Федеральное государственное образовательное бюджетное учреждение высшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РФ»

Департамент анализа данных и машинного обучения

Отчет по практике №3

по дисциплине «эконометрика»

Студента группы ПМ23-1

Факультета информационных технологий и анализа больших данных

Тищенко И.С.

Преподаватель

Михайлова С.С.

Москва 2024

Задание 1. Дз 3 нелинейная.xlsx. Лист2

Возьмем данные из столбцов таблицы и переведем их в объект класса pandas. DataFrame.

Прологарифмируем данные, чтобы создать требуемую модель.

На основе полученных данных создадим линейную регрессионную модель с помощью библиотеки **stats.models.api**:

	OLS Regr	ession F	Results		
Dep. Variable:		Inw	R-sq	uared:	0.682
Model		OLS	Adj. R-sq	uared:	0.668
Method:	: Least Sqi	uares	F-st	atistic:	47.26
Date	: Sat, 19 Oct	2024 I	Prob (F-sta	itistic):	6.64e-07
Time	: 22:	34:37	Log-Likel	ihood:	-0.056948
No. Observations:		24		AIC:	4.114
Df Residuals:		22		BIC:	6.470
Df Model		1			
Covariance Type:	nonro	bust			
coef st	d err t	P> t	[0.025	0.975]	
1 2.2997 ().186 12.366	0.000	1.914	2.685	
lnu -0.7791 ().113 -6.875	0.000	-1.014	-0.544	
Omnibus:	4.052 Dur	bin-Wat	son: 1.10)3	
Prob(Omnibus):	0.132 Jarqı	ue-Bera	(JB): 2.29	90	
Skew:	-0.477	Prob	(JB): 0.31	18	
Kurtosis:	4.174	Cond.	No. 7.9	97	

Проанализируем информацию о модели:

- Коэффициент Детерминаци равен:68,235%
- · Коэфициенты b при каждом члене равны соответственно: 2,2997037728451235; -0,7790563496663773.
- \cdot Коэффициент 2,2997037728451235 стат. значим, т.к. значение t=12,3658 больше t критического = 2,0739 <=> pvalue=2,228541583865526e-11 < 0,05
- . Коэффициент -0,7790563496663773 стат. значим, т.к. значение t=6,8746 больше $t_{\rm k}$ ритического = 2,0739 <=> pvalue=6,638587637386962e-07 < 0,05
- Регрессия стат. значима, т.к. F-значение критерия фишера = 47,2597 больше F_критического <=> fvalue=6,638587637386955e-07 < 0,05

Напишем уравнение нелинейной регрессии.

$$w = Epsilon + u^{b}e^{a}$$

$$w = Epsilon + \frac{9.97119064887161}{u^{0.7791}}$$

Коэффициент детерминации этой модели составил уже 57,327%

Построим график регрессии вместе с диаграммой рассеяния:

Теперь стандартизируем данные с помощью инструмента **sklearn.preprocessing.StandardScaler().fit_transform()**, на основе преобразованных данных составим модель и выведем статистическую информацию:

OLS Regression Results							
Dep. Variable	Dep. Variable: In_std_w		R	R-squared (uncentered):			0.682
Model		OLS	Adj. R	-squared	(uncente	ered):	0.669
Method	Leas	t Squares			F-sta	tistic:	49.41
Date	Sat, 19	Oct 2024		Pro	b (F-stat	istic):	3.66e-07
Time		22:34:37		Lo	og-Likelił	nood:	-20.293
No. Observations		24				AIC:	42.59
Df Residuals		23				BIC:	43.76
Df Model		1					
Covariance Type	: n	onrobust					
coe	f std err	t	P> t	[0.025	0.975]		
In_std_u -0.8260	0.118	-7.029	0.000	-1.069	-0.583		
Omnibus:	4.052	Durbin-W	latson:	1.103			
Prob(Omnibus):	0.132	Jarque-Be	ra (JB):	2.290			
Skew:	-0.477	Pro	ob(JB):	0.318			
Kurtosis:	4.174	Con	ıd. No.	1.00			

Проанализируем информацию о модели:

