FISTA: from PEP or Lyapunov Function

Zhenghao Xu

Zhejiang University

July 18, 2021

PEP 1/47

Table of Contents

Previous Results on FISTA

2 FISTA from PEP Perspective

3 Lyapunov Analysis

Table of Contents

Previous Results on FISTA

2 FISTA from PEP Perspective

3 Lyapunov Analysis

FISTA

- Original paper [Beck and Teboulle, 2009]
- PEP analysis [Kim and Fessler, 2018]

FISTA method

Replace the gradient step in Nesterov's FGM with proximal step [Beck and Teboulle, 2009]

FISTA with constant stepsize

$$x_k = P_L(y_k) \text{ (proximal step)}$$
 $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$ $y_{k+1} = x_k + \left(\frac{t_k - 1}{t_{k+1}}\right) (x_k - x_{k-1})$

PEP 5/

Objective function: $F(x) = f(x) + \phi(x)$.

- $f(x) \in \mathcal{F}_{0,L}$
- $\phi(x) \in \mathcal{F}_{0,\infty}$

Objective function: $F(x) = f(x) + \phi(x)$.

- $f(x) \in \mathcal{F}_{0,L}$
- $\phi(x) \in \mathcal{F}_{0,\infty}$

Proximal step:

$$p_{L}(y) = \underset{x}{\operatorname{arg min}} \left\{ f(y) + \langle x - y, \nabla f(y) \rangle + \frac{L}{2} \|x - y\|^{2} + \phi(x) \right\}$$
$$= \underset{x}{\operatorname{arg min}} \left\{ \frac{L}{2} \left\| x - \left(y - \frac{1}{L} \nabla f(y) \right) \right\|^{2} + \phi(x) \right\}$$

PEP 6/4

Objective function: $F(x) = f(x) + \phi(x)$.

- $f(x) \in \mathcal{F}_{0,L}$
- $\phi(x) \in \mathcal{F}_{0,\infty}$

Proximal step:

$$p_{L}(y) = \underset{x}{\operatorname{arg min}} \left\{ f(y) + \langle x - y, \nabla f(y) \rangle + \frac{L}{2} \|x - y\|^{2} + \phi(x) \right\}$$
$$= \underset{x}{\operatorname{arg min}} \left\{ \frac{L}{2} \left\| x - \left(y - \frac{1}{L} \nabla f(y) \right) \right\|^{2} + \phi(x) \right\}$$

Composite gradient mapping:

$$\tilde{\nabla}_L F(x) = -L(\mathbf{p}_L(x) - x)$$

PEP 6/

Composite gradient mapping:

$$\tilde{\nabla}_L F(x) = -L(\mathbf{p}_L(x) - x)$$

Key (in)equalities:

$$\tilde{\nabla}_{L}F(x) = \nabla f(x) + \phi'(\mathbf{p}_{L}(x))$$
$$\|F'(\mathbf{p}_{L}(x))\| \le 2 \|\tilde{\nabla}_{L}F(\mathbf{p}_{L}(x))\|$$

PEP 7/4

Algorithm PGM

Input: $f \in \mathcal{F}_L(\mathbb{R}^d)$, $\boldsymbol{x}_0 \in \mathbb{R}^d$. For $i = 0, \dots, N-1$

 $\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{x}_i)$

$$F(x_N) - F(x_*) \le \frac{LR^2}{2N}$$

$$\min_{i} \|\tilde{\nabla}_L F(x_i)\| = \|\tilde{\nabla}_L F(x_N)\| \le \frac{2LR}{\sqrt{(N-1)(N+2)}}$$

PEP 8 / 47

Algorithm FPGM (FISTA)

Input:
$$f \in \mathcal{F}_L(\mathbb{R}^d)$$
, $\mathbf{x}_0 \in \mathbb{R}^d$, $\mathbf{y}_0 = \mathbf{x}_0$, $t_0 = 1$.
For $i = 0, ..., N - 1$

$$\mathbf{x}_{i+1} = \mathbf{p}_L(\mathbf{y}_i)$$

$$t_{i+1} = \frac{1 + \sqrt{1 + 4t_i^2}}{2}$$

$$\mathbf{y}_{i+1} = \mathbf{x}_{i+1} + \frac{t_i - 1}{t_{i+1}}(\mathbf{x}_{i+1} - \mathbf{x}_i)$$
(2.11)

$$F(x_N) - F(x_*) \le \frac{LR^2}{2t_{N-1}^2} = \frac{2LR^2}{(N+1)^2}$$

for any
$$t_i^2 = \sum_{j=0}^{i} t_j, t_i \ge \frac{i+2}{2}$$
.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

PEP 9 / 47

To optimize gradient norm:

Algorithm FPGM-m

Input:
$$f \in \mathcal{F}_L(\mathbb{R}^d)$$
, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$, $t_0 = 1$.
For $i = 0, \dots, N-1$

$$\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i)$$

$$t_{i+1} = \frac{1 + \sqrt{1 + 4t_i^2}}{2}, \quad i \leq m-1$$

$$\boldsymbol{y}_{i+1} = \begin{cases} \boldsymbol{x}_{i+1} + \frac{t_i - 1}{t_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{x}_i), & i \leq m-1, \\ \boldsymbol{x}_{i+1}, & \text{otherwise.} \end{cases}$$

$$\min_{i} \left\| \tilde{\nabla}_{L} F(x_{i}) \right\| = \left\| \tilde{\nabla}_{L} F(x_{N}) \right\| \leq \frac{2LR}{(m+1)\sqrt{N-m+1}}$$

for any $t_i^2 = \sum_{j=0}^i t_j, t_i \ge \frac{i+2}{2}$. N is given a priori. $O(1/N^{\frac{3}{2}})$ with $m = \lfloor \frac{2N}{3} \rfloor$.

PEP 10 / 47

FPGM- σ : Replace $p_L(\cdot)$ in FPGM with $p_{L/\sigma^2}(\cdot)$.

$$F(x_N) - F(x_*) \le \frac{LR^2}{2t_{N-1}^2} = \frac{2LR^2}{\sigma^2 N^2}$$

$$\min_{i} \left\| \tilde{\nabla}_{L/\sigma^2} F(x_i) \right\| \le \frac{2\sqrt{3}}{\sigma} \sqrt{\frac{1+\sigma}{1-\sigma}} \frac{LR}{N^{\frac{3}{2}}}$$

for any $t_i^2 = \sum_{j=0}^i t_j, t_i \ge \frac{i+2}{2}$. *N* is is not needed a priori.

