Algorithms for Computational Logic

Summary

Contents

1	SAT and Modeling with SAT	2
	1.1 Cardinality Constraints	2
	1.1.1 AtMost1	2
	1.1.2 General Cardinality Constraints	3
2	Optimization problems and SAT-Based Problem Solving	6
3	Satisfiability Modulo Theories	7
4	Answer Set Programming	8

SAT and Modeling with SAT

1.1 Cardinality Constraints

In order to handle cardinality constraints we have two options: encode the cardinality constraints to CNF and use a SAT solver, or use a pseudo boolean (PB) solver.

1.1.1 AtMost1

- $\sum_{j=1}^{n} x_j = 1$ can be encoded with $\left(\sum_{j=1}^{n} x_j \leq 1\right) \wedge \left(\sum_{j=1}^{n} x_j \geq 1\right)$
- $\sum_{j=1}^{n} x_j \ge 1$ can be encoded with $(x_1 \lor x_2 \lor ... \lor x_n)$
- $\sum_{j=1}^{n} x_j \leq 1$ can be encoded with:
 - Pairwise encoding
 - Sequential counter encoding
 - Bitwise encoding

Sequential Counter

In order to realize this encoding, we need to add new variables s_i for the fact "there is a 1 on some position 1.i":

$$s_i$$
 is true if $\sum_{j=1}^i x_j \ge 1$

Encoding $\sum_{j=1}^{n} x_j \leq 1$ with sequential counter:

$$(\neg x_1 \lor s_1) \land (\neg x_i \lor s_i), i \in 2..n - 1 \land (\neg s_{i-1} \lor s_i), i \in 2..n - 1 \land (\neg x_i \lor \neg s_{i-1}), i \in 2..n$$

If $x_j = 1$, then all s_i variables are assigned and all other x variables must take value 0. There are $\mathcal{O}(n)$ clauses and $\mathcal{O}(n)$ auxiliary variables.

Bitwise Encoding

In bitwise encoding, we represent the constraint $\sum_{j=1}^{n} x_j \leq 1$ by encoding the index of the potential true variable in binary. For this, we add new auxiliary variables:

$$v_0, ... v_r - 1; \ r = \lceil \log n \rceil \text{ (with } n > 1)$$

Each variable x_j is assigned a unique binary number that represents its index. Then, for each variable x_j with binary index representation i, we create clauses that enforce the condition:

- If $x_j = 1$, assignment to v_i variables must encode j-1, and all other x variables must take value 0
- If all $x_i = 0$, any assignment to v_i variables is consistent

For example, $x_1 + x_2 + x_3 \le 1$:

$$\frac{j-1}{x_1} \quad \frac{v_1 v_0}{00} \qquad \qquad (\neg x_1 \lor \neg v_1) \land (\neg x_1 \lor \neg v_0) \\
x_2 \quad 1 \quad 01 \\
x_3 \quad 2 \quad 10$$

$$(\neg x_1 \lor \neg v_1) \land (\neg x_1 \lor \neg v_0) \\
(\neg x_2 \lor \neg v_1) \land (\neg x_2 \lor v_0) \qquad \text{There}$$

are $\mathcal{O}(n \log n)$ clauses and $\mathcal{O}(\log n)$ auxiliary variables

1.1.2 General Cardinality Constraints

Constraints of the form $\sum_{j=1}^{n} x_j \leq k$ or $\sum_{j=1}^{n} x_j \geq k$ can be added with:

- Sequential Counters
- BDDs
- Sorting Networks
- Cardinality Networks
- Totalizer

Sequential Counter Encoding

For each variable x_i , create k additional variables $s_{i,j}$ that are used as counters:

- $s_{i,j} = 1$ if at least j variables $\{x_1...x_i\}$ are assigned value 1
- $s_{i,j} = 0$ if at most j 1 variables $\{x_1...x_i\}$ are assigned value 1

Encoding:

Totalizer Encoding

In this encoding we count in unary how many of the n variables $(x_1...x_n)$ are assigned to 1. It can be visualized as a tree:

- Each node is (name : variable : sum)
- Root node has the output variables $(o_1...o_n)$ that count how many variables are assigned to 1
- Literals are at the leaves
- Each node counts in unary how many leaves are assigned to 1 in its subtree
- Example: if $b_2 = 1$, then at least 2 of the leaves (x_3, x_4, x_5) are assigned to 1

$$(O:o_1,o_2,o_3,o_4,o_5:5)$$
 $(A:a_1,a_2:2)$
 $(B:b_1,b_2,b_3:3)$
 $(C:x_1:1)$
 $(D:x_2:1)$
 $(E:x_3:1)$
 $(F:f_1,f_2:2)$
 $(G:x_4:1)$

To encode $x_1 + x_2 + x_3 + x_4 + x_5 \le 3$ just set $o_4 = 0$ and $o_5 = 0$. Encoding:

$$\bigwedge_{\substack{0 \leq \alpha \leq n_2 \\ 0 \leq \beta \leq n_3 \\ 0 \leq \sigma \leq n_1 \\ \alpha + \beta = \sigma}} \neg q_\alpha \vee \neg r_\beta \vee p_\sigma \quad \text{where, } p_0 = q_0 = r_0 = 1$$

There are $\mathcal{O}(n\log n)$ new variables and $\mathcal{O}(n^2)$ new clauses

Optimization problems and SAT-Based Problem Solving

Satisfiability Modulo Theories

Answer Set Programming