

Graph Algorithms

9 December 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 9: Graph Algorithms

- **1.** Know basic terminology from graph theory, including types of graphs.
- **2.** Know adjacency matrix and adjacency list representations and their performance characteristica.
- 3. Know graph-traversal based algorithm, including efficient implementations.
- **4.** Be able to proof correctness of graph-traversal-based algorithms.
- **5.** Know algorithms for maximum flows in networks.
- **6.** Be able to model new algorithmic problems as graph problems.

Outline

9 Graph Algorithms

- 9.1 Introduction & Definitions
- 9.2 Graph Representations
- 9.3 Graph Traversal
- 9.4 BFS and DFS
- 9.5 Advanced Uses of DFS
- 9.6 Network flows
- 9.7 The Ford-Fulkerson Method

9.1 Introduction & Definitions

Graphs in real life

- ▶ a graph is an abstraction of *entities* with their (pairwise) *relationships*
- abundant examples in real life (often called network there)
 - ▶ social networks: e.g. persons and their friendships, . . . Five/Six? degrees of separation
 - physical networks: cities and highways, roads networks, power grids etc., the Internet, . . .
 - ▶ content networks: world wide web, ontologies, . . .

▶ ...

Many More examples, e.g., in Sedgewick & Wayne's videos:

https://www.coursera.org/learn/algorithms-part2

Flavors of Graphs

Since graphs are used to model so many different entities and relations, they come in several variants

Property	Yes	No
edges are one-way ≤ 1 edge between u and v edges can lead from v to v	directed graph (digraph) simple graph with loops (Schlage, Schlage)	undirected graph multigraph / with parallel edges
edges have weights	(edge-) weighted graph	unweighted graph

- on any combination of the above can make sense ...
- ► Synonyms:
 - vertex ("Knoten") = node = point = "Ecke"
 - edge ("Kante") = arc = line = relation = arrow = "Pfeil"
 - ▶ graph = network

Graph Theory

- ▶ default: unweighted, undirected, loop-free & simple graphs
- ► *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*

 $ightharpoonup E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of V: $[V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Graph Theory

- ▶ default: unweighted, undirected, loop-free & simple graphs
- ► *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{\{0,1\},\{1,2\},\{1,4\},\{1,3\},\{0,2\},$$

$$\{2,4\},\{2,3\},\{3,4\},\{3,5\},\{4,5\}\}.$$

Graphical representation

like so . . .

Graph Theory

- ▶ default: unweighted, undirected, loop-free & simple graphs
- ightharpoonup *Graph* G = (V, E) with
 - ▶ *V* a finite of *vertices*
 - $ightharpoonup E \subseteq [V]^2$ a set of edges, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{\{0,1\},\{1,2\},\{1,4\},\{1,3\},\{0,2\},$$

$$\{2,4\},\{2,3\},\{3,4\},\{3,5\},\{4,5\}\}.$$

Graphical representation

like so . . .

...or so

(same graph)

Digraphs

- ▶ default digraph: unweighted, <u>loop-free</u> & simple
- ▶ *Digraph (directed graph)* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v, v) : v \in V\}$ a set of (*directed*) edges, $V^2 = V \times V = \{(x, y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Digraphs

- ▶ default digraph: unweighted, loop-free & simple
- ▶ *Digraph (directed graph)* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v,v) : v \in V\}$ a set of (*directed*) edges, $V^2 = V \times V = \{(x,y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{(0,2),(1,0),(1,4),(2,1),(2,4),$$

$$(3,1),(3,2),(4,3),(4,5),(5,3)\}$$

Graphical representation

Graph Terminology

Undirected Graphs

- \blacktriangleright *V*(*G*) set of vertices, *E*(*G*) set of edges
- write uv (or vu) for edge $\{u, v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ► *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- **▶** *uv* for (*u*, *v*)
- ightharpoonup iff $(u,v) \in E \lor (v,u) \in E$
- ightharpoonup in-/out-neighbors $N_{\rm in}(v)$, $N_{\rm out}(v)$
- ▶ in-/out-degree $d_{in}(v)$, $d_{out}(v)$

Graph Terminology

Undirected Graphs

- ightharpoonup V(G) set of vertices, E(G) set of edges
- write uv (or vu) for edge $\{u, v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ▶ *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- \blacktriangleright *uv* for (u, v)
- ightharpoonup iff $(u,v) \in E \lor (v,u) \in E$
- ▶ in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- ► in-/out-degree $d_{in}(v)$, $d_{out}(v)$

