Graphs - DFS & Connected Components Fundamental Algorithms

Rodica Potolea, Camelia Lemnaru and Ciprian Oprișa

Technical University of Cluj-Napoca Computer Science Department

Agenda

Depth First Search (DFS)

- Connected components
 - Connected components
 - Strongly connected components

Agenda

Depth First Search (DFS)

- Connected components
 - Connected components
 - Strongly connected components

Depth First Search (1)

- similar to BFS, the queue is replaced by a stack
 - the stack is implicit with recursive calls
- instead of enqueuing the neighbors, we make a recursive call for each of them
- keep the color representation
 - WHITE unvisited (all vertices are WHITE at first)
 - GRAY under visitation (all GRAY vertices are on the stack)
 - BLACK visited (in the end end, all nodes become BLACK)
- the color clusters define a vertical boundary between visited/unvisited vertices

Depth First Search (2)

- keep the parent attribute (π) a reference to the vertex from where we reached the current vertex
- add the attributes
 - *d* **d**iscovery time
 - f finish time
- \bullet π , d and f provide useful information for other algorithms
 - edge classification
 - topological sort


```
DFS(G)
   for each vertex u \in G.V
        u.color = WHITE
3
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
            DFS-VISIT(G, u)
DFS-VISIT(G, u)
    time = time + 1
 2 u.d = time
 3 u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
    u.color = BLACK
    time = time + 1
10
    u.f = time
```

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```


DFS-VISIT(G, u) 1 time = time + 1 2 u.d = time 3 u.color = GRAY 4 for each $v \in G.Adj[u]$ 5 if v.color = WHITE6 $v.\pi = u$ 7 DFS-VISIT(G, v) 8 u.color = BLACK 9 time = time + 1 10 u.f = time

DFS forest:

DFS(G)

```
for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
  2 \quad u.d = time
   u.color = GRAY
    for each v \in G.Adj[u]
         if v.color == WHITE
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
    time = time + 1
```


DFS forest:

10

```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
  time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
 3 u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
    time = time + 1
```


DFS forest:

10

```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


а

stack

time = 0

a

DFS


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
\mathrm{DFS\text{-}Visit}(G,u)
```

```
1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


а

stack

time = 1

a

DFS


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


а

stack

time = 1

a

DFS


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


a

stack

time = 1

a

DFS


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


b a

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


b a

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


b a

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


b a

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


stack

DFS(G)

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

DFS-VISIT(G, u) time = time + 1

```
2 \quad u.d = time
 u.color = GRAY
   for each v \in G.Adj[u]
5
       if v.color == WHITE
            v.\pi = u
            DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
```


stack

time = 3

10

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


time = 3

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each v \in G.Adj[u]

5   if v.color = white

6   v.\pi = u

7   DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


stack

time = 3

DFS(G)

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

DFS-VISIT(G, u) time = time + 1 $2 \quad u.d = time$ u.color = GRAY**for** each $v \in G.Adj[u]$ 5 if v.color == WHITE $v.\pi = u$ DFS-VISIT(G, v) u.color = BLACKtime = time + 1

stack

10

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color = WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


stack

DFS(G)

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
    time = time + 1
10
     u.f = time
```



```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for \ each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


stack

time = 4

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each v \in G.Adj[u]

5  if v.color == WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


stack

time = 5

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for  each  v  \in G.Adj[u]

5  if  v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```



```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```



```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


а

b

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
```

```
1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color == WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


b a

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


а

b

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


а

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for  each  v  \in G.Adj[u]

5  if  v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


а

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


а

stack


```
\mathrm{DFS}(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
```

```
1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color == WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


а

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


а

stack

DFS(G)

```
1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color = WHITE

7 DFS-VISIT(G, u)
```

DFS-VISIT(G, u) 1 time = time + 12 u.d = time3 u.color = GRAY4 $for each \ v \in G.Adj[u]$ 5 $if \ v.color = WHITE$ 6 $v.\pi = u$ 7 DFS-VISIT(G, v)8 u.color = BLACK9 time = time + 110 u.f = time

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color = WHITE

7 DFS-VISIT(G, u)
```

DFS-VISIT(G, u) 1 time = time + 12 u.d = time3 u.color = GRAY4 $for each \ v \in G.Adj[u]$ 5 $if \ v.color = WHITE$ 6 $v.\pi = u$ 7 DFS-VISIT(G, v)8 u.color = BLACK9 time = time + 110 u.f = time

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color = WHITE

7 DFS-VISIT(G, u)
```

