

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ZARZĄDZANIA

Inteligencja Obliczeniowa

Problem komiwojażera

Autorzy: Mateusz Strojek, Tomasz Zapart, Adrian Żyła, Radosław Mocarski, Anna Rubin

Kierunek studiów: Informatyka i Ekonometria, 3 rok stacjonarnie

Prowadzący przedmiot: Radosław Puka, dr inż.

Kraków 2023r.

Spis treści

١.	Problem komiwojażera	3
	1.1. Solver	3
	1.2. Metoda najbliższego sąsiada	4
	1.3. Wspinaczka	6
	1.3.1. Rodzaj sąsiedztwa	6
	1.3.2. Liczba iteracji	7
	1.3.3. Liczba powtórzeń z rzędu bez poprawy rezultatu	9
	1.3.4. Najlepsze wyniki	10
	1.4. Symulowane Wyżarzanie	10
	1.4.1. Temperatura początkowa	10
	1.4.2. Współczynnik chłodzenia	11
	1.4.3. Iteracje dla jednej temperatury	13
	1.4.4. Minimalna temperatura (temperatura końcowa)	14
	1.4.5. Rodzaj sąsiedztwa	15
	1.4.6. Rodzaj spadku temperatury	16
	1.4.7. Najlepsze wyniki	18
	1.5. Tabu Search	20
	1.5.1. Rodzaj sąsiedztwa	20
	1.5.2. Rozmiar listy tabu.	20
	1.5.3. Liczba iteracji	21
	1.5.4. llość iteracji bez poprawy	22
	1.6. Algorytm Genetyczny	22
	1.6.1. Populacja	23
	1.6.2. Generacje	23
	1.6.3. Prawdopodobieństwo mutacji	24
	1.6.4. Liczba krzyżówek	24
	1.6.5. Zachowanie najlepszych osobników z poprzedniej populacji	25
	1.6.6. Metoda doboru rodziców	25
	1.6.7. Metoda krzyżowania	26
	1.6.8. Dynamiczna mutacja	26
	1.6.9. Najlepsze wyniki	27
<u>.</u>	Wnioski ogólne	27
R	Niesamodzielność	29

1. Problem komiwojażera

Problem komiwojażera to jedno z klasycznych zagadnień optymalizacyjnych w matematyce i informatyce. Polega on na znalezieniu najkrótszej trasy łączącej zbiór miast, tak aby odwiedzić każde z miast dokładnie raz i wrócić do punktu początkowego. Znalezienie minimum globalnego poprzez przeszukanie każdej możliwej kombinacji miast jest bardzo czasochłonny, w szczególności, gdy potrzeba policzyć najlepsze rozwiązanie dla 127 miast. Należałoby sprawdzić aż 126!/2 przypadków. Z tego powodu korzysta się z algorytmów przybliżonych.

1.1. Solver

Parametry, które wybraliśmy dla 48 i 76 miast to defaultowe. Zmieniliśmy jedynie czas bez poprawy na 500sek. Natomiast dla 126 miast, zastosowaliśmy takie parametry:

Zb <u>i</u> eżność:	0,0001
Szybkość mutacji:	0,15
Rozmi <u>a</u> r populacji:	200
Inicjat <u>o</u> r losowy:	0
Maksymalny czas bez poprawy:	1200
☐ Wymagaj granic dla zmiennych	

Wyniki:

	Wy	niki	Wyniki											
Dane	Dane 48 76 127													
1	10769	112356.8003	122235,1											
2	10835	112746.6917	127399,0594											
3	10854	113074.8852	128125.811											
4	10972	113664.9251	130119.1245											

Trasy dla 48:

5,42,10,24,45,35,26,4,2,29,34,41,3,16,22,1,8,9,38,31,44,18,7,28,6,37,19,27,17,43,30,36,46,33,20,12,15,40,11,23,14,25,13,47,21,32,39,48

Trasy dla 76:

38,39,35,32,33,34,40,41,60,59,58,61,62,73,72,71,64,63,57,56,55,52,53,54,42,43,28,29,26,27,49,50,5 1,66,65,67,70,68,69,47,48,44,45,46,24,25,21,22,23,1,76,75,2,8,7,6,3,4,30,31,19,20,5,10,9,11,12,13,1 4,74,15,16,17,18,37,36

Trasy dla 127:

 $109,88,87,86,85,110,71,70,69,75,76,68,67,73,74,77,18,21,17,20,4,22,19,72,8,23,24,108,15,12,14,41,\\30,38,39,42,34,43,36,37,35,40,44,103,45,54,57,51,50,13,115,10,120,7,2,16,1,105,114,106,6,9,11,3,1\\00,64,58,91,61,90,116,60,62,59,104,125,89,92,99,65,113,66,55,124,52,5,121,56,47,49,53,48,118,46,\\94,112,111,107,127,93,95,123,98,97,28,122,32,29,33,25,26,27,31,79,80,78,117,84,81,126,82,83,101,\\102,63,119,96$

1.2. Metoda najbliższego sąsiada

Metoda ta polega na tym, że szukamy najmniejszej odległości pomiędzy ostatnim odwiedzonym miastem, a następnym. Idea algorytmu jest taka, że szukamy lokalnie optymalnej odległości do kolejnego miasta licząc na to, że doprowadzi nas to do globalnie dobrego wyniku. Natomiast wadą tego algorytmu jest to, że wybierając lokalnie optymalną trasę, inne miasto może utracić dobry wynik. Natomiast ma on niską złożoność O(n^2) i stosunkowo szybko się go liczy. Jest on deterministyczny, natomiast sam z siebie nie jest w stanie poprawić rezultatu. Mamy małą szansę na wejście w globalne optimum, natomiast szybko jesteśmy w stanie uzyskać dobre rozwiązanie.

Wyniki dla 48 miast (indeksy są liczone od 0):

Najlepszym wynikiem jest dystans 12012. Wyszło tak dla indeksu 9 (miasta 10) i 34 (miasta 35). Bardzo blisko wyniku 12012 jest też indeks 23 (miasto 24), gdyż wtedy odległość wynosi 12020. Wyniki wahają się w okolicach 13000.

Trasy:

Trasa nr 1: 9, 23, 41, 4, 47, 38, 31, 20, 46, 10, 22, 13, 24, 12, 11, 14, 32, 45, 43, 17, 6, 27, 35, 29, 5, 36,

18, 26, 42, 16, 19, 39, 8, 0, 7, 37, 30, 21, 15, 2, 33, 40, 28, 1, 25, 3, 34, 44, 9

Trasa nr 2: 34, 44, 9, 23, 41, 4, 47, 38, 31, 20, 46, 10, 22, 13, 24, 12, 11, 14, 32, 45, 43, 17, 6, 27, 35, 29, 5, 36, 18, 26, 42, 16, 19, 39, 8, 0, 7, 37, 30, 21, 15, 2, 33, 40, 28, 1, 25, 3, 34

Uwaga - są to indeksy liczone od 0, a nie od 1.

Wyniki dla 78 miast:

Najlepszym wynikiem jest dystans 130921.0045. Wyszło tak dla indeksu nr 15 (miasto nr 16). Natomiast średnia wynosi ok. 147 tysięcy.

Trasa: 15, 14, 12, 13, 11, 10, 16, 17, 36, 35, 34, 33, 39, 40, 59, 58, 57, 56, 62, 63, 61, 60, 54, 55, 50, 65, 64, 49, 48, 51, 52, 53, 41, 42, 27, 28, 29, 30, 18, 19, 4, 5, 6, 7, 8, 9, 3, 2, 1, 0, 22, 21, 20, 24, 23, 45, 44, 43, 47, 46, 68, 67, 66, 69, 70, 71, 72, 38, 37, 31, 32, 26, 25, 74, 75, 73, 15

Uwaga - są to indeksy miast liczone od 0.

Wyniki dla 127 miast:

Najlepszym wynikiem jest dystans 133970.65. Wyszło tak dla indeksu nr 116 (miasto nr 117). Natomiast średnia wychodzi ok. 146 tysięcy.

Trasa: 116, 83, 80, 125, 81, 82, 74, 75, 77, 79, 78, 76, 17, 20, 16, 21, 3, 22, 23, 5, 105, 14, 107, 19, 18, 71, 7, 8, 10, 113, 104, 6, 0, 15, 1, 50, 56, 53, 44, 102, 43, 34, 35, 36, 40, 13, 11, 30, 26, 29, 42, 33, 38, 37, 25, 24, 32, 121, 27, 28, 31, 41, 39, 120, 4, 55, 123, 51, 49, 12, 114, 9, 119, 2, 89, 115, 59, 61, 60, 90, 57, 63, 99, 112, 65, 54, 46, 48, 52, 117, 47, 45, 93, 111, 110, 106, 126, 92, 94, 122, 96, 97, 100, 101, 62, 118, 95, 108, 86, 85, 84, 87, 109, 70, 69, 68, 67, 72, 73, 66, 58, 124, 88, 91, 98, 64, 103, 116

Uwaga - są to indeksy miast liczone od 0.

1.3. Wspinaczka

Metoda ta polega na wylosowaniu początkowej drogi, po czym wchodzimy w pętle, gdzie wybiera się dwa losowe indeksy miast do swappingu, insercji lub odwracania. Wykonujemy zamianę oraz sprawdzamy, czy rozwiązanie jest lepsze od najlepszego, jaki udało nam się uzyskać. Jeśli jest lepsze, to przyjmujemy nową najlepszą trasę i rozwiązanie. Pętle wykonujemy do momentu x powtórzeń z rzędu bez poprawy lub określoną liczbę iteracji, np 20000. Algorytm wspinaczki jest prosty w implementacji, ale jego skuteczność może być niska, ponieważ jest podatny na zatrzymywanie się w minimum lokalnym.

