Depth reduction of arithmetic ckts to depth three A chasm at depth three

Mohith Raju N

April 2022

 Constant depth circuits are circuits whose depth is bounded by a constant

- Constant depth circuits are circuits whose depth is bounded by a constant
- We usually allow unbounded fanin and due to which we can assume alternating sum and product gates

- Constant depth circuits are circuits whose depth is bounded by a constant
- We usually allow unbounded fanin and due to which we can assume alternating sum and product gates
- $ightharpoonup \sum \prod \sum$ represents a depth three circuit

- Constant depth circuits are circuits whose depth is bounded by a constant
- We usually allow unbounded fanin and due to which we can assume alternating sum and product gates
- $ightharpoonup \sum \prod \sum$ represents a depth three circuit

Main Theorem. Let $f(x) \in \mathbb{Q}[x]$ be an n-variate polynomial of degree $d = n^{\mathcal{O}(1)}$ computed by an arithmetic circuit of size s. Then it can also be computed by a $\sum \prod \sum$ circuit of size $2^{\mathcal{O}}(\sqrt{d \log n \log d \log s})$

Remarks:

- By size we mean the number of edges in the circuit
- The intermediate polynomials have degree much higher than d

Why do we care about depth reductions

- Circuits with low depth correspond to computations which are highly parallelizable and therefore it is natural to try to minimize the depth of a circuit while allowing the size to increase somewhat
- ► Lower bounds for constant depth circuits imply lower bounds for general circuits thanks to depth reduction results

Example.

Given an explicit family of polynomials f_n , a $2^{\Omega(d \log n)}$ lower bound for $\sum \prod \sum$ circuits computing f_n implies a $2^{\Omega\left(\frac{d \log n}{\log d}\right)}$ lower bound for general arithmetic circuits computing f_n

How to depth reduce

Preliminaries

- ▶ Powering circuits are those which contain exponentiation gates, denoted by \land . Such a gate has all incoming edges coming from a single input x and computes x^n where n is the number of incoming nodes from x
- Exponentiation gate is just a product gate with n incoming edges all coming from the same input
- Exponentiation gate is a "weaker" product gate as it can only compute a specific type of product
- One can think of an Algebraic Branching Program (ABP) as a special type of a circuit
- ightharpoonup Small lemma. For any n, k

$$\binom{n+k}{k} = \mathcal{O}\left(e \cdot \frac{n+k}{k}\right)^k = 2^{\mathcal{O}(k\log n)}$$

Overview

- **Step 0:** General ckts → ABPs
- Step 1: ABPs $\longrightarrow \sum \prod^{[a]} \sum \prod^{[d/a]}$ ckts
- Step 2: $\sum \prod^{[a]} \sum \prod^{[d/a]} \text{ckts} \longrightarrow \sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts}$
- Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \mathsf{ckts} \longrightarrow \sum \prod \sum \mathbb{C} \mathsf{-ckts}$
- Step 4: $\sum \prod \sum \mathbb{C}$ -ckts $\longrightarrow \sum \prod \sum \mathbb{Q}$ -ckts

Overview

- **Step 0:** General ckts → ABPs
- Step 1: ABPs $\longrightarrow \sum \prod^{[a]} \sum \prod^{[d/a]}$ ckts
- Step 2: $\sum \prod^{[a]} \sum \prod^{[d/a]} \text{ckts} \longrightarrow \sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts}$
- Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$
- Step 4: $\sum \prod \sum \mathbb{C}$ -ckts $\longrightarrow \sum \prod \sum \mathbb{Q}$ -ckts

The a in $\prod^{[a]}$ denotes the maximum fanin of any gate in this layer of multiplication gates

Step 0: General ckts \longrightarrow ABPs

Lemma III.1. Let f be a polynomial of degree d computed by a circuit of size s. Then there is a homogeneous ABP of depth d and size $2^{\mathcal{O}(\log s \cdot \log d)}$ computing f

What we shall prove next

Theorem I.1 Let $f(x) \in \mathbb{Q}[x]$ be an n-variate polynomial of degree $d = n^{\mathcal{O}(1)}$ computed by an ABP of size s. Then it can also be computed by a $\sum \prod \sum$ circuit of size $2^{\mathcal{O}(\sqrt{d \log n \log s})}$

Step 1: ABPs $\longrightarrow \sum \prod^{[a]} \sum \prod^{[d/a]}$ ckts

Theorem IV.1 ([Koi12]). Let f be an n-variate polynomial of degree d computed by an ABP of size s. Then, for all a there is an equivalent homogeneous $\sum \prod^{[a]} \sum \prod^{[d/a]}$ circuit computing f of size $s^a + s^2 d \cdot \binom{n+d/a}{d/a}$

Theorem IV.1 ([Koi12]). Let f be an n-variate polynomial of degree d computed by an ABP of size s. Then, for all a there is an equivalent homogeneous $\sum \prod^{[a]} \sum \prod^{[d/a]}$ circuit computing f of size $s^a + s^2 d \cdot \binom{n+d/a}{d/a}$

- After applying the small lemma, the above size becomes $2^{a \log s} + s^2 d \cdot 2^{d/a \log n}$
- ► To minimize the quantity we choose $\sqrt{\frac{d \log n}{\log s}}$
- $2^{a \log s} + s^{2} d \cdot 2^{d/a \log n} = 2^{\mathcal{O}(\sqrt{d \log n \log s})}$

Overview

Progress so far

$$(\mathsf{ABP},s) \longrightarrow \left(\sum \prod^{[a]} \sum \prod^{[d/a]}, s_1 = 2^{\mathcal{O}\left(\sqrt{d \log n \log s}\right)} \right)$$

Overview of steps

- **Step 0:** General ckts \longrightarrow ABPs
- Step 1: ABPs $\longrightarrow \sum \prod^{[a]} \sum \prod^{[d/a]}$ ckts
- Step 2: $\sum \prod^{[a]} \sum \prod^{[d/a]} \text{ckts} \longrightarrow \sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts}$
- Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \mathsf{ckts} \longrightarrow \sum \prod \sum \mathbb{C} \mathsf{-ckts}$
- Step 4: $\sum \prod \sum$ \mathbb{C} -ckts $\longrightarrow \sum \prod \sum$ \mathbb{Q} -ckts

What we shall do is,

$$\sum \prod^{[a]} \sum \prod^{[d/a]} \longrightarrow \sum \left(\sum \bigwedge^{[a]} \sum \right) \sum \left(\sum \bigwedge^{[d/a]} \sum \right)$$

Lemma IV.3 (Fischer's trick). For any n, the monomial $x_1 \cdots x_n$ can be expressed as a linear combination of 2^{n-1} powers of linear forms through the following:

$$n! \cdot x_1 \cdots x_n = \sum_{S \subseteq [n]} (-1)^{n-|S|} \left(\sum_{i \in S} x_i \right)^n$$

Every multiplication gate computes $\prod_{i=1}^{n} C_i$. Using Fischer's trick we replace it as follows,

$$C_1 \cdots C_m = \sum_{S \subseteq [m]} \frac{(-1)^{m-|S|}}{m!} \left(\sum_{i \in S} C_i\right)^m$$

Observe:

- A product gate with fanin a is replaced with an exponentiation gate of fanin a. Thus $\prod^{[a]} \longrightarrow \sum \bigwedge^{[a]} \sum$
- ▶ Replacing one product gate as shown will increase size of ckt by $2^m + m \cdot 2^m + m \cdot 2^m = 2^{\mathcal{O}(m)}$

Observe:

- A product gate with fanin a is replaced with an exponentiation gate of fanin a. Thus $\prod^{[a]} \longrightarrow \sum \bigwedge^{[a]} \sum$
- ▶ Replacing one product gate as shown will increase size of ckt by $2^m + m \cdot 2^m + m \cdot 2^m = 2^{\mathcal{O}(m)}$
- ▶ Replacing every product gate in $\prod^{[a]}$ layer will increase size of circuit by $s_1 \cdot 2^{\mathcal{O}(a)}$
- ▶ Replacing every product gate in $\prod^{[d/a]}$ layer will increase size of circuit by $s_1 \cdot 2^{\mathcal{O}(d/a)}$
- ► Total increase is

$$s_{1} \cdot (2^{\mathcal{O}(a)} + 2^{\mathcal{O}(d/a)})$$

$$= 2^{\mathcal{O}(\sqrt{d \log n \log s})} \cdot \left(2^{\mathcal{O}(\sqrt{\frac{d \log n}{\log s}})} + 2^{\mathcal{O}(\sqrt{\frac{d \log s}{\log n}})}\right)$$

$$= 2^{\mathcal{O}(\sqrt{d \log n \log s})}$$

Overview

Progress so far

$$(\mathsf{ABP}, \mathsf{s}) \longrightarrow \left(\sum \prod^{[a]} \sum \prod^{[d/a]}, \mathsf{s}_1 = 2^{\mathcal{O}(\sqrt{d \log n \log s})} \right) \\ \longrightarrow \left(\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum, \mathsf{s}_2 = 2^{\mathcal{O}(\sqrt{d \log n \log s})} \right)$$

Overview of steps

- **Step 0:** General ckts \longrightarrow ABPs
- Step 1: ABPs $\longrightarrow \sum \prod^{[a]} \sum \prod^{[d/a]}$ ckts
- Step 2: $\sum \prod^{[a]} \sum \prod^{[d/a]} \text{ckts} \longrightarrow \sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts}$
- Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \mathsf{ckts} \longrightarrow \sum \prod \sum \mathbb{C} \mathsf{-ckts}$
- Step 4: $\sum \prod \sum \mathbb{C}$ -ckts $\longrightarrow \sum \prod \sum \mathbb{Q}$ -ckts

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$

What we shall do is

$$\bigwedge^{[a]} \sum \longrightarrow \sum \prod^{[s_2]} E$$

$$\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \longrightarrow \sum \left(\sum \prod^{[s_2]} E\right) \bigwedge^{[d/a]} \sum$$

Step 3:
$$\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$$

What we shall do is

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$

Lemma IV.6 (Saxena's duality trick). For every m,d>0 and distinct $\alpha_1,\ldots,\alpha_{md+1}\in\mathbb{Q}$, there exists $\beta_1,\ldots,\beta_{md+1}\in\mathbb{Q}$ such that

$$(u_1+\cdots+u_m)^d=\sum_{i=1}^{md+1}\beta_i\prod_{i=1}^m E_d(\alpha_i\cdot u_j)$$

where
$$E_d(u) := 1 + \frac{u}{1!} + \cdots + \frac{u^d}{d!}$$

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \operatorname{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\operatorname{-ckts}$

Lemma IV.6 (Saxena's duality trick). For every m,d>0 and distinct $\alpha_1,\ldots,\alpha_{md+1}\in\mathbb{Q}$, there exists $\beta_1,\ldots,\beta_{md+1}\in\mathbb{Q}$ such that

$$(u_1+\cdots+u_m)^d=\sum_{i=1}^{md+1}\beta_i\prod_{j=1}^m E_d(\alpha_i\cdot u_j)$$

where
$$E_d(u) := 1 + \frac{u}{1!} + \cdots + \frac{u^d}{d!}$$

Proof: Let
$$I := (u_1 + \dots + u_m)$$

Note, $e^{Iz} = 1 + \frac{1}{1!}z + \dots + \frac{I^d}{d!}z^d + \dots$

Hence,

$$I^d = d! \cdot (\text{coeff of } z^d \text{ in } e^{lz})$$

= $d! \cdot (\text{coeff of } z^d \text{ in } e^{u_1z} \cdot e^{u_2z} \cdots e^{u_mz})$
= $d! \cdot (\text{coeff of } z^d \text{ in } E_d(u_1z) \cdot E_d(u_2z) \cdots E_d(u_mz))$

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$

Proof cont'd: Let $I := (u_1 + \cdots + u_m)$

$$I^d = d! \cdot (\text{coeff of } z^d \text{ in } E_d(u_1 z) \cdot E_d(u_2 z) \cdots E_d(u_m z))$$