- Коэффициент Детерминаци равен: 68,235%.
- Коэфициенты в при каждом члене равны соответственно: -0,8260476877422089.
- Коэффициент -0,8260476877422089 стат. значим, т.к. значение t = 7,0291 больше t критического = 2,0739 <=> pvalue=3,6637058596786566e-07 < 0,05
- Регрессия стат. значима, т.к. F-значение критерия фишера = 49,4078 больше F_критического <=> fvalue=3,6637058596786704e-07 < 0,05

Напишем уравнение нелинейной регрессии.

$$w = Epsilon + u^{-0.826}$$

Задание 2. Дз 3 нелинейная.xlsx. Лист3

Возьмем данные из столбцов таблицы и переведем их в объект класса pandas.DataFrame. Преобразуем уравнение нелинейной регрессии в линейную форму.

$$\Delta K_t = \alpha I_t^{\beta} \times \epsilon_t$$

$$\ln(\Delta K_t) = \ln(\alpha) + \beta \times \ln(I_t) + \epsilon_t$$

Построим модель на изначальных данных и выведем статистическую информацию.

		OLS Regression	n Results		
Dep. Va	ariable:		y F	R-squared:	0.982
	Model:	OL	S Adj. F	R-squared:	0.981
M	lethod:	Least Square	s	F-statistic:	1359.
	Date: S	at, 19 Oct 202	4 Prob (f	-statistic):	2.58e-23
	Time:	22:50:1	B Log-l	ikelihood:	41.209
No. Observ	ations:	2	7	AIC:	-78.42
Df Res	siduals:	2	5	BIC:	-75.83
Df	Model:		1		
Covarianc	e Type:	nonrobus	t		
coe	f std err	t P>	t [0.02	5 0.975]	
Inl 0.9726	0.026	36.869 0.0	00 0.91	8 1.027	
1 0.0363	0.117	0.311 0.7	59 -0.20	4 0.277	
Omn	ibus: 18.	786 Durbin-	Watson:	0.522	
Prob(Omni	bus): 0.0	000 Jarque-E	Bera (JB):	27.506	
S	kew: -1.4	189	Prob(JB):	1.06e-06	
Kurt	tosis: 6.9	947 C	ond. No.	51.6	

Проанализируем информацию о модели:

- Коэффициент Детерминаци равен: 98,194%.
- Коэфициенты b при каждом члене равны соответственно: 0,9726013794191091; 0,03626064833517084 .
- Коэффициент 0,9726013794191091 стат. значим, т.к. значение t = 36,8692 больше t_критического = 2,0595 <=> pvalue=2,5764166737745987e-23 < 0,05
- Коэффициент 0,03626064833517084 стат. незначим, т.к. значение t = 0,3107 меньше t критического = $2,0595 \le pvalue = 0,7585750524336108 > 0,05$
- Регрессия стат. значима, т.к. F-значение критерия фишера = 1359,3374 больше F_критического <=> fvalue=2,5764166737745728e-23 < 0,05

Можно заметить, что коэффициент при свободном члене не проходит проверку по Т-критерию Стьюдента, так что резонно построить модель без этого поля.

	OLC Poor	ossion Posults	
Dep. Variable:	y y	ession Results R-squared (uncentered):	1.000
Model:	OLS	Adj. R-squared (uncentered):	1.000
Method:	Least Squares	F-statistic:	1.763e+05
Date:	Sat, 19 Oct 2024	Prob (F-statistic):	2.42e-51
Time:	22:50:19	Log-Likelihood:	41.157
No. Observations:	27	AIC:	-80.31
Df Residuals:	26	BIC:	-79.02
Df Model:	1		
Covariance Type:	nonrobust		
coef std e	rr t P>	t [0.025 0.975]	
Inl 0.9808 0.00	2 419.829 0.0	00 0.976 0.986	
Omnibus: 2	0.825 Durbin-V	Vatson: 0.518	
Prob(Omnibus):	0.000 Jarque-Be	era (JB): 32.803	
Skew: -	1.629 Pı	rob(JB): 7.53e-08	
Kurtosis:	7.306 Co	nd. No. 1.00	

