

CLAIMS

What is claimed is:

1. A self calibrating network comprising:

5 a first node transmitting a calibration data packet; and
 a second node receiving said calibration data packet and
determining a calibration value for said second node to optimize the
transfer of data from said first node to said second node.

10 2. The self calibrating network according to claim 1,
wherein:

 said second node stores said calibration value in a
calibration memory.

15 3. The self calibrating network according to claim 1,
wherein:

 said calibration data packet contains a node identification
associated with said first node.

20 4. The self calibrating network according to claim 1,
wherein:

 said second node repeatedly accepts copies of said
calibration data packet from said first node until the transfer of data from
said first node to said second node is optimized.

25 5. The self calibrating network according to claim 2,
wherein:

 said calibration memory stores said calibration value
associated with a node identification.

6. The self calibrating network according to claim 1,
wherein:

5 said first node repeatedly transmits a calibration data packet
until said second node acknowledges an optimal calibration value has
been determined.

7. The self calibrating network according to claim 1,
wherein:

10 said one of said first node or said second node issues a
network lock command on the network, ceasing nodes other than said first
node or said second node from communicating on the network.

8. The self calibrating network according to claim 7,
wherein:

15 said first node or said second node issues an unlock
command on the network, giving permission to all nodes on the network to
again begin communication.

9. A method for self calibrating a network comprising:

20 transmitting a calibration data packet from a first node; and
receiving said calibration data packet by a second node and
determining a calibration value for said second node to optimize the
transfer of data from said first node to said second node.

25 10. The method for self calibrating a network according to
claim 9, further comprising:

 storing said calibration value in a calibration memory.

11. The method for self calibrating a network according to
claim 9, further comprising:

associating a node identification associated with said first
node in said calibration data packet.

5

12. The method for self calibrating a network according to
claim 9, further comprising:

repeatedly accepting copies of said calibration data packet
by said second node from said first node until the transfer of data from
10 said first node to said second node is optimized.

13. The method for self calibrating a network according to
claim 10, further comprising:

storing in said calibration memory said calibration value
15 associated with a node identification.

14. The method for self calibrating a network according to
claim 9, further comprising:

repeatedly transmitting from said first node a calibration data
20 packet until said second node acknowledges an optimal calibration value
has been determined.

15. The method for self calibrating a network according to
claim 9, further comprising:

25 issuing from said one of said first node or said second node
a network lock command on the network, ceasing nodes other than said
first node or said second node from communicating on the network.

16. The method for self calibrating a network according to
claim 15, further comprising:

issuing from said first node or said second node an unlock
command on the network, giving permission to all nodes on the network to

5 again begin communication.

17. A means for self calibrating a network comprising:

a transmitter means for transmitting a calibration data packet
from a first node; and

10 a receiver means for receiving said calibration data packet
from said first node and determining a calibration value for said second
node to optimize the transfer of data from said first node to said second
node.

15 18. The means for self calibrating a network according to
claim 17, further comprising:

a storage means for storing said calibration value in a
calibration memory.

20 19. The means for self calibrating a network according to
claim 17, further comprising:

an associate means for associating a node identification with
said first node in said calibration data packet.

25 20. The means for self calibrating a network according to
claim 17, further comprising:

a repeated acceptor means for repeatedly accepting copies
of said calibration data packet by said second node from said first node
until the transfer of data from said first node to said second node is
30 optimized.

21. The means for self calibrating a network according to
claim 17, further comprising:

a storage means in said calibration memory said calibration
value associated with a node identification.

5

22. The means for self calibrating a network according to
claim 17, further comprising:

a repeated transmitter means repeatedly transmitting from
said first node a calibration data packet until said second node
10 acknowledges an optimal calibration value has been determined.

23. The means for self calibrating a network according to
claim 17, further comprising:

an issue means for issuing from said one of said first node
15 or said second node a network lock command on the network, ceasing
nodes other than said first node or said second node from communicating
on the network.

24. The means for self calibrating a network according to
20 claim 23, further comprising:

an issue means for issuing from said first node or said
second node an unlock command on the network, giving permission to all
nodes on the network to again begin communication.

25