20/089202

PGT/JPC0/06667

日本国特許庁

EJU

PATENT OFFICE
JAPANESE GOVERNMENT

27.09.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年10月 1日

REC'D 17 NOV 2000

WIPO PCT

出 願 番 号 Application Number:

平成11年特許顯第281271号

出 願 人 Applicant (s):

株式会社ジャパンエナジー

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年11月 6日

特 許 庁 長 官 Commissioner, Patent Office

特平11-281271

【書類名】 特許願

【整理番号】 P99-0520

【提出日】 平成11年10月 1日

【あて先】 特許庁長官 殿

【国際特許分類】 C07C275/00

【発明の名称】 新規なウレア誘導体及びその医薬用途

【請求項の数】 14

【発明者】

【住所又は居所】 埼玉県戸田市新曽南三丁目17番35号 株式会社 ジ

ャパンエナジー内

【氏名】 荻田 晴久

【発明者】

【住所又は居所】 埼玉県戸田市新曽南三丁目17番35号 株式会社 ジ

ャパンエナジー内

【氏名】 磯部 義明

【発明者】

【住所又は居所】 埼玉県戸田市新曽南三丁目17番35号 株式会社 ジ

ャパンエナジー内

【氏名】 高久 春雄

【特許出願人】

【識別番号】 000231109

【氏名又は名称】 株式会社 ジャパンエナジー

【代理人】

【識別番号】 100091096

【弁理士】

【氏名又は名称】 平木 祐輔

【選任した代理人】

【識別番号】 100096183

【弁理士】

【氏名又は名称】 石井 貞次

【選任した代理人】

【識別番号】

100101904

【弁理士】

【氏名又は名称】 島村 直己

【手数料の表示】

【予納台帳番号】 015244

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9600688

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 新規なウレア誘導体及びその医薬用途

【特許請求の範囲】

【請求項1】 一般式(1):

【化1】

(式中、Aはベンゼン環、ピリジン環、チオフェン環、フラン環及びナフタレン 環から選択される芳香環であり;COYで表される置換基とNHCOXで表される置換基 は隣接して存在し、該芳香環内でこれらの置換基が結合しているのは炭素原子で あり;Xは炭素数1~4のアルキレン基、炭素数1~4のアルキレンオキシ基又 は単結合であり;Yは炭素数 $1\sim 4$ のアルコキシ基、水酸基及び $N(R^6)(R^7)$ から選 択され、 R^6 及び R^7 は同一でも異なっていてもよく、それぞれ水素原子、炭素数1~4のアルキル基、炭素数3~9のシクロアルキル基、炭素数4~9のシクロア ルキルーアルキル基、炭素数3~9のアルケニル基、フェニル基、ピリジル基及 びアラルキル基から選択され、該フェニル基及びピリジル基、並びにアラルキル 基の芳香環は炭素数1~4のアルキル基、炭素数1~4のアルコキシ基及びハロ ゲン原子から選択される $1\sim3$ 個の置換基で置換されていてもよく; R^1 は水素原 子、ハロゲン原子、水酸基、炭素数1~4のアルキル基、炭素数3~9のシクロ アルキル基、炭素数4~9のシクロアルキルーアルキル基、炭素数1~4のアル コキシ基、炭素数3~9のシクロアルキルオキシ基、炭素数4~9のシクロアル キルーアルコキシ基、アラルキルオキシ基、炭素数1~4のアシル基及びニトロ 基から選択され、Aの任意の位置に1~4個存在しており、それぞれ同一でも異

なっていてもよく、また R^1 が2個存在する場合には両者が一緒になって炭素数 $1 \sim 4$ のアルキレンジオキシ基を形成してもよく、但しAがベンゼン環の場合、R 1 は水素原子でなく; Bはベンゼン環、ピリジン環又はチオフェン環であり; 2 は水素原子、ハロゲン原子、水酸基、炭素数1~4のアルキル基、炭素数1~4 のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のヒドロキシア ルコキシ基、炭素数3~9のシクロアルキルオキシ基、炭素数4~9のシクロア ルキル-アルコキシ基、アラルキルオキシ基、炭素数 1 ~ 4 のアシル基、シアノ 基、炭素数5~8のモルホリノ-N-アルコキシ基、及び炭素数1~4のアルキ ル基でモノ又はジ置換されていてもよいアミノ基から選択される置換基であり、 任意の位置に1~4個存在しており、それぞれ同一でも異なっていてもよく; R 3 及び 4 はそれぞれ水素原子及び炭素数 $1\sim4$ のアルキル基から選択され、それ ぞれ同一でも異なっていてもよく; R^5 は炭素数 $1 \sim 8$ のアルキル基、炭素数 2~4のアルケニル基、炭素数3~9のシクロアルキル基、炭素数4~9のシクロ アルキル-アルキル基、テトラヒドロピラニル基、アラルキル基、インダニル基 、芳香族アシル基、フェニル基、ピリジル基、フリル基及びチエニル基から選択 され、該アラルキル基、インダニル基及び芳香族アシル基の芳香環、フェニル基 、ピリジル基、フリル基並びにチエニル基はハロゲン原子、水酸基、シアノ基、 炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアル キルチオ基、炭素数2~5のアルコキシカルボニル基、カルボキシル基、炭素数 $1\sim 4$ のアシル基、芳香族アシル基、炭素数 $1\sim 4$ のアシロキシ基、炭素数 $1\sim$ 4 のアルキレンジオキシ基、トリフルオロメチル基、フェニル基、フェノキシ基 、フェニルチオ基、ピリジル基、モルホリノ基、アラルキルオキシ基、ニトロ基 、メチルスルホニル基、アミノスルホニル基、及び炭素数1~4のアルキル基又 は炭素数1~4のアシル基でモノ又はジ置換されていてもよいアミノ基から選択 される1~5個の置換基を有していてもよく;Zは酸素原子又はイオウ原子であ る。)

で表されるウレア誘導体又はその薬学的に許容される塩。

【請求項2】 一般式(1)において、Xが炭素数 $1\sim4$ のアルキレン基である請求項1に記載の化合物。

【請求項3】 一般式(1)において、Xが単結合である請求項1に記載の化合物。

【請求項4】 一般式(1)において、A及びBが同一でも異なっていてもよく、それぞれベンゼン環又はピリジン環である請求項1~3のいずれか一項に記載の化合物。

【請求項 5 】 一般式(1)において、A及びBがベンゼン環である請求項 1 ~4 のいずれか一項に記載の化合物。

【請求項6】 一般式(1)において、Yが無置換のアミノ基、水酸基又は 炭素数 $1 \sim 4$ のアルコキシ基である請求項 $1 \sim 5$ のいずれか一項に記載の化合物

【請求項7】 一般式(1)において、 R^2 が水素原子、炭素数 $1\sim 4$ のアルキル基、炭素数 $1\sim 4$ のアルコキシ基、ハロゲン原子又は水酸基である請求項 $1\sim 6$ のいずれか一項に記載の化合物。

【請求項8】 一般式(1)において、R⁵がベンジル基、フェニル基又はピリジル基であり、該ベンジル基の芳香環、並びにフェニル基及びピリジル基はハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数2~5のアルコキシカルボニル基、炭素数1~4のアシル基、トリフルオロメチル基、炭素数1~4のアルキルチオ基、及び炭素数1~4のアルキル基でジ置換されたアミノ基から選択される1~5個の置換基を有していてもよい請求項1~7のいずれか一項に記載の化合物。

【請求項9】 一般式(1)において、 R^5 が炭素数 $1\sim 4$ のアルキル基、炭素数 $2\sim 4$ のアルケニル基、炭素数 $3\sim 6$ のシクロアルキル基又は炭素数 $4\sim 6$ のシクロアルキルーアルキル基である請求項 $1\sim 7$ のいずれか一項に記載の化合物。

【請求項10】 一般式(1)において、 R^3 及び R^4 が水素原子である請求項 $1\sim 9$ のいずれか一項に記載の化合物。

【請求項11】 請求項1~10のいずれか一項に記載の化合物又はその薬学的に許容される塩を有効成分とする薬学的組成物。

【請求項12】 請求項1~10のいずれか一項に記載の化合物又はその薬

学的に許容される塩を有効成分とする血管平滑筋細胞の異常増殖を原因とする疾 患の予防又は治療に使用可能な薬学的組成物。

【請求項13】 請求項1~10のいずれか一項に記載の化合物又はその薬学的に許容される塩を有効成分とする経皮的冠動脈形成術もしくは冠動脈バイパス形成術後の再狭窄又はアテローム性動脈硬化症の予防又は治療に使用可能な薬学的組成物。

【請求項14】 請求項1~10のいずれか一項に記載の化合物又はその薬学的に許容される塩を有効成分とするメサンジウム細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、医薬品として有用なウレア誘導体、更に詳しくは、異常な細胞増殖に対する阻害作用を有するウレア誘導体及びその薬学的に許容される塩に関するものである。

[0002]

【従来の技術】

血管平滑筋細胞などの種々の細胞の増殖においては、インスリン、上皮細胞成長因子あるいは血小板由来成長因子(platelet-derived growth factor、以下PD GFと略す)などの成長因子が重要な役割を果たしており、中でもPDGFは強力な細胞増殖因子として細胞の増殖・分化の調節に関わっていることが知られている(Cell, 46, 155 (1986))。例えば、経皮的冠動脈形成術や冠動脈バイパス形成術後の再狭窄、メサンジウム細胞増殖性腎炎などの疾患においては、病態部位の細胞にPDGFやPDGF受容体の異常産生が生じており、これらの疾患においては病態箇所での細胞の異常増殖が観察される。

[0003]

トラニラスト ((E)-2-(3,4-ジメトキシシンナモイルアミノ)安息香酸) はPDGF による血管平滑筋細胞の増殖を阻害し、臨床試験においても経皮的冠動脈形成術後の再狭窄を防止することが示されている (Am. Heart. J, 134(4),712(1997))

。しかしながら、トラニラストのin vitro試験における血管平滑筋細胞増殖抑制作用は弱いため(W097/09301では自然発症高血圧ラット胸部大動脈血管平滑筋細胞増殖抑制作用においてIC₅₀=231μMと記載されている。)、臨床試験においては有効性を発揮する投与量において肝毒性が高頻度に現れるという問題点がある

[0004]

メサンジウム細胞増殖性腎炎は腎臓のメサンジウム細胞が異常増殖するために起こる疾患であり、特開平10-306024号公報にトラニラストが増殖阻害作用を示すことが報告されている。

[0005]

この他、白血病、癌、乾癬、糸球体疾患、臓器線維症、関節リウマチ、動脈硬化症、心筋梗塞、脳梗塞、糖尿病などの疾患や病態においても、病態部位にPDGFやPDGF受容体の異常産生が生じている。従来公知のPDGFで惹起される細胞増殖の阻害剤として、J. Med. Chem., 37, 2627 (1994)で示される3-アリールキノリン誘導体、Cancer Research, 54, 6106 (1994)で示されるキノキサリン誘導体、WO92/20642で示されるビスモノ-及び二環式アリール及びヘテロアリール誘導体などが挙げられる。

[0006]

【発明が解決しようとする課題】

前記状況に鑑み、本発明の目的は、PDGFで惹起される細胞増殖や遊走をより低 濃度で阻害する薬物を探索することにより、動脈硬化症、血管再閉塞疾患、腎炎 などの細胞増殖性疾患の予防又は治療に対して有用な新規化合物又はその薬学的 に許容される塩を提供することにある。

[0007]

【課題を解決するための手段】

かかる背景から、本発明者らは、前記の目的を達成するために、鋭意研究を重ねた結果、特定のを構造を有するウレア置換ジアリールアミド誘導体がPDGFで惹起される細胞増殖を低濃度で阻害することを見いだし、本発明を完成するに至った。

即ち、本発明は以下の発明を包含する。

(i) 一般式(1):

[0008]

【化2】

[0009]

(式中、Aはベンゼン環、ピリジン環、チオフェン環、フラン環及びナフタレン 環から選択される芳香環であり;COYで表される置換基とNHCOXで表される置換基 は隣接して存在し、該芳香環内でこれらの置換基が結合しているのは炭素原子で あり;Xは炭素数1~4のアルキレン基、炭素数1~4のアルキレンオキシ基又 は単結合であり;Yは炭素数 $1\sim4$ のアルコキシ基、水酸基及び $N(R^6)(R^7)$ から選 択され、 R^6 及び R^7 は同一でも異なっていてもよく、それぞれ水素原子、炭素数1~4のアルキル基、炭素数3~9のシクロアルキル基、炭素数4~9のシクロア ルキルーアルキル基、炭素数3~9のアルケニル基、フェニル基、ピリジル基及 びアラルキル基から選択され、該フェニル基及びピリジル基、並びにアラルキル 基の芳香環は炭素数1~4のアルキル基、炭素数1~4のアルコキシ基及びハロ ゲン原子から選択される $1\sim3$ 個の置換基で置換されていてもよく; R^1 は水素原 子、ハロゲン原子、水酸基、炭素数1~4のアルキル基、炭素数3~9のシクロ アルキル基、炭素数4~9のシクロアルキル-アルキル基、炭素数1~4のアル コキシ基、炭素数3~9のシクロアルキルオキシ基、炭素数4~9のシクロアル キルーアルコキシ基、アラルキルオキシ基、炭素数1~4のアシル基及びニトロ 基から選択され、Aの任意の位置に1~4個存在しており、それぞれ同一でも異

なっていてもよく、また R^1 が2個存在する場合には両者が一緒になって炭素数 $1 \sim 4$ のアルキレンジオキシ基を形成してもよく、但しAがベンゼン環の場合、R 1 は水素原子でなく; $^{\mathrm{B}}$ はベンゼン環、ピリジン環又はチオフェン環であり; $^{\mathrm{R}^{\mathrm{Z}}}$ は水素原子、ハロゲン原子、水酸基、炭素数1~4のアルキル基、炭素数1~4 のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のヒドロキシア ルコキシ基、炭素数3~9のシクロアルキルオキシ基、炭素数4~9のシクロア ルキル-アルコキシ基、アラルキルオキシ基、炭素数 1 ~ 4 のアシル基、シアノ 基、炭素数5~8のモルホリノーN-アルコキシ基、及び炭素数1~4のアルキ ル基でモノ又はジ置換されていてもよいアミノ基から選択される置換基であり、 任意の位置に1~4個存在しており、それぞれ同一でも異なっていてもよく; R 3 及び 4 はそれぞれ水素原子及び炭素数 $\,1\,{\sim}\,4\,$ のアルキル基から選択され、それ ぞれ同一でも異なっていてもよく; R^5 は炭素数 $1 \sim 8$ のアルキル基、炭素数 2~4のアルケニル基、炭素数3~9のシクロアルキル基、炭素数4~9のシクロ アルキルーアルキル基、テトラヒドロピラニル基、アラルキル基、インダニル基 、芳香族アシル基、フェニル基、ピリジル基、フリル基及びチエニル基から選択 され、該アラルキル基、インダニル基及び芳香族アシル基の芳香環、フェニル基 、ピリジル基、フリル基並びにチエニル基はハロゲン原子、水酸基、シアノ基、 炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアル キルチオ基、炭素数2~5のアルコキシカルボニル基、カルボキシル基、炭素数 1~4のアシル基、芳香族アシル基、炭素数1~4のアシロキシ基、炭素数1~ 4 のアルキレンジオキシ基、トリフルオロメチル基、フェニル基、フェノキシ基 、フェニルチオ基、ピリジル基、モルホリノ基、アラルキルオキシ基、ニトロ基 、メチルスルホニル基、アミノスルホニル基、及び炭素数1~4のアルキル基又 は炭素数1~4のアシル基でモノ又はジ置換されていてもよいアミノ基から選択 される1~5個の置換基を有していてもよく;Zは酸素原子又はイオウ原子であ る。)

で表されるウレア誘導体又はその薬学的に許容される塩。

[0010]

(ii)一般式(1)において、Xが炭素数1~4のアルキレン基である前記(i)に記

載の化合物。

(iii)一般式 (1) において、Xが単結合である前記(i)に記載の化合物。

(iv)一般式(1)において、A及びBが同一でも異なっていてもよく、それぞれベンゼン環又はピリジン環である前記(i)~(iii)のいずれかに記載の化合物。

(v) 一般式 (1) において、A及びBがベンゼン環である前記(i) \sim (iv) のいずれかに記載の化合物。

[0011]

(vi) 一般式 (1) において、Yが無置換のアミノ基、水酸基又は炭素数 $1 \sim 4$ のアルコキシ基である前記 $(i) \sim (v)$ のいずれかに記載の化合物。

(vii) 一般式 (1) において、 R^2 が水素原子、炭素数 $1 \sim 4$ のアルキル基、炭素数 $1 \sim 4$ のアルコキシ基、ハロゲン原子又は水酸基である前記 $(i) \sim (vi)$ のいずれかに記載の化合物。

[0012]

(viii)一般式(1)において、R⁵がベンジル基、フェニル基又はピリジル基であり、該ベンジル基の芳香環、並びにフェニル基及びピリジル基はハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数2~5のアルコキシカルボニル基、炭素数1~4のアシル基、トリフルオロメチル基、炭素数1~4のアルキルチオ基、及び炭素数1~4のアルキル基でジ置換されたアミノ基から選択される1~5個の置換基を有していてもよい前記(i)~(vii)のいずれかに記載の化合物。

[0013]

(ix)一般式 (1) において、 R^5 が炭素数 $1\sim 4$ のアルキル基、炭素数 $2\sim 4$ のアルケニル基、炭素数 $3\sim 6$ のシクロアルキル基又は炭素数 $4\sim 6$ のシクロアルキルーアルキル基である前記 $(i)\sim (vii)$ のいずれかに記載の化合物。

(x)一般式 (1) において、 R^3 及び R^4 が水素原子である前記(i)~(ix)のいずれかに記載の化合物。

(xi) 前記(i)~(x)のいずれか一項に記載の化合物又はその薬学的に許容される 塩を有効成分とする薬学的組成物。

[0014]

(xii) 前記(i)~(x)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする血管平滑筋細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

(xiii) 前記(i)~(x)のいずれかに記載の化合物又はその薬学的に許容される塩を有効成分とする経皮的冠動脈形成術もしくは冠動脈バイパス形成術後の再狭窄又はアテローム性動脈硬化症の予防又は治療に使用可能な薬学的組成物。

(xiv) 前記(i)~(x)のいずれか一項に記載の化合物又はその薬学的に許容される塩を有効成分とするメサンジウム細胞の異常増殖を原因とする疾患の予防又は治療に使用可能な薬学的組成物。

[0015]

【発明の実施の形態】

本発明の化合物を更に詳細に説明する。本発明の化合物は前記一般式(1)で示されるものであり、前記式(1)中の R^1 、 R^2 、 R^3 、 R^4 、 R^5 、X、Y、Z、環A及び環Bは前記の定義のとおりである。本明細書における下記の置換基を更に具体例を挙げて詳細に説明すると次のとおりである。

[0016]

ハロゲン原子:フッ素、塩素、臭素、ヨウ素を例示することができる。

炭素数1~4のアルキル基:メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基を例示することができる。 炭素数3~9のシクロアルキル基:シクロプロピル基、シクロブチル基、シクロペンチル基、シクロペキシル基、シクロペプチル基などを例示することができる

炭素数4~9のシクロアルキルーアルキル基:シクロペンチルメチル基、シクロヘキシルメチル基、シクロペンチルエチル基、シクロヘキシルエチル基などを例示することができる。

[0017]

炭素数 2~4のアルケニル基:アリル基、ビニル基、イソプロペニル基、1ープロペニル基、2ープロペニル基、3ープテニル基、2ープテニル基、3ープテニル基、1ーメチルー1ープロペニル基、1ーメ

チルー2ープロペニル基、2ーメチルー2ープロペニル基などを例示することが できる。

[0018]

炭素数3~9のアルケニル基:アリル基、イソプロペニル基、1ープロペニル基、2ープロペニル基、1ーブテニル基、2ーブテニル基、3ーブテニル基、1ーメチルー1ープロペニル基、1ーメチルー2ープロペニル基、2ーメチルー2ープロペニル基、1ーペンテニル基、3ーペンテニル基、4ーペンテニル基、3ーメチルー2ーブテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基などを例示することができる。

[0019]

炭素数1~4のアルコキシ基:メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、 s-ブトキシ基、 t-ブトキシ基を例示することができる。

炭素数3~9のシクロアルキルオキシ基:シクロプロポキシ基、シクロブトキシ 基、シクロペントキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基な どを例示することができる。

[0020]

炭素数4~9のシクロアルキルーアルコキシ基:シクロペンチルメトキシ基、シクロヘキシルメトキシ基、シクロペンチルエトキシ基、シクロヘキシルエトキシ 基などを例示することができる。

アラルキルオキシ基:ベンジルオキシ基、1-ナフチルメトキシ基、2-ナフチルメトキシ基、2-フェニルエトキシ基、1-フェニルエトキシ基、3-フェニルプロポキシ基、4-フェニルブトキシ基、5-フェニルペントキシ基、6-フェニルヘキシルオキシ基などを例示することができる。

[0021]

炭素数1~4のアシル基:ホルミル基、アセチル基、プロピオニル基、ブチリル 基などを例示することができる。

芳香族アシル基:ベンゾイル基、トルオイル基、ナフトイル基などを例示することができる。

炭素数1~4のアルキル基でモノ置換されたアミノ基:メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基を例示することができる。

炭素数 1~4のアルキル基でジ置換されたアミノ基:ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基などを例示することができる。

[0022]

炭素数 2~5のアルコキシカルボニル基:メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、s-ブトキシカルボニル基、t-ブトキシカルボニル基を例示することができる。

炭素数 1 ~ 4 のアルキレンジオキシ基:メチレンジオキシ基、エチレンジオキシ 基などを例示することができる。

炭素数1~4のヒドロキシアルコキシ基:ヒドロキシメトキシ基、ヒドロキシエトキシ基、ヒドロキシプロポキシ基、ヒドロキシブトキシ基などを例示することができる。

[0023]

炭素数 5~8のモルホリノーN-アルコキシ基:モルホリノーN-メトキシ基、 モルホリノーN-エトキシ基、モルホリノーN-プロポキシ基、モルホリノーN -ブトキシ基などを例示することができる。

アラルキル基(複素芳香族置換アルキル基を含む): ベンジル基、1ーナフチルメチル基、2ーナフチルメチル基、2ーフェニルエチル基、1ーフェニルエチル基、3ーフェニルプロピル基、4ーフェニルブチル基、5ーフェニルペンチル基、6ーフェニルへキシル基、メチルベンジル基、1ーメチルフェネチル基、ジメチルベンジル基、1ージメチルフェネチル基、1ーエチルベンジル基、ジエチルベンジル基、チエニルメチル基、チエニルエチル基、フリルメチル基、フリルエチル基などを例示することができる。

[0024]