PEP 11/4

Table of Contents

Previous Results on FISTA

2 FISTA from PEP Perspective

3 Lyapunov Analysis

General First Order PG Method

Algorithm Class FSFOM

Input:
$$f \in \mathcal{F}_L(\mathbb{R}^d)$$
, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$.
For $i = 0, \dots, N-1$

$$\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i) = \boldsymbol{y}_i - \frac{1}{L}\tilde{\nabla}_L F(\boldsymbol{y}_i)$$

$$\boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \sum_{k=0}^i h_{i+1,k} \left(\boldsymbol{x}_{k+1} - \boldsymbol{y}_k\right) = \boldsymbol{y}_i - \frac{1}{L}\sum_{k=0}^i h_{i+1,k} \tilde{\nabla}_L F(\boldsymbol{y}_k).$$

PEP 13/47

General First Order PG Method

Algorithm Class FSFOM

Input:
$$f \in \mathcal{F}_L(\mathbb{R}^d)$$
, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$.
For $i = 0, \dots, N-1$

$$\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i) = \boldsymbol{y}_i - \frac{1}{L}\tilde{\nabla}_L F(\boldsymbol{y}_i)$$

$$\boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \sum_{k=0}^i h_{i+1,k} \left(\boldsymbol{x}_{k+1} - \boldsymbol{y}_k\right) = \boldsymbol{y}_i - \frac{1}{L}\sum_{k=0}^i h_{i+1,k}\tilde{\nabla}_L F(\boldsymbol{y}_k).$$

Step coefficients for FPGM (FISTA):

$$h_{i+1,k} = \begin{cases} \frac{1}{t_{i+1}} (t_k - \sum_{j=k+1}^i h_{j,k}), & k = 0, \dots, i-1 \\ 1 + \frac{t_{i-1}}{t_{i+1}}, & k = i. \end{cases}$$

PEP 13 / 47

PEP Formulation

Algorithm Class FSFOM

Input:
$$f \in \mathcal{F}_L(\mathbb{R}^d)$$
, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$.
For $i = 0, \dots, N-1$
 $\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i) = \boldsymbol{y}_i - \frac{1}{L}\tilde{\nabla}_L F(\boldsymbol{y}_i)$
 $\boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \sum_{k=0}^i h_{i+1,k} (\boldsymbol{x}_{k+1} - \boldsymbol{y}_k) = \boldsymbol{y}_i - \frac{1}{L}\sum_{k=0}^i h_{i+1,k} \tilde{\nabla}_L F(\boldsymbol{y}_k)$.

Corresponding PEP:

$$\mathcal{B}_{P}(\boldsymbol{h}, N, d, L, R) := \max_{\substack{F \in \mathcal{F}_{L}(\mathbb{R}^{d}), \\ \boldsymbol{x}_{0}, \cdots, \boldsymbol{x}_{N} \in \mathbb{R}^{d}, \ \boldsymbol{x}_{*} \in X_{*}(F) \\ \boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{N-1} \in \mathbb{R}^{d}}} F(\boldsymbol{x}_{N}) - F(\boldsymbol{x}_{*})$$

$$\text{s.t. } \boldsymbol{x}_{i+1} = \mathbf{p}_{L}(\boldsymbol{y}_{i}), \quad i = 0, \dots, N-1, \quad ||\boldsymbol{x}_{0} - \boldsymbol{x}_{*}|| \leq R,$$

$$\boldsymbol{y}_{i+1} = \boldsymbol{y}_{i} + \sum_{k=0}^{i} h_{i+1,k}(\boldsymbol{x}_{k+1} - \boldsymbol{y}_{k}), \quad i = 0, \dots, N-2.$$

PEP 14/47

PEP Simplification

Relaxation inequality:

$$\begin{split} \frac{L}{2}||\mathbf{p}_{L}(\boldsymbol{y})-\boldsymbol{y}||^{2}-L\left\langle \mathbf{p}_{L}(\boldsymbol{x})-\boldsymbol{x},\;\mathbf{p}_{L}(\boldsymbol{y})-\boldsymbol{y}\right\rangle \\ &\leq F(\mathbf{p}_{L}(\boldsymbol{x}))-F(\mathbf{p}_{L}(\boldsymbol{y}))+L\left\langle \mathbf{p}_{L}(\boldsymbol{y})-\boldsymbol{y},\;\boldsymbol{x}-\boldsymbol{y}\right\rangle ,\quad\forall \boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^{d} \end{split} \tag{3.2}$$

15 / 47

EP EP

PEP Simplification

Relaxation inequality:

$$\frac{L}{2}||\mathbf{p}_{L}(\boldsymbol{y}) - \boldsymbol{y}||^{2} - L\langle\mathbf{p}_{L}(\boldsymbol{x}) - \boldsymbol{x}, \ \mathbf{p}_{L}(\boldsymbol{y}) - \boldsymbol{y}\rangle
\leq F(\mathbf{p}_{L}(\boldsymbol{x})) - F(\mathbf{p}_{L}(\boldsymbol{y})) + L\langle\mathbf{p}_{L}(\boldsymbol{y}) - \boldsymbol{y}, \ \boldsymbol{x} - \boldsymbol{y}\rangle, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d} \quad (3.2)$$

Relaxed PEP:

$$\mathcal{B}_{P1}(\boldsymbol{h}, N, d, L, R) := \max_{\boldsymbol{G} \in \mathbb{R}^{N \times d}, \atop \boldsymbol{\delta} \in \mathbb{R}^{N}} LR^{2} \delta_{N-1}$$
s.t. $\text{Tr}\{\boldsymbol{G}^{\top} \check{\boldsymbol{A}}_{i-1,i}(\boldsymbol{h})\boldsymbol{G}\} \leq \delta_{i-1} - \delta_{i}, \quad i = 1, \dots, N-1,$

$$\text{Tr}\{\boldsymbol{G}^{\top} \check{\boldsymbol{D}}_{i}(\boldsymbol{h})\boldsymbol{G} + \boldsymbol{\nu}\boldsymbol{u}_{i}^{\top}\boldsymbol{G}\} \leq -\delta_{i}, \quad i = 0, \dots, N-1,$$
(P1)

