Big Data Management System

GROUP 2, BATCH A

Group Members

O1
R Sriviswa
CB.EN.U4AIE21046

03 Vikhyat Bansal CB.EN.U4AIE21076 O2
Aman Sirohi
CB.EN.U4AIE21003

04
Rakhil ML
CB.EN.U4AIE21048

O1 Introduction

The datasets describe ratings and free-text tagging activities from MovieLens, a movie recommendation service. It contains 200002 ratings and 465564 tag applications across 27278 movies. These data were created by 1384 users.

Users were selected at random for inclusion. All selected users had rated at least 20 movies.

The dataset contains 6 files.

- genome_scores.csv: Contains movie-tag relevance data.
 - a. movield: Particular ID given to each movie
 - b. tagld: ID of a tag
 - c. relevance: How much is the tag relevant to movie

novield	tagld	relevance	
1	1		0.025
1	2		0.025
1	3		0.05775
1	4		0.09675
1	5		0.14675
1	6		0.217
1	7		0.067
1	8		0.26275
1	9		0.262

2. genome_tags.csv that contains tag descriptions:

tagld: ID for a tag

tag: Tags used to describe a movie

tagld	tag	
1		7
2	007 (series)	
3	18th century	
4	1920s	
5	1930s	
6	1950s	
7	1960s	
8	1970s	
9	1980s	
10	19th century	

3. link.csv that contains identifiers that can be used to link to other sources:

movield: ID for the movie

• imdbld: IMDB id for the movie

• tmbdld: The Movie DB ID for a movie

novield	imdbld	tmdbId
1	114709	862
2	113497	8844
3	113228	15602
4	114885	31357
5	113041	11862
6	113277	949
7	114319	11860
8	112302	45325
9	114576	9091
10	113189	710

4. movie.csv that contains movie information:

movield: ID for a movie

title: Name of the movie

genres: Genres associated with the movie

5. rating.csv that contains ratings of movies by users:

userId: ID of the user

movield: ID of the movie

rating: rating given by the user to each movie

timestamp: Time of review in UNIX time format

novieta titie	genres
1 Toy Story (1995)	Adventure Animation Children Comedy Fantasy
2 Jumanji (1995)	Adventure Children Fantasy
3 Grumpier Old Men (1995)	Comedy Romance
4 Waiting to Exhale (1995)	Comedy Drama Romance
5 Father of the Bride Part II (1995)	Comedy
6 Heat (1995)	Action Crime Thriller
7 Sabrina (1995)	Comedy Romance
8 Tom and Huck (1995)	Adventure Children
9 Sudden Death (1995)	Action
10 GoldenEye (1995)	Action Adventure Thriller

userId	movield	rating	timestamp
1	2	3.5	1112486027
1	29	3.5	1112484676
1	32	3.5	1112484819
1	47	3.5	1112484727
1	50	3.5	1112484580
1	112	3.5	1094785740
1	151	4	1094785734
1	223	4	1112485573
1	253	4	1112484940

- 6. **tag.csv** that contains tags applied to movies by users:
 - userId: ID of the user
 - movield: ID of the movie
 - tag: tag given by the user to a movie
 - timestamp: time in UNIX format

userId	movield	tag
18	4141	Mark Waters
65	208	dark hero
65	353	dark hero
65	521	noir thriller
65	592	dark hero
65	668	bollywood
65	898	screwball comedy
65	1248	noir thriller
65	1391	mars

