²²⁴₈₈ Ra ₁₃₆

1 Decay Scheme

Ra-224 mainly decays by alpha emission to the fundamental and the 241 keV levels of Rn-220. Le radium 224 se désintègre par émission alpha principalement vers le niveau fondamental et le niveau excité de 241 keV du radon 220.

2 Nuclear Data

2.1 α Transitions

	Energy keV	Probability × 100	F
$\begin{array}{c} \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	5125,84 (25) 5143,43 (24) 5255,18 (25) 5547,88 (16) 5788,87 (15)	0,0030 (5) 0,0076 (14) 0,0074 (8) 5,26 (7) 94,72 (7)	7,42 3,73 17,4 1,03

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} P_{\gamma+ce} \\ \times 100 \end{array}$	Multipolarity	α_K	$lpha_L$	α_M+	α_T
$\gamma_{1,0}(\mathrm{Rn})$	240,986 (6)	5,27 (7)	E2	0,111 (2)	0,124 (3)	0,045 (1)	0,280 (6)
$\gamma_{2,1}(\mathrm{Rn})$	292,70 (11)	0,0073 (8)	E2	0,0730 (15)	0.057(1)	0,0210(4)	0,151(3)
$\gamma_{3,1}(\mathrm{Rn})$	404,5 (1)	0,0022(5)	E1	0,0141 (3)	0,00240(5)	0,00080(2)	0,0173 (4)
$\gamma_{4,1}(\mathrm{Rn})$	422,04 (11)	0,0030(5)	[E1]	0,0129(3)	0,00220(4)	0,00070(1)	0,0158 (3)
$\gamma_{3,0}(\mathrm{Rn})$	645,44 (9)	0,0054(9)	E1	0,0055(1)	0,00090(2)	0,00030(1)	0,0067 (1)

3 Atomic Data

3.1 Rn

 $\begin{array}{lllll} \omega_K & : & 0.967 & (4) \\ \bar{\omega}_L & : & 0.428 & (17) \\ n_{KL} & : & 0.804 & (5) \end{array}$

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
X_{K}				
1-K	$K\alpha_2$	81,07		60,5
	$K\alpha_1$	83,78		100
	$K\beta_3$	94,247	}	
	$\mathrm{K}eta_1$	94,868	}	
	$K\beta_5''$	95,449	}	34,68
	$\mathrm{K}eta_2$	97,48	}	
	$K\beta_4$	97,853	} } }	11
	$KO_{2,3}$	98,357	}	
${ m X_L}$				
	$\mathrm{L}\ell$	10,137		
	$L\alpha$	$11,\!598-11,\!726$		
	$\mathrm{L}\eta$	12,855		
	$\mathrm{L}eta$	$14,\!565 - 13,\!52$		
	${ m L}\gamma$	16,77 - 17,28		

${\bf 3.1.2}\quad {\bf Auger\ Electrons}$

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	62,02 - 68,89 $75,74 - 83,79$ $89,45 - 98,39$ $5,58 - 11,48$	100 56 8 5840

4 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,4}$ $\alpha_{0,3}$ $\alpha_{0,2}$ $\alpha_{0,1}$ $\alpha_{0,0}$	5034,31 (25) 5051,58 (24) 5161,34 (25) 5448,81 (16) 5685,50 (15)	0,0030 (5) 0,0076 (14) 0,0074 (8) 5,26 (7) 94,72 (7)

5 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.
$e_{ m AL}$	(Rn)	5,58 - 11,48	0,537 (9)
e_{AK}	(Rn) KLL KLX KXY	62,02 - 68,89 75,74 - 83,79 89,45 - 98,39	0,0151 (19) } } }
ec _{1,0 K} ec _{1,0 L} ec _{1,0 M}	(Rn) (Rn) (Rn)	142,590 (12) 222,94 - 226,38 236,51 - 240,76	0,46 (2) 0,51 (2) 0,18 (1)

6 Photon Emissions

6.1 X-Ray Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Photons per 100 disint.	
XL	(Rn)	10,137 — 17,28		0,387 (8)	
$XK\alpha_2$	(Rn)	81,07		0,130(4)	$K\alpha$
$XK\alpha_1$	(Rn)	83,78		0,215 (7)	}
$XK\beta_3$	(Rn)	94,247	}		
$XK\beta_1$	(Rn)	94,868	}	0,0744 (24)	$K'\beta_1$
$XK\beta_5''$	(Rn)	95,449	}		
$XK\beta_2$	(Rn)	97,48	}		
$XK\beta_4$	(Rn)	97,853	}	0,0238(9)	$K'\beta_2$
$XKO_{2,3}$	(Rn)	$98,\!357$	}		

