LINEAR FILTERS (REVIEW)

Definition of a linear filter

- A linear filter f is characterized by a sequence $(f_k)_k$ of real numbers
- the f_k 's are called the *filter* taps (and we write $f=(f_k)_k$
- Filtering an input signal $x = (x_n)_n$ through filter f gives an output signal $y = (y_n)_n$:

$$y_n = \sum_k f_k x_{n-k} = \sum_k f_{n-k} x_k$$
 for all n

- Mathematical notation: $y = f \otimes x$
- That is called the ${\it convolution}$ of f and x
- · Notes about indexing notation:
- Indices k can range from anywhere to anywhere
- Any term where its index is "out of range" is by default = 0 Then $x_{101} = 0, x_{-1} = 0, \dots$

FILTERING AS A WEIGHTED "AVERAGE" (REVIEW) -- THE FILTER TAPS ARE THE WEIGHTS --

THE CONVOLUTION THEOREM (REVIEW) (1/2)

The convolution theorem:

- Let $x=(x_n)_n$ be a digital signal and $f=(f_k)_k$ be a filter, and let $y = (y_n)_n \stackrel{\text{\tiny def}}{=} f \otimes x$ be the output of filtering x with f.
- Let X,Y and F denote the Fourier Transforms of x,y and f , respectively.
- Then, Y = F.X (pointwise multiplication).

THE Z-TRANSFORM (REVIEW)

- Let $a=(a_k)_k$ be a sequence (like a discrete signal or a filter)
- The z-transform transforms a sequence $a=(a_k)_k$ into a complex function A(z):

$$A(\mathbf{z}) = \sum_k a_k \mathbf{z}^k$$
 // a polynomial in \mathbf{z}

- · We use the notation that the input sequence is denoted with a lower case letter, and its z-transform is denoted by the upper-case of the same letter:
- $a = (a_k)_k \rightarrow A(z) = \sum_k a_k z^k$
 - $x = (x_k)_k \to X(z) = \sum_k x_k z^k$
- $y = (y_k)_k \rightarrow Y(z) = \sum_k y_k z^k$
 - $f = (f_k)_k \rightarrow F(z) = \sum_k f_k z^k$

THE CONVOLUTION THEOREM (REVIEW) (2/2)

· The convolution theorem

Z-TRANSFORM AND FILTERING (REVIEW) CONVOLUTION THEOREM IN TERMS OF

- Convolution Theorem in terms of the z-transform:
- Let $x=(x_n)_n$ be a digital signal and $f=(f_k)_k$ be a filter, and let $y = (y_n)_n \stackrel{\text{def}}{=} f \otimes x$ be the output of filtering x with f.
 - Let X(z),Y(z) and F(z) denote the z-transforms of x,y and f,respectively
- Then, Y(z) = F(z). X(z) (polynomial multiplication)

THE CONVOLUTION THEOREM (REVIEW)

AS A DIAGRAM

Filtering in the z-domain as a simplified diagram:

FREQUENCY RESPONSE OF A FILTER (REVIEW) (1)

- A filter $f=(f_k)_k$, as a spectrum-shaping tool, is best understood by its **frequency response**, $F(e^{-i\omega}) = \sum_k f_k e^{-ik\omega}$, where ω is a <u>continuous</u> frequency, and F is the z-transform of f

- The frequency response $F(\omega)$ is a complex function, periodic of period
- Its magnitude $|F(\omega)|$ is periodic of period 2π and symmetric around the vertical axis, and thus it is enough to plot it in the $[0~\pi]$ interval

LOW-PASS FILTERS (LPF) (REVIEW) -- FREQUENCY RESPONSE

HIGH-PASS FILTERS (HPF) (REVIEW) -- FREQUENCY RESPONSE --

OBSERVATIONS ABOUT LPF'S AND HPF'S (REVIEW)

- Ideal LPF's and HPF's are not realizable in practice, but
- $\boldsymbol{\cdot}$ many realizable filters are good approximations of ideal filters

EXAMPLES OF LPF'S AND HPF'S AND THEIR EFFECT

THE MAIN SCHEME OF SUBBAND CODING/DECODING (REVIEW)

