OGDEN AIR LOGISTICS CENTER HILL AFB UT PROPELLANT AN--ETC F/G 21/9.2 PROPELLANT SURVEILLANCE REPORT, LGM-30F & G STAGE I, PHASE G, S--ETC(U) MAY 81 J A THOMPSON MANDA-458(81) NL -A100 361 CLASSIFIED les A0: A0:036

HEADQUARTERS

OGDEN AIR LOGISTICS CENTER

UNITED STATES AIR FORCE

HILL AIR FORCE BASE, UTAH 84056

PROPELLANT
SURVEILLANCE REPORT
LGM-30 F&G STAGE 1
PHASE G, SERIES I
TP-H1011

PROPELLANT ANALYSIS LABORATORY

MANPA REPORT

458(81)

MAY 1981

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

DTC FILE COP

81 6 15 115

MANPA REPORT NR 458(81) MMWRBM PROJECT MO4046C-WNL0529

PROPELLANT SURVEILLANCE REPORT.

Component & Combustion Test Unit

10

Engineering & Statistical Review By

OHN K. SCAMBIA, Project Engineering Service Engineering

EDWARD J. ERICKSON, Math/Stat Data Analysis Unit

Recommended Approval By

Component & Combustion Test Unit

Physical & Mechanical Test Unit

Approved By

MNVERSO, Chief

Propellant Analysis Laboratory

May 1981

Industrial Products and Landing Gear Division Directorate of Maintenance Ogden Air Logistics Center United States Air Force Hill Air Force Base, Utah 84056

ABSTRACT

This report contains propellant test results from cartons of TP-H1011 bulk propellant representing LGM-30F and G First Stage Minuteman Motors. This report uses a statistical approach to analyze the bulk carton propellant data. Testing was accomplished in accordance with MMWRBM Project M04046C-WNL01529.

The data from this test period are combined with data from previous testing and entered into the GO85 Computer for storage, analysis, and regression analysis. From the statistical analysis of all data tested to date (fifteen years for F & G), significant degradation of the propellant does not appear likely for at least two years past the oldest data point.

Each point on the regression plot represents the mean of all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot or group of regression plots. The data range at any age can be found by suitable inquiry of the GO85 System.

TABLE OF CONTENTS

	Page
Abstract	11
List of Figures	iv
List of References	viii
Glossary of Terms and Abbreviations	xiii
Introduction	1
Table 1 - Test Program	2
Statistical Approach	3
Test Results	5
Conclusions	9
Table 2 - Regression Summary	10
Distribution List	107
pp1473	108

7	T	CT.	Ω	T	FI	m.	Œ	r.	c
- 1	·Li	эτ	u	r	r L	toi.	ĸ	٠.	٠,

Figure Nr		Page
	Regression Plot, Very Low Rate Tensile	
1	Strain at Maximum Stress	14
2	Maximum Stress	15
3	Strain at Rupture	16
4	Stress at Rupture	17
5	Modulus	19
	Regression Plot, Low Rate Biaxial Tensile	
6	Strain at Maximum Stress	21
7	Maximum Stress	22
8	Stress at Rupture	23
9	Modulus	24
	Regression Plot, Low Rate Tensile	
10	Strain at Maximum Stress	26
11	Maximum Stress	27
12	Strain at Rupture	28
13	Stress at Rupture	29
14	Modulus	30
	Regression Plot, High Rate Triaxial Tensile	
15	Strain at Maximum Stress	32
16	Maximum Stress	33
17	Strain at Rupture	34
18	Modulus	35
	Regression Plot, High Rate Hydrostatic Tensile	
19	Strain at Maximum Stress	37
20	Maximum Stress	38
21	Strain at Rupture	39

LIST	OF.	FIGURES	(cont)

Figure Nr		Page
22	Stress at Rupture	40
23	Modulus	41
24	Regression Plot, Tear Energy	43
	Regression Plot, Stress Relaxation, .5% Strain, -65°F	
25	Modulus at 10 sec	45
26	Modulus at 50 sec	46
27	Modulus at 100 sec	48
28	Modulus at 1000 sec	49
	Regression Plot, Stress Relaxation, .5% Strain, ~40°F	
29	Modulus at 10 sec	51
30	Modulus at 50 sec	52
31	Modulus at 100 sec	53
	Regression Plot, Stress Relaxation, 3% Strain, 20°F	
32	Modulus at 10 sec	55
33	Modulus at 50 sec	56
34	Modulus at 100 sec	57
35	Modulus at 1000 sec	58
	Regression Plot, Stress Relaxation, 3% Strain, 77°F	
36	Modulus at 10 sec	60
37	Modulus at 50 sec	61
38	Modulus at 100 sec	62
39	Modulus at 1000 sec	63
	Regression Plot, Stress Relaxation, 3% Strain, 100°F	
40	Modulus at 10 sec	65
41	Modulus at 50 sec	66

1/2

LIST OF FIGURES (cont)

Figure Nr		Page
42	Modulus at 100 sec	67
43	Modulus at 1000 sec	68
	Regression Plot, Stress Relaxation, 3% Strain, 140°F	
44	Modulus at 10 sec	70
45	Modulus at 50 sec	71
46	Modulus at 100 sec	72
47	Modulus at 1000 sec	73
	Regression Plot, Stress Relaxation, 3% Strain 180°F	
48	Modulus at 10 sec	75
49	Modulus at 50 sec	76
50	Modulus at 100 sec	77
51	Modulus at 1000 sec	78
52	Regression Plot, Sol Gel, Crosslink Density	80
53	Regression Plot, Constant Strain	82
54	Regression Plot, Hardness, 10 sec Reading	84
	Regression Plot, Pressure Time	
55	Maximum Pressure	86
56	Time to Maximum Pressure	87
	Regression Plot, TCLE	
57	TCLE Above Tg	89
58	TCLE Below Tg	90
	Regression Plot, TGA, 9°C rise/min	
59	Ignition Temperature	92
60	% Weight Loss at Ignition	93
	Regression Plot, DTA, 12°C rise/min	
61	Endotherm	95

LIST OF FIGURES (cont)

Figure Nr		1276
62	Exotherm 1	96
63	Exotherm 2	98
64	Exotherm 3	100
65	Regression Plot, Burning Rate, 1000 psi	102
	Regression Plot, DSC	
66	Endotherm	104
67	Exotherm 1	105
68	Exotherm 2	106

LIST OF REFERENCES

Report Nr	<u>Title</u>	Report Date
	LGM-30 First Stage, Wing I Test Reports	
29A	Test Report (Missile in silo)	13 Jan 64
29B	Zero Time Test Results	29 Jan 64
29C	Zero Time Test Results (Supplement 1)	30 Mar 64
29D	Zero Time Test Results (Aft Closure)	9 Jun 64
29E	Zero Time (Aft Closure Supplement 1)	24 Jun 64
29F	ATP Phase I Test Results	30 Mar 65
29G	ATP Phase I Test Results	19 Aug 65
29Н	ATP Phase I Test Results	10 Sep 65
32A	Zero Time, Wings II-V Test Results	17 Mar 65
32B	Zero Time, Wings II-V Test Results (Aft Closure)	18 Mar 65
32C	ATP Phase I, Wings II-V Test Results	3 Nov 65
49	ATP Phase I, Wings II-V (First Group)	18 Mar 66
53	ATP Phase I, Wings II-V (Second Group)	22 Apr 66
55	ATP Phase I, wings II-V (Third Group)	29 Apr 66
58	ATP Phase I, Wings II-V (Fourth Group)	6 May 66
61	ATP Phase I, Wings II-V (Fifth Group)	10 Jun 66
66	ATP Phase I, Wings II-V (Sixth Group)	22 Jul 66
76	ATP Phase II, Wing I Test Results	24 Jan 67
78	Zero Time, Wing VI Test Results	3 Feb 67
104	ATP Phase I, Wing VI (First Group	12 Oct 67
119	ATTO Phase II Wines II V (Pinet Crown)	E Wa- 60

Report Nr	<u>Title</u>	Report Date
126	ATP Phase II, Wings II-V (Second Group)	11 Apr 68
130	ATP Phase II, Wings II-V (Third Group)	3 May 68
162	ATP Phase I, Wing VI (Second Group)	30 Sep 69
176	ATP Phase II, Wing VI (First Group)	15 Apr 70
181	ATP Phase III, Wing I	7 May 70
185	ATP Phase I, Wing VI (Third Group)	22 Jun 70
195	ATP Phase III, wings II-V (Retest)	29 Oct 70
223	Surveillance Report LGM-30 Stage I (TP-H1011)	Sep 71
239	Surveillance Report LGM-30 Stage I (TP-H1011 and TP-H1043)	Apr 72
258	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 72
268	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	May 73
271	Surveillance Report LGM-30 F & G Stage I Phase A Series II, (TP-H1011)	Jul 73
277	Surveillance Report LGM-30 F & G Stage I Phase A Series III, (TP-H1011)	Oct 73
280	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 73
288	Propellant Surveillance Report LGM-30 A & B, Stage I, TP-H1043	Mar 74
290	Propellant Surveillance Report LGM-30 F & G, Stage I, Phase B, Series I TP-H1011	Mar 74
300	Minuteman Stage I Motor Reliability Improvement Program Surveillance	May 74

Report Nr	<u>Title</u>	Report	Date
302	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Nov	74
313	Stage 1 Propellant Surveillance Report, Propellant Containing Glacial Acrylic Acid	Oct	74
315	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	Jan	75
316	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Feb	75
319	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VI, TP-H1011	Apr	75
321	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase B, Series II, TP-H1011	Apr	75
325	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jun	75
328	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Sep	75
330	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	0ct	75
335	Stage 1 Motor Reliability Improvement Program	Dec	75
337	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1043	Feb	76
339	Stage 1, New MAPO & ERL-510 Qualification	Mar	76
341	Propellant Surveillance Report LGM-30	Mar	76

Report Nr	<u>Title</u>	Report Date
343	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Jun 76
345	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase B, Series III, TP-H1011	Jun 76
350	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman, Stage 1, UF-2121 Liner	Sep 76
351	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Sep 76
354	Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Sep 76
⁷ 58	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VIII, TP-H1011	Oct 76
360	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase E, Series III, TP-H1011	Nov 76
367	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Apr 77
370	Propellant Surveillance Report LGM-30 F & G, Stage 1, Phase E, Series II, TP-H1011	Apr 77
377	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman Stage 1, UF-2121 Liner	Oct 77
379	Final RIP Report, Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Oct 77
385	Propellant Surveillance Report LGM-30 A, B, F, & G, Stage 1, TP-H1043	Dec 77
388	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jan 78
390	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase E, Series IV, TP-H1011	Feb 78
392	Propellant Surveillance Report LGM-30 Dissected Motors, Phase IX, TP-H1011	Mar 78
393	Propellant Surveillance Report LGM-30 A & B	May 78