DFS-VISIT(G, u) 1 time = time + 12 u.d = time3 u.color = GRAY4 $for each \ v \in G.Adj[u]$ 5 $if \ v.color = WHITE$ 6 $v.\pi = u$ 7 DFS-VISIT(G, v)8 u.color = BLACK9 time = time + 110 u.f = time

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```



```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
    time = time + 1
 2 \quad u.d = time
   u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
    time = time + 1
```


stack

time = 9

10

```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```


. .

stack


```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
    time = time + 1
10
     u.f = time
```


DFS

```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```


stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```



```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
3
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
     for each v \in G.Adj[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1    time = time + 1

2    u.d = time

3    u.color = GRAY

4    for each v \in G.Adj[u]

5    if v.color == WHITE

6    v.\pi = u

7    DFS-VISIT(G, v)

8    u.color = BLACK

9    time = time + 1

10    u.f = time
```



```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
3
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
     for each v \in G.Adj[u]
 5
         if v.color == WHITE
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
3
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
     for each v \in G.Adj[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```



```
DFS(G)
```

```
for each vertex u \in G.V
        u.color = WHITE
        \mu \pi = NIL
   time = 0
   for each vertex u \in G.V
6
        if \mu.color == WHITE
             DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
   u.color = GRAY
    for each v \in G.Adj[u]
 5
         if v.color == WHITE
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
    time = time + 1
10
     u.f = time
```


finish

time

```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```



```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

DFS-VISIT(G, u) 1 time = time + 12 u.d = time3 u.color = GRAY4 $for each \ v \in G.Adj[u]$ 5 $if \ v.color = WHITE$ 6 $v.\pi = u$ 7 DFS-VISIT(G, v)8 u.color = BLACK9 time = time + 110 u.f = time

stack


```
DFS(G)
```

```
1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = = \text{WHITE}

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each \ v \in G.Adj[u]

5 if \ v.color = WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


stack


```
DFS(G)
   for each vertex u \in G.V
        \mu.color = WHITE
3
        \mu \pi = NIL
  time = 0
  for each vertex u \in G.V
6
        if \mu.color == WHITE
            DFS-VISIT(G, u)
DFS-VISIT(G, u)
     time = time + 1
 2 u.d = time
    u.color = GRAY
     for each v \in G.Adi[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
    u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
   for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
  time = 0
  for each vertex u \in G.V
6
        if u.color == WHITE
            DFS-VISIT(G, u)
DFS-VISIT(G, u)
     time = time + 1
 2 \quad u.d = time
    u.color = GRAY
     for each v \in G.Adi[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
    u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
   for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
        if u.color == WHITE
            DFS-VISIT(G, u)
DFS-VISIT(G, u)
    time = time + 1
   u.d = time
    u.color = GRAY
    for each v \in G.Adi[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
   for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
        if u.color == WHITE
             DFS-VISIT(G, u)
                                                        \rightarrow called |V| times
DFS-VISIT(G, u)
     time = time + 1
   u.d = time
    u.color = GRAY
     for each v \in G.Adi[u]
 5
         if v.color == WHITE
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
10
     u.f = time
```



```
DFS(G)
    for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
        if u.color == WHITE
             DFS-VISIT(G, u)
                                                           \rightarrow called |V| times
DFS-VISIT(G, u)
                                                           \rightarrow O(1)
     time = time + 1
    u.d = time
    u.color = GRAY
     for each v \in G.Adi[u]
  5
          if v.color == WHITE
 6
7
               v.\pi = u
               DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
                                                           \rightarrow O(1)
10
     u.f = time
```



```
DFS(G)
    for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
        if u.color == WHITE
             DFS-VISIT(G, u)
                                                           \rightarrow called |V| times
DFS-VISIT(G, u)
                                                           \rightarrow O(1)
    time = time + 1
   u.d = time
     u.color = GRAY
                                                            each neighbor
     for each v \in G.Adi[u]
                                                           → for every vertex,
  5
          if v.color == WHITE
                                                             so |E| steps in total
 6
7
               v.\pi = u
               DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
                                                           \rightarrow O(1)
10
     u.f = time
```



```
DFS(G)
   for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
        if u.color == WHITE
             DFS-VISIT(G, u)
                                                         \rightarrow called |V| times
DFS-VISIT(G, u)
                                                          O(1)
     time = time + 1
   u.d = time
     u.color = GRAY
                                                           each neighbor
     for each v \in G.Adi[u]
                                                         for every vertex,
 5
          if v.color == WHITE
                                                           so |E| steps in total
 6
7
               v.\pi = u
               DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
                                                         \rightarrow O(1)
10
     u.f = time
```



```
DFS(G)
   for each vertex u \in G.V
                                            Complexity: O(V + E)
        u.color = WHITE
        u.\pi = NIL
   time = 0
   for each vertex u \in G.V
        if u.color == WHITE
             DFS-VISIT(G, u)
                                                        \rightarrow called |V| times
DFS-VISIT(G, u)
                                                        \rightarrow O(1)
    time = time + 1
   u.d = time
     u.color = GRAY
                                                         each neighbor
     for each v \in G.Adi[u]
                                                        for every vertex,
 5
         if v.color == WHITE
                                                         so |E| steps in total
 6
7
              v.\pi = u
              DFS-VISIT(G, v)
     u.color = BLACK
     time = time + 1
                                                        \rightarrow O(1)
10
     u.f = time
```


