Conditional Coding for Flexible Learned Video Compression

Théo Ladune^{1,2}

Pierrick Philippe¹, Olivier Déforges², Wassim Hamidouche², Lu Zhang²

¹Orange — ²INSA Rennes theo.ladune@orange.com

ICLR 2021 - Neural Compression Workshop, 7 May 2021

Context & Contributions

Learned Video Coding

• 2 types of frame { Intra : 0 reference (I) Inter : 1 ref. (P) or 2 ref. (B)

Context & Contributions

Learned Video Coding

- 2 types of frame { Intra : 0 reference (I) Inter : 1 ref. (P) or 2 ref. (B)
- Previous work: 2 separate coders for intra and inter-frames

Context & Contributions

Learned Video Coding

- ullet 2 types of frame $\left\{ egin{array}{ll} \mbox{Intra} & : \mbox{ 0 reference (I)} \\ \mbox{Inter} & : \mbox{ 1 ref. (P) or 2 ref. (B)} \end{array} \right.$
- Previous work: 2 separate coders for intra and inter-frames
- Contribution: conditional coding
 - Leverage 0, 1 or 2 ref. with a unique coder
 - Flexible coder on par with HEVC

Coding x_t

• Coding x_t knowing up to 2 references \hat{x}_p , \hat{x}_f

- Coding x_t knowing up to 2 references \hat{x}_p , \hat{x}_f
- MOFNet transmits motion info

- Coding x_t knowing up to 2 references \hat{x}_p , \hat{x}_f
- MOFNet transmits motion info to compute the prediction $\tilde{\mathbf{x}}_t$

- Coding x_t knowing up to 2 references \hat{x}_p , \hat{x}_f
- MOFNet transmits motion info
- ullet CodecNet sends the **unpredictable** part to get the decoded frame $\hat{f x}_t$

- Transmit x_t knowing \tilde{x}_t
- Previous work: residual coding
 - 2 types of signal: image (intra) & residue (inter) \rightarrow 2 coders

- Transmit x_t knowing \tilde{x}_t
- Previous work: residual coding
 - 2 types of signal: image (intra) & residue (inter) \rightarrow 2 coders
- Conditional coding: generalization of residual coding

- Transmit x_t knowing \tilde{x}_t
- Previous work: residual coding
 - 2 types of signal: image (intra) & residue (inter) \rightarrow 2 coders
- Conditional coding: generalization of residual coding
 - Always process image-domain inputs → single coder

- Transmit x_t knowing \tilde{x}_t
- Previous work: residual coding
 - 2 types of signal: image (intra) & residue (inter) \rightarrow 2 coders
- Conditional coding: generalization of residual coding
 - ullet Always process image-domain inputs o single coder
 - Offer better performance¹

¹Ladune, Optical Flow and Mode Selection for Learning-based Video Coding, MMSP 2020

• Shortcut: exploit decoder information

- Shortcut: exploit decoder information
- Analysis: transmit information not present at the decoder

- Shortcut: exploit decoder information
- Analysis: transmit information not present at the decoder
- Synthesis: process both shortcut and analysis latents

Conditional Coding for CodecNet

Conditional Coding for CodecNet and MOFNet

- Conditional Coding for CodecNet and MOFNet
 - Retrieve motion information from the references

Motion from the shortcut

- Conditional Coding for CodecNet and MOFNet
 - Retrieve motion information from the references
 - The analysis transform sends only a small correction

Motion from the analysis

Training process

- The system is trained to code an entire GOP (+ the first I)
 - \bullet Our system learns to code I, P & B-frames

Training process

- The system is trained to code an entire GOP (+ the first I)
 - Our system learns to code I, P & B-frames
- End-to-end training from scratch through a RD-loss

$$\mathcal{L}_{\lambda} = \sum_{t} D(\mathbf{x}_{t}, \hat{\mathbf{x}}_{t}) + \lambda R(\hat{\mathbf{x}}_{t})$$

Training process

- The system is trained to code an entire GOP (+ the first I)
 - Our system learns to code I, P & B-frames
- End-to-end training from scratch through a RD-loss

$$\mathcal{L}_{\lambda} = \sum_{t} D(\mathbf{x}_{t}, \hat{\mathbf{x}}_{t}) + \lambda R(\hat{\mathbf{x}}_{t})$$

Single backward for all the frames: model compression noise propagation

Experimental Results

Evaluation on 3 coding configurations against HEVC

Our single-coder system is on par with HEVC for the 3 coding config.

Thanks for your attention