ex如下随机过程:
Py { Sin = 5', Rin = Y So, Ao, R1,, Se, , Ae, }. Re, Se, Ae}
也就是说在过台所有的历史信息的情况下,Agent 在状态与,采取动作At,进入新状态
(So, Ao, R ₁ ,, St-1, At-1, Pt)
St+1=51 且 Rewayd=Y的联合标序分布。
如果车纸满足马尔科大属性,则所有历史信息都压缩在当前状态54,在经定54的多位
下与过去的历史之关,我们啊:
$P(s', r s, a) = P_r \{ s_{t+1} = s', R_{t+1} = r s_t = s, A_t = a \}$
马车科表决策过程(Markov Pecision Processes)
这个过程即定义的描述的过程。
C CTU KX V 112 Cly CTV
1.计算在状态St=5, At=a时的期望回报
$\gamma(s,a) \equiv E[R_{t+1} S_t=s, A_t=a] = \sum_{r} r P_r(R_{t+1}=r S_t=s, A_t=a)$
16), w) = E C PER 34-3), At - 2 (PER - 1 34-3), At - 2
Note: 边缘分布是联合分布的水和或银分 = \(\sigma\) ren s'es
2. 计算状态整约程处率
P(s' s,a) = Pr(ster=s' St=s, At=a) = \(\subseteq \text{P(s',r s,a)} \)