Kantenzus

- ▶ walk w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n) : w[i]w[i+1] \in E$
- ightharpoonup is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- *edge-simple* walk: no edge used twice
- ► cycle c is a closed path, i. e., c[0] = c[n] (ges closseen Weg, 2xhol, Kreiz (2xholus)

Graph Terminology

Undirected Graphs

- \blacktriangleright *V*(*G*) set of vertices, *E*(*G*) set of edges
- ightharpoonup write uv (or vu) for edge $\{u, v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ► *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- **▶** *uv* for (*u*, *v*)
- ightharpoonup iff $(u,v) \in E \lor (v,u) \in E$
- ▶ in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- ▶ in-/out-degree $d_{in}(v)$, $d_{out}(v)$
- ▶ *walk* w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n) : w[i]w[i+1] \in E$
- ightharpoonup is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- ▶ *edge-simple* walk: no edge used twice
- *cycle c* is a closed path, i. e., c[0] = c[n]
- ► *G* is *connected* iff for all $u \neq v \in V$ there is a path from u to v
- ► *G* is *acyclic* iff \nexists cycle (of length $n \ge 1$) in *G*
- strongly connected for digraphs (weakly connected = connected ignoring directions)

Typical graph-processing problems

- ► **Path**: Is there a path between *s* and *t*? **Shortest path**: What is the shortest path (distance) between *s* and *t*?
- ► Cycle: Is there a cycle in the graph?

 Euler tour: Is there a cycle that uses each edge exactly once?

 Hamilton(ian) cycle: Is there a cycle that uses each vertex exactly once.
- Connectivity: Is there a way to connect all of the vertices?MST: What is the best way to connect all of the vertices?Biconnectivity: Is there a vertex whose removal disconnects the graph?
- ▶ Planarity: Can you draw the graph in the plane with no crossing edges?
- ► **Graph isomorphism**: Are two graphs the same up to renaming vertices?

 \sim can vary a lot, despite superficial similarity of problems

Challenge: Which of these problems
can be computed in (near) linear time?
in reasonable polynomial time?
are intractable?

Tools to work with graphs

- Convenient GUI to edit & draw graphs: yEd live yworks.com/yed-live
- ▶ *graphviz* cmdline utility to draw graphs
 - Simple text format for graphs: DOT

dot -Tpdf graph.dot -Kfdp > graph.pdf

- graphs are typically not built into programming languages, but libraries exist
 - e.g. part of Google Guava for Java
 - they usually allow arbitrary objects as vertices
 - aimed at ease of use

9.2 Graph Representations

Graphs in Computer Memory

- ► We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a *representation* for graphs.
 - which is better depends on the required operations

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a representation for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u,v) Test whether $uv \in E$
- Adjacency list of v (iterate through (out-) neighbors of v)
- most others can be computed based on these

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a representation for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u,v)
 Test whether $uv \in E$
- ▶ adj (v)Adjacency list of v (iterate through (out-) neighbors of v)
- most others can be computed based on these

Conventions:

- ▶ (di)graph G = (V, E) (omitted if clear from context)
- ightharpoonup n = |V|, m = |E|
- in implementations assume V = [0..n)

(if needed, use symbol table to map complex objects to V)

Adjacency Matrix Representation

- ▶ adjacency matrix $A \in \{0,1\}^{n \times n}$ of G: matrix with $A[u,v] = [uv \in E] = \begin{cases} 1 & \text{if } E \\ 0 & \text{south} \end{cases}$
 - works for both directed and undirected graphs (undirected $\rightsquigarrow A = A^T$ symmetric)
 - can use a weight w(uv) or multiplicity in A[u,v] instead of 0/1
 - ightharpoonup can represent loops via A[v, v]

Example:

$$A = \begin{cases} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Adjacency Matrix Representation

- ▶ adjacency matrix $A \in \{0,1\}^{n \times n}$ of G: matrix with $A[u,v] = [uv \in E]$
 - works for both directed and undirected graphs (undirected $\rightsquigarrow A = A^T$ symmetric)
 - can use a weight w(uv) or multiplicity in A[u, v] instead of 0/1
 - ightharpoonup can represent loops via A[v, v]

Example:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

- \bigcirc $O(n^2)$ (bits of) space wasteful for sparse graphs
- \bigcap adj (v) iteration takes O(n) (independent of d(v))

