AD-A009 842

TRAJECTORY RECONSTRUCTION PROGRAM MILESTONE 2/3 REPORT. VOLUME I. DESCRIPTION AND OVERVIEW

M. J. Rademacher, et al

Aerospace Corporation

Prepared for:

Space and Missile Systems Organization

16 December 1974

DISTRIBUTED BY:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION NO. SAMSO-TR-75-90, Vol. I	AD-A009 842			
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
TRAJECTORY RECONSTRUCTION PROGRAM MILESTONE 2/3 REPORT				
VOLUME I: DESCRIPTION AND OVERVIEW	TR-0075(9320)-3, Vol. I			
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(a)			
M. J. Rademacher and W. F. Rearick	F04701-74-C-0075			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
The Aerospace Corporation El Segundo, Calif. 90245				
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
Space and Missile Systems Organization	16 December 1974			
Air Force Systems Command Los Angeles Calif 90045	13 WILLIAMS OF PAGES 5/4			
Los Angeles, Calif. 90045 14. MONITORING AGENCY NAME & ADDRESS(11 ditterent from Controlling Office)	15. SECURITY CLASS. (of this report)			
	Unclassified			
	152. DECLASSIFICATION/DOWNGRADING			
16. DISTRIBUTION STATEMENT (of this Report)				
	_			
Approved for public release; distribution unlimited	d.			
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	us Report)			
18. SUPPLEMENTARY NOTES				
Reproduced by NATIONAL TECHNICAL				
INFORMATION SERVICE				
U.S. Department of Commerce Springfield VA 22151				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	7°1			
CDC 6600/7600 Launch/Reentry S Data Generation Missile Trajector				
Error Analysis Modularized Prog				
Guidance and Targeting Multiple Vehicle S				
IBM 360/370 Numerical Integra				
20. ABSTRACT (Continue on reverse elde if necessary and identify by block number) The Trajectory Reconstruction Program (TRP) sy	estare consists of wobiels			

lation system has been designed to accommodate extreme variations in vehicle configuration, flight profile, and mission objective and to provide a fast reaction to specific simulations at minimal cost. This simulation system consists of a family of computer subprograms from which a judicious

DD FORM 1473

PRICES SUBJECT TO CHANGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS FAGE(When Data Entered)

19. KEY WORDS (Continued)

Parameter Estimation Postflight Reconstruction Powered Flight (3D and 6D) Sensor System Modeling Subsystems Modeling Trajectory Reconstruction UNIVAC 1108/1110 Vehicle Ephemeris

20. ABSTRACT (Continued)

selection can be made to form a specific simulation system for a particular simulation task.

Two major design features of the TRP system make it general and versatile. Its inodular construction concept (each module contains several models) allows the user to choose those suited to his simulation. Variations in flight profile are accommodated by input at event times only.

TRP is used to solve problems associated with flight reconstruction and to design and mechanize trajectories. It has application to orbit and trajectory (launch and reentry) simulation; trajectory reconstruction, simulation, and design; powered flight (using 3D or 6D equations); error analysis of existing or proposed systems; guidance equation development and targeting; vehicle subsystem modeling; and sensor system modeling (onboard and remote).

This program has a unique input processor that uses standard FORTRAN capabilities. Structured cards are read from input and may be output in compact form for input as binary decks (binary milestones). It is modular, employing main, primary, and secondary overlay levels. TRP execution core size requirements vary according to overlay structure and model usage (from 15,000 to 32,000₁₀ sixty-bit words). It uses blank or labeled common and mass storage devices for data communications. TRP is simple to modify and maintain; it has no structural limitations other than those imposed by hardware configuration or operating system interfaces.

This document, which is intended to provide basic instruction for new users, is published in two volumes. Volume II: Equations and Logic is published in three parts for user convenience. Information needed for day to day TRP operation is provided in the Milestone 7 Report, which is published as TR-0075(9320)-4.

Approved

 $\frac{\mathcal{L}}{\mathcal{L}}$

D. C. Walker
Systems Engineering Director
Orbital Systems Analysis
Advanced Orbital Systems Division
Systems Engineering Operations

A. R. Sima Director

A. R. Sims, Director
Mathematics and Programming
Subdivision
Information Processing Division
Engineering Science Operations

CALLEGISMON BURNEY CONTROL

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

G. E. Aichinger

Technical Advisor

Contracts Management Office

iii

PREFACE

This report, which is intended to provide basic instruction for new users, is published in two volumes. Volume II: Equations and Logic is published in three parts for user convenience:

Part A: Input and Executive Modules

Part B: Trajectory Tracking and Reconstruction

Part C: Trajectory Generation

Information needed for day to day TRP operation is provided in the Milestone 7 Report, which is published as TR-0075(9320)-4.

CONTENTS

PREF	FACE.				1
GLOS	SARY			• • • • • • • • • • • • • • • • • • • •	15
1.	INTR	ODUCTIO	ON · · · · ·	• • • • • • • • • • • • • • • • • • • •	1-1
	1.1	Function	al Design	• • • • • • • • • • • • • • • • • • • •	1-3
		1.1.1	Functiona	l Requirements • • • • • • • • • • • • • • • • • • •	1-3
		1.1.2	Elements	of Flight Dynamics	1-4
		1.1.3	Modules a	and Models	1-5
		1.1.4	Module In	teraction · · · · · · · · · · · · · · · · · · ·	1-5
	1.2	Mission	Profile Sp	ecification •••••••	1-10
		1.2.1	Event Cla	ssification • • • • • • • • • • • • • • • • • • •	1-11
		1.2.2	Event Spe	cification · · · · · · · · · · · · · · · · · · ·	1-13
			1.2.2.1	Example 1: Ballistic Mission Profile	1-15
			1.2.2.2	Example 2: Earth Parking Orbit to Lunar Impact Profile	1-16
		1.2.3	Event Init	ialization • • • • • • • • • • • • • • • • • • •	1-17
	1,3	Data Inp	ut • • • • •	• • • • • • • • • • • • • • • • • • • •	1-18
		1.3.1	Description	on Data · · · · · · · · · · · · · · · · · ·	1-19
		1.3.2	-	teria Data · · · · · · · · · · · · · · · · · ·	1-19
		1.3.3		Data • • • • • • • • • • • • • • • • • •	1-19
		1.3.4		ecification Data	1-19
		1.3.5	-	ion Data · · · · · · · · · · · · · · · · · ·	1-20
		1.3.6	-	ards · · · · · · · · · · · · · · · · · · ·	1-20
	1.4	Trajecto		tion Features and Capabilities	1-20
		1.4.1	Three or Simulation	Six Degree of Freedom	1-20
		1.4.2	Integratio	n Features · · · · · · · · · · · · · · · · · · ·	1-22
		1.4.3		Computations	1-23
		1.4.4	•	ed Event Determination · · · · · · · · · · · · · · · · · · ·	1 - 24
		1.4.5		Vehicle Simulations	1-25

		i.4.6	Arbitrary Origin
		1.4.7	Generalized Radar Tracking
	1.5	Parame	eter Reconstruction and Data Matching 1-28
		1.5.1	PFRP Modules 1-28
		1.5.2	Iterative Process
			1.5.2.1 Iteration Equations 1-29
			1.5.2.2 Major and Minor Cycles · · · · · · · 1-31
			1.5.2.3 Tests 1-32
		1.5.3	Measures of Approximation
	1.6	Error A	Analysis \cdots \cdots \cdots 1-34
		1.6.1	Covariance Matrices 1-34
		1.6.2	Modeled and Unmodeled Parameters 1-35
		1.6.3	Value of Acquired Data and Experimental Improvement
		1.6.4	Linearity Assumptions
	1.7	Major (Observation Pata Types
2.	YEO	MAN • • ·	2-1
	2.1	YEOMA	AN Flow Charts
	2.2	YEOMA	N Equations • • • • • 2-53
	2.3	YEOMA	aN Inputs · · · · · · · · 2-63
	2.4	YEOMA	AN Outputs · · · · · · · · · · · · · · · · · · ·
3.	COO	RDINATI	E SYSTEMS AND TYPES 3-1
	3.1	Coordin	nate Systems · · · · · · · · · · · · · · · · · · ·
		3.1.1	Computational Coordinate System I 3-3
		3.1.2	Vehicle Zero Reference Coordinate System Q
		3.1.3	Vehicle Body Coordinate System B (RM0TM) · · · · · · · · · · · · · · · · · · ·
		3.1.4	Launch-Centered Inertial Coordinate System L (TM0TM)

		3.1.5	Initial Body Coordinate System B ₀ (RM0TM)
		3.1.6	Gimbal Coordinate System G (RM0TM) 3-14
		3.1.7	Body Attitude Initialization 3-15
			3.1.7.1 Method 1
			3.1.7.2 Method 2
		3.1.8	Local Horizontal Coordinate System H (ENVRM)3-16
		3.1.9	Wine Coordinate System W (AERMM) 3-17
		3.1.10	Earth-Centered Fixed Coordinate System F
		3.1.11	Launch-Centered Rotating Coordinate System R (TM0TM) 3-20
		3.1.12	Tracking Station Coordinate System S (TRAKM)
	3.2	Coordin	ate Types · · · · · · · · · · · · · · · · · · ·
		3.2.i	Earth-Centered Inertial Cartesian Coordinates (TM0TM) · · · · · · · · · · · · · · · · · · ·
		3.2.2	Spherical Coordinates (TM0TM, ENVRM) · · · · · · 3-23
		3.2.3	Geographic Coordinates (TM0TM) · · · · · · · · 3-22
		3.2.4	Orbital Coordinates · · · · · · · · · · · · · · · · · 3-23
4.	INTE	ERFACE	DETAILS 4-1
	4.1	Data Sto	orage 4-i
		4.1.1	Labeled Common 4-1
		4.1.2	Expandable BUCKET Usage
	•	4.1.3	Card Data Input Storage 4-5
	4.2	Card Da	ata Input
		4.2.1	Input Card Format 4-9
			4.2.1.1 Card Column Assignments 4-9
			4.2.1.2 Module, Vehicle, and ESN Identification

		4.2.1.3	Card Codes 4-12
		4.2.1.4	Information Field Codes 4-12
		4.2.1.5	Address Fields 4-14
		4.2.1.6	Information Fields 4-15
	4.2.2	Preparing	g the Symbolic Data 4-16
		4.2.2.1	Header Card (H or P) 4-16
		4.2.2.2	Event Identification Card (E) · · · · · · 4-17
		4.2.2.3	Event Criteria Data (L) 4-18
		4.2.2.4	General Data () 4-24
		4,2,2,5	Interpolation Table Data (I) · · · · · · · 4-27
		4.2.2.6	Tabular Block Data (T) · · · · · · · · 4-38
		4.2.2.7	Control Cards (C) · · · · · · · · · 4-40
		4.2.2.8	Case Identification (A) 4-49
		4.2.2.9	Data Deletion · · · · · · · · · · · · · · 4-49
4.3	Data Ta	pe Input .	
4.4	Printed	Output	
4.5	Tape Ou	ıtput	
	4.5.1	9300 Tape	e Output 4-92
	4.5.2	Special P	rint Tape Output 4-93
	4.5.3	Data Tape	e Output
4. b	Control	Interfaces	
4.7			Interfaces
4.8	Storage	and Timin	g Requirements
	4.8.1		
	4.8.2	Timing .	
TRP	CHARAC	TERISTIC	S AND CONVENTIONS 5-1
5.1	TRP Ch	aracteristi	.cs · · · · · · · · 5-1
	5.1.1	TRP Inpu	t Characteristics 5-1

5.

		5,1,1,1	Dictionaries · · · · · · · · · · · · · · · 5-1
		5.1.1.2	Mnemonic Input · · · · · · · · · · · · · 5-2
	5.1.2		tructure · · · · · · · · · · · · · · · · · · ·
	5.1.2	5.1.2.1	General Module Characteristics · · · · · 5-2
			Module Sections 5-3
		5.1.2.2	
	5.1.3	-	out Print · · · · · · · · · · · · · · · · · · ·
		5.1.3.1	Print Routines · · · · · · · · · · · · · · · · · · ·
		5.1.3.2	Print Initialization 5-10
		5.1.3.3	Print Mechanization 5-11
	5.1.4	Trajector	ry Design and Reconstruction 5-11
		5.1.4.1	Iteration Parameters 5-12
		5.1.4.2	Observations and Measurements for Iteration 5-13
	5.1.5	General A	Argument Function
5.2	TRP Co	nventions	5-14
	5.2.1	Program	Symbols 5-15
		5.2.1.1	Mnemonics Usage 5-15
		5.2.1.2	Program Constants and Temporary Storage
		5.2.1.3	Integration and Integration Lists 5-17
	5.2.2	Statemen	t Cards • • • • • • • • • • • • • • • • • • 5-18
		5, 2.2.1	Statement Numbering 5-18
		5.2.2.2	Comments Cards 5-18
	5.2.3	Program	Variables 5-19
		5.2.3.1	Labeled Common 5-19
		5.2.3.2	Plank Common 5-20
		5.2.3.3	Local Variables 5-20
	5.2.4	Table Us	age
	5.2.5		Usage 5-21
	5.2.6		ibroutines · · · · · · · · · · · · · · · · · · 5-21

		5.2.6.1	M0DX Routine Usage 5-2	1
		5.2.6.2	Trigonometric Functions and Subroutines	4
		5.2.6.3	Vector Functions and Subroutines 5-24	4
		5.2.6.4	Matrix Operations 5-2	5
		5.2.6.5	Data Retrieval 5-28	8
		5.2,6.6	Miscellaneous Operations 5-29	9
6.	ERRO	OR CHECKING, AB	ORT PROCEDURES, AND	
	6.1	TRP Execution Er	rors 6-1	
	6.2	System Errors		
	6.3	Input Errors		
	6.4	Checkpoint Utiliza	tion	1
	6.5	Special Coding		1
APP	ENDIX	ES:		
Α.	SYMI	BOL CROSS REFER	ENCES A-1	l
В.	SUBR	OUTINE LIST	B-1	l
c.	SUBR	OUTINE CROSS RI	EFERENCE LIST	l
D.	REQU	JIRED COMMONS	AND EXTERNALS D-1	l
INDE	х		T-1	1

FIGURES

1-1.	TRP Module Interactions
3-i.	TRP/YEOMAN Interaction · · · · · · · · · · · · · · 2-2
3-1.	Earth Reference Ellipsoid
3-2.	Computational Coordinate System I 3-5
3-3.	Vehicle Zero Reference Coordinate System Q · · · · · · · 3-7
3-4.	Engine Nozzle Location and Orientation in the Vehicle Coordinate System Q: Examples
3-5.	Vehicle Body Coordinate System B · · · · · · · · · · · · · 3-9
3-6.	Launch-Centered Inertial Coordinate System L · · · · · · · 3-10
3-7.	Geometric Relationship Between Geodetic and Astronomic Coordinates on a Unit Sphere
3-8.	Initial Body Coordinate System B ₀ · · · · · · · · · · · · · · · · · · ·
3-9.	Rotations to Obtain the G Coordinate System 3-14
3-10.	Local Horizontal Coordinate System H 3-17
3-11.	Aerodynamic Angles of Attack in the Pitch and Yaw Planes and Sideslip Angle
3-12.	Earth-Centered Fixed Coordinate System F 3-19
3-13.	Tracking Station Coordinate System S 3-20
3-14.	ECI Cartesian Coordinates
3-15.	Spherical Coordinates 3-22
3-16.	Geographic Coordinates · · · · · · · · · · · · · · · · · · ·
3-17.	Orbital Coordinates 3-24
4-1.	X-5 Input Data Form 4-10
4-2.	Card Column Assignments

FIGURES (Continued)

4-3.	Sample Header Card4-7
4-4.	Sample Event Identification Cards4-8
4-5.	Sample Primary Type 1 Input
4-6.	Sample Secondary Type 1 Input
4-7.	Sample Second Criterion Input
4-8.	General Input Data: Example 1
4-9.	General Input Data: Example 2
4-10.	General Input Data: Example 3
4-11.	General Input Data: Example 4 4-26
4-12.	Bivariate Table Data Curves • • • • • • • • • • • • • • • • • • •
4-13.	Thrust Table Input · · · · · · · · · · · · · · · · · · ·
4-14.	Constant Value Flow Rate Table Input 4-34
4-15.	Bivariate Aerodynamic Lift Coefficient Function Input 4-35
4-16.	Table Cross Referencing
4-17.	Table Alteration
4-18.	Table Multiplier · · · · · · · · · · · · · · · · · · ·
4-19.	Sample T Type Table Input 4-39
4-20,	Resequencing Vehicles and Events
4-21.	Three Sample Control Cards 4-47
4-22.	Sample Data Deck with Two Separate Milestones 4-48
4-23.	Event Criteria Deletion: Example 1 4-50
4-24.	Event Criteria Deletion: Example 2 4-50

FIGURES (Continued

4-25.	General Data Deletion: Example 1 · · · · · · · · · · · · · · · · · ·
4-26.	General Data Deletion: Example 2 · · · · · · · · · · · · · 4-5
4-27	General Data Deletion: Example 3 · · · · · · · · · · · · · · · · · ·
4-28.	General Data Deletion: Example 4 · · · · · · · · · · · · · · · · · 4-5
4-29.	TRP Storage Requirements • • • • • • • • • • • • • • • • • • •
5-1.	Module Composition · · · · · · · · · · · · · · · · · · ·

TABLES

2-1.	Calling Sequence Parameters · · · · · · · · · · · · · · · 2-64
2-2.	YEOMAN Output Variables · · · · · · · · · · · · · · · 2-68
2-3.	TRP Models: Full Set · · · · · · · · · · · · · · · · 2-71
2-4.	Subroutine List: Full Set · · · · · · · · · · · · · · · · · · 2-75
2-5.	TRP Models: Operational Set · · · · · · · · · · · · 2-81
2-6.	Subroutine List: Operational Set
4-1.	TRP Subroutines Using the CRAL Function 4-2
4-2.	BUCKET: Event Criteria Section · · · · · · · · · · 4-6
4-3.	BUCKET: Table Section · · · · · · · · · · · · · · · · · · ·
4-4.	ECS: General Data Section · · · · · · · · · · · · · · · · · · ·
4-5.	Event Criterion Option Call Words 4-21
4-6.	Interpolation Code Numbers 4-28
4-7.	PFRP Data Tape Format
4-8.	Print Format Key 4-94
5-1.	TRP Tape Reference Names

GLOSSARY

The glossary will be supplied at a later date.

SECTION 1

INTRODUCTION

The Trajectory Reconstruction Program (TRP) system consists of vehicle simulation subprograms designed and written in FORTRAN for CDC 6600/7600, IBM 360/370, and UNIVAC 1108/1110 series computers. The overall simulation system has been designed to accommodate extreme variations in vehicle configuration, flight profile, and mission objective and to provide a fast reaction to specific simulations at minimal cost. Note that this simulation system consists of a family of computer subprograms from which a judicious selection can be made to form a specific simulation system for a particular simulation task.

The TRP system is a valuable analytical tool that can be used in a wide variety of ways in many phases of the design, development, and mechanization of aerospace vehicles (e.g., guidance analysis, computer simulation, subsystems modeling, trajectory design, launch support, mission simulation, environmental modeling, postflight reconstruction, and error analysis).

I'wo major design features of the TRP system make it general and versatile:

- The selection and organization of functional units
- The manner in which flight profiles are presented to the program

With regard to functional organization, generality and versatility are obtained by the modular construction concept. The TRP system is an integrated set of functional units called modules; each module contains selectable models that can be used for specific simulation purposes.

With regard to the second major design aspect, each flight profile is defined as a sequence of trajectory phases, each phase initiated by an event. At each event, the necessary data and criteria associated with the next phase are processed and assigned to the module for which they are required. Many specific design and mechanization problems are connected with this aspect of the TRP system; however, successful development of the techniques necessary to accommodate varying flight profiles has produced a generalized simulation system characterized by simple, low-cost operation; versatility; growth potential; and fast reaction times to specific simulations.

From its conception, the TRP system has been designed to accommodate either three or six degree of freedom simulation requirements. TRP also features multiple vehicle simulation, system error analysis, and postflight reconstruction capabilities.

This Milestone 2/3 Report contains a detailed description of TRP structure and design. It is intended to provide basic instruction for new users, not the information needed for day to day TRP operation. This report is published in two volumes: Description and Overview (Vol. I) and Equations and Logic (Vol. II). Volume II is divided into Parts A, B, and C for user convenience. Part A describes the input and executive modules, Part B describes the trajectory tracking and reconstruction modules, and Part C describes the trajectory generation modules.

This section contains a general description of TRP functional design, mission profile specification, and data input techniques. Trajectory generation features and capabilities, parameter reconstruction and data matching, and error analysis are discussed here, and the major observation data types are also listed.

The YEOMAN system is described in Sec. 2. Flow charts and equations are presented, along with a description of input and output variables. Various coordinate systems and types are described in Sec. 3. Interface details (including data storage, card and tape input mechanics, output types and destinations, control and operating system interfaces, and storage and timing requirements) are discussed in detail in Sec. 4.

M. J. Rademacher and W. F. Rearick, <u>Trajectory Reconstruction Program Milestone 7 Report (Usage Guide)</u>, Report No. TR-0075(9320)-4, The Aerospace Corp., El Segundo, Calif. (15 November 1974).

Section 5 contains a detailed description of important aspects of the TRP system. An understanding of the mechanization principles used in the design of TRP is important in making best use of the program. Programming conventions used in the original program design are also presented here; these conventions should be adhered to in further program development.

Error checking (execution, system, and input errors), abort procedures, and special features of TRP are presented in Sec. 6.

Symbol cross references are listed alphabetically and alphabetically by module in Appendix A. TRP subroutines are listed alphabetically in Appendix B, subroutine cross references are listed in Appendix C, and required commons and externals are listed by subroutine in Appendix D.

1.1 FUNCTIONAL DESIGN

1.1.1 Functional Requirements

The functional requirements that have influenced the design of the TRP system result primarily from experience with other simulation programs and from a forecast of future simulation requirements in the aerospace industry. A very general, but demanding requirement is that all flight dynamics elements must be included in any simulation, with only the degree of sophistication and physical realism that satisfies the needs of the user (and nothing more). This particular requirement has been satisfied through a model selection capability within each module (modules are assigned a major simulation function, and models perform specific functions within each module).

The specification of arbitrary mission profiles for the TRP system is another very demanding requirement that has considerably influenced the overall program design (Sec. 1.3).

Along with these two general requirements, the following were also treated as TRP design requirements:

- Flexibility
- Operational simplicity
- Fast reaction time
- Growth potential
- Low operational cost per simulation
- Ease of program maintenance
- Machine independence

1.1.2 Elements of Flight Dynamics

Embedded in the total complex of the TRP system is a set of modules, or units that have functional significance with respect to flight dynamics. The functions performed by these units, as well as their interaction, have been precisely defined. These units, or flight dynamics elements, which are fundamental to the TRP system design are:

- Propulsion
- Structure (mass properties)
- Aerodynamics
- Control
- Sensors
- Rotational motion
- Translational motion
- Environment
- Guidance and sensor data processing
- Radar tracking

The modeling of the navigation function of flight dynamics has been split into sensors and sensor data processing. This split also occurs in the real world because the sensor function is primarily hardware oriented, and the sensor data processing and guidance functions are both primarily software oriented. From a computer mechanization point of view, it is often impossible to separate sensor data processing and guidance functions; thus they are combined into a single functional unit in the TRP system.

1.1.3 Modules and Models

The TRP system is composed of a set of modules, each of which performs a significant simulation function. Modules fall into two categories: those that mathematically represent the physical processes being simulated and those associated with the program's sequence of operations, viz., input, output, and executive control.

A model is defined as a selectable method of performing a module's function. Therefore each module has a number of models in its repertory, and each performs the module function in a different way.

The dynamic equations associated with the TRP system are based on the classical laws of physics, but as a rule the mathematical models mechanized in the TRP system are not the most general representations available; simplifying assumptions are often made. Generality in mathematical models creates mechanization problems and results in models that are expensive and difficult to use. Similar problems exist with executive functions, so the simple model concept was implemented to provide a means of removing a large portion of the logic from models, and therefore from modules. Logic is thus largely specified via model selection at event time by direct input. This design philosophy is consistent with the requirement that the program not be too costly to operate. A very general function, when mechanized on a computer, is very inefficient for the simple cases, so a basic decision was made to mechanize multiple models, designed for specific simulation requirements, in most modules. These models are then selected as needed. Simply stated, the multiple model selection process is effected by the same concept utilized for variation in flight profiles, i.e., by input at the time of an event.

1.1.4 Module Interaction

With the modularized construction design, the selection of well defined functional units eliminates ambiguous interfaces. As a result, each module has well defined inputs and outputs and can be figuratively described as a black box with inputs and outputs, as shown.

The overall set of modules that comprise the TRP system interact with each other in the manner shown in Fig. 1-1. Each module is identified by a five-letter mnemonic related to the functional role played by the module (Table 1-1). Each module containing an X as the fourth character in its mnemonic is classified as an executive module, which performs a major sequencing or control function. Only through an executive module can another module be executed.

Three executive modules (MPEXM, TSPXM, and CYCXM) form a hierarchy of executive modules in the TRP system. The Master Program Executive (MPEXM), which performs the highest level executive functions in the TRP system, is a step removed from trajectory simulation and, as such, it controls the task of selecting the prime function to be performed. This is usually trajectory simulation; however, other types can be controlled through this executive (e.g., error analysis and postflight reconstruction). TSPXM and CYCXM modules perform trajectory simulation functions on a total trajectory and a computational cycle basis, respectively. Three other executive modules (DPGXM, INTXM, and INFXM) are all controlled from CYCXM. These executives, in turn, control all modules that simulate the dynamic process.

Because of demanding requirements for open loop, pseudo type guidance and navigation simulations, very generalized techniques for open loop steering and event determination have been mechanized and assigned module stature, viz., OLSTM and TG0EM, respectively. These two modules, together with DPG1M, DPG2M, and TRAKM, provide a considerable capability in the areas of data processing and guidance and open loop trajectory simulation. These modules are controlled by DPGXM, with TG0EM controlled by CYCXM.

Fig. 1-1. TRP Module Interactions

Table 1-1. Module Mnemonics

SERVM	Service module
MPEXM	Master Program Executive module
INPIM	Input Processing module number 1
INP2M	Input Processing module number 2
TSPXM	Trajectory Simulation Processing Executive module
CYCXM	Cycling Executive module
DPGXM	Data Processing and Guidance Executive module
DPG1M	Data Processing and Guidance module number 1
DPG2M	Data Processing and Guidance module number 2
OLSTM	Open Loop Steering module
TG0EM	Time to Go to an Event module
TRAKM	Radar Tracking module
C0NTM	Control module
ENVRM	Environmental module
STRTM	Structures module
AERMM	Aerodynamic module
PR0PM	Propulsion module
RM0TM	Rotational Motion module
TM0TM	Translational Motion module
SENSM	Sensor module
JUNKM	Miscellaneous module
INTXM	Integration or Dynamics Executive module
INFXM	Information Executive module
PFRPM	Postflight Reconstruction Processor module
ITERM	Iteration Control module
ITIFM	Iteration Information module

INTXM is the dynamics or integration executive module of the TRP system. It controls all dynamic processes being simulated outside the data processing and guidance functions; it also controls the integration of derivatives that appear in the equations of motion, control equations, etc.

The modules controlled by INTXM (Fig. 1-1) are all mathematically oriented, each computationally executing the function assigned to it. For many simulations, SENSM and CONTM perform trivial or do-nothing computational functions; and in free fall, RMOTM, AERMM, and PROPM are normally assigned trivial functions. Therefore, ENVRM and TMOTM are the workhorse modules controlled by INTXM. The miscellaneous module (JUNKM) is available for general and/or temporary equations which do not specifically fit in any of the other modules.

INFXM, which performs the trajectory information function for the TRP program, is formulated to provide direct output in the form of print formats or data tapes. It also is concerned with auxiliary computations.

A set of three modules, collectively called the Postflight Reconstruction Processor (PFRP), gives TRP the ability to perform iterations to match specified constraints or data and to perform error analysis. The module PFRPM solves a set of nonlinear equations in an iterative manner with partial derivatives approximated by finite differences generated by perturbation techniques. The Iteration Information module (ITIFM) performs the calculations for the partials and residuals, and the Iteration Control module (ITERM) generates the necessary trajectories for these functions.

The Input Processing modules (INP1M, INP2M) perform the function of data input.

Finally, the Service module (SERVM) stands alone, servicing all other modules with a constants pool, a temporary storage pool, and a library of service/utility routines.

This then is a very brief description of module interaction in the TRP system. The user must refer to Vol. II of this report for a complete description of individual modules and the interaction of all variables involved.

1.2 MISSION PROFILE SPECIFICATION

Trajectory simulation with the TRP system is accomplished by describing the desired mission profile as a series of phases separated by events. Some of the terms used in connection with this subject are defined below:

Mission profile A family of trajectories, all characterized

by a similar sequence of events.

Trajectory The dynamic state of the vehicle being

simulated, generally as a function of time (the term is used here in the

broad sense).

Trajectory phase A subset of the total trajectory considered,

which is initiated by an event and terminated

by some later event initiation.

Event A discrete point along a trajectory, which

represents the terminating point of the preceding trajectory phase and the initiation point of the following one. Events may signify abrupt changes in the variables of the dynamic process being simulated, or in simulation models or philosophy, or events may simply

be information output points.

In the TRP system, considerable emphasis is placed on events because the course of a simulation can only be altered externally, through input, at event time. The course a simulation takes due to internal programmed equations is another matter; the significant fact remains that the user has no external control over a TRP simulation except at events, and it follows that all TRP input and initialization are geared to them.

1.2.1 Event Classification

All events are classified according to whether they are primary or secondary and ordered or unordered. They are also classified in terms of whether they can be ordered absolutely with respect to each other. If all events for a given mission profile are specified, there is always a starting event and a desired terminating event for each simulation case. In the trajectory interval between the beginning and the end of the profile, a sequence of events that may or may not occur in some predetermined order usually exists. All events that must occur in absolute order with respect to each other are termed type 1, or ordered events; starting events are always type 1 events. Any event that cannot be given an absolute order is classified as a type 2, or unordered roving event. A variation of the type 2 event is the type 3, or repetitive unordered roving event (i.e., it may be activated more than once).

When a designated event is superseded by another event, the superseded event is called a secondary. All other events are primary.

The kinds of events that may be specified and their corresponding event type numbers are:

- 0 Primary type 1 (ordered)
- 1 Secondary type 1 (ordered)
- 2 Primary type 2 (unordered)
- 3 Secondary type 2 (unordered)
- 4 Primary type 3 (repeating)

A type 1 primary event must occur during the course of a complete and successful simulation and must be in absolute order with respect to all other type 1 primary events.

A type 1 secondary event may or may not occur, but if it does it must occur in the interval bounded by two consecutive type 1 primary events. If more than one type 1 secondary event is specified in the same interval, they must occur in the order specified. To illustrate: Let P_{11} and P_{12} be two consecutive type 1 primary events and let S_{11} and S_{12} be

two consecutive type 1 secondary events, which (if they occur) must occur within the interval separated by P₁₁ and P₁₂. The TRP philosophy permits the following three sequences of events, given appropriate event criteria:

Sequence 1 is the specified input sequence.

A type 2 primary event is a roving event that can occur any time in the event sequence after it has been specified. It is distinguished from a type 2 secondary event because it can occur anywhere along the trajectory profile, whereas the type 2 secondary event pertains to an interval. To illustrate, add to the previous input sequence a type 2 primary event called P₂₁ and specify it in the interval separating P₁₁ and S₁₁. The following sequences of events may then occur, based on the input (number 1) sequence, again given appropriate event criter.a:

Sequences 4, 7, and 9 will not include event P₂₁ whenever event P₁₂ is the last one in the profile. Thus, it is possible that a type 2 primary event will not occur, even though it is specified early in the event sequence (Sec. 1.3.2).

A type 2 secondary event is also a roving event, but it can only rove over an interval bounded by the two consecutive type 1 primary events between which it is specified. It is not reasonable to specify a type 2 secondary event in an interval if no type 1 secondaries are specified in the same interval because a single event occurring between two ordered events cannot be unordered. Taking the event sequence P_{11} , S_{11} , S_{12} , P_{12} and specifying a type 2 secondary event (S_{21}) in the interval between P_{11} and S_{11} leads to the following possible sequences, given appropriate criteria:

A type 3 primary event is like a type 2 primary event in that it may occur at any point in the event sequence after it has been specified, or it may not occur at all. The difference is that the type 2 event may occur only once, after which it is beyond consideration in the event determination process. The type 3 event may occur as many times as event criteria permit.

1.2.2 Event Specification

Given a mission profile and a sequence of events related to it, it is necessary to assign an ESN (event sequence number) to each member of the event sequence to be considered in the simulation. The following should be considered when these numbers are assigned:

- ESNs are restricted to a range of values such that
 - $1 \le ESN \le 199$ for vehicle 1
 - 1 ≤ ESN ≤ 99 for vehicles 2 through 9

- Each assigned ESN must be unique (two events occurring along the same mission profile cannot have identical ESNs).
- The first event is always associated with the smallest designated ESN and must be a type 1 primary event.
 This event is considered to be executed at the start of a trajectory; as such, the event criteria are not monitored.
- All type 1 events must be assigned ESNs in a monotonically increasing order, one to one with the order in which they will occur in the simulation.
- A type 2 or 3 primary event is a roving event, and the ESN assigned to it should be smaller than any ESN assigned to an event that may occur later.

It is one thing to classify an event and to assign it an ESN, but it is quite another to specify event criteria for the determination of the event. A single criterion or a set of criteria for event determination must be specified for each event except the first, which stands alone; by definition it has occurred once the simulation commences.

Criteria for event determination are all specified to provide a measure of the time to go until the occurrence of the event for which a criterion is specified. Equations and full details are presented in the TG0EM description (Sec. 2.13).

When multiple criteria are specified for an event determination, the criterion producing a time to go parameter (which goes to zero first) becomes the instrument for event determination, and the other criteria are disregarded. From the sample event sequences (Sec. 1.3.1), it is apparent that criteria relative to a number of events must be monitored simultaneously if secondary and type 2 primary events are specified. To illustrate, take the input event sequence

				<u>t</u>		
×	×	×	×	x	×	
P ₁₁	s ₂₁	P ₂₁	s ₂₂	s ₁₁	P ₁₂	

In this example, all criteria associated with events S_{21} , P_{21} , S_{22} , S_{11} , and P_{12} are monitored as soon as event P_{11} occurs. Whenever an event other than a type 3 is encountered, the criteria used in determining the event are dropped. If a type 1 primary is encountered (such as P_{12}), all criteria associated with S_{21} , S_{22} , and S_{11} are immediately dropped (as well as those associated with P_{12}). If P_{21} is not encountered before P_{12} , its criteria are still monitored, provided that P_{12} is not the final event in the sequence.

1.2.2.1 Example 1: Ballistic Mission Profile

The typical ballistic missile follows a mission profile with a sequence of major ordered events such as:

- Liftoff
- End first stage, start second stage
- End second stage, start third stage
- End third stage, start free fall
- Apogee
- End free fall, start reentry
- Impact

All these events must occur for the successful completion of a launch to impact mission, so it is appropriate to classify each of these events as type 1 primary. Let this sequence of type 1 primary events be represented by the abbreviated nomenclature: P_{11} , P_{12} , P_{13} , P_{14} , P_{15} , P_{16} , and P_{17} . Further, let these events be assigned corresponding ESNs, viz., 10, 20, ..., 70. For certain applications this sequence of events may be complete, but there may be additional events that must be inserted into the sequence, depending on the degree of sophistication with which the mission profile is to be simulated.

For example, consider the following type 2 primary events that might be inserted into the mission profile:

- Departure from the earth's atmosphere
- Maximum simulation time

Let these two events be called, respectively, P_{21} and P_{22} (type 2, or roving primary events), and let the ESNs 16 and 17 be assigned. The event criteria for these events are monitored at the start of the simulation because they fall between the first and second primary events. Event P_{21} is recognized and encountered even if it is impossible to determine beforehand whether the vehicle will depart from the earth's atmosphere before or after event P_{12} . The maximum time event may not occur unless the vehicle goes into orbit or some unpredictable situation develops, causing the maximum time to be reached before event P_{17} occurs. Thus, P_{22} provides an emergency means of terminating the simulation.

J

In addition, suppose that the following events are to be considered and that the order of their occurrence is unknown:

- Constant time of flight
- 45-deg reentry angle

It is assumed that these events must occur between P_{16} and P_{17} if at all; indeed, it is quite possible that over a wide range of trajectories either one or both of these events will not be encountered in the interval between P_{16} and P_{17} . It is therefore appropriate that they both be classed as secondaries. One of these secondary events may arbitrarily be designated a type 1 and the other a type 2 because their order of occurrence is unknown in this example.

Let the constant time of flight event be S_{21} (type 2) and the 45-deg reentry angle event be S_{11} (type 1), and let their ESNs be 66 and 67, respectively. This assures that the criterion or criteria for S_{21} are monitored as soon as those for S_{11} .

Note that in this example S_{21} and S_{11} could have been specified as type 2 primary events because the next type 1 primary event concludes the mission profile. Alternatively, S_{11} could have been designated a type 2 secondary, but both could not have been classified as type 1 secondary events.

1.2.2.2 Example 2: Earth Parking Orbit to Lunar Impact Profile

A mission profile, starting from a point in an earth parking orbit and proceeding to lunar impact, might have the following sequence of major events:

- Leave earth parking orbit
- Commence free fall phase in earth's sphere of influence
- Enter sun acquisition phase
- Leave sun acquisition phase and enter earth acquisition phase
- Leave earth acquisition phase and resume normal free fall phase
- Begin first midcourse maneuver
- Terminate first midcourse maneuver and resume free fall phase
- Begin terminal maneuver
- End terminal maneuver
- Lunar impact

If all these events are required in the order shown for successful mission completion, they can properly be described as type 1 primary events. The labels $P_{1!}$, P_{12} , \cdots , $P_{1(10)}$ are assigned to this sequence of events, with corresponding ESNs of 40, 45, 50, \cdots , 85. In this example, it may be required to perform several additional midcourse maneuvers between P_{17} and P_{18} . The events required should be classified as type 1 secondaries, and if each of the two possible midcourse maneuvers persists for a finite time, four events are required. Therefore, S_{11} , S_{12} , S_{13} , and S_{14} can be assigned the ESNs 71, 72, 73, and 74, respectively.

In addition, let it be assumed that it is necessary to recognize the following type 2 primary event: leave earth's sphere of influence and enter lunar sphere of influence. Call this event P₂₁ and assign 62 as its ESN. This ensures that the criteria for this event are monitored as soon as the earth acquisition phase (for vehicle stabilization) is completed.

1.2.3 Event Initialization

The TRP system interprets events as discrete time points. Each discrete time point is given a t^- , t^0 , and t^+ interpretation; the t^- interpretation pertains to the end of the preceding trajectory phase, the t^+ to the initiation of the subsequent trajectory phase, and the t^0 to data retrieval and initialization.

In effect, each event is considered to be a point of discontinuity. New data enter the simulation at t⁰ of each event and may take many forms, varying from simple alphanumeric identification to complete sets of vehicle and environmental data. All of these data very much depend on the particular event.

All input data are entered into the data BUCKET on a vehicle, ESN, and module basis by the input module INP1M. At the t⁰ of each event's occurrence, the BUCKET is examined by TSPXM, and all data pertinent to the event are placed in the input section of the modules for which they are specified. TSPXM then makes the initialization pass through all modules; at this time the initialization models perform any computations necessary before starting into the next trajectory phase. It is a design fundamental that all initialization is performed at event time on a module basis and that all initialization procedures are followed irrespective of the event type.

1.3 DATA INPUT

Input to the TRP system is primarily by card images; tape input is limited to time histories of observed data for postflight reconstruction. Both types of input have prescribed formats that were chosen to facilitate the internal arrangement of the data. Input is by vehicle number, ESN, module name, and mnemonic parameter name. The advantage of mnemonic input lies in the ease with which a user can communicate with the program because symbolism is related directly to the functional process.

The TRP system interprets events as discrete time points during the simulation process. New data may be entered at each event, and it may vary from alphanumeric identification to complete configurations or reconfigurations. The criterion for each event is also specified by input and can be based on any variable computed in the program.

All input data goes into an expandable buffer called the BUCKET. This concept allows storage to be conserved by using only the amount needed for a particular simulation (and no more). Simple mission profiles/vehicles thus require much less program storage than complex ones. All data is

processed at input time by INP1M and INP2M; stored in the BUCKET; and sorted by type, vehicle, ESN, and module. This enables processing routines to quickly access the particular data required at event times.

The user must be familiar with several types of input, which are described briefly here. Section 4.2 contains a more complete description.

1.3.1 Description Data

Data card formats describe the simulation in various ways.

Each event and each simulation case has a description card. These cards have no impact on the simulation, but they make the output more descriptive.

1.3.2 Event Criteria Data

This data specifies the criteria for the determination of events along the trajectory. For each event the user specifies such things as the event type (ordered or unordered, primary or secondary), the form of the time to go equation to be used to compute how close the event is, the TRP-computed variable, the value the TRP-computed variable must attain for the event to occur, and the name of the first derivative of the variable (if it exists).

1.3.3 General Data

General data consists of scalar quantities that are input to a named variable at a specific ESN. This variable is set to the input value when the ESN is reached, and it retains that value until it is changed by input. General data is specified by vehicle number, ESN, module name, and variable name.

1.3.4 Model Specification Data

Model selection data specifies the model desired for each module. It is similar to general data in that it is scalar; input by vehicle, ESN, and module; and retains its condition until it is changed by input. It differs from general data in that the input is the name of a model rather than a numerical value.

1.3.5 Interpolation Data

Tabular data is similar to general data except that it consists of a table of data rather than a scalar constant. This table is in the 'orm of paired values of an independent variable and a dependent variable. There may be any number of these pairs, but they must be in ascending order of independent variable value. The method of interpolation may be specified; several techniques are available. Tables may cross reference other tables for data, and the independent variable name may be specified.

1.3.6 Control Cards

Control cards are simply means of manipulating the data input stream. They are inserted into the data card set and specify such things as termination of data input reading and execution of a case with the data currently available, termination of the run, and writing of an image of the data on hand for future reference. Control cards do not affect the simulation beyond the INP1M module.

1.4 TRAJECTORY GENERATION FEATURES AND CAPABILITIES

1.4.1 Three or Six Degree of Freedom Simulations

The term 3D (three degrees of freedom) is used loosely to describe a simulation in which the total moments about the center of mass of the vehicle always sum to zero. This then leads to zero angular acceleration about the vehicle center of mass. Conversely, the term 6D (six degrees of freedom) is used to describe a simulation that is not subject to the constraint that total body moments sum to zero.

A 6D simulation always imposes a greater computational load than a comparable 3D simulation. This, of course, implies that there are greater core requirements for a 6D simulation capability than for the simpler 3D. The 6D capability adds complexities to the TRP modules CONTM, PROPM, and RMOTM. As a matter of fact, CONTM owes its existence to the 6D capability, for it performs only trivial functions during 3D simulations.

PROPM is complicated by the 6D capability requirement because the thrust moments are computed from thrust vector and attitude control commands from CONTM. RMOTM becomes more complicated because of angular acceleration computations.

In the 6D application, the guidance commands are generated so as to be acceptable to the control equations in CONTM. In the 3D application, the guidance modules (including OLSTM) issue commands that directly interface with RM0TM. Thus the data flow between guidance and TRP dynamic modules differs somewhat for 3D and for 6D simulations. The 6D flow is such that the guidance and control interface is "real-world" to a greater extent than is the 3D option; the guidance commands are generated in the units required by the control equations, at a frequency specified by the user or automatically controlled through the programmed guidance equations. The 3D interface is less complicated because the guidance commands are generally issued in the form of rate or angle commands. The rate commands must be issued with respect to the body roll, pitch, and yaw axes; whereas the angle commands must be referenced to some inertial coordinate frame established at the start of the simulation (Sec. 3).

Regardless of the type of simulation required (3D or 6D), the TRP system sequencing logic remains the same. Only the amount and the kinds of computation are affected. It naturally follows that the implementation of the 3D or 6D option is accomplished by specifying certain models, primarily those in guidance modules that specify internally the value of the Guidance Command Flag (GCF). This parameter identifies the type of guidance commands being issued to all dynamic modules. The flag is set to a unique value for each type of steering command that may be issued by DPG1M, DPG2M or OLSTM. A value of zero assigned to GCF identifies 6D by virtue of the fact that commands are being issued directly to CONTM. Several values are assigned to GCF for the 3D option in order to accommodate rate and angle commands. The model selection process permits switching between the 3D and 6D options at any event.

The basic TRP system always provides an immediate 3D capability through OLSTM, but a 6D capability always implies knowledge of the vehicle control system and, generally, a considerable knowledge of the vehicle's guidance system. In essence, a full 6D capability does not exist from vehicle to vehicle and, in the final analysis, it must be created somewhat on an individual vehicle basis. Thus, the 3D capability always exists in the program (from vehicle to vehicle), but the 6D capability must be generated by adding models to CONTM and DPG1M or DPG2M, which are vehicledependent.

1.4.2 Integration Features

The TRP system has been designed so it is not constrained by a particular integration technique or routine. Integrations are controlled by INTXM using the most appropriate integration techniques available.

Great variations in mission profile, accuracy requirement, speed of computation, computer storage, a . many other factors affect the selection of an integration technique and its mechanization. Unfortunately, nearly all integration techniques are mechanized as closed subroutines, are quite general, and are not designed specifically for the trajectory simulation problem. Historically, therefore, the existence of integration routines has forced the simulation designer to conform to the integration routine interface; whereas, ideally, the integration routine used in the simulation program should be designed to conform to the major program interfaces.

The TRP design and mechanization provide a set of module interfaces from which a wide variety of integration mechanizations are easily incorporated, including very special purpose, TRP-oriented integration mechanizations. The TRP mechanization (with respect to integration features) has been influenced largely by the assortment of simulation problems that would normally be encountered (ballistic, powered flight, or orbiting missions); none of these would be of prolonged duration.

To accommodate the primary stated requirements plus speed, flexibility, accuracy, and storage, mechanization involving the Runge-Kutta technique was selected for primary usage. The mechanization is single-precision, fourth-order and will be referred to as fourth-order RK.

Two second-order methods are also available; they can be used independently or in conjunction with fourth-order RK. These methods are known as the Improved Euler and the Euler/Cauchy methods. Trapezoidal integration (first-order) is available and is generally used for auxiliary (not in-line) variables. A variable-step, variable-order method is available.

The description of INTXM (Sec. 2.8) explains in greater detail the workings of these integration techniques.

1.4.3 Auxiliary Computations

Variables that are computed primarily for information are classified as auxiliary variables in the TRP system. It is important to recognize how these auxiliary items are computed and to understand the computational philosophy.

Auxiliary computations are by definition linked to the output information process; only when the information function is executed is there a need for auxiliary computations. Thus there must be a decision process to ascertain the simulation times at which this information function is to be performed. Affirmation that the information function is to be performed then sets in motion the auxiliary computational machinery.

The TRP system is similar to many other simulation programs in that auxiliary computations are triggered in the performance of the normal information function, but it is unlike many others in that each applicable module contains its own auxiliary computational capability. All auxiliary variables, and the computations thereof, are localized on a module basis; consequently, the variables involved are physically and functionally related to the module in which they are found.

When the process of auxiliary computation takes place, the Information Executive module (INFXM) executes a Service module (SERVM) routine (AUXF) that executes in order all subroutines responsible for computing auxiliary variables.

Auxiliary functions are often added to a program on a special purpose basis. Over a long period of time, a considerable number of these functions (of no interest to the current program user) accumulate. A methodology like that used in the TRP system facilitates program retrenchment to a preceding state, partially or entirely.

On many occasions, an auxiliary variable must be used on a main loop basis for functions such as steering, table argument, event determination, or as PFRP observations. For example, the magnitude of the inertial velocity vector (VMI) is not required for main loop dynamic computations, so it is classed as an auxiliary variable. However, it is not unusual to specify a criterion for event determination that requires VMI to be specified as the event determination variable. Making this variable automatically available to the main loop is an important TRP feature.

1.4.4 Generalized Event Determination

The TRP system is always capable of event determination through the models described in TG0EM. This capability is always called directly through input, so event determination in this manner is said to be externally controlled. The versatility and generality of the event determination models in TG0EM afford the user a very powerful event determination capability. A complete description of the externally controlled event determination capability is given in Sec. 2.13. Mission profile specification is discussed in detail in Sec. 1.2.

Events can be determined through internally programmed guidance laws and by other equations not directly specified via input.

Specifically, event determination, through techniques not mechanized within TG0EM, is said to be internally controlled.

The occurrence of an event dictated by closed loop guidance laws (discrete commands) generally requires the same procedures for event sequencing as those followed when an externally controlled event is encountered. This involves processing input data and sequencing through the t^- , t^0 , and t^+ times of an event.

Other situations that develop in a vehicle simulation are analogous to events; a discontinuity is encountered, but no new data must be entered into the program at the point of discontinuity. Such an encounter is called a pseudo event and is distinguished from other events because no input data or ESN are associated with it. For example, suppose that a step function table of vehicle pitch rates is given as a function of time. At each point at which the rate changes, there is a discontinuity in pitch rate, which can be treated as an event through internally controlled procedures. The sequencing is exactly the same as for normal events, but no data is expected from the BUCKET. The complete interfacing for pseudo events is through communication to TG0EM from DPGXM and INTXM. The net result is that the pseudo event is sequenced just like any other event, except that no input is obtained from the BUCKET and the ESNs remain undisturbed.

1.4.5 Multiple Vehicle Simulations

A multiple vehicle simulation capability adds complexity to the TRP system, just as it would to any vehicle simulation program. It is significant that the philosophy used in the TRP system localizes these added complexities into the Executive module TSPXM and the Input Processing modules INP1M and INP2M. All TRP system modules controlled by the Trajectory Simulation Executive TSPXM (Fig. 1-1) are thus completely divorced from the multiple vehicle simulation problem; in these modules absolutely no internal distinctions are made between single and multiple vehicle simulations.

In the multiple vehicle simulation method, entire input and output sections of modules are treated as entities that must be preserved

when TRP cycles from one vehicle simulation to another. A block of storage external to the TRP modules is assigned internally for each secondary vehicle simulation; this storage block is known as the multiple vehicle core data reservoir. This approach requires that data processing routines transport module data to and from the core reservoir in accordance with multiple vehicle simulation sequencing.

A very small time penalty, and a somewhat large storage penalty, are attached to the performance of multiple vehicle simulations, but the following profound advantages more than outweight them:

- The method required to implement multiple vehicle simulations is simple and straightforward because it is localized in a few modules.
- Core storage is the only absolute constraint because all the sophistication and capability of the TRP system are available in each vehicle simulation.
- Simulation data pertinent to the vehicle being simulated are always in the actual input/output section of the TRP modules during vehicle simulation.

In TRP multiple vehicle simulations, a particular vehicle is specified as the primary vehicle. As such, it becomes the prime reference vehicle for starting multiple vehicle simulation sequencing, as well as for leading the simulation.

Some simulation applications call for a multiple vehicle simulation to start at some point after the start of a single vehicle simulation, e.g., a ballistic missile with multiple reentry vehicles. In this case, a single vehicle would be simulated until the reentry vehicles separated; at this point, one reentry vehicle would remain the primary vehicle and the others would become secondary vehicles.

All vehicles except the primary are called secondary vehicles. The total number permitted is generally dictated by core storage constraints; otherwise the maximum number of vehicles (including the primary) is nine.

Secondary vehicle simulations need not start simultaneously.

A secondary vehicle is initiated when the primary vehicle reaches an ESN that matches the first ESN of a secondary vehicle. The assignment of ESNs

to secondary vehicle mission profiles is not otherwise constrained by any ESNs assigned to the primary vehicle. However, for the sake of convenience and identification, similar mission profiles should have corresponding ESNs.

1.4.6 Arbitrary Origin

Program users can present initial conditions to a simulation program in many ways. A simulation starting with initial conditions that describe a launch pad universally accepts latitude, longitude, altitude, and environmental model constants from which the initial velocity, position, altitude, and attitude rate states of the vehicle can be determined. Alternatively, it is often necessary to start with direct inputs describing the total initial state vector of the vehicle at the start of the simulation. This is referred to as starting a simulation from an arbitrary origin.

The set of initial conditions commonly used in an arbitrary origin start for point mass simulations is the velocity and position vectors in some coordinate frame. If nonzero attitude and attitude rate (or body rates) exist, they can also be supplied.

The initial conditions that can be used to start a simulation are restricted only by the initialization models available in TM0TM and RM0TM. In the final analysis, initial conditions presented to the TRP system must be transformed into initial conditions for the programmed equations of motion. The discussion of the RM0TM and TM0TM modules (Secs. 2.23 and 2.24) includes the available methods for an arbitrary origin start.

1.4.7 Generalized Radar Tracking

The function of generating information describing the state of a vehicle seen from radar stations is mechanized in the Tracking module (TRAKM). This function is assigned module status because of its major importance and the magnitude of the computational problems involved.

The tracking capability is mechanized in such a way as to permit a number of tracking stations to simultaneously or sequentially participate, and to be able to track from one vehicle to another or from a vehicle to landmarks.

Note that this module can be used strictly to generate auxiliary variables for information purposes, or it can be entered into a guidance and navigation loop.

The equation and mechanization details concerning this capability are presented in the TRAKM discussion (Sec. 2.14).

1.5 PARAMETER RECONSTRUCTION AND DATA MATCHING

1.5.1 PFRP Modules

A set of three modules, collectively called the Post Flight Reconstruction Processor (PFRP), gives TRP the ability to perform iterations to match specified constraints or data and to perform error analyses. These modules use all other modules collectively (under the control of TSPXM) as a black box to provide measurement values to match observed data. A complete discussion of PFRP is given in Sec. 5.1.4.

Measurement models are mathematical representations of some physical process, whether it be the flight of a missile, a vehicle subsystem, or any other process that can be mathematically formulated. The module PFRPM iteratively solves a set of nonlinear equations with partial derivatives approximated by finite differences generated by perturbation techniques. The Iteration Information module (ITIFM) performs the calculations of the partials and residuals, and the Iteration Control module (ITERM) generates the necessary trajectories for these functions.

Any parameter that can be input to TRP can be used as an independent parameter in an iteration, whether it be a value in a table, the value of an event initiation, or a constant used in a measurement function model. An a priori covariance matrix, bounds on parameter displacements, and perturbation increments to be used for computing observation partials are additional inputs that are customarily made. The number of such parameters (reconstruction parameters) that can be estimated is currently limited to 75.

Any variable computed by TRP can be used as a measurement to be matched against observational data. Observations may be input either by cards in tabular form or by formatted tapes generated by an auxiliary external program, and may be single observations or time histories of observations. A covariance matrix developed from the noise associated with the measurements is also input. This may be simply a diagonal matrix assuming independent random measurements or a matrix with off-diagonal terms denoting correlations between observations at a given time point or correlations between successive time points. A large number of observations may be used, but time and storage constraints place a practical limit upon TRP of about 4000 data points.

1.5.2 Iterative Process

The PFRPM component of the TRP system can be thought of as the unit in which an estimate of the reconstruction parameters is calculated from the processed observations, data statistics, partial derivatives of observations with respect to reconstruction parameters, and computed observations. This part of the program commands TRP to compute a new set of measurements based on the new estimate of the reconstruction parameters and, if necessary, to compute an updated set of partial derivatives.

1.5.2.1 Iteration Equations

The equations used by PFRPM for weighted least squares fitting of reconstruction parameters to observed data when a priori information is available are presented in this section.

Let a vector of observations be available such that

$$y = f(\Gamma) + n \tag{1-1}$$

where

y = vector of observations

 Γ = vector of reconstruction parameters

n = vector of zero mean Gaussian noise with covariance matrix \sum_{n} - E(nn')

 $f(\Gamma)$ = vector of observations with no noise present

and let a nominal value of Γ , namely Γ_0 , along with its a priori covariance matrix Σ_0 be available. PFRP then determines an estimate of Γ that minimizes the weighted sum of squares, the cost function

$$Q(\Gamma) = [y - f(\Gamma)]^{T} \sum_{n=1}^{-1} [y - f(\Gamma)] + [\Gamma - \Gamma_{0}]^{T} \sum_{n=1}^{-1} [\Gamma - \Gamma_{0}]$$
 (1-2)

This estimate, under a Gaussian noise assumption, is a maximum likelihood estimate even though no nonlinearities are present.

Since no closed form solution exists for the value of Γ , which minimizes Eq. (1-2), the minimizing value can be determined by iteration using the equation

$$\Gamma_{k+1} = \Gamma_k + \left(\sum_{0}^{-1} + A_k^T \sum_{n}^{-1} A_k\right)^{-1} \left\{ A_k^T \sum_{n}^{-1} [y - f(\Gamma_k)] - \sum_{0}^{-1} (\Gamma_k - \Gamma_0) \right\}$$
(1-3)

where

 $\Gamma_k = k^{th}$ estimate of the minimizing vector

 A_k = matrix of partials of $f(\Gamma)$ with respect to Γ evaluated at Γ_k by perturbation methods

 $Y_k = \text{weighted error vector } \left| A^T \sum_{n=1}^{-1} [y - f(\Gamma_k)] - \sum_{n=0}^{-1} (\Gamma_k - \Gamma_n) \right|$

As $\boldsymbol{\Gamma}_k$ approaches the minimizing vector, \boldsymbol{Y}_k approaches zero.

The indicated inverse in Eq. (1-3) is the estimate of the covariance matrix of the error in the parameters, \sum_{Γ} , which is restated as

$$\sum_{\Gamma} = \left(\sum_{0}^{-1} + A_{k}^{T} \sum_{n}^{-1} A_{k}\right)^{-1}$$
 (1-4)

The correction vector, γ_k , approaches zero as the weighted error approaches zero

$$Y_k = \left(\sum_{\Gamma}\right) Y_k \tag{1-5}$$

Equation (1-3) may now be restated using Eq. (1-5); Eq. (1-6) is the basic equation for the iteration process

$$\Gamma_{k+1} = \Gamma_k + \gamma_k \tag{1-6}$$

The predicted value of the cost function, from Eq. (1-6), is computed as

$$Q_{k+1} = Q_{\Gamma_k} - \gamma_k^T Y_k \qquad (1-7)$$

This equation is used in a linearity test (Sec. 1.5.2.3).

1.5.2.2 Major and Minor Cycles

When partial derivatives are approximated by finite difference quotients, P+1 function evaluations must be simulated each time the partials are recomputed. To avoid this cost, iterations are sometimes made with Eq. (1-3) without reevaluating the partials. This method of iteration is called a minor cycle. (A major cycle is an iteration involving a reevaluation of

partials.) Tests are necessary to determine whether a cycle should be major or minor.

1.5.2.3 Tests

When major and minor cycles are used as part of an iteration scheme, tests are necessary to determine whether a cycle should be major or minor. A criterion for convergence is also implemented in PFRP.

For example, suppose a major cycle has just been completed. If the partials that were calculated are to be used for a minor cycle, $f(\Gamma)$ should be linear in the neighborhood of the preceding estimate. If $f(\Gamma)$ is approximately linear, the new cost function $Q(\Gamma_{k+1})$ from Eq. (1-2) should approximately equal the predicted cost function [Eq. (1-7)]

$$Q(\Gamma_{k+1}) \simeq Q_{k+1}$$

Therefore, a linearity test is performed.

$$\frac{\left|Q_{k+1} - Q(\Gamma_{k+1})\right|}{Q(\Gamma_{k+1})} \le \epsilon_3$$

Whenever this test is failed a major cycle is made. Unless the iterations have converged, a minor cycle must result in a decrease in the cost function. To ensure this, an improvement test (where k refers to a minor cycle) is made.

$$\frac{Q(\Gamma_k) - Q(\Gamma_{k+1})}{Q(\Gamma_k)} \ge \epsilon_2$$

If this test is passed another minor cycle is made. If the test fails a major cycle is performed using the best of the last two minor cycles.

After every major loop a test is performed to determine if the iteration has converged. One test is as follows: Let $\gamma_{i;k-1}$ be the change

in the i^{th} reconstruction parameter after the k^{th} major cycle iteration and let $\sigma_{i,k-1}$ be the square root of the i^{th} diagonal element in the corresponding covariance matrix of the estimation errors in the reconstruction parameters. Under these definitions the convergence test is

$$\left| \frac{Y_{i,k-1}}{\sigma_{i,k-1}} \right| < \epsilon_i \quad \text{(for all } i = 1, \dots, P)$$
 (1-8)

where P equals the number of reconstruction parameters.

The reasoning behind this test is as follows: It has previously been shown that the vector

$$\gamma_{k} = \left(\sum_{0}^{-1} + A_{k}^{T} \sum_{n}^{-1} A_{k}\right)^{-1} \left[A_{k}^{T} \sum_{n}^{-1} [y - f(\Gamma_{k})] + \sum_{0}^{-1} (\Gamma_{0} - \Gamma_{k})\right]$$

approaches zero as Γ_k approaches the value that minimizes the cost function

$$Q = [y - f(\Gamma)]^{T} \sum_{n=1}^{-1} [y - f(\Gamma)] + [\Gamma - \Gamma_{0}]^{T} \sum_{n=1}^{-1} [\Gamma - \Gamma_{0}]$$

Since the components of γ_k are mixed quantities, it is necessary to have the term "approaching zero" defined in some normalized sense. Also, if the square roots of the diagonal elements of \sum_{Γ} [Eq. (1-4)] are to retain the interpretation of estimates of the standard deviations of the estimation errors, it is necessary that the parameters not be considered converged unless their changes, as a result of a major cycle iteration, are all small relative to the estimation sigmas. This convergence test satisfies both of these conditions.

1.5.3 <u>Measures of Approximation</u>

An important consideration in any iterative process is the examination of the measures of approximation. Stated in other terms, the quality of the fit of the model to the data should be evaluated. Several measures in TRP are computed and displayed for this purpose.

Since the iterative process of PFRP is designed to minimize the weighted sum of squares Q (the cost function), the value of this computation shows how well the process is converging. The expected value of this function equals the total number of observations plus the total number of parameters. A value of Q approaching this sum indicates that the process may be converging.

The character of the differences of the computed measurements and the observed data is also a measure of the quality of the fit to the data. A random set of residuals with small mean and no significant patterns is usually a good sign of convergence. These characteristics are displayed in TRP by a printer plot of the residuals plus the calculation and display of the mean and standard deviation of the residuals. A more precise display may be obtained by the use of the pen plotters in lieu of a printer plot, but usually with a significant delay in turnaround time.

A convergence test was derived in a previous section [Eq.(1-8)]. The individual components of the test are printed and show how well individual parameters are converging.

To summarize, the quality of the fit to the data can be assumed to be valid if the value of the cost function has reached a minimum, the residuals of the measurements exhibit no significant trends or patterns, and the changes in the estimated parameters do not exceed an a priori standard deviation from the a priori best estimates of the parameters. If any of the above indicators do not hold, there is a good chance that modeling errors have been made, either in the function generations or in the measurement models.

1.6 ERROR ANALYSIS

1.6.1 Covariance Matrices

The matrix

$$\sum_{\Gamma} = \left(\sum_{0}^{-1} + A_{k}^{T} \sum_{n}^{-1} A_{k}\right)^{-1}$$

on the diagonal and covariances off the diagonal. This matrix forms the basis for all error analysis calculations made in PFRPM. The square roots of the variances yield the standard deviations, which can be construed as the accuracy to which the parameters can be estimated, and the off-diagonal elements are used to compute the correlation coefficients between the parameters.

A dependent variable covariance matrix can be computed, provided that the partials of these variables with respect to the reconstruction parameters are known. The partials $(\partial V/\partial \Gamma)$ are computed by ITIFM, with the weighting matrix usually input as zero. The matrix is computed as

$$\sum_{V} = \left(\frac{\partial V}{\partial \Gamma}\right) \sum_{\Gamma} \left(\frac{\partial V}{\partial \Gamma}\right)^{T}$$

This is a standard transformation matrix, which may be used for coordinate system transformations or for propagating a state vector in time.

1.6.2 Modeled and Unmodeled Parameters

For covariance matrix purposes, unmodeled vehicle or measurement parameters (Q parameters) may be used. The reconstruction parameters are called the P parameters and are estimated to derive measurement matches. The Q parameter differs from the P parameter in that the Q parameter does not affect the fit to the measurements, only the covariance matrices. The advantage of a Q parameter is that it may be used to determine the effect of uncertainties in its value without affecting the fitting process. These include highly correlated parameters that might blow up a solution if estimated, or they may include weakly observable parameters.

The matrix equation for the independent variable covariance matrix with Q parameter effects is

$$\sum_{\delta \Gamma} = \sum_{\Gamma} + \left(\frac{\partial \gamma}{\partial \lambda}\right) \sum_{\gamma} \left(\frac{\partial \gamma}{\partial \lambda}\right)^{T}$$

where

$$\frac{\partial \mathbf{Y}}{\partial \lambda} = -\sum_{\mathbf{T}} \mathbf{A}^{\mathbf{T}} \sum_{\mathbf{n}}^{-1} \mathbf{B}$$

B is a matrix of observation partials with respect to Q parameters, and $\partial\gamma/\partial\lambda$ equals the partials of the P parameters with respect to the Q parameters.

The matrix equation for the dependent variable covariance matrix with Q parameter effects is

$$\sum_{VQ} = \sum_{V} + (\partial V/\partial Q) \sum_{\lambda} (\partial V/\partial Q)^{T}$$

where

 $\frac{\partial V}{\partial \lambda}$ = partials of V dependent variables with respect to Q parameters from CVRT table specifications

 \sum_{λ} = input upper triangular a priori covariance matrix for Q parameters

 $\frac{dV}{dQ}$ = computed partials of V variables with respect to Q parameters, or

$$\left(\frac{\partial V}{\partial \lambda} + \frac{\partial V}{\partial \Gamma} \frac{\partial \gamma}{\partial \lambda}\right)$$

1.6.3 Value of Acquired Data and Experimental Improvement

The independent variable covariance matrix that results from a TRP error analysis may be processed and transformed to give the user an idea of the value of acquired data or to measure the improvement in an experiment resulting from its use. The square roots of the diagonals of the covariance matrix indicate the accuracies to which parameters may be estimated. The correlation coefficients, which are computed from the off-diagonal elements, indicate how the parameters of the model are related.

The a priori covariance matrix is a statement of what is known about a model or process before an estimation procedure is begun. The a posteriori covariance matrix shows the information gleaned from the use of measurements of the process. The degree of reduction of the diagonals of the matrix give a measure of the worth of the acquired data and the amount by which an experiment was improved.

The transformation of the a posteriori independent parameter covariance matrix to other coordinate systems or to other time points is also a means of evaluating the worth of acquired data. Coordinate systems of interest, even the measurement coordinate system, may be used. Elements of these covariance matrices may be used as the basis for CEP (circular error probability) for two-dimensional vectors or as a basis for SEP (spherical error probability) for three-dimensional vectors. Additional output for CEP and SEP calculations includes the angles of rotation necessary to diagonalize these elements of the covariance matrix and the length of the axes. The off-diagonal elements are used to compute the amount of rotation required for diagonalization.

1.6.4 Linearity Assumptions

For the covariance matrices to be valid representations of estimation uncertainties, the property of linearity must be maintained because the iterative equations used by TRP (and most other estimation programs) are first order. Therefore the fit to the observations must have forced the reconstruction parameters into a region of linearity. This normally follows as a result of the iterative process, but two things may interfere. The first, modeling errors of the measurements or parameters, may be corrected by the addition of uncertainties due to unmodeled or unestimated (Q) parameters. The presence of modeling errors may be detected by patterns in the residuals, which should exhibit only a random, unbiased appearance. The second cause of nonlinearity is the generation of numerical partials using too small or too large a perturbation increment. The region of linearity may be checked by overlaying plots of various sizes of perturbation increments.

1.7 MAJOR OBSERVATION DATA TYPES

The major observational data types that may be generated or used in the reconstruction process are listed below. Literally any cutput of TRP may be used as an observation variable; these were tabulated only for the user's convenience.

Standard radar station range, azimuth, and elevation plus rates

Rectangular U, V, W radar position from a ground station

Multipath time delay

Multipath doppler and integrated doppler

Multipath interference data

Over-the-horizon backscatter range and range rate

Doppler

Time of arrival

Time difference of arrival from a single emitter or an emitter pair

Double time difference of arrival

X, Y angles using either north-south or east-west keyholes

Radar look angles in pitch, yaw, and roll planes

Interferometer p, q, p, and q from L or X arrays

Range differences and sums from ground stations or vehicles

Vehicle-to-vehicle radar range, azimuth, and elevation plus rates

Vehicle-to-ground range, azimuth, and elevation

Observed optical intensity along LOS (line of sight)

Body-mounted accelerometer with acceleration and velocity

Inertial platform sensed velocity meters

Gimbal angles and rates

Inertial body angular rates

Ballistic impact range, latitude, longitude, and time

Altitude, ft, m, or nmi

Atmospheric and aerodynamic properties (e.g., pressure and temperature)

Mach 1 bump time and maximum acceleration time Geomagnetic field orientation

Gravitational components in downrange, crossrange, and vertical coordinates

Downrange, crossrange, and vertical position, velocity and acceleration

Engine gimbal deflection angles

Angle of arrival

Radar frequency model as a polynomial in azimuth and elevation

Inertial position, velocity, and acceleration

Topocentric right ascension and declination

SECTION 2

YEOMAN

The YEOMAN system generates an absolute TRP program configuration, which is specified by a TRP model requirement (REQ/NREQ) input deck (Fig. 2-1). Program YEOMAN, which is an integral part of the YEOMAN system, interrogates each relocatable binary deck to obtain the external requirements of each deck. This information is retained as a directory, which is written as the first logical record on the TRP relocatable binary library file.

Program YEOM replaces or extends the external requirement information of the library file with modified requirements (determined by examining newly compiled decks on the LGO file). It also outputs a TRP program configuration by reading the REQ/NREQ input deck and determining which external (subroutine and labeled common) requirements must be output to satisfy the external requirements of the models selected by the REQ/NREQ input deck. Modified decks (decks on file LGO) replace existing decks on the library file in the final TRP configuration to be loaded.

Program YEOM generates a library file dictated by the LIBR inputs in the REQ/NREQ input deck. The library decks are merged with the TRPC file in the required overlays. It can also generate a new TRP binary library file by merging the old binary file with the decks on the LGO file. A TRP binary library may be generated without an old binary file by compiling all TRP decks on file LGO.

Flow charts for the YEOMAN program are shown in Sec. 2.1, and the equations are in Sec. 2.2. Inputs and outputs are in Secs. 2.3 and 2.4, respectively. Symbols used in the flow charts are the mnemonics used in the program.

2.1 YEOMAN Flow Charts

places are surely to the first transmission of the section of the

YEOM

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

grand at the state of the state

LIBCHK

YEOM MERGDEK

YEOM

MERGDEK

YEOM

YEOM MERGLIB

YEOM

RDIR

YEOM

< /

J

YEOM UPDIR

The same of a county of the contract of the co

ökulballistineni, lakin 11. aktuabeti ilik idikanumunan ola todakunik, mililik dirikin

2. 2 YEOMAN EQUATIONS

Program YEOMAN contains no equations other than those required for indexing. All variables used by the program are integer by default or are typed as integer. Program YEOMAN is the executive control that examines tape file inputs to determine the functional flow of the program.

Subroutine <u>BINSCM</u>* performs a binary search on an array of alphanumeric-sorted deck names. The number of bits with which the search is made is controlled by an input mask. A logical AND is applied to the word in the array prior to its comparison, which allows the search to be any bit configuration as a function of the input mask. The calling sequence is:

CALL BINSCM(IARAY, NSIZE, MASK)

where

IARAY = array containing alphanumeric-sorted deck names

NSIZE = number of dock names in array IARAY

MASK = mask used in binary search (if entered 0, no masking is used for the search)

Subroutine communication is by the labeled commo · statement:

COMMON/SEARCH/NUMBER, JLOC, IPASTE, JLOC2, MARKER where

NUMBER = alpha deck name searching for JLOC

JLOC = index relative to IARAY where deck was found (0 indicates deck name could not be found)

MARKER = flag with which to OR the deck name if
NUMBER = IARAY(JLOC), without using a mask

^{*}YEOMAN utility subroutine (no flow charts).

IPASTE = not used

JLOC2 = not used

Subroutine <u>BUILD</u> reads each deck on file LGO to obtain the order of relocatable decks and the external requirements of each deck.

Subroutine <u>HTOLD</u>* unpacks an input array containing BCD deck names separated by a comma. Each deck name is placed in the output array (one name per output array element in a left-justified format) until terminated by a blank or a right parenthesis, or until eight deck names have been unpacked. The calling sequence is:

CALL HTOLD (INBUF, IOBUF, N)

where

INBUF = input array containing deck names separated by a comma

N = number of deck names unpacked

Function <u>IFIND</u>* is used to address absolute locations relative to a program's starting address. IFIND is used mainly to interrogate tape parameters that start in relative address 2. The calling sequence is:

I = IFIND(IADD)

where

IADD = relative address to location 0

I = contents of relative address IADD

For example, if

I = IFIND(IFIND(2))

^{*}YEOMAN utility subroutine (no flow charts).

location 2 contains the address of the name of tape parameter 1, and I contains the BCD name (L format) of tape parameter 1.

Function IHTOL* converts a BCD H-format word to a BCD L-format word. The calling sequence is:

A = IHTOL(IWRD)

where

IWRD = BCD H-format word

A = IWRD converted to BCD L-format word

Subroutine ISCAN* goes through an array looking for a word with a 1 in bit position 59. When this word is found, control is returned to the calling routine with the new pointer. If the word is not found, control is returned with the pointer set to zero. This subroutine is used by subroutine MARKDEK to determine the TRP external requirements. The calling sequence is:

CALL ISCAN(LIST, NLIST, POINTER)

where

LIST = array being searched

NLIST = number of words in array LIST

POINTER = pointer in LIST array that searches for word containing a 1 in bit position 0 (set to zero if word is not found)

Subroutine <u>LIBCHK</u> checks the external requirements of decks being written to the TRPC file to identify all library requirements of the deck. The calling sequence is:

CALL LIBCHK(BUFF, IN, OUT)

^{*}YEOMAN utility subroutine (no flow charts).

where

BUFF = buffer containing the relocatable deck

IN = first word index to BUFF

OUT = last word index to BUFF

Subroutine MARKDEK reads the TRP REQ/NREQ deck and marks all required input decks. It cycles through the directory marking all external requirements (commons, subroutines, functions) until all requirements are satisfied and then re-sorts the marked directory back to deck order.

Subroutine MASKR is used by subroutine SORT to interrogate the input mask starting at bit position BIT and to output a mask containing a 1 in the next bit position to sort on. The calling sequence is:

CALL MASKR(BIT, MASK, SWITCH, NM)

where

BIT = current position (bit number) that input mask is being interrogated

MASK = input sorting mask (the bits set to 1 determine the bit positions to sort on)

SWITCH = completion flag:

1 = more bits to sort on

0 = sorting is complete

NM = output mask containing a 1 in the bit position to be sorted (sign bit is 0, where bit positions are $0 \leftarrow 59$)

Subroutine <u>MERGDEK</u> merges input files OLDBL and LGO to create file NEWBL and/or file TRPC (as dictated by the TRP REQ/NREQ input deck).

Subroutine <u>MERGLIB</u> decodes overlay cards and sets appropriate masks for library merge of the current overlay. It inserts the

library decks marked required by subroutine LIBCHK at the end of each overlay. The calling sequence is:

CALL MERGLIB(IDEK, NDEK)

where

IDEK = overlay flag:

7HOVERLAY = positioned at the beginning of an

overlay

≠ 7HOVERLAY = positioned at the end of an overlay

NDEK = array used to store the names of the library decks inserted into the current overlay

Subroutine <u>MXCALL</u> is called by YEOMAN when an abort situation occurs. MXCALL passes the first parameter to system macro ABORT to return control to the operating system. The calling sequence is:

CALL MXCALL(3RABT,I)

where

3RABT = system recognizes that an abort of the program is requested

I = not used

Subroutine <u>OLPRNT</u> prints an overlay card and the deck names that have been output to file TRPC. OLPRNT also gives control to subroutine MERGLIB at the start and end of each overlay for library deck insertion. The calling sequence is:

CALL OLPRNT(ICD, NEDK, IDEK)

where

ICD = number of decks output to file TRPC in the current
 overlay

IDEK = overlay flag:

7HOVERLAY = positioned at the beginning of

an overlay

≠ 7HOVERLAY = array containing the size of ICD

decks written to file TRPC

NDEK = array containing the names of ICD decks written to file TRPC

Subroutine RDIR reads the directory from the OLDBL to obtain the order of the relocatable decks and the external requirements of each deck.

Subroutine <u>REDEK</u> controls the reading of the OLDBL and LGO files. 'The calling sequence is:

CALL REDEK(FILE, NAME, BUFF, LNGTH, REDFLG, STATUS, IN, OUT)

where

FILE = BCD file indicator:

5LTAPEB = read next deck from file OLDBL 3LLGO = read next deck from file LGO

NAME(1) = name of relocatable deck read

(2) = size of relocatable deck read

BUFF = buffer area to read the deck into

LNGTH = number of words contained in relocatable deck

REDFLG = read status indicator:

0 = end of file read

1 = deck read

2 = overlay card read

STATUS = not used

IN = current pointer that contains first word of relocatable deck read

OUT = current pointer that contains last word of relocatable deck read

Subroutine READL* is used to read decks residing on the LGO file. READL tests for errors on the LGO file; if errors are encountered, a printed message is output and the deck is skipped. The calling sequence is:

CALL READL (LOC, IA, IB, ITP, ISTAT, LEN)

where

LOC = buffer name to read the data into

IA = first word index to LOC

IB = last word index to LOC

ITP = LGO file number to read

ISTAT = go status flag:

0 = LGO file read

1 = end of file read on LGO file

LEN = number of words read

Subroutine <u>REED</u>* is used to buffer in data and return the number of words read. The calling sequence is:

CALL REED (LOC, IA, IB, ITP, ISTAT, LEN)

where

LOC = buffer name to read the data into

IA = first word index to LOC

IB = last word index to LOC

ITP = tape file number to read

ISTAT = go status flag:

0 = file ITP read successfully

i = end of file read on file ITP

LEN = number of words read

^{*}YEOMAN utility subroutine (no flow charts).

Subroutine RITDEK controls the writing of the NEWBL and TRPC files. RITDEK also gives control to subroutine LIBCHK for library requirement interrogation. The calling sequence is:

CALL RITDEK (FILE, BUFF, LNGTH, STATUS, IN, OUT, REDFLG, IRIT)

where

FILE = not used

BUFF = buffer area from which to write the relocatable deck

LNGTH = not used

NAME = name of the deck being written

REDFLG = not used

STATUS = not used

IN = pointer that contains the first word of the relocatable deck to be written

OUT = pointer that contains the last word of the relocatable deck to be written

IRIT = file write indicator:

1 or 3 = write deck to NEWBL

2 or 3 = write deck to TRPC or library file

Subroutine <u>RITE</u>* is used to buffer out data. The calling sequence is:

CALL RITE (LOC, IA, IB, ITP)

where

LOC = buffer name from which to write the data

IA = first word index to LOC to start write

IB = last word index to LOC to end write

ITP = tape file number to write

^{*}YEOMAN utility subroutine (no flow charts).

Subroutine <u>RITEL</u>* is used to write the TRPC file. The calling sequence is:

CALL RITEL (LOC, IA, IB, ITP)

where

LOC = buffer name from which to write the deck

IA = first word index to LOC to start write

IB = last word index to LOC to end write

ITP = tape file number to write

Subroutine <u>SORT</u> sorts an array of I rows and J columns by entries in the Nth column. The sorting is ARRAY(1, N) = min,..., ARRAY(I, N) = max, according to the bits set in the mask. A mask of all ones and mode 0 is a normal numerical sorting mode, which works for input vectors of any type. Sorting is performed within a column of bits down the array with zeros sorted low and ones sorted high. The sorting time is linearly proportional to L * M, where L is the length of column in the array being sorted and M is the number of nonzero positions in the mask. ARRAY is sorted back into itself, so no extra working storage is required. The calling sequence is:

CALL SORT (ARRAY, I, J, L, N, MASK, MODE)

where

ARRAY = array with I rows and J columns to be sorted

I = number of rows in ARRAY

J = number of columns in ARRAY

L = number of elements in each row to be sorted

N = column of ARRAY to be sorted; all other columns are moved as a function of the sort on this column

^{*}YEOMAN utility subroutine (no flow charts).

MASK = nonzero bits in MASK specify the bit positions to be used in the sorting process

MODE = sorting mode:

0 = bit 0 is not to be considered as a sign bit

0 = the sign bit is to be considered, and all negative items are placed at the bottom of the array

Subroutine <u>UPDIR</u> merges the OLDBL and LGO directory information to an updated directory. It then sorts the new directory alphanumerically, retaining deck order and file residence information.

Subroutine <u>WDIR</u> writes the updated directory on the NEWBL file.

Subroutine \underline{XREF} prints out a cross reference map of the complete TRP library.

2.3 YEOMAN INPUTS

Ū

Input may be made to Program YEOM by three methods. The first is by way of REQ/NREQ data decks, the second is by calling sequence parameters (Table 2-1), and the third is by a compiler-created library file that contains relocatable subroutine decks and newly created subroutines (Sec. 2 of the TRP Milestone 7 Report).

The only card input to Program YEOM is the REQ/NREQ input deck, which contains the TRP model names and designates the final program configuration to be written on file TRPC. Absence of this deck (EOR card only) negates the generation of file TRPC. This deck should be removed when a new binary library (NEWBL) is generated and a program configuration is not needed.

Model names are considered as primary members whenever a hierarchy of decks exists. All decks in a hierarchy are designated as required if the primary member of the hierarchy is required.

There are six REQ/NREQ control cards. In the REQ/NREQ deck structure, each control card (except NO MORE) may be followed by one or more data cards containing deck names. Each deck cited on a data card is processed according to the preceding control card, until a new control card is encountered. The REQ card is used to designate the decks required.

Table 2-1. Calling Sequence Parameters

Calling Sequence		
Parameter No.	Default	Description
í	IFLG	The first five characters of this parameter are used to select YEOMAN options. These characters may be input in any order. Note that IFLG (default) does not contain any of the input characters:
		P Used as a flag to the program to print intermediate output. The P option is automatically set when a NEWBL is generated
		C Print file COMPILE with C/ common suppression and UPDATE identifiers shifted left
		S Same as C except that printed output is compressed (8 lines/inch)
		E Program aborts if an error is encountered on LGO file (default)
		O Program ignores (skips) errors encountered on LGO file
2	TAPEZ ^a	Generates a new TRP relocatable binary tape when this parameter is input as NEWBL
3	OLDBL ^a	File containing the old TRP relocatable binary tape. If the file is empty, program assumes all input decks are on file LGO
4	LGO ^a	File containing the newly compiled TRP decks. If this file is empty, the program assumes all input decks are on file OLDBL
5	TRPCa	File containing TRP program configuration to be loaded
6	INPUT ^a	Input file that the REQ/NREQ deck is on

aNote that TAPE3 = TAPEZ, TAPE1 = OLDBL, TAPEB - OLDBL, TAPE2 = LGO, TAPE5 = INPUT, and TAPE7 = TRPC.

The NREQ card is used to identify unwanted decks.

1 11	80
NREQ	
СС	Contents
1-4	NREQ
5-10	Blank
11-80	User's comments

The NREQE card is the same as the NREQ card.

1 11	80
NREGE	
cc	Contents
1-5	NREGE
6-10	Blank
11-80	User's comments

Each deck whose name appears on a data card following the NREQR control card is replaced by subroutine that immediately returns control to the calling program.

1 11	80
NREQR	
CC	Contents
1-5	NREQR
6-10	Biank
11-80	User's comments

The LIBR card is used to designate library decks. Compiled decks are on the LGO file; uncompiled decks are on OLDBL. The only rule is that each deck must appear before the first overlay requiring it. Library decks are automatically inserted into the overlays that require them.

1 11	80
LIBR	
cc	Contents
1-4	LIBR
5-10	Blank .
11-80	User's comments

The NO MORE control card signifies the end of the REQ/NREQ data deck.

1 11	80
NØ MØRE	
cc	Contents
1-7	NØ MØRE
8-10	Blank .
11-80	User's comments

All data cards that follow the REQ/NREQ control cards are in one of the following formats:

Up to 8 deck names may be entered per card; each deck name is separated by a comma. The first blank encountered ends the list, and the remainder of the card is interpreted as user's comments.

Output from Program YEOM consists of a disc file (TRPC) of relocatable decks that contains the TRP program configuration dictated by the model names in the REQ/NREQ input deck.

An updated version of the OLDBL may be generated on tape NEWBL.

2.4 YEOMAN OUTPUTS

Output from the YEOMAN program consists of a disc file (TRPC) of relocatable decks that contains the TRP program configuration dictated by the model names in the REQ/NREQ input deck. An updated version of the OLDBL may be generated on tape NEWBL.

All YEOM variable outputs are integer by default or are typed as integer (Table 2-2).

The models that make up the TRP program (the full set that resides on the source file) are shown in Table 2-3. Loading this set of models results in the subroutine map shown in Table 2-4. This table gives the ordering of subroutines and also shows the overlay in which they reside. For most runs, the full set of models is not required; the user can specify through YEOMAN the models that are required and those that are not. The user can also identify specific subroutines known to be unnecessary even though YEOMAN, through the automatic determination of required subroutines, would specify that it be loaded. This technique is useful in minimizing the core size required for execution.

The required models, the models that are not required, several modules that are not required, and some individual subroutines that are not used for the operational version of TRP are shown in Table 2-5. The YEO-MAN input cards needed to configure the operational version of TRP are listed in this table. This configuration results in the subroutine map shown in Table 2-6.