$$\begin{cases} \mathbf{g}_i := -\frac{1}{||\mathbf{y}_0 - \mathbf{x}_*||} (\mathbf{p}_L(\mathbf{y}_i) - \mathbf{y}_i) = \frac{1}{L||\mathbf{y}_0 - \mathbf{x}_*||} \tilde{\nabla}_L F(\mathbf{y}_i), \\ \delta_i := \frac{1}{L||\mathbf{y}_0 - \mathbf{x}_*||^2} (F(\mathbf{p}_L(\mathbf{y}_i)) - F(\mathbf{x}_*)), \end{cases}$$

$$\begin{cases}
\check{A}_{i-1,i}(h) := \frac{1}{2} u_i u_i^{\top} - \frac{1}{2} u_{i-1} u_i^{\top} - \frac{1}{2} u_i u_{i-1}^{\top} + \frac{1}{2} \sum_{k=0}^{i-1} h_{i,k} (u_i u_k^{\top} + u_k u_i^{\top}), \\
\check{D}_i(h) := \frac{1}{2} u_i u_i^{\top} + \frac{1}{2} \sum_{j=1}^{i} \sum_{k=0}^{j-1} h_{j,k} (u_i u_k^{\top} + u_k u_i^{\top}),
\end{cases}$$
(3.5)

PEP 15 / 47

Dual PEP

Dual problem:

$$\mathcal{B}_{D}(\boldsymbol{h}, N, L, R) := \min_{\substack{(\boldsymbol{\lambda}, \boldsymbol{\tau}) \in \Lambda, \\ \boldsymbol{\gamma} \in \mathbb{R}}} \left\{ \frac{1}{2} L R^{2} \boldsymbol{\gamma} : \begin{pmatrix} \boldsymbol{S}(\boldsymbol{h}, \boldsymbol{\lambda}, \boldsymbol{\tau}) & \frac{1}{2} \boldsymbol{\tau} \\ \frac{1}{2} \boldsymbol{\tau}^{\top} & \frac{1}{2} \boldsymbol{\gamma} \end{pmatrix} \succeq 0 \right\}, \tag{D}$$

$$\Lambda := \left\{ (\lambda, \tau) \in \mathbb{R}_{+}^{2N-1} : \begin{array}{l} \tau_0 = \lambda_1, \ \lambda_{N-1} + \tau_{N-1} = 1, \\ \lambda_i - \lambda_{i+1} + \tau_i = 0, \ i = 1, \dots, N-2, \end{array} \right\},$$
(3.6)

$$S(\boldsymbol{h}, \boldsymbol{\lambda}, \boldsymbol{\tau}) := \sum_{i=1}^{N-1} \lambda_i \check{\boldsymbol{A}}_{i-1,i}(\boldsymbol{h}) + \sum_{i=0}^{N-1} \tau_i \check{\boldsymbol{D}}_i(\boldsymbol{h}). \tag{3.7}$$

PEP 16 / 47

Lemma

Lemma 2 For the following step coefficients:

$$h_{i+1,k} = \begin{cases} \frac{t_{i+1}}{T_{i+1}} \left(t_k - \sum_{j=k+1}^i h_{j,k} \right), & k = 0, \dots, i-1, \\ 1 + \frac{(t_i - 1)t_{i+1}}{T_{i+1}}, & k = i, \end{cases}$$
 (3.8)

the choice of variables:

$$\lambda_i = \frac{T_{i-1}}{T_{N-1}}, \quad i = 1, \dots, N-1, \quad \tau_i = \frac{t_i}{T_{N-1}}, \quad i = 0, \dots, N-1, \quad \gamma = \frac{1}{T_{N-1}},$$
 (3.9)

is a feasible point of (D) for any choice of t_i such that

$$t_0 = 1, \quad t_i > 0, \quad and \quad t_i^2 \le T_i := \sum_{l=0}^i t_l.$$
 (3.10)

FISTA falls into this category with $T_i = t_i^2$.

PEP 17/4

General FPGM(FISTA)

From lemma we get generalized FPGM(FISTA):

Algorithm GFPGM Input: $f \in \mathcal{F}_L(\mathbb{R}^d)$, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$, $t_0 = T_0 = 1$. For $i = 0, \dots, N-1$ $\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i)$ Choose t_{i+1} s.t. $t_{i+1} > 0$ and $t_{i+1}^2 \leq T_{i+1} := \sum_{l=0}^{i+1} t_l$ $\boldsymbol{y}_{i+1} = \boldsymbol{x}_{i+1} + \frac{(T_i - t_i)t_{i+1}}{t_iT_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{x}_i) + \frac{(t_i^2 - T_i)t_{i+1}}{t_iT_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{y}_i)$

Produced sequence $\{x_i\}$ are identical (GFPGM and FSFOM with step sizes in lemma 2).

PEP 18 / 47

General FPGM(FISTA)

From lemma we get generalized FPGM(FISTA):

Algorithm GFPGM

Input:
$$f \in \mathcal{F}_L(\mathbb{R}^d)$$
, $\mathbf{x}_0 \in \mathbb{R}^d$, $\mathbf{y}_0 = \mathbf{x}_0$, $t_0 = T_0 = 1$.
For $i = 0, \dots, N - 1$
 $\mathbf{x}_{i+1} = \mathbf{p}_L(\mathbf{y}_i)$
Choose t_{i+1} s.t. $t_{i+1} > 0$ and $t_{i+1}^2 \le T_{i+1} := \sum_{l=0}^{i+1} t_l$
 $\mathbf{y}_{i+1} = \mathbf{x}_{i+1} + \frac{(T_i - t_i)t_{i+1}}{t_iT_{i+1}}(\mathbf{x}_{i+1} - \mathbf{x}_i) + \frac{(t_i^2 - T_i)t_{i+1}}{t_iT_{i+1}}(\mathbf{x}_{i+1} - \mathbf{y}_i)$

Produced sequence $\{x_i\}$ are identical (GFPGM and FSFOM with step sizes in lemma 2). Convergence rate from dual objective:

Theorem 3 Let $F: \mathbb{R}^d \to \mathbb{R}$ be in $\mathcal{F}_L(\mathbb{R}^d)$ and let $\mathbf{x}_0, \dots, \mathbf{x}_N \in \mathbb{R}^d$ be generated by GFPGM. Then for $N \geq 1$,

$$F(\boldsymbol{x}_N) - F(\boldsymbol{x}_*) \le \frac{LR^2}{2T_{N-1}}.$$
 (3.11)

18 / 47

General FPGM(FISTA)

Select $t_i = \frac{i+a}{a}$ satisfying conditions:

Corollary 1 Let $F: \mathbb{R}^d \to \mathbb{R}$ be in $\mathcal{F}_L(\mathbb{R}^d)$ and let $\mathbf{x}_0, \dots, \mathbf{x}_N \in \mathbb{R}^d$ be generated by GFPGM with $t_i = \frac{i+a}{2}$ (FPGM-a) for any $a \geq 2$. Then for $N \geq 1$,

$$F(x_N) - F(x_*) \le \frac{aLR^2}{N(N+2a-1)}.$$
 (3.13)

PEP 19 / 47

Conjecture on Optimality

Conjecture 1

FISTA is optimal. That is, the feasible point in Lemma 2 with $t_i^2 = T_i$ that corresponds to FISTA is a global minimizer of the dual problem. (Might require further derivations with KKT conditions.)

