DM2 - Mines MP 2019

1 Premiers exemples

- 1. Le langage reconnu par l'automate A_1 est l'ensemble des \mid mots de taille impaire
- 2. Le langage reconnu par l'automate A_2 est l'ensembles des mots contenant un nombre impair de b

2 États accessibles d'un automate

```
6.
       let numero n a =
           let t = Array.make n (-1) in
           let rec aux index = function (*parcourt la liste*)
             |[] -> ()
              |h::q \rightarrow t.(h) \leftarrow index ; aux (index + 1) q in
           aux 0 a ; t ;;
7.
       let etats_accessibles aut =
           let n, delta, f = aut in
           let visited = Array.make n false in
           let parcours = ref [] in
           let aux etat =
                if not visited.(etat) then
                    begin
                    visited.(etat) <- true ;</pre>
                    parcours := etat :: !parcours ;
                    let succ_a, succ_b = delta.(etat) in
                    aux succ_a ;
                    aux succ_b
                    end
           in
           aux 0 ;;
           List.rev !parcours
```

Compléxité: La création d'une Array de taille n est en O(n), et l'accès à un élément d'une liste, tout comme la concatenation d'un élément avec une liste, sont en O(1). On ne s'intéresse donc qu'aux appels récursifs de la fonction aux. Comme |Q|=n, et que pour tout $q\in Q$, il existe deux états q_1 et q_2 (potentiellement égaux) tels que $\delta(q,a)=q_1$ et $\delta(q,b)=q_2$, la fonction aux fait au plus 2n appels récursifs, soit une compléxité en O(n).

```
let partie_accessible aut =
    let n, delta, f = aut in
    let new_etats = etats_accessibles aut in
    let apparition = numero n new_etats in
    let new_n = List.length new_etats in
    let new_delta = Array.make new_n (0,0) in
    let new_f = Array.make new_n false in
    let rec aux = function
        |[] -> (new_n, new_delta, new_f)
        |h::t -> let s = apparition.(h) in
                new_f.(s) < -f.(h);
                let succ_a, succ_b = delta.(h) in
                new_delta.(s) <- apparition.(succ_a) ,apparition.(succ_b);</pre>
                aux t
    in
    aux new_etats ;;
```

3 Morphismes d'automates

3.1 Exemples de morphismes d'automates

- 9. $\varphi: \mathcal{A}_3 \to \mathcal{A}_2$ est représentée par $\begin{vmatrix} q & \varphi(q) \\ E & C \\ \hline F & C \\ \hline G & D \end{vmatrix}$
- 11. Supposons qu'il existe un morphisme d'automates $\varphi : \mathcal{A}_1 \to \mathcal{A}_2$, alors, pour vérifier (2) : $\varphi(A) = C$, et pour vérifier (4) : $\varphi(B) = D$. Or si φ est un morphisme d'automates, alors d'après (3),

$$\begin{array}{rcl} \varphi(\delta_{\mathcal{A}_1}(A,a)) & = & \varphi(B) \\ & = & D \\ & = & \delta_{\mathcal{A}_2}(\varphi(A),a) \end{array}$$

Mais, $\varphi(A) = C$ d'après (2), donc

$$\begin{array}{rcl} \delta_{\mathcal{A}_2}(\varphi(A),a) & = & \delta_{\mathcal{A}_2}(C,a) \\ & = & C \\ & = & D \\ & \to & \text{Absurde}\,! \end{array}$$

Ainsi, il n'existe pas de morphisme d'automates de A_1 vers A_2

12. Comme à la question précédente, supposons qu'il existe un morphisme d'automates $\varphi: \mathcal{A}_5 \to \mathcal{A}_2$, alors (2) et (4) nous donne : $\varphi(L) = C$, $\varphi(M) = D$ et $\varphi(N) = C$ (car $N \notin F_{\mathcal{A}_5}$). (3) impose alors,

$$\varphi(\delta_{\mathcal{A}_{5}}(N,b)) = \varphi(L)$$

$$= C$$

$$= \delta_{\mathcal{A}_{2}}(\varphi(N),b)$$

$$= \delta_{\mathcal{A}_{2}}(C,b) \quad (\varphi(N) = C)$$

$$= D$$

$$\rightarrow \text{Absurde!}$$

Ainsi, il n'existe pas de morphisme d'automates de \mathcal{A}_5 vers \mathcal{A}_2

3.2 Propriétés des morphismes d'automates

13. Soit \mathcal{A}, \mathcal{B} deux automates. Supposons qu'il existe un morphisme d'automates $\varphi : \mathcal{A} \to \mathcal{B}$. Notons $\mathcal{P}(n)$ le prédicat : « pour tout $q \in Q_{\mathcal{A}}$ et pour tout mot m de taille $n, \varphi(\delta_{\mathcal{A}}^*(q, m)) = \delta_{\mathcal{B}}^*(\varphi(q), m)$ ». Montrons par récurrence simple, que pour tout $n \in \mathbb{N}, \mathcal{P}(n)$.

Initialisation: Si n=0, alors $m(=\varepsilon)$ est le mot vide, alors pour tout état q, $\delta_{\mathcal{A}}^*(q,\varepsilon)=q$ et $\delta_{\mathcal{B}}^*(\varphi(q),\varepsilon)=\varphi(q)$ donc $\varphi(\delta_{\mathcal{A}}^*(q,\varepsilon))=\varphi(q)=\delta_{\mathcal{B}}^*(\varphi(q),\varepsilon)$.

