Clustering in Interfering Binary Mixtures

Sarah Miracle, Dana Randall, Amanda Streib Georgia Institute of Technology

Colloids

Colloids are mixtures of 2 types of molecules - one suspended in the other.

As the density increases, large particles cluster together.

* purely entropic *

Folklore: A dense system of non-overlapping large and small tiles will exhibit "clumping".

Framework for Colloid Models

Physicists study the model with fixed # of A-tiles and B-tiles, but it is often helpful to switch to a grand-canonical ensemble where the # of each type of tile is

allowed to vary.

- α A-tiles and
- •vary the # of B-tiles
- •σ has weight:

$$\pi(\sigma) = \frac{\lambda^{\#B-tiles}}{Z}$$

Examples of Colloid Models

Model 1

A-tiles: squares on faces

B-tiles: diamonds on edges

Ising Model

Model 2

A-tiles: squares on faces

B-tiles: squares on vertices

Independent Sets

Model 1 – Ising Model

$$P_{\pi}(X) = \sum_{\sigma:X(\sigma)=X} \pi(\sigma)$$

$$\sigma:X(\sigma)=X$$

$$disagree \lambda^{\#B-tiles}$$

$$\pi(\sigma) = \sum_{\sigma:X(\sigma)=X} Z$$

$$= \frac{(1+\lambda)^{\#openedges}}{Z}$$

$$= \frac{\mu^{perimete Zof A-tiles}}{Z}$$

<u>IsMgd4btlel</u>

Goal: Identify Clustering

What does a typical configuration look like?

2 approaches:

(1) Sampling

- Local algorithms are inefficient at high densities
- [Buhot and Krauth '99] Using algorithm from Dress and Krauth, provided experimental evidence of clustering in a colloid model consisting of different sized squares
- [M., Randall and Streib '11] Showed that the Dress and Krauth algorithm can take exponential time to converge

(2) Counting

Previous Work

[Frenkel and Louis '92]

Introduced Model 1, constructed so that its behavior could be inferred from the Ising Model.

→ Model 1 inherits clustering from Ising Model

[Dobrushin, Kotecký and Shlosman '92]

In the Ising Model, the exact limiting shape is the Wulff shape.

We prove clustering directly for Interfering Binary Mixtures

- Uses elementary methods
- Applies broad class of colloid models
- Direct proof in terms of parameters natural for clustering

Examples of Interfering Binary Mixtures

Interfering Binary Mixtures

Take two planar lattices Λ_A , Λ_B .

- •A-tiles lie on the faces of Λ_A
- B-tiles lie on the faces of Λ_B

Take their intersection with some finite region.

Interfering Binary Mixtures

Require that the faces of Λ_A and Λ_B are either

Interfering Binary Mixtures

Main Theorems

Model 1 on an $n \times n$ region with bn^2 A-tiles

Theorem 1:

For $0 < b \le 1/2$, there exist constants $\lambda^* = \lambda^*(b) > 1$, $\Upsilon_1 < 1$ and $n_1 = n_1(b)$ such that for all $n > n_1$, $\lambda \ge \lambda^*$ a random sample from Ω will have the *clustering property* with probability at least $(1-\Upsilon_1^n)$.

Theorem 2:

For $0 < b < \frac{1}{2}$, there exist constants $\lambda_* = \lambda_*(b) > 0$, $\Upsilon_2 < 1$ and $n_2 = n_2(b)$ such that for all $n > n_2$, $\lambda \le \lambda_*$ a random sample from Ω will not have the *clustering property* with probability at least $(1-\Upsilon_2^n)$.

Thms 1 and 2 hold for all Interfering Binary Mixtures

Our Results: The Cluster Property

What does it mean for a config. to "cluster"?

- has large, very dense region
- tightly packed (small perimeter:area ratio)
- the rest of the config. is very sparse

Clustering

No Clustering

Formal Definition of Clustering

A configuration has the clustering property if it contains a region R such that:

- 1. R contains at least $(b-c)n^2$ A-tiles
- 2. Perimeter of R is at most $8\sqrt{b}n$
- 3. Density of A-tiles in R is at least

1-c and in \overline{R} is at most c.

$$c = \min\{b/2, 1/100\}$$

C: configurations that have the clustering property

Want to show: $\pi(\Omega - C) \leq \gamma^{-n}\pi(C)$

Define $f: \Omega - C \to C$ such that for every $\tau \in C$,

$$\sum_{\sigma \in f^{-1}(\tau)} \pi(\sigma) \le \gamma^{-n} \pi(\tau)$$

- 1. Identify a set of components to remove.
- 2. Remove selected components to obtain a "bank" of tiles
- 3. Use bank of tiles to create a large square component

To bound $|f^{-1}(\tau)|$: Record where the components were and what they looked like

Plan: Find a set B of edges (**bridges**) that connect several components to the boundary of the region.

Use those bridges to encode the location and perimeter of the components removed.

 \rightarrow # preimages is at most $6^{\#edges\ encoded}$

Plan: Find a set B of edges (bridges) that connect several components to the boundary of the region.

Properties of bridges:

- # edges < c * perimeter of components we remove
- Perimeter of components removed is large $\theta(n^2)$

preimages is at most $6^{\#edges\ encoded} \le 6^{t\Delta perim}$

and
$$\pi(\sigma) \leq \mu^{-\Delta perim} \pi(\tau)$$

So: $\sum_{\sigma \in f^{-1}(\tau)} \pi(\sigma) \leq \left(\frac{6^t}{\mu}\right)^{\Delta perim} \pi(\tau) \leq \mu^{-n} \pi(\tau)$

Thm 2 (low density): Proof Sketch

Want to show if λ is small enough: $\pi(C) \leq \gamma^{-n}\pi(\Omega - C)$

Proof idea:

- 1. Define bridges as before.
- 2. Remove big components t tiles.
- 3. Redistribute the t tiles uniformly: $\binom{n^2-an^2}{t}$ ways

Open Problems

- Prove clustering occurs in other discrete models where the overlap between lattice faces is not a fixed shape.
- Generalize to higher dimensions
- Other algorithms for sampling