Data Mining and Machine Learning

Assignment Project Exam Help Sequence Analysis & Dynamic https://powcoder.com/Programming-WeChat powcoder

Peter Jančovič

Objectives

- To consider data mining for sequential data
- To understand Dynamic Programming (DP)
- Using DP to compute distance between sequences
- To understandtphatpsychologom
 - An alignmentapathChat powcoder
 - The DP recurrence equation
 - The distance matrix
 - The accumulated distance matrix
 - The optimal path

Sequences

- Sequences are common in real applications:
 - DNA analysis in bioinformatics and forensic science
 - Segassienon det l'Euroje et, Ex anan Help
 - Signature recognition biometrics
 Words and text
 - - Spelling and grant macheokers duthor verification,...
 - Speech, music and audio
 - Speech/speaker recognition, speech coding and synthesis
 - Electronic music
 - Radar signature recognition...

Mining sequential data

- Sequences may not be amenable to human interpretation (complexity, dimension, quantity)
- Need for automated sequential data retrieval/mining
- For clustering tand of the fundamental requirement is for a measure of the distance between two sequences

Basic definitions

• In a typical sequence analysis application we have a basic <u>alphabet</u> consisting of *N* symbols

Assignment Project Exam Help
$$A = \{\alpha_1, ..., \alpha_n, ..., \alpha_N\}$$
 https://powcoder.com

- Examples:
 - In text A is the set of letters plus punctuation plus 'white space'
 - Bioinformatics $A = \{A, G, C, T\}$ (elements of DNA sequences)

Sequences of continuous variables

- In some applications, elements of a discrete sequence are taken from a continuous vector space, rather than significate Project Exam Help
- Sequences of continuous variables can be dealt with in two ways:
 - Directly
 Add WeChat powcoder
 - Vector quantization (VQ):
 - -Represent space as a set of *K* centroids:
- -Replace each data point by its closest centroid

Distance between sequences (1)

- Sequences from the alphabet $A = \{A, B, C, D\}$
- How similar are the sequences: Assignment Project Exam Help $-S_1 = ABCD$

 - $-S_2 = ABD^{https://powcoder.com}$
- Intuitively S₂AslobhachethefromvSquer deleting C
- Alternatively S_2 is obtained from S_1 by substituting D for C and then deleting D

Distance between sequences (2)

- Or S₂ was obtained from S₁ be <u>deleting</u> ABCD and <u>inserting</u> ABC
- Assignment Project Exam Help
- First explanation is intuitively 'wrong'. Why?
- We favour the stimplest explanation, involving the minimum number of insertions, deletions and substitutions
- ...but maybe not always

Distance between sequences (3)

Consider:

- $-S_1 = AABC$
- $-S_2 = SABC$
- $-S_3 = PAB$ eignment Project Exam Help
- S₄ = ASCB https://powcoder.com
- If these sequences were <u>typed</u> then maybe S_2 is closer to S_1 than S_3 is, because S_3 are adjacent on a keyboard
- Similarly S_4 is close to S_2 because letter-swapping (SA \rightarrow AS etc) is a common typographical error

Alignments

Relationship between
 two sequences can be
 expressed asignment Project Exam Help
 alignment between//powcoder.com
 their elements

 Insertion (w.r.t. ABC)
 is a horizontal step

Alignment: deletion and substitution

Deletion is a vertical step

Substitution or perfect alignment are diagonal steps

Alternative alignment paths

Which alignment path is best?

The Distance Matrix

- Let *d* be a metric, so *d*(A,B) is the distance between the alphabet symbols A and B
- Example signment Project Exam Help
 - -d(A,B) = 0 if A. 7-B wetherwise d(A,B) = 1
 - In typing, d(A,B) might indicate how unlikely it is that A would be chatypewed Br
 - For continuous valued sequences d could be Euclidean distance, or City Block distance, or L_{∞} distance

Notation

Suppose we have an alphabet:

Assignment Project Exam Help

The distance matrix for A is an $N \times N$ matrix

https://powcoder.com
$$D = [D_{m,n}], 1 \le m, n \le N$$
Add WeChat powcoder

where $D_{m,n} = d(\alpha_m, \alpha_n)$ is the <u>distance</u> between the m^{th} and n^{th} alphabet symbols

The Accumulated Distance

- Consider two sequences:
 - $-S_1 = ABCD$ Assignment Project Exam Help $-S_2 = ACXCCD$
- For an alignment path p between S_1 and S_2 the accumulated distance between S_0 and S_2 , denoted by $AD_p(S_1,S_2)$, is the sum over all the nodes of p of the corresponding distances between elements of S_1 and S_2

Accumulated distance along p

Accumulated distance (continued)

Optimal path and DP distance

- Optimal path is path with minimum accumulated distance
- Formally the optimal path is *p*

where: https://powcoder.com $\hat{p} = \arg\min_{p} AD_{p}(S_{1}, S_{2}) \text{ or } AD_{p}(S_{1}, S_{2}) = \min_{p} AD_{p}(S_{1}, S_{2})$

• The <u>DP distance</u>, or <u>accumulated distance</u> $AD(S_1,S_2)$ between S_1 and S_2 is given by:

$$AD(S_1, S_2) = AD_{\hat{p}}(S_1, S_2)$$

Calculating the optimal path

- Given
 - the distance matrix D,
 - the insertion penalty K_{INS}, and Help
 - the deletiontpenalty Wooder.com
- How can we compute the optimal path between two (potentially very long) sequences S_1 and S_2 ?

*If K_{DEL} and K_{INS} are not defined you should assume that they are zero

Dynamic Programming (DP)

- Optimal path calculated using <u>Dynamic</u>
 <u>Programming (DP)</u>, based on <u>principle of optimality</u>
- If paths from X to Y go through A or B immediately before Y, optimal path from E. to H is best of:
 - Best path from Weetharlus costute go from A to Y
 - Best path from *X* to *B* plus cost to go from *B* to *Y*

UNIVERSITYOF BIRMINGHAM

DP - step 1

• Step 1: draw the trellis of all possible paths

DP – forward pass – initialisation

Accumulated distance matrix

ad(i,j)

- ad(i,j) is the sum of distances along the best (partial) path from (1,1) to (i,j)
- Calculate assignment of phiopeiple and phiopeiple

$$ad(i,j) = \min \begin{cases} \frac{\text{https://powcoder.com}}{ad(i-1,j) + K_{DEL} + d(i,j)} & \text{(i-1,j-1)} \\ Add(i\text{We,Ghat}) \text{powcoder.com} \\ ad(i,j-1) + K_{INS} + d(i,j) & \text{(i,j-1)} \end{cases}$$

Forward path matrix records local optimal paths

Accumulated distance matrix

Accumulated distance matrix

Accumulated distance matrix

A C X C D

Path matrix

UNIVERSITY^{OF} BIRMINGHAM

Accumulated distance matrix

Optimal path obtained by <u>tracing back</u> through path matrix, starting at the bottom right-hand corner

UNIVERSITY OF BIRMINGHAM

Summary

- Introduction to sequence analysis
- Dynamic Programming (DP) and the principle of optimality
- Computing the accumulated distance using DP
 - Distance matrix, Accompdated distance matrix,
 Path matrix, and Optimal path
- Recovering the optimal path