READING THE DATASET

The data was stored in MySQL and then using a JDBC connector, we connected it to Spark for Analysis.

```
val moviesDF = spark.read.format("jdbc")
    option(
        url="jdbc:mysql://localhost/moviedb",
        driver="com.mysql.jdbc.Driver",
        dbtable="movies",
        user="root"
        password="<password>")
```

```
// Define MySQL connection properties
val jdbcHostname = "localhost"
val jdbcPort = "3306"
val jdbcDatabase = "moviedb"
val jdbcUsername = "root"
val jdbcPassword = "viswa@123"
// Set up the JDBC URL for MySQL
val jdbcUrl = s"jdbc:mysql://${jdbcHostname}:${jdbcPort}/${jdbcDatabase}"
// Read data from MySQL into a DataFrame
val moviesDF= spark.read
  .format( source = "jdbc")
  .option("url", jdbcUrl)
  .option("dbtable", "movies")
  .option("user", jdbcUsername)
  .option("password", jdbcPassword)
  .load()
```

Schema

```
moviesDF
root
 |-- movieId: integer (nullable = true)
 |-- title: string (nullable = true)
 |-- genres: string (nullable = true)
tagsDF
root
 |-- userId: integer (nullable = true)
 |-- movieId: integer (nullable = true)
 |-- tag: string (nullable = true)
 |-- timestamp: integer (nullable = true)
genomeTagsDF
root
 |-- tagId: integer (nullable = true)
 |-- tag: string (nullable = true)
```

```
genomeScoresDF
root
 |-- movieId: integer (nullable = true)
 |-- tagId: integer (nullable = true)
 |-- relevance: double (nullable = true)
ratingsDF
root
 |-- userId: integer (nullable = true)
 |-- movieId: integer (nullable = true)
 |-- rating: double (nullable = true)
 |-- timestamp: integer (nullable = true)
linkDF
root
 |-- movieId: integer (nullable = true)
 |-- imdbId: integer (nullable = true)
 |-- tmdbId: integer (nullable = true)
```

RATINGS ANALYSIS

```
val ratingCounts = ratingsDF
   .groupBy("rating")
   .agg(count("rating").alias("count"))
   .sort("rating")

ratingCounts.show()
```

It helps us to understand how users tend to rate movies.

We can see that the number of 3-5 stars rating is high Compared to the others, this suggests us that users tend To rate movies more positively.

```
|rating|count|
   0.5 | 1244
   1.0 | 3530
   1.5 | 1510 |
   2.0 7472
   2.5 | 4088 |
   3.0 22817
   3.5 9811
   4.0 | 27538 |
   4.5 7421
   5.0 | 14568 |
```

PLOT

MOVIES WITH HIGHEST NUMBER OF RATINGS

```
val moviePopularityByRatings = ratingsDF
 .groupBy("movieId")
 .agg(count("rating").alias("numRatings"))
 .sort(desc("numRatings"))
  Join with moviesDF to get movie details
val popularMoviesWithDetails = moviePopularityByRatings
 .join(moviesDF, Seq("movieId"))
 .select("movieId", "title", "numRatings", "genres")
val top20PopularMovies = popularMoviesWithDetails
 .sort(desc("numRatings"))
 .limit(20)
top20PopularMovies.show()
```

MOVIES WITH HIGHEST NUMBER OF RATINGS

+		++
movieId	title numRatin	ngs genres
+		++
296 Pulp Fiction	(1994) 3	550 Comedy Crime Dram
356 Forrest Gump	(1994) 3	340 Comedy Drama Roma
318 Shawshank Rede	empt 3	05 Crime Drama
480 Jurassic Park	(1993) 3	02 Action Adventure
593 Silence of the	e La 2	295 Crime Horror Thri
260 Star Wars: Ep:	isod 2	264 Action Adventure
110 Braveheart	(1995) 2	262 Action Drama War
589 Terminator 2:	Jud 2	256 Action Sci-Fi
2571 Matrix, The	(1999) 2	253 Action Sci-Fi Thr
527 Schindler's L:	ist 2	247 Drama War
1 Toy Story	(1995) 2	241 Adventure Animati
2858 American Beaut	ty (2	238 Comedy Drama
150 Apollo 13	(1995) 2	235 Adventure Drama IMAX
780 Independence [Day 2	234 Action Adventure
1210 Star Wars: Ep:	isod 2	233 Action Adventure
457 Fugitive, The	(1993) 2	233 Thriller
1196 Star Wars: Ep:	isod 2	231 Action Adventure
608 Fargo	(1996) 2	230 Comedy Crime Dram
380 True Lies	(1994) 2	224 Action Adventure
50 Usual Suspects	s, T 2	224 Crime Mystery Thr
+		++

This analysis helps us to identify the movies that have attracted the most attention/engagement from the viewers.