炭素数1~4のアルキレン基:メチレン基、エチレン基、トリメチレン基、テト

ラメチレン基などを例示することができる。

炭素数 $1 \sim 4$ のアルキレンオキシ基:メチレンオキシ基、エチレンオキシ基、トリメチレンオキシ基、テトラメチレンオキシ基などを例示することができる。

炭素数 1~4のアシロキシ基:アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基などを例示することができる。

炭素数 1 ~ 4 のアルキルチオ基: メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基などを例示することができる。

[0025]

前記一般式(1)で表される本発明のウレア誘導体においてAで示される芳香環は前記したとおりであるが、その中でもベンゼン環、ピリジン環が好ましく、ベンゼン環が更に好ましい。

Xで示される基としては、単結合(直接結合)、又はメチレン基、エチレン基 が好ましい。

[0026]

Yで示される置換基は前記したとおりであるが、その中でもアミノ基、水酸基 もしくは炭素数 1 ~ 4 のアルコキシ基であることが好ましく、アミノ基、メトキ シ基、エトキシ基が更に好ましい。

[0027]

 R^1 で示される置換基は前記したとおりであるが、その中でも炭素数 $1\sim 4$ のアルコキシ基、ニトロ基及びハロゲン原子から選択される置換基が 1 又は 2 個存在することが好ましく、これらの置換基はメトキシ基、エトキシ基又はフッ素であることが更に好ましい。 R^1 の結合位置は、A環がベンゼン環の場合は、NHCOXで表される置換基に対して 4 位又は 5 位のモノ置換、あるいは 4 位と 5 位のジ置換が好ましい。

[0028]

Bで示される環は前記したとおりであるが、その中でもベンゼン環が好ましい

 R^2 としては、水素原子、又は炭素数 $1 \sim 4$ のアルキル基、炭素数 $1 \sim 4$ のアル

コキシ基、ハロゲン原子、水酸基のモノ置換が好ましい。 R^3 及び R^4 としては、水素原子が好ましい。

[0029]

R⁵としては、炭素数1~8のアルキル基、炭素数3~9のシクロアルキル基、 炭素数4~9のシクロアルキルーアルキル基、アリル基、無置換又は置換フェニル基、ピリジル基、アラルキル基が好ましく、炭素数1~4のアルキル基、炭素 数3~6のシクロアルキル基、炭素数4~6のシクロアルキルーアルキル基、無 置換又は置換フェニル基、ピリジル基、ベンジル基が更に好ましい。R⁵ が置換 フェニルの場合は、環上の置換基はハロゲン原子、炭素数1~4のアルキル基、 炭素数1~4のアルコキシ基、炭素数2~5のアルコキシカルボニル基、カルボ キシル基、炭素数1~4のアシル基、アミノ基、炭素数1~4のアルキルアミノ 基、炭素数1~4のアルキル基でジ置換されたアミノ基、トリフルオロメチル基 が好ましく、フッ素原子、塩素原子、炭素数1~4のアルキル基、炭素数1~4 のアルコキシ基、炭素数1~4のアルコキシカルボニル基、カルボキシル基、炭 素数1~4のアシル基、アミノ基、炭素数1~4のアルキルを、炭素数1 ~4のアルキル基でジ置換されたアミノ基及びトリフルオロメチル基から選択さ れる基が1~2個置換していることが更に好ましい。

[0030]

Zとしては、酸素が好ましい。

本発明の化合物は、例えば下記の方法によって合成することができるが、本発明の化合物の製造方法はこれらに限定されるものではないことはいうまでもない

[0031]

本発明の化合物は、いずれも文献未記載の新規化合物であるが、文献記載の公知の方法又はそれと類似した方法で製造することができる。文献の例を挙げると、オーガニック・ファンクショナル・グループ・プレパレーションズ(Organic Functional Group Preparations), S.R.サンドラーら著、アカデミック・プレス・インコーポレイテッド(Academic Press Inc.) (New York and London) (1968)、シンセティック・オーガニック・ケミストリー(Synthetic Organic Chemistry

), S.R.ワーグナーら著, (John Wiley) (1961)、コンプリヘンシブ・オーガニ ック・トランスフォーメーションズ(Comprehensive Organic Transformations), R.C.ラロック著 (1989)、エンサイクロペディア・オブ・レージェント・フォー ・オーガニック・シンセシス(Encyclopedia of Reagents for Organic Synthesi s), L.A.パケットら著 (1995)、コンペンジアム・オブ・オーガニック・シンセ シス・メソッド(Compendium of Organic Synthetic Methods), M.B.スミス著(1 995)などが挙げられる。また、本発明の化合物の類似化合物として、前記式(1)においてAがベンゼン環、 R^1 が水素原子、Xが単結合であるものの合成が報告さ れており、それと類似の方法を使っても合成することができる。報告例をあげる と、Indian. J. Chem., Sect.B (1987), 26B (12), 1133-9、特公平02-24825号 公報、Acta Chim. Acad. Sci. Hung. (1981), 107 (1), 57-66、Tetrahedron (1 968), 24 (16), 5529-45, Acta Chim. Acad. Sci. Hung. (1966), 48 (1), 77-87, J. Org.Chem. (1967), 32 (2), 462-3, Acta Vet. (Brno) (1971), 40 (2), 209-14、 J. Org. Chem. (1974), 39 (13), 1931-5、 J. Chem. Eng.Data (1968), 13 (4), 577-9が挙げられる。なお、前記文献に同化合物の生理活性に関する 記述はない。なお、製法に際して用いる原料化合物としては、市販されているも のを用いても、又は必要に応じて常法により製造してもよい。以下に製法の例を 示す。

[製法1]

前記一般式 (1) においてR³が水素原子である化合物は以下の反応工程に従い 製造することができる。

[0032]

【化3】

OzN B
$$R^1$$
 R^1 R^1 R^1 R^2 R^2 R^3 R^4 R^5 R^5 R^4 R^4 R^4 R^5 R^5 R^4 R^5 R^5 R^6 R^6

[0033]

(式中、R¹、R²、R⁴、R⁵、X、Y、Z、環A及び環Bは前記定義のとおりである。) 出発原料である化合物(2)は市販品を購入するか、文献記載の公知の方法又は それと類似した方法で製造することができる。例えばA環がベンゼン環の場合、 下記の化合物を原料として製造することができる。

[0034]

【化4】

$$R^{1}$$
 $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{3}N$ $H_{2}N$ $H_{3}N$ $H_$

[0035]

前記一般式(6)で示されるアントラニル酸誘導体をジシクロヘキシルカルボジイミド等のカルボジイミド試薬を用いて、アンモニア又はアミン化合物と縮合さ

せて、Yがアミノ基又はN(\mathbb{R}^6)(\mathbb{R}^7)である化合物を製造することができる。また、前記一般式(7)で示されるニトロ安息香酸誘導体を塩化チオニルなどで処理した後にアルコール化合物又はアミン化合物と不活性溶媒中、塩基の存在下に反応させたり、一般式(6)の場合と同様の処理をした後に、文献記載の公知の方法又はそれと類似した方法でニトロ基をアミノ基に変換することで、Yが炭素数 $1 \sim 4$ のアルコキシ基、アミノ基又はN(\mathbb{R}^6)(\mathbb{R}^7)である化合物を製造することができる。また、前記一般式(8)で示されるニトリル誘導体を文献記載の公知の方法又はそれと類似した方法でニトリル基を加水分解することで、Yがアミノ基又は水酸基である化合物を合成できる。

[0036]

前記一般式(4)で示される化合物は、文献記載の公知の方法又はそれと類似し た方法である、前記一般式(2)で示されるアミン誘導体と前記一般式(3)で示され るカルボン酸誘導体の縮合反応によって製造することができる。本縮合反応は、 各種の縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロへ キシルカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、 2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また前 記一般式(3)で示されるカルボン酸化合物を、塩化チオニル等のハロゲン化試薬 と反応させて、対応する酸ハライドに変換するか、又は例えばp-トルエンスルホ ン酸クロリドなどにより反応活性体である酸無水物に変換した後、前記一般式(2)で示されるアミン誘導体と反応させることにより縮合反応を行うこともできる 。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル 類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジク ロロメタン、クロロホルムなどのハロゲン化炭化水素類、アセトニトリルなどの ニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチ ルスルホキシドなどから選択される適当な溶媒を用いることができる。反応は0 ℃~溶媒の還流温度で行うことができる。

[0037]

前記一般式(5)で示される化合物は、前記一般式(4)で示されるアミド誘導体の ニトロ基を文献記載の公知の方法又はそれと類似した方法によりアミノ基へ変換 することで製造することができる。例えば、メタノール、エタノールなどのアルコール性溶媒中でパラジウム炭素、鉄、すず粉末などの触媒の存在下に水素添加反応を行うことによって製造することができる。反応は0℃~溶媒の還流温度で行うことができる。

[0038]

前記一般式(1)で示される化合物は、R⁴が水素原子である場合、前記一般式(5)で示される化合物と、公知の方法で得られるイソシアネート(R⁵NCO)又はイソチオシアネート(R⁵NCS)とを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20℃~用いた溶媒の沸点の温度で、10分~48時間反応させることで製造することができる。また、イソシアネートの代わりにトリホスゲン又はカルボニルジイミダゾールと対応するアミン類からイソシアネート等価体を別途調製して反応に用いて合成することもできる。

[0039]

前記一般式(1)で示される化合物は、R⁴が炭素数1~4のアルキル基である場合、前記一般式(5)で示される化合物と、公知の方法で得られるR⁴R⁵NCZCIで表されるカルバモイルクロリド又はチオカルバモイルクロリドとを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムア

ミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20℃~用いた溶媒の沸点の温度で、10分~48時間反応させることで製造することができる。

[製法2]

化合物(1)は以下の反応工程に従い製造することができる。

[0040]

【化5】

(2)

$$R^3HN$$
 R^1
 R^3HN
 R^2
 R^3HN
 R^3HN
 R^3HN
 R^3HN
 R^2
 R^3HN
 R^3HN
 R^3HN
 R^3HN
 R^3HN
 R^3HN
 R^3HN
 R^2
 R^3HN
 R^3HN

[0041]

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、X、Y、Z、環A及び環Bは前記定義のとおりである。)

前記一般式(10)で示される化合物は、文献記載の公知の方法又はそれと類似した方法である、前記一般式(2)で示されるアミン誘導体と前記一般式(9)で示されるカルボン酸誘導体の縮合反応によって製造することができる。本縮合反応は、

縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシルカルボジイミドなどのカルボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムヨウ化物塩などを用いることができる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタンなどのハロゲン化炭化水素類、アセトニトリルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。反応は0℃~溶媒の還流温度で行うことができる。

[0042]

前記一般式(1)で示される化合物は、R⁴が水素原子である場合、前記一般式(10)で示される化合物と、公知の方法で得られるイソシアネート(R⁵NCO)又はイソチオシアネート(R⁵NCS)とを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20℃~用いた溶媒の沸点の温度で、10分~48時間反応させることで製造することができる。

[0043]

前記一般式(1)で示される化合物は、 $R^4 \neq H$ の場合、前記一般式(10)で示される化合物と公知の方法で得られる $R^4 R^5 NCZCI$ で表されるカルバモイルクロリド又はチオカルバモイルクロリドとを、必要により例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムL-Jトキシドなどの金属アルコキシドなどの塩基存在下、適当な不活性溶媒、例えば

ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒もしくはこれらの混合溶媒中、-20℃~用いた溶媒の沸点の間の温度で、10分~48時間反応させることで製造することができる。

[製法3]

化合物(1)は以下の反応工程に従い製造することができる。

[0044]

【化6】

[0045]

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、X、Y、Z、環A及び環Bは前記定義のとおりであり、 L^1 は水素原子、又は保護基、例えばベンジル基、アルキル基を表す。) 前記一般式(12)で示される化合物は、 R^4 が水素原子である場合、前記一般式(11)で示される化合物と、公知の方法で得られるイソシアネート(R^5 NCO)又はイソ

チオシアネート(R⁵NCS)とを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノピリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20℃~用いた溶媒の沸点の温度で、10分~48時間反応させることで製造することができる

[0046]

前記一般式(12)で示される化合物は、R⁴が炭素数 1 ~ 4 のアルキル基である場合、前記一般式(11)で示される化合物と、公知の方法で得られるR⁴R⁵NCZCIで表されるカルバモイルクロリド又はチオカルバモイルクロリドとを、必要により、例えばトリエチルアミン、ピリジン、ジメチルアミノビリジンなどの有機塩基、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウムt-ブトキシドなどの金属アルコキシドなどの塩基の存在下、適当な不活性溶媒、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドンなど非プロトン性極性溶媒又はこれらの混合溶媒中、-20℃~用いた溶媒の沸点の温度で、10分~48時間反応させることで製造することができる。

[0047]

前記一般式(1)で示される化合物は、文献記載の公知の方法又はそれと類似した方法である、前記一般式(2)で示されるアミン誘導体と前記一般式(12)で示される化合物との縮合される化合物又は脱保護反応を施した前記一般式(12)で示される化合物との縮合反応によって製造することができる。本縮合反応は、縮合剤の存在下に行うことができる。縮合剤としては、例えばジシクロヘキシルカルボジイミドなどのカル

ボジイミド試薬、カルボニルジイミダゾール、2-クロロ-1-メチルピリジニウムョウ化物塩などを用いることができる。また本縮合反応は、不活性な溶媒、例えばテトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどの炭化水素類、ジクロロメタンなどのハロゲン化炭化水素類、アセトニトリルなどのニトリル類、酢酸エチルなどのエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどから選択される適当な溶媒を用いることができる。

[0048]

前記の製造方法において定義した基が実施方法の条件下で変化するか又は方法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入及び脱離方法 (例えばプロテクティブ・グループス・イン・オーガニック・シンセシス (Protective Groups of Organic Synthesis),グリーン著,(John Wiley)(1981)参照)等を用いることにより目的化合物を得ることができる。また化合物(1)の中には、これを合成中間体として更に新規な誘導体(1)に導くことができるものもある。

[0049]

前記の各製造方法における中間体及び目的化合物は、有機合成化学で常用される精製手段、例えば中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィーなどに付して単離精製することができる。また、中間体においては、特に精製することなく、次の反応に供することも可能である。

また化合物(1)の中には、異性体が存在しうるものがあるが、本発明はこれら を含めて全て可能な異性体及びそれらの混合物を含む。

[0050]

化合物(1)の塩を取得したいとき、化合物(1)が塩の形で得られる場合には、そのまま精製すればよく、また遊離の形で得られる場合には、適当な有機溶媒に溶解又は懸濁させ、酸又は塩基を加えて通常の方法により塩を形成させればよい。薬学的に許容される塩として、例えば塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸、P-トルエンスルホン酸、プロピオン酸、クエン酸、コハク酸、酪酸、シ

ュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アルパラギン酸などの有機酸との酸付加塩、ナトリウム塩、カリウム塩、カルシウム塩 などの無機塩基との塩、モルホリン、ピペリジンなどの有機アミン、アミノ酸と の塩を挙げることができる。

[0051]

また化合物(1)及びその薬学的に許容される塩は、水あるいは各種溶媒との付加物の形で存在することもあるが、これらの付加物も本発明に含まれる。

前記製造方法によって得られる化合物(1)の具体例を表 1 ~表 8 に示す。本発明の化合物がこれらに限定されるものではないことはいうまでもない。

[0052]

【表1】

	$\bigcup_{3}^{R^1}$													
		\mathbf{Y}												
						5 الرج								
			**		ни	6								
		H	H	5 '	7									
		R5-1	~ \ / :	<u>`</u>	X >0									
			5'	Y										
		7	z [[2'									
			4'	3' \	Z									
			i	3' \ 1	\mathbb{R}^2									
n. A 44-1	R ¹	Y	x !	z	R ²	ウレ	R ⁵							
化合物 番号	K-	-				ア位								
香节			ŀ		ļ	置								
	4,5-(OMe)2	OEt		0	H	4'	Ph							
$\frac{1}{2}$	4,5-(OMe) ₂	OEt		0	H	4'	4-Me-Ph							
3	4,5-(OMe) ₂	OEt		0	H	4'	3-Me-Ph							
4	4,5-(OMe) ₂	OEt		0	H	4'	2-Me-Ph							
5	4,5-(OMe)2	OEt		0	H	4'	4-Et-Ph							
6	4,5-(OMe) ₂	OEt		0	H	4'	3-Et-Ph							
$\frac{-6}{7}$	4,5-(OMe) ₂	OEt		0	H	4'	2-Et-Ph							
8	4,5-(OMe) ₂	OEt		0	H	4'	4-Pr-Ph							
9	4,5-(OMe)2	OEt		0	<u> </u>	4'	4-nBu-Ph							
10	4,5-(OMe)2	OEt		0	H	4	4-CF ₃ -Ph							
11	4,5-(OMe)2	OEt		0	<u> </u>	4'	4-tBu-Ph							
12	4,5-(OMe)2	OEt		0	<u>H</u>	4'	4-Ac-Ph 3-Ac-Ph							
13	4,5-(OMe)2	OEt		0	<u> </u>	4'	4-CO ₂ Et-Ph							
14	4,5-(OMe)2	OEt		10	<u> </u>	4'	3-CO ₂ Et-Ph							
15	4,5-(OMe)2	OEt		0	H	4'	4-CO ₂ Me-Ph							
16	4,5-(OMe)2	OEt		l o	H	141	4-CO2ºBu-Ph							
17	4,5-(OMe)2		_=_	18	H	4'	4-SMe-Ph							
18	4,5-(OMe)2			18	H	1 4 1	4-F-Ph							
19	4,5-(OMe) ₂			18	H	4	3-F-Ph							
	4,5-(OMe) ₂			+응	H	4	2-F-Ph							
21	4,5-(OMe) ₂		 =	18	H	4	4-Cl-Ph							
22	4,5-(OMe)2			lŏ	H	4	3-Cl-Ph							
23	4,5-(OMe)		 	tŏ	H	4	2-Cl-Ph							
24	4,5-(OMe)		├ = -	tŏ	H	4'	4-NO ₂ -Ph							
25	4,5-(OMe)	OTA	 	 	H	4'	3-NO ₂ -Ph							
26	4,5-(OMe)		+=	 ŏ	H	4'	2-NO ₂ -Ph							
27	4,5-(OMe)		$+ \equiv$	Τŏ	H	4'	4-NH2-Ph							
28	4,5-(OMe)		+=	Ιŏ	H	4'	3-NH2-Ph							
29_	4,5-(OMe)		+	Τŏ	H	4'	2-NH2-Ph							
30	4,5-(OMe)		 	Tö	Н	4'	4-NHAc-Ph							
31	4,5-(OMe) 4,5-(OMe)		+	Tŏ		4'	4-NMe2-Ph							
32	4,5-(OMe)		+=	Tō		4'	3-NMe ₂ -Ph							
<u>33</u> 34	4,5-(OMe)		1 =	0		4'	2-NMe ₂ -Ph							

25	145.005						
35	4,5-(OMe				О Н	_ 4	4-OMe-Ph
36_	4,5-(OMe)				H	4	
37	4,5-(OMe)				Н	4	
38_	4,5-(OMe)				Н	4	
39	4,5-(OMe)				Н	4	
40	4,5-(OMe)					4	7 1 1 1 1 1 1 1 1
41	4,5-(OMe)	2 OEt	_			4	1 One 1 II
42	4,5-(OMe)	2 OEt		10		4	0 0110 1 11
43	4,5-(OMe)			10		_	
44	4,5-(OMe)			To		4'	1011111
45	4,5-(OMe):			To		4'	
46	4,5-(OMe):			18		4'	2-011-111
47	4,5-(OMe)	OEt	+=	_		4'	
48	4,5-(OMe)	OEt	+-=	10		4'	4-PhCO-Ph
49	4,5-(OMe) ₂	OEt	+	18		4'	4-CO ₂ H-Ph
50	4,5-(OMe) ₂	OEt	+-=-	10		4'	3-CO ₂ H-Ph
51	4,5-(OMe) ₂	OE	+	10		4'	4-CN-Ph
52	4,5-(OMe) ₂	OEt	 -	10	H	4'	4-morpholino-Ph
53	4,5-(OMe) ₂	OEt	+	10	H	4'	4-(2-Py)-Ph
54	4,5-(OMe) ₂		 =	10	H	4'	2,4-(OMe) ₂ -Ph
55				10	H	4'	4-Cl-6-NH2Ph
56	4,5-(OMe) ₂	OEt	+	10	H	4'	2-Cl-4-NO ₂ -Ph
-50 57	4,5-(OMe) ₂		 =	10	H	4'	4-Cl-6-CF ₈ Ph
	4,5-(OMe) ₂	OEt	 	10	H	4'	2,4-F ₂ -Ph
<u>58</u> 59	4,5-(OMe) ₂	OEt	 	10	H	4'	2,4-Cl ₂ -Ph
	4,5-(OMe) ₂	OEt_		10	H	4'	4-Cl-6-NO2Ph
60	4,5-(OMe) ₂	OEt		10	H	4'	4-Cl-6-Me-Ph
61	4,5-(OMe) ₂	OEt		0	H	4'	2-Cl-4-NH ₂ -Ph
62	4,5-(OMe) ₂	OEt	_=.	0	H	4'	2,5-(OMe) ₂ -Ph
63	4,5-(OMe) ₂	OEt_		0	H	4'	2,5-F ₂ -Ph
<u>64</u> 65	4,5-(OMe) ₂	OEt_		0	H	4'	2,5-Cl ₂ -Ph
	4,5-(OMe) ₂	OEt_		0	H	4'	2,5-CF ₃ -Ph
<u>66</u> 67	4,5-(OMe) ₂	OEt		0	H	4'	2,5-CO ₂ Me-Ph
	4,5-(OMe) ₂	OEt		0	H	4'	3,5-(OMe) ₂ -Ph
68 69	4,5-(OMe) ₂	OEt		0	H	4'	3,5-Me ₂ -Ph
	4,5-(OMe) ₂	OEt		0	H	4'	3,5-(CF ₃) ₂ -Ph
70	4,5-(OMe) ₂	OEt		0	H	4'	3,5-F ₂ -Ph
71 72	4,5-(OMe) ₂	OEt		0	H	4'	3,5-Cl ₂ -Ph
	4,5-(OMe) ₂	OEt		0	H	4'	3,5-(NO ₂) ₂ -Ph
· 73	4,5-(OMe) ₂	OEt		0	H	4'	3,4-Me ₂ -Ph
74	4,5-(OMe) ₂	OEt		0	H	4'	3,4-(CF ₃) ₂ -Ph
75	4,5-(OMe) ₂	OEt		0	H	4'	4-Cl-5-NO ₂ -Ph
76	4,5-(OMe) ₂	OEt		0	H	4'	3,4-F ₂ -Ph
77	4,5-(OMe) ₂	OEt		0	H	4'	3,4-Cl ₂ -Ph
78	4,5-(OMe) ₂	OEt		0	H	4'	4-Cl-5-CF ₃ -Ph
79	4,5-(OMe) ₂	OEt		0	H	4'	indane-5-yl
80	4,5-(OMe) ₂	OEt		0	H	4'	1,3-benzodioxole-5-yl
81	4,5-(OMe) ₂	OEt]	0	H	4'	1,4-benzodioxane-6-yl
82	4,5-(OMe) ₂	OEt]	0	H	4'	3-Cl-4-Me-Ph
83	4,5-(OMe) ₂	OEt		0	H	4'	3-Cl-4-F-Ph
84	4,5-(OMe) ₂	OEt		0	H	4'	3-NO ₂ -4-Me-Ph
	4,5-(OMe) ₂	OEt		0	H	4'	3,4-(OMe) ₂ -Ph
	4,5-(OMe) ₂	OEt		0	H	4'	2,6-iPr ₂ -Ph
	4,5-(OMe) ₂	OEt		0	H	4'	2,6-F ₂ -Ph
88	4,5-(OMe) ₂	OEt	$-\Box$	0	H	4'	2,6-Cl ₂ -Ph
					•	•	-10 A79-I II

