Course Lesson plan (// includes Learning Outcomes & Learning Plan&Assessment Plan)

Course | 19MA D 101T | Course | CALCULUS AND INSEAD ALCEDRA | Course | DG | D 1001

Code	18MAB101T	Name	CALCULUS A	ND LIN	IEAR ALGEBRA	Category	BS	Basic Sciences	3	1	0	4
Pre- requisite Courses			Co- requisite Courses	NII			ressiv urses	Nil				
Course Oi Departme		Mathematic	es .		Data Book / Codes/Standards	nil						

(CLR):	Learning Rationale The purpose of learning this course is to:	Le	arn	ing	ing Program Learning Outcomes (PLO)															
:	Application of Matrices in problems of Science and Engineering	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
:	To apply the concept of Taylor series, Maxima minima, composite function and Jacobian in problems of science and Engineering								1			lity								
CLR-3	To Apply the concept of Differential Equations in problems of Science and Engineering	loom	(%)	(%)		dge		ent	search			Sustainability		Work		e				
: .	To apply the concepts of radius of curvature, evolute, envelope in problems of Science and Engineering	ing (B	ciency	Attainment		owle	sis	lopme	gn, Re	sage	ure	Susta		Team W	ı	Finance	ning			
	Application of Sequences and Series in all problems involving Science and Engineering	of Thinking (Bloom)	Expected Proficiency	ed Attai		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment &		8	Communication	Mgt. &	ng Learning			
Outcon	Learning At the end of this course, learners will be able to:	Level	Expect	Expected.		Engine	Problen	Design	Analysi	Модет	Society	Environ	Ethics	Individual	Commu	Project Mgt.	Life Long	PSO - 1	PSO-2	PSO - 3
CLO- 1 :	Apply the Knowledge of Matrices, Eigenvalues and Eigen Vectors Reduce to Quadratics form in problems involving Science and Engineering	2	85			L		L						M			Н			
CLO- 2:,	Gain familiarity in the knowledge of Maxima and Minima, Jacobian, and Taylor series and apply them tn the problems involving Science and Engineering	2	85	80		L			М	М										
CLO-	Gain knowledge in solution of Differential Equations and Its applications in engineering problems	2	85	80			М							M			Н			
CLO- 4:	To gain the knowledge of Radius, Centre, envelopre and Circle of of curvature and apply them in the problems involving Science and Engineering	2	85	80		L	М		М					М			Н			
CLO- 5:	Gain the knowledge of convergence and divergence of series using different test and apply sequences and Series in the problems involving Science and Engineering	2	85	80			М	L						М			Н			

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module	Learning Unit / Module	Learning Unit / Module		
	ation our)	12	12	12	12	12		
S-1	SLO-	Characteristic equation	Function of two variables — Partial derivatives	Linear equations of second order with constant coefficients when PI=0 or exponential	Radius of Curvature – Cartesian coordinates	Series of five terms – Test of Convergence-		
3-1	SLO-	Eigen values of a real matrix	Total differential	Linear equations of second order with constant coefficients when PI=sinax or cosax	Radius of Curvature – Cartesian coordinates	Comparison test – Integratest-		
	SLO-	Eigen vectors of a real matrix	Total differential	Linear equations of second order with constant coefficients when PI=polynomial	Radius of Curvature – Polar coordinates	Comparison test – Integral test-		
S-2	SLO-	Eigen vectors of a real matrix	Taylor's expansion with two variables up to second order terms	Linear equations of second order with constant coefficients when PI=exponential with sinax or Cosax	Radius of Curvature – Polar coordinates	Comparison test – Integral test		
S-3	SLO-	Properties of Eigen values	Taylor's expansion with two variables up to third order terms	Linear equations of second order with constant coefficients	Circle of curvature	D'Alemberts Ratic test,		

