MATH 2031 Introduction to Real Analysis

May 9, 2013

Tutorial Note 21 Review on Riemann Integral

Proper integral

Let f(x) be a function which is bounded on a closed and bounded interval [a, b].

(I) Definition (partition):

- (i) A partition P of [a, b] is a finite set $\{x_0, x_1, \dots, x_n\}$ such that $a = x_0 < x_1 < \dots < x_n = b$.
- (ii) Denote $m_j = \inf\{f(x)|x \in [x_{j-1},x_j]\}$ and $M_j = \sup\{f(x)|x \in [x_{j-1},x_j]\}.$

(II) Definition (Riemann sums):

Given a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] and a function f bounded on [a, b],

- (i) A Riemann sum of f is $S = \sum_{j=1}^{n} f(t_j) \Delta x_j$, where every $t_j \in [x_{j-1}, x_j]$.
- (ii) A lower Riemann sum of f is $L(f, P) = \sum_{j=1}^{n} m_j \Delta x_j$, where every $t_j \in [x_{j-1}, x_j]$.
- (iii) A upper Riemann sum of f is $U(f, P) = \sum_{j=1}^{n} M_j \Delta x_j$, where every $t_j \in [x_{j-1}, x_j]$.

Remark:

Since f is bounded, |f(x)| < K on [a, b]. So we have

$$-K \le m_i \le f(t_i) \le M_i \le K \quad \Rightarrow \quad -K(b-a) \le L(f,P) \le S \le U(f,P) \le K(b-a).$$

(III) Definition (refinement):

- (i) Given partitions P_1, P_2 of the same interval [a, b], we say that P_2 is a refinement of P_1 iff $P_1 \subseteq P_2$.
- (ii) Given partitions P_1, P_2 of the same interval [a, b], we say that $P_1 \cup P_2$ is the common refinement of P_1 and P_2 .

(IV) Refinement theorem:

If $P \subseteq \widetilde{P}$, then

$$L(f, P) \le L(f, \widetilde{P}) \le U(f, \widetilde{P}) \le U(f, P)$$

Lower sum increasing Upper sum decreasing

Remark:

The above inequality gives

$$U(f, \widetilde{P}) - L(f, \widetilde{P}) \le U(f, P) - L(f, P).$$

(V) Integral criterion:

Let f(x) be bounded on [a, b]. Then

$$f(x)$$
 is Riemann integrable on $[a,b] \iff \begin{pmatrix} \forall \varepsilon > 0 \ \exists \ \mathrm{partition} \ P \ \mathrm{of} \ [a,b] \ \mathrm{such \ that} \\ U(f,P) - L(f,P) < \varepsilon \end{pmatrix}$

Remark:

We may rewrite U(f, P) - L(f, P) as follows:

$$U(f, P) - L(f, P) = \sum_{j=1}^{n} M_j \Delta x_j - \sum_{j=1}^{n} m_j \Delta x_j = \sum_{j=1}^{n} (M_j - m_j) \Delta x_j$$

(VI) **Definition:**

(i) A set
$$S \subseteq \mathbb{R}$$
 is of measure zero iff $\left(\begin{array}{c} \forall \varepsilon > 0, \ \exists \text{ intervals } (a_1, b_1), (a_2, b_2) \cdots \text{ such that } \\ S \subseteq \bigcup_{k=1}^{\infty} (a_k, b_k) \text{ and } \sum_{k=1}^{\infty} (b_k - a_k) < \varepsilon \end{array}\right)$

(ii) A property is said to hold almost everywhere (a.e.) iff it holds except on a set of measure zero.

Remarks:

- (i) Countable sets are of measure zero, but uncountable sets may or may not be of measure zero. (The set of irrational numbers in [a, b] for a < b has measure b a, while the Cantor set is uncountable but of measure zero)
- (ii) A countable union of measure zero sets is also of measure zero.
- (iii) Subsets of a measure zero set are again of measure zero.
- (iv) The limit of a sequence of Riemann integrable functions on [a,b] may not be a Riemann integrable function.

