Analysis 1 Hundertmark WS 2023/2024

Alle Angaben ohne Gewähr

5. November 2023

Beispiele

Die Natürlichen Zahlen \mathbb{N} sind alle Zählzahlen (1, 2, 3, 4, 5, ...)

$$n \in \mathbb{N}$$
 ist gerade mit $n = 2k$
 $n \in \mathbb{N}$ ist ungerade mit $n = 2k - 1$

Behauptung 0.0.1

Für $n \in \mathbb{N}$ ist n gerade, folgt aus n^2 gerade

Beweis: Direkt:

$$n = 2k$$

$$\implies n^2 = 4k^2$$

$$= 2 \cdot \underbrace{(2k^2)}_{\in \mathbb{N}}$$

$$\implies n^2 \text{ ist gerade}$$

Behauptung 0.0.2

aus n^2 gerade folgt n gerade. Diese Aussage zu treffen ist schwierig, da man mit Wurzeln hantieren muss. Was allerdings einfach zu beweisen ist, ist Behauptung 3

Behauptung 0.0.3

Aus n ungerade folgt n^2 ungerade

Beweis: durch Kontraposition Annahme: n = 2k - 1 mit $k \in \mathbb{N}$

$$n^{2} = (2k - 1)^{2}$$

$$= 4k^{2} - 4k + 1$$

$$= 2(2k^{2} - 2k) + 1$$

$$= 2(2k(k - 1) + 1)$$

$$= 2\underbrace{(2k(k - 1) + 1)}_{\in \mathbb{N}} - 1$$

$$\implies n^{2} \text{ ist ungerade}$$

Frage 1: Was hat Beh. 2 mit Beh. 3 zu tun?

p="n ist gerade", q=" n^2 ist gerade"

Beh. 2: Aus q folgt p

Beh. 3 Aus nicht p folgt nicht q (Kontraposition)

$$A \Longrightarrow B \Leftrightarrow \neg B \Longrightarrow \neg A$$

Behauptung 0.0.4

 $\sqrt{2}$ ist irrational

Beweis: Annahme: $\sqrt{2} \in \mathbb{Q}$

$$\mathrm{D.h.}\sqrt{2} = \frac{m}{n}\mathrm{mit}\ m\in\mathbb{Z}, n\in\mathbb{N}$$

D.h.
$$A := \{ n \in \mathbb{N} : \exists m \in \mathbb{Z} \text{ mit } \sqrt{2} = \frac{m}{n} \}$$

 $\sqrt{2}$ ist rational genau dann, wenn A nicht leer ist.

A ist Teilmenge N

ist A nicht leer, so hat A ein kleinstes Element (Prinzip des kleinsten Diebes)

D.h. es existiert $n_* \in A$ mit $n \ge n_*$ deshalb in A $\sqrt{2} = \frac{m}{n_*}$

$$m - n_* = \sqrt{2}n_* - n_* = (\sqrt{2} - 1)n_*$$

Es gilt: $1 < \sqrt{2} < 2 \to 0 < \sqrt{2} - 1 < 1$

Also folgt $m - n_*$ ist eine ganze Zahl

und $m - n_* = (\sqrt{2} - 1)n_* > 0$ also ist $m - n_* \in \mathbb{N} \ge 1$

und $m - n_* = (\sqrt{2} - 1)n_* < n_*$

Also ist

$$\sqrt{2} = \frac{m}{n_*} = \frac{m(m - n_*)}{n_*(m - n_*)} = \frac{m^2 - mn_*}{n_*(m - n_*)}$$
$$= \frac{2n^2 - mn_*}{n_*(m - n_*)}$$
$$= \frac{n_*(2n_* - m)}{n_*(m - n_*)} = \frac{2n_* - m}{m - n_*} = \frac{\tilde{m}}{m - n_*}$$

wobe
i $\tilde{m}\in\mathbb{Z}$

D.h. $m - n_* \in A$

Widerspruch zu n_* ist kleinstes Element von A, da $m - n_* < n_*$

Behauptung 0.0.5

Seien $k \in \mathbb{N}$, dann ist $\sqrt{k} \in \mathbb{N}$ oder $\sqrt{k} \in \mathbb{I}$.