 $\underline{\text{H\'er\'edit\'e}}: \text{Soit } n \in \mathbb{N}, \text{ supposons } \mathcal{P}(n), \text{ montrons } \mathcal{P}(n) \Rightarrow \mathcal{P}(n+1),$

Soit $q \in Q_A$ un état quelconque et m un mot de taille n+1, on peut alors noter $m=\sigma m_r$ où m_r est un mot de taille n, et σ une lettre dans $\{a,b\}$. Ainsi,

$$\varphi(\delta_{\mathcal{A}}^{*}(q,m)) = \varphi(\delta_{\mathcal{A}}^{*}(\delta_{\mathcal{A}}(q,\sigma),m_{r})) \text{ par définition de } \delta_{\mathcal{A}}^{*}$$

$$= \delta_{\mathcal{B}}^{*}(\varphi(\delta_{\mathcal{A}}(q,\sigma)),m_{r}) \text{ par l'hypothèse de récurrence}$$

$$= \delta_{\mathcal{B}}^{*}(\delta_{\mathcal{B}}(\varphi(q),\sigma),m_{r}) \text{ par la propriété (3) d'un morphisme d'automates}$$

$$= \delta_{\mathcal{B}}^{*}(\varphi(q),m) \text{ par définition de } \delta_{\mathcal{B}}^{*}$$

Donc $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vérifié.

Ainsi, si $m \in L(\mathcal{A})$, alors $\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m) \in F_{\mathcal{A}}$, et donc $\varphi(\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m)) = \delta_{\mathcal{B}}^*(\varphi(i_{\mathcal{A}}), m) = \delta_{\mathcal{B}}^*(i_{\mathcal{B}}, m) \in F_{\mathcal{B}}$

d'après ce que l'on vient de montrer, (2) et (4). Donc $\delta_{\mathcal{B}}^*(i_{\mathcal{B}}, m) \in F_{\mathcal{B}}$, et par conséquent $m \in L(\mathcal{B})$. D'où le résultat.

14. Soit \mathcal{A}, \mathcal{B} deux automates **finis**, tels que $|Q_{\mathcal{A}}| = |Q_{\mathcal{B}}|$. Supposons qu'il existe un morphisme d'automates $\varphi : \mathcal{A} \to \mathcal{B}$, alors φ est surjective par définition. Or comme $|Q_{\mathcal{A}}| = |Q_{\mathcal{B}}|$, φ surjective $\Leftrightarrow \varphi$ bijective. Donc φ est nécessairement bijective.

De plus:

- (1) φ^{-1} est bijective donc surjective;
- (2) $\varphi^{-1}(i_{\mathcal{B}}) = \varphi^{-1}(\varphi(i_{\mathcal{B}})) = i_{\mathcal{A}};$
- (3) Soit $q \in F_{\mathcal{B}}$, d'après la définition de φ , $\forall \sigma \in \{a, b\}$, $\varphi(\delta_{\mathcal{A}}(\varphi^{-1}(q), \sigma)) = \delta_{\mathcal{B}}(q, \sigma)$, et donc en appliquant φ^{-1} à l'égalité :

$$\forall q \in Q_{\mathcal{B}}, \ \forall \sigma \in \{a, b\}, \ \varphi^{-1}(\delta_{\mathcal{B}}(q, \sigma)) = \delta_{\mathcal{A}}(\varphi^{-1}(q), \sigma)$$

(4) $\forall q \in Q_{\mathcal{B}}$, (encore une fois d'après la définition de φ),

$$\varphi^{-1}(q) \in F_{\mathcal{A}} \iff \varphi(\varphi^{-1}(q)) \in F_{\mathcal{B}}$$

 $\iff q \in F_{\mathcal{B}}$

Donc φ^{-1} est bien un morphisme d'automates

- 15. Soit $\mathcal{A}, \mathcal{B}, \mathcal{C}$ trois automates et $\varphi : \mathcal{B} \to \mathcal{C}, \psi : \mathcal{A} \to \mathcal{B}$ deux morphismes d'automates.
 - (1) φ et ψ surjectives donc $\varphi \circ \psi$ est surjective;
 - (2) $(\varphi \circ \psi)(i_{\mathcal{A}}) = \varphi(i_{\mathcal{B}}) = i_{\mathcal{C}};$
 - (3) $\forall q \in Q_A, \forall \sigma \in \{a, b\}, (\varphi \circ \psi)(\delta_A(q, \sigma)) = \varphi(\delta_B(\psi(q), \sigma)) = \delta_A((\varphi \circ \psi)(q), \sigma);$
 - (4) $\forall q \in Q_A, q \in F_A \iff \psi(q) \in F_B \iff (\varphi \circ \psi)(q) \in F_C$;

Donc $\varphi \circ \psi : \mathcal{A} \to \mathcal{C}$ est un morphisme d'automates, d'où le résultat

3.3 Existence de morphismes d'automates entre automates accessibles

16. Soit \mathcal{A}, \mathcal{B} deux automates **accessibles**, soit $\varphi : \mathcal{A} \to \mathcal{B}$ une application verifiant les propriétés (2), (3) et (4). Le résulat montré par récurrence à la question 13. est toujours valable puisque les seules hypothèses utilisées ((2), (3) et (4)) sont vérfiées.

