CSCI 466: Networks

Lecture 3: OSI Model, Packet Forwarding

Reese Pearsall Fall 2023

Announcements

- TA: Shahnaj Mou
- ➤ Office Hours: Mondays 3:10 4:10 and 5:10 6:00 PM in Barnard Hall 259
- ➤ Email: shahnajmou@gmail.com

Groups + Partners

Questionnaire Stuff

[Сору How comfortable are you with Python? 78 responses 25 (32.1%) 20 18 (23.1%) 3 □ Copy How comfortable are you with Git/Github 78 responses 22 (28.2%) 20 20 (25.6%)

It makes my life much less stressful knowing people have used Git ©

3

2

Have you taken CSCI 476- Computer Security?
78 responses

"This seems relevant for my career"
"I hate group projects",
"I am a hardcore procrastinator"

Questionnaire Stuff

Questionnaire Stuff

Submarine Cables

Submarine cables are set on the floors of the ocean

https://www.youtube.com/watch?v=d0gs497KApU

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a copper wire

*In the textbook, they condense it to a 5-layer model, but 7 layers is what is most used

What is a protocol?

What is a protocol?

What is a protocol?

A **protocol** defines the format and the order of messages exchanges between two or more communicating entities, as well as the actions taken on the transmission and/or receipt of the message or event

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

Search query on website →

GET /index.html HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive

→ Sent to presentation layer

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

Search query on website →

GET /index.html HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive

→ Sent to presentation layer

Protocol defines the steps of getting data from application to application

- FTP Client opens command channel to server; tells server second port number to use
- FTP Server acknowledges
- 6 FTP Server opens data channel to clients second port as instructed

Client acknowledges and data flows

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

Search query on website →

GET /index.html HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive

→ Sent to presentation layer

Protocol defines the steps of getting data from FTP Server FTP Client application to application Port 20 Port 21 Data Command Port 5150 Port 5151 FTP Client opens command channel to server; tells server second port number to use FTP Server acknowledges Data Channel 6 FTP Server opens data channel to clients second port as instructed Client acknowledges and data flows

Presentation Layer

The layer which allows applications to interpret meaning of data

Translation

Text encoding → Encoding, Ascii

Bit/Byte order

File Syntax

Encryption

Compression

Session Layer

Manages, monitors, and synchronizing "sessions" between endpoints

Most of this functionality is handled by our web browsers

Transport Layer

Manges end to end communication and method of how data will be transferred

Ensures that the data received at host will be in the same order in which it was transmitted

Splits up packets into smaller segments

Transport Layer

Transmission Control Protocol (TCP)

- Requires an established connection to transmit data.
- Guarantees delivery of data in order
- Extensive error checking and acknowledgement of data

User Datagram Protocol (UDP)

- Connectionless protocol
- Faster, Simpler
- Not reliable
- No acknowledgement of data, basic error checking

Network Layer

Primary purpose is to move datagrams from one host to another, and to determine physical path to destination

31

23

Total Length

Header Checksum

24

Fragment Offset

Data Link Layer

Handles the formatting and physical addressing of the "packet" before reaching the destination

Physical Layer

Transmits bits into physical signals over some medium

Application Layer

Presentation Layer

Session Layer

Data Data

Data

Application Layer

Presentation Layer

Session Layer

Transport Layer

Application Layer Presentation Layer Session Layer Transport Layer Network Layer

Application Layer Data Presentation Layer Data Session Layer Data Transport Layer Data Network Layer Data Data Link Layer Data

Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer Physical Layer

Baggage (Check)

Baggage (Check)

Gates (load)

Baggage (Check)

Gates (load)

Runway Takeoff

Baggage (Check)

Gates (load)

Runway Takeoff

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Runway landing

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Gates (unload)

Runway landing

Ticket (purchase)

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Baggage (claim)

Gates (unload)

Runway landing

Airplane Routing

Ticket (purchase)

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Tickets (complain)

Baggage (claim)

Gates (unload)

Runway landing

Airplane Routing

OSI Model

The internet is a *network of networks*, connected by **packet switches** and **communication links**

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

To: Host A John Paxton 192.42.98.11 n: Host B Reese Pearsall 192.5.223.42

ou

Generated Packet

Good morning, I hope you are having a good day!

