

LEEC

Ano Letivo 2021/2022

PROPAGAÇÃO E RADIAÇÃO DE ONDAS ELECTROMAGNÉTICAS (PROE)

PROPAGAÇÃO GUIADA - LINHAS DE TRANSMISSÃO

Custódio Peixeiro

Dezembro 2021

Este documento foi concebido para servir de guia nas aulas e apenas como tal deverá ser utilizado no estudo da matéria.

- Tipos de Guias de Ondas (Modos)
- Linhas de Transmissão (LT)
 - Modo TEM
 - Parâmetros Distribuídos
 - Exemplo do Cabo Coaxial
 - Equações Canónicas
 - Tensão e Corrente (com perdas, sem perdas, com fracas perdas)
 - Geometria (linha bifilar, cabo coaxial, linha de placas paralelas)
 - Linha Micro-Tira
- Linhas de Transmissão sem Perdas
- Carta de Smith
- Adaptação de Impedâncias
- Aplicações de Linhas de Transmissão

Tipos de Guias de Ondas (Modos) (1)

Guias de ondas são estruturas metálicas e/ou dielétricas que guiam OEs. Pode haver confinamento total de energia (guias fechados) ou não (guias abertos).

Guias Fechados

Cabo Coaxial

Guia de Paredes Metálicas

Guias Abertos

Linha Bifilar Fibra Óptica

Exibem geometria cilíndrica e as ondas propagam-se ao longo do eixo longitudinal (vamos considerar o eixo dos ZZ).

Modos (Estrutura do campo eletromagnético)

TEM
$$E_z = 0, H_z = 0$$

TE (H) $E_z = 0, H_z \neq 0$

TM (E)
$$E_z \neq 0, H_z = 0$$

Híbridos (HE ou EH)
$$E_z \neq 0, H_z \neq 0$$

Tipos de Guias de Ondas (Modos) (2)

Só existem modos TEM em guias metálicos (sem perdas) de seção transversal multiplamente conexa (mínimo 2 condutores) e dieletricamente homogénea.

Não suportam modos TEM os guias de paredes metálicas (são simplesmente conexos) (qualquer que seja a secção transversal) nem os guias dielétricos (são dieletricamente não homogéneos) (varão dielétrico, fibra ótica).

Existem estruturas que suportam modos quase-TEM (por exemplo as linhas micro-tira)

Usam-se normalmente as designações **linha de transmissão** para os guias de ondas que suportam modos TEM e **guia de ondas** para os outros.

Os modos TEM têm características que os tornam especiais em telecomunicações

- O campo elétrico, o campo magnético e a direcção de propagação formam um triedro directo
- Os modos TEM correspondem a ondas planas (mas não necessariamente uniformes)
- Definem-se univocamente tensões e correntes
- Admitindo que as características macroscópicas do meio (μ,ε) não dependem da frequência, não há dispersão

$$k_z = \omega \sqrt{\mu \epsilon}$$
 $Z = \sqrt{\frac{\mu}{\epsilon}}$ $v_f = v_g = c = \frac{1}{\sqrt{\mu \epsilon}}$

Os sinais propagam-se sem deformação

Modos TEM

Eixo longitudinal da LT ao longo de $\hat{\mathbf{z}}$

Pelo teorema de Stokes

$$\begin{split} &\oint_{c} \overline{\boldsymbol{E}} \cdot \boldsymbol{d} \boldsymbol{I} = \iint_{S} (\nabla \times \overline{\boldsymbol{E}}) \cdot \boldsymbol{d} \boldsymbol{S} = \iint_{S} (\nabla \times \overline{\boldsymbol{E}})_{z} \, dS = \iint_{S} -j\omega\mu \overline{H}_{z} \, dS = 0 \\ &\overline{\boldsymbol{E}}_{T} = -\nabla_{T} \, \overline{\boldsymbol{\Phi}} & \overline{V}_{12} = \int_{1}^{2} \overline{\boldsymbol{E}} \cdot \boldsymbol{d} \boldsymbol{I} = -\int_{1}^{2} \nabla \overline{\boldsymbol{\Phi}} \cdot \boldsymbol{d} \boldsymbol{I} = \overline{\boldsymbol{\Phi}}_{1} - \overline{\boldsymbol{\Phi}}_{2} \end{split}$$

$$\oint\limits_{c} \overline{\boldsymbol{H}} \cdot \boldsymbol{dI} = \iint\limits_{S} (\nabla \times \overline{\boldsymbol{H}}) \cdot \boldsymbol{dS} = \iint\limits_{S} (\nabla \times \overline{\boldsymbol{H}})_{z} \, dS = \iint\limits_{S} (\overline{J} + j\omega\epsilon \overline{E})_{z} \, dS = \iint\limits_{S} \overline{J}_{z} \, dS = \overline{I}$$

$$\overline{V}(x,y,z) = \overline{V}(x,y) e^{\pm jkz}$$
 $\overline{I}(x,y,z) = \overline{I}(x,y) e^{\pm jkz}$

Equações Canónicas (1)