It provides insight into what types of movies tend to attract more ratings or attention from users. This might suggest genres, actors, directors, or specific themes that are popular among viewers.

It could also indicate how users utilize the platform. Do they tend to rate only popular or well-known movies, or do they rate a diverse range of films?

PLOT

USER ACTIVITY

```
val userActivity = ratingsDF
   .groupBy("userId")
   .agg(count("rating").alias("numRatings"))
   .sort(desc("numRatings"))

userActivity.show()

val threshold = 100

val activeUsers = userActivity.filter(s"numRatings > $threshold")
activeUsers.show()
```

USER ACTIVITY

+	+	+
us	erId num	Ratings
+	+	+
1	156	2179
1	586	1431
I	572	1326
1	359	1300
I	208	1288
1	394	1212
Ī	298	1127
F	116	1110
1	632	1094
1	614	1042

1	104	998
1	424	918
1	648	904
1	587	873
I	348	786
1	347	778
1	637	758
l	367	739
I	388	737
1	54	710
+-	+	+

The analysis helps identify a subset of users who are particularly engaged or active in the platform.

These active users are likely to have a more significant impact on any analysis due to their extensive rating history.

DISTRIBUTION OF USER RATINGS

```
val ratingStats = userActivity
  .select("numRatings")
  .summary("min", "25%", "50%", "75%", "max")
ratingStats.show()
```

+	+	+
su	ummary num	nRatings
+	+	+
1	min	20
1	25%	35
Ī	50%	70
1	75%	158
1	max	2179
+	+	+

GENRE BASED ANALYSIS

```
val moviesWithGenres = moviesDF
 .withColumn("genre", explode(split(col("genres"), "\
val ratingsWithGenres = ratingsDF
                                                          |userId|rating|
                                                                          genrel
 .join(moviesWithGenres, Seg("movieId"))
 .select("userId", "rating", "genre")
                                                               1| 3.5| Fantasy|
                                                                   3.5| Children
   Show the resulting DataFrame
                                                                   3.5|Adventure|
ratingsWithGenres.show()
                                                                   3.5| Sci-Fi|
                                                                   3.5
                                                                        Mystery|
It allows for analysis to understand how users rate
                                                                   3.5
                                                                        Fantasy|
movies across different genres
                                                                   3.5
                                                                         Dramal
                                                               1 3.5 | Adventure |
It provides insights into user preferences
                                                                   3.5| Thriller|
for specific genres. For instance, do users tend
to rate certain genres higher than others?
                                                                   3.5| Sci-Fi|
```

AVERAGE RATING BY GENRE

```
val avgRatingByGenre = ratingsWithGenres
  .groupBy("genre")
  .agg(avg("rating").alias("avgRating"))
  .sort(desc("avgRating"))
```

```
avgRatingByGenre.show()
```

It helps us to what kind of movies are highly liked by the audience.

Allows for comparisons between genres to determine which genres are generally better received or preferred by users

```
genre
                      avgRating
  Film-Noir | 4.016393442622951
         War | 3.799306625577812
|Documentary|3.7591389114541025|
     Mystery 3.6695906432748537
       Dramal 3.6674349115167241
       Crime| 3.665608432992233|
        IMAX| 3.662633305988515|
  Animation | 3.560841881853555|
     Musical | 3.5345509539320616 |
     Romance | 3.5328068043742404 |
    Thriller[3.5096385542168673]
     Fantasy [3.4921072295908835]
   Adventure 3.4764559256741445
     Western 3.4753086419753085
      Action | 3.429536442432537|
      Sci-Fi|3.4119467657072113|
      Comedy [3.4091980205796872]
    Children | 3.366832976954146|
      Horror 3.2613436272517946
```

