3. Linear Mixed Effects (LME) Models

- Overview
- 2. Simple cases:
 - a) Random intercept
 - b) Random intercept and slope.
- 3. The general LME model formulation.
- Variance and covariance structures.
- 5. Estimation.
- Model selection.
- 7. Residual Analysis and Goodness of Fit.
- 8. Implementation in R and Phoenix.

3.1 Overview

Overview LME Models

- Not very common for pharmacokinetic data;
 however, they lead to a better grasp of the nonlinear mixed effects case.
- Mixed effects are introduced when measurements within subjects are not assumed independent.
- Data is longitudinal: multiple measurements are made on the same subject over time, e.g., blood pressure, drug concentration.

Overview

- Responses may be:
 - Unequally spaced (times between measurements may vary).
 - With an unequal number of observations per subject
 - Often correlated within a subject.
- Overall are more flexible than multiple regression models, since they:
 - Allow for greater control over the sources of variability
 - Incorporate patient-specific characteristics
 - Allow for covariates to vary over time

Mixed effects: Fixed + Random effects

Fixed effects

- Represent variables whose levels were chosen/ controlled, e.g., drug doses or time points for blood draws.
- Their levels represent a set of all possible levels,
 e.g., gender

Random effects

- Represent variables whose levels do not constitute the set of all possible levels (e.g., countries, in multinational level analysis).
- Often represent nuisance variables: effect is not of interest but rather the variability induced by the variable.
- Are arbitrary samples from a larger pool of other equally possible samples.
- Most common example: the subjects used in an experiment
 - There is often no specific interest in the particular set of subjects, but in generalizing the results to a population at-large.

Simple cases of random and mixed effects models

- Linear random effects model:
 - Random intercept
 - Random intercept and slope
- Linear mixed effects model (random + fixed):
 - Random intercept and slope by groups

Example Random Effects – No Covariates Orthodontic Study on Maxillary Distance (Pinheiro, 2000)

- Measurements of the distance from the pituitary gland to the pterygo-maxillary fissure (abbrev. "maxillary distance").
- Data collected from x-rays of children's skulls.
- Taken every two years
- From 8 -14 years of age
- Sample of 27 children- 16 males and 11 females.
- Available in R with name "Orthodont" (ISwR package)

Example Random Effects, Orthodontic Study on Maxillary Distance (Pihneiro, 2000)

Response variable:

$$Y_{ij}$$
 = Maxillary distance (mm),

where

```
i indexes subjects (i=1,...,n=27),

j indexes occasions (j=1,...,m=4)

representing 8,10,12 and 14 years of age.
```

Data structure (4 subjects)

Subject i	Maxil	Maxillary distance measurements (mm) Y_{ij} i =subject, j =occasion				
S	<i>j=1</i> 8 yrs	<i>j</i> =2 10 yrs	<i>j</i> =3 12 yrs	<i>j=4</i> 14 yrs	Y_i	
	O yis	10 yıs	12 y15	14 y15		
1	26	25	29	31	27.75	
2	21.5	22.5	23	26.5	23.38	
3	23 22.5		24	27.5	24.25	
4	25.5	27.5	26.5	27	26.63	

Grand Mean
$$\overline{Y} = 24.02$$
 (27 subjects)

Note: The arrangement of the data in R consists of multiple lines per subject.

Random effects model with no covariates

$$Y_{ij} = \mu + u_i + \varepsilon_{ij}; \quad j = 1, ..., m_i, \quad i = 1, ..., n.$$

$$= \mu_i + \varepsilon_{ij}; \quad \text{In terms of regression, think of } \mu \text{ as } \beta_0.$$
 and
$$\mu_i = \beta_0 + u_i \text{ only here there's no line!}$$

In our example,

- n=4, $m_i=4$ for all subjects i=1,...,n.
- Y_{ij} is the maxillary distance (mm) taken from subject i at occasion j.
- μ is the population overall mean maxillary distance.
- μ_i is the true (population) subject-specific mean.
- u_i is the random deviation of μ_i from μ
- $arepsilon_{ij}$ is the random deviation for j-th measurement on subject i from μ_i .