Adjacency List Representation

- ▶ Store a linked list of neighbors for each vertex *v*:
 - ► *adj*[0..*n*) bag of neighbors (as linked list)
 - ▶ undirected edge $\{u, v\} \rightsquigarrow v \text{ in } adj[u] \text{ and } u \text{ in } adj[v]$
 - weighted edge $\underline{uv} \rightsquigarrow \text{store pair } (v, w(uv)) \text{ in } adj[u]$
 - multiple edges and loops can be represented

Adjacency List Representation

- ▶ Store a linked list of neighbors for each vertex *v*:
 - ► *adj*[0..*n*) bag of neighbors (as linked list)
 - undirected edge $\{u, v\} \rightsquigarrow v \text{ in } adj[u] \text{ and } u \text{ in } adj[v]$
 - weighted edge $uv \rightsquigarrow \text{store pair } (v, w(uv)) \text{ in } adj[u]$
 - multiple edges and loops can be represented

$$\Theta(n+m)$$
 (words of) space for any graph ($\ll \Theta(n^2)$ bits for moderate m)

→ de-facto standard for graph algorithms

Graph Types and Representations

- Note that adj matrix and lists for undirected graphs effectively are representation of directed graph with directed edges both ways
 - conceptually still important to distinguish!
- multigraphs, loops, edge weights all naturally supported in adj lists
 - good if we allow and use them
 - but requires explicit checks to enforce simple / loopfree / bidirectional!
- we focus on static graphs dynamically changing graphs much harder to handle

9.3 Graph Traversal

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - b depth-first search, breadth-first search
 - connected components
 - detecting cycles
 - topological sorting
 - ► Hierholzer's algorithm for Euler walks
 - strong components
 - testing bipartiteness
 - Dijkstra's algorithm
 - ▶ Prim's algorithm
 - Lex-BFS for perfect elimination orders of chordal graphs
 - **▶** ...

visiting all nodes & edges

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - depth-first search, breadth-first search
 - connected components
 - detecting cycles
 - topological sorting
 - ► Hierholzer's algorithm for Euler walks
 - strong components
 - testing bipartiteness
 - Dijkstra's algorithm
 - ▶ Prim's algorithm
 - Lex-BFS for perfect elimination orders of chordal graphs
 - ▶ ...

visiting all nodes & edges

- → Formulate generic traversal algorithm
 - ▶ first in abstract terms to argue about correctness
 - ▶ then again for concrete instance with efficient data structures

Tricolor Graph Traversal

Tricolor Graph Search:

- ► maintain vertices in 3 (dynamic) sets
 - Gray: unseen vertices

 The traversal has not reached these vertices so far.

Invariant:

No edges from done to unseen vertices

► Green: done vertices (a.k.a. visited vertices)

These vertices have been visited and all their edges have been explored already.

Red: active vertices (a.k.a. frontier ("Rand") of traversal)
All others, i. e., vertices that have been reached and some unexplored edges remain; initially some selected start vertices *S*.

- ► (implicitly) maintain status of each edge
 - ▶ not yet used
 - ▶ used edge

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
        C[0..n) := unseen // Color array, all cells initialized to unseen
 3
        for s \in S do C[s] := active end for
        unusedEdges := E
        while \exists v : C[v] == active
             v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
 7
            if \nexists vw \in unusedEdges // no more edges from <math>v \leadsto done \ with \ v
 8
                 C[v] := done
            else
10
                  w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
11
                 if C[w] == unseen
12
                     C[w] := active
13
                 end if
14
                 unusedEdges.remove(vw)
15
            end if
16
        end while
17
```


Invariant:

No edges from done to unseen vertices

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // Color array, all cells initialized to unseen
3
       for s \in S do C[s] := active end for
       unusedEdges := E
       while \exists v : C[v] == active
            v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
7
            if \nexists vw \in unusedEdges // no more edges from <math>v \leadsto done \ with \ v
8
                C[v] := done
            else
                 w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
11
                if C[w] == unseen
12
                     C[w] := active
13
                end if
14
                unusedEdges.remove(vw)
            end if
16
       end while
17
```


Invariant:

