

Stereo Matching

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

Recall: Stereo Rectification

What can we do after rectification?

Depth Estimation via Stereo Matching

- 1. Rectify images
 (make epipolar lines horizontal)
- 2. For each pixel
 - a. Find epipolar line
 - b. Scan line for best match
 - c. Compute depth from disparity

$$Z = \frac{bf}{d}$$

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Normalized cross-correlation

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Formula

$$\sum_{(i,j)\in W} |I_1(i,j)-I_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j)|$$

$$\frac{\sum_{(i,j)\in W}I_{1}(i,j).I_{2}(x+i,y+j)}{\sqrt[2]{\sum_{(i,j)\in W}I_{1}^{2}(i,j).\sum_{(i,j)\in W}I_{2}^{2}(x+i,y+j)}}$$

Effect of window size

W = 20

Effect of window size

W = 20

Smaller window

- + More detail
- More noise

Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

Improving Stereo Block Matching

Block matching

Ground truth

What are some problems with the result?

How can we improve depth estimation?

How can we improve depth estimation?

Too many discontinuities.
We expect disparity values to change slowly.

Let's make an assumption: depth should change smoothly

Stereo matching as ...

Energy Minimization

What defines a good stereo correspondence?

1. Match quality

Want each pixel to find a good match in the other image

2. Smoothness

If two pixels are adjacent, they should (usually) move about the same amount

energy function (for one pixel)

$$E(d) = E_d(d) + \lambda E_s(d)$$
data term smoothness term

energy function (for one pixel)

$$E(d) = E_d(d) + \lambda E_s(d)$$
data term smoothness term

Want each pixel to find a good match in the other image (block matching result)

Adjacent pixels should (usually) move about the same amount (smoothness function)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$
 data term $(x,y)\in I$

SSD distance between windows centered at I(x, y) and J(x+d(x,y), y)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

SSD distance between windows centered at I(x, y) and J(x+d(x,y), y)

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term
$$(p,q) \in \mathcal{E}$$

 ${\mathcal E}$: set of neighboring pixels

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term $(p,q) \in \mathcal{E}$

$$V(d_p,d_q) = |d_p - d_q|$$
L₁ distance

$$V(d_p,d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$
 "Potts model"

Dynamic Programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP)

D(x,y,d): minimum cost of solution such that d(x,y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \{D(x - 1, y, d') + \lambda |d - d'|\}$$

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001