Chapitre 2:

Séries numériques

1. Introduction

Définition 1.1: On appelle série de terme général $(u_n)_{n\in\mathbb{N}}$ la suite $(S_n):=\forall n\in\mathbb{N}, S_n=\sum_{k=0}^n u_k=u_0+\ldots+u_n$. Elle est appelée somme partielle d'ordre n de la série. La série de terme général (u_n) sera notée par $\sum_{n=0}^{+\infty}u_n$.

Définition 1.2 (Convergence): On dit que $S=\sum_{n=0}^{+\infty}u_n$ converge si la suite S_n converge vers une limite finie et $\lim S=\lim_{n\to+\infty}S_n$. Sinon on dit que $\sum_{n=0}^{+\infty}u_n$ diverge.

Définition 1.3: Si la série $S=\sum_{n=0}^{+\infty}u_n$ est convergente alors le reste (R_n) est défini par $R_n=S-S_n=\sum_{k=n+1}^{+\infty}u_n$

Proposition 1.1: Si l'on modifie la valeur d'un nombre fini de U_n la nature de la série $\sum_{n=0}^{+\infty} U_n$ est inchangée.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{On suppose qu'on a deux s\'{e}ries} \sum_{n=0}^{+\infty} u_n \text{ et } \sum_{n=0}^{+\infty} v_n \text{ tel que } \exists N \in \mathbb{N}, \forall n \geq N, u_n = v_n. \\ \text{On pose pour } n \geq NS_n - T_n = \sum_{k=0}^{n-1} u_k - v_k. \text{ La suite est donc stationnaire, elle converge. Par cons\'{e}quent } (S_n) \text{ et } (T_n) \text{ sont de m\'{e}me nature.} \end{array}$

Remarque:

Si
$$\sum_{n=0}^{+\infty} u_n$$
 converge et $\sum_{n=0}^{+\infty} v_n$ diverge alors $\sum_{n=0}^{+\infty} u_n + v_n$ diverge.

Si
$$\sum_{n=0}^{+\infty}u_n$$
 converge et $\sum_{n=0}^{+\infty}v_n$ diverge alors $\sum_{n=0}^{+\infty}u_n+v_n$ diverge.

Proposition 1.2: si $\sum_{n=0}^{+\infty} u_n$ converge alors $\lim_{n\to+\infty} u_n = 0$.

Démonstration:
$$U_n = S_n - S_{n-1} = S - S = 0$$
.

Définition 1.4: Si $\lim_{n \to +\infty} u_n \neq 0$ on dit que la série diverge grossièrement.

Définition 1.5: On dit que $\sum_{n=0}^{+\infty} u_n$ est absolument convergente si $\sum_{n=0}^{+\infty} |u_n|$ est convergente.

Proposition 1.3: Si $\sum_{n=0}^{+\infty} u_n$ est absolument convergente alors elle est convergente.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{On montre que} \sum_{n=0}^{+\infty} u_n \text{ v\'{e}rifie le crit\`ere de Cauchy}. \\ \text{Soit } \varepsilon > 0. \text{ Comme} \sum_{n=0}^{+\infty} \lvert u_n \rvert \text{ converge,elle v\'{e}rifie le crit\`ere de Cauchy}. \end{array}$

$$\exists N \in \mathbb{N}, \forall p \in \mathbb{N} \smallsetminus \{0\}, p > n \geq N \Rightarrow \left| \sum_{k=n}^{n+p} u_k \right| \leq \varepsilon.$$

$$\Rightarrow \forall n \leq N, p \in \mathbb{N} \smallsetminus \{0\}, \left| \sum_{k=n+1}^{n+p} u_k \right| \leq \sum_{k=n+1}^{n+p} |u_k| \leq \varepsilon.$$

i.e $\sum_{n=0}^{+\infty} u_n$ vérifie le critère de Cauchy.

Définition 1.6: Une série qui converge mais pas absolument est appelée série semi-convergente.

2. Série à termes généraux positifs

Nous allons désormais considérer des séries $\sum_{n=0}^{+\infty}u_n$ tel que $\forall n\in\mathbb{N},u_n\geq0.$

Proposition 2.1: $\sum_{n=0}^{\infty} u_n$ est convergente si et seulement si la suite des sommes partielles (S_n) est majorée.

