(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公阴番号

特開2003-292849

(P2003-292849A)

(43)公開日 平成15年10月15日(2003.10.15)

(51) Int.Cl. ⁷		識別記号	•	F	1			ī	-マコード(参考)
COSD	11/00			С	0 9 D	11/00			2C056
B41J	2/01			В.	4 1 M	5/00		E	2H086
B41M	5/00			С	0 9 B	47/06			4J039
C09B	47/06					47/067			
	47/067					47/073			
			審查請求	未請求	請求項	頁の数 6	OL	(全 36 頁)	最終頁に続く
				(2)	43 MI 1993				

(21)出願番号 特顯2002-102658(P2002-102658) (71)出願人 000005201

(22) 出願日 平成14年4月4日(2002.4.4) 富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 小川 学

静岡県富士宮市大中里200番地 富士写真

フイルム株式会社内

(74)代理人 100105647

弁理士 小栗 昌平 (外4名)

最終頁に続く

(54) 【発明の名称】 インクジェット記録用インクおよびインクジェット記録方法

(57)【要約】

【課題】 品質が高い画像の形成が可能で、保存性に優れ、しかもインクジェットヘッドでのインクの乾きが無く、吐出安定性が高いインクジェット記録用インクを提供すること。

【解決手段】 下記一般式 (I) で表される少なくとも 1種の染料を、水性媒体中に溶解または分散してなり、 消泡剤を含有することを特徴とするインクジェット記録 用インク。

(2)

【特許請求の範囲】

【請求項1】 下記一般式(I)で表される少なくとも 1種の染料を、水性媒体中に溶解または分散してなるイ ンクであって、消泡剤を含有することを特徴とするイン クジェット記録用インク。

一般式(I)

【化1】

$$(X_3)a_3 \qquad \qquad (Y_4)b_4 \qquad \qquad (Y_4)b_4 \qquad \qquad (Y_1)b_1 \qquad \qquad (Y_1)b_1 \qquad \qquad (Y_1)b_1 \qquad \qquad (Y_2)a_2 \qquad \qquad (X_2)a_2 \qquad \qquad (X_3)a_3 \qquad \qquad (X_$$

上記一般式(I)中; X_1 、 X_2 、 X_3 および X_4 は、それ ぞれ独立に、-SO-Z、 $-SO_2-Z$ 、 $-SO_2NR_1$ R_2 、スルホ基、 $-CONR_1R_2$ 、または $-CO_2R_1$ を 表す。上記2は、置換もしくは無置換のアルキル基、置 換もしくは無置換のシクロアルキル基、置換もしくは無 置換のアルケニル基、置換もしくは無置換のアラルキル 基、置換もしくは無置換のアリール基、または置換もし くは無置換の複素環基を表す。上記 R_1 、 R_2 は、それぞ れ独立に、水素原子、置換もしくは無置換のアルキル 基、置換もしくは無置換のシクロアルキル基、置換もし くは無置換のアルケニル基、置換もしくは無置換のアラ ルキル基、置換もしくは無置換のアリール基、または置 30 換もしくは無置換の複素環基を表す。なお、乙が複数個 存在する場合、それらは同一でも異なっていてもよい。 Y_1 、 Y_2 、 Y_3 および Y_4 は、それぞれ独立に、一価の置 換基を表す。なお、X1~X4およびY1~Y4のいずれか が複数個存在するとき、それらは、同一でも異なってい

 $a_1 \sim a_4$ および $b_1 \sim b_4$ は、それぞれ $X_1 \sim X_4$ および $Y_1 \sim Y_4$ の置換基数を表し、 $a_1 \sim a_4$ は、それぞれ独立に、 $0 \sim 4$ の整数であり、全てが同時に0になることはなく、 $b_1 \sim b_4$ は、それぞれ独立に、 $0 \sim 4$ の整数である。Mは、水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

【請求項2】 一般式(I)で表される染料が、下記一般式(II)で表される染料であることを特徴とする請求項1に記載のインクジェット記録用インク。

一般式(11)

[化2]

$$(X_{12})a_{13} = (X_{14})a_{14} = (X_{12})a_{13} = (X_{12})a_{13} = (X_{12})a_{12} = (X_{11})a_{12} = (X_{12})a_{12} = (X_{$$

上記一般式 (II) 中; $X_{11}\sim X_{14}$ 、 $Y_{11}\sim Y_{18}$ 、Mは、それぞれ一般式 (I) の中の $X_1\sim X_4$ 、 $Y_1\sim Y_4$ 、Mと同義である。 $a_{11}\sim a_{14}$ は、それぞれ独立に、1または2の整数である。

【請求項3】 前記消泡剤の含有量が0.001~5質量%であることを特徴とする請求項1又は2に記載のインクジェット記録用インク。

【請求項4】 ベタイン系界面活性剤を含有することを 特徴とする請求項1~3のいずれかに記載のインクジェ ット記録用インク。

【請求項5】 請求項1~4のいずれかに記載のインクジェット記録用インクを用いることを特徴とするインクジェット記録方法。

【請求項6】 支持体の上に白色無機顔料微粒子を含有する受像層を有する受像材料の該受像層の表面に、ノズルより、請求項1~4のいずれかに記載のインクジェット記録用インクを、記録信号に応じて吐出させて、該受像層上にインク画像を形成することを特徴とするインクジェット記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は吐出安定性が高く、 得られる画像の色相に優れ、過酷な条件下での画像保存 性に優れるインクジェット記録用インクおよびインクジェット記録方法に関する。

[0002]

【従来の技術】近年、コンピューターの普及に伴いインクジェットプリンターがオフィスだけでなく家庭で紙、フィルム、布等に印字するために広く利用されている。【0003】インクジェット記録方法には、ピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。これらのインクジェット記録用インクとしては、水性インク、油性インク、あるいは固体(溶融型)インクが用いられる。これらのインクのうち、製造・取り扱い性・臭気・安全性等の点から水性インクが主流となっている。

【0004】これらのインクジェット記録用インクに用いられる色素に対しては、溶剤に対する溶解性が高いこ

3

と、高濃度記録が可能であること、色相が良好であること、光、熱、空気、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性がないこと、純度が高いこと、さらには、安価に入手できることが要求されている。しかしながら、これらの要求を高いレベルで満たす色素を捜し求めることは、極めて難しい。特に、良好なシアン色相を有し、耐候堅牢性に優れた色素が強く望まれている。

【0005】一方、インクを調液する際にインク中の微小な気泡の除去が重要となる。インク中の微小な気泡の除去が不十分であると、インクジェットヘッドでのインク詰まり等、吐出安定性が損なわれるという問題がある。インクへの物性調整及び紙への浸透性向上の目的でインク中に界面活性剤を添加することがよく行われるが、この場合界面活性剤が気泡発生の要因の一つとなり、気泡除去の問題がより重要となる。

[0006]

【発明が解決しようとする課題】従って、本発明が解決しようとする課題は、吐出安定性、得られた画像の色相 20 が良好で、保存性に優れた、高画質の画像を与えるインクジェット記録用インクおよびインクジェット記録方法が提供することにある。さらに、長期間、過酷な条件下での吐出安定性が良好で、画像保存性が高いインクジェット記録用インクおよびインクジェット記録方法を提供することである。

[0007]

【課題を解決するための手段】本発明の上記目的は、下 記構成のインクジェット記録用インクおよびインクジェ ット記録方法によって達成される。

(1) 下記一般式(I)で表される少なくとも1種の 染料を、水性媒体中に溶解または分散してなるインクで あって、消泡剤を含有することを特徴とするインクジェ ット記録用インク。

一般式(I)

[0008]

[化3]

$$(X_{3})a_{3}$$

$$(X_{4})a_{4}$$

$$(X_{5})a_{5}$$

$$(Y_{1})b_{5}$$

$$(Y_{2})b_{2}$$

$$(X_{5})a_{2}$$

【0009】上記一般式(I)中 $: X_1, X_2, X_3$ および X_4 は、それぞれ独立に、-SO-Z、 $-SO_2-Z$ 、

- SO₂NR₁R₂、スルホ基、-CONR₁R₂、または -CO₂R₁を表す。

【0010】上記 Z は、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。上記 R 1、R 2 は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なお、Z が複数個存在する場合、それらは同一でも異なっていてもよい。

【0011】 Y_1 、 Y_2 、 Y_3 および Y_4 は、それぞれ独立に、一価の置換基を表す。

【0012】なお、 $X_1 \sim X_4$ および $Y_1 \sim Y_4$ のいずれかが複数個存在するとき、それらは、同一でも異なっていてもよい。

【0013】 a_1 ~ a_4 および b_1 ~ b_4 は、それぞれ X_1 ~ X_4 および Y_1 ~ Y_4 の置換基数を表し、 a_1 ~ a_4 は、それぞれ独立に、0~4の整数であり、全てが同時に0になることはなく、 b_1 ~ b_4 は、それぞれ独立に、0~4の整数である。

【0014】Mは、水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

- (2) 一般式(I)で表される染料が、下記一般式
- (11) で表される染料であることを特徴とする上記
- (1) に記載のインクジェット記録用インク。

30 一般式(11)

[0015]

【化4】

$$(X_{14})a_{14}$$
 Y_{17}
 Y_{18}
 Y_{16}
 Y_{18}
 Y_{16}
 Y_{18}
 Y_{11}
 Y_{11}
 Y_{12}
 Y_{14}
 Y_{12}
 Y_{13}
 Y_{14}
 Y_{12}
 Y_{13}

【0016】上記一般式(II)中; $X_{11}\sim X_{14}$ 、 $Y_{11}\sim Y_{18}$ 、Mは、それぞれ一般式(I)の中の $X_1\sim X_4$ 、 $Y_1\sim Y_4$ 、Mと同義である。

【0017】 a₁₁~ a₁₄は、それぞれ独立に、1または 2の整数である。

(3) 前記消泡剤の含有量が 0.001~5質量%で あることを特徴とする上記(1)又は(2)に記載のイ

ンクジェット記録用インク。

(4) ベタイン系界面活性剤を含有することを特徴とする上記(1)~(3)のいずれかに記載のインクジェット記録用インク。

(5) 上記(1)~(4)のいずれかに記載のインクジェット記録用インクを用いることを特徴とするインクジェット記録方法。

(6) 支持体の上に白色無機顔料微粒子を含有する受像層を有する受像材料の該受像層の表面に、ノズルより、上記(1)~(4)のいずれかに記載のインクジェット記録用インクを、記録信号に応じて吐出させて、該受像層上にインク画像を形成することを特徴とするインクジェット記録方法。

[0018]

【発明の実施の形態】以下、本発明についてさらに詳細 に説明する。

【0019】本発明のインクジェット記録用インクに含有される染料は、上記一般式(I)で表されるフタロシアニン染料である。

【0020】フタロシアニン染料は堅牢な染料として知 20 られていたが、インクジェット用記録染料として使用した場合、オゾンガスに対する堅牢性に劣ることが知られている。

【0021】本発明では、求電子剤であるオゾンとの反応性を下げるために、フタロシアニン骨格に電子求引性基を導入して酸化電位を1.0V(vs SCE)よりも貴とすることが望ましい。酸化電位は貴であるほど好ましく、酸化電位が1.1V(vs SCE)よりも貴であるものがより好ましく、1.2V(vs SCE)より貴であるものが最も好ましい。

【0022】酸化電位の値 (Eox) は当業者が容易に測定することができる。この方法に関しては、例えばP. Delahay著"New Instrumental

Methods in Electrochemis try" (1954年 Interscience Publishers社刊)、A. J. Bard他著"Electrochemical Methods" (1980年 JohnWiley & Sons社刊)、藤嶋昭他著"電気化学測定法" (1984年技報堂出版社刊)などに記載されている。

【0023】具体的には、酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムなどの支持電解質を含むジメチルホルムアミドやアセトニトリルなどの溶媒中に、被験試料を1×10⁻⁴~1×10⁻⁶モルノリットルの濃度に溶解して、サイクリックボルタンメトリーや直流ポーラログラフィーを用いてSCE(飽和カロメル電極)に対する値として測定する。この値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料(例えばハイドロキノン)を入れて電位の再現性を保証すること

6

ができる。

【0024】なお、電位を一義的に規定するために、本発明では、0.1moldm⁻³の過塩素酸テトラプロピルアンモニウムを支持電解質として含むジメチルホルムアミド中(染料の濃度は0.001moldm⁻³)で直流ポーラログラフィーにより測定した値(vs SCE)を染料の酸化電位とする。

【0025】Eox (酸化電位)の値は試料から電極への電子の移りやすさを表わし、その値が大きい (酸化電位が貴である)ほど試料から電極への電子の移りにくい、言い換えれば、酸化されにくいことを表す。化合物の構造との関連では、電子求引性基を導入することにより酸化電位はより貴となり、電子供与性基を導入することにより酸化電位はより卑となる。本発明では、求電子剤であるオゾンとの反応性を下げるために、フタロシアニン骨格に電子求引性基を導入して酸化電位をより貴とすることが望ましい。従って、置換基の電子求引性や電子供与性の尺度であるハメットの置換基定数σρ値を用いれば、スルフィニル基、スルホニル基、スルファモイル基のようにσρ値が大きい置換基を導入することにより酸化電位をより貴とすることができると言える。

【0026】このような電位調節をする理由からも、上 記一般式(I)で表されるフタロシアニン染料を用いる ことは好ましい。

【0027】一般式(I)において、 X_1 、 X_2 、 X_3 お よび X_4 は、それぞれ独立に、-SO-Z、 $-SO_2-$ Z、-SO₂NR₁R₂、スルホ基、-CONR₁R₂、ま たは $-CO_2R_1$ を表す。これらの置換基の中でも、-SO-Z、 $-SO_2-Z$ 、 $-SO_2NR_1R_2$ および-CON R_1R_2 が好ましく、特に $-SO_2-Z$ および $-SO_2NR$ $1R_2$ が好ましく、 $-SO_2-Z$ が最も好ましい。ここ で、その置換基数を表すaェ~a₄のいずれかが2以上の 数を表す場合、 X_1 \sim X_4 の内、複数存在するものは同一 でも異なっていても良く、それぞれ独立に上記のいずれ かの基を表す。また、 X_1 、 X_2 、 X_3 および X_4 は、それ ぞれ全く同じ置換基であってもよく、あるいは例えばX 1、X2、X3およびX4が全て-SO2-Zであり、かつ 各2は異なるものを含む場合のように、同じ種類の置換 基であるが部分的に互いに異なる置換基であってもよ く、あるいは互いに異なる置換基を、例えば-SO2-Zと-SO2NR1R2を含んでいてもよい。

【0028】上記 Z は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリール基、置換もしくは無置換のアリール基、置換もしくは無置換のでリール基、置換をしては無置換のでリールを、置換をしては無置換のでリールを、置換を表別表が最も好ましい。

【0029】上記R₁、R₂は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なかでも、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換のでリール基、および置換もしくは無置換の複素環基が好ましく、その中でも水素原子、置換アルキル基、置換アリール基、および置換複素環基がさらに好ましい。但し、R₁、R₂がいずれも水素原子であることは好ましくない。

【0030】R₁、R₂およびZが表す置換もしくは無置換のアルキル基としては、炭素原子数が1~30のアルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、R₁、R₂、Y₁、Y₂、Y₃およびY₄が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。中でも水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していても良い。なお、アルキル基の炭素原子数は置換基の炭素原子を含まず、他の基についても同様である。

【0031】R₁、R₂およびZが表す置換もしくは無置換のシクロアルキル基としては、炭素原子数が5~30のシクロアルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、R₁、R₂、Y₁、Y₂、Y₃およびY₄が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、およびスルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していても良い。

【0032】R₁、R₂および2が表す置換もしくは無置換のアルケニル基としては、炭素原子数が2~30のアルケニル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルケニル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述の2、R₁、R₂、Y₁、Y₂、Y₃およびY₄が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。な

K1、K2、11、12、13やよい14が天に直接基を行う ことが可能な場合の置換基と同じものが挙げられる。な かでも、水酸基、エーテル基、エステル基、シアノ基、 アミド基、スルホンアミド基が染料の会合性を高め堅牢 性を向上させるので特に好ましい。この他、ハロゲン原 子やイオン性親水性基を有していてもよい。

【0033】R₁、R₂およびZが表す置換もしくは無置 50

換のアラルキル基としては、炭素原子数が7~30のアラルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアラルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述の2、R₁、R₂、Y₁、Y₂、Y₃およびY₄が更に置換基を持つ

R1、R2、Y1、Y2、Y3およびY4か果に直換基を行うことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

【0034】R1、R2およびZが表す置換もしくは無置換のアリール基としては、炭素原子数が6~30のアリール基が好ましい。置換基の例としては、後述のZ、R1、R2、Y1、Y2、Y3およびY4が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、染料の酸化電位を貴とし堅牢性を向上させるので電子吸引性基が特に好ましい。電子吸引性基としては、ハメットの置換基定数のp値が正のものを挙げられる。なかでも、ハロゲン原子、複素環基、シアノ基、カルボキシル基、アシルアミノ基、スルホンアミド基、スルファモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホニル基、イミド基、アシル基、スルホニル基、ストシル基、スルホニル基、スルステモイル基、カルバモイル基、スルホニル基、ストシル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルステモイル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホエル基、スルホエル基、スルホエル基、スルホエル基、スルホエル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホニル基、スルホエル基、スルホエルストラーに対する。

【0035】R_{1、R2}および2が表す複素環基として は、5員または6員環のものが好ましく、それらは更に 縮環していてもよい。また、芳香族複素環であっても非 芳香族複素環であっても良い。以下にR₁、R₂およびZ で表される複素環基を、置換位置を省略して複素環の形 で例示するが、置換位置は限定されるものではなく、例 えばピリジンであれば、2位、3位、4位で置換するこ とが可能である。ピリジン、ピラジン、ピリミジン、ピ リダジン、トリアジン、キノリン、イソキノリン、キナ **ゾリン、シンノリン、フタラジン、キノキサリン、ピロ** ール、インドール、フラン、ベンゾフラン、チオフェ ン、ベンゾチオフェン、ピラゾール、イミダゾール、ベ ンズイミダゾール、トリアゾール、オキサゾール、ベン ズオキサゾール、チアゾール、ベンソチアゾール、イソ チアゾール、ベンズイソチアゾール、チアジアゾール、 イソオキサゾール、ベンズイソオキサゾール、ピロリジ ン、ピペリジン、ピペラジン、イミダソリジン、チアゾ リンなどが挙げられる。なかでも、芳香族複素環基が好 ましく、その好ましい例を先と同様に例示すると、ピリ ジン、ピラジン、ピリミジン、ピリダジン、トリアジ ン、ピラゾール、イミダゾール、ベンズイミダゾール、 トリアゾール、チアゾール、ベンゾチアゾール、イソチ アソール、ベンズイソチアソール、チアジアソールが挙 げられる。それらは置換基を有していても良く、置換基 の例としては、後述のZ、 R_1 、 R_2 、 Y_1 、 Y_2 、 Y_3 お よびY4が更に置換基を持つことが可能な場合の置換基 と同じものが挙げられる。好ましい置換基は前記アリー ル基の置換基と、更に好ましい置換基は、前記アリール 基の更に好ましい置換基とそれぞれ同じである。

【0036】 Y1、Y2、Y3およびY4は、それぞれ独立 に、水素原子、ハロゲン原子、アルキル基、シクロアル キル基、アルケニル基、アラルキル基、アリール基、複 素環基、シアノ基、ヒドロキシル基、ニトロ基、アミノ 基、アルキルアミノ基、アルコキシ基、アリールオキシ 10 基、アシルアミノ基、アリールアミノ基、ウレイド基、 スルファモイルアミノ基、アルキルチオ基、アリールチ オ基、アルコキシカルボニルアミノ基、スルホンアミド 基、カルバモイル基、スルファモイル基、スルホニル 基、アルコキシカルボニル基、複素環オキシ基、アゾ 基、アシルオキシ基、カルバモイルオキシ基、シリルオ キシ基、アリールオキシカルボニル基、アリールオキシ カルボニルアミノ基、イミド基、複案環チオ基、ホスホ リル基、アシル基、カルボキシル基、またはスルホ基を 挙げる事ができ、各々はさらに置換基を有していてもよ 20 い。

【0037】なかでも、水素原子、ハロゲン原子、アル キル基、アリール基、シアノ基、アルコキシ基、アミド 基、ウレイド基、スルホンアミド基、カルバモイル基、 スルファモイル基、アルコキシカルボニル基、カルボキ シル基、およびスルホ基が好ましく、特に水素原子、ハ ロゲン原子、シアノ基、カルボキシル基およびスルホ基 が好ましく、水素原子が最も好ましい。

【0038】Z、R₁、R₂、Y₁、Y₂、Y₃およびY₄が 更に置換基を有することが可能な基であるときは、以下 に挙げる置換基を更に有してもよい。

【0039】炭素数1~12の直鎖または分岐鎖アルキ ル基、炭素数 7~18の直鎖または分岐鎖アラルキル 基、炭素数 2~1 2の直鎖または分岐鎖アルケニル基、 炭素数 2~1 2の直鎖または分岐鎖アルキニル基、炭素 数3~12の直鎖または分岐鎖シクロアルキル基、炭素 数3~12の直鎖または分岐鎖シクロアルケニル基(以 上の各基は分岐鎖を有するものが染料の溶解性およびイ ンクの安定性を向上させる理由から好ましく、不斉炭素 を有するものが特に好ましい。以上の各基の具体例:例 えばメチル、エチル、プロピル、イソプロピル、sec-ブ チル、 t ープチル、2 -エチルヘキシル、2 -メチルス ルホニルエチル、3ーフェノキシプロピル、トリフルオ ロメチル、シクロペンチル)、ハロゲン原子(例えば、 塩素原子、臭素原子)、アリール基(例えば、フェニ ル、4-t-ブチルフェニル、2,4-ジ-t-アミル フェニル)、複素環基(例えば、イミダソリル、ピラソ リル、トリアゾリル、2ーフリル、2ーチエニル、2ー ピリミジニル、2-ベンゾチアゾリル)、シアノ基、ヒ ドロキシル基、ニトロ基、カルボキシ基、アミノ基、ア 50 10

ルキルオキシ基(例えば、メトキシ、エトキシ、2ーメ トキシエトキシ、2ーメタンスルホニルエトキシ)、ア リールオキシ基(例えば、フェノキシ、2-メチルフェ ノキシ、4 – t ープチルフェノキシ、3 – ニトロフェノ キシ、3 – t –ブチルオキシカルバモイルフェノキシ、 3-メトキシカルバモイル)、アシルアミノ基(例え ば、アセトアミド、ベンズアミド、4-(3- t ーブチ ルー4ーヒドロキシフェノキシ) ブタンアミド) 、アル キルアミノ基(例えば、メチルアミノ、ブチルアミノ、 ジエチルアミノ、メチルブチルアミノ)、アニリノ基 (例えば、フェニルアミノ、2ークロロアニリノ、ウレ イド基(例えば、フェニルウレイド、メチルウレイド、 N, Nージブチルウレイド)、スルファモイルアミノ基 (例えば、N, Nージプロピルスルファモイルアミ ノ)、アルキルチオ基(例えば、メチルチオ、オクチル チオ、2ーフェノキシエチルチオ)、アリールチオ基 (例えば、フェニルチオ、2ーブトキシー5ー tーオク チルフェニルチオ、2-カルボキシフェニルチオ)、ア ルキルオキシカルボニルアミノ基(例えば、メトキシカ ルボニルアミノ)、スルホンアミド基(例えば、メタン スルホンアミド、ベンゼンスルホンアミド、pートルエ ンスルホンアミド)、カルバモイル基(例えば、N-エ チルカルバモイル、N, Nージブチルカルバモイル)、 スルファモイル基(例えば、N-エチルスルファモイ ル、N、Nージプロピルスルファモイル、Nーフェニル スルファモイル)、スルホニル基(例えば、メタンスル ホニル、オクタンスルホニル、ベンゼンスルホニル、ト ルエンスルホニル)、アルキルオキシカルポニル基(例 えば、メトキシカルボニル、ブチルオキシカルボニ ル)、複素環オキシ基(例えば、1ーフェニルテトラゾ ールー5-オキシ、2-テトラヒドロピラニルオキ シ)、アゾ基(例えば、フェニルアゾ、4-メトキシフ エニルアゾ、4ーピバロイルアミノフェニルアゾ、2ー ヒドロキシー4ープロパノイルフェニルアゾ)、アシル オキシ基(例えば、アセトキシ)、カルバモイルオキシ 基(例えば、Nーメチルカルバモイルオキシ、Nーフェ ニルカルバモイルオキシ)、シリルオキシ基(例えば、 トリメチルシリルオキシ、ジブチルメチルシリルオキ シ)、アリールオキシカルポニルアミノ基(例えば、フ エノキシカルボニルアミノ)、イミド基(例えば、Nー スクシンイミド、Nーフタルイミド) 、複素環チオ基 (例えば、2ーベンソチアソリルチオ、2, 4ージーフ ェノキシー1,3,5ートリアゾールー6ーチオ、2ー ピリジルチオ)、スルフィニル基(例えば、3-フェノ キシプロピルスルフィニル)、ホスホニル基(例えば、 フェノキシホスホニル、オクチルオキシホスホニル、フ ェニルホスホニル)、アリールオキシカルボニル基(例 えば、フェノキシカルボニル)、アシル基(例えば、ア セチル、3ーフェニルプロパノイル、ベンゾイル)、イ オン性親水性基(例えば、カルボキシル基、スルホ基、

ホスホノ基および4級アンモニウム基) が挙げられる。 【〇〇4〇】前記一般式(I)で表されるフタロシアニ ン染料が水溶性である場合には、イオン性親水性基を有 することが好ましい。イオン性親水性基には、スルホ 基、カルボキシル基、ホスホノ基および4級アンモニウ ム基等が含まれる。前記イオン性親水性基としては、カ ルボキシル基、ホスホノ基、およびスルホ基が好まし く、特にカルボキシル基、スルホ基が好ましい。カルボ キシル基、ホスホノ基およびスルホ基は塩の状態であっ てもよく、塩を形成する対イオンの例には、アンモニウ ムイオン、アルカリ金属イオン(例、リチウムイオン、 ナトリウムイオン、カリウムイオン) および有機カチオ ン(例、テトラメチルアンモニウムイオン、テトラメチ ルグアニジニウムイオン、テトラメチルホスホニウム) が含まれる。対イオンのなかでも、アルカリ金属塩が好 ましく、特にリチウム塩は染料の溶解性を高めインク安 定性を向上させるため特に好ましい。

【0041】イオン性親水性基の数としては、フタロシアニン系染料1分子中少なくとも2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

【0042】 $a_1 \sim a_4$ および $b_1 \sim b_4$ は、それぞれ $X_1 \sim X_4$ および $Y_1 \sim Y_4$ の置換基数を表す。 $a_1 \sim a_4$ は、それぞれ独立に、 $0 \sim 4$ の整数を表すが、全てが同時に0になることはない。 $b_1 \sim b_4$ は、それぞれ独立に、 $0 \sim 4$ の整数を表す。なお、 $a_1 \sim a_4$ および $b_1 \sim b_4$ のいずれかが2以上の整数であるときは、 $X_1 \sim X_4$ および $Y_1 \sim Y_4$ のいずれかは複数個存在することになり、それらは同一でも異なっていてもよい。

【0043】 a_1 と b_1 は、 a_1 + b_1 =4の関係を満たす。特に好ましいのは、 a_1 が1または2を表し、 b_1 が3または2を表す組み合わせであり、そのなかでも、 a_1 が1を表し、 b_1 が3を表す組み合わせが最も好ましい。

【0044】 a_1 と b_1 、 a_1 と b_1 、 a_1 と b_1 の各組み合わせにおいても、 a_1 と b_1 の組み合わせと同様の関係であり、好ましい組み合わせも同様である。

【0045】Mは、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表す。

【0046】Mとして好ましいものは、水素原子の他に、金属元素として、Li、Na、K、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi等が挙げられる。酸化物としては、VO、GeO等が好ましく挙げられる。

【0047】また、水酸化物としては、 $Si(OH)_2$ 、 $Cr(OH)_2$ 、 $Sn(OH)_2$ 等が好ましく挙げられる。さらに、ハロゲン化物としては、AICI、

12

SiCl₂、VCl、VCl₂、VOCl、FeCl、GaCl、ZrCl等が挙げられる。なかでも、Cu、Ni、Zn、Al等が好ましく、Cuが最も好ましい。【0048】また、L(2価の連結基)を介してPc(フタロシアニン環)が2量体(例えば、Pc-M-L-M-Pc)または3量体を形成してもよく、その時のMはそれぞれ同一であっても異なるものであってもよい。

【0049】Lで表される2価の連結基は、オキシ基ーOー、チオ基ーSー、カルボニル基ーCOー、スルホニル基ーSO2ー、イミノ基ーNHー、メチレン基ーCH2ー、およびこれらを組み合わせて形成される基が好ましい。

【0050】前記一般式(I)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

【0051】前記一般式(I)で表されるフタロシアニン染料のなかでも、前記一般式(II)で表される構造のフタロシアニン染料が更に好ましい。以下に本発明の一般式(II)で表されるフタロシアニン染料について詳しく述べる。

