

Troy Reynolds

J.P. Morgan

December 17, 2021

Goal for Client Attrition Analysis

Business priorities

- Create a client churn model to identify clients that are likely to terminate services.
- The bank can use that model to focus customer retention strategies on clients with high attrition risk.

Error Metric

- Unbalanced Data: Recall
 - <u>Assumption for recall:</u> The opportunity loss from false negative outweighs the profit loss from a false positive.
 - <u>Reasoning</u>: The attrition of a false negative client eliminates all profits from the client while the promotions sent to a false positive client will reduce some profits.

Agenda

01. Process

Describe the dataset and changes the data undergoes as it flows through the pipeline.

02. Insights

Present discoveries found during Exploratory Data Analysis.

03. Models

Understand the models and reasoning for their candidacy in the model selection.

04. Results

Compare the crossvalidation results of various metrics to select the best model.

05. Solutions

Introduce recommendations that work in tandem with the customer attrition model.

Feature Characteristics

Column	Data type	Description
RowNumber	Integer	10K customers
CustomerID	Integer	Unique Identified for client
Surname	String	Client Surname
CreditScore	Integer	Ranging from 350 to 850
Geography	String	USWM Sales Division
Gender	String	
Age	Integer	
Tenure	Integer	Length of client relationship in years
Balance	Decimal	Investment balance snapshot
Number of Products	Integer	Number of products with JPMC
HasChckng	Integer	1 = Has a checking account
		0 = No checking account
IsActiveMember	Integer	1 = Digitally Active
		0 = Digitally Inactive
EstimatedSalary	Decimal	Salary

Things to Note:

- 1. Credit Score data was missing for some clients.
- 2. Max age of clients is 190.
- 3. There are no interactions amongst the features

Label Characteristics

Things to note:

- 1. Labels are unbalanced.
- 2. Recall is the better error metric.

Distribution of Exited

Pipeline

1. Preprocessing

IDs are removed, age is caped at 100, and features were reformatted to appropriate data type.

3. Transformation

Continuous features were standardized, categorical features were one-hotencoded, and integer feature remained the same.

2. Imputation

Missing values were replaced with the mode for categorical features or median for continuous features.

4. Modeling

The processed data moves to the next step for model training and tuning.

Insights

During the Exploratory Data Analysis process, key differences were identified between churned and non-churned clients.

Key Insights

- 1. Clients in the West churn less frequently
- 2. Clients in the East churn more frequently

Key Insights

3. Clients with 2 products churn the least

Distribution of NumOfProducts 1 State of the state of t

1000

1500 2000 2500 3000 3500

count

4. Active Client churn less

1000

2000

count

3000

Key Insights

5. Older clients churn more frequently

Distribution of Age

6. Clients with a larger balance churn more frequently

Models

Baseline Model

Majority Class Predictor (Should achieve 80% accuracy)

Logistic Regression

Linearly Separating Predictor

K-Nearest Neighbors (KNN)

Distance-based Predictor

Random Forest

Grouping Purity-based Predictor

XgBoost Classifier

Gradient Boosted Decision Tree Predictor

Model Results

Probability Threshold: 0.2

Best Model: XgBoost Classifier

Results on Test Data:

• Accuracy: 0.78

Precision: 0.47

• Recall: 0.79

Xgboost Feature Importance

The Feature Importance chart agrees with many of the insights that were discovered earlier:

- 1. 2 Products: Less likely to churn
- 2. <u>Active Member</u>: Less likely to churn
- 3. Older: More likely to churn
- 4. East: More likely to churn
- 5. <u>Large Balance</u>: More likely to churn
- 6. West: Less likely to churn

Recommendations

Use the Xgboost Classifier to Identify Possible Attrition

Depending on the characteristics of the client, below are some possible ways to prevent client churn.

Member Activity

Incentivize clients to be a more active member.

Geography

Focus client retention strategies on the east region.

Number of Products

If clients are only using 1 product, persuade clients to use an additional product.

Age

Reward older clients for being a customer.

Thank you

Thanks for your time and giving me the opportunity to present.

I look forward to working together in the future!

Troy Reynolds

Troy.Lloyd.Reynolds@gmail.com