

User Manual

PCI-104, Parallel port, RoHS

Revision

Date	Version	Changes
28 October, 2010	1.00	Initial release

Copyright

COPYRIGHT NOTICE

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

TRADEMARKS

All registered trademarks and product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Table of Contents

1 INTRODUCTION	1
1.1 Introduction	2
1.2 Connectors	2
1.3 DIMENSIONS	4
1.4 Data Flow	5
1.5 TECHNICAL SPECIFICATIONS	6
2 UNPACKING	9
2.1 Anti-static Precautions	10
2.2 Unpacking Precautions	10
2.3 PACKING LIST	11
2.3.1 Optional Items	
3 CONNECTORS	13
3.1 Peripheral Interface Connectors	14
3.1.1 NANO-PV-D4251/N4551/D5251 Layout	14
3.1.2 Peripheral Interface Connectors	
3.1.3 External Interface Panel Connectors	
3.2 Internal Peripheral Connectors	16
3.2.1 Audio Connector	16
3.2.2 Battery Connector	17
3.2.3 CompactFlash® Slot	
3.2.4 Digital I/O Connector	19
3.2.5 Fan Connector (CPU)	20
3.2.6 Fan Connector (System)	21
3.2.7 Front Panel Connector	22
3.2.8 Keyboard/Mouse Connector	23
3.2.9 Backlight Inverter Connector	23
3.2.10 LVDS1 LCD Connector	24
3.2.11 Parallel Port Connector	
3 2 12 PCI-104 Connector	26

3.2.13 PCIe Mini Card Slot	
3.2.14 12V Power Connector	
3.2.15 SATA Drive Connectors	
3.2.16 SATA Power Connector	
3.2.17 Serial Port Connectors (RS-232)	
3.2.18 Serial Port Connector (RS-232/422/485)	
3.2.19 SMBus Connector	
3.2.20 SPI Flash Connector	
3.2.21 TPM Connector	
3.2.22 USB Connectors	
3.3 EXTERNAL PERIPHERAL INTERFACE CONNECTOR PANEL	
3.3.1 Ethernet Connector	
3.3.2 Keyboard/Mouse Connector	
3.3.3 USB Connectors	
3.3.4 VGA Connector	
4 INSTALLATION	40
4.1 Anti-static Precautions	41
4.2 Installation Considerations	42
4.2.1 Installation Notices	
4.3 Unpacking	43
4.4 SO-DIMM Installation	43
4.4.1 SO-DIMM Installation	44
4.5 JUMPER SETTINGS	45
4.5.1 AT Auto Button Power Select Jumper Settings	
4.5.2 AT/ATX Power Select Jumper Settings	
4.5.3 Clear CMOS Jumper	
4.5.4 COM 3 Function Select Jumper	
4.5.5 COM 3 RS-422/485 Function Select Jumper	
4.5.6 CompactFlash® Card Setup	50
4.5.7 CompactFlash® Voltage Selection	51
4.5.8 LVDS1 Screen Resolution Selection	52
4.5.9 LVDS Voltage Selection	53
4.5.10 PCI-104 Voltage Setup	54
4.6 CHASSIS INSTALLATION	55

	4.6.1 Airflow	. 55
	4.6.2 Motherboard Installation	. 55
	4.7 Internal Peripheral Device Connections	. 55
	4.7.1 AT/ATX Power Connection	. 55
	4.7.2 Audio Kit Installation	. 57
	4.7.3 Single RS-232 Cable (w/o Bracket)	. 58
	4.8 EXTERNAL PERIPHERAL INTERFACE CONNECTION	. 59
	4.8.1 LAN Connection (Single Connector)	. 60
	4.8.2 PS/2 Y-Cable Connection	. 60
	4.8.3 Serial Device Connection	. 61
	4.8.4 USB Connection (Dual Connector)	. 62
	4.8.5 VGA Monitor Connection	. 63
	4.9 Software Installation	. 64
5	BIOS SCREENS	. 67
	5.1 Introduction.	. 68
	5.1.1 Starting Setup	. 68
	5.1.2 Using Setup	. 68
	5.1.3 Getting Help	. 69
	5.1.4 Unable to Reboot After Configuration Changes	. 69
	5.1.5 BIOS Menu Bar	. 69
	5.2 Main	. 70
	5.3 ADVANCED	. 71
	5.3.1 ACPI Settings	. 71
	5.3.2 Trusted Computing	. 72
	5.3.3 CPU Configuration	. 73
	5.3.4 SATA Configuration	. 75
	5.3.5 USB Configuration	. 76
	5.3.6 Super IO Configuration	. 77
	5.3.6.1 Serial Port n Configuration	. 78
	5.3.6.2 IrDA Configuration	. 83
	5.3.6.3 Parallel Port Configuration	. 84
	5.3.7 H/W Monitor	. 85
	5.3.8 Serial Port Console Redirection	. 87
	5.4 CHIPSET	. 88

5.4.1 Host Bridge Configuration	89
5.4.1.1 OnChip VGA Configuration	89
5.4.2 South Bridge Configuration	90
5.4.3 Intel IGD SWSCI OpRegion	91
5.5 BOOT	93
5.6 SECURITY	94
5.7 Exit	96
A BIOS OPTIONS	98
B ONE KEY RECOVERY	101
B.1 ONE KEY RECOVERY INTRODUCTION	102
B.1.1 System Requirement	103
B.1.2 Supported Operating System	104
B.2 SETUP PROCEDURE FOR WINDOWS	105
B.2.1 Hardware and BIOS Setup	105
B.2.2 Create Partitions	106
B.2.3 Install Operating System, Drivers and Applications	109
B.2.4 Build-up Recovery Partition	110
B.2.5 Create Factory Default Image	112
B.3 SETUP PROCEDURE FOR LINUX	117
B.4 RECOVERY TOOL FUNCTIONS	120
B.4.1 Factory Restore	122
B.4.2 Backup System	123
B.4.3 Restore Your Last Backup	124
B.4.4 Manual	125
B.5 Other Information	126
B.5.1 Using AHCI Mode or ALi M5283 / VIA VT6421A Controller	126
B.5.2 System Memory Requirement	128
C TERMINOLOGY	129
D DIGITAL I/O INTERFACE	133
D.1 Introduction	134
D.2 DIO CONNECTOR PINOUTS	134
D.3 ASSEMBLY LANGUAGE SAMPLES	135
D.3.1 Enable the DIO Input Function	

D.3.2 Enable the DIO Output Function	135
E WATCHDOG TIMER	. 136
F HAZARDOUS MATERIALS DISCLOSURE	. 139
F.1 HAZARDOUS MATERIALS DISCLOSURE TABLE FOR IPB PRODUCTS CERTIFIED AS	
ROHS COMPLIANT UNDER 2002/95/EC WITHOUT MERCURY	140

List of Figures

Figure 1-1: NANO-PV-D4251/N4551/D5251	2
Figure 1-2: Connectors	3
Figure 1-3: NANO-PV-D4251/N4551/D5251 Dimensions (mm)	4
Figure 1-4: Data Flow Block Diagram	5
Figure 3-1: Connector and Jumper Locations	14
Figure 3-2: Audio Connector Location	17
Figure 3-3: Battery Connector Location	17
Figure 3-4: CompactFlash® Slot Location	18
Figure 3-5: Digital I/O Connector Locations	20
Figure 3-6: CPU Fan Connector Location	20
Figure 3-7: +12V Fan Connector Locations	21
Figure 3-8: Front Panel Connector Location	22
Figure 3-9: Keyboard/Mouse Connector Location	23
Figure 3-10: Backlight Inverter Connector Location	24
Figure 3-11: LVDS1 Connector Locations	24
Figure 3-12: Parallel Port Connector Location	25
Figure 3-13: PCI-104 Connector Location	26
Figure 3-14: PCle Mini Card Slot Location	28
Figure 3-15: CPU 12V Power Connector Location	29
Figure 3-16: SATA Drive Connector Locations	30
Figure 3-17: SATA Power Connector Locations	31
Figure 3-18: COM Connector Pinout Locations	31
Figure 3-19: Serial Port Connector Location	32
Figure 3-20: SMBus Connector Locations	33
Figure 3-21: SPI Flash Connector	34
Figure 3-22: TPM Connector Pinout Locations	34
Figure 3-23: USB Connector Pinout Locations	35
Figure 3-24: NANO-PV-D4251/N4551/D5251 External Peripheral Interface Connector	36
Figure 3-25: RJ-45 Ethernet Connector	37
Figure 3-26: PS/2 Pinout and Configuration	38

Figure 3-27: VGA Connector	39
Figure 4-1: SO-DIMM Installation	44
Figure 4-2: AT Auto Button Select Jumper Settings	46
Figure 4-3: AT/ATX Power Select Jumper Location	47
Figure 4-4: Clear CMOS Jumper	48
Figure 4-5: COM 3 Function Select Jumper Location	49
Figure 4-6: COM 3 RS-422/485 Function Select Jumper Location	49
Figure 4-7: CompactFlash® Setup Jumper Location	51
Figure 4-8: CompactFlash® Voltage Selection Jumper Location	52
Figure 4-9: LVDS Screen Resolution Jumper Locations	53
Figure 4-10: LVDS Voltage Selection Jumper Locations	54
Figure 4-11: PCI-104 Voltage Jumper Location	54
Figure 4-12: Power Cable to Motherboard Connection	56
Figure 4-13: Connect Power Cable to Power Supply	57
Figure 4-14: Audio Kit Cable Connection	58
Figure 4-15: Single RS-232 Cable Installation	59
Figure 4-16: LAN Connection	60
Figure 4-17: PS/2 Keyboard/Mouse Connector	61
Figure 4-18: Serial Device Connector	62
Figure 4-19: USB Connector	63
Figure 4-20: VGA Connector	64
Figure 4-21: Introduction Screen	65
Figure 4-22: Available Drivers	66
Figure B-1: IEI One Key Recovery Tool Menu	102
Figure B-2: Launching the Recovery Tool	106
Figure B-3: Recovery Tool Setup Menu	107
Figure B-4: Command Mode	107
Figure B-5: Partition Creation Commands	108
Figure B-6: Launching the Recovery Tool	110
Figure B-7: System Configuration for Windows	110
Figure B-8: Build-up Recovery Partition	111
Figure B-9: Press any key to continue	111
Figure B-10: Press F3 to Boot into Recovery Mode	112
Figure B-11: Recovery Tool Menu	112
Figure B-12: About Symantec Ghost Window	113

Figure B-13: Symantec Ghost Path	113
Figure B-14: Select a Local Source Drive	114
Figure B-15: Select a Source Partition from Basic Drive	114
Figure B-16: File Name to Copy Image to	115
Figure B-17: Compress Image	115
Figure B-18: Image Creation Confirmation	116
Figure B-19: Image Creation Complete	116
Figure B-20: Image Creation Complete	116
Figure B-21: Press Any Key to Continue	117
Figure B-22: Partitions for Linux	118
Figure B-23: System Configuration for Linux	119
Figure B-24: Access menu.lst in Linux (Text Mode)	119
Figure B-25: Recovery Tool Menu	120
Figure B-26: Recovery Tool Main Menu	121
Figure B-27: Restore Factory Default	122
Figure B-28: Recovery Complete Window	122
Figure B-29: Backup System	123
Figure B-30: System Backup Complete Window	123
Figure B-31: Restore Backup	124
Figure B-32: Restore System Backup Complete Window	124
Figure B-33: Symantec Ghost Window	125

List of Tables

Table 1-1: Technical Specifications	8
Table 3-1: Peripheral Interface Connectors	16
Table 3-2: Rear Panel Connectors	16
Table 3-3: Audio Connector Pinouts	17
Table 3-4: Battery Connector Pinouts	18
Table 3-5: CompactFlash® Slot Pinouts	19
Table 3-6: Digital I/O Connector Pinouts	20
Table 3-7: CPU Fan Connector Pinouts	21
Table 3-8: +12V Fan Connector Pinouts	21
Table 3-9: Front Panel Connector Pinouts	22
Table 3-10: Keyboard/Mouse Connector Pinouts	23
Table 3-11: Backlight Inverter Connector Pinouts	24
Table 3-12: LVDS2 Connector Pinouts	25
Table 3-13: Parallel Port Connector Pinouts	26
Table 3-14: PCI-104 Connector Pinouts	27
Table 3-15: PCIe Mini Card Slot Pinouts	29
Table 3-16: CPU 12V Power Connector Pinouts	29
Table 3-17: SATA Drive Connector Pinouts	30
Table 3-18: SATA Power Connector Pinouts	31
Table 3-19: COM Connector Pinouts	32
Table 3-20: Serial Port Connector Pinouts	32
Table 3-21: SMBus Connector Pinouts	33
Table 3-22: SPI Flash Connector Pinouts	34
Table 3-23: TPM Connector Pinouts	35
Table 3-24: USB Port Connector Pinouts	36
Table 3-25: LAN Pinouts	37
Table 3-26: RJ-45 Ethernet Connector LEDs	37
Table 3-27: Keyboard Connector Pinouts	38
Table 3-28: USB Port Connector Pinouts	38
Table 3-29: VGA Connector Pinouts	39

Table 4-1: Jumpers	45
Table 4-2: AT Auto Button Power Select Jumper Settings	46
Table 4-3: AT/ATX Power Select Jumper Settings	47
Table 4-4: Clear CMOS Jumper Settings	48
Table 4-5: COM 3 Function Select Jumper Settings	48
Table 4-6: COM 3 RS-422/485 Function Select Jumper Settings	49
Table 4-7: CompactFlash® Setup Jumper Settings	51
Table 4-8: CompactFlash® Voltage Selection Jumper Settings	52
Table 4-9: LVDS1 Screen Resolution Jumper Settings	52
Table 4-10: LVDS Voltage Selection Jumper Settings	53
Table 4-11: PCI-104 Voltage Jumper Settings	54
Table 5-1: BIOS Navigation Keys	69

BIOS Menus

BIOS Menu 1: Main	70
BIOS Menu 2: Advanced	71
BIOS Menu 3: ACPI Settings	72
BIOS Menu 4: TPM Configuration	73
BIOS Menu 5: CPU Configuration	74
BIOS Menu 6: IDE Configuration	75
BIOS Menu 7: USB Configuration	76
BIOS Menu 8: Super IO Configuration	77
BIOS Menu 9: Serial Port n Configuration Menu	78
BIOS Menu 10: IrDA Configuration Menu	83
BIOS Menu 11: Parallel Port Configuration Menu	84
BIOS Menu 12: Hardware Health Configuration	86
BIOS Menu 13: Serial Port Console Redirection	87
BIOS Menu 14: Chipset	88
BIOS Menu 15: Host Bridge Chipset Configuration	89
BIOS Menu 16: OnChip VGA Configuration	89
BIOS Menu 17: South Bridge Chipset Configuration	90
BIOS Menu 18: South Bridge Chipset Configuration	92
BIOS Menu 19: Boot	93
BIOS Menu 20: Security	95
BIOS Menu 21:Exit	96

Chapter

1

Introduction

1.1 Introduction

Figure 1-1: NANO-PV-D4251/N4551/D5251

The NANO-PV-D4251/N4551/D5251 EPIC motherboard is an Intel® Atom™ processor D525, D425 or N455 platform. Up to one 2.0 GB 800 MHz or 667 MHz DDR3 SDRAM SO-DIMM is supported by the NANO-PV-D4251/N4551/D5251.

