FULL WAVE RECTIFICATION

IN HALF WAVE:

- igspace APPLIED 'V' TO THE LOAD IS '0' OR '-VE' BEYOND π
- RIPPLE IN THE OUTPUT 'V' INCREASES
- **USE FULL WAVE RECTIFICATION**

USING CENTRE TAPPED TRANSFORMER

POPULAR IN POWER SUPPLIES

In the +ve HALF D_1 Conducts

$$V_{D2} = -(V_{11} + V_{12})$$

$$V_{D2(\text{max})} = -2V_{11\,(\text{max})}$$

$$V_{11} = \left(\frac{N_2}{N_1}\right) V_{in}$$

AV. O/P
$$V=rac{2V_m}{\pi}$$

CONSIDER: A COMMON CATHOD CONFIGURATION

- ightharpoonup ONLY D_2 CAN CONDUCT
- DIODE WHOSE ANODE POTENTIAL IS HIGHEST WILL CONDUCT

A COMMON ANODE CONFIGURATION

- POTENTIAL OF x CAN BE -10V
- \longrightarrow ONLY D_2 CAN CONDUCT
- DIODE WHOSE CATHOD POTENTIAL IS MINIMUM WILL CONDUCT

SINGLE PHASE BRIDGE

 $D_1 D_3 \longrightarrow \text{COMMON CATHOD CONFIGURATION}$ $D_2 D_4 \longrightarrow \text{COMMON ANODE CONFIGURATION}$

IN +VE HALF

POT. OF A > POT. B

 D_1 WILL CONDUCT IN THE UPPER HALF

 D_2 WILL CONDUCT IN THE LOWER HALF

EQUIVALENT CIRCUIT

$$V_m \sin \omega t = Ri + L \frac{di}{dt}$$

$$i = \frac{Vm}{Z} \left[\sin(\omega t - \varphi) + \sin \varphi e^{-t/\tau} \right]$$

$$i = i_{\text{max}}$$
 $\pi/2 < \omega t < \pi$

$$v_i = Ri_{\text{max}}$$
 :: $L \frac{di_{\text{max}}}{dt} = 0$

At $\omega t = \pi^+$, $D_3 \& D_4$ starts conducting.

+ve V is applied to the load.

At steady state if load is highly L i_0 becomes almost constant.

Whenever Diode conducts source I = Load I

- \Rightarrow For analysis assume that i_L is constant & ripple free.
- \Rightarrow Source I is square wave
- ⇒ Odd function
- ⇒ Fourier series will have all odd component

Peak of 1st or Fundamental component =
$$\frac{4I_0}{\pi} = b_1$$

Displacement Angle
$$\theta_1 \angle_{V_i}^{b_1} = 0$$

Displacement Factor =
$$\cos \theta_1 = 1$$

Input power factor:

$$P.F = \frac{Mean i/p power}{R.M.S. Input VA}$$

- \Rightarrow only fundamental component of i/p I contributes to mean i/p power.
- \Rightarrow other components contribute to heat $(I^2R \text{ loss})$

$$P.F. = \frac{V_1 I_1 \cos \theta_1}{V_{rms} I_{rms}}$$

⇒ supply is a pure sinusoid.

$$\Rightarrow V_1 = V_{rms}$$

- \Rightarrow Source I is a square waveform.
- $\Rightarrow 3^{rd}, 5^{th}, 7^{th}$ Harmonics

$$I_{rms} = I_0$$
 $I_1 = \frac{4I_0}{\sqrt{2}\pi}$ $\cos \theta = 0.9 \ lag$

⇒ Decides the VA requirement

T.H.D.=
$$\frac{\text{Ripple}}{\text{Fundamental}} = \frac{(I_{rms}^2 - I_1^2)^{1/2}}{I_1} \approx 49\%$$

LOAD IS PURE L:-

In the +ve Half
$$L\frac{di}{dt} = V$$

$$i = i_{\text{max}}$$
 at $\omega t = \pi$,

At
$$\omega t = \pi^+$$

+ve \(\) is again applied to the Load

- $i \uparrow continuously$
- ⇒ No steady state
- $\Rightarrow V \text{ across } L = +ve$

$$\Rightarrow \frac{di}{dt} is + ve$$

CONTROLLED RECTIFICATION

SCR (THYRISTOR) IS USED

- GATE SIGNAL WHEN IT IS F.B.
- OPERATION IS ALMOST THE SAME AS THAT OF 'D' CIRCUIT
- \blacksquare IF LOAD I IS CONTINUOUS, $\alpha_{\min} = 0$
 - & IS INDEPENDENT OF TYPE OF LOAD

HALF CONTROLLED BRIDGE

ASSUMING: i_{ℓ} Const. and ripple free possible if 'l' is high assume 'l' on source side is = 0 scr turns off immediately when –ve voltage is applied across it at $\omega T = \alpha$ T_1 is turned on at $\omega T = \pi + \alpha$ T_4 is turned on

