Context-Free Grammars

 (V, Σ, R, S)

V: non-terminal symbols

 Σ : terminals $V \cap \Sigma = \emptyset$

R: productions R: $V \rightarrow (V \cup \Sigma)^*$

S: start symbol

Example

```
V = \{ q, f \} \Sigma = \{ 0, 1 \} R = \{ q \rightarrow 11q, \ q \rightarrow 00f, \ f \rightarrow 11f, \ f \rightarrow \epsilon \} \{ q \rightarrow 11q \mid 00f, \ f \rightarrow 11f \mid \epsilon \} S = q
```

Derivation

- If $A \rightarrow B$, then $xAy \Rightarrow xBy$ (xAy yields xBy)
- If $s \Rightarrow \cdots \Rightarrow t$, then $s \Rightarrow^* t$.
- $x \text{ in } \Sigma^* \text{ is generated by } (V,\Sigma,R,S) \text{ if } S \Rightarrow^* x.$
- $G = (V, \Sigma, R, S), L(G) = \{ x \mid S \Rightarrow^* x \}.$

Example

- G = ({S}, {0,1}. {S \rightarrow 0S1 | ϵ }, S)
- ε in L(G) since S □ ε
- 01 in L(G) since S □ 0S1□ 01
- 0011 in L(G) since

- $0^n 1^n$ in L(G) since $S \Rightarrow 0^n 1^n$
- $L(G) = \{0^n 1^n | n \ge 0\}$

Context-Free Language

A language L is context-free if L = L(G) for some CFG G

If L is regular, then L = L(G) for some CFG G

Let L=L(M) for finite automaton M=(Σ , F, Q, δ)

Consider the regular grammar $G = (V, \Sigma, R, S)$

$$V = Q$$

$$\Sigma = \Sigma$$

$$R = \{ q \rightarrow xq' \mid \delta(q,x) = q' \} \cup \{ f \rightarrow \epsilon \mid f \text{ in } F \}$$

$$S = i$$

$$S \mathbin{\square} x_1 q_1 \mathbin{\square} x_1 x_2 q_2 \mathbin{\square} \cdots \mathbin{\square} x_1 \dots x_n f \mathbin{\square} x_1 \dots x_n$$

Regular Grammars

A regular grammar is a CFG (V, Σ, R, S) where every rule has the form

$$V \rightarrow \Sigma^*(V+\epsilon)$$

Every regular language is generated by a regular grammar (previous slide)

Regular grammars generate regular languages

Consider regular grammar $G = (V, \Sigma, R, S)$

Construct a directed graph with vertices VU {f}:

For each rule $A \to xB$, where x in Σ^* and B in V, draw edge $A \stackrel{X}{\to} B$.

For each rule $A \rightarrow x$, where x in Σ^* , Draw edge $A \xrightarrow{x} f$

Example $G = (\{S,A\}, \{0,1\}, \{S \rightarrow 0S \mid 10A, A \rightarrow 00\}, S)$

There is a path from S to f consuming input x

$$L(G) = L(M)$$

CFL closed under concatenation

Let
$$A = L(G_A)$$
 and $B = L(G_B)$,

$$G_A = (V_A, \Sigma_A, R_A, S_A)$$

 $G_B = (V_B, \Sigma_B, R_B, S_B)$

Assume $V_A \cap V_B = \emptyset$.

Consider $G = (V, \Sigma, R, S)$,

V = Va U Vb U {S}

$$\Sigma = \Sigma_A U \Sigma_B$$

R = Ra U Rb U {S \rightarrow SaSb }

CFL closed under union

A = L(GA), B = L(GB),

$$GA = (VA, \Sigma A, RA, SA)$$

$$GB = (VB, \Sigma B, RB, SB)$$

where $VA \cap VB = \emptyset$

Consider G = (V, \Sigma, R, S),

$$V = VA \cup VB \cup \{S\}$$

$$\Sigma = \Sigma A \cup \Sigma B$$

$$R = RA \cup RB \cup \{S \rightarrow SA \mid SB\}$$

CFL closed under Kleene closure

Let L = (G) where G = (V, Σ , R, S)

Consider $G^* = (V, \Sigma, R^*, S)$,

 $R^* = R U \{ S \rightarrow \varepsilon \mid SS \}.$

Parse Trees

A vertex labeled with a nonterminal is a parse tree

If $A \rightarrow y_1y_2 \dots y_n$ is a production, then

is a parse tree

If $A \rightarrow \epsilon$ is a production, then

is a parse tree

If a leaf of a parse tree is the root of some other parse tree, then their union is a parse tree

Nothing else is a parse tree

Every derivation has a parse tree

Let $G = (\{S\}, \{a, b, c\}, R, S)$, where $R = \{S \rightarrow SbS \mid ScS \mid a\}$

S ⇒ SbS ⇒ SbScS ⇒ abScS ⇒ abSca ⇒ abaca

A parse tree may correspond to multiple derivations

S ⇒ SbS ⇒ SbScS ⇒ SbSca ⇒ abSca ⇒ abaca

has the same parse tree

Each parse tree corresponds to exactly one leftmost derivation

A leftmost derivation

is obtained by applying at each step some production to the leftmost nonterminal symbol

S ⇒ SbS ⇒ abS ⇒ abScS ⇒ abacS ⇒ abaca

Ambiguous CFG

A CFG is *ambiguous* if some string has more than one parse tree

 $G = (\{S\}, \{a, b, c\}, \{S \rightarrow SbS \mid ScS \mid a\}, S)$ is ambiguous because abaca has two parse trees

Parsing

w in (V U Σ)* is a *left sentential form* if S $\Longrightarrow_{\mathbb{L}}^*$ w.

The *leftmost graph* g(G) is defined as follows: The vertex set is the set of all left sentential forms There exists directed edge (x, y) if $x \Rightarrow_i y$

A breadth-first construction of g(G) might (termination is an issue) yield a derivation for a string (if one exists)

Greibach normal form

All productions are of the form $A \rightarrow a x$ Where a in Σ , and x in V*

If CFL L does not contain the empty string, then L is generated by a CFG in G-NF

A breadth-first construction of g(G) will (termination is no issue) yield a derivation for a string (if one exists)

Chomsky normal form

All productions are of the forms $A \rightarrow BC$, or $A \rightarrow a$ Where a in Σ , and B,C in V

If CFL L does not contain the empty string, then L is generated by a CFG in C-NF

A breadth-first construction of g(G) will (termination is no issue) yield a derivation for a string (if one exists)

CYK (Cocke, Younger, Kasami) algorithm

Given G in C-NF and w in Σ^* , decide if w in L(G) in O($|w|^3$) time

Given $w = a_1 \dots a_n$, define

$$V_{ij} = \{ A \text{ in } V \mid A \Rightarrow^* w_{ij} = a_i \dots a_j \}$$

Note that w in L(G) if and only if S in V_{1n}

• A in V_{ii} if and only if $A \rightarrow a_i$

• For j > i, $A \Rightarrow^* w_{ij}$ if and only if $A \rightarrow BC$, $B \Rightarrow^* w_{ik}$, $C \Rightarrow^* w_{k+1j}$ That is, $V_{ij} = \bigcup_{i \le k < j} \{A \mid A \rightarrow BC, B \text{ in } V_{ik}, C \text{ in } V_{k+1j}\}$

Pumping Lemma

Let G = (V, Σ , R, S) be a CFG, and let c be such that for every production A \rightarrow w, $|w| \le c$

Consider a parse tree T for x in L(G),

If
$$|x| > K = c^{|v|+1}$$
, then T has depth > $|V|+1$

Hence some path from root to a leaf contains more than |V| variables

Therefore, some nonterminal A appears twice on the path; consider a path with lowest such A

Decompose T into subtrees I, II, III

Correspondingly, x = uvwyzand uv^iwy^iz is in L(G) for any $i \ge 0$ If T is a parse tree for x having minimum number of nodes, then $vy \neq \varepsilon$

If $vy = \varepsilon$, then the following is a parse tree for x

having fewer nodes than T

A is a lowest repeated nonterminal

Subtree II u III has at most K leaves and depth < |V|+2 (otherwise A is not the lowest repeated nonterminal)

Pumping Lemma:

For any CFL L, there exists a constant K such that all x in L with |x| > K can be expressed as x = uvwyz such that

- (1) $vy \neq \varepsilon$,
- (2) for any $i \ge 0$, $uv^i w y^i z$ is in L,
- (3) |vwy| < K

CFL not closed under intersection

A =
$$\{a^{m}b^{m}c^{n}| m, n \ge 0\}$$

B = $\{a^{m}b^{n}c^{n}| m, n \ge 0\}$

A and B are CFL, but

$$A \cap B = \{a^n b^n c^n | n \ge 0\}$$
 is not

CFL not closed under complement

Deterministic Pushdown Automata

 $(Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$

Q: states (finite set)

Σ: *input alphabet* (finite set)

Γ: stack symbols (finite set)

δ: Q x (Σ U {ε}) x Γ → Q x Γ* (transition function)

q₀: start state

z₀: initial stack top symbol

F: accepting states

Pushdown Automata (nondeterministic)

$$\delta(q,a,x) = \{(q',\beta),...\}$$

q: current state

a: input symbol (ε transitions allowed)

x: current stack top

q': next state

β: replacement for x (top at left, β = ε for pop)

