SST1 Übungsstunde 4

Matteo Dietz

October 2025

Themenüberblick

Repetition: Zeitinvarianz

Analoge LTI Systeme im Zeitbereich:

Impulsantwort

Faltung, Eigenschaften der Faltung, Graphische Faltung Eigenschaften der Impulsantwort

Aufgaben für diese Woche

31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45

Die <u>fettgedruckten</u> Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Repetition: Zeitinvarianz

$$Hx(t) = t \cdot x(t) \qquad T_{\tau}x(t) = x(t - \tau)$$

$$\chi(t) \longrightarrow H \longrightarrow t \cdot x(t) \qquad x(t) \longrightarrow T_{\tau} \longrightarrow x(t - \tau)$$

$$(HT_{\tau}x)(t) : \qquad x \longrightarrow T_{\tau} \longrightarrow H \longrightarrow y$$

$$\chi(t) \longrightarrow T_{\tau} \longrightarrow \chi' \longrightarrow H \longrightarrow H\chi(t) = t \cdot \chi(t - \tau)$$

$$HT_{\tau}x(t) = t \cdot x(t - \tau)$$

Beispiel

$$X(t) = \left\{ \begin{array}{ll} 0 & : t < 0 \\ 1 & : \text{otherwise} \end{array} \right.$$

$$TX(t) = X(t-2)$$

$$= \begin{cases} 0 : t-2 < 0 \\ 1 : otherwise \end{cases}$$

$$HTX(t) = t TX(t)$$
= t If(t - 2 < 0, 0, 1)

$$HX(t) = t X(t)$$
= t If(t < 0, 0, 1)

THX(t) = HX(t - 2)
$$= (t - 2) If(t - 2 < 0, 0, 1)$$

Matteo Dietz

SST1 Übungsstunde 4

Punktenotation (aus Lösung 30.c) & 28)

• $(Hx(\cdot - \tau))$ bedeutet: H wirkt auf das verschobene Signal $x(t - \tau) = (T_{\tau}x)(t)$, also:

$$(Hx(\cdot - \tau))(t) = (HT_{\tau}x)(t) = tx(t - \tau)$$

• $(Hx)(t-\tau)$ bedeutet: Antwort y(t)=(Hx)(t) des Systems H auf Eingangssignal x(t) wird um τ zeitverschoben, also:

$$(Hx)(t-\tau)=(T_{\tau}Hx)(t)=(t-\tau)x(t-\tau)$$

Analoge LTI-Systeme im Zeitbereich

Impulsantwort

LTI-Systeme sind vollständig durch ihre Impulsantwort $h := (H\delta)(t)$ definiert.

Wir können dem System einen $\delta-$ Impuls als Input geben und den Output betrachten und dieser Output charakterisiert das LTI-System vollständig.

Herleitung

Herleitung

Herleitung

Impulsantwort von LTI-Systemen

Ein LTI-System antwortet auf ein Eingangssignal x(t) mit dem Ausgangssignal

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau := x * h$$

wobei $h(t) = (H\delta)(t)$ die **Impulsantwort** des Systems ist.

Aufgabe 42.a)

Existenz des Faltungsintegrals

• Das Faltungsintegral zweier Signale $x_1(t)$ und $x_2(t)$

$$(x_1*x_2)(t)=\int_{-\infty}^{\infty}x_1(\tau)x_2(t-\tau)d\tau$$

kann divergieren.

• Die **Young'sche Ungleichung** stellt sicher, dass eine Faltung zweier Signale existiert.

Repetition: L^p

•
$$L^p := \left\{ x : \mathbb{R} \to \mathbb{C} \left| \int_{-\infty}^{\infty} |x(t)|^p dt < \infty \right. \right\}$$

- p-Norm: $||x||_p := \left(\int_{-\infty}^{\infty} |x(t)|^p dt\right)^{1/p}$
- **Spezialfall**: $||x||_{\infty} := \inf\{C \ge 0 : |x(t)| \le C$, für alle $t \in \mathbb{R}$

Young'sche Ungleichung: Theorem

• Seien x und h (messbare) Funktionen, sodass $||x||_p$, $||h||_q < \infty$ für p, q mit $1 \le p, q \le \infty$. Man setze:

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$$

Dann gilt: $||x * h||_r \le ||x||_p ||h||_q$.

