Searching for dark matter and exotic physics with atomic clocks and GPS

Benjamin M. Roberts¹, G. Blewitt¹, C. Dailey¹, M. Pospelov^{2,3}, A. Rollings¹, J. Sherman⁴, W. Williams¹, and A. Derevianko¹

¹University of Nevada, Reno; ²Perimeter Institute; ³University of Victoria, BC; ⁴NIST Boulder

Nature Comm. 8, 1195 (2017), arXiv:1704.06844 Phys. Review D (2018), arXiv:1803.10264 arXiv:1803.00617

> NASA Fundamental Physics Workshop, La Jolla, CA, 9–11 April 2018

1704.06844 1803.10264 1803.00617

Outline

Ultralight DM + TDs

GI 5

first results

Bayesian searci

Asymmetry & ann. modulatio

Outline:

- Ultra light dark matter; "clumps", e.g. Topological defects
- Transient signals: Global networks of precision devices
- GPS: 50,000km aperture sensor array
 - ullet \sim 30 satellite clocks, > 15 years of archived data
- Initial search: domain walls
 - limits: orders of magnitude improvement for certain models
- Looking forward: Bayesian search technique + broader models
- Noise asymmetry & annual modulation signatures

1704.06844 1803.10264 1803.00617

Outline

Ultralight DM TDs

GPS

Initial search first results

Bayesian search

Asymmetry & ann. modulation

Dark Matter: What is it?

- ullet \sim 25% of Universe energy budget (cf \sim 5% for "normal" matter)
- We don't know what it is but we have narrowed it down to a small 90 orders-of-magnitude window

Rough mass-range for various models:

• MACHOs: $10^{58} - 10^{68} \text{ eV}$

• WIMPs: $10^6 - 10^{12} \text{ eV}$

• I-WIMPS: $1 - 10^6 \text{ eV}$

• Axions: $10^{-10} - 10^{-4} \text{ eV}$

• Ultralight Q fields: $10^{-24} - 1 \text{ eV}$

(context: $m_{\rm Earth} \sim 10^{60} \, {\rm eV}$ $m_{\rm electron} \sim 10^6 \, {\rm eV}$)

ullet Even asserting that DM is a fundamental particle (i.e. ignore MACHOs) \Longrightarrow 36 orders of magnitude range

1704.06844 1803.10264 1803.00617

Outline

Ultralight DM + TDs

GP:

first results

Bayesian searci

Asymmetry & ann. modulation

Ultralight Dark Matter:

WIMPs

- long-time "favourite" DM candidate
- ullet Masses ~ 10 1000 GeV
- Many null WIMP results
- Increased interest in other forms of DM

Ultralight fields (e.g., axions)

- $\bullet \ \ \text{Masses} \sim 10^{-24} 1 \, \text{eV}$
- Oscillating field: $\phi = a\cos(m_a t)$ [T. Kalaydzhyan: next talk]
- Stable topological defects: monopoles, strings, walls
 - Also: Q-balls, solitons, "clumps"
- Peccei & Quinn '77, Weinberg '78, Dine & Fischler '82,...

Ultralight DM + TDs

Topological Defect DM

Topological Defects

- monopoles, strings, walls,
- Defect width: $d \sim 1/m_{\phi}$
- Earth-scale object $\sim 10^{-14} \, \mathrm{eV}$

Inside: $\phi^2 \to A^2$, Outside: $\phi^2 \to 0$

Dark matter: Gas of defects

- DM: galactic speeds: $v_g \sim 10^{-3}c$
- A^2 , d, $T_{\rm b/w \, collisions}$ \Longrightarrow

$$A^2 = \rho_{\rm DM} \, v_{\rm g} \, d \, \mathcal{T},$$

 Sikivie '82, Preskil '83, Vilekin '85, Coleman '85, Lee '89, ...

1704.06844 1803.10264 1803.00617

Outline

Ultralight DM + TDs

GPS

Initial search first results

Bayesian search

Asymmetry & ann. modulation

Shift in atomic clock frequencies

DM may interact with: Photons, fermions
 ⇒ shifts in energy levels
 ⇒ shifts in clock frequencies

$$\frac{\delta\omega(r,t)}{\omega_0} = \phi^2(r,t) \sum_X K_X \Gamma_X$$

 K_X sensitivity: Flambaum, Dzuba, Can. J. Phys. 87, 25 ('09).

Monitor Atomic Clocks

• Derevianko, Pospelov, Nat. Phys. 10, 933 (2014).

1704.06844 1803.10264 1803.00617

Outline

ralight DM s

first results

Bayesian search

Asymmetry & ann. modulation

GPS: 50,000 km DM observatory

- ullet 32 satellite clocks (Rb/Cs), \sim 16 years of high-quality data
- Also several H-maser ground-based clocks.
- Data from JPL: (sideshow.jpl.nasa.gov/pub/jpligsac/)
 - 30s sampled data; 0.01-0.1 ns precision
- ullet Correlated, directional signal, with $v_g \sim 300\,\mathrm{km/s}$

- Derevianko, Pospelov, Nat. Phys. 10, 933 (2014).
- & GNOME: Pospelov, Pustelny, Ledbetter, Kimball, Gawlik, Budker, PRL110, 21803 ('13).

1704.06844 1803.10264 1803.00617

0....

Ultralight DM TDs

Initial search/ first results

Bayesian search

Asymmetry & ann. modulation

DM Walls: Initial search/limits

• Thin wall [easiest case]: brief (< 30 s) frequency excursion

- $\vec{\mathbf{v}}$ encoded in time-delay and signal ordering: $\Delta t \sim$ minutes
- BMR, Blewitt, Dailey, Pospelov, Rollings, Sherman, Williams, Derevianko, Nature Comm. 8, 1195 (2017). [1704.06844]

1704.06844 1803.10264 1803.00617

0....