Caso sem perdas

$$-V + (Ldz)\frac{\partial I}{\partial t} + V + \frac{\partial V}{\partial z}dz = 0$$

$$I = I + \frac{\partial I}{\partial z} dz + (Cdz) \frac{\partial V}{\partial t}$$

$$\begin{cases} \frac{\partial V}{\partial z} = -L \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial z} = -C \frac{\partial V}{\partial t} \end{cases}$$

$$\begin{cases} \frac{\partial^2 V}{\partial z^2} = LC \frac{\partial^2 V}{\partial t^2} \\ \frac{\partial^2 I}{\partial z^2} = LC \frac{\partial^2 I}{\partial t^2} \end{cases}$$

$$\begin{cases} \frac{\partial V}{\partial z} = -L \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial z} = -C \frac{\partial V}{\partial t} \end{cases} \begin{cases} \frac{\partial^2 V}{\partial z^2} = LC \frac{\partial^2 V}{\partial t^2} \\ \frac{\partial^2 I}{\partial z^2} = LC \frac{\partial^2 I}{\partial t^2} \end{cases} \begin{cases} \frac{\partial^2 \overline{V}}{\partial z^2} + \omega^2 LC \overline{V} = 0 \\ \frac{\partial^2 \overline{I}}{\partial z^2} + \omega^2 LC \overline{I} = 0 \end{cases}$$

$$\overline{V}(z) = \overline{V}_i e^{-jk_z z} + \overline{V}_r e^{+jk_z z}$$

$$\bar{I}(z) = \bar{I}_i e^{-jk_z z} + \bar{I}_r e^{+jk_z z}$$

$$k_z = \omega \sqrt{LC} = \frac{\omega}{v_f}$$
 $v_f = \frac{1}{\sqrt{LC}}$ $\frac{\overline{V_i}}{\overline{I_i}} = -\frac{\overline{V_r}}{\overline{I_r}} = Z_0$ $Z_0 = \sqrt{\frac{L}{C}}$

$$v_f = \frac{1}{\sqrt{LC}}$$

$$\frac{\overline{V}_i}{\overline{I}_i} = -\frac{\overline{V}_r}{\overline{I}_r} = Z_0$$

$$Z_0 = \sqrt{\frac{L}{C}}$$

Equações Canónicas (2)

Caso geral (com perdas)

$$\begin{cases} \frac{\partial^2 \overline{V}}{\partial z^2} - (R + j\omega L)(G + j\omega C) \overline{V} = 0 \\ \frac{\partial^2 \overline{I}}{\partial z^2} - (R + j\omega L)(G + j\omega C) \overline{I} = 0 \end{cases}$$

$$\overline{V}(z) = \overline{V}_i \, e^{-\gamma z} \,\, + \, \overline{V}_r \, e^{+\gamma z}$$

$$\bar{I}(z) = \bar{I}_i e^{-\gamma z} + \bar{I}_r e^{+\gamma z}$$

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

$$\frac{\overline{V}_{i}}{\overline{I}_{i}} = -\frac{\overline{V}_{r}}{\overline{I}_{r}} = Z_{0} \qquad Z_{0} = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$

Equações Canónicas (3)

Caso de interesse prático (com fracas perdas, $\omega L \gg R = \omega C \gg G$)

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

$$\begin{cases} \alpha \approx \frac{\sqrt{LC}}{2} \left(\frac{R}{L} + \frac{G}{C} \right) \\ \beta \approx \omega \sqrt{LC} \end{cases}$$

$$Z_0 = R_0 + jX_0 = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$

$$\begin{cases} R_0 = \sqrt{\frac{L}{C}} \\ X_0 = \frac{1}{2\omega} \sqrt{\frac{L}{C}} \left(\frac{G}{C} - \frac{R}{L} \right) \end{cases}$$

$$v_f = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$

Igual ao caso sem perdas

Parâmetros Distribuídos (1)

Parâmetros Distribuídos

Dielétrico $(\epsilon_d, \mu_d, \sigma_d)$ Condutores $(\epsilon_0, \mu_0, \sigma_c)$

$$R_s = \frac{1}{\sigma_c \delta} = \sqrt{\frac{\omega \mu_0}{2\sigma_c}}$$

$$L = \frac{\mu_d}{I_0^2} \int_S \overline{\mathbf{H}} \cdot \overline{\mathbf{H}}^* ds \qquad [H.m^{-1}]$$

$$C = \frac{\varepsilon_d}{V_0^2} \int_S \overline{\mathbf{E}} \cdot \overline{\mathbf{E}}^* ds \qquad [F.m^{-1}]$$

$$R = \frac{R_s}{I_0^2} \int_{C_1 + C_2} \overline{\mathbf{H}} \cdot \overline{\mathbf{H}}^* dI \qquad [\Omega.m^{-1}]$$

$$G = \frac{\sigma_d}{V_0^2} \int_S \overline{\mathbf{E}} \cdot \overline{\mathbf{E}}^* ds$$
 [S.m⁻¹]

Parâmetros Distribuídos (2)

		2 R	R_{A}	h A w
R [Ω.m ⁻¹]	$\frac{R_s}{\pi R}$		$\frac{R_s}{2\pi}(\frac{1}{R_B} + \frac{1}{R_A})$	$\frac{2R_s}{w}$
L [H.m ⁻¹]	$(\frac{d}{R})^2\rangle\rangle 1$	$\frac{\mu_d}{\pi} ln(\frac{2d}{R})$	$\frac{\mu_{d}}{2\pi} \ln(\frac{R_{B}}{R_{A}})$	$\mu_d \frac{h}{w}$
G [S.m ⁻¹]	$(\frac{d}{R})^2\rangle\rangle 1$	$\frac{\pi\sigma_d}{\ln(2d/R)}$	$\frac{2\pi\sigma_{d}}{\ln(R_{B}/R_{A})}$	$\sigma_d \frac{w}{h}$
C [F.m ⁻¹]	$(\frac{d}{R})^2\rangle\rangle 1$	$\frac{\pi \epsilon_d}{\ln(2d/R)}$	$\frac{2\pi\epsilon_{d}}{\ln(R_{B}/R_{A})}$	$\epsilon_d \frac{w}{h}$
Z ₀ [Ω]	$(\frac{d}{R})^2\rangle\rangle 1$	$\frac{1}{\pi} \sqrt{\frac{\mu_d}{\epsilon_d}} \ln(\frac{2d}{R})$	$\frac{1}{2\pi} \sqrt{\frac{\mu_d}{\epsilon_d}} \ln(\frac{R_B}{R_A})$	$\sqrt{\frac{\mu_d}{\epsilon_d}} \frac{h}{w}$

