Topic: Exploratory Data Analysis (EDA)

Presentation of Bivariate Data

Part D: Time Series

School of Mathematics and Applied Statistics

Two Continuous Variables with one as Time: Where in the statistical process?

- Ethics
- Nature of the question to be answered
- What is the nature of variation over time?
 - Context/Expertise
 - Design:
 - Experiment vs. observational study
 - Sampling
 - Measurement
 - Description and analysis:
 - Line plots and Scatterplots
 - Conclusions and decision making

Time Series: How do data vary over time?

A time series is a collection of univariate data in which the values are recorded at successive time intervals

- measurements may be discrete or continuous
- observations may be observed in discrete or continuous time
- Examples:
 - Temperature; Rainfall
 - Sales
 - Road deaths by month
 - Share prices
 - Employment
 - Tourist arrivals . . .

What might we be interested in when we look at measurements collected over successive time intervals?

An example: BHP share prices

Daily opening share price from 1st Sept to 31st Dec 2015 (n=85 obs)

• What do these data reveal?

BHP Share Prices: Univariate distribution

What do the univariate plots reveal? no order considered

```
BHP Open Price Stem-and-Leaf Plot
Frequency
             Stem &
                     Leaf
    3.00
                     333
   14.00
                     4444444555555
    7.00
                     6666666
   12.00
                     88888888999
    7.00
                     0000111
   15.00
                     222222333333333
   20.00
                     4444444444555555555
    7.00
                     6666677
Stem width:
             10.00000
Each leaf:
                 1 case(s)
```


- Shape: Slightly skewed to __lef+
- Centre: median about 532 and mean is \$30.85
- Spread: range is $\frac{237-23}{2}$ and sd is \$4.23

- Outliers: None
- Patterns: No a.

Time Series

In simple univariate analysis, use

- Stem-and-leaf plots,
- Boxplots
- histograms

to find centre, shape of the distribution, spread, outliers, patterns (S&L) But these plots ignore the time dimension

So if there is a series of data points over time, we need a different technique to reveal the components of the time series

To represent a time series a plot is more appropriate.

BHP Share Prices: Time Series

Scatterplot: Opening share price on vertical axis against time on the horizontal axis.

What does it reveal?

- There is quite a bit of variation or scatter
- But there is an overall pattern of price over time
- This is called the +cod.

BHP Share Prices: Time Series

Line Plot: Price by time: Join the data points in the scatterplot in sequence order

What does it reveal?

BHP Daily Opening Share Price: 1st Sept - 31st Dec 2015

- There are fluctuations within the overall trend
- We can see high

Components of a Time Series

A time series may consist of components such as

- a trend
- cyclical and /or seasonal variation
- random variation

600

500

200

No. of passengers

Example: Number of airline passengers over time

50

Month

100

150

1949-> 1960

=) 144 dete

Seasonal Patterns

Example: Number of airline passengers over time

What do you observe?

- in number of passengers over time.
- Appears to be a seed all pattern
- Peaks within the repeating pattern are getting hahee over time
- More vacate in later years
- This is called a multiplicative time series

Seasonal Patterns - Zooming in

Number of airline passengers over time: 3-year slice

What else can you observe?

- Appears to be a seasonal pattern
 - First peak each year at about
 - Dip at about __May
 - High peak at about Jul- Aug

March

- Low occurs about Nov. 3 months after high peak
- Not entirely same pattern each year

es Introduction Line Plots Components Dynamic Plots

Transformed data: log(passengers)

Example: Transform by taking the log of Number of airline passengers over time

What is the impact of the transformation?

- Removes the multiplicative behaviour of the <u>seasonal</u> pattern
- This results in an additive time series

Time Series Introduction Line Plots Components Dynamic Plots

Dynamic Plots Example: CBA ASX Chart

You may see dynamic interactive plots such as this one (see link below): customize the plot by choosing the time period, labelling a particular point, adding a moving average, comparing to another series.

Commonwealth Bank of Australia Shares

Ref: https://www.marketindex.com.au/asx/cba

Dynamic plots - try these

Go to:

https://ourworldindata.org/covid-vaccinations

Share of people who received at least one dose of COVID-19 vaccine -

- go to website play videos
 - Select countries
 - CHART
 - MAP

Also go to:

https://ourworldindata.org/

to find plots on other interesting topics such as Artificial Intelligence.