Inverse Function Example

Math 111

The suspended sediment concentration is the concentration of sediment in a river. A certain river is flooded, and t days after the flood starts, the suspended sediment concentration is $C = S(t) = \frac{500t + 5000}{25 + t} \frac{mg}{L}$.

- a) Find S(0) and write a sentence interpreting it.
 - $S(0) = \frac{5000}{.25} = 20000$. Therefore, immediately after the flood begins, the concentration os sediment is $20000 \frac{mg}{L}$.
- b) Find the behavior of S as $t \to \infty$ and as $t \to -\infty$, and for each, either write a sentence interpreting it or explain why it's not meaningful.

As $t \to \infty$, $S(t) \to \frac{500t}{t} = 500$. The same is true as $t \to -\infty$. The first statement means that over time, the concentration of sediment in the river will settle down to $500 \frac{mg}{L}$. The second statement is meaningless, since we have negative time.

c) Find the mathematical and practical domains of S.

The mathematical domain is $(-\infty, -.25) \cup (-.25, \infty)$, since we just need the denominator to be nonzero in a rational function. The practical domain is $[0, \infty)$, since we need positive time.

- d) Using the method from Quiz 5, find the behavior of S as $t \to -.25$ with t > -.25 and as $t \to -.25$ with t < -.25. Plugging in numbers close to -.25 but slightly bigger, we have (for example) S(-.249) = 4875500 and S(-.2499) = 48750500. It's pretty clear that as $t \to -.25$ with t > -.25, $S(t) \to \infty$. Doing the same process with numbers slightly less than -.25 shows us that as $t \to -.25$ with t < -.25, $S(t) \to -\infty$.
- e) Find $S^{-1}(C)$ and write a sentence interpreting what it does.

We have $C = \frac{500t + 5000}{.25 + t}$, so .25C + Ct = 500t + 5000. Thus Ct - 500t = 5000 - .25C, and so $t = S^{-1}(C) = \frac{5000 - .25C}{C - 500}$. S^{-1} takes the output of S to whatever input produced that output. In this example, that means that S(C) gives the number of days after which the concentration has fallen to C.

f) Find the domain of S^{-1} .

 S^{-1} is also a rational function, so we just need to figure out when the denominator is nonzero. This gives us $(-\infty, 500) \cup (500, \infty)$.

- g) Using your answer to part f), what must the image of S be? The image of S is the domain of S^{-1} , so it's also $(-\infty, 500) \cup (500, \infty)$.
- h) Find the behavior of S^{-1} as $C \longrightarrow \infty$ and interpret it.

As $C \to \infty$, $S^{-1}(C) \to \frac{-.25C}{C} = -.25$. This is apparently saying that if we want the time until we hit larger and larger concentrations, we should wait about -.25 days after the flood. This is clearly nonsense, but it should also not be too surprising: after the flood, the concentration starts at $20000 \frac{mg}{L}$ and only decreases, so asking for the time until larger and larger concentrations happen (eventually over 20000) won't produce a meaningful response.