1. Definition of a sequence

A set of elements arranged in a definite order and formed according to some definite rule relating the elements to their position or / and the preceding & succeeding elements is called a sequence.

The different elements in a sequence are called terms of the sequence and are generally denoted with respect to their positions as t_1, t_2, t_3, \ldots

The n^{th} term is called the general term of the sequence and it is generally denoted by $t_{n} \\$

Finite Sequence

A sequence is said to be finite sequence if the number of terms in the sequence is finite. A finite sequence always has a last term. e.g. 1, 3, 9, 27, ..., 729.

Infinite sequence

A sequence is said to be an infinite sequence if the number of terms in the sequence is infinite. An infinite sequence has no last term. e.g. $1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \dots$

Series

An expression consisting of the terms of a sequence, alternating with the symbol '+', is called a series. If $\{t_n\} = \{t_1, t_2, t_3, \ldots\}$ is a sequence, then $S = t_1 + t_2 + t_3 + \ldots$ is called the corresponding series.

2. Arithmetic Progression (A.P.)

A sequence $\{t_n\}$ of numbers is said to be an A.P. if $t_n - t_{n-1} = a$ constant for all $n \in N$, $n \ge 2$. This constant is known as the common difference (c.d.) of the A.P. and is denoted by 'd'.

If three elements a, b, c are in A.P., then $b-a=c-b \Rightarrow 2b=a+c$.

Sequences of natural number, odd and even integers etc. are some well-known A.P.s In general a sequence governed by a rule which linearly relates the elements with their positions is an A.P. i.e. $t_n = pn + q$, where p and q are constants.

e.g. $t_n = 3n + 2$ Generates for n = 1, 2, 3, ... an A.P. as 5, 8, 11, ... $t_n = 4n - 3$ Generates for n = 1, 2, 3, ... an A.P. as 1, 5, 9, ...

3. General representation of an A.P.

Let us consider an A.P. with first term = a, common difference = d and the last term = l

- The general form of an A.P. is a, a + d, a + 2d, a + 3d, ...
- Formula for n^{th} term of an A.P. is "a + (n 1)d"
- Formula for rth term from the end of an A.P. containing n terms is

"
$$l - (r-1)d$$
" or " $a + (n-r)d$ "

When sum of three or more elements of an A.P. is known generally the terms of the A.P. are assumed as "a-d, a, a+d" for three terms and "a-3d, a-d, a+d, a+3d" for four terms. Similar idea may be used if it is required to select more terms.

4. Important Results and Properties Regarding an A.P.

- If a fixed number is added to (or subtracted from) each term of an A.P., then the resulting sequence is also an A.P. with same c.d. as that of the original A.P.
- If each term of an A.P. is multiplied (or divided) by a fixed non-zero number k, then the resulting sequence is also an A.P.
- If corresponding terms of two or more A.P.'s are added then the resulting sequence will be an A.P.
- Common terms of two A.P.s are also in A.P. with common difference as L.C.M. of the common differences of the two A.P.s.
- If elements are selected at equal interval from an A.P. then those elements will also be in A.P. i.e. $t_n = \frac{1}{2} (t_{n-k} + t_{n+k})$
- In an A.P. sum of terms symmetrically located from center is always equal to sum of the first and the last term i.e. $t_r + t_{n-r+1} = a + l$.

5. Sum of the first n terms of an A.P.

$$S = a + (a+d) + (a+2d) + ... + (a+(n-1)d)$$

Also if we start from last term then

$$S = l + (l - d) + (l - 2d) + \dots + (l - (n - 1)d)$$

Adding the two series we get, $S = \frac{n}{2} \{a + l\}$.

Also as, l = a + (n-1)d, the formula becomes $S = \frac{n}{2} \{2a + (n-1)d\}$.

In general the expression for sum of n terms of an A.P. is always of the form $(pn^2 + qn)$, where p & q are constants.

