

D-ITET, D-INFK, D-MATH (RW)

Probeprüfung Analysis 3

401-0353-00L

Nach name

XX

Vorname

Legi-Nr.

XX-000-000

Prüfungs-Nr.

000

Bitte noch nicht umblättern!

Beachten Sie die Hinweise auf dem Antwortheft.

1. Boxaufgaben

Instruktionen für diesen Teil der Prüfung:

- Tragen Sie Ihre Lösung zu jeder Aufgabe in die untere Tabelle ein.
- Tragen Sie jeweils **nur das Endresultat** ein. Nur dieses wird bewertet. Sie brauchen nichts zu begründen.
- Text ausserhalb der Tabelle wird bei der Korrektur nicht berücksichtigt.

Antwort	Punktzahl
(i)	
(ii)	
(iii)	
(i)	
(ii)	
(i)	
(ii)	
	(ii) (iii) (i) (ii)

1.A1 [2 Punkte] (Eigenschaften einer PDG) Wir betrachten die PDG (partielle Differentialgleichung)

$$y - xu_{yy}(x, y) + e^y u_{xxy}(x, y) = 0.$$

- (i) Geben Sie die Ordnung der PDG an.
- (ii) Geben Sie an, ob die PDG linear ist.
- (iii) Falls die PDG linear ist, geben Sie dann an, ob sie homogen oder inhomogen ist.
- **1.A2** [2 Punkte] (Typ einer PDG) Wir schreiben die Standardkoordinaten in \mathbb{R}^2 als x_1, x_2 . (Wir schreiben also einen Punkt in \mathbb{R}^2 als (x_1, x_2) . Die Standardkoordinaten sind kartesische Koordinaten.) Wir betrachten die folgende PDG für eine Funktion u auf \mathbb{R}^2 :

$$u_{x_2x_2} - \cos(x_2)u_{x_1} = x_1^2 - 3u_{x_1x_1} - 2u_{x_1x_2}.$$

(i) Ist diese PDG elliptisch?

- (ii) Ist sie hyperbolisch?
- 1.A3 [2 Punkte] (Anfangswertproblem, Abhängigkeitsgebiet) Wir betrachten die Lösung $u:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ des Problems

$$u_{tt}(t,x) = 4u_{xx}(t,x),$$
 für alle $t > 0, x \in \mathbb{R},$

$$u(0,x) = 0,$$
 für alle $x \in \mathbb{R},$

$$u_t(0,x) = 0,$$
 für alle $x \le 0,$

$$u_t(0,x) = e^{(x^2)} - x^2 - 1,$$
 für alle $x > 0.$

- (i) Bestimmen Sie das Abhängigkeitsgebiet von (t, x) := (1, -3).
- (ii) Bestimmen Sie u(t=1, x=-3).
- 1.A4 [2 Punkte] (zwei Integrale) Wir definieren die Funktion

$$g: \mathbb{R} \to \mathbb{R}, \qquad g(y) := \int_{-\infty}^{\infty} e^{-x^4} \sin(x) e^{-iyx} dx.$$

Bestimmen Sie die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \int_{-\infty}^{\infty} g(y)e^{ixy}dy.$$

1.A5 [2 Punkte] (Fouriertransformierte) Wir betrachten eine stückweise stetige, absolut integrierbare Funktion $u : \mathbb{R} \to \mathbb{R}$. Wir definieren

$$v: \mathbb{R} \to \mathbb{R}, \qquad v(x) := u(x-1).$$

Drücken Sie die Fouriertransformierte von v mittels der Fouriertransformierten von u aus.

1.A6 [3 Punkte] (asymptotisches Verhalten einer Lösung) Wir definieren $v : \mathbb{R} \to \mathbb{R}$ als die Zickzackfunktion, d. h. die 2π -periodische Fortsetzung der Funktion

$$[-\pi,\pi)\ni x\mapsto |x|.$$

Wir schreiben die Standardkoordinaten in \mathbb{R}^2 als t,x und betrachten die Lösung $u:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ des Problems

$$u_t = u_{xx},$$

 $u(0,x) = v(x), \quad \forall x \in \mathbb{R},$
 $u(t,x+2\pi) = u(t,x), \quad \forall t \ge 0, x \in \mathbb{R}.$

Konvergiert u(t,0) für $t\to\infty$ gegen eine reelle Zahl? Falls ja, gegen welche?

