

Composantes fortement connexes; plus court chemin

CM nº4 — Algorithmique (AL5)

Matěj Stehlík 13/10/2022

Une conséquence du tri topologique

- Le premier sommet dans un tri topologique de G est une source (c'est-à-dire, aucun arc n'entre le sommet).
- De même, le dernier sommet est un puits (c'est-à-dire, aucun arc ne sort du sommet).

Théorème

Tout graphe orienté acyclique contient au moins une source et au moins un puits.

Ce théorème est la base d'une autre approche au tri topologique :

- Trouver un sommet source de G et supprimer-le de G.
- Répéter jusqu'à ce que le graphe devienne vide.

Implémentation naïve de l'algorithme

```
Entrées : graphe orienté acyclique G=(V,E) L \leftarrow \emptyset tant que V \neq \emptyset faire trouver un sommet v t.q. d^-(v)=0 G \leftarrow G-v L \leftarrow L+v
```

return L

Quelques idées pour améliorer l'algorithme...

```
Voisins "entrants" de v: N(v)

11 "sortents" " : N+(v)

Le degné "entrant" de v: d(v)

11 "sortent" " : d+(v)
```


• Garder une file avec les sommets <u>de degré entrant</u> 0 pour ne pas avoir à rechercher ces sommets plusieurs fois.

(source)

- Le degré entrant d'un sommet ne change que lorsque l'un de ses voisins entrants (correspondant à des conditions préalables) ne soit supprimé.
- Garder une liste des degrés entrants des sommets pour ne pas avoir à modifier le graphe.

Algorithme de Kahn

```
Entrées : graphe orienté acyclique G = (V, E)
L \leftarrow \emptyset
pour tous les u \in V faire
 d^-(u) \leftarrow \text{degr\'e entrant de } u
créer file(Q)
pour tous les u \in V faire
    \operatorname{si} d^-(u) = 0 \operatorname{alors}
    | enfiler(Q, u)
tant que Q \neq \emptyset faire
    v \leftarrow \text{défiler}(Q)
    L \leftarrow L + v
    réduire le degré de tous les voisins sortants de v de 1
    pour tous les u \in V faire
```

Complexité de l'algorithme de Kahn

- L'initialisation prend temps O(n),
- La boucle **tant que** est parcourue O(n) fois.
- Réduire le degré de tous les voisins sortants de v est de complexité O(m).
- On obtient donc une complexité de O(mn).

Complexité de l'algorithme de Kahn

- L'initialisation prend temps O(n),
- La boucle **tant que** est parcourue O(n) fois.
- Réduire le degré de tous les voisins sortants de v est de complexité O(m).
- On obtient donc une complexité de O(mn).
- Or, si on est attentif, on remarque que chaque arc n'est traité qu'une seule fois, donc finalement la boucle while prend temps O(n+m).
- On conclut que l'algorithme de Kahn est de complexité O(n+m), donc la même que si l'on utilise DFS.

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	А	В
1	1	
2	1	=A2/A1
3	=A1+A2	=A3/A2
4	=A2+A3	=A4/A3
5		=AVERAGE (B2:B4)

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	Α	В
1	1	
2	1	=A2/A1
3	2	=A3/A2
4	=A2+A3	=A4/A3
5		=AVERAGE (B2:B4)

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	А	В
1	1	
2	1	1
3	2	=A3/A2
4	=A2+A3	=A4/A3
5		=AVERAGE (B2:B4)

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	А	В
1	1	
2	1	1
3	2	=A3/A2
4	3	=A4/A3
5		=AVERAGE (B2:B4)

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	Α	В
1	1	
2	1	1
3	2	2
4	3	=A4/A3
5		=AVERAGE (B2:B4)

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	Α	В
1	1	
2	1	1
3	2	2
4	3	1.5
5		=AVERAGE (B2:B4)

- Cellules dont les formules font référence à d'autres cellules ont des dépendances.
- On peut utiliser le tri topologique pour mettre à jour efficacement les cellules!

	А	В
1	1	
2	1	1
3	2	2
4	3	1.5
5		1.5

Connexité dans les graphes orientés

- Nous avons déjà vu la définition de graphes connexes et des composantes connexes.
- Intuitivement, un graphe est connexe s'il ne peut pas être "séparé" sans casser des arêtes.
- Pour les graphes orientés, la notion de connexité est un peu plus subtile.
- Soit \sim la relation suivante : $u \sim v$ ssi il existe un chemin de u à v et aussi un chemin de v à u.

Composantes fortement connexes

- Il est facile de vérifier que \sim est une relation d'équivalence :
 - \sim est symétrique
 - \sim est refléxive
 - \sim est transitive.
- Les classes d'équivalence forment une partition de V(G).
- On les appelle les composantes fortement connexes.
- D'une façon informelle, une composante connexe consiste de tous les sommets t.q. pour chaque paire de sommets u,v, il existe un chemin de u à v.

Contracter les composantes fortement connexes

Le graphe contracté est un DAG

Théorème

Soit G un graphe orienté quelconque, et soit G' le graphe obtenu en contractant chaque composante fortement connexe à un seul sommet. Alors, G' est un graph orienté acyclique (un DAG).

