1. Solve each of the following sets of simultaneous congruences:

Solution: $(mod 3), n \equiv 2 \pmod{5}, n \equiv 3 \pmod{7}$

- > Total modulus N = 3.5.7 = 105
- For modulus 3: $N_1 = 105/3 = 35$. Inverse of 35 mod 3 is $35 = 2 \pmod{3}$, and $2^{-1} = 2 \pmod{3}$ (since $2 \cdot 2 = 4 = 1$).

contribution: 1.35.2=70

- For modulus 5: $N_2 = 105/6 = 21$. Inverse of 21 mod 5 is $21 \equiv 1 \pmod{5}$, inverse = 1.

 Contribution: $2 \cdot 21 \cdot 1 = 42$
 - For modulus $7:N_3 = 105/7 = 15$. Inverse of 15 mod $7:S = 15 = 1 \pmod{7}$, inverse = 1.

 Control bution: 3.16.1 = 45

Sum 70+42+45 = 157. Reduce mod 105:157=52 mod (105).

Answers: $n = 52 \pmod{105}$. The smallest positive solution is n = 52.

b) N=5 (mod 11), N=14 (mod 29)9 N=15 (mod 31)

0) 25 1 (and 3) 25 2 (and 5), 25 1 (miles)

→ N = 11 · 29 · 31 = 9889

 \Rightarrow N₁ = 9889/11 = 899. Inverse of 889 mod 11:899 \equiv 7 (mod 11). Solve \forall 7 = 1 (mod 11) \Rightarrow 7 = 8 Contribution: $5 \cdot 899 \cdot 8 = 35960$

 \rightarrow N2 = 9889/29 = 341·341 = 20 (mod 29). Inverse of 20 mod 29 is 3 because 20·3 = 60 = 2 - mot quite; contribution : 14 · 341·15 = 71610

 $\rightarrow N_m = 9889/31 = 319.319 = 9 \pmod{31}$. Inverse of 9 mod 31 is $7 \pmod{9.7 = 63 = 1}$.

mod (105).

Answers: n=4944 (mod 9889). The smallest possitive

Amorago : ME 52 (and 105). The smallest positive

e) n=5 (mod 6), n=4 (mod 11), n=3 (mod 17)

Solution;

- → N=6.11.17=1122
- $\rightarrow N_1 = 1122/6 = 187$. Inverse of 187 mod 6:187 = 1 (mod 6), inverse = 1.
 - Contribution: 5 · 187 · 1 = 935
- \rightarrow N2 = 1122/11 = 102·102 = 3 (mod 11). Inverse of 3 mod 11 is 4 (since 3.4=12=1). Contribution: 6 4·102·4=1632.
- \rightarrow N3 = 1122/17 = 66.66 = 15 (mod 17). Inverse of 15 mod 17 is 8 (since 15.8 = 120 = 1). Contribution: 3.66.8 = 1584
- Sum 935+1632+1584=4151. Reduce mod 1122:4151 mod 1122=785.

Answer: $n = 785 \pmod{1122}$. The smallest positive solution is n = 785.