Boosting

Adrian Barbu

Boosting – Combining Classifiers

- Given a set of "weak" classifiers
 - Aimed at solving the same problem
 - Different
 - Algorithm types
 - Parameters
 - Data types
 - Training sets
 - Sub-problems
- Combine them into a "strong" classifier
 - More powerful than any of them

Early Methods

- Boosting by filtering (Schapire 1990)
 - Run weak learner on filtered sample sets (more and more difficult)
 - Combine weak hypotheses
 - Requires knowledge on the performance of weak learner
- Boosting by majority (Freund 1995)
 - Run weak learner on weighted example set
 - Combine weak hypotheses linearly
 - Requires knowledge on the performance of weak learner
- Bagging (Breiman 1996)
 - Train weak learner on bootstrap replicates of the training set
 - Average weak hypotheses or majority voting
 - Similar to Random Forest (what is the difference?)
 - Reduces variance

Weak Classifiers

- Component classifiers
 - Output $y=\pm 1$
 - Based on one single feature x_k
 - Decision stump (cut down decision tree)

$$h(x,\theta) = \operatorname{sign}(wx_k + b), \quad \theta = (k, w, b)$$

Should be better than random

Combining Weak Classifiers

Weighted Majority Voting

classify(x) = sign(h(x))

$$h(x) = \alpha_1 h(x, \theta_1) + ... + \alpha_m h(x, \theta_m)$$

- ssues:
 - Criterion that is optimizing (loss function)
 - How to find best weak classifier combination and weights?

Measuring Error

Loss Function:

$$\lambda(y, h(\mathbf{x}))$$

Generalization Error:

$$L(h) = E[\lambda(y, h(\mathbf{x}))]$$

- Want to find h to minimize L(h)
 - Don't know the true distribution that generated the data
- Minimize the sample average (empirical error) instead:

$$\widehat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, h(\mathbf{x}_i))$$

AdaBoost Loss

Exponential Loss

$$\lambda(y, h(\mathbf{x})) = \exp(-yh(x))$$

Empirical Error is:

$$\begin{split} \hat{L}(h) &= \frac{1}{N} \sum_{i=1}^{N} \exp[-y_i \sum_{k=1}^{m} \alpha_k h(\mathbf{x}_i, \theta_k)] \\ &= \frac{1}{N} \sum_{i=1}^{N} \exp[-y_i \sum_{k=1}^{m-1} \alpha_k h(\mathbf{x}_i, \theta_k) - y_i \alpha_m h(\mathbf{x}_i, \theta_m)] \\ &= \frac{1}{N} \sum_{i=1}^{N} \exp[-y_i \sum_{k=1}^{m-1} \alpha_k h(\mathbf{x}_i, \theta_k)] \exp[-y_i \alpha_m h(\mathbf{x}_i, \theta_m)] \\ &= \frac{1}{N} \sum_{i=1}^{N} W_i^{m-1} \exp[-y_i \alpha_m h(\mathbf{x}_i, \theta_m)] \end{split}$$

- After m-1 iterations, each sample has a weight W_i^{m-1}
- Correctly classified samples have small weight
- Error is a weighted loss based on the last classifier

Linearization

We can use a linear approximation when α is small

$$\exp[-y_i\alpha_m h(\mathbf{x}_i, \theta_m)] \approx 1 - y_i\alpha_m h(\mathbf{x}_i, \theta_m)$$

We get

$$\widehat{L}(h) \approx \frac{1}{N} \sum_{i=1}^{N} W_i^{m-1} [1 - y_i \alpha_m h(\mathbf{x}_i, \theta_m)]$$

$$= \frac{1}{N} [\sum_{i=1}^{N} W_i^{m-1} - \alpha_m \sum_{i=1}^{N} W_i^{m-1} y_i h(\mathbf{x}_i, \theta_m)]$$

- One way to minimize $\widehat{L}(h)$ at stage m

 1. Maximize $\sum_{i=1}^{N} W_i^{m-1} y_i h(\mathbf{x}_i, \theta_m)$ 2. Find α_m that minimizes the original loss

$$\sum_{i=1}^{N} W_i^{m-1} \exp[-y_i \alpha_m h(\mathbf{x}_i, \theta_m)]$$

This is Boosting

AdaBoost Training

- Start with N training samples (\mathbf{x}_i, y_i)
- Assign equal weights to all positives and to all negatives

$$W_i^0 = \frac{0.5}{|\{j, y_j = y_i\}|}$$

- Repeat m times:
 - 1. At step k find θ_k for which

$$\epsilon_k(\theta_k) = 0.5 - \frac{1}{2} \sum_{i=1}^{N} W_i^{k-1} y_i h(\mathbf{x}_i, \theta_k) = \sum_{i=1}^{N} W_i^{k-1} I[y_i \neq h(\mathbf{x}_i, \theta_k)]$$
 is minimum.

