

Astronómico Nacional

Computational Astrophysics

Neural Networks. Classification

Eduard Larrañaga Observatorio Astronómico Nacional Universidad Nacional de Colombia

Neural Networks

Layers

Neural Network

Loss Function

Loss Function

The **loss (or cost) function** measures the difference between predictions of the model and known targets. It is the function that is minimized using the optimizer.

Loss Function

Regression losses

- MeanSquaredError class
- MeanAbsoluteError class
- MeanAbsolutePercentageError class
- MeanSquaredLogarithmicError class
- CosineSimilarity class
- mean_squared_error function
- mean_absolute_error function
- mean_absolute_percentage_error function
- mean_squared_logarithmic_error function
- cosine_similarity function
- Huber class
- huber function
- LogCosh class
- log_cosh function

Probabilistic losses

- BinaryCrossentropy class
- CategoricalCrossentropy class
- SparseCategoricalCrossentropy class
- Poisson class
- binary_crossentropy function
- categorical_crossentropy function
- sparse_categorical_crossentropy function
- poisson function
- KLDivergence class
- kl_divergence function

The **optimizer** defines how to adjust the parameters of the neural network.

The simplest method is based on the gradient descent,

$$w_{t+1} = w_t - \alpha \frac{\partial f_C}{\partial w}$$

 α : learning rate

The **Momentum** method incorporates the average of past gradients to accelerate the convergence,

$$w_{t+1} = w_t - \alpha m_t$$

$$m_t = (1 - \beta) \frac{\partial f_C}{\partial w} + \beta m_{t-1}$$

 m_t : aggregate of gradients at time t

 β : average parameter (~ 0.9)

The Root Mean Square Propagation (RMPS) method takes an exponential moving average of the gradients,

$$w_{t+1} = w_t - \frac{\alpha_t}{(v_t + \epsilon)^{1/2}} \frac{\partial f_C}{\partial w}$$

$$v_t = \beta v_{t-1} + (1 - \beta) \left(\frac{\partial f_C}{\partial w}\right)^2$$
: weighted sum of past gradients

 ϵ : small positive parameter ($\sim 10^{-8}$)

- SGD (Stochastic Gradient Descent)
- RMSprop
- Adam
- Adadelta
- Adagrad
- Adamax
- Nadam
- Ftrl

ADAM

ADAptive Moment Estimation [see arXiV:1412.6980]

Is one of the simpler optimizers. Uses a combination of **gradient descent** and **momentum methods**.

According to its documentation, this optimizer is efficient, requires little memory and it is useful for problems with a large number of data or parameters.

Only one argument: learning_rate (the default is 0.001). Measures how much will adjust the parameters in each epoch.

@astronomia OAN

AstronomiaOAN

@astronomia OAN