Resumo 2

Banco de dados 1

Marcos Geraldo Braga Emiliano 19.1.4012

Fonte: Slides das aulas

Modelo relacional

Introduzido por Codd em 1970 (pesquisa da IBM), modelo formal fundamentado nos conceitos de uma relação matemática (teoria de conjuntos), o modelo relacional representa o banco de dados como uma coleção de relações. Informalmente, cada relação é semelhante a uma tabela, cada linha da tabela representa uma coleção de valores de dados relacionados, que podem ser interpretados como fatos descrevendo uma entidade ou um relacionamento, o nome da tabela e os nomes das colunas são usados para ajudar na interpretação do significado dos valores em cada linha da tabela.

Conceitos Básicos

Na terminologia do modelo relacional, uma linha é chamada de uma tupla, um cabeçalho de coluna é chamado de um atributo, e uma tabela é chamada de uma relação. O tipo de dado que descreve os valores que um atributo pode ter é chamado de domínio. Um domínio D é um conjunto de valores atômicos (indivisíveis). Esquema de Relação: é uma expressão da forma R (A₁, A₂, ..., A_n), onde:

R: nome da relação;

Ai: nome de um atributo, cujo domínio em R é denotado por dom (Ai);

n: grau da relação;

Relação ou instância de uma relação: uma relação r de um esquema R, denotado por r(R), é um conjunto de tuplas: $r = \{t_1, t_2, ..., t_n\}$, cada tupla é uma lista ordenada de n valores: $t = \langle v_1, v_2, ..., v_n \rangle$, onde cada $v_i, 1 \le i \le n$, é um elemento do domínio dom (Ai) ou um valor especial nulo. Formalmente, uma relação r(R) é um subconjunto do produto cartesiano dos domínios que definem R: $r(R) \subseteq (\text{dom}(A_1) \ X \ \text{dom}(A_2) \ X \ ... \ X \ \text{dom} \ (A_n))$, o produto cartesiano especifica todas as possíveis combinações de valores dos domínios fundamentais.

Características das Relações

A ordem das tuplas é irrelevante, a ordem dos valores dentro de uma tupla é relevante, a menos que se estabeleça uma correspondência entre esses valores e os atributos definidos. Exemplo: t = < (nome, BD), (código, 032), (cargaHorária, 72), (numCreditos, 4)>, o valor de cada atributo em uma tupla é atômico, atributos compostos e multi-valorados não são permitidos e as tuplas de uma relação são únicas.

Esquema de um Banco de Dados Relacional

Um esquema S de um banco de dados relacional define um conjunto de esquemas de relação R = {R₁, R₂, ..., R_n} e um conjunto de restrições de integridade I = {I₁, I₂, ..., I_m}. Uma instância BD de S é um conjunto de instâncias de relação BD = { $r_1, r_2, ..., r_n$ }, tal que cada r_i é uma instância de R_i e as relações r_i satisfazem as restrições de integridade em I. Portanto, pode-se dizer que S = (R, I).

Exemplo de Instância de um Banco de Dados

Empregado									
PrimeiroNome	InicialMeio	UltimoNome	NumEmpregado	DataNascimento	Endereco	Sexo	Salario	NumSupervisor	NumDepto
João	В	Silva	123456789	09/01/65	R. da Bahia, 2557	M	300.00	333445555	5
Frank	T	Santos	333445555	08/12/55	Av. Afonso Pena, 3005	M	4000.00	888665555	5
Alice	J	Pereira	999887777	19/07/68	Av. do Contorno, 2534	F	2500.00	987654321	4
Luciene	S	Ferreira	987654321	20/06/51	R. Iraí, 175	F	430.00	888665555	4
Pedro	K	Magalhães	666884444	15/09/52	Av. Silva Lobo, 2050	M	1200.00	333445555	5
Daniela	Α	Oliveira	453453453	31/07/62	R. Ataliba Lago, 250	F	2500.00	333445555	5
Mateus	V	Mascarenhas	987987987	29/03/79	R. Contria, 12	M	2500.00	987654321	4
Fábio	E	Lemos	888665555	10/11/47	R. Chile, 425	M	5500.00	null	1

Departamento			
NomeDepto	NumDepto	NumGerente	DatalnicioGerencia
Pesquisa	5	333445555	22/05/98
Administração	4	987654321	01/01/95
Diretoria	1	888665555	19/06/01

Localizacao_Depto				
NumDepart	Localizacao			
1	Savassi			
4	Centro			
5	Buritis			
5	Pampulha			
5	Contagem			