The integrated Intel® ICH8M Chipset supports two GbE LAN port through two Realtek RTL8111E Ethernet controllers (with ASF 2.0 support). The NANO-PV-D4251/N4551/D5251 also supports two SATA 3Gb/s drives and provides 5 V SATA power.

The NANO-PV-D4251/N4551/D5251 supports dual display via VGA and an internal LVDS LCD connector. Eight USB 2.0 channels, one PCIe mini socket, one PCI-104 slot and internal one parallel port connector provide flexible expansion options. High Definition Audio (HDA) support ensures HDA devices can be easily implemented on the NANO-PV-D4251/N4551/D5251. Serial device connectivity is provided by a RS-232 serial port, three internal RS-232 and one internal RS-232/422/485 connectors.

1.2 Connectors

The connectors on the NANO-PV-D4251/N4551/D5251 are shown in the figure below.

Figure 1-2: Connectors

1.3 Dimensions

The dimensions of the board are listed below:

Length: 165 mmWidth: 115 mm

Figure 1-3: NANO-PV-D4251/N4551/D5251 Dimensions (mm)

1.4 Data Flow

Figure 1-4 shows the data flow between the two on-board chipsets and other components installed on the motherboard and described in the following sections of this chapter.

Figure 1-4: Data Flow Block Diagram

1.5 Technical Specifications

NANO-PV-D4251/N4551/D5251 technical specifications are listed in table below.

Specification	NANO-PV-D4251/N4551/D5251	
Form Factor	EPIC	
CPU options	Intel® Atom™ processor D525, 1.8 GHz/1 MB L2 cache	
	Intel® Atom™ processor D425, 1.8 GHz/512 KB L2 cache	
	Intel® Atom™ processor N455, 1.66 GHz/512 KB L2 cache	
Express Chipset	Intel® ICH8M	
Graphics Engine	GMA3150	
	Gen3.5 DX9, 400MHz for D525/D425	
	Gen3.5 DX9, 200MHz for N455	
Memory	One 204-pin SO-DIMM sockets support one 800/667 MHz	
	2.0 GB (max.) DDR3 SDRAM SO-DIMM	
Audio	Realtek ALC888 HD 7.1 channel audio codec	
LAN	Two Realtek RTL8111E PCIe GbE controllers with ASF 2.0	
	support	
Super I/O	Fintek F81865	
Digital I/O	8-bit, 4-bit input/4-bit output	
BIOS	AMI BIOS label	
ТРМ	One LPC connector via 20-pin header	
Watchdog Timer	Software programmable supports 1~255 sec. system reset	
Expansion		
PCIe	One PCIe Mini slot	
PCI	One PCI-104 slot	
I/O Interface Connectors		
Audio Connector	One internal audio connector (10-pin header)	

Specification	NANO-PV-D4251/N4551/D5251
Display Ports	One VGA port (up to 2048x1536 for D4251/D5251, up to
	1400x1050 for N4551)
	One internal 18-bit single-channel LVDS connector (up to
	1024 x 768 or 1366 x 768)
Ethernet	Two RJ-45 GbE ports
Serial Ports	One RS-232 serial port
	Three RS-232 via four 10-pin headers
	One RS-232/422/485 via 14-pin header
USB 2.0/1.1 Ports	Two external USB ports
	Six internal USB ports via three 8-pin headers
Parallel Ports	One LPT connector via 26-pin header
Storage	
Serial ATA	Two SATA 3.0 Gb/s connectors
	One 5 V SATA power connector
CompactFlash®	One CompactFlash® Type II socket
Environmental and Power Spe	ecifications
Power Supply	12 V only
	ATX and AT power supported
Power Connector	One internal 4-pin power connector for power supply
Power Consumption	12 V @ 2.21A (Intel® Atom™ D525 with 2 GB 1066 Mhz
	DDR3)
	12 V @ 2.11A (Intel® Atom™ D425 with 2 GB 1066 Mhz
	DDR3)
	12 V @ 2.00A (Intel® Atom™ N455 with 2 GB 1066 Mhz
	DDR3)

Specification	NANO-PV-D4251/N4551/D5251	
Operating Temperature	-20°C~60°C without cooler, -20°C~70°C with forced air for D525 processor -20°C~65°C without cooler, -20°C~70°C with forced air for D425 processor -20°C~70°C without cooler, -20°C~75°C with forced air for	
	N455 processor	
Humidity	5% ~ 95% (non-condensing)	
Physical Specifications		
Dimensions	165 mm x 115 mm	
Weight GW/NW	850 g / 350 g	

Table 1-1: Technical Specifications

Chapter

2

Unpacking

2.1 Anti-static Precautions

WARNING!

Static electricity can destroy certain electronics. Make sure to follow the ESD precautions to prevent damage to the product, and injury to the user.

Make sure to adhere to the following guidelines:

- Wear an anti-static wristband: Wearing an anti-static wristband can prevent electrostatic discharge.
- Self-grounding: Touch a grounded conductor every few minutes to discharge any excess static buildup.
- Use an anti-static pad: When configuring any circuit board, place it on an anti-static mat.
- Only handle the edges of the PCB: Don't touch the surface of the motherboard. Hold the motherboard by the edges when handling.

2.2 Unpacking Precautions

When the NANO-PV-D4251/N4551/D5251 is unpacked, please do the following:

- Follow the antistatic guidelines above.
- Make sure the packing box is facing upwards when opening.
- Make sure all the packing list items are present.

2.3 Packing List

NOTE:

If any of the components listed in the checklist below are missing, do not proceed with the installation. Contact the IEI reseller or vendor the NANO-PV-D4251/N4551/D5251 was purchased from or contact an IEI sales representative directly by sending an email to sales@iei.com.tw.

The NANO-PV-D4251/N4551/D5251 is shipped with the following components:

Quantity	Item and Part Number	Image
1	NANO-PV-D4251/N4551/D5251-R10	
1	SATA and 5 V power cable (P/N : 32801000201-100-RS)	1
1	KB/MS PS/2 Y-cable (P/N: 32000-133200-RS)	
2	RS-232 serial port cable (P/N : 32200-000049-RS)	
1	AT 12 V Cable (P/N : 32100-087100-RS)	
1	Audio cable (P/N : 32000-072100-RS)	
1	Dual USB cable (without bracket) (P/N: 32000-044300-RS)	

1	Mini jumper pack (2.0mm) (P/N : 33100-000033-RS)	**************************************
1	Utility CD	O iEi
1	Quick Installation Guide	Open business com

2.3.1 Optional Items

The following are optional components which may be separately purchased:

Item and Part Number	Image
LPT cable (wo bracket)	
(P/N : 32200-015100-RS)	
RS-232/422/485 cable	100
(P/N : 32205-000300-100-RS)	
SATA power cable	
(P/N : 32100-000100-100-RS)	
(P/N : 32100-000100-200-RS)	
SATA cable	
(P/N : 32000-062800-RS)	

Chapter

3

Connectors

3.1 Peripheral Interface Connectors

This chapter details all the jumpers and connectors.

3.1.1 NANO-PV-D4251/N4551/D5251 Layout

The figures below show all the connectors and jumpers.

Figure 3-1: Connector and Jumper Locations

3.1.2 Peripheral Interface Connectors

The table below lists all the connectors on the board.

Connector	Туре	Label
Audio connector	10-pin header	AUDIO1
Battery connector	2-pin wafer	BAT1
CompactFlash® slot	50-pin header	CF1
DDR3 SO-DIMM socket	204-pin socket	DIMM1
Digital I/O connector	10-pin header	DIO1
Fan connector (CPU)	3-pin wafer	CPU_FAN1
Fan connector (system)	3-pin wafer	SYS_FAN1
Front panel connector	8-pin header	F_PANEL1
Keyboard and mouse connector	6-pin wafer	KB/MS1
LVDS1 backlight inverter connector	5-pin wafer	INV1
LVDS LCD connector	20-pin crimp	LVDS1
Parallel port connector	26-pin header	LPT1
PCI-104 connector	PCI-104 connector	PC104_PLUS1
PCIe Mini card slot	PCIe Mini card slot	MINI_PCIE1
Power connector (+12V, power supply)	4-pin connector	CPU12V1
RS-232 serial port connector	10-pin header	COM2
RS-232 serial port connector	10-pin header	COM4
RS-232 serial port connector	10-pin header	COM5
RS-232/422/485 serial port connector	14-pin header	СОМЗ
Serial ATA (SATA) drive connector	7-pin SATA	SATA1
Serial ATA (SATA) drive connector	7-pin SATA	SATA2
SATA power connector	2-pin wafer	PWR1
SMBus connector	4-pin wafer	CN1

Connector	Туре	Label
SPI flash connector	8-pin header	SPI1
TPM connector	20-pin connector	TPM1
USB connector	8-pin header	USB0_1
USB connector	8-pin header	USB2_3
USB connector	8-pin header	USB4_5

Table 3-1: Peripheral Interface Connectors

3.1.3 External Interface Panel Connectors

The table below lists the connectors on the external I/O panel.

Connector	Туре	Label
Ethernet connector	RJ-45	LAN1
Ethernet connector	RJ-45	LAN2
Keyboard/Mouse connector	PS/2	PT1
VGA port connector	15-pin Female	VGA1
Serial port (RS-232) connector	9-pin male	COM1
USB ports (dual)	USB port	USB6_7

Table 3-2: Rear Panel Connectors

3.2 Internal Peripheral Connectors

The section describes all of the connectors on the NANO-PV-D4251/N4551/D5251.

3.2.1 Audio Connector

CN Label: AUDIO1

CN Type: 10-pin header (2x5)

CN Location: See Figure 3-2

CN Pinouts: See Table 3-3

The audio connector is connected to external audio devices including speakers and microphones for the input and output of audio signals to and from the system.

Figure 3-2: Audio Connector Location

Pin	Description	Pin	Description
1	LFRONT-R	2	LLINE-R
3	GND	4	GND
5	LFRONT-L	6	LLINE-L
7	GND	8	GND
9	LMIC1-CONN-R	10	LMIC1-CONN-L

Table 3-3: Audio Connector Pinouts

3.2.2 Battery Connector

CN Label: BAT1

CN Type: 2-pin wafer (1x2)

CN Location: See Figure 3-3

CN Pinouts: See Table 3-4

This is connected to the system battery. The battery provides power to the system clock to retain the time when power is turned off.

Figure 3-3: Battery Connector Location

Pin	Description
1	Battery+
2	Ground

Table 3-4: Battery Connector Pinouts

3.2.3 CompactFlash® Slot

CN Label: CF1

CN Type: CompactFlash® card slot

CN Location: See Figure 3-4

CN Pinouts: See **Table 3-5**

A CompactFlash® Type I/II card can be used in this slot.

Figure 3-4: CompactFlash® Slot Location

Pin	Description	Pin	Description
1	GROUND	26	VCC-IN CHECK1
2	DATA 3	27	DATA 11
3	DATA 4	28	DATA 12
4	DATA 5	29	DATA 13
5	DATA 6	30	DATA 14
6	DATA 7	31	DATA 15
7	HDC_CS0#	32	HDC_CS1
8	N/C	33	N/C
9	GROUND	34	IOR#

Pin	Description	Pin	Description	
10	N/C	35	IOW#	
11	N/C	36	WE#	
12	N/C	37	IRQ14	
13	VCC_CF	38	VCC_CF	
14	N/C	39	CSEL	
15	N/C	40	N/C	
16	N/C	41	HDD_RESET	
17	N/C	42	IORDY	
18	SA2	43	SDREQ	
19	SA1	44	SDACK#	
20	SA0	45	HDD_ACTIVE#	
21	DATA 0	46	66DET	
22	DATA 1	47	DATA 8	
23	DATA 2	48	DATA 9	
24	N/C	49	DATA 10	
25	VCC-IN CHECK2	50	GROUND	

Table 3-5: CompactFlash® Slot Pinouts

3.2.4 Digital I/O Connector

CN Label: DIO1

CN Type: 10-pin header

CN Location: See Figure 3-5

CN Pinouts: See Table 3-6

The digital I/O connector provides programmable input and output for external devices.

The digital I/O provides 4-bit output and 4-bit input.

Figure 3-5: Digital I/O Connector Locations

Pin	Description	Pin	Description	
1	GND	2	+5V	
3	Output 3	4	Output 2	
5	Output 1	6	Output 0	
7	Input 3	8	Input 2	
9	Input 1	10	Input 0	

Table 3-6: Digital I/O Connector Pinouts

3.2.5 Fan Connector (CPU)

CN Label: CPU_FAN1

CN Type: 3-pin wafer (1x3)

CN Location: See Figure 3-6

CN Pinouts: See **Table 3-7**

The fan connector attaches to a CPU cooling fan.

Figure 3-6: CPU Fan Connector Location

Pin	Description	
1	FANIO1	
2	FANOUT1	

Pin	Description
3	GND

Table 3-7: CPU Fan Connector Pinouts

3.2.6 Fan Connector (System)

CN Label: SYS_FAN1

CN Type: 3-pin wafer (1x3)

CN Location: See Figure 3-7

CN Pinouts: See Table 3-8

The cooling fan connector provides a 12V, 500mA current to the cooling fan. The connector has a "rotation" pin to get rotation signals from fans and notify the system so the system BIOS can recognize the fan speed. Please note that only specified fans can issue the rotation signals.

Figure 3-7: +12V Fan Connector Locations

Pin	Description	
1	FANIO2	
2	+12V	
3	GND	

Table 3-8: +12V Fan Connector Pinouts

3.2.7 Front Panel Connector

CN Label: F_PANEL1

CN Type: 8-pin header (2x4)

CN Location: See Figure 3-8

CN Pinouts: See Table 3-9

The front panel connector connects to external switches and indicators to monitor and controls the motherboard. These indicators and switches include:

- Power button
- Reset
- Power LED
- HDD LED

Figure 3-8: Front Panel Connector Location

FUNCTION	PIN	DESCRIPTION	FUNCTION	PIN	DESCRIPTION
Power Button	1	PWR_BTN+	Power LED	2	PWR LED
	3	GND		4	GND
SATA LED	5	SATA LED PWT	Reset	6	RESET
	7	SATA_LED#		8	GND

Table 3-9: Front Panel Connector Pinouts

3.2.8 Keyboard/Mouse Connector

CN Label: KB/MS1

CN Type: 6-pin wafer (1x6)

CN Location: See Figure 3-9

CN Pinouts: See Table 3-10

The keyboard/mouse connector connects to a PS/2 Y-cable that can be connected to a PS/2 keyboard and mouse.

Figure 3-9: Keyboard/Mouse Connector Location

Pin	Description
1	+5 VCC
2	MS DATA
3	MS CLK
4	KB DATA
5	KB CLK
6	GROUND

Table 3-10: Keyboard/Mouse Connector Pinouts

3.2.9 Backlight Inverter Connector

CN Label: INV1

CN Type: 5-pin wafer (1x5)

CN Location: See Figure 3-10

CN Pinouts: See **Table 3-11**

The backlight inverter connector provides power to an LCD panel.

Figure 3-10: Backlight Inverter Connector Location

Pin	Description
1	BL_ADJ
2	GROUND
3	+12 V
4	GROUND
5	BACKLIGHT ENABLE

Table 3-11: Backlight Inverter Connector Pinouts

3.2.10 LVDS1 LCD Connector

CN Label: LVDS1

CN Type: 20-pin crimp (2x10)

CN Location: See Figure 3-11

CN Pinouts: See Table 3-12

The LVDS1 connector is for an LCD panel connected to the board.

