Билет 16. Линейные преобразования линейного пространства, их задание матрицами. Характеристический многочлен линейного преобразования. Собственные векторы и собственные значения, их связь с характеристическими корнями.

Определение

Пусть дано n-мерное линейное пространство V_n . Рассмотрим преобразование этого пространства, т.е. отображение, переводящее каждый вектор а пространства V_n в некоторый вектор а' этого же пространства. Вектор а' называется образом вектора а при рассматриваемом преобразовании.

Преобразование f линейного пространства V_n называется линейным преобразованием этого пространства, если выполнены следующие условия:

$$1)f(a+b) = f(a) + f(b)$$

$$2)f(\lambda a) = \lambda f(a)$$

Утверждение

Из определения линейного преобразования следует, что линейное преобразование линейного пространства переводит любую линейную комбинацию данных векторов a_1, a_2, \ldots, a_k в линейную комбинацию образов этих векторов:

$$f(\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_k a_k) = \alpha_1 f(a_1) + \ldots + \alpha_k f(a_k)$$

Доказательство вытекает из определения линейного преобразования линейного пространства.

Утверждение

Любое линейное преобразование линейного пространства V_n , оставляет нулевой вектор O неподвижным:

$$f(O) = O$$

Доказательство данного утверждения вытекает из определения линейного преобразования линейного пространства.

Утверждение

Образ противоположного вектора, для данного вектора a, есть противоположный вектор для образа вектора a:

$$f(-a) = -f(a)$$

Доказательство данного утверждения вытекает из определения линейного преобразования линейного пространства.

Примеры линейных преобразований линейного пространства:

1) Тождественное преобразование, оставляющее произвольный вектор a на месте:

$$f(a) = a$$

2) Нулевое преобразование, переводящее произвольный вектор a в O:

$$f(a) = O$$

Определение

L называется линейным подпространством V_n , если :

- 1) Если вектора $a,b\in L => (a+b)\in L$
- 2) Если вектор $a \in L => \alpha a \in L$ при любом значении α

Из определения следует, что если L линейное подпространство V_n , то и совокупность f(L) образов всех векторов L также будет линейным подпространством.

Определение

Областью значений линейного преобразования f линейного пространства V_n , называется совокупность $f(V_n)$ образов всех векторов V_n .

Определение

Совокупность N(f) всех векторов пространства V_n , отображающихся при линейном преобразовании f в нулевой вектор, будем называть ядром преобразования f.

Взаимно однозначное соответствие между линейными пре-

образованиями n-мерного линейного пространства и квадратными матрицами порядка n.

Пусть

$$e_1, e_2, \ldots, e_n$$
 (4)

произвольный базис линейного пространства V_n . Так как всякий вектор a линейного пространства V_n единственным образом представляется в виде линейной комбинации (4) базиса пространства V_n , то ввиду того что, образ вектора a с теми же коэффициентами выражается через образы векторов базиса. Получается что всякое линейное преобразование f линейного пространства V_n однозначно определяется заданием образов $f(e_1), f(e_2), \ldots, f(e_n)$ всех векторов фиксированной базы (4).

Утверждение

Какова бы ни была упорядоченная система из n векторов пространства V_n ,

$$c_1, c_2, \ldots, c_n (5)$$

существует, притом единственное, такое линейное преобразование f этого пространства, что (5) служит системой образов векторов базиса (4) при этом преобразовании,

$$f(e_i) = c_i \; ; i = 1, 2, \dots, n(6)$$

Доказательство

Единственность преобразования f уже доказана выше(в силу единственности разложения по базису) и нужно лишь доказать существование. Определим преобразование f следующим образом: если a – произвольный вектор пространства и

$$a=\Sigma_{i=1}^n lpha_i e_i$$
 – его запись в базисе (4), то положим

$$f(a) = \sum_{i=1}^{n} \alpha_i c_i \tag{7}$$

Докажем линейность этого преобразования. Если

$$b = \sum_{i=1}^{n} \beta_{i} e_{i}$$
 – любой другой вектор пространства, то

$$f(a + b) = f \left[\sum_{i=1}^{n} (\alpha_i + \beta_i) e_i \right] = \sum_{i=1}^{n} (\alpha_i + \beta_i) c_i = \sum_{i=1}^{n} \alpha_i c_i + \sum_{i=1}^{n} \beta_i c_i = f(a) + f(b)$$

Аналогично проводим рассуждения для произвольного числа γ и значения $f(\gamma a)$, оно будет равно $\gamma f(a)$. Что же касается справедливости равенства (6), то она вытекает из определения (7) преобразования f, так как все координаты вектора e_i , кроме i-ой координаты равно единице, равны нулю.