Table 2-2. YEOMAN Output Variables

Mnemonic	Units	Description
BTAPE	N. D.	OLDBL flag: 0 = OLDBL is vacant = 0 = Relocatable decks reside on file OLDBL
LGO	N.D.	LGO flag: 0 = LGO is vacant \(\neq 0 = \text{Relocatable decks reside on} \) file LGO
NBTAPE	N. D.	NEWBL flag: 0 = TRP binary file NEWBL is generated ≠0 = NEWBL is not generated
NMVS	N. D.	TRPC flag: 0 = TRP program configuration flag TRPC is not generated ≠0 = TRPC is generated
PRINTP	N.D.	Intermediate print flag: 0 = Intermediate print is not output = 0 = intermediate print is output
NBD	N. D.	Counts number of binary decks that reside on file OLDBL
NLD	N.D.	Counts number of binary decks that reside on file LGO
NLEQD	N.D.	Counts maximum number of decks to be considered when output file TRPC is merged
NDICT	N. D.	Counts total number of decks in the directory after it has been marged

Table 2-2. YEOMAN Output Variables (Continued)

Mnemonic	Units	Description
DICT(2000,3)	BCD	Directory vector (Col. 1): Col. 1 contains deck names with REQ/NREQ information in the following format:
		NAME I
		where I = 2B indicates that a deck is required, I = 10B indicates that a dummy return deck is required, and I = 20B indicates that a deck is not required
BASEL	N. D.	Directory vector (Col. 2): Relative BASE pointer to deck requirements
DORDR	N. D.	Directory vector (Col. 3): Deck order and file residence information for deck in Col. 1:
		*DORDR = R*10000B+N
		where N = deck order and R = file residence (R = 1 indicates deck is on file CLDBL, R = 2 indicates deck is on file LGO, and R = 3 indicates deck is on both files)
NUMBER	BCD	Deck name to be searched for by binary search routines
JLOC	N. D.	Relative location in array where NUMBER was found
JLOC2	N. D.	Relative location if NUMBER has two entries in array
MARKER	N.D.	Mask used to OR requirement flags in deck names found by binary search routines

Table 2-2. YEOMAN Output Variables (Continued)

Mnemonic	Units	Description
BASE	N. D.	Buffer that contains the OLDBL relocatable directory
ввкт	N. D.	Pointer to first work in array BASE
СВКТ	N.D.	Current pointer to array BASE
EBKT	N. D.	Pointer to last word in array BASE

THE THE PARTY OF T

Table 2-3. TRP Models: Full Set

```
HOBEL - AERODYNAMICS COMPUTATION SYMMETRIC VEHICLE
HOBEL - AERODYNAMICS COMPUTATION ASYMMETRIS VEHICLE
HOBEL - AERODYNAMICS INITIALIZATION COMPUTING MULT. FOR COEFFS
HOBEL - AERODYNAMICS COMPUTATION GENERAL SYMMETRIC
HOBEL - AERODYNAMICS COMPUTATION MODEL- DRAG FUNCTION OF MACH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MODEL - TRACKING COMPUTATION 25 SIMPLE RADARS, VARIABLE ORIENT. MODEL - EXESUTES
eseseseseseseseseseseses CODETES II IIVIIIVIII seseseseseseseseseseseseses
            FOR AEROSPACE PUT THIS CARD IN REQ DECK RECONSTRUCTION INITIALIZATION
                                                                                                                    ITERATION INFORMATION INITIALIZATION
ITERATION INFORMATION COMPUTATION
MASTER PROCESSING EXECUTIVE INITIALIZATION NORMAL
MASTER PROCESSING EXECUTIVE COMPUTATION
IRAJECTORY PROCESSING EXECUTIVE INITIALIZATION
IRAJECTORY PROCESSING EXECUTIVE COMPUTATION
                                                                                                                                                                                                                                          DDEL - CYCLING EXECUTIVE INITIALIZATION
DDEL - CYCLING EXECUTIVE COMPUTATION (FAST VERSION)
DDEL - DATA PROCESSING/GUIDANCE EXECUTIVE
DDEL - OPEN-LOOP STEERING INITIALIZATION
DDEL - TIME-TO-GO INITIALIZATION
DDEL - TIME-TO-GO COMPUTATION
MODEL - TRACKING INITIALIZATION
MODEL - TRACKING INITIALIZATION
MODEL - TRACKING INITIALIZATION FOR MODEL 3
MODEL - TRACKING INITIALIZATION FOR MODEL 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MODEL - PROPULSION COMPUTATION GENERAL LOW OR SINGLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               HES HODEL - CONTROLS INITIALIZATION FOR MODEL 4
HODEL - CONTROLS COMPUTATION GENERAL
RP HODEL - ENVIRONMENT INITIALIZATION FOR MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MODEL - ENVIRONMENT COMPUTATION SENERAL POTENTIAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FP MODEL - STRUCTURES INITIALIZATION FOR MODEL MODEL - STRUCTURES COMPUTATION 1 ASSEMBLY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - PROPULSION INITIALIZATION FOR MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AERHGAERNP HOJEL - AERODYNAMICS INIT FOR HODEL 1,2,3
Aerhhaerpij nojel - Aerodynamics init
                                                          POSTFLIGHT RECONSTRUCTION COMPUTATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                           MODEL - TRACKING COMPUTATION NORMAL
                                                                            ITERATION INITIALIZATION ITERATION COMPUTATION
                                                                                                                                                . . . . .
                                                                                                                       MODEL
                                                                                                                                                                MODEL
                                                                                                                                                                                                                                                                                                             HODEL
                                                           HODEL
                                                                                                  MODEL
                                                                                                                                                                                                       MODEL
                                                                                                                                                                                                                             MODEL
                                                                                                                                                                                                                                                                      RODEL
                                                                                                                                                                                                                                                                                                                                     TODEL
                                                                                                                                                                                                                                                                                                                                                        MODEL
                                                                                                                                                                                                                                                                                                                                                                            MODEL
                                                                                                                                                                                                                                                                                           HODEL
                                                                                HODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTO, CONTES
                                                                                                                                                                                                                                                                                                                                                                                                                   RAKC, TRAKP3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ENERB, ENVRP
                                                                                                                                                                                                                                                                                                                                                       TGBEB HO
TGBE1 HO
TRAKB, TRAKP
                                                                                                                                                                                                                                                                                                                                                                                                                                         RAKO, TRAKPL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  AEZHG, AEZNP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STRIC, STATP
STRIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PROPC, PRIPP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LERM13
                                                                                                                       ITIFB
ITIF1
MPEX8
MPEX1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTE
                                                                                LTERB
                                                                                                                                                                                                       SPXB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AERMO
                                                                                                                                                                                                                             SPX1
                                                                                                                                                                                                                                                                                                              OLSTB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RAK3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RAK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ENVRI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PROP9
                                          PF2PB
                                                                                                                                                                                                                                                    CYCX9
                                                                                                                                                                                                                                                                                           DPGX1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LERHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PR0P1
                                                                                                     ITERI
                                                                                                                                                                                                                                                                       CYCX2
                                                                                                                                                                                                                                                                                                                                                                                                                                                              RAKI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LERM2
                                                             PFRP1
                                                                                                                                                                                                                                                                                                                                     OLST1
```

The same of the sa

Table 2-3. TRP Models: Full Set (Continued)

```
HODEL - ROTATIONAL MOTION COMPUTATION TIE DOWN
HODEL - ROTATIONAL MOTION COMPUTATION GEMINI POSTFLIGHT
HODEL - GRAVITY TURN IN PITCH AND YAM
HODEL - GRAVITY TURN IN PITCH AND YAM
P MODEL - TRANSLATIONAL MOTION INIT LAUNCH SITE
P HODEL - TRANSLATIONAL MOTION INIT ADBARY (AIR)
P HODEL - TRANSLATIONAL MOTION INIT ADBARY (INERTIAL)
                                                                                                                                                                                                             HODEL - TRANSLATIONAL MOTION INIT, POS AND/OR VELOC PERTURB, MODEL - TRANSLATIONAL MOTION COMPUTATION NORMAL MODEL - TRANSLATIONAL MOTION COMPUTATION NORMAL MODEL - TRANSLATIONAL MOTION COMPUTATION TE-COWN MODEL - TRANSLATIONAL MOTION COMPUTATION GENINI POSTFLIGHT MODEL - TRANSLATIONAL MOTION COMPUTATION RADAR DATA MODEL - TRANSLATIONAL MOTION COMPUTATION RADAR DATA MODEL - SENSORS INFRA-RED INITIALIZATION FOR MODELS 5 AND 6 MODEL - SENSORS INITIALIZATION FOR MODELS 5 AND 6 MODEL - SENSORS COMPUTATION GENERAL LOW MODEL - SENSORS COMPUTATION GENERAL LOW MODEL - SENSORS COMPUTATION GENERAL LOW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                - INCL, VCIRC, ECCEN, PERS, APOG, VVEN, SMAX, ANAM, PERL, P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    L - INITIALIZATION MODEL FOR MODEL 3 (INTX3)

L - INTEGRATION INITIALIZATION FOR MODEL 4

L - INTEGRATION SINGLE FREQUENCY, SINGLE PRECISION R-K

L - INTEGRATION ADAMS MOULTON VARIABLE STEP COMPUTATION

L - INFORMATION EXECUTIVE INITIALIZATION

L - INFORMATION EXECUTIVE COMPUTATION

MODEL - INITIALIZATION FOR JUNKP
                       MOTION INITIALIZATION FOR MODEL
                                            - ROTATIONAL MOTION COMPUTATION ATTITUDE MATRIX - ROTATIONAL MOTION COMPUTATION TIE DOWN
- ROTATIONAL MOTION INIT FOR MODEL 2,3,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MODEL - AUXILIARY INTEGRATION COMPUTATION MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MODEL - WEMICLE-TO-VEHICLE RELATIVE VARIABLES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        MODEL-1- JUNKH VARIABLE REPLACEMENT OPTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       - ELRLH, AZRLN, BANK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              AUXILIARY - PXIL(3), VXIL(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            auxiliary - Ltgy,laty,gmi
auxiliary - Cang,rang
auxiliary - Ami,rat,vsmi
                           MODEL - ROTATIONAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        - GANI, GAHA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            - AZVI, AZVA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TXBSL -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SUB-OUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AUXILIAZY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              AUXILIARY
AUXILIARY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AUXILIARY
                                                 MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           MCDEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MODEL
                                                                                                                                                                                                                                                                                                                                                                 SENSC, SENSPA
SENSO, SENSP
SENSA HODI
                                                                                                                                                                           FMOTC, THOTP
                          RHOTE, RHOTP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         JUNKS, JUNKP
      RADTC, RADTP
                                                                                                                                                         FROTB.TRUTP
                                               RM0T2
RM0T3
                                                                                        RMOT4
                                                                                                                                                                                                                                                          TM0 T2
TM0 T3
TM0 T4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INTXO
INTXO
INTX¢
INFX¢
INFX¢
                                                                                                                                 RMOTÓ
                                                                                                                                                                                                                  TMSTV
                                                                                                                                                                                                                                                                                                                          THOTS
                                                                                                                                                                                                                                                                                                                                                                                                                                 SENS5
SENS6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           NTXC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        JUNK 3
ENS2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 THOST
THOSS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        THOSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TMOS5
TMOS6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              THOS8
ROCOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SVCOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       THUST
                                                                                                                                                                                                                                           MOTI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               JUNK1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      JUNK2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            JNAT
```

AND SALES OF THE S

the feet of the section of the secti

Table 2-3. TRP Models: Full Set (Continued)

```
*****
                                                                                          HODEL - ROTATIONAL MOTION COMPUTATION EULER ANGLE
HODEL - INITIALIZATION OF LAT, LON, AZ OF LAYNCH FROM DATA FIT
HODEL - TRANSLATIONAL HOTION - PXIP FROM LOS ANGLES
                                                                                                                                                                                                                                                                                                            MODEL - ROTATIONAL MOTION INIT X-VEH ORIENTATIONS
                                                                                                                                                                                         HOJEL - ROTATIONAL MOTION INIT FOR MOJEL
                                  - INTEGRATION EXECUTIVE INITIALIZATION - INTEGRATION EXECUTIVE COMPUTATION LOW
                                                                                                                                                                                                                PREVIOUSLY DEFINED ** ISNORING INPUT
                                                                                                                                                                                                                                                   PREVIOUSLY DEFINED ** ISNORING INPUT
                                                                                                                                                                                                                                                                                                                                                                                                          AUXILIARY - TASIU(3), TVSIU(3)
OPTIMIZATION PACKAGE
                                                                                                                                                                                                                                                                                                                                                                                                                      ENASH -
                                                                                                                                                                                                                                                                                                                                                                                                                                             - ITIFH
                                                                                                                                                                                                                                                                                                                                                                                                                                                         - ITIFM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PROPH
                                                                                                                                                                                                                                                                                                                                                                                                                      SUBROUTINE
SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                             SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                         SUBROUTINE
SUBROUTINE
                                                                                                        HODX1, MODX2, TZP31
                                              MODEL
                                  MODEL
                                                                                                                                                      0PG2H,0PG2P
                                                                                                                                                                                         RHOTS, 240TP
                                                                                                                                                                                                                            RMOTO, 240TP
                                                                                                                                                                                                                                                   DECK RADIP
                                                                                                                                                                                                                DECK RNOTP
MAX, RESL3
                                              INTX1
CFGMAG
                                                                      GECHAG
                                                                                                                                                                                                                                                                                                                                                                       EULERC
                                                                                                                                                                                                                                                                                                                                                                                                          SENS X1
                                                                                                                                                                                                                                                                          TM070
TM078
                                                                                                                                                                                                                                                                                                                                                                                                                      NDTLU
LJAT
                                                                                                                                                                  DPG25
                                                                                                                                                                                                                                                                                                             NREQR
DPG14
                                  INTXB
                                                                                                                                                                                                                                                                                                                                    DPG2M
                                                                                                                                                                                                                                                                                                                                                                                  TRS13
                                                                                                                    SPXC
                                                                                                                                           CYCX1
                                                                                                                                                                              TRAK2
                                                                                                                                                                                                                                                               RMOT1
                                                                                                                                                                                                                                                                                                                                                                                              9PGXP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TBAL1
                                                                                                                               I SPX2
                                                                                                                                                                                                                                                                                                                                                                                                                                             NRMOA
                                                                                                                                                                                                                                                                                                                                                                                                                                                         NRMPR
                                                                                             NREQ
            RSU4
                                                                                                                                                                                                                                                                                                                                                01.52
                                                                                                                                                                                                                                                                                                                                                            OLS4
```

Table 2-3. TRP Models: Full Set (Continued)

DYNWT

LIBR ************************************	LIBRARY (DEFINED	ECKS IN OVE	****	0.0	-SER VM	****** SUBROUTINES
EXPN. WYPOUT	DEFINED	IN OVE	RLAY	1.0		
CALJ,INUJB,LMITZ,M31C,M33GGC,M33CRR DEFINED IN OVERLAY 3,0 -SERVM SUBROUTINES M33RCR,M33RCC,M33RRR,QNTZ2,QNTZ3	DEFINED	IN OVE	REAV	3,0	-SERVH	SUBROUTINES
RAND1, RANNB, REED, XVEH, PCG2, PVCGI						
WICI, GAMGS, IMMIX, VELAI, PRPII, PRPIZ	,					
KMUSZOJUNKIOKUZNYOKULAISOAKIPSOHFII	-1					
DECK JUNKI PREVIOUSLY DEFINED ** ISNORING INPUT	ISNORING	INPUT				
LCMUVE,SP31,DISC16 POLYE SUBROUTING - SERVM						
AUGM, BABT, COVRDM, DMTX3, LTL, MTXPR	DEFINED	IN OVE	2LAY	0.4	-PFRPH	DEFINED IN OVERLAY 4,0 -PFRPM SUBROUTINES
SOLV, STATS, UTL, TREMS, CRAL2, 4TRX5						
PRESENTED TO THE PROPERTY OF T	OF VECHAL	THORT	***	***	***	******

YEOM

Table 2-4. Subroutine List: Full Set

	2 9						33. 3.15.				31			Y	EOM
	0005 2000 *						0131 0053				0631			0	utputs
	PCOM PPTIME						JELET1 LEFJST				T9300				
	3115						0154 5635				7705				
	H P II X K II X						OFCHK INP1#				IFIELO				
	#0011 #0051						0021				0067				
	BLANK CPTINE						CMPR		HYPOUT		CARDF				
	\$000 \$000						3060 *0113				2364				
	SPEEDY						CKYJUL EXPN		EXP.		ОРИЧСН				
	0010 #0012 #0153		0011				0212				2200				0207
	RECALL GETHEM XY23TG		ANOI		PPTIME		ALFNUM EPHTAB		SHIFTI		gpaput				HOV?
	0153 *0105 *0035		0154	INSERTED			0435 0253 40067	DECKS INSERTED			باري ده	INSERTED			1455
• 0	LOADOV 32al Syifti	•	FIND	DECKS	EMILCO		BKCHEK DELET3 MYPOJT	DECKS I	GETADO		BPRINT	DECKS I		•	INTERX
OVERLAY(TRPR,6,0	1455 0635 JG36 103610	TRP, 1, 0	0113 1L=000300	LIBRARY		OVERLAY(TRP,1,1)	3003 3373 0654 0654	LIBEARY		OVERLAY (TRP, 1,2)	00044 0115 -310767	LIBRARY		OVERLAY(TRP,1,3)	2P13 0005 TOTAL=001671
OVERLAY	TRP LCHAX OLAY3+ TOTAL=	OVERLAY(TRP,1,0	TRP1 TOTAL=	PROGRAM	GETMEN	OVERLAV	TRP11 OELET2 VERT TOTAL=	PROGRAM LIBEARY	כאיד	OVERLAY (T2P12 T93HP TOTAL=	PROGRAM LIBRARY	LINEF	OVERLAY	T2P13 TOTAL=

The second of the second secon

Table 2-4. Subroutine List: Full Set (Continued)

GETADD

CRAL

HYPOUT

EXPN

PROGRAM LIBRARY DECKS INSERTED

OVERLAY(TRP,2,0	T2P,2,0	•											
TRP2	00	(K)	-	SERI1	30	SERV	0	SERVI	0027	SERV2	9400	SERV3	9400
SERVA	20	ERV	0	3	20	PFRI	9	PFRI1	3	~	2	ũ	9
ITEI	0	TEI	0	ITEV	03	ITEV1	92	H	03	14	5	Ţ	2
MPEI	00	PEI		MDER	9	ISPI	0	3	90	Η	70	8	2
CACI	00	7	0	CVCV	03	OPGI	00	GI	9	3	8	2	32
DP1V	2	PZI	0	DP2V	02	OLSI	00	SI	2,5	S	5	ဌ	8
TGOV	27	R	0	H	15	-	23	TRAIZ	23	H	23	~	23
TRAIS	15	ZAV	↤	2	13	-	13	5	13	5	7	ž	43
STRI	9000	STRI1	0016	STRIZ	0017	STRIB	0016	2	2	STRV1	10	2	2
STZV3	62	HNO	0	¥	02	•	970	CONTA	92	片	04	20	6
CONVZ	50	>	0	N	5	-	10	Z	:	H	90	ì	12
ENVVI	40	7 7 7	0	ERI	00	-	70	Z	03	7	50	E	9
AE2V1	10	2	0	ER	92	_	00	H	12	2	37	ç	8
RMOIT	S	¥0 ×	0	20	97	THOI	9	H	9	I	9	2	4
THOV	10	P	0	x	07	SENI	00	벟	0	Z	9	Z 1:	9
SENIS	43	2	0	>	03	•	07	=	16	>	07	Z.	02
INOC	00	JNI	G	¥	0.5	•	9	3	40	_	8	늘	10
THI	5	71%	~	NFI	00	_	90	INFV	02	2	8	È	5
HVSA	80	5	m	Ç	7	CVAHT	검	DICT	36	S	20	2	5
OTSL7	10	TSL	0	김	90	~	17	ST	28	2	95	KS51	90
INS22	3	NS22	~	25	5		2	ሦ	13	빌	23	9	40
NAMSER	90	305	0	PCEPT	30		#	PCVRT	16	2	03	1	53
PNDTLU	25	PLJT	O	2	03	•	05	¥	5	5	4	8	28
11	37												
PROGRAM	LIBRARY	DECKS IN	INSERTED										
GETHEN		GETAGO		SHIFTI									
OVERLAVCT	122,3,0	•											
1893	00	02 111	10	γ.	0041	ď	0023	SERV1	0627	SERVS	90.00	SERV3	9403
SERVE	20	ERV	0.5	A	20	α	10	S.	31	F٦٧	04	€:	6
ITEI	00	TEL	5	ה, ה	E .	ui i	0.5	TIL	C 3	H	٠ ٢	ĭ	20
MPEI	5000	APEL1	0011	> : 6. 1 7. 0	20	ISPI	0	SP	9	SPI	50	SERIZ	27
1010	3	1 5	2	د	ο 2	2	=	٥	2	2	2	→	2

Table 2-4. Subroutine List: Full Set (Continued)

LAY(T	OVERLAY(T 2P, 3, 2)	_											
T2P32	0031	MODX32	3071	STRT2	0021	VCS1	0400	CONTE	2100	ENGCS	0220	SDEFL	0140
ರ _	0403	A LRV	R 0003	LONGT	100	ARAR	0020	AERMS	020	AFRAS	? ~	AERH13	0200
11	0111	AHREA	700	AERT1	5	AMCRI	0076	ARHC1	176	AZHCZ	01	AUX	0124
1	0015	P30P9	900	DEFC	02	ISoI	† † 00	PRFB	111	PZFW	00	PRMB	0016
z (0021	TBAL 1	3	RNOTZ	E 1	RHOTA	0045	RHOTA	212	R4015	0	RIOTE	0131
<u>بر</u>	740B	オクロにど	9 1	001011	3	110051	1	11011	7 . 7 . 7 .	2181	9 (2010	9,00
ب خوا	245	61081	,	9101	7		3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 150 E	450	5:N56	000	SENS5	100
0	7910	211	7		9	N TO LY	2420	ハコム・せつ) t	SANOT	3	JUNES	7/20
다 :	0146	ENTX3	306	TANT	0	AUNI	4 T 5 B	AUMZ	532	AUVI	50	CINUER	1420
DERIV	0131	EJLERS	0	EULERI		INISZ	2100	RUKI	10	RUKS	→	SHNKS1	0103
OTAL=0													
PROGRAH L	LIBRAZY	JECKS I	INSERTED										
		,		•		•				1			
IMU58 Vela1		#33463 PRPI1		M33RR2 Proi2		PCG2 RMOS2		PVCGI M33CCC		MTG1 MR3CRR		GANGS	
OVERLAY (TR?	R2,3,3	•											
TRP33 PLIT TOTAL=00	0031 0032 104017	M00X33	0020	ITIF8 RESL1	0000	ITIF1 RES.2	1006	CAIT RESL3	0321	R SHOA	R 0003 0737	NRMPR	R 0003 0132
PROGRAM L	LIBRARY	DECKS I	INSERTED										
ECISV		ROLATS		AKTPS		BUFF1		SPCT		REED			
LAYCT	OVERLAY(T2P,3,4)												
T2P34 1TS1 1TS9 R TOTAL=0	0022 0022 0003 005015	MODX34 ITS2 ITVLS	0020 0197 0057	ITERS ITS3 MAX	0043 0077 1672	ITER1 ITS4 PRED	0415 0114 0111	INGR ITS5 RITE	0045 0124 0164	INGH ITS6	0036 0304	ITSO	0446
PROGRAM L	LIBRARY	DECKS	INSERTED										O
CPTIME		3 = E 0		ECISV		ROLATS		AKTPS		BUFF1		SPCT	utput
													s

فلاستخاره كالأفروج والمرام وكالكفكاء يفط سكو وجزار والمشاعلة والمفايد غاسون حسائلا بدود والطويف بينطائعة لمعاوشان

YEOM

Table 2-4. Subroutine List: Full Set (Continued)

	YEOM
κ The standard of the stan	Outputs
TAGO TO THE TO THE TAGO TAGO TAGO TAGO TAGO TAGO TAGO TAGO	LHIT? IHMTX
SEASTANTE TO A DESCRIPTION OF THE SEASTANT OF	
TACAS A TO COCYCO TO COCYC	LCMOVE XVEH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
TAC TAC TAC TAC TAC TAC TAC TAC	DT SL 10 RA NNO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
TAREST CONTRACTOR CONT	SHIFTI Randi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
TAPANT TO CONTRACT TAPACT TAPA	GETAD) QNT23
x x x x x x x x x x	NSZRTED
TAREST A XIIII COLUNA SA XIII COLUNA	DECKS I GETYEN QNTZ2
**************************************	LIBRA
THE STATE OF	

Table 2-4. Subroutine List: Full Set (Continued)

0105 SINI 0125 CONVER 01 0347 VAKS 01 0116 RMOSI8 91
THOS11
INSERTED
M33RCA PRP11
0054 INSC 011 0003 TRAKP 021 0175 AERMP 010 01+3 JUNKP 010
INSERTED
CALD
0105 SERII 004 0055 TPAV 002 0017 ITEV 003
011 MPTV 0 057 ECINF 0 550 STATS +0
0196 APCVM 0240 6223

Table 2-4. Subroutine List: Full Set (Continued)

TOTAL=803765

PROGRAM LIBRARY	BRAZY	DECKS	DECKS INSERTE	0									
CRAL CRAL2 CPTIME		GETHEN		GETADO LTL		XYZRIC		AUGH		BABT		COVRTH UTL	
OVERLAY(TRP,4,2)	P,4,2)												
12P42 0665 GMKPR 0134 TOTAL=003711		PFRP1 GMKPJ	1512	BNJGHK	0157	COVA	0223 0036	OY NWT PROG	R 0003 0017	EDIT 25mkr	0216 3035	EIGANL YSBK	0313
PROGRAH LIBRARY	SEARY	JECKS 1	JECKS INSERTED										
AUGN HTRX5	_	BABI CPTIME		נזו		MTXPR		ATOS		TREMS		מדנ	
OVERLAY(TRP,4,3)	,4,3)												
TRP43 1361 MATMBR 0233 TOTAL=005540		AKFXR RADPC	3160 0151	CSEPS RADPS	0454	BPV2 RCVMTX	0071	DVCPR RTCCV	0425 0552	EIGEN	3226	LPGHR	0112
PROGRAM LIBRARY		DECKS I	INSERTED										
XYZRIC TREMS	m =>	BABT UTL		COVRDW		OHTXD CPII4E		רזו		MTXPR		STATS	
	YEOHAN	* NA	START	TIME =	16.57500		STOP TIME =	= 21.19100		TOTAL CPTINE	11	4.61500	

Table 2-5. TRP Models: Operational Set

SASSASSASSASSASSASSASSASSAS CULLINCULO ON LIVINCUL SASSASSASSASSASSASSASSAS TO JECT CPY EPCCESSING SINGLE VEHICLE INITIALIZATION PADIANT INTENSITY COMPUTATION 5 7 PASTER CEOFFSTNG FXFLUTIVE INITIALIZATION NCRMAL TPAJECTORY FREGESING SINGLE VEHICLE COMPUTATION PCTICH INIT ADMARY (INFRIJAL) - FOTATIONAL METION CEMPUTATION GEMINI FOSTFLIGHT INTEGRATION SINGLE FPFOUENCY, SINGLE PRECISION WORFL - FOTATIONAL MOTION COMPUTATION ATTITUDE MATRIX PROFI MONFL - EPCPULSION COMPUTATION GENEPAL LOW OF SINGLE RMOTO, PMITP POCEL - FOTATIONAL MOTICN INIT FOR MONFL 2,3,4 CYCLING EXFOUTIVE COMPUTATION (FAST VERSTON) MODEL - BERODYNAMICS COMPUTATION SYMMETPIN VEHICLE MCCFL - TRANSLATIONAL MCTICN INTA LAUNCH SITE - TPANSLATIONAL MOTION COMFUTATION FREE-FALL WENGL - FNVIOCKMENT INITIALIZATION FOR MEDEL MOPFL - FNVTPCNMFNT CCMPUTATION GENERAL POTENTIAL - TPANSLATIONAL MOTION COMPUTATION TIF-FOUN MCFFL - STRUCTURES INITIALIZATION FOR MCNFL MCCFL - FPOFULCION INITIALIZATION FOP MODEL FOSTFLIGHT PFCONSTPUCTION INITIALIZATION INITIBLIZATICH MOREL FOR MOREL & (INTX3) MACTER PROPESCING EXECUTIVE COMPUTATION - TO ANGLATIONAL MOTION COMPUTATION NORMAL - POTATIONAL METION CCMPUTATION TIE NCWN MODEL - STRUCTUBES COMPUTATION 1 ASSEMBLY

P MODEL - AFBODYNAMICS INIT FUR MODEL 1,2,3 MCTION INIT ANDARD ENSTELIGHT BECONSTRUCTION COMPUTATION - CENCOPS INFRA-FEC INTTIALITATION INITIALIZATION ITFOATION INFCRMATICA INITIALIZATION CATA FROCESTAG/GUICANCE EYFCUTIVE ITERATION INFOPMATION COMPUTATION INFOFMATION EXFCUTIVE CCMFUTATION CYCLING EXFCUTIVE INITIALIZATION - GO AVITY TURN IN PITCH AND VAW TIME-TC-GO TNITIALIZATION ITEPATION INITIALIZATION - IIMF-IC-GO CCMPUTATION EXCOUTIVE ITEDATION COMPUTATION # SENSOFS 4 SPACECRAFT - TFANSLATIONAL - TPANSLATIONAL INFORMATION コニロンス HUDEL MODEL MODEL HODEL MODEL MODEL MCDFL せいいいない MODUL T L L L L ていして だいい はん MCPFL MODEL HUUUH **HULLE** MCDEL HOUE TUUU A HOUR コレンエ しいいしと MCPF SENSC, SENSE ddCdd Gdddd ENVOR, ENVED STRIC, STETP BERMC, AFOND TMOTG, TM3TP THOTA, THOTP TMOTC, TMOTP produce CPGX1 ENVE RMOT2 RMDT3 TERA TIER FGOER STRT2 PFRP1 TEP1 ITIF1 MPEXA APEX1 LSPXC **ISPX2** CYCXG CYCX2 TG0E1 AEDM1 RMOTA **PH016** TM0 71 TM0T2 THOTE SENSS CNTXC

. ... Les . . . White

the second secon

Table 2-5. TRP Models: Operational Set (Continued)

```
FREE REFERENCE FREE COEDIF DUMMY ROUTINE WHICH RETURNS ARREST
                                                                                                                                                                                                                                                                                                                                                                                                                                   MODFL - TRAJECTORY PRCCESSING EXECUTIVE INITIALIZATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                            - TPAJECTORY PRCCESSING EXECUTIVE COMPUTATION
            MODULF - DATA PROCESSING GUIDANCE NUMBER 1 MODULE
MCPULE - DATA PROCESSING GUIDANCE NUMBER 2 MODULE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     "OCEL - GUIDANCE 2 INITIALIZATION FOR MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         - TRACKING INITIALIZATION FOR MODEL
                                     MODEL - CPEN-LCOP STEFRING INITIALIZATION MODEL - CPEN-LOOP STEFPING CCMPUTATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         - CYCLING EXECUTIVE COMPUTATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MODFL - GUIDANCE 2 CCMPUTATION X P MCDEL - TRACKING INITIALIZATION
                                                              MCDULE - TRACKING MODULE
                                                                                                                                                                                           TNI ad
                                                                                                                                                                                         PERM
                                                                                                              SERVM
                                                                                                                                                                              EXUS.
                                                                                                                           SERVE
                                                                                                                                                                                                                               AFRFE
                                                                                                                                                                                                                                                                                                                    TIFM
                                                                                                                                                                                                                                                                                                                                 TATAL
                                                                            * CEPVE
                                                                                      NA CES
                                                                                                    は入る出い
                                                                                                                                         TSPXE
                                                                                                                                                     TYDY
                                                                                                                                                                 TYPYM
                                                                                                                                                                                                      STOLV
                                                                                                                                                                                                                   FUVPM
                                                                                                                                                                                                                                           MdOad
                                                                                                                                                                                                                                                        TUDGE
                                                                                                                                                                                                                                                                    TTO OT
                                                                                                                                                                                                                                                                                FROPM
                                                                                                                                                                                                                                                                                            FMOTE
                                                                                                                                                                                                                                                                                                        THEFT
                                                                                                                                                                                                                                                                                                                                             radia
                                                                                                                                                                                                                                                                                                                                                          FFDFF
                                                                                                                                                                                                                                                                                                                                                                       HOOLI
                                                                                                                                                                                                                                                                                                                                                                                                            reapt
                                                                          SULTUDANCE
                                                                                    SUPPRITING
                                                                                                   SURPCUTINE
                                                                                                                                                                 SURPCUTINE
                                                                                                                                                                              SUPRCUTINE
                                                                                                                                                                                                     SUPPCUTINE
                                                                                                                                                                                                                                                        SUPPCUTINE
                                                                                                                                                                                                                                                                    SUAPCUTINF
                                                                                                                                                                                                                                                                                                                                                                                                           SUPPCUTINE
                                                                                                                SUPP CUTTAE
                                                                                                                           SUPPCUTINE
                                                                                                                                         SURPCUTINE
                                                                                                                                                    SUPPOUTINF
                                                                                                                                                                                          SURPICUTINE
                                                                                                                                                                                                                   SURPCUTINE
                                                                                                                                                                                                                             SUPPCUTINE
                                                                                                                                                                                                                                          SUBROUTIA
                                                                                                                                                                                                                                                                                SUPPCUTINE
                                                                                                                                                                                                                                                                                             SUPPCUTINE
                                                                                                                                                                                                                                                                                                         SUPPCUTINE
                                                                                                                                                                                                                                                                                                                    SURPCUTINE
                                                                                                                                                                                                                                                                                                                                  SUBPCUTINE
                                                                                                                                                                                                                                                                                                                                             SUPPCTINE
                                                                                                                                                                                                                                                                                                                                                          SUPPROTINE
                                                                                                                                                                                                                                                                                                                                                                       SUBPCUTINE
                                                                                                                                                                                                                                                                                                                                                                                   SUPPCUTINE
                                                                                                                                                                                                                                                                                                                                                                                                シハエトバンロロハミ
                                                                                                                                                                                                                                                                                                                                                                                                                                                            MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MCDFL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TRAKC, TRAKP3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      OPG2H, OPG2P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TRAKB, TRAKP
                                                                          DMPREP
                                                                                     PNOTLU
                                                                                                                                                                                                                                                                                                                                                                                              RCVHTX
                                                                                                              REPREV
                                                                                                                                                                                                                                                                                                                                             APOECI
                                                                                                                                        RDCOP
                                                                                                                                                                                                                             AMCR1
DEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                EXdS.
             OPGIM
                          DPG2M
                                                                                                   PRNT3
                                                                                                                                                     SVCOP
                                                                                                                                                                                         DPGXP
                                                                                                                                                                                                                                                                                                                                                         DVCPR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0PG25
                                     OLSTR
                                                                HRAKE
                                                                                                                                                                                                                                                                                                                    RRMCA
                                                                                                                                                                                                                                                                                                                                  RUILLE
                                                                                                                                                                                                                                                                                                                                                                                                           RTCCV
                                               OLST1
                                                                                                                           XVEH1
                                                                                                                                                                                                                                                                                            RM0S1
                                                                                                                                                                                                                                                                                                                                                                     PANA
                                                                                                                                                                                                                                                                                                                                                                                                                                                              SPX1
                                                                                                                                                                                                                                                                                TEAL 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CYCX1
                                                                                                                                                                 1881
                                                                                                                                                                              585
                                                                                                                                                                                                     CXX2
                                                                                                                                                                                                                  SUNV
                                                                                                                                                                                                                                                       DEFC
                                                                                                                                                                                                                                                                                                         £TS9
                                                                                                                                                                                                                                                                                                                                                                                   ストスエ
                                                                                                                                                                                                                                                                                                                                                                                                                                     NRED
```

- BUXILIARY INTERRATION COMPUTATION MODEL

MCDEL

JUNK 2 JUNK3

JUNKS, JUNKP

SENSTO

MCDEL

EXTAB INTXU

MUDUL

MUCLET - INITIOLIZATION FOR JUNKP

MCDFL - SATSP COMPUTATION MCDFL

- SENSUBS LONDITATION GENERAL HIGH

- SPNSOPS COMPUTATION GENERAL - CATA PASE PRINT FOR 16

- VFHICLE+TO-VEHICLE FFLATIVE VARIABLES

MUCHEL - SENSOPS INITIALIZATION FOR MODFLS 5 AND

- TNITIALIZATION FICP 13 - SUMMARY MONEL FOR 10

PCCFL MCDFL

SENSL, SNSP10 SENS & SNSET C SENST, SNSP1

SENSU SENSE

MCCFL

MODEL

SENSE SENS6

MCDEL

TRP Models: Operational Set (Continued) rable 2-5.

- TRACKING INITIALIZATION FOR MODEL

MONEL - TEACKING COMPUTATION NORMAL

MCTFL

PAKD. TRAKI'4

- POTATIONAL MCTION CCMPUTATION FOR TANG., CIRC. ATTITUDE - TGACKING COMPUTATION 25 SIMPLE PARAPS, VAPIABLE ORIENT. MUDGE - DEBOLYNDMICS COMPUTATION MODGE- DRAG FUNCTION OF MACH - INITIALIZATION OF LAT, LON, A? OF LAUNCH FROM DATA FIT MOTION COMPUTATION POS, VFL FRCM TABLES MODEL - FOTATIONAL MCTICN INITIALIZATION X-VEH ORIENTATIONS - TEANSLATIONAL MOTION COMPUTATION GEMINI POSTFLIGHT PCCEL - CCIDITIONAL POTICA INITIALIZATION FOR MODFL POTTEL - COTATIONAL POTTON INIT X-VEH OPIENTATIONS - TEANSLATIONAL MOTION INIT, FCS ANNIOR VELCE MOTION COMPUTATION PADAR DATA TRANSLATIONAL MOTION - DXIP FPOM LOS ANGLES - AFROFYNAMICS INITIALIZATION COMPUTING MULT. COMPUTATION ASYMMETRIC VEHICLE - AEPCCYNAMICS COMPUTATION GENERAL SYMMETRIC MORFL - FOTATIONAL MCTION CCMPUTATION EULFR ANGLE MUTEL - BOTATTENAL MOTICA INIT FOR MONEL 1 MCCEL - CONTROLS INITIALIZATION FOR MODEL PREVIOUSLY DEFINED ** IGNOFING INPUT PERVIOUSIY NEFTNER ** IGNOPING INCOL PPFVICUSE V DFFINED ** ICNOFING IMPUT MCDFL - CONTPCLS CCMFUTATION GENFRAL CI WELFL - BEPFRYNDMICS INIT - TPACKING COMPUTATION TPANSLATICWAL TOANSLATIONAL - DEROPYNAMICS - EXERUTES HOULF MCDFL MCPFL MODEL MODEL FOR MODEL ~ いっじぇ MCDEL MCFFL HODEL **コ**ェゴンM MOPFL AEPPH, AFRF13 CONTO, CONTP 2 RMOTE, QMOTP RMOTB, PMOTF RMOTO, RMSTP DECK REGIF DECK RPOTE DECK BECTE AERY 13 RMOTO TRAKS BERK2 BERKS RM011 THOTO TM0 T6 TRAKG BEPHI RMOTS **1M01V** THOTA THOTS 210H **FRAK3**

- INTEGRATION EXECUTIVE INITIALITATION - INTEGRATION INITIALIZATION FOR MODEL 4 - INTEGEATION EXECUTIVE COMPUTATION LOW Reproduced from best available copy. MCDFL MOPFL

TO THE STATE OF THE PROPERTY O

THE THE PROPERTY OF A SECOND OF THE PROPERTY O

Table 2-5. TRP Models: Operational Set (Continued)

NOT	SURPOUTINES	Suarout ines	OFFINED IN OVERLAY 4,0 -PFRPM SUAPOUTINES
COMPUTAT	-SERVE	E> & & & & & & & & & & & & & & & & & & &	- PFRPH
0 43	4000	გ ტ	4 2 0
ACAMS MCULTON VARIARLE STEP COMPUTATION F UTIONS EASEN ON EIGENVALUE OPTION	IPPADY DECKS ************************************	CVFRL AY	OVFRLAY
2	DECK	z H	Z H
PACULTON PACED	IPRAPY DEFINED DEFINED	CENINE	NEFINFO
INTX4 MCDEL - INTEGRATION ACAMS MCULTON VARIABLE STEP COMPUTEDNS EDNS SUBPCUTINF - SERVM NOTLU SUBPCUTINF - SERVM POLY1 SUBPCUTINF - SERVM LJAT SUBPCUTINF - FRVPM LJAT SUBPCUTINF - FRVPM PSIG7 SUBRCUTINF - FRPPM MAX, RESL3 CPTIMIZATION PACKAGF EIGANL, SYMOP - SECUTIONS BASED OF SCLUTIONS	IBR ++++++++++++++++++++++++++++++++++++	CALD, IMUSP, LMTT2, M31C, M33CCC, M33CPP DF M33RCP, M33RCP, M33RCP, M33RFP, GNTZ2, GNT73 RANC1, RANNO, PFET, XVEH, PFG2, PVG5I WTC1, GAMSS, THMTX, VFL A1, FRPI1, PRFIZ RMDS2, JUNK1, FCISV, RDLATS, AKTPS, PUFF1 LCMOVE, SPCT, PTSL10 POLYE	UGM, BART, COVPCW, CMTXO, LTL, MTXPP OLV, STATS, UTL, TREMS, CPALZ, WTPX5

安全的安全的安全的安全的安全的安全的 AUDINI NUTCON LO ONL 计中央的专作的 计对象的专作的专作的专作的专作的

NC MORE

Table 2-6. Subroutine List: Operational Set

TRP 1455 LCADCV 0153 RECALL CRAL *01012 GETAOD SHIFTI *0036 XY2PTC *0153 CETAOD TOTAL=002552 XY2PTC *0153 AND TOTAL=002552 XY2PTC *0153 AND TOTAL=000300 O154 AND TOTAL=000300 CETAEN CECKS INSEPTED FOR TRP11 COTTWE CATS ALFNUM OELET3 0250 EXFN *0113 ICHECK TOTAL=007711 GETAON CECKS INSEPTED CRAL GETAON SHIFTI OUVERLAY(TPP,1,2) TRP12 0044 PFPINT 5205 EPPPUT TRP12 0044 PFPINT 5205 EPPPUT TOTAL=007711	*0004 *0004 0011 0212 0072	CPTINE CPTINE	* 000 001 11	el ank Linef	+0011	HPEXH PPTIME	0113	PCOM OLAY34	12 11
DECKS INSERTED CPTIME RKCHEK 0435 EXEN *0113 DECKS INSERTED GETADO	0011 0212 0072)
DECKS INSEPTED CPTIME RKCHEK 0435 EXFN *0113 DECKS INSEPTED GETADO	0011 0212 0072								
CPTIME CPTIME RKCHEK 0435 EXFN *0113 CECKS INSEPTED GETADO	0212 0072								
CPTIME RKCHEK 0435 EXFN +0113 DECKS INSEPTED GETADO	0212								
EXFN #0113 EXFN #0113 CECKS INSEPTED GETADO	0212								
EXFN #0113 EXFN #0113 DECKS INSEPTED GETADO	0212 0072								
CECKS INSEPTED GETADO PERINT 5205		CKMBUL INPIM	0000 5406	CHPR LEFJST	0021	DELET 1 Vert	0131	OFLET2 MYPOUT	0302 +8067
GETADN PFRINT 5205									
PFRINT 5205		HOXE		NYPOUT					
0044 PFPINT 5205									
	0027	DPUNCH	2231	IFIELD	1100	T 9300	C 622	193KP	3115
PROGRAM LIBPADY CECKS INSEPTFO									
LINEF									
QVERLAY (TPP13,1, ")									
TRP13 0005 INTERX 1226 MOVE TOTAL=001442	0207								

HAT THE WAS ASSESSED FOR A STATE OF THE PROPERTY OF THE PROPER

Table 2-6. Subroutine List: Operational Set (Continued)

CO41 SFOV SC23 SFOV1 OC27 SFRV2 C046 SFRV2 C051 TTTT C033 TSFTV OC37 TTTT C033 TSFTV OC37 TTTT C033 TSFTV OC37 SFRV1 C056 TTTT C035 TSFTV OC37 SFRV1 C056 TTTTT C035 TSFTV OC37 SFRV2 C056 STAV C051 SFRV2 C056 STAV C051 SFRV2 C056 STAV C051 SFRV1 C056 STAV C051 SFRV1 C056 SFRV1 C056 STAV C051 SFRV1 C056 SFRV1 C056 SFRV1 C056 SFRV1 C056 SFRV1 C057 SFRV1	اھ م	Ľ	رو ۲ ۵۴ ۲									
0.011 0F01 0F01 0F02 0F02 0F02 0F04 0F04 0F04 0F04 0F04	L	:	,	:								
177 177 177 177 177 177 177 177 177 177	י זורי ני	, u	4 L	* *	01011	۳ د.	1 A 1 L Q	7 6	747 V C	, c	4464	5 C
0197 TSPV 0563 TSFT 0613 SFRTZ C273 CVCT 0705 CSVCT 0714 0705 CSVCT 0714 0705 CSVCT 0715 CSCT 0715 CS	0632	F.	· 5	101	ITII	: 0		. 1	ITIN	200	1402	9 0
C005 NFC11 0C23 FPGV 0C27 NP11 00021 CF1V 00035 OCVV 0C16 TGVV 0012 TGVV 0027 TGVV 0012 STRVV 0012 STRVV 0012 STRVV 0012 ENVT3 0101 FNV1V 0012 ENVT3 0101 FNV1V 0012 ENVT3 0101 FNV1V 0012 DAV C016 DAV	î 26	v	Id	C	1spV	0		5	SEP12	27	CACI	000
0135 015V 0617 TGCI 0015 TGOV 0277 TPAI 0016 STPV 0015 STPV2 0027 STRV3 0016 STPV2 0015 STPV2 0027 STPV3 0016 STPV1 0015 STPV2 0027 STPV3 0016 STRV3 0017 STPV3 STPV3 0017 STPV3 STPV3 O017 STPV3 STPV3 STPV3 O017 STPV3 STPV3 STPV3 STPV3 O017 STPV3 ST	3500	٥	19	5	nFG11	Ü	rpev	çi	1140	92	UFIV	200
C016 STOV C021 STEV1 OC15 STOV2 C036 FRV C016 FRV C016 FR FR C016 FR FR C016 FR FR C016 FR FR C017 FR	£ C 5 3	ب	I.	5	010	J	_	2	7001	27	TPAI	¥00
COJ6 FNVT1 0111 FNVI2 0012 ENVI3 0101 FNVI4 000 COJ6 FRE	1 0C1F	۲	e I 3	7	STOV	0	•	ij	STRV2	05	STRV3	00 26
COUNTY OF THE TOTAL OF THE TOTA	33 60	z	!		CN.V.T.1	+ 1	_	5	FINATA	2	JI > NL	0062
COST OF THE	ا ا ا	z	2 1 2	3	AFPI	، ت	_	5	AFRI2	0	AFR	0055
0371 TP91 0827 TMC11 0822 TM012 2062 TW013 080 027 C FFN T 0811 0815 SFNV4 016 JUNI 0817 SENTS 0431 SFNV4 016 JUNI 0817 SENTS 010 TF11 0816 JUNI 0819 0610 TS12 CVANT 0110 TICT 0819 065 FFMAT 0110 TICT 0832 TS12 TS14 0823 CS16 LINFH 0823 CS16 FFMAT 0110 TICT 0832 TS14 0833 TS14 0819 TS1	3015	Į.	۰, م	C1	opgl	0	_	12	PR0 <	04	1010	9000
007C SFNT 0007 SENIS 0431 SFNV4 0166 JUNI 000 0017 TWTV 10053 INFI 0105 INFI 01064 INFV 000 00104 DTSLA C232 CTSL9 0655 FRANT C164 INFV 000 00104 DTSLA 0010 INS22B 0610 INS23 C216 LINFH 000 00137 PCFPT 1042 PCFPT 0110 PCFPT 0166 FRPVT 000 00137 PCFPT 10135 FTVMD 0051 PVMAXT 0044 SFRCH 020 0011 PFP 1 0013 SFP 1 0014 SFR 1 000 0012 TTT 1013 FFP 1 0013 SFP 1 000 0014 SFRV 1063 TSF 1 0013 SFP 1 000 0015 TSPV 0051 TTI 1 0013 SFP 1 000 0015 TSPV 0051 TTI 1 0013 SFP 1 000 0016 TSPV 0017 TF0 1 0013 SFP 1 000 0016 TSPV 0017 TF0 1 0013 SFP 1 000 0016 TSPV 0017 TF0 1 0013 SFP 1 000 0017 TSPV 0017 TF0 1 0013 SFP 1 000 0016 TSPV 0017 TF0 1 0013 SFP 1 000 0017 TSPV 0017 TF0 1 0013 SFP 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TF0 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFO 1 0013 TFN 1 000 0017 TSPV 0017 TFN 1 0013 TFN 1 000 0017 TSPV 0017 TFN 1 0013 TFN 1 000 0017 TSPV 0017 TFN 1 0013 TFN 1 000 0017 TSPV 0017 TFN 1 0013 TFN 1 000 0017 TSPV 0017 TFN 1 0017 TFN 1 000 0017 TSPV 0017 TFN 1 0017 TFN 1 000 0017 TSPV 0017 TFN 1 0017 TFN 1 000 0017 TSPV 0017 TFN 1 0017 TFN 1 000 0017 TSPV 0017 TFN 1 000 0017	3690	3	۲,	2	1641	0	_	2	TMOIS	90	THOIS	0045
0017 TNTV 1053 INFI 0015 INFI1 0064 INFV 0010 10737	٦. ٦.	3	1 7 2	7	LNL	C	•	€,	SENVE	16	LUNI	9000
0007 AFTENT 5364 CHKT 0105 CVANT 0110 TICT 033 0104 DTSL8 C25C TELSTH 020 0732 TINS2A 0010 TNS29 0110 TNS23 C211 LINFH 020 0733 PCFPT 0142 FGFPT 0152 0010 TNS23 C211 LINFH 020 0133 PTVMD 0151 PVMAXT 0344 SFRCH 020 0111 PCFPT 0152 PVMAXT 0344 SFRCH 020 0111 PFPT 0152 PFPV 0154 SFRCH 020 0111 PFPT 0154 SFRCH 020 0111 PFPT 0154 SFRCH 020 PFFT 0154 SFRCH 020 PFFT 0154 SFRCH 020 PFFT 0155	9220	Ξ	I	7	11.1	J	INFI	S	INFI1	90	NN N	0027
0104 DTSL8 0232 CTSL9 0655 FRMAT C164 ILSTW 020 0737 INS22A 0010 INS22B 0010 INS23 C21C LINEW 002 0537 PCPPT 0130 PCWPT 0166 FRPVT 0165 PTCVT 0035 FTVMD 0051 PVMAXT 0344 SFRCH 020 011 PPTV 0151 PVMAXT 0344 SFRCH 020 011 PPTV 011 PPT 011 P	613	Š	₹:	0	ALUBAT	m	_	1	CVAHT	1	PICT	0354
0737 INS22A 0010 INS22B 0C10 INS23 C21C LINFH 00 C537 PCFFT 0110 PCWPT 5166 FPPVT 00 C555 PTCVT 0035 FTVMD 0051 PVMAXT 6044 SFRCH 02 C565 PTCVT 0035 FTVMD 0051 PVMAXT 6044 SFRCH 02 C5041 SFRV 0023 SEPV1 0C27 SFRVI 0066 ITET 00 C5027 ITIT 0030 ITII 0134 ITIV 0203 MPET 00 C505 DFGT1 0C23 CPGV 0C75 PFRVI 0066 ITET 00 C505 DFGT1 0C23 CPGV 0C75 PFRVI 0020 C277 TPAT 00 C506 FNVT 1 7601 0C15 STRV2 0027 STRV3 00 C506 FNVT 1 7601 CC15 STRV2 0027 STRV3 00 C507 FPPV 0017 TG0T 0C15 STRV2 0027 STRV3 00 C5045 PPDT 0016 PFCT1 0C45 AERIZ 0037 RFRV 00 C5045 PPDT 0016 FPCT1 0C23 PFCTV 0037 PFCT	7730	7.0	"	9	DISLA	3		S	FRMAT	16	ILSTH	0260
CG 55 PTCVT 0035 FTVMD 0C51 PVMAXT C166 FCPVT 00 CC 65 PTCVT 0035 FTVMD 0C51 PVMAXT G144 SFRCH 02 C144 SFRCH 02 SFRC	2530	Ž	22	73	INSSSA	0	Ž	IJ	INSS3	2	LINFH	0032
6041 SERV 0035 FTVMD 0051 DVMAXT 6044 SFRCH 022 6041 SERV 0023 SEPV1 0027 SEPV2 0046 SFRV3 000 6041 SFRV 0053 SEPV1 0055 PFRV1 0066 ITEI 00 6052 ITIT 0030 ITII1 0134 ITIV 0203 MPEI 00 6057 ISPV 0063 ISFI1 0013 SFRIZ 0273 CVCI 00 6057 ISPV 0063 ISFI1 0013 SFRIZ 0273 CVCI 00 6056 OLSV 0017 IGOI 0015 SFRIZ 0021 DP1V 00 6056 SNVI 0021 STPV1 0015 STRV2 0027 STRV3 00 6046 AFRI 0005 AEFII 0045 AERIZ 0037 RP01 6046 FP01 0006 FP01 0007 FM01	2736	Ę	FT	5	prest	C		1	PCVPT	16	FUDVI	9200
6041 SERV 3023 SEPV1 0627 SEPV2 6346 SEPV3 004 0511 PEPV1 0316 FFPV 0675 PFRV1 0666 ITEI 000 0522 ITIV 0523 MPEI 000 0527 ITIV 0523 MPEI 000 0527 ITIV 0523 MPEI 000 0527 PFV1 000 0527 PPV1 0527 PPV1 0627 DP1 0627 DP1 0627 DP1 0627 DP1 0626 STRV2 0627 PPV1 0626 STRV2 0627 PPV1 0626 STRV2 0627 PPV1 0626 PPV1 0625 PPV1 D625 PPV	703 £330 a 07		-	e L	DTCVT		•	r.	DVMAXT	Ç	SFRCH	0211
6041 SERV 1023 SEPV1 0627 SEPV2 6346 SFRV3 004 0511 PEP1 0316 FFV 0675 PFRV1 0666 ITEI 000 0527 SFRV1 0666 ITEI 000 0527 ITIV 6203 HPEI 000 0527 ITIV 6203 HPEI 000 0527 ITIV 0221 DP1V 000 0527 CVCI 000 0526 SFRV1 0021 DP1V 0021 DP1V 0021 DP1V 0021 DP1V 0027 TPAI 0046 STRV2 0027 TPAI 0046 STRV1 015 STRV2 0027 STRV3 002 050 050 050 050 050 050 050 050 050												
6041 SERV												
6041 SERV	CFCKS INSEOTER											
6041 SERV	CETACO CHIF	HIH	TI									
6041 SERV 7023 SEPV1 0627 SEPV2 6346 SEPV3 904 0511 PFP1 0316 FFPV 0675 PFRV1 066 ITET 000 0522 ITIT 7031 FFPV 0675 PFRV1 066 ITET 000 052 ITIT 1 0134 ITIV 6203 MPET 000 000 7 TSPV 063 TSF1 0134 ITIV 6273 CVCI 000 000 05 PFRT2 0621 DPLV 002 0516 STPV 0517 PPAT 0618 STPV 0518 STRV 0518 STRV 0618												
0011 9F911 0316 FF9V 0C75 PFRV1 0066 ITET 0000 0052 ITIT 0033 ITII1 0134 ITIV 0203 MPET 0000 0097 TSPV 0063 TSF11 0013 SF912 C273 CVCI 0000 0095 PFG11 0023 DPGV 9027 DP1I 0021 DP1V 0027 TPAT 0004 0095 C106 STPV 0017 TG1 0195 TG0V 0277 TPAT 0004 C106 STVT 1101 ENVIS 0012 ENVIS 0101 ENVIC 01045 AFRI 0036 AFRI 0045 AFRI 0037 AFRI 0037 AFRI 0004 C1045 AFRI 0037 AFRI 0004 DP1V 0005 TANTA DP1V DP1V DP1V DP1V DP1V DP1V DP1V DP1V	r.	ů	11	70	SERV	0 2	SEP V1	6	SEP V2	7	•	4
0322 ITIT 9033 ITII1 0134 ITIV 6203 MPEI 000 0097 TSPV 0663 TSFI1 0013 SFFI2 C273 CVCI 000 0005 PFGT1 0023 CPGV 9627 DPII 0021 DPLV 002 0005 OLSV 0017 TG0I 0C15 TG0V 0277 TPAI 004 0516 STPV 0321 STPV1 0C15 STRV2 3021 FNV3 002 0106 SVVII G101 FNVI2 0312 ENVIS 3101 FNVI4 004 0145 AFRI 0036 AFFI1 0C45 AFRI2 0037 AFRV 002 0027 TMAI 0037 AMOTA 0C23 TMAI 004	55 30 5	ŭ	I	91	PFPI1	31	FFDV	7	PFRV1	9	-	0
0097 TSPV 0063 TSFII 0013 SFRIZ C273 CYCI 0000 0095 PFGTI 0023 CPGV 9627 DPII 0021 DPIV 0022 C035 OLSV 0017 TGT 0019 TGOV C277 TPAI 0044 C035 OLSV 0021 STRV2 0021 STRV2 0021 STRV3 0021 C006 SVVTI C101 FNVIZ 0012 STRV2 0021 STRV3 0021 C045 AFRI 0036 AFRI 0045 AFRI 0037 AFRI 0037 AFRI 0023 TANTA 0042 TANTA 0042 TANTA 0042 TANTA 0042	1532	ř	٠٧1	2	ITIT	03	ITIII	13	VITI	23	HOEL	00
0005 7FGT1 0023 CPGV 0627 DP11 0021 DP1V 002 0035 OLSV 0017 TG01 0C15 TG0V 0277 TPAI 004 0516 STPV 015 STRV2 0027 TPAI 004 0516 STPV 0027 TPAI 004 0516 STPV 015 STRV2 015 STRV3 002 0516 STRV3 002 0516 STRV3 005 0516 STRV3 00516 SEFII 0C45 SERIZ 0031 STRV 002 0525 PP01 0605 PP01 0605 TENT 0007 TENT 0602 TENT 005	3626	Ų.	1.	0	Adil	90	TSFII	5	SFPI2	27	CACI	0
CODE OLSV COLT TGOT COTS TGOV C277 TPAT COMPACT COLS STRV2 COCE STRV3 COLS COLS STRV2 COLS STRV3 COLS COLS STRV2 COLS STRV3 COLS COLS STRV3 COLS STRV3 COLS STRV3 COLS STRV3 COLS COLS AFRI COLS AFR	C 55	ă	H	S	15671	22	CPCV	2	OPII	0	OPIV	20
CG16 STPV 0321 STPV1 OCIS STRV2 3025 STRV3 002 CG06 SNVT1 F151 FNVI2 0312 SNVI3 0101 FNVI4 006 CG45 AFRI 0036 AEFI1 OC45 AERI2 0037 AFRV 002 CG26 PPG1 0636 PRFI1 0123 PRGV 0672 RMG1 000	5626	ب	H	ດ	01.57	01	TGGT	C	7007	27	TPAI	9
C006 5NVT1 C101 ENVIS 0312 ENVIS 0101 FNVT4 006 C045 AFRI 0006 AEFI1 0C45 AERI2 0037 AFRV 002 C026 PPOT 0606 PRC11 0123 PRGV 0072 RM3I 800	1 0016	۴	113	5	STDV	20	cTpV1	1	STRV2	9	-	0
CO45 AFRI 0006 AEFII 0C45 AERIZ 0036 AFRV 002 CO26 PPOI 0606 PPCII 0123 PROV 0072 RMJI 2020	4400	Z	٧٦	20	FRVT1	10	FNVIZ	č	FRVIB	5		90
COSE PROT DESCRIPTION OF THAT DESCRIPTION	いっと	ź	172	C.	AFRI	CO	AEFI1	3	AER I2	03	-	20
TOUR TELL COOK THOSE SCAN TERMS SOLD TOUR	3615	ŭ	۰۷3	2	iCad	C	PPC II	12	P # 0 V	9	RECH	80
TOO STOLL SOON STALL SOON TIOLS SOON TOLL TION	20	7	١٨i	5	TCHT	8	TH0 I1	62	THOIS	96	THOIS	3

Table 2-6. Subroutine List: Operational Set (Continued)

+ + + + + + + + + + + + + + + + + + +	7 000 00 00 00 00 00 00 00 00 00 00 00 0	00000000000000000000000000000000000000
JUNI INTO ATANDS PTSC110 ITCUSS TANDS PYCG1 VFC AL	DTSL2 RPCCP CYS3 CPGX1 TTPAKH ITIFK	0NT23 ATM62 AFR11 ISP1 TM013
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000000000000000000000000000000	8 000000000000000000000000000000000000
SENVE INFII ATAND CCST GGALUS GGALUS ONTIZ SINU PCGZ SUNV TMOSE JUNKI	01811 15811 0481 06684 16854 17884	ANTZZ AIRV AERFW DEFC RMDTZ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00277 00277 0053 0053 0053
A STATE OF THE STA	TERMI CYCKC CYCKC CYCKC CYSTS CCSTS INST	LCMGVF FNV PAFFA1 TAAL1 PMCS11
00000000000000000000000000000000000000	7953 00013 01010 01010 0003	0035 0020 0015 0135
11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	O TAND CANNO	PTSL1C Vr51 AFOW1 PFDF1 PFDN PPDS6
001177 00133 00133 00133 00133 00137 0147 0127	000 0114 0114 0110 0110 0110 01011	0021 00321 0124 0 0003
111	FANDI TLSTE CYCXF CYSYF CLSTF TCSY INFXP	GETALN STOTZ LLNST AUX FRM9 GM0S1
00.56 00.56 00.00 00	7 N S R P S	ASFFTTD 9071 9367 9175 9175 9175 9175 9175
1	FERES 7 F31C F31C F32C F32C F32C F32C F32C F32C F32C F32	GETWEN GETWEN GETWEN JERVIL BREVIL BR
	LIBFADY (TFP,3,1) (171 0 (171 0 (171	LIBPADY (TFP, 1, 2) (C237 R 0003 0111
TMOV JUNI3 INFVI BUNECT CCMOVE M339CC RANDI VSCOT WTCI FRRDI TMOSE POLATS	PPOGRAM LIPFA LMIT2 CVERLAY(TPP,3 TPP31 TYSL3 TY	CRAL XVEH CVERLAY(TFP, 7 TRF32 007 ATPC C23 AMCR1 R 000 FRF9 011

uned)
ontin
9
Set (
nal
Operationa
_
List
ubroutine
Subr
2-6.
Table 2-6

THOT3 INTX3 PUK2 TCTAL	CC26 CC66 C1C7 =976176	Tw0<0 Acvt TRF7	9674 9616 9634	SENS CINDEP	6911 6241	ATTEN PFRTV	0110 9131	LOSAN FULEPC	0463 0046	eadin Eulfri	5246 3044 344	Satpos Intee	0064
PPCGQAM	LIBDADY	recks inse	Ngerten										
IMUSA VELA1 M338PP		7335CT 7571 733CCT		60912		PVCGI		MTC1 JUNK1		GAMAS		THETX	
CVEFLAY	CVEFLAY (TFP,7,3)	_											
TPF33 PLIT TCTAL	TPP33 CC31 PLIT 0C32 TCTAL=0C3442	PJFY33 FEIT2	0132 0132	ITTED FFCL1	0347	ITIF1 RFSL2	1336	CAIT	0319 0541	VPHTX	0003 132	3 H Q Y	F 0003
FPOGRAM	FPOGRAM LIPCAOV	PFCKS INSE	ASEPTER										
CPAL PUFF1		###### 1010		cet Atr		SHIFTI		FCISV		RCLATS		AKTPS	
CVERLAY	CVERLAY (TFP, 7,4)	•											
TRF34 ITS1 ITS9 TCTAL	Cr17 0 222 0 661 1 - 0(2651	P2FY34 IT52 TTVLS	9120 7167 9167	Trop ITC3 FJFF	0047 CC77 C144	17581 1754	0415 7114	IHGB	0124	IFGW	0035	1750 1758	0 4 0 0 0 0 0 0 0 0 0 0 0
ррссал	PPCGQAM LIBBAOY	itelys insp	N SFRTFP										
CPAL		הקדש בי הפדש בי		CETADO SPCT		PETINE		DECC		ASIVE		POLATS	
CVEPLAY (TFP , 3	(TEP,3,5)	•											
			1		1		•						
19535 ALCHAG	C) C	F3CX35	5 C C C C C C C C C C C C C C C C C C C	- NA C	0045	0.40.40 0.60.0	3004	VC62	\$ C C C C C C C C C C C C C C C C C C C	M102	0015	4 4 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	200
FPOPL			200C a	MPOPI	3065	りょうしょう	.123	FKC S7	0110	RF0S18	6132	1111	00.00
TMOTO	400	THET	3041	TWC SQ	6031	TMONIC	0112	TMCS11	4400	TPOSIZ	C067	TH0513	0140
TCTAL:	-01321F	C N N N	3 3 3 3 3 3 3 3 3 3	JX LN+	0117	TALAL	0024	CINDIN	7 4 0 0				

THE CONTROL OF THE PROPERTY OF

Table 2-6. Subroutine List: Operational Set (Continued)

LIRFADY	CECKS INSEP	A SEPTFP										
GETWEN GAYGN JUNK1			GFT ADN IHMTX M33CCC		CAL ⁿ P(LYE M33¢RP		r338FB Vela1		9662 9891		PVCGI	
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	6 0003 0405 0405	TMSO STOTE SENSP3	0110 0066 0143	LINF Datec TNS3	9339 9050 9133	FBKT1 ENVRP IN'S	0510 0175 0152	PANTS AFRED INSS	0364 0104 0210	W G G G G G G G G G G G G G G G G G G G	8 000 00 00 00 00 00 00 00 00 00 00 00 0
TABS INSERT	-	V SEBTER										
GFTWFH			GETAND		CPTIME		LINEF		CALB		nTSL 10	
A		# 0000 # # 0000 # # 0000 # # 0000 # # # 0000 #	SFP11 FFP1 TTFV1 PV SFNN LTL	14 00 00 00 00 00 00 00 00 00 00 00 00	AFBI ITIT AUGH MEDFLA	1023 0316 0030 40076	SEDV1 FFFV ITIII PADI	0000 0000 00135 40135 40135	SERV2 DFRV1 ITIV COVRDW PFRF	6000 4000 4000 4000 6000 6000 6000 6000	SERV3 ITEI MPEI CPAL2 SELV	
			BPTVM	0263	A FOR TO	P 0003	7. 0. 0.	0554	418X5	*0162	A T	R 0003
יבואר הפדארא משני	-		GET ADN TO E MS		AUGH CPTTMF		COVROW		CRAL2		CMTXD	
												(
6 F F F 1		1642	ON J GMK	c162	CTVA	222:	TVNHT	R 0033	FnIT	0216	GMKP	Outputs

The contract of the second of

Table 2-6. Subroutine List: Operational Set (Continued)

GMKPU TOTAL=	MKPU C:43 TCTAL=0E3431	7 8 8 7	ŭ 3 4 4	GFR2	£336	טנישם	2017	GAMADO	9630	Yeak	0.061		
PPCGBAM	LIRDAOY	PPCGBAM LIRBADY CFCKS INSFPTFT	NSFPTFF										
AUGM GETACO		CFAL2 CFTIME		4TXF9		SCLV		TOFMS		CRAL		GFTMEN	
CVFPLAY (TEF,4,3)	TCP , 4, 3												
TRF43 Hatmad Total=	RP43 1346 ATMMP C233 TOTAL=3C4169	AKFYR Racpc	0162 0161	CSFPS FANDS	1372	CVMTX P 2033	9071 9033	ruce PTCCV	9 0033 R 0033	FIGEN	2940	LPGHR	0112
FRCGRAM	LIRPADY	FRCGRAM LIAPADY CFCKS INSEPTFF	ASEPTER										
RAPT PTDXS		COVPTH		CMTXC		רזר		PTXPP		STATS		UTL	
	YE	YECMON **		STAPT TIME =	1.83123		STOP 1148 =	3,32500		TOTAL CPTIME = 1.49400	11 LL Z	1.40400	

SECTION 3

COORDINATE SYSTEMS AND TYPES

A number of coordinate systems and types are used in TRP. A coordinate system is a set of well defined points and lines to which measurements can be referenced. Coordinate types are the measurements necessary to specify the position and velocity of an object relative to a particular coordinate system.

All coordinate systems used in TRP are right-handed, where the triad is denoted by (x, y, z), (1, 2, 3), (u, v, w), etc. Wherever possible, coordinate frames are assigned an upper case alphabetic character for identification (e.g., A, B, or C).

The coordinate transformation from the A to the B coordinate system is symbolically denoted as [AB] and is assigned the mnemonic AB11. Matrices are usually stored by rows; the inverse of an orthogonal matrix is never stored explicitly, even though it may be required explicitly in an equation.

The ij element of [AB] is located symbolically at ABij, where i and j are integers, or (more often) ABij is located at cell AB11 + k, where k is the address of ABij relative to AB11.

A shorthand notation is used to describe the rotations required to generate an orthogonal transformation matrix. The notation is contained in parenthetical expressions of the form (α_1, α_2) , where

 α_1 = axis of rotation (1, 2, or 3)

 α_2 = angle of rotation in the right-hand sense

Thus, the expression (proceeding from right to left)

[AB] =
$$(1,\beta)(2,45^{\circ})[I]$$

where [I] is the identity matrix

is equivalent to the expression

[AB] =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} \cos 45^{\circ} & 0 & -\sin 45^{\circ} \\ 0 & 1 & 0 \\ \sin 45^{\circ} & 0 & \cos 45^{\circ} \end{bmatrix} [I]$$

Coordinate systems require either a time, angle, or position specification (or a combination of these) to uniquely define the system. The necessary times, angles, and positions are defined below:

Epoch =

an arbitrary time required to define the earthcentered inertial Cartesian coordinate system
(Sec. 3.1.1). Epoch is usually chosen to either
coincide with the missile launch or to precede
the missile launch by a few seconds. Year,
month, day, and time since midnight inputs
are used to specify epoch.

Launch time =

an arbitrary time, specified by the user, required to define the launch-centered inertial coordinate system (Sec. 3.1.3). If the missile being simulated is to fly from the pad, the launch time is the time the missile leaves the pad (normally, t=0).

Launch site =

an arbitrary position, specified by the user, required to define the launch-centered inertial coordinate system (Sec. 3.1.3). If the missile being simulated is to fly from the pad, the launch site is the location of the launch pad in latitude, longitude, altitude, and azimuth coordinates.

Launch azimuth =

an arbitrary angle, measured from true north at the launch site to the launch plane, required to define the launch-centered inertial coordinate system (Sec. 3.1.3). If the missile being simulated is to fly from the pad, the launch azimuth is the downrange direction if a roll program is not used.

Earth reference ellipsoid =

a mathematical representation of the sea level surface of the earth (Fig. 3-1). The earth reference ellipsoid is an ellipsoid of revolution about the rotational axis of the earth with a semimajor axis of 20925672.6 feet and a semiminor axis of 20855511 feet.

3.1 CCORDINATE SYSTEMS

The principal TRP coordinate systems are described in this section. Particularly important transformations are also delineated.

3.1.1 Computational Coordinate System I

The differential equations for translational motion are integrated in the inertial Cartesian coordinate system I. This system has its origin at the center of the principal attracting body at the start of each simulation. The X and Y axes lie in the equatorial plane of this body, and Z is directed along the north polar axis. If the body rotates, its rotational rate is assumed to be Ω_{\bullet} about Z (Fig. 3-2).

If the nutation flag NUTF # 0, the equatorial components of nutation and precession are accounted for; the result is that TRP uses a true equator and equinox of date (instant). If NUTF = 0, only the equatorial precession is accounted for, and TRP uses a true equator and mean equinox of epoch. When the year of epoch is input negative, the coordinate system X axis is forced to be on the Greenwich meridian.

SEMIMAJOR AXIS (a_e) = 20925672.6 ft SEMIMINOR AXIS (b_e) = 20855511 ft

GC = GEOMETRIC CENTER OF THE EARTH REFERENCE ELLIPSOID

Note: Preset values approximate the WGS-66 standard

Fig. 3-1. Earth Reference Ellipsoid

Fig. 3-2. Computational Coordinate System I

The symbols used are defined as follows:

- vehicle right ascension with respect to the I frame, or vehicle longitude referenced from the X axis of the I frame. The X axis is directed toward the vernal equinox by input of year, month, and day of epoch.
- vehicle longitude as measured positively in the righthand sense from the prime meridian (Greenwich on the earth).
- GHA(0) = angle, measured in the right-hand sense, from the X axis of the I coordinate frame to the Greenwich meridian. It is computed for zero hours (midnight) from input of day, month, and year.
- t_d = simulation time (generally referred to as the dynamics time).

tsel = time at which the simulation starts in channel 1
(td - tsel = 0 at start of simulation).

 t_{fg} = time since zero hour of the reference day to the starting time t_{sel} , where $t_{fg} \cdot \Omega_e$ gives the rotation angle that the Greenwich meridian has traversed since midnight.

tfr = time since a fixed reference date was established. Precession and nutation effects terminate at the year, month, and day chosen. This input allows the use of inputs from other programs, such as the AOES (Advanced Orbit Ephemeris System), to be used instead of the usual offset reference date.

P_I = vehicle position vector in the I coordinate system.

 Ω_{e} = rotational rate of the reference ellipsoid.

Note that the relation between λ_{\intercal} and λ is given by

$$\lambda = \lambda_{I} - GHA(0) - \Omega_{e}(t_{d} - t_{sel} + t_{fg} + t_{fr})$$

3.1.2 <u>Vehicle Zero Reference Coordinate System Q</u>

The Q coordinate system is a Cartesian coordinate system originating at the vehicle zero reference station. This station can be arbitrarily assigned with respect to the vehicle, although it is usually located at the nose of the vehicle or at some point near the vehicle's forward extremity. The X axis of the Q frame points positively forward along the vehicle centerline or roll axis; the Y and Z axes complete a right-handed orthogonal system with Z up and Y left when looking in the positive X direction (Fig. 3-3).

Vehicle locations are all referenced to the Q station. For example, the vehicle center of pressure and center of gravity are often specified tabularly with respect to the Q station, as a function of parameters such as Mach number and vehicle weight, respectively. Engine nozzles are

Fig. 3-3. Vehicle Zero Reference Coordinate System Q

specified relative to the Q system for 6D applications. Vehicle (Q) reference points may not lie on the vehicle centerline, but this poses no problem because three-dimensional references can be made from the Q frame to any desired point in, on, or about the vehicle. Engine nozzle locations in the Q system are shown in Fig. 3-4.

3.1.3 Vehicle Body Coordinate System B (RM0TM)

The vehicle's instantaneous center of gravity serves as the origin for the Cartesian B coordinate system (Fig. 3-5). The X, Y, and Z axes of this coordinate system are parallel to those of the Q coordinate system.

Rotational motion of the vehicle is measured in terms of rotation about the axes of this coordinate system. Vehicle attitude is also measured from this frame to other frames, one of which is the I frame (Sec. 3.1.1). This [IB] transformation matrix contains the direction cosines of each body axis referenced to inertial space.

ENGINE 1	ENGINE 2	ENGINE 3	ENGINE 4
$P_{nxQ1} = +X_Q$	$P_{nxQ2} = -X_Q$	$P_{nxQ3} = -X_Q$	$P_{nxQ4} = -X_Q$
$P_{nyQ1} = 0.$	$P_{nyQ2} = -Y_Q$	$P_{nyQ3} = 0.$	$P_{nyQ4} = 0.$
$P_{nzQ1} = -Z_{Q}$	$P_{nzQ2} = 0.$	$P_{nzQ3} = Z_{Q}$	$P_{nzQ4} = 0.$
PRF ₁ = 1.	PRF ₂ = 3.	PRF ₃ = 2.	PRF ₄ = 1.
$\delta_{\text{pm1}} = +\delta$ $\delta_{\text{ym1}} = 0.$	$\delta_{\text{pm2}} = 0.$	$\delta_{pm3} = 0.$	$\delta_{\text{pm4}} = 0.$ $\delta_{\text{ym4}} = 0.$
$\delta_{ym1} = 0.$	$\delta_{\text{ym2}} = 0.$	δ _{ym3} = 0.	δ _{ym4} = 0.

Fig. 3-4. Engine Nozzle Location and Orientation in the Vehicle Coordinate System Q: Examples

Rotations about \hat{X}_b , \hat{Y}_b , \hat{Z}_b are vehicle roll, pitch, and yaw, respectively. The position of the vehicle center of gravity (or the origin of the B frame), as referenced from Q, is given by

$$\vec{P}_{cgQ} = \begin{bmatrix} P_{cgXQ} \\ P_{cgYQ} \\ P_{cgZQ} \end{bmatrix}$$

Fig. 3-5. Vehicle Body Coordinate System B

Similarly, the center of pressure and thrust application points are given relative to Q by the expressions

$$\vec{P}_{cpQ} = \begin{bmatrix} P_{cpXQ} \\ P_{cpYQ} \\ P_{cpZQ} \end{bmatrix}$$

$$\vec{P}_{NQ} = \begin{bmatrix} P_{NXQ} \\ P_{NYQ} \\ P_{NZQ} \end{bmatrix}$$

3.1.4 <u>Launch-Centered Inertial Coordinate System L</u> (TM0TM)

At the start of a simulation, the inertial Cartesian coordinate system L is established. This coordinate frame normally has its origin at the vehicle center of gravity at the start of a simulation and is always fixed inertially with respect to the I frame (Fig. 3-6).

Fig. 3-6. Launch-Centered Inertial Coordinate System L

The origin of the L frame defines the location of the vehicle center of gravity with respect to the I frame at $t=t_{fg}$, providing that the initial position $(\overrightarrow{P}_{10})$ of the vehicle is computed from the astronomic latitude ϕ_{AL} , astronomic longitude λ_{AL} , height above sea level $h_{s\ell L}$, geoidal separation N_L , and launch aximuth Az_L . All of these taken together define the origin of the L frame. The quantity γ_G is the rotation angle since zero hour of epoch to time t_{fg} .

Starting a simulation with an arbitrary origin implies that the vehicle's center of gravity is initially specified either directly through \overrightarrow{P}_{I0} or through some other representation of \overrightarrow{P}_{I0} . This in turn implies that the L frame has its origin translated from the I frame at the start of a simulation by the representation of \overrightarrow{P}_{I0} .

Note that the L frame may establish the vehicle's initial center of gravity but has nothing to do with the initial vehicle attitude, other than to provide a reference from which to specify that attitude.

The Z axis in the L frame is directed outward along the astronomic vertical, X_L points along the launch azimuth of the L frame as measured clockwise from north, and Y_L completes the right-handed triad (Fig. 3-6). Note that Az_L need not be the downrange azimuth (but it usually is).

The geometric relationship between geodetic and astronomic coordinates is shown in Fig. 3-7, where

 ϕ^* = geodetic latitude

 ϕ_A = astronomic latitude

 δ_N = northward deflection of the local vertical

 δ_{E} = eastward deflection of the local vertical

 λ = east longitude

 λ_{A} = east astronomic longitude

 $\hat{\mathbf{W}}^*$ = geodetic local vertical

 $\hat{\mathbf{W}}_{\mathbf{A}}$ = astronomic local vertical (plumb bob vertical)

3.1.5 <u>Initial Body Coordinate System Bo (RM0TM)</u>

The initial vehicle attitude is determined through the B_0 coordinate system (Fig. 3-8). This coordinate frame is established relative to the L frame so that the vehicle's initial body axes are related to the I frame through the transformation

Fig. 3-7. Geometric Relationship Between Geodetic and Astronomic Coordinates on a Unit Sphere

Fig. 3-8. Initial Body Coordinate System B₀

$$\begin{bmatrix} \hat{\mathbf{x}}_{b0} \\ \hat{\mathbf{y}}_{b0} \\ \hat{\mathbf{z}}_{b0} \end{bmatrix} = [\mathbf{LB}_0] [\mathbf{IL}] \begin{bmatrix} \hat{\mathbf{x}}_{\mathbf{I}} \\ \hat{\mathbf{y}}_{\mathbf{I}} \\ \hat{\mathbf{z}}_{\mathbf{I}} \end{bmatrix} = [\mathbf{IB}_0] \begin{bmatrix} \hat{\mathbf{x}}_{\mathbf{I}} \\ \hat{\mathbf{y}}_{\mathbf{I}} \\ \hat{\mathbf{z}}_{\mathbf{I}} \end{bmatrix}$$

where

 $\hat{X}_{I}, \hat{Y}_{I}, \hat{Z}_{I}$ form a unit vector triad in the I frame $\hat{X}_{b0}, \hat{Y}_{b0}, \hat{Z}_{b0}$ form a unit vector triad in the B_{0} frame [IL] transforms from I to L [LB₀] transforms from L to B₀ [IB₀]

The B_0 frame is referenced from the L frame through the transformation

$$[LB_0] = (1, \sigma_0) (2, \alpha_0)^{T} (3, \beta_0) (2, \gamma_0)^{T} (3, Az_{a0})^{T}$$

$$(3, \eta_3) (2, \eta_2) (1, \eta_1) [I]$$

where the initial values of the bank angle σ_0 , angle of attack α_0 , sideslip angle β_0 , relative flight path angle γ_0 , relative azimuth angle Az_{a0} , and body rotations relative to launch $\eta_{1,2,3}$ are used.

Thus, if a vehicle simulation is started from the point at which the L and B_0 frames have coincident origins, if the initial vehicle roll axis is along the astronomic vertical, and if the initial yaw axis is directed opposite to that of X_L , the above reduces to the standard preset values of

$$[LB_0] = (3,0^\circ)(2, -90^\circ)(1,0^\circ)$$

3.1.6 Gimbal Coordinate System G (RM0TM)

The capability for determining the vehicle attitude through gimbal angles is computed by models in RM0TM. The vehicle attitude (in terms of gimbal angles) is computed with respect to the G coordinate system, which is an inertial Cartesian frame whose origin coincides with that of the B_0 frame. It can also be thought of as a gimbal coordinate system from which ideal platform gimbal angles can be measured, and for this reason it is called the G frame (Fig. 3-9). The orientation of this coordinate system is always defined relative to the B_0 frame by the transformation

$$[B_0 G_0] = (3, \xi_3) (2, \xi_2) (1, \xi_1) [I]$$

Fig. 3-9. Rotations to Obtain the G Coordinate System

If the G_0 frame is made equal to the B_0 frame and if B_0 defines the usual vehicle launch attitude, the gimbal angles θ_1 , θ_2 , θ_3 measure roll, pitch, and yaw attitudes, respectively. However, the gimbal angle θ_2 is indeterminate at 90 deg, so it is standard to assign θ_3 as the gimbal angle that measures pitch attitude and θ_2 as the gimbal angle that measures vehicle yaw attitude. This is accomplished by setting $\xi_1 \approx 90$ deg and $\xi_2 = \xi_3 = 0$.

3.1.7 Body Attitude Initialization

The methods for performing body attitude initialization consist of two basic methods, each with myriads of suboptions. A good understanding can only be obtained by careful study of module RMOTM. The basic elements of these two methods can be obtained from the information below.

3.1.7.1 Method 1

Initialization under this method can only be performed at the first event by the RM0TM module, using the launch coordinate system as a reference.

Given the results presented in Sec. 3.1.5 [IB₀] and Sec. 3.1.6 [B₀G₀] plus a matrix [G₀G] computed from the initial values of the gimbal angles θ_0 , the body attitude matrix [IB] may be obtained. Note that [B₀G₀] = [BG].

$$[G_0 G] = [3, \theta_{30}] [2, \theta_{20}] [1, \theta_{10}] [1]$$

 $[B_0 B] = [BG]^T [G_0 G] [B_0 G_0]$
 $[IB] = [B_0 B] [IB_0]$

Further changes in [IB] result from $[G_0 \ G]$ changes (as in RM0TM model 1) or from integrating [IB] (as in the remaining RM0TM models). Since so many angles went into the creation of $[IB_0]$ and $[B_0 \ G_0]$, Secs. 3.1.5 and 3.1.6 should be reviewed with the above equations in mind.

3.1.7.2 <u>Method 2</u>

RM0TM models E and/or 5 may be used at any event to recompute or reinitialize [IB]. A reference system is chosen by an input flag from which misalignment angle tables and bias angles may be used. The axes of rotation (RMA1, 2, 3) associated with these angles are also input. This is expressed symbolically by

$$\theta_{1} = [SIGMT]_{table} + \theta_{10}$$

$$\theta_{2} = [BETAT]_{table} + \theta_{20}$$

$$\theta_{3} = [ALFAT]_{table} + \theta_{30}$$

$$[IB_{R}] = reference system option$$

$$[IB] = [RMA_{3}, \theta_{3}] [RMA_{2}, \theta_{2}] [RMA_{1}, \theta_{1}] [IB_{R}]$$

Further changes in [IB] are accomplished by using the three tables.

3. 1. 8 Local Horizontal Coordinate System H (ENVRM)

This geocentric coordinate system is defined by the unit vectors along the radius vector to the vehicle, with the origin on the reference ellipsoid, and by unit vectors normal to this radius vector, pointing north and east on the reference ellipsoid surface. The origin on the surface is defined by the geocentric latitude ϕ , the longitude of the vehicle relative to the I frame $\lambda_{\rm I}$, and pertinent geometric parameters (Fig. 3-10), where

$$\hat{Z}_{H} = \frac{\vec{P}_{I}}{|\vec{P}|}$$
 points up
$$\hat{X}_{H}$$
 points east, perpendicular to \hat{Z}_{H} points north, perpendicular to \hat{Z}_{H} and \hat{X}_{H}

The H frame is related to the I frame through the orthogonal transformation

[IH] =
$$(1,90 - \phi)(3,\lambda_{T} + 90)$$

Translation of origins is also required.

Fig. 3-10. Local Horizontal Coordinate System H

3.1.9 Wind Coordinate System W (AERMM)

The W coordinate system is a geocentric Cartesian coordinate frame whose origin is at the vehicle center of gravity, where the X_W axis is directed along \overrightarrow{V}_{aI} , the velocity with respect to the air mass vector. The Y_W axis is normal to the plane containing \overrightarrow{P}_I and X_W , and the Z_W axis completes the right-handed set. Unit vectors along each of these axes with components in the I frame are given by the expressions.

$$\widehat{X}_{W} = \frac{1}{|\widehat{V}_{aI}|} \begin{bmatrix} V_{aXI} \\ V_{aYI} \\ V_{aZI} \end{bmatrix}$$

$$\hat{\mathbf{Y}}_{\mathbf{W}} = \frac{\hat{\mathbf{X}}_{\mathbf{W}} \times \frac{\vec{\mathbf{P}}_{\mathbf{I}}}{|\vec{\mathbf{P}}_{\mathbf{I}}|}}{\left\{1 - \left(\hat{\mathbf{X}}_{\mathbf{W}} \cdot \frac{\vec{\mathbf{P}}_{\mathbf{I}}}{|\vec{\mathbf{P}}_{\mathbf{I}}|}\right)^{2}\right\}^{1/2}}$$

$$\hat{z}_{\mathbf{w}} = \hat{x}_{\mathbf{w}} \times \hat{\mathbf{y}}_{\mathbf{w}}$$

The components of the above unit vectors form, respectively, the rows of [IW], i.e.

$$\begin{bmatrix} x_{\mathbf{W}} \\ y_{\mathbf{W}} \\ z_{\mathbf{W}} \end{bmatrix} = [\mathbf{IW}] \begin{bmatrix} x_{\mathbf{I}} \\ y_{\mathbf{I}} \\ z_{\mathbf{I}} \end{bmatrix}$$

The W frame is related to the B frame through rotations involving the angle of attack in the pitch plane α and the sideslip angle β by the transformation

[BW] =
$$(3, -\beta)(2, -\alpha)(1, 180)$$

where α is positive if the vehicle's nose is up from \overrightarrow{V}_{aI} and β is positive when the vehicle's nose is right of \overrightarrow{V}_{aI} when viewed from the rear of the vehicle. Figure 3-11 shows these angles, where

 α_T = total angle of attack between \widehat{X}_B and \overline{V}_a

 $+\alpha = \hat{X}_B$ above the projection of \bar{V}_a into the body X-Z plane

 $+\overline{\beta} = \hat{X}_{R}$ to the right of \overline{V}_{a} projection into the body X-Z plane

 $+\beta = \hat{X}_B$ to the right of \bar{V}_a , sideslip angle

3.1.10 Earth-Centered Fixed Coordinate System F

This Cartesian coordinate system (Fig. 3-12) is fixed to the earth and rotates with it, where

0 = geometric center of the earth reference ellipsoid

 $\boldsymbol{\widehat{x}}_F$ = vector from zero perpendicular to $\boldsymbol{\widehat{z}}_F$ pointing to the Greenwich meridian

 \hat{Y}_F = vector from zero perpendicular to \hat{X}_F and \hat{Z}_F such that (X_F, Y_F, Z_F) form a right-handed coordinate system

 \hat{Z}_F = vector from zero pointing along the earth angular velocity vector $\hat{\Omega}_e$

Fig. 3-11. Aerodynamic Angles of Attack in the Pitch and Yaw Planes and Sideslip Angle

Fig. 3-12. Earth-Centered Fixed Coordinate System F

3.1.11 <u>Launch-Centered Rotating Coordinate System R</u> (TM0TM)

This Cartesian coordinate system is identical to the launch-centered inertial system L except that it rotates with the earth instead of being inertially fixed. It has the same origin and the same translation vector.

3.1.12 Tracking Station Coordinate System S (TRAKM)

This Cartesian coordinate system is similar to the launch-centered rotating coordinate system R. It differs from the R system in that its origin (λ_r, ϕ_r^*) can be other than at the launch point and its azimuth μ_r other than downrange (Fig. 3-13).

Fig. 3-13. Tracking Station Coordinate System S

3.2 COORDINATE TYPES

Several coordinate types (measurements necessary to specify the position and velocity of an object relative to a particular coordinate system) are used in TRP. In this section, some of the more basic coordinate types are described; note that the symbols used here do not match those used in Sec. 2, Vol. II.

2.2.1 <u>Earth-Centered Inertial Cartesian Coordinates</u> (TM0TM)

Earth-centered inertial (ECI) Cartesian coordinates may be either input to or output from TRP. Position P and velocity \overline{V} in ECI coordinates are depicted in Fig. 3-14, where

X = distance between zero and intersection of \widehat{X}_I , with the line perpendicular to \widehat{X}_I passing through P (input PXIO, output PXIP)

 $Y = same as X except \hat{Y}_{I}$ is used (input PYIO, output PYIP)

 $Z = \text{same as } X \text{ except } \widehat{Z}_T \text{ is used (input PZIO, output PZIP)}$

 \dot{X} = time rate of change of X (input VXIO, output VXIP)

 \dot{Y} = time rate of change of Y (input VYIO, output VYIP)

 \dot{Z} = time rate of change of Z (input VZIO, output VZIP)

Fig. 3-14. ECI Cartesian Coordinates

3.2.2 Spherical Coordinates (TM0TM, ENVRM)

Position and velocity in spherical (ADBARV) coordinates are shown in Fig. 3-15, where

 \overline{A} = projection of $\overline{0P}$ onto $(\widehat{X}_{I}, \widehat{Y}_{I})$ plane

 $\overline{\mathbf{0P}}$ = geocentric to point P

Fig. 3-15. Spherical Coordinates

V = vector equal in magnitude and direction to inertial velocity

 α = right ascension, angle between \widehat{X}_{I} and \overline{A} (input RAL, output LONVI)

 δ = declination, geocentric latitude (input LTCL, output LTCV)

 β = zenith angle, angle between \overline{OP} and \overline{V} ; TRP uses γ_I = β - 90 deg, inertial flight path angle (input GAMI, output GAMI)

A = inertial azimuth, angle between true north and projection of \overline{V} onto the plane normal to \overline{OP} (input AZVI, output AZVI)

r = radius, length of \overline{OP} (input RADL, output RGRV)

V = magnitude of inertial velocity \overline{V} (input VMI, output VMI)

3.2.3 Geographic Coordinates (TM0TM)

Position and velocity in geographic coordinates are shown in Fig. 3-16, where

 \overline{A} = projection of $\overline{0P}$ onto $(\widehat{X}_F, \widehat{Y}_F)$ plane

 \overline{V}_a = earth relative velocity of missile at P

 $\overline{\mathbf{0P}}$ = geocentric to point P

GSVP = geocentric subvehicle point at intersection of \overline{OP} with the reference ellipsoid

THE STATE STATE OF THE PARTY

Fig. 3-16. Geographic Coordinates

h = geographic altitude (input HSLL, output H)

 ϕ = geographic latitude (input LATL, output LATV)

 λ = geographic east longitude (input LONL, output LONV)

V_a = magnitude of air velocity vector (input VAMIO, output VAMI)

γ = air relative flight path angle (input GAMA0, output GAMA)

A = air relative azimuth angle (input AZVA), output AZVA)

3.2.4 Orbital Coordinates

Orbital elements which represent the position and velocity of the missile at point P are shown in Fig. 3-17, where

Perifocus direction = line defining shortest distance between zero and missile elliptical orbit

a = semimajor axis of elliptical orbit of missile
 (output SMAX)

e = eccentricity of elliptical orbit (output ECCEN)

Fig. 3-17. Orbital Coordinates

i = inclination of orbit plane (output INCL)

 Ω = right ascension of ascending node (output NODE)

ω = argument of perifocus, angle between equator and perifocus direction along orbit plane (output ARGP)

τ = time since last perifocus passage (output T'AUPM)

SECTION 4

INTERFACE DETAILS

4.1 DATA STORAGE

Several important data storage areas within TRP are described in this section. These data areas are important to an understanding of the program's design and operation, and a thorough knowledge of them is particularly important in debugging situations. These areas include labeled common, the expandable BUCKET, and card data input storage.

4.1.1 Labeled Common

Labeled common (LC) blocks are used for all incernal data communication between and within TRP modules. All computations are placed there, and all input parameters for equations reside there (Sec. 2.3.3.1, Vol. II).

Each module functionally contains an I (input) section, which is actually one or more labeled common blocks. Each module also has a V (variable output) section, which is also labeled common. The name of the labeled common block includes characters that identify the module, whether it is an I or a V section, and a number that completes the name, e.g.:

COMMON/STRV1/ Module STRTM, V section COMMON/PR012/ Module PR0PM, I section

4.1.2 Expandable BUCKET Usage

The concept of the expandable BUCKET is described in Sec. 2.3.3.2 (Vol. II). The mechanism for expansion is function CRAL, which is described in Sec. 2.4 (Vol. II). Calls to this function result in an extension of the field length of the size requested. The pointer passed back from the CRAL function is a relative address to the blank common called BUCKET. The areas in TRP that utilize CRAL to obtain variable sized working storage are described in Table 4-1. The order in which they are listed is the nominal order in which calls are expected to occur.

Table 4-1. TRP Subroutines Using the CRAL Function

Subroutine	Module	Description	
EXPN	INPIM	Expands to size of event criteria and tabular input. The address of individual pieces is not stored	
мрехв	мрехм	Requires seven cells for GTBLU (general table lookup) function intermediate storage. The address is stored in LDUM of a SERVM labeled common	
PFRS1	PFRPM	During iteration and for the multiplier of MD1T(i) \neq 0 (i = 1,2,3,4), the contents of table MD1T(i) determine the amount of storage to request. The address is stored in MD1(i) of a PFRPM labeled common	
MDRD	PFRPM	During iteration there are two options for core allocation. Let j = MDTPE + i-1 and i = 1,2,3,4:	
		When the TiMD table is not input, tape ITDAT1(i) contains the weighting marix. The core size allocated is n(n+1)/2* number of time frames (n = frame diagonal size); these cells are stored in MD1(j) of PFRP common	
		When the multiplier # 0, table TiMD specifications are used to determine the core size needed. The address is stored in MD1(j)	
PFRPB	PFRPM	During iteration, the size of the CEPT table is allocated and stored in variable IRDLT of PFRPM. Twice NCUP cells are allocated and stored in LPVCU if this option is chosen	
TSPXB	ТЅРХМ	When multiple vehicles are being modeled, an array large enough for up to nine vehicles is allocated to store from TSPXM labeled common variable TSPIIS to labeled common MVSA+1. The address is stored in VEHL(m), where m = 1 through 9	
ITVLS	ITERM	During iteration, NITV cells (the number of parameters in the ITVT table) are requested for the current solution vector, and the address is stored in variable GMK of ITERM common. The address of NITV cells for perturbation increments is stored in LDLI, and the address of NITV+1 cells is stored in IMAGT for keeping track of iteration images	
CAIT	ITIFM	During iteration, several variable sized arrays are allocated. The following list of ITIFM labeled common variables contains the variable name in which the address of requested size is found, in the order in which they are requested:	
		FXRES Size NFIX, to save CVRT residuals	
		TiRES Size NTP1, to save tape/table residuals . (when applicable)	
j		T9RES Size NTP9	
		FXPAR Size NFIX, for saving CVRT partials (one column)	
		T1PAR Size NTP1, for saving tape/table partials, when applicable (one column, sequentially)	
L		T9PAR Size NTP9	

Table 4-1. TRP Subroutines Using the CRAL Function (Continued)

Subroutine	Module	Description	
		T1BUF	Size NPT1(i)+2 if multiplier TiVAL < 0 (i = 1 through 9) for observation data buffer, or NTP1(i)+NTP1(i)/NVAR(i) limited to 512 for data on tape when TiVAL table is not input
		T9BUF	
		TiPLV	Size (3*NVAR(i):2) if TiPLF # 0, to store one frame of data for plot tape (i = 1 through 9)
		RMS(i)	Size NVAR(i), to store standard deviation of TiRES for editing in PFRPM (i = 1 through 9)
1		LAUX(i)	Size NVAR(i)+1, to store auxiliary variable flags for TiCVT names (i = 1 through 9)
		TiCVR	Size NTP1(i) if TiNMF # 0, to store values of function for normalized observations (i = 1 through 9)
		FXVR	Size NFIX:2+3, to store values of functions in CVRT table plus a posteriori standard deviations of first three ITVT functions
		LCFF	Size NFIX, to store completion flags for CVRT variables
MAX	ITERM	Several arrays mizing ITRF =	are required for the process of maximizing or mini- 1:
		LP0(i)	Size equal to the number of parameters in the ITVT associated with MAX, N (i = 1 through 11)
		LEV	Size N ² if INET has not been input
		LGMX	Size ITVS to save values of standard ITVT parameters at a maximum function point
INTXB	INTXM	Several arrays of size NIV (maximum number of integration variables, a preset input) are used with model B:	
		LVAR	NIV cells for location of integration variable
		LDER	NIV cells for location of integration variable derivative
Į		LC0D	NIV cells for integration variable option
		LLK	NIV cells for integration variable sequence number
		LSY1	NIV cells for intermediate derivative storage
		LSY2	NIV cells for intermediate variable storage
İ		LSY3	NIV cells for extra precision accumulation
		NOR DR 2	Size 9 NIV when Adams-Moulton integration method is chosen
INTXC	INTXM	Several arrays	s of size NIV are required with model C (see INTXB):
		LVAR	Size NIV (each)

Table 4-1. TRP Subroutines Using the CRAL Function (Concluded)

Subroutine	Module	Description	
INTXD	INTXM	Several arrays of size NIV are required with model D (similar to INTXB, but allocation is performed in a slightly different order):	
		LVAR	
		Size NIV (each) LLK LSY3 LSY1 LSY2	
ADM21	INTXM	Allocates core for model D associated with past values of derivatives for variable step size option	
!		NORD2 Size NIV*AMORDR	
INS4	INFXM	Allocates from 500 cells up to the size of the table for storing one or more data frames for tables PLOTT and PLOT2T. Variables ILCA and ILCB contain the location of the buffer whenever these tables are input	
TRSI	TRAKM	Allocates k arrays (k = 0,1,2,3) to contain the input and output labeled commons for TRAKM model 1, depending on how many radars are simulated. LTSI contains the starting location of k input common arrays. LTSV contains the starting location of k output common arrays	
CRAL2	PFRPM	When the intermediate storage buffer of size NBS in PFRPM is exceeded during iteration, the overflow causes calls to CRAL to be executed. A buffer array will not be split, but will reside in one area or the other	
İ	}	CRAL may be used to fill several arrays in TRP41:	
		DSIGID Size (ITVS+1)(ITVS+2)/2	
]	CKSTR Size (ITVS)(ITVS+1)/2	
		SIGMA Size ITVS	
		LGK Size ITVS	
	ļ	GMK0 Size ITVS	
		GMK1 Size ITVS	
		STDEV Size ITVS	
	Ì	ITVNAM Size NITV	
		CVRNAM Size NFIX	
		PFR1 has one array when NQP # 0:	
		COVQ Size NQP*(NQP+1)/2	
		PFRP1 has three arrays when EIGF # 0:	
		IGVL Size ITVS for eigenvalues	
		IGVC Size ITVS*ITVS for eigenvectors	
		NMTI Size ITVS*ITVS for decomposition inverse	
INPIM	INPIM	Sets field length to the initial field length whenever a control card 1. is read and just before T9300 processing	

4.1.3 Card Data Input Storage

The input data cards are processed by INP1M and are left, for TRP use, in three separate areas: event criteria data (ECL), tabular data, and general data. All three areas are sorted for quick retrieval by processing routines. The first two sections, ECL and tabular data, are placed at the beginning of the BUCKET. General data is placed on ECS. The sorting for all three areas is first on vehicle number, then on ESN, then module, and finally on symbol name.

The precise format for event criteria data is shown in Table 4-2, for tabular data in Table 4-3, and for general data in Table 4-4. All three input areas are in module INP1M.

Table 4-2. BUCKET: Event Criteria Section

Word N	o.	Word Content	Description
	1	Size (γ - 1)	ECL data size
	2	Vehicle no.	Vehicle identifier (1, 2, etc.)
	3	Size (β - 2)	Number of words for this vehicle
	4	ESN	Event sequence number
	5	Size (α - 4)	Number of words for this ESN
	6	Туре	Event type
	7	Model	Name of model used to compute time to go (t_g)
į	8	Variable	Variable (x) used to compute tg
	9	Value	Desired value (x ₀)
Number	10	Derivative	Derivative of variable (x) if computed
of words	11	Tolerance	Allowable tolerance
event criter-	12	Preset value location	Internally preset value of variable at event time
ion = 10	13	Cross vehicle no.	
	14 15 16		Auxiliary computation flags for the variable, derivative, and preset value, respectively
	17	•	Next criterion for this event
	•	•	
	α	ESN Size Type	Next ESN Number of words for this ESN Event type
	α + 3	Event criteria data for this ESN	Ten words are required for each event criterion at each event: The size indicates how many event criteria per event and ordering indicates the event criterion number
	β	Vehicle no. Size	Next vehicle
		•	
	γ	Table data	

Table 4-3. BUCKET: Table Section

Word No.	Word Content	Description
1	Size (σ - 1)	Table data size
2	Vehicle nc.	
3	Size (σ - 1)	Number of words for this vehicle
4	ESN	Event sequence number
5	Size (δ - 3)	Number of words for this ESN
6	Module name	
7	Size (γ - 5)	Number of words for module
8	Table name location	Table location in labeled common
9	Size (β - 7)	Number of words for this table
10	Subtable no.	Subtable no. (zero if not a subtable, negative if T type table)
11	Seven words of Table ID ^a	
α	Argument ^a	Table lookup argument location (zero if a constant value table)
	Auxiliary flag ^a	Value if constant value table
•	Option ^{a, b}	Interpolation type
•	Cross reference a, b	Cross reference location of table data
•		Three words of temporary storage provided for this table to be used by GTBLU (general table lookup subroutine)
	Tabular data ^b	Table data block
β	Table name location Size	Next table
•	•	
•	:	
Υ	Module name	Next module
•	•	
•		
δ	ESN Size	Next ESN
•		
•	•	
•	Vehicle no.	Next vehicle
•	Size	INEXT VEHICLE
•	•	
•		
σ - 1	End table data	

^aFor I type tables only.
^bNot used for constant value tables.

Table 4-4. ECS: General Data Section

Word No.	Word Content	Description
1	Size (γ - 1)	General data size
2	Vehicle number	
3	Size (δ - 1)	Number of wurds for this vehicle
4	ESN	Event sequence number
5	Size (β - 3)	Number of words for this ESN
6	Ten words of	
	event	Alphanumeric data
	••	
15	Identification	
16	Module name	
17	Size (α - 15)	Number of words for this module
18	Symbol location	There are three words for each piece of input data: word 1 contains the BASKET relative labeled com-
19	Data word	mon and the location of the input symbol, word 2 is a
20	Auxiliary flag	data word, and word 3 is an auxiliary data flag
α	Module name	Next module
a + 1	Size	
α + 2	Symbol location	į
a + 3	Input data word	
α + 4	Auxiliary flag	
		N TORY
β	ESN	Next ESN
β + 1	Size	Number of words for this ESN
δ	Vehicle number	Next vehicle
	Size	Number of words for this vehicle
γ - 1	End general data	

4.2 CARD DATA INPUT

This section provides a complete description of the data input techniques designed for the simulation. The mechanics of card input are thoroughly discussed. In Sec. 4.2.1 the input card format is described and various input options are defined. Section 4.2.2 deals with the preparation of the symbolic data. Every possible type of input is described in detail, and examples of each type of input are given.

4.2.1 Input Card Format

The input card is divided into four fields: a control field and three parameter fields. The control field contains the information necessary to assign the three parameter fields to a module, a vehicle, and an ESN (event sequence number). It also contains a one-column code to identify the type of data being input, e.g., tabular data, event criteria data, or general input (Sec. 4.2.2). Each parameter field consists of an information field code, an address field, and an information field. The information field contains either the input value or a symbol. The address field contains a symbol or relative address, and the information field code classifies the information field as to decimal, integer, octal, or symbolic data.

The standard input form (Fig. 4-1) was designed to simplify the task of filling out input sheets. Its use will minimize input errors. The correspondence between the input data form format and the input card format is obvious. The four major input fields (the control field and the three parameter fields) plus the identification field have each been placed on a separate line, and each major field has been divided into the proper subfields.

4.2.1.1 Card Column Assignments

The card column assignments are shown in Fig. 4-2. The control field occupies cc 1 through 9 and is subdivided as follows:

- The module name is assigned to cc 1 through 5
- The vehicle number is assigned to cc 6 (or extended vehicle 1 ESN)

Fig. 4-1. X-5 Input Data Form

TOTAL STATE OF THE

Fig. 4-2. Card Column Assignments

- The ESN is assigned to cc 7 and 8
- The card code is assigned to cc 9

The first parameter field occupies cc 10 through 30; the second parameter field cc 31 through 51; and the third parameter field cc 52 through 72. The three parameter fields are subdivided as follows:

- The information codes each occupy one column and are assigned to cc 10, 31, and 52.
- The address fields each occupy six columns and are assigned to cc 11 through 16, 32 through 37, and 53 through 58.
- The information fields, which contain the input parameter or symbol, each occupy 14 columns and are assigned to cc 17 through 30, 38 through 51, and 59 through 72.

Card columns 73 through 80 may be used for card identification or sequencing or both.

4.2.1.2 Module, Vehicle, and ESN Identification

4.2.1.2.1 Module Identification

and the second second second second second second second second second second second second second second second

All input classified as general or tabular (Secs. 4.2.2.4 and 4.2.2.6) is associated with a specific module. For general data, its name should be placed in cc 1 through 5 of each input card (but only on the first card for

tabular data). All modules in the system (except INPPM) may receive input data. In every module name, the character 0 is the number zero (except for OLSTM). All modules in the system are described in detail in Sec. 2, Vol. II, with a list of associated inputs.

4.2.1.2.2 Vehicle Identification

All input data, except control cards (Sec. 4.2.2.7) input to modules MPEXM or PFRPM and header cards (Sec. 4.2.2.1), are associated with a specific vehicle, which has a unique vehicle identification number that must be placed in cc 6 of the input cards. Optionally, cc 6 may be used to extend the ESN through 199 for vehicle 1. Thus, vehicle 1 is never explicitly indicated. Input data for as many as nine vehicles can be processed and used in the simulation.

