COSC 290 Discrete Structures

Lecture 25: Partial orders and Warshall relations

Prof. Michael Hay Wednesday, Apr. 4, 2018

Colgate University

Review: Transitive Closure

Plan for today

- 1. Review: Transitive Closure
- 2. Warshall relations
- 3. Partial orders
- 4. Hasse diagram

Review: Transitive closures

A transitive closure of a relation R on A is a smallest $R'\supseteq R$ that satisfies transitivity.

2

Review: Computing the transitive closure

Input: Relation $R \subseteq A \times A$.

Output: smallest $R' \supset R$ that is transitive

1: R' := R

2: repeat

3: $new := (R \circ R') - R'$

4: $R' := R' \cup new$ 5: **until** |new| = 0

6: return R'

Warshall relation

Warshall relations are a more efficient way of computing transitive closure.

Warshall relations are a sequence of relations W_0, W_1, \ldots, W_n . Each one can be computed with a "small" update from the previous one. In the end, W_n is the transitive closure of R.

Warshall relations

Warshall relation

Let $A := \{a_1, a_2, \dots, a_n\}$, a finite set.

Let R be a relation on A.

For k=0 to n, let W_k denote the k^{th} Warshall relation for R where W_b is defined as...

- W₀ := R
- For k ≥ 1, W_k is a relation on A such that ⟨a_i, a_j⟩ ∈ W_k iff there is
 a sequence of relationships in R connecting a_i to a_j using any
 subset of the elements {a₁, a₂,..., a_k} as intermediates.

(Example shown on board.)

Summary of example shown on board

```
W₀ (i.e., this is the relation R)
FFFT
TFFF
                                 W<sub>3</sub>
FTFF
FTFF
                                 FFFT
                                 TFFT
W<sub>1</sub>
                                 TTFT
                                 TTFT
FFFT
TFFT
                                 W_{4}
FTFF
FTFF
                                 TTFT
                                 TTFT
W<sub>2</sub>
                                 TTFT
                                 TTFT
FFFT
TEET
TTFT
TTFT
```

Warshall relations: kev ideas

If you are adding a pair $\langle x,y\rangle$ to W_k that is not already in W_{k-1} , the following must be true:

- There is a path from x to y that uses a subset of { a₁,..., a_k } as intermediates.
- 2. Element ab appears on that path
- 3. The path from x to a_k must only require a subset of $\{a_1, \ldots, a_{k-1}\}$. Similarly for the path from a_k to y.

Thus, to go from W_{b-1} to W_b , you can focus on paths through a_b .

Poll: what pairs are in W_k ?

Background: for relation R on A where |A| = n, the Warshall relations are a sequence of relations $W_0, W_1, \dots, W_{n-1}, W_n$. Relation W_0 is a relation on A such that $(a_1, a_j) \in W_0$, iff there is a sequence of relationships in R connecting a_1 to a_1 using any subset of the elements $\{a_0, a_1, \dots, a_n\}$ as intermediates.

Question: Consider two Warshall relations W_{k-1} and W_k and the difference between them W_k-W_{k-1} . Consider some $\langle x,y\rangle\in W_k-W_{k-1}$. Which of the following statements could be true?

- A) No such pair exists (implying $W_{k-1} \supseteq W_k$)
- B) $\langle x, y \rangle \in R$
- C) There is a path from x to y using only $\{a_1, \ldots, a_{k-1}\}$
- D) $\langle x, a_k \rangle \in R$ and $\langle a_k, y \rangle \in R$
- E) $\langle x, a_k \rangle \in W_{k-1}$ and $\langle a_k, y \rangle \in W_{k-1}$
- F) More than one / None of the above

Partial orders

Special relation: partial order

Relation R on A is a partial order if it is reflexive, antisymmetric, transitive

Conventions: use \preceq as the "name" of the relation (as opposed to a letter like R) and use infix notation: $a \preceq b$ instead of $(a,b) \in \preceq$. Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Example (Partial order)

The prefixOf relation is a partial order:

- "a" ≺ "aa"
- "aa" ≤ "aardvark"

Note: not all pairs comparable: "a" ≥ "b" and "b" ≥ "a"

Poll: partial order

Relation \leq is a partial order if it is reflexive, antisymmetric, transitive.

Consider two relations on a set of track runners:

- a ≤₁ b if the number of races in which a competed is no more than the number in which b competed.
- a ≤₂ b if the total amount of time (measured in nanoseconds with laser precision so that ties are impossible) that a ran is no more than the total amount of time that b ran.

Is \leq_1 a partial order? Is \leq_2 a partial order?

- A) Yes, Yes
- B) Yes, No
- C) No, Yes
- D) No, No

Special relation: strict partial order

Relation R on A is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like R) and use *infix* notation: $a \prec b$ instead of $\langle a,b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be incomparable.

Example (Strict partial order)

The ancestorOf relation (ancestor is parent or (recursively) parent of ancestor):

- · "DT" ≺ "Don Jr"
- · "Hanns Drumpf" ≺ "DT" (#makedonalddrumpfagain)

Hasse diagram

Hasse diagram

A partial order ≺ on A can be drawn using a Hasse diagram.

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if a

 b, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and layout nodes "by level" if $a \preceq b$ for $a \neq b$, then a is placed lower than b

Example: isSubstringOf relation on the strings $\{a, b, c, ab, bc, abc, cd\}$.

Example partial order

A to do list.

[attendClass, sleep, borrowBook, eat, brushTeeth, study]

with constraints:

study ≺ attendClass

 $\bullet \ \ \text{sleep} \preceq \text{attendClass}$

eat ≤ brushTeeth
 brushTeeth ≺ sleep

What should you do first? Brush teeth? Eat? Borrow book?

Exercise: draw Hasse diagram

Complete the following exercise: on a piece of paper, draw a Hasse diagram for the relation on $A := \{1,2,3,4,5,6,10,12,15,20,30,60\}$ for the relation $R \subseteq A \times A$ where

$$R \mathrel{\mathop:}= \{\langle x,y \rangle \in A \times A : y \bmod x = 0\}$$

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and layout nodes "by level" if $a \preceq b$ for $a \neq b$, then a is placed lower than b

13

Total order

Relation R is a total order if it is a partial order where every pair is comparable (either $(a,b) \in R$ or $(b,a) \in R$).

A total order can be written succinctly as an ordered list.

Is previous example a total order?

Topological ordering

Given a partial order \preceq , a topological ordering is a total order \preceq_{total} that is *consistent* with \preceq .

(See book for formal definition of consistent; see earlier lectures for algorithms for topological sort.)

16