### **UROPS** Project Presentation 1

### Wang Zexin

Chapter 8 Performance Python Chpter 10 Stochastics of Python for Finance

Quantitative Finance National University of Singapore

January 18, 2017

## Today's Agenda

- Performance Python
  - Improvements in execution speed
  - Preserving memory efficiency
  - Efficiency in writing code
- Stochastics
  - Random number generation
  - Simulation
  - Valuation
  - Risk measures

## Changes due to different Python version

We are using Python 3.6 while the version in the book is Python 2.7 So here is a list of items to change

- print x now becomes print(x)
- dict.iteritems() now becomes dict.items()
- xrange now becomes range
- lambda (k, v) : (v, k) is no longer available
- instead we can only use: lambda x : (x[1], x[0])
- x / 2 is float division, while x // 2 is integer division

## Chapter 8 Performance Python

#### We have three aims in this chapter

- Efficiency in writing code
  - numpy vectorization in compact matrix forms
  - numba : nb.jit(f\_py)
- Improvement in execution speed
  - numexpr fast numerical operations (multithread)
  - numba dynamic compiling for nested loops
  - IPython.parallel (ipyparallel)
  - multiprocessing local parallel calculations
  - Cython static compiling (almost as fast as numba)
- Preserving memory efficiency
  - numba
  - numpy : C-like (default)

## Chapter 8 Performance Python

We shall go through these useful methods

- Implementation paradigms
- Libraries
- Compiling
- Parallelization

## Convenience function - systematic performance comparison

```
def perf comp data(func list, data list, rep=3, number=1):
    ''' the convenience function for comparing performance systematically '''
    from timeit import repeat
    res list = {}
    for name in enumerate (func list):
        # enumerate basically create an array of tuples of (index, element)
        stmt = name[1] + '(' + data list[name[0]] + ')' # function name(data name)
        setup = "from main import " + name[1] + ', ' + data list[name[0]]
        #from main import function name, data name
        results = repeat(stmt=stmt, setup=setup, repeat=rep, number=number)
        res list[name[1]] = sum(results) / rep #take average running time
    res sort = sorted(res list.items(), key = lambda \times (x[1],x[0]))
    for item in res sort:
        rel = item[\overline{1}] / res sort[0][1]
        print('function: ' + item[0] + ', av. time sec: %9.5f, ' % item[1]\
              + 'relative: %6.1f' % rel) #C-like print formatting
```

## Numerical operations

Multithreaded numexpr implementation is fastest compared to:

- using eval function
- using built-in library math
- using iterators (lists)
- using numpy's mathematical methods
- using single-threaded numexpr

```
def multithreaded_numexpr(a):
    import numexpr as ne
    ex = 'abs(cos(a)) ** 0.5 + sin(2 + 3 * a)'
    ne.set_num_threads(16)
    return ne.evaluate(ex)
```

## Highly computational burden problems

Parallel calculations are superior in heavy workloads There are two different ways to conduct parallel calculations

- IPython.parallel (or ipyparallel) using cluster
- using the standard library multiprocessing
- massive parallel operations using GPGPUs

Multiprocessing is a standard built-in library, hence recommended

```
#running on server with 8 cores/16 threads
from time import time
times = []
for w in range(1, 17):
    t0 = time()
    pool = mp.Pool(processes = w)
    result = pool.map(simulate_gbm, t * [(M, I), ])
    times.append(time() - t0)
```

## Compiling to improve memory efficiency

NumPy is significantly faster than normal python but it is using 8 times of memory compared to normal python!

There are two other ways to resolve this with the same computation speed

- Dynamic compiling using numba
- Static compiling using Cython

Cython preserves the same speed with numba in dealing with nested loops numba has another advantage introduced in the next page!

## Little additional effort to improve performance

- numpy requries us to think of the matrix form
- numba only requires to call the jit function
- numba also preserve the memory efficiency
- numba seems to be the best choice!

```
import numba as nb
binomial_nb = nb.jit(binomial_py)
```