- Now define $F(z) := E_d(u_1z) \cdot E_d(u_2z) \cdot \cdot \cdot E_d(u_mz)$ to be a univariate poly of degree (md)
- ▶ By interpolation, given md + 1 distinct points $\alpha_1, \ldots, \alpha_{md+1}$, we can write the coeff of z^d in F(z) as a linear combination of $F(\alpha_1), \ldots, F(\alpha_{md+1})$

coeff of
$$z^d$$
 in $F(z) = \sum_{i=1}^{ma+1} \delta_i F(\alpha_i)$

$$\Rightarrow d! \cdot (\text{coeff of } z^d \text{ in } E_d(u_1 z) \cdots E_d(u_m z)) = \sum_{i=1}^{md+1} d! \delta_i \prod_{j=1}^m E_d(\alpha_i \cdot u_j)$$

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[b]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$

Lemma IV.7. Let f be a polynomial computed by a $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum$ circuit of size s_2 over \mathbb{Q} . Then, there is an equivalent $\sum \prod \sum$ circuit over \mathbb{C} of size $s_3 = \mathcal{O}(s_2^3 a^2 bn)$ computing f. The circuit has formal degree at most $\mathcal{O}(s_2 ab)$

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\text{-ckts}$

Proof:

- A $\sum \bigwedge^{[a]} \sum \bigwedge^{[b]} \sum$ circuit C computes a polynomial of the form $C = T_1 + \cdots + T_{s_2}$ where each $T_i = (l_{i_1}{}^b + \cdots + l_{i_{s_2}}{}^b)^a$ for some linear forms l_{i_i} 's
- Applying Saxena's trick to each $T = (I_1^b + \cdots + I_{so}^b)^a$ we get

$$T = \sum_{i=1}^{s_1} \beta_i \prod_{j=1}^{s_2} E_a(\alpha_i \cdot l_j^b)$$

$$= \sum_{i=1}^{s_2 a+1} \beta_i \prod_{j=1}^{s_2} f_i(l_j) \quad \text{where } f_i(t) = E_a(\alpha_i \cdot t^b)$$

Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \operatorname{ckts} \longrightarrow \sum \prod \sum \mathbb{C}\operatorname{-ckts}$

Proof:

- A $\sum \bigwedge^{[a]} \sum \bigwedge^{[b]} \sum$ circuit C computes a polynomial of the form $C = T_1 + \cdots + T_{s_2}$ where each $T_i = (I_{i_1}{}^b + \cdots + I_{i_{s_2}}{}^b)^a$ for some linear forms I_{i_j} 's
 - lacksquare Applying Saxena's trick to each $T=(\mathit{l}_1^b+\cdots+\mathit{l}_{\mathit{s}_2}^b)^a$ we get

$$T = \sum_{i=1}^{s_2 a+1} \beta_i \prod_{j=1}^{s_2} E_a(\alpha_i \cdot I_j^b)$$

$$= \sum_{i=1}^{s_2 a+1} \beta_i \prod_{j=1}^{s_2} f_i(I_j) \quad \text{where } f_i(t) = E_a(\alpha_i \cdot t^b)$$

$$= \sum_{i=1}^{s_2 a+1} \beta_i \prod_{j=1}^{s_2} \prod_{k=1}^{ab} (I_j - \gamma_{ik})$$

- f can be computed by a $\sum \prod \sum$ ckt having intermediate degree at most s_2ab
- The final size of the ckt is $s_2 \cdot (s_2a+1) \cdot (s_2ab) \cdot (n+1)$

Overview

Progress so far

(ABP,
$$s$$
) $\longrightarrow \left(\sum \prod^{[a]} \sum \prod^{[d/a]}, \quad s_1 = 2^{\mathcal{O}(\sqrt{d \log n \log s})}\right)$
 $\longrightarrow \left(\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum, \quad s_2 = 2^{\mathcal{O}(\sqrt{d \log n \log s})}\right)$
 $\longrightarrow \left(\sum \prod \sum_{\mathbb{C}}, \quad s_3 = 2^{\mathcal{O}(\sqrt{d \log n \log s})}\right)$

