

One-for-All: An Unified Learning-based Framework for Efficient Cross-Corner Timing Signoff

Linyu Zhu, Yichen Cai and Xinfei Guo

University of Michigan – Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University, Shanghai, China

Challenges in Timing Signoff

- Hundreds of process corners.
- Lengthy ECO iterations.

Sign-off Corners

Problem Formulation

- Given the timing or only parasitic parameter for one selected 'observed' RC corner, estimate the interconnect timing for the remaining corners.
- Given few signed-off nets in all RC corners, classify the best corner as 'observed'.

Proposed Framework

- A unified, learning-based approach.
- Utilizes a single known corner to predict timing across all other corners.

Key Contributions

- Precise and fast cross-corner timing predictions.
- Machine learning-based corner selection.
- Seamless integration with timing ECO processes.

Proposed Methodology

Cross-corner timing prediction module

2.Extract low dimensional embedding from graph matrices

Corner Selection

Selecting the most representative corner using minimal data.

Learning-based corner selection module

Experiments and Results

Setup and baseline

- Evaluation on industry-standard technology nodes (sub-10nm, 28nm).
- Representative benchmark.
- SOTA works and classical methods as baselines.
- Fast version denoted as **fa**, accurate version denoted as **acc**, previous best denoted as **pb**.

Benchmark

Process	Benchmark	#Cells	#Nets	#FFs		
	B19	13863	15394	1980		
	PCI_BRIDGE	8518	9269	3337		
28nm	DES_PERT	1506	1634	192		
2011111	AES-128	5363	5432	935		
	SALSA	11292	12749	1674		
	OPENGFX	8220	8534	1584		
sub-10nm	Industrial	Over	Over 1 million nets			
sub-10HH	Design (confidential)	Over .	nets			

Accuracy comparison w/ prior works in sub-10 nm node

- X-coordinate represents the observed corner.
- Y-coordinate represents the predicted corner.

43/d Edition

Comparison to previous best methods in sub-10 nm node

- At least 5 observed corners on average are required to achieve same accuracy as acc.
- Acc 62.6% accuracy improvement with pb.

The number of required corners to achieve same accuracy

	Proposed		Previous Best							
Known Corner	#1	#1	#2	#3	#4	#5	#6	#7	# Minimum Required Corner	
c_0	0.30	1.62	0.83	0.5	0.38	0.40	0.39	0.29	7	
c_1	0.41	1.36	0.62	0.47	0.50	0.50	0.53	0.27	7	
c_2	0.36	1.06	0.64	0.52	0.51	0.53	0.38	0.28	7	
c_3	0.43	0.88	0.60	0.60	0.61	0.36			5	
c_4	0.37	1.12	0.62	0.63	0.34				4	
c_5	0.49	0.92	0.74	0.50	0.38				4	
c_6	0.38	0.89	0.63	0.41	0.38				4	
c_7	0.50	0.83	0.77	0.71	0.76	0.36			5	
c_8	0.48	1.18	0.93	0.76	0.36				4	
<i>c</i> ₉	0.43	1.02	0.77	0.40					3	
Average									5	

Summary of the predicted MAE(ps) (mean/min/max) of the unobserved corners

Benchmark		c_0	c_1	c_2	<i>c</i> ₃	<i>c</i> ₄	c_5	c ₆	<i>c</i> ₇	c ₈	c 9
Industrial	pb	1.5/0.8/2.4	1.2/0.5/2.1	1.0/0.7/1.7	0.8/0.6/1.5	1.0/0.5/1.5	0.8/0.5/1.8	0.8/0.6/1.3	0.8/0.5/1.4	1.1/0.5/2.1	0.9/0.5/1.7
	fa								1.4/1.4/1.7		
Design	acc	0.3/0.2/0.4	0.4/0.3/0.5	0.3/0.2/0.4	0.4/0.3/0.5	0.3/0.3/0.5	0.4/0.3/0.6	0.3/0.3/0.5	0.5/0.4/0.6	0.4/0.3/0.6	0.4/0.3/0.5

Comparison to previous best in 28 nm node

- Acc 95.3% accuracy improvement with pb, increase about 10s runtime on average.
- Fa achieves over a 2× speedup compared to acc, with 0.5 ps accuracy degradation on average.