- Коэффициент Детерминаци равен: 99,985%.
- Коэфициенты в при каждом члене равны соответственно: 0,9807652414335774.
- Коэффициент 0.9807652414335774 стат. значим, т.к. значение t = 419.829 больше t критического = 2.0595 <=> pvalue=2.4224054494664673e-51 < 0.05
- Регрессия стат. значима, т.к. F-значение критерия фишера = 176256,354 больше F_критического <=> fvalue=2,4224054494664916e-51 < 0,05

Если использовать эти коэффициенты для нелинейной регрессии, то получим детерминацию, равную 96, 428%.

$$K = I_t^{0.9808} + \epsilon$$

Стандартизируем логарифмированные данные и построим модель линейной регрессии:

	OLS Regr	ession Results		
Dep. Variable	: In_std_K	R-squared	d (uncentered):	0.982
Model	: OLS	,	Adj. R-squared (uncentered):	0.981
Method	: Least Squares		F-statistic:	1414.
Date	Sat, 19 Oct 2024	Pro	ob (F-statistic):	3.40e- 24
Time	23:05:13	L	og-Likelihood:	15.879
No Observations	77		AIC:	-29.76
Df Residuals	: 26		BIC:	-28.46
Df Model	: 1			
Covariance Type	nonrobust			
coef	std err t	P> t [0.025	0.975]	
ln_std_I 0.9909	0.026 37.599	0.000 0.937	1.045	
Omnibus:	18.786 Durbin-\	Natson: 0.5	522	
Prob(Omnibus):	0.000 Jarque-B	era (JB): 27.5	506	
Skew:	-1.489 P	rob(JB): 1.06e-	-06	
Kurtosis:	6.947 Co	ond. No. 1	.00	

- Коэффициент Детерминаци равен: 98,194%.
- Коэфициенты в при каждом члене равны соответственно: 0,9909292700664827.
- Коэффициент 0,9909292700664827 стат. значим, т.к. значение t=37,5993 больше t критического = 2,0595 <=> pvalue=3,396455335888668e-24 < 0,05
- Регрессия стат. значима, т.к. F-значение критерия фишера = 1413,7109 больше F_критического <=> fvalue=3,39645533588866e-24 < 0,05

$$ln(K) = \epsilon + 0.9909 ln(I_t)$$

$$K = I_t^{0.9909} + \epsilon$$

Задание 3. Дз 3 нелинейная.xlsx. Лист4

Возьмем данные из столбцов таблицы и переведем их в объект класса pandas. Data Frame.

Аналогично с предыдущими заданиями:

		Ol	LS Regre	ssion R	lesults		
[Dep. Variab			lnQ		quared:	0.965
	Mode	el:		OLS	Adj. R-s	quared:	0.959
	Metho	d: L	east Squ	ares	F-s	statistic:	163.6
	Dat	te: Sat,	19 Oct 2	2024	Prob (F-s	tatistic):	1.96e-09
	Tim	ie:	23:0	8:35	Log-Lik	elihood:	44.745
No. (Observatior	ns:		15		AIC:	-83.49
	Df Residua	ls:		12		BIC:	-81.37
	Df Mod	el:		2			
Cov	ariance Typ	e:	nonro	bust			
	coef	std err	t	P> t	[0.025	0.975]	
1	-5.3417	0.829	-6.443	0.000	-7.148	-3.535	
lnL	1.6809	0.116	14.477	0.000	1.428	1.934	
lnK	0.0077	0.019	0.415	0.685	-0.033	0.048	
	Omnibus:	6.644	Durb	oin-Wat	son:	2.148	
Prob	(Omnibus):	0.036	Jarqu	e-Bera	(JB):	3.999	
	Skew:	-1.241		Prob	(JB):	0.135	
	Kurtosis:	3 483		Cond	No 2	58e+03	

- Коэфициенты b при каждом члене равны соответственно: -5,341670376619618; 1,6809432632307555; 0,007704622816963713 .
- Коэффициент -5,341670376619618 стат. значим, т.к. значение t = 6,4432 больше t критического = 2,1788 <=> pvalue=3,1919952969638325e-05 < 0,05
- Коэффициент 1,6809432632307555 стат. значим, т.к. значение t = 14,4774 больше t критического = 2,1788 <=> pvalue=5,826128816733424e-09 < 0,05
- Коэффициент 0,007704622816963713 стат. незначим, т.к. значение t = 0,4153 меньше t_критического = 2,1788 <=> pvalue=0,6852734964090719 > 0,05

Третий параметр не подходит по Т-критерию Стьюдента, значит, стоит его убрать из уравнения.

