, מבוא ללוגיקה, מטלה -02 מבוא פתרון

2024 בנובמבר 9


```
.\varphi=(\lnot((P\to(\lnot Q))\land((\lnot R)\lor S)))יהיי וL=\{P,Q,R,S\} תהי שפה נכתוב עץ בינארי מיושר לשמאל מיושר לשמאל ל(T,f)ל־מיושר מטנדרטי בינארי פתרון נגדיר פתרון פתרון נגדיר
```

$$f=\{(\langle\rangle,\neg),(\langle0,0,1\rangle,\neg),(\langle0,1,0\rangle,\neg),(\langle0\rangle,\wedge),(\langle0,0\rangle,\rightarrow),$$

$$(\langle0,1\rangle,\vee),(\langle0,0,0\rangle,P),(\langle0,0,1,0\rangle,Q),(\langle0,1,0,0\rangle,R),(\langle0,1,1\rangle,S)\}$$
 עוד נגדיר $T=(\mathrm{dom}f,\preceq)$ עץ היצירה של $T=(\mathrm{dom}f,\preceq)$ נגדיר $\psi:T\to\mathrm{sent}_L$ נגדיר $\psi:T\to\mathrm{sent}_L$

$$\begin{split} \psi &= \{ (\langle \rangle, (\neg((P \rightarrow (\neg Q)) \land ((\neg R) \lor S)))), \\ &\quad (\langle 0 \rangle, ((P \rightarrow (\neg Q)) \land ((\neg R) \lor S))), \\ &\quad (\langle 0, 0 \rangle, (P \rightarrow (\neg Q))), \\ &\quad (\langle 0, 0, 0 \rangle, P), \\ &\quad (\langle 0, 0, 1 \rangle, (\neg Q)), \\ &\quad (\langle 0, 0, 1, 0 \rangle, Q), \\ &\quad (\langle 0, 1, 0 \rangle, (\neg R) \lor S)), \\ &\quad (\langle 0, 1, 0 \rangle, (\neg R)), \\ &\quad (\langle 0, 1, 0, 0 \rangle, R), \\ &\quad (\langle 0, 1, 1 \rangle, S) \} \end{split}$$

תהי L שפה, נוכיח שהביטוי $p \in \exp_L$ הוא פסוק אם ורק אם הוא פסוק מוגדר קווית.

 $\square \in B$ לכל F_{\lnot}, F_{\Box} תחת הסגורה הסגורה מינימלית של מינימלית מינימלית ארל $sent_L^+$ לכל

נניח כי $\varphi\in sent_L^+$ אמינימלית בגללה. $\varphi\in sent_L^+$ נניח כי $\varphi\in sent_L^+$ אמינימלית בגללה. $\varphi\in sent_L^+$ אונגדיר $\varphi\in sent_L^+$ בבסיס נניח מהגדרת $\varphi\in sent_L^+$ קיימת סדרת יצירה לי φ , נגדירה כי $\varphi= \varphi$ וסיימנו. נניח עתה כי אורך הרשימה הוא $q\in sent_L^+$ אורך הרשימה $q\in sent_L^+$ מתקיים $q\in sent_L^+$ שאורך הרשימה $q\in sent_L^+$ וסיימנו. נניח עתה כי אורך הרשימה הוא $q\in sent_L^+$ ועוד נניח כי לכל $q\in sent_L^+$ מתקיים $q\in sent_L^+$ וסיימנו, אילו מתקיים $q\in sent_L^+$ עבור $q\in sent_L^+$ או בקבל $q\in sent_L^+$ ובהתאם $q\in sent_L^+$ וקיבלנו כי $q\in sent_L^+$ ושמתקיים $q\in sent_L^+$ שמתקיים $q\in sent_L^+$ ושמתקיים $q\in sent_L^+$

 $.sent_L = sent_L^+$ נסיק, $.sent_L = S = sent_L^+$ נסיק, א

 $.\Box\in B$ לכל פונקציה ל $\epsilon_\Box:X^2 o X$ ו פונקציה פונקציה היא פונקציה לכל פונקציה לכל פונקציה לתחשיב פסוקים, א פונקציה לכל ווא פונקציה לכל פונקציה לכל א פונקציה לכל פונקציה לכל איי

'סעיף ב

נוכיח כי $\forall \varphi = (\neg \psi), \bar{h}(\varphi) = \epsilon_\neg(\bar{h}(\psi))$ וכן $\forall \varphi \in L, \bar{h}(\varphi) = h(\varphi)$ כך ש־ $\bar{h}: sent_L \to X$ ועבור כל $\bar{h}: sent_L \to X$ נוכיח כי קיימת פונקציה $\varphi = (\psi_0 \Box \psi_1) \implies \bar{h}(\varphi) = \epsilon_\Box(\bar{h}(\psi_0), \bar{h}(\psi_1))$

. עבורו (T_{ψ}, f_{ψ}) יצירה עץ לכן קיים $\psi \in sent_L$ יהי הוכחה.

