Oppgaver MAT2500

Fredrik Meyer

27. oktober 2014

Oppgave 1. Finn sentrum og halvakser til kjeglesnittet med ligningen

$$25x^2 + 9y^2 - 18x + 2y = 0.$$

Løsning 1. Vi vet at alle ikke degenererte kjeglesnitt er enten ellipser, hyperbler eller parabler. Siden det er snakk om "halvakser", regner vi kanskje med at dette blir en ellipse. For å finne sentrum er det ikke annet å gjøre enn å begynne å fullføre kvadrater. Vi tar x- og y-leddene hver for seg.

$$25x^{2} - 18x = (5x)^{2} - 2 \cdot (5x) \cdot \frac{9}{5}$$
$$= (5x)^{2} - 2 \cdot (5x) \cdot \frac{9}{5} + \frac{81}{25} - \frac{81}{25}$$
$$= (5x - \frac{9}{5})^{2} - \frac{81}{25}.$$

Og tilsvarende for y finner vi at

$$9y^2 + 2y = (3y + \frac{1}{3})^2 - \frac{4}{9}.$$

Dermed finner vi at kjeglesnittet kan skrives som

$$(5x - \frac{9}{5})^2 + (3y + \frac{1}{3})^2 = \frac{754}{225}.$$

Vi ser med en gang at dette er en ellipse. Men standardligningen for en ellipse ser ut som $x^2/a^2 + y^2/b^2 = 1$, så må må dele på høyresiden og ta ut konstantene fra leddene. Vi får

$$\frac{\left(x - \frac{9}{25}\right)^2}{\left(\frac{\sqrt{754}}{225}\right)^2} + \frac{\left(y - \frac{1}{9}\right)^2}{\left(\frac{\sqrt{754}}{45}\right)^2} = 0$$

Da er sentrum $(\frac{9}{25}, \frac{1}{9})$, og halvaksene er nevnerne.

Oppgave 2. Finn asymptoter og eksentrisitet til hyperbelen med ligning

 \Diamond

$$9x^2 - 4y^2 - 18x + 4y - 6 = 0.$$

Løsning 2. Det er bare å fullføre kvadrater. Her tar jeg ikke med utregningen. Vi ender opp med

$$\frac{(x-1)^2}{\frac{14}{9}} - \frac{\left(y - \frac{1}{2}\right)^2}{\frac{14}{4}} = 1.$$

Dermed er $a=\sqrt{14}/3$ og $b=\sqrt{14}/2$. Eksentrisiteten er definert som c/a der c tilfredsstiller $a^2+b^2=c^2$. Vi finner at $c=\sqrt{91/18}$. Dermed er eksentrisiteten $e=\sqrt{13}/2$.

Asymptotene er
$$y = \frac{3x}{2} - 1$$
 og $y = -\frac{3x}{2} + 2$.

Oppgave 3. Finn ligningen og symmetriaksene til det geometriske stedet for punkter som har dobbelt så stor avstand til punktet (1,2) som til linja y=5.

Løsning 3. Skriv P = (x, y). Da er betingelsen vår at

$$|(x-1, y-2)| = 2|y-5|.$$

Vi kvadrerer begge sider, og fullfører kvadrater som før. Vi får en hyperbel gitt ved ligningen

$$\frac{(y-6)^2}{4} - \frac{(x-1)^2}{12} = 1.$$

Symmetriaksene blir da gitt ved y = 6 og x = 1. Se Figur 1.

Oppgave 4. Finn brennpunkt og styrelinje for parabelen $y = x^2$. Finn det geometriske stedet for midtpunktet til kordene til parabelen som går gjennom brennpunktet.

Løsning 4. Ved å se i tabellen, eventuelt tenke selv, ser vi at brennpunktet er gitt ved $(0, \frac{1}{4})$ og styrelinja er gitt ved $y = -\frac{1}{4}$.

Vi ønsker å finne et uttrykk for midtpunktet til en korde gjennom brennpunktet slik at vi får alle slike midtpunkter.

La y = ax + b. Vi ønsker at linja y(x) skal gå gjennom brennpunktet til parabelen. Dette er det samme som å kreve at $y(0) = \frac{1}{4} = b$. Dermed er en

Figur 1: Oppgave 3.

generell linje som går gjennom brennpunktet gitt ved $y = ax + \frac{1}{4}$, og vi får alle slike linjer ved å la a variere.

Neste steg er å finne midtpunktet på korden linja definerer. For å finne det, trenger vi skjæringspunktene med linja. Vi setter ligninga for linja inn i $y = x^2$, og får andregradsligningen

$$x^2 - ax - \frac{1}{4} = 0.$$

Her er en generell observasjon: om en andregradsligning $x^2+bx+c=0$ har røttene x_1 og x_2 , så er $x^2+bx+c=(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2=$ 0. Dermed ser vi at $b = -x_1 - x_2$.

