Quiz 8-2

- 1. Consider the language $L = \{a^i b^j a^i b^j | i, j \ge 0\}$. Consider the following "proof" that L does not satisfies the pumping lemma. Let p be the pumping length. Choose $z = a^p b a^p b$. Consider a division of z, where $u = a^i$, $v = a^j$, $w = a^k$, $x = a^\ell b$ and $y = a^p b$. Clearly $uv^0 wx^0 y$ is not in L.
 - (A) This is an incorrect proof because all possible pumping lengths have not been considered.
 - (B) This is an incorrect proof because all divisions of z have not been considered.
 - (C) This is an incorrect proof because all possible z have not been considered.
 - (D) This is a correct proof.
- 2. Consider the language $L = \{a^i b^j a^i b^j \mid i, j \geq 0\}$. Consider the following "proof" that L satisfies the pumping lemma. Let p be the pumping length. Choose $z = a^p b a^p b$. Consider a division of z, where $u = a^{p-1}$, v = a, w = b, x = a and $y = a^{p-1}b$. Clearly $uv^i wx^i y$ is in L for every i.
 - (A) This is an incorrect proof because all possible pumping lengths have not been considered.
 - (B) This is an incorrect proof because all divisions of z have not been considered.
 - (C) This is an incorrect proof because all possible z have not been considered.
 - (D) This is a correct proof.
- 3. Consider the language $L = \{a^i b^j c^k d^\ell \mid \text{either } i = 0 \text{ or } j = k = \ell\}$. Consider the following "proof" that L satisfies the pumping lemma. Take p = 1. Let $z \in L$ be a string of length at least p. Take $u = \epsilon$, v to be the first symbol of z, $w = x = \epsilon$, and take y to be the rest of the string. Now $uv^i wx^i y \in L$ for every $i \geq 0$.
 - (A) This is an incorrect proof because all possible pumping lengths have not been considered.
 - (B) This is an incorrect proof because all divisions of z have not been considered.
 - (C) This is an incorrect proof because all possible z have not been considered.
 - (D) This is a correct proof.
- 4. Here is a faulty proof showing that $L = \{a^n b^n c^n \mid n \geq 0\}$ is context-free. Consider the grammar $G = (\{S\}, \{a, b, c\}, R, S)$ whose rules R are given as

$$S \rightarrow SaSbScS \mid SaScSbS \mid SbSaScS \mid SbScSaS \mid ScSaSbS \mid ScSbSaS \mid SS \mid \epsilon$$

The proof consists of the following sequence of assertions. Which of the assertions in the proof is incorrect?

- (A) $L(G) = L_{eq}$ where $L_{eq} = \{w \mid w \text{ has an equal number of } as, bs, \text{ and } cs\}$
- (B) $\mathbf{L}(a^*b^*c^*)$ is regular.
- (C) $L_{eq} \cap \mathbf{L}(a^*b^*c^*) = \{a^nb^nc^n \mid n \ge 0\} = L$
- (D) L(G) is context-free, and context-free languages are closed under intersection with regular languages. Therefore $L(G) \cap L(a^*b^*c^*)$ is context-free.