## Code sample for binomial option pricing

```
def binomial py(strike):
    S0 = 100; r = 0.05 \# constant short rate
    T = 1. \# call option maturity
    vola = 0.20 # constant volatility factor
   M = 1000; dt = T / M; df = exp(-r * dt) # time parameters
    u = exp(vola * sqrt(dt)); d = 1 / u # binomial parameters
    q = (\exp(r * dt) - d) / (u - d) # risk neutral probability
    S = np.zeros((M+1, M+1), dtype = np.float64)
    S[0,0] = S0; z1 = 0
    for j in range(1, M+1, 1): #future stock pricings
      z1 += 1
     for i in range (z1 + 1):
        S[i,i] = S[0,0] * (u ** i) * (d ** (i*2))
    iv = np.zeros((M+1, M+1), dtype = np.float64)
    z^2 = 0
    for j in range(0, M+1, 1): #future call option pricings
     for i in range (z2 + 1):
        iv[i, j] = max(S[i,j]-strike, 0)
     z2 += 1
    pv = np.zeros((M+1, M+1), dtype = np.float64)
   pv[:, M] = iv[:, M]; z3 = M+1
    for j in range (M-1, -1, -1):
      z3 -= 1
      for i in range(z3):
        pv[i,j] = (q * pv[i, j+1] + (1-q) * pv[i+1, j+1]) * df
    return pv[0,0]
```

## Chapter 10 Stochastics

- Random number geneartion
- Simulation
- Valuation
- Risk measures

### Random number generation

using functions provided in *numpy.random* (import numpy.random as npr: for convenience)

- Standard normal: npr.standard\_normal(sample\_size)
- Normal: npr.normal(mu, sigma, sample\_size)
- Chi Square: npr.chisquare(df = 0.5, size = sample\_size)
- Poisson:  $npr.poisson(lam = 1.0, size = sample\_size)$

The return value of the above methods are numpy arrays

### Simulation

- Geometric Brownian Motion
- Square-root Diffusion Model
- Jump Diffusion Model
- Stochastic Volatility Model

### Simulation for Geometric Brownian Motion

We have two different ways to generate simulations for this equation:

$$S_T = S_0 \exp\{(r - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}z\}$$

```
import numpy as np
import numpy.random as npr
S0 = 100 # initial value
r = 0.05 # constant short rate
sigma = 0.25 # constant volatility
T = 2.0 # in years
I = 10000
ST1 = S0 * np.exp((r-0.5*sigma**2)*T+sigma*np.sqrt(T)*npr.standard_normal(I))
ST2 = S0 * npr.lognormal((r-0.5*sigma**2)*T, sigma*np.sqrt(T), size = I)
```

#### Simulation for Geometric Brownian Motion

$$S_t = S_{t-\Delta_t} \exp\{(r - \frac{1}{2}\sigma^2)^{\Delta}t + \sigma\sqrt{\Delta_t}z_t\}$$

```
def bsm mcs valuation(strike):
    ''' Dynamic Black-Scholes-Merton Monte Carlo estimator
        for European calls.
        Parameters
        strike : float
        strike price of the option
        Results
        value : float
        estimate for present value of call option
    . . .
    import numpy as np
    S0 = 100.; T = 1.0; r = 0.05; vola = 0.2
    M = 50: I = 20000
    dt = T / M
    rand = np.random.standard normal((M + 1, I))
    S = np.zeros((M + 1, I)); S[0] = S0
    for t in range(1, M + 1):
        S[t]=S[t-1]*np.exp((r-0.5*vola**2)*dt+vola*np.sqrt(dt)*rand[t])
    value = (np.exp(-r * T) * np.sum(np.maximum(S[-1] - strike, 0)) / I)
    return value
```

## Simulation for Stochastic volatility model

$$dS_t = rS_t dt + \sqrt{v_t} S_t dZ_t^1$$
 
$$dv_t = \kappa_v (\theta_v - v_t) dt + \sigma_v \sqrt{v_t} dZ_t^2$$
 
$$dZ_t^1 dZ_t^2 = \rho$$

For simulation: (Euler discretization?)

$$\begin{aligned} v_t &= v_{t-\Delta_t} + \kappa (\theta - v_{t-\Delta_t})^{\Delta} t + \sigma \sqrt{\Delta_t * v_{t-\Delta_t}} z_t^2 \\ S_t &= S_{t-\Delta_t} \exp\{(r - \frac{1}{2} v_t)^{\Delta} t + \sqrt{v_t^{\Delta} t} z_t^1\} \end{aligned}$$

