Les mathématiques de la distanciation sociale

CHOUKRANI Omar

2021-2022 : Santé, prévention.

Travail d'Initiative Personnelle Encadré

Plan de la présentation

- 1 Motivation
- 2 Modélisation
- 3 Hexagones et énergies
- 4 Conclusion
- 6 Annexe

Plan de la présentation

- 1 Motivation
- 2 Modélisation
- 3 Hexagones et énergies
- 4 Conclusion
- 6 Annexe

Motivation

Motivation

Motivation

Mais qu'est ce que l'empilement de sphères ?

Plan de la présentation

- 1 Motivation
- 2 Modélisation
- 3 Hexagones et énergies
- 4 Conclusion
- 6 Annexe

Définitions

• Empilement de sphères :

C'est toute famille
$$(S(c_i, R))_{i \in I}$$
 telle que $\forall (i, j) \in I^2, i \neq j \Rightarrow ||c_i - c_j|| \geq 2R$.

Définitions

• Empilement de sphères :

C'est toute famille
$$(S(c_i, R))_{i \in I}$$
 telle que $\forall (i, j) \in I^2, i \neq j \Rightarrow ||c_i - c_j|| \geq 2R$.

Densité d'un empilement de sphères :
 C'est la proportion d'espace occupée par ces sphères.

Définitions

• Empilement de sphères :

C'est toute famille
$$(S(c_i, R))_{i \in I}$$
 telle que $\forall (i, j) \in I^2, i \neq j \Rightarrow ||c_i - c_j|| \geq 2R$.

- Densité d'un empilement de sphères :
 C'est la proportion d'espace occupée par ces sphères.
- Empilement compact :
 Sa densité est maximale.

Exemples

Exemples

(a) NON.

Exemples

- (a) NON.
- (b) OUI, de densité $\frac{3\pi R^2}{L^2}$.

Comment aboutir à un empilement compact ?

Un peu d'histoire

La conjecture de Kepler (1571 – 1630) :
 L'empilement hexagonal compact et l'empilement cubique à faces centrées sont des empilements compacts en dimension 3.

Un peu d'histoire

Cubique à faces centrées ABC

Hexagonal compact ABA

Un peu d'histoire

L'empilement hexagonal compact et l'empilement cubique
 à faces centrées sont des empilements compacts en dimension 3.

Un peu d'histoire

- L'empilement hexagonal compact et l'empilement cubique à faces centrées sont des empilements compacts en dimension 3.
- Carl Friedrich Gauss (1777 1855) : C'est vrai en réseau régulier !

Un peu d'histoire

- L'empilement hexagonal compact et l'empilement cubique à faces centrées sont des empilements compacts en dimension 3.
- Carl Friedrich Gauss (1777 1855) : C'est vrai en réseau régulier !
- En 2015, avec Thomas Hales et le projet Flyspeck : démonstration formelle de la conjecture.

Théorème

Théorème de Thue

L'empilement hexagonal régulier est le plus dense empilement de sphères dans le plan. La densité correspondante à cet empilement est $\frac{\pi}{\sqrt{12}}$.

Figure 1: Empilement hexagonal régulier de cercles dans le plan.

Définition

• Empilement hexagonal :

C'est tout empilement de sphères $(S(c_i, R))_{i \in I}$ tel que : $\{c_i, i \in I\}$ repose sur un réseau hexagonal.

Exemples

Figure 2:

- (a) Empilement carré de 35 cercles dans un rectangle.
- (b) Empilement hexagonal de 35 cercles dans un rectangle.

Exemples

Figure 3:

- (a) Empilement carré de 4 cercles dans un carré.
- (b) Empilement hexagonal de 4 cercles dans un carré.

Nous nous intéresserons aux empilements de sphères :

• Unitaires de $(\mathbb{R}^2, \|\cdot\|_2)$.

Nous nous intéresserons aux empilements de sphères :

- Unitaires de $(\mathbb{R}^2, \|\cdot\|_2)$.
- Dont le nombre est hexagonal centré.

Nous nous intéresserons aux empilements de sphères :

- Unitaires de $(\mathbb{R}^2, \|\cdot\|_2)$.
- Dont le nombre est hexagonal centré.
- Dans un espace infini (i.e absence d'effet de bord).

Nous nous intéresserons aux empilements de sphères :

- Unitaires de $(\mathbb{R}^2, \|\cdot\|_2)$.
- Dont le nombre est hexagonal centré.
- Dans un espace infini (i.e absence d'effet de bord).
- D'une énergie quadratique minimale.

