

Starting with an $n \times m$ grid, remove one corner at a time (uniformly at random) until the grid is gone.

Figure 1: An example of a process starting with a 2×3 grid.

Question. If a stopping point is chosen randomly, how many corners are expected?

Related.

- 1. What if the deletion is uniform with respect to faces instead of vertices?
- 2. How many sides are expected?
- 3. If all polygons in the process are considered, what is the expected number of corners on the polygon with the greatest number of corners?
- 4. What figure produces the greatest number of corners?
- 5. How many possible processes exist (up to, say, dihedral action)?
- 6. What if each figure must stay path connected?
- 7. What if paths cannot travel through corners? (e.g. the second-to-last figure is illegal.)

References.

Problem 8.