	OLS Regressio	n Results		
Dep. Variable:	InC	R-s	quared:	0.964
Model:	OLS	Adj. R-s	quared:	0.961
Method:	Least Squares	F-s	tatistic:	349.3
Date:	Sat, 19 Oct 2024	Prob (F-st	tatistic):	8.92e-11
Time:	23:08:35	Log-Like	elihood:	44.638
No. Observations:	15		AIC:	-85.28
Df Residuals:	13		BIC:	-83.86
Df Model:	1			
Covariance Type:	nonrobus			
coef std	err t P	t [0.025	0.975]	
1 -5.5010 0.7	711 -7.736 0.0	000 -7.037	-3.965	
InL 1.7090 0.0	091 18.689 0.0	000 1.511	1.907	
Omnibus:	7.273 Durbin-\	Watson:	2.073	
Prob(Omnibus):	0.026 Jarque-B	era (JB):	4.414	
Skew: -	1.295 P	rob(JB):	0.110	
		.		

- Коэффициент Детерминаци равен: 96,412%.
- Коэфициенты b при каждом члене равны соответственно: -5,501021987061762; 1,7089577240081084.
- Коэффициент -5,501021987061762 стат. значим, т.к. значение t = 7,7359 больше t критического = 2,1604 <=> pvalue=3,223205444753363e-06 < 0,05
- Коэффициент 1,7089577240081084 стат. значим, т.к. значение t=18,6889 больше t_{κ} тического = 2,1604 <=> pvalue=8,920073563460382e-11 < 0,05
- Регрессия стат. значима, т.к. F-значение критерия фишера = 349,2753 больше F_критического <=> fvalue=8,920073563460092e-11 < 0,05

Уравнение линейной регрессии:

$$ln(Q) = \epsilon + 1.709ln(L) - 5.501$$

Уравнение в стандартной форме:

$$Q = 0.00408268670973036L^{1.709} + \epsilon$$

Стандартизируем логарифмированные данные и построим модель линейной регрессии:

			OLS Regr	ession l	Results			
Dep.	Variable:		In_std_Q	F	R-squared	d (uncent	ered):	0.965
	Model:		OLS	Adj. F	R-squared	d (uncent	ered):	0.959
	Method:	Leas	st Squares			F-sta	atistic:	177.2
	Date:	Sat, 19	Oct 2024		Pr	ob (F-sta	tistic):	3.69e-10
	Time:		23:08:36		L	.og-Likeli	hood:	3.7788
No. Obse	rvations:		15				AIC:	-3.558
Df R	esiduals:		13				BIC:	-2.142
D	of Model:		2					
Covariar	nce Type:	ı	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]		
ln_std_L	0.9658	0.064	15.069	0.000	0.827	1.104		
In_std_K	0.0277	0.064	0.432	0.673	-0.111	0.166		
On	nnibus:	6.644	Durbin-V	Vatson:	2.148			
Prob(Om	nibus):	0.036	Jarque-Be	ra (JB):	3.999			
	Skew:	-1.241	Pr	ob(JB):	0.135			
Kı	urtosis:	3.483	Cor	nd. No.	1.94			

Аналогично с нестандартизированными данными коэффициент при K не проходит проверку по Т-критерию Стьюдента.

OLS Regression Results							
Dep. Variable:	ln_std_Q	R-squ	uared (uncentered):	0.964			
Model:	OLS	Adj. R-squ	uared (uncentered):	0.962			
Method:	Least Squares		F-statistic:	376.1			
Date:	Sat, 19 Oct 2024		Prob (F-statistic):	1.63e-11			
Time:	23:08:36		Log-Likelihood:	3.6718			
No. Observations:	15		AIC:	-5.344			
Df Residuals:	14		BIC:	-4.636			
Df Model:	1						
Covariance Type:	nonrobust						
coef	std err t	P> t [0.0)25 0.975]				
ln_std_L 0.9819	0.051 19.394	0.000 0.8	373 1.090				
Omnibus:	7.273 Durbin-W	Vatson: 2.0	73				
Prob(Omnibus):	0.026 Jarque-Be	ra (JB): 4.4	14				
Skew:	-1.295 Pr	ob(JB): 0.1	10				
Kurtosis:	3.598 Cor	nd. No. 1.	.00				