PEP 20 / 47

PEP in Composite Gradient Mapping Form

Above argument is for cost function form of PEP.

$$\mathcal{B}_{P}(\boldsymbol{h}, N, d, L, R) := \max_{\substack{F \in \mathcal{F}_{L}(\mathbb{R}^{d}), \\ \boldsymbol{x}_{0}, \dots, \boldsymbol{x}_{N} \in \mathbb{R}^{d}, \ \boldsymbol{x}_{*} \in X_{*}(F) \\ \boldsymbol{y}_{0}, \dots, \boldsymbol{y}_{N-1} \in \mathbb{R}^{d}}} F(\boldsymbol{x}_{N}) - F(\boldsymbol{x}_{*})$$

$$\text{s.t. } \boldsymbol{x}_{i+1} = \mathbf{p}_{L}(\boldsymbol{y}_{i}), \quad i = 0, \dots, N-1, \quad ||\boldsymbol{x}_{0} - \boldsymbol{x}_{*}|| \leq R,$$

$$\boldsymbol{y}_{i+1} = \boldsymbol{y}_{i} + \sum_{k=0}^{i} h_{i+1,k}(\boldsymbol{x}_{k+1} - \boldsymbol{y}_{k}), \quad i = 0, \dots, N-2.$$

PEP 21 / 47

PEP in Composite Gradient Mapping Form

Above argument is for cost function form of PEP.

$$\mathcal{B}_{P}(\boldsymbol{h}, N, d, L, R) := \max_{\substack{F \in \mathcal{F}_{L}(\mathbb{R}^{d}), \\ \boldsymbol{x}_{0}, \dots, \boldsymbol{x}_{N} \in \mathbb{R}^{d}, \ \boldsymbol{x}_{*} \in X_{*}(F) \\ \boldsymbol{y}_{0}, \dots, \boldsymbol{y}_{N-1} \in \mathbb{R}^{d}}} F(\boldsymbol{x}_{N}) - F(\boldsymbol{x}_{*})$$

$$\text{s.t. } \boldsymbol{x}_{i+1} = \mathbf{p}_{L}(\boldsymbol{y}_{i}), \quad i = 0, \dots, N-1, \quad ||\boldsymbol{x}_{0} - \boldsymbol{x}_{*}|| \leq R,$$

$$\boldsymbol{y}_{i+1} = \boldsymbol{y}_{i} + \sum_{k=0}^{i} h_{i+1,k}(\boldsymbol{x}_{k+1} - \boldsymbol{y}_{k}), \quad i = 0, \dots, N-2.$$

Similarly for composite gradient mapping form of PEP.

$$\begin{split} \mathcal{B}_{\mathrm{P'}}(\boldsymbol{h},N,d,L,R) &:= \max_{\substack{F \in \mathcal{F}_L(\mathbb{R}^d), \\ \boldsymbol{x}_0, \cdots, \boldsymbol{x}_N \in \mathbb{R}^d, \ \boldsymbol{x}_* \in X_*(F), \\ \boldsymbol{y}_0, \cdots, \boldsymbol{y}_{N-1} \in \mathbb{R}^d}} \min_{\boldsymbol{x} \in \Omega_N} ||L\left(\mathbf{p}_L(\boldsymbol{x}) - \boldsymbol{x}\right)||^2 \\ &\text{s.t.} \ \boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i), \quad i = 0, \dots, N-1, \quad ||\boldsymbol{x}_0 - \boldsymbol{x}_*|| \leq R, \\ &\boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \sum_{k=0}^i h_{i+1,k}(\boldsymbol{x}_{k+1} - \boldsymbol{y}_k), \quad i = 0, \dots, N-2. \end{split}$$

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

PEP 21 / 47

PEP in Composite Gradient Mapping Form

$$\mathcal{B}_{P'}(\boldsymbol{h}, N, d, L, R) := \max_{\substack{F \in \mathcal{F}_L(\mathbb{R}^d), \\ \boldsymbol{x}_0, \cdots, \boldsymbol{x}_N \in \mathbb{R}^d, \ \boldsymbol{x}_* \in X_*(F), \\ \boldsymbol{y}_0, \cdots, \boldsymbol{y}_{N-1} \in \mathbb{R}^d}} \min_{\boldsymbol{x} \in \Omega_N} ||L(\mathbf{p}_L(\boldsymbol{x}) - \boldsymbol{x})||^2$$
s.t. $\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i), \quad i = 0, \dots, N-1, \quad ||\boldsymbol{x}_0 - \boldsymbol{x}_*|| \le R,$

$$\boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \sum_{k=0}^i h_{i+1,k}(\boldsymbol{x}_{k+1} - \boldsymbol{y}_k), \quad i = 0, \dots, N-2.$$
(P')

 $\Omega_N = \{y_0, \ldots, y_{N-1}, x_N\}.$

- if $\Omega_N = \{y_0, \dots, y_{N-1}\}$, then the bound would be worse.
- if $\Omega_N = \{x_0, \dots, x_{N-1}\}$, then no proven result yet.
- if min is not taken among history composite gradient mapping, then the bound would be O(1/N) (worse).