(Exemplo) Cabo Coaxial (1)

Modo TEM

$$\overline{\textbf{E}} = \overline{\textbf{E}}_{\textbf{t}} = -\nabla_{\textbf{t}} \, \overline{\boldsymbol{\Phi}}$$

$$\overline{\mathbf{H}} = \overline{\mathbf{H}}_{\mathbf{t}} = \frac{\hat{\mathbf{z}} \times \overline{\mathbf{E}}}{Z_{\mathsf{TEM}}}$$

$$\frac{\partial}{\partial \phi} = 0$$

$$\nabla_t^2 \Phi = 0 \qquad \qquad \frac{\partial}{\partial \phi} = 0 \qquad \qquad \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho \frac{\partial \Phi(\rho)}{\partial \rho} \right] = 0$$

cnf
$$\begin{cases} \overline{\Phi}(a) = \overline{V}_0 \\ \overline{\Phi}(b) = 0 \end{cases}$$

$$\operatorname{cnf} \left\{ \begin{array}{l} \Phi(a) = V_0 \\ \overline{\Phi}(b) = 0 \end{array} \right. \quad \overline{\Phi}(\rho) = C_1 \ln(\rho) + C_2 = \overline{V}_0 \frac{\ln(b/\rho)}{\ln(b/a)}$$

$$\overline{\mathbf{E}} = -\nabla_{\mathbf{t}} \overline{\boldsymbol{\Phi}} = -\frac{\partial \overline{\boldsymbol{\Phi}}(\rho)}{\partial \rho} \hat{\boldsymbol{\rho}} = \frac{\overline{V}_0}{\rho \ln(b/a)} \hat{\boldsymbol{\rho}} \qquad \overline{\mathbf{H}} = \frac{\hat{\mathbf{z}} \times \mathbf{E}}{Z_{\mathsf{TEM}}} = \frac{V_0}{Z_{\mathsf{TEM}} \rho \ln(b/a)} \hat{\boldsymbol{\phi}}$$

$$\overline{\mathbf{H}} = \frac{\hat{\mathbf{z}} \times \overline{\mathbf{E}}}{Z_{\text{TEM}}} = \frac{\overline{V}_0}{Z_{\text{TEM}} \rho \ln(b/a)} \hat{\mathbf{q}}$$

(Exemplo) Cabo Coaxial (2)

Modo TE₁₁

- O cabo coaxial também suporta modos TE e TM
- O modo com frequência de corte mais baixa (depois do TEM) é o TE₁₁

$$J'_{n}(k_{c}a)Y'_{n}(k_{c}b) = J'_{n}(k_{c}b)Y'_{n}(k_{c}a)$$

Equação característica dos modos TE_{nm}

Solução aproximada
$$k_c a = \frac{2}{1+b/a}$$

Exemplo (Cabo coaxial RG-142)

2a = 0,856 mm
$$Z_0 = 50 \Omega$$

2b = 2,946 mm $k_c \approx 526 \text{ rad} \cdot \text{m}^{-1}$
ε_r = 2,2 $f_c \approx 17 \text{ GHz}$

Linha Micro-Tira (1)

Há muitos outros tipos de linhas de transmissão

Exemplos de Linha Impressas

A mais comum é a linha micro-tira – fácil de fabricar, plano de terra, frequências elevadas, grande largura de banda

Linha Micro-Tira (2)

Linha Micro-Tira

Deriva da linha de tira (versão plana do cabo coaxial)

Estrutura não homogénea

- Substrato dielétrico (ε_r) entre a tira e o plano de terra
- Ar (ε_r=1) acima do plano de terra

Estrutura não suporta modos TEM, suporta modos híbridos

Modo fundamental com frequência de corte nula

Em baixa frequência pode-se utilizar a aproximação quase-TEM ($E_z << E_x, E_y$)

Linha Micro-Tira (4)

Linha Micro-Tira

Não existem soluções analíticas

Utilizam-se simuladores eletromagnéticos rigorosos (exemplo: CST)

Utilizam-se simuladores que usam soluções aproximadas (exemplo: TX-LINE)

TX-LINE (grátis) https://www.awr.com/awr-software/options/tx-line

Linha Micro-Tira (5)

Linha Micro-Tira (Modo quase-TEM)

Define-se uma estrutura homogénea equivalente (ε_{re})

Há várias equações aproximadas que permitem calcular ε_{re}. Estas equações resultam de soluções numéricas rigorosas

Um bom compromisso entre simplicidade e rigor (erro < 1% para $0.05 \le w/h \le 20$ e $\epsilon_r < 16$) é

$$\varepsilon_{re} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \frac{1}{\sqrt{1 + 12\frac{h}{w}}}$$

Linha Micro-Tira (6)

Análise – $Z_0(\epsilon_{re}, w/h)$

$$Z_0 = \begin{cases} \frac{60}{\sqrt{\epsilon_{re}}} \ln\left(\frac{8h}{w} + \frac{w}{4h}\right) & w \le h \\ \frac{120\pi}{\sqrt{\epsilon_{re}} \left[\frac{w}{h} + 1,393 + 0,667 \ln\left(\frac{w}{h} + 1,444\right)\right]} & w \ge h \end{cases}$$