Beweis: durch Widerspruch

$$A:=\{n\in\mathbb{N}|\exists m\in\mathbb{Z}: \sqrt{k}=\frac{m}{n} \text{ für } \sqrt{k}\notin\mathbb{N}\}$$

- 1. $\sqrt{k} > 1$, d.h. es gibt ein $\in \mathbb{N}$ mit $l < \sqrt{k} < l + 1$
- 2. A hat ein kleinstes Element n_*

Man müsste eigentlich beweisen, dass für $\forall M \subseteq \mathbb{N}$ ein kleinstes Element existiert

$$\sqrt{k} = \frac{m}{n_*}$$

$$\underbrace{m - ln_*}_{\in \mathbb{Z}} = \sqrt{k}n_* - ln_* = \underbrace{(\sqrt{k} - l)}_{>0} n_* > 0$$

$$\Longrightarrow (m - ln_*) \in \mathbb{N}$$

$$m - ln_* = \underbrace{(\sqrt{k} - l)}_{<1} n_* < 1n_* = n_*$$

Also gilt:

$$\sqrt{k} = \frac{m}{n_*} = \frac{m(m - ln_*)}{n_*(m - ln_*)}$$

$$= \frac{m^2 - lmn_*}{n_*(m - ln_*)}$$

$$= \frac{kn_*^2 - lmn_*}{n_*(m - ln_*)}$$

$$= \frac{EZ}{kn_* - lm}$$

$$= \frac{kn_* - lm}{m - ln_*}$$

$$\in \mathbb{N}$$

 $\implies m - l n_* \in A$ Widerspruch, da $m - l n_* < n_*.$

Aussagenlogik

Definition 1.0.1: Aussage

Eine Aussage ist eine Behauptung, welche sprachlich, oder durch eine Formel formuliert ist. Diese kann entweder wahr (w), oder falsch sein. (Prinzip vom ausgeschlossenen Dritten)

Hinweis: Ein Beispiel beweist niemals etwas. Ein Gegenbeispiel hingegen, beweist, dass die Aussage falsch ist!

Example 1.0.1

- Bielefeld existiert (w)
- 2+2=5 (f)
- es gibt unendlich viele Primzahlen (w)

Definition 1.0.2: Konjunktion, Disjunktion, Implikation

Seien p,q Aussagen:

- Konjunktion: $p \wedge q$ (p und q) "und"
- Disjunktion: $p \vee q$ (p oder q) "oder"
- Implikation: $p \implies q$ (p impliziert q) "wenn...dann"
- Äquivalenz: $p \iff q$ (p und q sind äquivalent) "genau dann, wenn..."
- $(p \lor q) \land (\neg p \lor \neg q)$ "entweder..., oder..."

1.0.1 Aussagenform H(.)

Wenn wir eine Aussage H(x) für die Variable x haben:

Bspw.:

$$H_1(x) := (x^2 - 3x + 2 = 0)$$

$$H_2(x) := (x = 1 \lor x = 2)$$

$$H_1(x) \iff H_2(x)$$

1.0.2 Beweisstruktur

$$p \implies q$$

Voraussetzung:hinreichende Bedingung für q

Behauptung:notwendige Bedingung für p

Beweis:
$$p \implies r_1 \implies r_2 \implies r_3 \implies r_4 \implies \dots \implies r_n \implies q$$

 $r_1, ... r_n$ sind bereits bekannte wahre Aussagen oder Axiome.

1.0.3 Regeln der Aussagenlogik

Seien A, B und C Aussagen, so sind folgende Aussagen wahr:

- 1. $A \implies A$
- 2. $(A \Longrightarrow B) \land (B \Longrightarrow C) \Longrightarrow (A \Longrightarrow C)$ (Transitivität)
- 3. $(A \land B) \land C \iff A \land B \land C \text{ und } (A \lor B) \lor C \iff A \lor B \lor C \text{ (Assoziativität)}$
- 4. $A \wedge B \iff B \wedge A \text{ und } A \vee B \iff B \vee Aund(A \iff B) \iff (B \iff A)$ (Kommutativität)
- 5. $A \land (B \lor C) \iff (A \land B) \lor (A \land C) undA \lor (B \land C) \iff (A \lor B) \land (A \lor C)$ (Distributivität)
- 6. $(B \implies C) \implies ((A \land B) \implies (A \land C))$ (Monotonie)
- 7. $\neg (A \land B) \iff \neg A \lor \neg Bund \neg (A \lor B) \iff \neg A \land \neg B \text{ (Morgansche Regeln)}$
- 8. $\neg(\neg A) \iff A$ (Doppelte Negation)
- 9. $A \implies B \iff \neg B \implies \neg A \text{ (Kontraposition)}$
- 10. $A \implies B \iff \neg A \lor B$ (Implikation)
- 11. $(A \iff B) \land (B \iff C) \iff (A \iff C)$
- 12. $(A \iff B) \iff (A \implies B) \land (B \implies A) (\ddot{A}quivalenz)$
- 13. $(A \iff B) \iff (A \land B) \lor (\neg A \land \neg B)$

