# 第五章 水蒸气及其热力过程



# 本章需掌握内容

#### 基本概念:

- ① 水的pT相图 (P12)
- ② 1点2线3区5态 (P19)

#### 知识运用:

- ① 查表
- ② 基本热力过程计算

# 作业

- 5-1
- 5-3
- **5-7**
- **5-8**

# 主要内容

- §5-1 水蒸气的产生过程
- §5-2 水和水蒸气状态参数
- §5-3 水蒸气的热力过程

# 水蒸气是实际气体的代表

水蒸气 { 在湿空气中含量极小,当作理想气体 一般情况下,为实际气体,使用图表

- ▶ 18世纪,蒸汽机的发明,是唯一工质
- ◆ 直到内燃机发明,才有燃气工质
- ➡目前仍是火力发电、核电、供暖、化工的工质
- ➡ 优点: 便宜, 易得, 无毒, 膨胀性能好,传热性能好
- ◆ 是其它实际气体的代表

# 水的三态

Solid Liquid Gas 物质三种聚集状态: 固态、液态、 气态

水的三态: 冰、水、蒸汽 lce Water Steam







热力学面:以p,v,T表示的物质各种状态的曲面

# 水的热力学面



六个区: 三个单相区、三个两相区

Saturation line

# 饱和线、三相线和临界点

Triple line



四个线: 三个饱和线、一个三相线

一个点:临界点

# 临界点 Critical point

# 临界点

饱和液线与饱和气线的交点" 气液两相共存的 $p_{\text{max}}, T_{\text{max}}$ 

$$\left(\frac{\partial p}{\partial v}\right)_{T_{c}} = 0, \left(\frac{\partial^{2} p}{\partial v^{2}}\right)_{T_{c}} = 0$$



# 水的 临界 点状

$$p_{\rm c} = 22.129 {\rm MPa}$$

$$T_{\rm c} = 647.30 \text{K}$$
 (374.15°C)

$$v_{\rm c} = 0.00326 \,{\rm m}^3 / {\rm kg}$$



# P-T 和 P-v 图





- 两相区: 定p即定T,两相区的面都平行于v坐标,称为规则面,在p-T图上投影为线;
- <u>三相共存线:</u> 定*p*定T线, 在*p-T*图上为一点;
- <mark>临界点C:</mark> 标志着液相与蒸汽相区别的终止, C以外两相合并;



- $\overline{p}$  <u>液相:</u>  $\overline{p}$  定 $\overline{p}$  定 $\overline{p}$  不下降,汽相转化为液相;
- <u>流体区:</u>在C点以上的区,汽液分不清,人为定义为流体区,定p下T下降,不液化,定T时p下降,不汽化。

# 纯物质的p-T相图



水的重要特性: 当液变固(水变冰)时体积膨胀,熔 解线向左倾斜。

#### • 升华:

低于三相点温度 北方冬天晾在外边的衣服 虽然冻硬,仍可变干



思考题: 有没有500 ℃的水? 没有。t>374.15 °C 有没有-3 ℃的蒸汽? 有。

# 汽相和液相



# 因固相不流动, 更关心汽液两相

# §5-1 水蒸气的产生过程

汽化: 由液态变成气态的物理过程 (不涉及化学变化)

# 饱和状态: 汽化与凝结的动态平衡

在密闭容器中,加热液体达到一定温度T,液体汽化,同时 气体分子回到液体中凝结。刚开始汽化占优势,随着蒸气密 度的上升,返回液体凝结的分子增加。过一段时间总有汽化 分子数与凝结分子数平衡,即达到一个动态的平衡。

# 饱和状态Saturation state

饱和状态: 汽化与凝结的动态平衡

**Saturation temperature** 

饱和温度
$$T_s$$
 ——对应  
饱和压力 $p_s$ 

**Saturation pressure** 

$$T_{\rm s}$$
  $\uparrow$   $p_{\rm s}$ 

$$p_s$$
=1.01325bar  $\longrightarrow$   $T_s$ =100 °C   
青藏  $p_s$ =0.6bar  $\longrightarrow$   $T_s$ =85.95 °C