- 2. Compute the k-th classifier weight $\alpha_k = 0.5 \ln \frac{1 \epsilon_k}{\epsilon_k}$
- 3. Update the weights $W_i^k = W_i^{k-1} \exp[-\alpha_k y_i h(\mathbf{x}_i, \theta_k)]$
 - and re-normalize them
 - Weights of all positives must sum to 0.5, same for negatives

AdaBoost Classification

Given a feature vector x

classify(x) = sign(h(x))

$$h(x) = \alpha_1 h(x, \theta_1) + ... + \alpha_m h(x, \theta_m)$$

Can also use a normalized h

$$h(\mathbf{x}) = \frac{\alpha_1 h(\mathbf{x}, \theta_1) + \dots + \alpha_m h(\mathbf{x}, \theta_m)}{\alpha_1 + \dots + \alpha_m}$$

AdaBoost Summary

- Input:
 - N training samples $T_N = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$
 - a weak base learner $h = h(\mathbf{x}, \theta)$
- Initialize: equal weights to all positives and to all negatives $W_i^0 = \frac{0.5}{|\{j, y_i = y_i\}|}$
- Repeat for k = 1...m:
 - 1. Train base learner using the samples and weights W_i^{k-1} obtain weak classifier $h(\mathbf{x}, \theta_k)$
 - 2. Compute weighted error ϵ_k
 - 3. Compute classifier weight $lpha_k$
 - 4. Update sample weights for next iteration W_i^k
- Output: final classifier as a linear combination

$$h(x) = \alpha_1 h(x, \theta_1) + \dots + \alpha_m h(x, \theta_m)$$

Example

Example (Continued)

Example (Continued)

Base Learners

- Weak learners used in practice:
 - Decision stumps (axis parallel splits)
 - Histogram based weak classifier
 - Decision trees (e.g. C4.5 by Quinlan 1996)
 - Multi-layer neural networks
 - . . .

- Base learners need to train on weighted samples
 - Modify them to use weights along with the samples
 - Obtain representative training set by sampling (with replacement) according to the distribution defined by the weights

Histogram-Based Weak Classifier

Decision stump $\theta = (k, w, b), w = \pm 1$

$$h(\mathbf{x}, \theta) = \begin{cases} 1 & \text{if } wx_k > b \\ -1 & \text{else} \end{cases}$$

Histogram classifier

$$\theta = (k, b_1, ..., b_n, s_1, ..., s_n), s_i = \pm 1$$

$$h(\mathbf{x},\theta) = \begin{cases} s_1 & \text{if } x_k < b_2 \\ \dots \\ s_i & \text{if } b_i \leq x_k < b_{i+1} \\ \dots \\ s_n & \text{if } b_n \leq x_k \end{cases}$$

Boosting Performance

```
pos=20000, neg=20000, nWeak=10, nFeatures=100511
i=0 best=21485 e=0.088 5,H ,4,3,4,34,8
i=1 best=21547 e=0.206 5,H ,4,1,3,38,8
i=2 best=49332 e=0.278 5,H ,10,7,6,30,6
i=3 best=21518 e=0.288 5,H ,4,1,4,36,8
i=4 best=37010 e=0.329 5,H ,7,13,7,16,4
i=5 best=5848 e=0.334 5,H ,0,3,6,28,4
i=6 best=21105 e=0.356 5,H ,4,7,2,22,12
i=7 best=21524 e=0.359 5,H ,4,3,3,36,8
i=8 best=91880 e=0.368 5,H ,20,7,4,26,4
i=9 best=50299 e=0.361 5,H ,11,15,5,8,3
1 detection rate=0.9820 false positive=0.1212
```


- The misclassification error of the best weak classifier at the last Boosting stage slowly grows over time
- Magic!
 - The training and testing errors are surprisingly small!
- Even after the training error goes to zero, boosting iterations can still improve the generalization error!!

