Bridging the Gap Between f-GANs and Bayes Hilbert Spaces

Linus Lach*, Alexander Fottner, Yarema Okhrin

Content

- *f*-GANs
- Bayes Hilbert Spaces
- Mixed conjugates and pseudo f-divergences
- Bayes Hilbert space GANs
- References

f-GANS

f-Divergences (Csiszár, Shields, et al. 2004)

Quantify dissimilarity between two probability measures μ and ν that are absolutely continuous w.r.t to some σ -finite base measure λ .¹

$$D_f(\mu,
u) = \int_{\mathbb{R}} p_
u(x) f\left(rac{p_\mu(x)}{p_
u(x)}
ight) \lambda(\mathrm{d}x).$$

- $f: \mathbb{R}_+ \to \mathbb{R}$ convex,
- lower-semicontinuous, and
- satisfying f(1) = 0.

f is called divergence generating function

1. μ is absolutely continuous w.r.t. λ if every μ nullset is a λ nullset and vice versa

Examples of f-divergences generating functions

Estimating f-divergences is hard!

- Nonparametric estimation
- Only finite samples available
- Highdimensional setting

Solution: Find easy to estimate lower bound (Nguyen, Wainwright, and Jordan 2010):

$$D_f(\mu,
u) \geq \sup_{T \in \mathcal{T}} \left\{ \mathbb{E}_{\mu}(T) - \mathbb{E}_{
u}(f^* \circ T)
ight\}$$

Components of the lower bound

$$D_f(\mu,
u) \geq \sup_{T \in \mathcal{T}} \left\{ \mathbb{E}_{\mu}(T) - \mathbb{E}_{
u}(f^* \circ T)
ight\}$$

- $oldsymbol{ au}$ \mathcal{T} arbitrary class of measurable functions $T:\Omega o \mathrm{dom}(f^*)$
- Fenchel conjugate f^* of f: $f^*(y) := \sup_{x \in \mathrm{dom}(f)} \{xy f(x)\}$

Fenchel conjugates

Theorem (Rockafellar (1970))

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. If f is lower semi-continuous, then the duality $f^{**}(x) = f(x)$ for all $x \in \mathbb{R}^n$ holds.

This theorem also works for concave functions:

Theorem (Rockafellar (1970))

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a concave function. If f is upper semi-continuous, then the duality $f_{**}(x) = f(x)$ for all $x \in \mathbb{R}^n$ holds.

Here,

$$f_*(y) := \inf_{x \in \mathrm{dom}(g)} \{xy - f(x)\}.$$

Optimizing the lower bound

If f is not only convex and lower semicontinuous but $f \in \mathcal{C}^1$, then the bound

$$D_f(\mu,
u) \geq \sup_{T \in \mathcal{T}} \left\{ \mathbb{E}_{\mu}(T) - \mathbb{E}_{
u}(f^* \circ T)
ight\}.$$

is tight and the supremum is attained at

$$ilde{T}(x) = f'\left(rac{p_{\mu}(x)}{p_{
u}(x)}
ight).$$

Generative Adversarial Networks (GANs) in a nutshell

- Sample from an unknown distribution
- Alternately:
 - Train a generative model that creates samples from an unknown distribution
 - Train a discriminatory model (binary classifier) that incentives the generator to produce more realistic examples

Training objective for f-GANs

Nowozin, Cseke, and Tomioka (2016) extended the work of Goodfellow et al. (2014) to a generalized optimization problem:

$$\min_{ heta} \max_{\omega} \left[\mathbb{E}_{\mu}(T_{\omega}) - \mathbb{E}_{
u_{ heta}}(f^* \circ T_{\omega})
ight]$$

 θ (generator) and ω (discriminator) are each parameters of neural networks.

Bayes Hilbert Spaces

General idea

- 1. Construct a linear space for proportional σ -finite measures, including probability measures.
- 2. Consider the subspace of square-log-integrable densities.¹
- 3. Define an inner product on this subspace using the centered log ratio for measures.
- 4. Obtain a Hilbert space structure that allows for a straight forward interpretation of distances between densities.

