Scilab Textbook Companion for Thermodynamics for Engineers by J. S. Doolittle¹

Created by
Jeevan Lal Bukya
Chemical Engineering
Computer Engineering
IIT Bombay
College Teacher
None
Cross-Checked by
Bhavani

July 23, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics for Engineers

Author: J. S. Doolittle

Publisher: The Haddon Craftsmen, USA

Edition: 2

Year: 1986

ISBN: 978-1439845592

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
5	Actual Gases	9
7	Entropy	12
8	Availability of Energy	13
10	Vapors	15
11	Thermodynamics of Fluid flow	23
12	Heat Transfer	32
13	Non reactive and reactive gaseous mixtures	41
14	Energies associated with chemical reactions	51
15	Thermodynamics of chemical reactions	57
16	Gas cycles	60
17	Internal combustion engines	64
18	Gas Compressors	66
19	Gas turbines	71
20	Vapor power cycles	80

21 Steam turbines	86
22 Refrigeration	93
23 Gas vapor mixtures	98

List of Scilab Codes

Exa 5.1	Volume calculations	9
Exa 5.2	Pressure calculations	9
Exa 5.3	Heat calculations	10
Exa 5.4	Heat calculations	11
Exa 7.1	Change in Entropy	12
Exa 8.1	Energy loss calculations	13
Exa 8.2	Energy loss calculations	13
Exa 10.1	Enthalpy calculations	15
Exa 10.2	Moisture content calculation	16
Exa 10.3	State calculations	16
Exa 10.4	State calculations	17
Exa 10.5	State calculations	17
Exa 10.6	State Enthalpy calculations	18
Exa 10.7	volume state calculations	18
Exa 10.8	State calculations	19
Exa 10.9	Work and heat calculations	19
Exa 10.10	Enthalpy calculations	20
Exa 10.11	Loss calculations	21
Exa 10.12	State calculations	21
Exa 10.13	Mean state calculations	22
Exa 11.1	Reynolds Number	23
Exa 11.2	Pressure calculations	23
Exa 11.3	Final pressure calculations	24
Exa 11.4	Change in Entropy	25
Exa 11.5	Enthalpy and entropy calculations	25
Exa 11.6	Temperature calculations	26
Exa 11.7	Velocity calculations	28
Exa 11.8	velocity and density calculations	28

Exa 11.9	Exit area calculation
Exa 11.10	Pressure and velocity calculations
Exa 12.1	Temperature calculation
Exa 12.2	Heat flow calculations
Exa 12.3	Energy exchange calculations
Exa 12.4	Energy Exchange calculation
Exa 12.5	Inside film coefficient calculation
Exa 12.6	Inside film coefficient calculation
Exa 12.7	convective film coefficient calculation
Exa 12.8	Outer film coefficient calculation
Exa 12.9	Boiling film coefficient calculation
Exa 12.10	Heat calculation
Exa 12.11	Temperature calculation
Exa 12.12	LMTD Calculation
Exa 12.13	True MTD Calculation
Exa 13.1	Mass calculations
Exa 13.2	Change in Entropy calculation
Exa 13.3	Change in Entropy calculation
Exa 13.4	Change in Entropy calculation
Exa 13.5	Weight calculations
Exa 13.6	Dry analysis calculations
Exa 13.7	Air fuel ratio calculations
Exa 13.8	Air fuel ratio calculations
Exa 13.9	volumetric analysis
Exa 13.10	volumetric analysis
Exa 13.11	Moles of dry products calculations
Exa 13.12	Moles of dry products calculations 49
Exa 13.13	Weight of dry air calculations
Exa 14.1	Heating value calculations 51
Exa 14.2	Heating value calculations
Exa 14.3	Heat removed calculations
Exa 14.4	Furnace efficiency calculations
Exa 14.5	Thermal efficiency calculations
Exa 14.6	Thermal efficiency calculations
Exa 14.7	Total available energy calculations
Exa 14.8	Max amount of work calculations
Exa 15.1	Dissociation calculations
Exa 15.2	Max temperature calculations
	6

Exa 15.3	Max temperature calculation	58
Exa 16.1	Temperature and pressure calculations	60
Exa 16.2	Temperature and pressure calculations	61
Exa 16.3	mep calculation	62
Exa 16.4	mep calculation	62
Exa 17.1	Indicated efficiency calculations	64
Exa 17.2	Indicated mep calculations	65
Exa 18.1	Horsepower calculation	66
Exa 18.2	Horsepower calculations	66
Exa 18.3	Piston displacement calculations	67
Exa 18.4	Piston displacement calculations	68
Exa 18.5	Pressure calculations	68
Exa 18.6	Pressure calculations	69
Exa 18.7	Pressure required	70
Exa 19.1	Efficiency calculations	71
Exa 19.2	Work and efficiency calculations	72
Exa 19.3	Work and efficiency calculations	73
Exa 19.4	Thermal efficiency calculation	73
Exa 19.5	Thermal efficiency calculation	74
Exa 19.6	Pressure calculation	75
Exa 19.7	Compressor work	75
Exa 19.8	Turbine work	76
Exa 19.9	Air fuel ratio	76
Exa 19.10	Thermal efficiency calculation	77
Exa 19.11	Thermal efficiency calculation	77
Exa 19.12	Thermal efficiency calculation	78
Exa 19.13	Thermal efficiency calculation	79
Exa 20.1	Thermal efficiency calculation	80
Exa 20.2	Thermal efficiency calculation	80
Exa 20.3	Enthalpy calculations	81
Exa 20.4	Thermal efficiency calculation	82
Exa 20.5	Thermal efficiency calculation	83
Exa 20.6	Heat transferred	84
Exa 21.1	Rate of flow calculation	86
Exa 21.2	Rate of flow calculation	86
Exa 21.3	Blade work and efficiency	87
Exa 21.4	Blade work and efficiency	88
Exa 21.5	Blade reheat calculation	89

Exa 21.6	Pressure calculation	9
Exa 21.7	Shaft output and efficiency calculation 9	0
Exa 21.8	Pressure at Exit calculation	1
Exa 21.9	Steam rate calculation	1
Exa 22.1	cop calculations	3
Exa 22.2	cop calculations	3
Exa 22.3	Tonnage calculations	4
Exa 22.4	Refrigeration and cop calculation 9	5
Exa 22.5	cop calculation	6
Exa 22.6	Power calculation	6
Exa 22.7	Power calculation	7
Exa 23.1	Specific humidity calculation 9	8
Exa 23.2	RH calculation	8
Exa 23.3	Temperature calculation	9
Exa 23.4	Heat calculations	9
Exa 23.5	Temperature calculation	0
Exa 23.6	Tonnage calculation	1
Exa 23.7	Tonnage calculation	1
Exa 23.8	Volume calculation	2

Actual Gases

Scilab code Exa 5.1 Volume calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m}=20 \text{ //lbm}
5 P = 1000 // psia
6 T = 580 / R
7 R = 35.12
8 //calculations
9 disp("From table 5-2,")
10 z = 0.667
11 V=z*m*R*T/(P*144)
12 \text{ vt} = 0.0935
13 \text{ vtt=vt*m}
14 //results
15 printf("Volume occupied = %.3 f cu ft", V)
16 printf("\n Tablulated value for volume = \%.2 f cu ft"
      ,vtt)
```

Scilab code Exa 5.2 Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m} = 90 //\text{lbm}
5 T = 200 + 459.7 / R
6 Tc=232.7+459.7 //R
7 R0 = 1545
8 M = 120.9
9 V = 30 //cu ft
10 //calculations
11 R = RO/M
12 disp("From fig 5.5")
13 z = 0.883
14 P=z*R*m*T/V/144
15 \text{ vc=V/m}
16 P2 = 156.1 // psia
17 //results
18 printf("Pressure obtained = \%.2 f psia",P)
19 printf("\n Theoretical pressure = \%.1 f psia", P2)
```

Scilab code Exa 5.3 Heat calculations

```
1 clc
2 clear
3 //Initialization of variables
4 T1=140+460 //R
5 T2=240 +460 //R
6 N=1
7 //calculations
8 Q=N*(9.47*(T2-T1)-3.47*10^3 *log(T2/T1) -1.16*10^6
          *(1/T2-1/T1))
9 Tm=(T1+T2)/2
10 Cp=9.47-3.47*10^3 /Tm +1.16*10^6 /Tm^2
11 Q2=N*Cp*(T2-T1)
12 //results
```

```
13 printf("Heat added in case 1 = \%d Btu",Q)
14 printf("\n Heat added in case 2 = \%.1f Btu",Q2)
```

Scilab code Exa 5.4 Heat calculations

```
1 clc
2 clear
3 //Initialization of variables
4 Rj = 1.985
5 N = 1
6 T1=540+460 //R
7 T2 = 3540 + 460 / R
8 //calculations
9 Q=N*(14.215*(T2-T1)-6.53*10^3 *log(T2/T1) -1.41*10^6
       *(1/T2-1/T1))
10 Tm = (T1 + T2)/2
11 Cv = 14.215 - 6.53 \times 10^3 / Tm + 1.41 \times 10^6 / Tm^2
12 Q2=N*Cv*(T2-T1)
13 // results
14 printf("Heat added in case 1 = \%.1 \, f Btu",Q)
15 printf("\n Heat added in case 2 = \%.1 \, \text{f Btu}",Q2)
```

Entropy

Scilab code Exa 7.1 Change in Entropy

```
1 clc
2 clear
3 //Initialization of variables
4 T2=920 //R
5 \text{ T1} = 520 / \text{R}
6 P1=14 // psia
7 P2=84 // psia
8 J = 778
9 R = 53.35
10 \text{ cv} = 0.1715
11 N=1
12 //calculations
13 k = log(T2/T1) / log(P2/P1)
14 n=1/(1-k)
15 cx = cv + R/(J*(1-n))
16 \text{ dS}=N*cx*log(T2/T1)
17 // results
18 printf("Change in entropy = %.5f unit of entropy",
      dS)
```

Availability of Energy

Scilab code Exa 8.1 Energy loss calculations

```
1 clc
2 clear
3 //Initialization of variables
4 q=1000 //Btu
5 th=1140 //F
6 tl=40 //F
7 ts=940 //F
8 //calculations
9 Q1=q*(th-t1)/(th+460)
10 Q2=q*(ts-t1)/(ts+460)
11 dif=Q1-Q2
12 //results
13 printf("Available energy loss = %d Btu", dif)
```

Scilab code Exa 8.2 Energy loss calculations

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 \text{ ma} = 200000 // 1b
5 \text{ cpa} = 0.26
6 T2g=1200 //F
7 \text{ T1g} = 300 //F
8 \text{ T1w} = 200 //F
9 mw = 250000 // lb
10 \text{ cpw} = 1.02
11 T1=560
           //R
12 cx = 1.01
13 //calculations
14 T2w=T1w+ ma*cpa*(T2g-T1g)/(mw*cpw)
15 Qun=T1*ma*cpa*log((T2g+460)/(T1g+460))
16 \quad Qtr = ma * cpa * (T2g - T1g)
17 Qav=Qtr-Qun
18 Qun2=T1*mw*cx*log((T2w+460)/(T1w+460))
19 Qav2=Qtr-Qun2
20 \text{ ht1} = Qav - Qav2
21 //results
22 printf ("For gas, Untransferred energy = %d Btu/hr",
23 printf("\n For gas, transferred energy = \%d Btu/hr",
      Qtr)
24 printf("\n For gas, available energy = \%d Btu/hr",
      Qav)
25 printf("\n For water, Untransferred energy = %d Btu/
      hr", Qun2)
26 printf("\n For water, available energy = %d Btu/hr",
27 printf("\n Loss of available energy = \%d Btu/hr", ht1
28 disp('The answers are a bit different due to
      rounding off error in textbook')
```

Vapors

Scilab code Exa 10.1 Enthalpy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p = 3000 //psia
5 T = 250 / F
6 //calculations
7 disp("From table 1, keenan and keynes,")
8 \text{ vf} = 0.01700
9 disp("From table 4,")
10 dvf = -18.3*10^{-5}
11 \quad v = vf + dvf
12 disp("From table 1,")
13 hf=218.48
14 disp("From table 4,")
15 \text{ dhf} = 6.13
16 h = hf + dhf
17 \text{ sf} = 0.3675
18 \, dsf = -4.34*10^{-3}
19 \text{ s=sf+dsf}
20 //results
21 printf("Specific volume = \%.5 f cu ft/lb",v)
```

```
22 printf("\n Enthalpy = \%.2 \, f \, Btu/lb",h)
23 printf("\n Entropy = \%.4 \, f \, Btu/lb per deg R",s)
```

Scilab code Exa 10.2 Moisture content calculation

```
clc
clear
//Initialization of variables
h=1100 //Btu/lb
P=100 //psia
//calculations
disp("From table 2 of keenan and keynes,")
hg=1187.2 //Btu/lb
hfg=888.8 //Btu/lb
y=-(h-hg)/hfg
//results
printf("The state is %d psia with a moisture content of %.2 f percent", P, y*100)
```

Scilab code Exa 10.3 State calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 1 of keenan and keynes,")
5 v1=0.2688
6 //calculations
7 v2=3.060
8 p2=200 //psia
9 t2=600 //F
10 //results
11 printf("State of steam is %d psia and %d F",p2,t2)
```

Scilab code Exa 10.4 State calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 2 of keenan and keynes,")
5 t1=439.60 //F
6 u1=1118.4 //Btu/lb
7 //calculations
8 p2=380 //psia
9 //results
10 printf("The state of steam is saturated at %d psia and %.2 f F",p2,t1)
```

Scilab code Exa 10.5 State calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 2 of keenan and keynes,")
5 p1=1 //in of Hg
6 s=1.9812
7 //calculations
8 sf=2.0387
9 sfg=1.9473
10 y=-(s-sf)/sfg
11 //results
12 printf("The state is %d in of Hg with a moisture content of %.2 f percent",p1,y*100)
```

Scilab code Exa 10.6 State Enthalpy calculations

```
clc
clear
//Initialization of variables
disp("From table 1 of keenan and keynes,")
h1=1204.8 //Btu/lb
q=174 //Btu/lb
//calculations
h2=h1+q
p2=30 //psia
t2=720 //F
//results
printf("Final state of steam is %d psia and %d F",p2,t2)
printf("\n Final enthalpy is %.1f Btu/lb",h2)
```

Scilab code Exa 10.7 volume state calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 1 of keenan and keynes,")
5 p=70 //psia
6 x=0.1
7 p2=198 //psia
8 //calculations
9 v1=6.206
10 v2=0.017
11 vx=v1-x*(v1-v2)
12 t2=1400 //F
13 //results
14 printf("Final specific volume = %.3 f cu ft",vx)
15 printf("\n Final state is %d psia and %d F",p2,t2)
```

Scilab code Exa 10.8 State calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 1 of keenan and keynes,")
5 p=400 //psia
6 t1=700 //F
7 p2=85 //psia
8 //calculations
9 s2=1.6398 //units/lb
10 t2=350 //F
11 //results
12 printf("Final state of steam is %d psia and %d F",p2,t2)
```

Scilab code Exa 10.9 Work and heat calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p1=20 //psia
5 p2=140 //psia
6 J=778
7 t2=150 //F
8 t1=30 //F
9 //calculations
10 disp("From Table A-3,")
11 v1=2.0884 //cu ft/lb
12 v2=0.33350 //cu ft/lb
13 h2=95.709
14 h1=81.842
```

Scilab code Exa 10.10 Enthalpy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 1 of keenan and keynes,")
5 in=440000 //lb/hr
6 out=255000 //lb/hr
7 p1 = 400 // psia
8 t1 = 700 / F
9 p2=35 // psia
10 t2 = 290 / F
11 vel=500 // ft/s
12 hp=44000 //hp
13 ent=1362.7 //Btu/lb
14 //calculations
15 ein=ent*in
16 \text{ eout=hp}*2544 + \text{out}*1183 + 925000
17 \text{ h2} = (ein-eout)/185000
18 // results
19 printf("Specific enthalpy of exhaust steam = %d Btu/
      lb",h2)
```

Scilab code Exa 10.11 Loss calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 1 of keenan and keynes,")
5 \text{ h1} = 1351.1 //Btu/lb}
6 p1=600 //psia
7 t1 = 700 / F
8 p2 = 234 // psia
9 h2=1.6865
10 h1=1.5875
11 t3=101.74
12 //calculations
13 t2=660 / F
14 loss = (h2-h1)*(t3+459.69)
15 //results
16 printf("Final state of steam is %d psia and %d F",p2
17 printf("\n Loss of available energy = \%.1 f Btu/lb",
      loss)
```

Scilab code Exa 10.12 State calculations

```
1 clc
2 clear
3 //Initialization of variables
4 disp("From table 2 of keenan and keynes,")
5 p1=98.87 //psia
6 p2=31.78 //psia
7 t1=80 //F
```

```
8 h2=26.365 //btu/lb
9 h1=11.554 //btu/lb
10 hfg=67.203 //btu/lb
11 //calculations
12 x=(h2-h1)/hfg
13 //results
14 printf("The state of vapor leaving is %.2f psia with a quality of %.2f percent",p2,x*100)
```

Scilab code Exa 10.13 Mean state calculations

```
1 clc
2 clear
3 //Initialization of variables
4 ps=216 // psig
5 pb=29.12 //in of Hg
6 p2=0.4 //in
7 t2=244 / F
8 //calculations
9 pa=0.491*pb
10 pabs=pa + p2*0.491
11 plb=pa+ ps
12 hcal=1166.5 //Btu/lb
13 h2=1200.1 //Btu/lb
14 h3=831.9 //Btu/lb
15 y = -(hcal - h2)/h3
16 //results
17 printf("Mean state in the line is %.1f psia with a
     moisture content of %.2f percent",plb,y*100)
```

Thermodynamics of Fluid flow

Scilab code Exa 11.1 Reynolds Number

```
1 clc
2 clear
3 //Initialization of variables
4 d=2.067 //in
5 P=20 //psia
6 R = 53.35
7 T = 600 / R
8 \text{ mu} = 0.0486 // \text{lb} / \text{ft.hr}
9 v = 50 / ft / s
10 //calculations
11 rho = P * 144/(R*T)
12 Re=d*v*rho*3600/(12*mu)
13 // results
14 printf("Reynolds number = %d", Re)
15 disp ('The answers are a bit different due to
      rounding off error in textbook')
```

Scilab code Exa 11.2 Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ eps} = 0.00015
5 D=2.067/12 //ft
6 1 = 100 //ft
7 P=20 // psia
8 R=53.35
9 T = 600 / R
10 mu = 0.0486 // lb / ft.hr
11 v = 50 // ft / s
12 g=32.17 //ft/s^2
13 //calculations
14 \text{ rho} = P * 144/(R*T)
15 Re=D*v*rho*3600/(mu)
16 ed=eps/D
17 disp("From figure 11.5")
18 f=0.0235
19 dp=f*l*rho*v^2 /(2*D*g) /144
20 \text{ change=dp/P} *100
21 // results
22 printf("Change in pressure = \%.2 f psi", dp)
23 printf("\n Percentage change in pressure = \%.2 \,\mathrm{f}
      percent", change)
```

Scilab code Exa 11.3 Final pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 v1=60 //ft/s
5 d1=10 //in
6 d2=15 //in
7 P=15 //psia
8 R=53.35
```

```
9 T=540 //R

10 g=32.17 //ft/s^2

11 v1=60 //ft/s

12 //calculations

13 v2=v1*d1^2 /d2^2

14 rho=P*144/(R*T)

15 dp=rho*(v2^2 -v1^2)/(2*g) /144

16 p2=P-dp

17 //results

18 printf("Final pressure = %.3 f psia",p2)
```

Scilab code Exa 11.4 Change in Entropy

```
1 clc
2 clear
3 //Initialization of variables
4 J=778 //ft.lb/Btu
5 D=2.067/12 //ft
6 1 = 100 / ft
7 P=20 //psia
8 R=53.35
9 T = 600 / R
10 mu = 0.0486 // lb / ft.hr
11 v = 50 //ft/s
12 g=32.17 //ft/s^2
13 //calculations
14 f = 0.0235
15 \text{ ds=f*v^2 *1 /(J*2*D*g*T)}
16 // results
17 printf("Change in entropy = \%.6 \, f Btu/lbm R", ds)
```

Scilab code Exa 11.5 Enthalpy and entropy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 v = 210 //ft/s
5 \text{ g} = 32.17 // \text{ft/s}^2
6 p = 200 // psia
7 z=5 //ft
8 x = 2.361
9 h=1210.3
10 J=778
11 //calculations
12 P0=p + v^2 /(2*g*144*x) + z/(144*x)
13 h0=h + v^2 /(2*J*g) +z/J
14 S=1.5594 //units/lb
15 S0=S
16 \text{ t0} = 401.9 //F
17 v0=2.342 //cu ft/lb
18 \text{ rho0} = 1/v0
19 //results
20 printf("Pressure = %d psia",P0)
21 printf("\n Enthalpy = %.2 f Btu/lb",h0)
22 printf("\n Entropy = \%.4 f units/lb",S0)
23 printf("\n Temperature = \%.1 \, \text{f F}",t0)
24 printf("\n Density = \%.3 f lb/cu ft", rho0)
```

Scilab code Exa 11.6 Temperature calculations

```
1  clc
2  clear
3  // Initialization of variables
4  p1=40  // psia
5  t1=80  // F
6  p2=30  // psia
7  ar=0.5  // sq ft
8  v1=200  // ft/s
```

```
9 R = 53.35
10 \text{ cp=0.24}
11 g = 32.17
12 J=778
13 //calculations
14 rho1=144*p1/(R*(t1+460))
15 G=rho1*v1
16 \text{ h}10 = \text{cp}*\text{t}1 + \text{p}1^2 / (2*g*\text{r}ho1^2 *J)
17 t2=78 / F
18 h2 = cp * t2
19 g2=h10-h2
20 \text{ rho2=sqrt}(p1^2 /(2*g*g2*J))
21 P2=rho2*R*(t2+460)/144
22 ds2=cp*log((t2+460)/(t1+460)) - R/J *log(P2/p1)
23 	 t3 = 77 	 //F
24 h3 = cp*t3
25 g3=h10-h3
26 \text{ rho3=sqrt}(p1^2 /(2*g*g3*J))
27 P3=rho3*R*(t3+460)/144
28 ds3=cp*log((t3+460)/(t1+460)) - R/J *log(P3/p1)
29 \text{ t4=79} //\text{F}
30 h4 = cp * t4
31 \text{ g4}=\text{h10}-\text{h4}
32 \text{ rho4} = \text{sqrt}(p1^2 / (2*g*g4*J))
33 P4=rho4*R*(t4+460)/144
34 \text{ ds4=cp*log}((t4+460)/(t1+460)) - R/J *log(P4/p1)
35 h5=18.62
36 t5=h5/cp
37 \text{ Gv} = [h4 \text{ h2 h3}]
38 \text{ Pv} = [P4 P2 P3]
39 \text{ Sv} = [ds4 ds2 ds3]
40 scf(1)
41 xtitle("Fanno line diagram, Enthalpy vs Entropy","
       Entropy", "Enthalpy Btu/lb")
42 plot (Sv, Gv)
43 scf(2)
44 xtitle ("Fanno line diagram, Pressure vs Entropy","
       Entropy", "Pressure psia")
```

```
45 plot(Sv,Pv)
46 //results
47 printf("Temperature at exit = %.1f F",t5)
```

Scilab code Exa 11.7 Velocity calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p1=40 // psia
5 \text{ t1=80 } //\text{F}
6 p2=30 //psia
7 ar=0.5 //sq ft
8 v1 = 200 //ft/s
9 R=53.35
10 \text{ cp=0.24}
11 g = 32.17
12 J=778
13 t2=78 / F
14 //calculations
15 G=40 //lb/sq ft/sec
16 \text{ rho2}=144*p2/(R*(t2+460))
17 v2=p1/rho2
18 //results
19 printf ("Velocity = \%d ft/s", v2)
```

Scilab code Exa 11.8 velocity and density calculations

```
1 clc
2 clear
3 //Initialization of variables
4 P2=[180 160 140 120 100 80 60 40 20]
5 k=1.4
```

```
6 p1 = 200 // psia
7 t1=240+460 / R
8 \text{ cp} = 0.24
9 J = 778
10 \text{ gc} = 32.2
11 R=53.35
12 \text{ m=4} // \text{lb/sec}
13 //calculations
14 pr=p1./ P2
15 prr=pr^((k-1)/k)
16 T2=t1 ./prr
17 dt=t1-T2
18 \text{ dh=dt*cp}
19 v2=sqrt(2*gc*J*dh)
20 \text{ vol} = (R*T2) ./(P2*144)
21 \quad A2 = m * vol * 144 . / v2
22 dia=sqrt(4/ %pi *A2)
23 \text{ rad=dia/}2
24 \text{ den=1 } ./\text{vol}
25 scf(1)
26 xtitle ('Velocity vs pressure', 'Pressure in psia', '
       velocity in ft/s')
27 plot (P2, v2)
28 scf(2)
29 xtitle ('specific volume vs pressure', 'Pressure in
      psia', 'specific volume in cu ft/lb')
30 plot (P2, vol)
31 scf(3)
32 xtitle ('Radius vs Pressure', 'Pressure in psia', '
      Radius in in')
33 plot(P2, rad)
34 //results
35 disp('Velocity in ft/s')
36 \text{ disp}(v2)
37 disp('Specific volume in cu ft/lb')
38 disp(vol)
39 disp('Density in lb/cu ft')
40 disp(den)
```

```
41 disp('Diameter of nozzle in in')
42 disp(dia)
```

Scilab code Exa 11.9 Exit area calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 200 // psia
5 t1 = 480 / F
6 \text{ eff} = 0.95
7 g=32.2 //ft/s^2
8 J = 778
9 \text{ mf} = 3.4 / lb / s
10 //calculations
11 disp("From steam tables,")
12 h1=1257.8
13 h2=1210.5
14 \, dh = eff * (h1 - h2)
15 ve=sqrt(2*g*J*dh)
16 h3=h1-dh
17 \text{ vs} = 3.961
18 Ae=mf*vs/ve *144
19 //results
20 printf("Nozzle exit area = \%.3 \, \text{f sq.in}", Ae)
```

Scilab code Exa 11.10 Pressure and velocity calculations

```
1 clc
2 clear
3 //Initialization of variables
4 R=53.35
5 v=300 //ft/s
```

```
6 p=100 // psia
7 t1=200 / F
8 q=500 / Btu/s
9 gc=32.2 // ft/s^2
10 J=778
11 //calculations
12 rho1=p*144/(R*(460+t1))
13 x = poly(0, "x")
14 \text{ s=x^2} -0.206*x+0.00535
15 vec=roots(s)
16 \text{ rho2=vec}(1)
17 t2=(236.6 - 0.301/rho2^2)/0.248
18 P2=rho2*R*(t2+462) /144
19 v2=sqrt(2*gc*J*(236.6-0.248*t2))
20 \quad v22 = rho1 * v/rho2
21 // results
22 printf("Final temperature = %.1 f F",t2)
23 printf("\n Final pressure = \%.1 f psia", P2)
24 printf("\n Exit velocity in case 1 = \%.1 f ft/s",v2)
25 printf("\n Exit velocity in case 2 = \%.1 \, \text{f ft/s}", v22)
```

Heat Transfer

Scilab code Exa 12.1 Temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ km1} = 0.62
5 \text{ km}2=0.16
6 \text{ km} 3 = 0.4
7 \ 11=8 \ //in
8 12=4 //in
9 \ 13=4 \ //in
10 Tf = 1600 //F
11 Tc = 100 / F
12 //calculations
13 Rw=11/12/km1 + 12/12/km2 + 13/12/km3
14 \text{ Rb} = 11/12/\text{km}1
15 \text{ Ti}=\text{Tf}-\text{Rb}/\text{Rw} * (\text{Tf}-\text{Tc})
16 // results
17 printf("Interface temperature = \%.1 \, f F", Ti)
18 disp("The answers might differ a bit from textbook
       due to rounding off error.")
```

Scilab code Exa 12.2 Heat flow calculations

```
1 clc
2 clear
3 //Initialization of variables
4 th=350 //F
5 \text{ tc=150} //F
6 \text{ od} 1 = 4.5
7 id1=4.026
8 \text{ od} 2=6.5
9 id2=4.5
10 k1=32
11 k2=0.042
12 //calculations
13 Q=2*\%pi*(th-tc)/(log(od1/id1)/k1 + log(od2/id2)/k2
      )
14 r1 = log(od1/id1) /k1
15 rt=log(od1/id1) /k1 + log(od2/id2) /k2
16 \text{ ti=th-r1/rt*(th-tc)}
17 //results
18 printf ("Heat flow = \%.1 \, \text{f Btu/hr}", Q)
19 printf("\n Interface temperature = \%.2 \, f F", ti)
```

Scilab code Exa 12.3 Energy exchange calculations

```
1 clc
2 clear
3 //Initialization of variables
4 Fa=0.045
5 l=4 //m
6 b=4 //m
7 Fe=1
```

Scilab code Exa 12.4 Energy Exchange calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ ea} = 0.8
5 \text{ eb} = 0.7
6 \text{ Fa} = 0.045
7 1=4 /m
8 b=4 /m
9 \text{ Fe=1}
10 Ta=540+460 //R
11 Tb=1540+460 //R
12 //calculations
13 A = 1 * b
14 \text{ ef=ea*eb}
15 Q=0.173*A*Fa*Fe*ef*((Tb/100)^4 -(Ta/100)^4)
16 //results
17 printf("Net energy exchange = %d Btu/hr",Q)
18 disp ('The answers are a bit different due to
      rounding off error in textbook')
```

Scilab code Exa 12.5 Inside film coefficient calculation

```
1 clc
2 clear
3 //Initialization of variables
4 den=61.995 //lb/cu ft
5 vel=6 //ft/s
6 \text{ t1=100 } //\text{F}
7 t2=160 / F
8 de=2.067 //in
9 \text{ mu} = 1.238
10 pr = 3.3
11 //calculations
12 G=den*vel*3600
13 \text{ tm} = (t1+t2)/2
14 \text{ hc} = 0.023 * 0.377/(de/12) * (de/12 * G/mu)^0.8 * (pr)^0.4
15 //results
16 printf("Inside film coefficient = %d Btu/sq ft hr F"
      ,hc)
```

Scilab code Exa 12.6 Inside film coefficient calculation

```
1 clc
2 clear
3 //Initialization of variables
4 d=0.5 //in
5 tm=1000 //F
6 v=5//ft/s
7 k=38.2
8 den=51.2
9 mu=0.3
```

Scilab code Exa 12.7 convective film coefficient calculation

```
1 clc
2 clear
3 //Initialization of variablesdo=2 //in
4 tf = 120 / F
5 \text{ ti=80 } //F
6 \text{ rho} = 0.0709
7 g = 32.17
8 \text{ bet} = 1/560
9 \text{ cp} = 0.24
10 mu=0.0461
11 k = 0.0157
12 d=2 //in
13 \text{ Cd} = 0.45
14 //calculations
15 GrPr = (d/12)^3 *rho^2 *g*3600^2 *bet*(tf-ti)*cp/(mu*k)
16 \text{ hc} = \text{Cd} * k/(d/12)^(1/4) * GrPr^(1/4)
17 //results
18 printf ("Convective film coefficient = \%.3 f Btu/sq ft
        hr F", hc)
```

Scilab code Exa 12.8 Outer film coefficient calculation

1 clc

```
2 clear
3 // Initialization of variables
4 tf=220 //F
5 ti=200 //F
6 d=2 //in
7 C=103.7
8 k=0.394
9 rho=59.37
10 hfg=965.2
11 mu=0.70
12 // calculations
13 h=C*(k^3 *rho^2 *hfg/((d/12) *mu*(tf-ti)))^(1/4)
14 // results
15 printf("Outer film coefficient = %d Btu/sq ft hr F", h)
```

Scilab code Exa 12.9 Boiling film coefficient calculation

```
1 clc
2 clear
3 // Initialization of variables
4 tf=225 //F
5 a=190
6 b=0.043
7 ti=212 //F
8 // calculations
9 hc=a/(1-b*(tf-ti))
10 hcti=hc*1.25
11 // results
12 printf("For a flat copper plate, boiling film coefficient = %.1 f Btu/sq ft hr F",hc)
13 printf("\n For an inclined copper plate, boiling film coefficient = %d Btu/sq ft hr F",hcti)
```

Scilab code Exa 12.10 Heat calculation

```
1 clc
2 clear
3 //Initialization of variables
4 Do = 2.375 / in
5 \text{ hi} = 1200
6 Di=2.067 //in
7 \text{ km} = 29.2
8 h0 = 1500
9 L=2.375 //in
10 t1=220 //F
11 t4=140 / F
12 //calculations
13 U0= 1/(Do/(Di*hi) + (Do/12 *log(Do/Di) /(2*km)) + 1/
      h0)
14 \ Q=U0*L*\%pi*(t1-t4)/12
15 //results
16 printf("Heat transferred per foot length of pipe =
      \%d btu/hr",Q)
```

Scilab code Exa 12.11 Temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 Do=2.375 //in
5 hi=1200
6 Di=2.067 //in
7 km=29.2
8 h0=1500
9 L=2.375 //in
```

```
10 t1=220 //F
11 t4=140 //F
12 //calculations
13 Re=Do/(Di*hi)
14 R0=Do/(Di*hi) + (Do/12 *log(Do/Di) /(2*km)) + 1/h0
15 td=Re/RO *(t1-t4)
16 ti=t4+td
17 Req=1/h0
18 td2=Req/RO *(t1-t4)
19 to=t1-td2
20 //results
21 printf("The temperature of the inner surface of pipe = %.1 f F",ti)
22 printf("\n The temperature of the outer surface of pipe = %.1 f F",to)
```

Scilab code Exa 12.12 LMTD Calculation

```
1 clc
2 clear
3 //Initialization of variables
4 th1=800 //F
5 th2=300 //F
6 tc1=100 //F
7 tc2=400 //F
8 //calculations
9 lmtd= ((th1-tc2) - (th2-tc1) )/(log((th1-tc2)/(th2-tc1)))
10 //results
11 printf("Logarithmic Mean temperature difference = %d F",lmtd)
```