(VII) Lebesgue's Theorem

Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then

f is integrable on
$$[a,b] \iff f$$
 is continuous a.e. on $[a,b]$

(VIII) Monotone Function Theorem

If f is increasing on (a, b), then f has countably many points of discontinuity on (a, b). Hence we have

$$S_f = \{x_0 \in [a, b] | f \text{ is discontinuous at } x_0\}$$
 is countable.

(IX) Fundamental theorem of Calculus

- (i) If f is integrable on [a, b], continuous at $x_0 \in [a, b]$ and $F(x) = \int_c^x f(t)dt$, where $c \in [a, b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.
- (ii) If G is differentiable on [a,b] and G' is integrable on [a,b], then $\int_a^b G'(x)dx = G(x)\Big|_a^b = G(b) G(a)$. (G' may not be continuous.)

2

Problem 1 (2008 Q5) (c.f. 2011 Q6)

For n = 0, 1, 2, ..., let $f_n : [0, 1] \to [0, 1]$ be Riemann integrable functions. Prove that $g : [0, 1] \to \mathbb{R}$ defined by q(0) = 0 and

$$g(x) = f_n(x)$$
 for $n \in \mathbb{N}$ and $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right]$

is Riemann integrable on [0, 1] by using integrable criterion.

Solution:

For every $\varepsilon > 0$, by Archimedean principle, there exists $N \in \mathbb{N}$ such that $n > \frac{3}{\varepsilon}$. Choose a number $0 < \delta < \min \left\{ \frac{1}{2} \left(\frac{1}{N-1} - \frac{1}{N}, \frac{\varepsilon}{6(N-1)} \right) \right\}$ and take the partition

$$P_0 = \left\{ \frac{1}{N} < \frac{1}{N} + \delta < \frac{1}{N-1} - \delta < \dots < \frac{1}{2} + \delta < 1 - \delta < 1 \right\}.$$

Since for all $n \in \{1, 2, \dots, N-1\}$, f_n is integrable on $\left(\frac{1}{n+1}, \frac{1}{n}\right]$, there exist partitions P_n on $\left(\frac{1}{n+1}, \frac{1}{n}\right]$ such that

$$U(f_n, P_n) - L(f_n, P_n) < \frac{\varepsilon}{3(N-1)}.$$

Now consider the partition $P = \bigcup_{n=0}^{N-1} P_n$. Then

$$U(g,P) - L(g,P) \le \frac{1}{N} + 2\delta(N-1)(1-0) + \sum_{n=1}^{N-1} (U(f_n, P_n) - L(f_n, P_n))$$
$$< \frac{\varepsilon}{3} + 2(N-1)\frac{\varepsilon}{6(N-1)} + (N-1)\frac{\varepsilon}{3(N-1)}$$
$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Thus by integrable criterion, we get g is integrable.

Problem 2 (adopted form 2010 Q4)

Let $f:[0,1]\to[0,1]$ be a Riemann integrable function. Let $\{r_n|n\in\mathbb{N}\}$ be a strictly increasing sequence on (0,1]. Prove that $g:[0,1]\to[0,1]$ defined by

$$g(x) = \begin{cases} f(x) & \text{if } x \in [0,1] \setminus \{r_n | n \in \mathbb{N}\} \\ 1 & \text{if } x \in \{r_n | n \in \mathbb{N}\} \end{cases}$$

is Riemann integrable on [0,1].

Solution:

Since the sequence $\{r_n|n\in\mathbb{N}\}$ is increasing and bounded, by monotonic sequence theorem, $\lim_{n\to\infty}r_n$ exists, say $\lim_{n\to\infty} r_n = r$. i.e.

For all $\varepsilon_0 > 0$, $\exists N_0 \in \mathbb{N}$ such that for every $n > n_0$, $|r - r_n| < \varepsilon_0$.

(If
$$r = 1$$
, then replace $|r - r_n| < \varepsilon_0$ by $1 - r_n < \varepsilon_0$).

