数据处理和误差分析: (原始记录见附页, 灰色格中为实验测得, 其余为计算而得)

一、有粘滞阻尼的阻尼振动

1、阻尼为0

			阻尼为 0		
	152	140	129	119	110
	151	139	129	119	109
	149	138	127	117	109
	149	137	127	117	107
θ	147	136	125	115	107
	146	135	125	115	106
	145	134	123	114	105
	144	133	123	113	104
	143	131	121	112	103
	141	131	121	111	103
Td	15. 695	15. 700	15. 705	15. 707	15. 710

$$b = \frac{1}{I^2} \bar{D} = \frac{1}{I^2} \sum_{i=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{25^2} \ln \left[\frac{\theta_{26} \theta_{27.....} \theta_{50}}{\theta_1 \theta_{2.....} \theta_{25}} \right] = -4.236 \times 10^{-3}$$

$$S_b = \frac{1}{25} \sqrt{\frac{\sum_{j=1}^{25} (D_j - \bar{D})^2}{24}} = 1.924 \times 10^{-4}$$

测量次数 n=50 时, $\frac{t_p(n-1)}{\sqrt{n}} \doteq 0.287$,所以 $\Delta b = 0.287 S_b = 5.525 \times 10^{-5}$

$$T_d = \frac{15.695 + 15.700 + 15.705 + 15.707 + 15.710}{50} = 1.570 \qquad \Delta T_d = 1.24 \times S_T = 8.746 \times 10^{-4} \text{s}$$

$$\beta = -\frac{b}{T_d} = 2.755 \times 10^{-3}$$

$$\omega_0 = \left| \frac{\beta}{b} \right| \sqrt{4\pi^2 + b^2} = 4.001 \qquad \Delta\omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 2.799 \times 10^{-3}$$

$$\xi = \sqrt{\frac{1}{1 + (\frac{2\pi}{b})^2}} = 6.885 \times 10^{-4} \qquad \qquad \Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b = -8.793 \times 10^{-6}$$

2、阻尼为 2

阻尼为2	1	2	3	4	5	6
θ	149	134	121	109	99	89
Td	1.570	1.571	1. 571	1. 571	1. 572	1.572
7	8	9	10	11	12	13
79	71	69	58	52	47	42
1.572	1. 572	1. 572	1. 572	1. 571	1. 571	1. 572

共测了13组,取后12组进行数据分析

$$\frac{t_p(n-1)}{\sqrt{n}} \doteq 0.60$$

$$b = \frac{1}{I^2} \bar{D} = \frac{1}{I^2} \sum_{j=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{6^2} \ln \left[\frac{\theta_8 \theta_{9.....} \theta_{13}}{\theta_2 \theta_{3.....} \theta_7} \right] = -0.1060$$

$$\Delta b = 0.6S_b = \frac{0.6}{6} \sqrt{\frac{\sum (D_j - \overline{D})^2}{5}} = 4.761 \times 10^{-4}$$

$$b = -0.1060 \pm 0.00058$$

$$T_d = \frac{1.571 \times 5 + 1.572 \times 7}{12} = 1.5716$$

$$\Delta T_d \doteq 0$$

$$\beta = -\frac{b}{T_d} = 0.0674 \qquad \xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 0.0169 \qquad \Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b = -7.574 \times 10^{-5}$$

$$\xi = 0.0169 \pm 7.6 \times 10^{-5}$$

$$\omega_0 = \left| \frac{\beta}{b} \right| \sqrt{4\pi^2 + b^2} = 3.999 \qquad \Delta\omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 6.730 \times 10^{-2}$$

$$\omega_0 = 3.999 \pm 0.067$$

$$\tau = \frac{1}{\beta} = 14.837 \quad \Delta \tau = -\frac{T_d}{2\pi} \times \frac{\Delta \xi}{\xi^2 \sqrt{1 - \xi^2}} = 6.634 \times 10^{-2} \quad \tau = 14.837 \pm 0.066s$$

$$Q = \frac{1}{2\xi} = 29.586$$
 $\Delta Q = -\frac{\Delta \xi}{2\xi^2} = 0.133$ $Q = 29.59 \pm 0.13$