Communication links have different transmission rates

10 Mbps

500 kbps

100 kbps

Packet Switching

Uses **store-and-forward** transmission

Store and forward- wait for the entire packet to arrive, check value(s) of packet, and then forward to next location

Routing Table

Routing Table

Routing Table

In circuit switching, the path and resources for transmitting from A to B is reserved

Communication links are divided into circuits, which allow for concurrent usage of the link

In circuit switching, the path and resources for transmitting from A to B is reserved

Communication links are divided into circuits, which allow for concurrent usage of the link

Reserved spaces that are not in use result in **silent periods**

How are links "reserved"?

Network diagnostic tool that displays route taken to destination and RTT for each hop

```
C:\Users\Reese Pearsall>tracert google.com
Tracing route to google.com [172.217.14.238]
over a maximum of 30 hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
      <1 ms
               <1 ms
                               Request timed out.
                               Request timed out.
                        <1 ms 153.90.125.254
      <1 ms
               <1 ms
      <1 ms
               <1 ms
                        <1 ms 10.196.6.10
                        <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                        16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
               15 ms
      15 ms
               15 ms
                        15 ms 209.124.190.202
      17 ms
               17 ms
                        17 ms 142.251.70.99
      16 ms
               16 ms
                        16 ms 209.85.254.247
      15 ms
               15 ms
                        15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

Network diagnostic tool that displays route taken to destination and RTT for each hop

Hop #

```
RTT time for each packet Destination
```

```
|Users\Reese | Pearsall>tracert google.com
Tricing rout to google.com [172.217.14.238]
over a maximum of 3) hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
                <1 ms
                         <1 ms 153.90.125.254
       <1 ms
      <1 ms
                <1 ms
                         <1 ms 10.196.6.10
       1 ms
                1 ms
                         <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
                         16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
               15 ms
      15 ms
               15 ms
                         15 ms 209.124.190.202
      17 ms
               17 ms
                         17 ms 142.251.70.99
               16 ms
                         16 ms 209.85.254.247
      16 ms
      15 ms
               15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

Network diagnostic tool that displays route taken to destination and RTT for each hop

Hop #

```
RTT time for each packet Destination
```

```
\Users\Reese Pearsall>tracert google.com
  cing route to google.com [172.217.14.238]
over a maximum of 30 hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
 3
                         <1 ms 153.90.125.254
 4
      <1 ms
                <1 ms
                <1 ms
                         <1 ms 10.196.6.10
      <1 ms
                        <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                         16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
                15 ms
               15 ms
                         15 ms 209.124.190.202
      15 ms
               17 ms
                        17 ms 142.251.70.99
      17 ms
                         16 ms 209.85.254.247
      16 ms
               16 ms
      15 ms
               15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

whois- provides registration data of a domain or IP address

172.217.14.238 address profil

Network diagnostic tool that displays route taken to destination and RTT for each hop

Hop #

```
RTT time for each packet Destination
```

```
\Users\Reese Pearsall>tracert google.com
  cing route to google.com [172.217.14.238]
over a maximum of 30 hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
 3
                         <1 ms 153.90.125.254
 4
      <1 ms
                <1 ms
                <1 ms
                         <1 ms 10.196.6.10
      <1 ms
                        <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                         16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
                15 ms
               15 ms
                         15 ms 209.124.190.202
      15 ms
               17 ms
                        17 ms 142.251.70.99
      17 ms
                         16 ms 209.85.254.247
      16 ms
               16 ms
      15 ms
               15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

whois- provides registration data of a domain or IP address

172.217.14.238 address profil

Network diagnostic tool that displays route taken to destination and RTT for each hop

```
Hop #
```

```
cing route to google.com [172.217.14.238]
ov r a maximum of 3) hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
  3
                         <1 ms 153.90.125.254
 4
       <1 ms
                <1 ms
                <1 ms
                         <1 ms 10.196.6.10
       <1 ms
                         <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                         16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
       15 ms
               15 ms
                         15 ms 209.124.190.202
       15 ms
               17 ms
                         17 ms 142.251.70.99
      17 ms
                         16 ms 209.85.254.247
       16 ms
                16 ms
       15 ms
                15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

whois- provides registration data of a domain or IP address

153.90.119.254 address pro

