DAXBACHER, Patricia (pd720)

Imperial College London

Department of Computing Academic Year **2020-2021**

Page created Tue Nov 3 23:15:07 GMT 2020

70051 rac101 2 t5 pd720 v1

Electronic submission

Mon - 02 Nov 2020 16:14:36

pd720

Exercise Information

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MŠc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101) **Issued:** Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020

Assessment: Individual Submission: Electronic

Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-10-31 20:21:31

For Markers only: (circle appropriate grade)

DAXBACHER,	Patricia	01975493	t5	2020-10-31 20:21:31	A *	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	${f E}$	\mathbf{F}
(pd720)											

Introduction to Symbolic AI Coursework 1: Logic

Patricia Daxbacher

November 2, 2020

- 1. i. If Michel isn't either fulfilled or rich, he won't live another five years.
 - $((\neg(p \lor q)) \to (\neg r))$
 - p: Michel is fulfilled.
 - q: Michel is rich.
 - r: Michel will live another five years.
 - ii. Unless the snowstorm doesn't arrive, Raheem will wear his boots; but I'm sure it will arrive.
 - $(((\neg p) \lor q) \land r)$
 - p: The snowstorm arrives.
 - q: Raheem will wear his boots.
 - r: I am sure the snowstorm will arrive.
 - iii. If Akira and Toshiro are on set, then filming will begin if and only if the caterers have cleared out.
 - $((p \land q) \to (r \leftrightarrow s))$
 - p: Akira is on set.
 - q: Toshiro is on set.
 - r: Filming will begin.
 - s: The caterers have cleared out.
 - iv. Either Irad arrived, or Sarah didn't: but not both!

$$((p \lor (\neg q)) \land (\neg (p \land (\neg q))))$$

- p: Irad arrived.
- q: Sarah arrived.
- v. It's not the case both that Herbert heard the performance and Anne-Sophie did, if the latter didn't answer her phone calls.

$$((\neg q) \to (\neg (p \land q)))$$

- p: Herbert heard the performance.
- q: Anne-Sophie heard the performance.
- r: Anne-Sophie answered her phone calls.
- 2. i. A formula A of propositional logic is *satisfiable* if there exists an atomic evaluation v such that $h_v(A) = \mathbf{t}$.
 - ii. Two formulas A and B of propositional logic are logically equivalent, noted as $A \equiv B$, if for all atomic evaluations v it holds that $h_v(A) = h_v(B)$.
 - iii. Prove that $\neg A$ is satisfiable if and only if $\neg \neg A \not\equiv \top$.
 - *Proof.* Let $\neg A$ be a satisfiable formula. Then there is some atomic evaluation v such that $h_v(\neg A) = \mathbf{t}$. By the propositional evaluation of \neg it follows that $h_v(A) = \mathbf{f}$ and

thus $h_v(\neg \neg A) = \mathbf{f}$. Therefore, $\neg \neg A$ is not logically equivalent to \top as $h_v(\neg \neg A) = \mathbf{f} \neq \mathbf{t} = h_v(\top)$.

Let $\neg \neg A \not\equiv \top$. It holds that $\neg \neg A \equiv A$ by the propositional evaluation of \neg . Thus, there is some evaluation v such that $h_v(A) = \mathbf{f}$ and $h_v(\neg A) = \mathbf{t}$. It follows by definition that $\neg A$ is satisfiable.

3. We use truth-tables to determine whether the following is valid or not: $(p \land \neg q \leftrightarrow \neg(\neg r \lor \neg p)) \rightarrow (\neg \neg q \rightarrow r)$.

p	\overline{q}	r	$(p \land \neg q)$	\leftrightarrow	$\neg(\neg r \lor \neg p))$	\rightarrow	$(\neg \neg q \to r)$
t	t	t	f	f	t	\mathbf{t}	t
\mathbf{t}	t	f	f	\mathbf{t}	${f f}$	${f f}$	${f f}$
\mathbf{t}	f	f	\mathbf{t}	${f f}$	${f f}$	\mathbf{t}	${f t}$
f	t	t	\mathbf{f}	\mathbf{t}	${f f}$	\mathbf{t}	${f t}$
f	f	t	f	\mathbf{t}	${f f}$	\mathbf{t}	${f t}$
\mathbf{t}	f	t	\mathbf{t}	\mathbf{t}	${f t}$	\mathbf{t}	${f t}$
f	t	f	\mathbf{f}	\mathbf{t}	${f f}$	\mathbf{f}	${f f}$
f	f	f	f	\mathbf{t}	${f f}$	\mathbf{t}	${f t}$

The given formula is not valid as there are valuations such that the formula is evaluated to false (marked in red in the truth table).