At
$$\omega t = \pi^+$$

Potential (Pot.) of B > Pot. of A

Upperhalf: - Common cathode configuration

- \Rightarrow Doide D_3 starts conducting
- \Rightarrow Cathode Pot. of T_1 =Pot. of B
- \Rightarrow -ve V across T_1
- T_1 Y

- $\Rightarrow T_1$ Turns off
- ⇒Line Commutation

Lower Arm:

- $\Rightarrow T_4$ is F.B.
- \Rightarrow Gate signal is applied only at $\pi + \alpha$
- \Rightarrow From π to $\pi + \alpha$ T_{Δ} is O.C.
- \Rightarrow D_2 continues to conduct
- \Rightarrow Load is free wheeling through D_2 D_3

$$V_0 = 0$$
 Source $I = 0$

- \Rightarrow Continues till $\pi + \alpha$ while T_A is Triggered
- \Rightarrow : It is F.B. & gate signal present T_4 starts conducting
- \Rightarrow Applied -ve 'V' across $D_2 \Rightarrow D_2$ turns off

- \Rightarrow From $\pi + \alpha$ to 2π
- \Rightarrow Operation is similar to that of α to π Only direction of I_s has reversed

- \Rightarrow From $2\pi to 2\pi + \alpha$
- \Rightarrow Operation is similar to that of π to $\pi + \alpha$
- $\Rightarrow T_4 \& D_2$, form common anode config.
- $\Rightarrow D$, starts conducting
- \Rightarrow Applies -ve 'V' across T_4 T_4 turns off
- \Rightarrow Upper half: T_1 is not triggered

$$V_{av} = \frac{V_m}{\pi} (1 + \cos \alpha)$$

- $\Rightarrow V_{av}$ is always $\pm ve$
- \Rightarrow Load I is always unidirectional

$$\Rightarrow$$
 Single Quardrant Converter $1 = \frac{2V_m}{\pi}$

Displacement Factor =
$$Cos\left(-\frac{\alpha}{2}\right)$$

Lagging : RMS value of the fundamental component source I_{ε}

$$I_{s} = \frac{2\sqrt{2}}{\pi} I_{a} Cos \left(\frac{\alpha}{2}\right) \qquad P.F = \frac{\sqrt{2} \left(1 - Cos\alpha\right)}{\left[\pi \left(\pi - \alpha\right)\right]^{1/2}}$$

Observation:

- $\Rightarrow If \alpha \neq 0$ $\gamma for T \neq \gamma for D$
- \Rightarrow Av. Current rating of T < Av. Current rating of D

Case H: Operation α to π is same

$$V_0 = V_{in}$$

From π to $\pi + \alpha$

Lower arm common Anode config.

 D_{A} starts conducting

In Upper half T_3 F.B.

Till then it can not conduct

 $\Rightarrow I_L$ freewheels through $T_1 \& D_4$

$$I_S = 0, V_0 = 0$$

- \Rightarrow At $\pi + \alpha : T_3$ is triggered
- ⇒Starts conducting
- \Rightarrow Applies -ve 'V' across T_1
- ⇒ Turns off

$$V_0 = V_{in}$$

From 2π to $2\pi + \alpha$ (or 0 to α)

Pot. of A > Pot. of B

- \Rightarrow D_2 starts conducting (C.A. config.)
- $\Rightarrow D_{\scriptscriptstyle A}$ turns off
- \Rightarrow T_1 starts conducting only at $2\pi + \alpha$ (or α) γ for $T = \gamma$ for D

Av. I of T = Av. I of D

$$V_0 = \frac{V_m}{\pi} (1 + Cos\alpha)$$

- DEVICE SHOULD ATTAIN THE FORWARD

 BLOCKING CAPABILITY BEFORE IT IS F.B.
- OTHERWISE IT WILL NOT TURN OFF
 - COMMUTATION FAILURE

IN CASE I

AT $\omega T = \pi^+$, T_1 IS TURNED OFF BECAUSE DIODE STARTS CONDUCTING

- CASE II
- T_1 CONTINUES TO CONDUCT TILL T_3 IS TRIGGERED T_3 CAN BE TURNED OFF ONLY BY TURNING ON T_1
- \rightarrow IF $\alpha \rightarrow \pi$
- BEFORE $\omega t = \pi^+ \rightarrow T_3$ GETS FORWARD BAISED
- T_3 SHOULD ATTAIN ITS F.B.

 CAPABILITY BEFORE $\omega t = \pi^+$
- REQUIRES FINITE TIME
- IF AVAILABLE TIME < THE ABOVE TIME T_3 CONTINUOUS TO CONDUCT
- 1/2 WAVE EFFECT