		_					o CLONE TH
89	4,5-(OMe)2	OEt		0	H	4'	2-Cl-6-Me-Ph
90	4,5-(OMe)2	OEt		0	H	4'	2,3-(OMe) ₂ -Ph
91	4,5-(OMe) ₂	OEt		0	<u>H</u>	4'	5-Cl-6-OMe-Ph
92	4,5-(OMe) ₂	OEt		0	H	4'	2,3-Cl ₂ -Ph
93	4,5-(OMe) ₂	OEt		0	H	4'	4-Cl-5-NH ₂ -Ph
94	4,5-(OMe) ₂	OEt		0	H	4'	3-Cl-6-OMe-Ph
95	4,5-(OMe)2	OEt		0	H	4'	3-Cl-4,6-(OMe)2-Ph
96	4,5-(OMe) ₂	OEt		0	H	4'	4,5-Me ₂ -2-NO ₂ -Ph
97	4,5-(OMe)2	OEt		0	H	4'	2,4,5-F ₃ -Ph
98	4,5-(OMe) ₂	OEt		0	H	4'	2,3,6-F ₃ -Ph
99	4,5-(OMe) ₂	OEt		0	H	4'	2,4,6-F ₃ -Ph
100	4,5-(OMe) ₂	OEt		0	H	4'	2,3,4-F ₃ -Ph
101	4,5-(OMe) ₂	OEt		0	H	4'	3,4,5-(OMe) ₃ -Ph
102	4,5-(OMe) ₂	OEt		0	H	4'	c-Pen
103	4,5-(OMe) ₂	OEt		ा	H	4'	c-Hex
104	4,5-(OMe) ₂	OEt		0	H	4'	с-Нер
105	4,5-(OMe) ₂	OEt		0	H	4'	tetrahydropyrane-2-yl
106	4,5-(OMe) ₂	OEt		0	H	4'	2-propenyl
107	4,5-(OMe) ₂	OEt		o	H	4'	₽Bu
	4,5-(OMe) ₂	OEt		o	н	4'	ⁿ Pr
108	4,5-(OMe) ₂	OEt		0	H	4'	iPr
109	4,5-(OMe) ₂	OEt		0	H	4'	ⁱ Bu
110	4,5-(OMe) ₂	OEt		0	H	4'	Me
111	4,5-(OMe) ₂	OEt		o	H	4'	Bn
112	4,5-(OMe) ₂	OEt		10	H	4'	4-F-Bn
113	4,5-(OMe) ₂	OEt		10	H	4'	3-F-Bn
114	4,5-(OMe)2 4,5-(OMe)2	OEt		ō	H	4'	2-F-Bn
115	4,5-(OMe)2	OEt		ŏ	H	4'	4-Cl-Bn
116	4,5-(OMe)2	OEt		Ŏ	H	4'	3-Cl-Bn
117	4,5-(OMe) ₂	OEt		To	H	4'	2-Cl-Bn
118	4,5-(OMe) ₂	OEt		Ιō	H	4'	4-OMe-Bn
119	4,5-(OMe) ₂	OEt		lo	H	4'	3-OMe-Bn
120	4,5-(OMe) ₂	OEt		0	H	4'	2-OMe-Bn
121	4,5-(OMe) ₂	OEt		lo	H	4'	4-Me-Bn
122 123	4,5-(OMe)2	OEt	 	To	H	4'	3-Me-Bn
	4,5-(OMe)2 4,5-(OMe)2	OEt		10	H	4'	2-Me-Bn
124	4,5-(OMe)2	OEt	 	To	H	4'	4-NO ₂ -Bn
125	4,5-(OMe) ₂		 	ŏ	Н	4'	4-NH2-Bn
126	4,5-(OMe) ₂		 	ō	H	4'	4-NMe2-Bn
127	4,5-(OMe) ₂		 	١ŏ	H	4'	4-SO ₂ Me-Bn
128	4,5-(OMe)2		+	Tō	H	4'	4-SO ₂ NH ₂ -Bn
129	1,0 (3 /-		+	10	H	4'	4-CN-Bn
130			+	ō	H	4'	4-Bu-Bn
131			 	1 ŏ	H	4'	piperonyl
132	4,5-(OMe)2		 	١ŏ	н	4'	
133			$+ \equiv$	Tŏ	H	4'	3,4-Cl ₂ -Bn
134			+=	Τŏ		4'	(CH ₂) ₂ -(4-Cl-Ph)
135			+=	٦ŏ		4'	
136			+	┪		4'	
137		_	+-=	- ŏ		4'	
138			 	Tŏ		4'	
139			 	- ŏ		4	
140			+	- 8		4	
14			+-=	18		4	
142	2 4,5-(OMe)	2 OEt	1 —	Į	т п	1 *	

14	2 45 (0)4	l on.			_				
14					0	H		4'	CH2-(1-Nap)
14		e)2 OEt			0	H		4'	CH ₂ -(2-Nap)
140		e)2 OEt			이	H		4'	2-Py
14	7 4,5-(OMe				0	H		4'	3-Py
148					0	H		4'	4-Py
149					0	H		4'	CH ₂ -(2-Py)
150				_	이	H		4'	CH ₂ -(3-Py)
151)2 OEt			잌	H		4'	CH ₂ -(4-Py)
152	7. 10 2.20				인	H		4'	(CH ₂) ₂ -(2-Py)
153					0	H	T	4'	furan-3-yl
154)2 OEt			o T	H		4'	thiophene-3-yl
155	4,5-(OMe				0	H		4'	CH2-(thiophene-3-yl)
156)2 OEt	+=		2	H		4'	CH ₂ -(furan-3-yl)
157			 =	_	2	H	\Box	4'	CH ₂ -(thiophene-2-yl)
158	4,5-(OMe) 4,5-(OMe)		 -	19	_	H		4'	(CH ₂) ₂ -(thiophene-2-yl)
159	4,5-(OMe)			49		H		4'	Ph
160	4,5-(OMe)					<u>H</u>	\Box	4'	4-Me-Ph
161	4,5-(OMe)	2 NH ₂		10		H		4'	3-Me-Ph
162	4,5-(OMe)		+=	<u> C</u>		H		4'	2-Me-Ph
163	4,5-(OMe)		 =	10		<u>H</u>		4'	4-Et-Ph
164	4,5-(OMe)		+=	10	_	H		4'	3-Et-Ph
165	4,5-(OMe)	2 NH ₂	+	10	_	H		4'	2-Et-Ph
166	4,5-(OMe)	NH ₂ NH ₂	+=	10	_	<u>H</u>		1'	4-iPr-Ph
167	4,5-(OMe):	NH ₂	┿═	10		H	_	<u> </u>	4-nBu-Ph
168	4,5-(OMe)	NH ₂	+=	10	_	<u>H</u>	_	<u>'</u>	4-CF ₃ -Ph
169	4,5-(OMe) ₂	NH ₂	 	18		H			4-tBu-Ph
170	4,5-(OMe) ₂	NH ₂	+	 호	_	H	4	_	4-Ac-Ph
171	4,5-(OMe) ₂	NH ₂	+=	10	┿	H	4		3-Ac-Ph
172	4,5-(OMe) ₂	NH ₂	 -	9	+	H	14	_	4-CO ₂ Et-Ph
173	4,5-(OMe) ₂	NH ₂	+=-	18	╀	H	4		3-CO ₂ Et-Ph
174	4,5-(OMe) ₂	NH ₂	 	18	+	<u>H</u>	4	_	4-CO ₂ Me-Ph
175	4,5-(OMe) ₂		 	18	+-	H	4		4-CO ₂ nBu-Ph
176	4,5-(OMe) ₂	NH ₂		Tö	+	H	4		4-SMe-Ph
177	4,5-(OMe) ₂	NH ₂	 	tŏ	╫	H	14		4-F-Ph
178	4,5-(OMe) ₂	NH ₂		lŏ	┼	H	4		3-F-Ph
179	4,5-(OMe) ₂	NH ₂		tö	┼─	H	4'	_	2-F-Ph
180	4,5-(OMe)2	NH ₂		ō	 	H	4'	_	4-Cl-Ph
181	4,5-(OMe) ₂	NH ₂		ŏ	 	H	4'		3-Cl-Ph
182	4,5-(OMe) ₂	NH ₂		ŏ	\vdash	H	4'	+-	2-Cl-Ph
183	4,5-(OMe)2	NH ₂		ŏ	_	H	4'	╁	4-NO ₂ -Ph
184	4,5-(OMe)2	NH ₂		ŏ	_	H	4'	╂	3-NO ₂ -Ph
185	4,5-(OMe) ₂	NH ₂		ŏ		H	4'	┿	2-NO ₂ -Ph
186	4,5-(OMe) ₂	NH ₂		ŏ		H	4'	+-	4-NH ₂ -Ph
187	4,5-(OMe) ₂	NH ₂		ō		H	4'	┰	3-NH ₂ -Ph
188	4,5-(OMe) ₂	NH ₂	_	Ō		H	4'	+	2-NH ₂ -Ph
189	4,5-(OMe) ₂	NH ₂		Ö		H	4'	+-	4-NHAc-Ph
190	4,5-(OMe) ₂	NH ₂		ŏ		H	4'	+	4-NMe ₂ -Ph
191	4,5-(OMe) ₂	NH ₂		ŏ		H	4'	†	3-NMe2-Ph
192	4,5-(OMe) ₂	NH ₂		ŏ		H	4'	 	2-NMe ₂ -Ph
193	4,5-(OMe) ₂	NH ₂		Ö		H	4'	 	4-OMe-Ph
194	4,5-(OMe) ₂	NH ₂		Ò		H	4'	 	3-OMe-Ph
195	4,5-(OMe) ₂	NH ₂		0		H	4'	 	2-OMe-Ph
196	4,5-(OMe) ₂	NH ₂		0		H	4'	 	4-OEt-Ph
		•		•			-	i	4-NEt ₂ -Ph

_				_ 1		1	4 OA - Dh
197	4,5-(OMe)2	NH ₂	_=_	0	<u>H</u>	4'	4-OAc-Ph
198	4,5-(OMe)2	NH ₂		0	H	4'	3-OAc-Ph
199	4,5-(OMe)2	NH ₂		0	H	4'	2-OAc -Ph
200	4,5-(OMe) ₂	NH ₂		0	H	4'	4-OH-Ph
201	4,5-(OMe) ₂	NH ₂		0	H	4'	3-OH-Ph
202	4,5-(OMe)2	NH ₂		0	H	4'	2-OH-Ph
203	4,5-(OMe) ₂	NH ₂		0	H	4'	4-OBn-Ph
204	4,5-(OMe) ₂	NH ₂	-	0	H	4'	4-PhCO-Ph
205	4,5-(OMe)2	NH ₂		0	H	4'	4-CO ₂ H-Ph
206	4,5-(OMe) ₂	NH ₂		0	H	4'	3-CO ₂ H-Ph
207	4,5-(OMe) ₂	NH ₂	_	0	H	4'	4-CN-Ph
208	4,5-(OMe) ₂	NH ₂		0	H	4'	4-morpholino-Ph
209	4,5-(OMe) ₂	NH ₂		0	H	4'	4-(2-Py)-Ph
210	4,5-(OMe) ₂	NH2		o	H	4'	2,4-(OMe) ₂ -Ph
211	4,5-(OMe) ₂	NH ₂		ō	H	4'	4-Cl-6-NH2-Ph
	4,5-(OMe) ₂	NH ₂		ō	H	4'	2-Cl-4-NO2-Ph
212	4,5-(OMe) ₂	NH ₂		lŏt	Н	4'	4-Cl-6-CF ₃ -Ph
213		NH ₂		lŏl	H	4'	2,4-F ₂ -Ph
214	4,5-(OMe) ₂	NH ₂		ŏ	H	4'	2,4-Cl ₂ -Ph
215	4,5-(OMe)2	NH ₂		l ŏ l	H	4'	4-Cl-6-NO2-Ph
216	4,5-(OMe)2	NH ₂	_=	ŏ	H	4'	4-Cl-6-Me-Ph
217	4,5-(OMe) ₂	NH ₂		tŏt	H	4'	2-Cl-4-NH ₂ -Ph
218	4,5-(OMe) ₂		_==-	lŏl	H	4	2,5-(OMe) ₂ -Ph
219	4,5-(OMe) ₂	NH ₂		lŏl	H	4'	2,5-F ₂ -Ph
220	4,5-(OMe) ₂	NH ₂		löl	H	4'	2,5-Cl ₂ -Ph
221	4,5-(OMe) ₂	NH ₂	_=_	löl	H	4'	2,5-CF ₃ -Ph
222	4,5-(OMe) ₂	NH ₂	_=-	181	H	1 4	2,5-CO ₂ Me-Ph
223	4,5-(OMe) ₂	NH ₂	_=-	18	— <u>H</u>	4'	3,5-(OMe) ₂ -Ph
224	4,5-(OMe) ₂	NH ₂	_=_	_	H	1 4	3,5-Me ₂ -Ph
225	4,5-(OMe) ₂	NH ₂		무	H	4'	3,5-(CF ₃) ₂ -Ph
226	4,5-(OMe) ₂	NH ₂		응	H	4'	3,5-F ₂ -Ph
227	4,5-(OMe)2	NH ₂	_=_	18	H	4'	3,5-Cl ₂ -Ph
228	4,5-(OMe) ₂	NH ₂	_=	_	H	4'	3,5-(NO ₂) ₂ -Ph
229	4,5-(OMe) ₂	NH ₂		무의	H	4'	3,4-Me ₂ -Ph
230_	4,5-(OMe) ₂	NH ₂	 = -	무	H	4	3,4-(CF ₃) ₂ -Ph
231	4,5-(OMe) ₂	NH ₂		무	H	4	4-Cl-5-NO ₂ -Ph
232	4,5-(OMe) ₂	NH ₂		0	H	4'	3,4-F ₂ -Ph
233	4,5-(OMe) ₂	NH ₂		10	H	4'	3,4-Cl ₂ -Ph
234	4,5-(OMe)2	NH ₂		ļõ		4'	4-Cl-5-CF ₃ -Ph
235	4,5-(OMe) ₂	NH ₂		10	H	4'	indane-5-yl
236	4,5-(OMe)2	NH ₂	<u> </u>	10	H	14	1,3-benzodioxole-5-yl
237	4,5-(OMe) ₂	NH ₂	! = -	0	H	_	1,4-benzodioxane-6-yl
238	4,5-(OMe)2		<u> </u>	10	<u> </u>	4'	3-Cl-4-Me-Ph
239	4,5-(OMe)2	NH ₂	<u> </u>	10	H	4'	3-Cl-4-F-Ph
240	4,5-(OMe)2		<u> </u>	10	H	4'	
241	4,5-(OMe)2		<u> </u>	10	H	4'	3-NO ₂ -4-Me-Ph
242	4,5-(OMe)2		<u> </u>	10	H	4'	3,4-(OMe) ₂ -Ph
243	4,5-(OMe) ₂		<u> </u>	0	H	4'	2,6-iPr ₂ -Ph
244	4,5-(OMe)2		1	0	H	4'	2,6-F ₂ -Ph
245	4,5-(OMe)2			0	H	4'	2,6-Cl ₂ -Ph
246	4,5-(OMe) ₂			0	H	4'	2-Cl-6-Me-Ph
247	4,5-(OMe)2			0	H	4'	2,3-(OMe)2-Ph
248	4,5-(OMe) ₂			0	H	4'	
249			T =	0	Н	4'	2,3-Cl ₂ -Ph
$\frac{-249}{250}$			1 -	0	Н	4'	4-Cl-5-NH ₂ -Ph
200	1 -, - () -		•				

[0057]

	1						
251	4,5-(OMe):			0		4	3-Cl-6-OMe-Ph
252	4,5-(OMe):			0	H	4	3-Cl-4,6-(OMe)2-Ph
253	4,5-(OMe):			0	H	4	
<u>254</u>	4,5-(OMe) ₂			0	H	4	
<u>255</u>	4,5-(OMe) ₂			0	H	4	
<u>256</u>	4,5-(OMe) ₂			0	H	4	
257	4,5-(OMe) ₂			0	H	4	
258	4,5-(OMe) ₂			0	H	4	
259	4,5-(OMe) ₂			0	H	4	c-Pen
260	4,5-(OMe) ₂	NH ₂		O	H	4'	
261	4,5-(OMe) ₂			0	H	4'	
262	4,5-(OMe) ₂			Ō	H	4'	
263	4,5-(OMe) ₂	NH ₂		0	H	4'	2-propenyl
264	4,5-(OMe) ₂	NH ₂		0	H	4	
<u>265</u>	4,5-(OMe) ₂			0	Н	4'	ⁿ Pr
<u>266</u>	4,5-(OMe) ₂			0	H	4'	iPr
267	4,5-(OMe) ₂	NH ₂		0	H	4'	ⁱ Bu
268_	4,5-(OMe) ₂	NH ₂		0	H	4'	Me
269	4,5-(OMe) ₂	NH ₂		0	H	4	Bn
270	4,5-(OMe) ₂	NH ₂		0	H	4'	4-F-Bn
271	4,5-(OMe) ₂	NH ₂		0	H	4	3-F-Bn
272	4,5-(OMe) ₂	NH ₂	_	0	H	4'	2-F-Bn
273	4,5-(OMe) ₂	NH ₂	_	0	H	4'	4-Cl-Bn
274	4,5-(OMe) ₂	NH ₂		0	H	4'	3-Cl-Bn
<u>275</u>	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Cl-Bn
276	4,5-(OMe) ₂	NH ₂		0	H	4'	4-OMe-Bn
277	4,5-(OMe) ₂	NH ₂		0	H	4'	3-OMe-Bn
278	4,5-(OMe) ₂	NH ₂		0	H	4'	2-OMe-Bn
279	4,5-(OMe) ₂	NH ₂		0	H	4'	4-Me-Bn
280	4,5-(OMe) ₂	NH ₂		0	H	4'	3-Me-Bn
281	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Me-Bn
282	4,5-(OMe) ₂	NH ₂		10	H	4'	4-NO ₂ -Bn
283	4,5-(OMe) ₂	NH ₂		0	H	4'	4-NH ₂ -Bn
284	4,5-(OMe) ₂	NH ₂		101	H	4'	4-NMe ₂ -Bn
285	4,5-(OMe) ₂	NH ₂		10	H	4'	4-SO ₂ Me-Bn
286 287	4,5-(OMe) ₂	NH ₂		10	H	4'	4-SO ₂ NH ₂ -B _n
	4,5-(OMe) ₂	NH ₂		0	H	4'	4-CN-Bn
288 289	4,5-(OMe) ₂	NH ₂		0	H	4'	4-'Bu-Bn
290	4,5-(OMe) ₂	NH ₂		101	H	4'	piperonyl
291	4,5-(OMe) ₂	NH ₂		101	H	4'	3,4-(OMe) ₂ -Bn
292	4,5-(OMe) ₂	NH ₂		0	H	4'	3,4-Cl ₂ -Bn
293	4,5-(OMe) ₂	NH ₂		101	<u> </u>	4'	(CH ₂) ₂ -(4-Cl-Ph)
294	4,5-(OMe) ₂	NH ₂		0	Н	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
295	4,5-(OMe) ₂	NH ₂	_=_	0	<u>H</u>	4'	(CH ₂) ₂ -Ph
	4,5-(OMe) ₂	NH ₂	_=_	0	<u>H</u>	4'	(CH ₂) ₃ -Ph
<u>296</u>	4,5-(OMe) ₂	NH ₂		0	Н	4'	(CH ₂) ₄ -Ph
297 298	4,5-(OMe) ₂	NH ₂		0	H	4'	COPh
299	4,5-(OMe) ₂	NH ₂		9	<u>H</u>	4'	1-Nap
	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Nap
300	4,5-(OMe) ₂	NH ₂		0	<u>H</u>	4'	CH ₂ -(1-Nap)
301	4,5-(OMe) ₂	NH ₂		0	<u>H</u>	4'	CH2-(2-Nap)
302	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Py
303	4,5-(OMe) ₂	NH ₂		0	H	4'	3-Py
304	4,5-(OMe) ₂	NH ₂	– 1	0	H	4'	4-Py