3、阻尼为3

阻尼为3	1	2	3	4	5	6
θ	142	127	114	102	91	81
Td	1.569	1.57	1. 571	1.572	1. 571	1.571
7	8	9	10	11	12	13
74	66	59	53	47	42	38
1.572	1. 572	1. 572	1. 572	1. 572	1. 572	1. 572

依然取后 12 组进行分析

$$b = \frac{1}{I^2} \bar{D} = \frac{1}{I^2} \sum_{i=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{6^2} \ln \left[\frac{\theta_8 \theta_{9.....} \theta_{13}}{\theta_2 \theta_{3.....} \theta_7} \right] = -0.1098$$

$$\Delta b = 0.6S_b = \frac{0.6}{6} \sqrt{\frac{\sum (D_j - \bar{D})^2}{5}} = 4.511 \times 10^{-4}$$

$$b = -0.1098 \pm 0.00045$$

$$T_d = \frac{1.570 + 1.571 \times 3 + 1.572 \times 8}{12} = 1.5716$$
 $\Delta T_d \doteq 0$

$$\beta = -\frac{b}{T_d} = 0.0699 \qquad \xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 0.0175 \qquad \Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b = -7.176 \times 10^{-5}$$

$$\xi = 0.0175 \pm 7.2 \times 10^{-5}$$

$$\omega_0 = \left| \frac{\beta}{b} \right| \sqrt{4\pi^2 + b^2} = 3.999 \qquad \Delta\omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 7.190 \times 10^{-2}$$

$$\omega_0 = 3.999 \pm 0.072$$

$$\tau = \frac{1}{\beta} = 14.306 \quad \Delta \tau = -\frac{T_d}{2\pi} \times \frac{\Delta \xi}{\xi^2 \sqrt{1 - \xi^2}} = 5.862 \times 10^{-2} \quad \tau = 14.306 \pm 0.059$$

$$Q = \frac{1}{2\xi} = 28.571 \quad \Delta Q = -\frac{\Delta \xi}{2\xi^2} = 0.117 \quad Q = 28.57 \pm 0.12$$

二、电机运动时的受迫振动

1、阻尼为2

测量数据如下

受迫振动阻尼 2	1	2	3	4	5	6	7
振幅 (度)	52	56	72	90	105	119	127
受迫周期 T(s)	1. 514	1.518	1. 532	1. 542	1. 552	1. 557	1.563
相差(度)	158	156	149	140	128	117	106
固有周期 T0(s)	1.5716	1.5716	1.5716	1.5716	1.5716	1.5716	1. 5716
w/w0	1.0380	1.0353	1.0258	1.0192	1.0126	1.0094	1.0055
8	9	10	11	12	13	14	15
131	133	133	133	133	132	131	131
1. 567	1.568	1.569	1.570	1. 571	1. 571	1.572	1. 575
99	95	92	90	89	88	85	81
1. 5716	1.5716	1.5716	1.5716	1.5716	1.5716	1.5716	1. 5716
1. 0029	1.0023	1.0016	1.0010	1.0004	1.0004	0. 9997	0. 9978
16	17	18	19	20	21	22	23
129	123	112	100	84	74	60	54
1. 575	1. 582	1. 588	1. 594	1. 604	1. 612	1.626	1.632
80	67	58	49	39	34	26	24
1. 5716	1. 5716	1. 5716	1.5716	1. 5716	1.5716	1. 5716	1.5716
0. 9978	0.9934	0. 9897	0. 9859	0.9798	0.9749	0.9665	0.9630

