80

58

-32

38

21

10

11

4.5 ... 42

V

V

V

V

Α

Α

Α

 $m\Omega$

Product Summary

 $V_{\rm bb}$ - $V_{\rm OUT}$ Avalanche Clamp

V_{Load dump}

V_{bb} (operation)

V_{bb} (reverse)

Ron

I_L(SCp)

L(SCr)

IL(ISO)

Smart Highside Power Switch

Features

- Load dump and reverse battery protection¹⁾
- Clamp of negative voltage at output
- Short-circuit protection
- Current limitation
- Thermal shutdown
- Diagnostic feedback
- Open load detection in ON-state
- CMOS compatible input
- Electrostatic discharge (ESD) protection
- Loss of ground and loss of V_{bb} protection²⁾
- Overvoltage protection
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis

Application

- μC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- Most suitable for inductive loads
- Replaces electromechanical relays and discrete circuits

55

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, integrated in Smart SIPMOS® chip on chip technology. Fully protected by embedded protection functions.

04.96

¹⁾ No external components required, reverse load current limited by connected load.

²⁾ Additional external diode required for charged inductive loads

SIEMENS BTS 432 F2

Pin	Symbol		Function
1	GND	•	Logic ground
2	IN		Input, activates the power switch in case of logical high signal
3	Vbb	+	Positive power supply voltage, the tab is shorted to this pin
4	ST	S	Diagnostic feedback, low on failure
5	OUT (Load, L)	0	Output to the load

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 3)	$V_{ m bb}$	63	V
Load dump protection $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{s}}$, $U_{\text{A}} = 13.5 \text{ V}$ $R_{\text{I}} = 2 \Omega$, $R_{\text{L}} = 1.1 \Omega$, $t_{\text{d}} = 200 \text{ ms}$, IN= low or high	$V_s^{3)}$	66.5	V
Load current (Short-circuit current, see page 4)	<i>I</i> L	self-limited	Α
Operating temperature range	Tj	-40+150	°C
Storage temperature range	$T_{ m stg}$	-55 + 150	
Power dissipation (DC)	P _{tot}	125	W
Inductive load switch-off energy dissipation, single pulse T_j =150 °C:	E _{AS}	1.7	J
Electrostatic discharge capability (ESD) (Human Body Model)	V _{ESD}	2.0	kV
Input voltage (DC)	V_{IN}	-0.5 +6	V
Current through input pin (DC)	I _{IN}	±5.0	mΑ
Current through status pin (DC)	<i>I</i> _{ST}	±5.0	
see internal circuit diagrams page 6			
Thermal resistance chip - case:	$R_{ m thJC}$	≤ 1	K/W
junction - ambient (free air):	$R_{\rm thJA}$	≤ 7 5	
SMD version, device on pcb ⁴):	1107	≤ tbd	

_

 $^{^{3)}}$ V_S is setup without DUT connected to the generator per ISO 7637-1 and DIN 40839

