Seven Tips for Surviving R

John Mount
Win Vector LLC

Bay Area R Users Meetup

http://www.meetup.com/R-Users/calendar/11202051/
October 13, 2009

http://www.win-vector.com/dfiles/SurviveR.pdf
based on:

http://www.win-vector.com/blog/2009/09/survive-r/

Who am 1?

Johr	John Mount: a principal consultant at Win-Vector LLC (http://www.win-vector.com/)			
	We think of ourselves as "analytics shock troops."			
	We listen, analyze and produce reports, algorithms and code.			
	Always looking for introductions.			
I was not originally a "statistics guy."				
	I had the luxury of learning statistics after I had already learned linear algebra, computer science, algorithms, combinatorics, time series analysis, spectral analysis, probability and measure theory.			
	Given my background I felt statistics was pretty neat and has some really deep ideas and techniques.			
	If you have really found the technique that fits the problem, you can usually explain it without any of the fifty cent words listed above.			
Iam	not "an R guy."			
	I can't tell you "the right way" to do things in R.			
	I can tell you how to brute your way through.			
	I do like R.			

Win-Vector LLC

Required

This is where you should spend the money you did not spend to acquire R. My 3 core R books (still waiting for "Data Manipulation with R"). Take a breath and read an appropriate chapter (the solution will come, but perhaps not quickly- and write it down!). Lattice is based on the 1968 William Cleveland book The Elements of Graphing Data. ggplot2 is based on the ideas from Leland Wilkison's Grammar of Graphics.

1: Write Down EVERYTHING

- When you do figure out how to do something in R it will be concise, powerful and completely un-mnemonic and impossible to find again through the help system.
- ☐ Use at least the following system:
 - Use the R gui's built in history pane
 - Copy and paste to/from an external editor
 - Maintain a task stack on paper
 - Edit down to a successful task and save in an appropriately named file in a big R directory.
- Literal masterpiece of writing things down: http://learnr.wordpress.com/.

LearnR Example: Every figure in Sarkar's "Lattice" book redone in ggplot2

Figure 3.11 lattice > pl <- bwplot(factor(score) ~ gcsescore | gender, data = Chem97, xlab = "Average GCSE Score") > print(pl) ggplot2 > pg <- ggplot(Chem97, aes(factor(score), gcsescore)) + geom boxplot() + coord flip() + ylab("Average GCSE score") + facet wrap(~gender) > print(pg) Average OCSE Score

Win-Vector LLC www.win-vector.com

2: Find Some Way to search for R Answers

On Google use "+R" (means search exactly as, not just force present) Use "site:" http://groups.google.com/group/help-R r-project.org stackoverflow.com http://stackoverflow.com/questions/102056/how-to-search-for-r-materials www.rseek.org http://search.r-project.org/

http://h4dev.com/entries?search=r+search+engine

3: Learn to Examine Structures

- □ unclass()
- □ str()
- \Box dput()
- □ names()
- □ dimnames()

3: Learn to Examine Structures ...

```
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3,1,9)
> treatment <- gl(3,3)</pre>
> glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())</pre>
> names(glm.D93)
 [1] "coefficients"
                                             "fitted.values"
                         "residuals"
                                                                 "effects"
 [5] "R"
                                             "ar"
                         "rank"
                                                                 "family"
 [9] "linear.predictors" "deviance"
                                             "aic"
                                                                 "null.deviance"
                                             "prior.weights"
                                                                 "df.residual"
[13] "iter"
                         "weights"
                                             "converged"
[17] "df.null"
                                                                 "boundary"
                                                                 "terms"
                         "call"
                                             "formula"
[21] "model"
                         "offset"
                                             "control"
                                                                 "method"
[25] "data"
[29] "contrasts"
                         "xlevels"
> print(qlm.D93)
Call: glm(formula = counts ~ outcome + treatment, family = poisson())
Coefficients:
(Intercept) outcome2 outcome3 treatment2 treatment3
  3.045e+00 -4.543e-01
                          -2.930e-01 1.338e-15
                                                     1.421e-15
Degrees of Freedom: 8 Total (i.e. Null); 4 Residual
Null Deviance:
                   10.58
Residual Deviance: 5.129 AIC: 56.76
>
```

4: Learn to Examine Methods

- > library(lattice)
- > data <- rnorm(1000)</pre>
- > densityplot(data)

>

4: Learn to Examine Methods ...

```
> library(lattice)
> methods(densityplot)
[1] densityplot.formula* densityplot.numeric*
   Non-visible functions are asterisked
> getS3method('densityplot','numeric')
function (x, data = NULL, xlab = deparse(substitute(x)), ...)
    ocall <- sys.call(sys.parent())</pre>
    ocall[[1]] <- quote(densityplot)
    ccall <- match.call()
    if (!is.null(ccall$data))
        warning("explicit 'data' specification ignored")
    ccall$data <- environment()</pre>
    ccall$xlab <- xlab
    ccall$x <- ~x
    ccall[[1]] <- quote(lattice::densityplot)</pre>
    ans <- eval.parent(ccall)</pre>
    ans$call <- ocall
    ans
<environment: namespace:lattice>
```


5: Learn to Stomp Out Attributes

- \Box attributes(x) <- c()
- \square names(x) <- c()
- \Box dimnames(x) <- c()

5: Learn to Stomp Out Attributes ...

```
> library(MASS)
> data <- rnorm(100)
> fit <- fitdistr(data,'Normal')</pre>
> fit
                   sd
     mean
 0.1566438 1.0669717
(0.1066972) (0.0754463)
> names(fit)
[1] "estimate" "sd"
                                        "loglik"
> fit$estimate[1]
     mean
0.1566438
> fit$estimate[2]
      sd
1.066972
> x <- fit$estimate[1] + 2*fit$estimate[2]</pre>
> X
    mean
2.290587
> attributes(x) <- c()</pre>
> X
[1] 2.290587
```


6: Swallow Your Pride

	You may not find "the right way" or you may want to pre-process your data (either outside of R or in R).			
		Do	n't be afraid to do your string processing before you get into R.	
		Do	n't be afraid to create new data frames.	
	Example			
			bblem: want mutable map (like string keys in lists, but able to pass the key around as a variable and able to er the contents).	
☐ Solution: R evaluation environments.			ution: R evaluation environments.	
	□ map <- new.env(hash=TRUE,parent=emptyenv())			
			assign('dog',7,map)	
			Is(map)	
			x <- 'dog'	
			get(x,map)	
		Do	I feel good about that? Not really.	

7: Find and Rely on "The One Liners"

☐ Why did I need a map?						
		To try and compute an empirical distribution.				
		Would unique(sort(keys)) have worked instead of insisting on a mutable solution?				
		Would it not be better to let R compute the whole thing with ecdf()?				
	Look for complete solutions:					
		read.table()				
		table()				
		write.table()				
		anova()				
		RJDBC				

Thank You