PLOT

RATINGS PER GENRE

```
val ratingsCountByGenre = ratingsWithGenres
  .groupBy("genre")
  .agg(count("rating").alias("numRatings"))
  .sort(desc("numRatings"))

ratingsCountByGenre.show()
```

Helps us to understand the type of movies that is Preferred by the users

+-	+	+
1	genre ı	numRatings
+-	+	+
L	Drama	43172
1	Comedy	38193
I	Action	28497
F	Thriller	26560
1	Adventure	22065
1	Romance	18929
1	Crime	16222
1	Sci-Fi	16155
L	Fantasy	10706
1	Children	8418
L	Mystery	7695
L	Horror	7383
I	Animation	5654
1	War	5192
1	Musical	4298
1	XAMI	2438
L	Western	2349
D	ocumentary	1231
Ĺ	Film-Noir	1037
+-	+	+

PLOT

GENRE TRENDS OVER TIME

```
val moviesWithGenres = moviesDF
 .withColumn("genre", explode(split(col("genres"), "\\|"
val ratingsWithGenres = ratingsDF
 .join(moviesWithGenres, Seq("movieId"), "inner")
 .select("userId", "rating", "genre", "timestamp")
val ratingsWithYear = ratingsWithGenres
 .withColumn("year", year(from unixtime(col("timestamp"))))
val genreTrends = ratingsWithYear
 .groupBy("genre", "year")
 .agg(count("rating").alias("numRatings"))
 .sort("genre", "year")
```

GENRE TRENDS OVER TIME

```
val windowSpec =
Window.partitionBy("year").orderBy(desc("numRatings"))

val rankedGenres = genreTrends.withColumn("rank",
    row number().over(windowSpec))

val topGenreByYear = rankedGenres.filter(col("rank") ===
1).select("year", "genre", "numRatings")
topGenreByYear.show()
```

GENRE TRENDS OVER TIME

Helps us to understand how the preferences of audience has changed over time

1		
	genre numF	
++-	+	
119961	Drama	3471
1997	Drama	1408
1998	Drama	788
119991	Dramal	4004
[2000]	Drama	3999
[2001]	Drama	2755
[2002]	Drama	2581
[2003]	Dramal	1537
[2004]	Dramal	2062
[2005]	Drama	4035
120061	Dramal	2549
[2007]	Drama	2355
[2008]	Drama	2112
1200910	Comedy	1580
[2010]	Drama	1623
[2011]	Drama	1972
[2012]	Dramal	1391
[2013]	Drama	1095
[2014]	Drama	1311
2015 A	Action	646
+		+

PLOT

TEMPORAL TRENDS

```
val ratingsWithTime = ratingsDF
 .withColumn("year", year(from unixtime(col("timestamp"))))
val avgRatingsOverTime = ratingsWithTime
 .groupBy("year")
 .agg(avg("rating").alias("avgRating"))
 .sort("year")
avgRatingsOverTime.show()
val ratingCountsOverTime = ratingsWithTime
 .groupBy("year")
 .agg(count("rating").alias("numRatings"))
 .sort("year")
ratingCountsOverTime.show()
```

TEMPORAL TRENDS

year avgRating
++
1996 3.5424331616384594
1997 3.6072922893006574
1998 3.460526315789474
1999 3.490390500673277
2000 3.624308238488044
2001 3.4476914085330215
2002 3.592880794701987
2003 3.523752254960914
2004 3.3268562078134587
2005 3.328034529950521
2006 3.6488343771746696
2007 3.2723028180757043
2008 3.5716326530612243
2009 3.4143384290985765
2010 3.4873750657548657
2011 3.6878773803994425
2012 3.6074444791992493
2013 3.709853249475891
2014 3.7279272451686243
2015 3.174344209852847

year numRa	tings
+	+
1996	8154
1997	3346
1998	1824
1999	8169
[2000]	9577
2001	6844
2002	6040
[2003]	3326
2004	4889
2005	9499
[2006]	5748
2007	5997
2008	4900
[2009]	3794
2010	3802
[2011]	4306
[2012]	3197
2013	2385
2014	2639
2015	1563

