

PUMA 560

PUMA 560 is a common 6-DOF industrial arm discussed in many textbooks.

Product of Exponential Approach

- 1. Choose reference base frame $\mathcal{E}_0 = \begin{bmatrix} \vec{x}_o & \vec{y}_0 & \vec{z}_0 \end{bmatrix}$.
- 2. Put the arm in the zero configuration.
- 3. Choose O_i on \vec{h}_i .
- 4. Represent \vec{h}_i in \mathcal{E}_0 , call them h_i . Represent $\vec{p}_{i-1,i}$ in \mathcal{E}_0 , call them $p_{i-1,i}$. $i=1,\ldots,N$. For the last link, write $(\vec{p}_{NT})_0 = p_{NT}$.

5.
$$R_{i-1,i} = rot(h_i, q_i), H_{i-1,i} = \begin{bmatrix} R_{i-1,i} & p_{i-1,i} \\ 0 & 1 \end{bmatrix}, H_{0N} = H_{01}H_{12} \cdots H_{NT}.$$

Product of Exponential: PUMA 560 \vec{h}_4 \vec{h}_6 b_4 4,5,6 \boldsymbol{b}_{3} \boldsymbol{b}_2 b_1 \vec{y}_0

Product of Exponential: PUMA 560

$$h_{1} = z, h_{2} = -y, h_{3} = -y, h_{4} = z, h_{5} = -y, h_{6} = z$$

$$p_{01} = b_{1}z, p_{12} = \mathbf{0}, p_{23} = \ell_{1}x - b_{2}y$$

$$p_{34} = -\ell_{2}x + b_{3}z, p_{45} = p_{56} = \mathbf{0}, p_{6T} = b_{4}z$$

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, z = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Standard Denavit-Hartenberg Convention

- 1. Put the arm in the *any* configuration. Label joint axis i as \vec{z}_{i-1} , i = 1, ..., N. Choose $\vec{z}_N = \vec{z}_{N-1}$.
- 2. Choose O_0 arbitrarily on \vec{z}_0 . Choose (\vec{x}_0, \vec{y}_0) to form an orthonormal frame.
- 3. For i = 1, ..., N, do the following:

Choose O_i at the intersection of \vec{z}_{i-1} and \vec{z}_i . If there is no intersection, choose O_i at the intersection of the common normal and \vec{z}_i . If \vec{z}_{i-1} is parallel to \vec{z}_i , choose O_i to minimize the distance between the point of intersection of the common normal and \vec{z}_{i-1} and O_{i-1} (called d_i).

Choose \vec{x}_i to be orthogonal to \vec{z}_{i-1} and \vec{z}_i .

4. Read off the SDH parameters based on:

$$\vec{p}_{i-1,i} = d_i \vec{z}_{i-1} + a_i \vec{x}_i, \ \vec{z}_i = rot(\vec{x}_i, \alpha_i) \vec{z}_{i-1}, \ \vec{x}_i = rot(\vec{z}_{i-1}, \theta_i) \vec{x}_{i-1}.$$

5. $H_{i-1,i} = \text{Rot}(z, \theta_i) \text{Trans}(z, d_i) \text{Trans}(x, a_i) \text{Rot}(x, \alpha_i)$ = $\text{Trans}(z, d_i) \text{Rot}(z, \theta_i) \text{Trans}(x, a_i) \text{Rot}(x, \alpha_i), H_{0N} = H_{01}H_{12} \cdots H_{N-1,N}.$

Notation

$$\operatorname{Rot}(k, \theta) = \begin{bmatrix} \operatorname{rot}(k, \theta) & 0 \\ 0 & 1 \end{bmatrix}, \operatorname{Trans}(k, d) = \begin{bmatrix} I & k \cdot d \\ 0 & 1 \end{bmatrix}.$$

Note:

$$Trans(k_1,d)Rot(k_2,\theta) = \begin{bmatrix} rot(k_2,\theta) & k_1 \cdot d \\ 0 & 1 \end{bmatrix}$$

$$Rot(k_2,d)Trans(k_1,\theta) = \begin{bmatrix} rot(k_2,\theta) & rot(k_2,\theta)k_1 \cdot d \\ 0 & 1 \end{bmatrix}$$

$$Rot(k,d)Trans(k,\theta) = \begin{bmatrix} rot(k,\theta) & k \cdot d \\ 0 & 1 \end{bmatrix} = Trans(k,\theta)Rot(k,d)$$

Standard Denavit-Hartenberg PUMA 560

i	d_i	a_i	$lpha_i$	Θ_i
1	b_1	0	$\pi/2$	0
2	0	ℓ_1	0	0
3	b_2	$-\ell_2$	$-\pi/2$	0
4	b_3	0	$\pi/2$	0
5	0	0	$-\pi/2$	0
6	b_4	0	0	0

Modified Denavit-Hartenberg Convention

- 1. Choose reference base frame $\mathcal{E}_0 = \begin{bmatrix} \vec{x}_o & \vec{y}_0 & \vec{z}_0 \end{bmatrix}$.
- 2. Put the arm in the *any* configuration (usually zero configuration). Label joint axes as \vec{z}_i , i = 1, ..., N. Choose $\vec{z}_{N+1} = \vec{z}_N$
- 3. For i = 1, ..., N, do the following: Choose O_i at intersection \vec{z}_i and \vec{z}_{i+1} . If there is no intersection, choose O_i at the intersection between the common normal and \vec{z}_i . If \vec{z}_i is parallel to \vec{z}_{i+1} , O_i is arbitrary on \vec{z}_i . Convention: choose common normal to minimize the distance from its intersection with \vec{z}_i to the intersection of the previous common normal (between \vec{z}_{i-1} and \vec{z}_i) with \vec{z}_i (this is called d_i).
- 4. Choose \vec{x}_i to be orthogonal to \vec{z}_i and \vec{z}_{i+1} .
- 5. Read off the MDH parameters based on: $\vec{p}_{i-1,i} = a_{i-1}\vec{x}_{i-1} + d_i\vec{z}_i$, $\vec{z}_i = rot(\vec{x}_{i-1}, \alpha_i)\vec{z}_{i-1}$, $\vec{x}_i = rot(\vec{z}_i, \theta_i)\vec{x}_{i-1}$.
- 6. $H_{i-1,i} = \text{Rot}(x, \alpha_i) \text{Trans}(x, a_{i-1}) \text{Rot}(z, \theta_i) \text{Trans}(z, d_i), H_{0N} = H_{01} H_{12} \cdots H_{N-1,N}.$

Modified Denavit-Hartenberg PUMA 560

Modified Denavit-Hartenberg PUMA 560

i	d_i	a_{i-1}	α_i	Θ_i
1	b_1	0	0	0
2	0	0	$\pi/2$	0
3	b_2	ℓ_1	0	0
4	b_3	$-\ell_2$	$-\pi/2$	0
5	0	0	$\pi/2$	0
6	0	0	$-\pi/2$	0
7	b_4	0	0	0