【0052】前記一般式 (II) において、 $X_{11} \sim X_{14}$ 、 $Y_{11} \sim Y_{18}$ は一般式 (I) の中の $X_{1} \sim X_{4}$ 、 $Y_{1} \sim Y_{4}$ と それぞれ同義であり、好ましい例も同じである。また、Mは一般式 (I) 中のMと同義であり、好ましい例も同様である。

 【0053】一般式(11)中、a₁₁~a₁₄は、それぞれ 独立に、1または2の整数であり、好ましくは4≦a₁₁ +a₁₂+a₁₃+a₁₄≤6を満たし、特に好ましくはa₁₁ =a₁₂=a₁₃=a₁₄=1のときである。

【0054】 X_{11} 、 X_{12} 、 X_{13} および X_{14} は、それぞれ全く同じ置換基であってもよく、あるいは例えば X_1 、 X_2 、 X_3 および X_4 が全て $-SO_2$ -Zであり、かつ各 Zは異なるものを含む場合のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基を、例えば $-SO_2$ -Zと $-SO_2$ N R_1 R $_2$ を含んでいてもよい。

【0055】一般式(II)で表されるフタロシアニン染料のなかでも、特に好ましい置換基の組み合わせは、以下の通りである。

【0056】 X_{11} \sim X_{14} としては、それぞれ独立に、- SO-Z、 $-SO_2-Z$ 、 $-SO_2NR_1R_2$ または $-SO_2NR_1R_2$ が好ましく、特に $-SO_2-Z$ または $-SO_2NR_1R_2$ が好ましく、 $-SO_2-Z$ が最も好ましい。

【0057】 Zは、それぞれ独立に、置換もしくは無置 換のアルキル基、置換もしくは無置換のアリール基、置 50 換もしくは無置換の複素環基が好ましく、そのなかで

も、置換アルキル基、置換アリール基、置換複素環基が 最も好ましい。特に染料の溶解性やインク安定性を高め るという理由から、置換基中に不斉炭素を有する場合 (ラセミ体での使用)が好ましい。また、会合性を高め 堅牢性を向上させるという理由から、水酸基、エーテル 基、エステル基、シアノ基、アミド基、スルホンアミド 基が置換基中に有する場合が好ましい。

【0058】R₁、R₂は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、水素原子、置換アルキル基、置換アリール基、置換複素環基がより好ましい。ただしR₁、R₂が共に水素原子であることは好ましくない。特に染料の溶解性やインク安定性を高めるという理由から、特に染料の溶解性やインク安定性を高めるという理由から、でいまた、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が置換基中に有する場合が好ましい。

【0059】Y11~Y18は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基、またはスルホ基であることが好ましく、水素原子であることが最も好ましい。

【0060】 a_{11} $\sim a_{14}$ は、それぞれ独立に、1または2であることが好ましく、全てが1であることが特に好ましい。

【0061】Mは、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表し、特にCu、Ni、Zn、Alが好ましく、なかでも特に特にCuが最も好ましい。

【0062】前記一般式(II)で表されるフタロシアニ ン染料が水溶性である場合には、イオン性親水性基を有 することが好ましい。イオン性親水性基には、スルホ 基、カルボキシル基、ホスホノ基および4級アンモニウ ム基等が含まれる。前記イオン性親水性基としては、カ ルポキシル基、ホスホノ基、およびスルホ基が好まし く、特にカルボキシル基、スルホ基が好ましい。カルボ キシル基、ホスホノ基およびスルホ基は塩の状態であっ てもよく、塩を形成する対イオンの例には、アンモニウ ムイオン、アルカリ金属イオン(例、リチウムイオン、 ナトリウムイオン、カリウムイオン) および有機カチオ ン (例、テトラメチルアンモニウムイオン、テトラメチ ルグアニジニウムイオン、テトラメチルホスホニウム) が含まれる。対イオンのなかでも、アルカリ金属塩が好 ましく、特にリチウム塩は染料の溶解性を高めインク安 定性を向上させるため特に好ましい。

14

【0063】イオン性親水性基の数としては、フタロシアニン系染料1分子中に少なくとも2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

【0064】前記一般式 (11) で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

【0065】本発明のフタロシアニン染料の化学構造としては、スルフィニル基、スルホニル基、スルファモイル基のような電子吸引性基を、フタロシアニンの4つの各ベンゼン環に少なくとも一つずつ、フタロシアニン骨格全体の置換基のσp値の合計で1.6以上となるように導入することが好ましい。

【0067】前記一般式(I)で表されるフタロシアニン誘導体は、その合成法によって不可避的に置換基Xn(n=1~4)が異なる類縁体混合物である場合が一般的であり、従って一般式はこれら類縁体混合物を統計的に平均化して表している場合が多い。本発明では、これらの類縁体混合物を以下に示す三種類に分類すると、特定の混合物が特に好ましいことを見出したものである。すなわち前記一般式(I)および(II)で表されるフタロシアニン系染料類縁体混合物を置換位置に基づいて以下の三種類に分類して定義する。

- (1) β-位置換型: 2およびまたは3位、6およびまたは7位、10およびまたは11位、14およびまたは15位に特定の置換基を有するフタロシアニン染料。
- (2) α -位置換型: 1およびまたは4位、5およびまたは8位、9およびまたは12位、13およびまたは16位に特定の置換基を有するフタロシアニン染料。
- (3)α, β-位混合置換型:1~16位に規則性な く、特定の置換基を有するフタロシアニン染料。

【0068】本明細番中において、構造が異なる(特に、置換位置が異なる)フタロシアニン染料の誘導体を 説明する場合、上記β-位置換型、α-位置換型、α,β

-位混合置換型を使用する。

【0069】本発明に用いられるフタロシアニン誘導体は、例えば白井ー小林共著、(株)アイピーシー発行「フタロシアニンー化学と機能ー」(P. 1~62)、C. C. LeznoffーA. B. P. Lever共著、VCH発行'PhthalocyaninesーProperties and Applications'(P. 1~54)等に記載、引用もしくはこれらに類似の方法を組み合わせて合成することができる。

【0070】本発明の一般式(I)で表されるフタロシ 10アニン化合物は、世界特許00/17275号、同00/08101号、同98/41853号、特開平10-36471号などに記載されているように、例えば無置換のフタロシアニン化合物のスルホン化、スルホニルクロライド化、アミド化反応を経て合成することができる。この場合、スルホン化がフタロシアニン核のどの位置でも起こり得る上にスルホン化される個数も制御が困難である。従って、このような反応条件でスルホ基を導入した場合には、生成物に導入されたスルホ基の位置と個数は特定できず、必ず置換基の個数や置換位置の異なる混合物を与える。従ってそれを原料として本発明の化合物を合成する時には、複素環置換スルファモイル基の個数や置換位置は特定できないの

16

で、本発明の化合物としては置換基の個数や置換位置の 異なる化合物が何種類か含まれる α , β -位混合置換型 混合物として得られる。

【0071】前述したように、例えばスルファモイル基のような電子求引性基を数多くフタロシアニン核に導入すると酸化電位がより貴となり、オゾン耐性が高まる。上記の合成法に従うと、電子求引性基が導入されている個数が少ない、即ち酸化電位がより卑であるフタロシアニン染料が混入してくることが避けられない。従って、オゾン耐性を向上させるためには、酸化電位がより卑である化合物の生成を抑えるような合成法を用いることがより好ましい。

【0072】本発明の一般式(II)で表されるフタロシアニン化合物は、例えば下記式で表されるフタロニトリル誘導体(化合物P)および/またはジイミノイソインドリン誘導体(化合物Q)を一般式(III)で表される金属誘導体と反応させるか、或いは下記式で表される4-スルホフタロニトリル誘導体(化合物R)と一般式(III)で表される金属誘導体を反応させて得られるテトラスルホフタロシアニン化合物から誘導することができる。

[0073]

【化5】

【0074】上記各式中、Xpは上記一般式(11)にお ける X_{11} 、 X_{12} 、 X_{13} または X_{14} に相当する。また、Yq、Yq'は、それぞれ上記一般式(II)における Y11、Y12、Y13、Y14、Y15、Y16、Y17またはY18 に相当する。化合物Rにおいて、M' はカチオンを表 す。

【0075】M'が表わすカチオンとしては、Li、Na、 Kなどのアルカリ金属イオン、またはトリエチルアンモ ニウムイオン、ピリジニウムイオンなどの有機カチオン などが挙げられる。

一般式 (111) : M- (Y) d

一般式 (III) 中、Mは前記一般式 (I) および (II) のMと同義であり、Yはハロゲン原子、酢酸陰イオン、 アセチルアセトネート、酸素などの1価または2価の配 位子を示し、dは1~4の整数である。

【0076】即ち、上記の合成法に従えば、望みの置換 基を特定の数だけ導入することができる。特に本発明の ように酸化電位を費とするために電子求引性基を数多く 導入したい場合には、上記の合成法は、一般式(1)の フタロシアニン化合物を合成するための既に述べた方法 50 と比較して極めて優れたものである。

【OO77】かくして得られる前記一般式(II)で表さ れるフタロシアニン化合物は、通常、Xpの各置換位置 における異性体である下記一般式(a)-1~(a)-4 で表される化合物の混合物、すなわちβ-位置換型と なっている。

[0078] 【化6】

一般式(a)-1

[0079] [化7]

一般式 (a) - 2

[0080] [化8]

一般式 (a) -3

(11)

一般式 (a) - 4

【0082】上記合成法において、Xpとして全て同一のものを使用すればX₁₁、X₁₂、X₁₃およびX₁₄が全く同じ置換基であるβー位置換型フタロシアニン染料を得ることができる。一方、Xpとして異なるものを組み合わせて使用すれば、同じ種類の置換基であるが部分的に互いに異なる置換基をもつ染料や、あるいは、互いに異なる種類の置換基をもつ染料を合成することができる。一般式(11)の染料のなかでも、互いに異なる電子吸引性置換基を持つこれらの染料は、染料の溶解性、会合性、インクの経時安定性などを調整できるので、特に好ましい。

【0083】本発明では、いずれの置換型においても酸化電位が1.0V(vs SCE)よりも貴であることが堅牢性の向上に非常に重要であることが見出され、その効果の大きさは前記先行技術から全く予想することができないものであった。また、原因は詳細には不明であるが、なかでも、α、β-位混合置換型よりはβ-位置換型の方が色相、光堅牢性、オゾンガス耐性等において明らかに優れている傾向にあった。

【0084】前記一般式(I) および(II) で表される フタロシアニン染料の具体例(例示化合物 I-1~I-12 および 101~190) を下記に示すが、本発明に 用いられるフタロシアニン染料は、下記の例に限定されるものではない。

[0085]

40 【化10】

$$SO_3Na$$
 $N = NO_2S$
 $N = NO_$

【化11】

.SO₃K

[0086]

23 (1-3)
$$SO_2NH - (n)C_8H_{17}$$
 $N = N$
 $N =$

[0087]

【化12】

$$(1-5)$$

$$SO_{2}N$$

$$NO_{2}S$$

$$NO_{2}S$$

$$NO_{2}S$$

$$NO_{2}S$$

$$NO_{2}N$$

$$SO_{2}N$$

$$SO_{2}N$$

$$NO_{2}S$$

$$NO_{2}$$

N (化13)

[8800]

`SO₃Na

[0089]

[0090]

$$\begin{array}{c} 3I \\ \text{(I-11)} \\ \\ \text{SO}_{2}\text{NH} \\ \\ \text{N} \\ \\ \text{N$$

$$\begin{array}{c} SO_2NH \\ SO_3K \\ \\ N \\ N \\ N \\ N \\ N \\ SO_2NH \\ SO_3K \\ \\ SO_2NH \\ SO_3K \\ \\ SO_3NH \\ \end{array}$$

[0091]

【表 1 】

(18)

33

$$\begin{array}{c} X_1 \\ X_2 \\ Y_{12} \\ Y_{14} \\ Y_{15} \\ Y_{15} \\ Y_{15} \\ Y_{16} \\ Y_{17} \\ Y_{19} \\ Y_$$

费中 (X. X.) (Y., Y.) (Y., Y.) (Y., Y.))、(Y ₁₁ 、Y ₁₁)の各組の具体例はそれぞれ独立に順不同である。
and the control of th	

化合物 No.	M	X,	X,	Y11. Y17	Y12- Y14	Y15. Y16 .	Y12. Yu
101	Cu	-so,-NH-CH,-CH,-so,Li	-H	-H, -H	-H, -H	-H, -H	-H, -H
102	Си	OH - SO ₂ - NH - CH ₂ - CH - CO - NH - CH ₂ CH ₂ - SO ₂ Na .	-н	CI,H	-CI, -H	-CIH	-CI, -H
103	Cu	OH 	-н	-н, -н	-н, -н	-મમ	-нн
104	Cu	60 ₂ - NH CH ₂ CH ₂ - 60 ₃ LI .	-н	-нн	-H -H	-нн	-нн
105	Ni	CH₂-COONa I -50₂-NH-CH₂-CH₂-CO-NH-CH-COONa	-н	-CI, -H	-CI, -H	-cı, -H	-CI, -H
105	Cu	-SO,-NH-CH,-CH,-SO,-NH-CH,-COONa	-CN	-H, -H	-H, -H	-H, -H	-H, -H
107	Cu	CH2-OH -SO2-CH2-CH2-CH2-SO2-NH-CH-COOL	-н	-н, -н	-нн	–н, –н	-н, -н
108	Cu	-SO,-CH,-CH,-CH,-SO,LI	-H	· -H, -H	-H, -H	-H, -H	-н, -н
109	Cu	-so,-ch,-ch,-ch,-so,K	-H	-HH	-нн	-нн	-ң-н
110	Cu	-so ₃ -(CH ₂) ₃ -co ₂ K	-н	-HH	-нн	−н. −н	<u> </u>

[0092]

表中 (X,, X,)、(Y,,, Y,,)、(Y,,, Y,,)、(Y,,, Y,,)、(Y,,, Y,,)の各組の具体例はそれぞれ独立に順不同である

化合物 No.	М	X ₁	X,	Y11, Y12	Y15, Y14	Y ₁₄ , Y ₁₆	Y_{12}, Y_{11}
111	Cu	. ОН . I . – SO ₂ – NH – CH ₃ – CH ₃ – CH ₃ – SO ₃ LI	-H	-нн	-HH	-HH	-нн
112	Cu	ОН - SO ₂ -NH-CH ₂ -CH ₃ -CH ₃ -SO ₂ NH-CH ₃ -CH-CH ₄	-so,Li	-н, -н	-н, -н	-н, -н	-нн
113	Cu	−so₂−cн₂-cн−cн₂so₂к I он	-н	-н, -н	-н, -н	-нн	-нн
114	Cu	ОН -so ₂ -ch ₂ -сh ₃ -сh ₄	-so _t ti	-нн	-н, -н	-нн	-н, -н
115	Cu	CH ₃ -SO ₂ NH(CH ₂) ³ N(CH ₂ CH ₃ OH) ₂ · CH ₃	-H	-нн	-ң -н	-н, -н	-нн
116	Cu	—со-ин-сн-снъо³к .	-н	-н, -н	-нн	-н, -н	-ң -н
117	Cu	COOLI 	-н	нн	-нн	-нн	-нн

