Niezawodność i diagnostyka systemów

W1 - Wprowadzenie

dr hab. inż. Henryk Maciejewski dr inż. Marek Woda

https://eportal.pwr.edu.pl

1. Wprowadzenie

2. Matematyczna teoria niezawodności – parę faktów z historii

3. Współczesna teoria i praktyka niezawodności – dziedziny zainteresowania

4. Program wykładu

Wprowadzenie

Niezawodność (*Reliability*) – własność obiektu, wyrażana za pomocą prawdopodobieństwa, że obiekt realizuje zadaną funkcję, w zadanych warunkach, w zadanym przedziale czasu (czas misji)

- Obiekt nienaprawialny, naprawialny, system, nadmiarowość ...
- Zadana funkcja parametr(y), które ją opisują zadajemy z pewną tolerancją
- Warunki pracy wpływają na niezawodność (np. intensywność uszkodzeń półprzewodników rośnie 2x przy wzroście temperatury o 10-20°C)
- <u>Niezawodność</u> wyrażana często jako funkcja czasu misji R(t), inne miary probabilistyczne

Matematyczna teoria niezawodności – parę faktów z historii

 lata 40-te – wiele wypadków podczas prób i eksploatacji niemieckich rakiet V-1 i V-2

 wczesne lata 50-te - liczne wypadki rakiet testowanych przez armię USA

 od 1952 - katastrofy samolotu Comet produkcji firmy British de Havilland

Comet Mk1

Pierwszych 10 katastrof Cometa

Nr	Date	Туре	Registration	SN	Operator	Fatalities	Location	Cause
1	26 Oct 52	Comet 1	G-ALYZ	6012	B.O.A.C.	0/8 + 0/35	Rome, Italy	Aircraft
2	03 Mar 53	Comet 1A	<u>CF-CUN</u>	6014	Canadian Pacific	5/5 + 6/6	Karachi, Pakistan	Aircraft
3	02 May 53	Comet 1	G-ALYV	6008	B.O.A.C.	6/6 + 37/37	Calcutta, India	Aircraft
4	25 Jun 53	Comet 1A	F-BGSC	6019	UAT	0/7 + 0/10	Dakar, Senegal	Pilot
5	10 Jan 54	Comet 1	G-ALYP	6003	B.O.A.C.	6/6 + 29/29	Elba, Italy	Aircraft
6	08 Apr 54	Comet 1	G-ALYY	6011	South African Airways	7/7 + 14/14	Stromboli, Italy	Aircraft
7	27 Aug 59	Comet 4	<u>LV-AHP</u>	6411	Aerolineas Argentinas	1/6 + 1/44	Asuncion, Paraguay	Pilot
8	20 Feb 60	Comet 4	<u>LV-AHO</u>	6410	Aerolineas Argentinas	0/6 + 0/0	Buenos Aires, Argentinia	Pilot
9	23 Nov 61	Comet 4	<u>LV-AHR</u>	6430	Aerolineas Argentinas	12/12 + 40/40	Sao Paulo, Brazil	Pilot
10	21 Dec 61	Comet 4B	G-ARJM	6456	British European Airways	7/7 + 20/27	Ankara, Turkey	Aircraft

 Początek lat 50-tych - podjęcie prac nad konstrukcją samolotu Boeing 707 (Boeing Scientific Research Laboratory, Seattle)

Boeing 707

Zygmunt William Birnbaum (1903 - 2000)

- 1925, ukończył Wydział Prawa Uniwersytetu we Lwowie
- 1929, uzyskał na Uniwersytecie we Lwowie stopień doktora matematyki (promotorem był prof. Hugo Steinhaus)
- od 1937 roku w USA (University of Washington w Seattle, lata 50-te i 60-te współpraca z Boeing SRL w dziedzinie niezawodności)
- W 1961 roku opublikował pracę "Multi-component systems and their structures and their reliability", która zapoczątkowała matematyczną teorię niezawodności

Współczesna teoria i praktyka niezawodności

- 1. Określanie czasu życia elementów (*life testing*)
- 2. Analiza niezawodności systemów (system reliability)
- 3. Projektowanie z uwzględnieniem niezawodności (design for reliability)
- 4. Obsługa i niezawodność (maintenance and reliability)
- 5. Przyspieszone badania niezawodności
- 6. Badanie fizyki uszkodzeń

Określania czasu życia elementów (*Life testing*)

Element – najmniejszy, niepodzielny obiekt na przyjętym poziomie rozważań

Cel analizy – określenie rozkładu czasu życia elementu lub jego parametrów (np. średniej)

Określania czasu życia elementów (*Life testing*)

Badania niezawodnościowe – w celu zebrania danych o uszkodzeniach, analiza statystyczna – wyznaczenie czasu życia

Problemy – trudność w uzyskaniu wystarczającej ilości danych konieczność wnioskowania z prób obciętych

Określania czasu życia elementów (*Life testing*)

Próba pełna

Próba obcieta

Analiza niezawodności systemów (System reliability)

system – zbiór elementów i powiązań pomiędzy nimi

Przykład: system szeregowy

system szeregowy (reprezentacja graficzna)

Warunek sprawności systemu:

System szeregowy jest sprawny, gdy są sprawne wszystkie wchodzące w jego skład elementy.

- model systemu modele elementów i warunek sprawności systemu
- cel analizy określenie niezawodności systemu na podstawie danych o niezawodności jego elementów składowych, bez konieczności przeprowadzania badań systemu (np. przed jego wyprodukowaniem)
- problemy trudności wynikające z niedostatków metod analitycznych i złożoności analizowanych systemów

Istnieje wiele metod opisu i algorytmów obliczeniowych stosowanych dla wyznaczania niezawodności systemów.