Still we need to ensure that:

$$dZ_t^1 dZ_t^2 = \rho$$



### Simulation for Stochastic volatility model

$$v_t = v_{t-\Delta_t} + \kappa (\theta - v_{t-\Delta_t})^{\Delta} t + \sigma \sqrt{\Delta_t} v_{t-\Delta_t} z_t^2$$
  
$$S_t = S_{t-\Delta_t} \exp\{(r - \frac{1}{2}v_t)^{\Delta} t + \sqrt{v_t} z_t^2\}$$

```
# Parameters
S0 = 100; r = 0.05; v0 = 0.1;
kappa = 3.0; theta = 0.25; sigma = 0.1; rho = 0.6
T = 1.0; M = 50; I = 10000
#Cholesky decomposition of correlation matrix
corr mat = np.zeros((2,2))
corr mat[0, :] = [1.0, rho]
corr^{-}mat[1, :] = [rho, 1.0]
cho mat = np.linalg.cholesky(corr mat)
ran num = npr.standard normal((2, M + 1, I))
v = np.zeros like(ran num[0]); vh = np.zeros like(v)
v[0] = v0; vh[0] = v0; dt = T / M
for t in range(1, M + 1): # simulation of volatility process
    ran = np.dot(cho mat, ran num[:, t, :]) # ensure certain correlation
    vh[t] = (vh[t-1] + kappa* (theta-np.maximum (vh[t-1], 0))*dt
           +sigma*np.sgrt(np.maximum(vh[t-1],0))*np.sgrt(dt)*ran[1])
v = np.maximum(vh. 0)
S = np.zeros like(ran num[0]); S[0] = S0
for t in range(1, M + 1): # simulation of stock prices
    ran = np.dot(cho mat, ran num[:, t, :]) # ensure certain correlation
    S[t] = S[t-1] * np.exp((r-0.5 * v[t]) * dt + np.sqrt(v[t]) * ran[0] * np.sqrt(dt))
```

## Simulation for Square-root diffusion model

$$dx_t = \kappa(\theta - x_t)dt + \sigma\sqrt{x_t}dZ_t$$

Euler discretization:

letting 
$$s=t-^{\Delta}t$$
, and  $x^+=\max(x,0)$  
$$\tilde{x}_t=\tilde{x}_s+\kappa(\theta-\tilde{x}_s^+)^{\Delta}t+\sigma\sqrt{\tilde{x}_s^{+\Delta}t}z_t$$
 
$$x_t=\tilde{x}_t^+$$

## Simulation for Square-root diffusion model

With the Eulder discretization:

letting 
$$s = t - \Delta t$$
, and  $x^+ = max(x, 0)$  
$$\tilde{x}_t = \tilde{x}_s + \kappa (\theta - \tilde{x}_s^+)^{\Delta} t + \sigma \sqrt{\tilde{x}_s^{+\Delta} t} z_t$$
 
$$x_t = \tilde{x}_t^+$$

## Simulation for Square-root diffusion model

With the exact Eulder discretization:

letting 
$$s = t - \Delta t$$
 
$$x_t = \frac{\sigma^2 (1 - e^{-\kappa \Delta t})}{4\kappa} \chi_d^2 \left[ \frac{4\kappa e^{-\kappa \Delta t}}{\sigma^2 (1 - e^{-\kappa \Delta t})} x_s \right]$$

```
def srd_exact():
    x0 = 0.05; kappa = 3.0; theta = 0.02; sigma = 0.1 # model parameters
    I = 10000; M = 50; T = 1; dt = T / M # time parameters
    x2 = np.zeros((M + 1, I));    x2[0] = x0
    c = (sigma ** 2 * (1 - np.exp(-kappa * dt))) / (4 * kappa)
    df = 4 * theta * kappa / sigma ** 2 # degree of freedom
    for t in range(1, M + 1):
        nc = np.exp(-kappa * dt) / c * x2[t - 1] #noncentrality parameter
        x2[t] = c * npr.noncentral_chisquare(df, nc, size=I)
    return x2
x2 = srd exact()
```

## Simulation for jump diffusion model

$$dS_t = (r - r_{\rm J})S_t dt + S_t dZ_t + {\rm J}_t S_t dN_t$$

Euler discretization:

$$S_t = S_{t-\Delta_t}[e^{(r-r_J-\sigma^2)^{\Delta}t+\sigma\sqrt{\Delta_t}z_t^1} + (e^{\mu_J+\delta z_t^2}-1)y_t]$$

## Simulation for jump diffusion model

#### Euler discretization:

$$S_t = S_{t-\Delta_t}[e^{(r-r_J-\sigma^2)^{\Delta}t+\sigma\sqrt{\Delta_t}z_t^1} + (e^{\mu_J+\delta z_t^2}-1)y_t]$$

