THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Applied Mathematics

Subject Code: AMA 563 Subject Title: Principles of

Data Science

PgS in Construction and Environment (04001)

Programme: MSc/PgD in Applied Mathematics for Science and Technology (63022)

Master of Science in Data Science and Analytics (63027)

Session: Semester 1, 2021/2022

Date: 7th December 2021 Time: 19:00 - 22:00

Time Allowed: 3 hours

This question paper has $\underline{6}$ pages (including this page).

Instruction to Candidates: This question paper has $\underline{\mathbf{5}}$ questions.

Attempt all questions.

Subject examiners: Dr. Stan Yip

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

- 1a.) Let X_1 and X_2 have the joint pmf $p(x_1, x_2) = x_1x_2/18$, $x_1 = 1, 2, 3$ and $x_2 = 1, 2,$ zero elsewhere.
- i.) Find the joint pmf of $Y_1 = X_1 X_2$ and $Y_2 = X_2$. (3 marks)
- ii.) Find the marginal pmf of Y_1 . (3 marks)
- iii.) Find the mean, variance and moment generating function of Y_1 . (4 marks)
- 1b.) Let X_1, \ldots, X_n be a random sample from a Beta distribution with parameters $\alpha = \theta$ and $\beta = 1$.
- i.) Find the maximum likelihood estimator (MLE) of θ and the MLE of $\tau(\theta) = \frac{\theta}{1+\theta}$. (7 marks)
- ii.) Is your MLE of θ a sufficient statistic? (3 marks)

2.) Let X_1, \ldots, X_n be independent identically distributed random variables from a half normal $HN(\mu, \sigma^2)$ distribution with pdf,

$$f(x) = \frac{2}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right),$$

where $\sigma > 0$ and x > 0 and μ is real. Assume that μ is known.

- a.) Find the maximum likelihood estimator of σ^2 . (5 marks)
- b.) What is the maximum likelihood estimator of σ ? (3 marks)
- c.) What is the uniformly most powerful with significance level α test for $H_0: \sigma_2^2 = 1$ vs $H_1: \sigma_2^2 = 4$? (8 marks)
- d.) Assuming $\mu=0$, find the expectation of the half normal distribution by substituting $w=\frac{x^2}{2\sigma^2}$. (4 marks)

3. Let X_1, \ldots, X_n be independent identically distributed random variables with pdf

$$f(x|\theta) = \begin{cases} \frac{2x}{\theta}e^{-x^2/\theta} & x > 0, \\ 0 & x \le 0. \end{cases}$$

- a.) Find the MLE of θ . (3 marks)
- b.) Show that X_1^2 is an unbiased estimator of θ by substituting $W=X^2$ or otherwise. (4 marks)
- c.) Show that the distribution of X is a member of exponential family of distribution. (3 marks)
- d.) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of θ . (5 marks)
- e.) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ . (5 marks)

- 4a. Let X_1, \ldots, X_n be independent identically distributed random variables from a $N(\mu, \sigma^2)$ distribution where the variance σ^2 is known. We want to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.
- i.) Find the likelihood ratio test of size α for $H_0: \theta = \theta_0$ vs $H_A: \theta \neq \theta_0$. (6 marks)
- 4b. Let X_1, \ldots, X_n be a random sample from Bernoulli(p), where $p \in (0, 1)$ is unknown. Let $Y = \sum_{i=1}^{n} X_i$
 - i.) Find the maximum likelihood estimator of p. (4 marks)
- ii.) Show that $\hat{p} = Y/n$ is an unbiased estimator of p. (3 marks)
- iii.) Find the Fisher information I(p). (4 marks)
- iv.) Find the variance of \hat{p} and show that it is a consistent estimator of p. (3 marks)

5a. A continuous random variable X follows a gamma distribution with parameters $\theta > 0$ and $\alpha > 0$ $(X \sim \Gamma(\alpha, \theta))$ if its probability density function is

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta}, \quad , \text{for } x > 0$$

- i.) By substituting $y = x \left(\frac{1}{\theta} t\right)$, find the moment generating function of X. (7 marks)
- ii.) From the result of part (i), show that $\sum_{i=1}^{m} X_i \sim \Gamma(m\alpha, \theta)$. (3 marks)
- 5b. Let X_1 , X_2 be a random sample of size n=2 from the distribution having pdf $f(x;\theta)=(1/\theta)e^{-x/\theta},\ 0< x<\infty,\ 0$ elsewhere. We reject $H_0:\theta=2$ and accept $H_1:\theta=1$ if the observed values of $X_1,\,X_2,\,$ say $x_1,x_2,\,$ are such that

$$\frac{f(x_1; 2)f(x_2; 2)}{f(x_1; 1)f(x_2; 1)} \le \frac{1}{2}.$$

Here $\Omega = \{\theta : \theta = 1, 2\}.$

- i.) Find the significance level of the test. (6 marks)
- ii.) Find the power the test when H_0 is false. (4 marks)