⁴⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

1.1

mΑ

Electrical Characteristics

Parameter and Conditions			Values		
wise specified	-	min	typ	max	
and Characteristics					
<i>T</i> _i =25 °C:	Ron		30	38	mΩ
<i>T</i> _i =150 °C:			55	70	
5)	I _{L(ISO)}	9	11		Α
D disconnected or	I _{L(GNDhigh)}			1	mA
to 90% V _{OUT} :	<i>t</i> on	50	160	300	μs
to 10% V _{OUT} :	$t_{ m off}$	10		80	
	dV/dt_{on}	0.4		2.5	V/μs
=-40+150°C					
=-40+150°C	-d V/dt _{off}	1		5	V/µs
$T_j = -40 + 150$ °C: $T_j = -40 + 150$ °C: $T_j = -40 + 150$ °C:	$V_{ m bb(on)}$ $V_{ m bb(under)}$ $V_{ m bb(u rst)}$	4.5 2.4		42 4.5 4.5	V V V
pump T _j =-40+150°C:	$V_{ m bb(ucp)}$		6.5	7.5	V
	$\Delta V_{ m bb(under)}$		0.2		V
<i>T</i> _j =-40+150°C:	$V_{ m bb(over)}$	42		52	V
$T_{\rm j}$ =-40+150°C:	V _{bb(o rst)}	42			V
$T_{\rm j}$ =-40+150°C:	$\Delta V_{ m bb(over)}$		0.2	-	V
<i>T</i> _j =-40°C:	$V_{\mathrm{bb}(AZ)}$	60		-	V
$T_{\rm j}$ =25+150°C:		63	67		
<i>T</i> _j =-40+25°C:	I _{bb(off)}		12	25	μΑ
<i>T</i> _j =150°C:			18	60	
	T_j =25 °C: T_j =150 °C: 5) T_c = 85 °C D disconnected or agram page 7, to 90% V_{OUT} : to 10% V_{OUT} : =-40+150°C: T_j =-40+150°C: T_j =-40+150°C: pump T_j =-40+150°C: T_j =-40+150°C: T_j =-40+150°C: T_j =-40+150°C: T_j =-40+150°C: T_j =-40+150°C:	and Characteristics $T_j=25 ^{\circ}\text{C}$: R_{ON} $T_j=150 ^{\circ}\text{C}$: 5) $T_{C}=85 ^{\circ}\text{C}$ D disconnected or agram page 7, $to 90\% \ V_{OUT}$: t_{On} $to 10\% \ V_{OUT}$: t_{off} =-40+150 $^{\circ}\text{C}$ $T_j=-40+150 ^{\circ}\text{C}$: $V_{bb(on)}$ $T_j=-40+150 ^{\circ}\text{C}$: $V_{bb(urst)}$ pump $T_j=-40+150 ^{\circ}\text{C}$: $V_{bb(urst)}$ $T_j=-40+150 ^{\circ}\text{C}$: $V_{bb(urst)}$ $T_j=-40+150 ^{\circ}\text{C}$: $V_{bb(urst)}$ $T_j=-40+150 ^{\circ}\text{C}$: $V_{bb(over)}$ $V_{bb(over)}$ $V_{bb(over)}$ $V_{bb(over)}$	wise specified min and Characteristics $T_j=25 ^{\circ}\text{C}$: R_{ON}	min typ and Characteristics $T_j=25$ °C: $T_j=25$ °C: $T_j=25$ °C: $T_j=-40$ +150°C: $T_j=-40$ +150°C	min typ max and Characteristics $T_j=25$ °C: R_{ON}

Operating current (Pin 1)7), V_{IN}=5 V

*I*_{GND}

⁵⁾ At supply voltage increase up to V_{bb} = 6.5 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

⁶⁾ see also $V_{\mathrm{ON(CL)}}$ in table of protection functions and circuit diagram page 7. Meassured without load.

⁷⁾ Add I_{ST} , if $I_{ST} > 0$, add I_{IN} , if $V_{IN} > 5.5 \text{ V}$

BTS 432 F2

D13 43					<u>) </u>
Parameter and Conditions	Symbol	Values			Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Protection Functions					
Initial peak short circuit current limit (pin 3 to 5)8), (max 400 μ s if $V_{ON} > V_{ON(SC)}$)	I _{L(SCp)}				
$T_i = -40$ °C:				35	Α
τ _i =25°C: τ _j =+150°C:		 7	21		
Repetitive short circuit current limit	/ (CC*)	,			
$T_i = T_{it}$ (see timing diagrams, page 10)	$I_{L(SCr)}$	6	10		Α
Short circuit shutdown delay after input pos. slope			10		
$V_{\text{ON}} > V_{\text{ON(SC)}},$ $T_{\text{i}} = -40+150^{\circ}\text{C}$:	$t_{d(SC)}$	80		400	μs
min value valid only, if input "low" time exceeds 30 μs	, ,			.00	pio
Output clamp (inductive load switch off)					
at $V_{OUT} = V_{bb} - V_{ON(CL)}$, $I_{L} = 30 \text{ mA}$	$V_{\rm ON(CL)}$		58		V
Short circuit shutdown detection voltage (pin 3 to 5)	$V_{ m ON(SC)}$		8.3		V
Thermal overload trip temperature	$T_{\rm jt}$	150		-	°C
Thermal hysteresis	ΔT_{jt}		10	-	K
Inductive load switch-off energy dissipation ⁹⁾ ,	E _{AS}			1.7	J
$T_{\text{j Start}} = 150 \text{ °C}$, single pulse $V_{\text{bb}} = 12 \text{ V}$:	E _{Load12}			1.3	
$V_{\rm bb} = 24 \ \rm V:$	E_{Load24}			1.0	
Reverse battery (pin 3 to 1) 10)	-V _{bb}			32	V
Integrated resistor in V _{bb} line	R _{bb}		120		Ω
	1	l			
Diagnostic Characteristics					
Open load detection current T _j =-40 °C:	I _{L (OL)}	2		900	mA
(on-condition) $T_j=25150$ °C:		2		750	