Overview of steps

- **Step 0:** General ckts → ABPs
- Step 1: ABPs $\longrightarrow \sum \prod^{[a]} \sum \prod^{[d/a]}$ ckts
- Step 2: $\sum \prod^{[a]} \sum \prod^{[d/a]} \text{ckts} \longrightarrow \sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \text{ckts}$
- Step 3: $\sum \bigwedge^{[a]} \sum \bigwedge^{[d/a]} \sum \mathsf{ckts} \longrightarrow \sum \prod \sum \mathbb{C} \mathsf{-ckts}$
- Step 4: $\sum \prod \sum \mathbb{C}$ -ckts $\longrightarrow \sum \prod \sum \mathbb{Q}$ -ckts

Lemma IV.8 (An algebraic observation). Let $\gamma_1, \ldots, \gamma_a$ be roots of $E_a(t)$, and let ω be a primitive b-th root of unity. Then, the field $\mathbb{Q}(\gamma_1^{1/b}, \ldots, \gamma_a^{1/b}, \omega)$ contains the roots of $E_a(\alpha \cdot t^b)$ for every $\alpha \in \mathbb{Q}$ such that $\alpha^{1/b} \in \mathbb{Q}$

Proof:

- The roots of $E_a(\alpha t^b)$ are exactly $\left(\frac{\gamma_i}{\alpha}\right)^{\frac{1}{b}}\omega^j$ for $i\in[a]$ and $j\in[b]$
- As $\alpha^{1/b} \in \mathbb{Q}$, each root is in $\mathbb{Q}(\gamma_1^{1/b}, \dots, \gamma_a^{1/b}, \omega)$

Г

Lemma IV.8 (An algebraic observation). Let $\gamma_1, \ldots, \gamma_a$ be roots of $E_a(t)$, and let ω be a primitive b-th root of unity. Then, the field $\mathbb{Q}(\gamma_1^{1/b}, \ldots, \gamma_a^{1/b}, \omega)$ contains the roots of $E_a(\alpha \cdot t^b)$ for every $\alpha \in \mathbb{Q}$ such that $\alpha^{1/b} \in \mathbb{Q}$

Proof:

- The roots of $E_a(\alpha t^b)$ are exactly $\left(\frac{\gamma_i}{\alpha}\right)^{\frac{1}{b}}\omega^j$ for $i\in[a]$ and $j\in[b]$
- As $\alpha^{1/b} \in \mathbb{Q}$, each root is in $\mathbb{Q}(\gamma_1^{1/b}, \dots, \gamma_a^{1/b}, \omega)$

Observe

- ▶ We want to apply the above to $E_a(\alpha_i \cdot t^b)$. As we can choose α_i to be any distinct rations we choose them s.t. $\alpha_i^{1/b} \in \mathbb{Q}$
- ► Thus the coefficients in step 3's $\sum \prod \sum$ \mathbb{C} -ckt come from $\mathbb{K} := \mathbb{O}(\gamma_1^{1/b}, \dots, \gamma_3^{1/b}, \omega)$
- Note $[\mathbb{Q}(\gamma^{1/b}):\mathbb{Q}] \leq ab$
- ightharpoonup \Rightarrow $[\mathbb{K}:\mathbb{Q}] \leq (ab)^a \cdot b$

Lemma IV.9 ($\sum \prod \sum \mathbb{K}$ -ckt $\longrightarrow \sum \prod \sum \mathbb{Q}$ -ckt).

Let $f(x) \in \mathbb{Q}[x]$ be computed by a $\sum \prod \sum$ circuit of formal degree D with coefficients coming from a finite extension field \mathbb{K}/\mathbb{Q} . Then, there is an equivalent $\sum \prod \sum$ circuit computing f of size $\operatorname{poly}(s_3, D, [\mathbb{K} : \mathbb{Q}])$ with coefficients coming from \mathbb{Q}

Rk: This along with Lemma IV.8 tells us that

$$(ABP, s) \longrightarrow \left(\sum \prod \sum_{\mathbb{Q}}, s_4 = 2^{\mathcal{O}(\sqrt{d \log n \log s})} \right)$$

Lemma IV.9 ($\sum \prod \sum \mathbb{K}\text{-ckt} \longrightarrow \sum \prod \sum \mathbb{Q}\text{-ckt}$).