4.2.1.2.3 ESN Identification

All input data associated with an event must have that event's sequence number in cc 7 and 8 (and sometimes 6); for input not associated with an event, these card columns are ignored. The ESNs are chosen by the user from the set of positive integers (1, 2, ..., 199). ESNs for vehicles 2 through 9 are limited to 1 through 99.

4.2.1.3 Card Codes

The card code (cc 9) assigns the card input to one of several input classifications; it may be a blank or one of the following letters: H, E, L, Z, I, T, C, A, or P. The format is discussed in Sec. 4.2.2.

4.2.1.4 Information Field Codes

The information field codes (cc 10, 31, and 52) indicate the type of conversion required for each information field (17 through 30, 38 through 51, and 59 through 72). The following symbols are permissible codes: blank (no punch), B, D, H, P, I, S, T, M, and C, X, A.

4.2.1.4.1 Decimal Data (Blank)

A blank indicates that the information field contains decimal data (Sec. 4.2.1.6).

4.2.1.4.2 Octal Data (B)

The letter B indicates that the information field (last 12 columns only) contains octal data (Sec. 4.2, 1.6).

4.2.1.4.3 Symbolic Data (D or H)

The letter D indicates that the corresponding information field (first six characters) contains alphanumeric characters (Sec. 4.2.1.6). These characters must be a legal TRP name in labeled common. The letter H is the same as the letter D without the legal name restriction, as for identifiers.

4.2.1.4.4 Extra Precision (P)

The letter P indicates that the number has extra precision and is located in the 21 columns of the next parameter field. The six columns following the P designate the address, and the next fourteen columns are ignored (Sec. 4.2.2.4 and Fig. 4-1).

4.2.1.4.5 Replacement (S)

The letter S indicates that the information field contains the name of a variable whose contents replaces the address field variable contents at the time of event initiation.

4.2.1.4.6 Integer Data (I)

The letter I indicates that the information is for an integer type variable. The format of the input is the same as that of decimal data, including the decimal point, but the number is truncated and converted internally.

4.2.1.4.7 Time Conversion (T)

The letter T indicates that the information field contains two digits each for day, hour, and minute and eight digits for seconds and fractions. This code may be used instead of the decimal data form.

4.2.1.4.8 Angle Conversion (M)

The letter M indicates that the information field contains four digits for sign and degree, two digits for minute, and eight digits for seconds and fractions. This code maybe used instead of the decimal data form.

4.2.1.4.9 Constant Table (C)

The letter C is used as an information field code in conjunction with card code I to indicate a constant value table (Sec. 4.2.2.5). It is used only in cc 10.

4.2.1.4.10 Deletions (X)

The special code X is used for deletion of previously input data (Sec. 4.2.2.9).

4.2.1.4.11 Table Alterations (A)

The special code A is used for either interpolation I type (Sec. 4.2.2.5) or for the special T type (Sec. 4.2.2.6) table alterations.

4.2.1.5 Address Fields

The address field associates a specific input cell within the specified module with the corresponding information field. The address field may contain a symbolic name or a numeric character, or it may be left blank, depending on the card code and/or the information field code.

4.2.1.5.1 Symbolic Address

If any nonnumeric character other than a blank is entered in the address field, it is assumed that the field contains a symbolic address. Every symbol used in an address field must be listed in the dictionary of the specified module. This dictionary assigns the symbol to the desired input cell core address. The symbol may be located anywhere within the address field.

4.2.1.5.2 Relative Address

If the address field contains all numeric characters, the contents of the information field are assigned to a core address relative to the core address of the previously entered symbol. The contents of the address field are interpreted as a right-justified integer, and the core assignment is equal to the address of the previously entered symbol plus this integer.

4.2.1.6 Information Fields

The information fields may contain symbolic data, decimal data, octal data, or extra precision data. Certain special control information can also be specified (Sec. 4.2.2.5).

4.2.1.6.1 Symbolic Data

Symbolic data (field codes H, S, D) use the first six characters in the information field and need not be left-justified; this is done internally (Sec. 4.2.2.4).

4.2.1.6.2 Decimal Data

Whenever the information field code is blank or I, the value in the information field is treated as a floating point number.

A decimal number is represented by a string of decimal digits with a decimal point and may contain an exponent representing a power of ten. The various forms are the following:

where n is the base and S is the exponent to the base 10. The plus sign may be omitted for positive S, and the maximum S is 308. The number may be placed anywhere within the information field as long as the blank columns (treated as zeros) do not affect the magnitude. If the form E±S is used, it must be right-justified.

4.2.1.6.3 Octal Data

When octal data have been specified (by placing the letter B in the parameter code field) the last twelve characters in the information field are converted to form one input word. Blanks, whether leading, trailing, or embedded, are treated as zeros; any nonoctal character causes an error condition.

4.2.1.6.4 Extra Precision Data

Extra precision data are of the same form as decimal data except that they are placed in the next parameter field of 21 columns instead of the normal 14-column information field (Sec. 4.2.2.4.2).

4.2.2 Preparing the Symbolic Data

The task of preparing the symbolic data consists of transcribing to input forms the data that describe a vehicle (or vehicles) and a mission profile. The resulting symbolic deck of input cards is called a symbolic milestone deck.

It is suggested that the following order be used when preparing a symbolic milestone:

- Identify the milestone with header cards.
- Assign an ESN to each event in the mission profile, and prepare event identification cards for each one.
- Prepare the event criteria input data.
- Select the models to be used in each module for each vehicle and each phase of the mission profile, and then prepare all general input data.
- Prepare all tabular data.
- Select the control cards.

4.2.2.1 Header Card (H or P)

The card code H or P indicates that the card contains header information for a run. The contents of cc 11 through 70 is printed at the top of the run output. A maximum of 50 header cards may be used, but none are

actually required. The module name, vehicle number, and ESN are not germane to this input; cc 1 through 8 are ignored.

The contents of these cards is not saved in core and cannot be made part of a binary milestone.

The H header card is also used for user comments to be included on the 9300 output tape. This usage requires that special characters (MS) be put in cc 11 and 12 (Sec. 4.5)

A header card that might be used to describe a symbolic milestone is shown in Fig. 4-3.

Fig. 4-3. Sample Header Card

4.2.2.2 Event Identification Card (E)

The card code E indicates that the card contains event identification information. The sixty BCD characters in cc 10 through 69 are printed with the normal output print at the event identified in cc 7/8 for the specified vehicle (cc 6). The module name is not germane to this input; cc 1 through 5 are not processed. Only the last event identification card input is used for a given vehicle and ESN combination. When no E card is specified for an event, storage is still allocated for event identification, but it is set with blanks.

The examples that follow (Fig. 4-4) illustrate event identification cards for ESNs 10 and 112. The vehicle number in both cases is 1.

Fig. 4-4. Sample Event Identification Cards

4.2.2.3 Event Criteria Data (L)

The card code L indicates the start of event criteria data, the set of inputs that determines the occurrence of events. Data for each event always include a number that represents the event type, the name of the criterion option, the variable name, and a value for the variable used in the criterion option. Depending on the number and type of event criteria options specified, this set may also include the criterion number, the derivative name, a cross vehicle reference, the tolerance, and the name of an internally computed value.

4.2.2.3.1 Address and Information Fields

The address field must always contain the relative address (right-justified) code of the input in the information field. The relative addresses for the nine possible inputs are listed below. The order need not be as indicated, and inputs marked with an asterisk need not be entered if inapplicable.

Relative Address Codes	Input
0	Event type, preset primary type 1*
1	Criterion number, preset 1*
2	Criterion option (alphanumeric), preset G1*
3	Variable name (alphanumeric)
4	Variable value to be satisfied or increment
5	Derivative name (alphanumeric)*
6	Tolerance*
7	Name of internally computed value (alphanumeric)*
8	Cross vehicle number*

Allowable quantities for alphanumeric inputs, except for criterion options, are variables located in the I/V section of any module (input or variable output). For any one set of inputs, the control field on all but the first card must be left blank.

4.2.2.3.2 Event List Format

4.2.2.3.2.1 Event Type (0)

Event types are defined and the philosophy of event classification is discussed in Sec. 1.3. The number, with decimal point, that represents the event type must be entered in the information field opposite relative address zero. The following values represent the types available:

- 0. = primary type one (preset)
- 1. = secondary type one
- 2. = primary type two
- 3. = secondary type two
- 4. = primary type three

If the type is not specified, a zero (primary type one) results.

4.2.2.3.2.2 Criterion Number (1)

If only one criterion is entered per event, this entry may be ornitted. If there are multiple criteria, a number must be assigned to each

criterion, and the criterion number must be entered in the information field opposite relative address one. The maximum number of criteria that may be specified between two primary type one events is currently set at eight.

4.2.2.3.2.3 Criterion Option (2)

The name of the criterion option is the input that determines the method or equation to be used in computing time remaining to an event. The desired name is entered alphanumerically in the information field opposite relative address two. If the option is not entered, a G1 option results. The call words for the permissible event criterion options are defined in Table 4-5.

4.2.2.3.2.4 Variable Name (3)

In all criterion options, the name of the variable to be used in the computation of time remaining (X) must be specified. The selected name is entered as an alphanumeric input (D code) in the information field opposite relative address 3.

4.2.2.3.2.5 Variable Value (4)

A numeric value for the variable used in the criterion option is always required. The specific use of this value is a function of the criterion option selected. The required value, if known, is entered as a decimal number opposite relative address 4. If the required value is unknown except as a function of an internal computation within the program, it can be specified as described by relative number 7. In this case, the value specified is considered an increment (X_T) .

4.2.2.3.2.6 Derivative Name (5)

If the derivative \dot{X} is a program variable, the name of this derivative should be entered as an alphanumeric input (D code) in the information field opposite relative address 5. If the derivative name is not available or not specified, the derivative is computed by TRP. When X and X_0 are in units of time, an alphanumeric derivative of FP1 (floating point 1.0) must be specified.

Table 4-5. Event Criterion Option Call Words

Criterion Option Call Word	Description
G1	Time remaining until the event (tg) is computed by the equation
	$tg = \frac{X_0 - X + X_I}{\dot{X}}$
	where
	X ₀ = value entered in relative address 4 or value of the variable whose name is entered in relative address 7
	X = value of the variable whose name is entered in relative address 3
	X _I = value entered in relative address 4 if relative address 7 has an entry (otherwise zero)
	X = value of the variable whose name is entered in relative address 5 or (if relative address 5 has no entry)
	$\dot{X} = \frac{(X_i - X_{i-1})}{(t_i - t_{i-1})}$
	where i denotes the present computation cycle.
G2	Same as G1 except that the time remaining until the next event is set to the absolute value of the computed value in G1.
G 5	If the numerator of the tg equation is zero, tg is set to zero; if not, tg is set to ∞. The derivative is never used.
G6	The derivative \dot{X} must be positive, otherwise tg is set to ∞ .
G7	The derivative \dot{X} must be negative, otherwise tg is set to ∞ .
G8	If the numerator of the tg equation is less than or equal to zero, tg is set to zero; if not, tg is set to . The derivative is not used.
G9	Same as G8 except that the numerater is greater than or equal to zero.

4.2.2.3.2.7 Tolerance (6)

A cutoff tolerance may be specified (in units of the variable) opposite relative address 6. If the numerator computed by the equation for tg is less than or equal to this value, it is considered zero. If a tolerance is not specified, a time parameter computed in CYCXM called ϵ_n (ENOIS) is used as the tolerance in seconds for the computed tg.

4.2.2.3.2.8 Name of Internally Computed Value (7)

If the required value of the variable (normally entered in relative location 4) is a function of an internal computation (and hence, unknown at input time), the symbolic name of the computed value may be input as an alphanumeric (D code) in the information field opposite relative location 7. When this parameter is used, the value in relative address 4 is considered an increment in the same units as the variable.

4.2.2.3.2.9 Cross Vehicle Reference (8)

This entry is a VESN (ESN from another vehicle) that furnishes a time value for the current vehicle to match. This entry is an alternate to entries 3, 5, and 7. Event initiation is made on whichever occurs first.

4.2.2.3.2.10 Examples

The input required to execute a primary type one event, identified by ESN 12, when the simulation time equals 20 sec, is shown in Fig. 4-5.

The input required to execute a type one secondary event (ESN 115) when the weight of propellant $W_{prp} = 100 \text{ lb i}$ shown in Fig. 4-6. The derivative in this case is known (\dot{W}_{prp}).

The input required to set up a second criterion for the determination of an event (ESN 115) is shown in Fig. 4-7. The criterion shown causes the event to be 110 sec after the occurrence of the previous type one primary event. If the condition established in Fig. 4-6 for this event is met first, the second criterion is ignored.

1.

űtestesestatoratatatatásátas aszábbető, asakiséssését mását maszadásátatarátását, etőtétéh aunakitáfátátátátát

Figure 4-5. Sample Primary Type 1 Input

Fig. 4-6. Sample Secondary Type 1 Input

Fig. 4-7. Sample Second Criterion Input

4.2.2.4 General Data ()

The card code "blank" indicates that the card contains general input data. The information in each of the three parameter fields of the card is assigned to the input section of the specified module for the specified vehicle and ESN. During program execution (at the execution of the specified event for the specified vehicle), the data in the information fields are physically placed in the module input cells designated by the respective address fields. Input data are inserted in the module input sections only at event times. The inserted data remain in the module input section until they are replaced by subsequent input.

4.2.2.4.1 Address and Information Field

The information field may contain an alphanumeric symbol, a decimal number, an extra precision number, or an octal number, depending on the information field code. The address field always contains the symbol or the relative address for the input parameter of the specified module. Relative addresses are right-justified in the address field and are always relative to the last symbol encountered there.

4.2.2.4.2 Examples

Specification of computational models for the Environmental module (vehicle 1 and ESN 10) is shown in Fig. 4-8. The initialization model to be used is model B, the high frequency computational model is the donothing U model, and the low frequency computational model is model 1. Note that a decimal point cannot be used for a model specification.

ENVRM 1	,0	9											
D',I,N, , ,		17	В,	1		,	23	1_		26	1 .	28	
³¹ 32 H, I, ,		38	U,			1	1	1_	1		1_	1 1	
⁵² 53 L ₁ 0		89	, 1	1	1	1	1	1_	1 .	1	1		
							臣	X	Α	M	P		, 1

Fig. 4-8. General Input Data: Example 1

Specification of computational models for module DPGXM (vehicle 1 and ESN 10) is shown in Fig. 4-9. Both the initialization model and the computational model are to be model 1.

Fig. 4-9. General Input Data: Example 2

^{*}See Sec. 2.20, Vol. II.

Input to the module CYCXM for ESN 10, vehicle 1 is shown in Fig. 4-10. The first information field assigns a 2. to the input parameter FRQF, the second information field assigns a 1.0 to the input parameter LFDT1, and the third information field assigns a 0.1 to the input parameter HFDT1.

Fig. 4-10. General Input Data: Example 3

Input to the module TRAKM for ESN 10, vehicle 1 is shown in Fig. 4-11. The first and second parameter fields assign an extra precision number to the input variable LATR. The third parameter field assigns octal word 00000000003 to the input variable RGRN.

T,R,A,K,M°,1,	0 9	
P'',LATR	17	23 26 28
31 32 7 . 4 3 6 2	5,4,7,3,6,6	4 3 7 3 2 1
B ⁵³ RGRN	59 0000	0 0 0 0 0 0 0 0 3
·		⁷³ E X A M P 4

Fig. 4-11. General Input Data: Example 4

4.2.2.5 Interpolation Table Data (I)

The card code I indicates the start of tabular data for use by the general table lookup routine. Tabular information is made available to the specified vehicle at the execution of the specified event and remains so for use by the module until it is replaced by subsequent input.

The control field of the first card is completed in the normal way by specifying the module in which the table is to be used, the vehicle and ESN to which the table applies, and the card code (in this case I). The control and address fields on all remaining cards for the table must be left blank.

4.2.2.5.1 Parameter Fields

The first card must contain information that defines the table. The tabular entries begin with the second card and continue to the end of the data.

4.2.2.5.2 Table Name

The table name should be entered in the first address field, cc 11 through 16.

4.2.2.5.3 Table Argument

The symbolic name for the variable that is to be the argument of the table must be entered in the first six columns of the first information field (cc 17 through 22).

4.2.2.5.4 Interpolation Type Code

A numeric code is used to specify the type of interpolation to be applied to the table, the type of tabular entries supplied (either paired values or equally spaced entries), and whether or not the table is a master table. This must be entered as a right-justified number in cc 23 through 25. The definitions for each available code are shown in Table 4-6. A negative interpolation type forces integration to each time point in the table. When this option is used, the table argument must be a time variable.

Table 4-6. Interpolation Code Numbers

Interpolation Code No.	Definition
0	Constant value
1	Step function, equally spaced points
2	Linear interpolation, equally spaced points
3	Inverse linear interpolation, equally spaced points
4	Quadratic interpolation, equally spaced points
5	Step function, stored argument
6	Linear interpolation, stored argument
7	Inverse linear interpolation, stored argument
8	Quadratic interpolation, stored argument
9	Master step function interpolation, equally spaced points
10	Master linear interpolation, equally spaced points
11-12	Master quadratic interpolation, equally spaced points
13	Master step function, stored argument
14	Master linear interpolation, stored argument
15-16	Master quadratic interpolation, stored argument
17	Exponential function, equally spaced points
18	Exponential function, stored argument
19 ^a	Aesthetic function, equally spaced points
20 ^a	Aesthetic function, stored argument
21 ^a	NDTLU subroutine, one argument set
22 ^a	NDTLU subroutine, two argument sets
23 ^a	NDTLU subroutine, three argument sets
24 ^a	NDTLU subroutine, four argument sets
25 ^a	NDTLU subroutine, five argument sets

^aTemporarily deleted due to storage constraint for reduced TRP only.

4.2.2.5.5 Subtable Number

When bivariate table input is being used, each subtable is assigned a number, which should be entered as a right-justified integer in cc 26 and 27 of the first card. If it is not a subtable, cc 26 and 27 must be left blank.

4.2.2.5.6 Table Cross Referencing

Within any given module, for a given vehicle and ESN, it is possible to reference an interpolation (i) table or subtable from the same module or from another module, vehicle, or ESN. This is accomplished by entering the vehicle number and ESN (or the extended ESN for vehicle 1) of the table to which reference is being made in cc 28, 29, and 30. The referenced table then becomes available to the specified module at the event identified with the ESN entered in cc 7 and 8 for the vehicle whose number was entered in cc 6. The name of the table to which reference is made should be entered in cc 32 through 37. Note that only the data portion of the table is being referenced, not the argument and interpolation type. If both table names are the same, it need not be rewritten in cc 32 through 37.

4.2.2.5.7 Table Identification

The remaining columns of the first card (normally cc 32 through 72) may be used for alphanumeric table identification. This information is printed as the table identification on the listing of tabular data. For cross referencing only cc 38 through 72 may be used for identification.

4.2.2.5.8 Tabular Entries

The tabular entries begin with the second card and are entered in the information fields.

If the interpolation code number selected requires a stored argument, the first information field must contain the value of the minimum argument; the value of the function for the minimum argument $f(X_1)$ is entered in the second information field, and the tabular entries are continued in this

manner (argument, function, next argument, next function, etc.) for increasing argument values. The last pair of entries should always be the maximum argument X_N and the value of the function for the maximum argument $f(X_N)$.

If the interpolation code is for equally spaced points, the first information field must contain the minimum argument value; the second information field must contain the argument increment ΔX used to compute the equally spaced values of the argument. The value of the function $f(X_1)$ for the minimum argument is entered in the third information field, and the function values $f(X_1 + \Delta X)$, $f(X_1 + 2\Delta X)$, $f(X_1 + 3\Delta X)$, ..., $f(X_N)$ are entered in the successive information fields.

All three information fields need not be filled on each card, even in the body of a table. There is no limit to the number of entries for a given table. If it is to be a constant value table (interpolation type 0), the constant should be entered in the first information field of the second card. No further entries are necessary. When information field code C is used, the constant is entered in the first information field ci the first (and only) card. If during program execution an attempt is made to extract data from an interpolation table for an argument value that lies outside the maximum or minimum allowable argument, the function value associated with the maximum or minimum argument is used.

4.2.2.5.9 Bivariate Table Input

It is possible to input an interpolation table in which the function value is defined as a function of two arguments (bivariate). This is accomplished by using a master table along with subtables.

The master table is input according to the normal requirements stated above. An interpolation type number will be selected (9 through 16) that gives the appropriate interpolation for the master table. The tabular entries are made by stating the argument values in the normal manner; however, the function intries must be subtable identification numbers, with decimal point. A subtable must be entered for each subtable number referred

to in the master table. Subtables are entered in the usual way, except that the subtable number is entered in cc 26 and 27. (Master interpolation type numbers should never be used for subtables.)

For a bivariate table input there is always one (and only one) master table, and there must be at least two subtables. One of the two arguments is the argument of the master table; the other argument is for each of the subtables. For an ordinary family of curves (or set of data), the argument for the master table defines the separate curves in the family. The master table must have a tabular entry stating the argument value for each curve, followed by the subtable number for that curve. The subtables use the abscissa variable as their argument and the corresponding ordinate as the function value. There is one subtable for each hypothetical curve.

Bivariate table lookup can be visualized if the data are viewed as a set of curves (Fig. 4-12). Table lookup then reduces to selecting two consecutive curves corresponding to entries in the master table (subtable numbers), followed by the location of a particular interpolated curve A_{2_i} from which the function $F(A_{1_i}, A_{2_i})$ is obtained. The point (A_{1_i}, A_{2_i}) is obtained by using the master table argument to locate A_{2_i} and the subtable argument to locate A_{1_i} .

Fig. 4-12. Bivariate Table Data Curves

4.2.2.5.10 Special Information Field Codes

4.2.2.5.10.1 Constant Value Tables (C)

A special information field code is used in conjunction with interpolation table data. Whenever a constant value table is to be specified (under the I table card code), it is possible to reduce the required input to only one card. This is accomplished with the special information field code C entered in the first information field code (cc 10). The control field of the card is filled out as usual; the table name is entered in the first address field. The table value is entered in the first information field, and the remainder of the card may be used for alphanumeric identification of the table. This option may not be used to enter a constant value subtable; to do this, one must specify interpolation type 0 and the constant entered in the first information field of the second card.

4.2.2.5.10.2 Table Alterations (A), I Tables

It is possible to alter a previously input interpolation table without reinputting the entire table. This option is especially useful when a binary milestone is being employed. To use this option, it is necessary to have a milestone data print generated by a previous computer run. Alterations may then be made to the table as follows: cc 1 through 16 of the first card are filled out as defined previously for interpolation tables (cc 10 should contain the letter A). Columns 17 through 72 of the first card are filled in only if existing information is to be altered; otherwise, these columns are left blank. There is one exception to this: the interpolation type must always be entered in cc 23 through 25. To delete a block of tabular entries, one enters the DSN (data sequence number), which is taken from the previously generated milestone print, of the beginning of the block of entries to be deleted in the first information field of the second card. The DSN of the end of the block of data to be deleted is entered in the second information field. These two DSNs may, of course, be equal. If a new data block is to be inserted where the data were deleted, the new data block should be input starting with

the third information field of the second card (the inserted data block need not be the same size as the deleted data block). To insert a block of tabular entries without a deletion, the second information field of the second card should be left blank. The inserted data must then be specified beginning in the third information field of the second card. If for any one table more than one block of data is to be deleted and/or inserted, the operation involving the highest DSN should be listed first; the operation involving the next highest DSN should follow in the first blank information field, etc.

4.2.2.5.10.3 Table Multiplier

For any interpolation type table, it is possible to scale the function value F(X) such that the function value returned for the argument X is $F'(X) = M \cdot F(X)$. This is accomplished simply by inputting a value for the table multiplier using general input at the desired event. A table multiplier is available for each table and remains, once input, until replaced.

4.2.2.5.10.4 Examples

The input for thrust table 3 is shown in Fig. 4-13. The argument of the table is atmospheric pressure, which has the symbolic name PRES. The table is to be used in the module PROPM, beginning at event 10. The interpolation type is linear, stored argument.

The input for constant value flow rate table 3 is shown in Fig. 4-14. The table name is DW3T, and the constant value is 1205.56. The table is to be used in the module PR0PM beginning at event 10.

The input for a bivariate aerodynamic lift coefficient function is shown in Fig. 4-15. The function is to be used in the module AERMM beginning with event 20. The interpolation type for the master table is linear (14). The argument for the master table is the total angle of attack, which has the symbolic name ALFT, and the table name is CNST. The master table refers to three subtables, each of which is also shown. The argument for each subtable is Mach number.

Fig. 4-13. Thrust Table Input

PROPM 1	0 0 1
C'', D, W, 3, T,	$\begin{bmatrix} 17 & 1 & 2 & 0 & 5 & 5 & 6 \\ & & & & & E & - & 2 \end{bmatrix}$
ONSTA	NT FLOW RATE T
⁵² ⁵³ B L E	50
	EXAMP. 2

Fig. 4-14. Constant Value Flow Rate Table Input

Fig. 4-15. Bivariate Aerodynamic Lift Coefficient Function Input

		_	
· · · · · · · · · · · · · · · · · · ·	. •	ļ	
10 11	T.	6,. ;23	26 28
31 32	4	<u> </u>	
		,1,0,5, ,	
52 83		.8.	
	Eid_		
•	1	7 [9	,A,R,D, ,
1011 · ·	t-1:	<u> </u>	
		6,2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	26 <u>28</u> _ :
P1 32	i l	1101.1	
52 53	7	'	
	<u> </u>	131-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	E,-,
1	1	7 <u>[</u> 8	A,R,D, ,1
1011	├ ;-	1	26 28
		2,6,.	
31 32	1	,5, , , ,	, , , ,E,-,;
52 53		 -	<u> </u>
<u> </u>	LL_		
1	0 12	ㄱ [2	A,R,D, , 1,
A E R M M 2		I	
'°'C,N,S,T,	17	,M,A,C,H, 23	6 26 3 20
31 Å, E, R, O, D, Y	1		
82 83			, I , F, T, C,O, I
FFICIEN	Ϊ	, S, U, B, - , T	A,B,L,E, 3, A,R,D, 1,
		7	ARD. 1
f.,,, f .	. ľ	"	11212121
10 11	1:10	6	26 28
31 32		10111111	
		1 8	<u> </u>
52 53		.8	
	_ []		
1 6	•	7 6	,A,R,D, , ; ;
1011	 	123	26 28
	1.	1 3 1	
31 32	3	, 1, 0,	
192 53	5		
			
1	[9	ղ !Ը	$A_{i}R_{i}D_{i}$
	۱.,	1 120	26 28
		2 6	
31 32	(A)	'. 1. 1	
52 53	- 5 t		
	4	<u> </u>	
		5	A,R,D, 1,5
		L	

Fig. 4-15. Bivariate Aerodynamic Lift Coefficient Function Input (Concluded)

Table cross referencing is shown in Fig. 4-16. If subtable 3 for atmospheric density as a function of altitude has been entered in the module ENVRM for vehicle 1, ESN 10, it is also made available to vehicle 2 at the event whose sequence number is 20 by the input card shown in this figure.

E,N,V,R,M 2,2	0°I	
'°'' ,D,E,N,S,T	¹⁷ H	23 4 26 3 28 1 0
31 37 DENST	38	1 1 1 1 1 1 1
52 53	59	1 1 1 1 1 1 1
		73

Fig. 4-16. Table Cross Referencing

Table alteration is demonstrated in Fig. 4-17. In this case three entries are being deleted from table CGXT, which was input to the module STRTM at event 15. These three entries have data sequence numbers 3, 4, and 5 and were replaced by a single entry using the T code: 0 days, 11 hours, 32 minutes, 10.31 seconds.

'S,T,R,T	M 1	5 Î													
Å'',C,G	,X,T,	17					—-; 	23		,6	26	1	28	,	
31 32		3.8													
52 53		59													
			L					73		Ь-	!	-	1	٠	
1	6	9						<u> </u>	<u> </u>	L	Ц	<u> </u>	1	Ь	.1
1011	1 1 1	3	 I •		 I			23			26		28		1
31 32		35							·	1	,	,		1	
52 53 T		ő	0	. 1	1	3	, 2	1	0	. •	, 3	, 1			1
!!!								73			•				

Fig. 4-17. Table Alteration

The use of a table multiplier (general) input that multiplies all function values retrieved from table FT3T is shown in Fig. 4-18.

Fig. 4-18. Table Multiplier

4.2.2.6 Tabular Block Data (T)

The card code T indicates the start of special block data. At the execution of the specified event, the input data block is made available to the specified module for the specified vehicle. It remains available until it is replaced by subsequent input.

Tabular block data consists of data blocks of variable size, stored in consecutive order, which are to be made available at a specified event. The first control field on the first card is filled in the normal manner; the card code is T. The first address field on the first card must contain the table name; all remaining control and address fields on subsequent cards of the table must be left blank. Information field codes are frequently required for many tables.

4.2.2.6.1 Comparison with Interpolation Table Data (I)

Tabular block data are not intended for use by the general table lookup routine, although tabular block data and interpolation table data are similar. The tabular entries reside in the table section of BUCKET and are never moved to the module input section unless special provision is made for doing so; hence, both may be of variable size. At the initiation of the event

at which the table is entered, the bucket core address of the table (for both T and I types) will be stored in the module input section in the cell whose symbolic address was in the first address field of the first card, i.e., the table name.

4.2.2.6.2 Table Alterations (T Tables)

The table alteration format for T tables is very similar to that for interpolation tables. The only difference is that the DSNs and insertion data begin in the first information field of the first card.

4.2.2.6.3 Example

The input for a block of six data words to be assigned to a tabular block table whose symbolic name is GHII (a fictitious name) is shown in Fig. 4-19. This input would be assigned to the module SENSM at event 19.

Fig. 4-19. Sample T Type Table Input

4.2.2.7 Control Cards (C)

The card code C indicates input control information. The module name, vehicle number, and ESNs are not germane to this input; only the first information field of the card is processed. The number supplied in cc 17 through 30 signals the execution of a control function (e.g., end of case input - execute program, end of run, punch binary milestone deck from the preceding input).

The selected function applies to all data cards processed before the control card. Negative numbers suppress subsequent card image printing until a positive control card is read (which restores image printing).

4.2.2.7.1 End of Case (0.nn)

When the first information field of a control card contains a zero, the end of case function is initiated. If an image of the BUCKET has not previously been formed, it is imaged. Program control is then returned to the Master Program Executive module, indicating that the simulation should proceed using the data already processed. When the simulation is complete, control is returned to the Input Processor. The data image is read back into the BUCKET, and the processing of additional input continues. NN sets the case number if it is nonzero.

4.2.2.7.2 End of Run (1.)

When the first information field of the control card contains a one, end of run functions are initiated. Control is transferred immediately to the Master Program Executive module, indicating that the run is to be terminated.

4.2.2.7.3 Punch Binary Milestone (2.)

When the first information field of a control card contains a two, a binary milestone of all preceding data is formed. The data in the BUCKET are punched out on binary cards. Program control is retained by

the Input Processor for processing additional data or control cards. Normally, two copies of the print are output but if the input was -2, only one copy is printed.

Each computer word in the processed BUCKET is punched onto the binary milestone cards. Subsequent runs can the be made using the binary milestone card deck. The advantages of using a binary milestone instead of a symbolic milestone are the following: The binary milestone is smaller, easier to handle, and requires less card read time; and the data in the binary milestone are already processed, reducing computer run time.

Data within a binary milestone may be altered or supplemented by placing symbolic input cards on the back of the binary milestone. The appropriate control cards must also be added to the back of the deck. Symbolic card input always follows binary input.

In order that symbolic changes to a binary milestone may be noted, the Input Processor causes the image of all symbolic cards to be printed. All symbolic changes made to subsequent cases are also printed in a multiple case run. This is done without regard to the type of input (binary or symbolic) for the first case.

4.2.2.7.4 Write BUCKET Image (3.)

When the first information field of a control card contains a three, an image of the processed input is written, and program control is retained by the Input Processor to process additional data or control cards. An end of case card (0.) causes an image to be written automatically if no write image card has yet been encountered.

4.2.2.7.5 Read BUCKET Invage (4.)

When the first information field of a control card contains a four, the previously written image is read back into core storage reserved for the BUCKET, and control is retained by the Input Processor to process additional data or control cards. Obviously, this control card is meaningless unless an end of case control card or a write image control card has previously been processed.

4.2.2.7.6 Clear BUCKET (5.)

When the first information field of a control card contains a five, the BUCKET cells are all cleared (set to zero), and the flag, which indicates that an image has been previously written, is reset to zero. Program control is retained by the Input Processor to process additional input.

This control card makes it possible to run two or more independent milestones consecutively. It should be placed between the last case, which is related to the previous milestone (after the end of case card), and the first card in the next milestone.

4.2.2.7.7 Read Binary Milestone (6.)

When the first information field of a control card contains a six, the Input Processor, which expects a binary milestone to be on TAPE76, reads it in and sets up the BUCKET to contain that information. Program control is retained by the Input Processor to accept additional input (symbolic data changes or control cards). Binary milestones cannot be merged (see DEPUNCH(15.)).

4.2.2.7.8 Suppress Milestone Print (7.)

When an end of case control card is encountered, the Input Processor normally prints the data in BUCKET and transfers control to MPEXM to execute the case. If a control card with a seven in the first information field is encountered before the end of case control card (0.), the BUCKET print is suppressed. This applies only to the first case (subsequent cases are normally suppressed).

4.2.2.7.9 Plot All Tables (8.)

This control card (8.) generates Cal Comp 835 film plots of all the I type table data in the BUCKET. This option is useful when many large tables have been entered for the first time and a visual check of the data is desired.

^{*}This option is not available in the operational version of TRP.

4.2.2.7.10 Print Milestone (9.)

For all cases after the first, the milestone print is normally suppressed. If the milestone print is required, enter this control card.

4.2.2.7.11 Write Secondary BUCKET Image (10.)

This control card (10.) allows a second BUCKET image to be created (i.e., an image in addition to the one written by control card 3). Control card 11. is used to read back this secondary image.

4.2.2.7.12 Read Secondary BUCKET Image (11.)

This control card (11.) is read back in the secondary BUCKET image written in response to control card 10.

4.2.2.7.13 Read Cards from IFTRP File (12. nn)

This control card (12.) commands a change in the mode of reading input cards. Following this control card, input data cards are read from physical file nn of a file named IFTRP until a control card 13. is encountered on that file.

4.2.2.7.14 Switch Back to Normal Input Mode (13.)

This control card (13.) reactivates the normal input mode. It is found only on file IFTRP, and it terminates the input cards on that file.

4.2.2.7.15 Print Data BUCKET (14.)

This control card specifies an input data BUCKET print of the data processed thus far. After the print, more data cards (or another control card) are read.

4.2.2.7.16 Punch Symbolic Cards, DEPUNCH (15.)

This control card allows the data in a milestone to be punched on X-5 format cards. The milestone may have been obtained from any legal combination of binary and symbolic data at any point in the input process.

4.2.2.7.17 Read Ephemeris Cards (16. n)

A specially formatted table of cards called DEALS coefficients may be input to module SENSM (Sec. 2.25) using this option for vehicles through 4 (also see subroutine EPHTAB, Sec. 2.2, for details).

4.2.2.7.18 Resequence Vehicles and/or Event Numbers (17.)

This control card causes TRP to enter subroutine INTERX via overlay 1,3. Subroutine INTERX renumbers or interchanges vehicles or ESNs and correctly arranges the BUCKET, depending on the X-5 cards that follow control card 17.

Option 1: Columns 1 to 3 of the X-5 card contain blanks, cc 6 to 8 contain a VESN1 currently in the BUCKET, and cc 23 to 25 contain a VESN2 not currently in the BUCKET (VESN2 may relate to any preexisting vehicle).

Result: VESN1 is renumbered VESN2, and the BUCKET is rearranged to maintain proper order. After this has been achieved VESN1 no longer occurs in the BUCKET, and another VESN may be numbered VESN1.

Option 2: Columns 1 to 3 contain XXX, cc 6 to 8 contain any VESN1 currently in the BUCKET, and cc 23 to 25 contain any other VESN2 currently in the BUCKET.

Result: The event numbers VESN1 and VESN2 are interchanged, along with the corresponding data.

Option 3: Columns 1 to 3 contain blanks, cc 6 contains a vehicle number VEH1 currently in the BUCKET, and cc 23 contains another vehicle number VEH2 not currently in the BUCKET. Columns 7, 8, 24, and 25 are blank

Result: The vehicle numbered VEH1 is renumbered VEH2, and all data associated with VEH1 is rearranged so that the BUCKET maintains its proper order. Since VEH1 is no longer in the BUCKET, some other vehicle may now be numbered VEH1.

^{*}See Vol. II, Parts C (Sec. 2.25) and A (Sec. 2.2).

Option 4: Columns 1 to 3 contain XXX, cc 6 contains a vehicle

number VEH1, and cc 23 contains a vehicle number

VEH2, both currently in the BUCKET.

Result: Vehicles numbered VEH1 and VEH2 are interchanged,

along with all related data.

Option 5: Columns 1 to 3 contain END.

Result: After this card is read, control is retained by the

Input Processor, and additional control cards may be

read.

In practice, vehicle numbers or individual ESNs may be renumbered or interchanged by using a control card 17, X-5 card using any or all of options 1 through 4, and then an END card. If a mistake is made in an intermediate X-5 card, that card (and all subsequent X-5 cards) are ignored until an END card is read and processed.

Variables FESN and VEHXI in module TSPXM are adjusted if necessary, and VEHP is left unchanged. The appropriate VESN in the T tables ITVT, CVRT, and COPT are also changed, as are references in cross referenced I tables.

After the resequencing has occurred, only vehicle 1 may have ESNs greater than 99.

4.2.2.7.19 Examples

A sequence of X-5 cards that would move event 120 of vehicle 1 to vehicle 2 and renumber it 90 (and then interchange all data associated with vehicles 1 and 2) is shown in Fig. 4-20.

If the three cards in Fig. 4-21 were placed in the order shown on the back of a symbolic milestone deck, the following functions would be performed: A binary milestone would be punched from the preceding symbolic deck. 2n image of the BUCKEI would be written, and the program would be executed with the input data. The computer run would then be terminated.

Fig. 4-20. Resequencing Vehicles and Events

Fig. 4-21. Three Sample Control Cards

A data deck setup consisting of two separate milestones is shown in Fig. 4-22. If this deck setup is input, the following sequence of operations occurs:

A binary milestone is produced.

The BUCKET is imaged.

Additional input is added to BUCKET, and the first case is executed.

The image is automatically read back into BUCKET (destroying the case 1 BUCKET).

The additional symbolic input for case 2 is added to BUCKET, and case 2 is executed.

The BUCKET is cleared, and the BUCKET image flag is set to zero.

The second milestone (a binary milestone) is read into BUCKET.

First Symbolic Milestone
Punch Binary Milestone Control Card (2.)
Write Image Control Card (3.)
Additional Symbolic Input Cards (for first case only)
End of Case Control Card (0.)
Additional Symbolic Input Cards (for second case only)
End of Case Control Card (0.)
Clear BUCKET Control Card (5.)
Read Binary Milestone Control Card (6.) (from TAPE76)
Additional Symbolic Input Cards
Punch Binary Milestone Control Card (2.)
End of Case Control Card (0.)
End of Run Control Card (1.)

Fig. 4-22. Sample Data Deck with Two Separate Milestones

The additional symbolic input, which follows the read binary milestone card, is added to BUCKET.

From the processed BUCKET, a new binary milestone is formed.

Case 3 is executed.

The computer run is then terminated.

4.2.2.8 Case Identification (A)

The card code A indicates input that is to be used for case identification, which consists of 60 BCD characters and is entered in cc 11 through 70. Only one case identification card is allowed per case, but it is not required. Card columns 1 through 8 are not processed for this card.

Case identification information serves two purposes: The case identification appears on the first page of the milestone print. In addition, the case identification is printed before the trajectory output.

4.2.2.9 Data Deletion

Deletion of data from the processed BUCKET may be accomplished by using the special information field code X. It is punched in cc 10 and may be applied to event criteria, general, and tabular data.

This code applies only to the type of data specified by the code in cc 9. If deletion of the general data for a given event is specified, only the general data are affected (the event criteria and tabular data for that event remain unchanged). To delete all types of data for an event, it is unnecessary to prepare three different inputs (i.e., one input for each of the three classes of data in the BUCKET). Instead, a card code Z is provided for deletion purposes only (deletion of all types of data).

4.2.2.9.1 Deletion of Event Criteria Data

Deletion of event criteria data differs from deletion of the other two types of data because the single item and module do not apply to the event criteria data. The only deletion levels pertinent to these data are the event (e.g., 15) and the vehicle (e.g., 2). An example is shown in Fig. 4-23.

Fig. 4-23. Event Criteria Deletion: Example 1

Deletion of all event criteria data for vehicle 2 is shown in Fig. 4-24.

Fig. 4-24. Event Criteria Deletion: Example 2

4.2.2.9.2 Deletion of General Data

Deletion of general data may be accomplished at four levels: the single item, the module, the event, and the vehicle.

4.2.2.9.2.1 Single Item

To delete single items of data, the code X should appear in the information code field. In addition, the control field must be completed and the symbol associated with the item to be deleted must appear in the symbol field.

The deletion of items FESN and MAXT from TSPXM at event 2 for vehicle 1 is shown in Fig. 4-25. Only data for a single module at a given ESN may be deleted with one card.

Fig. 4-25. General Data Deletion: Example 1

4.2.2.9.2.2 Module

To delete all general data for a particular module at a given event and vehicle, the code X is entered in cc 10, and the control field (cc 1 to 8) should be completed.

Deletion of the propulsion module data for vehicle 2 at event 7 is shown in Fig. 4-26.

Fig. 4-26. General Data Deletion: Example 2

4.2.2.9.2.3 Event

To delete all general data for an event, use the code X in cc 10. No module name should be entered in the control field.

The deletion of all general data for vehicle 1 at event 3 is shown in Fig. 4-27.

Fig. 4-27. General Data Deletion: Example 3

4.2.2.9.2.4 Vehicle

To delete all general data for a vehicle, the code X is placed in cc 10, and only the vehicle number is specified in the control field. If the vehicle number is 1, it must be left blank.

Deletion of all general data for vehicle 1 is shown in Fig. 4-28.

Fig. 4-28. General Data Deletion: Example 4

4.2.2.9.3 Deletion of Tabular Data

Deletion of tabular data differs from the deletion of general data only in that the card code in cc 9 must specify tabular data, and the single item refers to a table rather than to an item of data. Also, the table name is entered in the symbol field as the item of data. More than one table can be deleted with a single card as in Example 1 (Fig. 4-25).

4.2.2.9.4 Deletion of All Data Types

To delete all data types (event criteria, general, and tabular), the rules are the same as for event criteria data only, but a Z is put in cc 9 instead of an L.

4.2.2.9.5 Inclusive Deletion

Inclusive deletion refers to deleting all data starting with the event specified in cc 6 to 8, up to and including the right-justified event sequence specified in cc 20 to 22. This occurs if cc 20 to 22 are nonblank. This option applies to all individual types of data and also to the Z option. The deletion code X must be present in cc 10, and the appropriate code must be in cc 9.

4.2.2.9.6 Restrictions on Data Deletion

The following restrictions apply to data deletion:

- Deletion of a master table does not result in deletion of the subtables associated with it (subtables must be deleted separately).
- Deletion of a single T type table requires a T in cc 9, but deletion of larger blocks of tables (module, ESN, or vehicle) take place with either an I or T.
- If all general data for an event are deleted, the event heading information (E card) is also deleted.

4.3 DATA TAPE INPUT

The postflight data preparation program PDP processes and filters large numbers of observations and outputs these observations with associated weighting matrices onto a tape utilizing a standard format (Table 4-7). These tapes contain a time history of up to six different variables at an arbitrary output time frequency. PFRP can accept a total of nine of these tapes during any one run; the total number of observations is limited by storage requirements (usually limited to 3000). PFRP integrates to the time argument specified on the tape even if it is not a multiple of the nominal step size.

Each tape contains a logical output file consisting of four physical files in which many logical output files reflecting different processing, different output frequencies, different data weighting, or even different specified observation variables may be written. File 1 of the logical file is an identification file, file 2 is the data file, file 3 is the weighting matrix file, and file 4 is an end of file file. The data file is composed of an identification second followed by data records (500 words maximum size). Each time point with associated observations comprises one data frame with an integral number of data frames per data record. As many data records are written as are required to put all time frames on the data file. The weighting matrix follows the same time sequence and observation ordering as the data file but is written without the time argument. The first record of file 3 contains size parameters used by PFRP in determining how many observations are to be made.

Table 4-7. PFRP Data Tape Format

File 1: Tape Identification Fi	le
Record 1	Tape identification record
Word 1	Number of words (M) in record - 2 (integer)
Word 2	1 (integer)
Word 3	1 (integer)
Words 4 through M	Hollerith tape identification ($M \le 511$)
File 2: PFRP Data Value File	e
Record 1	File identification record
Word 1	Number of words (M) in record - 2 (integer)
Word 2	2 (integer)
Word 3	Hollerith file identification
Word 4	Number of words (N) per frame
Words 5 through (4+N)	Hollerith data element identifiers
Record 2 through n	Data value records
Word 1	Number of words (M) in record - 2 (integer)
Word 2	4 (integer)
Words 3 through M	Data values in frames, where a frame is one time point $(M \le 511)$
File 3: PFRP MD (Weighting	Matrix)
Record 1	File identification record
Word 1	Number of words (M) in record - 2 (integer)
Word 2	2 (integer)
Word 3	Hollerith file identification
Word 4	Number of entries per submatrix
Word 5	Number of diagonal entries per submatrix (N)
Word 6	Number of submatrices (time points) in MD matrix

Table 4-7. PFRP Data Tape Format (Continued)

Record 2 through n	MD value records
Word 1	Number of words (M) in record - 2 (integer)
Word 2	4 (integer)
Word 3 through M	MD entries in frames (submatrices) where a frame is one time point $(M \le 511)$
File 4: End of File File	
Record 1	End of file record
Word 1	Number of words (M) in record - 2 (integer)
Word 2	5 (integer)
Word 3	1 (integer)
Word 4	Hollerith ENDOFCASE b

A sample MD matrix format is shown below (word 4 = 6, word 5 = 3, word 6 = 5). Each submatrix corresponds to one time point. Each diagonal entry is one sigma (in accuracy) for the observation data, and each off-diagonal entry is the correlation between observations. Submatrix entries are ordered by rows.

4.4 PRINTED OUTPUT

U

Printed TRP output can be categorized as follows:

- Print of the input cards (optional)
- Print of the final/sorted data input (optional milestone print)
- PFRP iteration output
- Trajectory output (optional)

All of the above are shown in the sample output that follows.

The problem statement for the sample output follows: Estimate the uncertainty in a vehicle state after 48 hours of range measurements from a single ground station. This problem utilizes the error analysis capability of TRP.

Vehicle

24-hr synchronous satellite, 80-deg inclination

Epoch at ascending node, 140 deg east longitude

Assume no knowledge of vehicle state at epoch

Propagate vehicle state to 48 hr

Station Measure range to satellite from 39 deg north, 105 deg east

Ranging accuracy 30 ft at one-min intervals

Range bias uncertainty of 30 ft (random)

Station location uncertainty of 50 ft with the three components independent and random

Output Covariance matrices of vehicle position at 48 hr:

Spherical error probability (SEP)

Radial, intrack, and crosstrack (RTC)

7 FP	2		ZGND 6.		DIN C	ກົດ	OIN C		_	DIX	DIN	DTHAX 729.	Q0P1 1.		ISGF 2.		ANDET D.					2AJL 1.3858659E+08	-		0 5 FP1		9	`	TRVAL -1.	•		40M 2.44949	œ		2.	.005	• 0	,0
HR ORBIT			GRVDF 1.		000	DHI N	ก เาด		םרפ ח		000		OTEA 360.		TRKF 1.		DGEN 3	35	STA 1	STA 1	STA 1	٠	GAMI 0.		+ 172800.		5	360	ITPRF -1.	480.	HOLT 1.	CVPKF 2.	ب		•06	•0	•0	•0
02E START SCS 24	•	. A . X	G2 OIN 3	2 TESJ	02	0	20	62	02	05	020	02	02	20	20	0210	02 DEN	_	_	_	0	02 LATL	AZVI	111	90,0	TXAP	101 July 101	T TIVAL	TIVAL -	PERPHODOF TIND 1.	-	PF2PH000 MAXKF -1.	PERPHODOTOTICNT TO	3 3385	ITERM O2F ITVT 1.	6	•0	• •

• 60 • 80 • 80	• •	• • • •	•06	• 🗗	.	e (•06	•0	•0	•	•06	0	0	6	- C		•	c	•				•				# 원	1000	10.	1800.	10.	1000	10.	ຜ	10.		٠, ٩٠٠	ທໍ		
••	IZd IZd			י צפא [ָ]	, C	•	•	H X >		ć	• 0	LATV	•			LONV		•				RGRV	7.		•0		•	•	18,	.0	30.	,0	42.	•0	30.	•	99	ė,		RGRV
	0		•	-				0				a				^					3965	ລ		197	TSE1															ດ
• m	7ZI		•	46RV	•	•		H	•		•	LATV	•			ANO J			-010203.	·	10075.3013965	-040637.	1.	114.2671979	, m	80.	3,	dIXd	15.	PYIP	27.	PZIP	39.	VXIP	51.	DIAA	53.	cIZA	•	-40904-
	a			5				6				O				0			10 5 2T(12 JIN	THOTH 02 VHI	IOT CE	IOT NO	12 GH	12 NO	12 AZI	PETAIT	6	ITERM DETAITVE	c	ITERM DETAITVE		ITERM DETAITUT		ITERM G2TAITVT		ITERM OSTAITUT		ITERM UZ RNQP	

		E-2	₩ •	m *		147E-4 356517	
	-1.	. 10627	2653	14		ENIO3 .72921151476-4 ENIO6 .1407653916617	0,00
	3PMX3 -1.						TART TARE
••	-1.	.0	• 0 ·	• 0		ENIO2 32.08759843 ENIO5 20955588.21	CASE Connect Cont
	DPMX2 -1.	OND 7 X				ENIO2 ENIO5	END OF CASE
-10203.			• • • m	• • • •	114.26719797	.003352329869 20925738.19	CONTROL CARD G. END OF CASE
1	DPMX -1.	X TESO			XGHAO GHAO ITRE	ENTOTA NICE	CARD
	INFXM 02 EVPF2 DPGXM 02 DPMX	ENVY 2 X TESO ENVYM 21 SRAVIT 2.			THOTH OZ KGHAG ENVZM OZ GHAG MPEXMOJO ITRF	ENVRY 62 ENVRY 02	CONTROL SARD

MILESTONE PRINT

PROGRAM RECONSTRUCTION TRAJECTURY

WERSION 74.04R

CASE

12.42.53

EVENT CRITERIA TABULAR INPUT TOTAL - DATA BUCKET ** TYPE OF DATA **

GENERAL INPUT - ECS

09/28/74

332

SIZE

RUN DESCRIPTION -

CASE DESIGIPTION -

TERLING LEGIS

		FP1		fP1		FP1
		DERIVATIVE TOLERANGE 0. X-VEHICLE		DERIVATIVE TOLERANCE 0. X-VEHICLE		DERIVATIVE FOLERANCE 0. X-VEHIGLE
	START SES 24 HR ORBIT	TLP		7.P	ſ	VARTJSLE TO 1.'280086//E+05
	SCS 2	VARIABLE TLP 0.		VARIAGLE TLP û•	END SCS ONG.	R719uE
	START		DUMMY		END S	
		VALUE		VALUE		VALUE
	2	CRITERION NO. 1 MODEL G1 PRIMARY 0 INDIRFG: VALUE		CRITERION NO. 1 MODEL G1 PRIMARY 0 INDIRECT VALUE		CRITERION NO. 1 43DEL G1 PRIMARY D INDIRECT VALUE
			3. 10	Ü	o. 30	ē -
	Z		ž		ž	
•	EVENT SEQUENCE NO.		EVENT SEQUENCE NO.		EVENT SEQUENCE NO.	
1 .01	EVENT		THEAS		EVENT	

VEHICLE 40. 0

· · · · · · · · · · · · · · · · · · ·	-1.00000000000		-1.000000000000000000000000000000000000	88888888888888888888888888888888888888		ະ	360.00000000000000000000000000000000000	Þ	-1.000000000000000000000000000000000000
• • • • • • • • • • • • • • • • • • •	T?VAL		HAXKF T1HD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		۱.0	L=011 TSE1	ç	004 184 186
	-1.06000600000		1.000000000000000		ORBIT) NI	1.0960009960	ב	-1.0900000000 3.0000000000
	TIVAL		COVF HOLT	# 5 0 0 0	SCS 24 HR	,	FRQF QDP1	•	OPHX3 GDPF
	-1.00000000000	2.0000000000000	2.00000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	START	n Ih	350.00000000 3.00000000000	n XH	-1.000000000000 2,0000000000
0	409ULE ITPRF	409ULE ITRF	MODULE GVPRF MDM	† † † †	~	MODULE	MODULE DTEA NJISB	MODULE	MODULE OP4X2 GCF
EVENT SEQUENCE NO.	HAILI	RYECK	ያ ያ ያ ያ	VEHICLE NO. 1	EVENT SEQUENCE NO.	N E V II V	E XC AO	CONTH	HXCaC

THE STATE OF THE PARTY OF THE PROPERTY OF THE PARTY OF TH

alled by material in material property and by the same of the same

1 ,000072921151 1.4076539E+16 -20000.000000		3.00000000000		5	Þ	Ð	5	2 0. 10076.3013965
ENIO3 ENIO3 NOAT		PREC		۲0	د و	เา	٦0	L ATL
32.0875984300 2085588.2100 1.00000000000		•		ပ	ပ	Ð	Ü	6 0. 178586590.000
Z				ž	Z	X	H	Z,
ENIOS ENIOS GRVDF		INTGF						GAMI
41 003352329869 20925738.1900 114.267197970		720.000066000	** 000000000000	ສ	Ð	ב	5	HI U 83.000000000000000000-1400.000000000000000
41 209251 114.26	ċ	720.0	000 • •	H 0	Ħ	¥	부	H H H H H H H H H H H H H H H H H H H
MODULE MODELS ENIO1 ENIO4 GHAG	MODULE	HODJLE DTMAX	MODULE RNQP	MODULE MODELS PRF	MODULE	MODELS	MODULE	MODULE MODELS AZVI LONL
ENV	X X : NI	INTX	ITERM	Р२32Н	RHOTH	SENSH	STRT	HIGHT

TRAKM MODULE SEN 3 IN C RNOFT CTSID5 11.0000000000 RGRB5 0. C RNOFT TSPXM MODULE 200000.000000

4-66

***************************************					MATRIX ELEMENT RADIUS NAME	-10203.						5 4 RGR5	
					MATR	m		9 9				3 4645	
			2 3.600000000E+02		RADIUS NAME	2 2GRV		2 7.90008000E+80		2 0.		2 10	
VEHICLE 40. 0	EVENT SEQUENCE NO. 0	ITIFN MODULE TAVAL TABLE	1 3.60000000000000	PFRP4 MODULE CEPT TABLE	MATRIX ELEMENT	1 -40607.	PFRPM MOJULE MOIT TABLE	1 1.00000000 + 00	PFRPM NODULE RTGT TABLE	1 -1.020300006+04	PFRPM MODULE TICVT TABLE	1 10	PFR24 MOJULE T1MD TAGLE

3 3.3333330E-02

2 4.50000000E+02

1 1.00000000E+00

VEHICLE VO. 1	6				***************************************							,	7 9 8		•
EVENT	EVENT SEQUENCE	N C II	0	2			STARE	SCS	24 HR ORBIT	<u>+-</u>					
	ណ៍	K 2 X	ENVRM HOJULE	-	GRAVIT TABLE	3L E									
			in 0.	4 6 6	2, 000000000E+00 3,00000000E+00 +•00000000E+00	999	2 9 0	* * *		11 1	1.0827 2.6930 1.4000	1.08270000E-03 -2.69300000E-06 -1.40000000E-06	7 0 C		
E S	2 11	¥ × L	INFXM MOJULE	-	PINCT TABLE	3.E					,				
					INTERPOLATION TYPE	NOH	TYPE	CONSTANT		3.600000000E+03	0E+03				
	I	TERM	ITERH MOJULE	••	ITVT TABLE	Ä									
			4	ALTER	SEG NO. FUNGT.		CMPESN Upper 3nd		ITVESN Lower Bnd		ITV BLANK	ADD. Gammad/stepl	5 P L	DLI Sighad/Conv	_
			•		;		.06		10.	ď	dIXd	•0		1.00000008E+03	m
			r			•		0	• 0		0.0	•		• 0	
			13	•	.5		•06		10.	Ā	PYIP	•0		1.0000000E+03	12
			19	•		•		0	• 0		0.0	•		• 0	
			25	16	'n		• 06		10.	24	d12d	•0		1.000000E+63	M
			31			•		0	• 0		0.0	•		0.	
			37		.		•06		10.	>	VXIP	•		5.00080000E+00	9

•0	5.0000000E+00	• 0	5.0000000E+00	•0	7.00000000E+01	3.0000000E+01	1.00000000E-02	1.36913006-04	1.50000000E-02	1.765000005-04	5.00000000E+01	5.000000005+01			BLANK/REL CVR SCALE
															CVR CVR2 SCALE
•	0	•	۵	•0	ů	•0	ï	0.	Ŧ	•0	ï	• •			CVR CVR2
0 •0	WYIP	• 0	471P	0 •0	RG385	0 •0	LATRIS	0 • 0	LC4RT5	0 • 0	HSLRTS	0 • 0			DSC/CVR2 Conv Crit
• •	10.	•	10.	• 0	2.	•	2•	· c	° 2	• 0	ง ๋	•			EFC ESN BLANK
	• 06		•06		•06		•06	_	-06		•06				EFC TO INEQZYAX
ċ				•		ċ		ċ		•		<u>.</u>	1	TABLE	• • •
	٠.		•		7.	RGRS	ø		•		10,			۲ د د	SEO 40. Valje
m .d	6 •	55	51	ř. O	7.3	49	85	91	26	103	109	115		IIIFM MOJULE CV	ALTER

		•				•		:		•			
			•		•		•				6		ó
PXI		IAd		PZI		RGRV		IMA		LATV		LENV	
			å		•		•				•		•
PXI	-1.0000005+30	IAd	•0	IZd	• 0	RGRV	• 0	IHA	0.	LATV	•0	LONV	• 0
•06		•06		•06		•06		•06		•06		•06	
	6				•		•		•				•
	0.		6		•		0.0		•		ដ		•
												•	
:		8		_*		;		5.		?		7.	
	7 0.	13	19 0.	16 2	32 0.	37	4 3 0.	ტ \$	55 0.	61	67 0.	73	.0 6%

STA 1	CONSTANT	STA 1
HSLRIS TABLE	INTERPOLATION TYPE	LATRIS TABLE
ESN 2 TRAKM MOJULE		2 TRAKY NOTULE
E SN		ESN 2

ن

200000000000

	-1.05000000E+02
STA 1	CONSTANT
LONRIS T'BLE	INTERPOLATION TYPE CONSTANT -1.05000000E+02
ESN 2 TRAKM MODULE	
~	
ES.	

PFRP ITERATION OUTPUT

` w

BLOCKS SLEMENTS P . 02 MATRIX 11 MATRIK Lock Size R Š 포함 HOLF

. 480 11 11 NFIX BLOCKS V A 2. R , 0 N DEP. + FIXED TAPE 91 M MATRIX BLOCK SIZE = 6.15+96659E-02 NO. OF MATRIX 11 9

480

11

08S•

P

• 0 2

480

11

ELENENTS

HATRIX

1.26216092E+18 1 1.26156002E+18 1 1.250368737+08 1 1.25977347E+08 1 1.25961274E+08 1 1.25961274E+08 1 1.25634154E+08 1 1.25578809E+08 1 1.25578809E+18 1 1.25578809E+18 1 1.25578809E+18 1 1.25578809E+18 1 1.25363415659E+18 1 1.26516092EF008 H.26156002EF008 H.26136625EF008 H.2613647EF008 H.2613647EF008 H.26136409EF008 H.26136409EF008 H.26136409EF008 H.261363934EF008 H.26136394H.26136394H.26136394H.26136394H.26136394H.26136394H.26136 11468 11468 11468 11468 11468 11468 11468 11468 11468 11468

To the second

1..25250729E+08 1..251150756E+08 1..25111714EF+08 1..25015357EF+08 1..25015357EF+08 1..246877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877EF+08 1..24673877FF+08 1..24673877FF+08 1..24673877FF+08 1..24673877FF+08 1..24673877FF+08 1..24673877FF+08 1..24673877FF+08 1..24673877FF+08 1..24675FF+08 1..246738777FF+08 1..24675FF+08 1..24675FF+08 1..246777FF+08 1..246777FF+08 1..246777FF+08 1..246777FF+08 1..246777FF+08 25260729 252102649 25311113649 25311113649 254111136 2549246705 2549246705 2549246705 2549246705 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 2547505 254765 2547 \$\text{A} \text{A} \t 11.86.5 11.

" > "

3.6360000E+04 3.6720000E+04 3.708000E+04 ¥~FG ¥-F6 4-F6 7-F6 Y-F6 Y-F6 Y-F6 Y-FG Y-FG Y-FG V-FG 1.. 24017912E+C8 1.. 240116493E+O8 1.. 240116493E+O8 1.. 240180127E+O8 1.. 24028101E+O8 1.. 24038148E+O8 1.. 24038148E+O8 1.. 24038148E+O8 1.. 24038148E+O8 1.. 24038148E+O8 1.. 24038148E+O8 1.. 2403838E+O8 1.. 24153311E+O8 1.. 2415331E+O8 1.. 2415338E+O8 1.. 25113531E+O8 1.. 251185408E+O8 1.. 251186408E+O8 2.. 2511 \$\text{\$\ TITITY AND SOUND TO THE SOUND

4

. || ^

. . "0

3...72 3...72 3...72 3...68 5.25600000E+5.2560000E+ 1.25301605E+08 1.255461332E+08 1.255461332E+08 1.2554666E+08 1.2554666E+08 1.255739916E+08 1.25539916E+08 1.257378E+08 1.257378E+08 1.277378E+08 1.27731856E+08 1.27931856E+08 1.27931856E+08 1.27931856E+08 255015605E+08
255462379E+08
255462379E+08
25554132E+08
255541332E+08
25554653795E+08
25554653795E+08
25554795E+08
255739916E+08
257779796996E+08
2577796996E+08
2577335307E+08
2577796996E+08
25777966996E+08
25777966996E+08
2577796996E+08
2577796996E+08
257978666+08
25797866E+08 TRESS TIRES
1

· · 在京王(美年)人

ì

. .

なるかい 一大の

a Warreller

wife Startes.

1

 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2
 5.2</td 4 - FG 4 - FG 4 - FG Y-FG -FG 4-FG Y-FG Y-F6 Y-FG Y-FG
 3.2920

 3.38260

 3.38260

 3.38260

 3.48260

 3.5640

 3.5640

 3.5640

 3.5640

 3.7860

 3.6820

 3.6820

 3.6820

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 3.7860

 <t 1...281523 1...28321733 1...2832173 1...28327 1. \$\text{\$\ 177 177 177 177 177 173 183 1181 1183 1183 1183 1183

THE PERSON NAMED IN

ALL PARTY PLAN

Ŏ

٠, د

232

والمؤند شعيان والمارا

Tar. Lan.

A Section of the second section Sectio

A STATE OF THE PARTY OF THE PAR

And to military to be the design.

ند الا

Ž,

Ġ

ەيىم

, Št.,

¥-F Y-FG Y - F <u>__</u>) |- L Ĭ. ŭ, Ĭ. 9.66800000E+04 9.50400000E+04 9.57600000E+04 9.64200000E+04 9.64300000E+04 9.72600000E+04 9.75600000E+04 # 0 + U 4043000000000 40430000000000 8000000E 9.43200000 82 1. 26675698 E + 08
1. 26575695 E + 08
1. 2657565 E + 08
1. 2657565 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 26576 E + 08
1. 25576 E + 08
1. 25676 E + 08
1. 2 .24647460E+08 .24808735E+08 .24773029E+02 .24734360E+08 .24698743E+08 1...2693144690 1...26531241690 1...26531241690 1...26531241690 1...26531241690 1...26531241690 1...26531241690 1...265314160 1...265314 \$\text{2} \text{2} \t

ستنزا

٥

Y-FG - FG 1111 Y-FG Y-FG -FG 5 H C 94-٢ 1.00 kb 00 00 E + 05 1.00 kb 0 0000 1.14480000 00 1,1412 1.24654195E+08 1.2453370731E+08 1.24557121E+08 1.24537107EF+08 1.24537107EF+08 1.24537107EF+08 1.244580237EF+08 1.244580237EF+08 1.244580237EF+08 1.244580237EF+08 1.244580237EF+08 1.242380206EF+08 1.242380206EF+08 1.242380206EF+08 1.242380206EF+08 1.242380206EF+08 1.242380206EF+08 1.242380206EF+08 1.242380206EF+08 1.242133660EF+08 1.24213386F+08 1.2421338EF+08 1.2421338EF+08 1.2421338EF+08 1.24213386F+08 1.2421338EF+08 1.24213386F+08 1.24213388F+08 1.24213388F+08 1.24213388F+08 1.24213388F+08 1.2421388F+08 2437 $\begin{array}{c} \mathbf{a} & \mathbf{$ 279 309 309 310 3112313 283 285 302 304 304 304 304 305 283 TILLARESS STATES
1.15640000E+005 1.15720000E+005 1.15720000E+005 1.17720000E+005 1.1772000E+005 1.1772000E+005 1.177200E+005 1.177200E+005 1.177200E+005 1.17720E+005 1.17720E+ 0000000 .2960C100E+05 .29960000E+05 2242998E+08
2244292382E+08
2244292382E+08
2244292382E+08
2244292382E+08
22463842E+08
22533438E+08
RGR5 RGRS AGR5 RGR5 RGR5 **SGRS 2685 36R5** 3333 345 345 345 345 345 343 3 th to the to t 360 353

< j

٠,٠

in Const

```
1.3032000EF05

1.31060000EF05

1.31060000EF05

1.32060000EF05

1.33260000EF05

1.33260000EF05

1.333920000EF05

1.33920000EF05

1.33920000EF05

1.33920000EF05

1.33920000EF05

1.33920000EF05

1.33920000EF05

1.33920000EF05

1.33920000EF05

1.349200000EF05

1.349320000EF05

1.349320000EF05

1.469320000EF05

1.469320000EF05

1.469320000EF05

1.469320000EF05

1.469320000EF05

1.469320000EF05

1.469300000EF05

1.46930000EF05

1.4693000EF05

1.46930000EF05

1.46930000EF05

1.46930000EF05

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.4693000

1.469300

1.469300

1.469300

1.469300

1.469300

1.469300

1.469300

1.469300

1.469300

1.469
                        ¥-FG
4-FG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Y-FG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   11111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Y-FG
Y-FG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Y-FG
   1.42920000E+05
1.43640000E+05
1.44600000E+05
1.44360000E+05
1.44720000E+05
1.44720000E+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.45440000E+05
    1..2567148

1..2567442526

1..2569548256

1..25695475606

1..2770567566

1..277056776606

1..277056776606

1..277056776606

1..277056776606

1..277056776606

1..277056776606

1..277056776606

1..277056776606

1..277056776606

1..277066776606

1..277066776606

1..277066776606

1..277066776606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606

1..28656066606606

1..28656066606606

1..28656066606606

1..28656066606606

1..28656066606606

1..2865606066606
                            26671387

26681425265+06

26681425265+06

26681425265+06

270958865+06

271661715+06

2737515+06

2737515+06

2737515+06

2737515+06

2737515+06

2737515+06

2737515+06

2737515+06

2737516+06

2737516+06

27774375+06

27774375+06

27774375+06

27774375+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

277743755+06

2777437355+06

277743755+06

277743755+06

277743755+06

2777455+06

2777455+06

2777455+06

2777455+06

2777455+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06

277745+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              28271460E+08
283831445+08
284837072+08
28489486E+08
28540152EE+08
28534191E+08
28534191E+08
28634703E+08
2864703E+08
28772907E+08
2895406+08
2895406+08
2895409E+08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      29056441E+08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 28996425E+08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    29327368E+08
           3393
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        395
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               395
398
398
399
400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               401
         TITE TITE TERMS OF THE TERMS OF
```

1.6056000E+0 1. 2906 3520E + 0 6

1. 29110 388885.0E + 0 6

1. 29113 3520E + 0 6

1. 29113 3520E + 0 6

1. 2912 3620E + 0 6

1. 29219 536E + 0 6

1. 2922 58510 5E + 0 6

1. 2882 59510 5E + 0 8

1. 2882 193E + 0 8

1. 2883 193E + 0 8

1. 2883 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 8

1. 2885 193E + 0 28568569E+0 9 1. 2910 8 3620 E 1. 29115 3620 E 1. 29115 3620 E 1. 29117 30520 E 1. 29117 30520 E 1. 29117 30520 E 1. 29217 30520 E 1. 2922 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2932 B 1. 2933 B 1. 2932 28522337E+08 **26R5**

```
9
                                                                                                                                                                                                                                                 .
                                                                                                                                                                                                                                                             ٦
                                                                                                                                                                                                                                                             EDITED
 RG25
ċ
(G) 1.20474304 (G) 1.20425643 (G) 1.20425643 (G) 1.20425643 (G) 1.20425443 (G) 1.2042543 (G) 1.2042543 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.204254 (G) 1.
 Ö
                                                                                                                                                                                                                                                             WIND !!
 ċ
```

1.24843764E+08	-6.01698165E+37	1.00000000E+03	4. 31426793E+03	8.94589445E+03	1.75507867E+03	3.00000000E+01	3.90100000E+01	-1.04985000E+02	5.00000000E+01	
VAL	VAL	VAL	VAL	VAL	VAL V	VAL	VAL	VAL	VAL	
. 425	9440	.467	.487	.508	.529	9546°	• 555	.571	.591	
CPTIME	CPTIME	CPTINE	CPTIME	CPTIME	CPTINE	CPTIME	CPTIME	CPTIME	CPTIME	
1.0000005+03	1.0000005+03	1.000000=+03	5.60000000+00	5.00000=+00	3.000000E+00	3.600000=+01	1.0000000-02	1.5000005-02	5.0000005+01	
DLI	10	011	0	DLI	011	DLI	1		9. 1.	
d I X d	DYTD	971P	DIXA	4 T D	47.7	9.5835	ATSTS	1	HSL2T5	
6	ď	9 5	0	6	ő	6	6	9	9 0	
0.1		3 (C	2 -	-) C	, ~	, 0	, 0	n 6	

よって よろら て ちらじょ

MCDY)T*MCDY) 0. ACTUAL QGMK 0. SOLUTION VECTOR DELTA, LGK

	•		.		•		•		•		d
	-1		~4		-4		-4		-+		-
PXIP	-4	PYIP	~	PZIP	m	VXIP	*	VYIP	Ŋ	VZIP	ď
_		_									

	SIG(K)	2.097146+01	3.57102E+01
	SIG(0)	•	9.
	GAM(0)	1.248435+08 9.	-6.017086+07 0.
10	5(K)-6(0) (6K-60)/S60	•0	.0
RECONSTRUCTION PARAMETERS	S(K)-6(0)	••	•
RECONSTRUCT1	GAH(K)	10 1.2484276417565+08 0.	13 -6.017091652246E+07 0.
	VESV	10	13
	PAZAM VESY	cIXd	cIAd
	T	+	~

PZIP 10 8. VXIP 10 4.309257567E+03 0. VYIP 10 8.94089452501E+03 0. VZIP 10 1.750078671490E+03 0.	6.91703E+0£	2.94932E-63	9.74449E-04	4.65456E=03	
10 8. 10 4.309257567E+03 0. 0. 10 8.940894452501E+03 0. 0. 11 1.750078671490E+03 0. 0.	:	•	•	å	
10 8. 10 4.309257927567E+03 0. 10 8.940894452501E+03 0. 10 1.750078671490E+03 0.	:	4.30927E+03	8.940895+03	1.750086603	
O O O O	•	0.	Ġ	•	
O O O O	:	•	:	•	
O O O O		4.309257927567E+03	8.9408944525115+03	1.750078671490E+03	
d IZA A XI A A XI A A X I A	10	7.0	0.7		
m t m o	3 P21P	dIXA +	dIAA 8	dIZA S	

\$, \$, PREDICTED QK 0.

ITER CYCLES 1.

MAX ITERATION CYCLES, PFRAFINAL SOLUTION VECTOR

RECONSTRUCTION PARAMETERS

					•			
*	PAZAM	VESA	GAHCK	G(K)-G(0)	(GK-GD)/SGD	GAMCO	S16(0)	SIG(K)
+	dIxd	0.7	1.2484276417505+08	•	•	1.24843=+08	•0	2.097146+01
N	dlåd	C T	-6.017081652246E+07	•	.0	-6.01708E+07 0.	•	3.57102E+81
m	dI2d	0.7	• 0	• 0	0.	• 0	•0	6.91703E+01
+	VXIP	0.7	4, 309267927567E+63	• 0	•	4.30927E+03 0.	•	2.949326-03
w	dIAA	64	6.940894452501E+03	• 0	•	8.94089E+03 0.	• 0	9.744495-04
9	412A	70	1.753078671480E+03	• 0	•	1.75008E+03 0.	••	4.85458E-03

PARTIALS OF P PARAMETERS M.R.T. Q PARAMETERS , DP/00

2,403925329E-05	1.546306603E+01
1.135634126E+01 2.67%199722E+00 -8.534854886E-04 3.912014792E-04 2.403925329E-05	2.457909757E+06 6.08768932kE+05 -1.825719701E+02 8.062540580E+01 1.546306603E+01
-8.534854686E-84	+1.625719701E+02
2.674195722E+00	6.087689324E+05
1.135634126E+01	2.4579097575+06
5.664587238E+CO	1.241844311E+06
RGR85 1 1 LAT2T5	2 1 LONRTS

3 1	9.6403693936+05	1.9909585795+66	1.9909585795+66 2.558905872E+05 -1.456543337E+62 6.632114250E+01 5.624328963E+00	-1.456543337E+D2	6.632114250E+01	5.624328963E+00
4 1 4 1	4 1 -3.354893239E+00	-6.1150824392+00	-6.115882439E+08 -1.439246276E+88 4.673891838E-84 ~2.849798535E-84 -6.228623871E-85	4.673891033E-04	~2.049790535E-04	-6.2286230715-05
00/	OP/O3 * SIGHA Q					

LATRIS
LATRIS
2 1 1.700246362E+02 3.3651979652+02 8.334838084E+01 -2.499647614E-U2 1.100246362E+02 9.926940620E-04
LGNRTS
3 1 1.701525198E+02 3.514041892E+02 4.516468865E+01 -2.570798990E-02 1.205868165E-02 9.926940620E-04
HSLRTS
4 1 -1.527446620E+02 -3.053041219E+02 -7.196231382E+01 2.336945516E-02 -1.024895268E-02 -3.114311535E-03 7.211775988E-04 1.1736044265-02 3.406902379E+02 8.022587166E+01 -2.560456466E-02 1.6993761896+02 **RG**235

: J LONER TRIANGULAR HALF 6 ROWS 6 COLS

6.4656457675-01 2.2584056365-02 6.852776175E-01 -8.590196201E-01 9.698319105E-01 -9.996235177E-01 4.967433940E-02 -9.998767855E-01 -9.751055861E-01 1.4353245906+02 9.9960209475-01 9.7255563202-01 8.5398203135-01 6.681692166E+02 FIXED INPUT P PARTIALS, ROW STORE 9.5776979J8E-01 3.994476199E-01 4 1 -9.998988433E-11 VYIP 9.761010562E-01 3.9986931655-01 3.317679625E+02 3 1 VXIP PYIP

3.9606268685-03

1.552778195E+01 2.842371821E+00 -4.336548843E-01 -3.761035621E-00 1.183085271E-05 9.0092411378-01 -5.8853260028-09 -2.4547032555-05 1 -1.3497129+65+01 -3.6139892425+01 -5.8975007515+66 1 7 -1.364796153E-05 PYIP 2 1 5.983965402E+30 1.552778195E+01 2.842371821E+00 -2 7 7.036808285c-06 4.345502043E-01 -1.603890045E-02 8.799652176E-01 -4.326541129E-02 1.7388778498-01 -6.5284314818-03 3.439636230E-05 -5.476529831E-09 4.162051318E-07 2.007961622E-05 3.503828024E-02 -1.988604841E-01 7.14736511E+01 7.19112408E+01 9.598498360E-01 -9.752535446E-01 5. + 89108918E-04 RSS N, EE RSS OF DIAGE 1.132136619E-03 1.3254737055-02 2,286056922E-01 -9.752509488E-01 -9.968865864E-01 -9.566062978E+04 -1.969368138E+05 -3.853498348E>04 -9.309383753E+01 -9.036483776E-62 9.946198978E+01 7,921005735E+00 2.22589373E+01 PSI STROAD DEW + CORR COEFFS OF FIXED INPUT DEP VARIABLES -3.861199248021-04 -7.996754763E+04 -1.868522374E+04 -3.8713494891-02 9.999753651E-01 9.800190162E-01 -1.988724695E-01 -1.999705898E+08 -4.072757568E+08 -7.997175265E+04 -1.875632654E-61 9.598461482E-01 *.565075327E-01 -3.853504243E-01 9.99999999E-01 6.7465313125+01 **EAST STO 0EV=** EIGENVECTORS FOR DIAGONALIZING COV. SUBMATRIX 7 4055 -1.902212057E-04 -5.325007439E-A5 -5.535639302E-11 5.144687494E-01 -1.904550737E-01 4.564975783E-01 -3.853619538E-01 2. J233073295+01 6.79192457E+01 LOWER TRIANGULAR HALF -40607. 5.9513999255-11 6.291727532E-01 7.712018566E-01 9.202501075E-06 1.3109894322+31 NORTH STO DEV MATRIX CLEMENTS , TH RGRV PYI 22 921 X

-6,34844193

-85.96279807

.0710106, -.9913278, -.1105746)

: • **•**

		1.57553635E+00	
		2.18308497E+01	916E+12
-4.50155916	82.20679495		1091E+01 1.34701
0734862) -176.40466698	1155893, .9907639) -121.52136854	STANJARD DEV ALONS PRIN AXES OF PROB ELLIPSOID = 6.84993302E+01	0.95 PER GENT PROB. SPHERE = 5.05608091E+01 1.34701916E+12
9949531,3625158,	0708929,1155899,	STANDARD DE	RADIUS OF 50,95 PER

-10203. MATRIX ELEMENT=

2E+01				1.926283476+00		• 0
RSS OF DIAG= 7.16442342E+01				2.18964531E+01	1.34171706E+02	= 7.164423E+01
70 N					7170	RSS=
PSI	4.86147391	-32,15918673	-57.38592447	6.8188880E+01	5.65383522E+01 1.341) GHT=172800.00
ZING COV. SUBMATRIX THETA	+70) -6.88135280	-93.81593484	75.88319350	ES OF PROB ELLIPSOID =	CENT PROB, SPHERE = 5.6538.	EM -13203000000,0000000000000000000000000000
EIGENVECTORS FOR DIAGONALIZING COV. SUBMATRIX Vector theta	.98922+8,1193827, .08+7+70	(1563406,3446957,5322734)	.1351296, .5217633,5+23200	STANDARD DEV ALONS PRIN AXES OF PROB ELLIPSOID =	RADIJS OF 50,35 PER CENT PR	RIC STAND DEV, SORR COEFF ELEM -10203000000,000000000 I J LOWER TRIANGULAR HALF 3 ROWS 3 GOLS
	_	•	U			

FIXED INPUT 2 PARTIALS, ROW STORE

2.269686856E+01 2.703553028E-01 6.731533557E+01

ຕໍ່	•
• 0	ن
• 0	• 0
•	• C
QGRB5 1 1 3. 1 7 0.	2 1 3.

•

•	•0		1.154361363E-06	2, F65845086E-01	1.208721164E-01	1.215629732E-05 -6.029761665E-07
• 0	• 0		211774896E+81 2.773875046E+08 2.972283590E-81 -2.294838327E-0\$	549248697E+06 6.163787836E+05 7.798998914E+04 -5.804866662E+00	213230513E+06 2.9f3251741E+05 2.\$51176086E+04 -2.278911465E+00	
•	• 0	PAZAMETERS , DV/DQ	2,972203590E-01	7.798998514E+04	2.551176086E+04	2996014382+00 -1.448473539E+00 -1.639789230E-01
GS	• 0	M.R.T. Q PAZAME	2.773075046E+08	6.163787510E+05	2,903251741E+05	-1.4484733395+00
• 0	• 0	UT DEP VARIABLES M.R.T. Q	1.2117748906+01	2.5492486976+06	2.2132305135+06	
• • •	•••	PARTIFLS OF FIXED INPUT	5.292612650E+00 5.4616336;2E-06	1.138699860E+06 1.153567450E+00	9.3825417586+09 9.9247771946-01	1 -2.769733992E+00 -6.7 -2.842709564E-06
LONATS 3 1	2 - A - A - A - A - A - A - A - A - A -	PART			A ← M E m m	460

• 0	-03	-03	-03	
3.4631440882-05	3,5129766245-05	2,1333928895-05	6.079145962E-04 -3.014860833E-05	
71897	51298	13339	01488	
1E-0	7E-0)0 - 36	2E-0	
\$6060	61709	27 57 3	968 71	
8.916610769E+00 -6.882090931E-04	1.067784284E+01 -7.947617094E-04	4.502828792E+00 -4.022278735E-04	5.079	
8	01 -1	7- 00		
769E+	28 4E+	792E+	152E+	
07991	57784	12825	98686	
6.9	1.00	4.5	-8-1	LES
E+01	E+01	E+ 01	-3.1498887195+82 -7.2423676965+81 -8.198946152E+88	COEFFS OF FIXED INPUT JEP WARIARLES
25137	11602	39323	67696	JEP V
0.319225137E+01	8.439020917E+01	5.124233323E+01	.2453	TOUT
			2 -7	£0 I
i. 635324669E+02	0.436.6	9 E + 0	0+361	FIX
32460	25296	3518	8007	FS 05
3.035	3.4982528635+02	3.906351856E+02	3.149	
0 0 0 3			90	30R3
1.5076437356+92 1.638550036E-04	1.559027728E+02 1.579383833E-04	1 1.656G13620E+02 7 1.751723179E-04	36413 4 1 -1.384865436E+02 4 7 -1.421352782E-04	P+Q STNORO DEV + SORR
37643 3655û	9383	56618	34665	JR0 J
	11.5	1.6	-1.3	STAC
AGRA5	22 4		10 L	d
υ ·		, ;	2	

J LOWER TRIANGULAR HALF 7 RONS 7 COLS

DAVDE . SIGNA Q

6.772001677E-05 8.841390168E-01 9.881018126E-01 -9.938652925E-01 9,999777725E-01 8,841008502E-01 8,883425786E-01 -8,850761991E-01 -3.987949831E-01 -8.820805671E-01 -9.936640659E-01 -9.977541137E-01 1.392095143E-03 8.550537154E-01 9.881041833E-01 1.854084047E+01 9.999999967E-01 8.812643120E-01 1.626815283E+02 8.813229159E-01 7.1147183795+02 9.992639955E-01 8.734733349E-01 8.970684269E-t1 A. 971044636E-01 3.994975443E-01 3.205705231E-04 RGRV

3.103103575E+02

MATRIX ELEMENT= -+0687.

2.76691625E+00 7.925059476+02 7.92722800E+02 7.57330519E+01 RSS N.E= SSS OF DIAG= 1.53023316E+03 7.89892065E+02 7.75393463E+02 83.21278993 -6.68511814 1.16746592 5.04578535E+02 PSI EAST STO DEV≈ STANDARD DEV ALONS PRIN AXES OF PROB ELLIPSOID = -79-1842780+ -89.16035272 10.57886457 EIGENVECTORS FOR JIAGONALIZING COV. SUBMATRIX VECTOR RAJIUS OF 50,95 PER CENT PROB. SPHERE * NORT4 STD DEV= 1.63600649E+02 .0016906, -.1181702, .9925919) .9824772, .1852657, .0203747) .1863750, -.9755575, -.1164128)

-10203. MATRIX ELEMENT= 7.93063667E+0? RSS OF DIAG= ISd EIGENVECTORS FOR DIAGONALIZING COV. SUBMATRIX VECTOR

23-14177766 78.46866211 .1638186, .9009748, .3930077)

4.89155165E+00 7.5+565643E+01 1.53070946E+03 7.694524715+92 2,72997995 66.67892515 5.05231574E+02 STANDARD DEV ALONS PRIM AXES OF PROB ELLIPSOID = -139.04941089 -12.69909110 RADIUS OF 50,95 PER CENT PROB. SPHERE B (-.1292096, -.3742037, .9163006) .97443090 -.2195012, .0476291)

• 7.930637E+02 RSS= G4T=172800.00 RTS STANU DEVISORR COEFF ELEM -10203000800.00000000 I J Lomer Triangular Half 3 40ms 3 60ls

1 1 3.07897358886+01 2 1 -9.2928409+45-01 7.888908+615+02 3 1 2.33803u339E-61 1.0933429155-01 7.5187861925+01

STHORY DEV + CORR COEFFS OF INDEP P PARAMETERS

LOWER TAIRNGULAR MALF 6 20MS 6 COLS

9.938445204E-02 -5.818693943E-01 -2.936030286E-01 3.1576820766-02 -5.2949175756-01 9.7444850546-01 -9.960450559E-01 -4.97035C122E-01 -5.876298462E-01 2.949322972E-03 6.9170324455+01 3.285939736d-01 5.923703442E-01 4.622172263E-C1 7.544577442E-D2 6.0447G234BE-C1 6.275400593E-G1 9.179000756E-01 3.571019674E+01 2.697136719E+C1 OIAd PZIP VZIP VXIP VYIP dIXd

4.854540678E-03

J LOWER TRIANGULAR MALF 6 20MS 6 COLS

STNORD DEV + JORG COFFES OF INDEP P+0 PARAMETERS

PXIP 1 1 3.324301117E+02 PYIP

5.375771605E+01 -5.687027868E-01 5.261931543E+01 6.265262861E+03 9.388117610E-01 8.73451206%E-01 -9.983000861E-01 2.260507177E-02 2 1 3.995460235E-01 6.590229416E+02
3 1 3.9022729+1E-01 8.75625338E-01 1.593301621E+02

VXIP
4 1 -9.998836951E-01 -9.9953663862-01 -8.899006254E-01 4.996146752E-02

VYIP
5 1 9.979571575E-01 9.388117810E-01 8.734512064E-01 -9.983000861E-01

VZIP
6 1 5.707117356E-01 5.649716439E-01 5.375771605E-01 -5.687027868E-01 5.7071173562-01 5.6497164392-01

TRAJECTORY OUTPUT SUPPRESSED BY INPUT

TIME REMAINING

.221

HAJOS LOOP TIME

明日、日本京都最大 とこ

The second of th

4.5 TAPE OUTPUT

4.5.1 9300 Tape Output

Subroutine T9300 of INP1M can generate a BCD file for subsequent transmission over a 9300 data line. The data output is formed after execution of a TRP end of run control card 1. The data is retrieved from the standard output file by searching for special Hollerith separator codes that separate the desired data.

The 9300 file, which is created only if a header card (H) was input with MS as the first two characters of the card, cor ains data in the following order:

MS (descriptive data found on H card)

SECTION ONE ********

Output of data enclosed within the two code words 9301,

IFTRP inputs

SECTION TWO ******** DATA *******

Output of data enclosed within the two code words 9302,
data cards modifying the milestone

SECTION THREE ****** ANALYTICAL AIDS ***

A. INITIAL WEIGHTING MATRIX FOR OBS

Output of data enclosed within the two code words 9307

SECTION THREE ****** ANALYTICAL AIDS ***

A. FINAL WEIGHTING MATRIX FOR OBS
Output of data enclosed within the two code words 9303

SECTION THREE ***** ANALYTICAL AIDS ***

B. LASI COVARIANCE MATRICES - STD DEV + CORREL COEFF Output of data enclosed within the two code words 9304

SECTION THREE ****** ANALYTICAL AIDS ***

C. FINAL SOLUTION VECTOR
Output of data enclosed within the two code words 9305

SECTION FOUR ******* RESULTS ******

A. ANALYTICAL SUMMARY

Output of reconstruction parameters enclosed within the two code words 9309

ANALYSTS COMMENT

Descriptive data found on H cards beginning with 4A

B. MISSILE SUMMARY COMMENT

Descriptive data found on H cards beginning with 4B

SECTION THREE ****** ANALYTICAL AIDS ***

C. RESIDUALS - PRINTER PLOTS

Output data enclosed within the two code words 9306

SECTION FOUR (CONTINUED)

B. MISSILE SUMMARY

Output of launch point, FECO, apogee, reentry, and impact conditions enclosed within the two code words 9300

SECTION FOUR (CONTINUED)

C. ANALYSTS FINAL COMMENTS

Descriptive data found on H cards beginning with 4C

Many of the above sections could have several versions when the program is iterating. Only the last iteration generated is output to the 9300 file. The code characters 93XX and YYY are in print columns 121 through 124 for 93XX and in columns 131 through 133 for YYY. YYY is the iteration number. File no. 70 is used for the 9300 output file. Subroutine T93HP is called to search for and output H header cards.

4.5.2 Special Print Tape Output

This output form is provided so that the user can specify the variables and the order in which they are desired as a time history output. The standard TRP block print is based on a fixed list of variables shown in Table 4-8. It is possible to select by input six variables to be included in the standard block print, but occasionally more selectable variables are desired (possibly at a print interval different from that of the standard block).

Table 4-8. Print Format Key

	Month	Day	Year	Hour	Min Sec	Julia	n Day	GMT
VEH/								
ESN	TD	TGO	1	TGOG	TDURP	1	TDURS	
	PE	PE2	2	PE3	PE4	2	PE5	PE6
	ARGI	ARG2	3	ARG3	ARG4	3		ARG6
	DER 1	DER2	4	DER3	DER4	4	DER5	DER6
ENVRM	н	RGRV	10	PRES	LTCV	10	LATV	LONV
DIVINI	DENS	ATEM	11	VS	GMI		HNMI	LONVI
SUN or	RXB	RYB	12	RZB	SXVE	12	SYVE	SZVE
SHADOW		SVEL		DAY	SXB	13	SYB	SZB
Shabon	GMT	GME	14					
		HMET	14	GHAO	SHINT	14		EIA
	TMPR	HMLI	15	ALFAS	SGXI	15	SGYI	SGZI
	GMGXI	GMGYI	16	GMGZI		16		
тмотм	PXIP	PYIP	20	PZIP	VXIP	20	VYIP	VZIP
	VSXI	VSYI	21	VSZI	AMI	21	VMI	VCIRC
	ASXI	ASYI	22	ASZI	ASMI	22	VSI	GACC
	VDR	INCL	23	ECCEN		23	PERG	RANG
	AZVA	AZVI	24	AZRLN			GAMA	
	PXRL	PYRL		PZRL	VXRL	25	VYRL	
	PXIL	PYIL	251	PZIL	VXIL	251	VYIL	VZIL
	AXI	AYI	26	AZI	BANKI	26	VSMI	VVEN
	ASXB	ASYB	27					
LOCCEC				ASZB	VSXB	27	VSYB	VSZB
LOSSES	AII	VII	270	VLG	VLLAM		VRGD	RGD
IMPCT	TIMP	ECAIMF		RANGI	LTCIMP			LONIMP
ORBIT	REV	SMAX		MANM	NODE	290	ARGP	TAUPM
	MMTN	P		DMANM			DARGP	
	ANAM	ECA		CANG	DVDR		PERL	
	TAPG	APGL		LONA	HAPG		HPER	
	BRNG	LPGL	294	LPLN	GBAL	294	GEAL	SLRM
RMOTM	THI	TH2	30	TH3	DTH1	30	DTH2	DTH3
		DOMYB		DOMZB	OMXB	31	OMYB	OMZB
	IBII	IB12	32	IB13	IB21	32	IB22	IB23
	IB31	IB32	33	IB33	TH4	33	DTH4	
A 1777 1 4 2 4	A T T A	D E-07.4	40		\			
AERMM	ALFA	BETA		ALFT	MACH	40	QALFT	
	ADH	FAXBI		VAXI	VAYI	41	VAZI	VAMI
	FAXB	FAYB	42	FAZB	MAXB	42	MAYB	MAZB
	CX	CY	43	CZ	CL	43	CM	CN
		(Keplac	e line	43 when	AERM13 us	ed)		
	CD	масно	43	СХ	CY	43	CZ	QS
PROPM	FTXB	FTYB	50	FTZB	MTXB	50	MTYB	MTZB
	FTM	WPRP		DWPRP		51	CBT	TMD
	IFTM	AVEF	52	PREFT	TISP	52	ISP	ISPAV
	FT	DWPR	53	WPR	WTI	53	EPD	EYD
	•				•	•		•
	•	•	•	•			•	EVD5
	FT5	DWPR5	57	WPR5	WTI5	57	EPD5	EYD5
STRTM	WT	M	60	PCGXQ	PCGYQ	60		VCGXQ
	PXI	PYI	61	PZI	VXI	61	XXX	VZI
	IXX	IYY	62	IZZ	IXY	62	IXZ	IYZ

Table 4-8. Print Format Key (Continued)

DPGXM	COMXB	COMYB	70	COMZB	COMI	70	COM2	сомз
CONTM	ERLLC	EPCHC	80	EYAWC	ERLLR	80	EPCHR	EYAWR
}	DERLLO	DEPCHO	81	DEVAWO	DERLLR	81		RDEYAWR
ì	CPHE	CTHE	82	CPSE	DCPHE	82	DCTHE	
}	0, 112	OTTLE	02	0100	DOTTE	02	DOTTE	DOPUL
CYCXM	LFT1	LFT2	90	LFT3	HFT1	90	HFT2	HFT3
1	DTIL	DT2L	91	DT3L	DTIH	91	DT2H	DT3H
	TCl	TC2	92	TC3	TC4	92	TC5	TC6
i		(Output	only '	when Mode	1 JUNK3 is	selec	cted)	
JUNK3	RELR	RELV	106	DRELR	RELPXI	106	RELPYI	RELPZI
				RELPZB	_			BRELVZB
		PROXR			RELVXI	108		RELVZI
1	LAMT	LAMP	109	LAMY	DLAMT	109		DLAMY
1	DAMI		107					
TRAKI	RGR	AZR	110	ELR	DRGR	110		DELR
1	LAI	LA2		LAP	LAY	111		QR
1	PUR	PVR	112	PWR	VUR	112	VVR	VWR
	DR	PR	113	QR	DPR	113	DQR	DDRGR
1	TN	TNP	114	PULSE		114		
	•	•	•	•	•	•	•	
1 •	•	•	•	•	•	•	•	•
TRAKI	RGR4	AZR4	140	ELR4	DRGR4	140	DAZR4	DELR4
	LAI4	LA24	141	LAP4	LAY4	141	PR4	QR4
	PUR4	PVR4	142	PWR4	VUR4	142	VVR4	VWR4
1	DR4	PR4	143	QR4	DPR4	143	DQR4	DDRGR4
ł	TN4	TNP4	144	PULSE4		144		
				M Model 3				
TRAK3	RGR5	AZR5	5		DRGR5	5	DAZR5	DELR5
	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•
TRAK3	RGR9	AZR9	9	ELR9	DRGR9	9	DAZR9	DELR9
1		(SENS	M Model 3	print)			
SENS3	VIHT	RLOS1	141	VIHA	PSITI	141	ALFVI	DELVI
SATI	VILT	VILN	142	RIVI	RIAVI	142	RIOVI	TAUI
	TAAl	HKM	143	PCTJ1	TJI	143	ARIVI	URIVI
}	RAAl	AAAl	144	VILA	AZVI	144	ELVI	AKI
1				• •				
1:	•	•	:	•	•	•	•	•
SENS3	V4HT	RLOS4	141	V4HA	PSIT4	141		'
SAT4	V4LT	V4LN	142	RIV4	RIAV4	142	RIOV4	TAU4
1	TAA4	HKM	143	PCTJ4	TJ4	143		URIV4
1	RAA4	AAA4	144	V4LA	AZV4	144		AK4
[MAAT	AAAAT		SM Model S		1-1-1	~ L 1 T	2342-X
SENS5	TIMU	IMUM		VSXA	ASAU	110	ASAV	ASAW
1 051,00	NAL	NBE	111	NGA	NU	111	NV	NW
1	PHIAL	PHIBE	111		VMAU	111	VMAV	VMAW
1	TASIU	TASIV	112	TASIW	VMAU VSAU	112	VMAV VSAV	VMAW VSAW
L	TWOLU	TWOTA	113	INSIM	V SA U	113	V OA V	Y SA W

This capability is selectable by the input of one T type table TPRVT and one interpolation type table TPRIT. Table TPRVT is used to specify the variable names and the order desired. Table TPRIT is used to specify the interval at which this output is desired. These inputs are described in Sec. 2.9, Vol. II (INFXM module).

