Introduction to Reinforcement Learning Model-free

https://github.com/racousin/rl_introduction

Raphael Cousin

March 17, 2021

I.1)Introduction

- Supervised learning → maps an input to an output based on example input-output pairs.
- Unsupervised learning \rightarrow models the probability density of inputs (using latent variables).
- Reinforcement learning (RL) \rightarrow maps actions to take in an environment to maximize long term reward.

Raphael Cousin March 17, 2021 2 / 33

I.2)Introduction

In RL problems:

- Unknown "correct" actions \rightarrow no explicit supervision for a learning algorithm to try to mimic.
- Provide our algorithms only a reward function → indicates to the learning agent when it is doing well, and when it is doing poorly.

Raphael Cousin March 17, 2021 3/33

I.3)Introduction

Applications: Neural Architecture Search, Autonomous vehicle, robot legged locomotion, cell-phone network routing, marketing strategy selection, factory control, efficient web-page indexing, video games.

Raphael Cousin March 17, 2021 4 / 33

I.4) Markov Decision Process

- S set of all valid states
- A set of all valid actions
- The transition model P $P_{ss'}^a = P(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} P(s',r|s,a)$
- The reward function R $R(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} P(s',r|s,a)$
- ρ_0 starting state distribution

Raphael Cousin March 17, 2021 5 / 33

I.5)Example: MDP long term reward

Raphael Cousin March 17, 2021 6 / 33

I.6) Policy and trajectory

- Policy (agent brain): rule used to decide what actions to take $a_t \sim \pi(\cdot|s_t) \to \mathbb{P}(a_t|s_t)$
- Trajectories: sequence of states and actions $\tau = (s_0, a_0, s_1, a_1, ...)$
- States follow:

$$s_0 \sim \rho_0(\cdot)$$

$$s_{t+1} \sim P(\cdot|s_t, a_t, s_{t-1}, a_{t-1}, ..., s_0, a_0) = P(\cdot|s_t, a_t)$$

Raphael Cousin March 17, 2021 7 / 33

I.7)Reward and Return

The future reward, also known as return, is a total sum of rewards going forward.

• Finite-horizon undiscounted return:

$$G_t = \sum_{k=0}^{T} R_{t+k+1}.$$

• Infinite-horizon discounted return:

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

With $\gamma \in]0,1[$

Raphael Cousin March 17, 2021 8/33

I.8) The MDP Objective

- \bullet The optimization problem:
 - $\pi^* = \arg\max_{\pi} J(\pi)$
- With the expected return:

$$J(\pi) = E_{\tau \sim \pi}[G(\tau)] = \int_{\tau} \mathbb{P}(\tau|\pi)G(\tau)$$

• We know the probability of a T -step trajectory is:

$$\mathbb{P}(\tau|\pi) = \rho_0(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t) \pi(a_t|s_t)$$

Raphael Cousin March 17, 2021 9 / 33

I.9) Value Functions

- Value Function, \rightarrow expected return in state s, according to π : $V^{\pi}(s) = E_{\tau \sim \pi}[G_t | s_t = s]$
- The Optimal Value Function \rightarrow expected return in state s, according to optimal policy:

$$V^*(s) = \max_{\pi} E_{\tau \sim \pi}[G_t | s_t = s] = E_{\pi^*}[G_t | s_t = s]$$

Raphael Cousin March 17, 2021 10 / 33

I.10) Action Value Functions

• The Action-Value Function \rightarrow expected return taking action a in state s, and then according π :

$$Q^{\pi}(s,a) = E_{\tau \sim \pi}[G_t \mid s_t = s, a_t = a]$$

• The Optimal Action-Value Function → expected return taking action a in state s, and then according to optimal policy:

$$Q^*(s, a) = \max_{\pi} E_{\tau \sim \pi} [G_t | s_t = s, a_t = a] = E_{\pi^*} [G_t | s_t = s, a_t = a]$$

Raphael Cousin March 17, 2021 11 / 33

I.11)Bellman Equations

• Idea: The value of your starting point is the reward you expect to get from being there, plus the value of wherever you land next.

$$\begin{aligned} V(s) &= \mathbb{E}[G_t | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s] \\ Q(s, a) &= \mathbb{E}[R_{t+1} + \gamma \mathbb{E}_{a \sim \pi} Q(S_{t+1}, a) \mid S_t = s, A_t = a] \end{aligned}$$

