Labor Werkstoffkunde

Sommer/Wintersemester	WS
Semester	ATB3
Gruppe	Gruppe 2
Versuchstag	02.10.15

Versuch: Magnetische Eigenschaften

Teilnehmer:

Name, Vorname	Matrikelnummer
Schwarz, Max	749669
Meier, Christian	749730
Weiß, Fabio	750345

1. Inhalt

	Ermittlung der Frequenzabhängigkeit der Ummagnetisierungsverlust ransformatorblechen	
2.1	Erläuterung des Versuchs	
2.2	Messergebnisse	3
2.3	Berechnung der Koeffizienten	4
	mittlung der Abhängigkeit der Ummagnetisierungsverluste P _v vom elwert der Induktion B	6
3.1	Erläuterung des Versuchs	6
3.2	Messergebnisse	6
3.3	Bestimmung von x	7
3.4	Ermittlung der Kurve	7
4. Ur	ntersuchung des Verhaltens eines Ferritkerns bei kleinen Aussteuerungen	8
4.1	Erklärung des Versuchs	8
4.2	Messergebnisse	8
5. An	hang	9
5.1	Berechnung von P _v Ausplanimentrieren	9
5.2	Ermittlung der Flussdichte	LO
5.3	Referenzmessung des Ferritkerns 1	L1

2. Ermittlung der Frequenzabhängigkeit der Ummagnetisierungsverluste von Transformatorblechen

2.1 Erläuterung des Versuchs

Bei der ersten Messreihe wurde die magnetische Flussdichte B = 0,1T gewählt und eine die Frequenz langsam von 17Hz auf 700Hz erhöht. Mit dieser Messung wurden die Ummagnetisierungsverluste gemessen und in einer Tabelle erfasst.

2.2 Messergebnisse

Frequenz in Hz	Flussdichte in T	Verlustleistung in Watt/kg
17	0,1048	1,11E-02
25	0,1077	1,77E-02
50	0,1048	3,50E-02
60	0,1047	4,36E-02
100	0,1028	7,76E-02
250	0,1088	2,50E-01
500	0,0993	6,75E-01
700	0,1	1,16E+00

Zu erkennen ist, dass die Verluststeigung zunimmt, wenn die Frequenz steigt.

2.3 Berechnung der Koeffizienten

Mit den unten genannten Formeln lassen sich die Koeffizienten c_h und c_w berechnen, indem die Steigung der unten gezeigte Gerade und den Y-Achsenabschnitt bestimmt wird.

$$P_v = P_h + P_w = c_h * f + c_w * f^2$$

$$P_v/f = c_h + c_w * f$$

Diese Werte wurden aus dem Diagramm abgelesen:

$$c_w = 1,44 * 10^{-6}$$

 $c_h = 6,39 * 10^{-4}$

Mit den Werten und den folgenden Werten konnten wir dann die Verluste für mehrere Frequenzen berechnen.

$$P_h = c_h * f$$

$$P_w = c_w * f^2$$

$$P_v = c_h * f + c_w * f^2$$

Frequenz in Hz	Ph	Pw
17	1,09E-02	0,00041616
25	1,60E-02	0,0009
50	3,20E-02	0,0036
60	3,83E-02	0,005184
100	6,39E-02	0,0144
250	1,60E-01	0,09
500	3,20E-01	0,36
700	4,47E-01	0,7056

3. Ermittlung der Abhängigkeit der Ummagnetisierungsverluste P_{ν} vom Scheitelwert der Induktion B

3.1 Erläuterung des Versuchs

Bei der zweiten Messreihe wurde die Frequenz fest auf 50Hz eingestellt und die magnetische Flussdichte von 0,05T bis 1,5T gesteigert.

3.2 Messergebnisse

Flussdichte in T	P _v in W/kg
1,5	5,025
1,25	3,249
1	2,143
0,75	1,306
0,5	0,648
0,25	0,196
0,1	0,035
0,05	0,009

3.3 Bestimmung von x

Durch das Einfügen einer Trendlinie (Potenz) in das Diagramm, lässt sich das x bestimmen.

Dieses ist die Potenz der Trendline und beträgt somit 1,822.

Die Trendlinie wurde aus der Formel $P_v=a^*B^*$ (entspricht der roten Funktion im Diagramm, aus dieser sich auch a bestimmen lässt).

Rechnerisch hätte man das x auch mit der Formel $log(P_v) = log(a) + x*log(B)$.

3.4 Ermittlung der Kurve

Bei der Messreihe wurden μ_0 , H und B benutzt, um das μ_r in Abhängigkeit von der magnetischen Feldstärke H zu bestimmen. Das Ergebnis sieht man im folgendem Diagramm.

4. Untersuchung des Verhaltens eines Ferritkerns bei kleinen Aussteuerungen

4.1 Erklärung des Versuchs

Um den Versuch durchzuführen wurde die Frequenz fest auf 1500Hz eingestellt und eine Referenzmessung ausgeführt.

Ziel dieser Referenzmessung war es, diejenige Flussdichte zu bestimmen, bei der die Kommutierungskurve so linear wie möglich verläuft.

Mit der eingestellten Referenz der Flussdichte konnten dann die dementsprechende Verlustleistung und Feldstärke ermittelt werden.

4.2 Messergebnisse

Frequenz in Hz	Flussdichte in T	Feldstärke in A/m	Verlustleistung in W/kg
1500	0,1487	43,25	0,8264
1500	0,0011	0,466	2,457*10 ⁻⁶

5. Anhang

5.1 Berechnung von P_v Ausplanimentrieren

Flächenmußslab:
$$\frac{\sqrt{37}}{\sqrt{38}} = \frac{1}{9.99} \cdot 10^{2} \text{ T} \cdot 60.14 \text{ A/m}$$
 $\frac{2209}{8000} = \frac{1}{6.034} \cdot \frac{1}{6.034} \cdot \frac{1}{60.03} \cdot \frac{1$

5.2 Ermittlung der Flussdichte

$$dx = 31 \text{mm} \cdot 0.09 \, \text{A}_{m} = 0.31 \, \text{A} \cdot \text{mm} \qquad dy = 30 \, \text{mm} \cdot 22.9 \, \text{P} \cdot 10^{6} \, \text{T} = 6.9 \cdot 10^{4} \, \text{Tmm}$$

$$dy = \frac{6.9 \cdot 10^{9} \, \text{T}}{0.31 \, \text{A}} = 2.23 \cdot 10^{3} \, \text{T·m}$$

$$M_{r} = \frac{9.23 \cdot 10^{3}}{M_{o}} = 1779$$

$$M_{o}$$

5.3 Referenzmessung des Ferritkerns

