

Etude d'un robot marcheur

Ci-dessous est représenté un robot marcheur avec la manivelle OA (1) qui est animée d'un mouvement de rotation continu tel que : $\omega_{1/0} = \frac{d\theta}{dt}$ = constante

La partie fixe S_0 (support) est associée au référentiel R ($O, \vec{x}, \vec{y}, \vec{z}$)

La manivelle OA (1) est liée au repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$) est en liaison pivot d'axe O \vec{z} par rapport à S_0 avec $\Theta = (\vec{x}, \overrightarrow{x_1})$ La biellette AB (2) est liée au repère R_2 ($A, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$) est en liaison pivot d'axe A \vec{z} par rapport à S_1 avec $\alpha = (\vec{x}, \overrightarrow{x_2})$ La patte BP (3) est liée au repère R_3 ($O_1, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}$) est en liaison pivot d'axe O_1 \vec{z} par rapport à S_0 avec $\varphi = (\overrightarrow{x_0}, \overrightarrow{x_1})$

On pose : $\theta = (\vec{x}, \overrightarrow{x_1})$; $\alpha = (\vec{x}, \overrightarrow{x_2})$; $\varphi = (\vec{x}, \overrightarrow{x_3})$; $\overrightarrow{OA} = r.\overrightarrow{x_1}$; $\overrightarrow{AB} = a.\overrightarrow{x_2}$; $\overrightarrow{O_1B} = b.\overrightarrow{x_3}$; $\overrightarrow{O_1P} = -c.\overrightarrow{x_3}$; $\overrightarrow{OO_1} = -d.\overrightarrow{x}$ Solide S₁ (biellette OA): Masse M₁, centre de gravité G₁ tel que $\overrightarrow{OG_1} = \frac{r}{2}.\overrightarrow{x_1}$, Moment d'inertie en O $I_{OZ}(S_1) = C_1$ Solide S₂ (bielle AB): Masse M₂, centre de gravité G₂ tel que $\overrightarrow{AG_2} = \frac{a}{2}.\overrightarrow{x_2}$, Moment d'inertie en G₂ $I_{G2Z}(S_2) = C_2$ Solide S₃ (levier BP): Masse M₃, centre de gravité G₃ tel que $\overrightarrow{O_1G_3} = e.\overrightarrow{x_3}$, Moment d'inertie en O₁ $I_{G3Z}(S_3) = C_3$

Questions

- 1) Réalisez les figures de changement de repère
- 2) Déterminez les vecteurs rotation $\vec{\Omega}$ (S_1/R) ; $\vec{\Omega}$ (S_2/R) ; $\vec{\Omega}$ (S_3/R) ; $\vec{\Omega}$ (S_3/S_2) ; $\vec{\Omega}$ (S_2/S_1)
- 3) Exprimez $\vec{V}_{A\ 1/R}$. Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 4) Exprimez $\vec{V}_{B\ 3/R}$. Vous l'exprimerez dans le repère R_3 ($O, \vec{x_3}, \vec{y_3}, \vec{z_3}$)
- 5) Exprimez $\vec{V}_{B \ 2/R}$
- 6) Que peut-on dire de $\vec{V}_{B\,2/R}$ et de $\vec{V}_{B\,3/R}$? Justifiez votre réponse.
- En déduire une relation entre $\dot{\theta}$ et $\dot{\phi}$ en fonction de b, r, ϕ , α , θ
- 7) Exprimez $\vec{V}_{P\,3/R}$ par dérivation puis par changement de point. Vous l'exprimerez dans le repère R_3 ($O, \vec{x_3}, \vec{y_3}, \vec{z_3}$)
- 8) Exprimez $\vec{I}_{P\;3/R}$. Vous l'exprimerez dans le repère R_3 ($O, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}$)
- 9) La patte (BP) peut être assimilée à un solide dont les caractéristiques sont données sur le croquis coté ci-après :

- a) Calculer la masse du solide sachant que sa masse volumique sera notée p
- b) Calculer les coordonnées de son centre d'inertie
- c) Déterminer sa matrice d'inertie exprimée au point O_1 dans la base $(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$

Pour information, page suivante, on donne la forme de la matrice d'inertie d'un pavé exprimée en G (centre de gravité)

Ainsi que celle d'un cylindre (rayon R et longueur L) exprimée en G (centre de gravité)

10)

a) Déterminez le moment cinétique en O_1 $\overrightarrow{\sigma}_{O_1(S_3/R)}$ de la patte (B O_1).

On prendra pour matrice d'inertie en O_1 : $I_{O_1}(S) = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})}$

- b) Déterminez le moment cinétique en G_2 $\overrightarrow{\sigma}_{G_2(S_2/R)}$ de la biellette AB (2). Le moment d'inertie de la biellette en G_2 autour de l'axe Oz est C_2
- c) Déterminez le moment cinétique en 0 $\overrightarrow{\sigma}_{O(S_1/R)}$ de la manivelle OA (1). Le moment d'inertie de la manivelle en O autour de l'axe Oz est C_1
- 11) Déterminez le moment dynamique en O $\vec{\delta}_{O(S/R)}$ de l'ensemble { patte (BO1), biellette (AB), manivelle (OA) }
- 12) Sachant : que l'action du moteur en O est modélisée par le torseur $\{\mathcal{T}_{(moteur \to S_1)}\} = \begin{cases} \overrightarrow{0} \\ \overrightarrow{C_M} = C_M . \overrightarrow{z} \end{cases}$ que l'action de contact en P est modélisée par le torseur $\{\mathcal{T}_{(sol \to S_3)}\} = \begin{cases} \overrightarrow{R} = R . \overrightarrow{y} \\ \overrightarrow{0} \end{cases}$ que le poids propre des pièces est négligé

Par application du théorème du moment dynamique en O, établissez l'équation permettant de déterminer le couple moteur C_M en fonction des masses, des inerties, des dimensions des solides en mouvement ainsi que des paramètres θ , ϕ , α et de leurs dérivées successives.

