

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

Joni Pajarinen 12.9.2023

Previous lecture: find shortest path exercise

Use backward value iteration for

Reminder:

$$G^*(s) = \min_a \left\{ l(s, a) + G^*(f(s, a)) \right\}$$

Today

Markov decision processes (MDPs)

Learning goals

- Understand MDPs and related concepts
- Understand value functions
- Be able to implement value iteration for determining an optimal policy (in exercise #2, you will get to do this for real)

Markov decision process (MDP)

MDP

Environment observable z = s

Defined by dynamics $P(s_{t+1}|s_t, a_t)$

And reward function $r_t = r(s_t, a_t)$

Solution, for example $a_{1,...,T}^* = arg \max_{a_1,...,a_T} \sum_{t=1}^{T} r_t$

Represented as policy $a=\pi(s)$

Markov property

- "Future is independent of past given the present"

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_{1},...,S_t)$$

- State captures all history
- Once state is known, history may be thrown away

- Markov process is a memoryless random process that generates a state sequence S with the Markov property
- Defined as (S,T)
 - S: set of states
 - $T: S \times S \rightarrow [0,1]$ state transition function

•
$$T_t(s, s') = P(s_{t+1} = s' | s_t = s)$$

- P can be represented as a transition probability matrix
- State sequences called episodes

Still no "decision"!

Markov reward process

- Markov reward process =
 Markov process with rewards
- Defined by (S, T, r, γ)
 - *S*, *T* : as above
 - $r: S \rightarrow \mathcal{R}$ reward function
 - $-\gamma \in [0,1]$ discount factor
- Accumulated rewards in finite (H steps) or infinite horizon

$$\sum_{t=0}^{H} \mathbf{y}^{t} r_{t} \qquad \sum_{t=0}^{\infty} \mathbf{y}^{t} r_{t}$$

Return G: accumulated rewards from time t

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k}$$

Why discount?

State value function for Markov reward processes

 State value function V(s) is expected cumulative reward starting from state s

$$V(s) = E[G_t|S_t = s]$$

 Value function can be defined by the Bellman equation

$$V(s) = E[G_t | s_t = s]$$

$$V(s) = E[r_t + \gamma V(s_{t+1}) | s_t = s]$$

What is the value function for y = 0?

What is the value function for y = 0.5 after a single Bellman update when starting with zero values?

Markov decision process (MDP)

- Markov decision process defined by (S, A, T, R, y)
 - S, γ : as above
 - A: set of actions (inputs)
 - T: $S \times A \times S \rightarrow [0,1]$ $T_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$
 - $R: S \times A \rightarrow \mathcal{R}$ reward function $r_t(s, a) = r(s_t = s, a_t = a)$
- Goal: Find policy $\pi(s)$ that maximizes expected cumulative reward

Grid world

Agent tries to move forward:

P(success) = 0.8

P(left) = 0.1

P(right) = 0.1

0.1	
-	8.0
0.1	

	0.8	
0.1		0.1

Policy

- Deterministic policy π(S): S → A is a mapping from states to actions
- Stochastic policy π(a|s): S,A → [0,1]
 is a distribution over actions given
 states
- Optimal policy π*(s) is a policy that is better or equal than any other policy (in terms of cumulative rewards)
 - There always exists a deterministic optimal policy for an MDP

Agent tries to move forward:

$$P(success) = 0.8$$

$$P(left) = 0.1$$

$$P(right) = 0.1$$

0.1	
-	0.8
0.1	

	0.8	
0.1	A	0.1

MDP value function

• State-value function of an MDP is the expected return starting from state s and following policy π

$$V_{\pi}(s) = E_{\pi}[G_t|s_t = s]$$

 Can be decomposed into immediate and future components using Bellman expectation equation

$$V_{\pi}(s) = E_{\pi}[r_{t} + \gamma V_{\pi}(s_{t+1}) | s_{t} = s]$$

$$V_{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$$

Action-value function

• Action-value function Q is expected return starting from state s, taking action a, and then following policy π

$$Q_{\pi}(s, a) = E_{\pi}[G_{t}|s_{t} = s, a_{t} = a]$$

Using Bellman expectation equation

$$Q_{\pi}(s, a) = E_{\pi}[r_{t} + \gamma Q_{\pi}(s_{t+1}, a_{t+1}|s_{t} = s, a_{t} = a)]$$

$$Q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} T(s, a, s') Q_{\pi}(s', \pi(s'))$$

Optimal value function

 Optimal state-value function is maximum value function over all policies

$$V^*(s) = max_{\pi} V_{\pi}(s)$$

 Optimal action-value function is maximum action-value function over all policies

$$Q^*(s,a) = max_{\pi}Q_{\pi}(s,a)$$

All optimal policies achieve optimal state- and action-value functions

Optimal policy vs optimal value function

Optimal policy for optimal action-value function

$$\pi^*(s) = arg max_a Q^*(s, a)$$

Optimal action for optimal state-value function

$$\pi^{*}(s) = arg \max_{a} E_{s'}[r(s, a) + \gamma V^{*}(s')]$$

$$\pi^{*}(s) = arg \max_{a} [r(s, a) + \gamma \sum_{s'} T(s, a, s') V^{*}(s')]$$

Value iteration

Do you notice that this is an expectation?

• Starting from $V_0^*(s) = 0 \quad \forall s$ iterate

$$V_{i+1}^*(s) = max_a \Big(r(s, a) + \chi \Big(\sum_{s'} T(s, a, s') V_i^*(s') \Big) \Big)$$
until convergence

Value iteration converges to V*(s)

Compare to $G^*(s) = \min_a \{l(s, a) + G^*(f(s, a))\}$ from last week!

Iterative policy evaluation

- Problem: Evaluate value of policy π
- Solution: Iterate Bellman expectation back-ups
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_{\pi}$
- Using synchronous back-ups:
 - For all states s
 - Update $V_{k+1}(s)$ from $V_k(s')$
 - Repeat

$$V_{k+1}(s) = r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_k(s')$$

$$V_{k+1}(s) = \sum_{a} \pi(a|s) [r(s,a) + \gamma \sum_{s'} T(s,a,s') V_{k}(s')]$$

V

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Greedy policy

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

1	1
K	- 1

k = 0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

r = -1 for all actions

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Policy improvement and policy iteration

- Given a policy π , it can be improved by
 - Evaluating V_{π}
 - Forming a new policy by acting greedily with respect to V_{π}
- This always improves the policy
- Iterating multiple times called policy iteration
 - Converges to optimal policy

Computational limits – Value iteration

- Complexity O(|A||S|²) per iteration
- Effective up to medium size problems (millions of states)
- Complexity when applied to action-value function
 O(|A|²|S|²) per iteration

Summary

- Markov decision processes represent environments with uncertain dynamics
- Deterministic optimal policies can be found using statevalue or action-value functions
- Dynamic programming is used in value iteration and policy iteration algorithms

Next week: From MDPs to RL

- Readings
 - Sutton & Barto Ch. 5-5.4, 5.6, 6-6.5