Optimization Methods

Fall 2021

Homework 1

Instructor: Lijun Zhang Name: Student name, StudentId: Student id

Notice

- The submission email is: zhangzhenyao@lamda.nju.edu.cn.
- Please use the provided LATEX file as a template.
- If you are not familiar with LATEX, you can also use Word to generate a PDF file.

Problem 1: Inequalities

Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, where n is a positive integer. Let $\|\cdot\|$ denote the Euclidean norm.

- a) Prove the triangle inequality $||x + y|| \le ||x|| + ||y||$.
- b) Prove $||x+y||^2 \le (1+\epsilon)||x||^2 + (1+\frac{1}{\epsilon})||y||^2$ for any $\epsilon > 0$.

Hint: You may need the Young's inequality for products, i.e. if a and b are nonnegative real numbers and p and q are real numbers greater than 1 such that 1/p + 1/q = 1, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.

Problem 2: Convex sets

- a) Show that a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m\}$ is convex.
- b) Show that if $S \subseteq \mathbb{R}^n$ is convex, and $A \in \mathbb{R}^{m \times n}$, then $A(S) = \{Ax : x \in S\}$, is convex.
- c) Show that if $S \subseteq \mathbb{R}^m$ is convex, and $A \in \mathbb{R}^{m \times n}$, then $A^{-1}(S) = \{x : Ax \in S\}$, is convex.

Problem 3: Hyperplane

What is the distance between two parallel hyperplanes, i.e., $\{x|a^{\top}x=b\}$ and $\{x|a^{\top}x=c\}$?

Problem 4: Examples

Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbb{R}^n | x^T A x + b^T x + c \leqslant 0\}$$

with $A \in \mathbb{S}^n$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- a) Show that C is convex if $A \succeq 0$.
- b) Is the following statement true? The intersection of C and the hyperplane defined by $g^T x + h = 0$ is convex if $A + \lambda g g^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Problem 5: Generalized Inequalities

Let K^* be the dual cone of a convex cone K. Prove the following,

- a) K^* is indeed a convex cone.
- b) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.