Training Margin

The margin shows how much agreement is between the weak classifiers

$$\mathsf{margin}_h(\mathbf{x}_i, y_i) = y_i \frac{\alpha_1 h(\mathbf{x}_i, \theta_1) + \ldots + \alpha_m h(\mathbf{x}_i, \theta_m)}{\alpha_1 + \ldots + \alpha_m}$$

- \blacksquare margin $\in [-1, 1]$, negative for misclassified samples
- As training progresses most margins are close to 1

Application: Face Detection

- Viola-Jones, 2004
- Face Detection
 - Detect horizontal faces
 - Three parameters:
 - Position (x,y)
 - Scale s
 - Need to be fast: 0.2 sec/ image
 - Classifier inside a 24x24 pixel window
 - Translated at all positions
 - Rescaled at scales 1,2,...
 - Slow if applied at all locations and all scales

Integral Image

Integral Image

- Value at (x,y)= sum of intensities of all pixels in the rectangle $(0,0) \rightarrow (x,y)$
- Sum of pixels of $D=J_4+J_1-J_2-J_3$
- Constant time
 - Independent of the size of D
- Can have integral image of square intensities
 - Obtain variance inside rectangles in constant time

Integral Image J

Sum of pixels of $D=J_4+J_1-J_2-J_3$

Haar Features

- Haar Features
 - Sum of pixels in white rectangles-sum of pixels in black rectangles
 - Rectangles relative the 24x24 pixel window
 - Many combinations of rectangles
 - Relative locations
 - Sizes
 - Type of combinations
 - Brightness constancy:
 - Sum of positive (white) rectangles= Sum of negative (black) rectangles
 - Can easily obtain >100k features

Viola, Jones, 2004

Cascade of AdaBoost Classifiers

- Problems with using a single classifier
 - Need many (~200) weak classifiers for good performance
 - Slow if applied at all locations and scales
- Cascade
 - Very few weak classifiers in first levels
 - Discards many windows quickly

Boosting Cascade

Training the Cascade

- 38 cascade Levels
- 5000 positive samples
 - Aligned and rescaled to 24x24 pixels
- 5000 negatives at each level
 - Random but have passed through all previous cascade levels
 - More difficult to differentiate from positives as level increases
- Level 1:
 - 2 weak classifiers
 - Detection ~100%, false alarm ~50%
- Level 2:
 - 10 weak classifiers
 - Detection ~100%, false alarm ~20%
- Level 3:
 - 25 weak classifiers
- ...

Face Detection Results

- MIT+ CMU frontal face dataset
 - 130 images with 507 faces
 - Detection rate vs number of false positives

Boosting – Pros and Cons

Pros:

- Simple to implement
- Can handle large datasets:
 - e.g. 40k samples x 100k features
- Fast Learning
- Feature selection → Fast Classification

Cons:

- Greedy feature selection might be suboptimal
- For a small number of features, SVM is better

Training Error Bound

- Remember the training error at stage k is ϵ_k
- $\blacksquare \quad \text{Let } \gamma_k = 0.5 \epsilon_k$
- Then the overall training error is bounded by

$$Error \le \exp(-2\sum_{k=1}^m \gamma_k^2)$$

- If all $\epsilon_k < 0.5 \epsilon$
- Then

$$Error \le \exp(-2m\epsilon^2) \to 0$$

Training error goes exponentially to zero

LogitBoost

Logistic Loss

$$\lambda(y, h(\mathbf{x})) = -\log(1 + e^{-2yh(\mathbf{x})})$$

Probability

$$p(y = 1|\mathbf{x}) = \frac{e^{h(\mathbf{x})}}{e^{h(\mathbf{x})} + e^{-h(\mathbf{x})}} = \frac{1}{1 + e^{-2h(\mathbf{x})}}$$

Like logistic regression but h is not linear

LogitBoost Training

- Start with N training samples (\mathbf{x}_i, y_i)
- Initialize $h(\mathbf{x}) = 0$
- Assign equal weights to all positives and to all negatives
- Repeat m times:

1. Compute
$$p(\mathbf{x}_i) = \frac{e^{h(\mathbf{x}_i)}}{e^{h(\mathbf{x}_i)} + e^{-h(\mathbf{x}_i)}}$$

$$w_i = p(\mathbf{x}_i)(1 - p(\mathbf{x}_i))$$

$$z_i = \frac{y_i - p(\mathbf{x}_i)}{p(\mathbf{x}_i)(1 - p(\mathbf{x}_i))}$$

- 2. Find $h(\mathbf{x}, \theta_k)$ as the best weighted regression of z_i on x_i with weights w_i
- 3. Update

$$h(\mathbf{x}) \leftarrow h(\mathbf{x}) + \frac{1}{2}h(\mathbf{x}, \theta_k)$$

Finding $h(\mathbf{x}, \theta_k)$

Find $h(\mathbf{x}, \theta_k)$ locally constant

$$\theta_k = (j, b_1, ..., b_n, v_1, ..., v_n)$$

$$h(\mathbf{x}, \theta_k) = \begin{cases} v_1 & \text{if } x_k < b_2 \\ ... \\ v_i & \text{if } b_i \le x_k < b_{i+1} \\ ... \\ v_n & \text{if } b_n \le x_k \end{cases}$$