For every $\varepsilon > 0$, by definition of limit, there exists $N \in \mathbb{N}$ such that $|r - r_n| < \frac{\varepsilon}{3}$.

Choose a number $0 < \delta < \min \left\{ \frac{1}{2} (r_{N-1} - r_N), \frac{\varepsilon}{6(N-1)} \right\}$ and take a partition

$$P_0 = \{r_1 - \delta < r_1 + \delta < r_2 - \delta < \dots < r_N - \delta < r_N < r < 1\}.$$

(Or
$$P_0 = \{r_1 - \delta < r_1 + \delta < r_2 - \delta < \dots < r_N - \delta < r_N < r = 1\}$$
 if $r = 1$.)

Since f(x) is integrable on [0, 1], there exists a partition P_1 on [0, 1] such that

$$U(f, P_1) - L(f, P_1) < \frac{\varepsilon}{3}.$$

Now consider the partition $P = P_0 \cup P_1$. Then

$$U(g,P) - L(g,P) \le r - r_N + 2\delta(N-1)(1-0) + (U(f,P_1) - L(f,P_1))$$

$$< \frac{\varepsilon}{3} + 2(N-1)\frac{\varepsilon}{6(N-1)} + \frac{\varepsilon}{3}$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Then by integrable criterion, we get g is integrable.

Improper integral

Now we focus on functions f(x) which are either unbounded or defined on an interval which is not closed or not bounded.

(I) Definition (Local Integrability):

Let I be an interval. A function $f: I \to \mathbb{R}$ is locally integrable if f is integrable on every closed and bounded subinterval of I. We denote this by $f \in L_{loc}(I)$.

(II) Definition (Improper Integrals):

Case 1: Let $a \in \mathbb{R}$, $b \in \mathbb{R} \cup \{+\infty\}$, I = [a, b), $f \in L_{loc}(I)$. The improper integral of f on [a, b) is

$$\int_{a}^{b} f(x)dx = \lim_{d \to b^{-}} \int_{a}^{d} f(x)dx$$

provided that the limit exists in \mathbb{R} .

In this case, we say that f is improper integrable on [a,b).

Case 2: Let $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$, I = (a, b), $x_0 \in I$, $f \in L_{loc}(I)$. The improper integral of f on (a, b) is

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{x_{0}} f(x)dx + \lim_{d \to b^{-}} \int_{x_{0}}^{d} f(x)dx$$

provided that the limit exists in \mathbb{R} .

In this case, we say that f is improper integrable on (a,b).

Remark

This definition is independent of the choice of x_0 .

Case 3: Let $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$, I be an interval with endpoints $a, b, I_0 = I \cap (-\infty, c)$, $I_1 = I \cap (c, +\infty)$ for $c \in (a, b)$. $f \in L_{loc}(I_0)$, $f \in L_{loc}(I_1)$ The improper integral of f on I is

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

provided that both integrals on the RHS exist in \mathbb{R} .

In this case, we say that f is improper integrable on I.

In each case, if the improper integral is a number, we say that the improper integral converges, otherwise it diverges.

(III) Tests for Improper integral:

For
$$0 < a < \infty$$
, $\int_{a}^{+\infty} \frac{1}{x^{p}} dx < +\infty \iff p > 1$;
Also $\int_{0}^{a} \frac{1}{x^{p}} dx < +\infty \iff p < 1$.

Comparison test:

Suppose $0 \le f(x) \le g(x)$ on interval I and $f, g \in L_{loc}(I)$. If g is improper integrable on I, then f is also improper integrable on I.

Limit Comparison test:

Suppose
$$f(x), g(x) > 0$$
 on $(a, b]$ and $f, g \in L_{loc}((a, b])$.

