Definition

Sei

$$\phi_{\mu,\sigma^2}(t) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{1}{2\sigma^2}(t-\mu)^2}.$$

Dann ist

$$\Phi_{\mu,\sigma^2}(x) = \int_{-\infty}^x \phi_{\mu,\sigma^2}(t) dt$$

die Normalverteilungsfunktion.

$$X \sim N(\mu, \sigma^2)$$

$$P(X \le \sigma z + \mu) = \int_{-\infty}^{\sigma z + \mu} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds. \frac{dt}{ds}$$
Substitution $s = \frac{t-\mu}{\sigma}$

$$= S \cdot G + \mu$$

(X – 11

$$P\left(\frac{X-\mu}{\sigma}\leq Z\right)=P(Z\leq Z)=:\Phi(Z)$$

Standard normal verteilung

- Durchschnitt $\mu = 0$
- Standardabweichung $\sigma=1$
- Varianz $\sigma^2=1$

Beispiel

Es sei $X \sim N(3,4)$. Bestimme $P(X \le 4)$ und $P(X \le 2)$.

Tabelle

z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574