I vårt tilfelle ser vi at midtpunktet har x-koordinat $\frac{a}{2}$. Ved å bruke at y = ax + b, får vi at y-koordinaten er gitt ved $\frac{a^2}{2} + \frac{1}{4}$.

Dermed er alle midtpunkter gitt ved

$$\left(\frac{a}{2}, \frac{a^2}{2} + \frac{1}{4}\right)$$

når a varierer. Sett $a' = \frac{a}{2}$. Da blir uttrykket over lik

$$\left(a',2a'^2+\frac{1}{4}\right).$$

Dermed er det geometriske stedet gitt ved ligningen $y = 2x^2 + \frac{1}{4}$. \Diamond

Oppgave 5. La A være et punkt på parabelen $x = y^2$ og la B være det andre punktet på parabelen som har samme x-koordinat som A. La P være skjæringspunktet mellom tangentlinja til parabelen i A og linja gjennom origo og B. Finn ligningen til det geometriske stedet for P når A gjennomløper parabelen.

Løsning 5. La $A=(b^2,b)$ for $b\in\mathbb{R}$. Da er $B=(b^2,-b)$.

Første steg er å finne ligningene for de to linjene. Man kan regne ut at, for eksempel med implisitt derivasjon, at stigningstallet til linja gjennom A er $\frac{1}{2b}$. Dermed finner vi at linja er gitt ved $y = \frac{1}{2b}x + \frac{b}{2}$. Linja gjennom B og origo er gitt ved $y = -\frac{x}{b}$.

Skjæringspunktet mellom disse linjene blir da gitt ved (etter litt regning) $\left(-\frac{b^2}{3}, \frac{b}{3}\right)$. Setter vi $b' = \frac{b}{3}$, får vi at skjæringspunktet kan skrives som $(-3b'^2, b')$, så det geometriske stedet er parabelen gitt ved $x = 3y^2$.

Oppgave 6. La ℓ_1 og ℓ_2 være gitt ved

$$x + 3y + 4 = 0$$
 og $x + 3y - 4 = 0$.

La ℓ være ei linje gjennom origo som skjæren den første linja i A og den andre i B. Trekk en linje gjennom A parallell med y-aksen og gjennom B parallell med x-aksen. Finn det geometriske stedet for skjæringspunktet mellom disse parallellene når l dreier seg om origo.

Løsning 6. Dette er stort sett samme framgangsmåte som forrige oppgave, så jeg skisserer bare en løsning.

Om vi lar linja gjennom origo være definert ved y = ax, finner vi at A og B er gitt ved (henholdsvis):

$$\left(\frac{-4}{1+3a}, \frac{-4a}{1+3a}\right)$$
 og $\left(\frac{4}{1+3a}, \frac{4a}{1+3a}\right)$.

Dermed er de parallelle linjene gitt ved

$$y = \frac{-4a}{1+4a}$$
 og $x = \frac{4}{1+3a}$.

Så skjæringspunktet er

$$P = \left(\frac{4}{1+4a}, \frac{-4a}{1+4a}\right).$$

Setter vi $a' = \frac{4}{1+3a}$, får vi, på samme måte som de andre oppgavene, at det geometriske stedet er gitt ved ligningen $y = \frac{-4+a'}{3}$, som er en linje.

Oppgave 7. En sirkel med sentrum i origo skjærer x-aksen i A = (-r, 0) og B = (r, 0). La M være midtpunktet på normalen fra et punkt P på sirkelen på x-aksen. Finn det geometriske stedet for skjæringspunktet mellom AP og BM når P beveger seg på sirkelen.

Løsning 7. Se Figur 2. Igjen: jeg skisserer løsningen, og lar noen andre gjøre all regningen. Første steg er å finne koordinatene til alle punktene. Om P = (x, y), så er $M = (x, \frac{1}{2}y)$.

Man finner så ligningen for linja gjennom (r,0) og $(x,\frac{1}{2}y)$. Og også ligningen for linja mellom (-r,0) og (x,y). Man regner så ut skjæringspunktet mellom disse.

Her er det viktig å gjøre ting sakte og oversiktlig, for det blir fort ganske stygge utregninger.

Man finner så at S ser ut som

$$\left(r\frac{3x-1}{3-x}, r\frac{2y}{3-x}\right).$$

Ved å kvadrere x-koordinaten og y-koordinaten og legge sammen, og å bruke at $x^2+y^2=r^2$, kan dette skrives om til ligningen for en ellipse. Vi skal ende opp med en ellipse med ligning $x^2+\frac{y^2}{1/2}=r^2$.

Figur 2: Figur 2.