Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting

Zheng Dong^{1,*}, Renhe Jiang^{2,*}, Haotian Gao², Hangchen Liu¹, Jinliang Deng³, Qingsong Wen⁴, Xuan Song^{5,1,†}

¹Southern University of Science and Technology, ²The University of Tokyo

³Hong Kong University of Science and Technology, ⁴Squirrel AI, ⁵Jilin University

*Equal Contribution, †Corresponding Author

KDD 2024 Research Track, Barcelona, Spain

Challenge: Spatiotemporal Heterogeneity

■ Spatiotemporal heterogeneity is a key challenge in spatiotemporal forecasting.

Spatial heterogeneity

Different locations + same time = different patterns **e.g.** different traffic speed distribution of A_1 and A_2

Temporal heterogeneity

Same location + **different times** = different patterns **e.g.** different speed patterns between Sun. and Mon.

■ Instead of designing new models, can we make the entire model adaptive to such different cases?

Motivation: Spatial/Temporal-Specific Parameters

■ A straightforward idea: maintain **different parameters** for each spatial location and time step

■ But not practical, because it is impossible to optimize such exploding parameters.

Motivation: Meta-Parameter Learning

Meta-parameter learning: learn parameters dynamically on each input

■ Can heterogeneity be a guidance? → Heterogeneity-Informed Meta-Parameter Learning

Methodology: Overview

1 Modeling Heterogeneity $\stackrel{inform}{\longrightarrow}$ 2 Learning Meta-Parameters $\stackrel{for}{\longrightarrow}$ 3 Predictor: HimNet

Methodology: Heterogeneity Modeling

- E_t : embeddings for each **time step** in a week Capturing temporal heterogeneity
- \blacksquare E_s : embeddings for each **spatial location** in the dataset Capturing spatial heterogeneity
- From the clustering view definition of heterogeneity
 - Times/locations having (dis)similar patterns will have (dis)similar embeddings after training
 - Heterogeneity of ST data → heterogeneity of embeddings, analogous to word embeddings in NLP models

Methodology: Meta-Parameter Learning

■ General Meta-Parameter Learning

• For a weight $W \in \mathbb{R}^{C \times D}$, initialize a meta-parameter **pool** $P = [W_1, W_2, ..., W_k] \in \mathbb{R}^{k \times C \times D}$; for n query vectors $Q \in \mathbb{R}^{n \times k}$, calculate the **meta-parameter** $W_m \in \mathbb{R}^{n \times C \times D}$ by $W_m = QP$

Heterogeneity-Informed Meta-Parameter Learning

• Temporal Meta-Parameters

Use
$$E_t$$
 as queries $\to W_t = E_t P_t = [W_1, W_2, ..., W_B] \in \mathbb{R}^{B \times C \times D}$

• Spatial Meta-Parameters

Use
$$E_s$$
 as queries $\to W_s = E_s P_s = [W_1, W_2, ..., W_N] \in \mathbb{R}^{N \times C \times D}$

• ST-Mixed Meta-Parameters

Queries
$$E_{st} = F_{enc}(X) \in \mathbb{R}^{B \times N \times d_{st}} \rightarrow W_{st} = E_{st}P_{st} \in \mathbb{R}^{B \times N \times C \times D}$$

Methodology: HimNet

■ <u>Heterogeneity-Informed Spatiotemporal Meta-Network</u>

Simple encoder-decoder architecture, based on Graph
Convolutional Recurrent Unit (GCRU) [1] with adaptive graph
learning mechanism [2,3].

$$r_{t} = \sigma(\mathbf{O}_{r} \star_{\mathcal{G}} [X_{t}, H_{t-1}] + b_{r}) \qquad u_{t} = \sigma(\mathbf{O}_{u} \star_{\mathcal{G}} [X_{t}, H_{t-1}] + b_{u})$$

$$c_{t} = \tanh(\mathbf{O}_{c} \star_{\mathcal{G}} [X_{t}, (r_{t} \odot H_{t-1})] + b_{c})$$

$$H_{t} = u_{t} \odot H_{t-1} + (1 - u_{t}) \odot c_{t}$$

$$X \star_{\mathcal{G}} = \operatorname{sum}_{i}(\tilde{A}XW_{i}) \quad \tilde{A} = \operatorname{Softmax}(\operatorname{ReLU}(E \cdot E^{\top}))$$

• No parameter initialization: $\Theta_{r/u/c}$ are dynamically generated by Meta-Parameter Learning with meta-parameter pools.

Experiment: Overall Performance

■ HimNet is SOTA on 5 benchmarks (METRLA, PEMSBAY, PEMS04/07/08) against 12 baselines.

	Dataset	Metric	HI	GRU	STGCN	DCRNN	GWNet	AGCRN	GTS	STNorm	STID	ST-WA	PDFormer	MegaCRN	HimNet
METRLA	Step 3 15 min	MAE	6.80	3.07	2.75	2.67	2.69	2.85	2.75	2.81	2.82	2.89	2.83	2.65	2.60
		RMSE	14.21	6.09	5.29	5.16	5.15	5.53	5.27	5.57	5.53	5.62	5.45	5.08	5.02
		MAPE	16.72%	8.14%	7.10%	6.86%	6.99%	7.63%	7.12%	7.40%	7.75%	7.66%	7.77%	6.73%	6.70%
	Step 6 30 min	MAE	6.80	3.77	3.15	3.12	3.08	3.20	3.14	3.18	3.19	3.25	3.20	3.04	2.95
		RMSE	14.21	7.69	6.35	6.27	6.20	6.52	6.33	6.59	6.57	6.61	6.46	6.18	6.06
		MAPE	16.72%	10.71%	8.62%	8.42%	8.47%	9.00%	8.62%	8.47%	9.39%	9.22%	9.19%	8.22%	8.11%
	Step 12 60 min	MAE	6.80	4.88	3.60	3.54	3.51	3.59	3.59	3.57	3.55	3.68	3.62	3.51	3.37
		RMSE	14.21	9.75	7.43	7.47	7.28	7.45	7.44	7.51	7.55	7.59	7.47	7.39	7.22
		MAPE	16.71%	14.91%	10.35%	10.32%	9.96%	10.47%	10.25%	10.24%	10.95%	10.78%	10.91%	10.01%	9.79%
PEMSBAY	Step 3 15 min	MAE	3.05	1.44	1.36	1.31	1.30	1.35	1.37	1.33	1.31	1.37	1.32	1.28	1.27
		RMSE	7.03	3.15	2.88	2.76	2.73	2.88	2.92	2.82	2.79	2.88	2.83	2.71	2.68
		MAPE	6.85%	3.01%	2.86%	2.73%	2.71%	2.91%	2.85%	2.76%	2.78%	2.86%	2.78%	2.67%	$\boldsymbol{2.64\%}$
	Step 6 30 min	MAE	3.05	1.97	1.70	1.65	1.63	1.67	1.72	1.65	1.64	1.70	1.64	1.60	1.57
		RMSE	7.03	4.60	3.84	3.75	3.73	3.82	3.86	3.77	3.73	3.81	3.79	3.69	3.60
		MAPE	6.84%	4.45%	3.79%	3.71%	3.73%	3.81%	3.88%	3.66%	3.73%	3.81%	3.71%	3.60%	3.52%
	Step 12 60 min	MAE	3.05	2.70	2.02	1.97	1.99	1.94	2.06	1.92	1.91	2.00	1.91	1.90	1.84
		RMSE	7.01	6.28	4.63	4.60	4.60	4.50	4.60	4.45	4.42	4.52	4.43	4.49	4.32
		MAPE	6.83%	6.72%	4.72%	4.68%	4.71%	4.55%	4.88%	4.46%	4.55%	4.63%	4.51%	4.53%	4.33%
PEMS04	Average	MAE	42.35	25.55	19.57	19.63	18.53	19.38	20.96	18.96	18.38	19.06	18.36	18.72	18.14
W.		RMSE	61.66	39.71	31.38	31.26	29.92	31.25	32.95	30.98	29.95	31.02	30.03	30.53	29.88
PE		MAPE	29.92%	17.35%	13.44%	13.59%	12.89%	13.40%	14.66%	12.69%	12.04%	12.52%	12.00%	12.77%	12.00%
PEMS07	Average	MAE	49.29	26.74	21.74	21.16	20.47	20.57	22.15	20.50	19.61	20.74	19.97	19.83	19.21
		RMSE	71.34	42.78	35.27	34.14	33.47	34.40	35.10	34.66	32.79	34.05	32.95	32.91	32.75
		MAPE	22.75%	11.58%	9.24%	9.02%	8.61%	8.74%	9.38%	8.75%	8.30%	8.77%	8.55%	8.36%	8.03%
PEMS08	Average	MAE	34.66	19.36	16.08	15.22	14.40	15.32	16.49	15.41	14.21	15.41	13.58	14.75	13.57
		RMSE	50.45	31.20	25.39	24.17	23.39	24.41	26.08	24.77	23.28	24.62	23.41	23.73	23.22
		MAPE	21.63%	12.43%	10.60%	10.21%	9.21%	10.03%	10.54%	9.76%	9.27%	9.94%	9.05%	9.48%	8.98%

Experiment: Ablation Study

- w/o E: replaces embedding with a constant matrix of all ones, removing heterogeneity modeling
- w/o MP: removes meta-parameters by downgrading to randomly initialized parameters

Average prediction MAE of the ablated variants.

Model	METRLA	PEMSBAY	PEMS04	PEMS07	PEMS08
$\overline{\text{w/o }E_t}$	2.94	1.53	18.35	22.00	14.14
w/o E_s	3.49	1.74	21.30	19.26	14.79
w/o E_{st}	3.07	1.55	18.55	19.77	13.61
w/o TMP	2.94	1.54	18.65	19.58	14.44
w/o SMP	3.53	1.75	21.41	22.26	14.07
w/o STMP	3.01	1.57	18.65	19.86	13.72
HimNet	2.92	1.51	18.14	19.21	13.57

■ The complete HimNet consistently outperforms the ablated versions. Every part is necessary.

Experiment: Interpretability Analysis

Temporal Meta-Parameters

- Can **cluster** and clearly distinguish weekdays and weekends, modeling temporal heterogeneity
- Can capture relations of adjacent hours and peak hours, in consistent with our daily travel patterns

Experiment: Interpretability Analysis

■ Spatial Meta-Parameters

- Can **cluster** spatial locations that matches real road segments on map, modeling spatial heterogeneity
- Can reflect the similarity of raw time series in the dataset, e.g. clusters 3, 13 and 10 in the latent space

Experiment: Interpretability Analysis

■ Spatiotemporal-Mixed Meta-Parameters

- Within-cluster similarity: always **high and stable** during the three selected peak and off-peak hours
- Cross-cluster similarity: **evolves** according to time series patterns, *e.g.* the sharp drop in peak hours

Conclusion

- Our Heterogeneity-Informed Meta-Parameter Learning is the first method to model and fully leverage spatiotemporal heterogeneity.
- **HimNet** achieves **SOTA** performance on **five** popular spatiotemporal benchmarks (METRLA, PEMSBAY, PEMS04/07/08) against **12 baselines**.
- The proposed meta-parameters show superior interpretability in real-world case studies.

Visit our poster at board #131, Aug. 27th 6:30 - 9:30 PM!

Appendix: Efficiency Study

Training efficiency of HimNet

- Faster than Transformer-based models: ST-WA and PDFormer
- Comparable with RNN-based models: DCRNN, AGCRN, GTS, and MegaCRN
- Slower than TCN-based (convolutional) models: STGCN, Graph WaveNet, and STNorm
- HimNet-Θ' confirms that optimizing the expanded spatial/temporal-specific parameters is impossible (refer to page 3).

Efficiency comparison of the baselines on METRLA dataset.

Model	#Params	Time / Batch	Time / Epoch	Mem Usage	
STID [51]	118K	8ms	12s	1420MB	
STGCN [64]	246K	23ms	34s	1650MB	
GWNet [60]	309K	40ms	60s	1994MB	
STNorm [11]	224K	39ms	59s	1818MB	
DCRNN [36]	372K	189ms	284s	2134MB	
AGCRN [2]	752K	54ms	82s	2492MB	
GTS [49]	38.5M	114ms	171s	4096MB	
MegaCRN [28]	389K	89ms	134s	1962MB	
ST-WA [8]	375K	135ms	203s	2668MB	
PDFormer [26]	531K	173ms	260s	6938MB	
HimNet-Θ'	10.9B	N/A	N/A	N/A	
HimNet	1251K	97ms	144s	6056MB	

Training cost of HimNet on each dataset.

RNN-based

TCN-based

Linear

Transformer-based

HimNet (Also RNN-based)

Appendix: Hyper-Parameter Study

■ An embedding size of 16 generally provides good performance with controllable #parameters.

Average prediction RMSE w.r.t. S/T/ST embedding dimensions on METRLA.