	1	1	1	0.1	77	4'	CU- (9 P-)
305	4,5-(OMe) ₂	NH ₂		응	H H	4'	CH ₂ -(2-Py) CH ₂ -(3-Py)
306	4,5-(OMe) ₂	NH ₂		허	<u>н</u>	4'	CH ₂ -(3-Py) CH ₂ -(4-Py)
307	4,5-(OMe) ₂	NH ₂		허	H	4	(CH ₂) ₂ -(2-Py)
308	4,5-(OMe) ₂	NH ₂		8	H	4'	furan-3-yl
309	4,5-(OMe) ₂	NH ₂	_=-	6	H	4'	thiophene-3-yl
310	4,5-(OMe) ₂	NH ₂	_=_	허	H	4'	CH ₂ -(thiophene-3-yl)
311	4,5-(OMe) ₂	NH ₂			<u> </u>	4'	CH ₂ -(furan-3-yl)
312	4,5-(OMe) ₂	NH ₂		9		4'	CH ₂ -(thiophene-2-yl)
313	4,5-(OMe) ₂	NH ₂		9	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
314	4,5-(OMe) ₂	NH ₂		<u>0</u>	<u>н</u> н	4'	Ph
315	4,5-(OMe) ₂	OEt		S	H	4'	4-Me-Ph
316	4,5-(OMe) ₂	OEt		S		4'	3-Me-Ph
317	4,5-(OMe) ₂	OEt			H		
318	4,5-(OMe) ₂	OEt		S	H	4'	2-Me-Ph
319	4,5-(OMe)2	OEt		S	H	4'	4-Et-Ph
320	4,5-(OMe)2	OEt		S	H	4'	3-Et-Ph
321	4,5-(OMe)2	OEt	-	S	H	4'	2-Et-Ph
322	4,5-(OMe)2	OEt		S	H	4'	4-iPr-Ph
323	4,5-(OMe)2	OEt		S	<u> </u>	4'	4-DBu-Ph
324	4,5-(OMe)2	OEt		S	<u>H</u>	4'	4-CF ₃ -Ph
325	4,5-(OMe) ₂	OEt		S	H	4'	4-tBu-Ph
326	4,5-(OMe) ₂	OEt		S	H	4'	4-Ac-Ph
327	4,5-(OMe) ₂	OEt	1	S	H	4'	3-Ac-Ph
328	4,5-(OMe)2	OEt	1	S	H	4'	4-CO ₂ Et-Ph
329	4,5-(OMe)2	OEt	1	S	H	4'	3-CO ₂ Et-Ph
330	4,5-(OMe)2	OE _t		S	H	4'	4-CO ₂ Me-Ph
331	4,5-(OMe)2	OEt	ļ	S	H	4'	4-CO2"Bu-Ph
332	4,5-(OMe) ₂	OEt	-	S	H	4'	4-SMe-Ph
333	4,5-(OMe)2	OEt		S	H	4'	4-F-Ph
334	4,5-(OMe)2	OEt	_	S	H	4'	3-F-Ph
335	4,5-(OMe)2	OEt		S	H	4'	2-F-Ph
336	4,5-(OMe) ₂	OEt		S	H	4'	4-Cl-Ph
337	4,5-(OMe)2	OEt		S	H	4'	3-Cl-Ph
338	4,5-(OMe)2	OEt		S	H	4'	2-Cl-Ph
339	4,5-(OMe)2	OEt		S	H	4'	4-NO ₂ -Ph
340	4,5-(OMe)2	OEt		S	H	4'	3-NO ₂ -Ph
341	4,5-(OMe)2	OEt		S	H	4'	2-NO ₂ -Ph
342	4,5-(OMe)2	OEt		S	H	4'	4-NH ₂ -Ph
343	4,5-(OMe)2	OEt		S	H	4'	3-NH ₂ -Ph
344	4,5-(OMe)2	OEt		S	H	4'	2-NH2-Ph
345	4,5-(OMe)2	OEt	_	S	H	4'	4-NHAc-Ph
346	4,5-(OMe)2		—	S	H	4'	4-NMe2-Ph
347	4,5-(OMe)2			S	H	4'	3-NMe ₂ -Ph
348	4,5-(OMe)2	OEt		S	H	4'	2-NMe ₂ -Ph
349	4,5-(OMe)2	OEt		s	H	4'	4-OMe-Ph
350	4,5-(OMe)2	OEt		S	H	4'	3-OMe-Ph
351	4,5-(OMe) ₂			s	H	4'	2-OMe-Ph
352	4,5-(OMe) ₂		T	s	H	4'	4-OEt-Ph
353	4,5-(OMe) ₂			S	H	4'	4-NEt ₂ -Ph
354	4,5-(OMe) ₂			s	H	4'	4-OAc-Ph
355	4,5-(OMe) ₂		-	s	н	4'	3-OAc-Ph
356	4,5-(OMe) ₂		 	S	н	4'	2-OAc -Ph
357	4,5-(OMe) ₂		1 =	s		4'	4-OH-Ph
٠.	-,- (/-	•	•	•	•	-	•

35	9 145 (0)5	\ 1					
35	-,- (02:20				S H		<u>1' </u>
36						4	2-OH-Ph
36				8		4	' 4-OBn-Ph
36	-,- (,-					4	4-PhCO-Ph
36				S		4	
36				S		4	
	1 -10 / 0 2120) ₂ OEt		S		4	
369)2 OEt		S		4	
366				S	H	4	4-(2-Py)-Ph
367				<u> S</u>		4	2,4-(OMe) ₂ -Ph
368				S	H	4	4-Cl-6-NH ₂ Ph
369				S	H	4	
370				S	H	4	4-Cl-6-CF ₃ Ph
371				S	H	4	
372				S	H	4	
373		2 OEt		S	H	4'	
374		2 OEt		S	H	4'	
375				S	H	4'	- 02 U 1/2C-1 11
376				S	H	4'	2,5-(OMe) ₂ -Ph
377	4,5-(OMe):			S	H	4'	2,5-F ₂ -Ph
378	4,5-(OMe)	OEt		S	H	4'	2,5-Cl ₂ -Ph
379	4,5-(OMe) ₂			S	H	4'	2,5-CF ₃ -Ph
380	4,5-(OMe) ₂			S	H	4'	2,5-CO ₂ Me-Ph
381	4,5-(OMe) ₂			S	H	4'	3,5-(OMe) ₂ -Ph
382	4,5-(OMe) ₂			S	H	4'	3,5-Me ₂ -Ph
383	4,5-(OMe) ₂	OEt		S	H	4'	3,5-(CF ₃) ₂ -Ph
384	4,5-(OMe) ₂		<u> </u>	S	H	4'	3,5-F ₂ -Ph
<u>385</u>	4,5-(OMe) ₂		=	S	H	4'	3,5-Cl ₂ -Ph
387	4,5-(OMe) ₂		 -	S	H	4'	3,5-(NO ₂) ₂ -Ph
388	4,5-(OMe) ₂ 4,5-(OMe) ₂		 -	S	H	4'	3,4-Me ₂ -Ph
389	4,5-(OMe) ₂	OEt	<u> </u>	S	H	4'	3,4-(CF ₃) ₂ -Ph
390	4,5-(OMe) ₂			S	H	4'	4-Cl-5-NO2-Ph
391	4,5-(OMe) ₂	OEt		S	H	4'	3,4-F ₂ -Ph
392	4,5-(OMe) ₂	OEt		S	H	4'	3,4-Cl ₂ -Ph
393	4,5-(OMe) ₂	OEt		S	H	4'	4-Cl-5-CF ₈ -Ph
394	4,5-(OMe) ₂	OEt OEt		S	<u> </u>	4'	indane-5-yl
395	4,5-(OMe) ₂	OEt		S	H	4'	1,3-benzodioxole-5-yl
396	4,5-(OMe) ₂	OEt	_=_	S	H	4'	1,4-benzodioxane-6-yl
397	4,5-(OMe) ₂	OEt		S	H	4'	3-Cl-4-Me-Ph
398	4,5-(OMe) ₂	OEt		S	H	4'	3-Cl-4-F-Ph
399	4,5-(OMe) ₂	OEt		S	<u>H</u>	4'	3-NO ₂ -4-Me-Ph
400	4,5-(OMe) ₂	OEt		S	<u> </u>	4'	3,4-(OMe) ₂ -Ph
401	4,5-(OMe) ₂	OEt		S	H	4'	2,6-iPr ₂ -Ph
402	4,5-(OMe)2	OEt	_=	S	<u>H</u>	4'	2,6-F ₂ -Ph
403	4,5-(OMe)2	OEt		S	H	4'	2,6-Cl ₂ -Ph
404	4,5-(OMe)2	OEt		s	H	4'	2-Cl-6-Me-Ph
405	4,5-(OMe) ₂	OEt		s	H	4'	2,3-(OMe) ₂ -Ph
406	4,5-(OMe) ₂	OEt		s	H	4'	5-Cl-6-OMe-Ph
407	4,5-(OMe) ₂	OEt		š	H	4'	2,3-Cl ₂ -Ph
408	4,5-(OMe) ₂	OEt		š	H	4'	4-Cl-5-NH ₂ -Ph
409	4,5-(OMe) ₂	OEt		s	H	4'	3-Cl-6-OMe-Ph
410	4,5-(OMe) ₂	OEt		s	H	4'	3-Cl-4,6-(OMe) ₂ -Ph
	•	•	•	- 1		- 1	4,5-Me ₂ -2-NO ₂ -Ph

						1	
411	4,5-(OMe) ₂	OEt		S	<u> </u>	4'	2,4,5-F ₃ -Ph
412	4,5-(OMe) ₂	OEt	_	S	H	4'	2,3,6-F ₃ -Ph
413	4,5-(OMe)2	OEt		S	H	4'	2,4,6-F ₃ -Ph
414	4,5-(OMe)2	OEt		S	H	4'	2,3,4-F ₃ -Ph
415	4,5-(OMe)2	OEt	_	S	H	4'	3,4,5-(OMe) ₃ -Ph
416	4,5-(OMe)2	OEt		S	H	4'	c-Pen
417	4,5-(OMe)2	OEt		S	H	4'	c-Hex
418	4,5-(OMe) ₂	OEt	_	s	H	4'	с-Нер
419	4,5-(OMe)2	OEt		s	H	4'	tetrahydropyrane-2-yl
420	4,5-(OMe) ₂	OEt		s	H	4'	2-propenyl
421	4,5-(OMe)2	OEt	_	S	H	4'	¤Bu
422	4,5-(OMe) ₂	OEt		S	H	4'	ⁿ Pr
423	4,5-(OMe)2	OEt		S	H	4'	iPr
424	4,5-(OMe) ₂	OEt		s	н	4'	ⁱ Bu
425	4,5-(OMe) ₂	OEt		s	Н	4'	Me
426	4,5-(OMe) ₂	OEt		s	Н	4'	Bn
427	4,5-(OMe) ₂	OEt		s	H	4'	4-F-Bn
428	4,5-(OMe) ₂	OEt		s	H	4'	3-F-Bn
429	4,5-(OMe) ₂	OEt		s	H	4'	2-F-Bn
430	4,5-(OMe) ₂	OEt		s	H	4'	4-Cl-Bn
431	4,5-(OMe) ₂	OEt		s	H	4'	3-Cl-Bn
432	4,5-(OMe) ₂	OEt		s	H	4'	2-Cl-Bn
433	4,5-(OMe) ₂	OEt		S	H	4	4-OMe-Bn
434	4,5-(OMe) ₂	OEt		S	H	4'	3-OMe-Bn
434		OEt		S	H	4'	2-OMe-Bn
	4,5-(OMe) ₂	OEt		S	H	4'	4-Me-Bn
436	4,5-(OMe) ₂	OEt		S	H	4'	3-Me-Bn
	4,5-(OMe) ₂	OEt		S	H	4'	2-Me-Bn
438	4,5-(OMe) ₂	OEt	_=_	S	H	4	4-NO ₂ -Bn
439	4,5-(OMe) ₂			S	H	4	4-NH2-Bn
440	4,5-(OMe) ₂	OEt OEt		S	H	4'	4-NMe ₂ -Bn
441	4,5-(OMe) ₂	OEt		S	H	4	4-SO ₂ Me-Bn
442	4,5-(OMe) ₂	OEt		S	H	4'	4-SO ₂ NH ₂ -Bn
	4,5-(OMe) ₂	OEt		S	H	4'	4-CN-Bn
444	4,5-(OMe) ₂			S	H	4'	4-tBu-Bn
445	4,5-(OMe) ₂	OEt OEt		S	H	4'	piperonyl
446	4,5-(OMe) ₂	OEt		S	H	4	3,4-(OMe) ₂ -Bn
447	4,5-(OMe) ₂	OEt		S	H	4'	3,4-Cl ₂ -Bn
448	4,5-(OMe) ₂	OEt	_=_	S	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
449	4,5-(OMe) ₂	OEt			H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
450	4,5-(OMe) ₂	OEt	<u> </u>	S		4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -F ₁) (CH ₂) ₂ -Ph
451	4,5-(OMe)2			20	H	4'	
452	4,5-(OMe) ₂	OEt_		S	H		(CH ₂) ₃ -Ph
453	4,5-(OMe) ₂			S	H	4'	(CH ₂) ₄ -Ph COPh
454	4,5-(OMe) ₂			S	H	4'	
455	4,5-(OMe) ₂			S	H	4'	1-Nap
456	4,5-(OMe)2			S	H	4'	2-Nap
457	4,5-(OMe)2			S	H	4'	CH ₂ -(1-Nap)
458	4,5-(OMe) ₂		<u> </u>	S	H	4'	CH ₂ -(2-Nap)
459	4,5-(OMe)2		<u> </u>	S	H	4'	2-Py
460	4,5-(OMe) ₂			S	<u> </u>	4'	3-Py
461	4,5-(OMe)2			S	H	4'	4-Py
462	4,5-(OMe) ₂		<u> </u>	S	<u> </u>	4'	CH ₂ -(2-Py)
463	4,5-(OMe)2	OEt	-	S	H	4'	CH ₂ -(3-Py)

[0061]

	1			_	_		
464	4,5-(OMe) ₂			<u>s</u>	H	4'	CH ₂ -(4-Py)
465	4,5-(OMe) ₂		+=	S	H	4'	(CH ₂) ₂ -(2-Py)
466	4,5-(OMe) ₂			<u></u>	H	4'	furan-3-yl
467	4,5-(OMe) ₂			S	H	4'	thiophene-3-yl
468	4,5-(OMe) ₂			S	H	4'	CH ₂ -(thiophene-3-yl)
469	4,5-(OMe) ₂			S	H	4'	CH ₂ -(furan-3-yl)
470	4,5-(OMe) ₂		<u> </u>	S	H	4'	CH2-(thiophene-2-yl)
471	4,5-(OMe) ₂			S	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
472	4,5-(OMe) ₂			S	H	4'	Ph
473	4,5-(OMe) ₂			S	H	4'	4-Me-Ph
474	4,5-(OMe) ₂			S	H	4'	3-Me-Ph
475	4,5-(OMe) ₂			S	H	4'	2-Me-Ph
476	4,5-(OMe) ₂			S	H	4'	4-Et-Ph
477	4,5-(OMe) ₂	NH ₂		S	H	4'	3-Et-Ph
478	4,5-(OMe) ₂	NH ₂		S	H	4'	2-Et-Ph
479	4,5-(OMe) ₂	NH ₂		S	H	4'	4-iPr-Ph
480	4,5-(OMe) ₂	NH ₂		S	H	4'	4-nBu-Ph
481	4,5-(OMe) ₂	NH ₂		S	H	4'	4-CF ₃ -Ph
482	4,5-(OMe) ₂	NH ₂		S	H	4'.	4-tBu-Ph
483	4,5-(OMe) ₂	NH ₂		S	H	4'	4-Ac-Ph
484	4,5-(OMe) ₂	NH ₂		S	H	4'	3-Ac-Ph
485	4,5-(OMe) ₂	NH ₂		S	H	4'	4-CO ₂ Et-Ph
486	4,5-(OMe) ₂	NH ₂		S	H	4'	3-CO ₂ Et-Ph
487	4,5-(OMe) ₂	NH ₂		S	H	4'	4-CO ₂ Me-Ph
488	4,5-(OMe) ₂	NH ₂		S	H	4'	4-CO2nBu-Ph
489	4,5-(OMe) ₂	NH ₂		S	H	4'	4-SMe-Ph
490	4,5-(OMe) ₂	NH ₂		S	H	4'	4-F-Ph
491	4,5-(OMe) ₂	NH ₂		S	H	4'	3-F-Ph
492	4,5-(OMe) ₂	NH ₂	_=_	S	HH	4'	2-F-Ph
493	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	4-Cl-Ph
494	4,5-(OMe) ₂	NH ₂		S	H	4'	3-Cl-Ph
495	4,5-(OMe) ₂	NH ₂		S	H	4'	2-Cl-Ph
496	4,5-(OMe) ₂	NH₂		S	H	4'	4-NO ₂ -Ph
497 498	4,5-(OMe) ₂	NH ₂		S	H	4'	3-NO ₂ -Ph
499	4,5-(OMe) ₂	NH ₂	_=_	S	H	4'	2-NO2-Ph
500	4,5-(OMe) ₂	NH ₂		S	H	4'	4-NH ₂ -Ph
501	4,5-(OMe) ₂	NH ₂		S	H	4'	3-NH ₂ -Ph
502	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	2-NH ₂ -Ph
503	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	4-NHAc-Ph
504	4,5-(OMe) ₂	NH ₂		S	H	4'	4-NMe2-Ph
505	4,5-(OMe) ₂	NH ₂		S	<u>H</u> .	4'	3-NMe ₂ -Ph
506	4,5-(OMe) ₂	NH ₂		S	<u> </u>	4'	2-NMe ₂ -Ph
507	4,5-(OMe) ₂	NH ₂		S	H	4'	4-OMe-Ph
508	4,5-(OMe) ₂	NH ₂		S	H	4'	3-OMe-Ph
509	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	2-OMe-Ph
510	4,5-(OMe) ₂	NH ₂		8	<u> </u>	4'	4-OEt-Ph
511	4,5-(OMe) ₂	NH ₂	_=_	S	<u>H</u>	4'	4-NEt ₂ -Ph
512	4,5-(OMe) ₂ 4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	4-OAc-Ph
513		NH ₂		S	<u>H</u>	4'	3-OAc-Ph
514	4,5-(OMe) ₂ 4,5-(OMe) ₂	NH ₂		S	H	4'	2-OAc -Ph
515	4,5-(OMe) ₂ 4,5-(OMe) ₂	NH ₂		S	H	4'	4-OH-Ph
	4,5-(OMe) ₂	NH ₂		S	H	4'	3-OH-Ph
210	-2,0-(UME)2	NH ₂		S	H	4'	2-OH-Ph

			_				
517	4,5-(OMe) ₂	NH ₂		S	H	4'	4-OBn-Ph
	4,5-(OMe) ₂	NH ₂		S	H	4'	4-PhCO-Ph
519	4,5-(OMe)2	NH ₂		S	H	4'	4-CO ₂ H-Ph
520	4,5-(OMe) ₂	NH ₂		S	H	4'	3-CO ₂ H-Ph
521	4,5-(OMe) ₂	NH ₂		s	H	4'	4-CN-Ph
522	4,5-(OMe) ₂	NH ₂		s	H	4'	4-morpholino-Ph
523	4,5-(OMe) ₂	NH ₂		s	H	4'	4-(2-Py)-Ph
524	4,5-(OMe) ₂	NH ₂		s	H	4'	2,4-(OMe) ₂ -Ph
525	4,5-(OMe) ₂	NH ₂		S	H	4'	4-Cl-6-NH2Ph
526	4,5-(OMe) ₂	NH2		S	H	4'	2-Cl-4-NO ₂ -Ph
527	4,5-(OMe) ₂	NH ₂		s	H	4'	4-Cl-6-CF ₃ Ph
528	4,5-(OMe)2	NH ₂		s	H	4'	2,4-F ₂ -Ph
529	4,5-(OMe) ₂	NH ₂		s	H	4'	2,4-Cl ₂ -Ph
		NH ₂		s	н	4'	4-Cl-6-NO2Ph
530	4,5-(OMe) ₂	NH ₂		s	H	4'	4-Cl-6-Me-Ph
531	4,5-(OMe) ₂			s	H	4'	2-Cl-4-NH2-Ph
532	4,5-(OMe) ₂	NH ₂	_=_	s	<u>н</u>	4	2,5-(OMe) ₂ -Ph
533	4,5-(OMe) ₂	NH ₂		s	H	4	2,5-F ₂ -Ph
534	4,5-(OMe) ₂	NH ₂		s	<u> </u>	4	2,5-Cl ₂ -Ph
535	4,5-(OMe) ₂	NH ₂			H H	4'	2,5-CF ₃ -Ph
536	4,5-(OMe) ₂	NH ₂		S	<u>н</u>	4'	2,5-CO ₂ Me-Ph
537	4,5-(OMe)2	NH ₂		S		4'	3,5-(OMe) ₂ -Ph
538	4,5-(OMe) ₂	NH ₂		S	H	4'	3,5-Me ₂ -Ph
539	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	3,5-(CF ₃) ₂ -Ph
540	4,5-(OMe)2	NH ₂		S	H	4'	3,5-F ₂ -Ph
541	4,5-(OMe) ₂	NH ₂		S	H		3,5-Cl ₂ -Ph
542	4,5-(OMe) ₂	NH ₂		S	<u> </u>	4'	3,5-(NO ₂) ₂ -Ph
543	4,5-(OMe)2	NH ₂		S	H	14'	
544	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	3,4-Me ₂ -Ph
545	4,5-(OMe) ₂	NH ₂		S	H	4'	3,4-(CF ₃) ₂ -Ph 4-Cl-5-NO ₂ -Ph
546	4,5-(OMe) ₂	NH ₂		S	H	4'	
547	4,5-(OMe)2	NH ₂		S	H	4'	3,4-F ₂ -Ph
548	4,5-(OMe)2	NH ₂	<u> </u>	S	H	4'	3,4-Cl ₂ -Ph
549	4,5-(OMe) ₂	NH ₂		S	H	4'	4-Cl-5-CF ₃ -Ph
550	4,5-(OMe)2	NH ₂	<u> </u>	S	<u>H</u>	4'	indane-5-yl
551	4,5-(OMe)2	NH ₂		S	H	4'	1,3-benzodioxole-5-yl
552	4,5-(OMe)2	NH ₂		S	H	4'	1,4-benzodioxane-6-yl
553	4,5-(OMe)2	NH ₂		S	H	4'	3-Cl-4-Me-Ph
554	4,5-(OMe)2	NH ₂		S	H	4'	3-Cl-4-F-Ph
555	4,5-(OMe)2	NH ₂	<u> </u>	S	H	4'	3-NO2-4-Me-Ph
556	4,5-(OMe)2	NH ₂		S	H	4'	3,4-(OMe) ₂ -Ph
557	4,5-(OMe)2	NH ₂		S	H	4'	2,6-iPr2-Ph
558	4,5-(OMe)2			S	H	4'	2,6-F ₂ -Ph
559				S	H	4'	2,6-Cl ₂ -Ph
560				S	H	4'	2-Cl-6-Me-Ph
561	4,5-(OMe) ₂		T -	S	H	4'	2,3-(OMe) ₂ -Ph
562			_	S	H	4'	5-Cl-6-OMe-Ph
563				S	H	4'	2,3-Cl ₂ -Ph
564			T	s	H	4'	4-Cl-5-NH2-Ph
565			1 =	S	H	4'	3-Cl-6-OMe-Ph
566			1 =	s	H	4'	3-Cl-4,6-(OMe)2-Ph
567				S	H	4'	4,5-Me ₂ -2-NO ₂ -Ph
568			 	s	H	4'	2,4,5-F ₃ -Ph
			 	s		4'	2,3,6-F ₃ -Ph
569	4,5-(OMe) ₂	1 14113	. —	. –			•

