Resumen ecuaciones econometria

Carlos Carbone

7/19/2021

Regresion lineal simple

$$Y_i = \beta_0 + \beta_1 * X_i + u$$

Donde el subindice i denonta la observación numero y. "u" son todos los errores, observaciones y omisiones que se hacen. Lo que calculamos son los parámetros β_0 y β_1 .

Nuestra regresión quedaría:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 * X_i$$

Donde \hat{Y} es nuestra variable dependendiente estimada y los $\hat{\beta}$ son nuestos estimadores de los β . Estos estiamadores deben ser consistentes, insesgados y eficientes.

Estos estimadores se puede usar para predecir valores. Ahora bien, que encontremos relacion entre las X y las Y no significa CAUSALIDAD.

 β_0 es la ordenada al origen, indica el valor que toma Y cuando X no participa de la ecuación. β_1 es la relación marginal que tiene X_i es cuanto varía Y cuando X varía en una unidad.

Regresion multiple

Supuestos de MCO

- 1. Linealidad en los parametros. $Y_i = \beta_0 + \beta_1 * X_i + u_i$. Los parametros son β y estos no deben estar elevados a ninguna potencia.
- 2. Valores de X independientes del error $cov(X_i, u_i) = 0$
- 3. Exogeneidad: El promedio de los errores, condicionados en X es cero $E(u_i|X) = 0$. ES decir en, en promedio, mis estimaciones son cero.
- 4. homoscedasticidad: la varianza σ^2 de los errores es constante a lo largo de las observaciones

$$var(u_i) = \sigma^2$$

- 5. No autocorrelacion: $cov(u_i, u_j | X_i, X_j) = 0$ Dado dos valores de $X(X_i, X_j)$ la correlacion entre u_i y u_j es cero. Es decir no hay relacion entre el error de i con el de j.
- 6. Observaciones mayores que los parámetros
- 7. Naturaleza de la variable X

Cuando se cumplen los supuestos anteriores el estimador es MELI.

MELI

1. Insesgado. No tiene sesgo. La esperanza del estimador es el parámetro.

$$E[\hat{\beta}] = \beta$$

2. Eficiente: de varianza minima:

$$var[\hat{\beta}_1] < var[\tilde{\beta}]$$

3. Consistencia:

$$\lim_{x \to \infty} EMC = E[\hat{\beta}_2 - \beta_2]^2 = 0$$

varianza de los estimadores

 $\hat{\beta}$