Young'sche Ungleichung: Spezialfälle

- $x_1 \in L^p$, $1 \le p \le \infty$, $x_2 \in L^1 \implies ||x_1 * x_2||_p \le ||x_1||_p ||x_2||_1$ und damit $x_1 * x_2 \in L^p$
- $x_1 \in L^2$, $x_2 \in L^2 \Longrightarrow |(x_1 * x_2)(t)| \le ||x_1||_2 ||x_2||_2$, $t \in \mathbb{R}$ und damit $x_1 * x_2 \in L^{\infty}$

Eigenschaften der Faltung

- **1 kommutativ**: $x_1 * x_2 = x_2 * x_1$
- **assoziativ**: $x_1 * (x_2 * x_3) = (x_1 * x_2) * x_3$
- **o** distributiv: $x_1 * (x_2 + x_3) = x_1 * x_2 + x_1 * x_3$
- linear in beiden Argumenten:

$$x_1 * (\alpha x_2 + \beta x_3) = \alpha(x_1 * x_2) + \beta(x_1 * x_3)$$

Graphische Faltung: Kochrezept

Ziel: Wir wollen
$$y(t) = \int_{-\infty}^{\infty} x(t-\tau)h(\tau)d\tau$$
 berechnen.

- 1) $x(\tau)$ spiegeln um $\tau = 0$, um $x(-\tau)$ zu erhalten.
- 2) Das gespiegelte $x(\tau)$ um t verschieben.
 - nach rechts für t > 0 nach links für t < 0 $\implies x(t \tau) = x(-(\tau t))$
- 3) Das gespiegelte & verschobene $x(\tau)$ mit $h(\tau)$ multiplizieren. $\Rightarrow x(t-\tau)h(\tau)$
- 4) Integrieren & den Wert von y(t) bei t eintragen.
- 5) Zurück zu 2) mit neuem t.

Graphische Faltung: Hinweise

Hinweise: Vergesst nicht, dass die Faltung kommutativ ist, d.h.

$$\int_{-\infty}^{\infty} x(t-\tau)h(\tau)d\tau = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Spiegelt und verschiebt das einfachere Signal und fixiert das kompliziertere!

Aufgabe 39.a)

Eigenschaften der Impulsantwort

Kausalität

Gedächtnis

BIBO-Stabilität

Repetition: Kausalität

• **Definition**: Ein System $H: X \to Y$ ist **kausal**, wenn für alle $x_1, x_2 \in X$ und jedes $T \in \mathbb{R}$ gilt

$$x_1(t) = x_2(t)$$
, für alle $t \le T$
 $\implies (Hx_1)(t) = (Hx_2)(t)$, für alle $t \le T$

Repetition: Kausalität

• **Intuition**: Das Ausgangssignal zu dem Zeitpunkt *T* ist nur von dem momentanen oder vergangenen Zeitpunkten abhängig.

• Echtzeitrealisierungen sind immer kausal.

Repetition: Gedächtnis

• **Definition**: Ein System $H: X \to Y$ ist **gedächtnislos**, wenn für alle $x \in X$ und alle Zeitpunkte $t_0 \in \mathbb{R}$ das Ausgangssignal (Hx)(t) zum Zeitpunkt t_0 nur von $x(t_0)$ abhängt.

- Sonst heisst das System **gedächtnisbehaftet**.
- Gedächtnislosigkeit ⇒ Kausalität (aber nicht umgekehrt)

Repetition: BIBO-Stabilität

• **Definition**: Ein System $H: X \rightarrow Y$ ist **BIBO-stabil**, wenn:

für alle $x \in X$ mit $|x(t)| \le B_x < \infty$, für alle t, existiert ein $B_y \in \mathbb{R}$ mit $B_y < \infty$, sodass

 $|y(t)| \le B_y$, für alle t, wobei y = Hx.

Zusammenfassung: Eigenschaften der Impulsantwort

Kausalität

Das LTI-System ist kausal $\Leftrightarrow h(t) = 0$ für t < 0.

Gedächtnislosigkeit

Das LTI-System H ist gedächtnislos \Leftrightarrow

$$y(t) = (Hx)(t) = \alpha x(t), \quad \alpha \in \mathbb{C} \Leftrightarrow h(t) = \alpha \delta(t)$$

BIBO-Stabilität

Wenn $h \in L^1$, dann ist das LTI-System BIBO-stabil.

Aufgaben

Aufgabe 45

Prüfungsaufgabe: Frühjahr 2024, Aufgabe 1