57	0 4,5-(OMe	A-I ATT	1		- (
57				-13	S H		2,4,6-F ₃ -Ph
57					S H	4	2,3,4-F ₃ -Ph
57	- 70 / 0 2:20				S H	4	3,4,5-(OMe) ₃ -Ph
57						4	c-Pen
						4	c-Hex
57)2 NH2				4	
570				S		4	tetrahydropyrane-2-yl
577				s	H	4	2-propenyl
578				S	H	4	"Bu
579		2 NH ₂		S		4	
580		2 NH ₂		S	H	4	
581				S	H	4	
582				S	H	4'	
583				S	H	4	2.20
584	-7- (-2-2)	2 NH ₂		S	H	4'	
585				S		4'	***************************************
586		2 NH ₂		S	H	4'	
587	7, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			S	H	4'	4-Cl-Bn
588		NH ₂		S	Н	4	3-Cl-Bn
589	4,5-(OMe):	NH ₂] =	S	H	4'	2-Cl-Bn
590	4,5-(OMe)	NH ₂		S	H	4	4-OMe-Bn
591	4,5-(OMe) ₂			S	H	4	3-OMe-Bn
592	4,5-(OMe) ₂			S	H	4'	2-OMe-Bn
593	4,5-(OMe) ₂		-	S	H	4'	4-Me-Bn
594	4,5-(OMe) ₂	NH ₂		S	H	4'	3-Me-Bn
595	4,5-(OMe) ₂			S	H	4'	2-Me-Bn
596	4,5-(OMe) ₂			S	H	4'	4-NO ₂ -B _n
597	4,5-(OMe) ₂			S	H	4'	4-NH2-Bn
598	4,5-(OMe) ₂			S	H	4'	4-NMe ₂ -Bn
599	4,5-(OMe) ₂			S	H	4'	4-SO ₂ Me-Bn
600	4,5-(OMe) ₂	NH ₂		S	H	4'	4-SO ₂ NH ₂ -B ₁₁
601	4,5-(OMe) ₂			S	H	4'	4-CN-Bn
602	4,5-(OMe)2	NH ₂		S	H	4'	4-*Bu-Bn
603	4,5-(OMe) ₂	NH ₂		S	H	4'	piperonyl
604	4,5-(OMe) ₂	NH ₂		S	H	4'	3,4-(OMe) ₂ -Bn
605	4,5-(OMe) ₂	NH ₂		S	H	4'	3,4-Cl ₂ -Bn
606	4,5-(OMe) ₂	NH ₂		S	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
607	4,5-(OMe) ₂	NH ₂	-	S	H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
608	4,5-(OMe) ₂	NH ₂		S	H	4'	(CH ₂) ₂ -Ph
609	4,5-(OMe) ₂	NH ₂		S	H	4'	(CH ₂) ₃ -Ph
610	4,5-(OMe) ₂	NH ₂	·	S	H	4'	(CH ₂) ₄ -Ph
611	4,5-(OMe) ₂	NH ₂		S	H	4'	COPh
612	4,5-(OMe) ₂	NH ₂		S	H	4'	1-Nap
613	4,5-(OMe) ₂	NH ₂		S	H	4'	2-Nap
614	4,5-(OMe)2	NH ₂		S	H	4'	CH2-(1-Nap)
615	4,5-(OMe) ₂	NH ₂		S	H.	4'	CH ₂ -(2-Nap)
616	4,5-(OMe) ₂	NH ₂		S	H	4'	2-Py
617	4,5-(OMe) ₂	NH ₂		S	H	4'	3-Py
618	4,5-(OMe) ₂	NH ₂		S	H	4'	4-Py
619	4,5-(OMe) ₂	NH ₂		S	H	4'	CH2-(2-Py)
620	4,5-(OMe) ₂	NH ₂		S	H	4'	CH2-(3-Py)
621	4,5-(OMe) ₂	NH ₂		S	H	4'	CH ₂ -(4-Py)
622	4,5-(OMe) ₂	NH ₂		S	H	4'	(CH ₂) ₂ -(2-Py)
			-				(~o/o (al-t J)

[0064]

200		ъпт. 1		s	H	141	furan-3-yl
623	4,5-(OMe) ₂	NH ₂ NH ₂	_=_	3	— <u>11</u>	4	thiophene-3-yl
624	4,5-(OMe) ₂			s	H	4'	CH2-(thiophene-3-yl)
625	4,5-(OMe) ₂	NH ₂ NH ₂		s	H	4'	CH ₂ -(furan-3-yl)
626	4,5-(OMe) ₂	NH ₂		s	H	4'	CH ₂ -(thiophene-2-yl)
627	4,5-(OMe)2			S	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
628	4,5-(OMe) ₂	NH ₂		8	H	4	Ph
629	5-NO ₂	NH ₂		181	<u> </u>	4'	Ph
630	4-OCH ₂ Ph	NH ₂		0	H	4'	Ph
631	4-OMe	NH ₂		8	<u>H</u>	4	Ph
632	4-OH	NH ₂	_=_	히	H	4	Ph
633	4-Me	NH ₂		8	H	4'	Ph
634	4-Br	NH ₂		181	H	4'	Ph
635	5-Cl	NH ₂			H	3'	Ph
636	5-C1	NH ₂		0	H	2'	Ph
637	5-C1	NH ₂			H	4	4-F-Ph
638	5-Cl	NH ₂		0	H	4'	4-Ac-Ph
639	5-Cl	NH ₂	L- <u>-</u> -	0	H	4'	4-OMe-Ph
640	5-Cl	NH ₂		10	H	4'	4-Me-Ph
641	5-Cl	NH ₂			<u>н</u>	4'	3,4,5-(OMe) ₃ -Ph
642	5-C1	NH ₂		0	H	4'	9,4,0-(OMe)s-1 H
643	4,5-F ₂	NH ₂		0	H	3'	Ph
644	4,5-F ₂	NH ₂			H	2'	Ph
645	4,5-F ₂	NH ₂	 	무	H	4'	4-F-Ph
646	4,5-F ₂	NH ₂		8	H	4'	4-Ac-Ph
647	4,5-F ₂	NH ₂		16	H	4'	4-OMe-Ph
648	4,5-F ₂	NH ₂	 = -	6	H	4	4-Me-Ph
649	4,5-F ₂	NH ₂	 = -	10	H	4'	3,4,5-(OMe) ₃ -Ph
650	4,5-F ₂	NH ₂		10	H	4'	Ph
651	4-Br, 5-NO ₂	NH ₂					
652	4-0	NH ₂	-	O	H	4'	Ph
653	3-0	NH ₂		10	Н	3'	Ph
055	4-4	1					
	50		<u> </u>				
654	49	NH ₂	-	0	H	2'	Ph
	50						
655	49	NH ₂	T -	0	H	4'	4-F-Ph
	5						
656	49	NH ₂	1 =	0	Н	4'	4-Ac-Ph
	5						:
657	4-0	NH ₂	+-	10	H	4'	4-OMe-Ph
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-		1	
	50			1		1	l

[0065]

658	49	NH ₂	-	0	Н	4'	4-Me-Ph
	50						
659	49	NH ₂	T -	0	H	4'	3,4,5-(OMe) ₃ -Ph
	50						
660	5-NO ₂	OEt		10	H	4'	Ph
661	4-OCH ₂ Ph	OEt	_	0	H	4'	Ph
662	4-OMe	OEt		0	Н	4'	Ph
663	4-OH	OEt		0	Н	4'	Ph
664	4-Me	OEt		0	H	4'	Ph
665	4-Br	OEt		0	H	4'	Ph
666	5-C1	OEt		0	H	4'	Ph
667	5-Cl	OEt		0	H	3'	Ph
668	5-Cl	OEt		0	Н	2'	Ph
669	5-Cl	OEt	_	0	H	4'	4-F-Ph
670	5-Cl	OEt		0	H	4'	4-Ac-Ph
671	5-Cl	OEt	-	0	H	4'	4-OMe-Ph
672	5-Cl	OEt		0	H	4'	4-Me-Ph
673	5-Cl	OEt		0	H	4'	3,4,5-(OMe) ₃ -Ph
674	4,5-F ₂	OEt		0	H	4'	Ph
675	4,5-F ₂	OEt_		0	H	3.	Ph
676	4,5-F ₂	OEt		0	H	2'	Ph
677	4,5-F ₂	OEt		0	H	4'	4-F-Ph
678	4,5-F ₂	OEt		0	H	4'	4-Ac-Ph
679	4,5-F ₂	OEt		0	H	4'	4-OMe-Ph
<u>680</u>	4,5-F ₂	OEt		0	H	4'	4-Me-Ph
682	4,5-F ₂	OEt		101	<u>H</u>	4'	3,4,5-(OMe) ₃ -Ph
	4-Br, 5-NO ₂	OEt		O	H	4'	Ph
683	49	OEt	_	0	H	4'	Ph
	5						
684		OEt				\vdash	
001	4-4	OEt		O	H	3,	Ph
	50					1 1	•
685	Ŏ	OEt	<u> </u>	0	H	2'	
	4					4	Ph
	50	İ					
686	A-Q	OEt	_	0	Н	4'	· 4-F-Ph
	7	ŀ				-	4-1-14
	50						
687	49	OEt	_	0	H	4'	4-Ac-Ph
	5.0				المنابعة الم		
688	10	OEt		0	H	- , 	
	4		_	٧	-	4'	4-OMe-Ph
1	5. 7		- 1	Ī	ŀ		
ı	σ	ļ	1	1	ſ	1	

[0066]

689	40	OEt	-	0	н	4'	4-Me-Ph
	5				ļ	1	
690	49	OEt	_	0	H	4'	3,4,5-(OMe) ₃ -Ph
	5	Î		I			
691	4,5-(OMe) ₂	OEt		ᇬ	Н	3'	Ph
692	4,5-(OMe) ₂	OEt		o	Н	2'	Ph
693	4,5-(OMe) ₂	OEt		ठ	3'-OMe	4'	Ph
694	4,5-(OMe) ₂	OEt		0	4'-OMe	3'	Ph
695	4,5-(OMe) ₂	OEt	_	0	4'-OH	3'	Ph
696	4,5-(OMe) ₂	OEt		0	3'-O-n-Bu	4'	Ph
697	4,5-(OMe) ₂	OEt		O	5'-F	3'	Ph
698	4,5-(OMe) ₂	OEt		0	5'-F	4'	Ph
699	4,5-(OMe) ₂	OEt	_	0	2'-OMe	4'	Ph
700	4,5-(OMe)2	OEt		O	2'-OH	4'	Ph
701	4,5-(OMe)2	OEt	_	0	6'-OMe	2'	Ph
702	4,5-(OMe) ₂	OEt	-	0]	6'-OH	2'	Ph
703	4,5-(OMe) ₂	OEt	_	0	2'-Me , 5'- OMe	4'	Ph
704	4,5-(OMe) ₂	OEt	-	0	2'-Me , 5'-OH	4'	Ph
705	4,5-(OMe)2	OEt		0	4'-SMe	3'	Ph
706	4,5-(OMe) ₂	OEt		ŏ	3'-SMe	4'	Ph
707	4,5-(OMe) ₂	OEt		0	3',5'-Me ₂	4'	Ph
708	4,5-(OMe) ₂	OEt		0	2',5'-Me2	4'	Ph
709	4,5-(OMe) ₂	OEt		0	3',5'-Cl2	4'	Ph
710	4,5-(OMe) ₂	OEt		0	2',5'-Cl2	3'	Ph
711	4,5-(OMe)2	OEt		0	3'-Me	4'	Ph
712	4,5-(OMe) ₂	OEt		0	4'-Me	3'	Ph
713	4,5-(OMe)2	OEt	_	0	4'-Cl	3'	Ph
714	4,5-(OMe)2	OEt	-	0	4'-O(CH ₂) ₂ -	3'	Ph
	i l		ļ		N-	1	:
				_	morpholinyl	4'	Ph
715	4,5-(OMe) ₂	OEt	CH ₂	0	H	3'	Ph
716	4,5-(OMe) ₂		CH ₂	<u> </u>	H	2'	Ph
717	4,5-(OMe) ₂		CH ₂	0	H	4'	Ph
718	4,5-(OMe)2	OEt	(CH ₂) ₂ (CH ₂) ₂	10	H	3'	Ph
719	4,5-(OMe) ₂		$(CH_2)_2$	10	H	2'	Ph
720	4,5-(OMe)2		(CH ₂) ₃	0	H	4'	Ph
721	4,5-(OMe)2		(CH ₂) ₈	ő	H	3,	Ph
722	4,5-(OMe) ₂ 4,5-(OMe) ₂		(CH ₂) ₈	ŏ	H	2'	Ph
723 724	4,5-(OMe) ₂ 4,5-(OMe) ₂			۱ŏ	H	3'	Ph
725	4,5-(OMe)2		 	ŏ	H	2'	Ph
726	4,5-(OMe)2		 	tŏ	3'-OMe	4'	Ph
727	4,5-(OMe)2		 _ _ _ _	ő	4'-OMe	3'	Ph
728	4,5-(OMe)2		 	tŏ	4'-OH	3'	Ph
729	4,5-(OMe)2		1=	ō	3'-O-n-Bu	4'	Ph
730	4,5-(OMe):	_	 	Ť	5'-F	3'	Ph
731	4,5-(OMe):		T	o	5'-F	4'	Ph
732			1 -	0	2'-OMe	4'	Ph

733	3 4,5-(OMe	_l xmr	•		. 1		
734				10		4	
735			 	19		2	
736			+=	10		2'	
	4,5-(OME)2 NH ₂	-	0	1	4'	Ph
737	4,5-(OMe)2 NH2		┵	OMe		
	1,0-(0116	/2 11112	-	0		4'	Ph
738	4,5-(OMe	2 NH ₂	+	1-	5'-OH	+-	
739			+	니 승		3'	
740			+=	 		4'	<u> </u>
741	4,5-(OMe)		+=	 은		4'	Ph
742	4,5-(OMe)		+=	18		4'	Ph
743	4,5-(OMe)		╁╌═╴	무용		4'	Ph
744	4,5-(OMe)		+-	18	2',5'-Cl ₂	3'	Ph
745			 	무	3'-Me	4'	Ph
746	4,5-(OMe)		+	무	4'-Me	3'	Ph
747	4,5-(OMe)		+	18	4'-Cl	3'	Ph
	2,0-(01/20)	11112	-	10	4'-O(CH ₂) ₂ -	3.	Ph
		1	1	1	N-	1	1
748	4,5-(OMe):	NH ₂	CH ₂	0	morpholinyl H		
749	4,5-(OMe):		CH ₂	tŏ		4'	Ph
750	4,5-(OMe):		CH ₂	_	H	3'	Ph
751	4,5-(OMe)2		(CH ₂) ₂	18	H	2'	Ph
752	4,5-(OMe) ₂		(CH ₂) ₂		H	4'	Ph
753	4,5-(OMe)2			10	H	3.	Ph
754	4,5-(OMe) ₂	NIII	(CH ₂) ₂	10	H	2'	Ph
755	4,5-(OMe) ₂	NH ₂ NH ₂	(CH ₂) ₃		<u> </u>	4'	Ph
756	4,5-(OMe) ₂		(CH ₂) ₃	0	H	3'	PhPh
757	4,5-(OMe) ₂		(CH ₂) ₃	Ö	H	2'	Ph
758	4,5-(OMe) ₂		_=_	0	H	4'	Ph
759	4,5-(OMe) ₂			0	H	4'	Ph
760	4,5-(OMe) ₂			0	H	4'	Ph
761		OH		0	H	4'	Ph
101	4,5-(OMe) ₂	ЙH	_	0	H	4'	Ph
						1	
	1			[]	Ī		
700	1 - 10-0	N				_	•
762	4,5-(OMe) ₂	NH	_	0	H	4'	Ph
		I				- 1	
		\cap \mid			ł	- 1	
		OMo			1	I	
		OMie			-	ı	
763	4,5-(OMe)2	OEt		0	H	3'	3-Py
764	4,5-(OMe) ₂	OEt		0	H	3'	3,4,5-(OMe) ₃ -Ph
765	4,5-(OMe) ₂	OEt		0	H	3'	4-Ac-Ph
766	4,5-(OMe) ₂	OEt		0	H	3'	4-NH ₂ -Ph
767	4,5-(OMe) ₂	OEt	_= 1	0	3-OMe	4'	3-Py
768	4,5-(OMe)2	OEt	1	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
769	4,5-(OMe) ₂	OEt		0	3-OMe	4'	4-Ac-Ph
	4,5-(OMe) ₂	OEt		0	3-OMe	4'	4-NH ₂ -Ph
	4,5-(OMe) ₂	OEt	CH ₂	0	H	3'	3-Py
772	4,5-(OMe)2	OEt	CH ₂	ŏ		3'	3,4,5-(OMe) ₃ -Ph
773	4,5-(OMe) ₂	OEt	CH ₂	ŏ		3'	3,4,5-(OMe) ₃ -Ph 4-Ac-Ph
	4,5-(OMe) ₂	OEt	CH ₂	ō		3'	
	· •	•		-	1	~ I	4-NH ₂ -Ph

	1 1	a-a. 1	orr I	~ I	0.036	4'	0 D
775	4,5-(OMe) ₂	OEt	CH ₂	힞	3-OMe	4'	3-Py 3,4,5-(OMe) ₃ -Ph
776	4,5-(OMe) ₂	OEt	CH ₂	힞	3-OMe	4	3,4,5-(OMe)3-Ph 4-Ac-Ph
777	4,5-(OMe) ₂	OEt	CH ₂	읽	3-OMe	4'	4-Ac-r n 4-NH ₂ -Ph
778	4,5-(OMe) ₂	OEt	CH ₂	0	3-OMe	3'	3-Py
779	4,5-(OMe) ₂	OEt	(CH ₂) ₂	힞	H	_	
780	4,5-(OMe) ₂	OEt _	(CH ₂) ₂	9	H	3,	3,4,5-(OMe) ₃ -Ph
781	4,5-(OMe) ₂	OEt	(CH ₂) ₂	Ö	H	3'	4-Ac-Ph
782_	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	H	3'	4-NH ₂ -Ph
783	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	3-OMe	4'	3-Py
784	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
785	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	3-OMe	4'	4-Ac-Ph
786	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	3-OMe	4'	4-NH ₂ -Ph
787	4,5-(OMe) ₂	NH2		0	<u> </u>	3'	3-Py
788	4,5-(OMe) ₂	NH ₂		0	<u> </u>	3'	3,4,5-(OMe) ₃ -Ph
789	4,5-(OMe) ₂	NH ₂		0	H	3,	4-Ac-Ph
790	4,5-(OMe) ₂	NH ₂		0	H	3'	4-NH ₂ -Ph
791	4,5-(OMe) ₂	NH ₂		0	3-OMe	4'	3-Py
792	4,5-(OMe) ₂	NH ₂		0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
793	4,5-(OMe)2	NH ₂		0	3-OMe	4'	4-Ac-Ph
794	4,5-(OMe) ₂	NH ₂		0	3-OMe	4'	4-NH ₂ -Ph
795	4,5-(OMe) ₂	NH ₂	CH₂	0	H	3'	3-Py
796	4,5-(OMe)2	NH ₂	CH ₂	0	<u>H</u>	3'	3,4,5-(OMe) ₃ -Ph
797	4,5-(OMe)2	NH ₂	CH ₂	0	H	3'	4-Ac-Ph
798	4,5-(OMe) ₂	NH ₂	CH ₂	0	H	3'	4-NH ₂ -Ph
799	4,5-(OMe)2	NH ₂	CH ₂	0	3-OMe	4'	3-Py
800	4,5-(OMe) ₂	NH ₂	CH ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
801	4,5-(OMe) ₂	NH ₂	CH ₂	0	3-ОМе	4'	4-Ac-Ph
802	4,5-(OMe) ₂	NH ₂	CH ₂	0	3-OMe	4'	4-NH ₂ -Ph
803	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	H	3'	3-Py
804	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	H	3'	3,4,5-(OMe) ₃ -Ph
805	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	H	3'	4-Ac-Ph
806	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	H	3'	4-NH2-Ph
807	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	3-OMe	4'	3-Py
808	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	3-OMe	4'	3,4,5-(OMe) ₈ -Ph
809_	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	3-OMe	4'	4-Ac-Ph
810	4,5-(OMe)2	NH ₂	(CH ₂) ₂	0	3-OMe	4'	4-NH ₂ -Ph
811	4,5-F ₂	OEt		0	<u> </u>	3'	3-Py 3,4,5-(OMe) ₃ -Ph
812	4,5-F ₂	OEt_		0	<u> </u>	3'	
813	4,5-F2	OEt	_=_	0	H	3'	4-Ac-Ph
814	4,5-F ₂	OEt		Ö	H	3'	4-NH ₂ -Ph
815	4,5-F2	OEt		0	3-OMe	4'	3-Py
816	4,5-F ₂	OEt		Ö	3-OMe	4'	3,4,5-(OMe) ₈ -Ph
817	4,5-F2	OEt		10	3-OMe	4'	4-Ac-Ph
818	4,5-F ₂	OEt	├	0	3-OMe	4'	4-NH ₂ -Ph
819	4,5-F ₂	OEt_	CH ₂	0	<u> </u>	3'	3-Py
820	4,5-F ₂	OEt	CH ₂	0	<u>H</u>	3'	3,4,5-(OMe) ₈ -Ph
821	4,5-F ₂	OEt	CH ₂	0	H	3'	4-Ac-Ph
822	4,5-F ₂	OEt	CH ₂	0	H	3'	4-NH ₂ -Ph
823	4,5-F ₂	OEt	CH ₂	10	3-OMe	4'	3-Py
824	4,5-F ₂	OEt	CH ₂	10	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
825	4,5-F ₂	OEt	CH ₂	10	3-OMe	4'	4-Ac-Ph
826	4,5-F2	OEt	CH ₂	10	3-OMe	4'	4-NH ₂ -Ph
827	4,5-F ₂	OEt	(CH ₂) ₂	10	H	3'	3-Py
828	4,5-F2	OEt	(CH ₂) ₂	10	H	3'	3,4,5-(OMe) ₃ -Ph