No edges from *done* to *unseen* vertices

► Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
        // (di)graph G = (V, E) and start vertices S \subseteq V
        C[0..n) := unseen // Color array, all cells initialized to unseen
 3
        for s \in S do C[s] := active end for
        unusedEdges := E
        while \exists v : C[v] == active
             v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
 7
             if \nexists vw \in unusedEdges // no more edges from <math>v \leadsto done \ with \ v
 8
                 C[v] := done
(9)
             else
10
                  w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
(11)
                 if C[w] == unseen
12
                      C[w] := active
13
                 end if
14
                 unusedEdges.remove(vw)
             end if
 16
        end while
17
```


Invariant:

No edges from *done* to *unseen* vertices

► Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Reachability

► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*

Generic Reachability

► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*

► Invariant:

- 1. No edges from done to unseen vertices
- **2.** For every *done* vertex v, there exists a path from $s \in S$ to v.

Generic Reachability

► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*

► Invariant:

- 1. No edges from done to unseen vertices
- **2.** For every *done* vertex v, there exists a path from $s \in S$ to v.

\rightarrow in final state:

- ▶ $v \in done \implies path from S \implies reachable from S$
- v ∈ unseen ~ not reachable from done ⊇ S ~ not reachable from S

 (assume met. then s ~ > v Rosel where on path that is variety has

 done were whose b (1)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ► test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - ► unusedEdges.remove(vw)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ▶ test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - ► unusedEdges.remove(vw)
- ► Typical solution maintains **bag** "frontier" of pairs (v, i) where $v \in V$ and i is an **iterator** in adj[v]

- unusedEdges represented implicitly: edge used iff previously returned by i
 - \rightsquigarrow don't need unusedEdges.remove(vw)

Data Structures for Frontier

- ▶ We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ▶ test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - ► unusedEdges.remove(vw)
- ▶ Typical solution maintains **bag** "frontier" of pairs (v, i) where $v \in V$ and i is an **iterator** in adj[v]
 - unusedEdges represented implicitly: edge used iff previously returned by i
 don't need unusedEdges.remove(vw)
 - ▶ Implement $\exists v : C[v] = active \text{ via } frontier.\text{isEmpty}()$
 - ▶ Implement $\exists vw \in unusedEdges \ via \ i.hasNext() \ assuming \ (v,i) \in frontier$
 - ► Implement nextUnusedEdge(v) via i.next() assuming (v, i) \in frontier
 - \rightarrow all operations apart from <u>nextActiveVertex()</u> in O(1) time
 - \rightsquigarrow *frontier* requires O(n) extra space

9.4 BFS and DFS

Breadth-First Search

► Maintain *frontier* in a **queue** (FIFO: first in, first out)

Breadth-First Search

► Maintain *frontier* in a **queue** (FIFO: first in, first out)

Invariant:

- No edges from done to unseen vertices fewest edges
 All done vertices are reached via a shortest path from S

fewest edges

3. *frontier* stores active vertices **sorted** by distance from *S*

→ in final state, we reach all reachable vertices via shortest paths

Breadth-First Search

► Maintain *frontier* in a **queue** (FIFO: first in, first out)

- IBS (21/ (21/ (1)/ (41/ IS: (i) no more edges
- ► Invariant: 4. el varice: at distrement to an achre or done

 Sor to distrement of head

 1. No edges from done to unseen vertices fewest edges of grown
- (3) V (4) If me distance of head her!

2. All done vertices are reached via a shortest path from S

vertices at dist. h+1 in queeze.

3. *frontier* stores active vertices **sorted** by distance from *S*

(ii) visit edge VW

(2) IH /

- to be continued
- (5)
- → in final state, we reach all reachable vertices via shortest paths
- ▶ To preserve that knowledge, we collect extra information during traversal
 - parent[v] stores predecessor on path from S via which v was reached the when v was
 - ▶ distFromS[v] stores the length of this path

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
3
       frontier := new Queue;
       parent[0..n) := NOT VISITED; distFromS[0..n) := \infty
5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
3
      frontier := new Queue;
       parent[0..n) := NOT_VISITED; distFromS[0..n) := \infty
5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- Can retrieve shortest path to v from some vertex s ∈ S
 (backwards) by following parent[v] iteratively

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
3
      frontier := new Queue;
       parent[0..n) := NOT_VISITED; distFromS[0..n) := \infty
5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- can retrieve shortest path to v from some vertex s ∈ S
 (backwards) by following parent[v] iteratively
- ▶ running time $\Theta(n + m)$
- ▶ extra space $\Theta(n)$

Depth-First Search

- ► Maintain *frontier* in a **stack** (LIFO: last in, first out)
 - ightharpoonup only consider $S = \{s\}$
 - usual mode of operation: call dfs(v) for all unseen v, for v = 0, ..., n-1

Depth-First Search

- ► Maintain *frontier* in a **stack** (LIFO: last in, first out)
 - ightharpoonup only consider $S = \{s\}$
 - usual mode of operation: call dfs(v) for all *unseen* v, for v = 0, ..., n

► Invariant:

- 1. No edges from done to unseen vertices
- 2. All *done* vertices are reached via a path from s
- **3.** The *active* vertices form a single **path** from *s*

Depth-First Search – Code

