Álgebra Lineal I

Darvid darvid.torres@gmail.com

September 26, 2024

Espacios vectoriales

Definición: Una operación binaria (*) sobre un cojunto V es una función:

$$*: V \times V \to V$$
$$*(u, v) = u * v \in V.$$

Definición: Sea K un campo. Un espacio vectorial sobre K, es un conjunto V no vacío, dotado con dos operaciones binarias, suma: + y multiplicación por escalares \cdot , las cuales satisfacen los siguientes:

Axiomas

- **1.** Cerradura (de la suma): Si $u, v \in V$, entonces $u + v \in V$.
- **2.** Conmutatividad (de la suma): Si $u, v \in V$, entonces u + v = v + u.
- **3.** Asociatividad (de la suma): Si $u, v, w \in V$, entonces u + (v + w) = (u + v) + w.
- **4.** Neutro aditivo: $\exists 0 \in V$ tal que si $v \in V$, entonces 0 + v = v.
- **5.** Inverso aditivo: Si $v \in V$, entonces $\exists (-v) \in V$ tal que v + (-v) = 0.
- **6.** Multiplicación por escalares: Si $\alpha \in K$, entonces $\alpha \cdot v \in V$.
- 7. Asociatividad (de la multiplicación por escalares): Si $\alpha, \beta \in K$ y $v \in V$, entonces $(\alpha \cdot \beta) \cdot v = \alpha \cdot (\beta \cdot v)$.
- 8. Neutro multiplicativo: Sea 1 es el elemento identidad en K y $v \in V$, entonces $1 \cdot v = v$.
- 9. P. Distributiva: Si $\alpha, \beta \in K$ y $u, v \in V$, entonces
 - $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$.
 - $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$.

Definición: A los elementos de K los llamaremos escalares y a los de V, vectores.

Nota: El uso de los símbolos $+ y \cdot$ no debe confundirse con las operaciones definidas sobre K, sin embargo, abusando de la notación, utilizaremos los mismos. Es decir, deberíamos utilizar símbolos distintos para denotar la suma y multiplicación en V, respecto de los de K, pero para simplificar la escritura, prescindiremos de ello.

Lista de ejercicios 1 (LE1)

 ${\bf 1.}\,$ Sea F un campo y un espacio vectorial sobre sí mismo