HOW SUBBAND CODING IS GENERALLY APPLIED -- A TREE-LIKE STRUCTURE: THE ENCODER --

HOW SUBBAND CODING IS GENERALLY APPLIED -- A TREE-LIKE STRUCTURE: THE DECODER --

ILLUSTRATION OF SUBBAND CODING ON 1D SIGNALS

ILLUSTRATION OF SUBBAND CODING ON 2D SIGNALS

A one-level transform of Lena (Lena 1) A two-level transform of Lena (Lena 2)

ILLUSTRATION OF SUBBAND CODING ON 2D SIGNALS

CS6351 Data Compression

ILLUSTRATION OF SUBBAND CODING ON 2D SIGNALS

Original Lena

Lena reconstructed from just the low-frequency subband of Lena 2 (CR

SUBBAND CODING ISSUES

• Filter design

- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

FILTER DESIGN

- Classical filter design techniques for LPF's and HPF's
- Least Mean Square technique
- Butterworth technique
- Chebychev technique
- Those techniques are for designing single filters, rather than a bank of four filters working together
- The four filters (g,h,p,q) for a subband coding system must have the perfection reconstruction property (to be seen later)
 - · the output signal is identical to the input signal if no quantization takes

HOW SHOULD THE FOUR FILTERS RELATE TO ONE ANOTHER

- quantization, then the reconstructed signal \hat{x} is identical to the original • The four filters g,h,p, and q should be designed so that if there is no
- That is, $\hat{x} = x$
- · That is referred to as the perfection reconstruction (PR) condition
- · We will see next how that the PR condition translates into conditions on the four filters
- To do so, we will recall the subband coding/decoding scheme, and make use of the z-transform and the convolution theorem

THE MAIN SCHEME OF SUBBAND CODING IN THE TIME DOMAIN

THE MAIN SCHEME OF SUBBAND CODING IN THE Z-DOMAIN

 $(z),V(z),\widehat{U}(z),\widehat{V}(z),P(z),Q(z),$ and $\widehat{X}(z)$ are

By the Conv. Thm: $\overline{U}(z)=G(z)X(z),\overline{V}(z)=H(z)X(z),\hat{X}(z)=P(z)\hat{U}(z)+Q(z)\hat{V}(z)$

DERIVATION OF THE PR CONDITION FOR THE FOUR FILTERS (1/3)

- $\cdots + \overline{u}_{N-2}z^{N-2} + \overline{u}_{N-1}z^{N-1}$ $= [\overline{u}_0,\overline{u}_1,\overline{u}_2,\overline{u}_3,...,\overline{u}_{N-2},\overline{u}_{N-1}] \to \overline{U}(z) = \overline{u}_0 + \overline{u}_1z + \overline{u}_2z^2 + \overline{u}_3z^3 +$
- $u = [\overline{u}_0, \overline{u}_2, \overline{u}_4 \dots, \overline{u}_{N-2}] \rightarrow \hat{u} = [\overline{u}_0, 0, \overline{u}_2, 0, \dots, \overline{u}_{N-2}, 0] \rightarrow \hat{U}(z) = \overline{u}_0 + \overline{u}_2 z^2 + \overline{u}_4 z^4 + \dots + \overline{u}_{N-2} z^{N-2}]$ V.
- က
- (From (1))
 $$\begin{split} & \overline{U}(z) = \overline{u}_0 + \overline{u}_1 z + \overline{u}_2 z^2 + \overline{u}_3 z^3 + \dots + \overline{u}_{N-2} z^{N-2} + \overline{u}_{N-1} z^{N-1} \\ & \bullet \ \overline{U}(-z) = \overline{u}_0 - \overline{u}_1 z + \overline{u}_2 z^2 - \overline{u}_3 z^3 + \dots + \overline{u}_{N-2} z^{N-2} - \overline{u}_{N-1} z^{N-1} \end{split}$$
- (Replace z by -z in the line above)
 - Therefore, $\overline{U}(z) + \overline{U}(-z) = 2(\overline{u}_0 + \overline{u}_2 z^2 + \overline{u}_4 z^4 + \dots + \overline{u}_{N-2} z^{N-2}) = 2\widehat{U}(z)$ 4
- Therefore, $\overline{\hat{U}}(z) = \frac{1}{2} [\overline{\hat{U}}(z) + \overline{\hat{U}}(-z)]$