(19)

35

 $X_1 \qquad X_2 \qquad Y_{1a} \qquad Y_{1a}$

化合物 No.	М	X ₁	X ₂	Y11, Y12	Y12. Y14	Y15. Y11	Yn, Yu
118	Cu	- so, ch, ch, ch, ch, ch, ch, ch, ch, ch, ch	-H	-HH	-H, -H	-нн	-нн
119	Сυ	OH -SO₂-CH₂-CH-CH₂-SO₃Na	-н	-н, -н	-нн	-н, -н	-нн
120	Cu	_so_ch_ch_coon .	-н	-н, -н	-нн	-н, -н	-н, -н
121	Си	— SO₂(CH₂)₃SO₂NHCH₂ — CH – CH₂ — SO₃Li · I OH	-н	-н, -н	-н, -н	-H -H	-н, -н
122	Cu	OH — CO₂CH₂CH₂CH₂SO₂ – NH – CH₂ — CH – CH₂ – SO₃Li	–ਮ	-H, -H	-H. - H	-H, -H	-нн
123	Cu	-SO,NH-C,H,(t)	-н	-HH	-нн	-н, -н	-н, -н
124	Cu	сңсң - so,- nн-сң-сн-сңснсң-сң	-н	-н, -н	-н, -н	-H, -H	-нн

[0094]

*【表4】

数中 (x₁, x₂)、(Y₁₁, Y₁₂)、(Y₁₁, Y₁₂)、(Y₁₁, Y₁₂)、(Y₁₁, Y₁₂)の各組の具体例はそれぞれ独立に順不同である。

化合物 No.	М	Χ,	Χ,	Y,,, Y,,	Y15, Y14	Y15. Y15	Y175 Y18
125	Сu	CH3 - SO2CH2CH2CH2SO2-NH-CH2-CH-CH2-CH3	-н	-ң -н	-H. -H	-H, -H	-н, -н
126	Cu	сң –so₂-сӊ-сӊ-сӊ-со₂—сн-сӊ-о-сӊ	-н	-н, -н	-нн	-нн	-HH
127	Cu	- 502CH3CH2CH2S02NHCH2CH3CH2O-CH3	-н	-нн	-н, -н	-нн	-н, -н
128	2n	о−сн₃ −so₂∽сн₂−сн-сн,−о−сн,	-CN	-нн	-H, - H	-нн	-HH
129	Cu	-co-ин-сӊ-сн-сӊ-сӊ-сӊсӊ -со-ин-сӊ-сн-сӊ-сӊ-сн,	-н	-CIH	-сі -н	-сін	-CIH
130	Cu		-#	-H, -H	-н, -н	-H, -H	-H, - H
131	Çu	CH ₃ SO ₃ U	-н	-н, -н	-H, - H	-н, -н	-нн

[0095]

【表 5】

(20)

37

$$\begin{array}{c} X_1 \\ X_2 \\ Y_{10} \\ X_1 \\ X_2 \\ Y_{10} \\ X_3 \\ Y_{10} \\ X_4 \\ Y_{10} \\ X_5 \\ Y_{10} \\$$

あ由 (Y X) (Y ... Y ...) (Y ... Y ...) (Y ... Y ...) (Y ... Y ...)の各組の具体例はそれぞれ独立に順不同である。

<u> </u>	X ₂), (1 ₁₁ ,	Y11), (Y11, Y14), (Y16, Y14), (Y11, Y14)0) 12 48 0) 32 94 34 6 4 6 6 4 6 52					
化合物 No.	М	X,	X ₂	Y_{11}, Y_{12}	Y12, Y14	Y ₁₉ , Y ₁₄	Y 17. Y 11
132	Cu	- SO ₂ NH- CO ₂ C ₆ H _{1.5} (n) CO ₂ C ₆ H _{1.5} (n)	-H .	-H, -H	-н, -н	-нн	-нн
133	Cu	- SO ₂ NH - OCH ₂ CH ₂ OCH ₃ SO ₂ NHCH ₂ CH C ₂ H ₅ C ₄ H ₆	-н	-нн	-н, -н	-н, -н	-H, -H
134	Cu	- SO ₂ NH-CH ₂ -CH-CH ₂ CH ₂ -CH ₂ -CH ₂	-н	-н, -н	-н, -н	-H -H	-н, -н
135	Cu	- SO ₂	-н	-н, -н	-н, -н	-нн	-н,н
138	Cu	-so ₂ N C.H ₀ (n)	-н	-н, -н	-нн	-н, -н	-нн

[0096]

 $oldsymbol{eta}$ 中 $(oldsymbol{\mathsf{X}}_1,oldsymbol{\mathsf{X}}_1),(oldsymbol{\mathsf{Y}}_1,oldsymbol{\mathsf{Y}}_1),(oldsymbol{\mathsf{Y}}_1,oldsymbol{\mathsf{Y}}_1),(oldsymbol{\mathsf{Y}}_1,oldsymbol{\mathsf{Y}}_1),(oldsymbol{\mathsf{Y}}_1,oldsymbol{\mathsf{Y}}_1)$ の各組の具体例はそれそれ独立に関小同じめる

化合物 No.	M	X _i	X,	Y_{11}, Y_{12}	Y12, Y14	Y15, Y16	Y_{13}, Y_{14}
137	Cu	-so, -s S SO ₃ U	- H	-нн	-н, -н	-нн	-HH
138	Cu	-so,NH N.N	-н	-н, -н	-н, -н	-н, -н	-н, -н
139	Cu	- SO ₂ (CH ₂) ₃ -NH-C-CO ₂ U	-CI	-н, -н	-н, -н	-H, -H	-H. -H
140	Cu	NH-CH₂-CH₂-CH-SO₃U N=⟨ CH₃ -CO₂-CH₃CH₂-NH-⟨ N CH₃ N-⟨ NH-CH₂-CH₃-CH-SO₃U	-H	-нн	-HH	-н, -н	-н, -н

	4
, <u>x</u> ,	
YION	
x,	
X ₂	
Y14	
X ₂ X ₁	

器中(X₁, X₂)、(Y₁₁, Y₁₂)、(Y₁₁, Y₁₂)、(Y₁₁, Y₁₂)、(Y₁₁, Y₁₂)の各組の具体例はそれぞれ独立に顧不同である。

化合物 No.	М	X,	Χz	Y Y	Y12. Y14	Y12. Y12	Y,, Y,
141	Сп	COOM 	-н	-ң -н	-HH	-H, -H	-н, -н
142	Cu	- 302NH- SO2Li	-н	-ң -н	-H, - H	-H, -H	-મ. - મ
143	Cu	OH COOK 	7	-нн	-н, -н	-н, -н	-н, -н
144	Cu	- 50 ₂ - CH ₂ CH ₂ CH ₂ - NH - CO - NH - CH - CH ₂ - COOLI	-н	-H, -H	-нн	-н, -н	-нн
145	Cu	— so₃сӊ,сӊ₂осӊ₂сӊ₂осн₃сӊ₃so₃⊔	∓ਮ	-нн	-н, -н	-нн	-нн

[0098]

* *【表8】

M-Pc(R	(R,)	表中(R ₁)、(R ₂)の各置換基の β 位置換基型内で導入	拉置	の順序は順不同である。	
化合物 No.	М	R ₁	Е	R _t	n
146	Cu	CH ₃ — SO ₂ —NHCH ₂ CHSO ₃ L1	3	0H SO₂ - NH - CH₂ CH₁ - CH₂ .	
147	Cu	– so, – nh – сн, – сн, so, li	3	ОН 	1
148	Cu	СН _а — SO ₂ —NH—СН ₂ —СН—SO ₃ LI	з	-SO ₂ NH-CH ₁ -GH ₂ -CH ₁ -SO ₂ -NH-CH ₃ -CH ₂ -O-CH ₃ -CH ₂ -OH	
149	Cu	CH。 —SO2—NH—CH2—CH—SO3Li	2	- SO ₂ -NH-CH ₂ -CH ₃ -CH ₃ -CO-N-(CH ₆ -CH ₂ -OH) ₀	2
150	Cu	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ CH ₃ -COON ₈	3	CH₃ I —SO₃NH—CH-CH₀OH.	1
151	Cu	-SO2-NH-SO2NH-CH2-CH-SO3Li	3	- so,nh-ch,-ch,-o-ch,-ch,-он	1
152	Сп	СН ₃ — SD ₃ — CH ₃ — CH ₃ — CH— SO ₃ Li	2.5	-SO ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -OH	1.5
153	Cu	CH ₃ — SO ₂ – CH ₂ – CH ₂ – CH – SO ₃ Na ·	2	~ SO2-CH2-CH2-CH2-CO-N-(CH2-CH2-CH)2	2
154	Cu	-50,-CH,-CH,-CH,-SO,LI	3	OH 	1
155	Cu	-so,-сн,-сн,-соок	2	OH 	2.
156	Cu	-so,-ch,-ch,-so,Li	3	OH 	1
157	Cu	-so,-ch,-ch,-o-ch,-ch,-so,L	2	-502-CH2-CH3-CH3-CO3-CH3-CH3-CH3-CO0k	(2.

[0099]

(22)

41 表中(R₁)、(R₁)の各種換基の 8 位置換基型内で導入位置の順序は順不同である。_____

M-Pc(F	(1)"(14')	表中(R _i)、(R _i)の各位技器の方位位技器室内で	7/1		
化合物 No.	M	R _i	m	R ₂	n
158	Cu	он —so₂-сн₂—сн-сн₂-so₃u	3	OH - SO ₂ -CH ₂ -CH-CH ₂ -OH	1
159	Си	-SO,NHCH,CH,-SO,Li	3	ОН SO ₂ СН ₂ СН ₃ SO ₂ NHСН ₃ СНСҢ	1
160	Cu	-50,-CH,-CH,-O-CH,-CH,-O-CH,-CH,-SO,Na	3	CH₂−CH₂−COON₃ SO₂−CH₂−CH₂−CH₂−CO—N−CH₂−COON₃	1
161	Cu	-so,ch,ch,ch,so,li	3	— ЅѸ҈ҪӉ҂ҪӉ҂ЅѸ҈ЍѤӉ҂ – СН – СӉ҂ЅѸӸ ОН	1
162	Cu	-so,ch,ch,ch,so,Li	2	so,сн,сн,осн,сн,он	2
163	Cu	-so,ch,ch,ch,so,K	3	СН ₃ - - SO ₂ CH ₂ CH ₂ SO ₂ NH-CH-CH ₂ -OH	1
164	Cu	—50,CH,CH,CH,SO,Li	2	-so ₂ cH ₂ cH ₂ cH ₃ so ₃ N(cH ₂ cH ₂ oH) ₂	2
165	Cu	-co-NH-CH ₂ -CH ₂ -SO ₂ K	3	-CO-NH-CH ₂ -CH ₂ -O-GH ₂ -GH ₂ -OH	1
166	Cu	CO-NH-CH ₃ -CH ₃ -SO ₃ -NH-CH ₃ -CH ₂ -COONa	3	ОН 	ŀ
167	Cu	OH 	2.5	-co-ин-сң-сң-сң-со-и-(сң-сң-он) ₂	1.
168	Cu	CH ₃ - CO ₂ - CH ₂ - CH ₂ - CH - SO ₃ N _b	2	-co-ch-ch-ch-co-n-(-ch-ch-a-);	1
169	Cu	-co,-ch,-ch,-so,Li	3	ОН - СО ₂ - СН ₂ - СН ₂ - СН ₂ - SO ₂ - NH - СН ₄ - СН - СН ₄	
170	Cu	-со _з -сн _з -сн _з -сн _з соок	2		<u>.</u>

[0100]

* *【表10】

M-Pc(R,)_(R,)。 农中(R,)、(R,)の各世換基のβ位置換基型内で導入位置の順序は順不同である。						
化合物 No.	М	R,	m	R,		
171	Cu	— со,-сн,-сн,-о-сн,-о-сн,-сн,-so,Na	3	OH 	•	
172	Си	– so₂ch₂ch₁och₂ch₁o – ch₂ch₂so₂k	2	— СО ₂ — СН ₂ — СН ₂ — СО ₂ — СН ₂ — СН — СН ₂ — СООК ОН	2	
173	Cu	— SO₂(CH₂)₃SO₂NHCH₂CHCH₂OH I OH	2	_co₃-c+₃-c+-c+₃-so₃u	2	
174	Cu.		3	OH -CO;-CH;-CH;-SO;-NH-CH;-CH-CH;	1	
175	Cu	-so,(ch,),so,nh(ch,),n(ch,ch,oh),	2	CH2−CH2−COOU 	2	
176	Cu	OH - SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	3		1	
177	Cu	-so,-cH,-CH,-O-CH,-CH,-O-CH,	2	OH 	1	
178	Cu	-SO ₃ -CH ₃ -CH ₃ -O-CH ₂ -CH ₃ -O-CH ₃ -GH ₃ -OH	3	CH2CH3 - SO2-CH2-CH2-CH2-CO2-CH2-CH-CH2CH3-CH2CH3	1	
179	Cu	СН ₂ СН ₃ - SO ₂ -СН ₃ -СН ₂ СН ₃ -СН ₂ СН ₃	2	0—сн, -so ₂ -ch,-ch,-ch,-so ₂ -nh-ch,-ch-ch	2	
180	Cu	0-СН ₂ - SO ₂ -СН ₂ -СН ₂ -СН ₂ -SO ₂ -NH-СН ₂ -СH-СН ₃	3	-so,nh-ch,-ch,-so,nh-ch,-ch,-o-ch,-ch,-oh	1	
181	Cu	CH ₃ -SO ₁ -CH ₂ -CH ₂ -CH ₃ -CO ₂ -NH-CH-CH ₂ -CH ₃	3	-502-CH2-CH2-CH2-SO2-NH-CH-(-CH4)2	1	
182	Cu	OH 	2.5	CH3 	1.5	