Random effects model with no covariates

Population: all children aged 8-14

Take subject *i*:

(Unknown, not measured yet)

True (population) subjectspecific mean:

$$\mu_{i} = \frac{1}{4} \sum_{j=1}^{4} Y_{ij} \qquad \mu = \frac{1}{N} \sum_{i=1}^{N} \mu_{i}$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mu_{i}$$

True population overall mean:

(Unknown)

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mu_i$$

Random effects model with no covariates

Deviation of Y_{il} from μ_i + measurement error

$$\varepsilon_{i1} = (Y_{i1} - \mu_i) + (y_{i1} - Y_{i1})$$

= $y_{i1} - \mu_i$

Take subject *i* from the sample:

Residuals: Deviations from subject means: $\hat{\varepsilon}_{ij} = y_{ij} - \hat{\mu}_i = y_{ij} - \overline{Y}_{i}$

Subject i	Maxillary distance measurements (mm) Y_{ij} i =subject, j =occasion			Subject Mean	Deviation from overall mean \hat{u}_i	
S	<i>j=1</i> 8 yrs	<i>j=2</i> 10 yrs	<i>j</i> =3 12 yrs	<i>j=4</i> 14 yrs	\overline{Y}_i	$(\overline{V} \overline{V})$
					Yannani.	,
1 (26	25	29	31	27.75	1.98
2	21.5	22.5	23	26.5	23.38	-0.64
3	23	22.5	24	27.5	24.25	0.23
4	25.5	27.5	26.5	27	26.63	2.61

Estimate of subject-specific mean μ_i

Grand Mean (n=27)

$$\overline{Y} = 24.02$$

population mean μ

ĉ	- 26	_ 27 75	=-1.75	•
c ₁₁		- 21.13	1./)

Subject i	Residuals						
	8 yrs	10 yrs	12 yrs	14 yrs			
1	-1.75	-2.75	1.25	3.25			
2	-1.88	-0.88	-0.38	3.13			
3	-1.25	-1.75	-0.25	3.25			
4	-1.13	0.88	-0.13	0.38			

3.2 Simple casesa) Random Intercept Model

- Model specification
- Marginal and conditional means
- E(Y), Var(Y)
- E(Y|u), Var(Y|u)

Specific learning objectives:

- 1. Write the random intercept model and its assumptions.
- Explain the meaning of the random effects.
- 3. Derive the marginal E(Y), Var(Y) and conditional E(Y|u), Var(Y|u).
- 4. Explain the marginal and conditional means.
- Fit a random intercept model in R and identify the estimated model parameters in the output.

Random Intercept Model

$$Y_{ij} = \mu_{ij} + \varepsilon_{ij}$$
 μ_{ij} is the subject-specific mean at occasion j .
$$= \beta_0 + \beta_1 t_{ij} + \mu_{i1} + \varepsilon_{ij}; \quad j=1,...,m_i; \quad i=1,...,n.$$
 Fixed Random

Re-arranging,
$$Y_{ij} = (\beta_0 + u_{i1}) + \beta_1 t_{ij} + \varepsilon_{ij};$$
 Intercept Slope

Random Intercept Model

Population subject specific mean: $\mu_{ij} = \beta_0 + \beta_1 t_{ij} + u_{i1}$

Population overall mean: $\beta_0 + \beta_1 t_{ij}$

- t_{ij} is the time variable associated with measurement Y_{ij}
- u_{il} is the random deviation of the true population subject specific mean intercept (β_0+u_{il}) and overall intercept β_0 .
- This translates in the deviation of the true population subject specific mean μ_{ij} vs. the overall population mean β_0 + $\beta_1 t_{ij}$.
- ε_{ij} is the random deviation of the ij-th response from from subject specific mean.

Sources of Variability Random Intercept Model

$$u_{i1} \sim N(0,\sigma_{u_1}^2), \qquad \varepsilon_{ij} \sim N(0,\sigma_{\varepsilon}^2).$$

- 1. σ_u^2 : Between subject variability (BSV): reflects the subject specific variability around the overall population mean.
- 2. σ_{ε}^{2} : Within subject variability (WSV): includes within subject variability and measurement error.
 - Represents variability that cannot be explained with available information.
 - It is impossible to determine if the deviation of Y_{ij} from the subject specific mean μ_{ij} is really measurement error or due to true random variability within a subject.

Model Assumptions

Random Intercept Model

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + u_{i1} + \varepsilon_{ij}; \quad j = 1,...,m_i; \quad i = 1,...,n.$$

$$u_{i1} \sim N(0,\sigma_u^2); \qquad \varepsilon_{ij} \sim N(0,\sigma_\varepsilon^2);$$

$$\varepsilon_{ij} \text{ independent of } \varepsilon_{ik}, \quad u_{i1} \text{ independent of } u_{j1}$$

$$u_{i1} \text{ independent of } \varepsilon_{ij}.$$

- 1. Linear relationship of Y with respect to parameters β_0 , β_1 .
- 2. Normally, independently distributed residual errors ε_{ij} .
- 3. Normally, independently distributed random effects u_{ij} .
- 4. Random effects and residuals errors are independent.

