Multiple Comparison Procedures To A Control For AN(C)OVA Models

Statsomat.com

Contributors*

23 Juli 2021

Contents

Basic Information	2
Model Information	3
Descriptive Plots	3
Dependent Variable	3
Dependent Against Categorical Factors	5
Analysis of variance	6
Effect of the separate expressions of the given variables (Parameter Estimates)	6
Total influence of factors (ANOVA Type III)	6
Goodness Of Fit Measures	6
Multiple Comparisons of Means to a Control	8
Dunnet Sandwich	8
Dunnet Sandwich	9
References	9

^{*}Denise Welsch, Viktoria Daum, Linda Müller, Damian Nink, Simone Schüttler, Daniela Wüller

Basic Information

File
recovery.csv
Variables considered continuous
minutes
Variables considered categorical blanket

Model Information

You defined the following linear model: minutes~blanket

You are interested in the factor: blanket

You are interested in pairwise comparisons to the reference level: b0

Descriptive Plots

Dependent Variable

Boxplot of minutes

Dependent Against Categorical Factors

Boxplot of minutes ~ blanket

Analysis of variance

Effect of the separate expressions of the given variables (Parameter Estimates)

Variable	Value	Std.Error	T.value	P.value	sign. level ¹	Significance at 5 percent error
(Intercept)	11.98	0.57	20.91	< 0.001	***	Intercept Significant.
blanket1	2.82	0.70	4.00	< 0.001	***	Significant. A Difference between the effect of blanket1 and its reference.
blanket2	0.68	1.20	0.57	0.573		Not Significant. No difference between the effect of blanket2 and its reference.
blanket3	-4.65	1.20	-3.87	< 0.001	***	Significant. A Difference between the effect of blanket3 and its reference.

¹ '***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. '.': sign. to 10% error. '.': not sign. '-': no statement.

Total influence of factors (ANOVA Type III)

Variable	Sum.Sq	Df	F.value	P.value	Interpretation (5% error)
(Intercept)	2933.11	1	437.13	< 0.001	Intercept significantly different from zero.
blanket	151.98	3	7.55	< 0.001	There exist significant differences between the levels of factor 2.
Residuals	248.27	37			

Goodness Of Fit Measures

To evaluate the model, some parameters are listed below.

	Values	Explanation	Interpretation
Multiple R-Squared	0.38	Fraction of variance explained by the model.	0: No fitting of data by the model. , 1: Perfect fit.
Adjusted R-Squared	0.33	Adjusted R-Squared by penalizing higher p.	A higher value means a better fit by the model.
F-statistic	7.55	Overall significance of the model.	Note the P-value to assess significance.
P-value	< 0.001	P-value of the F-statistic.	Significance to the 5% error. The model is better than the only-intercept model.

Multiple Comparisons of Means to a Control

Theoretical background: Testing multiple hypotheses simultaneously and each at the same pre-specified significance level, increases the probability of false positive effects. The probability to commit at least one false positive decision increases with the number of hypotheses. A solution to overcome this problem is given by multiple comparisons procedures. Here, we do not control the per-hypothesis Type I error but the probability of committing at least one Type I error over all hypotheses. Using p-values adjusted for multiplicity, individual hypotheses can be finally compared with the pre-specified significance level.

Dunnet

Multiple Comparison: Dunnet Contrasts

Test whether the factor level b0 of the factor blanket is different from the other levels. The Null Hypothesis is for example b1 - b0 =0.

Null Hypothesis	Value	Std.Error	T.value	adjusted P.value	Sign. level ¹	Significance at 5 percent Type I error
b1 - b0 = 0	-2.13	1.60	-1.33	0.456		Not Significant. Level b0 of factor blanket is not different than b1 ²
b2 - b0 = 0	-7.47	1.60	-4.66	< 0.001	***	Significant. Level b2 of factor blanket is significantly different than $b0^3$
b3 - b0 = 0	-1.67	0.88	-1.88	0.182		Not Significant. Level b0 of factor blanket is not different than b3 ²

¹ '***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. '.': sign. to 10% error. '.': not sign. '-': no statement.

