Aprendizado de Máquina

Treinando Modelos

Prof. Regis Pires Magalhães

regismagalhaes@ufc.br - http://bit.ly/ufcregis

O'REILLY®

Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow

GÉRON, Aurélien; **Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow:** Conceitos, Ferramentas e Técnicas para a Construção de Sistemas Inteligentes. 2ª Ed. Alta Books, 2021.

PARTE I - Os conceitos básicos do aprendizado de máquina

- 1. O Cenário do Aprendizado de Máquina
- 2. Projeto de Aprendizado de Máquina Ponta a Ponta
- 3. Classificação

4. Treinando Modelos

- 5. Máquinas de Vetores de Suporte
- 6. Árvores de Decisão
- 7. Aprendizado Ensemble e Florestas Aleatórias (Bagging, Random Forests, Boosting, Stacking)
- 8. Redução de Dimensionalidade (PCA, Kernel PCA, LLE)
- 9. Técnicas de Aprendizado Não Supervisionado (Clusterização, Misturas de gaussianas)

PARTE II - Redes Neurais e Aprendizado Profundo

- 10. Introdução às Redes Neurais Artificiais com a Biblioteca Keras
- 11. Treinando Redes Neurais Profundas
- 12. Modelos Customizados e Treinamento com a Biblioteca TensorFlow
- 13. Carregando e Pré-processando Dados com a TensorFlow
- 14. Visão Computacional Detalhada das Redes Neurais Convolucionais
- 15. Processamento de Sequências Usando RNNs e CNNs
- 16. Processamento de Linguagem Natural com RNNs e Mecanismos de Atenção
- 17. Aprendizado de Representação e Aprendizado Gerativo com Autoencoders e GANs
- 18. Aprendizado por Reforço
- 19. Treinamento e Implementação de Modelos TensorFlow em Larga Escala

Objetivos

- Entender os modelos de regressão linear e logística
- Explorar técnicas de treinamento: equação normal e gradiente descendente
- Introduzir regularização e curvas de aprendizado
- Apresentar modelos para classificação: regressão logística e softmax

Métrica R²

- Outra métrica usada em problemas de regressão:
 - R² ou coeficiente de determinação
 - Mede a proporção da variância da variável dependente que é explicada pelo modelo de regressão.
 - Indica o quão bem o modelo se ajusta aos dados observados.
 - O valor 1 indica que o modelo explica 100% da variância dos dados (ajuste perfeito).
 - O Valor o indica que o modelo não explica nenhuma variância além da média.
 - Um valor < o indica que o modelo é pior do que usar a média como previsão.
 - Quanto mais próximo de 1, melhor.
 - Pode ser enganoso em modelos não lineares, pois supõe linearidade da relação entre variáveis.

Métrica R²

$$R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

Onde:

y_i = valor real do ponto i y^i = valor predito pelo modelo para o ponto i y^i = média de todos os yin = número de observações

Métrica R²

- Problemas quando usado em modelos não lineares
 - Mede ajuste, não generalização.
 - Não mede overfitting.
 - Não considera complexidade real.
 - Pode ser usado em modelos não lineares como um indicador auxiliar, mas nunca como única métrica de avaliação.
 - Métricas como RMSE e MAE são mais robustas e seguras.

$R^2 \times r^2$

Coeficiente	Significado	Fórmula	Intervalo
r (Correlação de Pearson)	Grau de associação linear entre duas variáveis X e Y	$r=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum (x_i-ar{x})^2}\sqrt{\sum (y_i-ar{y})^2}}$	-1 a 1
r^2	Proporção da variância compartilhada entre X e Y	$r^2 = r \cdot r$	0 a 1
R^2 (Coeficiente de determinação)	Proporção da variância de Y explicada pelo modelo	$R^2=1-rac{SS_{ ext{res}}}{SS_{ ext{tot}}}$ onde: $SS_{ ext{res}}=\sum (y_i-\hat{y}_i)^2 \ SS_{ ext{tot}}=\sum (y_i-ar{y})^2$	0 a 1*

^{*} pode ser < 0 para modelos ruins, quando o modelo não inclui intercepto e se ajusta pior do que uma média constante.

- SSres Soma dos quadrados residual
- SStot Soma dos quadrados total
- Em modelos de regressão linear simples, com apenas uma variável preditora, R² = r². É possível provar isso algebricamente.