 $ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=h(f(t))$ היציר בשאלה 3 ממטלה 1 ונגדיר את $ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\neg}(\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל שני עוקבים בעל שני עוקבים $ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\neg}(\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל שני עוקבים $ilde{e}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\neg}(\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל $ilde{e}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל $ilde{e}_{\psi,(T_{\psi},f_{\psi})}(t)$

. נגדיר עתה אכן שהתנאים ונבדוק ונבדוק $ar{h}(\psi) = ilde{g}_{\psi,(T_\psi,f_\psi)}(\langle
angle)$ נגדיר עתה

תחילה נבחין כי ממסקנה מהכיתה נובע כי עץ היצירה לכל פסוק הוא יחיד, לכן הגדרה זו יחד עם יחידות g היא תקפה, ונוכל לדון לא בתוקפה אלא בקיום התכונות הרצויות בלבד.

 $ar{h}(\psi)= ilde{g}_{\psi,(T_\psi,f_\psi)}(\langle
angle)=h(f_\psi(\langle
angle))=h(\psi)$ נניח כי $\psi\in L^1$ נניח כי

בהתאם נוכל להסיק כי $ar{h}$ לא רק מוגדרת באופן חזק, אלא גם מקיימת את שלושת התנאים.

'סעיף ג

. נוכיח כי הפונקציה $ar{h}$ מוגדרת ביחידות

. התנאים את המקיימות פונקציות שתי \bar{h}, \bar{h}' שתי התנאים.

 $ar{h}(\psi)=ar{h}'(\psi)$ בפרט ולכן הלכן הל $ar{h}'(\psi)=h(\psi)$ אך גם התכונות שמצאנו מתקיים מתקיים אך אך גם $ar{h}(\psi)=h(\psi)$ אר יהי

 $ar{h}(arphi)=ar{h}'(arphi)$ כך ש־ $arphi\in sent_L$ גם הפעם נשתמש בטענה זו כבסיס האינדוקציה על מבנה הפסוק, ולכן נניח עתה את מהלך האינדוקציה, דהינו יהי בסיס האינדוקציה על מבנה הפסוק, ולכן נניח עתה $ar{h}(\psi)=\epsilon_{\lnot}(ar{h}(arphi))=\epsilon_{\lnot}(ar{h}'(arphi))=ar{h}'(\psi)$ ייהי $\psi=(\lnotarphi)$ ושוב הגענו לשוויון.

. $\square \in B$ עבור $\psi = (\varphi_0 \square \varphi_1)$ ונגדיר הטענה, מקיימים את מקיימים $\varphi_0, \varphi_1 \in sent_L$ נניח אם כך

 $ar{h}(\psi)=\epsilon_\square(ar{h}(arphi_0),ar{h}(arphi_1))=\epsilon_\square(ar{h}'(arphi_0),ar{h}'(arphi_1))=ar{h}'(\psi)$ to

היא אכן יחידה. $ar{h}$ יש השלמנו אם כך את מהלך האינדוקציה וקיבלנו

תהי L שפה לתחשיב פסוקים.

'סעיף א

. עונות יצירה סדרות אינסוף לו שי או $\varphi \in sent_L$ בוכיח כי נוכיח נוכיח לו

 $arphi=arphi_0$ סדרת יצירה כך ש $lpha_0=\langle arphi_0,\ldots,arphi_{n-1}
angle$ הוכחה. תהי

.L הגדרת שקיים שמובטחל כלשהו כלשהי יסודי פסוק $\psi \in L$ כי נניח נניח

עתה נבנה סדרה חדשה (שמרו ניספים, נבחין כי כל תנאי סדרת היצירה משמרו שכן איבר נוספים, ולכל איבר נוספים, ולכל איבר כל $lpha_1=\langle arphi \rangle \frown lpha_0$ איבר כל האיברים הקודמים לו נשמרו ברשימה ובסדר.

 φ של שינדוקציה סדרת אכן כי הרשימה אורך אורך באינדוקציה באינדוקנית פירוט ביתר פירוט ביתר ביתר של

עתה נבצע תהליך זה באופן מחזורי, נגדיר $lpha_{k-1} - lpha_k = lpha_k$. כמובן אורך $lpha_k$ שונות נגדיר נגדיר בארית אכן שונות.

'סעיף ב

.3 באורך עתה עד הפסוק $\varphi = (p o q)$ הפסוק של היצירה היצירה מספר את ונחשב את ונחשב אר גדיר $L = \{p,q\}$

 $arphi_2=arphi$ גגדיר $arphi_2=arphi$ סדרת יצירה של $\langle arphi_0,arphi_1,arphi_2
angle$ כתרון נגדיר

 $arphi_0=p, arphi_1=q$ משפע היתכן כי מצב היתכן פרת מטענה מטענה, $arphi=\varphi_0$ את מספר מופיע בסדרה פרת מופיע בסדרה מטענה עבור פרת מטענה פרת מטענה עד מיים מער מטער מער פרת מטער מטער מטער בלבד. נסיק אם כן שמספר הסדרות באורך 3 הוא 2 בלבד. נסיק אם כן שמספר הסדרות באורך 3 הוא 2 בלבד.