

USOS DE UNSUPERVISED MACHINE LEARNIG

- Agrupamiento (encontrar las fracciones del espacio de característico naturales)
- Reducción de dimensionalidad (transformación del espacio de características)
- Detección de Anomalías

K - MEANS

- Hiperparámetros: Número de K y Métricas
- Entrenamiento

$$O(I \cdot n \cdot k \cdot d)$$

• Predicción:

$$O(k \cdot d)$$

HIERARCHICAL

HIERARCHICAL

• Hiperparámetros:

 $n_clusters$ (número de clusters deseado)

affinity (métrica utilizada para calcular la distancia)

linkage (criterio para fusionar clusters: 'ward', 'complete', 'average', 'single')

Entrenamiento

$$O(n^3)$$
 $O(n^2 \cdot \log(n))$

• Predicción:

$$O(n \cdot d)$$

DBSCAN

DBSCAN

- Hiperparámetros:
 - eps (distancia máxima entre dos puntos $min_samples$ (número mínimo de puntos necesarios para formar un cluster) metric (métrica de distancia)
- Entrenamiento

$$O(n^2)$$
 $O(n \cdot \log(n))$

• Predicción:

$$O(n \cdot d)$$

GAUSSIAN MIXTURE MODEL

EXPECTATION-MAXIMIZATION PARA CALIBRAR:

$$p(x) = \sum_{i=1}^{K} \phi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

EXPECTATION STEP:

$$\hat{\gamma}_{ik} = \frac{\hat{\phi}_k \mathcal{N}(x_i | \hat{\mu}_k, \hat{\sigma}_k)}{\sum_{j=1}^K \hat{\phi}_j \mathcal{N}(x_i | \hat{\mu}_j, \hat{\sigma}_j)}$$

MAXIMIZATION STEP:

Peso:

$$\hat{\phi}_k = \sum_{i=1}^N \frac{\hat{\gamma}_{ik}}{N}$$

Media:

$$\hat{\mu}_k = \frac{\sum_{i=1}^N \hat{\gamma}_{ik} x_i}{\sum_{i=1}^N \hat{\gamma}_{ik}}$$

Varianza:

$$\hat{\sigma}_{k}^{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{ik} (x_{i} - \hat{\mu}_{k})^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{ik}}$$