Report Nr	<u>Ti</u> :	<u>tle</u>			Repor	t Date
396	Propellant Surveillance Stage I, TP-H1011	Report LG	M-30 F	? & G	Jun	78
405	Propellant Surveillance Stage I, TP-H1011	Report LG	M-30 I	? & G	0ct	78
406	Propellant Surveillance Dissected Motors, Phase	_			Nov	78
416	Propellant Surveillance Stage I, TP-H1011	Report LG	6M-30 F	and	G Apr	79
423	Propellant Surveillance Stage 1, TP-H1011	Report LG	M-30 F	and	G Oct	79
424	Propellant Surveillance Stage I, TP-H1043	Report LG	M-30		Nov	79
425	Propellant Surveillance Stage I, TP-H1011	Report LG	SM-30 A	and	B Nov	79
427	Propellant Surveillance Dissected Motors, Phase				Nov	79
438	Propellant Surveillance Stage I, TP-H1011	Report LG	GM-30 F	and	G Apr	80
445	Propellant Surveillance Stage I, TP-H1011	Report IG	EM-30 I	? and	G Sep	80
448	Propellant Surveillance Stage I, TP-H1011	Report LG	SM-30 A	and	B Nov	80
452	Propellant Surveillance Dissected Motors, Phase				Jan	81

GLOSSARY OF TERMS AND ABBREVIATIONS

Aging Trend A change in properties or performance resulting

from aging of material or component

CSA Cross Sectional Area

DB Dogbone

Degradation Gradual deterioration of properties or performance

E Modulus (psi), defined as stress divided by strain

along the initial linear portion of the curve.

EB End Bonded

EGL Effective Gage Length

em Strain at maximum stress

er Strain at rupture

"F" ratio The ratio of the variance accounted for by the

regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting signi-

ficant changes in random variation between

succeeding time points

JANNAF Joint Army, Navy, NASA, Air Force Committee

MANCP Propellant Lab Section at Ogden Air Logistics Center

Ogden ALC Ogden Air Logistics Center, Air Force Logistics

Command

r or R The Correlation Coefficient is a measure of the

degree of closeness of the linear relationship

between two variables

Linear The general form of the linear regression equation

Regression is Y = a + bx

Equation

Regression Line Line representing mean test values with respect

to time

Standard error of estimate of the regression

coefficient

GLOSSARY OF TERMS AND ABBREVIATIONS (cont)

 S_e or $S_{Y \cdot X}$ Standard deviation of the data about the

regression line

Sm Maximum Stress

Sr Stress at rupture

Standard Square root of variance Deviation (S_v)

Strain Rate Crosshead speed divided by the EGL

"t" test

A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95%

confidence level)

Variance The sum of squares of deviations of the test results from the mean of the series after division by one less than the total number of test

results

3 Sigma Band The area between the upper and lower 3 sigma

limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the popu-

lation is normally distributed.

90-90 Band It can be stated with 90% confidence that 90% of

the inventory represented by the test samples would fall within this range assuming that the

population is normally distributed

Significant As used in the statistical sense, means a

difference unlikely to have been the result of random sampling from some specified population.

INTRODUCTION

A. PURPOSE:

Laboratory testing has been performed for fifteen years on First Stage LGM-30F and G Minuteman Motor propellant blocks to evaluate the effects of aging on TP-H1011 propellant. This report contains those tests conducted on propellant as instructed in MMWRBM Test Directive GTD-1C, Amendment 2, LGM-30 First Stage Operational Propellant Laboratory Testing.

Statistical analysis of the data from tests performed will provide early warning if serious degradation trends develop. Annual evaluation of the propellant provides data for input into engineering reliability analysis for service life predictions.

B. BACKGROUND

LGM-30F and G testing was started in 1966 with phase testing at 24 month intervals (Report Numbers 78 - zero time; 104, 162, 185-Phase I; 176, 239, 257-Phase II; 271-Phase III). Report Number 257 was the first time that LGM-30F and G data were statistically analyzed seperately from LGM-30A and B data. The present report is a continuation of testing and statistical analysis.

Zero time testing for LGM-30A, B, F, and G was started as soon as possible after receipt of the propellant by MANPA. Data from these tests were used to establish a base line for each test parameter.

The LGM-30F and G propellant test matrix (Table 1) is used to determine the number of specimens to be taken from each propellant loaf and the specific test or tests to which these specimens are to be subjected. Very low rate and low rate tensile specimens are taken on all LGM-30F and G blocks. Specimens for other physical and combustion tests are taken from every third (LGM-30F and G) block.

TABLE 1

SAMPLE PLAN

The Procedure for determining tests to be performed on propellant batch samples of LGM-30 F & G First Stage Motors are as follows:

1. Divide the USAF motor serial numbers into three groups by dividing the last three digits of each serial number by three to determine the remainder integer, e.g., 154 $^{\circ}_{\circ}$ 3 $^{\circ}$ 51 with a remainder integer of 1.

2. Use the remainder integer to enter the following matrix to determine the group of tests to be performed on the forward, middle, and aft batch samples associated with a particular motor serial number.

1	GROUP 11	1 2	O	
	TP-H1011 PROPELLANT BATCH SAMPLE GROUP I	Forward	ile	Aft

Each group will receive the following tests:

	GROUP 111	se High Rate Hydrostatic	Sol Gel	DSC	TGA	DTA	Impact	
LEST MATRIA	GROUP II	Dynamic Response	Stress Relaxation	Burning Rate	Heat of Explosion	Pressure Time		
	T 911080	High Rate Injaxial	Cook.	Diesel	DIALIAI DON 16400	London	Ignitability	-

NOTE: Low Rate and Very Low Rate Tensile tests are performed on all blocks.

STATISTICAL APPROACH

In order to determine aging trends for shelf/service life predictions, as directed by Service Engineering, First Stage LGM-30 F and G Minuteman TP-H1011 propellant blocks have been undergoing testing since 1966, statistically analyzed and reported on a regular test cycle by this laboratory.

The primary reason for performing statistical analysis on test data is for the detection of propellant changes due to aging that would affect motor reliability. Regression analysis was the method used to examine data and to aid in drawing conclusions about dependency relationships that may exist i.e., relationship between age versus test results.

In selecting the best fit model for the regression equation, the linear model Y = a + bX was found to be the best fit model for the regression plots.

Individual data points from different time periods were used to establish a least squares trend line for the data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level 90% of the sample distribution falls within this interval. This tolerance interval was extrapolated to a maximum of 24 months into the future from age of the oldest motor tested. The 't' value and the significance of this statistic, which are reported for each regression model, give an indication of the "statistical significance" of the slope of the trend line as compared to a line of zero slope. When a regression slope is indicated to be significant, it should be noted that the slope of the regression line is significant from a statistical standpoint and it is an indication that a change over time is occurring, but does not necessarily mean that the indicated change in the

value obtained during testing is significant in regards to motor operational performance. In a few cases, this small change has become the apparent trend in data variance and regression line trends. However, the changes are gradual and no operational problems are expected at this time.

The data were plotted by computer. The 'y' axis is computed so that the values at one inch intervals are peculiar to the data spread of the parameter tested. Plotted data points represent means at the particular ages at which testing occurred. The number of specimens at each age point is indicated on the sample size summary sheet accompanying the regression plot. Variance at each test age can be determined by consulting the GO85 data storage system.

A regression summary of all test parameters is included in Table 2. The direction of the regression trend lines are also indicated in Table 2. The slopes that are "statistically" not significant from a line of zero slope are labeled as such and those regressions have been left out of this report.

TEST RESULTS

VERY LOW RATE TENSILE:

Very low rate regressions show a statistically significant decrease for strain at maximum stress and strain at rupture. The stresses and modulus show a statistically significant increase (Figures 1 thru 5). The trends are gradual for the respective regressions and no operational problems from the propellant are expected for at least two years beyond the last test data.

LOW RATE BIAXIAL TENSILE:

The strain at maximum stress regression shows a statistically significant gradual increase with the strain at rupture showing no statistically significant change. The stresses and modulus show a statistically significant increase (Figures 6 thru 10).

LOW RATE TENSILE:

Low rate tensile data regressions show a statistically significant gradual decrease for strains and a statistically significant increase for stresses and modulus (Figures 11 thru 15).

HIGH RATE TRIAXIAL TENSILE:

The strain at maximum stress, strain at rupture and modulus regressions show a statistically significant decrease. Maximum stress shows a statistically significant increase. Stress at rupture does not show a significant change (Figures 16 thru 20).

HIGH RATE HYDROSTATIC TENSILE:

The strains show a statistically significant decrease. The stresses and modulus show a statistically significant increase (Figures 21 thru 25).

TEAR ENERGY:

The cohesive energy shows a statistically significant decrease (Figure 26).

TENSILE SUMMARY:

The test data regressions show that the strain is gradually decreasing and the stress and modulus gradually increasing.

Based on the analysis of test data regressions, it does not appear that meaningful degradation is occurring at this time and no operational problems are expected in the propellant for at least two years beyond the last data point.

STRESS RELAXATION MODULUS:

For the 0.5% strain at -65° F, the regressions for data at 10, 50, 100, and 1000 seconds show a statistically significant gradual increase. (Figures 27 thru 30).

At -40°F, the 10, 50, and 100 second regressions show a statistically significant increase. The 1000 second regression shows no statistically significant change. (Figures 31 thru 34).

The 3% strain regressions at 20°F, 77°F, 100°F, 140°F and 180°F show a statistically significant gradual increase. (Figures 35 thru 54).

SOL GEL:

The percent extractables, density and gel swell ratio do not show a significant change. The crosslink density regression shows a statistically significant increase (Figures 55 thru 58).

CONSTANT STRAIN:

A statistically significant gradual decrease is shown for constant strain (Figure 59).

HARDNESS:

Shore A ten second hardness shows a statistically significant increase (Figure 60).

SUMMARY OF SOL GEL, TENSILE AND HARDNESS DATA:

The crosslink density, constant strain, and hardness data regressions correlate with the tensile data. As the polymer continues to crosslink, the strains decrease and the stresses increase.

