and since the matrix A_{R_i,S_j} represents $g_{ij}: F_j \to G_i$, the matrix B_{S_j,T_k} represents $f_{jk}: E_k \to F_j$, and the matrix C_{R_i,T_k} represents $h_{ik}: E_k \to G_i$, so $(*_5)$ implies the matrix equation

$$C_{ik} = \sum_{j=1}^{n} A_{ij} B_{jk}, \quad 1 \le i \le m, \ 1 \le k \le p,$$
 (*6)

establishing (when combined with Proposition 6.13) the fact that [C] = [A][B], namely the product C = AB of the matrices A and B can be performed by blocks, using the same product formula on matrices that is used on scalars.

We record the above fact in the following proposition.

Proposition 6.14. Let M, N, P be any positive integers, and let $\{1, \ldots, M\} = R_1 \cup \cdots \cup R_m, \{1, \ldots, N\} = S_1 \cup \cdots \cup S_n, \text{ and } \{1, \ldots, P\} = T_1 \cup \cdots \cup T_p \text{ be any partitions into nonempty subsets } R_i, S_j, T_k, \text{ and write } r_i = |R_i|, s_j = |S_j| \text{ and } t_k = |T_k| \ (1 \le i \le m, 1 \le j \le n, 1 \le k \le p).$ Let A be an $M \times N$ matrix, let [A] be the corresponding $m \times n$ block matrix of $r_i \times s_j$ matrices A_{ij} ($1 \le i \le m, 1 \le j \le n$), and let B be an $N \times P$ matrix and [B] be the corresponding $n \times p$ block matrix of $s_j \times t_k$ matrices B_{jk} ($1 \le j \le n, 1 \le k \le p$). Then the $M \times P$ matrix C = AB corresponds to an $m \times p$ block matrix [C] of $r_i \times t_k$ matrices C_{ik} ($1 \le i \le m, 1 \le k \le p$), and we have

$$[C] = [A][B],$$

which means that

$$C_{ik} = \sum_{j=1}^{n} A_{ij} B_{jk}, \quad 1 \le i \le m, \ 1 \le k \le p.$$

Remark: The product $A_{ij}B_{jk}$ of the blocks A_{ij} and B_{jk} , which are really the matrices A_{R_i,S_j} and B_{S_j,T_k} , can be computed using the matrices A'_{ij} and B'_{jk} (discussed after Example 6.3) that are indexed by the "canonical" index sets $\{1,\ldots,r_i\}$, $\{1,\ldots,s_j\}$ and $\{1,\ldots,t_k\}$. But after computing $A'_{ij}B'_{jk}$, we have to remember to insert it as a block in [C] using the correct index sets R_i and T_k . This is easily achieved in Matlab.

Example 6.4. Consider the partition of the index set $R = \{1, 2, 3, 4, 5, 6\}$ given by $R_1 = \{1, 2\}, R_2 = \{3\}, R_3 = \{4, 5, 6\}$; of the index set $S = \{1, 2, 3\}$ given by $S_1 = \{1, 2\}, S_2 = \{3\}$; and of the index set $T = \{1, 2, 3, 4, 5, 6\}$ given by $T_1 = \{1\}, T_2 = \{2, 3\}, T_3 = \{4, 5, 6\}$. Let [A] be the 3×2 block matrix

$$[A] = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} & \begin{bmatrix} & \\ & & \end{bmatrix} & \begin{bmatrix} & \\ & & \end{bmatrix} \\ \begin{bmatrix} & & \\ & & \end{bmatrix} & \begin{bmatrix} & \\ & & \end{bmatrix} \end{pmatrix}$$