В ходе доказательства этого утверждения было установлено взаимно однозначное соответствие между всеми линейными преобразованиями линейного пространства V_n и всеми упорядоченными системами (5) из п векторов этого пространства.

Всякие вектор c_i обладает определенной записью в базисе (4):

$$c_i = \sum_{j=1}^n \alpha_{ij} e_j, i = 1, 2, \dots, n$$
 (8)

Из координат вектора c_i в базисе (4) можно составить квадратную матрицу

$$A = (\alpha_{ij}) \ (9)$$

беря в качестве ее i-ой строки строку координат вектора вектора $c_i, i=1,2,\ldots,n$. Так как система (5) была взята произвольно, то матрица A будет произвольной матрицей порядка n с действительными элементами. Таким образом мы установили взаимно однозначное соответствие между всеми линейными преобразованиями пространства V_n и всеми квадратными матрицами порядка n. Будем говорить что матрица A задает линейное преобразование f в базисе (4).

$$f(e) = Ae.$$
 (10)

Операции над линейными преобразованиями.

1) Пусть f, g линейные преобразования линейного пространства V_n , тогда суммой двух линейных преобразований назовем:

$$(f+g)(a) = f(a) + g(a).$$
 (14)

Доказательство этого свойства вытекает из представления линейного преобразования квадратной матрицей.

2) Сумма двух линейных преобразований, тоже является линейным преобразованием.

$$(f+g)(a+b) = f(a+b) + g(a+b) = f(a) + f(b) + g(a) + g(b) = (f+g)(a) + (f+g)(b)$$

$$(f+g)(\alpha a) = f(\alpha a) + g(\alpha a) = \alpha f(a) + \alpha g(a) = \alpha (f(a) + g(a)) =$$
$$= \alpha ((f+g)(a))$$

Следовательно сумма линейных преобразований линейна.

3) Пусть f, g линейные преобразования линейного пространства V_n , тогда произведением двух линейных преобразований назовем:

$$(fg)(a) = g(f(a)). (15)$$

4) Произведение двух линейных преобразований, тоже является линейным преобразованием.

$$(fg)(a+b) = g(f(a+b)) = g(f(a)+f(b)) = g(f(a))+g(f(b)) =$$

= $(fg)(a)+(fg)(b)$

5) Пусть f линейное преобразование линейного пространства V_n , а χ произвольное число, тогда произведением линейного преобразования на число назовем:

$$(\chi f)(a) = \chi f(a). (16)$$

6)Произведение линейного преобразования и числа, также является линейным преобразованием

$$(\chi f)(a+b) = \chi f(a+b) = \chi(f(a)+f(b)) = \chi f(a) + \chi f(b) = (\chi f)(a) + (\chi f)(b)$$

$$(\chi f)(\alpha a) = \chi f(\alpha a) = \chi(\alpha f(a)) = \alpha(\chi f(a)) = \alpha(\chi f)(a)$$

Пусть в базисе e_1, e_2, \ldots, e_n преобразования f, g задаются соответственно матрицами $A = (\alpha_{ij}), B = (\beta_{ij})$

$$f(e) = Ae, g(e) = Be.$$

Тогда в виду (14),(15),(16) получаем:

$$(g+f)(e_i) = g(e_i) + f(e_i) = \sum_{j=1}^n \alpha_{ij} e_j + \sum_{j=1}^n \beta_{ij} e_j = \sum_{j=1}^n (\alpha_{ij} + \beta_{ij}) e_j,$$
то есть $(f+g)(e) = (A+B)e$

$$(fg)(e_i) = g(f(e_i)) = g(\Sigma_{j=1}^n \alpha_{ij} e_j) = \Sigma_{j=1}^n \alpha_{ij} g(e_j) = \Sigma_{j=1}^n \alpha_{ij} (\Sigma_{k=1}^n \beta_{jk} e_k) = \Sigma_{k=1}^n (\Sigma_{j=1}^n \alpha_{ij} \beta_{jk}) e_k$$
, то есть $(fg)(e) = (AB)e$.

$$(\chi f)(e_i) = \chi f(e_i) = \chi \sum_{j=1}^n \alpha_{ij} e_j = \sum_{j=1}^n (\chi \alpha_{ij}) e_j$$
, то есть $(\chi f)(e) = (\chi A)e$.

Получаем что свойства матриц сохраняются и для линейных преобразований.

Характеристический многочлен линейного преобразования. Собственные векторы и собственные значения, их связь с характеристическими корнями.

