Exercice 1

1. Déterminer les réels a, b, c tels que pour tout u

différent de $\frac{1}{2}$, $\frac{u^2 - 1}{2u - 1} = au + b + \frac{c}{2u - 1}$.

- 2. Calculer $\int_{-1}^{0} \frac{x^2 1}{2x 1} dx$.
- 3. Calculer $\int_{-\frac{\pi}{6}}^{0} \frac{\cos^3 x}{1 2\sin x} dx$.

Exercice 2

1) Calculez les intégrales:

a)
$$\int_{-3}^{0} (x^3 + 2x^2 - 1) dx$$
 ; b) $\int_{-3}^{2} \frac{x - 1}{x^2 - 2x + 2} dx$

c)
$$\int_{1}^{e} \frac{\ln t}{t} dt$$
 ; d) $\int_{1}^{2} 2e^{3x} dx$; e) $\int_{0}^{3} \frac{5}{\sqrt{2x+3}} dx$

f)
$$\int_{1}^{2} (x+1) \ln x \, dx$$
 ; g) $\int_{1}^{e} \frac{\ln x}{x^2} \, dx$; h) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 1} \, dx$

i)
$$\int_{-2}^{0} (2x^3 - x + 1) dx$$
 ; j) $\int_{1}^{2} \frac{2}{(3u - 1)^2} du$; k) $\int_{\frac{1}{2}}^{e} \frac{\ln x}{x} dx$; l)

$$\int_{0}^{2} 3e^{2x} dx \; ; \; m) \int_{0}^{4} \frac{1}{\sqrt{2x+1}} dx \; ; \; n) \int_{1}^{2} x^{2} \ln x \, dx \; ;$$

o)
$$\int_{1}^{e} \frac{\ln 2t}{t^{2}} dt$$
; p) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \cos x \, e^{\sin x} \, dx$; q) $\int_{-1}^{1} t \sqrt{1-t^{2}} dt$;

r)
$$\int_{1}^{2} \frac{1}{x^{2}} + \frac{1}{(1+2x)^{2}} dx$$
 ;s) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \tan^{2}\left(\frac{u}{2}\right) du$.

t)
$$\int_0^1 x e^{2x} dx$$
; u) $\int_0^{\frac{\pi}{3}} \sin x \cos^3 x dx$, v) $\int_1^2 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.

2) Calculer les intégrales suivantes (on précisera éventuellement l'intervalle de validité) :

1°)
$$\int_{\sqrt{3}}^{2\sqrt{2}} \frac{x dx}{\sqrt[3]{x^2 + 1}}$$
 ; 2°) $\int_0^{-2} t. \exp(-t^2) dt$

3°)
$$\int_{1}^{e} (x - \frac{1}{x} + \frac{1}{x^2}) dx$$
; **4**°) $\int_{-1}^{x} \frac{dt}{1 - t}$

$$5^{\circ}$$
) $\int_{0}^{\pi/6} \sin 3u \ du$; 6°) $\int_{e^{2}}^{e} \frac{\ln t}{t} \ dt$

$$\mathbf{7}^{\circ}) \int_{0}^{1} \frac{x^{n-1}}{1+x^{n}} dx \ (n \in N^{*}); \quad \mathbf{8}^{\circ}) \int_{1}^{e} \frac{\ln(t)}{t^{2}} dt$$

9°)
$$\int_{a}^{a^{n}} \frac{dx}{x \ln x}$$
 ; **10**°)

$$\int_{1}^{e^{2}} (x^{3} + 1) \ln(x) dx \, \mathbf{11}^{\circ}) \, \int_{0}^{1} (x^{2} + x + 1) e^{-x} dx \quad ;$$

12°)
$$\int_{0}^{\pi} x^{2} \sin(x) dx$$

Exercice 3

Pour tout réel positif a, on définit $I(a) = \int_{1}^{a} \frac{\ln x}{x^2} dx$.

1. A l'aide d'une intégration par parties, montrer que

$$I(a) = \frac{\ln(a) - 1}{a^2} + 1$$
.

2. En déduire la limite de I(a) quand a tend vers $+\infty$.

3. On définit maintenant $J(a) = \int_{1}^{a} \frac{\ln(x)}{x^2 + 1} dx$. En

utilisant (avec justification) que pour tout x supérieur à

1, $x^2 \le x^2 + 1 \le 2x^2$, montrer que $\frac{1}{2}I(a) \le J(a) \le I(a)$.

Exercice 4

Soit f la fonction définie sur [1; $+\infty$ [par :

$$f(x) = \sqrt{x} e^{-x}.$$

Pour tout $\alpha > 1$, on considère l'intégrale :

$$I(\alpha) = \int_{\alpha}^{2\alpha} f(x) dx.$$

1. Interpréter géométriquement le nombre $I(\alpha)$.

2. Démontrer que, pour tout $x \in [1; +\infty)$, on a :

$$e^{-x} \le f(x) \le xe^{-x}$$
.

- 3.En déduire pour tout $\alpha > 1$ un encadrement de $I(\alpha)$
- 4. Quelle est la limite de $I(\alpha)$ lorsque α tend vers $+\infty$?
- 5. Déterminer la dérivée par rapport à α de I. Quel est son signe ? Dresser le tableau de variation de I.

Exercice 5

1. Restitution organisée de connaissances

Démontrer la formule d'intégration par parties en utilisant la formule de dérivation d'un produit de deux fonctions dérivables, à dérivées continues sur un intervalle [a;b].

2. Soient les deux intégrales définies par

$$I = \int_0^{\pi} e^x \sin x dx \text{ et } J = \int_0^{\pi} e^x \cos x dx.$$

- a. Démontrer que I = -J et que $I = J + e^{\pi} + 1$.
- b. En déduire les valeurs exactes de *I* et de *J*.

Exercice 6

1°) Montrer que les intégrales

$$I = \int_0^\pi \frac{\sin t}{\sin t + \cos t} dt \quad et \quad J = \int_0^\pi \frac{\cos t}{\sin t + \cos t} dt$$

existent.