[Ehde d'in whot marchen ! 1) Figures de changement du represe y do man de man 2) Vecteurs rotation

5251/p = 03 7252/R = 28 5253/R = 43 $\frac{\pi^{2}s_{3}/s_{1}}{-1} = \frac{\pi^{2}s_{3}/2}{-1} - \frac{\pi^{2}s_{2}/2}{-1} = \frac{(\hat{y}-\hat{z})\hat{y}}{-1}$ 元/s1/s1=元/s1/R=(2-0)3 3) $V_{41}^{2} = \tilde{\Sigma}_{1/2} = \tilde{O}_{4} = \tilde{O}_{3} = \tilde{O}_{3} = \tilde{O}_{3}$ 4) $V_{3/2} = \tilde{\Sigma}_{3/2} = \tilde{O}_{3/2} = \tilde{O}_{3$ 5) VB21R = VA21 + IZO 1 FB = VA16 + IZYO 1 FB VB2(R = (09) + 28 1002 Brie 1991 + Lagr 6) VBrie - VB3/2 car Best le Certre de l'inhimlater 33 et VBris - 5

6/(Syile)

y = -shon + cosoy gi = wsky - smxn 13 = cos 42 + Sin 45 roy +2 a Ji = 6 q J3 (a- 132/n = 133/n) r 0 (-sin 0 n + ca 0 g) + 2 a (coský-sindrí) = bip(cos q n + sin q g) \Rightarrow rosmo = adsmd = bépeos φ rocoso + adcosx = bépsniq rousnowx + cososmix) = bip (cosp cosx + supsuma) v8 sin(2-0) = by cos(p+x) 0 - b cos (Q-K) (vsm(2-0) 7) $V_{g_{3}/n} = \frac{d(\tilde{o}_{1}\tilde{r})}{dv} = \frac{d(-c\tilde{n}_{3})}{dv} = -c(\tilde{d}_{1}\tilde{u}_{3}) = -c(\tilde{\phi}_{3}\tilde{f}_{3})$ VP3/2 - VB3/2 + R3/2 1 BP = b() \(\vec{y}_3 + \vec{y}_3 \) (1-b-c) \(\vec{y}_3 \) $\sqrt{23/2} = -cqq_3$ 8) $rac{7}{\rho_3} = d(\overline{V}_{\rho_3}/R) = -c(\rho_3) - \rho_3$

D) Suite Pour le cylinde euß Fon, c = FB, c) + mc (0 62 0 62) Matine d'iredu de la pièce emplete (3) TO15) = TO16, Con) - Fores $= Mp \left| \begin{array}{c} 24^2 \\ 72 \end{array} \right|$ $\frac{b^{2}+e^{2}}{72}+d3^{2}$ $\frac{b^{2}+e^{2}}{71}+d3^{2}$ $\frac{b^{2}+b^{2}}{71}+d3^{2}$ $\frac{b^{2}+b^{2}}{71}+d3^{2}$ 10) Jon Sale [Fon, s) - 52 s/2 + M30, 631 Von/2 Jis/12 = 93 Jas3/12 = G93 Jousnin = Ing Perin Tradge Josile Forsin = CISI 11) Sosile = 2/600/n) = C10] Foresile = of Consula) = Colo Sosila - Saisipe + Malazsen 1 Gro

M) (site)
Calcul de 19252/2 Junie Sin/2-0-1/2) F1772 = -105(K-0)} V6251/n = VASI/n+ SSI/n 1 AG2 Thanh = sink-0) 2 三个多岁十分了1点部 VG. 51/2 - roy + 2252 でいいりゃー 引(でいい)=アウダルアウマルナをより、一点とが Me lazseln 1620 = me (rôy, -rôza+22/2-92/12) 1(a zíz) M, TG252/n (620 = ann (18060)-réside 0)+ 22) } Sosyla = €223 + M2.a(-röwsk.o)-rösmk-o)+a273 Sosgin = d(0.153/n) + M3/6352/n 10,0 Calcul de C63 53/2 avec 0,63 = 0323 V6353/n = d3 (\$ y\f3 et (6353/n = d3 (\$ y\f3 = \$ \f2 \ni_3) Soszlp = C3 48 + m3 d3 (473 - 4273) A (d2) 5053/R = C3 48 + M3d3 (Gusy-gsing) 8

12) | Tunsteur -> 51 | = { Cm3} 23 19 = - Seos p (TS-1-) S3 } = { Ry = d 07 0 0P1RJ={dil-(niz)1RJ? Atsol-s3) = 1 Rg 6-RA+cosy) 2 On isole l'ensemble de Dre to)

Thert somes ina l'ache du moteur (Troberss,)

- à l'ache du sol Itsolss,) On applique le PFD à 20+0+3) au 0 Sogn 10 +0 /R = Cm 3 - R(d+ C. Cos 4) 3 Ce qui donne l'equit en prych sur 07: (10 + C2 X + m2 a [-r0 w(x-0)-r0 su(x-0) + a 2] + C3 (+ m3 d3 (- 4 cosp - 4 sing) = Cm - 2 (d + CoCosp)