General term and sum of n terms of some common A.P.s are as follows:

Sequence of natural numbers $t_n = n \& S_n = \frac{n(n+1)}{2}$ Sequence of first n odd natural numbers $t_n = 2n-1 \& S_n = n^2$

Sequence of first n even natural numbers $t_n = 2n \& S_n = n(n+1)$

6. Single Arithmetic mean (A.M.) and Arithmetic means

A.M. of the numbers $a_1, a_2, a_3, \ldots, a_n$ is given by $\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}$.

If a, b, c are in A.P., then b is called a single arithmetic mean (A.M.) between a and c, i.e. $b = \frac{a+c}{2}.$

Inserting Arithmetic means

Inserting n arithmetic means between two given numbers a & l actually means identifying an A.P. consisting (n + 2) terms with a & l as respectively the first and last terms. Considering A_1 , A_2, \ldots, A_n to be the n arithmetic means between a and l to form an A.P. of common difference 'd' we will have

$$l = a + (n+1)d \implies d = \frac{l-a}{n+1}$$
 :: $A_1 = a + \frac{l-a}{n+1}, A_2 = a + \frac{2(l-a)}{n+1}, A_3 = a + \frac{n(l-a)}{n+1}, \dots$

In general if n A.M.'s are inserted between a & l, then r^{th} A.M. will be given by $a + \frac{r(l-a)}{r^{l-1}}$

Here take care of not getting confused between the concept of inserting A.M.'s between two given numbers and the concept of A.M. of n numbers.

Single A.M. of n A.M.'s between two numbers a & l is equal to the arithmetic mean of a & l

i.e.
$$\frac{A_1 + A_2 + A_3 + \dots + A_n}{n} = \frac{a + l}{2}$$
.

7. Geometric Progression (G.P.)

A sequence is said to be a G.P. if its first term is non-zero and each of the succeeding terms is equal to the preceding term multiplied by a certain non-zero number which is constant for a given sequence. The non-zero number is called the common ratio of the G.P.

If three elements a, b, c are in G.P., then $\frac{b}{a} = \frac{c}{b} \Rightarrow b^2 = a \cdot c$.

In general a sequence governed by a rule which exponentially relates the elements with their positions is a G.P. i.e. $t_n = p \cdot q^n$, where p and q are constants.

e.g. $t_n = 2 \cdot 3^n$ generates for n = 1, 2, 3, ... a G.P. as 6, 18, 54, ...

$$t_n = \frac{4^n}{3}$$
 generates for n = 1, 2, 3, ... a G.P. as $\frac{4}{3}$, $\frac{16}{3}$, $\frac{64}{3}$, ...

Note that No term of a G.P. can be zero neither can be the common ratio of a G.P. zero.

8. General representation of an A.P.

Consider A G.P. with a as the first term, last term l and r as the common ratio.

- General form of the G.P. will be a, ar, ar^2 , . . .
- General formula for n^{th} term of the G.P. is ar^{n-1}
- General formula for nth term of the G.P. from the end is $\frac{l}{r^{n-1}}$.

When product of three or more elements of an G.P. is known generally the terms of the G.P. are assumed as " $\frac{a}{r}$, a, ar" for three

terms and "
$$\frac{a}{r^3}$$
, $\frac{a}{r}$, ar , ar^3 " for four terms.

Similar idea may be used if it is required to select more terms.

9. Important Results and Properties Regarding A G.P.

- If each term of a G.P. be multiplied (or divided) by a fixed non-zero number, then the resulting sequence is also a G.P.
- If each term of a G.P. be raised to the same power, then the resulting sequence is also a G.P.
- If x_1 , x_2 , x_3 , ..., x_n is a G.P. of positive terms then $\log x_1$, $\log x_2$, $\log x_3$,..., $\log x_n$ will be an A.P. Similarly if x_1 , x_2 , x_3 ,..., x_n is an A.P., then a^{x_1} , a^{x_2} , a^{x_3} ,..., a^{x_n} (a > 0) will be a G.P.
- If a number of terms are taken from a G.P. such that
 - (i) their positions are at equal interval (ii) their positions are in A.P., then the selected terms will also be in G.P.
- If corresponding terms of two or more G.P.s are multiplied then the resulting terms will also be in G.P.

