Analise II: Prova 3

27 de junho de 2017

Nome:

Q:	1	2	3	4	5	Total
P:	20	20	20	20	20	100
N:						

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa. Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Questão 1

Seja \mathcal{E} uma familia de funções $f: K \to \mathbb{R}$, com $K \subset \mathbb{R}$ compacto. Considere os enunciados:

- 1. Toda sequência em \mathcal{E} tem uma subsequência uniformente convergente em \mathcal{E} ;
- 2. \mathcal{E} é equicontínua e uniformemente limitada .

Prove que (1) implica (2).

Questão 2

Calcule a série de Fourier das seguintes funções definidas em $[-\pi, \pi)$.

- 1. f(x) = a, se $x \in [-\pi, 0)$ e f(x) = b se $x \in [0, \pi)$;
- 2. $f(x) = x \text{ para } x \in [-\pi, \pi)$.

Seja $\mathcal{C}[a,b]$ o conjunto das funções contínuas em [a,b]. Para cada $f \in \mathcal{C}[a,b]$, defina a seguinte função $\phi_f(x) := \int_{-\infty}^{\infty} f(t)dt$, para $x \in [a, b]$.

Dado M um número estritamente positivo, considere o conjunto

$$\mathbb{E}(M):=\{\phi_f:[a,b]\to\mathbb{R}:f\in\mathcal{C}[a,b],f\geq0,|f(x)|\leq M\}.$$

Mostre que dada uma sequência de funções $\{\psi_k\}_{k\in\mathbb{N}}\subset\mathbb{E}(M)$ é possível extrair uma subsequencia uniformemente convergente em [a, b].

Questão 4

Seja f uma função contínua em [a,b] tal que $\int_a^b f(x)p(x)dx = 0$ para todo polinômio. Mostre que fdever ser a função nula.

Questão 5

Usando derivação e integração termo a termo, calcule as somas das séries de potências abaixo (cada passo deve ser corretamente justificado).

1.
$$\sum_{k=1}^{\infty} \frac{x^k}{k}$$

$$2. \sum_{k=1}^{\infty} kx^k$$

2.
$$\sum_{k=1}^{\infty} kx^k$$
3.
$$\sum_{k=1}^{\infty} kx^{2k}$$