Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 09

Abgabetermin: Freitag, 22.01.2021, 9:15 Uhr

Aufgabe 1. (Galoisgruppe) (6 Punkte) Es sei $f = X^4 - 4X^2 + 9 \in \mathbb{Q}[X]$. Bestimmen Sie einen Zerfällungskörper L von f über \mathbb{Q} sowie $\operatorname{Gal}(L/\mathbb{Q})$ und alle Zwischenkörper von L/\mathbb{Q} . (Hinweis: Zeigen Sie zunächst, dass für eine Nullstelle α von f die Menge der Nullstellen von f gleich $\{\pm \alpha, \pm 3/\alpha\}$ ist.)

Aufgabe 2. (Beispiele) (6 Punkte, je 1 Punkt) Beweisen oder widerlegen Sie:

- (a) Die Erweiterung $\mathbb{Q}(\sqrt[4]{7})/\mathbb{Q}$ ist eine Galoiserweiterung.
- (b) Es sei $f=X^4+6X+3\in\mathbb{Q}[X]$ und L über \mathbb{Q} ein Zerfällungskörper von f. Dann ist $[L:\mathbb{Q}]$ ein Teiler von 24.
- (c) Es sei L/\mathbb{Q} ein Zerfällungskörper des Polynoms X^3-2 . Dann ist $\operatorname{Gal}(L/\mathbb{Q})$ zyklisch.
- (d) Es sei L/\mathbb{Q} ein Zerfällungskörper eines Polynoms von Grad 3. Dann hat L/\mathbb{Q} höchstens 4 echte Zwischenkörper.
- (e) Es sei K ein Körper mit $\operatorname{char}(K) \neq 2$ und $f = X^4 a \in K[X]$ irreduzibel sowie L/K ein Zerfällungskörper von f. Dann ist $\operatorname{Gal}(L/K)$ nicht zyklisch.
- (f) Es sei L/K eine endliche Galoiserweiterung. Dann hat L/K höchstens $2^{[L:K]}$ viele Zwischenkörper.

Aufgabe 3. (Kreisteilungskörper) (6 Punkte, je 3 Punkte) Es sei $n \geq 3$ und $L = \mathbb{Q}(\mu_n)$.

- (a) Bestimmen Sie die von der komplexen Konjugation induzierte Permutation π von μ_n . Wir wählen eine primitive n-te Einheitswurzel $\zeta_n \in \mathbb{C}$ und identifizieren $\mathbb{Z}/n\mathbb{Z}$ mit μ_n via $k \mapsto \zeta_n^k$. Bestimmen Sie die von π induzierte Permutation von $\mathbb{Z}/n\mathbb{Z}$.
- (b) Zeigen Sie, dass $[L:L\cap\mathbb{R}]=2$ sowie $L\cap\mathbb{R}=\mathbb{Q}(\zeta_n+\zeta_n^{-1})$.

Aufgabe 4. (Funktionenkörper) (6 Punkte; je 2 Punkte) Es sei K ein Körper und L = K(Y) der Funktionenkörper in der Variablen Y.

- (a) Zeigen Sie, dass es für jedes $a \in K$ ein eindeutiges $\sigma_a \in \operatorname{Aut}_K(L)$ gibt mit $\sigma_a(Y) = Y + a$.
- (b) Es sei $G := \{ \sigma_a \mid a \in K \}$. Zeigen Sie, dass G eine Untergruppe von $\operatorname{Aut}_K(L)$ ist, die isomorph zu (K, +) ist. Falls K unendlich ist, zeigen Sie weiter $L^G = K$.
- (c) Nun sei char(K) = p > 0 und $H := \{\sigma_a \mid a \in \mathbb{F}_p\} \subset G$. Zeigen Sie, dass $L^H = K(Z)$ mit $Z = Y^p Y$.