350

% Os valores de entrada b = 200 m = 20 y10 = 0 y20 = 0

0.00585 0.05634 0.05770 Metodo RK4 para sistema de ordem 2 0.03843 0.04189 0.04505 0.04790 0.05046 0.05272 0.05468 0.05875 0.01140 0.01665 0.02161 0.02626 0.03467 0.03061 0.05951 7.409328.00990 2.06648 4.51195 0.0000.0 0.25652 0.44805 0.68762 1.66466 2.50139 2.96640 3.45849 3.97468 5.63773 6.22022 6.81175 0.02950 0.11600 0.97224 5.06731 1.29891 % produzem os resultados 13 130 00000 14 140 00000 15 150 00000 17 170 00000 18 180 00000 20 200 00000 70.00000 0.0000 10,00000 20.00000 30.00000 40.00000 50.00000 60.00000 90.0000 10 100.00000 12 120.00000 11 110.00000

Análise dos resultados

Em um estudo mais detalhado, deve-se levar em conta que, a partir de uma certa carga, este A Figura 7.7 mostra a deflexão da viga em função da distância em que a carga é colocada. modelo elástico não será mais válido, visto que a deflexão estará na faixa plástica.

Figura 7.7 Deflexão de uma viga metálica em função da distância da carga.

7.7 Exercícios

Resolver os problemas de valor inicial abaixo subintervalos m indicado

7.1.
$$y' = \sqrt{x}$$
, $y(0) = 0$, $x \in [0, 2]$ e $m = 5$.
7.2. $y' = x^2 + y^2$, $y(1) = 0$, $x \in [1, 2]$ e $m = 8$

7.5. Resolver os Exercícios 7.1-7.3, usando o programa do Exercício 7.4.

Seção 7.2

'n

mação, implementar o método de Runge-Kutta 7.6. Utilizando qualquer linguagem de progra-

1----

7.7. Implementar o método de Dormand-Prince exibido na Figura 7.3.

mos de Runge-Kutta e Dormand-Prince imple-Resolver os três PVI abaixo usando os algoritresultados com o valor exato dado por y(x)

7.8.
$$y' = -\sin(x)y$$
, $y(0) = -1$, $x \in [0, \pi]$
 $n = 10 \text{ e } y(x) = -e^{\cos(x)-1}$.

7.9.
$$y' = (\sqrt{x} + 1)y$$
, $y(1) = 1$, $x \in [1,3]$, $m = 20 e y(x) = e^{2x^{1,5}/3+x-5/3}$.

7.10.
$$y' = x^2 - 3x - 1 - y$$
, $y(1) = 1$, $x \in [1, 2]$, $m = 50 e y(x) = e^{1-x} + x^2 - 5x + 4$.

utilizando o método de Euler com o número de

$$7.1. \ y' = \sqrt{x}, \ y(0) = 0, \ x \in [0, 2] \ em = 5.$$

$$7.2. \ y' = x^2 + y^2, \ y(1) = 0, \ x \in [1, 2] \ em = 8.$$

3.
$$y' = xy$$
, $y(0) = 1$, $x \in [0,1]$ e $m = 10$.

de ordem quatro apresentado na Figura 7.2.

mentados nos Exercícios 7.6 e 7.7. Comparar os

7.8.
$$y' = -\sin(x)y$$
, $y(0) = -1$, $x \in [0, \pi]$, $m = 10 e y(x) = -e^{\cos(x)-1}$.

$$m = 20 \text{ e } y(x) = e^{2x^{1/3}/3+x^{-5/3}}.$$

$$7.10 \text{ o} f(x) = e^{2x^{1/3}/3+x^{-5/3}}.$$

7.11. Implementar em uma linguagem de programação o método preditor-corretor de Adams-

Bashforth-Moulton de ordem quatro mostrado

na Figura 7.4.

Resolver os quatro PVI dados abaixo utilizando o algoritmo de Adams-Bashforth-Moulton implementado no Exercício 7.11. Comparar os resultados com o valor exato dado por y(x)

7.12.
$$y' = x \cos(x) + y$$
, $y(0) = \pi$, $x \in [0, \pi/2]$, $m = 20 e y(x) = \pi e^x + \frac{\sin(x)(x+1) - \cos(x)x}{2}$

7.14.
$$y' = e^x x^2 + y$$
, $y(0) = -1$, $x \in [0, 1]$, $m = 100 e y(x) = e^x \left(\frac{x^3}{3} - 1\right)$.

7.13. $y' = (e^x x - 1)y$, y(1) = -1, $x \in [1, 2]$, $m = 100 e y(x) = -e^{(e^x - 1)(x - 1)}$.

$$\begin{array}{ll} 7.15. \ y' = 5x^3 + 2x^2 + x - 1 - y, \ y(0) = 1, \ x \in \\ [0,2], \ m = 200 \ \mathrm{e} \\ y(x) = 29e^{-x} + 5x^3 - 13x^2 + 27x - 28. \end{array}$$

Seção 7.4

Comparar o valor exato dos PVI abaixo dado por y(x) com os valores obtidos pelos métodos Dormand-Prince e Adams-Bashforth-Moulton de ordem quatro

7.16.
$$y' = \operatorname{sen}(x)\cos(x) - y$$
, $y(0) = 0$, $x \in [0, \pi]$, $m = 100$ e $y(x) = \frac{e^{-x} - \cos(2x)}{5} + \frac{\sin(2x)}{10}$.

7.17.
$$y' = x - \cos(x) + y$$
, $y(0) = -1$, $x \in [0, \pi]$, $m = 100 \text{ e}$
 $y(x) = \frac{\cos(x) - \sin(x) - e^x}{2} - x - 1$.

