Investigating Data - Covid Wider Impacts

Sarah Hughes

evidence of meeting PDA outcome 2.5. Exploratory data analysis

```
#Data Notes
First look at the wider covid impacts data.
About the data.
weekly variability - related to 2018/19 baseline.
revised version - now extracting all Scotland more easily.
library("tidyverse")
library("janitor")
library("lubridate")
library("skimr")
library("infer")
read in healthboard codes
hb_codes <- read_csv(here::here("lookup_tables/health_board_codes.csv"))
hb_codes <- clean_names(hb_codes)</pre>
load in datafiles
weekly_admissions_spec <- read_csv("Covid admissions by health board and speciality.csv")
weekly_admissions_spec <- clean_names(weekly_admissions_spec)</pre>
weekly_admissions_dep <- read_csv("Covid admissions by health board and deprivation.csv")</pre>
weekly_admissions_dep <- clean_names(weekly_admissions_dep)</pre>
weekly_admissions_demog <- read_csv("Covid admissions by health board, age and sex.csv")
weekly_admissions_demog <- clean_names(weekly_admissions_demog)</pre>
```

data cleaning note probably more cleaning needed before we finalise I changed the spelling but it turns out both spellings are correct!

```
weekly_admissions_spec <- weekly_admissions_spec %>%
  rename("speciality"= "specialty") %>%
  rename("speciality_qf"= "specialty_qf")
```

merge hbnames into datafiles

```
weekly_admissions_spec <- left_join(weekly_admissions_spec,hb_codes)
weekly_admissions_demog <- left_join(weekly_admissions_demog,hb_codes)
weekly_admissions_dep <- left_join(weekly_admissions_dep,hb_codes)</pre>
```

```
# for some reason this line is causing pdf error -?? as Neringa
#skim(weekly_admissions_spec)
```

do the mutates needed for identifying winter and 'crisis'

```
weekly_admissions_dep <- weekly_admissions_dep %>%
  mutate(year = as.integer(str_sub(week_ending,1,4))) %>%
  mutate(month = as.integer(str_sub(week_ending,5,6))) %>%
  mutate(day = as.integer(str_sub(week_ending,7,8))) %>%
  mutate(wdate = ymd(week_ending)) %>%
  # identify "All Scotland" data
  mutate(hb_name = ifelse(hb=="S92000003","All Scotland",hb_name)) %>%
  mutate(hb_name = ifelse(is.na(hb_name),"NHS Region Unknown",hb_name)) %>%
  mutate(iswinter = ifelse(month %in% c(4,5,6,7,8,9),FALSE,TRUE)) %>%
  mutate(above_thresh = ifelse(percent_variation>0,7,0))
```

```
weekly_admissions_demog <- weekly_admissions_demog %>%
  mutate(year = as.integer(str_sub(week_ending,1,4))) %>%
  mutate(month = as.integer(str_sub(week_ending,5,6))) %>%
  mutate(day = as.integer(str_sub(week_ending,7,8))) %>%
  mutate(wdate = ymd(week_ending)) %>%
  # identify "All Scotland" data
  mutate(hb_name = ifelse(hb=="S92000003","All Scotland",hb_name)) %>%
  mutate(hb_name = ifelse(is.na(hb_name),"NHS Region Unknown",hb_name)) %>%
  mutate(iswinter = ifelse(month %in% c(4,5,6,7,8,9),FALSE,TRUE)) %>%
  mutate(above_thresh = ifelse(percent_variation>0,7,0))
```

```
weekly_admissions_spec <- weekly_admissions_spec %>%
mutate(year = as.integer(str_sub(week_ending,1,4))) %>%
mutate(month = as.integer(str_sub(week_ending,5,6))) %>%
mutate(day = as.integer(str_sub(week_ending,7,8))) %>%
mutate(wdate = ymd(week_ending)) %>%
# identify "All Scotland" data
mutate(hb_name = ifelse(hb=="S92000003","All Scotland",hb_name)) %>%
mutate(hb_name = ifelse(is.na(hb_name),"NHS Region Unknown",hb_name)) %>%
mutate(iswinter = ifelse(month %in% c(4,5,6,7,8,9),FALSE,TRUE)) %>%
mutate(above_thresh = ifelse(percent_variation>0,7,0))
```