Random effects model with a time covariate Random intercept.

Example: Maxillary Distance

$$Y_{ij} = \beta_0 + \beta_1 A g e_{ij} + u_{i1} + \varepsilon_{ij}; \quad j = 1,...,4, \quad i = 1,...,27.$$

The subject-specific mean is:

$$\mu_{ij} = \beta_0 + \beta_1 A g e_{ij} + u_{i1}$$
 The subject specific mean is the regressi line.
$$= (\beta_0 + u_{i1}) + \beta_1 A g e_{ij}$$
 The subject specific mean is the regressi line.

mean is the regression line.

- Y_{ii} is the maxillary distance (mm) taken from subject i at occasion j.
- is the true (population) subject-specific mean.
- $(\beta_0 + u_{ij})$, β_j are the intercept (random) and slope
- is the random deviation of the subject-specific intercept from the overall intercept β_0 .
- is the random deviation for j-th measurement on subject i from μ_i . \mathcal{E}_{ii}

Two random sources of variability

Fitting a Random Intercept Model Maxillary Distance Example

$$Y_{ij} = \beta_0 + \beta_1 A g e^*_{ij} + u_{i1} + \varepsilon_{ij}.$$

$$u_{i1} \sim N(0, \sigma_u^2); \qquad \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2);$$

$$\varepsilon_{ij} \text{ independent of } \varepsilon_{ik}, \quad u_{i1} \text{ independent of } \varepsilon_{ij}.$$

Age is centered: Age*=Age-11

Typical call: | lme (fixed , data , random)

```
> summary(fitt1)
Linear mixed-effects model fit by REML
Data: dat
      AIC BIC logLik
  455.0025 465.6563 -223.5013
Random effects:
Formula: ~1 | Subject
        (Intercept) Residual
StdDev: 2.114724 1.431592
Fixed effects: distance ~ I(age - 11)
                Value Std.Error DF t-value p-value
(Intercept) 24.023148 0.4296605 80 55.91193
                                                  0
I(age - 11) 0.660185 0.0616059 80 10.71626
 Correlation:
            (Intr)
I(age - 11) 0
Standardized Within-Group Residuals:
       Min
                               Med
                    01
                                             03
                                                        Max
-3.66453932 -0.53507984 -0.01289591 0.48742859 3.72178465
Number of Observations: 108
Number of Groups: 27
                                                      Number of subjects
```

Accessing fitted values

> 24.0231481 + 0.6601852 *(c(8,10,12,14)-11) + 3.3437571

[1] 25.38635 26.70672 28.02709 29.34746

```
> fitt1$fitted
                                           > fitt1$coef
          fixed
                   Subject
                                           $fixed
      22.04259 25.38635
  1
                                           (Intercept) I(age - 11)
  2
      23.36296 26.70672
                                            24.0231481 0.6601852
  3
      24.68333 28.02709
      26.00370 29.34746
                                           $random
      22.04259 21.46107
                                           $random$Subject
      23.36296 22.78144
                                                (Intercept)
      24.68333 24.10181
                                                 -0.9179756
                                           M16
      26.00370 25.42218 .
  8
                                           M05 - 0.9179756
  Note that the first two subjects are
                                           M02 - 0.5815230
 male, have the same overall mean.
                                           M11 - 0.3572213
                                           MO1 3.3437571
       "fixed": \hat{\beta}_0 + \hat{\beta}_1 A g e^*_{ij}
 > 24.0231481 + 0.6601852 *(c(8,10,12,14)-11)
  [1] 22.04259 23.36296 24.68333 26.00370
"Subject": |\hat{\beta}_0 + \hat{\beta}_1 A g e^*_{ij} + \hat{u}_{i1}|
```

Accessing fitted values

More convenient when plotting...

