Seaborn

Types: 1.Figure Level 2.Axis Level

Classification: 1. Relational Plot 2. Distribution Plot 3. Categorical Plot 4. Regression Plot 5. Matrix plot 6. Multiplots

1. Relational Plot

Scatter Plot

```
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
```

tips =sns.load_dataset('tips')

tips.head()

	total_bill	tip	sex	smoker	day	time	size	П
0	16.99	1.01	Female	No	Sun	Dinner	2	ılı
1	10.34	1.66	Male	No	Sun	Dinner	3	
2	21.01	3.50	Male	No	Sun	Dinner	3	
3	23.68	3.31	Male	No	Sun	Dinner	2	
4	24.59	3.61	Female	No	Sun	Dinner	4	

Next steps: Generate code with tips View recommended plots

```
sns.scatterplot(data=tips,x='total_bill', y='tip')
plt.show()
```



```
#relplot -> Figure Level ->Square Shape
sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter")
plt.show()
```


sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter",hue='sex')
plt.show()

sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter",hue='sex',style='time')
plt.show()

sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter",hue='sex',style='size')
plt.show()

sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter",col='sex')
plt.show()

sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter",row='sex',col='smoker')
plt.show()


```
sns.relplot(data=tips,x='total_bill', y='tip',kind="scatter",row='day',col='sex')
plt.show()
```


LinePlot

```
gap = px.data.gapminder()
gap.head()
temp =gap[gap['country']=="India"]
sns.lineplot(data=temp,x='year',y='lifeExp')
```


sns.relplot(data=temp,x='year',y='lifeExp',kind='line')
plt.show()

temp1=gap[gap['country'].isin(['India','Pakistan','China','Germany','Brazil'])]
temp1.head()

	country	continent	year	lifeExp	рор	gdpPercap	iso_alpha	iso_num
168	Brazil	Americas	1952	50.917	56602560	2108.944355	BRA	76
169	Brazil	Americas	1957	53.285	65551171	2487.365989	BRA	76
170	Brazil	Americas	1962	55.665	76039390	3336.585802	BRA	76
171	Brazil	Americas	1967	57.632	88049823	3429.864357	BRA	76
172	Brazil	Americas	1972	59.504	100840058	4985.711467	BRA	76
4								→

Next steps: Generate code with temp1 View recommended plots

sns.relplot(data=temp1,x='year',y='lifeExp',kind='line',hue="country")
plt.show()

sns.relplot(data=temp1,x='year',y='lifeExp',kind='line',hue="country",style="continent")
plt.show()

sns.relplot(data=gap,x='lifeExp',y='gdpPercap',kind='scatter',col='year',col_wrap=3)
plt.show()


```
sns.relplot(data=gap,x='lifeExp',y='gdpPercap',kind='scatter')
plt.show()
```


Distribution Plots

Histplot

#Univariate histogram
sns.histplot(data=tips,x='total_bill')
plt.show()

#Univariate histogram
sns.displot(kind='hist',data=tips,x='total_bill')
plt.show()

#hue
sns.displot(kind='hist',data=tips,x='total_bill',hue='sex')
plt.show()

#bins
sns.displot(kind='hist',data=tips,x='total_bill',bins=20)
plt.show()

sns.displot(kind='hist',data=tips,x='day')
plt.show()

#element -> step
sns.displot(kind='hist',data=tips,x='total_bill',hue='sex',element='step')
plt.show()

titanic=sns.load_dataset('titanic')
titanic.head()

	survived	рс	lass	sex	age	sibsp	parch	fare	embarked	class	who	adu]
0	C		3	male	22.0	1	0	7.2500	S	Third	man	
1	1		1	female	38.0	1	0	71.2833	С	First	woman	
2	1		3	female	26.0	0	0	7.9250	S	Third	woman	
3	1		1	female	35.0	1	0	53.1000	S	First	woman	
4	C		3	male	35.0	0	0	8.0500	S	Third	man	
Next ste	eps: Gen	erate	code w	/ith tita	anic		View rec	ommende	ed plots			

