BUNDE REPUBLIK DEUTS HLAND

REC'D 16 SEP 2003 WIFO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 36 647.0

Anmeldetag:

9. August 2002

Anmelder/Inhaber:

Basell Polyolefine GmbH, Wesseling/DE

Bezeichnung:

Modifizierter Ziegler Katalysator, Verfahren zu seiner

Herstellung und Verfahren zum Herstellen eines

Poly-1-olefins in seiner Gegenwart

IPC:

C 08 F 4/646

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 7. März 2003 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COFY

Joost

Basell Polyolefine GmbH

5 Beschreibung

Modifizierter Ziegler Katalysator, Verfahren zu seiner Herstellung und Verfahren zum Herstellen eines Poly-1-olefins in seiner Gegenwart

Die Erfindung bezieht sich auf einen chemisch modifizierten Ziegler Katalysator und auf ein Verfahren zum Herstellen von Poly-1-olefinen in dessen Gegenwart.

Aus Magnesiumalkoholaten Mg(OR¹)(OR²) oder "komplexen" Magnesiumalkoholaten lassen sich durch Umsetzung mit Verbindungen des Titans, Zirkons, Vanadiums oder Chroms Feststoffe herstellen, die zusammen mit metallorganischen Verbindungen der 1., 2. oder 13. Gruppe des Periodensystems (die Gruppen werden wie beispielsweise im Handbook of Chemistry and Physics, 76th edition (1995-1996) abgedruckt zitiert) hervorragende Katalysatoren für die Olefinpolymerisation ergeben.

Bekannt ist ein Verfahren zur Polymerisation von 1-Olefinen in Gegenwart eines Mischkatalysators, dessen Komponente (a) durch Umsetzen von Magnesium-alkoholaten mit vierwertigen, halogenhaltigen Titanverbindungen hergestellt wurde (vgl. US-A 3,644,318). Die Magnesiumalkoholate werden in der Form eingesetzt, wie sie im Handel erhältlich sind. Die in diesem Verfahren erhältlichen Polymeren

Weiterhin ist ein Verfahren zur Herstellung eines Ziegler Katalysators bekannt, bei welchem ein gelöstes Magnesiumalkoholat mit einer halogenhaltigen Ti- oder V-Verbindung und einem Übergangsmetallalkoholat umgesetzt wird (vgl. EP-A 319 173). Die dabei entstehenden Katalysatorpartikel sind kugelförmig und besitzen eine mittlere Teilchengröße von 10 bis 70 µm.

besitzen eine relativ enge Molmassenverteilung.

Schließlich ist noch bekannt, als Übergangsmetallkomponente ein Produkt der

20

30

15

10

15

20

Reaktion einer vierwertigen, halogenhaltigen Titanverbindung mit einem Magnesiumalkoholat, welches mindestens 40 Gew.-% Teilchen eines Durchmessers kleiner 63 µm enthält, zu verwenden (vgl. EP-A 223 011). Ein Magnesiumalkoholat mit dieser Korngröße erhält man unter anderem durch Mahlen eines Handelsproduktes in einer Kugelmühle. Das Magnesiumalkoholat wird als Suspension in einem inerten Kohlenwasserstoff eingesetzt.

Es wurde auch in der EP-A 532 551 beschrieben, dass man Ziegler Katalysatoren mit hoher bis sehr hoher Aktivität und mit der Möglichkeit, die Teilchengrößenverteilung des Polymerisats zu steuern, erhält, wenn man das Magnesiumalkoholat als gelartige Dispersion einsetzt. Diese gelartige Dispersion wird erhalten, indem das handelsübliche Magnesiumalkoholat in einem inerten Kohlenwasserstoff suspendiert wird und diese Suspension unter Schutzgas (Ar, N₂) in einer Dispergiereinheit mit einem Hochleistungsscherwerkzeug (z.B. [®]Ultra-Turrax oder [®]Dispax, IKA-Maschinenbau Janke & Kunkel GmbH, oder [®]Supraton, Firma Krupp-Buckau, Deutschland) über einen Zeitraum von mehreren Stunden oder Tagen unter starker Kühlung dispergiert wird.

Weiter beschreibt die WO 01/38405, dass man Ziegler Katalysatoren mit sehr hoher Aktivität erhält, wenn man das Magnesiumalkoholat als gelartige Dispersion einsetzt, vorher aber das Ausgangsmaterial einer Trockenmahlung in einer inertisierten Mühle unterwirft, wobei daraus gewisse wirtschaftliche Vorteile beim Herstellen des Katalysators resultieren.

Beim Herstellen von mono-, bi- oder multimodalen PE-Produkten in kaskadierter oder batchweise betriebener Suspensionspolymerisation (STHD) ist es indes für das Verfahren und die Eigenschaften der damit hergestellten Produkte von Vorteil, wenn durch den Katalysator das unter gezielt gewählten Reaktionsbedingungen gebildete Polymer mit einer niedrigen Molmasse eine möglichst steil abfallende Flanke auf der niedermolekularen Seite der Molmassenverteilung aufweist, und zwar möglichst steiler als nach dem Stand der Technik.

Eine steilere Flanke auf der niedermolekularen Seite der Molmassenverteilung ist nämlich gleichbedeutend mit einer geringeren Bildung von niedermolekularem Wachs, das bei der Suspensionspolymerisation im Suspensionsmittel gelöst ist. Wenn bei der Polymerisation weniger Wachs gebildet wird, muss bei der großtechnischen Herstellung von PE auch weniger Wachs aus dem Verfahren ausgeschleust werden, was die Wirtschaftlichkeit des Verfahrens steigert, weil weniger Energie- und Entsorgungskosten anfallen. Außerdem wird die der Menge an nicht gebildetem Wachs entsprechende Menge am monomerem Ethylen in PE-Produkt umgesetzt, womit die Produktausbeute des Verfahrens steigt und die Wirtschaftlichkeit des Herstellverfahrens noch weiter erhöht wird.

Aufgabe der vorliegenden Erfindung war es daher, einen Ziegler Katalysator zu finden, der das Reaktionsprodukt einer Magnesiumalkoholatdispersion mit einer Übergangs-metallverbindung und einer metallorganischen Verbindung darstellt, wobei der Katalysator chemisch so modifiziert werden soll, dass die Polymerisierung von 1-Olefinen in seiner Gegenwart ein Produkt mit einer deutlich geringeren Menge an Wachsanteilen als nach dem Stand der Technik aufweisen soll und damit eine steil abfallende Flanke auf der niedermolekularen Seite der Molmassenverteilung, und zwar steiler als nach dem Stand der Technik.

20

5

10

15

Gelöst wird diese Aufgabe durch einen Ziegler Katalysator zum Herstellen von 1-Olefinhomo- und -copolymeren durch Polymerisation eines 1-Olefins der Formel R⁴CH=CH₂, in der R⁴ Wasserstoff oder einen Alkylrest mit 1 bis 10 Kohlenstoffatomen bedeutet, in Suspension, in Lösung oder in der Gasphase, der aus dem Umsetzungsprodukt eines Magnesiumalkoholats (Komponente a) mit einer Übergangsmetallverbindung (Komponente b) und einer metallorganischen Verbindung (Komponente c) besteht, dessen Kennzeichenmerkmal darin zu sehen ist, dass zusätzlich eine Komponente (d) hinzukommt, die eine Verbindung mit der allgemeinen chemischen Formel

25

enthält, in der M ein Element der IV. Hauptgruppe des Periodensystems bedeutet, in der R Halogen bedeutet oder einen organischen Rest wie Alkyl- mit 1 bis 10 C-Atomen, Oxyalkyl- mit 1 bis 10 C-Atomen, Cycloalkyl- mit 4 bis 8 C-Atomen im Ring und ggf. 1 bis 6 Substituenten R' am Ring, Aryl- mit 6 bis 10 C-Atomen im Aromaten und ggf. 1 bis 6 Substituenten R' am Aromaten, wobei R' für ein Halogen steht, oder für einen Alkylrest mit 1 bis 4 C-Atomen, oder für eine OH-Gruppe, oder für eine NO₂-Gruppe, oder für einen Oxyalkylrest mit 1 bis 4 C-Atomen, und in der x für eine ganze Zahl von 1 bis 4 steht.

