

Sequence Listing

<110> ASHKENAZI, AVI J
 BOTSTEIN, DAVID
 DODGE, KELLY H.
 GURNEY, AUSTIN L.
 KIM, KYUNG JIN
 LAWRENCE, DAVID A.
 PITTI, ROBERT
 ROY, MARGARET A
 TUMAS, DANIEL B
 WOOD, WILLIAM I.

<120> DcR3 Polypeptide, A TNFR Homolog

<130> P1134R2 REVISED

<140> US 09/157,289

<141> 1998-09-18

<150> US 60/059,288

<151> 1997-09-18

<150> US 60/094,640

<151> 1998-07-30

<160> 18

<210> 1

<211> 300

<212> PRT

<213> Homo sapiens

<400> 1

Met Arg Ala Leu Glu Gly Pro Gly Leu Ser Leu Leu Cys Leu Val

Leu Ala Leu Pro Ala Leu Leu Pro Val Pro Ala Val Arg Gly Val 20 25 30

Ala Glu Thr Pro Thr Tyr Pro Trp Arg Asp Ala Glu Thr Gly Glu
35 40 45

Arg Leu Val Cys Ala Gln Cys Pro Pro Gly Thr Phe Val Gln Arg
50 55 60

Pro Cys Arg Arg Asp Ser Pro Thr Thr Cys Gly Pro Cys Pro Pro
65 70 75

Arg His Tyr Thr Gln Phe Trp Asn Tyr Leu Glu Arg Cys Arg Tyr

Cys Asn Val Leu Cys Gly Glu Arg Glu Glu Glu Ala Arg Ala Cys 95 100 105 His Ala Thr His Asn Arg Ala Cys Arg Cys Arg Thr Gly Phe Phe 115 Ala His Ala Gly Phe Cys Leu Glu His Ala Ser Cys Pro Pro Gly 130 Ala Gly Val Ile Ala Pro Gly Thr Pro Ser Gln Asn Thr Gln Cys 140 145 Gln Pro Cys Pro Pro Gly Thr Phe Ser Ala Ser Ser Ser Ser 160 Glu Gln Cys Gln Pro His Arg Asn Cys Thr Ala Leu Gly Leu Ala Leu Asn Val Pro Gly Ser Ser Ser His Asp Thr Leu Cys Thr Ser 185 190 Cys Thr Gly Phe Pro Leu Ser Thr Arg Val Pro Gly Ala Glu Glu 200 205 Cys Glu Arg Ala Val Ile Asp Phe Val Ala Phe Gln Asp Ile Ser 215 ile Lys Arg Leu Gln Arg Leu Leu Gln Ala Leu Glu Ala Pro Glu Gly Trp Gly Pro Thr Pro Arg Ala Gly Arg Ala Ala Leu Gln Leu 245 255 Lys Leu Arg Arg Leu Thr Glu Leu Leu Gly Ala Gln Asp Gly 260 265 Ala Leu Leu Val Arg Leu Leu Gln Ala Leu Arg Val Ala Arg Met 275 Pro Gly Leu Glu Arg Ser Val Arg Glu Arg Phe Leu Pro Val His 290 295