Proof:

- ▶ Let $[\mathbb{K} : \mathbb{Q}] = m$
- ▶ There is $\theta \in \mathbb{K}$ s.t. $\mathbb{K} = \mathbb{Q}(\theta)$
- $ightharpoonup \mathbb{K}$ is a vector space over \mathbb{Q} with basis $\{\theta^0, \theta^1, \theta^2, \dots, \theta^{m-1}\}$
- ▶ Thus any $g(x) \in \mathbb{K}[x]$ is uniquely written as $g^{[0]}\theta^0 + g^{[1]}\theta^1 + \dots + g^{[m-1]}\theta^{m-1}$ where $g^{[r]} \in \mathbb{Q}[x]$

Lemma IV.9 ($\sum \prod \sum \mathbb{K}\text{-ckt} \longrightarrow \sum \prod \sum \mathbb{Q}\text{-ckt}$).

Proof:

- ▶ Let $[\mathbb{K} : \mathbb{Q}] = m$
- ▶ There is $\theta \in \mathbb{K}$ s.t. $\mathbb{K} = \mathbb{Q}(\theta)$
- $ightharpoonup \mathbb{K}$ is a vector space over \mathbb{Q} with basis $\{\theta^0, \theta^1, \theta^2, \dots, \theta^{m-1}\}$
- Thus any $g(x) \in \mathbb{K}[x]$ is uniquely written as $g^{[0]}\theta^0 + g^{[1]}\theta^1 + \dots + g^{[m-1]}\theta^{m-1}$ where $g^{[r]} \in \mathbb{Q}[x]$
- ▶ $f = T_1 + \cdots + T_{s_3}$ where each T_i is a product of linear polynomials over \mathbb{K} , then $f = T_1^{[0]} + \cdots + T_{s_3}^{[0]}$
- ▶ Hence it suffices to show that each $T_i^{[0]}$ can be expressed as a small depth-3 circuit over $\mathbb Q$

Proof cont'd:

▶ Let $T = I_1 \cdots I_D \in \mathbb{K}[x]$

$$T = \prod_{i \in [D]} (I_i^{[0]} \theta^0 + I_i^{[1]} \theta^1 + \dots + I_i^{[m-1]} \theta^{m-1})$$

= $T^{[0]} \theta^0 + T^{[1]} \theta^1 + \dots + T^{[m-1]} \theta^{m-1}$

 $lackbox{ }$ Consider the polynomial obtained by replacing heta with a formal variable y

$$\tilde{T}(\underline{x}, y) = \prod_{i \in [D]} (l_i^{[0]} y^0 + l_i^{[1]} y^1 + \dots + l_i^{[m-1]} y^{m-1})
= \tilde{T}_0 y^0 + \tilde{T}_1 y^1 + \dots + \tilde{T}_{(m-1)D} y^{(m-1)D}$$

- ▶ Using interpolation, \tilde{T}_i can be written as a linear combination of $\{\tilde{T}(x,\beta_j): 1 \leq j \leq (m-1)D+1\}$
- ▶ Thus \tilde{T}_i has a small depth-3 ckt

Proof cont'd:

- ► To get $T^{[0]}$ from $T_1, T_2, ..., T_{(m-1)D}$, note $T^{[0]}\theta^0 + \cdots + T^{[m-1]}\theta^{m-1} = \tilde{T}_0\theta^0 + \cdots + \tilde{T}_{(m-1)D}\theta^{(m-1)D}$
- Use $\theta^j = \sum_{i=0}^{m-1} c_{ij} \theta^i$ to get
- $T^{[0]} = \sum_{j=0}^{(m-1)D} c_{0j} \tilde{T}_j$
- ► Thus T^[0] is computable by a small depth-3 ckt and hence f is computable by a small depth-3 ckt

References

1. A. Gupta, P. Kamath, N. Kayal, R. Saptharishi. Arithmetic circuits: A chasm at depth three.