Figure 3-11: LVDS1 Connector Locations

Pin	Description	Pin	Description
1	GROUND	2	GROUND

Pin	Description	Pin	Description
3	LVDSA_DATA0+	4	LVDSA_DATA0-
5	LVDSA_DATA1+	6	LVDSA_DATA1-
7	LVDSA_DATA2+	8	LVDSA_DATA2-
9	LVDSA_CLK+	10	LVDSA_CLK-
11	N/C	12	N/C
13	GROUND	14	GROUND
15	LDDC_DATA	16	LDDC_CLK
17	VCC_LCD	18	VCC_LCD
19	VCC_LCD	20	VCC_LCD

Table 3-12: LVDS2 Connector Pinouts

3.2.11 Parallel Port Connector

CN Label: LPT1

CN Type: 26-pin box header

CN Location: See **Figure 3-12**

CN Pinouts: See **Table 3-13**

The parallel port connector connects to a parallel port connector interface or some other parallel port device such as a printer.

Figure 3-12: Parallel Port Connector Location

Pin	Description	Pin	Description
1	STB	2	AFD
3	PTD0	4	ERROR#
5	PTD1	6	INITIALIZE
7	PTD 2	8	SLIN

Pin	Description	Pin	Description
9	PTD3	10	GROUND
11	PTD 4	12	GROUND
13	PTD 5	14	GROUND
15	PTD 6	16	GROUND
17	PTD7	18	GROUND
19	ACK	20	GROUND
21	BUSY	22	GROUND
23	PE	24	GROUND
25	SLCT	26	NC

Table 3-13: Parallel Port Connector Pinouts

3.2.12 PCI-104 Connector

CN Label: PCI-104_PLUS1

CN Type: PCI-104 connector

CN Location: See Figure 3-13

CN Pinouts: See Table 3-14

The PCI-104 connector is for installing a PCI-104 expansion card.

Figure 3-13: PCI-104 Connector Location

Pin	Description	Pin	Description	Pin
1	GND/5 V	TBD1	5 V	AD00
2	VI/O1	AD02	AD01	+5 V
3	AD05	GND	AD04	AD03

Pin	Description	Pin	Description	Pin
4	C/BEO#	AD07	GND	AD06
5	GND	AD09	AD08	GND
6	AD11	VI/O2	AD10	M66EN
7	AD14	AD13	GND	AD12
8	+3.3 V	C/BE1#	AD15	+3.3 V
9	SERR#	GND	SB0#	PAR
10	GND	PERR#	+3.3 V	SDONE
11	STOP#	+3.3 V	LOCK#	GND
12	+3.3 V	TRDY#	GND	DEVSEL#
13	FRAME#	GND	IRDY#	+3.3 V
14	GND	AD16	+3.3 V	C/BE2#
15	AD18	+3.3 V	AD17	GND
16	AD21	AD20	GND	AD19
17	+3.3 V	AD23	AD22	+3.3 V
18	IDSEL0	GND	IDSEL1	IDSEL2
19	AD24	C/BE3#	VI/O1	IDSEL3
20	GND	AD26	AD25	GND
21	AD29	+5 V	AD28	AD27
22	+5 V	AD30	GND	AD31
23	REQ0#	GND	REQ1#	VI/O2
24	GND	REQ2#	+5 V	GNTO#
25	GNT1#	VI/O3	GNT2#	GND
26	+5 V	CLKO	GND	CLK1
27	CLK2	+5 V	CLK3	GND
28	GND	INTD#	+5 V	RST#
29	+12 V	INTA#	INTB#	INTC#
30	-12 V	TBD2	TBD	GND/3.3 V

Table 3-14: PCI-104 Connector Pinouts

3.2.13 PCle Mini Card Slot

CN Label: MINI-PCIE1

CN Type: PCle Mini card slot

CN Location: See Figure 3-14

CN Pinouts: See **Table 3-15**

The PCIe Mini card slot is for installing PCIe Mini expansion cards.

Figure 3-14: PCle Mini Card Slot Location

Pin	Description	Pin	Description
1	PCIE_WAKE#	2	VCC3
3	N/C	4	GND
5	N/C	6	1.5 V
7	CLKREQ#	8	NC
9	GND	10	NC
11	CLK-	12	NC
13	CLK+	14	NC
15	GND	16	NC
17	PCIRST#	18	GND
19	LPC	20	VCC3
21	GND	22	PCIRST#
23	PERN2	24	3VDual
25	PERP2	26	GND
27	GND	28	1.5 V
29	GND	30	SMBCLK
31	PETN2	32	SMBDATA
33	PETP2	34	GND

Pin	Description	Pin	Description
35	GND	36	USBD-
37	GND	38	USBD+
39	VCC3	40	GND
41	VCC3	42	N/C
43	GND	44	RF_LINK#
45	SATATXP1	46	BLUELED#
47	SATATXN1	48	1.5 V
49	SATARXN1	50	GND
51	SATARXP1	52	VCC3

Table 3-15: PCle Mini Card Slot Pinouts

3.2.14 12V Power Connector

CN Label: CPU12V1

CN Type: 4-pin Molex power connector (1x4)

CN Location: See Figure 3-15

CN Pinouts: See Table 3-16

The connector supports the 12V power supply.

Figure 3-15: CPU 12V Power Connector Location

Pin	Description	Pin	Description
1	+12V	2	GND
3	GND	4	+12V

Table 3-16: CPU 12V Power Connector Pinouts

3.2.15 SATA Drive Connectors

CN Label: SATA1, SATA2

CN Type: 7-pin SATA drive connectors

CN Location: See Figure 3-16

CN Pinouts: See Table 3-17

The two SATA 3Gb/s drive connectors are each connected to a SATA 3Gb/s drive. The SATA 3Gb/s drives transfer data at speeds as high as 3.0 Gb/s.

Figure 3-16: SATA Drive Connector Locations

Pin	Description
1	GND
2	TX+
3	TX-
4	GND
5	RX-
6	RX+
7	GND

Table 3-17: SATA Drive Connector Pinouts

3.2.16 SATA Power Connector

CN Label: PWR1

CN Type: 2-pin wafer (1x2)

CN Location: See Figure 3-17

CN Pinouts: See Table 3-18

The SATA Power Connector provides +5V power output to the SATA connectors.

Figure 3-17: SATA Power Connector Locations

Pin	Description
1	+5V
2	GND

Table 3-18: SATA Power Connector Pinouts

3.2.17 Serial Port Connectors (RS-232)

CN Label: COM2, COM4, COM5

CN Type: 10-pin header (2x5)

CN Location: See Figure 3-18

CN Pinouts: See Table 3-19

These connectors provide RS-232 communications.

Figure 3-18: COM Connector Pinout Locations

Pin	Description	Pin	Description
1	Data Carrier Direct (DCD)	2	Data Set Ready (DSR)
3	Receive Data (RXD)	4	Request To Send (RTS)
5	Transmit Data (TXD)	6	Clear To Send (CTS)
7	Data Terminal Ready (DTR) 8 Ring Indicator (Ring Indicator (RI)
9	Ground (GND)	10	GND

Table 3-19: COM Connector Pinouts

3.2.18 Serial Port Connector (RS-232/422/485)

CN Label: COM3

CN Type: 14-pin header (2x7)

CN Location: See Figure 3-19

CN Pinouts: See **Table 3-20**

Used for RS-232/422/485 communications.

Figure 3-19: Serial Port Connector Location

Pin	Description	Pin	Description
1	DCD	2	DSR2
3	RXD	4	RTS2
5	TXD	6	CTS2
7	DTR	8	RI2
9	GND	10	N/A
11	RS422 TX2/485+	12	RS422 TX2/485-
13	RS422 RX2+	14	RS422 RX2-

Table 3-20: Serial Port Connector Pinouts

3.2.19 SMBus Connector

CN Label: CN1

CN Type: 4-pin wafer (1x4)

CN Location: See Figure 3-17

CN Pinouts: See Table 3-18

The SMBus Connector provides a connection to a SMBus (System Management Bus) device.

Figure 3-20: SMBus Connector Locations

Pin	Description
1	GND
2	SMBDATA
3	SMBCLK
4	VCC5S

Table 3-21: SMBus Connector Pinouts

3.2.20 SPI Flash Connector

CN Label: SPI1

CN Type: 8-pin header (2x4)

CN Location: See Figure 3-21

CN Pinouts: See **Table 3-22**

The 8-pin SPI Flash connector is used to flash the BIOS.

Figure 3-21: SPI Flash Connector

Pin	Description	Pin	Description
1	VCC	2	GND
3	CS#	4	CLOCK
5	SO	6	SI
7	NC	8	NC

Table 3-22: SPI Flash Connector Pinouts

3.2.21 TPM Connector

CN Label: TPM1

CN Type: 20-pin header (2x10)

CN Location: See Figure 3-22

CN Pinouts: See Table 3-23

The Trusted Platform Module (TPM) connector secures the system on bootup.

Figure 3-22: TPM Connector Pinout Locations

Pin	Description	Pin	Description
1	TPMCLK	2	GND

Pin	Description	Pin	Description
3	LPC_FRAME#	4	NC
5	LRESET#	6	VCC5S
7	LPC_AD3	8	LPC_AD2
9	VCC3S	10	LPC_AD1
11	LPC_AD0	12	GND
13	SMBCLK	14	SMBDATA
15	VCC3DUAL	16	SERIRQ
17	GND	18	NC
19	VCC3S	20	LDRQ#

Table 3-23: TPM Connector Pinouts

3.2.22 USB Connectors

CN Label: USB0_1, USB2_3, USB4_5

CN Type: 8-pin header (2x4)

CN Location: See **Figure 3-23**

CN Pinouts: See **Table** 3-28

The USB connectors connect to USB devices. Each pin header provides two USB ports.

Figure 3-23: USB Connector Pinout Locations

Pin	Description	Pin	Description
1	VCC	2	GND
3	DATA-	4	DATA+

Pin	Description	Pin	Description
5	DATA+	6	DATA-
7	GND	8	VCC

Table 3-24: USB Port Connector Pinouts

3.3 External Peripheral Interface Connector Panel

Figure 3-24 shows the NANO-PV-D4251/N4551/D5251 external peripheral interface connector (EPIC) panel. The NANO-PV-D4251/N4551/D5251 EPIC panel consists of the following:

- 2 x Ethernet connector
- 1 x Keyboard/Mouse
- 1 x Serial port (RS-232)
- 2 x USB connectors
- 1 x VGA connector

Figure 3-24: NANO-PV-D4251/N4551/D5251 External Peripheral Interface Connector

3.3.1 Ethernet Connector

CN Label: LAN1, LAN2

CN Type: RJ-45

CN Location: See Figure 3-24

CN Pinouts: See Table 3-25

The NANO-PV-D4251/N4551/D5251 is equipped with two built-in RJ-45 Ethernet controllers. The controllers can connect to the LAN through the RJ-45 LAN connectors.

Pin	Description	Pin	Description
1	LAN1_MDIOP	2	LAN1_MDION
3	LAN1_MDI1P	4	LAN1_MDI1N
5	+VCT_LAN1	6	GND
7	LAN1_MDI2P	8	LAN1_MDI2N
9	LAN1_MDI3P	10	LAN1_MDI3N

Table 3-25: LAN Pinouts

The RJ-45 Ethernet connectors have two status LEDs, one green and one yellow. The green LED indicates activity on the port and the yellow LED indicates the speed. See **Table 3-26**.

Speed LED		Activity/Link LED	
STATUS	DESCRIPTION	STATUS	DESCRIPTION
Off	10 Mbps connection	Off	No link
Green	100 Mbps connection	Yellow	Linked
Orange	Gbps connection	Blinking	TX/RX activity 1

Table 3-26: RJ-45 Ethernet Connector LEDs

Figure 3-25: RJ-45 Ethernet Connector

3.3.2 Keyboard/Mouse Connector

CN Label: PT1

CN Type: PS/2

CN Location: See Figure 3-24

CN Pinouts: See Figure 3-26 and Table 3-27

The keyboard and mouse connector is a standard PS/2 connector.

Figure 3-26: PS/2 Pinout and Configuration

Pin	Description
1	KB DATA
2	MS DATA
3	GND
4	VCC
5	KB CLOCK
6	MS CLOCK

Table 3-27: Keyboard Connector Pinouts

3.3.3 USB Connectors

CN Label: USB6_7

CN Type: USB port

CN Location: See Figure 3-24

CN Pinouts: See 815HTable 3-28

The NANO-PV-D4251/N4551/D5251 has four external USB 2.0 ports. The ports connect to both USB 2.0 and USB 1.1 devices.

Pin	Description	Pin	Description
1	VCC	5	VCC
2	DATA-	6	DATA-
3	DATA+	7	DATA+
4	GROUND	8	GROUND

Table 3-28: USB Port Connector Pinouts

3.3.4 VGA Connector

CN Label: VGA1

CN Type: 15-pin Female

CN Location: See **Figure** 3-24

CN Pinouts: See Figure 3-27 and Table 3-29

Connects to a monitor that accepts a standard VGA input.

Figure 3-27: VGA Connector

Pin	Description	Pin	Description
1	RED	2	GREEN
3	BLUE	4	NC
5	GND	6	GND
7	GND	8	GND
9	VCC / NC	10	GND
11	NC	12	DDC DAT
13	HSYNC	14	VSYNC
15	DDCCLK		

Table 3-29: VGA Connector Pinouts

Chapter

4

Installation

4.1 Anti-static Precautions

WARNING:

Failure to take ESD precautions during the installation of the NANO-PV-D4251/N4551/D5251 may result in permanent damage to the NANO-PV-D4251/N4551/D5251 and severe injury to the user.

Electrostatic discharge (ESD) can cause serious damage to electronic components, including the NANO-PV-D4251/N4551/D5251. Dry climates are especially susceptible to ESD. It is therefore critical that whenever the NANO-PV-D4251/N4551/D5251 or any other electrical component is handled, the following anti-static precautions are strictly adhered to.

- Wear an anti-static wristband: Wearing a simple anti-static wristband can help to prevent ESD from damaging the board.
- Self-grounding: Before handling the board, touch any grounded conducting material. During the time the board is handled, frequently touch any conducting materials that are connected to the ground.
- Use an anti-static pad: When configuring the NANO-PV-D4251/N4551/D5251, place it on an antic-static pad. This reduces the possibility of ESD damaging the NANO-PV-D4251/N4551/D5251.
- Only handle the edges of the PCB: When handling the PCB, hold the PCB by the edges.

4.2 Installation Considerations

NOTE:

The following installation notices and installation considerations should be read and understood before the NANO-PV-D4251/N4551/D5251 is installed. All installation notices pertaining to the installation of the NANO-PV-D4251/N4551/D5251 should be strictly adhered to. Failing to adhere to these precautions may lead to severe damage of the NANO-PV-D4251/N4551/D5251 and injury to the person installing the motherboard.

4.2.1 Installation Notices

WARNING:

The installation instructions described in this manual should be carefully followed in order to prevent damage to the NANO-PV-D4251/N4551/D5251, NANO-PV-D4251/N4551/D5251 components and injury to the user.