Mengen

Definition 2.0.1: Mengen

Nach Cantor ist eine Menge M eine Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens (welche die Elemente von M genannt werden) zu einem Ganzen. Diese Objekte heißen Elemente:

$$Bsp.: A := \{M, A, T, H, E, M, A, T, I, K\}$$

= $\{M, A, H, T, E, A, I, K\}$
= $\{T, H, E, M, T, A, I, K\}$

Man schreibt $x \in A$, wenn A eine Menge ist und x ein Element von A ist. Ist x kein Element von A, so schriebt man $x \notin A$

Ist H(.) eine Aussagem die von einer Variable x abhängt, dann gibt es eine Menge

$$A := \{x | H(x)\}$$

D.h. $x \in A \iff H(x)$ ist wahr

$$H(x) := \{x^2 - 3x + 2 = 0\}$$

 $B := \{x | H(x)\} = \{1, 2\}$

Definition 2.0.2: Gleichheit, leere Menge, Teilmenge

- 1. 2 Mengen A und B sind gleich, wenn sie die selben Elemente enthalten.
- 2. Die leere Menge (\emptyset) ist die eindeutige Menge, welche kein Elemnt enthält
- 3. Teilmengen: Wenn alle Elemente von A auch Elemente von B sind, dann ist A Teilmenge von B. $A \subseteq B$ bzw. $A \supseteq B$ für alle $x \in A$ folgt $x \in B$ Bemerkung: $A = B \iff (A \subseteq B) \land (B \subseteq A)$
- 4. Ist $A \subseteq B$ und $A \neq B$, dann nennt man A echte Teilmenge von B

$$A \subseteq B$$

5. Zwei Mengen sind disjunkt, falls $x \in A \land x \notin B$ oder $A \cap B = \emptyset$

2.0.1 Operationen mit Mengen

- Durchschnitt: $A \cap B := \{x | (x \in A) \land (x \in B)\}$
- Vereinigung: $A \cup B := \{x | (x \in A) \lor (x \in B)\}$
- Differenz/Komplement: $A \setminus B := \{(x \in A) \land (x \notin B)\}$ Ist $A \subseteq M : A^C = A_M^C = M \setminus A$

2.0.2 Regeln für Mengen

Seien A, B, C, M Mengen und $A, B \subseteq M$. Dann gilt:

- 1. $A \cap B = B \cap A$ und $A \cup B = B \cup A$.
- 2. $(A \cap B) \cap C = A \cap (B \cap C)$ und $(A \cup B) \cup C = A \cup (B \cup C)$.
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ und $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 4. $(A \cap B)^C = (A \cap B)_M^C = A^C \cup B^C = A_M^C \cup B_M^C$ $(A \cup B)^C = A^C \cap B^C$ $M \setminus (A \cap B) = (M \setminus A) \cup (M \setminus B)$ $M \setminus (A \cup B) = (M \setminus A) \cap (M \setminus B)$

Behauptung 2.0.1 ∩ ist kommutativ

 $A \cap B \iff B \cap A$

Beweis:

$$A \cap B = \{x | x \in A \land x \in B\}$$
$$= \{x | x \in B \land c \in A\}$$
$$= B \cap A$$

Behauptung 2.0.2 Distributivität von ∩ und ∪

 $A \cup (B \cap C) \iff (A \cup B) \cap (A \cup C)$

Beweis:

$$x \in A \cup (B \cap C) \iff x \in A \land x \in B \cap C$$

$$\iff x \in A \lor (x \in B \land x \in C)$$

$$\iff (x \in A \lor x \in B) \land (c \in A \lor x \in C)$$

$$\iff x \in A \cup B \land x \in A \cup B$$

$$\iff (A \cup B) \cap (A \cup C)$$

Die restlichen Beweise sind ähnlich

Definition 2.0.3: Mengenfamilien

Sei J beliebige Menge $J \neq \emptyset$

Eine Familie von Mengen (Mengenfamilie) ist gegeben durch A_j fpr jeden $j \in J$ Schreibe:

 ${A_i}_{j \in J}$

Definition 2.0.4: Schnitt und Vereinigungsmengen

Es kommt öfters vor, dass man eine Menge I gegeben hat (Indexmenge genannt) und jedem Element $i \in I$ der Indexmenge wird eine Menge A_i zugeordnet. So eine Zuordnung nennt man dann auch Mengenfamilie indiziert über I. In so einem Fall schreibt man dann auch:

$$\bigcap_{i \in I} A_i := \{ x \in M \mid \forall i \in I : x \in A_i \}$$
$$\bigcup_{i \in I} A_i := \{ x \in M \mid \exists i \in I : x \in A_i \}$$

Definition 2.0.5: Kartesisches Produkt

Sind M und N Mengen, und ist $m \in M$ und $n \in N$, so bezeichnet (m, n) das geordnete Paar bestehend aus $m \in M$ und $n \in N$. Zwei solche Paare (m_1, n_1) und (m_2, n_2) sind nach Definition genau dann gleich, wenn $m_1 = m_2$ und $n_1 = n_2$. Man schreibt

$$M \times N := \{(x, y) \mid x \in M \land y \in N\}$$

und nennt $M \times N$ das kartesische Produkt von M und N.