Soit $q \in Q_{\mathcal{B}}$, comme q est accesible, il existe $m \in L(\mathcal{B})$ tel que :

```
\delta_{\mathcal{B}}^{*}(i_{\mathcal{B}}, m) = q 

= \delta_{\mathcal{B}}^{*}(\varphi(i_{\mathcal{A}}), m) \text{ d'après (2)} 

= \varphi(\delta_{\mathcal{A}}^{*}(i_{\mathcal{A}}, m)) \text{ d'après la question 13.}
```

Or, comme $\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m) \in Q_{\mathcal{A}}$, alors il existe $q' \in Q_{\mathcal{A}}$ tel que $\varphi(q') = q$ donc φ est surjective, d'où (automates accessibles) \wedge (2) \wedge (3) \wedge (4) \Longrightarrow (1)

```
17.
       let existe_morphismes aut1 aut2 =
           let n1, delta1, f1 = aut1 in
           let n2, delta2, f2 = aut2 in
           let def = ref true in (*variable indiquant si un morphisme existe ou non*)
           let visited = Array.make n1 false in
           let morphisme = Array.make n1 (-1) in
           let construire etat1 etat2 = (*fonction qui construit le morphisme*)
               if morphisme.(etat1) <> 1 (*si phi(q) ne s'est pas encore vu etre associe
                   une image, on la definit*)
                    then begin
                        if (f1.(etat1) = f2.(etat2) ) || ((not f1.(etat1)) = (not
                        \rightarrow f2.(etat2)) ) (*test de la condition (4)*)
                        then morphisme.(etat1) <- etat2 (*si (4) est respectee, alors on
                        \rightarrow peut definir phi(q)*)
                        else def := false (*sinon il n'existe pas de morphisme*)
                    end
               else if morphisme.(etat1) <> etat2 (*si phi(q) est deja defini, mais que la
                   condition (3) n'est pas respectee...*)
                     then def := false (*... alors il n'existe pas de morphisme*)
```

```
in
let rec aux etat1 = (*fonction qui parcours l'automate afin de constuire le

    morphisme*)

    if not visited.(etat1) (*on verifie que le sommet n'a pas deja ete visite*)
    then begin
        let etat2 = morphisme.(etat1) in
        let succ1_a, succ1_b = delta1.(etat1) in (*on construit le morphisme
        → recursivement, en partant du sommet que l'on visite*)
        let succ2_a, succ2_b = delta2.(etat2) in
        visited.(etat1) <- true ;</pre>
        construire succ1_a succ2_a ; (*on definit les images de phi pour sigma
        \Rightarrow = a*)
        construire succ1_b succ2_b; (*on definit les images de phi pour sigma
        \rightarrow = b*)
        if !def then (aux succ1_a ; aux succ1_b) (*si le morphisme existe (i.e
        → les etapes de construction se sont achevees), alors on continue
        → jusqu'a ce que tous les sommets soient visites*)
        end
in
morphisme. (0) <- 0; (*initialisation de la constuction avec la condition (2)*)
aux 0 ; (*début du parcours*)
!def , morphisme ;;
```

4 Construction de morphismes d'automates

4.1 Automate produit

18.

Partie accessible de $A_3 \times A_4$

```
f.(n2 * i + j) <- true ;
  delta.(n2 * i + j) <- prod_etats n2 delta1.(i) delta2.(j) ;
  end
  done; done;
partie_accessible (n, delta, f) ;;</pre>
```

20. Soit $\mathcal{A}, \mathcal{A}'$ deux automates.

Notons $\mathcal{P}(n)$ le prédicat : « pour tout état $(q,q') \in Q_{\mathcal{A}} \times Q_{\mathcal{A}'}$ et pour tout mot m de taille n, $\delta^*_{\mathcal{A} \times \mathcal{A}'}((q,q'),m) = (\delta^*_{\mathcal{A}}(q,m),\delta^*_{\mathcal{A}'}(q',m))$ ». Montrons par récurrence simple, que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$.

 $\underline{\text{Initialisation}}: \text{Si } n=0, \text{ alors } m(=\varepsilon) \text{ est le mot vide, alors pour tout \'etat } (q,q'), \ \delta^*_{\mathcal{A}\times\mathcal{A}'}((q,q'),\varepsilon) = (q,q')$ Or $\delta^*_{\mathcal{A}}(q,\varepsilon) = q$ et $\delta^*_{\mathcal{A}'}(q',\varepsilon) = q'$ donc $\delta^*_{\mathcal{A}\times\mathcal{A}'}((q,q'),\varepsilon) = (q,q') = (\delta^*_{\mathcal{A}}(q,\varepsilon),\delta^*_{\mathcal{A}'}(q',\varepsilon))$

<u>Hérédité</u>: Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$, montrons $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$,

Soit $(q, q') \in Q_A \times Q_{A'}$ un état quelconque et m un mot de taille n+1, on peut alors noter $m = \sigma m_r$ où m_r est un mot de taille n. Ainsi,

$$\begin{array}{lll} \delta_{\mathcal{A}\times\mathcal{A}'}^*((q,q'),m) & = & \delta_{\mathcal{A}\times\mathcal{A}'}^*(\delta_{\mathcal{A}\times\mathcal{A}'}((q,q'),\sigma),m_r) \text{ par d\'efinition de } \delta_{\mathcal{A}\times\mathcal{A}'}^*\\ & = & \delta_{\mathcal{A}\times\mathcal{A}'}^*((\delta_{\mathcal{A}}(q,\sigma),\delta_{\mathcal{A}'}(q',\sigma)),m_r) \text{ par par d\'efinition de } \delta_{\mathcal{A}\times\mathcal{A}'}\\ & = & (\delta_{\mathcal{A}}^*(\delta_{\mathcal{A}}(q,\sigma),m_r),\delta_{\mathcal{A}'}^*(\delta_{\mathcal{A}'}(q',\sigma),m_r)) \text{ d'après l'hypothèse de r\'ecurrence}\\ & = & (\delta_{\mathcal{A}}^*(q,m),\delta_{\mathcal{A}'}^*(q',m)) \text{ par d\'efinition de } \delta_{\mathcal{A}}^* \text{ et } \delta_{\mathcal{A}'}^* \end{array}$$

Donc $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vérifié.