> fitted(fitt1)

M01	M01	M01	M01	M02	M02	M02	M02
25.38635	26.70672	28.02709	29.34746	21.46107	22.78144	24.10181	25.42218
M03	M03	M03	M03	M04	M04	M04	M04
22.24613	23.56650	24.88687	26.20724	24.37699	25.69736	27.01773	28.33810

Individual Maxillary Growth (ages 8-14)

Marginal and Conditional Means

$$\begin{array}{c} \text{Marginal} & \text{Conditional} \\ (\textbf{u}_{i1}\text{'s as fixed}) \\ Y_{ij} \sim \left(\mu_{ij} \;,\; \sigma_{u}^{\;\; 2} + \sigma_{\varepsilon}^{\;\; 2}\right) \quad \text{and} \quad Y_{ij} \mid u_{i1} \sim \left(\mu_{ij} + u_{i1} \;,\; \sigma_{\varepsilon}^{\;\; 2}\right) \end{array}$$

- E(Y): expected value of an individual randomly sampled from Y
- $E(Y|u_{ij})$: expected value for a particular individual
- If the expected value of individuals in their most general sense is of interest, then E(Y) is of interest.
- But as soon as the discussion moves to particular subjects, $E(Y|u_{i1})$ becomes of interest.
- Var(Y): total variability.
- $Var(Y|u_{ij})$: variability within a subject.

Two random sources of variability

Marginal E(Y) and Var(Y)

Random intercept model

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + u_{i1} + \varepsilon_{ij}; \quad j = 1, ..., m_i, i = 1, ..., n.$$

- The random errors ε induce variability into Y.
- The random effects *u* induce:
 - ✓ Variability into Y AND
 - \checkmark Correlation within individual observations, i.e., $Cov(Y_{ij}, Y_{ik}) > 0$.

How can we see this?

Marginal E(Y) and Var(Y) Random intercept model

$$\begin{split} E(Y_{ij}) &= E(\beta_1 + \beta_2 t_{ij} + u_{i1} + \varepsilon_{ij}) \\ &= \beta_1 + \beta_2 t_{ij} + E(u_{i1}) + E(\varepsilon_{ij}) \\ &= \beta_1 + \beta_2 t_{ij} \,. \end{split}$$
 Recall E(constant)=constant

The random effects induce variability into Y:

$$\begin{aligned} Var(Y_{ij}) &= Var(\beta_{1} + \beta_{2}t_{ij} + u_{i1} + \varepsilon_{ij}) \\ &= Var(u_{i1} + \varepsilon_{ij}) \\ &= Var(u_{i1}) + Var(\varepsilon_{ij}) + 2Cov(u_{i1}, \varepsilon_{ij}) \\ &= \sigma_{u}^{2} + \sigma_{\varepsilon}^{2}. \end{aligned}$$
 Recall Var(constant)=0 Independence assumptions u_{1} 's vs. ε 's, and within ε 's

Marginal E(Y) and Var(Y) Random intercept model

The random effects induce correlation into subject-specific Y's:

$$Cov(Y_{ij},Y_{ik}) = Cov(\beta_1 + \beta_2 t_{ij} + u_{i1} + \varepsilon_{ij}, \beta_1 + \beta_2 t_{ik} + u_{i1} + \varepsilon_{ik})$$

$$= Cov(u_{i1} + \varepsilon_{ij}, u_{i1} + \varepsilon_{ik})$$

$$= Var(u_{i1}) + Cov(u_{i1}, \varepsilon_{ik}) + Cov(\varepsilon_{ij}, u_{i1}) + Cov(\varepsilon_{ij}, \varepsilon_{ik})$$

$$= \sigma_u^2.$$

0's due to independence assumptions u_1 's vs. ε 's, and within ε 's

$$Corr(Y_{ij},Y_{ik}) = \frac{Cov(Y_{ij},Y_{ik})}{\sqrt{Var(Y_{ij})}\sqrt{Var(Y_{ik})}} = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_{\varepsilon}^2}.$$

Marginal E(Y) and Var(Y) Random intercept model

In summary E(Y) and Var(Y) are:

$$E(Y_{ij}) = \beta_0 + \beta_1 t_{ij}$$

$$Var(Y_{ij}) = \sigma_u^2 + \sigma_{\varepsilon}^2$$
.