PRESSURE TIME:

Maximum pressure and time to maximum pressure shows a statistically significant gradual decrease (Figures 61 and 62).

TCLE (Thermal Coefficient of Linear Expansion):

The thermal coefficient of linear expansion for both above and below the glass transition point (Tg) shows a statistically significant gradual increase (Figures 63 and 64).

TGA (Thermal Gravimetric Analysis):

A statistically significant increase is shown for the ignition temperature (9°C rise/min), no significant percent weight loss at 250°C hold (12°C rise/min to hold) and a statistically significant weight loss at ignition (Figures 65 thru 67).

DTA (Differential Thermal Analysis):

The endotherm and first and second exotherms show a statistically significant decrease. The third exotherm shows a statistically significant increase and the ignition temperature with no significant change (Figures 68 thru 72).

BURNING RATE:

The burning rate shows a statistically significant gradual increase (Figure 73).

DIFFERENTIAL SCANNING CALORIMETER:

The endotherm and first and second exotherms shows a statistically significant decrease. (Figures 74 thru 76).

THERMAL AND COMBUSTION SUMMARY:

The time to maximum pressure from the pressure time data and burning rate data show a correlation. In both cases, the regressions show a gradual increase in rate of reaction. The maximum pressure and DSC regressions also correlate well with each other. In both cases, a gradual decrease in energy is shown.

The ignition temperatures for TGA shows a gradual increase.

From the analyses of the regressions, no combustion problems are expected for at least two years beyond the oldest data point.

CONCLUSIONS

Fifteen years of aging at ambient temperature (77°F) has not greatly changed the properties of the propellant. Some test parameters indicate slight aging trends, but nothing that would adversely affect the operational characteristics of the rocket motor propellant.

From the statistical analysis, it does not appear that significant propellant degradation is occurring. Based on fifteen years of accumulated data, there is no reason to suspect that properties will show much change for at least two years past the last data point. Therefore, propellant reliability should not change appreciably over that time period. Since failure limits are not available for the parameters tested, this statement is based on the fact that the slope of the regression curves where statistically significant are, with few exceptions, relatively flat or close to a line of zero slope and have not changed appreciably from the last test period.

TABLE 2

Regression Summary

Test Parameter	<u>Slope</u>
Very Low Rate Tensile Strain at Maximum Stress Maximum Stress Strain at Rupture Stress at Rupture Modulus	- + - +
Low Rate Biaxial Tensile Strain at Maximum Stress Maximum Stress Strain at Rupture Stress at Rupture Modulus	+ + NS + +
Low Rate Tensile Strain at Maximum Stress Maximum Stress Strain at Rupture Stress at Rupture Modulus	- + - +
High Rate Triaxial Tensile Strain at Maximum Stress Maximum Stress Strain at Rupture Stress at Rupture Modulus	- NS -
High Rate Hydrostatic Tensile Strain at Maximum Stress Maximum Stress Strain at Rupture Stress at Rupture Modulus	- + - + +
Tear Energy	-
Stress Relaxation -65°, 10 sec -65°, 50 sec -65°, 100 sec -65°, 1000 sec	+ + + +
-40°, 10 sec -40°, 50 sec -40°, 100 sec -40°, 1000 sec	+ + + NS

TABLE 2 (cont)

Regression Summary	
Test Parameter	<u>Slope</u>
+20°. 10 sec	+
+20°, 50 sec	+
+20°, 100 sec	++
+20°, 10 sec +20°, 50 sec +20°, 100 sec +20°, 1000 sec	+
+77°. 10 sec	+
+77°, 10 sec +77°, 50 sec +77°, 100 sec	+
+77 ⁰ , 100 sec	+ +
+77°, 1000 sec	τ
+100°, 10 sec	+
+100°, 50 sec	+
+100°, 100 sec	+ +
+100°, 10 sec +100°, 50 sec +100°, 100 sec +100°, 1000 sec	т
+140°. 10 sec	+
$+140^{\circ}$, 50 sec	+
+140°, 100 sec	+
+140°, 10 sec +140°, 50 sec +140°, 100 sec +140°, 1000 sec	τ
+180°. 10 sec	+
+180°, 10 sec +180°, 50 sec +180°, 100 sec	+
+180°, 100 sec	+
+180°, 1000 sec	*
Sol Gel	
% Extractables	NS
Density	ns Ns
Gel Swell Ratio	NS +
Crosslink Density	т
Constant Strain	-
	+
Hardness, Shore A, 10 sec	'
Pressure Time	
Maximum Pressure	_
Time to Maximum Pressure	
TCLE	1
Above Tg	+
Below Tg	7
TGA	,
Ignition Temperature	+ NC
% Weight Loss at 250°	ns +
% Weight Loss at Ignition	т

TABLE 2 (cont)

Regression Summary

Test Parameter	Slope
DTA	
Endotherm 1	-
Exotherm 1	-
Exotherm 2	-
Exotherm 3	+
Ignition Temperature	NS
Burn Rate, 1000 psi	+
DSC	
Endotherm	-
Exotherm 1	•••
Exotherm 2	-

NS = Not Significant
-- = Negative Slope
+ = Positive Slope

*** SAMPLE SIZE SUMMAGY ***

5 A S	8	126	6.0	51	55	256	157	78	40	4 ያ	203	26	12	21	30	40	12	27	51	6	8	27	15	23	12	21	58	6	33	18	6	σ	18	20	18	ന	~
AGE (MOS)	133	134	135	136	137	1.38	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	16€	166	167	16	171	172
SAMP	ŗ	120	۳. ٤	4 53	135	262	165	133	321	247	149	133	012	123	41	4	45	84	53	107	60	75	184	212	156				11011								
AGE (Mrs)	1 08	109	110	111	112	113	114	115		117		119			122			125	126	127	128	129	130	131	132				IN/MIN TO-HIOI								
HF SAME.	ن ن	ч.	76	9.5	122	130	177	156	107	38	117	55	146	π Τ	15c	159	191	163	136	1 r	99		33						£00°		ru 4						
AGF (RMS)	α; rc	48	85	P6	87	æ	68	06	15	26	65	46	36	96	25	96	66	100	101	102	103	1 04	105	106	107				9ESS.CHS=0		gures 1 thru						
SAND			413					104	62	5.4	179	2.34	287	135	1 24	011	1 52	198	147	167	91		113	155					AT MAX ST		to fi						
AGE (MUS)			<i>5</i> ¥				6.4	65		23		69	2.0	7.1	72	73	74	75	76	77	28	52	60	81	82				STEAIN.		is applicable						
N A N	152	154			147	126	119	122	156	123	142	106	135	122	166	177	199	Œ	347	~	9	(*)	~	9	265				6.V.L.P.TENSILE		size summary						
AGE (~OS)	33	34	35	36	37	38	36	40	41	42	43	44	45	46	47	48	49	20	51	25	53	54	52	56	57						This sample si						
S A S	le.	19	1.1	15	30		28	α'n	46	នន	2.8	49	24	99	27		52	63					73		153				DIVIM		Thie						
AGE (MUS)	æ	σ	10	11	12	13	14	5	16	17	61	19	20	21	22	α.	₽ 2	N	26	27	28	29	30	31	61 B												

WING 6, V.L. P. TENSILE, STFAIN AT MAX STRESS, CHS=0.002 IN/MIN TP-H1011

*** SAMPLE SIZE SUNNAFY ***

αZ	SAMP	84	126	9	51	66	256	157	78	40	45	203	46	12	24	30	4 0	12	27	24	σ	æ	27	15	23	15	21	28	6	33	18	6	6	18	50 50	χ, ς	5 Z	
AGË	(MOS)	133	134	135	136	137	1 38	1 39		141	142	143	144	145	146	147	148	149	1 50	151	152	153	154	155	156	151	158	159	160	161	162	163	165	166	167	109	171	
ŭ	SAMP	93	120	63	42	141	303	168	133	327	250	149	133	192	111	4 1	48	48	84	53	107	09	75	184	215	156												
AGE	(k0s)	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129		131	132												
ýN	SAGE	8.0	56	76	20	122	138	177	156	101	85	117	66	145	188	051	159	151	163	136	~			33						TP-H1011		ıre 5						
J	(MDS)	93	84	အ	86	87	88	85	06	16	36	63	40	96	96	26	36	66	3 O T	101	102		104	105		101				NIWIN 2		e to figu	5					
α 2	SAMP	352	4	4	9	4	559	'n	105	ó /	4.7	~	3	287	3	121	110	152	198	147	167	68		113	155	178				CHS = 0 • 00		pplicabl						
AGF	(MOS)	58	59	60	19	62	63	6:4	65	99	67	68	69	7.0	7.1	72	73	74	75	76	77	78	62	80	81	82				. MODULUS, CHS		mmary is a	•					
a Z	SAMP	152		113	226	147	126	611	122	156	123	142	106	135	122	166	177	199	188	347	314	568	232	474	463	390				6.V.L.R.TENSILE		size sum						
A (5F	(MOS)	33	34	ن (۲)	36.	37	36	σD	04	41	42	64	44	45	46	47	84	64	50	51	52	53	54	55	ú	5.2						s sample						
1 12 41	SAMP	~)	01	1 1	ار س	30	4	23	35	46	55	28	5	24	56	27	6.7	55	63	47	20	25	4.0	73	<u>හ</u>	153			^	DNIM		Thi						
,	(408)	æ	•	1.0		1.	13	14	15	91	17	13	1.9	20	21	22	2,3	24	25	2	22	28	62	30	31	32												