- Erfindungsgemäß müssen die Reste R nicht gleich sein, sondern es können verschiedene Möglichkeiten als Reste R miteinander kombiniert werden. Als Element der IV. Hauptgruppe des Periodensystems ist erfindungsgemäß bevorzugt Silizium oder Germanium.
- Als Komponente (a) kann ein im Handel erhältliches Magnesiumalkoholat verwendet werden. Dieses Magnesiumalkoholat kann ein Magnesiumalkoholat der Formel Mg(OR¹)(OR²) sein, in der R¹ und R² gleich oder verschieden sind und einen Alkylrest mit 1 bis 6 Kohlenstoffatomen bedeuten. Beispiele sind Mg(OCH₃)₂, Mg(OC₂H₅)₂, Mg(OiC₃H₀)₂, Mg(OC₂H₅)₂, Mg(OC₂H₅), Mg(OC₂H₅)(OnC₃H₀).
- Es kann auch ein Magnesiumalkoholat der Formel Mg(OR)_nX_m verwendet werden, in der X = Halogen, (SO₄)_{1/2}, OH, (CO₃)_{1/2}, (PO₄)_{1/3}, CI ist, R die oben genannte

 Bedeutung von R¹ oder R² hat und n + m = 2 ist.
- Es kann jedoch auch ein Magnesiumalkoholat eingesetzt werden, das neben

 Magnesium mindestens ein weiteres Metall der 1., 2., 13. oder 14. Gruppe des
 Periodensystems enthält. Beispiele für ein derartiges Magnesiumalkoholat sind:
 [Mg(OiC₃H₇)₄]Li₂; [Al₂(OiC₃H₇)₈]Mg; [Si(OC₂H₅)₆]Mg; [Mg(OC₂H₅)₃]Na;
 [Al₂(OiC₄H₉)₈]Mg; [Al₂(O-secC₄H₉)₆(OC₂H₅)₂]Mg.

 Bevorzugt verwendet werden Mg(OC₂H₅)₂, Mg(OnC₃H₇)₂ oder Mg(OiC₃H₇)₂. Das

 Magnesiumalkoholat wird in reiner Form eingesetzt.

Handelsübliches Mg(OC₂H₅)₂ hat im allgemeinen folgende Spezifikation:

Mg-Gehalt

21 – 22 Gew.-%

MgCO₃

≤ 1 Gew.-%

5 C₂H₅OH-Gehalt

< 0,3 Gew.-%

Der mittlere Korndurchmesser liegt bei 400 - 700 µm, wobei mindestens 90 % der Partikel einen Korndurchmesser im Bereich von 200 bis 1200 µm besitzen.

Als inerte Kohlenwasserstoffe eignen sich erfindungsgemäß aliphatische oder cycloaliphatische Kohlenwasserstoffe wie Butan, Pentan, Hexan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan, sowie aromatische Kohlenwasserstoffe wie Toluol, Xylol; auch hydrierte Dieselöl- oder Benzinfraktionen, die sorgfältig von Sauerstoff, Schwefelverbindungen und Feuchtigkeit befreit worden sind, sind brauchbar.

15

20

25

10

Es kann von Vorteil sein, es ist aber für das erfindungsgemäße Verfahren nicht unbedingt wesentlich, wenn die Komponente (a), das handelsübliche Magnesium-alkoholatpulver, durch Rühren mit einem Rührorgan oder Zerscheren mit einem Hochleistungsscherwerkzeug einer Suspension des handelsüblichen Magnesium-alkoholatpulvers in einem inerten Kohlenwasserstoff, in dem das Magnesium-alkoholat nicht löslich ist, in eine gelartige Dispersion des Magnesiumalkoholats überführt wird, die bei gleichem Verhältnis von vorgelegtem Feststoffanteil zu Kohlenwasserstoffanteil, ausgedrückt als Massenprozent, bei gleicher Temperatur ein langsameres Absitzen des Feststoffanteils und einen höheren Raumanteil des Feststoffanteils in der Dispersion nach vollständigem Absitzen des Feststoffanteils, ausgedrückt als Volumenprozent, aufweist als die eingesetzte Suspension des handelsüblichen Magnesiumalkoholatpulvers in dem gleichen inerten Kohlen-

30

wasserstoff.

Eine gelartige Dispersion dieser Art wird auch durch Rühren mit einem Rührorgan oder Zerscheren mit einem Hochleistungsscherwerkzeug einer Suspension eines vorher gemahlenen Magnesiumalkoholatpulvers in einem inerten Kohlenwasserstoff,

20

25

in dem das Magnesiumalkoholat nicht löslich ist, in einem inertisierten Gefäß hergestellt, wobei in jedem Volumeninkrement der Mischung die gleiche mittlere Anzahl an Teilchen vorliegt.

Für die Herstellung des Ziegler Katalysators kann die Dispersion oder Suspension der Komponente (a) dann in einer Stufe oder in mehreren Stufen mit der Komponente (b) einer Übergangsmetallverbindung wie einer Ti-Verbindung (TiCl₄, Ti(OR)₄ u.a.), einer Zr-Verbindung (Zr(OR)₄, ZrCl₂(OCOC₆H₅)₂ u.a.), einer V-Verbindung (VCl₄, VOCl₃ u.a.) oder einer Chromverbindung (CrO₂Cl₂ u.a.) umgesetzt werden.

Dabei wird die Komponente (a) mit der Übergangsmetallverbindung bei einer Temperatur im Bereich von 20 bis 100° C, vorzugsweise von 60 bis 90° C, in Gegenwart eines inerten Kohlenwasserstoffs unter Rühren mit einer den Erfordernissen entsprechenden Rührerdrehzahl umgesetzt. Auf 1 mol Magnesiumalkoholat werden 0,05 bis 5 mol Übergangsmetallverbindung eingesetzt, vorzugsweise 0,1 bis 3,5 mol. Die Reaktionsdauer beträgt 0,5 bis 8 Stunden, vorzugsweise 2 bis 6 Stunden.

Zusätzlich dazu oder im Anschluss an die Umsetzung der Komponente (a) mit der Komponente (b) kann das Umsetzungsprodukt mit einer Suspension oder einer Lösung der Komponente (d) in einem inerten Lösungsmittel behandelt werden. In einer bevorzugten Ausführungsform der Erfindung hat die Komponente (d) eine chemische Zusammensetzung, bei der der Rest R ein Chlor- oder Bromatom bedeutet oder einen Alkylrest mit 1 bis 6 C-Atomen, vorzugsweise mit 1 bis 4 C-Atomen, einen Oxyalkylrest mit 1 bis 6 C-Atomen, vorzugsweise mit 1 bis 4 C-Atomen, einen Cycloalkylrest mit 5 oder 6 C-Atomen oder einen Phenylrest.

