Weekly Homework 23

Math Gecs

August 08, 2024

Exercise 1

For each positive integer n let S_n denote the set of positive integers k such that $n^k - 1$ is divisible by 2006. Define the function P(n) by the rule

$$P(n) := \begin{cases} \min(s)_{s \in S_n} & \text{if } S_n \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Let d be the least upper bound of $\{P(1), P(2), P(3), \ldots\}$ and let m be the number of integers i such that $1 \le i \le 2006$ and P(i) = d. Compute the value of d + m.

Source: 2006 iTest Problems/Problem 34

Answer. 688

Solution. We find that the prime factorization of 2006 is 2 * 17 * 59.

Then we can compute $d = \lambda(2006)$ (where λ is the Carmichael function) by Carmichael's theorem: it is $lcm(\lambda(2), \lambda(17), \lambda(59)) = lcm(1, 16, 58) = 2^4 * 29 = 464$.

As for solving P(i) = d, we must have i odd (otherwise it would not be coprime to 2), and we must also have i be a primitive root modulo 17 as well as a primitive root modulo 59. There are $\phi(\phi(17)) = \phi(16) = 8$ primitive roots modulo 17 (where ϕ is the Euler totient function) and $\phi(\phi(59)) = \phi(58) = (2-1)*(29-1) = 28$ primitive roots modulo 59. Then we have m = 1*8*28 = 224 by the Chinese Remainder Theorem, so our answer is d+m=464+224=688 and we are done.