Определение

Пусть в действительном линейном пространстве V_n задано линейное преобразование f. Если вектор b, отличный от нуля, переводится преобразованием f в вектор, пропорциональный самому b, т.е.:

$$f(b) = \lambda_0 b,$$

где λ_0 — некоторое действительное число, то b называется собственным вектором преобразования f, а число λ_0 — собственным значением этого преобразования для собственного вектора b. Вектор b=0 не считается собственным вектором, хотя удовлетворяет условию для любого собственного значения.

Пусть матрица $A=(\alpha_{ij})$ — квадратная матрица порядка n с действительными элементами, а λ — некоторое неизвестное. Тогда матрица $A-\lambda E$, где E— единичная матрица порядка n, называется характеристической матрицы A. Определитель характеристической матрицы для матрицы A будет равен многочлену от λ степени n. Этот многочлен называется характеристическим многочленом матрицы A, а его корни будут называться характеристическими корнями этой матрицы. Так как каждому линейному преобразованию соответствует некоторая матрица, то характеристические корни и многочлен можно назвать характеристическими корнями и многочлен можно назвать характеристическими корнями и многочленом данного линейного преобразования.

Утверждение

Действительные характеристические корни линейного преобразования f, если они существуют, и только они служат собственными значениями этого преобразования.

Пусть преобразование f имеет в базисе e_1, e_2, \ldots, e_n матрицу $A = (\alpha_{ij})$ и пусть вектор $b = \sum_{i=1}^n \beta_i e_i$ является собственным вектором преобразования f, $f(b) = \lambda_0 b$ (2). В силу доказанных выше свойств линейного преобразования получим: $f(b) = ((\beta_1, \beta_2, \ldots, \beta_n)A)e$ (3). В силу (2) и (3) получим систему уравнений:

$$\beta_1 \alpha_{11} + \beta_2 \alpha_{21} + \ldots + \beta_n \alpha_{n1} = \lambda_0 \beta_1$$

$$\beta_1 \alpha_{12} + \beta_2 \alpha_{22} + \ldots + \beta_n \alpha_{n2} = \lambda_0 \beta_2$$

. . .

$$\beta_1 \alpha_{1n} + \beta_2 \alpha_{2n} + \ldots + \beta_n \alpha_{nn} = \lambda_0 \beta_n$$

Так как $b \neq 0$ получается что не все числа $\beta_1, \beta_2, \dots, \beta_n$ равны нулю таким образом система линейных однородных уравнений:

$$x_1(\alpha_{11} - \lambda_0) + x_2\alpha_{21} + \dots + x_n\alpha_{n1} = 0$$

 $x_1\alpha_{12} + x_2(\alpha_{22} - \lambda_0) + \dots + x_n\alpha_{n2} = 0$

. . .

$$x_1\alpha_{1n} + x_2\alpha_{2n} + \ldots + x_n(\alpha_{nn} - \lambda_0) = 0$$

обладает ненулевым решением, а потому определитель матрицы составленный из коэффициентов однородной системы равен 0. Транспонируя определитель получаем $|A - \lambda_0 E| = 0$, получается что собственное значение λ_0 если корень характеристического уравнения матрицы A.

В обратную сторону. Пусть λ_0 будет любым действительным характеристическим корнем преобразования f. Тогда имеет место равенство $|A-\lambda_0 E|=0$, с помощью транспонирования данного равенства получаем что система однородных линейных уравнений имеет ненулевое решение

$$x_1(\alpha_{11} - \lambda_0) + x_2\alpha_{21} + \ldots + x_n\alpha_{n1} = 0$$

$$x_1\alpha_{12} + x_2(\alpha_{22} - \lambda_0) + \ldots + x_n\alpha_{n2} = 0$$

. . .

$$x_1\alpha_{1n} + x_2\alpha_{2n} + \ldots + x_n(\alpha_{nn} - \lambda_0) = 0$$

Обозначим это решение через $(\beta_1, \beta_2, \dots, \beta_n)$ (1), то будут выполняться равенства

$$\beta_1 \alpha_{11} + \beta_2 \alpha_{21} + \ldots + \beta_n \alpha_{n1} = \lambda_0 \beta_1$$

$$\beta_1 \alpha_{12} + \beta_2 \alpha_{22} + \ldots + \beta_n \alpha_{n2} = \lambda_0 \beta_2$$

. . .

$$\beta_1 \alpha_{1n} + \beta_2 \alpha_{2n} + \ldots + \beta_n \alpha_{nn} = \lambda_0 \beta_n$$

Обозначим через b вектор пространства V_n имеющий в базисе e_1, e_2, \ldots, e_n строку координат (1). Тогда будут справедливы равенства (3), а из (3) и последней системы уравнений получим (2). Вектор b оказался, собственным вектором преобразования f, который относится к собственному значению λ_0 .

Утверждение доказано.

Замечание

материал взят из книги Курош, стр 194