Ainsi, si $(q, q') \in Q_{\mathcal{A}} \times Q_{\mathcal{A}'}$ est un état accessible, alors il existe un mot m tel que $(q, q') = \delta^*_{\mathcal{A} \times \mathcal{A}'}((i_{\mathcal{A}}, i_{\mathcal{A}'}), m) = (\delta^*_{\mathcal{A}}(i_{\mathcal{A}}, m), \delta^*_{\mathcal{A}'}(i_{\mathcal{A}'}, m)).$

Or comme
$$L(\mathcal{A}) = L(\mathcal{A}'), m \in L(\mathcal{A}) \iff m \in L(\mathcal{A}').$$
 D'où $q \in F_{\mathcal{A}} \iff q' \in F_{\mathcal{A}'}$

21. Soit $\mathcal{A}, \mathcal{A}'$ deux automates accessibles qui acceptent le même langage. On considère \mathcal{B} la partie accessible de $\mathcal{A} \times \mathcal{A}'$.

Montrons qu'il existe un morphisme d'automates $\varphi: \mathcal{B} - > \mathcal{A}$:

Considérons $\varphi: \begin{array}{ccc} \mathcal{B} & \rightarrow & \mathcal{A} \\ (q,q') & \mapsto & q \end{array}$

D'après la question 16, comme \mathcal{B} et \mathcal{A} sont deux automates accessibles, il suffit de montrer que φ vérifie (2), (3) et (4) :

- (2) Comme $i_{\mathcal{B}} = (i_{\mathcal{A}}, i_{\mathcal{A}'})$, on a directement $\varphi(i_{\mathcal{B}}) = i_{\mathcal{A}}$;
- (3) Si $(q,q') \in Q_{\mathcal{B}}$, alors pour tout $\sigma \in \{a,b\}$, on a à la fois $\varphi(q,q') = q$ par définition de φ et $\varphi(\delta_{\mathcal{B}}((q,q'),\sigma)) = \varphi(\delta_{\mathcal{A}}(q,\sigma),\delta_{\mathcal{A}'}(q',\sigma)) = \delta_{\mathcal{A}}(q,\sigma)$;
- (4) Enfin, soit $(q, q') \in Q_{\mathcal{B}}$:
 - (\Rightarrow) Si $(q, q') \in F_{\mathcal{B}}$, par définition de \mathcal{B} , $\varphi(q, q') = q \in F_{\mathcal{A}}$;
 - (\Leftarrow) Si $\varphi(q,q')=q\in F_{\mathcal{A}}$, alors d'après la question 20, $q'\in F_{\mathcal{A}'}$, et donc $(q,q')\in F_{\mathcal{B}}$;

Ainsi, on démontre bien l'existence d'un morphisme d'automates entre \mathcal{B} et \mathcal{A}

La symétrie du problème entre \mathcal{A} et \mathcal{A}' permet de conclure.

4.2 Diagramme d'automates

- 22. Montrons que \equiv définit bien une relation d'équivalence :
 - Si $p \in Q_{\mathcal{B}}$ alors il existe une suite de longueur 0+1 constituée du terme $p=q_0=p$ donc $p\equiv p$. Ainsi \equiv est réfléxive.
 - Soit $(p,q) \in Q_B^2$ tel que $p \equiv q$, par définition, il existe une suite de longueur $k+1 \in \mathbb{N}^*$ constituée des termes $p=q_0,q_1,...,q_k=q$, alors en considérant la suite constituée des termes $q=p_0,p_1,...,p_{k-1},p_k=p$, où $\forall \ 0 \leq j \leq k, p_j=q_{k-j}$. Ainsi on a :

$$\forall \ 0 \leq j < k, \ \varphi(p_{j+1}) = \varphi(q_{\underbrace{k-j-1}}) = \varphi(q_{k-j}) = \varphi(p_j)$$
 ou
$$\psi(p_{j+1}) = \psi(q_{\underbrace{k-j-1}}) = \psi(q_{k-j}) = \psi(p_j)$$

Soit, $\forall 0 \leq j < k$, $\varphi(p_j) = \varphi(p_{j+1})$ ou $\psi(p_j) = \psi(p_{j+1})$ Ce qui montre $p \equiv q \implies q \equiv p$, et donc que \equiv est symétrique. — Soit $(p,q,r) \in Q^3_{\mathcal{B}}$ tel que $p \equiv q$ et $q \equiv r$, alors il existe deux suites, de taille respective l+1 et m+1 $((\ell,m) \in \mathbb{N}^2)$, constituées des termes $p=q_0,q_1,...,q_\ell=q$ et $q=r_0,r_1,...,r_m=r$. Alors en considérant la suite de taille k+1 (où $k=(\ell+m) \in \mathbb{N}$) constituée des termes $p=q_0,q_1,...,q_\ell=r_0,r_1,...,r_m=r$, on a clairement:

$$\forall \ 0 \leq j < k, \ \varphi(p_j) = \varphi(p_{j+1}) \text{ ou } \psi(p_j) = \psi(p_{j+1}) \text{ (même lorsque } j = \ell \text{ puisque } \varphi(q_\ell) = \varphi(r_0) = \varphi(r_1))$$

Donc $(p \equiv q) \land (q \equiv r) \implies p \equiv r$, ce qui conclut sur la transitivité de \equiv

