Problème du *p*-centre avec contraintes de capacité, stratification et gestion de pannes

CARPENTIER Antonin, BRISOUX-DEVENDEVILLE Laure, LUCET Corinne, SÁ SHIBASAKI Rui, CHERIF Sami

27 février 2025

SOCIÉTÉ FRANÇAISE DE RECHERCHE OPÉRATIONNELLE ET D'AIDE À LA DÉCISION

Description du problème

Problème d'optimisation NP-Difficile

Soit un graphe G = (N, E) où :

- N est l'ensemble des nœuds (des villes)
- ► E est l'ensemble des arêtes pondérées (des routes)

Au maximum p centres (unités mobiles de soin) à placer dans G, avec P l'ensemble des centres placés.

 N est aussi l'ensemble des emplacements candidats pour les centres

Problème du p-centre

Placer p centres dans G en minimisant la distance maximale entre les villes et leur centre le plus proche

Description du problème

Variantes

Plusieurs variantes du problème existent :

- ▶ Ajout de *p* centres avec *q* centres déjà existants
- Prise en compte de paramètres incertains
- Ajout de contraintes de capacité
- ► Stratification du problème
- ► Gestion de pannes
- **.**..

Variantes

Plusieurs variantes du problème existent :

- ▶ Ajout de *p* centres avec *q* centres déjà existants
- ▶ Prise en compte de paramètres incertains
- Ajout de contraintes de capacité
- Stratification du problème
- Gestion de pannes
- **...**

Combinaison de 3 variantes

Description du problème : Contraintes de capacité

Samir Khuller and Yoram J.Sussmann. The Capacitated K-Center Problem, SIAM Journal on Discrete Mathematics, vol.13, no.3, pp. 403–418, Jan. 2000

Demande : Quantité de soins demandés dans une ville

Capacité : Quantité de soins que peut fournir une unité de soin (centre)

Nœud	1	2	3	4	5	6
Demande	3	5	1	3	2	3
Capacité	9	6	2	9	4	4

Table: Demandes et capacités du graphe

Description du problème : Gestion de pannes

Inmaculada Espejo, Alfredo Marín, and Antonio M. Rodríguez-Chía. Capacitated p-center problem with failure foresight, European Journal of Operational Research, vol. 247, no. 1, pp. 229–244, Nov. 2015

Yolanda Hinojosa, Alfredo Marín, and Justo Puerto. Dynamically second-preferred p-center problem, European Journal of Operational Research, vol. 307, no. 1, pp. 33-47, 2023

Ajout : Une unité de soin peut maintenant tomber en panne

► Toutes les villes assignées à l'unité de soin en panne doivent être re-dirigées vers une autre unité

Nœud	1	2	3	4	5	6
Demande	3	5	1	3	2	3
Capacité	17	6	2	18	4	4

Table: Demandes et capacités du graphe

L'unité de soin de secours est la deuxième unité la plus proche disponible (demande/capacité)

Description du problème : Stratification

Maria Albareda-Sambola, Luisa I. Martínez-Merino, and Antonio M.Rodríguez-Chía. The stratified *p*-center problem, Computers & Operations Research, vol. 108, pp. 213–225, Aug. 2019

Ajouts:

- Nous avons un ensemble de soins $S = \{gériatrie, gynécologie, ...\}$
- ► Chaque ville demande différents soins avec des quantités distinctes
- Chaque unité de soin fournit un ensemble de soins avec des capacités distinctes
- Les soins demandés ou fournis ne sont pas nécessairement tous présents dans une même ville.

Description du problème : Stratification

Lignes pleines : Assignation au centre principal Lignes pointillées : Assignation au centre de secours

Figure: Soin gériatrique

Figure: Soin gynécologique

Difficulté : Trouver une solution faisable commune à chaque soin

Données et variables

Dans le problème nous avons :

- ► *N* l'ensemble des villes et emplacements candidats
- ► E l'ensemble des arêtes
- p unités de soin à placer

Nous ajoutons :

- ► S : ensemble des soins
- ▶ A^s = max_{i∈N}{d_{ik}, où k est le centre principal de la ville i pour la strate s}, Le maximum sur l'ensemble des distances entre les villes et leur premier centre, pour la strate s
- ▶ $B^s = \max_{i \in N} \{d_{ik}, \text{ où } k \text{ est le centre de secours de la ville } i \text{ pour la strate } s\}$, Le maximum sur l'ensemble des distances entre les villes et leur centre de secours, pour la strate s

Exemple A et B pour une strate

Fonctions objectives comparées

Fonction objective inspirée de la littérature¹:

$$f = \sum_{s \in S} B^s$$

Minimiser la distance maximale assignée entre les villes et leur centre de secours pour chaque strate.

