Contents

1	1 Theorem 1.19				
	.1 Wilson's Theorem	1			
	.2 Factorization of the Norm	1			
2	Jemma 1.28	1			

1 Theorem 1.19

$$(-1)^{2k} = ((-1)^2)^k = 1^k = 1$$

(2k)! has 2k terms, and can therefore be also written as

$$(2k)! = (-1)(-2)\cdots(-2k+1)(-2k)$$

Now finally note that $-a \equiv p - a \mod p$, and the expression becomes $(p-1)! \mod p$.

1.1 Wilson's Theorem

Wilson's theorem in short:

 \mathbb{Z}_p is a field so all $x \in \mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ is a unit $\implies \bar{2} \cdot \overline{p-2} = \bar{1}$

$$(p-1)! \equiv (p-1)(p-2)! \mod p$$
$$\equiv -1 \cdot 1 \mod p$$

See also Pinter, 23G.

1.2 Factorization of the Norm

$$N: \mathbb{Z}[i] \to \mathbb{Z}$$

Since we have integer factorization in \mathbb{Z} , then we have $N(\alpha) \in \{1, p, p^2\}$.

$\overline{N(lpha)}$	N(eta)	$\alpha = a + ib$	$\beta = c + id$	lphaeta	
1	p^2	1	p	p	
1	p^2	-1	-p	p	
1	p^2	i	-ip	p	
1	p^2	-i	ip	p	
p^2	1	p	1	p	
p^2	1	-p	-1	p	
p^2	1	-ip	i	p	
p^2	1	ip	-i	p	

We are writing p in an equivalent way using units with the norm function.

We proved in the previous paragraph that p is not prime. Since these factorizations above are just equivalent ways of representing p, that only leaves $N(\alpha) = N(\beta) = p$.

2 Lemma 1.28

The only units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$.