Note non-zero covariance implies nonzero correlation, this means that the LME model accounts for within-individual correlation

$$Cov(Y_{ij},Y_{ik}) = \sigma_u^2 \neq 0.$$

$$Corr(Y_{ij},Y_{ik}) = \frac{Cov(Y_{ij},Y_{ik})}{\sqrt{Var(Y_{ij})}\sqrt{Var(Y_{ik})}} = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_{\varepsilon}^2}.$$

Conditional E(Y|u) and Var(Y|u)

Random Intercept Model

$$Y_{ij} = \mu_{ij} + u_{i1} + \varepsilon_{ij}; \quad j = 1,...,m_i, \quad i = 1,...,n$$

$$u_{i1} \sim (0,\sigma_u^2) \qquad \varepsilon_{ij} \sim (0,\sigma_\varepsilon^2)$$

• When u_{il} is stated as "given" (i.e., " $|u_{il}$ "), it can be considered fixed, then Y's ONLY inherit the distributional properties of the random component ε_{ii} .

$$E(Y_{ij} \mid u_{i1}) = \beta_0 + \beta_1 t_{ij} + u_{i1}$$

$$Var(Y_{ij} \mid u_{i1}) = \sigma_{\varepsilon}^{2}.$$

So
$$Y_{ij} \mid u_{i1} \sim (\beta_0 + \beta_1 t_{ij}, \sigma_{\varepsilon}^2)$$

3.2 Simple casesb) Random Intercept & Slope:

- Model specification
- Variance & Covariance of Y

Specific learning objectives:

- 1. Write the random intercept & slope model and its assumptions.
- State the features of the LME models that result from the random intercept & slope.
- 3. Fit a random intercept & slope model in R and identify the estimated model parameters in the output.
- 4. Construct graphs in R for longitudinal data.

Random Intercept and Slope Model A Mixed Effects Model

Fixed Random effect for slope
$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij}; \quad j = 1,2,3,4, \quad i = 1,...,26.$$

$$Y_{ij} = \mu_i + \varepsilon_{ij};$$
 where $\mu_i = \beta_0 + \beta_1 t_{ij} + u_{i1} + u_{i2} t_{ij}$.

Rearranging,

$$Y_{ij} = (\beta_0 + u_{i1}) + (\beta_1 + u_{i2})t_{ij} + \varepsilon_{ij};$$
Intercept Slope

This is a mixed effects model because we are allowing a fixed effect (t_{ij}) to vary randomly.

- ullet t_{ij} is the time variable associated with measurement Y_{ij}
- u_{il} is the random deviation of true population subject specific intercept and overall population intercept β_0 .
- u_{i2} is the random deviation of true population subject specific slope and overall population slope β_1 .
- ε_{ij} is the random deviation of the ij-th response from from subject specific mean.

$$Y_{ij} = (\beta_0 + u_{i1}) + (\beta_1 + u_{i2})t_{ij} + \varepsilon_{ij};$$
Intercept Slope

Subject #1 has a higher intercept (baseline level) $\beta_0 + u_{II}$ than the population average β_0 and thus $u_{II} > 0$.

Subject #2 has a lower intercept and thus u_{21} <0.

Subject #1 has a steeper rate of increase over time $\beta_1 + u_{21}$ than the population average β_1 .

Subject #2 has a less steep rate of increase over time than the population average, u_{22} <0.

Fitzmaurice, Laird & Ware, 2nd Ed. 2011.

Model Assumptions

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + u_{i1} + u_{i1} t_{ij} + \varepsilon_{ij}; \quad j = 1,...,m_i; \quad i = 1,...,n.$$

$$u_{i1} \sim N(0, g_{11}); \qquad u_{i2} \sim N(0, g_{22});$$

$$\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^{2});$$

$$\varepsilon_{ij} \text{ independent of } \varepsilon_{ik}, \quad u_{i1} \text{ independent of } u_{j1}$$

$$u_{i2} \text{ independent of } u_{j2}, \quad Cov(u_{i1}, u_{i2}) = g_{12} \neq 0$$

$$u_{i1} \text{ independent of } \varepsilon_{ij}.$$

- 1. Linear relationship of *Y* with respect to parameters β_0 , β_1 .
- 2. Normally, independently distributed residual errors ε_{ij} .
- 3. Normally, independently distributed random effects u_{ij} and u_{i2} .
- 4. Correlated random effects u_{i1} and u_{i2}
- 5. Random effects and residuals errors are independent.

Variance and correlation of Y

Recall the variance and covariance of the random effects are denoted as follows:

•
$$Var(u_{i1}) = g_{11}$$

•
$$Var(u_{i2}) = g_{12}$$

•
$$Cov(u_{i1}, u_{i2}) = g_{12}$$

It can be shown that (see Fitzmaurice, Ch.8):

$$Var(Y_{ij}) = Var(\beta_0 + \beta_1 t_{ij} + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij})$$
$$= g_{11} + 2t_{ij}g_{12} + t_{ij}^2 g_{22} + \sigma_{\varepsilon}^2.$$

