Les tris

Sandrine Vial sandrine.vial@uvsq.fr

Septembre 2020

Les tris par comparaison

Données

- Collection de N valeurs du même type rangées dans un tableau T
- ▶ Un opérateur de comparaison (\leq, \geq)

But

Ré-ordonner les valeurs de T de telle sorte que :

$$T[i] \le T[i+1], \, \forall i \in \{1 \dots N-1\}$$

Quelques algorithmes de tris

- ► Le tri par insertion
- Le tri à bulles (par permutation)
- Le tri fusion
- ► Le tri rapide (Quicksort)

Le tri par insertion

Principe Général

A tout moment le tableau T est séparé en 2 parties :

- ▶ *T*[1]... *T*[*TailleCourante*] : Partie déjà triée du tableau
- ► T[TailleCourante + 1] . . . T[N] : Partie non triée du tableau.

Le tri par insertion (2)

Une Etape

- Prendre un élément non encore trié;
- L'insérer à sa place dans l'ensemble des éléments triés.

Le tri par insertion (3)

Fin

Algorithme 1 Tri par insertion

```
TriInsertion(T : tableau d'entiers, N : entier)
> Variables Locales
     TC, i, p, temp : entiers
 Debut
 pour TC de 1 à N - 1 faire
    temp \leftarrow T[TC + 1]
    p \leftarrow 1
       tant que T[p] < temp faire
           p \leftarrow p + 1
       fin tant que
     Chercher la position p
       pour i de TC en décroissant à p faire
           T[i+1] \leftarrow T[i]
                                                      Décaler les éléments
       fin pour
    T[p] \leftarrow temp
 fin pour
```

Tri par insertion(4)

Complexité pour N éléments

- ▶ Le corps de la boucle est exécuté N-1 fois
- ► Une itération :
 - ▶ Recherche de la position : *p*
 - ightharpoonup Décalage des éléments : TC p
 - ► Total : *TC*
- ► Au total :

$$\sum_{i=1}^{N-1} i = \frac{N(N-1)}{2}$$

La complexité du tri par insertion est en $O(N^2)$.

8 4 3 5 7 2 1 6

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Tri par permutation

Principe général

- Si deux éléments voisins ne sont pas ordonnés correctement, on les échange.
- Deux parties dans le tableau :
 - Une partie avec des éléments triés
 - Une partie avec des éléments non triés

de telle sorte que les éléments de la partie triée sont inférieurs aux éléments de la partie non triée.

Tri par permutation (2)

Algorithme 2 Tri par permutation

```
 \begin{split} & \text{TriPermutation}(T: \text{tableau d'entiers}, \, \textit{N}: \text{entier}) \\ & \triangleright \textit{Variables Locales} \\ & \textit{i, TC}: \text{entiers} \\ & \text{Debut} \\ & \text{pour } \textit{TC} \text{ de 2 å N faire} \\ & \text{pour i de N en décroissant à TC faire} \\ & \text{si T[i-1]} > \text{T[i] faire} \\ & \text{T[i-1]} \leftrightarrow \text{T[i]} \\ & \text{fin pour} \\ \end{split}
```

Tri par permutation (3)

Complexité pour N éléments

- ▶ Boucle externe : N 2 fois
- ▶ Boucle interne : N TC fois
- ► Total : $\frac{(N-1)(N-2)}{2}$

La complexité du tri par permutation est en $O(N^2)$.

8 4 3 5 7 2 1 6

TC ↓ 1 2 3 4 5 8 6 7

Tri Fusion

- Machine à trier des cartes perforées en 1938;
- ▶ 1er algo de tri fusion écrit par Von Neumann pour l'EDVAC en 1945 ;
- ► Basé sur le paradigme

«Diviser pour régner»

Diviser Pour Régner

- ➤ Séparer le problème en plusieurs sous-problèmes similaires au problème initial.
- ▶ 3 étapes :
 - Diviser le problème en un certain nombre de sous-problèmes
 - ► Régner sur les sous-problèmes en les résolvant
 - Combiner les solutions des sous-problèmes en une solution unique au problème initial.

Tri Fusion (2)

3 étapes :

- ▶ **Diviser** le tableau de N éléments à trier en 2 sous-tableaux de $\frac{N}{2}$ éléments.
- ► Régner :
 - ► Tout tableau de longueur 1 est trié.
 - ▶ Trier les 2 sous-tableaux récursivement à l'aide du Tri Fusion
- ► Combiner : Action Principale : la Fusion
 - Fusionner les 2 sous-tableaux triés pour produire un tableau trié.

