School of Mathematics and Statistics Math1131-Algebra

Lec09: Complex numbers: Introduction

Laure Helme-Guizon (Dr H)
Laure@unsw.edu.au
Jonathan Kress
j.kress@unsw.edu.au

Red-Centre, Rooms 3090 and 3073

2020 Term 1

When you first learnt to count you used the natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

When you first learnt to count you used the natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

but soon you found you couldn't solve equations like

$$x + 5 = 3$$
.

When you first learnt to count you used the natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

but soon you found you couldn't solve equations like

$$x + 5 = 3$$
.

So you learnt about negative numbers and the integers

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}.$$

When you first learnt to count you used the natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

but soon you found you couldn't solve equations like

$$x + 5 = 3$$
.

So you learnt about negative numbers and the integers

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}.$$

But, even though multiplication is defined for both $\mathbb N$ and $\mathbb Z$, these numbers can not be used to solve equations like

$$3x = 5$$
.

When you first learnt to count you used the natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

but soon you found you couldn't solve equations like

$$x + 5 = 3$$
.

So you learnt about negative numbers and the integers

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}.$$

But, even though multiplication is defined for both $\mathbb N$ and $\mathbb Z$, these numbers can not be used to solve equations like

$$3x = 5$$
.

So you graduated to the rational numbers

$$\mathbb{Q} = \left\{ \frac{p}{q} \ : \ \gcd(p,q) = 1, \ q \neq 0 \right\}.$$

Fields

Definition of a field

A field $\mathbb F$ is a set of with two operations, + and \times , that satisfies the following properties for all $x,y,z\in\mathbb F$:

- 1. Associative laws: (x + y) + z = x + (y + z) and x(yz) = (xy)z
- 2. Commutative laws: x + y = y + x and xy = yx
- 3. Distributive law: x(y+z) = xy + xz
- 4. Existence of 0: There is a 0 such that 0 + x = x + 0 = x
- 5. Existence of 1: There is a (non-zero) 1 such that 1x = x
- 6. Existence of negatives: There is -x such that x + (-x) = 0
- 7. Existence of inverses: If $x \neq 0$ there is x^{-1} such that $x^{-1}x = 1$

Example 1.

- b) The rational numbers \mathbb{Q} (are /are not) a field.

"closed under . . . " meaning

Note that for + and \times to be operations on \mathbb{F} , their result must be in \mathbb{F} . We say that \mathbb{F} is *closed* under + and \times .

Exercise 2.

- a) Is the interval $I = [0, \infty)$ closed under + and \times ?
- b) Is it a field?

Exercise 3. What about $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$?

- a) Is it closed under + and \times ?
- b) Is it a field?

Exercise 4. [Left to the reader] Show that \mathbb{Q} is closed under + and \times .

Can you solve

$$x^2 = 2?$$

Pythagoras knew this could not be solved using rational numbers but kept this fact secret!

Can you solve

$$x^2 = 2?$$

Pythagoras knew this could not be solved using rational numbers but kept this fact secret!

To solve this equation we need a field called the *real numbers* \mathbb{R} which fills in the gaps, such as $\sqrt{2}$, in the rationals.

Can you solve

$$x^2 = 2?$$

Pythagoras knew this could not be solved using rational numbers but kept this fact secret!

To solve this equation we need a field called the *real numbers* \mathbb{R} which fills in the gaps, such as $\sqrt{2}$, in the rationals.

Happy now? Can we solve all the equations we want to solve?

Can you solve

$$x^2 = 2?$$

Pythagoras knew this could not be solved using rational numbers but kept this fact secret!

To solve this equation we need a field called the *real numbers* \mathbb{R} which fills in the gaps, such as $\sqrt{2}$, in the rationals.

Happy now? Can we solve all the equations we want to solve?

What about

$$x^2 = -1$$
?

There is no real number solution!

There is no real number solution to $x^2=-1$, but we can extend out number system again by introducing the imaginary unit i and thinking of this as $i=\sqrt{-1}$ (although this notation should be avoided) In other words, the square of i is -1, that is $i^2=-1$

There is no real number solution to $x^2=-1$, but we can extend out number system again by introducing the imaginary unit i and thinking of this as $i=\sqrt{-1}$ (although this notation should be avoided) In other words, the square of i is -1, that is $i^2=-1$

What do we gain by extending our number system?