990	1 458	1 00.	1			_	
829	4,5-F ₂	OEt	(CH ₂)	2 0		3'	4-Ac-Ph
830	4,5-F ₂	OEt	(CH ₂)		H	3'	4-NH ₂ -Ph
831	4,5-F ₂	OEt	(CH ₂)		3-OMe	4'	3-Py
832	4,5-F ₂	OEt	(CH ₂)		3-OMe	4'	3,4,5-(OMe) ₃ -Ph
833	4,5-F ₂	OEt	(CH ₂):		3-OMe	4'	4-Ac-Ph
834	4,5-F ₂	OEt	(CH ₂):		3-OMe	4'	4-NH ₂ -Ph
835	4,5-F ₂	NH ₂		0	H	3'	3-Py
836	4,5-F ₂	NH ₂	 -	0	H	3'	3,4,5-(OMe) ₃ -Ph
837	4,5-F ₂	NH ₂	 -	0	H	3'	4-Ac-Ph
838	4,5-F ₂	NH ₂		10	H	3'	4-NH ₂ -Ph
839	4,5-F ₂	NH ₂		0	3-OMe	4'	3-Ру
840	4,5-F ₂	NH ₂		0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
841	4,5-F ₂	NH ₂		0	3-OMe	4'	4-Ac-Ph
842	4,5-F ₂	NH ₂		0	3-OMe	4'	4-NH ₂ -Ph
843	4,5-F ₂	NH ₂	CH ₂	0	H	3'	3-Py
844	4,5-F ₂	NH ₂	CH ₂	0	H	3'	3,4,5-(OMe) ₃ -Ph
<u>845</u>	4,5-F ₂	NH ₂	CH ₂	0	H	3'	4-Ac-Ph
846	4,5-F ₂	NH ₂	CH ₂	0	H	3'	4-NH ₂ -Ph
847	4,5-F ₂	NH ₂	CH ₂	0	3-OMe	4'	3-Py
848	4,5-F ₂	NH ₂	CH ₂	0	3-ОМе	4'	3,4,5-(OMe) ₃ -Ph
849	4,5-F ₂	NH ₂	CH ₂	0	3-OMe	4'	4-Ac-Ph
850	4,5-F ₂	NH ₂	CH ₂	0	3-OMe	4'	4-NH ₂ -Ph
851	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	3'	3-Pv
852	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	3'	3,4,5-(OMe) ₃ -Ph
853	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	3'	4-Ac-Ph
854	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	3,	4-NH2-Ph
<u>855</u>	4,5-F ₂	NH ₂	(CH ₂) ₂	0	3-OMe	4'	3-Py
856	4,5-F ₂	NH ₂	$(CH_2)_2$	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
857	4,5-F ₂	NH ₂	(CH ₂) ₂	0	3-OMe	4'	4-Ac-Ph
858	4,5-F ₂	NH ₂	(CH ₂) ₂	0	3-OMe	4'	4-NH ₂ -Ph
859	4Q	OEt	-	0	H	3'	3-Py
	' }			li		1 1	3
	5-0					1 1	
860	<u> </u>	OEt				├ ─┤	·
000	44	OEt	_	0	H	3.	3,4,5-(OMe) ₃ -Ph
	5.			i		1 1	
	3-0	- 1				1 1	_
861	4Q	OEt		0	H	3'	4-Ac-Ph
	4	1	1			"	4-AC-Ph
	5/	ł	-			1 1	
	-0					i i	
862	4Q	OEt	_	0	. н	3'	4-NH ₂ -Ph
	` }	İ	l	- 1			
	5	1	- 1	1		1	
863	 	OF		_			
000	44	OEt	_	0	3-ОМе	4'	3-P y
		1		ł			
	50		- 1	- 1			
864	00	OEt		${\circ}$	3-OMe	4'	0.45.004: 5:
ļ	4-1		_ [٦	2-OME	4	3,4,5-(OMe) ₈ -Ph
į	5 /	Ì			1	- 1	
1	0		1		Į	- 1	
			_		•	•	

[0070]

865	Qسیر	OEt	- 1	0	3-OMe	4'	4-Ac-Ph
	50						
866	49	OEt		0	3-ОМе	4'	4-NH ₂ -Ph
	50						
867	4-0	OEt	CH ₂	0	Н	3'	3-Py
	50	- 07:	- 077		Н	3'	3,4,5-(OMe)s-Ph
868	40	OEt	CH ₂	0	A		0,2,0 (OBIO)3 1 A
869	50	OEt	CH ₂	0	H	3'	4-Ac-Ph
009	4	QD.	UZZ,				
870	5-0 4-Q	OEt	CH ₂	0	н	3'	4-NH2-Ph
	4 5						
871	49	OEt	CH ₂	0	3-ОМе	4'	3-Ру
	5_0		!				
872	4-9	OEt	CH ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
	5-0						4 A . Db
873	4-0	OEt	CH ₂	0	3-ОМе	4'	4-Ac-Ph
	50	OEt	CH ₂	0	3-OMe	4'	4-NH2-Ph
874	4-0	OEt	CIII	ľ	0-01120		
875	5-0	OEt	(CH ₂) ₂	0	H	3'	3-Py
0.0	5						
876	1-0	OEt	(CH ₂) ₂	0	H	3'	3,4,5-(OMe) ₃ -Ph
	5						
877	4-9	OEt	(CH ₂) ₂	0	H	3'	4-Ac-Ph
	5-0						
878	4-9	OEt	(CH ₂) ₂	0	Н	3'	4-NH2-Ph
	50						

879	4Q	OEt	(CH ₂) ₂	0	3-ОМе	4'	3-P y
	50						·
880	49	OEt	(CH ₂) ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
	50		l				
881	49	OEt	(CH ₂) ₂	0	3-OMe	4'	4-Ac-Ph
	5-0						
882	4	OEt	(CH ₂) ₂	0	3-ОМе	4'	4-NH ₂ -Ph
	50						
883	49	NH ₂	_	0	Н	3'	3-Ру
	50						
884	4-9	NH ₂		0	H	3'	3,4,5-(OMe) ₃ -Ph
	50						
885	4-0	NH ₂	_	0	H	3'	4-Ac-Ph
	5-0						
886	40	NH₂	_	0	H	3'	4-NH ₂ -Ph
887	50) TT					
001	4-0	NH ₂	_	0	3-OMe	4'	3-Py
888	50	NH2			0.016		
333	4-0	14112		0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
889	5-0	NH ₂		0	3-OMe		
	5.		_		3-OME	4'	4-Ac-Ph
890	-0	NH2		0	3-ОМе	4'	4 MIL DI
	5				O OME	1	4-NH ₂ -Ph
891	49	NH ₂	CH ₂	0	H	3'	3-Py
	5.						or A
892	7:Q	NH ₂	CH ₂	0	H	3'	3,4,5-(OMe) ₃ -Ph
	5				·		0, 2,0 -{\O1176\2.1 II
ļ	70	1	ı		İ	1	

[0072]

893	49	NH2	CH ₂	0	н	3'	4-Ac-Ph
	50						
894	49	NH ₂	CH ₂	0	H	3'	4-NH ₂ -Ph
	50						
895	4-Q 5-Q	NH ₂	CH ₂	0	3-ОМе	4'	3-Py
896	49	NH ₂	CH ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
	5_0						
897	49	NH2	CH ₂	0	3-ОМе	4'	4-Ac-Ph
	5_0						
898	4-9	NH2	CH ₂	0	3-OMe	4'	4-NH2-Ph
	5-0						
899	4-0	NH ₂	(CH ₂) ₂	0	H	3'	3-Py
	5-0						- (O)() PI
900	40	NH ₂	(CH ₂) ₂	0	H	3'	3,4,5-(OMe) ₃ -Ph
	50					<u> </u>	4-Ac-Ph
901	49	NH ₂	(CH ₂) ₂	0	H	3'	4-Ac-Ph
	50				н	3'	4-NH2-Ph
902	4-9	NH ₂	(CH ₂) ₂	O	н		4-14112-F H
	50			1	3-OMe	4'	3-Py
903	40	NH ₂	(CH ₂) ₂	°	3-OME	*	019
	50		(077)	 	2 OMo	1	3,4,5-(OMe) ₈ -Ph
904	49	NH ₂	(CH ₂) ₂	O	3-OMe	4	0,2,0 (0120)3-12
	50		(077)	1_	3-OMe	4'	4-Ac-Ph
905	40	NH ₂	(CH ₂) ₂	0	2-Olyte		7-10-1 H
	50		(077.)	1	2.006	4	4-NH ₂ -Ph
906	49	NH ₂	(CH ₂) ₂	0	3-ОМе	1	-14112-1 H
	50				1	1	

[0073]

【表2】

	R ⁵	H 6'	Y 2' R ²	HA	a A b)	
化合物 番号	A	X	Y	Z	R ²	ウレア 位置	R ⁵
907	a b	_	OEt	0	Н	4'	Ph
908	a b	_	OEt	0	Н	4'	Ph
909	a b		OEt	0	Н	4'	Ph
910	a b	<u> </u>	OEt	0	H	4'	Ph
911	a b		NH ₂	0	H	3.	Ph
912	a S b S		NH2	0	H	3'	Ph
913	a b		NH2	0	Н	3,	Ph

[0074]

914	a b	-	NH2	0	н	3'	Ph
915	a b		NH ₂	0	Н	4'	Ph
916	a S		NH2	0	H	4'	Ph
917	a b		NH2	0	Н	4'	Ph
918	a b	-	NH2	0	H	4'	Ph
919	a b	_	OEt	0	H	3	Ph
920	a S b S	_	OEt	0	H	3'	Ph
921	a b	_	OEt	0	H	3	Ph
922	a b		OEt	0	H	3,	Ph
923	a b	-	OEt	0	H	3'	3-Ру
924	a b	_	OE	t O	Н	3'	3,4,5- (OMe) ₃ -Ph

[0075]

92	b N	_	OE	Et C	Н	3'	4-Ac-Ph
926	a b	_	OE	t O	H	3'	4-NH ₂ -Ph
927	a b	_	OE	t O	3-ОМе	4'	3-Py
928	a b		OE	0	3-OMe	4'	3,4,5- (OMe) ₃ -Ph
929	a b		OEt	0	3-ОМе	4'	4-Ac-Ph
930	a b	_	OEt	0	3-ОМе	4	4-NH2-Ph
931	a b	CH ₂	OEt	0	Н	3'	3-Ру
932	a b	CH ₂	OEt	0	H	3'	3,4,5- (OMe) ₃ -Ph
933	a b	CH₂	OEt	0	н	3"	4-Ac-Ph
934	a b	CH ₂	OEt	0	Н	3'	4-NH ₂ -Ph
935	a b	СН₂	OEt	0	3-ОМе	4'	3-Py

[0076]

936	a b	CH ₂	OEt	0	3-OMe	4'	3,4,5- (OMe)3-Ph
937	a b	CH ₂	OEt	0	3-OMe	4'	4-Ac-Ph
938	a b	CH ₂	OEt	0	3-OMe	4'	4-NH2-Ph
939	a b	(CH ₂) ₂	OEt	0	Н	3'	3-Py
940	a b	(CH ₂) ₂	OEt	0	H	3'	3,4,5- (OMe) ₃ -Ph
941	a b	(CH ₂) ₂	OEt	0	H	3'	4-Ac-Ph
942	a b	(CH ₂) ₂	OEt	0	Ħ	3'	4-NH2-Ph
943	a b	(CH2)2	OEt	0	3-OMe	4'	3-Py
944	a b	(CH ₂) ₂	OEt	0	3-ОМе	4'	3,4,5- (OMe) ₃ -Ph
945	a b	(CH ₂) ₂	OEt	0	3-OMe	4'	4-Ac-Ph
946	a b	(CH ₂) ₂	OE	0	3-OMe	4'	4-NH2-Ph

[0077]

947	a b	_	NH	0	н	3'	3-Py
948	a b		NH₂	0	H	3'	3,4,5- (OMe) ₃ -Ph
949	a b		NH ₂	0	Н	3'	4-Ac-Ph
950	a b		NH ₂	0	Н	3'	4-NH ₂ -Ph
951	a b	:	NH ₂	0	3-ОМе	4'	3-Ру
952	a b		NH2	0	3-ОМе	4'	3,4,5- (OMe) ₃ -Ph
953	a b		NH2	0	3-ОМе	4'	4-Ac-Ph
954	a b		NH ₂	0	3-ОМе	4'	4-NH2-Ph
955	a b	CH ₂	NH ₂	0	H	3'	3-Py
956	a b	СН₂	NH ₂	0	Н	3'	3,4,5- (OMe) ₃ -Ph
957	a b	CH ₂	NH ₂	0	Н	3'	4-Ac-Ph

[0078]

958	a b	CH ₂	NH2	0	H	3'	4-NH2-Ph
959	a b	CH ₂	NH ₂	0	3-OMe	4'	3-Py
960	a b	CH ₂	NH2	0	3-OMe	4'	3,4,5- (OMe) ₃ -Ph
961	a b	CH ₂	NH ₂	0	3-OMe	4'	4-Ac-Ph
962	a b	CH2	NH2	0	3-OMe	4'	4-NH2-Ph
963	a b	(CH ₂) ₂	NH ₂	0	Н	3'	3-Ру
964	a b	(CH ₂) ₂	NH2	0	H	3'	3,4,5- (OMe)s-Ph
965	a b	(CH ₂) ₂	NH ₂	0	Ħ	3'	4-Ac-Ph
966	a b	(CH ₂) ₂	NH2	0	H	3'	4-NH2-Ph
967	a b	(CH ₂) ₂			3-OMe	4'	3-Py
968	a b	(CH ₂) ₂	NH	2 0	3-ОМе	4	3,4,5- (OMe)s-Ph

[0079]

969	a b	(CH ₂) ₂	NH2	0	3-ОМе	4'	4-Ac-Ph
970	a b	(CH ₂) ₂	NH ₂	0	3-ОМе	4'	4-NH ₂ -Ph

[0080]

【表3】

$\begin{array}{c c} & & & & & & & \\ & & & & & & & \\ & & & & $										
化合物 番号	В.	X	Z	R1	R ⁵					
971	b a		0	4,5- (OMe) ₂	Ph					
972	b N		0	4,5- (OMe) ₂	Ph					
973	b a		0	4,5- (OMe) ₂	Ph					
974	b a		0	4,5- (OMe) ₂	Ph .					
975	b Salar		0	4,5- (OMe) ₂	Ph					

[0081]

【表4】

[0082]

【表5】

R ⁵ H H G' a X O G G G G G G G G G G G G G G G G G G										
と合物 番号	R1	X	Y	R ²		R ⁵				
979	4,5-(OMe) ₂	a-OCH ₂ -b	OF	+ ++	位置	ļ				
980	4,5-(OMe) ₂ 4,5-(OMe) ₂		OEt OEt	 H	4'	Ph				
981	4,5-(OMe) ₂	a-OCH2-b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph				
982	4,5-(OMe) ₂	a-OCH2-b	OEt	H	4'	4-Ac-Ph				
983	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	4'	4-NH ₂ -Ph 3-Py				
984	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	Ph				
985	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Ħ	3'	3,4,5-(OMe) ₃ -Ph				
986	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Ħ	3,					
987	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Ħ	3'	4-Ac-Ph 4-NH2-Ph				
988	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	3-Py				
989	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	Ph				
990	4,5-(OMe) ₂	a-OCH2-b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph				
991	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	4-Ac-Ph				
992	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	4'	4-NH ₂ -Ph				
993	4,5-(OMe) ₂	a-OCH2-b	NH ₂	H	4'	3-Py				
994	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	Ph				
995	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	3,4,5-(OMe) ₃ -Ph				
996	4,5-(OMe) ₂	a-OCH2-b	NH ₂	H	3'	4-Ac-Ph-				
997	4,5-(OMe) ₂	a-OCH2-b	NH ₂	H	3,	4-NH ₂ -Ph				
998	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	H	3'	3-Py				
999	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	Ph				
1000	4,5-F ₂	a-OCH ₂ -b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph				
1001	4,5-F ₂	a-OCH2-b	OEt	H	4'	4-Ac-Ph				
1002	4,5-F ₂	a-OCH2-b	OEt	H	4'	4-NH ₂ -Ph				
1003	4,5-F ₂	a-OCH2-b	OEt	H	4	3-Py				
1004	4,5-F ₂	a-OCH2-b	OEt	H	3'	Ph				
1005	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	3,4,5-(OMe) ₃ -Ph				
1006	4,5-F ₂	a-OCH2-b	OEt	H	3,	4-Ac-Ph				
1007	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	4-NH2-Ph				
1008	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	3-Py				
1009	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	Ph				
1010	4,5-F ₂	a-OCH2-b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph				
1011	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	4-Ac-Ph				
1012	4,5-F ₂	a-OCH ₂ -b		Ħ	4'	4-NH2-Ph				
	•	= : •	- •		- 1					

[0083]

						0 D
1013	4,5-F ₂	a-OCH2-b	NH ₂	H	4'	3-Py
1014	4,5-F ₂	a-OCH2-b	NH ₂	H	3'	Ph 3,4,5-(OMe) ₃ -Ph
1015	4,5-F ₂	a-OCH ₂ -b	NH ₂	井	3'	4-Ac-Ph
1016	4,5-F ₂	a-OCH2-b	NH ₂	井	3'	4-NH ₂ -Ph
1017	4,5-F ₂	a-OCH2-b	NH ₂	풉ㅣ	3'	3-Py
1018	4,5-F ₂	a-OCH ₂ -b	OEt	詽	4'	Ph
1019	49	a-CCIII			_	
	50					- 1026 \ TV
1020	4Q	a-OCH2-b	OEt	H	4'	3,4,5-(OMe) ₃ -Ph
	* >			1	.	
	5		1	1	j	
1021		a-OCH ₂ -b	OEt	H	4'	4-Ac-Ph
1041	44	" " " " " " " " " " " " " " " " " " "		1	i	
	5-	1	1 1			
	1 -0	1 - c	100	-	4'	4-NH2-Ph
1022	49	a-OCH2-b	OEt	H	4	3-74773-7 FF
	\ <u>\</u> \					
	50					
1023	4Q	a-OCH2-b	OEt	H	4'	3-Py
	4		1			
	50					
1024	49	a-OCH2-b	OEt	H	3.	Ph
	1 - >		1	1		
	5		1		i	
1025	1 4	a-OCH2-b	OEt	H	3'	3,4,5-(OMe) ₃ -Ph
102	4		1	1		
	5-	1	1	1	1	
100	0 0	a-OCH2-b	OEt	H	3'	4-Ac-Ph
102	6 4Q	a-OCHF0	OBC		"	
			1	1	1	
	3~~0			 	 	4-NH2-Ph
102	7 4-Q	a-OCH2-b	OEt	H	3'	4-NEI2-FII
	T >	1	1	1	1	
	5	1			l	
102	80	a-OCH2-l	OEt	H	3'	3-Py
	4-4		1	İ	i	
	15-/		1	1	1	
)O	a-OCH2-	b NHs	H	4'	Ph
102	²⁹ 4	a-UUD2-I	' MEI	` '''	•	1
		1	1		1	
	JQ					0.15 (0.16) 101
103	30Q	a-OCH2-	b NH	H	4'	3,4,5-(OMe) ₃ -Ph
	1 - >		- 1		1	
	5		1		1	
103	31 4 Q	a-OCH2-	b NH	2 H	4'	4-Ac-Ph
	4" \				1	1
	5	1	- 1		Į	1
	, ,	ı	•	•	•	•

[0084]

1032	49	a-OCH2-b	NH2	н	4'	4-NH ₂ -Ph
<u></u>	5					·
1033	49	a-OCH ₂ -b	NH ₂	H	4'	3-Py
	50			ļ		
1034	4Q	a-OCH ₂ -b	NH ₂	H	3'	Ph
	50					
1035	49	a-OCH ₂ -b	NH ₂	H	3'	3,4,5-(OMe) ₃ -Ph
	50					
1036	40	a-OCH ₂ -b	NH ₂	H	3'	4-Ac-Ph
	50					
1037	49	a-OCH ₂ -b	NH ₂	H	3'	4-NH ₂ -Ph
	50					
1038	40	a-OCH ₂ -b	NH ₂	H	3'	3-Py
	5_0				•	

[0085]

【表6】

[0086]

					Y	3	R1
		н	ш		ΗŅ	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
			H N	6'		. 0	
		R ³	$Y = \lambda$		_X	\ 0	
			" " \	٦			
			4'\\	ليلا	2'		
				<u>.</u>			
n . A 41	1	1			Ŗ ²	_	_
化合物	R1	Y	X	Z	R ²	ウレア	R ⁵
番号	45 (0)()	07.		1_	1	位置	
1059 1060	4,5-(OMe) ₂		CH ₂	10	<u> </u>	4'	3-Py
1061	4,5-(OMe) ₂		CH ₂	TŠ	H	4'	3,4,5-(OMe) ₃ -Ph
1062	4,5-(OMe) ₂ 4,5-(OMe) ₂		CH ₂	18	H	4'	4-Ac-Ph
1063	4,5-(OMe) ₂		CH ₂	18	H	4'	4-NH ₂ -Ph
1064	4,5-(OMe) ₂		CH ₂	18	H	4'	3-Py
1065	4,5-(OMe) ₂			남	H	4'	3,4,5-(OMe) ₃ -Ph
1066	4,5-(OMe) ₂		CH ₂	8	H	4'	4-Ac-Ph
1067	4,5-(OMe) ₂		CH ₂ (CH ₂) ₂	능	H	4'	4-NH ₂ -Ph
1068	4,5-(OMe) ₂		(CH ₂) ₂	ㅎ		4'	3-Py
1069	4,5-(OMe) ₂		(CH ₂) ₂	18	H	4'	3,4,5-(OMe) ₃ -Ph
1070	4,5-(OMe)2	OEt	(CH ₂) ₂	6	H	4'	4-Ac-Ph
1071	4,5-(OMe) ₂		(CH ₂) ₂	ŏ	H	4'	4-NH ₂ -Ph
1072	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	10	H	4'	3-Py
1073	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	ŏ	H	4'	3,4,5-(OMe) ₃ -Ph
1074	4,5-(OMe)2	NH ₂	(CH ₂) ₂	ŏ	H	4'	4-Ac-Ph 4-NH ₂ -Ph
1075		OEt		ŏ	H	4'	3-Py
	4-4			Ĭ		-	3-1 y
	5-		,				
	, <u>, o</u>						
1076	49	OEt	CH ₂	0	H	4'	3-Py
	_ >					i i	
	5~~~						
1077	0	OEt	CH ₂	0	н	4'	0.45.4075.
_,,,	4-1	02.	CITY	٦		4	3,4,5-(OMe) ₃ -Ph
	5 /						
	<u>~</u> 0						
1078	4Q	OEt	CH ₂	0	H	4'	4-Ac-Ph
	7)			I			
	5.	i					
1079	- × 	OF.		_			<u> </u>
1019	44	OEt	CH ₂	0	H	4'	4-NH2-Ph
	_ /	i	j	İ	1	j	
ı	~~	- 1				- 1	

[0087]