Tri Fusion (3)

Fin

Algorithme 3 Tri Fusion

```
\begin{aligned} & \text{TriFusion}(T: \text{tableau d'entiers}, \, p: \text{entier}, \, r: \text{entier}) \\ & \triangleright \, p \, \textit{et } r \, \textit{sont les indices entre lesquels on veut trier le tableau. On suppose } p \leq r. \\ & \text{Debut} \\ & \text{si } p < r \, \text{faire} \\ & q \leftarrow \lfloor \frac{p+r}{2} \rfloor \\ & \text{TriFusion}(\mathbf{T}, \mathbf{p}, \mathbf{q}) \\ & \text{TriFusion}(\mathbf{T}, \mathbf{q} + 1, \mathbf{r}) \\ & \text{Fusion}(\mathbf{T}, \mathbf{p}, \mathbf{q}, \mathbf{r}) \end{aligned}
```

Tri Fusion (4)

Algorithme 4 Tri Fusion

```
Fusion(T: tableau d'entiers, p: entier, q: entier, r: entier)
```

- \triangleright Entrées : T : tableau d'entiers. p, q et r : indices entre lesquels on veut trier le tableau avec $p \le q \le r$.
- ▷ Sortie : T : tableau trié entre les indices p et r.
- ho Pré-condition : ho tableau trié entre les indices ho et q et ho trié entre les indices q+1 et r
- \triangleright Variables locales : i,j,k : entiers et B : tableau d'entiers

```
\begin{aligned} \text{Debut} \\ \mathbf{i} \leftarrow \mathbf{p} \,; \, \mathbf{k} \leftarrow \mathbf{p} \,; \, \mathbf{j} \leftarrow \mathbf{q} + \mathbf{1} \,; \\ \text{tant que} \,\, & (i \leq q \text{ et } j \leq r) \text{ faire} \\ & \quad \text{si T[i]} < \mathbf{T[j]} \text{ faire} \\ & \quad \text{B[k]} \leftarrow \mathbf{T[i]} \\ & \quad \mathbf{i} \leftarrow \mathbf{i} + \mathbf{1} \end{aligned} \begin{aligned} & \quad \text{sinon} \\ & \quad \text{B[k]} \leftarrow \mathbf{T[j]} \\ & \quad \mathbf{j} \leftarrow \mathbf{j} + \mathbf{1} \end{aligned} \begin{aligned} & \quad \text{fin si} \\ & \quad \mathbf{k} \leftarrow \mathbf{k} + \mathbf{1} \\ & \quad \text{fin tant que} \end{aligned}
```

$$\begin{array}{l} \text{tant que } i \leq q \ \text{ faire} \\ B[k] \leftarrow T[i] \\ i \leftarrow i+1 \\ k \leftarrow k+1 \\ \text{fin tant que} \\ \text{tant que } j \leq r \ \text{faire} \\ B[k] \leftarrow T[j] \\ j \leftarrow j+1 \\ k \leftarrow k+1 \\ \text{fin tant que} \\ T \leftarrow B \\ \text{Fin} \end{array}$$

Tri Fusion (5)

Complexité pour N élements

Intuitivement il faut résoudre :

$$Tri(N) = 2 \times Tri(\frac{N}{2}) + \Theta(N)$$

 $ightharpoonup \Theta(N)$: complexité de la fusion

La complexité du tri fusion est en $\Theta(N \log_2 N)$.

8 4 3 5

X

8 4 3 5

X

8 4 3 5

X

Tri Rapide

- Proposé par Hoare en 1962.
- ► Basé sur le paradigme «diviser pour régner» :
 - **Diviser**: le Tableau T[p..r] est divisé en 2 sous-tableaux non vides. Trouver q de telle sorte que chaque élément de T[p..q] soit inférieur à chaque élément de T[q+1..r].
 - ▶ **Régner** : 2 sous-tableaux sont triés grâce à la récursité.
 - Combiner : rien à faire.

Tri Rapide (2)

Algorithme 5 Tri Rapide

```
\begin{split} & \text{TriRapide}(T: \textbf{tableau d'entiers}, \ p: \textbf{entier}, \ r: \textbf{entier}) \\ & \triangleright p \ et \ r \ sont \ les \ indices \ entre \ lesquels \ on \ veut \ trier \ le \ tableau. \ On \ suppose \ p \leq r. \\ & \text{Debut} \\ & \text{si} \ p < r \ \text{faire} \\ & q \leftarrow \text{partitionner}(T,p,r) \\ & \text{TriRapide}(T,p,q) \\ & \text{TriRapide}(T,q+1,r) \end{split} fin si
```

Tri Rapide (3)

Algorithme 6 Partitionner

```
Partitionner(T: tableau d'entiers, p: entier, r: entier)
\triangleright p et r sont les indices entre lesquels on veut trier le tableau. On suppose p < r.
\triangleright Variables locales : i,j,pivot : entiers
 Debut
i \leftarrow p; j \leftarrow r; pivot \leftarrow T[p];
tant que (i < j) faire
      tant que (T[i] < pivot) faire i \leftarrow i + 1 fin tant que
      tant que (T[j] > pivot) faire j \leftarrow j - 1 fin tant que
      si (i < j) faire
           T[i] \leftrightarrow T[j]
           i \leftarrow i + 1
          i \leftarrow i - 1
      fin si
 fin tant que
retourner j
 Fin
```