Síntese – $w/h(\epsilon_r, Z_0)$

$$A = \frac{Z_0}{60} \sqrt{\frac{\epsilon_r + 1}{2}} + \frac{\epsilon_r - 1}{\epsilon_r + 1} \left(0.23 + \frac{0.11}{\epsilon_r}\right) \qquad B = \frac{377 \,\pi}{2 Z_0 \sqrt{\epsilon_r}}$$

$$\frac{w}{h} = \begin{cases} \frac{8e^{A}}{e^{2A} - 2} & \frac{w}{h} < 2\\ \frac{2}{\pi} \left\{ B - 1 - \ln(2B - 1) + \frac{\epsilon_{r} - 1}{2\epsilon_{r}} \left[\ln(B - 1) + 0.39 - \frac{0.61}{\epsilon_{r}} \right] \right\} & \frac{w}{h} > 2 \end{cases}$$

Linha Micro-Tira (7)

 Z_0 elevado: ε_r baixo e/ou w/h baixo

 Z_0 baixo: ϵ_r elevado e/ou w/h elevado

 Z_0 =50 Ω, ε_r=10 ε_{re}=6,81 w/h=0,93

Linha Micro-Tira (8)

Perdas

$$\alpha_c = \frac{R_s}{Z_0 w} N_p / m$$
 $R_s = \sqrt{\frac{\omega \mu_c}{2\sigma_c}}$

$$\alpha_{d} = \frac{k_{0} \, \epsilon_{r} \left(\epsilon_{re} - 1\right)}{2 \sqrt{\epsilon_{re}} \left(\epsilon_{r} - 1\right)} \, \tan \delta \, N_{p} / m \qquad \tan \delta = \frac{\sigma_{d}}{\omega \, \epsilon_{d}}$$

Exemplo (f=1 GHz)

(Substrato – ϵ_r =10, tan δ =0,001, h=1,575 mm, σ_c =5,8x10⁷ S/m, μ_c = μ_0) Linha micro-tira: Z_0 =50 Ω

$$\begin{array}{ll} \text{w=1,46 mm (w/h=0,93)} & \alpha_c = 0,113 \text{ Np/m=0,98 dB/m} \\ \text{R}_s = 8,25 \text{ m}\Omega & \alpha_d = 0,026 \text{ Np/m=0,23 dB/m} \end{array}$$

Linha Micro-Tira (9)

Modelo Dispersivo (Simples)

$$\varepsilon_{\text{re}}(f) = \varepsilon_{\text{r}} - \frac{\varepsilon_{\text{r}} - \varepsilon_{\text{res}}}{1 + G\left(\frac{f}{f_{\text{p}}}\right)^{2}}$$

ε_{res} - ε_{re} estático (f=0)

$$f_d = \frac{Z_0}{2\mu_0 h}$$

$$G=0,6+0,009Z_0$$

$$\Delta \varepsilon_{\text{re}}(f) = \frac{\varepsilon_{\text{re}}(f) - \varepsilon_{\text{res}}}{\varepsilon_{\text{res}}}$$

Exemplo

Substrato: RT/Duroid 6010

$$\epsilon_r = 10,2, h=1,27 \text{ mm}$$

$$Z_0$$
=50, w=1,18 mm, ε_{res} =6,833

LT - Tensão e Corrente (1)

$$\begin{split} \overline{V}(y) &= \overline{V}_{i2} \, e^{\gamma y} + \overline{V}_{r2} \, e^{-\gamma y} = \overline{V}_{i2} (e^{\gamma y} + k_s \, e^{-\gamma y}) & \overline{V}_{i2} &= \overline{V}_{i1} e^{-\gamma \ell} \\ \overline{I}(y) &= \frac{\overline{V}_{i2}}{Z_0} e^{\gamma y} - \frac{\overline{V}_{r2}}{Z_0} e^{-\gamma y} = \frac{\overline{V}_{i2}}{Z_0} (e^{\gamma y} - k_s \, e^{-\gamma y}) & \overline{V}_{r1} &= \overline{V}_{r2} \, e^{-\gamma \ell} \end{split}$$

 \overline{V}_{i2} , \overline{V}_{r2} – ondas incidente e reflectida de tensão na carga (z = 1, y = 0)

$$k_s = \frac{\overline{V}_{r2}}{\overline{V}_{i2}} = k e^{j\theta_s}$$
 fator de reflexão (de tensão) na carga

LT – Tensão e Corrente (2)

$$k(y) = ke^{j\theta} = \frac{\overline{V}_r(y)}{\overline{V}_i(y)} = \frac{k_s e^{-\gamma y}}{e^{\gamma y}} = k_s e^{-2\gamma y}$$

$$Z(y) = \frac{\overline{V}(y)}{\overline{I}(y)} = Z_0 \frac{e^{\gamma y} + k_s e^{-\gamma y}}{e^{\gamma y} - k_s e^{-\gamma y}} = Z_0 \frac{1 + k(y)}{1 - k(y)}$$

$$k(y) = \frac{Z(y) - Z_0}{Z(y) + Z_0}$$

$$k(y) = \frac{Z(y) - Z_0}{Z(y) + Z_0}$$
 $k_s = \frac{Z_s - Z_0}{Z_s + Z_0} = \frac{Z_s - 1}{Z_s + 1}$ $Z_s = \frac{Z_s}{Z_0}$

$$Z_s = \frac{\overline{V}_2}{\overline{I}_2}$$

$$Z_{s} = \frac{\overline{V}_{2}}{\overline{I}_{2}} \qquad Z_{1s} = \frac{\overline{V}_{1}}{\overline{I}_{1}} = Z(y = \ell) = Z_{0} \frac{e^{\gamma \ell} + k_{s} e^{-\gamma \ell}}{e^{\gamma \ell} - k_{s} e^{-\gamma \ell}} = Z_{0} \frac{1 + k_{1s}}{1 - k_{1s}}$$

$$\overline{V}_2 = T_V \overline{V}_1$$

$$T_{V} = \frac{1 + k_{s}}{e^{\gamma \ell} + k_{s} e^{-\gamma \ell}}$$

$$\bar{I}_2 = T_1 \bar{I}_1$$

$$T_1 = \frac{1 - K_s}{e^{\gamma \ell} - K_s e^{-\gamma \ell}}$$

LT – Tensão e Corrente (3)

$$\left| \frac{\overline{V}(y)}{\overline{V}_{i2}} \right| = \sqrt{e^{2\alpha y} + k^2 e^{-2\alpha y} + 2k \cos(2\beta y - \theta)}$$

