Al Macrostratigraphy Lab

Note to Search Committee: I developed this laboratory exercise during the Fall of 2010 while participating in the Instructional Materials Development course as part of the DELTA Program at the University of Wisconsin-Madison. At the end of the semester I implemented this lab exercise in the Sedimentology and Stratigraphy course (GEOSCI 430). From talking with the GEOSCI 430 students and Graduate Teaching Assistant, I found that the lab was well received, both for the novelty of the exercise and the use of quantitative methods in an otherwise qualitative course.

Laboratory Exercise: The macrostratigraphy of North America

Introduction

In the 1970s and 1980s the Geological Survey of Canada and the American Association of Petroleum Geologists produced a series of stratigraphic correlation charts that show the geology of North America from the crystalline basement to the surface at over 800 locations. These charts were indented to standardize the stratigraphic nomenclature of geologic units and allow geologists to easily determine which units are roughly equivalent. However, these charts also contain a wealth of information on the geology of North America, including lithology, thickness paleoenvironments and economic minerals. Although the effort that went into producing these charts they have gone largely unnoticed by geologists. In this laboratory exercise you will use these charts to explore the spatial and temporal dynamics of North American geology; will quantify where and when rocks are preserved. This basic quantification will then form the basis of an interpretation of Earth History.

The group will work on Parts I-III as a group. The lab group will turn in one report for these parts. Part IV will be done individually. Although you are encouraged to discuss possibilities for the prospectus with your lab-mates, it is unacceptable for two individuals to turn in a prospectus on the same idea.

Part I: Digitizing the correlation charts

You will work in groups of 3 or 4. Each group will be given a correlation chart, a geologic time scale and an Excel spreadsheet. The correlation charts are divided into stratigraphic columns that each represent the geology of a different area. The rocks in each column are then divided into a vertical series of temporally continuous "packages" of rock separated by unconformities (white space). Your group must identify and first appearance datum (FAD) and last appearance datum (LAD) of every package on your chart (Figure 1). As you identify the FAD and LAD of each package enter the numeric age for each into your Excel spread sheet. To obtain the numeric age, find the geologic stage that the datum of interest resided in from the time scale on the chart. Then look up the numeric age on the time scale provided at the end of this lab packet or on the Excel spread sheet (these two are the same). **Do**not use the numeric ages on the charts! After you have identified the FAD and LAD of a package, fill in the number 1 in each cell in which the package spans (Figure 2; you can type in a 1 for the LAD then drag the cell down to the FAD). As you fill in your chart, the duration of each package, the mean duration of all packages and the number of packages present in each time interval will be filled in automatically. Only enter packages whose LAD is in the

Phanerozoic; exclude packages that are entirely Precambrian. **NOTE:** You should rotate chart-reading and data entry tasks after every two columns are completed. It's important that everyone in the group is equally involved in all aspects of the data collection process.

When your group is done compiling the package data from your chart, save it and give a copy to the lab instructor. Once all the spreadsheets have been completed, the lab instructor will provide a summary containing all the data collected by each group (this may be a short time after the lab period is over, depending on how quickly groups finish). While you are waiting for the total summary begin answering the questions below. Figure 3 shows the approximate locations of all the North American Correlation charts.

Figure 1. Three partial columns from a correlation chart showing FAD and LAD of four packages.

		package 1	package 2	package 3	package 4	# Packages	mean duration
	column	1	1	2	2		
	LAD	0.0117	99.6	65.6	2.588		
	FAD	65.5	251	199.6	23.03		
	Duration	65.4883	151.4	134	20.442		92.832575
Age (Ma)							
0.0117	Holocene					0	
2.588	Pleistocene	1				1	
5.332	Pliocene	1			1	2	
23.03	Miocene	1			1	2	
33.9	Oligocene	1				1	
55.8	Eocene	1				1	
65.5	Paleoence					0	
199.6	Late K			1		1	
145.5	Early K		1	1		2	
161.2	Late J		1	1		2	
175.6	Middle J		1	1		2	
199.6	Early J		1	1		2	
245.0	Late Tr		1			1	
228.0	Middle Tr		1			1	
251.0	Early Tr		1			1	

Figure 2. A partial spread sheet illustrating how it should be filled out.

Figure 3. Locations of all 25 stratigraphic correlation charts for North America.

What is the name of the sheet from which you collected data?

What geographic area does your sheet represent?

Part II: Data Analysis

Using the graphing functionality of Excel to plot a time series of the number of packages in each time interval (see Figure 4 for an example of a time series plot with time in the correct stratigraphic order).

Using the graphing functionality of Excel to plot a time series of the total number of packages in North America using the summary data.