Démonstration: On a $S_n = \sum_{k=0}^n u_k$.

 $S_{n+1}-S_n=u_{n+1}\geq 0.$ La suite (S_n) est donc croissante. Par conséquent, (S_n) est convergente si et seulement si elle est majorée.

2.1. Comparaison.

Théorème 2.1.1 (Comparaison): Soient $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$ deux séries a termes positifs tel que

 $\forall n \in \mathbb{N}, v_n \geq u_n \geq 0.$

- $*\operatorname{Si}\sum_{n=0}^{+\infty}v_n \text{ converge, alors }\sum_{n=0}^{+\infty}u_n \text{ converge et }\sum_{n=0}^{+\infty}u_n \leq \sum_{n=0}^{+\infty}v_n.$
- $*\operatorname{Si}\sum_{n=0}^{+\infty}u_{n}$ diverge, alors $\sum_{n=0}^{+\infty}v_{n}$ diverge.

Démonstration: On pose $S_n = \sum_{k=0}^n u_k$ et $T_n = \sum_{k=0}^n v_k$. On remarque que $0 \le S_n \le T_n$.

Alors $\sum_{n=0}^{+\infty} v_n$ converge \Rightarrow (T_n) majoréeé \Rightarrow (S_n) majorée \Rightarrow $\sum_{n=0}^{+\infty} u_n$ converge. En faisant tendre $n \text{ vers} + \infty$, on obtient $S \leq T$.

Théorème 2.1.2 (Equivalence): Soit $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}$ deux suites de nombres positifs telles

- que $u_n \underset{+\infty}{\sim} v_n$. Alors: $* \sum_{n=0}^{+\infty} u_n \text{ et } \sum_{n=0}^{+\infty} v_n \text{ sont de même nature.}$
- * En cas de convergence, les restes sont équivalents.
- * En cas de divergence, les sommes partielles sont équivalentes.

Démonstration: Soit $\varepsilon > 0$

 $\text{Comme } u_n \underset{+\infty}{\sim} v_n, \exists N \in \mathbb{N}, n \geq N \Rightarrow (1-\varepsilon)v_n \leq u_n \leq (1+\varepsilon)v_n$

* Par le théorème de comparaison,

$$\begin{split} \sum_{n=0}^{+\infty} u_n \text{ converge} &\Rightarrow \sum_{n=0}^{+\infty} (1-\varepsilon) v_n \text{ converge} \\ &\Rightarrow \sum_{n=0}^{+\infty} v_n \text{ converge} \\ &\Rightarrow \sum_{n=0}^{+\infty} (1+\varepsilon) v_n \text{ converge} \Rightarrow \sum_{n=0}^{+\infty} u_n \text{ converge} \end{split}$$

donc $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$ sont de meme nature.

$$*$$
 On suppose que $\sum_{n=0}^{+\infty}u_n$ converge. On pose $s_n=\sum_{k=0}^nu_k$ et $T_n=\sum_{k=0}^nu_k.$

On a, $\forall n \geq N$

Théorème 2.1.3 (de domination): Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs et telles que $u_n = O_{n \to +\infty}(v_n)$.

- 1. Si la série $\sum v_n$ converge alors $\sum u_n$ converge également.
- 2. Si $\sum u_n$ diverge, alors $\sum v_n$ diverge également.

Théorème 2.1.4 (de négligeabilité): Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que $u_n = o_{n \to +\infty}(v_n)$.

- 1. Si $\sum v_n$ converge, alors $\sum u_n$ converge également.
- 2. Si $\sum u_n$ diverge, alors $\sum v_n$ diverge également.