1.3.1. Rodzaj sąsiedztwa

Wyniki dla 48 miast:

Liczba miast: 48	Typ zamiany	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	reverse	11845,00	11585,00	11299,00	11299,00	11220,00	11260,00	11061,00	11028,00	11224,00	11179,00	11157,00	11277,00	11390,00	11123,00	11436,00	10998,00
Powt z rzędu - 1000	swapping	12628,00	15222,00	17689,00	18674,00	14757,00	17923,00	15524,00	16771,00	13566,00	14299,00	14922,00	15676,00	19520,00	14073,00	15336,00	18751,00
Iteracje - brak	insercja	15553,00	14724,00	16128,00	15881,00	12375,00	18570,00	14572,00	13952,00	14319,00	13084,00	15170,00	13198,00	12809,00	13683,00	12413,00	13144,00

Typ zamiany	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
reverse	11273,81	215,5471236	0,019119275	10998
swapping	15958,19	2036,535137	0,127616945	12628
insercja	14348,44	1645,968812	0,11471415	12375

Wniosek: Najlepszy rezultat udało się uzyskać za pomocą metody reverse. Zostało to wykonane przy parametrze: liczba powtórzeń z rzędu bez polepszenia rezultatu – 1000. Niski współczynnik zmienności oraz niska średnia sugeruje, że rodzaj sąsiedztwa reverse zwraca prawie zawsze bardzo dobre wartości i nie różnią się one za bardzo. Z drugiej strony, najgorzej wypada swapping przy średniej ok. 16tys. Swapping i insercja posiadają taką cechę, że wyniki są bardziej zróżnicowane, niż przy odwracaniu. Można to wywnioskować przez współczynnik zmienności na poziomie 10%.

Wyniki dla 76 miast:

Liczba miast: 76	Typ zamiany	1	2	3	4	5		6	7	8		9 1	11	12	13	14	15	16
Inne parametry:	reverse	115056,6	122439,3	113271	113295,9	116276,3	11982	22,4	119097,1	122956,1	113506	5,8 119833,	117850,1	119784,8	121003,5	118014,6	118617,1	120420
Powt z rzędu - 2000	swapping	156049,9	173061,1	144499,9	176665,2	179412,1	17158	81,7	154467	163398,4	190161	1,3 164931,	172010,4	151601,1	175256,1	190676,9	168245,7	183166
Zamiana: reverse	insercja	132873,8	182512,5	154612,8	141746,6	156415,9	16168	87,9	153458,9	148778	150297	7,7 14686	152713,8	165279	148424,2	164570,8	164484,4	149236,2
Typ zamiany			śrec	lnia:				ode	chylen	nie:	,	współcz	ynnik z	mienn	ności:	najlep	sza wa	rtosc
reverse					118	202,84	199		312	22,838	945			0,0264	1932	1	13271	,0073
swapping					169	699,0	114		13	365,2	935		0	,07879	8818	1	44499	,8864
insercja					154	622,34	461		114	145,64	305		0	,07402	23214	1	32873	,7915

Wniosek: Najlepszy rezultat udało się uzyskać za pomocą metody reverse. Zostało to wykonane przy parametrze: liczba powtórzeń z rzędu bez polepszenia rezultatu – 2000. Niski współczynnik zmienności oraz niska średnia sugeruje, że rodzaj sąsiedztwa reverse zwraca prawie zawsze bardzo dobre wartości i nie różnią się one za bardzo. Z drugiej strony, najgorzej wypada swapping przy średniej ok. 170tys. Znowu swapping i insercja mają większy współczynnik zmienności, niż odwracanie.

Wyniki dla 127 miast:

Liczba miast: 127	Typ zamiany	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	reverse	130863,5	130419,4	131788	134791,8	130726,3	131485	135151,1	126516	126476,4	126802,2	129541	129886,9	139630,3	129506,5	137933,1	131854,4
Powt z rzędu - 5000	swapping	203757	195920,1	189168,5	184957,4	185190,1	200406,4	167720,2	180971,6	199403,7	176972,7	200775,8	184459	178932,9	188425	200884,3	181877,7
Zamiana: reverse	insercja	163310,7	157905,7	161130,9	169055,9	158996,3	184371	160769,8	155697	159675,4	160750,4	166758,6	154756,5	162663,9	183785,8	186224,4	158893,6

Typ zamiany	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
reverse	131460,7502	3799,727867	0,028903896	126476,3961
swapping	188738,91	10483,84714	0,055546825	167720,2413
insercja	165296,6227	10326,25527	0,06247106	154756,4963

Wniosek: Najlepszy rezultat udało się uzyskać znowu pomocą metody reverse. Zostało to wykonane przy parametrze: liczba powtórzeń z rzędu bez polepszenia rezultatu – 5000. Niski współczynnik zmienności oraz niska średnia sugeruje, że rodzaj sąsiedztwa reverse zwraca prawie zawsze bardzo dobre wartości i nie różnią się one za bardzo. Z drugiej strony, najgorzej wypada swapping przy średniej ok. 170tys. Znowu swapping i insercja mają większy współczynnik zmienności, niż odwracanie.

Podsumowanie: Metoda reverse daje najlepsze rezultaty dla wspinaczki, a najgorsze metoda swap.

1.3.2. Liczba iteracji

Wyniki dla 48 miast:

Liczba miast: 48	Iteracje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	1000	14567	14749	14894	14492	14107	12627	14660	13498	13432	15031	14236	14328	15705	15147	14444	14517
Powt z rzędu - brak	2500	12018	11564	11656	12003	12165	11432	11778	12939	12325	12224	11580	12122	11781	12035	11528	12935
Zamiana: reverse	10000	11622	11517	10859	11215	11288	10991	11216	11035	11203	11232	11677	11647	11203	10994	11030	11541
	50000	11163	11379	11105	11433	11351	11248	11170	11126	11100	11290	11139	10841	11023	11100	11386	11420

Iteracje	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
1000	14402,125	737,4109551	0,051201538	12627
2500	12005,3125	453,3172133	0,037759718	11432
10000	11266,875	260,5667861	0,023126802	10859
50000	11204,625	163,8881224	0,014626828	10841

Wniosek: Najlepszy rezultat udało się uzyskać za pomocą 50000 iteracji. Zostało to wykonane przy pomocy metody odwracania. Przy przeskoku z 10000 tysięcy iteracji na 50000 widać, że trudno o znaczną poprawę, gdybyśmy zwiększyli np. do 200000 iteracji. Uzyskaliśmy najkrótszy dystans, który wynosi 10841 dla 50000 iteracji.

Wyniki dla 76 miast:

Liczba miast: 76	Iteracje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	1500	182798	179552	178752,4	173904,5	189375,2	186506,9	192695,9	172762,9	184663,6	180902,8	200268	174776,6	179417	197978,2	188101,4	180756,7
Powt z rzędu - brak	5000	142452,3	130338,1	129818,9	129180,2	137607,6	145311,4	133677,6	138318	136656,5	126945,6	138820,1	129437,4	135382,6	133069,5	131258,2	127269,9
Zamiana: reverse	20000	115260,3	121263,1	119007,7	118606,7	117407,9	116751,2	117963,2	118349,8	115219,9	114517,7	117628,2	114216,7	114242,3	117305	114486,2	114364,9
	75000	114737,3	112102,6	115156,8	118019,7	121839,4	119420,6	113123,7	112699,8	112958,3	114653,9	109905,6	113111,2	117081,8	119263,9	116692,1	118735,7

Iteracje	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
1500	183950,7491	8128,980409	0,04419107	172762,8775
5000	134096,4996	5425,787117	0,04046181	126945,6022
20000	116661,9304	2119,675548	0,018169385	114216,731
75000	115593,8781	3268,406343	0,028274909	109905,56

Wniosek: Najlepszy rezultat udało się uzyskać za pomocą 75000 iteracji. Zostało to wykonane przy pomocy metody odwracania. Przy przeskoku z 20000 tysięcy iteracji na 75000 widać, że trudno o znaczną poprawę, gdybyśmy zwiększyli np. do 200000 iteracji. Uzyskaliśmy najkrótszy dystans, który wynosi 109995,56 dla 75000 iteracji,

Wyniki dla 127 miast:

Liczba miast: 127	Iteracje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	2000	252218,8	234411,7	259113,8	236003,1	250788,1	248509,3	244934,9	277107,5	240628,5	270578,9	264900,2	237491,1	246580,1	266577,5	254729,3	254431
Powt z rzędu - brak	10000	153959,5	154373,5	156230,5	158151,7	158438,7	157569,2	156876,7	156627	150781	153754,9	154031,6	154343,1	152960,4	151911,1	152949,6	153527,8
Zamiana: reverse	50000	131193,8	137082,3	125517,9	134847,8	133569,7	133447,6	127554,6	132417,3	125893,5	133542	135377,5	129631,8	127683,3	129016,5	138126,3	126822,1
	150000	128922,6	127907,3	129221,7	134532,6	125963,9	131217	129234,5	129812,7	131603,4	133194,1	131251,2	135564,9	130841,1	132278,8	132916,8	126118

Iteracje	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
2000	252437,7417	12684,46738	0,050247904	234411,7381
10000	154780,3932	2273,579674	0,014689068	150781,0155
50000	131357,7576	4025,446612	0,03064491	125517,8704
150000	130661,287	2743,116306	0,020994101	125963,9244

Wniosek: Najlepszy rezultat udało się uzyskać za pomocą 50000 iteracji, natomiast najlepszą średnią udało się uzyskać przy 150000 iteracji. Wykonaliśmy wspinaczkę za pomocą metody odwracania. Przy przeskoku z 50000 tysięcy iteracji na 150000 widać, że trudno o znaczną poprawę, gdybyśmy zwiększyli np. do 2000000 iteracji.

Podsumowanie: Im większa ilość iteracji, tym lepszy wynik. Na początku, średni wynik maleje szybko. Potem, przy zwiększeniu iteracji o jedną jednostkę, najlepsza wartość w coraz wolniejszym tempie maleje.

1.3.3. Liczba powtórzeń z rzędu bez poprawy rezultatu

Wyniki dla 48 miast:

Liczba miast: 48	Powtórzenia z rzędu bez poprawy wyniku	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	50	15724	16081	16136	16613	16895	18363	24941	16249	17700	21860	14814	17562	17338	19597	15955	15568
Iteracje - brak	200	13031	12428	11931	11987	12077	12022	12147	11905	12092	12322	13360	13442	13916	11898	12311	11684
Zamiana: reverse	400	12378	13396	12085	11433	11507	11355	11769	11841	12208	12714	11368	10956	11891	11441	12624	11485
	1000	10903	11094	11414	11271	11143	10967	11226	11111	10916	11604	11323	11804	11291	11538	11082	11245

Powtórzenia z rzędu bez poprawy wyniku	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
50	17587,25	2614,686967	0,14866946	14814
200	12409,5625	659,4648304	0,053141666	11684
400	11903,1875	634,0110639	0,053263974	10956
1000	11245,75	251,0270902	0,022321952	10903

Wniosek: Najlepszy rezultat udało się uzyskać, gdy ustawiliśmy liczbę powtórzeń z rzędu bez poprawy rezultatu na 1000. Wykonaliśmy wspinaczkę za pomocą metody odwracania. Najlepszym uzyskanym wynikiem jest 10903 dla parametru ustawionego na 1000.