						. 1	
1080	4-9	NH ₂	CH ₂	°	H	4'	3-Py
	50						
1081	49	NH ₂	-	0	H	4'	3-Py
	5						
1082	49	NH ₂	CH ₂	0	H	4'	3,4,5-(OMe) ₃ -Ph
	 ` 						
	50	NH2	CH ₂	 	H	4'	4-Ac-Ph
1083	4	NE		Ĭ		-	•••
	50						
1084	49	NH2	CH ₂	0	H	4'	4-NH2-Ph
	5						
1085	0	OEt	(CH ₂) ₂	0	H	4'	3-Py
1000	4						
	50						0.45 (OMa). Ph
1086	4-9	OEt	(CH ₂) ₂	0	H	4'	3,4,5-(OMe) ₃ -Ph
	5-0						
1087	49	OEt	(CH ₂) ₂	0	H	4'	4-Ac-Ph
	5					1	
1088	4-9	OEt	(CH ₂) ₂	0	H	4'	4-NH2-Ph
	\ \ \ \ \ \	Ì					
1000	5-0	NH ₂	(CH ₂) ₂	0	H	4'	3-Py
1089	4-4	MIN	(0112)2	ľ		1	
	5-0	1				<u> </u>	
1090	4-9	NH ₂	(CH ₂) ₂	0	Н	4'	3,4,5-(OMe) ₃ -Ph
	5						·
1091	49	NH ₂	(CH ₂) ₂	0	H	4'	4-Ac-Ph
	5						
1092	1 0	NH ₂	(CH ₂) ₂	10	H	4'	4-NH2-Ph
1032	4-4		(022,2				
	50				<u> </u>	<u> </u>	
1093		OEt	CH ₂	18	H	4'	3-Py 3-Py
1094		OEt	1	9	H	4'	3,4,5-(OMe) ₃ -Ph
1095		OEt	CH ₂	응	H	4'	3,4,5-(OMe)s-1 ii 4-Ac-Ph
1096		OEt OEt	CH ₂	Ö	H	4'	4-NH2-Ph
1097		NH ₂	- CITY	Τŏ		4'	3-Py
1090	3 4 3 0 - T. X	1 44448		, –		•	•

[0088]

1099	4,5-F ₂	NH ₂	CH ₂	Lo	_ н	4'	3-P _y
1100	4,5-F ₂	NH ₂	CH ₂	0	H	4'	3,4,5-(OMe) ₃ -Ph
1101	4,5-F ₂	NH ₂	CH ₂	0	H	4'	4-Ac-Ph
1102	4,5-F ₂	NH ₂	CH ₂	0	H	4'	4-NH ₂ -Ph
1103	4,5-F ₂	OEt	(CH ₂) ₂	0	H	4'	3-Py
1104	4,5-F ₂	OEt	(CH ₂) ₂	0	H	4'	3,4,5-(OMe) ₃ -Ph
1105	4,5-F ₂	OEt	(CH ₂) ₂	0	H	4'	4-Ac-Ph
1106	4,5-F ₂	OEt	(CH ₂) ₂	0	H	4'	4-NH2-Ph
1107	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	4'	3-Pv
1108	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	4'	3,4,5-(OMe) ₃ -Ph
_1109	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	4'	4-Ac-Ph
1110	4,5-F ₂	NH ₂	(CH ₂) ₂	0	H	4'	4-NH2-Ph

[0089]

【表8】

R ⁵ H 6' X O										
化合物 番号	A	X	Y	Z	R²	ウレア 位置	R ⁵			
1111	a b	СН₂	OEt	0	H	4'	3-Py			
1112	a b	CH ₂	OEt	0	H	4'	3,4,5-(OMe) ₈ -Ph			
1113	a b	CH ₂	OEt	0	H	4'	4-Ac-Ph			
1114	a b	CH ₂	OEt	0	H	4'	4-NH2-Ph			
1115	a b	(CH ₂) ₂	OEt	0	H	4'	3-Py			
1116	a b	(CH ₂) ₂	OEt	0	H	4'	3,4,5-(OMe)s-Ph			
111	a b	(CH ₂) ₂	OEt	0	H	4'	4-Ac-Ph			

[0090]

1118	b N	(CH ₂) ₂	OEt	0	Н	4'	4-NH2-Ph
1119	a b	CH ₂	NH ₂	0	H	4'	3-Py
1120	a b	CH₂	NH ₂	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1121	a b	СН₂	NH ₂	0	H	4'	4-Ac-Ph
1122	b N	CH₂	NH₂	0	H	4'	4-NH₂-Ph
1123	a b	(CH ₂) ₂	NH2	0	H	4'	3-Py
1124	a b	(CH ₂) ₂	NH2	0	Н	4'	3,4,5-(OMe)s-Ph
1125	a b	(CH ₂) ₂	NH2	0	H	4'	4-Ac-Ph
1126	a b	(CH ₂) ₂	NH ₂	0	Н	4'	4-NH ₂ -Ph

[0091]

表 1 ~表 8 において、Pyはピリジル基、Phはフェニル基、Meはメチル基、Etはエチル基、 $^{\mathbf{n}}$ Prはノルマルプロピル基、Acはアセチル基、 $^{\mathbf{n}}$ Buはノルマルブチル基、Bnはベンジル基、 $^{\mathbf{c}}$ -Penはシクロペンチル基、 $^{\mathbf{c}}$ -Hexはシクロヘキシル基、 $^{\mathbf{c}}$ -He pはシクロヘプチル基、 $^{\mathbf{i}}$ Prはイソプロピル基、Napはナフチル基をそれぞれ表す

[0092]

本発明のウレア誘導体を有効成分とする薬学的組成物、即ち医薬組成物は、錠剤、カプセル剤、散剤、顆粒剤などの経口剤をはじめ、静脈内、皮下、筋肉内などの注射剤、外用剤など種々の剤形で投与することができる。例えば、本発明のウレア誘導体とラクトース、澱粉などの賦形剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、その他常用の添加剤を混合し、錠剤とすることができる。また、蒸留水、生理食塩水、アルコールなどを用いて注射剤とすることができ、必要に応じて緩衝剤、等張剤、防腐剤、安定剤などを添加してもよい。

[0093]

本発明のウレア誘導体の用量は、患者の性別、年齢、体重、疾患の種類、症状などに応じて適宜定めるものであるが、経口投与する場合、概ね1日当たり0.1~100 mg/kgの範囲、好ましくは1~10 mg/kgの範囲で、単回又は数回に分けて投与することができる。

[0094]

【実施例】

本発明の内容を以下の参考例、実施例及び処方例でさらに詳細に説明するが、 本発明はその内容に限定されるものではない。

実施例1

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル ウレア (化合物番号 1)

0.75 gの4,5-ジメトキシ-2-二トロ安息香酸をエタノール100 mlに溶かした後に濃硫酸3 mlを加えて還流下18時間撹拌した。5%水酸化ナトリウム水溶液で中和後、析出した固体を吸引濾取、水洗後乾燥し、0.53 gの白色固体を得た。引き続き0.30 gのこの固体と60 mgの5% Pd/Cをエタノール20 mlに加え、水素雰囲気下、室温で14時間撹拌した。反応液を濾過し、濾液を濃縮することで0.27 gの2-アミノ-4,5-ジメトキシ安息香酸エチルエステルを白色固体として得た。

[0095]

引き続き0.26 gのこの固体をジクロロメタン20 mlに溶かした後に0.27 gの4-ニトロ安息香酸クロリドと0.5 mlのトリエチルアミンを加えて室温で30分撹拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マ グネシウムで乾燥後、濃縮した。残さをメタノールで洗浄後乾燥し、0.36gの黄 色固体を得た。

引き続き0.36 gのこの固体と50 mgの5%Pd/Cをメタノール100 mlに加えた後に水素雰囲気下、室温で32時間撹拌した。反応液を濾過し、濾液を濃縮して0.28 gの2-(4-アミノフェニル)-カルボニルアミノ-4,5-ジメトキシ安息香酸エチルエステルを黄色固体として得た。

[0096]

引き続き90 mgのこの固体、0.24 gのフェニルイソシアネート、0.12 gのトリエチルアミンをトルエン20 mlに加えた後に還流下18時間撹拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:酢酸エチル=10:1→ジクロロメタン:メタノール= 30:1)、白色固体として、表記化合物を80 mg得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H) 、3.80 (s, 3H) 、3.88 (s, 3H) 、4.37 (q, J = 7.2 Hz, 3H) 、6.99 (t, J = 7.3 Hz, 1H) 、7.30 (m, 3H) 、7.48 (d, J = 7.5 Hz, 2H) 、7.48 (s, 1H) 、7.67 (d, J = 7.3 Hz, 2H) 、7.90 (d, J = 8.9 Hz, 2H) 、8.45 (s, 1H) 、9.05 (s, 1H) 、9.31 (s, 1H) 、11.75 (s, 1H)

[0097]

実施例2

実施例1と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H) 、 3.80 (s, 3H) 、 3.88 (s, 3H) 、 4.37 (q, J = 7.2 Hz, 2H) 、 7.48 (s, 1H) 、 7.71 (m, 4H) 、 7.92 (d, J = 8.9 Hz, 2H) 、 8.22 (d, J = 9.2 Hz, 2H) 、 8.43 (s, 1H) 、 9.40 (s, 1H) 、 9.65 (s, 1H) 、 11.76 (s, 1H)

[0098]

実施例3

 $N-(4-アミノフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 28)$

実施例2で合成した化合物90 mg、5%Pd/C 20 mgをエタノール10 m1に加えた後に水素雰囲気下、室温で14時間撹拌した。反応液を濾過、濾液を濃縮し、残査をシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:メタノール= 50:1)、淡桃色固体として、表記化合物を50 mg得た。

 $^{1}\text{H-NMR} \text{ (DMSO-d}_{6}, \ 270\text{MHz}) \ \delta \text{ ppm} : 1.35 \ (\text{t}, \ J=7.2 \text{ Hz}, \ 3\text{H}) \ , \ 3.80 \ (\text{s}, \ 3\text{H}) \ , \ 3.87 \ (\text{s}, \ 3\text{H}) \ , \ 4.37 \ (\text{q}, \ J=7.2 \text{ Hz}, \ 2\text{H}) \ , \ 4.80 \ (\text{s}, \ 2\text{H}) \ , \ 6.52 \ (\text{d}, \ J=8.1 \text{ Hz}, \ 2\text{H}) \ , \ 7.10 \ (\text{d}, \ J=8.9 \text{ Hz}, \ 2\text{H}) \ , \ 7.48 \ (\text{s}, \ 1\text{H}) \ , \ 7.63 \ (\text{d}, \ J=8.9 \text{ Hz}, \ 2\text{H}) \ , \ 7.87 \ (\text{d}, \ J=8.9 \text{ Hz}, \ 2\text{H}) \ , \ 8.22 \ (\text{d}, \ J=9.2 \text{ Hz}, \ 2\text{H}) \ , \ 8.42 \ (\text{s}, \ 1\text{H}) \ , \ 8.45 \ (\text{s}, \ 1\text{H}) \ , \ 9.03 \ (\text{s}, \ 1\text{H}) \ , \ 11.74 \ (\text{s}, \ 1\text{H}) \$

[0099]

実施例4

N-(4-7)ルオロフェニル) $-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル}ウレア(化合物番号 19)$

2- (4-アミノフェニル) -カルボニルアミノ-4,5-ジメトキシ安息香酸エチルエステル60 mg、0.11 gの4-フルオロフェニルイソシアネート、70 mgの4-ジメチルアミノピリジンをテトラヒドロフラン20 mlに加えた後に70℃で5時間撹拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:酢酸エチル=10:1→ジクロロメタン:メタノール=30:1)、白色固体として、表記化合物を60 mg得た。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 1.35 (t, J=7.2Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.14 (t, J = 6.2 Hz, 2H), 7.48 (s, 1H), 7.49 (dd, J = 3.8, 8.6 Hz, 2H), 7.67 (d, J = 8.6 Hz, 2H), 7.89 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 9.12 (s, 1H), 9.34 (s, 1H), 11.75 (s, 1H)

[0100]

実施例5

N-(4-エトキシカルボニルフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル)ウレア(化合物番号 14) 実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (m, 6H) 、3.80 (s, 3H) 、3.88 (s, 3 H) 、4.33 (m, 4H) 、7.48 (s, 1H) 、7.62 (d, J = 8.4 Hz, 2H) 、7.68 (d, J = 8.6 Hz, 2H) 、7.91 (m, 4H) 、8.44 (s, 1H) 、9.29 (s, 1H) 、9.34 (s, 1 H) 、11.76 (s, 1H)

[0101]

実施例6

N-(4-アセチルフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル) ウレア (化合物番号 12)

実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H) 、3.80 (s, 3H) 、3.88 (s, 3H) 、4.37 (q, J = 7.2 Hz, 2H) 、7.48 (s, 1H) 、7.62 (d, J = 8.9 Hz, 2H) 、7.68 (d, J = 8.9 Hz, 2H) 、7.93 (m, 4H) 、8.44 (s, 1H) 、9.34 (s, 1H) 、9.38 (s, 1H) 、11.76 (s, 1H)

[0102]

実施例7

N-(4-メトキシフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル) ウレア(化合物番号 35)

実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H) , 3.73 (s, 3H) , 3.80 (s, 3H) , 3.88 (s, 3H) , 4.37 (q, J = 7.2 Hz, 2H) , 6.89 (d, J = 9.2 Hz, 2H) , 7.38 (d, J = 8.6 Hz, 2H) , 7.48 (s, 1H) , 7.65 (d, J = 8.9 Hz, 2H) , 7.89 (d, J = 8.9 Hz, 2H) , 8.45 (s, 1H) , 8.73 (s, 1H) , 9.11 (s, 1H) , 11.75 (s, 1H)

[0103]

実施例8

N-(2-メトキシフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフ

ェニル)アミノカルボニル]フェニル} ウレア(化合物番号 37)

実施例4と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 3.89 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.00 (m, 3H), 7.48 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 8.13 (dd, J = 1.6, 7.3 Hz, 1H), 8.41 (s, 1H), 8.45 (s, 1H), 9.75 (s, 1H), 11.76 (s, 1H)

[0104]

実施例9

N-(3-メトキシフェニル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル) ウレア (化合物番号 36)

実施例4と同様の方法で表記化合物を合成した。

 $\begin{array}{l} 1_{\rm H-NMR} \ ({\rm DMSO-d}_6, \ 270\,{\rm MHz}) \ \delta \ ppm: 1.35 \ (t, \ J=7.2 \ Hz, \ 3H) \ , \ 3.74 \ (s, \ 3H) \\ , \ 3.80 \ (s, \ 3H) \ , \ 3.88 \ (s, \ 3H) \ , \ 4.37 \ (q, \ J=7.2 \ Hz, \ 2H) \ , \ 6.58 \ (dd, \ J=2.4, \ 8.1 \ Hz, \ 1H) \ , \ 6.96 \ (d, \ J=9.5 \ Hz, \ 1H) \ , \ 7.20 \ (m, \ 2H) \ , \ 7.48 \ (s, \ 1H) \\ , \ 7.66 \ (d, \ J=8.6 \ Hz, \ 2H) \ , \ 7.90 \ (d, \ J=8.9 \ Hz, \ 2H) \ , \ 8.44 \ (s, \ 1H) \\ , \ 8.97 \ (s, \ 1H) \ , \ 9.21 \ (s, \ 1H) \ , \ 11.75 \ (s, \ 1H) \\ \end{array}$

[0105]

実施例10

N-(3, 4, 5-トリメトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル} ウレア(化合物番号 101)

実施例4と同様の方法で表記化合物を合成した。

 $1_{\rm H-NMR}$ (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H), 3.61 (s, 3H), 3.76 (s, 6H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 6.83 (s, 2H), 7.48 (s, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 8.93 (s, 1H), 9.19 (s, 1H), 11.74 (s, 1H)

[0106]

実施例11

N-(3-ピリジル)-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル)ウレア(化合物番号 972)

実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.34 (m, 1H), 7.48 (s, 1H), 7.69 (d, J = 8.6 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 7.97 (d, J = 8.9 Hz, 1H), 8.20 (d, J = 4.3 Hz, 1H), 8.44 (s, 1H), 8.66 (s, 1H), 9.50 (s, 1H), 9.70 (s, 1H), 11.75 (s, 1H)

[0107]

実施例12

N-ベンジル $-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル<math>\}$ ウレア(化合物番号 112)

実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.34 (t, J = 7.2 Hz, 3H) 、 3.80 (s, 3H) 、 3.87 (s, 3H) 、 4.37 (m, 4H) 、 6.99 (t, J = 6.5 Hz, 1H) 、 7.28 (m, 5H) 、 7.47 (s, 1H) 、 7.61 (d, J = 8.6 Hz, 2H) 、 7.84 (d, J = 8.9 Hz, 1H) 、 8.44 (s, 1H) 、 9.18 (s, 1H) 、 11.72 (s, 1H)

[0108]

実施例13

N-シクロヘキシル-N' - [4- [(4,5-ジメトキシ-2-エトキシカルボニルフェニル) アミノカルボニル] フェニル) ウレア (化合物番号 103)

実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.20 (m, 6H) 、 1.34 (t, J = 7.2Hz, 3H) 、 1.65 (m, 4H) 、 3.48 (m, 1H) 、 3.79 (s, 3H) 、 3.87 (s, 3H) 、 4.37 (m, 4H) 、 6.42 (d, J = 7.8 Hz, 1H) 、 7.47 (s, 1H) 、 7.57 (d, J = 8.9 Hz, 2H) 、 7.83 (d, J = 8.9 Hz, 1H) 、 8.45 (s, 1H) 、 8.88 (s, 1H) 、 11.72 (s, 1H)

[0109]

実施例14

N- J N- J N- N' - N' - N' - N- N' - N- N- N' - N- N' - N

実施例4と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 0.90 (t, J = 6.7 Hz, 3H) , 1.27 (m,4H) , 1.34 (t, J = 7.2 Hz, 3H) , 3.10 (q, J = 5.7 Hz, 2H) , 3.80 (s, 3H) , 3.87 (s, 3H) , 4.37 (m, 4H) , 6.45 (t, J = 5.4 Hz, 1H) , 7.47 (s, 1H) , 7.59 (d, J = 8.9 Hz, 2H) , 7.83 (d, J = 8.6 Hz, 1H) , 8.45 (s, 1H) , 8.9 8 (s, 1H) , 11.72 (s, 1H)

[0110]

実施例15

 $N-フェニル-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル} チオウレア(化合物番号 315)$

実施例4と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.14 (t, J = 6.8 Hz, 1H), 7.35 (m, 3H), 7.48 (m, 3H), 7.76 (d, J = 8.9 Hz, 2H), 7.91 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 10.21 (s,br, 2H), 11.80 (s, 1H)

[0111]

実施例16

N-フェニル-N'-[3-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]フェニル ウレア(化合物番号 691)

実施例4と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 1.34 (t, J = 7.2 Hz, 3H), 3.81 (s, 3H), 3.89 (s, 3H), 4.36 (q, J = 7.2 Hz, 2H), 6.99 (t, J = 7.3 Hz, 1H), 7.29 (t, J = 8.3 Hz, 2H), 7.49 (m,5H), 7.23 (m, 1H), 8.08 (s, 1H), 8.42 (s, 1H), 8.92 (s, 1H), 9.13 (s, 1H), 11.76 (s, 1H)

[0112]

実施例17

N-フェニル-N'-[2-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノ

カルボニル] フェニル} ウレア(化合物番号 692)

実施例4と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H) 、3.80 (s, 3H) 、3.88 (s, 3H) 、4.37 (q, J = 7.2 Hz, 2H) 、6.96 (t, J = 7.3 Hz, 1H) 、7.16 (t, J = 7.8 Hz, 1H) 、7.26 (t, J = 7.3 Hz, 2H) 、7.51 (m, 4H) 、7.80 (d, J = 7.0 Hz, 1H) 、8.12 (s, 1H) 、8.20 (d, J = 5.7 Hz, 2H) 、9.61 (s, 1H) 、9.79 (s, 1H) 、11.47 (s, 1H)

[0113]

実施例18

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]フェニル} ウレア(化合物番号 158)

0.66gの4,5-ジメトキシ-2-二トロ安息香酸と5 mlの塩化チオニルをクロロホルム40 mlに加えて還流下6時間撹拌し後に濃縮した。残さをジクロロメタン20 ml に溶かした後に、氷浴下アンモニア水20 mlを加えた後、室温下て10分間激しく撹拌した。有機層を分取して濃縮し、残さと0.20 gの5% Pd/Cをメタノール50 ml に加え、水素雰囲気下、室温で19時間撹拌した。反応液を濾過し、濾液を濃縮することで0.55 gの2-アミノ-4,5-ジメトキシベンズアミドを白色固体として得た

[0114]

引き続き0.55gのこの固体をジクロロメタン50 mlに溶かした後に2.00 gの4-二トロ安息香酸クロリドと2 mlのトリエチルアミンを加えて室温で6時間撹拌した。反応液を飽和重曹水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをメタノールで洗浄し、乾燥することで0.72 gの2-(4-ニトロフェニル)-カルボニルアミノ-4,5-ジメトキシベンズアミドを黄土色固体として得た。

引き続き0.68gのこの固体と0.10 gの5% Pd/Cをメタノール50 mlに加えた後に 水素雰囲気下、室温で40時間撹拌した。反応液を濾過、濾液を濃縮し0.35 gの2-(4-アミノフェニル) -カルボニルアミノ-4,5-ジメトキシベンズアミドを黄色固 体として得た。 [0115]

引き続き0.12 gのこの固体、0.14 gのフェニルイソシアネート、0.10 gの4-ジメチルアミノピリジンをテトラヒドロフラン30 mlに加えた後に70℃で4時間撹拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:酢酸エチル=20:1→ジクロロメタン:メタノール=30:1)、白色固体として、表記化合物を80 mg得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆, 270MHz) δ ppm: 3.81 (s, 3H), 3.84 (s, 3H), 7.00 (t, J = 8.1 Hz, 1H), 7.30 (t, J = 8.4 Hz, 2H), 7.44 (s, 1H), 7.47 (d, J = 7.9 Hz, 2H), 7.64 (m, 3H), 7.87 (d, J = 8.6 Hz, 2H), 8.31 (s, 1H), 8.53 (s, 1H), 8.87 (s, 1H), 9.13 (s, 1H), 13.21 (s, 1H)

[0116]

実施例19

 $N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]フェニル}-N'-メチルウレア(化合物番号 976)$

2- (4-アミノフェニル) -カルボニルアミノ-4,5-ジメトキシベンズアミド40 mg、60 mgのヒドロキシベンズトリアゾール (HOBt)、50 mgのトリエチルアミン、70 mgの4-メチルアミノ安息香酸をDMFに加えて30分間撹拌した後に、80 mgの1-エチル-3-[3-(ジメチルアミノ)プロピル]-カルボジイミド塩酸塩(WSCI)を氷浴下加えた後、室温に戻し50時間撹拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:酢酸エチル=30:1→ジクロロメタン:メタノール=50:1)、80 mgの白色固体を得た。

[0117]

引き続き30 mgのこの固体、60 mgのフェニルイソシアネート、30 mgの4-ジメチルアミノピリジンをテトラヒドロフラン10 mlに加えた後に70℃で6時間撹拌した。反応液を水にあけジクロロメタン抽出を行い、有機層を無水硫酸マグネシウムで乾燥後、濃縮した。残さをシリカゲルカラムクロマトグラフィーによって精製し(溶出溶媒ジクロロメタン:酢酸エチル=30:1→ジクロロメタン:メタノー