WING 6.V.L.P.TENSILE.MODULUS, CHS=0.002 IN/MIN TP-H1011

This sample size summary is applicable to figure

*** SAMPLE SIZE SUMMARY ***

NR SAMP	18	∢	17	09	38	10	6 0	ø	56	43	9	80	4	N	9	9	89	S.	4	∾	•	12	8	8	4	7	П	2	2	9	7	2	2
AGE (MOS)	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	154	155	156	157	158	159	160	161	162	163	165	166	167	169	171
NR SAMP	14	22	27	10	10	61	68	21	50	68	34	32	45	32	10	α	12	10	2	8	24	80	92	12	22				TPH-1011				
AGE (MOS)		109	110	111	112	113	114				118	119	120	121	122	123	125	127	128	129	130	131	132	133	134				NIW/NI				
NR SAMP	91	10	٥	~	ю	10	သွ	9	1 S	10	12	58	27	32	39	25	42	18	14	ထ	m	14	ø	9	rv				S.CHS=0.2		0		
AGE (MUS)				86									98	96	16	36	56	100		0			105		107				MAX STRES		figures 6 then	>	
SAMD	0.4	31	45	35	22	54	42	18	27	32	32	9 6	43	17	26	32	40	43	18	19	22	20	17	29	24				STRAIN AT		+	3	
AGE (MCS)		59	60	61	62	63	40	65	66	29	68	69	20	7.1	72	73	74	75	92	7.7	78	62	80	81	82				FENSILE, ST		is applicable	CT	
NA QMAS	25		56	34	1 4	1.1	28		14	89	7	S	4	10	16	24	34	24	34	64	4 1	20	32	36	0 4				.L.R.BIAXIAL 1		Was Committee of	oc summar)	
AGE (MOS)	33	34	35	36	37	38	36	0 \$	41	42	4 3	44	45	46	47	84	49	20	51	52	53	54	55	99	57				9		This sample size	ordinas	
NR SA:4P	-	N	4	·o	14	22	4	91	12	14	91	14	16	12	10	13	16	25	22	24	28	23	26	26	42				N INC		This	1	
AĞE (Mûs)	-	80	6	11	12	13	14	15	91	17	18	61	20	21	22	23	24	25	26	27	28	59	30	31	32								

WING 6, L. R. BIAXIAL TENSILE, STRAIN AT MAX STRESS, CHS=0.2 IN/MIN TPH-1011

*** SAMPLE SIZE SUMMARY ***

NR SAMP	74	51	264	150	52	69	111	47	45	102	267	159	43	4	84	229	30	24	45	21	18	23	38		1 2	N	3	m	9	9	24	12		د ا	6
AGE (MUS)	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	Age	162	163	164	165	166	167	168	169	171
																										Nr	9	27	27	25	23	24	21	21	33
NE S A M P	S	81	18	15	27	111	601	62	33	105	129	82	7.7	282	264	191	117	256	127	38	46	44	9	78	65	Age	153	154	155	156	157	158	159	160	191
AGE (MOS)	F01	104	1 05	106	107	103	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127			TP-H1011							
Nf. SAMP	177	129	131	179	94	001	75	m 100	60	153	143	150	1117	4 0	80	18	131	136	539	26.6		153	65	103	22			TE NIMINI		,	thru 14				
AGE (MOS)			30	3 1	82	83	84	38	86	87	8 8	68	06	91	92	F 5	76	96	96	46	ያ መ	Ф	100	101	102			C·		,	figures 10 th				
AN. SAMP	97	83	143	80 I	1 72	158	134	159	681	213	283	134	75	19	104	110	154	188	102	157	162	196	259	161	154			RUP T'RE, CHS=2			t 0				
AGE (MOS)	53	54	55	99	22	58	59	09	19	6.2	63	64	65	99	67	68	69	70	7.1	72	73	74	75	76	11			STRESS AT			is applicable				
ለና S A 	₹α	r)	52	52	154	P.5	70	7 7	154	83	39	69	90	35	69	37	21	5.0	85	106	35	122	103		223			6, L.P.TENSILE, S			size summary				
AGE (MUS)	ىد ∾	58	30	31	35	33	34	B)	3(37	36	3 و	04	7 7	42	43	44	45	44	47	48	64	50	51	25			G 6, L. P.		1000	sambie				
NE S AMP	*1	K 10	1:1	161	171	143	194	1.34	<i>₹</i> 1	025	213	222	223	212	184	96	23	61	7.8	43	30	7.7	51	ŝ¢	ი ს			SVI W		T.	27117				
AGE (408)	۲:	₹	n	·s	7	m	•	٠ 1	11	1.7	13	14	15	91	17	უ 1 25	1 19	50	21	22	23	24	2.5	26	27										

*** SAMPLE SIZE SUMMARY ***

α Z	SAMP	18	15	9	01	27	18	ø	σ	0 7	9	4 3	27	80	9	8	so.	80	11	4	8	4	4	•	12	4 .	ヤ て て ヤ て と と と と と と り り り り
AGE	(MOS)	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159 160 161 163 165 167 170 173 173
ď	SAMP	Ø	21	46	80	8	24	49	55	59	42	23	21	41	80	13	11	N	60	83	80	4	19	18	47	30	IN/MIN,800 PSI
AGE	(MOS)	1 08	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	127	128	129	130	131	132	133	
X X	SAMP	σ	သ	14	ဆ	01	16	61	5 1	27	9	12	91	91	35	37	31	46	20	17	8	9	1 1	15	0 **	0	STRESS.CHS=1750 5 thru 18
AGE	(MCS)		84	8 €	86	87	98	58	06	91	92	63	94	95	96	26	36	66	100	101	102	103	104	105	106	101	AT MAX STRE figures 15 th
¥	SAMP	30	27	22	36		41	42	28	27	28	29	24	69	50	59	44	36	36	26	13	14	27	1 4		22	
AGE	(MDS)	58	69	60	61	62	63	64	65	99	29	83	69	7.0	7.1	72	73	74	75	76	2.2	78	62	8	81	82	TENSILE,STRAIN is applicable to
ď	SAMP	23	22	24	20	91	11	25	10	œ	9	8	4	C)	9	18	o,	34	34	24	42	42	1.4	30	22	30	I AL mary
AGE	(SOW)	33	34	35	36	37	38	39	40	41	42	43	44	45	40	47	48	6*	50	51	52	53	54	55	56	57	
8 .	SAMP	7	N	4	*	14	17	9	9	ю	4	14	11	20	4	10	9	œ	23	13	11	17	14	18	16	23	HING This s
AGE	(MOS)	-	6 0	G	11	12	13	14	15	51	17	18	19	20	21	22	23	24	25	26	27	28	53	30	31	32	

はないというというというというと

*** SAMPLE SIZE SUMMARY ***

ĭ	SAMP	13	01	23		65	æ		0 1	80	21	4 1	0 4	20	~	6	ဆ	4	4	∢	•	S	₫	S	0.7	7	7	∞	2	2	2	7	7 (7	5 -	-
A GF	(SOM)	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	165	166	167	168	169	1/1
Q. Z.	SAMP	40	17	12	85	25	31	34	122	31	34	48	27	φ	21	14	34	91	56	28	12	23	32	34	11	36										
AGE	(MCS)	110	111	112	113	114	115	911	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134				800 PSI						
32	SAMP	<u>۲</u>	1.1	<u> </u>	25	46	20	30	T.	8₹	31	2.1	э С.	34	#) #0	17	2	23	•	7	† CJ	5	11	12	1.2	23				S . 1750 IN/MIN . 80		ru 23				
AGE	(80w)					58			25	E)		ល្វ	96	26	છ 6	66	100	101	102	103	104	105		107		501				STRESS, 179		figures 19 thru				
<u>*</u>	SA MP	38	4.5	63	120	4.3		91	55	₽ \$	47	40	40	4	81	63	51	59	t> 1	30	63	20	17	24	23	æ				AT MAX S		to				
AGE	(MOS)	0.9	61	62	63	6.4	65	99	6.7	89	69	0.2	7.1	72	73	74	75	16	11	٠١	79	80	81	82	83	84				C.STRAIN		is applicable				
-4. -2.	SAMP	7	5 <i>€</i>	56	4 %	4 1)	1 1	7.1	7	~	1.2	S	5	10	4	28	92	25	100	64	16	43	0.0	\$. \$\alpha\$	54	24				TEFUSTATI		e summary				
Ą	(MCS)	35	30	37	36	36	4.0	41	(3 4	43	7 7	94	46	7.47	4.8	64	50	51	52	53	54	55	96	57	58	59				6 . H.P. HYDFUSTAT	,	sample size				
₹	SAKO	۴,	<u> </u>	C. -1	~.	ধ	3	τ	1,7	1 4	†	4	24	4	7	16	7.7	12	31	50	3.2	2.3	50	77	54	21				SNIM	ì	This				
35 4	(30)	.•		77	~	14	<u>.</u>	<u>د</u> 1	17	٠ <u>٠</u>	<u>*</u>	5.0	21	رج	ر ار	42	50	20	2.2	÷	6ċ	3.0	31	32	£.	34										

WING 6.H.P. HYDFUSTATIC.STRAIN AT MAX STRESS, 1750 INZMIN, 800 PSI

6 A 5	ا سو ادر سر ادر ادر
жан.	다 K 전
(408)	주 그 전

ເົ	~~~	14	12	7	1.4	7	Ci m
36	25	53	ζ,	91	36	120	121

STAGE I WING 6 TP-HIOII TEAP ENERGY TEST/TEMP=77 DEG F

This sample size summary is applicable to figure 24

The second second second

*** SAHPLE SIZE SUMMARY ***

ď	SAMP	21	4 1	12	9	9	12	ĸ	12	m	15	6	32	6	σ	6	0	9	Ŷ	0	15	r	(*)	9	12	m	m v	9	6	m	m	m y	·	n ~	1
AGE	(MUS)	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	151	158	651	160	161	163	16 s	991	167	168	169	170	171	172	173	175	201	195	747
ù Z	SAMP	7.3	2.1	19	4.0	83	ę	6	27	50	21	18	23	23	36	42	œ	21	31	21	8	12	37	84	Ó	15				F, TPH-1011					
AGE	(MOS)	117	118	119	120	121	122	123	124	125	126	127	128	129	130	121	132	133	134	135	136	137	138	139		141				65 DEG F.					
1	SAMP	J	ಭ. ೧.	56)¢	 បា	40	មា	4.1	25	2.3	ņ	ಣ 1	15	J	.		S.	ာ •	12	Ģ	50		35	4.9	42				SEC.		d 26			
ĄĢE	(MOS)				36		1.6	9.6	<u>ა</u> ზ	100		102	103	104	105	106	101	108	501		111	112	113	114	116	116				STRAIM. 10		gures 25 and			
~ 7	SAMP	3 v	ين	5.0	30	1 4	30	36	32	35	17	0.4	25	15	17	23	3.0	21	17	& 1	σ	33	6.2	7.7	30	14				MCDRIGGS 0 5 5 4		to fi			
7	(M(:S)	67	2	6,1,	70	7.1	27	2.2	74	7.5	76	11	70	75	æ0	91	42	83	3 4	ņ	βę	87	с 8	3	0 5	7.7				Z011		is applicable			
*** ***	Ch 40	ند	74	m	Ψ,	(۳)	J	ů.	, rig	25	24	46	7.7	2.2	2.2	2.1	50	50	÷	σ	2.1	4	57	3	J	۲.				S KELAKA		size summary			
7. A	(37.3)	4	10.4 10.4	‡	7.4	46	7.4	40	7 7	.)0	51	G (S)	r E	54	525	<u>ي</u> ن	25	58	5,5	09	6.1	62	د'،	\$3	ć.	ē.				G C. STPESS		sample			
` .	5,4.40	•	~		٠,	4	.,	•		÷	ప	, 70	₩,	m	۲٦	~,	9	·s	- 7	¥	2	5	φ		٣	9				9 5KIW		This			
4	(504)	c. 1		,	e -	۲.	1.9	17	2	÷ ^1	2.5	20	21	2 ,	r m	31	32	13 13	34	35	35	12	38	ي نن	(4	1 7									