Wyniki dla 76 miast:

Liczba miast: 76	Powtórzenia z rzędu bez poprawy wyniku	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	100	166209,5	256873,9	214979,7	172411,4	209972,4	187623,3	181168,9	171940,5	172952,9	220636,9	168519	206340,2	154317,7	182740,9	181518,1	216518,8
Iteracje - brak	300	141917,5	135886	148181,5	136148,1	128499,1	132054	134436,6	139967,4	134628,4	143147,7	136988,1	143808,2	153681,3	138651,8	162371	142602,3
Zamiana: reverse	800	123182,6	119159,4	128456,8	124214,8	123271,3	127153,1	116841,2	123164,7	126774,4	122461,2	117692,3	124634,7	124035,4	118450,1	119858,6	122267,1
	2000	113750,1	116837,8	114139,9	112424,8	115066,1	119778,9	121374,7	126114,3	113753,3	117882,3	113259,1	121331,7	116252,2	118212,4	111415,6	116649,3

Powtórzenia z rzędu bez poprawy wyniku	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
100	191545,2649	26833,67933	0,140090539	154317,7193
300	140810,5637	8472,66805	0,060170685	128499,1198
800	122601,0984	3428,600401	0,027965495	116841,2075
2000	116765,1504	3914,969558	0,033528579	111415,6314

Wniosek: Najlepszy rezultat udało się uzyskać, gdy ustawiliśmy liczbę powtórzeń z rzędu bez poprawy rezultatu na 2000. Wykonaliśmy wspinaczkę za pomocą metody odwracania. Najlepszym uzyskanym wynikiem jest 111415 dla parametru ustawionego na 2000.

Wyniki dla 127 miast:

Liczba miast: 127	Powtórzenia z rzędu bez poprawy wyniku	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Inne parametry:	300	165061,4	183567,3	163027,1	165798,5	183316,4	163247,8	159841,3	178746,1	155343,6	163253,4	168708,3	163570,8	179489,4	179357,9	165339,8	159891
Iteracje - brak	500	145170,4	156762	148801,2	161384,2	153208,3	144263,6	153071,7	139220	142285,1	148292,6	148706,7	150017,1	147419,7	157217,2	159294,6	152434,5
Zamiana: reverse	1000	134229,3	140643	142162,9	139417,2	149441,4	142101,8	148403,9	139877,4	142375,4	131635	137401	135826,7	146636,1	144847,6	145302	135229
	2500	126879,6	130333,8	130769	142456,3	130970,6	139306,2	129051,5	133799,9	130751,9	130641,6	128902,1	132931,8	128701	132478,8	133025,1	136827,6

Powtórzenia z rzędu bez poprawy wyniku	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
300	168597,5047	9131,394725	0,054160913	155343,5646
500	150471,8077	6221,136615	0,041344201	139219,9787
1000	140970,6155	5202,916674	0,03690781	131635,0221
2500	132364,173	4110,405537	0,031053762	126879,6209

Wniosek: Najlepszy rezultat udało się uzyskać, gdy ustawiliśmy liczbę powtórzeń z rzędu bez poprawy rezultatu na 2500. Wykonaliśmy wspinaczkę za pomocą metody odwracania. Najlepszym uzyskanym wynikiem jest 126879 dla parametru ustawionego na 2500.

Podsumowanie: Im większa liczba powtórzeń bez poprawy wyniku, tym lepszy rezultat. Wraz ze zwiększaniem się tego parametru, współczynnik zmienności maleje.

1.3.4. Najlepsze wyniki

Wyniki dla 48 miast:

Parametry: metoda reverse, 20000 iteracji z rzędu bez poprawy, liczba iteracji : -

Trasa:

28,7,18,44,31,38,8,1,9,40,15,12,11,13,25,14,23,3,22,16,41,34,29,2,26,4,35,45,10,24,42,5,48,39,32,21,47,20,33,46,36,30,43,17,27,19,37,6 (indeks od 1)

Długość trasy: 10628

Wyniki dla 76 miast:

Parametry: metoda reverse, 20000 iteracji z rzędu bez poprawy, liczba iteracji : -

Trasa:

6,5,4,3,2,75,76,1,23,22,21,25,24,46,45,44,48,47,69,68,70,67,50,49,51,66,65,71,72,73,64,63,62,61,60,59,58,57,56,55,52,53,54,42,43,28,27,26,29,30,20,19,31,32,33,35,34,40,41,39,38,36,37,18,17,16,15,74,14,13,12,11,10,9,8,7

Długość trasy: 108349,636

Wyniki dla 127 miast:

Parametry: metoda reverse, 30000 iteracji z rzędu bez poprawy, liczba iteracji : -

Trasa:

79,77,18,72,19,23,24,11,9,8,67,73,74,68,71,70,69,75,76,78,117,84,81,126,82,83,101,102,63,119,96,1 09,88,87,86,85,110,104,125,89,92,99,65,113,66,55,124,52,5,56,47,49,53,48,118,46,94,112,111,107,1 27,93,95,123,97,98,32,29,28,122,33,25,26,38,39,42,34,43,30,41,14,16,2,35,37,36,40,44,103,45,54,57 ,121,51,50,13,115,10,100,64,58,91,61,62,59,60,116,90,3,120,7,1,105,114,6,106,15,108,4,22,21,17,20 ,12,31,27,80 (indeks od 1)

Długość trasy: 120860,96941

1.4. Symulowane Wyżarzanie

SA został zainspirowany zjawiskiem metalurgicznym, w którym metal jest łatwo odkształcalny podczas ogrzewania, ale staje się coraz trudniejszy do zmiany kształtu w miarę ochładzania. Tak samo tutaj, przy większej temperaturze mamy większe prawdopodobieństwo na zmianę naszego rozwiązanie nawet jeśli jest gorsze. W miare spadku temperatury, maleje również szansa na przyjęcie rozwiązania gorszego. Dużym plusem tej metody jest to, że umożliwia wyjście z minimum lokalnego.

W naszym przypadku, kryterium zatrzymania się algorytmu będzie minimalna temperatura, która będzie jednym z wielu parametrów. Pozostałymi parametrami są: temperatura początkowa, współczynnik chłodzenia temperatury, iteracje (są to iteracje przypadające na jedną temperature!), rodzaj sąsiedztwa (odwracanie, insercja i zamiana) oraz sposób redukcji temperatury (geometryczny lub powolny). Algorytm zatrzymuje się, gdy temperatura osiągnie odpowiednią wartość.

1.4.1. Temperatura początkowa

Wyniki dla 48 miast:

Temp początkowa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	11156	10928	10940	11068	11075	11306	11852	10890	11252	10891	11061	11512	10859	11046	10803	11269
50	10943	11005	11156	11350	11142	11118	10801	10784	11077	10765	10978	10830	10850	10944	10929	10830
300	10881	10751	10986	10906	10898	10653	10663	10761	10910	10786	11015	10852	10828	10966	10795	10992
2000	11134	11054	10698	10984	10921	10961	10906	10638	10847	10715	10671	10700	11003	10725	10875	11085

Parametry:				
cool_rate: 0,01	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
iteracje: 100	11119,25	273,483333	0,024595484	10803
min_t: 10	10968,88	164,330916	0,014981565	10765
sąs: reverse	10852,69	112,052201	0,010324834	10653
redukcja: geom,	10869,81	161,276664	0,014837116	10638

Wniosek: W tym przypadku, wartości te są podobne, jednakże widać zależność, że im większa temperatura początkowa, tym lepsze wyniki. Wysokość temperatury wpływa na liczbę iteracji w całym algorytmie, a wiadomo, że im więcej iteracji, tym większe prawdopodobieństwo na lepszy wynik.

Wyniki dla 76 miast:

Temp początkowa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
150	113681,3997	112945,1	117716,7	114100,1	114943,5	115994,7	114500,2	111468,7	112177,6	117984,6	117680,9	118069,8	113066	117409,2	110712,6	115203,1
200	114269,7396	115059,8	112497,5	116335	112886,3	109763,7	114670	112805,1	110079,8	115475	113194,7	115632,6	112317,4	115487	114839,9	113654,9
500	113166,99	113756,2	110836,2	109309,5	111018	117219,2	117315,7	114194,8	111872,5	110833,6	112225,4	114763,6	112064,1	114695,9	111652,8	109695,1
3000	111502 6292	111669 4	111478 4	112653.2	111817.4	110040.8	109881.9	110443 1	111471.3	110080 1	110652.3	109253.3	108761.4	112045.8	113133.1	113283.2

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
cool_rate: 0,01	114853,4	2435,45891	0,021204935	110712,6146
iteracje: 200	113685,5	1916,78849	0,016860444	109763,6932
min_t: 60	112788,7	2396,30424	0,021245956	109309,469
sąs: reverse	111135,5	1332,31035	0,011988167	108761,4187
redukcja: geom,				

Wniosek: Widać, że występuje podobna zależność, jak dla 48 miast. Najlepsza wartość to 108761,4187, widać spadek średniej wraz ze wzrostem temperatury początkowej. Współczynniki zmienności są na podobnym poziomie.

Wyniki dla 127 miast:

Temp początkowa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
300	127549,1873	136194,3	130623,1	140573,5	136633,4	129777,9	129827,7	129239,3	130310,4	132808,2	126951,1	126007,6	131119,9	130007,4	130798,2	133530,5
500	126744,7796	129080,2	128748,1	134182,8	132767,5	128084	129392,8	128405	128770,7	129649,9	129594,9	128414,1	128611,3	129932,8	126074,3	129047,3
1300	128507,3278	125449,1	121456,9	130948,9	126589,6	125077,4	129178,7	130067,6	126302	129543,9	126842,6	126955,5	125265,9	124140,2	126477	128126,6
4000	126136.2974	128870.1	127520	126372.5	126357.9	125467.8	127757.2	123622.6	127156.3	130819.5	128058.8	125455.1	122420.2	128392.2	125625.5	125621.2

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
cool_rate: 0,01	131372	3818,19658	0,029064011	126007,62
iteracje: 300	129218,8	1958,70587	0,015158059	126074,2555
min_t: 100	126933,1	2431,20042	0,019153402	121456,8557
sąs: reverse	126603,3	2032,28701	0,016052397	122420,25
redukcja: geom,				

Wniosek: Widać podobne wnioski, jak dla 76 i 48 miast.

Podsumowanie: Im większa temperatura, tym lepsze wyniki. Warto jednak zwrócić uwagę na to, że ustawiając temperaturę na np. 1000000 dla 127 miast, niepotrzebnie przejdziemy dużą ilość iteracji, gdyż będzie bardzo duże prawdopodobieństwo na przyjęcie bardzo złego rezultatu.

1.4.2. Współczynnik chłodzenia

Wyniki dla 48 miast:

Wsp, chłodzenia	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0,001	10753	10648	10750	10836	10725	10793	10628	10725	10653	10725	10628	10725	10684	10845	10688	10628
0,01	10882	10889	10736	10762	10769	10777	10793	11012	11042	11087	10698	10931	10825	10797	10804	10638
0,03	10791	10865	10816	11135	10922	11096	11108	11163	11100	11231	10999	11005	11223	11417	10907	10793
0,1	11802	11850	11808	12239	11795	11721	11637	11383	12207	11840	12317	11594	11780	11632	11483	12385

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1000	10714,63	69,9627282	0,006529648	10628
iteracje: 100	10840,13	125,512217	0,011578484	10638
min_t: 10	11035,69	179,934328	0,016304768	10791
sąs: reverse	11842,06	296,874489	0,025069492	11383
redukcja: geom,				

Wniosek: Widać, że im mniejszy współczynnik chłodzenia, tym osiągamy lepsze rezultaty. Udało nam się uzyskać (według przypuszczeń) minimum globalne dla parametrów podanych na obrazku. Zostało to potem jeszcze przetestowane dla większej liczby iteracji. Dodatkowo, im mniejszy współczynnik chłodzenia, tym mniejszy współczynnik zmienności. Z drugiej strony, różnice we współczynniki nie są bardzo duże.

Wyniki dla 76 miast:

_																	
	Wsp, chłodzenia	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	0,001	109585,4525	109086,6	109770,2	108860	108424,6	108159,4	109221,3	109711,1	108512,7	108425,5	109201,2	108558,9	108911,9	109091,9	109686,9	108688,5
	0,01	111103,3851	110112,4	110089,2	110469,9	110565,2	110251,4	111176	109529	111221,2	108887,8	109556,9	111006,6	110313,8	110420,8	111908	111717,2
	0,03	112103,108	116961,5	112747,1	116641,6	113071,6	115470,8	111515	114600,3	114112,3	110027	115755,5	110519,8	113993	114761,8	111792,5	109840,8
Г	0.1	129437.63	127451	125607.6	118146.3	134398.1	127761	121948 6	125605 1	125270 9	124154.5	1219198	125628 9	125955.8	128472 1	132837.3	125492.2

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1500	108993,5	512,662055	0,004703601	108159,4383
iteracje: 200	110520,6	812,957149	0,007355709	108887,8256
min_t: 60	113369,6	2278,31808	0,020096374	109840,7981
sąs: reverse	126255,4	3989,61247	0,031599535	118146,3024

Wniosek: Widać podobną właściwość, jak dla wyników dla 48 miast. Najlepszą średnią wartością było 109 tysięcy dla współczynniku chłodzenia o wartości 0,001.

Wyniki dla 127 miast:

Wsp, chłodzenia	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0,001	120895,6445	120659,2	122338,7	122803,8	121621,6	120771,5	120669,4	121589,9	122849,4	122578,9	123888,7	123300,9	122709,2	122925,9	121176,1	122878,8
0,01	126463,7688	127594,6	123414,3	128484,4	127426,6	125814	131813,6	125138,4	126004,4	125080,4	128568,5	129301,8	132202,8	125706,4	127028,4	127068
0,03	143213,8183	134103,6	134204,2	140915,4	144321,7	133027,9	138443,9	138830,8	142972,3	139017,4	138185,9	133298,7	137012,4	137945,5	134846,6	144186,3
0,1	167945,515	173723,3	170479,8	172245,9	173843,7	168172,2	184714,8	161325,6	173961,1	188319,1	167407,4	173335,8	175082,4	180715,1	164421,7	173069,3

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 2000	122103,6	1043,22468	0,008543765	120659,2257
iteracje: 300	127319,4	2359,04961	0,018528595	123414,337
min_t: 100	138407,9	3875,33542	0,027999382	133027,8879
sąs: reverse	173047,7	6999,72181	0,040449671	161325,6279
redukcia: geom				

Wniosek: Widać takie same wnioski, jak dla 48 i 76 miast.

Podsumowanie: Im mniejszy współczynnik chłodzenia, tym lepsze wyniki można osiągnąć. Warto dodać, że tak samo, jak dla początkowej tempertatury, współczynnik chłodzenia wpływa na liczbę iteracji w całym algorytmie. Im mniejszy współczynnik, tym więcej iteracji.

1.4.3. Iteracje dla jednej temperatury

Wyniki dla 48 miast:

Iteracje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	10983	10790	10769	11092	11231	11046	11062	10978	10698	11012	10922	11024	11202	10987	10865	11109
100	10960	10840	10684	10977	10719	10840	11192	10738	10812	10991	10804	10956	10911	11021	10886	10888
300	10918	10707	10711	10754	10653	10663	10886	10725	10738	10876	10688	10830	10797	10658	10882	10711
1500	10725	10767	10765	10707	10730	10600	10690	10653	10653	10767	10703	10648	10684	10801	10653	10882

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1000	10985,63	148,727884	0,013538409	10698
cool_rate: 0,01	10888,69	128,863089	0,011834584	10684
min_t: 10	10762,31	89,8760025	0,008350994	10653
sąs: reverse	10721	63,9604044	0,005965899	10648
redukcja: geom,				

Wniosek: Widzimy logiczne wnioski, że im więcej iteracji dla jednej temperatury, tym lepsze wyniki otrzymujemy. Maleje również współczynnik zmienności. Są to jednak minimalne różnice.

Wyniki dla 76 miast:

Iteracje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
50	111296,2769	117081,4	112560,5	114465,7	119472,4	116128	113947,3	119227,2	121417	113613,4	118598	116503	116481,6	112564,8	116814,1	121758,5
200	110690,7703	111690,6	114675,5	110021,6	111072,2	111676,8	111631,7	109166,3	110590,9	110236,7	110816,6	109968,1	108750,3	109140,8	109188,9	111299,4
800	109558,4406	109530,4	109787,6	108930,4	110013,9	109546,4	109149,8	109803,5	111326,2	110347,2	109805,3	109616,9	108558,9	108589,1	108589,1	109025,4
5000	108275,0866	108304,5	108813,5	109086,6	108159,4	109059,2	109207,7	108347,2	108512,7	108396,1	108874,8	108547,4	108159,4	108275,1	108304,5	108637,1

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1500	116370,6	3161,03239	0,027163503	111296,2769
cool_rate: 0,01	110663,6	1441,97208	0,013030233	108750,2855
min_t: 60	109511,2	722,045579	0,006593351	108558,9417
sąs: reverse	108560	346,76353	0,00319421	108159,4383
redukcja: geom,				

Wniosek: Widać podobne wnioski, jak dla 48 miast. Dla 5000 iteracji i parametrów podanych na obrazku, najlepsza wartość jest bardzo zbliżona do najlepszej, jaką otrzymaliśmy.

Wyniki dla 127 miast:

	Iteracje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	100	138445,2085	143039,2	133866,9	142464,5	139630,8	139891,8	137527,4	136310	141283,5	136366,3	142646	138976,4	134700,9	141262,2	136331,6	139514
	300	125836,9461	129767	128322,3	125643,1	126125	129255,6	125362,2	125218,2	127815,2	126071,9	125810,5	130182,7	126919,6	128384,4	126505,5	127171,2
	1000	125587,422	122906,5	121668,9	124390,5	124482,1	123353,5	122255,1	122000,9	123151,7	122872	122347,6	123536,5	123342,2	121822,7	123425,9	123291,9
Γ	10000	123280,0142	121896,8	120521,5	121896,3	119482,1	119275,2	120151	121398,3	120860,2	121641,8	121193,1	121683,5	120869,7	119510,6	121746,3	120753,6

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 2000	138891	2849,68744	0,020517432	133866,9131
cool_rate: 0,01	127149,5	1616,96544	0,012717045	125218,2053
min_t: 100	123152,2	1046,75224	0,008499662	121668,8846
sąs: reverse	121010	1063,97848	0,008792485	119275,2049
redukcja: geom,				

Wniosek: Widać podobne wnioski, jak dla 48 i 76 miast. Maleje współczynnik zmienności oraz średnia wraz ze zwiększeniem liczby iteracji.

Podsumowanie: Im większa ilość iteracji w danej temperaturze, tym występują niższe wartości. Maleje również współczynnik zmienności oraz najlepsza wartość.

1.4.4. Minimalna temperatura (temperatura końcowa)

Wyniki dla 48 miast:

Temp koncowa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10	10909	10859	10764	10653	10711	10953	10881	10808	10934	10892	11079	11230	11216	10725	10638	10979
100	13102	13208	12904	12633	13774	12617	13655	12201	12604	11936	13554	13083	12367	12956	13090	12863
200	15031	17583	16539	16534	16205	16502	17235	14937	15938	16372	16934	16227	16177	15633	17503	17105
300	20844	18944	19673	18643	20587	20340	18665	19653	19083	20164	19981	20349	19218	20550	19223	19421

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1000	10889,44	177,832119	0,016330698	10638
cool_rate: 0,01	12909,19	510,622133	0,03955494	11936
iteracje: 100	16403,44	777,93427	0,047425076	14937
sąs: reverse	19708,63	712,891004	0,036171524	18643
redukcja: geom,				

Wniosek: Dla najniższej temperatury końcowej uzyskano najlepsze wyniki. Wyniki różnią się bardzo widocznie.

Wyniki dla 76 miast:

Temp koncowa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
60	110342,1064	109599,9	109713	112440,2	112508,3	109447,1	110404,7	112304,3	109931,2	110120,3	111016,6	110826,1	114116,9	110416	113248,4	109880,9
200	114184,8666	109834,3	109631,1	112445,7	115230,5	110074,7	113686,9	112070,5	113244,3	111060,6	109875,4	113838,5	114499,8	114270,8	111503,9	110401,4
300	115805,1729	120750,9	115923	118598,2	120377,6	114497,4	116495,8	114425,7	114143,6	114985,2	113524,3	116530,6	119453,1	115020,9	117076,9	116045,9
400	117068,2795	115926,7	123123,2	121304,8	110569,3	118901,5	124327,8	116937,2	115051,9	118014,7	124046,8	125876,2	124267	116195,9	114790,9	117574,3

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1500	111019,7	1441,52818	0,01298443	109447,1218
cool_rate: 0,01	112240,8	1929,96925	0,017194895	109631,1102
iteracje: 200	116478,4	2232,78873	0,019169124	113524,2564
sąs: reverse	118998,5	4350,34473	0,036557966	110569,3122
redukcia: geom.				

Wniosek: Widać podobną zależność, jak dla 48 miast. Im mniejsza temperatura końcowa, tym lepsze wyniki. Z drugiej strony, nie różnią się one aż tak, jak 48 miastach.

Wyniki dla 127 miast:

Temp koncowa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
100	127935,7704	129093,3	126743,2	127816	123830,8	128268	130069,6	128828,6	127274,5	124829,8	131634,7	125586,2	126748	126048,5	127509,8	123900,2
200	138549,8873	136257,1	146649,2	137034,1	139018,9	140028,2	134173,5	140683,7	132679,8	132856,5	141600,5	138434	134579	128375,3	137790,9	149440,5
300	150099,5745	146853,4	155406	153235,4	149175,7	142736,2	146143	145779	147195,2	149450,2	150172,7	153652,6	150555,6	151067,4	154739,4	148695,9
500	183353,78	178293,7	183625,9	178663,7	182156,4	171355,5	180771,2	177182,1	177174,4	170652,9	179902,9	175801,3	183078,4	182568,8	176254,6	174000,6

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 2000	127257,3	2136,20723	0,016786519	123830,7508
cool_rate: 0,01	138009,4	5223,38461	0,037848023	128375,3326
iteracje: 300	149684,8	3476,59429	0,023226097	142736,2391
sąs: reverse	178427,3	4135,34445	0,023176641	170652,8869
redukcja: geom,				

Wniosek: Ponownie, im mniejsza temperatura końcowa, tym lepsze wyniki.

Podsumowanie: Wybranie odpowiedniej temperatury końcowej ma duży wpływ na wyniki. Parametr ten ma wpływ na liczbę parametrów, jak i na fakt, że przy wysokich temperaturach jest duża szansa na przyjęcie gorszych rozwiązań. Przykładowo, gdybyśmy założyli, że nowe rozwiązanie jest gorsze o 1000 przy szukaniu najlepszego rozwiązania dla 127 miast, to dla temperatury równej 500 mamy ok 14% na

przyjęcie takiego rozwiązania, natomiast dla temperatury równej 100, taka szansa jest bliska zeru procent.

1.4.5. Rodzaj sąsiedztwa

Wyniki dla 48 miast:

Typ zamiany	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
reverse	11018,00	10918,00	10898,00	10736,00	10835,00	10628,00	10725,00	10859,00	10765,00	10661,00	10835,00	10882,00	10918,00	10765,00	10983,00	11223,00
swapping	11733,00	12909,00	12515,00	11332,00	11933,00	12810,00	11378,00	11692,00	13251,00	12719,00	11362,00	12309,00	11540,00	11142,00	11988,00	11526,00
insercja	11294,00	10924,00	11011,00	11418,00	11299,00	10886,00	11261,00	10848,00	11036,00	11078,00	11028,00	11373,00	10864,00	11731,00	11336,00	10914,00

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1000	10853,06	147,439239	0,013585035	10628
cool_rate: 0,01	12008,69	658,646058	0,054847464	11142
iteracje: 100	11143,81	251,688755	0,022585516	10848
min_t: 10				
redukcia: geom.				

Wniosek: Metoda reverse daje najlepsze wyniki, natomiast swapping najgorsze. Widać podobne wnioski, jak przy metodzie wspinaczki. Najmniejszym współczynnikiem zmienności charakteryzuje się odwracanie, natomiast największym swapping. Można wywnioskować, że metoda odwracania daje prawie zawsze bardzo dobre pojedyncze wyniki.

Wyniki dla 76 miast:

Typ zamiany	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
reverse	111753,2487	111252,8	109277,3	110738,6	112172,7	109625,2	110991,5	111916,2	112308,2	110703,2	111436,4	111082,9	111658,4	109601,7	111940,9	113950,9
swapping	148509,8663	147874,1	135208,4	139476,3	144391,7	141213,2	142663,2	132828,3	136668,8	136925,2	140937,4	143819,1	151086,6	137710,5	136638,8	142297,6
insercja	113436,5722	125559,9	117510,3	120124,7	114033,9	125361,6	120418,9	118441,5	117585,5	120863,7	116561,6	112386,2	119907,9	124490,2	111688,5	119220

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1500	111275,6	1170,03387	0,010514735	109277,3434
cool_rate: 0,01	141140,6	5143,74047	0,036444097	132828,3241
iteracje: 200	118599,4	4335,84258	0,036558715	111688,4916
min_t: 60				
redukcja: geom,				

Wniosek: Widać podobną zależność, jak dla 48 miast.

Wyniki dla 127 miast:

	Typ zamiany	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	reverse	126773,22	130484,9	129956	124857,3	133129	130338,7	126544	128662,2	124826,6	123960,3	125108,7	127406,1	127436,7	128207,2	128602,6	130466,7
	swapping	165789,282	166490,7	168348,7	154267,9	160715,3	165821,6	165868,4	153092,3	153363,8	152539,6	150541,2	160718,8	151947,9	160597,9	157165,2	156906,9
ľ	insercia	141986.4651	138490.5	152372.2	150439	138357.6	131944.9	142074.6	143615	139347.8	142539.1	147691.2	145619	141119.3	144471.2	139577.2	139206.1

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 2000	127922,5	2549,91644	0,019933288	123960,271
cool_rate: 0,01	159011	6064,03743	0,038135971	150541,1502
iteracje: 300	142428,2	5023,53411	0,035270644	131944,9062
min_t: 100				
redukcja: geom,				

Wniosek: Tak samo sprawa kształtuje się dla 127 miast, jak dla pozostałych przypadków.

Podsumowanie: Widać ewidentnie, że najlepszą metodą jest metoda odwracania. Cechuje się ona najlepszymi wynikami i najniższym współczynnikiem zmienności. Tak samo wyglądało to przy metodzie wspinaczki.

1.4.6. Rodzaj spadku temperatury

Powolny spadek:

$$\alpha(T) = T/(1 + b * T)$$

Redukcja geometryczna:

$$\alpha(T)=a*T$$

Wyniki dla 48 miast:

Uwaga – ustalam iterację na 1 dla obu metod, gdyż dla powolnego spadku podano, że stosuje się jedną iterację na temperaturę. Zatem wybieram tak parametry dla obu metod, aby temperatura osiągnęła swoje minimum w tym samym czasie (w tej samej iteracji).

Cod	oling rate	
0,003	0,000006	0,003
"Powolny spadek"	"Powolny spadek	Geometrycznie
2000	2000	2000
285,7142857	1976,284585	1994
153,8461538	1953,125	1988,018
105,2631579	1930,501931	1982,053946
80	1908,396947	1976,107784
64,51612903	1886,792453	1970,179461
54,05405405	1865,671642	1964,268922
46,51162791	1845,01845	1958,376116
40,81632653	1824,817518	1952,500987
36,36363636	1805,054152	1946,643484
32,78688525	1785,714286	1940,803554
29,85074627	1766,784452	1934,981143
27,39726027	1748,251748	1929,1762
25,3164557	1730,103806	1923,388671
23,52941176	1712,328767	1917,618505
21,97802198	1694,915254	1911,86565

Cooling rate

	_	
0,003	0,000006	0,003
"Powolny spadek"	"Powolny spadek	Geometrycznie
0,925497455	375,9398496	678,0894506
0,922934933	375,0937734	676,0551822
0,920386562	374,251497	674,0270167
0,917852226	373,4129948	672,0049356
0,915331808	372,5782414	669,9889208
0,912825194	371,7472119	667,9789541
0,910332271	370,9198813	665,9750172
0,907852928	370,096225	663,9770921
0,905387053	369,2762186	661,9851609
0,902934537	368,4598379	659,9992054
0,900495272	367,6470588	658,0192078
0,898069151	366,8378577	656,0451501
0,895656068	366,0322108	654,0770147
0,893255918	365,230095	652,1147836
0,890868597	364,4314869	650,1584393
0,888494003	363,6363636	648,207964
0,886132034	362,8447025	646,2633401

Tak wygląda spadek temperatury, jeśli ustawimy na powyższe parametry. W takim wypadku, nie ma sensu testować dla takiego samego parametru, jakim jest współczynnik chłodzenia. Metoda geometryczna charakteryzuje się tym, że występuje wolniejszy spadek temperatury na początku przy wysokich wartościach oraz szybszy przy niskich temperaturach.

Metoda redukcji temp	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
geometryczna	14939	15146	14583	15824	15921	14524	15663	14682	14491	13367	14287	14878	15813	14845	15424	15190
powolny spadek	14359	13135	12446	14481	13623	13432	12825	14173	14117	14640	13886	13208	13673	14400	14237	13196

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1000	14973,56	674,888728	0,045072021	13367
cool_rate: 0,004/0,0000862	13739,44	650,408484	0,0473388	12446
iteracje: 1				
min_t: 10				
sąs: reverse				

Wniosek: Można zauważyć, że lepsze wyniki daje nam powolny spadek. Jest to różnica w średniej w ok. 1200.