 2°) Calculer I + J et I – J. En déduire I et J.

Exercice 7

- 1. Application du changement de variable. Montrer:
- -- si f est impaire et continue sur [-a, a], alors

$$\int_{-a}^{a} f(t)dt = 0 \quad (a > 0) ;$$

-- si f est paire et continue sur [-a, a], alors

$$\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt \ (a > 0) \ ;$$

-- si f est périodique de période T est continue sur

$$\mathbf{R}$$
, alors $\int_{a}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt$.

Calculer:
$$\int_{-3}^{3} x \sqrt{x^4 + 1} dt$$
; $\int_{0}^{2\pi} \sin^3 t dt$

Exercice 8

Pour n entier naturel, on pose : $I_n = \int_0^1 x^n \sqrt{1-x^2} dx$

- 1°) Quelle est la signification géométrique de I_0 ? En déduire la valeur de I_0 .
- 2°) Calculer I₁.
- 3°) Montrer que pour tout $n \geq 2$, on a :

 $I_{n} = \, \frac{n-1}{n+2} \ \, I_{\text{n-2}}. \ \, \text{En d\'eduire la valeur de } \, \, I_{n} \ \, \text{en fonction}$

de n (on distinguera suivant la parité de n).

- $\mathbf{4}^{\circ}$) Montrer que (I_n) est une suite positive et décroissante et que cette suite converge vers 0.
- 5°) Montrer que n(n+1)(n+2) I_n I_{n-1} est indépendant de n et calculer sa valeur ; en déduire un équivalent simple de I_n lorsque I_n tend vers $+\infty$.

Exercice 9

Soit $I_n = \int_0^{\frac{\pi}{2}} (\cos x)^n dx$, avec n appartenant à **N**.

- 1°) Montrer que la suite (I_n) est décroissante. En déduire qu'elle est convergente.
- 2°) A l'aide d'une intégration par parties, montrer

 $\text{que pour tout } n \ \geq 2, \text{ on } a: I_n = \frac{n-1}{n} \ I_{n\text{--}2}.$

- $\boldsymbol{3}^{\circ})$ Après avoir calculé I_0 et $I_1,$ en déduire I_{2p} et $I_{2p+1},$ $p \in \boldsymbol{N}.$
- **4°**) Montrer que pour tout $p \in \mathbf{N}$, on a :

$$\frac{I_{2p+2}}{I_{2p}} \leq \frac{I_{2p+1}}{I_{2p}} \leq 1.$$

 5°) En déduire la limite quand p tend vers +∞ de

$$\left(\frac{2.4.6....2p}{1.3.5...(2p-1)}\right)^2 \cdot \frac{1}{2p+1}$$
 (formule de Wallis).

Exercice 10

On note, pour tout nombre réel a positif et pour tout entier naturel n :

$$u_n(a) = \int_0^1 \exp(a(1-x)) x^n dx$$

- 1°) Calculer $u_0(a)$.
- $\boldsymbol{2}^{\circ})$ Convergence de la suite ($u_n(a)$) $_{n\in \boldsymbol{N}}$. Soit a>0 donné.
- a) Montrer que pour tout n dans N:

$$0 < u_n(a) < \frac{exp(a)}{n+1}$$
.

- **b**) Montrer que la suite (u_n(a)) est décroissante.
- c) Déterminer la limite de $u_n(a)$ quand n tend vers $+\infty$.
- 3°) Forme explicite de $u_n(a)$.
- a) A l'aide d'une intégration par parties, montrer que $pour\ tout\ n\ dans\ \textbf{N}:\ a.u_{n+1}(a)=-1+\ (n+1).u_n(a).$
- b) Montrer par récurrence sur n que pour tout n dans N

$$u_n(a) = \frac{n!}{a^{n+1}} \left[\exp(a) - \sum_{k=0}^n \frac{a^k}{k!} \right].$$

Exercice 11

On étudie dans cet exercice la suite (S_n) définie pour

 $n \ge 1 \text{ par}$:

$$S_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$

c'est à dire $S_n = \sum_{k=1}^n \frac{1}{k^2}$

A cet effet, on introduit pour tout réel t tel que $0 \le t \le \pi/2 :$

$$I_k = \int_0^{\frac{\pi}{2}} \cos^{2k}(t) dt$$
 ; $J_k = \int_0^{\frac{\pi}{2}} t^2 \cos^{2k}(t) dt$

- 1°) convergence de la suite (J_k/I_k) .
- a) Etablir l'inégalité suivante pour tout nombre réel t tel que $0 \le t \le \pi/2$: $t \le \frac{\pi}{2} \sin(t)$.
 - b) Etablir l'inégalité suivante pour tout nombre entier

k tel que
$$k \ge 0$$
 : $0 \le J_k \le \frac{\pi^2}{4}(I_k - I_{k+1})$.

- c) Exprimer I_{k+1} en fonction de I_k en intégrant par parties I_{k+1} (on pourra poser u'(t) =cos(t) et $v(t) = \cos^{2k+1}(t) \text{ dans l'intégration par parties}).$
- **d**) Déduire des résultats précédents que J_k/I_k tend vers 0 quand k tend vers $+\infty$.
- **2**°) Convergence et limite de la suite (S_n).
- a) Exprimer I_k en fonction de J_k et J_{k-1} , en intégrant deux fois par parties l'intégrale I_k $(k \ge 1)$.
 - **b**) En déduire la relation suivante pour $k \ge 1$:

$$\frac{J_{k-1}}{I_{k-1}} - \frac{J_k}{I_k} = \frac{1}{2k^2}$$

c) Calculer J_0 et I_0 , puis déterminer la limite S de la suite (S_n) .

d) Etablir l'inégalité suivante pour tout nombre entier $k \geq 2 \ :$

$$\frac{1}{k} - \frac{1}{k+1} \le \frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}.$$

En déduire un encadrement de S_{n+p} - S_n pour $n \geq 1$ et $p \geq \! 1, \, puis \; de \; S \; \text{-} \; S_n, \, et \; montrer \; que$

$$0 \le S_n - S + \frac{1}{n} \le \frac{1}{n^2}$$
. Autrement dit, $S_n + \frac{1}{n}$

constitue une valeur approchée de S à $\frac{1}{n^2}$ près.

e) Ecrire un programme en PASCAL calculant et affichant une valeur approchée du nombre S à 10^{-6} près.