- Коэффициент Детерминаци равен: 96,412%.
- Коэфициенты в при каждом члене равны соответственно: 0,9818939281520398.
- Коэффициент 0,9818939281520398 стат. значим, т.к. значение t=19,3944 больше t критического = 2,1604 <=> pvalue=1,630760045990652e-11 < 0,05
- Регрессия стат. значима, т.к. F-значение критерия фишера = 376,1426 больше F_критического <=> fvalue=1,6307600459906518e-11 < 0,05

$$ln(Q) = \epsilon + 0.9819ln(L)$$

Задание 4. Задача 18.pdf

Выпишем все данные из условия задачи.

$$\mathbb{E}(Y) = 1000$$

$$\mathbb{E}(X_1) = 420$$

$$\mathbb{E}(X_2) = 41, 5$$

$$\sigma_Y = 27$$

$$\sigma_{X_1} = 45$$

$$\sigma_{X_2} = 18$$

$$r_Y$$

$$r_Y$$

$$r_{X_1}$$

№1

Для нахождения коэффициентов уравнения приведем коэффициенты парной корреляции в матричный вид

$$R = \begin{pmatrix} 1 & r_{X_1\,X_2} = 0,38 \\ r_{X_1\,X_2} = 0,38 & 1 \end{pmatrix}$$

$$r = \begin{pmatrix} r_{Y\,X_1} = 0,77 \\ r_{Y\,X_2} = 0,43 \end{pmatrix}$$

$$\beta = R^{-1} \times r$$
 - Коэффициенты уравнения в стандартизированном масштабе, откуда:
$$y = 0.708976157082749x_1 + 0.16058906030855535x_2$$

Чтобы найти коэффициенты уравнения в натуральном масштабе, полученные коэффициенты β умножим на среднее каждого X, просуммируем полученные произведения и вычтем из среднего значения Y. Запишем результаты в виде уравнения в натуральном масштабе.

$$y = 811.3413394109397 + 0.4253856942496494x_1 + 0.24088359046283303x_2$$

No2

Формула для частной корреляции между переменными X_i и X_j с учётом всех остальных переменных в отношении матриц выглядит следующим образом :

$$r_{ij \cdot other} = -\Omega_{ij} / \sqrt{\Omega_{ii}\Omega_{jj}}$$

Здесь Ω - обратная матрица к матрице парных корреляций. Из этого равенства получим следующие коэффициенты.

$$r_{YX_1 \cdot other} = 0.72637614236143$$

$$r_{YX_2 \cdot other} = 0.232809551177815$$

$$r_{X_1X_2 \cdot other} = 0.084889282207865$$

Для множественного коэффициента корреляции формула в матричном виде выглядит так:

$$R_{plur} = r^T \times R^{-1} \times r = 0.7841970013245367$$

№3

Для нахождения коэффициентов эластичности при каждом X вспомним про коэффициенты b. Игнорируя коэффициент свободного члена, поэлементно умножим каждый из b_i на $\mathbb{E}(X_i)$ и разделим на $\mathbb{E}(Y)$:

Частный коэффициент эластичности при $X_1=0.178661991584853$ Он меньше, чем коэффициент β_{X_1}

Частный коэффициент эластичности при $X_2=0.00999666900420757$ Он меньше, чем коэффициент β_{X_2}

№4

С помощью посчитанных в №2 частных коэффициентов корреляции, найдем частные значения F-критериев Фишера для всех X_i :

$$F_{X_i} = r_{YX_i \cdot other}^2 \times (n-k-1)/(1-r_{YX_i \cdot other}^2) \times k$$

n - количество наблюдений

k - количество X

А общий F-критерий Фишера рассчитаем по формуле:

$$F_{all} = R_{plur}^2 \times (n - k - 1)/(1 - R_{plur}^2) \times k$$

Откуда:

 $F_{all} = 21.5617418861327$

 $F_{X_1} = 15.0788258113867$

 $F_{X_2} = 0.773635121844607$