Math 245A - Real Analysis: Homework #1

Due on October 6, 2023

Professor Mario Bonk

Nakul Khambhati

Problem 1

We proceed by verifying the 3 conditions for A to be an algebra:

- 1. $\emptyset \in \mathcal{F} \subset \mathcal{A}$. This is sufficient to show $X \in \mathcal{A}$ once we show it is closed under taking complement.
- 2. Let $A \in \mathcal{A}$ so we can write $A = A_1 \cup \cdots \cup A_m$ where $A_i \in \mathcal{F}$. Then by condition (iii) for each $i \in [m]$ there exists $n_i \in \mathbb{N}$ and pairwise disjoint $A_{i1}, \ldots, A_{in_i} \in \mathcal{F}$ such that $A_i^c = A_{i1} \cup \ldots \cup A_{in_i}$. So, $A^c = A_1^c \cap \cdots \cap A_m^c = \bigcup_{j_1 \in [n_1], \ldots, j_m \in [n_m]} (A_{1j_1} \cap \cdots \cap A_{mj_m}) \in \mathcal{A}$ since we are taking a disjoint union of elements in \mathcal{F} and the family is closed under finite intersection.
- 3. Let $A, B \in \mathcal{A}$. It suffices to show that $A \cap B \in \mathcal{A}$ as then $A \cup B = (A^c \cap B^c)^c$ and we have already checked that \mathcal{A} is closed under taking complement. By assumption, we can write $A = A_1 \cup \ldots \cup A_n$ and $B = B_1 \cup \ldots \cup B_m$ where $A_i, B_j \in \mathcal{F}$. Then $A \cap B = \bigcup_{i,j=1}^n (A_i \cap B_j) \in \mathcal{A}$ since \mathcal{F} is closed under intersections so we have expressed $A \cap B$ as a finite disjoint union of sets in \mathcal{F} .

Problem 2

- (a) First we verify the conditions for A to be an algebra on X.
 - 1. By considering $I = \emptyset$ and I = [n] we see that $\emptyset = \bigcup_{i \in \emptyset} M_i \in \mathcal{A}$ and $X = \bigcup_{i \in [n]} M_i \in \mathcal{A}$.
 - 2. Let $M \in \mathcal{A}$ so we can write $M = \bigcup_{i \in I} M_i$ for some $I \subset [n]$. Since the $\{M_i\}_{i \in [n]}$ form a partition of X, we can write $M^c = (\bigcup_{i \in I} M_i)^c = \bigcup_{i \in I^c} M_i \in \mathcal{A}$.
 - 3. Let $M_1 = \bigcup_{i \in I_1} M_i, M_2 = \bigcup_{i \in I_2} M_i$ be elements of \mathcal{A} . Then, $M_1 \cup M_2 = \bigcup_{i \in I_1 \cup I_2} M_i \in \mathcal{A}$.

Elements of \mathcal{A} are in bijection with subsets of [n] so there are 2^n elements in the algebra. Yes, every finite algebra is a σ -algebra since countable unions and finite unions are the same.

(b) Need to explicitly construct this set somehow by partitioning based on disjoint parts. Just need to formalize this construction.

Problem 3

Problem 4

Problem 5

- (a) We are given that \mathcal{A} is an algebra on X. First assume that it is a σ -algebra and $A_n \nearrow$. We know that a σ -algebra is closed under countable unions so $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$. Conversely assume that the property holds and we need to show that \mathcal{A} is closed under countable unions. Let $\{B_n\}_{n \in \mathbb{N}}$ be an arbitrary collection of elements in \mathcal{A} . Define $A_n = \bigcup_{i \in [n]} B_i$ so it is the union of the first n elements in the collection. Since \mathcal{A} is an algebra, each $B_i \in \mathcal{A}$ by closure under finite unions. Clearly $A_n \subset A_{n+1}$ so $A_n \nearrow$. But also note that for all n we have $\bigcup_{i \in [n]} A_i = A_n = \bigcup_{i \in [n]} B_i$ so in particular $\bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$ by the property we assumed and so we are done.
- (b) We need to show that μ has countable additivity assuming it has finite additivity and the property stated. Let $\{B_n\}_{n\in\mathbb{N}}\in\mathcal{A}$ be a collection of pairwise disjoint sets. We define $A_n=\bigcup_{i\in[n]}B_i$ as above so that $A_n\nearrow$. Then $\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{N\to\infty}\mu\left(A_n\right)$. But from finite additivity, we can write $\mu\left(A_n\right)=\sum_{i=1}^n\mu\left(B_i\right)$ so the term above simplifies to $\sum_{n=1}^\infty\mu\left(B_n\right)$.

Problem 6

(a) Note that $x \in A$ if and only if for all $n \in \mathbb{N}$, there exists some $m \geq n$ such that $x \in A_m$. This is because if $x \in A$ i.e. it is in infinitely many A_m then it is also in infinitely many A_m if we exclude a finite number of sets (say the first n sets). On the other hand, if it is not in infinitely many A_n there is an N such that for all for all n > N, $x \notin A_n$ and so the right hand side becomes false. Finally, we can write $\forall n \in \mathbb{N}, \exists m \geq n : x \in A_m \iff x \in \bigcap_{n \in \mathbb{N}} \bigcup_{m \geq n} A_m$. A is a countable intersection of a countable union of sets in A and is therefore in A.

Math 245A - Real Analysis: Homework #1

(b) Let B_n denote $\bigcup_{m\geq n} A_m$. Then $A = \bigcap_{n\in\mathbb{N}} B_n$ and $B_n \searrow$. Also $\mu(B_1) = \mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) \leq \sum_{n=1}^{\infty} \mu(A_n) < \infty$ so we can apply continuity from above to get $\mu(A) = \lim_{n\to\infty} \mu(B_n)$. Then, by countable subadditivity, $\mu(B_n) \leq \sum_{m=n}^{\infty} \mu(A_m)$ which goes to 0 as $n\to\infty$ because $\sum_{n=1}^{\infty} \mu(A_n) < \infty$.

Problem 7

- (a) Pick A_1 to be a set such that there are infinitely many sets in \mathcal{A} that intersect with A_1^c . Such an A_1 always exists because \mathcal{A} has infinite elements. Next, choose A_2 from $\{A_1^c \cap B : B \in \mathcal{A}\}$ such that there are infinitely many sets in \mathcal{A} that intersect with both A_1^c and A_2^c . This way, A_1 and A_2 are disjoint. We can repeat this process indefinitely. Formally, assume we have picked $A_1, A_2, \ldots, A_{n-1}$ that are disjoint and there are infinite sets in \mathcal{A} that intersect with all A_i^c . Then, once again, we can pick A_n disjoint from the others such that infinitely many sets in \mathcal{A} intersect it. This gives us an infinite series of disjoint sets in \mathcal{A} .
- (b) Call this disjoint family $\mathcal{F} = \{A_i\}_{i \in \mathbb{N}}$. Now consider the collection \mathcal{G} of all sets that can be obtained by taking (disjoint) unions of sets in this family. Each element in \mathcal{G} is also in \mathcal{A} since it is closed under countable unions. Since the A_i are disjoint, this collection \mathcal{G} is in bijection with subsets of \mathbb{N} which we know is uncountable by Cantor's diagonal argument. Since $\mathcal{G} \subset \mathcal{A}$, we also get that \mathcal{A} is uncountable.