此法测出的 ω_0 为 4.002,与理论值 3.999 误差为 0.075%

由 $\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$ 可以计算出 ϕ_{theory} 如下表

阻尼为 2	1	2	3	4	5	6	7
β	0.0674	0.0674	0.0674	0.0674	0.0674	0.0674	0.0674
Td (s)	1. 514	1. 518	1. 532	1. 542	1. 552	1. 557	1. 563
θ (度)	52	56	72	90	105	119	127
ω	4. 150	4. 139	4. 101	4. 075	4.048	4. 035	4. 020
ω()	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999
φtheory	155. 56	153. 93	146. 29	138.05	126. 10	118. 29	107. 23
ф	158	156	149	140	128	117	106
Δφ	2. 4400	2.0723	2.7110	1.9467	1.9037	1. 2919	1. 2262
Δφ/φ theory	0.0157	0. 0135	0. 0185	0. 0141	0. 0151	0.0109	0. 0114
8	9	10	11	12	13	14	15
0.0674	0.0674	0.0674	0.0674	0.0674	0.0674	0.0674	0.0674
1. 567	1. 568	1. 569	1.57	1. 571	1. 571	1.572	1. 575
131	133	133	133	133	132	131	131
4. 010	4. 007	4. 005	4.002	3. 999	3. 999	3. 997	3. 989
3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999
99.00	96.87	94. 73	92.57	90.41	90.41	88. 25	81.82
99	95	92	90	89	88	85	81
0.0011	1.8740	2.7290	2. 5721	1.4092	2. 4092	3. 2466	0.8206
0.0000	0.0193	0.0288	0.0278	0.0156	0.0266	0.0368	0.0100
16	17	18	19	20	21	22	23
0.0674	0.0674	0.0674	0.0674	0.0674	0.0674	0.0674	0.0674
1. 575	1. 582	1. 588	1. 594	1.604	1.612	1.626	1.632
129	123	112	100	84	74	60	54
3. 989	3. 972	3. 957	3. 942	3. 917	3.898	3.864	3.850
3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999
81. 82	67.86	57. 73	49. 46	39. 19	33. 31	26. 17	23. 93
80	67	58	49	39	34	26	24
1.8206	0.8609	0. 2709	0. 4617	0. 1947	0. 6873	0.1704	0.0715
0.0223	0.0127	0.0047	0.0093	0.0050	0.0206	0.0065	0.0030

 ϕ 的理论值与实际值的误差大多数在 2%以内,在接近 90 度时误差逐渐增大,最高达到 3.68%,平均误差为 1.51%

2、阻尼为3

受迫阻尼振动3	1	2	3	4	5	6	7
振幅	52	56	71	87	101	113	121
受迫周期	1.514	1.518	1.532	1.542	1.552	1. 557	1.563
相差	157	155	147	138	126	116	106
固有周期	1.5716	1.5716	1.5716	1.5716	1.5716	1.5716	1. 5716
w/w0	1.0380	1.0353	1.0258	1.0192	1.0126	1.0094	1.0055
8	9	10	11	12	13	14	15
124	125	125	125	125	125	125	124
1. 566	1.568	1.570	1.570	1.570	1.570	1. 572	1.574
99	96	92	91	91	90	86	83
1. 5716	1.5716	1.5716	1.5716	1.5716	1.5716	1.5716	1. 5716
1. 0036	1.0023	1.0010	1.0010	1.0010	1.0010	0.9997	0. 9985
16	17	18	19	20	21	22	23
124	117	108	97	82	73	60	54
1. 575	1. 582	1.588	1. 594	1.604	1.611	1.626	1.632
80	68	59	51	41	36	29	25
1. 5716	1.5716	1.5716	1. 5716	1. 5716	1.5716	1.5716	1.5716
0. 9978	0. 9934	0. 9897	0. 9859	0. 9798	0. 9755	0.9665	0.9630

此法测出的 ω_0 为 4.002,与理论值 3.999 误差为 0.075%

由 $\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$ 可以计算出 ϕ_{theory} 如下表

阻尼为3	1	2	3	4	5	6	7
β	0.0699	0.0699	0.0699	0.0699	0.0699	0.0699	0.0699
Td	1.514	1.518	1. 532	1.542	1. 552	1. 557	1.563
θ	52	56	71	87	101	113	121
ω	4. 150	4. 139	4. 101	4. 075	4. 048	4. 035	4. 020
ω0	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999
Φ theory	154. 76	153.09	145. 32	137.01	125. 11	117. 43	106.64
ф	157	155	147	138	126	116	106
Δφ	2. 2354	1.9053	1.6810	0.9859	0.8914	1. 4298	0.6448
Δφ/φ theory	0.0144	0. 0124	0. 0116	0.0072	0.0071	0. 0122	0. 0060