```
procedure dfsTraversal(G)
       C[0..n) := unseen
       for v := 0, ..., n-1
           if C[v] == unseen
               dfs(G, v)
  procedure dfs(G, s)
      frontier := new Stack;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.top()
11
           if \neg i.hasNext() // v has no unused edge
12
               C[v] := done; frontier.pop(); postorderVisit(v)
13
           else
14
               w := i.next(); visitEdge(vw)
15
               if C[w] == unseen
16
                   preorderVisit(w)
17
                   C[w] := active; frontier.push((w, G.adj[w].iterator()))
18
               end if
19
           end if
20
       end while
21
```

- define *hooks* to implement further operations
 - ▶ preorder: visit v when made *active* (start of T(v))
 - ▶ postorder: visit v when marked *done* (end of T(v))
 - visitEdge: do something for every edge
- ► if needed, can store DFS forest via *parent* array

Depth-First Search – Code

```
procedure dfsTraversal(G)
       C[0..n) := unseen
       for v := 0, ..., n-1
3
           if C[v] == unseen
               dfs(G, v)
  procedure dfs(G, s)
      frontier := new Stack;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.top()
11
           if \neg i.hasNext() // v has no unused edge
12
               C[v] := done; frontier.pop(); postorderVisit(v)
13
           else
14
               w := i.next(); visitEdge(vw)
15
               if C[w] == unseen
16
                   preorderVisit(w)
17
                   C[w] := active; frontier.push((w, G.adj[w].iterator()))
18
               end if
19
           end if
20
       end while
21
```

- define *hooks* to implement further operations
 - ▶ preorder: visit v when made *active* (start of T(v))
 - ▶ postorder: visit v when marked *done* (end of T(v))
 - visitEdge: do something for every edge
- ► if needed, can store DFS forest via *parent* array
- ▶ running time $\Theta(n + m)$
- ▶ extra space $\Theta(n)$

Simple DFS Application: Connected Components

- ► In an <u>undirected</u> graph, find all *connected components*.
 - ▶ **Given:** simple undirected G = (V, E)
 - ▶ **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

Simple DFS Application: Connected Components

- ► In an undirected graph, find all *connected components*.
 - ▶ **Given:** simple undirected G = (V, E)
 - ▶ **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

```
procedure connectedComponents(G):
      // undirected graph G = (V, E) with V = [0..n)
       C[0..n) := unseen
      CC[0..n) := NONE
      id := 0
      for v := 0, ..., n-1
          if C[v] == unseen
              dfs(G, v)
8
              id := id + 1
9
       return CC
10
11
12 procedure preorderVisit(v):
       CC[v] := id
13
```