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

PEP 22 / 47

PEP Derivation

After relaxation and dualization, we get the dual PEP:

$$\mathcal{B}_{\mathrm{D'}}(\boldsymbol{h}, N, L, R) := \min_{\substack{(\boldsymbol{\lambda}, \boldsymbol{\tau}, \boldsymbol{\eta}, \boldsymbol{\beta}) \in A', \\ \boldsymbol{\gamma} \in \mathbb{R}}} \left\{ \frac{1}{2} L^2 R^2 \boldsymbol{\gamma} \ : \ \begin{pmatrix} \boldsymbol{S'}(\boldsymbol{h}, \boldsymbol{\lambda}, \boldsymbol{\tau}, \boldsymbol{\eta}, \boldsymbol{\beta}) \ \frac{1}{2} [\boldsymbol{\tau}^\top, 0]^\top \\ \frac{1}{2} [\boldsymbol{\tau}^\top, 0] & \frac{1}{2} \boldsymbol{\gamma} \end{pmatrix} \succeq \boldsymbol{0} \right\} \tag{D'}$$

$$A' := \left\{ (\lambda, \tau, \eta, \beta) \in \mathbb{R}_{+}^{3N+1} : \begin{array}{l} \tau_0 = \lambda_1, \ \lambda_{N-1} + \tau_{N-1} = \eta, \ \sum_{i=0}^{N} \beta_i = 1, \\ \lambda_i - \lambda_{i+1} + \tau_i = 0, \ i = 1, \dots, N-2 \end{array} \right\},$$
(4.4)

$$S'(\boldsymbol{h}, \boldsymbol{\lambda}, \boldsymbol{\tau}, \eta, \boldsymbol{\beta}) := \sum_{i=1}^{N-1} \lambda_i \bar{\boldsymbol{A}}_{i-1,i}(\boldsymbol{h}) + \sum_{i=0}^{N-1} \tau_i \bar{\boldsymbol{D}}_i(\boldsymbol{h}) + \frac{1}{2} \eta \bar{\boldsymbol{u}}_N \bar{\boldsymbol{u}}_N^\top - \sum_{i=0}^N \beta_i \bar{\boldsymbol{u}}_i \bar{\boldsymbol{u}}_i^\top.$$
(4.5)

PEP 23 / 47

Feasible Solution and Bound

Lemma 3 For the step coefficients $\{h_{i+1,k}\}$ in (3.8), the choice of variables

$$\lambda_{i} = T_{i-1}\tau_{0}, \quad i = 1, \dots, N-1, \quad \tau_{i} = \begin{cases} \left(\frac{1}{2} \left(\sum_{k=0}^{N-1} \left(T_{k} - t_{k}^{2}\right) + T_{N-1}\right)\right)^{-1}, \quad i = 0, \\ t_{i}\tau_{0}, \quad i = 1, \dots, N-1, \end{cases}$$

$$(4.6)$$

$$\eta = T_{N-1}\tau_0, \quad \beta_i = \begin{cases} \frac{1}{2} \left(T_i - t_i^2 \right) \tau_0, & i = 0, \dots, N-1, \\ \frac{1}{2} T_{N-1}\tau_0, & i = N, \end{cases}$$
 $\gamma = \tau_0.$ (4.7)

is a feasible point of (D') for any choice of t_i and T_i satisfying (3.10).

Theorem 4 Let $f: \mathbb{R}^d \to \mathbb{R}$ be in $\mathcal{F}_L(\mathbb{R}^d)$ and let $\mathbf{x}_0, \dots, \mathbf{x}_N, \mathbf{y}_0, \dots, \mathbf{y}_{N-1} \in \mathbb{R}^d$ be generated by GFPGM. Then for $N \geq 1$,

$$\min_{i \in \{0,\dots,N\}} ||\tilde{\nabla}_{L} F(x_i)|| \le \min_{x \in \Omega_N} ||\tilde{\nabla}_{L} F(x)|| \le \frac{LR}{\sqrt{\sum_{k=0}^{N-1} (T_k - t_k^2) + T_{N-1}}}.$$
(4.8)

PEP 24 / 47

Conjecture on Optimality

Choose

$$t_{i} = \begin{cases} 1, & i = 0, \\ \frac{1 + \sqrt{1 + 4t_{i-1}^{2}}}{2}, & i = 1, \dots, \lfloor \frac{N}{2} \rfloor - 1, \\ \frac{N - i + 1}{2}, & i = \lfloor \frac{N}{2} \rfloor, \dots, N - 1, \end{cases}$$
(4.9)

Numerical result shows its optimality.

Conjecture 2

Above choice of t_i corresponds to the optimal methods (with respect to composite gradient mapping).

PEP 25 / 47

FPGM-OCG

$$t_{i} = \begin{cases} 1, & i = 0, \\ \frac{1+\sqrt{1+4t_{i-1}^{2}}}{2}, & i = 1, \dots, \lfloor \frac{N}{2} \rfloor - 1, \\ \frac{N-i+1}{2}, & i = \lfloor \frac{N}{2} \rfloor, \dots, N-1, \end{cases}$$
(4.9)

Corresponding method (N specified in advance):

Algorithm FPGM-OCG (GFPGM with t_i in (4.9))
Input: $f \in C_L^{1,1}(\mathbb{R}^d)$ convex, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$, $t_0 = T_0 = 1$.
For $i = 0, \dots, N-1$ $\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i)$ $t_{i+1} = \begin{cases} \frac{1+\sqrt{1+4t_i^2}}{2}, & i = 1, \dots, \left\lfloor \frac{N}{2} \right\rfloor - 2, \\ \frac{N-i}{2}, & i = \left\lfloor \frac{N}{2} \right\rfloor - 1, \dots, N-2, \end{cases}$ $\boldsymbol{y}_{i+1} = \boldsymbol{x}_{i+1} + \frac{(T_i - t_i)t_{i+1}}{t_iT_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{x}_i)$ $+ \frac{(t_i^2 - T_i)t_{i+1}}{t_iT_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{y}_i), \quad i < N-1$

- 《□》《圖》《불》《불》 - 불 : જીવ(

FPGM-OCG Bound

Algorithm FPGM-OCG (GFPGM with t_i in (4.9))

Input: $f \in C_L^{1,1}(\mathbb{R}^d)$ convex, $\boldsymbol{x}_0 \in \mathbb{R}^d$, $\boldsymbol{y}_0 = \boldsymbol{x}_0$, $t_0 = T_0 = 1$. For $i = 0, \dots, N - 1$ $\boldsymbol{x}_{i+1} = \mathbf{p}_L(\boldsymbol{y}_i)$ $t_{i+1} = \begin{cases} \frac{1+\sqrt{1+4t_i^2}}{2}, & i = 1, \dots, \left\lfloor \frac{N}{2} \right\rfloor - 2, \\ \frac{N-i}{2}, & i = \left\lfloor \frac{N}{2} \right\rfloor - 1, \dots, N - 2, \end{cases}$ $\boldsymbol{y}_{i+1} = \boldsymbol{x}_{i+1} + \frac{(T_i - t_i)t_{i+1}}{t_iT_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{x}_i)$ $+ \frac{(t_i^2 - T_i)t_{i+1}}{t_iT_{i+1}}(\boldsymbol{x}_{i+1} - \boldsymbol{y}_i), \quad i < N - 1$