RMSE normalizado (nRMSE)

Tipo de normalização	Fórmula	Quando usar
Pelo intervalo (min- max)	$ ext{nRMSE} = rac{ ext{RMSE}}{y_{ ext{max}} - y_{ ext{min}}}$	Quando a escala do target é conhecida
Pela média	$ ext{nRMSE} = rac{ ext{RMSE}}{ar{y}}$	Quando o erro relativo ao valor médio importa
Pelo desvio padrão	$ ext{nRMSE} = rac{ ext{RMSE}}{ ext{std}(y)}$	Para avaliar se o modelo melhora sobre a média

- nRMSE < 10% → geralmente considerado muito bom
- nRMSE entre 10% e 20% → razoável
- $nRMSE > 30\% \rightarrow provavelmente alto$
- Pela média é o mais usado e tem leitura direta:
 - "Meu modelo erra, em média, x% do valor real."

• 2 maneiras de treinar:

- Usando uma equação direta de "forma fechada" que calcula os parâmetros do modelo que melhor se ajustam ao modelo no conjunto de treinamento.
- Usando uma abordagem de otimização iterativa chamada gradiente descendente (GD)
 - Ajusta gradualmente os parâmetros do modelo para minimizar a função de custo no conjunto de treinamento.
 - Acaba convergindo para o mesmo conjunto de parâmetros que o primeiro método.
 - Variantes:
 - GD batch
 - GD mini-batch
 - GD estocástico.

- Regressão polinomial
 - Modelo mais complexo que pode se ajustar aos conjuntos de dados não lineares.
 - Mais propenso a sobreajustar os dados de treinamento.
 - Técnicas de regularização podem mitigar o risco de sobreajuste no conjunto.
- Modelos de regressão usados para classificação:
 - Regressão logística
 - Regressão softmax

 Modelo linear - predição calculando uma soma ponderada das características de entrada, além de uma constante chamada viés (intercepto ou coeficiente linear)

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

- ŷ é o valor previsto.
- n é o número das características.
- x_i é o valor da i-ésima característica.
- θ_j é o j-ésimo parâmetro do modelo (incluindo o viés θ_0 e os pesos das características $\theta_1, \theta_2, ..., \theta_n$).

Forma vetorizada:

$$\hat{y} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$$

- θ é o vetor de parâmetro do modelo, que contém o viés θ_0 e os pesos das características θ_1 a θ_n . x é o vetor da característica da instância, que contém de x_0 a x_n , com x_0 sempre igual a 1.
- h_{θ} é a função de hipótese, usando os parâmetros do modelo θ .

- O treino busca encontrar o valor de θ que minimize a RMSE.
- É mais simples minimizar o erro quadrático médio (MSE) do que o RMSE.
- Função de custo MSE para um modelo de regressão linear:

$$\mathrm{MSE}\big(\mathbf{X}, h_{\boldsymbol{\theta}}\big) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{\theta}^{\intercal} \mathbf{x}^{(i)} - y^{(i)}\right)^2$$

Equação normal

 forma analítica (ou fechada) de resolver a regressão linear sem precisar de métodos iterativos como o gradiente descendente.

$$\widehat{\mathbf{\theta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \quad \mathbf{X}^{\mathsf{T}} \quad \mathbf{y}$$

- 0 vetor de parâmetros (pesos) que minimizam a função de custo $J(\theta)$.
- X: matriz de entrada
- X^T : transposta da matriz XX
- $(X^TX)^{-1}$: inversa da matriz produto X^TX
- y é o vetor de valores-alvo contendo y⁽¹⁾ a y ^(m).

- Equação normal
 - Para encontrar o valor de θ que minimiza a função de custo, existe uma solução de forma fechada, que fornece o resultado diretamente.
 - Custo computacional alto: $O(n^3)$

Geração de conjunto de dados linear

Equação normal

Fazendo predições usando ^θ:

• Equação normal

```
plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()
```


• Usando o scikit-learn:

 Baseada na função dos mínimos quadrados do scipy/numpy:

Calcula $^{\theta} = X^{+}y$, em que X^{+} é o pseudoinverso de X.

rcond controla o limiar de corte para considerar valores singulares como não nulos durante o cálculo da pseudo-inversa da matrix.