Relationen und Äquivalenzrelationen

Definition 3.0.1: Relation

Relation R = (A, B, G) $G \subset A \times B$ (G ist der Graph von $R = G_R$) $(a,b) \in G$ a ist R-verwandt zu aRb

$$R_1 = (A_1, B_1, G_1)$$

$$R_2 = (A_2, B_2, G_2)$$

$$R_1 = R_2 \Leftrightarrow A_1 = A_2 \wedge B_1 = B_2 \wedge G_1 = G_2$$

Definition 3.0.2: Inverse Relation

Inverse Relation R^{-1} :

$$R^{-1} = (B, A, G_{R^{-1}})$$

$$G_{R^{-1}} = \{(b, a) \mid (a, b) \in G_R\}$$

Example 3.0.1

mit
$$G_L := \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}\$$

 $a_1 < a_2 \Leftrightarrow (a_1, a_2) \in G_L$

Definition 3.0.3: Äquivalenzrelation

Sei R=(A,A,G) eine Relation, diese Relation heißt Äquivalenz
relation wenn gilt:

R ist reflexiv: $\forall a \in A : aRa \quad (\forall a \in A : (a, a) \in G)$

R ist symetrisch: $\forall a_1, a_2 \in A : a_1Ra_2 \Leftrightarrow a_2Ra_1$

R ist transitiv: $\forall a_1, a_2, a_3 \in A : a_1Ra_2 \land a_2Ra_3 \Rightarrow a_1Ra_3$

Ist $a_1Ra_2\left((a_1,a_2)\in G\right)$ so nennt man a_1 äquivalent zu a_2 bezüglich R

Definition 3.0.4: R Äquivalenzrelation auf A

$$[a]_R := \{b \in A \mid aRb\}$$

Für Äquivalenzklassen schreiben wir auch $a \sim_R b$ für aRb oder a = b modulo R

Note:-

Beobachtung: $\forall a \in A \text{ ist } [a]_R \neq \emptyset$ Reflexivität: $aR_a \Rightarrow a \in [a]_R$

$$a_1, a_2 \in [a]_R \Rightarrow a_1 v_R a, a_2 \sim_R a$$

 $\Rightarrow a_1 v_R a, a \sim_R a_2 \Rightarrow a_1 \sim_R a_2 \text{ also } a_1 \in [a_2]_R$

Behauptung 3.0.1 R Äquivalenzrelation auf A

Für $a_1,a_2\in\mathbb{A}$ ist entweder $[a_1]_R=[a_2]_R$ oder $[a]_R\cap[a_2]_R=\varnothing$

 $\textbf{\textit{Beweis:}} \ \ \text{Da}\ [a_1]_R\,, [a_2]_k \neq \emptyset \ \text{reicht zu zeigen ist} \ [a_1]_R \cap [a_2]_R \neq \emptyset \Rightarrow [a_1]_R = [a_2]_R$

Sei $b \in [a_1]_R \cap [a_2]_R$

Sei $c \in [a_1]_R$, $c \sim_R a_1$

und $b \sim_R a_1 \Rightarrow a_1 \sim_R b \Rightarrow c \sim_R b$

Auch $b \in [a_2]_R : b \sim_R a_2 \Rightarrow c \sim_R a_2$ dh. $c \in [a_2]_R$

Also ist $[a_1]_R \subset [a_2]_R$

Genauso (Symmetrie) $[a_2]_R \subset [a_1]_R$

Corollary 3.0.1

Ist R Äquivalenzrelation auf $A \neq \emptyset$. Dann sind $a_1, a_2 \in A$ entweder äquivalent oder sie gehören zu disjunkten Äquivalenzrelation.

Note:-

Sei $A \neq \emptyset$.

Zerlegung: $F = \{A_j\}_{j \in I}$ $A_j \subset A$ mit:

1)

$$\forall j \in J: A_j \neq \emptyset$$

2)

$$j_1,j_2\in]\,,j_1\neq j_2:A_{j_1}\cap A_{j_2}=\emptyset$$

3)

$$\bigcup_{i \in I} A_j = A$$