Projeto			
NomeProj	<u>NumProj</u>	Localizacao	NumDepto
Produto X	1	Buritis	5
Produto Y	2	Pampulha	5
Produto Z	3	Contagem	5
Informatização	10	Centro	4
Reorganização	20	Savassi	1
NovosBenefícios	30	Centro	4

Trabalha_em			
NumEmpregado	<u>NumProj</u>	Horas	
123456789	1	32	
123456789	2	7	
666884444	3	40	
453453453	1	20	
453453453	2	20	
333445555	2	10	
333445555	3	10	
333445555	10	10	
333445555	20	10	
999887777	30	30	
999887777	10	10	
987987987	10	35	
987987987	30	5	
987654321	30	20	
987654321	20	15	
888665555	20	null	

NumEmpregado	NomeDependente	Sexo	DataAniversario	Parentesco
333445555	Aline	F	03/04/76	Filha
333445555	Vitor	M	25/10/73	Filho
333445555	Joana	F	03/05/98	Cônjuge
987654321	lgor	M	29/02/52	Cônjuge
123456789	Michel	M	01/01/88	Filho
123456789	Aline	F	31/12/98	Filha
123456789	Elizabeth	F	05/05/57	Cônjuge

Restrições do Modelo Relacional

Restrição de Domínio:

O valor de cada atributo deve ser um valor atômico no domínio do atributo, Restrição de Chave: uma chave é um conjunto mínimo de valores dos atributos que identifica unicamente uma tupla, se um esquema de relação tem mais de uma chave, cada uma é chamada chave candidata. Uma das chaves candidatas é arbitrariamente escolhida para ser a chave primária, e as outras são chamadas chaves alternativas ou chaves secundárias, é melhor escolher como chave primária aquela com o menor número de atributos, cada esquema de relação R deve ter uma chave primária que é indicada no esquema por um sublinhado. Restrição de Integridade de Entidade: a chave primária de um esquema de relação R não pode ter valor nulo. Restrição de Integridade Referencial: é uma restrição especificada entre duas relações, sendo usada

para manter a consistência entre as tuplas das duas relações. Usa-se o conceito de chave estrangeira para definir tais restrições, um conjunto de atributos FK em um esquema de relação R₁ é uma chave estrangeira de R₁ que referência uma relação R₂ se satisfaz as duas regras seguintes: os atributos de FK referenciam a chave primária PK de R₂, tendo os mesmos domínios dos atributos de PK e um valor de FK na tupla t₁ da instância r₁(R₁) ocorre como um valor de PK para alguma tupla t₂ da instância r₂(R₂) ou é nulo. As restrições de integridade referencial são obtidas, geralmente, a partir dos relacionamentos entre as entidades representadas pelos esquemas de relação. As restrições de integridade referencial podem ser representadas graficamente usando-se setas que partem de uma chave estrangeira para a chave primária na relação referenciada.

Departamento		
NomeDepto	NumDepto	NumGerente DataInicioGerencia
	7	•
Localizacao_De	pto	
NumDepart	Localizacao	

Integridade Referencial com Opção de Exclusão

Notação: R₁[fk] ^{op}→ R₂[pk], onde "op" é a opção de exclusão, dentre as seguintes: bloqueio (restrict): se alguma tupla referência a tupla a ser excluída, através de uma chave estrangeira, a exclusão não é efetuada, propagação (cascade): todas as tuplas que referenciam a tupla a ser excluída, através de uma chave estrangeira, são excluídas também automaticamente e substituição por nulos (set null): todas as tuplas que referenciam a tupla a ser excluída, através de uma chave estrangeira, têm os valores dos atributos da chave estrangeira modificados para nulo (se for permitido nulo) e a exclusão é efetuada.

Operações de Atualização sobre Relações

Inserção (insert): insere novas tuplas em uma relação. pode violar qualquer dos quatro tipos de restrições discutidas, exclusão (delete): exclui tuplas de uma relação, pode violar somente restrição de integridade referencial e modificação (update ou modify): muda os valores de modificação (update ou modify): muda os valores de alguns atributos em tuplas existentes, modificar um atributo que não é chave primária nem chave estrangeira pode violar somente a restrição de domínio, modificar a chave primária é similar a excluir uma tupla e inserir uma outra no seu lugar; assim, pode violar qualquer das quatro restrições discutidas ou modificar um atributo de uma chave estrangeira pode violar a restrição de integridade referencial ou de domínio.

