

Topics

- The Network layer of the Internet IP (Internet Protocol)
 - Main Functions
 - Header at network layer
 - IP addresses:
 - Address classes
 - Classless inter-domain routing
 - Routing

The Network Layer

- Network Layer
 - Layer 3 in the Internet model
 - Responsible for addressing and routing of message
- RFC = Request for Comments – specifies internet related standards
 - Developed by IETF –
 Internet Engineering Task
 Force

Application Network We are here (Layer 3) Data Link **Physical**

Internet Solution to Internetworking

 Gateways called "routers" can route packets between different LANs using the Internet protocol

Two Ways for Packet switching

- Connection Oriented: virtual circuit packet switching
 - All packets go on same route

- Connection-less: datagram packet switching
 - Route each packet independently through the network

Connection Oriented Service

- Before data flows, end hosts establish connection called virtual Circuit (VC)
- Needs signaling protocol to setup, teardown VC
- Each packet has VC ID in header decision based on ID
 - Used in WAN standards: ATM, frame-relay, X.25

Datagram (IP) Networks

- Packet between same source-destination pair may follow a different routing path
 - Packets forwarded using destination host address
- No setup needed at network layer
- Used in Internet

Connection-Oriented vs.

Connectionless

Network Protocols

- IPv4 Packet
 - 160-192 bits (20-24 bytes) of overhead
 - Options field: rarely used

Version numbe		Type of service	Total length	IDs	Flags	Packet Offset	Time to Live /	Protocol	CRC-16	Source Address	Destination Address	Options	User Data
(4 bits)	(4 bits)	(8 bits)	(16 bits)	(16 bits)	(3 bits)	(13 bits)	Hop Limit (8 bits)	(8 bits)	(16 bits)	(32 bits)	(32 bits)	(32 bits)	(varies)

IP Datagram Format

160-192 bits (20-24 bytes) of overhead

IP Header fields

- Like other layers, IP header fields enable IP functionality
 - Used primarily by routers to find addresses
- Version of network protocol (IPv4 or IPv6)
 - IPv4 expected to be popular for some more years
- Header length
 - Length of header in multiples of 32 bits
- Type of service
 - Packets with higher value should get higher priority

Version number	Header length	Type of service	Total length	IDs	Flags	Packet Offset	Time to Live /	Protocol	CRC-16	Source Address	Destination Address	Options	User Data
(4 bits)	(4 bits)	(8 bits)		(16 bits)	(3 bits)	(13 bits)	Hop Limit (8 bits)	(8 bits)	(16 bits)	(32 bits)	(32 bits)	(32 bits)	(varies)

IP Header fields

- Total length
 - Size of packet in bytes, including header and data
 - Maximum packet size of 65,536 bytes
- ID
 - Used to re-assemble packet if it is fragmented by intermediate routers (since datalink layer has maximum frame size, fragmentation may be required)
 - All fragments will have the same ID
- Flags
 - Indicates whether packet may be further fragmented, and whether it has in fact been fragmented
- Fragment offset
 - Location of packet with respect to TCP datagram

Version number	Header length	Type of service /	Total length	IDs	Flags	Packet Offset	Time to Live /	Protocol	CRC-16	Source Address	Destination Address	Options	User Data
(4 bits)	(4 bits)	(8 bits)	(16 bits)	(16 bits)	(3 bits)	(13 bits)	Hop Limit (8 bits)	(8 bits)	(16 bits)	(32 bits)	(32 bits)	(32 bits)	(varies)

IP Header fields

- Time to live (TTL)
 - Each router subtracts 1 from the field when a packet passes through it
 - Packet is destroyed if TTL = 0
 - Helps clear stale packets from the network
- Protocol: defines transport layer technology
- Header checksum with CRC-16 calculated over header only
- Source address, destination address: 32 bits IP address (IPv4)
- Options for routing, padding can be added after that

Version number	Header length	Type of service	Total length	IDs	Flags	Fragment Offset	Time to	Protocol	CRC-16	Source Address	Destination Address	Options	User Data
Hamber	iciigtii	3CI VICC	iciiguii			Offset	Hop Limit			Address	Address)	Data
(4 bits)	(4 bits)	(8 bits)	(16 bits)	(16 bits)	(3 bits)	(13 bits)	(8 bits)	(8 bits)	(16 bits)	(32 bits)	(32 bits)	(32 bits)	(varies)

Why Need Addressing at Network and Link Layers?