5 9

- $\overline{U}(z) = G(z)X(z), \overline{V}(z) = 0$ $\widehat{X}(z) = P(z)\widehat{U}(z) + O(z)$ By the convolution theorem, $\overline{U}(z)=G(z)X(z)$ and thus $\overline{U}(-z)=G(-z)X(-z)$
- From (5) and (6) above, we have $\hat{U}(z) = \frac{1}{2} \left[G(z) X(z) + G(-z) X(-z) \right]$
- Similarly , $\widehat{V}(z) = \frac{1}{2} [H(z)X(z) + H(-z)X(-z)]$

LPFg u (2) u (2) u LPFp HPPh T (2) " HPPq

DERIVATION OF THE PR CONDITION (2/3)

LPF g u (2) u (2) u LPF p HPPh T (12) V HPPq

$$Z$$
. $\hat{U}(z) = \frac{1}{2} [G(z)X(z) + G(-z)X(-z)]$

8.
$$\hat{V}(z) = \frac{1}{2} [H(z)X(z) + H(-z)X(-z)]$$

9. Recall that
$$\hat{X}(z) = P(z)\hat{U}(z) + Q(z)\hat{V}(z)$$

$$\overline{U}(z) = G(z)X(z), \overline{V}(z) = H(z)X(z),$$
10. Using 7-9, we get:

$$\hat{X}(z) = P(z)\hat{U}(z) + Q(z)\hat{P}(z) = \frac{1}{2}P(z)[G(z)X(z) + G(-z)X(-z)] + \frac{1}{2}Q(z)[H(z)X(z) + H(-z)X(-z)]$$

$$\hat{X}(z) = \frac{1}{2}[P(z)G(z) + Q(z)H(z)]X(z) + \frac{1}{2}[P(z)G(-z) + Q(z)H(-z)]X(-z)$$

11. Therefore:
$$\hat{X}(z) = \frac{1}{2} [P(z)G(z) + Q(z)H(z)] X(z) + \frac{1}{2} [P(z)G(-z) + Q(z)H(-z)]$$
12. For perfect reconstruction, $\hat{x} = x$, so we must have $\hat{X}(z) = X(z)$

13. Therefore
$$\frac{1}{2} [P(z)G(z) + Q(z)H(z)] = 1$$

৯

$\frac{1}{2}[P(z)G(-z) + Q(z)H(-z)] = 0$

THE PR CONDITION (3/3)

- ℅ 13. Therefore, $\frac{1}{2}[P(z)G(z) + Q(z)H(z)] = 1$
- $\frac{1}{2}[P(z)G(-z) + Q(z)H(-z)] = 0$
 - 14. Hence, the perfect reconstruction (PR) condition becomes:

$$P(z)G(z) + Q(z)H(z)=2$$

 $P(z)G(-z) + Q(z)H(-z)=0$

- 15. Consequently, to get a subband filter bank (of four filters), one has to solve the two equations above, subject to the constraints that
- $H(1) = Q(1) = 0, H(-1) \neq 0, Q(-1) \neq 0$
- (because h and q are high-pass filters)

(because g and p are low-pass filters) • $G(-1) = P(-1) = 0, G(1) \neq 0, P(1) \neq 0$

EXERCISES

- Let $f=(f_k)_k$ be a filter, and let $F(z)=\sum_k f_k z^k$ be its z-transform. Prove
- 1. If f is a LPF, then $F(z=1) \neq 0$ and F(z=-1) = 0
- If f is a LPF, then $\sum_k f_k \neq 0$ and $\sum_k f_k (-1)^k = 0$ **6**2
- If f is a HPF, then F(z=1)=0 and $F(z=-1)\neq 0$ ო
- 4. If is a HPF, then $\sum_k f_k = 0$ and $\sum_k f_k (-1)^k \neq 0$
 - Let $g = (g_k)_k$ where $g_k = (-1)^k f_k$. Prove that
 - 1. If f is a LPF, then g is a HPF

If f is a HPF, then g is a LPF

EXISTENCE OF GOOD FILTER BANKS (1/2)

EXISTENCE OF FILTER BANKS THAT SATISFY

THE PR CONDITION

Are there filter banks that satisfy the PR condition?