WING COURTESS RELAKATION MORREDS, D. 5% STRAIMORD SECOTOS DEG FOTPH-1011

*** SAMPLE SIZE SUMMAFY ***

は、 できない ないかい ないかい かいましん

NR	m	m																							
AGE (MOS)	193	22€																							
NR S AMP	12	m	15	6	32	6	6	6	6	ç	ç	σ	15	m	m	9	12	m	m	•	6	m	m	m	ø
A GE	149	150	151	152	153	154	155	156	157	158	159	160	161	163	165	166	167	168	169	170	171	172	173	175	176
NF. SAMP	2.3	0.7	12	8 7	23	2	36	42	x	2.1	31	21	2	12	37	48	9	1	21	4 1	12	φ	9	1.2	m
AGE (1405)	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	135	140	141	142	143	144	145	146	147	14e
2 N N U U N N N N N N N N N N N N N N N	4 1	25	2.7	ю	31	12	⊅	״	1.2	15	13	12	9	2.0	5.1	35	64	42	27	2.1	۲ ٦	7	21	ఫ	0
AUE (MES)	22	001	101	201	10,3	104	105	106	107	100	109	110	111	112	113	114	115	110	117	118	119	120	121	122	123
N N N N N N N N N N N N N N N N N N N	(3	26	1.7	40	64	15	17	r. 2	41 m	1.5	1.1	18	31	33	15	21	30	14	6	25	26	5¢	51	54	58
Aut (*463)	74	75.	26	7.4	26	74	90	31	38	ن ي	7 Ω	ଖଣ	36	19	នន	36	90	16	36	ሯ	574	36	ઝુ	26	:2 1
7 E	۴.	(*) *\}	* 3	4 G	7) -	2.7	2.5	1 6	40	C-Z	?	თ	7.7	Ť	23	20	Ç	C)	ירי	ਰ	7.0	3.0	7 7	5.0	\$
16.5)	: 0	7.	٦ ٢	5.,	5.5	40	8.83 10.03		5.7	∵ v.	53	()	19	6.	53	6.4	65	şç	29	\$ C\$	5.3	7.0	7.1	72	5 2

WING COSTRESS RELAXATION MCDULUS. J. 5% STRAIN, 100 SEC. -65 DEG FOTPH-1011

This sample size summary is applicable to figures 27 and 28

*** SAMPLE SIZE SUMMARY ***

a Z	SAND	15	30	4	0	ø	m	12	m	12	m	15	9	9	6	9	6	Φ	9	9	6	15	m	m	9	Y	m	, (r)	m
AGE	(MOS)	141	4	143		145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	163	165	166	167	9	7	193
u Z	SAMP					35		Ŷ			16					86	51	σ			15	נייו		4.1		σ			
AGE	(SUA)	116	117	_	119	120	121	122	\circ	0	125	8	0	128	2	130	131	L J	3	134	135	136	137	138	139	140			, u
D Z	SAME	18	24	18	22	21	57	E E	54	42	21	24	Q	21	1.5	ა	m	σ	16	12	o [,]	Ų		69		60			04 1 030
₩	(SUM)	15	92	93	4 5	35	96	25	98	65	100	101	1 02	103	104	105	106	107	108	109	110	111	112	113	114	115			CTOATM
ā	SAMP	v	9	12	21	30	44	36	35	46	28	5 3	36	35	15	19	24	33	6	24	21	15	30	P) (V)	21	59			A O ST STOOM NOT
AGE	(SOW)	99	67	е 9	69	70	7.1	72	7.3	74	75	76	7.7	78	62	80	81	82	6 0	84	85	96	87	88	68	06			
o 7	SAWF	٥	σ		(۳)	9	m	δ	ľ	Ü	27				30							20				J			AVA 122 A
A GE	(SUM)	41	45	43	44	45	46	47	4	49	90	51	55	53	54	55	56	57	58	69	60	61	62	63	64	65			S & CTDEC
Ω 2	SAVD	r*)	(۳)	P*)	PT)	^	(*)	۲۰)	¥	נית	N	¥	^	8	æ	ř۲)	Ę	m	ę	Ψ	(*)	1.8		ស	9	12			9
9	(SÚM)	12									24																		

WING 6,STRESS RELAXATION MODULUS, 0.5% STRAIN, 10 SEC, - 40 DEG F, TPH-1011

This sample size summary is applicable to figures 29 thru 31

- 52 -

YAN STUD USTE CHANNE

NR SAMP	30	56	12	9	¢	12	Ю	12	15	3 1	•	6	6	6	6	9	9	6	61	Ю	ю	•	15	ø	6	9	e	က	٣	9	m	3
A GE.	142	143	144	145	140	147	148	145	151	152	153	154	155	156	157	158	159	160	191	163	165	166	167	168	170	171	172	173	175	176	193	226
N.F SAMP	5.1	21	21	2.2	K)	21	6	 	53	18	20	17	24	m	33	54	15	6	42	18	18	50	0 9	12					F. TPH-1011			
AGE (MUS)	110	117	118		120		122	123	124	125	126	\sim	128	129	0 € 1	131	132	153	134	135	137	136	139	140	141				20 DEG F.T			
NP SAMP	21	2.1	5.1	₹.	32	52	5.7	.	42	1 C	22	1 1	2.1	<u>۲</u>	IJ	У.	5 T	સ્ટ્ર -	12	1.2	Ç		17) L		4 8				SEC.		1 35	
304 (208)		26		4		96	47	9	56	100				104	307	106	107	101		110		112	113		311				STRAIN.1C		figures 32 thru	1
014 014		1.0	3	5 e	↑	40	42	24	3.)	∞ r,	92	3.7	36	2	54	Ųį	2.2	15	27	12	21	20	54	24	36				LU3.2.0%		ţ	
AG: (MCS)	.:	7-2	10	£2	7.0	7.1	2.2	73	1~	7	7.5	7.7	7.6	+, 2	90	£1	22	83	4.7	4} *€	ညှင	10	୫୫	S. X	ى ئ				TILN MUDULUS.2		is applicable	
2 × 4 2 2 × 4 2 2 × 4 2 2 × 4 × 4	¢.	ن س	3	+ 1	٠	2	(*	n	υ	Żι		0 4	15	78	π 21	ъ.	30	16	Û	ζ,	0.1	4.5		2.7					SHELAKA		e summary	
) (१५५)		, , 4	€. 4 . 3	:	i d	4 7	2.41	Ģ.	4.4	3.6	51	C.	/ግን ሆን	,¢.	ш О	iQ Ç	25	7.5) iii) <u>)</u>	0.1	ě	17	41	(,				6,5116.5		sample size	•
	ş · *			٨.	ā		•,	•	ć	^	J	÷	Ç	~ ?	j	۳;	J	71	≥ 1		``	;†	,*						ئ: ا ﴿		This	
(**; *; *)	* ; #4			1.7	· .	` ~	١,	- ~1	•1	ć.))	را 2	2.5	ř	ιċ	ζ,	11	* ; ;	5.5	7.	ζ;	•	<i>\</i> \	7.6	(+)							

*** SAMPLE SIZE SUMMARY ***

ď	SAMP		24	m	42	45	1	12	39	15	18	45		15	12	27	33	9	9	•	12	m	9	9	15	m
AGE	(MOS)	127	128	129	130	131	132	133	134	135	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152
X.	SAMP	15	26	12	9	m	10	24	6	Φ	6	30	62	4	30	7.1	18	21	21	36	15	Φ	12	24	18	22
A	(MOS)	1 02	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126
ŭ	SAMP	33	39	21	21	45	21	15	21	15	21	36	21	30	42	7 7	23	51	18	39	96	06	96	42	20	34
AGE	(MUS)	7.7	78	52	80	81	82	r) 60	84	8 5	8€	87	88	68	06	16	95	56	46	98	96	26	96	56	001	101
<u>~</u> 7	SAMP	72	18	39	22	36	S	45	6 £	74	99	82	63	51	36	36	36	15	75	66	62	99	51	66	45	27
AGE	(MCS)	52	53	54	55	99	57	58	29	60	61	62	63	64	65	99	19	68	69	7.0	7.1	72	73	74	75	76
a Z	SAMP	24	27	48	43	30	09	8	51	36	58	18	24	42	18	24	12	σ	o	ç	5	30	36	42	30	82
A Gr	(MUS)	2.2	28	58	30	31	32	23	34	35	36	37	38	36	40	41	42	43	44	45	46	47	8	64	50	51
~	SAMO	m	Ţ	٥ ١	c.	2.1	35	33	ນ ຈ	33	37	65	5.1	46	27	36	46	13	01	4	27	•	\$	34	2.2	C.Ł
AGE	(MOS)	С	~	†	ហ	9	~	æ	6	1.0	11	12	13	14	15	16	17	18	61	20	21	22	2,3	24	25	26