PLOT

CO OCCURRENCE ANALYSIS

```
val moviePairs = ratingsDF.alias("r1")
   .join(ratingsDF.alias("r2"), col("r1.userId") === col("r2.userId")&&
col("r1.movieId") < col("r2.movieId"))
   .select(col("r1.movieId").alias("movie1"),
col("r2.movieId").alias("movie2"))

val movieConnections = moviePairs
   .groupBy("movie1", "movie2")
   .agg(count("*").alias("coOccurrences"))
   .orderBy(desc("coOccurrences"))</pre>
movieConnections.show()
```

CO-OCCURRENCE ANALYSIS

35 VS		
movie1	movie2 co0cc	urrences
++		+
356	480	243
296	593	228
296	356	225
296	318	221
356	593	209
296	480	206
480	589	204
318	593	198
318	356	198
356	589	195
260	1196	192
50	296	190
260	1210	186
480	593	185
47	296	185
1196	1210	184
110	356	183
457	480	182
110	296	182
318	480	180
++		+

ASSOCIATION MINING

```
val movieBaskets = ratingsDF
 .groupBy("userId")
 .agg(collect set("movieId").alias("ratedMovies"))
movieBaskets.show()
import org.apache.spark.ml.fpm.{FPGrowth, FPGrowthModel}
val fpGrowth = new FPGrowth()
 .setItemsCol("ratedMovies")
 .setMinSupport(0.1)
 .setMinConfidence(0.5)
val model: FPGrowthModel = fpGrowth.fit(movieBaskets)
val frequentItemsets = model.freqItemsets
frequentItemsets.show()
```

```
| the standard | the
```

ASSOCIATION MINING

```
items|freq|
            [95] | 105|
       [95, 648]
                   74
        [95, 32]
                   76
       [95, 457]
                   71
       [95, 780]
                   83|
       [95, 589]|
                   71|
       [95, 380]
                   71
       [95, 736]
                   74
       [95, 480]|
                   77
          [7438] | 103|
     [7438, 4226]
                   76
     [7438, 2571]
                   81|
[7438, 2571, 296]|
                   72
```

RATINGS PREDICTION

Comparative Analysis between Different Prediction Models

PREPARING THE DATA

```
val joinedDF = ratingsDF.join(moviesDF, Seg( "movieId"), "inner")
val selectedData = joinedDF.select("userId", "movieId", "genres",
"timestamp", "rating")
val indexer = new
StringIndexer().setInputCol("genres").setOutputCol("genreIndex")
val indexed = indexer.fit(selectedData).transform(selectedData)
val encoder = new
OneHotEncoder().setInputCol("genreIndex").setOutputCol("genreVec").fit(indexe
val encoded = encoder.transform(indexed)
numerical features)
val assembler = new VectorAssembler().setInputCols(Array( "userId", "movieId",
"genreVec", "timestamp")).setOutputCol("features")
val assembledData = assembler.transform(encoded).select( "rating", "features")
val Array(training, test) = assembledData.randomSplit(Array( 0.8, 0.2))
```

LINEAR REGRESSION

```
// Train the Regression Model using Multiple Features
val lr = new
LinearRegression().setLabelCol("rating").setFeaturesCol("features")
val lrModel = lr.fit(training)

// Make predictions on the test set
val predictions lr = lrModel.transform(test)
```

