriptions may not be very reliable, especially with respect to quantity and qualitative variation
 - More work needed: dialect diversity, pretonic syllables, better post-tonic controls, control for phrasal accent (Rees 2013)
- · Diachrony: apparently not very much done here yet!

References

Awbery, Gwenllian M. 1984. Phonotactic constraints in Welsh. In Martin J. Ball & Glyn E. Jones (eds.), *Welsh phonology: Selected readings*, 65–104. Cardiff: University of Wales Press.

Awbery, Gwenllian M. 1986. Pembrokeshire Welsh: A phonological study. Llandysul: Welsh Folk Museum.

Ball, Martin J. & Briony Williams. 2001. *Welsh phonetics* (Welsh Studies 17). Lewiston, Queenston, Lampeter: Edwin Mellen Press.

Bermúdez-Otero, Ricardo. 2015. Amphichronic explanation and the life cycle of phonological processes. In Patrick Honeybone & Joseph C. Salmons (eds.), *The Oxford handbook of historical phonology*. Oxford: Oxford University Press.

- Bermúdez-Otero, Ricardo & Graeme Trousdale. 2012. Cycles and continua: On unidirectionality and gradualness in language change. In Terttu Nevalainen & Elizabeth Closs Traugott (eds.), *Handbook on the history* of English: Rethinking approaches to the history of English, 691–720. Oxford: Oxford University Press.
- Crosswhite, Catherine M. 2000. Vowel reduction in Russian: A unified account of standard, dialectal, and 'dissimilative' patterns. In Catherine M. Crosswhite & Joyce McDonough (eds.), *University of Rochester working papers in the language sciences*, vol. Spring 2000, 107–171.
- Hyman, Larry M. 1976. Phonologization. In Alphonse Juilland (ed.), *Linguistic studies presented to Joseph H. Greenberg*, 407–418. Saratoga: Anna Libri.
- Hyman, Larry M. 2013. Enlarging the scope of phonologization. In Alan C. L. Yu (ed.), *Origins of sound change: Approaches to phonologization*, 3–28. Oxford: Oxford University Press.
- Iosad, Pavel. 2012. *Representation and variation in substance-free phonology: A case study in Celtic.* Tromsø: University of Tromsø PhD thesis.
- Jones, Christine & David Thorne. 1992. Dyfed: Blas ar ei thafodieithoedd. Llandysul: Gwasg Gomer.
- Jones, Glyn E. 1984. The distinctive vowels and consonants of Welsh. In Martin J. Ball & Glyn E. Jones (eds.), *Welsh phonology: Selected readings*, 40–64. Cardiff: University of Wales Press.
- Kasatkina, R. F. & Ye. V. Ščigel'. 1996. Osobennosti prosodii slova v južnorusskix govorax. In T. M. Nikolaeva (ed.), *Prosodičeskij stroj russkoj reči*, 236–255. Moscow: RAS Russian Language Institute.
- Keyser, Samuel Jay & Kenneth N. Stevens. 2006. Enhancement and overlap in the speech chain. *Language* 82(1). 33–63.
- Kniazev, Sergey & Evgeny Shaulskiy. 2007. The development of *akanje* in Russian: new data. In *Proceedings of ICPhS XVI*, 1425–1428. Saarbrücken. http://www.icphs2007.de/conference/Papers/1211/1211.pdf.
- Mayr, Robert & Hannah Davies. 2011. A cross-dialectal acoustic study of the monophthongs and diphthongs of Welsh. *Journal of the International Phonetic Association* 41(1). 1–25.
- Mielke, Jeff. 2007. The emergence of distinctive features. Oxford: Oxford University Press.
- Morén, Bruce. 2001. Distinctiveness, coercion, and sonority: A unified theory of weight. London, New York: Routledge.
- Morén, Bruce. 2003. The Parallel Structures model of feature geometry. In *Working Papers of the Cornell Phonetics Laboratory*, vol. 15, 194–270. Ithaca, NY.
- Morén, Bruce. 2006. Consonant–vowel interactions in Serbian: Features, representations and constraint interactions. *Lingua* 116(8). 1198–1244.
- Morén, Bruce. 2007. The division of labour between segment-internal structure and violable constraints. In Sylvia Blaho, Patrik Bye & Martin Krämer (eds.), *Freedom of analysis?* (Studies in Generative Grammar 95), 313–344. Berlin: Mouton de Gruyter.
- Ó Sé, Diarmuid. 1984. Coimriú siollaí tosaigh sa Ghaeilge. *Éigse* 20. 171–186.
- Ó Sé, Diarmuid. 1989. Contributions to the study of word stress in Irish. Ériu 40. 147–178.
- Pearce, Mary. 2007. ATR allophones or undershoort in Kera? *UCL Working Papers in Linguistics* 19. Richard Breheny & Nikolaos Velegrakis (eds.).
- Ramsammy, Michael. 2015. The life cycle of phonological processes: Accounting for dialectal microtypologies. Language and Linguistics Compass 9(1). 33-54.
- Rees, Iwan Wyn. 2013. Astudiaeth o amrywiadau ffonolegol mewn dwy ardal yng nghanolbarth Cymru. Aberystwyth: Aberystwyth University PhD thesis.
- Stevens, Kenneth N. & Samuel Jay Keyser. 1989. Primary features and their enhancement in consonants. *Language* 65(1). 81–106.
- Stevens, Kenneth N. & Samuel Jay Keyser. 2010. Quantal theory, enhancement and overlap. *Journal of Phonetics* 38(1). 10–19.