In other terms, is the PR condition sufficient?

Are they all good for compression?

• Yes, there are many!!!!!!

- Are there good filter banks that satisfy the PR condition?
- Answer:
- Yes, there are!!!!!!
- $\mbox{ \bullet }$ Most filter banks that satisfy the PR condition are bad for compression, but a few are good
- · All we need is just one good filter bank
- · Luckily, there are a few families of filter banks that are quite good for compression, and satisfy the PR condition

· When quantization is applied (and loss incurred), the reconstructed signal

Not all filter banks that satisfy the PR condition perform well in lossy

· No, the PR condition alone is not sufficient

can be of very low quality and exhibit serious distortions and artifacts

EXISTENCE OF GOOD FILTER BANKS (2/2)

- I have generated all filter quartets (i.e., filter banks) that
- · Satisfy the perfect reconstruction condition, and
- Have a combined length (of the two analysis filters g and h) of at most 56 taps
- · There were more than 4000 such quartets
- I measured their goodness for subband coding
- Findings:
- · The overwhelming majority of the quartets are bad or not good enough
- Only about 18 quartets were very good
- · The good quartets are illustrated next (by their frequency responses)
- Also illustrated are 7 bad quartets

GOOD FILTER QUARTETS AND BAD FILTER QUARTETS

SUBBAND CODING ISSUES

- Filter design
- **Quantization Method**
- Shape of the tree
- Same or different filter sets per image or class of images?

QUANTIZATION QUESTIONS

- · As we saw in previous lectures, we have scalar quantizers, and vector quantizers
- Scalar quantizer work best when the data is decorrelated
- · And different scalar quantizers can be used: uniform, semi-uniform, and optimal Max-Lloyd quantizers
- · Vector quantizers are preferable if the data is (still) correlated
- So, for subband coding, which quantizers to use?
- Same type of quantizer for all subbands?
- · If not, why not and which type for which subband?
 - If same type of quantizer, which type?
- · If scalar quantizers, which subtype, and what quantizer parameters to use?

QUANTIZATION OF SUBBANDS

- subbands are split deep enough, then the high-frequency (HF) subbands should be largely decorrelated If we choose the filters really well, and
- · Therefore, scalar quantization are quite suitable
 - The LL subband can still have a lot of for high-frequency subbands
 - · Either use a vector quantizer, or correlation. Therefore,
- Apply DCT on it then use a scalar quantizer like in JPEG, or
- Use a (uniform) scalar quantizer of fine granularity (i.e., large number of small intervals)

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (1/8)

- · We said that for HF subbands, use scalar quantizers
- Uniform or non-uniform?
- But as we'll see, a non-uniform (optimal) Max-Lloyd quantizer could be justified Uniform might be sufficient, especially if HF has been split several times
- Non-uniform quantizers have a higher overhead to represent, increasing the
- bitrate
- But, as will be seen, it turns out that HF subbands can be modeled statistically, requiring only a couple of parameters
- This implies that optimal non-uniform quantizers can be specified with a small number of data values, thus keeping the overhead (and the bitrate) low

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (2/8)

quantized, then the Max-Iloyd algorithm can be executed nicely to compute the Recall that if we have the probability distribution $p(\boldsymbol{x})$ of the data \boldsymbol{x} to be decision levels $d_1, d_2, ..., d_{n-1}$ and reconstruction values $r_0, r_1, ..., r_{n-1}$:

$$r_i = \frac{\int_{d_i}^{d_i+1} x p(\mathbf{x}) d\mathbf{x}}{\int_{d_i}^{d_i+1} p(\mathbf{x}) d\mathbf{x}}, d_i = \frac{r_{i-1}+r_i}{2} \text{ for all } i$$