8	9	10	11	12	13	14	15
0.0699	0.0699	0.0699	0.0699	0.0699	0.0699	0.0699	0.0699
1.566	1.568	1.57	1.57	1.57	1.57	1. 572	1. 574
124	125	125	125	125	125	125	124
4.012	4. 007	4. 002	4.002	4.002	4.002	3. 997	3. 992
3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999	3. 999
100.72	96.63	92.48	92.48	92.48	92.48	88.31	84. 16
99	96	92	91	91	90	86	83
1. 7170	0.6304	0.4802	1. 4802	1. 4802	2. 4802	2.3092	1. 1613
0.0170	0.0065	0.0052	0.0160	0.0160	0.0268	0.0261	0.0138
16	17	18	19	20	21	22	23
0.0699	0.0699	0.0699	0.0699	0.0699	0.0699	0.0699	0.0699
1.575	1.582	1. 588	1. 594	1.604	1.611	1.626	1.632
1. 575 124	1. 582 117	1. 588 108	1. 594 97	1. 604 82	1. 611 73	1. 626 60	1. 632 54
124	117	108	97	82	73	60	54
124 3. 989	117 3. 972	108 3. 957	97 3. 942	82 3. 917	73 3. 900	60 3. 864	54 3. 850
124 3. 989 3. 999	117 3. 972 3. 999	108 3. 957 3. 999	97 3. 942 3. 999	82 3. 917 3. 999	73 3. 900 3. 999	60 3. 864 3. 999	54 3. 850 3. 999
124 3. 989 3. 999 82. 11	117 3. 972 3. 999 68. 58	108 3. 957 3. 999 58. 66	97 3. 942 3. 999 50. 49	82 3. 917 3. 999 40. 22	73 3. 900 3. 999 34. 93	60 3. 864 3. 999 27. 01	54 3. 850 3. 999 24. 71

 ϕ 的理论值与实际值的误差大多数在 2%以内,在接近 90 度时误差逐渐增大,最高达到 2.68%,平均误差为 1.67%

3、幅频曲线

根据上述结果,绘制幅频曲线如下图

4、相频曲线 根据上述结果,绘制相频曲线如下图

三、实验小结

在预习实验时其实没有想到这次的实验对于我来说做的如此艰难。周二第一次做实验的时候,先是由于粗心大意,在最初测阻尼 3 的受迫振动时没有更改阻尼,浪费了时间;继而在阻尼 3 的状态下测完数据后没有意识到其峰值与阻尼 2 几乎相同,也就是说实验过程中存在问题。导致第二天处理数据时才发现曲线形状不对,只好周四上午重做实验。

周四上午实验的时候发现了周二数据错误似乎并非偶然现象。我在前两次测量阻尼 3 的过程中发现其振幅与我周二所测阻尼 2 的峰值相近。第三次发现在接近峰值的时候,即相差在 80-100 之间的时候,按闪光灯开关时有时会出现不同寻常的"啪"声,随后振幅会突然增加 5-7 个点,并且难以回落。回落也发生在某次按闪光灯开关时不同寻常的"啪"声之后。由于这种情况下所测数据已经不好同阻尼 2 相对比。我只好进行第四次重新测量。

在第四次重新测量中,我在每一个固定的驱动周期下依次测量阻尼 2 和阻尼 3,这样保证了无论怎样,曲线不会出现二者交叉或者阻尼 3 与阻尼 2 太过接近。在这次测量中,当相差到 80 左右的时候,再次出现了之前的问题,我只好先换纸记录,到相差到 40 左右的时候又一次发生突变,这时我将驱动周期调回 1.575 秒左右,继续之前的测量,完成了数据的记录。

这个实验过程中的那个情况我不知道是什么情况引起的,考虑到这个实验中本人不会接触到机器内部,普通操作应该不会引发上述情况,而倘若是机器自身原因,周围与我使用同种机器的,以及其他组的 16 号同学似乎也没有遇到类似情况。因此我对此非常疑惑,希望老师能够给予简单解释。

在重做实验的过程中,我感觉自己能够不松懈,坚持把实验做完,并通过合理的操作而不是 其他行为获得了真实的实验数据,这对于我来说是很大的收获,我收获了对于实验的严谨态度, 还锻炼了耐心。