Theorem 5 Let $F: \mathbb{R}^d \to \mathbb{R}$ be in $\mathcal{F}_L(\mathbb{R}^d)$ and let $\mathbf{x}_0, \dots, \mathbf{x}_N, \mathbf{y}_0, \dots, \mathbf{y}_{N-1} \in \mathbb{R}^d$ be generated by FPGM-OCG. Then for $N \geq 1$,

$$F(\boldsymbol{x}_N) - F(\boldsymbol{x}_*) \le \frac{4L||\boldsymbol{x}_0 - \boldsymbol{x}_*||^2}{N(N+4)},$$
 (4.11)

and for $N \geq 3$,

$$\min_{i \in \{0,\dots,N\}} ||\tilde{\nabla}_L F(\boldsymbol{x}_i)|| \le \min_{\boldsymbol{x} \in \Omega_N} ||\tilde{\nabla}_L F(\boldsymbol{x})|| \le \frac{2\sqrt{6}LR}{N\sqrt{N-2}}.$$
(4.12)

PEP 27 / 47

FPGM-a Bound

Another choice of t_i preventing pre-selection of N:

Corollary 2 Let $f: \mathbb{R}^d \to \mathbb{R}$ be in $\mathcal{F}_L(\mathbb{R}^d)$ and let $x_0, \dots, x_N, y_0, \dots, y_{N-1} \in \mathbb{R}^d$ be generated by GFPGM with $t_i = \frac{i+a}{a}$ (FPGM-a) for any $a \geq 2$. Then for $N \geq 1$, we have the following bound on the (smallest) composite gradient mapping:

$$\min_{i \in \{0, \dots, N\}} ||\tilde{\nabla}_{L} F(\boldsymbol{x}_{i})|| \leq \min_{\boldsymbol{x} \in \Omega_{N}} ||\tilde{\nabla}_{L} F(\boldsymbol{x})|| \\
\leq \frac{a\sqrt{6}LR}{\sqrt{N((a-2)N^{2} + 3(a^{2} - a + 1)N + (3a^{2} + 2a - 1))}}.$$
(4.14)

Theoretic Results

Algorithm	Asymptotic v	Require selecting	
	Cost function $(\times LR^2)$	Proximal gradient $(\times LR)$	N in advance
PGM	$\frac{1}{2}N^{-1}$	$2N^{-1}$	No
FPGM	$2N^{-2}$	$2N^{-1}$	No
FPGM- σ (0 < σ < 1)	$\frac{2}{\sigma^2}N^{-2}$ $3.3N^{-2}$	$\frac{2\sqrt{3}}{\sigma^2}\sqrt{\frac{1+\sigma}{1-\sigma}}N^{-\frac{3}{2}}$	No
FPGM- $(\sigma = 0.78)$	$3.3N^{-2}$	$16.2N^{-\frac{3}{2}}$	
$FPGM-\left(m=\left\lfloor \frac{2N}{3}\right\rfloor \right)$	$4.5N^{-2}$	$5.2N^{-\frac{3}{2}}$	Yes
FPGM-OCG	$4N^{-2}$	$4.9N^{-\frac{3}{2}}$	Yes
FPGM- a ($a > 2$)	aN^{-2}	$\frac{a\sqrt{6}}{\sqrt{a-2}}N^{-\frac{3}{2}}$	No
\mathbf{FPGM} - $(a=4)$	$4N^{-2}$	$6.9N^{-\frac{3}{2}}$	

Table 1 Asymptotic worst-case bounds on the cost function $F(x_N) - F(x_*)$ and the norm of the composite gradient mapping $\min_{x \in \mathcal{D}_N} ||\tilde{\nabla}_L F(x)||$ of PGM, FPGM, FPGM- σ , FPGM-m, FPGM-OCG, and FPGM-a. (The cost function bound for FPGM after m iterations because a tight bound for the final Nth iteration is unknown. The bound on $\min_{i \in \{0,...,N\}} ||\tilde{\nabla}_{L/\sigma^2} F(y_i)||$ is used for FPGM- σ .)

PEP 29 / 47

Numerical Results

Cost function:

N PGM	DCM	FPGM	FPGM	FPGM	FPGM	FPGM
	FGM		$-(\sigma = 0.78)$	$-\left(m = \left\lfloor \frac{2N}{3} \right\rfloor \right)$	-OCG	-(a=4)
1	4.00	4.00	2.43	4.00	4.00	4.00
2	8.00	8.00	4.87	8.00	8.00	8.00
4	16.00	19.35	11.77	17.13	17.60	17.23
10	40.00	79.07	48.11	56.47	59.25	55.88
20	80.00	261.66	159.19	163.75	170.10	159.17
30	120.00	546.51	332.49	321.56	331.97	312.03
40	160.00	932.89	567.57	502.37	544.55	514.73
47	188.00	1263.58	768.76	675.68	723.06	686.33
50	200.00	1420.45	864.20	752.90	807.66	767.37
Empi. $O(\cdot)$	$N^{-1.00}$	$N^{-1.89}$	$N^{-1.89}$	$N^{-1.75}$	$N^{-1.79}$	$N^{-1.80}$
Known $O(\cdot)$	N^{-1}	N^{-2}	N^{-2}	N^{-2}	N^{-2}	N^{-2}

Table 2 Tight worst-case bounds on the cost function $LR^2/(F(x_N) - F(x_*))$ of PGM, FPGM, FPGM-($\sigma = 0.78$), FPGM-($m = \left\lfloor \frac{2N}{3} \right\rfloor$), FPGM-OCG, and FPGM-(a = 4). We computed empirical rates by assuming that the bounds follow the form bN^c with constants b and c, and then by estimating c from points N = 47, 50. Note that the corresponding empirical rates are underestimated due to the simplified exponential model.