				when PI= exponential			
	2	Cayley – Hamilton theorem	Maxima and Minima	with polynomial Linear equations of second order with constant coefficients when PI=polynomial with sinhax or coshax	Circle of curvature	D'Alemberts Ratio test,	
6.4		Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14	
S-4	2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 6	Applications of Radius of curvature in engineering	Problem solving using tutorial sheet 14	
S-5		Finding A inverse using Cayley – Hamilton theorem	Maxima and Minima	Linear equations of second order variable coefficients	Centre of curvature	Raabe's test.	
	SLO- 2	Finging higher powers of A using Cayley – Hamilton theorem	Maxima and Minima	Linear equations of second order variable coefficients	Centre of curvature	Raabe's test.	
	SLO- 1	orthogonal reduction of a symmetric matrix to diagonal form	Maxima and Minima	Homogeneous equation of Euler type	Centre of curvature	Covergent of Exponential Series	
S-6	SLO- 2	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multiplier method	Homogeneous equation of Legendre's Type	Evolute of a parabola	Cauchy's Root test	
6.7	SLO-	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multiplier method	Homogeneous equation of Legendre's Type	Evolute of an ellipse	Log test	
S-7	SLO-	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multiplier method	Equations reducible to homogeneous form	Envelope of standard curves	Log test	
	SLO-	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15	
S-8	SLO-	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Applications of Curvature in engineering	Problem solving using tutorial sheet 15	
		Assignment I		Assignment II		Assignment III	
	SLO-	Reduction of Quadratic form to canonical	Jacobians of two Variables	Equations reducible to homogeneous form	Beta Gamma Functions	Alternating Series: Leibnitz test	
S-9	SLO-	Quadratic form to canonical form by orthogonal transformations	Jacobians of Three variables	Variation of parameters	Beta Gamma Functions and Their Properties	Alternating Series: Leibnitz test	
S-10		Quadratic form to canonical form by orthogonal transformations		Variation of parameters	Sequences – Definition and Examples	Series of positive and Negative terms.	
	SLO- 2	Orthogonal matrices	Jacobians Problems	Simultaneous first order with constant co-efficient.	Series – Types of Convergence	Series of positive and Negative terms.	
S-11	1	Reduction of quadratic form to canonical form	Properties of Jacobians and Problems	Simultaneous first order with constant co-efficient.	Series of five terms – Test of Convergence-	Absolute Convergence	
	SLO-	Reduction of quadratic form to canonical form	Properties of Jacobians and problems	Simultaneous first order with constant co-efficient.	Comparison test – Integral test-	Conditional Convergence	
	SLO-	Problem solving using tutorial sheet 3	Application of Taylor's series Maxima Minima Jacobians in Engineering	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13	Problem solving using tutorial sheet 13	
S-12		Applications of Matrices in Engineering	Application of Taylor's series Maxima Minima Jacobians in Engineering	Applications of Differential Equation in engineering	Problem solving using tutorial sheet 13	Applications Convergence of series in engineering	
		Cycle Test I		Cycle Test II		Cycle Test III	

Learning Resources

- I. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010
- 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

	Level of		Final Examination			
	Thinking	CLA – 1 (10%)	CLA - 2 (15%)	CLA - 3 (15%)	CLA - 4 (10%)	(50%)
Level	Remember Understand	40 %	30 %	30%	30 %	30 %
Level	Apply Analyze	40 %	40 %	40%	40 %	40 %
Level	Evaluate Create	20 %	30 %	30%	30 %	30 %

#CA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO – Session Learning Outcome

Course Designers					
(a) Experts from Industry					
1 Mr.V.Maheshwaran	CTS, Chennai	maheshwaranv@ yahoo.com			
(b) Experts from Higher Tech	nnical Institutions				
3 Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.a c.in	Dr.Nanjundan	Bangalore University	nanzundan@gmail.com
(b) Internal Experts		-			
5 Dr.A.Govindarajan	SRMIST	givindarajan.a@k tr.srmuniv.ac.in 6	Dr.Srinivasan	SRMIST	srinivasan.va@srmuniv.ac.

Assignment 1: 13.10.2020 Assignment 2: 13.11.2020 Assignment 3: 18.12.2020 CLA-1: 23.10.2020

CLA - 2: 04.12.2020

CLA - 3: 26.12.2020 LWD: 31.12.2020 Tentative

Professor Ganapathi Subramanian K.S

Course Coordinator

Department of Mathematics

ganapatk@srmist.edu.in

23.09.2020

SRM Nagar
Kaltankulathur - 603203
Kancheepuram Dist
Tamil Nadu, India

Dr.A.Govindharajan

HOD/Department of Mathematics hod.maths.ktr@srmist.edu.in

23/9/2000

Dr. A. GOVINDARAJAN, M.Sc.,M.Phil.,Ph.D., Professor & Head Department of Mathematics Faculty of Engineering & Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur - 603 203. Kancheepuram Dist., Tamil Nadu, India.

and mark are strong to property and

Four Street Stre