```
1 // same as before
2 procedure dfs(G, s)
      frontier := new Stack;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
      while ¬frontier.isEmpty()
           (v,i) := frontier.top()
           if ¬i.hasNext() // v has no unused edge
               C[v] := done; frontier.pop()
               postorderVisit(v)
           else
10
               w := i.next(); visitEdge(vw)
11
               if C[w] == unseen
12
                    preorderVisit(w)
13
                    C[w] := active
14
                   frontier.push((w, G.adj[w].iterator()))
15
               end if
16
           end if
17
      end while
18
```

Dijkstra's Algorithm & Prim's Algorithm

- ▶ On edge-weighted, we can use the tricolor traversal with a *priority queue* for *frontier*
- Dijkstra's Algorithm for shortest paths from s in digraphs with weakly positive edge weights
 - ightharpoonup priority of vertex v = length of shortest path known so far from s to v
- ▶ Prim's Algorithm for finding a minimum spanning tree
 - ightharpoonup priority of vertex v = weight of cheapest edge connecting v to current tree
- → Detailed discussion in Unit 11

9.5 Advanced Uses of DFS

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

stack over time

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

1 2 4

DFS forest

stack over time

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from s

stack over time

input graph G

1 2

DFS forest

 \leadsto Each vertex v spends time interval T(v) as *active* vertex

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from s

DFS forest

stack over time

- \rightarrow Each vertex v spends time interval T(v) as active vertex
- **1.** *frontier* is stack \rightsquigarrow $\{T(v): v \in V\}$ forms *laminar set family*: ("disjoint or contained") either $T(v) \cap T(w) = \emptyset$ or $T(v) \subseteq T(w)$ or $T(v) \supseteq T(w)$

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from s

input graph G

DFS forest

stack over time

- \rightarrow Each vertex v spends time interval T(v) as active vertex
- **1.** frontier is stack \rightarrow $\{T(v): v \in V\}$ forms laminar set family: ("disjoint or contained") either $T(v) \cap T(w) = \emptyset$ or $T(v) \subseteq T(w)$ or $T(v) \supseteq T(w)$
- **2.** Parenthesis Theorem: $T(v) \subseteq T(w)$ iff $\overset{\omega}{p}$ is ancestor of $\overset{\omega}{p}$ is DFS tree
 - $'\Rightarrow'$ during T(v), all discovered vertices become descendants of v
 - $' \Leftarrow' T(v)$ covers v's entire subtree, which contains w's subtree

Properties of DFS – Unseen-Path Theorem

▶ Unseen-Path Theorem: In a DFS forest of a (di)graph G, $\overset{\omega}{\triangleright}$ is a descendant of $\overset{\omega}{\circledast}$ iff at the time of preorderVisit(v), there is a path from v to wusing only *unseen* vertices. \ at the firm v was made red

Properties of DFS – Unseen-Path Theorem

▶ Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of w iff at the time of preorderVisit(v), there is a path from v to w using only *unseen* vertices.

 $'\Rightarrow' v=w$ trivial; for w strict descendant of $v,T(w)\subseteq T(v)$ by the Parenthesis Thm

Properties of DFS – Unseen-Path Theorem

▶ Unseen-Path Theorem: In a DFS forest of a (di)graph G, \mathscr{V} is a descendant of \mathscr{W} iff at the time of preorderVisit(v), there is a path from v to w using only *unseen* vertices.

' \Rightarrow ' v=w trivial; for w strict descendant of v, $T(w) \subsetneq T(v)$ by the Parenthesis Thm

' \Leftarrow ' by contraposition. If v descendant of w, w is *active* when in preorderVisit(v). If neither is a descendant of the other, $T(v) \cap T(w) = \emptyset$, so one is strictly earlier.

Topological Sorting & Cycle Detection

- ► **Application:** Given a set of <u>tasks</u> with precedence constraints of the form "*a* must be done before *b*", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - ► tasks are the vertices *V*
 - ightharpoonup add an edge (a, b) when a must be done before b

Topological Sorting & Cycle Detection

- ► **Application:** Given a set of tasks with precedence constraints of the form "*a* must be done before *b*", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - ightharpoonup tasks are the vertices V
 - \blacktriangleright add an edge (a,b) when a must be done before b
- ▶ **Definition:** R[0..n) is a topological (order) ranking of digraph G = (V, E) if $\forall (u, v) \in E : R[u] < R[v]$
- ► Lemma DAG iff topo:

A directed graph *G* has a topological ranking **iff** it does not contain a directed cycle.

Topological Sorting & Cycle Detection

- ► **Application:** Given a set of tasks with precedence constraints of the form "*a* must be done before *b*", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - ► tasks are the vertices *V*
 - ightharpoonup add an edge (a, b) when a must be done before b
- ▶ **Definition:** R[0..n) is a *topological (order) ranking* of digraph G = (V, E) if $\forall (u, v) \in E : R[u] < R[v]$
- ► Lemma DAG iff topo:

A directed graph *G* has a topological ranking **iff** it does not contain a directed cycle.

- ► Topological Sorting
 - ▶ **Given:** simple digraph G = (V, E)
 - ▶ **Goal:** Compute topological ranking of vertices R[0..n) or output a directed cycle in G.
- ► Amazingly, can do all with one pass of DFS!

DFS Edge Types

input digraph G

DFS Edge Types

input digraph G

DFS forest

stack over time

DFS Edge Types

DFS forest

stack over time

ightharpoonup During DFS traversal, an edge vw has one of these 4 types:

example:

1. tree edge: $\longrightarrow w \in unseen \rightsquigarrow vw$ part of DFS forest.

(0,1), (0,2), (2,3)

2. back edges: --> $w \in active$; $\rightsquigarrow w$ points to ancestor of v.

(3,0)

3. forward edges*: $w \in done \land w$ is descendant of v in DFS tree.

(0,3)

4. cross edges*: ---> $w \in done \land w$ is not descendant of v.

(3,0)

*only possible in <u>directed</u> graphs

Cycle Detection

If *G* contains a directed cycle, DFS will find a directed cycle:

- ▶ any back edge implies a cycle:
 - ▶ DFS visits an edge (v, w) where $w \in active$, w is already on the stack
 - \leadsto DFS tree contains path $w \leadsto v$ and we have edge $v \to w$.

Cycle Detection

If *G* contains a directed cycle, DFS will find a directed cycle:

- any back edge implies a cycle:
 - ▶ DFS visits an edge (v, w) where $w \in active$, w is already on the stack
 - \rightsquigarrow DFS tree contains path $w \rightsquigarrow v$ and we have edge $v \rightarrow w$.
- ightharpoonup conversely any cycle C[0..k] once reached must have some back edge or cross edge (tree and forward edges go from smaller to larger preorder index)
 - cannot be a cross edge since cycle is strongly connected all cycle vertices must be descendants of first reached cycle vertex
 - → cycle contributes a back edge

DFS Postorder Implementation