If $\lim_{x \to a^+} \frac{g(x)}{f(x)} = \left\{ \begin{array}{l} L > 0 \\ 0 \\ +\infty \end{array} \right\}$, then $\left\{ \begin{array}{l} \text{either both } \int_a^b f(x) dx, \int_a^b g(x) dx \text{ converge or both diverge} \\ \int_a^b f(x) dx \text{ converges} \Rightarrow \int_a^b g(x) dx \text{ converges} \\ \int_a^b f(x) dx \text{ diverges} \Rightarrow \int_a^b g(x) dx \text{ diverges} \end{array} \right\}$

For an interval [a,b), we take $\lim_{x\to b^-} \frac{g(x)}{f(x)}$ and the results are similar.

Absolute Convergence test:

Let $f \in L_{loc}(I)$. If |f| is improper integrable on I, then f is improper integrable on I.

Cauchy Principal Value of Integrals

P.V. (I) **Definition:**

Let $f \in L_{loc}(\mathbb{R})$. The principal value of $\int_{-\infty}^{\infty} f(x)dx$ is

$$P.V. \int_{-\infty}^{\infty} f(x)dx = \lim_{c \to \infty} \int_{-c}^{c} f(x)dx$$

P.V. (II) Theorem:

If the improper integral $\int_{-\infty}^{\infty} f(x)dx$ exists in \mathbb{R} ,

then P.V. $\int_{-\infty}^{\infty} f(x)dx$ exists and equals the improper integral $\int_{-\infty}^{\infty} f(x)dx$.

P.V. (III) **Definition:**

Let I be an integral with endpoints a, b, let $c \in (a, b)$, $I_0 = I \cap (-\infty, c)$, $I_1 = I \cap (c, +\infty)$. Let $f \in L_{loc}(I_0)$,

Define the principal value of the improper integral $\int_{0}^{b} f(x)dx$ as

$$P.V. \int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \left(\int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx \right)$$

Remark:

You should check carefully before applying the Fundamental theorem, which require that the primitive function of f(x) is differentiable. It may happen that your integral is improper.

Problem 3 Determine whether the following improper integral converges or not, then determine whether their principal value converges or not.

(i)
$$\int_{-1}^{1} \frac{\sin(\sin(x))}{x} dx$$

(ii)
$$\int_{-1}^{1} \frac{\sin(\sin(x))}{x^2} dx$$

Solution:

(i) Since $\frac{\sin(\sin(x))}{x}$ is continuous on $[-1,1] \setminus \{0\}$,

$$\int_{-1}^{1} \frac{\sin(\sin(x))}{x} \, dx = \int_{-1}^{0} \frac{\sin(\sin(x))}{x} \, dx + \int_{0}^{1} \frac{\sin(\sin(x))}{x} \, dx.$$

Consider $\int_0^1 \frac{\sin(\sin(x))}{x} dx$. As $x \to 0$, $\frac{\sin(\sin(x))}{x} \sim \frac{\sin(x)}{x}$.

$$\lim_{x \to 0} \frac{\left(\frac{\sin(\sin(x))}{x}\right)}{\left(\frac{\sin(x)}{x}\right)} = \lim_{x \to 0} \frac{\sin(\sin(x))}{\sin(x)} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1.$$

As

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

then consider

$$\int_{0}^{1} dx = x \Big|_{0}^{1} = 1.$$

Thus by limit comparison test, $\int_0^1 dx$ converges implies $\int_0^1 \frac{\sin(x)}{x} dx$ converges and this then implies $\int_0^1 \frac{\sin(\sin(x))}{x} dx$ converges.

Since

$$\frac{\sin(\sin(-x))}{-x} = 1 \cdot \frac{\sin(-\sin(x))}{x} = \frac{\sin(\sin(x))}{x},$$

the integrand is even. Then

$$\int_{-1}^{0} \frac{\sin(\sin(x))}{x} dx = \int_{0}^{1} \frac{\sin(\sin(x))}{x} dx$$

also converges.

So
$$\int_{-1}^{1} \frac{\sin(\sin(x))}{x} dx$$
 converges and hence the principle value converges $\left(\text{to } 2 \int_{0}^{1} \frac{\sin(\sin(x))}{x} dx\right)$.

