所以 $A_1O \perp AC$ .

又由题意可知, 平面  $AA,C,C \perp$  平面 ABC, 交线为 AC, 且  $A,O \subset$  平面 AA,C,C,

所以 $A_1O$   $\bot$  平面ABC.

(II) 如图,以O为原点,OB,OC,OA,所在直线分别为x,y,z 轴建立空间直角坐标系.

由题意可知,  $A_1A = A_1C = AC = 2$ , X AB = BC,  $AB \perp BC$ ,

所以 
$$OB = \frac{1}{2}AC = 1$$
,

所



则有: 
$$\overrightarrow{A_1C} = (0,1,-\sqrt{3}), \overrightarrow{AA_1} = (0,1,\sqrt{3}), \overrightarrow{AB} = (1,1,0),$$



令 
$$y = 1$$
, 得  $x = -1$ ,  $z = -\frac{\sqrt{3}}{3}$ , 所以  $\vec{n} = (-1, 1, -\frac{\sqrt{3}}{3})$ .

$$\cos\langle \vec{n}, \overrightarrow{A_1C} \rangle = \frac{\vec{n} \cdot \overrightarrow{A_1C}}{|\vec{n}|| \overrightarrow{A_1C}|} = \frac{\sqrt{21}}{7}.$$

因为直线  $A_iC$  与平面  $A_iAB$  所成角  $\theta$  和向量 n 与  $\overline{A_iC}$  所成锐角互余,所以  $\sin\theta = \frac{\sqrt{21}}{7}$ .

(III) 
$$\begin{cases} \begin{cases} \begin{c$$

即 
$$(x_0 - 1, y_0, z_0) = \lambda(-1, 2, \sqrt{3})$$
,得 
$$\begin{cases} x_0 = 1 - \lambda \\ y_0 = 2\lambda \\ z_0 = \sqrt{3}\lambda \end{cases}$$

所以 $E(1-\lambda,2\lambda,\sqrt{3}\lambda)$ ,得 $\overrightarrow{OE}=(1-\lambda,2\lambda,\sqrt{3}\lambda)$ ,

令OE//平面 $A_1AB$ ,得 $\overrightarrow{OE} \cdot \overrightarrow{n} = 0$ ,

即 
$$-1 + \lambda + 2\lambda - \lambda = 0$$
, 得  $\lambda = \frac{1}{2}$ ,

即存在这样的点E, E为BC, 的中点.