The data is written on file ITFRNT in BCD line image form. ITPRNT is in the input labeled common block of the service module (SERVM) and is preset to be TAPE74. After TRP is executed, this file is normally rewound and copied to OUTPUT to be printed. It is possible to put this information on a tape to be saved, of course, by requesting a tape for file TAPE74.

4.5.3 Data Tape Output

This output option produces binary, floating point time history tapes of certain variables. It is specified by the input of a T type table PLOTT to identify the variables and their order. Interpolation type table PLINCT is input to specify the output frequency. The information is written on file ITDATA, which is in the Service module labeled common inputs and is preset to be TAPE99.

The tape format is binary, up to 500 words per record with floating point values. Each case generates one file or tape with multiple files possible.

There is a second data tape capability, which is completely independent of the first. The T type table is PLOT2T, the interpolation type able is PLIN2T, and the output file variable is ITDATB, preset to be TAPE75.

All of these input tables are described in Sec. 2.9, Vol. II (INFXM module).

4.6 CONTROL INTERFACES

TRP is designed to operate as a stand-alone analytical program under the operating system; interfacing with other data processing software is minimal. The one mode of interfacing is through the PFS

(permanent file system) file IFTRP, which is created by other modules for use by TRP as an input file for observational data. PFS is designed so that IFTRP cannot be retained as a PFS file more than 48 hours after it is created. TRP must therefore be run within that period to avoid losing the data. When TRP is executed in this mode, it punches cards that replace the IFTRP file as input for future runs.

4.7 OPERATING SYSTEM INTERFACES

The following major operating system programs are required for use with TRP:

UPDATE

Maintains the TRP source file

FTN

FORTRAN extended compiler

LOAD/NOGO

Loader

The next set of required operating system functions are minor and callable by control cards:

REQUEST

Tape assignment control card

REWIND

Rewinds a file

COPYBF

Copies a binary file

RFL

Requests field length

ACCESS

PFS access card

DEFINE

PFS definition card

EXIT

Error processing control card pointer

COPYCF

Copies a coded file

COPYBR

Copies a binary record

COPYSBF

Copy-shifts a binary file

The following list shows all system subroutines called by TRP that must be available on the FTN system library:

LOCF

Location function: gets absolute address

DUMP

FORTRAN core dump routine

DECODE

Decodes a card image

READEC Reads ECS

WRITEC Writes ECS

EXIT Job termination call

ASIN Arc sine function

ACOS Arc cosine function

ATAN Arc tangent function

ATAN2 Arc tangent function (two parameters)

ALOG Natural log

ALOG10 Log to the base 10 TAN Tangent function

LENGTH Length of record function

SIN Sine function

COS Cosine function
BUFFER IN Buffer read

BUFFER OUT Buffer write

ABS/IABS Absolute value function

SYSTEMP Error traceback call

PDUMP FORTRAN core dump and proceed

4.8 STORAGE AND TIMING REQUIREMENTS

4.8.1 Storage

Storage requirements for TRP vary in two ways. First, the TRP storage configuration varies as a function of the models necessary for the simulation. Using YEOMAN, different program configurations can be generated. Second, the storage used for data input and PFRP working storage obviously varies according to the amount of input data and the number of observations, parameters, etc.

The operational version (basic models) of TRP is used to show program storage allocations (Fig. 4-29). An algorithm is given as a function of several variables to indicate the data storage requirements

Data storage =
$$15m + \left(99 + 15.4 \frac{n}{NVAR}\right) V + 17 N + 15q + 1000_{10}$$

Fig. 4-29. TRP Storage Requirements

. 0 ·

e, 0, e

where

m = number of P parameters

n - number of observations

N = number of fixed dependent variables

q = number of Q parameters

NVAR = number of observations per time point per satellite

V = number of satellites

Note that a constant value of 1000 is a probable upper limit for table data plus ECL data plus integration storage.

A typical set of numbers might be:

n = 1050

m = 40

q = 0

N = 16

NVAR = 3

V = 1

The data storage required for this set is 7361_{10} or 16301_8 , and when it is added to the program length of 12800_{10} or 31000_8 , the total required storage is 20161_{10} or 47301_8 .

4.8.2 Timing

Timing varies according to the kind of simulation being run and its relative complexity. Computer time for TRP is best expressed as central processor (CP) or peripheral processor (PP) time. These can generally be added to determine total computer time. The CP and PP time requirements for postflight reconstruction can be expressed as a function of two variables:

m number of P + Q parameters, nonbias type (two-way partials count as two)

TI - time interval of the observed data, min

$$CP_{1}min) \cdot C_{0} + C_{1}TI(m + 7)$$

$$PP (min) - P_0 + P_1 TI(m + 7)$$

where (for a CDC 6600 computer)

$$C_0 - i$$

 $C_1 = 1/30$

 $P_0 - 6.5$

 $P_1 = 1/15$

These figures are based on the assumption that one major loop, five minor loops, and a final converged trajectory will be run.

When this algorithm is used for maximum time estimates, 20% should be added to include uncertainties.

SECTION 5

TRP CHARACTERISTIC 3 AND CONVENTIONS

A detailed discussion of major aspects of the TRP system is presented in this section. Users should pay particular attention to Sec. 5.1, which describes the implementation details of some of the more important aspects of the TRP system. TRP input characteristics, module structure, output print, trajectory design and reconstruction, and general argument functions are described here. Programmers will be particularly interested in Sec. 5.2, which outlines the programming conventions used in the original design of TRP; these conventions should be adhered to in further program development. Program symbols, FORTRAN statement conventions, program variables, table and file usage, and utility subroutines are presented. However, both users and programmers should scan the entire section.

5.1 TRP CHARACTERISTICS

To best use the program, the user must be familiar with the TRP characteristics described here. The mechanization principles used in the design of TRP are stated in this discussion.

5.1.1 TRP Input Characteristics

5.1.1.1 Dictionaries

The input and output labeled common sections for each module are used as dictionaries during input processing. The Hollerith representation of each symbol is preset in the symbol's location through the use of a data statement for each labeled common statement. Since this set of labeled common statements and data statements resides in contiguous block data subroutines, it is possible to refer to the total set of I (input) and V (output variable) sections as one large array. A symbol can thus be located through its relative location with respect to the beginning of the SERI data block. This dictionary is necessary only during input processing and is initialized via overlay link TRP2 (see INP2M, Sec. 2.2, Vol. II).

The labeled common sections in TRP2 are identical in size and format to those in TRP3 so that the relative ordering established in TRP2 is preserved in TRP3. Program checks are made in TRP3 to ensure this ordering and format.

5.1.1.2 Mnemonic Input

All input to the TRP system is entered with identification regarding the following:

- Vehicle number
- ESN (event sequence number)
- Module name
- Parameter name or relative address

Vehicle numbers and ESNs are always entered as numerics. The module name is entered symbolically, just as it is used in the program. Any parameter can be input to a module either symbolically or relative to a mnemonic entry (other than its own). All TRP parameters are defined in Sec. 2, Vol. II. Appendix A contains an index of all TRP parameters, cross referenced to Sec. 2, Vol. II.

The great advantage of mnemonic input lies in the ease with which the user can communicate with the program. This communication can be quite natural, too, since symbolism can be assigned in a way that is easily correlated with mathematical symbol conventions.

5.1.2 Module Structure

5.1.2.1 General Module Characteristics

Each module is composed of five physical sections. These sections vary considerably in content from module to module, but functionally each is invariant for all modules (with the possible exception of the Service module). The five module sections are as follows:

- Model selection, or M section
- Data input, or I section

- Model section
- Output variable, or V section
- Subroutine, or S section

A module is identified in the TRP system by its mnemonic, which is related to its module name (Table 1-1). The diagram presented in Fig. 6-1 summarizes the composition of a module; Sec. 5.1.2.2 describes the module sections in detail.

5.1.2.2 Module Sections

5.1.2.2.1 Module Selection (M Section)

The first section of a module is identified by the mnemonic $X_1X_2X_3X_4M$; it of course also identifies the module name. The mnemonic then identifies the entrance point to the module.

The function of this section is to select the appropriate model(s) to execute, to execute that model, and to exit. Modules controlled by INTXM do not have an M section because they have identical model entrance logic; therefore, INTXM actually executes the appropriate model for these modules.

5.1.2.2.2 Data Input (I Section)

This module section contains all parameter words and table names that may be assigned inputs during a simulation. All data cells in this section of a module can be supplied with input at event initialization by processing routines driven by TSPXM. Once data is entered into the I section of a module it remains there, unaltered, until it is replaced by a new piece of data or modified by an initialization model. It is standard TRP operating procedure that the inputs to the I section of a module can only be modified, replaced, or zeroed out by initialization models.

The first two or three parameters in the I section of each module identify the models to be used in the module; the number of parameters (two or three) depends on the kind of models appearing in the module.

X ₁ X ₂ X ₃ X ₄ M	M Section: Standard entrance, model selection logic, and exit
X ₁ X ₂ X ₃ X ₄ I	l Section: Module input (storage)
X ₁ X ₂ X ₃ X ₄ A X ₁ X ₂ X ₃ X ₄ B X ₁ X ₂ X ₃ X ₄ 1	Model Section: Models for initialization, unity transfer, etc., depending on the functions to be performed
•	• •
x ₁ x ₂ x ₃ x ₄ v	V Section: Storage for variables computed by the models of the module
x ₁ x ₂ x ₃ x ₄ s	S Section: Specific subroutine storage for subroutines uniquely employed by models in the module

Fig. 5-1. Module Composition

Input to the I section of any module can be classified broadly in the following three categories:

- Model selection inputs
- General one-cell data words
- Table parameter words

In the first two categories, there is a one-to-one correspondence between an input mnemonic and its program parameter (i.e., each mnemonic input has one cell reserved in the input region of the module). However in the third category, the input parameter to the module is almost always just the table address; the table data itself remains in the BUCKET. A module input region thus never contains excess storage for input data blocks of variable size because this kind of data remains in the BUCKET. Two cells are assigned to each tabular input; the first is the pointer to the data and the second is used as a table multiplier, which is processed like general data input. To input a table function multiplier, the table name must be specified as the mnemonic using the general data input format.

5.1.2.2.3 Model Section

The functions assigned to a module are executed through models that reside in the model section of each module. The selection of specific models through the M section provides computational flexibility and generality within each module, while maintaining a high degree of explicitness at each module entrance.

Ideally, a model performs a very straightforward function (special-purpose and free of event-dependent logic). It should consist of a brief sequence of computer instructions that may, for example, consist simply of a set of subroutine entrances; but in any event, the function assigned to the model is clearly indicated by scanning the high-level sequence of instructions that comprise the model. Thus, in programming language, a model is a high-level "driver" for the computational function to be performed.

Models usually call on subroutines unique to the module that appear in the subroutine section and/or on general subroutines that appear

in the service module. All parameters and variables generated by a module reside in the output variable section. All input required by a model comes via the module input section or mnemonic communication with the I/V sections of other modules.

5.1.2.2.3.1 Model Nomenclature

Each module is uniquely identified by an alphanumeric symbol of the form $X_1X_2X_3X_4M$. Similarly, each model in module $X_1X_2X_3X_4M$ is uniquely identified by the symbols $X_1X_2X_3X_4i$, where i may be one of the following symbols: 0 through 9, A through L, N, and P through Z. The symbols M and O are thus the only alphanumeric symbols unavailable for model names. The reasons for the specified exceptions are obvious except for the alphabetic character O, which is arbitrarily considered equal to zero in all TRP programming. The numeric symbols 10 through 99 are also available for model names, if required. In the following sections, note that certain alphanumeric characters are reserved for special kinds of models. The characters G, H, I, and L are not available in model names if labeled common names cannot match subroutine (model) names due to compiler restrictions, but G, H, I, and L are used in model call words (Sec. 5.1.2.2.3.3).

5.1.2.2.3.2 Kinds of Models

Models can be broadly classified into two categories:

- Initialization models
- Main loop computational models

Initialization models are usually executed only once, at the start of each event. They are always concerned with input or computation of initial conditions, which are simulation- or event-dependent. Every module has initialization models, except the Input Processing and Service modules. The earlier alphabetic characters (A, B, and C) are reserved for this class of model.

All models not in the initialization class are lumped into the major Main Loop Computation model category. All models in this class can be called through input, and numeric names are generally assigned to them.

The following specific model names are assigned:

Model U The Unity Transfer, or do-nothing

model

Models A, B, C, D, etc. Simulation or event dependent

initialization models

Models 1, 2, etc. Main loop, nontrivial, computational

models

5.1.2.2.3.3 Model Call Words

TRP users select models through input by using model call words, which are abbreviated, easily remembered mnemonics associated with a class of models.

The call word for all initialization models specifiable through input is IN (the abbreviation of initialization). Three call words are used to call all main loop computational models, but not all apply to every module. The single call word GEN (an abbreviation for general main loop computational model) is used for modules not capable of dual frequency computation. For models capable of dual frequency computation, the call words HI and LO are used for high- and low-frequency computational models, respectively.

The model call words IN, GEN, HI, and L0 are paired with the module input parameters $X_1X_2X_3X_4I$, $X_1X_2X_3X_4G$, $X_1X_2X_3X_4H$, $X_1X_2X_3X_4L$, respectively, by the INP2M module.

5.1.2.2.4 Output Variables (V Section)

All parameters and variables generated by models in a module are either placed in cells reserved in the V section or lost because they were placed in temporary storage. Thus, any parameter or variable generated within a module and required for external use must be assigned storage in the V section of the module (temporary storage is not preserved from module to module).

One of the conventions governing TRP system development is that any entry in the V section of a module (this convention also applied to the I section) may not be modified by another module. Any module is free to use any other module's input or output entries, but is never permitted to modify

an entry in another module. A notable exception to this convention is the Integration Executive module (INTXM), which replaces the values of specified integration variables.

The mnemorics assigned to variables in the V section are subject only to the designer's discretion and to the restriction that each symbol be different from any used elsewhere in the program. Certain general conventions, however, have been adopted for symbol assignment.

5.1.2.2.5 Subroutine (S Section)

To obtain simplicity in models, most computational details required of a model are relegated to subroutines that are physically located in the last section of the module, the subroutine or S section. A given module subroutine is then available for use by any model to which it is applicable; these subroutines thus form the basic building blocks from which most models are developed. The S section is thus a library of building blocks for use by the models of the module. When it is augmented by the general service subroutines of the Service module, a considerable amount of model building material becomes available to each module. By convention, all subroutines are ordered alphanumerically.

The subroutine section of each module terminates with the model-associated print routines, which are executed for TRP printed output (Sec. 5.1.3). Any subroutine that may be used by more than one module is classed as a service subroutine and must be physically located in the Service module (SERVM). Modules, models, and subroutines thus form a three-level hierarchy in which the subroutine is the lowest.

5.1.3 TRP Output Print

In TRP printing, the BCD name or the integer equivalent of the print routine is obtained from Scrvice module labeled common for each module. This BCD name is supplied from an initialization model at execution time, which allows a print routine to be defined for each model of a module. The print routines for any given TRP configuration must appear in the YEOMAN

REQ deck, along with the corresponding initialization model. Print keys are supplied with TRP output print.

5.1.3.1 Print Routines

Labeled common SERV5 contains the BCD name or the integer equivalent of the selected print routine of each module. It would appear as:

COMMON/SERV5/

- 1 SERV5S, SERV5N.
- 2 LENVRP(1), LTM0TP(1), LRM0TP(1), LAERMP(1), LPR0PP(1),
- 3 LSTRTP(1), LDPGXP(1), LC0NTP(1), LCYCXP(1), LJUNKP(1),
- 4 LTRAKP(1), LSENSP(1)

COMMON/SERV5/

1 SERV5E

EQUIVALENCE

- 1 (LENV, LENVRP), (LTM0, LTM0TP), (LRM0, LRM0TP).
- 2 (LAER, LAERMP), (LPRO, LPROPP), (LSTR, LSTRTP),
- 3 (LDPG, LDPGXP), (LC0N, LC0NTP), (LCYC, LCYCXP),
- 4 (LJUN, LJUNKP), (LTRA, LTRAKP), (LSEN, LSENSP)

where

LENVRP = BCD name or its integer equivalent for the ENVPM module

LTM0TP = BCD name or its integer equivalent for the TM0TM module

LSENSP = BCD name or its integer equivalent for the SENSM module

5.1.3.2 Print Initialization

A module's initialization model sets the BCD name of the print routine, e.g., initialization model C of TRAKM would appear as:

SUBROUTINE TRAKC

```
С
   * * * * * * * TRAKC (TRAKM) * * * * * * * * * * *
С
c
    INITIALIZATION MODEL FOR TRAK3
С
c
   INSERT, TRAI
   INSERT, TRAV
   INSERT, SERV5
   INSERT.
С
   DATA IPRINT/6HTRAKP3/
                       SET PRINT ROUTINE FOR TRAK3
С
    LTRAKP = IPRINT
                       SET NUMBER OF TRACKERS
С
   NOFT = RNOFT
299 RETURN
   END
```

5.1.3.3 Print Mechanization

SERVM subroutine PRNT1 contains the following:

CALL PRNCN(LENVRP)
CALL PRNCN(LTM0TP)

CALL PRNCN(LSENSP)

SERVM subroutine PRNCN (NAME) matches the BCD name with an internal dictionary. NAME is replaced by the dictionary integer equivalence, and control is passed to the subroutine that matches NAME. The integer equivalent is used on subsequent calls.

The computation model print routine calls the print driver:

SUBROUTINE ENVRP

CALL LINE(10, 5HENVRM, H, RGRV, PRES, LTCV, LATV, LONV)

399 RETURN

END

SERVM subroutine LINE performs the actual printing of the lesired information using the TRP standard format:

SUBROUTINE LINE(I, H, A, B, C, D, E, F)

where

Print line I = line number

H = Hollerith name (5HNAMEX) or (1H)

A through F = items to be printed on the line

5.1.4 Trajectory Design and Reconstruction

Techniques and processes that facilitate the problem of trajectory design and reconstruction are mechanized in the modules ITERM, PFRPM, and ITIFM, which collectively are called PFRP. The trajectory design problem generally requires parameter iteration and trajectory shaping, which lead to a satisfactory trajectory by iterative techniques and/or analytic solutions.

Trajectory design problems arise because of trajectory constraints that limit the family of trajectories acceptable for successful mission completion. Selecting a satisfactory constrained trajectory often involves considerable parameter iteration; the pertinent trajectory parameters are determined through a combined iteration and convergence process.

The other side of the coin is trajectory reconstruction. An acceptable mission, or one that is assumed to be acceptable, is evidenced by a time history of observations (usually radar measurements); the methods by which it was performed or the exact mechanisms utilized may be only partially known.

In TRP, a trajectory may be reconstructed in two ways. The first method uses the observations as forcing functions and applies inverse transformations to obtain the trajectory. The second method requires an iterative process in which the assumed methods are modeled by input. Model unknowns are estimated by TRP measurement models, which are either implicit or explicit functions of the parameters estimated, to match the observed data.

Both trajectory design and trajectory reconstruction problems may thus be solved using TRP.

5.1.4.1 Iteration Parameters

One of the primary design criteria for TRP iteration was the capability to estimate any parameter that could be input to the TRP program. This goal could only be met by using perturbation techniques for approximating partial derivatives associated with iteration. The primary disadvange of this technique is that m+1 trajectories must be run to estimate m parameters; this can be expensive in terms of machine time. Several techniques were implemented to alleviate this condition. The first was to run only the portion of the trajectory affected by a parameter. This technique was made possible by using program images, written on a program file, of the input and output sections of the modules thus enabling a restart of the trajectory at any desired event. The use of local variables for flags could defeat this technique, so this practice has been discouraged.

The second technique for minimizing the number of trajectories run is the major and minor loop concept in PFRP. A major loop consists of a nominal trajectory and the m trajectories used to evaluate measurement partials with respect to the parameters. A minor loop consists of only a nominal (residual) trajectory resulting from new parameter estimates using the previously evaluated partials. Tests are mechanized to ensure that linearity and improvement are maintained; otherwise the program reverts to a major loop. A typical problem on TRP averages three or four minor loops per major loop and converges in many fewer trajectories than if major loops only are used.

A third technique for minimizing run time is the use of analytic partials for measurement biases. The partial derivative is simply one for associated observations and zero for all others. Additional analytic measurement partials are being examined, but several mechanization problems must be resolved before any coding can be initiated.

A fourth technique for reducing machine time is to save the partials from one run on tape and to use them on subsequent runs, starting immediately into the minor loop process.

The inputs associated with the above techniques plus the definitions of the iteration parameters are input to module ITERM at the first event. The iteration variable table is an open-ended table used for this purpose.

5.1.4.2 Observations and Measurements for Iteration

As for iteration parameters, the design goal for iteration measurements and observations was to be able to use any variable computed by TRP as a measurement to be matched against input observations. This goal has been achieved for all known measurement types. If a measurement model does not exist in TRP for a given observation, the customary procedure is to model the equation in the general argument function (Sec. 5.1.5). If a sufficient number of cases are expected for this observation, a measurement model is coded into the program.

Observations may be input to TRP either by cards or tapes, and the associated TRP variables are designated by an input table. A significant feature of the TRP iteration method is that everything known about the vehicle and all observations collected may be treated simultaneously in a consistent manner. The only constraints are those imposed by machine storage space and the amount of machine time a user is willing to invest.

5.1.5 General Argument Function

The general argument function (ARGS) is a TRP characteristic by which a user can specify by input equations not formally a part of the program. These equations can be thought of as a logical extension of the auxiliary computation characteristics of TRP. ARGS may be used for event

criteria, table arguments, steering equations, plot variables, special print parameters, variables for other ARG equations, or as observations or arguments in TRP iteration methods. General argument functions are calculated when required by subroutine AUXF (as are other auxiliary parameters).

The ten ARG equations, whose components are specified by input data, are of the form:

$$ARG_{i} = f\left(\left[A_{i}C_{1} * f_{1}(A_{i}V_{1}) * f_{2}(A_{i}V_{2}) + A_{i}C_{2} * f_{3}(A_{i}V_{3}) * f_{4}(A_{i}V_{4})\right]^{A_{i}P}\right)$$

$$(i = 0 \text{ through } 9)$$

where

 f_1, f_2, f_3, f_4 = option flags for variables 1, 2, 3, and 4, preset to 0.

Each of the four variables on the input side of an ARG equation may be operated on independently by option flags f_1 through f_4 , and the ARG equation itself by option flag f. All possible option flag selections are discussed in Sec. 2.4, Vol. II (SERVM input descriptions).

5.2 TRP CONVENTIONS

TRP programming conventions to encourage standard practices and to provide consistently high quality have been established.

5.2.1 Program Symbols

Symbols used in TRP programming must be six characters or fewer and should impart meaningful information as to function or source, with units, component, and coordinate system (if applicable).

5.2.1.1 Mnemonic Usage

Some significant mnemonic conventions are:

Each module name must end with the letter M (SERVM, MPEXM, etc.)

The fourth character of each executive module is X Initialization models are identified by an alphabetic character

Main computational models are identified by numerics Mnemonics for program flags end with the character F (AUXF, CYCF, PIF, etc.)

Matrices are identified by the coordinate frames involved. The matrix transforming from the A to the B frame is thus denoted as [AB], and the mnemonic identifying the first element of this matrix array is labeled AB11.

Position, velocity and acceleration variables (except gravity) are identified with the prefixes P, V, and A, respectively. The component and pertinent coordinate frame are also indicated in the mnemonic, e.g.:

VXI = X component of total velocity in the I frame

AZG = Z component of total acceleration in the G frame

PXIO = initial X component of position in the I frame

ASYB = Y component of sensed acceleration in the B frame

Force components are identified with the lead character F:

FAXB = X component of aerodynamic forces in the B frame

FTYB = Y component of thrust in the B frame

FTM = magnitude of the thrust vector

Subroutines are named by four- or five-letter mnemonics, which usually suggest the function to be performed. Alternatively, the first two letters of the module followed by the character S and the subroutine number are given, e.g.:

CYS1 = subroutine 1 in CYCXM

TMS10 = subroutine 10 in TM0TM

MTRX1 = matrix transformation routine 1 in SERVM

Mnemonics for variables and parameters are restricted to six characters or fewer

Unique mnemonics are used throughout the basic system

The alphabetic character O is used only in COMMON, DIMENSION, or as a lead character. The third character of PROPM is thus the number zero. No lead numeric is permitted in any mnemonic

5.2.1.2 Program Constants and Temporary Storage

A set of program constants (Sec. 2.4.3, Vol. II), to be used in preference to individually defined constants on a model basis, have been assigned to the Service module (SERVM) as labeled common. This assures consistent use of fundamental constants throughout the TRP system, especially conversion constants and frequently used floating and fixed point numbers. Four types of temporary storage cells are also defined:

IT00 → ITXX (integer)
T00 → TXX (real)
IA00 → IAXX (integer)
A00 → AXX (real)

where XX indicates numbers in increasing size. ITXX and TXX cells may be used by all modules excdpt the Service module; the contents of the cells are not preserved from module to module. IAXX and AXX cells are used primarily by the Service module, but they may be used by other modules (with caution, because the contents may be destroyed).

5. 2. 1. 3 Integration and Integration Lists

Each module controlled by the Integration Executive module (INTXM) may specify a list of variables to be integrated, which is known as the INTXM master integration list. The manner in which the modules specify their integration variables is to call Service module subroutine SINT, one call per variable. The parameters in each call consist of three words:

Integration variable

Derivative

Integration flag:

0 = do not integrate this variable (null)

1 = low frequency integration is required

2 = high frequency integration is required

4 = trapezoidal

10 = single frequency with accuracy control for INTX4

The specification of each variable's integration is performed by the modules at all event times necessary to satisfy the computing requirements. A sample TMOTM integration setup is:

CALL SINT(PXIP, VXIP, 1)

CALL SINT(PYIP, VYIP, 1)

CALL SINT(PZIP, VZIP, 1)

which specifies the integration

$$\overline{P}'_{I} = \int \overline{V}'_{I} dt$$

The specification of the first-order portion of a second-order integration should be physically located after the second-order specifications, e.g.,

For model INTX4, the flags have been preset to provide accuracy control information. The flag value divided by 10 gives the number of digits of accuracy required.

VXIP integration should be specified after PXIP integration. Following this procedure ensures that timing problems are minimized.

5.2.2 Statement Cards

5. 2. 2. 1 Statement Numbering

Statement numbers should be used in increasing numerical order, with gaps in numbering of 10 or more to allow insertion of new numbers between two existing statement numbers. The return statement number at the end of each module entrance routine should be 199, the return statement number at the end of each model should be 299, and the return statement number at the end of each subroutine other than a model should be 399.

Continuation cards for a FORTRAN statement should be numbered consecutively from 1, 2, ..., 9, A, B, etc.

5.2.2.2 Comments Cards

Comments cards (C in cc 1) should be used following the subroutine name identifying the module to which the subroutine belongs, the intended usage of the routine, and the parameters used in the calling sequence.

A sample commentary for the Service module subroutine ASIND identification might be:

```
1 31 71
c
c * * * * * * * ASIND (SERVM) * * * * * *
c
c ARC SINE IN DEGREES
c
c A = ASIND(X)
c X - SINE OF A
c
```

Comments should also be sprinkled liberally through the coding, in detail sufficient to identify the function the coding is to perform. Commentary should start in cc 31 for ease of recognition.

5.2.3 Program Variables

5.2.3.1 Labeled Common

Each module has two areas of labeled common, one for input variables and table addresses and another for output variables. The name associated with each contains the first three characters of the module name followed by an I or V to designate the input or output section, plus a number (1 to n), except for the first in each I and V section. The first word in each block has the block name followed by an S and is the size parameter of the block, and the second has the block name followed by an N and contains the name. For the first block in the input section, the next words is the initialization model name followed by the computation model name(s). All are the integer type, followed by the variable names in the other blocks. The last word is the block name followed by an E, preset to 3HEND, e.g.:

COMMON/TM0I/TM0IS, TM0IN, TM0TI, TM0TL, ..., TM0IE COMMON/CYCI1/CYCI1S, CYCI1N, Q0P1, ..., CYCI1E

For modules driven by INTXM, the computation model names end in L and H to designate low or high frequency models. Those external to INTXM have only one computational model which ends in G to designate the general model.

Table variables must be two-dimensional; the first cell contains the BUCKET location of the table data, and the second cell the table multiplier. The second cell is preset Hollerith with the table name in TRP2. The value of the multiplier is present in TRP3.

Variables in labeled common are spaced evenly across a page, six per line, to maintain legibility (the commas should be in cc 17, 28, 39, 50, 61, and 72). Data statements with name and value are spaced three sets per line for the same reason (the commas are in cc 31 and 52).

The size parameters at the start of each labeled common area are used for two purposes: as a stepping stone for incrementing through the labeled common by the data processing routines and as a flag for the intermediate image subroutine (a negative number, preset to 5HSIZEN indicates that an

image is not to be made and a practive number, preset to 4HSIZE, indicates that an image of that data block is to be made). The second word is preset Hollerith with the block name.

All symbols in the labeled common blocks are preset Hollerith by data statements in TRP2; the name of the symbol serves as a dictionary and presets values in TRP3. Note that the common blocks should be identical in TRP2 and TRP3, or input will be made to the wrong areas.

5.2.3.2 Blank Common

The blank common area is reserved for the data BUCKET sections that reside permanently in core (including event criteria list data, table data, general data, secondary vehicle storage, and parameters associated with case and data locations). No other use of blank common is permitted.

5.2.3.3 Local Variables

The creation or use of local variables in subroutine coding is discouraged; use the Service module temporary storage cells whenever possible. TRP is an overlay program; local variables set on the first call of an overlay do not retain the same values on subsequent calls of the overlay. If the contents need to be retained, a new cell in the module variable data (V) should be defined.

5.2.4 Table Usage

Each table in TRP requires two cells of storage in the input section of a module labeled common. The mnemonic used to define the table should end with the letter T. The first cell of the two-word labeled common array is filled at event initialization time with the BUCKET relative address of the table data by data processing routines executed by the TSPXM module. The second word contains the table multiplier for I type tables or an option flag for T type tables. Tables using an I conversion code are interpolation type tables, which are evaluated by the Service module function GTBLU. Data blocks are input using the T, or tabular conversion code. T tables permit intermixing of Hollerith and decimal data for special applications.

In the TRP2 overlay, the second word of the labeled common table array is preset with the table name. An input processing routine of the INP2M module can then match this name against an input name and replace the input name with the SERI labeled common relative index to enable matching in overlay TRP3.

The second word of the table array is preset (for I tables) by a data statement to the value one. This value is used as a table multiplier for all tables evaluated by GTBLU. At event time the first cell is filled by the relative address determined in the TRP2 overlay.

5.2.5 TRP File Usage

Tape assignments are defined in the Service module labeled common SERI1. All references to tapes must be made using the mnemonic name rather than the integer tape number; otherwise input tape assignment changes cannot be made (Table 5-1).

Tape operations should be referenced in the following manner:

WRITE (ITDATA) List READ (ITIMGR) List REWIND ITIMGR END FILE ITIMGW IF (EOF (ITIMGR)) 10, 20

External setup operations (control cards and program card) must use TAPEnn (TAPE99 corresponds to ITDATA).

5.2.6 Utility Subroutines

5.2.6.1 MODX Routine Usage

The MODX routines of the Service module are used to translate and execute the initialization or computation models of modules. The MODX routine consists of a Hollerith dictionary of model names and a matching GO TO statement containing statement numbers that call the model, e.g.:

CALL MODX35(TMOTI)

Table 5-1. TRP Tape Reference Names

Name	Description	Preset (integer)
ITDATC	BGD punch card images (FUJCH)	3
ITINPT"	BCD input card images (INPUT)	5
ITOTPT	BCD printed output (OUTPUT)	6
MSUMRY*	BCD run summary	13 (equivalent to 74)
ITPRNT	Auxiliary BCD printed output	74
IBIN T	Binary input data deck	76
OBIN [®]	Binary punch of input data (PUNCHB)	77
ITINTG ²	Contains block print format	78
ITCIMG"	Case image of input data	80
ITT1PL	Residual plot data, PFRP tape 1	81
ITT2PL	Residual plot data, PFRP tape 2	82
ITT3PL	Residual plot data, PFRP tape 3	83
ITT4PL	Residual plot data, PFRP tape 4	84
ITT5PL	Residual plot data, PFRP tape 5	85
ITT6PL	Residual plot data, PFRP tape 6	86
ITT7PL	Residual plot data, PFRP tape 7	67
ITT8PL	Residual plot data, PFRP tape 8	68
ITT9PL	Residual plot data, PFRP tape 9	69
ITAKTP	Observation partials tape for PFRP	87
ITMATP	Weighted observation partials	88
ITITIM	Iteration image	89
ITGUID	Inertial position and velocity for PFRP RTC output	90
ITDAT1	PFRP observation input tape 1	91
ITDAT2	PFRP observation input tape 2	92
ITDAT3	PFRP observation input tape 3	93
ITDAT4	PFRP observation input tape 4	94
ITDAT5	PFRP observation input tape 5	95
ITDAT6	PFRP observation input tape 6	96
ITIMGR	Intermediate image read	97
ITIMGW	Intermediate image write	98
ITDATA	Data tape 1	99
ITDATB	Data tape 2	75
ITPFSV	Labeled common image for ERR2 and carryover parameter tape for TSPX1	79
ITC0VM	Covariance matrix carryover to the next case	73
T9300*	9300 BCD output file	70
IFTRP*	Unblocked BCD auxiliary input file	71

[&]quot;These units cannot be changed by input to TRP (SERVM).

where TM0TI contains 5HTM0TB, the input specified TM0TM initialization model. When the dictionary translation is completed, the call to M0DX35 results in:

110 CALL TM0TB RETURN

The call to the MODX routines is normally made in the M section of a module except for modules controlled by the Integration Executive module (INTXM), which are called by subroutine CINDER to evaluate derivatives. The MODX routines are used as follows:

M0DX1	Reads overlay 3, 1 (executive modules) and MPEXM
M0DX2	Reads overlay 3, 2 (derivative models) and executes the integration model
M0DX3*	Reads overlay 3, 3 (iteration information models)
M0DX4*	Reads overlay 3, 4 (iteration models)
M0T/X.5*	Reads overlay 3,5 (initialization models) and executes the integration initialization model
M0DX6	Reads overlay 3, 6 (print overlay)
M0DX3i	Executes the models that reside in overlay 3, 1 $(1 \le i \le 5)$
PRNCN	Executes the subroutines in overlay 3, 6 (print control execution)

^{*}M0DX3, 4, 5, and 6 are entry points that reside in Subroutine M0DX2.

5.2.6.2 <u>Trigonometric Functions and Subroutines</u>

The following trigonometric functions and subroutines are contained in the Service module. These routines should be used to ensure compatible results in all TRP program areas. The calling sequences and outputs are:

A = ACOSD(X)	Arc cosine (X), deg	$(0 \le A \le 180)$
A = ASIND(X)	Arc sine (X), deg	$(-90 \le A \le 90)$
A = ATAND(X)	Arc tangent (X), deg	$(-90 \le A \le 90)$
A = ATAND2(X, Y)	Arc tangent (X/Y), deg	$(-180 \le A \le 180)$
X = COSD(A)	Cosine of angle A, deg	
X = SIND(A)	Sine of angle A, deg	
X = T AND(A)	Tangent of angle A, deg	
CALL SCFD(A, SX, CX)		

on consider a minimal consideration of the constant of the con

where A is the angle (deg), SX is the sine function output, and CX is the cosine function output.

The arc function routines for sine and cosine have built-in error tolerances for numbers slightly larger than one. Values greater than one but less than the tolerance are set to the value appropriate to the argument of one.

5. 2. 6. 3 Vector Functions and Subroutines

Several vector (three-dimensional) functions and subroutines are available in the Service module for use in TRP programming:

CALL AVECT (A, B, C)	Cross product	$(\overrightarrow{C} = \overrightarrow{A} \times \overrightarrow{B})$
C = DVECT(A, B)	Dot product	$(C = \overrightarrow{A} \cdot \overrightarrow{B})$
C = VSQRT(A)	Norm of vector	$(C = (\overrightarrow{A} \cdot \overrightarrow{A})^{1/2})$

5, 2, 6, 4 Matrix Operations

Matrix multiplication, rotational matrix evaluation, and matrix equation subroutines are contained in the Service module to facilitate TRP programming:

• 3×3 matrix multiplication: (Z) = (X) (Y)

$$X = (3 \times 3)$$

$$Y = (3 \times 3)$$

$$Z = (3 \times 3)$$

	A	rray Storag	e
Call Statement	X	<u> </u>	<u>Z</u>
CALL M33CCC(X, Y, Z)	Col.	Col.	Col.
CALL M33CCR(X, Y, Z)	Col.	Col,	Row
CALL M33CRC(X, Y, Z)	Col.	Row	Col.
CALL M33CRR(X, Y, Z)	Col.	Row	Row
CALL M33RCC(X, Y, Z)	Row	Col.	Col.
CALL M33RCR(X, Y, Z)	Row	Col.	Row
CALL M33RRC(X, Y, Z)	Row	Row	Col.
CALL M33RRR(X, Y, Z)	Row	Row	Row

• 3×1 matrix mu¹tiplication: $\vec{Z} = (X) \vec{Y}$

$$X = (3 \times 3)$$

$$Y = (3 \times 1)$$

$$Z = (3 \times 1)$$

Note that a transpose is indicated by specifying that the matrix be stored opposite to the manner in which it actually is stored.

General matrix multiply: (Z) = (X) (Y)

$$X = (M \times N)$$

$$Y = (N \times P)$$

$$Z = (M \times P)$$

sares cestas cesta citation de contractions de la contraction de l

CALL MTRX5(X, Y, Z, M, N, P, I)

Option Flag		Array Stora	ge
I	<u>X</u>	Ý	Z
0	Col.	Col.	Col.
1	Col.	Col.	Row
2	Col.	Row	Col.
3	Col.	Row	Row
4	Row	Col.	Col.
5	Row	Col.	Row
6	Row	Row	Col.
7	Row	Row	Row

Rot :: (Q) = (ROT) (P)

Transforme a 3 % ? anho, anal matrix through three angles a' it any of three axes. The input matrix P may be a unit (IDEN GFY) matrix. The output matrix Q may have the same name as the input matrix. The calling sequence is:

CALL MTRX1(P,Q,L,R₁,
$$\alpha_1$$
,R₂, α_2 ,R₃, α_3)

where

P = input matrix

Q = output matrix

L = option flag for P, Q storage

L	P	Q
0	Col.	Col.
1	Col.	Row
2	Row	Col.
3	Row	Row

Note that the transpose of either P or Q may be used.

R₁, R₂, R₃ = rotation axis choices of classes 0, 1, 2,

3 in arbitrary order. (The class specification is by
plus or minus integer; if minus, change the sign of the
rotation angle). The first zero or the third rotation
terminates the list.

 α_1 , α_2 , α_3 = rotation angles associated with R_1 , R_2 , R_3

Rotation matrix classes (0 = NULL) for a given α :

	Class 1			Class	2		Class 3		
1	0	٥٦	cos	0	-sin	cos	sin	0	
0	cos	sin	0	1	0	-sin	cos	0	i
0	-sin	cos	sin	0	cos	0	0	1	

Solution of matrix equation: $\vec{X} = (A)^{-1} \vec{B}$. Cramer's Rule is used to solve for X, where the determinant is evaluated by the scalar triple product:

 $A = (3 \times 3)$ matrix stored by rows

 $B = (3 \times 1)$ right-hand vector

 $X = (3 \times 1)$ solution vector

CALL EQNS(A, B, X)

• Transformation matrix from orbit plane to inertial coordinates. The call statement is:

CALL XY2RTC(X, RTC, I)

where

X = LCI position and velocity vector (six elements)

I = Option flag: 0 = X to RTC

f = RTC to X

RTC = Output transformation matrix (3 × 3), in the order radial, intrack, crosstrack

5.2.6.5 Data Retrieval

Several routines are used in the Service module to obtain information from the four areas of the data BUCKET: event criteria list, tabular data, general input data, and multiple vehicle data reservoir. The routines are used as follows:

CALL DTSL1(IVEH, S)

Passes through the event criteria list data portion of the BUCKET until vehicle IVEH is found and then executes subroutine S to process each event.

CALL DTSL2(IVEH, IESN)

Passes through the tabular data portion of the BUCKET until vehicle IVEH and ESN IESN are found. It then executes subroutine DTSL4 for processing each table.

CALL DTSL4(I)

Sets the BUCKET address pointer in the input section of a module for a table, starting at location I of the BUCKET.

F = GTBLU(I)

General table lookup of table I (Sec. 2.4, Vol. II).

CALL DTSL3(IVEH, IESN)

Passes through the general input data portion of the BUCKET and executes subroutine DTSL5 for each input variable per module when vehicle IVEH and ESN IESN have been matched.

CALL DTSL5(I)

Moves the general data from location I of the BUCKET to the module input data area. Passes the auxiliary variable name from location I+1 to input area+1 (if defined).

CALL DTSL10(IVEH, IESN)

Passes through the general data portion of the BUCKET until vehicle IVEH and ESN IESN are matched and then sets the location of the event description input into pointer cell EVENT.

B = XVEH(A, IV)

Retrieves variable A from vehicle IV for routines requiring cross vehicle information.

B = XVEH1(K, IV)

Retrieves the variable specified by a BASKET relative location from vehicle IV for routines requiring cross vehicle information. BASKET is the first cell of labeled common, to which all labeled common names are relative.

5. 2. 6. 6 Miscellaneous Operations

Numerous additional routines are available in the Service module for transmitting information internally or externally. Some of the more frequently used are listed below:

CALL AUXF(I)

Computes auxiliary variable I. If I is not an auxiliary, it is set to zero by AUXF; otherwise, the computation for I is executed. If I is negative, computes all auxiliaries.

CALL ERRI(M)

Makes an error print of the six Hollerith characters M onto the standard output file and then returns.

CALL ERR2(M)

Same as ERR1, except that the case is dumped and terminated.

F = GTBLU(I)

Performs general table lookup on table I.

CALL IMU5B(SA, CA, ANGLE)

Computes an angle given the sine SA and cosine CA of that angle. The magnitude of the angle is unlimited, but the angle is not permitted to change by more than 180 degrees per calculation.

CALL LINE(I, H, A, B, C, D, E, F)

Prints variables A through F on line I for H module (or blank) onto a standard output file.

XLM = LMIT2(X, Y)

Limits the magnitude of X to |Y|.

B = POLY1(A, X, N)

Evaluates a polynomial for B given the order N, coefficient vector A, and argument X.

CALL PRNT1

Prints the normal TRP block print onto the standard output file.

CALL PRNT2

Prints the current event discontinuity header information onto the standard output file.

AQ = QNTZ2(A, B)

Quantizes A by B and rounds off to the next multiple of B in A if half or greater.

AQ = QNTZ3(A, B)

Quantizes A by B. If negative, quantizes away from zero (does not round off as in QNTZ2).

CALL RAND1(A, N)

Random number generator. Normal distribution, zero mean, and unit variance:

A = random number

N = integer starter for random sequence, stored and retrieved from this cell

SECTION 6

ERROR CHECKING, ABORT PROCEDURES, AND SPECIAL FEATURES

When TRP runs terminate abnormally, various diagnostic codes and comments are printed at the termination point to indicate the error condition detected. These codes and comments are explained in this appendix; the corrective action to be taken is also indicated whenever possible.

This appendix is divided into the following categories:

Execution errors	Errors detected when the trajectory is being simulated
Systems errors	Errors detected by the operating system
Input errors	Errors detected while input deta cards are being processed

6.1 TRP EXECUTION ERRORS

Error Code	Module	Description
ABGK12	AERMM	Error in model AERMD. Check inputs of coefficients.
ACØSD	SERVM ⁽¹⁾	Arc cosine function error (cos $\alpha > 1.01$).
AERMH	AERMM	Error in model AERMH. Computations have yielded unreasonable results. Check inputs.
ARGF	SERVM	Occurs when the function code for an overall ARG equation is specified as tabular or a vector square root. Also occurs if a dot product function code is specified for variables 2, 4 or the overall equation.
ARGFR	SERVM	Occurs when the function code for an overall ARG equation is specified as random noise (option 19).

Error Code	Module	Description
ARGFXV	SERVM	Occurs when the function code for variables 1, 3, or the overall equation is specified as crossvehicle (option 20).
ARGI	SERVM	Generalized argument (ARG _i) is indirectly a function of itself.
ASIND	SERVM ⁽¹⁾	Arc sine function error ($\sin \alpha > 1.01$).
AUX 36	SERVM	This ARG function option is not available.
AUX 37	SERVM	This ARG function option is not available.
AUX 41	SERVM	This ARG function option is not available.
BIAS P	INTERM	Trying to use other than a function value of a tabular bias partial. Check ITVT inputs.
DTS = 0	CYCXM	Integration step size equals zero. Indicates that the input step size associated with the active time channel is zero (NTC2 = 1. and DTG11 = DTG12 = 0.).
DYNF X	INTXM	Logic error in integration equations; flag value bad. This should not happen.
ENDCAS	MPEXM	This is not an error condition, but a dump at the normal end of a case in response to the input, DMPF $\neq 0$.
ESN = 0	TG0EM	An event has been reached, but the ESN (event sequence number) is undefined. This occurs when guidance is trying to stage but has named an ESN that is not being monitored. It usually means that events have occurred in an unexpected sequence.
GTBLU	SERVM ⁽¹⁾	Logic error in the general table lookup routine. Machine error.

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

TOTAL COMPANY CONTRACTOR AND COMPANY OF AN AND COMPANY

Error Code GTBLU1	Module SERVM ⁽¹⁾	Description Illegal entry to GTBLU (general table lookup routine). Occurs when a table argument is an ARG function whose evaluation depends on another table.
HALVE	INTXM	Problem in model INTX4; had to cut step size in half too many times in succession to meet error tolerance. Check inputs for error tolerance and step size.
IMPACT	ENVRM	Vehicle has impacted (H < CRASH). CRASH is an input.
		This can be due to a number of errors, some gross and some very small. In general it means that the vehicle has failed to reach orbital velocity and has reentered the atmosphere unexpectedly and impacted. Some possible sources of error are:
		a. Thrust is insufficient to overcome the weight, and the vehicle sank at the pad.
		b. The final event (H = 0) was missed due to an input error in the event criteria.

- c. Trajectory was perturbed enough to miss orbital velocity.
- d. Event criteria input incorrectly, forcing negative integration to impact.
- e. Event criteria input incorrectly for a primary event, creating an unachievable condition, and resulting in an impact error.

Error Code	Module	Description
IN TX2	INTXM	Model INTX2 is being requested by input; not available.
ITSO F	ITEEM	End of file encountered before finding desired ESN of iteration image. Probable machine error.
ITSO P	ITERM	Iteration image parity error. Probable machine error.
IV Ø RDP	SERVM	This error condition indicates that the size of labeled common in overlay TRP2 is not the same as in overlay TRP3. This indicates a programming error in modifying labeled common storage.
LØSBAD	TM0TM	Error in model TM0TD; line of sight does not intersect the earth.
LØS1,2	TM0TM	Same as LØSBAD, but at times T1 and T2.
I.FDT = 0	INTXM	Low frequency step size (Δt_L) from CYCXM equals zero.
MASS = 0	TMOTM	Mass ≤ 0. Equations of motion cannot be solved with a zero mass.
MØDEL	SERVM ⁽¹⁾	An undefined model has been selected by input. The erroneous model will be printed preceding this error code.
MØDPR	SERVM	Trying to use a nonexistent print routine. May need to recompile to get subroutine.
MPEXC	MPEXM	Model MPEXC is being requested by input; not available.

是是一个人,我们是一个人,我们是一个人,我们就是一个人,我们就是一个人,我们们是一个人,我们们的一个人,我们们的一个人,我们们的一个人,我们们的一个人,也可以会

THE STATE OF THE PARTY OF THE P

Error Code	Module	Description
NIVERR	INTXM	Too many integration variables have been assigned. Set input NIV for the correct number.
NØ NTC	СҮСХМ	None of the three time channels has been indicated to be active. NTC1, NTC2, and/or NTC3 must be set nonzero.
Ø LSMDL	ØLSTM	Illegal model requested, acceptable names are SNOP, SDIF, SVECT, GTM1, and GTM2.
PXIEI	SENSM	Complaint from model SENSC that model was executed without tables of satellite position input.
REED P	SERVM	Ten consecutive parity errors while reading a file. Machine error.
RITE P	SERVM	Ten consecutive parity errors while writing a file. Machine error.
TH2LM	RM0TM	θ_2 > 72 deg using RM0T1 (Euler angle integrations). Switch to RM0T2 or redefine the gimbal system order.
TIVAL	TMOTM	Out of bounds on performing linear interpolation on TiVAL tables
TMESNS	TG0EM	Too many events have been encountered and exceeded storage allocation. Reduce the number of events in the input deck.
TRAP	From System	Indicates that the operating system has discovered an error (Sec. C.2).

THE TOTAL PROPERTY OF THE PROP

PFRPM Error Messages

INSUFFICIENT TEMP STORAGE FOR PFRP - PFA SIZE IS XXXX, SIZE REQUESTED IS, XXXX

Reduce the dimensions of the problem or check for an MDiT input error.

PROBABLE SYMOR ERROR INDICATOR=

The trace or square of the matrix solution indicates a probable solution error. May be due to input specifications of weighting or problem statement.

6. 2 SYSTEM ERRORS

These abort conditions are detected by the operating system, which sends control to the system control card following the EXIT control card. This terminates the TRP case being run and sends control to the abort/cleanup routine in TRP, which prints the error code TRAP, ends all tapes, and dumps out the variable storage. TRP does not process data cards for succeeding cases.

System-recognized errors are identified by the printing of the error code TRAP. Further explanation of the type of error is found on the system Dayfile.

DAYFILE Comment

MAX LINES EXCEEDED

More than the anticipated amount of printout has been generated.

TIME LIMIT

More than the allotted amount of CP time has been used.

BCD INPUT**ENDFILE INPUT

TRP control card 1. (end of case) is missing.

OPERATOR DROP

A comment from the operator will appear before this line, indicating why the job was dropped. Usually caused by a machine malfunction.

MT XX, UNRECOVERED WRITE (OR READ) PARITY ERROR

The indicated tape has an impassable bad spot. If the tape is being read, it usually means that the tape will have to be recreated. If it is a write parity, the job will have to be rerun.

BINARY INPUT**ENDFILE INPUT

In the iteration mode, this error can be caused by improper input of the tape comparison variable table or lack of input of the table itself. It may also be caused by starting a trajectory beyond the start of the observation data on the tape.

ARITH ERROR

MODE 1

Address out of range. Program or machine error.

MODE 2

Operand out of range (i.e., infinite). Usually caused by zero divisors (argument not input for a table, inertial velocity = 0).

MODE 4

Indefinite operand. Caused by zero/zero or operations with infinite operands.

MODE 0 - ADDRESS 0

Field length too short for TRP to be loaded.

6.3 INPUT ERRORS

Possible input data card errors discovered by the input processor modules (INP1M and INP2M) are listed below. When these errors are discovered, a comment is immediately printed and processing continues. A flag is set, however, which disables the execution of that case and any further cases.

PREVIOUS CARD IS UNRECOGNIZABLE

Card code (cc 9) is not one of the following: blank, L, C, H, A, P, I, E, T, N.

BUCKET LIMITS EXCEEDED

Too much general data for the data array. Array must be expanded, or some general data must be deleted.

GENERAL DATA OUT OF ORDER

Binary milestone deck is probably out of order.

DELETION RANGE EXCEEDS TABLE, NOT DELETED

Tabular deletion range exceeds the data range. There is either an error on the deletion range number, or multiple deletions were not put in reverse order.

LAST TABLE PROCESSED HAS ARGUMENT OUT OF ORDER TABLE NAMET

Independent variable mus, increase algebraically from first to last entry.

TABLE DATA OUT OF ORDER

Binary milestone deck is probably out of order.

TABLE TO BE ALTERED (NAMET) DOESN'T EXIST

Table to be altered cannot be found. Check table name, ESN, vehicle number, module, and subtable number.

PREVIOUS DELETION CARD IS UNRECOGNIZABLE

Deletion card must have in cc 9: blank, L, I, T or Z.

BUCKET OUT OF ORDER

Binary milestone deck is probably cut of order.

ERROR THE SYMBOL XXXXXX IS ILLEGAL

An alphabetic character has been found in a numeric field.

DATA FOR DELETION NOT FOUND

Self explanatory. Check name, ESN, vehicle number and module.

SYMBOL XXXXXX IS UNDEFINED -- MODULE

Input symbol used is not in the dictionary.

SYMBOL XXXXXX IS MULTIPLY-DEFINED

Input symbol found more than once in the dictionary. Program error.

SUB OR X-REFERENCED TABLE NOT FOUND

Table referenced in cross referencing or in a master table cannot be found. Check the input.

ILLEGAL TABLE INTERPOLATION TYPE

Table interpolation type must be ±0 through ±25.

SEQUENCE ERROR IN DATA BUCKET AT - XX DATA VEH=X ESN=XX MOD=X\(\chi\)XXX ITEM = XXXXXX

Binary milestone deck is out of order at the indicated location.

ILLEGAL RELATIVE NUMBER XX

Relative numbers for event criteria data must be 0 through 8.

LAST TABLE PROCESSED DOES NOT HAVE A TERMINAL FUNCTION VALUE, TABLE NAMET

The number of stored argument table entries must be even.

NO EVENT DATA FOUND FOR VEH X, ESN XX

If table or general data are found for an ESN, event criteria data must also exist.

NO. OF I/V SYMBOLS EXCEEDS SIZE OF SYMBOL ARRAY

Labeled common I/V storage has grown past the expected limit. Program error.

XXXXXX INPUT MORE THAN ONCE-ERROR

T tables PLOTT and PLOT2T may not appear more than once per case.

PLOT TABLE LENGTH IS XXX, MUST BE XXX OR LESS

Maximum number of entries in tables PLOTT and PLOT2T is 1000.

TABLE ENTRIES NOT IN PROPER ORDER

T type table GRAVTT entries are not in proper order. There are four values per entry: n, m. J, λ ; n must increase first, then m.

COPT VESN INPUT ERROR

Check inputs to T table COPT.

ITVT INPUT ERROR

Check inputs to T table ITVT

N-TABLE XXXXXX ARGS REVERSED, N2=X, N1=X

The inputs for n-dimensional table lookup arguments must be ordered with the largest array first, then descending.

N-TABLE XXXXXX VALUES REVERSED X Y

The inputs for arguments must be in ascending numerical value in each argument array.

N-TABLE XXXXXX SIZE WRONG, IS=X SHOULD BE Y

Check inputs; incorrect number of entries made.

CVRT SIZE NOT PROPER, SIZE IS, XXX

Input error made in CVRT table of ITIFM; insufficient number of entries.

ITVT SIZE NOT PROPER, SIZE IS, XXX

Input error made in ITVT table of ITERM; insufficient number of entries.

ITVT CMPESN LT ITVESN

The specified comparison ESN for terminating partials is less than the iteration variable ESN for table ITVT.

***** XXXXXX NOT FOUND

Parameter XXXXXX in ITVT table was not found for ECL criterion.

***** TABLE XXXXXX VEH XX ESN XX NOT FOUND

Table named XXXXXX was not found for VESN requested in the ITVT table.

ITVT UPPER BOUND LT LOWER BOUND

Bounding inputs numerically inverted in the ITVT table.

6.4 CHECKPOINT UTILIZATION

There is no checkpoint utilization in TRP.

6. 5 SPECIAL CODING

There is no special coding in TRP.

APPENDIX A

SYMBOL CROSS REFERENCES

TRP program symbols, sorted alphabetically, are listed on pp. A-2 through A-41. Each symbol is identified as an input (I) or a variable output (V). The labeled common name with the implied module is shown in the LCOM column, and the relative location of the symbol within the labeled common is shown in the LOC column.

TRP program symbols, sorted alphabetically by module, are listed on pp. A-42 through A-94.

707			87				- 13		- 12	0 4	-100	66.	- 98	- 98	- 33	- 36	62 -	; , .	*	- 25	- 23	m •	† 0 †	•	- 29	m •			- 10		6			-	- 19		
1001	w	Z	IAK	N X	z	NVI	NVI	W	z	I	RAI	RAI	RAI	RAI	N	X	N Z	N	NVI	NVI	N	FR	EN	PG2	HOI	uj	EN	EN	> 0E	701	MIL	X 0×	FRI	H0 V	14041	FR	-
\ \ !	>	•	1-4	H	~	H	ы	~		>	H	-	H	H		H	H	H	H	H	H	>	>	>		>	>	>	>	>	H	>	H	>	>	>	•
SAMBOL	A	U	3	Ü	ပ	Ū	U	w	AGG	1	IMMI	를	F	IM	TH'S	TNS	LHL	JNS	AJN23	ナエフ	Z	ĸ		Ĺ	LFA	_	LFV	_	Z	7		¥	5	0	ARGP	9	-
707	54		**		9	•		116			07	ð							M # .						07	. 15		. 15	.		. 24		m				•
CCOM	Z	2	ENVI3 -	2	2	>	2	Œ	AERI -	?	RAI	RAI	RAI	RAI	IA	I A	X X	H >	?	IAN	Z Z	IAS	NW	FRV	> > ×	HOI	8	NE C	SENI¢ -	2	9	W	INS	IN	SERI2 -	ERI2	
1/4	>	,	H	H	H	H	H	>	c=0	H	H	H	H	H	⊷ 3	H	H	H	H	H	H	H	>	>	>	H	>	>	H	>	>	>	H	H	H	Н	• 3
SYMBOL	A	7	AC13	5	AC2	ACS	AC8	ADH	AEZML	A G 2	AINHTS	AIML N2	H	I	Z	JMT	Z	3	7	E Z	2	3	2 2	×	LFA	_	F.F.	LFV		1	I	Z	Z	PTA	ARGPF	RG1	
207			- 16			6	- 11			- 13	0	-100	P	86 -	- 31	-\$- P3	- 37	04 -	- 45	- 23	- 25	- 29	- 82	- 85	*	- 41	- 13	- 14	m	С	٨.	ا	.+ I		- 63		
LCOM	Z	N N	> X	X	X	N	X	E	E 2	IN	RAI	RAI	RAI	RAI	X X	IN	IAN	HVI	?	NAT	N	N	EN	ENC	ERV	> ×	ERV	ENV	ENI	> 0 H	NTI	NII	LND	> OH	ITII1	EZV	
1/1	>	>	—	H	H	H	H	>	ы	+	1-6	H	H	1-4	H	H	ы	Н	H	₩	54	H	>	>	>	>	>	>	H	>	H	H	Н	>	н	>	•
SYMBOL	4	4		7	CI	()	(3	()	11)	61	HE	HHH	IMC	IHL	111	JNT	JA N	JMT	7	JN2	Z	スフ	X	¥	A 2 7	<u>ا</u>	1:1	LFV	151	-	MCOR	2	XAX	PSL	ARSF	8	

SYMBOL	I/V	LCOM	507	SYMBOL	1/1	LCOM	207	SYMBOL	\ \ !	LCOM	207
(3	>	ERV		ARGAT	H	ER	-170	RG	>	کر انا	
5	H	ERI		86	>	ERV	- 19	86	н	5	
3	>	524		RG	>	ERV	- 21	86	>	ERV	
3	>	R		RIV	>	EN	- 90	RIV	>	NU	- 91
RIV	>	EN	- 92	R	>	EN	- 93	SA	>	>NU	
S	>	EN		SAP	>		•••	S	>	ENV	_ا
SA	>	EN	.±	SA	>	EN	S	SI	>	a'	S
ES	>	2		S	>	EN	6 -	SED	>	N	
SE	>	Z W	- 11	SX	>	EN	m •	×S	>	2	- 27
X	>	E		×	>	ENC		S	>	Z	4
SY	>	2		SY	>	2	- 34	SY	>	EN<	
25	>	EN	10	25	>	2		25	>	2	35
25	>	EN	- 15	ATA	>	FRV	. 5	10	>	>	
() 	H	}	.±	5	н	>	ı m	10	н	MVI	9
FILE	Н	IAN		ш	>	ì		70	:-	ERI	
2	H	NVI	- 10	TS	H	IAN	- 11	75	>	5	77 -
735	H	IAN		TUT	Н	ì	6 0	102	ы	IAN	
13	>	> N	- 32	13	н	HOI	- 30	H	н	IN	
3	>	¥	• •	빙	>	RO V	- 36	S	>	>	
X	H	IAN		X	>	¥0×	- 31	×	>	2	
×	Ð	E		AXR2	>	RAV	- 58	×	>	RAV	
×	>	RAV		8	>	RAY	- 53	>	➣	¥0 €	
>	>	Y OK		72	>	70k	- 51	Y.R.	>	RAV	
4	>	RAY		AYR	>	RAV	- 59	K	>	RAV	
ZC	₩	RAI	O	22	H	RAI	-128	22	Н	RAI	~
7	H	RAI		22	Н	RAI	-153	20	;-4	RAI	
37	н	2	w	AZC	H	RAI	-153	17	'>	707	
7	>	> 0F		72	H	HOR HOR		ZR	н	RAI	
ZRA	Н	RAI		ZZA	H	RAI		2 R	н	RAI	
Z 28T	H	RAI		ZR9T	ы	RAI		ZRBT	н	RAI	
238	ы	RAI	~	ZR3	н	RAI		ZR8	H	RAI	
1852	ы	RAI		Z 23T	⊷	RAI		ZR	н	RAI	
238	н	RAI		ZRB	⊱- 1	RAI		2RB	H	RAI	
233	H	RAI		238	H	RAI		ZRB	H	RAI	
248	H	RAI		249	H	RAI		28	ы	RAI	
AZZC2	((TRAIZ	#M +	AZZC3	H	TRAIS	- 34	AZRC4	H	TRAIG	- 34
ZRC	H	RAI		ZRD	>	RAV		ZR	>	RAV	

SYKBOL	1/1	LCOM	207	SYMBOL	1/1	FCOM	207	SYMBOL	1/1	LCON	207
N	H	ERI	-145	A21	>	E		N	>	EN	- 29
~	>	EX		M	H	ERI		A3C1	1-4	ERI	5
M	H	ERI		M	H	ERI		35	;	ERI	
M	H	ERI	- 55	ABEV4	H	ERI	- 65	L	H	ERI	- 25
M	H	ERI		M	H	ERI			ы	ERI	-107
M	H	ERI			-	ERI		m	>	EN	- 27
M	>	ERV			>	ENV		0 4 4	H	ERI	-179
A4C1	-	SEQ12	9 -	A4C2	+	SER12	- 16	A4FV1	H	SERIZ	- 36
L.	H	ERI		*	н	ERI	- 56		H	ERI	- 66
*	H	ERI			H	ERI			H	ERI	- 89
A4V2	H	ERI		*	H	ERI			H	ERI	-149
80	H	ERI		S	H	ERI			H	ERI	- 17
5	H	ERI		r	H	ER J.	- 47	35	H	ERI	
5	H	ERI		r	~	ERI	- 27	ASP	H	ERI	- 77
5	H	ERI		S	H	ERI	-111		H	ERI	
2	н	ERI		68	H	ERI	•	29	H	ERI	
S	H	E.R.	+		Н	ERI	M	9	H	ERI	84 -
49	H	ERI		AGFVL	H	ERI	- 68	ASF	H	ERI	
ASP	H	ERI	- 78	A6V1	H	ERI	- 93	9	H	ERI	-113
9	H	ERI		A6V4	H	ERI	-153	A7B	H	ERI	
~	H	ERI	6 •	70	H	ERI	- 19	7FV	H	ERI	
7	H	ERI		4	H	ERI	- 59	AZFV4	H	ERI	
7 F	1-4	ERI		A7P	H	ERI	- 79	A7V1	H	ERI	
~	-	ERI	-115	A7V3	H	EPI	-135	2	H	ERI	
7 0	н	ERI		30	+	ERI	- 10	ABC2	H	ERI	
1	н	ERI		L	H	ERI	- 50	8 F	H	ERI	
1	H	ERI		•	H	ERI	- 30	ABP	H	ERI	
8	H	ERI		A8V2	H	ERI	-117	2	н	ERI	
8	-	ERI		Φ	H	ERI	-184	A9C1	H	ERI	
36	H	EQI		σ	H	ERI	- 41	A9FV2	H	ERI	- 51
6	H	E2I		ASFV4	H	ERI		A9F	H	ERI	
$\boldsymbol{\sigma}$	H	ERI		1764	H	ERI	- 66	9	н	ERI	-119
σ	H	ERI		49V4	H	ERI		AA	>	EN <	- 23
Z.	н	ERI		AKK	H	HOH		₹	>	> OH	
X	>	운		A	>	¥	9 -	Z Y	H	ENI	9
⋖	н	M	-266	AZ3	н	W		AZ	H	ENI	-268
4	>	2			>	MCK		A1	>	¥0 ×	*

the little of the second of the second second of the secon

Description where the description is a second and the second and t

SY480L	1/1	LCOM	700	SYMBOL	1/1	LCOM	700	SYMBOL	1/1	LCOM	700
A 2	>		- 42	A2	>	>0X		A2	>	704	**
A	>	> 0 7:		A3	>	701	- 46	A 3	>	70 E	
3	>	EN		E E	H	ENT	Ø	i i	н	IX.	-279
11	Н	Z	-271	8EL4	H	IIJ	-272	EPU	H	Z W	m
100	н	FNA		EPV	н	ENI	. 5	EPV	H	ING	• •
G.	H	ENI	~ -	E D	M	ENI	€0		>	PGSV	5 4
E TA	>	282	б	ETA	H	HOH	- 27	ETA	H	XOY	-4
ETA	H	HNI	ιΩ •	H	>	ERV		¥	H	IN	
IVI	₩	ENH	~	ĭ	H	HWW		7	н	ENI	Ñ
2	н	ENI		Z	н	ERI		2	н	FRI	
7	>	ENV.	-	RNS	>	¥0×		SIG	>	ERV	
0301	>	70H		0601	>	701		0601	>	705	
0302	>	> 0 F		C 632	>	704		960	>	Y 0 E	
(5)	>	X 0 X	- 35	9	>	9	- 37	000	>	X 00	- 38
14S1	ы	ENI		1A32	H	ENI	1	1 AS	H	IN I	~
1 AS	н	ENT		105	H	ENI	٢	108	H	ENI	Ñ
133	Н	FINE	•	105	H	ENK		2AS	н	ENI	•
2AS	H	ENH		2AS	H	ENI	•	2AS	H	KKI	•
235	H	ENI	æ	208	Н	ENI	$\boldsymbol{\sigma}$	202	H	IN	
208	-	INI		A9	>	NT N	+1	⋖	>	> LZ	
ACB	>	ERV		A	>	N V		⋖	>	> 1x	
A	>	40 4		AS	H	PEI	*	8	۲,	ERV	
8	>	200		CH	H	IN		00	H	N > H	
0	Н	NI	- 13	ü	H	INO	1 25	Õ	Н	ERI	
S	ы	ERI		2	H	ERI		¥	н	ERI	
20	н	E21		0	H	10%		10	н	40 T	
10	H	HOI		20	Н	HOL		20	H	HOH	
02	ы	HOI	c; ≠ 1	03	н	HOH		03	H	TOT	
33	H	HOK			>	2		M Li	H	N	
EA	-	NVI	- 34	4	>	FRV		a W	H	F.R.H	
0	H	IAN		E02	H	N		ပ္ပ	H	721	~
GIN	>	TRV	~	GXS	>	3	۳ ۱	×	H	TRI	• •
GXO	>	1.8	. .	GYS	>	TRV	.t	5	H	TRI	
370	>	12	· ·	29	>	TRV	• •	29	н	TRI	6
29	>	TRV	ن 1	품	н	RAI	-10	H	H	RAI	.
XP1	Н	ONI	.+	Š	н	INO	~ -	Y	H	CONIS	- t.
\$ C X D	ы	CONIS	- 13	CK41	н		m	CKR2	H	INC	9

707	17	«	- 21	6	. 17	-			53	6	- 12	12		•				64				•	6	10			. 65	r.	•		. 11		9	14	74.	71.	- 21
LSOM	2	UND	¥0 ∀	UND	I A	NVI	I A	NVI	ENVIS	N > I	IAN	N	RAI	> ×	ERI	F. 1	N	?	X	S	Z	ERV	SRI	Q'	IN N	= 21	> > 2	¥ X	Ž	Ĭ\	FRI	181	ERI	Z	M	ERI	E.P.
\ 1	>	ы	>	.	-	H	H	+	M	H	H	H	-	>	H	H	-	H	H	>	>	>	H	H	H	H	>	H	H	H	H	ы	H	>	>	H	H
SVHBOL	S	₹	AT.	4	17.	1	15.	7	3773	٦,	7	3	۲,	۲	7	2	N	4	4	Ť	T.	Ş	=	*	~	5	7	>	2	>	7	2	Ö	ISC	٥	>	2
၁၀	12	S	14					25	2.7	•	11	14	24	54	10	23	54	6	¢.5	32	35				16		4	ŧ	^	11	16		63	r v		17	
Ĩ.	•	•	•	•	•	•	•	•	•	ł	•	•	•	•	•	•		•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
LCOM	INO	HNO	INO	IND	IAN	N X	NVI	NVI	ENAIS	N	NVI	NVI	RAI	70H	> ^ N	NVI	¥ X	ERV	NVI	> NO	Z	ERI	ERI	NVI	NAI	ERV	ERX	È	MAI	NVI	ERI	ERI	NTV	720	EN	8	ERI
1/1	H	Н	1-4	н	H	Н	H	н	H	H	н	H	H	>	>	H	H	>	н	>	>	H	51	H	H	>	>	Н	H	н	H	H	>	>	>	H	H
SYMBOL	3%	¥	¥	LAH	177	171	177	3	CL 321	LJ	1	3	Z	113	2	17	7	ر	I	40 %	TO Y	£	2	CM1	X	I	z	ž	ì	N S	2	2	9	PSE	PSI	Ď,	2 d
50	თ	20	11	13	10	18	21	54	25	53	10	13		25	29	36	38	25	44	36	34	2	12	28	30	18	20	m	'n	6		32		m	24		19
نہ	•	ŧ	¢	•	•	1	•	•	•	•	¢	•	1-1	•	<u>_</u>	•	•			•	•	•	ŧ	•	ŧ	•	•	•	•	•	•	•	•	•	•	•	•
LCOM	ONI	FZV	ING	DNI	CRI	NVI	IAN	NVI	$\frac{1}{z}$	IAN	N	NVI	RAIL	H0 V2	RAIL	ERI	ERI	NVI	NVI	ERI	> N O	ERI	ERV	ERI	ERI	NVI	ERI	>	I ≥H	NVI	ERV	ERI	EZV	S	EN	EZI	AERI2
1/1	H	>	H	H	H	H	H	14	ы	ы	H	H	н	>	H	H	н	ы		Н	>	H	>	ы	н	H	Н	ы	H	н	>	H	>	>	>	М	H
SYMBOL	×	S S	KYS	A	LJF	177	171	111	CL 123	1,32	7	3	Z	5	-	7	2	L 3	₹ X	HAT	Q.	FOR	I	Ħ	I	23	S	Z	$\frac{2}{z}$	>	Z	Z	Z	ī	Q (V	PX9	CPYQT

MBOL I/V	LCOM	۲٥٥	SYMBOL	1/1	LCOM	٦٥ ٦	SYMBOL	1/1	LCOM	۲٥٥
×	N	- 59	02	H	Z		60	H	ENVIG	- 32
H	> z	- 39	S	H	N	- 27	TAU	H	ENT	
H	GNI	۳ ا	E	>	Z		I	>	9	
>	700		I	>	9		TH2	>	9	
>	PG	18	HH	>	5	- 15	TSID	H	RAI	* *•
	RAI	-	TSID	H	RAI		13	H	RAI	- 63
	RAI		TS	H	RAI	- 65	TSID	H	RAI	
1 6	A	- 67	TSID	H	A A	m -	-	>	Z	m
	FRI		UPL	н	H	- 12	>	H	HOF	
1-4	HOH	_	2	H	101		>	H	HOF	- 47
H	NVI	•••	Z	>	> ×		7 11	>	280	•••
H	F 24	- 140	2	H	FRI		8	>	FRV	74 -
>	FOV	01 -	3	H	H	- 25	×	H	18	- 10
\$-4	EZI	13	×	H	EPL		X	ы	25	~
•	EZI		×	>	ERV		X	H	ERI	m
H	E2I		×	H	ERI	<i>±</i>	XX	Н	ERI	
>	17 15	.	>	H	ERI	- 11	7	>	Ž	111
>	YCV		× CX	H	YCI	.	YCX	H	7	m:
>	YC		¥	H	TEI	. ,	7.1	H	EAI	
H	ERI	- 20	>	н	2	- 25	7	H	2	- 23
Н	5	- 24	72	H	ERI	9	72	H	ERI	
H	YCI	N	42	H	YCI	- 25	72	H	YCI	
H	YCI		X 3	H	YCI	- 29	X 3	H	YCI	
>	52		82	H	ERI	- 12	17	H	ERI	
H	11 12 14		22	н	ERI	€	22	H	£21	- 26
>	743		00	H	FRI	-201	X	>	S	•
>	PGV		≯HO	>	S	. ,	7	>	9	
>	S	en t	82H0	>	96	- 12	THO	'>	b 61	63 -
>	PG2	- 10	E	>	PG	- 19	OMU	>	9	- 11
>	96	- 11	I	>	ð	- 20	DHO	>	P 61	- 12
>	PG2	- 12	E	>	PG	- 21	Z	H	Z	r.
H	Z	m	Z	}- 1	20	± .	> z	>	3	m •
H	SPI	ტ •	>0	н	FRI	6 -	0 > 0	H	FR	-102
>	PFRVI	- 23	CIAT	н	SENIS	-214	CIVIT	H	ENI	
H	ENI	•	2 A	H	ENI	+	25	H	IAN	- 29
H	ENI	•	2 V	H	INS	- 24	3AT	H	Z W	
H	ENI	•	312	H	ENI	- 26	>	H	HNU	

Table Strategy of the second second of the second second of the second second second second second second second

SYMBOL	1/1	LCOM	2	ပ	SYMBOL	1/1	LCOM		၁၀	SYMBOL	1/1	LCOM	700
4 72	H	ENI	7	\$ 0	5 1	H	ENI	•		5 7 2	•	ENIS	
9	н	ENT	-	.	Ð	H	ENI		32		H	ENI	
7 12	ы	INI	1 LD	.	7.1	H	ENI	•		72	H	ING	
73	н	ENI	+	-	~	Н	ENI	•	12	~	H	M	
~	ы	Z	بر ا	*	87	H	S S	•	18	>	H	ENI	- 36
σ	H	EVI	5	5	σ	H	ENI		38	9	>	5	
A	>	>	-	80	8	>	¥0×	•	28	DATE	>	SERV4	m
A	H	NVI	. 7 1	Ñ	⋖	>	ž	•	38	A ZR	H	2	
AZR	H	A A	7	80	A 28	н	RAI	•	28	Z V	H	RAI	- 28
A ZR	>	RAV	•	8	A24	>	RAV	•	33	AZR	>	RAV	- 38
7 V	>	SAV	.7	9	AZ	>	RAV	•	64	AZR	>	RAV	- 50
A ZR	>	RAV	1	T :	AZR	>	A A	•	52	74	>	RAV	
⋖	>	> z	4	u,	A5	H	HOH	•	53	S	>	> NO	9
()	>	Z		3	5	>	NO	•	~	U	H	HOH	
5	н	HOF	-	80	25	H	무	•		ပ	H	HOH	
90	H	RAI	<u>ა</u>	90	80	H	RAIL			90	H	RAI	
03	Н	RAIL	5	3	60	H	RAIL			9	H	RAIL	- 95
08	н	RAIL	ۍ ا	9(60	H	RAIL	ŧ		80	H	RAIL	
0	H	RA	.7	4		H	œ		45	0	H	2	9
5	H	RAIL	7	٨,	L O	H	RAIL			6	H	RAIL	
6	Н	RAIL	ın ı	0:	4	H	RAIL	. 6		9	H	RAIL	- 52
270	>	>	•	0	ORS	>	RAY	•		8	>	RAV	
20	>	ZY	-	<u>-</u> -	ORG	>	RAV	•		w	>	200	
FLF	>	IIV		10	딥	>	RAV	•		ELP	>	RAV	62 -
4	>	RAV	.	0	ELP	>	RAV	•		ELP	>	RAV	
113	H	Z X	رب ا	6	213	Н	RAI	•		u	H	2	- 29
ニス	H	RAI	5	6	ELZ	>	RAV	•		ELR	>	RA	
ELR	>	RAY	1	61	EL2	>	RAV	•		ELR	> 0	RAV	
11 L	>	RAY	i in	55	ELR	>	RAV	•		ELR	%	RAV	
.J til	>	RAV	•	61	ELV	>	ENV	ı		ELV	>	N X	81 -
111	>	NU	-	6.	ELV	>	W W	•		ENS	H	H Y	- 47
Z.	>	>	4	10	EPC	>	Z	•		EPC	>	Z	13
003	>	8	.T	6	EPD	>	8	ŧ		690	>	8	- 50
003	>	20	er.	11	EPO	>	80	•		E R.F	H	LSI	- 86
2	-	96	•	•	2	ы	NPG2I			ERI	H	7	- 11
EZL	>	Z	1	60	ERL	>	Z	•	12	2	>	>	32
	>	Ë	•	83	E 2 3	>	-	•	34	er Li	>	7	35

SYMBOL	IV	LCOM	Ī	20	SYMBOL	1/4	LCOM	_	20	TOGMAS	17	LCOM	_	၁
E S	>	Ħ	•	36	ER	>	-	•	37	EYA	>	0	•	8
EYA	>	Z	•	14	EYO	>	0	•	53	4	>	PROV	•	*
EY03	>	20	•	55	E	>	PROV	•	56	EYO	*	ď	•	
E2	H	RAIL		78	E 2	H	AIL	;	79	23	H	TRAILV	ī	9
E 2	H	RAIL	•	81	ш	H	AIL	; >	92	w	H	ATL	•	23
E 2	H	RAIL		*9	EZ	H	AIL	-	85	23	> 4	2		
111	1 →1	HOH	•	55	181	>	0	6	19	181	>		•	8
181	>	2	•	21	18	>	0	•	22	81	>	=	1	
I B	>	2	•	24	IFG	>	2	•	10	IXX	>	TRV	•	
IΥ	>	TRV	•	.	221	>	2	•	8 0	3	H	ENI	2	
J2T	H	ENI	2	04	KPHI	H	¥	•		KPHI	H	ONT	•	
KPI	н	INO	1	51	T	н	H	•		Š.	H	2	•	
KPX	ы	IND	•	53	KTHE	H	벋	•		KTHE	H	DNI	•	
X	H	HNO	•	71	LAZ	>	>	•		LAH	>	NS	•	
LAH	>	> N S	•	37	H	H	E	•		Ľ	>	1	•	
L PX	H	HOL	•	22	5	~	70	•		5	H	HON	•	
157	>	EN	•	21	167	>	2	•		LP2	>	KNA	•	
L P 2	>	EN	•	25	5	>	>	•		5	>	EX	•	
7	!>	Ž	•	33	LVX	H	0	•	15	_	H	Ž	•	91
717	H	H	•	17	2	>	>0	•		7	>	¥00	ı	
ZVI	>	>0	١	29	Ŧ	>	2	•		Š	H	RAI	•	
NC1	>	> x	1	62	2	>	>0	•		9	H	HNO		•
PSS	Н	HOM	ı	1.8	PFO	>	S	•	*	PF	>	9	•	*
P :: 2	>	9	•		۵	>	6	•	•	PGI	>	7		_
PGK	>	PG1	•	17	PGV	>	62	•	17	9	H	9	•	4
XCa	H	9	•	m	PG1	н	5	•	*	PG1	H	5	•	m
P 32	H	PG2	•	÷.	5	н	25	•	m	H	>	}	•	m
PHA	H	HOH	•	19	XXd	н	GI	9	.	PIX	H	5	•	zv.
P.TX	H	PGI	•	m	9	H	IO	•		8	-	RAI	•	2
PRA	; 4	RAI	•	78	3	H	AI	•	7.0	Q.	H	RAI	•	9
P ~ B	н	RAI	H		8	н	AI	7		PRB	H	RAI	7	
4	н	RAI			P & B	H	⋖	•		8	H	2	•	
P ~B	н	RAI	•	68	5	н	AK	•		P. *C	H	RAI		
P 2C	H	RAI	•	82	P20	H	H	•		8	Н	RAI	•	
200	>	RAV	•	20	8	>	4	•		PRO	>	RAV	•	
0 P 20	>	TZAV1	•	20	DP3K2	H	TRAIS	•	73	DPRK3	H	TRAI3		73
2	H	RAI	•	73	8	H	◂	•		PRE	6- 3	TRAIZ	•	

707	- 87		- 23		- 32		ۍ •		- 79			- 69	۳ و	- 21	± -	する・	99	- 95	- 29	- 29	- 55		-			- 19					- 45	- 37	- 92	- 72	- 86	. 85	- 93
1001	TRAIL	841	RA	RAV	RAK	PG1	P62	PG2	RAI	RAI	2	RAI	RAI	RAC	MY W	RAI	RAI	RAI	RAV	RAV	RAY	RAI	RAI	RAI	RAI		RAV	RAI	RAI	RAK	RAV	2	RAI	RAI	TRAIZ	RAI	RAI
E/V	+	⊷	>	>	>	H	H	H	;- -	-	H	H	H	>	-	H	⊷	H	>	>	>	H	H	H	H	>	>	H	-	>	>	>	H	-	H	+	H
SYMBOL	OPRL3	8	786	8	8	4	929	P2P	ORA	DRB	are	8	ORC C	2	DRK	2	arl	2	QR<	2	8	2	ď	8	8	2	2	5	8	2	8	ဗ္ဗ	I	×	œ	7	Z
90	87	3 6	28	28	54	10	16	13	79	14	14	69	63	25	21	74	88	95	95	29	55	77	77	10	29	29	19	6	27	37	**	47	92	72	72	96	93
ب	•	•	•	•	•	•	•		•	7		•	•		•	•	•	•	•		•	•	•	7		•	•	•	ŧ	•	•	•	•	•	•	•	•
LCON	TRAI4	RAI	RAV	RAV	RAV	194	PG1	PG2	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAI	RAI	RAI	RAI	RAV	RAY	RAI	RAI	RAI	RAI	2	RAV	II	RAI	RAV	RAV	RAV	RAI	RAI	TRAIL	RAI	RAI
77	H	H	>	>	>	1-4	H	H	-	H	-	H		>	>	H	H	- -	H	>	>	H	H	н	H	H	>	>	H	>	>	>	Н	H	H	H	H
SYMBOL	2	Z Z Z	PRV	٥.	8	414	PIP	P2P	928	028	Q	023	240	020	8	02X	8	240	8	8	8	RA	RA	8	œ	8	2	eri Lii	RGR	RGR	œ	RGR	RHF	쏬	ORK	2	œ
700	- 87	*6 -	†6 -	- 28	ı Vi	- 20	41.	11.	- 79	- 79	-114	- 69	- 83	- 83	- 21	+ 7.+	- 88	- 88	- 95	- 29		. 55		-110	٠,	- 67	19	- 31	- 27	- 37	- 43		- 92		- 72		
LCOM	RAI	RAI	RAI	2AV	RAV	HOM	PG	962	RAI	RAI	RAIG	RAI	RAI	RAI	RAV	RAI	RAI	RAI	RAI	ZAV	ZAV	RAV	RAI	RAI	ONI	RAI	RAV	ZNO	RAI	NA K	RAV	2AV	RAI	RAI	A A	RAI	TRAI2
1/1	н	H	ы	>	>)	H	.	H	H	H	H	H	H	>	H	-	,	H	>	>	>	H	H	H	H	>	>	H	>	>	>	H	,	H	H	н
SYMBOL	4	270	D AN	4	p 23	<u>_</u>	PIPS	2	QZA	0 2 A	038	228	9	920	QRD	2XX	226	0218	8	220	922	9	AY	8	R 81	8	2	REL	RGR	RSR	5	RGR	QAP.	34%	2XK	2	0842

ANNERS OF THE SECOND CONTRACTOR OF THE SECOND SECOND CONTRACTOR OF THE SECOND S

SYMBOL I/V LCOM LOC	2V3 V TRAV3 - 2	R2 V TRAV2 - 5	R5T I TH012 - 5	SGDG V PFRV1 - 1	SRPQ3 V TRAV3 - 3	SUBRE V SENVS -	TAUP V TROVI - 3	TOV3 I CYCII - 4	TO1 I TRAILV- 6	TO4 I TRAILV- 7	TST I TRAILV- 7	- ALNI > OF	TG11 I 0PG1I -	T622 I 0P62I -	THR V RHOV -	THAX I INTII -	TPRV V INTV2 -11	TV1 I CYCI1 - 3	TH I ENVIG - 3	T08 V INTV - 2	TIL V CYCV - 2	TZL V CYCV - 2	T3L V CYCV - 2	T6A I ITII.1 - 7	T9A I ITIII - 8	VCPT I PFRII -16	AISXN V THOUS - 4	VLG V TM0V - 4	T - LICHL I SAA	MPRS V PROV - 2	MPRS V PROV - 2	W2T I PRCI1 - 6	W5T I PR0I1 - 6	ANF V INTV - I	04Z9 V RM0V - 3	DILMZ I DPGI1 - 13	2LMY I DPGI1 - 1
700		1 - 27	·	-			•	, ,		٧- ٧	LV- 74	V-7		1 - 5	5 0	د		M						1			M		+				•		•	1 - 12	
IV LCOM	TRAV	RAV	TRAV	DPGI	TRAV	TRAV	SEN	CYCI	INI	TRAI	TRAI	TRAI	NU.S	SPC	RAO	INT	INI	ENVI	CYCI	121	CYC	CYC	CAC	ITII	ITII	TNI	TMOV	Y WO K	TMCI	PRO	P.R.0	PRUI	PROI	PFRV	RMGV	I OPGI	OPG
I TOEHAS	0.	8	œ	SCHI	SAP	SRPQ	SUR	-	101	TD3	13	C	15	16	142	171	Z	2	1	2	1	72	13	15	5	\supset	2	SIA	*	MP 2	MP 2	H	I	YNB	O MY	DILMY	21.4
207 W027	3AI1 - 9	RAV4 - 2	RAV3 - 5	2AV1 - 5	FRV1 - 1	ZAV4 - 3	ENV5 -	VCII - 3	NIV - 2	RAILV- 7	RAILV- 7	RAILV- 7	YCI1 -	P611 -	- NOK	MOV - 1	NTI1 -	NTV2 - 6	YCI1 - 3	FRI -	TII1 - 5	TII1 - 6	TIII - 5	TIII - 7	TIII - 7	E2V4 - 1	MOI3 - 1	40 V2 - 4	+ - ADH	MDI3 - 1	204 - 2	ROV - 1	R011 - 5	- EINO	MOV - 3	PGI	E - 31
1/1	н	>	>	>	>	>	>	H	'>	ы	H	H	н	H	>	>	H	>	ы	Н	H	H	H	-	ы	>	ы	>	>	-	>	>	H	H	>	1-4	H
SYMBOL	0	3284	8	~	SIGI	SZP	SUBR	TOVI	101	7	C _	1	lil ber	13	THI	F	I.	7	2	10	11	72	73	.+ !==	17	770	VCS	VISY	VLL.	7	C	C	M	₹	XX:	01. MX	

SYMBOL	1/1	LCOM	207	SYMBOL	1/I	LCOM	700	SYMBOL	1/	LC03	100
2	H	PGI			H	IAN		⋖	>	RAV	
M	· >	700		4	>	RAY	•	I	>	RAK	
SA	>	> > Z		A	-	20 I		A 2	\$-4	ROI	- 71
A	H	RON		⋖	H	ROI	. 75	A 5	H	201	
CAI	>	T	- 31	S	>	2		ပ	>	100	- 11
C	>	> ×		0	H	HOI	σ.	80	H	RAI	- 1C
033	H	RAI		2	н	RAI		8	H	RAI	E)
10	>	7		07	>	2	- 14	9	>	£	- 15
F 30	>	2		GF1	>	5		F	>	P62	_
6	>	9	10	IA	>	> ×		16	H	FRI	
JET	н	3	ഴ	2	H	RAI	*	LCT	H	RAI	m
LOT	H	RAI		LCT	н	RAI		2	H	RAI	
LZA	H	RA:		LZA	н	RAI		3	H	RAI	
L 28T	ы	RAI		L 287	H	RAI		L R.B	H	RAI	
L 28	н	RAI	- 89	L 23	H	RAI		LRS	H	RAI	
LRBT	H	RAI	- 95	LRBT	H	RAI		LRB	H	RAI	
L 382	н	RAI	- 23	L 233	H	RAI		3	H	RAI	
L 2B	H	RAI		L29	H	RAI		LRA	H	RAI	
7	н	RAI		2	H	RAI		LRB	H	2	- 23
LAC	H	RAI		135	н	RA I		LRC	^ ~t	RAI	
LACC	H	RAI		140	H	RAI		LRC	<u>ታ</u> ቁ	RAI	
LAC	H	RAI		L2C	-	RAI		LRJ	٠.	RAI	
1200	н	RAI		1800	H	RAI		LRO	ы	RAI	
L 20	H	RAI		129	-	RAI		LRD1	H	RAI	
1921	H	RAI		L202	H	RAI		L. R.O	٠.	RAI	
1 20	н	RAI		LR32	H	RAI		LRO	>	RAV	- 13
L 2D	>	RAV		180	>	RAV		3	>	RAV	
LAK	H	RAI		7%	H	RAI		LRK	H	QAI	
LZK	H	RAI		74.7	H	RAI		3	ы	ZAZ	- 15
1 × X	H	RAI		7%7	H	RAI		2	, ;	RAI	
141	>	707		131	>	AC <		3	H	RAI	
LAN	H	RAI		132	H	RAI		3	н	RAI	1
7	>	RAV		12	>	RAV		3	>	SA S	- 26
7	>	RAV		~	>	RAV		3	>	RAV	- 36
7	>	ZAV		3	>	RAV		3	>	SA V	177
7	>		- 15	EL 28	>	TRAYS	- 16	ELR9	>	TZAVS	- 17
ELA	>	RAN		2	>	>		7	>	≥ N	-115

SYMBOL	1/1	LCOM	207	SYMBOL	1/2	HCO7	707	SYMBOL	1/1	F.COM	2	ပ
7	>	2	-115	>	>	> Z		S	н	>		σ
NCO		N		C	•	2	0	NC.D	-	>		~
) (1)	ı 	1 > 2		CUZ	• •	2		K C C	· 14	2	رة ا ا	
) ()	۰ بـ) > >	v 0 1) C	• •-	2 2		2	٠,	2		
1 C Z	ı .	NVI	32	NC N	ı H	I A		NCI	. H	N N		0
EX318	H	ENVII	23	IN CONTRACTOR	: -	ENVIL	33	INC 21	•	ENVII		
NO X	•	I AN	- 29	NC3	H	IN		N CM	H	N		•
EC. 7.	н	IAN	30	S N N	H	N V		AC A	H	X A K		σ
NIO	н	NVI	- 12	NIO		NVI		NIO	н	N X		.
NIO	H	NUL	- 15	NIO	H	NVI		OIN	H	2		۴.
NIC	H	MAK	- 18	NIS	H	X		2 × ×	H	⋛	•	*
X > X	H	?	۳ •	N N	H	ž	3	0 > N	>	>	•	~
OAR	➤	>	.1	0 > X	>	2		N CO	>	*	•	~
9AN	>	>		2	>	ì	e o	X > N	>	Ž	•	σ
HOZ	>	5	•	POT	>	S		TOA	>	Z	•	_
POR	>	ZO	- 22	PCH	>	Z		TO A	>	Z		4
PCI	>	Z	- 25	PCH	>	Z		P01	>	8	m	•
P 32	>	20	- 39	5	>	2		6	>	20		+
P.35	>	202	- 42	Ŧ	H	FIN	2	Ĭ	н	RNA		9
T a.	.	EN I	-278	Ţ	H	ENT	•	7	H	ROI		ტ
ã	м	RUI	30	ಷ	,	ROI		7	н	ROI		~
4	H	ROI	- 29	A	H	ROI		T.	H	ROI		9
0	н	3	14 -	ď	н	ROI		a	H	ROI		•
O.	>	YCV	- 39	PYT	ы	8	- 78	PYTC	H	ROI		σ
PYT	H	8	- 80	à	H	ROI		PYT	H	ROI		~
4	>	Z	- 15	7	>	Z	თ •	2	>	Z	-11	
217	>	N = 1	-116	പ	>	> x		RHA	>	NT <		ტ
ZHI	>	NIV	- 63	Z.	H	KH		R11	>	RAV		.
211	>	RAV	± ±	RII	>	RAV		R11	>	RAV	÷	•
R12	>	RAV	1 (†	R12	>	RAV		R12	>	77	3	S.
212	>	RAV	- -	R13	>	RAV		R13	>	RAY	\$	٠
213	>	RAV	6	컱	>	RAV	94 -	2	>	ストス	3	
721	>	RAV	14 -	R21	>	RAV		221	>	RAV	*	•
25	>	ZAX	80 	R 2	>	RAV	84 -	R22	>	RAV	<i>4</i> 7	•
222	>	RAX	£ †	R23	>	RAV		2	>	2	.	σ
223	>	2	64	R 2	>	8	64 -	231	>	TRAVZ	•	0
8 .	>	ZAY	- 50	83	>	RAV	- 50	53	>	2	ı	0

LC0	T	2	ပ	SYMBOL	1/1	LCOM	L0	S	SYMBOL	1/1	LCOM		၁၀
•		- U	• ••	R32	>	RAV	ķ		23	>	8	•	21
1	un I		ايو	R3	>	A	ii ii		R33	>	24	•	25
! +			61	R33	>	RAK	3		· ~	H	>	•	23
V4 - 2	1		10	GINS	>	ERV	7		SNI	>	2	•	8
ا د	2	0	•	S	>	ERV	<u>۔</u>		S	>	8	•	25
	•	(A)		S	>	8			Z	>	H	•	21
•	1	ın		Z	H	MOI	7		TA	H	2	•	15
+ • •				7	H	2	io I		VC1C	>	8	7	2
•	6 0	80		2	>	2	-		2	>	8	•	56
r I				X	>	Ü	3		2	>	80		86
-10	10			2	>	8	-11		S	>	90	7	69
il)	111			Z	H	NFI	S		VPF	H	¥	•	36
1 - 3	m			T d A	н	¥	3		9	H	ILL		1,1
+	\$			ڄ	H	NFI	4		٥. >	H	KFI		\$
1 -20	23			7	>	2	•		>	>	Z	•	11
•		+		YA	>	Z	7		YAK	>	Z	•	28
•		ō,		YAH	>	20	3		YA	>	Z		56
•		W		5	>	8	3		2	>	2	•	Į,
+	*			5	>	80	3		>	ы	RØI	•	34
1 - 3	M			굿	H	ROI	į.		7	H	20 I		37
1 - 3	M			★	H	RGI	3		Z	н	20 I	•	Ę,
•	4			Y	н	RGI	*		>	H	20 I	•	m
•		۲-		AX	>	ERV	+	•	¥	>	18 ×		ø
12 - 7	_	~		FAZ9	>	AERV2	•	<u>u</u>	BAR	ы	ENVI3	•	đ
, H	- 43	M		i di	H	HOH	m •		S	H	ç		M
12 - 76	- 76	õ		포	>	RAV	7		Ŧ	>	ZAV	•	92
, H	- 75	Š		Ŧ	H	IAN	÷		Ī	>	> L	•	m
-	7	7	_4	アンエン	H	RAI	S		Ŧ	H	8	Ŧ	3. 3.
4 - 1	+1	Ň		H.H.	H	RAI	-15		ď	H	2		27
•		iv		FPP5	₩	3	- 2		PP6	H	œ	•	37
•		an)		4	H	ER	<u>۔</u>		7	H	2	•	50
•				FP1	ы	ER	=======================================		2	н	2	•	30
•		==	10	FP2	-	3	7		2	H	2	•	36
•			~	FP45	н	3	, e		0	H	ď	•	8
•			6	FP50	H	ER	1		Δ	н	œ	•	
•	4	- :		FPB	ы	ER	2		0	H	2		33
I - 23	- 23	P 7		FROF	ы	XC.	•		W	H	?	•	24