10. Sum of the first n terms and infinite terms of a G.P.

- The sum of first n terms of a G.P. is given by $S_n = \frac{a(1-r^n)}{1-r}$ where $r \ne 1$
- Sum to infinite terms of a G.P. is $S_{\infty} = \frac{a}{1-r}$, |r| < 1

11. Single Geometric Mean (G.M.) and Geometric Means

If a, G, b are in G.P. then G is called the G.M. between a and b. In such case

$$G = \begin{cases} -\sqrt{ab} & if \ a,b < 0 \\ \sqrt{ab} & otherwise \end{cases}.$$

G.M. of n numbers $t_1,\,t_2,\,...,\,t_n$ is given by $\left(t_1,\,t_2,\,t_3...\,t_n\right)^{1/n}$

Inserting Geometric Means

Inserting n Geometric Means between two given numbers a & l actually means identifying a G.P. consisting (n + 2) terms with a & l as respectively the first and last terms. Considering G_1 , G_2 , . . ., G_n to be the n Geometric Means between a and l to form a G.P. of common ratio 'r' we will have

$$l = ar^{n+2-1} \implies l = ar^{n+1} \implies r = \left(\frac{l}{a}\right)^{1/n+1}$$

$$\therefore G_1 = ar = a \left(\frac{l}{a}\right)^{\frac{1}{n+1}}, G_2 = ar^2 = a \left(\frac{l}{a}\right)^{\frac{2}{n+1}}, ..., G_n = ar^n = a \left(\frac{l}{a}\right)^{\frac{n}{n+1}}$$

In general if n G.M.s are inserted between a & l, then rth G.M. will be given by $a \left(\frac{l}{a}\right)^{\frac{r}{n+1}}$

Here take care of not getting confused between the concept of inserting A.M.'s between two given numbers and the concept of A.M. of n numbers.

Single G.M. of n G.M.'s between two numbers a & l is equal to the Geometric Mean of a & l

i.e.
$$(G_1.G_2.G_3...G_n)^{\frac{1}{n}} = (a.l)^{\frac{1}{2}}$$
.

12. Harmonic progression (H.P.)

A sequence of non-zero real numbers t_1 , t_2 ,..., t_n is said to be an H.P. if $\frac{1}{t_1}, \frac{1}{t_2}, \frac{1}{t_3}, \dots, \frac{1}{t_n}$ are in A.P.

Hence if a, b, c are in H.P. then $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ will be in A.P. Hence $\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \implies b = \frac{2ac}{a+c}$.

The general form of an H.P. is
$$\frac{1}{a}$$
, $\frac{1}{a+d}$, $\frac{1}{a+2d}$,..., $\frac{1}{a+(n-1)d}$

It must be noted here that no terms of an H.P. can be zero.

There is no formula which can represent sum of n terms of a H.P.

13. Single Harmonic mean (H.M) and Harmonic Means

If a, H, b are in H.P., then H is said to be H.M. between a and b. In such case $\frac{1}{a}$, $\frac{1}{b}$ are in

A.P.
$$\therefore \frac{1}{H} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right) \Rightarrow H = \frac{2ab}{a+b}$$
.

The harmonic mean of
$$t_1$$
, t_2 , t_3 , ..., t_n is given by $\frac{1}{H} = \frac{1}{n} \left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_n} \right)$.

Inserting Harmonic Means

If a, H_1 , H_2 ,, H_n , b are in H.P., then H_1 , H_2 , H_3 ,, H_n are said to be the n H.Ms between a and b.

In such case $\frac{1}{a}$, $\frac{1}{H_1}$, $\frac{1}{H_2}$, $\frac{1}{H_3}$,....., $\frac{1}{H_n}$, $\frac{1}{b}$ are in A.P. Let common difference of this A.P.

be d.

$$\therefore \frac{1}{b} = \frac{1}{a} + (n+2-1)d \implies \frac{1}{b} - \frac{1}{a} = (n+1)d \implies d = \frac{a-b}{(n+1)ab}$$

$$\therefore \frac{1}{H_1} = \left[\frac{1}{a} + \frac{a - b}{(n+1)ab} \right], \quad \frac{1}{H_2} = \left[\frac{1}{a} + \frac{2(a - b)}{(n+1)ab} \right], \quad \dots, \frac{1}{H_n} = \left[\frac{1}{a} + \frac{n(a - b)}{(n+1)ab} \right]$$