Exercice 12

Pour n entier naturel non nul on définit la suite (S_n) par

:
$$S_n = 1 + ... + \frac{1}{2^{1/3}} + \frac{1}{3^{1/3}} + ... + \frac{1}{n^{1/3}}$$

1°) Justifier pour k entier naturel non nul l'encadrement

$$: \frac{1}{(k+1)^{1/3}} \le \int_{k}^{k+1} \frac{dx}{x^{1/3}} \le \frac{1}{k^{1/3}}$$

2°) En déduire l'encadrement :

$$\int_{1}^{n+1} \frac{dx}{x^{1/3}} \le S_n \le \int_{1}^{n} \frac{dx}{x^{1/3}} + 1.$$

- 3°) que peut-on dire de la suite (S_n) ?
- $\mathbf{4}^{\circ}$) A l'aide d'encadrements analogues, montrer que la suite (T_n) définie par :

$$T_n = 1 + \frac{1}{2^{4/3}} + \frac{1}{3^{4/3}} + \ldots + \frac{1}{n^{4/3}}$$
 est convergente.

Exercice 13

Calculer les limites quand n tend vers +∞ des sommes

suivantes :
$$\sum_{k=1}^n \frac{k^4}{n^5} \quad ; \qquad \qquad n \sum_{k=1}^n \frac{1}{k^2 + n^2} \label{eq:suivantes}$$

(rappel:
$$\int_0^1 \frac{dt}{1+t^2} dt = \frac{\pi}{4}$$
);
$$\frac{\pi}{2n} \sum_{k=1}^n \sin\left(\frac{k\pi}{2n}\right).$$

Exercice 14

Soit n un entier ≥ 2 et $u_n = \frac{1}{n} \sum_{k=1}^{n} ln \left(\frac{k}{n}\right)$. Démontrer :

1°)
$$\forall$$
 k ∈ [[1, n-1]]

$$\frac{1}{n}ln\frac{k}{n} \ \leq \ \int_{k/n}^{(k+1)/n}ln(x)dx \ \leq \frac{1}{n}ln\frac{k+1}{n}.$$

$$2^{\circ}$$
) $u_n \leq \int_{1/n}^{1} \ln(x) dx \leq u_n - \frac{1}{n} \ln \frac{1}{n}$.

$$3^{\circ}$$
) $\frac{1}{n} - 1 \le u_n \le \frac{1}{n} - 1 - \frac{1}{n} \ln \frac{1}{n}$.

4°)
$$\lim_{n\to +\infty} (u_n) = -1$$
.

$$5^{\circ}) \lim_{n \to +\infty} \sqrt[n]{\frac{n!}{n^n}} = \frac{1}{e}.$$

Exercice 15

Pour
$$n \in \mathbf{N}$$
 on note $u_n = \frac{1}{n} \sum_{k=1}^n \sqrt[n]{2^k}$

 1°) Montrer que pour tout k appartenant à [[0, n-1]] :

$$\frac{1}{n} \sqrt[n]{2^k} \le \int_{k/n}^{(k+1)/n} 2^t dt \le \frac{1}{n} \sqrt[n]{2^{k+1}}.$$

- $\textbf{2}^{\circ})$ En déduire un encadrement de u_n et la limite de u_n quand n tend vers $+\infty.$
- 3°) Retrouver cette limite en calculant u_n en fonction de n.

Exercice 16

Soit f la fonction définie pour tout x strictement positif

par:
$$f(x) = \frac{x^2}{2} - \ln x - \frac{1}{2}$$

- 1°) Etudier les variations de f. montrer que c'est une fonction convexe. Donner sa représentation graphique.
- 2°) Déterminer une primitive de la fonction f sur l'intervalle]0, $+\infty$ [. En déduire que l'intégrale

 $\int_0^1 f(x) dx$ est convergente et calculer sa valeur.

3°) Soit n un entier supérieur ou égal à 2. On pose :

$$S_n = \frac{1}{n} \sum_{j=1}^n f\left(\frac{j}{n}\right)$$

a) Etablir, pour tout entier j vérifiant $1 \le j \le n,$ les

inégalités :
$$\frac{1}{n} f\left(\frac{j+1}{n}\right) \le \int_{\frac{j}{n}}^{\frac{j+1}{n}} f(x) dx \le \frac{1}{n} f\left(\frac{j}{n}\right)$$

b) en déduire l'encadrement :

$$\int_{\frac{1}{n}}^{1} f(x) dx \le S_n \le \frac{1}{n} f\left(\frac{1}{n}\right) + \int_{\frac{1}{n}}^{1} f(x) dx$$

c) Montrer les inégalités :

$$0 \le \frac{1}{n} f\left(\frac{1}{n}\right) \le \int_0^{\frac{1}{n}} f(x) dx$$

- **d**) Montrer que la suite (S_n) est convergente et déterminer sa limite.
- 4°) On rappelle que pour tout entier naturel non nul n,

on a l'égalité :
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Exprimer, pour tout entier naturel non nul n, la

somme $\sum_{i=1}^{n} f\left(\frac{j}{n}\right)$ en fonction de n. En déduire la

limite: $\lim_{n \to +\infty} \frac{1}{n} \ln \left(\frac{n^n}{n!} \right)$.

Exercice 17

Soit I la suite de terme général $I_n = \int_0^1 x^n e^{-x} dx$

- 1°) a) Calculer I₀ et I₁.
- **b)** Montrer que pour tout entier naturel n, $I_n \le \frac{1}{n+1}$.

Etudier la convergence de la suite I.

