

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D Varianta087

 $Profilul: Filiera\ Teoretică: sp.: matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică\ profil\ Militar, Specializarea: specializarea\ profil\ profil\$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\sqrt{2} + \sqrt{3}i$.
- (4p) b) Să se calculeze distanța de la punctul D(1, 2, 3) la planul x + 2y + 3z 4 = 0.
- (4p) c) Să se determine ecuația tangentei la elipsa $x^2 + 2y^2 = 12$ dusă prin punctul P(2,2).
- (4p) d) Să se arate că punctele L(1, 2), M(2, 3) și N(3, 4) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, 1, 2), B(1, 2, 1), C(2, 1, 1) și D(1, 2, 3).
- (2p) f) Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\frac{2+3i}{4+5i} = a+bi \ .$

SUBIECTUL II (30p)

1.

- (3p) a) Dacă într-o progresie geometrică primul termen este 1 și rația este 2, să se calculeze termenul al douăzecilea.
- (3p) b) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_5$ să verifice relația $\hat{x}^2 = \hat{x}$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^5 + 1$ are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(0) + g(-31).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $\log_2(x^2+7) = \log_2(2x^2+3)$.
- (3p) e) Să se calculeze suma pătratelor rădăcinilor polinomului $f = X^3 X 24$.
- **2.** Se consideră funcția $f : \mathbf{R} \to \mathbf{R}$, $f(x) = \sin x + \cos x$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{\pi} f(x) dx.$
- (3p) c) Să se arate că funcția f este concavă pe intervalul $\left(0, \frac{\pi}{2}\right)$.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) e) Să se calculeze $\int_{0}^{1} \frac{x^{2}}{x^{3}+1} dx.$

SUBIECTUL III (20p)

Se consideră matricele $A = \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, mulțimile

 $I(A) = \{g(A) \mid g \in \mathbf{Q}[X]\}$ şi $J(A) = \{aA + bI_2 \mid a, b \in \mathbf{Q}\}$ şi polinomul $f = X^2 - X + 1$.

(Dacă avem polinomul $g=a_0+a_1X+...+a_nX^n$, atunci prin matricea g(A) înțelegem $g(A)=a_0I_2+a_1A+...+a_nA^n$.)

- (4p) a) Să se calculeze determinantul matricei A.
- (4p) $| \mathbf{b} \rangle$ Să se calculeze rangul matricei A.
- (4p) c) Să se verifice că $f(A) = O_2$.
- (2p) d) Să se arate că matricea A este inversabilă și să se calculeze inversa sa.
- (2p) e) Să se arate că I(A) = J(A).
- (2p) f) Să se arate că polinomul f nu se poate scrie ca produs de polinoame de gradul întâi cu coeficienți în Q.
- (2p) g) Să se arate că orice matrice nenulă din J(A) este inversabilă și inversa sa este tot în J(A).

SUBIECTUL IV (20p)

Se consideră funcțiile $f: \mathbf{R} \to \mathbf{R}$, $f(x) = e^{-x^2}$ și $F: \mathbf{R} \to \mathbf{R}$, $F(x) = \int_0^x f(t)dt$, $\forall x \in \mathbf{R}$.

- (4p) a) Să se calculeze f(0) și F(0).
- (4p) b) Să se verifice că F'(x) = f(x), $\forall x \in \mathbb{R}$.
- (4p) c) Să se arate că funcția F este strict crescătoare pe \mathbb{R} .
- (2p) d) Să se arate că funcția F este concavă pe intervalul $[0,\infty)$ și este convexă pe intervalul $[-\infty,0]$.
- (2p) e) Să se arate că $e^x \ge x+1$, $\forall x \in \mathbb{R}$.
- (2p) f) Utilizând inegalitatea de la punctul e), să se arate că $f(x) \le \frac{1}{x^2 + 1}$, $\forall x \in \mathbb{R}$.
- (2p) g) Să se arate că șirul $(F(n))_{n \in \mathbb{N}^*}$ este convergent.

2