Rapport projet 1 TNI

1) Entropie d'un texte

A l'aide du langage de programmation PHP, nous avons fait un algorithme permettant de déterminer l'entropie du texte "Exemple1.txt".

2) Taille du fichier = 25098

z) raile du lichier – 25050		
a : 1297	à : 84	A:7
b : 142	è : 42	B:3
c : 533	é : 321	C : 19
d : 653	ù : 13	D : 10
e : 2860	ä:0	E:6
f : 195	ë : 0	F:7
g : 164	ö : 0	G:0
h : 164	ü : 0	H:0
i : 1203	ï : 2	I : 31
j : 84	ç:4	J : 10
k:0	â : 12	K:0
I : 988	û : 13	L : 72
m : 536	ê : 46	M : 12
n : 1416	ô:6	N : 4
o : 1022	î:8	O : 24
p : 570	œ:0	P : 14
q : 231	æ:0	Q : 10
r : 1174	': 316	R:9
s : 1666	. : 224	S : 19
t : 1264	, : 267	T : 21
u : 1187	: 3971	U : 9
v : 280	« : 4	V : 5
w:0	» : 4	W : 0
x : 76	!:1	X:0
y : 66	; : 60	Y:1
z : 17	:: 14	Z:0
	?:5	
	- : 19	

$$H_b(X) = -\mathbb{E}[\log_b P(X)] = \sum_{i=1}^n P_i \log_b \left(rac{1}{P_i}
ight) = -\sum_{i=1}^n P_i \log_b P_i.$$

3) 4.334807739453

2) Entropie d'une image

- 1 . Entropie estimée grâce à notre programme php : 7.4454838208758
- 2. On peut se rendre compte que l'entropie de l'image est largement supérieure à celle du texte, ce qui signifie que la "dispersion" est plus importante pour l'image.