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 10 SEC, 77 DEG F, TPH-1011

This sample size summary is applicable to figures 36 thru 39

Age

- 60 -

*** SAMPLE SIZE SUMMARY ***

ď	SAMP	30	12	9	9	12	m	6	9	15	ø	12	m	9	12	Ø	m	•	15	m	m	٥	12	m	m	9	3	3	e
AGE	(MOS)	143	144	145	146	147	148	149	150	151	152	154	155	156	157	158	159	160	191	163	165	166	167	168	170	171	172	175	193
Ľ Z	SAMP	21	21	36	18	6	15	21	15	24	17	21	m	42	48	6	15	36	12	9	21	51	51	21	18	27			,
AGE	(MOS)	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142			
<u>د</u>	SAMP	21	21	27	60	57	60	39	21	24	ው	21	o r	6	ľ")	œ	21	6	Ø	ም	ы Б	51	4 7	30	36	21			
AGE	(MUS)	25	7 6	36	96	25	9 6	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117			
u Z	SAMP	15	24	2.7	4 9	4 (1	24	42	36	29	33	36	81	24	38	27	18	2.1	12	18	18	14	18	30	24	24			
AGE	(MOS)	68	59	20	7.1	72	73	74	75	76	7.7	78	62	80	81	82	83	84	85	ВÉ	87	88	69	06	16	85			
α Z	SAMP	σ	m	o,	9	တ	m	9			4 3	12	28	27	27	31	24	2	15	20	48	21	33	σ	1.2	ç			
ACE	(SOW)	43	5 5 5	45	4	47	4 8	64	50	51	52	53	54	55	56	57	58	58	09	61	62	63	64	65	99	67			
ار بر	SAMir	۲3	m	·c	2 5	ņ	m	~	၁	r:	Ç	3 1	ত	·1	σ	σ	m	6	6	15	24	æ	Ę	Φ	1.2	٤			
394	(SOM)	12	13	្ រ	17	61	20	21	22	23	24	25	26	23	29	30	31	32	33	.) ()	36	38	39	04	41	42			

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 10 SEC, 100 DEG F, TPH-1011

This sample size summary is applicable to figures 40 thru 43

*** SAMPLE SIZE SUMMARY ***

ă	SAMP	39	12	•	21	42	54	12	15	27	33	•	ø	ø	12	m	0	9	15	9	m	Φ.	P)	Φ	Φ	Φ.	m v	0 0	7 6) r	א ר	0 (77	1 ~	۰ ve	» ო	en .	m
∃9 ∀	(MOS)	134	135	136	137	138	1 39	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	101	163	107	997	167	108	170	172	175	193
Y Z	SAMP	6	12	6	30	51	44	27	39	21	27	21	33	21	6		21	15	24	17	18	8	36	54	6	15				F . IPH-1011								
A GE	(MUS)	1 09	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	120	127	128	129	130	131	132	133			!	חב								
) 1 1	SAMP	21	12	18	24	15	17	24	27	18	24	24	32	06	7.7	63	42	2.1	21	₩	21	9	6	n	Q	24				0 SEC 140		thru 47					~	
u) Y	(MOS)	84		86		99	98	06	91	9.5	50	86	56	96	77	86	55	100	101	102					101	108			, ,	SIKAIN, 10		figures 44 th						
ž	SAMP	42	9 9	7.5	72	60	25	33	4	30	4 3	78	94	ን	69	4 5	29	48	36	36	36	17	23	33	2.7	1.8			1	LUS , 3 . 0%		to						
AGE	(MCS)	59	60	61	62	63	40	65	6.6	67	ξ	69	0.2	7.1	72	73	74	75	16	11	78	62	80	81	82	83			,	ATION MODOLUS, 3.0%		is applicable						
2	SAVP	52	36	51	21	19	4	18	21		'n	\$	'n	12	30	38	5£	36	ÇC	69	2.2	30	33	42	51	57				LELAX		ze summary						
۲	(808)	34	35	36	37	38	39	40	1 +	42	r. 4	77	45	4	47	48	64	50	51	2,	53	54	52	56	57	58				6.STRESS		sample si						
.	SAA	۴,	•	,~	* ~	1 :	ን	2.2	S 1	35	G.1	ve.	Ç	£.1	ŗ¢	œ	33	30	30	21	27	10.4	' : †	~ '7	75	2.7			•	· · · · · · · · · · · · · · · · · · ·		This						
<u>ا</u> ورا د	(SDr)	~	•	1.0	1.2	13	14	1 5	16	17	1 8	9	20	21	22	23	24	25	26	27	2.3	2.3	30	31	32	33												

AINS 6.STRESS SELAXATION MODULUS, 3.0% STRAIN, 10 SEC, 140 DEG F, TPH-1011

- 73 -

*** SYMPLE SIZE SUMMARY ***

Y Z	SAMP	27	12	9	21	9	20	12	15	56	39	12	m	9	٥	9	12	9	15	9	E	9	•	12	6	Φ	က	σ (18	m	9	12	m	m	9 ,	n (m (~
A GE	(MOS)	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	165	166	167	168	170	171	7/7	175	193
ű. Z	SAMP	0	တ	9	36	54	41	24	39	21	20	15	32	12	6	15	21	15	24	17	15	ę	30	54	12	15				1101-441								
A GE	(MOS)	601	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133			<u>i</u> :	ה ה ה								
α 2	SAMP	24	6	21	2.7	30	30	5 10 10 10 10 10 10 10 10 10 10 10 10 10	2.2	18	24	23	30	102	78	56	42	20	1.9	O,	21	9	12	n	9	2.2				10 St. C. 180			thru 51					
AGE	(MCS)	93 4	38	36	67	BB		06	16	92	(1) (2)	94	9.6	96	16	36	56		101	102	103	104	105		101	108				STANIA IS			figures 48 t					
α Z	SAMP	42	63	59	7.5	99	51		4 5	30	51	7.8	80	45	75	50	54	51	39	27	42	18	24	36	27	18			,	LUS : 3 · U 3								
Act	(MOS)	<u>ማ</u> ነያ	C 3	£1	€ ¥	63	64	S.	\$.	24	68	6.9	20	1.1	72	73	74	75	92	11	7.3	62	80	81	62	83			3	ALLUM MUDOLUS 3.03			, is applicable to					
Œ Z	SAMO	ii.	33	5.7	Λi	16	4	1.8	1 c	13	φ	æ	S	9	30	42	42	36	2.5	9)	27	33	53	42	54	2.5			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HEL AX			ize summary					
ÀGE	(MCS)	*	ŝ,	₹.	37	36	36	0.4	4 1	4.2		77	4 45	46	47	48	64 .	20	<u>ا</u> ر	52	53	54	55	၁၄	25	58				05.5410.40			s sample size					
÷	CA 4.2	~	;	Ų	4 7	40	21	4.3	: -	*, *	6, ••••	on.	ø	~;	Ç.	6	33	35	2.4	54	26	ن ژ	C'	~ í	56	() ()				2 ₹		i	This					
A GR	(4CS)	7)	<i>3</i> ^	10	7.7	13	,÷ ~	د 	16	17	و ۲	51	20	21	C1	23	-t	25	56	22	23	53	£	31	32	33												

- 75 -

*** SAMPLE SIZE SUMMARY ***

ď	SAMP	*	28	32	15	34	99	29	80	16	12	91	15	1	•	20	12	16	15	12	20	4	15	4	12	7	19 8 15 16 16 8 8 8
AGE	(MOS)	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	154	155	156	157	158	159	160 161 163 164 165 170 172 172 173
ď	SAMP	4	24	9	24	31	80	88	7.1	04	124	106	108	76	64	12	12	4	1.1	28	20	52	28	42	132	86	
AGE	(MOS)	601	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	0
α	SAMP	16	13	16	16	28	4	4	8 4	32	23	36	39	44	47	47	126	110	96	54	0	91	4	28	20	28	, CROSSLINK figure 52
AGE	(MOS)	84	85	86	87	88	88	06	16	95	66	46	98	96	16	96	56	001	101	102	103	104	105	901	101	108	EL.
α Z	SAMP	4	73	64	42	74	79	06	36	52	64	29	56	84	100	9	122	75	20	55	62	38	20	40	20		H10
AGE	(MDS)	59	09	61	62	63	49	9	99	29	68	69	7.0	7.1	72	73	74	75	92	7.2	78	42	80	81	82	83	•
X Z	SAMP	4 83	64	47	56	47	36	45	36	26	20	4	12	67	36	36	44	24	60	103	112	14	42	70	43	86	sample
AGE	(MOS)	34	35	36	37	38	39	0*	41	42	4 3	44	45	9	47	48	64	20	51	52	ß	54	55	26	25	58	H
ž	SAMP	m	4	24	12	32	36	20	20	28	32	52	12	32	28	24	8	0 4	56	32	77	64	4 4	72	64		
AGE	(MOS)	-	τ	01	12	13	14	15	10	1.7	18	19	50	21	22		24			27	28	29	30	31	32	33	

STAGE 1. WING 6. TP-H1011, SOL GEL. CROSSLINK DENSITY

This sample size summary is applicable to figure 52

*** JAMPLE SIZE SUMMARY ***

NA SA PA	15	6	6.0		21	54	39	24	12	30	87	63	59	21	24	7.5	6	13	18	9	٥	17	m	Ō	6	N N							۳ _			
2 3				-																						Age	165	166	167	168	169	170	171	172	175	
AGE MUS)	128	129	1 30	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	e Nr							12			
- 3				,																						Age	153		155	156	157	158	1.9	91	161	162
S A S G M	12	15	9	15	15	c	39	36	18	28	114	53	25	51	110	37	63	84	51	12	6	m	9	m	ы			STRATS								
AGE MGS)	103	104	301	901	107	1 08	601	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124		126			F 14 4 F 0 14	רכוייי								
•																												ز								
SAMP	75	20	ე \$	5.1	32	38	25	33	27	36	32	52	2.5	4 8	32	19	40	45	50	86	75	47	39	27	14			-		re 53						
AGE AGS)	7 è	52	80	91	82	83	84	85	86	47	83	88	0.6	16	36	66	94	9 0	96	26	a 6	66	100	101	0					applicable to figure						
J																											1	_		able t						
SA AR	7.2	42	34	74	48		6.9	53	72	65	96	92	37	37	62	82	6.5	83	40	33	85	72	74	70	\$4					s applica						
A G E A L S)	ئ ئ		55	ڻ د	27	58	53	6.3	61	62	c 3	04	65	96	29	63	69	7.0	7.1	7.2		74	7.5	70	2.2			0 5 1 2		summary is						
•																														size su						
NK SAMP	52	34	69	15	15	29	56	<u>.</u>	39	36	43	59	84	36	71	24	24	16	31	30	37	64	17	9	06		-	•		sample si						
AGE (ACs.)	27	28	59	0,1	31	35	33	34	35	၁	37	38	39	40	1 7	42	43	7 4	46	47	848	64	50	19	52			110 X 10		Thiss						
SAMP	~	5.1	၁ 1	1.1	23	13	54	5	C: *	7.4	4	51	ۍ د ا	25	63	1.5	ó5	87	78	17	2.5	1 1	-	4.2	22											
AGE (MUS)	2	n	*	J	Ò	2	το	C	1	11	1.2	13	7 7	: T	o 2	/1	ρ 1	6.1	20	٠, ١	77.74	.	e ?													