 $f=15 \text{ MHz } (\lambda = 20 \text{ m})$

Exemplo – LT sem perdas
$$\frac{\left| \overline{I}(y) \right|}{\left| \overline{I}_{i2} \right|} = \sqrt{e^{2\alpha y} + k^2 e^{-2\alpha y} - 2k \cos(2\beta y - \theta)}$$

LT – Tensão e Corrente (4)

Exemplo – LT com perdas $\ell=60$ m, $Z_s=Z_0+jZ_0$, $\alpha=0.01$ Nep.m⁻¹ f=15 MHz ($\lambda=20$ m)

LT sem Perdas (1)

$$\begin{aligned} \overline{V}(y) &= \overline{V}_{i2} \left(e^{j\beta y} + k_s e^{-j\beta y} \right) & \overline{I}(y) &= \overline{I}_{i2} \left(e^{j\beta y} - k_s e^{-j\beta y} \right) \\ \left| \overline{\overline{V}(y)} \right| &= \sqrt{1 + k^2 + 2k \cos(2\beta y - \theta_s)} & \left| \overline{\overline{I}(y)} \right| &= \sqrt{1 + k^2 - 2k\cos(2\beta y - \theta_s)} \end{aligned}$$

Tensão

$$y_{max} = \frac{\lambda \theta_s}{4\pi} + n \frac{\lambda}{2} \qquad \left| \frac{\overline{V}}{\overline{V}_{i2}} \right|_{max} = 1 + k$$

$$y_{min} = \frac{\lambda \theta_s}{4\pi} + \frac{\lambda}{4} + n \frac{\lambda}{2} \qquad \left| \frac{\overline{V}}{\overline{V}_{i2}} \right|_{min} = 1 - k$$

Corrente

 $\bar{I}(y) = \bar{I}_{i2} \left(e^{j\beta y} - k_s e^{-j\beta y} \right)$

$$\begin{aligned} y_{max} &= \frac{\lambda \theta_s}{4 \pi} + n \frac{\lambda}{2} & \left| \frac{\overline{V}}{\overline{V}_{i2}} \right|_{max} = 1 + k \\ y_{min} &= \frac{\lambda \theta_s}{4 \pi} + \frac{\lambda}{4} + n \frac{\lambda}{2} & \left| \frac{\overline{I}}{\overline{I}_{i2}} \right|_{min} = 1 - k \end{aligned}$$

$$y_{min} = \frac{\lambda \theta_s}{4 \pi} + \frac{\lambda}{4} + n \frac{\lambda}{2} & \left| \frac{\overline{V}}{\overline{V}_{i2}} \right|_{min} = 1 - k \end{aligned}$$

$$y_{max} = \frac{\lambda \theta_s}{4 \pi} + \frac{\lambda}{4} + n \frac{\lambda}{2} & \left| \frac{\overline{I}}{\overline{I}_{i2}} \right|_{max} = 1 + k \end{aligned}$$

$$p = \frac{\left|V\right|_{max}}{\left|V\right|_{min}} = \frac{1+k}{1-k}$$

$$k(y) = k_{s} e^{-j2\beta y} = k e^{-j(2\beta y - \theta_{s})}$$

$$Z(y) = \frac{\overline{V}(y)}{\overline{I}(y)} = Z_{0} \frac{Z_{s} + jZ_{0} \tan(\beta y)}{Z_{0} + jZ_{s} \tan(\beta y)}$$

LT sem Perdas (2)

Caso Particular $Z_s=Z_0$ (Carga adaptada) ($\ell=40$ m, f=15 MHz, $\lambda=20$ m)

LT sem Perdas (3)

Caso Particular $Z_s=0$ (Curto-circuito) ($\ell=40$ m, f=15 MHz, $\lambda=20$ m)

$$k_s = \frac{Z_s - Z_0}{Z_s + Z_0} = -1$$
 $p = \frac{1+k}{1-k} = \infty$

$$\overline{V}(y) = j2\overline{V}_{i2} \operatorname{sen}(\beta y) \quad \left| \frac{\overline{V}(y)}{\overline{V}_{i2}} \right| = \left| 2\operatorname{sen}(\beta y) \right| \quad k(y) = -e^{-j2\beta y} \quad Z(y) = jZ_0 \tan(\beta y)$$

LT sem Perdas (4)

Caso Particular $Z_s = \infty$ (Circuito aberto) ($\ell = 40$ m, f=15 MHz, $\lambda = 20$ m)

$$k_s = \frac{Z_s - Z_0}{Z_s + Z_0} = 1$$
 $p = \frac{1 + k}{1 - k} = \infty$

$$\overline{V}(y) = 2\overline{V}_{i2}\cos(\beta y) \quad \left|\frac{\overline{V}(y)}{\overline{V}_{i2}}\right| = \left|2\cos(\beta y)\right| \quad k(y) = e^{-j2\beta y} \quad Z(y) = -jZ_0 \cot(\beta y)$$