- We can now solve $x^2 = -1$, but also $x^2 = -24$ and even any quadratic equation.
- Using complex numbers, it will be possible to factorise any polynomial. Yes, any!

There is no real number solution to $x^2=-1$, but we can extend out number system again by introducing the imaginary unit i and thinking of this as $i=\sqrt{-1}$ (although this notation should be avoided) In other words, the square of i is -1, that is $i^2=-1$

What do we gain by extending our number system?

- We can now solve $x^2 = -1$, but also $x^2 = -24$ and even any quadratic equation.
- Using complex numbers, it will be possible to factorise any polynomial. Yes, any!

What do we lose?

There is no real number solution to $x^2=-1$, but we can extend out number system again by introducing the imaginary unit i and thinking of this as $i=\sqrt{-1}$ (although this notation should be avoided) In other words, the square of i is -1, that is $i^2=-1$

What do we gain by extending our number system?

- We can now solve $x^2 = -1$, but also $x^2 = -24$ and even any quadratic equation.
- Using complex numbers, it will be possible to factorise any polynomial. Yes, any!

What do we lose?

- sign
- ordering

Algebra with Complex numbers

Algebra with Complex numbers

Calculation with i

We treat i like a variable but replace i^2 with -1 since $i^2 = -1$.

Example 5.

$$(3+2i) + (5-4i) = 3+5+(2-4)i$$

= $8-2i$

b)
$$(3+2i)(5-4i) = 3 \times 5 + (3 \times (-4) + 2 \times 5)i + 2 \times (-4)i^{2}$$

$$= 15 + (-12 + 10)i - 8 \times (-1)$$

$$= 15 + 8 - 2i$$

$$= 23 - 2i.$$

Algebra with Complex numbers

$$i^2 = -1$$

Example 6. Expand and simplify z = -i + (2+i)(1-3i) - 5

Exercise 7. Simplify $1, i, i^2, i^3, i^4, i^5, i^6, i^7, i^8, i^9, \dots$

With complex numbers, we can now solve ANY quadratic equation

We introduced i to solve the quadratic equation $x^2=-1$. Can we solve other quadratic equations?

Exercise 8. What about $x^2 = -9$?

Exercise 9.

Solve in $\mathbb C$ the equation $z^2+2z+3=0$ by "completing the square".

The field of complex numbers $\mathbb C$

The set of complex numbers

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

along with the operations of + and \times defined by

$$(a+bi)+(c+di) \stackrel{def}{=} (a+c)+(b+d)i$$

and

$$(a+bi) \times (c+di) \stackrel{def}{=} ac-bd + (ad+bc)i$$

forms a field.

Exercise 10. Check the field properties!

Therefore, subtraction is:

$$(a+bi)$$
— $(c+di) = (a-c) + (b-d)i$

We will discuss division in the next lecture.

Representing complex numbers in the plane

• The set of complex numbers

$$\mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \}$$

is often represented as a plane called the Argand diagram or complex plane.

ullet If a and b are real numbers then the complex number z=a+bi has real part and imaginary part

$$Re(z) = a$$
 and $Im(z) = b$.

The imaginary part is a real number, it is "b", not "bi".

Exercise 11. Find the real and imaginary parts of (a) 2 + 3i, (b) 6i, (c) -2.

If a point in the plane has coordinates (1,3), we can store its coordinates in the complex number 1+3i and identify the point in the plane and the complex number.

Exercises

Exercise 12. For z = 2 + 3i and w = 4 - 7i evaluate:

- (a) z+w
- (b) 5z + 6w
- (c) z 2w
- (d) zw

Exercises

Exercise 13. Solve $z^2 - 6z + 34 = 0$.

Exercises

Exercise 14. Show that z=2+i is a solution of the cubic equation

$$z^3 - 5z^2 + 9z - 5 = 0.$$

Maple

```
> # In Maple, the imaginary unit is I not i.

z := 2 + 3*I;
w := 4 - 7*I;

z+w;
5*z + 6*w;
z - 2*w;
z*w;

z := 2 + 3 I

w := 4 - 7 I

6 - 4 I

34 - 27 I

-6 + 17 I

29 - 2 I
```