On a ainsi montré que \equiv est une relation d'équivalence

23. Soit $(p,q) \in Q_{\mathcal{B}}^2$ tel que $p \equiv q$. Soit $p = q_0, q_1, ..., q_k = q$ la suite associée à \equiv . Soit $\sigma \in \{a,b\}, j \in [0;k]$. Si $\varphi(q_j) = \varphi(q_{j+1})$, il découle :

$$\begin{split} \varphi(\delta_{\mathcal{B}}(q_j,\sigma)) &= \delta_{\mathcal{A}}(\varphi(q_j),\sigma) & \text{par propriété de morphisme de } \varphi \\ &= \delta_{\mathcal{A}}(\varphi(q_{j+1}),\sigma) \\ &= \varphi(\delta_{\mathcal{B}}(q_{j+1},\sigma)) & \text{à nouveau par propriété de } \varphi \end{split}$$

Le résultat est clairement similaire avec ψ , si on suppose $\psi(q_j) = \psi(q_{j+1})$. Ainsi en définissant la suite $\Delta_0, \Delta_1, ..., \Delta_k$, avec $\forall j \in [\![0;k]\!], \ \Delta_j = \delta_{\mathcal{B}}(q_j, \sigma)$, alors

$$\forall 0 \leq j < k, \ \varphi(\Delta_j) = \varphi(\Delta_{j+1}) \text{ ou } \psi(\Delta_j) = \psi(\Delta_{j+1}) \text{ (d'après ce que l'on vient de montrer)}.$$

D'où le résultat : $\delta_{\mathcal{B}}(p,\sigma) \equiv \delta_{\mathcal{B}}(q,\sigma)$.

24. Soit $(p,q) \in Q_B^2$ tel que $p \equiv q$. Par symétrie de la relation \equiv , montrer que $p \in F_B \implies q \in F_B$ suffira à montrer l'équivalence.

Soit $p = q_0, q_1, ..., q_k = q$ la suite associée à \equiv .

Soit $j \in [0; k[$. Si $\varphi(q_j) = \varphi(q_{j+1})$, montrons que $q_j \in F_{\mathcal{B}} \implies q_{j+1} \in F_{\mathcal{B}}$:

$$q_j \in F_{\mathcal{B}} \implies \varphi(q_j) = \varphi(q_{j+1}) \in F_{\mathcal{A}} \implies q_{j+1} \in F_{\mathcal{B}}$$
 (par propriété de morphisme de φ)

Le résultat est clairement similaire avec ψ , si on suppose $\psi(q_j) = \psi(q_{j+1})$.

Et donc, par une récurrence immédiate, $p \in F_{\mathcal{B}} \implies q \in F_{\mathcal{B}}$ et ainsi $p \in F_{\mathcal{B}} \iff q \in F_{\mathcal{B}}$

- 25. Construisons un tel automate \mathcal{C} :
 - Comme imposé par l'énoncé : $Q_{\mathcal{C}} = \{S_0, S_1, ..., S_{l-1}\}$;
 - L'état initial $i_{\mathcal{C}}$ est $[i_{\mathcal{B}}]$;
 - Comme montré à la question 23., si $\sigma \in \{a,b\}$, $(p,q) \in Q^2_{\mathcal{B}}$, alors $[p] = [q] \implies [\delta_{\mathcal{B}}(p,\sigma)] = [\delta_{\mathcal{B}}(q,\sigma)]$. On peut donc définir $\forall \sigma \in \{a,b\}$, $\forall [q] \in Q_{\mathcal{C}}$, $\delta_{\mathcal{C}}([q],\sigma) = [\delta_{\mathcal{B}}(q,\sigma)]$;
 - De même, la question 24. montre que si [p] = [q] alors $p \in F_{\mathcal{B}} \iff q \in F_{\mathcal{B}}$ donc on définit $F_{\mathcal{C}}$ ainsi : $F_{\mathcal{C}} = \{[q] \mid q \in F_{\mathcal{B}}\}.$

On a ainsi construit $C = \langle Q_C, i_C, \delta_C, F_C \rangle$, montrons maintenant que η est bien un morphisme d'automates de \mathcal{B} vers \mathcal{C} . Comme \mathcal{B} et \mathcal{C} sont deux automates accessibles, il suffit de montrer que η vérifie les conditions (2), (3) et (4) (question 16.):

- (2) Par définition de $i_{\mathcal{C}}$, on a clairement $\eta(i_{\mathcal{B}}) = [i_{\mathcal{B}}] = i_{\mathcal{C}}$;
- (3) Soit $q \in Q_{\mathcal{B}}$, $\sigma \in \{a, b\}$, Comme $\eta(q) = [q]$, on a clairement :

$$\eta(\delta_{\mathcal{B}}(q,\sigma)) = [\delta_{\mathcal{B}}(q,\sigma)] = \delta_{\mathcal{C}}([q],\sigma) = \delta_{\mathcal{C}}(\eta(q),\sigma);$$

(4) Enfin, encore une fois d'après la définition de $\mathcal{C}: \forall q \in Q_{\mathcal{B}}, \ q \in F_{\mathcal{B}} \iff [q] = \eta(q) \in F_{\mathcal{C}};$

Donc η est bien un morphisme d'automates de $\mathcal B$ vers $\mathcal C$

26. Construisons un morphisme d'automates ψ' tel que $\psi' \circ \psi = \eta$.

Soit $q \in Q_{\mathcal{A}'}$, comme ψ est surjective, il existe $p \in Q_{\mathcal{B}}$ tel que $q = \psi(p)$ et donc on définit : $\psi'(q) = [p]$. Supposons qu'il existe $p, p' \in Q_{\mathcal{B}}$ tels que $q = \psi(p) = \psi(p')$, alors $p \equiv p'$ et donc [p] = [p'], ce qui montre bien que $\psi'(q')$ ne dépend pas de l'antécédent pas ψ choisit, ce qui conclut bien sur la bonne définition de ψ' .