RANDOM FOREST

val predictions gbt = gbtModel.transform(test)

```
val rfr = new
RandomForestRegressor().setLabelCol("rating").setFeaturesCol("features"
val rfrModel = rfr.fit(training)
val predictions rfr = rfrModel.transform(test)
 Gradient Boosting Regression
val qbt = new
GBTRegressor().setLabelCol("rating").setFeaturesCol("features")
val gbtModel = gbt.fit(training)
```

EVALUATING THE MODEL

```
predictions.select(sgrt(avg((col("rating") - col("prediction")) * (col("rating") -
col("prediction")))).as("rmse").show()
predictions.select(avg(abs(col("rating") - col("prediction")))).as("mae").show()
//R-squared error
predictions.select
 corr(col("prediction"), col("rating")) * corr(col("prediction"), col("rating"))
).as("r2").show()
//Accuracy
val threshold = 0.5
val accuracy = predictions.select(\sum(\sum(\sum(abs(col("rating") - col("prediction")) <=</pre>
threshold, 1).otherwise(0)) / count(col("rating"))).as("accuracy")).show()
```

PLOTS

PLOTS

MOVIE RECOMMENDATION

COLLABORATIVE FILTERING + CONTENT BASED FILTERING

import org.apache.spark.ml.recommendation.ALS val ratings = ratingsDF.select("userId", "movieId", "rating") .na.drop() Create the ALS model val als = new ALS() .setMaxIter(10) .setRegParam(0.01) .setUserCol("userId") .setItemCol("movieId") .setRatingCol("rating") Fitting the ALS model to the training data val model = als.fit(ratings)

```
val genreFilteredMovies = moviesWithGenresDF.filter( col("genre") ===
userGenre)

// Get tags for movies
val userTagRelevance = genomeTagsDF.filter( col("tag") ===
userTag).select("tagId").first().getInt(0)
val tagRelevanceDF = genomeScoresDF.filter( col("tagId") ===
userTagRelevance)

val userPredictions = model.recommendForAllUsers( 50)
val relevantMoviesDF = genreFilteredMovies.join(tagRelevanceDF,
"movieId")
```

import org.apache.spark.sql.functions.{ col, expr}

```
val userTopRecommendations = relevantMoviesDF.alias( "relevant")
.join(userPredictions.select(col("userId"),
explode(col("recommendations")))
    .select(col("userId"), col("col.movieId"), col("col.rating"))
    .alias("predictions"), expr("relevant.movieId =
predictions.movieId"))
.orderBy(col("predictions.rating").desc)
.select(col("relevant.movieId"), col("relevant.title"),
col("predictions.rating"), col("relevant.relevance"))
.limit(50)
```

```
val distinctRecommendations =
userTopRecommendations.dropDuplicates('movieId'')
```

```
val finalRecommendations = distinctRecommendations
.join(linkDF, Seq("movieId"), "left")
.select("movieId", "title", "rating", "relevance", "ImdbID", "TmdbID")
```

finalRecommendations.show(10)

RECOMMENDATIONS

```
val userId = 123
val userGenre = "Comedy"
val userTag = "thriller"
```

```
|movieId| title| rating| relevance|ImdbID|TmdbID|
   187| Party Girl (1995)| 13.802541| 0.123|114095| 36196|
   663|Kids in the Hall:...| 12.055248| 0.09025|116768| 18414|
   921|My Favorite Year ... | 11.439761|0.15200000000000002| 84370| 31044|
   1541|Addicted to Love ...| 11.322601|0.11975000000000002|118556| 2058|
   1772|Blues Brothers 20...| 11.702422|0.0414999999999998|118747| 11568|
   2014|Freaky Friday (1977)|11.5768385|0.0642499999999997| 76054| 16084|
   2163|Attack of the Kil...| 13.445128| 0.062| 80391| 2182|
   2583|Cookie's Fortune ... | 12.734982| 0.1385|126250| 9465|
   2618 | Castle, The (1997) | 12.247027 | 0.1195 | 118826 | 13852 |
```

THANK YOU