Statistical Learning Theory

Omar Montasser

Lecture 3 *PAC Learning and VC Theory*

Probably Approximately Correct (PAC)

Definition. A hypothesis class H is realizably-PAC-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2, \exists m(\epsilon, \delta) \in \mathbb{N}, \forall D \text{ s.t. } \inf_{h \in H} L_D(h) = 0, \lim_{h \in H} L_D(h) = 0$

$$\mathbb{P}_{S \sim D^{m(\epsilon,\delta)}} \left\{ L_D(A(S)) \leq \epsilon \right\} \geq 1 - \delta.$$

Definition. A hypothesis class H is agnostically-PAC-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2, \exists m(\epsilon, \delta) \in \mathbb{N}, \forall D$,

$$\mathbb{P}_{S \sim D^{m(\epsilon,\delta)}} \left\{ L_D(A(S)) \leq \inf_{h \in H} L_D(h) + \epsilon \right\} \geq 1 - \delta.$$

RESEARCH CONTRIBUTIONS

Artificial Intelligence and Language Processing

A Theory of the Learnable

David Waltz Editor

Leslie Valiant

The Growth Function

- For $C = (x_1, x_2, ..., x_m) \in X^m$, define the restriction (or projection) of H onto C:
 - $H|_C = \{(h(x_1), h(x_2), ..., h(x_m)) \mid h \in H\}.$
- $\bullet \ \Gamma_H(m) = \max_{C \in X^m} |H|_C|.$
- Examples:
 - $X = \{1, ..., 100\}, H = \{\pm 1\}^X: \Gamma_H(m) = \min(2^m, 2^{100}).$
 - $X = \{1, ..., 2^{100}\}, H = \{\mathbf{1}[x \le \theta] \mid \theta \in \{1, ..., 2^{100}\}\}: \Gamma_H(m) = \min(m + 1, 2^{100}).$

Vapnik-Chervonenkis Dimension

- $C = \{x_1, ..., x_m\}$ is **shattered** by H if $|H|_C| = 2^m$, i.e., the projection contains all 2^m labelings:
 - $\forall y_1, ..., y_m \in \{\pm 1\}, \exists h \in H \text{ s.t. } \forall_{1 \le i \le m} h(x_i) = y_i.$
- The VC-dimension of *H*, denoted vc(*H*), is the largest number of points that can be shattered by *H*:
 - $\operatorname{vc}(H) = \max\{m \in \mathbb{N} : \Gamma_H(m) = 2^m\}.$
- If *H* is *infinite* and $\forall m, \Gamma_H(m) = 2^m$ then we say vc(H) is infinite.

Sauer-Shelah-Perles Lemma

Lemma. If vc(H) = d, then for all m:

$$\Gamma_H(m) \le \sum_{i=0}^d \binom{m}{i}$$

 $\Gamma_H(m) \le \sum_{i=0}^d \binom{m}{i}.$ In particular, when m > d, $\Gamma_H(m) \le (em/d)^d = O(m^d)$.

Sauer-Shelah-Perles Lemma

Lemma. If vc(H) = d, then for all m:

$$\Gamma_H(m) \leq \sum_{i=0}^d \binom{m}{i}$$

 $\Gamma_H(m) \le \sum_{i=0}^d \binom{m}{i}.$ In particular, when m > d, $\Gamma_H(m) \le (em/d)^d = O(m^d)$.

Refinement (Pajor 1985). If vc(H) = d, then for all $C \in X^m$: $|H|_C| \le |\{B \subseteq C : H \text{ shatters } B\}|.$

Sauer-Shelah-Perles Lemma

Refinement (Pajor 1985). If vc(H) = d, then for all $C \in X^m$: $|H|_C| \le |\{B \subseteq C : H \text{ shatters } B\}|$.

Proof Sketch.

