

LAB 7 - TJB – Operação como amplificador pequenos sinais

1. Objetivos:

Projetar e verificar o funcionamento do transistor bipolar do tipo NPN como amplificador de pequenos sinais na configuração emissor comum

2. Material:

Laboratório	A ser providenciado pela equipe
01 Fonte de tensão CC variável	01 resistor 1 MΩ ¼ W
01 Multímetro digital (MD)	01 resistor para R_{B1} , R_{B2} , R_C e R_E com o valor calculado no pre-
	lab ¼ W
01 Matriz de contatos	03 capacitores cerâmico ou poliéster 470 nF
01 Gerador de sinais	01 transistor BC337 ou similar
	Pontas de prova b-b, pontas de prova banana-jacaré (b-j), jumpers,
	alicate corte, alicate bico, estilete

3. Reconhecimento e inspeção dos componentes:

3.1. Meça com seu MD, o valor dos componentes que serão utilizados.

	Valor Medido
$R_{B1} = \underline{\hspace{1cm}}$	
$R_{B2} = \underline{\hspace{1cm}}$	
$R_C = \underline{\hspace{1cm}}$	
$R_E = \underline{\hspace{1cm}}$	
$R_L = 1M\Omega$	
C = 470nF	

Tabela 1. Valores obtidos pela medida com o MD.

4. Circuito de polarização do TBJ

Figura 1: Circuito de polarização do TBJ

- 5.1 Na Tabela 2 transcreva do pre-lab (ou calcule) os valores teóricos do circuito de polarização do TBJ.
- 5.2 Monte o circuito indicado Figura 1 usando Vcc = 12V e meça as tensões de coletor, base e emissor utilizando o osciloscópio (utilize a medida de valor médio do canal). Informe os valores na Tabela 2.
- 5.3 A partir dos valores experimentais (e LKT,LKC, lei de ohm) encontre os valores das correntes de coletor, base e emissor. Informe os valores na Tabela 2.

	Teórico	Experimental	Baseado no experimental
V_{C}			-
V_E			-
V_B			-
$I_{\mathcal{C}}$		-	
I _E		-	
I_B		-	

Tabela 2. Grandezas relativas às medidas da montagem do circuito de polarização do TBJ.

5.4 Compare com os valores teóricos (do Pre-lab) e verifique seus resultados. O valor da correte I_C devese encontrar muito próximo ao valor teórico, caso tenha diferenças significativas, revise o circuito antes de continuar.

5. Circuito de amplificação de pequeno sinal – emissor comum.

5.1. Ajuste o gerador de funções para que forneça um sinal senoidal de 10mVp e f= 1MHz. <u>Confirme sua forma de onda com o OSCILOSCÓPIO</u>. Configure para medir a frequência do CH1; a tensão pico-pico e tensão RMS dos dois canais do osciloscópio.

Atenção: A tensão pico a pico deve se encontrar em 20mV, o acoplamento dos canais deve ser CC. Caso tenha ruído o sinal, aperte o botão aquisição e ative o modo média com 16 amostras.

5.2. Monte o circuito indicado na Figura 2, usando os capacitores de 470nF e $R_L=1M\Omega$. Meça os valores **pico-pico** e **RMS** da entrada e saída do amplificador como mostrado no diagrama. Faça o print da tela incluindo as medidas. Informe os valores na Tabela 3.

Figura 2: Circuito de amplificação de pequeno sinal – emissor comum.

	Sinal de entrada (CH1)	Sinal de saída (CH2)
Vpp		
Vrms		

Tabela 3. Grandezas relativas às medidas de amplificação de pequeno sinal – emissor comum.

5.3. Encontre o valor do ganho de tensão a partir dos valores da Tabela 3 e registre na .Compare com a especificação do projeto.

	Especificação	$A_V = Vpp_{CH2}/Vpp_{CH1}$	$A_{V} = Vrms_{CH2}/Vrms_{CH1}$
$A_{v}\left(V/V\right)$			

Tabela 4. Verificação do ganho experimental.

5.4. Apresente seus cálculos, o print de tela do osciloscópio, resultados e conclusões (Checkpoint).