CS55500: Lecture II
Recap
·Trapdoor Permutations: One-way function of additional properties
Some trapdoor which when known makes the function easy to convert
.RSA: based on DLP
· Goldwasser - Micali: Quad residue
GM Encryption
Gen: 2 large primes Piq N=piq
L) pk= (n,y) and sk=(p,q)
Encid bis message bit
1. generate rondom reZi
2 Give quad, residue
2. Give quad. residue C= (Cmod N) if b=0 and r2y (mod N) if b=1
Dec(sk,c): Check if CEZN is a quad. residue using p and q. Laif cisquad res. mod N - aquad res. mod p and q
IND-security follows from the quadratic residuosity assumption given N, no PPT can distinguish blue Jac that is QRN vs NQR,
GM is homomorphic encryption · given a GM-cipherrext of b and of b', I can compute GM-cipherrext (b+b') (mod 2)
computation done on aphertexts gives same output as ifi-
mas done on plaintexts
Mant (b+b') from ciphertexts (say c,c') -> do C*C'
* Enc (pk, b) · Enc (pk, b') is an encryption of b@b=b+b' (mod 2),
Post-Quantum Security + Latrice - based Crypto
why latrices?
45 best algorithms run in 2 ^h time vs facting + DLP can be solved ~2 ⁱⁿ
Scotar ils quantum resistant
Worst-case hardness is strengly connected to avg-hardness simple + efficient

Genabler of other capabilities
4) Fully Homomorphic Encyption
1994: Shor gives quentum construction for factoring + DLP
Locapacing Still not available yet, but coming
Post Quantum Cryptography: schemes that should be quantum resistant
How it works
·matrix A, secret \$
Try 1: Find S given (A)S Gavisian Elim.
Try 2: Find & given (A)s mad q makes this easy
To 3: 5: 1 1 - (A)s 1 1
Try 3: Find 3 given (A)s +e
36102010
5 +e = <a; +e;<="" 5="" td=""></a;>
Try 4: Finds given [(A) s +e] (mod q)
To Very hard to find s
· error can just bump you
over to a new dist area in nor
-mod condenses and distint
x 1 x1e 39 49
29
<u> </u>
Johns Noisy, mad I:n equis (nxl) mxl
Given: A (mxn) and [A·s+ē] mod q
Parameters: dimensions min, mid q, emordist & -> uniformin int
[-β,,B]
LA: chosen at rand film Zq", 5 film Zq", e film X"
e fin X m
Learning With Emis (LHE)
decoding random linew codes (error correcting code when

L) learning noisy linear functions
L's moist-case hard lattice problems
Attack 1: Linear zamon
given A,[As+e], find &
ty 1: each linean is exact poly, ean
ex. b= < a, s7 +e = E? a; s; +e = error bound B=1
Ce[-1,0,1]
More eqn (b- 2qisi-1)(b- 2qisi)(b- 2qisi+1)=0 Aone of these is 0 so all will be 0
Geven just solving deg. 2 polynomial equation is NP-hard
try 2: easy to solve given sufficiently many equs
La using "linearization"
7 5 0 0 0 5 5 0 5 0 0 4 5 0 0 1 + (1-12) b/ (b-12) - 0
Σ a, a, aκ sisjsκ + ε a i sis + ε a i si + Cb-1) b (b+1)=0
replace w) indep. var
Ecik
· created moiseless linear equation in tijk
fener egn: more candidates -> more egns: less condidates
Ly when # eans - # was a a (a3)
4 When #eqns=#vars & O(n³)
Generalized Linearization Affack D. · breakable when m>> n
· breakable when m >> n
· Set B= n _> ensure linearization doesn't get enough equist
break it
What is the latrice?
· discrete, additive sub group of PR
· A is pls on lattice - c does not have to be on lattice
Latrice Reduction Attack2
111 Ala
Say 9/B= 2" for constant E>0

· LLL sover LHE in time 20(n1-E) . poh	(~,1-99)
Lapovyin n and logg when B = 2ª	
Safe Parameters	
·n - Sec. parameter	
'm: arbivery per in ro (A is nxm)	Say 2no.19
·B: small poly in n say In	
· q: poly in n, larger than B, could be as	largens sub-exp
La from quantum side: no known alg to break i	nell-consumed LWE
Decisional LWE correlated	completely independen
can you dist wo A, (Aste) and	A, 6
	the dependence on A vs
Same hardness as LWE	Independence
Info-computation gap	
Columns in A	
. if m is much smaller than m, it is informa	non-theoretically hard
to find s	•
n	
(1-log 2B+1) 2 m = 2 log (2) : S is uniquely determined	d given (A, Aste) but it is
(1- Togq dust 2811) computationally hard	to recover
OWF + PRG	
g _A (s,e) = As +e	
120000000000000000000000000000000000000	
Gone-way (by LNE)	
L) PRG (decisional LNE	
Lican be trapdoor	
Using LHE in ene Secret-Key Energy	
Gen: sk = vector s & Zq	
Encin) // ne {o, 1} = message	her mon't know
1. Sample a EZgh, Small mise eEZ	•
2. C= (a b= < a \$7+ 0+ 4/9/2)	
Aecoder recov	rent this a maisy message
k need signifi	icent large Signal ratto

Decerces: output round 9/2 (b- < 9/87 mod q)
Lacorrectness as long as lele 9/4
- Schrodes as long as left 1/4