

Proposition de stage M1:

Etude du destin post-collisionnel d'un dipôle tourbillonnaire

• Laboratoire : Institut de Physique de Nice (INPHYNI), CNRS, Université Côte d'Azur

- Contacts:
 - Simon Thalabard (simon.thalabard@univ-cotedazur.fr)
 - Christophe Brouzet (christophe.brouzet@univ-cotedazur.fr)

Contexte général

Nous souhaitons revisiter un problème épuré de couche limite initialement formulé par Orlandi [1], dans lequel un dipôle tourbillonnaire 2D collisionne avec un mur lisse. À faible viscosité, le destin post-collisionnel des tourbillons est en quelque sorte ambigu: la couche limite se décolle en présence d'une viscosité, mais ne se décolle pas pour un fluide parfait [2]. Physiquement, cette ambiguïte est à lier aux forts gradients pariétaux, qui compensent la faible viscosité, et pourraient permettre une dissipation anomale, c'est à dire non-visqueuse, de l'énergie: ce mécanisme est une signature d'un régime multi-échelles, et suggère une extrême sensibilité de la dynamique aux perturbations externes.

Des travaux numériques et expérimentaux réalisés au cours de l'été 2024 ont permis d'étudier la phase précolisionnelle. La partie expérimentale a exploité une cuve de dimension $79 \times 22 \times 38 cm^3$ sur un dispositif inspiré de celui proposé par van Heijst et Flór [3], dans lequel des dipôles tourbillonnaires quasi-2D sont générés par l'effondrement gravitationnel d'un jet turbulent 3D dans un environnement stratifié en densité. La partie numérique a exploité un code dédalus bi-dimensionnel. Ces études ont mis en évidence certains défis expérimentaux: créer une collision dans un régime 2D et atteindre des nombres de Reynolds suffisamment élevés.

Objectifs

Le but du stage est de reprendre les travaux préliminaires pour adresser ces deux défis. Le travail consistera

- 1. À reproduire l'étude pré-colisionnelle dans une cuve plus grande, de dimension $145 \times 48 \times 56 cm^3$ pour éliminer des effets de bords spurieux et permettre des vitesses initiales de jets plus élevées.
- 2. A identifier un régime quasi-2D et à proposer un protocole reproductible pour étudier un régime collisionnel.

3. A comparer quantitativement les expériences avec des simulations bi-dimensionnelles ou quasi-bidimensionnelles des équations de Navier-Stokes. Les simulations seront réalisées avec un code dedalus pseudo-spectral et une méthode de pénalisation de volume.

Figure 1: (a) Schéma du dispositif expérimental (b) Collapse gravitationnel d'un jet 3D en un structure grande échelle 2D dans les plans horizontaux et verticaux

Références

- [1] Orlandi, Vortex dipole rebound from a wall, Phys. Fluids A, 1990.
- [2] Nguyen van yen et al., Energy dissipation caused by boundary layer instability at vanishing viscosity, J. Fluid Mech., 2018.
- [3] van Heijst & Flór, Dipole formation and collisions in a stratified fluid, Nature, 1989.
- [4] Voropayev & Afanasyev, Two-dimensional vortex-dipole interactions in a stratified fluid, J. Fluid. Mech., 1992