- Base case when m = 1 holds.
- Induction: suppose statement holds for k < m.
- Let $C = \{x_1, ..., x_m\} \in X^m$ and $C' = \{x_2, ..., x_m\}$. Consider:

$$A = \{(y_2, ..., y_m) : (+1, y_2, ..., y_m) \in H|_C \lor (-1, y_2, ..., y_m) \in H|_C\}$$

and

$$B = \{(y_2, ..., y_m) : (+1, y_2, ..., y_m) \in H|_C \land (-1, y_2, ..., y_m) \in H|_C\}.$$

- Verify that $|H|_C| = |A| + |B|$.
- By induction, it holds that

$$|A| = |H|_{C'}| \le |\{B \subseteq C' : H \text{ shatters } B\}| = |\{B \subseteq C : x_1 \notin B \land H \text{ shatters } B\}|.$$

• Let $H' \subseteq H$ be defined as

$$H' = \{ h \in H : \exists h' \in H \text{ s.t. } (1 - h'(x_1), h'(x_2), ..., h'(x_m)) = (h(x_1), h(x_2), ..., h(x_m)) \}.$$

• Observe that $B = H'|_{C'}$. Thus, by induction,

$$|B| = |H'_{C'}| \le |\{B \subseteq C' : H' \text{ shatters } B\}| = |\{B \subseteq C' : H' \text{ shatters } B \cup \{x_1\}\}\}|$$

= $|\{B \subseteq C : x_1 \in B \land H' \text{ shatters } B\}| \le |\{B \subseteq C : x_1 \in B \land H \text{ shatters } B\}|.$

• Combining the above, we have

$$|H|_C| = |A| + |B|$$

$$\leq |\{B \subseteq C : x_1 \notin B \land H \text{ shatters } B\}| + |\{B \subseteq C : x_1 \in B \land H \text{ shatters } B\}|$$

$$= |\{B \subseteq C : H \text{ shatters } B\}|.$$

Recall

Summary so far ...

Theorem. For any hypothesis class H, any (realizable) distribution D, any $(\epsilon, \delta) \in (0,1)^2$, with sample complexity

$$m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon}\right) \text{ or } m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon^2}\right)$$

with probability $\geq 1 - \delta$ over $S \sim D^{m(\epsilon,\delta)}$:

$$\forall h \in H : L_S(h) = 0 \Longrightarrow L_D(h) \le \epsilon \text{ or } \forall h \in H : |L_D(h) - L_S(h)| \le \epsilon.$$

Sauer-Shelah-Perles Lemma. If vc(H) = d, then for all m:

$$\Gamma_H(m) \le \sum_{i=0}^d \binom{m}{i} \le (em/d)^d = O(m^d).$$
When $m > d$

Corollaries. Any hypothesis class *H* with finite VC dimension is

• realizably-PAC-learnable using ERM with sample complexity

$$m(\epsilon, \delta) = O\left(\frac{\operatorname{vc}(H)\ln(1/\epsilon) + \ln(1/\delta)}{\epsilon}\right).$$

• agnostically-PAC-learnable using ERM with sample complexity

$$m(\epsilon, \delta) = O\left(\frac{\operatorname{vc}(H) + \ln(1/\delta)}{\epsilon^2}\right).$$

Questions ...

- Are there classes *H* with *infinite* VC dimension that are PAC-learnable?
- Can we learn with *fewer* samples than VC dimension?
- Are there any hypothesis classes that are *not* PAC-learnable?

Plan

Theorem. For any hypothesis class H, any (realizable) distribution D, any $(\epsilon, \delta) \in (0,1)^2$, with sample complexity $m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon}\right) \text{ or } m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon^2}\right)$ with probability $\geq 1 - \delta$ over $S \sim D^{m(\epsilon, \delta)}$:

 $\forall h \in H : L_S(h) = 0 \Longrightarrow L_D(h) \le \epsilon \text{ or } \forall h \in H : |L_D(h) - L_S(h)| \le \epsilon.$

Questions:

- Are there classes *H* with *infinite* VC dimension that are PAC-learnable?
- Can we learn with fewer samples than VC dimension?
- Are there any hypothesis classes that are *not* PAC-learnable?
- What about computation?

$$m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon}\right) \text{ or } m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon^2}\right)$$

with probability $\geq 1 - \delta$ over $S \sim D^{m(\epsilon,\delta)}$:

$$\forall h \in H : L_S(h) = 0 \Longrightarrow L_D(h) \le \epsilon \text{ or } \forall h \in H : |L_D(h) - L_S(h)| \le \epsilon.$$