 $\verb|titanic.dropna(inplace=True)|\\$

```
survived
                0
                0
pclass
sex
                0
age
sibsp
               0
                0
                0
parch
fare
                0
embarked
               0
class
                0
who
adult_male
                0
               0
deck
embark_town
               0
alive
                0
alone
                0
dtype: int64
```

titanic.isnull().sum()

sns.displot(kind='hist',data=titanic,x='age',element='step')
plt.show()

sns.displot(kind='hist',data=titanic,x='age',hue='sex',element='step')
plt.show()

#faceting using row and col
sns.displot(kind='hist',data=titanic,x='age',element='step',col='sex')
plt.show()

Kdeplot

#kdeplot
sns.kdeplot(data=tips,x='total_bill')
plt.show()

#kdeplot -> fig level
sns.displot(kind='kde',data=tips,x='total_bill',aspect=2)
plt.show()


```
#hue
sns.kdeplot(data=tips,x='total_bill',hue='sex')
plt.show()
```


#hue -> fill
sns.kdeplot(data=tips,x='total_bill',hue='sex',fill=True)
plt.show()

#bivariate histogram
sns.histplot(data=tips,x='total_bill', y='tip',color='r')
plt.show()

#bivariate kdeplot
sns.kdeplot(data=tips,x='total_bill',y='tip')
plt.show()

Categorical Plots

Categorical Scatter plot: 1.Stripplot 2.swarmplot

#Strip plot
tips.head()

	total_bill	tip	sex	smoker	day	time	size	Ш
0	16.99	1.01	Female	No	Sun	Dinner	2	th
1	10.34	1.66	Male	No	Sun	Dinner	3	
2	21.01	3.50	Male	No	Sun	Dinner	3	
3	23.68	3.31	Male	No	Sun	Dinner	2	
4	24.59	3.61	Female	No	Sun	Dinner	4	

Next steps: Generate code with tips View recommended plots

```
sns.stripplot(data=tips,x='day',y='total_bill')
plt.show()
```


#jitter
sns.stripplot(data=tips,x='day',y='total_bill',jitter=False)
plt.show()


```
#using catplot ->fig. level
sns.catplot(kind="strip", data=tips, x='day', y='total_bill')
plt.show()
```


#jitter
sns.catplot(kind="strip", data=tips, x='day', y='total_bill',jitter=0.1)
plt.show()

#hue
sns.catplot(kind="strip", data=tips, x='day', y='total_bill',hue='sex')
plt.show()

#swarmplot
sns.catplot(kind="swarm", data=tips, x='day', y='total_bill')
plt.show()

#hue
sns.catplot(kind="swarm", data=tips, x='day', y='total_bill',col='sex')
plt.show()

2.Distribution: 1.Boxplot 2.Violinplot

#Boxplot
sns.boxplot(data=tips,x='sex',y='total_bill')
plt.show()

sns.catplot(kind='box',data=tips,x='day',y='total_bill')
plt.show()

#hue
sns.catplot(kind='box',data=tips,x='day',y='total_bill',hue='sex')
plt.show()

sns.catplot(kind='box',data=tips,y='total_bill')
plt.show()

#col
sns.catplot(kind='box',data=tips,x='day',y='total_bill',col='sex')
plt.show()

#Violinplot =(Boxplot + KDEplot)
sns.violinplot(data=tips,x='day',y='total_bill')
plt.show()

#hue
sns.catplot(kind='violin',data=tips,x='day',y='total_bill',hue='sex',split=True)
plt.show()

Estimate plot: 1.Barplot 2.Pointplot 3.Countplot

```
#barplot
sns.barplot(data=tips,x='sex',y='total_bill')
plt.show()
```


#barplot
sns.catplot(data=tips,x='sex',y='tip',kind='bar')
plt.show()

#hue
sns.catplot(kind='bar',data=tips,x='sex',y='total_bill',hue='smoker')
plt.show()

#estimator
import numpy as np
sns.catplot(kind='bar',data=tips,x='sex',y='total_bill',hue='smoker',estimator=np.median)
plt.show()

#pointplot
sns.catplot(kind='point',data=tips,x='sex',y='total_bill')
plt.show()

#countplot
sns.catplot(kind='count',data=tips,x='sex')
plt.show()

#hue
sns.catplot(kind='count',data=tips,x='sex',hue='smoker')
plt.show()