MAE(ps) of each unobserved corners in 28 nm

Benchmark		c_0	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	C 9	Run 1 Time (s)
	pb	0.122	0.133	0.162	0.169	0.105	0.110	0.151	0.162	0.111	0.116	161
B19	fa	0.464	0.483	0.529	0.540	0.457	0.466	0.552	0.548	0.501	0.519	53
	acc	0.005	0.005	0.005	0.006	0.005	0.005	0.006	0.006	0.005	0.006	172
	pb	0.240	0.268	0.258	0.269	0.185	0.197	0.254	0.261	0.192	0.190	115
PCI_BRIDGE	fa	0.801	0.860	0.857	0.860	0.752	0.811	0.869	0.865	0.810	0.827	50
	acc	0.011	0.011	0.011	0.011	0.011	0.011	0.012	0.012	0.011	0.011	126
	pb	0.088	0.084	0.107	0.094	0.078	0.078	0.108	0.088	0.063	0.067	59
DES_PERT	fa	0.450	0.459	0.625	0.600	0.425	0.508	0.572	0.600	0.499	0.517	42
	acc	0.011	0.012	0.012	0.013	0.011	0.012	0.013	0.013	0.013	0.012	69
	pb	0.240	0.268	0.258	0.269	0.185	0.197	0.254	0.261	0.192	0.190	96
AES-128	fa	0.802	0.854	0.891	0.920	0.818	0.839	0.930	0.927	0.854	0.876	47
	acc	0.009	0.010	0.010	0.010	0.009	0.009	0.010	0.010	0.010	0.010	107
	pb	0.341	0.391	0.407	0.442	0.287	0.289	0.388	0.419	0.273	0.281	150
SALSA	fa	1.436	1.475	1.502	1.560	1.397	1.455	1.569	1.610	1.467	1.518	54
	acc	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.013	0.012	0.012	161
	pb	0.147	0.162	0.205	0.220	0.135	0.135	0.218	0.223	0.135	0.138	123
OPENGFX	fa	0.620	0.646	0.682	0.706	0.609	0.647	0.692	0.723	0.650	0.671	49
	acc	0.007	0.007	0.007	0.008	0.007	0.007	0.008	0.008	0.007	0.007	134

Runtime Improvement and corner selection accuracy

- Fa over 2× speedup acc in delay prediction.
- Acc 10× acceleration of ECO processes.
- In small sample size (200), the test accuracy surpasses 70%.

Runtime(s) for two ECO iterations (in 28nm).

		Itera	tion #1	Iteration #2			
Benchmark	fa	acc	Traditional ECO	fa	acc	Traditional ECO	
B19	53	169	1574	53	172	1608	
PCI_BRIDGE	70	147	1354	50	126	1154	
DES_PERT	43	79	697	42	69	588	
AES-128	42	112	1009	47	107	962	
SALSA	53	127	1582	54	161	1502	
OPENGFX	50	100	1285	49	134	1228	
Average	51.83	122.33	1250.17	49.17	128.17	1173.67	

Know corner selection accuracy with respect to the sample size (in28nm)

Sample Size	Training Accuracy	Test Accuracy
100	0.663	0.611
200	0.805	0.744
500	0.771	0.767
Mixed	0.814	0.8

Conclusion

- Learning-based cross-corner timing signoff frame work is proposed.
- Only one RC corner timing or just parasitic parameter is enough to predict interconnect timing in all corners.
- 'Observed' corner smart selecting strategy, enhance the framework's adaptability.
- Integrated in ECO flow, the proposed framework accelerates each iteration substantially by over 10×.

Q&A