- 2°) Calcul d'une valeur approchée de I₁₅.
- a) Montrer que $\forall n \in \mathbb{N} \mid I_{n+1} = (n+1)I_n 1/e$, et :

$$I_{n} = \frac{n!}{e} \sum_{k=1}^{p} \frac{1}{(n+k)!} + \frac{n!}{(n+p)!} I_{n+p}$$

b) En déduire que pour tout n dans N:

$$0 \leq I_n - \frac{n!}{e} \sum_{k=1}^p \frac{1}{(n+k)!} \leq \frac{n!}{(n+p+1)!} \leq \frac{1}{(n+1)^{p+1}}$$

c) Comment peut-on choisir p pour que

$$0 \le I_{15} - \frac{15!}{e} \sum_{k=1}^{p} \frac{1}{(15+k)!} < 10^{-6}$$
?

En déduire là l'aide de la calculatrice une valeur approchée de I_{15} à 10^{-6} près.

c*) Ecrire en turbo-pascal un programme qui affiche

une valeur de
$$\frac{15!}{e} \sum_{k=1}^{p} \frac{1}{(15+k)!}$$
. p est fourni par

l'utilisateur. On veillera à minimiser les calculs.

Exercice 18

Pour tout n dans N, on pose:

$$I_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} \, dx \ \ \text{et} \qquad J_n = \int_0^1 \frac{x^{n+2}}{(1+x^2)\sqrt{1+x^2}} \, dx$$

 $1^\circ)$ Quelle est la dérivée de la fonction $f:IR\to IR$

définie par
$$f(x) = ln(x + \sqrt{1 + x^2})$$
 ? Calculer I_0 .

- 2°) Calculer I_1 .
- $\mathbf{3}^{\circ}$) Montrer que pour tout n dans $\mathbf{N}, \ 0 \leq In \leq \frac{1}{n+1}$

En déduire la limite de I_n quand n tend vers $+\infty$.

Montrer que J_n tend vers 0 quand n tend vers $+\infty$.

4°) Etablir à l'aide d'une intégration par parties :

$$I_n = \frac{1}{(n+1)\sqrt{2}} + \frac{1}{n+1}J_n$$
.

Quelle est la limite de nI_n quand n tend vers $+\infty$?

Exercice 19

Pour tout entier n supérieur ou égal à 1 on pose :

$$I_n = \int_0^1 x^n \, ln(1+x^2) dx \qquad \quad \text{et} \qquad J_n = \int_0^1 \frac{x^n}{1+x^2} \, dx \, .$$

- 1°) Etude de la suite (J_n)
- a) Calculer J₁.
- **b)** Montrer que pour tout n supérieur ou égal à 1
- $0 \le J_n \le 1/(n+1)$.
 - c) Etudier la convergence de la suite $(J_n)_{n\geq 1}$.
- **2**°) Etude de la suite $(I_n)_{n\geq 1}$.
- a) A l'aide d'une intégration par parties, montrer que pour tout n supérieur ou égal à 1 :

$$I_n = \frac{ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}.$$

- **b**) Etudier la convergence de la suite $(I_n)_{n\geq 1}$.
- c) Déterminer un équivalent de I_n quand n tend vers $+\infty$.

Exercice 20

On pose pour tout entier naturel non nul n:

$$I_n = \int_1^e (\ln(x))^n dx$$
, et $I_0 = e - 1$.

1°) a) Etablir, pour tout entier naturel n:

$$I_{n+1} = e - (n+1)I_n$$
.

- **b**) Montrer, pour tout entier naturel $n : I_n \ge 0$.
- c) Déduire des questions a) et b) que, pour tout entier $naturel\ n: 0 \le I_n \le \frac{e}{n+1}.$
- **d**) Quelle est la limite de la suite $(I_n)_{n \in \mathbb{N}}$?
- e) Montrer : $I_n \sim_{+\infty} \frac{e}{n}$.
- $\mathbf{2}^{\circ})$ Soit a un réel différent de I_0 ; on note $(u_n)_{n\in \mathbf{N}}$ la suite réelle définie par :

$$\begin{cases} \mathbf{u}_0 = \mathbf{a} \\ \forall \mathbf{n} \in \mathbf{N} \ \mathbf{u}_{n+1} = \mathbf{e} - (n+1)\mathbf{u}_n \end{cases}$$

Montrer : $\lim_{n \to +\infty} |u_n| = +\infty$. (On pourra considérer la

suite $(D_n)_{n \in \mathbb{N}}$ définie par $D_n = |u_n - I_n|$.)

Exercice 21

On définit la fonction $f: [2,+\infty[\rightarrow IR, x \rightarrow$

$$\frac{1}{\sqrt{x^2-1}}$$

1°) Démontrer que pour tout réel x supérieur ou égal à

$$2: \frac{1}{x} \le f(x) \le \frac{1}{\sqrt{x-1}}.$$

2°) Pour tout entier n supérieur ou égal à 2, on définit

l'intégrale :
$$I_n = \int_{2}^{n} f(x) dx$$
.

a) Démontrer que : $\lim_{n\to+\infty} I_n = +\infty$.

b) On définit la fonction $F: [2, +\infty [\rightarrow \mathbf{R},$

 $x\to \ln(\ x+\sqrt{x^2-1})$. Calculer la dérivée de F, et en déduire une expression de I_n en fonction de n.

- c) Déterminer la limite de I_n ln(n) quand n tend vers $+\infty$.
- 3°) On définit, pour tout entier naturel n supérieur ou

$$\text{\'egal \`a 2}: S_n = \sum_{k=2}^n \frac{1}{\sqrt{k^2-1}} \,.$$

- a) Montrer que : $I_{n+1} \le S_n \le I_n + 1/\sqrt{3}$.
- b) Trouver un équivalent simple de S_n quand n tend vers $+\infty$.

Exercice 22

Pour tout entier naturel n on pose : $I_n = \int_0^1 x^n . e^{-x} dx$.