14. Algebraic Mean Inequalities

• If A, G & H are respectively the Arithmetic mean, Geometric mean & Harmonic mean of n positive numbers, then $A \ge G \ge H$. i.e.

$$\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n} \ge \left(a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n\right)^{\frac{1}{n}} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \ldots + \frac{1}{a_n}}.$$

• If $a_1, a_2, a_3, \ldots, a_n$ be n positive numbers and $m_1, m_2, m_3, \ldots, m_n$ are n positive rational numbers then

$$\frac{m_1.a_1 + m_2.a_2 + m_3.a_3 + \ldots + m_n.a_n}{m_1 + m_2 + m_3 + \ldots + m_n} \ge \left(a_1^{m_1}.a_2^{m_2}.a_3^{m_3}.\ldots a_n^{m_n}\right)^{\frac{1}{m_1 + m_2 + m_3 + \ldots + m_n}}.$$

Here the two means are called the weighted A.M. & the weighted G.M.

• If $a_1, a_2, a_3, \dots, a_n$ be n positive numbers and 0 < m < 1, then

$$\frac{a_1^m + a_2^m + a_3^m + \ldots + a_n^m}{n} \le \left(\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}\right)^m.$$

• If $a_1, a_2, a_3, \dots, a_n$ be n positive numbers and m < 0 or m > 1, then

$$\frac{a_1^m + a_2^m + a_3^m + \ldots + a_n^m}{n} \ge \left(\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}\right)^m.$$

15. Some more inequalities which you may find useful

Tchebychef Inequality

If $a_1, a_2, a_3, \ldots, a_n$ & $b_1, b_2, b_3, \ldots, b_n$ are real numbers such that $a_1 \le a_2 \le a_3 \le \ldots \le a_n$ & $b_1 \le b_2 \le b_3 \le \ldots \le b_n$, then

$$\frac{a_1b_1 + a_2b_2 + a_3b_3 + \ldots + a_nb_n}{n} \ge \left(\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}\right) \left(\frac{b_1 + b_2 + b_3 + \ldots + b_n}{n}\right)$$

Weierstrass Inequality

If $a_1, a_2, a_3, \dots, a_n$ are n positive numbers and n > 1, then

$$(1+a_1)(1+a_2)(1+a_3)\dots(1+a_n)>1+a_1+a_2+a_3+\dots+a_n$$

If $a_1, a_2, a_3, \dots, a_n$ are n positive numbers less then unity and n > 1, then

$$(1-a_1)(1-a_2)(1-a_3)\dots(1-a_n)>1-a_1-a_2-a_3-\dots-a_n$$

Cauchy - Schwartz Inequality

If $a_1, a_2, a_3, \ldots, a_n \& b_1, b_2, b_3, \ldots, b_n$ are real numbers then

$$(a_1b_1 + a_2b_2 + a_3b_3 + \ldots + a_nb_n)^2 \le (a_1^2 + a_2^2 + a_3^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + b_3^2 + \ldots + b_n^2).$$

Equality will hold if $a_1, a_2, a_3, \dots, a_n$ are proportional to $b_1, b_2, b_3, \dots, b_n$.

16. Arithmetical Geometric Progression (A.G.P.)

If x_1 , x_2 , x_3 ,, x_n are in A.P. and y_1 , y_2 , y_3 ,, y_n are in G.P. then x_1y_1 , x_2y_2 , x_3y_3 ,, x_ny_n is called arithmetical geometric sequence.

In general an A.G.P. may be represented as ab, (a+d)br, $(a+2d)br^2$, $[a+(n-1)d]br^{n-1}$, where a, a+d, a+2d,, a+(n-1)d are in A.P. and b, br, br^2 ,, br^{n-1} are in G.P.

