Importing necessary Liabraries

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,plot_tree
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectFromModel,RFE
```

In [2]:

company_data=pd.read_csv("Company_Data.csv")
company_data.head(50)

Out[2]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Url
0	9.50	138	73	11	276	120	Bad	42	17	
1	11.22	111	48	16	260	83	Good	65	10	,
2	10.06	113	35	10	269	80	Medium	59	12	,
3	7.40	117	100	4	466	97	Medium	55	14	,
4	4.15	141	64	3	340	128	Bad	38	13	,
5	10.81	124	113	13	501	72	Bad	78	16	
6	6.63	115	105	0	45	108	Medium	71	15	,
7	11.85	136	81	15	425	120	Good	67	10	,
8	6.54	132	110	0	108	124	Medium	76	10	
9	4.69	132	113	0	131	124	Medium	76	17	
10	9.01	121	78	9	150	100	Bad	26	10	
11	11.96	117	94	4	503	94	Good	50	13	,
12	3.98	122	35	2	393	136	Medium	62	18	,
13	10.96	115	28	11	29	86	Good	53	18	,
14	11.17	107	117	11	148	118	Good	52	18	,
15	8.71	149	95	5	400	144	Medium	76	18	
16	7.58	118	32	0	284	110	Good	63	13	,
17	12.29	147	74	13	251	131	Good	52	10	,
18	13.91	110	110	0	408	68	Good	46	17	
19	8.73	129	76	16	58	121	Medium	69	12	,
20	6.41	125	90	2	367	131	Medium	35	18	,
21	12.13	134	29	12	239	109	Good	62	18	
22	5.08	128	46	6	497	138	Medium	42	13	,
23	5.87	121	31	0	292	109	Medium	79	10	,
24	10.14	145	119	16	294	113	Bad	42	12	,
25	14.90	139	32	0	176	82	Good	54	11	
26	8.33	107	115	11	496	131	Good	50	11	
27	5.27	98	118	0	19	107	Medium	64	17	,
28	2.99	103	74	0	359	97	Bad	55	11	,
29	7.81	104	99	15	226	102	Bad	58	17	,
30	13.55	125	94	0	447	89	Good	30	12	,
31	8.25	136	58	16	241	131	Medium	44	18	,
32	6.20	107	32	12	236	137	Good	64	10	
33	8.77	114	38	13	317	128	Good	50	16	,

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urt
34	2.67	115	54	0	406	128	Medium	42	17	,
35	11.07	131	84	11	29	96	Medium	44	17	
36	8.89	122	76	0	270	100	Good	60	18	
37	4.95	121	41	5	412	110	Medium	54	10	,
38	6.59	109	73	0	454	102	Medium	65	15	,
39	3.24	130	60	0	144	138	Bad	38	10	
40	2.07	119	98	0	18	126	Bad	73	17	
41	7.96	157	53	0	403	124	Bad	58	16	,
42	10.43	77	69	0	25	24	Medium	50	18	,
43	4.12	123	42	11	16	134	Medium	59	13	,
44	4.16	85	79	6	325	95	Medium	69	13	,
45	4.56	141	63	0	168	135	Bad	44	12	,
46	12.44	127	90	14	16	70	Medium	48	15	
47	4.38	126	98	0	173	108	Bad	55	16	,
48	3.91	116	52	0	349	98	Bad	69	18	,
49	10.61	157	93	0	51	149	Good	32	17	,
4										•

Initial analysis

In [3]:

company_data.isna().sum()

Out[3]:

Sales 0 CompPrice 0 Income Advertising 0 0 Population Price 0 0 ShelveLoc 0 Age Education Urban 0 US dtype: int64

```
In [4]:
```

```
company_data.dtypes
Out[4]:
               float64
Sales
CompPrice
                 int64
                 int64
Income
Advertising
                 int64
                 int64
Population
Price
                 int64
ShelveLoc
                object
                 int64
Age
Education
                 int64
Urhan
                object
US
                object
dtype: object
In [5]:
company_data.shape
Out[5]:
(400, 11)
In [6]:
company_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 11 columns):
               400 non-null float64
Sales
               400 non-null int64
CompPrice
Income
               400 non-null int64
Advertising
               400 non-null int64
               400 non-null int64
Population
Price
               400 non-null int64
               400 non-null object
ShelveLoc
               400 non-null int64
Age
Education
               400 non-null int64
Urban
               400 non-null object
               400 non-null object
US
dtypes: float64(1), int64(7), object(3)
memory usage: 34.5+ KB
In [7]:
# As per the problem statement, converted into Good and Risky
company_data.loc[company_data['Sales'] <= 9.50, '<= 9.50'] = 'low'</pre>
company_data.loc[company_data['Sales'] >9.50 , '> 9.50'] = 'High'
```