1. In this setting, measures can be identified with their corresponding Radon-Ni density.

Some definitions

- Define $\mathcal{M}(\lambda)$ as the set of measures on (Ω, \mathcal{B}) that are equivalent to the base measure λ .
- Two measures $\mu, \nu \in \mathcal{M}(\lambda)$ are defined as B-equivalent denoted by $\mu =_{B(\lambda)} \nu$ if there exists a constant c>0 such that $\mu(A)=c\nu(A)$ for all $A\in\mathcal{B}$. Then, $=_{B(\lambda)}$ is an equivalence relation on $\mathcal{M}(\lambda)$
- Finally, define $B(\lambda) := \mathcal{M}(\lambda) / =_{B(\lambda)}$

Bayes Linear Space

For two measures $\mu, \nu \in B(\lambda)$ define the perturbation of μ by ν over some set $R \in \mathcal{B}$ as

$$(\mu \oplus \nu)(R) := \int_{R} \frac{\mathrm{d}\mu}{\mathrm{d}\lambda} \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \, \mathrm{d}\lambda$$

and the powering of μ by $\alpha \in \mathbb{R}$ as

$$(\alpha \odot \mu)(R) := \int_{R} \left(\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\right)^{\alpha} \mathrm{d}\lambda$$

Theorem (K. Van den Boogaart, Egozcue, and Pawlowsky-Glahn (2010))

 $(B(\lambda),\oplus,\odot)$ is a linear space.

The centered log ratio

For $p \ge 1$ define

$$B^p(\lambda) = \left\{ \mu \in B(\lambda) : \int_{\mathbb{R}} \left| \log \left(rac{\mathrm{d} \mu}{\mathrm{d} \lambda}
ight)
ight|^p \mathrm{d} \lambda < + \infty
ight\}.$$

The clr of $\mu \in B^p(\lambda)$ is defined as

$$\operatorname{clr}(\mu) = \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\right) - \int \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\right) \mathrm{d}\lambda.$$

Bayes Hilbert spaces

Theorem (K. G. Van den Boogaart, Egozcue, and Pawlowsky-Glahn (2014))

 $B^2(\lambda)$ equipped with the inner product

$$\int \left(\log(f(x)) - \int \log(f(y))\lambda(\mathrm{d}y)\right) \left(\log(g(x)) - \int \log(g(y))\lambda(\mathrm{d}y)\right) \lambda(\mathrm{d}y)$$

denoted by $\langle f,g\rangle_{B^2(\lambda)}$ with f,g densities in $B^2(\lambda)$ is a separable Hilbert space.

Theorem (K. G. Van den Boogaart, Egozcue, and Pawlowsky-Glahn (2014))

 ${
m clr}: B^2(\lambda) o L^2_0(\lambda)$ is an isometry of Hilbert spaces.

Mixed conjugates and pseudo f-divergences

Mixed conjugates

Consider $f:[0,\infty)\to\mathbb{R}$ continuous, satisfying f(1)=0, concave on some interval $[0,a),\ a>0$, and convex on $[a,\infty)$. The mixed conjugate f_*^* of f is defined by

$$f_*^*(t) := \sup_{x \in [a,\infty)} \{tx - f(x)\} \mathbb{I}_{\{t \in M\}} + \inf_{x \in [0,a)} \{tx - f(x)\} \mathbb{I}_{\{t \in N\}}$$

where

$$M := \left\{ t \in \mathrm{dom}(f_*^*) : rgmax(tx - f(x)) \in [a, \infty)
ight\}, \ N := \left\{ t \in \mathrm{dom}(f_*^*) : rgmin(tx - f(x)) \in [0, a)
ight\}.$$

Mixed conjugates and pseudo f-divergences

Lemma

For any continuous function $f:[0,\infty)\to\mathbb{R}$ that is convex on $[a,\infty),\ a>0$, concave on [0,a), and satisfies $\lim_{x\to\infty}f(x)=+\infty$, the mixed conjugate satisfies:

- 1. $M\cap N=\emptyset$ and $M\cup N=\mathrm{dom}(f_*^*)$
- 2. $f^{**}_{**} = f$ for almost all $t \in \text{dom}(f)$.

Lemma

Let $f:[0,\infty)\to [0,\infty)$ be concave on some interval $[0,a),\ a>0$ and convex on $[a,\infty).$ For any probability measures $\mu,\nu\in B^2(\lambda),\ D_f(\mu,\nu)$ is well-defined in the sense that $D_f(\mu,\nu)\geq 0$ and $D_f(\mu,\nu)=0\iff \mu=\nu\quad \lambda-\mathrm{a.s.}$

Pseudo divergence generating functions

Lower bounds for pseudo f-divergences

Corollary

For any function f satisfying the conditions of the previous Lemma, the lower bound

$$D_f(\mu,
u) \geq \sup_{ar{T} \in C(M^*) \cup C(N^*)} \left\{ \mathbb{E}_{\mu}(ar{T}) - \mathbb{E}_{
u}(f_*^* \circ ar{T})
ight\}$$

holds.

Optimizing lower bounds for pseudo f-divergences

Theorem

Let $f:[0,\infty)\to\mathbb{R}$, convex on $[a,\infty)$ with $0< a<\infty$, concave on [0,a), assume that f is twice continuously differentiable, and that $((f_*^*)')^{-1}$ is well-defined.

