MATH 644

Chapter 6

SECTION 6.2: NORMALITY AND EQUICONTINUITY

Contents

Normality	2
Space of Continuous Functions	4
Equicontinuous Family of Functions	6
Family of Analytic Functions	9

Created by: Pierre-Olivier Parisé Spring 2023

NORMALITY

DEFINITION 1. A collection, or family, \mathcal{F} of continuous functions on a region $\Omega \subset \mathbb{C}$ is said to be **normal on** Ω provided every sequence $(f_n) \subset \mathcal{F}$ contains a subsequence which converges uniformly on compact subsets of Ω .

EXAMPLE 2. Show if the given family is normal on the given region.

- (a) $\mathcal{F}_1 := \{ f_n(z) = z^n : n = 0, 1, \ldots \}$ and $\Omega = \mathbb{D}$.
- (b) $\mathcal{F}_2 := \{g_n : n = 0, 1, \ldots\}$, where $g_n(z) = 1$ if n is even and $g_n(z) = 0$ if n is odd and $\Omega = \mathbb{C}$.

(a) Since $|z| < 1 \Rightarrow |z|^n \Rightarrow 0 , n \Rightarrow \infty$ (uniformly) If $z \in K \leq z$, K compact

(b) Take sequence (fn) $\subseteq F_z$.

Case 1) All index n are odd or all index n are even.

In this case fr = 1 Yn or fr = 0 Yn.

the whole requerce works for a subsequence.

[Case 2] Index are odd or even.

Create (gnk) = , such that

1) nk=n if n is odd

(hoose () if infinitely many

(house 1)

finitely many

even incluses

(hoose (2))

odd indukes

thuefre $g_{nk} \equiv 0$ in case ()

or $g_{nk} \equiv 1$ in case (2)

(g_{nk}) $g_{nk} \equiv 1$ converges on compact subsets of C.

LEMMA 3. Suppose Ω

- is a region and;
- $\Omega = \bigcup_{j=1}^{\infty} \Delta_j$, where Δ_j are eleved disks. such that $\overline{\Delta_j} \subset \mathcal{D}$

A family of continuous functions \mathcal{F} is normal on Ω if and only if, for each j, every sequence in \mathcal{F} contains a subsequence which converges uniformly on $\overline{\Delta}_i$.

Proof.

(=>) Obvious.

(=). Suppose (fn) = I be an arbitrary sequence.

Goal: 3 (fnk) = (fn) sol. (fnk) converges unit. compact subsets of IZ.

· Start with ==1.

 $\exists (\exists n_k) \in (\exists n)$ at. $\exists r_k \rightarrow g$, unif. on $\overline{\Delta}_n$

 $y=Z_1$ $\exists \left(f_{n_k^2} \right) \subseteq \left(f_{n_k^2} \right) \cap f \cdot f_{n_k^2} \rightarrow g_2 \quad \text{lim} f$

Tor j≥z, ∃(fnj) = (fnji) n.l. fnji

Exposition:

Define the subsequence (hk) of (fn) as $h_k := f_{n_k}^k$, $k \ge 1$.

Then, Y_j , (hk) converges uniformly on Q_j .

Let $K \subseteq JR$ be a compact subset.

Then K can be cover by finitely many A_j , so by finitely many A_j , so by finitely many A_j .

Since (hk) converges uniformly on A_j , then A_k converges uniformly on A_j .

Let
$$\mathcal{R}$$
 be a region and write $\mathcal{R} = \mathcal{C} \cap \mathcal{A}_j$, \mathcal{A}_j considered disks. $\mathcal{R} = \mathcal{C} \cap \mathcal{A}_j \cap \mathcal{$

 $(f_n) \in C(x)$ will converge to $f \in C(x)$ ff $p(f_m +) \longrightarrow 0 \quad (n \rightarrow \infty).$

$$\rho(f,g) := \sum_{j=1}^{\infty} \frac{\rho_j(f,g)}{1 + \rho_j(f,g)} \cdot \frac{1}{\partial_j f_j}$$

THEOREM 4. A sequence $(f_n) \subset C(\Omega)$ converges uniformly on compact subsets of Ω to $f \in C(\Omega)$ if and only if $\lim_{n\to\infty} \rho(f_n, f) = 0$.

Proof.

(A) Suppose
$$(f_n) \subseteq C(D)$$
 converges uniformly to f on compact subsets of D .