PEP 30 / 47

Numerical Results

Min composite gradient mapping:

N	PGM	FPGM	FPGM	FPGM	FPGM	FPGM
10	r GW	FFGM	$-(\sigma = 0.78)$	$-\left(m = \left\lfloor \frac{2N}{3} \right\rfloor \right)$	-OCG	-(a=4)
1	1.84	1.84	1.18	1.84	1.84	1.84
2	2.83	2.83	1.78	2.83	2.83	2.83
4	4.81	5.65	3.50	5.09	5.21	5.12
10	10.80	13.24	8.74	14.91	15.60	14.76
20	20.78	27.19	18.83	39.70	39.61	29.21
30	30.78	43.49	30.82	64.45	64.40	47.14
40	40.78	61.76	44.39	92.82	91.99	67.82
47	47.77	75.60	54.73	113.92	113.41	83.67
50	50.77	81.78	59.35	123.54	123.17	90.78
Empi. $O(\cdot)$	$N^{-0.98}$	$N^{-1.27}$	$N^{-1.31}$	$N^{-1.31}$	$N^{-1.33}$	$N^{-1.32}$
Known $O(\cdot)$	N^{-1}	N^{-1}	$N^{-\frac{3}{2}}$	$N^{-\frac{3}{2}}$	$N^{-\frac{3}{2}}$	$N^{-\frac{3}{2}}$

Table 3 Tight worst-case bounds on the norm of the composite gradient mapping $LR/\left(\min_{x \in \Omega_N} ||\tilde{\nabla}_L F(x)||\right)$ of PGM, FPGM, FPGM- $(\sigma = 0.78)$, FPGM- $\left(m = \left\lfloor \frac{2N}{3} \right\rfloor\right)$, FPGM-OCG, and FPGM-(a = 4). Empirical rates were computed as described in Table 2. (The bound for FPGM- σ uses $\min_{x \in \Omega_N} ||\tilde{\nabla}_{L/\sigma^2} F(x)||$.)

PEP 31 / 47

Numerical Results

Final composite gradient mapping:

N	PGM	FPGM	FPGM $-(\sigma = 0.78)$	FPGM $-\left(m = \left \frac{2N}{3} \right \right)$	FPGM -OCG	FPGM -(a=4)
1	1.84	1.84	1.18	1.84	1.84	1.84
2	2.83	2.83	1.78	2.83	2.83	2.83
4	4.81	5.65	3.50	5.09	5.21	5.12
10	10.80	12.68	8.41	14.91	15.60	14.76
20	20.78	22.02	14.26	39.65	39.10	25.96
30	30.78	31.26	20.12	64.40	63.40	34.21
40	40.78	40.46	25.97	92.78	90.16	42.39
47	47.77	46.89	30.06	113.92	110.12	48.13
50	50.77	49.65	31.81	123.53	118.99	50.59
Empi. $O(\cdot)$	$N^{-0.98}$	$N^{-0.92}$	$N^{-0.92}$	$N^{-1.31}$	$N^{-1.25}$	$N^{-0.81}$
Known $O(\cdot)$	N^{-1}	N^{-1}	N^{-1}	$N^{-\frac{3}{2}}$	N^{-1}	N^{-1}

Table 4 Tight worst-case bounds on the norm of the final composite gradient mapping $LR/||\tilde{\nabla}_L F(x_N)||$ of PGM, FPGM, FPGM- $(\sigma=0.78)$, FPGM- $(m=\left\lfloor\frac{2N}{3}\right\rfloor)$, FPGM-OCG, and FPGM-(a=4). Empirical rates were computed as described in Table 2. (The bound for FPGM- σ uses $||\tilde{\nabla}_{L/\sigma^2}F(x_N)||$.)

PEP 32 / 4

Numerical Results

Final subgradient bound:

N	PGM	FPGM	FPGM	FPGM	FPGM	FPGM
IN .	I GM	I I GM	$-(\sigma = 0.78)$	$-\left(m = \left\lfloor \frac{2N}{3} \right\rfloor \right)$	-OCG	-(a = 4)
1	1.00	1.00	0.61	1.00	1.00	1.00
2	2.00	2.00	1.22	2.00	2.00	2.00
4	4.00	4.83	2.94	4.28	4.40	4.31
10	10.00	7.60	4.67	14.12	14.81	12.10
20	20.00	12.58	7.67	38.29	36.65	16.85
30	30.00	17.63	10.74	62.71	60.40	21.61
40	40.00	22.67	13.80	91.00	86.62	26.47
47	47.00	26.20	15.94	112.01	106.21	29.91
50	50.00	27.71	16.86	121.53	114.93	31.39
Empi. $O(\cdot)$	$N^{-1.00}$	$N^{-0.91}$	$N^{-0.91}$	$N^{-1.32}$	$N^{-1.27}$	$N^{-0.78}$
Known $O(\cdot)$	N^{-1}	N^{-1}	N^{-1}	$N^{-\frac{3}{2}}$	N^{-1}	N^{-1}

Table 5 Tight worst-case bounds on the subgradient norm $LR/||F'(x_N)||$ of PGM, FPGM, FPGM- $(\sigma=0.78)$, FPGM- $(m=\left\lfloor\frac{2N}{3}\right\rfloor)$, FPGM-OCG, and FPGM-(a=4), where $F'(x)\in\partial F(x)$ is a subgradient. Empirical rates were computed as described in Table 2.

PEP ______33 / 47

Table of Contents

Previous Results on FISTA

2 FISTA from PEP Perspective

3 Lyapunov Analysis

Lyapunov Analysis

- $\sqrt{2}$ acceleration [Park et al., 2021]
- Acceleration methods monograph [d'Aspremont et al., 2021]

FGM

FGM-form1

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$x_{k+1} = y_{k+1} + \frac{\theta_k - 1}{\theta_{k+1}} (y_{k+1} - y_k)$$

with $x_0 = y_0 = z_0$, $\theta_{k+1}^2 - \theta_{k+1} = (\leq)\theta_k^2$.

FGM-form2

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$z_{k+1} = z_k - \frac{\theta_k}{L} \nabla f(x_k)$$

$$x_{k+1} = (1 - \frac{1}{\theta_{k+1}}) y_{k+1} + \frac{1}{\theta_{k+1}} z_{k+1}$$

OGM

OGM-form1

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$x_{k+1} = y_{k+1} + \frac{\theta_k - 1}{\theta_{k+1}} (y_{k+1} - y_k) + \frac{\theta_k}{\theta_{k+1}} (y_{k+1} - x_k)$$

OGM-form2

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$z_{k+1} = z_k - \frac{2\theta_k}{L} \nabla f(x_k)$$

$$x_{k+1} = \left(1 - \frac{1}{\theta_{k+1}}\right) y_{k+1} + \frac{1}{\theta_{k+1}} z_{k+1}$$

PEP 37 / 47

OGM

OGM-form3 (last step modification)

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$x_{k+1} = y_{k+1} + \frac{\theta_k - 1}{\theta_{k+1}} (y_{k+1} - y_k) + \frac{\theta_k}{\theta_{k+1}} (y_{k+1} - x_k)$$

$$\tilde{x}_{k+1} = y_{k+1} + \frac{\theta_k - 1}{\phi_{k+1}} (y_{k+1} - y_k) + \frac{\theta_k}{\phi_{k+1}} (y_{k+1} - x_k)$$

with
$$x_0 = y_0 = z_0$$
, $\phi_{k+1}^2 - \phi_{k+1} = 2\theta_k^2$.