高压锅
$$p_s$$
=1.6bar  $\longrightarrow T_s$ =113.32 °C





# 水蒸气的定压发生过程











$$t < t_{\rm s}$$

$$t = t_{\rm s}$$

$$t = t_{\rm s}$$

$$t = t_{\rm s}$$

$$t > t_{\rm s}$$

#### 未饱和水

#### 饱和水

#### 饱和湿蒸气 饱和干蒸气 过热蒸气

# v = v' v' < v < v'' v = v''

$$v > v$$
"

v < v'

$$h = h^{3}$$

$$h = h$$
,  $h < h < h$ 

$$h = h$$
"

$$h > h$$
"

$$\mathbf{s} = \mathbf{s}^{s}$$

$$s = s'$$
  $s' < s < s''$ 

$$s = s^{"}$$

汽化



# 水蒸气定压发生过程说明



(1) 
$$Q = \Delta U + W = \Delta U + \int p dV$$
$$= \Delta U + p \Delta V = \Delta U + \Delta (pV) = \Delta H$$

(2) 理想气体 h = f(T)

实际气体汽化时,T = T。不变,但h增加

$$h''-h'=\gamma$$
 汽化潜热

 $\Delta S = \Delta S_{\rm f} + \Delta S_{\rm g} > 0$ 

#### 只有熵加热时永远增加

(4) 未饱和水 过冷度 讨执蒸汽

$$\Delta t_{$$
过冷  $}=t_{\mathrm{s}}-t$  过冷水

过热度 
$$\Delta t_{\rm dh} = t - t_{\rm s}$$

# p-v图, T-s图上的水蒸气定压加热过程

临界点,饱和水线和饱和汽线, 过冷水、湿蒸汽、过热蒸汽三区, 过冷水、饱和水、湿蒸汽、饱和蒸汽、过热蒸汽



# 等压线上饱和态参数

| $\boldsymbol{p}$ | $t_{s}$ | v'         | v **    | s,        | s **   |
|------------------|---------|------------|---------|-----------|--------|
| (bar)            | (°C)    | (m3/kg)    |         | kJ/(kg.K) |        |
| 0.006112         | 0.01    | 0.00100022 | 206.175 | 0.0       | 9.1562 |
| 1.0              | 99.63   | 0.0010434  | 1.6946  | 1.3027    | 7.3608 |
| <b>5.0</b>       | 151.85  | 0.0010928  | 0.37481 | 1.8604    | 6.8215 |
| 50.0             | 263.92  | 0.0012858  | 0.03941 | 2.9209    | 5.9712 |
| 221.29           | 374.15  | 0.00326    | 0.00326 | 4.429     | 4.429  |

20

# §5-2 水和水蒸气状态参数

p, T, v, h, s

水和水蒸气状态参数确定的原则

- 1. 未饱和水及过热蒸汽 确定任意两个独立参数,如: p、T
- 2. 饱和水和干饱和蒸汽 确定p或T
- 3. 湿饱和蒸汽 除p或T外, 其它参数与两相比例有关

# 两相比例由干度x确定

$$x = \frac{\text{干饱和蒸汽质量}}{\text{湿饱和蒸汽质量}} = \frac{m_{v}}{m_{v} + m_{f}}$$

#### 干饱和蒸汽

饱和水

#### 对干度x的说明:

- > x = 0 饱和水 x = 1 干饱和蒸汽
- $\rightarrow$  湿蒸汽  $0 \le x \le 1$
- > 在过冷水和过热蒸汽区域,x无意义

# 湿饱和蒸汽区状态参数的确定

如果有1kg湿蒸汽,干度为x,即有xkg饱和蒸汽, (1-x)kg饱和水。

$$h = xh'' + (1-x)h'$$

$$v = xv'' + (1-x)v'$$

$$s = xs'' + (1-x)s'$$

$$x = \frac{h - h'}{h'' - h'}$$

$$= \frac{v - v'}{v'' - v'}$$

$$= \frac{s - s'}{s'' - s'}$$

$$=\frac{s-s}{s^{"}-s^{"}}$$

已知p或T(h',v',s',h'',v'',s'')