<210> 2

<211> 1114

<212> DNA

<213> Homo sapiens

<220>

<221> Unsure

<222> 1090

<223> Unknown base

<400> 2 teegeaggeg gaceggggge aaaggaggtg geatgteggt eaggeacage 50 agggteetgt gteegegetg ageegegete teeetgetee ageaaggace 100 atgagggcgc tggaggggcc aggcctgtcg ctgctgtgcc tggtgttggc 150 getgeetgee etgetgeegg tgeeggetgt acgeggagtg geagaaacae 200 ccacctaccc ctggcgggac gcagagacag gggagcggct ggtgtgcgcc 250 cagtgeeece caggeaeett tgtgeagegg eegtgeegee gagaeageee 300 cacgacgtgt ggcccgtgtc caccgcgcca ctacacgcag ttctggaact 350 acctggagcg ctgccgctac tgcaacgtcc tctgcgggga gcgtgaggag 400 gaggcacggg cttgccacgc cacccacaac cgtgcctgcc gctgccgcac 450 eggettette gegeaegetg gtttetgett ggageaegea tegtgteeae 500 ctggtgccgg cgtgattgcc ccgggcaccc ccagccagaa cacgcagtgc 550 cageegtgee eeccaggeae etteteagee ageageteea geteagagea 600 gtgccagccc caccgcaact gcacggccct gggcctggcc ctcaatgtgc 650 caggetette etcecatgae accetgtgea ceagetgeae tggetteece 700 ctcagcacca gggtaccagg agctgaggag tgtgagcgtg ccgtcatcga 750 ctttgtggct ttccaggaca tctccatcaa gaggctgcag cggctgctgc 800 aggccetega ggccceggag ggctggggte cgacaccaag ggcgggccgc 850 gcggccttgc agctgaagct gcgtcggcgg ctcacggagc tcctgggggc 900 gcaggacggg gcgctgctgg tgcggctgct gcaggcgctg cgcgtggcca 950 ggatgcccgg gctggagcgg agcgtccgtg agcgcttcct ccctgtgcac 1000 tgatcctggc cccctcttat ttattctaca tccttggcac cccacttgca 1050 ctgaaagagg ctttttttta aatagaagaa atgaggtttn ttaaaaaaaa 1100 aaaaaaaaa aaaa 1114

<210> 3

<211> 491

<212> DNA <213> Unknown <220> <223> Unknown organism <220> <221> unsure <222> 62, 73, 86, 98 <223> unknown base <400> 3 geogagacag ecceaegacg tgtggeoegt gtecaeegeg ceaetacaeg 50 cagttetgga antaactgga genetgeege tactgnaacg teetetgngg 100 ggagcgtgag gaggaggcac gggcttgcca cgccacccac aaccgtgcct 150 geogetgeeg caeeggette ttegegeaeg etggtttetg ettggageae 200 gcategtgte cacetggtge eggegtgatt geceegggea ecceeageea 250 gaacacgcag tgcctagccg tgcccccag gcaccttctc agccagcagc 300 tccagctcag agcagtgcca gccccaccgc aactgcacgg ccctgggcct 350 ggccctcaat gtgccaggct cttcctccca tgacaccctg tgcaccagct 400 gcactggctt cccctcagc accagggtac caggagctga ggagtgtgag 450 cgtgccgtca tcgactttgt ggctttccag gacatctcca t 491 <210> 4 <211> 73 <212> DNA <213> Unknown <220> <223> Unknown organism <400> 4 geogagaeag ecceaegaeg tgtggeeegt gtecaeegeg ecaetaeaeg 50 cattetggaa etaeetggag ege 73 <210> 5 <211> 271 <212> DNA <213> Unknown <220>

```
<223> Unknown organism
 <220>
 <221> unsure
 <222> 42, 62, 73, 86, 98, 106, 120, 122, 153, 167, 184, 220, 233
 <223> unknown base
 <400> 5
  gccgagacag ccccacgacg tgtggcccgt gtccaccgcg cnactacacg 50
  cagttetgga antaactgga genetgeege tactgnaacg teetetgngg 100
  ggagcntgag gaggaggcan gngcttgcca cgccacccac aaccgcgcct 150
 gengetgeag caeeggntte ttegegeaeg etgntttetg ettggageae 200
 gcatcgtgtc cacctggtgn cggcgtgatt gcnccgggca cccccagcca 250
 gaacacgcat gcaaagccgt g 271
 <210> 6
 <211> 201
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 182
<223> unknown base
<400> 6
 gcagttctgg aactacctgg agcgctgccg ctactgcaac gtcctetgcg 50
 gggagcgtga ggaggaggca cgggcttgcc acgccaccca caaccgtgcc 100
 tgccgctgcc gcaccggctt cttcgcgcac gctggtttct gcttggagca 150
 cgcatcgtgt ccacctggtg ccggcgtgat tnccccgggc acccccagcc 200
 a 201
<210> 7
<211> 277
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
```

