Categories in Context - Ch. 2 Solutions

Emily Pillmore

October 17, 2020

1 Representable Functors

problem 1.1. (2.1.i) For each of the three functors

$$\mathbb{1} \xrightarrow{\underbrace{-1}_{1}}^{0} \mathbb{2}$$

Between the categories 1 and 2 describe the corresponding natural transformations between the covariant functors $Cat \Rightarrow 2$ represented by the categories 1 and 2.

proof (2.1.i). Consider the covariant represented functors $\mathsf{Cat}(\mathbb{1},-), \mathsf{Cat}(2,-) : \mathsf{Cat} \to \mathsf{Set}$ and let $F : \mathsf{C} \to \mathsf{D}$. Consider the following diagram for the components of the transformations:

$$\begin{array}{c|c} \mathsf{Cat}(\mathbb{1},\mathsf{C}) & \xleftarrow{\longleftarrow} \overset{\mathsf{Cat}(0,\mathsf{C})}{\longleftarrow} & \mathsf{Cat}(2,\mathsf{C}) \\ \downarrow & & & \mathsf{Cat}(1,\mathsf{C}) & \to \\ \mathsf{Cat}(\mathbb{1},F) & & & & \mathsf{Cat}(2,F) \\ \mathsf{Cat}(\mathbb{1},D) & \xleftarrow{\longleftarrow} \overset{\mathsf{Cat}(0,\mathsf{D})}{\longleftarrow} & \to & \mathsf{Cat}(2,\mathsf{D}) \\ & & & & \mathsf{Cat}(1,\mathsf{D}) & \xrightarrow{\longleftarrow} & \mathsf{Cat}(2,\mathsf{D}) \end{array}$$

The transformations may be described as follows:

- Cat(0, -) maps * to the 0 object of 2, and given any functor $F: 2 \to C$, will map the domain of the unique nontrivial arrow $f: 0 \to 1$ in 2 to the domain of the arrow $Ff: F0 \to F1$.
- Likewise, for Cat(1, −), given any functor, the transformation will choose a codomain for the
 unique arrow in 2, and given any functor F: 2 → C, will correspond to the codomain object
 of the chosen arrow in C.
- The transformation Cat(!, -) takes any choice of arrow in $2 \to C$ and maps it to an object of C.

problem 1.2. (2.1.ii)Prove that if $F: C \to Set$ is representable, then F preserves monomorphisms, i.e., sends every monomorphism in C to an injective function. Use the contrapositive to find a covariant set-valued functor defined on your favorite concrete category which is not representable.

Proof. Let $F: \mathsf{C} \to \mathsf{Set}$ be a representable functor with representing object $c \in \mathsf{C}$, and let $f: x \rightarrowtail y$ be a monomorphism in C . Consider the set function $Ff: Fx \to Fy$. Since F is representable it is naturally isomorphic to $\mathsf{C}(c,-)$, and Ff is then isomorphic to a set function $\mathsf{C}(c,f): \mathsf{C}(c,x) \to \mathsf{C}(c,y)$. Consider the parallel morphisms $h, k: w \rightrightarrows x$. Since f is monic, we have that fh = fk implies that h = k. Hence, $\mathsf{C}(c,fh) = \mathsf{C}(c,fk)$ implies that $\mathsf{C}(c,k) = \mathsf{C}(c,h)$. Let $w,w' \in \mathsf{C}(c,x)$. Then, we recover the usual statement for set injection: for any two w,w', $f1_w = f1_{w'}$ implies that $1_w = 1_{w'}$, and therefore w = w'. Hence, we recover the usual notion of injective function in set: $fw = fw' \Rightarrow w = w'$. Therefore representable functors preserve monomorphisms.

For the contrapositive, let the functor $\pi_0 : \mathsf{Top} \to \mathsf{Set}$ be the functor taking a topological space to its set of connected components. Then the monomorphism $\{0,1\} \to [0,1]$ is mapped to $\{*\}$.

problem 1.3. (2.1.iii) Suppose $F: C \to Set$ is equivalent to $G: D \to Set$ in the sense that there is an equivalence of categories $H: C \to D$ so that GH and F are naturally isomorphic.

- (i) If G is representable, then is F representable?
- (ii) If F is representable, then is G representable?

Proof. Let G be representable and let $K: D \to C$ be the inverse equivalence to H. Note now that we have the following:

$$F \cong GH$$

$$\cong \mathsf{D}(d,-)H \qquad \text{(representability of } G\text{)}$$

$$\cong \mathsf{D}(d,H-)$$

$$\cong \mathsf{D}(HKd,H-) \qquad \text{(equivalence } HK\cong 1_{\mathsf{D}}\text{)}$$

$$\cong \mathsf{C}(Kd,-) \qquad \text{(H is f.f. due to equivalence)}$$

$$\cong \mathsf{C}(c,-) \qquad \text{(K is e.s.o due to equivalence)}$$

Hence, F is representable. Verbatim proof for the opposite direction.

problem 1.4. (2.1.iv) A functor F defines a **subfunctor** of G if there is a natural transformation $\alpha: F \Rightarrow G$ whose components are monomorphisms. In the case of $G: \mathsf{C}^{op} \to \mathsf{Set}$, a subfunctor is given by a collection of subsets $Fc \subset Gc$ so that each $Gf: Gc \to Gc'$ restricts to a function $Ff: Fc \to Fc'$. Characterize those subsets that assemble into a subfunctor of the representable functor $\mathsf{C}(-,c)$.

Proof. For the functor F to be a subfunctor of $\mathsf{C}(-,c)$, we must build a natural transformation $\alpha: F \Rightarrow \mathsf{C}(-,c)$ such that, given $f: d' \to d \in \mathsf{C}$, the components $\alpha_d: Fd \to \mathsf{C}(d,c)$ restrict Fd and widen Fd' when precomposed with f. Thus, to completely characterize the subsets of a subfunctor,

we need that the family $\bigcup_d Fd$ is closed precomposition by arbitrary morphisms $d'\to d$ so that we have a sieve on d.