4. i. a. $p \wedge (\neg q \vee r)$

The formula is in CNF. The formula is not in DNF.

b. $\neg p$

The formula is in CNF and in DNF.

c. $p \wedge (q \vee (\beta \wedge r))$

The formula is neither in CNF nor in DNF.

d. \top

The formula is in CNF and in DNF.

e. $(p \wedge q) \vee (p \wedge q)$

The formula is in DNF. The formula is not in CNF.

f. $\neg \neg p \land (q \lor p)$

The formula is neither in CNF nor in DNF.

g. $p \wedge q$

The formula is in CNF and in DNF.

h. $p \vee q$

The formula is in CNF and in DNF.

- ii. Let S be a formula in CNF. It holds that $S \models \bot$ if and only if there is some derivation of the empty clause from S, i.e., $S \vdash_{\text{res}(\text{PL})} \emptyset$. Where $S \models \bot$ means nothing else than S is unsatisfiable. This property can be applied to derive algorithms for SAT solvers. Applying it naively to check SAT, we build all resolution-derivations from S. But also more efficient algorithms like Davis-Putnam or Davis-Logemann-Loveland have the property of the refutation-soundness and -completeness of a resolution derivation at its heart.
- iii. a. $\{\{p, s\}, \{q, r\}, \{\neg s, q\}, \{\neg p, \neg r, \neg s\}\}\$ $\Rightarrow \{\{p, s\}, \{\neg p, \neg r, \neg s\}\}\ [q \text{ was pure}]$

$$\Rightarrow \{\{p,s\}\} \ [\neg r \text{ was pure}]$$

b.
$$\{\{\neg p, q, r\}, \{\neg q\}, \{p, r, q\}, \{\neg r, q\}\}\}$$

 $\Rightarrow \{\{\neg p, r\}, \{p, r\}, \{\neg r\}\}\}$ [unit propagation by unit clause $\{\neg q\}$]
 $\Rightarrow \{\{\neg p\}, \{p\}\}\}$ [unit propagation by unit clause $\{\neg r\}$]
 $\Rightarrow \{\{\}\}\}$ [unit propagation by unit clause $\{p\}$]

5. If I'm going, then you aren't.

If you're not going, then neither is Tara.

Either Tara's going or I'm not.

Tara's going unless I am.

So, you're going.

I formalize it as: $p \to \neg q, \neg q \to \neg r, r \lor \neg p, r \lor p$, so q.

p: I am going.

q: You are going.

r: Tara is going.

To check the validity of the argument in propositional logic, we have to show that

$$p \to \neg q, \neg q \to \neg r, r \vee \neg p, r \vee p \models q.$$

Since $A_1, A_2, \ldots, A_n \models B$ iff $A_1 \wedge A_2 \wedge \ldots \wedge A_n \wedge \neg B$ is unsatisfiable, we can check the satisfiability of $(p \to \neg q) \wedge (\neg q \to \neg r) \wedge (r \vee \neg p) \wedge (r \vee p) \wedge \neg q$ to determine the validity of the aforementioned argument.

First, we convert it to clausal-form CNF: $\{\{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{r, p\}, \{\neg q\}\}\}$. Now we can use Davis Putnam to determine the satisfiability:

```
\{\{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{r, p\}, \{\neg q\}\}
```

- $\Rightarrow \{\{\neg r\}, \{r, \neg p\}, \{r, p\}\}\$ [unit propagation by unit clause $\{\neg q\}$]
- $\Rightarrow \{\{\neg p\}, \{p\}\}\$ [unit propagation by unit clause $\{\neg r\}$]
- \Rightarrow {{}} [unit propagation by unit clause {p}]
- \Rightarrow UNSATISFIABLE [since \emptyset is in the set]

Thus, the argument is valid.

- 6. I consider all sets in the signature of FOL, which are not specified, to be empty throughout the exercise.
 - i. All of Andreas's aunts' aunts gave a cupcake to someone other than Andrea. Consider the following FOL signature \mathcal{L} with:

$$C = \{Andrea\}$$

 $\mathcal{P}_1 = \{cupcake\}$

 $\mathcal{P}_2 = \{aunt\}$

 $\mathcal{P}_3 = \{gave\}$

 $\forall X \forall Y (aunt(X,Y) \land aunt(Y,Andrea) \rightarrow \exists Z \exists W (gave(X,Z,W) \land cupcake(Z) \land \neg (W = Andrea)))$

