Real-Time Driver Drowsiness Recognition System

30 July 2021

Ana Sousa

Supervised by:

Ana Rebelo (<u>ana.m.rebelo@inesctec.pt</u>)
Ana F. Sequeira (<u>ana.f.sequeira@inesctec.pt</u>)
João R. Pinto (<u>joao.t.pinto@inesctec.pt</u>)

INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIÊNCIA

Motivation

- Drowsiness is a major cause of road accidents.
- Automatic drowsiness monitoring systems promise to drastically reduce the number of road accidents

Objectives

Development automatic face image/video-based drowsiness recognition

Work Description

Data processing, labeling and feature extraction...

drowsiness)

Work Description

- Dynamic fusion information and DBN
- Classification and Performance Evaluation (Train 70%, Test 30%)

Work Description

Model Performance Comparison

Obtained Results

Comparison of the algorithms using single information and fusion information

Table I - Comparison of decision tree algorithm using single information and fusion information

	Alert %	MD %	SD%	Accuracy %
Landmarks	89,1	95,5	96,4	93,8
Textures	90,2	93,4	93,5	92,4
Fusion Information	96,3	96,1	97	96,5

Obtained Results

 Comparison results of the methods that use DBN and other classifiers based on fusion information

Table II - Results described in the literature

	Alert ,%	MD,%	SD,%	Accuracy %
SVM	98,3	93,2	82,6	93,7
KNN	93,6	90,9	86,8	91,5
DecisionTree	87,1	98,9	97,4	80,5
DBN	95,6	98,9	97,4	96,7

Table III - Results obtained

	Alert ,%	MD,%	SD,%	Accuracy %
SVM	98,6	98,5	98,8	98,7
KNN	97,5	97,9	98,6	98,1
DecisionTree	96,3	96,1	97	96,5
DBN	0	0	100	47,6

Obtained Results

 Comparison results of the methods that use DBN and other classifiers based on fusion information

Table IV - Comparison between the results obtained and those described in the literature

	Alert ,%	MD,%	SD,%	Accuracy %	
SVM	98,3	93,2	82,6	93,7	+ 5,0%
	98,6	98,5	98,8	98,7	+ 5,0%
KNN	93,6	90,9	86,8	91,5	+ 6,6%
	97,5	97,9	98,6	98,1	
DecisionTree	87,1	98,9	97,4	80,5	+ 16,0%
	96,3	96,1	97,0	96,5	+ 10,0%
DBN	95,6	98,9	97,4	96,7	-49,1%
	0	0	100	47,6	-43,1/0

Conclusions

- Algorithms that use dynamic fusion information outperform models that use single information.
- The DBN model approach should be further explored.

Future work

- Increase number of samples in the dataset.
- Use alternative techniques to obtain the textures/features of the images.

Thanks for listening!

INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIÊNCIA

