Diagrammatic Categories in Representation Theory Honours Thesis (Draft)

Victor Zhang Supervisor: Dr Anna Romanov

UNSW Australia

 $March\ 4,\ 2023$

Contents

1	Introduction	1
2	Background	2
3	One-colour Diagrammatics 3.1 One-colour Diagrammatic Hecke Category	
4	Two-colour Diagrammatics 4.1 Two-colour Diagrammatic Hecke Category	6

Introduction

This page was empty.

Background

To do

One-colour Diagrammatics

3.1 One-colour Diagrammatic Hecke Category

In this section, we describe one-colour diagrammatics for morphisms in BSBim. The morphisms in this category have a presentation in terms of generators and relations.

The generators are the following univalent and trivalent vertices, along with boxes where f is a homogeneous polynomial in R.

These are the unit, multiplication, counit and comultiplication maps from the Frobenius algebra structure of $B_s \in \mathbb{BSBim}$.

3.2 Diagrammatic $\mathcal{O}(SL(2))$

We will describe one-colour diagrammatics for $\mathcal{O}(SL(2))$ via generators and relations up to isotopy.

The elements of this category are generated by taking tensor products of an element s, coloured red.

Similar to one colour diagrammatics for \mathbb{BSBim} , the morphisms in this category are generated by horizontal concatenation, vertical concatenation, and sums of the following univalent and trivalent vertices, along with boxes where f is a homogeneous polynomial in ??.

$$f$$
 , f f f f

The morphisms are subject to the following local relations, up to isotopy.

$$\begin{array}{c|c}
\hline
f \\ \hline
g \\ \hline
\end{array} = \begin{array}{c|c}
\hline
fg \\ \hline
\end{array} (3.2.2c)$$

Additionally, we must impose a right R-module relation following from the lack of a left action. Instead of embedding in the double-sided strip $[0,1] \times \mathbb{R}$, we embed the diagrams in the one-sided strip $[0,1] \times \mathbb{R}_{>0}$ (Check the inequality), where the left side is an imaginary wall. For example a morphism may be

Then, diagrams are related to the wall by

$$\boxed{f} = 0 \tag{3.2.3}$$

where f is a homogeneous polynomial in R with non-zero degree. That is, if a diagram has a non-constant homogeneous polynomial on its far left, then the entire diagram dies.

Blah

Two-colour Diagrammatics

4.1 Two-colour Diagrammatic Hecke Category

$\textbf{4.2} \quad \textbf{Diagrammatic} \ \operatorname{Tilt}(\operatorname{SL}(2))$

Blah