For any graph G = (V, E) and for any $u, v \in G.V$, exactly one of the three conditions hold:

• $[u.d, u.f] \cap [v.d, v.f] = \emptyset$

- $[u.d, u.f] \subset [v.d, v.f]$
- $[v.d, v.f] \subset [u.d, u.f]$

•
$$[u.d, u.f] \cap [v.d, v.f] = \emptyset$$

•
$$[v.d, v.f] \subset [u.d, u.f]$$

•
$$[u.d, u.f] \cap [v.d, v.f] = \emptyset$$

- $[u.d, u.f] \subset [v.d, v.f]$
- $[v.d, v.f] \subset [u.d, u.f]$

- $[u.d, u.f] \cap [v.d, v.f] = \emptyset$ neither u nor v is a descendant of the other
- $[u.d, u.f] \subset [v.d, v.f]$
- $[v.d, v.f] \subset [u.d, u.f]$

- $[u.d, u.f] \cap [v.d, v.f] = \emptyset$ neither u nor v is a descendant of the other
- $[u.d, u.f] \subset [v.d, v.f]$ u is a descendant of v
- $[v.d, v.f] \subset [u.d, u.f]$

- $[u.d, u.f] \cap [v.d, v.f] = \emptyset$ neither u nor v is a descendant of the other
- $[u.d, u.f] \subset [v.d, v.f]$ u is a descendant of v
- $[v.d, v.f] \subset [u.d, u.f]$ v is a descendant of u

Tree edges

Back edges

Forward edges

Tree edges

Back edges

Forward edges

- Tree edges
 - u = GRAY; v = WHITE
 - u.d < v.d < v.f < u.f
- Back edges

Forward edges

- Tree edges
 - u = GRAY; v = WHITE
 - u.d < v.d < v.f < u.f
- Back edges
 - u = GRAY; v = GRAY
 - v.d < u.d < u.f < v.f
 - also self-loops
- Forward edges

- Tree edges
 - u = GRAY; v = WHITE
 - u.d < v.d < v.f < u.f
- Back edges
 - u = GRAY; v = GRAY
 - v.d < u.d < u.f < v.f
 - also self-loops
- Forward edges
 - u = GRAY; v = BLACK
 - u.d < v.d < v.f < u.f
- Cross edges

Tree edges

- u = GRAY; v = WHITE
- u.d < v.d < v.f < u.f

Back edges

- u = GRAY; v = GRAY
- v.d < u.d < u.f < v.f
- also self-loops

Forward edges

- u = GRAY; v = BLACK
- u.d < v.d < v.f < u.f
- Cross edges
 - u = GRAY; v = BLACK
 - v.d < v.f < u.d < u.f

Tree edges

- u = GRAY; v = WHITE
- u.d < v.d < v.f < u.f

Back edges

- u = GRAY; v = GRAY
- v.d < u.d < u.f < v.f
- also self-loops

Forward edges

- u = GRAY; v = BLACK
- u.d < v.d < v.f < u.f
- Cross edges
 - u = GRAY; v = BLACK
 - v.d < v.f < u.d < u.f

Q: which edges produce cycles?