```
In [8]:
```

```
#Converting all data into numerical data
company_data[['Urban','US']]=pd.get_dummies(company_data[['Urban','US']],drop_first=True)
```

In [9]:

```
company_data['ShelveLoc']=pd.get_dummies(company_data['ShelveLoc'],drop_first=True)
```

In [10]:

company_data

Out[10]:

		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	U
-	0	9.50	138	73	11	276	120	0	42	17	
	1	11.22	111	48	16	260	83	1	65	10	
	2	10.06	113	35	10	269	80	0	59	12	
	3	7.40	117	100	4	466	97	0	55	14	
	4	4.15	141	64	3	340	128	0	38	13	
	395	12.57	138	108	17	203	128	1	33	14	
	396	6.14	139	23	3	37	120	0	55	11	
	397	7.41	162	26	12	368	159	0	40	18	
	398	5.94	100	79	7	284	95	0	50	12	
	399	9.71	134	37	0	27	120	1	49	16	

400 rows × 13 columns

In [11]:

#deleting the sales column after getting high or low category
del company_data['Sales']

In [12]:

del company_data['<= 9.50']</pre>

In [13]:

company_data.head(10)

Out[13]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	0	59	12	1	1
3	117	100	4	466	97	0	55	14	1	1
4	141	64	3	340	128	0	38	13	1	0
5	124	113	13	501	72	0	78	16	0	1
6	115	105	0	45	108	0	71	15	1	0
7	136	81	15	425	120	1	67	10	1	1
8	132	110	0	108	124	0	76	10	0	0
9	132	113	0	131	124	0	76	17	0	1

In [14]:

company_data.fillna(value=0,axis=0,inplace=True)

In [15]:

company_data.head(10)

Out[15]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	0	59	12	1	1
3	117	100	4	466	97	0	55	14	1	1
4	141	64	3	340	128	0	38	13	1	0
5	124	113	13	501	72	0	78	16	0	1
6	115	105	0	45	108	0	71	15	1	0
7	136	81	15	425	120	1	67	10	1	1
8	132	110	0	108	124	0	76	10	0	0
9	132	113	0	131	124	0	76	17	0	1
4										•

In [16]:

```
company_data['Sales']=pd.get_dummies(company_data['> 9.50'],drop_first=True)
```

In [17]:

company_data.head(10)

Out[17]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	0	59	12	1	1
3	117	100	4	466	97	0	55	14	1	1
4	141	64	3	340	128	0	38	13	1	0
5	124	113	13	501	72	0	78	16	0	1
6	115	105	0	45	108	0	71	15	1	0
7	136	81	15	425	120	1	67	10	1	1
8	132	110	0	108	124	0	76	10	0	0
9	132	113	0	131	124	0	76	17	0	1
4										•

Data Visualization

In [18]:

sns.boxplot(x='CompPrice', data=company_data)

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x19cf6707088>

In [19]:

```
sns.countplot(x='Age',hue='Sales',data=company_data)
```

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x19c8735d448>

In [20]:

company_data.dtypes

Out[20]:

CompPrice	int64
Income	int64
Advertising	int64
Population	int64
Price	int64
ShelveLoc	uint8
Age	int64
Education	int64
Urban	uint8
US	uint8
> 9.50	object
Sales	uint8
<pre>dtype: object</pre>	

Data preprocessing

```
In [21]:
```

```
#Now we scaled the data by using Standard Scaler
scaled_X=StandardScaler()
x_scale=scaled_X.fit_transform(company_data.iloc[:, :-2])
```

Model Building

In [22]:

```
X=company_data.iloc[:, :-2]
y=company_data[['Sales']]
```

In [23]:

Χ

Out[23]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	U
0	138	73	11	276	120	0	42	17	1	
1	111	48	16	260	83	1	65	10	1	
2	113	35	10	269	80	0	59	12	1	
3	117	100	4	466	97	0	55	14	1	
4	141	64	3	340	128	0	38	13	1	
395	138	108	17	203	128	1	33	14	1	
396	139	23	3	37	120	0	55	11	0	
397	162	26	12	368	159	0	40	18	1	
398	100	79	7	284	95	0	50	12	1	
399	134	37	0	27	120	1	49	16	1	

400 rows × 10 columns