Die Behandlung erfolgt bei einer Temperatur in einem Bereich von 20 bis 120° C, vorzugsweise von 60 bis 100° C, über eine Zeitdauer im Bereich von 0,1 bis 8 h, vorzugsweise von 2 bis 6 h, in einer Menge im Bereich von 0,05 bis 5 mol Komponente (d) pro mol Magnesiumalkoholat, vorzugsweise von 0,1 bis 3,5 mol, behandelt werden.

Man erhält so einen in Kohlenwasserstoff unlöslichen, magnesium- und übergangsmetall- und Element-M-haltigen Feststoff als Umsetzungsprodukt, das mit dem inerten Kohlenwasserstoff eine Suspension (Feststoff/ Flüssigkeit) bildet.

5

Die Herstellung des erfindungsgemäß zu verwendenden Polymerisationskatalysators erfolgt durch Zusammenbringen des Umsetzungsproduktes mit Komponente (c), einer metallorganischen Verbindung eines Metalls der 1., 2. oder 13. Gruppe des Periodensystems. Das Umsetzungsprodukt aus Komponente (a), (b) und (d) kann als Suspension direkt mit der Komponente (c) umgesetzt werden.

15

10

Vorzugsweise verwendet man als Komponente (c) aluminiumorganische Verbindungen. Als aluminiumorganische Verbindungen eignen sich chlorhaltige aluminiumorganische Verbindungen, die Dialkylaluminiummonochloride der Formel R^3_2 AlCl oder Alkylaluminiumsesquichloride der Formel R^3_3 Al $_2$ Cl $_3$, worin R^3 ein Alkylrest mit 1 bis 16 Kohlenstoffatomen ist. Als Beispiele seien genannt (C_2H_5) $_2$ AlCl $_3$ (i C_4H_9) $_2$ AlCl $_3$ (C $_2H_5$) $_3$ Al $_2$ Cl $_3$ Es können auch Gemische dieser Verbindungen eingesetzt werden.

20

25

30

Die Reihenfolge in der die Komponenten (a), (b), (c) und (d) zur Bildung des Ziegler Katalysators zusammengegeben werden ist erfindungsgemäß variabel. Dabei können zu Komponente (a) die Komponenten (b), (c) und (d) nacheinander zugesetzt werden, es können aber genauso gut auch die Komponenten (b), (d) und (c) nacheinander oder die Komponenten (b) und (d) als Mischung und danach Komponente (c) eingesetzt werden, wobei die Komponente (d) auch ggf. als externer Donor während der Polymerisation eingesetzt werden kann.

Das Umsetzungsprodukt aus den Komponenten (a), (b), (c) und (d) stellt den Ziegler Katalysator dar, der aber noch mit einer aluminiumorganischen Verbindung als sog. Cokatalysator in ein aktives System überführt werden muss. Hierzu eignen sich

chlorfreie aluminiumorganische Verbindungen wie Aluminiumtrialkyle AIR³₃ oder Aluminiumdialkylhydride der Formel AIR³₂H, in denen R³ ein Alkylrest mit 1 bis 16

Kohlenstoffatomen bedeutet. Beispiele sind Al(C_2H_5)₃, Al(C_2H_5)₂H, Al(C_3H_7)₃, Al(C_3H_7)₂H, Al(C_4H_9)₃, Al(C_4H_9)₂H, Al(C_8H_{17})₃, Al($C_{12}H_{25}$)₃, Al(C_2H_5)($C_{12}H_{25}$)₂, Al(C_4H_9)($C_{12}H_{25}$)₂.

Als Cokatalysator können auch Mischungen von metallorganischen Verbindungen von Metallen der 1., 2. oder 13. Gruppe des Periodensystems, insbesondere Mischungen verschiedener aluminiumorganischer Verbindungen eingesetzt werden.

Beispielsweise seien folgende Mischungen genannt:

Al(C_2H_5)₃ und Al(iC_4H_9)₃, Al(C_2H_5)₂Cl und Al(C_8H_{17})₃, Al(C_2H_5)₃ und Al(C_8H_{17})₃, Al(C_4H_9)₂H und Al(C_8H_{17})₃, Al(iC_4H_9)₃ und Aluminiumisoprenyl (= Umsetzungsprodukt von Isopren mit Al(iC_4H_9)₃ oder Al(iC_4H_9)₂H).

15

20

25

30

(1) oder Octen-(1).

10

Das Mischen von Katalysator und Cokatalysator kann vor der Polymerisation in einem Rührkessel bei einer Temperatur im Bereich von - 30 bis + 150° C, vorzugsweise von - 10 bis + 120° C, erfolgen. Es ist aber auch möglich, Katalysator und Cokatalysator direkt im Polymerisationskessel bei einer Temperatur im Bereich von 20 bis 200° C zu vereinigen. Die Zugabe des Cokatalysators kann jedoch auch in zwei Schritten erfolgen, indem vor der Polymerisationsreaktion der erfindungsgemäße Katalysator mit einem ersten Teil des Cokatalysators bei einer Temperatur im Bereich von – 30 bis 150° C voraktiviert wird und die weitere Zugabe eines weiteren Teils des gleichen oder eines anderen Cokatalysators in dem Polymerisationsreaktor bei einer Temperatur im Bereich von 20 bis 200° C erfolgt. Der erfindungsgemäß zu verwendende Polymerisationskatalysator (Ziegler Katalysator) wird zur Polymerisation von 1-Olefinen der Formel R⁴-CH=CH₂, in der R⁴ ein Wasserstoffatom oder einen Alkylrest mit 1 bis 10 C-Atomen bedeutet, eingesetzt, beispielsweise Ethylen, Propylen, Buten-(1), Hexen-(1), 4-Methylpenten-

Vorzugsweise wird Ethylen allein oder im Gemisch von mindestens 50 Gew.-%

10

15

20

Ethylen und maximal 50 Gew.-% eines anderen 1-Olefins der obigen Formel polymerisiert.

Insbesondere wird Ethylen allein oder ein Gemisch von mindestens 90 Gew.-% Ethylen und maximal 10 Gew.-% eines anderen 1-Olefins der obigen Formel polymerisiert.

Die Polymerisation wird in bekannter Weise in Lösung, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig bei einer Temperatur von 20 bis 200° C, vorzugsweise 50 bis 150° C, durchgeführt. Der Druck beträgt 0,5 bis 50 bar. Bevorzugt ist die Polymerisation in dem technisch besonders interessanten Druckbereich von 1,5 bis 30 bar.

Dabei wird der erfindungsgemäße Katalysator in einer Konzentration, bezogen auf Übergangsmetall, von 0,0001 bis 1 mmol, vorzugsweise 0,001 bis 0,5 mmol Übergangsmetall pro dm³ Dispergiermittel verwendet. Prinzipiell sind aber auch höhere Konzentrationen möglich.

Die Suspensionspolymerisation wird in einem für das Ziegler-Niederdruckverfahren gebräuchlichen inerten Dispergiermittel durchgeführt, beispielsweise in einem aliphatischen oder cycloaliphatischen Kohlenwasserstoff; als solcher sei beispielsweise Butan, Pentan, Hexan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan genannt. Weiterhin können Benzin- bzw. hydrierte Dieselölfraktionen, die sorgfältig von Sauerstoff, Schwefelverbindungen und Feuchtigkeit befreit worden sind, benutzt werden.

25

Suspensionspolymerisation wie Gasphasenpolymerisation können direkt oder nach Vorpolymerisation des Katalysators durchgeführt werden, wobei die Vorpolymerisation zweckmäßiger Weise nach dem Suspensionsverfahren durchgeführt wird.