70C	173	10	70	52	M		39	35	-	8		W	23	39	٠ <u>+</u>	M	w	~	1	4	9	۲	•	•	36		2	33	24	•	m	5 6		53	\$	30	σ
	•	•	•	3	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
LCOM	8	60	8	2	œ	H	Z	=	W	Ž	2	M	40	7	7	5	9	196	SENAG	2	5	5	5	9	2	2	?	HOL	70	>>	704	¥00	>0 I	¥	Ž		TRAIS
1/1	>	H	>	H	>	>	>	>	1-4	>	>	H	>	>	>	>	H	H	>	>	>	>	>	>	>	>	>	H	>	>	>	>	>	>	>	>	H
SYMBOL	×	FTON		F147	-	×	C)	S	Y	4	AH	7.	•	•	•	S	O	9	GORY	ш	ш	ш	ESNI	ESN	\mathbf{H}	HGE	S	HIH	풋	T	Z	GMTP2	HTS	×	Z	S	S
۲٥٥	64 -	ın	- 51	- 11			1000			•	- 62			- 38		m	m	•	- 13		ę,	~ .	- 18	•	- 51	- 50	- 24	- 27	-170	- 17	- 32	- 25	- 35	67 -	- 31	- 29	- 7
FCOM	8	ď	2	PROV	2	-	NT C	F	HOE	PG2	RAK	2× ×	7	5	5	S	5	P52	SENES	PG2	PG2	961	196	9	>	?	>>>	?	FRI	7	9	> 0H	205	ENNS	2	ANN	2
1/1	H	>	H	>	H	>	>	>	H	H	>	>	>	>	>	>	>	H	>	>	>	>	>	>	>	>	>	>	н	>	H	>	>	>	>	>	اسا
SYMBOL	-	17		-		×	10		AHA		AHY	AMA	¥	⋖	⋖	S	C	C3	60%	10	F	ES	ESNI	ES	¥	I	301	I	Z X D	Σ	¥	I	H	I	74	GRS1	S
207	- 24	. 	- 13	- 53	- 12	6	- 24	- 36	5- 3	- 13	- 19	- 62	- 21	- 37	04 -	. 53	m •	ν. υ.	- 12	- 15	'n	m	~	- 18	1	- 63	- 23	- 26	- 22	- 25	- 3¢	.+ I	+ M -	JE M	- 3¢	- 51	۳ •
LCOM	20	20	6 2	2	20	20	H	VIN	PG2V	2	> OF	RAV	2	5	2	70 H	362V	PG2I	la1	PG1	961	> > 7	9	ဗ္	IN	IA	>>>	> >	?	2	10 I	2	> 2	> C+	>>>	ENVI1	2
1/1	>	>	H	1 -4	>	>	>	>	>	>	>	>	>	>	>	>	>	ы	>	>	>	>	>	>	H	H	>	>	>	>	H	>	>	>	>	H	8-4
SYMBOL		7	NNOLL	13	FT+	FT	FXRES	F1	A	⋖	I.	¥	X	⋖	⋖	BA	ls C	S	6020	5	LL.		u	ESK	<u>د.</u>	T	Z 5	> 0 ¥	T	T V I		Ë	K H K	ᆵ	1 7 3	GZAVTT	3 0 0

SYMBOL	1/1	LC04	100	SYMBOL	I/V	CCOM	70C	SYMBOL	1/1	LCOM	707
	ļ	1		•			,	1	((•
6843	H	Z Z	6 1	6884	H	TRAIG	б	Ø	H	RAI	б
S	>	2	# P	HO9	>	> ×		×	>	> ×	- 37
×	>	> ×	m	GYIR	>	> N	- 38	Y	>	> ×	\$
17	>	> > Z	- 39	-	>	> > N	ı.	081	>	> OH	
0 81	>	MEV	- 13	81	>	>0H		28.0	>	> OH	
8	>	∀ 0∧	- 16	0	>	2	- 17	(2)	>	70H	- 18
033	>	> 0 H	- 19	83	>	MEV		2E.	H	NVI	
2NT	н	N	~	GZUT	H	HAN	6	4	>	TMOV1	
AT	н	Z W	-211	HA33	>	2		HCO	H	HOH	- 21
O	H	MOI	- 22	HC2	Н	유		ပ	H	THOIS	
5	+	YCI			>	7		HFT1	>	CYCV	
F12	>	YCV		-	>	7		-	>	INTV	
⋖	н	8		4	H	A		HHF2	H	RAI	5
I	H	RAI	-154	4	H	A	-154	u.	H	TRAIL	-154
X	A	> Z	- 28	-	H	A		4	H	RAI	- 22
H12	H	RAI		+	H	A A			н	TRAI	92 -
72	H	A A	- 21	N	H	A		N	9 ⊶4	TRAI	- 25
T W	н	A A		N	H	Z Z		HIR2	H	RAI	- 15
7	н	RAI		H	H	Z A		HIR	н	TRAIL	- 15
Y	>	EN		빞	>	}		I	>	> ×	** -
til O	>	Y 0 E		S	H	HOH	9	SLRT	н	RAI	-145
S-RT	М	RAI		SLRT	64	RAI		SLR	H	RAI	- 54
SLR	5-4	RAI		SL2	Н	RAI	- 58	SLRT	H	RAI	- 60
S_RT	н	RA	29 -	S	H	AA		SLR2	!	TRAIZ	* 0
SIR	н	RAI	∞ •	SLR	H	RAI	€ .		H	RAI	6 0
S	ы	HOH	- 30	S	>	Ž	- 45		н	N	- 57
3	H	ENT		H1	H	N	₩		H	H N N	.*
Н3	H	NVI	i iv	J I	H	ì	9	I	>	ENV	- 12
AD	>	u.	- 12	A O	>	ERV	m	A 0	>	ERV	.
0	>	FR	i iv	AO	>	ERV	9	AOA	>	SERV1	_
A S	>	ERV	€O 1	A	>	ERV	6 •	ACA	>	ERV	- 10
A	>	(I)	- 11	AO	>	5	- 12	A1	>	SERV1	- 13
861	>	NO K		801	>	2	± .	801	>	> 0 H	ı N
80	>	705	ی	80	>	2	٠ ،	30	>	RMGV1	•
833	>	MOV	<u>ი</u>	803	>	9		803	>	>01	- 11
IB11	>	RM0 V		1812	>	RHOV	- 26	1813	>	RHOV	- 27
92	>	2	- 28	82	>	문		92	>	P	

Ü

700	33								. 22					23						m	m	٥	m	ý.	m	0 7	11	P C:	12	. 41	44	•	61.		185		•
LC04	> 0H	UNO	NO	S	NO	JNL	INO	14	9	4	Z	1	28	> 0 1	NO.	> 05	> 2	>>>	ž	747	5	2	5	Ħ	Z	5 .	E I	u Z	11	<u>~</u>	r Z	Ë	Ë	Ĺ.	SERI2 -	11	A
1/1	>	H	H	H	H	H	н	>	>	H	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	H	H	>	>	>	H	>	>	H	>	>
SYMBOL	833	CFP	CFP	CF	CFR	CFY	CFY	CRP	90	S	H	FXRE	GVL	9	602	603	Ħ	2 H	H	C	44	2	L31	A T	HUF	Š	W Z	XLZ	HHZ	NS3	d L	Z	PAO	9	IRAN	W.	2
၁ ၀				15						ıv	~								21		ຜ	41	.		ŧ		20	4	ტ	32		m		49	26	ტ	۲.
_	•	ŧ	•	¢	•	•	•	•	•	•	ŧ	•	•	٠	•	•	ê	1	ŧ	•	•	•	•	a	•	•	4	•	•	•	•	•	ı	•	•	•	•
CCOM	5	UND	DNI	20	INC	UNI	UNI	YCV	11	TRI	1	202	FRY	MO.Y	アンド	¥0 X	7 > 7	7 7 %	ž	SPT	HOX	2	H	5	Sp	ÉN	I	T.	2	NU NU	Ħ	Z	5	Ľ.	TMBID		>
1/1	>	H	H	H	н	н	H	>	H	ы	H	>	>	(se	>	>	>	>	>	H	H	>	>	>	>	н	>	ы	H	>	н	;	>	>	н	>	>
SYMBOL	E3	Crp	O LLO	F	9,40	CFY	といる	にゅい	iii O	S	30	F	20	601	602	න හ	H N	24	E	12	14	7	2	ı	SE	3:	W.	×uz	L	X	Ħ	X	g	ď	IRAND	Sis	80
267	- 31	- 19	- 23	747	- 27	<u>C</u> + +	- 31	64 -	-187	<i>+</i>	~ -	- 17	- 12	- 21	- 24	- 27	77 -	- 17	- 23	ı,	. ;	.+	~	- 10	- 13	- 15	- 13	, (C)	-236	- 24 -	- 23	; !V	٣.	₽.7 •	- 14		-205
LCOM	Œ.	E2V	INO	Z	INO	ONI	HZO	INO	G0V	T&I	12I	TEV	18 ×	V 0 ₩	>0H	> OH	> N	> >	> z	SpI	NFV	Y 0	S	5	M	Z	111	5	3	11'	Ē	7	Z	O	INFV	3	FRI
77	>	>	ы	1-4	Н	ы	ы	Н	>	j (ы	>	>	>	>	>	>	>	>	1 -4	>	>	>	>	>	>	>	>	H	>	>	H	>	>	>	>	1-4
SYMBOL	83	CAL	9	is.	α. !:	CFR	とこと	CFY	COI	0 K 2	O KS	FMA	STB	ບູ	200	600	HILL	E S	E	H	607	4	7	<u>ا۔</u>	12	3	上川之	ピア	lı.	T I Z	NTG	NTX	X	PAD	aLNYdI	30 L	Z

SYMBOL	1//	LCOM	707	SYMBOL	1/1	TCOM FOC	SYMBOL	1/1	F007	700
3.1	>	2 A	- 78	2	>	RAV1 - 7	3	>	24	
2	>	ZAV	- 81	2	>	RAV1 - 8	7	>	8	
7	>	RAV	180	2	>	RAV1 - 8	8	>	RAV	
22	>	ZAV	- 78	82	>	RAV2 - 7	32	>	RAV	
22	>	241	- 81	82	>	RAV2 - 8	25	>	RAV	
0	>	ZAV	18 -	82	>	RAV2 - 8	23	>	2 A V	
3	>	ZAV	- 78	83	>	RAV3 - 7	83	>	RAV	
1435	>	TZAV3	- 81	IR35	>	TRAV3 - 82	1837	>	TRAVS	- 83
8	>	RAV		IR3	>	RAV3 - 8	3	>	RAV	
4	>	2 A V		IRG	>	RAV4 - 7	t Y	>	RAV	
.+ (2'	>	RAY	- 81	IRG	>	RAV4 - 8	3	>	A A	
*	>	2AV		IR4	>	RAV4 - 8	S	>	70H	
S	>	띹	-	SPA	>	ROV - 3	S	>	3	
S	>	70H		ITAKT	H	ERI1 - 1	TCOV	н	ERI	
TOAT	Н	ERI		ITDAT	Н	ERI1 -	10	;	50 I	
TOA	н	ERI		TACTI	ы	ERI1 - 2	TDAT	H	ERI	
TOAT	Н	D'	- 23	III	H	ERI1 - 2	TOAT	H	9	
101	н	PG2		ITOS	н	PG215- 2	10	н	PG2	
<u> -</u>	H		÷	L	H	TEI -	Li	>	F	۳ •
LL. }~ ~	>	7	1 401	٣	H	PG2I5- 1	1	Н	PG2	
}	н	96	5- 19	165	>	G0V -10	TGU	н	3	- 19
11	H	===	. 	TIF	Н	TII -	TIF	>	1	•
1	>	H	- 12	ITIMG	H	ERI1 - 2	TING	H	ERI	
H	H	0 <u>/</u>		IIII	H	ERI1 - 1	I	H	FRI	- 17
-	>	Ä	- 21	ITPFS	H	ERI1 - 2	TPR	H	TII	m •
TPR	н	2	+	IID	н	NFI1 - 2	-	н	u Q	
-	>	Sp	- 15	ITTIP	н	ERI1 -	TT2P	н	ERI	•
T13P	H	531	<u>ი</u>	1114	Н	ERI1 - 1	٢	~	ERI	
116	H	E S		ITT7P	н	ERI1 - 1	TT8P	ы	8	- 14
TT9P	H	ERI		ANALI	>	FRV1 - 4	2	>	FI	3
TVT	>	H	4	ITVT	>	TEV - 1	2	н	H	6
T KD	>	LII		TTE	>	TEV - 2	0	н	3	۳ •
20	>	S,	M	ITO	>	ERV -	10	>	3	ir
10	>	S S	2	ITO	>	ERV -	10	>	8	•
	>	02 111	<u>ი</u>	ITO	>	ERV - 1	6	>	2	
10	>	IIJ IX		IT1	>	TIV - 7	1	>	I	- 63
4	>	or ui	- 13	IT29	>	TIV - 7	TZRE	>	Ţ	

SYMBOL	1/1	LCOM	700	SYMBOL	\ \ \	LCOM	207	SYMBOL	1/1	LC04	207
T 38	>	H	+2 -	F32	>	1-4		9	>	I	- 75
ITARES	>	ITIV	- 65	IT58F	>	ITIV	- 76	ITSRES	>	ITIV	٩
158F	>	II	- 77	162	>	14		78F	>	1	^
T7R	>	11	- 59	T89F	>	1-4		80	>	11	- 70
198	>	II	- 80	198	>	H		ここ	>	ŝ	
=	H	72	œ0 •	H	H	œ	с	+1	>	S.	
걸	>	ď	ش	IM13	>	~	6 -	Ŵ	>	H	•
Z	>	11	- 22	IXI	Н	2	.	×	>	TRV	
> ×	н	T2I	- 10	IXY	>	~	9 -	IXZI	н	7	- 12
2 ×	>	181	- 7	IYT	H	2	9	IYY	>	TR	•
>	ы	TRI	- 14	ZAI	>	2	5 0	121	H	TRI	•
Ν	>	TRV	6 .	9	>	-	39	ı	н	FRI	- 23
()	H	N	- 53	JABU	H	Z	€ 0	-	ы	ENI	6.
A 2	н	EN	- 10	JA2	>	>		3	H	HEI	٠.
4	н	FNI	- 12	A5	H	H	- 13	Φ	ы	173	71 -
7	₩	RAIL	7	⋍	н	AIL	•	Z	н	UN'T	•
Z	н	RAI	7	Z	H	⋖	ı	-	н	RAI	-105
1	-	RAIL	•	2	>	>	- 33	Z	ы	3	· S
\supset	н	IND	•	JUNKL	H	7		12HB	ы	ZAI	7
7	H	RAIL	•	2	H	AIL	-13	_	H	PAIL	10
2	ы	RAI		22	H	AIL	-10	_	н	HOL	
A	н	ENIC		AO	Н	H	न	C	н	IN II	
4	Н	ENH	- 18	A	H	H		-	H	HUNU	
A2	H	Z	- 21	AZ	H	Z	- 22	O	ы	Z	- 23
ABB	н	HNU	- 24	A3	H	벟		3	Н	ENT	
t V	н	ENI	- 27	A4	H	H		.#	H	ENI	
A	⊶	ENI	- 30	A5	H	H		S	H	INI	
A U	ы	ENI	- 33	A5	H	H		ø	H	ENT	
111	H	是日	4£ •	I	н	SI		3	H	LSI	
X L	H	LSI	- 72	X	H	SI		×	₩	LSI	
×	H	IST	76 -	ĭ	H	SI		>	н	LSI	
X	H	LSI	- 60	FZ	H	HS		7	H	LSI	
7,4	H	LSI	- 65	5	>	>	± .	2	>	EN	
3	>	> NI	າກ •	꿏	н	SH		+1	L 1	LSI	
Z	H	LSI	- 19	¥	Н	SH		~	H	.SI	
62	н	LSI	- 22	¥	H	IS	- 23	m	H	LSI	- 24
KK32	н	LSI	- 25	Ï	>	>		-	>	> + Z	

3066.10	^	۲ ا ا	3	SYMBOL	^ 1	LCOM	700	SYMBOL	1/1	COH	L0C
Z	>	NTV2	- 62	Z	>	NTV	- 66	Z	>	NTV	79 -
MHA	H	EINE	- 15	OHO.	Н	W	- 16	KPHGA	H	N	- 17
-	н	UNIT	9.	E	H	DNI	- 10	KPHI	H	HNO	•
PSI	ы	CNIT	6 0	PSI	H	IND	- 12	KPSI	Н	NO	EV
DS c	H	ENIS	- 13	2	Н	FNH	- 19	KPSMS	H	ENT	- 20
7	H	ONIT	~ -	E	H	HNC	- 11	KTHE	H	IND	*
THI	H	IST	- 77	TH2	H	LSI	- 78	KTM3	H	LSI	64 :
4	н	LSI	ı,	5	Н	LSI	9	>	н	LSI	~
AER	>	36	œ۰ •	H	>	RAV	07 -	AI3	>	RAV	0,
AI	>	2AV	C+ -	⋖	>	RAV	04 -	⋖	>	707	
¥	>	> N O	- 33	AM	>	>NO	- 32	⋖	>	>NS	- 34
A P	>	RAV	- 42	AP	>	RAV	- 42	⋖	>	RAV	
AD	>	RAV	1 42	ATIM	>	¥0¥	- 31	⋖	H	HOH	± 1
ATRI	ы	RAI	-140	AT	H	RAI	-140	AT	H	RAI	-140
ATR	H	RAI	+ M+	ATRT	H	RAI	3	ATR	ы	RAI	- 38
ATRI	-	RAI	07 -	ATRT	Н	RAI	24 -	ATR	H	RAI	-140
AT	ы	RAI	~ ,	ATR	H	RAI		AT	H	RAI	-
ATR	H	RAII	~ -	ATT	H	HOI	- 26	ATV	>	?	
AUX	>	TIV	4	AUX	>	H	~	AUX	>	I	8
⋖	>	TIV	-125	LAUXS	>	L	-126	LAUX6	>	1	-127
AJX	>	TIV	4	AUX	>	I	~	AUX	>	I	m
AY2	>	RAV		A	>	RAV	- 43	A	>	RAV	
AY	>	RAV	2+ -	A2	>	RAV	- 41	A2	>	2	
A2	>	A A	- 41	A 2	>	A A	- 41	98	H	INU	
ų,	H	FINI	- 22	å.	н	ENI	- 23	88	>	¥	
S	>	H	-121	S	>	151	- 11	2	>	2	
<u>~</u>	>	FRV	- 17	Ç	>	ERV	- 13	20	>	> \ \ \	
S	>	38	- 12	E	>	NTV	6 •	10	н	FRI	
(C)	Н	FZI	- 15	u O	H	FRI		5	H	3	
Ē	H	FRI	- 13	6	H	FRI	- 20	6	H	FRI	
5	⊷	FRI	- 22	\Box	H	FRI		2	>	ħ	
0	>	H	~ -		>	ERV	- 11	9	>	2	- 14
OPG	>	52	- 18	20	>	ERV	- 11	ENVR	>	283	
E13	>	ER	- 21	W	>	M	- 14	נים	>	7	•
5	H	YCI	+	LFDT	>	CYCV	6	LFT1	>	CYCV	- 11
F 12	>	YCV	- 12	L	>	Ž		LFT	>	Z	.
L6 <s7< td=""><td>></td><td>PFRV1</td><td>- 13</td><td>רפע</td><td>></td><td>OK.</td><td>- 21</td><td>Ö</td><td>></td><td>H</td><td>- 16</td></s7<>	>	PFRV1	- 13	רפע	>	OK.	- 21	Ö	>	H	- 16

Ō

Chings	اد الا الا	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	> -	\ \ \ \	CON L	ည 4	¥ +	, ,	000	
RAV2 - 74 LNMP3 V TRAV3 - 74 LNMP4 V TRAV1 - 55 LNMP4 V TTAV1 - 54 LNMP4 - 7 TTAV1 - 7 LNMP4 - 7 TTAV1 - 7 TTAV1 - 7 LNMP4 - 7 TTAV1 - 7 LNMP4 - 7 TTAV1 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 - 7 LNMP4 -		E	+ M	HDX3	> >	E & <	.	LIC	> >	ارا الا	
### ### ### ### ### ### ### ### ### ##		RAV	+.2	MAMA	>	RAV	74	d II Z	>	2	
The control of the		RAV	+ 1	Z	>	TEV	13	A	>	H	
THOU 1 - 42 LPEND I PRRI - 5 LPEA W INTV - 42 LPG		FZV	- 25	P.9	>	FRV	52	9	>	7	
PFRV1 - 15 LPGL V THOW 1 - 44 LPT V INTW - 5 PFRV1 - 41 LPA V TEV1 - 9 LPA V TEV2 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 9 LPA V TEV4 - 10 LPA		70H		2010	H	T T	r.	F	Þ	5	
THOU	_	FRV		PGL	>	>0F	4.	0	>	Z	
DPRV1 - +1	_	> 01		PZI	>	<u>6</u> 0	80 80	PROP	>	ar W	б
TIEV1	_	FRV		2	>	TEV	6	0	>	7	9
SENV6 - 30 LP13	_	TEV		O.	>	TEV	m	=	>	ENV	
SENV6 - 28 LP22		EN		7	>	EN	33	4	>	TEV	
SENV6 - 29	_	EN		72	>	EN	31	2	>	EN	
SERV5 - 7 LSEC V 760V - 109 LSTAT V SERV4 - 31 LSTAT V SERV5 - 10 LSTAT V SERV5 - 10 LTMP2 - 22 LTMP4 V TRAV4 - 73 LTMP2 V TRAV2 - 73 LTMP V TRAV1 - 7 LTMI TRAII - 10 LTM V TRAV1 - 6 LTM V TRAV1 - 7 LTM V T	•	EN		5	>	EN	32	5	>	EN	
ITEVA - 12	>	ER		SE	>	200	68	SENS	>	220	
SERV4 - 33 LSTRTP V SERV5 = 10 LSY1 V INTV1 - 5 LTCIMP V TRAV2 - 3 TRAV2 - 22 LTMP4 V ENVY - 21 LTMP2 V TRAV2 - 3 TRAV3 - 73 LTMP4 V ERVY - 21 LTMP V TRAV2 - 7 LTMP V TRAV2 - 7 LTMP V TRAV2 - 15 LTMP V TRAV2 - 15 LTMP V TRAV1 - 2 LTMP V TRAV1 - 2 LTMP V TRAV1 - 2 LTMP V TRAV1 - 3 LTM V TRAV1 - 10 LDNR V TRAV1 - 10 LDNR V TRAV1 - 10 LDNR V TRAV1 - 10 LDNR V TRAV1 - 10 LDNR V TRAV2 - 10 LDNR V TRAV2 - 10 LDNR V TRAV2 - 10 LDNR V TRAV3 - 10 LDNR V TRAV3 - 10 LDNR V TRAV4 - 10 LD	-	TEV		ST	>	ERV	31	ST	>	ERV	
INTV1 - 6 LSY3 V INTV1 - 7 LTGIMP V TRAV2 - 3 THOV2 - 22 LTRAV3 - 73 LTRAV3 - 73 LTRAV4 - 73 LTRAV - 15 LONA - 17 LONA - 10 LONA - 10 LONA - 17 LONA	>	ER		STRT	,>	ERV	10	S	>	NTV	
TRAV2 - 22 LTRAKP V ENVV - 21 TRAV3 - 73 LTRAV - 73 LTRAV - 1 TRAV - 1	>	> \ \ \		S	>	7	^	TCIM	>	¥0×	
TRAV3 - 73 LTRAV - 5 LTRAV - 5 LTSV V TRAV - 15 LTRAV - 3 LTSV V TRAV - 4 LTRAV - 3 LTSV V TRAV - 4 LTRAV - 3 LUNT I THOI - 5 LUNT I THOI - 5 LUNT I TRAIS - 13 LUNRTS I TRAIS - 15 LUNRTS I TRAIS - 5 LUNR I TRAII - 6 LUNR I TRAIS - 6 LUNR I TRAII - 6 LUNR I TRAII - 6 LUNR I TRAII - 6 LUNR I TRAV - 6 LUNR I TRAII - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 6 LUNR I TRAV - 7 HANK I FRAII - 12 HANK I FRAII - 13 HONH I TRAII - 15 HONH I TRAII - 13	>	> 0 H		100	>	>	21	THD	>	RAY	
SERV5 - 5 LTRAKP V SERV5 - 15 LTRM ENVV1 - 2 TRAV - 3 LTSV V TRAV - 4 LTTF I TWOV1 - 3 INTV1 - 6 LCN I TMOII - 5 LCN T TWOV1 - 3 TMOV2 - 38 LCN I TRAIS - 136 LCNRT3 I TRAIS - 13 TRAIS - 48 LCNRT5 I TRAIS - 6 LCNRT6 I TRAIS - 5 TRAIL - 138 LCNRT I TRAIS - 6 LCNRT I TRAIS - 5 TRAIL - 5 LCNR I TRAIS - 6 LCNRT I TRAIS - 6 ENV2 - 5 LCNR I TRAIS - 6 LCNR I TRAIS - 6 ENV2 - 5 LCNR I TRAIS - 6 LCNR I TRAIS - 6 ENV2 - 67 LCS V TRAV - 6 LCS V TRAV - 6 AERV - 17 MAKF I PFRII - 12 MAKK I TIV - 2 MAKK I PFRII - 15 MAKK I PFRII - 15 MAKK I PFRII - 15 TRAIS - 152 MOH4 I TRAIL - 15 MOH4 TRAIS - 152 MOH4 I TRAIL - 15 MOH5 TRAIS - 152 MOH6 I TRAIL - 15 MOH6	•	RAV		I	>	RAY	73	E	>	RAV	
TRAV - 3 LTSV V TRAV - 4 LTTF I TWOI - 5 INTVI - 6 LXM V ITEVI - 10 LGNA V THOVI - 3 TMOV2 - 38 LGNL I TRAIZ - 136 LGNRTS I TRAIS - 13 TMOV1 - 33 LGNRTS I TRAIZ - 136 LGNRTS I TRAIS - 13 TRAIL - 138 LGNRTS I TRAIZ - 6 LGNRTS I TRAIS - 5 TRAIL - 138 LGNRTS I TRAIZ - 6 LGNRTS I TRAIS - 5 TRAIL - 138 LGNRY I TRAII - 6 LGNR I TRAIZ - 6 TRAY - 5 LGNV V ENVV2 - 6 LGNS V TRAV - 6 TRAV - 17 MACH V AERV - 10 MANH V TMOVI - 2 TEII - 5 MAXKF I PFRII - 12 MAXS V ITIV - 2 TEII - 5 MAYB V AERV2 - 10 MAXS V ITIV - 2 TRAIZ - 15 MAYB V AERV2 - 10 MAXS V ITIV - 2 TRAIZ - 15 MAYB V AERV2 - 10 MAXS V ITIV - 2 TRAIZ - 15 MAYB V AERV2 - 10 MAXS V ITIV - 2 TRAIZ - 15 MOHI I TRAII - 15 MONS I PFRII - 13 PFRII - 133 MOH4 I TRAII - 15 MONS I PFRII - 13	>	E2	ى، •	TRAK	>	ERV	15	7	:	>>2	
INTV1 - 6 LXM V ITEV1 - 10 LUNA V THOV1 - 5 IMOV2 - 38 LUNL I THOI1 - 5 LUNRT3 I THOV1 - 3 IMOV2 - 38 LUNRT2 I TRAI2 - 136 LUNRT3 I TRAI3 - 13 IRAI4 - 138 LUNRT8 I TRAI5 - 50 LUNRT9 I TRAI5 - 5 IRAI1 - 138 LUNR2 I TRAI2 - 6 LUNR I TRAI3 - 5 IRAI4 - 5 LUNR I TRAI1 - 6 LUNT I THOI3 - 2 IRAI4 - 5 LUNV V ENVV2 - 6 LUSS V TRAV2 - 6 IRAV2 - 29 LUNV V ENVV2 - 6 LUSS V TRAV1 - 6 IRAV3 - 67 LUSS V TRAV4 - 67 IRAV3 - 67 LUSS V TRAV1 - 6 IRAV1 - 5 MAXF I PFRI1 - 12 MAXF V ITIV - 2 ITEI1 - 5 MAXF I PFRI1 - 12 MAXS V ITIV - 2 ITEI1 - 5 MAYB V AERV2 - 10 MAXS V ITIV - 2 ITEI1 - 5 MAYB V AERV2 - 10 MAXS V ITIV - 2 IRAI3 - 152 MOH4 I TRAI1 - 152 MOMS I PFRII - 13 PFRII - 133 MOM4 I TRAI4 - 152 MOM5 I PFRII - 13	>	RAV	.	15	>	RAV	4	1	H	HOH	
TMOV2 - 38 LGNL I TMOII - 5 LGNPI V TMOV1 - 3 TMOV1 - 33 LGNRT2 I TRAI2 - 136 LGNRT3 I TRAI3 - 13 TRAI4 - 138 LGNRT6 I TRAI5 - 50 LGNRT9 I TRAI5 - 5 TRAI1 - 136 LGNR I TRAI2 - 6 LGNR I TRAI3 - 5 TRAI1 - 5 LGNR I TRAI1 - 6 LGNR I TRAI3 - 2 TRAI4 - 5 LGNR I TRAI1 - 6 LGNR I TRAI3 - 2 TRAV2 - 29 LGNV V ENVV2 - 6 LGS V TRAV1 - 6 TRAV3 - 67 LGS V TRAV4 - 67 LGS V TRAV1 - 6 TRAV3 - 67 MAKF I PFRII - 12 MAKF V ITIV - 2 MAKKF I PFRII - 12 MAKS V ITIV - 2 TSPII - 5 MAYB V AERV2 - 10 MAKS V ITIV - 2 TSPII - 5 MAYB V AERV2 - 10 MAXS V ITIV - 2 TRAI3 - 152 MOH1 I TRAI1 - 152 MOH2 I TRAI2 - 153 PFRII - 133 MOH4 I TRAI1 - 134 MOH5 I PFRII - 13	>	> = z		×	>	TEV	10	z	>	70 H	
TRAIG - 33 LONRT2 I TRAIS - 136 LONRT6 I TRAIS - 13 TRAIG - 139 LONRT6 I TRAIS - 50 LONRT9 I TRAIS - 5 TRAIG - 139 LONRT8 I TRAIZ - 6 LONR I TRAIS - 5 TRAIG - 5 LONR I TRAIZ - 6 LONT I TRAIS - 5 TRAIG - 5 LONR I TRAII - 6 LOSS V TRAV2 - 6 TRAV3 - 67 LOSS V TRAV2 - 6 TRAV3 - 67 LOSS V TRAV1 - 6 TRAV3 - 67 LOSS V TRAV1 - 6 TRAV3 - 67 LOSS V TRAV2 - 6 TRAV3 - 67 LOSS V TRAV2 - 6 TRAV3 - 67 LOSS V TRAV2 - 6 TRAV4 - 67 LOSS V TRAV2 - 6 TRAV5 - 67 LOSS V TRAV2 - 6 TRAV6 - 10 MANN V TRAV1 - 2 TRAV7 - 10 MANN V TRAV1 - 2 TRAIG - 15 HOHL I TRAII - 15 HOHL I TRAII - 15 HOHL I TRAII - 13 HOHL I TRAII - 13 HOHL I TRAII - 13 TRAIZ - 13 HOHL I TRAII - 13 TRAIZ - 13	•	> 0 E		GR	H	HOH	S.	OZ O	>	10	
TRAIG - 133 LONRTS I TRAIS - 44 LONRTS I TRAIS - 5 TRAIG - 48 LONRTS I TRAIS - 50 LONRS I TRAIS - 5 TRAIG - 138 LONR I TRAIG - 6 TRAIG - 5 ENVZ - 29 LONV V ENVZ - 6 ENVZ - 29 LOS V TRAV - 6 TRAV3 - 67 LOS V TRAVI - 6 TRAV3 - 67 LOS V TRAVI - 6 TRAVI - 17 MACH V AERV - 10 MANH V THOVI - 2 ITEII - 5 MAKE I PFRII - 12 MAXS V ITIV - 2 ITEII - 5 MAYS V AERV2 - 10 MAXS V ITIV - 2 ITEII - 5 MAYS V AERV2 - 10 MAXS V ITIV - 2 ITRAIG - 152 MOH4 I TRAIG - 152 MOMS I PFRII - 133 PFRII - 133	>	> 0 E		DNRT	H	RAI2 -1	36	ONRT	н	RAI	13
TRAIS - 48 LONRTS I TRAIS - 50 LONR3 I TRAIS - 5 TRAI1 - 136 LONR I TRAI2 - 6 LONT I TRAI3 - 2 ENVV2 - 29 LONV V ENVV2 - 6 LOS V TRAV2 - 6 TRAV3 - 67 LOS V TRAV4 - 67 LOS V TRAV1 - 6 TRAV3 - 67 LOS V TRAV1 - 6 AERV - 17 MACH V AERV - 10 MANH V THOV1 - 2 ITEI1 - 5 MAKF I PFRII - 12 MAXS V ITIV - 2 ITEI1 - 5 MAYS V AERV2 - 10 MAXS V ITIV - 2 ITRAI3 - 152 MOH4 I TRAI4 - 152 MOM2 I PFRII - 13 PFRII - 133 MOM4 I PFRII - 134 MOM5 I PFRII - 13	_	RAI		ONAT	H	RAIS -	7.7	DNRT	H	RAI	
TRAI1 -138	ы	RAI		DNAT	H	RAIS -	50	DNRT	H	RAI	
TRAI4 - 5 LONR I TRAI1 - 6 LOSS V TRAV2 - 6 TRAV2 - 29 LONV V ENVV2 - 6 LOSS V TRAV2 - 6 TRAV3 - 67 LOS V TRAV4 - 67 LOS V TRAV1 - 6 AERV - 17 MACH V AERV - 10 MANN V TMOV1 - 2 ITEI1 - 5 MAXCF V ITIV - 22 MAXFL V ITIV - 2 ITEI1 - 5 MAXF I PFRI1 - 12 MAXS V ITIV - 2 ISPII - 5 MAYS V AERV2 - 10 MAXS V ITIV - 2 ITRAI3 - 152 MOH4 I TRAI1 - 152 MOM2 I PFRI1 - 13 PFRI1 - 133 MOM4 I PFRI1 - 134 MOM5 I PFRI1 - 13	н	RAI		NNO	н	RAI	9	GND		RAI	9
ENVV2 - 29	н	RAI	٠c •	20	H	RAI	\$	Z	H	HON	
TRAV3 - 67 LOS4 V TRAV4 - 67 LOS V TRAV1 - 6 AERV - 17 HACH V AERV - 10 HANN V THOV1 - 2 AERV2 - 9 HAXCF V ITIV - 22 HAXFL V ITIV - 2 ITEI1 - 5 HAXKF I PFRI1 - 12 HAXS V ITIV - 2 ISPII - 5 HOH1 I TRAII - 152 HOH2 I TRAI2 - 15 TRAI3 - 152 HOH4 I TRAII - 152 HOH2 I PFRII - 13 PFRII - 133 HOM6 I PFRII - 134 HOM5 I PFRII - 13	>	> N		Z	>	> > ×	•	95	>	RAV	
AERV - 17 MACH V AERV - 10 MANN V THOVI - 2 AERV2 - 9 MAXCF V ITIV - 22 MAXFL V ITIV - 2 ITEII - 5 MAXKF I PFRII - 12 MAXS V ITIV - 2 ISPII - 5 MAYB V AERV2 - 10 MAZB V AERV2 - 1 PFRVI - 5 HOH1 I TRAII -152 MOH2 I PFRII -13 PFRII -133 MOM6 I PFRII -134 MOM5 I PFRII -13	>	2A V		0.8	>	RAVG -	67	05	>	RAV	
AERV2 - 9 HAKKF V ITIV - 22 HAKFL V ITIV - 2 ITEI1 - 5 HAKKF I PFRI1 - 12 HAXS V ITIV - 2 ISPI1 - 5 HAYB V AERV2 - 10 HAZB V AERV2 - 1 PFRV1 - 5 HOHL I TRAII - 152 HOH2 I TRAIZ - 15 TRAI3 - 152 HOHL I TRAIL - 152 HOHS I PFRII - 13 PFRII - 133 HOML I PFRII - 134 HOMS I PFRII - 13	>	F. P.		AC	>	ERV -	10	Z	>	704	
ITEI1 - 5 MAXKF I PFRII - 12 MAXS V ITIV - 2 ISPII - 5 MAYS V AERV2 - 10 MAZS V AERV2 - 1 PFRVI - 5 MOH1 I IRAII - 152 MOH2 I PFRII - 13 I ARII - 13 MOM4 I PFRII - 13 MOM5 I PFRII - 13	>	EZV	6	AXC	>	- AIL	22	A	>	I	
TSPII - 5	-	TEL		A X X	H	FRI1 -	12	×	>	11	
PFRV1 - 5 HOH1 I TRAI1 -152 HOH2 I TRAI3 -152 HOH2 I PFRI1 -13 PFRI1 -133 HOM4 I PFRI1 -134 HOM5 I PFRI1 -134	_	SPI	s •	A	>	ERV2 -	10	AZ	>	ERV	
TRAI3 -152 HOH4 I TRAI4 -152 HOH2 I PFRII -13 PFRII -133 HOM4 I PFRII -134 HOM5 I PFRII -13		FRV	s •	E	н	RAI1 -1	52	HO	H	RAI	15
PFRI1 -133 MOM4 I PFRI1 -134 MOM5 I PFRI1 -13	H	RAI	15	F	H	RAIG -1	52	TO	H	FRI	13
		FRI	33	S	ы	FRI1 -1	34	E	Н	FRI	13

700	-138	48 -						- 36							- 42	64	6	- 37	- 59			- 75			- 11	-144	4	-145	- 17	- 12	m	· 53			11 -		
LCOM	FRI1	FRV	FRII	3	3	7	œ.	3	8	a.	H.	FR	4	3	5	8	R	ENIA	RAI	FRV1	PEI	œ	7	8	2	RAI3	RAIZ	RAII	2	4	w	7	FRI1 .	Z	TRAIS	2	
1/1	H	>	H	>	>	>	>	>	>	>	+	>	>	>	>	>	H	₩	Н	>	ы	>	н	>	H	H	Н	H	>	H	>	>	н	>	Н	H	1 1
SYMBOL	HOM	-	1	-	4	4	M013	0	MOSPE	HD3	3	5	9	MO7PS	9	96	HH	H	7		MPEXI		HRL	MTXB	_	MURT3	œ	AUR RUR	MY8	MZCG	NAL	NAPCVA	\supset			NECT	1
207			M	**		94 -					- 38									- 24		- 75		97 -	•0	-144	4			- 18				- 11	11 -	- 11	1
LCOM	FRI1	FRI1	ī	3	ũ	3	2	3	3	FR	2	7	3	FR	R	3	9	Z	7	P	PEI	A	FRV	P	R0 V	A A	RAI	RAI	7	2	TR	Z	80	H	TRAI2	R	
1/1	H	H	>	>	>	>	>	>	>	H	>	>	>	>	>	>	>	H	>	>	Н	>	>	H	>	H	H	н	H	>	>	>	>	>	H	j 1	
SYMBOL	HOH7	TOT	DIP	010P	011P	012P	M	DZPN	0	20	049	D5P	06P	10	900	60	S	IS	=	F	H	MPI3	lul OZ	7	71	3	œ	AUA	X	7	¥	A	S	ပ	032		
700		M					- 60	- 26			- 51			- 31			- 34	6	38	[- 34	ec 1	- 75		- 30	~ -	~ 1	-144	-145	- 15	- 11	. 	- 13	t.	ح	- 10	- 11)
LCOM	3	FRI	FR	7	5	5	E C	FRV	6	4	2	3	FRV	K	FRV	FRV	FRV	TRV	ENI	RAI	FRV	RAV	2	ERI	₹0 ₹	E K	RAI	A A	E	121	E A	NTV	Z	TII	THOIS	PAI	
1/1	н	1-4	>	>	>	>	>	>	H	>	>	>	>	>	>	>	>	>	1-4	H	>	>	>	H	>	H	Н	H	>	Н	>	>	>	H	H	H	. '
SYMBOL	7	E	DIP	010	011	D12P	0139	10	20	J 3P	*	0		0	0		0	dI	-	_	-J	Q.	Id	S	1	-	3	3	×	ر د	DUSA	Z Z	Ø	S	-ON	C	

SY MBOL	1/1	LCOM	707	SYMBOL	1/1	LCOM	700	SYMBOL	1/1	LCOM	700
-	•	TAG		i	۰	RAT		ini Z		RAI	- 41
	4 1	Z 2	.		ч	œ	14	MELL		A A	
X	· >	78		FXCV	>	AIL		97	>	Z	• •
Z	>	Z		H	>	Z		HZ	H	TEI	.
7 1	>	H		2	н	NTI		318	>	E C	
(A	>	2	.+	Σ	>	¥	ı	LXX	>	784	
-	ы	4		Z	H	EN I	72 -	TNN	>	よう	
N 20	H	ENI	- 23	9	>	TEV			>	4	- 68
111	>	ZAV		111	>	RAV		NRE	>	RAV	
lil W	Н	RAI	0	Œ	H	RAI	O	NAN NA	H	RAI	0
2:1	H	2	13	2	H	A	-124	N.S.T	H	RAI	
7	Н	RAI	~	œ	H	RAI	2	ASM	H	IN	Φ
S	1-4	ENI	σ	SA	H	ENT	σ	ASN	ы	ENI	σ
A	Н	E2I	ு	S	H	ENI	9	OSN	H	NZ II	0
S	H	ENI	23	S	Н	FNI	0	NTC	H	YCI	
	H	7		7	j. -1	YCI		NTG	>	30	
•	>	FRV		7	>	FRV		ATA	>	ď	
a.	>	U,	- 15	4	>	3		MTP	>	30	
0	>	2		5	>	ũ		d L N	➣	8	
-	>	>> N		۳-	н	RAI	1 33	77	ы	3	- 18
7	,	A A		73	н	RA		NOT	H	N	
_	>	N	4	VAZ	>	OL.		NVAR	>	ũ	
X X	>	ũ		A >	>	œ.		4 > Z	>	a'	
NV AR7	>	5	~	VA2	>	5		NAN	>	ũ	
VAR	>	3		S	>	S			>	Z	
3	>	Z		Š	H	ROI	3	X	H	ROI	i S
×	Н	Right		X	H	ROI	- 7	Q X N	H	30I	.
×	>	N	6.	>	H	80	<u>ნ</u>	7	H	8	0 7
7	H	ROI	- 11	7	н	ROI		×	1 -4	ROI	« •
207	Н	ROI		20	H	ROI		02N	H	8	- 16
2	H	ROI		N	н	ROI		A O A	H	I A	~
0 9 T	н	5	- 13	CO	>	M0 V		ON	>	8	ı S
OIS	ы	YCI		030	>	Ħ		X OX	>	불	•
8	>	Ä		8	>	ž		MORD	>	N N	
DRI	>	\geq		ပ	H	ER.		97	ы	œ	
NO 2	H	SERI	IJ ‡ Ⅰ	NON	H	SERI	- 41	†07	Н	SERI	24 -
	н	53	- 43	0	н	E LUI		07	H	S.	

-	-
Š	Ĵ

10°C		ر. ا						33				6	m		- 19			9	- 21	ŧ	•		- 39		141	- 20	r.	•				3	- 11	m	-245	•	- :
LC04	N N	EN X	1. P.	ERV	58	#R <	ERV	8	280	RAV	RAV	190	LSI	2	UNC	SAH	HOM	>NO	>	HOP	HCI	HIL	EN <	Nu	> N III	HOH	SNI	ENI	INS	ENI	75	3	TRV	ERV	SENIS	INA F	ENIS
I/V	>	>	>	>	>	>	>	>	>	>	>	н	H	>	H	ы	,	>	н	H	H	H	>	>	>	H	H	н	H	Н	>	>	>	>	н	>	H
SYMBOL		2	32	35	36P	36PR	36R	360T	36	000	000	LL	LS	EXE	¥	HVO	74	H2T	422	AI1	AI2	AI3	A	AM2	AHB	¥	41	A 2	A 3	S C	000	X S S S	700	X d C	PCTJ1T	CTJ	7 1
207	27 -	.+	23	- 26	- 39	24 -	- 29	- 32	- 35	&	- 69	ec	.		± .			- 15		ю.	9	6.		- 37			. .	~		- 34		თ	rv	2, -	u.		- 88
LCOM	ERI	ERI	ERV	ERV	SRV	ERV	ERV	2	ERV	EN V	RAV	Igd	LS	HOI	20	2	JNC	HNO	>	HOK HOK	HOH	HCI	EN	EN	Nu.	HOH	ENI	HNU	IN I	ENI	ENI	7,	3	TRE	AERV2	ENI	ENC
^ I	н	М	>	>	>	>	>	>	>	>	>	1-4	H	ы	>	>	H	H	H	H	H	н	>	>	>	H	H	н	H	H	H	>	>	>	>	Н	>
SYMBOL	0	44	31	34	35P	36PR	364T	m	360T	t	060	LH	l.s	HX3	¥	¥	2	74	E S	AI1	AI2	AI3	A	AM2	AM3	AX	A1	A2	A3	ည	ပ္ပ	693	C 6₹	292	PCP7Q	CTJ	CTJ
707	4	:°	٠ ،	- 25	- 38	- 41	- 37	- 31		30	- 69	ه ه ا	- 10	4	+1				-	~			+	1	- 43	*	N		თ •	-1	35	&	- 10	رن •	<i>.</i> +	8	-246
LCOM	m ov.	NU	ENV	ERV	ER	EZV	52V	17.1 05.	28	ERV	RAV	P61	PGI	INO	IND	HGH	> N C	> U	N	7 × N	H QH	#0#	HOH	> N .:	> Z =	ととこ	HOH	INI	E'NI	HZU	ENI	TR	5	T2V	AERV2	NU	¥
1/1	н	>	>	>	>	>	>	>	>	>	>	H	H	ы	-	H	>	>	н	H	-	ы	H	>	>	>	ы	H	H	H	H	>	>	>	>	>	H
SYMBOL	C	71	M	33R	36PR	35PR	35PR	35	3667	356	000	ב	T.	HXB	NX N	N Y B	HYT	7	¥	M	ΑI	AI	AI	A	A	Ā	¥?	ન -T	A 2	A 3	9	S	S	S	PCOYQ	C	C

SYMBOL	1/1	LCOM	207	SYMBOL	1/1	LCOM	J0 7	SYMBOL	1/	LCOM	207
C 1 3	>	2 2	- 89	PS	H	ď	m	S	H	ď	t
PEPS3	1 -1	R	10	PEPS4	H	FRI	9 -	PEPSS	н	FRII	-
. 2 . 3 . 3	>	NO W	- 13	52	>	9	- 16	Z	>	F	+
CI III	H	NFI	6 0	M	н	FF	0 10	5 64	н	Ä	- 12
เม	н	HUN	- 1:	LAB	H	Ŧ	- 16	P	н	Ä	9
FZP	Н	FRI	.+	400	н	FRI	m -	RVC	>	3	.
11	>	F.	ın	74	>	2	9	œ	>	3	_
FIFF	H	3	-142	HASL	H	Z	- 12	98	н	Z.	- 15
3	Н	ING	- 18	S E	H	IN	- 13	a	ы	ENI	- 14
NO I	H	NN	- 15	H	H	KK	- 16	S	H	INI	- 17
0	н	FNH	- 20	9	-	IN	- 18		H	EZ	- 19
¥	Н	INO	.+	E C	н	INC	- 23	ER1	>	501	- 13
HERI	>	PG		HER1	>	5	- 15	8	>	PG2	- 13
111 X	>	PG2	- 14	W III	>	296	- 15	ES	H	Z	- 29
HIAL	>	Z	ۍ د	H	>	Z		н	>	PG2	9
H	>	Z	6 0	ZHH	>	Z	- 10	X	>	Z	
Z	>	Z	6	YI'	>	>	- 42	Ω	H	FINE	
U.	H	ENI		<u>T</u>	H	HN	- 23	Δ	H	HXU	
a.	H	ENI	- 25	H 12	H	ZAI		3	H	RAI	m
HIR	H	RAI	+1	H	H	RAI		4	H	RAI	12
HIR	н	RAI	+	덮	H	RAI	4	-	H	RAI	~
100 H	H	RAI		424	H	RAI		28	H	RAI	13
HZRT	H	RAI		H22	H	RAI		28	н	RAI	12
~ T	H	RA	-121	H2.2	5- 1	A	-121	m	H	RA	-136
H M	Н	RAI		33	H	ZAI		8	Н	RAI	m
1322	H	RAI		M	н	ZAI		M	H	RAI	~
H3R	9 -)	RAI		FF	>	AdS		2	j -d	MET	
Z	H	NFI		Z	H	П	- 13		н	Ę	±
1-4	H	E2I	m	_1	H	8	- 65	INC	ы	MFI	- 21
LIN	H	IHN	- 23	ZH	H	느	- 47	Z	H	NFI	
L 3 T	ы	IL	- 29	L01	H	IFI	- 31	013	H	I si N	- 45
HX1	>	EN	- 10	XXXX	>	Z	- 11	¥	>	ENC	- 12
XX2	>	N N	- 13	XXZ	>	N	- 14	×	>	NU	- 15
KX X	>	NU	- 15	HX3	>	N	- 17	×	>	Z	- 18
PPSING	>	INFV	- 11	SNIdd	>	FV		PPLINC	>	LNFV	•
PLI	>	Ľ	6 •	PLI	>	Ŧ	- 15	LIN	>	K	- 16
PAIT	>	¥	- 13	¥	>	Z	- 22	<u>></u>	>	Z	- 23

V LCOM LOC SYMBOL I/V LCOM LO SENVI - 4	COM LOC SYMBOL I/V LCOM LO ENV3 - 4	OC SYMBOL I/V LCOM LO 24 PPZ V ENV3 - 4	YHBOL I/V LCOM LOPPZ V ENVY - 4	V ENVY - 4	COM LO	0 4		> O	1 / I	E N N	L0C
•	ENIS - 27 POZ I SENIS -	PINUS I ZOd	OZ I SENIS -	SENIS	ENHM -		28	PRAZ	.	TRAIZ	
TRAIS - 80 PRAC I TRAIL	RAIS - 80 PRAF I TRAIL	SC PRAC I TRAIL	RAG I TRAIG	TRAIL	RAIL	•	∞,	Q (H	RAIL	8
TRAIL -116 PR92 I TRAI	RAIL -116 PR92 I TRAI	116 PR92 I TRAI	R92 I TRAI	TRAI	RAH		11	803	4 1-4	RAIS	!
TRAIG - 70 PRB I TRAI	RAI4 - 70 PRB I TRAI	PRB I TRAI	RB I TRAI	TRAI	RAI	-1		2	H	RAI	70
TRAI3 - 84 PRC4 I TRA	RAI3 - 84 PRC4 I TRA	PRC4 I TRA	RC4 I TRA	TRA	RA	4		() () ()	H	RAI	ē
TRAV2 - 22 PRD3 V TRA	RAV2 - 22 PRD3 V TRA	PRD3 V TRA	RD3 V TRA	TRA	RA	m		3	>	RAV	õ
TRAV1 - 22 PRES I INT	RAV1 - 22 PRES I INT	PREG I INT	REG I INT	INT	Z	**		EN P	>	202	m
ENVII - 51 PRES V ENV	NVII - 51 PRES V ENV	PRES V ENV	RES V ENV	NS NS	}			2	H	ROI	~
PRIII - 20 PRF4 I PRO	RJI1 - 20 PRF4 I PRO	PRF4 I PRO	RF4 I PRO	200	80			2	} ⊸í	ROI	~
PRUIT - 18 PRK2 I TRA	ROI1 - 18 PRK2 I TRA	PRK2 I TRA	RK2 I TRA	TRA	8			8 8 8	H	RAI	~
TRAIG - 75 DEK I TRA	RAIG - 75 DEK I TRA	75 DEK I TRA	RK I TRA	TRA	4			7	H	RAI	č
TRAIS - 89 PRLS4 I TRA	RAI3 - 89 PRLB4 I TRA	89 PRLB4 I TRA	RLB4 I TRA	TRA	RA			2	н	RAI	1
INFI1 - 5 PPN2 I TRA	NFI1 - 5 PPN2 I TRA	5 PPN2 I TRA	PN2 I TRA	TRA	8			Z	H		96
TRAIL - 95 PRN I TRA	RAIG - 95 PRY I TRA	95 PRN I TRA	RY I TRA	TRA	RA	ij	- 96	PRPFF	>	20 <	m
SENI3 - 29 PRV2 V TRA	ENI3 - 29 PRV2 V TRA	29 PRV2 V TRA	RV2 V TRA	TRA	A A			2	>	œ	3(
TZAV4 - 35 PRV V TRA	2AV4 - 33 PRV V TRA	33 PRV V TRA	RV V TRA	TRA	A A			ROP	Н	ROI	ť
PRGI - 3 PROPL I PRO	RGI - 3 PROPL I PRO	3 PROPL I PRO	ROPL I PRO	980	8		£	80	>	> N S	
JUNY3 - 29 PR2 V TRA	UNV3 - 29 PR2 V TRA	29 PR2 V TRA	R2 V TRA	TRA	RA	22	- 56	œ	>	RAV	- 36
TRAV4 - 55 PR V TR	RAV4 - 55 PR V TR	55 PR V TR	R + TR	5	œ	>	- 56	S	H	MXO	
SONI4 - 17 PSCSL I CO	ONIA - 17 PSCSL I CO	17 PSCSL I CO	SCSL I CO	D D	2	71	- 20	SE	н	UNI	
CENIS - 27 PSEST I CO	CNI3 + 27 PSEST I CO	27 PSEST I CO	SEST I CC	ຍ	C	~	m	SF	H	101	
JPG2V5- 8 PSIMX I SE	PG2V5- 8 PSIMX I SE	B PSI4X I SE	SI4X I SE	S	W	н	-220	S	>	> X	5
SENV4 - 38 PSIT3 V SE	ENV4 - 38 PSIT3 V SE	38 PSIT3 V SE	SIT3 V SE	SE	u	>	- 39	SIT	>	≥	
SENV3 - 15 PSV V SE	ENV3 - 15 PSV V SE	15 PSV V SE	SV V SE	SE	w	>	- 17	SE	>	> X	<u> </u>
TRAV2 - 6C PTAF3 V TP	RAV2 - 60 PTAF3 V TR	6C PTAF3 V TP	TAF3 V TR	₽	Œ.	>	- 60	TAF	>	ZAV	
TRAVI - 60 PTAX22 I TR	RAV1 - 60 PTAX22 I TR	60 PTAX22 I TR	TAX32 I TR	+ 8	œ	H	- 47	-	H	RAI	
TRAIG - GT PTAXO I TR	RAIG - G7 PTAXQ I TR	47 PTAXQ I TR	TAXQ I TR	* ·	œ	H	- 47	TAYQ	►ŧ	RAI	
TRAIS - 48 PIAVQ4 I TR	RAI3 - 48 PIAYQ4 I TR	48 PIAYQ4 I TR	TAYQ4 I TR	%	œ	H	- 48	TAY	H	ZAI	
TRAI2 - 49 PTAZO3 I TR	RAI2 - 49 PTAZ03 I TR	49 PTAZO3 I TR	TAZO3 I TR	1 R	œ	H	64 -	TAZQ	н	RAI	
TRAIL - 49 PTOL I INF	RAI1 - 49 PTOL I INF	PTOL I INF	TOL I INF	INI	Ä	H	M	ULS	>	ZAX	9
TRAV3 - 65 PULSE4 V TRA	RAV3 - 65 PULSE4 V TRA	PULSE4 V TRA	ULSE4 V TRA	TRA	RA		- 66	5	>	RAV	
TRAV2 - 10 PUGIS V TRA	RAV2 - 10 PURIS V TRA	PURIS V TRA	URIS V TRA	TRA	AA A			URI	>	2 A V	
TRAVI - 13 PURE V TRA	RAV1 - 13 PURE V TRA	PURE V TRA	URS V TRA	TRA	RA A			3	>	RAV	
TRANK + 7 PURS V TRE	BANG + 7 TRU	PUSS V TRE	781 A 186	TRE	72			3	>	ZAV	
TRAV5 - 50 PUR8 V TRA	RAV5 - 50 PURB V TRA	PURB V TRA	URB V TRA	TRA	A A	2	. 61	PURS	>	TRAVS	ق

Ũ

700					- 59	- 11		•	- 65	•				- 57				6			- 52				-	- 61	.	- 20	.		m			_	- 35		- 25
LCOM	RAI	RAI	RAI	RAI	RAI	RAV	2	RAV	RAV	RAV	EX	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAV	QAV	TRAIZ	RAI	RAI	RAI	RAI	RAI	SA V	RA A	RAV	ENT	M	9	> 0 X	문	8	8	A A
1/1	H	H	H	H	Н	>	>	>	>	>	>	H	H	Н	H	H	>	>	>	>	H	H	H	H	H	~	>	>	>	H	H	>	>	H	1 -1	>	>
SYMBOL	UIR	200	U2R	USR	3	VRI	VRI	>	<r< td=""><td>></td><td>27</td><td>VIR</td><td>72</td><td>V3R</td><td>23</td><td>3</td><td>HRI</td><td>X X</td><td>3</td><td>3</td><td>PW1R2</td><td>MIR</td><td>H2R</td><td>MI</td><td>X +K</td><td>#</td><td>S S</td><td>XER</td><td>¥</td><td>XIE</td><td>XIE</td><td>X</td><td>XIX</td><td>X</td><td>×</td><td>M</td><td>YER</td></r<>	>	27	VIR	72	V3R	23	3	HRI	X X	3	3	PW1R2	MIR	H2R	MI	X +K	#	S S	XER	¥	XIE	XIE	X	XIX	X	×	M	YER
ي																					6						.										
20	ı zv	1	1	ı	ı	. 5	-	•	Q I	•	2				1	•	+	-	•	1	•	ı	ı	ţ	i S	9	•	1	~		-12	-13	m I	<i>ا</i>	۳ •	•	~
LCON	RAI	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAV	RAK	EN	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAV	RAV	TRAV1	RAI	RAI	RAI	RAI	RAI	RAV	RAY	RAK	ENI	ENI	FNI	70 K	2	704	Z Z	RAV
\ \ !	H	-	H	H	-	H	>	>	>	>	>	Н	-	H	H	н	>	>	>	>	>	H	H	H	1-4	H	>	>	>	H	н	H	>	>	>	>	>
SYMBOL	รี	5	UZR	5	U4.R	3	3	>	8	3	X	VIR	22	V22	V3R	3	HRI	HAH	3	4	D.K.O.	HI 7	#2R	2	W32	247	XER	M	XE2	XIE	XIE	EIX	XIX	X	PX4L	1:1	YER
700						- 59		œ		- 65				- 54					6		- 72						_+ 1	- 18		S	-154	M	.	ac I	- 10	• •	- 23
LCOM	ZAV	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAV	RAV	NI	RAI	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAV	ď	RAI	RAI	RAI	RAI	RAI	ZAV	RAV	RAV	ENI	INI	HNI	70H	> 0 ×	4	2AV	TRAVS
1/1	>	Н	H	ы	H	H	>	>	3	>	>	H	Н	H	-	H	H	>	>	>	>	-	H	H	н	H	>	>	>	H	H	H	>	>	>	>	>
SYMBOL	\supset	ULR	U 2.2	5	U3R	2+3	3	V 22	3	3	×	41	V12	YZR	V 3R	*	X + >	3	H23	*	PHR9	# 12 R	2	#2R	H 3R	A + A	XIII	×	XIR	XIE9	XIE	XIE	X	X	X	Y =R	PYERS

-	•
4	j

, CO
V5 - 27 15 -156
5
, 0
•
0
17
ī
r
10
r.
ŧ
10
_
_
_
12

SY 480_	1/1	LC04	207	SYMBOL	1/1	LCOM	707	SYMBOL	\$	LCOM	207
n	>	7 4 0		Q	1-	-		¥	•	RAI	
) ×	,	4	, c	X	4 1-4	TRAIT	9.6.	041.92	Н	TRAIZ	
' α	ı	ZAZ	000	<u>ال</u>	H	Ĥ		5	H	RAT	
22.22	Н	ZAI	- 97	KNY	H	-		Z	H	RAI	
Z	H	RAI	- 97	R	>	>		>	>	RAV	
R	>	ZAV	- 31	8	>	>	- 31	œ	>	TRAVZ	
2	>	RAV	72.	œ	>	Š		œ	~	RAV	
S	>	78	- 32		>	•		100 t	H	YCI	
C	H	YCI	- 11	G	H	CYCI1	- 12	ď	>	AERV	- 11
A	>	Z		AA	>	>		AA	>	ENV	
Â	>	EN.	-109	A	н	-		⋖	H	HOK	
()	ы	HOI		A	+-1	H		A O	H	무	
ACA	>	> N	+8 -	CA	>	>	m	⋖	>	RAV	•
CA C	>	ZAV	٠ ٢		>	3	m	JAC	H	TMOIL	<u>~</u>
AVG	>	¥ C <	- 37	A	>	>	9	Z	>	FRV	
AT	>	NO H	٠.	A1	H	-	#	~	H	RAI	-146
A	H	RAI	941-	A1	H	м	-146	A 2	H	RAI	-147
A2	н	RAI		A2	H	-	4	A2	H	RAI	-147
⋖	H	RAI	-148	Ø	₩	-	4	⋖	H	PAI	ŧ
A3	H	RAI	-1	œ	H	н	±	8	H	ERI	•
S	H	HWI		CA	H	14		C	Н	FIN	- 28
ပ	H	FINE	- 23	ပ	H	-	ë Mi	2	H	FRI	
č	H	RAI	٠.	2	н	1-4		C	+	RAZ	•
E.PU	>	> N	- 17	F. P	>	>		ELPU	>	S N S	
ELI	>	> Z	- 26	ELPV	>	>	- 21	7	>	SNO NO	- 22
H O H	>	> X S	- 23	ELPM	>	>		HUTE	>	SNC.	
SLPX	>	> NO		ELP	>	\rightarrow	<u>.</u>	ELPY	>	EAND	
ELPY	>	ON C	. +	ELP2	>	>	- 13	ELPZ	>	EANDT	i N
113	>	> N O	6 .	il il	>	>	- 38	ELVU	>	N N	- 26
ELVU	>	> N O	- 27	ELVU	>	\rightarrow	- 28	ELVX	>	SANOT	
> : !!	>	SNO	9	딦	>	>	- 15	FLVY	>	JUN43	
ELVZ	>	> N D	- 15	EL VZ	>	> x >	ac	ELV	>	EANOS	
219	H	PEI	8 0	2	>	> 0 E		<u>ارا</u>	>	THOVE	
> !!!	>	NO.	- 21	င္ပ	H	RAI	0	SCT	H	TRAIS	-126
631	H	RAI	-126	ပ္ပ	н	RAI		G	>	7 W D X	
RG Z A 2	ы	TRAIS	- 30	RG2A3	H	TRAIS	- 30	RGRA4	H	TRAIF	36
GRA	н	RAI	- 30	643	ы	RAI		GRB	H	RAI	

SYMBOL	1/1	FCOM	רספ	SYMBOL	1/1	TCOM FOC	SYMB	7	1/1	LCOM	207
G28T	н	RAI		62	H	RAI5 - 6	RGR		H	AI	
633	H	RAI		G23T	H	RAIS - 7	AGR	-	H	RAI	
628	H	RAI		628	Н	RAI2 - 2	SGR		H	RAI	
328	Н	RAI		683	Н	RAI5 - 1	RSR		н	2AI	
628	н	RAI		683	Н	RAIS - 2	AGR		H	RAI	
528	H	RAI		623	H	RAI2 - 3	RGR		н	RAI	
62C	H	RAI		62 C	H	RAI1 - 3	46R	2	>	RAV	- 16
320	>	RAV		680	>	RAV4 - 1	43R	_	>	RAV	
28 2 K 2	H	TRAIZ	- 24	RG2K3	H	TRAI3 - 24	RGRK		H	Ą,	
S.V.	ы	RAI		GAX	H	RAIS -	AGK.	7	H	RAI	
GZK	Н	RAI	ι L	62 ×	н	RAIS -	46R		H	RAI	
7	H	RAI		GRLB	ы	RAI3 - 3	RGR	æ	н	RAI	
6418	H	RAI		GRM	H	RAI2 - 6	RGR	EX3	н	RAI	
GZM	H	RAI		GRM	н	RAI1 - 6	AGR		H	RAI	
G2N3	H	RAI		G?N	н	RAI4 - 4	808 808		н	RAI	
524	>	RAV	- 24	620	>	84V3 - 2	RGR	þ¢	>	RAV	- 24
GRVP	>	ZAV		63	>	NVV - AVN	AGR	•	>	RAV	
623	>	ZAV		3	>	RAV4 - 3	46R	•-	>	RAV	8
636	>	RAV		GR	>	RAV5 -	RGR		>	RAV	
639	>	RAV		3	>	RAV1 - 3	ZH7		H	FRI	
HTC	н	FRI	19	Ħ	н	FRI1 -19	H?	į,	H	FRI	-196
まれ	ы	FRI		HTC	H	FRI1 -19	2HT		н	FRI	σ
HTC	H	FRI	20	Ξ	H	FRI1 -19	SHO		н	RAI	
COL	Н	RAI		I	H	RAI4 - 9	OH?		н	RAI	
IAV	>	> Zu		IAV	>	ENV4 - 2	AI.S.		>	4ANU	
IAV	>	FINA		î	н	MCI1 - 4	dIò		H	RAI	
2c I	ы	RAIL	80	Н	н	RAILI- 3	RIP		н	RAIL	
e H	ы	RAIL	6 0	å	H	RAILI- 8	4I6	_	H	SAIL	
d H	ы	RAI	4C	H	H	RAILI- 8	AIV.		>	EN<	
ľ	>	ENVE	- 2	IV3	>	ENA + 2	RIV		>	EN	
IUS	н	ENI		IO	H	ENIE -23	RIO	m	н	Z	
IOS	ы	FNI	23	70I	>	ENV4 - 2	2I0		>	> N.I.	
01	>	FIN	M	YOI	>	ENV4 - 3	23		H	RAI	
7	H	RAIL	•	7	H	RAILV-	2		н	RAIL	
7	H	RAIL	V- 13	25	н	RAILV- 1	₹. ₹		ン	2	69
<u></u>	>	> N O		LOS	>	ENAt -	상	2	>	N	
6	>	ENC	- 11		>	ENV4 - 1	RHA	_	H	E	

TCOM FOC	MOI1 -	TIV - 1	TIV - 1	- AIL	40II - 2	40V1 - 5	MOV1 - 5	MOV1 - 5	RAILV- 1	HOI -	4015 - 1	ENI1 - 3	ENTT - 3	ENI3 - 3	1 - 1	FRI1 - 1	RAI - 1	RAI - 1	RAI - 1	TII1 -	RAV -	2AV - 1	RAV - 1	FRI1 -16	YCI1 - 1	MOI2 - 2	UNI3 - 1	UNI3 - 2	ENV3 - 2	RAV2 - 8	RAV1 - 8	2AV3 - 8	NVV - 5	RAV4 - 9	TRAILI- 60	RAILV- 1	,
SYMBOL I	lil E	S	HS	ZHS7	F	MV1	2	H V 3	I	HOH	Z	4	Q Q	٥.	œ	SE	SF	SF	SF	S	2 S	S	S	7	70	75	VAR	2	^	×	HX	>	2	12	RILN	-4	(
٦٥٦				1.4		1		ı	V- 1	m	+	~ -		m I	+	+1	•			60			- 12	9	•	9	+1	~				æ	•0	ъ •	I- 10	٧- 1	•
NO TCOM	RMO	INT	ITI	ITI	III	RAO	RMOV	RMCV	TRAI	SEC	THE	TRA	SENI	SIL	130 ×	PFRI	TRAI	TRA	TRA	ITI	TRA	1.RA	TRA	TRA	CAC	SER	JONI	NO S	N	N N N	TRAV	TRA	TRAV	TRAV	TRAIL	TRA	
SYMBOL IN	MA 3	H.	HS3	MS6	6SH	MV12	MV 22	HV32	MY	MOTI	NT V	Fuck	PA3	Pu	REL	SEOF	SF2	SF5	SF8	SSEDA	SIÛ	St	27	S	TC2	TOO	VARI	VAR	VBSV	X3	+IX	YI2	11	213	RIHT	1X	
OM LOG	H	011 -	- ^1	1-4	- 1	0 V1 -	0 11 -	C V 1 -	AILV-		H	- SI0	- TIN	Z	NI3 -	H	◂	⋖	◂	⋖1	>	◂	◂	A V	CI1 -	CI1 -	- EAN	- EIN	- EIN	- EAN	4 V 3 -	· >	4 4 4	4 V2 -	AV1 - 93	AILI-	
I/V LC	Ø.	Σ. Ο	II	H	II	W.	α. π	E.	7.8	χ.	II	Æ	S	SE	SE	无	7.	1 R	4.5	TR	iu Iu	72	72	73	Ç	C	S	3	25	S	73	7 U	7.2	18	V TR/	7.8	
SYMBOL	4 I	H	(A	RASS	I	4 7 1	X 72	>	×	X	PCN	Z	Q.	α.	ď.	SA	K	SFL	in	S	S	S3	(1)	S	()	-	5	VAR	RARS	3	×	¥ 8	ΥI	N	RZI	+1	

on services as someone supplies the material telescope to the service of the serv

COM LOC	AILV- 1	AILI- 1	AILV- 2	VV2 - 2	AILI- 3	AILV- 2	AILI- 3	AILV- 2	AILI- 4	AILV- 3	AILI- 4	AILV- 3	AILI- 4	AILV- 3	AILI- 4	AILV- 4	0I2 - 1	RV3 - 1	0I2 - 1	0I2 - 2	NIS -25	RV3 - 2	RI1 - 2	RI1 -17	NIS -11	RI1 - 2	NIS -26	NIS -26	NI3 = 3	- HZ	NIS -16	NIS -16	NIS -11	NIS -12	LSI1 - 48	SI1 - 3	
1/V L(-	-	-	m	•	-	-	-	-	-	-	-	-	-	! ~	-	-	⋖	j ~	j- -	S	⋖	⋖	۵.	S	4	S	S	S	S	S	S	S	S	1 0	0	C
SYMBOL	Ň	ñ	m	5	*	4	R5LT	10	õ	9	-	~	80	40	Ō	26	AB	A	AX	AZ	AZ	80	CAL	80	CIV	š	4	H	I	Z	A	O	7	7	SFEG	×	2
207	'n	0	m	2	9	~	9	- 2	9	M	9	*	9	1	9	4	+			+1	25	9		~			23		M		Φ	S	1	12			
LCOM	RAI	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	RAI	RAIL	RAI	RAIL	RAIL	RAIL	HOH	ERV	HOH	HOH	ENI	ENI	NTV	E S	ERI	ERI	ENI	ENI	ENI	M	ENI	ENI	ENI	ENI	OLSI1	LSI	•
1/1	H	H	H	Н	H	j.	H	H	 - 1	1-4	н	H	H	H	H	H	H	>	Н	H	H	+ -1	>	H	H	H	ы	ы	 	3-4	Н	H	H	ы	- 4	H	+
SYMBOL	~	~	m		4	3	S	S	9	Φ	~	1	€	8¥	ഗ	8	A 3	A	AXT	A	AZ	AZ	S	C95	ဗ္ဗ	CK1	3	EL3	X X	M	FA2	6	0	Ī	SFW2	¥	2
ж Т	ILI- 6	ILV- 1	ILI- 6	ILV- 2	ILI- 1	ILV- 2	ILI- 1	ILV- 2	ILI- 1	ILV- 3	ILI- 1	ILV- 3	ILI- 1	ILV- 3	ILI- 1	ILV- 3	12 - 1	V3 - 1	V1 - 4	I2 - 2	I2 - 1	I5 -25	V3 - 1	V2 - 9	I1 -17	I5 -11	I1 - 2	I5 -26	I3 - 3	•	IS -16	I5 -15	I5 -15	I5 - 12	12 -	11 - 2	
1007	RA	RA	RA	S	RA	Ø.	A A	RA	A A	A A	A A	8	&	A A	A A	A A	2	6 %	3	E	2	Z	(L)	F	8	Z	4	2	Z	Z	Z	2	2	2	OLS	S	0
1/1	H	H	H	н	H	H	H	H	H	н	H	H	H	H	H	H	H	>	>	H	H	H	>	>	H	H	H	1-4	H	H	H	H	Н	H	+	Н	•
SYMBOL	N	~	M	m	*		S	n	Ø	5		××	©	8	σ	š	A 3	AC	A	AY	AZ	2 A	8	S	CBS	ü	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J	X	M M	FA	F	F	> L	SFW1	Ä.	L

207	2	σ		0	0	208			9										ĸ		92								49	0		^	8	252			ď
COM	S	>	>	ENIS	ENIS	KAT	HOIS	FRI1	4	LSI	LSI	LSI	> 0 I	> O T	RAV	88	ERV	LSI	TRI	S	LSI	2	?	?	ENI	W	?	?	?	EX EX	EN	EN	> 01	ENIS -	EN <	N 0 E	HOM
\ \ \	0	ш	W	S	S	S	-	Q.	•	0	0	0	-	-	-	-	S	0	S	0	0	w	W	W	G	S	w	w	W	()	S	()	_	S	v	-	-
SYMBOL I	L.	š	보	IGA	IGA	1 G	160	Z9I	X	¥	X	×	7	4 T	8	9	Ţ	THE	78	7XT	TZT	3	VC2	VC4	5	HCH	X	>	N	AA	AA	ASI	A	TAU2T	A	핌	CA
700	04 -	- 28	- 11	22	202	-207	21	~	- 30	ъ •	- 12	- 15	- 55	6.	9.	- 33	- 17	* 7.	- 13	.#	- 63	- 64	- 73	- 76	- 36	- 33	- 65	- 66	- 67	m	-104	- 37	6	- 33	-254	- 36	
LCOM	LSI	HOH	>>	ENI	ENI	Z	ENI	HOL	RAI	LSI	LSI	LSI	₩	>>2	TEI	RAV	7	LSI	TRI	TRI	LSI	2	> X	2	ENI	Z	> X	>	2	ERI	SN S	AOM V	EN	SENVA	ENT	EN	LON
I/V	н	H	>	7	н	Н	9 (H	H	Н	H	H	>	>	H	>	H	H	H	H	—	H	>	>	ы		>	>	>	Н	>	>	>	>	н	>	۰
SYMBOL	FZ	15	29	¥	IGA	9 H	169	HOH	ZOH	¥	N Y	X 3	2	NOU	RCH	RPD	10	THI	TRA	8	TYT	3	2	VC.	TUE	SWCHS	80 X	>	N		AA	AD	AS	TAUL	AU	AUA	9
507	- 38	- 27	- 10	- 81	-204		-209		64.	, ec	11	- 14									· PO			- 75	- 71	33	ا	- 53	- 60	- 61		-133		-250		0	
LCOM	LSI	HOL	2	> ×	ENI	2	IN	FR	> >	LSI	2	LSI	> O T	≫ > ×	EQ.	RAV	ď	LSI	TST	TRI	LSI	N	> N	> 2	2	Z.	ENI	2	2	2	N N	ERV	NU	SENIS	EN	IN	TIT
1/1	н	H	>	>	• •	ı -	ı -	>	>		ı —	Н	>	>	Н	>	>	-	H	H	· H	H	>	>	>	H	-	>	>	>	>	>	>	· 1-4	>	ы	-
SYMBOL	L	(9	ی ا	N	-	ISA	160	1		1 3 2	' Y	¥	LAT	۔.	7	320	·	TXT	-	-	TYP	-	· >	· >	>	T (3	X	XVE	>	7	4	⋖	ASI	TAULT	AU2	A JA	0

SYMBOL	1/1	LEOM	COT	SYMBOL	1/1	TCOH FOC	SYMBOL	1/1	LCOM	700
i.	3-4	ILI	69	ပ	H	RAILI- 7	U	H	2	•
U	Н	TRAILI-	_	TC1	>	•	TC2	>	CYCV	
C3	>	>		ပ	>	YCV - 3	Ü	>	2	
U	>	` >	36		ы	RAILV- 4	20	H	2	- 43
<u>က</u>	н	급	_	0	H	RAILV- 4	20	H	RAIL	
0	ы	ILV	k \$		Н	RAILV- 4	20	H	2	64
၁	H	급		0	Н	TII - 2		Н	3	. 33
DER	H	-		DER	н	UNI3 - 3	DER	н	SINDS	39
=0	ы	Н	14	96	н	THE STAF	FO	н	RAIL	
052	Н	1		9	H	RAILI- 2	9	H	RAIL	
G	H	ILI		i L	н	RAILI- 2	9	ы	RA	- 25
F	H	I		님	н	RAILI- 2	90	H	RAIL	
90	H	ILV		90	н	RAILV- 5	90	Н	2	
5	H	H	55	50	H	RAILY- 5	90	Н	8	
50	H	H		90	Н	RAILV- 5	STO	>	T	•
XXO	>	>		NO	>	tiv - 9	DNXT	>	1	
DWXT	>	ITIV -	93	Š	>	trv - 9	XNO	>	I	
DAXT	>	- AIII	98	XNO	>	6 - AII	DNXT	>	H	
20	>	ITIV -	66		H	MOIS - 2	TOR82	H	TRAIZ	5
328	н	1	10	048	Н	RAI4 -15	9	H	RA	
025	H	Н		025	H	RAI3 -14	ORS	н	8	4
048	H	TRAI1 -	149	2	>	RAV2 - 6	90	>	RA	
021	>	>	Φ	021	>	RAVS - 3	DR1	>	2	
0	>	>	35	021	>	RAV5 - 3	DR1	>	RA	
021	>	>		020	>	8 - ANN	080	>	>	
3	>	>	ტ	500	>	NTY - 1	2	H	RAIL	. 72
70	н	1	73	20	H	RAILI- 7	20	H	ž	
20	H	TRAILI-	75	20	н	RAILI- 7	20	۲H	RAIL	
20	H	1	79	20	н	RAILI- 8		>	Z	^
EMP	>	>	31	FBS	H	TII1 - 5	FBS	ы	TII	
E	,	-		F 33	Н	TII1 - 5	L	Н	TII	- 59
F3S	н	ы	60	Fas	ы	TII1 - 6	FBS	H	TII	
E	H	ы		L	H	NVI 1 - 4	L.	H	NVI	64.
2	H	1		FI	н	PG215- 1	72	H	PG2I	- 13
TF30	H	0PG2I5-	14	TGK1	H	-512	TGK2	H	GPG215	6
Š	H	12	10	8	H	PG215- 1	G	н	YCIT	. 43
09	>	· >	13		Н	- I09	0	H	8	m

A PROPERTY OF THE PROPERTY OF

0

AND CONTRACTOR OF THE STATE OF

Committee of the property of the committee of the committ

SYMBOL	1/1	LCOM	فيد	207	SYMBOL	1/1	LCOM	-1	30 .	SYMBOL	1/1	F007	207	
9	>	LS	•	10	99	>	9	•	6	S 0 S	>	P62	6	_
500	>	9	•	6	G0 M	>	Sp	ŧ	20	TGOPF	H	SP	- 10	
9	>	Ţ	ŧ	യ	ပ	>	9	•		HAS	Н	HNO	- 13	
A BS	ы	Z	•		유	ы	IND	•	19	HE B	н	UNO		
¥	H	Z	•		발	>	Z	•	•••	빞	>	PG2	•	
RIIS	H	Z	ı		Ę	>	¥0×	ı	12	HIC	>	LS	6	
HIX	>	S	•	12	I	ы	E	ŧ		덮	>	2		
5 H	>	2	•		2 1	>	LS	ŧ		H 2	H	2	6	_
÷	>	5	•		E	>	CS	•	11	E	>	LS	177 -	
I,	н	E	•	10	£	>	2	•	S.	±	>	2	- 11	
t	>	E	•		IF	Н	RAI	•	ហ	IFT	Н	RAI	i Tu	
ILI	H	RA	•	r.	IFT	H	8	•	r.	H	н	Ħ	9	
H	H	3	•	~	M	н	FRI	•	€0	H	>	> 0 H	- 36	
I	>	Z Li	•		H	Н	3	•	6	IS	>	8	- 33	
14	>	ž	•		112	>	> ×	ŧ	13	H	>	> x	- 14	
12	>	2			12	>	> N	•	16	12	>	> N	- 17	
H 3	>	>	•		13	>	> N	•	19	I 3	>	> x	- 20	
7	>	Z U	ŧ		22	>	N III	•	66	7	>	NU UNI	-100	
7	>	2	7		KOF	>	RAV	•	70	¥	>	RAV	- 70	
¥	>	A A	•	70	KOFF	>	A A	•	70	¥	H	Z Z	- 14	
×	н	A A	1		¥	Н	RAI		14	¥-	H	RAI	- 14	
2	H	3	•		·	Н	HOH	•	29	I	H	NVI	- 36	
_	>	A			_	>	RAV	•	87	_	>	RAV	- 87	
7	>	2A	ŧ		4	>	NT N	•	11	S	>	> LN	- 12	
7	H	?	1		E	H	HOI	•	36	I	>	83	- 28	
T	H	E	•		H	н	HOL	•	m	Q.	>	>	- 68	
Q.	>	A A	•		Œ	>	RAV	•		J.	>	RAV	- 72	
A	>	RA	•		Σ	H	HOI	•		F	H	HOH	64	
H	H	2	•		È	>	>05	•		2	H	HOH	- 20	
HX H	>	Z	ŧ		MX1	>	EN	•		HXI	>	NU NU	- 54	
×	>	Z	•		MX2	>	Z	•	56	XXZ	>	2	- 57	
EX.	>	Z	1		EXE	>	NU	•		HXM	>	EN N	- 60	
HOH	н	2	•	10	T 07	1-4	T	•		X O T	H	HON	+	
Ë	>	7	•	ω	T C	>	¥	•		n	H	HOH		
H30	>	E	•		ASF	Н	£	1	33	8 8 8 8	н	RAI		
TNBR3	H	TRAI3	•	15	TN32¢	H	TRAIG	•	16	NBN:	н	TRAII	- 16	
lı Z	ы	RA	٠		Z	>	99	•		ď	>	¥0 ¥		

SY MBO.	1/1	LC04	C03	SYMBOL	1/1	T WOOT	၁၀.	SYMBOL	1/1	LCOM	007
Z	>	-	ď	Z	>	>			>	RAVG	
ď.	>	>			>	>	94	ž	>	RAV	19
Z	>	-		Z	>	>		PHI	Н	INO	
HE	H	Н	S.	H	H	\mathbf{H}		O.	н	NFI	
PZV	Н	ы	- 33	5	H	H		9	H	RAI	
P 23	H	_	- 13	5	ы	H	13	8	H	RAI	. 13
PS	н	CONIC	10		H	CGNI4 -		PS	Н	Z	
DV1	>	>	б	2	>	>	10	₽	>	> NO	
\$ ^ ¢	>	>	- 12	PVS	>	>		2	>	> × >	77 -
4	H	\blacksquare		RA	H	TRAI -	m	83	ы	RAI	
283	ы	-	2	R3+	H	TRAI4 -		æ	H	RAI	
111	>	>	1Ci	REF	>	- ADAD		REF	>	YCV	
111	H	1	.	RFL	>	CYCV		RFL	>	2	
RIN	H	-	11	RINF	H	-4	+4	RINF	H	RAI	
RINF	H	-	11	RIN	>	>	61	7	>	RAV	
RIN	>	>	- 61	RINX	>	>		RIN	>	> N S	m
AIN	>	>		RIN	>	>	r.	RIN	>	> 2 2	£
RIN	' >	>		RIN	>	>		RKF	H	PGI	9
2KJ	Н	Н	'n	RK J1	H	TRAI3 -	65	RKJ1	ы	RAI	
2KJ1	н	-	10	RK.	H	H		2KJ	н	RAI	
2K72	H	-	. ^	RK J2	Н	1-1		RKK4	Н	RAI	+9
2884	H	-	Q٠	RKKE	ы	-		8 8 8 9 8 9 9 9	ы	RAI	
2 X X	H	-	Ġ	X X X	ы	\blacksquare		XXX XX	н	RAI	
ススの	H	TRAIL	- 63	TRKPF	ы	TRAI -	9	TRRF2	Н	TRAIS	+
RAF	H	-	<u>۔</u>	RAF	H	~	ŧ	RRF	н	RAI	±
222	н	-		RS.	H	TRAIS -		S	H	RAI	
3	Н	-	+	RZ	ы	ILV		82	н	RAIL	. 61
22	н	급	9	22	H	ILV		20	H	RAILV	
77	ы	-	9	R 2	 	ב		R 2	H	RAIL	
22	ы	급	\$	F!	H	_		SE	Н	YCI	
SE3	ы	-	•	SI	>	HPEV	21	SP	H	Sp	.
XdS	н	-		SUA	>	P 40 V		S	>	L.	17
138	н	ü		198	Н	H	€0	TBS	H	TIL	6
188	H	1-4	4	198	H	н		•	H	TII	12
8	ы	Н	+	8	н	ITII1 -	14		H	TIL	9
7	>	>	- 15	HE	۲4	H		I	н	UND	•
TTHES	H	CONIC	- 10	10	>	INTUS -	54	11	>	F	- 25

A TO THE THE PARTY OF THE PARTY

SYMBOL	1/4	LCOM	LOC	SYMBOL	1/1	TCOH	700	SYMBOL	1/1	LCOM	7 OC
-	•				•		(•	٠	•	•
7	-4	KAI	_	7	-1	YAI	- 12	7	-4	TEY	21
N	H	RAI		Ü	>	ERV	m	9	>	<u>ک</u> س	.t
C	>	2	10		>	ERV	\$	a	>	ER.	٠ ١
	>	· ~	· •c		>	ERV	6		>	17	
	>	ERV	- 11	a	>	ERV		13	>	TIV	1 44
() H	>	-	-103	TICAL	H	PFRI1	-112	TIOF	H	ITII	i rv
1	>	TIV	-111	H	H	TII		I	H	FRI	-146
Z	H	TIL	~	1 P A	>	I		191	H	H	
۵. ۲۲	>	TIV	00	125	>	H		15	>	Ľ	. 53
7	H	III	- 36	7	H	3	~	4	>	ERV	- 13
23	>	TIV		207	>	1		25	H	1	-114
20	H	H		2F7	>	H	4	25	н	TII	+ 94
24	H	ď	÷	2:4H	н	I	~	2PA	>	TIV	- 35
2	H	I	=	292	>	11		8	>	1	- 26
23	>	I	- 54	2VA	H	H		2VH	н	FRI	17
33	>	11		300	>	H	0	300	H	3	+1
M	H	I		3F 2	>	H		3FS	H	TIL	. 85
M	H	3		Y NM	H	Ţ	~	m	>	TIV	- 37
9	H	II		3pL	>	H		3RE	>	H	N
35	>	I		3VA	H	11		374	بس	FRI	-179
. *	>	TIV		40	>	H	0	* C<	H	7	=
3	H	TII	4	452	>	H		4FS	н	TII	•
I	Н	8	-152	I Z J	H	II	0	40	>	TIV	- 38
4	H	TII	H	4PL	>	H		4RE	>	7	~
(A)	>	TIV		FVA	н	H		T C	H	TAR.	-181
S	>	11		200	>	1		2C	ы	T.	N
5	H	II	+	SFR	>	H	7	3FS	H	111	- 87
S.	H	ĸ		SZ	H	H		SPA	>	11	39
U U	ы	11		SPL	>	H		58	>	I	- 23
55	>	I		5VA	H	1		S Z	H	8	-183
S C	>	H		6CV	>	I		900	H	FRI	-122
Ĉ	;	I	- 15	6F 2	>	H	Ť	19	н	1	- 83
Z.	ы	ď	-156	6 N &	H	IL		6PA	>	Ţ	04 -
60	H	11	- 20	6PL	>	-		8	>	11	30
6 S	>	11	- 53	EVA	H	H		6VH	H	FRI	-185
73	>	1	- 50	707	>	I	Ö	707	н	6 .	Ň
17.3F	ы	ILII	- 17	7F.9	>	11		7	н	TII	•

TO THE STATE OF THE PRODUCTION OF THE STATE

L 0C	14	P 7	0	12	თ	24	. 32	-189	-120	9	. 43	33	-191	96 -	64	12	m		11	6	6	25	. 25	28	ŗ				36		ľ				. 25		
LCOM	IJ) AIA	FRI1	FRI	TIII	TIV	II	FRI1	FRI1	TIII	I	T	FRI1	ENVE	FR	S	ER.	TRV	8	70H	SP	Sp	SP	SP	SP	S	S	å	S	as	S	2	9	Z	TH0 <	HNO	Z
~	>	>	H	H	H	>	>	H	H	H	>	>	H	>	>	H	>	>	>	>	>	>	>	>	H	>	>	>	>	>	>	>	>	>	>	H	н
SYMBOL	7 DA	7 RE	7	800	BFS	CPA	BRE	>	A 06	9FS	9PA	9RE	HA6	RIV	101	AMI	AX	CGX	C G ∀	CIR	OTS	EHA	EHA	VEHAB	OH II	H	I	EH	EHT	H	ш	-	_1	I	H	O.	VRF4
700	- 32	- 87	94 -	0	11	m	- 68	- 50	Ç	-119	- 34	69 -	- 52	- 95	- 19	- 23	9	. 5	€0	- 12	+	- 52	- 24	- 27	- 21	9	~	- 32	- 35	- 38	- 18	64 -	- 29	- 22	- 35	S	- 29
LCOM	I	I	II	H	I	I	TIV	I	TIV	I	I	TIV	TII	EN	NU NU	3	ERV	5	786	7	>0K	ERI	Sp	SP	Sp	S	H	Sp	SP	S	Sp	2	> OH	ENV	INFIL	LND	IND
N I	H	>	H	>	>	H	>	H	>	>	H	>	₽H	>	>	H	>	>	>	>	>	Н	>	>	>	>	H	>	>	>	>	>	>	>	н	H	H
SYMBOL	7 7 7	7PL	71	80 <	SFR	NNO	80	8	106	9FR	N N N	9PL	A A 6	RIV	ر ک	AHI	AS	AZI	CGY	Ü	20	ECO	EHAG	EHA	X	H	EHS	EH	EHT	EHT	T	II	IS	4	VHAXT	3	α
707							~	- 60					- 51	÷6 -	- 97	64 -	- 15	.+ 1	- 13	6 -	ıv			- 25			ى ا	- 31	34	- 37	- 7	- 97	- 28	** 1	- 24	- 34	- 28
LCOM	FRI	II	1	11	II	FRI	II	TIV	H	Ĭ	FRI	H	TIV	N.	EN	Z	12 X	K	7.RV	72	70H	ERI	S	S	S	S	as	S	Sp	Sp	SP	00	2	¥0 ×	EN	F	H
1/1	H	H	>	>	ы	1-4	ы	>	>	H	- -	H	>	>	>	>	>	>	>	>	>	ы	>	>	>	>	ĸ	>	>	>	Н	' •	>	>	>	H	H
SYMBOL	7	797	75	830	S	80 T	32	8	930	6	S.	766	93	RIV	RIV	232	A	AY	C GX	()	5	ESZ	EHA3	T	FHA	E FF	III	HI	HHE	1	in in	N N	ISY	7	MAX	×	VRF2

Ō

SYMBOL	1/1	LCOM	207	TOENAS	1/1	CCOM	700	SYMBOL	1/1	LCOM	207	
VRF5	ы	INC		¥RF6	H	H	- 32	V260	>	THOV		
⋖	>	> X		SAS	>	SENVI	- 11	ASAE	>	SENVI		
tı.	H	2		S	>	TMOV	- 26	VSHI	>	7 HO K		
-	н	IV		SX	>	>	- 20	8XSA	>	유		
×	>	2	35	S	>	SENVI	- 16	0×SA	1-4	SENIT	04	
>	>	N		S	>	TMD <	- 31	IASA	>	P		
>	>	Z		S	н	SENIT	- 41	VSZA	>	M		
7	>	10 <		25	>	TMOV	- 38	VSZR	>	EN V		
7	H	IN		S	>	FNV	- 18	W	H	INO		
38	ы	SNI	•	132	H	Н		VT BR4	H	LNI	6	
$\mathbf{\alpha}$	ы	JNI		-	ы	H		VURZ	>	R	- 13	
\sim	>	ZAV	- 13	3	>	\rightarrow	- 13	VUR S	>	RAV	- 13	
1 . 1	>	10 <	6 0	3	>	>		VVR3	>	RA?	1 1	
~	>	ZAV		>	>	>		T H H A	>	> >	- 24	
Let	Н	IAN	,Ç	3	H	-	m	XXX>	>	> >	- 25	
7	н	IAN		3	>	>		VARS	>	RAV	- 15	
N	>	YAY		3	>	>		THV	H	Z	- 50	
7	>	>>	- 26	×	>	>	- 11	VHXRI	>	>	- 30	
IAMA	>	ENVV2	- 12	VWYZI	>	ENANS	- 31	IZHA	>	ENVV2	. 13	
~	>	>	- 32	X	>	>	9	AKINT	>	701	- 11	
K	>	10 <		X	>	THUV	- 18	NXIS	>	> O I	- 28	
H	H	40 I	.+ 1	×	>	STRV	- 13	VXRL	>	201	- 42	
-	H	무무		>	>	TMOV2	~ .	VAINT	>	707	- 12	
VYIN2	>	40 \	- 15	Y	>	THOY		SIAA	>	>0	- 29	
ы	H	HOF	י עו	>	>	STRY	- 14	VYRL	>	> 01	P #3	
VYT	н	40 I		N	>	TMOV2	•	VZIN1	>	70H	- 13	
VZINZ	>	₹ 0 <	- 15	12	>	THOV	- 20	SIZA	>	>01	- 30	
1-4	54	101		7	>	STRV	- 15	VZRE	>	z		
VZT	ы	101		H	>	>	- 57	VIHT	>	EN		
-	H	H		7	>	Š	- 62	VILN	>	ENK		
	>	> X		11	H	SENIS	-221	V1 V1	H	ENT	- 39	
>	H	INI		1 X	>	>	- 45	VIYI	>	NU		
2	>	> N		10	H	н	- 57	>	H	ENT		
7	-	K		4	5-4	-	tri eo	>	H	ENT		
~	н	IN		13	H	SENI 5	- 63	V13V2	H	ENI		
VSHA	>	> N	- 58		>	•	- 75	æ	H	ш	-226	
	>	> X		_	>	>	- 71	V2LT	>	ENS	9	

SYMBOL	1/1	LCOM	707	SYMBOL	1/1	LCOM	700	SYMBOL	1/1	LCOM	LOC
21	H	SENIS	-222	VZV1	H	SENIS	- 41	>	H	SENIS	- 67
2	>	ENY		27	>	ENV		N	>	EN	
H	>	Z	- 59	ME	>	Z		-	H	Z	
3	>	M	+9+	3	>	ENV	- 72	_1	>	Z	•
V37F	H	SENIS	-223	1ASA	Н	SENIS	F# -	V3V2	H	SENIS	- 69
×	>	Z		37	>	E Z	- 52	N	>	EN	
Ŧ	>	ENV	- 50	ī	>	ENV	- 77	н	H	M	
į.	>	M	- 65	7	>	ENV	- 73	_	>	Z	
+	H	M	-224	3	H	ENI	- 45	>	H	M	
×	>	EN		*	>	EN	- 55	N	>	ENS	
5	ы	M	24 -	5	H	ENI	- 73	>	н	M	
9	H	INU	- 75	7	H	ENT	- 51	>	H	ENI	
8	H	HNU	- 53	7882	H	ENI	- 79	>	H	ENT	
9	H	ENI	- 81	024	>	TRV	- 11	N	>	7	
20	>	TRV	- 13	20	>	TRV	- 14	2	>	TRV	
3	ы	NVI	- 57	2	H	NVI	- 58	Z	H	IAN	- 59
7	ы	N	- 60	Z	H	N	- 61	Z	H	N Y	
Z	Н	NVI		PI	H	ROI	- 24	H	H	ROI	
P	н	ROI		4	н	ROI	- 27	HPI	H	ROI	
5	>	80	- 25	9	>	2	- 15	KPR3	>	8	91 -
4	>	80		2	>	3	- 18	2	>	2	
2	>	TRV	- 15	RE	>	TRY	- 16	-	>	TRV	
I	>	5	- 19	H	>	STRV3	- 20	MITS	>	TRV	
=	>	TRV	- 17	10	H	ERI	•		>	7	
93	н	MFI	- 51	XAB	>	NT	- 80	Ō	н	ERI	<u>ہ</u>
⋖	>	> LN	47 -	XAH	>	불	- 15	XCA9	>	NT N	- 90
S P	>	N	- 91	XESN	>	Ē	m I	XII	;	I O H	- 11
H	H	HOI	- 12	XI3	H	HOH	- 23	XMPF2	н	RAI	- 17
T	₩	RAI	- 17	Ţ	-	RAI	- 17	XXPF	H	2	- 17
-	H	TRI	- 11	S	>	TRV	- 13	L.	H	RAI	15
l:	H	RAI	-155	>	H	RAI		XYF	H	RAI	
>	H	CNI	• •	8	H	ERI	&	YKSTR	>	FRV	4
S	н	FRI	œ	-	H	TRI		¥	>	> N 0	6
ده ح	>	120	44	⋖	>	X		80	H	ERI	6
¥	>	N Y	- 45	⋖	>	F	94 .	ũ	H	SERI	
7.4	>	>	- 37	ZTR	H	TRI		1022	ン	7	- 15

