EL RETO

Análisis de redes terrestres multicapa para el vehículo autónomo

Objetivo

Diseñar e implementar soluciones que optimicen la planificación de rutas en redes terrestres multicapa que actualmente són un problema clave en el desarrollo de vehículos autónomos y sistemas de movilidad avanzada.

El objetivo es encontrar la **ruta de menor coste posible** entre un punto de origen y un destino, teniendo en cuenta:

- •Transiciones entre capas (por ejemplo, carreteras urbanas, autopistas, caminos rurales, etc.).
- •Restricciones dinámicas, como costos variables en las redes y puntos de acceso limitados.
- •Complejidad computacional, optimizando el uso de recursos y garantizando tiempos de ejecución eficientes.

¿Por qué es relevante?

Las redes terrestres multicapa son fundamentales en sectores como:

- •Movilidad Autónoma: Ayuda a vehículos autónomos a planificar rutas óptimas y seguras.
- •Logística y Transporte: Mejora la eficiencia de rutas multimodales.
- •Infraestructura Inteligente: Contribuye a desarrollar ciudades más conectadas y sostenibles.

Estructura de datos

- 1. POSTGRE SQL
 - Capas de datos
 - Puntos de transición de las capas.

VISOR DE DATOS

- 1. Visualización de capas
 - Permite la programación en Python
 - Creación de extensiones

Estructura de datos

Estructura de datos

Datos necesarios

1. Puntos aleatorios para cada equipo

• A cada equipo se le asignara un punto origen y destino

2. Costes de las redes prestablecidos

 Las redes tienen un coste distinto, por lo que la selección del camino mas corto no es la solución óptima

Criterios de evaluación

1. Eficiencia del algoritmo:

- Tiempo de ejecución.
- Uso eficiente de recursos computacionales.

2. Calidad de la solución:

- Exactitud al encontrar el camino con menor coste.
- Capacidad de adaptarse a cambios en los datos o en los costos.

3. Creatividad y originalidad:

 Uso de enfoques innovadores como algoritmos de optimización, aprendizaje automático, o metaheurísticas.

4. Documentación y claridad:

- Explicación del enfoque utilizado.
- Facilidad para entender y reproducir la solución.

EL PREMIO

- El grupo ganador recibirá un premio de 1.000€ a repartir entre sus miembros.
- **2. Objetivo:** Entregar la ruta con **menor coste posible** resolviendo el problema planteado.
- **3. Validación de las soluciones:** Todos los programas entregados por los participantes serán evaluados utilizando una ruta distinta a la proporcionada en el planteamiento inicial.

Requisitos para el grupo ganador:

- El grupo ganador deberá entregar el código de su solución.
- El código debe ser **compilable** y permitir la verificación de los resultados.