



**Stakeholder Requirement to Final SW for Product** 

# Software Product Development Workflow



### Agenda

- Introduction Software Product Development Lifecycle
- ASPICE Mapping to PS-PE Product Development
- Software Product Development Workflow
  - Pre-Software Processes
  - Software Requirement Engineering
  - Software Architecture Design
  - Software Detailed Design and Implementation
  - Software Unit Verification
  - Software Integration and Integration Test
  - Software Qualification test
  - Program version and Initial Calibration Data Delivery
  - Software Release Meeting
  - Final Calibration and Container generation
  - Post Software Development Processes



### Software Development in EM-PE Product Development







### Software Product Development Workflow Introduction – Software Product Development Lifecycle

• SW Product Development describes the development lifecycle of a single program version from requirements analysis till delivery.

Lifecycle Software Product Development





#### Process Reference Model (PRM)\* - Processes and Process Groups



Processes are selected based on relevance for the organization

Processes according to Automotive SPICE Guidelines

\*Automotive SPICE v3.1



#### Requirement Elicitation

- The <u>Requirements Elicitation</u> process describes how to gather, obtain, understand, evaluate and agree external and internal <u>Stakeholder Requirements</u> <u>Specifications</u>.
- The process transforms the <u>delivered Stakeholder</u> <u>Requirements Specification</u> into the <u>agreed</u> and <u>baselined Stakeholder Requirements</u> <u>Specification</u>. If needed, a deviation list is created.



#### System Requirement Analysis

- Prepare Development Environment
- Identify system boundaries, interfaces, and environment
- Identify system requirements
- Analyze dependencies of the system requirements
- Analyze technical feasibility and define verification criteria
- Review system requirements with Domain Responsible
- Release System and Domain (SW, HW, CAL etc) requirement specification

#### System Architecture Design

- Prepare System architecture environment
- Derive Project System Architecture
- Design System User Function/Chain
- Design System Element
- Communicate and Publish System Architecture



# Software Product Development Workflow Process Flow of Software Development





### Software Requirement Engineering – SW Requirement Engineer / Previously it was SWSD

This process describes how the software related parts of the <u>System Requirements Specification</u> and the <u>SysArchSpec: System Architecture Specification</u> (including interface definitions) are transformed into a <u>SW Requirements</u> Specification.

- 1. Specify the SW requirements
- 2. Analyze the SW requirements
- 3. Structure the SW requirements
- 4. Develop verification criteria
- Establish bidirectional traceability of SW requirements

**SW Requirement Freeze** 

### Software Architecture Design

SW Architect

The purpose of this workflow is to provide a <u>SW Architectural</u> <u>Design</u> down to the level of SW components (SWCs). This mainly includes:

- to define the SW structure (that means to determine the SWCs),
- to allocate the software requirements to the SWCs,
- to define the interfaces between all SWCs and the scheduling of SWCs,
- to define criteria how the <u>SW Architectural</u> <u>Design</u> can be verified,
- and to define central/global elements and directives (e.g. SW coding guidelines).

The <u>SW Architecture Design</u> supports an early definition of SWCs, their interfaces/scheduling and global SW elements used by more than one SWC. This avoids iterations during SW development.

SW Design Freeze



# Software Detailed Design and Implementation - Software Dev Engineer

This process describes the activities SW detailed design and SW unit implementation inside a project.

The detailed design contains the detailed concept for a SW component and its units including why the design was chosen. SW components and their units are implemented according to this design.



#### Software Unit Verification -

#### **Software Tester**

The main goal/purpose of the <u>SW Unit Verification</u> is to cover the following points:

- Static Code Checks (Static Unit Verification)
- 2. <u>SW Module Review</u> (Static Unit Verification)
- Verification that the code corresponds to <u>Software Module</u> <u>Specification (swMS)</u> in <u>SW Unit Test Case Specification</u> -(Dynamic Unit Verification)
- 4. Finding errors in code (inaccessible code, infinite loops, division by zero, overruns, data types...) (Dynamic Unit Verification)
- 5. Reaching a Coverage (C1) (Dynamic Unit Verification)



**SW Implementation Freeze** 



#### Software Integration and Integration Test -

#### **SW Integrator**

This process describes the integration of the Software Components into larger software items up to a complete integrated software and verification of the integrated software against software architectural design.

#### **SW Integration**

- Set the system constants
- Create customer-specific hardware configurations
- Collect EEPROM configuration information
- Configure EEPROM layout
- Configure the process sequence
- Follow integration strategy to create a program version
- Verify the program version created/stored in the CM system

#### **SW Integration Test**

The SW integration test verifies the correct integration of each component against the software
architecture into an integrated SW (PVER). The test process is organized in a two-level test
approach including a static and dynamic test scenario.

Software Integration Tests (previously checklist)

The Integration tests performed are:

- •RTE Warning Analysis
- Port Configuration Check
- Scheduling Check
- •Plan Checker
- System Constant Setting check
- Dynamic Interface Test
- Interface check
- •Runtime Resource Measurement
- Memory Resources
- Short test







#### Software Qualification test -

#### **Testing team**

- This workflow describes SW Qualification Test of the integrated software against accepted <u>SW Requirements</u>.
- Human resources are <u>SW Test Manager</u>, <u>SW Test Designer</u> and <u>SW Tester</u>. Technical resources are Test Environment <u>HIL</u> (hardware in the loop).

Resources are provided with estimation model and agreed with Subproject Manager SW



### Program version and Initial Calibration Data Delivery

This process describes the procedure for reviewing and delivering an ECU program version



SW Delivery Open Software



### Software Release Meeting

#### **Motivation**

- check for completeness of release
- communication between all stakeholders, common understanding
- risk assessment and problem resolution
- traceability of released software for distribution

#### **Stakeholder**

- line manager of affected domains
- project manager, safety responsibles and quality representatives
- additional participants based on project situation and special topics

#### Relevance

 A release meeting prior to the delivery is mandatory for software versions that are handed over to the customer





### Final Calibration (CAL Team) and Container generation (PEC-C)





### System Integration and System Qualification Tests

System Integration



System Qualification Tests



#### **System Qualification Tests**

- · Vehicle OBD System Test
- DIAG(S)
- OBD Scan Tool Test
- Basic Function Test System
- · CHAR-Sys
- ECU Monitoring & Safety Test
- Functional System Tests
- Noise Vibration Harshness
- PA-EY Verth
- · Robustness System test





**Q & A** 





# **Thank You!**





## References

Process - Power Electronics (bosch.com)

