Title

D. Zack Garza

Thursday 28th May, 2020

Contents

1	Join	Joint GT/UGA Topology Seminar: Monday January 13th			
	1.1	Talk 1	: Knot Floer Homology and Cosmetic Surgeries	1	
		1.1.1	Basics	1	
		1.1.2	Known Results	2	
			Tools		
	1.2	Talk 2	2: Branched Covers Bounding $\mathbb{Q}HB^4$	5	

1 Joint GT/UGA Topology Seminar: Monday January 13th

1.1 Talk 1: Knot Floer Homology and Cosmetic Surgeries

Dehn surgery: fundamental procedure for building 3-manifolds.

Outline

- Background on problem
- Results (known and new)
- Tools
- Proof

1.1.1 Basics

Let $K \hookrightarrow S^3$ be a knot. Pick a rational number p/q or ∞ . Can perform p/q-surgery (i.e. Dehn surgery) to obtain $S^3_{p/q}(K) \coloneqq (S^3 \setminus K) \coprod_f (D^2 \times S^1)$ where $\partial D^2 \times \{ \mathrm{pt} \} \mapsto -p\mu + q\lambda$ where $\mu = ?, \lambda$ is the Seifert fiber (?).

Is this a unique operation? I.e. do different knots yield different 3-manifolds?

Question: Can different surgeries on the same knot yield different 3-manifolds?

Definition: Two surgeries are *purely cosmetic* iff there is an orientation-preserving diffeomorphism between them. If there is an orientation *reversing* diffeomorphism, they are said to be chirally cosmetic

Conjecture: There are no purely cosmetic surgeries.

Remark: The conjecture can be stated for $K \hookrightarrow Y^3$

Note: don't know what Y^3 is.

Remark: There exist chirally cosmetic surgeries.

Example: +9 and $+\frac{9}{2}$ surgery on $T_{2,3}$, or +r, -r on any ampichiral knot.

Remark: Meant to generalize the "knot complement problem", i.e. are knots determined by their complements?

Theorem (Gordon-Luecke 89): If $S_r^3(K) = S^3 = S_\infty^3(K)$, then $r = \infty$. (I.e. the only trivial surgery really is the trivial surgery?)

1.1.2 Known Results

Suppose $K \subset S^3$ is nontrivial, and two Dehn surgeries with different slopes are diffeomorphic.

- Computing $H^1 = \mathbb{Z}_p$ forces p = p'.
- By Boyer-Lines '91, the Alexander polynomial satisfies $\Delta_k''(1) = 0$.
- By Osvath-Szabo-Wu ('05, '09), q and q' have opposite signs (not necessarily q = -q'). - So there at most two ways of getting the same manifold from cosmetic surgeries.
- By Wang '06, $q \neq 1$
- By Ni-Wu '10, $\tau(K) = 0$, q' = -q, and $q^2 = -1 \mod p$.

Theorem: Let q > 0, so q' < 0. Then

- p = 1, 2
- If p = 2, then q = 1 and g = 2. If p = 1, then $q \le \frac{t + 2g}{2g(g 1)}$

where g is the genus and t is the Heegard-Floer thickness.

Moreover, the knot Floer homology satisfies some further conditions (stronger than e.g. $\tau(K) = 0$).

Note that if t < 4, then the last condition forces q = 1, g = 2. We then only have to consider two slopes.

Corollary: The corollary holds for thin knots (i.e. thickness zero), e.g. all alternating and quasialternating knots.

For knots up to 16 crossings, $t \leq 2$ (from computations of knot-Floer homology on 1.6 million knots?) When K is thin, this condition can be stated in terms of the Alexander polynomial.

Theorem: If K is thin and has purely cosmetic surgery, then

- q(K) = 2
- The slopes are $\pm 1, \pm 2$
- The coefficients of the Alexander polynomial occur in ratios: $\Delta_k(t) = nt^2 4nt + (6n+1) 1$ $4nt^{-1} + nt^{-2}$ for some n,

This is computationally effective:

- Number of prime knots with at most 16 crossings: 1.7 million
- Number with $\tau = 0$: 450,000
- Number satisfying the conditions in the theorem: 337

For each of these, need to consider $\pm 1, \pm 2$. Noting from HF will distinguish these surgeries. Can use SnapPea to compute hyperbolic invariants – most are distinguished by hyperbolic volume, or Chern-Simons invariant.

Could potentially take connect sums of the above knots, but eventually they stop satisfying the necessary condition. In fact, the conjecture holds if all prime summands of K have less than 16 crossings.

Theorem (Ichihara-Song-Mattman-Saito): The conjecture holds for all 2-bridge knots.

Theorem (Tao): Conjecture holds for arbitrary connected sums.

So if there is a knot with cosmetic surgery, it is not prime.

Remark: Futer-Purcell-Schleimer independently proved a similar result using hyperbolic techniques.

