Assignment 10

Bryant Oblad

A01770171

Question 1

Please use the theory of generating functions to determine the number of solutions to the equation $x_1 + x_2 + x_3 + x_4 = n$, where the variables are constrained in the following way: $x_1 = 2k$ for some $k \in \mathbb{N}$, $x_2 \in \mathbb{0}$, 1, 2 $x_3 = 3q$ for some $q \in \mathbb{N}$, and $x_4 \in \mathbb{0}$,1.

Claim: There are n + 1 solutions to $x_1 + x_2 + x_3 + x_4 = n$, where the variables are constrained in the following way: $x_1 = 2k$ for some $k \in \mathbb{N}$, $x_2 \in \mathbb{0}$, 1, 2 $x_3 = 3q$ for some $q \in \mathbb{N}$, and $x_4 \in \mathbb{0}$, 1.

Proof. We can identify \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 to be

$$x_1 = A(x) = \frac{1}{1-x^2}$$

$$x_2 = B(x) = \frac{1-x^2}{1-x} = 0 + 1 + 2$$

$$x_3 = C(x) = \frac{1}{1-x^3}$$

$$x_4 = D(x) = \frac{1-X^2}{1-x} = 0 + 1$$

To explore every possibility we multiple A(x)B(x)C(x)D(x) to get $\frac{1}{(1-x)^2}$ and we know that $\frac{1}{(1-x)^2}$ is equal to n + 1 so we can denote that

$$\sum_{n>=0} (n+1)x^2 = \frac{1}{(1-x)^2}$$

The coefficient for x^n is equal to n + 1

Question 2

Please revisit and re-solve the pizza problem using generating functions to obtain the closed formula: P (n) = $\frac{1}{2}$

$$n^2 + \frac{1}{2}n + 1 = \binom{n}{2} + n + 1.$$

Claim: P (n) = $\frac{1}{2}$ n² + $\frac{1}{2}$ n + 1 is a solution to the pizza problem.

Proof. If we take the recurrence relation formula of $\mathbf{a}_n = \mathbf{a}_{n-1} + \mathbf{n}$ as a generator function we can see that $\sum_{n > =0} \mathbf{a}_{n-1} x^n + \sum_{n > =0} \mathbf{n} x^n = \sum_{n > =0} \mathbf{a}_n x^n \text{ . Using the lemma we were given in class of } \mathbf{n} x^n \text{ is } \frac{x}{(1-x)^2} \text{ . Using this lemma we can get the equation } \frac{x}{(1-x)^2} + \mathbf{x} \sum_{n > =0} \mathbf{a}_n x^n = \sum_{n > =0} \mathbf{a}_n x^n \text{ . With some factorization we can get } \frac{x}{(1-x)^3} + \frac{1}{1-x} \text{ which is the same as } \sum_{n > =0} \mathbf{P}(\mathbf{a}_n) = \sum_{n > =0} (\frac{n^2}{2} + \frac{n}{2} + 1 \text{ which outlines P(n) to be } \frac{1}{2} \text{ n}^2 + \frac{1}{2} \text{ n} + 1 \text{ and as it is defined as } \binom{n}{2} + \text{n} + 1.$

Question 3

Please solve the following recurrence relations using the theory of generating functions:

(a)
$$a_n = a_{n-1} + a_{n-2} + n$$
, $n \ge 2$, $a0 = 0$, $a1 = 1$

(b)
$$b_n = 4b_{n-1} - b_{n-2} - 6b_{n-3}$$
, $n \ge 3$, $b0 = 0$, $b1 = 1$, $b2 = 1$