- Generally nth term of an A.G.P. is $t_n = [a + (n-1)d]r^{n-1}$
- Sum of n terms of an A.G.P. is given by

$$S_n = \frac{a}{1-r} + \frac{dr}{(1-r)^2} - \frac{dr^n}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}$$
$$= \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}$$

• If
$$|\mathbf{r}| < 1$$
 $S_{\infty} = \lim_{n \to \infty} S_n = \frac{a}{1-r} + \frac{dr}{(1-r)^2} \left(: \lim_{n \to \infty} r^n = 0 \right)$

17. Series of natural numbers

•
$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

•
$$\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

Sum of pairwise products of first n natural numbers

$$\sum_{1 \le i < j \le n} i \cdot j = \frac{1}{2} \left\{ \left(\sum_{r=1}^{n} r \right)^{2} - \sum_{r=1}^{n} r^{2} \right\}$$

In general
$$1^k + 2^k + 3^k + ... + n^k = a_0 n + a_1 n (n-1) + a_2 n (n-1) (n-2) + ... + a_k n (n-1) ... (n-k)$$
 Where $a_0, a_1, a_2, ..., a_k$ can be found by letting $n = 1, 2, 3, ..., k-1$.

18. Method of Differences

Consider the sequence "a₁, a₂, a₃, ..." The nth term of this sequence may be found as follows –

$$S = a_1 + a_2 + a_3 + a_4 + \ldots + a_n$$

$$\frac{-\left\{S = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n\right\}}{0 = a_1 + \left\{b_1 + b_2 + b_3 + \dots + b_{n-1}\right\} - a_n}$$

$$0 = a_1 + \{b_1 + b_2 + b_3 + \dots + b_{n-1}\} - a_n$$

$$\Rightarrow a_n = a_1 + \{b_1 + b_2 + b_3 + \dots + b_{n-1}\}$$

Let
$$S = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$$
 ... (1)

If the terms in bracket are in a known sequence such as A.P., G.P., A.G.P. or powers of natural numbers, value of a_n can be found in terms of n and then $S_n = \sum_{n=0}^{\infty} a_n$.

19. Special Sequence Related to A.P. & H.P.

To find the sum of the series of the form . . .

•
$$\frac{1}{x_1 x_2 \dots x_r} + \frac{1}{x_2 x_3 \dots x_{r+1}} + \dots + \frac{1}{x_n x_{n+1} \dots x_{n+r-1}}$$
 &

•
$$x_1x_2 \ldots x_r + x_2x_3 \ldots x_{r+1} + \ldots + x_nx_{n+1} \ldots x_{n+r-1}$$

where $x_1, x_2, x_3, \ldots, x_n \ldots$ are in A.P. with common difference d.

First consider the series

$$S_{n} = \frac{1}{x_{1}x_{2} \dots x_{r}} + \frac{1}{x_{2}x_{3} \dots x_{r+1}} + \dots + \frac{1}{x_{n}x_{n+1} \dots x_{n+r-1}}$$

Here general term of the sequence i.e. $t_n = \frac{1}{x_n x_{n+1} \dots x_{n+r-1}}$

Let us define u_n as $\frac{1}{x_{n+1}x_{n+2}\dots x_{n+r-2}x_{n+r-1}}$ by leaving first term in denominator of t_n .

$$\Rightarrow u_{n-1} = \frac{1}{x_n x_{n+1} \dots x_{n+r-3} x_{n+r-2}}$$

$$\Rightarrow \mathbf{u_n} - \mathbf{u_{n-1}} = \frac{x_n - x_{n+r-1}}{x_n x_{n+1} \dots x_{n+r-1}}$$

$$u_n - u_{n-1} = t_n (x_n - x_{n+r-1})$$

$$= t_n \{ [x_1 + (n-1)d] - [x_1 + (n+r-2)d] \}$$

$$= t_n(1-r)d$$

$$\Rightarrow t_n = \frac{u_n - u_{n-1}}{d(1-r)} \quad or \quad \frac{u_{n-1} - u}{d(r-1)}$$