# 水和水蒸气表

#### 两类水及水蒸气表

- 1. 饱和水和干饱和蒸气表 附表5、附表6
- 2. 未饱和水和过热蒸汽表 附表7

# 饱和水和饱和水蒸气表 (按温度排列)



| $t/^{\circ}$ C $T/K$ $p/MP_a$ $v'/m^3/kg$ $v''/m^3/kg$ $h'/kJ/kg$ $h'/$ |      |        |             |            |           |          |                                      |                |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------------|------------|-----------|----------|--------------------------------------|----------------|----------------|
| 0.01       273.16       0.000611       0.00100022       206.1750.000614       2501.0       0.00000       9.1562         100       373.15       0.1013250.0010437       1.6738       419.06       2676.3       1.3069       7.3564         200       473.15       1.5551       0.0011565       0.12714       825.4       2791.4       2.3307       6.4289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/00 | T/K    | n/MD        | 3/1-0      | v''/      | h'/      | $h''/_{l_{\bullet} I / l_{\bullet}}$ | s'/kJ/         | s''/kJ/        |
| 100       373.15       0.1013250.0010437 1.6738 419.06       2676.3 1.3069 7.3564         200       473.15       1.5551 0.0011565 0.12714 825.4       2791.4 2.3307 6.4289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I/   | ΙΙΧ    | $p / N r_a$ | v/m/kg     | $/m^3/kg$ | /KJ/Kg   | / KJ / K§                            | $(kg \cdot K)$ | $(kg \cdot K)$ |
| 100       373.15       0.1013250.0010437 1.6738 419.06       2676.3 1.3069 7.3564         200       473.15       1.5551 0.0011565 0.12714 825.4       2791.4 2.3307 6.4289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 | 273.16 | 0.000611    | 0.00100022 | 206.175   | 0.000614 | 2501.0                               | 0.0000         | 9.1562         |
| 200 473.15 1.5551 0.0011565 0.12714 825.4 2791.4 2.3307 6.4289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |             | \ \        |           |          |                                      |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |        |             | \          |           |          |                                      |                |                |
| 300 573.15 8.5917 0.001404 0.02162 1345.4 2748.4 3.2559 5.7038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |             |            |           |          |                                      |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300  | 573.15 | 8.5917      | 0.0014041  | 0.02162   | 21345.4  | 2748.4                               | 3.2559         | 5.7038         |

# 饱和水和饱和水蒸气表 (按压力排列)

| $p/MP_a$ | r/kJ/kg | t/°C   | $v'/m^3/kg$ | $m^3/kg$ | h'/kJ/kg | h''/kJ/kg | $s'/kJ/(kg \cdot K)$ | s''/kJ/<br>$(kg \cdot K)$ |
|----------|---------|--------|-------------|----------|----------|-----------|----------------------|---------------------------|
|          |         |        | 0.0010001   |          |          |           |                      |                           |
| 0.1      | 2258.2  | 99.63  | 0.0010434   | 1.6946   | 417.51   | 2675.7    | 1.3027               | 7.3608                    |
| 1.0      | 2014.4  | 179.88 | 0.0011274   | 0.19430  | 762.6    | 2777.0    | 2.1382               | 6.5847                    |
| 10       | 1315.8  | 310.96 | 0.0014526   | 60.01800 | 1408.6   | 2724.4    | 3.3616               | 5.6143                    |
|          |         |        |             |          |          |           |                      | 20                        |

# 未饱和水和过热蒸汽表(节录)



| p   |                               | 0.01 <i>MPa</i> |                            | 0.02MPa                       |              |         |  |
|-----|-------------------------------|-----------------|----------------------------|-------------------------------|--------------|---------|--|
| 饱   |                               | $t_s = 45.83$   |                            | $t_s = 60.09$                 |              |         |  |
| 和   | v' = 0.0010102 $v'' = 14.676$ |                 |                            | v' = 0.0010172 $v'' = 7.6515$ |              |         |  |
| 参   | h' = 191.84 $h'' = 258$       |                 | =2584.4                    | h' = 251.46 $h'' = 2609.6$    |              |         |  |
| 数   | s' = 0.6493 $s'' = 8.1505$    |                 | s' = 0.8321 $s'' = 7.9092$ |                               |              |         |  |
| t   | v                             | h               | S                          | $\nu$                         | h            | S       |  |
| 0   | 0.0010002                     | 0.0             | -0.0001                    | 0.0010002                     | 0.0          | -0.0001 |  |
| 40  | 0.0010078                     | <u>167.4</u>    | <u>0.5729</u>              | 0.0010078                     | 167.5        | 0.5721  |  |
| 60  | 15.34                         | 2611.3          | 8.1752                     | 0.0010171                     | <u>251.1</u> | 0.8310  |  |
| 80  | 16.27                         | 2649.3          | 8.3437                     | 8.119                         | 2647.8       | 8.0205  |  |
| 120 | 18.12                         | 2725.4          | 8.5479                     | 9.052                         | 2724.4       | 8.2261  |  |

2'

# 说明1: 表的出处和零点的规定

表依据1963年第六届国际水和水蒸气会议发表的国际骨架表编制,尽管IFC(国际公式化委员会)1967和1997年先后发表了分段拟合的水和水蒸气热力性质公式,但图表更加直观。