- $\boldsymbol{1}^{\circ})$ a) Montrer que, pour tout entier naturel n : $0 \leq I_n \leq 1/(n{+}1).$
- **b**) En déduire que la suite $(I_n)_{n\in \mathbb{N}}$ converge et donner sa limite.
- 2°) A l'aide d'une intégration par parties, établir, pour tout entier naturel n : $I_n=\frac{1}{e(n+1)}+\frac{I_{n+1}}{n+1}$.
- 3°) a) En déduire pour tout entier naturel n :

$$0 \le I_n - \frac{1}{e(n+1)} \le \frac{1}{(n+1)(n+2)}$$

b) Trouver un équivalent simple de I_n quand n tend $\text{vers} \ +\infty.$

Exercice 23

On considère, pour tout $n \in \mathbf{N}^*$, la fonction polynomiale

 $P_n \!\!: [0 \; ; + \infty[\; \to \textbf{R} \; \text{définie, pour tout } x \; \text{appartenant à } [0 \; ; + \infty[\; , \; \text{par } :$

$$P_n(x) = \sum_{k=1}^{2n} \frac{(-1)^k x^k}{k} = -x + \frac{x^2}{2} + \dots + \frac{-x^{2n-1}}{2n-1} + \frac{x^{2n}}{2n}$$

- I. Etude des fonctions polynomiales P_n
- **1**°) Montrer, pour tout $n ∈ \mathbb{N}^*$ et tout $x ∈ [0; +\infty[$:

$$P'_{n}(x) = \frac{x^{2n}-1}{x+1},$$

où P_n désigne la dérivée de P_n.

- 2°) Etudier, pour $n \in \mathbf{N}^*$, les variations de P_n sur $[0 ; +\infty[$ et dresser le tableau de variations de P_n .
- **3°**) Montrer, pour tout $n \in \mathbb{N}^* : P_n(1) < 0$.
- **4**°) **a**) Vérifier, pour tout $n \in \mathbb{N}^*$ et tout $x \in [0 ; +\infty[:$

$$P_{n+1}(x) = P_n(x) + x^{2n+1} \left(-\frac{1}{2n+1} + \frac{x}{2n+2} \right)$$

- **b**) En déduire, pour tout $n \in \mathbb{N}^* : P_n(2) \ge 0$.
- **5**°) Montrer que, pour tout $n \in \mathbf{N}^*$, l'équation $P_n(x) = 0$, d'inconnue $x \in [1 ; +\infty[$, admet une solution et une seule, notée x_n , et que $1 < x_n \le 2$.
- 6°) Ecrire un programme en langage Pascal qui calcule et affiche une valeur approchée décimale de x_2 à 10^{-3} près.
- **II.** Limite de la suite $(x_n)_{n \in \mathbb{N}^*}$. $\mathbf{1}^{\circ}$) Etablir, pour tout $n \in$

$$N^*$$
 et tout $x \in [0; +\infty[: P_n(x) = \int_0^x \frac{t^{2n} - 1}{t + 1} dt$

 2°) En déduire, pour tout $n \in \mathbb{N}^*$:

$$\int_{1}^{x_{n}} \frac{t^{2n} - 1}{t + 1} dt = \int_{0}^{1} \frac{1 - t^{2n}}{t + 1} dt$$

 $\boldsymbol{3}^{\circ})$ Démontrer, pour tout $n\in \!\! N^{*}$ et tout $t\in [1\ ; +\infty[\ :$

$$t^{2n} - 1 \ge n(t^2 - 1).$$

4°) En déduire, pour tout $n \in \mathbb{N}^*$:

$$\int_{1}^{x_{n}} \frac{t^{2n} - 1}{t + 1} dt \ge \frac{n}{2} (x_{n} - 1)^{2}, \text{ puis }:$$

$$0 < x_{_n} - 1 \le \frac{\sqrt{2 \ln 2}}{\sqrt{n}}$$

 $\mathbf{5}^{\circ}$) Conclure quant à la convergence et à la limite de la suite $(x_n)_{n\in \mathbf{N}^*}$.

Exercice 24

Soit n un entier naturel non nul. On pose:

$$I_n = \int_1^e x^2 (\ln x)^n dx$$

- 1. Calculer I₁.
- **2.** a) Etudier le sens de variation de la suite $(I_n)_{n\geq 1}$.
 - **b)** Montrer que la suite $(I_n)_{n\geq 1}$ est convergente.
 - c) Montrer que, pour tout $x \in [1,e]$: $ln(x) \le x/e$.
 - **d**) En déduire $\lim_{n\to+\infty} I_n$.
- 3. a) Montrer que, pour tout entier naturel n non nul:

$$I_{n+1} = \frac{e^3}{3} - \frac{n+1}{3} I_n.$$

b) En déduire $\lim_{n\to +\infty} nI_n$.

Exercice 25

Pour n appartenant à N_1 , on pose : $I_n =$

$$\int_0^1 x^n \sin(\pi x) dx$$

1°) a) Montrer que pour tout n dans IN

$$0 \le I_n \le 1/(n+1)$$
.

- b) En déduire que la suite (In) converge vers 0.
- 2°) Calculer Io et I₁.
 - 3°) Trouver une relation de récurrence entre In et

I_{n-2} pour tout n supérieur ou égal à 2.

4°) Démontrer par récurrence : $\forall p \ge 1$

$$I_{2p} = (-1)^p \frac{2(2p)!}{\pi^{2p+1}} + \sum_{k=0}^{p-1} (-1)^k \frac{(2p)!}{\pi^{2k+1}(2p-2k)!}$$

Exercice 26

Question de cours : soit I un intervalle de \mathbb{R} . Soient u et v deux fonctions continues, dérivables sur I telles que les fonctions dérivées u' et v' soient continues sur I.

Rappeler et démontrer la formule d'intégration par parties sur un intervalle [a;b] de I.

Partie A

Soit f une fonction définie et dérivable sur l'intervalle [0;1]. On note f' la fonction dérivée de f. On suppose que f' est continue sur l'intervalle [0;1].

