ECE 215 Spring 2025

Objective 1.1: DC Circuit Analysis

ADMIN

- Any Gradescope or Teams issues?
- Questions about syllabus? *Only if you've read it*.
- Quiz 0: due T2 by 2359
- Retakes for Quizzes due 1 week after grades are published
 - See instructions on how to submit a retake
- Quiz 1 (Objs 1-2): due M6/T6 (21/22 Jan) by 2359
 - Work practice problems posted on course website to prep!

• Objective 1.1: I can calculate the voltages, currents, and power associated with devices in a simple DC-powered circuit using tools such as KVL, KCL, voltage and current dividers, Ohm's Law, and the power equation.

GOOD LAB PRACTICES

Onantities

We will be doing hands-on lab work throughout this course - get excited!

Some things to remember:

- Keep power supply off when making changes
- Check all connections before engaging power
- Analyze first, so you know what to expect
- Keep food and drinks away from equipment

EQUIPMENT - DMM

Lab Review

Series/Parallel

MEASURING R, V, & I

Voltage/Resistance

 Should the DMM's internal R be large or small?

Current

Should the DMM's internal R be large or small?

OHM'S LAW

• For a linear resistor/device: Voltage, Resistance, and Current are related

- Ex: A 12V source is connected to a 1000Ω resistor how much current flows through the resistor?
- Measure to verify!

ELECTRICAL POWER

- Power is work done over time
- Power = $\frac{\Delta E}{\Delta t} = \frac{dE}{dt} \rightarrow \frac{J}{S} = Watt$
- $V = \frac{dE}{dq}$, $I = \frac{dq}{dt}$
- Find power consumption of R in previous slide

Power Equation

$$P = I \cdot V$$

ENGINEERING NOTATION

- Engineering notation is similar to Scientific notation...
- Exponent is ALWAYS a multiple of 3
- Coefficient somewhere between 1 and 999.999...
- Wait...but why?
- Convert to engineering notation...
 - 0.00003056 W =
 - 0.707 A =
 - $3.014 \times 10^7 \text{ V} =$
- Don't forget about significant figures...

10^{12}	T (tera)
10 ⁹	G (giga)
10^{6}	M (mega)
10 ³	k (kilo)
10^{-3}	m (milli)
10^{-6}	μ (micro)
10^{-9}	n (nano)
10-12	p (pico)
10^{-15}	f (femto)
10^{-18}	a (atto)

STANDARD UNITS

Quantity	Unit	Notes
Charge	Coulomb (C)	6.241×10^{18} electrons = 1C
Energy	Joules (J)	
Time	Seconds (s)	
Current	Ampere (A)	1A = 1/s
Voltage	Volts (V)	1V = 1 J/C
Power	Watts (W)	1W = 1 J/s
Resistance	Ohms (Ω)	

KEY TERMS

Branch

Node

Loop

Mesh

A 2 terminal element.

KEY TERMS

Branch

Node

Loop

Mesh

A connection of 2 or more components.

Ouantities

Kirchoff's Laws

Series/Parallel

KEY TERMS

Lab Review

Branch

Node

Loop

Mesh

Any closed path through a circuit.

KEY TERMS

Lab Review

Branch

Node

Loop

Mesh

A loop that does not contain another loop.

KIRCHHOFF'S VOLTAGE LAW (KVL)

KVL

Lab Review

The algebraic sum of voltages around any closed loop in a circuit is zero.

Method:

- 1. Label voltage polarities (how?)
- 2. Move around the loop and write each voltage; you may use the first or second sign as polarity - just stay consistent!
- 3. Set the sum of the voltages equal to zero
- 4. Solve for the desired voltage

KVL - LABEL & WRITE VOLTAGE EQUATIONS

KIRCHHOFF'S CURRENT LAW (KCL)

KCL

Lab Review

The algebraic sum of all currents at a node equals zero.

Series/Parallel

- Label all voltages, using same convention as with KVL
- Identify all nodes
- Label all currents in circuit, including directions
- Write each current, in an equation for each node (current into node = positive)
- Set the sum of the currents equal to zero
- Solve for the desired current(s)

EXAMPLE - FIND V_1 , I_1 , I_2

EXAMPLE - FIND I_1, I_5, V_2, V_4, V_5

EXAMPLE - FIND I_1, I_5, V_2, V_4, V_5

- How many nodes are there?
- Write valid KCL equations for each node.
- Find I₁ and I₅
- How many meshes are there?
- Write valid KVL equations for each mesh.
- Find V_2 , V_4 , and V_5 .

KEY TERMS

Lab Review

- Series: Two or more elements cascaded or connected sequentially. Series components only share one node.
- Parallel: Two or more elements connected to the same two nodes.

RESISTORS IN SERIES

What does this circuit tell us about resistors in series?

(Hint: Let's use KCL, KVL, and Ohm's law)

Equivalent Series Resistance

 $R_{eq} = R_1 + R_2 + \ldots + R_N \label{eq:Req}$

R_{eq} is ALWAYS larger than the largest resistor!

SERIES CIRCUIT IN PRACTICE

fritzing

Resistors in Practice

VOLTAGE DIVISION

- If the current through series resistors is the same, what about the voltage?
- Each resistor "eats up" some of our potential
- Voltage division helps us determine how much each resistor "drops"

Voltage Division

$$V_{x} = V_{s} \frac{R_{x}}{R_{eq}}$$

Current

Current through series resistors is the same

RESISTORS IN PARALLEL

What does this circuit tell us about resistors in parallel?

Equivalent Parallel Resistance

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_N}}$$

ALWAYS smaller than the smallest Resistor!

Voltage

Voltage is the same across resistors in parallel

Ouantities

PARALLEL CIRCUITS IN PRACTICE

fritzing

CURRENT DIVISION

- If the voltage is the same across parallel resistors, what about current?
- Current division helps determine how current flows through parallel components
- What tools do we have available (again)??

Current Division

$$I_x = I_{total} rac{R_{eq}}{R_x}$$
 For 2 resistors $\longrightarrow I_x = I_{total} rac{R_y}{R_{sum}}$

EQUIVALENT RESISTANCE EXAMPLES

VOLTAGE AND CURRENT DIVISION EXAMPLES

Objective

Lab Review

Find Voltages/Currents across each Resistor and power consumed.

$$R_1 = 100\Omega$$
 $R_2 = 60\Omega$

$$R_3 = 120\Omega$$
 $R_4 = 80\Omega$

ECE 215 (Spring 2025)

 $R_4 = 750\Omega$

 $R_5 = 900\Omega \ R_6 = 1.2k\Omega$

Resistors in Practice

RESISTOR COLOR CODE

Kirchoff's Laws

- Q: What dictates wattage?
 - $\frac{1}{8}$ W \rightarrow 3.3mm
 - $\frac{1}{4}$ W \rightarrow 6.0mm
 - $\frac{1}{2}$ W \rightarrow 8.5mm
 - $\bar{1} \text{ W} \rightarrow 11 \text{mm}$
 - $2 \text{ W} \rightarrow 15 \text{mm}$
- Q: What values are available?

RESISTOR VALUES

• Q: How much voltage can you put across a $1k\Omega \frac{1}{4}W$ resistor?

• How much current can you put through a $470\Omega \frac{1}{2}$ W resistor?

Heuristic

Operate at half of operating power