Before and during the installation please **DO** the following:

- Read the user manual:
 - O The user manual provides a complete description of the NANO-PV-D4251/N4551/D5251 installation instructions and configuration options.
- Wear an electrostatic discharge cuff (ESD):
 - O Electronic components are easily damaged by ESD. Wearing an ESD cuff removes ESD from the body and helps prevent ESD damage.
- Place the NANO-PV-D4251/N4551/D5251 on an antistatic pad:
 - O When installing or configuring the motherboard, place it on an antistatic pad. This helps to prevent potential ESD damage.

- Turn all power to the NANO-PV-D4251/N4551/D5251 off:
 - When working with the NANO-PV-D4251/N4551/D5251, make sure that it is disconnected from all power supplies and that no electricity is being fed into the system.

Before and during the installation of the NANO-PV-D4251/N4551/D5251 **DO NOT:**

- Remove any of the stickers on the PCB board. These stickers are required for warranty validation.
- Use the product before verifying all the cables and power connectors are properly connected.
- Allow screws to come in contact with the PCB circuit, connector pins, or its components.

4.3 Unpacking

When the NANO-PV-D4251/N4551/D5251 is unpacked, please check all the unpacking list items listed in Chapter 3 are indeed present. If any of the unpacking list items are not available please contact the NANO-PV-D4251/N4551/D5251 vendor reseller/vendor where the NANO-PV-D4251/N4551/D5251 was purchased or contact an IEI sales representative.

4.4 SO-DIMM Installation

SO-DIMM is a critical component of the NANO-PV-D4251/N4551/D5251. If it is not installed the NANO-PV-D4251/N4551/D5251 cannot run.

4.4.1 SO-DIMM Installation

To install an SO-DIMM, please follow the steps below and refer to Figure 4-1.

Figure 4-1: SO-DIMM Installation

- **Step 1: Locate the SO-DIMM socket**. Place the board on an anti-static mat.
- Step 2: Align the SO-DIMM with the socket. Align the notch on the memory with the notch on the memory socket.
- **Step 3:** Insert the SO-DIMM. Push the memory in at a 20° angle. (See Figure 4-1)
- Step 4: Seat the SO-DIMM. Gently push downwards and the arms clip into place. (See Figure 4-1)

4.5 Jumper Settings

NOTE:

A jumper is a metal bridge used to close an electrical circuit. It consists of two or three metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To CLOSE/SHORT a jumper means connecting the pins of the jumper with the plastic clip and to OPEN a jumper means removing the plastic clip from a jumper.

Before the NANO-PV-D4251/N4551/D5251 is installed in the system, the jumpers must be set in accordance with the desired configuration. The jumpers on the NANO-PV-D4251/N4551/D5251 are listed in **Table 4-1**.

Description	Туре	Label
AT Auto Button	2-pin header	J_AUTOPWR1
Clear CMOS	3-pin header	J_CMOS1
CompactFlash® Master/Slave function setting	2-pin header	JCF1
CompactFlash® voltage select	2-pin header	J_VCF1
COM3 RS-232/422/485 select	6-pin header	J4
COM3 RS-422/485 select	6-pin header	J6
COM3 RS-422 Termination select	J10	2-pin header
COM3 RS-485 Termination select	J9	2-pin header
LVDS LCD voltage select	6-pin header	J_VLVDS1
LVDS LCD panel type	8-pin header	J_LCD_TYPE1
PC-104 voltage setup	3-pin header	JP1

Table 4-1: Jumpers

4.5.1 AT Auto Button Power Select Jumper Settings

Jumper Label: J_AUTOPWR1

Jumper Type: 2-pin header

Jumper Settings: See Table 4-2

Jumper Location: See Figure 4-2

The AT Auto Button Power Select jumper specifies the systems auto button power mode as AT or ATX.

Setting	Description
Short	Use AT power
Open	Use ATX power

Table 4-2: AT Auto Button Power Select Jumper Settings

Figure 4-2: AT Auto Button Select Jumper Settings

4.5.2 AT/ATX Power Select Jumper Settings

Jumper Label: J_ATXCTL1

Jumper Type: 3-pin header (1x3)

Jumper Settings: See Table 4-3

Jumper Location: See Figure 4-3

The AT/ATX Power Select jumper specifies the systems power mode as AT or ATX. AT/ATX Power Select jumper settings are shown in **Table 4-3**.

AT Power Select	Description	
Short 1 - 2	Use ATX power	

AT Power Select	Description	
Short 2 – 3	Use AT power	Default

Table 4-3: AT/ATX Power Select Jumper Settings

The location of the AT/ATX Power Select jumper is shown in Figure 4-3 below.

Figure 4-3: AT/ATX Power Select Jumper Location

4.5.3 Clear CMOS Jumper

Jumper Label: J_CMOS1

Jumper Type: 3-pin header (1x3)

Jumper Settings: See Table 4-4

Jumper Location: See Figure 4-4

If the NANO-PV-D4251/N4551/D5251 fails to boot due to improper BIOS settings, the clear CMOS jumper clears the CMOS data and resets the system BIOS information. To do this, use the jumper cap to close pins 2 and 3 for a few seconds then reinstall the jumper clip back to pins 1 and 2.

If the "CMOS Settings Wrong" message is displayed during the boot up process, the fault may be corrected by pressing the F1 to enter the CMOS Setup menu. Do one of the following:

- Enter the correct CMOS setting
- Load Optimal Defaults
- Load Failsafe Defaults.

After having done one of the above, save the changes and exit the CMOS Setup menu.

The clear CMOS jumper settings are shown in Table 4-4.

Clear CMOS	Description	
Short 1 - 2	Keep CMOS Setup Default	
Short 2 - 3	Clear CMOS Setup	

Table 4-4: Clear CMOS Jumper Settings

The location of the clear CMOS jumper is shown in Figure 4-4 below.

Figure 4-4: Clear CMOS Jumper

4.5.4 COM 3 Function Select Jumper

Jumper Label: J4

Jumper Type: 6-pin header

Jumper Settings: See Table 4-5

Jumper Location: See Figure 4-5

The COM 3 Function Select jumper sets the communication protocol used by the second serial communications port (COM 3) as RS-232, RS-422 or RS-485. The COM 3 Function Select settings are shown below.

Setting	Description
1-2	RS-232
3-4	RS-422
5-6	RS-485

Table 4-5: COM 3 Function Select Jumper Settings

Figure 4-5: COM 3 Function Select Jumper Location

4.5.5 COM 3 RS-422/485 Function Select Jumper

Jumper Label: J6

Jumper Type: 6-pin header

Jumper Settings: See Table 4-5

Jumper Location: See Figure 4-5

The COM 3 Function Select jumper sets the communication protocol used by the second serial communications port (COM 3) as RS-422 or RS-485. The COM 3 Function Select settings are shown below.

Setting	Description
1-3, 2-4	RS-422
3-5, 4-6	RS-485

Table 4-6: COM 3 RS-422/485 Function Select Jumper Settings

Figure 4-6: COM 3 RS-422/485 Function Select Jumper Location

4.5.6 COM 3 RS-422/485 Termination Select Jumpers

Jumper Label: J9 and J10

Jumper Type: 2-pin header

Jumper Settings: See Table 4-5 and Table 4-7

Jumper Location: See Figure 4-7

The COM 3 RS-422 and RS-485 Termination Select jumpers enable or disable the termination used by the serial COM 3 communications port as 120 ohm. The COM 3 RS-422 and RS-485 Termination Select settings are shown in **Table 4-5 and Table 4-7**.

RS-422 (J9) Setting	Description
Short	120 ohm termination
Open	No 120 ohm termination

Table 4-7: COM 3 RS-422 Termination Select Jumper Settings

RS-485 (J10) Setting	Description
Short	120 ohm termination
Open	No 120 ohm termination

Table 4-8: COM 3 RS-485 Termination Select Jumper Settings

Figure 4-7: COM 3 RS-422 and RS-485 Termination Select Jumper Location

4.5.7 CompactFlash® Card Setup

Jumper Label: JCF1

Jumper Type: 2-pin header

Jumper Settings: See Table 4-9

Jumper Location: See Figure 4-4

The CompactFlash® slot is connected through an IDE connection. This jumper sets the CompactFlash® card as the master or slave IDE device.

Setting	Description
Open	Slave
Closed	Master

Table 4-9: CompactFlash® Setup Jumper Settings

Figure 4-8: CompactFlash® Setup Jumper Location

4.5.8 CompactFlash® Voltage Selection

WARNING:

Incorrect voltages can destroy the CF card. Make sure to select a voltage that matches the voltage required by the CF card.

Jumper Label: J_VCF1

Jumper Type: 2-pin header

Jumper Settings: See Table 4-10

Jumper Location: See Figure 4-9

The CompactFlash® voltage selection jumper sets the voltage of the power supplied to the CF card.

Setting	Description
Open	+3.3 V (Default)

Setting	Description
Short	+5.0 V

Table 4-10: CompactFlash® Voltage Selection Jumper Settings

Figure 4-9: CompactFlash® Voltage Selection Jumper Location

4.5.9 LVDS1 Screen Resolution Selection

Jumper Label: J_LCD_TYPE

Jumper Type: 8-pin header

Jumper Settings: See Table 4-11

Jumper Location: See Figure 4-10

The LVDS1 Screen Resolution Selection jumper allows the LVDS screen voltage to be set. The LVDS1 Screen Resolution Selection jumper settings are shown in Table 4-12.

Pin	Description
Open	640 x 480
1-2	800 x 600
3-4	1024 x 768
1-2 and 3-4	1280 x 1024
7-8	1366 x 768
1-2 and 7-8	1920 x 1080

Table 4-11: LVDS1 Screen Resolution Jumper Settings

Figure 4-10: LVDS Screen Resolution Jumper Locations

4.5.10 LVDS Voltage Selection

WARNING:

Incorrect voltages can destroy the LCD panel. Make sure to select a voltage that matches the voltage required by the LCD panel.

Jumper Label: J_VLVDS1

Jumper Type: 6-pin header

Jumper Settings: See Table 4-12

Jumper Location: See Figure 4-11

The LCD voltage selection jumper sets the voltage of the power supplied to the LCD panel.

Setting	Description
1-2	+3.3 V (Default)
3-4	+5.0 V
5-6	+12 V

Table 4-12: LVDS Voltage Selection Jumper Settings

Figure 4-11: LVDS Voltage Selection Jumper Locations

4.5.11 PCI-104 Voltage Setup

Jumper Label: JP1

Jumper Type: 3-pin header

Jumper Settings: See Table 4-13

Jumper Location: See Figure 4-12

This jumper selects the voltage supplied to the PCI-104 expansion module.

Setting	Description
1-2	+5.0 V
2-3	+3.3 V

Table 4-13: PCI-104 Voltage Jumper Settings

Figure 4-12: PCI-104 Voltage Jumper Location

4.6 Chassis Installation

4.6.1 Airflow

WARNING:

Airflow is critical to the cooling of the CPU and other onboard components. The chassis in which the NANO-PV-D4251/N4551/D5251 must have air vents to allow cool air to move into the system and hot air to move out.

The NANO-PV-D4251/N4551/D5251 must be installed in a chassis with ventilation holes on the sides allowing airflow to travel through the heat sink surface. In a system with an individual power supply unit, the cooling fan of a power supply can also help generate airflow through the board surface.

4.6.2 Motherboard Installation

To install the NANO-PV-D4251/N4551/D5251 motherboard into the chassis please refer to the reference material that came with the chassis.

4.7 Internal Peripheral Device Connections

This section outlines the installation of peripheral devices to the onboard connectors

4.7.1 AT/ATX Power Connection

Follow the instructions below to connect the NANO-PV-D4251/N4551/D5251 to an AT or ATX power supply.

WARNING:

Disconnect the power supply power cord from its AC power source to prevent a sudden power surge to the NANO-PV-D4251/N4551/D5251.

- Step 5: Locate the power cable. The power cable is shown in the packing list inChapter 3.
- Step 6: Connect the Power Cable to the Motherboard. Connect the 4-pin (2x2) Molex type power cable connector to the AT/ATX power connector on the motherboard. See Figure 4-13.

Figure 4-13: Power Cable to Motherboard Connection

Step 7: Connect Power Cable to Power Supply. Connect one of the 4-pin (1x4) Molex type power cable connectors to an AT/ATX power supply. See Figure 4-14.

Figure 4-14: Connect Power Cable to Power Supply

4.7.2 Audio Kit Installation

The Audio Kit that came with the NANO-PV-D4251/N4551/D5251 connects to the audio connector on the NANO-PV-D4251/N4551/D5251. The audio kit consists of three audio jacks. Mic-in connects to a microphone. Line-in provides a stereo line-level input to connect to the output of an audio device. Line-out, a stereo line-level output, connects to two amplified speakers. To install the audio kit, please refer to the steps below:

- **Step 8:** Locate the audio connector. The location of the 10-pin audio connector is shown in **Chapter 3**.
- Step 9: Align pin 1. Align pin 1 on the on-board connector with pin 1 on the audio kit connector. Pin 1 on the audio kit connector is indicated with a white dot. See Figure 4-15.

Figure 4-15: Audio Kit Cable Connection

Step 10: Connect the audio devices. Connect speakers to the line-out audio jack.
Connect the output of an audio device to the line-in audio jack. Connect a microphone to the mic-in audio jack.

4.7.3 Single RS-232 Cable (w/o Bracket)

The single RS-232 cable consists of one serial port connector attached to a serial communications cable that is then attached to a D-sub 9 male connector. To install the single RS-232 cable, please follow the steps below.

- Step 1: Locate the connector. The location of the RS-232 connector is shown in Chapter 3.
- Step 2: Insert the cable connector. Insert the connector into the serial port box header.

 See Figure 4-16. A key on the front of the cable connectors ensures the connector can only be installed in one direction.

Figure 4-16: Single RS-232 Cable Installation

- **Step 3: Secure the bracket**. The single RS-232 connector has two retention screws that must be secured to a chassis or bracket.
- **Step 4:** Connect the serial device. Once the single RS-232 connector is connected to a chassis or bracket, a serial communications device can be connected to the system.

4.8 External Peripheral Interface Connection

The following external peripheral devices can be connected to the external peripheral interface connectors.

- Keyboard and mouse
- RJ-45 Ethernet cable connector
- Serial devices
- USB devices
- VGA monitor

To install these devices, connect the corresponding cable connector from the actual device to the corresponding NANO-PV-D4251/N4551/D5251 external peripheral interface connector making sure the pins are properly aligned.

4.8.1 LAN Connection (Single Connector)

There is one external RJ-45 LAN connector. The RJ-45 connector enables connection to an external network. To connect a LAN cable with an RJ-45 connector, please follow the instructions below.

- Step 1: Locate the RJ-45 connectors. The location of the LAN connector is shown in Chapter 4.
- **Step 2:** Align the connectors. Align the RJ-45 connector on the LAN cable with one of the RJ-45 connectors on the NANO-PV-D4251/N4551/D5251. See Figure 4-17.

Figure 4-17: LAN Connection

Step 3: Insert the LAN cable RJ-45 connector. Once aligned, gently insert the LAN cable RJ-45 connector into the on-board RJ-45 connector.

4.8.2 PS/2 Y-Cable Connection

The NANO-PV-D4251/N4551/D5251 has a PS/2 connector on the external peripheral interface panel. The dual PS/2 connector is connected to the PS/2 Y-cable that came with the NANO-PV-D4251/N4551/D5251. One of the PS/2 cables is connected to a keyboard and the other to a mouse to the system. Follow the steps below to connect a keyboard and mouse to the NANO-PV-D4251/N4551/D5251.