1. Utiliser la question de cours pour montrer que

$$\int_0^1 f(x) dx = f(1) - \int_0^1 x f'(x) dx$$

2. En déduire que

$$\int_0^1 \left[f(x) - f(1) \right] dx = -\int_0^1 x f'(x) dx$$

Partie B

On désigne par ln la fonction logarithme néperien. Soit f la fonction définie sur l'intervalle]-2;2[par $f(x) = \ln\left(\frac{2+x}{2-x}\right)$ et C sa courbe représentative dans un repère orthonormal $(o;\vec{i},\vec{j})$ d'unité graphique 2 cm.

1. Déterminer les limites de f aux bornes de son ensemble de définition.

2. a. Montrer que pour tout réel x de l'intervalle

]-2;2[, on a
$$f'(x) = \frac{4}{4-x^2}$$
.

b. En déduire les variations de f sur l'intervalle

Partie C

Le courbe C est tracée ci-dessous. Hachurer la partie P du plan constituée des points M(x; y) tels que :

$$0 \le x \le 1$$
 et $f(x) \le y \le \ln 3$.

En utilisant la partie A, calculer en cm² l'aire de P.

Exercice 27

1. Calculer $I = \int_0^{\frac{\pi}{4}} x \tan^2 x \, dx$ à l'aide d'une

intégration par parties.

2. Soit la fonction définie sur $\left[0; \frac{\pi}{2}\right[$ par :

 $f(x) = \sqrt{x} \tan x$ dont la courbe (C_f) est représentée ci-contre dans le plan P muni du repère orthonormal $(O; \vec{i}, \vec{j})$.

On considère le solide engendré par la rotation autour de l'axe $(O; \vec{i})$ de la surface délimitée dans le plan P

par l'axe $(O; \vec{i})$, la droite d'équation $x = \frac{\pi}{4}$ et la courbe (C_f) .

Sachant que l'unité graphique est de 2 cm, calculer le volume V du solide en cm³.

Exercice 28

On considère la fonction numérique f définie par

$$f(x) = \frac{1}{1+x}.$$

- 1. Déterminer une fonction polynôme P, de degré inférieur ou égal à 3 qui a même valeur et même nombre dérivé que f en 0 et 1.
- 2. Soit k la fonction définie par

 $k(x) = \frac{1}{1+x} + \frac{1}{4}x^3 - \frac{3}{4}x^2 + x - 1$. Factoriser k et en déduire la position relative de C_f et C_P , les courbes représentatives de f et P.

- 3. A l'aide d'un encadrement de 1+x pour x dans
- [0; 1] montrer que $\frac{1}{240} < \int_0^1 k(x) dx < \frac{1}{120}$.
- 4. Calculer $\int_0^1 f(x) dx$ et $\int_0^1 P(x) dx$.
- 5. Déduire des résultats précédents la valeur de l'entier n tel que $\frac{n}{240} < \ln 2 < \frac{n+1}{240}$.
- 6. On considère la suite géométrique u_n de premier terme 1 et de raison -x.
- a. Calculer la somme des *n* premiers termes :

$$s_n(x) = 1 - x + x^2 - ... + (-x)^n$$
; en déduire

$$f(x) = s_n(x) + \frac{(-x)^{n+1}}{1+x}$$
.

b. Montrer que

$$\int_{0}^{a} f(x) dx = a - \frac{1}{2}a^{2} + \frac{1}{3}a^{3} + \dots + \frac{1}{n+1}(-x)^{n+1} + \int_{0}^{a} \frac{(-x)^{n+1}}{1+x} dx$$

c. Montrer que sur [0; a] on a

$$-\frac{a^{n+1}}{1+a} \le \frac{(-x)^{n+1}}{1+x} \le \frac{a^{n+1}}{1+a}$$
 puis que

$$-\frac{a^{n+2}}{1+a} \le \int_0^a \frac{(-x)^{n+1}}{1+x} dx \le \frac{a^{n+2}}{1+a}.$$
 Préciser la limite de

$$\int_0^a \frac{(-x)^{n+1}}{1+x} dx \text{ lorsque } n \text{ tend vers } +\infty.$$

- d. On admet que ce résultat reste valable lorsque a vaut
- 1. En déduire un algorithme de calcul de ln2.

Rappel : somme des n premiers termes d'une suite géométrique de premier terme u_0 , de raison q :

$$u_0 \frac{1 - q^{n+1}}{1 - q}$$
.

Exercice 29

Pour tout k entier on note f_k l'application de [0;1] dans \mathbb{R} définie par $f_k(x) = x^k \sqrt{1-x}$. On appelle C_k sa courbe représentative.

- 1. Etudier la continuité et la dérivabilité de f_k .
- 2. Donner, en distinguant suivant la valeur de k, le tableau de variations de f_k .
- 3. Etudier les positions respectives de C_k et C_{k+1} . Tracer les courbes C_0, C_1, C_2 .
- 4. On pose $I_k = \int_0^1 f_k(x) dx$. Calculer $\int_0^1 f_0(x) dx$.
- a. Quel est le sens de variation de I_k ? Montrer que I_k converge vers une limite l que l'on ne cherchera

pas.

b)Montrer, en intégrant par parties que pour tout entier

$$k > 0$$
, on a $I_k = \frac{2k}{2k+3}I_{k-1}$. En déduire une expression

 $de I_k$.

c. Montrer que pour tout k entier, on a

$$\int_0^1 f_k(x)dx \le \frac{a}{1+k}$$
 où a est une constante que l'on

déterminera. En déduire la limite de I_k .

Exercice 30

On définit la suite d'intégrales :

$$I_0 = \int_0^1 \frac{dx}{1+e^x}$$
, $I_1 = \int_0^1 \frac{e^x}{1+e^x} dx$, ..., $I_n = \int_0^1 \frac{e^{nx}}{1+e^x} dx$

(*n* désigne un entier naturel).