How would we make monthly data?

```
monthly_admissions_spec <- weekly_admissions_spec

monthly_admissions_spec <- monthly_admissions_spec %>%
   group_by(hb, admission_type, speciality, year, month) %>%
   summarise(monthly_admissions = 4*mean(number_admissions, na.rm = TRUE)) %>%
   mutate(mdate = as.Date(make_datetime(year, month, 15))) %>%
   ungroup()
```

```
monthly_admissions_spec <- left_join(monthly_admissions_spec,hb_codes)</pre>
```

```
## Joining, by = "hb"
```

```
monthly_admissions_spec <- monthly_admissions_spec %>%
  mutate(hb_name = ifelse(is.na(hb_name),"NHS Region Unknown",hb_name)) %>%
  mutate(iswinter = ifelse(month %in% c(4,5,6,7,8,9),FALSE,TRUE))
```

plot weekly data

```
weekly_admissions_spec %>%
  filter(speciality == "All") %>%
  filter(admission_type == "All") %>%
  filter(hb_name == "All Scotland") %>%
ggplot() +
aes(x=wdate, y = number_admissions) +
geom_line(colour='red')
```


check results - plot monthly data

```
monthly_admissions_spec%>%
  filter(speciality == "All") %>%
  filter(admission_type == "All") %>%
  filter(hb_name == "All Scotland") %>%
ggplot() +
```

```
aes(x=mdate, y = monthly_admissions) +
geom_line(colour='red')
```



```
monthly_admissions_spec %>%
filter(year == 2021) %>%
filter(month==8) %>%
filter(speciality == "All") %>%
filter(admission_type == "All") %>%
filter(hb_name =="All Scotland")
```

```
## # A tibble: 1 x 12
##
    hb
            admis~1 speci~2 year month month~3 mdate
                                                            hb_name hb_da^4 hb_da^5
     <chr>
                     <chr>
                            <int> <int>
                                           <dbl> <date>
                                                            <chr>
                                       8 56210. 2021-08-15 All Sc~
## 1 S92000~ All
                              2021
                     All
## # ... with 2 more variables: country <chr>, iswinter <lgl>, and abbreviated
     variable names 1: admission_type, 2: speciality, 3: monthly_admissions,
      4: hb_date_enacted, 5: hb_date_archived
```

try using smoother?

```
library(slider)

data_rolling <- weekly_admissions_spec %>%
  filter(wdate > as.Date("2020-05-01")) %>%
```

```
filter(speciality == "All") %>%
  filter(admission_type == "All") %>%
  filter(hb_name =="All Scotland") %>%
   moving_avg = slide_dbl(
      .x = number_admissions,
      .f = \sim mean(., na.rm = TRUE),
      .before = 12,
      .after = 12,
      .complete = FALSE
   )
data rolling
## # A tibble: 135 x 22
                             hbqf admis~1 admis~2 speci~3 speci~4 numbe~5 avera~6
##
         id week ending hb
##
                 <dbl> <chr> <chr> <chr>
                                                    <chr>
                                                            <chr>
                                                                      <dbl>
                                                                              <dbl>
      <dbl>
                                            <chr>>
## 1 2416
              20200503 S920~ d
                                   All
                                                    All
                                                                      10422 15608.
## 2 2548
              20200510 S920~ d
                                   All
                                            d
                                                    All
                                                            d
                                                                      10363 15114.
## 3 2682
                                                                      10510 15783
              20200517 S920~ d
                                   All
                                                    All
## 4 2815
              20200524 S920~ d
                                   All
                                                                      10987 15634.
                                           d
                                                    All
                                                            d
## 5 2953
              20200531 S920~ d
                                   All
                                                    All
                                                            d
                                                                      11008 15458.
```

```
## # ... with 125 more rows, 12 more variables: percent_variation <dbl>,
## # hb_name <chr>, hb_date_enacted <dbl>, hb_date_archived <dbl>,
## # country <chr>, year <int>, month <int>, day <int>, wdate <date>,
```

All

All

All

All

All

iswinter <lgl>, above_thresh <dbl>, moving_avg <dbl>, and abbreviated
variable names 1: admission_type, 2: admission_type_qf, 3: speciality,

4: speciality qf, 5: number admissions, 6: average20182019

20200607 S920~ d

20200614 S920~ d

20200621 S920~ d

20200628 S920~ d

20200705 S920~ d

6 3088

7 3221

8 3357

9 3493

10 3633

plot - check the smoother makes sense and tweak values if they dont

d

d

d

d

All

All

All

All

All

d

d

d

d

d

11792 15490.

11619 15508.

12034 15082.

15556

15455

12217

12358

```
ggplot(data_rolling)+
  geom_line(aes(x = wdate, y = number_admissions), colour = "gray") +
  geom_line(aes(x = wdate, y = moving_avg), colour = "red")
```


this is a smoothed version of weekly data - its not the right way to create monthly values take a look at what is in each dataset

```
weekly_admissions_spec %>%
distinct(hb_name)
```

```
## # A tibble: 16 x 1
##
      hb_name
      <chr>
##
    1 NHS Ayrshire and Arran
##
    2 NHS Borders
##
    3 NHS Dumfries and Galloway
   4 NHS Forth Valley
    5 NHS Grampian
##
    6 NHS Highland
##
##
    7 NHS Lothian
##
    8 NHS Orkney
    9 NHS Shetland
## 10 NHS Western Isles
## 11 NHS Fife
## 12 NHS Tayside
## 13 NHS Greater Glasgow and Clyde
## 14 NHS Lanarkshire
## 15 All Scotland
## 16 NHS Region Unknown
```

14 health boards plus 'all scotland' and an NA - need to work out what to do with this

```
weekly_admissions_spec %>%
  distinct(admission_type)
## # A tibble: 3 x 1
##
     admission_type
     <chr>
## 1 All
## 2 Emergency
## 3 Planned
Data neatly divided into emergency and planned
weekly_admissions_spec %>%
  distinct(speciality)
## # A tibble: 13 x 1
##
      speciality
##
      <chr>
## 1 Accident & Emergency
## 2 All
## 3 Cardiology
## 4 Medical (excl. Cardiology & Cancer)
## 5 Medical (incl. Cardiology & Cancer)
## 6 Paediatrics (medical & surgical)
## 7 Paediatrics (medical)
## 8 Surgery
## 9 Community
## 10 Gynaecology
## 11 Cancer
## 12 Paediatrics (surgical)
## 13 <NA>
note that some groupings are also combined. need to take a closer look at what these mean.
weekly_admissions_demog %>%
  distinct(age_group)
## # A tibble: 8 x 1
##
     age_group
##
     <chr>
## 1 Under 5
## 2 5 - 14
## 3 15 - 44
## 4 45 - 64
## 5 65 - 74
## 6 75 - 84
## 7 85 and over
## 8 All ages
```

7 age groups and "all ages"

```
## # A tibble: 3 x 1
## sex
## <chr>
## 1 All
## 2 Female
## 3 Male

just male - female and all

weekly_admissions_dep %>%
    distinct(simd_quintile)
```

weekly_admissions_demog %>%

note there is no 'all' category in this dataset

```
weekly_admissions_spec %>%
  filter(speciality == "All") %>%
  filter(admission_type == "All") %>%
  filter(hb_name == "All Scotland") %>%
ggplot() +
aes(x=wdate, y = number_admissions) +
geom_line(colour='red')
```


weekly hospital admissions hover around 14000 per week expect 168,000 per quarter?

pre=pandemic hospital admissions hovered around 15500 per week expect 186,000 per quarter

Overall(all specialities, all admissions, all healthboards) admissions are only at 90% of pre-pandemic levels quick look at demographics

```
weekly_admissions_demog %>%
  filter(sex == "All") %>%
  filter(age_group != "All ages") %>%
  filter(hb_name == "All Scotland") %>%
  filter(admission_type == "All") %>%
  ggplot() +
  aes(x=wdate, y = number_admissions, color = age_group) +
  geom_line() #+
```


#scale_colour_brewer(palette = "Set2")

age plot shows some variation between age groups. quick look at sex differences

```
weekly_admissions_demog %>%
  filter(sex != "All") %>%
  filter(age_group == "All ages") %>%
  filter(hb_name == "All Scotland") %>%
  filter(admission_type == "All") %>%
  ggplot() +
  aes(x=wdate, y = percent_variation, color = sex) +
  geom_line() #+
```


#scale_colour_brewer(palette = "Set2")

quick look at index of deprivation. 1 is most deprived and 5 is least deprived

```
weekly_admissions_dep %>%
  filter(admission_type == "All") %>%
  filter(hb_name =="All Scotland") %>%
ggplot() +
aes(x=wdate, y = percent_variation, color = as.factor(simd_quintile)) +
geom_line()
```


something happening in 2022 - why is there divergence between 1 and 5? look at admissions type

```
weekly_admissions_spec %>%
  filter(admission_type != "All") %>%
  filter(speciality=="All") %>%
  filter(hb_name == "All Scotland") %>%
ggplot() +
aes(x=wdate, y = percent_variation, colour = admission_type) +
geom_line()
```


need to check what the 'spike' in planned at end of 2021 is related to quick look at specialities

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality !="All") %>%
  filter(hb_name =="All Scotland") %>%
ggplot() +
aes(x=wdate, y = percent_variation, colour=speciality) +
geom_line()
```


take a closer look at paediatrics

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality !="All") %>%
  filter(str_detect(speciality, "Paed")) %>%
  filter(hb_name =="All Scotland") %>%
  ggplot() +
  aes(x=wdate, y = number_admissions, colour=speciality) +
  geom_line()
```



```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality !="All") %>%
  filter(str_detect(speciality, "Paed")) %>%
  filter(hb_name =="All Scotland") %>%
ggplot() +
aes(x=wdate, y = percent_variation, colour=speciality) +
geom_line()
```


take a closer look at medical

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality !="All") %>%
  filter(str_detect(speciality, "Medical")) %>%
  filter(hb_name =="All Scotland") %>%
ggplot() +
aes(x=wdate, y = percent_variation, colour=speciality) +
geom_line()
```


simpler plot of specialities

```
weekly_admissions_spec %>%
  filter(admission_type == "Planned") %>%
  filter(speciality !="Medical (incl. Cardiology & Cancer)") %>%
  filter(!str_detect(speciality,"Paed")) %>%
  filter(speciality !="All") %>%
  filter(speciality !="Accident & Emergency") %>%
  filter(hb_name =="All Scotland") %>%
  ggplot() +
  aes(x=wdate, y = percent_variation, colour=speciality) +
  geom_line() +
  scale_colour_brewer(palette = "Set1")
```


we cant present data like this - its just too busy. how would we illustrate these differences - better with a barplot

```
weekly_admissions_spec %>%
  filter(admission_type == "Emergency") %>%
  filter(speciality !="Medical (incl. Cardiology & Cancer)") %>%
  filter(!str_detect(speciality,"Paed")) %>%
  filter(speciality !="All") %>%
  filter(speciality !="Accident & Emergency") %>%
  filter(hb_name =="All Scotland") %>%
  ggplot() +
  aes(x=wdate, y = percent_variation, colour=speciality) +
  geom_line() +
  scale_colour_brewer(palette = "Set1")
```


boxplot for different specialities? some values greater than 8000% (i have filtered them out) indicates we need some more work on data cleaning!

```
weekly_admissions_spec %>%
  #filter(admission_type == "All") %>%
  #filter(speciality!="All") %>%
  #filter(hb_name =="NHS Region Unknown") %>%
  #group_by(speciality) %>%
  #need to take a good look at what these values are!
  filter(percent_variation>500)
```

```
# A tibble: 230 x 21
##
         id week_ending hb
                                      admis~1 admis~2 speci~3 speci~4 numbe~5 avera~6
##
                                hbqf
                                                                           <dbl>
                                                                                    <dbl>
##
      <dbl>
                   <dbl> <chr> <chr>
                                      <chr>
                                               <chr>>
                                                        <chr>
                                                                <chr>>
##
    1
        325
                20200119 S080~ <NA>
                                      All
                                               d
                                                        Accide~ <NA>
                                                                             263
                                                                                     27.5
    2
                20200628 S080~ <NA>
                                      All
                                                                               5
                                                                                      0
##
       3429
                                               d
                                                        Commun~ <NA>
##
    3
       3507
                20200628 <NA>
                                <NA>
                                      All
                                               d
                                                        Gynaec~ <NA>
                                                                               5
                                                                                      0
       3570
##
    4
                20200705 S080~ <NA>
                                      All
                                               d
                                                        Commun~ <NA>
                                                                               5
                                                                                      0
##
    5 3977
                20200726 S080~ <NA>
                                      All
                                               d
                                                        Commun~ <NA>
                                                                               8
                                                                                      0
##
    6
      4118
                20200802 S080~ <NA>
                                      All
                                                        Commun~ <NA>
                                                                               8
                                                                                      0
##
    7
       4255
                20200809 S080~ <NA>
                                      All
                                               d
                                                        Commun~ <NA>
                                                                               9
                                                                                      0
##
    8
       4333
                20200809 <NA>
                                <NA>
                                                        Gynaec~ <NA>
                                                                               5
                                                                                      0
    9
                                                                                      0
##
       4396
                20200816 S080~ <NA>
                                               d
                                                        Commun~ <NA>
                                                                               7
                                      All
  10
       4535
                20200823 S080~ <NA>
                                      All
                                               d
                                                        Commun~ <NA>
                                                                                      0
     ... with 220 more rows, 11 more variables: percent_variation <dbl>,
## #
## #
       hb_name <chr>, hb_date_enacted <dbl>, hb_date_archived <dbl>,
```

```
country <chr>, year <int>, month <int>, day <int>, wdate <date>,
## #
       iswinter <lgl>, above_thresh <dbl>, and abbreviated variable names
## #
       1: admission_type, 2: admission_type_qf, 3: speciality, 4: speciality_qf,
       5: number_admissions, 6: average20182019
## #
weekly_admissions_spec %>%
  filter(admission type == "All") %>%
  filter(speciality!="All") %>%
  group_by(speciality) %>%
  #need to take a good look at what these values are!
  filter(percent_variation<8000) %>%
  ggplot()+
  aes(x=speciality, y=percent_variation)+
  geom_boxplot()+
```


some specialities have faced higher admission levels than others.

theme(axis.text.x = element_text(angle = 45, hjust = 1))

Now look by health boards. high variability i some health boards. is this true variability - e.g indicator of crisis persiod or just data artefact? values are small so more affected by transformation to %percentage var. especially when related to weekly values

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality=="All") %>%
  group_by(hb_name) %>%
  ggplot()+
```

```
aes(x=wdate, y=percent_variation, colour = hb_name)+
geom_line()
```


try different visualisations

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality=="All") %>%
  group_by(hb_name) %>%
  ggplot()+
  aes(x=hb_name, y=percent_variation)+
  geom_boxplot()+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


for some health boards a significant number of admissions levels are above the levels seen in 2018-19. could we perhaps try and use this as an indicator?

Need to think more carefully about what the data in 'region unknown' means

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality=="All") %>%
  ggplot() +
  aes(x=wdate, y=percent_variation, colour=hb_name) +
  geom_line()+
  facet_wrap(~hb_name)
```


How is NA calculated - still need to check?? summarise admissions by health board - need to show how they differ.

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality == "All") %>%
  filter(hb_name != "All Scotland") %>%
  group_by(hb_name) %>%
  summarise(mean = mean(number_admissions)) %>%
  arrange(desc(mean))
```

```
# A tibble: 15 x 2
##
##
      hb_name
                                        mean
##
      <chr>
                                       <dbl>
    1 NHS Greater Glasgow and Clyde 3522.
##
##
    2 NHS Lothian
                                      2052.
##
    3 NHS Lanarkshire
                                      1468.
    4 NHS Grampian
                                      1170.
##
##
    5 NHS Tayside
                                      1154.
    6 NHS Ayrshire and Arran
##
                                       932.
    7 NHS Fife
                                       849.
    8 NHS Forth Valley
                                       721.
##
##
    9 NHS Highland
                                       679.
## 10 NHS Dumfries and Galloway
                                       367.
## 11 NHS Borders
                                       210.
## 12 NHS Region Unknown
                                       186.
```

```
## 13 NHS Western Isles 63.8
## 14 NHS Shetland 36.6
## 15 NHS Orkney 36.5
```

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality == "All") %>%
  filter(hb_name != "All Scotland") %>%
  ggplot() +
  aes(x=wdate, y = number_admissions, colour = hb_name) +
  geom_line()
```


admission values shows all health boards - health boards vary massively in size and admission numbers but mostly same overall pattern.

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality=="Accident & Emergency") %>%
  #take a good look at what these values are!
  filter(percent_variation<8000) %>%
  group_by(hb_name) %>%
  ggplot()+
  aes(x=hb_name, y=percent_variation)+
  geom_boxplot() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


do only certain health boards have an A+E dept?

```
weekly_admissions_spec %>%
  filter(admission_type == "Emergency") %>%
  #filter(speciality=="Accident & Emergency") %>%
  #take a good look at what these values are!
  filter(percent_variation<8000) %>%
  group_by(hb_name) %>%
  ggplot()+
  aes(x=hb_name, y=percent_variation)+
  geom_boxplot() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


first attempt at a 'crisis' calculation. this will be affected by varialibility - need a smoothed or monthly version for summary

```
weekly_admissions_spec %>%
  filter(admission_type == "All") %>%
  filter(speciality=="All") %>%
  #filter(admission_type == "Emergency") %>%
  #filter(speciality=="Accident & Emergency") %>%
  #filter(year == 2020) %>%
  filter(iswinter) %>%
  group_by(hb_name) %>%
  summarise(count_bad_days = sum(above_thresh),
            count_{days} = n()*7,
            pcnt_bad_days = 100*(sum(above_thresh)/(n()*7)),
            mean_percentvar =mean(percent_variation)) %>%
  ggplot() +
  aes(x=hb_name, y=mean_percentvar) +
  geom_col() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


hb_name

```
weekly_admissions_spec %>%
  filter(speciality=="All") %>%
  filter(admission_type =="All") %>%
  #filter(year == 2021) %>%
  #filter(iswinter) %>%
  group_by(hb_name) %>%
  summarise(count_bad_days = sum(above_thresh),
            count_{days} = n()*7,
            pcnt_bad_days = 100*(sum(above_thresh)/(n()*7)),
           mean_percentvar =mean(percent_variation)) %>%
 ggplot() +
  aes(x=hb_name, y=pcnt_bad_days) +
  geom_col() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


hb_name

take a look by health board

quick look at winter v summer

```
weekly_admissions_spec %>%
  filter(speciality=="Accident & Emergency") %>%
  filter(admission_type =="All") %>%
  group_by(iswinter, year) %>%
  summarise(pcnt_bad_days = sum(above_thresh)/n()*7, mean_percentvar =mean(percent_variation))
## 'summarise()' has grouped output by 'iswinter'. You can override using the
## '.groups' argument.
## # A tibble: 6 x 4
  # Groups:
               iswinter [2]
##
     iswinter year pcnt_bad_days mean_percentvar
##
     <1g1>
              <int>
                             <dbl>
                                             <dbl>
## 1 FALSE
               2020
                              21.4
                                              1.35
## 2 FALSE
               2021
                              28.1
                                             17.6
## 3 FALSE
                                            -13.1
               2022
                              19.1
               2020
                              28.3
                                             43.7
## 4 TRUE
## 5 TRUE
               2021
                              25.0
                                             14.4
## 6 TRUE
               2022
                              21.1
                                              2.10
```

no obvious big discrepancy in winter admissions for this parameter winters of 2020 and 2022 are 'worse' than summers, percentages are small and maybe not significant?

'summarise()' has grouped output by 'iswinter'. You can override using the
'.groups' argument.


```
mean_percentvar =mean(percent_variation)) %>%
ggplot() +
aes(x=iswinter, y=pcnt_bad_days) +
geom_col() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
facet_grid(~year)
```

'summarise()' has grouped output by 'iswinter'. You can override using the
'.groups' argument.

'summarise()' has grouped output by 'iswinter'. You can override using the

'.groups' argument.