PEP 38 / 47

FGM:
$$U_k = \theta_{k-1}^2(f(y_k) - f_*) + \frac{L}{2} ||z_k - x_*||^2$$
, $U_k \le U_{k-1}$

PEP 39 / 47

FGM:
$$U_k = \theta_{k-1}^2 (f(y_k) - f_*) + \frac{L}{2} ||z_k - x_*||^2$$
, $U_k \le U_{k-1}$

$$f(y_k) - f_* \le \frac{U_0}{\theta_{k-1}^2} = \frac{LR^2}{2\theta_{k-1}^2} \le \frac{2LR^2}{(k+1)^2}.$$

PEP 39 / 47

OGM (primary sequence):

$$U_{k} = 2\theta_{k-1}^{2}(f(x_{k}) - f_{*} - \frac{1}{2L} \|\nabla f(x_{k})\|^{2}) + \frac{L}{2} \|z_{k+1} - x_{*}\|^{2}, \ U_{k} \leq U_{k-1}$$

PEP 40 / 47

OGM (primary sequence): $U_k = 2\theta_{k-1}^2 (f(x_k) - f_* - \frac{1}{2L} \|\nabla f(x_k)\|^2) + \frac{L}{2} \|z_{k+1} - x_*\|^2$, $U_k \leq U_{k-1}$

$$f(y_k) - f_* \le \frac{LR^2}{4\theta_{k-1}^2} \le \frac{LR^2}{(k+1)^2}.$$

PEP 40 / 47

OGM (secondary sequence):

$$\tilde{U}_k = \phi_k^2(f(\tilde{x}_k) - f_*) + \frac{L}{2} \|z_k - x_* - \frac{1}{L}\phi_k \nabla f(\tilde{x}_k)\|^2, \ \tilde{U}_k \leq U_{k-1}$$

PEP 41 / 47

OGM (secondary sequence):

$$\begin{split} \tilde{U}_k &= \phi_k^2 (\textit{f}(\tilde{x}_k) - f_*) + \frac{L}{2} \left\| z_k - x_* - \frac{1}{L} \phi_k \nabla \textit{f}(\tilde{x}_k) \right\|^2, \ \tilde{U}_k \leq U_{k-1} \\ & \textit{f}(y_k) - f_* \leq \frac{LR^2}{2\phi_k^2} \leq \frac{LR^2}{(k+1+1/\sqrt{2})^2}. \end{split}$$

PEP 41/47

Strongly Convex Case

In strongly convex case, we have similar result that OGM methods is $\sqrt{2}$ times faster than FGM,

PEP 42 / 47

Linear Coupling

First do gradient step, then do mirror descent step, finally couple them together. [Zhu and Orecchia, 2017]

$$y_{k+1} = x_k - L^{-1}Q^{-1}\nabla f(x_k)$$

$$z_{k+1} = \underset{y \in \mathbb{R}^n}{\arg \min} \{V_{z_k}(y) + \langle \alpha_{k+1}\nabla f(x_k), y - x_k \rangle \}$$

$$x_{k+1} = (1 - \tau_{k+1})y_{k+1} + \tau_{k+1}z_{k+1}$$
(LC)

Linear Coupling

Theorem 5 Assume (A1), (A2), and (A3). Let the positive sequence $\{\alpha_k\}_{k=1}^{\infty}$ satisfy $0 \le \alpha_{k+1}^2 L - 2\alpha_{k+1} \le \alpha_k^2 L$ for $k = 1, 2 \dots$ and $\alpha_1 = \frac{2}{L}$. Let $\tau_k = \frac{2}{\alpha_{k+1} L}$ for $k = 1, 2, \dots$ The y_k -sequence of (LC) exhibits the rate

$$f(y_k) - f_\star \le \frac{2V_{x_0}(x_\star)}{L\alpha_k^2}$$

for k = 1, 2, ...

Theorem 6 In the setup of Theorem Ξ , let $0 \leq \tilde{\alpha}_{k+1}^2 L - \tilde{\alpha}_{k+1} \leq \frac{1}{2} \alpha_k^2 L$ and $\tilde{\alpha}_1 = \frac{1}{L}$. Then the \tilde{x}_k -sequence, the secondary sequence with last-step modification, of the linear coupling method (LC) exhibits the rate

$$f(\tilde{x}_k) - f_\star \le \frac{V_{x_0}(x_\star)}{L\tilde{\alpha}_{k+1}^2}$$

for k = 0, 1, ...

4□ > 4□ > 4 = > 4 = > = 90

PEP 44 / 47

Unify FGM and OGM

Unified method. Equivalent to FGM when $t=\frac{1}{2}$, equivalent to OGM when t=1.

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

$$z_{k+1} = z_k - \frac{2t\theta_k}{L} \nabla f(x_k)$$

$$x_{k+1} = \left(1 - \frac{1}{\theta_{k+1}}\right) y_{k+1} + \frac{1}{\theta_{k+1}} z_{k+1}$$

Corollary 5 Assume (A1), (A2) and (A3). Let $0 < t \le 1$. Then

$$f(y_k) - f_{\star} \le \frac{L \|x_0 - x_{\star}\|^2}{4t\theta_{k-1}^2}$$

for k = 1, 2, ...

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

PEP 45 / 47

How to Find Lyapunov Function

Start from functions that contains all the available information at iteration k. Then derive coefficients with numerical insights. [Taylor et al., 2018] [d'Aspremont et al., 2021]

PEP 46 / 47

Bibliography

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imaging Sci., 2:183-202.

d'Aspremont, A., Scieur, D., and Taylor, A. B. (2021).

Acceleration methods.

ArXiv, abs/2101.09545.

Kim, D. and Fessler, J. (2018).

Another look at the fast iterative shrinkage/thresholding algorithm (fista).

SIAM journal on optimization : a publication of the Society for Industrial and Applied Mathematics, 28 1:223–250.

Park, C., Park, J., and Ryu, E. K. (2021).

Factor- $\sqrt{2}$ acceleration of accelerated gradient methods. arXiv: Optimization and Control.

PEP 47 / 47