What are the similarities and differences between the plot for your chart and the chart for the whole of North America?

Part III: Interpretation

Figure 5 may be useful in generating answers for answering the following questions.

What might account for the gaps between successive packages within any given column?

Assume that all the rocks you have plotted are sedimentary (this assumption is of course not true, but it's approximately correct [see Figure 4]). What does your plot tell you about the depositional history of your region of North America?

What might the similarities and differences between your chart and the whole of North America mean for your interpretation of the sedimentary history of North America and your chart region?

Part IV: Research prospectus

Please write a short research prospectus, ~1-2 pages, based on your experience with this lab exercise. Describe a geologic question you might like to answer with the type of data provided on these stratigraphic correlation charts or in conjunctions with other types of geologic data you can fit into this type of data structure. Keep in mind that the charts contain lots of information that was not used for this lab (e.g., variation within packages, thickness, lithology). Feel free to consider the integration of fossil, geochemical, sedimentological or other geologic data with the correlation charts.

The first part of your prospectus should clearly state a hypothesis, how it relates to the observations and analyses you made during this lab and explain why you feel it is interesting. The bulk of the prospectus should be an outline of the type of data you would need to test your

hypothesis and the methods you would use to test the hypothesis. Finally, the prospectus should conclude with a discussion of what your research project will tell you about the geologic history of North America.

Figure 4. The proportion of sedimentary (i.e., not igneous or metamorophic) rock units (individual colored blocks on correlation charts) in North America through time.

Figure 5. Continental flooding and timing of major North America orogenies. This figure was taken from Bates, Sweet, & Utgard. 1973. Geology - An Introduction (2nd ed.). D. C. Heath and Co.

onother Eon

Erathem Era

System

Period

Series Epoch

Stage Age

Age Ma

GSSP

Holocene

0.0117

8

Quaternary

NTERNATIONAL STRATIGRAPHIC CHART on Stratigraphy

		145.5 ±4.0			
	GSSP	Age Ma	Stage Age	Series Epoch	System Period
]	1
_	1		2		

							Р	h	a r	пе	r o	Z	o i c	2													Eonothem
	Pal	eo z	z o i	С											N	1 e	s c	Z	o i	С							Erathem Era
Carbonife	rous			Per	miar	1					Tri	ias	sic							Ju	ras	sic					System Period
sippian sy	Penn- Ivanian		Cisu		Guada		Lopii		Lo			riiva					5	-			IVII	<u></u>			Upper		Series
Lower Upper Middle Lower	Upper		Cisuralian		Guadalupian		Lopingian		Lower		MINIMA	dip		Upper			C				č	Middle			per		Epoch
Bashkirian Serpukhovian Visean Tournaisian	Gzhelian Kasimovian	Sakmarian Asselian	Artinskian	Kungurian	Wordian	Capitanian	Wuchiapingian	Changhsingian	Induan	Olenekian	Anisian	Ladinian	Carnian	Norian	Rhaetian	Hettangian	Sinemurian	Pliensbachian	Toarcian	Aalenian	Bajocian	Bathonian	Callovian	Oxfordian	Kimmeridgian	Tithonian	Stage Age
311.7 ±1.1 318.1 ±1.3 328.3 ±1.6 345.3 ±2.1 359.2 ±2.5	303.4 ±0.9 307.2 ±1.0	294.6 ±0.8	284.4 ±0.7	270.6 ±0.7	268.0 ±0.7	265.8 ±0.7	253.8 ±0.7	4.01.0	251 0 +0 4)))))	~ 245.9	237 0 +2 0	~ 228 7	216 5 +2 0	203 6 +1 5	100 6 +0 6	106 5 +1 0	189 6 +1 5	1830+15	175 6 +2 0	171 6 +3 0	167 7 +3 5	164.7 +4.0	161 2 +4 0	~ 155.6	1508+40	Age Ma
8 88	1	>		•	b	V	8	>	V			8	V			V	V	V		V	8	V					GSSP

