线性代数期末复习题(一)

一、简答题(每小题 5 分, 共 30 分): 请根据课程内容作出清晰的表述和推导; 需要作判断的题目请通过推导或举反例等方式给出你的理由。

1. 设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, 其中 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,又设矩阵

$$B = (2\alpha_1, -2\alpha_1 + 3\alpha_2, \alpha_1 + \alpha_2 - 2\alpha_3)$$
.

已知|A|=-2, 求|B|.

2. 已知n 阶矩阵 $A = (a_{ii})_{n \times n}$,请写出矩阵 AA^T 的第k 行第l 列的元素。

3. 设矩阵
$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & 0 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$, 则 $A 与 B$ 是否等价?请说明你的理由。

- 4. 已知 $\alpha=(1,-2,1)^T$, $A=E+k\alpha\alpha^T$,其中E为三阶单位矩阵,且 $k\neq 0$. 如果A是正交矩阵,试求 k的值。
- 5. 已知 4 阶方阵 $A=\left(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\right)$, 其中 α_{1},α_{2} 线性无关,且 $\alpha_{3}=\alpha_{1}+2\alpha_{2}$, $\alpha_{4}=3\alpha_{1}+4\alpha_{2}$. 求齐次方程组 Ax=0 的解空间的维数和一组基。
- 6. 已知三阶方阵 A 与 B 相似,且满足: $\left|A-E\right|=0$, $\left|A+2E\right|=0$, $\left|A-3E\right|=0$,其中 E 为三阶单位矩阵。若 $C=B^{-1}+3B^*+5E$,求 C 的所有特征值。

二、计算题(每小题10分,共60分)

 D_{ij} $(i, j = 1, 2, \dots, n)$ 所对应的代数余子式为 A_{ij} . 试计算 $A_{n1} + 2A_{n2} + \dots + nA_{nn}$.

2. 设矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
,且满足 $AX + E = A^2 + X$,其中 E 为三阶单位矩阵。试求矩阵 X .

- 3. 设向量组 $\alpha_1 = (1,-1,2,4)^T$, $\alpha_2 = (0,3,1,2)^T$, $\alpha_3 = (3,t,7,14)^T$, $\alpha_4 = (2,1,5,5)^T$.
- (1) t为何值时向量组线性相关?此时求向量组的一个极大无关组,并将其余向量用极大无关组线性表出;
- (2) t 为何值时向量组线性无关? 此时将向量 $\beta = (1, -7, 0, 0)^T$ 表示为向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的线性组合。

4. 已知线性方程组
$$(I)$$

$$\begin{cases} x_1 + x_2 - 2x_4 = -6 \\ 4x_1 - x_2 - x_3 - x_4 = 1 \\ 3x_1 - x_2 - x_3 = 3 \end{cases}$$
 (II)
$$\begin{cases} x_1 + mx_2 - x_3 - x_4 = -5 \\ nx_2 - x_3 - 2x_4 = -11 \\ x_3 - 2x_4 = -t + 1 \end{cases}$$

- (1) 求解线性方程组 (I),用其导出组的基础解系表示全部解
- (2) 当方程组 (II) 中的参数 m, n, t 为何值时,方程组(I), (II) 同解?
- 5. 设A 是n 阶方阵,且满足 $A^2 + 3A 4E = O$. 请说明: (1) r(A + 4E) + r(A E) = n; (2) A 相似于一个对角矩阵。
- 6. 设三阶实对称矩阵 A 的特征值是1,0,-1. 其中,对应于特征值1,0 的特征向量分别为

$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.$$

试求: (1) 矩阵 A 对应于特征值 -1 的特征向量; (2) 矩阵 A^{1000} .

三、证明题(10分)

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,向量组 $\alpha_2, \alpha_3, \alpha_4$ 线性无关,问

- (1) α_1 能否由 α_2 , α_3 线性表出?证明你的结论。
- (2) α_4 能否由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出?证明你的结论。

线性代数期末复习题(二)

一、简答题(每小题 5 分, 共 30 分): 请根据课程内容作出清晰的表述和推导; 需要作判断的题目请通过推导或举反例等方式给出你的理由。

1. 试计算
$$f(x) = \begin{vmatrix} 2x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} + x^4 = x^3$$
的系数。

2. 若
$$A = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$, 则有 $A^2 - B^2 = (A + B)(A - B)$ 吗? 请说明理由。

- 3. 向量组 $\alpha_1 = (0, 2, 1)^T$, $\alpha_2 = (2, 1, 1)^T$, $\alpha_3 = (4, 2, 2)^T$ 是线性相关还是线性无关 ? 请说明理由。
- 4. 已知 $A \ge m \times n$ 矩阵,请写出 n 元线性方程组 $AX = \beta$ 无解,有唯一解和无穷多解的判定方法。
- 5. 已知 $\alpha = (1.0.0)^T$, $A = E 2\alpha\alpha^T$, 其中E 为三阶单位矩阵。 请说明A 是正交矩阵。
- 6. 设A为n阶方阵,请至少写出6个与"方阵A可逆"等价的条件。

二、计算题(每小题10分,共60分)

$$1. 设6阶行列式 $D_6 = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 & 0 & 0 \\ 1 & 0 & 5 & 0 & 0 & 0 \\ 1 & 6 & 0 & 0 & 0 & 0 \end{vmatrix},$$$

求第一行元素的代数余子式之和 $A_{11} + A_{12} + A_{13} + A_{14} + A_{15} + A_{16}$.

2. 同阶方阵
$$A, B$$
 满足: $A + B = AB$. (1) 证明: $(B - E)^{-1} = A - E$: (2) 若 $B = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 求 A .

3. 设向量组
$$\alpha_1 = (1,0,2,3)^T$$
, $\alpha_2 = (1,1,3,5)^T$, $\alpha_3 = (1,-1,3,1)^T$, $\alpha_4 = (1,2,4,t+9)^T$. 问: t 为何值时向量组线性相关? 此时求向量组的一个极大无关组,并将其余向量用该极大无关组线性表出。

4. 设
$$A$$
 是四阶方阵, $A=\left(\alpha_1,\ \alpha_2,\ \alpha_3,\ \alpha_4\right)$, A 的列秩为 2,且对向量 β 有:
$$\alpha_1+\ \alpha_2+\ \alpha_3+\ \alpha_4-\beta=O,$$

$$\alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4 - \beta = O,$$

 $\alpha_2 + 2\alpha_3 + 3\alpha_4 - \beta = O$, 表 方程组 $4X - \beta$ 的通知

其中
$$O$$
 是四维列向量。求方程组 $AX = \beta$ 的通解。

5. 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & c \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & d \end{pmatrix}$, 且 A,B 相似。试求 (1) c,d 的值;(2) 可逆矩阵 P 使

得 $P^{-1}AP = B$.

6. 已知实对称矩阵
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
. 求正交矩阵 P ,使得 P^TAP 为对角矩阵。

	$,,lpha_3$ 线性无关,向				
(1) β 可由 α_1 ,	$lpha_2,lpha_3$ 线性表出;((2) $\beta \oplus \alpha_1, \alpha_2$	$, \alpha_3$ 的线性表出	方法是唯一的。	