- For each feature j
 - Divide the range of values of feature j into n bin's
 - For each bin b, v_i is the weighted mean of z_i that fall into that bin

$$v_j = \frac{\sum_{i, x_i^j \in b} w_i z_i}{\sum_{i, x_i^j \in b} w_i}$$

- Find the j with smallest MSE
 - Better yet, find j that decreases loss most
- Could also use splines

Multi-Class LogitBoost Training (C classes)

- Start with N training samples (\mathbf{x}_i, y_i)
- Initialize $h_c(\mathbf{x}) = 0, c = 1, ..., C$
- Assign equal weights w_{ic} to all positives and to all negatives
- Repeat m times:

1. Compute
$$p_c(\mathbf{x}_i) = \frac{e^{h_c(\mathbf{x}_i)}}{\sum_{j=1}^C e^{h_j(\mathbf{x}_i)}}$$

$$w_{ic} = p_c(\mathbf{x}_i)(1 - p_c(\mathbf{x}_i))$$

$$z_{ic} = \frac{y_i - p_c(\mathbf{x}_i)}{p_c(\mathbf{x}_i)(1 - p_c(\mathbf{x}_i))}$$

- 2. Find $h(\mathbf{x}, \theta_{kc})$ as the best weighted regression of z_{ic} on x_i with weights wic
- Change $h(\mathbf{x}, \theta_{kc}) \leftarrow \frac{C-1}{C} (h(\mathbf{x}, \theta_{kc}) \frac{1}{C} \sum_{j=1}^{C} h(\mathbf{x}, \theta_{kj}))$ Update $h_c(\mathbf{x}) \leftarrow h_c(\mathbf{x}) + \frac{1}{2} h(\mathbf{x}, \theta_{kc})$

$$h_c(\mathbf{x}) \leftarrow h_c(\mathbf{x}) + \frac{1}{2}h(\mathbf{x}, \theta_{kc})$$

Multi-Class LogitBoost Classification

Observe

$$\sum_{c=1}^{C} h_c(\mathbf{x}) = 0, \ \forall \mathbf{x}$$

- Given a feature vector x
 - Compute all $h_c(\mathbf{x}), c = 1, ..., C$
 - Obtain

classify(x) =
$$\underset{c}{\operatorname{arg}} \max_{c}(h_c(\mathbf{x}))$$

Real AdaBoost

- Start with N training samples (\mathbf{x}_i, y_i)
- Assign equal weights to all positives and to all negatives

$$W_i^0 = \frac{0.5}{|\{j, y_j = y_i\}|}$$

- Repeat m times:
 - 1. Find the class probability estimate on x_i with weights w_i $p(\mathbf{x}, \theta_k) = P_W(y = 1|\mathbf{x}) \in [0, 1]$
 - Set $h(\mathbf{x}, \theta_k) = \frac{1}{2} \log \frac{p(\mathbf{x}, \theta_k)}{1 p(\mathbf{x}, \theta_k)}$
 - 3. Update the classifier $h(\mathbf{x}) \leftarrow h(\mathbf{x}) + h(\mathbf{x}, \theta_k)$
 - 4. Update the weights $W_i^k = W_i^{k-1} e^{-y_i h(\mathbf{x}_i, \theta_k)}$ and re-normalize them

Gentle AdaBoost

- Start with N training samples (\mathbf{x}_i, y_i)
- Assign equal weights to all positives and to all negatives

$$W_i^0 = \frac{0.5}{|\{j, y_j = y_i\}|}$$

- Repeat m times:
 - 1. Find $h(\mathbf{x}, \theta_k)$ as the best weighted regression of y_i on x_i with weights w_i
 - 2. Update the classifier

$$h(\mathbf{x}) \leftarrow h(\mathbf{x}) + \frac{1}{2}h(\mathbf{x}, \theta_k)$$

3. Update the weights

$$W_i^k = W_i^{k-1} e^{-y_i h(\mathbf{x}_i, \theta_k)}$$

and re-normalize them

Dataset:

- Classes are between concentric hyper-spheres in 10D space
- Additive boundary $\sum_{i} f_i(\mathbf{x}) = b$

- Complex boundary with overlapping classes
 - Non-additive boundary $\log \left(\frac{\Pr[y=1 \mid x]}{\Pr[y=-1 \mid x]} \right) = 10 \sum_{j=1}^{6} x_j \left(1 + \sum_{l=1}^{6} (-1)^l x_l \right)$
- Bayes error 0.046

- Trees are better than stumps when the boundary is not "additive"
- They can capture some feature interactions

Real-Data Comparison

Method	Terminal	Iterations				Fraction
	Nodes	20	50	100	200	
Satimage	CART error					
LogitBoost	2	.140	.120	.112	.102	
Real AdaBoost	2	.148	.126	.117	.119	
Gentle AdaBoost	2	.148	.129	.119	.119	
Discrete AdaBoost	2	.174	.156	.140	.128	
LogitBoost	8	.096	.095	.092	.088	
Real AdaBoost	8	.105	.102	.092	.091	
Gentle AdaBoost	8	.106	.103	.095	.089	
Discrete AdaBoost	8	.122	.107	.100	.099	
Letter	CART error					
LogitBoost	2	.250	.182	.159	.145	.06
Real AdaBoost	2	.244	.181	.160	.150	.12
Gentle AdaBoost	2	.246	.187	.157	.145	.14
Discrete AdaBoost	2	.310	.226	.196	.185	.18
LogitBoost	8	.075	.047	.036	.033	.03
Real AdaBoost	8	.068	.041	.033	.032	.03
Gentle AdaBoost	8	.068	.040	.030	.028	.03
Discrete AdaBoost	8	.080	.045	.035	.029	.03

CART=Decision Tree

Real-Data Comparison

- 27 Benchmark problems
- Test error C4.5 vs. test error boosting

	# examples		#	# attributes		missing
name	train	test	classes	disc.	cont.	values
soybean-small	47	-	4	35	-	-
labor	57	-	2	8	8	×
promoters	106	-	2	57	-	-
iris	150	-	3	-	4	-
hepatitis	155	-	2	13	6	×
sonar	208	-	2	-	60	-
glass	214	-	7	-	9	-
audiology.stand	226	-	24	69	-	×
cleve	303	-	2	7	6	×
soybean-large	307	376	19	35	-	×
ionosphere	351	-	2	-	34	-
house-votes-84	435	-	2	16	-	×
votes1	435	-	2	15	-	×
crx	690	-	2	9	6	×
breast-cancer-w	699	-	2	-	9	×
pima-indians-di	768	-	2	-	8	-
vehicle	846	-	4	-	18	-
vowel	528	462	11	-	10	-
german	1000	-	2	13	7	-
segmentation	2310	-	7	-	19	-
hypothyroid	3163	-	2	18	7	×
sick-euthyroid	3163	-	2	18	7	×
splice	3190	-	3	60	-	-
kr-vs-kp	3196	-	2	36	-	-
satimage	4435	2000	6	-	36	-
agaricus-lepiot	8124	-	2	22	-	-
letter-recognit	16000	4000	26	-	16	-

Text Categorization

- 2 Text Datasets:
 - Reuters newswire articles
 - AP newswire articles

Weight Trimming

- Most weights decrease after a number of boosting iterations
- Idea:
 - Ignore samples with very small weight when training
 - Recompute all weights each time
 - Use LogitBoost

Overfitting

- 2 Isotropic 10D Gaussians
 - same mean, different variances
- Bayes error 0.25

Conclusion

- Boosting is a powerful method for classification
- Advantages:
 - Easy to implement
 - Fast to train
 - Can handle large training sets
 - Offers feature selection
 - Hard to overfit
 - Fast classification when using a cascaded approach

References

- Robert E. Schapire. The strength of weak learnability. *Machine Learning*, 5(2):197–227, 1990
- Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256–285, 1995
- L Breiman Bagging Predictors *Machine Learning*, 1996
- J. R. Quinlan. Bagging, boosting, and C4.5. In *Proceedings of the Thirteenth National Conference on Artificial Intelligence*, pp. 725–730.
 1996
- J Friedman, T Hastie, R Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 2000
- Robert E. Schapire. The Boosting Approach to Machine Learning, MSRI Workshop on Nonlinear Estimation and Classification, 2002
- P Viola, MJ Jones. Robust Real-Time Face Detection International Journal of Computer Vision, 2004