Scilab code Exa 12.13 True MTD Calculation

```
1 clc
2 clear
3 //Initialization of variables
4 th1=200 //F
5 \text{ th}2=100 \text{ }/\text{F}
6 \text{ tc1=80 } //F
7 tc2=110 //F
8 //calculations
9 disp("From the lmtd graph,")
10 R=(tc1-tc2)/(th2-th1)
11 P=(th2-th1)/(tc1-th1)
12 F=0.62
13 lmtd = F* ((th1-tc2) - (th2-tc1))/(log((th1-tc2))/(
      th2-tc1)))
14 // results
15 printf("True Mean temperature difference = %.1 f F",
      lmtd)
```

Non reactive and reactive gaseous mixtures

Scilab code Exa 13.1 Mass calculations

```
1 clc
2 clear
3 //Initialization of variables
4 P=70 // psia
5 \text{ Pt=110} // \text{psia}
6 V=20 //cu ft
7 RO=1545 //Universal gas constant
8 T = 540 / R
9 M=32 // Molecular weight of Oxygen
10 M2=28 // Molecular weight of Nitrgoen
11 //calculations
12 N=P*V*144/(R0*T)
13 mo = M * N
14 Pn=Pt-P
15 N2=Pn*V*144/(R0*T)
16 \, \text{mn} = \text{N2} * \text{M2}
17 Vo=N*RO*T/(144*Pt)
18 Vn = N2*R0*T/(144*Pt)
19 Vn2 = V - Vo
```

Scilab code Exa 13.2 Change in Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P=50 //psia
5 V=4 //cu ft
6 dv=3 //cu ft
7 J=778
8 T=560 //R
9 //calculation
10 ds= 144*P*V*log((V+dv)/V) /(J*T)
11 //results
12 printf("Change in entropy = %.3 f unit", ds)
```

Scilab code Exa 13.3 Change in Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=50 //psia
5 t1=100+460 //R
6 R1=48.3
```

```
7 R2 = 55.2
8 \text{ v1=4} //\text{cu} \text{ ft}
9 p2=100 // psia
10 v2=3 //cu ft
11 t2=200+460 / R
12 \text{ cv1} = 0.157
13 \text{ cv2} = 0.177
14 \text{ cpm} = 0.219
15 J=778
16 //calculations
17 m1=144*p1*v1/(R1*t1)
18 m2=144*p2*v2/(R2*t2)
19 tf = (m1*cv1*(t1-460) + m2*cv2*(t2-460))/(m1*cv1+m2*
       cv2)
20 \text{ Po2=v1/(v1+v2)} * (tf+460)/t1 *p1
21 ds = cpm * log((tf + 460)/t1) - R1/J * log(Po2/p1)
22 \text{ dss=ds*m1}
23 //results
24 printf ("Change in entropy = %.4f unit", dss)
```

Scilab code Exa 13.4 Change in Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=30 //psia
5 t1=80+460 //R
6 R1=48.3
7 R2=55.2
8 m1=20 //lb/min
9 p2=50 //psia
10 m2=35 //lb/min
11 t2=160+460 //R
12 cp1=0.219
13 cp2=0.248
```

```
14 J=778
15 //calculations
16 tf=(m1*cp1*(t1-460) + m2*cp2*(t2-460))/(m1*cp1+m2*cp2)
17 Po2=m1/32/(m1/32+m2/28) *p1
18 ds=cp1*log((tf+460)/t1) - R1/J *log(Po2/p1)
19 dss=ds*m1
20 //results
21 printf("Change in entropy = %.4f units/min",dss)
```

Scilab code Exa 13.5 Weight calculations

```
1 clc
2 clear
3 //Initialization of variables
4 x = [0.15 0.08 0.77]
5 M = [44 32 28]
6 //calculations
7 y=x ./M
8 yt = sum(y)
9 \text{ mt} = y/yt
10 \text{ per=mt}*100
11 \text{ wt} = 1/\text{yt}
12 R = 1545/wt
13 / results
14 printf("Volumetric analysis")
15 disp('percent by volume')
16 format('v',6);per
17 disp(per)
18 printf("Weight per mole = %.1 f lb", wt)
19 printf("\n Gas constant = \%.1 \, \text{f} ",R)
```

Scilab code Exa 13.6 Dry analysis calculations

```
1 clc
2 clear
3 //Initialization of variables
4 x1=0.885 //mole fraction of Ch4
5 x2=0.115 //mole fraction of c2h6
6 \text{ x3=0.4/100 //mole fraction of N2}
7 n1=2 //Moles of Ch4
8 n2=3.5 //Moles of c2h6
9 n3=1 //moles of ch4 in case 2
10 n4=2 //moles of c2h6 in case 2
11 //calculations
12 y1=n1*x1
13 y2=n2*x2
14 y=y1+y2
15 \text{ vec2} = [y1 y2]
16 \text{ air} = y/0.21
17 y3=n3*x1
18 y4 = n4 * x2
19 yy = y3 + y4
20 \text{ vec3} = [y3 y4]
21 air2=y/0.21 *0.79
22 / results
23 printf ("Theoretical air = \%.2 \,\mathrm{f} moles of air per mole
       of fuel", air)
24 disp("Oxygen analysis")
25 \text{ disp}(\text{vec2})
26 printf("\n Amount of nitrogen = \%.2 f moles of
      nitrogen per mole of fuel", air2)
27 disp("Dry analysis")
28 disp(vec3)
29 printf('total = \%.3 f moles', yy)
```

Scilab code Exa 13.7 Air fuel ratio calculations

1 clc

```
2 clear
3 //Initialization of variables
4 x = [0.74 \ 0.06 \ 0.01] //mole fraction of C, H and S
      respectively
5 y=[8/3 8 1] //Pounds O2 per pound substance of C,H
      and S respectively
6 oxy=0.08 //Oxygen in coal
7 z=0.232 //mass of coal
8 //calculations
9 \text{ pou}=x.*y
10 tot=sum(pou)
11 \quad oxy2 = tot - oxy
12 \text{ air} = \text{oxy} 2/z
13 //results
14 printf("Theoretical air fuel ratio = %.2 f lb of air
      per pound of coal", air)
```

Scilab code Exa 13.8 Air fuel ratio calculations

```
1 clc
2 clear
3 //Initialization of variables
4 o2=12.5 / moles of O2
5 h20=9 //moles of H2O
6 x=0.21 //Mole fraction of Oxygen in air
7 M=28.97 //Molar mass of air
8 M2=56 //molar mass of C4H8
9 M1=8*12+18 //molecular mass of c8h18
10 //calculations
11 \text{ air} = 02/x
12 pound=air*M
13 AR=pound/M1
14 y1=h20/M2 *100
15 \text{ y2=o2*(79/21)} / \text{M2} * 100
16 //results
```

```
17 printf("Air fuel ratio = %.2 f lb of air per pound of
            fuel", AR)
18 printf("\n Molal or volumetric analysis is %.2 f
            percent of CO2 and %.2 f percent N2", y1, y2)
```

Scilab code Exa 13.9 volumetric analysis

```
1 clc
2 clear
3 //Initialization of variables
4 x=18.5 / Moles of O2
5 c=12 //Moles of CO2
6 vap=13 //moles of H2O
7 P=15 //psia
8 R=1545 //Universal gas constant
9 //calculations
10 \text{ excess=x*0.5}
11 M = 12 * 12 + 2 * vap
12 n2=(x+excess)*79/21
13 \text{ nt=n2+excess+c}
14 \text{ dry} = [c x/2 n2]/nt *100
15 \text{ wet=nt+vap}
16 \text{ fue} = 100/(M)
17 mol=wet*fue
18 vol=mol*R*1460/(144*P)
19 //results
20 disp("Volumetric analysis in percentage")
21 disp('
                 CO2
                               O2
22 disp(dry)
23 printf("Volume of wet products = %d cfm", vol)
```

Scilab code Exa 13.10 volumetric analysis

```
1 clc
2 clear
3 //Initialization of variables
4 A = [1 1; 0.5 1]
5 B = [1; 0.9]
6 x = 0.9
7 //calculations
8 N2 = x * 79/21
9 C=A\setminus B
10 vec= [C(1) C(2) N2]
11 \text{ su=sum (vec)}
12 vec2=vec/su *100
13 / results
14 printf("Volumetric analysis")
15 disp('CO
                   CO2
                             N2;)
16 disp(vec2)
```

Scilab code Exa 13.11 Moles of dry products calculations

```
1 clc
2 clear
3 //Initialization of variables
4 c = 0.74
5 \text{ ref} = 0.02
6 co2=0.12
7 co = 0.1/100
8 M = 12
9 //calcualtions
10 \text{ carbon=c-ref}
11 car2=co2+co
12 \text{ wt}=\text{car2}*M
13 amount = carbon/wt
14 //results
15 printf("Moles of dry products per pound of coal = %
      .3 f mole", amount)
```

Scilab code Exa 13.12 Moles of dry products calculations

```
1 clc
2 clear
3 //Initialization of variables
4 x1=0.128
5 x2=0.035
6 x3=0.002
7 M = 12
8 N = 26
9 //calculations
10 c = x1 + x3
11 \text{ mole} = 12/c
12 wt = M * M + N
13 \text{ num=mole/wt}
14 //results
15 printf("Number of moles of dry products per pound of
       fuel = \%.3 f mole, num)
```

Scilab code Exa 13.13 Weight of dry air calculations

```
1 clc
2 clear
3 //Initialization of variables
4 c=0.74
5 ref=0.02
6 co2=0.12
7 co=0.1/100
8 o2=0.065
9 M=12
10 x=0.79
```

Energies associated with chemical reactions

Scilab code Exa 14.1 Heating value calculations

```
1 clc
2 clear
3 //Initalization of variables
4 lhs=8.5 //moles of reactants
5 \text{ rhs}=6 \text{ } //\text{moles of CO2}
6 \text{ n=3} //\text{moles of H2O}
7 R=1545 //Universal gas constant
8 R2=18.016 // molar mass of water
9 J=778 //Work conversion constant
10 T = 537 / R
11 T2=1050.4 //R
12 T3 = 991.3 / R
13 Qhp=1417041 //Btu/mol
14 //calculations
15 Qhpv=(lhs-rhs)*R*T/J
16 Qhv=Qhp-Qhpv
17 hfg=(rhs-n)*R2*T2
18 Qlp=Qhp-hfg
19 Qlpv = (lhs - rhs - n) * R/J * T
```

Scilab code Exa 14.2 Heating value calculations

```
1 clc
2 clear
3 //Initalization of variables
4 disp("From table 5-4,")
5 \text{ no} = 7.5
6 n1=3
7 n2 = 6
8 Q=1360805 //Btu/mol
9 //calculations
10 \text{ Uo} = 337 + \text{no} * 85
11 Uf = n1*104+n2*118
12 \text{ del} = Q - (Uo - Uf)
13 \text{ Uo2} = 1656 + \text{no} * 402
14 Uf2=n1*490+n2*570
15 \quad Qv = Uo2 - Uf2 + de1
16 //results
17 printf ("Change in chemical energy during complete
       combustion = %d Btu/mol", del)
```

Scilab code Exa 14.3 Heat removed calculations