- Step 1: Locate the dual PS/2 connector. The location of the PS/2 connector is shown in Chapter 3.
- Step 2: Insert the keyboard/mouse connector. Insert the PS/2 connector on the end of the PS/2 y-cable into the external PS/2 connector. See Figure 4-18.

Figure 4-18: PS/2 Keyboard/Mouse Connector

Step 3: Connect the keyboard and mouse. Connect the keyboard and mouse to the appropriate connector. The keyboard and mouse connectors can be distinguished from each other by looking at the small graphic at the top of the connector.

4.8.3 Serial Device Connection

The NANO-PV-D4251/N4551/D5251 has a single female DB-9 connector on the external peripheral interface panel for a serial device. Follow the steps below to connect a serial device to the NANO-PV-D4251/N4551/D5251.

- Step 1: Locate the DB-9 connector. The location of the DB-9 connector is shown in Chapter 3.
- Step 2: Insert the serial connector. Insert the DB-9 connector of a serial device into the DB-9 connector on the external peripheral interface. See Figure 4-19.

Figure 4-19: Serial Device Connector

Step 3: Secure the connector. Secure the serial device connector to the external interface by tightening the two retention screws on either side of the connector.

4.8.4 USB Connection (Dual Connector)

The external USB Series "A" receptacle connectors provide easier and quicker access to external USB devices. Follow the steps below to connect USB devices to the NANO-PV-D4251/N4551/D5251.

Step 1: Locate the USB Series "A" receptacle connectors. The location of the USB Series "A" receptacle connectors are shown in Chapter 3.

Step 2: Insert a USB Series "A" plug. Insert the USB Series "A" plug of a device into the USB Series "A" receptacle on the external peripheral interface. See Figure 4-20.

Figure 4-20: USB Connector

4.8.5 VGA Monitor Connection

The NANO-PV-D4251/N4551/D5251 has a single female DB-15 connector on the external peripheral interface panel. The DB-15 connector is connected to a CRT or VGA monitor. To connect a monitor to the NANO-PV-D4251/N4551/D5251, please follow the instructions below.

- Step 1: Locate the female DB-15 connector. The location of the female DB-15 connector is shown in Chapter 3.
- **Step 2:** Align the VGA connector. Align the male DB-15 connector on the VGA screen cable with the female DB-15 connector on the external peripheral interface.

Step 3: Insert the VGA connector Once the connectors are properly aligned with the insert the male connector from the VGA screen into the female connector on the NANO-PV-D4251/N4551/D5251. See Figure 4-21.

Figure 4-21: VGA Connector

Step 4: Secure the connector. Secure the DB-15 VGA connector from the VGA monitor to the external interface by tightening the two retention screws on either side of the connector.

4.9 Software Installation

All the drivers for the NANO-PV-D4251/N4551/D5251 are on the CD that came with the system. To install the drivers, please follow the steps below.

Step 1: Insert the CD into a CD drive connected to the system.

NOTE:

If the installation program doesn't start automatically: Click "Start->My Computer->CD Drive->autorun.exe"

Step 2: The driver main menu appears (Figure 4-22).

Figure 4-22: Introduction Screen

Step 3: Click NANO-PV-D4251/N4551/D5251.

Step 4: A new screen with a list of available drivers appears (**Figure 4-23**).

Figure 4-23: Available Drivers

Step 5: Install all of the necessary drivers in this menu.

Chapter

5

BIOS Screens

5.1 Introduction

The BIOS is programmed onto the BIOS chip. The BIOS setup program allows changes to certain system settings. This chapter outlines the options that can be changed.

5.1.1 Starting Setup

The AMI BIOS is activated when the computer is turned on. The setup program can be activated in one of two ways.

- 1. Press the **DELETE** key as soon as the system is turned on or
- 2. Press the **DELETE** key when the "**Press Del to enter SETUP**" message appears on the screen.

If the message disappears before the **DELETE** key is pressed, restart the computer and try again.

5.1.2 Using Setup

Use the arrow keys to highlight items, press **ENTER** to select, use the PageUp and PageDown keys to change entries, press **F1** for help and press **Esc** to quit. Navigation keys are shown in.

Key	Function
Up arrow	Move to previous item
Down arrow	Move to next item
Left arrow	Move to the item on the left hand side
Right arrow	Move to the item on the right hand side
F1 key	General help, only for Status Page Setup Menu and Option
	Page Setup Menu
F2 key	Load previous values.
F3 key	Load optimized defaults

Key	Function	
F4 key	Save all the CMOS changes	
Esc key	Main Menu – Quit and not save changes into CMOS	
	Status Page Setup Menu and Option Page Setup Menu	
	Exit current page and return to Main Menu	

Table 5-1: BIOS Navigation Keys

5.1.3 Getting Help

When **F1** is pressed a small help window describing the appropriate keys to use and the possible selections for the highlighted item appears. To exit the Help Window press **Esc** or the **F1** key again.

5.1.4 Unable to Reboot After Configuration Changes

If the computer cannot boot after changes to the system configuration is made, CMOS defaults. Use the jumper described in Chapter 4.

5.1.5 BIOS Menu Bar

The **menu bar** on top of the BIOS screen has the following main items:

- Main Changes the basic system configuration.
- Advanced Changes the advanced system settings.
- Chipset Changes the chipset settings.
- Boot Changes the system boot configuration.
- Security Sets User and Supervisor Passwords.
- Save & Exit Selects exit options and loads default settings

The following sections completely describe the configuration options found in the menu items at the top of the BIOS screen and listed above.

5.2 Main

The **Main** BIOS menu (**BIOS Menu 1**) appears when the **BIOS Setup** program is entered. The **Main** menu gives an overview of the basic system information.

	tility - Copyright				nc.
Advanced	Chipset Boot	Security	Save &	Exit	
BIOS Information BIOS Vendor Core Version Compliency Project Version Build Date	4.6.4 UEFI SA25A	can Megatre .0 0.20 2.0 R11.ROM /2010 20:25	:34 ←	·→: Select Sc ↓: Select It	
System Date System Time Access Level	[14:2	09/23/2010] 0:27] istrator	Er F1 F2 F3	nterSelect General H Previous Optimized Save	elp Values
Version 2.02	2.1205. Copyright (C) 2010 Ame:	rican Me	gatrends, Inc	

BIOS Menu 1: Main

→ BIOS Information

The **BIOS Information** lists a brief summary of the BIOS. The fields in **BIOS Information** cannot be changed. The items shown in the system overview include:

BIOS Vendor: Installed BIOS vendor

Core Version: Current BIOS version

Project Version: the board version

Build Date: Date the current BIOS version was made

The System Overview field also has two user configurable fields:

→ System Date [xx/xx/xx]

Use the **System Date** option to set the system date. Manually enter the day, month and year.

→ System Time [xx:xx:xx]

Use the **System Time** option to set the system time. Manually enter the hours, minutes and seconds.

5.3 Advanced

Use the **Advanced** menu (**BIOS Menu 2**) to configure the CPU and peripheral devices through the following sub-menus:

WARNING!

Setting the wrong values in the sections below may cause the system to malfunction. Make sure that the settings made are compatible with the hardware.

Aptio Setup U	tility - Cop	yright (C) 2010 An	merica	n Megatrends, Inc.
Main	Chipset	Boot	Security	Save	& Exit
> ACPI Settings > Trusted Computing > CPU Configuration > IDE Configuration > USB Configuration > Super IO Configuration > H/M Monitor > Serial Port Conso	ation le Redirecti				<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
version 2.0	2.1205. Copy	right (C) 2010 Ame	rican	Megatrends, Inc.

BIOS Menu 2: Advanced

5.3.1 ACPI Settings

The **ACPI Settings** menu (**BIOS Menu 3**) configures the Advanced Configuration and Power Interface (ACPI) options.

Acri Sleep State [S3 (Suspend to R...)]

←→: Select Screen

↑ ↓: Select Item
EnterSelect
F1 General Help
F2 Previous Values
F3 Optimized
Defaults
F4 Save
ESC Exit

Version 2.01.1205. Copyright (C) 2010 American Megatrends, Inc.

BIOS Menu 3: ACPI Settings

→ ACPI Sleep State [S3 (Suspend to RAM)]

Use the **ACPI Sleep State** option to specify the sleep state the system enters when it is not being used.

→ Suspend Disabled

S1 (CPU Stop Clock)

The system enters S1(POS) sleep state. The system appears off. The CPU is stopped; RAM is refreshed; the system is running in a low power mode.

→ S3 (Suspend to DEFAULT RAM)

The caches are flushed and the CPU is powered off. Power to the RAM is maintained. The computer returns slower to a working state, but more power is saved.

5.3.2 Trusted Computing

Use the **Trusted Computing** menu (**BIOS Menu 4**) to configure settings related to the Trusted Computing Group (TCG) Trusted Platform Module (TPM).

Aptio Setup Utility - Copyright (C) 2010 American Megatrends, Inc. TPM Configuration Current TPM Status Information **←→**: Select Screen NO TPM Hardware $\uparrow \downarrow$: Select Item EnterSelect General Help Previous Values Optimized Defaults F4 Save ESC Exit Version 2.02.1205. Copyright (C) 2010 American Megatrends, Inc.

BIOS Menu 4: TPM Configuration

→ TPM Support [Disable]

Use the **TPM Support** option to configure support for the TPM.

Disable DEFAULT TPM support is disabled.

Enable TPM support is enabled.

5.3.3 CPU Configuration

Use the **CPU Configuration** menu (**BIOS Menu 5**) to view detailed CPU specifications and configure the CPU.

Aptio Setup Utility	- Copyright (C) 2010 America	n Megatrends, Inc.
CPU Configuration		
Processor Type	Intel(R) Atom(TM) CPU CPU D425 @ 1.80GHz	
EMT64	Supported	
Processor Speed	1800 MHz	
System Bus Speed	800 MHz	
Ratio Status	9	←→: Select Screen
Actual Ratio	9	↑ ↓: Select Item
Processor Stepping	106ca	EnterSelect
Microcode Revision	263	F1 General Help
L1 Cache RAM	56 k	F2 Previous Values
L2 Cache RAM	512 k	F3 Optimized
Processor Core	Single	Defaults
Hyper-Threading	Supported	F4 Save
		ESC Exit
Version 2.02.1205.	. Copyright (C) 2010 American	Megatrends, Inc.

BIOS Menu 5: CPU Configuration

The CPU Configuration menu (BIOS Menu 5) lists the following CPU details:

- Processor Type: Lists the brand name of the CPU being used
- EMT64: Indicates if the EM64T is supported by the CPU.
- Processor Speed: Lists the CPU processing speed
- System Bus: Lists the system bus
- Ratio Status: List the maximum FSB divisor
- Actual Ratio: Lists current FSB divisor
- Processor Stepping: Lists the CPU processing stepping
- Microcode Revision: Lists the microcode revision
- L1 Cache RAM: Lists the CPU L1 cache size
- L2 Cache RAM: Lists the CPU L2 cache size
- Processor Core: Lists the number of the processor core
- Hyper-Threading: Indicates if the Intel Hyper-Threading Technology is supported by the CPU.

5.3.4 SATA Configuration

Use the **SATA Configuration** menu (**BIOS Menu 6**) to change and/or set the configuration of the SATA devices installed in the system.

Aptio Setup Utility	- Copyright (C) 2010 Americ	an Megatrends, Inc.
DATA Magter	Not Present	
PATA Master PATA Slave	Not Present	
SATA Port0 SATA Port1	Not Present Not Present	←→: Select Screen
SATA Port2 SATA Port3	Not Present Not Present	↑↓: Select Item EnterSelect
ATA/IDE Configuration	[Enhanced]	F1 General Help F2 Previous Values
Configure SATA as	[IDE]	F3 Optimized Defaults F4 Save
Version 2 02 1205	Copyright (C) 2010 American	ESC Exit

BIOS Menu 6: IDE Configuration

→ ATA/IDE Configurations [Enhanced]

Use the ATA/IDE Configurations option to configure the ATA/IDE controller.

→	Disabled		Disables the on-board ATA/IDE controller.
→	Compatible		Configures the on-board ATA/IDE controller to be in compatible mode. In this mode, a SATA channel will replace one of the IDE channels. This mode supports up to 4 storage devices.
→	Enhanced	DEFAULT	Configures the on-board ATA/IDE controller to be in Enhanced mode. In this mode, IDE channels and SATA channels are separated. This mode supports up to 6 storage devices. Some legacy OS do not support this mode.

→ Configure SATA as [IDE]

Use the Configure SATA as option to configure SATA devices as normal IDE devices.

→ IDE DEFAULT Configures SATA devices as normal IDE device.

→ AHCI Configures SATA devices as AHCI device.

5.3.5 USB Configuration

Use the **USB Configuration** menu (**BIOS Menu 7**) to read USB configuration information and configure the USB settings.

BIOS Menu 7: USB Configuration

→ USB Devices

The USB Devices Enabled field lists the USB devices that are enabled on the system

→ Legacy USB Support [Enabled]

Use the **Legacy USB Support** BIOS option to enable USB mouse and USB keyboard support. Normally if this option is not enabled, any attached USB mouse or USB keyboard does not become available until a USB compatible operating system is fully booted with all USB drivers loaded. When this option is enabled, any attached USB mouse or USB

keyboard can control the system even when there is no USB driver loaded onto the system.

→	Enabled	DEFAULT	Legacy USB support enabled
→	Disabled		Legacy USB support disabled
→	Auto		Legacy USB support disabled if no USB devices are
			connected

5.3.6 Super IO Configuration

Use the **Super IO Configuration** menu (**BIOS Menu 8**) to set or change the configurations for the FDD controllers, parallel ports and serial ports.

Aptio Setup Utility - Copyright (C) 2010 America	n Megatrends, Inc.
Super IO Configuration	
Super IO Chip Finteck F81865 > Serial Port 0 Configuration > Serial Port 1 Configuration > Serial Port 2 Configuration > Serial Port 3 Configuration > Serial Port 4 Configuration > IrDA Configuration > Parallel Port Configuration	<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.02.1205. Copyright (C) 2010 American	Megatrends, Inc.

BIOS Menu 8: Super IO Configuration

5.3.6.1 Serial Port n Configuration

Use the Serial Port n Configuration menu (BIOS Menu 9) to configure the serial port n.

Aptio Setup Utility - Copyright (C) 2010 American Megatrends, Inc. Serial Port 0 Configuration Serial Port [Enabled] Device Settings IO=3F8h; IRQ=4 **←→**: Select Screen Change Settings [Auto] $\uparrow \downarrow$: Select Item General Help Previous Values Optimized Defaults F4 Save ESC Exit Version 2.02.1205. Copyright (C) 2010 American Megatrends, Inc.

