Linear programming notes

Marco Marini

October 26, 2016

${\bf Contents}$

1 Supply chain model	1
1.1 Production \dots	
1.2 Constraints	
	Abstract
This document contains	s notes about Linear programming.
1 Supply chain mod	del
	chain model as a system that produces prod- ransformations performed by suppliers.
$A = a_1 \dots a_n$ the set of supplies	er types
$B = b_1 \dots b_n$ the set of produc	et types.
$N_i, i \in A$ the number of supp	liers of type i .
The supplier can perform of	only a single transformation for the its dura-
tion.	
Let us define	
N_i the number of suppliers i	$i \in A$
V_i the value of product $i \in I$	3
Q_{ij} the quantity of produced duction interval	d product $j \in B$ for supplier $i \in A, j$ in pro-
$T_{ij}, i \in A, j \in B$ the product $i \in A, j$	tion interval for product $j \in B$ in supplier
C_{ijk} the quantity of product $j \in Bj$ in production int	$k \in B$ consumed to produce the product erval of supplier $i \in A$.

1.1 Production

By now we do not consider the constraint on the availability of consuming products. It will be considered later.

When a supplier of type i is ready to produce we assign a production slot for the product j such that

 Y_{ij} is the weighted distribution of slots

The value Y_{ij} is constrained to

$$0 \le Y_{ij} \le 1 \tag{1}$$

Moreover we may put the supplier in idle state for a while

 Z_{i0} is the idle time during a whole production cycle

with

$$Z_{i0} \ge 0 \tag{2}$$

The total time of production cycle for supplier i is

$$Z_i = \sum_{j \in B} Y_{ij} T_{ij} + Z_{i0}$$

Let normalize the total time production to 1

$$Z_i = \sum_{j \in B} Y_{ij} T_{ij} + Z_{i0} = 1 \tag{3}$$

During this interval all the suppliers i produce the product j at a slot rate

$$S_{ij} = N_i \frac{Y_{ij}}{Z_i} = N_i Y_{ij} \bigg|_{i \in A, j \in B} \tag{4}$$

The production rate of product j for supplier i is

$$P_{ij} = Q_{ij}S_{ij} = N_i Q_{ij}Y_{ij}|_{i \in A, j \in B}$$

While the production rate of product j is

$$P_{j \in B} = \sum_{i \in A, P_{ij}} P_{ij}$$

1.2 Constraints

The (4) expresses the slot rate of a product for specific suppliers.

Therefore we can calculate the consumption rate of a product k to produce product j for suppliers i

$$E_{ijk} = C_{ijk} S_{ij}|_{i \in A, i, k \in B}$$

Then the total consumption rate for product k is

$$E_k = \sum_{i \in A, j \in B} E_{ijk}$$

If

$$E_i < P_i$$

the product s produced at a higher rate then it is consumped creating a surplus that can be sold.

On the other hane we cannot have

$$E_i > P_i$$

because it cannot consume more product than the produced.

So the system must satisfy the constraint

$$P_i - E_i \ge 0 \tag{5}$$

1.3 Value rate

We can compute the value rate for the whole supply chain

$$V = \sum_{i \in B} (P_i - E_i) V_i \tag{6}$$

The problem is to find the optimal production configuration that maximize the value rate. This is defined by the linear system composed by (1), (2), (3), (5), (6)

$$\begin{cases} \max_{(Y_{ij}, Z_{i0})}(V) &, i \in A, j \in B \\ \sum_{j \in B} Y_{ij} T_{ij} + Z_{i0} = 1 &, i \in A \\ Z_{i0} \ge 0 &, i \in A \\ Y_{ij} \ge 0 &, i \in A, j \in B \\ Y_{ij} \le 1 &, i \in A, j \in B \\ P_i - E_i \ge 0 &, i \in B \end{cases}$$