Przykładem jest metodologia stosowana w normie **MIL 271** (Departament Obrony USA), umożliwiająca analizę niezawodności urządzeń elektronicznych.

Obsługa i niezawodność (Maintenance and reliability)

- badanie stanu obiektu czynności mające na celu zebranie informacji o tym, czy obiekt jako całość jest zdatny do działania
- lokalizacja uszkodzeń w przypadku stwierdzenia uszkodzeń, określenie miejsc gdzie one występują
- usuwanie uszkodzeń organizacja procesu napraw i samo ich wykonanie
- prognozowanie przewidywanie zachowania się obiektu w przyszłości
- profilaktyka działania uprzedzające mające na celu podwyższenie niezawodności

Przykład – analiza wpływu przeglądów / napraw prewencyjnych na niezawodność

 Budujemy probabilistyczny model procesu życia/inspekcji/napraw (proces Markowa)

D – stany sprawności systemu I – stany inspekcji M – stany napraw

Określamy czasy przejść między stanami, czas realizacji inspekcji i napraw oraz prawdopodobieństwa decyzji

Przykład – analiza wpływu przeglądów / napraw prewencyjnych na niezawodność

Rozwiązanie:

czasy przejścia (do awarii)

 $D1 \rightarrow F$

 $D2 \rightarrow F$

 $D3 \rightarrow F$

prawdopodobieństwa przebywania w systemu w stanach

 Rozwiązanie analityczne procesu Markowa (rozwiązanie symulacyjne jeśli chcemy znać rozkłady czasów przejść)

Inspekcje co 10 lat

Inspekcje co 1 rok

Plan wykładu

- 1. Wprowadzenie Podstawy matematyczne przypomnienie
- 2. Element nienaprawialny
 - Model matematyczny, miary niezawodności, rozkłady
- 3. Eksperyment niezawodnościowy
 - Life testing, analiza danych, próby pełne, próby obcięte
- 4. Analiza niezawodności systemów
 - Struktury niezawodnościowe, nadmiarowość

- 5. Element naprawialny
 - Wprowadzenie do teorii procesów stochastycznych, proces Markowa
 - Obsługa i niezawodność (maintenance and reliability)
- 6. Zarządzenia usługami IT w przedsiębiorstwie
 - ITIL
 - Zarządzenie dostępnością, ciągłością
- 7. Transmisja cyfrowa
- 8. Kody nadmiarowe
- 9. Testowanie układów cyfrowych

6. Zarządzenia usługami IT w przedsiębiorstwie

- Zapewnienie wysokiej dostępności usług IT
- Metodyka / best practices: ITIL (IT Infrastructure Library)

7-8 Transmisja cyfrowa

- Kody nadmiarowe w systemach transmisji cyfrowej
 - Detekcyjne (systemy ARQ Automatic Repeat Request), korekcyjne (FEC – forward error correction)
 - Blokowe, cykliczne
 - Błędy pojedyncze, grupowe
- Modulacja wpływ zakłóceń, np. QPSK
- Scrambling

9 Testowanie układów cyfrowych

Generowanie wektorów testowych

• Np. s-a-0 @ b w układzie kombinacyjnym

	Temat	Kto
1	Wprowadzenie Podstawy matematyczne teorii niezawodności	НМ
2	Element nienaprawialny, podstawy matematyczne, miary niezawodności, rozkłady	НМ
3	Eksperyment niezawodnościowy, analiza wyników (badania pełne, próby obcięte)	НМ
4	Analiza niezawodności systemów, Struktury niezawodnościowe, nadmiarowość	НМ
5	Element naprawialny Wprowadzenie do teorii procesów stochastycznych	НМ
6	Proces Markowa Obsługa i niezawodność (maintenance and reliability)	НМ
7	Zarządzanie usługami IT w przedsiębiorstwie (ITIL)	MW
8	Zarządzenie poziomem, dostępnością i ciągłością usług w przedsiębiorstwie	MW

	Temat	Kto
9	Transmisja cyfrowa	HM, MW
10	Kody nadmiarowe Podstawowe pojęcia, rodzaje i własności kodów, zdolność detekcyjna i korekcyjna	НМ
11	Kody liniowe, cykliczne, korygowanie błędów seryjnych, Zastosowania w systemach ARQ, FEC; protokoły ARQ, modele kanałów transmisyjnych	НМ
12	Testowanie układów cyfrowych	НМ
13	Kolokwium	НМ

Literatura

- A. Birolini, Reliability engineering: theory and practice. Springer, 2007.
- P. O'Connor, Practical reliability engineering.
 Wiley, 2007.
- W. Mochnacki, Kody korekcyjne i kryptografia, Oficyna Wydawnicza PWr., 2000.
- W. Nelson, Applied Life Data Analysis. Wiley, 2004.

Literatura

 D.J. Smith, Reliability, Maintainability and Risk -Practical Methods for Engineers (8th Edition). Elsevier, 2011.

http://app.knovel.com/hotlink/toc/id:kpRMRPME19/reliability-maintainability-2/reliability-maintainability-2

- D. Daley, Design for Reliability Developing Assets That Meet the Needs of Owners. Industrial Press, 2011. http://app.knovel.com/hotlink/toc/id:kpDRDATMNF/design-reliability-developing
- B. Wilkinson, Układy cyfrowe, WKŁ