Tree edges

- u = GRAY; v = WHITE
- u.d < v.d < v.f < u.f
- Back edges [they produce cycles]
 - u = GRAY; v = GRAY
 - v.d < u.d < u.f < v.f
 - also self-loops
- Forward edges
 - u = GRAY; v = BLACK
 - u.d < v.d < v.f < u.f
- Cross edges
 - u = GRAY; v = BLACK
 - v.d < v.f < u.d < u.f

• which types of edges can we encounter in undirected graphs?

• which types of edges can we encounter in undirected graphs?

$\mathsf{Theorem}$

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

• which types of edges can we encounter in undirected graphs?

$\mathsf{Theorem}$

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

• which types of edges can we encounter in undirected graphs?

$\mathsf{Theorem}$

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Agenda

Depth First Search (DFS)

- Connected components
 - Connected components
 - Strongly connected components

- A undirected graph G = (V, E) is **connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ (u and v are reachable from one another).
- A **connected component** is a maximal set of vertices $C \subseteq V$ such that C is connected.

- A undirected graph G = (V, E) is **connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ (u and v are reachable from one another).
- A **connected component** is a maximal set of vertices $C \subseteq V$ such that C is connected.

- A undirected graph G = (V, E) is **connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ (u and v are reachable from one another).
- A **connected component** is a maximal set of vertices $C \subseteq V$ such that C is connected.

• $\{a, b, f, h\}$, $\{c, e\}$, $\{d, g, i\}$ and $\{j\}$ are connected components

- A undirected graph G = (V, E) is **connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ (u and v are reachable from one another).
- A **connected component** is a maximal set of vertices $C \subseteq V$ such that C is connected.

- $\{a, b, f, h\}$, $\{c, e\}$, $\{d, g, i\}$ and $\{j\}$ are connected components
- $\{a, b, c\}$ is not a connected component because $\nexists a \leadsto c$
- {a, b, h} is not a connected component because it is not maximal


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)

2 return True

3 else return False
```



```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V
```

```
2 MAKE-SET(v)
3 for each edge (u, v) \in G.E
```

4 if $FIND-Set(u) \neq FIND-Set(v)$

5 Union(u, v)

Same-Component (u, v)

- 1 **if** FIND-SET(u) == FIND-SET(v)
- 2 return TRUE
- 3 **else return** FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```

```
SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE
```



```
1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)

2 return TRUE
```

CONNECTED-COMPONENTS (G)

else return FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```

```
Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)

2 return true
```


else return FALSE


```
1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)
```

CONNECTED-COMPONENTS (G)

return TRUE else return FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```

```
SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE
```

3 else return FALSE


```
1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)
```

CONNECTED-COMPONENTS (G)

return TRUE else return FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```

SAME-COMPONENT (u, v)

1 **if** FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 **else return** FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)
```

```
SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE
```



```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```

```
SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE
```



```
2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)
```

CONNECTED-COMPONENTS(G)

1 **for** each vertex $v \in G.V$

return TRUE else return FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if FIND-Set(u) \neq FIND-Set(v)

5 UNION(u, v)
```

```
Same-Component(u, v)

1 if Find-Set(u) == Find-Set(v)

2 return TRUE
```


else return FALSE


```
1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)
```

CONNECTED-COMPONENTS (G)

```
SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE
```



```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```

```
SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE
```



```
1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)

Same-Component(u, v)
```

if FIND-SET(u) == FIND-SET(v)

CONNECTED-COMPONENTS (G)

return TRUE else return FALSE


```
CONNECTED-COMPONENTS(G)

1 for each vertex v \in G.V

2 Make-Set(v)

3 for each edge (u, v) \in G.E

4 if Find-Set(u) \neq Find-Set(v)

5 Union(u, v)
```

SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else return FALSE

use DFS as a skeleton

```
DFS-CC(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4

5 time = 0

6

7 for each vertex u \in G.V

8 if u.color = WHITE

9

DFS-VISIT-CC(G, u)
```

```
DFS-VISIT-CC(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each v \in G.Adj[u]

5  if v.color == WHITE

6  v.\pi = u

7  DFS-VISIT-CC(G, v)

8  u.color = BLACK

9

10  time = time + 1

11  u.f = time
```


- use DFS as a skeleton
- add the comp attribute for each node
- the current *comp* value increases when a new DFS tree is started

