Lista 3 - Topologia 2021

F-cja $h:(0,1)\setminus\{\frac{1}{n}:n\in\mathbb{N}\}\to Y,\,h(x)=\frac{1}{x}+\left[\frac{1}{x}\right]$ jest homeomorfizmem. Znajdź Y.

Dla $a < b, c < d \in \mathbb{Q}$ niech $f_{a,b,c,d}(x) = c + (x-a)\frac{d-c}{b-a}$ oraz $g_{a,b,c,d}(x) = d - (x-a)\frac{d-c}{b-a}$ Niech $c = \frac{1}{2}\sqrt{2} = [0, c_1c_2c_3...]_{10}$ (zapis dziesiętny). Podaj wzory homeomorfizmów:

a) $h_1: (\tilde{0},1) \cap \mathbb{Q} \to (0,c) \cap \mathbb{Q},$ b) $h_2: (0,1) \cap \mathbb{Q} \to ((0,1) \cup (2,3)) \cap \mathbb{Q},$ c) $h_3: (0,1) \cap \mathbb{Q} \to ((0,1) \cap \mathbb{Q}) \cup \{c\},$ d*) $h_4: (0,1) \cap \mathbb{Q} \to [0,1) \cap \mathbb{Q}.$

Ćw. 3 F-cja $h: \{(x,y): x^2+y^2 \le 1, x \ge y \ge 0\} \to Y$ jest homeomorfizmem. Znajdź Y, gdy

$$h(x,y) = \begin{cases} \left(\sqrt{x^2 + y^2}, \sqrt{x^2 + y^2} \cdot \frac{y}{x}\right) & gdy \quad x \neq 0\\ (0,0) & gdy \quad x = 0 \end{cases}$$

Sprawdź, że funkcja $f: \{0,1\}^{\mathbb{N}} \to \mathbb{R}, f(x) = \sum_{n=0}^{\infty} \frac{x(n)}{2^{n+1}}$ jest ciągła. Znajdź jej obraz.

Sprawdź, że $h:\{0,1\}^{\mathbb{N}}\to C,\,h(x)=\sum\limits_{n=0}^{\infty}\frac{2\cdot x(n)}{3^{n+1}}$ jest homeomorfizmem kostki i zbioru Cantora.

Zad. 5 Niech X, Y beda przestrzeniami topologicznymi i niech \mathcal{B} bedzie baza przestrzeni Y. Pokaż, że następujące warunki są równoważne ciągłości funkcji $f: X \to Y$:

- $f^{-1}[F]$ jest domknięty dla każdego domkniętego $F \subseteq Y$,
- $f^{-1}[B]$ jest otwarty dla każdego $B \in \mathcal{B}$,

Pokaż, że okrąg bez punktu jest homeomorficzny z prostą euklidesową. Uogólnij ten Zad. 6 wynik na wyższe wymiary.

Zad. 7 Które przekształcenia liniowe są homeomorfizmami? Które są funkcjami ciągłymi?

Zad. 8 Pokaż, że trójkat jest homeomorficzny z kwadratem.

Pokaż, że zbiór Cantora C jest homeomorficzny z $C \times C$. Zad. 9

Zad. 10 Pokaż, że jeżeli X jest przestrzenia metryzowalna, to spełnia następująca własność: dla każdego $x \in X$ istnieje rodzina $\{U_n : n \in \omega\}$ otwartych otoczeń x takich, że dla każdego V, otwartego otoczenia x, istnieje n, że $U_n \subseteq V$. (Wskazówka: pomyśl o kulach.) Wywnioskuj, że przestrzeń $C_p([0,1])$ nie jest metryzowalna.

Zadanie trudniejsze.

Przestrzeń Baire'a definiujemy w następujący sposób. Na zbiorze $\mathbb{N}^{\mathbb{N}}$ (wszystkich ciągów liczb naturalnych) generujemy topologię zbiorami postaci $B_s = \{x \in \mathbb{N}^{\mathbb{N}} : \forall i \leq n \ x(i) = 1\}$ s(i), gdzie s jest ciągiem liczb naturalnych długości n. (Zauważ podobieństwo tych zbiorów do zbiorów bazowych w kostce Cantora.).

- Pokaż, że przestrzen Baire'a jest metryzowalna.
- (*) Pokaż, że przestrzeń Baire'a jest homeomorficzna z $\mathbb{R} \setminus \mathbb{Q}$ z metryką euklidesową.