44

M-Pc(F	(,)_(R,)。	入化	1世の順序は順不同である。	
化合物 No.	М	R _i	E	R,	n
183	Cu	CH ₂ - so ₂ - cH ₂ - CH ₂ - CH ₃ - CH ₂ - CH ₃	2	-so,-ch,-ch,-ch,-so,-nh-(ch,),-ch,-o-ch,ch,-oh	
184	Си	OH 	3	-so,-сн,-сн,-о-сн,-сн,-о-сн,	1
185	Cu	OH 	3	-so ₃ -cH ₂ -cH ₂ -o-cH ₂ -cH ₃ -o-cH ₃ -cH ₁ -o-CH ₃	1
186	Cu	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₃ -CO ₂ -NH-CH-CH ₂ -CH ₃	3	-so,-ch,-ch,-o-ch,-ch,-o-ch,-ch,-oh	1
187	Cu	-so ₂ -сн ₂ -сн ₂ -сн ₂ -so ₂ -м-сн-(сн ₄) ₂	. 3	СН₂СН₃ — СО₂ – СН₂ — СН - СН₂ – СН₂СН₃ .	1
188	Cu	СН ₃ СС ₂ -СН ₂ -СН ₂ -СН ₂ -СС ₂ -NH-СН-СН ₃ -СН ₃	3	-co ₂ -ch ₂ -ch ₃ -o-ch ₃ -o-ch,	1
189	Cu	-co-nh-ch-ch-so2-nh-ch-(-ch)2	3	CH ₂ CH ₃ SO ₂ -NH-CH ₂ -CH-CH ₃ -CH ₃ -CH ₃ -CH ₃	,
190	Cu	CH3CH3 I —CO-NH-CH3-CH-CH3-CH3-CH3	3	-co-nh-ch ₂ -ch ₃ -o-ch ₃ -ch ₃ -o-ch ₃	1

【0102】なお、表8~表110M-Pc(Xp_1)m(Xp_2)nで示されるフタロシアニン化合物の構造は下記の通りである。

[0103]

【化16】

$$X_{pl}$$
 Y_{q} Y

【0104】前記一般式(I)で表されるフタロシアニン染料は、前述した特許に従って合成することが可能である。また、一般式(II)で表されるフタロシアニン染料は、前記した合成方法の他に、特開2001-226275号、同2001-96610号、同2001-47013号、同2001-193638号の各公報に記載の方法により合成することができる。また、出発物質、染料中間体および合成ルートについてはこれらに限定されるものでない。

【0105】本発明のインクジェット記録用インクは、前記フタロシアニン染料を好ましくは0.2~20質量%含有し、より好ましくは0.5~15質量%含有する。

【0106】本発明のインクジェット用インクには、前 記シアン色索とともにフルカラーの画像を得る目的で、 色調を整えるために他の色素を併用してもよい。併用す ることが出来る色素の例としては以下を挙げることが出

来る。

【0107】イエロー染料としては、例えばカップリン 20 グ成分としてフェノール類、ナフトール類、アニリン 類、ピラゾロン類、ピリドン類、開鎖型活性メチレン化 合物類を有するアリールもしくはヘテリルアゾ染料:例 えばカップリング成分として開鎖型活性メチレン化合物 類を有するアソメチン染料;例えばベンジリデン染料や モノメチンオキソノール染料等のようなメチン染料;例 えばナフトキノン染料、アントラキノン染料等のような キノン系染料などがあり、これ以外の染料種としてはキ ノフタロン染料、ニトロ・ニトロソ染料、アクリジン染 料、アクリジノン染料等を挙げることができる。これら 30 の染料は、クロモフォアの一部が解離して初めてイエロ ーを呈するものであってもよく、その場合のカウンター カチオンはアルカリ金属や、アンモニウムのような無機 のカチオンであってもよいし、ピリジニウム、4級アン モニウム塩のような有機のカチオンであってもよく、さ らにはそれらを部分構造に有するポリマーカチオンであ ってもよい。

【0108】マゼンタ染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアグ染料;例えばカップリング成分としてピラゾロン類、ピラゾロトリアゾペール類を有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、オキソノール染料のようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料、例えばナフトキノン、アントラキノン、アントラピリドンなどのようなキノン系染料、例えばジオキサジン染料等のような縮合多環系染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてマゼンタを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウム

のような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

【0109】シアン染料としては、例えばインドアニリ ン染料、インドフェノール染料のようなアゾメチン染 料;シアニン染料、オキソノール染料、メロシアニン染 料のようなポリメチン染料;ジフェニルメタン染料、ト リフェニルメタン染料、キサンテン染料のようなカルボ ニウム染料;フタロシアニン染料;アントラキノン染 料;例えばカップリング成分としてフェノール類、ナフ トール類、アニリン類を有するアリールもしくはヘテリ ルアゾ染料、インジゴ・チオインジゴ染料を挙げること ができる。これらの染料は、クロモフォアの一部が解離 して初めてシアンを呈するものであってもよく、その場 合のカウンターカチオンはアルカリ金属や、アンモニウ ムのような無機のカチオンであってもよいし、ピリジニ ウム、4級アンモニウム塩のような有機のカチオンであ ってもよく、さらにはそれらを部分構造に有するポリマ ーカチオンであってもよい。

【0110】また、ポリアゾ染料などのブラック染料も使用することができる。

【0]1] 水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料、反応性染料等が挙げられる。好ましいものとしては、

C. I. ダイレクトレッド2、4、9、23、26、31、39、62、63、72、75、76、79、80、81、83、84、89、92、95、11 1、173、184、207、211、212、214、218、21、223、22 4、225、226、227、232、233、240、241、242、243、24 7

C. I. ダイレクトバイオレット7、9、47、48、51、6 6、90、93、94、95、98、100、101

C.I. ダイレクトイエロー8、9、11、12、27、28、2 9、33、35、39、41、44、50、53、58、59、68、86、8 7、93、95、96、98、100、106、108、109、110、130、1 32、142、144、161、163

C. 1. ダイレクトブルー 1、10、15、22、25、55、67、6 8、71、76、77、78、80、84、86、87、90、98、106、10 8、109、151、156、158、159、160、168、189、192、19 3、194、199、200、201、202、203、207、211、213、21

4, 218, 225, 229, 236, 237, 244, 248, 249, 251, 25 2, 264, 270, 280, 288, 289, 291

C. I. ダイレクトプラック 9、17、19、22、32、51、5

6、62、69、77、80、91、94、97、108、112、113、11 4、117、118、121、122、125、132、146、154、166、16

4、117、118、121、122、125、132、146、154、166、168、168、173、199

C. 1. アシッドレッド35、42、52、57、62、80、82、11 1、114、118、119、127、128、131、143、151、154、15 8、249、254、257、261、263、266、289、299、301、30

5, 336, 337, 361, 396, 397

46

C. I. アシッドバイオレット5、34、43、47、48、90、10 3、126

C. 1. アシッドイエロー17、19、23、25、39、40、42、4 4、49、50、61、64、76、79、110、127、135、143、15 1、159、169、174、190、195、196、197、199、218、21 9、222、227

C. I. アシッドブルー9、25、40、41、62、72、76、78、80、82、92、106、112、113、120、127: 1、129、13 8、143、175、181、205、207、220、221、230、232、24 7、258、260、264、271、277、278、279、280、288、29 0、326

0、326
C. 1. アシッドブラック7、24、29、48、52: 1、172
C. I. リアクティブレッド3、13、17、19、21、22、23、24、29、35、37、40、41、43、45、49、55
C. I. リアクティブバイオレット1、3、4、5、6、7、8、9、16、17、22、23、24、26、27、33、34
C. I. リアクティブイエロー2、3、13、14、15、17、18、23、24、25、26、27、29、35、37、41、42
C. 1. リアクティブブルー2、3、5、8、10、13、14、120
5、17、18、19、21、25、26、27、28、29、38
C. 1. リアクティブブラック4、5、8、14、21、23、26、31、32、34

31、32、34
C. I. ベーシックレッド12、13、14、15、18、22、23、2
4、25、27、29、35、36、38、39、45、46
C. I. ベーシックバイオレット1、2、3、7、10、15、1
6、20、21、25、27、28、35、37、39、40、48
C. I. ベーシックイエロー1、2、4、11、13、14、15、1
9、21、23、24、25、28、29、32、36、39、40
C. I. ベーシックブルー1、3、5、7、9、22、26、41、4
30 5、46、47、54、57、60、62、65、66、69、71
C. I. ベーシックブラック8、等が挙げられる。

【0112】また、本発明で使用するフタロシアニン染料および上記の色素は実質的に水溶性又は水分散性のものである。具体的には20℃における色素の水への溶解度は2質量%以上であることが好ましく、より好ましくは5質量%以上である。

【0113】本技術に用いられる顔料としては、市販のものの他、各種文献に記載されている公知のものが利用できる。文献に関してはカラーインデックス(The Socie ty of Dyers and Colourists編)、「改訂新版顔料便覧」日本顔料技術協会編(1989年刊)、「最新顔料応用技術」CMC出版(1986年刊)、「印刷インキ技術」CMC出版(1984年刊)、W. Herbst, K. Hunger共著によるIndustrial Organic Pigments (VCHVerlagsgesellschaft、1993年刊)等がある。具体的には、有機顔料ではアゾ顔料(アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料)、多環式顔料(フタロシアニン系顔料、イン・デジョンので、リーンので、リーンのので、リーンのので、リーンのので、リーンのので、カーンので、カーンので、カーンのでは、カーンのでは、カーンのでは、カーンので、カーンので、カーンのでは、カーンのでは、カーンので、カーンので、カーンので、カーンのでは、カーンので、カーンので、カーンので、カーンので、カーンので、カーンのでは、カーンのでは、カーンのでは、カーンので、カーンので、カーンのでは、カーンのでは、カーンので、カーンの

ケトピロロピロール系顔料等)、染付けレーキ顔料(酸性または塩基性染料のレーキ顔料)、アジン顔料等があり、無機顔料では、黄色顔料のC. 1. Pigment Yellow 3 4, 37, 42, 53など、赤系顔料のC. 1. Pigment Red 10 1, 108など、青系顔料のC. 1. Pigment Blue 27, 29, 17:1など、黒系顔料のC. 1. Pigment Black 7, マグネタイトなど、白系顔料のC. 1. Pigment White 4, 6, 18, 21などを挙げることができる。

【0114】画像形成用に好ましい色調を持つ顔料とし ては、青ないしシアン顔料ではフタロシアニン顔料、ア ントラキノン系のインダントロン顔料(たとえばC. 1. Pigment Blue 60など)、染め付けレーキ顔料系のトリ アリールカルボニウム顔料が好ましく、特にフタロシア ニン顔料 (好ましい例としては、C. I. Pigment Blue1 5:1、同15:2、同15:3、同15:4、同15:6などの銅フタロシ アニン、モノクロロないし低塩素化銅フタロシアニン、 アルニウムフタロシアニンでは欧州特許860475号に記載 の顔料、C. I. Pigment Blue 16である無金属フタロシ アニン、中心金属が2n、Ni、Tiであるフタロシアニンな ど、中でも好ましいものはC. I. Pigment Blue 15:3、同 20 15:4、アルミニウムフタロシアニン)が最も好ましい。 【0115】赤ないし紫色の顔料では、アゾ顔料(好ま しい例としては、C. I. Pigment Red 3、同5、同11、 同22、同38、同48:1、同48:2、同48:3、同48:4、同49: 1、同52:1、同53:1、同57:1、同63:2、同144、同146、 同184) など、中でも好ましいものはC. I. Pigment Red 57:1、同146、同184)、キナクリドン系顔料(好まし い例としてはC. I. Pigment Red 122、同192、同202、 同207、同209、C. I. Pigment Violet 19、同42、なか でも好ましいものはC. I. Pigment Red 122)、染め付 けレーキ顔料系のトリアリールカルボニウム顔料(好ま しい例としてはキサンテン系のC. I. Pigment Red 81: 1、C. I. Pigment Violet 1、同2、同3、同27、同3 9) 、ジオキサジン系顔料 (例えばC. I. Pigment Viole t 23、同37)、ジケトピロロピロール系顔料 (例えばC. I. Pigment Red 254) 、ペリレン顔料 (例えばC. I. P igment Violet 29)、アントラキノン系顔料(例えばC. 1. Pigment Violet 5:1、同31、同33)、チオインジゴ 系 (例えばC. I. Pigment Red 38、同88) が好ましく用 いられる。

【0116】黄色顔料としては、アブ顔料(好ましい例としてはモノアブ顔料系のC. I. Pigment Yellow 1, 3, 74, 98、ジスアブ顔料系のC. I. Pigment Yellow 12, 13, 14, 16, 17, 83、総合アブ系のC. I. Pigment Yellow 93, 94, 95, 128, 155、ベンズイミダブロン系のC. I. Pigment Yellow 120, 151, 154, 156, 180など、なかでも好ましいものはベンジジン系化合物を原料に使用しなもの)、イソインドリン・イソインドリノン系顔料(好ましい例としてはC. I. Pigment Yellow 109, 110, 137, 139など)、キノフタロン顔料(好ましい例とし

48

てはC. 1. Pigment Yellow 138など)、フラパントロン 顔料 (例えばC. I. Pigment Yellow 24など) が好まし く用いられる。

【0117】黒顔料としては、無機顔料(好ましくは例としてはカーボンブラック、マグネタイト)やアニリンブラックを好ましいものとして挙げることができる。

【0118】この他、オレンジ顔料 (C. I. Pigment Or ange 13, 16など) や緑顔料 (C. I. Pigment Green 7など) を使用してもよい。

【0119】本技術に使用できる顔料は、上述の裸の顔料であっても良いし、表面処理を施された顔料でも良い。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤やエポキシ化合物、ポリイソシアネート、ジアゾニウム塩から生じるラジカルなど)を顔料表面に結合させる方法などが考えられ、次の文献や特許に記載されている。

【0120】① 金属石鹸の性質と応用(幸書房)

- ② 印刷インキ印刷 (CMC出版 1984)
- 20 ③ 最新顔料応用技術 (CMC出版 1986)
 - ④ 米国特許5,554,739号、同5,571,311号
 - ⑤ 特開平9-151342号、同10-140065号、同10-292143 号、同11-166145号

特に、上記④の米国特許に記載されたジアゾニウム塩を カーボンブラックに作用させて調製された自己分散性顔 料や、上記⑤の日本特許に記載された方法で調製された カプセル化顔料は、インク中に余分な分散剤を使用する ことなく分散安定性が得られるため特に有効である。

【0121】本発明においては、顔料はさらに分散剤を用いて分散されていてもよい。分散剤は、用いる顔料に合わせて公知の種々のもの、例えば界面活性剤型の低分子分散剤や高分子型分散剤を用いることが出来る。分散剤の例としては特開平3-69949号、欧州特許549486号等に記載のものを挙げることができる。また、分散剤を使用する際に分散剤の顔料への吸着を促進するためにシナジストと呼ばれる顔料誘導体を添加してもよい。

【0122】本技術に使用できる顔料の粒径は、分散後で0.01~10 μ の範囲であることが好ましく、0.05~1 μ であることが更に好ましい。

【0123】顔料を分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、縦型あるいは横型のアジテーターミル、アトライター、コロイドミル、ボールミル、3本ロールミル、パールミル、スーパーミル、インペラー、デスパーサー、KDミル、ダイナトロン、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。

【0124】次に、本発明でインクが含有し得る界面活性剤について説明する。

【0125】本発明のインクジェット記録用インクに界

(26)