Transition diagram

$$V = Q$$
; $q_0 = \longrightarrow$, $f = \bigcirc$ for $f \in F$)

$$E = \{ q \xrightarrow{a, x/\beta} q' \mid (q', \beta) \in \delta(q, a, x) \}$$

Instantaneous Description

 (q, w, α)

q: current state

w: remaining input

α: stack contents (top at left)

Id → Id' if instantaneous description Id could change to Id' in one move of the PDA

 $Id \rightarrow^* Id'$ (zero or more moves)

The language L(P) of PDA P

w such that $(q_0, w, z_0) \rightarrow^* (f, \varepsilon, \alpha)$ for some final state f

$$(q_0, ((())())(), Z_0) \rightarrow (q_0, (())())(), (Z_0) \rightarrow (q_0, ())())(), ((Z_0) \rightarrow (q_0, ())())(), (((Z_0) \rightarrow (q_0, ())(), ((Z_0) \rightarrow (q_0, ())(), (Z_0) \rightarrow (q_0, ())(), (Z_0) \rightarrow (Q_0, (), Z_0) \rightarrow (Q_0, (), Z_0) \rightarrow (Q_0, (), (Z_0) \rightarrow (Q_0, (), Z_0) \rightarrow (Q_0, (), Z_0) \rightarrow (Q_0, (), (Z_0) \rightarrow (Q_0, (), Z_0) \rightarrow (Q_0, Z_0) \rightarrow (Q_0$$

w such that $(q_0, w, z_0) \rightarrow^* (q, \varepsilon, \varepsilon)$ for some state q

Accept: empty stack or final state

P' simulates P:

- When P accepts, P' empties its stack
- P' avoids emptying stack prematurely (use special stack-bottom marker)

P simulates P':

- If P' would accept by empty stack...
- ...then P moves to accepting state

Accept by empty stack

L=
$$\{0^n 1^n \mid n \ge 0\}$$

initialization: empty stack

special notation: push

CFG (V,Σ,R,S) to PDA (top-down)

```
 \begin{array}{l} (Q,\, \Sigma,\, \Gamma,\, \delta,\, q_0,\, z_0,\, F) \\ \\ Q:\, \{q\} \\ \\ \Sigma:\, \Sigma \\ \\ \Gamma:\, V\, \cup\, \Sigma \\ \\ \delta(q,\epsilon,A) = \{(q,\alpha)\mid A \rightarrow \alpha \text{ in R}\} \ \textit{rewrite variables (store on stack)} \\ \delta(q,a,a) = \{(q,\epsilon)\mid a \text{ in }\Sigma\} \qquad \textit{match input (with derivation on stack)} \\ q_0:\, q \\ z_0:\, S \\ \end{array}
```

F: not applicable; accept by empty stack

G = ($\{S,A\}$, $\{0,1\}$, $\{S\rightarrow AS|\epsilon, A\rightarrow 0A1|A1|01\}$, S)

PDA to CFG

$$P = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$

F: $\{q_a\}$ (if not, then $\delta(q,\epsilon,\epsilon) = \{(q_a,\epsilon)\}$ for all q in F)

P empties its stack before accepting (modify δ if necessary)

δ: a single symbol is either pushed or popped

G has (for each pair p,q of states of P) a variable A_{pq} that generates all strings which can take P from p with an empty stack to q with an empty stack

G has start symbol $A_{q_0 q_a}$; the language of G is therefore the language accepted by P

On input w, P must first push (since each move is either push or pop, and the stack is initially empty) and P must have last move pop (because the stack returns to empty)

During the computation on w, either:

- a) The first symbol pushed is the last popped
- b) The stack is emptied during the computation (when the first symbol is popped)

Case a: the computation of P on input w is simulated by $A_{pq} \rightarrow a A_{rs}$ b where a is the input symbol read at the first move (from state p), b is the symbol read at the last move (to state q), r is the state following p, and s is the spate preceding q

Case b: the computation of P on input w is simulated by A $_{pq} \rightarrow$ A $_{pr}$ A $_{rq}$ where r is the state where the stack becomes empty

BNF Notations

- Variables: left-hand-side or delimited by < >
- Terminals: boldface, underlined, or quoted
- ::= or = abbreviates →
- abbreviates "one or more" (as does +)
 (replace β... with variable V, add productions V → Vβ|β)
- * abbreviates zero or more
 (replace β* with variable V', add productions V' → V'β|ε)
- Symbols delimited by [] are optional (replace [β] with variable V", add productions V" → β|ε)
- Symbols delimited by { } or () are treated as a unit (replace {β} with variable V"', add productions V"' → β)

Syntax diagrams