- Given a set $S = \{(x_i, y_i)\}_{i=1}^m$ of m examples, define the event $A_S = \{\exists h \in H : L_D(h) > \epsilon \land L_S(h) = 0\}.$
 - Our goal is to show that $\mathbb{P}_{S \sim D^m}[A_S] \leq \delta$.
- Now, consider drawing two sets S, S' of m examples each. Define the event $B_{S,S'} = \{ \exists h \in H : L_{S'}(h) > \epsilon/2 \land L_{S}(h) = 0 \}.$
- $B_{S,S'} = \{ \exists h \in H : L_{S'}(h) > \epsilon/2 \land L_{S}(h) = 0 \}.$ Claim: $\mathbb{P}_{S,S' \sim D^m}[B_{S,S'}] \ge \frac{1}{2} \mathbb{P}_{S \sim D^m}[A_S].$ Why?
 - $\mathbb{P}_{S,S'\sim D^m}[B_{S,S'}] = \mathbb{P}_{S\sim D^m}[A_S]\mathbb{P}_{S,S'\sim D^m}[B_{S,S'}|A_S]$, and $\mathbb{P}_{S,S'\sim D^m}[B_{S,S'}|A_S] \geq \frac{1}{2}$ by a Chernoff bound as long as $m>8/\epsilon$.
- Thus, it suffices to show that $\mathbb{P}_{S,S'\sim D^m}[B_{S,S'}] \leq \delta/2$.

$$m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon}\right) \text{ or } m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon^2}\right)$$

with probability $\geq 1 - \delta$ over $S \sim D^{m(\epsilon,\delta)}$:

$$\forall h \in H : L_S(h) = 0 \Longrightarrow L_D(h) \le \epsilon \text{ or } \forall h \in H : |L_D(h) - L_S(h)| \le \epsilon.$$

- Now consider a 3rd experiment. Draw a set S'' of 2m examples, then randomly partition S'' into two sets S, S' each of size m.
- Define event $C_{S'',S,S'} = \{ \exists h \in H : L_{S'}(h) > \epsilon/2 \land L_{S}(h) = 0 \}.$
- Claim: $\mathbb{P}_{S'' \sim D^m, S, S'}[C_{S'', S, S'}] = \mathbb{P}_{S, S' \sim D^m}[B_{S, S'}].$
- Thus, it suffices to show that $\mathbb{P}_{S'' \sim D^m, S, S'}[C_{S'', S, S'}] \leq \delta/2$.
- We will actually prove that for any (fixed) S'', $\mathbb{P}_{S,S'}[C_{S'',S,S'}] \leq \delta/2$.

$$m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon}\right) \text{ or } m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon^2}\right)$$

with probability $\geq 1 - \delta$ over $S \sim D^{m(\epsilon,\delta)}$

$$\forall h \in H: L_S(h) = 0 \Longrightarrow L_D(h) \leq \epsilon \text{ or } \forall h \in H: |L_D(h) - L_S(h)| \leq \epsilon.$$

- To show that for any (fixed) S'' of 2m examples, $\mathbb{P}_{S,S'}[C_{S'',S,S'}] \leq \delta/2$.
 - **Key idea**: Once S'' is fixed, we only need to consider the projection/restriction of H onto the x's that appear in S''. In other words, there are at most $\Gamma_H(2m)$ labelings that we need to consider.
 - For each such labeling, we will show that the chance of being perfect on S but error $\geq \epsilon/2$ on S' is low. Then, we apply a union bound.
- Fix a labeling $h \in H|_{S''}$. We can assume that h makes at least $\epsilon m/2$ mistakes on S'', otherwise the probability of the bad event is zero.
- When we randomly split S'' into S and S', what's the chance that all these mistakes fall into S'?

$$m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon}\right) \text{ or } m(\epsilon, \delta) = O\left(\frac{\ln\left(\Gamma_H(2m)\right) + \ln(1/\delta)}{\epsilon^2}\right)$$

with probability $\geq 1 - \delta$ over $S \sim D^{m(\epsilon,\delta)}$:

$$\forall h \in H : L_S(h) = 0 \Longrightarrow L_D(h) \le \epsilon \text{ or } \forall h \in H : |L_D(h) - L_S(h)| \le \epsilon.$$