Furthermore, let $\mu,
u \in B^2(\lambda)$ with $p_\mu(x) := rac{\mathrm{d}\mu}{\mathrm{d}\lambda}(x), \, p_
u(x) := rac{\mathrm{d}
u}{\mathrm{d}\lambda}(x)$. Then,

 $ilde{T}(x) := f'\left(rac{p_{\mu}(x)}{p_{
u}(x)}
ight)$ is an optimizer for

$$\sup_{T\in C(M^*)}igg\{\left(\mathbb{E}_{\mu}(T)-\mathbb{E}_{
u}(f_*^*\circ T)
ight)igg\}+\inf_{T\in C(N^*)}igg\{\left(\mathbb{E}_{\mu}(T)-\mathbb{E}_{
u}(f_*^*\circ T)
ight)igg\}.$$

Here, $C(M^*)$ ($C(N^*)$) denotes the set of continuous functions $T:\Omega\to \mathrm{dom}(f_*^*)$ such that $f_*^*\circ T$ is convex (concave).

Bayes Hilbert space GANs

Bayes Hilbert space divergence

Consider the function

$$f_{BHS}:[0,\infty) o \mathbb{R},\quad x\mapsto x\log(x)^2$$

that is convcave on $[0, \exp(-1)]$ and convex for $x > \exp(-1)$.

Applying the previous lemma implies that f_{BHS} induces a pseudo f-divergence called f_{BHS} -divergence.

Connection to Bayes Hilbert spaces

$$D_{f_{BHS}}(\mu,
u) = d_{B^2(\mu)}(\mu,
u) + \mathbb{E}_{\mu}(\log(\mu\ominus
u))^2$$

Corollary

For
$$ilde{T}(x)=f'_{BHS}\left(rac{p_{\mu}(x)}{p_{
u}(x)}
ight)$$
 we have
$$\sup_{T\in C}ig\{(\mathbb{E}_{\mu}(T)-\mathbb{E}_{
u}(f_*^*\circ T))\mathbb{I}_{\{T\in M_C\}}ig\}+\\ \inf_{T\in C}ig\{(\mathbb{E}_{\mu}(T)-\mathbb{E}_{
u}(f_*^*\circ T))\mathbb{I}_{\{T\in N_C\}}ig\}\\ =\mathbb{E}_{\mu}(ilde{T})-\mathbb{E}_{
u}(f_*^*\circ ilde{T})\\ =D_{f_{\mathrm{BHS}}}(\mu,\nu).$$

Bayes Hilbert space GAN

Optimization problem:

$$\min_{artheta} \max_{\omega} F(artheta, \omega) := \min_{artheta} \max_{\omega} \mathbb{E}_{\mu}(ar{T}_{\omega}) - \mathbb{E}_{
u_{artheta}}(f_{*}^{*} \circ ar{T}_{\omega}).$$

where

$${ar T}_{\omega}(x)=g_f\circ V_{\omega}(x).$$

 V_{ω} denotes the discriminatory model with no restrictions on the output, i.e., $\operatorname{Im}(V_{\omega}) \subseteq \mathbb{R}$ and g_f a final output activation function depending on the domain of f_*^* .

Computational results

Model	FID
BHSGAN	31.26 ± 0.08
KL GAN	37.50 ± 0.13
Reverse KL GAN	85.27 ± 0.19
Pearson GAN	33.60 ± 0.38
GAN	33.60 ± 0.10
WGAN	30.81 ± 0.12

References

- Csiszár, Imre, Paul C Shields, et al. 2004. "Information Theory and Statistics: A Tutorial." Foundations and Trends in Communications and Information Theory 1 (4): 417–528.
- Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. "Generative Adversarial Nets." Advances in Neural Information Processing Systems 27.
- Nguyen, XuanLong, Martin J Wainwright, and Michael I Jordan. 2010. "Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization." *IEEE Transactions on Information Theory* 56 (11): 5847–61.
- Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. 2016. "F-Gan: Training Generative Neural Samplers Using Variational Divergence Minimization." Advances in Neural Information Processing Systems 29.
- Rockafellar, Ralph Tyrell. 1970. Convex Analysis. Princeton University Press.
- Van den Boogaart, Karl Gerald, Juan José Egozcue, and Vera Pawlowsky-Glahn. 2014. "Bayes Hilbert Spaces." *Australian & New Zealand Journal of Statistics* 56 (2): 171–94.

Van den Roogsart K. Juan José Egozeus and Vera Dawlewsky-Clahn 2010 "Rayes