LT sem Perdas (5)

Variação no Espaço e no Tempo

$$V\left(y,t\right)=Re\left[\overline{V}(y)e^{j\omega t}\right]=Re\left[\overline{V}_{i2}\left(e^{j\beta y}+k_{s}\,e^{-j\beta y}\right)e^{j\omega t}\right]$$

$$\frac{V\left(y,t\right)}{V_{i2}} = cos\left(\omega t + \beta y\right) + k cos\left(\omega t - \beta y + \theta_{s}\right)$$

Variação espacial (t=Constante)

Variação temporal (y=Constante, z=Constante)

$$\omega t = 2\pi \frac{t}{T}$$
 $\beta y = 2\pi \frac{y}{\lambda}$

LT sem Perdas (6)

Caso Particular $Z_s = \infty$ (Circuito-aberto) (f=15 MHz, λ =20 m)

LT sem Perdas (7)

Caso Particular $Z_s = Z_0 + j Z_0 (k_s = 0.447 e^{j63.43^\circ}) (f=15 MHz, \lambda=20 m)$

LT sem Perdas (8)

Potência Transportada

Numa linha sem perdas a potência transportada é a mesma em qualquer ponto da linha

$$P = \frac{1}{2} \operatorname{Re} \left(\overline{V} \, \overline{I}^* \right) = \frac{1}{2} \operatorname{Re} \left(\overline{V} \, \frac{\overline{V}^*}{Z^*} \right) = \frac{\left| \overline{V} \right|^2}{2} \operatorname{Re} \left(\frac{1}{Z^*} \right)$$

É mais fácil calcular a potência nos pontos de máximo e mínimo de tensão (corrente), porque a tensão e a corrente estão em fase

$$\begin{split} \overline{V}_{max} = & \overline{V}_{i2} (1+k) & \overline{I}_{min} = \frac{\overline{V}_{i2}}{Z_0} (1-k) = \frac{\overline{V}_{max}}{pZ_0} & k_s = k e^{j\theta_s} \\ P = & \frac{1}{2} \, \text{Re} \left[\overline{V}_{i2} (1+k) \, \frac{\overline{V}_{i2}^*}{Z_0} (1-k) \right] = \frac{\left| \overline{V}_{i2} \right|^2}{2Z_0} (1-k^2) = \frac{\left| \overline{V}_{max} \right|^2}{2pZ_0} = p \frac{\left| \overline{V}_{min} \right|^2}{2Z_0} \\ Z_s = & Z_0 \, \left(k_s = 0, \, p = 1 \right) \rightarrow P_{max} = \frac{\left| \overline{V}_{i2} \right|^2}{2Z_0} = \frac{\left| \overline{V}_0 \right|^2}{8Z_0} \quad \text{se } Z_g = Z_0 \end{split}$$

LT sem Perdas (9)

Adaptação do Gerador

$$\overline{V}_{1} = \overline{V}_{i2} \left(e^{j\beta \ell} + k_{s} e^{-j\beta \ell} \right) = \frac{Z_{1s}}{Z_{1s} + Z_{g}} \overline{V}_{0} \qquad Z_{1s} = \frac{V_{1}}{\overline{I}_{1}} = \frac{V_{i2} \left(e^{j\beta \ell} + k_{s} e^{-j\beta \ell} \right)}{\overline{V}_{i2}} \left(e^{j\beta \ell} - k_{s} e^{-j\beta \ell} \right)$$

$$\overline{V}_{i2} = \frac{Z_0 (Z_s + Z_0)}{(Z_s + Z_0) (Z_q + Z_0) e^{j\beta \ell} - (Z_s - Z_0) (Z_q - Z_0) e^{-j\beta \ell}} \overline{V}_0 \qquad k_s = \frac{Z_s - Z_0}{Z_s + Z_0}$$

Se Z_q ≠ Z₀ (Linha desadaptada do gerador)

 \overline{V}_{i2} depende da carga (Z_s) (excepto se $Z_s = Z_0$)

• Se $Z_g = Z_0$ (Linha adaptada ao gerador)

$$\overline{V}_{i2}$$
 é independe da carga $\overline{V}_{i2} = \frac{\overline{V}_0}{2} e^{-j\beta \ell}$ $(\overline{V}_{i1} = \frac{\overline{V}_0}{2})$

Carta de Smith (1)

$$\overline{V}\left(y\right) = \overline{V}_{i} + \overline{V}_{r} = \overline{V}_{i2}\left(e^{j\beta y} + k_{vs}e^{-j\beta y}\right) = \overline{V}_{i2}\left[1 + k_{v}(y)\right] = \overline{V}_{i}\left(y\right)\left[1 + k_{v}(y)\right]$$

$$\bar{I}(y) = \bar{I}_i + \bar{I}_r = \bar{I}_{i2} (e^{j\beta y} + k_{Is}e^{-j\beta y}) = \bar{I}_{i2} e^{j\beta y} [1 + k_I(y)] = \bar{I}_i (y)[1 + k_I(y)]$$

$$k_v(y) = k_{vs} e^{-j2\beta y} k_I(y) = -k_V(y)$$

$$\overline{V}_{i}(y) = \overline{V}_{i2} e^{j\beta y}$$

$$\bar{I}_{i}(y) = \frac{\overline{V}_{i}(y)}{Z_{0}} = \bar{I}_{i2} e^{j\beta y}$$

$$z(y) = \frac{Z(y)}{Z_0} = r(y) + jx(y) = \frac{1 + k_V(y)}{1 - k_V(y)}$$

$$y(y) = \frac{Y(y)}{Y_0} = g(y) + jb(y) = \frac{1 + k_1(y)}{1 - k_1(y)}$$

Carta de Smith (2)

$$r + jx = \frac{1+k}{1-k} = \frac{1+(k_{real} + jk_{imaginário})}{1-(k_{real} + jk_{imaginário})}$$

$$\begin{cases} (k_{real} - \frac{r}{1+r})^2 + k_{imaginário}^2 = \frac{1}{(1+r)^2} \\ (k_{real} - 1)^2 + (k_{imaginário} - \frac{1}{x})^2 = \frac{1}{x^2} \end{cases}$$