```
procedure dfsPostorder(G):
       C[0..n) := unseen
       P[0..n) := NONE; r := 0
       parent[0..n) := NONE
      cycle := NONE
       for v := 0, ..., n-1
          if C[v] == unseen
7
               dfs(G, v)
       return (P, cycle)
9
10
  procedure postorderVisit(v):
       P[v] := r; r := r + 1
13
14 procedure visitEdge(vw):
       if C[w] == active
15
           if cycle ≠ NONE return
16
           while v \neq w
17
               cycle.append(v)
18
               v := parent[v]
19
           cycle.append(v)
20
```

```
1 // dfs is as in CC but with parent
2 procedure dfs(G, s)
      frontier := new Stack;
       parent[s] := NONE;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
       while ¬frontier.isEmpty()
           (v, i) := frontier.top()
7
           if \neg i.hasNext() // v has no unused edge
                C[v] := done; frontier.pop()
                postorderVisit(v)
10
           else
11
                w := i.next() // Advance i in adj[v]
12
                visitEdge(vw)
13
                if C[w] == unseen
14
                    parent[w] := v;
15
                    preorderVisit(w)
16
                    C[w] := active; frontier.push((w, G.adj[w].iterator()))
17
                end if
18
           end if
19
       end while
20
```

DFS Postorder & Topological Sort

▶ **DFS Postorder**: The DFS <u>postorder numbers</u> is a numbering P[0..n) of V such that P[v] = r iff exactly r vertices reached state *done* before v in a DFS.

DFS Postorder & Topological Sort

- ▶ **DFS Postorder**: The DFS postorder numbers is a numbering P[0..n) of V such that P[v] = r iff exactly r vertices reached state *done* before v in a DFS.
- Lemma rev postorder:

 Let G be a simple, connected \overline{DAG} and R[0..n) a reverse \overline{DFS} postorder of G, i. e., R[v] = n 1 P[v] for a DFS postorder P[0..n). Then R is a topological ranking of G.
- ▶ **Invariant:** If $v \in done$ and $(v, w) \in E$ then $w \in done$ and R[v] < R[w].
 - ▶ initially true ($done = \emptyset$)
 - ▶ upon postorderVisit(v), all outgoing edges vw lead to $w \in done$ (Parenthesis Theorem)

Topological Sorting & Cycle Detection – Summary

- ▶ Putting everything together we obtain topological sorting
 - can produce either the ranking or the sequence of vertices in topological order, whatever is more convenient

```
procedure topologicalRanking(P):

(P[0..n), cycle) := dfsPostorder(G)

if c \neq NULL

return NOT_A_DAG

R[0..n) := NONE

for v := 0, \dots, n-1

R[v] = n-1-P[v]

return P
```

```
1 procedure topologicalSort(P):

2 (P[0..n), cycle) := dfsPostorder(G)

3 if c \neq NULL

4 return NOT_A_DAG

5 S[0..n) := NONE

6 for v := 0, \dots, n-1

7 S[P[v]] := v // return S
```

- ▶ $\Theta(n+m)$ time
- \triangleright $\Theta(n)$ extra space