Var(Y) = between variance + within variance

Var(Y) increases when g12>0 Var(Y) decreases when g12<0

$$Cov(Y_{ij},Y_{ik}) = g_{11} + (t_{ij} + t_{ik})g_{12} + t_{ij}t_{ik}g_{22}.$$

Cov(Y when age=2, Y when age=4)

Cov(Y when age=2, Y when age=8)

Features of LME models

- 1. Unlike other models, LME models explicitly distinguish between subject-specific and within-subject sources of variability.
- 2. Covariance for Y_{ij} , Y_{ik} can be expressed as a function of time, therefore, the time spacing between measurements doesn't have to be uniform between subjects.
- 3. Magnitude of covariance between a pair of responses Y_{ij} , Y_{ik} depends on the time separation between them.
- 4. Variance of Y_{ij} increases over time when $cov(u_{i1}, u_{i2}) \ge 0$ but decreases when $cov(u_{i1}, u_{i2}) < 0$. Allows for heteroscedasticity (or non-constant variance).
- 5. Do not require a balanced longitudinal design: since $Cov(Y_{ij}, Y_{ik})$ is expressed as an explicit function of t_{ij} 's, each subject can have a unique sequence of measurement times.

Fitting a Random Intercept and Slope Model

$$Y_{ij} = \beta_0 + \beta_1 A g e^*_{ij} + u_{i1} + u_{i2} A g e^*_{ij} + \varepsilon_{ij}.$$

$$u_{i1} \sim N(0, \sigma_{u_1}^2); \quad u_{i2} \sim N(0, \sigma_{u_2}^2); \quad \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2);$$

$$u_{i1} \text{ not independent of } u_{i2}, \quad \varepsilon_{ij} \text{ independent of } \varepsilon_{ik},$$

$$u_{i1} \text{ independent of } \varepsilon_{ij},$$

```
Linear mixed-effects model fit by REML
 Data: dat
       AIC BIC logLik
  454.6367 470.6173 -221.3183
Random effects:
 Formula: ~I(age - 11) | Subject
 Structure: General positive-definite, Log-Cholesky parametrization
             StdDev Corr
                                                                  \begin{vmatrix} \hat{\sigma}_{u_1}, \hat{\sigma}_{u_2}, \hat{\sigma}_{\varepsilon} \\ Corr(u_{i1}, u_{i2}) \end{vmatrix}
(Intercept) 2.1343289 (Intr)
I(age - 11) 0.2264278 0.503
Residual 1.3100402
Fixed effects: distance ~ I(age - 11)
                  Value Std.Error DF t-value p-value
(Intercept) 24.023148 0.4296601 80 55.91198
I(age - 11) 0.660185 0.0712533 80 9.26533
 Correlation:
              (Intr)
I(age - 11) 0.294
Standardized Within-Group Residuals:
          Min
                          01
                                        Med
                                                        03
                                                                     Max
-3.223106888 -0.493760896 0.007316481 0.472151221 3.916031742
Number of Observations: 108
Number of Groups: 27
                                                             Number of subjects
```

> summary(fitt2)

Accessing fitted values

```
> fitt2$fitted
                                      > fitt2$coef
        fixed
                 Subject
                                      $fixed
    22.04259 24.81965
                                      (Intercept) I(age - 11)
2
    23.36296 26.57139
                                       24.0231481 0.6601852
   24.68333 28.32313
                                                     [\hat{u}_{i1},\hat{u}_{i2}]s
   26.00370 30.07487
                                      $random
                                      $random$Subject
                                           (Intercept) I(age - 11)
                                      M16 -0.9451479 -0.06885385
                                      M05 - 0.8950636 0.02560005
                                      M02 -0.5679151 0.01450765
                                      MO1 3.4241123 0.21568501.
      \hat{\beta}_0 + \hat{\beta}_1 A g e^*_{ij}
> 24.0231481 + 0.6601852 *(c(8,10,12,14)-11)
[1] 22.04259 23.36296 24.68333 26.00370
    \hat{\beta}_{0} + \hat{\beta}_{1}Age^{*}_{ij} + \hat{u}_{i1} + \hat{u}_{i2}Age^{*}_{ij}
> 24.0231481 + 0.6601852*(c(8,10,12,14)-11)
                      + 3.4241123 + 0.21568501*(c(8,10,12,14)-11)
[1] 24.81965 26.57139 28.32313 30.07487
```

