

Computationally Hard Problems – Fall 2015 Assignment 7

Date: 10.11.2015, Due date: 16.11.2015, 23:59

	<i>C</i> I				_	1 .
I ha	+~1	LOWING	OVORCICOC	ara	not	mandatory
1110	TOI	IOWILLE -	CXCLCISCS	alc	HUL	mandatory:
	. • .					

Exercise 7.1: Let $\mathbf{x} = x_1 x_2 \dots x_n \in \{0,1\}^n$ be a bit string, and let $m \leq n$. Let $\mathbf{x}_j = x_j x_{j+1} \cdots x_{j+m-1}$ be the substring of length m starting at position j. Let $X_j = \sum_{i=0}^{m-1} x_{j+i} 2^i$ be the natural number represented by \mathbf{x}_j . Show how to compute the numbers $X_1, X_2, \dots, X_{n-m+1}$ in this order with only O(n+m) arithmetic operations.

_____ End of Exercise 1 _____

Exercise 7.2: Suppose you have a deterministic primality test that, given a natural number r, checks the number error-free for primality in time bounded by a polynomial in the input length $\log(r)$, say time at most $(\log(r))^c$ for some c > 0.

Given a natural number $t \geq 3$, your aim is to select a prime number **uniformly** over all prime numbers in the interval [2,t]. Describe a randomized algorithm that returns an output of the desired kind with probability at least 1/2. The algorithm should have a running time that is polynomial in $\log t$ and be Las Vegas, i.e., if it fails to solve its task it should output "FAILED". Give arguments for the correctness and prove a bound on the running time.

Hint: Use

- the bound $\pi(t) \ge t/(2 \ln t)$ on the prime number function for $t \ge 3$,
- Lemma B.3 from the lecture notes.

End of Exercise 2

Exercise 7.3: Let G = (V, E) be a directed graph with vertex set $V = \{v_1, v_2, \dots, v_n\}$ and edge set E. The graph does not have self-loops, i.e., there are no edges of the kind (v_i, v_i) . A directed cut V_1, V_2 is a partition of the vertex set, i.e., $V_1, V_2 \subseteq V$, $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$. The directed cut edge set $C \subseteq E$ induced by the cut is the set of directed edges running from V_1 to V_2 , formally $C = \{(v, w) \in E \mid v \in V_1 \text{ and } w \in V_2\}$. We construct such a directed cut with the following randomized algorithm: Every vertex is independently put into V_1 or V_2 according to the outcome of a random number generator.

```
\begin{array}{c} \mathbf{\underline{for}} \ i \leftarrow 1 \ \underline{\mathbf{to}} \ n \ \underline{\mathbf{do}} \\ \underline{\mathbf{if}} \ (rand(1,3) = 1) \\ \underline{\mathbf{then}} \\ \mathrm{put} \ v_i \ \mathrm{into} \ V_1 \\ \underline{\mathbf{else}} \\ \mathrm{put} \ v_i \ \mathrm{into} \ V_2 \\ \end{array}
```

- a) Is the running time of the algorithm deterministic or can it vary due to the randomization?
- b) What is the expected size of V_1 ? What is the expected size of V_2 ? The sizes should be expressed in terms of the size n of the set of vertices.
- c) For an edge $e \in E$, what is the probability that it has both start and end point in V_1 ?
- d) For an edge $e \in E$, what is the probability that it has its start point in V_1 and its end point in V_2 ?
- e) What is the expected size of the directed cut edge set C, induced by this partition? The sizes should be expressed in terms of the size |E| of the set of edges.

End of Exercise 3
The following exercise is mandatory :
Exercise 7.4: Show the computation of $\left[\frac{773}{1373}\right]$ (the Jacobi symbol of the two numbers) using the rules shown in the lecture notes. You may use that $\gcd(773, 1373) = 1$.

End of Exercise 4 _