LanczosNet: Multi-Scale Deep Graph Convolutional Networks

Credit: Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard S. Zemely

https://qdata.github.io/deep2Read

Presenter: Ryan McCampbell

https://qdata.github.io/deep2Read

- Introduction
- 2 Background
- 3 LanczosNet
- 4 AdaLanczosNet
- Experiments
- 6 Conclusions

- Introduction
- 2 Background
- 3 LanczosNet
- AdaLanczosNet
- 5 Experiments
- Conclusions

Introduction

Two main issues with current GCN approaches

- How to efficiently leverage multi-scale information
 - Graph coarsening fixed process
 - Powers of graph Laplacian expensive
- Spectral filters are mostly fixed
 - Learning filters can produce more useful representations

Introduction

Idea:

- Use low-rank approximation of graph Laplacian
 - Enables efficient computation of matrix powers for multi-scale information
- Design learnable spectral filters

- Introduction
- 2 Background
- 3 LanczosNet
- 4 AdaLanczosNet
- Experiments
- Conclusions

Graph Fourier Transform

- Graph Laplacian L = D A, $L = I D^{-1}A$, or $L = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- Affinity matrix $S = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- Spectral decomposition $S = U \Lambda U^T$
- Graph Fourier Transform $Y = U^T X$ and $\hat{X} = U Y$
- We can filter in the spectral domain

Localized Polynomial Filter

• τ -localized polynomial filter:

$$g_w(\Lambda) = \sum_{t=0}^{\tau-1} w_t \Lambda^t$$

- Leverages information from nodes $\leq \tau$ hops away
- More general form:

$$Y = \sum_{t=0}^{\tau-1} g_t(S, ..., S^t, X) W_t$$

• Krylov subspace $\mathcal{K}_t(S,x) = span\{x,Sx,...,S^{t-1}x\}$

- Introduction
- 2 Background
- 3 LanczosNet
- 4 AdaLanczosNet
- Experiments
- Conclusions

Lanczos Algorithm

• Given affinity matrix S and node features x, the N-step Lanczos algorith computes orthogonal Q and symmetric tridiagonal T with $Q^TSQ = T$.

$$T = \begin{bmatrix} \gamma_1 & \beta_1 \\ \beta_1 & \ddots & \ddots \\ & \ddots & \ddots & \beta_{N-1} \\ & & \beta_{N-1} & \gamma_N \end{bmatrix}$$

- Q forms orthogonal basis of $\mathcal{K}_N(S,x)$
- First K cols of Q form orthogonal basis of $\mathcal{K}_K(S,x)$

Lanczos Algorithm

Algorithm 1: Lanczos Algorithm

```
1: Input: S, x, K, \epsilon
 2: Initialization: \beta_0 = 0, q_0 = 0, and q_1 =
    x/\|x\|
 3: For j = 1, 2, \dots, K:
 4: z = Sq_i
 5: \gamma_j = q_i^{\dagger} z
 6: z = z - \gamma_{i} q_{i} - \beta_{i-1} q_{i-1}
 7: \beta_i = ||z||_2
 8: If \beta_i < \epsilon, quit
 9: q_{i+1} = z/\beta_i
10:
11: Q = [q_1, q_2, \cdots, q_K]
12: Construct T following Eq. (2)
13: Eigen decomposition T = BRB^{\top}
14: Return V = QB and R.
```

Localized polynomial filter

• Run Lanczos for K steps starting with X_i to compute orthonormal basis Q of $\mathcal{K}_K(S, X_i)$

$$Y_j = Qw_{i,j}$$

- Q depends on X_i : separate run of Lanczos is needed for each graph convolution layer
- Ideally, we want to only compute Lanczos once during inference on a graph

Spectral Filter

Alternate view:

- Choose random starting vector x
- ullet Treat K step Lanczos output as low-rank approximation $S pprox QTQ^T$
- ullet Decompose tridiagonal matrix into Ritz values $T = BRB^T$
 - R is diagonal: approximation of eigenvalues
- $S \approx VRV^T$ where V = QB
- Rewrite graph convolution as

$$Y_j = [X_i, SX_i, ..., S^{K-1}X_i]w_{i,j} \approx [X_i, VRV^TX_i, ..., VR^{K-1}V^TX_i]w_{i,j}$$