```
1 clc
2 clear
3 //Initalization of variables
4 disp("From table 5-4,")
5 \text{ a=1 } //\text{moles of C6H6}
6 b=7.5 //moles of O2 in reactant
7 c=1.875 //moles of excess O2
8 d=35.27 //moles of N2
9 \text{ e=3 } //\text{moles of H2O}
10 flow=40 //lb/min
11 w = 1360850 //Btu/mol
12 //calculations
13 U11=a*337
14 \text{ U12=(b+c)}*85
15 U13=d*82
16 \text{ U}14 = (a+b+c+d)*1066
17 Ua1=U11+U12+U13+U14
18 \quad U21 = c * 2539
19 U22=d*2416
20 U23=e*3009
21 U24=2*e*3852
22 \quad U25 = (c+d+e+2*e)*1985
23 Ua2=U21+U22+U23+U24+U25
24 \quad Q = Ua1 + w - Ua2
25 \text{ fuel=flow/}(6*12+2*e)
26 \quad Q2=Q*fuel
27 //results
28 printf("Heat removed = %d Btu/min", Q2)
29 disp("The answers might differ a bit from textbook
      due to rounding off error.")
```

Scilab code Exa 14.4 Furnace efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 rate=10700 //lb/min
5 t2=97.90
6 t1=33.05
7 r1=46 //lb/min
8 //calculations
9 disp("From steam tables,")
10 Hv=1417041
11 Qw=rate*(t2-t1)
12 Q=r1/(12*6+6) *Hv
13 eff=Qw/Q*100
14 //results
15 printf("Furnace efficiency = %.1f percent",eff)
```

Scilab code Exa 14.5 Thermal efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 rate=94 //lb/hr
5 hp=197 //hp
6 c=8
7 h=18
8 Lv=17730 //Btu/hr
9 H=2368089 //Btu/hr
10 //calculations
11 amount=rate*c/12 +h
```

```
12 amount=0.824
13 Lvv=H-Lv
14 eff=hp*2544/(amount*Lvv) *100
15 //results
16 printf("Thermal efficiency = %.2f percent",eff)
```

Scilab code Exa 14.6 Thermal efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 rate=94 //lb/hr
5 \text{ hp} = 197 //\text{hp}
6 c = 8
7 h = 18
8 \text{ mole} = 9
9 H=2350359 //Btu/hr
10 //calculations
11 amount=rate*c/12 +h
12 amount = 0.824
13 Lvv=H-mole *18.016 *1050.4
14 eff=hp*2544/(amount*Lvv) *100
15 // results
16 printf ("Thermal efficiency = \%.2 f percent", eff)
17 disp ("The answer in the textbook is a different due
      to rounding off error")
```

Scilab code Exa 14.7 Total available energy calculations

```
1 clc
2 clear
3 //Initalization of variables
4 hv=14000 //Btu/lb
```

```
5 \text{ ef} = 0.4
6 \text{ tmin}=80 //F
7 tmid=300 //F
8 m = 13 // lb
9 c = 0.27
10 tmean = 2300 //F
11 //calculations
12 \text{ heat=ef*hv}
13 Qavail=heat*(tmean-tmin)/(tmean+460)
14 Q=m*c*(tmean-tmid)
15 Q2=Q- (tmin+460)*m*c*log((tmean+460)/(tmid+460))
16 \text{ tot=Qavail+Q2}
17 //results
18 printf("Total available energy = %d Btu/lb of fuel",
      tot)
19 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 14.8 Max amount of work calculations

```
1 clc
2 clear
3 //Initalization of variables
4 disp("From table 14-2,")
5 G1=55750 //Btu/mol
6 co2=-169580 //Btu/mol
7 h2o=-98290 //Btu/mol
8 //calculations
9 G2=6*co2+3*h2o
10 avail=G1-G2
11 //results
12 printf("Max. amount of work = %d Btu/mol", avail)
```

Thermodynamics of chemical reactions

Scilab code Exa 15.1 Dissociation calculations

```
1 clc
2 clear
3 //Initalization of variables
4 kp=10^(1.45)
5 //calculations
6 x=poly(0,"x")
7 s=(1-x)^2 *(2+x) -kp^2 *x^(3)
8 vec=roots(s)
9 X=vec(3)
10 xper=X*100
11 //results
12 printf("Amount of dissociation = %.1 f percent",xper)
13 printf("\n Of each original mole of CO2, there will be %.3 f mole of CO , %.3 f mol of Oxygen and %.3 f mol of CO2",X,X/2,(1-X))
```

Scilab code Exa 15.2 Max temperature calculations

```
1 clc
2 clear
3 //Initalization of variables
4 U=121200 //Btu/mol
5 Uco2 = 51635 / Btu/mol
6 Un2 = 27589 / Btu/mol
7 Uco22=57875 / Btu/mol
8 Un22=21036 //Btu/mol
9 T1=5000 //R
10 T2=5500 //R
11 //calculations
12 Ut1=Uco2+1.88*Un2
13 Ut2=Uco22 + 1.88*Un22
14 disp("By extrapolation,")
15 Tx = 5710 / R
16 //results
17 printf("Max. Temperature reached = %d R", Tx)
18 disp("The calculation for Ut2 is wrong in textbook.
      Please use a calculator.")
```

Scilab code Exa 15.3 Max temperature calculation

```
1 clc
2 clear
3 //Initalization of variables
4 disp("By trial and error,")
5 X=0.201
6 X1=0.2
7 R=59.3 //universal gas constant
8 T=5000 //R
9 U=121200 //Btu/mol
10 Uco2=51635 //Btu/mol
11 Un2=27907 //Btu/mol
```

Gas cycles

Scilab code Exa 16.1 Temperature and pressure calculations

```
1 clc
2 clear
3 //Initalization of variables
4 cr=9
5 p1=14 // psia
6 t1 = 80 + 460 / R
7 n = 1.4
8 heat=800 //Btu
9 c = 0.1715
10 R=53.35
11 J=778
12 //calculations
13 p2=p1*(cr)^n
14 t2=t1*cr^(n-1)
15 t3=heat/c +t2
16 p3=p2*t3/t2
17 eff=(1-1/cr^{(n-1)})*100
18 t4=t3/cr^{(n-1)}
19 Qr = c * (t4 - t1)
20 cyclework=heat-Qr
21 eff2= cyclework/heat *100
```

Scilab code Exa 16.2 Temperature and pressure calculations

```
1 clc
2 clear
3 //Initalization of variables
4 t1=80+460 / R
5 p1 = 14 //psia
6 n = 1.4
7 cr = 16
8 heat=800 //Btu
9 \text{ cp} = 0.24
10 c = 0.1715
11 //calculations
12 t2=t1*cr^(n-1)
13 p2=p1*(cr)^n
14 t3=t2 + heat/cp
15 \quad v32=t3/t2
16 v43=cr/v32
17 t4=t3/v43^{(n-1)}
18 Qr = c * (t4 - t1)
19 etat=(heat-Qr)/heat *100
20 // results
```

```
21 printf("Max. Temperature = %d R",t3)
22 printf("\n Max. Pressure = %d psia",p2)
23 printf("\n Thermal efficiency = %.1 f percent",etat)
```

Scilab code Exa 16.3 mep calculation

```
1 clc
2 clear
3 //Initalization of variables
4 \text{ eff} = 0.585
5 heat=800 //Btu
6 \text{ t1=80+460 } //R
7 p1=14 // psia
8 n=1.4
9 R=53.35
10 \text{ cr} = 9
11 \text{ cp=0.24}
12 J=778
13 //calculations
14 W=eff*heat
15 \text{ v1=R*t1/(144*p1)}
16 v2=v1/cr
17 t2=1301 / R
18 t3=t2+ heat/cp
19 v3=v2*t3/t2
20 v4 = cr * v3
21 \text{ mep=W*J/(144*(v4-v2))}
22 / results
23 printf("Mean effective pressure = \%.1 f psia", mep)
```

Scilab code Exa 16.4 mep calculation

```
1 clc
```

```
2 clear
3 //Initalization of variables
4 \text{ eff} = 0.585
5 \text{ heat} = 500 //Btu
6 \text{ heat1=300 } //Btu
7 t1 = 80 + 460 / R
8 p1 = 14 // psia
9 n = 1.4
10 R=53.35
11 cr=9
12 J=778
13 c=0.1715
14 \text{ cp=0.24}
15 t2=1301 / R
16 p2=308 //psia
17 //calculations
18 t3=t2+ heat/c
19 p3=p2*t3/t2
20 t4=t3+ heat1/cp
21 \text{ v43=t4/t3}
22 v54 = cr/v43
23 t5=t4/(v54)^(n-1)
24 \text{ Qr} = c*(t5-t1)
25 etat=(heat+heat1-Qr)/(heat+heat1) *100
26 \text{ mep} = (\text{heat+heat1-Qr})*J/(12.69*144)
27 //results
28 printf("Max. Temperature = %d R",t4)
29 printf("\n Max. Pressure = %d psia",p3)
30 printf("\n Thermal efficiency = \%.1f percent", etat)
31 printf("\n Mean effective pressure = \%.1 \, \text{f psia}", mep)
32 disp("The calculations are a bit different due to
      rounding off error in textbook")
```

Internal combustion engines

Scilab code Exa 17.1 Indicated efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 hp1=2000 //bhp
5 m = 792 // lb / hr
6 \text{ ex} = 0.5
7 \text{ hp2} = 210
8 \text{ hv} = 18900 //Btu/lb}
9 \text{ etth} = 51.3
10 //calculations
11 \quad ihp=hp1+hp2
12 ietat= ihp*2544/(m*hv) *100
13 betat=ietat*hp1/ihp
14 betat2=hp1*2544/(m*hv) *100
15 ietae=ietat/etth *100
16 betae=betat/etth *100
17 brake= ietae*hp1/ihp
18 //results
19 printf ("Indicated efficiency = %.1f percent", ietat)
20 printf("\n Brake thermal efficiency = \%.1 \, \mathrm{f} percent",
      betat)
```

```
21 printf("\n In case 2, Brake thermal efficiency = %.1
    f percent", betat2)
22 printf("\n Indicated thermal efficiency = %.1f
    percent", ietae)
23 printf("\n Brake engine efficiency = %.1f percent",
    betae)
24 printf("\n In case 2, Brake engine efficiency = %.1f
    percent", brake)
```

Scilab code Exa 17.2 Indicated mep calculations

```
1 clc
2 clear
3 //Initalization of variables
4 J=778
5 \circ 2 = 12.5
6 \text{ theo} = 0.95
7 N = 56.5
8 R0 = 1545
9 T = 540 / R
10 p=14 // psia
11 LHV=2368089 //Btu/lb
12 \text{ ther} = 39.4
13 \text{ iep=0.78}
14 \text{ ve=0.8}
15 //calculations
16 \text{ Ar} = 02/0.21 * theo
17 vol = N*R0*T/(144*p)
18 \text{ hv} = (LHV - 17730) / LHV
19 ithep=iep*ther
20 pd=ithep/100 *ve *100.5
21 \text{ mep=J*pd}
22 //results
23 printf("Indicated mep = %d lb/sq ft", mep)
```

Gas Compressors

Scilab code Exa 18.1 Horsepower calculation

```
1 clc
2 clear
3 //Initalization of variables
4 q=200 //cfm
5 p2=90 //psia
6 p1=14.5 //psia
7 n=1.36
8 //calculations
9 hpp=n/(n-1) *144*p1*q/33000 *(1- (p2/p1))^((n-1)/n)
10 //results
11 printf("Theoretical horse power required = %.1f hp", hpp)
12 disp("The answer given in textbook is wrong. Please verify with a calculator")
```