Phanerozoic

Priaboniar

37.2 ±0.1 33.9 ±0.1 28.4 ±0.1

Rupelian Chattian

8

Bartonian

40.4 ±0.2

Ypresian Lutetian Oligocene

Paleogene

Paleocene

Danian

~ 61.1

4444

58.7 ±0.2 55.8 ± 0.2 48.6 ±0.2 Cenozoic

Burdigalian

23.03

V

20.43 15.97 13.82

Neogene

Serravalliar

Tortonian

11.608

88

7.246 5.332 3.600 2.588 1.806 0.781 0.126

Langhian

Pliocene

Piacenzian

8888

Calabrian

"lonian" Upper

Gelasian

Zanclean

Mesozoic

Cretaceous

Cenomaniar

99.6 ±0.9 93.6 ±0.8

88

Albian

Aptian

125.0 ±1.0 112.0 ±1.0 Turoniar

Valangınıar

140.2 ±3.0

~ 133.9 130.0 ±1.5 Upper

Coniacian Santonian Campaniar

~ 88.6

83.5 ±0.7

70.6 ±0.6 65.5 ±0.3

85.8 ±0.7

												F	P h	а	n e	r o	Z (o i c	0													Eonothem Eon
													Р	a I	е) Z	0 i	С														Erathem Era
			С	am	bri	an					(Ord	ovi	cia	n				5	Silu	riaı	n				[De	von	ian	١		System Period
Terreneuvian		Oction 7	Spripe 2		Series 3			Furongian			Lower	Miladic	Middle		Upper			Llandovery		V V C II C C V	Wenlock	Luciow	wollon I	Pridoli		Lower		Middle	SIPPIN	opper	1000	Series Epoch
	Stage 2	Stage 3	Stage 4	Stage 5	Drumian	Guzhangian	Paibian	Stage 9	Stage 10	Tremadocian	Floian	Dapingian	Darriwilian	Sandbian	Katian	Hirnantian	Rhuddanian	Aeronian	Telychian	Sheinwoodian	Homerian	Gorstian	Ludfordian		Lochkovian	Pragian	Emsian	Eifelian	Givetian	Frasnian	Famennian	Stage Age
542 0 +1 0	1 (× 50 0 50 1 *	51 51 51 51 51 51 51 51 51 51 51 51 51	. ≈ 510 *	~ 506 5	~ 503	~ 499	~ 496 *	* 1	488 3 +1 7	478 6 +1 7	471 8 +1 6	468 1 +1 6	460 0 +1 6	<u> </u>	445.6+1.5	443 7 H	439 0 +1 8	436 0 +1 9	200 1	426 2 +2 4	4000 +0.5	410.7 HZ.7	410.0 ±2.0	5 1	407.0 HZ.0	407.0 +0.0	307 F ±2.7	301 0 ±3.7	30F 3 +3 6	374 F ±2 6	Age Ma
>					>	>	>			>	>	>	>	8	8	>	8	> '	>	> '	> '	> '	> '	> '	> '	> '	>	>	> '	> '	⋖	GSSP

Precambrian

2500 2300 2050 1800

2800

(1)

3200

(<u>1</u>)

Rhyacian

Veoarchear

Proterozoic

Calymmian Ectasian

1600

1400

 Θ

Statherian Orosirian

Copyright @ 2010 International Commission on Stratigraphy This chart was drafted by Gabi Ogg. Intra Cambrian unit ages with * are informal, and awaiting ratified definitions.

formally defined by their lower boundary. Each unit of the Phanerozoic (~542 Ma to Present) and the base of Ecliacarian are defined by a basal Global Boundary Stratotype Section and Point (GSSP), whereas Precambrian units are formally subdivided by absolute age (Global Standard Stratigraphic Age, GSSA). Details of each GSSP are posted on the ICS website (www.stratigraphy.org).

Numerical ages of the unit boundaries in the Phanerozoic are subject to revision. Some stages within the Cambrian will be formally named upon international agreement on their GSSP limits. Most sub-Series boundaries (e.g., Middle and Upper Apilan) are not formally defined.

Hadean (informal) 4000 Hadean (informal) 4600 Subdivisions of the global geologic record are				3600	Ð	
Hadean (informal) -4600 Subdivisions of the global geologic record are		Eoarchean				
Subdivisions of the global geologic record are		Hadean (inforn		1000		
Subdivisions of the global geologic record are	}			~4600		
rmally defined by their lower boundary. Each unit	Subc	livisions of the global g	geologic	record	are h unit	

	Erathem Era	
Ediacaran	System Period	and mentioned them of Codespical Size
746	Age Ma	ā
⋖	GSSP GSSA	

Eonothem Eon

proterozoic

Cryogenian

Stenian Tonian

1200 1000 850

		6	1	1
1		A		3
	TO	11		
	CD	,		
	Geological I			

Colors are according to the Commission for the Geological Map of the World (www.cgmw.org).

The listed numerical ages are from A Geologic
Time Scale 2004; by F.M. Gradstein, J.G. Ogg,
es A.G. Smith, et al. (2004; Cambridge University Press),
and "The Concise Geologic Time Scale" by J.G. Ogg,
G. Ogg and F.M. Gradstein (2008).