Cálculo direto da pseudo-inversa:

- O próprio pseudoinverso é calculado usando uma técnica de fatoração de matriz padrão chamada decomposição em valores singulares (SVD), que pode decompor a matriz do conjunto de treinamento X na multiplicação da matriz de três matrizes U Σ V^T.
- O pseudoinverso é calculado como $X^+ = V \Sigma^+ U^T$.

- SVD
 - A Decomposição em Valores Singulares
 (SVD) é uma técnica que decompõe uma matriz qualquer X em três matrizes:
 - $X=U \Sigma V^{T}$
 - U: matriz ortogonal de dimensão m×m.
 - Σ (sigma): matriz diagonal (ou quase diagonal, se X não for quadrada), com os valores singulares
 σ1,σ2,... na diagonal.
 - V^T : transposta da matriz ortogonal V, de dimensão $n \times n$.
 - A partir da decomposição $X=U \Sigma V^T$ pode-se calcular o pseudoinverso como:
 - $X^+=V \Sigma^+ U^\top$

- Complexidade computacional
 - A equação normal calcula o inverso de X[↑]X matriz (n + 1) × (n + 1), em que n é o número de características.
 - A complexidade computacional da inversão dessa matriz é normalmente de O (n^{2,4}) a O(n³), dependendo da implementação.
 - A abordagem SVD usada pela classe
 LinearRegression do Scikit-Learn é O(n²· m).
 - Onde:
 - n é o número de características (colunas de X)
 - m é o número de amostras (linhas de X)
 - Usa: np.linalg.lstsq(X, y)

- Complexidade computacional
 - Equação normal e SVD ficam muito lentas quando se aumenta o número de características.
 - Ambas são lineares em relação ao número de instâncias no conjunto de treinamento (são O(m)), lidando com grandes conjuntos de treinamento, desde que se tenha memória para tal.
 - Após treinado, a complexidade computacional é linear para as predições, em relação ao número de instâncias e ao número de características.

- É um algoritmo de otimização genérico que consegue identificar ótimas soluções para um leque amplo de problemas.
- Ideia geral: ajustar iterativamente os parâmetros com o intuito de minimizar uma função de custo.

Gradiente descendente - Passos

- Comece com valores aleatórios para os parâmetros θ .
- Calcule o gradiente da função de custo (em que direção o erro aumenta).
- Atualize os parâmetros movendo na direção contrária ao gradiente.
- Repita até o erro parar de diminuir (ou diminuir muito pouco).
- As etapas gradualmente ficam menores à medida que os parâmetros se aproximam do mínimo.
- Quando o gradiente é zero, você atingiu o mínimo!

Gradiente descendente - Termos

- α (learning rate)
 - Tamanho do passo que você dá em cada iteração
- Gradiente
 - Vetor que aponta para a direção onde o erro cresce
- θ
 - Parâmetros do modelo (ex.: inclinação e intercepto)
- Iterações
 - Quantas vezes você atualiza os parâmetros

Derivada de uma função f

Função de custo objetivo: minimizar o erro quadrado

Minimizando a função de custo

$$Error_{\beta_0,\beta_1} = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\beta_1 x_i + \beta_0))^2$$

Fonte: https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

Se a taxa de aprendizado for muito pequena, o algoritmo precisará passar por muitas iterações para convergir, o que levará muito tempo.

Custo Etapa de aprendizado Mínimo Valor inicial aleatório

Uma taxa de aprendizado muito pequena.

• Se a taxa de aprendizado for muito alta, você pode atravessar o vale e acabar do outro lado, possivelmente em um lugar mais alto do que estava antes. Nesse caso, o algoritmo pode divergir, com valores cada vez maiores, e não encontrar uma boa solução.

Custo

Obstáculos do gradiente descendente

- Dois principais desafios do gradiente descendente:
 - Se a inicialização aleatória iniciar o algoritmo à esquerda, ele convergirá para um mínimo local, que não é tão bom quanto o mínimo global.
 - Se iniciar à direita, levará muito tempo para atravessar o platô. E, se você parar cedo demais, nunca alcançará o mínimo global.

Gradiente descendente com e sem escalonamento de características

• Ao usar o gradiente descendente, você deve garantir que todas as características tenham uma escala semelhante (por exemplo, usar a classe StandardScaler do Scikit-Learn) ou levará um bom tempo para convergir.