- To show that for any (fixed) S'' of 2m examples, $\mathbb{P}_{S,S'}[C_{S'',S,S'}] \leq \delta/2$.
- h makes at least $\epsilon m/2$ mistakes on S''. When we randomly split S'' into S and S', what's the chance that all these mistakes fall into S'?
 - Consider partitioning S'' by randomly pairing the points together $(a_1, b_1), ..., (a_m, b_m)$. Then, for each pair (a_i, b_i) , flip a coin: if heads then a_i goes to S and b_i goes to S', if tails then a_i goes to S' and b_i goes to S.
 - Observe that if there is any pair (a_i, b_i) where h makes a mistake on both then the chance is zero. Otherwise, the probability that all mistakes fall in S' is at $\max\left(\frac{1}{2}\right)^{\epsilon m/2}$.
- By a union bound over all labelings in $H|_{S''}$, $\mathbb{P}_{S,S'}[C_{S'',S,S'}] \leq \Gamma_H(2m)2^{-\epsilon m/2}$.
- To conclude the proof, choose m large enough so that $\Gamma_H(2m)2^{-\epsilon m/2} \leq \delta/2$.

Statistical No Free Lunch

Theorem. For any hypothesis class H, any learning rule A, and any $\epsilon < 1/4$, there exists a (realizable) distribution D, such that if

$$m < \frac{\operatorname{vc}(H) - 1}{8\epsilon},$$

then

$$\mathbb{E}_{S \sim D^m} \left[L_D(A(S)) \right] \ge \epsilon.$$

Proof Sketch.

- Pick d = vc(H) shattered points.
- Define a marginal distribution P with probability mass $1-4\epsilon$ on one point, and mass $4\epsilon/(d-1)$ on the remaining points.
- Pick a random labeling from the 2^d possible target functions. Then,

$$\mathbb{E}_{S \sim D^m} \left[L_D(A(S)) \right] = \mathbb{P} \{ \text{mistake on test point} \}$$

$$\geq \frac{1}{2} \mathbb{P} \{ \text{test point not in } S \}$$

$$\geq \frac{1}{2} 4\epsilon \left(1 - \frac{4\epsilon}{d-1} \right)^m \geq 2\epsilon \left(1 - \frac{m4\epsilon}{d-1} \right) \geq 2\epsilon \left(1 - \frac{1}{2} \right) = \epsilon.$$

Fundamental Theorem of Statistical Learning

Theorem. For any hypothesis class *H* with finite VC dimension:

• *H* is (realizably)-PAC-learnable with sample complexity

$$m(\epsilon, \delta) = \Theta\left(\frac{\text{vc}(H) + \ln(1/\delta)}{\epsilon}\right)$$
. ERM incurs a multiplicative $\log(1/\epsilon)$.

• *H* is (agnostically)-PAC-learnable with sample complexity

$$m(\epsilon, \delta) = \Theta\left(\frac{\operatorname{vc}(H) + \ln(1/\delta)}{\epsilon^2}\right).$$

Achieved by ERM.

• *H* satisfies the uniform convergence property with sample complexity

$$m(\epsilon, \delta) = \Theta\left(\frac{\text{vc}(H) + \ln(1/\delta)}{\epsilon^2}\right)$$

Key Takeaways / Implications

- What is learnable? VC classes.
- How to learn? ERM.
- Tight quantitative understanding of sample complexity.

Leslie Valiant

Question (Harvard, 1984): What is PAC-Larnable?

Question (Harvard, 1984): What is PAC-Larnable?

Answer (Moscow, 1971): *H* is learnable iff it has finite VC dimension.

Alexey Chervonenkis Vladimir Vapnik

Question (Harvard, 1984): What is PAC-Larnable?

1986

Answer (Moscow, 1971): *H* is learnable iff it has finite VC dimension.

Alexey Chervonenkis Vladimir Vapnik

Question (Harvard, 1984): What is PAC-Larnable?

Answer (Moscow, 1971): *H* is learnable iff it has finite VC dimension.

Alexey Chervonenkis Vladimir Vapnik

Valiant's actual question: What is efficiently PAC-Larnable?