Random intercept vs. random intercept & slope Fitted models (n=27)

$$\hat{Y}_{ij} = (\hat{\beta}_0 + \hat{u}_{i1}) + \hat{\beta}_1 Age^*_{ij}$$

$$\hat{Y}_{ij} = (\hat{\beta}_0 + \hat{u}_{i1}) + (\hat{\beta}_1 + \hat{u}_{i2}) Age^*_{ij}$$

$$\hat{Y}_{ij} = (\hat{\beta}_0 + \hat{u}_{i1}) + (\hat{\beta}_1 + \hat{u}_{i2}) Age^*_{ij}$$

Mixed Effects Model Random Intercept & Slope Model Adding Categorical Covariate

Data structure

Subject i	κ (1=M,0=F)	Maxillary distance measurements (mm) Y_{ij} i =subject, j =occasion				Subject Mean
	Sex	8 yrs	10 yrs	12 yrs	14 yrs	
1	1	26	25	29	31	27.75
2	1	21.5	22.5	23	26.5	23.38
3	1	23	22.5	24	27.5	24.25
4	1	25.5	27.5	26.5	27	26.63
5	0	21	20	21.5	23	21.38
6	0	21	21.5	24	25.5	23.00
7	0	20.5	24	24.5	26	23.75
8	0	23.5	24.5	25	26.5	24.88

Sample data, n=27, 11 female, 16 male.

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 Sex_i + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij}; \quad j = 1, ..., m_i.$$
 Fixed Random effects for intercept and slope + error (Stays the same)

Rearranging....

When
$$Sex_i = 1$$
 (Males)

$$\begin{split} Y_{ij} &= \beta_0 + \beta_1 t_{ij} + \beta_2 + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij} \\ &= \left(\beta_0 + \beta_2 + u_{i1}\right) + \left(\beta_1 + u_{i2}\right) t_{ij} + \varepsilon_{ij}; \quad j = 1, ..., m_i. \end{split}$$
 Intercept Slope

When
$$Sex_i=0$$
 (Females)

$$\begin{split} Y_{ij} &= \beta_0 + \beta_1 t_{ij} + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij} \\ &= \left(\beta_0 + u_{i1}\right) + \left(\beta_1 + u_{i2}\right) t_{ij} + \varepsilon_{ij}; \quad j = 1, \dots, m_i. \end{split}$$
 Intercept Slope

```
> summary(fitt.sex)
Linear mixed-effects model fit by REML
 Data: dat
       AIC
                      logLik
                BIC
  449.2339 467.8116 -217.6169
Random effects:
 Formula: ~I(age - 11) | Subject
 Structure: General positive-definite, Log-Cholesky parametrization
           StdDev
                    Corr
(Intercept) 1.8320242 (Intr)
I(age - 11) 0.2264279 0.19
Residual 1.3100396
Fixed effects: distance ~ I(age - 11) + Sex
               Value Std.Error DF t-value p-value
(Intercept) 24.897236 0.4852090 80 51.31239
                                             0.000
I(age - 11) 0.660185 0.0712533 80 9.26533
                                             0.000
SexFemale -2.145489 0.7574536 25 -2.83250
                                             0.009
 Correlation:
            (Intr) I(-11)
I(age - 11) 0.085
SexFemale -0.636 0.000
Standardized Within-Group Residuals:
        Min
                    01
                               Med
                                            03
                                                       Max
-3.08141614 -0.45675578 0.01552687 0.44704106 3.89437718
Number of Observations: 108
Number of Groups: 27
```

Random Intercept and Slope Model, Adding Categorical Variable + Interaction

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 Sex_i + \beta_3 \Big(t_{ij} \times Sex_i \Big) + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij}; \quad j = 1, ..., m_i.$$
 Fixed

Rearranging....

When
$$Sex_i = 1$$

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 + \beta_3 t_{ij} + u_{i1} + u_{i2} t_{ij} + \varepsilon_{ij}$$

$$= (\beta_0 + \beta_2 + u_{i1}) + (\beta_1 + \beta_3 + u_{i2}) t_{ij} + \varepsilon_{ij}; \quad j = 1, ..., m_i.$$
 Intercept Slope

