Contents:

- 1. What is learning a function by optimization?
- 2. What are feed-forward neural networks?
- 3. How are they applied?
- 4. How are they trained?
- 5. How does PyTorch help in function learning with neural networks?
- 6. What alternatives exist?

Note. code examples torch.nn.

Let $f: \mathbb{X} \longrightarrow \mathbb{Y}$ be a function we want to learn from observations $\mathcal{D} \in \mathbb{X} \times \mathbb{Y}$

\mathcal{X}	$y \simeq f(x)$
x_1	y_1
•	•
\mathcal{X}_n	y_n

The function f can be learned from (noisy) observations \mathcal{D} by optimization if

- 1. we have a suitably expressive function class $\mathcal{F} := \{f(x;\theta) | \theta \in \Theta\}$ such that $f(x) \simeq f(x; \theta^*)$ for some parameter (vector) θ^* and some quality criterion " \simeq ".
- 2. we have a practicable algorithm $A: (\mathcal{D}, \mathcal{F}, \mathcal{H}) \longrightarrow \theta^*$.
 - → rich model class, quality criterion and practical inference algorithm ←

rich model class. (deep) feedforward neural networks

quality criterion. low test error: empirical risk minimization + regularization

learning algorithm. descent along gradients calculated by backpropagation

Feedforward neural networks became useful function approximators with concurrent, often interdependent improvements in

- expressivity (depth, conv/pool layers)
- regularization (dropout, early stopping, explicit cost penalties...)
- inference speed/stability (activations, gradient rules, backpropagation...).

networks. graphical expression of function composition

feedforward. no cycles – network is a DAG

neural. each node calculates $h_i = g(x^T W_{:,i} + c_i)$. The linear combination followed by nonlinear threshold/saturation function resembles a *very* stylized neuron

deep. more layers facilitate training of very expressive networks

```
torch.nn.[Conv2d|Linear|Dropout2d|...],
torch.nn.functional.[max_pool2d, |relu|...]
```

Note: H = g(XW + c) batch matrix multiplication \rightarrow leverage GPU acceleration

```
torch.[.cuda].Tensor, a_tensor.to_device(<dev>)
```

As our functions are parameterised, we turn this into an optimisation problem:

$$\theta^* = \operatorname{argmin}_{\theta} \operatorname{cost}(f(x; \theta), y)$$

Two terms contribute to the cost:

- i. loss: penalizes bad predictions, i.e. some idea of training error
- ii. regularization: penalizes complex f, leading to generalization error
 - \rightarrow this is the difference between pure optimization (fit = minimize training error) and a machine *learning* algorithm.

torch.nn.*loss

- Find how the cost J depends on each of the parameters θ_i
 - → find gradients, (reverse) differentiation → backpropagation
- and adjust the parameters to minimize it
 - → use gradients, learning rule

$$\theta^{[k]} = \theta^{[k-1]} - \eta \nabla_{\theta} J(\theta), \quad \eta \in \mathbb{R}^+$$

- only local minima but some of these surprisinly useful in NNs
- since *J* usually additive on samples, i.e. $J = J_i$ we can perform gradient updates with fixed batch size \ll dataset size \rightarrow *minibatches* (uniform sampling)
- Adadelta, Adagrad, Adam, momentum, RMSprop...

```
torch.optim.*
```

• gradient descent may need or benefit from learning rate adaptation

```
torch.optim.lr_scheduler.*
```

Where do the gradients come from?


```
torch.Tensor(..., require_grad=True)
```

a_tensor.backward()

torch.autograd.

Engineering

- dynamic computation graphs vs. declaration/execution phases
- distributed, multimachine training → torch.distributed
- C++ model serving → tensorflow.serving
- checkpointing → torch.utils.checkpoint
- monitoring / debugging / optimizing → tensorflow.tensorboard
- model porting (to production / other frameworks) → ONNX
- fast forward mode embedded / mobile → tensorflow lite

- caffe 2 (production, mobile) → PyTorch 1.0
- tensorflow: docs, community, tensorboard, serving, lite
- keras (tf, cntk, theano): prototyping, spark,
- mxnet: language agnostic
- cntk: spark, azure