NS4150B 3.0W 单声道 D 类音频功率放大器

1 特性

- 工作电压范围: 3.0V~5.0V
- 输出功率: 2.8W(5V/4Ω,THD=10%)
- 0.1%THD (0.5W/3.6V)
- 高达 88%的效率
- 高 PSRR: -80dB (217Hz)
- 无需滤波器 Class-D 结构
- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 低静态电流: 4mA(3.6V 电源、No load)
- 过流保护、过热保护、欠压保护
- MSOP8 封装

2 应用范围

- 平板电脑
- 行车记录仪
- 蓝牙音箱

4 典型应用电路

3 说明

NS4150B 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。NS4150B 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

NS4150B 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。 并且利用扩频技术充分优化全新电路设计,高达 90%的效率更加适合于便携式音频产品。

NS4150B 无需滤波器的 PWM 调制结构及增 益内置方式减少了外部元件、PCB 面积和系统成本。

NS4150B 提供 MSOP8 封装, 额定的工作温度范围为-40℃至 85℃。

5 管脚配置

MSOP-8 的管脚图如下图所示:

编号	管脚名称	管脚描述	
1	CTRL	工作模式控制,低电平时 Shutdown	
2	Bypass	内部共模电压旁路电容脚,接 1uF 电容至 GND	
3	INP	音频输入正极	
4	INN	音频输入负极	
5	VoN	音频输出负极	
6	VCC	电源输入及音频功率管供电脚	
7	GND	地	
8	VoP	音频输出正极	

6 极限工作参数

· ·						
参数	最小值	最大值	单位	说明		
电源电压 VDD	-0.3	5.25	V			
INP/INN/CTRL PIN	-0.3	VDD+0.3				
储存温度	-65	150	°C			
耐 ESD 电压 ±4000		000	V			
结温		150	°C			
推荐工作温度	-40	85	°C			
推荐工作电压	2.2	5.0				
热阻						
θ _{JC} (MSOP-8)		190	°C/W			
Latch up		±150	mA			
焊接温度		220	°C	15 秒内		

注:超过上述极限工作参数范围可能导致芯片永久性的损坏。长时间暴露在上述任何极限条件下可能会影响芯片的可靠性和寿命。

7 电气特性

工作条件(除非特别说明): T=25℃, VDD=4.8V。

符号	参数	测试条件	最小值	标准值	最大值	单位
V _{DD}	电源电压		3.0	4.8	5.0	٧
I _{DD}	电源静态电流	VIN=0V,VDD-3.6V,No Load		3.0		mA
I _{SD}	关断漏电流	VDD =3.6V,CTRL=0V		0.1	10	μΑ
Vos	输出失调电压	VIN=0V,VDD =3.0V to 5.25V		5	20	mV
f _{SW}	调制频率	VDD =3.0V to 5.25V		400		kHz
Po	输出功率	THD=1%,f=1KHz,VDD=5V RL=4 Ω		2.0 1.3		W
		THD=10%,f=1KHz,VDD=5V RL=4 Ω RL=8 Ω		2.8 1.7		W
THD+N	总失真度+噪声	VDD =3.6V,, $f=1kHz$, RL =8 Ω Po=0.1W		0.15		%
		VDD =3.6V,f=1kHz, RL= 4Ω ,Po=0.5W		0.10		%
PSRR	电源抑制比	217Hz 20KHz		-80 -72		dB
CMRR	共模抑制比			-70		dB
η	效率	Po=0.6W,f=1kHz, VDD=3.6V,RL =8 Ω		90		%
V _{IH}	CTRL 输入高电平		1.2		VDD	V
V _{IL}	CTRL 输入低电平		0		0.2	V
Tst	启动时间			120		ms
Tsd	关断时间		80			ms

8 典型特性曲线

下列特性曲线中,除非指定条件,T=25℃。

9 应用说明

9.1 芯片基本结构描述

NS4150B 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。在 5V 电源下,能够 向 4Ω 负载提供 3W 的功率,并具有高达 90%的效率。NS4150B 采用先进的技术,在全带宽范围内 极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

NS4150B 无需滤波器的 PWM 调制结构及增益内置方式减少了外部元件数目、PCB 面积和系统成本,利用扩展频谱技术充分优化全新电路设计。芯片内置过流保护、过热保护和欠压保护功能,在异常工作条件下关断芯片,有效地保护芯片不被损坏,当异常条件消除后,NS4150B 自动恢复工作。其原理框图为:

9.2 无需输出滤波器

NS4150B 采用无需输出滤波器的 PWM 调制方式,省去了传统 D 类放大器的 LC 滤波器, 提高了效率,提供了一个更小面积,更低成本的实现方案。

9.3 上电、掉电噪声抑制

NS4150B 内置上电,掉电噪声抑制电路,有效地消除了系统在上电、下电、唤醒和关断操作时可能出现的瞬态噪声。

9.4 EMI 增强技术

NS4150B 内置 EMI 增强技术。 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图所示:

9.5 CTRL 引脚设置

通过设置 CTRL 引脚的电平值,可以设置 NS4150B 的工作模式,如表所示:

CTRL	Mode	
Н	Open	
L	Shutdown	

9.6 效率

NS4150B 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。最高可达 88%的效率更加适合于便携式音频产品。

9.7 保护电路

当芯片发生输出引脚之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,NS4150B 自动恢复工作。当芯片温度过高时,芯片也会被关断。 温度下降后,NS4150B 继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

9.8 电源去耦电容

电源端加适当的去耦电容可以确保器件的高效率及最佳的 THD+N 性能, 同时为得到良好的高频 瞬态性能,希望电容的 ESR 值要尽量小。一般使用 1uF 的陶瓷电容将 V_{DD} 旁路到地。去耦电容在布局上应尽可能的靠近芯片的 V_{DD} 放置。如果希望更好地滤除低频噪声,则需要根据具体应用添加一个 10uF 或更大的去耦电容。

9.9 增益设置和输入电阻

NS4150B 内部集成反馈电阻为 240k,增益 $A_{VD}=rac{240\ K\Omega}{Rin}$,其中 Rin 为外接输入电阻。

9.10 输入滤波器

音频信号通过隔直电容和输入电阻输入到 NS4150B 的 INP 与 INN。输入电容 Cin 与输入电阻 Rin

构成一个高通滤波器。截止频率为 $\mathit{fc} = \frac{1}{2\pi \cdot \mathit{Rin} \cdot \mathit{Cin}}$ 。实际上,在很多应用中,扬声器(Speaker)

不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致POP噪声出现,因此,小的耦合电容可以减少该噪声。

9.11 磁珠与电容

NS4150B 在没有磁珠和电容的情况下,对 60cm 的音频线,仍可满足 FCC 标准要求。在输出音频线过长或器件布局靠近 EMI 敏感设备时,建议使用磁珠、电容。磁珠及电容要尽量靠近芯片放置。

10 封装信息

10.1 MSOP-8 封装尺寸图

11 版本修改历史

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。