Scilab code Exa 18.2 Horsepower calculations

1 clc

```
2 clear
3 //Initalization of variables
4 q=350 //cfm
5 eff=0.78
6 x=0.95
7 p2=120 //psia
8 p1=14.3 //psia
9 //calculations
10 cal=p1*144*q/550 *log(p2/p1) /100
11 ihp= cal/eff
12 shp=ihp/x
13 //results
14 printf("Indicated hp = %.1 f hp",ihp)
15 printf("\n Shaft hp = %.1 f hp",shp)
```

Scilab code Exa 18.3 Piston displacement calculations

```
1 clc
2 clear
3 //Initalization of variables
4 n=1.35
5 p1=14.2
6 q = 400 / cfm
7 p2 = 200 // psia
8 p1=14.2 // psia
9 \text{ ve} = 0.75
10 t1=530 / R
11 //calculations
12 thp=-n/(n-1) *144 *p1*q/33000 *(1- (p2/p1)^((n-1)/n)
      )
13 pd=q/ve
14 Tmax=t1*(p2/p1)^((n-1)/n)
15 //results
16 printf ("Theoretical hp = \%.1 f hp", thp)
17 printf("\n Piston displacement = %d cfm",pd)
```

```
18 printf("\n Max. Temperature = %d R", Tmax)
```

Scilab code Exa 18.4 Piston displacement calculations

```
1 clc
2 clear
3 //Initalization of variables
4 n=1.35
5 p1 = 14.2 //psia
6 p3=200 //psia
7 = 400 / cfm
8 \text{ ve} = 0.78
9 \text{ t1}=530 / R
10 //calculations
11 p2=sqrt(p3*p1) //psia
12 thp=-2*n/(n-1) *144 *p1*q/33000 *(1- (p2/p1)^((n-1)/
      n))
13 pd=q/ve
14 \text{ pd2=q*p1/p2 /ve}
15 Tmax=t1*(p2/p1)^((n-1)/n)
16 //results
17 printf ("Theoretical hp = \%.1 f hp", thp)
18 printf("\n For low pressure case, Piston
      displacement = \%.1 f cfm",pd)
19 printf("\n For high pressure case, Piston
      displacement = \%.1 f cfm", pd2)
20 printf("\n Max. Temperature = \%.1 f R", Tmax)
21 disp('The answers are a bit different due to
      rounding off error')
```

Scilab code Exa 18.5 Pressure calculations

```
1 clc
```

```
2 clear
3 //Initalization of variables
4 dia=2 //ft
5 \text{ rpm} = 6000 //\text{rpm}
6 p=14.2 // psia
7 t = 75 / F
8 g = 32.17
9 n = 1.4
10 R=53.35
11 //calculations
12 v = 2 * \%pi * rpm / 60
13 \text{ wbym} = \text{v}^2 / \text{g}
14 T = t + 460
15 pr=1+ wbym*(n-1)/n /(R*T)
16 \text{ pr2=pr}^(n/(n-1))
17 p2=pr2*p
18 //results
19 printf("Theoretical pressure at exit = \%.1 \, \mathrm{f} psia",p2
```

Scilab code Exa 18.6 Pressure calculations

```
1 clc
2 clear
3 //Initalization of variables
4 pa=14.7 //psia
5 p1=12 //psia
6 t1=560 //R
7 n=1.4 //gamma
8 J=778 //constant conversion
9 g=32.2 //ft/s^2
10 cp=0.24 //heat capacity
11 eff=0.7 //efficiency
12 m1=1.8
13 m3=1
```

```
14  // calculations
15  t5=t1*(pa/p1)^((n-1)/n)
16  v4=sqrt(2*g*J*cp*(t5-t1)/eff)
17  v3=(m1+m3)/m1 *v4
18  // results
19  printf(" Velocity of air = %.1 f ft/s", v3)
```

Scilab code Exa 18.7 Pressure required

```
1 clc
2 clear
3 //Initalization of variables
4 v2 = 1180 //ft/s
5 \text{ etan=0.95}
6 \text{ cp=0.24}
7 n = 1.4
8 p2=12
9 //calculations
10 dh=v2^2 /(etan*223.8^2)
11 dt = dh/cp
12 t2d=560 / R
13 t1=t2d+etan*dt
14 t2=554 / R
15 pr=(t1/t2)^(n/(n-1))
16 p1=p2*pr
17 / results
18 printf("Pressure required = %.2f psia",p1)
```

Gas turbines

Scilab code Exa 19.1 Efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 n = 1.4
5 \text{ t1}=540 / \text{R}
6 \text{ tmax} = 1200 \text{ } //\text{F}
 7 \text{ tmax2=1500 } //F
8 pr=5
9 \text{ cp} = 0.24
10 //calculations
11 t2=t1*(pr)^{(n-1)/n}
12 \text{ work=cp*(t2-t1)}
13 t4=(tmax+460) / pr^{((n-1)/n)}
14 twork = cp*(tmax+460-t4)
15 net=twork-work
16 \text{ eff=1- } 1/\text{pr}^((n-1)/n)
17 Qs = cp * (tmax + 460 - t2)
18 \text{ ett=net/Qs } *100
19 t42 = (tmax2 + 460) / pr^{((n-1)/n)}
20 \text{ twork2=cp*(tmax2+460-t42)}
21 net2=twork2-work
```

```
22 Qs2=cp*(tmax2+460-t2)
23 eff3=net2/Qs2 *100
24 //results
25 printf("Compressor work = %.1f Btu/lb",work)
26 printf("\n Turbine work = %.1f Btu/lb",twork)
27 printf("\n Net work = %.1f Btu/lb",net)
28 printf("\n Thermal efficiency = %.1f percent",eff
     *100)
29 printf("\n In case 2, Thermal efficiency = %.1f
     percent",ett)
30 printf("\n In case 2, Turbine work = %.1f Btu/lb",
     twork2)
31 printf("\n In case 2, Net work = %.1f Btu/lb",net2)
32 printf("\n In case 3, Thermal efficiency = %.1f
     percent,",eff3)
```

Scilab code Exa 19.2 Work and efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 work=75.9 //Btu/lb
5 twork=173.5 //Btu/lb
6 \text{ eta=0.8}
7 t2=856 / R
8 \text{ t1}=540 / \text{R}
9 t4=1960 / R
10 \text{ cp} = 0.24
11 //calculations
12 cwork=work/eta
13 internal=twork*eta
14 net=-cwork+internal
15 t2d = (t2-t1)/eta + t1
16 \ Qs = cp*(t4-t2d)
17 \text{ eff=net/Qs } *100
```

Scilab code Exa 19.3 Work and efficiency calculations

```
1 clc
2 clear
3 //Initalization of variables
4 \text{ eff} = 0.97
5 c1 = 94.9 //Btu/lb
6 c2=138.8 //Btu/lb
7 ntee=246 //Btu/lb
8 //calculations
9 cwork=c1/eff
10 \text{ twork} = c2 * eff
11 net=twork-cwork
12 etat=net/ntee *100
13 //results
14 printf ("Compressor work = %.1 f Btu/lb", cwork)
15 printf("\n Turbine work = \%.1 \, f Btu/lb", twork)
16 printf("\n Net work = \%.1 \, f \, Btu/lb", net)
17 printf("\n Thermal efficiency = \%.1f percent", etat)
```

Scilab code Exa 19.4 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 pr=5
```

```
5 p1=14 // psia
6 \text{ pd=3} // \text{psi}
7 pen=70 // psia
8 tin=1960 //R
9 n = 1.4
10 \text{ cp} = 0.24
11 Qs = 265 / Btu/lb
12 //calculations
13 p2=p1*pr
14 pe=pen-pd
15 \text{ prt=pe/p1}
16 tex=tin/prt^{(n-1)/n}
17 twork=cp*(tin-tex)
18 \text{ net=twork} - 75.9
19 \text{ eff=net/Qs } *100
20 //results
21 printf("Thermal efficiency = %.1f percent", eff)
```

Scilab code Exa 19.5 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 pr=5
5 p1=14 //psia
6 pd=3 //psi
7 pen=70 //psia
8 tin=1960 //R
9 n=1.4
10 cp=0.24
11 Qs=265
12 ef=0.95
13 //calculations
14 p2=p1*pr
15 pe=pen-pd
```

```
16  prt=pe/p1
17  tex=tin/prt^((n-1)/n)
18  twork=cp*(tin-tex)
19  net=twork-75.9
20  Qs2=Qs/ef
21  eff=net/Qs2 *100
22  //results
23  printf("Thermal efficiency = %.1f percent",eff)
```

Scilab code Exa 19.6 Pressure calculation

```
1 clc
2 clear
3 //Initalization of variables
4 pr1=1.0590
5 pr2=4.396
6 p1=14 //psia
7 //calculations
8 prr=pr2/pr1
9 p2=p1*prr
10 //results
11 printf("Final pressure = %.1f psia",p2)
```

Scilab code Exa 19.7 Compressor work

```
1 clc
2 clear
3 //Initalization of variables
4 t1=540 //R
5 h1=129.06
6 pr1=1.386
7 cr=5
8 //calculations
```

```
9 pr2=pr1*cr
10 disp("From air tables,")
11 h2=204.63
12 cwork=h2-h1
13 //results
14 printf("Compressor work = %.2 f Btu/lb", cwork)
```

Scilab code Exa 19.8 Turbine work

```
1 clc
2 clear
3 //Initalization of variables
4 cr=5
5 pr3=176.73 //psia
6 h3=14580.3 //Btu/mol
7 M=28.9
8 //calculations
9 pr4=pr3/cr
10 h4=9409
11 twork=h3-h4
12 turb=twork/M
13 //results
14 printf("Turbine work = %.1 f Btu/lb", turb)
```

Scilab code Exa 19.9 Air fuel ratio

```
1 clc
2 clear
3 //Initalization of variables
4 chem=19000 //Btu/lb
5 m1=204.63 //Btu/lb
6 M=28.9
7 w=14580.3
```

```
8 //calculations
9 ma=(chem-w/M)/(w/M -m1)
10 //results
11 printf("Air fuel ratio = %.1 f lb air/lb fuel",ma)
```

Scilab code Exa 19.10 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 cp=0.24
5 h=138.8
6 t3=1960 //R
7 //calculations
8 t4d=t3-h/cp
9 Qs=cp*(t3-t4d)
10 work=43.9 //Btu/lb
11 etat=work/Qs *100
12 //results
13 printf("Thermal efficiency of the unit = %.1f percent", etat)
```

Scilab code Exa 19.11 Thermal efficiency calculation

```
1 clc
2 clear
3 // Initalization of variables
4 n=1.4
5 t1=540 //R
6 tmax=1500 //F
7 pr=5
8 cp=0.24
9 p1=14 // psia
```

```
10 p3 = 70 // psia
11 //calculations
12 pint=p1*sqrt(pr)
13 t2=t1*(pint/p1)^{((n-1)/n)}
14 t4=t1*(p3/pint)^((n-1)/n)
15 \ w = cp * (t4 - t1)
16 w2 = 2 * w
17 t6 = (tmax + 460) / (p3/pint)^{(n-1)/n}
18 t8=(tmax+460)/(pint/p1)^{(n-1)/n}
19 work=cp*(tmax+460-t6)
20 \text{ w22=2*work}
21 \text{ net} = w22 - w2
22 \quad Qa = cp * (tmax + 460 - t2)
23 Qb = cp * (tmax + 460 - t6)
24 Qt=Qa+Qb
25 \text{ eta=net/Qt}*100
26 //results
27 printf("Thermal efficiency = \%.2 f percent", eta)
```

Scilab code Exa 19.12 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 n=1.4
5 t1=540 //R
6 tmax=1500 //F
7 pr=5
8 cp=0.24
9 p1=14 //psia
10 p3=70 //psia
11 w2=75.9 //Btu/lb
12 Qa=265 //Btu/lb
13 //calculations
14 pint=p1*sqrt(pr)
```

```
15     t6=(tmax+460)/(p3/pint)^((n-1)/n)
16     t8=(tmax+460)/(pint/p1)^((n-1)/n)
17     work=cp*(tmax+460-t6)
18     w22=2*work
19     net=w22-w2
20     Qb=cp*(tmax+460-t6)
21     Qt=Qa+Qb
22     eta=net/Qt*100
23     //results
24     printf("Thermal efficiency = %.1f percent",eta)
```