BIOS Menu 9: Serial Port n Configuration Menu

5.3.6.1.1 Serial Port 0 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

Disabled Disable the serial portEnabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

→	Auto	DEFAULT	The serial port IO port address and interrupt address
			are automatically detected.
→	IO=3F8h;		Serial Port I/O port address is 3F8h and the interrupt
	IRQ=4		address is IRQ4

→	IO=3F8h;	Serial Port I/O port address is 3F8h and the interrupt
	IRQ=3, 4	address is IRQ3 and IRQ4
→	IO=2F8h;	Serial Port I/O port address is 2F8h and the interrupt
	IRQ=3, 4	address is IRQ3 and IRQ4
→	IO=2C0h;	Serial Port I/O port address is 2C0h and the interrupt
	IRQ=3, 4	address is IRQ3 and IRQ4
→	IO=2C8h;	Serial Port I/O port address is 2C8h and the interrupt
	IRQ=3, 4	address is IRQ3 and IRQ4

5.3.6.1.2 Serial Port 1 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

→	Disabled		Disable the serial port
→	Enabled	DEFAULT	Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

→	Auto	DEFAULT	The serial port IO port address and interrupt address
			are automatically detected.
→	IO=2F8h;		Serial Port I/O port address is 2F8h and the interrupt
	IRQ=3		address is IRQ3
→	IO=3F8h;		Serial Port I/O port address is 3F8h and the interrupt
	IRQ=3, 4		address is IRQ3 and IRQ4
→	IO=2F8h;		Serial Port I/O port address is 2F8h and the interrupt
	IRQ=3, 4		address is IRQ3 and IRQ4
→	IO=2C0h;		Serial Port I/O port address is 2C0h and the interrupt
	IRQ=3, 4		address is IRQ3 and IRQ4

→ IO=2C8h; Serial Port I/O port address is 2C8h and the interrupt address is IRQ3 and IRQ4

5.3.6.1.3 Serial Port 2 Configuration

→ Serial Port [Enabled]

Use the Serial Port option to enable or disable the serial port.

→ Disabled Disable the serial port

→ Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

Auto **DEFAULT** The serial port IO port address and interrupt address are automatically detected. IO=3E8h; Serial Port I/O port address is 3E8h and the interrupt IRQ=11 address is IRQ11 IO=3E8h; Serial Port I/O port address is 3E8h and the interrupt IRQ=10, 11 address is IRQ10, 11 IO=2E8h; Serial Port I/O port address is 2E8h and the interrupt IRQ=10, 11 address is IRQ10, 11 IO=2D0h; Serial Port I/O port address is 2D0h and the interrupt IRQ=10, 11 address is IRQ10, 11 IO=2D8h; Serial Port I/O port address is 2D8h and the interrupt IRQ=10, 11 address is IRQ10, 11

→ Serial Port 2 Mode [RS232]

Use the **Serial Port 2 Mode** option to set the Serial Port 2 signaling mode.

→ RS232 DEFAULT Serial Port 2 signaling mode is RS-232

RS422/RS485 Serial Port 2 signaling mode is RS-422/RS-485

5.3.6.1.4 Serial Port 3 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

Disabled
 Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

Auto DEFAULT The serial port IO port address and interrupt address

are automatically detected.

IO=2E8h; Serial Port I/O port address is 2E8h and the interrupt

IRQ=10 address is IRQ10

IO=3E8h; Serial Port I/O port address is 3E8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2E8h; Serial Port I/O port address is 2E8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D0h; Serial Port I/O port address is 2D0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

→ IO=2D8h; Serial Port I/O port address is 2D8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

5.3.6.1.5 Serial Port 4 Configuration

→ Serial Port [Enabled]

Use the Serial Port option to enable or disable the serial port.

Disabled
 Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

Auto DEFAULT The serial port IO port address and interrupt address

are automatically detected.

IO=2C0h; Serial port I/O port address is 2E8h and the interrupt

IRQ=10 address is IRQ10

→ IO=2C0h; Serial port I/O port address is 2C0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

→ IO=2C8h; Serial port I/O port address is 2C8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

→ IO=2D0h; Serial port I/O port address is 2D0h and the interrupt

IRQ=10, 11 address is IRQ10 and IRQ11

→ IO=2D8h; Serial port I/O port address is DC8h and the interrupt

IRQ=10, 11 address is IRQ10 and IRQ11

IO=2E0h; Serial port I/O port address is 2E0h and the interrupt

IRQ=10, 11 address is IRQ10 and IRQ11

5.3.6.2 IrDA Configuration

Use the IrDA Configuration menu (BIOS Menu 9) to configure the serial port n.

Aptio Setup Utility - Copyright (C) 2010 American Megatrends, Inc. IrDA Configuration IrDA [Enabled] Device Settings IO=2E0h; IRQ=10 ←→: Select Screen Change Settings [Auto] $\uparrow \downarrow$: Select Item General Help Previous Values Optimized Defaults F4 Save ESC Exit Version 2.02.1205. Copyright (C) 2010 American Megatrends, Inc.

BIOS Menu 10: IrDA Configuration Menu

→ IrDA [Enabled]

Use the IrDA option to enable or disable the infrared function.

Disabled Disable the infrared functionEnabled DEFAULT Enable the infrared function

→ Change Settings [Auto]

Use the **Change Settings** option to change the IrDA I/O port address and interrupt address.

→	Auto	DEFAULT	The IrDA I/O port address and interrupt address are automatically detected.
→	IO=2E0h; IRQ=10		IrDA I/O port address is 2E0h and the interrupt address is IRQ10
→	IO=2C0h; IRQ=10, 11		IrDA I/O port address is 2C0h and the interrupt address is IRQ10, 11

ID=2C8h; IrDA I/O port address is 2C8h and the in

IRQ=10, 11 address is IRQ10, 11

IRQ=10, 11 address is IRQ10 and IRQ11

In DA I/O port address is 2D8h and the interrupt

IRQ=10, 11 address is IRQ10 and IRQ11

→ IO=2E0h; IrDA I/O port address is 2E0h and the interrupt

IRQ=10, 11 address is IRQ10 and IRQ11

5.3.6.3 Parallel Port Configuration

Use the Parallel Port Configuration menu (BIOS Menu 9) to configure the serial port n.

Aptio Setup Utility - Copyright (C) 2010 American Megatrends, Inc.

Parallel Port Configuration

Parallel Port [Enabled]

Device Settings IO=378h; IRQ=7

Change Settings [Auto]

Device Mode [Printer Mode]

←→: Select Screen

↑ ↓: Select Item

EnterSelect

F1 General Help F2 Previous Values

F3 Optimized

Defaults F4 Save

F4 Save ESC Exit

Version 2.02.1205. Copyright (C) 2010 American Megatrends, Inc.

BIOS Menu 11: Parallel Port Configuration Menu

→ Parallel Port [Enabled]

Use the **Parallel Port** option to enable or disable the parallel port.

Disabled Disable the parallel port

Enabled DEFAULT Enable the parallel port

→ Change Settings [Auto]

Use the **Change Settings** option to change the parallel port IO port address and interrupt address.

→	Auto	DEFAULT	The parallel port IO port address and interrupt address are automatically detected.
→	IO=378h; IRQ=7		Parallel Port I/O port address is 378h and the interrupt address is IRQ7
→	IO=278h; IRQ=7		Parallel Port I/O port address is 278h and the interrupt address is IRQ7
→	IO=3BCh; IRQ=7		Parallel Port I/O port address is 3BCh and the interrupt address is IRQ7
→	IO=378h		Parallel Port I/O port address is 378h
→	IO=278h		Parallel Port I/O port address is 278h
→	IO=3BCh		Parallel Port I/O port address is 3BCh

→ Device Mode [Printer Mode]

Use the **Device Mode** option to select the mode the parallel port operates in. Configuration options are listed below.

•	Printer Mode	Default

- SPP Mode
- EPP-1.9 and SPP Mode
- EPP-1.7 and SPP Mode
- ECP Mode
- ECP and EPP 1.9 Mode
- ECP and EPP 1.7 Mode

5.3.7 H/W Monitor

The H/W Monitor menu (**BIOS Menu 12**) shows the operating temperature, fan speeds and system voltages.

Aptio Setup Utility	- Copyright (C) 2010 Amer	rican Megatrends, Inc.
PC Health Status		
10 110012011 2000002		
CPU Temperature	:+39 C	
SYS Temperature	:+40 C	
CPU FAN Speed	:4950 RPM	
VCC3V	:+3.312 V	
V_core	:+1.104 V	
Vcc	:+4.961 V	()
Vcc12	:+11.176 V	←→: Select Screen
V1_5VDDR	:+1.776 V	↑ ↓: Select Item
VSB3V	:+3.312 V	EnterSelect
VBAT	:+3.232 V	F1 General Help
CPU Smart Fan control	[Auto Mode]	F2 Previous Values
Temperature Bound1	60	F3 Optimized
Temperature Bound2	50	Defaults
Temperature Bound3	40	F4 Save
Temperature Bound4	30	ESC Exit
Version 2 02 1205	Copyright (C) 2010 Ameri	can Megatrends Inc

BIOS Menu 12: Hardware Health Configuration

→ PC Health Status

The following system parameters and values are shown. The system parameters that are monitored are:

- System Temperatures:
 - O CPU Temperature
 - O System Temperature
- Fan Speeds:
 - O CPU Fan Speed
- Voltages:
 - O V_core
 - O Vcc
 - O Vcc12
 - O V1_5VDDR
 - o VSB3V
 - O VBAT

→ CPU Smart Fan control [Auto Mode]

Use the CPU Smart Fan control option to configure the CPU fan.

Auto Mode The fan adjusts its speed using these settings:

Temperature Bound 1

Temperature Bound 2

Temperature Bound 3

Temperature Bound 4

Manual Mode The fan spins at the speed set in:

Manual Duty Cycle Setting

5.3.8 Serial Port Console Redirection

The **Serial Port Console Redirection** menu (**BIOS Menu 13**) allows the console redirection options to be configured. Console redirection allows users to maintain a system remotely by re-directing keyboard input and text output through the serial port.

BIOS Menu 13: Serial Port Console Redirection

→ Console Redirection [Disabled]

Use Console Redirection option to enable or disable the console redirection function.

→	Disabled	DEFAULT	Disabled the console redirection function
→	Enabled		Enabled the console redirection function

5.4 Chipset

Use the **Chipset** menu (**BIOS Menu 14**) to access the Northbridge and Southbridge configuration menus

WARNING!

Setting the wrong values for the Chipset BIOS selections in the Chipset BIOS menu may cause the system to malfunction.

BIOS Menu 14: Chipset

5.4.1 Host Bridge Configuration

Use the **Host Bridge Configuration** menu (**BIOS Menu 15**) to configure the Northbridge chipset.

BIOS Menu 15: Host Bridge Chipset Configuration

5.4.1.1 OnChip VGA Configuration

Use the OnChip VGA Configuration menu (BIOS Menu 15) to configure the OnChip VGA.

BIOS Menu 16: OnChip VGA Configuration

®Technology Corp

NANO-PV-D4251/N4551/D5251 EPIC SBC

→ Share Memory Size [8 MB]

Use the **Share Memory Size** option to set the amount of system memory allocated to the integrated graphics processor when the system boots. The system memory allocated can then only be used as graphics memory, and is no longer available to applications or the operating system. Configuration options are listed below:

- Disabled
- 1 MB
- 8 MB Default

→ Multi-Monitor Support [Enabled]

Use Multi-Monitor Support option to enable or disable the multi-monitor function.

Disabled Disabled the multi-monitor function

Enabled DEFAULT Enabled the multi-monitor function

5.4.2 South Bridge Configuration

Use the **South Bridge Configuration** menu (**BIOS Menu 17**) to configure the Southbridge chipset.

BIOS Menu 17: South Bridge Chipset Configuration

→ HD Audio Controller [Enabled]

Use the **HD Audio Controller** option to enable or disable the High Definition Audio controller.

→ Enabled DEFAULT The onboard High Definition Audio controller

automatically detected and enabled

Disabled The onboard High Definition Audio controller is disabled

→ USB Function [Enabled]

Use the **USB Function** BIOS option to enable or disable USB function support.

→ Disabled USB function support disabled

Enabled DEFAULT USB function support enabled

→ USB 2.0 (EHCI) Support [Enabled]

Use the USB 2.0 (EHCI) Support BIOS option to enable or disable USB 2.0 support.

Enabled DEFAULT USB 2.0 (EHCI) support enabled

Disabled USB 2.0 (EHCI) support disabled

→ Set Spread Spectrum Function [Disabled]

The **Set Spread Spectrum Function** option can help to improve CPU EMI issues.

→ **Disabled DEFAULT** The spread spectrum mode is disabled

The spread spectrum mode is enabled

5.4.3 Intel IGD SWSCI OpRegion

Use the **Intel IGD SWSCI OpRegion** menu to configure the video device connected to the system.

Aptio Setup Utility - Cop	yright (C) 2010 America	n Megatrends, Inc.
Intel IGD SWSCI OpRegion Config		
DVMT Mode Select DVMT/Fixed Memory IGD - Boot Type LCD Panel Type	[DVMT Mode] [256 MB] [VBIOS Default] [640x480 18bit]	<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.02.1205. Copyr	right (C) 2010 American	Megatrends, Inc.

BIOS Menu 18: South Bridge Chipset Configuration

→ DVMT Mode Select [DVMT Mode]

Use the **DVMT Mode Select** option to select the Intel Dynamic Video Memory Technology (DVMT) operating mode.

→	Fixed		A fixed portion of graphics memory is reserved as
	Mode		graphics memory.
→	DVMT DEFAULT		Graphics memory is dynamically allocated according
	Mode		to the system and graphics needs.

→ DVMT/FIXED Memory [256 MB]

Use the **DVMT/FIXED Memory** option to specify the maximum amount of memory that can be allocated as graphics memory. Configuration options are listed below.

■ 128 MB

256 MB Default

Maximum

→ IGD - Boot Type [VBIOS Default]

Use the **IGD - Boot Type** option to select the display device used by the system when it boots. Configuration options are listed below.

- VBIOS Default
 DEFAULT
- CRT
- LFP
- CRT + LFP

→ LCD Panel Type [Select by Panel ID]

Use the **LCD Panel Type** option to select the type of flat panel connected to the system. Configuration options are listed below.

- 640x480 18bit **DEFAULT**
- 800x480 18bit
- 800x600 18bit
- 1024x768 18bit
- 1280x1024 18bit
- 1366x768 18bit
- 1280x800 18bit
- 1280x600 18bit

5.5 Boot

Use the **Boot** menu (**BIOS Menu 19**) to configure system boot options.

BIOS Menu 19: Boot

®Technology Corp.

NANO-PV-D4251/N4551/D5251 EPIC SBC

→ Bootup NumLock State [On]

Use the **Bootup NumLock State** BIOS option to specify if the number lock setting must be modified during boot up.

→ On DEFAULT Allows the Number Lock on the keyboard to be

enabled automatically when the computer system boots up. This allows the immediate use of the

10-key numeric keypad located on the right side of

the keyboard. To confirm this, the Number Lock LED $\,$

light on the keyboard is lit.

Off Does not enable the keyboard Number Lock

automatically. To use the 10-keys on the keyboard, press the Number Lock key located on the upper left-hand corner of the 10-key pad. The Number

Lock LED on the keyboard lights up when the

Number Lock is engaged.

→ Quiet Boot [Enabled]

Use the Quiet Boot BIOS option to select the screen display when the system boots.

→ **Disabled** Normal POST messages displayed

Enabled DEFAULT OEM Logo displayed instead of POST messages

→ Launch PXE OpROM [Disabled]

Use the **Launch PXE OpROM** option to enable or disable boot option for legacy network devices.

→ Disabled DEFAULT Ignore all PXE Option ROMs

Enabled Load PXE Option ROMs.