- Soit $C = (G_1, G_2, \dots, G_k)$ un circuit dans G'.
- Alors, tous les sommets de G dans la composante fortement connexe G_i sont atteignable depuis tous les sommets de G_j , pour tous $i, j \in \{1, \dots, k\}$.
- Donc, $V(G_1) \cup V(G_2) \cup \cdots \cup V(G_k)$ appartiennent à une seule composante connexe.
- Donc k = 1.

Composantes fortement connexes et parcours en profondeur

Propriété 1

Si la procédure explorer est lancée à partir du sommet u, elle se terminera précisément lorsque tous les sommets atteignables depuis u auront été visités.

• Donc, si u est un sommet dans une composante fortement connexe G_i qui est un puits dans le graphe contracté G' (tous les arcs incidents à G_i pointent vers G_i), alors $\exp(u)$ va parcourir précisément les sommets de G_i .

Composantes fortement connexes et parcours en profondeur

Propriété 2

Soient G_i et G_j des composantes fortement connexes de G. S'il existe un arc d'un sommet de G_i à un sommet de G_j , alors

$$\max\{\mathbf{post}(v): v \in G_i\} \ge \max\{\mathbf{post}(v): v \in G_j\}.$$

- Il y a deux cas à considérer.
- Si le DFS visite la composante G_i avant la composante G_j , alors tous les sommets de G_i et G_i seront visités avant que explorer coince.
- Par conséquent, le nombre post du premier sommet visité dans G_i sera supérieur à celui de tout sommet de G_j .
- Si G_j est visité en premier, explorer va coincer après avoir visité l'ensemble de G_i mais avant d'avoir visité l'ensemble de G_i .

Conséquence de la Propriété 2

Propriété 3

Le sommet avec la valeur maximum de $post(\cdot)$ dans une recherche en profondeur appartient à une composante fortement connexe de type source.

• On peut trier les composantes fortement connexes par ordre décroissant de leurs nombres post maximaux.

... et si on veut trouver un sommets dans un puit? 🖍

- La Propriété 2 nous aide à trouver un sommet dans une composante fortement connexe de G de type « source ».
- ullet Or, nous avons besoin d'un sommet dans une composante fortement connexe de G de type « puits ».
- Soit G^R le graphe orienté *inverse*, définit comme suit : $G^R = (V, E^R)$, où $(u, v) \in E^R$ ssi $(v, u) \in E$. C'est-à-dire, on reverse la direction des arcs.
- G^R a les même composantes fortement connexes que G.
- En effectuant un parcours en profondeur sur G^R , le sommet avec la valeur maximale de post (\cdot) appartient à une composante fortement connexe de G^R de type « source », c'est-à-dire, à une composante fortement connexe de G de type « puits ».

Vers un algorithme de composantes fortement connexes

- Comment continuer après l'identification de la première composante fortement connexe de type puits?
- Il suffit d'utiliser la Propriété 2.
- Une fois que nous avons trouvé la première composante fortement connexe G_1 et que nous l'avons supprimée du graphe, le sommet avec le nombre post maximum dans $G V(G_1)$ appartiendra à une composante fortement connexe de $G V(G_1)$.
- Par conséquent, nous pouvons continuer à utiliser les nombres $post(\cdot)$ du parcours en profondeur initial sur G^R pour produire successivement la deuxième composante fortement connexe, la troisième composante fortement connexe, etc.

Un algorithme de composantes fortement connexes

Kosaraju (?)

Voici donc un algorithme pour déterminer les composantes fortement connexes de ${\cal G}$:

- 1. Exécuter un parcours en profondeur sur G^R et garder pour chaque sommet son valeur post.
- 2. Trier les sommets selon leurs valeurs post.
- 3. Exécuter un parcours en profondeur sur sur *G* selon l'ordre inverse. (En particulier, chaque fois que la procédure DFS appelle la procédure explore, commencer par la premier sommet non visité dans l'ordre inverse.)

Exemple

 $\{e,h,g\},\{b\},\{c,d,f\},\{a\}$

Applications du parcours en profondeur : résumé

Nous avons vu 3 applications du parcours en profondeur :

- 1. Détection de circuits dans les graphes orientés :
 - Un DFS révèle un arc retour ssi le graphe contient un circuit.
- 2. Tri topologique des graphes acycliques orientés :
 - Il suffit de faire un DFS qui garde trace des temps de visite, et ensuite trier les sommets par nombre post décroissant.
- 3. Calcul des composantes connexes d'un graphe orienté :
 - On fait DFS sur le graphe inverse ${\cal G}^R$ et on trie les sommets selon l'ordre décroissant de nombre post
 - Ensuite on fait DFS sur G en utilisant l'ordre trouvé dans la première étape.

Plus court chemin

Chemins et circuits pondérés

Définition

- Soit G = (V, E) un graphe orienté pondéré (avec pondération $w \in \mathbb{R}^{|E|}$).
- Soit $P \subseteq$ un chemin dans G.
- La longueur (ou poids) du chemin P est définie comme $\sum_{e \in E(P)} w_e$.