2. Multiple-Choice-Aufgaben

2.MC1 [2 Punkte] (iteriertes Integral) Seien $f, g : \mathbb{R} \to \mathbb{C}$ stückweise stetige absolut integrierbare Funktionen, sodass f beschränkt ist. Wodurch ist das folgende iterierte Integral gegeben?

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x - y) g(y) \, dy \right) e^{-i\xi x} dx$$

(A)
$$\left(\int_{-\infty}^{\infty} f(x)e^{-i\xi x}dx\right)\left(\int_{-\infty}^{\infty} g(x)e^{-i\xi x}dx\right)$$

- (B) $\widehat{fg}(\xi)$
- (C) $(\hat{f} * \hat{g})(\xi)$, wobei * die Faltung zweier Funktionen bezeichnet
- (D) durch keinen der obigen Ausdrücke

2.MC2 [3 Punkte] (Anfangswertproblem für partielle Differentialgleichung) Wir definieren die Funktion

$$v: \mathbb{R} \to \mathbb{R}, \qquad v(x) := \left\{ \begin{array}{ll} 1 - |x|, & \text{falls } |x| \leq 1, \\ 0, & \text{sonst.} \end{array} \right.$$

Wir schreiben t, x für die Standardkoordinaten in $(0, \infty) \times \mathbb{R}$. Sei $u \in C^2((0, \infty) \times \mathbb{R}, \mathbb{R})$ eine Lösung des Anfangswertproblems

$$u_t = u_{xx}$$

 $u(t, y) \to v(x) \text{ für } (t, y) \to (0, x), \qquad \forall x \in \mathbb{R}.$

Wir nehmen auch an, dass

$$|u(t,x)| \le e^{x^2}, \quad \forall t \in (0,\infty), x \in \mathbb{R}.$$

Hinweis: Es gilt

$$\int_{-1}^{1} e^{-\frac{(2-y)^2}{4}} dy < \sqrt{\pi}.$$

Welche der folgenden Aussagen stimmt?

- (A) u(1,2) = 0
- (B) $0 < u(1,2) < \frac{1}{2}$
- (C) $u(1,2) = \frac{1}{2}$
- (D) $u(1,2) > \frac{1}{2}$

2.MC3 [2 Punkte] (elektrostatisches Potential, Poissongleichung) Die vier Maxwell-Gleichungen für die elektrische Feldstärke E und das Magnetfeld B sind gegeben durch:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \tag{1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{2}$$

$$\nabla \times \mathbf{E} + \partial_t \mathbf{B} = 0, \tag{3}$$

$$\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \partial_t \mathbf{E} = \mu_0 \mathbf{j} \tag{4}$$

Prüfungs-Nr.: 000 XX-XX-XX-000-000 Seite 4 von 11

- (i) Wir nehmen an, dass \mathbf{E} und \mathbf{B} zeitlich konstant sind, d. h. nicht von t abhängen. Wir können \mathbf{E} und \mathbf{B} also als zeitunabhängige Vektorfelder auf \mathbb{R}^3 auffassen, d. h. als Abbildungen \mathbf{E}, \mathbf{B} : $\mathbb{R}^3 \to \mathbb{R}^3$. Aus welcher der vier Maxwell-Gleichungen folgt, dass \mathbf{E} ein Potential besitzt?
- (ii) Aus welcher der vier Maxwellgleichungen folgt, dass dieses Potential die Poissongleichung erfüllt?
- 2.MC4 [4 Punkte] (partielle Differentialgleichung auf der Kreisscheibe) Sei $u \in C^2(\overline{B}_1^2(0), \mathbb{R})$ eine Lösung des Dirichlet-Randwertproblems