#### Variance Reduction

#### There are two main techniques

- antithetic variates first moment
- moment matching first and second moments

```
def gen sn(M, I, anti paths=True, mo match=True):
    "" Function to generate random numbers for simulation.
    Parameters
    M: int number of time intervals for discretization
    I: int number of paths to be simulated
    anti paths: Boolean use of antithetic variates
    mo math: Boolean use of moment matching'''
    if anti paths is True: # "is True" is different from == True
        sn = npr.standard normal((M + 1, I / 2)) # generate half
        sn = np.concatenate((sn, -sn), axis=1) # add negative half
    else:
        sn = npr.standard normal((M + 1, I))
    if mo match is True:
        sn = (sn - sn.mean()) / sn.std()
    return sn
```

#### **Valuation**

We will be doing valuation on two different types of derivatives

European options

American options

#### European options

Pricing by risk-neutral expectation

$$C_0 = e^{-rT} \mathbb{E}_0^Q(h(S_T)) = e^{-rT} \int_0^\infty h(s)q(s) ds$$

Risk-neutral Monte Carlo estimator

$$\tilde{C}_0 = e^{-rT} \frac{1}{I} \sum_{i=1}^{I} h(\tilde{S}_T^i)$$

where  $h(S_t)$  stands for the payoff function,  $S_t$  is the index level at maturity. and  $\tilde{S}_{t}^{i}$  stands for the ith simulated index level at maturity

January 18, 2017

$$\begin{split} \tilde{C}_0 &= e^{-rT} \frac{1}{I} \sum_{i=1}^{I} h(\tilde{S}_T^i) \\ \tilde{S}_T &= S_0 \exp\{(r - \frac{1}{2}\sigma^2)T + \sigma\sqrt{T}\tilde{z}_T\} \end{split}$$

```
def \ qbm \ mcs \ stat(K, S0 = 100, r = 0.05, sigma = 0.25, T = 1.0, I = 50000):
    "' Valuation of European call option in Black-Scholes-Merton
   by Monte Carlo simulation (of index level at maturity)
   Parameters
   _____
   K: float (positive) strike price of the option
   CO : float.
               estimated present value of European call option
    . . .
   sn = gen sn(1, I)
   # simulate index level at maturity
   ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * np.sqrt(T) * sn[1])
   # calculate payoff at maturity
   hT = np.maximum(ST - K. 0)
   # calculate MCS estimator
   C0 = np.exp(-r * T) * 1 / I * np.sum(hT)
   return CO
```

We can make a generic pricing function!

$$ilde{C}_0 = e^{-rT} rac{1}{\mathrm{I}} \sum_{i=1}^{\mathrm{I}} h(\tilde{S}_T^i)$$
 $ilde{S}_T = S_0 \exp\{(r - rac{1}{2}\sigma^2)T + \sigma\sqrt{T}\tilde{z}_T\}$ 

```
def gbm_mcs_stat_generic(K, payoff_f, S0=100, r=0.05, sigma=0.25, T=1.0, I=50000):
    ''' Valuation of European call option in Black-Scholes-Merton
    by Monte Carlo simulation (of index level at maturity)
    Parameters
    payoff: a payoff function for the european option
    K: float (positive) strike price of the option
    C0: float estimated present value of European call option
    '''
    sn = gen_sn(1, I)
    # simulate index level at maturity
    ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * np.sqrt(T) * sn[1])
    # calculate payoff at maturity
    hT = payoff_f(ST - K)
    # calculate MCS estimator
    C0 = np.exp(-r * T) * 1 / I * np.sum(hT)
```

return CO

Testing the generic pricing function using payoff function of call option

```
def call_payoff_function(x):
    return np.maximum(x, 0)

>>> gbm_mcs_stat_generic(105, call_payoff_function)
10.020535172468639

>>> gbm mcs stat(105)
```

9.9879466161233719

### We can adopt the dynamic simulation approach

```
def qbm mcs dyna(K, M = 50, option='call'):
    "" Valuation of European options in Black-Scholes-Merton
    by Monte Carlo simulation (of index level paths)
    Parameters
    K: float (positive) strike price of the option
    option: string type of the option to be valued ('call', 'put')
    CO: float estimated present value of European call option
    . . .
   dt = T / M
    # simulation of index level paths
    S = np.zeros((M + 1, I))
    S[0] = S0
    sn = gen sn(M, I)
    for t in range (1, M + 1):
        S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt
                                 + sigma * np.sgrt(dt) * sn[t])
    # case-based calculation of payoff
    if option == 'call':
       hT = np.maximum(S[-1] - K, 0)
    else:
       hT = np.maximum(K - S[-1], 0)
    # calculation of MCS estimator
    C0 = np.exp(-r * T) * 1 / I * np.sum(hT)
    return CO
```

## Valuation - American options

optimal stopping approach - theory not understood yet

$$V_0 = \sup_{ au \in \{0, {}^{\Delta}t, 2^{\Delta}t, ..., T\}} e^{-rT} \mathbb{E}_0^Q(h_{ au}(S_{ au}))$$