Variação com r

Circunferências de centro $(\frac{r}{1+r},0)$ e raio $\frac{1}{1+r}$

Variação com x Circui

Circunferências de centro $(1, \frac{1}{x})$ e raio $|\frac{1}{x}|$

Carta de Smith (3)

Curvas de r=cte (circunferências com centro sobre o eixo real)

$$r=0$$

$$\begin{cases} Centro (0,0) \\ Raio 1 \end{cases}$$

$$r=1\begin{cases} \text{Centro } (\frac{1}{2},0) \\ \text{Raio } \frac{1}{2} \end{cases}$$

$$r=2 \begin{cases} Centro & (\frac{2}{3},0) \\ Raio & \frac{1}{3} \end{cases}$$

$$r=\infty$$

$$\begin{cases} \text{Centro (1,0)} \\ \text{Raio } 0 \end{cases}$$

Carta de Smith (4)

Curvas de x=cte (circunf. com centro sobre a recta vertical k_{real} =1)

$$x=\pm\infty$$

$$\begin{cases} Centro (1,0) \\ Raio 0 \end{cases}$$

$$x=-1 \begin{cases} Centro (1,-1) \\ Raio 1 \end{cases}$$

$$x=0$$

$$\begin{cases} \text{Centro } (1,\infty) \\ \text{Raio } \infty \end{cases}$$

$$x=1$$

$$\begin{cases} Centro (1,1) \\ Raio 1 \end{cases}$$

Carta de Smith (5)_{The Complete Smith Chart}

Exemplo (f=200 MHz, l=4,8 m, $Z_s=Z_0+jZ_0$)

 λ =1,5 m

 $\ell=3,2\lambda$

 $k_s \approx 0.447 \exp(j63.4^\circ)$

p≈2,62

 $y_s \approx 0.5 - j0.5$

 $z_{\text{max}} \approx 2,62$

z_{min}≈0,38

 $d\approx(0,162+0,2)\lambda$

 $k_{1s} \approx 0,447 \exp(-j80,5^{\circ})$

 $z_{1s} \approx 0,760 - j0,838$

 $\frac{\overline{V}_s}{\overline{V}_{i2}} \approx 1,265 \text{ exp}(j18,4^0)$

Adaptação de Impedâncias (1)

$$P_{i} = \frac{1}{2} \operatorname{Re}(\overline{V}_{i} \overline{I}_{i}^{*}) = \frac{\left|\overline{V}_{i}\right|^{2}}{2Z_{0}} \qquad P_{r} = \frac{1}{2} \operatorname{Re}(\overline{V}_{r} \overline{I}_{r}^{*}) = \frac{\left|\overline{V}_{r}\right|^{2}}{2Z_{0}} = k^{2} \frac{\left|\overline{V}_{i}\right|^{2}}{2Z_{0}} = k^{2} P_{i}$$

$$P_{t} = P_{i} - P_{r} = (1 - k^{2})P_{i}$$

Para maximizar a potência entregue à carga procede-se à adaptação (k=0)

A desadaptação pode provocar a deformação dos sinais

- Transformador de λ/4 em série
- "Stub" simples em paralelo

Adaptação de Impedâncias (2)

Transformador de Quarto de Comprimento de Onda (Z_{0t})

$$Z(y) = Z_{0t} \frac{e^{j\beta y} + k_s e^{-j\beta y}}{e^{j\beta y} - k_s e^{-j\beta y}} \qquad Z(y) = Z_{0t} \frac{Z_s \cos(\beta y) + jZ_{0t} \sin(\beta y)}{Z_{0t} \cos(\beta y) + jZ_s \sin(\beta y)}$$

$$y = \ell_t = \frac{\lambda}{4} \rightarrow \beta y = \frac{\pi}{2}$$
 $Z(y = \lambda/4) = \frac{Z_{0t}^2}{Z_s}$ $Z_s = R_s$ $Z_{0t} = \sqrt{Z_0 R_s}$

- Mesmo quando Z_s não é real, pode-se usar o transformador de $\lambda/4$, inserindo-o num ponto da LT (y=d) onde a impedância é real.
- Pode usar-se mais do que um troço (maior largura de banda).

Adaptação de Impedâncias (3)

Transformador de Quarto de Comprimento de Onda (d, Z_{0t})

Exemplo
$$Z_{s} = \frac{Z_{0}}{3} - j\frac{Z_{0}}{3}$$

Solução 1

 $d=0,056 \lambda$

$$Z_{0t} = \sqrt{Z_0 \, 0.30 \, Z_0} = 0.5477 \, Z_0$$

Solução 2

 $d=0,306 \lambda$

$$Z_{0t} = \sqrt{Z_0 3,40 Z_0} = 1,8439 Z_0$$

Adaptação de Impedâncias (4)

Exemplo - Transformador de $\lambda/4$ com vários troços (N)

As impedância característica de cada troço segue uma lei definida (neste caso obtida a partir de polinómios de Chebyshev).