- 1. Calculer I_1 et $I_0 + I_1$. En déduire I_0 . Pour tout entier
- n, calculer $I_n + I_{n+1}$.
- 2. Montrer sans calcul que la suite (I_n) est croissante.
- 3. Prouver que pour tout x de [0; 1]

$$\frac{e^{nx}}{e+1} \le \frac{e^{nx}}{e^x+1} \le \frac{e^{nx}}{2}$$
. En déduire un encadrement de I_n .

4. A partir de cet encadrement, déterminer la limite de I_n et celle de $\frac{I_n}{e^n}$.

Exercice 31

On considère la suite numérique (J_n) définie, pour tout entier naturel n non nul, par $J_n = \int_1^n e^{-t} \sqrt{t+1} dt$.

- 1. Démontrer que la suite (J_n) est croissante.
- 2. Dans cette question, le candidat est invité à porter sur sa copie les étapes de sa démarche même si elle

n'aboutît pas.

On définit la suite (I_n) , pour tout entier naturel n non

nul, par
$$I_n = \int_{1}^{n} (t+1)e^{-t} dt$$
.

- a. Justifier que, pour tout $t \ge 1$, on a $\sqrt{t+1} \le t+1$.
- b. En déduire que $J_n \leq I_n$.
- c. Calculer I_n en fonction de n. En déduire que la suite
- (\boldsymbol{J}_n) est majorée par un nombre réel (indépendant de

n).

d. Que peut-on en conclure pour la suite (J_n) ?

Exercice 32

On considère la fonction f définie sur $[0; +\infty[$ par

$$f\left(x\right) = \frac{\ln\left(x+3\right)}{x+3}.$$

- 1. Montrer que f est dérivable sur $[0; +\infty[$. Etudier le signe de sa fonction dérivée f', sa limite éventuelle en $+\infty$ et dresser le tableau de ses variations.
- 2. On définit la suite $(u_n)_{n\geq 0}$ par son terme général

$$u_n = \int_n^{n+1} f(x) dx.$$

a. Justifier que, si $n \le x \le n+1$, alors

$$f(n+1) \le f(x) \le f(n)$$
.

- b. Montrer, sans chercher à calculer u_n , que pour tout entier naturel $n, f(n+1) \le u_n \le f(n)$.
- c. En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 3. Soit F la fonction définie sur $[0; +\infty[$ par

$$F(x) = \left[\ln(x+3)\right]^2$$
.

a. Justifier la dérivabilité de F sur $[0; +\infty[$ et

déterminer pour tout réel positif x le nombre F'(x).

b.On pose, pour tout entier naturel n, $I_n = \int_0^n f(x) dx$.

Calculer I_n .

4. On pose, pour tout entier naturel n,

$$S_n = u_0 + u_1 + \dots + u_{n-1}$$
.

Calculer S_n . La suite (S_n) est-elle convergente ?

Exercice 33

L'objectif est de calculer les intégrales suivantes :

$$I = \int_0^1 \frac{dx}{\sqrt{x^2 + 2}} ; J = \int_0^1 \frac{x^2}{\sqrt{x^2 + 2}} dx ; K = \int_0^1 \sqrt{x^2 + 2} dx.$$

1. Calcul de I

Soit la fonction f définie sur [0; 1] par

$$f(x) = \ln(x + \sqrt{x^2 + 2}).$$

- a. Calculer la dérivée de la fonction $x \mapsto \sqrt{x^2 + 2}$.
- b. En déduire la dérivée f de f.
- c. Calculer la valeur de I.

2. Calcul de J et de K

a. Sans calculer explicitement J et K, vérifier que :

$$J + 2I = K$$
.

b. À l'aide d'une intégration par parties portant sur l'intégrale K, montrer que : $K = \sqrt{3} - J$.

c. En déduire les valeurs de J et de K.

Soit la fonction f définie par : $f(x) = \sin^4 x$; $x \in \mathbb{R}$.

1. Exprimer $\sin^2 x$ en fonction de $\cos 2x$, puis $\sin^4 x$ en fonction de $\cos 2x$ et de $\cos 4x$.

2. Quelle est la forme générale des primitives de f sur

 \mathbb{R} ?

3. Calculer
$$\int_0^{\frac{\pi}{8}} f(x) dx$$
.

Exercice 34

On désigne par n un nombre entier relatif différent de

- -1 et par x un nombre réel supérieur ou égal à 1.
- 1. Calculer l'intégrale $I_n(x) = \int_1^x t^n \ln t dt$ (on pourra effectuer une intégration par parties).
- 2. En déduire le calcul de $J_n(x) = \int_1^x t^n (\ln t)^2 dt$.
- 3. Calculer $I_n(e) J_n(e)$.
- 4. déterminer la limite de $\frac{I_n(e) J_n(e)}{e^{n+1}}$ quand n tend

vers $+\infty$.

Exercice 35

On pose $I_0 = \int_1^e x dx$ et $I_n = \int_1^e x (\ln x)^n dx$ pour tout n

entier non nul.

- 1. Calculer I_0 et I_1 (on pourra utiliser une intégration par parties).
- 2. Montrer que pour tout n entier $2I_{n+1} + (n+1)I_n = e^2$
- . Calculer I_2 .
- 3. Montrer que pour tout n entier, $I_{n+1} \leq I_n$. En déduire en utilisant la relation du 2° l'encadrement

suivant :
$$\frac{e^2}{n+3} \le I_n \le \frac{e^2}{n+2}.$$

4. Calculer $\lim_{n\to+\infty} I_n$ et $\lim_{n\to+\infty} nI_n$

Exercice 36

Soit p et n des entiers naturels. On pose

$$I_{p,n} = \int_{0}^{1} x^{p} (1-x)^{n} dx \cdot$$

- 1. Calculer $I_{n,0}$ et $I_{n,1}$.
- 2. Calculer $I_{0,n}$ et en déduire $I_{1,n}$.
- 3. Etablir une relation de récurrence entre $I_{p,n}$ et

 $I_{p+1,\,n+1}$. En déduire la valeur de $I_{p,\,n}$ en fonction de

p et n.