Plan de la présentation

- 1 Motivation
- 2 Modélisation
- 3 Hexagones et énergies
- 4 Conclusion
- 6 Annexe

Nombre hexagonal centré

La suite des nombres hexagonaux centrés est définie par :

$$\forall n \in \mathbb{N}^*, \ U_n = n^3 - (n-1)^3$$

Figure 4: Représentation d'empilements de U_1 resp. U_2 , U_3 et U_4 cercles.

Energie quadratique

On appelle énergie quadratique $\zeta(n)$ d'un empliments de $n \geq 2$ sphères $(S(c_1,1),...,S(c_n,1))$:

$$\zeta(n) = \sum_{1 \le i \le j \le n} \|c_i - c_j\|_2^2$$

L'énergie quadratique moyenne $\xi(n)$ correspondante est définie par :

$$\xi(n) = \frac{\zeta(n)}{n}$$

Théorème

Motivation

Énergie quadratique d'un empilement hexagonal

$$\forall n \geq 2, \ \zeta(U_n) = 4\binom{n}{2}\left(5\binom{n}{2} + 1\right)\left(6\binom{n}{2} + 1\right)$$

n	Un	$\zeta(U_n)$	$\xi(U_n)$
1	1	0	0
2	7	168	24
3	19	3648	192
4	37	27528	744
5	61	124440	2040
6	91	414960	4560
7	127	1130808	8904
8	169	2668848	15792
9	217	5655888	26064
10	271	11024280	40680

Figure 5: Valeurs caractéristiques des empilements hexagonaux.

Figure 6: ζ et 100ξ en fonction de U_n pour $n \in [1, 20]$.

Est-ce tout empilement optimal à nombre hexagonal de sphères hexagonal ?

Annexe

Notations

- $S = (S(X_i, 1))_i$ est un empilement de $U_N = n$ sphères.
- $X_i(t_0)$ est le vecteur position associé à la i-ème sphère à l' instant $t_0 \in \mathbb{R}^+$.

Four
$$i \in \{1, \dots, n\}, l_0 \in \mathbb{R}^+,$$
 $X_i(t_0) = X_i(0)$

$$X_i(t_0) = X_i(0) + W_i(t_0)$$

$$\begin{split} X_i(t_{\!\!0}) &= X_i(0) + W_i(t_{\!\!0}) \\ &- a \qquad \int_0^{t_{\!\!0}} (X_i(t) - X_j(t)) \, \mathrm{d}t \end{split}$$

$$X_{i}(t_{0}) = X_{i}(0) + W_{i}(t_{0})$$

$$- a \qquad \int_{0}^{t_{0}} (X_{i}(t) - X_{j}(t)) dt$$

$$+ \qquad \int_{0}^{t_{0}} (X_{i}(t) - X_{j}(t)) dL_{ij}(t)$$

$$\begin{split} X_i(t_{\!\scriptscriptstyle 0}) &= X_i(0) + W_i(t_{\!\scriptscriptstyle 0}) \\ &- a \qquad \int_0^{t_{\!\scriptscriptstyle 0}} (X_i(t) - X_j(t)) \,\mathrm{d}t \\ &+ \qquad \int_0^{t_{\!\scriptscriptstyle 0}} (X_i(t) - X_j(t)) \,\mathrm{d}L_{ij}(t) \end{split}$$

• $L_{ij}(0) = 0$

$$\begin{split} X_{i}(t_{0}) &= X_{i}(0) + W_{i}(t_{0}) \\ &- a \qquad \int_{0}^{t_{0}} (X_{i}(t) - X_{j}(t)) \, \mathrm{d}t \\ &+ \qquad \int_{0}^{t_{0}} (X_{i}(t) - X_{j}(t)) \, \mathrm{d}L_{ij}(t) \end{split}$$

•
$$L_{ij}(0) = 0$$
 • $L_{ij} \equiv L_{ji}$

Annexe

$$\begin{split} X_i(t_0) &= X_i(0) + W_i(t_0) \\ &- a \qquad \int_0^{t_0} (X_i(t) - X_j(t)) \, \mathrm{d}t \\ &+ \qquad \int_0^{t_0} (X_i(t) - X_j(t)) \, \mathrm{d}L_{ij}(t) \end{split}$$

•
$$L_{ij}(0) = 0$$
 • $L_{ij} \equiv L_{ji}$ • $L_{ii} \equiv 0$

Annexe

$$\begin{split} X_i(t_0) &= X_i(0) + W_i(t_0) \\ &- a \qquad \int_0^{t_0} (X_i(t) - X_j(t)) \, \mathrm{d}t \\ &+ \qquad \int_0^{t_0} (X_i(t) - X_j(t)) \, \mathrm{d}L_{ij}(t) \end{split}$$