Raphael Cousin March 17, 2021 12 / 33

I.12)Bellman Equations development

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s, a)$$

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{\pi}(s')$$

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{\pi}(s') \right)$$

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} \sum_{s' \in \mathcal{A}} \pi(a'|s') Q_{\pi}(s', a')$$

Raphael Cousin March 17, 2021 13 / 33

I.13) Bellman Equations Optimality

Bellman equations for the optimal value functions

$$V_{*}(s) = \max_{a \in \mathcal{A}} Q_{*}(s, a)$$

$$Q_{*}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{*}(s')$$

$$V_{*}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{*}(s') \right)$$

$$Q_{*}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{*}(s', a')$$

Raphael Cousin March 17, 2021 14 / 33

I.14) The MDP Solution

Dynamic Programming allows to resolve the MDP optimization problem ($\pi^* = \arg \max_{\pi} E_{\tau \sim \pi}[G(\tau)]$). It is an iterative process:

- Policy initialization
- Policy evaluation
- Policy improvement

Raphael Cousin March 17, 2021 15 / 33

I.15) Policy evaluation

Policy Evaluation: compute the state-value V_{π} for a given policy π ($\forall s$):

$$V_{\pi}(s) = \mathbb{E}_{\pi}[r + \gamma V_{\pi}(s')|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a)(r + \gamma V_{\pi}(s'))$$

Raphael Cousin March 17, 2021 16/33

I.16) Policy Improvement

Policy Improvement: generates a better policy $\pi' \geq \pi$ by acting greedily. Compute Q from V ($\forall a, s$):

$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$= \sum_{s', r} P(s', r | s, a) (r + \gamma V_{\pi}(s'))$$

Update greedily: $\pi'(s) = \arg \max_{a \in \mathcal{A}} Q_{\pi}(s, a) \ (\forall s)$

Raphael Cousin March 17, 2021 17 / 33

I.17) Dynamic Programming

Policy Iteration: iterative procedure to improve the policy when combining policy evaluation and improvement.

$$\pi_0 \xrightarrow{\text{evaluation}} V_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluation}} \dots \xrightarrow{\text{improve}} \pi_* \xrightarrow{\text{evaluation}} V_* \quad (1)$$

This policy iteration process works and always converges to the optimality.

Raphael Cousin March 17, 2021 18 / 33

I.18) Bestiarry of RL Algorithms

To simplify:

• Model free: large data + low complexity

• Model based: less data + high complexity

Raphael Cousin March 17, 2021 19 / 33

II.1)Model-Free

The objective is the same as MDP:

•
$$J(\pi) = \int_{\tau} \mathbb{P}(\tau|\pi)G(\tau) = E_{\tau \sim \pi}[G(\tau)]$$

• The optimization problem: $\pi^* = \arg \max_{\pi} J(\pi)$

But we don't know the transition model P. The constraint is therefore to interact intelligently with the environment to obtain the information needed to solve the problem.

- Q-learning: learn the action value function Q $(\pi'(s) = \arg \max_{a \in \mathcal{A}} Q_{\pi}(s, a))$
- Policy Optimization: learn directly the policy π

Raphael Cousin March 17, 2021 20 / 33

II.2) Exploration-Exploitation

Knowledge of the environment comes from interaction. There are trade-offs to be made between using what we know and further exploration.

Naive solution: force exploration with random action (control by an ϵ factor)

Raphael Cousin March 17, 2021 21 / 33

II.3) Definition

- On-policy: Use the deterministic outcomes or samples from the target policy to train the algorithm.
- Off-policy: Training on a distribution of transitions or episodes produced by a different behavior policy rather than that produced by the target policy.

Raphael Cousin March 17, 2021 22 / 33

II.4) Monte-Carlo

- To evaluate $V_{\pi}(s) = E_{\tau \sim \pi}[G_t | s_t = s]$
- Generate an episode with the policy π $S_1, A_1, R_2, \ldots, S_T$ to compute $G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$.
- The empirical value function is : $V_{\pi}(s) = \frac{\sum_{t=1}^{T} \mathbb{1}[S_t = s]G_t}{\sum_{t=1}^{T} \mathbb{1}[S_t = s]}$
- As, well, the empirical action-value function is:
- $Q_{\pi}(s, a) = \frac{\sum_{t=1}^{T} \mathbb{1}[S_t = s, A_t = a]G_t}{\sum_{t=1}^{T} \mathbb{1}[S_t = s, A_t = a]}$

Raphael Cousin March 17, 2021 23 / 33

II.5) Monte-Carlo Algorithm

Initialize Q $Q(s, a) \forall s, a$.