```
In [24]:
y
```

Out[24]:

	Sales
0	0
1	1
2	1
3	0
4	0
395	1
396	0
397	0
398	0
399	1

400 rows × 1 columns

In [26]:

```
X_train,X_test,y_train,y_test=train_test_split(x_scale,y,test_size=0.20,random_state=19)
```

In [27]:

```
X_train
```

Out[27]:

```
array([[-1.23895458, -0.1666307, 0.506621, ..., 1.18444912, 0.64686916, 0.74188112],
[ 0.98104309, -0.52439924, 0.35606498, ..., 0.80236876, -1.54590766, 0.74188112],
[ 0.39339665, 0.15536099, 0.95828906, ..., 1.18444912, 0.64686916, 0.74188112],
...,
[ -0.71660219, -0.91794464, -0.99893918, ..., -1.4901134, -1.54590766, 0.74188112],
[ 0.1975145, -0.23818441, 0.05495295, ..., 0.03820804, 0.64686916, 0.74188112],
[ 1.30751334, -1.38304374, -0.99893918, ..., 1.18444912, 0.64686916, -1.34792485]])
```

Decision tree, Random Forest & Gradient Boosting regressor Model

```
In [28]:
```

```
#Decison Tree Classifier
d_tree=DecisionTreeClassifier(max_depth=5,random_state=12)
d_tree.fit(X_train,y_train)
```

Out[28]:

```
DecisionTreeClassifier(class_weight=None, criterion='gini', max depth=5,
                       max_features=None, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, presort=False,
                       random_state=12, splitter='best')
```

Model Training

In [29]:

```
y_pred_train=d_tree.predict(X_train)
```

In [30]:

```
y_pred_test=d_tree.predict(X test)
y_pred_test
```

Out[30]:

```
array([0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
      1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], dtype=uint8)
```

Model Testing Accuracy

In [31]:

```
print("Classification_Report:",classification_report(y_test,y_pred_test))
print("confusion matrix :",confusion matrix(y test,y pred test))
print("Accuracy
                           :",accuracy_score(y_test,y_pred_test))
```

Classification_F	Report:		precision	recall	f1-score	support
0	0.85	0.92	0.88	62		
1	0.62	0.44	0.52	18		
accuracy			0.81	80		
macro avg	0.73	0.68	0.70	80		
weighted avg	0.80	0.81	0.80	80		

confusion_matrix : [[57 5]

[10 8]]

: 0.8125 Accuracy

Hyperparameter using GridSearch Cy

```
In [33]:
```

```
0.8375
```

Fitting the best parameter for better accuracy

```
In [34]:
```

```
#Decison Tree Classifier
d_tree=DecisionTreeClassifier(criterion='entropy',max_depth=3,random_state=12)
d_tree.fit(X_train,y_train)
```

```
Out[34]:
```

```
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=12, splitter='best')
```

In [35]:

```
y_pred_train1=d_tree.predict(X_train)
```

In [36]:

```
y_pred_test1=d_tree.predict(X_test)
y_pred_test
```

Out[36]:

In [37]:

```
print(classification_report(y_test,y_pred_test1))
print(confusion_matrix(y_test,y_pred_test1))
print(accuracy_score(y_test,y_pred_test1))
```

	precision	recall	f1-score	support
0 1	0.86 0.64	0.92 0.50	0.89 0.56	62 18
accuracy macro avg weighted avg	0.75 0.81	0.71 0.82	0.82 0.73 0.82	80 80 80
[[[7 []				

[[57 5] [9 9]] 0.825

In [38]:

###After fitting the hyperparameter we get better accuracy with reducing false positive and

In [39]:

```
roc_auc=roc_auc_score(y_test,y_pred_test1)
roc_auc
```

Out[39]:

0.7096774193548386

In [40]:

In [42]:

```
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

fpr, tpr, thresholds = roc_curve(y, d_tree.predict_proba (x_scale)[:,1])

auc = roc_auc_score(y_test, y_pred_test1)
print(auc)

import matplotlib.pyplot as plt
plt.plot(fpr, tpr, color='red', label='d_tree ( area = %0.2f)'%auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
plt.ylabel('True Positive Rate')
```

0.7096774193548386

Out[42]:

Text(0, 0.5, 'True Positive Rate')

In [43]:

ROC curve gives a level of probability and AUC curve gives a level of seperability