Die Molmasse des Polymerisats wird in bekannter Weise geregelt, vorzugsweise wird zu diesem Zweck Wasserstoff verwendet.

Das erfindungsgemäße Verfahren ergibt in Folge der hohen Aktivität des erfindungsgemäßen Katalysators Polymerisate mit sehr geringem Übergangsmetall- und Halogengehalt und daher äußerst guten Werten im Farbbeständigkeits- und Korrosionstest.

5

Ferner ermöglicht das erfindungsgemäße Verfahren, die Katalysatoren so zu modifizieren, dass damit die Wachsanteile im hergestellten Polymer geringer werden, so dass eine engere Molmassenverteilung ausgedrückt durch das Verhältnis von M_w/M_n erreicht wird, wobei insbesondere eine sehr steil abfallende Flanke auf der niedermolekularen Seite der Molmassenverteilung zu dieser Verengung beiträgt.

Mit den nachfolgend beschriebenen Ausführungsbeispielen, soll die Erfindung für den Fachmann noch deutlicher erläutert werden.

15

10

Die darin aufgeführten Ergebnisse zur Elementzusammensetzung der beschriebenen Katalysatoren wurden nach folgenden analytischen Verfahren erhalten:

Ti: photometrisch über Peroxid-Komplex

20 Mg, Cl, Al: titrimetrisch nach üblichen Verfahren

Si : mittels ICP-OES (InductiveCoupledPlasma-OptischeSpektralAnalyse) nach DIN EN ISO11885

25

Die in den Tabellen aufgeführten Produkteigenschaften der Polymerpulver sind nach den folgenden Methoden ermittelt worden:

VZ (Viskositätszahl): nach DIN EN ISO 1628-3

Schüttdichte: nach DIN EN ISO 60

d₅₀ (mittlerer Teilchendurchmesser): nach DIN 53477 und DIN66144

M_w/M_n (Polydispersität): Maß für die Verteilungsbreite der Molmassenverteilung

(M_w=Gewichtsmittel, M_n=Zahlenmittel), die mir der GPC-Methode nach DIN55672 ermittelt wird. Die Messungen wurden bei 135° C und Trichlorbenzol als Lösungsmittel durchgeführt.

M<1E3g/mol: Gewichtsanteil der Moleküle mit einer Molmasse kleiner als 1000 g/mol, der als Maß für den gebildeten Wachsanteil herangezogen wird. Dieser wird aus der mit der GPC-Methode erhaltenen integralen Molgewichtsverteilungskurve ermittelt.

Beispiel 1 (erfindungsgemäß)

In einem 2 dm³ Rührgefäß mit Rückflusskühler, 2-flügeligem Blatt-Rührer und Inertgasüberlagerung (Ar) wurde eine Suspension aus 57 g eines in einer Gegenstrahlmühle des Typs 100 AFG der Fa. Hosokawa Alpine AG, Augsburg / Deutschland, mit einem Durchsatz von ca. 6 kg/h auf einen mittleren Korndurchmesser von ca. 5 µm gemahlenen handelsüblichen Mg(OC₂H₅)₂ in 1,0 dm³ Dieselöl mit einem Siedebereich von 140 bis 170° C (hydrierte Benzinfraktion) bei einer Temperatur von 85° C für 20 h bei einer Rührerdrehzahl von 100 Upm (Umdrehungen pro Minute) gerührt.

Die Absitzzeit der dadurch erhaltenen gelartigen Mg(OC₂H₅)₂-Dispersion bei

Raumtemperatur betrug nach Abstellen des Rührers ca. 60 min.

20

25

30

5

10

15

0,4 dm³ (enthalten 23 g Mg(OC₂H₅)₂) der gelartigen Dispersion wurden in ein 1 dm³ Rührgefäß mit Rückflusskühler, 2-flügeligem Blatt-Rührer und Inertgasüberlagerung (Ar) überführt, mit 0,1 dm³ Dieselöl mit einem Siedebereich von 140 bis 170° C (hydrierte Benzinfraktion) aufgefüllt. Dann wurde bei einer Rührerdrehzahl von 125 Upm auf 85° C hochgeheizt und anschließend 0,04 mol TiCl₄ in 10cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) während 4 h zudosiert. Nach einer Nachreaktionszeit von 0,5 h wurden als Silankomponente 0,02 mol SiCl₄ in 10cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) innerhalb 4h Stunden zudosiert. Nach einer Nachreaktionszeit von 0,5 h wurde auf 110° C erhitzt. Während 2 h wurden bei einer Rührerdrehzahl von 250 Upm 0,175 mol Al₂(C₂H₅)₃Cl₃ in 200 cm³ Dieselöl (hydrierte Benzinfraktion mit

15

20

25

30

Siedebereich 140 bis 170° C) zudosiert. Anschließend wurde die Temperatur weitere 2 h bei 110° C gehalten.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Al:Cl ≈ 1:0,21:0,16:2,36.

Vergleichsbeispiel 1

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 1 mit dem Unterschied, dass keine Silanverbindung zudosiert wurde.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Al:Cl ≈ 1:0,21:0,33:2,25.

Beispiel 2 (erfindungsgemäß)

Beispiel 2 beschreibt die Verwendung der gemäß Beispiel 1 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen.

Die Polymerisationsversuche wurden in einem 200 dm³ Reaktor diskontinuierlich durchgeführt. Dieser Reaktor war mit einem Impellerrührer und Stromstörer ausgestattet. Die Temperatur im Reaktor wurde gemessen und automatisch konstant gehalten. Die Polymerisationstemperatur betrug $85 \pm 1^{\circ}$ C.

Die Polymerisationsreaktion wurde in folgender Weise durchgeführt: In den mit N₂ überlagerten Reaktor wurden 100 dm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) eingefüllt und auf 85° C aufgeheizt. Unter Inertgasüberlagerung (N₂) wurde der Cokatalysator (Al(C₂H₅)₃) zugegeben, so dass im Reaktor eine Cokatalysatorkonzentration von 0,50 mmol/dm³ vorlag. Danach

10

15

25

wurde der Katalysator hergestellt gemäß Beispiel 1 in einer Menge, die 3,0 mmol Titan entspricht, als mit Dieselöl verdünnte Suspension in den Reaktor zugegeben.

Der Reaktor wurde mehrmals bis 8 bar mit H_2 (Wasserstoff) beaufschlagt und wieder entspannt, um den Stickstoff vollständig aus dem Reaktor zu entfernen (der Vorgang wurde durch Messung der H_2 -Konzentration im Gasraum des Reaktors kontrolliert, die schließlich 95 Vol.-% anzeigte). Die Polymerisation wurde durch Öffnen des Ethyleneingangs gestartet. Über die gesamte Polymerisationszeit wurde Ethylen in einer Menge von 4,0 kg/h zugeführt, wobei der Druck im Reaktor langsam anstieg. Im Gasraum des Reaktors wurde der Gehalt an Wasserstoff ständig gemessen und der Volumenanteil konstant gehalten, indem Wasserstoff entsprechend dosiert wurde (Vol.-% H_2 = 80).

Die Polymerisation wurde nach 300 min beendet (20 kg Ethylen-Eingas) und der Gesamtdruck abgelesen. Der Reaktorinhalt wurde auf ein Filter abgelassen. Das mit Dieselöl behaftete Polymer wurde mehrere Stunden im Stickstoffstrom getrocknet. Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 1 zusammengestellt.

