Example. Maximize

$$z = 3x_1 + x_2$$

subject to:

$$-x_1 + x_2 \le 1$$

$$x_1 \le 3$$

$$2x_1 + x_2 \le 7$$

$$x_1, x_2 > 0$$

×1, ×2, 3, 5, 5, 9, 7

Convert to the equality form:

Constraints:
$$-x_1 + x_2 + g_1 = 1$$

$$x_1 + s_2 = 3$$

$$2x_1 + x_2 + g_3 = 7$$

$$x_1, x_2 \ge 0$$
free variables basic variables
$$x_1 \times z \le g_2 \times g_3$$
occugamented
$$x_1 + x_2 + g_3 = 7$$

$$x_1, x_2 = 3$$

$$2x_1 + x_2 + g_3 = 7$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

$$x_1, x_2 = 3$$

$$x_1, x_2 = 3$$

$$x_2, x_3 = 3$$

We want to maximize

$$z = 3 \times_1 + \times_2 + \frac{0}{9} + \frac{0}{9} + \frac{0}{9} + \frac{0}{9}$$

Coefficients of basic variables are all 0.

Note: By selling the free variables to O we get a basic fearible solution:

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ y_1 = 1 \\ y_2 = 3 \\ y_3 = 7 \end{cases}$$
 this gives: $z = 0$

Goal: Look for other basic feasible solutions that make the value of z larger.

Simplex tableau

The current basic feasible solution:

free
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ S_1 = 1 \\ S_2 = 3 \\ S_3 = 7 \end{cases} \mapsto Z = 0$$

The pivot step:

- 1) We can increase the value of z by increasing either x_1 or x_2 . Let's try to increase x_2 , keep $x_1 = 0$.
- 2) Change of x_z will affect the values of the bosic variables s_1 , s_{z_1} s_3 . These variables must stay >0, which restricts possible values of x_z .

Since by assumption x1=0 we have:

All these conditions are satisfied if $x_2 \le 1$. For the biggest increase of z we set $x_2 = 1$ which makes $s_1 = 0$. Since we mant free variables to have value 0, and basic variables to have non-zero values, we want to make x_2 into a basic variable and make s_1 free,

The new basic feasible solution

free
$$\begin{cases} \begin{cases} x_1 = 0 \\ s_1 = 0 \end{cases} \\ x_2 = 1 \end{cases} \longrightarrow \begin{cases} 2 - 1 = 0 \\ s_2 = 3 \end{cases}$$

$$\begin{cases} s_3 = 6 \end{cases}$$

The pivot step:

The free variables are x, and s.

Increasing s, will decrease 2,

but increasing x, will increase Z.

Thus we will increase x, while keeping x_2 , s_2 , $s_3 > 0$. (Note: we keep $s_1 = 0$)

$$- \times_{1} + \times_{2} = 1 \Rightarrow \times_{2} = 1 + \times_{1} \nearrow 0 - \text{no restriction on } \times_{1}$$

$$\times_{1} + S_{2} = 3 \Rightarrow S_{2} = 3 - \times_{1} \nearrow 0 = 0; \quad \times_{1} \leqslant 3$$

$$3 \times_{1} + S_{3} = 6 \Rightarrow S_{3} = 6 - 3 \times_{1} \nearrow 0 = 0 \quad 3 \times_{1} \leqslant 6$$

$$\times_{1} \leqslant 2$$

The biggest value of x_1 satisfying all conditions is $x_1 = 2$ Then $s_3 = 0$, so s_3 becomes free and x_1 basic.

The new besic feasible solution:

free
$$\begin{cases} S_1 = 0 \\ S_3 = 0 \\ \times_2 = 3 \end{cases} \longrightarrow \begin{cases} z - q = 0 \\ (or z = q) \end{cases}$$
basic
$$\begin{cases} S_1 = 0 \\ \times_2 = 3 \\ S_2 = 1 \\ \times_1 = 2 \end{cases}$$

The pivot step:

We can increase z by increasing s, (and keeping s, =0)
We have:

$$x_2 + \frac{2}{3}S_1 = 3 \Rightarrow x_2 = 3 - \frac{2}{3}S_1 > 0$$
 So: $\frac{2}{3}S_1 < 3$ $S_1 < \frac{9}{2}$

$$\frac{1}{3}S_1 + S_2 = 1 \Rightarrow S_2 = 1 - \frac{1}{3}S_1 > 0 \qquad S_0: \quad \frac{1}{3}S_1 \leq 1$$
 $S_1 \leq 3$

 $x_1 - \frac{1}{3}S_1 = 2 \Rightarrow x_1 = 2 + \frac{1}{3}S_1 > 0$ no restiction on S, The largest value of S_1 satisfying all conditions is $S_1 = 3$. Then $S_2 = 0$, so S_2 becomes free

and s, bosic

Note: The objective function depends on sz and sz only, but increasing these variables will make z smeller. Thus we can't increase z anymore, we reached the maximum.

The final solution of the linear program:

The maximum value is
$$z=10$$
.
It is obtained for $x_1=3$, $x_2=1$
(and $s_1=3$, $s_2=0$, $s_3=0$)

Geometric interpretation of the simplex method

Recall: Maximize

$$z = 3x_1 + x_2$$

subject to:

$$-x_1 + x_2 \le 1$$

$$x_1 \le 3$$

$$2x_1 + x_2 \le 7$$

$$x_1, x_2 \ge 0$$

Note: It would have been more efficient to increase x_i instead of x_2 in the first pivot step. In the simplex method there are various pivoting rules which aim to decide which free variable should be used at each step to get to the solution as quickly as possible.