

CMP9783M Neural Computing Assessment 1 Criterion Grid 2024-2025

Learning Outcome	Criterion	Pass (50-59%)	Merit (60-69%)	Distinction (>= 70%)
LO1 Understanding of the principles of artificial and biological neuronal models and knowledge of their main areas of application in vision sciences	Section I: LIF neuron model with adaptation	You have simulated correctly both LIF model with adaptation and AELIF model. The code displays some commenting. You have generated 30% of the requested plots with correct labels, and answered 30% of the questions. Your answers were vague and not of sufficient detail	You have simulated correctly both LIF model with adaptation and AELIF model. The code displays effective commenting. You have generated 70% of the requested plots with correct labels, and answered 70% of the questions. Your answers were not of sufficient detail.	You have simulated correctly both LIF model with adaptation and AELIF model. The code was well written, clean and with appropriate commenting. You have generated more than 70% of the requested plots with correct labels, and answered in sufficient detail all questions
LO2 Demonstrate the ability to design, implement and analyse the behaviour of simple neural models	Section II: Hodgkin-Huxley model as an oscillator	You have simulated correctly HH model. The code displays some commenting. You have generated 30% of the requested plots with correct labels, and answered 30% of the questions. Your answers were vague and not of sufficient detail.	You have simulated correctly HH model. The code displays effective commenting. You have generated 70% of the requested plots with correct labels, and answered 70% of the questions. Your answers were not of sufficient detail.	You have simulated correctly HH model. The code was well written, clean and with appropriate commenting. You have generated more than 70% of the requested plots with correct labels, and answered in sufficient detail all questions