

Design of Experiments

Jayendran Venkateswaran
IE630 Simulation Modeling and Analysis
IIT Bombay

Example: Inventory Policy

CUSTOMER VIEW

Customers Arrive Exponential (λ =10)

Demand

1 unit w/ prob. 1/6;

2 units w/ prob.1/3;

3 units w/ prob. 1/3;

4 units w/prob. 1/6

Demand met from inventory (if there)
Else, backlogged

BACK-END DECISION AT THE STORE

Inventory reviewed end of each month

If *Inventory* < s then

Order quantity = *S-Inventory*

The order quantity is then delivered after some days

Example: Inventory Policy

Demand, D(t)

Inter-arrival times: EXPO(lambda=10) month

Quantity: DISCRETE(1/6, 1, 3/6, 2, 5/6, 3, 6/6, 4)

 $Inv_level(t) = Inv_level(t-1) - D(t) + OrderQuantityReceived*$

Periodic review of inventory level every month

Order Quantity = (S - Inv_level) IF Inv_level < s; 0 o.w.

Delivery lag: UNIF(0.5, 1) month

Performance measure: Total Cost

- = fixed cost (Rs. 32/order) + variable cost (Rs. 3 /item)
- + holding cost (Rs.1/unit/month) + backlog cost (Rs. 5/ unit/ month)

Source: Law and Kelton (2000) Simulation Modeling & Analysis

Ex.: Compare Inventory Policies

Measure: Average total cost per month for the first 120 months of operations Initial inventory level is 60

Suppose, given a combination of $(s, S) \rightarrow We$ can evaluate outcome.

For example: (s, S) = (20, 40); or (s, S) = (30, 60); etc...

How to systematically explore the design space such that we can find the best combination of (s, S)?

Source: Law and Kelton (2000) Simulation Modeling & Analysis

Experiments

Experiments must be carefully planned and executed to be effective An experiment is a deliberate manipulation of a process that intends to measure the effect of one or more experimental factors on some set of responses

Purpose

Which of many parameters or assumptions have the greatest effect on the response?

Which set of specifications appears to lead to optimal performance?

Factors, Levels & Responses

A factor is something you manipulate in your experiments

→ Input parameters & assumptions

Quantitative or Qualitative

A response is something you measure during or after the experiment

→ Performance Measures

IEOR @ IIT Bombay

A factor has an **effect** on a response if different **levels** of the factor produce differing responses

Factorial Experiments

Why do we need factorial experiments?

Many factors can be observed in action together Interactions between factor, if any, can be observed

INTUITION & INSIGHT

Include factors/ levels which you feel are unimportant

Nomenclature & Design Matrix

- 2^2 factorial design \rightarrow 4 combinations
- 2^3 factorial design \rightarrow 8 combinations
- 2^k factorial design

Full factorial design vs. Fractional factorial design

JV

Design Matrix

2² factorial design

#	Factor 1	Factor 2	Response
1	_	_	R1
2	1	+	R2
3	+		R3
4	+	+	R4

2³ factorial design

#	Factor 1	Factor 2	Factor 3	Response
1	_	_	_	R1
2	_		+	R2
3	_	+	_	R3
4	_	+	+	R4
5	+		-	R5
6	+	1	+	R6
7	+	+	_	R7
8	+	+	+	R8

JV

Estimating Main Effects of factor j

Average **change** in response due to moving factor *j* from – level to + level, holding all other factors fixed.

(Trick: Sum the responses as per the sign of factor j & divide by half of the number of responses)

#	F1	F2	F3	Response
1	_	_	_	R1
2	_		+	R2
3		+		R3
4	_	+	+	R4
5	+			R5
6	+		+	R6
7	+	+	_	R7
8	+	+	+	R8

Estimating Interaction effect (two-way between $j_1 \& j_2$)

Occurs when effect of one factor depends on settings of other factors

Half the difference between the

average effect of factor j_1 when factor j_2 is at + level and the average effect of factor j_1 when factor j_2 is at its – level (all other factors fixed)

Trick: Construct a truth table for $(j_1 x j_2)$. Now Sum the responses as per the sign of $(j_1 x j_2)$ & divide by half of

the number of responses

#	F1	F2	F3	Response	
1	_		_	R1	
2	_		+	R2	
3	_	+	_	R3	
4	_	+	+	R4	
5	+		_	R5	
6	+	_	+	R6	
7	+	+		R7	
8	+	+	+	R8	

$$C_{1x2} = C_{12} = \frac{1}{2} \left[\frac{(R_{7} - R_{5}) + (R_{8} - R_{6})}{2} - \frac{(R_{3} - R_{5}) + (R_{4} - R_{2})}{2} \right]$$

$$C_{21} = C_{12} = (R_{1} + R_{2} - R_{3} - R_{4} - R_{5} - R_{6} + R_{7} + R_{5}) / 4$$

$$C_{23} = ---$$

$$C_{13} = ---$$

Example 1 (Inventory)

Evaluate the effects of different combination of (s, d) on the response average monthly operating cost

Note:	S	=	S	+	d
-------	---	---	---	---	---

	D 4
	N /1 つ + r i / · ·
17621811	Matrix:
201011	1 1 1 6 61 17 (1

#	S	d	sxd	Response
1		1	+	142
2		+	1	119.81
3	+	_	_	145.83
4	+	+	+	148.31

Main effects, Interaction effects
Interpreting the results

Factors		+
S	20	60
d	10	50

Example 1 (Inventory)

How to use multiple replications data?

Example 1: Comparing inventory policies

With multiple replications, say 5

S	d=S-s	S=s+d	Rep1	Rep2	Rep3	Rep4	Rep5
20	10	30	142	135	143.31	149.1	139.31
20	50	70	119.81	117.18	128.02	123.13	124.54
60	10	70	145.83	144.82	143.66	146.54	144.31
60	50	110	148.31	145.28	145.66	150.4	149.67

e s	16.165	18.96	8.995	12.355	15.065
\mathbf{e}_{d}	-9.855	-8.68	-6.645	-11.055	-4.705
e _{sd}	12.335	9.14	8.645	14.915	10.065

Example 2

Factor	- (current)	+ (improved)
Machining times	U[0.64, 0.70]	U[0.585, 0.63]
Inspection times	U[0.75, 0.80]	U[0.675, 0.72]
Machine uptimes	Expo(360)	Expo(396)
Machine repair times	U[8, 12]	U[7.2, 10.8]
Scrap %	10%	9%
Queue rule	FIFO	SPT

Design Matrix 2 = 64 Combination

2 - 64 Combination

640 Simulation

runs...

90% Cl of the effects using 10 replications

Suppose we can improve some process by 15%, where all do we invest? Will it improve time in system response?

Example 2: Main effects & two-way interactions

FIGURE 12.2
Experimental design for small factory: Main effects and two-factor interactions.

Analysis of Variance (ANOVA)

Why?

To identify the factors that are statistically significant Will NOT say which combination is the best

A division of the overall variability in data values in order to compare means.

Overall (or "total") variability is divided into two components: the variability "between" groups, and the variability "within" groups

Summarized in an "ANOVA" table
Observe the p-value corresponding each factor

One factor experiments

Check how change in ONE factor affects performance Which queue rule improves throughput?

Q rule	N	MEAN	SD
FIFO	10	188.20	3.88
LIFO	10	195.20	9.02
LPT	10	191.20	5.55
SPT	10	200.50	5.44

Similar to comparing alternatives!

Null hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

Alternative hypothesis

 H_A : at least one μ_i differs from the others

Analysis of Variance

Comparing 4 queue rules

Source	DF	SS	MS	F	P
QRule	3	1174.8	293.7	7.95	0.000
Error	35	1661.7	36.9		
Total	39	2836.5			

The P-value is small \rightarrow reject H_0 . There is sufficient evidence to conclude that *at least one queue rule is different* from the others.

Source	DF	SS	MS	${f F}$	P
QRule	3	80.1	40.1	0.46	0.643
Error	35	1050.8	87.6		
Total	39	1130.9			

The P-value is large \rightarrow cannot reject H_0 .

There is NOT sufficient evidence.

NOTE: Above data is for illustration only

JV

Two way ANOVA Table

Table 5-3 The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	b-1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_T	abn-1		
	•	due to the factor o	finterest	
Ur	nexplained i	andom variations		
Total va	riation from	the grand mean		

Further uses of Factorial Design

Simulation can be thought of as a mechanism that turns inputs parameters to outputs measures

Simulation is just a function!

Can we come up with a approximate formula that can be used as a proxy for full blown simulation?

This meta-model could be used in order to get at least a rough idea of what will happen for different of input-combinations

Regression model

Response Surface & Contour plots

Regression Model

General regression model for two-factor experiment

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \mathcal{E}$$
 Estimated output measure Variable for factor A Variable for factor B Random error term

 x_1 and x_2 are in coded scale -1 to +1

 β_0 : average of responses of all combinations

 $\beta_1 : \frac{1}{2}$ * (Main effect of A) $\beta_2 : \frac{1}{2}$ * (Main effect of B)

 β_{12} : ½ * (interaction effect between A & B)

Regression model for Example-1 (inventory)

2

IV

Compare inventory policies example

$$\overline{e_s} = \overline{e_d} = \overline{e_{sd}} = \overline{R} = \overline{R}$$

Regression model, based on 5 replication data In terms of transformation (x_s, x_d) vs. Directly in terms of input parameters (s, d)

Compare inventory policies example (contd)

Based on regression model from 2^2 design, compute response for all 420 combinations of s = 0, 5, 10, ..., 100 and d = 5, 10, ..., 100.

Use Excel spreadsheet to generate response (*doe-ex1.xls, Sheet: 'doe2x2'*)

Response Surface: 3-D plot, with response on z axis & inputs (s, d) in x-y axis

Contour plot: top view of response surface!

Response surface from regression model based on 2² design

Contour plot from regression model based on 2² design

Comparing inventory policies example (contd)

Let's make 10 replications of 16 combinations of s = 20, 40, 60, 80 and d = 20, 40, 60, 80

Using average of 10 replications

Fit a full quadratic model to the 16 data points Use "Regression" from Tools>>Data Analysis $R(s,d) = 127.38 - 0.09s - 0.467d + 0.002sd + 0.007s^2 + 0.005d^2$

Use regression model to generate response for all 420 combinations!

Create contour plot Refer Excel (doe-ex1.xls, Sheet: 'doe medium')

Contour plot from regression based on 4² design

Comparing inventory policies example (contd)

Simulation generated response

Let's run 10 replications of all 420 combinations of s = 0, 5, 10, ..., 100 and d = 5, 10, ..., 100

Plot response surface and contour from simulation results Using average of 10 replications

Response Surface from direct SIMULATION of all 420 combos

Contour from direct SIMULATION of all 420 combos

S

Summary

Brief overview of Design of Experiments

Further Reading

Full vs partial factorial designs

ANOVA

Other meta-modelling techniques

Handling multiple outputs

Sensitivity analysis

Gradient estimation

Optimum seeking