Learning the Spectral Filter

• Use K different spectral filters with kth output $\hat{R}(k) = f_k([R^1, ..., R^{K-1}])$, where f_k is MLP

$$Y_j = [X_i, V\hat{R}(1)V^TX_i, ..., V\hat{R}(K-1)V^TX_i]w_{i,j}$$

Multi-Scale Graph Convolution

$$Y = [L^{S_1}X, ..., L^{S_M}X, V\hat{R}(\mathcal{I}_1)V^TX, ..., V\hat{R}(\mathcal{I}_N)V^TX]W$$

- S: Short-scale parameters, e.g. 0, ..., 5
- \mathcal{I} : Long-scale parameters, e.g. 10, 20, ..., 50

LanczosNet

Algorithm 2: LanczosNet

```
1: Input: Signal X, Lanczos output V and R,
      scale index sets S and I,
 2: Initialization: Y_0 = X
 3: For \ell = 1, 2, \dots, \ell_c:
        Z = Y_{\ell-1}, \mathcal{Z} = \{\emptyset\}
 5: For j = 1, 2, ..., \max(S):
                   Z = SZ
 6:
 7:
                    If i \in \mathcal{S}:
                          \mathcal{Z} = \mathcal{Z} \cup \mathcal{Z}
 8.
             For i \in \mathcal{I}:
 9.
                    \mathcal{Z} = \mathcal{Z} \cup V \hat{R}(\mathcal{I}_i) V^{\top} Y_{\ell-1}
10:
11: Y_{\ell} = \operatorname{concat}(\mathcal{Z})W_{\ell}
12: If \ell < L
                Y_{\ell} = \operatorname{Dropout}(\sigma(Y_{\ell}))
13:
14: Return Y_{\ell_a}.
```

- Introduction
- 2 Background
- 3 LanczosNet
- 4 AdaLanczosNet
- Experiments
- Conclusions

AdaLanczosNet

- Back-propagate through Lanczos algorithm
- Facilitates learning graph kernel and/or node embeddings

Graph Kernel

• Learnable anisotrophic graph kernel

$$k(x_i, x_j) = \exp\left(\frac{-\|f_{\theta}(x_i) - f_{\theta}(x_j)\|^2}{\epsilon}\right)$$

- f_{θ} is an MLP
- We can construct adjacency matrix $A_{i,j} = k(x_i, x_j)$ if $(i, j) \in \mathcal{E}$ and 0 otherwise
- Use to define affinity matrix $S = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- \bullet We can discard f to learn node embeddings on X

Tridiagonal Decomposition

- Backpropagation through the eigendecomposition of tridiagonal matrix is unstable
- Instead directly use approximation $S = QTQ^T$

$$Y = [L^{\mathcal{S}_1}X,...,L^{\mathcal{S}_M}X,Qf_1(T^{\mathcal{I}_1})Q^TX,...,Qf_N(T^{\mathcal{I}_N})Q^TX]W$$

• f_i is learnable filter

- Introduction
- 2 Background
- 3 LanczosNet
- 4 AdaLanczosNet
- 5 Experiments
- 6 Conclusions