Scilab code Exa 19.13 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 n=1.4
5 t1=540 / R
6 \text{ tmax} = 1500 //F
7 pr=5
8 \text{ cp} = 0.24
9 t3=1558 / R
10 net=125.8 //Btu/lb
11 //calculations
12 Q = cp * (tmax + 460 - t3)
13 Qt = 2 * Q
14 \text{ eta=net/Qt}*100
15 //results
16 printf("Thermal efficiency = %.1f percent", eta)
```

Chapter 20

Vapor power cycles

Scilab code Exa 20.1 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 Qs = 825.1 / Btu/lb
5 ds = 0.9588
6 t1 = 101.74 / F
7 th=400.95 //F
8 //calculations
9 Qr=ds*(t1+459.69)
10 work=Qs-Qr
11 eta=work/Qs*100
12 \text{ eta2}=(\text{th-t1})/(\text{th+459.69}) *100
13 / results
14 printf("In case 1, Thermal efficiency = \%.2f percent
      ",eta)
15 printf("\n In case 2, Thermal efficiency = \%.2 f
      percent", eta2)
```

Scilab code Exa 20.2 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 s2=1.5263
5 \text{ sfg} = 1.8456
6 \text{ sf} = 1.9782
7 h2=1201.1 //Btu/lb
8 hf=1106 //Btu/lb
9 hfg=1036.3 //Btu/lb
10 v = 0.01616 / m^3 / kg
11 p2=250 // psia
12 p1=1//psia
13 J=778
14 //calculations
15 \times 3 = 1 + (s2 - sf) / sfg
16 \text{ h3=hf} - (1-x3)*hfg
17 \quad h4 = 69.7
18 Wp = v * 144 * (p2 - p1) / J
19 h1 = h4 + Wp
20 etat=((h2-h3)-Wp)/(h2-h1) *100
21 \text{ eta2=(h2-h3)/(h2-h4)*100}
22 //results
23 printf("\n In case 1, Efficieny = \%.2 f percent", etat
24 printf("\n In case 2, Efficieny = \%.2 f percent", eta2
```

Scilab code Exa 20.3 Enthalpy calculations

```
1 clc
2 clear
3 //Initalization of variables
4 p=40000 //kW
5 ef=0.98
6 rate=302000 //lb
```

```
7 s3=1.6001
8 h2=1490.1
9 \ loss = 600
10 v = 400 // ft / s
11 g=32.2 //ft/s^2
12 J=778
13 //calculations
14 out=p/(0.746*ef)
15 srate=rate/out
16 \quad X = -(s3-1.9782)/1.8456
17 h3=1106 - X*1036.3
18 theoturb=h2-h3
19 intturb=(out+loss)*2544/rate
20 Ie=intturb/theoturb *100
21 \text{ h3d=h2-intturb-v^2} / (2*g*J)
22 \text{ hex=h3d+ v^2} / (2*g*J)
23 excess=rate*(hex-h3)
24 //results
25 printf("Steam rate = \%.2 \, \text{f lb/shaft hp-hr}", srate)
26 printf("\n Internal engine efficiency = %.1f percent
      ", Ie)
27 printf("\n Enthalpy of exhaust steam = \%.1 \, \text{f Btu/lb}",
28 printf("\n Excess heat to be removed = \%d Btu/hr",
      excess)
29 disp ("The answers are a bit different due to
      rounding off error in textbook")
```

Scilab code Exa 20.4 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 s2=1.5263
5 sf=1.6993
```

```
6 \text{ sfg} = 1.3313
7 hf = 1164.1 / Btu/lb
8 \text{ hfg=945.3 } //\text{Btu/lb}
9 h2=1201.1 //Btu/lb
10 h1=852.3 //Btu/lb
11 //calculations
12 X3 = -(s2 - sf) / sfg
13 \text{ h3=hf-X3*hfg}
14 h4=218.82
15 h6=h4
16 h5 = 69.7
17 x=(h4-h5)/(h3-h5)
18 W= h2-h3+(1-x)*(h3-h1)
19 Qs=h2-h4
20 \text{ eff=W/Qs} *100
21 //results
22 printf ("Thermal efficiency = \%.2 \,\mathrm{f} percent", eff)
```

Scilab code Exa 20.5 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 h6=157.933 //Btu/lb
5 s2=0.11626
6 sf=0.16594
7 sfg=0.14755
8 hf=139.095 //Btu/lb
9 hfg=126.98 //Btu/lb
10 h5=12.016 //Btu/lb
11 h2=1201.1 //Btu/lb
12 h1=69.7 //Btu/lb
13 w=348.8 //Btu/lb
14 m=0.0745 //lb
15 //calculations
```

Scilab code Exa 20.6 Heat transferred

```
1 clc
2 clear
3 //Initalization of variables
4 \text{ m=1} // \text{lb}
5 \text{ cp} = 0.26
 6 t2=1800+460 //R
 7 t1=400.95+460 //R
8 x = 0.6
9 sink = 100 + 460 / R
10 tm = 2600 + 460 / R
11 //calculations
12 Q=m*cp*(t2-t1)
13 ds=m*cp*log((t2/t1))
14 tds=ds*(sink)
15 \text{ avail=Q-tds}
16 hf = Q * x / (1 - x)
17 av2=hf*(tm-sink)/(tm)
18 \quad Qt = Q + hf
19 \text{ av=avail+av2}
20 per=av/Qt *100
21 / results
22 printf("Available portion of heat transferred = %.1f
```

percent",per)

Chapter 21

Steam turbines

Scilab code Exa 21.1 Rate of flow calculation

```
1 clc
2 clear
3 //Initalization of variables
4 p2=190 // psia
5 p1 = 110 // psia
6 v1=2.456
7 k = 1.3
8 J = 778
9 A2=1.2 //in^2
10 //calculations
11 v2=v1*(p2/p1)^(1/k)
12 dh=k/(k-1) *144/J *(p2*v1-p1*v2)
13 Vex=223.8*sqrt(dh)
14 \text{ m=A2*Vex/(144*v2)}
15 //results
16 printf("Rate of flow = \%.2 \, \text{f lb/sec}",m)
```

Scilab code Exa 21.2 Rate of flow calculation

```
1 clc
 2 clear
 3 //Initalization of variables
4 h1=1205.8 //Btu/lb
5 \text{ s}2=1.5594
 6 \text{ sf} = 1.5948
 7 \text{ sfg} = 1.1117
8 hf = 1188.9 //Btu/lb
9 hfg=883.2 //Btu/lb
10 \text{ vf} = 4.049
11 vfg=vf-0.018
12 k=1.3
13 J=778
14 A2=1.2 //in^2
15 //calculations
16 	 x2 = -(s2 - sf) / sfg
17 h2=hf-x2*hfg
18 \quad v2 = vf - x2 * vfg
19 dh=h1-h2
20 \ \text{Vex} = 223.8 * \text{sqrt} (dh)
21 \text{ m=A2*Vex/(144*v2)}
22 //results
23 printf("Rate of flow = \%.2 \, \text{f lb/sec}",m)
```

Scilab code Exa 21.3 Blade work and efficiency

```
1 clc
2 clear
3 //Initalization of variables
4 alp=14 //degrees
5 vb=900 //ft/s
6 v1=2200 //ft/s
7 g=32.17 //ft/s^2
8 //calculations
9 vrc=v1*cosd(alp) - vb
```

```
10 W=(2*vrc)/g *vb
11 eta=W/(v1^2/ (2*g)) *100
12 bet=atand(v1*sind(alp) /vrc)
13 //results
14 printf("Blade work = %d ft-lb/lb",W)
15 printf("\n Efficiency = %.1f percent",eta)
16 printf("\n Blade angle = %.1f degrees",bet)
17 disp('The answers are a bit different due to rounding off error')
```

Scilab code Exa 21.4 Blade work and efficiency

```
1 clc
2 clear
3 //Initalization of variables
4 v1 = 1234 //ft/s
5 v2 = 532 //ft/s
6 \text{ kb} = 0.92
7 alp=20 // degrees
8 \text{ ve} = 900 // \text{ft/s}
9 r = 2200 //ft/s
10 g=32.17 //ft/s^2
11 //calculations
12 \text{ vr} = \text{sqrt} (v1^2 + v2^2)
13 vr2=vr*kb
14 vrc=vr2*cosd(alp)
15 W = (v1 + vrc) * ve/g
16 \text{ eta=W/(r^2/(2*g))} *100
17 //results
18 printf ("Blade work = \%d ft-lb/lb", W)
19 printf("\n Efficiency = \%.1f percent", eta)
20 disp ('The answers are a bit different due to
      rounding off error')
```

Scilab code Exa 21.5 Blade reheat calculation

```
1 clc
2 clear
3 //Initalization of variables
4 v1 = 1234
5 v2 = 532
6 \text{ kb} = 0.92
7 alp=20 // degrees
8 \text{ ve} = 900
9 r = 2200 //ft/s
10 g=32.17 //ft/s^2
11 J=778
12 \quad w = 67000
13 //calculations
14 \text{ vr} = \text{sqrt} (v1^2 + v2^2)
15 \text{ vr2=vr*kb}
16 vrc=vr2*cosd(alp)
17 reheat=(vr^2 - vr2^2 )/(2*g*J)
18 v22=sqrt((vrc-ve)^2 +(vr2*sind(alp))^2)
19 ein=r^2 / (2*g*J)
20 \text{ eout=w/J + v22^2 /(2*g*J)}
21 re2=ein-eout
22 / results
23 printf("\n In case 1, Blade reheat = \%.2 f Btu/lb",
24 printf("\n In case 2, Blade reheat = \%.1 f Btu/lb",
      re2)
```

Scilab code Exa 21.6 Pressure calculation

```
1 clc
```

```
2 clear
3 //Initalization of variables
4 h1=1416.4
5 \text{ s1}=1.6842
 6 \text{ sf} = 1.7319
 7 \text{ sfg} = 1.3962
8 \text{ fac} = 1.05
9 x2=0.7
10 //calculations
11 \times 6 = -(s1 - sf) / sfg
12 h6=1156.3 - x6*960.1
13 dh6=h1-h6
14 \text{ drop= } fac*h6/2
15 h2=h1-drop
16 \text{ first} = (1-x2) * drop
17 h3=1264.1 +first
18 h4 = 1157 / Btu/lb
19 \text{ fac2=(drop+153)/dh6}
20 disp("From air charts,")
21 p2 = 107 / psia
22 // results
23 printf("Intermediate pressure = %d psia",p2)
```

Scilab code Exa 21.7 Shaft output and efficiency calculation

```
1 clc
2 clear
3 //Initalization of variables
4 reh=1.047
5 dh6=292.8
6 x2=0.7
7 flow=98000 //lb/hr
8 loss=200 //hp
9 //calculations
10 intwork=reh*dh6*x2
```