Put n = 1, 2, 3, 4, ..., n, we get

$$t_1 = \frac{1}{d(r-1)}(u_0 - u_1), \ t_2 = \frac{1}{d(r-1)}(u_1 - u_2), \dots, t_n = \frac{1}{d(r-1)}(u_{n-1} - u_n)$$

by adding all, we get

$$t_1 + t_2 + \ldots + t_n = \frac{1}{(r-1)d}(u_0 - u_n)$$

$$\therefore S_n = \frac{1}{(r-1)d} \left(\frac{1}{x_1 x_2 \dots x_{r-1}} - \frac{1}{x_{n+1} x_{n+2} \dots x_{n+r-1}} \right)$$

Hence the sum of n term is

$$S_{n} = \frac{1}{(r-1)(x_{2}-x_{1})} \left(\frac{1}{x_{1}x_{2} \dots x_{r-1}} - \frac{1}{x_{n+1} \quad x_{n+2} \dots x_{n+r-1}} \right)$$

case(i) when r = 2,

$$\frac{1}{x_1 x_2} + \frac{1}{x_2 x_3} + \dots + \frac{1}{x_n x_{n+1}} = \left(\frac{1}{x_2 - x_1}\right) \left(\frac{1}{x_1} - \frac{1}{x_{n+1}}\right)$$

$$=\frac{x_{n+1}-x_1}{(x_2-x_1)x_1x_{n+1}}$$

$$=\frac{nd}{dx_1x_{n+1}}=\frac{n}{x_1x_{n+1}}$$

case(ii) when r = 3, we can prove

$$\frac{1}{x_1 x_2 x_3} + \frac{1}{x_2 x_3 x_4} + \dots + \frac{1}{x_n x_{n+1} x_{n+2}} = \frac{1}{2(x_2 - x_1)} \left(\frac{1}{x_1 x_2} - \frac{1}{x_{n+1} x_{n+2}} \right)$$

Similarly consider now the series

$$S_n = x_1 x_2 \dots x_r + x_2 x_3 \dots x_{r+1} + \dots + x_n x_{n+1} \dots x_{n+r-1}$$

$$\Rightarrow$$
 $t_n = x_n x_{n+1} x_{n+2} \dots x_{n+r-1}$

Let
$$u_n = x_n x_{n+1} x_{n+2} \dots x_{n+r-1} x_{n+r}$$
 (ii) (Take one extra term at the end in t_n for u_n)

$$\Rightarrow$$
 $u_{n-1} = x_{n-1} \cdot x_n \cdot x_{n+1} \cdot \dots \cdot x_{n+r-1}$

$$\Rightarrow$$
 $u_n - u_{n-1} = x_n x_{n+1} x_{n+2} \dots x_{n+r-1} (x_{n+r} - x_{n-1})$

$$= t_n \{ [x_1 + (n + r - 1)d] - [x_1 + (n - 2)d] \}$$

$$= (r + 1)d t_n$$

$$\Rightarrow t_n = \frac{1}{(r+1)d} (u_n - u_{n-1})$$

Put n = 1, 2, 3, ..., n, we get

$$t_1 = \frac{1}{(r+1)d}(u_1 - u_0), \ t_2 = \frac{1}{(r+1)d}(u_2 - u_1), \dots, \ t_n = \frac{1}{(r+1)d}(u_n - u_{n-1})$$

By adding, we get

$$t_1 + t_2 + t_3 + \ldots + t_n = \frac{1}{(r+1)d}(u_n - u_0)$$

Hence the sum of n terms is

$$S_{n} = \frac{1}{(r+1)(x_{2}-x_{1})} \left[x_{n}x_{n+1} \dots x_{n+r} - x_{0}x_{1}x_{2} \dots x_{r} \right] \qquad (Here \ x_{0} = x_{1} - d)$$

Case(i) when r = 2,

$$x_1 x_2 + x_2 x_3 + \ldots + x_n x_{n+1} = \frac{1}{3(x_2 - x_1)} (x_n x_{n+1} x_{n+2} - x_0 x_1 x_2)$$

Case (ii) when r = 3,

$$x_1 x_2 x_3 + x_2 x_3 x_4 + \ldots + x_n x_{n+1} x_{n+2} = \frac{1}{4(x_2 - x_1)} (x_n x_{n+1} x_{n+2} x_{n+3} - x_0 x_1 x_2 x_3).$$