February 11, 2025 CS 1102 Problem Set 3

Problem Set 3

Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live.

— John Woods

- This problem set is due at 9:00am on February 17, 2025.
- This problem set comprises 3 problems.
- Submit early. Do **not** wait till the last moment.
- Each solution should start on a new page.
- We will give full credit **only** for correct solutions that are described clearly and convincingly.

Problem 3-1. My Type? Rational, Well-Defined, and Denominator-Stable [10 points] Consider the custom type nat defined as:

```
type nat = Zero | Succ of nat
```

Use the above to define type rational that represents rational numbers. Remember that the set of rational numbers is defined as:

$$\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0, \gcd(p, q) = 1 \right\}$$
 (1)

That is, the type rational can be defined as pairs of integers p (numerator) and q (denominator), where q is non-zero and p and q do not have any non-trivial common divisors. Remember that rational numbers may be negative.

Problem 3-2. Rational Numbers [60 points]

Use the rational type defined in the previous problem for designing the following functions:

(a) [15 points] Define the binary operation add_rational with the signature:

```
add rational: rational -> rational -> rational
```

That is, add_rational takes two numbers p:rational and q:rational as an input and adds them and returns them in the *reduced* form, that is, where the numerator and denominator have no common divisors.

(b) [15 points] Define the binary operation sub_rational with the signature:

```
sub_rational: rational -> rational -> rational
```

That is, alike the previous subproblem, sub_rational takes two numbers p:rational and q:rational as an input and returns their difference (in the reduced form).

(c) [15 points] Define the binary operation mult_rational with the signature:

```
mult_rational: rational -> rational -> rational
```

That is, mult_rational takes two numbers p:rational and q:rational as an input and returns their product in the reduced form.

(d) [15 points] Define the binary operation div_rational with the signature:

```
div_rational: rational -> rational -> rational
```

Problem Set 3 3

That is, div_rational takes two numbers p:rational and q:rational as an input and divides them and returns them in the *reduced* form, that is, where the numerator and denominator have no common divisors. We also assume that the denominator is a non-zero value. If you need to make any assumptions for this part of the code, please state them clearly.

Problem 3-3. The Square Root of All Evil [30 points]

Given a positive rational number r, its square root \sqrt{r} can be approximated by a simple recursive process. Begin with an initial estimate a_0 (say $a_0 = 1$). If this estimate is *good enough*, return it. Otherwise, refine the approximation using:

$$a_{i+1} = \frac{1}{2} \left(a_i + \frac{r}{a_i} \right) \tag{2}$$

Each successive a_i is an improved approximation. Moreover, one can prove that a_i converges to \sqrt{r} in limit. In this problem we will approximate the value of square root within an ε bound, that is, we want to compute a value a_N such that $|r-a_N^2| \leq \varepsilon$. For instance, if the given value of r is 2 and ε is 0.01, we will first pick a value for a_0 say 1, and then get the following sequence of approximations using the recursion in Equation 2. The sequence we get is:

$$1, \frac{3}{2}, \frac{17}{12}, \frac{577}{408}, \dots$$

Observe that $(\frac{17}{12})^2 - 2 = \frac{1}{144} \le \varepsilon$, and hence we can stop at the term a_2 . Define a recursive function approx_sqrt_2 of the form:

```
let rec approx_sqrt_2 (r : rational) (e: rational) : rational =
...
```

You may use the functions defined in the previous problems to define $approx_sqrt_2$. For this purpose you may also need to define auxiliary (helper) functions such as for computing the absolute value, comparison (\leq) operator, squaring, etc. Please define these auxiliary (helper) functions as a part of your code.

Exploration (Optional). The recursive method to approximate square roots can be extended to finding roots of arbitrary polynomials. Given a polynomial f(x), its root can be approximated using the recurrence relation:

$$a_{i+1} = a_i - \frac{f(a_i)}{f'(a_i)} \tag{3}$$

Where f'(x) is the derivative of f(x). You can implement a program to approximate the roots of polynomials (given a fixed polynomial).