Wyniki dla 76 miast:

Metoda redukcji temp	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
geometryczna	187721,8136	187277,3	176842,5	170309,5	184112,3	186967	197052,8	185629,9	191668,2	195640	179318,3	174873,1	190970,1	187388,5	193988,5	199334,1
powolny spadek	180119,5485	202187,2	166913,4	174788,7	178331,1	174049,8	193392,6	183602,4	166622,8	179304,9	176505,4	169780,4	167236,6	194691,2	179543,1	186863,2

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 1500	186818,4	8215,76743	0,043977302	170309,5335
cool_rate: 0,002/0,00001	179620,8	10459,6449	0,058231821	166622,8323
iteracje:1				
min_t: 60				
sąs: reverse				

Wniosek: Tak jak w przypadku poprzednim, najlepiej sprawuje się metoda po

Wyniki dla 127 miast:

Metoda redukcji temp	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
geometryczna	284913,0774	271944,2	267895,1	288057,4	274523	288605,4	278208	290885	303906,3	286088,9	277179,3	302149,5	295553,4	273507,3	249602,2	287914,8
powolny spadek	271252,3258	259605,1	283596,7	267295,3	308231,6	267565,6	268830,3	273380,9	300449,4	283921,6	280216,8	256211,1	277183,5	269748,2	260345,5	266138,4

Parametry:	Średnia	Odchylenie	Wsp.zmiennosci	Najlepsza wartosc
temp_start: 2000	282558,3	13661,1068	0,048347922	249602,204
cool_rate: 0,00189/0,000006	274623,3	14178,5623	0,051629136	256211,0754
iteracje:1				
min_t: 100				
sąs: reverse				

Wniosek: Znowu lepiej sprawuje się metoda powolnego spadku.

Podsumowanie: Lepsze wyniki dla jednej iteracji na temperaturę daje powolny spadek. Może to świadczyć o tym, że lepiej jest, gdy będziemy obniżać powoli temperaturę przy niższych wartościach. Tym charakteryzuje się metoda powolnego spadku

1.4.7. Najlepsze wyniki

Wyniki dla 48 miast:

Parametry:

Trasa:

19,27,17,43,30,36,46,33,20,47,21,32,39,48,5,42,24,10,45,35,4,26,2,29,34,41,16,22,3,23,14,25,13,11, 12,15,40,9,1,8,38,31,44,18,7,28,6,37 (indeksy od 1)

Długość trasy: 10628.0

Wyniki dla 76 miast:

Parametry:

Poczatkowa temparatura: 10000
Wsp. chlodzenia: 0.003
Liczba iteracji dla jednej temperatury: 100000
Minimalna temperatura: 0.11
Metoda redukcji temperatury: geometryczna
Metoda: reverse

Trasa:

74,15,16,17,18,37,36,38,39,40,34,35,33,32,29,30,31,19,20,26,27,28,43,42,54,53,52,55,56,57,58,59,6 0,41,61,62,63,64,73,72,71,65,66,51,49,50,67,70,68,69,47,48,44,45,46,24,25,21,22,23,1,76,75,2,3,4,5,

6,7,8,9,10,11,12,13,14 (indeks od 1)

Długość trasy: 108159,438

Wyniki dla 127 miast:

Parametry:

Poczatkowa temparatura: 10000

Wsp. chlodzenia: 0.003

Liczba iteracji dla jednej temperatury: 100000

Minimalna temperatura: 0.11

Metoda redukcji temperatury: fast

Metoda: reverse

Trasa:

 $17,20,108,15,106,6,114,105,7,1,16,2,51,44,103,45,54,57,121,56,124,52,5,50,115,13,120,10,100,64,5\\8,91,61,62,59,60,116,90,3,11,9,24,23,4,22,19,72,8,67,73,74,68,71,70,69,75,76,78,117,84,81,126,82,8\\3,101,102,63,119,96,109,88,87,86,85,110,104,125,89,92,99,65,113,66,55,47,49,53,48,118,46,94,112,\\111,107,127,93,95,123,97,98,32,29,28,122,33,25,26,38,39,42,34,43,40,35,37,36,41,14,12,30,27,31,\\80,79,77,18,21 (indeks od 1)$

Długość trasy: 118293.524

temperatura początkowa: 10000							
współczynnik chłodzenia: 0.003							
iteracje: 3000							
minimalna temperati	ur: 0,11						
sąsiedztwo: reverse							

rodzaj redukcji temperatury: geometryczny

UWAGA – PO WNIOSKACH WYCIĄGNIĘTYCH ZE WSPINACZKI I WYŻARZANIA, BĘDZIEMY TERAZ TESTOWAĆ PARAMETRY TYLKO DLA JEDNEGO PLIKU Z CSV Z MIASTASTAMI, GDYŻ WNIOSKI Z 48,76 i 128 MIAST SĄ TAKIE SAME.

1.5. Tabu Search

Tabu Search to metaheurystyka używana do rozwiązywania problemów optymalizacyjnych, działająca na zasadzie iteracyjnego przeszukiwania przestrzeni rozwiązań w celu znalezienia optymalnego lub zbliżonego do niego rozwiązania. Algorytm ten dla problemu komiwojażera opiera się na przekształcaniu aktualnego rozwiązania poprzez ruchy, które generują sąsiedztwo danego rozwiązania. W trakcie każdej iteracji algorytm przeszukuje to sąsiedztwo w poszukiwaniu najlepszego rozwiązania, które staje się punktem wyjścia dla kolejnego kroku. Każdy ostatnio wykonany ruch jest dodawany do listy ruchów zabronionych, uniemożliwiając ich wykonanie przez pewną liczbę iteracji, dzięki temu unikamy utknięcia w lokalnym minimum oraz zapobiegamy cykliczności ruchów. Istnieje również możliwość wykonania zabronionego ruchu, jeśli funkcja aspiracji określi, że taki ruch może przynieść korzyść. Zakończenie obliczeń następuje po przekroczeniu limitu czasu, osiągnięciu dopuszczalnej liczby iteracji lub wykonaniu ustalonej liczby ruchów bez poprawy wartości funkcji kryterium.

1.5.1. Rodzaj sasiedztwa

Dane dla 76 miast:

Typ zamiany	1	2		3 4	5	6	7	8	9	10	11	12	13	14	15	16
reverse	109202,57	111552,96	109054,0	8 109489,91	108917,68	108688,49	110800,33	108493,35	109072,54	109434,36	110670,54	110214,90	108872,38	110222,96	110046,14	108551,80
swapping	142131,75	139170,17	140117,6	6 145872,97	131463,60	144225,88	137254,50	142713,44	138124,34	139391,22	138471,87	151379,03	137722,80	139487,14	152464,24	146407,47
insercja	109702,06	109378,91	108741,6	0 108712,64	109807,40	109201,44	109202,01	109888,60	110349,21	110377,80	109211,18	110102,22	110606,94	110208,60	109847,74	108656,64
Typ zar	niany	średn	nia:	odchyle	enie:	współc	zynnik	zmien	ności:	najlep	sza wai	rtosc				
reve	rse	10958	0,31	904,909	2031	(0,0082	57954		10	8493,3	5				
swap	ping	14164	9,88	5412,21	7145	(0,0382	08413		131	463,59	92				
inser	rcja	10962	4,69	628,366	9221	(0,0057	31984		10	8656,6	4				

Wyniki zostały uzyskane przy pozostałych parametrach:

• Liczba iteracji: 3000

 Dozwolona liczba iteracji bez poprawy: 3000 (nie chcieliśmy aby algorytm zakończył się wcześniej w tym przypadku.)

• Rozmiar listy Tabu: 400

Nie liczymy wyników dla innych miast, gdyż wnioski przy doborze rodzaju sąsiedztwa będą dla wszystkich jednakowe.

Wnioski: metoda odwracania (reverse) osiąga najlepsze wyniki, podobnie jak w przypadku wcześniejszych algorytmów. Z kolei metoda swapping wypada najgorzej. Stwierdzenia te są zgodne z wcześniejszymi obserwacjami. Metoda insercji oraz odwracania mają najniższe współczynniki zmienności, z lekką przewagą na korzyść metody insercji. Oznacza to, że te metody przeważnie przynoszą bardzo dobre pojedyncze wyniki. Natomiast metoda swapping charakteryzuje się największym współczynnikiem zmienności, co sugeruje, że osiągane wyniki są bardziej zróżnicowane.

Dane dla 76 miast:

Długość listy tabu	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10	118247,04	109116,07	114576,53	110741,69	113266,10	113082,83	109590,69	116199,93	112721,76	110260,52	110592,92	112637,61	112907,21	112770,13	113998,29	110897,96
200	112908,52	112054,86	112955,97	112212,34	110781,98	112408,08	112889,12	113535,04	112699,72	110578,02	108688,49	112072,45	110969,15	111534,27	112020,60	111362,25
400	109324,54	109361,98	109691,28	109441,25	109099,44	109255,24	108159,44	109789,99	108954,21	108730,77	108237,59	109898,96	109849,94	108645,77	109484,16	109232,44
1000	108962,4	110511,14	109385,91	108930,38	111401,13	109920,21	109736,64	109701,5	110349,03	110816,67	109736,64	109701,5	110349,03	110816,67	109736,64	109701,4957

Długość listy tabu	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
10	112600,45	2429,983306	0,021580582	109116,0669
200	111854,43	1194,849848	0,010682186	108688,4889
400	109197,31	534,9122966	0,004898585	108159,4383
1000	109984,81	677,14265	0,006156692	108930,3792

Wyniki zostały uzyskane przy pozostałych parametrach:

Liczba iteracji: 3000

Metoda: odwracania (reverse)

• Dozwolona liczba iteracji bez poprawy: na tyle duża aby algorytm nie zakończył się wcześniej.

Samo wykorzystanie listy tabu w naszym algorytmie ma kluczowe znaczenie, ponieważ pozwala unikać cykliczności ruchów i umożliwia wyjście z lokalnych minimów. W przypadku 76 miast mamy do dyspozycji 2850 możliwych ruchów.

Wnioski:

Dla krótkiej listy o rozmiarze 10 (ok. 0,35% wszystkich możliwych ruchów) obserwujemy najgorsze wyniki. Mała lista tabu nie zapewnia wystarczającej różnorodności ruchów, co utrudnia uniknięcie cykliczności i opuszczenie lokalnego minimum. Wyniki są głównie determinowane przez ograniczenia lokalne.

Dla listy o rozmiarze 200 (ok. 7% możliwych ruchów) wyniki są nieco lepsze niż przy liście o rozmiarze 10, ale wciąż pozostają daleko od optymalnych. To nadal zbyt mały rozmiar, aby skutecznie unikać wpadania w lokalne minima. Natomiast dla listy o rozmiarze 400 (ok. 14% możliwych ruchów) uzyskujemy najlepsze wyniki, co wskazuje, że mechanizm wychodzenia z lokalnych minimów działa efektywnie. Warto zauważyć, że najlepsza uzyskana wartość (108159,4383) stanowi jednocześnie najlepszy wynik ogólny jaki udało nam się uzyskać (podejrzewamy, że może to też być minumum globalne).

Przyjęcie rozmiaru tablicy tabu na poziomie około 15% wszystkich możliwych ruchów, podobnie jak w przypadku listy o rozmiarze 400, pozwala algorytmowi skutecznie unikać lokalnych minimów i cykliczności ruchów. Przy zbyt dużym rozmiarze tabu, jak w teście z listą o rozmiarze 1000 (ok. 35% możliwych ruchów), nadal uzyskujemy dobre wyniki, ale trudniej jest poprawiać je w dalszym czasie i wymaga to większej liczby iteracji.

1.5.3. Liczba iteracji

Dane dla 76 miast:

Liczba iteracji	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
50	134597,57	128822,72	131625,33	136334,85	131720,14	142691,12	138604,98	136563,85	136288,68	138515,29	137002,53	132400,95	133318,77	137641,77	133182,78	146696,67
100	110149,71	113218,29	111619,13	118197,16	114845,51	112406,76	111845,45	113569,85	110916,07	111558,16	112901,47	110325,71	111442,47	115484,57	109935,94	109439,61
200	110184,82	112203,49	110083,92	109871,30	109693,80	109126,12	109529,35	109805,07	111111,88	110496,54	110294,14	109425,29	110832,56	111168,58	109289,60	111669,06
3000	109202,57	111552,96	109054,08	109489,91	108917,68	108688,49	110800,33	108493,35	109072,54	109434,36	110670,54	110214,90	108872,38	110222,96	110046,14	108551,80

Liczba iteracji	średnia:	odchylenie:	współczynnik zmienności:	najlepsza wartosc
50	136000,5	4438,694593	0,03263734	128822,7239
100	112365,99	2314,018203	0,020593582	109439,6053
200	110299,1	888,7267637	0,008057426	109126,1215
3000	109580,31	904,9092031	0,008257954	108493,35

Wyniki zostały uzyskane przy pozostałych parametrach:

- Metoda: odwracania (reverse)
- Dozwolona liczba iteracji bez poprawy: na tyle duża aby algorytm nie zakończył się wcześniej.
- Rozmiar listy Tabu: 400

Wniosek: najlepsze wyniki uzyskaliśmy dla 3000 iteracji, wykorzystując metodę odwracania. Zauważalne jest, że przy niskiej liczbie iteracji (50) uzyskane wyniki są istotnie wyższe w porównaniu do pozostałych przypadków. Jednak już od 100 iteracji ta różnica stopniowo maleje, a między 100 a 200 iteracją nie występuje znacząca różnica w wynikach. Niemniej jednak, wraz ze wzrostem liczby iteracji, zbliżamy się coraz bardziej do rozwiązania optymalnego, co sprawia, że 3000 iteracji generuje najlepsze rezultaty. Dla mniejszej liczby iteracji (50, 100) obserwuje się również wyższe współczynniki zmienności. W przypadku większej liczby iteracji współczynniki zmienności maleją, a różnice między 200 a 3000 iteracją stają się nieznaczne.

1.5.4. Ilość iteracji bez poprawy

Nasz algorytm Tabu Search wykorzystuje parametr, jakim jest ilość iteracji bez poprawy. W przypadku, gdy ta liczba przekroczy ustaloną wartość, algorytm zatrzymuje się, zwracając najlepszy dotychczasowy wynik.

Wnioski płynące z tego mechanizmu są głównie uzależnione od odpowiedniego doboru pozostałych parametrów algorytmu. Warto zauważyć, że zbyt mała lista tabu może prowadzić do cyklicznego powtarzania tych samych rozwiązań, co sprawia, że algorytm utyka w lokalnym minimum. W takim przypadku, parametr określający ilość iteracji bez poprawy może być szybko wykorzystany, co skutkuje zakończeniem działania algorytmu. Sam w sobie parametr też nie może przyjmować wartości zbyt niskiej, bo przez to może uniemożliwiać wyjście algorytmowi z lokalnego minimum, gdyż będzie on miał zbyt mało szans (powtórzeń) na to.

1.6. Algorytm Genetyczny

Algorytm genetyczny to metaheurystyczna technika optymalizacyjna inspirowana procesem ewolucji biologicznej. Wykorzystuje ona mechanizmy selekcji naturalnej, krzyżowania i mutacji do rozwiązywania problemów optymalizacyjnych. Algorytmy genetyczne operują na zbiorze rozwiązań potencjalnych, nazywanym populacją, a następnie ewoluują tę populację w kierunku coraz lepszych rozwiązań. Zaletą algorytmu genetycznego jest to, że szeroko przeglądamy przestrzeń możliwych rozwiązań.

Korzystamy z parametrów takich jak:

Populacja, generacje, prawdopodobieństwo mutacji, liczba krzyżówek, zachowanie najlepszych osobników danej populacji, metoda doboru rodziców (metoda ruletka i metoda turniejowa), metoda krzyżowania oraz dynamiczna mutacja.

Parametry stałe, z których będziemy korzystać, to:

1.6.1. Populacja

Opis: Populacja to zbiór rozwiązań potencjalnych reprezentujących osobniki. Każdy osobnik w populacji jest potencjalnym rozwiązaniem badanego problemu optymalizacyjnego, w tym przypadku najlepszą odległością w problemie komiwojażera.

Wyniki:

liczba miast 48	populacja	1	2	3	4	5	6
	20	11121	10944	10998	11754	10971	11124
	50	11094	11023	11347	11179	11953	11090
	100	11465	11150	10919	11201	11027	11229
	150	11131	11385	11229	11116	10661	10912

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
11152	304,5948128	0,027313021	10944
11281	347,6659316	0,030818716	11023
11165,17	187,1773669	0,016764404	10919
11072,33	253,9902885	0,022939184	10661

Wnioski:

Mniejsza ilość populacji powinna gromadzić lepszych osobników, natomiast może zaistnieć problem ze zbyt małą różnorodnością genetyczną, co w konsekwencji może prowadzić do tego, że osobnicy w populacji będą podobni, co spowoduje utknięcie w lokalnym minimum. Natomiast dla 48 miast rezultaty są podobne dla wszystkich rozmiarów populacji. Może to wynikać z faktu, że problem komiwojażera dla 48 nie jest zbyt złożony i łatwo jest osiągnąć rezultat zarówno w wyniku przewagi dobrych genów jak i większej różnorodności.

1.6.2. Generacje

Opis: Porównując to do natury, jest to inaczej liczba pokoleń. Większa liczba generacji powoduje poprawę wyniku (nie może pogorszyć).

liczba miast 76	Generacje	1	2	3	4	5	6
	400	119186,514	121678,3	126794,5	116119,2	128006,4	127131,034
	600	111306,745	111580,5	117240,4	115069	118443,3	118975,5669
	800	114571,9195	113110,9	108954,6	115855,4	112175,4	118380,1336
	1000	114544,147	114287,8	114649,2	116210,7	113619,1	116587,5214

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
123152,6	4899,438703	0,039783465	116119,1975
115435,9	3372,804745	0,029217983	111306,745
113841,4	3236,670645	0,028431402	108954,5832
114983,1	1160,109339	0,010089392	113619,0622

Wnioski:

Zgodnie z oczekiwaniami większa ilość generacji poprawia wynik, wyjątkiem jest tutaj liczba generacji 800, która ma niższą wartość niż dla 1000 natomiast prawdopodobnie wynika to z faktu, że od pewnego momentu wynik się nie poprawia, oprócz tego dla 800 uzyskaliśmy bardzo dobry wynik 108954.

1.6.3. Prawdopodobieństwo mutacji

Opis: Prawdopodobieństwo na przeprowadzenie mutacji na danym osobniku. Mutacją u nas jest metoda odwracania. Mutacja w algorytmie genetycznym, ma pomóc algorytmowi w wyjściu z lokalnego minimum, wprowadza ona większą różnorodność do populacji. Zdecydowaliśmy się na zamianę reverse, gdyż ogólnie daje lepsze rezultaty, znacznie zmienia strukturę trasy, przy potencjalnie mniejszym pogorszeniu

Wyniki:

liczba miast 127	mutacje	1	2	3	4	5	6
	0,01	152934,687	150630	158594,1	164112,1	171726,7	160166
	0,03	136838,2918	138004,7	141377	147302,3	147285,7	139259,1
	0,05	133663,0587	137296,4	135616,3	141699,8	131493,8	129291,5
	0,1	135059,3532	136937,1	127760,7	130498	132762	131021,1

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
159693,9	7662,671659	0,047983491	150629,9696
141677,9	4602,975866	0,032489029	136838,2918
134843,5	4405,952668	0,032674567	129291,5423
132339,7	3310,857167	0,025017864	127760,6673

Wnioski:

Znacznie lepiej wyszły mutacje na poziomie 0.05 jak i 0.1, wynika to prawdopodobnie z tego, że 0.01 jak i 0.03 za rzadko wprowadzały zmiany, przez co algorytm prawdopodobnie utknął w lokalnym minimum.

