Calcul de l'intégrale de Gauss

L'objectif de ce problème est de calculer $I = \int_0^{+\infty} e^{-x^2} dx = \lim_{X \to +\infty} \int_0^X e^{-x^2} dx$.

- 1. Montrer que la fonction $X \mapsto \int_0^X \mathrm{e}^{-x^2} \mathrm{d}x$ est croissante et majorée. En déduire l'existence de la limite définissant I.
- 2. Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\pi/2} \cos^n x dx$.
- 2.a Calculer a_0 et a_1 .
- 2.b Démontrer l'inégalité stricte : $0 < a_{n+1} < a_n$.
- 2.c En supposant $n \ge 2$, former une relation de récurrence liant a_n et a_{n-2} .
- 2.d Montrer que, si $n \ge 1$, on a l'égalité : $na_n a_{n-1} = \frac{\pi}{2}$.
- 2.e On suppose toujours $n \ge 1$.

A l'aide de l'encadrement : $a_{n+1} < a_n < a_{n-1}$ déterminer $\lim_{n \to +\infty} \frac{a_n}{a_{n-1}}$.

- 2.f A l'aide des résultats précédents, déterminer $\lim_{n\to +\infty} a_n$ et déterminer un équivalent de a_n lorsque n tend vers $+\infty$.
- 3. Soit x élément de $]-1,+\infty[$. On pose $h(x)=x-\ln(1+x)$. Etudier les variations de h sur $]-1,+\infty[$. Quelle inégalité en déduit-on ?
- 4. On pose, n désignant un entier strictement positif :

$$b_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \mathrm{d}x \ \text{ et } \ c_n = \int_0^{+\infty} \frac{\mathrm{d}x}{\left(1 + \frac{x^2}{n}\right)^n} = \lim_{X \to +\infty} \int_0^X \frac{\mathrm{d}x}{\left(1 + \frac{x^2}{n}\right)^n} \ .$$

4.a Réaliser le changement de variable $x = \sqrt{n} \tan t$ sur $\int_0^x \frac{\mathrm{d}x}{\left(1 + \frac{x^2}{n}\right)^n}$ et en déduite l'existence de la limite

définissant c_n .

- 4.b En employant, notamment, l'inégalité trouvée dans la question 3, démontrer la double inégalité : $b_n \leq \int_0^{\sqrt{n}} \mathrm{e}^{-x^2} \, \mathrm{d}x \leq c_n \,.$
- 4.c A l'aide de changements de variable convenablement choisis, exprimer b_n et c_n à l'aide des intégrales a_{2n+1} et a_{2n-2} .
- 5. A l'aide des résultats précédents, déterminer la valeur de I.