

Clustering

mit Scikit-Learn

Agenda

- 1. Definition Cluster-Analyse
- 2. Kontext Datensatz
- 3. Daten aufbereiten
- 4. Daten visualisieren
- 5. Cluster-Analyse: kMeans
- 6. Cluster-Analyse: Hierarchisch
- 7. Erkenntnisse für Unternehmen

Definition Cluster-Analyse

- Verfahren des <u>maschinellen Lernens</u>
- In einer Menge von **Daten** "ähnliche " **Gruppierungen (Cluster)** erkennen
- Einsatz unterschiedlicher Algorithmen zur Bildung der Cluster

Kontext Datensatz

- Raumklima-Datensatz
- 15 Messungen mit <u>Temperatur</u> (°C) und <u>Luftfeuchtigkeit</u> (%)
- Unterschiedliche Kombinationen und damit Klima-Arten
- Gibt es ein optimales Klima?

Daten aufbereiten

- In der Regel: Dubletten entfernen, Metriken anpassen, Umgang Nullwerte, usw.
- In diesem Fall: Nicht notwendig

Feuchte (in %)	Temperatur (in °C)
42	21
45	19
52	19
55	21
53	22
69	23
80	21
81	23
73	25
75	25

Daten visualisieren

Visualisiert mit Matplotlib

Cluster-Analyse: kMeans

Lorem

Cluster-Analyse: Hierarchisch

- Agglomerative Cluster-Analyse
- Darstellung in Dendogramm
- Abstandfunktion: **Euklidische** Distanz
- <u>Fusionsvorschrift:</u> Ward Methode

Cluster-Analyse: Hierarchisch

Visualisiert mit Matplotlib

Ausblick

- Anzahl Features (d): > 2
- Hyperparameter-Tuning
- Bias
- Over- & Underfitting
- Vergleich der unterschiedlichen Cluster-Scores