Modellierung mit FEMKapitel 1: Einführung

Prof. Dr.-Ing. Thomas Grätsch
Department Maschinenbau und Produktion
Fakultät Technik und Informatik
Hochschule für Angewandte Wissenschaften Hamburg

thomas.graetsch@haw-hamburg.de

Organisatorisches (WS 2017/18)

Vorlesung Do 12:15 – 13:45 Uhr

Labore Di 15:45 – 19:00 Uhr an 4 Terminen

genauer Terminplanung siehe nächste Folie

Laborbericht Präsentation am Ende des Semesters

Sprechstunde Do 10:00 – 12:00 Uhr, Raum 226e

Skript PDF-Folien, Mitschriften

Klausur KW 05 (Di oder Do) oder Fr 16.02., 12:30 Uhr

Vorlesungstermine und –inhalte, 1/2

Datum	Tag	Thema	
12.10.	Do 3.V	1. Einführung	
19.10.	Do 3.V	2. Mathematische Grundlagen der FEM Herleitung über PdvV, mathematische Notation, Ansatzfunktionen	
26.10.	Do 3.V	3. Grundlagen der Elastizitätstheorie Spannungen, Gleichgewicht, Verzerrungen, Ausgabegrößen	
02.11.	Do 3.V	4. Wahl des 'richtigen' Modells Modelle der Strukturmechanik, 2D- und 3D-Elemente, Element- bewertung, Symmetrie, Submodellierung, linear vs. nichtlinear	
07.11.	Di 5.+6.V	Labor Modellierung	
09.11. / 16.11.	Do 3.V	5. Singularitäten Singularitäten aus Geometrie, scharfe Ecken und Knicke, Fehler in der Geometrie, Praxisempfehlungen, Singularitäten aus der Belastung, Einzelkräfte und –momente, äquivalente Knotenkräfte	
21.11.	Di 5.+6.V	Labor Singularitäten	
23.11. / 30.11.	Do 3.V	6. Genauigkeit der FE-Methode Vernetzungstipps, Elementauswahl, Konvergenz, FE-Lastfall, Fehlerschätzung, Einflussfunktionen, Verifizierung vs. Validierung	

Vorlesungstermine und –inhalte, 1/2

Datum	Tag	Thema	
07.12.	Do 3.V	Keine Vorlesung	
14.12.	Do 3.V	7. Kopplung von Bauteilen RBE-Elemente, Glue/Join/Tie-Verbindungstechniken	
19.12.	Di 5.+6.V	Labor Kopplung / Genauigkeit	
21.12. / 11.01.	Do 3.V	8. Schraub- und Schweißverbindungen Schraubenmodelle, Konzepte zur Berechnung von Schweiß- verbindungen, Praxisempfehlungen	
16.01.	Di 5.+6.V	Labor Schraub- und Schweißverbindungen	
18.01.	Do 3.V	9. Ausgewählte Themen Modellierung von Flüssigkeiten und Dichtungen, Erstellen einer Berechnungspräsentation	
23.01.	Di 5.+6.V	Laborvorträge	
25.01.	Do 3.V	Zusammenfassung / Klausurvorbereitung	

Literaturempfehlungen

- Bathe KJ: Finite-Elemente-Methoden, Springer, 2001
- Nasdala, L: FEM-Formelsammlung Statik und Dynamik, Vieweg, 2010
- Hartmann F, Katz C: Structural Analysis with Finite Elements, Springer, 2006
- Grundlagen der FEM:
 - Fish J, Belytschko T: A first course in FEM, Wiley, 2007
 - Link M: Finite Elemente in der Statik und Dynamik, Vieweg, 2014
 - Steinke P: Finite-Elemente-Methode, Springer, 2015
 - •

Modellbildung

Physikalisches Problem Annahmen, Hypothesen Bewertung **Mathematisches Modell** Ø FEM: Wahl der Elemente, Netzdichte, etc. Interpretation Computermodell effizient lösen **Ergebnis**

Ein einfaches(?) Beispiel

Gegeben:

$$E = 2.1 \times 10^5 \text{ N/mm}^2$$

$$v = 0.2$$

Rechteckprofil: 40 mm x 200 mm

$$\sigma = \frac{M}{W} \quad mit \ W = \frac{b \cdot h^2}{6} = \frac{0.04m \cdot (0.2m)^2}{6} = 2.667 \cdot 10^{-4} m^3$$

$$M = F \cdot l = 25000N \cdot 2m = 50000Nm$$

$$\Rightarrow \sigma = \frac{50000Nm}{2,667 \cdot 10^{-4} m^3} = 187,5 \frac{N}{mm^2}$$

Ein einfaches(?) Beispiel

Ein weiteres Beispiel

${\bf Freiheits grade}$	${\bf Lagerkraft}$	Einspannmoment	Durchbiegung
Balkenlösung	2.70	-1.70	8.39
66	2.70	-1.70	4.45
116	2.70	-1.70	3.67
203	2.70	-1.70	2.89
378	2.69	-1.74	1.00
694	2.69	-1.74	-0.37
1202	2.68	-1.78	-1.98
∞	0	-12.5	-937.5

2D- oder 3D-Elemente

Volumenmodell

Schalenmodell

	Schalenmodell	Volumenmodell	Abweichungen
max. Verschiebung	6,10 mm	5,85 mm	4,3 %
max. Spannungen	330 MPa	354 MPa	7,3 %
DOF	102684	567712	ca. 450 %

Tetraeder oder Hexaeder

Vernetzung mit Tetraeder-Elementen (Tet 10)

6871 Knoten

max. Durchbiegung: 4,12mm

Eigenfrequenzen

- 1. 2,46 Hz
- 2. 3,4383 Hz
- 3. 4,1286 Hz
- 4. 13,841 Hz
- 5. 17,265 Hz

Prof. Dr.-Ing. Thomas Grätsch

Modellierung mit FEM Kapitel 1: Einführung

Ausnutzung von Symmetrie

Gute Netze vs. schlechte Netze

Modellierung Konus - Lagerbuchse

Hexaeder-Vernetzung eines Abgaskrümmers

Vernetzung mit 200.000 Hexaeder-Elementen:

