Метод динамического программирования решения задачи распределения ресурсов. Постановка задачи.

Рекуррентные соотношения Беллмана.

Имеется однородный ресурс в количестве S единиц, который должен быть распределен между N предприятиями. Использование i-ым предприятием x_i единиц ресурса дает доход, определяемый значением нелинейной функции $f_i(x_i)$. Требуется найти распределение ресурсов между предприятиями, обеспечивающее максимальный доход.

$$F = \sum_{i=1}^{n} f_i(x_i) \to \max$$

$$\sum_{i=1}^{n} x_i = S, \quad x_i \ge 0, \quad i = \overline{1, n}$$

В данной задаче принятие решений является однократным, а многошаговость вводится формально. Вместо того, чтобы рассматривать допустимые варианты распределения ресурсов между n предприятиями и оценивать их эффективность, будем рассматривать следующий многошаговый процесс:

- 1. 1 шаг состоит в оценке эффективности выделения ресурса на 1-ое предприятие (первое направление);
- 2. 2 шаг: выделение ресурса на первые два предприятия;
- 3. ...
- 4. n-ый шаг: оценка эффективности распределения на n предприятий.

Следовательно, получаем n этапов, на каждом из которых состояние системы описывается объемом ресурса, подлежащим распределению между k предприятиями. Управлениями будут являться решения об объеме ресурса, выделенного k-му предприятию. Задача состоит в выборе таких управлений, при которых целевая функция принимает максимальное значение.

Для применения схемы ДП погружают данную задачу в семейство задач с любым числом шагов $k \le n$ и любым запасом ресурса $X_C \le S$.

Пусть $W_i(C)$ — максимальный доход при распределении объема C ресурса между i предприятиями, i=1,n-1.

$$W_i(C) = \max \sum_{i=1}^k f_i(x_i), \quad k = 1, n,$$

где максимум берется по всем неотрицательным x_i , таким что $x_1 + \ldots + x_k = C$. Следовательно, применение принципа оптимальности приводит к рекуррентным соотношениям:

$$W_i(C) = \max_{0 \leq x_i \leq C} \{f_i(x_i) + W_{i-1}(C - x_i)\}, \quad i = 2, n-1, \quad$$
 при \forall допустимых C

$$W_1(C) = \max_{0 \leq x_1 \leq C} \{f_1(x_1)\}, \quad$$
 при \forall допустимых $C \ (0 \leq C \leq S)$

Значение функции $W_n(C)$ вычисляется лишь для данного значения C=S:

$$W_n(S) = \max_{0 \le x_n \le S} \{ f_n(x_n) + W_{n-1}(S - x_n) \}$$

Рекуррентные соотношения позволяют вычислить значения $W_1(C)$, $W_2(C)$, ..., $W_n(C)$ при всех допустимых C и найти оптимальные политики. Оптимальный доход для исходной задачи определяется значением $W_n(S)$.

 \Rightarrow , зная $W_n(S)$, можно определить x_n^0 , соответствующее оптимальному решению:

$$x_{n-1}^0$$
 определяется из $W_{n-1}(S-x_n^0)$ x_{n-2}^0 определяется из $W_{n-2}(S-x_n^0-x_{n-1}^0)$: x_1^0 определяется из $W_1(S-x_n^0-x_{n-1}^0-\ldots-x_2^0)$