Watkins, Arwyn T. 1967. Some phonological features of the Welsh dialect of Llansamlet (West Glamorgan). In Wolfgang Meid (ed.), *Beiträge zur Indogermanistik und Keltologie: Julius Pokorny zum 80. Geburtstag gewidmet*, 315–322. Innsbruck: Sprachwissenschaftliches Institut der Universität Innsbruck.

Wmffre, Iwan. 2003. *Language and place-names in Wales: The evidence of toponymy in Cardiganshire*. Cardiff: University of Wales Press.

Wmffre, Iwan. 2013. The qualities and origins of the Welsh vowel [i]. Berlin: Curach Bhán Publications. Wood, Simon N. 2006. Generalized additive models: An introduction with R. Chapman & Hall/CRC. Youssef, Islam. 2010. Laryngeal assimilation in Buchan Scots. English Language and Linguistics 14(3). 321–345.

	No height effect	No interaction	Model with interaction
Intercept	-1.01^*	-1.06^*	-1.00^*
	[-1.24; -0.77]	[-1.29; -0.83]	[-1.18; -0.82]
//ə//	0.71^*	0.65^{*}	0.79^*
	[0.44; 0.98]	[0.39; 0.90]	[0.57; 1.00]
//e//	1.55*	1.42*	1.58*
	[1.28; 1.82]	[1.17; 1.68]	[1.34; 1.82]
//o//	1.59^*	1.50^{*}	1.54^{*}
	[1.26; 1.91]	[1.19; 1.82]	[1.26; 1.81]
//u//	0.26	0.14	0.29
	[-0.09; 0.61]	[-0.20; 0.48]	[-0.04; 0.62]
Long vowel	-0.22	-0.29^*	-0.25^*
	[-0.50; 0.06]	[-0.55; -0.03]	[-0.47; -0.04]
Long /e/	-0.26	-0.16	-0.83^*
	[-0.62; 0.10]	[-0.50; 0.18]	[-1.15; -0.52]
Long /o/	0.00	0.08	-0.38^*
	[-0.36; 0.37]	[-0.27; 0.42]	[-0.68; -0.08]
Long /u/	0.34	0.34	0.35
	[-0.10; 0.77]	[-0.07; 0.75]	[-0.16; 0.85]
Duration smooth	1.86	2.37	2.13
	[-2.70; 6.42]	[-3.35; 8.10]	[-3.04; 7.31]
F2 smooth	3.33	3.50	3.79
	[-4.04; 10.70]	[-4.06; 11.05]	[-3.97; 11.56]
Speaker (random)	4.41	4.43	4.35
	[-5.39; 14.21]		[-5.45; 14.15]
Word (random)	98.37	96.29	76.98
	[-117.23; 313.97]	[-119.30; 311.89]	•
High post-tonic vowel		0.27^{*}	0.05
		[0.15; 0.38]	[-0.27; 0.36]
//e// before high			-0.08
			[-0.47; 0.30]
//o// before high			0.02
			[-0.36; 0.39]
//u// before high			-0.18
			[-0.61; 0.25]
Long vowel before high			0.03
			[-0.35; 0.42]
Long //e// before high			1.06*
- 11 113 0 3 5			[0.57; 1.54]
Long //o// before high			0.82*
* 11 113 0 3 5			[0.34; 1.30]
Long //u// before high			0.05
			[-0.60; 0.69]
AIC	2098.91	2091,54	2074.06
BIC	2762.91	2753.46	2672.18
Log Likelihood	-931.50	-928.18	-930.77
\mathbb{R}^2	0.79	¹⁷ 0.79	0.79

 $^{^{\}ast}$ o outside the confidence interval