B.3:

Beweisen Sie mittels vollständiger Induktion über die Anzahl der Kanten $l \geq 0$ (und ohne Verwendung von Satz 2.15 der Vorlesung):

Für jeden Baum G = (V, E) gilt k = m - 1, wobei m = #V und k = #E.

Induktions an fang: l=0

Ist keine Kante im Baum vorhanden gilt k=0, da k die Anzahl der Kanten repräsentiert. Da es keine Kante gibt und der Baum nach Definition zusammenhängend sein muss, muss die Anzahl der Knoten m=1 sein. Somit gilt:

$$k = 0 = 1 - 1 = m - 1$$

Induktionsannahme: Die Aussage

Für jeden Baum G=(V,E) gilt k=m-1, wobei m=#V und k=#E gilt für einen Baum mit $l\geq 0$ Kanten.

Induktionsschritt: $l \rightarrow l + 1$

Die Anzahl der Kanten beträgt l+1 somit gilt:

$$k = l + 1$$

Nach Induktionsannahme gilt somit:

$$k = l + 1 = (m - 1) + 1 = m$$

q.e.d.

 \rightarrow Logisch falsche Beweisstruktur, weil wir nicht alle Graphen mit l+1 Kanten abgedeckt haben

- (IV) Für alle Bäume G' mit $k' \leq l$ Kanten und m' Knoten gilt k' = m' 1
- z.z.: im (IS): Für alle Bäume G mit k=l+1 Kanten und m Knoten gilt k=m-1
- → Problem: muss für ALLE Bäume mit l+1-Kanten gelten
- \rightarrow Daher gehen wir umgekehrt vor: wir gehen von einem beliebigen Baum mit l+1-Kanten aus und bilden daraus einen Baum mit l Kanten auf den wir die (IV) anwenden
- ightarrow Hier gilt $k \leq l$ weil wir bei Induktion Stufenweise vorgehen und es bereits für alle Kantenzahlen bis l gezeigt haben

(IS):

Sei G ein Baum mit l+1 Kanten und m Knoten

z.z.
$$k = m - 1$$

- Wir löschen in G eine beliebige Kante und erhalten zwei Graphen G_1 und G_2 .
- ullet G_1 und G_2 sind Bäume, da sie immer noch zusammenhängend und kreisfrei sind.
- G_1 und G_2 haben k_1 bzw. k_2 viele Kanten und m_1 bzw. m_2 viele Knoten. Weil G_1 und G_2 Bäume sind und $k_1 \le l$ und $k_2 \le l$ (weil wir Baum in zwei Teile geteilt haben, können wir die (IV) für G_1 und G_2 anwenden:

$$k_1 = m_1 - 1$$
 und $k_2 = m_2 - 1$

• Dann gilt $k = k_1 + k_2 + 1 = (m_1 - 1) + (m_2 - 1) + 1 = (m_1 + m_2) - 1 = m - 1$

q.e.d.