Simoultaneous Confidence Intervals: Dunnet Contrasts

Simultaneous Confidence Intervals which includes the true value of the difference between the reference level b0 and the other levels of blanket

Null Hypothesis	Value	Lower bound	Upper bound	Interpretation
b1 - b0 = 0	-2.13	-6.13	1.86	The interval (-6.13, 1.86) traps the true difference b1-b0 with probability 95 percent. ²
b2 - b0 = 0	-7.47	-11.46	-3.47	The interval (-11.46, -3.47) traps the true difference b2-b0 with probability 95 percent.
b3 - b0 = 0	-1.67	-3.87	0.54	The interval (-3.87, 0.54) traps the true difference b3-b0 with probability 95 percent. ²

¹ Remark: Zero is not in the conidence interval.

² H1 does not hold significantly.

³ H1 holds significantly.

² Remark: Zero is in the confidence interval.

Dunnet Sandwich

The sandwich function provides a heteroskedasticity-consistent estimate of the covariance matrix. Thus, the sandwich estimate is resistant to the violation of the variance homogeneity assumption.

Multiple Comparison: Dunnett Contrasts Sandwich

Test whether the factor level b0 of the factor blanket is different from the other levels. The Null Hypothesis is for example b1 - b0 =0.

Null Hypothesis	Value	Std.Error	T.value	adjusted P.value	Sign. level ²	Significance at 5 percent Type I error
b1 - b0 = 0	-2.13	1.73	-1.23	0.521		Not Significant. Level b0 of factor blanket is two.sided than b1 ³
b2 - b0 = 0	-7.47	1.11	-6.73	< 0.001	***	Significant. Level b2 of factor blanket is significantly two.sided than b0 ⁴
b3 - b0 = 0	-1.67	0.86	-1.93	0.167		Not Significant. Level b0 of factor blanket is two.sided than b3 ³

¹ Note: Due to the applied sandwich estimator, the standard errors of the effects may be unequal.

Simultaneous Confidence Intervals: Dunnett Contrasts Sandwich

Simultaneous Confidence Intervals which includes the true value of the difference between the reference level b0 and the other levels of blanket.

Null Hypothesis	Value	Lower bound	Upper bound	Interpretation
b1 - b0 = 0	-2.13	-6.45	2.18	The interval (-6.45, 2.18) traps the true difference b1-b0 with probability 95 percent. ²
b2 - b0 = 0	-7.47	-10.23	-4.70	The interval (-10.23, -4.7) traps the true difference b2-b0 with probability 95 percent. ¹
b3 - b0 = 0	-1.67	-3.82	0.48	The interval (-3.82, 0.48) traps the true difference b3-b0 with probability 95 percent. ²

¹ Remark: Zero is not in the conidence interval.

References

Bretz, Frank, and Peter Westfall Torsten Hothorn. 2010. Multiple Comparisons Using R. 1st Edition. Chapman; Hall/CRC. https://doi.org/10.1201/9781420010909.

Fox, John, and Sanford Weisberg. 2019. An R Companion to Applied Regression. Third. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

 $Gross,\,Juergen,\,and\,\,Uwe\,\,Ligges.\,\,2015.\,\,Nortest:\,\,Tests\,\,for\,\,Normality.\,\,https://CRAN.R-project.org/package=nortest.$

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Zeileis, Achim, and Torsten Hothorn. 2002. "Diagnostic Checking in Regression Relationships." R News 2 (3): 7–10. https://CRAN.R-project.org/doc/Rnews/.

² '***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. '.': sign. to 10% error. '.': not sign. '-': no statement.

³ H1 does not hold significantly.

⁴ H1 holds significantly.

² Remark: Zero is in the confidence interval.