Montrons maintenant que ψ' est bien un morphisme d'automates. Comme $\mathcal{B}, \mathcal{A}'$ accessibles, il suffit de montrer que ψ' vérifie (2), (3) et (4) (question 16.) :

```
(2) Comme i_{\mathcal{A}'} = \psi(i_{\mathcal{B}}), \ \psi'(i_{\mathcal{A}'}) = [i_{\mathcal{B}}] = i_{\mathcal{C}};
```

(3) Soit $q \in \mathcal{A}'$, $\sigma \in \{a, b\}$, il existe $p \in Q_{\mathcal{B}}$ tel que $q = \psi(p)$. On a alors :

```
\begin{split} \delta_{\mathcal{A}'}(q,\sigma) &= \delta_{\mathcal{A}'}(\psi(p),\sigma) \\ &= \psi(\delta_{\mathcal{B}}(p,\sigma)) \qquad \text{par propriété de morphisme de } \psi \\ \text{Donc } \psi'(\delta_{\mathcal{A}'}(q,\sigma)) &= \underbrace{\psi' \circ \psi}_{=\eta}(\delta_{\mathcal{B}}(p,\sigma)) \\ &= [\delta_{\mathcal{B}}(p,\sigma)] \qquad \text{par définition de } \eta \text{ (cf question 25.)} \\ &= \delta_{\mathcal{C}}([p],\sigma) \qquad \text{par définition de } \delta_{\mathcal{C}} \text{ ((cf question 25.))} \\ &= \delta_{\mathcal{C}}(\psi'(q),\sigma) \qquad \text{car } \psi'(q) = [p] \text{ par construction} \end{split}
```

(4) Soit $q \in Q_{\mathcal{A}'}$, il existe $p \in Q_{\mathcal{B}}$ tel que $q = \psi(p)$:

```
q \in F_{\mathcal{A}'} \iff \psi(p) \in F_{\mathcal{A}'}
\iff p \in F_{\mathcal{B}} par propriété de morphisme de \psi
\iff [p] \in F_{\mathcal{C}} par définition de F_{\mathcal{C}} (cf question 25.)
\iff \psi'(q) \in F_{\mathcal{C}} car \psi'(q) = [p] par construction
```

Donc ψ' , ainsi construit, est bien un morphisme d'automates de \mathcal{A}' vers \mathcal{C} . En procédant de même avec φ' , en remplacant \mathcal{A}' par \mathcal{A} , on construit bien φ' et ψ' deux tels morphismes.

```
27.
       let maxi_positif arr = (*renvoie l'element maximum d'un tableau d'entiers positifs
       → (et -1 si la liste est vide)*)
           if Array.length arr = 0 then -1 else
           let value = ref arr.(0) in
           for i=1 to (Array.length arr) - 1 do
               value := max arr.(i) !value
           done;
           !value ;;
       let renomme arr =
           let size = Array.length arr in
           let l = maxi_positif arr + 1 in (*entier l positif permettant de creer le
           → dictionnaire (cf ci dessous)*)
           let index = Array.make 1 (-1) in (*semblant de dictionnaire qui a une valeur n
           → associe une cle k (son indice dans le tableau renomme)*)
           let res = Array.make size 0 in (*tableau renomme*)
           let compteur = ref 0 in (*compteur permettant de garder en memoire la derniere
           for i = 0 to size - 1 do
              begin
               if index.(arr.(i)) = -1 (*verifie que l'on a pas deja associe a la valeur n
                  une cle*)
                   then begin index.(arr.(i)) <- !compteur; (*on attribut a la valeur n

    une cle*)

                              incr compteur (*on incremente le compteur*)
              res.(i) <- index.(arr.(i)) (*on renomme le tableau*)
               end
           done;
           res ;;
```

La fonction maxi_positif à une complexité linéaire en ℓ , et la fonction renomme effectue une boucle for comportant n étapes (où n est la taille du tableau donné en arguement). Les fonctions Array.make sont aussi de complexité linéaire en n pour res et ℓ pour index.

Ainsi la fonction renomme a une complexité en $O(\max(\ell, n))$

```
let q_arrive2 = maxi_positif morph2 + 1 in (*cardinal de l'automate image de
\hookrightarrow psi*)
let voisins1 = Array.make q_arrive1 [] in (*voisins1.(q) = liste des
→ antecedents de q par phi*)
let voisins2 = Array.make q_arrive2 [] in (*voisins2.(q) = liste des
→ antecedents de q par psi*)
for i = 0 to (q_depart - 1) do (*on remplit les voisins*)
  voisins1.(morph1.(i)) <- i :: voisins1.(morph1.(i)) ;</pre>
  voisins2.(morph2.(i)) <- i :: voisins2.(morph2.(i))</pre>
done:
let morph_res = Array.make q_depart (-1) in (*initialisation de eta*)
let rec aux e arr = function (*fonction auxiliaire qui pour tout i dans la
→ liste va attribuer a arr.(i) la valeur e*)
  |[] -> ()
  |h::t -> morph_res.(h) <- e ; aux e arr t in
for i = 0 to (q_depart - 1) do (*on remplit eta*)
  if morph_res.(i) = -1 then (*verifie si l'etat i ne s'est pas deja vu etre
  → attribue une classe d'equivalence ...*)
   begin (*... si non, alors on initialise la classe d'equivalence (en lui
    → donnant un numero quelconque (MAIS QUI N'A PAS ENCORE ETE DONNE))*)
      aux i morph_res voisins1.(morph1.(i)) ; (*on attribut cette classe
      → d'equivalence aux voisins de q par phi*)
      aux i morph_res voisins2.(morph2.(i)) ; (*on attribut cette classe

→ d'equivalence aux voisins de q par psi*)
  else begin (*... si on a deja attribue une classe d'equivalence a cet etat,
  → alors on l'attribut aux voisins de cet etat*)
    aux morph_res.(i) morph_res voisins1.(morph1.(i)) ;
    aux morph_res.(i) morph_res voisins2.(morph2.(i)) ;
  end
  done:
  renomme morph_res ;; (*on renomme les classes d'equivalence (notamment afin
  \rightarrow d'avoir morph_res.(0) = 0)*)
```

5 Réduction d'automates

5.1 Existence et unicité

29. D'après les questions 21. et 25, on peut construire un automate \mathcal{C} à partir de la partie accessible du produit d'automates $\mathcal{A} \times \mathcal{A}'$.