Tri Rapide (4)

Complexité pour N éléments

- ▶ Partitionner N éléments coûte $\Theta(N)$.
- Temps d'éxécution dépend de l'équilibre ou non du partitionnement :
 - ► S'il est équilibré : aussi rapide que le tri fusion
 - S'il est déséquilibré : aussi lent que le tri par insertion

Tri Rapide (5)

Partitionnement dans le pire cas

- \triangleright 2 sous-tableaux de 1 élement et N-1 éléments.
- ▶ Trier un élément coûte $\Theta(1)$
- Supposons que ce partitionnement déséquilibré intervienne à chaque étape.
- Résolution de :

$$Tri(N) = Tri(N-1) + \Theta(N)$$

Tri Rapide (6)

Partitionnement dans le pire cas

$$Tri(N) = Tri(N - 1) + \Theta(N)$$

$$= \sum_{k=1}^{N} \Theta(k)$$

$$= \Theta(\sum_{k=1}^{N} k)$$

$$= \Theta(N^{2})$$

- ► Ce partitionnement apparaît quand le tableau est trié!
- ▶ Dans ce cas-là le tri par insertion est linéaire!

Tri Rapide (7)

Partitionnement dans le meilleur cas

- ► Le partitionnement est équilibré
- Il faut résoudre :

$$Tri(N) = 2 \times Tri(\frac{N}{2}) + \Theta(N)$$

► Solution : $Tri(N) = \Theta(N \log_2 N)$

Optimalité des tris par comparaisons

- Un tri par comparaison a une complexité en $\Omega(N \log_2 N)$
- Les tris qui ont une complexité en θ(N log₂ N) sont optimaux

Synthèse pour N éléments

Algorithme	Pire cas	En moyenne	Meilleur cas
Insertion	$O(N^2)$	$O(N^2)$	O(N)
Permutation	$O(N^2)$	$O(N^2)$	$O(N^2)$
Fusion	$O(N \log_2 N)$	$O(N \log_2 N)$	$O(N \log_2 N)$
Rapide	$O(N^2)$	$O(N \log_2 N)$	$O(N \log_2 N)$

Tri par dénombrement

Cet algorithme s'appuie sur une supposition forte : les éléments à trier sont des entiers positifs inférieurs à t.

Théorème

La complexité du tri par dénombrement et l'espace qu'il utilise sont en O(n+t). Quand t est fixé, la complexité est donc linéaire.

Première étape : dénombrer

Le principe est de compter combien de fois chaque élément entre 0 et t-1 apparaît et noter cela dans un nouveau tableau.

Algorithme 4 Calcul des fréquences

```
Frequence (A : tableau d'entiers, Taille Max : entier, t : entier):
tableau d'entiers

    ∇ariables Locales

    i: entier
    B: tableau d'entiers de taille t
Début
pour i de 0 à t-1 faire
    B[i] = 0
fin pour
pour i de 1 à TailleMax faire
    B[A[i]] + +
fin pour
retourner B
Fin
```

Deuxième étape : créer le tableau trié

On écrit les éléments dans l'ordre en lisant leur fréquence.

Algorithme 5 Tri par dénombrement

```
Frequence (A : tableau d'entiers, Taille Max : entier, t : entier):
tableau d'entiers
> Variables Locales
     i, j : entiers initialisées à 0
     B: tableau d'entiers de taille t
 Début
tant que j < t faire
          \mathbf{si} \ B[j] > 0 \ \mathbf{faire}
              A[i] = j
              B[j] - -
              i + +
          sinon
              j + +
          fin si
 fin tant que
 Fin
```

Propriétés utiles

On s'intéresse souvent à deux propriétés des algorithmes de tri :

- ► Un tri est stable si plusieurs éléments qui sont égaux pour l'ordre sont dans le même ordre avant et après le tri.
- ► Un tri est en place si on utilise pas de tableau additionnel pour trier.

Utilisation du tri stable : on peut trier des éléments à plusieurs coordonnées selon plusieurs de leurs coordonnées, comme un jeu de carte ou une feuille de tableur.

Propriétés utiles

On s'intéresse souvent à deux propriétés des algorithmes de tri :

- ► Un tri est stable si plusieurs éléments qui sont égaux pour l'ordre sont dans le même ordre avant et après le tri.
- Un tri est en place si on utilise pas de tableau additionnel pour trier.

Utilisation du tri stable : on peut trier des éléments à plusieurs coordonnées selon plusieurs de leurs coordonnées, comme un jeu de carte ou une feuille de tableur.