```
DFS-VISIT-CC(G, u, comp)
DFS-CC(G)
                                                time = time + 1
    for each vertex u \in G.V
                                             2 \mu d = time
         \mu.color = WHITE
                                               u.color = GRAY
         \mu \pi = NIL
                                                for each v \in G.Adi[u]
         u.comp = 0
                                                     if v.color == WHITE
     time = 0
                                                         v.\pi = u
     comp = 0
                                                         DFS-VISIT-CC(G, v, comp)
    for each vertex \mu \in G.V
                                                \mu.color = BLACK
 8
         if u.color == WHITE
                                                u.comp = comp
              comp = comp + 1
                                            10 \quad time = time + 1
              DFS-VISIT-CC(G, u, comp)
10
                                            11
                                                u.f = time
```


- use DFS as a skeleton
- add the comp attribute for each node
- the current comp value increases when a new DFS tree is started
- remove unwanted attributes like π , d, f

```
DFS-VISIT-CC(G, u, comp)
DFS-CC(G)
                                                  time = time + 1
     for each vertex u \in G.V
                                                u.d = time
         \mu.color = WHITE
                                                u.color = GRAY
          \mu_{\cdot}\pi = NH_{\cdot}
                                                 for each v \in G.Adi[u]
         u.comp = 0
                                                      if v.color == WHITE
 5
     time = 0
                                                           v.\pi = u
     comp = 0
                                                          DFS-VISIT-CC(G, v, comp)
     for each vertex u \in G.V
                                                 \mu.color = BLACK
 8
         if u.color == WHITE
                                                 u.comp = comp
              comp = comp + 1
                                            10
                                                 time = time + 1
              DFS-VISIT-CC(G, u, comp)
10
                                             11
```


- use DFS as a skeleton
- add the comp attribute for each node
- the current comp value increases when a new DFS tree is started
- remove unwanted attributes like π , d, f
- the BFS algorithm can also be used instead of DFS