La question 26. assure l'existence de deux morphismes $\varphi' : \mathcal{A} \to \mathcal{C}$ et $\psi' : \mathcal{A}' \to \mathcal{C}$.

30. L'automate $\mathcal{A} \times \mathcal{A}'$ possède 2 classes d'équivalence pour la relation $\equiv : (E, H) \equiv (F, I)$ et $(G, J) \equiv (G, K)$. On les note respectivement S_0 et S_1 . La représentation de \mathcal{C} est donc :

Automate \mathcal{C}

 $\varphi': \mathcal{A} \to \mathcal{C}$ est représentée par

	q	$\varphi'(q)$	
	E	S_0	et ψ' est représentée par
ĺ	F	S_0	et ψ est representee par
	\overline{G}	S_1	

	q	$\psi'(q)$
	H	S_0
•	I	S_0
	J	S_1
	K	S_1

31. Soit $\mathcal{A}, \mathcal{A}' \in \mathfrak{R}_L$ (i.e $L = L(\mathcal{A}) = L(\mathcal{A}')$) tels que $|Q_{\mathcal{A}}| = |Q_{\mathcal{A}'}| = m_L$.

Par le même procédé qu'à la question 29., on construit \mathcal{C} , $\varphi': \mathcal{A} \to \mathcal{C}$ et $\psi': \mathcal{A}' \to \mathcal{C}$.

Par surjectivité de φ' et ψ' : $|Q_{\mathcal{C}}| \leq m_L$. De plus l'existence de φ' et ψ' assure que $L(\mathcal{C}) = L(\mathcal{A}) = L(\mathcal{A}')$.

Donc $C \in \mathfrak{R}_L$, d'où $Q_C \geq m_L$ (par défintion de m_L). Donc $|Q_C| = |Q_A| = |Q_{A'}|$.

Donc, d'après la question 14., φ' et ψ' sont des isomorphismes d'automates.

Toujours d'après la question 14, ψ'^{-1} est aussi un isomorphisme d'automates, et donc comme composition d'isomorphismes : $\psi'^{-1} \circ \varphi'$ est un isomorphisme de \mathcal{A} vers \mathcal{A}' (cf question 15.).

Donc \mathcal{A} et \mathcal{A}' sont nécessairement isomorphes

32. Soit $\mathcal{A}, \mathcal{M}_L \in \mathfrak{R}_L$ (i.e $L = L(\mathcal{A}) = L(\mathcal{M}_L)$) tels que $|Q_{\mathcal{M}_L}| = m_L$.

Par le même procédé qu'à la question 29., on construit \mathcal{C} , $\varphi': \mathcal{A} \to \mathcal{C}$ et $\psi': \mathcal{M}_L \to \mathcal{C}$.

Par surjectivité de $\psi': |Q_{\mathcal{C}}| \leq m_L$. De plus l'existence de φ' et ψ' assure que $L(\mathcal{C}) = L(\mathcal{A}) = L(\mathcal{A}')$. Donc $\mathcal{C} \in \mathfrak{R}_L$, d'où $Q_{\mathcal{C}}| \geq m_L$ (par défintion de m_L). Donc $|Q_{\mathcal{C}}| = |Q_{\mathcal{M}_L}|$.

Donc, d'après la question 14., ψ' est un isomorphisme d'automates.

Toujours d'après la question 14, ψ'^{-1} est aussi un isomorphisme d'automates, et donc comme composition de morphismes : $\varphi = \psi'^{-1} \circ \varphi'$ est un morphisme de \mathcal{A} vers \mathcal{M}_L (cf question 15.).

Donc il existe bien un morphisme $\varphi: \mathcal{A} \to \mathcal{M}_L$

5.2 Construction d'un automate réduit par fusion d'états

33.

Automate
$$\mathcal{A}_6^{O,P}$$

Afin de pouvoir créer un morphisme φ de \mathcal{A}_6 vers $\mathcal{A}_6^{O,P}$, il faut aussi que l'on fusionne les états Q et T

afin d'avoir les bonnes transitions par b. On peut alors représenter φ par

4	$\varphi (q)$	
O	O, P	
P	O, P	
Q	Q, T	
R	R	
S	S	
T	Q, T	

. Ainsi, on a bien

$$\varphi(O) = \varphi(P) \text{ et } |Q_{\mathcal{A}_6^{O,P}}| < |Q_{\mathcal{A}_6}|$$

- 34. Les transitions des états Q et R selon b dans \mathcal{A}_6 sont respectivment $O \in F_{\mathcal{A}_6}$ et $S \notin F_{\mathcal{A}_6}$. Ainsi par les propriétés (3) et (4) de morphisme de ψ , il n'est pas possible d'avoir un tel $\mathcal{A}_6^{Q,R}$.
- 35. En partant de l'automate $\mathcal{A}_6^{O,P}$, on peut encore fusionner les états R et S.