1.6.4. Liczba krzyżówek

Opis: Liczba krzyżówek wpływa na liczbę dzieci. Większa ilość krzyżówek zwiększa pole eksploracji potencjalnych rozwiązań, natomiast wydłuża on czas działania programu. Ważne jest to aby dobrze go dopasować liczbę krzyżówek aby zarówno przeszukiwał interesujące rozwiązania, jak i nie wydłużał nie potrzebnie czas wykonywania algorytmu.

liczba miast 48	Krzyżowania	1	2	3	4	5	6
	200	11018	11233	11245	11146	11502	10881
	600	11360	11548	10991	10961	11513	11759
	800	10998	10947	11304	10961	11061	11090
	1000	11191	10904	11415	11120	11138	11711

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
11170,83	213,079719	0,019074648	10881
11355,33	320,3702025	0,028213192	10961
11060,17	131,7959281	0,01191627	10947
11246,5	280,1119419	0,024906588	10904

Wnioski:

Wyniki nie różnią się specjalnie, generalnie ilość krzyżówek powinna polepszać wynik.

1.6.5. Zachowanie najlepszych osobników z poprzedniej populacji

Opis: Ilość (procent) osobników, których zachowujemy z poprzedniej populacji.

Wyniki:

liczba miast 76	Elite percent	1	2	3	4	5	6
	0,1	111450,03	112141,1	111076	115967,3	121416,3	117081,7027
	0,2	115566,7953	114669,5	118622,8	116510,4	115947,1	120828,7178
	0,3	114154,456	116857,5	122652,2	111498,8	114362,4	112235,8121
	0,4	111093,0493	118856,1	117030,6	115279	112866,8	122160,7422

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
114855,4	4061,6566	0,03536322	111076,011
117024,2	2285,732547	0,019532132	114669,4839
115293,5	4062,286845	0,035234301	111498,7711
116214,4	4032,704828	0,03470057	111093,0493

Wnioski:

Najlepszym wynikiem jest elite_percent 10 % rodziców i reszta dzieci, prawdopodobnie zachowujemy balans między eksploracja, jak i eksploatacją. Najgorzej wyszedł elite_percent 20%, co może być przypadkowe, albo po prostu dla tego przypadku mamy gorszy balans między wyszukiwaniem lepszych rozwiązań jak i ekploracja kolejnych. Natomiast jak widać jest to dosyć skomplikowany temat na pewno wartość tą należy zmieniać odpowiednio wraz ze zmianą innych parametrów

1.6.6. Metoda doboru rodziców

Opis: Mamy dwie metody - turniejową oraz ruletkę. Metoda turniejowa polega na wybraniu 3 losowych osobników oraz wybraniu tego, który ma pożądane cechy (najkrótszy dystans). Robimy tak 2 razy i w ten sposób powstają rodzice. Metoda ruletki polega na losowym wybraniu 2 rodziców. Każdy osobnik posiada prawdopodobieństwo na wybranie na rodzica jako dystans/suma dystansów wszystkich osobników.

76 miast	Dobór rodziców	1	2	3	4	5	6
	Metoda turniejowa	111957,9598	119725,2	116842,1	112191,6	124603,9	111802,2
	Metoda ruletki	117965,3733	118481	120522,8	119088,5	110930,4	113744,5

Śre	ednia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
11	6187,2	5231,943211	0,045030306	111802,1916
11	6788,8	3662,453688	0,031359637	110930,4309

Wnioski:

Nieznacznie lepiej wychodzi selekcja turniejowa, może to być spowodowane tym, że dla metody ruletki w pewnym momencie większość osobników będzie miała podobne prawdopodobieństwo zostania rodzicem, co może wpłynąć na gorszą konwergencje algorytmu, gdyż przestrzeń rozwiązań może być zbytnio przeszukiwana. Metoda turniejowa zaś nie ma takiego problemu, natomiast może być problem z eksploracja nowych rozwiązań, choć jak widać w tym wypadku lepszy balans zachowała metoda turnieju. Natomiast najlepszym rezultatem był wynik z metody turniejowej, być może dzięki tej eksploracji.

1.6.7. Metoda krzyżowania

Opis: Metoda krzyżowania służy do utworzenia nowych potomków.

Wyniki:

76 miast	Metoda krzyżowania	1	2	3	4	5	6
	1 point	120293,4595	112833,8	113245,5	119771,9	114423,2	111863,7
	2 point	118236,2134	113757,7	126137,2	120805,5	117017,8	124384,5

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
115405,2	3680,942351	0,0318958	111863,66
120056,5	4658,080922	0,038799081	113757,6741

Wnioski:

Wynik dosyć mocno się różni, może spowodowane być to tym, że krzyżowanie z jednym punktem przedziału ma tendencję do lepszego zachowania oryginalnych sekwencji miast, co może prowadzić do bardziej optymalnych tras.

1.6.8. Dynamiczna mutacja

Opis: Idea dynamicznej mutacji jest taka, aby w momencie gdy algorytm długo nie jest w stanie poprawić wyniku to zwiększa mutacje w celu zwiększenia różnorodności genu, w momencie gdy znajdzie lepsze rozwiązanie obniża wartość mutacji

48 miast	Dynamiczna mutacja	1	2	3	4	5	6
1500 generacji	Tak	11268	11025	10834	11089	11253	10776
	Nie	11135	10972	11446	11027	10988	11602

Średnia	Odchylenie	Wsp, zmiennosc	Najlepszy rezultat
11040,83	205,9644791	0,018654795	10776
11195	265,7261748	0,023736148	10972

Wnioski: Dynamiczna mutacja nie różni znacząco od klasycznej. Jednakże widać, że średnia dla dynamicznej mutacji jest nieco niższa. Dodatkowo, najlepszy rezultat jest o 150 lepszy od tego, który uzyskaliśmy za pomocą statycznej mutacji.

1.6.9. Najlepsze wyniki

Wyniki dla 48 miast:

Parametry:

generacji 650
liczba krzyżówek 400
populacja 150
selekcja rodziców: turniej
metoda krzyżowania: 1 punkt przedziału
mutacja: 0.05
dvnamiczna mutacia: False

Trasa:

37,19,27,17,43,30,36,46,33,20,47,21,32,39,48,5,42,24,10,45,35,4,26,2,29,34,41,16,22,3,14,25,13,23, 11,12,15,40,9,1,8,38,31,44,18,7,28,6 (indeks od 1)

Długość trasy: 10661

Wyniki dla 76 miast:

Parametry:

Trasa:

37,18,17,11,16,15,74,14,13,12,10,9,8,7,6,5,20,4,3,2,75,76,1,23,22,21,25,24,46,45,44,48,47,69,68,70,67,50,49,51,66,65,71,72,73,64,63,62,61,41,40,60,59,58,57,56,55,52,53,54,42,43,28,27,26,29,30,31,19,32,33,34,39,38,35,36 (indeks od 1)

Długość trasy: 108954,5832

Wyniki dla 127 miast:

Parametry:

Trasa:

27,31,80,79,12,14,16,1,2,50,13,10,3,90,116,60,59,62,61,91,100,58,64,125,104,89,92,99,65,113,66,55,47,53,49,118,48,46,94,112,111,107,127,93,95,123,97,98,101,102,63,119,96,109,88,87,86,85,110,71,70,69,68,73,67,8,19,72,74,76,75,82,83,126,81,84,117,78,77,18,21,17,22,4,108,20,15,106,6,24,23,9,11,114,105,7,120,115,52,124,56,5,121,51,57,54,45,103,44,40,35,37,36,41,30,43,34,42,39,38,28,122,32,29,33,25,26 (indeks od 1)

Długość trasy: 125515,7025

2. Wnioski ogólne

Zdecydowaliśmy się na zamianę reverse, gdyż ogólnie daje najlepsze rezultaty, znacznie zmienia strukturę trasy, przy potencjalnie mniejszym pogorszeniu. Najlepsze wyniki dla 48 miast:

Iteracyjna wspinaczka	Symulowane wyżarzanie	Tabu Search	Algorytmy Genetyczne	NN	Solver
10628.0	10628.0	10628.0	10661	12012	10769

Najlepsze wyniki dla 76 miast:

Iteracyjna wspinaczka	Symulowane wyżarzanie	Tabu Search	Algorytmy Genetyczne	NN	Solver
108349,636	108159,438	108159,438	108954,5832	130921,005	112356.8003

Najlepsze wyniki dla 127 miast:

Iteracyjna wspinaczka	Symulowane wyżarzanie	Tabu Search	Algorytmy Genetyczne	NN	Solver
120860,9694	118293.524	118997.07	125515,7025	133970,6	122235,1

Wniosek: Najlepszą metodą okazała się metoda symulowanego wyżarzania. Następnie, najlepszym było tabu search oraz iteracyjna wspinaczka. Najgorzej poradziła sobie metoda najbliższego sąsiada. Nieco lepiej jedynie poradził sobie solver.

Mówiąc o szybkości wykonania algorytmu, najszybszym była metoda najbliższego sąsiada. Następnie plasowała się iteracyjna wspinaczka. Potem najszybszym algorytmem było symulowane wyżarzanie, a po nim tabu search. Najwolniejszym algorytmem jest algorytm genetyczny i solver.

Warto zwrócić uwagę, że iteracyjna wspinaczka i symulowane wyżarzanie zostało zoptymalizowanie o działanie kodu, gdyż działaliśmy na liczeniu różnic w odległości.

Mówiąc o szybkości wykonania insercji, odwracania i zamiany, dla parametrów podanych poniżej (SA), czas zajął:

matrix, num_runs=16, initial_temperature=1000, cooling_rate=0.003,
num_iterations=100, acc_value=400000, min_temp=10, temp_red='fast', method="swapping",
filename=f"Wyzarzanie_records_testy1.txt")

- 23 sekundy dla odwracania.
- 32 sekundy dla zamiany.
- 77 sekundy dla insercji.

Wniosek: Najszybszą metodą była metoda odwracania.

3. Niesamodzielność

Metoda najbliższego sąsiada - idea z użyciem zbioru (set) do sprawdzania czy juz dany index nie był ist(all_indices - set(visited))

Tabu search – brak

Metoda wspinaczki - pomysł z chatGPT na usprawnienie kodu (liczenie różnic odległości, chat nie podał nam kodu, tylko sam pomysł), funkcje i wszystko inne wykonane samemu.

Symulowane wyżarzanie - ten sam przypadek, co powyżej

Algorytm genetyczny – niesamodzielna calculate_fitness_vectorized, crossover2