ル= 30:1)、白色固体として、表記化合物を20 mg得た。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.35 (s, 3H) 、3.81 (s, 3H) 、3.85 (s, 3 H) 、6.97 (t, J = 8.5 Hz, 1H) 、7.25 (t, J = 8.4 Hz, 2H) 、7.45 (m, 5H) 、7.68 (s, 1H) 、7.94 (d, J = 8.1 Hz, 2H) 、8.33 (s, 1H) 、8.53 (s, 1H) 、8.59 (s, 1H) 、13.32 (s, 1H)

[0118]

実施例20

N-フェニル-N'-[3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-ピリジル)ウレア(化合物番号 971)

実施例19と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.82 (s, 3H) 、3.85 (s, 3H) 、7.02 (t, J = 7.3 Hz, 1H) 、7.32 (m, 3H) 、7.46 (s, 1H) 、7.51 (d, J = 5.1 Hz, 2H) 、7.69 (dd, J = 1.9, 5.1 Hz, 1H) 、8.12 (s, 1H) 、8.25 (d, J = 2.4 Hz, 1H) 、8.47 (d, J = 5.4 Hz, 1H) 、8.57 (s, 1H) 、9.33 (s, 1H) 、9.83 (s, 1H) 、13.33 (s, 1H)

[0119]

実施例21

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-2-ピリジル〉ウレア(化合物番号 972)

実施例19と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.82 (s, 3H) , 3.84 (s, 3H) , 7.04 (t, J = 7.3 Hz, 1H) , 7.33 (t, J = 7.8 Hz, 3H) , 7.46 (s, 1H) , 7.54 (d, J = 7.0 Hz, 2H) , 7.73 (s, 1H) , 7.79 (d, J = 8.9 Hz, 1H) , 8.21 (dd, J = 2.4, 8.6Hz, 1H) , 8.36 (s, 1H) , 8.48 (s, 1H) , 8.83 (d, J = 2.1 Hz, 1H) , 9.86 (s, 1H) , 10.20 (s, 1H) , 13.35 (s, 1H)

[0120]

実施例22

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-3-メトキシフェニル} ウレア(化合物番号 726)

実施例19と同様の方法で表記化合物を合成した。

 $\begin{array}{l} 1_{\rm H-NMR} \ ({\rm DMSO-d_6}, \ 270\,{\rm MHz}) \ \delta \ {\rm ppm}: 3.81 \ ({\rm s, 3H}) \ , \ 3.84 \ ({\rm s, 3H}) \ , \ 3.99 \ ({\rm s, 3H}) \ , \ 6.99 \ ({\rm t, J=7.3 \ Hz, 1H}) \ , \ 7.31 \ ({\rm t, J=8.1 \ Hz, 2H}) \ , \ 7.46 \ ({\rm s, 1H}) \ , \ 7.49 \ ({\rm m, 2H}) \ , \ 7.58 \ ({\rm s, 1H}) \ , \ 7.73 \ ({\rm s, 1H}) \ , \ 8.33 \ ({\rm s, 1H}) \ , \ 8.36 \ ({\rm s, 1H}) \ , \ 8.56 \ ({\rm d, J=3.5 \ Hz, 2H}) \ , \ 9.49 \ ({\rm s, 1H}) \ , \ 13.29 \ ({\rm s, 1H}) \ . \end{array}$

[0121]

実施例23

 $N-フェニル-N'-[3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-メトキシフェニル} ウレア(化合物番号 727)$

実施例19と同様の方法で表記化合物を合成した。

 $\begin{array}{l} 1_{\rm H-NMR} \ ({\rm DMSO-d_6},\ 270{\rm MHz}) \ \delta \ {\rm ppm}: 3.81 \ ({\rm s,\ 3H}) \ ,\ 3.84 \ ({\rm s,\ 3H}) \ ,\ 3.98 \ ({\rm s,\ 3H}) \ ,\ 6.98 \ ({\rm t,\ J}=7.3\ {\rm Hz},\ 1{\rm H}) \ ,\ 7.19 \ ({\rm d,\ J}=8.4\ {\rm Hz},\ 1{\rm H}) \ ,\ 7.30 \ ({\rm t,\ J}=7.8\ {\rm Hz},\ 1{\rm H}) \ ,\ 7.30 \ ({\rm t,\ J}=7.8\ {\rm Hz},\ 2{\rm H}) \ ,\ 7.60 \ ({\rm dd,\ J}=2.1,\ 8.1\ {\rm Hz},\ 1{\rm H}) \ ,\ 7.63 \ ({\rm s,\ 1H}) \ ,\ 8.29 \ ({\rm s,\ 1H}) \ ,\ 8.38 \ ({\rm s,\ 1H}) \ ,\ 8.53 \ ({\rm s,\ 1H}) \ ,\ 8.79 \ ({\rm d,\ J}=2.4\ {\rm Hz},\ 2{\rm H}) \ ,\ 9.37 \ ({\rm s,\ 1H}) \ ,\ 13.14 \ ({\rm s,\ 1H}) \ . \end{array}$

[0122]

実施例24

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルメチル]フェニル ウレア (化合物番号 748)

実施例19と同様の方法で表記化合物を合成した。

 1 H-NMR (DMSO- d_{6} , 270MHz) δ ppm: 3.59(s, 2H), 3.76 (s, 3H), 3.77 (s, 3H), 6.95 (t, J = 8.1 Hz, 1H), 7.24 (m, 9H), 7.56(s, 1H), 8.16 (s, 1H), 8.28 (s, 1H), 8.76 (s, 2H), 12.13 (s, 1H)

[0123]

実施例25

 $N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルエチル]フェニル} ウレア (化合物番号 751)$

実施例19と同様の方法で表記化合物を合成した。

 1_{H-NMR} (DMSO-d₆, 270MHz) δ ppm: 2.61 (t, J = 7.6 Hz, 2H), 2.87 (t, J =

8.4 Hz, 2H) 、3.78 (s, 6H) 、6.94 (t, J = 7.6 Hz, 1H) 、7.15 (d, J = 8.4 Hz, 2H) 、7.26 (t, J = 8.4 Hz, 2H) 、7.35 (s, 1H) 、7.36 (d, J = 8.4 Hz, 2H) 、7.44 (d, J = 7.8 Hz, 2H) 、7.56 (s, 1H) 、8.17 (s, 1H) 、8.29 (s, 1H) 、8.73 (s, 1H) 、8.77 (s, 1H) 、12.12 (s, 1H)

[0124]

実施例26

N - [4- [(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル] フェニル} -N'-メチル-N'-フェニルウレア (化合物番号 977)

2- (4-アミノフェニル) -カルボニルアミノ-4,5-ジメトキシベンズアミド0.11 gをTHF10 mlに溶かした後に0.50 gのN-フェニル-N-メチルカルバモイルクロリドと1 mlのジイソプロビルエチルアミン加え、還流下16時間撹拌した。反応液を水にあけてジクロロメタン抽出を行い、無水硫酸マグネシウムで乾燥後、濃縮した。残さをメタノールで洗浄し、乾燥することで50 mgの白色固体を得た。 ¹H-NMR (DMSO-d₆、270MHz) δ ppm: 3.29 (s, 3H)、3.81 (s, 3H)、3.83 (s, 3H)、7.27 (t, J = 6.8 Hz, 1H)、7.44 (m, 5H)、7.63 (m,3H)、7.80 (d, J = 8.9 Hz, 2H)、8.30 (s, 1H)、8.52 (s, 1H)、8.53 (s, 1H)、13.18 (s, 1H)

[0125]

実施例27

N - [4- [(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル] フェニル} -N、N'-ジメチル-N'-フェニルウレア (化合物番号 978)

実施例26と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.12 (s, 3H), 3.18 (s, 3H), 3.81 (s, 3H), 3.83 (s, 3H), 7.00 (m, 3H), 7.12 (m, 4H), 7.44 (s, 1H), 7.68 (m, 3H), 8.32 (s, 1H), 8.49 (s, 1H), 13.18 (s, 1H)

[0126]

実施例28

N-(3, 4, 5-トリメトキシフェニル)-N'-[4-[(4, 5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]<math>-3-メトキシフェニル $\}$ ウレア (化合物番

号 792)

実施例18と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 3.61 (s, 3H), 3.76 (s, 6H), 3.81 (s, 3H), 3.84 (s, 3H), 3.98 (s, 3H), 6.81 (s, 2H), 7.53 (m, 3H), 7.74 (s, 1H), 8.33 (m, 2H), 8.51 (s, 1H), 8.55 (s, 1H), 9.49 (s, 1H), 13.28 (s, 1H)

[0127]

実施例29

 $N-フェニル-N'-[4-[(4-メチル-2-カルバモイルフェニル)アミノカルボニル]フェニル} ウレア (化合物番号 633)$

実施例18と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 2.32 (s, 3H), 6.99 (t, J = 8.1 Hz, 1H), 7.37 (m,3H), 7.48 (d, J = 7.3 Hz, 2H), 7.66 (m, 6H), 8.36 (s, 1H), 8.59 (d, J = 8.9 Hz, 2H), 9.00 (s, 1H), 9.26 (s, 1H), 12.73 (s, 1H)

[0128]

実施例30

 $N-フェニル-N'-[4-[(6-カルバモイル-3,4-メチレンジオキシフェニル)アミノカルボニル]フェニル} ウレア (化合物番号 652)$

実施例18と同様の方法で表記化合物を合成した。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$, 270MHz) δ ppm: 6.12 (s,2H) , 6.99 (t, J = 7.3 Hz, 1H) , 7.30 (t, J = 7.3 Hz, 2H) , 7.47 (d, J = 7.9 Hz, 2H) , 7.50 (s, 1H) , 7.63 (d, J = 8.9 Hz, 2H) , 7.71 (s, 1H) , 7.86 (d, J = 8.4 Hz, 2H) , 8.21 (s, 1H) , 8.36 (s, 1H) , 8.91 (s, 1H) , 9.18 (s, 1H) , 13.28 (s, 1H) [0 1 2 9]

実施例31

N-フェニル-N'-[4-[(2-カルバモイル-4-メトキシフェニル)アミノカルボニル] フェニル ウレア (化合物番号 631)

実施例18と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.89 (s, 3H), 6.99 (t, J = 8.1 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.45 (m,4H), 7.64 (m, 3H), 7.97 (s, 1H), 8.13 (d, J = 8.7 Hz, 2H), 8.92 (s, 1H), 9.14 (s, 1H), 12.37 (s, 1H)

[0130]

実施例32

N-(4-エトキシカルボニルフェニル)-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]フェニル)ウレア (化合物番号 171)

実施例18と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.32 (t, J = 7.3Hz,3H) 、3.81 (s, 3H) 、3.84 (s, 3H) 、4.33 (q, J = 7.3 Hz,2H) 、7.45 (s, 1H) 、7.65 (m, 5H) 、7.89 (m, 4H) 、8.32 (s, 1H) 、8.53 (s, 1H) 、9.46 (s, 1H) 、9.51 (s, 1H) 、13.22 (s, 1H)

[0131]

実施例33

N-フェニル-N'-[3-[(2-カルバモイルチエニル)アミノカルボニル]フェニル ウレア (化合物番号 916)

実施例18と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 7.00 (t, J = 7.3 Hz, 1H) 、 7.30 (t, J = 8 .4 Hz, 2H) 、 7.48 (d, J = 7.8 Hz, 2H) 、 7.78 (m, 7H) 、 8.11 (d, J = 5.4 Hz, 1H) 、 8.93 (s, 1H) 、 9.23 (s, 1H) 、 12.31 (s, 1H)

[0132]

実施例34

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-3-メチルフェニル ウレア (化合物番号 744)

実施例19と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 2.34 (s, 3H) 、3.81 (s, 3H) 、3.84 (s, 3H) 、6.99 (t, J = 7.3 Hz, 1H) 、7.31 (t, J = 7.3 Hz, 2H) 、7.44 (s, 1H) 、7.49 (d, J = 7.6 Hz, 2H) 、7.75 (m, 3H) 、8.16 (d, J = 7.8 Hz, 1H) 、8

.33 (s, 2H) 、8.54 (s, 1H) 、9.38 (s, 1H) 、13.22 (s, 1H)

実施例35

 $N-フェニル-N'-[3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-メチルフェニル} ウレア (化合物番号 745)$

実施例19と同様の方法で表記化合物を合成した。

 $1_{\rm H-NMR}$ (DMSO-d₆, 270MHz) δ ppm: 2.33 (s, 3H), 3.81 (s, 3H), 3.84 (s, 3 H), 6.97 (t, J = 7.3 Hz, 1H), 7.37 (m, 7H), 7.66 (s, 1H), 8.30 (s, 1 H), 8.38 (s, 1H), 8.45 (s, 1H), 8.54 (s, 1H), 9.35 (s, 1H), 13.21 (s, 1H)

[0134]

実施例36

N-フェニル-N'-[4-クロル-3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル] フェニル ウレア (化合物番号 746)

実施例19と同様の方法で表記化合物を合成した。

 $1_{\rm H-NMR}$ (DMSO-d₆, 270MHz) δ ppm: 3.82 (s, 3H), 3.85 (s, 3H), 7.01 (t, J = 7.3 Hz, 1H), 7.31 (t, J = 8.1 Hz, 2H), 7.54 (m, 4H), 7.68 (d, J = 8.1 Hz, 2H), 8.34 (s, 1H), 8.50 (s, 1H), 8.69 (s, 1H), 8.78 (d, J = 1.8 Hz, 1H), 9.67 (s, 1H), 13.34 (s, 1H)

[0135]

実施例37

N-フェニル-N'-[3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-ヒドロキシフェニル ウレア (化合物番号 728)

実施例19と同様の方法で表記化合物を合成した。

 $1_{\mathrm{H-NMR}}$ (DMSO-d₆, 270MHz) δ ppm: 3.81 (s, 3H) , 3.84 (s, 3H) , 6.97 (m, 2

H) $\sqrt{7.29}$ (t, J = 7.8 Hz, 2H) $\sqrt{7.46}$ (m, 4H) $\sqrt{7.60}$ (s, 1H) $\sqrt{8.26}$ (s, 1

H) \cdot 8.32 (s, 1H) \cdot 8.54 (s, 1H) \cdot 8.71 (d, J = 2.2 Hz, 1H) \cdot 9.34 (s, 1

H) 13.22 (s, 1H)

[0136]

実施例38

N-フェニル-N'-[3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-4-(2-(N-モルフォリニル)エトキシ)フェニル)ウレア (化合物番号 747)

実施例19と同様の方法で表記化合物を合成した。

 1 H-NMR (DMSO- 1 G, 270MHz) δ ppm: 3.81 (s, 3H) 、3.84 (s, 3H) 、3.70 (m, 1 2H) 、6.99 (t, J = 7.3 Hz, 1H) 、7.27 (m, 3H) 、7.50 (m, 4H) 、7.64 (s, 1H) 、8.23 (s, 1H) 、8.29 (s, 1H) 、8.53 (s, 1H) 、8.75 (d, J = 2.4 Hz, 1H) 、9.43 (s, 1H) 、13.15 (s, 1H)

[0137]

実施例39

N-フェニル-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニル]-2-チエニル) ウレア (化合物番号 975)

実施例19と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 3.81 (s, 3H) 、3.83 (s, 3H) 、6.92 (s, 1 H) 、6.99 (t, J = 8.1 Hz, 1H) 、7.30 (t, J = 8.1 Hz, 2H) 、7.46 (m, 4H) 、8.62 (s, 1H) 、8.31 (s, 1H) 、8.46 (s, 1H) 、9.00 (s, 1H) 、10.28 (s, 1H) 、13.02 (s, 1H)

[0138]

実施例40

N-トルイル-N'-[4-[(4,5-ジメトキシ-2-エトキシカルボニルフェニル)アミノカルボニル]-フェニル ウレア (化合物番号 2)

実施例1と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.35 (t, J = 7.0 Hz, 3H), 2.25 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.0 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.48 (s, 1H), 7.67 (d, J = 8.9 Hz, 2H), 7.89 (d, J = 8.9 Hz, 2H), 8.45 (s, 1H), 9.09 (s, 1H), 9.43 (s, 1H), 11.75 (s, 1H)

[0139]

実施例41

N-フェニル-N'-[3-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルメトキシ]フェニル〉ウレア (化合物番号 994)

実施例19と同様の方法で表記化合物を合成した。

 $1_{\text{H-NMR}}$ (DMSO-d₆, 270MHz) δ ppm: 3.76 (s, 3H), 3.77 (s, 3H), 4.50(s, 2H), 6.95 (t, J = 8.1 Hz, 1H), 8.16 (m, 14H), 12.13 (s, 1H)

[0140]

実施例42

N-(4-アセトキシフェニル)-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルエチル]フェニル}ウレア (化合物番号 1073)

実施例19と同様の方法で表記化合物を合成した。

 $1_{\rm H-NMR}$ (DMS0- d_6 , 270MHz) δ ppm: 2.62 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.78 (s, 6H), 7.17 (d, J = 8.4 Hz, 2H), 7.36 (m, 3H), 7. 57 (m, 3H), 7.89 (d, J = 8.9 Hz, 2H), 8.18 (s, 1H), 8.29 (s, 1H), 8. 86 (s, 1H), 9.21 (s, 1H), 12.13 (s, 1H)

[0141]

実施例43

N-(3-ピリジル)-N'-[4-[(4,5-ジメトキシ-2-カルバモイルフェニル)アミノカルボニルエチル]フェニル}ウレア (化合物番号 1071)

実施例19と同様の方法で表記化合物を合成した。

 $1_{\rm H-NMR}$ (DMSO- d_6 , 270MHz) δ ppm: 2.62 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.78 (s, 6H), 7.17 (d, J = 8.4 Hz, 2H), 7.33 (m,4H), 7.56 (s, 1H), 7.91 (m, 1H), 8.17 (m, 2H), 8.29 (s, 1H), 8.59 (d, J = 2.4 Hz, 1H), 8.81 (s, 1H), 8.91 (s, 1H), 12.13 (s, 1H)

[0142]

実施例44

N-(3-ピリジル)-N'-[4-[(4,5-ジフルオロ-2-エトキシカルボニルフェニル)ア ミノカルボニル] フェニル} ウレア (化合物番号 1094)

実施例1と同様の方法で表記化合物を合成した。

¹H-NMR (DMSO-d₆, 270MHz) δ ppm: 1.34 (t, J = 7.2 Hz, 3H) 、 4.37 (q, J = 7.2 Hz, 2H) 、 7.34 (m, 1H) 、 7.69 (d, J = 8.6 Hz, 2H) 、 7.97 (m, 4H) 、 8.21 (m, 1H) 、 8.64 (m, 2H) 、 9.31 (s, 1H) 、 9.55 (s, 1H) 、 11.59 (s, 1H)

[0143]

試験例 PDGF-BB刺激平滑筋細胞增殖抑制試験

ヒト冠血管平滑筋細胞(初代培養)を96穴microplate(50000 cells/well)に撒き、24時間培養した。細胞が集密的(confluent)になったことを確認した後、0.4又は 2μ Mの化合物を添加した無血清培地(20 ng/ml PDGF-BBを含む)で24時間培養した。3H-チミジン(1μ Ci/well)を添加し、4時間培養した。細胞をフィルターに回収した後、クレアゾール(Creasol)(4ml/vial)を添加し、シンチレーションカウンターで 3 H-チミジンの取り込み量を測定した。なお、被験化合物の増殖抑制活性は、無処置群(PDGF-BB不添加)に対し、50%阻害を示す濃度(IC_{50})で表した。対照化合物としてトラニラスト及び参考例1(W097/09301に記載されている実施例4、化合物17の化合物)をおいた。その結果は表5に示すとおりである。

[0144]

化合物名 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6	PDGF-BB 刺激平滑筋 細胞増殖抑制 IC ₅₀ (μM) 0.28 0.5 0.08 0.16
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6	IC ₅₀ (μM) 0.28 0.5 0.08 0.16
実施例 2 実施例 3 実施例 4 実施例 5 実施例 6	0.28 0.5 0.08 0.16
実施例 2 実施例 3 実施例 4 実施例 5 実施例 6	0.5 0.08 0.16
実施例 3 実施例 4 実施例 5 実施例 6	0.08
実施例 4 実施例 5 実施例 6	0.16
実施例 5 実施例 6	
実施例 6	0.17
	0.17
	0.008
実施例7	0.08>
実施例8	0.094
実施例 9	0.15
実施例 10	0.016>
実施例 11	0.13
実施例 12	0.02
実施例 13	0.22
実施例 14	0.14
実施例 15	0.30
実施例 16	0.096
実施例 17	0.18
実施例 18	0.21
実施例 19	2<
実施例 20	1.7
実施例 21	0.18
実施例 22	0.18
実施例 23	0.5
- 実施例 24	0.16
実施例 25	0.016>
実施例 26	2<
実施例 27	0.4>
実施例 28	0.008
実施例 29	0.29
実施例 30	0.14
実施例 31	0.10
実施例 32	0.4<

[0145]

実施例 33	0.56
実施例 34	0.03
実施例 35	0.13
実施例 36	0.08>
実施例 37	0.08>
実施例 38	0.08>
実施例 39	0.08>
実施例 40	0.08>
トラニラスト	19.8
参考例1	4.1

[0146]

【化7】

[0147]

製剤例

常法により次の組成からなる錠剤を作成した。

実施例1の化合物 100mg

ラクトース 120mg

馬れいしょ **澱粉** 30mg

ヒドロキシプロピルセルロース 5mg

カルボキシメチルセルロースナトリウム 7 暇

ステアリン酸マグネシウム 0.5mg

[0148]

本発明のウレア誘導体は、PDGFによる細胞増殖に対する阻害作用を有し、動脈 硬化症、血管再閉塞疾患、腎炎などの細胞増殖性疾患の予防又は治療に有用であ る。

【要約】

【課題】 動脈硬化症、血管再閉塞疾患、腎炎などの細胞増殖性疾患の予防又は 治療に対して有用な新規化合物又はその薬学的に許容される塩を提供する。

【解決手段】 式(1):

【化1】

$$R^{5}$$
 R^{4}
 R^{3}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}

(式中、A及びBはベンゼン環等の芳香環;COYとNHCOXは隣接して存在し、芳香環A内でこれらの置換基が結合しているのは炭素であり;Xはアルキレン、アルキレンオキシ又は単結合;Yはアルコキシ、水酸基又は置換もしくは非置換のアミノ基;R¹は水素、ハロゲン、水酸基、アルキル等であり、但しAがベンゼン環の場合、R¹は水素でなく;R²は水素、ハロゲン、水酸基、アルキル等;R³及びR⁴は水素又はアルキル;R⁵はアルキル又は置換もしくは非置換のフェニル等;Zは酸素又はイオウである。)で表されるウレア誘導体又はその塩、並びに該化合物を有効成分とする薬学的組成物。

【選択図】 なし

識別番号

[000231109]

1. 変更年月日 1993年12月 8日

[変更理由] 名称変更

住 所 東京都港区虎ノ門二丁目10番1号

氏 名 株式会社ジャパンエナジー