	MBOL I/V LCOM LOC	HI I AERI -	A V AERV3 -	GN C AGREST	AM V AERV3 -	8 V AERV3 - 1	0 I AERI1 - 3	3 I AERI1 - 3	F I AERI3 - 1	T I AERI3 - 3	I AERI1 -	V AERVI - 1	T I AERI3 - 2	V AERV1 - 1	V AERVI -	F I AERI3 - 1	T I AERI3 - 3	9 I AERI2 - 1	07 I AERIZ - 1	I AERIZ - 1	F I AERI1 -	F I AERIS -	AERI3 - 1	F I AERI3 -	T I AERI3 - 2	F I AERI3 -	T I ASRI3 - 2	BI V AERV2 - 1	B V AERV2 -	3 V AERV -	B V AERV2 -	XQ V A59V2 -	FA V AERV3 -	AERII - 2		ASRV3 -	T V AERV3 - 1
	S	H	_	S	lıJ	⋖	0	0	_	_	7.	I	I	I	2	Z	7	Q.	٥	×	×	×	×	>	>	N	•	⋖	◂	3	•	Ç	4		α. σ.	⋖	€
ARAHA																																					
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	700	_		+1	~	+	M	M		Ŧ	(M)			M	+	Ħ			+	(1)	~			+	-	4		13		••	–	11	ي		11		
!	-			M							+																	<u>'</u>	2	•	<u>'</u>		2	-		ŭ	
HOOUL E	1007	E.R.	E C	3	8	3	ER	ER	3	ER SA	w	ER	8	5	3	3	3	3	E C	S S	R	2	EX.	5	2	ER	ER	11	er Cu	0% W	E3	5	2	2	AERV	ER	ER.
ď	1/1	H	>	>	H	>	H	H	H	H	H	>	H	н	н	H	H	H	н	;	-	>	H	⊷	H	н	-	>	>	>	>	>	>	>	>	>	>
CALL		E 2.1	ت	FFT	A	SIG	9	2	2	2	CMKT	S.	Ę	4 2	SS	2	2	5	ž	Q.	XX2	X	×	>	>	7	22	4	AY	덮	AC	Z V	ů	日日		SACB	ည္အ မ
ALPH		•	_	•	_	_	_				_	•					•	4			_		. •		_							_	_		•		
w	L03	Ä			-			8				-		=						#			#		2		. 24					=		H	. 12		=
027							m		•		-																			•	•		2			٠ ٧	
STO	LCOM	17. 5.	S	5	3	S,	4	5	1	9	3	3	4	3	9	3	٦. رح	ţ	5	E I	04	10	E R	E,	17) U.S.	8	E	14	3	Ę	S S	4	UK.	~	AERV	بت. ح	3
>	1/1	>	H	>	>	>	>	ы	>	H	>	H	p-4	н	H	>	H	>	-	H	H	-	н	>	н	>	-	>	>	>	>	>	>	>	>	H	>
2068	SYMBOL	C	E X	lu.	TSI	13		č	0		ر	5	7.		1/1 2:	7.	Z	Z	ď	7 0	×	₩ ×		×		>			AX	Ξ		AY	63	ALF	QS	ന	

YMBOLS	SSTOR	0	7	ED ALPHAS	CAL		HODULE	•	4	EZHH		•		•	
IVA LCOM LOC SYN	COM LOC SY	AS .	AS .	>	1301	> 1	LCOM		30		SYMBOL	?		_	ပ
AERII - 21 S	ERI1 - 21 S	- 21		SCa	} ⊷ 11	Н	A H	•	22		SCGAM	ы	AERI1	•	~
ERI1 - 24 S	ERI1 - 24 S	s 24 S	S	SCK2		ы	lij	•	25		SCK3	Н	A ERI1	•	8
AERIZ - 3	ERI2 - 3 V	, ,	>	VAHI	-	ы	RI	ı	23		VAMI	>	AERV	•	4
A	7	ا	>	VAXI		>	AERN	•	m		VAYI	>	AERV	•	
AERV - 5 X	34 + 5 ×	ıv.	*	XADA		H	AERI2	•	~		YADH	H	AFRIZ		

PROGRAM SY 480L	SYMB	LCCH LCCH	7	EJ ALPHASST LOS	ICALLY Symbol	FOR M	ODULE-"	-	CONTH	SYMBOL	\ \ \	FCOM		ပ္မ
0	H	NO	•	13	0	н	HNO	•		Ā	H	C	•	-
ď	H	Z	ŧ	۴.	Α O	H	Z	•	10	ð.	•	INO	•	13
×	H	IND	•	~	X	H	IND	•	9	K K	H	HNO		ტ
×	Н	HNO	•	12	×	H	ONI	•	2	¥	H	HNO		
×	-	ONI	•	11	¥	H	UND	•	14	LAN	Н	INC	•	
LAN	H	CNI	•	11	LA	₩	ONT	•		J. 30	>	Z		32
Σ	>	> N C	•	33	Ţ	>	Z	•	34	4	>	Z	•	
M PR	>	Z	•		Ţ	>	Z	•	m	5	>	> N O	•	w
8	H	Z. 0	•	1 2	I	>	20		t	-	>	Z	•	m
NO	5-4	Z	ŧ	£C.	ONT	H	20	•	m	N Z	М	Σ	•	t
COH	>	Z	•	₩.	CPS	>	3	•	æ	CTH	>	Z		٠
EPCH	>	Z	•		EDGE	>	20	•		ERL	>	S		81
= 26L	>	Z	•		EYAH	>	Z	•		EYAK	>	> 2 C	•	
KPHI	H	INC	4		KPHT	н	H W	ý		XP.	H	N	•	
¥	H	Z	•	55	Š	ы	Z	•	65	¥	H	S		53
KTHE	1~4	DNI	•		KTHE	H	INC	•		XII	H	INC	•	
9 8	-	INO	•		831	H	CNI	•		>	H	I NO	•	ტ
HUC	>	> N C	•	15	T.O.	>	Z			PCE	>	S	•	25
6	>	S	•	23	PCH	>	Z			PCH	>	S.		
T C T	*	Z	ŧ	21	RLL	>	Z	•		RLL	>	Z	•	
YAH	>	Z	ı	17	YAH	>	Z	•		YAH	>	S	ŧ	
YA	>	Z	•	28	YAH	>	Z	•		YAN	>	Z	•	
YAH	>	Z	ŧ	25	9 L.	H	NO NI	1	13	r S	H	INC	•	23
CFP	×	ONI	•	29	CFP	H	IND	•		CFP	H	ONI	•	
'n	H	ONI	•	47	CFR	н	IND	•		CFR	H	INO O	•	
CFR	н	ONI	•		CFR	H	INO	•		CFR	H	HNO	•	
CFR	1 1	DNI	•		CFY	H	NNO	•		CFY	H	JNG		
C = 7	н	INO	•	12	CFY	ы	INO	•		CFY	H	IND	•	
CFY	H	ONI	•		PHI	H	JNC	•	9	PHI	H	SNI	•	01
Ţ	H	INO	ı	~	PSI	H	HNU	•	•••	PSI	H	INO	•	12
Q (V)	н	INO		2	エニ	H	INO	•	7	THE	H	ONI	•	11
H	H	UNI	•	.	MX8	H	GNI	ŧ		×	H	ONI		£ 3
×	>	> Z O	•	.+	¥¥	H	INO	ı		7	H	HNO	•	1
OMYT	>	CONV2	•	in	0HZ3T	н	CONI3	•	21	OMZD	ы	Z.	ŧ	15
7 1	>	>NC	•	S	HAS	H	ONI	•		E	н	UNO	•	4
(.) I	H	INC	•	18	Ħ	н	INO	•	.	띺	н	ONI	•	23

207	17		13	ľ	31	ტ	#	10	C
	ŧ	•	•	•	•	ı	•	ŧ	•
LCOM	CONIC	HNO	INO	DNI	CONIS	CONIC	CONIC	CONIA	
1//	H	H	н	H	H	н	H	н	
I/V LCOM LOC SYMBOL	PSBSL	PSECT	THASL	THEB	THEST	TPHI3	TPSI3	TTHE3	
z Z S									
207	4	9	^	19	∞	G	€0	۲-	C
-	•	•	•	•	•	•	•	•	•
LCOM	CONIC	CONIS	CONV2	CONIT	CONVS	CONIA	CONIA	CONIC	
X > 1	+	H	>	H	>	} I	H	; ;- -(
	PSASL	PSEB	RLEC	THESE	THEG	TPHI2	· a	TTHES	
G ALPHABETICALLY	ď	.	m	· CO	ır	· M			
L 0	٨.	8	M	-	ر ا	' .			
<u> </u>	~		-			•		•	
OLS SORTE	CONI	CONT	CONI	CONT	LNCC	CONT	12NC2	41200	
SY430LS I/V LC	Н	H)	1 1	۱ ا	۰,	ı	1 - -	. :
PROGRAM	SEHd	PSSSL) li	TEN ST) (i	: a	0	1 L 1 I) (

arippositi provinci propijanski provinci provinci provinci provinci provinci provinci provinci provinci. Obberopisevene posterio propijanski provinci provinci provinci provinci provinci provinci provinci provinci provinci

0	_		20				33								15	_	σ	13							18		C
ب	•	•	•	•	•		•	•	•	¢	•	•		•	ŧ	•	٠	•	•	•	•	•	•	,	•	•	ŧ
LCOM	<u>۲</u>	YCI	CYCIA	YCI	2	7	7	7	7	7	2	5	7	7	7	Y C	2	X	YCI	7	YCI	YCI	K	7	K	Š	
1/1	H)	H	H	>	₩	Н	>	>	>	>	>	>	H	>	>	>	>	H	H	ы	}-4	>	>	>	н	
SYMBOL	ر د	Y 1 1	CY21	7 3	19d	5	7	11	13	PS	⋖	A1	⋖	5	1	F	F3	L	10	90	7	10	C	S	S.	SE1	
CYCXM																											
100	4	100	7	27						∞	M		39				£	12	∞	10						20	
-	•	•	9	•	•	•	•	•	ŧ	•	٠	•	•	•	•	•	•	•	1	•	•	•	ŧ	•	1	•	•
HODULE-	Z.	S	CYCIA	Y.C.	YCI	YCI	YCI	7	7	Ž	5	5	Ķ	5	5	5	S	Y.C.	YCI	2	YCI	YCI	5	5	5	∠	7
FOR X	>	>	,	ы	H	H	Н	>	>	>	1-4	>	>	>	>	>	H	>	H	н	H	Н	>	>	>	>	\$
PHABETICALLY SYMBOL	ς Υ	7	CY13	۲2	7 3	10	7	1	12	2	R	A	Ø	⋖	F	င္မ	F	u.	5	9	70	5	ပ	ပ	REF	œ	S
٠ ا	و ر م	m	m	۵	σ.	~	'n	īŪ	60	S	10	ار ا	6 0	+	6	'n	ıņ		~	æ	٨į	īŪ	+	.	W	o.	C
1EQ	1		1	5	~	(c.)	•	رما ا	- 2	~		- 2		1	+	7	3	+	•	-	-	•	•	1	<i>3</i>	+	•
SOLS SOR	X C	<u>ں</u> ۔	CYCIA	YC	YCI	YCI	YCI	YCI	Y.C.	7	2	7	2	YC	70	XC.	5	7	YCI	7	YCI	YCI	XC.	45	7	5	YC
SYMB	>	· #-4	H	H	H	ы	Н	ы	>	>	>	>	>	>	>	>	>	>	н	H	ы	м	>	>	H	>	ы
PRJGRAH Symbol	YCC	()	CY12	۲2	₹3	5	i	2	72	73	5	K	A2	Ø	5	F	u.	u.	5	IO	0	2	S	u	а. (5	2	S

	00 T			10			12	^	*	11	*	M	m	14	11		ŧ۸	12	15	ø	\$	m	^	16	ဖ	~			25		ტ	14		•		10	σ
		•	•	٠		•							•			•		•	•	•	Š	•	5	•	•	•	•	•		ņ		•	•	'n	'n		•
	LCOM	9	9	Q.	9	PG1	PG1	PG1	962	P62	PG1	PG2	PGI	PG1	29d	PGI	P62	PGI	9	P62	P62	9	Q.	294	9	9	9	₽6∨	PG2	P62	PGI	9	P G 2	DPG2V	Sd	PG2	PG2
	1 \	>	>	>	>	>	>	H	>	>	н	H	H	н	ы	H	H	H	H	>	Н	>	H	>	>	>	>	>	H	H	ы	>	>	>	H	н	>
i	SYMBOL	I	TH2	XH D	OHI	0 M2	I	ERF	PF2	PGV	9	P 62	PHX	Edid	P25	SCHE	T62	1	27.2	GF2	A	ပ	5	0	ш	ES	ESN	90	10	1	LLA	HER1	HER	PSIEC	F	8	00
DPGXM																																					
1	ည	\$	17	15	12	19	20	21	\$	17	M	ŧ	ស	12	တ	12	9	11	77	တ	w	M	•	16	rv	•	Ø	₩	23	17	4 0		13	ဖ	13	თ	σ
		1	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•		•		•		•	•			•	•	•	•	•	•		•	•
	_	75	_	_	_	_	_	_	>	>									+	>			15			>		_	H	15		_		>		H	>
MODULE	LCON	ပ	9	G	Ġ	G	G	ق	G	G	G	G	G	S	G	G	G	G	L)	G	G	G	0PG2	S	ര	G	ഥ	Ġ	G	ပ	G	G	Ġ	0P62	Ġ	S	S
œ	1/4	>	>	>	>	>	>	>	>	>	H	H	н	H	H	H	H	н	H	>	>	>	н	>	>	>	>	>	H	н	۱-4	>	>	>	н	H	>
ETICALL		E	THS	H	T	E	E	E	Δd	PGV	PGX	PG2	PXX	P1P2	P2P	post.	T G1	닦	21.4	GF1	X	S	c_{2}	07	H	ES	ESN	ES	10	٣	LLE	HE 21	エニス	PHIEC	F2	쏬	60
ALPHA3																																					
		M	13	+ 3	11	10	11	12	~	.+	*	M	±	19	15	13	īV	S	13		10	M	ın	^	ın	~	18		21	_	80	C T	15	12	12	∞	11
RTE		10	•	•	•	•	•	•	•	•	•		•	6	•	•	•	•	8	•	ŧ			٠	ŧ		•	•		Ţ	•	•	•	•		1	
SO	0	627	G	O	G	62	G	25	29	G	GI	51	5.5	5	61	62	Ğ	25	(2)	5	2	614	25	19	5	5	61	627	25	32I	51	H	61	,62V	52I	621	62 I
or s	2	90	Ç	Ö	5	Ċ	2	ā	9	ဌ	0	0	9	2	0	0.	90	9	0	9	6	9	0	Ç	G	0	6	9	9	C G		9	G	9	٣	2	2
SYM3(>	>	>	>	>	>	>	H	>	H		ы	ы	••	ы	ы	ы	ы	ы	>	>	н	ы	>	>	>	>	ы	ы	ы	H	>	>	н	ы	H
PROGRAM	Y 480		141	7	¥	0 H 1	045	043	E 2F	u Q.	Y S S	450	PXX2	PIP	PIP4	P2P3	161	162	-1	2 L X	ij	r C	2	9	LL.	S	ESNI	といい	1	F	1:1	LLMZ	HIN.	R 2	F1	8	Š

STATE TO THE PROPERTY THE PROPERTY OF THE PARTY OF THE PA

	00.	ø
	_	•
	IN LCOM LOC	0PGI1 - 6
	1/1	y-4
	SYMBOL	TRKF
DPGXA		
•	သ	^
į		Š.
MODULE-	LCOM	V DPG2V5- 7
FOR	1/1	>
ASETICALLY	STABOL I/V LCOM LOS STABOL I/V LCOM LOC STABOL	THESC
ALPH	c)	~
TED	20	
OLS SOR	LCOM	VDAC
SYMB	1/1	>
740644 7	SYMBOL	1636

207	-1	#	'n	•				36								*	64	11	σ.		28		17				80	6	12		23			=	m	9
	•	•				•				•	•	•		•	•	٠.	•	٠.	•	•	•	•		•		•			•		•	•	•	•		•
LCOM	N	NAI	₹	N	N	ENVI4	N N	ENAIS	I > N	N	IAN	NVI	I A	NVI	?	N	N VI	ENVII	N	ENV	ENVIC	ENVI	Ä≥N	N/I	NVI	IN	ENVIS	N N	N	2	NVI	Ž	2	2	ENVI	2
1/1	н	H	H	H	н	ы	H	H	H	H	H	H	H	H	>	H	H	H	н	>	H	H	H	H	H	H	H	H	H	H	н	н	H	H	H	ы
SYMBOL	7	()	23	(1	43	15	SNI	AJN13	IN	TNO	3N2	Z	Z	Z	4	5	FE	2	25.	S	13	0	. 11	7	15	7		3	7	7	4		4	7	CNAT	>
ENVRM																																				
18			21	^				33									9	10	∞				16					€			10					L
1		•	•	ŧ	•	•	•	•	•	•	•	•	1	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	
•	m	m	m	m	M	m	4	m	M	m	m	m	m	m			-	+4	+	4	4	3	'n	เก	Ľ,	W	S	S	r	Ś	N	ŧ	.	4	+	4
HODULE	Ž	Ž	ENVI	Ž	ì	ENVI	3	ENVI	ì	ì	ì	ì	ì	ž	$\frac{2}{z}$	ì	>	>	ì	₹	?	2	Ž	ž	$\frac{2}{z}$?	Ž	ì	Ž	?	?	È	ì	2	Z	⋛
α >																							4.4								_					
FO.		_		_	_			H		,	_	7	_	_	_	_	_	_	_	_	_			-		_		_		_	-	_			_	_
LPHABETICALLY SYMBOL	CI	AC14	AC17	AC3	AC6	AC9	A G 2	AJN12	ZNO	Z	SX5	JN2	Z	Z	Ľ	1	TC2	•	TUI	3	3	EA	171	171	2	L J1	132	3	1	3	10	7	¥	X	E	Z
S A	_		_	٠,	_	۵.		~		_	•	•			_					٥.	Δ.	_	•	_	_			•	_		_	_	•			_
E 2		17		~~,	J,			m										7									N				•		\$			<i>-</i>
ORT	•	•	•	•		•	•	•	•	•	•	1	ı	•	•	•	•	•	•	•	•	•	ı	•	•	١	•	•	•	•	U	•	٠	ŧ	•	•
S X	H	H	H	\vdash	H	H	H	13	Н	H	H	H	H	H	Н	H	H	>	Ħ	>	H	H	H	H	H	H	15	H	H	H	>	H	H	1-1	H	Н
လူ	Z	Z	2	z	Z	Z	Z	₹	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	22	Z	Z	Z	Z	Z	Z	Z
BOLS	(1)	w	ш	w	u	ш	lı.i	w	ш	W	W	ш	נגו	lı!	W	w	W	ш	ш	l:J	w	ш	w	ш	w	ш	tr)	W	W	ևյ	ليا	uı	w	ш	ш	ш
SYMB	H	H	н	H	н	ы	H	H	H	H	ы	H	H	H	H	H	ы	>	H	>	H	H	H	H	H	Н	H	H	ы	H	>	H	H	⊷	H	1-1
PROGRAM Symbol	2	S	ដ	O	ပ	U	O	AJN11	3	ゼスカ	Z	Z	Z	3	Z	<u>d</u>	101	•	2	-	3	M		L 31	177	131	_	1 32	7		-	7	₹ T	H A	¥	> Z

DE CHENNES OF THE SOUTH CHENDER STATES OF THE SECOND STATES OF THE SECON

I WARRY TO SELECT CONTRACTOR OF THE SELECT O

	00 T	σ			53																	ŧ	rv	« n		24	M	20								39	۲
		•	ı	ı	•	i	•	•	•	ı	ı	•	•	•	•	•	ŧ	ı	ı	•	•	ŧ	•	ı	•	•	1	ı	ı	ı	F	•	•	ı	•	ı	•
	LC04	N	N I	$\frac{2}{z}$	NVI	?	}	>	NAT	Ž	>	N	IN	NVI	IN	I > Z	NVI	NVI	NVI	?	NVI	\geq	>	>	2	ì	> N	>	2	Z	2	Z	Ž	?	>>	ENVV2	N N
	> I	H	H	н	H	>	Н	>	H	H	>	н	H	H	H	H	H	H	H	H	H	H	>	>	ы	H	>	>	>	>	>	>	>	>	>	>	H
;	SYMBOL	> Z	œ	S	C2S9	ΑY	ш	2	-	N	H	S S S	SUC	20 NCO	NC1	NC2	NC3	4 C Z	OHZ	OHZ	NHO	X > X	ENVOS	0 > z	۴J	-	ш	in Ro	100	7.	I	I	S	gs	×	GZIR	Z
ENVER																																					
	ر د د	•	07	30	19	ţ	80	F-)	t	30	23	20	23	5 8	35	28	53	33	12	15	1 8	m	\$	^	t	41	23	63	23	56	€0	30		m	37	.\$	و ر.
•	_	•	•	•	•	•	•	•	•	•	•	•		•	•			ŧ	ŧ	•	ŧ	•	•		•	•	•	•		•	•	•	•	•	•	ŧ	•
00ULE	HOOT /	NI	>	I >N	AANS	2	>	ž	>	I AN	>>×	NVI	NVI	IAN	NVI	H >N	IN	IN	I ^ N	?	IAN	Ž	>	>	>	ž	?	IAN	> 2 2	> > Z	> N	> 2	N	NAI	> > X	ENVV2	I A
œ	1 /2	н	H	н	>	н	>	>	>	H	>	H	H	H	Н	H	H	H	H	H	H	H	>	>	H	H	>	H	.>	>	>	>	H	H	>	>	H
A BETICALL	SYMBOL	Ž	Z	S	Υ	A	Z	LIC	==	-	ದ್ದ	SUN	2 2 2 3	SCN NO	NCI	NC1	NC2	NC3	NIO	NHO	NIO	NY'S	ENVOZ	C > Z	BAZ	7	A	MAG	S	MG∢	I	¥	RA A	RVD	×	GYI	õ
ED ALPH	C03	~		32	50															1 †		10	m	ഗ	σ			51					.+	30	10	38	10
2	_	•	•		•	•	•	•	•	*	ŧ	•	•	•	•	•	•	•	•		•	ŧ	•	•	•	•	•	•	•	•	•	•	•	•	•	ŧ	ŧ
S	HOO7	NVI	IVE	PIVNE	NVI	ENV	ANU	NN N	AANU	NAT	>> N	N	N	NVI	NVI	NAI	IN	IN	NVI	ENVIT	IAN	ENVI	>> N	ENV	NA N.	ENVII	AANU	ENV V	ENVA	> N	NANI	Z	Z	Z	> N	ENAN2	> 2
SYYB	1/1	н	H	н	н	>	>	>	>	-	>	Н	H	Н	н	н	ы	Н	H	H	H	ы	>	>	>	H	>	>	>	>	>	>	>	>	>	>	>
œ	SYMBOL	> z	Z	S		⋖	⋖	w	ď	7	AS	S	00 N	00 Z	S	NC1	N 32	NC3	ナハス	ZIO	OIN	N < R	z	N V	N V1	I	-	AH	\mathbf{x}	XUX	H	X	ž	ď	₩ ₩	GYIR	7

tosikerkeni internetiana antaini aintaini katamani kataman aintaini dikanaka aintaini aintaini kataman aa aa

The same was teached with the control of the contro

M SY43	s so	215		CALLY	FOR	MODULE-	•	•	ENVRH	1			
	LCOR	_	00	Y # 30	?	LCOM	_	ر د ور		SYMBOL	1/1	LCOM	700
	ENVIZ	•	I	IA33	>	2	1			HHMMSS	>	ENVI	
	AANU	•	H M	HWN	>	Ž	•	14		HS	>	Ž	1
	ENVIT	•	I	<u>-</u>	н	NVI	•			H2	ы	>	
	ENVIS	•	10 I	≢	н	ENVIS	•	9		T	>	ENVV	- 12
	ENAV2	•	H	H12	>	> N	•			Ŧ	>	>	
	ENAV2	1	H	H22	>	> ×	•			IH23	>	>>2	
	ENAVE	1	H	H32	>	> N	1			E	>	>	
	ENVV	ŧ	~	ACDF	H	NVI	•	₹,		A 2	>	>>NU	-
	ENVV	•) L	TCV	>	> N	ı			78	>	> ×	
	ENVV2	ŧ	.J	> NO.	>	> > N	•			NTRH	>	ENVV1	
	FINNE	•	2	IGAT	H	≥	•	M		80	>	> ×	
	ENUIF	•	0 6	IM21	н	N	1			Z V	Н	N	
	ENVIF	•	2	HI.	>	2	ŧ			2 d	>	> z	
	ENVIL	ŧ	1 P	RES	>	ž	•			PZH	>	> z	
	ENV V	9	a.	37	>	$\frac{2}{z}$	•			P73	>	ENV	- 26
	ENANS	1	œ .t	(634	>	$\frac{2}{z}$	•			XX XX	>	>	
	フタスに	•	₩	SUVE	H	ì	1			SADSA	>	>	
	N N N	1	ox	(∀3	>	>> Z	•	21		429	>	?	
	ENAV2	•	7	4624	>	?	1			Š	>	ENVA	•
>	ENVVI	1	S	129	>	> ×	•			SHFG	>	>	5
	ENVV	ŧ	1 S	91	>	ž	•			LTC	>	2	
	ENVV2	•	S	UNF	H	ì	•			S	>	$\frac{1}{2}$	
	N N N	•	S	VS1	>	ENV	¢			2	>	Z	7
	ENV	1	S	VC41	>	?	1			2	>	>	
	22元川	•	S	8 X	>	$\frac{2}{z}$	1			IXS	>	?	
	ENV	•	S S	.¥3	>	Ž	•			SYI	>	ì	
	N N N	ı	S	82	>	$\frac{2}{x}$	•			12	>	>	
	N N N	٠	p.	USOF	>	Ž	•			TOSON	>	>	
	NAN!	•	-	FG	H	NVI	1			1 F R	ы	77	
	ENVV1	i)	112	>	₹	•			11	>	>	17
	ENANT	١	- L	122	>	× N N	•			TI23	>	> >	
	ENVV1	•	8	132	>	> N	•			13	>	>	
	TIAND	•	7		ہے	NAI	•			7	H	N N	
	NAV N	•	≫	ST	Н	NAI	•			۲S	>	>	
	ENVV2	•	>	THE	-	I ^N	•			777	H	2	
	ENVV2	•	٠ •	T N N	Н	IN	•			-X >	H	N	1

707		40		12	\$		2	•			8					27		0
	•		•	•		•	•	•	•	•	•	•	•	•		•	•	•
LCOM	NFI	NFI	¥	INFV	Ä	¥	NFI	NFI	NFI	MFI	¥	MFI	¥	K	¥	NFI	¥	
1/1	H	ы	H	>	H	>	H	H	H	H	H	H	>	>	>	H	Н	
SYMBOL	EVHF	L	EVPF6	IAPF	INFXG	IPPF	ITPRT	PE2	PES	()	PL IN2T	•	PPGINC	-	_	TPRIT	¥	
X L Z H																		
707	6	- 39	- 42	m •	.		- 21	*	- 12	9	- 21	64 -	- 45	•	- 16	m	- 17	- 51
MODULE	INFV	INFI 1	INFI 1	INFV	INFV1	INFV	INF	INFV	14	H	INFI 1	H	INFIL	INF	INF	INFIL	INFY	
FOR H	>	H	H	>	>	>	>	>	H	н	H	H	н	>	>	H	>	H
PHABETICALLY SYMBOL	Z Z Z	id A	9	FIFF	2	NdI	HI	PESK	PEF	u;	LIN	LING	LOT3	4	PLIN	PTOL	TS1	M93F
٦ د د	ın	يو	٠,	.+	m	m		ľ			o.		<u></u>		ıņ	ın	m	
160	ı	•	+	•		•	1	•	+	-	1	J	.		بر ۱		M	
IOLS SOR	Ä	¥	F	INFIL	Z	Ä	Ä	¥	Ä	۳	Ä	¥	Ä	14 22	Ä	노	¥	Ž
SYMB	>	H	н	н	>	H	>	>	Н	H	н	H	н	>	>	н	н	н
PROGRAM SYMBOL	- 23	~	-	EVPF		z	a.	I	111	111	$\boldsymbol{\vdash}$	_;	J	α,	a.	Œ.	œ	X

WANTER THE SECOND OF THE SECON

ROGR	<u>x</u>	00	2	CALL	œ	MODULE	•	T. XLX H	•				
SYMBOL	1/1	LCOM	007	SYMBOL	1/1	LCOM	707		SYMBOL	7/3	LCOM	7	၁၀
() T	н	NTI	~	A	н	NTI	σ.		2	H	NTI	•	ç
ABA	>	> N	-115	A O A	>	Z			M	>	Z	•	m
⋖	>	Z		Z	>	N Y			20	>	N _ N	ı	₩.
E W	H	NIT		DER	>	Z	32		DER2	>	Ž	•	33
6	>	Z		DER	>	F			₩ ₩	>	Z	1	36
143	>	Z	- 37	DTO1	>	Z			101	>	Z	•	2
1	>	E		DTC	>	Ħ			I	н	NTL	•	4
E	1-4	NII	. 5	DATO	>	Z			T P.R	>	Z	7	
-	>	F		010	>	¥	30		106	>	N 1	•	53
2	>	NTV		NAC	>	Z			7	>	> \ \ \		
217	>	NTV	-115	ERL	>	NTV			ZHZ	>	F		
E,	>	Z		FRA	H	Ħ			0; 111	н	HH	•	
10	>	> LN		F1	>	ALN			~	>	N N	•	
u.	>	Z		IFIN	>	NIV			SZ	>	Ħ	•	
NTG	>	Z	- 28	INTG	H	I Z			917	>	Ë	•	
2	H	H		ZH	H	NII	M		XLX	ы	Ħ	•	
NIX	>	Z	•	IGPT	>	Ë			۳	>	NTV	•	61
Z	>	Z		×	>	> L N			20	>	NIX	•	
LBSKET	>	VINI	(1) +	LC03	>	INTV1 -	10		LOER	>	INTVI	•	
ᇤ	>	Z	.1	LLK	>	NTV			٥	>	NTV	•	31
S	>	NTV		LSY.	>	NT N	ى		7	>	F	•	^
>	>	Ë	an I	DMAN	>	Ħ			I	>	717	•	_
9	>	NTV		HN	>	Ħ	. 26		-	>	Z	•	\$
H	H	Z	- 12	NCAD	>	Z			œ	>	> L	•	m
63	>	Z		NGAD	>	F			080	>	N _ N	-1	
æ	H	NIT	•	P50	>	Ħ			8	>	Z	•	58
A T	>	Z		T.	>	Z			Q U	>	NT N	7	
S	>	> 	- 92	TOU	>	Z	σ ,		2	>	F	•	
	>	Z		1 6	>	Z			٦	>	¥.	•	
	>	E		TRE	>	> L	. 57		0	>	N <	•	
	>	Z_Z		ΑX	>	717			₫	>	7 7	•	
	>	Z	- 15	×	>	Z			S	>	ż	•	
⋖	>	N	-103	ZAM	>	> LN	43		₫	>	N <	-	စ္
						•	o					•	0

PROGRAM	SYNA	YMBOLS SORT	R	ED ALPHABET	TICALLY	FOR	MODULE-	i -	ITERN	1 3	;	3	-	Ş
		5	-	>	-	-	r. O)	1		709616	>	F 0.3.1	٠,	1 OC
4	>	111	•		⊃	H	Ħ	12	م.دي	CYMAX	н	IN		۴.
H	H	H	•			>	7	- 11	ه. د	XX.	>	11	•	
I	>	14	ŧ		Σ	>	7	- 15	10	₹	>	'n	•	üT
111	>	-	•		Z	H	7	-		H	>	7	•	
NIT	>	빌	•	54	RES	>	7	1	~	8	>	H	1	
SEQ	>	프	1		-	Н	7	1	•	111	H	H	•	M
TER	>	111	•	€	-	>	7		•	7	>	7		\$
ITVTA	>	1	•	14	-	>	H		_	7	H	111	•	σ
447	>	늗	8	21	446	>	111			til ×	>	F		4 0
TXXI	>	ITEV	1	22	LCNV	>	ITEV1	- 11	ه. د	LOLI	>	ITEV	•	16
רםי	>	111	ė	~	W	>	H	1	•	Li	>	TEV	•	•
T	>	11	•	15	Z	>	٣		100	.J	>	m	•	13
LPVP	>	H	•	თ	Q.	>	TEV	ŧ		LPGN	>	TEV	ŧ	4
r P C	>	11	•		₽	>	الر	•		S	>	TEV	•	21
L X S	>	H	ŧ	10	HAXIT	H	TEI	•		による	H	TEL		4
NITA	>	H	•	10	Q	>	H	ı		Z	H	TEI	•	2
2	,	•		•	0000	•	1	•						•

Ō

208	Y H B	OFS SD	RTE	D ALPHAB	ETECALL	œ	HOBOLE -		ITIFH				
	71	LCOM		ပ္ ၀	SYMBOL	\\ I	LCOM	700		SYMBOL	> 1	LCOM	207
(9	H	H	•	63	8	H	TII	- 25		ונו	>		
4	>	TIV	•	6	1	H	LII			72	H	TIL	
13	H	III	•		4	Н	H			1	H	H	
12	H	II	•	7.4	17	H	TII			-	н	TIL	- 78
19	H	TII	•		AI	>	H	- 7		S X X	>	H	
U.	>	TIV	•		XXF	>	H			0.80	>	H	.
¥	>	1	•	62	N N	>	H	-120		TIF	H	H	4
TIFI	H	I	•		TIF	>	H			TPR	н	H	~
11	>	I		72	112	>	I			128	>	H	
7	>	I	•	9 .	-	>	H	- 74		-	>	1	- 65
TUBF	>	I	•	75	144	>	L			158	>	I	
10	>	I	•	29	T69F	>	H			TER	>	H	
178F	>	H	•	78	172	>	H			188	>	Ï	
78	>	H	•	7.0	199	>	H			T 9R	>	H	
AJX1	>	H			AUX	>	H			AUX	>	H	~
A	>	11	-		AUX	>	11	Ō		AUX	>	H	12
A	>	I			AUX	>	H			AUX	>	H	m
S	>	L			PAR	>	14			AXC	>	-	
AX	>	II	•		AX	>	11			2	н	H	
2	>	11	•	11	×	>	L			S	>	Ĕ	
SE	>	I	•	13	X S	>	11			ES	>	H	
I	>	I	•	15	Z S	>	-			E S	>	I	- 13
(/)	>	II	•		I S	>	H			SS	ы	H	
SS	H	11	•	+	BUF	H	I			0	H	H	
9	>	TIV	•	•	ă	>	H			DNXT	>	I	
DAXT	>	I	•	35	DNXT	>	1			XZO	>	H	
20	>	11	•	95	Š	>	H			DNXT	>	H	
DYXT	>	H	•	98	DNXT	>	H			FBS	ы	1	
E L	H	TII	•	55	F.B	H	TII			F 95	1-4	1	
8	н	TII	•	2 9	FBS	H	111			F BS	H	1	
F 3	H	II	•	62	F3	H	1			S	>	۲	9
₩	H	III	•	•	193	H	TII	•		13	H	I	σ·
1 3	-	TII	•	10	195	H	III			T BS	H	H	- 1 2
B	H	III	•	13	13	H	TII	- 14		73	1-4	I	9
1130F	>	ITIV	•	t t		>	ITIV	-136		T10F	н		• •
1	>	11	-	111	Ħ	н	1			Z Z	Н	I	- 26

PROGRAM	SYMB	ors so	RTEO ALPHABE	TICALLY	FOR M	MODULE		ITIFH				
0 0 1 1		င္ပ		× 2.00	?	LCOM			SYMBOL	1	L 00 M	207
V c T	>	1	- 35	1PL	H	I	- 15		121	>	I	- 81
13€	>	11	- 25	1ST	>	H	- 53		7	H	II	- 35
230	>	11	· +3	23	>	11	-101		20F	H	H	<u>۱</u>
252	>	11	-112	2FS	Н	TII	1 34		2NH	ы	II	
Vc2	>	7	- 35	202	H	I	- 16		2PL	>	I	- 82
2 ZE	>	I	- 25	2 S	>	TIV	1 54		2	H	I	
380	>	11	94 -	304	>	I	-102		30F	₩	I	6
358	>	H	-113	355	H	11	ĝ		MNE	Н	II	- 28
3 2 A	>	11	- 37	30[H	TII	- 17		30	>	TIV	£80 -
325	>	11	- 27	35	>	H	- 55		341	Н	I	04
480	>	II	24 -	4CV	>	H	-103		40F	H	11	
よては	>	1	-114	4FS	H	III	€		IZ	+	I	
Vc 5	>	I	m	104	H	I	- 18		144	>	1IV	
4 2E	>	I	- 28	45	>	H	- 56		3	Н	T	
590	>	11	6. 1	ふいい	>	I	-104		50F	H	T	
SFR	>	H	-115	SUS	H	TII	- 97		SNE	H	I	
5 2 A	>	II	m	501	H	H	- 19		50	>	H	
32E	>	II	- 23	5ST	>	TIV	- 57		SVA	н	7	
6.90	>	II	6+ •	၁	>	I	-105		60F	H	I	
6FR	>	11	-115	6FS	H	TIL	88		6NM	H	II	
6 2 A	>	I	#	749	H	I	- 20		6PL	>	TIV	
TGRES	>		- 30	16812	>	ITIV	- 58		TOVAL	н	ITIII	94 -
730	>	11	- 50	707	>	ĭ	-106		70F	Н	TI	
7 F.R.	>	H	-117	7FS	н	TII	6 8		7 NA	H	II	
7 2 A	>	H	- 41	101	ы	1=	12.		7	>	T	
7RE	>	11	150	75	>	17	- 59		7 V A	H	H	
980	>	I	15 -	83.	>	I	-107		80F	H	Ţ	
₩. ₩.	>	T	-118	8FS	ы	TII	- 90		BNM	H	H	
A c 8	>	1	4	10.8	~	II	- 22		BPL	>	I	
BRE	>	H	- 32	85	>	H	- 60		8	ы	II	
990	>	II	- 52	A 36	>	1	-108		90F	н	I	
9FR	>	11	-119	9FS	H	I	g		NN6	H	I	
9 2 A	>	H	ŧ	ç	H	11	- 23		96	>	T	
92E	>	TI	- 33	186	>	11	- 61		9VA	ы	TI	- 52
			5				•					0

Ū

	90	36	31	m	32	62			22		ĸ	5 8		^	0	4	52		4 3	#	*	ĸ	•		30	m	σ	ĸ	•
		•		•		•	•		•	•	•	•	•	•	•	•	\$	•	•		•	•	•	•		•	•	•	•
	LCOM	JUNAS	SANOT	INDS	JUNAS	JUNVS	JUNV3	SANDE	SANDS	JUNN3	JUNV3	PANDS	SANDE	JUNV3	JUNA 3	SINDS	JUNIS	JUNIS	JUNI 3	JUNV2	JUNV2	JUNV2	JUNV2	JUNES	JUNIS	JUNIS	JUNI 3	JUNIT	
	1	>	>	H	>	>	>	>	>	>	>	>	>	>	>	₩	H	H	H	>	>	>	>	H	Н	H	H	H	
• • • • • • • • • • • • • • • • • • • •	SYMBOL	7	DRELR	JUNKI	LAMT	PROXT	RELPUZ	RELPVZ	RELPHZ	RELPYB	RELPZI	RELVUX	REL VX9	RELVYI	RELV	N	RVAR6	N	$\bar{\mathbf{v}}$	TPV3	1 P V 6	TRING	TRIN6	VRF1	* L. Y.	~	VT 9R4	XYZF	
JUNKA																													
!	207	m	37	ĸ	33	30	10	21	24	m	13	38	28	15	•	17	23	35	7	70	13	.	^	φ	29	32	~	13	C
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	١	•	•	•	•	ı	•
HODOL E	i COM	JUNI 1	NANDE	TNOS	SANOS	P ANDT	SANDS	20% 43	SANDS	2UNV 3	SANOS	SANDS	SANOC	SANDE	SANDE	JUNIS	SINDS	INDI	PINDS	JUNV2	JUNY2	JUNAS	JUAV2	JUNIT	JUNIS	SINDS	JUNIS	JUNIS	
FOR	17.	;	>	H	; >	>	>	>	>	>	>	>	>	>	>	H	H	٠.	H	>	>	>	>	H	H	H	H	ы	
BETICALLY	108 k AS	Z	DLAMY	5	LAMP	8	딥	E	E	1	H	딥	ü	ü	ū	3	5	90	8	2	2	2	2	z	ď	4	TBR	18	
0	ည	٠	35	~	÷	34	17	20	8	11	.+	ტ	27	•	15	15	21	33	39	ტ	12	m	2	15	29	31	10	11	~
2		•	•	•	۱	•	•	ı	ı	•	•	•	ŧ	•	•	•	•	•	١	•	•	1	ŧ	•	ı	•	•	•	ı
JOE SO	'V LCOM L	JUNIT	ENNOT	JUNIT	INDE	50N0	JUNV3	JUNY3	EANDE	JUNV3	SUNUL	SUNUE	JUNV3	JUNES	SANOF	SUNIS	JUNIS	JUNIS	JUNIS	30472	JUNV2	>	JUNNS	>	H	\mathbf{H}	H		
SYMB	•	H	>	H	ы	Þ	>	>	>	>	>	>	>	>	>	H	H	H	H	>	>	>	>	>	н	H	н	н	
PROGRAM	Y 118	Z	I	ĭ	JUNKL	A I	E.PU	ELPV	E. PK	E P	FLPY	L.	E.VU	77:	ELVZ	A R	VAR	0 :: 8	DER	2	<u>۵</u>	7	H	-	W	4	VTBR2	1 BR	

(רטנ	- 12	m	27	۰ د
			•		¢
	I/V LCOM	HPEV	HPEI	MPEV	
	>	>	H	>	
•	SYMBOL	ESM1	MPEXI	TSIF	
•	ပ္ပ	M	\$	ဖ	M
•		•	•	•	•
IODULE-	LCOM	MPE I 1	NPEI	MPEI 1	Z III
FO.70	1/1	•	Н	H	>
IN ALPHABETICALLY FOR MODULE MPEXM	SYMBOL	ESNSI	MPEXG	TIMESI	XUUX
ALP					
<u>ت</u> ایا	707	-37	10		
ORT		- 1 1	ा - न ्न	-	+
SYMBOLS SORTE	LCOM	MPET	MPEHA	MPEI	LUQN
SYMB	1/1	1-4	6-4	H	۴-
1 ADGRAM	SYMBOL	CASESI	~	2ET97	10717

A SOND THE SOUTH AND THE PROPERTY OF THE PROPE

806	>	STO	20.5	EU ALPHABE	CALL	œ	M		0LSTM	:				
SYMBOL	1/1	CON		700	SYMBOL	1/1	LCOM	ل	30	SYMBOL	>	LCOM		၂ ၂
Z C	>	S	•		T	>	S	•	•	Σ	>	LS		•
ERFO	H	SI	·	•0	L	>	S	•	t	S	>	S	•	m
KFA1	Н	OLSI		89	XFX2	H	OLSI1	•	70	XFW3	H	OLSI1	•	22
L.	н	IS	3	ıv	×	H	IS	•		¥	H	LSI	•	24
LL.	H	S	•		>	H	SI	ŧ		7	H	LSI		60
L	Н	10			N	н	S	•	94	FZ	H	S		99
¥	· !~ !	SH			-	H	IS	•		꿏	H	LSI	•	19
`	5 -4	IS	•		N	H	SI	•		8	ы	LSI	•	22
' '	H	SI			1	H	SI	•		χ Υ	H	LSI	•	25
΄ 🛏	H	IS	•		x	Н	SI	•		I	H	LSI	•	79
\ \ \ \ \ \	Н	SH	-		A	Н	SI	•	Q	Y.	н	LSI	•	~
	!	S	•		S	Н	SI	•	M	ĭ	H	LSI	ŧ	44
2× = 1	H	HS			M	H	IS	•	84	¥	н	LSI	•	25
u.	,	HS			×	M	IS	•	30	7	H	LSI	•	32
·	1 1-4	IS	1	34	>	H	S	•	36	24	H	LSI	•	38
u	H	S			N	H	SI	•	24	¥	н	LSI	•	∞
¥	Н	IS	•		-	H	SI	•	10	χ γ	H	LSI	•	11
×	Н	SH			~	н	SI	•	13	×	H	LSI	•	77
¥	~ 4	SI	•		M	H	SI	•	16	논	н	TS7	•	\$
-	-	S	•		7	н	SI	•	75	I	H	LSI	•	92
-	1-1	H	•		>	H	SI	•	m	7	H	LSI	•	83
-	H	SI	•		0	>	S	ŧ	ហ	¥	>	S		σ
T.	>	S	•	12	O	>	S	•	10	Z H	>	LS	•	13
1	>	U	t		~	>	U	•						c

	ر د ٥٥				-140	+	б		÷											- 15				m		1 1									- 53		
	COL	ď	FR	ď	3	u	FRI	0	3	3	ď	ď	3	FRV	K.	FRI	FRI	3	6	3	FRV	3	ď	2	ď	3	5	3	3	3	3	3	FR	5	PFRV	3	3
	1/1	н	>	>	H	>	H	>	н	H	>	H	>	>	H	н	H	>	>	>	>	H	H	н	>	>	>	>	>	>	>	H	>	>		>	>
	E E	PCO	Ē	KST	9	CVRS	> 0	IFG	S	8	¥.	Ä	7	2	9	40		7	٥.	PG		E	C	E	01P	1 SP	0115	012	0139	02P	O	03	940	SP	406PN	70	08
PFRP4																																					
!!!!	0			14		† † †	m															M		M											30		
1	I					47														- 1					' >	· >	' >	' >	' >		11	, >	<u>'</u>		7.		
4000L	1 1 1	3	5	ال 5	3	£	8	ď	ጜ	ጜ	لا %	ጜ	3	2	Ŗ	3	3	3	<u>ئ</u>	3	<u>a′</u>	3	75	3	3	ď	3	3	3	5	Ŗ	ď	3	ď	PFR	3	a.
FOR 4	?	>	н	>	>	>	>	>	>	н	>	>	H	>	H	н	H	>	>	>	H	H	н	н	>	>	>	>	>	>	ы	>	>	>	>	>	>
ETICALLY !	Y M 30	ΑK	2	KST	VH7	2	770	<u>ک</u>	SI	16	Σ.	2	ď	2	Ë	6	Ë	š	P3	ŗ	AX	E	S.	Œ	010	01.13 P	D11P	012	C13P	0	20	039	0		ADO		0
AL PHA B	ပ	m	เก			t							39	23		18				ın															39		
RTE		•	•	**	4	+	S	41	•	•	7			•	•	•	•	•	•	•	•	+	Ħ			1		1	•	•	•	•	•	+1	•		ŧ
OFS SQ	္ပ	FRV	7.8	FRI	FZI	F	FRI	FRI	FR	FRV	FRI	FRV	FZV	FRI	FRI	FRI	FZI	78	F 2 V	FRI	アプト	FRI	ď	FZI	ũ	FRI	72	3	FRV	78	ď	ď	FRV	e R	PFQV	œ	3
SYHB	>	>	>	H	ы	H	H	H	>	>	H	>	>	H	Н	H	H	>	>	н	>	H	н	H	>	H	>	>	>	>	>	>	>	ы	>	>	>
PROGRAM	Y 480	¥	T A	0	<u>a</u>	9	ပ	0 0 0	S	8 × 8	<u>X</u>	()	6 2	4	<u>η</u>	u.	C	ŝ	g.	O.	PVC	S	2	E	0		01	01	5	10	02P	03	\Box	С	405PS	06P	07

THE SECTION OF THE CONTRACT OF THE PROPERTY OF SECTION OF THE PROPERTY OF THE

是是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是

ن

ROCA	EY X:	S SO		ALPHASETI	ALL	o.			PFAPN	1::::::::::::::::::::::::::::::::::::::				
SYMBOL				S	YH 30L	1/1	LCOM	707		SYNBOL	1 \	LCOM	Ľ0	U
3.8	*	7.	1	2		>	FRV			60	>	PFRV	. 5	9
60	>	8	3	×	60	>	L	- 34		7	>	ď	•	ტ
N12	30	12	ı	2		>	3	•		A F	>	œ		ᠸ
A	>	7	•	10		Н	FRI	-141		FI	>	3		
HTI	>	5	J	2	44	>	œ	- 53		4	>	u		~
۵.	>	FRV	1	Z	•	>	3	71 -		4	>	ď		EV.
2	>	3	6	Z.	۵.	>	ď.	- 17		4	>	E,		••
a	>>	3	3	Z	Q.	>	8	- 20		VAR	>	3		٨.
X X	>	L CH	•	Z	A	>	a,	- 24		VAR	>	ď		IV.
NV AR6	>	PFRV	0	2	VA27	>	PFRV	- 27		NVARB	>		Ñ	∞
VAR	>	5	1	2	⋖	>	3	- 21		0 9T	Н	FRI		m
Seli	Н	FRI	•	3	Sd	н	FRI	± ;		EPS PS	н	ď	•	ľ
Seli	Н	ď	•	Q .	S	-	œ	<u>-</u>		n R.D	H	ű	•	.
7.20	H	FRI	•	Q.	340	>	3	t I		FRV	>	ď	•	rv.
7	>	5	•	۵.	2	>	ď	<u>-</u>		Ĭ	н	6 2		O1
¥	>	er.	•	3	lıj	>	FRV			S	>	6 .		_
3. 9	>	2	M	G	Q.	H	FRI	~		58	>	Ę		٠.
Z	>	FRV	•	Α.	>	н	FRI	٥		HTC	H	FRI	თ	~
HTC	Н	FeI		<u>ئ</u>	5	н	FRI	თ		HTC	H	FRI		മ
HTC	H	FRI	+19	<u>۲</u>	5	H	FRI	σ		H	H	FRI	9	ው
41C	H	FRI		C	-	þщ	FRI	σ		SEO	H	FRI		0
SEO	1-1	FRI		A.	ပ	H	FRI	9		APC	>	FRV		S
80	ы	3		5	8	H	3	-172		16	>	784	7	•
ZSI	н	FRI	- 10	S	SI	H	FRI	Ø		TOE	>	3		e.
HE	Н	FRI		7	Σ	H	<u>د</u>	න •		IM	H	œ	•	ტ
K III	H	8	•		ಲ	н	FRI	+1		드	н	5		۵
1 V M	H	FRI		5	2	H	FRI	Ħ		7 7	H	r R I	4	ec
2 V M	H	FRI		7	<u>2</u>	H	FRI	H		I	н	FRI	S	E
BVR	1-4	FRI		6	2	H	FRI	H		I,	H	FRI	S	ر.
F A H	н	FRI	- 18	_	2	Н	FRI	~		T.	H	FZI	S	ŧ
7	Н	ũ	-18	3 1	2	H	3	-122		E	1 -1	E.	-15(ம
6∨ X	H	FRI		2	ដ	,	FRI	0		I	н	FRI	S	€ O
7 < #	ы	FRI	-18	7 T	3	H	FRI	0		8	н	FRI	စ	0
8 VH	н	FRI		1	≳	H	FRI	~		940	H	for I	စ	e N
HA6	H	FRI		1 7	2	>	FRV	± ,		S	H	FRI		ec.
			•					ت •						0

	007															- 79										- 57			- 27	9	6				- 20	
	LCOM	80	80	80	8	83	80	ROI	80	ROI	8	80	ROI	ROI	ROI	80	ROI	80	ROI	ROI	8	ROI	8	80	2	PROIT .	20	8	8	ROI	ROI	ROI	ROI	ROI	8	700
	1/1	>	>	>	>	>	>	м	H	H	>	>	н	н	н	H	H	>	H	н	н	H	>	H	>	н	>	>	>	H	H	н	H	н	H	٠
1	SYMBOL	EPD	EPO	EYD	>	MPR	X	MI	AT	A	0	9	7	T	Ţ	PYTC	7	70	7	7	×	ĭ	×	-	13	FTST	1	×	93	X	>	Š	02	7	0	O
PROPH																																				
Í	207	30	20	53	56	20	23	9	67	73	38	41	30	28	41	78	81	t	41	36	ţ	74	49			12	თ	35		rv	M		7		19	
	_	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	ŧ	9	•	•	•	•	ŧ	•	•	•	•	•	•	•	•	•	1	•	
MODULE-	LCOM	80	8	8	80	8	8	ROI	8	ROI	8	80	ROI	ROI	ROI	80	ROI	80	80	ROI	2	ROI	ROI	80	2	PRGV	8	8	8	TO.	ROI	ROI	ROI	ROI	8	1
α	1/1	>	>	>	٠.	>	>	H	H	Н	>	>	Н	H	 	H	H	>	>	H	Н	H	н	>	H	>	>	>	>	H	H	H	H	ы	1-1	!
CALL		∞	EPD	EYD	EYD	ď.	Z d'X	2	5	A3	٥	5	ᇫ	٦	g.		PYTC	70	20	ᅷ	X .	Y	F	 	=3	# L L		S	2	×	K	70	02	23		1
ALPHA																																				
03									65							⊗							%	.*	4	S.	13	34	•	.+	~	0	യ	16	31	
Tà.		٠	•	•	ŧ	•	ŧ	•	•	•	•	١	•	•	•	•	•	•	ı	٠	٠	1	•	•	ě	•	•	ı	•	•	•	•	Ť.,	•	٠	
S STOR	င္ပ	80	8	80	8	8	80	ROI	20I	ROI	8	201	ROI	ROI	Rei	8	ROI	8	3	20 I	8	ROI	8	0 <u>/</u>	2	PROIT	20	80	20	ROI	8	ROI	20 I	ROI	8	1
SAHB		>	>	>	>	>	>	н	\$~4	H	H	>	н	H	H	н	Н	>	>	H	ы	ы	>	>	>	H	>	>	>	1 —1	H	Н	H	н	>	
PROGRAM	¥ *80	<u> </u>	063	2 2 D	2 7 0	X	K PR	<u></u>	*	A 2	⋖	9	₫.	ئة	<u>ح</u>	٥	ď	>	5	,	>	>	7	₩	42	FT+T	►	S	1	X	×	C	>	02	N	1

	10C	- 28	- 25	- 23	- 16	44	•
	I/V LCOM	PROV	PROIT	PROIL	PROV	PROV	
	1/1	>	H	H	>	>	
		THO	WPI3	IdM	MPR3	*PR	
PROPA							
	707		- 24		•		•
	LCOM	PROV	PROI1.	PR0I1	PROV	PROV	
FOR	1/1	>	H	ы	>	>	
PHABETICALLY	OC SAMBOL I/V LCOM LOC	TISP	MPIZ	WPIS	MP.R.2	WPRS	
STED A	L05	. 	- 29	- 26	- 25	- 17	•
SYMBOLS SORTE	LCOM	PROI	PROV	PR011	V050	P 20 V	
SKM3	1/1	ы	>	H	>	>	
PROGRAM	SYMBOL	PROPL	TSUBI	HDIdm	4P.4P	#2 G#	

THE PROPERTY OF THE PARTY OF TH

	ည် ၁၀	6	1				36										16				5							5							32		
	_	•	•	•	8	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	ŧ	•	•	•	•
	LC04	¥0×	70 E	70 E	701	> 0¥	RHOVI	HOI	HOH	HON	2	2	2	2	2	> 0 10 10	HOH	¥0×	YOU	ĭ	¥0×	¥0 ×	70	2	2	> 10 10	701	2	7 O K	> 0 H	유	문	HOL	19	E	101	> 0 1
	1/s	>	>	>	>	>	>	H	H	H	>	>	>	>	>	>	H	>	>	>	>	>	>	>	>	>	>	>	>	>	H	>	H	H	H	H	>
•	8 H X	A1	A2	A3	0601	90		10	02	03	18	I 82	Ξ	Ξ	E	DIE	TA3	081	082	98	801	802	803	87	82	83	601	8	603	×	×	¥	×	1	I	<u> </u>	>
RHOTH																																					
1							35										15				÷							52				g		25			t 0
!		•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-3700	LCOM	YOU	NO.	¥00	HOH	70H	RMOV1	YOK	HON	HOH	HOH	2	2	2	呈	Ï	HOH	MO <	¥0×	2	70 E	701	NO	2	呈	Š	2	NO K	704	2	2	Ä	웊	HOH	2	HOH	> 0 1
FOR MO		>	>	>	H	>	>	>	H	H	H	>	>	>	>	>	H	>	>	>	>	>	>	>	>	>	>	>	>	ы	>	H	>	H	H	H	>
BETICALLY	¥₩80	A1	A.2	A3	ETA	0601	806023	0303	ğ	20	033	18	Z8I	TH3	E	OTH	IA	GB1	0.82	03	801	802	303	81	85	832	601	8	603	BET	82	¥	74	AZ	Σ	門の	>
ALPHA		_							_	_												_	_														
E0							M.																														
×		•		•	1	١.	•	•	•	•	•	•	1	1	f	-	-	•	•	١.	•	-		•	ı	•			•	1	•	١	-		1		-
ors so	L C 0	HOI	> 0 H	701	¥0×	ADE	RHOVI	>0F	HOH	HOH	HOH	Σ	9	9	9	> 0 F	무	70F	205	O	70F	701	>05	2	2	70X	>0	Ö	¥0.	HOH	무	2	HOL	무	9	204	> 0 I
SKAB		Н	>	>	>	>	>	>	н	Н	H	>	>	>	>	>	H	>	>	>	>	>	>	>	>	>	>	>	>	⊷	>	>	H	Н	H	H	>
PROGRAM	∀ ₩ B 0	اب ال	A13	A 2	A3	0301	303022	0603	2	20	032	H 39	195	7 H2	X T O	DIE	TAI	031	98	9	301	302	803	91	82	331	601	3.0	603	ALF	∞	×	27	A	X	젊	>

100	11111111111111111111111111111111111111
L C 0:4	RRRHOVI RRHOVI RRHOVI RRHOVI
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>>HH>>+
TH	2MV23 2MV23 2M07L 7H10 7H10 7H2 X10
RHOTH	B110 to 01 m
707	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FOR MODULE	RMOV1 RMOV RMOV FMOI RMOV RMOV RMOV
F08 1	エハエハス
ALPHABETICALLY SYMBOL	RMV22 RMV32 RMDTI THQF TH20 XI1
TED A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SYMBOLS SORTED I/V LCOM LOC	RANDVI RANDVI RANDII RANDII RANDII
SY49 I/V	>>HH>H>>
PRJGRAH Syhbol	RAVZ1 RANVZ1 RANVITA SIGNT THE GAT THE GAT XIS

ROGR	>	OS STO		ICALL	œ	HODULE	NāS	YS	7			
SYMBO.	1/1	700		JCEHAS	1/1	LCOM	U	S	HBOL	1/1	LC04	707
AA	>	>> 2 1	80	⋖	>	FNV	_	⋖	143	>	N	
Þ	>	Lit	-	컾	>	ENA	•	¥	~	>	Z	
X	>	> N		¥	>	N S	20		7	>	Z	
LFV	>	ENV	t	LFV	≫	NE N	+1	_	FV+	>	N	- 16
1:1	μ	ENI	m	LF2	Н	ENI		W	7	>	N	
21	>	NI		RI	>	ENV	. 92	œ	7	>	2	
SAP	>	NU.	'n	SAP	>	>NU		S	d A	>	2	•0
S	>	N N		S	>	N N		S	⋖	>	NUI	
S.	>	N.S.		Z.	>	ENC		S	I	>	220	- 11
SX	>	Nu		×	>	EN	. 13	S	>	>	2	- t
SY	>	NU	.+	Z S	>	EN	'n	S	7	>	NIN	- 15
72	>	EN C		72	>	ENC	11	N	>	>	N N	-112
7 Z	>	N N	æ	11	>	EN	~	-	0	>	SN2	- 28
13	>	FIN	- -1	S	>	N W	~	3	ÇŲ	>	ことい	° 29
2	>	NN.	2	M	>	ENV		3	2	>	EN	- 30
33	>	N N	m	AA	>	EN		⋖	1	H	INI	9
AΖ	Н	ENI	9	A 7.3	H	ENIS	28	⋖	1	н	INI	26
3CMTX	>	SENVE	۳ •	3EL1	н	SENIS -	-269	AF	75	H	SENIS	
FLB	 ∕ 4	ENI	₩.	H	5 —4	ENI 5	27	113	3	H	FE	•
U C	ы	ENT		200	H	ENI		Lil	Ω	H	FNI	•
アンド	н	ENI		O.	H	ENI		u	TA	H	ENI	9
¥	H	FINE	36	IVI	H	ENI	12	\mathbf{H}	72	н	FNE	
7.7	H	HWI		7	н	INI	12	Δ	F	>	KNV.	4
1 AS	н	NU	71	IAS	Н	ENI	17	-	AS	-	INE	~
1 AS	ы	ENI		10	H	FNI	17	-4	C	H	FNI	
138	н	INI	! -	SC1	H	ENI	•	Q1	AS	H	FNI	€
2AS	H	II NI	82	2AS	н	ENI	4	S.	AS	H	HNU	10
238	60	FNI	αņ	205	H	ENI	19	N	05	н	HNU	σ
235	H	ENI	16	PSI	>	EN		Δ.	IS	>	>NU	
PSI	>	NN.		PSI	>	EN		œ	01	н	ENI	
TAU	н	ENH		14	H	ENI	21	-4	7	H	IN	t 1
112	H	ENI		2	H	ENI	21	N.	7	H	ENI	9
2	н	ENI		3 A	H	ENI	21	M	>	1 -4	FRI	•
312	н	FNH		+ 4.1	₩	ENI	#		27	H	N.	
5 11) -4	ENI		> <	ы	ENI		ŝ	7	н	ENT	+1 -
6 V 2	н	H N II		7 \ 1	н	INI			22	н	H	-

ROGR	Y M B	S	D ALPHABE	CALL	α	MODULE	•	SENSA				
SYMBOL		CO	207	706kAS	I/V	LCOM	700		TO6WAS	1/1	LCOH	207
~	н	IN	o •	~	H	ENI			~	н	HNU	- 11
~	H	FNI	- 12	~	H	FAT			~	H	IN.	
8 1	ы	FINI	- 18	8 12	H	ENI			9 V 1	H	H N N	
9 7 2	ы	HZ	- 38	ELV	>	EN			H	>	≥ 1:1	
111	>	> Z	• 19	ELV	>	ENV	- 20		JIT	н	RINI	-238
J2T	H	I Z	242-	107	>	EN			161	>	EX <	
122	>	> Z	- 25	٦	>	ZNS			_	>	SN S	
LP3	>	NIN	- 25	SUB	>	M			SUS	>	EN	•
SJB	>	FNV	۱D و	2	>	EN	Ħ		2	>	2 No	4
7	>	ENV		2	>	ENV	-117		2	н	ENT	-274
P 42	ы	INE	-276	PH3	H	ENI	٢		H	н	I Ni	€
AHA		ENI		A	H	ENI	•		8	>	N N	
020	>	> NU	. 13	8	>	SN S			G	H	INI	
ATR	>	NI	. M.	ATA	H	ENI	-211		¥	>	> N !!!	
>	ы	HNI	-212	3	>	>NU			3	>	いとい	
E O K	H	FN		NSK	>	EN C			A 0	н	E N N	
A	ы	H N	σ· •	A2	H	ENI			£ 3	н	HNU	
Ø	н	Z	- 12	⋖	H	Z	- 13		⋖	H	Z UI	1 1
Z	>	2	- 33	AOA	H	ENT			A O	н	EN	
AO	H	IN	27 -	A1	н	ENI			A	н	ENI	
A1	Н	ENI	- 26	A2	н	ENI			A 2	H	걸	
A 2	H	NI	- 23	A3	H	ENI			A 3	н	KIN	
A 3	н	K	- 26	AG	H	Z			4	H	ENT	- 28
+ A	}	IN	- 29	A5	•	ENI			A5	H	IN II	
AS	⊷	ENT	- 32	A5	H	ENT			46	н	ENI	
A 5	Н	ENI	- 35	G	>	EN	-± 1		25	>	Z	v
5	>	NIN	ى •	HILL	>	> NI			I	H	ENI	
ā	H	HNI	- 15	Ŧ	H	HNU			S	H	ENI	
a	H	LNI	- 19	PSK	H	ENI			9	ы	ENI	
8	н	HNU	- 22	86	Н	ENY			4	>	FN	
4	>	NI	- 30	7	>	Z W	- 33		2	>	Z	- 28
2	>	> 2	- 31	2	>	> NI			2	>	N N N	
5	>	> Z	- 32	2	>	ENC			IS	н	ENI	
H	H	INI	- 37	IS	H	ENI			◂	>	IN S	m
N 00 X	>	SENV		NGA	>	SENV	i N		MLST	>	SENVA	
Z	H	Z	- 24	Z	Н	Z W	- 25		VS	н	ENT	-195

	COM LOC	ENIS -19	ENIS -20	ENV - 1	ENV4 -	ENV4 -	ENV6 - 3	ENV6 - 4	ENV6 - 4	ENI1 -	ENII -	ENI1 - 1	ENI3 - 3	ENIS -24	ENV4 - 8	ENIS -24	ENI1 - 1	ENI1 - 1	ENI1 - 1	ENV	ENV -	ENI1 - 2	ENVS - 1	ENV5 - 1	ENNS - 1	ENV1 - 2	ENT3 - 2	ENI3 - 2	ENAC - 3	ENV3 - 1	ENV1 - 1	ENIS -15	ENIS -15		ENIS -13	FINE
	>	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	ဟ	S	S	S	S	S	S	S	S	S	S	S	S	S		S	N W
												•					_		_	_			_	_	_		_	_	_			_	_		_	
!	SYMBOL	S	SO	>	-4	N3 K	AHI	A	AMA	A1	⋖	A3	ပ္ပ	C13	C	CTJ	おり	I	2	벞	H	Ŧ	HX1	×	HX3	DX.R	ă	α	ZS	S	××	XIEB	XIE		XIE	PXIE3 PYIE82
SERSE																																				
		σ	-200		6	9		- 37		t I								- 16															S	1	M	-130
MODULE	LCOM	Z	ENI	Z	w	NU	EN	ENY	EN	ENI	ш	ENI	ENI	ENI	ENI	EN	ENI	ENI	ENI	Z	Z U	ENI	ENT	NU	Nu S	EX	ENV	ENI	ENV	N N	FIN	EN	ENI		E'S'	SENIS
FOR N	?	н	H	>	>	>	>	>	>	н	н	н	H	H	H	>	H	H	H	>	>	н	H	>	>	>	>	н	>	>	>	>	H	•	+	H H
ETICALLY	08 H ≯	NSA3	S	O N	×	NSV	AHI	Ā	AMA	A1	PA21	A3	S	S	CTJ	C	₹ S	S E	2	보	ZHI	ā	유	HXI	×	HX3	24	PQZ	SIT	PSITE	PSW	77	XIE	1	XII	PXIEZ PYIE81
ALPHAB		σ	H		4	ın	ه.	- 42	£† -	٠ ٦, ١	ن د	ъ •	- 12		- 00°	-246	6p -	- 15	- 20	w I	- 10	- 21	- 24	- 11	- 14	- 17	- 23		-223		- 17	- 20		•		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
OLS SOR	0	Z	IN	IN	Z	NIN	N N	NS NS	N N N	ことと	N N	ENT	ENI	IN IN	FN	ENI	ENV	INI	ENI	とし	ᆂ	ENI	INE	ンとこ	NN NN	N.	EN	ENI	ENI	ENC	> N !!	FIN	FNI		コフリ	SERIS
SYMB	>	H	H	ы	>	>	>	>	>	>	н	н	H	ы	>	H	>		11	>	>	н	ы	>	>	>	>	ы	Н	>	>	>	Н	(-4	н н
PROGRAM	0 3 3 3 4	SA	S	S	X	4	7 7	AMA	Y	AHB	⋖	A2	A3	S	CIJ	C	513	H33	2	HIA	꿈	H 21	HDF	HXT	XXX	×	PYR	۵¥	EHO	SI	75	>	XIE	*41	YIL	PXIEG

PRJGRAM Symbol	SY48	OFS SO	RTED ALPHABE Loc	TICALLY	F0R .	MODULE	707	SERSA	SYMBOL	7/1	LCOM	707
	,)	,) }	•	•)))
IE8	H	ENI		ZIE	H	ENI	16		312	H	Z	•
ZIE8+	H	SENIS		PZI=1	H	SENIS	-144		PZIEZ	H	SHAIS	-146
ZIE	H	ENI	14	Ξ12	H	ENI	ıņ		171	٠,	ENT	Ð
112	н	ENT	10	101	H	ENI	0		100	H	INS	4
4	н	ENI	10	117	H	ENI	+1		12	H	EN	
12V	H	ENI	4	134	H	ENI	0		134	H	ENI	4
~	н	FINI	9	242	H	ENI	0		341	H	ENI	0
3	H	ENI	0	*	H	ENI	Ō١		3	H	E N	0
S	H	ENT	σ	5	H	FNI			9	+	ENI	
S	н	FNI	0	7	H	ENI	9		7	H	EIL	7
8	H	ENI	9	8	H	INU	-		96	H	TEN IN	9
σ	H	ENT	+1	AA	>	ENV	Ö		AA	>	EN	
RAA3	>	N N		AA	>	EN			3	H	Z	~
ပ	H	ENI	0	40	H	ENH	N		2	1 -4	ENI	
CAS	H	INS	m	IAU	>	EN			I	>	FN	
Н	>	N.	N	IA	>	EN			IVI	>	ENV	
I V2	>	EN	N	IV3	>	EN			7	>	EN	
H	ы	ENI		EH	H	ENI			IOS	H	E	
S	н	EXI	23	AOI	>	EN			AOI	>	EN	
>	>	EN	M	TOA	>	NU			2	>	EN	
9	>	EN	-	LOS	>	EN			SO J	>	EN	
PAI	H	ENI		PA	H	ENI			4	H	ENI	
P A 4	H	ENI		4	H	ENI			2	H	M	- 30
>	н	ENI		Ē	H	KNU				>	ME	
>	>	N N	2	3	>	EN	~		24	H	ENI	in
22	н	ENT	2	7 V	H	125	S		77	H	IN	5 6
CIV1	н	ENI		SCIAZ	H	ENI			2	H	ENI	
ユ	н	ENI	92	딥	H	ENI	9		ü	H	ENT	9
†	Н	IN II	92	EXX	ы	ENI			EXX	H	ENI	m
E4X3	H	ENI	M	Ä	H	Z			M	H	Z W	.
Š	H	ENI		FA	H	ENI	Ø		F	~	ENT	9
FA3	Н	INI	9	FA	H	ENI	ō		5	H	ENI	9
FD2	H	Z	-168	6	H	Z	-169		6	-	Z W	-
FV1	щ	ENT	11	7	H	ENI	0		7	H	ENI	~
*	н	ENI	Ñ	¥	H	ENI	N		IGA	H	ENT	0
ISA2	ы	ENI	Ö	16	H	ENI	0		H	H	ENI	

RJGR	Y MB	s so	D ALPHASET	ICALL	ø,	HODULE	;	SENSH				
SY MBOL	1/1	LCOX	C07	SYMBOL	1/1	LCOM	707		SYMBGL	1/1	LCOM	207
160	H	ENI		H	H	ENI			160	H	E E	-219
130	ы	IN	-210	10	H	EX.	- 39		ဌ	H	ENI	
X CX	H	ENI		TUR	H	ENI			E CE	H	ERI	
3	H	ENI	£+ +	잎	H	E	9		Y	>	M	2
AA2	>	EN	-103	AA	>	EN	-104		4	>	Z	
ASI	>	EN	~ •	AS	>	w	•		ASI	>	Ĭ	
⋖	1 1	HNU			>	ENV			◀	l-d	ENT	
AUZ	>	EN	+ 34	A	H	ENI			3	>	M	
A	H	ENT		B	>	EN			I	>	EN	
7	>	N	- 98	25	>	EN			7	>	M	
4	>	NU		HXI	>	ENA			HXH	>	EN	
HX1	>	EX		MX2	>	EN			XXX	>	ᇤ	
XX2	>	> N	- 57	MX3	>	EN			x	>	ENV	
×	>	N N		0 <u>4</u>	>	EN			RIV	>	EN	
RIV	>	EN	- 95	RIV	>	EN			×	>	Z	
()	>	NE N		25	>	EN C			¥	>	EN	
X	>	NU	- 23	¥	>	ENV			SA	>	EN	
S	>	FN	- 11	ST	>	アスピ			XS	>	N N	
×	>	EN	- 15	š	H	ENI			S	>	EX C	
S	>	ERV		SY	H	ENI			25	>	ZN3	
2 S	>	S N S	- 1.8	25	H	ENI			표	>	ž Z Z	
1	>	N N	+.2.+	11	H	ENI			1	>	SK S	
긖	>	NU	- 70	닦	>	EN			11	×	W Z	
7	ы	IN	- 39	7	H	ENI			X	>	EN	
>	>		94 -	Y12I	>	SENVE	- 47		V10V1	H	SENIS	- 57
101	ы	ENI	- 83	111	H	ENI			11	H	ENI	
12	H	ENI	- 51	12	H	HZ L			137	H	EXI	
137	₩	ENI		5	>	EN			Z	>	Z	
217	н	INI	-226	7	>	FZ			2	>	W	
5.	>	EN	- 57	27	H	IN II			2	H	ENI	77 th
2	н	INE	<u> </u>	%	>	EN			2	>	EN	54 -
22	>	FN	- 56	æ	>	N N N			IM	>	Z	- 76
31	ы	ENI	-227	岌	>	EN			3	>	W	- 72
2	>	FN	- 63	31	H	ENI			3	H	Z	P# 1
3 <	Н	INI	± 59	×	>	ENV	r		37	>	Z	- 52
12 E A	>	>	- 53	Į	>	FIN			I	>	iii	- 77

	207	73	45	53	73	21	79	•
	LCOM	SENV4 -	SENIS -	SENV4 -	SENIS -	SENIS -	u	
	1/1	>	H	>	+	H	H	
	SYMBOL	NITA	V4 V1	IATA	V5 V2	17.7	7872	
SENSA								
• • • •	ر د ور	- 65	-224	1 56	- 47	- 75	- 53	
00ULE	I/V LCOM LOC	SENA	SENIS	サイル語の	SENIS	w	SENIS	STATE
FOR I	1/	>	H	>	H	H	Н	•
ALPHABETICALLY	SYMBOL	V4LA	VATE	IXTA	VSV1	V6V2	VBVI	7070
→	C02	-228	69 -	- 71	- 56	ტ •	- 77	ic ic
OLS SOR	LCOM			1:1	SENVA	111	CNI	Z
SYAB	77	⊢≀	**	} 4	ാ	H	اسا	>
PROGRAM	SYMBOL	VLIRM	ト・ナン	7445	IZTA	V6V1	7772	4767

¥ 2 3	OLS SOR	TED A	LPHASETICALLY SYM30L	FOR H	MODULE -	3S	RVH	YMBOL	\ \ \	LCOM	700
> 2		100	S	н	ES.		Ā	S	>	FRV	
SERIZ		-164	ARG1	>	SERV4	15	₹	362T	н	SERIZ	-156
\ <u>\</u>		- 16	8	14	ERI		Ā	8	>	10 K	
ERI		-170	8	>	ERY		Ā	8	H	ERI	
NA NA		- 13	8	H	ERI		ä	3	>	2	
ERV		- 21	80	>	ERV		ď	8	>	FR	
ERI		-187	0	H	587		d	20	H	E R	- 12
EQI		- 22	F	H	ERI		ď	9	ы	ERI	
ERI		- 62	4	H	ERI		ď	0	H	ERI	
ERI		- 82	a	H	ERI	0	A	0	H	ERI	
ERI		-141	20	H	ERI		Ø	0	>	ERV	•
ERV		. 	u	>	ERY	ı v	₹	2	>	ERV	9
12 ×		-	0	>	ERY	•	Ø	0	>	FRV	6
ころく		- 10	C	>	ERV	- 11	4	0	>	ERV	
ER.		-175	10	н	ERI		A	10	₩	FRI	
E & I		- 33	7	H	ERI		A	4	H	ERI	
5			۱. ۲	H	ERI		⋖	-	H	ERI	
EZI		- 83	4	H	ERI	-103	4	4	H	E R	-123
ERI		-143	+	>	ERV		A	2	н	ERI	~
12:		4	0	H	ERI		A	25	H	ERI	
ERI		+	2F	H	ERI		Ø	2FV	H	FRI	
ERI		- 24	0	H	ERI		A	2	H	ERI	
ERI			24	н	ERI		Ø	2	H	ERI	
ERI			m	H	ERI	i iv	ď	30	H	11 20 11	
ERI		35	3 F	H	ERI	- 45	A	3F	-	ERL	
ERI		- 63	m	H	FRI	- 25	⋖	m	H	E	
FRI		- 87	M	H	ERI	-107	Ø	3	н	· Lii	
ERI		-147	3	H	ERI	•	A	3	H	ERI	9
ERI		15	ŧ	H	ERI	- 36	4	T T	H	FRI	
EZI		- 56	3	H	ERI	- 66	Ø	\$	н	ERI	- 26
ERI		- 76	4	H	ERI	- 89	4	æ.	н	ERI	0
ERI		-129	>	H	ERI	-149	4	ın	H	144	
ERI	. .		S	H	ERI	- 17	Ø	3FV	H	ER.	
FRI		- 47	5	H	ERI	- 57	4	5	Н	ERI	
ERI		- 27	ın	H	ERI	- 77	A	30	H	FRI	
ERI		-111	S	ы	ERI	-131	4	5 <	н	ERI	

9200	Z 7.	S		TICALL	œ	Ĺ		SEAVA	•				
SYMBOL	17	LCOM	100		1/1	LCOM	700		SYMBOL	1/1	1004	207	
· ·	H	RI	- 18	ပ္မ	∺	RI	•		6C2	н	SERIZ	- 18	
5FV	Н	I'S'	M	A6FV2	₩	ERI			4	H	ERI		
i.	•	-2I	10	49	H	RI			•	H	EZH H		
5 4 1	, 🛏	Z	6	Q	ب	RI	4		> 9	н	ERI		
>	ı ş	7	-15	78	H	RE			5	Н	ERI	٠ •	
	, p -4	~	1	A7FV1	H	5	- 39		~	Н	FRI		
1	H	12	10	4	H	RI			7	H	ERI	~	
a .	•	2	~	2	H	RI			►	Н	ERI	-	
2	;	-2I	-13	2	H	FRI			•	H	ERI		
. 60	H	RI	-	80	н	ERI			BFV	H	ERI	() 	
ls ec	1	2	ı	140	H	18			4	1-4	ERI		
u W	, ,	2	1	80	H	3			8	H	ERI		
) oc	, ,	0	-11	28	H	183			2	M	ERI		
α 5 σ	1 5 -4	E 2 I	-18	9	1-4	RI			σ	H	ERI		
746	, 1	FRI	4	46	Н	ERI			46	H	ERI		
. II	, p.	U. (1)		46	H	58.1			ᠬ	H	ERI		
775	ı	7.4.E	. o	36	H	2			26	H	583		
>	.	E 2 I	-15	Z	H	3			AT	>	ERV		
G.	>	7	-	T02	H	3			UMV	>	ERV		
111	•	2	E I	CINS	>	8	- 26		ZS	>			
V.	· >	(2	- 25	S	>	7	- 29		SNID	>	ar lij		
CINC	>	2	- 23	2925	H	2	- 27		9	H	E		
9 5	· H	ER I	- 25	PP6	H	8	- 37		799	H			
4	Н	(K	- 24	P12	5	3	- 29		4	H	Œ		
4	н	OZ Lid	1 15	9	н	8	- 30		p27	н	li i		
۰	—	~	- 15	p 3	Н	2	36		Q.	н	E E		
2	H	œ	- 31	FP4	H	SERI	- 13		FPS	H		61 -	
٥.	9-4	OY.	- 32	۵	H	8	- 20		Q.	-			
60	H	8	- 22	9	H	E S	33		5	H	W		
0	Н	(M)	- 19	-	H	8	27 ,		•	>	ER	.	
A	>	ERV		A	>	ER.	i S		8	>	E C	•	
A	>	FRV	~ •	AOA	>	8			Ø V	>	A S S	o .	
A	>	24	•	A	>	ER	<* - \(\)		A 0 9	>	3	21	
A	>	FR	•	2	>	282			E	H	ERI	- 52	
9	>	E S	a	Ž	H	ď			z	>	8	- 20	
IZAN	· -	SERIZ	-186	ITAKTP	H	w	- 16		10	н	ERI	- 35	

,这是是这种的时候,他们就会们们就会不是这种情况,但是是这种情况,但是是这种情况,也可以是这种情况,也可以是这种情况,也可以是这种情况,也可以可以是一种情况,也

700	2 4 5 4 1 1 1 1	•
I/V LCOM	SERV2 - SERV2 - SERI -	
71	>>HH	ľ
SYMBOL	TOS TOS VECZER Zero)
SERVA		
100	P 0 M 0	•
ļ		(
I/V LCOM LOC	SERV2 - 10 SERV2 - 10 SERV2 - 13	
FOR 1	>>>	•
ALPHABETICALLY	7 H H H H H H H H H H H H H H H H H H H	
₹ ∪	600000	j e
50	++ t	
ORTE	1 1 1 1	
OLS SO LCMM	SERV2 SERV2 SERV2	1
SYHB I/V	>>>	•
PROGRAM Sy 480l	1400 1000 1000 1000 1000 1000 1000 1000	

	LOC	m	*	S	m	.	•	o	10	^	17	σ	10	m	<u>ი</u>	W		12	m	.								12	
		-	•	_		n		<u>.</u>	•	<u>.</u>	•	_		•	•	•	_	•	•			•	·	(L)		m	•	• +	•
	LCOH	TRV	TRV	TRV	TRV	TRI	TRI	TRI	TRI	TRV	TRI	TRV	TRI	7	78	7	7,	3	7	TRV	7	7	TRV	TRV	TRY	TRV	78	STRI	TRV
	1/1	>	>	>	>	н	+	H	H	>	H	>	H	>	>	>	>	>	-	>	>	>	>	>	>	>	>	,	>
• • • • • •	SYMBOL	SXS	5	628	X	2MOI	30	1:	×	×	>	M	×	T	090	CGY	C	17	TRT	ACCXI	CG7	X	DRY	9	REF	I		YTR	7
STRTH																													
•	ပ္ပ	M	4	80	ø	w	•	40	~	12	•	30	10	12	€0	0 T		덖		•	•	12						13	
į	ت	•	•	•	•	•	•	•	ı	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•
i u	T :					2									>	7.7	_	>	н		2		>					42	
HODULE	CO	7.	7	7	2	7	7	78	3	2	3	2	2	4	3	7	7	3	2	3	7	7	4	3	2	3	5	STR	5
FOR		>	>	>	>	>	н	H	>	H	>	H	н	H	>	>	>	>	H	>	>	>	>	>	>	>	>	>	H
NBETICALLY	60	GIN	GXO	5	620	H	3	É	×	×	>	7	ď	32	CGQ	CGX	ပ	Ϋ́Ι	7	TMO1	CGY	ဗ္ဗ	12	0	R :: F	I	-	XX01	-
ALPHA																													
0	30	M	10	~	ന	÷	ın	M	•	'n	Φ	•0	6	11	^	\$	77	10	13	\$	6 7	6	14	12	10	18	21	11	+
ORTE	-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ŧ	•	•	ð	•	•	•
S	CO #	TRI	TRI	141	TRI	7	TRI	TRI	TRI	TRV	TRI	TRV	TRV	TRI	7.	78	7.	TRV	3	4	TRV	3	72	TRV	TRY	121	TRV	STRI1	T.2V
>	1/1	₩	H	Н	H	>	H	9 —4	H	>	H	>	>	H	>	>	>	>	H	-	>	>	>	>	>	>	>	H	>
RJG	SY480L	C)	S	5	25	H	Z		×	×	>	>	H	2	000	CGX	S	×	TZA	-	CSX	293	Ι×	60	9	1	-	XTX	>

PROGRAM Symbol	SY MB I/V	SYMBOLS SORT	RTED ALPHABETICALLY Loc Symbol	TICALLY SY430L	FOR 1	TODOLE-	I/W LCOM LOC	SYHBOL	1 /1	LCOM	707
	>	7007	.:1	FINA	>	TGOV	•	201	>	1600	·
ב ה ה	• >	7007	•	EVC1	>	760 V	•0	EVC2	>	T50V	- 17
> 3	>		•	1 d	>	1667	- 36	EVCS	>	T G0 V	94
	> >	> > > > > > > > > > > > > > > > > > > >	6) L	> >	1601	-109	E AC 8	>	TG0 V	-119
•	> :	> n	1 (. + C	> >	> 0 C	\ \ \ \ \ \ \	ITGF1	>	1607	-108
> (> :	> 0)		> >	> 0		ZUUZ	>	1500	-193
3	>	> 2 2 2 -	•		•		607.		• •		
14	>	1601	•	2 2	>	10c	-118	16055	-4	7 2 2	2 (
ט ו	,	TGGI	•	160	>	TGGV	.	122	>•	160	•
) tı	>	100	- 97				0				0

ROGR	X.	OFS SO	818	O ALPHABE	CALL	œ	HODOLE	Ì	ナトロモト				
SYMBOL	1/1	LCOM		50	SYM 30L	1/1	LCOM	207		SYMBOL	1/1	LC04	207
-	>	Σ	•	en at	u.	ы	X 00 H			Z	>	THEVE	- 10
١.	>	C	•		7	>	> 0H			>	>	¥0×	
• •	>	701	•	5 t.	7 424	>	THEVI	. 15		APGL	>	> 0 I	- 17
3	>	9	1		8	>	704			S	>	2	
×	· >	2	•		X	>	AC <			S	>	2	
>	>	5	ı		25	>	2			2 S	>	Z	
10	н	HOH	•		X	>	>0			×	>	9	
. 24	>	9	•		Y	>	S.			>	>	ç	
~	>	>0H	•		12	>	701			7	>	2	
7.7	Н	HOH	C		73	>	NO.			ZR	>	70F	
ZVA	Н	NO K	•		72	>	> 0 W			72	>	70	1.5
XX	H	HOE	•		A	>	> 05.			Z	>	¥0×	
4.1	H	HOH	•		RNG	>	70H			Z	>	X 00 ×	
AT	>	> OH	•		1	>	707			5	>	100	72 -
4	,	HON	ı		VOV	H	HOL			>	H	HOH	
- >	н	HOW	•		AZ	>	>0	- 28		AS	H	40 H	- 53
	H	MOM	•		t U	-	HOH	- 18		u	ы	HOI	67
· (3	1-4	HOH	•	20	ES	H	HOH	- n5		7	H	P	- 22
O.	н	HOH	•		۵	H	HOI	- 24		2	H	HOH	
1 _1	· 1-4	HOH	•			Н	ACH	17		_	>	> 04	- 23
*	>	70H	•		NAN	>	> 0 V	₩ •		2	>	> O I	
(d)	ы	HOL	• 1		7	H	HOH	- 19		9	H	HOR	
PIE	н	HOH	ŧ		RST	H	HOF	- 51		TA	>	707	
SSA	H	HOE	ŧ		S	>	YOK	- 32		SIA	>	¥0×	
7	>	¥0 ×	•		VIS	>	> 0H	63		7	>	POT	
VILLA	>	70 H	•		VMAG	F-1	무	- 12		2	₩	1. 0	
VIH	Н	HOT	•		CAI	>	70F	- 31		CA	>	10	
C	>	NO.	•		0	H	HOL	6		S L	>	> © T	
7	>	701	•		3	>	>	- 17		13	H	HOT.	
EESS	H	IOM	ŧ	31	ACC	>	707	35		Œ	H	Ş	
4	>	× 0 %	ŧ		T	>	707	- 19		9AL	>	705	
A III	>	¥0 ×	ŧ		Z	>	A O K	- 36		という	H	HOH	
110	-	HOH	•		HTO	H	HOH	- 32		Ï	>	30	
=	>	70%	•	.+	¥	>	> 01	- 25		4	>	Z ~	- 26
4TS	>	× 0 €	ŧ	35	MTS	>	7 OF	- 36		¥	>	707	
	-	TMOIL			⋖	>	707	- 38		000	н	HOT	

0

THE CONTROL OF THE PROPERTY OF

208	YHB	STC	7	111	ICALL	œ		ŧ	THOTH					
TOGHAS	1/1	LCOM		501	TOBMAS	250	LCOM) 		SV M90L	\ \ !	LCOM	ت	ပ္
13	н	MC T	•	22	u	H	Y.	23		HC3	н	THOIS		t S
111	>	E	•	39	S	H	TOK	9		_	H	2	1	20
1	H	HÖL	•	w	7	>	2	m		4	>	Ç		4
	>	O	*	10	7	>	2	ø		TL 22	>	Ï		₽.
N	>	S	•	€0	2	>	2	σ		m	>	20%	•	2
1	>	9	•	11	Ä	>	¥0×			₹	>	> 0 1	•	<u>6</u>
4	>	¥0×	•	23	ZAK	H	HOH	5 8		ISA	>	H 00	•	17
>	>	705	•	18	Y	>	707			LATIMP	>	70H	•	31
-	Н	HOH	•	.+	AT	H	HOH			u	>	150	•	Ņ
Λ	>		•	.÷.	LPLN	>	THOAT -			LTCIMP	>	P	•	35
-	>	> OE		22	1	H	HOI	^		۲	>	X30	•	ဝ
2	>	HC V	•	3.8	Z	H	HOH	Ŀ		z	>	M30 <	•	34
7	>	> 0 H	•	33	7	H	HOL			z	>	¥0×	•	Š
-	>	70H	•	5 *	7	н	HOP	94		A	н	105	•	9
0	>	> 0H	•	13	AII	H	HOI	m		H	H	TOF		.
TIV	ы	101	•	ın	A.I. 2	H	HUH	Ø		14	- 1	437	6	~
14	Н	10 E		• ••	AI	H	Y	σ		H	H	HOL	•	
413	H	HCH	•	11	283	>	70F			20	>	¥0 ×	•	16
11	H	MOR	•	35	XIL	>	2	12		\mathbf{H}	>	704		P)
H	>	A O H	•	32	H	>	XUX	w		H	>	> 05.		€
×	>	≯ 0¥	•	21	H	H	T	^		œ	>	> 67:		39
×	-	HOH	•	35	YIL	>	? .	13		\vdash	>	70	•	#
1	>	2	•	33	Y	>	70H	മ		1-1	>	X 0 <		σ
-	>	YON	•	25	VIJ	H	2	•		PYRL	>	70H	•	9
>	ы	YOI		37	717	>	¥0×	7		H	>	¥0×		
11	>	9	•	34	12	>	£	~		+4	>	> O I	•	07
N	>	707	8	63	17	>	ä	23		\mathbf{H}	H	101		σ
22	>	¥05	•	6.1	N	H	HOH	39			>	> 0 I	•	E)
()	ō ~4	HOM	0	13	A	H	ION	7,		SAC2	H	HOH	•	Ę.
()	 	P	•	15	⋖	H	2			SAL	H	HOH		M)
Z	>	201	•	37	Z	>	¥00×	9		ZAT	>	¥0×	•	m
>	>	202	9	22	E	>	¥6 <			>	.>	¥0×	•	27
13	>	2	•	24	Ë	H	HOH	12		ゴロンハで	,	F	•	=======================================
2	Н	HOH	•	6	S.	>	¥0			⋖	₩	Ë		€0
in	H	HOI	•	86	A 8	H	HOI			8	H	S	,	2
SABZ	н	TYDIZ	•	1.	Ä	H	HOI			×	н	HOI	•	

THE THE PROPERTY OF THE PROPER

Market and the second of the s

207			€ 6.				- 29		- 18		. 51		6		- 29						19						9	G 1
LCOM	IOK	HOL	70H	701	70H	THOIS	107	HOP	HOH	5	7	HOF	Ş	2	X .	ç	2	3 .	ž	2	E	>0	> 0 1	70	Ë	> 0 X	HOH	•
X H	H	~	>	>	>	ы	H	H	H	- -:	*	H	>	>	>	>	>	>	>	>	>	>	>	>	H	>	H	
SYMBOL	SAZT		SLATL	⋖		TOF	TLE	-	-	10	10	7	H	VII	NISZN	H >	H	×	NS ZB	H	H	œ	-	н	VYT	-	10	
THOT																												
100		61			5 8					20			42		28					€0	14	*	~				30	
	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
HODULE-	HOT	107	HOF	70k	70×	2	> 0F	TOF	MOI	HOI	HOI	E	HOH	E	70H	2	2	皇	2	>0H	2	HOH	> OH	7	MCV	¥00×	THOVE	HOH
FOR H	H	1-4	H	>	>	H	>	H	H	H	H	>	H	>	>	>	H	>	>	>	>	H	>	>	>	>	>	H
9ETICALLY Symbol	Ž	3	(9	170	5	O	I	벞	L.	>	HOH	150	T	8	ISY	_1	iL	X	S	i	X	X	X	X	×	12	VZIS	F-3
ALPHA																												
0.0		17	m		37	10	23		61	25	m	43	27	rv	27	4		7	31	€	#	() ()	t t	15	10	6 0	20	t
ORTE	•	•	•		•	•	•	•	•	•	•	•	•	•	•	¥	9	•	•	•	•	•	•		•	¢	•	•
U I	H	H	1	>	>	H	H	1-4		>	-	H	13	>	>	>	>	>	>	>	>	>	H	>) I 3	>	>	C V 2
LS	I	T	7	T	I	T.	7	I	T	T	7.	×	文	7.	T	I	X	I	7.	Ŧ	T	T	T	T.	7	7	7	7.
SYMBOL:	н	Н	H	>	>	,	H	H	•	>	H	H	>	>	>	>	>	>	>	:•	>	>	9-4	>	H	>	>	>
PROGRAH Sy4801	A	AZ	17	7	AP	ပ	0	5	F	×	7	I	Z	DZA	IS	()	5	S	S	2 S	X	XIS	×	IL	YIG	ZI	M	VZZL

William Street Company Street Company Street Company Street Company Street Company Company Street Company Company Street Company Compa

