Exercise Sheet 8 Stochastics (AAI)

Exercise 8.1

Let X_1, \ldots, X_{10} be i.i.d. with $X_1 \sim \mathrm{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, and $\sigma \in]0, \infty[$. Moreover, let a sample be given with sample mean $\bar{x}_{10} = 5$ and sample variance $s_{10}^2 = 4$.

- a) Assume that $\sigma = 2$ is known. Determine a confidence interval for μ with confidence level 0.95.
- b) Assume that σ is unknown. Determine a confidence interval for μ with confidence level 0.95.
- c) Determine a confidence interval for σ^2 with confidence level 0.95.

Exercise 8.2

The expected value $\mu \in \mathbb{R}$ of a normal distribution with known variance $\sigma^2 = 9$ shall be estimated.

- a) Let a sample of size n=100 be given with sample mean 53.97. Determine a 95% confidence interval for μ .
- b) What sample size is required to obtain a 95% confidence interval of length less than 0.4 if the sample mean is given by 53.97?
- c) What sample mean is required to obtain a 95% confidence interval of length less than 0.4 if the sample size is given by n = 1000?

Exercise 8.3

A sample yields the following weights of cement bags [in kg]:

50.100	49.980	50.040	50.050	50.000	50.150
50.030	50.090	50.120	49.990	50.010	50.110
50.120	50.050	50.000	50.050	49.980	50.080
50.080	50.050	49.990	50.030	50.000	50.090
49.980	50.000	50.070	50.100	50.050	50.120

Determine an approximate 95% confidence interval for the average weight μ .

Exercise 8.4

Let
$$X_1, \ldots, X_n$$
 be i.i.d. with $X_1 \sim N(\mu, \sigma^2)$ where $\sigma \in]0, \infty[$ is known and $\mu = \vartheta \in \Theta = \mathbb{R}$

is unknown. For $0 < \alpha < 1$ construct a function $b_n : \mathbb{R}^n \to \mathbb{R}$ such that

$$\forall \vartheta \in \Theta \colon P^{\vartheta} \left(\{ \vartheta \le b_n(X_1, \dots, X_n) \} \right) \ge 1 - \alpha.$$