1.1.3 Tools

What we'll want

- 1. Need some 3-manifold invariant to distinguish different surgeries
- 2. A knot invariant
- 3. A surgery formula computing (1) from (2) and the slope p, q.

Previously used

- Cassem-Gordon and Cassem-Walker invariants, and
- Alexander polynomial ($\implies \Delta''(1) = 0$)

For (1), we'll use Heegard-Floer homology for the 3-manifold invariant: Associated to a closed oriented 3-manifold Y a graded vector space $\widehat{HF}(Y)$. In our case, it will be over $\mathbb{Z}/(2)$, and splits over Spin^c structures as $\widehat{HF}(Y) = \bigoplus_{s \in \mathrm{Spin}^c(Y)} \widehat{HF}(Y;s)$.

Note that $Spin^{c}(Y)$ can be put in correspondence with $H^{1}(Y)$.

For (2), we'll use knot Floer homology, namely a reformulation following H-Rasmussen-Watson. To a knot $K \subset S^3$, associate

- An immersed collection of closed curves $\Gamma = (\gamma_0, \dots, \gamma_n)$ in the punctured torus T:
 - I.e. a graded immersed Lagrangian
 - Defined up to homotopy equivalence, where homotopies can't cross the puncture.

- Some grading data ($\times 2$, Alexander and Maslov) amounting to labeling each component of Γ with an integer. (Important to proof!)
- (From world of immersed Lagrangians) A bounding cochain, i.e. a subset of self-intersection points of Γ .

Interpret the Alexander grading as specifying a lift $\bar{\Gamma}$ of Γ from T to \bar{T} , a \mathbb{Z} -fold covering space of T:

Examples (These are curves wrapped around cylinders):

Somehow, this last example is representative.

A surgery formula: $\widehat{HF}(S^3_{p/q}(K))$ is floer homology in T of Γ with $\ell_{p,q}$ a line of slope p/q, i.e. it is generated by minimal intersection points $\Gamma \cap \ell_{p,q}$. (This gives a chain complex, count bi-gons.)

For the spin^c decomposition, look at \overline{T} with different lifts of $\ell_{p,q}$.

1.2 Talk 2: Branched Covers Bounding $\mathbb{Q}HB^4$

Joint work with Aceto, Meier, A. Miller, M. Miller, Stipsicz.

Definition: Two knots K_0, K_1 are **concordant** iff they cobound an annulus, i.e. there exists a smooth cylinder $S^1 \times I$ embedded in $S^3 \times I$ such that $S^1 \times \{i\}$ in $S^3 \times \{i\}$ is K_i .

Figure 1: The unknot

Figure 2: $T_{2,3}$

Figure 3: Figure 8

Figure 4: $C_{\{2,1\}}(T_{\{2,3\}})$

Figure 5: 9₄₄

The concordance group is an abelian group defined by $C = \{\text{knots in } S^3\} / \sim \text{where we identify knots that are concordant.}$

Theorem (Fox-Milnor 66): If K is slice, then $\Delta_K(t) = f(t)f(t^{-1}) \in \mathbb{Z}[t^{\pm 1}].$

Remark: Define $A(k) := H_1(S^3 \setminus K, \mathbb{Z})$ as the integral homology of the infinite cyclic cover as a $\mathbb{Z}[t^{\pm 1}]$ -module. This is equal to $H_1(S^3 \setminus K; \mathbb{Z}[t^{\pm 1}])$. Then $\Delta_k(t) := \operatorname{ord}(A(k))$. Given an element of $M_{n,m}$ we get $\mathbb{Z}[t^{\pm 1}]^m \longrightarrow \mathbb{Z}[t^{\pm 1}]^n \longrightarrow A(k) \longrightarrow 0$. We can consider the ideal generated by all the minors (the order ideal), and if this ideal is principal we call the generator $\Delta_k(t)$.

 $V - tV^t$ (the Seifert matrix?) is a square presentation matrix for A(k), so $\Delta_k(t) = \det(V - tV^t)$. Note that this is easy to compute. Example: for the figure 8, $\Delta_{4,1}(t) = \det([1 - t, t; -1, -1 + t]) = -t^2 + 3t - 1$.

There is a notion of algebraically slice, and an algebraically slice knot implies Fox-Milnor.

Theorem (Casson-Gordon, 78): If K is slice and p prime then the p^r -fold branched cover $\Sigma_{p^r}(K)$ is a rational homology 3-sphere $\mathbb{Q}HS^3$ and bounds a rational homology 4-ball $\mathbb{Q}HB^4$.

Remark: $\Sigma_{p^r}(K_1 \# K_2) = \Sigma_{p^r} K_1 \# \Sigma_{p^r} K_2$. The following map measures the obstruction to being slice: $\beta_{p^r}: \rho \longrightarrow \Theta_{\mathbb{O}}^3$, where $[K] \longrightarrow [\Sigma_{p^r} K]$.

Question: How good is β_{p^r} as a slice obstruction?

 β_2 is pretty good for 2-bridge knots, i.e.

