

The 2024 ICPC Vietnam Northern Provincial Programming Contest

Hosted by: HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Date: October 27^{th} , 2024

OVERVIEW

Note: All problems use standard input/output (STDIN/STDOUT)

Problem A: PILE	1
Problem B: HUNTING DOG	2
Problem C: MAXIMUM SUM	3
Problem D: COMPLETE TASKS	4
Problem E: DIVISIBILITY FACTOR	5
Problem F: INDEPENDENT LINE	6
Problem G: NICESTR	7
Problem H: PRINTING	8
Problem I: REPLACEMENT	10
Problem J: SENSORS	11
Problem K: PALINDROMIC SEQUENCE	12
Problem L: EQPAIR	13

The 2024 ICPC Vietnam Northern Provincial Programming Contest

Problem A

Time limit: 0.5 seconds

Given a sequence of n piles $\{1, 2, ..., n\}$ on a straight line. The pile i is located at the coordinate i and has height h[i]. We need to make a string connection between pile 1 and pile n using some intermediate piles i[1], i[2], ..., i[k] (1 < i[1] < i[2] < i[3] < ... < i[k] < n). (denote i[0] = 1, i[k+1] = n). Due to a technical constraint, two consecutive selected piles must have balanced heights and be close together. In particular, for 2 consecutive selected piles i[j] and i[j+1] (j=0,1,...,k), we have constraints:

- $i[j+1] i[j] \leq D$
- $|h[i[j]] h[i[j+1]]| \le H$

Find the subset of intermediate piles satisfying the constraint above such that the sum of heights of the selected intermediates is minimal.

Input

- Line 1: contains 3 positive integers n, D, H $(1 \le n \le 10000, 1 \le D \le n, 1 \le H \le 10000)$
- Line 2: contains n positive integers h[1], h[2], ..., h[n] $(1 \le h[i] \le 10000)$

Output

Write the sum of heights of piles selected in the solution, including piles 1 and n (write -1 if no solution is found)

Sample Input	Sample Output
13 4 2	13
4 1 7 2 6 3 5 1 7 5 3 4 3	

Explanation

Piles used are 1, 4, 8, 11, 13 and the sum of heights is 4 + 2 + 1 + 3 + 3 = 13