49

面活性剤を含有させ、インクの液物性を調整することで、インクの吐出安定性を向上させ、画像の耐水性の向上や印字したインクの滲みの防止などに優れた効果を持たせることができる。

【0126】本発明においては、上記の目的のために種々の界面活性剤を用いることができるが、中でもベタイン系界面活性剤を用いることが好ましい。ここでは、ベタイン系界面活性剤は例えば油溶性染料の分散に用いたものをも含むこととする。

【0127】ここで言うベタイン系界面活性剤とは、分 10 子中にカチオン性の部位とアニオン性の部位を両方とも有し、かつ界面活性を有する化合物を表す。カチオン性の部位としてはアミン性の窒素原子、ヘテロ芳香族環の窒素原子、炭素との結合を4つ有するホウ素原子、リン原子などを挙げることができる。この中で好ましくはアミン性の窒素原子もしくはヘテロ芳香族環の窒素原子である。中でも特に第4級の窒素原子であることが好ましい。アニオン性の部位としては、水酸基、チオ基、スルホンアミド基、スルホ基、カルボキシル基、イミド基、リン酸基、ホスホン酸基などを挙げることができる。こ 20 の中でも特にカルボキシル基、スルホ基が好ましい。界面活性剤分子全体としての荷電は、カチオン、アニオン、中性のいずれでもよいが、好ましくは中性である。

【0128】ベタイン系界面活性剤の好ましい添加量 (染料の分散に用いた量をも含むこととする) は広い範 囲を持つが、好ましくはインク組成物中の0.001~50質 量%、さらに好ましくは0.01~20質量%である。

【0129】以下にベタイン系界面活性剤の具体例を示すが、本発明はもちろんこれによって限定されるものではない。

[0130]

【化17】

W-1

(n)C₁₂H₂₅-N HOCH₂CH₂ N CH₂COO

50

W-2

(n)C₁₄H₂₉—(n) HOCH₂CH₂CH₂COO⁶

W-3

W-4

W-5

C₅H₁₃(n) (n)C₅H₁₃[©]N-CH₂COO[©] C₅H₁₃(n)

W-6

Ç₈H₁₇(n) (n)C₈H₁₇[©]N-CH₂COO[©] C₈H₁₇(n)

W-7

CH3 COO®

H3C=N-CH
CH3 C10H21

W-8

30

СН₃ СОО^Ө Н,С-Й-СН СН₃ С₁₄Н₂₉

【0131】 【化18】

(27)

51

м-9 сн³ соо_е м-ен

CH₃ C₁₆H₃₃

W-10 $C_7H_{15}CONHC_3H_8$ $\overset{\bullet}{\text{N}}$ $\overset{\bullet}{\text{CH}}_2COO^{\Theta}$ $\overset{\bullet}{\text{CH}}_3$

W-11 $C_8H_{17}CONHC_3H_6^{-N}V-CH_2COO^{\odot}$ CH₃

W-12 $C_{11}H_{23}CONHC_{3}H_{6}\stackrel{\oplus}{-}N-CH_{2}COO^{\ominus}$ CH_{3}

W-13 C₁₃H₂₇CONHC₃H₆−N-CH₂COO[©] CH₃

W-14 C₁₅H₃₁CONHC₃H₆−[®]N−CH₂COO[©] CH₃

W-15 CH₃ C₁₇H₃₅CONHC₃H₆[®]N-CH₂COO[©] CH₃

W-16 ÇH₃ C₁₇H₃₁CONHC₃H₅[©]N-CH₂COO[©]

C₁₇H₃₁CONHC₃H₈=N-CH₂COO°CH₃
CH₃

W-18 $C_{18}H_{37} - N - CH_{2}CH - CH_{2}SO_{3}^{6}$ $CH_{3} - OH$

【0133】本発明のインクジェット記録用インクは、水性媒体中に、フタロシアニン染料と界面活性剤を溶解および/または分散させることによって作製することができる。本発明における「水性媒体」とは、水または水と少量の水混和性有機溶剤との混合物に、必要に応じて湿潤剤、安定剤、防腐剤等の添加剤を添加したものを意味する。

【O 1 3 4】本発明のインク液を調液する際には、水溶性インクの場合、まず水に溶解することが好ましい。そ

52

のあと、各種溶剤や添加物を添加し、溶解、混合して均 ーなインク液とする。

【0135】このときの溶解方法としては、攪拌による溶解、超音波照射による溶解、振とうによる溶解等種々の方法が使用可能である。中でも特に攪拌法が好ましく使用される。攪拌を行う場合、当該分野では公知の流動攪拌や反転アジターやディゾルバを利用した剪断力を利用した攪拌など、種々の方式が利用可能である。一方では、磁気攪拌子のように、容器底面との剪断力を利用した攪拌法も好ましく利用できる。

【0136】水性のインクジェット用インクの調製方法については、特開平5-148436号、同5-295312号、同7-97541号、同7-82515号、同7-118584号、特願2000-200780号、同2000-249799号の各公報に詳細が記載されていて、本発明のインクジェット記録用インクの調製にも利用できる。

【0137】本発明において用いることができる水混和 性有機溶剤の例には、アルコール(例えば、メタノー 20 ル、エタノール、プロパノール、イソプロパノール、ブ タノール、イソブタノール、sec-ブタノール、t-**ブ**タノール、ペンタノール、ヘキサノール、シクロヘキ サノール、ベンジルアルコール)、多価アルコール類 (例えば、エチレングリコール、ジエチレングリコー ル、トリエチレングリコール、ポリエチレングリコー ル、プロピレングリコール、ジプロピレングリコール、 ポリプロピレングリコール、ブチレングリコール、ヘキ サンジオール、ペンタンジオール、グリセリン、ヘキサ ントリオール、チオジグリコール)、グリコール誘導体 (例えば、エチレングリコールモノメチルエーテル、エ チレングリコールモノエチルエーテル、エチレングリコ ールモノブチルエーテル、ジエチレングルコールモノメ チルエーテル、ジエチレングリコールモノブチルエーテ ル、プロピレングリコールモノメチルエーテル、プロピ レングリコールモノブチルエーテル、ジプロピレングリ コールモノメチルエーテル、トリエチレングルコールモ ノメチルエーテル、エチレングリコールジアセテート、 エチレングルコールモノメチルエーテルアセテート、ト リエチレングリコールモノメチルエーテル、トリエチレ 40 ングリコールモノエチルエーテル、エチレングリコール モノフェニルエーテル)、アミン(例えば、エタノール アミン、ジエタノールアミン、トリエタノールアミン、 N-メチルジエタノールアミン、N-エチルジエタノー ルアミン、モルホリン、N-エチルモルホリン、エチレ ンジアミンン、ジエチレントリアミン、トリエチレンテ トラミン、ポリエチレンイミン、テトラメチルプロピレ ンジアミン) およびその他の極性溶媒(例えば、ホルム アミド、N. Nージメチルホルムアミド、N. Nージメ チルアセトアミド、ジメチルスルホキシド、スルホラ

50 ン、2ーピロリドン、Nーメチルー2ーピロリドン、N

ービニルー2ーピロリドン、2ーオキサゾリドン、1,3ージメチルー2ーイミダゾリジノン、アセトニトリル、アセトン)等が挙げられる。尚、上記水混和性有機溶剤は、2種類以上を併用してもよい。

【0138】前記フタロシアニン染料が油溶性染料の場合は、該油溶性染料を高沸点有機溶媒中に溶解させ、水性媒体中に乳化分散させることによって調製することができる。

【0139】本発明に用いられる高沸点有機溶媒の沸点は150℃以上であることが好ましいが、より好ましくは170℃以上である。

【0140】高沸点有機溶媒としては、例えば、フター ル酸エステル類(例えば、ジブチルフタレート、ジオク チルフタレート、ジシクロヘキシルフタレート、ジー2 ーエチルヘキシルフタレート、デシルフタレート、ビス (2, 4-ジーtert-アミルフェニル) イソフタレ ート、ビス (1, 1ージエチルプロピル) フタレー ト)、リン酸またはホスホンのエステル類(例えば、ジ フェニルホスフェート、トリフェニルホスフェート、ト リクレジルホスフェート、2-エチルヘキシルジフェニ 20 ルホスフェート、ジオクチルブチルホスフェート、トリ シクロヘキシルホスフェート、トリー2ーエチルヘキシ ルホスフェート、トリドデシルホスフェート、ジー2-エチルヘキシルフェニルホスフェート)、安息香酸エス テル酸(例えば、2-エチルヘキシルベンゾエート、 2, 4-ジクロロベンゾエート、ドデシルベンゾエー ト、2-エチルヘキシル-p-ヒドロキシベンゾエー ト)、アミド類(例えば、N、Nージエチルドデカンア ミド、N, Nージエチルラウリルアミド)、アルコール 類またはフェノール類(イソステアリルアルコール、 2, 4ージー t.e r tーアミルフェノールなど)、脂肪 族エステル類(例えば、コハク酸ジプトキシエチル、コ ハク酸ジー2-エチルヘキシル、テトラデカン酸2-ヘ キシルデシル、クエン酸トリブチル、ジエチルアゼレー ト、イソステアリルラクテート、トリオクチルシトレー ト)、アニリン誘導体(N, Nージブチルー2ーブトキ シー5-tert-オクチルアニリンなど)、塩素化パ ラフィン類(塩素含有量10%~80%のパラフィン 類)、トリメシン酸エステル類(例えば、トリメシン酸 トリブチル)、ドデシルベンゼン、ジイソプロピルナフ タレン、フェノール類 (例えば、2, 4ージー t e r t ーアミルフェノール、4ードデシルオキシフェノール、 4-ドデシルオキシカルボニルフェノール、4-(4-ドデシルオキシフェニルスルホニル)フェノール)、カ ルボン酸類(例えば、2-(2、4-ジーtert-ア ミルフェノキシ酪酸、2-エトキシオクタンデカン 酸)、アルキルリン酸類(例えば、ジー2(エチルヘキ シル) リン酸、ジフェニルリン酸) などが挙げられる。 【0]4]】高沸点有機溶媒は、油溶性染料に対して質

54

倍量で使用できる。

【0142】これらの高沸点有機溶媒は単独で使用しても、数種の混合〔例えばトリクレジルホスフェートとジブチルフタレート、トリオクチルホスフェードとジ(2ーエチルヘキシル)セバケート、ジブチルフタレートとポリ(N-t-ブチルアクリルアミド)〕で使用してもよい。

【0143】本発明において用いられる高沸点有機溶媒 の前記以外の化合物例やこれら高沸点有機溶媒の合成方 法は、例えば米国特許第2,322,027号、同第2,533,514 号、同第2,772,163号、同第2,835,579号、同第3,594,17 1号、同第3,676,137号、同第3,689,271号、同第3,700,4 54号、同第3,748,141号、同第3,764,336号、同第3,765, 897号、同第3,912,515号、同第3,936,303号、同第4,00 4,928号、同第4,080,209号、同第4,127,413号、同第4,1 93,802号、同第4,207,393号、同第4,220,711号、同第4, 239,851号、同第4,278,757号、同第4,353,979号、同第 4, 363, 873号、同第4, 430, 421号、同第4, 430, 422号、同 第4,464,464号、同第4,483,918号、同第4,540,657号、 同第4,684,606号、同第4,728,599号、同第4,745,049 号、同第4,935,321号、同第5,013,639号、欧州特許第27 6.319A号、同第286.253A号、同第289,820A号、同第309, 158A号、同第309, 159A号、同第309, 160A号、同第509, 31 1A号、同第510,576A号、東独特許第147,009号、同第15 7,147号、同第159,573号、同第225,240A号、英国特許第 2,091,124A号、特開昭48-47335号、同50-26530号、同51 -25133号、同51-26036号、同51-27921号、同51-27922 号、同51-149028号、同52-46816号、同53-1520号、同53 -1521号、同53-15127号、同53-146622号、同54-91325 号、同54-106228号、同54-118246号、同55-59464号、同 56-64333号、同56-81836号、同59-204041号、同61-8464 1号、同62-118345号、同62-247364号、同63-167357号、 同63-214744号、同63-301941号、同64-9452号、同64-94 54号、同64-68745号、特開平1-101543号、同1-102454 号、同2-792号、同2-4239号、同2-43541号、同4-29237 号、同4-30165 号、同4-232946号、同4-346338号等に記 載されている。

リンスン類(塩素含有量10%~80%のパラフィン 【0144】本発明では、油溶性性染料や高沸点有機溶 類)、トリメシン酸エステル類(例えば、トリメシン酸 トリブチル)、ドデシルベンゼン、ジイソプロピルナフ タレン、フェノール類(例えば、2,4ージーtert ーアミルフェノール、4ードデシルオキシフェノール、 4ードデシルオキシカルボニルフェノール、4ー(4ードデシルオキシカルボニルフェノール)、カ ルボン酸類(例えば、2ー(2,4ージーtertーア ミルフェノキシ酪酸、2ーエトキシオクタンデカン 酸)、アルキルリン酸類(例えば、ジー2(エチルへキ シル)リン酸、ジフェニルリン酸)などが挙げられる。 【0141】高沸点有機溶媒は、油溶性染料に対して質 量比で0.01~3倍量、好ましくは0.01~1.0 50 101~3倍量、好ましくは0.01~1.0 50 101~41 101~4 】本発明では、油溶性性染料や高沸点有機溶 媒は、水性媒体中に乳化分散して用いられる。乳化分散 を併用することができる。併用することができる低沸点 有機溶媒としては、常圧で沸点約30℃以上150℃以 下の有機溶媒である。例えばエステル類(例えばエチル アセテート、ブチルアセテート、メチルセロソルブ アセテート)、アルコール類(例えばイソプロピルアル コール、nーブチルアルコール、セカンダリーブチルア ルコール)、ケトン類(例えばメチルイソブチルケト ン、メチルエチルケトン、シクロへキサノン)、アミド 類(例えばジメチルホルムアミド、Nーメチルピロリド

ン)、エーテル類(例えばテトラヒドロフラン、ジオキサン)等が好ましく用いられるが、これらに限定されるものではない。

【0145】乳化分散は、高沸点有機溶媒と場合によっては低沸点有機溶媒の混合溶媒に染料を溶かした油相を水を主体とした水相中に分散し、油相の微小油滴を作るために行われる。この際、水相、油相のいずれかまたは両方に、後述する界面活性剤、湿潤剤、染料安定化剤、乳化安定剤、防腐剤、防黴剤等の添加剤を必要に応じて添加することができる。