Distance

Définition

Soient u, v deux sommets dans un graphe orienté pondéré G = (V, E) (avec pondération $w \in \mathbb{R}^{|E|}$). La distance de u à v est définie comme

 $dist(u, v) = min\{w(P) : P \text{ est un chemin de } u \text{ à } v \}$

 $\operatorname{dist}(u,v) \leq 8$

Distance

Définition

Soient u,v deux sommets dans un graphe orienté pondéré G=(V,E) (avec pondération $w\in\mathbb{R}^{|E|}$). La distance de u à v est définie comme

 $dist(u, v) = min\{w(P) : P \text{ est un chemin de } u \text{ à } v \}$

 $\operatorname{dist}(u,v) \leq 7$

Distance

Définition

Soient u,v deux sommets dans un graphe orienté pondéré G=(V,E) (avec pondération $w\in\mathbb{R}^{|E|}$). La distance de u à v est définie comme

 $dist(u, v) = min\{w(P) : P \text{ est un chemin de } u \text{ à } v \}$

$$dist(u, v) = 6$$

Le problème du plus court chemin

Problème

Étant donné un graphe orienté G=(V,E) pondéré (avec pondération $w\in\mathbb{R}^{|E|}$) et deux sommets $u\neq v$ dans V, trouver un plus court chemin (« chaîne orientée ») de u vers v.

Remarque

Il peut ne pas exister de plus court chemin de u à v :

- S'il n'y a aucun chemin de u à v : $dist(u, v) = \infty$
- S'il y a un circuit négatif sur le chemin de u à v : $dist(u, v) = -\infty$

Principe de sous-optimalité

Observation

Si P est un plus court chemin de s vers v alors, en notant v' le prédécesseur de v dans ce chemin, le sous-chemin de P qui va de s vers v' est un plus court chemin de s vers v'.

Démonstration par l'absurde

S'il existe P' de s vers v' de poids strictement inférieur au sous-chemin de P de s vers v' alors en concaténant P' à (v,v') on aurait un chemin de s à v' de poids strictement inférieur à celui de P, contradiction.

Algorithme de Dijkstra

nombres réels non-négatify

Entrées : Graphe orienté G=(V,E) avec pondération $\ell \in \mathbb{R}^+$ un sommet $s \in V$

Sorties : Distances de s aux autres sommets

$$S \leftarrow \emptyset$$

$$D[s] \leftarrow 0$$

pour tous les $u \in V \setminus \{s\}$ faire

$$D[u] \leftarrow +\infty$$

tant que $S \neq V$ faire

Trouver $u \in V \setminus S$ tel que D[u] est minimum

$$S \leftarrow S \cup \{u\}$$

pour tous les $v \in V \setminus S$ tels que $(u, v) \in E$ faire

$$D[v] \leftarrow \min(D[v], D[u] + \ell(u, v))$$

Illustration de l'algorithme de Dijkstra

Illustration de l'algorithme de Dijkstra

Distances partielles

Définition

Soit G=(V,E) un graphe orienté avec pondération $\ell \in \mathbb{R}^+$, et $s \in S \subseteq V$. Pour tout $u \in V$, on note $d(u) = \operatorname{dist}(s,u)$. Pour tout sommet $v \notin S$, on définit

$$D(v) = \min \{ d(u) + \ell(u, v) : u \in S \text{ et } (u, v) \in E \}.$$

Justification de l'algorithme de Dijkstra (1/3)

Lemme

Soit v_0 tel que $D(v_0)$ est minimum, parmi tous les sommets dans $V \setminus S$. Alors, $D(v_0) = d(v_0)$.

Démonstration

- Soit v_0 tel que $D(v_0)$ est minimum.
- Comme $D(v_0)$ est la longueur d'un chemin de s à v_0 , on a $D(v_0) \ge d(v_0)$.
- Si $D(v_0) \leq d(v_0)$ alors la preuve est terminé.
- Sinon, supposons par l'absurde que $D(v_0) > d(v_0)$.
- Soit P un plus court chemin de s vers v_0 (son poids est alors $d(v_0)$).
- Soit x le premier sommet de P qui n'appartient pas à S.

Justification de l'algorithme de Dijkstra (2/3)

Démonstration (suite)

- Soit $y \in S$ le prédécesseur de x dans ce chemin.
- Soit P_y le sous-chemin de P de s vers y.
- P_y est un plus court chemin de s vers y (principe de sous optimalité).
- Soit P_x le sous chemin de P de s vers x.

Justification de l'algorithme de Dijkstra (3/3)

Démonstration (suite)

- La longueur de P_x est $d(y) + \ell(y, x)$.
- Ceci entraı̂ne que $D(x) \le d(y) + \ell(y, x) \le d(v_0) < D(v_0)$.
 - Première inégalité : par définition de D.
 - Deuxième inégalité : tous les poids sont ≥ 0 .
 - Troisième inégalité : par hypothèse.
- Implique $D(x) < D(v_0)$ contradiction avec le choix de $D(v_0)$.