	Note		
		I	II
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
wastikeinummer Studiengang (trauptiaen) Taemientung (tvesemaen)	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur			
Mathematik 3 für Physiker	7		
(Analysis 2)	8		
Prof. Dr. S. Warzel			
	Σ		
4. August 2015 , $15:00 - 16:30$ Uhr			
Hörsaal: Platz:	I	 Erstkorrel	tur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II	$\mathbf{Z}_{ ext{weitkorre}}$	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt Erreichbare Gesamtpunktzahl: 54 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			
Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen:	1		
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

 $Musterl\ddot{o}sung \hspace{0.5cm} ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Stetigkeit und Differentiation

(4 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = (1+|x|^{1/3})e^y$. Kreuzen Sie die richtigen Antworten an:

- (a) f ist im Ursprung stetig.
- XI Ja □ Nein

[1]

(b) Die partielle Ableitung $\partial_1 f(0,0)$ ist

[1]

 $\Box -1 \qquad \Box \ 0$

- $\square \frac{1}{2}$
- \Box 1

X nicht definiert.

(c) Die partielle Ableitung $\partial_2 f(0,0)$ ist

[1]

 $\Box -1$ $\Box 0$

- $\square \frac{1}{2}$
- \mathbb{X} 1

 \square nicht definiert.

(d) Wie lautet die totale Ableitung von f im Nullpunkt?

[1]

$$\Box Df(0) = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

$$\Box Df(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\Box Df(0) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

 $\Box Df(0) = \begin{pmatrix} 0 & 1 \end{pmatrix} \qquad \Box Df(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \Box Df(0) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \boxtimes Df(0) \text{ ist nicht definient}$

LÖSUNG:

- (a) stetig als Kombination stetiger Funktionen, (c) $\partial_2 f(x,y) = f(x,y)$. f(0,0) = 1,
- (b) $x \mapsto f(x,0) = 1 + |x|^{\frac{1}{3}}$ nicht diffbar bei 0, (d) siehe (b)

2. Taylorentwicklung

(6 Punkte)

Bestimmen Sie die Taylorentwicklung bis zur 3-ten Ordnung von $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = e^x (1 + x^2 + y^2)^{-1},$$

mit dem Ursprung als Entwicklungspunkt.

$$T_3 f((x,y);(0,0)) = 1 + x - \frac{1}{2}x^2 - y^2 - \frac{5}{6}x^3 - xy^2$$

Lösung:

$$e^{x}(1+x^{2}+y^{2})^{-1} = (1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots)(1-(x^{2}+y^{2})+\cdots) = 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}-x^{2}-x^{3}-y^{2}-xy^{2}+\cdots$$

3. Extremalstellen

(11 Punkte) Bestimmen Sie mit Begründung die lokalen Maxima von $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = (x^2 + y^2 - 1)^2$. Lösung:

$$0 = \nabla f(x,y) = \begin{pmatrix} 2(x^2 + y^2 - 1)2x \\ 2(x^2 + y^2 - 1)2y \end{pmatrix} \iff x^2 + y^2 = 1 \lor (x,y) = (0,0).$$
 [2]

[1]

Dies sind genau die kritischen Punkte, mithin Kandidaten für lokale Extremstellen. [1]
Hessematrix:
$$H_f(x,y) = \begin{pmatrix} 8x^2 + 4(x^2 + y^2 - 1) & 8xy \\ 8xy & 8y^2 + 4(x^2 + y^2 - 1) \end{pmatrix}$$
. [2]

$$H_f(0,0) = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$$
 negativ definit, also ist $(0,0)$ ein lokales Maximum. [2]

Sei nun $(x,y) \in \mathbb{R}^2$ mit $x^2 + y^2 = 1$. Dann ist $\det H_f(x,y) = \det \begin{pmatrix} 8x^2 & 8xy \\ 8xy & 8y^2 \end{pmatrix} = 0$, also keine direkte

Aussage möglich.

Da aber $f(x,y) = 0^2 = 0$ und für alle $\epsilon > 0$ gilt, dass $(1 + \frac{\epsilon}{2})(x,y) \in U_{\epsilon}((x,y))$, wobei $f((1 + \frac{\epsilon}{2})(x,y)) = 0$ $((1+\frac{\epsilon}{2})^2-1)^2>0$ ist, folgt, dass (x,y) kein lokales Maximum sein kann. [2]

Somit ist (0,0) das einzige lokale Maximum von f. [1]

4. Umkehrfunktionen

(6 Punkte)

Sei $\Psi:(0,\infty)\times(0,2\pi)\times\mathbb{R}\to\mathbb{R}^3$,

$$\Psi(r,\varphi,z) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi\\z \end{pmatrix}.$$

(a) Bestimmen Sie die Ableitung von Ψ .

$$D\Psi(r,\varphi,z) = \begin{pmatrix} \cos\varphi - r\sin\varphi & 0\\ \sin\varphi & r\cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 [3]

(b) Ist Ψ ein lokaler Diffeomorphismus? Begründen Sie Ihre Antwort.

LÖSUNG:

(a) s.o.

(b) Ψ ist stetig differenzierbar. [1]

Die Jakobi-Matrix ist überall invertierbar, da det $D\Psi(r, \phi, z) = r > 0$. [1]

Nach dem Satz über die Lokale Umkehrfunktion ist Ψ ein also ein lokaler Diffeomorphismus.[1]

5. Implizit definierte Funktionen

(9 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = 2x^2 + y^2 + e^{z-1}z^2.$

(a) Beweisen Sie, dass die Gleichung f(x, y, z) = 4 im Punkt (1, 1, 1) lokal nach z auflösbar ist.