#### 焓、内能、熵零点的规定:

原则上可任取零点,国际上统一规定。

水的三相点 
$$T = 273.16K$$
  $u = 0$   $s = 0$ 

$$h = u + pv$$
 原则上不为0

$$p = 611.2Pa$$
  $v = 0.00100022 \text{ m}^3 / kg$   
 $h = u + pv = 0.6 J / kg = 0.0006 kJ / kg \approx 0$ 

## 说明2: 直线内插法

已知某一参数(如P)值为a、b, 其对应的另一参数值(如h)查表为m、n, 欲求P为c时h的值q, 则由直线内插法得:

$$q = m + \frac{c - a}{b - a}(n - m)$$

例: 由表知: T=373.15K时, v'=0.001043 m<sup>3</sup>/kg

T=473.15K时,v'=0.001156 m<sup>3</sup>/kg

可求得: T=400K时, v'=0.001073 m<sup>3</sup>/kg

#### 注意: 未饱和水和过热蒸汽表中

- 粗线上方代表液相未饱和
- 粗线下方代表过 热蒸汽
- 中间是饱和态, 不能内插
- 饱和态内插应用饱和态表



#### 说明3: 关于查表

对饱和水和饱和蒸汽表,可用T为序,也可以P为序,按已知参数查表。

EXP.1 北京大气压为1bar, 按P查表得, $t_s = 99.63C^\circ$  此时水达到饱和,即水开了。

EXP.2 西藏海拔3000米, 大气压为0.6bar, 查表得:

 $t_s = 89.85C^{\circ}$  在这个温度下水也开了。

**查表时先要确定在哪个区,既<u>五态</u>中的哪一态。** 

## 查表举例 (1)

查表时先要确定在五态中的哪一态。

例.1 已知:p=1MPa,试确定t=100°C, 200°C 各处于哪个状态,各自h是多少?

$$t_{\rm s}(p) = 179.916$$
°C

t=100°C <  $t_s$ , 未饱和水 h=419.74kJ/kg t=200°C >  $t_s$ , 过热蒸汽 h=2827.3kJ/kg

#### 查表举例 (2)

已知 t=250°C, 5kg 蒸气占有0.2m<sup>3</sup>容积, 试问蒸气所处状态? h=?

$$t=250$$
°C,  $v' = 0.00125145 \frac{\text{m}^3}{\text{kg}}$   
 $v'' = 0.050112 \frac{\text{m}^3}{\text{kg}}$ 

$$v = \frac{0.2}{5} = 0.04 \,\text{m}^3/\text{kg}$$
  $v' < v < v''$  湿蒸汽状态

$$x = \frac{v - v'}{v'' - v'} = \frac{0.04 - 0.0012513}{0.05002 - 0.0012513} = 0.795$$

#### **查表举例**(2)

已知 t=250°C, 5kg 蒸气占有0.2m³容积, 试 问蒸气所处状态? h=?

湿蒸汽状态 x = 0.795

t=250°C,

$$h' = 1085.3 \text{ kJ/kg}$$
  $h'' = 2800.66 \text{ kJ/kg}$ 

$$h = xh'' + (1-x)h' = 2448.2 \text{ kJ/kg}$$

在一刚性容器内充满p=0.1MPa, t=20°C的水。由于太阳照射,使其温度升为40°C,求容器承受的压力。

- (A) 1
- B 5
- **c** 10
- **D** 14

# §5-3 水蒸气的热力过程

热力过程: **p** s T v

方法: 第一、二定律基本方程和状态参数的定义是分析的基本依据,由于状态方程的复杂性,采用h-s图建立状态参数间关系.

