

Mathematik

KA 17

ANR

Aufgabe 1 (Erlösfunktion)

Sei $p(x) = -\frac{1}{2}x + 10$ eine Preis-Absatz-Funktion.

- (a) Geben Sie E(x) inklusive eines passenden Definitionsbereiches D_E an.
- (b) Bestimmen Sie die Nullstellen von E(x).
- (c) Ermitteln SIe die erlösmaximale Produktionsmenge und den maximalen Erlös.

Aufgabe 2 (Kosten- und Gewinnfunktion)

Sei $E(x) = -4x^2 + 60x$ eine Erlösfunktion (Erlös in GE) und $K(x) = x^3 - 10x^2 + 35x + 18$ eine Kostenfunktion (Kosten in GE). Die Produktionsmenge x sei in ME angegeben.

- (a) Geben Sie die Kosten bei Produktion von 2 ME an.
- (b) Ermitteln Sie die Gewinnfunktion G(x).
- (c) Bestimmen Sie näherungsweise die gewinnmaximale Produktionsmenge und den maximalen Gewinn.
- (d) Jemand behauptet, der Break-Even-Point liege bei x=2 ME. Überprüfen Sie, ob die Behauptung wahr ist.
- (e) Berechnen Sie den Scheitelpunkt der variablen Stückkostenfunktion $k_v(x)$.
- (f) [schwer] Begründen Sie, warum G(15) < 0 gelten muss. (Eine Berechnung von G(15) ist nicht erforderlich.)

Mathematik

Übungen zur Klassenarbeit

KA 17

ANR

Lösungen

Aufgabe 1

- (a) $E(x) = x \cdot (-\frac{1}{2}x + 10) = -\frac{1}{2}x^2 + 10x$ mit $D_E = \mathbb{R}_{\geq 0}$.
- (b) $E(x) = 0 \Leftrightarrow -\frac{1}{2}x(x 20) = 0 \Leftrightarrow x = 0 \text{ <u>oder } x = 20.$ </u>
- (c) Erlösmaximum liegt am Scheitelpunkt vor. Lösen entweder mit pq-Formel oder Scheitelpunkt als Mitte der beiden Nullstellen identifizieren. Es gilt $x_{EM} = 10$ und E(10) = 50 GE.

Aufgabe 2

- (a) $K(2) = 2^3 10 \cdot x^2 + 35 \cdot x + 18 = 56$
- (b) $G(x) = E(x) K(x) = -4x^2 + 60x (x^3 10x^2 + 35x + 18) = -x^3 + 6x^2 + 25x 18$
- (c) Abgelesen aus dem Graphen von G ergibt sich $x_{GM} \approx 5.5$ und entsprechend $G(x_{GM}) \approx 135$.
- (d) Am BEP gilt G(x) = 0, aber $G(2) \neq 0$. Also liegt der BEP nicht bei x = 2.
- (e) $k_v(x) = x^2 10x + 35$. Der Scheitelpunkt liegt bei SP(5|10).
- (f) Es gilt E(15) = 0, aber K(15) > 0, da K(x) > 0 für alle $x \in \mathbb{R}_{\geq 0}$. Somit G(15) = E(15) K(15) < 0.