$$\Delta u = 0, \quad \text{auf } B_1^2(0),$$

$$u(x,y) = x^3 \quad \text{auf } \partial B_1^2(0).$$

(i) Hinweis: Es gilt

$$\int_{\pi}^{2\pi} \cos^3 = -\int_{0}^{\pi} \cos^3 .$$

u(0,0) ist gegeben durch

- (A) 0
- (B) 1
- (C) -1
- (D) keine der obigen drei Zahlen
- (ii) Welche der folgenden Aussagen stimmt?
 - (A) $\max u = 1$ und $\min u = -1$
 - (B) $\max u = 8$ und $\min u = -8$
 - (C) $\max u = \sqrt[3]{2} \text{ und } \min u = -\sqrt[3]{2}$
 - (D) Die obigen drei Aussagen sind falsch.
- 2.MC5 [2 Punkte] (Invarianz des Laplace-Operators) Welche der folgenden Aussagen ist wahr?
 - (A) $\Delta(f \circ \Phi) = (\Delta f) \circ \Phi$ für jede Abbildung $\Phi \in C^2(\mathbb{R}^2, \mathbb{R}^2)$ und jede Funktion $f \in C^2(\mathbb{R}^2, \mathbb{R})$
 - (B) Es gilt $\Delta(f \circ \Phi) = (\Delta f) \circ \Phi$ für jeden C^2 -Diffeomorphismus $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ und jede Funktion $f \in C^2(\mathbb{R}^2, \mathbb{R})$. Es gibt eine Abbildung $\Phi \in C^2(\mathbb{R}^2, \mathbb{R}^2)$ und eine Funktion $f \in C^2(\mathbb{R}^2, \mathbb{R})$, sodass $\Delta(f \circ \Phi) \neq (\Delta f) \circ \Phi$.
 - (C) Es gilt $\Delta(f \circ \Phi) = (\Delta f) \circ \Phi$ für jede euklidische Transformation¹ $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ und jede Funktion $f \in C^2(\mathbb{R}^2, \mathbb{R})$. Es gibt einen C^2 -Diffeomorphismus $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ und eine Funktion $f \in C^2(\mathbb{R}^2, \mathbb{R})$, sodass $\Delta(f \circ \Phi) \neq (\Delta f) \circ \Phi$.
 - (D) Es gilt $\Delta(f \circ \Phi) = (\Delta f) \circ \Phi$ für jede Drehung von \mathbb{R}^2 . Es gibt eine euklidische Transformation $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ und eine Funktion $f \in C^2(\mathbb{R}^2, \mathbb{R})$, sodass $\Delta(f \circ \Phi) \neq (\Delta f) \circ \Phi$.

¹Das bedeutet, dass Φ den euklidischen Abstand erhält.

2.MC6 [3 Punkte] ("kritische Punkte" des Wirkungsfunktionals) Sei $g:\partial B_1^2(0)\to\mathbb{R}$ eine stetige Funktion. Wir definieren

$$\mathcal{A} := \left\{ u \in C^2(\overline{B}_1^2(0), \mathbb{R}) \,\middle|\, u = g \text{ auf } \partial B_1^2(0) \right\}.$$

Für welche der folgenden Funktionen L sind die "kritischen Punkte" des zugehörigen Wirkungsfunktionals S_L gerade die Lösungen des folgenden Randwertproblems?

$$-\Delta u = u \qquad \text{auf } B_1^2(0)$$
$$u = g \qquad \text{auf } \partial B_1^2(0)$$

(A)
$$L(x, y, \xi) := \|\xi\|^2 - y$$

(B)
$$L(x, y, \xi) := \frac{1}{2} ||\xi||^2 - y$$

(C)
$$L(x, y, \xi) := \|\xi\|^2 - \frac{y^2}{2}$$

(D)
$$L(x, y, \xi) := \frac{1}{2} ||\xi||^2 - \frac{y^2}{2}$$

Offene Fragen

Instruktion für diesen Teil der Prüfung:

• Schreiben Sie alle Rechnungsschritte auf.

Aufgabe 3

(Fourierkoeffizienten, Anfangswertproblem mit periodischer Bedingung) Wir definieren $v : \mathbb{R} \to \mathbb{R}$ als die 2π -periodische Fortsetzung der Funktion

$$\tilde{v}: [0, 2\pi) \to \mathbb{R}, \qquad \tilde{v}(x) := (x - \pi)^2.$$

3.A1 [9 Punkte] Berechnen Sie die (komplexen) Fourierkoeffizienten von v.