【0146】乳化法としては水相中に油相を添加する方法が一般的であるが、油相中に水相を滴下して行く、いわゆる転相乳化法も好ましく用いることができる。

【0147】本発明の乳化分散する際には、種々の界面 活性剤を用いることができる。例えば脂肪酸塩、アルキ ル硫酸エステル塩、アルキルベンゼンスルホン酸塩、ア ルキルナフタレンスルホン酸塩、ジアルキルスルホコハ ク酸塩、アルキルリン酸エステル塩、ナフタレンスルホ ン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫 酸エステル塩等のアニオン系界面活性剤や、ポリオキシ 20 エチレンアルキルエーテル、ポリオキシエチレンアルキ ルアリルエーテル、ポリオキシエチレン脂肪酸エステ ル、ソルビタン脂肪酸エステル、ポリオキシエチレンソ ルビタン脂肪酸エステル、ポリオキシエチレンアルキル アミン、グリセリン脂肪酸エステル、オキシエチレンオ キシプロピレンブロックコポリマー等のノニオン系界面 活性剤が好ましい。また、アセチレン系ポリオキシエチ レンオキシド界面活性剤であるSURFYNOLS(A irProducts&Chemicals社) も好ま しく用いられる。また、N、NージメチルーNーアルキ 30 ルアミンオキシドのようなアミンオキシド型の両性界面 活性剤等も好ましい。更に、特開昭59-157, 63 6号の第(37)~(38)頁、リサーチ・ディスクロージャー No. 308119(1989年) 記載の界面活性剤と して挙げたものも使うことができる。

【0148】なお、乳化に用いられる界面活性剤は、前述したインクジェット記録用インクの液物性を調整するために添加される界面活性剤とは目的が異なるが、同一種類のものを用いることができ、結果としてインクの物性調整の機能を果たすこともできる。

【0149】また、乳化直後の安定化を図る目的で、上記界面活性剤と併用して水溶性ポリマーを添加することもできる。水溶性ポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリルアミドやこれらの共重合体が好ましく用いられる。また多糖類、カゼイン、ゼラチン等の天然水溶性ポリマーを用いるのも好ましい。

【0150】さらに染料分散物の安定化のためには実質的に水性媒体中に溶解しないアクリル酸エステル類、メ 50

56

タクリル酸エステル類、ビニルエステル類、アクリルアミド類、メタクリルアミド類、オレフィン類、スチレン類、ビニルエーテル類、アクリロニトリル類の重合により得られるポリビニルやポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーボネート等も併用することができる。これらのポリマーは一S〇²⁻、一C〇〇⁻を含有していること好ましい。これらの実質的に水性媒体中に溶解しないポリマーを併用する場合、高沸点有機溶媒の20質量%以下用いられることが好ましく、10質量%以下で用いられることがより好ましい。

【0151】乳化分散により油溶性性染料や高沸点有機溶媒を分散させて水性インクとする場合、特に重要なのはその粒子サイズのコントーロールである。インクジェットにより画像を形成した際の、色純度や濃度を高めるには平均粒子サイズを小さくすることが必須である。体積平均粒子サイズで好ましくは1μm以下、より好ましくは5~100nmである。

【0152】前記分散粒子の体積平均粒径および粒度分布の測定方法には静的光散乱法、動的光散乱法、遠心沈降法のほか、実験化学講座第4版の417~418ページに記載されている方法を用いるなど、公知の方法で容易に測定することができる。

【0153】例えば、インク中の粒子濃度が0.1~1質量%になるように蒸留水で希釈して、市販の体積平均粒子サイズ測定機(例えば、マイクロトラックUPA(日機装(株)製))で容易に測定できる。更に、レーザードップラー効果を利用した動的光散乱法は、小サイズまで粒径測定が可能であり特に好ましい。

【0154】体積平均粒径とは粒子体積で重み付けした 平均粒径であり、粒子の集合において、個々の粒子の直 径にその粒子の体積を乗じたものの総和を粒子の総体積 で割ったものである。体積平均粒径については「高分子 ラテックスの化学」(室井宗一著 高分子刊行会)」1 19ページに記載がある。

【0155】また、粗大粒子の存在も印刷性能に非常に大きな役割を示すことが明らかになった。即ち、粗大粒子がヘッドのノズルを詰まらせる、あるいは詰まらないまでも汚れを形成することによってインクの不吐出や吐出のョレを生じ、印刷性能に重大な影響を与えることが分かった。これを防止するためには、インクにした時にインク 1μ L中で 5μ m以上の粒子を10個以下、 1μ m以上の粒子を1000個以下に抑えることが重要である。

【0156】これらの粗大粒子を除去する方法としては、公知の遠心分離法、精密濾過法等を用いることができる。これらの分離手段は乳化分散直後に行ってもよいし、乳化分散物に湿潤剤や界面活性剤等の各種添加剤を加えた後、インクカートリッジに充填する直前でもよい。

【0157】平均粒子サイズを小さくし、且つ粗大粒子

を無くす有効な手段として、機械的な乳化装置を用いる ことができる。

【0158】乳化装置としては、簡単なスターラーやイ ンペラー撹拌方式、インライン撹拌方式、コロイドミル 等のミル方式、超音波方式など公知の装置を用いること ができるが、高圧ホモジナイザーの使用は特に好ましい ものである。

【0159】高圧ホモジナイザーは、米国特許4533 254号明細書、特開平6-47264号公報等に詳細 な機構が記載されているが、市販の装置としては、ゴー リンホモジナイザー (A. P. V GAULIN IN C.)、マイクロフルイダイザー(MICROFLUI DEX INC.)、アルティマイザー(株式会社スギ ノマシン)等がある。

【0160】また、近年になって米国特許572055 1号明細書に記載されているような、超高圧ジェット流 内で微粒子化する機構を備えた高圧ホモジナイザーは本 発明の乳化分散に特に有効である。この超高圧ジェット 流を用いた乳化装置の例として、DeBEE2000

(BEE INTERNATIONAL LTD.)が 20 れる。 挙げられる。

【0161】高圧乳化分散装置で乳化する際の圧力は5 OMPa以上であり、好ましくは60MPa以上、更に 好ましくは180MPa以上である。

【0162】例えば、撹拌乳化機で乳化した後、高圧ホ モジナイザーを通す等の方法で2種以上の乳化装置を併 用するのは特に好ましい方法である。また、一度これら の乳化装置で乳化分散した後、湿潤剤や界面活性剤等の 添加剤を添加した後、カートリッジにインクを充填する 間に再度高圧ホモジナイザーを通過させる方法も好まし 30 い方法である。

【0163】高沸点有機溶媒に加えて低沸点有機溶媒を 含む場合、乳化物の安定性および安全衛生上の観点から 低沸点溶媒を除去するのが好ましい。低沸点溶媒を除去 する方法は溶媒の種類に応じて各種の公知の方法を用い ることができる。即ち、蒸発法、真空蒸発法、限外濾過 法等である。この低沸点有機溶剤の除去工程は乳化直 後、できるだけ速やかに行うのが好ましい。

【0164】また、本発明のインクジェット記録用イン クは消泡剤を含むものである。

【0165】本発明における消泡剤とは、起泡の原因物 質に代わって自ら液体表面に存在し、自分自身には泡膜 の薄化に抵抗する反発力を付与する力の無い化合物を指 す。具体的にはアルコール類、エーテル類、脂肪酸エス テル類、金属石類、燐酸エステル類、シリコン類、ノニ オン性界面活性剤類等がある。

【0166】アルコール類として例えば、メタノール、 エタノール、ブタノール、オクタノール等がある。

【0 1 6 7】脂肪酸エステル類として例えば、ステアリ ン酸イソアミル、コハク酸ジエステル、ジエチレングリ 50 ~30mPa・s であることが好ましい。更に好ましく

58

コールジステアレート、オキシエチレンソルビタンモノ ラウリル酸エステル等が挙げられ、市販品として例えば NopcoChem. Co製のNopco KFがある。

【0168】エーテル類として例えば、ジーt-アミル フェノキシエタノール、3-ヘプチルセロソルブ、ノニ ルセロソルブ、3-ヘプチルカルビトール等が挙げられ 市販品として例えば竹本油脂(株)製バイオニンK-1 7、サンノプコ (株) 製ノプコDF122-NSが挙げ

【0169】金属石鹸として例えば、ステアリン酸アル ミニウム、オレイン酸カリウム等があり市販品としては サンノプコ(株)製ノプコDF122-NS等が挙げら れる。

【0170】シリコン類として例えばシリコンオイル、 シリコンエマルジョン、有機変性シリコンオイル等があ り市販品としてはサンノプコ(株)製SNデフォーマー 5016、エアープロダクツ (株) 製サーフィノールD F-58、サーフィノールDF-695、東レダウコー ニングシリコーン (株) 製のSM-5513等が挙げら

【0171】ノニオン性界面活性剤類として、以下の例 が挙げられる。

1)アルキルアリルエーテルエチレンオキシド付加体 2) HO-(C₂H₄O)_n-(C₃H₆O)_m-(C₂H₄O)_n-OH で分子量500 ~10000、C₂H₄0含有量が0~55%

3)アルキルエステル型:

 $R_1(R_2)$ CHCOO (C_2H_4O)_n R_1, R_2 : C1~C10のアルキル基 n: $1 \sim 8$

4)アセチレンジオール類及びそのエチレンオキシド0~ 8モル付加体

本発明に用いられる消泡剤としては、これらの中でもシ リコン類及びノニオン性界面活性剤類が好ましく、中で もHLB値が1~4程度のノニオン性界面活性剤類が特 に好ましい。

【0172】以上に挙げた消泡剤は単独又は2種以上併 用して用いることができる。

【0173】インク中における消泡剤の添加量としては 0.001~5質量%であることがが好ましく、0.0 1~3質量%であることがより好ましい。添加量が少な 40 すぎると消泡効果が十分現れず、添加量が多すぎるとイ ンク液が層分離を起こしてしまうため好ましくない。

【0174】上記の消泡剤の他に、本発明で得られたイ ンクジェット記録用インクには、インクの噴射口での乾 操による目詰まりを防止するための乾燥防止剤、インク を紙によりよく浸透させるための浸透促進剤、紫外線吸 収剤、酸化防止剤、粘度調整剤、分散剤、分散安定剤、 防黴剤、防錆剤、pH調整剤、キレート剤等の添加剤を 適宜選択して適量使用することができる。

【0 1 7 5】本発明のインク粘度は、2 5℃において 1

は2~15mPa·sであり、特に好ましくは2~10mPa·sである。30mPa·sを超えると記録画像の定着速度が遅くなり、吐出性能も低下する。1mPa·s未満では、記録画像がにじむために品位が低下する。

【0176】粘度の調製はインク溶剤の添加量で任意に 調製可能である。インク溶剤として例えば、グリセリ ン、ジエチレングリコール、トリエタノールアミン、2 ーピロリドン、ジエチレングリコールモノブチルエーテ ル、トリエチレングリコールモノブチルエーテルなどが 10 ある。

【0177】本発明で用いるインクジェット記録用インクは、25℃での静的表面張力が25~50mN/mであることが好ましい。さらに、25℃での静的表面張力が30~40mN/mであることが好ましい。インクの静的表面張力が50mN/mを超えると、吐出安定性の低下、混色時の滲みの発生、ひげ発生(例えば、シアンベタ上に黒文字を印字した場合などに、黒文字からヒモ状に滲みが発生することがある)などのように印字品質が著しく低下する。また、インクの静的表面張力が25mN/mに満たないと、吐出時にハード表面へのインクの付着等が生じ、印字不良となる場合がある。

【0178】本発明に使用される乾燥防止剤としては水 より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な 例としてはエチレングリコール、プロピレングリコー ル、ジエチレングリコール、ポリエチレングリコール、 チオジグリコール、ジチオジグリコール、2ーメチルー 1, 3-プロパンジオール、1, 2, 6-ヘキサントリ オール、アセチレングリコール誘導体、グリセリン、ト リメチロールプロパン等に代表される多価アルコール 類、エチレングリコールモノメチル(またはエチル)エ ーテル、ジエチレングリコールモノメチル(またはエチ ル) エーテル、トリエチレングリコールモノエチル(ま たはブチル) エーテル等の多価アルコールの低級アルキ ルエーテル類、2-ピロリドン、N-メチルー2-ピロ リドン、1、3ージメチルー2ーイミダゾリジノン、N ーエチルモルホリン等の複素環類、スルホラン、ジメチ ルスルホキシド、3-スルホレン等の含硫黄化合物、ジ アセトンアルコール、ジエタノールアミン等の多官能化 合物、尿素誘導体が挙げられる。これらのうちグリセリ ン、ジエチレングリコール等の多価アルコールがより好 ましい。また上記の乾燥防止剤は単独で用いてもよいし 2種以上併用してもよい。これらの乾燥防止剤はインク 中に10~50質量%含有することが好ましい。

【0179】本発明に使用される浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1,2ーヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に10~30質 50

60

量%含有すれば充分な効果があり、印字の滲み、紙抜け (プリントスルー)を起こさない添加量の範囲で使用す るのが好ましい。

【0180】本発明で画像の保存性を向上させるために 使用される紫外線吸収剤としては特開昭58-1856 77号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34 057号公報等に記載されたベンゾトリアゾール系化合 物、特開昭46-2784号公報、特開平5-1944 83号公報、米国特許第3214463号等に記載され たベンゾフェノン系化合物、特公昭48-30492号 公報、同56-21141号公報、特開平10-881 06号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特 表平8-501291号公報等に記載されたトリアジン 系化合物、リサーチディスクロージャーNo. 2423 9号に記載された化合物やスチルベン系、ベンズオキサ ゾール系化合物に代表される紫外線を吸収して蛍光を発 する化合物、いわゆる蛍光増白剤も用いることができ る。

【0181】本発明では、画像の保存性を向上させるた めに使用される酸化防止剤としては、各種の有機系およ び金属錯体系の褪色防止剤を使用することができる。有 機の褪色防止剤としてはハイドロキノン類、アルコキシ フェノール類、ジアルコキシフェノール類、フェノール 類、アニリン類、アミン類、インダン類、クロマン類、 アルコキシアニリン類、ヘテロ環類などがあり、金属錯 体としてはニッケル錯体、亜鉛錯体などがある。より具 体的にはリサーチディスクロージャーNo. 17643 の第VIIのIないしJ項、同No.15162、同N o. 18716の650頁左欄、同No. 36544の 527頁、同No. 307105の872頁、同No. 15162に引用された特許に記載された化合物や特開 昭62-215272号公報の127頁~137頁に記 載された代表的化合物の一般式および化合物例に含まれ る化合物を使用することができる。

【0182】本発明に使用される防御剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキシド、pーヒドロキシ安息香酸エチルエステル、1,2-ベンズイソチアゾリン-3-オンおよびその塩等が挙げられる。これらはインク中に0.02~5.00質量%使用するのが好ましい。

【0183】なお、これらの詳細については「防菌防御 剤事典」(日本防菌防御学会事典編集委員会編)等に記 載されている。

【0184】また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニ

6.