(ii) Similar to the above, we get

$$\int_{-1}^{1} \frac{\sin(\sin(x))}{x^2} dx = \int_{-1}^{0} \frac{\sin(\sin(x))}{x^2} dx + \int_{0}^{1} \frac{\sin(\sin(x))}{x^2} dx.$$

Consider $\int_0^1 \frac{\sin(\sin(x))}{x^2} dx$. As $x \to 0$, $\frac{\sin(\sin(x))}{x^2} \sim \frac{\sin(x)}{x^2}$.

$$\lim_{x \to 0} \frac{\left(\frac{\sin(\sin(x))}{x^2}\right)}{\left(\frac{\sin(x)}{x^2}\right)} = \lim_{x \to 0} \frac{\sin(\sin(x))}{\sin(x)} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1.$$

And consider the limit

$$\lim_{x \to 0} \frac{\left(\frac{\sin(x)}{x^2}\right)}{\left(\frac{1}{x}\right)} = \lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

Since

$$\int_0^1 \frac{1}{x} \, dx = \ln(x) \Big|_0^1 = +\infty,$$

by limit comparison test, $\int_0^1 \frac{\sin(x)}{x^2} dx$ diverges and so $\int_0^1 \frac{\sin(\sin(x))}{x^2} dx$ diverges. Hence $\int_{-1}^1 \frac{\sin(\sin(x))}{x^2} dx$ diverges.

Since

$$\frac{\sin(\sin(-x))}{(-x)^2} = \frac{\sin(-\sin(x))}{x^2} = -\frac{\sin(\sin(x))}{x^2},$$

the integrand is odd.

So we have

$$P.V. \int_{-1}^{1} \frac{\sin(\sin(x))}{x^{2}} dx = \lim_{c \to 0} \left(\int_{c}^{1} \frac{\sin(\sin(x))}{x^{2}} dx + \int_{-1}^{c} \frac{\sin(\sin(x))}{x^{2}} dx \right)$$

$$= \lim_{c \to 0} \left(\int_{c}^{1} \frac{\sin(\sin(x))}{x^{2}} dx + \int_{-1}^{-c} \frac{\sin(\sin(-x))}{(-x)^{2}} d(-x) \right)$$

$$= \lim_{c \to 0} \left(\int_{c}^{1} \frac{\sin(\sin(x))}{x^{2}} dx - \int_{c}^{1} \frac{\sin(\sin(x))}{x^{2}} dx \right)$$

$$= 0.$$

Problem 4 Determine the value of the improper integral $\int_{0}^{\infty} \frac{dt}{1-t^4}$.

Solution: Consider $\int_{1}^{\infty} \frac{dt}{1-t^4}$. Using the substitution $t = \frac{1}{x}$,

$$\int_{1}^{\infty} \frac{dt}{1 - t^4} = \int_{1}^{0} \frac{-\frac{1}{x^2}}{1 - \left(\frac{1}{x^4}\right)} \, dx = \int_{0}^{1} \frac{x^2}{x^4 - 1} \, dx = \int_{0}^{1} \frac{-t^2}{1 - t^4} \, dt.$$

Therefore we have

$$\int_0^\infty \frac{dt}{1 - t^4} = \int_0^1 \frac{dt}{1 - t^4} + \int_1^\infty \frac{dt}{1 - t^4}$$

$$= \int_0^1 \frac{dt}{1 - t^4} + \int_0^1 \frac{-t^2}{1 - t^4} dt$$

$$= \int_0^1 \frac{1 - t^2}{1 - t^4} dt$$

$$= \int_0^1 \frac{1}{1 + t^2} dt$$

$$= \arctan x \Big|_0^1$$

$$= \arctan 1 - \arctan 0$$

$$= \frac{\pi}{4}.$$

Thus, the improper integral $\int_0^\infty \frac{dt}{1-t^4}$ converges to $\frac{\pi}{4}$.