Método de Newton

18 de junho de 2021

1 Descrição

Considere o conjunto de n equações não lineares

$$f_j(x_1, x_2, \dots, x_n), \quad j = 1, 2, \dots, n.$$
 (1)

Essas equações podem ser reescritas de maneira concisa como

$$\mathbf{f}\left(\mathbf{x}\right) = 0\tag{2}$$

em que \mathbf{x} é o vetor coluna de variáveis independentes e \mathbf{f} o vetor coluna de funções f_j . Se \mathbf{x}_i é a *i*-ésima aproximação da solução de (2) e \mathbf{f}_i é escrita para $\mathbf{f}(\mathbf{x}_i)$, então o método de Newton é definido por

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{A}_i^{-1} \mathbf{f}_i \tag{3}$$

em que \mathbf{A}_i é a matriz Jacobiana $[\partial f_j/\partial x_k]$ calculada em \mathbf{x}_i .

2 Uma descrição mais intuitiva

O gráfico acima, que representa uma função $f_i: \mathbb{R} \to \mathbb{R}$, ajuda a ilustrar as operações envolvidas no método de Newton. Suponha que tenhamos como chute inicial o ponto x_0 e queremos encontrar a raiz da função $f_i(x)$ – ponto x^* . Se calcularmos a primeira derivada de $f_i(x_0)$, encontramos o coeficiente angular da reta tangente à função f_i no ponto x_0 . Eventualmente, $f_i'(x) = 0$, ou seja, a reta tangente à função toca o eixo das abscissas – ponto x_n . Este ponto se encontra mais à esquerda do chute inicial (x_0) , e se torna um melhor candidato a raiz; caso x_n ainda não seja raiz, podemos encontrar um x_{n+1} seguindo a mesma ideia, e proceder assim até que $|x_{n+i} - x_{n+i-1}|$ seja tão pequena que encontramos a raiz da função.

O problema, por ora, consiste em encontrarmos o valor de x_n . Lembrar que $f'_i(x_n) = \tan \alpha$, no entanto, diminui essa dificuldade: como temos x_0 , podemos calcular $f_i(x_0)$ e $f'_i(x_0)$; ademais, sabendo que $\tan \alpha = \frac{c_0}{c_0}$, vem:

$$f'_{i}(x_{0}) = \frac{co}{ca} = \frac{f_{i}(x_{0})}{x_{0} - x_{n}}$$
$$\Rightarrow x_{n} = x_{0} - \frac{f_{i}(x_{0})}{f'_{i}(x_{0})}.$$

Repare que a equação acima reproduz exatamente (3) para o caso em que tratamos apenas de uma variável e uma função.

3 Dificuldades

O método de Newton, como expresso em (3), sofre de duas dificuldades sérias: (i) calcular a matriz Jacobiana (por mais simples que as f_i 's sejam, calcular todas as derivadas parciais é bastante custoso computacionalmente); e, principalmente, (ii) o frequente fracasso em convergir sem que sejam feitas algumas alterações no processo (em casos mais complexos, as condições de convergência são muito dependentes de boas estimativas para as raízes 1). Tudo isso faz do método de Newton, como definido em (3), um algoritmo de pouca utilidade prática(Broyden, 1965, p.578).

Referências

Broyden, C. G. (1965). A Class of Methods for Solving Nonlinear Simultaneous Equations. *Mathematics of Computation*.

Burden, R. L. and Faires, J. D. (1989). *Numerical Analysis*. PWS-Kent Publishing Company, Boston, 5 edition.

 $^{^1\}mathrm{Burden}$ and Faires (1989, p.56) derivam método de Newton demonstrando desde o início como uma boa estimativa de x_0 condiciona a convergência.