⁸⁾ Short circuit current limit for max. duration of 400 μs, prior to shutdown (see t_{d(SC)} page 4)

While demagnetizing load inductance, dissipated energy in PROFET is $E_{AS} = \int V_{ON(CL)} * i_L(t) dt$, approx. $E_{AS} = \frac{1}{2} * L * \int_{L}^{2} * (\frac{V_{ON(CL)}}{V_{ON(CL)}} * V_{obb}), \text{ see diagram page 8}$

Reverse load current (through intrinsic drain-source diode) is normally limited by the connected load. Reverse current I_{GND} of ≈ 0.3 A at V_{bb} = -32 V through the logic heats up the device. Time allowed under these condition is dependent on the size of the heatsink. Reverse I_{GND} can be reduced by an additional external GND-resistor (150 Ω). Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

BTS 432 F2

Parameter and Conditions	Symbol	Values			Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Input and Status Feedback ¹¹⁾					
Input turn-on threshold voltage $T_j = -40+150$ °C:	$V_{IN(T+)}$	1.5		2.4	V
Input turn-off threshold voltage $T_j = -40+150$ °C:	$V_{IN(T-)}$	1.0			V
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$		0.5		V
Off state input current (pin 2) $V_{IN} = 0.4 \text{ V}$:	I _{IN(off)}	1		30	μΑ
On state input current (pin 2) $V_{IN} = 3.5 \text{ V}$:	I _{IN(on)}	10	25	50	μΑ
Status invalid after positive input slope (short circuit) T_{j} =-40 +150°C:	t _{d(ST SC)}	80	200	400	μs
Status invalid after positive input slope (open load) T_{j} =-40 +150°C:	$t_{d(ST)}$	350		1600	μs
Status output (open drain)					
Zener limit voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	

 $^{^{\}rm 11)}\,$ If a ground resistor $R_{\rm GND}$ is used, add the voltage drop across this resistor.

Truth Table

	Input-	Output	Status		
	level	level	432 D2	432 E2 /F2	432 12
Normal operation	L	L	H	H	H
	H	H	H	H	H
Open load	L H	12) H	H L	H	L
Short circuit to GND	L	L	H	H	H
	H	L	L	L	L
Short circuit to V _{bb}	L	H	H	H	L
	H	H	H (L ¹³⁾)	H (L ¹³⁾)	H
Overtem-	L	L	L	L	L
perature	H	L	L	L	L
Under-	L	L	L ¹⁴⁾	H	L ¹⁴⁾
voltage	H	L		H	L ¹⁴⁾
Overvoltage	L	L	L	H	L
	H	L	L	H	L

L = "Low" Level H = "High" Level

Terms

Input circuit (ESD protection)

ZD_{I1} 6.1 V typ., ESD zener diodes are not designed for continuous current

Status output

ESD-Zener diode: 6.1 V typ., max 5 mA; $R_{ST(ON)}$ < 250 Ω at 1.6 mA, ESD zener diodes are not designed for continuous current

Short Circuit detection

Fault Condition: $V_{ON} > 8.3 \text{ V typ.}$; IN high

¹²⁾ Power Transistor off, high impedance

Low resistance short $V_{\rm bb}$ to output may be detected by no-load-detection No current sink capability during undervoltage shutdown

Inductive and overvoltage output clamp

V_{ON} clamped to 58 V typ.

