Recent NLP Highlights AM11/AM12

Week 2

David Schlangen

david.schlangen@uni-potsdam.de

A Glossary of Machine Learning Terms and Concepts

Overview

- Learning & Machine Learning
- Everything's a Function
- Experience
- Types of Machine Learning
- Supervised Learning: X, Y, h, and \$\theta\$
- Loss and Cost (as a function of \$\theta\$), and Gradient Descent
- Representations
- The Perceptron and Its Learning Rule; What it Can't Do
- Weights & Activation Functions
- Backpropagation
- The Computation Graph
- Fully Connected Neural Networks
- Other Types of NN Architectures

Learning

- Using experience to get better at something.
- Herb Simon: "Learning is any process by which a system improves performance from experience"
- Tom Mitchell: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
- Note: "Normal" programs don't improve through experience.
 But ML models are still programs. ML is a form of programming. (Through spec of model + provision of data.)

Everything's a function

 Reminder: A function maps an object (from its domain) to another object (from its range). f(x) = y

Dialopue Stede + Win

Parsing

Translation

Dialogue

Labelling Images

Seeing Similarities

Writing Poems

Acting in the world

• ...

Experience

• = Data

$$X = \{ x^{(n)}, x^{(2)}, \dots, x^{(m)} \}$$

Types of Machine Learning

- supervised learning: data + intended response
 - "supervision signal"
- unsupervised learning: just data, figure out structure

Supervised Learning

- supervised learning: data + intended response

Hypothesis, Loss, Cost, Objective Function

$$h_{\theta}(x^{(i)}) = z^{(i)}$$
 $L: (z_{1}y) \in \mathbb{R} \times Y \longrightarrow L(z_{1}y) \in \mathbb{R}$

$$J(\theta) = \sum_{i=1}^{\infty} L(h_{\theta}(x^{(i)}), y^{(i)})$$

Loss & Cost

- main concept: Loss and cost as function of parameters; data is kept constant.
- loss function direct the learning. different kinds exist.

Minimise Cost

• differential calculus, finding minima

Representations

Description of object, presenting the important (for the

task) aspects

A Neuron

Den 1-12

The Perceptron

Rosenblatt 1957

The Perceptron

$$Z^{(i)} = \{(u_i \times^{(i)}) \\ = \{(u_{n+1} \times_{n+1} + \dots + u_{n+1} \times_{n+1}) \\ U_{i(1+1)} = U_{i+1} + Y_{i}(y^{(i)} - z^{(i)}) \times_{i}^{(i)} \}$$

What the Perceptron Can't Learn

Other Activation Functions

Deep (= Multilayer) Networks

How does the supervision signal get to each weight?

Backpropagation

The Computation Graph

Theans Tensolve My Tord

Fully Connected (Feed Forward) Network

Convolutional Networks

Recurrent Networks

Overview

- Learning & Machine Learning
- Everything's a Function
- Experience
- Types of Machine Learning
- Supervised Learning: X, Y, h, and \$\theta\$
- Loss and Cost (as a function of \$\theta\$), and Gradient Descent
- Representations
- The Perceptron and Its Learning Rule; What it Can't Do
- Weights & Activation Functions
- Backpropagation
- The Computation Graph
- Fully Connected Neural Networks
- Other Types of NN Architectures

advertisement

• The CL Colloquium! Wednesdays, 16-18h. https://github.com/compling-potsdam/sose19-cl-colloquium

Week	Date	Presenter(s)	Title / Abstract
01	2019-04-10	no talk scheduled	
02	2019-04-17	David Schlangen	Information on getting credit for this course
03	2019-04-24	CL students	Poster Slam
04	2019-05-01	public holiday	
05	2019-05-08	Alan Nichols (RASA)	tba
06	2019-05-15	Shlomi Hod (Potsdam)	tba
07	2019-05-22	Alan Akbik (Zalando)	tba
80	2019-05-29	no talk scheduled	
09	2019-06-05	no talk scheduled	
10	2019-06-12	Staffan Larsson (Gothenburg)	tba
11	2019-06-19	Feiyu Xu (Lenovo) to be confirmed	tba
12	2019-06-26	Milica Gasic (Düsseldorf)	tba
13	2019-07-03	Raquel Fernández (Amsterdam)	tba
14	2019-07-10	no talk scheduled	
15	2019-07-17	no talk scheduled	