- Generate an episode with the policy π (extract from Q ϵ -greedy)
- 2 Evaluate Q using the episode:

$$q_{\pi}(s, a) = \frac{\sum_{t=1}^{T} \left(\mathbb{1}[S_{t} = s, A_{t} = a] \sum_{k=0}^{T-t-1} \gamma^{k} R_{t+k+1} \right)}{\sum_{t=1}^{T} \mathbb{1}[S_{t} = s, A_{t} = a]}$$

- **3** Improve the policy greedily: $\pi(s) = \arg \max_{a \in \mathcal{A}} Q(s, a)$
- 4 Iterate

Raphael Cousin March 17, 2021 24 / 33

II.6) Temporal difference/bootstrapping

- Remember $V(S_t) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})|S_t = s]$
- So $R_{t+1} + \gamma V(S_{t+1})$ is an unbiased estimate for $V(S_t)$
- As well $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$ is an unbiased estimate for $Q(S_t, A_t)$
- $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target.
- α improvement:

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

This observation motivates the following algorithm.

Raphael Cousin March 17, 2021 25 / 33

II.7) SARSA Algorithm

Initialize Q function $Q(s, a) \forall s, a$ $S_t = \text{initial state, act with } \pi \text{ to get } A_t, R_{t+1}, S_{t+1}$

- $\bullet \text{ Act with } \pi \text{ to get } A_{t+1}, R_{t+2}, S_{t+2}$
- ② Evaluate Q using the observation step: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t))$
- **3** Improve the policy greedily: $\pi(s) = \arg \max_{a \in \mathcal{A}} Q(s, a)$
- $A_t = A_{t+1}, R_{t+1} = R_{t+2}, S_{t+1} = S_{t+2}$. Iterate

Raphael Cousin March 17, 2021 26 / 33

II.8) Q-learning

• Remember

$$Q_{\pi^*}(S_t, A_t) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} Q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

- So $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$ is an unbiased estimate for $Q(S_t, A_t)$
- $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$ is called the Q target.
- α improvement:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t))$$

This observation motivates the following algorithm.

Raphael Cousin March 17, 2021 27 / 33

II.9) Q-learning Algorithm

Initialize Q function $Q(s, a) \forall s, a$ $S_t = \text{initial state}$

- **1** Act with π to get A_t, R_{t+1}, S_{t+1}
- ② Evaluate Q using the observation step: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t))$
- **3** Improve the policy greedily: $\pi(s) = \arg \max_{a \in \mathcal{A}} Q(s, a)$
- Iterate

Raphael Cousin March 17, 2021 28 / 33

II.10) Policy Optimization

- Parametrization of policy, π_{θ} .
- We aim to maximize the expected return $J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}}[G(\tau)]$.
- Gradient ascent: $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta})|_{\theta_{\theta}}$.
- We can proof that:

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} [\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) G(\tau)]$$
 https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Raphael Cousin March 17, 2021 29 / 33

II.11) Monte Carlo Policy gradient estimation

- Set of trajectories $\mathcal{D} = \{\tau_i\}_{i=1,\dots,N}$ from the policy π_{θ}
- $\hat{\nabla} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) G_t$,

Raphael Cousin March 17, 2021 30 / 33

II.12) Reinforce/VPG algorithm

Initialize policy π_{θ}

- Generate episodes $\mathcal{D} = \{\tau_i\}_{i=1,\dots,N}$ with the policy π_{θ}
- 2 Update policy (apply gradient ascent) $\theta \leftarrow \theta + \alpha \hat{\nabla}$
- Iterate

Raphael Cousin March 17, 2021 31 / 33

References

Course:

```
http://incompleteideas.net/book/the-book-2nd.html
https://lilianweng.github.io/lil-log/2018/02/19/
a-long-peek-into-reinforcement-learning.html
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/
https://github.com/kengz/awesome-deep-rl
Framework:
https://spinningup.openai.com/en/latest/
https://gym.openai.com/envs/#atari
```

https://github.com/deepmind/bsuite

Raphael Cousin March 17, 2021 32 / 33

What we haven't seen

- AlphaGo Monte-Carlo-Tree-search https://medium.com/applied-data-science/ how-to-build-your-own-alphazero-ai-using-python-and-keras
- MBRL https://arxiv.org/abs/1907.02057
- Bandit https://arxiv.org/abs/1802.09127
- Intrinsic reward https://pathak22.github.io/noreward-rl/

Raphael Cousin March 17, 2021 33 / 33