Exponentiation

Properties of exponentiation

Definition 5.1

Let G be a group. An *order* of an element $g \in G$ is the smallest integer $n \ge 1$ such that $g^n = e$. We write: |g| = n.

If $g^n \neq e$ for all $n \geq 1$ then we say that g is an element of an *infinite order* and we write $|g| = \infty$.

Exercise 5.2. Recall that the multiplication table of the dihedral group D_4 is as follows:

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	I R ₉₀ R ₁₈₀ R ₂₇₀ H V	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

Find the order of every element of D_4

Exercise 5.3. Find the order of every element in the group \mathbb{Z}_6 .

Theorem 5.4

If G is a finite group and $g \in G$ then $|g| < \infty$.

Theorem 5.5

If G is a group, $g \in G$ and $n \ge 1$ is an integer such that $g^n = e$, then |g| divides n.

Theorem 5.6

If G is a group, and $a,b\in G$ are elements such that $|a|,|b|<\infty$ and ab=ba then |ab| divides $|a|\cdot |b|$.

Theorem 5.7

If G is a group, and $a \in G$ is element such that $|a| = n < \infty$ then

$$|a^k| = \frac{n}{\gcd(n, k)}$$

Exercise 5.8. Compute the order of the element $6 \in \mathbb{Z}_{10}$.