Where the predicates have the meaning:

cupcake(X) ('X is a cupcake')

aunt(X,Y) ('X is an aunt of Y')

gave(X, Y, Z) ('X gave Y to Z')

ii. There's a computer connected to every computer which isn't connected to itself. Consider the following FOL signature \mathcal{L} with:

$$\mathcal{P}_1 = \{computer\}$$

```
\mathcal{P}_2 = \{connected\}
    \exists X(computer(X) \land \forall Y(computer(Y) \land \neg connected(Y,Y) \rightarrow connected(X,Y)))
    Where the predicates have the meaning:
    computer(X) ('X is a computer')
    connected(X,Y) ('X is connected to Y')
iii. Any painting by Paul Klee in a British gallery hangs in a room where all Kandinsky
```

paintings in that gallery hang.

Consider the following FOL signature \mathcal{L} with:

 $C = \{paulKlee, kandinsky\}$

 $\mathcal{P}_1 = \{painting, room, gallery, british\}$

 $\mathcal{P}_2 = \{hangIn, locatedIn, painter\}$

 $\forall X \forall Y (painting(X) \land painter(paulKlee, X) \land locatedIn(X, Y) \land british(Y) \land gallery(Y)$ $\rightarrow \exists R(room(R) \land locatedIn(Y, R) \land \forall Z(painting(Z) \land painter(kandinsky, Z) \land Z(painting(Z) \land painter(kandinsky, Z)))$ $locatedIn(Z,Y) \rightarrow hangIn(Z,R)) \land hangIn(X,R)))$

Where the predicates have the meaning:

painting(X) ('X is a painting')

room(X) ('X is a room')

gallery(X) ('X is a gallery')

british(X) ('X is British')

hangIn(X,Y) ('X hangs in Y')

locatedIn(X,Y) ('X is (located) in Y')

painter(X, Y) ('X is painter of Y')

iv. If there's somebody who loves nobody, then it's false that everybody loves somebody. $\exists X \forall Y \neg loves(X,Y) \rightarrow \neg(\forall X \exists Y loves(X,Y))$ Where the predicate has the meaning:

loves(X,Y) ('X loves Y')

- 7. All the given formulas are sentences. Thus, by Corollary 3.12, it follows that $M, \sigma \models S$ does not depend on σ which means we can prove the following for an arbitrary M-assignment σ .
 - i. $\forall X(a(k,X) \rightarrow \neg (X=j))$ Let σ be an arbitrary M-assignment. Then $M, \sigma \models \forall X(a(k, X) \rightarrow \neg (X = j))$ iff for all X-variant assignments σ^* of σ it holds true that $M, \sigma^* \models a(k, X) \to \neg(X = j)$. Consider the X-variant σ^* with $\varphi_{\sigma^*}(X) = \varphi(j)$. Then it is true that $M, \sigma^* \models a(k, X)$ as $(\varphi_{\sigma^*}(k), \varphi_{\sigma^*}(X)) \in \varphi(a)$. But clearly $M, \sigma^* \not\models \neg (X = j)$ and by the evaluation of $'\rightarrow'$ it follows that $M, \sigma \not\models \forall X(a(k,X) \rightarrow \neg (X=j)).$
 - ii. $c(l) \to \exists X(b(X) \land c(X) \land a(l,X))$ Let σ be an arbitrary M-assignment. Then $M, \sigma \models c(l)$ iff $\varphi_{\sigma}(l) \in \varphi(c)$ which is true. Therefore, by the evaluation of \rightarrow we must show that $M, \sigma \models \exists X(b(X) \land b)$ $c(X) \wedge a(l,X)$). This is true iff for some X-variant assignment σ^* it holds that $M, \sigma^* \models b(X) \land c(X) \land a(l, X)$. Consider $\varphi_{\sigma^*}(X) = \varphi(j)$. Then $\varphi_{\sigma^*}(X) \in \varphi(b) \cap \varphi(c)$ and $(\varphi_{\sigma^*}(l), \varphi_{\sigma^*}(X)) \in \varphi(a)$. So, $M \models c(l) \rightarrow \exists X(b(X) \land c(X) \land a(l,X)).$
 - iii. $\exists X \neg \exists Y (\neg (X = Y) \land a(X, Y))$

Let σ be an arbitrary M-assignment. Then $M, \sigma \models \exists X \neg \exists Y (\neg (X = Y) \land a(X, Y))$ iff for some X-variant σ^* it holds true that $M, \sigma^* \models \neg \exists Y (\neg (X = Y) \land a(X, Y))$. Consider $\varphi_{\sigma^*}(X) = \blacksquare$. We want to show that for this σ^* the aforementioned is true in M. $M, \sigma^* \models \neg \exists Y (\neg (X = Y) \land a(X, Y)) \text{ holds true iff } M, \sigma^* \not\models \exists Y (\neg (X = Y) \land a(X, Y)).$ It holds that $\varphi(a)(\varphi_{\sigma^*}(X),\cdot) = \{(\blacksquare,\blacksquare)\}$. So, $\neg(X=Y) \land a(X,Y)$ is false in M for

 $\varphi_{\sigma^*}(X) = \blacksquare$ and every assignment of Y. Therefore, $M, \sigma^* \not\models \exists Y (\neg(X = Y) \land a(X, Y))$ is true.