1000	1/2	100 F001	SYMBOL	> 1	1007	0 L O L
TRAIL: 100 TRAIL: 100 TRAIL: 100 TRAIC: 999 TRAIC: 999 TRAIC: 158 TRAIC: 158 TRAIC: 158 TRAIC: 158 TRAIC: 157 TRAIC: 157 TRAIC: 177 TRAIC: 177 TRAIC: 177 TRAIC: 177 TRAIC: 177 TRAIC: 178 TRAIC: 178 TRAIC: 177 AZARBI TRAIC: 178 TRAIC: 178 TRAIC: 178 TRAIC: 178 AZARBI TRAIC: 255 TRAI						
TRAIL TRAIL		RAI3 -10	IMHT	H	RAI	
TRAIL TRAIS - 99 TRAIS - 99 TRAIS - 99 TRAIS - 199 TRAIS - 197 TRAIS - 27 TRAIS	2	TRAI2 - 99	AIML N3	H	TRAES	66 -
TRAIS - 96 TRAVC - 56 TRAVC - 56 TRAIC - 159 TRAIC - 157 TRAIC - 27 TRAIC - 27 TRAIC - 27 TRAIC - 17 TRAVC - 27 TRAVC - 13 TRAVC - 25 TRAVC - 35	~	RAI1 - 9	IRLT	~	RAI	
TRAV2 - 56 TRAV1 - 56 TRAV2 - 56 TRAV2 - 56 TRAV2 - 126 TRAV3 - 126 TRAV3 - 127 TRAV3 - 127 TRAV3 - 27 TRAV3 - 27 TRAV3 - 17 TRAV3 - 17 TRAV4 - 17 TRAV4 - 15 TRAV4 - 25 TRAV5 - 10 TRAV6 - 37 TRAV6 - 35		RAIG - 9	IH	H	RAI	
TRAVI - 56 TRAIL - 159 TRAIL - 159 TRAIL - 159 TRAIL - 159 TRAIS - 105 TRAIS - 107 TRAIS - 27 TRAIS - 17 TRAIS - 100 ANARST TRAVI - 25 TRA	>	RAV3 - 5	Ř	>	RAV	
TRAIS TR	>	RAV2 - 5	7	>	278	
TRAI3 - 128 TRAI2 - 153 TRAIS - 153 TRAIS - 155 TRAIS - 105 TRAIS - 107 TRAIS - 127 TRAIS - 128 ANARST TRAIS - 137 TRAVS - 137 TRAVS - 137 TRAVS - 137 ANARSS TRAVS - 157 ANARSS TRAVS - 157 ANARSS TRANS	>	RAV1 - 5	22	H	RAI	N
TRAIL - 153 TRAIL - 153 TRAIL - 153 TRAIS - 105 TRAIS - 07 TRAIS - 07 TRAIS - 07 TRAIS - 17 TRAIS - 17 TRAIS - 17 TRAIL - 17 TRAIL - 17 TRAIL - 13 TRAIL - 13 TRAIL - 13 TRAVS - 10 TR	H	RAI4 -12	22	H	RAI	
TRAIL - 153 TRAIL - 153 TRAIS - 105 TRAIS - 007 TRAIS - 007 TRAIS - 007 TRAIS - 127 TRAIS - 127 TRAIS - 127 TRAIL - 127 TRAIL - 126 TRAIL - 126 TRAIL - 126 TRAIL - 126 TRAIL - 25 TRAVS - 10 TRAV	~	RAI3 -15	Ü	H	RAI	10
TRAIT TRAV TRAV TRAV TRAV TRAV TRAV TRAV TRA	H	RAIZ - 3	ZRA	-	RAI	
TRAIS - 106 TRAIS - 107 TRAIS - 07 TRAIS - 07 TRAIS - 07 TRAIS - 127 TRAIS - 128 AZARS TRAVC - 128 AZARS TRAVC - 25 TRAVC - 25 TRAVC - 35	H	RAI1 - 3	ZRBT	H	RAI	
TRAIS - 01 TRAIS - 07 TRAIS - 27 TRAIS - 27 TRAIS - 27 TRAIS - 127 TRAIS - 127 TRAIL - 120 TRAIL - 130 TRAIL - 130 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAVE - 35	+	RAIL -10	œ	H	RAI	~
TRAIS - 07 TRAIS - 22 TRAIS - 24 TRAIS - 24 TRAIS - 27 TRAIS - 127 TRAIL - 136 TRAIL - 136 TRAIL - 25 TRAIL - 37 TRAVS - 35 TRAVS - 10 ACARS TRAVS - 10 ACARS TRAVS - 10 ACARS	-	RAIS - 8	ZRBT	H	RAI	
TRAIS - 22 TRAIS - 24 TRAIS - 24 TRAIS - 27 TRAIG - 17 TRAIG - 17 TRAIG - 17 TRAIG - 100 TRAIG - 10 TRAIG - 25 TRAIG - 37 TRAIG - 37 TRAIG - 37 TRAIG - 37 TRAIG - 37 TRAIG - 35 TRAUG - 25 TRAUG		RAI1 -10	ZRB	•	RAI	
TAAIS - 24 TRAIS - 24 TRAIS - 27 TRAIS - 17 TRAIC - 17 TRAIC - 15 TRAIC - 15 TRAIC - 10 TRAIC - 10 TRAIC - 25 TRAIC - 25 TRAIC - 25 TRAIC - 37 TRAIC - 37 TRAIC - 37 TRAIC - 35 TRAIC - 37 TRAIC - 35	~	RAI4 - 2	ZRB	H	RAI	
TRAIS - 27 TRAIS - 15 TRAV - 17 TRAV - 17 TRAIT - 156 TRAIT - 156 TRAV - 157 TRAV - 157 TRAV - 157 TRAV - 25 TRAV - 10 AZAR TRAV - 157 AZAR	H	RAIS - 2	ZRB	+-(RAI	
TRAI3 - 34 TRAV2 - 17 TRAV2 - 17 TRAI4 - 156 TRAI4 - 156 TRAI4 - 25 TRAV2 - 25 TRAV4 - 37 TRAV4 - 25 TRAV5 - 10 TRAV6 - 10 TRAV	~	RAI1 - 2	ZRC	H	RAI	
TAAV2 - 17 TRAV1 - 17 TRAV1 - 17 TRAV1 - 156 TRAV1 - 156 TRAV1 - 25 TRAV2 - 25 TRAV2 - 25 TRAV2 - 25 TRAV2 - 25 TRAV2 - 25 TRAV3 - 10 AZAV3 TRAV4 - 25 TRAV4 - 15 TRAV5 - 10 AZAV3	-	RAIL - 3	2R	H	RAI	
TRAVI - 17 TRAIG - 150 TRAIG - 150 TRAIG - 150 TRAIG - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 25 TRAVI - 10 ACARS TRAVI - 157 ACARS TRAVI - 157 ACARS	>	RAV3 - 1	ZRO	>	RAV	
TRAIL - 158 TRAIL - 158 TRAIL - 158 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAVC - 25 TRAVC - 25 TRAVC - 25 TRAVC - 25 TRAVC - 35	H	RAI2 -15	ZRF	H	RAI	
TRAIS - 100 TRAIL - 156 TRAIL - 156 TRAIS - 10 TRAIS - 10 TRAVE - 37 TRAVE - 25 TRAVE - 35	H	P.AIS - 9	ZRF	-	RAI	
TRAIL - 156 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAV2 - 25 TRAV4 - 25 TRAV5 - 10 TRAV6 - 35	H	RAIS -10	28	H	RAI	
TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAIL - 25 TRAV2 - 25 TRAV6 - 35	H	RAI2 - 2	1 % X	H	RAI	
TRAIS - 13 TRAIL - 25 TRAIG - 37 TRAIS - 44 TRAV2 - 25 TRAV4 - 25 TRAV6 - 35 TRAV6 - 35 TRAV6 - 35 TRAV6 - 35 TRAV6 - 10 TRAV6	•	RIIS -	28K	H	RAI	
TRAIL - 25 TRAIG - 37 TRAIG - 44 TRAV2 - 25 TRAV4 - 25 TRAV6 - 35	H	RAIS - 1	ZRK	;- -	RAI	
TRAIL - 37 TRAIS - 44 TRAV2 - 25 TRAV4 - 25 TRAV6 - 35 TRAV6 - 35 TRAV6 - 35 TRAV1 - 35 TRAV1 - 35 TRAV1 - 35	2 1	RAI2 - 3	ZRL	H	RAI	
TGAI3 - 44 TGAV2 - 25 TRAV1 - 25 TRAV4 - 35 TRAV5 - 10 TRAV5 - 10 TRAV1 - 35 TRAV1 - 35 TRAV1 - 35 TRAV1 - 35	₩	RAI1 - 3	ZRN	H	RAI	**
TRAV2 - 25 TRAV4 - 25 TRAV4 - 35 TRAV5 - 10 TRAV2 - 35 TRAV2 - 35 TRAV4 - 35 TRAV4 - 35	(~4	RAIG - 4	28	H	RAI	
TABUL - 25 TRAV6 - 35 TRAV5 - 10 TRAV2 - 35 TRAV1 - 35 TRAV1 - 157 AGAF TRAT4 - 157 AGAF	>	RAV3 - 2	2,2	>	27	
TRAV4 - 35 TRAV5 - 10 AZ40 TRAV2 - 35 TRAV1 - 35 TRAV1 - 157 AGAF TRAT4 - 157 AGAF	>	RAV2 - 3	Z R	>	œ	
TRAVS - 10 AZ40 TRAV1 - 35 ACAF TRAI4 -157 ACAF TRAIR -105	>	RAV5 -	ZR	>	NAX.	6
TRAVE - 35 ACAR TRAIL -157 AGAR TRAIR -158 AFAR	>	RAV5 - 1	Z R	>	RAY	
TARIT - 157 AGAR	•	RAI2 -15	DAF	~	RAI	IN
TRATE - 105	H	RAIS -10	0	Н	œ	-104
1212 (01) (12)	+	RAIS -19	DAF	₩	RAI	0
TRAI1 -157 CHT	H	RAILI-10	H	H	RAI	

The continue of the second of

206	F	SORTE	ICALL	~	MODUL E	TRAKH	5			
SYMBOL	1/1	DON HOD	SYMBOL	Se	TCOM LOC		SVHBOL	17	LCOM	207
Z	H	RAILI-1	2	H	RAILI- 5		7	H	Z	-104
7	H	RAILI	TSID	H	RAIZ -		TSID	H	2	m
TSIO	H	RAIG -	TSID	~	RAIS - 6		TSIO	H	2	3 .
ISI	H	RAI	15	H	RAIS - 6		75	H	2	- 67
ISI	-	RAII -	AZRK	H	RAI2 - 2		A ZRK	+	RAI	
A ZR	H	RAIG -	A24	H	RAI 1 - 2		AZR	>	7	88
AZR	>	ZAV3 -	A22	>	RAVE - 3		AZK	>	RAY	
2 Y	>	RAV5 -	A22	>	RAVS -		AZK	>	TRAVS	- 51
A ZR	>	ZAV5 -	77	>	RAV1 - 3		60	H	RAIL	
9	H	RAILI-	60	₩	RAILI- 9		80	H	RAIL	
03	H	RAILI-	60	H	RAILI- 9		8	H	RAI	
80	•	RAILI-	80	~	RAILI- 9		6	~	RAIL	
ö	H	RAIL I-	Ö	H	RAILI- 4		40	+	RAIL	
C) IF	H	RAILI-	6	H	RAILI- 4		6	H	RAIL	- 50
6	H	RAILI-	6	~	RAILI- 5		DRG	>	24	. Z
3.50	>	RAV3 -	DRG	>	RAV4 - 7		20	>	RAV	7.
4	>	RAVS -	ELP	>	RAVS - 3		ELP	>	77	
<u>م</u> انا	>	RAVS -	613	>	RAVS - 4		ELR	H	RAI	
L. III	5-4	RAI3 -	딦	-	RAI4 - 2		딥	~	RAI	- 29
ELR	>	ZAV2 -	ELA	>	RAV3 - 3		ELR	>	RAV	
ELR	>	ZAVS -	ELR	>	RAVS - 3		ELR	>	7	
m 5.	>	RAVS -	ELA	>	RAVS - 5		T U	>	7	
ž Z	H	RAILV-	E 2	H	RAILY- 7		E 2	H	RAIL	2
2:	H	RAILV-	£2	H	RAILY- B		E Z	~	RAIL	
ĒZ	.	RAILV-	23	H	RAILV- B		23	~	RAI	
ည Z	.	RAILI-	2	H	RAIZ - 7		PRA	M	RAI	
PZA	H	RAI4 -	2	~	RAI1 - 7		P.R.B.	H	RAI	#
~	H	RAI3 -1	P.8.	•	RAIL -11		K	H	RAI	
P 2.0	-	RAI2 -	6	H	RAI3 - 6		78.00	-	RAI	
2	H	RAI1 -	220	H	RAI2 - 8		2		RAI	
P 2C	H	RAIL -	2	H	RAI1 - 8		200	>	2	
4	>	ZAV3 -	642	>	RAV4 - 2		*	>	RAV	
7 X	-	RAI2 -	PZK	H	RAI3 - 7		7 X X	~	RAI	
~	H	RAI1 -	725	H	RAI2 - 6		1	H	RAI	
DP 21.84	5-4	TRAIG - 87	OP4L B	> 4	TRAIL - 87		DPRN2	H		96 -
4	H	RAI3 -	Z	H	RAIL -		A Z	H	RAI	

PROGRAM	SYAB	OLS 50	RTED	ALPHA BETICALLY	FOR		TRAKE	į	i		(
CONA		္မ		SVABO	?	2		£	?	LC04	201	
4	>	RAV		00	>	RA V3 - 2		8	>	3	- 28	
PZ	>	248		90	>	RAV2 - 5		88	>	24	_	
3	>	ZAV		90	>	RAV1 - 5		ğ	-	RAI	_	
924	-	RAI		00	H	RAI + - 7		ORA	-	2		
9	H	8	+1	0048	;	RAI3 -11		ORB	H	RAI	-114	
02BT	H	RAI		003	₩	RAI2 - 6		8	~	RAI		
948	H	8	S	0043	H	RAI1 - 6		QRC	H	RAI		
QZC	;	RAI		0080	H	RAI4 - B		80		RAI		
020	>	248		500	>	RAV3 - 2		8	>	RAV	- 21	
940	>	446		DORK	H	RAIZ - 7		2RK	-	RAI		
Q X K	H	RAI		500	H	RAI1 - 7		ORL	H	RAI		
6	H	RAI		004	}- 4	RAIL - 3		ORL	H	RAI		
200	H	RAI		N200	;	RAI3 - 9		8	~	RAI		
200	H	RAI		500	>	RAV2 - 2		ORV	>	RAV		
8	>	RAV		900	>	RAV1 - 2		8	>	RA		
023	>	RAV		004	>	RAV4 - 5		Ø	>	RAV		
1	H	RAI		DRA	H	RAIS - 7		K	H	RAI		
4	H	RAI		ORS	H	RAI2 -11		8	₩	RAI		
3	н	⋖	-110	DRBT	H	TRAI1 -110		0432	-	TRAIZ	- 67	
733	H	AAI	O	089	-	RAIL - 6		8	H	RAI		
~	>	RAV		080	>	RAV3 - 1		2	>	SAV		
20	>	247		DRGR	H	RAI2 - 2		RGR	H	RAI		
あられ	H	RAI		DRG2K	H	RAI1 - 2		みのみ	>	RAV		
RGR	>	RAV		JRSA	>	RAV4 - 3		2GR	>	211		
œ	>	ZAV		ORGR	>	RAV5 - 4		8	5	RAY		
RSR	>	RAV		DRG	>	RAV1 - 3		AIP	,4	QAI		
4	H	RAI		SER	H	RAI4 - 9		RHOP	H	RAI		
RK2	H	RAI		DRK3	H	RAI3 - 7		X	,	ZAI		
N.	H	RAI		DRL	M	RAIZ - 8		2	H	RAI		
7	H	RAI		ORL	H	RAI 1 - 5		Z	-	ZVI		
7	H	RAI		NYO NYO	H	RAI4 - 9		æ	H	24 I		
œ	>	RAY		DRV	>	RAV3 - 2		æ	>	RAV		
2	>	RAV		OR2	>	RAV2 - 5		ď	>	R		
~	>	RAV		a C	>	RAV1 - 5		SRP	>	44		
2	>	RAV		DS4	>	RAV4 - 7		SR	>	212		
	H	RAIL	69 - A	0132	H	RAILV- 7		103	H	RAI	-	

ر ودُ	_	~	∞	-	13	13	M	108	91	46	23	9	32	46	10 10	35	8	39	5	() 1	13	56	7 7	14	ţ	92	28	36	15	36	t t	t U			4	
LCOM	RAI	RAIL	RAV	RAI3	RAI2	RAI	RAIT	TRAIS -	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAK	RAI	RAI	RAI	RAI	RA<	RAV	RAV	RAV	RAV	RA <	RAV	RAV	RA <	œ	RAV
AZI	H	н	>	Н	Н	H	ы	H	H	ы	ы	H	H	н	5 4	ы	H	н	н	H	>	H	ы	H	H	>	>	>	>	>	>	>	>	>	>	>
SYMBOL	10	5	A	20	၁	LCT	LAA	ELR8T3	LRB	LRBT	LR8	LRB	LRB	LRC	LRC	2	LRDÛ	6 2	LR02	LRDZ	LRD	L R K	ال 78 جج	LRK	LRN	LRV	3	7	7	_	R11	7	213	7	R21	82
TRAKM																																				
207	•	~	6 0					108																									÷5			848
M X	1	1.V	>	Н	H	\vdash	H	12 -	H	5-4	H	-	H	H	\vdash	:-	H	H	H	H	>	H	H	Ĥ	;	H	>	>	>	>	>	>	>	>	>	>
HODAL	œ	œ	œ	œ	æ	ď	04	TRA	œ	n/	œ	œ	œ	ď	œ	œ	œ	œ	æ	œ	œ	02	04	æ	α	æ	œ	O.	œ	2	œ	œ	œ	Œ	œ	œ
F02 H	ы	11	>	H	Н	н	Н	H	н	H	H	H	Н	H	H	H	H	H	H	H	>	ы	₩	ы	Н	н	>	>	>	>	>	>	>	>	>	>
ASETICALLY Symbol	2	2	≪(6	0	LCT	LRA	E13312	533	LRBT	ر در ارتا	643	1,33	بر ده ده	3	1.20	120	1201	22	L 20	280	٦ ۲	7%7	これ	1 % N	Z ~	2	3	2	ことら	2	R12	R	R13	82	R22
ALPH																																				
7.50 1.00	7	- 75		- 85		-130	- 32	- 32		₹ 6 -								- 38													47	49	1, 15	- 46		,÷
OLS SOR	RAIL	RAI	RAV	RAV	RAI	RAI	RAI	TRAII	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	Rill	RAI	3A V	2AV	RAI	RAI	RAI	RAI	RAV	RAV	RAV	RAV	2 A V	RAY	RAV	346	RAY	RAV
SY48 I/V	H	H	>	>	5-4	ы)	H	H	Н	H	H	Н	ы	H	н	Н	H	H	H	>	>	Н	H	H	H	~	>	>	>	>	>	>	>	>>	*
PROGRAM Symbol	2	10	⋖	4	20	LCT	~	ELRA	L 28T	L 2B	L 2B	. 28	7	2	L2C	L 2C	120	2	L 26	L 202	720	2	7%	2	2	1 2 2	7	2	2	<u>~</u>	2	7	212	2	221	8

	207	64 -				- 55												- 15			10 10 10 10					*									•	•	-10
	LC04	ZAV	RAV	Q A V	RAV	8	ZAX	RAV	8	RAV	2 A V	RAI	R A	₹	8	₹	4	RAI	RAI	RAI	RAI	ZAI	A A	RAV	RAV	œ	RAV	RA V	RAV	×××	RAV	RAV	241	R	RAVG	TRAILI	RAIL
	1/1	>	>	>	>	>	>	>	+	>	>	H	H	H	H	н	H	H	н	H	Н	H	н	>	>	ستق	3 *	(5)	>	>	>	>	>	>	>	H	H
	SYMAOL	22	R23	R31	8	R33	8	Ì	T	Ĩ	GAMRP	œ	⋖	L.	-	-	N	O.	HIR	787	_1	3	2	-	-	IR18	8	N	N	3	M	m	4	3	4	SHTT	
TRAKH																																					
•	700								Ś		- 62																								∞		i N
MODULE	LCOM	RAV	RAY	RAV	RAY	RAV	RAV	RAY	RAI	RAI	RA	RAI	Z A	A A	A	Z Z	A	A A	RAI	RAI	RAI	RAI	RAI	RAV	RAV	œ	RAV	RAV	RAV	RAV	RA V	RAV	RAK	RAV	RAV	TRAILI	RAIL
œ	1/2	>	>	>	>	>	>	>	H	H	>	H	- 4	H	H	;-4	H	6-4		H	H	H	H	>	>	>	>	>	>	>	>	>	>	>	Þ	H	H
CALLY	SYMBOL	N	23	M	m	32	m	I	T	I		2	∢	L	-	-	N	N	N	187		124	3	-	-	-	2	N	3	M	M	m	*	•	•	JHT3	Z
ly l	C03	\$	6.			51							ტ		W	0				142				∞												iv	
SORT	COM	> A	A >	X	A	A	A	A	A	AH	⋖	AI	AI	AI	AI	⋖	٠I	⋖	AI	⋖	IW	H	AI	AI	7	A	>	⋖	2	>	>	A	•	A	⋖	RAV4 -	Y
YHBOL	1/1 1/1	- >	<u>-</u>	∑	∓	₹	!	j	}- -	 	-	}	-	}	-	} -	!	j- -	F	!	-	-	-	}- -	-	•	}	-	*	-	j	-	-	-	-	<u>-</u>	-
ROGRAM		222	223	23	231	R32	8	12.2	T	I	⋖	25	SS	I	L.	H	2	H2	12	SLRI	S	SLRI	SLR2	SLR	2	7	3	3	22	25	3	8	8	2	4	IR49	

100	•	M		- 42		-140	- 38		•	- 43	- 41	- 41		- 73	1	-138	9	- 52	9	- 67			- 59		-144	4	*			24 -				0	
LC04	RAILI	RAILI	RAV3	RAV	RAV	TRAIL	RAI	RAI	RAI	RAY	RAY	œ	RAV	A	RAV	RAI	RAI	TRAIS	RAI	RAV	RAV	RAI3	RAILI	RAV	RAI	RAII	RAI4	RAI 3	Z	RAI	RA	RAV	RAVI	RAIG	QAT3
1/1	9-1	H	>	>	>	H	н	H	H	>	>	>	>	>	>	H	H	H	H	>	>	H	94	>	H	н	H	н	Н	H	H	>	>	H	H
SVHBOL	Ī	7	LAI3	AP	9	ATRT	ATR	ATRT	T	AY3	A2	A2	Q X X	-	TSI	ONRT	ONRT	LONRT9	SNO	0	00	0	Z	10	4URT2	à	è	œ	i	_	NELLU3		k.	ĬL.	-
TRAKH																																			
707	-13	1 70	4			-140	*				- 43		- 74			-138		- 50		9		-152	•			.\$				- 42					C
HODULE	RAIL	RAI	RAV 2	RAV	RAV	RAI	RAI	RAI	RAI	RAV	RAV	RAV	RAV	RAV	RAV	RAI	RAI	TRAIS	RAI	RAI	RAV	RAI	RAI	RAV	RAV	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAV	RAI	1
FOR W	H	H	>	>	>	H	H	⊢ ÷	⊷ ;	>	>	>	>	>	>	H	H	н	Н	H	>	H	H	>	>	н	H	H	н	H	H	н	>	н	٠
9ETICALLY SYMBOL	I	Ĺ	4	d	AD	ATRI	ATRT		M		LAY	LA24	-	LTMP2	_	-		LCNRT8			1024	240H	MHT	MPI2	IdH	MURTA	HU23	ND32	NON	_	NELLUZ	D	-	5	0
ALPHA	-4	v.	ത	_	~	~	.*	0	1 -1	2	8	-4	. .	. +	m		ac.	70	9 0	10	~	٨ı	C)	.+	ľ	.3	10	rv	-4	C)	~ 1	-4	er)	2	·
RTED LO	1-1	H	H	+	1	-14	•	.+	•	•	1		- 1			•	-13	t	-13	•		-	-15			-14		-14	-	3	4	+	•	-19	1
LCOM	RA	RAI	RAI	241	848	RAI	RAI	RAI	RAI	RA	RAV	2AV	ZAV	ZAV	2AV	2 A	RAI	TRAIS	RAI	RAI	ZAV	RAI	RAI	RAI	RAV	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAY	RAI	+ V C
SYMB(₩	H	H	>	>	H	H	H	н	H	>	>	>	>	>	>	H	H	Н	н	>	н	H	H	>	H	H	Н	н	⊷	H	H	>	H	٠
PRJGRAM Symbol	7	2	Z	AI	AP	ATRT	ATR	ATRI	ATR	AT	AY	A 2	7. Z	S AD	E	75	GNRT	LOVRIZ	ONR	GNR	S	5	2	Ţ,	H	\supset	3	\supset	0	113	113	7	NAMEN	257	-

ROGR	BWA	OLS SO	0	ALPHA BETI	CALL	œ	HODULE	•	TRAKH				
	1/1	LCOM	9	S	YMB0L	1/1	LCOM	707		TOEMAS	1/1	LCOM	707
7.2	H	A.	7	2	a	H	RAI	- 10		}	H	RAI	
7	>	RA			0	>	RAV	- 69		000	>	RAV	
000	>	RAV		0	0	>	RAV	- 69		HIR	H	RAI	m
¥	H	RAI	M		4	H	RAI	m		HIRT	H	RAI	23
HIR	H	RAI	N	•	1.23	H	RAI	8		HIR	H	RAI	8
HIR	н	RAI	~	•	22	H	RAI	M		AZK	H	RAI	m
HZR	H	RAI	-13			H	2	-134		H2R2	H	RAI	
H2R3	1 1	RAI			23	H	RAI	~		H2R	H	RAI	N
H3R	M	RAI			m	H	RAI	*		HUR	1-4	RAI	M
H3R	H	RAI	m		m	H	RAI	~		H	H	RAI	~
HUR	H	RAI	2	a .	m	H	RAI	2		2	H	RAI	•
RA3	H	RAI	•		⋖	14	RAI	- 80		œ	H	RAI	
33	H	RAI	4	۵.	8	H	RAI	-116		88	-	RAI	
8	H	RAI	-11	a	•	H	RAI	-		8	H	RAI	-
8	H	RAI	~	a	8	Н	RAZ	- 70		œ	H	LIN	
8	H	RAI	0	۵.	C	H	RAI	48		2	H	RAY	
8	>	RAY	<u>ئ</u> د	Q.	R 33	>	RAV	- 22		2	>	RAV	
5	>	RAY	- 2	a.	RK2	H	RAI	- 75		PRK3	H		- 75
4 7 4	н	RAI	1	•	ጽ	H	RAI	- 75		2	H	RAI	
æ	н	RAI	•	a.	_	H	RAI	68		218	H	RAI	
Z	ы	RAI	<u>6</u>	۵.	RN3	H	RAI	96 -		Z	H	RAI	
Z	H	RAI	о	۵	3	>	RAV	- 30		>	>	RAV	
æ	>	241	<u>m</u>	Q.	R.	>	RAV	- 30		W	>	84	
83	>	248	i N	۵.	R¢	>	A K	- 56		œ.	>	RAV	
7	>	RAK	1	a .	u.	>	RAV	- 60		FAF	>	RAV	
TAF	>	241	9	a .	AX	Н	RAI	- 47		TAXQ	H	RAI	
TAXQ	н	RAI	•	a	⋖	H	RAI	- 47		-	н	RAI	
TAY	.	RAI	į	•	AYQ	H	RAI	84		TAY	H	RAI	84
TAZQ	H	RAI	÷	a.	74	H	RAI	64 1		TAZ	H	RAI	64 -
TAZG	H	RAI	*	a .	LSE	>	RAY	99 -		ULSE	>	RAV	99 -
U.S	>	241	9	۵.	2	>	RAV	- 66		URI	>	RAV	- 10
U?I	>	RAV	- -	Q.	RI	>	RAK	- 10		2	>	RAY	
3	>	ZAX		Q.	9	>	RAV	-		3	>	RAV	
3	>	RAV		α.		>	RAV			\supset	>	2	- 60
PUጓ&	>		- 61	1 P	0 29	>	TRAVS	- 62		PUR	>	TRAVE	٠
7	H	RAI		Q	-	н	RAI			\supset	H	Z	- 50

	207				- 59		•			- 51											- 53				.		- 21	i R		- 26	6		75	- 81		-118	
	LC0M	RAX	RAI	RAZ	RAI	RAV	2	RAY	RAV	RAI	RAI	RAI	RAI	RAI	RAI	RAV	RAY	RAV	RAV	RAI	RAI	RAI	RAI	RAI	RAV	RAY	RAV	RAY	RAY	RAV	RAV	RAV	RAY	TRAIZ	RAI	RAI	RAI
	1/	H	•	H	H	>	>	>	>	H	-	+	H	н	H	>	>	>	>	н	H	H	н	H	>	>	>	>	>	>	>	>	>	H	H	-	н
•	SYMBOL	8	m	10	Ř	œ	œ	œ	œ	-	w	2	M	3	3	œ	œ	œ	œ	4	PH2R2	N	30	4	K	K	8	Li.	8	8	3	K	2	QRAZ	ORA	arbt4	60
TRAKM																																					
:	Ö	53	53	26	53	11	11	•	92	# D	44 K ,	2	57	21	90	12	σ	89		25	25	52	50	61	6 1	4	20	4	ĸ	1 2	w	Ø	30	ø		7	
	_	•	•	•	•	4	8	ŧ	9	•	•	•	•	ŧ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7	•
HODOL E-	COH	RAI	RAI	RAI	RAI	RAY	うほん	RAV	RAV	RAV	RAI	RAI	RAI	RAI	RAI	RAV	RAV	RAV	RAV	RAI	TRAII	RAI	RAI	RAI	RAI	RAK	RAV	RAV	RAV	RAV	RAV	RAV	RAV	TRAVI	RAI	RAI	RA 7
œ	3	Н	j edj	H	; (>	>	>	>	>	H	H	H	H	H	>	>	>	>	H	H	H	H	H	H	>	>	>	>	>	>	>	>	>	Н	H	H
PETICALL	Ø X ×	27	20	U3R	3	VZI	>	8	3.	>	V1 R	V 2	33.2R	23	X + X	3	3	3	3,	겊	닭	H2R	#3	X * X	¥	W X	XEX	K	7	YER	Ž	ZER	37	PZER	A A	53	R 3
E0				IV	- 59		. 11		9	- 57	. 51	. tis	**	- 57				6	٧			ທ	w	เบ			4			N		\$			87	7,7	11
ORT																																		5	m		
OLS	္မ	RA	8	2	R A	8	Z	8	A A	Z Z	8	RA A	8	8	A A	2	8	8	Q'	A A	A.	Œ,	8	A A	S.	8	2	A.	2	₹ 3′	4	8	A A	TZAV	RA	Z Y	A
SYMB	>	1-4	H	H	H	ы	>	>	>	>	s)radj	H	 -	ы	н	>	>	>	>	>	H	H	H	H	H	>	>	>	>	>	>	>	>	>	ы	H	н
PRJGRAM	Y MB0	11	UZR	U3R	Š	S+2	2	2	2	V R 9	7	V 28	V 2.R	V 3R	7	#ZI	3	3	2	3	#1 X	0.0 X	K	#3R	X+R	XIIX	XIIR	XIIR	YER	¥ :: 8	YER	ZER	ZER	PZER9	2 A 3	S S	מו

95Cq	Ø 7 >	05 50		ICALL	œ	MOOUL E	TRAKH				
9	17.	LCOM	007	SYMBOL	1/1	T WOOT	U	SYMBOL	1/1	LCOM	207
80	н	ZAI		æ	H	A A		~	ы		- 85
	.	ZAI		2	Н	RAI		N	H	RAI	- 65
<i>^</i> ~	>	74		2	>	RAV		2	>	24	- 23
2	>	> A <		· 02	+ (RAI		×	H	RAI	- 76
0254	,	ZAI		¥	H	RAI		귅	H	RAI	06 -
, ,,	H	ZAI		교	H	RAI	26	\sim	;- -4	RAI	96 -
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H	ZAI		843	4	RAI		Z	H	RAI	- 97
Z	н	ZAZ		2	>	RAV		2	>	RAV	
' ~	>	Z A V		2	>	RAV		N	>	RAV	- 57
M	>	Z A V	- 57	480	>	A		<u>ج</u>	>	RAV	
	>	ZAV		A	>	RAY	m	5	>	RAV	m •
A 2 R	>	> A V	1 00	A12	} ~4	RAI	3	•	H	RAI	3
1	Н	ZAI	-146	A1	H	RAI1 -	3	2	H	RAI	3
2	H	ZAI	\$	A2	H	RAI	3	•	H	ZAI	-147
M	H	ZAI	•	Ø	H	RAI3 -	4	4	,	RAI	*
(d	•	RAI	4	ö	H	RAI	m	43	H	RAI	•
C	H	ZAI		S	H	RAIZ -	N	19	ы	RAI	-126
100	H	PAI		500	H	RAI	~	SRA	H	RAI	30
A & 5	•	ZAI	M	G?A	H	RAI	60	8	н	RAI	- 30
GRET	н	RAI		G23T	H	RAIR -	0	GRBT	H	RAI	-104
9	H	ZAI	S	3	H	RAI	71	19	H	RAI	- 73
328T	H	ZAI		G29T	H	RAI	77	388	H	RAI	-104
5885	H	RAI		643	H	RAI	21	6:3	Н	RAI	- 21
62.0	H	RAI		628	H	RAI	19	503	M	RAI	- 20
G 28	H	RAI		648	H	RAI	22	8	H	RAI	12.
540	H	RAI		620	H	RAI	33	GRC	₩	QAI	- 33
G 2C	H	RAI		640	٧	RAV	16	GRO	>	SA S	- 16
3	>	ZAV		3	>	RAV	16	5 8 8	H	RAI	- 24
GZK	H	RAI		54	H	RAI	77	GRA	H	RAI	~
3		RAI		3	H	RAI	ev.	GRKB	H	43.I	9
GAX	- -	RAI		3	H	RAI	72	GR	1-4	RAI	- 36
6418	H	RAI		6418	H	RAI	36	GRL	H	RAI	- 36
E 60	H	RAI		54 X	H	RAI	6 2	7. 20	ы	QAI	- 62
X H Y S	H	RAI		3	H	RAI	43	GRN3	H	RAI	
~	H	TZAIG	- 43	RGSX	H	TRAI1 -	£43	2GRVP2	>	TRAV2	- 24
620	>	ZAV	- 24	62	>	RAV	54	GRV	>	RA	- 24

	207	34	r					85 8.9					11			•	11						9														
	_	•	•	•	•			H			5	•	•	•	•	•	•	•	•	•	•	•	H	>	H	*	-	>	-	5	-	5	H	5	H		
	LCOM	RAV	RAV	RAY	RAI	RAI	RAI	2	RAI	RAI	RAI	2	A A	A A	A	A A	Z	8A	RAV	RAV	RAV	RAV	TRAIL	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	4	RAI	A A
	1/1	>	>	>	н	H	H	H	н	H	f4	1-4	} ~{	H	н	>	>	>	>	>	>	>	H	H	Н	Н	Н	м	÷4	ы	н	Н	H	H	H	H	н
	SYMBOL	ဇ	98	G	9	H	H	H	7	7	I	S	SF	S	S	S	S	5	HX	>	>-	17	ZY. CZ	₹	2	0	M	2		*	10	5	9	30	~	•	38LN
TRAKH																																					
•	ပ္	*	\$	•			3		9	σ	12	~	10	13		^	10						1 0												16		
•	_	•	•	•	•	:	<u>_</u>	÷		-	;	•	•	•	•	•	•	•	•	•	•	•			-	-	.	<u>,</u>	H	!	.	;	; H	;	1	;	.
MODULE-	LCOM	RAV	RAV	RAV	R	RAI	RAI	AX	œ	8	RA	8A	8	RA	A A	8	A A	RA	RAV	RAV	RAV	RAV	TRAIL	RAI	RAI	Z	RAI	8	RAI	RA	PAI	4	A	œ	RAI	RAI	RA
œ	1/1	>	>	>	H	H	H	H	H	H	H	H	H	H	H	>	>	>	>	>	>	>	H	H	H	H	•~	н	H	- 4	H	₩	н	H	H	H	H
ETICALL	SYMBOL	3	3	8	2	4	14	A	7	7	¥	2	S	S	SF	S	S	S	×	×	Y	7	RIHT	-	~	8	M	m	4	4	S	S	Ó	ø	RIHT	-	6
	0	34	m	9	91		83	85	89	€0	11	14	σ	12	15	15	თ	12	'n	88	69	9 û	06	3.5	17	35	20	37	23	38	25	39	29	0.7	32	1 1	35
RTE	-1	•	•	•	•	•	L	:	L	_	_	-	•	•	•	•	•	•	•	•	•	•	•		<u>,</u>	L	<u> </u>	4	<u>-</u>	<u>.</u>	-		->	L	-	Ļ	٠
S	LCOM	RAV	RAV	RAV	RAI	RAI	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	8	A A	8	Z Z	Z A	4	8	RAV	RAV	RAV	TZAV1	RAI	RAIL	RAI	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	RAIL	œ	RAIL	RAIL	RAIL
×	1/1	>	>	>	н	ы	н	H	ы	H	H	H	н	H	H	>	>	>	>	>	>	>	>	H	H	₩	H	-	H	H	H	H	ы	H	ы	ы	H
ROGR	SYMBOL	8	3	3	dOT	9	4	4I>6	CH	25	7	T	SF	Si	S	SI	S	1/1	S	×	>	12	RZI	-	-	S	~	~	3	*	*	u,	S	'n	262	~	R72

		u	ICALL	2	4000LE	- KAKE				
1/1	LCOM	007	SYMBOL	1/1	T 10	•	SYMBOL	1 /1	LCOM	200
Н	RAIL	24 -	•	H	RAILV- 3	.0	•	ы	RAIL	- 37
H	RAIL	- 35	0	H	RAILI- 1	_	g	H	PAIL	
H	RAIL	- 43	σ	ы	RAILV- 3	•	9	H	RAIL	
H	RAIL	14.	PI	H	RAI - 3	_	8	>	RAV	
>	RAV3	- 33	8	>	RAV4 - 3		9	>	RAVI	
H	RAIL	- 69	S	H	RAILI- 7	_	3	H	RAIL	
H	RAIL	24	8	 - 1	RAILV- 4	-	S	F 4	RAIL	
H	RAILV	10.00	5	H	RAILV- 4	·e·	20	H	RAIL	
H	RAILV	n+ +	20	H	RAILV- 4	•	20	H	RAIL	
H	RAIL	- 13	40	H	RAILI- 2	_	6	H	RAIL	
H	RAIL	- 25	9	H	RAILI- 2	•	6	×	RAIL	
1-1	RAIL	- 25	P	H	RAILI- 2	.0	9	> 4	RAIL	
H	RAIL	- 51	90	H	RAILV- 5	•	90	н	RAIL	
ы	RAIL	at in	50	H	RAILV- 5	10	50	6-4	RAIL	
—	RAIL	- 57	90	H	S-ATIVE	_	25	H	RAIL	
Н	RAIZ	H	023	H	RAI3 -15	_	ORB	H	RAI	
H	RAII	4	025	H	RAI2 -14	•	ORS	H	RAI	4
H	RAIG	-	80	H	RAI1 -14	•	ORT	>	RAV	
.	RAV		0	>	RAV4 - 6	-	DR1	>	RAV	
>	ZAV		3	>	RAV5 - 3	••	OR1	>	RAVS	
>	RAV		ď	>	RAV1 - 6	_	20	H	RAIL	
H	RAILI		20	н	RAILI- 7		20	H	RAIL	
1-4	RAIL		20	H	RAILI- 7		20	H	RAIL	- 78
Н	RAIL		20	н	RAILI- 6	_	0	н	RAIL	
н	RAI	10	IFT	H	RAI3 -	••	IFT4	H	RAI	
1-4	RAI	·	KOF	>	RAV2 - 7		KON	>	RAV	
>	RAV	- 76	KOF	>	24V1 - 7	_	¥	Н	RAI	7
H	RAI	- 16	¥	H	RAI+ - 1		¥	-	1 7	
>	ZAK	- 67	I	>	RAV3 - 8	•	Ĭ	>	RAV	- 67
>	RAV	- 87	Ŧ	>	RAV2 - 7	•	Ţ	>	RAV	
>	8	- 72	I	>	RAV1 - 7	•	Ø Z	H	RAI	
H	Z	- 15	80 Z	H	RAI4 - 1	••	8 2	+	RAI	
H	RA	10	2	>	RAV2 - 6	45	Ž	>	RAZ	
>	RAV	- 65	Z	>	RAV1 - 6	•	Z	>	241	
>	RAV	+9-	Z.	>	RAV4 - 6			>	RAV	64
H	RAI	- 87	Q.	н	RAI2 - 1	•		н	RAI	
	 > 	L <pre></pre>	I TRAILL - 42 II TRAILL - 43 II TRAILL - 43 II TRAILL - 43 II TRAILL - 43 II TRAILL - 25 II TRAILL - 25 II TRAILL - 25 II TRAILL - 25 II TRAILL - 25 II TRAILL - 25 II TRAIL - 150 II TRAIL - 150 II TRAIL - 150 II TRAIL - 150 II TRAIL - 150 II TRAIL - 73 II TRAIL - 73 II TRAIL - 73 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 75 II TRAIL - 55	TRAILI	I TRAILI- 42 I TRAILI- 43 I TRAILI- 43 I TRAILI- 43 I TRAILI- 41 I TRAILI- 41 I TRAILI- 42 I TRAILI- 42 I TRAILI- 22 I TRAILI- 22 I TRAILI- 22 I TRAILI- 22 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 23 I TRAILI- 150 I TRAILI- 150 I TRAILI- 73 I TRAILI- 73 I TRAILI- 73 I TRAILI- 74 I TRAILI- 75 I T	TRAILI- 42	TRAILI-	TRAILI	TRAILL	TRAIL

The second of th

	700	*	N	11		9	- 65					9	•		9		9								がはなり	5
	LCOM	₹	RAI	RAI	RAI	RAV	RA	RAI	RAI	RAI	RAI	2	RAI	TRAIS	RAIL	RAIL	RAIL	RAT	RAI	RAV	RA	RAY	RAV	RAI	RAI	
	\ \ \	н	H	H	H	>	H	H	-	H	~	H	H	H	H	, ,	H	6-3	H	>	>	>	>	ы	H	
	SYMBOL	8	82	RIK	RINF	RINX	œ	RKJ2	RK 32	RXX4	XXX	R P T T	RRF	1253	22	27	R 2	Z R	N	3	>	푺	3	F	XYFX	
TRAKM																										
•	700															9	•								-156	
MODULE	LCOM	RAI	RAI	RAI	RAI	RAY	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAI	RAIL	RAI	RAIL	RAI	RAV	RAV	RAV	RAV	RAI	TRAIZ	RAI
	3/1	H	H	H	H	>	н	H	H	H	H	H	H	}~ I	H	H	H	ы	ы	>	>	>	>	Н	н	H
PHABETICALL	TOB KAS	٥.	œ	88	RINF	とこと	RKJ1	RXJ	RKJ2	RKK	RKK5	RXX	RZF		RS	RZ	0.	82	22	3	3	>	4	긒	XYF2	>
	00	13	M	20	404	61	19	62	99	† 9	49	63		4		61	_	29	12	-	13	4	13	17	2.7	26
ORTE	_	•	•	ŧ	4	•	•	•	•	•	•	•		•	3	<u>م</u>	-	-	•	ŧ	•	•	•	•	•	-1
SO	70	414	H	\mathbf{H}	H	>	>	\vdash	H	\mathbf{H}	\mathbf{H}	H	H	H	H	님	H	I	H	>	>	>	>	H	AI1	H
OLS	Ľ.	œ	K	ď	œ	~	œ	ď	œ	ď	ď	œ	œ	œ	œ	ď	œ	œ.	œ	œ	œ	œ.	~	œ	7.2	œ
Y	1/1	H	H	H	ы	>	>	ы	H	H	H	H	H	⊷	~	ы	(4	H	H	>	>	>	>	Н	H	H
ROG	SYMBOL	O.	œ	23	NI Y	ZINX	œ	RK J1	2 X	2KK%	パスス	X X X	RZF	RZF	~	œ	~	~	7	\supset	\supset	>	x	X.	HO EX	>

The control of the co

k Andrews and the Commence of

The state of the s

THE STREET STREE

**

207	m	*	•	20	m		92			•		50		18	0
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
LCOM	S	Ø	S	W	S	1SPV	S	S	W	S	8	S	IJ	TSPY	
1/1	н	>	H	>	+	>	>	>	>	-	>	>	>	>	
SYMBOL	w	ES	HAXT	9	S	VEHAS	EHA	H	VERF	lel	EHT	M	E E	E I	
TSPXA															
: 2	2	4	0	ادعا	*	N	25	8	8	67	31	34	2	~	0
3	•		•			•	•			*	•		.,		
i	•	+	•	•	•	•	٠	•	•	•	•	•	•	+	•
FOR MODULEIVC		SPI	S		S	TSPV		S		SP	Sp		TSPV	Hd	
FOR 1	>	H	>	>	H	>	>	>	H	>	>	>	>	H	
ALPHABETICALLY SYNBOL	8.8	IIESK		PIF	TSPXG	•	VEHAS	VEHAS	VEHOT	VEHN		VEHTS	۲	VEHKI	
AL PHA 9															
20	σ	in	15	15	40	64	2	27	21	Φ	ř	33	35	30	K
7 7	•	•	•	•	•		•	•		•	•	•	•	•	•
OLS SORTE	SPI	S	S	v	S	S	S	S	S	S	G	S	n	TSPV	S
SYNB	H	H	>	>	H	>	>	>	>	>	>	>	>	>	>
PROGRAM Symbol	a	I :: S	!	>	GOP		HH	EHA	w	ш	EH.	w	111	VEHT	us

Section of the control of the contro

IN THE COLUMN TO THE THE PROPERTY OF THE PROPE

ì

APPENDIX B

SUBROUTINE LIST

TRP subroutines are listed alphabetically with their order numbers on the following pages.

	34:	×	٠.4	•	*	٠,	> P	• (>	Ď.	N	•	9	676	•	•	-	•	-	202	•		N	•	240	•		•		462	•		404	•		N	Õ	•	٠	€.	N				756
	AFRA1	AFBT2	AFBM	7 1 6 6 V			7	1	A KC	UXF	BKCAEK	CAAE	CINDER	CPAZ	CVANT	CACA	C^S1	CYSE	CONT	CONTS	C02	CVRD	FLET	-	DPCII	# T940	040	1246	\$A2.0	TSL3	718400	E011	ENSS	ENVIZ	ENVIS	ENANI	erre	FRHAT	GHKPR	CUE SS	¥5.2	MFI	X	NS2	NS.
	0	•		۱ ۵) () (• 1		8	•	2	•	102	9	76	-	•	-	286	-		N	655		194	;	283				N	531	N	Ñ	P		-	77		õ	ī	926		
	VUNT	AFDTt	C 104 4	A A		***	75.66	2001	ATANDS	AUXE	BCDPNT	BUFF1	CEKT	CPAGES	CSEPS	CACA	CYCX2	CYSS	CONT	CONT	> 2 0 0 0 0 0 0 0 0 0 0	COVA	OELET1	-	11940	DPGX1	HONDA O	1240	0P2V9	OTSLZA	07519	ECISA	£760\$	21/15	SIANS	MXV MXV	EDNS		GFOHAG	-	ILSTY	INFIL	INFX	INST	INSA
CK ORDER	Φ	۲	: 6) \ \	E		26	v	351	~	*	39	m	358	~	77	-	-	•	-	m	0	n	105	~	E	~	•	-	4			\$2\$	W	~	~	36	n	-	•	*	•	N. N.	3	Œ
ORT WITH DE	AOMZI	TONY	AFDAC	ACBMO	A5044	1014	24.4	TONK	ATANO	A CX	BAST	PD##C8	CFGHAG	0800	CSDCC	CVCII	CYCX1	CYSA	CONI	CONTA	CONT	C0 TV	OEFC	OTSPOSE		DPGXP	0P62 \$	0P1V	0250	DTSL2	01SL 6	Ž	END31	5	7	>	EPHTAG	EXPX	SEOC	787	_	NFX	INFVI	INSO	Ž
Ü	599	*) C	•	P) (•	Ē	Ē	Ō			25	-	4	0	-	•	116	4	~	9	•	242	•	•	M 43	9	5	•	-	191	ው	P	m	g	0	10	•	-	~	346		197
HA-A	ADM2	1631	A 10 3 4	AFORTA	: 3		נ ע	~	2	ACGR	A O A	\mathbf{H}	ō	A CH	_	CVCIL	×	CYS3	CYS9	CONTS	_	27	-	DICT	1940	×	98222	» 140	0P2V	_	_	3	FICEN	-	-	FNVR	-	ш	!!!	_	-	IJEI	INFVI	INP24	61
ALP	Φ	0	N P	• 1	•	•	A 8	n	5	•	10	731	17	5 ¢	σ	*	8	457	•0	285	-	•	N	0	678	•	•	S	8	m	•	•	785	~	~	-	~	0	-	539	•	•	3,5	33	136
	*	٨	A:011				7 7 7	Ž,	U.	=	5	5	4	CKMDU.	~	>	>	>	>	HO	HO	(3	ECH ECH	L	TO I	a	٥.	P11	۰	TSL	12	VEC	EIGAML	Z Z	z	~ > z	> > 2	ござ	ETAD	74	FIE	HUS.	z	ů.	INSSEA
			è		• 3	•	,	v		m	in		ŭ		+		In		9	284	-	m	-	N	-	251	~	82	92	13	4	9	362	g	Ġ.	10	σ	3	O	•	m	1	175	N	193
	AC0S0	Ŀ	100	1 2 4		18	224		SE SE	E	×	MAI	7	TONI	PII	ICI	XCA	4	157	IXO	Z	> Z	ATES	141 1-1 141	CXTH	9	•	P1I	2	5	-	20	EERZXX	X	z	× ×	> >	ž N S	•	¥	CHE	9	INFV	INFX1	INSSS

TANTOCOMO JOHN PROCESSION NOW TANDOCOMO PROGRESSION PROCESSION AND THE STATE OF THE
CINCIBRORGENCOS INVINCENCON DENCONTRACTURA L'ACTURA DE CONTRACTOR DE CON
ARREST SAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
ARRADA PETPETE CONTRIBUTE COLUMNIUM CONTRIBUTE COLUMNIUM
SBN 9NM NG IL JEBO SENIMAL MARKET SEEM NJ ITH FOLK JOJEM IN MM PHILER LINE LINE LINE LONG JEFO IS IN IN IN IN IN IN IN IN IN IN IN IN IN
HINDHINHHINDS TEETEREN REGEREN REEN REEN REEN REEN REEN RE
BENEVER SOL FRESH SEEN SEEN SEEN SEEN SEEN SEEN SEEN S
ARREST SEPRESTER SERVICE CECHNICH CONTRACTOR
そのものできててながらないのでもなりままらきまるののというかい とりゅうと しゅうと しゅうしょう しょうしょく しょうしょく しゅうしょう しゅうとう しょうしょう しゅうと しょうしょう ちょうしょう こうしょう いくかいしょう いくりょう いくしょう いくかいしょう いくりょう いくりょう しょうしょう ちょうしょう ちょうしょう いんしょう いんしょう しょうしょう ちょうしょう しょうしょう しゅうしょう しょうしょう しゅうしょう しょうしょう しょう
ARE BUSHING STATE ALL STATE ST

THE CONTROL OF THE PROPERTY OF

	-		ĕ	158	Ñ	•	•		•	17	2	-	•		-	•	•	•	•	•	-	•	•	124	•	•	8	*	~	20	ም	•	~	102	•	•	926	4	2		•	613	•	o
24875	A 100	BIN:2	SENT	SENIS	SFRSKI	SENAT	SERVS	SERI	SERIZ	SERVI	SERVS	SERVS	SPCT	STRII	STRTP	STRV2	2000	1652	TGBE1	THINTS	11011	THOIS	THOSE 3	14085	TMOTO	7 MOT &	100	1 X 0 X 4	TRAILV	TOPES	TRAKE	ZZ	7	2	REE	2	2	S	SPI	S	بر	-	102	ê
356	313	787	12.1	161	721	320	791	971	20	122	4	522	216	276	;	111	214	•••	F 9 3	315	318	316	109	124	671	374	269	152	263	265	66	404	5	273	272	24	510	193	243	\$ \$ \$ \$	9	649	407	11
24076	RHB V1	6 13K 1	I Way	4125	SHASPA		12 X X X X X X X X X X X X X X X X X X X	SEAT	STRIZ	SERVI	SERV3	SERVS	SORT	STRII	STATC	STRVI	>NOS	1681	TGDEN	THE RT	11011	71615	TM8512	THOSE	14878	THOTA	14016	•	TARILI	TRAIZ	*	TZAKP3	744	TRAVE	TRAVS	12P12	12933	2000	TSPII	TSPX	19300	A C62	WTC1	XYZRTC
\$65	166	404	48	326	125	159	331	218	75%	25	223	20	647	106	276	288	727	295	404	26	314	317	663	674	681	679	579	121	16	9 6	192	706	764	101	101	21	926	779	241	446	9	500	499	204
RH613	RHOV1	70020	SFMT	SENT	SERSE	22.30	SERVE	SFRCE	SERIT	SERVI	SERV3	SERVS	SINT	STRI	STRES	STRV1	SUMRY	TBALI	TGBEB	168	THOI	11011	THOSTI	THOSE	THOSA	THOTA	TM076	THOVE	TRAILI	TRAIZ	TRAIS	TRAKP	TRAKE	TRAVZ	TRAVS	TRP11	TRP32	Tep42	v	S. S.	ding-	193	PRP	XVEH1
•) P	328			•	•	-	-	53	~	ø		•	-	•	O	•	•	•	•	•	295	N	•	•	60	•	Φ	o	•	σ	•	0	-	m	277	22	•	*	661	C)	101
- 2		V		SERIS	SENSO	SENS	SERVS	SERVE	SERII	¥25	SERUZ	SERVA	SYND	5721	STRI3	STRV	STRV3	TARU	1635	168	121	THOIS	150H	THIS19	THOSE	THETP	1 40 1 5	12 00 7	FRAI	TRAIL	TRAIL	TRAKH	TRAKS	TRAVI	TRAVE	TRP1	TRP 31	TRPLI	TSPI	ŝ	S	VAKS	S	VE
563	352	622	4 (/)	156	888	587	330	333	90	732	734	736	£0.8	763	10e	279	113	765	683	16	583	167	418	647	423	674	577	320	93	26.	252	404	964	100	272	609	217	269	515	242	450	516	623	52.7
RMOTI	£	6		1	E L	ERS	Z	EN	ERI	26	ER	ERV	Ž	TAT	TAI	726	2	9	S	5	XX	THUIS	20%	5	LSGKL	I SI	HOL	701	RAI	RAI	Ĭ	245				œ œ		å	T 3 3 1 0	S	SS	3>0	T	XAZY
716	3 0 0		10	326	~		N	m	-1	~	~	55	16	٠		N	40	ø	40	.0	•	316		685	·v	~	•	0 1 E	ſV	0		σ	o.	S.	~		0	3	514			339	~	36
RMOTP	9	2	1	NI	Z	Z	2	EX	w	ď	2	ERV	붗	DEB	FRI	TRI	18	4 40	SS	99	X	TM612	NGS	0.5	THOSS		-	1 MO 4	2	TRAI.	2	ZYK	XXX	TRAV	ď	189	78P2	8	12516	S		111	8	>

THE PARTY OF THE PROPERTY OF T

APPENDIX C

SUBROUTINE CROSS REFERENCE LIST

TRP subroutine cross references are listed on the following pages.

RELOCATABLE CROSS REFERENCE MAP

ROUTINE				CALLING	ING SUBROUTINES	r I NES			
T RP	×								
LOADOV	×	RXII d.K	TRP1	FIND	KODX2A	M00X2	PFRP		
RECALL	×	LOABOV	MODX2A						
SPEEDY	×	* XIII d.							
BLANK	×	LOADOV	LOABOV	MPEXM	HPEXH	CRAL	CRAL	Z	FIND
		BKCHEK	BKCHEK	DELETI	DELET1	DELET2	DELETZ	DELET3	DEL ET3
		K D X	EXPN	INPLA	HTdNI	WYPOUT	WYPOUT	BPRINT	APRINT
		BP20UT	9PRPJT	DPUNCH	HUNGLO	INTERX	INTERX	MOVE	HOVE
		CEX	CHKT	CVART	CVANT	DICT	DICT	OT SL 2A	OTSLZA
		DTSL6	OTSL6	DT SL7	DTSL7	DTSL9	DTSL9	ILSTH	ILSTH
		ENPSM	INP2M	INSS1	INSST	INS22	INSSS	INSSSA	INSSSA
		INS228	INS228	NAMSER	NAMSER	PCOEFT	PCDEFT	PCEPT	PCEPT
		PCOPT	PCOPT	PCVRT	PCVRT	PORVI	PORVT	PITVI	PITVT
		PNOTLU	PNOTLU	PPLOTT	PPLOTT	PTCST	PTCVT	PTVMD	PTVMO
		PVHAXT	PVMAKT	SERCH	SERGH	AUXF2	AUXF2	ERR2	ERR2
		GTBLU	GTBLJ	GT BL U1	GT BL U1	MODX1	MOCKI	NOTL C	NOTEU
		REED	REED	XVEH	XVEH	XVEHL	XVEHL	SVCOP	SVCOP
		OBVAL	OBVAL	ECISA	ECISV	ROLATS	ROLATS	AKTPS	AKTPS
		BUFF1	OUFF1	OBTIM	OBTIM	SPCT	SPCT	MPEX1	MPEX
		D;SL1	DTSL1	OT SL 2	DTSL2	OTSL&	OTSL4	TSPX1	TXuSi
		TSPX2	TSPX2	RDCOP	ROCOP	1881	TSSI	TS\$2	TSSS
		TGOEB	T60E8	1681	T6S1	TGS2	TGS2	1685	TGS9
		1251	TRS1	INFXB	INFXB	INFX1	INFX1	SOEF1	SOEF1
		CFGMAG	CFGMAG	GRAVT	GRAVT	THINH	TRIET	SATPOS	SATPOS
		ADM1	ADM1	ADM2	ADM2	DERIV	DERIV	EULERC	EULERC
		EULERI	EULERI	INTS2	INTSS	RUK1	RUK1	RUK2	RUK2
		SHNKS1	SHNKS1	TZPZ	TRPZ	ITIF9	ITIFB	ITIF1	ITIF1
		CAIT	CAIT	NAHOA	NRHDA	NRMPR	KATA	PLIT	PLIT
		PZITZ	PRIT2	RESL1	RESL1	RESL 2	RESL2	RESL3	RESL3
		RSED	2SE0	VANTX	NAME	ITERI	ITERI	INGR	INGR
		HUCK	HUUR	ITSO	ITSO	ITS1	ITS1	1752	1152
		ITS3	ITS3	ITS4	ITS4	ITSS	ITS5	1156	1156
		85.1	ITS8	ITS9	ITS9	ITVLS	ITVLS	HAX	XV
		RITE	AITE	SINT	SINT	CONVER	CONVER	7	THINTS
		INTX3	INTXB	INTXC	INTXC	INTXD	CXTNI	INTSI	INTSI

			PANTE	PRNT1 SUMRY	PANT2 INS8	PRNT2 Insb	INS¢	INSE	INSS	INSS CRAL2
			OMTXO	CXTMO	ECINE	FOINE	HODELS	MODELS	PSIGZ	PSIGZ
			STATS	STATS	TRP41	TRE41	PFKPB	77. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7		PER 4
			PERSI	PERSI	98891	PFRP1	BNDGMK	BNDCMK	V O O O	CG < >
			DYNHI	DYNHT	EDIT	EDIT	EIGANL	FIGANL	GMKPA	GIKPR
			GMKPC	GMKPU	MAKS	HAKS	PFR2	PFR2	TRP43	TRPLS
			AKFXR	AKFXZ	CSEPS	CSEPS	DPVQ	DPVQ	OVCPR	DVCPR
			HATHER	MATHBR	RCVHTX	RCVMTX	RTCCV	RTCCV		
Φ	MPEXM	×	136							
~	PCOM	×	CZAL	OL AY34	INPLH	19300	FRMAT	ILSTH	TRP3	AUKFI
	: • •	•	ERR2 ITIF1	MODXIA	BUFF1 P2NT1	TRP31 Insb	MPEXB TRP41	HPEX1 PFRP3	ILSTR PFRP1	ITIF9 TRP43
•	LCMAX	×	HAX							
σ	CRAL	×	EXPN	INPIN	MPEXB	TSPX9	TRS1	CAIT	ITVLS	HAX
•			INTX8 PFRS1	INTXC	INTXD	ADM2I	INS¢	CRALZ	ps 20g	#080 080
10	GETNEN	×	CRAL	TRP1	DICT					
11	GETAJD	×	CRAL	DICT	CZALZ	PFRPB				
12	CPTIME	×	TRP1	CPAGES	ITER1	PRNT2	TREMS			
13	LINEF	×	BPRINT	LINE						
14	PPTIME	×	1461							
15	OLAY34	×	NPEXM							
16	SHIFTI	×	ALFNUM	DECHK	ICHECK	LEFJST	INSS3	SORT	OMPREP	SED
11	XYZRTG	×	RYOTO	APQECI	RTCCV					
18	TRP1	×								
19	FIND	×	INPIN	BPRINT	INTERX					

LEFJST					INPIN											INTERX				
ICHECK					DELET3											INPLN				
ALFNJH					DELET2						INTERX					DELET2				
BKCHEK		INPIN	HIGNI	INPIM	DELET1	HTANI	INDIA	HIGNI	INPLH	HIGHI	INPIN	INPLA	12911	HAPAN	INPIN	DELET1		TRP12	BPRINT	TRP12
× ;	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
ANDI	TRP11	BKCHEK	ALFNUM	CKMDUL	CHPR	DECHK	DELETI	DELETZ	DELET3	EPHTAB	EXPN	ICHECK	INPIN	LEFJST	VERT	HYPOUT	TRP12	BPRINT	BPRPUT	DPUNCH
20	13	22	23	54	52	56	27	28	53	30	35	32	33	36	32	36	37	38	33	G

								ATAND	IMUSB	SCFO	GAMGS	THOSS	TRP31	TSPX2	CYS12	0153	TRAKZ	D ()	XAXY Geometri	ARMC1	RHOTE	11015	RADIN	CINDER	ITIFB	RESL3	1156	ALPHAG	H	I ON	107	S S	2
								ASIND	GTALU1	RA NO1	ENSS	TMOST	SPCT	TSPXI	CAS9	OL 52	1685	ATER 40040		AMCR.	RMOTS	THETE	LOSAD	AOM2	TRPZ	RESL2	ю 1	CONTO	VAKS	N	INTXO	7	SYMOR
								ACOSB	GTBLU	QNT23	WTC1	RHGS2	09TIN	TSPXC	CYSS	OL ST1	1681	I T T T T T T T T T T T T T T T T T T T	ATAC	AERA1	RM072	THOTI	ATTEN	ADM1	SHUKST	RESL1	ITSZ	STRTC	A MA	7 LON L	INTXC	INSE	STATS
								SERCH	ERRZ	ONT 22		~	ROLATS	ILSTR	CYS2	OLSTB	16051		2780	AERM13	DEFC	RMDS6	SENS6	INTX3	RUKS	PRITZ	ILSI	INIS	AERHO	THOTO	INTX9	LNS	SOLV
								MODSER	COSD	7	SVCOP	PRP12	JUNKI	UTSL4	CAST	0P G25	T C D E B	A 00 10 0		AFRAS	PR0P9	RMOSA	SENSE	INVX	KUK1	NA NA NA	ITERI	ESURF	NOTE	2.40S7	SENSO	98099	PSIGZ
								ILSTW	\circ	HO DX S	*	VELA1	OBVAL	DTSL3	CACKI	0 P G2 M	05.57	> = = = = = = = = = = = = = = = = = = =	7 L		^	10	THENT	JUNKS	EULERI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	ITERB	K T C	20:50	RMOTO	THOST	DATEC	HTXPR
								FRHAT		40 DX 2 A	TAND	SUNA	THOSE	MPEX1	CACXB	0 P G L X	01.55	0 8 8 0 0 0 0	FORT	LJAT	AUX	RH 0S1	TMCSO	JUNKZ	EULERG	CAIT	XIEEA	6511	DJULA	2 M 0 T 9	TM0513	PRNT	EC IN
DPUNCH	DPUNCH	TRP12	19300		T2P13	INTERX		DICT	ATAND2	LCHOVE	SIND	IHHTX	TMOSE	E X I	ROCOP	005X1	0LS4		TMEXT	LANO	ARMG2	RMOTE	THOTE	SATPOS	DEKIN	ITIF1	48FC	9217	CONCE	H (140812	ul 9	DMTXD
×	×	×	×	×	×	×	×	×																									
CARDF	IFIELD	19300	T93HP	TRP13	INTERX	MOVE	TRP2	SERI																									
ų	Ņ	μŽ	4	rė	á	•	•	φ																									

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A TO TO TO TO TO TO TO TO TO TO TO TO TO	AATON TANGO SE SE SE SE SE SE SE SE SE SE SE SE SE	THOUSE TO LAND
PFRS1 NAKS OVOPR	SPCT HARITS HASS COUNT APPECI APPECI ACVET	ROCKATS OPGRATS OPGRATS OFFRES OFFRES TRRES PECTAL STREET ST	
PFR1 Girpr Cseps	PULTE HILLER HIL	CANDER CA	NOTICE NO
MMTK EIGANL AKFKR RTCCV	AKTPR INKEPR INKOR INKOR INCOR ACOCK RADGER RADGER	SVCOP TSS1 TGS4 ALGS4 SATPOS ITSED INTSED INTSED INTSED CEFP CSEPS	HTRX6 ADDA ADDA APDAECI ACCUTX CYST TGST TGST RSUM ENGCS
HDRO EDIT TRP43 RCVNTX	ECISK ITIF1 ITIF1 IDIOTO IDIOTO INFR INFR INFR INFR	TOUS TOUS TOUS TOUS TOUS TOUS TOUS TOUS	THE STATE OF
APGECI OYNNT YSBK RAOPC	SVCOP ITERS INTERS SYNDS GIRPU EIGEN	INS22A TSPX1 TGS2 INFX8 EULERI NRPR INTXC PSIGZ FOIT FOIT YSGK	DTSC110 DTSC4 SOCE EDIT THMTX TSPX1 CFS6 OCS3 CBTV CNC0
APCVM COVA GGKR HATHBR	ERRZ ROGOP RNSEU INSE PFRIGZ GHKPA	TOPERSON TOPERSON TOPERSON TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA TOPERSON TANAMA	AUXF2 DTSL3 SUMAY GO VA CO VA CO VA CO VS CO VS VS VS VS VS VS VS VS VS VS VS VS VS
PFRPB BNDGAK PRDQ LPGHR	DMPREP ILSTR RESL3 MAX INSX MTXPR MMTXPR EIGANL CSEPS	ILESTM SPCT TGGEG TGGEG CINDEG CAIT TACK ITACK SENSO SENSO SENSO SPCCA PAUD RADPC	HESTM CANTZ3 CAN
	×	×	××
	SEZII	S S S S S S S S S S S S S S S S S S S	SERV1
	0.50	iv H	o m

ARMC1	5	Š	2	26	œ	◂	z	2	>	-		VEL A1	REA		OTSL3	2		×	×	ENVRO	5	F			RR00	₹	PFRS1		202	S	ADOFCT	E011	KATIBE)
AMCR1	5	SENSE	N T	F	Z	5	SENSC	I	90	ui O		2NT 23	RNT		\sim	PRNT2		×	×	CONTO	-	0		CAAE	0000	240 TS	~	HATHAR	0	0	HA JOY	. • • • • • • • • • • • • • • • • • • •	DVCPR	
AERFA	AH OS11	-	ADM1	RSED	NUTE	11010	TMOSES	~	PFRP1	CSEPS		=	S	X	PEX	PRNTI		0	2	STRIC	ž	2			0	XARY	02	AKFXQ	CAIT	TTERA	DEDDS	MEGNA	Sessi)
AERM13	SOF	THVKI	SAND?	RESL3	730LA	RM0S7	TMOSIZ		PFRS1	AKFXR			14010	COVA	GT9LU1	Ä	MAKS	- 100	•	TRP35		. ~		TRAKE	te.	K > 0	-	TRP43	ITIE	VMMTX	1001	10000	AKFYR	
AERMS	SOH	I	ATP	211	2 Z O	HOT	SON	SIG	FRI	MAKS		2	ESURF	PFRP1	€ 60	S	COKA	XQU	X X	TRPSE	LON	MES		RAK	Z	TRS18	<u>د</u>	MAKS	۰.	U	u	12070	100	;
LJAT	RMOS3	THOTE	RADIN	KKKPK	AL PHAG		THOSTO	1	MTX	GNKPR	RTCCV	HU5	OTOOA	FRI	œ	TOF	PFRP1	XQQ	600	1223	200	I NS	CAR	\sim	9	TRS16	M	EDIT	⊐	· tı	ıu	2010	· te	
GRAVE	1 2	THOTS	VS.	2	×	-	TM0S9	M	2	A	RCVHTX	a	3P G24	MORD	TSL	TVLS	PFRI	Q II	D X	TRP32	2 4	HOL	RNT	⋖	ER	TRS1	R	COVA	4	ī	5 0	0 / X X	VATE	ATCC.
GEOMAG	R4376	THOES	ATTEN	CAIT	ITS8	SXVA	DUPOLY	ADM2I	APOECI	EDIT	RADPC	SL	S	SOLV	AUXF2	PAITZ	MD20	e. Ge	0 × 0 × 0	INST	A TRACTA	TNOTE	PANTS	TZAKB	LARY	RSUM	G.	PF2P1		D2TT2	- 4		10 4 G F R	ROVATX
												×			×	:		×	:					×			×		×	:				
												SERV3			SERVA			SACAS						TRAV			PFRI		95914	•				
												2			r.			r.)					22			40))	o u	`				

(_)

THE TRANSPORT OF THE PROPERTY

TTTFB RESL2 NAK NDRD EIGANL	TRAK TRAK PFRP1 PFRP1 CPCR		ITSS IAX IAKS	RECURSE OF AND OCARS OCA		TMOTE PRITZ TRP41	TS D X X X X X X X X X X X X X X X X X X
ROCOP RESCI APCVM EDIT OVOPR	TATSO TREINS MARSI OVCPR		ITS1 ITVLS GMK*U	TSPX2 RESLI IMEN ITSO ITSO APDECI OPVQ		CVC%2 PLIT THOTD	TSPX1 CAIT RSED
H PER PER PER PER PER PER PER PER PER PER	CONTRACT CON		ITSO ITSO GAKPA	A T T T T T T T T T T T T T T T T T T T		CYCX1 NAMP2 ITS9 AKFXR	SPCT ITIF1 RESL 3
SPCT PLIT ITS1 TRP41 TRP43	HTSL PSIG2 HHTK EIGAN: AKFXR		INGW ITSB ANDGMK	MPEXI NATER HTERE HTSS HTSS HTSS HTSS HTSS HTSS HTSS HTS	ITSO	SPCT NRMDA ITERB TRP43	OBTIN IIIF9 RESL2
NACTI NOCTI NACTI NACTI NACTI NACTI NACTI NACTI NACTI NACTI NACTI NACTI	HECHEN HE HECHEN		IHGR ITS6 PFRP1	SPCT ITTER ITTER ITSE 041X0 EDIT	ITERB	OBTIN CAIT RSED EDIT	BUFF1 SENS3 RESL1
BUFF1 ITERI PFRP PFRP QGFRS1	CAHTX CAHL2 APDECI OYNNTT YSBK YCCV		ITERA ITSS PFR1 DPVQ	AKTPS LITTE LITTE LITTE LITTE AUGH GGVA	HAX ITIFH	BUFF1 ITIF1 RESL3 DYNHT	AKTPS ITIFM PAIT2
A CANTY OF STANTY	LTTFL COVADA COVA COVA RCVKX	PFRP1	ITERB ITS¢ APCV4 AKFX?	RDLATS ITIFH RSED ITSS MAX BROGHK PROGH MATHOR	ITER1 ITERM	KKTPS ITIFB RESL2 PFRP1	RDLATS CYCX2 PLIT
OBVAL ITIF1 RSEO IMOTO MATK MATK MATK	AUCH AUCH PERPB BNOGHK PROG	ITERN	15PX1 1153 12P41 12P43	SYCOP ITTERN ITTSI ITTSI ITTSI ITTSI ITTSI PFRP1 PFR2 LPGHR	ITERB OSTIM	OBVAL TMVXI RESL1 MORO	OBVAL CYCXI NR4PR
×	×	×	×	×	× ×	×	×
> & u a	PFRV1	ITEI	ITEI	> !! H	ITEV1 ITII	ITIII	ITIV
09	51	29	8	.	65 55	6	6.8

Maria de maria de maria de como de com

HAX THUTO		ROCOP CYCXS S ITIFS ITIFL TREMS PERPI	INTX9 HATRO		TSPX1 TSPX2 CYS9 CYS9 CYS9 CYS9 CYS9 CYS9 CYS9 CYS9	2000P TSS1	SURF	CYCXB CYCX1 CYS7 CYS6 MTER INFXB	CYCKS CYCK1 CYS6 CYS7 DPG2M TGGE1
ITSB		T S P X S S S S S S S S S S S S S S S S S	TSPXE ITS6	ITIF	TOTO CONTROLL CONTROL CONTROLL CONTROL CON	TSPX?	LONGT	TAYED TAYED THE SAME TO SAME T	TSPX2 CYSS DPG14
ITS6 DYNWT		TSPX1 INFX1 HAX	ITSPX	TSPX1	CYCKA CYCKA INDEX INDIFA INDIFA INDIFA	TSPX1	INFXB	TSPKI CYSK TGSS INTXI CINDIN	TSPX1 CYS4 DPGX1
ITS1 PFRP1		HPEXT INFXB ITERT	HPS1 ITERB	TSPXC	MPSH CYCXB OLSTM INFXM MINDER INTOER	TSPXB	THOSS	THE CAND	OBTIM CYS3 DPGXM
ITS8 TRP41		MPEKB TRS16 RSE0	TP TGBEN TGBEN TPFEN	TSPXB	RACOSSE CVCXI INTXI LUNXI ILIOTXI ILIOTXI	SVCOP	14886	RAGENOS EL LE LE LE LE LE LE LE LE LE LE LE LE	RHOSSE CYS2 CYS12
ITERI TRENS		SPCT CYCX2 RESL2	APEXB OPGXB FRP	TSPXM	XVEHI 1552 1552 1754 1754 1750 1750 1750 1750 1750	XVEH1 ITER1	AUXF2	GAMGS CAST CAST ITIFI INTER	GTBLUS CYS1 CYS9
ITERB INSS AKFKR	MPEXB	AUXF2 CYCX1 RESL1	LCMOVE TSPX2 Ecinf	LCHOVE	XXEH TSS1 TSS1 TABEX1 TABEX1 TABES SUMMA	XVEH TSS2	ATAND2 CYCXR	GTSEUS CVCX2 CVS9 INS1 CAIT	GTBLUI CYCX2 CYS8
	×	×	×	×	×	×	××	×	×
	HPEI	MPEI1	Z PE	ISPI	T Spy	TSP11	SERIZ	CVCI1	AGAC
	69	0 %	11	22	m N	*	7.3	*	7.8

THE PARTY OF THE P

AMERICAN SERVICE CONTRACTOR CONTR

1 H I N 1 2		PRNTI	PROP9 RHOTS STRTP								9570			CYCXB TGS1	ITIF1	PRNT	CAAE	XARY
ITIF1		ITIF1	AERIC Deck Deck Deck Deck Deck Deck Deck Deck								01.57			ROCOP TGOEL	ITIFB	0 0 1 1 1	ABA	7 00
DERIV		ITIFH	STRT2 STRTC PANT1			SUMRY					95 70			TSPX2 TG0E9	INFX1	CXTNI	TRAKE	TRS18
CINDER		INSI	TGOE1 RHOT6 THOTG			0P62P		SUMRY			OL S4			TSPX1	INFXB	INTXC	TRAK1 PV00	TRS16
ADM2		DP GX 1	DPGX1 RMOT3 TMOTC			0PG25		0PG25			01.53			TSPXC CYS7	1685 11688	INTX	TRAKO	1281
INTX4 PRNT2		TSPX2	OPCXH RNGT2 THGT8	SUMRY	SUMRY	DPG2H		DP 62H			0 S S	01.571		TSPXB CYS4	1654 8 10 13	MTC2	TZAKC	RSUM
INTX3		TSPX1	CYCX2 RHGT1 RHGS18	DPGLM	DPGIN	DPG2M	0PG23	0P624	0P G25		0L ST1	OLSTB		MPEXI	TGS3	ITS9 SUMRY	TRAKB	RRGO
INTXA	DPGXM	ERR2 DP G2P	CYCX1 PRF8 RHOTC	CVS12	DPGX1	CYS12	DPG2H	DPGX1	DP62H	OLSTM	0LST3	DPGX1	TGOEN	SVCOP	1652 PFSI 4	ITS6 PRNT2	TRAKM	SN00
	×	×	×	×	×	×	×	×	×	×	×	×	×	×			×	
	1940	DPGI1	DP6∀	DP1I	0P1V	DP2I	0P2I5	DP2V	CP2WS	OLSI	OLSI1	OLSV	1091	TGGV			TRAI	
	62	90	91	82	83	*	82	0	28	80	&	06	91	95			86	

		RARY					X										+ 7. + 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
		COTV RNDD Senss					TRAKU CVN CVN										TH055 PV00 TH0T3
TRAKPU		CAAE RLGG THOTS					TÄAK2 Randt Täsib										VELAL MPATH TROTI STRTP
TRAKP3		A A B A A A A A A A A A A A A A A A A A					TRAK1 PV00 TRS16									MPRPI	SUNV OTODA RNOT6 THOSL3
TRAKP		TRAK2 RANDI					TRAKO HTER TRS1									STRTC	IHMTX TRAK3 ISP1 RHOTO
ITIF1		TRAK1 PV00 TRS18					TRAK8 LARY RSUM TRAKP				TRAKP3		STRTP			STRT2	ENS2 OLS2 LONGT MTC2
TMOTS		TRAKO MTER TRS16				TRAKP3	RNOSSE COTV RROG SENSS				RSUM		CINDIN			WTC1	WTC1 YMDS3 JNAT VC62
ITTEN	DTOOA	TRAKB MPATH TRS1	1281	TRS1	1381	TRAK3	ENS2 CAAE RNOB TMDTS	1881	TRS1	TRS1	TRAKS	DTOOA	CINDER	P C62	IXX2	PCG2	PVCGI THUST AIRV LUSAD
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	TRAILI	TRAI1	TRA12	TRAIS	TRAI4	TRAIS	TRAV1	TRAV2	TRAV3	TRAVG	TRAVS	TRAILV	STRI	STRII	STAIS	STAI3	STRV
	36	95	96	16	€0	66	100	101	102	103	104	165	106	107	108	109	110

194L1	140SL2	STRTP									ATIC AERRS AERPIS			ALPHAG		THOSS COTY Georag
۲ ۵ ۲	VCG2	WTC2									AIRV AERN2 AERNP		ENVRP	LJAT		THOS! TRAKS ATHC
ANCRI	SENSS	STRTC						CONTP2					GEOC	JNAT		RHOSSE TRAK2 AIRV
VCG1 STRTP	RHOSA	RHDS4						CONTO			HTER LJAT THOS13		ENVRS	ENVR		VELAS OLSS RROO
P C C C C	RES 1	RH0S1						PRFW			TEGSE Juat Aeric		LJAT	HTER		SUNV ECTSV PV00
P & C C C C C C C C C C C C C C C C C C	1934	STRT2	CONTPS					DEFC			SUNV GRAVT GFOC		JNAT	SUNY		THHTX THOSE MTER
PCG2 RM054	PVOO	WTC1	CINDIN	SDEF1	ENGC S	CONTO		SOEF1	ENGCS	CINDIN	THHTK GRONAG CONVER	5039	AIRU	GANGS		GAHGS
IXX2 RHOS1	PVCGI T40S13	IXX2 P20PP	CINDER	ENGCS	CONTA	ENGCS	ENGCS	ENGCS	CONTA	CINDER	GAMGS CFGNAG ANAMA INSMAG	ENVR1	NAS	CALD	LJAT	ENS2 TM0S6 DT30A
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
STRV1	STRV2	STZV3	CONT	CONII	CONIS	CONIC	CONIS	CON	CONV2	ENVI	ENVII	ENVIZ	ENVI3	+ I	ENVIS	ENA
121	112	113	क्ष	115	116	117	118	119	120	121	122	123	124	125	126	127

AERH13 Thota Esurf CPAZ Aerp13	2029	TRAK2 LJAT ENVRP			ARHCI		AERM13 Losao	AERP13	AERMC	AERMD		T D W D I	9 KF
ANRES JUNTS JUNTS THOTA ARRES ARRES	CONVER	TM0S6 JNAT TM0S11		AERMH	ANCRI		7 1 1 0 S 0	AERAP	TH3T1	R4076		0501	ISPI
AERAZ TAOTS SATPOS TAOTO	JNAT	THOS1 TRAVT TROT V		AERND	AERFH		TRAK2 RMOT6 AERP13	ARMC	P.H0S1	AUX		CONTO	DEFC
AERM1 11014 10540 11078 72013	GEOMAG	RHOSSE GEOMAG THOTA	AERP13	AR 4C2	AERH13		OLS2 Armc2 Aernp	ARHCI	TBAL 1	ARMC2		X 4.00	PROP9
TONGT TIBOTA ATTEN AMPAG TROME	CFGHAG	VELA1 AIRV THOT3	AERHP	ARMCI	AERNS		CYS12 ARMC1 THOS11	ANGR1	ANCRE	ARHCI		PZFW	P&0P1
LJAT RHOT6 THPXI GEOC TH0S12	ENVR1	SUNV ENVR1 THGT 2	CINDIN	AERFH	AFRAS		THOSS AFRT VAKE	AERFH	AERT1	AERA1	PROPP	92FB	PRPIZ
CTACTI TACTI TACTI TACTI TACTI TACTI	SUNV	IHHTX RROG TROTI	AERNO	AERH13	AERN1 AERND		THOSE Abrit Arrit	AERN13	AERFH Aerplu	AERN13	CINDIN	0EFC	PRPII
TATA TACA TACA TACA TACA TACA TACA TACA	GAMGS	ENSS MPATH Longt Insb	CINDER	AERNS	VELA1 ARHG2	A SHC S	VELAN ARRA ARRA ARRA ARRA ARRA ARRA ARRA A	AERNS	AERH13 Aerhp	AERNS AERP13	CINDER	940P9 940P9	WTC1
	×	×	×	×	×	×	×	×	×	×	×	×	×
	ENANT	ENVV2	AEZI	AERI1	AE312	AERI3	AERV	AERV1	AE3V2	AE243	PROI	PROIL	PROV
	128	129	130	131	132	133	134	135	136	137	138	139	140

1030		R4053	ATTOORY TOOLS ATTOORY ATTO	440TB	TM8514	TMGT		TH659		ECTS TROTS JUNKS TROSE	TNOT	71074 710512
0 0 0 8	RMOTE	RHOT6	0152 AR4C2 ANBS6 L05AD THOTE	VAKS	TH0518	ANDS7 IXS0	140510	THETV		ATTOOR OF THE CORP. THE CO	TRAKZ	TRAK2 THOS18
14071	CINDIN	RHOTS RHOST	A SECOND	2H0511	71017	GEOC TMDS13	THOTY	THOTE			7 x 0 S 6	THOSA THOS9
RH4S1	RMS16	RN074 RN07E	ARASS ARASA ARASA ARASA ARASA ARASA	RN0S3	TM876	HPATH THOSES	THOTS	THPKI		TIPO CONTRACTOR CONTRA	14055	THOST
TBAL1	RNOTE	RMOT3 RMOTO	AECTE AECTE THOTO TOTO	RM074 TH0511	THOTO	TM058 TM0518	TM0 T6	THUXI THUSIA		11001 11001 11011 11011 11001	TH054	TNOS6 TNOTO INS6
XQ XQ	RNOTO	RHOT2 RHOTC	VECTAL GEGERA ALCOTA ALCOTA	RHOS2 THOTY	THOTC	TH056 TH059	TKOTS	THOTA		4411 4410 4410 4410 4410 4410 4410 4410	T TON	TROSS
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CINDER	ANOTE ANOTE	SCINCE AND AND AND AND AND AND AND AND AND AND	RHUSSE RHUS7	CINDER	THOSE	THOT	THOTS THOSE3		RATOUS RATOS RATOS RATOS RATOS	11051 11010	7 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
Pafa	RM0 SSE	RMOSSE R40S6	RACOTA RA	VELA1 RHOTG	THOTOCING	24055E	PVCGI	TM071 T40512	14010	7 CC CC CC CC CC CC CC CC CC CC CC CC CC	ENSP THOSE	THOSE FM075 THOSE3
	×	×	×	×	×	×	×	×	*	×	×	*
	KHOI	RM0I1	A 6 5	RHOVI	TMOT	TMOIL	THOIS	THOIS	THOIS	V OKT	THOVI	THGV2
	141	145	F + 3	144	145	145	147	1 48	1:9	150	151	152

					SENSC													TGOE1 ADM2 ADM2I
					THOTO				INSB									CYS12 INTX4 INTX5
	SENSP3				SATPOS				SENSP3									CYS2 INTX3 INTXC
	SENSP				RADIN	SENSP			SENSC									CVS1 INTX1 INTX8
	CENDIN	SENSP			LOSAO	SENSD	SENSP	SENSP	RADIN	SENSA								CYCX2 TMPXI SINT
TMPXI	SENSO	SENSD	SENSO	SENSO	ATTEN	SENSE	SENSD	SENSD	LO SAD	SENSO	SENSO							CVCX1 THVXI ITIF1
THUKI	CINDER	SENSS	SENSS	SENSS	INDXI	SENS5	SENSS	SENS5	ATTEN	SENSS	SENS6	CINDIN		JUNK2		JUNKP		CYCXB THOTB TRPZ SUMR*
TMOTS	SENSS	SENSS	SENSS	SENSS	SENSX	09625	SENSS	SENS5	SENSXI	SENSS	SENSS	CINDER	JUNKS	JUNKI	JUNKS	JUNKS	INTXN	TSPX1 TGS1 DERIV PRNT1
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
THOVS	SENE	SENII	SENI3	SENI4	SENIS	SENV	SENVI	SENV3	SENVA	SENVS	SENV6	INDE	JUNI 1	SINDS	JUNV2	JISHV3	INI	INTIT
153	1.54	155	156	157	158	159	160	161	162	163	164	165	166	157	168	169	170	17.