Then, in particular, $f_n \rightarrow f$ uniformly $D_j \subseteq D_j$, $V_j \ge 1$.

Choose N_j $p.t.$ $n \ge N_j$

$$= |f_n(z) - f(z)| < \mathcal{E}, \quad \forall z \in N_j$$

Choose $M = ncx \setminus N_j, N_{Z_1...}, N_{H-1}, \quad \downarrow hen$

for $n \ge N$,

$$p(f_n, f) \le \int_{j=1}^{M-1} \frac{p(f_n, f)}{1 + p_j(f_n, f)} 2^{-j} + \sum_{j=H}^{\infty} 2^{-j}$$

The function, $x \mapsto \frac{x}{x}$ is increasing

Note:

m 2>0,

• When $\lim_{n\to\infty} \rho(f_n, f) = 0$, we say that (f_n) converges locally uniformly to f on Ω .

Since
$$\rho_{j}(f_{n},f) < \varepsilon$$
, then
$$\frac{\rho_{j}(f_{n},f)}{|+\rho_{j}(f_{n},f)|} < \frac{\varepsilon}{|+\varepsilon|} < \varepsilon$$

So,
$$\rho(f_{n},f) < \varepsilon \cdot \left(\frac{\varepsilon}{j-1} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

$$\Rightarrow \rho(f_{n},f) < \varepsilon \cdot \left(\frac{1}{1-\frac{1}{2}} - 1\right) + \varepsilon$$

So, for $\rightarrow f$ uniformly on Δj .

If $K \subseteq \mathcal{Z}$ is compact, then $K \subseteq \bigcup_{k=1}^{N} \Delta_{jk}$ and $f_n \to f$ uniformly on each of A_{jk} .

EQUICONTINUOUS FAMILY OF FUNCTIONS

DEFINITION 5. A family of functions \mathcal{F} defined on a set $E \subset \mathbb{C}$ is

(a) equicontinuous at $\mathbf{w} \in \mathbf{E}$ if $\forall \varepsilon > 0, \exists \delta > 0$ so that

$$z \in E \text{ and } |z - w| < \delta \implies |f(z) - f(w)| < \varepsilon, \forall f \in \mathcal{F}.$$

- (b) equicontinuous on E if it is equicontinuous at each $w \in E$.
- (c) uniformly equicontinuous on E if $\forall \varepsilon > 0, \exists \delta > 0$ so that

$$z, w \in E \text{ and } |z - w| < \delta \implies |f(z) - f(w)| < \varepsilon, \forall f \in \mathcal{F}.$$

EXAMPLE 6. Fix M > 0. Show that the family

$$\mathcal{F} := \{ f : \mathbb{D} \to \mathbb{C} : f \text{ analytic and } |f'| \le M \}$$

is uniformly equicontinuous on \mathbb{D} .

$$f(z) - f(\omega) = \int_{\sigma} f'(z) dz$$

$$\Rightarrow |f(z)-f(\omega)| \leq \int_{\sigma} |f'(z)| |dz|$$

$$\leq |z-\omega| H$$

$$S_{e} + S = \frac{\varepsilon}{M}$$
.

 \Box

THEOREM 7. [Arzela-Ascoli] A family of continuous functions \mathcal{F} is normal on a region $\Omega \subset \mathbb{C}$ if and only if

- (a) \mathcal{F} is equicontinuous on Ω and;
- (b) there is a $z_0 \in \Omega$ so that the collection $\{f(z_0) : f \in \mathcal{F}\}$ is a bounded subset of \mathbb{C} .

Proof.

Family of Analytic Functions

DEFINITION 8. A family \mathcal{F} of continuous functions is said to be **locally bounded** on Ω if $\forall w \in \Omega, \exists \delta > 0$ and $M < \infty$ so that $|z - w| < \delta \Rightarrow |f(z)| \leq M, \forall f \in \mathcal{F}$.

THEOREM 9. Let \mathcal{F} be a family of analytic functions on a region Ω . Then the following are equivalent:

- (a) \mathcal{F} is normal on Ω ;
- (b) \mathcal{F} is locally bounded on Ω ;
- (c) $\mathcal{F}' := \{f' : f \in \mathcal{F}\}$ is locally bounded on Ω and there is a $z_0 \in \Omega$ so that $\{f(z_0) : f \in \mathcal{F}\}$ is a bounded subset of \mathbb{C} .

Proof.