Theorem (Lisca 07): If K is a connected sum of 2-bridge knots, then $\beta_2(K) = 0 \implies K$ is slice.

Note: there are non-slice knots with $\beta_2 = 0$.

Theorem (Casson-Haner 81): For each s > 0, $\Sigma(2, 2s - 1, 2s + 1) \cong \Sigma_2(T_{2s-1,2s+1})$ bounds a contractible manifold.

Theorem (Litherland 78): Torus knots are $L_{\delta}I_0$ in ρ . (??)

These together imply that $\ker \beta_2 \geq \mathbb{Z}^{\infty}$.

Theorem (Aceto-Larson 18): $\ker \beta_2 \cong \mathbb{Z}^{\infty} \oplus G$.

Main Theorem: $\bigcap_{p \text{ prime },r \in \mathbb{N}} \ker \beta_{p^r} \ge (\mathbb{Z}/(2))^4.$

Knots in here have arf invariant zero, and are torsion in the concordance group.

Step 1: Construction Define $K_n := (\sigma_1 \cdot \sigma_2^{-1})^n$ for σ_i in the braid group B_3 .

Example:

Definition: K is strongly negative ampichiral if there exists an orientation reversing involution $\tau: S^3 \longrightarrow S^3$ such that $\tau(K) = K$.

Figure 6: Image

Lemma (Kawauchi 09): If K is strongly negative ampichiral, then K bounds a disc in a $X = \mathbb{Q}HB^4$ with only 2-torsion in $H_1(X;\mathbb{Z})$.

Proof (sketch): Let $M_k = S_0^3(K)$ be zero surgery on the knot.

Then $\tau: M_k \longrightarrow M_k$ is fixed-point free.

Can then consider the map $\pi: M_k \longrightarrow M_k/\tau$ and the associated twisted *I*-bundle $I \longrightarrow Z \longrightarrow M_k \longrightarrow M_k/\tau$. Then:

Theorem: If K is slice, the $\Sigma_{p^r}(K)$ bounds a $\mathbb{Q}HB^4$ if p is prime.

Proof (Milnor 68).

There is an exact sequence

$$\tilde{H}_i(\tilde{X}; \mathbb{Z}_p) \xrightarrow{t^{p^r} - \mathrm{id}} \tilde{H}_i(\tilde{X}; \mathbb{Z}_p) \longrightarrow \tilde{H}(\Sigma_{p^r}(D); \mathbb{Z}_p) (=0) \longrightarrow 0$$

 $\tilde{H}_i(\tilde{X}; \mathbb{Z}_p) \xrightarrow{t - \mathrm{id}} \tilde{H}_i(\tilde{X}; \mathbb{Z}_p) \longrightarrow \tilde{H}(B^4; \mathbb{Z}_p) (=0) \longrightarrow 0,$

where if $t-\mathrm{id}$ is an isomorphism, $(t^{p^r}-\mathrm{id})=(t-\mathrm{id})^{p^r}$ is an isomorphism as well (note we're in \mathbb{Z}_p .)

Figure 7: Image

Figure 8: Image

Corollary: If p is an odd prime, then $\Sigma_{p^r}(K)$ bounds a $\mathbb{Q}HB^4$.

Thus $\Sigma_{2^r}(K_n) \cong \Sigma_n(K_{2^r})$ by this symmetry.

In conclusion, if n is an odd prime power, then $K_n \in \bigcap \ker \beta_{p^r}$.

Step 2: Obstruction Theorem (Brandenbursky 16): K_n is algebraically slice iff n odd.

Uses a twisted Alexander polynomial: Take $M_k = S_0^3(K)$ a zero surgery, $G = \pi_1(M_k)$, and $A(k) = G^{(1)}/G^{(2)}$ (?).

The input is a map $X: H_1(\Sigma_{p^r}(K); \mathbb{Z}) \longrightarrow \mathbb{Z}_q$. This lets you define a character

$$\alpha(X): G \longrightarrow G/G^{(1)} \cong \mathbb{Z} \rtimes A(k) \longrightarrow \mathbb{Z} \rtimes A(t)/t^{p^r} - \mathrm{id} \cong \mathbb{Z} \rtimes H_1(\Sigma_{p^r}(K)) \longrightarrow \mathrm{GL}(K, \mathbb{Q}(\zeta_q)[t^{\pm 1}]).$$

Then \tilde{M}_k is the universal cover of M_k . Consider $C_*(\tilde{M}_k) \otimes \mathbb{Z}[G]Y$ for $Y = (\mathbb{Q}(\zeta_q)[t^{\pm 1}])^k$, then define the twisted Alexander polynomial $\Delta_k^{\tilde{X}}(t) = \operatorname{ord}(H_1(M_k, Y))$.

Theorem: If K is slice, then there exists some X such that $\delta_K^{\tilde{X}}(t) = f(t)f(t^{-1})$ in $\mathbb{Q}(\zeta_q)[t^{\pm 1}]$.

Open question: Are there infinite order elements in this group?