One Period=7 days (costs scaled by 1,000,000 during optimization)

Movement

A: $$[5000, 10000] \cdot 10^{2}$ B: \$[10000,20000]·10²

C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

A: $\$[0, 0] \cdot 10^2$

B: $\$[0 , 0] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

P: [.99 ,.99 ,.97 ,.93]

A: \$[2500 ,5000 ,10000] 10²

B: $\$[5000,10000,20000]\cdot10^2$

C: \$[8 ,10 ,14]·10² P: [.99 ,.95 ,.93]

A: $\$[0, 0, 0, 0] \cdot 10^2$ B: $\$[0, 0, 0] \cdot 10^2$

C: \$[8 ,10 ,14] 10² P: [.99 ,.95 ,.93]

A: \$[2500 ,5000 ,10000] 10²

B: \$[5000 ,10000,20000] ·10² C: $\$[8 , 10 , 14] \cdot 10^2$ P: [.99 ,.95 ,.93]

4. Restaurants

5. Masking

6. Mega Events

7. Border Control A: $[5000, 10000] \cdot 10^2$

A: $\$[0] \quad]\cdot 10^2$

B: \$[0] 10^2

C: \$[10]·10² P: [.93]

B: $\$[10000, 20000] \cdot 10^2$ C: \$[10 ,14]·10² P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL

Probability Factor

Cost Per Period: POLICY Cost Per Period: DISEASE

A: $\$[5000,10000]\cdot10^2$ **B:** \$[10000,20000] 10² C: \$[10 ,14] 10² P: [.95 ,.93]