```
DFS-VISIT-CC(G, u, comp)
DFS-CC(G)
                                                  time = time + 1
     for each vertex u \in G.V
                                                u.d = time
         \mu.color = WHITE
                                                u.color = GRAY
          \mu_{\cdot}\pi = NH_{\cdot}
                                                 for each v \in G.Adi[u]
         u.comp = 0
                                                     if v.color == WHITE
 5
     time = 0
                                                           v.\pi = u
     comp = 0
                                                          DFS-VISIT-CC(G, v, comp)
     for each vertex \mu \in G.V
                                                 \mu.color = BLACK
 8
         if u.color == WHITE
                                                 u.comp = comp
              comp = comp + 1
                                            10
                                                time = time + 1
              DFS-VISIT-CC(G, u, comp)
10
                                             11
```


- DSF approach
 - for each vertex we call MAKE-SET
 - for each edge we call FIND-SET and UNION

- DSF approach
 - for each vertex we call Make-Set
 - for each edge we call FIND-SET and UNION
 - $O(V + E \cdot \alpha(V))$

- DSF approach
 - for each vertex we call Make-Set
 - for each edge we call FIND-SET and UNION
 - $O(V + E \cdot \alpha(V))$
- DFS/BFS

- DSF approach
 - ullet for each vertex we call Make-Set
 - for each edge we call FIND-SET and UNION
 - $O(V + E \cdot \alpha(V))$
- DFS/BFS
 - O(V+E)

- DSF approach
 - ullet for each vertex we call Make-Set
 - for each edge we call FIND-SET and UNION
 - $O(V + E \cdot \alpha(V))$
- DFS/BFS
 - \circ O(V+E)
- normally, the DFS/BFS approach is faster

- DSF approach
 - ullet for each vertex we call Make-Set
 - for each edge we call FIND-SET and UNION
 - $O(V + E \cdot \alpha(V))$
- DFS/BFS
 - O(V+E)
- normally, the DFS/BFS approach is faster
- there are custom scenarios where the DSF approach is preferred

- A directed graph G = (V, E) is **strongly connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ and a path $v \rightsquigarrow u$ (u and v are reachable from one another).
- A strongly connected component (SCC) is a maximal set of vertices $C \subseteq V$ such that C is strongly connected.

- A directed graph G = (V, E) is **strongly connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ and a path $v \rightsquigarrow u$ (u and v are reachable from one another).
- A strongly connected component (SCC) is a maximal set of vertices $C \subseteq V$ such that C is strongly connected.

- A directed graph G = (V, E) is **strongly connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ and a path $v \rightsquigarrow u$ (u and v are reachable from one another).
- A strongly connected component (SCC) is a maximal set of vertices $C \subseteq V$ such that C is strongly connected.

• $\{a, b, c\}$, $\{d, f\}$, $\{e, g\}$ and $\{h\}$ are

- A directed graph G = (V, E) is **strongly connected** if $\forall u, v \in V$ there is a path $u \rightsquigarrow v$ and a path $v \rightsquigarrow u$ (u and v are reachable from one another).
- A strongly connected component (SCC) is a maximal set of vertices $C \subseteq V$ such that C is strongly connected.

- $\{a, b, c\}$, $\{d, f\}$, $\{e, g\}$ and $\{h\}$ are SCC
- $\{a, b, c, d\}$ is not an SCC because $\nexists d \rightsquigarrow a$ (although $\exists a \rightsquigarrow d$)

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^T by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call DFS(G^T), but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

STRONGLY-CONNECTED-COMPONENTS(G)

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

vertex order:

a, c, e, g, b, d, f, h

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call DFS(G^T), but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^T by reversing each edge direction
- 3 call DFS(G^T), but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^T by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC
 - **1** DFS complexity: O(V + E)

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^T by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC
 - **1** DFS complexity: O(V + E)
 - **2** computing G^T : O(E)

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^{T} by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC
 - ① DFS complexity: O(V + E)
 - 2 computing G^T : O(E)
 - **3** DFS complexity: O(V + E)

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^T by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC
 - ① DFS complexity: O(V + E)
 - **2** computing G^T : O(E)
 - **3** DFS complexity: O(V + E)
 - \bullet traversing the DFS forest: O(V)

STRONGLY-CONNECTED-COMPONENTS(G)

- 1 call DFS(G) to compute finishing times u.f, for each $u \in G.V$
- 2 compute G^T by reversing each edge direction
- 3 call $DFS(G^T)$, but in the main loop consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the DFS forest (line 3) as a separate SCC