Ultralight DM TDs

Initial search/ first results

Bayesian search

Asymmetry & ann. modulation

Results: Limits - Λ_{α} (photon)

Sr: Wcislo, Morzynski, Bober, Cygan, Lisak, Ciurylo, Zawada, Nat. Astron. 1, 9 (2016). Astro: Olive, Pospelov, Phys. Rev. D. 77, 43524 (2008).

 BMR, Blewitt, Dailey, Pospelov, Rollings, Sherman, Williams, Derevianko, Nature Comm. 8, 1195 (2017). [1704.06844]

1704.06844 1803.10264 1803.00617

Outline

Iltralight DM Ds

Initial search/ first results

Bayesian searcl

Asymmetry & ann. modulation

Results: Limits - fermion masses

Combine Rb, Cs, and Sr (optical)

• Three different combo's of three couplings

Sr: Wcislo, Morzynski, Bober, Cygan, Lisak, Ciurylo, Zawada, Nat. Astron. 1, 9 (2016). Astro: Olive, Pospelov, Phys. Rev. D. 77, 43524 (2008).

 BMR, Blewitt, Dailey, Pospelov, Rollings, Sherman, Williams, Derevianko, Nature Comm. 8, 1195 (2017). [1704.06844] 1704.06844 1803.10264 1803.00617

Outline

alight DM -

GPS

first results

Bayesian search

Asymmetry & ann. modulation

How to improve upon this?

- There may be events "hiding" below the noise.
- Other geometries: monopoles, strings, thicker walls

Bayesian Analysis

- Marginalise (integrate) all parameters (In-built Occam's Razor)
 - Time, velocity, object size, impact parameter
- Form odds ratios

• Events as small as:

$$s\approx\sigma/\sqrt{N}\approx0.001\,\mathrm{ns}$$

(for the best GPS clocks)

1704.06844 1803.10264 1803.00617

Outline

Ultralight DM TDs

GPS

Initial search first results

Bayesian search

Asymmetry & ann. modulation

Bayes: True + false positive rates

BMR, Blewitt, Dailey, Derevianko, Phys.Rev.D (2018). [1803.10264]

1704.06844 1803.10264 1803.00617

0....

Ultralight D

CDC

Initial search first results

Bayesian search

Asymmetry & ann. modulation

Bayes: Projected sensitivity

Large time between events (low number density), large objects:

BMR, Blewitt, Dailey, Derevianko, Phys.Rev.D (2018). [1803.10264]

1704.06844 1803.10264 1803.00617

Outline

Iltralight DM

GPS

first results

Bayesian search

Asymmetry & ann. modulation

Asymmetry + an. modulation

Small objects, large event rate: asymmetry in noise distribution

- Yearly change in event rate:
- Sun + Earth velocities add
- $R(t) = R_0 + R_m \cos(\omega t + \phi_{\text{June}2})$

BMR, Derevianko, arXiv:1803.00617

1704.06844 1803.10264 1803.00617

0....

Ultralight DM -

GPS

Initial search first results

Bayesian search

Asymmetry & ann. modulation

Asymmetry + an. modulation

• BMR, Derevianko, arXiv:1803.00617

Conclusion:

GPS: 50,000km aperture DM observatory

- Topological defect dark matter/transient exotic physics
- GPS: 50,000km aperture sensor array
 - ullet \sim 30 satellite clocks, many earth clocks, > 15 years of clock data
- DM walls: Orders of magnitude improvement for certain models
- Looking forward: Bayesian search technique
 - ullet Monopoles, strings, signals below $\sigma_{
 m clock}$
- General technique: archived, time-stamped data
- Nature Comm. 8, 1195 (2017). BMR¹, G. Blewitt¹, C. Dailey¹, M. Pospelov^{2,3}, A. Rollings¹, J. Sherman⁴, W. Williams¹, A. Derevianko¹ [1704.06844].
- Phys. Rev. D (2018). BMR, G. Blewitt, C. Dailey, A. Derevianko [1803.10264].
- BMR, A. Derevianko [1803.00617].

¹University of Nevada, Reno; ²Perimeter Institute; ³University of Victoria, BC; ⁴NIST Boulder

Some references:

Axions, ultralight scalar DM:

- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Phys. Rev. Lett. 48, 1156 (1982).

Topological defect DM:

- T. W. B. Kibble, Phys. Rep. 67, 183 (1980).
- A. Vilenkin, Phys. Rep. 121, 263 (1985).

non-topological solitons, Q-balls:

- S. Coleman, Nucl. Phys. B 262, 263 (1985).
- K. Lee, J. A. Stein-Schabes, R. Watkins, and L. M. Widrow, Phys. Rev. D 39, 1665 (1989).
- A. Kusenko and P. J. Steinhardt, Phys. Rev. Lett. 87, 141301 (2001).

Other non-gravitational TD searches:

- M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, Phys. Rev. Lett. 110, 21803 (2013).
- Y. V. Stadnik, V. V. Flambaum, Phys. Rev. Lett. 113, 151301 (2014); PRL 114, 161301 (2015).
- E. D. Hall, T. Callister, V. V. Frolov, H. Muller, M. Pospelov, and R. X. Adhikari, arXiv:1605.01103.
- P. Wcisło, Morzynski, Bober, Cygan, Lisak, Ciuryło, M. Zawada, Nat. Astron. 1, 9 (2016).

Aside: challenges of re-purposed data

data from JPL: Histogram

- Possible that some clocks mis-identified (Here, one of the "Rb" clocks is probably Cs).
- Same discrepancy in autocorrelation function, Allan variance etc.