A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and

free from seasonal variations (July, 1964–April, 1965). A possible explanation for the observed excess noise temperature is the one given by Dicke, Peebles, Roll, and Wilkinson (1965) in a companion letter in this issue.

The total antenna temperature measured at the zenith is 6.7° K of which 2.3° K is 6.7° - 2.3° - 0.9° due to atmospheric absorption. The calculated contribution due to ohmic losses in the antenna and back-lobe response is 0.9° K.

The radiometer used in this investigation has been described elsewhere (Penzias and Wilson 1965). It employs a traveling-wave maser, a low-loss (0.027-db) comparison switch, and a liquid helium-cooled reference termination (Penzias 1965). Measurements were made by switching manually between the antenna input and the reference termination. The antenna, reference termination, and radiometer were well matched so that a round-trip return loss of more than 55 db existed throughout the measurement; thus errors in the measurement of the effective temperature due to impedance mismatch can be neglected. The estimated error in the measured value of the total antenna temperature is 0.3° K and comes largely from uncertainty in the absolute calibration of the reference termination.

The contribution to the antenna temperature due to atmospheric absorption was obtained by recording the variation in antenna temperature with elevation angle and employing the secant law. The result, 2.3° ± 0.3° K, is in good agreement with published values (Hogg 1959; DeGrasse, Hogg, Ohm, and Scovil 1959; Ohm 1961).

The contribution to the antenna temperature from ohmic losses is computed to be 0.8° ± 0.4° K. In this calculation we have divided the antenna into three parts: (1) two non-uniform tapers approximately 1 m in total length which transform between the $2\frac{1}{8}$ -inch round output waveguide and the 6-inch-square antenna throat opening; (2) a double-choke rotary joint located between these two tapers; (3) the antenna itself. Care was taken to clean and align joints between these parts so that they would not significantly increase the loss in the structure. Appropriate tests were made for leakage and loss in the rotary joint with negative results.

The possibility of losses in the antenna horn due to imperfections in its seams was eliminated by means of a taping test. Taping all the seams in the section near the throat and most of the others with aluminum tape caused no observable change in antenna temperature.

The backlobe response to ground radiation is taken to be less than 0.1° K for two reasons: (1) Measurements of the response of the antenna to a small transmitter located on the ground in its vicinity indicate that the average back-lobe level is more than 30 db below isotropic response. The horn-reflector antenna was pointed to the zenith for these measurements, and complete rotations in azimuth were made with the transmitter in each of ten locations using horizontal and vertical transmitted polarization from each position. (2) Measurements on smaller horn-reflector antennas at these laboratories, using pulsed measuring sets on flat antenna ranges, have consistently shown a back-lobe level of 30 db below isotropic response. Our larger antenna would be expected to have an even lower back-lobe level.

From a combination of the above, we compute the remaining unaccounted-for antenna temperature to be 3.5° ± 1.0° K at 4080 Mc/s. In connection with this result it should be noted that DeGrasse et al. (1959) and Ohm (1961) give total system temperatures at 5650 Mc/s and 2390 Mc/s, respectively. From these it is possible to infer upper limits to the background temperatures at these frequencies. These limits are, in both cases, of the same general magnitude as our value.

We are grateful to R. H. Dicke and his associates for fruitful discussions of their results prior to publication. We also wish to acknowledge with thanks the useful comments and advice of A. B. Crawford, D. C. Hogg, and E. A. Ohm in connection with the problems associated with this measurement.

Note added in proof.—The highest frequency at which the background temperature of the sky had been measured previously was 404 Mc/s (Pauliny-Toth and Shakeshaft 1962), where a minimum temperature of 16° K was observed. Combining this value with our result, we find that the average spectrum of the background radiation over this frequency range can be no steeper than $\lambda^{0.7}$. This clearly eliminates the possibility that the radiation we observe is due to radio sources of types known to exist, since in this event, the spectrum would have to be very much steeper.

> A. A. Penzias R. W. WILSON

May 13, 1965 BELL TELEPHONE LABORATORIES, INC CRAWFORD HILL, HOLMDEL, NEW JERSEY

REFERENCES

Crawford, A. B., Hogg, D. C., and Hunt, L. E. 1961, Bell System Tech. J., 40, 1095.

DeGrasse, R. W., Hogg, D. C., Ohm, E. A., and Scovil, H. E. D. 1959, "Ultra-low Noise Receiving System for Satellite or Space Communication," Proceedings of the National Electronics Conference, 15,

Dicke, R. H., Peebles, P. J. E., Roll, P. G., and Wilkinson, D. T. 1965, Ap. J., 142, 414. Hogg, D. C. 1959, J. Appl. Phys., 30, 1417
Ohm, E. A. 1961, Bell System Tech. J., 40, 1065
Pauliny-Toth, I. I. K., and Shakeshaft, J. R. 1962, M.N., 124, 61.
Penzias, A. A. 1965, Rev. Sci. Instr., 36, 68.
Penzias, A. A., and Wilson, R. W. 1965, Ap. J. (in press).