Question 1

Examples of custom commands: $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, trace(**H**) = p. Code example:

Code Listing 1: Smoothed estimation of mean trajectory

Theorem (Leibniz integral rule). Let f(x,t) and its partial derivative $\frac{\partial}{\partial x}f(x,t)$ be continuous in x and t in some region of the (x,t) plane that includes $a(x) \leq t \leq b(x)$ and $x_0 \leq x \leq x_1$. Suppose also that the functions a(x) and b(x) are continuous and have continuous derivatives for $x_0 \leq x \leq x_1$. Then, for $x_0 \leq x \leq x_1$, we have:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b(x)} f(x,t) \, \mathrm{d}t = f(x,b(x)) \cdot \frac{\mathrm{d}}{\mathrm{d}x} b(x) - f(x,a(x)) \cdot \frac{\mathrm{d}}{\mathrm{d}x} a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) \, \mathrm{d}t$$

If a(x) = a and b(x) = b, where a and b are constants, then the above reduces to:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{b} f(x,t) \, \mathrm{d}t = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t) \, \mathrm{d}t$$

References

- [1] Last name, first name. Book Title. Publisher, Year. Print.
- [2] Last name, first name. "Webpage Title". Website name, Organization name. Online; accessed Month Date, Year. www.URLhere.com