Vereinfachen Sie das Resultat.

3.A2 [3 Punkte] Bestimmen Sie eine stetige Funktion $u:[0,\infty)\times\mathbb{R}\to\mathbb{R}$, welche auf dem Gebiet $(0,\infty)\times\mathbb{R}$ die PDG

$$u_t = u_{xx}$$

löst, die Anfangsbedingung

$$u(0,x) = v(x), \quad \forall x \in \mathbb{R},$$

erfüllt und räumlich 2π -periodisch ist. Formulieren Sie Ihre endgültige Lösung als die Summe einer konstanten Funktion und von Funktionen der Form $f(t,x) = g(t)\cos(kx)$ oder $f(t,x) = g(t)\sin(kx)$. (Es kann sein, dass nur gewisse dieser Funktionen vorkommen.)

Bemerkung: Falls Sie die erste Teilaufgabe nicht lösen konnten, dann dürfen Sie hier annehmen, dass $\hat{v}_0 = \frac{\pi^3}{2}$ und $\hat{v}_k = \frac{k^4}{2}$, für $k \neq 0$. Sagen Sie in diesem Fall, dass Sie diese Annahme machen. (Das ist nicht die richtige Lösung zur ersten Teilaufgabe.)

(Anfangswertproblem)

4.A1 [4 Punkte] Wir schreiben die Standardkoordinaten in \mathbb{R}^2 als t,x. Berechnen Sie die Lösung u des Anfangswertproblems

$$u_{tt} = 9u_{xx}$$
 auf $(0, \infty) \times \mathbb{R}$,
 $u(0, x) = 0$, $\forall x \in \mathbb{R}$
 $u_t(0, x) = e^{2x}$, $\forall x \in \mathbb{R}$.

(Anfangswertproblem)

5.A1 [5 Punkte] Berechnen Sie eine Lösung des Anfangswertproblems

$$u_t = u_{xx}$$
 auf $(0, \infty) \times \mathbb{R}$,
 $u(0, x) = e^{-x}$, $\forall x \in \mathbb{R}$.

Bemerkung: Sie dürfen ohne Herleitung verwenden, dass

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

(Inhomogene PDG)

 ${f 6.A1}$ [3 Punkte] Berechnen Sie eine Lösung w des Anfangswertproblems

$$w_t(t, x) - w_{xx}(t, x) = e^{-x}$$

 $w(0, x) = 0.$

Bemerkung: Sie dürfen Aufgabe 5 verwenden. Falls Sie Aufgabe 5 nicht lösen konnten, dann dürfen Sie annehmen, dass eine Lösung zu jener Aufgabe durch $u(t,x) = e^{t+x}$ gegeben ist. (Das ist keine richtige Lösung.)

Prüfungs-Nr.: 000 XX-XX-XX-000-000 Seite 10 von 11

(Eindeutigkeit der Lösung der Poisson-Gleichung)

7.A1 [3 Punkte] Wir betrachten die offene Einheitskreisscheibe

$$B^{2} := \left\{ (x, y) \in \mathbb{R}^{2} \, \middle| \, x^{2} + y^{2} < 1 \right\}$$

und zwei stetige Funktionen

$$f: B^2 \to \mathbb{R}, \qquad g: \partial B^2 \to \mathbb{R}.$$

Zeigen Sie, dass die Lösung des Dirichlet-Randwertproblems für die Poissongleichung

$$\Delta u = f \quad \text{auf } B^2,$$

$$u(x,y) \to g(x_0, y_0) \quad \text{für } (x,y) \to (x_0, y_0), \qquad \forall (x_0, y_0) \in \partial B^2,$$

eindeutig ist, d. h., falls u_0, u_1 Lösungen dieses Problems sind, dann gilt $u_0 = u_1$.

Bemerkung: Diese Aussage war ein Korollar in der Vorlesung. Die Aufgabe ist es, dieses Korollar zu beweisen. Sie dürfen dazu Sätze aus der Vorlesung anwenden, ohne diese zu beweisen.