5.6 Security

Use the Security menu (BIOS Menu 20) to set system and user passwords.

Aptio Setup Utility - Copyright (C) 2010 American Megatrends, Inc. Advanced Chipset Save & Exit Boot Password Description If ONLY the Administrator's password is set, then this only limits access to Setup and is **←→**: Select Screen only asked for when entering Setup ↑↓: Select Item If ONLY the User's password is set, then this is a power on password and must be entered to EnterSelect boot or enter Setup. In Setup the User will F1 General Help have Administrator rights. F2 Previous Values F3 Optimized Administrator Password Defaults User Password F4 Save ESC Exit Version 2.02.1205. Copyright (C) 2010 American Megatrends, Inc.

BIOS Menu 20: Security

Administrator Password

Use the **Administrator Password** to set or change a administrator password.

→ User Password

Use the **User Password** to set or change a user password.

5.7 Exit

Use the **Exit** menu (**BIOS Menu 21**) to load default BIOS values, optimal failsafe values and to save configuration changes.

BIOS Menu 21:Exit

→ Save Changes and Reset

Use the **Save Changes and Reset** option to save the changes made to the BIOS options and to exit the BIOS configuration setup program.

→ Discard Changes and Reset

Use the **Discard Changes and Reset** option to exit the system without saving the changes made to the BIOS configuration setup program.

→ Restore Defaults

Use the **Restore Defaults** option to load the optimal default values for each of the parameters on the Setup menus. **F3 key can be used for this operation.**

→ Save as User Defaults

Use the Save as User Defaults option to save the changes done so far as user defaults.

→ Restore User Defaults

Use the **Restore User Defaults** option to restore the user defaults to all the setup options.

BIOS Options

Below is a list of BIOS configuration options in the BIOS chapter.

BIOS Information	70
System Date [xx/xx/xx]	70
System Time [xx:xx:xx]	71
ACPI Sleep State [S3 (Suspend to RAM)]	72
TPM Support [Disable]	73
ATA/IDE Configurations [Enhanced]	75
Configure SATA as [IDE]	76
USB Devices	76
Legacy USB Support [Enabled]	76
Serial Port [Enabled]	78
Change Settings [Auto]	78
Serial Port [Enabled]	79
Change Settings [Auto]	79
Serial Port [Enabled]	80
Change Settings [Auto]	80
Serial Port 2 Mode [RS232]	80
Serial Port [Enabled]	81
Change Settings [Auto]	81
Serial Port [Enabled]	82
Change Settings [Auto]	82
IrDA [Enabled]	83
Change Settings [Auto]	83
Parallel Port [Enabled]	84
Change Settings [Auto]	85
Device Mode [Printer Mode]	85
PC Health Status	86
CPU Smart Fan control [Auto Mode]	87
Console Redirection [Disabled]	87
Share Memory Size [8 MB]	90
Multi-Monitor Support [Enabled]	90
HD Audio Controller [Enabled]	91
USB Function [Enabled]	91
USB 2.0 (EHCI) Support [Enabled]	91

Set Spread Spectrum Function [Disabled]	
DVMT Mode Select [DVMT Mode]	92
DVMT/FIXED Memory [256 MB]	92
IGD - Boot Type [VBIOS Default]	92
LCD Panel Type [Select by Panel ID]	93
Bootup NumLock State [On]	94
Quiet Boot [Enabled]	94
Launch PXE OpROM [Disabled]	94
Administrator Password	95
User Password	95
Save Changes and Reset	96
Discard Changes and Reset	96
Restore Defaults	96
Save as User Defaults	96
Restore User Defaults	97

Appendix

B

One Key Recovery

B.1 One Key Recovery Introduction

The IEI one key recovery is an easy-to-use front end for the Norton Ghost system backup and recovery tool. The one key recovery provides quick and easy shortcuts for creating a backup and reverting to that backup or for reverting to the factory default settings.

The IEI One Key Recovery tool menu is shown below.

Figure B-1: IEI One Key Recovery Tool Menu

Prior to using the IEI One Key Recovery tool (as shown in **Figure B-1**) to backup or restore <u>Windows</u> system, five setup procedures are required.

- 1. Hardware and BIOS setup (see **Section B.2.1**)
- 2. Create partitions (see Section B.2.2)
- 3. Install operating system, drivers and system applications (see **Section B.2.3**)
- 4. Build-up recovery partition (see **Section B.2.4**)
- 5. Create factory default image (see **Section B.2.5**)

After completing the five initial setup procedures as described above, users can access the recovery tool by pressing <F3> while booting up the system. The detailed information of each function is described in **Section B.4**.

NOTE:

The initial setup procedures for Linux system are described in Section B.3.

B.1.1 System Requirement

NOTE:

The recovery CD can only be used with IEI products. The software will fail to run and a warning message will appear when used on non-IEI hardware.

To create the system backup, the main storage device must be split into two partitions (three partitions for Linux). The first partition will be for the operating system, while the second partition will be invisible to the operating system and contain the backup made by the one key recovery software.

The partition created for recovery images must be big enough to contain both the factory default image and the user backup image. The size must be calculated before creating the partitions. Please take the following table as a reference when calculating the size of the partition.

	os	OS IMAGE AFTER GHOST	Compression Ratio
Windows® 7	7 GB	5 GB	70%
Windows® XPE	776 MB	560 MB	70%
Windows® CE 6.0	36 MB	28 MB	77%

Specialized tools are required to change the partition size if the operating system is already installed.

B.1.2 Supported Operating System

The recovery CD is compatible with both Microsoft Windows and Linux operating system (OS). The supported OS versions are listed below.

- Microsoft Windows
 - O Windows XP (Service Pack 2 or 3 required)
 - Windows Vista
 - O Windows 7
 - O Windows CE 5.0
 - O Windows CE 6.0
 - O Windows XP Embedded
- Linux
 - O Fedora Core 12 (Constantine)
 - O Fedora Core 11 (Leonidas)
 - O Fedora Core 10 (Cambridge)
 - O Fedora Core 8 (Werewolf)
 - O Fedora Core 7 (Moonshine)
 - O RedHat RHEL-5.4
 - O RedHat 9 (Ghirke)
 - O Ubuntu 8.10 (Intrepid)
 - O Ubuntu 7.10 (Gutsy)
 - O Ubuntu 6.10 (Edgy)
 - O Debian 5.0 (Lenny)
 - O Debian 4.0 (Etch)
 - O SuSe 11.2
 - O SuSe 10.3

Installing unsupported OS versions may cause the recovery tool to fail.

B.2 Setup Procedure for Windows

Prior to using the recovery tool to backup or restore Windows system, a few setup procedures are required.

- Step 1: Hardware and BIOS setup (see Section B.2.1)
- Step 2: Create partitions (see Section B.2.2)
- Step 3: Install operating system, drivers and system applications (see Section B.2.3)
- Step 4: Build-up recovery partition (see Section B.2.4)
- Step 5: Create factory default image (see Section B.2.5)

The detailed descriptions are described in the following sections.

NOTE:

The setup procedures described below are for Microsoft Windows operating system users. For Linux system, most setup procedures are the same with Microsoft Windows except for several steps which is described in Section B.3.

B.2.1 Hardware and BIOS Setup

- **Step 1:** Make sure the system is powered off and unplugged.
- **Step 2:** Install a hard drive or SSD in the system. An unformatted and unpartitioned disk is recommended.
- **Step 3:** Connect an optical disk drive to the system and insert the recovery CD.

- Step 4: Turn on the system.
- Step 5: Press the <DELETE> key as soon as the system is turned on to enter the BIOS.
- Step 6: Select the connected optical disk drive as the 1st boot device. (Boot → Boot Device Priority → 1st Boot Device).
- **Step 7:** Save changes and restart the computer. Continue to the next section for instructions on partitioning the internal storage.

B.2.2 Create Partitions

To create the system backup, the main storage device must be split into two partitions (three partitions for Linux). The first partition will be for the operating system, while the second partition will be invisible to the operating system and contain the backup made by the one key recovery software.

- **Step 1:** Put the recovery CD in the optical drive of the system.
- Step 2: Boot the system from recovery CD. When prompted, press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient!

Figure B-2: Launching the Recovery Tool

Step 3: The recovery tool setup menu is shown as below.

```
C. X:\I386\system32\cmd.exe

1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text._
```

Figure B-3: Recovery Tool Setup Menu

Step 4: Press <5> then <Enter>.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.5
```

Figure B-4: Command Mode

Step 5: The command prompt window appears. Type the following commands (marked in red) to create two partitions. One is for the OS installation; the other is for saving recovery files and images which will be an invisible partition.

(Press <Enter> after entering each line below)

system32>diskpart

DISKPART>list vol

DISKPART>sel disk 0

DISKPART>create part pri size= ____

DISKPART>assign letter=N

DISKPART>create part pri size=

DISKPART>assign letter=F

DISKPART>exit

system32>format N: /fs:ntfs /q /y

system32>format F: /fs:ntfs /q /v:Recovery /y

system32>exit

Figure B-5: Partition Creation Commands

Use the following commands to check if the partitions were created successfully.

Step 6: Press any key to exit the recovery tool and automatically reboot the system. Please continue to the following procedure: Build-up Recovery Partition.

B.2.3 Install Operating System, Drivers and Applications

Install the operating system onto the unlabelled partition. The partition labeled as "Recovery" is for use by the system recovery tool and should not be used for installing the operating system or any applications.

NOTE:

The operating system installation program may offer to reformat the chosen partition. DO NOT format the partition again. The partition has already been formatted and is ready for installing the new operating system.

To install the operating system, insert the operating system installation CD into the optical drive. Restart the computer and follow the installation instructions.

B.2.4 Build-up Recovery Partition

- Step 1: Put the recover CD in the optical drive.
- **Step 2:** Start the system.
- Step 3: Boot the system from recovery CD. When prompted, press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient!

Figure B-6: Launching the Recovery Tool

Step 4: When the recovery tool setup menu appears, press <2> then <Enter>.

```
2. X:\I386\system32\cmd.exe

1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.2
```

Figure B-7: System Configuration for Windows

Step 5: The Symantec Ghost window appears and starts configuring the system to build-up a recovery partition. In this process, the partition which is created for

recovery files in **Section B.2.2** is hidden and the recovery tool is saved in this partition.

Figure B-8: Build-up Recovery Partition

Step 6: After completing the system configuration, press any key in the following window to reboot the system.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.2
Press any key to continue . . . _
```

Figure B-9: Press any key to continue

Step 7: Eject the recovery CD.

B.2.5 Create Factory Default Image

Before creating the factory default image, please configure the system to a factory default environment, including driver and application installations.

To create a factory default image, please follow the steps below.

Step 1: Turn on the system. When the following screen displays (Figure B-10), press the <F3> key to access the recovery tool. The message will display for 10 seconds, please press F3 before the system boots into the operating system.

Figure B-10: Press F3 to Boot into Recovery Mode

Step 2: The recovery tool menu appears. Type <4> and press <Enter>. (Figure B-11)

```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:4
```

Figure B-11: Recovery Tool Menu

Step 3: The About Symantec Ghost window appears. Click **OK** button to continue.

Figure B-12: About Symantec Ghost Window

Step 4: Use mouse to navigate to the option shown below (Figure B-13).

Figure B-13: Symantec Ghost Path

Step 5: Select the local source drive (Drive 1) as shown in Figure B-14. Then click OK.

Figure B-14: Select a Local Source Drive

Step 6: Select a source partition (Part 1) from basic drive as shown in Figure B-15.

Then click OK.

Figure B-15: Select a Source Partition from Basic Drive

Step 7: Select 1.2: [Recovery] NTFS drive and enter a file name called iei

(Figure B-16). Click Save. The factory default image will then be saved in the selected recovery drive and named IEI.GHO.

WARNING:

The file name of the factory default image must be iei.GHO.

Figure B-16: File Name to Copy Image to

Step 8: When the Compress Image screen in **Figure B-17** prompts, click **High** to make the image file smaller.

Figure B-17: Compress Image

Step 9: The Proceed with partition image creation window appears, click **Yes** to continue.

Figure B-18: Image Creation Confirmation

Step 10: The Symantec Ghost starts to create the factory default image (**Figure B-19**).

Figure B-19: Image Creation Complete

Step 11: When the image creation completes, a screen prompts as shown in Figure B-20.

Click Continue and close the Ghost window to exit the program.

Figure B-20: Image Creation Complete

Step 12: The recovery tool main menu window is shown as below. Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:4

Done!
Press any key to continue . . . _
```

Figure B-21: Press Any Key to Continue

B.3 Setup Procedure for Linux

The initial setup procedures for Linux system are mostly the same with the procedure for Microsoft Windows. Please follow the steps below to setup recovery tool for Linux OS.

- Step 1: Hardware and BIOS setup. Refer to Section B.2.1.
- Step 2: Install Linux operating system. Make sure to install GRUB (v0.97 or earlier)

 MBR type and Ext3 partition type. Leave enough space on the hard drive to

 create the recover partition later.

NOTE:

If the Linux OS is not installed with GRUB (v0.97 or earlier) and Ext3, the Symantec Ghost may not function properly.

While installing Linux OS, please create two partitions:

- Partition 1: /
- Partition 2: SWAP

Please reserve enough space for partition 3 for saving recovery images.

Figure B-22: Partitions for Linux

Step 3: Create a recovery partition. Insert the recovery CD into the optical disk drive.
Follow Step 1 ~ Step 3 described in Section B.2.2. Then type the following commands (marked in red) to create a partition for recovery images.

system32>diskpart

DISKPART>list vol

DISKPART>sel disk 0

DISKPART>create part pri size= ___

DISKPART>assign letter=N

DISKPART>exit

system32>format N: /fs:ntfs /q /v:Recovery /y

system32>exit

Step 4: Build-up recovery partition. Press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient. When the recovery tool setup menu appears, type <3> and press <Enter> (Figure B-23). The Symantec Ghost window appears and starts configuring the system to build-up a recovery partition. After completing the system configuration, press any key to reboot the system. Eject the recovery CD.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.3
```

Figure B-23: System Configuration for Linux

Step 5: Access the recovery tool main menu by modifying the "menu.lst". To first access the recovery tool main menu, the menu.lst must be modified. In Linux system, enter Administrator (root). When prompt appears, type:

cd /boot/grub

vi menu.lst

```
Fedora release 9 (Sulphur)
Kernel 2.6.25-14.fc9.i686 on an i686 (tty2)
localhost login: root
Password:
[root@localhost ~]# cd /boot/grub/
[root@localhost grub]# vi menu.lst _
```

Figure B-24: Access menu.lst in Linux (Text Mode)

Step 6: Modify the menu.lst as shown below.

Type command:

```
title Recovery Partition
root (hd0,2)
makeactive
chainloader +1
```

Step 7: The recovery tool menu appears. (**Figure B-25**)

```
1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:
```

Figure B-25: Recovery Tool Menu

Step 8: Create a factory default image. Follow Step 2 ~ Step 12 described in SectionB.2.5 to create a factory default image.

B.4 Recovery Tool Functions

Page 120

After completing the initial setup procedures as described above, users can access the recovery tool by pressing <**F3**> while booting up the system. The main menu of the recovery tool is shown below.