- $L_{ij}(0) = 0$ $L_{ij} \equiv L_{ji}$ $L_{ii} \equiv 0$
- $\bullet \ L_{ij}(t) = \int_0^{t_0} \mathbb{1}_{|X_i(t) X_j(t)| = 2} \, \mathrm{d}L_{ij}(t)$

$$\begin{split} X_{i}(t_{0}) &= X_{i}(0) + W_{i}(t_{0}) \\ &- a \qquad \int_{0}^{t_{0}} (X_{i}(t) - X_{j}(t)) \, \mathrm{d}t \\ &+ \qquad \int_{0}^{t_{0}} (X_{i}(t) - X_{j}(t)) \, \mathrm{d}L_{ij}(t) \end{split}$$

- $L_{ij}(0) = 0$ $L_{ij} \equiv L_{ji}$ $L_{ii} \equiv 0$
- $L_{ij}(t) = \int_0^{t_0} \mathbb{1}_{|X_i(t) X_j(t)| = 2} dL_{ij}(t)$
- $\bullet \int_{0}^{t_{0}} \mathbb{1}_{|X_{i}(t)-X_{j}(t)|\neq 2} dL_{ij}(t) = 0$

$$\begin{split} X_i(t_0) &= X_i(0) + W_i(t_0) \\ &- a \sum_{j=1}^n \int_0^{t_0} (X_i(t) - X_j(t)) \, \mathrm{d}t \\ &+ \sum_{j=1}^n \int_0^{t_0} (X_i(t) - X_j(t)) \, \mathrm{d}L_{ij}(t) \end{split}$$

•
$$L_{ii}(0) = 0$$
 • $L_{ii} \equiv L_{ii}$ • $L_{ii} \equiv 0$

•
$$L_{ij}(t) = \int_0^{t_0} \mathbb{1}_{|X_i(t) - X_j(t)| = 2} dL_{ij}(t)$$

$$\bullet \int_{0}^{t_{0}} \mathbb{1}_{|X_{i}(t)-X_{j}(t)|\neq 2} dL_{ij}(t) = 0$$

Annexe

$$\begin{split} \bullet & \text{ Pour } i \in \{1, \dots, n\}, t_{\scriptscriptstyle 0} \in \mathbb{R}^+, \\ & X_i(t_{\scriptscriptstyle 0}) = X_i(0) + W_i(t_{\scriptscriptstyle 0}) \\ & - a \sum_{j=1}^n \int_0^{t_{\scriptscriptstyle 0}} (X_i(t) - X_j(t)) \, \mathrm{d}t \\ & + \sum_{j=1}^n \int_0^{t_{\scriptscriptstyle 0}} (X_i(t) - X_j(t)) \, \mathrm{d}L_{ij}(t) \end{split}$$

- $L_{ij}(0) = 0$ $L_{ij} \equiv L_{ji}$ $L_{ii} \equiv 0$
- $L_{ij}(t) = \int_0^{t_0} \mathbb{1}_{|X_i(t) X_j(t)| = 2} dL_{ij}(t)$
- $\bullet \int_{0}^{t_{0}} \mathbb{1}_{|X_{i}(t)-X_{j}(t)|\neq 2} dL_{ij}(t) = 0$

Annexe

• Pour $i \in \{1, \dots, n\}, t_o \in \mathbb{R}^+,$ $X_i(t_o) = X_i(0) + W_i(t_o)$ $-a \sum_{j=1}^n \int_0^{t_o} (X_i(t) - X_j(t)) dt$ $+ \sum_{i=1}^n \int_0^{t_o} (X_i(t) - X_j(t)) dL_{ij}(t)$

•
$$L_{ij}(0) = 0$$
 • $L_{ij} \equiv L_{ji}$ • $L_{ii} \equiv 0$

•
$$L_{ij}(t) = \int_0^{t_0} \mathbb{1}_{|X_i(t) - X_j(t)| = 2} dL_{ij}(t)$$

$$\bullet \int_{0}^{t_{0}} \mathbb{1}_{|X_{i}(t)-X_{j}(t)|\neq 2} dL_{ij}(t) = 0$$

Détection des collisions

Détection des collisions

Détection des collisions

Simulations

- N = 7
- a = 100
- *rep* = 300
- *rayon* = 7
- rayonF = 7.7

Simulations

- N = 19
- a = 100
- rep = 300
- *rayon* = 4
- rayonF = 4.9

Simulations

- N = 37
- a = 40
- rep = 290
- *rayon* = 4
- *rayonF* = 5

Plan de la présentation

- 1 Motivation
- 2 Modélisation
- 3 Hexagones et énergies
- 4 Conclusion
- 6 Annexe

En fin!

Théorie

Simulation

Merci de votre attention !