Citation Networks

Cora	GCN-FP	GGNN	DCNN	ChebyNet	GCN	MPNN	GraphSAGE	GAT	LNet	AdaLNet
Public	$ 74.6 \pm 0.7 $	77.6 ± 1.7	79.7 ± 0.8	78.0 ± 1.2	80.5 ± 0.8	78.0 ± 1.1	74.5 ± 0.8	$\textbf{82.6} \pm \textbf{0.7}$	79.5 ± 1.8	80.4 ± 1.1
3%	71.7 ± 2.4	73.1 ± 2.3	76.7 ± 2.5	62.1 ± 6.7	74.0 ± 2.8	72.0 ± 4.6	64.2 ± 4.0	56.8 ± 7.9	76.3 ± 2.3	$\textbf{77.7} \pm \textbf{2.4}$
1%	59.6 ± 6.5	60.5 ± 7.1	66.4 ± 8.2	44.2 ± 5.6	61.0 ± 7.2	56.7 ± 5.9	49.0 ± 5.8	48.6 ± 8.0	66.1 ± 8.2	$\textbf{67.5} \pm \textbf{8.7}$
0.5%	50.5 ± 6.0	48.2 ± 5.7	59.0 ± 10.7	33.9 ± 5.0	52.9 ± 7.4	46.5 ± 7.5	37.5 ± 5.4	41.4 ± 6.9	58.1 ± 8.2	$\textbf{60.8} \pm \textbf{9.0}$
Citeseer	GCN-FP	GGNN	DCNN	ChebyNet	GCN	MPNN	GraphSAGE	GAT	LNet	AdaLNet
Public	$ 61.5 \pm 0.9 $	64.6 ± 1.3	69.4 ± 1.3	70.1 ± 0.8	68.1 ± 1.3	64.0 ± 1.9	67.2 ± 1.0	$\textbf{72.2} \pm \textbf{0.9}$	66.2 ± 1.9	68.7 ± 1.0
1%	54.3 ± 4.4	56.0 ± 3.4	62.2 ± 2.5	59.4 ± 5.4	58.3 ± 4.0	54.3 ± 3.5	51.0 ± 5.7	46.5 ± 9.3	61.3 ± 3.9	$\textbf{63.3} \pm \textbf{1.8}$
0.5%	43.9 ± 4.2	44.3 ± 3.8	53.1 ± 4.4	45.3 ± 6.6	47.7 ± 4.4	41.8 ± 5.0	33.8 ± 7.0	38.2 ± 7.1	53.2 ± 4.0	$\textbf{53.8} \pm \textbf{4.7}$
0.3%	38.4 ± 5.8	36.5 ± 5.1	44.3 ± 5.1	39.3 ± 4.9	39.2 ± 6.3	36.0 ± 6.1	25.7 ± 6.1	30.9 ± 6.9	44.4 ± 4.5	$\textbf{46.7} \pm \textbf{5.6}$
Pubmed	GCN-FP	GGNN	DCNN	ChebyNet	GCN	MPNN	GraphSAGE	GAT	LNet	AdaLNet
Public	76.0 ± 0.7	75.8 ± 0.9	76.8 ± 0.8	69.8 ± 1.1	77.8 ± 0.7	75.6 ± 1.0	76.8 ± 0.6	76.7 +- 0.5	$\textbf{78.3} \pm \textbf{0.3}$	78.1 ± 0.4
0.1%	70.3 ± 4.7	70.4 ± 4.5	73.1 ± 4.7	55.2 ± 6.8	73.0 ± 5.5	67.3 ± 4.7	65.4 ± 6.2	59.6 +- 9.5	$\textbf{73.4} \pm \textbf{5.1}$	72.8 ± 4.6
0.05%	63.2 ± 4.7	63.3 ± 4.0	66.7 ± 5.3	48.2 ± 7.4	64.6 ± 7.5	59.6 ± 4.0	53.0 ± 8.0	50.4 + -9.7	$\textbf{68.8} \pm \textbf{5.6}$	66.0 ± 4.5
0.03%	56.2 ± 7.7	55.8 ± 7.7	60.9 ± 8.2	45.3 ± 4.5	57.9 ± 8.1	53.9 ± 6.9	45.4 ± 5.5	50.9 +- 8.8	60.4 ± 8.6	$\textbf{61.0} \pm \textbf{8.7}$

Table 1: Test accuracy with 10 runs on citation networks. The public splits in Cora, Citeseer and Pubmed contain 5.2%, 3.6% and 0.3% training examples respectively.

Quantum Chemistry

Methods	Validation MAE ($\times 1.0e^{-3}$)	Test MAE ($\times 1.0e^{-3}$)
GCN-FP [29]	15.06 ± 0.04	14.80 ± 0.09
GGNN [37]	12.94 ± 0.05	12.67 ± 0.22
DCNN [8]	10.14 ± 0.05	9.97 ± 0.09
ChebyNet [7]	10.24 ± 0.06	10.07 ± 0.09
GCN [11]	11.68 ± 0.09	11.41 ± 0.10
MPNN [62]	11.16 ± 0.13	11.08 ± 0.11
GraphSAGE [39]	13.19 ± 0.04	12.95 ± 0.11
GPNN [40]	12.81 ± 0.80	12.39 ± 0.77
GAT [33]	11.39 ± 0.09	11.02 ± 0.06
LanczosNet	$\textbf{9.65} \pm \textbf{0.19}$	$\textbf{9.58} \pm \textbf{0.14}$
AdaLanczosNet	10.10 ± 0.22	9.97 ± 0.20

Table 2: Mean absolute error on QM8 dataset.

- Introduction
- 2 Background
- 3 LanczosNet
- AdaLanczosNet
- Experiments
- 6 Conclusions

Conclusions

- This method enables more powerful learning on graphs, incorporating multi-scale information as well as learned spectral filters and graph kernels.
- It outperforms many other graph networks on difficult problems