Least-sqaures regression for American option valuation

$$\min_{\alpha_{1,t},\dots,\alpha_{D,t}} \frac{1}{I} \sum_{d=1}^{D} (\alpha_{d,t} \cdot b_d(S_t,i))^2$$

## Valuation - American options

```
def qbm mcs amer(K, S0=100, T=1, M=50, I= 20000, option='call', r=.05, sigma=.25):
    ''' Valuation of American option in Black-Scholes-Merton by MCS LSM
    K: float (positive) strike price of the option
    option: string type of the option to be valued ('call', 'put')
    CO : float estimated present value of European call option
    dt = T / M; df = np.exp(-r * dt)
    # simulation of index levels
    S = np.zeros((M + 1, I)); S[0] = S0; sn = gen sn(M, I)
    for t in range (1, M + 1):
        S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt
        + sigma * np.sgrt(dt) * sn[t])
    if option == 'call': # case-based calculation of payoff
       h = np.maximum(S - K, 0)
    else:
        h = np.maximum(K - S, 0)
    # LSM algorithm
    V = np.copv(h)
    for t in range (M - 1, 0, -1):
        reg = np.polyfit(S[t], V[t + 1] * df, 7)
       C = np.polyval(reg, S[t])
       V[t] = np.where(C > h[t], V[t + 1] * df, h[t])
    CO = df * 1 / I * np.sum(V[1]) # MCS estimator
    return CO
```

### Risk measures

- Value at Risk
- Credit Value Adjustment

### Value at Risk - Black Scholes' World

Holding a stock has probability of x% to suffer a loss greater than y

scs: scipy.stats

```
import numpy as np
import numpy.random as npr
import scipy.stats as scs

def VaR_stock_price(S0=100, r=.05, sigma=.25, T=30/365, I=10000):
    ST = S0*np.exp((r-0.5*sigma**2)*T+sigma*np.sqrt(T)*npr.standard_normal(I))
    R_gbm = np.sort(ST - S0) / S0
    percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0]
    var = scs.scoreatpercentile(R_gbm, percs)
    print("%16s %16s" % ('Confidence Level', 'Value-at-Risk'))
    print(33 * "-")
    for pair in zip(percs, var):
        print("%16.2f %16.3f" % (100 - pair[0], -pair[1]))
```

### Value at Risk - Jump Diffusion Model

Holding a stock has probability of x% to suffer a loss greater than y

```
def VaR jump diffusion(r=.05, sigma=.2, lamb=.75, mu=-.6, delta=.25):
   M = 50; I = 10000; dt = 30. / 365 / M
   rj = lamb * (np.exp(mu + 0.5 * delta ** 2) - 1)
   S = np.zeros((M + 1, I)); S0 = 100; S[0] = S0
   sn1 = npr.standard normal((M + 1, I))
   sn2 = npr.standard normal((M + 1, I))
   poi = npr.poisson(\overline{lamb} * dt, (M + 1, I))
   for t in range (1, M + 1, 1):
        S[t] = S[t - 1]*(np.exp((r-rj-0.5*sigma**2)*dt
            + sigma * np.sgrt(dt) * sn1[t])
            + (np.exp(mu + delta * sn2[t]) - 1) * poi[t])
        S[t] = np.maximum(S[t], 0)
   R jd = np.sort(S[-1] - S0)
   percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0]
   var = scs.scoreatpercentile(R jd, percs)
   print("%16s %16s" % ('Confidence Level', 'Value-at-Risk'))
   print(33 * "-")
   for pair in zip (percs, var):
        print("%16.2f %16.3f" % (100 - pair[0], -pair[1]))
```

January 18, 2017

## Credit Value Adjustment through CVaR

Holding a stock has probability of x% to suffer a loss greater than y

```
def CVaR():
   S0 = 100.
   r = 0.05
    sigma = 0.2
   T = 1.
   T = 100000
    ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T
                     + sigma * np.sqrt(T) * npr.standard normal(I))
   L = 0.5
    p = 0.01
   D = npr.poisson(p * T. I)
    D = np.where(D > 1, 1, D)
   CVaR = np.exp(-r * T) * 1 / I * np.sum(L * D * ST)
    S0 CVA = np.exp(-r * T) * 1 / I * np.sum((1 - L * D) * ST)
    S0 adj = S0 - CVaR
    return (CVaR, S0 CVA, S0 adj)
```

# Thank You

E0007424@u.nus.edu