Matrix Plot

1.Heatmap

gap.head()

	country	continent	year	lifeExp	рор	gdpPercap	iso_alpha	iso_num	
0	Afghanistan	Asia	1952	28.801	8425333	779.445314	AFG	4	ıl.
1	Afghanistan	Asia	1957	30.332	9240934	820.853030	AFG	4	
2	Afghanistan	Asia	1962	31.997	10267083	853.100710	AFG	4	
3	Afghanistan	Asia	1967	34.020	11537966	836.197138	AFG	4	
4	Afghanistan	Asia	1972	36.088	13079460	739.981106	AFG	4	

Next steps: Generate code with gap View recommended plots

data_heat_map=gap.pivot(index='country',columns='year',values='lifeExp')

plt.figure(figsize=(15,15))
sns.heatmap(data=data_heat_map)
plt.show()


```
#annot
x=gap[gap['continent']=='Asia'].pivot(index='country',columns='year',values='lifeExp')
plt.figure(figsize=(15,15))
sns.heatmap(data=x,annot=True,linewidths=0.5,cmap='viridis')
plt.show()
```



```
#annot
x=gap[gap['continent']=='Asia'].pivot(index='country',columns='year',values='lifeExp')
plt.figure(figsize=(15,15))
sns.heatmap(data=x,annot=True,linewidths=0.5,cmap='summer')
plt.show()
```


2.Clustermap

iris=px.data.iris()

iris.head()

	sepal_length	sepal_width	petal_length	petal_width	species	species_id	\blacksquare
0	5.1	3.5	1.4	0.2	setosa	1	ıl.
1	4.9	3.0	1.4	0.2	setosa	1	
2	4.7	3.2	1.3	0.2	setosa	1	
3	4.6	3.1	1.5	0.2	setosa	1	
4	5.0	3.6	1.4	0.2	setosa	1	
4							•

Next steps: Generate code with iris View recommended plots

sns.clustermap(iris.iloc[:,[0,1,2,3]])
plt.show()

Regression plots

tips.head()

	total_bill	tip	sex	smoker	day	time	size	П
0	16.99	1.01	Female	No	Sun	Dinner	2	ılı
1	10.34	1.66	Male	No	Sun	Dinner	3	
2	21.01	3.50	Male	No	Sun	Dinner	3	
3	23.68	3.31	Male	No	Sun	Dinner	2	
4	24.59	3.61	Female	No	Sun	Dinner	4	

Next steps: Generate code with tips View recommended plots

Types: 1.regplot 2.lmplot

```
#regplot ->axes level
sns.regplot(data=tips,x="total_bill",y="tip")
plt.show()
```


#lmplot ->figure level
sns.lmplot(data=tips,x="total_bill",y="tip")
plt.show()


```
#hue only present in lmplot
sns.lmplot(data=tips,x="total_bill",y="tip",hue='sex')
plt.show()
```


#residplot
sns.residplot(data=tips,x="total_bill",y="tip")
plt.show()

MultiGridplots

FacetGrid

```
g= sns.FacetGrid(data=tips,hue='smoker',col='day',row='time')
g.map(sns.violinplot,'sex','total_bill')
g.add_legend()
```

 $\label{lib-python3.10/dist-packages/seaborn/axisgrid.py:718: UserWarning: Userwarnings.warn(warning)$

<seaborn.axisgrid.FacetGrid at 0x7e88c1534970>


```
g= sns.FacetGrid(data=tips,col='day',row='time')
g.map(sns.boxplot,'sex','total_bill')
g.add_legend()
```

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:718: UserWarning: Us warnings.warn(warning)

<seaborn.axisgrid.FacetGrid at 0x7e88c1260550>

iris.head()

	sepal_length	sepal_width	petal_length	petal_width	species	species_id	=
0	5.1	3.5	1.4	0.2	setosa	1	ıl.
1	4.9	3.0	1.4	0.2	setosa	1	
2	4.7	3.2	1.3	0.2	setosa	1	
3	4.6	3.1	1.5	0.2	setosa	1	
4	5.0	3.6	1.4	0.2	setosa	1	
Next st	eps: Generate c	ode with iris	View rece	ommended plots			

sns.pairplot(data=iris,hue='species')
plt.show()