<220> <221> unsure <222> 142 <223> unknown base <400> 7 gaggggcccc caggagtggt ggccggaggt gtggcagggg tcaggttgct 50 ggtcccagcc ttgcaccctg agctaggaca ccagttcccc tgaccctgtt 100 cttccctcct ggctgcaggc acccccagcc agaacacgca gnccagccgt 150 gcccccagg caccttctca gccagcagct ccagctcaga gcagtgccag 200 ccccaccgca actgcacggc cctgggcctg gccctcaatg tgccaggctc 250 ttcctcccat gacaccctgt gcaccag 277 <210> 8 <211> 199 <212> DNA <213> Unknown <220> <223> Unknown organism <400> 8 gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 50 gaacacgcag gcctagccgt gcccccagg caccttctca gccagcagct 100 ccagctcaga gcagtgccag ccccaccgca actgcacggc cctgggcctg 150 gccctcaatg tgccaggctc ttcctcccat gacaccctgt gcaccagct 199 <210> 9 <211> 226 <212> DNA <213> Unknown <220> <223> Unknown organism <220> <221> unsure <222> 4, 9, 12, 165 <223> unknown base <400> 9 agengtgene encaggeace tteteageea geagtteeag eteagageag 50

tgccagccc accgcaactg cacggccctg ggcctggccc tcaatgtgcc 100
aggctcttcc tcccatgaca cgctgtgcac cagctgcact ggcttccccc 150
tcagcaccag ggtancagga gctgaggagt gtgagcgtgc cgtcatcgac 200
tttgtggctt tccaggacat ctccat 226

<211> 283 <212> DNA <213> Homo sapiens <220> <221> Unsure

<210> 10

<222> 1-283 <223> Unknown organism

<220> <221> unsure <222> 27, 64, 140 <223> unknown base

<400> 10
cttgtccacc tggtgccggc gtgattnccc gggcaccccc agccagaaca 50
cgcagtgcca gccntccccc caggcacctt ctcagccagc agctccagct 100
cagagcagtg ccagcccac cgcaactgca acgccctggn ctggccctca 150
atgtgccagg ctcttcctcc catgacaccc tgtgcaccag ctgcactggc 200
ttccccctca gcaccagggt accaggagct gaggagtgtg agcgtgccgt 250
catcgacttt gtggctttcc aggacatctc cat 283

<210> 11
<211> 21
<212> DNA
<213> Unknown

<220>
<223> Unknown organism

<400> 11
 cacgctggtt tctgcttgga g 21

<210> 12 <211> 22 <212> DNA

```
<213> Unknown
  <220>
  <223> Unknown organism
  <400> 12
  agctggtgca cagggtgtca tg 22
 <210> 13
 <211> 53
 <212> DNA
 <213> Unknown
 <220>
 <223> Unknown organism
 <400> 13
  cccaggcacc ttctcagcca gccagcagct ccagctcaga gcagtgccag 50
  CCC 53
 <210> 14
 <211> 24
 <212> DNA
 <213> Unknown
 <220>
 <223> Unknown organism
<400> 14
 acacgatgcg tgctccaagc agaa 24
<210> 15
<211> 17
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 15
 cttcttcgcg cacgctg 17
<210> 16
<211> 16
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
```

at	cacg	ccgg	cac	cag	16									
<21 <21	0 > 1 1 > 4 2 > P 3 > H	61	sapi	ens										
	0 > 1 וא		o Vo		• ••	٠								
110	l	a PI	o va.	r Ala	a va 5	1 Tr	p Ala	a Ala	a Lei		a Vai	l Gl	y Lei	u Glu 15
Let	ı Trj	p Ala	a _Ala	A Ala 20	a Hi:	s Ala	a Le	ı Pro	2 Ala		ı Val	l Ala	a Phe	● Thr 30
Pro	ту:	r Ala	a Pro	35	Pro	Gl _y	/ Sei	Thi	Cys		, Lei	ı Arg	g Glu	Tyr 45
Туг	ası	o Gin	Thr	Ala 50	Glr	n Met	: Cys	Cys	Ser 55		Cys	Ser	Pro	Gly 60
Gln	His	Ala	Lys	Val 65	Ph∈	Cys	Thr	Lys	Thr .70		Asp	Thr	Val	Cys 75
Asp	Ser	Cys	Glu	Asp 80	Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90
Pro	Glu	Cys	Leu	Ser 95	Cys	Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105
Glu	Thr	Gln	Ala	Cys 110	Thr	Arg	Glu	Gln	Asn 115	Arg	Ile	Cys	Thr	Cys 120
Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala	Leu	Ser	Lys 130	Gln	Glu	Gly	Cys	Arg 135
Leu	Суѕ	Ala	Pro	Leu 140	Arg	Lys	Суѕ	Arg	Pro 145	Gly	Phe	Gly	Val	Ala 150
Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160	Cys	Lys	Pro	Cys	Ala 165
Pro	Gly	Thr	Phe	Ser 170	Asn	Thr	Thr	Ser	Ser 175	Thr	Asp	Ile	Cys	Arg 180
Pro	His	Gln	Ile	Cys 185	Asn	Va1	Val	Ala	Ile 190	Pro	Gly	Asn	Ala	Ser 195
Arg	Asp	Ala	Val	Cys 200	Thr	Ser	Thr	Ser	Pro 205	Thr .	Arg	Ser		Ala 210