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(Rn)$ $\gamma_{2,1}(Rn)$ $\gamma_{3,1}(Rn)$ $\gamma_{4,1}(Rn)$ $\gamma_{3,0}(Rn)$	240,986 (6) 292,70 (11) 404,5 (1) 422,04 (11) 645,44 (9)	4,12 (4) 0,0063 (7) 0,0022 (5) 0,0030 (5) 0,0054 (9)

7 Main Production Modes

Ra - 226(p,t)Ra - 224 $Th - 228 \alpha decays$

8 References

- F. ASARO, F. STEPHENS, I. PERLMAN. Phys. Rev. 92 (1953) 1495 (Alpha-particle emission probabilities)
- R.D. LLOYD, C.W. MAYS, D.R. ATHERTON, D.O. CLARK. Report COO-225 (1962) 88 (Half-life)
- R.J. WALEN. Comp. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies)
- J.B. HURSH. J. Inorg. Nucl. Chem. 28 (1966) 2771 (Half-life)
- A. PEGHAIRE. Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray emission probabilities)
- J.C. SOARES, J.P. RIBEIRO, A. GONCALVES, F.B. GIL, J.G. FERREIRA. Comp. Rend. Acad. Sci. (Paris) 273B (1971) 985

(Alpha-particle emission probabilities)

- K.C. JORDAN, G.W. OTTO, R.P. RATAY. J. Inorg. Nucl. Chem. 33 (1971) 1215 (Half-life)
- J. DALMASSO. FRNC-TH-441 (1972) (Gamma-ray emission probabilities)
- J. DALMASSO, H. MARIA, C. YTHIER. Comp. Rend. Acad. Sci. (Paris) 277B (1973) 467 (Gamma-ray emission probabilities)
- W. KURCEWICZ, N. KAFFRELL, N. TRAUTMANN, A. PLOCHOCKI, J. ZYLICZ, M. MATUL, K. STRYCZNIEWICZ K.STRYCZNIEWICZ. Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities)
- W. KURCEWICZ, E. RUCHOWSKA, N. KAFFRELL, N. TRAUTMANN. Nucl. Instrum. Methods 146 (1977) 613

(Gamma-ray energies)

- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data Nucl. Data Tables 21 (1978) 291 (Internal conversion coefficients)
- S. SADASIVAN, V.M. RAGHUNATH. Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities)
- R. VANINBROUKX, H.H. HANSEN. Int. J. Appl. Radiat. Isot. 34 (1983) 1395 (Gamma-ray emission probabilities)
- U. SCHÖTZIG, K. DEBERTIN. Int. J. Appl. Radiat. Isot. 34 (1983) 533 (Gamma-ray emission probabilities)

- R.J. GEHRKE, V.J. NOVICK, J.D. BAKER. Int. J. Appl. Radiat. Isot. 35 (1984) 581 (Gamma-ray emission probabilities)
- G. BORTELS, D. REHER, R. VANINBROUKX. Int. J. Appl. Radiat. Isot. 35 (1984) 305 (Gamma-ray emission probabilities)
- P.B. PRICE, J.D. STEVENSON, S.W. BARWICK, H.L. RAVN. Phys. Lett. 54 (1985) 297 (Cluster decay)
- E. HOURANI, L. ROSIER, G. BERRIER-RONSIN, A. ELAYI, A.C. MUELLER, G. RAPPENECKER, G. ROTBARD, G. RENOU, A. LIEBE, L. STAB, H.L. RAVN. Phys. Lett. C44 (1991) 1424 (Cluster decay)
- W-J. LIN, G. HARBOTTLE. J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities)
- T. BABELIOWSKY, G. BORTELS. Appl. Rad. Isotopes 44 (1993) 1349 (Alpha-particle emission probabilities)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409
 (Q value)
- G. ARDISSON, M. HUSSONNOIS. Radiochim. Acta 70/71 (1995) 123 (Cluster decay)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- A. ARTNA-COHEN. Nucl. Data Sheets 80 (1997) 157 (Nuclear structure, energies)
- S.P. TRETYAKOVA, V.L. MIKHEEV. Nuovo Cim. 110 (1997) 1043 (Cluster decay)
- E. SCHÖNFELD, G. RODLOFF. PTB Report 6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report 6.11-1999-1 (1999) (K-x ray)
- H. SCHRADER. Appl. Rad. Isotopes 60 (2004) 317 (Half-life)