Fonction objective proposée :

$$g = \sum_{s \in S} (A^s + B^s)$$

Minimiser la distance maximale assignée entre les villes et leur centre principal et leur centre de secours pour chaque strate.

f reste-t-elle pertinente pour notre problème?

229-244. Nov. 2015

¹Inmaculada Espejo, Alfredo Marín, and Antonio M. Rodríguez-Chía. Capacitated *p*-center problem with failure foresight, European Journal of Operational Research, vol. 247, no. 1, pp. 4 D > 4 B > 4 B > 4 B > 9 Q P

Modèle du problème

Le nombre de contraintes et variables est de l'ordre $O(|S| \cdot |N|^2)$.

 $\forall i \in N, s \in S_i$ (9)

 $\forall i \in N, s \in S_i$ (10)

 $\forall j \in N, s \in C_i$ (11)

 $\forall i \in N \quad (14)$

 $\forall s \in S$ (15)

Protocole expérimental

Pour les deux fonctions objectives f et g, nous analysons :

- La structure des solutions données
- Les performances en termes de temps

Benchmarks effectués avec IBM ILOG Cplex 22.1.1.

Pour effectuer nos benchmarks :

- Nous limitons le temps de résolution à 3600 secondes
- ► Nous distinguons le cas où f et g
 - trouvent simultanément l'optimalité
 - ne trouvent pas simultanément l'optimalité

Familles d'instances

Les instances sont tirées de la littérature et ont été enrichies.

Famille	N p		S	Nombre d'instances	
Pmed	[100, 800]	$[5, \frac{N}{3}]$	{3, 5, 10, 15, 20}	54	
Beasley	{100, 150}	5 quand $N = 50$, 10 quand $N = 100$	{3, 5, 10, 15, 20}	99	
Galvao	{100, 150}	{5, 15}	{3, 5, 10, 15, 20}	31	
Lorena	[100, 402]	[10, 40]	{3, 5, 10, 15, 20}	7	
Aleatoire	{20, 25, 30, 35, 40, 45, 50}	$\left\{\frac{N}{10}, \frac{N}{5}, \frac{N}{3}\right\}$	$\{\frac{N}{10}, \frac{N}{5}\}$	42	

Critères de comparaison des fonctions objectives

Pour chaque instance résolue, nous avons :

Nous comparons entre les deux fonctions objectives :

- ▶ La moyenne des valeurs de A, B et A + B pour chaque famille d'instances
- Le nombre d'occurrences où f (resp. g) obtient une valeur de A (resp. B et A+B) meilleure ou équivalente pour chaque famille d'instances.

Analyses structurelles : valeurs des fonctions objectives en cas d'optimalité simultanée

 Axes des abscisses : Moyenne des valeurs objectives pour une famille d'instances donnée

Analyses structurelles : fréquence d'obtention de résultats meilleurs ou équivalents sur A,B et A+B en cas d'optimalité simultanée

Axes des abscisses : Nombre de cas où une fonction objective produit un résultat meilleur ou équivalent à l'autre, sur les valeurs A, B et A + B.

Analyses structurelles : valeurs des fonctions objectives en cas d'optimalité non simultanée

 Axes des abscisses : Moyenne des valeurs objectives pour une famille d'instances donnée

Analyses structurelles : fréquence d'obtention de résultats meilleurs ou équivalents sur A,B et A+B en cas d'optimalité non simultanée

Axes des abscisses : Nombre de cas où une fonction objective produit un résultat meilleur ou équivalent à l'autre, sur les valeurs A, B et A+B.

D'autres critères de comparaison

Lors d'optimalité simultanée par f et g, pour chaque instance nous avons :

$$M_A = \{A^1, A^2, ..., A^{|S|}\}$$

et

$$M_B = \{B^1, B^2, ..., B^{|S|}\}$$

Pour les deux fonctions objectives, nous comparons le minimum, le maximum et la moyenne sur les ensembles M_A et M_B , avec :

- $\blacktriangleright \min M_A = \min_{i \in M_A} i$

- $\blacktriangleright \min M_B = \min_{i \in M_B} i$
- $\blacktriangleright \max M_B = \max_{i \in M_B} i$

Exemple

Nous avons donc :

- $M_A = \{A^1, A^2\} = \{6, 5\}$
- $M_B = \{B^1, B^2\} = \{20, 19\}$

Analyses structurelles : fréquence d'obtention de résultats meilleurs ou équivalents sur A^s (moyenne, minimum, maximum)

Axes des abscisses : Nombre de cas où une fonction objective produit un résultat meilleur ou équivalent à l'autre, sur la moyenne, le minimum et le maximum des plus grandes distances assignées A^s , $s \in S$.