Figure B-26: Recovery Tool Main Menu

The recovery tool has several functions including:

- 1. **Factory Restore**: Restore the factory default image (iei.GHO) created in Section B.2.5.
- 2. **Backup system**: Create a system backup image (iei_user.GHO) which will be saved in the hidden partition.
- 3. Restore your last backup: Restore the last system backup image
- 4. **Manual**: Enter the Symantec Ghost window to configure manually.
- 5. Quit: Exit the recovery tool and restart the system.

WARNING:

Please do not turn off the system power during the process of system recovery or backup.

WARNING:

All data in the system will be deleted during the system recovery. Please backup the system files before restoring the system (either Factory Restore or Restore Backup).

B.4.1 Factory Restore

To restore the factory default image, please follow the steps below.

- **Step 1:** Type <1> and press <**Enter**> in the main menu.
- **Step 2:** The Symantec Ghost window appears and starts to restore the factory default. A factory default image called **iei.GHO** is created in the hidden Recovery partition.

Figure B-27: Restore Factory Default

Step 3: The screen is shown as in **Figure B-28** when completed. Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore

2. Backup system

3. Restore your last backup.

4. Manual

5. Quit
Please type the number to select and then press Enter:1

Recovery complete!

Press any key to continue . . . _
```

Figure B-28: Recovery Complete Window

B.4.2 Backup System

To backup the system, please follow the steps below.

- **Step 4:** Type **<2>** and press **<Enter>** in the main menu.
- **Step 5:** The Symantec Ghost window appears and starts to backup the system. A backup image called **iei_user.GHO** is created in the hidden Recovery partition.

Figure B-29: Backup System

Step 6: The screen is shown as in Figure B-30 when system backup is completed.

Press any key to reboot the system.

```
I. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:2

System backup complete!
Press any key to continue . . .
```

Figure B-30: System Backup Complete Window

B.4.3 Restore Your Last Backup

To restore the last system backup, please follow the steps below.

- **Step 7:** Type <**3**> and press <**Enter**> in the main menu.
- **Step 8:** The Symantec Ghost window appears and starts to restore the last backup image (iei_user.GHO).

Figure B-31: Restore Backup

Step 9: The screen is shown as in Figure B-32 when backup recovery is completed.

Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore

2. Backup system

3. Restore your last backup.

4. Manual

5. Quit

Please type the number to select and then press Enter:3

Recovery complete!

Press any key to continue . . . _
```

Figure B-32: Restore System Backup Complete Window

B.4.4 Manual

To restore the last system backup, please follow the steps below.

- **Step 10:** Type **<4>** and press **<Enter>** in the main menu.
- **Step 11:** The Symantec Ghost window appears. Use the Ghost program to backup or recover the system manually.

Figure B-33: Symantec Ghost Window

Step 12: When backup or recovery is completed, press any key to reboot the system.

B.5 Other Information

B.5.1 Using AHCI Mode or ALi M5283 / VIA VT6421A Controller

When the system uses AHCI mode or some specific SATA controllers such as ALi M5283 or VIA VT6421A, the SATA RAID/AHCI driver must be installed before using one key recovery. Please follow the steps below to install the SATA RAID/AHCI driver.

- Step 1: Copy the SATA RAID/AHCI driver to a floppy disk and insert the floppy disk into a USB floppy disk drive. The SATA RAID/AHCI driver must be especially designed for the on-board SATA controller.
- Step 2: Connect the USB floppy disk drive to the system.
- Step 3: Insert the One Key Recovery CD into the system and boot the system from the CD.
- **Step 4:** When launching the recovery tool, press <**F6**>.

Step 5: When the following window appears, press **<S**> to select "Specify Additional Device".

Step 6: In the following window, select a SATA controller mode used in the system. Then press **<Enter>**. The user can now start using the SATA HDD.

Step 7: After pressing <Enter>, the system will get into the recovery tool setup menu.
Continue to follow the setup procedure from Step 4 in Section B.2.2 Create
Partitions to finish the whole setup process.

B.5.2 System Memory Requirement

To be able to access the recovery tool by pressing <F3> while booting up the system, please make sure to have enough system memory. The minimum memory requirement is listed below.

Using Award BIOS: 128 MB system memory

Using AMI BIOS: 512 MB system memory.

Appendix

C

Terminology

AC '97 Audio Codec 97 (AC'97) refers to a codec standard developed by Intel®

in 1997.

ACPI Advanced Configuration and Power Interface (ACPI) is an OS-directed

configuration, power management, and thermal management interface.

AHCI Advanced Host Controller Interface (AHCI) is a SATA Host controller

register-level interface.

ATA The Advanced Technology Attachment (ATA) interface connects storage

devices including hard disks and CD-ROM drives to a computer.

ARMD An ATAPI Removable Media Device (ARMD) is any ATAPI device that

supports removable media, besides CD and DVD drives.

ASKIR Amplitude Shift Keyed Infrared (ASKIR) is a form of modulation that

represents a digital signal by varying the amplitude ("volume") of the signal. A low amplitude signal represents a binary 0, while a high

amplitude signal represents a binary 1.

BIOS The Basic Input/Output System (BIOS) is firmware that is first run when

the computer is turned on and can be configured by the end user

CODEC The Compressor-Decompressor (CODEC) encodes and decodes digital

audio data on the system.

CompactFlash® CompactFlash® is a solid-state storage device. CompactFlash® devices

use flash memory in a standard size enclosure. Type II is thicker than

Type I, but a Type II slot can support both types.

CMOS Complimentary metal-oxide-conductor is an integrated circuit used in

chips like static RAM and microprocessors.

COM COM refers to serial ports. Serial ports offer serial communication to

expansion devices. The serial port on a personal computer is usually a

male DB-9 connector.

DAC The Digital-to-Analog Converter (DAC) converts digital signals to analog

signals.

DDR Double Data Rate refers to a data bus transferring data on both the rising

and falling edges of the clock signal.

bypass the system processor and communicate directly with the system

memory.

DIMM Dual Inline Memory Modules are a type of RAM that offer a 64-bit data

bus and have separate electrical contacts on each side of the module.

DIO The digital inputs and digital outputs are general control signals that

control the on/off circuit of external devices or TTL devices. Data can be

read or written to the selected address to enable the DIO functions.

EHCI The Enhanced Host Controller Interface (EHCI) specification is a

register-level interface description for USB 2.0 Host Controllers.

EIDE Enhanced IDE (EIDE) is a newer IDE interface standard that has data

transfer rates between 4.0 MBps and 16.6 MBps.

EIST Enhanced Intel® SpeedStep Technology (EIST) allows users to modify

the power consumption levels and processor performance through application software. The application software changes the bus-to-core

frequency ratio and the processor core voltage.

FSB The Front Side Bus (FSB) is the bi-directional communication channel

between the processor and the Northbridge chipset.

GbE Gigabit Ethernet (GbE) is an Ethernet version that transfers data at 1.0

Gbps and complies with the IEEE 802.3-2005 standard.

GPIO General purpose input

HDD Hard disk drive (HDD) is a type of magnetic, non-volatile computer

storage device that stores digitally encoded data.

ICH The Input/Ouput Controll Hub (ICH) is an Intel® Southbridge chipset.

IrDA Infrared Data Association (IrDA) specify infrared data transmission

protocols used to enable electronic devices to wirelessly communicate

with each other.

L1 Cache The Level 1 Cache (L1 Cache) is a small memory cache built into the

system processor.

L2 Cache The Level 2 Cache (L2 Cache) is an external processor memory cache.

LCD Liquid crystal display (LCD) is a flat, low-power display device that

consists of two polarizing plates with a liquid crystal panel in between.

LVDS Low-voltage differential signaling (LVDS) is a dual-wire, high-speed

differential electrical signaling system commonly used to connect LCD

displays to a computer.

POST The Power-on Self Test (POST) is the pre-boot actions the system

performs when the system is turned-on.

RAM Random Access Memory (RAM) is volatile memory that loses data when

power is lost. RAM has very fast data transfer rates compared to other

storage like hard drives.

SATA Serial ATA (SATA) is a serial communications bus designed for data

transfers between storage devices and the computer chipsets. The SATA bus has transfer speeds up to 1.5 Gbps and the SATA II bus has data

transfer speeds of up to 3.0 Gbps.

S.M.A.R.T Self Monitoring Analysis and Reporting Technology (S.M.A.R.T) refers to

automatic status checking technology implemented on hard disk drives.

UART Universal Asynchronous Receiver-transmitter (UART) is responsible for

asynchronous communications on the system and manages the system's

serial communication (COM) ports.

UHCI The Universal Host Controller Interface (UHCI) specification is a

register-level interface description for USB 1.1 Host Controllers.

USB The Universal Serial Bus (USB) is an external bus standard for

interfacing devices. USB 1.1 supports 12Mbps data transfer rates and

USB 2.0 supports 480Mbps data transfer rates.

VGA The Video Graphics Array (VGA) is a graphics display system developed

by IBM.

Appendix

Digital I/O Interface

D.1 Introduction

The DIO connector on the NANO-PV-D4251/N4551/D5251 is interfaced to GPIO ports on the Super I/O chipset. The DIO has both 4-bit digital inputs and 4-bit digital outputs. The digital inputs and digital outputs are generally control signals that control the on/off circuit of external devices or TTL devices. Data can be read or written to the selected address to enable the DIO functions.

For further information, please refer to the datasheet for the Super I/O chipset.

D.2 DIO Connector Pinouts

The following table describes how the DIO connector pins are connected to the Super I/O GPIO port 1.

Pin	Description	Pin	Description		
1	Ground	N/A	N/A		
2	VCC	N/A	N/A		
3	Output 3	GP27	General purpose I/O port 2 bit 7.		
4	Output 2	GP26	General purpose I/O port 2 bit 6.		
5	Output 1	GP25	General purpose I/O port 2 bit 5.		
6	Output 0	GP24	General purpose I/O port 2 bit 4.		
7	Input 3	GP23	General purpose I/O port 2 bit 3.		
8	Input 2	GP22	General purpose I/O port 2 bit 2		
9	Input 1	GP21	General purpose I/O port 2 bit 1		
10	Input 0	GP20	General purpose I/O port 2 bit 0		

Table D-1: Digital I/O Connector Pinouts

D.3 Assembly Language Samples

D.3.1 Enable the DIO Input Function

The BIOS interrupt call INT 15H controls the digital I/O. An assembly program to enable digital I/O input functions is listed below.

MOV AX, 6F08H Sets the digital port as input

INT 15H Initiates the INT 15H BIOS call

D.3.2 Enable the DIO Output Function

The BIOS interrupt call INT 15H controls the digital I/O. An assembly program to enable digital I/O output functions is listed below.

MOV AX, 6F09H Sets the digital port as output

MOV BL, 09H

INT 15H Initiates the INT 15H BIOS call

Appendix

Watchdog Timer

NOTE:

The following discussion applies to DOS. Contact IEI support or visit the IEI website for drivers for other operating systems.

The Watchdog Timer is a hardware-based timer that attempts to restart the system when it stops working. The system may stop working because of external EMI or software bugs. The Watchdog Timer ensures that standalone systems like ATMs will automatically attempt to restart in the case of system problems.

A BIOS function call (INT 15H) is used to control the Watchdog Timer.

INT 15H:

AH – 6FH Sub-function:					
AL – 2:	Sets the Watchdog Timer's period.				

AH – 6FH Sub-function:				
BL:	Time-out value (Its unit-second is dependent on the item "Watchdog			
	Timer unit select" in CMOS setup).			

Table E-1: AH-6FH Sub-function

Call sub-function 2 to set the time-out period of Watchdog Timer first. If the time-out value is not zero, the Watchdog Timer starts counting down. When the timer value reaches zero, the system resets. To ensure that this reset condition does not occur, calling sub-function 2 must periodically refresh the Watchdog Timer. However, the watchdog timer is disabled if the time-out value is set to zero.

A tolerance of at least 10% must be maintained to avoid unknown routines within the operating system (DOS), such as disk I/O that can be very time-consuming.

The Watchdog Timer is activated through software. The software application that activates the Watchdog Timer must also deactivate it when closed. If the Watchdog Timer is not deactivated, the system will automatically restart after the Timer has finished its countdown.

EXAMPLE PROGRAM:

```
; INITIAL TIMER PERIOD COUNTER
W LOOP:
       MOV
                    AX, 6F02H
                                      ;setting the time-out value
       MOV
                    BL, 30
                                      ;time-out value is 48 seconds
       INT
                15H
; ADD THE APPLICATION PROGRAM HERE
```



```
CMP EXIT_AP, 1 ;is the application over?

JNE W_LOOP ;No, restart the application

MOV AX, 6F02H ;disable Watchdog Timer

MOV BL, 0 ;

INT 15H

;;
; EXIT;
```


Appendix

F

Hazardous Materials Disclosure

F.1 Hazardous Materials Disclosure Table for IPB Products Certified as RoHS Compliant Under 2002/95/EC Without Mercury

The details provided in this appendix are to ensure that the product is compliant with the Peoples Republic of China (China) RoHS standards. The table below acknowledges the presences of small quantities of certain materials in the product, and is applicable to China RoHS only.

A label will be placed on each product to indicate the estimated "Environmentally Friendly Use Period" (EFUP). This is an estimate of the number of years that these substances would "not leak out or undergo abrupt change." This product may contain replaceable sub-assemblies/components which have a shorter EFUP such as batteries and lamps. These components will be separately marked.

Please refer to the table on the next page.

Part Name	Toxic or Hazardous Substances and Elements							
	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (CR(VI))	Polybrominated Biphenyls (PBB)	Polybrominated Diphenyl Ethers (PBDE)		
Housing	Х	0	0	0	0	Х		
Display	Х	0	0	0	0	Х		
Printed Circuit Board	Х	0	0	0	0	X		
Metal Fasteners	Х	0	0	0	0	0		
Cable Assembly	Х	0	0	0	0	Х		
Fan Assembly	Х	0	0	0	0	X		
Power Supply Assemblies	Х	0	0	0	0	Х		
Battery	0	0	0	0	0	0		

O: This toxic or hazardous substance is contained in all of the homogeneous materials for the part is below the limit requirement in SJ/T11363-2006

X: This toxic or hazardous substance is contained in at least one of the homogeneous materials for this part is above the limit requirement in SJ/T11363-2006

此附件旨在确保本产品符合中国 RoHS 标准。以下表格标示此产品中某有毒物质的含量符合中国 RoHS 标准规定的限量要求。

本产品上会附有"环境友好使用期限"的标签,此期限是估算这些物质"不会有泄漏或突变"的年限。本产品可能包含有较短的环境友好使用期限的可替换元件,像是电池或灯管,这些元件将会单独标示出来。

部件名称	有毒有害物质或元素						
	铅	汞	镉	六价铬	多溴联苯	多溴二苯	
	(Pb)	(Hg)	(Cd)	(CR(VI))	(PBB)	醚	
						(PBDE)	
壳体	xxxx	0	0	0	0	XXXX	
显示	x	o	0	0	0	Х	
印刷电路板	x	0	0	0	0	X	
金属螺帽	x	0	0	0	0	0	
电缆组装	x	0	0	0	0	X	
风扇组装	x	0	0	0	0	X	
电力供应组装	x	o	0	0	0	X	
电池	О	О	0	О	0	0	

O:表示该有毒有害物质在该部件所有物质材料中的含量均在 SJ/T11363-2006 标准规定的限量要求以下。

X: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ/T11363-2006 标准 规定的限量要求。