<400> 16

Pro	Gl _y	y Ala	a Val	1 His		u Pro	Glr	n Pro	220		Thr	Arg	Se 1	Gln 225
His	Th	c Gli	n Pro	230		o Glu	ı Pro	Ser	235		Pro	Ser	Thr	Ser 240
Phe	e Lei	ı Leı	ı Pro	Met 245		/ Pro	Ser	r Pro	250		Glu	Gly	' Ser	Thr 255
Gly	⁄ Asp	Phe	e Ala	Leu 260		Val	Gly	/ Leu	11e 265		Gly	Val	Thr	Ala 270
Leu	Gly	Leu	Leu	11e 275		Gly	Val	Val	Asn 280		Val	Ile	Met	Thr 285
Gln	Val	Lys	Lys	Lys 290	Pro	Leu	Cys	Leu	Gln 295		Glu	Ala	Lys	Val 300
Pro	His	Leu	Pro	Ala 305	Asp	Lys	Ala	Arg	Gly 310		Gln	Gly	Pro	Glu 315
Gln	Gln	His	Leu	Leu 320	Ile	Thr	Ala	Pro	Ser 325	Ser	Ser	Ser	Ser	Ser 330
Leu	Glu	Ser	Ser	Ala 335	Ser	Ala	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345
Asn	Gln	Pro	Gln	Ala 350	Pro	Glγ	Val	Glu	Ala 355	Ser	Gly	Ala	Glý	Glu 360
Ala	Arg	Ala	Ser	Thr 365	Gly	Ser	Ser	Asp	Ser 370	Ser	Pro	Gly	Gly	His 375
Gly	Thr	Gln	Val	Asn 380	Val	Thr	Cys	Ile	Val 385	Asn	Val	Cys	Ser	Ser 390
Ser	Asp	His	Ser	Ser 395	Gln	Cys	Ser	Ser	Gln 400	Ala	Ser	Ser	Thr	Met 405
Gly	Asp	Thr	Asp	Ser 410	Ser	Pro	Ser	Glu	Ser 415	Pro	Lys	Asp	Glu	Gln 420
Val	Pro	Phe	Ser	Lys 425	Glu	Glu	Cys		Phe 430	Arg	Ser	Gln		Glu 435
Thr	Pro	Glu	Thr	Leu 440	Leu	Gly	Ser		Glu 445	Glu	Lys	Pro		Pro 450
Leu	Gly	Val		Asp 455	Ala	Gly	Met		Pro 460	Ser				

<211> 293 <212> PRT														
<213> Homo sapiens														
			Leu	Leu 5		s Cys	s Ala	. Leu	Val		Leu	Asp	Ile	Ser 15
Ile	Lys	Trp	Thr	Thr 20		Glu	ı Thr	Phe	Pro 25		Lys	Tyr	Leu	His 30
Tyr	Asp	Glu	Glu	Thr 35		His	Gln	Leu	Leu 40		Asp	Lys	Cys	Pro 45
Pro	Gly	Thr	Tyr	Leu 50		Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60
Val	Cys	Ala	Pro	Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75
Thr	Ser	Asp	Glu	Cys 80	Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90
Gln	Tyr	Val	Lys	Gln 95	Glu	Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105
Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr	Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120
				125			Phe		130					135
				140			Lys	•	145					150
				155			Ala		160					165
Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys	Gly	Asn .	Ala	Thr 180
His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn		Glu 190	Ser	Thr	Gln :		Cys 195
				200			Glu		205					210
Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn		Leu 220	Ser '	Val :	Leu '		Asp 225

<210> 18

Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 230

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Lys 255

Leu Trp Lys His Gln Asn Lys Ala Gln Asp Ile Val Lys Lys Ile 260

Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile 285

Gly His Ala Asn Leu Thr Phe Glu 290