Repetition

Geometrie

Beschreibung des Gauss-Algorithmus

- 1 Bestimme die am weitesten links stehende Spalte, die von Null verschiedene Elemente enthält.
- 2 Ist die oberste Zahl in der in Schritt 1 gefundenen Spalte Null, so vertausche man die erste Zeile mit einer andern, wo keine Null steht (Pivot).
- 3 Addiere ein passendes Vielfaches der obersten Zeile zu den übrigen Zeilen, um unterhalb des Pivots Nullen zu erzeugen.
- 4 Wende Schritt 1 bis 3 auf die Untermatrix an, die durch Streichen der ersten Zeile entsteht, und zwar solange, bis es nicht mehr geht. Dann ist die **Zeilenstufenform** erreicht.
- 5 Bestimme die Lösungsmenge durch Rückwärtseinsetzen.

Zeilenstufenform

<i>x</i> ₁	<i>x</i> ₂	 Xi	x_j	 Xn	1
*	*			 *	<i>c</i> ₁
0	0	 0 (*) *		 *	<i>c</i> ₂
:		·		* * :	:
0			0 * *	 *	Cr
0			0	 0	c_{r+1}
:			:	:	:
0			0	 0	c _m

Pivots

Rot: Pivot-Variable Blau: freie Parameter

Grün: Verträglichkeitsbedingungen $c_{r+1} = \ldots = c_m = 0$

Repetition

Lineare Algebra

Zeilenstufenform

2::+--

Geometrie

Zeilenstufenform

Definition

Die Zahl r heisst **Rang** des LGS.

- ▶ $0 \le r = \text{Anzahl Pivotvariablen} \le \min\{m, n\}$
- ightharpoonup n-r= Anzahl freie Parameter

Repetition

Lineare Algebra

Gauss-Algorithmus
Zeilenstufenform

ätze

eometrie

Satz 1.1

Ein LGS hat mindestens eine Lösung genau dann, wenn

- entweder r = m (keine Nullzeilen)
- oder r < m und $c_{r+1} = \ldots = c_m = 0$ (Verträglichkeitsbedingungen erfüllt)

In beiden Fällen liefert Rückwärtseinsetzen die Lösungsmenge.

Satz 1.2

Falls ein LGS eine Lösung besitzt, so ist diese eindeutig genau dann, wenn r = n gilt.

Definition

Ein LGS Ax = b heisst **homogen**, wenn b = 0.

Bemerkungen:

- Ein homogenes LGS (HLGS) besitzt immer die triviale Lösung x = 0.
- ► Falls bei einem HLGS *n* > *m* gilt, so besitzt es nichttriviale Lösungen.

Korollar 1.3

Ein HLGS hat genau dann eine nicht-triviale Lösung, wenn r < n gilt.

Repetition

Lineare Algebra

Gauss-Algorithmus

Zeilenstufen:

Sätze

eometrie

Geometrische Interpretation

Sei

$$a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \neq 0$$

ein Vektor in \mathbb{R}^n .

Eine Gleichung der Form

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = d$$
 (*)

stellt geometrisch dar:

- eine Gerade in der Ebene, falls n=2
- eine Ebene im Raum, falls n = 3
- eine Hyperebene, im allgemeinen

Schnittmenge

Die Lösungsmenge eines linearen Gleichungssystems stellt somit die Schnittmenge der Hyperebenen im LGS dar.

Repetition

Lineare Algebra

Gauss-Algorithmus

Sätze

Geometrie

Geometrische Interpretation

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = d$$
 (*)

Hessesche Normalform

Falls ||a|| = 1 heisst (*) **Hessesche Normalform**. Dann ist a ein Einheitsnormalenvektor auf der Hyperebene, und d der orientierte Abstand der Hyperebene vom Ursprung.

Dabei ist $||a|| = \sqrt{a_1^2 + \ldots + a_n^2}$ die **Länge** (auch **Norm** genannt) des Vektors a.

Repetition

Lineare Algebra

Gauss-Algorithmus

Geometrie