Mapeamento ERE para Relacional

Entidade:

Para cada tipo de entidade E no esquema ERE, crie uma relação R que inclua todos os atributos simples de E, inclua também os atributos simples componentes de um atributo composto de E na relação R, Escolha uma das chaves candidatas de E para ser a chave primária de R, exemplo: para o tipo de entidade Empregado, gere a relação:

Empregado (cpf, primeironome, sobrenome, salario);

Entidade Fraca:

Para cada tipo de entidade fraca W no esquema ERE, crie uma relação R e inclua todos os atributos simples (ou componentes simples de atributos compostos) de W como atributos de R, inclua também como atributos de R todos os atributos componentes das chaves primárias de cada uma das entidades fortes de W, cada uma dessas inclusões corresponde a uma chave estrangeira de R, a chave primária de R é a combinação dos atributos das chaves primárias das entidades fortes de W mais a chave parcial de W. Exemplo:

para o tipo de entidade fraca Dependente, gere a relação:

Dependente (cpfEmp, nome, dataNascimento, parentesco)

Dependente[cpfEmp] ^p→ Empregado[cpf]

Atributo Multi-valorado:

Para cada atributo multi-valorado A, crie uma nova relação R que inclua o atributo A mais a chave primária K (como chave estrangeira em R) da relação que representa o tipo de entidade ou o tipo de relacionamento que tem A como atributo. Se o atributo multi-valorado é composto, inclua seus componentes simples, a chave primária de R é a combinação de K e A. Exemplo:

para o atributo Localização, gere a relação:

Localização_Depto (número, localização)

Localização_Depto[número] ^p→ Departamento[número]

Relacionamento Binário 1:1

Para cada tipo de relacionamento binário R 1:1 no esquema ERE, identifique as relações S e T que correspondem aos tipos de entidades participantes de R. Escolha uma das relações, S por exemplo, e inclua como chave estrangeira em S a chave primária de T. É melhor escolher um tipo de entidade com participação total em R no papel de S, inclua todos os atributos simples (ou componentes simples de atributos compostos) do tipo de relacionamento R como atributo de S. **Obs**: um mapeamento alternativo é juntar os dois tipos de entidades e o tipo de relacionamento em uma única relação. Isso é particularmente apropriado quando ambas as participações são totais e os tipos de entidades não participam de nenhum outro tipo de relacionamento. Exemplo: para o tipo de relacionamento Gerencia, adicione os atributos cpfGerente e datalnício à relação Departamento:

Departamento (número, nome, cpfGerente, datalnício)

Departamento[cpfGerente] ^b→ Empregado[cpf]

Relacionamento Binário 1:N

Para cada tipo de relacionamento binário R 1:N regular (não identificador) no esquema ERE, identifique a relação S que representa o tipo de entidade participante do lado N do tipo de relacionamento. Inclua como chave estrangeira em S a chave primária da relação T que representa o outro tipo de entidade participante de R. Isso ocorre porque cada instância do lado N está relacionada a, no máximo, uma instância do lado 1 do tipo de relacionamento, inclua todos

os atributos simples (ou componentes simples de atributos compostos) do tipo de relacionamento R como atributos de S. Exemplo: para o tipo de relacionamento Trabalha_para, adicione o atributo númeroDepto à relação Empregado:

Empregado (cpf, primeiroNome, sobrenome, salario, númeroDepto)

Empregado[númeroDepto] ^b→ Departamento[número]

Relacionamento Binário M:N

Para cada tipo de relacionamento binário R M:N no esquema ERE, crie uma nova relação S para representar R. Inclua como chaves estrangeiras em S as chaves primárias das relações que representam os tipos de entidades participantes, também inclua todos os atributos simples (ou componentes simples de atributos compostos) do tipo de relacionamento R como atributos de S, a chave primária de S é a combinação de suas chaves estrangeiras. Exemplo: para o tipo de relacionamento Trabalha_em, gere a relação:

Trabalha_em (cpf, númeroProjeto, horas)

Trabalha_em[cpf] ^p→ Empregado[cpf]

Trabalha_em[númeroProjeto] p→ Projeto[número]

Os tipos de relacionamentos 1:1 e 1:N podem ser mapeados de forma similar ao tipo de relacionamento M:N, essa alternativa é particularmente útil quando existem poucas instâncias relacionadas, a fim de evitar valores nulos nas chaves estrangeiras, neste caso, a chave primária da relação que representa o tipo de relacionamento é a chave estrangeira de somente uma das relações que representam os tipos de entidades participantes, para um tipo de relacionamento 1:N, a chave primária vem da relação representando o lado N. Para um tipo de relacionamento 1:1, qualquer lado pode ser escolhido, mas é

preferível escolher o lado com restrição de participação total (se houver); no caso, a outra chave estrangeira deve ser definida como chave secundária.