No 1º gráfico, as variáveis θ_1 e θ_2 estão na mesma escala e o caminho do gradiente descendente (as bolinhas azuis) vai direto ao centro.

- Alternativa iterativa para otimização
- Atualização dos parâmetros:
 - $\bullet \theta = \theta \eta \nabla_{\theta} MSE(\theta)$

Tipos

- Batch (em lote)
 - · usa todos os dados de treino em cada passo.
- Estocástico (SGD) = aleatório
 - atualiza os parâmetros com apenas uma amostra por vez.
 - Erro e gradiente mudam a cada iteração porque são baseados em uma amostra aleatória.
 - Como cada exemplo é diferente, isso introduz variabilidade (aleatoriedade) no caminho da descida.
- Mini-batch
 - Atualiza os parâmetros com apenas um pequeno grupo de amostras por vez.

Gradiente descendente

Algoritmo	Grande m	Grande n	Out-of-core	Hiperparâmetros
Equação Normal	Sim	Não	Não	Nenhum
SVD	Sim	Não	Não	Nenhum
GD (Batch)	Não	Sim	Não	η, epochs
SGD	Sim	Sim	Sim	η, schedule
Mini-batch	Sim	Sim	Sim	η, tamanho

m → linhas n → colunas

Regressão polinomial

- Estende atributos com potências e interações
- Capaz de modelar dados não-lineares
- Risco maior de overfitting

Curvas de aprendizado

- Treinamento vs Validação
- Diagnóstico:
 - Underfitting: Erros altos e semelhantes
 - Overfitting: Grande distância entre erros
- Soluções:
 - Mais dados (para overfitting)
 - Modelo mais complexo (para underfitting)

Curvas de aprendizado

- Custo benefício do Viés/ Variância
- **Viés**: suposições incorretas (ex: modelo linear em dado não-linear)
- Variância: sensível a variações nos dados
- Erro de generalização = viés + variância + ruído

Modelos Lineares Regularizados

- Reduz overfitting ao penalizar pesos altos
- Modelos:
 - Ridge (L2): penaliza soma dos quadrados
 - Lasso (L1): zera pesos irrelevantes (seleção de atributos)
 - Elastic Net: combina L1 e L2

Modelos Lineares Regularizados

- Parada Antecipada (Early Stopping)
 - Regularização alternativa para modelos iterativos
 - Interrompe o treinamento no melhor desempenho de validação

- Usada para classificação binária
- Saída: probabilidade via função sigmoide
- Predição: y = 1y = 1 se p^≥0.5
- Função de custo: log loss

- Estimando as probabilidades
 - Calcula score linear: $t = \theta Tx$
 - Aplica função sigmoide:

$$\hat{p} = \sigma(t) = rac{1}{1+e^{-t}}$$

- Resultado é a probabilidade da classe positiva
- Se $p^{\wedge} \ge 0.5$, prediz classe 1, senão 0

- Treinamento e função de custo
 - Objetivo: estimar parâmetros θ que maximizem as probabilidades
 - Função de custo: log loss ou entropia cruzada
 - Forma vetorizada: $J(\theta) = -1m \sum_{i=1}^{n} [y(i) \log(p^{(i)}) + (1 y(i)) \log(1 p^{(i)})]$
 - Convexa: permite otimização com gradiente descendente

- Fronteiras de decisão
 - Exemplo: detecção da espécie *Iris virginica*
 - Fronteira é linear em atributos
 - Probabilidade define decisão

- Regressão softmax
 - Classifica em múltiplas classes mutuamente exclusivas
 - Generaliza a regressão logística
 - Calcula *scores* por classe e aplica *softmax*
 - Predição: classe com maior probabilidade

- Entropia Cruzada
 - Mede a diferença entre distribuição real e prevista.
 - Equivalente à *log loss* na regressão logística.
 - Fórmula para um exemplo:
 - $c(\theta) = -[y \log(p^{\wedge}) + (1 y) \log(1 p^{\wedge})]$
 - Penaliza previsões erradas com mais intensidade.
 - Ótima para classificação binária com saída probabilística.

Conclusão

- Capítulo essencial para compreender redes neurais
- Regressão linear como base
- Gradiente descendente é amplamente utilizado
- Regularização é chave para evitar overfitting