Adaptação de Impedâncias (5)

"Stub" Simples (d, ℓ_{st})

$$y_{A^+} = y_{A^-} + y_{stub}$$

$$y_{A^{-}} = g_{A^{-}} + j b_{A^{-}} = \frac{1}{z_{A^{-}}} = \frac{1 + j z_{s} \tan(\beta d)}{z_{s} + j \tan(\beta d)}$$
 $z_{s} = \frac{Z_{s}}{Z_{0}} = r_{s} + j x_{s}$

$$Z_s = \frac{Z_s}{Z_0} = r_s + jx_s$$

$$1+j0 = (g_{A^{-}} + jb_{A^{-}}) + (0+jb_{stub}) \begin{cases} g_{A^{-}} = 1 & \text{(define d)} \\ b_{stub} = -b_{A^{-}} & \text{(define } \ell_{st}) \end{cases}$$

"Stub" em curto-circuito

$$b_{stub} = -\cot(\beta \ell_{st})$$

"Stub" em circuito-aberto

$$b_{stub} = tan(\beta \ell_{st})$$

Adaptação de Impedâncias (6)

$$\tan(\beta d) = \frac{-x_s \pm \sqrt{r_s \left[\left(r_s - 1 \right)^2 + x_s^2 \right]}}{1 - r_s}$$

$$b_{A^{-}} = \frac{x_{s} \tan^{2}(\beta d) + (r_{s}^{2} + x_{s}^{2} - 1) \tan(\beta d) - x_{s}}{r_{s}^{2} + [x_{s} + \tan(\beta d)]^{2}}$$

Exemplo
$$Z_s = \frac{Z_0}{3} - j\frac{Z_0}{3}$$
 $r_s = \frac{1}{3}$ $x_s = -\frac{1}{3}$

$$\tan(\beta d) = \frac{1+\sqrt{5/3}}{2}$$
 $\beta d = 48,8793^{\circ} d = 0,13578 \lambda$ $b_{A^{-}} = -1,29099$ $\tan(\beta d) = \frac{1-\sqrt{5/3}}{2}$ $\beta d = 171,7217^{\circ} d = 0,47700 \lambda$ $b_{A^{-}} = 1,29099$

$$\tan(\beta d) = \frac{1-\sqrt{5/3}}{2}$$
 $\beta d = 171,7217^{\circ}$ $d = 0,47700 \lambda$ $b_{A^{\circ}} = 1,29099$

"Stub" em curto-circuito

$$\ell_{st} = 0.39511\lambda \text{ e } \ell_{st} = 0.10489\lambda$$

"Stub" em circuito-aberto

$$\ell_{st} = 0.14511\lambda \text{ e } \ell_{st} = 0.35489 \lambda$$

Adaptação de Impedâncias (7)

Carta de Smith Exemplo 1

$$Z_s = \frac{Z_0}{3} - j\frac{Z_0}{3}$$

$$Y_s = \frac{3Y_0}{2} + j\frac{3Y_0}{2}$$

"Stub" em CA

Solução a $\begin{cases} d_a = 0,136 \lambda \\ \ell_{sta} = 0,145 \lambda \end{cases}$

Solução b $\begin{cases} d_b = 0,477 \,\lambda \\ \ell_{stb} = 0,355 \,\lambda \end{cases}$

Adaptação de Impedâncias (8)

f=30 MHz, λ =10 m (k=-10 dB 10% de potência reflectida)

Adaptação de Impedâncias (9)

Adaptação de Impedâncias (10)

Exemplo 2 (f=30 MHz, $z_s=1/3+j1/3$, "stub" CC)

$$d_a=0,24 \text{ m}, \ell_{sta}=3,95 \text{ m}, d_b=3,64 \text{ m}, \ell_{stb}=1,05 \text{ m}$$

Regra geral tem maior LB a solução com menores troços desadaptados. Nem sempre é possível avaliar a melhor solução sem calcular a curva k(f).

Adaptação de Impedâncias (11)

"Stub" Duplo (ℓ_{st1} , ℓ_{st2})

The Complete Smith Chart Black Magic Design

- Tem a vantagem das posições dos "stubs" serem fixas
- Existe uma gama de cargas (círculo azul) que não pode ser adaptada (tanto menor quanto menor d)
- Quando tal acontece pode-se usar um "stub" triplo

Aplicações de Linhas de Transmissão (1)

Características (Típicas) de Linhas de Transmissão

Características	Linha Bifilar	Cabo Coaxial	Linha Micro-tira
Modos	TEM*	TEM*	Quase-TEM*
Frequência	Baixa	Até Média	Até Alta
Dispersão	Nenhuma	Nenhuma	Pequena
Largura de Banda	Grande	Grande	Grande
Perdas	Baixas	Médias	Altas
Capacidade de Potência	Grande	Grande	Pequena
Volume	Grande	Grande	Pequeno
Fabrico (Custo)	Difícil	Médio	Baixo
Integração de Componentes	Difícil	Difícil	Fácil

^{*} Também suportam modos TE, TM ou híbridos

Aplicações de Linhas de Transmissão (2)

Atenuação de cabos coaxiais (norma) RG-# (ou RG-#U)

Aplicações de Linhas de Transmissão (3)

Aplicações

Linha bifilar

- Linhas de distribuição de energia (sobretudo em média e alta tensão)
- Linhas telefónicas aéreas (zonas rurais)
- Alimentação de dipolos

Cabo coaxial

- Redes de computadores
- Redes de distribuição de TV (internas e externas)
- Equipamentos de telecomunicações
- Instrumentação e controle

Linha microtira

- Aparelhos electrónicos de produção em massa (vídeo, áudio, "gadgets")
- Electrónica integrada (carros, aviões, navios, etc.)
- Equipamento de telecomunicações

Aplicações de Linhas de Transmissão (4)

Exemplos de Aplicações