Exercice 37

Le plan est muni d'un repère orthonormal. $(o; \vec{i}, \vec{j})$

d'unité 1 cm.

Soit f la fonction définie par $f(x) = e^{-\frac{x}{2}} .\cos x$

représentée ci-dessous. Soit C cette courbe

représentative.

1. Montrer que pour tout réel x, on a

$$f'(x) = -e^{-\frac{x}{2}} \cdot (\frac{1}{2}\cos x + \sin x)$$
.

- 2. a. Résoudre dans \mathbb{R} l'équation f(x)=0.
- b. Montrer que sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, on a $f(x) \ge 0$.

c. Montrer que pour tout réel x,

$$4f''(x) + 4f'(x) = -5f(x)$$
.

3. Soit l'intégrale $I = \int_{-\pi/2}^{\pi/2} f(x) dx$.

On considère la fonction F telle que, pour tout réel x,

$$F(x) = -\frac{1}{5} [4f'(x) + 4f(x)].$$

- a. Sachant que f vérifie (1), montrer que F est une primitive de f.
- b. Etablir que

$$I = -\frac{4}{5} \left[f\left(\frac{\pi}{2}\right) - f\left(-\frac{\pi}{2}\right) \right] - \frac{4}{5} \left[f'\left(\frac{\pi}{2}\right) - f'\left(-\frac{\pi}{2}\right) \right]$$

puis que
$$I = \frac{4}{5} \left(e^{\frac{\pi}{4}} + e^{-\frac{\pi}{4}} \right)$$

c. Interpréter graphiquement ce résultat.

Exercice 38

Soit F une fonction définie et dérivable sur \mathbb{R} telle que F(0)=0 et dont la dérivée est donnée par

$$F'(x) = \frac{1}{x^2 + 1}$$
, pour tout x de \mathbb{R} . On suppose que cette

fonction existe et on ne cherchera pas à donner une expression de F(x). (C) est la courbe représentative de F dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

- 1. Soit G, définie sur IR, par G(x) = F(x) + F(-x).
- a. Montrer que G est dérivable sur IR et calculer G'(x).
- b. Calculer G(0) et en déduire que F est une fonction impaire.
- 2. Soit *H* définie sur]0; $+\infty$ [par $H(x) = F(x) + F(\frac{1}{x})$.
- a. Montrer que H est dérivable sur]0; $+\infty$ [et calculer

H'(x).

- b. Montrer que, pour tout x élément de] 0; $+\infty$ [, H(x) = 2F(1).
- c. En déduire que $\lim_{x \to +\infty} F(x) = 2F(1)$.
- d. Qu'en déduit-on pour la courbe (C) ?
- 3. a. Démontrer que, pour tout x élément de [0 ; 1],

$$\frac{1}{2} \le F'(x) \le 1$$
. En déduire que $\frac{1}{2} \le F(1) - F(0) \le 1$

puis une valeur approchée de F(1). Quelle est la précision de cette approximation ?

- b. Soit *T* la fonction définie sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ par
- $T(x) = F(\tan x) x$. Démontrer que T est une fonction constante sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. En déduire la valeur exacte de F(1).
- 4. Dresser le tableau de variation de F sur \mathbb{R} . Tracer la courbe (C), ses asymptotes et ses tangentes aux points d'abscisses -1, 0 et 1. Unités graphiques : 2 cm sur (Ox) et 4 cm sur (Oy). On prendra F(1) = 0.78.

Exercice 39

Partie A

On considère l'équation différentielle (E) : $y' + y = e^{-x}$.

- 1. Démontrer que la fonction u définie sur l'ensemble
- \mathbb{R} des nombres réels par $u(x) = xe^{-x}$ est une solution de (E).
- 2. Résoudre l'équation différentielle (E_0) : y' + y = 0.

3. Démontrer qu'une fonction y, définie et dérivable sur \mathbb{R} , est solution de (E) si et seulement si y-u est solution de (E₀).

4. En déduire toutes les solutions de (E).

5. Déterminer la fonction f_2 , solution de (E), qui prend la valeur 2 en 0.

Partie B

k étant un nombre réel donné, on note f_k la fonction définie sur l'ensemble IR par : $f_k(x) = (x+k)e^{-x}$

On note C_k la courbe représentative de la fonction f_k dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

1. Déterminer les limites de f_k en $-\infty$ et $+\infty$.

2. Calculer $f'_k(x)$ pour tout réel x.

3. En déduire le tableau de variations de f_k .

Partie C

1. On considère la suite d'intégrales (I_n) définie par $I_0 = \int_{-2}^0 e^{-x} dx$ et pour tout entier naturel $n \neq 1$ par :

$$I_n = \int_{-2}^{0} x^n e^{-x} dx .$$

a. Calculer la valeur exacte de l'intégrale I_0 .

b. En utilisant une intégration par parties, démontrer

l'égalité :
$$I_{n+1} = (-2)^{n+1} e^2 + (n+1)I_n$$
.

c. En déduire les valeurs exactes des intégrales I_1 et I_2 .

2. Le graphique ci-dessous représente une courbe C_k qui est la représentation graphique d'une fonction f_k définie à la partie B.

a. À l'aide des renseignements donnés par le graphique, déterminer la valeur du nombre réel k

correspondant.

b. Soit S l'aire de la partie hachurée (en unité d'aire) ; exprimer S en fonction de I_1 et I_0 et en déduire sa valeur exacte.

Exercice 40

 Exprimer les limites suivantes sous forme d'intégrales.

a)
$$\lim_{n \to \infty} n \sum_{i=1}^{n} \frac{1}{n^2 + i^2}$$

b)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^2 + i^2}}$$

2. Montrer que

a)
$$\lim_{n\to\infty} \frac{1^6 + 2^6 + \dots + n^6}{n^7} = \int_0^1 x^6 dx$$
,

b)
$$\lim_{n\to\infty} \frac{1^r + 2^r + \dots + n^r}{n^{r+1}} = \int_0^1 x^r dx$$
,

pour tout nombre réel positif r