

Doç. Dr. Revna ACAR VURAL

1.Ödev Alirıza BİLİR

No:18014125

17 NİSAN 2022

S1)

A)Simülasyon Kodu

```
## ED1-1.dat (active) | X | ED1-1.dat (active) | X |

*Alinza Bilir | VI 1 0 DC 0 | VE 4 0 DC 3V |

## R1 12 20k | R2 2 0 40k | R3 3 0 40k |

## D1 2 3 D1N4001 | D2 2 4 D1N4001 |

## D2 2 4 D1N4001 D (IS=28 5E-9 RS=73 5E-3 N=1.96 CJO=34 6P VJ=0.627 M=0.461 BV=60 IBV=100) |

## D1 CV I -8 8 0 0001 | Probe |

## ED1-1.dat (active) | X |

## PD1-1.dat (active) | X
```

$V_0 = f(V_l)$ gerilim transfer karakteristiği simülasyon sonucu:

$$V_{1} = \frac{R_{1}}{20k} = \frac{1.40k}{R_{2} V_{6}}$$

$$V_{0} = I.R_{2} = I.40k$$

$$I = \frac{V_{1}}{R_{1} + R_{2}} = \frac{V_{1}}{60k}$$

$$V_{6} = \frac{2}{3} V_{1}$$

=)
$$V_1 = 2V_X + 0.9405 =$$
 $V_X = \frac{V_1 - 0.9605}{2} = \frac{V_1}{2} - 0.47025$
 $V_6 = V_X + 0.627 = \frac{V_1}{2} + 0.15675$ (2)

(2)
$$0,627 = \frac{U_1}{2} + 0.15675$$
 (1) $0,627 = \frac{2}{3}V_1$
 $V_1 = 0.9405$ $V_1 = 0.94.06$

①
$$0,627 = \frac{2}{3}V_1$$

 $V_1 = 0,9405$

$$\frac{V_{1}-V_{0}}{R_{1}} = \frac{V_{0}}{R_{2}} + \frac{V_{0}-0.627}{R_{3}+R_{5}} + \frac{V_{0}-3,627}{R_{52}}$$

=)
$$\frac{V_1 - V_0}{20\xi} = \frac{V_0}{40\xi} + \frac{V_0 - 0.621}{40\xi + 73.5 \times 10^{-3}} + \frac{V_0 - 3.627}{73.5 \times 10^{-3}}$$
 (3)

(2)
$$3,627 = \frac{U_{1+}0,15675}{2}$$

 $U_{1} = 6,9405$

-8< U,<0,9405

$$V_1 = -8 = 5 V_0 = -5.33$$

0, 9405 EU, <6,9405

6,940S < U, < 8

D1; ON D13 ON

C)

IS	Saturation current (tıkama akımı)
RS	Series resistance
N	Emission coefficient
TT	Transit time
CJO	Zero-bias junction capacitance (tdD'deki jonksiyon kapasitesi)
VJ	Junction potential
M	Junction grading coefficient
EG	Activation energy:
XTI	IS temperature exponent
KF	Flicker noise coefficient
AF	Flicker noise exponent
FC	Forward bias depletion capacitance coefficient
BV	Reverse breakdown voltage
IBV	Reverse breakdown current

$$V_1 = \frac{25}{25} + 1 = 2$$
 $V_2 = 8.5 - \frac{25}{25} = 7.5$

$$V_{0-6} = \left(\frac{6-2}{10-2}\right) \left(V_{I-10}\right)$$

$$V_{0}+g=\left(\frac{-g+V_{2}}{-10+V_{2}}\right)\left(V_{I}+I_{0}\right)$$

$$\sqrt{6} + 9 = \left(\frac{-9 + 7,5}{-10 + 7,9}\right) \left(\frac{1}{4} + 10\right)$$

$$\frac{10}{RA+R_1} < 5mA$$

$$RA+R_1 > 2\xi$$

$$R_1 = 0.5 \text{ (constant)}$$

$$\frac{10}{R_{A}+R_{2}} \leq S_{A}A$$

$$\frac{10}{R_{A}+R_{2}} \leq S_{A}A$$

$$\frac{R_{2}}{R_{A}+R_{1}} = 0,6 \left(y = 1: t - s_{1}, r_{1}\right)$$

RA=1E, R2= 1,2E, B1=1E