20 Vergleichsbeispiel 2

Vergleichsbeispiel 2 beschreibt die Verwendung der gemäß Vergleichsbeispiel 1 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgt wie in Beispiel 2 beschrieben.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 1 zusammengestellt.

10

Tabelle 1:Polymerisationsversuche 200 dm³-Reaktor, 50 mmol Triethylaluminium, 3,0 mmol Ti (Katalysator), 100 dm³ Dieselöl, 4,0 kg/h Ethylen, 85° C Polymerisationstemperatur, 300 min Polymerisationsdauer, 80 Vol.-% Wasserstoff im Gasraum

Polymerisationsversuch	Bsp. 2	Vglbsp. 2
Katalysatorkomponente gemäß	Bsp. 1	Vglbsp. 1
Enddruck / bar	6,426	6,498
Ausbeute PE / kg	19,8	19,8
VZ / cm³/g	52	55
Schüttdichte / g/L	379	357
d ₅₀ / μm	165	154
Mw / Mn	4,0	5,7
M<1E3 g /mol / [wt-%]	5,5	8,5

Aus den Werten der Tabelle 1 wird deutlich, dass nach dem erfindungsgemäßen Verfahren vorteilhaft die Wachsanteile des Polymerisats gemessen durch den Anteil der Moleküle kleiner 1000 g/mol geringer werden als im Vergleich zum Vergleichsbeispiel. Gleichzeitig wird die Molmassenverteilung enger.

Beispiel 3 (erfindungsgemäß)

15 103 g handelsübliches Mg(OC₂H₅)₂ wurden in Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) suspendiert (Gesamtvolumen 1,0 dm³). Die Suspension wurde in einem zylindrischen Glasgefäß unter Inertgas (Ar), um Feuchtigkeit und Luft (O₂) auszuschließen, mit einem hochtourigen Dispergator (®Ultra-Turrax) unter äußerer Kühlung mit einem Eisbad in eine Dispersion überführt 20 (Dauer ca. 8 h). Die Dispersion hatte eine gelartige Konsistenz.

0,28 dm³ (enthalten 29 g Mg(OC₂H₅)₂) der gelartigen Dispersion wurden in ein 1 dm³ Rührgefäß mit Rückflusskühler, 2-flügeligem Blatt-Rührer und Inertgasüberlagerung (Ar) überführt, mit 0,32 dm³ Dieselöl mit einem Siedebereich von 140 bis 170° C (hydrierte Benzinfraktion) aufgefüllt und bei Raumtemperatur bei einer Rührerdrehzahl von 100 Upm für 10 min aufgerührt.

Die Absitzzeit der gelartigen Dispersion bei Raumtemperatur betrug nach Abstellen des Rührers ca. 7 h.

Diese gelartige Dispersion wurde bei einer Rührerdrehzahl von 125 Upm auf 85° C gebracht und anschließend 0,05 mol TiCl₄ in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) während 4 h zudosiert. Nach einer Nachreaktionszeit von 0,5 h wurden als Silankomponente 0,025 mol SiCl₄ in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) innerhalb 4 h Stunden zudosiert. Nach einer Nachreaktionszeit von 0,5 h wurde auf 110° C erhitzt. Während 2 h wurden bei einer Rührerdrehzahl von 250 Upm 0,175 mol Al₂(C₂H₅)₃Cl₃ in 200 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) zudosiert. Anschließend wurde die Temperatur weitere 2 h bei 110° C gehalten.

20

5

10

15

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,20:0,06:0,11:2,25.

Beispiel 4 (erfindungsgemäß)

25

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass TiCl₄ und als Silankomponente SiCl₄ gemeinsam in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) innerhalb 4 h Stunden zudosiert wurden.

30

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,20:0,07:0,15:2,30.

Beispiel 5 (erfindungsgemäß)

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und die Dosierung von 0,025 mol SiCl₄ in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) als Silankomponente erst im letzten Schritt nach der Zugabe von Al₂(C₂H₅)₃Cl₃ ausgeführt wurde. Die Zugabe erfolgte bei 85° C innerhalb von 2 h Stunden und einer Nachreaktionszeit von 2 h.

10

5

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,30:0,02:0,16:2,53.

15 Vergleichsbeispiel 3

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass keine Dosierung einer Silanverbindung erfolgte.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Al:Cl ≈ 1:0,20:0,25:2,15.

Vergleichsbeispiel 4

25

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und keine Dosierung einer Silanverbindung erfolgte.

30 Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Al:Cl ≈ 1:0,32:0,20:2,5.

Beispiel 6 (erfindungsgemäß)

Beispiel 6 beschreibt die Verwendung der gemäß Beispiel 3 hergestellten 5 Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass die Polymerisation nach 440 min beendet wurde (30 kg Ethylen-Eingas).

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

10

Beispiel 7 (erfindungsgemäß)

Beispiel 7 beschreibt die Verwendung der gemäß Beispiel 4 hergestellten 15 Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass die Polymerisation nach 220 min beendet wurde (15 kg Ethylen-Eingas).

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

20

Beispiel 8 (erfindungsgemäß)

Beispiel 8 beschreibt die Verwendung der gemäß Beispiel 5 hergestellten 25 Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass der Katalysator in einer Menge, die 5,0 mmol Titan entspricht, zugegeben wurde, die Ethylendosierung 8 kg/h betrug, der Volumenanteil des Wasserstoffs konstant bei 85 Vol.-% gehalten wurde sowie die Polymerisation nach 220 min beendet wurde (30 kg Ethylen-30

Eingas).

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

Vergleichsbeispiel 5

Vergleichsbeispiel 5 beschreibt die Verwendung der gemäß Vergleichsbeispiel 3 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass der Katalysator in einer Menge, die 5,0 mmol Titan entspricht, zugegeben wurde, die Ethylendosierung 8 kg/h betrug, der Volumenanteil des Wasserstoffs konstant bei 85 Vol.-% gehalten wurde sowie die Polymerisation nach 220 min beendet wurde (30 kg Ethylen-Eingas).

10

5

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

Vergleichsbeispiel 6

15

Vergleichsbeispiel 6 beschreibt die Verwendung der gemäß Vergleichsbeispiel 4 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass die Polymerisation nach 440 min beendet wurde (30 kg Ethylen-Eingas).

20

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

Vergleichsbeispiel 7

25

Vergleichsbeispiel 7 beschreibt die Verwendung der gemäß Vergleichsbeispiel 4 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass die Polymerisation nach 220 min beendet wurde (15 kg Ethylen-Eingas).

30

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

Vergleichsbeispiel 8

Vergleichsbeispiel 8 beschreibt die Verwendung der gemäß Vergleichsbeispiel 4 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 2 beschrieben mit dem Unterschied, dass der Katalysator in einer Menge, die 5,0 mmol Titan enspricht, zugegeben wurde, die Ethylendosierung 8 kg/h betrug, der Volumenanteil des Wasserstoffs konstant bei 85 Vol.-% gehalten wurde sowie die Polymerisation nach 220 min beendet wurde (15 kg Ethylen-Eingas).

10

5

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 2 zusammengestellt.

Aus den Werten der Tabelle 2 wird deutlich, dass bei ein und denselben Polymerisationsbedingungen nach dem erfindungsgemäßen Verfahren vorteilhaft die Wachsanteile des Polymerisats gemessen durch den Anteil der Moleküle kleiner 1000 g/mol geringer werden als im Vergleich zu den Vergleichsbeispielen.