On obtient alors un automate \mathcal{M}_{L_6} à trois états qui reconnait le même langage que \mathcal{A}_6 :

Automate \mathcal{M}_{L_6}

36. let table_de_predecesseurs aut = let n, delta, f = aut in

let tab = Array.make_matrix n n false in (*on initalise le tableau*)

```
let rec aux p q = (*fonction auxiliaire qui visite tous les (p, q) pour un
if not tab.(p).(q) (*s'assure de ne visiter les sommets qu'une seule fois*)
then begin
   tab.(p).(q) <- true ;
   let succP_a, succP_b = delta.(p) in
   let succQ_a, succQ_b = delta.(q) in
   aux succP_a succQ_a ; (*début du parcours*)
   aux succP_b succQ_b ; (*suite du parcours (en profondeur)*)
in
for p = 0 to n - 1 do
    for q = 0 to n - 1 do
        if (f.(p) \&\& (not f.(q))) \mid \mid ((not f.(p)) \&\& f.(q))  (*pour tous les
        \rightarrow couples (p, q), on regarde si il respecte les conditions de

    l'enonce ...*)

       then aux p q (*... si oui, alors on le visite*)
    done;
done;
tab ;;
```

37. On considère le graphe orienté P' similaire à P, mais où l'orientation des arcs est inversée (i.e que pour tout $(p,q) \in Q \times Q$ et pour toute lettre $\sigma \in \{a,b\}$ les arcs vont de $(\delta(p,\sigma),\delta(q,\sigma))$ vers (p,q)). En faisant une fonction table_de_predecesseurs_bis, simillaire à la fonction de la question 36. mais pour le graphe P', on aura alors tab. (p). (q) = false si et seulement si pour tout mot $m \in L(\mathcal{A})$, $(\delta_{\mathcal{A}}^*(p,m) \in F_{\mathcal{A}})$ et $\delta_{\mathcal{A}}^*(q,m) \in F_{\mathcal{A}}$ ou $(\delta_{\mathcal{A}}^*(p,m) \notin F_{\mathcal{A}})$ et $\delta_{\mathcal{A}}^*(q,m) \notin F_{\mathcal{A}}$. On dira que p est en relation avec q (et on notera cette relation \star).

Cette relation est clairement refléxive, symétrique et transitive, \star est donc une relation d'equivalence. Ainsi pour réduire l'automate \mathcal{A} on va déterminer les classes d'équivalence de la relation \star , et fusionner les états appartenant à chacune des classes. Pour ce faire, on determinera un morphisme φ entre \mathcal{A} et l'automate dont les états sont les classes d'équivalence de \star (même procédé qu'à la question 26.), pour ensuite calculer l'image de \mathcal{A} par φ pour obtenir \mathcal{M}_L .

```
let table_de_predecesseurs_bis aut =
    let n, delta, f = aut in
    let tab = Array.make_matrix n n false in
    let transi = Array.make_matrix n n [] in (*graphe P'*)
    for p = 0 to n - 1 do (*construction de P'*)
        for q = 0 to n - 1 do
            let succP_a, succP_b = delta.(p) in
            let succQ_a, succQ_b = delta.(q) in
            transi.(succP_a).(succQ_a) \leftarrow (p, q) :: transi.(succP_a).(succQ_a);
            transi.(succP_b).(succQ_b) <- (p, q) :: transi.(succP_b).(succQ_b);</pre>
        done:
    done;
    let rec aux p q = (*fonction auxiliaire qui parcours P' pour mettre a jour les
    → relations "etoiles" entre les etats*)
        if not tab.(p).(q)
        then begin
            tab.(p).(q) <- true ;
            List.iter (fun (i,j) -> aux i j) transi.(p).(q) ;
            end
    in
    for p = 0 to n - 1 do
        for q = 0 to n - 1 do
            if (f.(p) && (not f.(q))) || ((not f.(p)) && f.(q))
            then aux p q
        done;
    done:
    tab ;;
```

```
let etoile aut = (*meme procede que pour `relation` mais cette fois-ci on veut le
    → morphisme et un etat quelconque dans chacune des classes*)
        let n, delta, f = aut in
        let pred = table_de_predecesseurs_bis aut in
        let classes_equiv = Array.make n (-1) in
        for p = 0 to n - 1 do
            if classes_equiv.(p) = -1
            then begin
                classes_equiv.(p) <- p ;</pre>
                for q = 0 to n - 1 do
                    if not pred.(p).(q)
                     then classes_equiv.(q) <- p
                done;
                end
        done:
        let classes_equiv = renomme classes_equiv in
        let nb_classes = maxi_positif classes_equiv + 1 in
        let etats_classe = Array.make nb_classes (-1) in
        Array.iteri (fun i elem -> etats_classe.(elem) <- i) classes_equiv ;</pre>
        classes_equiv, etats_classe ;;
    let reduit aut =
        let n, delta, f = aut in
        let classes_equiv, etats_classe = etoile aut in
        let new_n = Array.length etats_classe in
        let new_delta = Array.make new_n (-1, -1) in
        let new_f = Array.make new_n false in
        for p = 0 to new_n - 1 do
            let succ_a, succ_b = delta.(etats_classe.(p)) in
            new_delta.(p) <- classes_equiv.(succ_a), classes_equiv.(succ_b) ;</pre>
            new_f.(p) <- f.(etats_classe.(p))</pre>
        done ;
        (new_n, new_delta, new_f) ;;
Exemple: en testant ces fonctions avec A_6, on retrouve bien \mathcal{M}_{L_6}:
INPUT:
let a6 = 6, [|(0, 2); (0, 5); (3, 1); (2, 4); (5, 4); (3, 0)|], [|true; true; false

    ; false ; false ; false|] in

reduit a6 ;;
OUTPUT :
- : int * (int * int) array * bool array =
(3, [|(0, 1); (2, 0); (1, 2)|], [|true; false; false|])
```

FIN DE LA COPIE