*** SAMPLE SIZE SUMMARY ***

α Z	SAM	30	21	24	36	18	64	48	30	18	O	9	21	9	15	m	9	0	15	m	9	σ	n	12	12	•	9	12	6	က	ო	m	9	٣	9	m
AGE	(SOM)	133	134	135	136	137	138	139	140	141	142	143	144	145	941	147	148	149	150	151	1 52	154	155	156	151	158	159	160	161	162	164	165	166	167	168	171
Z Z	SAMP	٣	9	21	15	27	5. 4.	27	6	42	36	6	12	30	6	ø	21	21	27	21	36	36	2.2	45	44	21				HARDNESS						
AGE	(SON)	1 08	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	1 30	131	132				SECUND						
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SAAP	12		27	•	24	36	36	51	27	33	18	27	27	15	66	75	22	51	σ	15	12	18	٣	m	18				A . 10 SE		75	74			
A GE	(MUS)	E &	84	85	86	87	88	68	06	16	92	93	94	96	96	16	96	56	100		102	103	104	105	106	101				SHGRE		6 1 21 11	applicable to lighte			
. x	SAMP	54	33	51	25	57	81	42	o	36	42	60	86	105	36	54	51	51	4 8	30	27	27	21	15	41	18				1 1011			appiicabie			
AGE	(80%)	58	29	60	61	62	63	64	65	99	29	68	69	70	7.1	72	73	74	75	92	11	78	42		81					TP-H			summary is			
	SAMP	30	24	2.7	27	45	18	21	4 5	15	21	Ÿ	૭	6	12	σ	51	45	51	22	72	27	24	39	60	69				1 WING O			sambre size si			
A GF	(MUS)	32	£	34	35	36	37	38	34	04	41	42	43	44	34	47	48	64	50	51	25	53	574	52	26	22				STAGE		71.40	INTS SAII			
a d	SAL	ĸ	~;		r;	₹1	٤	7. 1	S.1	٢	30	81	15	ır.	∵.	۲3	15	m	27	21	36	1.2	12	24	17	39										
AGE	(808)		10	~	m	σ	01	21	13	14	1.5	16	17	13	1.3		21			25	26	27	28	53	30	31										

ď	SAMP	26	55	7	10	36	12	m	36	33	ស	9	18	25	m	12	12									
AGE	(SOW)	115	116	117	118	120	121	129	130	131	132	133	134	135	136	139	140									
ž	SAWP	σ	ĸ	m	m	12	24	36	24	0	17	15	19	33	7.7	64	49	56	21	ထ	9	σ	9	ĸ	ю	1.1
AGE	(MO S)	84	9 7	86	87	88	89	06	91	92	66	94	98	96	46	86	56	100	101	102	103	105	106	108	113	114
ď	SAMP	57	43	34	7.9	46	90	72	38	59	38	40	46	11	24	11	28	15	56	22	13	~	21	24	~	σ
AGE	(MOS)	69	09	61	62	63	64	65	99	67	68	69	70	7.1	72	73	74	75	92	77	78	79	80	81	82	83
ĭ	SAMP	39	50	39	13	1 1	16	11	13	30	4	10	_	12	16	4	36	13	38	39	47	37	25	21	25	22
AGE	(MCS)	34	35	36	25	38	30	9	41	42	43	44	45	44	47	48	64	20	51	52	53	54	55	56	22	ιυ X
· 7	5443	m	15	-	ç	S.	13	16	17	1.8	61	22	35	91	19	21	61	25	27	36	4	m ∳	\$	1 0	42	٦. 4
AGE	(MOS)	গ্ৰ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	5.4	25	ري زيو	27	28	59	30	31	35	13

STAGE 1 WING 6 TP-H 1011 MAXIMUM PRESSURE

This sample size summary is applicable to figures 55 and 56

PRESSURE TIME

Figure 55

*** SAMPLE SIZE SUMMA ...

ď	SAMP	37	14	13	1 1	64	47	14	•		6*			*	4		Φ.	•	4	•	*						2	2	1 7	r		7	4 /	494
AGE	(MOS	134	135	136	137	138	139	140	141	142	143	144	146	147	148	149	150	151	152	154	155	156	157	158	159	160	161	166	167	-		168	168	168
X Z	SAMP	10	24	6	15	18	22	22	19	110	65	15	19	1.1	28	60	23	31	o	F.	92	10	7	¢.	ن	• -				SION AN UE				
AGE	(Si)MI)	601	01-	=	<u>'-</u>	٠.	₹.			•		•	-:	<u>`</u>	7.	7 7	124	.21	12c	121	128	129	130	131	132	133				FXPANSION				
-1- -	S A 4;	1 ,	-	1 1	1.2	3	22	21	17	σ	27	2.7	64	54	49	104	99	25	10	14	13	σ	13	1.7	80	01				AARINI AD				58
نيا ∀	(MOS)	8	85	986	87	88	68	06	16	92	93	96	95	96	26	86	66	100	101	102	103		105		107	108				COFFEICIENT				figures 57 and
α 7	SA MP	39		53	45	04	33	50	35	34	64	45	61	53	37	35	23		25	20	37	16	32	52	16	22				THEOMAI				applicable to
A CH	(MCS)	59	60	61	62	63	64	65	99	19	68	69	70	7.1	72	7.3	74	75	92	77	78	62	80	81	82	83				0.110				1s
Z	SAMP									15				ĸ	5 6	32	42	25	64	99	80	15	39	21	45	69				Τ,	•			ze summary
Aish	(80M)	34	35	36	37	38	39	04	41	42	43	44	45	46	7.4	48	64	20	15	52	53	54	55	56	25	58				OTACE 1 MING	•			This sample size
	SAND	٠.	1.0	•	(1	, r.;	្រ	21	24.	σ	اما (م	4	æ	25	24	12	18	4 2	15	27	24	30	4	4	54	30				0.1.0	;			Thi
ALTE	MOS)	aj		13	12	13	14	15	16	1.7	8		2)	21	22	23	24	25	5	2.7	23	53	30	31	32	33								

*** SAMPLE SIZE SUMMARY ***

	L C	80	6 0	4	10	•	8	•	9	9	•	4	v	•	ø	-	8	N	*	4	N	8	8	N		
AGE	COL	147	149	150	151	152	153	154	155	156	157	158	159	160	191	162	163	165	166	167	169	171	172	192		
ON V	SABL	16	91	80	N,	N	8	α	N	4	12	80	^	80	4	4	4	N	4	9	8	12	4	4	N	6 0
AGE	COL	121	122	123	124	125	126	127	128	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
N K	L E T	4	6	20	22	28	25	33	4	2	01	1 1	9	4	₫	~	۲,	4	~	Œ	2	9	4	4	¢	Œ
A GE	1000	96	9.8	96	67	96	56	100	101	102	103	104	105	901	108	109	110	111	112	113	114	115	116	117	118	120
ロスマッ	SA ME	4	23	34	20	16	31	10	14	20	14	14		9	20	8	2	4	8	m	9	2	4	5	9	21
AGE	(SOM)	65	99	29	89	69	7.0	7.1	72	73	74	75	76	79	81	82	84	85	86	87	88	89	06	16	92	93
7. F.	I E	13	4	7	ડ	1.7	2	٧	8	מו	m	~	4	m	m	m	ю	m	σ,	4	13	18	23	21	32	23
Auf	(5/16/2)	12	58	30	6.4	1 4	.4	4 9	44	134	46	47	48	6.4	50	51	53	56	57	58	S. II	60	1 y	62	63	4.4
Nr 0 8 . 4 0	SAVE	~		1		••		7	C,	4	4	50	4	4	0	14	2	4	1.4	12	1.0	r;	۵	1.0	?	ر د کر
AGE	(5.)		01	1.1	13	15	91	18	61	20	21	22	2 3	24	25	56	27	23	2)	30	31	32	33	34	35	96

TGA IGNITION TEMPERATURE, 9 DEGREE C RISE/MINUTE S DNIE

STAGE I

This sample size summary is applicable to figures 59 and 60

- 92 -

*** SAMPLE SIZE SUMMARY ***

ď	SAMP	62	39	24	16	9	12	80	80	10	•	10	6 0	20	4	91	12	9	8	16	4	~	8	~	80	4	5	7	2		7	7	7 0
AGE	(MOS)	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	146	147	148	149	151	152	153	154	155	156	157	159	160	RISE/MIN	161	162	163
ŭ	SAMP	œ	15	٥	14	15	4	9	14	37	58	35	11	25	42	N	16	12	13	m	60	17	17	S	23	11				CENTIGRADE R			
AGE	(MOS)	105	106	107	108	601	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129				DEGREE CENT			
<u> </u>	SAMP	34	35	0.			5.0	16	19	20	35	32	2.3	14	# S	2.1	01	31	4 1	or M	2.7	22	51	01	2 C	21				12			62
AGE	(SOM)	80	81	82		84	85	86	8.7	88	უ. გ	06	91	26	(F)	96	9.5	96	16	96	56		101	102	103	104				ENDOTHERM 1.			figures 61 and
(<u>Y</u>	SAMP	15	32	27	1 7	33	44	4 1	35	47	25	30	30	59	30	40	20	4 8	30	32	36	36	18	on.	22	56				DTA, EN			ble to fig
AGE	(MUS)	36	56	23	o G	59	0.4	61	62	63	6.4	6.5	99	29	68	69	7.0	7.1	72		74	75	92	11	78	62				1011.			s applicable to
<u>.</u>	SANP				51		24			S	22	2.1	S	11			c	(i)		4.1	38	2.7	23	50	34	1 1				TP-H			summary is
:5 ∀	_	f,	31	C. 77	٠.	200	7.	36	22	ř.	35.	0.4	41	<i>7</i> 7	t. 4	77	4 5	46	47	48	2.4	5.0	13	52	53	54				1 VING C.			size
	- - 	-	٨,		t =	٠. د.	r	~	4 0	:: 1) •	7	24	7 1	CE	0.1	11	54	1	13	′`	10	2.0	2.1	23	50				STAGE			This sample
(. V	(11)	£	,	٠,	5)	•	(-1	1 1	1.0	*.	14	· · 1	် •	2.1	٠. ١	1)		12	t ;	23	54	5) ()	2,1	~ (·)	136							

