

High dimensional time series analysis

4. Forecast reconciliation

robjhyndman.com/hdtsa

Outline

1 Forecast reconciliation

Outline

1 Forecast reconciliation

- Quarterly data on visitor night from 1998:Q1 2013:Q4
- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

Spectacle sales

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

■ Tourism demand by state and region

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Spectacle sales by brand, gender, stores, etc.
- Tourism by state and purpose of travel

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm.

 (e.g., ets, auto.arima, FFORMA, ...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is available in the **hts** package in R.

Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$y_t = Sb_t$$

where

- \mathbf{y}_t is a vector of all series at time t
- **b**_t is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

observed aggregate of all series at time *t*.

observation on series *X* at time *t*.

vector of all series at bottom level in time *t*.

observed aggregate of all series at time *t*.

observation on series *X* at time *t*.

vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}$$

observed aggregate of all series at time *t*.

observation on series *X* at time *t*.

vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SG}\hat{\mathbf{y}}_{n}(h)$$

for some matrix G.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SG}\hat{\mathbf{y}}_{n}(h)$$

for some matrix G.

- **G** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- **S** adds them up

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{G} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{G} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{S}(\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1} \hat{\mathbf{y}}_n(h)$$

Problem: Σ_h hard to estimate, especially for h > 1.

Solutions:

- Ignore Σ_h (OLS)
- Assume Σ_h diagonal (WLS) [Default in hts]
- Try to estimate Σ_h (GLS)

Features

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- Conceptually easy to implement: regression of base forecasts on structure matrix.

Domestic visitor nights

Quarterly data: 1998 - 2006.

From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+,

collected by Tourism Research Australia.

Base forecasts

Reconciled forecasts

Reconciled forecasts

Reconciled forecasts

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

Training sets Test sets h = 1

Training sets Test sets h = 1 tin

Hierarchy: states, zones, regions

Forecast horizon								
RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	Ave	
Australia								
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28	
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22	
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57	
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43	
			Sta	ates				
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61	
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43	
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95	
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95	
			Reg	ions				
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47	
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47	
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39	
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34	