When
$$Sex_i=0$$

$$Y_{ij}=\beta_0+\beta_1t_{ij}+u_{i1}+u_{i2}t_{ij}+\varepsilon_{ij}$$

$$=\left(\beta_0+u_{i1}\right)+\left(\beta_1+u_{i2}\right)t_{ij}+\varepsilon_{ij}; \quad j=1,...,m_i.$$
 Intercept Slope

```
> summary(fitt.sexage)
Linear mixed-effects model fit by REML
 Data: dat
      AIC
               BIC
                      logLik
  448.5817 469.7368 -216.2908
Random effects:
Formula: ~I(age - 11) | Subject
 Structure: General positive-definite, Log-Cholesky parametrization
           StdDev
                     Corr
(Intercept) 1.8303267 (Intr)
I(age - 11) 0.1803454 0.206
Residual 1.3100397
Fixed effects: distance ~ I(age - 11) + Sex + Sex * I(age - 11)
                         Value Std.Error DF t-value p-value
(Intercept)
                    24.968750 0.4860007 79 51.37596 0.0000
I(age - 11) 0.784375 0.0859995 79 9.12069 0.0000
SexFemale
                    -2.321023 0.7614168 25 -3.04829 0.0054
I(age - 11):SexFemale -0.304830 0.1347353 79 -2.26243 0.0264
 Correlation:
                     (Intr) I(g-11) SexFml
I(age - 11)
                     0.102
SexFemale
                     -0.638 - 0.065
I(age - 11):SexFemale -0.065 -0.638 0.102
Standardized Within-Group Residuals:
        Min
                      01
                                  Med
                                                03
                                                            Max
-3.168078484 -0.385939134 0.007103929 0.445154686 3.849463230
Number of Observations: 108
Number of Groups: 27
```

Random intercept and slope, adding a categorical variable (fixed)

Models: $\hat{Y}_{ij} = (\hat{\beta}_0 + \hat{\beta}_2 + \hat{u}_{i1}) + (\hat{\beta}_1 + \hat{\beta}_3 + \hat{u}_{i2}) Age_{ij}$ Age (yrs) $\hat{Y}_{ij} = (\hat{\beta}_0 + \hat{u}_{i1}) + (\hat{\beta}_1 + \hat{u}_{i2}) Age_{ij}$

- Data sets can be stored as data frames or as groupedData objects.
- Multiple lines per subject
- In R, the variable Subject will be labeled as a "grouping" variable, used for plotting and LME analysis.

The groupedData object:

- Contains data stored as a data frame
- Designates special roles for some variables:
 - Response
 - Primary covariate
 - Grouping factor

response ~ primary | grouping

 R stores a formula with the data, which can be accessed through the formula() function

> formula(Orthodont)
distance ~ age | Subject

Also useful when fitting models

- Since there's multiple lines per subject, dim(dat) or nrow(dat) does not longer work to obtain the number of subjects.
- Also, it may be of interest to check the balance of the data.

Alternatively, the getGroups() function can be used if the data has the groupedData format:

```
> table(getGroups(female.dat))
F10 F09 F06 F01 F05 F07 F02 F08 F03 F04 F11
4  4  4  4  4  4  4  4  4  4  4
```

• To check whether the data is balanced with respect of a covariate, e.g. Age in the Maxillary Distance data:

> table(getCovariate(female.dat),getGroups(female.dat))

Some ways to plot involve:

- The groupedData structure.
- The interaction.plot() function
- The lattice library (and the "lattice" R package).

Plotting longitudinal data in R Plots using a groupedData object

R Code to create a groupedData object:

• The "data" option can also be used together with a function to read data, such as the read.table() function:

```
data = read.table(dataset,header=T)
```

• The "outer" option is designated to variables that do not vary within a subject, e.g., sex.

plot(Orthodont, outer=~Sex, aspect=1)


```
> fitt.sex <- lme(. . ., data=dat)</pre>
> dat$fitted.sex <- fitted(fitt.sex)</pre>
> formula(dat.sex)
distance ~ age | Subject
> dat.sex <- update( dat , fitted.sex ~ age | Subject)</pre>
> plot(dat.sex, outer=~Sex, aspect=1)
                                Male
                                                           Female
                  30
                Fitted by Sex (mm)
                                     12
                                             Age (yrs)
```

interaction.plot()

Plots trajectories ("traces") in one single panel – useful when not too many: interaction.plot(x.factor,trace.factor,response)

E.g.,
interaction.plot(age,Subject,distance,col=1:8)

The lattice library (lattice R package)

- Used to plot information in multiple panels: to display multivariate relationships.
- The typical format is:

In the examples below, suppose x,y are continuous variables and A,B are factors.

See http://www.statmethods.net/advgraphs/trellis.html

Plotting longitudinal data in R The lattice library

Plotting longitudinal data in R The lattice library

Simplification of Ime() with groupedData

Since

- -the data set used has a groupedData structure
- -by default the random effects have the same form as the fixed effects,

... the following two fits give the same results: