PARISHRAM 2025

Mathematics

DPP: 1

Relations and Functions

- **Q1** Let A and B be finite sets containing 3 and 5 elements respectively then no. of relations that can be defined from A to B is
 - (A) 2^{15}
- (B) 2^8
- (C) 2^{30}
- (D) 2^{18}
- **Q2** If n(A)=3 and a relation R is defined on set A, then no. of possible reflexive relations is
 - (A) 64
- (B) 32
- (C) 16
- (D) 8
- **Q3** Let $A = \{1, 2, 3\} \& B = \{5, 7, 9\}$ if a relation Rdefined from Ais B, defined as $R = \{(a,b) : a > b, a \in A \& b\}$ $\in B$ } then R is
 - (A) Universal Relation
 - (B) Null Relation
 - (C) Identity Relation
 - (D) None of these
- **Q4** Let $A = \{-5, -2, -3\} \& B = \{1, 5, 7\}$ if a relation R is defined from A to B defined by $R = \{(a, b) : a < b, a \in A \& b, a \in A \&$ $\in B$ } then R is
 - (A) Universal Relation
 - (B) Null Relation
 - (C) Identity Relation
 - (D) None of these
- **Q5** In order that a relation R defined on a nonempty set A is an equivalence relation, it is sufficient, if ${\it R}$
 - (A) Is reflective
 - (B) Is symmetric
 - (C) Is transitive
 - (D) Possesses all the above three properties

- **Q6** Let A be the non-void set of the children in a family. The relation x is brother of y on A is
 - (A) Reflexive
- (B) Symmetric
- (C) Transitive
- (D) None of these
- $A = \{1, 2, 3, 4\}$ Q7 Let and $R = \{(1,2), (2,3), (1,3)\}$ be a relation on A, then R is
 - (A) Transitive
 - (B) Symmetric
 - (C) Reflexive
 - (D) Equivalence
- Q8 Let $B = \{a, b, c, d\}$ $R = \{(a,c), (c,a), (a,a), (b,d), (d,b)\}$ be a relation on B, then R is
 - (A) Symmetric
 - (B) Transitive
 - (C) Reflexive
 - (D) Equivalence
- **Q9** Let A be the set of all students in a school. A relation R is defined on A as follows:aRb iff aand b have the same teacher
 - (A) Reflexive
- (B) Symmetric
- (C) Transitive
- (D) Equivalence

Q10 Let

$$R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9)\}$$

- (3,12),(3,6)} be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is
- (A) reflexive and transitive only
- (B) reflexive only
- (C) reflexive and symmetric only
- (D) equivalence relation
- **Q11** Let be a relation R_1 defined $R_1 = \{(a,b)\} \mid a \geq b, a,b \in R\}$. Then, R_1 is

- (A) An equivalence relation on ${\cal R}$
- (B) Reflexive, transitive but not symmetric
- (C) Symmetric, transitive but not reflexive
- (D) Neither transitive not reflexive but symmetric
- **Q12** The void relation on a set A is
 - (A) Reflexive
 - (B) Symmetric and transitive
 - (C) Reflexive and symmetric
 - (D) Reflexive and transitive
- Q13 Show that the relation R in the set A of all the books in a library of a college, given by $R=\{(x,y):x \text{ and } y \text{ have same number of pages }\}$ is an equivalence relation.
- **Q14** Let R be the relation in the set N given by $R = \{(a,b): a-b \text{ is divisible by } 5\}$. Prove that R is an equivalence relation.
- Q15 Show that the relation R defined in the set A of all triangles as $R=\{(T_1,T_2):T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides $3,4,5,T_2$ with sides 5,12,13 and T_3 with sides 6,8,10. Which triangles among T_1,T_2 and T_3 are related?

Answer Key

Q1	(A)	Q9	(D)
Q2	(A)	Q10	(A)
Q3	(B)	Q11	(B)
Q4	(A)	Q12	(B)
Q5	(D)	Q13	Check the solution
Q6	(C)	Q14	Check the solution
Q7	(A)	Q15	T_{1} and T_{3} are related.
Q8	(A)		

Android App | iOS App | PW Website