Beispiel 9 (erfindungsgemäß)

20

15

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und die Dosierung von 0,05 mol Dimethoxy-Diphenyl-Silan in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) als Silankomponente erst im letzten Schritt nach der Zugabe von $Al_2(C_2H_5)_3Cl_3$ ausgeführt wurde. Die Zugabe erfolgte bei 110° C innerhalb von 1 h und einer Nachreaktionszeit von 0,5 h.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,32:0,01:0,17:2,43.

25

15

20

25

30

Beispiel 10 (erfindungsgemäß)

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und die Dosierung von 0,05 mol Diethoxy-Diethyl-Silan in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) als Silankomponente erst im letzten Schritt nach der Zugabe von Al₂(C₂H₅)₃Cl₃ ausgeführt wurde. Die Zugabe erfolgte bei 110° C innerhalb von 1 h und einer Nachreaktionszeit von 0,5 h.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare
Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,32:0,08:0,17:2,43.

Beispiel 11 (erfindungsgemäß)

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und die Dosierung von 0,05 mol Dimethoxy-Diisobutyl-Silan in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) als Silankomponente erst im letzten Schritt nach der Zugabe von $Al_2(C_2H_5)_3Cl_3$ ausgeführt wurde. Die Zugabe erfolgte bei 110° C innerhalb von 1 h und einer Nachreaktionszeit von 0,5 h.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,36:0,01:0,16:2,85.

Beispiel 12 (erfindungsgemäß)

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und die Dosierung von 0,05 mol Dimethoxy-Dicyclopentyl-Silan in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) als Silankomponente erst

im letzten Schritt nach der Zugabe von Al₂(C₂H₅)₃Cl₃ ausgeführt wurde. Die Zugabe erfolgte bei 110° C innerhalb von 1 h und einer Nachreaktionszeit von 0,5 h.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,32:0,01:0,11:2,44.

Beispiel 13 (erfindungsgemäß)

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und die Dosierung von 0,05 mol Diethoxy-Dimethyl-Silan in 100 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) als Silankomponente erst im letzten Schritt nach der Zugabe von Al₂(C₂H₅)₃Cl₃ ausgeführt wurde. Die Zugabe erfolgte bei 110° C innerhalb von 1 h und einer Nachreaktionszeit von 0,5 h.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Si:Al:Cl ≈ 1:0,32:0,15:0,09:2,48.

20

5

Vergleichsbeispiel 9

Die Herstellung des Katalysators erfolgte nach dem Verfahren gemäß Beispiel 3 mit dem Unterschied, dass die 1,5-fache molare Menge TiCl₄ zudosiert wurde und keine Dosierung einer Silanverbindung erfolgte. Zusätzlich wurde der Katalysator mit 0,4 g Polyethylen pro g Feststoff vorpolymerisiert.

Die Feststoff-Suspension wurde auf Raumtemperatur abgekühlt. Das molare Verhältnis des Feststoffs betrug: Mg:Ti:Cl ≈ 1:0,32:2,5.

Beispiel 14 (erfindungsgemäß)

Beispiel 14 beschreibt die Verwendung der gemäß Beispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen.

5

10

15

In einem 1,5 dm³-Reaktor wurden 800 cm³ Dieselöl (hydrierte Benzinfraktion mit Siedebereich 140 bis 170° C) eingefüllt. Danach wurde auf 85° C hochgeheizt und unter Stickstoff-Überlagerung 2mmol Triethylaluminium als Cokatalysator und anschließend der Katalysator hergestellt gemäß Beispiel 9 in einer Menge, die 0,045 mmol Titan entspricht, als mit Dieselöl verdünnte Suspension in den Reaktor zugegeben. Dann wurden 5 bar Wasserstoff und 2 bar Ethylen aufgedrückt. Der Gesamtdruck von 7 bar Ethylen wurde während der Polymerisationszeit von 2 h konstant gehalten, indem das verbrauchte Ethylen nachdosiert wurde. Die Polymerisation wurde durch Entspannen der Gase abgebrochen und das Polymere durch Filtration und Trocknung vom DIspergiermittel abgetrennt.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 3 zusammengestellt.

20 Beispiel 15 (erfindungsgemäß)

Beispiel 15 beschreibt die Verwendung der gemäß Beispiel 10 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben.

25

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 3 zusammengestellt.

Beispiel 16 (erfindungsgemäß)

Beispiel 16 beschreibt die Verwendung der gemäß Beispiel 11 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 3 zusammengestellt.

10 Beispiel 17 (erfindungsgemäß)

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 3 zusammengestellt.

Beispiel 18 (erfindungsgemäß)

20

15

5

25 Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 3 zusammengestellt.

Vergleichsbeispiel 10

Vergleichsbeispiel 10 beschreibt die Verwendung der gemäß Vergleichsbeispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 3 zusammengestellt.

Aus den Werten der Tabelle 3 wird deutlich, dass nach dem erfindungsgemäßen Verfahren vorteilhaft die Wachsanteile des Polymerisats gemessen durch den Anteil der Moleküle kleiner 1000 g/mol geringer werden als im Vergleich zum Vergleichsbeispiel. Gleichzeitig wird die Molmassenverteilung enger.

Beispiel 19 (erfindungsgemäß)

10

15

5

Beispiel 19 beschreibt die Verwendung der gemäß Vergleichsbeispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben mit dem Unterschied, dass zusätzlich zu 2 mmol Triethylaluminium als Cokatalysator 0,068 mmol Dimethoxy-Diphenyl-Silan (DMDPS) als externer Donor zudosiert wurden.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 4 zusammengestellt.

20 Beispiel 20 (erfindungsgemäß)

25

Beispiel 20 beschreibt die Verwendung der gemäß Vergleichsbeispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben mit dem Unterschied, dass zusätzlich zu 2 mmol Triethylaluminium als Cokatalysator 0,068 mmol Diethoxy-Diethyl-Silan (DEDES) als externer Donor zudosiert wurden.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 4 zusammengestellt.

Beispiel 21 (erfindungsgemäß)

Beispiel 21 beschreibt die Verwendung der gemäß Vergleichsbeispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben mit dem Unterschied, dass zusätzlich zu 2 mmol Triethylaluminium als Cokatalysator 0,068 mmol Dimethoxy-Diisobutyl-Silan (DMDiBS) als externer Donor zudosiert wurden.

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 4 zusammengestellt.

10

15

5

Beispiel 22 (erfindungsgemäß)

Beispiel 22 beschreibt die Verwendung der gemäß Vergleichsbeispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben mit dem Unterschied, dass zusätzlich zu 2 mmol Triethylaluminium als Cokatalysator 0,068 mmol Dimethoxy-Dicyclopentyl-Silan (DMDcPS) als externer Donor zudosiert wurden.

20 Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 4 zusammengestellt.

Beispiel 23 (erfindungsgemäß)

25 Beispiel 23 beschreibt die Verwendung der gemäß Vergleichsbeispiel 9 hergestellten Katalysatorkomponente zur Polymerisation von Polyethylen. Die Polymerisation erfolgte wie in Beispiel 14 beschrieben mit dem Unterschied, dass zusätzlich zu 2 mmol Triethylaluminium als Cokatalysator 0,068 mmol Tetraethoxy-Silan (TES) als externer Donor zudosiert wurden.

30

Die Ergebnisse der Polymerisation sind nachfolgend in Tabelle 4 zusammengestellt.