Relacionamento n-ário (n > 2)

Para cada tipo de relacionamento n-ário R, onde n > 2, no esquema ERE, crie uma nova relação S para representar R. Inclua como atributos da chave estrangeira em S as chaves primárias das relações que representam os tipos de entidades participantes. Também inclua todos os atributos simples (ou componentes simples de atributos compostos) do tipo de relacionamento R como atributos de S. A chave primária de S é normalmente a combinação de suas chaves estrangeiras. Entretanto, se as restrições de cardinalidade de qualquer um dos tipos de entidades E participante de R é 1, então a chave primária de S não deve incluir a chave estrangeira que referencia a relação correspondente a E. Exemplo: para o tipo de relacionamento Fornecimento, gere a relação:

fornecimento (codForn, codProj, codPeça, qtde)

fornecimento[codForn] ^p→ Fornecedor[código]

fornecimento[codProj] ^p→ Projeto[código]

fornecimento[codPeça] ^p→ Peça[código]

Especialização / Generalização

Opção 1: crie uma relação L para a superclasse C no esquema ERE com os atributos de C. A chave primária de L é uma chave de C. Crie também uma relação L_i para cada subclasse S_i. Cada L_i inclui os atributos específicos de S_i mais a chave primária de L, a qual torna-se também a chave primária de L_i. Essa opção funciona para qualquer restrição i na especialização: disjunta/sobreposta, total/parcial.

Opção 2: crie uma relação L_i para cada subclasse S_i com os atributos da subclasse mais os atributos da superclasse. A chave primária de L_i é uma chave da superclasse. Essa opção deve ser usada para restrições total e disjunta.

Opção 3: crie uma única relação L com todos os atributos da superclasse C e das subclasses S_i, mais um atributo para indicar a qual subclasse cada tupla

pertence. A chave primária de L é uma chave de C. Essa opção é para uma especialização cujas subclasses são disjuntas. Essa opção pode gerar um grande número de valores nulos.

Opção 4: crie uma única relação L com todos os atributos da superclasse C e das subclasses S_i, mais um atributo lógico (flag) t_i para cada subclasse para indicar se a tupla pertence à subclasse S_i. A chave primária de L é uma chave de C. Essa opção é indicada para especialização cujas subclasses são sobrepostas (mas também funciona para especialização disjunta). Exemplos: para a especialização abaixo.

usando a opção 1, gere as relações:

Empregado (cpf, nome)

Secretário (cpf, vdigitação)

Secretário[cpf] ^p→ Empregado[cpf]

Técnico (cpf, grau)

Técnico[cpf] ^p→ Empregado[cpf]

Engenheiro (cpf, tipoeng)

Engenheiro[cpf] ^p→ Empregado[cpf]

usando a opção 3, gere a relação:

Empregado (<u>cpf</u>, nome, tipodetrabalho, vdigitação, grau, tipoeng) para a generalização abaixo:

usando a opção 2, gere as relações:

Carro (código, numLicença, preço, numPassageiros, velocMáxima)

Caminhão (<u>código</u>, numLicença, preço, numEixos, tonelagem)

para a especialização abaixo:

usando a opção 4, gere a relação:

Peça (<u>número</u>, descrição, Mflag, numDesenho, dataManuf, numLote, Aflag, nomeFornecedor, listadePreço)

Tipo União ou Categoria

Crie uma relação para representar a categoria e inclua todos os seus atributos. Para uma categoria cujas superclasses têm chaves diferentes, adicione um novo atributo chave, chamado "chave substituta", para ser a chave primária da relação. Adicione este atributo como chave estrangeira em todas as relações correspondentes às superclasses da categoria, para especificar a correspondência de valores entre a chave substituta e as chaves de cada superclasse. Para uma categoria cujas superclasses têm as mesmas chaves, a chave substituta não é necessária. Adicione à relação representante da categoria o atributo chave de uma superclasse para ser a sua chave primária. Cada chave primária das relações correspondentes às superclasses são também chaves estrangeiras referenciando a relação da categoria. Exemplo:

para a categoria abaixo:

gere as relações:

Empresa (cnpi, razãosocial, numCorrentista)

Empresa[numCorrentista] $^{n}\rightarrow$ Correntista[numCorrentista]

Pessoa (cpf, nome, numCorrentista)

Pessoa[numCorrentista] $^{n}\rightarrow$ Correntista[numCorrentista]

Correntista (numCorrentista)