- Data Link(DL) Layer address is addressing over a link \rightarrow Changes every link (every hop)
 - Source address is address of device transmitting over a link
 - Destination address is the address of the device receiving at end of a link
- IP (network layer) addressing is end-to-end
 - IP destination address is that of the final destination
 - May not change throughout routing path

Internet (IP) Addresses

- IP addresses are assigned by network administrators
 - Provides flexibility in addressing

- The current addresses consist of 32 bit binary numbers (IPv4)
 - Theoretically up to $2^{32} = 4.29$ billion addresses
 - IPV6 expands the address space

IP Addresses

- Binary numbers are hard to remember → use decimal equivalents
- IP addresses are written in dotted decimal notation
 - 32 bit addresses broken into 4 numbers, each of
 8 bits
 - Each block converted to decimal representation
 - Decimals are separated by dots

- -E.g. 136.142.185.57
 - Decimal to Binary
 - $-10001000\ 10001110\ 10111001\ 00111001$

IP Addresses (dotted decimal notation)

Examples

Recall Decimal to binary video link on Canvas.

11000000 10101000 00000001 00000101

192 . 168 . 1

```
Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix .: home
Link-local IPv6 Address . . . : fe80::d848:beb0:fb44:4171%8

IPv4 Address . . . : 192.168.1.5

Subnet Mask . . . . : 255.255.255.0

Default Gateway . . . : 192.168.1.1
```

IP Addresses – 2 Part Structure

- IP address has network part and host part
- Network part: The first few bits define organization to which the address belongs
- Host part: Remaining bits are unique to the computer (host) within the organization
 - Host part is generally broken further into subnets (discussed later)

Internet (IP) Addresses

- When an organization connects to the Internet, it obtains a set of IP addresses for its computers
 - Internet Assigned Numbers Authority (IANA)
 manages IP addresses at top level
 - IANA is part of ICANN (Internet Corporation for Assigned Names and Numbers)
 - IANA distribute pool of addresses to registries in counties
 - ISPs get IP addresses from registries
 - Organizations/users get IP addresses from ISP

ICANN: The Internet Corporation for Assigned Names and Numbers

IP Address Classes (Old Technique)

- Addresses are allocated in blocks (chunks)
- Defined 3 address classes
 - Allowed three possible network sizes
- An organization could request from ISP an address block depending on its needs
 - Class A for the largest organizations
 - Need to support huge number of devices (hosts)
 - Class B for organizations like Universities
 - Class C for small businesses

Address Classes

First bit is always '0' for class A

Class A addresses

First two bits are '10' for class B

Class B addresses

65k hosts

Class C addresses

256 hosts

CIDR: Classless Inter-Domain Routing

- What if you need 2000 addresses in your organization
 - Get 8 blocks of class C (complex to handle) or one class B (waste addresses)
 - Ideally how many bits do we need?
- CIDR: Stands for Classless Inter-Domain Routing
 - Eliminates address classes
 - CIDR aims to solve unavailability of address blocks of reasonable size
 - Defined in RFC 1519

CIDR

- With CIDR
 - Choose any number of bit for the network part of the IP address block
- If we need 2000 addresses,
 - we want IP address with <u>11</u> bits in <u>host ID</u> part (2¹¹=2048)
 - Thus, the <u>network ID part is 21 bits</u>
 - 32 11=21 bits
 - » 32 is the total length of IP

CIDR Notation

- With CIDR, a number along with the IP address to specify how many bits are in the network ID part
 - The number denotes the number of bits in the network part of the address
 - E.g. 73.5.0.0/ 17
 - The number after the dash is the number of bits for network ID (17 bits)

CIDR Notation

- If an organization has CIDR address of:
 73.5.0.0 17 Means that the network part of IP address is 17 bits, hence the host part is 32-17
 - First 17 bits of the address are the network part
 - Called a /17 network
 - The remaining 15 bits (32-17) identify the host
 - So, the network can have $2^{15} = 32,768$ computers

Key takeaways

- IP frame format
 - Splits into parts to specify organization and host (i.e., device) in organization
- IP address classes
 - Fixed number of bits for each part of IP address
- CIDR: Classless Inter-Domain Routing
 - Any number of bits in net ID