To conclude: $M \models \exists X \neg \exists Y (\neg (X = Y) \land a(X, Y)).$

- iv. $\forall X(\neg s(X) \to \exists Y(c(Y) \land b(Y) \land a(X,Y)))$
 - Let σ be an arbitrary M-assignment. We have to show that for every X-variant σ^* of σ it holds that $M, \sigma^* \models \neg s(X) \to \exists Y(c(Y) \land b(Y) \land a(X,Y))$. $\neg s(X)$ is true iff $\varphi_{\sigma^*}(X) \in D \setminus \varphi(s) = \{\varphi(j), \varphi(k), \varphi(l)\}$. Consider σ^* such that $\varphi_{\sigma^*}(X) = \varphi(j)$. So, we need to check if the RHS evaluates to true for this assignment. Consider a Y-variant σ^{**} of σ^* , so we have that $\varphi_{\sigma^{**}}(X) = \varphi_{\sigma^*}(X)$. But since $\varphi(c) \cap \varphi(b) = \{\varphi(j), \varphi(k)\}$ and $(\varphi(j), \varphi(k)) \notin \varphi(a), (\varphi(j), \varphi(j)) \notin \varphi(a)$ it follows that $M, \sigma^{**} \not\models c(Y) \land b(Y) \land a(X,Y)$ and therefore $M \not\models \forall X(\neg s(X) \to \exists Y(c(Y) \land b(Y) \land a(X,Y)))$.
- v. $\forall X(\exists Y(\neg(X=Y) \land a(X,Y)) \rightarrow \exists Y(a(X,Y) \land a(Y,X)))$ Let σ be an arbitrary M-assignment and σ^* an X-variant of σ such that $\varphi_{\sigma^*}(X) = \varphi(k)$. The LHS of the conditional is true iff there is some Y-variant σ^{**} such that $M, \sigma^{**} \models a(X,Y)$ and $M, \sigma^{**} \models \neg(X=Y)$. $\neg(X=Y) \land a(X,Y)$ holds true in M for the following object pairs: $\{(\varphi(k), \varphi(j)), (\varphi(j), \varphi(l)), (\varphi(l), \varphi(j)), (\varphi(l), \varphi(k)), (\varphi(l), \square)\}$. Thus, for the specific assignment σ^* the LHS evaluates to true. To evaluate the RHS of the conditional to true we must now find some Y-variant σ^{***} of σ^* such that

 $M, \sigma^{***} \models a(X,Y) \land a(Y,X)$. We have that $\varphi_{\sigma^{***}}(X) = \varphi_{\sigma^*}(X) = \varphi(k)$. But there is

Therefore, $M \not\models \forall X (\exists Y (\neg (X = Y) \land a(X, Y)) \rightarrow \exists Y (a(X, Y) \land a(Y, X)))$

no object **obj** such that $(\mathbf{obj}, \varphi(k)) \in \varphi(a)$ and $(\varphi(k), \mathbf{obj}) \in \varphi(a)$.

vi. $\forall X \forall Y (a(X,j) \land a(Y,j) \rightarrow (a(X,Y) \lor a(Y,X)))$

Let σ be an arbitrary M-assignment and σ^* an X-variant of σ and σ^{**} a Y-variant of σ^* . For every combination of such assignments it must hold that $M, \sigma^{**} \models a(X,j) \land a(Y,j) \to (a(X,Y) \lor a(Y,X))$. Consider $\sigma^{**}(X) = \sigma^{**}(Y) = \varphi(k)$. Then the LHS of the conditional evaluates to true as $(\varphi(k), \varphi(j)) \in \varphi(a)$ but the RHS evaluates to false as $(\varphi(k), \varphi(k)) \notin \varphi(a)$ which evaluates the conditional to false.

Therefore, $M \not\models \forall X \forall Y (a(X,j) \land a(Y,j) \rightarrow (a(X,Y) \lor a(Y,X))).$