 - **1** DFS complexity: O(V + E)
 - 2 computing G^T : O(E)
 - **3** DFS complexity: O(V + E)
 - lacktriangledown traversing the DFS forest: O(V)

The algorithm complexity is O(V + E).

SCC algorithm - Proof (1)

- the component graph $G^{SCC} = (V^{SCC}, E^{SCC})$
- the SCC are $C_1, C_2, \dots C_k$
- $V^{SCC} = \{v_1, v_2, \dots v_k\}$
- $(v_i, v_j) \in E^{SCC}$ if $\exists (x, y) \in E$, such that $x \in C_i$, $y \in C_j$

SCC algorithm - Proof (1)

- the component graph $G^{SCC} = (V^{SCC}, E^{SCC})$
- the SCC are $C_1, C_2, \dots C_k$
- $V^{SCC} = \{v_1, v_2, \dots v_k\}$
- $(v_i, v_j) \in E^{SCC}$ if $\exists (x, y) \in E$, such that $x \in C_i$, $y \in C_j$

 G and G^T have the same SCC

SCC algorithm - Proof (1)

- the component graph $G^{SCC} = (V^{SCC}, E^{SCC})$
- the SCC are $C_1, C_2, \dots C_k$
- $V^{SCC} = \{v_1, v_2, \dots v_k\}$
- $(v_i, v_j) \in E^{SCC}$ if $\exists (x, y) \in E$, such that $x \in C_i$, $y \in C_j$

- G and G^T have the same SCC
- let C be a SCC of G
- $d(C) = \min_{u \in C} \{u.d\}$
- $f(C) = \max_{u \in C} \{u.f\}$

SCC algorithm - Proof (2)

Lemma 22.13

Let C and C' be distinct SCC in directed graph G. Let $u, v \in C$ and $u', v' \in C'$ and suppose G contains a path $u \rightsquigarrow u'$. Then G cannot contain a path $v' \rightsquigarrow v$.

SCC algorithm - Proof (2)

Lemma 22.13

Let C and C' be distinct SCC in directed graph G. Let $u, v \in C$ and $u', v' \in C'$ and suppose G contains a path $u \rightsquigarrow u'$. Then G cannot contain a path $v' \rightsquigarrow v$.

- by contradiction, if $\exists v' \leadsto v$, then
 - $\exists u \rightsquigarrow u' \rightsquigarrow v'$
 - $\exists v' \rightsquigarrow v \rightsquigarrow u$
- $\bullet \Rightarrow u$ and v' are reachable from each other
- $\bullet \Rightarrow C$ and C' are not distinct

SCC algorithm - Proof (3)

Lemma 22.14

Let C and C' be distinct SCC in directed graph G = (V, E). Suppose that $(u, v) \in E$, with $u \in C$ and $v \in C'$. Then f(C) > f(C').

SCC algorithm - Proof (3)

Lemma 22.14

Let C and C' be distinct SCC in directed graph G = (V, E). Suppose that $(u, v) \in E$, with $u \in C$ and $v \in C'$. Then f(C) > f(C').

- if d(C) < d(C')
 - Let x be the first vertex discovered in C. At the time x.d all the vertices in C and C' are WHITE.
 - Any vertex in C and C' is a descendant of x in the DFS tree $(x \rightsquigarrow u \rightarrow v \rightsquigarrow y, \forall y \in C')$.
 - $\bullet \Rightarrow x.f = f(C) > f(C')$

SCC algorithm - Proof (3)

Lemma 22.14

Let C and C' be distinct SCC in directed graph G = (V, E). Suppose that $(u, v) \in E$, with $u \in C$ and $v \in C'$. Then f(C) > f(C').

- if d(C) < d(C')
 - Let x be the first vertex discovered in C. At the time x.d all the vertices in C and C' are WHITE.
 - Any vertex in C and C' is a descendant of x in the DFS tree
 (x → u → v → v, ∀v ∈ C').
 - $\bullet \Rightarrow x.f = f(C) > f(C')$
- if d(C) > d(C')
 - Let y be the first vertex discovered in C'. At the time y.d, all the vertices in C and C' are WHITE.
 - Any vertex in C' is a descendant of y.
 - From Lemma 22.13, $\nexists y \rightsquigarrow x, \forall x \in C$.
 - At the time y.f, C is still WHITE, so f(C) > y.f = f(C').

SCC algorithm - Proof (4)

Corollary 22.15

Let C and C' be distinct SCC in directed graph G = (V, E). Suppose there is an edge $(u, v) \in E^T$ where $u \in C$ and $v \in C'$. Then f(C) < f(C').

SCC algorithm - Proof (4)

Corollary 22.15

Let C and C' be distinct SCC in directed graph G = (V, E). Suppose there is an edge $(u, v) \in E^T$ where $u \in C$ and $v \in C'$. Then f(C) < f(C').

- Since $(u, v) \in E^T$, we have $(v, u) \in E$.
- Since G and G^T have the same SCC, from Lemma 22.14 $\Rightarrow f(C) < f(C')$.

SCC algorithm - Proof (5)

Theorem

The ${\it Strongly-Connected-Components}$ procedure correctly computes the SCC of the directed graph ${\it G}$ provided as input.

SCC algorithm - Proof (5)

Theorem

The Strongly-Connected-Components procedure correctly computes the SCC of the directed graph G provided as input.

- ullet proof by induction on the number of DFS trees produced by calling DFS on $\mathcal{G}^{\mathcal{T}}$
- The induction hypothesis is that the trees $T_1, T_2, \dots T_k$ are SCC and we need to prove that T_{k+1} is also a SCC. k = 0 is trivial.
- Let the root of T_{k+1} be u, that belongs to the SCC C.
- Since the DFS on G^T considers the vertices in descending order by finishing time, u.f = f(C) > f(C') for any SCC C' that has yet to be visited.
- By the inductive hypothesis, at the time u.d, all nodes $v \in C$ are WHITE so they will be descendants of u in T_{k+1} . $\Rightarrow C \subseteq T_{k+1}$.
- From Corollary 22.15, any SCC C' that is reachable from C (in G^T) has f(C) < f(C') so it has already been visited. $\Rightarrow T_{k+1} \subseteq C$.
- $C \subseteq T_{k+1} \land T_{k+1} \subseteq C \rightarrow T_{k+1} = C$, so T_{k+1} is an SCC.

Bibliography

• Cormen, Thomas H., et al., "Introduction to algorithms.", MIT press, 2009, cap. 22.3, 22.4, 22.5