give below. Let the notation ' \star ' represent convolution. Assume that the bias values, **b**, are appropriately broadcast.

98 Example (Max Pooling)

Max pooling is a simple operation used to reduce the output size of a layer.

$$\mathbf{X}_{4 imes4}
ightarrow \boxed{f_{\mathsf{pool}}}
ightarrow \mathbf{Y}_{2 imes2}$$

Instead of a dot product of the input with the weights of a filter, the maximum value of the input is saved as in the diagram below. A max pooling layer has no trainable parameters.

99 Example (LeNet Functional Representation)

The LeNet network in functional form is given below. (Assume that the bias values, ${\bf b}$, are appropriately broadcast.)

100 Example (LeNet Parameters for CIFAR-10)

Listed below are the LeNet trainable parameters for the CIFAR-10 dataset which consists of inputs that are 32×32 pixel RGB images and 10 class labels as outputs.

Layer 1	\mathbf{W}_0	$3 \times 5 \times 5 \times 20$	1,500
	\mathbf{b}_0	20	20
Layer 2	\mathbf{W}_1	$20 \times 5 \times 5 \times 50$	25,000
	\mathbf{b}_1	50	50
Layer 3	W_2	$(8 \cdot 8 \cdot 50) \times 500$	1,600,000
	\mathbf{b}_2	500	500
Layer 4	W_3	500×10	5,000
	\mathbf{b}_3	10	10
		Total	1,632,080

Using single precision (32 bits or 4 bytes) we need approximately

$$1,632,080 \times 4 = 6,528,320 \approx 6.5 \text{ MB}$$

6.5 megabytes of memory to store the LeNet parameters.