7.18.
$$y' = xy(x+1), y(0) = 1, x \in [0,1],$$

 $m = 100 e y(x) = e^{x^2(2x+3)/6}.$

7.19.
$$y' = x^2 + 3x - 5$$
, $y(0) = 0$, $x \in [0, 2]$, $m = 100 \text{ e } y(x) = \frac{x^3}{3} + \frac{3x^2}{2} - 5x$.

[
método	intervalo	raiz	iter
secante	[1, 2]	1,2167	ಬ
regula falsi	[1, 2]	1,2167	19
	[1, 2]	1,2167	5

6.13)			
método	intervalo	raiz	iter
secante	[-2, 0]	3,5270	16
regula falsi	[-2, 0]	-1,6813	∞
pégaso	[-2, 0]	-1,6813	9

Seção 6.4

6.16)

	iter	4	∞
	raiz	-1,3133	-1,3133
	intervalo	[-2, 0]	[-2, 0]
(0=	método	Muller	W-D-Brent

	_			
	iter	က	9	
	raiz	0,6329	0,6329	
	intervalo	[0, 1]	[0, 1]	
6.17)	método	Muller	W-D-Brent	

intervalo raiz iter 0,9180 0,9180

método Muller

6.18)

0,0 2,2

W-D-Brent

Seção 6.5

6.21)

ter.	5	ಸರ
raiz it	2823	,2823
$x_0 \mid { m r}$	2 1, 5	2 1, 5
método	Newton	Schröder(1)

33

regula falsi

pégaso Muller

1,57084,7124 1,5708

bisseção

secante

método

1,5708 12

W-D-Brent

 $(a+bi)^*$ 1,5708

 $a = 7,8540 e b = -8 \times 10^{-4}$

Schröder(1)

Newton

			_	
	iter	28	12	_
	raiz	1,0000	1,0000	1 0000
	x_0	2	2	٥
,	método	Newton	Schröder(2)	Schröder(3)

6.23)			
método	x_0	raiz	iter
Newton	3	2,0000	18
Schröder(2)	3	2,0000	ಬ

Seção 6.6

6.26)			
nétodo	raiz	iter	erro
ojsseção	0,9454	35	0
secante	0,9454	∞	0
regula falsi	0,9454	38	0
égaso	0,9454	7	0
ller	0,9454	4	0
-Brent	0,9454	∞	0
Newton	0,9454	4	0
Schröder(1)	0,9454	4	0

6.27)

,		ĺ	
método	raiz	iter	erro
bisseção	1,8798	36	0
secante	1,8798	∞	0
regula falsi	1,8798	41	0
pégaso	1,8798	7	0
Muller	1,8798	ഹ	0
W-D-Brent	1,8798	∞	0
Newton	1,8798	∞	0
Schröder(1)	1,8798	∞	0

iter	5	ಬ	!
raiz	1,2823	1,2823	
x_0	2	2	
nétodo	Tewton	$chr\ddot{o}der(1)$	

6.22)

nétodo	x_0	raiz	iter
Tewton	2	1,0000	28
$chr\ddot{o}der(2)$	2	1,0000	12
chröder(3)	2	1.0000	7

6.30)

alsi
raiz ii raiz ii
método bisseção – secante – pégaso – pégaso – Muller – Ww-D-Brent –
método bisseção secante regula f pégaso Muller W-D-B Newtor

Gerais

6.34)
$$D(\lambda) = \lambda^3 - 10\lambda^2 + 15\lambda + 49$$
, com $\lambda_1 = -1,5120$, $\lambda_2 = 4,9045$; $\lambda_3 = 6,6076$.

6.35)
$$D(\lambda) = \lambda^3 - 17\lambda^2 + 75\lambda - 91$$
, com $\lambda_1 = 2,0543$, $\lambda_2 = 4,0748$; $\lambda_3 = 10,8709$.

6.36)
$$L_3(x) = \frac{1}{2}(5x^3 - 3x)$$
, com $\lambda_1 = -0.77460$; $\lambda_2 = 0$; $\lambda_3 = 0.77460$.

6.38)
$$V = 0.9984 \text{ litro} \times \text{mol}^{-1}$$
.

$$6.39$$
) pH = 6.82 .

$$6.40$$
) taxa = $5,75\%$.

Capítulo 7: Equações diferenciais ordinárias

iter erro

6.29)

Seção 7.1

136 34

$$7.1) y_5 = 1,55490.$$

7.2)
$$y_8 = 3,39195$$
.

500 188 500 80 80 4

7.3)
$$y_{10} = 1,54711$$
.

0

7.8) RK:
$$y_{10} = -0,13534$$
;
DP: $y_{10} = -0,13534$.

7.9) RK:
$$y_{20} = 121,18508$$
;
DP: $y_{20} = 121,19923$.

7.10) RK:
$$y_{50} = -1,63212$$
;
DP: $y_{50} = -1,63212$.

Seção 7.3

$$7.12)$$
 $y_{20} = 16,39798.$

$$7.13$$
) $u_{100} = -595.31949$.

1
 7.13) $y_{100} = -595,31949.$

7.14)
$$y_{100} = -1,81219$$
.

7.15)
$$y_{200} = 17,92472$$
.

Seção 7.4

7.16) DP e ABM:
$$y_{100} = -0,19136$$
.

7.17) DP e ABM:
$$y_{100} = -16,21194$$
.

7.18) DP e ABM:
$$y_{100} = 2,30098$$
.

7.19) DP e ABM:
$$y_{100} = -1,33333$$
.

7.20) DP e ABM:
$$y_{100} = 27,25271$$
.