Tarea # 1

Algoritmos y Estructuras de Datos Avanzados/Magister en Cs. de la Comp.

Universidad del Bío-Bío

Prof: Rodrigo Torres A.

Otoño 2024

Problema Multiplicación de Matrices. Sean dos matrices, A y B, de dimensiones $n \times n$. La matriz C = $A \times B$ también es una matriz de $n \times n$ cuyo elemento (i, j) se forma multiplicando cada elemento de la *i*-ésima fila de A por el elemento correspondiente de la j-ésima columna de B y sumando los productos parciales:

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

El cálculo de cada elemento C_{ij} requiere de nmultiplicaciones. La matriz C tiene n^2 elementos, así que el tiempo total del algoritmo es $O(n^3)$. El algoritmo anterior, que llamaremos algoritmo tradicional, se desprende directamente de la definición de la multiplicación de matrices.

Sin embargo, la multiplicación de 2 matrices cuadradas puede resolverse de las siguientes maneras:

$$\left(\begin{array}{ccc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \quad \left(\begin{array}{ccc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right) \quad = \quad \left(\begin{array}{ccc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right)$$

1) Propiedad 1:

 $C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$

 $C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$

 $C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$

 $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$

2) Propiedad 2:

 $M = (A_{11} + A_{22})(B_{11} + B_{22})$

 $N = (A_{21} + A_{22})B_{11}$

 $O = A_{11}(B_{12} - B_{22})$

 $P = A_{22}(B_{21} - B_{11})$

 $Q = (A_{11} + A_{12})B_{22}$ $R = (A_{21} - A_{11})(B_{11} + B_{12})$

$$S = (A_{12} - A_{22})(B_{21} + B_{22})$$

Posteriormente se calculan las submatrices C_{ij} :

C11 = M + P - Q + S

C12 = O + Q

C21 = N + P

C22 = M + O - N + R

Se pide:

1) Usando las ideas anteriores, generar al azar las matrices A y B (considere matrices de enteros) y completar las siguiente tabla con los tiempos de ejecución¹. DR1 usa la primera propiedad, y DR2 usa la segunda (programelos en el lenguaje que estime conveniente).

	Tiempos		
	Algoritmo		
n	Tradicional	DR1	DR2
32			
64			
128			
256			
512			
1024			
2048			
4096			

2) Obtenga al menos dos conclusiones, respecto del rendimiento de los algoritmos.

¹Elija la unidad de medida de tiempo que mejor se acomode (milisegundos, segundos, minutos, etc.)

²Si para $n \ge 2048$ se excede tiempo razonables (más de unas horas) considere solamente valores de $n \le 1024$

3) Haga un estudio de comportamiento asintótico de los 2 algoritmos que creó.

Fecha de Entrega: 23 de Mayo de 2024.