Aus den Werten der Tabelle 4 wird deutlich, dass nach dem erfindungsgemäßen Verfahren vorteilhaft die Wachsanteile des Polymerisats gemessen durch den Anteil der Moleküle kleiner 1000g/mol geringer werden als im Vergleich zum Vergleichsbeispiel. Gleichzeitig wird die Molmassenverteilung enger.

 Tabelle 2:
 Polymerisationsversuche 200 dm³-Reaktor, 50 mmol Triethylaluminium,
 100 dm³ Dieselöl, 85° C Polymerisationstemperatur,

Polymerisationsversuch	Bsp. 6	Bsp. 7	Bsp. 8	Vgl.Bsp. 5	Vgl.Bsp. 6	Vgl.Bsp. 7	Vgl.Bsp. 8
Katalysatorkomponente gemäß	Bsp. 3	Bsp. 4	Bsp. 5	Vgl.Bsp. 3	Vgl.Bsp. 4	Vgl.Bsp. 4	Vgl.Bsp. 4
Katalysatormenge / mmol Titan	3	3	5	5	3	3	5
C2-Dosierung / kg/h	4	4	80	8	4	4	æ
H ₂ -Volumenanteil/ Vol-%	80	80	85	85	80	80	85
Polymerisationszeit / min	440	220	220	220	440	220	220
Enddruck / bar	5,964	4,128	4,752	7,008	7,194	4,206	5,838
Ausbeute PE / kg	29,3	15,0	29,8	30,6	29,7	14,9	29,4
VZ / cm³/g	58	93	83	95	89	92	77
Schüttdichte / g/L	360	288	357	300	370	334	368
dso / µm	286	246	170	206	227	181	187
Ww / Mn	6,2	6,3	5,1	7,1	7,2	8,3	6,1
M<1E3g/mol/[wt-%]	2,5	1,7	2,3	2,7	3,8	3,5	3,5

0,8 dm³ Dieselöl, 85° C Polymerisationstemperatur, 5 bar H₂, 2bar C₂ (7 bar Gesamtdruck), 2h Polymerisationsdauer Polymerisationsversuche 1,5 dm³-Reaktor, 2 mmol Triethylaluminium, 0,045 mmol Titan (Katalysator) Tabelle 3:

Polymerisations-	Bsp. 14	Bsp. 15	Bsp. 16	Bsp. 17	Bsp. 18	Vgl.Bsp. 10
versuch						
Katalysatorkom-	Bsp. 9	Bsp. 10	Bsp. 11	Bsp. 12	Bsp. 13	Vgl.Bsp. 9
ponente gemäß						
Ausbeute PE / g	76,5	68,1	36,1	28,5	43,3	122,3
VZ / cm³ /g	85	95	22	74	92	81
Schüttdichte / g/L 285		267	280	292	275	297
Mw/Mn	4,4	4,6	3,8	3,9	3,8	5,2
M<1E3g/mol/[wt-%] 0,96		1,16	96'0	1,31	0,77	1,79

29

(Katalysator) 0,8 dm³ Dieselöl, 85° C Polymerisationstemperatur, 5 bar H₂, 2bar C₂ (7 bar Gesamtdruck),

Polymerisationsversuche 1,5 dm³-Reaktor, 2 mmol Triethylaluminium, 0,068 mmol externer Donor, 0,045 mmol Titan

2h Polymerisationsdauer

Tabelle 4:

Polymerisations-	Bsp. 19	Bsp. 20	Bsp. 21	Bsp. 22	Bsp. 23	Vgl.Bsp. 10
versuch			c·			
Katalysatorkom-	Vgl.Bsp. 9					
ponente gemäß						
externer Donor	DMDPS	DEDES	DMDibs	DMDcPS	TES	1
Ausbeute PE / g	53,7	48,8	56,2	27,5	72,4	122,3
VZ / cm³ /g	80	99	85	62	83	81
Schüttdichte / g/L	265	256	256		258	297
Mw / Mn	4,7	4,2	3,9	3,7	4,3	5,2
M<1E3g/mol/[wt-%] 1,11		0,79	0,38	0,43	0,78	1,79

10

15

20

Patentansprüche

1. Ziegler Katalysator zum Herstellen von 1-Olefinhomo- und -copolymeren durch Polymerisation eines 1-Olefins der Formel R⁴CH=CH₂, in der R⁴ Wasserstoff oder einen Alkylrest mit 1 bis 10 Kohlenstoffatomen bedeutet, in Suspension, in Lösung oder in der Gasphase, der aus dem Umsetzungsprodukt eines Magnesiumalkoholats (Komponente a) mit einer Übergangsmetallverbindung (Komponente b) und einer metallorganischen Verbindung (Komponente c) besteht, dadurch gekennzeichnet, dass zusätzlich eine Komponente (d) hinzukommt, die eine Verbindung mit der allgemeinen chemischen Formel

$M - R_x$

enthält, in der M ein Element der IV. Hauptgruppe des Periodensystems bedeutet, in der R Halogen bedeutet oder einen organischen Rest wie Alkylmit 1 bis 10 C-Atomen, Oxyalkyl- mit 1 bis 10 C-Atomen, Cycloalkyl- mit 4 bis 8 C-Atomen im Ring und ggf. 1 bis 6 Substituenten R' am Ring, Aryl- mit 6 bis 10 C-Atomen im Aromaten und ggf. 1 bis 6 Substituenten R' am Aromaten, wobei R' für ein Halogen steht, oder für einen Alkylrest mit 1 bis 4 C-Atomen, oder für eine OH-Gruppe, oder für eine NO₂-Gruppe, oder für einen Oxyalkylrest mit 1 bis 4 C-Atomen, und in der x für eine ganze Zahl von 1 bis 4 steht.

- 25 2. Ziegler Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass die Reste R in Komponente (d) gleich sind und dass Komponente (d) als Element der IV. Hauptgruppe des Periodensystems bevorzugt Silizium oder Germanium enthält.
- 30 3. Ziegler Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass die Reste R in Komponente (d) nicht gleich sind, wobei verschiedene Möglichkeiten als Reste R miteinander kombiniert sind, und dass Komponente (d) als

10

15

20

25

30

Element der IV. Hauptgruppe des Periodensystems bevorzugt Silizium oder Germanium enthält.

- 4. Ziegler Katalysator nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Komponente (a) ein Magnesiumalkoholat der Formel Mg(OR¹)(OR²) ist, in der R¹ und R² gleich oder verschieden sind und einen Alkylrest mit 1 bis 6 Kohlenstoffatomen bedeuten, insbesondere Mg(OCH₃)₂, Mg(OC₂H₅)₂, Mg(OiC₃Hշ)₂, Mg(OnC₄H )₂, Mg(OCH₃)(OC₂H₅), Mg(OC₂H₅)(OnC₃Hշ), oder ein Magnesiumalkoholat der Formel Mg(OR)nXm, in der X = Halogen, (SO₄)1/2, OH, (CO₃)1/2, (PO₄)1/3, CI ist, R die oben genannte Bedeutung von R¹ oder R² hat und n + m = 2 ist.
- Ziegler Katalysator nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er als Komponente (b) eine Übergangsmetallverbindung wie eine Ti-Verbindung wie TiCl₄ oder Ti(OR)₄, eine Zr-Verbindung wie ZrCl₄, Zr(OR)₄ oder ZrCl₂(OCOC₆H₅)₂, eine V-Verbindung wie VCl₄ oder VOCl₃ oder eine Cr-Verbindung wie CrO₂Cl₂ enthält.
- 6. Ziegler Katalysator nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Komponente (d) bevorzugt eine chemische Zusammensetzung besitzt, bei der der Rest R ein Chlor- oder Bromatom bedeutet oder einen Alkylrest mit 1 bis 6 C-Atomen, vorzugsweise mit 1 bis 4 C-Atomen, einen Oxyalkylrest mit 1 bis 6 C-Atomen, vorzugsweise mit 1 bis 4 C-Atomen, einen Cycloalkylrest mit 5 oder 6 C-Atomen oder einen Phenylrest.
- 7. Ziegler Katalysator nach einem oder mehrern der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass er als Komponente (c) eine metallorganische Verbindung eines Metalls der 1., 2. oder 13. Gruppe des Periodensystems enthält, wobei als Komponente (c) bevorzugt aluminiumorganische Ver-bindungen, besonders bevorzugt chlorhaltige aluminiumorganische Ver-bindungen sind wie Dialkylaluminiummonochloride der Formel R³₂AlCl oder Alkylaluminiumsesquichloride der Formel R³₂Alcl oder Alkylrest mit 1 bis 16

10

15

25

Kohlenstoffatomen ist.