2.2. Quelques critères.

Théorème 2.2.1 (Critère de Cauchy): $\sum_{n=0}^{+\infty} u_n$ est convergente si et seulement si elle vérifie le critère de Cauchy:

$$\forall \varepsilon>0, \exists N\in\mathbb{N}, \forall p\in\mathbb{N}\setminus\{0\}, n\geq N \Rightarrow \left|\sum_{k=n}^{n+p}u_k\right|\leq \varepsilon.$$

Démonstration:

$$\begin{split} \sum_{n=0}^{+\infty} u_n &\Leftrightarrow (S_n) \text{ converge} \\ &\Leftrightarrow (S_n) \text{ est de Cauchy} \\ &\Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, (m > n \geq N) \Rightarrow |S_n - S_m| \leq \varepsilon \end{split}$$

Si
$$m=n+p$$
 avec $p\in\mathbb{N}$ alors $|S_n-S_m|=\left|\sum_{k=n+1}^{n+p}u_k\right|$

Théorème 2.2.2 (critère de d'Alembert): Soit $\sum u_n$ une série a termes positifs strictement à partir d'un certain rang telle que $\lim_{n \to +\infty} \left(\frac{U_{n+1}}{U_n} \right) = l \in \mathbb{R}$. 1. Si l < 1, alors $\sum u_n$ converge.

- 2. Si l>1, alors $\sum u_n$ diverge grossièrement.
- 3. Si l = 1, on ne peut pas conclure.

Théorème 2.2.3 (de Bertrand): Soit $\alpha, \beta \in \mathbb{R}$.

$$\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$$

converge si et seulement si $\alpha > 1$ (ou $\alpha = 1$ et $\beta > 1$)

3. Série téléscopique

Définition 3.1: Soit $(a_n)_{n\in\mathbb{N}}$ une suite. On appelle série téléscopique la série : $\sum_{n=0}^{+\infty}a_n-a_{n-1}$.

Proposition 3.1: La série $\sum_{n=0}^{+\infty}a_n-a_{n-1}$ est de même nature que la suite $(a_n)_{n\in\mathbb{N}}$. En cas de convergence on a $\sum_{n=0}^{+\infty}a_n-a_{n-1}=a_n-a_0$.

Démonstration: On pose $S_n = \sum_{k=1}^n a_k - a_{k-1}$
$$\begin{split} S_n &= g_1 - a_0 + g_2 - g_1 + \ldots + a_n - \underbrace{a_{n-1}}_{n-1} \\ &= a_n - a_0 \underset{n \to +\infty}{\longrightarrow} a_n - a_0. \end{split}$$

Théorème 3.1 (De Riemann): Soit $\alpha \in \mathbb{R}$ une suite. La série

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

converge si et seulement si $\alpha > 1$.

Démonstration: La série de Riemann est à termes positifs.

 $\alpha = 1$ On obtient la série harmonique qui diverge.

 $\alpha < 1$. $\forall n \in \mathbb{N} \setminus 0$ On a $\frac{1}{n} \leq \frac{1}{n^{\alpha}}$ donc la série $\sum \frac{1}{n^{\alpha}}$ est divergente par comparaison.

 $\alpha>1\;\forall n\in\mathbb{N}\smallsetminus0$ on a $\frac{1}{n}^2\geq\frac{1}{n^\alpha}$ or $\sum\frac{1}{n^2}$ converge donc $\sum\frac{1}{n^\alpha}$ converge A $\in]1,2[$ On procède par téléscopage avec $n^\alpha=n^{\alpha-1}-(n+1)^{\alpha-1}$

4. Séries alternées.

 $\begin{array}{l} \textbf{Th\'eor\`eme 4.1} \ (\ \text{Crit\`ere d'Abel}\)\colon \ \text{Soit} \ (a_n)_{n\in\mathbb{N}} \ \text{une suite positive \`a valeurs r\'eelles d\'ecroissante} \\ \text{avec } \lim_{n\to+\infty} a_n = 0 \ \text{et} \ (b_n)_{n\in\mathbb{N}} \ \text{une suite de nombres complexes telle que } \exists M\in\mathbb{R}, \forall n\in\mathbb{N}, \forall m>n, \left|b_n+b_{n+1}+\ldots+b_m\right| < M \ \text{alors } \sum a_nb_n \ \text{converge et} \ \forall n\in\mathbb{N}, \end{array}$

$$\left| \sum_{n+1}^{+\infty} a_n b_n \right| < M a_{n+1}.$$

En particulier si $b_n=(-1)^n,$ on a $\left|b_n+b_{n+1}+\ldots+b_m\right|\leq 1$ donc le critère d'Abel implique le critère spécial des séries alternées.