Analyses structurelles : fréquence d'obtention de résultats meilleurs ou équivalents sur B^s (moyenne, minimum, maximum)

Axes des abscisses : Nombre de cas où une fonction objective produit un résultat meilleur ou équivalent à l'autre, sur la moyenne, le minimum et le maximum des plus grandes distances assignées B^s , $s \in S$.

Récapitulatif / Conclusion intermédiaire

En termes de valeurs objectives

- ► En cas d'optimalité simultanée :
 - ▶ f obtient de meilleurs B (g est en moyenne 2.58% plus élevée)
 - ightharpoonup g obtient de meilleurs A+B (f est en moyenne 5.79% plus élevée)
 - ▶ g obtient de meilleurs A (f est en moyenne 17.69% plus élevée)
- En cas d'optimalité non simultanée
 - ▶ La fonction g est meilleur sur A, B et A + B

En termes de structures :

- lacktriangle La fonction g obtient de meilleurs minimum, maximum et moyennes sur M_A
- lacktriangle La fonction f obtient de meilleurs minimum, maximum et moyennes sur M_B
- ▶ La fonction g fournit plus souvent de meilleurs résultats en ce qui concerne les valeurs minimales, maximales et moyennes sur M_B, par rapport aux mêmes mesures obtenus par f sur M_A.

Résultats en termes de temps

- ightharpoonup T(s) étant le temps en secondes
- ► Node étant le nombre de nœuds CPLEX développés

Instances	F	$T_{avg}(s)$	$T_{min}(s)$	$T_{max}(s)$	Node _{avg}	# optimum
Pmed ^{sim}	f	1196.1	14.6	3516.5	836.3	21
Fined	g	664.6	8.5	2890.0	461.4	21
Beasley ^{sim}	f	910.5	120.8	3442.9	16757.3	39
Deasiey	g	166.2	11.2	487.8	5244.0	39
Aleatoire	f	135.0	0.1	3102.1	4429.3	42
Aleatone	g	48.9	0.1	783.4	2525.2	42

Table: Résultats en termes de temps en cas d'optimalité simultanée

Instances	F	$T_{avg}(s)$	$T_{min}(s)$	$T_{max}(s)$	Node _{avg}	# optimum	
Lorena	f	3600	3600	3600	3434.1	0 sur 7	
	g	3600	3600	3600	4582.9	U Sur 1	
Galvao	f	3600	3600	3600	2852.8	0 sur 31	
Galvao	g	3600	3600	3600	3420.8	0 Sur 31	
Pmed ^{dif}	f	3564.4	2420.3	3600	6191.2	1 sur 33	
Filled	g	3084.2	376.3	3600	11868.0	8 sur 33	
Beasley ^{dif}	f	3600	3600	3600	5789.1	0 sur 60	
	g	3277.9	860.0	3600	6282.2	10 sur 60	

Table: Résultats en termes de temps en cas d'optimalité non simultanée

Conclusion finale

- ▶ Un nouveau problème combinant 3 variantes connues :
 - ► Contraintes de capacités
 - ► Ajout de gestion de pannes
 - Stratification du problème
- Comparaison de deux fonctions objectives :
 - $f = \sum_{s \in S} B^s$ inspirée de la littérature
 - $g = \sum_{s \in S} (A^s + B^s)$
- D'après nos analyses, la fonction g :
 - b obtient des solutions avec une meilleure structure
 - est plus performantes en termes de temps

f reste-t-elle pertinente pour notre problème ?

Non, elle ne l'est pas !

Perspectives

Nous aimerions:

- ► En termes de modélisation :
 - Ajouter des poids à chaque soin pour en prioriser certains ou en particulier les distances A^s
 - ▶ Ajouter des capacités de surcharges pour les centres de secours
- ► En termes de résolution
 - Décomposer le problème strate par strate

Merci de m'avoir écouté!

Avez-vous des questions ?

SOCIÉTÉ FRANÇAISE DE RECHERCHE OPÉRATIONNELLE ET D'AIDE À LA DÉCISION