```
inthp=intwork*flow/2544
sout=inthp-loss
swork=sout*2544/flow
seff=swork/290.1 *100
//results
printf("Shaft output = %d hp", sout)
printf("\n Shaft engine efficiency = %.1f percent", seff)
```

Scilab code Exa 21.8 Pressure at Exit calculation

```
clc
clear
//Initalization of variables
h1=1416.4 //Btu/lb
h2=214.5 //Btu/lb
//calculations
hex=h1-h2
disp("From Air tables,")
pe=20 //psia
te=321.5 //F
//results
printf("Exit Pressure = %d psia",pe)
printf("\n Exit temperature = %.1 f F",te)
```

Scilab code Exa 21.9 Steam rate calculation

```
1 clc
2 clear
3 //Initalization of variables
4 flow=98000 //lb/hr
5 loss=200 //hp
6 x= 0.11 //percent
```

```
7 shp=3000 //hp
8 //calculations
9 sflow = x*flow
10 sflow2= sflow + (flow-sflow)*shp/8060
11 srate=sflow2/shp
12 //results
13 printf("Steam rate required = %.2 f lb/hp-hr", srate)
```

Chapter 22

Refrigeration

Scilab code Exa 22.1 cop calculations

```
1 clc
2 clear
3 //Initalization of variables
4 t1=45+460 / R
5 \text{ th} = 70 + 460 / R
6 t2 = -200 + 460 / R
7 th2=100+460 //R
8 //calculations
9 \text{ cp1=t1/(th-t1)}
10 \text{ cp2=th/(th-t1)}
11 cp3=t2/(th2-t2)
12 \text{ cp4=th2/(th2-t2)}
13 //results
14 printf ("In case 1, Refrigerator cp = \%.1 \,\mathrm{f}", cp1)
15 printf("\n In case 1, Heat pump cp = \%.1 \, \text{f}",cp2)
16 printf("\n In case 2, Refrigerator cp = \%.3 f",cp3)
17 printf("\n In case 2, Heat pump cp = \%.3 \,\mathrm{f}", cp4)
```

Scilab code Exa 22.2 cop calculations

```
1 clc
2 clear
3 //Initalization of variables
4 h3=85.282 //Btu/lb
5 \text{ s}2=0.16392
6 \text{ sf} = 0.16798
7 //calculations
8 \text{ sfg=sf-0.023954}
9 x3 = -(s2 - sf) / sfg
10 \text{ h}2=78.335 - x3*67.651
11 h4=26.365 / Btu/lb
12 h1=h4
13 ref=h2-h1
14 \text{ work=h3-h2}
15 cp1=ref/work
16 \text{ h2d} = 78.355
17 h1d=26.365 //Btu/lb
18 h3d=87.495 //Btu/lb
19 \text{ ref2=h2d-h1d}
20 \quad work2=h3d-h2d
21 cp2=ref2/work2
22 //results
23 printf("\n Coefficient of performance in wet
       compression = \%.3 \,\mathrm{f}",cp1)
24 printf("\n Coefficient of performance in dry
      compression = \%.3 \,\mathrm{f}", cp2)
```

Scilab code Exa 22.3 Tonnage calculations

```
1 clc
2 clear
3 //Initalization of variables
4 h1=24.973 //Btu/lb
5 h2=81.436 //Btu/lb
6 cfm=200 //cfm
```

```
7  v2=0.77357
8  v3=3.8750
9  h4=72.913
10  //calculations
11  mass=cfm/v2
12  ref=h2-h1
13  tonnage=mass*ref/cfm
14  mass2=cfm/v3
15  ref2=h4-h1
16  tonnage2=mass2*ref2/cfm
17  //results
18  printf("In case 1,Tonnage = %.1f tons",tonnage)
19  printf("\n In case 2,Tonnage = %.2f tons",tonnage2)
```

Scilab code Exa 22.4 Refrigeration and cop calculation

```
1 clc
2 clear
3 //Initalization of variables
4 h2d=93.410 //Btu/lb
5 \text{ h1} = 80.740 // \text{Btu/lb}
6 x = 0.75
7 PD=160
8 \text{ vol} = 0.82
9 v1=1.7213
10 \text{ w} 2 = 80.156
11 \quad \text{w1} = 27.3
12 //calculations
13 \text{ twork=h2d-h1}
14 swork=twork/x
15 \text{ flow=PD*vol/v1}
16 \text{ ref=flow*(w2-w1)/200}
17 shp = flow*swork/42.4
18 \text{ cop} = (w2 - w1) / swork
19 // results
```

```
20 printf("Refrigeration = %.1 f tons",ref)
21 printf("\n Shaft hp= %.1 f hp",shp)
22 printf("\n Coefficient of performance = %.2 f ",cop)
```

Scilab code Exa 22.5 cop calculation

```
1 clc
2 clear
3 //Initalization of variables
4 mc=3000 //lb
5 hv=1080.2 //Btu/lb
6 hfe=26.06 //Btu/lb
7 hfp=10.05 //Btu/lb
8 x=0.7
9 //calculations
10 mv=(mc*hfp-mc*hfe)/(hfe-hv)
11 dh=145.4 //Btu/lb
12 chp=dh*mv/(x*42.4)
13 cop=mc*(hfe-hfp)/(chp*42.4)
14 //results
15 printf("Coefficient of performace = %.2f",cop)
```

Scilab code Exa 22.6 Power calculation

```
1 clc
2 clear
3 //Initalization of variables
4 loss=80000 //Btu/lb
5 t=560 //R
6 //calculations
7 ratio=t/68
8 power=loss/(ratio*2544)
9 //results
```

```
10 printf("Power = \%.2 \, f \, hp", power)
```

Scilab code Exa 22.7 Power calculation

```
1 clc
2 clear
3 //Initalization of variables
4 loss=2*80000 //Btu/lb
5 tb=72 //F
6 to=12 //F
7 to2=42 //F
8 tf=104+460 //R
9 //calculations
10 ratio=tf/(tf-460)
11 power=loss/(2544*ratio)
12 //results
13 printf("Power = %.1 f hp",power)
```

Chapter 23

Gas vapor mixtures

Scilab code Exa 23.1 Specific humidity calculation

```
1 clc
2 clear
3 //Initalization of variables
4 pv=0.3631 //psia
5 pa=14.7 //psia
6 cp=0.24
7 tw=70 //F
8 td=80 //F
9 hv1=1096.6 //Btu/lb
10 hfb=38.06 //Btu/lb
11 //calculations
12 sh=0.622*pv/(pa-pv)
13 sh1=(cp*tw -cp*td + sh*1054.3)/(hv1-hfb)
14 //results
15 printf("Specific humidity = %.5 f lb/lb",sh1)
```

Scilab code Exa 23.2 RH calculation

```
1 clc
2 clear
3 //Initalization of variables
4 rel=0.9
5 p1=0.0396 //psia
6 p2=0.3631 //psia
7 //calculations
8 act=rel*p1
9 RH=act/p2 *100
10 //results
11 printf("Relative humidity = %.1f percent",RH)
```

Scilab code Exa 23.3 Temperature calculation

```
1 clc
2 clear
3 //Initalization of variables
4 pa=14.2
5 rel=0.9
6 sh=0.012 //lb/lb
7 //calculations
8 pv=(pa*sh)/(0.622-sh)
9 sat=pv/rel
10 tf=64.34 //F
11 //results
12 printf("From steam tables, by interpolation, Final temperature = %.2 f F",tf)
```

Scilab code Exa 23.4 Heat calculations

```
1 clc
2 clear
3 //Initalization of variables
```

```
4 pa=14.7
5 \text{ pv} = 0.0356
6 \text{ pv2} = 0.04
7 \text{ cp} = 0.24
8 t1=70 //F
9 t2=15 / F
10 R=53.35
11 V = 8000 // ft^3
12 //calculations
13 sh=0.622*pv/(pa-pv2)
14 \text{ hm2=cp*t1+ sh*1092.3}
15 \text{ hm1} = \text{cp} * \text{t2} + \text{sh} * 1068.4
16 \quad Q = hm2 - hm1
17 m=144*(pa-pv2)*V/(R*(t2+460))
18 \quad Q2 = Q * m
19 //results
20 printf("Heat added per min = %d Btu/min",Q2)
21 disp("The answer is a bit different due to rounding
       off error in the textbook")
```

Scilab code Exa 23.5 Temperature calculation

```
1 clc
2 clear
3 //Initalization of variables
4 rel=0.45
5 p1=0.4747 //psia
6 disp("From steam table data,")
7 //calculations
8 act=rel*p1
9 t2=54.94 //F
10 //results
11 printf("Temperature = %.2 f F",t2)
```

Scilab code Exa 23.6 Tonnage calculation

```
1 clc
2 clear
3 //Initalization of variables
4 \text{ rel=0.6}
5 p1=0.6982 //psia
6 pa=14.7 // psia
7 t1=90 //F
8 t2=54.94 //F
9 \text{ cp} = 0.24
10 p2=0.2136 // psia
11 vol = 4000 // ft
12 t3=538 / R
13 R=53.35
14 //calculations
15 \text{ act1=rel*p1}
16 sh1=0.622*act1/(pa-act1)
17 hm1=cp*t1+sh1*1100.9
18 sh2=0.622*p2/(pa-p2)
19 hm2=cp*t2+sh2*1085.8
20 \quad con=sh1-sh2
21 \text{ enth} = \text{con} * 23.01
22 \quad \text{heat=hm1-hm2-enth}
23 mass=144*(pa-p2)*vol/(R*(t3))
24 tonnage=mass*heat/200
25 //results
26 printf("Tonnage = \%.1 \, f tons ", tonnage)
```

Scilab code Exa 23.7 Tonnage calculation

```
1 clc
```

```
2 clear
3 //Initalization of variables
4 p1=0.541 // psia
5 \text{ rel} = 0.48
6 pa=14.7 // psia
7 t1=82 //F
8 \text{ cp} = 0.24
9 m1=0.75 //lb
10 \text{ m} 2 = 0.25 // lb
11 hm4=23.15 //Btu/lb
12 \text{ mass} = 291 // lb
13 //calculations
14 p2=rel*p1
15 sh=0.622*p2/(pa-p2)
16 \text{ hm1} = \text{cp*t1} + \text{sh*1097.5}
17 \, \text{hm} \, 2 = \text{m} \, 1 * \text{hm} \, 1
18 \text{ hm}3=\text{m}2*41.67
19 \quad \text{heat=hm2+hm3-hm4}
20 tonnage=heat*mass/200
21 //results
22 printf ("Tonnage = \%.2 \, \text{f} \, \text{tons}", tonnage)
```

Scilab code Exa 23.8 Volume calculation

```
1 clc
2 clear
3 //Initalization of variables
4 ce=0.8
5 t1=115 //F
6 tc=75 //F
7 td=85 //F
8 pa=14.7 //psia
9 p1=0.43 //psia
10 p2=0.9492 //psia
11 m1=159600
```

```
12 m2 = 31.65
13 R=53.35
14 \text{ T} = 545 / \text{R}
15 //calculations
16 t2=t1-ce*(t1-tc)
17 Pv=0.4298-(pa-p1)*(td-tc)/(2800-1.3*tc)
18 sh1=0.622*Pv/(pa-Pv)
19 sh2=0.622 *p2/(pa-p2)
20 \text{ mda=m1/m2}
21 \ V=mda*R*T/(144*(pa-Pv))
22 amount=mda*(sh2-sh1)
23 / results
24 printf("Volume of entering air = %d cfm", V)
25 printf("\n Amount of make up water = \%.1 \, \mathrm{f} \, \mathrm{lb/min}",
      amount)
26 disp('The answers are a bit different due to
      rounding off error in textbook')
```