Overvolt. and reverse batt. protection

 R_{bb} = 120 Ω typ., V_Z + R_{bb} *40 mA = 67 V typ., add R_{GND} , R_{IN} , R_{ST} for extended protection

Open-load detection

ON-state diagnostic condition: $V_{\rm ON}$ < R_{ON} * I_{L(OL)}; IN high

GND disconnect

Any kind of load. In case of Input=high is $V_{OUT} \approx V_{IN}$ - $V_{IN(T+)}$. Due to V_{GND} >0, no V_{ST} = low signal available.

GND disconnect with GND pull up

Any kind of load. If $V_{GND} > V_{IN}$ - $V_{IN(T+)}$ device stays off Due to $V_{GND} > 0$, no $V_{ST} =$ low signal available.

V_{bb} disconnect with charged inductive load

Inductive Load switch-off energy dissipation

Energy dissipated in PROFET $E_{AS} = E_{bb} + E_L - E_R$. $E_{Load} < E_L$, $E_L = \frac{1}{2} * L * I_L^2$

Options Overview

all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection, protection against loss of ground

	. 9		9.00	
Type BTS	432D2	432E2	432F2	43212
Logic version	D	Е	F	I
Overtemperature protection				
$T_{\rm i}$ >150 °C, latch function ¹⁵⁾¹⁶⁾	X		X	Χ
$T_{\rm j}$ >150 °C, with auto-restart on cooling		Х		
Short-circuit to GND protection				
switches off when $V_{\rm ON}>8.3$ V typ. ¹⁵⁾ (when first turned on after approx. 200 μ s)	Х	Х	Х	Х
Open load detection				
in OFF-state with sensing current 30 μA typ. in ON-state with sensing voltage drop across power transistor	Х	Х	x	Х
Undervoltage shutdown with auto restart	Х	Х	Х	Χ
Overvoltage shutdown with auto restart	Х	Х	Х	Х
Status feedback for				
overtemperature	X	Х	Х	Χ
short circuit to GND	X	Х	X	Х
short to V _{bb}	_17)	_17)	_17)	X
open load	X	Х	Х	Х
undervoltage	X	-	-	Х
overvoltage	X	-	-	Х
Status output type				
CMOS	X			X
Open drain		Х	Х	
Output negative voltage transient limit (fast inductive load switch off)				
to V _{bb} - VON(CL)	Х	Х	X	Х
Load current limit				
high level (can handle loads with high inrush currents)	Х	Х		
medium level				Х
low level (better protection of application)			X	

-

Latch except when $V_{\rm bb}$ - $V_{\rm OUT}$ < $V_{\rm ON(SC)}$ after shutdown. In most cases $V_{\rm OUT}$ = 0 V after shutdown ($V_{\rm OUT}$ \neq 0 V only if forced externally). So the device remains latched unless $V_{\rm bb}$ < $V_{\rm ON(SC)}$ (see page 4). No latch between turn on and $t_{\rm d(SC)}$.

With latch function. Reseted by a) Input low, b) Undervoltage, c) Overvoltage

¹⁷⁾ Low resistance short $V_{\rm bb}$ to output may be detected by no-load-detection

Timing diagrams

Figure 1a: V_{bb} turn on:

in case of too early V_{IN}=high the device may not turn on (curve A) $t_{\rm d(bb\;IN)}$ approx. 150 μs

Figure 2a: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit,

Figure 3b: Turn on into overload,

Heating up may require several milliseconds , $\ensuremath{\text{V}_{\text{bb}}}$ - $\ensuremath{\text{V}_{\text{OUT}}}$ < 8.3 V typ.

Figure 3c: Short circuit while on:

Figure 4a: Overtemperature,

Reset if (IN=low) and $(T_j < T_{jt})$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump $V_{\mbox{ON}}$ [V]

Figure 7a: Overvoltage:

Package and Ordering Code

All dimensions in mm

Standard TO-220AB/5

Ordering code

BTS 432 F2 Q67060-S6203-A2

- 2) min. length by tinning
- 3) max. 11 mm allowable by tinning

TO-220AB/5, Option E3043 Ordering code

BTS 432 F2 E3043 Q67060-S6203-A4

- 2) dip tinning
- 3) max. 14.5 by dip tinning press burr max. 0.05

SMD TO-220AB/5, Opt. E3062 Ordering code

BTS432F2 E3062A | T&R: Q67060-S6203-A6