Es sei $(x,y) \mapsto g(x,y)$ die dadurch implizit definierte Funktion.

(b) Berechnen Sie $\nabla g(1,1)$.

Lösung:

(a) Es ist
$$f(1,1,1) = 2 + 1 + 1 \cdot 1 = 4$$
. [1]

f ist stetig differenzierbar [1]

mit
$$\partial_z f(x, y, z) = e^{z-1}(z^2 + 2z), \ \partial_z f(1, 1, 1) = 3 \neq 0.$$
 [2]

Nach dem Satz über implizite Funktionen ist f also in (1,1,1) lokal nach z auflösbar

(b) und es gilt für die Auflösung g

$$Dg(1,1) \stackrel{[2]}{=} -\frac{\left(\partial_x f(1,1,1) \ \partial_y f(1,1,1)\right)}{\partial_z f(1,1,1)} \stackrel{[1]}{=} \left(-\frac{4}{3} - \frac{2}{3}\right), \quad \text{also } \nabla g(1,1) = \begin{pmatrix} -\frac{4}{3} \\ -\frac{2}{3} \end{pmatrix}. \quad [1]$$

6. Vektoranalysis

(5 Punkte)

[1]

Seien $v, w \in C^1(\mathbb{R}^3, \mathbb{R}^3)$. Beweisen Sie:

$$\nabla \cdot (v \times w) = w \cdot (\nabla \times v) - v \cdot (\nabla \times w)$$

LÖSUNG:

$$\nabla \cdot (v \times w) \stackrel{[1]}{=} \sum_{i,j,k=1}^{3} \epsilon_{ijk} \partial_{i} v_{j} w_{k} \stackrel{[1]}{=} \sum_{i,j,k=1}^{3} \epsilon_{ijk} \left((\partial_{i} v_{j}) w_{k} + v_{j} (\partial_{i} w_{k}) \right) \stackrel{[1]}{=} \sum_{i,j,k=1}^{3} \epsilon_{ijk} \left((\partial_{i} v_{j}) w_{k} + v_{j} (\partial_{i} w_{k}) \right)$$

$$\stackrel{[1]}{=} \sum_{k=1}^{3} w_{k} \sum_{i,j=1}^{3} \epsilon_{kij} \partial_{i} v_{j} - \sum_{j=1}^{3} v_{j} \sum_{i,k=1}^{3} \epsilon_{jik} \partial_{i} w_{k} \stackrel{[1]}{=} w \cdot (\nabla \times v) - v \cdot (\nabla \times w)$$

7. Gradientenfelder

(6 Punkte)

Gegeben sei das Gradientenfeld $v: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$, $v(x) = \frac{x}{|x|^{2015}}$.

(a) Geben Sie explizit ein Potenzial $\Phi : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ an.

$$\Phi(x) = -\frac{1}{2013|x|^{2013}} \qquad [3]$$

(b) Berechnen Sie das Kurvenintegral $\int_{\gamma} v(x) \cdot dx$ mit $\gamma : [0,1] \to \mathbb{R}^3$, $\gamma(t) = (1-t) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

LÖSUNG:

(a) s.o. (b) $\int_{\gamma} v(x) \cdot dx \stackrel{[1]}{=} \Phi(\gamma(1)) - \Phi(\gamma(0)) = \Phi(0, 1, 0) - \Phi(1, 0, 0) \stackrel{[1]}{=} 0$, da das Potential nur von der Entfernung zum Ursprung abhängt. [1]

8. Gewöhnliche Differentialgleichungen

(7 Punkte)

Gegeben sei $G \in C^1(\mathbb{R})$ mit G' = g und die Differentialgleichung

$$\dot{x} = q(t)x^2.$$

(a) Bestimmen Sie eine lokale Lösung für das zugehörige Anfangswertproblem zu x(0) = 1.

$$x(t) = \frac{1}{1 + G(0) - G(t)}$$
 [3]

(b) Geben Sie eine Lösung für das zugehörige Anfangswertproblem zu x(0)=0 an.

$$x(t) = 0 \qquad [1]$$

(c) Besitzt das Anfangswertproblem zu $x(0) = x_0, x_0 \in \mathbb{R}$, lokal eine eindeutige Lösung? (Begründen Sie Ihre Antwort!)

Lösung.

- (a) Für die Lösung x(t) des AWP gilt $\int_{x(0)}^{x(t)} \frac{dx}{x^2} = \int_{0}^{t} g(t)dt$, bzw., $-\frac{1}{x(t)} + \frac{1}{x(0)} = G(t) G(0)$, bzw. $\frac{1}{x(t)} = 1 + G(0) G(t)$. (b) s.o.
- (c) Nach dem Satz von Picard-Lindelöf haben diese AWPs alle lokal eindeutige Lösungen, denn $F(t,x) = g(t)x^2$ erfüllt in der DGl $\dot{x} = F(t,x)$ überall eine lokale Lipschitz-Bedingung bezüglich x, da $(t,x) \mapsto \partial_x F(t,x) = 2xg(t)$ stetig ist. [3] (Achtung: F ist i.A. nicht stetig differenzierbar, da q nur als stetig bekannt ist.)