- Therefore, if we know $p(\boldsymbol{x})$, we can solve those equations using the iterative Max-Lloyd algorithm
- Do we know p(x), when the data x is the pixels in a HF subband?
- Answer: Yes, that has been computed by researchers (see next)

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (3/8) - STATISTICAL MODEL OF HF SUBBANDS

• Probability distribution p(x) of the pixel values in HF subbands: The generalized Gaussian distribution

$$p(x) = ae^{-|bx|^r}$$

$$b = \frac{1}{\sigma} \left(\frac{\Gamma(\frac{2}{\tau})}{\Gamma(\frac{1}{\tau})} \right)$$

 $a = \frac{1}{2\Gamma(\frac{1}{r})}$

and

and $\sigma=$ the standard deviation of the data in the HF subband

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (4/8) -- STATISTICAL MODEL OF HF SUBBANDS --

Taking r = 0.7, we get

•
$$\Gamma\left(\frac{1}{r}\right) = \Gamma\left(\frac{1}{0.7}\right) = 0.8861$$
, $\Gamma\left(\frac{3}{r}\right) = \Gamma\left(\frac{3}{0.7}\right) = 8.6879$

•
$$b=rac{1}{\sigma}ig(rac{\Gamma(rac{\sigma}{r})}{\Gamma(rac{\sigma}{r})}ig)^{rac{1}{2}}=rac{3.1313}{\sigma}$$
, thus $b=rac{3.1313}{\sigma}$

•
$$a = \frac{br}{2\Gamma(\frac{1}{r})} = \frac{1.2369}{\sigma}$$
, thus $a = \frac{1.2369}{\sigma}$

•
$$p(x) = ae^{-|bx|^r}$$
,

Thus
$$p(x) = \frac{1.2369}{\sigma} e^{-\frac{3.1313}{\sigma}|x|^{0.7}}$$

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (5/8) VERIFYING THE STATISTICAL MODEL

where $\sigma=$ the standard deviation of the data in the HF subband

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (6/8) VERIFYING THE STATISTICAL MODEL

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (7/8) VERIFYING THE STATISTICAL MODEL

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (8/8) -- STATISTICAL MODEL OF HF SUBBANDS --

Since the probability distribution of the pixels in any HF subband can be closely

modeled by $p(x) = \frac{1.2369}{\sigma} e^{-\frac{3.1313}{\sigma}|x|^{0.7}}$, then

- The optimal quantizer (of a certain given number n of intervals) can be fully specified by σ , the standard deviation of the data in the HF subband
- And therefore, for dequantization, the coder need only send the σ of each HF subband to the decoder
- That way, we keep the bitrate low, while the HF subbands are quantized with optimal scalar quantizers

SHAPE OF THE TREE (1/2)

· Shape of the tree refers to the structure of where to apply the subband coding scheme:

SUBBAND CODING ISSUES

- Filter design
- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

SUBBAND CODING ISSUES

- Filter design
- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

SHAPE OF THE TREE (2/2)

- · Questions about the tree shape:
- What is the best shape?
- Is there a best shape for all images, or at least one best shape per class of images?
 - If not, is there an efficient way of deciding the shape of the tree on-line?
- · Wavelet theory can address some of those questions
- · But we won't have time to cover it
- Nevertheless:
- $\ensuremath{\bullet}$ The four tree shapes shown on the previous slide are good for all images
 - · The uniform tree is rarely needed
- A good dynamic way to tell, per image and per subband, whether a subband should be decomposed further, is to check if its variance > some threshold

SAME OR DIFFERENT FILTERS FOR DIFFERENT SIPPANDES

- SUBBANDS?
- In the early days of Wavelet theory (1990's), people wondered whether
 Different subbands are best filtered with different customized filters
- Intuitively, the best filter set for a given signal is the one whose corresponding wavelet best resembles the signal in shape (i.e., in plot)
- The data in the subbands have different plots than the original data, suggesting the use for different filters than the ones applied on the original data
- However, studies have shown that, again, if you choose a good filter bank, the same filters will work really well for all subbands and all income.
- · Relying on the frequency perspective