YOLACT: Real-time Instance Segmentation

Nguyễn Tấn Phúc

University of Information Technology HCMC, Vietnam

What?

We introduce an instance segmentation algorithm, in which we have:

- Proposed a innovative one-stage instance segmentation algorithm to delineate and identify objects within an image.
- Proposed Fast NMS to trade a little performance off for speed.
- Compare our model with competitive SOTA methods.

Why?

- Instance segmentation is necessary as it provides detailed information about individual objects within an image. This fine-grained segmentation is essential for various applications, such as object tracking, scene understanding, and even medical imaging.
- Prevailing two-stage methods have focus primarily on performance over speed. One-stage methods still have been far from real-time.

Overview

Description

1. Instance Segmentation

- YOLACT breaks up instance segmentation (see Fig. 1) into two parallel tasks:
 - (1) generating a dictionary of nonlocal prototype masks over the entire image.
 - (2) predicting a set of linear combination coefficients per instance.
- Then producing a full-image instance segmentation from these two components: for each instance, linearly combine the prototypes using the corresponding predicted coefficients and then crop with a predicted bounding box.

Figure 1. Input & Output illustration

2. Prototype Generation

 Uses an Fully Convolution Network to produce a set of image-sized "prototype masks" that do not depend on any one instance (see Fig. 2).

Figure 2. Prototype Generation

3. Mask Coefficients

 Adds an extra head to the object detection branch (RetinaNet backbone with ResNet-101 and FPN) to predict a vector of "mask coefficients" for each anchor that encode an instance's representation in the prototype space (see Fig. 3)

Figure 3. Mask coefficients

4. Mask Assembly

 For each instance that survives NMS, we construct a mask for that instance by linearly combining the work of those two stages above (see Fig. 4).

Figure 4. Mask assembly