トライト、ベンゾトリアゾール等が挙げられる。これらは、インク中に 0: 02~5.00質量%使用するのが好ましい。

【0185】また本発明では分散剤、分散安定剤として 上述のカチオン、アニオン、ノニオン系の各種界面活性 剤やEDTAに代表されるれるキレート剤等も必要に応 じて使用することができる。

【0186】本発明の画像記録方法に用いられる記録紙及び記録フィルムについて説明する。記録紙及び記録フィルムおける支持体はLBKP、NBKP等の化学パル 10プ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等をからなり、必要に応じて従来の公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚み10~250μm、坪量は10~250μ/m²が望ましい。

【0187】支持体にそのまま受像層及びバックコート 20 層を設けて受像材料としてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、受像層及びバックコート層を設けて受像材料としてもよい。さらに支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

【0188】本発明では支持体としては、両面をポリオレフィン(例、ポリエチレン、ポリスチレン、ポリブテンおよびそれらのコポリマー)やポリエチレンテレフタレートでラミネートした紙およびプラスチックフイルムがより好ましく用いられる。ポリオレフィン中に、白色顔料(例、酸化チタン、酸化亜鉛)または色味付け染料(例、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

【0189】支持体上に設けられる受像層には、多孔質材料や水性バインダーが含有される。また、受像層には顔料を含むのが好ましく、顔料としては、白色顔料が好ましい。白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。特に好ましくは、多孔性の白色無機顔料がよく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法(気相法)によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも使用可能である。

【0190】上記顔料を受像層に含有する記録紙として 50

62

は、具体的には、特開平10-81064号、同10-119423号、同10-157277号、同10-217601号、同10-348409号、特開2001-138621号、同2000-309157号、同2001-96897号、同2001-138627号、特開平11-91242号、同8-2087号、同8-2090号、同8-2091号、同8-2093号、同8-174992号、同11-192777号、特開2001-301314号などに開示されたものを用いることができる。

【0191】受像層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独または2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、受像層の耐剥離性の点で好適である。

【0192】受像層は、顔料及び水性バインダーの他に 媒染剤、耐水化剤、耐光性向上剤、耐ガス性向上剤、界 面活性剤、硬膜剤その他の添加剤を含有することができ る。

【0193】受像層中に添加する媒染剤は、不動化されていることが好ましい。そのためには、ポリマー媒染剤が好ましく用いられる。

【0194】ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124 726号、同55-22766号、同55-14233 9号、同60-23850号、同60-23851号、 同60-23852号、同60-23853号、同60 -57836号、同60-60643号、同60-11 8834号、同60-122940号、同60-122 941号、同60-122942号、同60-2351 34号、特開平1-161236号の各公報、米国特許 2484430号、同2548564号、同31480 61号、同3309690号、同4115124号、同 4124386号、同4193800号、同42738 53号、同4282305号、同4450224号の各 明細書に記載がある。特開平1-161236号公報の 212~215頁に記載のポリマー媒染剤を含有する受 像材料が特に好ましい。同公報記載のポリマー媒染剤を 用いると、優れた画質の画像が得られ、かつ画像の耐光 性が改善される。

【0195】耐水化剤は、画像の耐水化に有効であり、

これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド等が挙げられる。これらのカチオン樹脂の含有量は、受像層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

【0196】耐光性向上剤、耐ガス性向上剤としては、フェノール化合物、ヒンダードフェノール化合物、チオ 10 エーテル化合物、チオ尿素化合物、チオシアン酸化合物、アミン化合物、ヒンダードアミン化合物、TEMP O化合物、ヒドラジン化合物、ヒドラジド化合物、アミジン化合物、ビニル基含有化合物、エステル化合物、アミド化合物、エーテル化合物、アルコール化合物、スルフィン酸化合物、糖類、水溶性還元性化合物、有機酸、無機酸、ヒドロキシ基含有有機酸、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物、ヘテロ環化合物、水溶性金属塩、有機金属化合物、金属錯体等が挙げられる。

【0197】これらの具体的な化合物例としては、特開 平10-182621号、特開2001-260519号、特開2000-260519号、特公平4-34953号、特公平4-34513号、特公平4-34512号、特開平11-170686号、特開昭60-67190号、特開平7-276808号、特開2000-94829号、特表平8-512258号、特開平11-321090号等に記載のものが挙げられる。

【0198】界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。

【0199】界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)および固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報 40に記載がある。

【0200】硬膜剤としては特開平1-161236号公報の222頁、特開平9-263036号、特開平10-119423号、特開2001-310547号、に記載されている材料等を用いることが出来る。

【0201】その他の受像層に添加される添加剤としては、顔料分散剤、増粘剤、消泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。尚、受像層は1層でも2層でもよい。

【0202】記録紙及び記録フィルムには、バックコー 50 クと称する濃度の低いインクを小さい体積で多数射出す

64

ト層を設けることもでき、この層に添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられる。

【0203】バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、珪薬土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

【0204】バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

【0205】インクジェット記録紙及び記録フィルムの構成層(バック層を含む)には、ポリマー微粒子分散物を添加してもよい。ポリマー微粒子分散物は、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ポリマー微粒子分散物については、特開昭62-245258号、同62-1316648号、同62-110066号の各公報に記載がある。ガラス転移温度が低い(40℃以下の)ポリマー微粒子分散物を媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマー微粒子分散物をバック層に添加しても、カールを防止できる。

【0206】本発明では、インクジェットの記録方式に制限はなく、公知の方式例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエグ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式等に用いられる。

【0207】インクジェット記録方式には、フォトイン クと称する濃度の低いインクを小さい体積で多数射出す

(34)

65

る方式、実質的に同じ色相で濃度の異なる複数のインク を用いて画質を改良する方式や無色透明のインクを用い る方式が含まれる。

【0208】本発明のインクジェット記録用インクは、インクジェット記録以外の用途に使用することもできる。例えば、ディスプレイ画像用材料、室内装飾材料の画像形成材料および屋外装飾材料の画像形成材料などに使用が可能である。

【0209】ディスプレイ画像用材料としては、ポスター、壁紙、装飾小物(置物や人形など)、商業宣伝用チラシ、包装紙、ラッピング材料、紙袋、ビニール袋、パッケージ材料、看板、交通機関(自動車、バス、電車など)の側面に描画や添付した画像、ロゴ入りの洋服、等各種の物を指す。本発明の染料をディスプレイ画像の形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

【0210】室内装飾材料としては、壁紙、装飾小物(置物や人形など)、照明器具の部材、家具の部材、床や天井のデザイン部材等各種の物を指す。本発明の染料 20を画像形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

*【0211】屋外装飾材料としては、壁材、ルーフィング材、看板、ガーデニング材料屋外装飾小物(置物や人形など)、屋外照明器具の部材等各種の物を指す。本発明の染料を画像形成材料とする場合、その画像とは狭義の画像ののみならず、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

66

【0212】以上のような用途において、パターンが形成されるメディアとしては、紙、繊維、布(不織布も含む)、プラスチック、金属、セラミックス等種々の物を挙げることができる。染色形態としては、媒染、捺染、もしくは反応性基を導入した反応性染料の形で色素を固定化することもできる。この中で、好ましくは媒染形態で染色されることが好ましい。

[0213]

【実施例】以下、本発明を実施例によって具体的に説明 するが、これに限定されるものでは無い。

実施例1

(インク液の調整)下記の成分に脱イオン水を加え1リッターとした後、30~40℃で加熱しながら1時間撹拌溶解した。その後、平均孔径0.25μmのミクロフィルターで減圧濾過しライトシアン用インク液を調製した。

※後、30~40℃で加熱しながら1時間撹拌溶解した。

圧濾過しシアン用インク液を調製した。

その後、平均孔径0. 25 μ mのミクロフィルターで減

(ライトシアン用インク液の成分)

シアン色素(例示化合物154)	17.5g
トリエチレングリコールモノブチルエーテル	119.0g
グリセリン	123g
ジエチレングリコール	164g
PROXEL XL2 [ゼネカ社]	1. 0 g
ベンゾトリアゾール	0. 07g
消泡剤 (A-1)	10.0g
界面活性剤(W-1)	6 g

界面活性剤(W-1):ポリエチレングリコール(平均 エチレンオキシド繰り返し数10)の片末端2ーブチル オクタン酸エステル

また、下記の成分に脱イオン水を加え1リッターとした※

(シアン用インク液の成分)

(2) 2 m 1 2 2 m 2	
シアン色素(例示化合物154)	68.0g
トリエチレングリコールモノブチルエーテル	127.0g
グリセリン	1 1 0 g
ジエチレングリコール	107g
PROXEL XL2 [ゼネカ社]	4.0g
ベンゾトリアゾール	0.09g
消泡剤 (A-1)	10.0g
界面括性剤(W-1)	10.0g

次に、上記の染料種、消泡剤種及び消泡剤の添加量、界面活性剤種を下記の表 1 に従って変更した以外は、全て同様にして実施例 2~4、比較例 1、2を作成した。

【0214】

67

	組成	5/11/77 [g/L]	<i>`T</i> 77 [g/L]
	学科:(154)	17.5	68.0
実施列—1	消 防 !:A1	10.0	10.0
実施列-2 実施列-3 実施列-4	界面活性群W-1	6.0	10.0
	染料:(154)	17.5	68.0
天施列—2	消包柱A-1	20.0	20.0
	界面对结件W-1	6.0	10.0
	9391:(154)	17.5	68.0
突施列—3	消池荆:A—2	10.0	10.0
	界面活性剤:W-1	6.0	10.0
	\$\$ * 1:(154)	17.5	68.0
英语列一4	海包村:A—1	10.0	10.0
	界面活性 剂 :W-19	17.5 10.0 6.0 17.5 20.0 6.0 17.5 10.0 6.0	10.0
	染料:(C−1)	17.5	68.0
比較例—1	消息除A—1	10.0	10.0
	界面活性剂:W1	60	10.0
	幹(154)	17.5	68.0
比较别—2	消包所無し	•	-
	界面活性剂:W-1	6.0	10.0

【0215】上記表で用いた消泡剤は以下のものである。

 $A-1: R_1(R_2) CHCOO(C_2H_4O)_n$ (式中、 $R_1=C_4H_9$ 、 $R_2=C_4H_9$ 、n=4)

A-2:2,4,7,9ーテトラメチルー5ーデシンー4,7ージオールのエチレンオキシド4モル付加体また、上記表で用いた比較染料C-1、界面活性剤W-19の構造式を以下に示す。

[0216]

C-2

【0217】 (インクジェット記録) 上記にて製造した 場合をB、全 ライトシアン用インク、シアン用インクを、インクジェ 40 ③耐オゾン性 ットプリンターPM920C(セイコーエプソン株式会 社製)のカートリッジに詰め、同機にて富士写真フィル ム株式会社製のインクジェットペーパーフォト光沢紙E 度計(X-R Xに画像を印刷し、下記の評価を行った。その結果を表 を求め評価し、15に示す。

(1) 吐出安定性

カートリッジをプリンターにセットし、ノズルからのインクの連続吐出試験を行い、吐出安定性について評価した。

【0218】さらにカートリッジをプリンターにセット 50

した状態で、プリンターを2週間室温で放置した後の吐 出安定性も評価した。

[0219]

〇:安定

△:やや不安定

20 X:不安定

(2) 画像保存性

画像保存性の評価については、シアンのベタ画像印字サンプルを作成し、以下の評価を行った。

①光堅牢性

印字直後の画像濃度Ciを反射濃度計(X-Rite31 OTR)にて測定した後、アトラス社製ウェザーメータ ーを用い画像にキセノン光(8万5千ルックス)を7日 照射した後、再び画像濃度Cfを測定し色素残存率Ci/Cf* 100を求め評価を行った。画像濃度Ciを1, 1.5,2 の3点にて評価し、いずれの濃度でも色素残存率が85 %以上の場合をA、2点が85%未満の場合をB、全て の濃度で85%未満の場合をCとした。

②熱堅牢性

70~80%RHの条件下に7日間に試料を保存する前後での濃度を、反射濃度計(X-Rite310TR)にて測定し色素残存率を求め評価した。画像濃度Ciを1,1.5,2の3点にて評価し、いずれの濃度でも色素残存率が90%以上の場合をA、2点が90%未満の場合をB、全ての濃度で90%未満の場合をCとした。

③耐オゾン性 オゾンガス濃度が 0.5 ppmに設定されたボックス内に 7日間放置し、オゾンガス化放置前後での濃度を反射濃

度計 (X-Rite310TR) にて測定し色素残存率を求め評価した。画像濃度Ciを1,1.5,2の3点にて評価し、いずれの濃度でも色素残存率が80%以上の場合をA、1又は2点が85%未満の場合をB、全ての濃度で70%未満の場合をCとした。得られた結果を表

15に示す。 【0220】

1 str 1 0 1

、 【表 1 3】

60

69					70
インク	吐出安定性	创始表示性 (2.週間故 而 後)	光學年性	粉壁料生	耐ナノン性
突拍列—1	0	0	A	А	A
実施別-2	0	0	A	A	Α
突胎》—3	0	0	A	Α	A
実施別一4	0	0 .	A	Α	A
比较好1	0	×	С	Α	С
比較例2	Δ	×	A	Α	Α

【0221】表15に示される結果より、本発明のイン クをインクジェット記録に用いた場合、比較例にくら べ、優れた保存性を示していた。特に、耐オゾン性にお いて優れた性能を示していた。また、印字性能の評価か ら良好な吐出安定性を示すことが分かる。さらに、本発 明のインクは2週間放置後の吐出安定性において比較例 に比べ顕著に優れた性能を示していた。

【0222】尚、本発明において使用する受像紙をEP 変更した場合でも上記結果と同様の効果が見られる。

【0223】実施例1で作製した同じインクを、インク ジェットプリンターBJ-F850(キャノン社製)の カートリッジに詰め、同機にてに画像を富士写真フイル ム製インクジェットペーパーフォト光沢紙EXにプリン トし、実施例1と同様な評価を行ったところ、実施例1 と同様な結果が得られた。また受像紙がEPSON社製 PM写真用紙、キャノン社製 PR101の場合でも同 様の効果が見られた。

[0224]

【発明の効果】本発明によれば、吐出安定性及び画像保 SON社製PM写真用紙、キャノン社製 PR101に 20 存性に優れ、高画質の画像を与え、過酷な条件でも性能 のよいインクジェット記録用インクおよびインクジェッ ト記録方法が提供することができる。

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

テーマコート*(参考)

C 0 9 B 47/073

47/24

C 0 9 B 47/24

B 4 1 J 3/04

101Y

Fターム(参考) 2C056 EA05 EA13 FC01 FC06

2H086 BA56 BA59 BA62

4J039 BC19 BC32 BC33 BC49 BC51

BC54 BC56 BC58 BC60 BE02

BE12 BE16 BE22 CA03 CA06

EA41 EA44 EA46 GA24