- 8. Verfahren zum Herstellen eines Ziegler Katalysators nach einem oder mehreren der Ansprüche 1 bis 7, bei dem das Magnesiumalkoholat der Komponmente (a) mit der Übergangsmetallverbindung der Komponente (b) bei einer Temperatur im Bereich von 20 bis 100° C, vorzugsweise von 60 bis 90° C, in Gegenwart eines inerten Kohlenwasserstoffs unter Rühren umgesetzt wird, wobei auf 1 mol Magnesiumalkoholat 0,05 bis 5 mol Komponente (b) eingesetzt werden, vorzugsweise 0,1 bis 3,5 mol Komponente (b) auf 1 mol Magnesiumalkoholat, dadurch gekennzeichnet, dass zusätzlich eine Metall M-haltige Komponente (d) hinzukommt.
- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Komponente (d) bei einer Temperatur von 20 bis 120° C, vorzugsweise von 60 bis 100° C, in Gegenwart eines inerten Kohlenwasserstoffs unter Rühren zugesetzt wird, wobei auf 1 mol Magnesiumalkoholat 0,05 bis 5 mol Komponente (d) eingesetzt werden, vorzugsweise 0,1 bis 3,5 mol Komponente (d) auf 1 mol Magnesiumalkoholat
- 20 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Dauer der Umsetzung jeweils 0,5 bis 8 Stunden beträgt, vorzugsweise 2 bis 6 Stunden.
 - 11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Reaktionsprodukt aus Komponente (a), Komponente (b) und Komponente (d) anschließend mit Komponente (c), einer chlorhaltigen aluminium-organischen Verbindung umgesetzt wird.
- 12. Verfahren zum Herstellen von 1-Olefinhomo- und copolymeren durch

 Polymerisation eines 1-Olefins der Formel R⁴CH=CH₂, in der R⁴ Wasserstoff
 oder einen Alkylrest mit 1 bis 10 Kohlenstoffatomen bedeutet, in Suspension,
 in Lösung oder in der Gasphase in Gegenwart eines Katalysators nach einem

oder mehreren der Ansprüche 1 bis 7, wobei der Katalysator vor der Polymerisation in einem Rührkessel bei einer Temperatur im Bereich von - 30 bis 150° C, vorzugsweise von - 10 bis 120° C, oder direkt im Polymerisationskessel bei einer Temperatur im Bereich von 20 bis 200° C mit einem Cokatalysator vereinigt wird und dass die Polymerisation in Lösung, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, einoder mehrstufig bei einer Temperatur im Bereich von 20 bis 200° C, vorzugsweise von 50 bis 150° C, durchgeführt wird wobei der Druck in einem Bereich von 0,5 bis 50 bar, bevorzugt von 1,5 bis 30 bar eingestellt wird.

10

15

5

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Zugabe des Cokatalysators in zwei Schritten erfolgt, wobei vor der Polymerisationsreaktion der Katalysator mit einem ersten Teil Cokatalysator bei einer Temperatur im Bereich von - 30 bis 150° C voraktiviert wird und wobei die weitere Zugabe eines weiteren Teils des gleichen oder eines anderen Cokatalysators in dem Polymerisationsreaktor bei einer Temperatur von 20 bis 200° C vorgenommen wird.

20

14. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass der Katalysator in vorpolymerisiertem Zustand zu der Polymerisationsreaktion zugesetzt wird.

15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass es zur Polymerisation von Ethylen, Propylen, Buten-(1), Hexen-(1), 4-Methylpenten-(1) oder Octen-(1), wobei besonders bevorzugt Ethylen allein oder im Gemisch von mindestens 50 Gew.-% Ethylen und maximal 50 Gew.-% eines anderen 1-Olefins der obigen Formel polymerisiert wird, und dass die Regelung der Molmasse des Polymerisats vorzugsweise durch Wasserstoff erfolgt.

30

25

16. Verfahren nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass es in Suspension oder Lösung durchgeführt wird und dass der

Katalysator in einer Konzentration, bezogen auf Übergangsmetall, von 0,0001 bis 1 mmol, vorzugsweise von 0,001 bis 0,5 mmol, Übergangsmetall pro dm³ Dispergiermittel eingesetzt wird und dass die Polymerisation in einem inerten Dispergiermittel durchgeführt wird, ausgewählt aus der Gruppe der aliphatischen oder cycloaliphatischen Kohlenwasserstoffe wie Butan, Pentan, Hexan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan oder Benzin- bzw. hydrierte Dieselölfraktionen, die vorher sorgfältig von Sauerstoff, Schwefelverbindungen und Feuchtigkeit befreit worden sind.

10

5

* * * * *

Zusammenfassung

Titel:

Modifizierter Ziegler Katalysator, Verfahren zu seiner Herstellung und

Verfahren zum Herstellen von Poly-1-olefinen in seiner Gegenwart

5

Die Erfindung betrifft einen modifizierten Ziegler Katalysator zum Herstellen eines Poly-1-olefins in Suspension, in Lösung oder in der Gasphase, der aus dem Umsetzungsprodukt eines Magnesiumalkoholats (Komponente a) mit einer Übergangsmetallverbindung (Komponente b) und einer metallorganischen Verbindung (Komponente c) besteht. Zusätzlich dazu kommt noch eine Komponente (d) hinzu, die eine Verbindung mit der allgemeinen chemischen Formel

 $M - R_x$

15

20

25

10

enthält, in der M ein Element der IV. Hauptgruppe des Periodensystems bedeutet, in der R Halogen bedeutet oder einen organischen Rest wie Alkyl- mit 1 bis 10 C-Atomen, Oxyalkyl- mit 1 bis 10 C-Atomen, Cycloalkyl- mit 4 bis 8 C-Atomen im Ring und ggf. 1 bis 6 Substituenten R' am Ring, Aryl- mit 6 bis 10 C-Atomen im Aromaten und ggf. 1 bis 6 Substituenten R' am Aromaten, wobei R' für ein Halogen steht, oder für einen Alkylrest mit 1 bis 4 C-Atomen, oder für eine OH-Gruppe, oder für eine NO₂-Gruppe, oder für einen Oxyalkylrest mit 1 bis 4 C-Atomen, und in der x für eine ganze Zahl von 1 bis 4 steht. Die Erfindung betrifft auch ein Verfahren zum Herstellen des Ziegler Katalysators und die Polymerisation von 1-Olefinhomo- und -copolymeren in seiner Gegenwart.

* * * * * *

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.