Hybrid Imputation Models Through Blocks

Stef van Buuren

2018/8/1, JSM 2018, Vancouver

Imputing multivariate missing data

Strategies

- Joint model (JM)
- Fully conditional specification (FCS)

Questions

- Can these be complementary strategies?
- When could hybrid imputation be useful?

Joint model (JM)

- Specify joint model P(Y, X)
 Derive P(Y^{mis}|Y^{obs}, X)
- ► Draw imputations Y^{mis} with Gibbs sampler

JM

Pro

- Conditionals are compatible
- Yield correct statistical inference under assumed JM
- ▶ Efficient parametrization possible
- Known theoretical properties

Con

- Lack of flexibility
- Can assume more than the complete data problem
- Leads to unrealistically large models

Fully conditional specification (FCS)

- Specify P(Y^{mis}|Y^{obs}, X)
 Draw imputations Y^{mis} with Gibbs sampler

FCS example: Multivariate Imputation by Chained Equations (MICE)

- ▶ Specify imputation models $P(Y_j^{\text{mis}}|Y_j^{\text{obs}},Y_{-j},X)$
- ▶ Fill in starting imputations
- And iterate

Fully conditional specification (FCS)

Pro

- Extremely flexible, close to the data
- Subset selection of predictors
- Modular, can preserve valuable work
- Appears to work very well in practice
- Easy to explain

Con

- Theoretical properties only known in special cases
- Possible incompatibility
- No computational shortcuts

Hybrids of JM and FCS

- ▶ Partition variables into b blocks h = 1, ..., b
- Example:

b	partioning	model
4	$\{Y_1\}, \{Y_2\}, \{Y_3\}, \{Y_4\}, X$	MICE
2	$\{Y_1, Y_2, Y_3\}, \{Y_4\}, X$	hybrid
1	$\{Y_1, Y_2, Y_3, Y_4\}, X$	JM

JM embedded within FCS

b	h	target	predictors	type
2	1	$\{Y_1, Y_2, Y_3\}$	Y_4, X	mult
2	2	Y_4	Y_1, Y_2, Y_3, X	univ

FCS embedded within FCS

h	j	target	predictors	type
1	1	Y_1	Y_2, Y_3, Y_4, X	univ
1	2	Y_2	Y_1, Y_3, Y_4, X	univ
1	3	Y_3	Y_1, Y_2, Y_4, X	univ
2	1	Y_4	Y_1, Y_2, Y_3, X	univ
	1 1 1	1 1 1 2 1 3	h j target 1 1 Y ₁ 1 2 Y ₂ 1 3 Y ₃ 2 1 Y ₄	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Consequence of blocks in mice()

- Main iteration loop over blocks
- ▶ dim(predictorMatrix): $b \times p$
- ▶ length(methods): b (instead of p)

Example: Multilevel data

```
library(mice, warn.conflicts = FALSE)
## Loading required package: lattice
library(miceadds)
## * miceadds 2.13-63 (2018-07-05 17:26:53)
d <- brandsma[, c("sch", "lpo", "iqv", "den")]</pre>
```

FCS multilevel (c.f. Chapter 7, FIMD2)

Idea 1: Embed joint model for multilevel data

Idea 2: Model-based imputation

- ▶ Define complete-data model $P(Y_1|Y_2,X)$
- ▶ Specify imputation model $P(Y_2|X)$ (no $Y_1!$)
- ▶ Rejection sampling to target $P(Y_2|Y_1,X)$
- Wu 2010, Bartlett 2015, Erler 2016
- R Software: smcfcs, mdmb, jomo
- Imputation compatible with complete-data model
- ► Can preserve deterministic relations
- Useful for strong, pre-specified complete-data models

Idea 3: Multivariate predictive mean matching

- Idea: Impute vector instead of scalar value
- ▶ Use redundancy analysis (van den Wollenberg 1977)
- Predictive mean matching using redundancy predictor
- ▶ Expected result: consistency within blocks, faster convergence

Idea 4: Imputing measurement scales

- ▶ Idea: Create module for imputing items + sum score
- ▶ Scale: items + sum score; some items are missing
- Items predicted by
 - 1. other items in scale
 - 2. sum scores other scales
- Expected result: simplification of model specification

predictorMatrix simplification: current method

```
##
     age a1 a2 s_a b1 b2 b3 s_b
## age
           0
## a1
      1 0 1 0 0 0 0
## a2 1 1 0 0 0 0 0
## sa 0 1 1
      1 0 0
            1 0 1 1
## b1
      1 0 0
            1 1 0 1
## b2
                        0
## b3
      1 0 0 1 1 1 0
                        0
              0
                1 1 1
      0
         0
           0
                        0
## s b
```

predictorMatrix simplification: new method

```
blocks <- list(age = "age",

A = c("a1", "a2", "s_a"),

B = c("b1", "b2", "b3", "s_b"))
```

```
## age a1 a2 s_a b1 b2 b3 s_b
## age 0 0 0 1 0 0 0 1
## A 1 0 0 0 0 0 0 1
## B 1 0 0 1 0 0 0 0
```

Idea 5: Combine imputation models from overlapping data

Source 1: $\{Y_1, Y_2\}$ given X - prefitted

Source 2: $\{Y_1, Y_3\}$ given X - prefitted

b	h	target	predictors	type
2	1	$\{Y_1, Y_2\}$	Y_3, X	mult
2	2	$\{Y_1,Y_3\}$	Y_2, X	mult

Conclusion

- ▶ Blocks are conceptually straightforward extension
- ▶ blocks implemented in mice 3.0
- Documentation still in the works
- Easy to specify hybrids of JM and FCS
 - ▶ Idea 1: Embed joint model for multilevel data
 - Idea 2: Model-based imputation
 - ▶ Idea 3: Multivariate predictive mean matching
 - ▶ Idea 4: Imputing measurement scales
 - ▶ Idea 5: Combine imputation models