任务:确定初终态参数;计算过程中的功和热;在T-s图上表示

# 注意与理想气体过程的区别

#### 第一定律与第二定律表达式均成立

$$\delta q = du + \delta w$$

$$\delta q = dh + \delta w_{t}$$

$$ds_{\rm iso} \ge 0$$

$$\delta w = p dv$$

准平衡 
$$\frac{\delta w = p d v}{\delta w_{\rm t} = -v d p}$$

#### 可逆

$$\delta q = Tds$$

#### 理想气体特有的性质和表达式不能用

$$pv = R_g T$$

$$u = f(T)$$

$$h = f(T)$$

$$c_{\rm p} - c_{\rm v} = R_g$$

$$\Delta s = c_{\rm p} \ln \frac{T_2}{T_1} - R_g \ln \frac{p_2}{p_1}$$

$$c_{\rm p} = \frac{\kappa}{\kappa - 1} R_{\rm g}$$

$$c_{\rm v} = \frac{1}{\kappa - 1} R_g$$

# 水蒸气的定压(Isobaric)过程

#### 锅炉、换热器

$$q = \Delta h$$

$$w_t = 0$$

例:锅炉中,水从30°C, 4MPa,定压加热到450°C t<sub>s</sub>(4MPa)=250.33°C





# 水蒸气的定压过程

例: 水从30°C, 4MPa, 定压加热到450°C

$$q = h_2 - h_1 = 3201.83 \text{kJ/kg}$$



$$h_1 = 129.37 \text{ kJ/kg } s$$
  $h_2 = 3331.2 \text{ kJ/kg} s$ 

#### 水蒸气的等熵过程 汽轮机

例: 汽轮机  $p_1 = 4$ MPa  $t_1 = 450$ °C

$$p_2 = 0.005 \text{MPa}$$

$$p_2 = 0.005 \text{MPa}$$
  $w_t = ? = h_1 - h_2$ 



$$h_1 = 3330.7 \text{ kJ/kg}$$

$$s_2 = s_1$$

$$s_1 = 6.9379 \text{kJ/kg.K}$$

#### 由pz查表

$$s_2 = 0.4762 \text{kJ/kg.K}$$

$$s_2'' = 8.3952 \text{kJ/kg.K}$$

# 汽轮机中水蒸气的等熵过程

例: 汽轮机 
$$p_1 = 4$$
MPa  $t_1 = 450$ °C

$$p_2 = 0.005 \text{MPa}$$
  $w_t = h_1 - h_2$ 

$$w_{\rm t} = h_1 - h_2$$



$$x_2 = \frac{s_2 - s_2}{s_2'' - s_2} = 0.8160$$

$$h_2' = 137.77 \text{kJ/kg}$$

$$h_2^{"} = 2561.2 \text{kJ/kg}$$

$$h_2 = x_2 h_2'' + (1 - x_2) h_2' = 2115.3 \text{kJ/kg}$$

# 课堂练习:

10 MPa的过冷水, 定压加热到500 ℃, 然后等熵膨胀到0.5MPa,接着等压加热到500 ℃,接着等熵膨胀到0.1 MPa,然后在凝汽器中被冷却至饱和液体,最后由水泵增压至10 MPa,构成循环。请在T-s图中画出过程



42

# 第五章小结

- 1、熟悉pT相图
- 2、熟悉1点2线3区5态
- 3、会查图表
- 4、基本热力过程在p-v、T-s图上的表示, 计算 q、 $w_t$

# 第五章习题课

#### 例5-1

#### 已知 t=300°C, p=0.8MPa, 试确定状态? h=?

$$t_s(p) = 170.444$$
°C<  $t$  过热状态

$$h_{0.5} = 3063.6 \text{ kJ/kg}$$

$$h_{1.0} = 3050.4 \text{ kJ/kg}$$

$$\frac{0.8 - 0.5}{1.0 - 0.5} = \frac{h - h_{0.5}}{h_{1.0} - h_{0.5}}$$

$$h_{NIST} = 3056.9 \, \text{kJ/kg}$$

$$h = 3055.68 \text{ kJ/kg}$$

# 例5-2

将1kg, $p_1$ =0.6MPa, $t_1$ =200°C的蒸汽定压下加热到 $t_2$ =300°C

- (1)  $q_{\rm p}$ ,  $\Delta u_{\rm p}$
- (2)加热后蒸汽在气缸中 定熵 膨胀到 $p_3=0.05$ MPa,求 $w_p$ 。



#### 解: 画h-s图如上图。

#### (1) 1点状态参数:

$$p_1 = 0.6MPa$$
  $t_1 = 200^{\circ}C$   
 $h_1 = 2849.6kJ/kg$   $v_1 = 0.35197m^3/kg$ 

#### 2点状态参数:

$$p_2 = 0.6MPa$$
  $t_2 = 300^{\circ}C$   
 $h_2 = 3061kJ/kg$   $v_2 = 0.43436m^3/kg$   
 $q_p = h_2 - h_1 = 211.4kJ/kg$   
 $\Delta u = h_2 - h_1 - p_1(v_2 - v_1) = 162kJ/kg$ 

#### (2) 3点状态参数:

$$p_3 = 0.05MPa$$

$$h_3 = 2566.8kJ/kg$$
  $v_3 = 3.1305m^3/kg$ 

$$w_p = h_2 - h_3 - (p_2 v_2 - p_3 v_3) = 390.1 kJ / kg$$
?