*** SAMPLE SIZE SUMMAPY ***

X X	SAMP	2	10	80	2	6	9	10	7	91	35	14	11	ស	8	15	M	N	N	N	€	4	4	4	-	∢ m	2	5	
AGE	(MOS)	134	135	136	137	138	139	140	141	142	143	144	146	147	148	149	151	152	153	154	155	156	157	159	160	161 162	163	170	E/MIN
ď	SAMP	15	4	•	11	35	22	31	6	24	47	8	12	12	13	m	6	17	91	S	61	10	50	37	22	4			CENTIGRADE RISE/MIN
AGE	(MUS)	601	110	111	112	113	114	115	911	117	118	119	120	121	122	123	124	125	126	127	128	1 29	130	121	132	133			
Ž	SAMP	16	16	15	17	18	32	31	13	13	14	20	σ	28	33	36	25	18	1.7	10	1.8	11	7	1.5	4	12			12 DEGREE
A GE	(MCS)		96			8.E	68			85	6	46	98	96		98	56	100	101	102	103	104	105		107	10			ć. •
α Z	SAMP	56	42	34	86	36		25		1) •	3	?	•	•									÷	•	~	Ž.			DTA. F.
	•					•		, ~		/ >	È	20	7.0	7.1	72	73	74	75	76	11	78	42	80	81	82	83			.1101
. <u></u> 2	SAMP	26	2.1	59	61	7	18	61	ស	1.1	01	4	J	σ	42	31	30	17	14	18	25	6	15	30	25	27			6. ТР-Н
AGE	(408)	34	35	36	37	38	36	40	41	45	43	77	24	46	47	84	64	50	51	52	53	54	55	99	57	56			DNIM I
Ž	S A*!.	ויין	ŵ	٠,	1.7	10	Э.	ď	2.2	14	13	4	1 1	22	13	01	3	S	31	12	61	18	22	21	22	11			STAGE
A Št.	(403)	ສ	σ	01	12	13	14	15	16	17	i o	13	30	2.1	2.3	23		۶ ₂		27	23	62	30	31	32	3.3			

This sample size summary is applicable to fiv

*** SAMPLC SIZE SUMMARY ***

GE NR	(MUS) SAMP	44 1	1 46	149 1	1 99	60 1																				
⋖	X	-	-		-	~	•																			
ŭ Z	SAMP	၁	8	(*)	¥	4	-	-	-	-	ĸ	4	-	11	21	^	8	m	m	۰.	6	4	m	-	8	
AGE	(SOW)	15	92	96	96	16	86	56	100	104	108	109	110	113	114	115	116	117	118	128	130	131		140	142	
X Z	SAMP	4	7	4	6	4	7	m	2	4	4	9	8	-	ĸ	81	12	01	80	80	7		30	80	91	
AGE	(MCS)	99	65	99	67	68	69	70	7.1	72	73	74	75	77	78	62	80	18	82	83	84	86	87	88	68	
N.F.	SAMP	₫	មា	Q	ự ,	m	(V	-	S	~	æ	2	2		က	4	-		ю	7	us Ou	7	4	2	9	
A GE	(405)	36	37	36	40	42	44	45	46	47	45 83	49	50	51	52	53	54	55	56	57	58	69	9	61	29	
Ż	SAMP	r.	~	m	4	S	Ю	-	4	ហ	S	·c	2	4	-	1	~	2	4	rc.	r	6	4	4	S	
P.O.A.	463)	Œ	c	1 1	12	13	14	31	91	17	2	61	2.1	2.5	23	24	25	56	27	28	59	30	31	33	34	

STAGE I WING 6, TP-H 1011, DTA, EXGTHERM 3, 12 DEGREE CENTIGPADE RISE/MIN

This sample size summary is applicable to tigure 64

- 100 -

*** SAMPLE SIZE SUMMAPY ***

					ı						
Aur	茫	AGE	Υ. Υ.	₽ G E	¥	ACE	YZ	AGE	NR R	AGE	œ Z
(404)	4.140	(504)	SAMP	(MOS)	SAMP	(MOS)	SAMP	(MOS)	SAMP	(SOM)	SAMP
	∿	4	33	7.0	33	Q.	38	120	44	145	33
15	. ')	41	٥	7.1	25	96	54	121	30	146	45
97	•	74	61	72	9	16	38	122	24	147	12
11	1,	4	Μ	73	22	86	7.1	123	σ	14E	m
91	12	47	3	74	83		60	1 24	11	149	12
61	12	50	14	75	46	100	25	125	٥	150	6
20	18	51	12	70	15	101	1 1	126	12	151	On.
7.7	~	52	22	7.7	21	102	æ	127	22	152	12
23	r;	53		78	σ	103	v	128	15	153	٥
44	יני	54	26	62	6.0	104	12	129	39	154	o
3.5	า	55	24	в о	15	105	12	130	25	155	v
30	۳۱	5c	17	61	34	106	lr)	131	68	150	m
27	40	57	27	82	24	101	Ý	132	30	157	12
37	~ (1	53	45	63	15	108	15	133	17	158	12
59	940	69	45	84	J	109	ĸ	134	18	159	v
30	18	9	4	дŞ	13	011	M	135	22	160	9
31	45	19	44	86	12	111	1 &	136	8 1	161	12
32	31	62	52	47	.o	112	20	137	6	162	89
33	43	63	99	88	15	113	24	138	8 1	104	m
46	53	40	69	3 0	16	114	63	139	50	166	Ю
35	4.3	C)	43	90	28	115	61	140	54	167	Ý
30	<u>ن</u> ت	90	18	15	22	116	25	141	39	166	9
37	4%	29	24	92	32	117	30	142	21	170	φ
30	<u>~1</u>	69	30	93	9	118	28	143	15	171	ø
31	17	ۍ ن	33	÷6	٥	119		144	36	172	9
										173	9
										174	m
										175	9
		STAGE	E 1 WING	6 TP-H1011		BURNING RATE	1 AT 1030	l ps I		178	æ
										179	S
		This	sample size	e summary	is applica	summary is applicable to figure 65	ıre 65			192	e

BURNING RATE AT 1000 PSI STAGE 1 WING 6 TP-H1011

This sample size summary is applicable to figure 65

*** SAMPLE SIZE SUMMARY ***

MCS)				ן כר	;		
	SATI	(SOM)	SAFP	(MOS)	SAMP	(MOS)	SAMP
29	~	7.1	17	86	14	128	~
30	٦,	7.2	16	66	18	131	an
() F	c;	27	2.1	100	α	132	54
त ह,	٠,	74	11	101	5	133	ហ
35	m	35	14	102	9	136	N
36	2	7.6	20	103	m	140	C ;
37	m	78	30	104	~	141	~
Ť	æ	44	42	105	70	144	8
1 1	rr,	30	56	100	4	145	~
4.2	۳,	18	42	107	7	146	~
8.4		82	32	108	m	147	8
25	٣	83	50	110	m	148	N
53	m	4 3	m	111	34	149	æ
40	Ð	36	ß	112	13	150	۸
35	n	87	8	113	ø	152	2
59	10	88	¢	114	13	154	Ω.
20	8	88	c,	115	23	15€	۲.
21	21	06	m	116	14	156	ß
25	15	16	15	117	9	157	~
F)	ហ	36	Ŋ	118	4	159	2
54	۳	93	9	611	22		
9	14	96	m	120	ъ		
5.7	54	36	S	122	9		
63	7.8	36	12	123	2		
66	36	10	9	125	CJ		

DIFFERENTIAL SCANNING CALCRIMETER ENDOTHERM PEAK TEMP STAGE I WING 6

This sample size summary is applicable to figures 66 thru 68

- 104 -

DIFFERENTIAL SCANNING CALORIMETER ENDMTHERM PERK TEMP ω SIBGE I WING

- 106 -

DISTRIBUTION

	COPIES
OOALC MMWRBM MMWRAM	1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
SAMSO, Norton AFB, CA 92409 Attn: Mr. Sanford Collins, Bldg 562, Room 613	1
AFPRO, Thickol Chemical Corporation Wasatch Division P.O. Box 524 Brigham City, UT 84302 (Cy to Larry Hales)	2
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGBM) Offutt AFB, NB 68113	1
U. S. Naval Ordnance Station, Indian Head, MD 20460 M. E. Loman, Code 3012A4 Air Launched Weapons Branch Weapons Quality Engineering Center	1
CPIA, Johns Hopkins University Applied Physics Lab John Hopkins Road, Laurel, MD 20810 Attn: Mr. Ronald D. Brown	1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
MANPA Report Nr 458(81)	.*
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
Propellant Surveillance Report	Test Results - Semi Annual
LGM-30 F & G Stage I, Phase G, Series 1	
TP-H1011	6 PERFORM N P SIN
7. AUTHOR(s)	·
John A. Thompson	
9. PERFORMING ORGANIZATION NAME AN	AREA & WORK UNIT NUMBERS
Propellant Analysis	THER & WORK DAIL NOMBERS
Directorate (M.)	MMWRBM Project M04046C-
OOALC Mill a second of the sec	WNL01529
TO THE RESIDENCE OF THE SECOND	12. REPORT DATE
i vision	May 1981
We of Maceriel Management	L
A	13. NUMBER OF PAGES
4 WIN THIS AGENCY NAME & ADDRESS(If different from Controlling Office)	126
4 W.N. TH NG AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	150 DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for Public Release, Distribution Unlimite	a .
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report:
18 SUPPLEMENTARY NOTES	· · · · · · · · · · · · · · · · · · ·
	İ
19 KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Solid Propellant	ì
Minuteman	
	i
20 ABSTRACT (Continue on reverse side if necessary and identity by block number)	
This report contains propellant test results for	rom cartons of TP-H1011 bull
propellant representing LGM-30F & G First Stage Min	nuteman Motors This wasant
propertions representing normals to a contract the state of the	nuteman Motors. This report
uses a statistical approach to analyze the bulk pro	opellant data. Testing was
accomplished in accordance with MAWRBM Project MO40	
The data from this test period are combined with	th data from previous testing
and entered into the GO85 Computer for storage, and From the statistical analysis of all data tested to	
cue semeratical analysis of all data fested to	date (titreen Aeats tot

least two years past the oldest data point.

Each point on the regression plot represents the mean of all samples at that particular age. The number of samples accompanying each regression plot or group of regression plots. The data range at any age can be found by suitable inquiry of the GO85 System.