172	INTV	×	ERR2 TSPX1	GT BLU1 TSPX2	GTOLUS	GAMGS	SUNV	RMOSSE CYS1	THOSE	JUNKI
			CYS	CASE	CYSB	CAS9	CYS12	DPGIN	DPGZM	TGOER
			T69E1	1651	1653	TRAKB	TRAKO	TRAKI	TRAKE	TRAKS
			S C C C C	# 6 A A A A A A A A A A A A A A A A A A	A KOLO	1851 6	INFXB	DEST	INNI Denta	1004 0
			RNOTA	RNOTS	RHOTE	RNOSE	RM0S11	THOT	THOTZ	11013
			THUTE	THOUN	THOTE	THOTE	THOSE	SENSS	SENSS	SENS6
			JUNKS	JUNKS	INTX1	INTX3	INTX	ADM1	ACN2	ADVT
			CINDER	DERIV	EULERC	EULERI	RUKI	RUK2	SHNKSt	TRPZ
			ITIF1	PRITZ	RESL1	RESL 2	RESL 3	1756	ITS8	SINT
			CONTO	RACTS	RHOTC	RHOTO	RNOTE	SENSD	INTXB	INTXC
			DALKO	APHZE	INTRI	というない	INSC	LINE	PRNT1	PRNT2
			CONTAC	IKSS	オンスと		SUMRA	LNSB		
173	INTV2	×	INTX4	ADM2	INTXD	ADHZI				
174	INFI	×	INFXA							
175	INFI	×	MPEX1 INS3	INFKE	INFXB	INFX1	INSI	1150	PRIVIT	PRNT2
176	INFV	×	INFXH	INFXB	INFX1	INST	PRNT1	INS3	M	INSB
111	INFV1	×	ISPX1	ITSO	INS	E S Z I				
178	INTVL	×	TSPX1 SHNKS1 HOMP	ADM1 TRPZ	ADM2	EUL ERG Intx9	euleri Intxc	INTS2	RUK1 ADHZI	RUK2 Inys1
179	MASA	×	LCMOVE							
180	BCDPNT	×	DICT	FRMAT	ILSTW	MODSER	SERCH			
181	CHKT	×	PITVT							
182	CPAGES	×								
183	CVAHT	×	INSSS							
184	DICT	×	INP2M							

					SL6 PCOPT																
					OTSLB																
CPAGES	INSSS	INPZH	INP2M	INPON	07SL7	INPZH	INPSM	1882	97840	DTSL7	INS22	INSS2	OTSL8	FZHAT	DICT	ILSTH	CPAGES	INSS2	INS22	INSS2	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	*	×	×	×	×	×	×	
DISPOSE	DTSL2A	DTSL6	DTSL7	DISLA	OTSL9	FRMAT	ILSTW	INP2M	INS21	1NS22	INS22A	INS22B	INS23	LINEH	LINEO	MODSER	NEGZERO	NAMSER	PCOEFT	PCEPT	
185	186	187	188	189	190	191	192	193	194	195	196	161	198	199	200	201	202	203	204	205	

RESL3 ITS6 O ALPHAG O OEOI THOS18 CINOIN A LCH R TREMS I PFRPI PFRPI R EIGEN	RESLITION HOSELS TASS	AKTPS OCCS OCCS OCCS OCCS OCCS OCCS OCCS OC	1 QNT 22 TMOTO
RESCUENT CONTROL CONTR	SPETTS TITS TO CONTINUE OF TAPES TECHNIST TAPES TEC	SE SOURCE STATE ST	U POLY1
PRITZ RESL1 ITS1 SINT SINT AERNO AERNH THOTO THOTV INTXB INTXG INS6 INS5 SOLV STATS HNIX PFR1 EIGANL GHKPR AKFXR GSEPS	AKTPS NRHPR INGR INGR INSO INSO INSO INSO INSO INSO INSO INSO	TATE OF THE CONTRACT OF THE CO	RX6 NDTLI
MRMPR PRI ITERI ITS ESURF SIN MUTE AER RHOST THO SENSO INT PROPP INS PROPP INS PROPP INS PROPP INS ROPP ARF	ECISY AKTI ITIFI NRHI ITERI INGH INGTO INSH HOHP SUM PERPI BNO HAKS AGGN	INSS28 RDGOP TSS1 TGS3 TGS4 INS1 SENS6 SENS6 INTS2 PLIT RSED ITS6 ADM21 SOLV HMTX HMTX PFR1 GANL GMKPR AKFXR CSEP	HTRXI HTRXE TSPXI ADA
NAME OF COMMENT OF COM	SVCCOP TITERS TITERS TANKS SAKSON CARROL GARROL GARROL GARROL GARROL GARROL	TITE SECOND SECO	DTSL16 H
CALT LTS9 LTS9 THOULA THOUS FFLITI AFRA THE	ERRE ROCOP INSED PSNSC OCHICA CORPA	INSSE TGGES INSE INSE INTX INTX INTX INTX INTX INTX INTX INTX	AUXF2 DTSL3
ITTITE ROLL OF THE PROPER PROP	OMPREP ELSTR INAX INAX INTXN ELGAN CSEPS	A PROPERTY OF THE PROPERTY OF	ILSTH QNT Z3
	S E S I	× ×	SERV1 X
	613	82 82	221

1100 CYCX CYCX CYCX 174 CYCX 110 10 10 10 10 10 10 10 10 10 10 10 10	ARREST AND THE THE THE THE THE THE THE THE THE THE	vela1 Prnt2	OTSL3 SURRY	HNPX HNPX HINFX HING HING HING HING HING HING HING HING	RROOT ARACT	PFRS1
RAGENT CAND CAND CAND CAND CAND CAND CAND CAND	ATTOCAL SENSTANDERS ANDERS ANDERS ANDERS ELGENS	ONT 23 PRNT1	HPEXA Prnt2	TAND CONTO	RAAA TROOF TOTO	PFR1 Hathbr
RIGSSE CYCSS CYCSS TASS TASS TASS TASS	CONTROL CONTRO	QNTZ2 DPDH HAKS	APEX8 PRNT1	HOOX31 TRAKD STRTC RHOTD TRP36	X X X X X X X X X X X X X X X X X X X	MORD
VELA1 ROCOP CYST TGS1 TARY RSCH RSCH	PRENTS PRENTS THVKI JUNKS PESTS THOSIC SOLV PFRS1 AKFKR	NDTLU TMDTD COVA	GTBL U1 LINE HAKS	TRP31 TRAKC TRACC TRACTC JUNKS	TRAK2 ROSF UVN	APCVM TRP43
SCINCE SC	A CONTRACT TO THE CONTRACT TO	HTRXI ESURF PRRPI	GTBLU INSO GOVA	A TAPAK SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	TRAKI RANDI TRS18	PFRP8 MAKS
HE COLVERY COL	A THE CONTRACT OF THE CONTRACT	INUSB OTOBA PFRI	ERR2 THOTV PFRP1	MODX2A TRPWW TRPWW FROPC SENSC SURN	TRAKD PV80 TRS16	TRP41 EDIT
PVCGI ROLGI CYSZ CYSZ CYSZ CYSZ CYSZ CYSZ CYSZ CYSZ	RESPONDE TO THE CONTROL OF THE CONTR	EQNS OPG2H MORD	OTSL18 ITVLS PFR1	LCHOVE DPGX1 TRP32 ARRH THOTG PRNT3	TRAKS MTER TRS1	TREMS
CALO SENSX1 CYS1 CYS1 OLST1 ABS RBSF	CONTROL OF THE CONTRO	DTSL10 DTSL3 SOLV	AUXF2 PRITZ Moro	ERRZ CYCKB INS1 AFRAC THOTC	TRAKB LARY RSUM	PFRP PFRP1
×		×	×	×	×	×
SERV2		SERV3	SERV4	SERVS	FRAV	PFRI
22.52		223	\$25	80 80 80	226	227

228	PF2I1	×	OBVAL	RDLATS	BUFF1	SPCT	ITIF1	CAIT	NRHOA	KRMPR
			PRIT2	RESLI	RESL2	RSED	VANTX	ITERB	ITERI	ITSS
			ITS6	ITSB	PSIGZ	TREMS	TRP41	PFRPS	APCVM	APOECI
			MORO	HHTX	PFR1	PFRS1	PFRP1	BNOCHK	COVA	EOIT
			EIGANL RCVMTX	HAKS RTCGV	PFR2	TRP43	AKFXR	CSEPS	DVCPR	MATHBR
			•							
229	PFRV	×	OBVAL.	AKTPS	BUFF1	OBTIN	SPCT	MPEX1	ROCOP	ITIFB
			ITIF1	CAIT	NAMON	KKAPR	PLIT	PRIT2	RESL1	RESL2
			RSED	VHMTX	ITER1	ITSO	ITSI	1156	ITS8	MAX
			THOTO	INSB	PFRP	TRENS	TRP41	PFRPB	APCVH	HORD
			HATX	PFR1	PFRS1	PFRP1	COVA	DYNHT	EDIT	EIGANL
			MAKS	P.R. () Q.	QGNKR	YSBK	TRP43	AKFKR	OVCPR	LPGHR
230	PFRV1	×	ROLATS	ITIE	VAMIX	ITERI	1751	ITSS	1158	MAX
		!		COVROW	C241.2	FORE	PS167	STATS	TREMS	TRP61
				APCKH	APDECT		MATA	PFD1	PFRSI	PFRP1
				COVA	DYNNT	EDIT	FIGANL	GENERAL	MAKS	PFR2
				OCH KO	YORK	TOPA	AKEYD	CAFDA	99770	9450
			HATHBR	RCVMTX	RTCCV	}			2	
231	ITEI	×	ITERN	PFRP1						
232	ITEI1	×		ITERB	ITER1	IMGR	IMGM	ITSO	ITSI	ITS2
				1154	ITSS	1156	_	ITS9	ITVLS	MAX
			12P41 12P43	APCVN AKFXR	PFR1 DPVQ	PFRP1	BNOCHK	G X K D	GNKPU	MAKS
223	115	>		POLATO	ACTOC	1000	205	1001	150%	
))	,	•		TTTEM	TTTEB	ITIE	NRMPR	PRIT2	RESL 1	RESL2
			E 1538	QSED.	VMMTX	TERR	TTERS	THER	THOR	ITSB
			ITSI	11 52	ITS3	ITS	1155	1756	ITS8	1159
			TINES	MAX	AUGN	DMTXO	TRP41	APCVA	APOECI	PFR
			PFRP1	BNDGHK	COVA	EDIT	ETGANL	GHKPR	GMKPU	HAKS
			PFR2	PROQ	QGMXR	YSBK	TRPAS	AKFXQ	DAAD	OVCPR
			LPGHR	MATHBR						
234	ITEV1	×	ITERB	ITERI	MAX					
235	1111	×	DBTIN	ITERM	ITIFH	ITERB	ITSO			

K2 THOTO F PRITZ FD TRP41	T TSPX2 O VANTA TAGTO TRP\$3	BP CYCXG FB HYFL PFRPL	KG TSPKI KG INTKG	71 72 73 74 74 76 76 76 76 76 76 76 76 76 76	15S1	KB CYCK1
CYCX2 PLIT TH0 TD	TST RSED TAK TAK SED TAK	ROCOP ITIFB TRENS	TSPXC	TSPXL CYS9 TGOE1 ITIFH ITSO THOTG INSO	RDCOP	CYCX CYS7
CYCX1 NRHPR ITS8 AKFXR	SPCT TTIFI TTSE TTSE TTSE	TSPX2 SENS3 SENS3	TSPXS ITS6	TACKO TOCKO TTERN THERN CINOIN	TSPX2 LONGT	TSPX2 CYSS TRAKS
SPCT NRHOA ITERB TRP43	OBTITED ITTED RESE 2 ITS OTNET	TSPXI INPXI IAX	TSPXH ITSO	TOUR X X X X X X X X X X X X X X X X X X X	TSPX1 INFX8	TSPX1 CYS4 TGS#
OBTIN CAIT RSED EDIT	BUTTERNAME RESELT TASE TO PROPERTY TO PROP	HPEXT INFXB ITER	PS1 TER	CACO A SOLUTION OF THE COLUMN TO A SOLUTION OF THE COLUMN	TSPXB	TH056 CYS3 TGS4
BUFF1 ITIF1 RESES DYNKT	A TITIFE	MPEXB FRS18 RSED	P P P P P P P P P P P P P P P P P P P	C C C C C C C C C C C C C C C C C C C	SVCOP ITSO THOSE	RNOSSE CYS2 TGRE1
AKTPS ITIFB RESL2 PFRP1	ROLATS CYCX2 PLIT ITERI TREMS	SPCT CYCK2 RESL2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TX TX TX TX TX TX TX TX TX TX TX TX TX T	XVEH1 ITER1 AUXF2	GAMGS CYS1 CYS12
DBVAL TYVXI RESLI HORO	COSCAL CYCCAL NATERAL INTERPA INTERPA INTERPA INTERPA INTERPA	MPEX8 AUXF2 CYCX1 RESE1	CH X C	TANTE TO THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF T	TSS2 ATAGD2 CYCXM	GTBLUS CYCX2 CYS9
×	×	××	*	x x	× × ×	×
ITII	ITIV	MPEI MPEI1	D (1 SP 1	TSPI1 SERIZ CVCI	CYCI1
236	237	238	3 3 7	2 2 2 2 2 4	2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	246

ENS	INTX1 INTX3 CINDIN INS6
CYCXZ CYS1 CYS8 CYS9 TGS1 TGS1 TGS1 TGS1 TGS1 TGS1 TGS1 TGS1	DBIIM TSPXI TSPX2 CYCXB CYS3 CYS4 CYS5 CYS6 DPGXN DPGXI DPG1M DPG2N TRAK3 PV00 IMTXN INFXN TH0T8 THYXI THPXI THITI
DPGXA	
ERR2 TSPX1 OPG2P	DPGX1 INS1 ITIFH ITIF1
CYCKI CYCKZ PRF9 AMOTI RNOTC RNOSIA	DPGX1 TGDE1 STRT2 ENGC5 RHOT3 RHOT6 STRTC AERHC THOTC THOTG PRN11 OPGXP
CYS12 OPG14	
DPGX1 DPG1M	
CYS12 OPG2M	DPG25 OPG2P SUMRY
DPG2H DPG25	
DPGX1 DPG2M	DPG25 SUMRY
DPG2H DPG25	
OLSFR	
OLSTB OLST1	0LS3 0LS4 0LS6 0LS7
OPGX1 OLSTB	0C30
TGDEM	
SVCOP MPEXI CVCX1 CVCX2	

			TGS2 RESL1 ITS8 PRNT2	TGS3 RESL2 ITS9 Sumry	T654 RESL3 HTC2	T.SS ITERO Intx8	INFX6 ITER1 INTXC	INFX1 INFX1 CXTMI	ITIFO ITSS INSO	ITIF1 ITS6 PRNT1
292	TRAI	×	TRAKM COTV RNOO ITIFM	TRAKB LARY RROO THOTS	TRAKC MPATH RSUN ITIF1	TRAKO TTER TRS1 TRAKP	TRAK1 PV00 TRS16 TRAKP3	TRAKZ RANDI TRS19 TRAKP6	AGA ROSE E	CAAR AR CO AR Y
263	TRAILI	×	DTOOA							
564	TRAI1	×	TRAKB MPATH TRS1	TRAKO MTER TRS16	TRAK1 PVOO TRS10	TRAK2 RANGI	AOA XBSF	CAAE RLOO THOTS	COT V AND CO SENS	LARY
592	TRAIS	×	TRS1							
566	TRAI3	×	TRS1							
267	TRAIL	×	TRS1							
2 2 8	TRAIS	×	TRAK3	TRAKP3						
569	TRAVI	×	E CAAC CAAC TROOC TOTO	RMOSSE COTV RROO SENSS	TRAKB LARY RSUN TAKP	TRAKO Myer Trsi	TRAKI PVGO TRS16	T&AK2 RANDI TRS18	TRAKS ROSF UVE	AGA ALOO XARY
270	TRAV2	×	1251							
271	TRAVS	×	1881							
272	TRAVA	×	TRS1							
273	TRAVS	×	TZAK3	RSUM	TRAKP3					
274	TRAILY	×	OTDOA							
275	STRI	×	CINDER	CINDIN	STRTP					
276	STRII	×	PCG2							

	277	STAYS	×	IXX2							
	278	STRI3	×	PCG2	WTC1	STRT2	STRTC	MPRPI			
	279	STRV	×	PVCGI THBS7 AIRV LDSAD	MTC1 TMDSB JNAT VCG2	ENSS OLSS LDNGT MTC2	IHMTX TRAK3 ISP1 RNDTD	SUNV OTOOA RNOT6 TMOS13	VELA1 MPATH THOT1 STRTP	11085 71085 71013	7 4 4 0 5 6 4 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	280	STRV1	×	IXX2 RMOS1	PCG2 RHOSA	PVCGI	PV00 VC62	VCG1 Strtp	AHCRI	N d d d	TBALL
	281	STRV2	×	PVCGI THOS13	PV06 STRTP	1924	RH0S1	RNOS4	SENSS	VCG2	TH05:2
	282	STRV3	×	IXX2 PROPP	MTCL	STRT2	RHOS1	RMO S.	STRTC	HTC2	STRTP
	283	CONI	×	CINDER	CINDIN	CONTRE					
C-	254	CONIT	×	ENGCS	SDEF1						
25	285	CONIS	×	CONTA	ENGCS						
	286	CONIC	×	ENGCS	CONTO						
	287	CONIS	×	ENGCS							
	288	CON	×	ENGCS	SOEF1	DEFC	PRFW	CONTO	CONTP2		
	289	CONV	×	CONTA	E 14 G C 15						
	290	EMAI	×	CINDER	CIMDIN						
	291	ENVII	×	GANGS CFGNAG AMRNIM INSB	CECNTK CECNTK CONVERG	SUNV GRAVT GEOC	THOSE LNAT AERAG	HTER LJAT TRBS13	ENVR1 AERN1 ENVRP	AIRV Aeque Aequp	athc Aerns Aerpi3
	262	ENAIS	×	ENVR1	2039						
	293	ENVI 3	×	NOS	AIRV	JNAT	LJAT	ENVRB	GEOC	ENVRP	

ALPHAG		THOS DECITY DECITY THOTH W CPAZ AERAZ AERAZ AERAZ	GEOC	-RAK2 LJAT ENVRP			AR4C1		AERH13 Losao	SERP13	AERNC	AERMP
LJAT		TROST TROST TROKE TROKE TROKE AERTA AERTA	CONVER	THUS6 JNAT THUS11		AERNH	AMCRI		AERHS Troso	AERNP	THOTA	RM0 T6
JHAT		RMOSSE AIRAK2 AERAK TACATS TAUTOS ENKRP	SNAT	THOS1 GRAVT THOTA		AERNO	AERFN		TRAK2 RHOT6 AERP13	ARMC2	RM0S1	AUX
ENVR1 ENVRP		VELAL OLSS REG TARGE TAGTA TAGTA PROTE PROTE	GEONAG	RNGSSE Geomag Tnot4	AERP13	ARMC2	AERH13		OLS2 ARMC2 AERHP	ARHC1	T8AL 1	ARHC2
NTER		SCNV ECISV TOVE THOUTH AFTEN AFFEN ERRC	CFGMAG	VELA1 AIRV Tho?3	AERNP	ARHC1	AERMS		SYS12 ARMC1 TMOS11	AHGR1	AHCRI	ARHC1
SUNE		TIENT TERM TERM TERM TERM TERM TERM TERM TER	ENVR1	SUNV ENVR1 THOT2	CINDIN	AERFH	AERN2		THOSS AERT1 VAKS	AERF	AERT1	AERA1
GANGS Geoc		GANGS ATATA ATACAT ATAC	ANGS	IHMTK RROB THOT!	AERMJ	AERM13	AERH1 Aerho		THOSE AERFH AERN4	AERN13	AERFH Aerp13	AERM13
CALD	LJAT	HHTPURATIONS CONTRACTOR CONTRACTO	GAMGS	ENSS HPATE LONGT INSO	CINDER	AERNS	VELA1 Aqug2	ARHC2	VELA1 AERA1 AERHG	AERNS	aezhi3 Aezhp	AERNS
×	×	×	×	×	×	×	×	×	×	×	×	×
ENVI¢	ENVIS	E N	TAANE	ENVZ	AERI	AERII	AE2I2	AERI 3	AEZV	AERV1	AE?V2	AEQV3
762	295	962	262	862	299	300	30%	302	303	708	305	306

		APRPT.	PRFB DEOI		RMOSS	TRAKE	RMOTI	44056 211173	186811	8H018	TM0514	14018		TH0S9		ECISV THOTS JUNKS THOSEO
		DEST	ISP1 PROPC	RMOTP	RMOTS	2570	ARHGS		1001 1001 1001	VAKS	TMOSES	RMOS7 Inso	THOSTB	1%017		THOSE THOTA SENSE THOSE
		CONTO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CINDIN	RHOTS RHOST	THBS7	ARKCI	AMONS Server	REG SI 6	RH0511	VIONT	GEOC	THOTA	THOTS		THOSS THOT3 SENSS
		N d W d	PROP REST	RM0S18	RM874 RM87E	RM0 S.2	AERA1	AND SA	RE TE	RNO S3	TNOTG	MPATH TMOS12	THOTS	THPXI		TMOS4 TMOT2 TMOXI
		PRF	PRBP1 TBAL1	RNOTE	RHOT3	RHOSSE	AERMS	72018 72016	. A	2H074 TH0511	THOTO	TH056 TH0510	TMOT6	THUXI		THOSS THOTA THOXI
	ddDed	PRFB	PRPI2 PRPN	RMOTO	RNOT2 RHOTC	VELA1	GEOMAG	A LORY	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RHOS2 THOTY	THOTC	TH0S6	THOTS	TH0T8 T#0514		THOS1 RHOT6 THOS19 THOTB
	CINDIN	DEFC	PRPII PRUB PB	CINDER	RHOT1	NOS	RL00	REGIA	A 20 20 20 20 20 20 20 20 20 20 20 20 20	RHOSSE RHOST	CINDER	THOST	THOT	TH075 TH0813		RHOSSE THOSO THOSO
AERP13	CINDER	64084	PATCH PAFE PAFE	RHOSSE	RHOSSE RHOSSE	PVCGI	P V 0 B	RMOTZ	VAKS RNOTP	VEL A1 RMOTC	THOTE	RNOSSE THOTO	PVCGI	TM871 TM0512	THOTO	PVCGI OLS2 TMOT6 ITS5
	×	×	×	×	×	×				×	×	×	×	×	×	×
	PROI	PROII	P & 0 &	RHOI	RM011	RMOV				RHOVI	THOT	TMOIL	TMDIZ	THOTS	TMOIS	> = = = = = = = = = = = = = = = = = = =
	307	308	6 0 M	310	311	312				313	314	315	316	317	310	319

			THESTT	THOSES	TH0513	THOSTO	SENSO	11017	INSO	
320	THOVI	×	ENS2 THOSE	THOSE	THOSS	TH054	TMBSS	THOSE	TRAKZ	THEF1
321	THOVZ	×	THOST THOTS THOSTS	71084 71075 710810	THOSS	THOSE THOSE INSE	THOS7 THOT V	T#050 T#059	TRAK2 TMOS10	THOTE THUSSE
32.2	THOVS	×	THOTE	THVXI	THPXI					
323	SENI	×	SENSS	CIMDER	SENSD	CINDIN	SENSP	SFNSP3		
324	SENIT	×	SENSS	SENSS	SENSO	SENSP				
325	SENI3	×	SENSS	SENSS	SENSO					
326	SENT	×	SENSS	SENS6	SENSO					
327	SENIS	×	SENSXI	THPXI	ATTEN	LOSAD	RADIN	SATPOS	TMOTO	SENSC
328	SENV	×	DPG25	SENSS	SENSE	SENSO	SENSP			
329	SENV1	×	SENSS	SENS6	SENSO	SENSP				
330	SENN3	×	SENSE	SENSS	SENSO	SENS®				
331	SENV	×	SENSKI	ATTEN	Lesab	RADIN	SENSC	SENSP3	INS	
332	SENVS	×	SENSS	SENSS	SENSO	SENSP				
333	SENV6	×	SENSS	SENSS	SENSD					
334	INOF	32	CINDER	CINDIN						
335	JUNIT	×	JUNKS							
336	SIND?	×	JUNKI	JUNKS						
337	JUNVZ	×	JUNK2							
338	SANDE	×	JUNK 3	JUNKP						

	339	INI	×	EXTRI							
	340	INTII	×	TSPX1 TGS1 DERIV PRNT1	CYCX9 THOT8 TRPZ SUMRY	CYCX1 THVXI ITIF1	CYCX2 THPXI SINT	CVS1 INTX1 INTXB	CYS2 INTX3 INTXG	CVS12 INTX4 INTX0	TGOE1 ADM2 ADM2I
C	∓ \$	> L	×	ERRE TSPX1 CYS4 TGOE1 OTOGA CONT4 TYOT4 CINDER ITIF1	GTBLJ1 TSPX2 TGSS1 TGSS1 TROOP THOTS JUNK3 DERIV	GTBLUS CYCKB CYCKB TGS3 TAS16 TAS16 THGT6 INTX1 EULERC RESL1	GAMES CYCXI CYS9 TRAKB TRS16 PROP9 RMOS6 INTX3 EULERI RESL2	SUNV CYS12 CYS12 TRAKD INFXB ISP1 TM050 INTX4 RUK1	RHOSSE CVS1 CVS1 CVS1 TRAKH INFXH TROT1 SENS3 SENS3 SENS3 SENS3 SENSO SENSO	THOSS CYS2 CYS2 CPG2H TRAK2 TNS1 THOT2 SENS5 SHNS5 TIS8 TIS8	CCCSS CCCSS TCCCSS TCCCS
-29	3\$2	IN I	×	INTXO CONTP2 INTX4			CINCIN HOMP ADM2I	INSO Suhra Suhra	LINE Ins e	Prnt1	Prnt NT2
	343	INFI	××	INFX INS IN S	INFXH INSS	INFXØ	INFX1	INSI	ITSO	PRNT1	PRNT2
	346	INFV INF 4 1	× ×	INFXM	INFX9 ITS0	INFX1 INS3	INSI INSB	PRNT	I KS X	INSS	N S N
	347	INTV1	* *	TSPX1 SHNKS1 HOHP LCHOVE	ADM1 TRPZ	SINIS	EULERC INTX9	EULERI Intxc	INTSS	RUK1 Adm2I	RUK2 Ints1
	548	ACOSD	×	AUXF2 RL00	SUNV Aerai	RMOSSE LOSAO	THOSE	THOS6 CPAZ	TRAK2	AOA	CAAE

TRAK2	MPATH	THOSB AERA1	OLS3 ENGCS VMMTX			AHCRI		TRAK3 UVN THOTS OPOH		OLS2 RL00 THPXI		
TMOSB	OTOBA	TMOST	OPG25 Inst Resl3			PVOD		TRAKZ RNOO RNOO CPAZ		THOS7 HPATH THOSO		
TM6S7 LOSAD	COTV	TM056 RL 80	CV S12 Infx1 Resl2			NTER RHOS1 CPAZ		07628 RBSF TROTF TROTO		THOSE LARY THOT1 CPAZ		
TADS6 Sens6	TRAK3 TMOS10	TMOSS RBSF	TSPX2 TRAK2 RESL1			TRAK3 RNOT6 TNOTV		THOS ATER PREB		T4051 DT00A R40511 T46T0		
THOSA Senss	TRAK2 ESURF	RHOSSE HPATH	TSPX1 TGS1 ITIF1			THOSE RHOTE RHOTE		THOS1 HPATH ARMC1 CONVER		RHOSSE TRAK3 RHOT6 RHOT9		
TMOS1 RMOS11	THOSE LOSAD	SUNV CAAE ESURF	OBTIM OLS7 DERIV INSB			RHUSSE RHGT3 JUNK3		SUNV OTODA AERMI3 VMMTX SENSO	SUMRY	SUNV TAAK2 AERA1 JUNK3		
ENS2 MPAT4	ENS2 TMOT5	INUSB ADA JUNK3	JUNKI OL S6 JUNK2 IT S8	AUXF2	GT BL U	EQNS RM072 Sens5	DATEC	MTRKI COTK CFGNAG SATPOS TMOSL3	TSPX2	EQNS OLS7 XARY LUSAD	RMOSA	
AUXF2 TRAK3	AUXF2 MTER	AUXF2 T2AK3 L0SAD	GTBLU1 OLS4 Radin ITS6	AUKF	AUXF	AUXF2 Panb Senss	GEOC	AUXF2 CAAE AIRV LOSAD IMOS12	TSPX1	AUXF2 OLS4 RR30 SENS5	UVH	REPREV
×	×	×	×	×	×	×	×	×	×	×	×	×
ASIND	ATAND	ATAND2	AUXF	AUKF1	AUXF2	AVECT	CALD	0000	DTSL10	DVECT	EQNS	EERRXK
350	351	352	80 80 80 80 80 80 80 80 80 80 80 80 80 8	354	355	356	357	80 85 80	359	369	361	362

363	DMPREP	×	EERRXX							
# 9 9	ERR2	×	ACOSO MODX31 TGBE1 INTX4 ARANO	ASIND HPEKS TGS3 ADM2 AEREH	AUXF2 MPEX1 NBOX32 CINDER TMGTD	EERRXX ILSTR RMGT1 ITSO SENSC	GTBLU CVCXB THOT1 ITSB PRNCR	GT BLU1 CYS2 THINT RITE	REED CYS3 INTX1 MGDX35	IHMTX OCSB INTX3 SINT
က က	67820	×	TAAKS TAAKS TAGO TIGOT¢ TIGOT¢	IXXZ TRAK3 TRS18 TRS18	PCG2 AOA INS1 AERA13 TROT6	E E E E E E E E E E E E E E E E E E E	VELA1 OYDOA ENVR1 ARMC1 ATTEN	AND AND AND AND AND AND AND AND AND AND	HTER HTER PATE PATE RADIN	OLS3 RBSF SNAT RHDT4 THOTD
366	GTBLUL	××	AUXF2 GTBLU1	6 T BL 3						
3 3 3 3 5 9	INUSB	××	RHOS11 HODX1A	SENS?	SENS6	R CT OT O				
370	LMIT2 LOGPR	××	AUXF2	DPGX£	TRAK2	ENGC 5	8 12 12			
372	H31C	×	AUXF2 RM3S4 TM0TD	PVCGI TMOTL TMOTV	VELA1 Trott Trosii	PVOO THOTE THOSE2	ENCR1 TAPXI THOSES	AIRV Senss Senss	GEOMAG Junka	RM0S3 VAKS
373	H31R	×	AUXF2 PV00 TM0T5 TM0S11	ENS2 RR00 SENS5 TMOS14	SUNV GEDRAG JUNKA	RHOSSE RHOT4 VAKS	THOSO	TRAK3 THOTC	A8A THOT3	14014 14014
374	M33CCC	×	M33888							
375	M33CC2	×	H33RRC	SENSO						
376	H33CR2	×	M33CRC	RHOSS	SENSO					
377	M33RCR	×	M33RCC	SENSD						

	378	M33CRS	×	DPON							
	379	M33RCC	×	RH0S11	RHOTS						
	380	H33ERC	×								
	361	H33RRR	×	RM0 S2	SENS	SENS6	RHOST				
	382	HOOKIA	×								
	303	MO OX2A	×								
	384	HODX1	×	TRP3							
	385	HODX2	×	INTX#							
C	386	MTRX1	×	R%085E GEOC TM0813	RHOSS RHOTB THOSI4	THOSB RHOTE SENSO	NTER RHOTO	PV00 RN0S7	THOTS	TM0 TM0 S10	JUNK3 TMOSE
22	387	2	×	DUPOLY							
	368	NOTEU	×	678101							
	389	POLY1	×	AUXF2	SNOO	2039	THOTO				
	390	QNTZ2	×	TSPX1	CYSI	CYSB	CY S12				
	391	QNTZ3	×	CYS9	INST						
	392	RAND1	×	AUXF2	RANDI	RNOD	TRS18	SENSS	SENS&	LOSAD	TM0T0
	393	RANNO	×	RANDI							
	394	REED	×	80FF1	SPCT	ITSO					
	395	REPREV	×	1223	ONPREP						
	396	SCFO	×	T4056 L05A0	TRAK2 Geoc	TRAKS	THOS9	LONGY	RHOS3 THOS14	THOTE	THPXI

268	ONIS	×	AUXF2 CAAE AIRV TMOT5 TMOS12	MTRX1 COTV CFGNAG LBSAD THOS13	SUNV DTDDA AERHIJ SATPOS SENSD	THOST HPATH AERAL VINTX	TMOS6 MTER Armc1 Conver	09625 RBSF TRFB TROTO	TRAK2 RNJO RHOT4 CPAZ	TRAK3 UVN RHOS6 DPON
398	TAND	×	AUXF2	TRAKE	COTV	HTER	&NOO			
399	UVECT	21	GEOMAG	CPAZ						
007	VSQRT	×	AUXF2 T40S8 RR80 JUNKS	ENS2 TRAK3 XARY RMCTC	VELA1 AOA RHGT2 THOTB	RMOSSE COTV THOTA THOTA	THOSE OTDOA THOTS THOSE	THOS3 LARY THOTE THOSES	TNOS6 TNOS0	THOS? HTER LOSAD
401	XVEH	×	RMOSSE	1681	TRAK3	JUNK3	RMBTO	SUMRE		
402	XVEH1	×	AUXF2							
403	SACOP	×	TSPX1	TSPX2	ITER1					
707	IXX2	×	STRT2	STRTC						
405	PCG2	×	STRT2	STRTC						
904	PVCGI	×	THOT4	THOTS	THOTE	CINDER	CINDIN			
205	WTC1	×	STRT2	STRTS						
60	ENS2	×	AUKF1							
604	GAMGS	×	LONGT	ENVR9						
410	IHHTX	×	SUNV	ENVR1	THOTS	THOTE	CINDIN			
411	POLYE	×	SUNV	NUTE						
412	SUNV	×	RHOSSE	ENVRI						
413	VEL A1	×	AERNI	AERH2	AERMS	AERM13	VAKS			
+3+	PRPI1	×	P20P1	HPRPI						

The state of the second state of the second

																				TGOER
																				OLSTM
		RMO TC																		DPG2M
		RNOTB																		DPG1 W
		RMGT6													ITS		ITS8	ITIF1		DPGXM
HPRPI	RMOTE	RHOT2										M80X35	ITSS	1155	ITERL	ITS8	ITIF1	86.11		CYCKH
PROP1	RHOTS	RMOT1	AUXF1	AUXF1	AUXF1	AUXF1	AUXF1	AUXF1	AUXF1	AUXF1	SEMSX1	M00X32	RESL1	RESL 1	ITIF1	ITIF1	DBVAL	AKTPS		HNPXA
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
PRPI2	RMOSSE	RMOSS	THOSI	THOSE	T M0 S4	THUSS	T M0 S6	TH057	THUSB	SENSXI	OBVAL	JUNKI	ECISV	ROLATS	AKTPS	8UFF1	OBTIM	SPCT	TRP31	H60X31
415	† 116	+17	41.6	419	420	421	422	423	454	425	426	427	428	429	430	431	432	433	434	£ 35
										C-3	4									

"我们的是我们的情况,我们也是一个人的,我们就是我们的是我们的,我们们的是我们的,我们也是我们的,我们是我们的,我们也会会说,我们也会会是我们的,也是是我们的, "我们的是我们的是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们们 TO THE PARTY OF THE STATE OF TH

The state of the s

TRÁKH

TRP31	TRP31		TGOEB	TSPXI	TSPX1			MPEXI					TSPX2	TSPK1		TSPK2				CYS9	
HODX1A	MDOX1A	MPEXB	MPEXB	RPEXB	APEX8	DTSL2	RPEX B	HPEX9	MODX31	M0 DX 31	M0 0X 31	HBDX31	TSPK1	TSPX8	TSPX1	TSPX1	H00X31	H00X31	HODX31	CYCX1	X () X ()
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	>
MPEXB	MPEX1	MPS1	DTSL1	OTSL2	DTSL3	DISLA	ILSTR	1 SPX#	TSPX3	TSPXC	TSPX1	TSPX2	ROCOP	1881	1882	CYCXM	CVCXB	CYCX1	CYCX2	CYS1	C \ \ \
436	437	8 2 3	624	0 + 1	661	244	443	* *	445	944	144	60 4 5	644	450	451	452	453	454	455	456	4

1 20	CAS3	×	CVCX2		
654	CY34	×	CYCX1		
460	CAS5	×	CVCX1		
451	CYS6	×	CYCX2		
462	CVS7	×	CVEX2		
463	CYS8	×	CVCX2		
494	CASO	×	CYCXB		
465	CYS12	×	CYS2	CY S3	CYS9
99	OPGXM	×	CYCXB	CACKI	CYCK
467	OPGX1	×	H8 DX 31		
468	0961M	×	DPGX1		
694	DPG2M	×	SPGX1		
470	DPG2H	×	MB DX 31		
124	0PG25	×	N90X31		
472	OLSTM	×	DPGX1		
473	OLSTB	×	H00X31		
+7+	OLST1	×	M00×31		
475	0151	×	OLST1		
476	01.52	×	01.51		
477	0153	×	01.31		
476	0134	×	0LS1		

6	10	10	€	KB CYCK1 CYCK2	K31	X31	FI Iti	60	Q	N	13	K1 INS1	K31	(31	(31	K31 TRAK4	K31	K31 TRAKE	K31	71
X OLSTB	X 01.55	X 0LS5	X OLSTB	X CYCKB	X MODX31	X MODX31	X TG0E1	x T6028	x 1652	x 16S2	x 160E1	X DPGX1	X H00X31	X MODX31	X MB0X31	K HODK31	X HJDX31	X H00X31	X M00X31	X TRAK1
9570	9570	2570	0570	TGOEN	TGDE8	TGOE1	1681	1682	TGS3	1684	1685	TRAKH	TRAKB	TRAKC	TRAKO	TRAKI	TRAK2	TRAK3	TRAK	AQA
615	7.80	481	482	483	404	485	486	487	488	694	164	491	442	£6 4	764	495	964	461	96 +	664

501	COTV	×	TRAKB	TRAKD	TRS16	
205	DTOOA	×	TZAK1	TRAKZ	TRAKE	
503	LARY	×	TRAKI	3 2		
504	HPATH	*	9644			
505	HTER	×	TRAKB	TRAKO	T3516	
206	9 400	×	TRAKI	TRAKE		
205	KANDI	×	TRAKB	TRAKO		
900	RBSF	×	TRAKI	TRAKZ		
503	RLOJ	×	TRAKI	TRAKE		
510	8 NO 00 NO 0	×	TZAK1	TRAKZ		
511	RROS	×	TRAKI	TRAKE		
515	RSUM	×	TRAKI	TRAKE	TRAKS	
513	TRS1	×	TRAKB	TRAKD	TRAKI	TRAKE
\$1 \$	TRS16	×	TRAKI	TRAKZ	TNOTS	
515	TRS18	×	TRAKI	TRAKZ		
516	UVH	×	TRAKB	TRAKD		
517	XARY	×	TRAKI			
518	INTXH	×	CYCXB	CYCKI	CYCX2	
519	INFXH	×	CYCX8	CYCKI	CYCK2	
520	INFXB	×	H02X31			
521	INFX1	×	HD DX 31			

	522	INS1	× >	INFX1	40040	
	253	FERE	≺	TYACI	2776	
	429	ITIFH	×	CYCXB	CYCX1	CACK
	\$25	ENDSt	×	12931		
	526	TRP32	×			
	527	M80X32	×	TRP32	CINDER	
	528	STRT2	×	MBDX32		
	529	VC61	×	STRT2		
	530	CONT	×	HODX32		
	535	ENGCS	×	CBNT+		
C-3	532	SOEF1	×	CONTA		
9	533	ENVRI	×	H00X32		
	534	AIRV	×	ENVR1		
	535	ATH62	×	ATHC		
	536	ATHC	×	ENVRE		
	537	CFGNAS	×	GEOMAG		
	538	GEOMAG	×	ENVRI		
	539	GRAVT	×	ENVRI	GEONAG	
	240	JNAT	×	ATHC		
	241	LJAT	×	ATHC		
	245	LONGT	×	ENVR1		

X HB0X32

AERMI

543

O

			AERM13	AERH13	AERM13				ARMC2											
			AERRS	AERMS	AERMS	AERNS			ARMCI											
			AERN2	AERH2	AERNZ	AERH2			AERN13											
H00x32	M8 DX 32	H00X32	AERM1	AERN1	AERNI	AERH1	AERM1	AERN2	AERNS	H60X32	PROP1	P28P1	PR0P9	PROP9	F 402d	PR0P9	PR0P9	6důèd	H00x32	M00x32
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
AERNZ	AERNS	AE2H13	AERAS	AERFH	AERT1	ANCRI	ARNCI	ARHC2	AUX	PROP1	PR0P9	DEFC	ISP1	PRFB	PRFW	P.R. M.B.	N Q Q	TBAL1	RHOT1	RM0 72
24	548	246	245	Ø 1 6	249	550	551	225	55.33	524	555	556	557	528	559	960	561	295	563	195

्रापुर्वाध्याक्ष्रीत्राकृतिकृति भूत्रे विदेशकृतिकारण रहत्वातिकारणकृति । अस्ति विद्यालकारणकृतिक अस्तिकारण स्वरो जन्म

Sylven and a remain of Mary many in the second of

563	RMOT3	×	H00K32					
986	24074	×	HD DX 32					
295	RNOTS	×	M6DX32					
999	RMOTO	×	MD DX 32					
696	RMOS1	×	RHOT1	RM0T2				
570	RMOS3	×	RHOT1					
571	RN0S4	×	RMOSI					
572	RN8 S6	×	RMOTE	RHOT3	RHOTE			
573	RM6511	×	RHOTZ	RHOT3	RHOTA	RHOT6		
37.5	THOTI	×	H00X32					
575	TM0T2	×	M00X32					
576	THOTS	×	MBDX 32					
577	THOTA	×	H00X32					
578	TMOTS	×	H00X32					
579	1M016	×	H0 0X 32					
286	THOTS	×	MB D X 32					
581	TMOSO	×	THOTI	THOTZ	THOTS	12011	TM0 T S	H
585	THESTS	×	14015					
583	THYXI	×	T40T6					
584	THPKI	×	THOTB	THVXE				
585	THINT	×	THOTS	TMAKI				
586	SENSS	×	H00X32					

												1	EULERI							
													EUL ERG				TRPZ			
												ı	AOVT				SHNKSI			
													A0 M.				RUK2			
													AG 41				RUK1			
													I 4 T X & SHNKS1	INTX4			EULERI		A0M2	
												INTX3	INTX3 RUK2	INTX3			EULERC		INTX3	
MDDX32	SENS3	SENS3	SENS3	LBSAO	M80X32	HBDX32	HB0X32	M00X32	NBDX32	INTX1	INTX4	INTX1	INTX1 RUK1	INTX1	INTX3	INTX3	ADMI	INTXA	INTXL	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
SENS6	ATTEN	LOSAO	RADIN	SATPOS	JUNK2	JUNK3	INTX1	INTX3	INTX4	ADM1	ADM2	ADVT	CINDE.	DERIV	EULERG	EULERI	INTSS	RUK1	RUK2	
5 6 8	\$69	290	591	592	593	\$65	898	96 5	42	8 98	599	009	501	602	603	409	605	909	607	
								<u> </u>	10											

M00×32

SENSS

	804	CHNKO	>	TXTX1		
		1001	· >	· · · · · · · · · · · · · · · · · · ·	14142	74141
	6 2 9	1 RP 2	×	TXINT	TA L X S	XINT
	610	TRP33	×			
	611	M30X33	×	12033		
	612	ITIFB	×	HODX33		
	613	ITIF	×	H0DX33		
	919	CAIT	×	ITIFB		
	615	NRHDA	×	ITIF1		
	616	NRMPR	×	ITIF1		
~	617	PLIT	×	RESL2		
42	618	PRITE	×	RESLZ		
	619	RESL1	×	ITIF1		
	620	RESL2	×	ITIF1		
	621	RESL3	×	ITIF1		
	622	RSED	×	XTIF1		
	623	VHHTX	×	ITIF1		
	429	TRP34	×			
	629	HCDX3+	×	TRP34		
	626	ITERB	×	HODX34		
	627	ITERI	×	4EXODH		
	628	GUESS	×	1159		

AND THE STREET OF THE STREET OF THE STREET S

O

Commence of the commence of th

62	E29 I	IMGR	×	ITERI						
63	630 I	INGH	×	1756						
631		ITSO	×	IMGR	INGN					
9	632 I	1151	×	ITERI						
6	633 I	1752	×	ITER1						
63	634 I	ITS3	*	ITER1						
9	635 I	1154	×	ITERB	ITERA					
9	636 I	1155	×	ITERB						
49	637 I	1156	×	ITERB						
9	638 I	ITS8	*	ITER1						
9	E39 I	1189	×	ITER1						
3	I 049	ITVLS	*	ITERB						
3	641 N	MAX	×	ITERB	ITERI					
3	642 P	PRED	×	MAX						
9	643 R	RITE	×	ITSO						
3	1 449	TRP35	×							
3	645 H	H00X35	×	12935	CINDIN					
3	646 E	ESURF	×	14010	NOAC					
9	2 2 1 9	SINT	×	CONTO	ENVABINTE	AERNC	DEDI	KPRPI	RMOS18	TH0518
Ö	S 649	STRTC	×	H00X35						
9	A 649	VC62	×	STRTC						

SENSO

The second distribution of the second second of the second

650	MTC2	×	STRTC			
651	CONTO	×	M00X35			
652	ENARB	×	MODX35			
653	ALPHAG	×	2039			
959	CONVER	×	ENVRB			
655	DJULA	×	2039			
656	GEOC	×	ENVRS			
159	NUTE	×	GEOC			
658	AERNC	×	MODX35	AERMH		
629	AERMD	×	H00X35			
650	AERHH	×	H00X35			
661	VAKS	×	AERNC			
299	PRGPC	×	HBDX35			
663	DEDI	×	PROPE			
1 99	WPRPI	×	PROPC			
665	RMOTB	×	H00X35			
999	RMOTC	×	MBDX35	,		
66.	RHOTO	×	H00X35			
668	RHOTE	×	M00X35			
699	RM0S7	×	RYGTB	RHOTS	RHOTO	RHOTE
670	RM0 S18	×	RMOTS	RMOTO	RHOTO	RNOTE
671	TMOTB	×	M00X35	THOTO		

()

TAKAN MENERAKAN MENERAK MENERAKAN MENER

672	THOTC	×	H00X35			
673	14010	×	H00X35			
67 4	THOTG	×	H0 DX 35			
675	21015	×	HODX35			
676	CPAZ	×	THOTO			
211	CSDCC	×	TMOTO			
678	DPOM	×	THOTO			
619	DOPOLY	×	TMOTO			
680	THINTS	×	THOTO			
581	TM0S9	×	THOTS			
585	TMOS10	×	THOTS	THOTO	THOTE	THOTY
683	THOSTI	×	THOTB	THOTS	THOTG	
584	THOSIZ	×	TMOTC			
685	TMOS13	×	TMOTC	THOTG		
685	TMOS14	×	THUTE			
687	THOSIB	×	THOTB	THOTO	THOTG	THOTY
888	SENSC	×	M00x35			
689	SENSD	×	H00X35			
169	JUNKB	×	M00X35			
691	INTXB	×	MODX35			
692	INTXC	×	HODX35			

						EXVRP													
						CONTPS													
						STRTP													
						TRAKP3 TM0TP											•		
				PRNT3		TRAKP							•						
	INTXD	INTXD		PRNT1		OPGXP PROPP													
	INTXC	INTXC		INSB		CYCXP Aerp13			PRNT		PRNT1	PRNT1		TRAKO4	TRAKO4				
HODX35 INTXD	EXTNI	INTXB		12236	PANCH	P?NT1 Aernp	PRNCN	PRNCH	PRNCN		PANCN	PRHCN	PANCH	PANCA	PRNCN	PRNCA	PRNCN	2 X X X X	PRNT1
××	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
INTXO	INTS1	CINDIN	TRP36	PRNCN	INSB	LINE	PRNT1	PRNT2	PRNT3	PRNT4	GYCXF	OPGXP	0PG2P	TRAKP	TRAKP3	TRAKP	STRTP	CONTP2	DATEC
969	695	969	6.97	969	669	788	701	702	703	104	705	796	797	708	709	710	711	712	713

on the contraction of the contra

O

																ATAND SCED CAND TROSS TAROSS TROSS TAROSS TAROSS TAROSS TAROS
																ASIND GTBLU1 RAND1 TNOS1 TNOS1 TSPX1 CYS9 OLSS HTER
																ACCASS CTOCASS CTOCASS CTOCASS CTOCASS CTOCASS CTOCASS CTOCASS CTOCASS CTOCASS CTOCASS
																SERCH ERRZ GNTZ2 PCG2 RDLATS ILSTR CYSZ OLSTB TGDE1
																MODSER COSD NOTLU SKCOP JUNKI DTSL4 CYSL TGOEB OFG25
																ILST CALD MBDX2 VELA1 OBVAL DTSL3 CYCX1 OLST COTV
									INSO							FACTORY TACKA TACK
PANGN	PANCN	PRNCN	PRICH	FANCN	PRNCN	PANCA	PANCN	PANCE	PRNCK	INS3	PANGN	PANCN	PANCH	PRACH		DICT ATANDS LCMOVE SIND IHMTX IMOS6 MPEXB RDCOP OLS6 TAK3
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
ENVRP	AERMP	AERP13	PROPP	RMOTP	THOTP	SENSP	SENSP3	JUNKP	ESNI	1SNI	INSS	HOH	SUMRY	INSA	PFRPM	SERI
714	715	716	727	718	719	720	721	722	723	724	725	726	727	728	729	7 30

ARBORNA TROUCH OF THE COLOUR O	APEXI ITSE ITSE ADDELS ACTY ARFXR	DATE OF SECOND O
TRST PROCESS CENAGE CONTROL TANDTA TANDTA TANDTA CONTROL CONTR	SPCT PRITZ ITSO PRNT1 CGVROW OVNWT TRP43 RCVMTX	ROLATS DPGX1 ADBA CFGRAG ADBA ITERI ITERI INSE TREMS PFRP1
ANSCENE CONTRACT CONT	PULL PULL PULL PULL PULL PULL PULL PULL	RAGE TARBE
ARROD ALES AND ARROD ARROS AND ARROD ARROD ARROD ARROD ARROD ARFAR	NAKTI NAKTI	SYCOP TGSL TGSL AIRSL TSEO TSEO STATS STATS
SANDO RECEPTOR SECTION OF THE SECTIO	HTTTT THE THE THE THE THE THE THE THE TH	INS228 ROCOP INS3 INTS2 ITS3 INTS2 I
ERCENCES AND STANDS AN	SVCOP OPFOCE INTERNATIONS INTERNATIONS OFFOCE OFFOC	TO TO TO TO TO TO TO TO TO TO TO TO TO T
TROSE TACKT	ERRES PSECO P INSE PSIGZ GKKPL CKPL	TENSON DESCRIPTION OF THE PROPERTY OF THE PROP
LANDER PROBLE STANDARD STANDAR	HENRE STEEL	A SECTION A SECT
	×	×
	SERII	S E S S S S S S S S S S S S S S S S S S
	731	732

Ō

PFR2 NATHBR	QNT 22 THO TO PFRS1	TO DE TO DE	VEL A1 PRNT2	DTSL3 SUMRY	TSPX2 INFX1 ENVR3 THOTB
HAKS	POLY1 SIN; PFR1	MONTH A A A A A A A A A A A A A A A A A A A	QNT 23 PRNT1	APEX1 PRNT2	TSPX1 COLTD COLTD INSOTE
GHKPU	NOTLS ITSO HORO	CAND TANDERS OF THE STANDS OF	QNT22 OPDH NAKS	HPEX9 PRNT1	HOOX31 TRAKO STRTC RHOTO TRP36
CS EPS	HTRK6 ADA APQECI RCVHTX	ATRICKON TO STAND THE STAN	NOTLU TMOTD COVA	GTBLU1 LINE HAKS	TRABS1 TRAKC TRASC MOTO
EIGANL	HTRX1 TSPX1 SYNDR HAKS	TSPECTORNA PROBLEM PRO	MTRX1 ESURF PFRP1	GTBLU Inso Cova	MODX2 TRAKB TRP34 RHOTB SENSO
EDIT YSBK RICCV	075L18 075L4 50LV EDIT	THE TERM TO THE TERM TO COLUMN TO COLUMN THE TERM TO COLUMN THE TERM THE TERM THE TERM THE TERM THE TERM THE TERM TO COLUMN THE TERM THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM TO COLUMN THE TERM THE TERM TO COLUMN THE TERM THE TER	IKUSB OTOGA PFR1	ERR2 THUTV PFRP1	MODX2A DPG2H TRP33 PROPC SENSC
DYNMT QGHK? RCVMTX	AUXF2 OTSL3 SUMRY COVA	PUCCOL SCORES COL SCOR	EQNS OPG2H MDRO	DTSL10 ITVLS PFR1	LCHOVE DPGX1 TRP32 AERNA THOT3
COVA PROQ RADPC	ILSTM QNT23 LINE PFRP1	CALCO STANSXI CYSNISXI OCYSNIS CANST	DTSL18 DTSL3 SOLY	AUXF2 PRIT2 NDRD	ERRZ CYCXB INS1 ARRC TWOTC
	×	×	×	×	×
	SERVA	SEZAS	SERW3	SEZV4	SERW5
	733	\$ pp	735	736	73%

			Pout2	PRNT3	SUMPY					
738	TRAV	×	TRAK9 Lary Rsun	TRAKS MTER TRS1	TRAKO PVOO TRS16	TRAK1 RANDI TRS18	TRAK2 RBSF UVW	ADA RLOD XARY	CAAE RNGO TNOTS	REGIT AND A KER A
739	PFRI	×	PF.20 PF.20	TREMS	TRP41 EDIT	PFRP8 MAKS	APCVN TRP43	MORO AKFXR	PFR1 Hathbr	PFRS1
6	PFRII	×	OBVAL PRIT2 ITS6 MDRD EIGANL	RESLATS HATS HATS AND TEST AND	BUFF1 RISL2 PSIGZ PFR1 PFR2	SPCT ASED TRENS TRPES TRPES	ITTE VARTX TRP\$1 PFRP1 AKFYR	C S S S S S S S S S S S S S S S S S S S	NRHOA TTERL APCRA COV & B COV & B	NAME IN SECOND TO SECOND SECON
741	PF&	×	09VAL ITIF1 ZSED TYOTO HMTX HAKS	AKTPS CAIT INSB PFRL PROQ	BUTTA INTERNATE PERRO PE	NATITA I TAENS TREENS TREENS TREENS TREENS	SPCT PLIT ITS1 TRP41 COVA TRP43	PERENT PE	RESCI ITSS APCVN EDIT	MANUARE LEGEN
7 4 5	PFRV1	×	ROLATS AUGN PFRPB BNDGMK PRDQ MATMBR	ITIF1 COV2DM COVA COVA 26MKA	VHHTX CARL2 APQECI DYNUT YSBK RTCCV	ITER1 ECINF MDRO EDIT TRP43	ITS1 PSIGE HMTK EIGANL AKFKR	ITSS STATS PFRI GRKPR CSEPS	ITSO TRUKS PFRS1 JAKS OVCPR	TRP41 PFRP1 PFR2 LPGHR
743	14 51 14 14 14 14 14 14 14 14 14 14 14 14 14	× ×	ITERN TSPX1	PFRP1 ITERS	ITERA	INGR	NONI	1180	ITS1	ITSS
			1255 1254 12543	APCVH AKFKR	PFR1 DPVQ	1 30 PFQP1	3NDGWK	E E E E E E E E E E E E E E E E E E E	SAK PC	() () () ()
\$5. **	ITEV	×	SVCBP ITERN RESL3 ITS1 ITVLS	ROLATS ITIFH RSED ITSZ MAX	AKTPS ITIFB VHHTX ITS3 AUGN	SPCT ITIF1 ITERB ITS4 DMTX0	MPEXI NRMPR ITERI ITSS TRP41	TSPX1 PAIT2 INGR ITS6 APCVA	TSPX2 RESL1 INGN ITS8 APQECI	ROCOP RESL2 ITSO ITS9 PFR1

			PFRP1 PFR2 LPGHR	BNDG4K PRDQ NATNBR	CO VA QGHKR	EDIT YSBK	eigan. Trp43	GHKPR	GWKPU	MAKS
746	ITEV1	×	ITERB	ITERL	HAX					
247	ITII	×	OBTIN	ITERN	ITIFH	ITERB	ITSO			
748	11111	×	OBVAL SMVXI RESL1 MORD	AKTPS ITIFB RESL2 PFRP1	BUFF1 ITTF1 RESL3 DYNMT	OBTIM CAIT RSED EDIT	SPCT NRMDA ITERB TRP43	CYCX1 NRMPR ITS8 AKFXR	CYCK2 PLIT TM0T0	THOTS PRITZ TRP41
642	IIIV	×	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ROLATS CYCKZ PLIT ITERI TRENS	AKTPS DITIFH PRITZ TRSB TRP61	BUTTI SENSI RESULI PTS1	OBTIH ITIFB RESL 2 ITS6 UVNWT	SPCT ITIFI RESL3 ITS8	TSPX1 CA LT RSED HAX HAKS	TSPX2 NRHDA VHHTX THGTO TRP43
750	MPEI	×	APEXB							
751	HPEI1	×	AUXF2 CYCX1 RESL1	SPCT CYCK2 RESL2	MPEX8 TRS18 RSEG	HPEX1 INFXB ITER1	TSPX1 INFX1 HAX	TSPX2 Sens3 Sens0	ROCOP ITIFB TRENS	CYCXB ITIF1 PFRP1
752	MPEV	×	LCMOVE TSPX2 ECINF	MPEX8 OPGXM PFRP	MPEX1 TGOEB TRP41	MPS1 ITERB	TSPXM ITS0	TSPXB ITS6	TSPXC IntxB	TSPX1
753	HVSENJ	×	AUGH DOJUN DOJUN DOJUN DOJUN	COVRJN PFR1 YSBK RCVM7X	CRAL2 PFRP1 TRP43 RTCCV	ONTYO COVA AKFXR	PSIG2 EIGANL CSEPS	STATS MAKS DVCPR	PFRP8 PFR2 EIGEN	APQECI PROO LPGHR
754	AUGH	×	MHTX	PFR1	PFRP1					
155	BABT	×	APQECI	EIGANL	TRP43	DVCPR	RTCCV			
756	COVRDM	×	PFR1	TRP43	RTCCV					
151	CRAL 2	×	TRP41	PFR1						

And the Annual of

的。 "我们是有一个人,我们是一个人,我们是一个人,我们是一个人,我们是不是一个人,我们是不是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们就是一个人,我们

				ACVHTX																
				DVCPR																
		RTCCV		TRP43																
		RCVHTX		EIGAN																
		TRP43		8N064K				RECEN												
		EIGANL		PFRP1			PFRP1	RCVNTX		TRP43							OVCPR			
TRP43		HHTX		PFR1		TRPAS	PFR1	DVCPR	e i gen	PFRP1	PFR1						TRP43			
PFR1	PFRP	BAST	9	APRECI RTCCV	PFRPN	PFRP1	HNTX	TRP43	EIGANL	PFRPB	BABT		TRP41	PFR1	PFR1	PFRS1	EIGANL	18941	12041	PFRP8
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
DMTXB	ECINF	LTL	MODELS	MIXPR	PFRP	PSIGZ	SOLV	STATS	SYMQR	TREMS	UTL	18941	PFRPB	APCVM	APQECI	MORO	HTRXS	HMTX	PFR1	PFRS1
758	759	168	761	762	763	764	765	766	767	768	769	770	771	772	773	111	775	176	111	778
									C.	-53										

- The second second second second second second second second second second second second second second second

THE SOLVE OF THE STREET OF STREET STR

	13842	PFRP1	FFRP1	PFRP1	PFRP1	PF2P1	PFRP1	PFRP1	PFRP1	PFZP1	PFRP1	PFRP1	PFRP1		12943	TRP43	TRP63	12043	CSEPS	12943	
•	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
2444	PFZP1	BNDGMK	COVA	DYNNT	EDIT	EIGANL	GMKPR	GMKPU	HAKS	PFR2	PROQ	QGMKR	7.88K	TRP43	AKFKR	CSEPS	DPVQ	DVCPR	EIGEN	LPGHR	
r :	780	781	782	783	784	185	786	787	788	789	790	791	192	793	161	795	196	161	798	799	

HATH82

8 0 0

CSEPS	CSEPS	12943	12943
×	×	×	×
RADPC	RADPS	RCVMTK	RTCCV
7 8 9 7	200	803	*00

APPENDIX D

REQUIRED COMMONS AND EXTERNALS

Required commons and externals are listed by subroutine on the following pages.

INPUT RELOCATABLE DECK CONFIGURATION

GONTRY.	FCACA			
22 2	ECSO		BLANK EDSOM EGSO Overlay	i i
42	ECSO	ECSON ECSONZ SPEEDY	ECSON	
GETADO	GE T	BLANK GET		BLANK
			OVERLAY	PCOM OVERLAY
				SQRT.
LOADOV	6	END. LO		END.

														DELET3 WRITEC FINDI OUTCI.				
ourci.														GENERL BKCHERL EXIT EXPN CRAL				DBNTRY.
EXTT			IONA							CMPR				INPIO INPBI. FIND DECODI.				BPRINT
LOADOV			OUTCI.						CNPR	HYPOUG				PCDM BACKSP. EXPNG ICHECK GOTOER.				DPUNCH
GENERL			EXIT	ANDI				CHPR	HYPOUT	outci.		CRAL		BLANK INPBR. POUMP DECHK ENOFIL.				19300
BLANK		QBNTRY.	GENERL	SHIFTI				MYPOUT	ourci.	GENERL		GENERL		BLANK EPHTAB WYPOUT CKMDUL REWIND.			GENERL	EXIT
9L ANK		INPLH	BLANK	outer.				BL ANK	9L ANK	BLANK	INPGI.	BLANK	ANDI	ECSOME DELETI TRPLOT INPCI.	ANDI	DECODI.	9L ANK	M ON
IVP10		ES.	BLANK	IfoJ.			SHIFTI	BLANK	BLANK	BLANK	GENERL	BLANK	SHIFTI	ECSON DELETZ OUTBI. LEFJST EGF	SHIFTI	GENERL	BLANK	INP10
•	•	•	•	•	•	ť	•	•	•	•	٠	•	•	•	•	t	•	•
FIND	ANDI	TRP11	BKCHEK	ALFNUR	CKNOUL	CMPR	DECHK	DELET1	DELET2	DELET3	EPHT A8	EXPR	ICHECK	H I M I	LEFJST	VERT	MYPOUT	IRP12
19	50	21	25	23	5	52	92	27	58	59	30	31	32	E	34	32	36	37
									,	. .								

Ū

3	BPRINT	•	BLANK COTOER.	BL ANK FIND	GENERL OUTCI.	BPRIN	EXIT	врярит	LINEF	outca.
39	BPRPUT	•	BLANK	BLANK	SPRIN					
4	DPUNCH	•	BLANK	BLANK	GENERL	IFIELD	CARDF	outci.		
41	CARDF	•								
42	IFIELD	•								
6	T 9300	•	PCOM T93NP	ENDFIL.	outci.	GOTOER.	OECODI.	E0F	INPCI.	REWIND.
.	T93HP	•	GENERL	outer.						
÷	TRP13	•	END.	INTERX	QBNTRY.					
\$	INTERX	•	BLANK MOVEG	BL ANK F I NO	GENERL OUTCI.	MYPOUT INPCI.	EXPR	GOTOER.	MOVE	FINDI
47	HOVE	•	BLANK	BL ANK	GENERL					
6 0	TRP2	•	ENO.	INP2M	GBNTRY.					
64	SERI	•								
20	SERI1	•								
51	SERV	•							٠	
25	SERV1	•								
m m	SERV2	•								
£	SERV3	•								
T. IV	SERV4	•								
70 20	SERVS	•								
21	TRAV	•								

A PARTITURA DE LO COMPANDA DE LA COMPANDA DECE PORTA DE COMPANDA D

D-5

ITIV

MPEI

MPEI1

MPEV

IdSI

SE412

CYCI

CYCIA

CYCV

DPGI

62

TSPII

1SPV

ITITI

ITEV1

ITII

ITEV

ITEI1

PFRV1

ITEI

PFRI1

PFQI

PFZV

TRAI

TRAILI

TRAI1 TRAI2 TRAIS

6

TRAIG

TRAIS

TRAV1

100

modern differen erren errenten den beste den med besterne den besterne den besterne den besterne besterne den

SATTABARA KATABARA KATALA KATALA KATALA KATALA KATALA KATARA KATALA KATALA KATALA KATARA MANTAKATA KATARA KATA

D-6

OLSI1

TGOI

OLSV

TGOV

OLSI

DPGI1

80

DPG V

81

OP1V

83

DP1I

82

DP215

DP2I

DP2V

DP2V5

()

TRAILV TRAVA TRAVS STRV1 STRV2 CONIS TRAV2 TRAV3 STRII STRIZ STRI3 STRV3 CONIT CONI3 CONIC CONAS ENVII CON STRV CONI ENVI STRI 105 103 109 114 116 118 119 106 112 113 115 120 101 102 104 101 108 110 111 117 122 121

on of the content of

AERI2

132

AERI1

131

ENVIS

125

ENVIG

125

ENVI2

123

ENVIS

124

ENVV1

128

ENV

127

ENVV2

129

AERI

130

AERI3

133

AERV2

136

AERV1

135

AEZV

134

AERV3

137

PR0I1

139

PROV

140

Towa

141

PROI

138

RMOII

145

RMOV

143

ANDERSONAL SECTION OF A SECTION OF THE SECTION OF SECTI

en de en en fentigen en en en en de entre partigen en en formen de en en des fentigens de en en en en en en en

150

THOV

THOVI

151

T MO V 2

152

THOVE

153

SENI

154

THOIS

149

THOIS

147

TMOIL

146

THOI

145

THOIS

148

RHOV1

144

SENI1

155

156

SENIA

151

SENIS

158

SENV

159

SEN A3

161

SENVG

162

SENVS

163

SENVE

164

JUNI

165

SENV1

150

									D-	10									
166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185
JUNII	JUNIS	JUNES	FANOF	INI	INTIT	INTV	INT V2	INFI	INFIL	INFV	INFV1	INTV1	MASA	BCOPME	CHKT	CPAGES	CVAHT	DICT	DISPOSE
•	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
															BLANK	ENDFIL. OUTCI. NEGZERO	BLANK	SERI Inpbi.	
															BL ANK	TAPESE OUTPUTE	BL ANK	BLANK OUTCI.	
																DISPOSE	GOTOER.	BLANK Rewind.	
																CPTINE		BCOPNT	
																EOF TAPES=		GETA00	
																OUTGR. REWIND.		GETHEN	
																INPCI.		LINED	
																INPUTE		LOCF	

186	DTSL2A	•	BLANK	3L AN	outci.					
187	DISLE	•	BLANK	3L ANK	INSS1					
188	DTSL7	•	BLANK	BL ANK	DTSL9	INSSS				
189	DISL8	0	ECSOM	ECSONS	WAITEC	DTSL9	INS23	READEC		
190	DTSL9	•	SLANK	BL ANK	OUTCI.					
161	FRNAT	•	PCOM REWIND.	SERI	BCOPNT	LINEH	outer.	INPBA.	E0F	INDRI
192	ILSTH	1	BLANK OUTCI.	BL ANK SORT	SERI	SERV	SERV1	PCOM	9C0PNT	HOUSER
193	INPZM	•	BLANK	3L ANK	01568	OTSL7	01516	FRNAT	DICT	ILSTH
194	INSS1	•	BLANK	9L ANK	SERCH					
195	INS22	•	BLANK PCEPT PNOTLU	BLANK PCOEFT CVANT	SERV PTCVT NAMSER	PTVMD PCVRT DTSL2A	PCOPT PITVT GOTOER.	PORVT PPLOTT INS228	PRTBL PPLESN INS22A	PVMAKT OUTCI. SERCH
196	INS22A	•	BLANK	BLANK	SERV					
197	INS22B	•	BL ANK	BLANK	SERV					
198	INSS3	•	SHIFTI	SERCH						
199	LINEH	•	ourci.							
200	LINED	•	ourci.							
201	MODSER	•	BCDPNT	SERI						
202	NEGZERO	•								
203	NAMSER	•	BLANK	BL ANK						
204	PCUEFT	•	BLANK	3L ANK	SERCH					

				SERCH								GBNTRY.								
2	25.55			outci.						outci.		REPREV								
0	61610	SERCH		OTSL9	SERCH	SERCH				SERI		HBOX1								
SERCH	•12100	ourci.	SERCH	CHKT	outci.	ourci.	SERCH	SERCH	SERCH	BCDPNT		END.								
BL ANK	3L ANK	3L ANK	9L ANK	BL ANK	9L ANK	9L ANK	BL ANK	BL ANK	BL ANK	BL ANK		DERV								
BLANK	BLANK	BLANK	BLANK	BLARK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	SHIFTI	PCOM								
• (•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PCEPT		PCVRT	POSVT	PITVI	PNDTLJ	PPLOTT	PTCVT	PTVMO	PVHAXT	SERCH	SORT	TRP3	SERI	SER11	SERV	SERVI	SERV2	SERV3	SERV4	SERVS
205	982	202	298	203	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225

SERIS CVCI1 ISPII HPE11 ITEI1 ITEV1 ITIII TSPV CVCI CYCV PF2V1 MPgV PF211 ITIV MPEI ITEV IIII ISEI PFRV ITEI PFRI TRAV 942 2 45 242 243 244 247 539 241 238 240 236 237 234 235 233 232 558 236 231 226 227 228

Ū

- per emperorance in the experience of the meteory of the contraction

ANN THE PROPERTY OF THE PROPER

OLSI1

258

OLSV

259

T60I

260

TGOV

261

TRAI

292

OLSI

DP2I5

254

DP2I

253

DP2V

255

DPG11

549

DPGV

250

1140

251

DP1V

252

DPGI

248

0P2**V**S

256

TRAILE

263

TRAII

264

TRAIZ

292

TRAIS

566

TRAIG

267

TRAIS

268

TOR HONDON SOCIETATION IN THE SECOND OF THE SECOND

m the content of the

The state of the s

TRAILS TRAV 3 TRAVS STRI3 TRAVE STRII TRAVZ STAIS STRVI STRV2 STRV3 TRAVE CONII CONIS CONIC CONIS CONV2 STRV STAI CON CONI ENVE 275 276 282 284 285 569 271 272 273 274 277 278 279 280 285 288 289 270 231 283 287 290

Ü

ENVI1	ENVIZ	ENVI3	ENVIG	ENVIS	ENV	ENV1	ENVV2	AERI	AERI1	AERI2	AERI3	AERV	AERV1	AERV2	AERV3	PROI	PR0I1	PROV	RMOI	RMOII
162	292	293	294	295	296	297	298	588	300	301	362	303	304	305	306	307	308	309	310	311

THE TOTAL PROPERTY OF THE PROP

TMOIZ THOIS SENIS RHGV1 THOIL THOIS THOAT THOV2 THOVE SERIT SENI3 SENIF SENV3 SENA SENVI SENVS SENV6 RMOV THOV THOI SENI SENA 312 313 314 316 319 315 31.7 318 323 324 325 326 327 328 329 326 321 325 330 331 332 333

Ū

expenses and an expensive section of the second sections of the second sections of the second second second sections of the second seco

CONTRACTOR OF THE SECONDARY OF THE SECON

324	TNOS	•								
335	JUNET	•								
336	SIND?	•								
337	JUNAS	•								
338	JUNVS	•								
339	INI	•								
340	INTIT	•								
341	INTV	•								
345	INTV2	•								
343		•								
346	INFIL	•								
345	HNF	•								
346	INFV1	•								
347	INTV1	ŧ								
348	MVSA	•								
349	ACOSD	•	SERI	ACOS.	ERR2					
350	ASIND	•	SERI	ASIN.	ERR2					
351	ATAND	•	SERI	ATAN.						
352	ATAMO2	•	SERI	SERIZ	ATANZ.					
353	AUXF	•	AUXF2	AUXFL						
354	AUXF1	•	PC04	SENSX1	RADZN TMOS4	XYZCL TM0S3	ANANI	SHRSK ENS2	THUSS	YSOKI

E GENERAL CONTRACTION OF CONTRACTION									0PG11		e X			READEC			
MPEII ALOG. ACOSO AUXFI									SERI1	FR 92	NOTEU			MVSA			
SERVE RAND1 ATAND XTOV.				READEC			•		SERVS	AUXF2	INT			ISPI			
SERVI XVEH1 GTBLU1 GOTOER.				SERV4				REPREV	SERV4	GT 8L U1	CYCV ERR2			MPEV		•	
SERIE ATANDE GTALU SARI.				SERV3				LOCF	SERI	SERV4	SERV4	GOTOER.		SERVS			
SERI AVECT OVECT SIND		ENVIG		SERVI		AVECT		SHIFTI	BLANK MOOX6	SERI	SERI Gotoer.	UTHI	AT AND?	SERI			
9L ANK POLY1 VSORT COSD		SERV2	C0S.	ECSON2		DVECT	DMPREP	outer.	9LANK Entol	3L ANK	BL ANK GT 9L JS	CYCV	SERV3	ECSON2 Locf			
BLANK M31C ALOG10. TAND LMIT2		SEAI	SERI	ECSOM		SERV3	ER72	SERII	PC0 X	BLANK	BLANK Alos.	CYCI1	SERI	ECSON MAITEC		LOCF	
ŧ	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•
AUXF2	AVECT	CALD	COSD	OTSLIB	DVECT	EQNS	EERRXX	UMPREP	ERR2	61910	GTBLU1	CTBLUS	IMUSB	LCHOVE	LMIT2	LOCPR	H31C
5 5 5	356	357	358	359	360	361	352	353	364	365	366	367	368	369	370	371	37.2

Ū

373	H31R	ı							
374	H33CCC	•							
375	433CCR	•							
376	H33CRA	•							
377	N33RCR	•							
378	MSSCRC	•	N33CRR						
379	H33RCC	•	M33RCR						
380	H33RRC	•	M33CCR						
381	H33RRR	•	M33CCC						
382	MODX1A	•	ECSON	ECSBNZ	PCOM	MPEX1	MPEXB	LCHOVE	OVERLAY
363	HODKZA	•	SERI	SERVS	FCSOM	ECSBM2	LOADOV	RECALL	
\$ 60 80	HODX1	•	BLANK	BL ANK	OVERLAY				
385	HODX2	•	SERI	SERVS	ECSON	EC SO 42	READEC	LOADOV	WRITEC
386	HTRX1	•	SERVI	SERV3	SIND	COSD	GOTOER.		
367	MTRX6	•	SERVI						
88	HOTLU	٠	SERI	SERVI	SERV3	BLANK	BLANK	ITOJ.	
389	POLY1	•	SERVI	XTOI.					
800	QNTZ2	•	SERI	SERVI	SERV 3				
391	QNTZ3	•	SERI	SERVI	SERV3				
392	RANDI	•	SEAI	AL 06.	SQRT.	RANKO			
393	RANNO	•							

"是一个时间,这时间,我就在大家的人,我们也是不是一个的人,我们也没有一个人,我们也不是一个人,我们也不是一个人,我们是一个人,我们也是一个人,我们也会看到一个 "我们是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,

Control to the Control of the Contro

									ITEV			M 31 C		VSORT		SORT.		4318 4318
									T60¥			7041		Hair	INTV	ERR2		STRV SQRT.
BUFIN.								LOCF	TSPII			THOIS	GT 9L U	TRAV1	ENV.1	STRV		SERV2 DVECT
TINO							LOCF	TSPII	SERV		GTBLU	SERV2	PR&V	SERI	CYCI1	SERV2		SERI ACOSD
BACKSP.							TSPI1	ISPV	SERI1	GTOLU	SERI	X 0 X	SERI	THOVE	ENVVI	SERI		ENVV1 ATAND2 IHMTX
F R R 2		SIN.					TSPV	SERI	SERI REWIND.	STRV3	STRV1	STRV2	STRV3	STRV	NAN	ENVZ		ENV ENV POLYE
3L ANK		cos.	SIN.	TAN.			BL ANK	BL ANK	BLANK OUTBI.	STRV1	STRI3	STRV1	STRV	ENVVZ	ENVIG	EN V		ENVIL ENVIL GOSG
BLANK	EERRXX	SERI	SERI	SERI	SQRT.	SQRT.	BLANK	BLANK	BLANK ENDFIL.	STRI2	STRI1	STRV	STRI3	ENVV	SERI	ENVI1		ENVI3 INTV SIND
•	•	•	•	•	•	6	•	•	٠	•	•	•	•	•	•	•	•	•
REED	REPREV	SCFO	SIND	TAND	UVECT	VSQRT	XVEH	XVEH1	SVCOP	I XX2	PC62	PVCGI	WTC1	ENS2	GAMGS	IHHTX	POLYE	ANNS
394	368	396	397	398	399	004	401	785	£ 0 4	101	405	¢ 0 ¢	407	904	604	410	411	412
									D-	21								

TEXAMENTERS OF THE PROPERTY OF

的一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,

413	VELA1	•	AERI2 Ryovi	AERV Serv3	SERI XTOV.	SERV2 VSQRT	ENWV M31C	ENVV2 GT 9L U	STRV	> 0 2 3
414	PRPI1	•	PROV							
415	PRP12	•	P20V	SERI						
616	RMO S SE	•	TZAV1 RMOI GTBLU AVECT	CYCV RHOI1 ATAND2 VSQRT	CYCI1 RMOV SUNV GOTOER.	SERI THOIL XVEH	SERV RNOV1 HTRX1	SERV2 TMOV DVECT	ENV INT ACOSO	TSPV TSPV TSTR
417	RM0 S2	•	2002	RHOV1	SERV2	SERI	M33RRR	H33CRR	HTRX1	
418	TROSI	•	THOV	THOI1 VSQRT	THEVI	TMOV2 ASIND	ENVV SQRT.	ENVV2 COSD	SERI	OVECT
419	THOS3	•	THOV	TMOV1	SERI	VSQRT				
420	TMOSA	•	7001	THOUS	THOWS	AERV	ASIND			
124	TMOSS	•	LAGNI	THOVE	AERW	STRV	ENVV	AT 4ND2		
425	TM0S6	•	SERIZ SERI SCFD	THOV THOIL	TAOV1 INTV ASIND	TMOV2 CVCI1 COSD	STRV ACOSO ATAND2	ENVI! ATAND SQRT.	ENVV VSQRT DVECT	ENVV2 ALOG. AVFCT
423	TH0S7	•	140 42	9, 0 H O	STRV	ENC	VSQRT	AT AND2	ASIND	DVECT
454	THOSB	•	SEZI2 ASIND	SERI VSQRI	THGI1 AT AND2	TMO¥ 4TRX1	TNBV2 H31R	STRV	SERV2	N N N N N N N N N N N N N N N N N N N
425	SENSX1	•	SERV2	SENIS	SENV4	KTOY.	OBVAL			
4 26	OBVAL	•	SERI	BL ANK	BLANK	ITIV	PFRV	PFRI1	ITIII	OSTIM
124	JUNKI	•	SERI	JUNIS	INTV	AUXF	GOTOER.			
428	ECISA	•	ENV	BL ANK	9L ANK	SERI1	THOY	OUTBI.		

。 1912年,2月1日,1912年,1912

PFRI1	ITIV	>	CYCV	PFRI REED	HPEXT	TRAKO OPG2H TSPXB	TSPXH	PRRV							
ITIV	ITIII	PFRIL	PFRV	ITE CART	END.	TRAK1 OPG25 TSPXC	PCON	MPEV ERR2				READEC			
ITEV	PFRV	ITIV	TIIV	SERV IRPOI.	EC SON2	TRAKZ OL ST3 TSPX1	MPEV	MPEI1 ENDFIL.				SERV4			
SERV2	ITEV	ITII1 Reed	11111	SERI1 EOF	ECSON Dentry.	TRAK3 OLST1 TSPX2	MPEI1 Ilstr	SERY4 OUTBI.				SER V 3		LOCF	
SERV	Saga	SERI1 LEHGTH	SERI	SERI Enofil.	SERVS END31	TRAK¢ TGOEB CYCXB	NPEI OTSL2	SERIT				SERV1	SERV1	ERR2	
SERI	SER11	PCOM IMPBI.	IIII	BL ANK IT IV	SERI LOCF	INFXB TGGE1 CYCX1	SERV4 DTSL3	SERI INFI1			DTSL4	SERI	SERI	PCOM	H0 DX31
BL ANK	SLANK OUTBI.	BLANK BACKSP.	BL ANK	BLANK ITIII	COMBL	INFX1 TRAKB GYCX2	SERV	BL ANK TGOV	TSPV	9L ANK	3L ANK	ECSONZ	3L ANK	SERII	HPEV
BLANK PF 2V1	BLANK	BLANK REWIND.	BLANK AUXF	SPECTOR SPECTO	PCON	SERVS TRAKC DPGX1 ERR2	SERI DTSL1	BLANK ITEV	ABGR	BLANK	BLANK	ECSON	BLANK	SEAI	ISPI
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ROLATS	AKTPS	BUFF1	081IM	SPCT	TRP31	M0 0X31	MPEXB	MPEXT	HPS1	DISLI	DTSL2	OTSL3	DTSL4	ILSTR	TSPXM
6 24	6 30	431	224	10 10 10	436	4 10	436	437	+38	439	0++	***	244	£ # 3	*

THE PROPERTY OF THE PROPERTY O

HELLEGISTA SOLISETTE AND SETTIMENTAL SETTIMENTAL SETTIMENTAL SETTIMENTAL SETTIMENT SET

442	TSPXB	•	ISPI	TSPII	TSPV	HPEV	168 ♦	1881	CRAL	
9 .	TSPXC	•	SERI	TSPI	TSPV	HPEV	160V			
	TSPX1	1	SERV BLANK ITIV AUXF DISL2	SERUS SERI INTII TSSI TSSI	INTVE SERVI TGUV SVCBP DTSL3	INFV1 Serv2 Intv Gnt22 Save	TSPII HPEII CYCV CYCX	TSPV HPEV OPGII OTSLIB	TSPI ITEII ITEII ITERI	BLANK ITEN REDOKE RECOF
•	TSPX2	•	SERVS BLAKK BOOKE DISL3	DPGI1 BLANK AUXF SAVE	CVCI1 TSPI1 SVCOP	SERV2 TGBV CYCXM	CYCV HPE11 OTSL16	NPEV ITEV ITER	SERI SERI SCOP	TSPV ITIV DTSL2
644	ROCOP	•	SERI	SERI1 ITEV	SE XV	SERY2 Rewind.	BL ANK EOF	BL ANK Inpbi.	HPE'I.1	13911
450	1551	•	TSPV	TSPI1	SERV	BLANK	BLANK			
451	: \$52	•	TSPV	TSPI1	BL ANK	BL ANK				
452	CYCXM	ŧ	CVCI	TSPV	M8 DX 31					
£54	CVCX8	•	RPEN1 ERRY	CVCI1 INTI1 XTOI.	CVCV ITIFH	SERI	SERV2 CYS9	SERV TGORE	TSPV	766 V S X S X S X S X S X S X S X S X S X S
÷ 0.	CVCX1	•	CVCI1 TGBV CYSS	CYCV INTIL TGOEM	SERI INTV INTXR	SERV2 TSPV CYS2	MPET1 CYS1 OPGXK	17111 17154	ITIV INFXH	096V 0484
455	CVCX2	•	CVCI1 INTI1 IGOEN	CYCV INTV INTXN	SERV2 TSPV CYS3	APEIL CYSS DPGX	ITILI	ITIV INFXH	DPGV CYS7	TGOV
+56	CYS1	•	CVCI1	CYCV	SERI	SERV?	INTEL	INTV	QMT 22	
124	CYS2	ı	CYCIA	CYCV	SERI	SERV2	INTIA	UTNI	ERR2	CVS12
458	CAS3	•	CVCI3	CYCV	INTV	ERR2	CYS12			

684	*SAC	٠	CVCI1	CACA	SERV2	TGOV	INTV			
460	CYSS	•	CYCII	CVCV	SERI	SERV2	INTV			
169	CYS6	•	CYGV							
794	CYS7	•	CYCII	SACE	SERVZ	1607				
463	CYSB	•	CYCI1	CVCV	SERVZ	INTV	QNT 22			
49	CVS9	•	CYCI1 CYS12	ACAC	SERI	SERVZ	1SPV	YTHE	CVS1	QN7 23
4 65	CVS12	•	CYCI1 SERV2	CYCV	SERI QNT22	DP1I XTOV.	0P21 AUXF	AER	INTI	SERV
466	DPGXH	•	1940	A9 d0	MPER	15PV	CYCV	160	HODX3T	
+67	UPGX1	•	SERVS TSPV	DPGI1 CYCV	DP6V DP62H	SERI	SERV	DP1V Gotjer.	OP2V	OLSV LHITZ
4 6 8	OPGIN	•	1140	OPIV	SERI	TSPV	CYCV	INTV	HODX31	
694	OPG2M	•	1240	0624	SERI	TSPV	CYCV	INTV	TEXOOH	
470	0P62H	•	1240	00215	0P2V	02275	SERII	SERV3	SERVS	
121	0P625	•	092I 6TBL U	OP 2 IS AUXF	Á240	99240	SERI	SERV	SIND	COSO
214	OLSTM	٠	OLSI	TSPV	NO DX31					
473	OLSTB	•	OLSI1	ASTO	67 67 69	95 70	04.56			
474	OLST1	•	0LSI1	AS 70	SEKI	Seque	0.51			
+75	1570	•	2570	9S 70	06.53	GOTOER.				
176	2570	•	OLSI1 DVEGT	SEPI	SERV2	STRV	ENV	A SE	> 01	T 0 %
477	0153	•	01.511	SEeI	SERVZ	61910	AUXF			

67.6	9570	•	OLSE1	SERI	DVECT	AUXF				
619	9570	•	01.57	9870	GOTOER.					
0	9570	•	OLSI1	SERI	AUXF					
194	0157	•	0LSI1	SERI	DVECT	AUXF				
214	9570	•	0.511	SERV	err2					
483	TGBEN	•	TGDI	TSPV	H0 DX 31					
•	TGBEB	•	BLANK DTSL1	BL ANK TGS2	1604	SERI	SERV	APEC	7887	ENTV
435	TGOEL	•	701 710 710	SERI	SERV	SERV2 TGS1	CYCIA TGSS	ACAG	0P6V	INT
9 9	1681	•	700 L	9L ANK TSPV	BL ANK XVEH	SERI	SERV2	CVCI	A 040	INTIL
184	1682	•	BLANK	BL AKK	160V	SERV	GOT OER.	1683	1684	
4 8 8	1683	•	TGOV	SERV	INTV	ERR2				
694	1684	•	160 V	SERV						
964	1685	•	160 V	9L ANK	BL ANK	SERI	CVCV	CVCI1		
164	TRAKH	•	TRAI	TSPV	CACA	M00X31				
264	TRAKB	•	SERVS Randi	TRAI	TRAI1 MTER	FRAV	TRAV1	VINI	TR 81	N A A
493	TRAKC	•	TRAI	TRAV	SERVS					
464	TRAKD	•	SERVS	TRAI	TRAI1 MTER	TRAV	TRAVI	INT	TRSI	NAN
\$64	TRAKI	•	TRAI RSUM CAAE	TRAII TRS18 RROO	TRAV TRS1 PV00	TRAVI RBSF TRSIF	SERV? RNGO	INTV	AOA Xarv	OTDEA

AND SECTIONS OF THE SECTION OF SECTIONS OF

ENVUZ TRS1 ATAND RR00	ENVV OVECT COSD	61460	SINO	VSQRT	SCFD	VSQRT	STRV	COSD	H H H H H H H H H	
TRNT TRNT TAND CARD	STRV RSUM SIND	SERV2	COSO	ENVV	INTV	OVECT	ENVV2 SQRT.	CYCIA SQRT.	SERVZ	RANDI
SERVS RSUN COSO RLCO	TRAVS OTOBA XVEH	SERVI	SERVZ	SERV2 AT AND	TRAILY SQRT.	SERV2	ENVV	SERV2 SIND	SERI	SQRT.
SERI OTOOA SCFO	TRAIS CVCI1 VSQRT	SERV	SERI	SERI	TRATLI	SERI	SERV2 Atand2	SERI VSQRT	CYCV	SERI
TRAV1 TMOV2 AUXF GTBLU	SERVZ CYCV AVECT SCFD	TRAV1 H31R	TRAVI	TRAV1 COSD	SERVA	TRAVI	SE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TRAVI	TRAV1 RHOV	TRAV1
TRAV TROVI SQRT. ACOSD LRITZ	SERV TSPV M31R GTBLU	T Z A V V S Q R T	TRAV Sart.	TRAV Sert.	SERV2 VSQRT	TRAV	TRAI1 SIND VSGRT	TZAV HFRX1 GTBLU	T 2 A V STRV2	TRAV
TRAIL AERV CVECT SIND TRS15	SERI Intv Atanda Atand	TRAKI TRAII ATAND2	TRAI1 Atand2	TRAII	SERV DVECT	TRAII	SERI COSD OVECT	TRAI1 ENVIG ATANO	TRAII STRVI MTRXI	TRAIS
TAAL INTW RBSF ASIND PVOO	TRAVI RMOV ASIND SQRT.	TRAK3 TRAI ACOSD	TRAI	TRAI H31R	SERI Envv Gtblu	TRAI	TRAI TMOI1 GTBLU	TRAI ENVII TAND	TAAI Strv N316	TRAI
•	•	• •	•	•	•	•	1	•	•	•
TRAK2	TRAK3	TRAK4 ADA	CAAE	COTV	DTOOA	LARY	HPATH	# TER	9 × 9	RANDI
96+	264	86+	900	501	582	503	504	503	206	205

0500	ATANDS	POLY1	ENANS		TRAVZ	MTER	INT	COSD	VSGRT		MODX31	GYCII	SERVZ	CYCV
SINO	RH OK	GTBLU	>> N		TRAVI	COTV	HPE I I	LARY	OVECT		GOTOER。	ALNI	9L ANK	CYCI1 GTBLU
SERV2	SERV2	SERV2	SERV2	TRAVS	TRAV	INTV	SER V 2	EQNS	SERV2		CACA	TG0V H00X6	SL ANK	SERV5 DNT23
SERI	SERI	SERI	SERI VSQRT	TRAVI	TRAI4 CRAL	SERV2	SERI	SERVZ	SERI	MODXS	rspv	CYCV	SERV5 AUXF	SERV2 Gotoer.
TRAVI	TRAVI	TRAV1 RAND1	TRAVI	TRAV	TRAI3 BLANK	TRAV1	TRAV1	TRAV1	TRAV1	M0 0X2	SERV	7SPV BLANK	SERI INS1	SERV TRAKM
TRAV	TRAV	TRAV	TRAV	TRAI	TRAI2 BLANK	TZAV .	TRAV	TRAV	TRAV	CYCV	INFV	MPEI1 Seri2	MPEI1 MOOX6	SERI AUXF
TRAI1 Atang2	TRAI1 DVECT	TRAIL	TRAII	SER V2	TRAI1 TRAV4	TRAIL	TRAIL	TRAII	TRAIL	TSPV	INFIL	INFU	INFV	INFU
TZAI Sqrt.	TZAI ACOSD	TRAI	TRAI	SERI	TRAI TRAV3	TRAI	TRAI RAND1	TRAI	TRAI	INT	INFI	INFIL	INFI1	INFI1 OPGI1
•	•	9	•	•	í	•	•	i,	•	•	•	•	•	•
RBSF	RLOO	R 00 00	2800 0	RSUM	TRS1	TRS16	1RS16	# > 0	XARY	INTXH	INFXH	INFX8	INFX1	INST
80 80 80	606	510	511	515	513	916	515	516	517	518	519	520	521	525

3 1	523	ITERN	•	TSPV	ITEI	1111	ITEV	HODX4	MODX3		
•••	524	ITIFH	•	CYCI1 HDDX31	TRAE MOOK3	CYCV	0PG11	ITEV	ITIV	TSPV	ITII
***	525	END31	¥								
	926	TRP32	•	COM32	SERVS	ECSON	ECSOM2	END.	M0 DX 32	LOCF	QBUTRY
••	527	MDDX32	•	SUNKI Senss Thota Aermij	INTXE SENSS REGIS	INTX3 TROTS AURDIS	INTX1 THOTE RNOTE AERM1	JUNK3 THOTS RMOT3 ENVR1	CONTROLL CONTROLL	SENSIO TROT3 RROT1 STRT2	SENSS THOTS PROP1 ERR2
	528	STAT2	•	STRI3	STRV3	DPGV	VC61	IXX2	PCG2	MTC1	
***	529	VC61	•	CYCV	STRV1	STRV2	INTV	SERV2			
- '	530	CONTA		CONIS	CONVE	THI	SDEF1	ENGCS			
	531	ENGCS	•	CONT 1 DPGV	CONIS	CONIG	CONIS	> NO	CONV2	SERI	SERV2
*****	532	SDEF1	•	CONIT	CGNV	BLANK	BL ANK	SERI			
	533	ENVR1	•	ENVI1 Sunv	ENVI2 H31C	ENVI4 GTBLU	ENVV1 GRAVT	ENVV2 Gotoer.	INTV Geomag	AIRV Lüngt	ATHC
_,	53.6	AIRV	•	ENVII H310	ENVI3	SIGD	ENVV2	SERI	SERV	SERV2	STRV
	535	ATH62	•	AL06.	EXP.	Sart.	xtov.				
_,	536	ATHC		ENVI1 GTBLU	SNAV	SERI Ljat	SERV	SERV2	INTV	ATH62	SaRT.
-	537	CFGNAG	•	ENVI1 COSD	ENVVI SQRT.	SERI	SERV	SERVZ	BL ANK	9LANK	SIND
⇔ •	83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	GEOMAG	0	RMOV M31R	ENVI1 M31C	ENVV	EN VV 1 CFGMAG	ENVV2	SERI	serv2	UVECT

是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们也不会的,我们也会会会的,我们就是一个人,我们就是一个人,我们就会会会

the said the same of the same

	ENVIL ASIN.	SERV2	ATANDS	AERA1	AERA1	ENVIL AERA1	AERI2 Aerti	ACOSD			AVECT	RMOV	SERV2
	ENVIL ATAN.	SERI	GAMGS	AERT1	AERT1	SERV2 Aerti	SERVZ GTBLU	SIND	GOT OER.		GOTOER.	SERV2	SERI
SERV2	ENVIS SIN.	EN A I S	SCFO	ARHC1	ARMCZ	SERI GTBLU	SERI	AT AND2	SERV2		STRVI	SCRI	AERV3
BLANK	ENVV2 COS.	ENV14 GTBLU	STRV	ANGR.	ANGRI	AERV3 AUX	SIND	SQRT.	AERV2		SERV2	AERV3	AERV1
BLANK	ENVEL KTOV.	ENVI3 SIN.	SERI	AERFN	AERFH	AERV1 Ancri	EN VI 1	A B B B B B B B B B B	AERV1		SERI	AERV1 GTBLU	AERV GTBLU
ENAV2	EXP.	ENVI1 COS.	ENV2	ENV	EN V	AERY Aerfn	AERV2 Aerfh	SERI	AERV		AERV2	AERW	AERI3 Aux
EN V	STRV ALOGIG. GTBLU	ENVW2 XTOY.	> 2 2	ENVI1	ENVII	AERI2 RHOV	AERV AERV3 VELA1	AERV3	AERIZ	AERVZ	AERVI	AERI2 Sind	AERIZ Serv
ENVI	SERI Tanh. Atan2.	ENVV EXP.	SERIZ	AERI2 Velai	AERI2 Vela1	AERI1 ENV VELA1	AERII AERVI AERAI	AERV DWECT	AERI1	AERV	AERI2 Stblu	AERI1 COSD	AERI1 Rmov
e	•	•	•	•	•	•	•	1	•	•	•	•	•
GRAVT	JHAT	LJAT	LONGT	AERM1	AERN2	AERHJ	AERH13	AERA1	AEZFH	AERT1	AMCR1	ARHC1	ARMC2
539	240	5+1	245	543	544	5 + 5	5.4	7 + 5	248	249	550	551	552

		TBALI								RHUSS	RMCS6	RHOSII	CTBLU		ENVV	SERV2	SCFO
		IdSI			LMITZ					E R R 2	RM 0 S2	RN0 S6	M31.R		DPGV OVECT	SERI	M31C
	DEFC	INTV			COSO	67910				2 0 M	SERV2	SERI	SERVZ		INTV RMOS11	AERV2	M31R
	PRPII	SERV			ÜNIS	SNV			SQRT.	RHOS3	SERI	ENV	SERI		RMO S6	STRV3	SERV2
	PRP12	SERI	SERI	SERV2	SERV2	CONC		STRUL	AERV2	INTV	INTV	INT	INTV		RHOT1 RHOS2	STRV2	SERI
GÓTOER.	P 20P 9	DPGV P&PN	CON	INTV	AD d O	SERV	AVECT	SERV2	STRV1	№	OPGV	A 940	RHOV1 RHOS11	RHOSSE	SERI SERV2	STRV1	RHOVI
SERI	SERI	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	P & 0 <	PROV	PROV	PROV	SERV2	PROV	SERV2	RHOV	RNOV RNOS1	A >	RM96 COSO	RH011	AERV3 STRV	PROK ANOSE	RMOV
AERV3	P30V	PROTI	540I1	STRV	PR011	PROIL	PROV	PROI1	PROV	RHOX1	R4011 RH0S11	RMOIL	RHOII	INTV	AERV	RHOV	2HOI1
•	•	•	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AUX	PROP1	PROP9	DEFC	ISP1	PRF8	PRFW	PRAB	r N D	TBAL1	RMOT1	RM0T2	RN013	RM0 T4	RMOTS	RM0T6	RMOSI	RMOS3
553	554	355	926	557	558	559	560	561	295	563	36	565	266	295	266	969	570
									D ^								

The comparison with the common of the contract

AVECT	0800	MSSRCC	ENVV2 M31C		431R	TMOV2	TRAV THOS19	TSPV SQRT.	2 N N N	VSORT		740 V	INTIL
EDNS	SINO	14058	ENVV		1105	SER V2	TRAI PVCGI TRS16	THOVE	VINI	VINI		ENC	SEXXS
STRV3	M312	DVEGT	HEAV		R N N	RNOV	TSPW IHMTX HTRX:	740V #31C	INTI	AERV		INTI	THOVY
STRV2	INTV	ASIND	AERV2 Ovect		VINI	ENVV2 H31R	SERV2 TMOSO GTBLU	ENVV	THOV3	ENV		THUYS	TMOV
STRV1	SERI	SERV2	SERU2 Seri	14050	STRV	INTV	SERI INTU SIND	INTC	THOTS	STRV		THOIS	THOIS
SERVZ	SERV2	INTV	TX0V1 PR0V	INTV	ENANS	THOV	THOUSE COND	TH012 TH050 GT8LU	CYCV THVXI	THOVE		ITII	SERY2 DVECT
SERI	> %	RH 0V1	RHORNOR	ENAN2	ERA	THOIS	TRAVI Sart.	THOI3 SERV2 SCFD	ITIII THINI	THO.	SERV2	CYCV	SERI H310
REGE	RMOEL	RHOV	THOI3 STRV ERR2	1407	THOV	SERI	THOIS FRAII M31R	THOI SERI ATAND	SERV2 THPXI	SERI DVECT	THOV	SERVZ	CYCV
6	•	•	•	•	•	•	•	•	•	•	•	•	•
RMOS4	RH0S6	RMOSII	THOT1	TMOT2	THOTE	7.40.7	TMOT	TMOTE	TH0T8	1 40 50	TM0S19	THVXI	THPXI
129	572	573	574	575	576	211	57.0	579	580	581	285	583	 80 00

To the Control of the

是我们是是我们的一个,我们就是我们的一个,我们的一个,我们的一个,我们的一个,我们的一个,我们的一个,我们的一个,我们的一个,我们的一个,我们的一个,我们的一个

305	THINT	•	BLANK	3L ANK	CYCY	ERR2				
500	SENS3	•	INTV	HPEI1	ITIV	TSPV	ATTEN	RADIN	LOSAD	
587	SENSS	•	SENT SENVS RHOV RSSRR	TRAV1 SENV5 THOV SQRT.	TRAIL SENV6 INTV MAIR	SENI1 SERI RAND1 AVECT	SENI3 SERV OVECT	SENIC	SENV STRV1 Imusb	SENVI STRV2 #31C
η. Θ	SENS6	•	SENII Seri Asird	SENI3 SERV Inusb	SENIA SERVZ Burra	SENV CYCI1 AVECT	SENV1 RMOV	SENVS	SENVS	SENV6 RANDI
589	ATTEN	•	SERI	SERV2	ENV	SENIS	SENVA	AL 0618,	GT 9L U	
80 00 00	LOSAD	•	SERI Randi Vsqrt	SERV2 SIND SORT.	STRV DVECT SCFD	AERV ACOSO Satpos	ENVV COSD GTBLU	RHOV A7AND	SENIS Atanda	SENVE
591	RADIN	•	SERI	SERV2	SENIS	SENV	EXP.	xtov.	AUXF	GTALU
25 s	SATPOS	•	SENIS COSO	> *	BL ANK	OL ANK	SERI	SERV	SERV2	ONIS
593	JUNK2	•	SERI	SINDS	3UNV2	INTV	AUXF			
\$65	JUNK3	•	R40V TSPV OVECT	THOV CYCII VSQLT	JUNIT CYCV M310	JUNES ENVE HTRX1	SERI Atano2 Xveh	SERV ACOSD	SERV2 AVECT	HARE
16 6 16	INTX1	•	INTI1 RUKZ	INTV	CYCI 1 ADVT	SERI Gotoer.	CYCV	DERIV	SHKS1 CINDER	P.UK1
3 6 5	INTX3	•	INTI1 EULERI	INTV EULERC	SERI	CVCI1 60TGER.	CYCV ERR2	DERIV	1.8P 2	40K2
265	INTX	•	INTIL	VINI	INTV2	CYCV	OERIV	TRPZ	ADM2	ERR2
\$98	ADM1	•	INTV	INTAI	SERI	SERV	SERV2	BL: 3K	PLA HK	INTSS

CYCIA		000 RR RR 12	YMI	INTS2	INTS2		INTS2	INTS2	INTS2	INTS2	GENTRY.		A A A	1 SFC 9 FR C 1
SERI		STRI	INTI	CINDER	CINDER		CINDER	CINDER	CINDER	INTI	LOCF		ITEV	TSPI PFRV
INTV CINDER		SERI	ASA5	INTVI	INTVI		INTVE	BLANK	INTVL	IMTWI	MO DX 33		760¥	MPEI1 Intv
CYCV		CYCY	SERVE	VINI	INTV		PL ANK	BL ANK	9LANK	BL ANK	END.		SERI	SERII
SERV2 RUK2		CYCI1 RHOI	SERI	SERV	SERV	INTAT	DL ANK	SERV	BLANK	OL ANK	EC SO N2		MPEI1 CAIT	SERI DPGI1
SERV INTV1		SERV Proi Gotoer.	OL ANK	SERI	SERI	BLANK	SERV	S R R	INTV	Sirk	ECSON		BLANK	BLANK
INTV2 BLANK	CINDER	SERI AERI Heox32	BL ANK	BL ANK	BL ANK	9L ANK	SERI	INTUI	SERV	SERI	SERVS	ITIFB	BLANK	9L ANK TGDV
INTI1 BLANK	INTV	INTV ENVI PVCGI	DERV AUXF	BLANK	BLANK	SERV	INTE	INT	SERI	INTV	CB H 33	ITIF1	PCSN ITII1	PCON INTII
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
A042	ADVT	CINDER	DERIV	EULERC	EULERI	INTS2	RUK1	RUK 2	SHNKS	TRPZ	TRP33	HODX33	ITIFB	ITIF1
899	900	561	6.0 2	£ 6 3	9	605	9	607	6 0	689	619	611	219	613

MRAPR BUFF1	CYCI1	17111	SERI	outer.	PFRII	ITEV	ZTEV	SERV2	PFRI1 XTOL.	PFRV1			ITEI1 ITVLS	1607
SPCT	PFRV	PFRV	9L ANK) ITI	ITEV	TGOV RDL ATS	3 A A A	160	SERV2 OUTCI.	>			HAX	TSPII
RSED	PFR11	PFRII	BLANK	11111	SERVA	INTV	TGOV	THI	SERV	PFRI1 AUXF			ITIII ITS4	MPE11
AKTPS RESL 3	SERV2	SERV2	ITEV OUTCI.	PFRV	SERV2 OUTCI.	SERI1 OUTCI.	PFRI1 PRIT2	ITEV	SERII Sart.	SERVZ	gentry.		ITII ITSB	SERV
ITIV RESL1	SERV	SERV	PFRW Sart.	SERV	SERI1 Intv	SERI	SERI	SERI1 AUXF	SERI	SERV	M0 0 X 34		160V PFR11	SERII
ITIII NRHDA	SERI CRAL	SERI Sert.	PFRI1 SERV2	SERII	SERI	MPEI1 ITII1	MPE11 Ifiv	SERI OUTGI.	MPEI1 ITIV	SERI Sart.	ENO.		T L S L S L S L S L S L S L S L S L S L	SERI
ITEV RESL2	BL ANG IT IV	BL ANK PCOM	ITIV Serv	BL ANK	BLANK ITII	BL ANK PFRV	BL ANK ITII	BL ANK IT IV	BL ANK IT II 1	BL ANK IT IV	SERVS	ITERB	SERI1 ITEV ITS§	BL ANK
PFRI1 VMMTX OUTGI.	GLANK ITII1	BLANK ITIV	ITII1 Serii	BLANK	BLANK PFRV	BLANK PF211	BLANK Intv	BL ANK ITII	BLANK PFRV	BL ANK ITEV	COM34	ITERI	SERI ITEV1 Rewind.	BLANK
	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	CAIT	NRKDA	NRHPR	PLIT	PRITZ	RESL1	RESL 2	RESL3	RSED	VMMTX	TRP34	HODX34	ITERB	ITERI
	614	619	616	617	919	619	628	621	229	623	429	625	929	627

ne desirabilitado de la contrata de alternación de consenso en como de adestración de desirabilidades de la co

			P P P P P P P P P P P P P P P P P P P	PFRVE CPTINE ITS¢	ITIV ITS2 AKTPS	ITEI1 ITS1 SVCOP	ITEV ITS3 ITS9	ITEV1 Ingr	PFRI1 Endfil•	REWIND. OUTCI.
829	GUESS	•								
629	INGR	•	SERII	ITEV	BL ANK	BLANK	SERV	ITEII	ITSO	REWIND.
630	MSHI	•	39 4 18	9L ANK	SERII	SERV	1604	ITEI1	ITEV	1150
631	ITSO	•	BLANK ITEV Unit	BLANK ITII LOCF	SERI1 ITIV REED	SERV1 PFRV 2ITE	HPEV INFV1	TSP INFIL	1	TTEI1 OUTCI.
289	1751	•	BLANK ITEV	BL ANK	SERI	SERV	PFR	PFRV1	ITIV	ITEIL
633	1152	•	BLANK	BLANK	SERI	SERV	ITEI1	ITEV		
634	1153	•	BLANK	BLANK	SERI	SERV	ITEI1	ITEV		
635	1754	•	BLANK	BLANK	SERV	ITEI1	ITEV			
636	1155	•	ITEI1 ROLATS	ITEV	1606	BLANK	OL ANK	PFRI1	PFRV1	7110
637	1156	•	BLANK TGOV AUXF	BLANK Pfrii Rewind.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SERIT	SERV ITE11	SERV2 Intv	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TSPV THGH
6 3 6	ITSO	•	BLANK TGOV BUFF1	3L ANK IFII1 AUXF	SERI ITIV ERR2	SERVINTA	Serv2 Itel1	PFRI: ITEV	PFRV AKTPS	PFRV1 OBTIH
639	1159	•	BLANK	3LANK	SERI	SERV	TGDV	ITEI1	ITEV	GUESS
9 + 9	ITVLS	•	BLANK	9L ANK	SERV	SERVA	ITEI1	ITEV	CRAL	
641	XX	•	BLANK MPEI1	BL ANK ITIV	SERI ITEI1	SERI1 ITEV	SERV	SERVZ	PF2V PRED	PFRV1 GOTOER.

				SENSL	RHOTE	FINARO			1	ERRZ	1xx						O NH N		TMOIL		SINT
		ENOFIL.		SENSA	THOTE	AERMC		SORT.		7	299A			SINT	GEOC		SERI		SERI	POLYE	VAKS
		BACKSP.		SENST	14012	AERNO	i I	AT AND2		SERVI	KTGZ			INT	SINT		BL ANK		ENVA	SIN.	SERVS
		err2	OBNTRY.	SAME.	140 10	AFRE		ATAND		BLANK	> 9 d 0			PRGII	GAMGS		9L ANK		ENVV AL PHAG	.soo	AERV2
CRAL		outci.	M0 0X 35	42748				222	2	BLANK	SERI			SERVS	CONVER		SERVZ		ENVI&	GSOS	> Z
Sart.		SERI1	END.	5) Y Y Y Y Y Y Y Y Y Y		ERR2		26783	Intri	SERVS	STRV2	TGOV	SERI	SHVV	ENVIA	ENVII	ENVIA	ENVI3 CALD	ENVI	ENVII
outer.	outer.	9!, ANK	SERVS		CXLXI	SENSO	STRTC		SEKI	INTV	STRV3 HTG1	STRVI	STRV3	CGN	ENVI3	SERV2	ENVEL	SERV2	ENVI2 MTRX1	SER#2	AERV
outck.	SERII	BLANK BUFGUT.	C0 435		よりがだれ	SERSO	RAGTO	; •	SEZIS	SERI LOGF	STRIB	STRV	STRV	PINOU	SERVS	SERI	ENVV	SERI	ENVI1 POLV1	SERI	A940
	•	•	•		•				•	•	•	•	•	•	•	٠	9	•	•	•	•
	PRED	RITE	TRP35		100X35				ESURF	SINT	STRTC	A C62	HTC2	CONTO	ENVRB	ALPHAG	CONVER	DJULA	GEOC	NUTE	AEZHC
	642	643	4 2 9	· •	645				949	647	9	€ •	650	651	652	653	469	655	ъ 72 75	557	. 6

and the constraint of the cons

689	AERNO	•	AERI Gotoer.	AERI1 Surt.	AERIZ	SERI	SERV	SERVZ	TSPV	ERR2
899	AERMH	•	AERI1 Atan2.	AERW XTOY.	SERI SORT.	SERV	SERV2	SERVS	ERR2	cos.
661	VAKS	•	AESV	SERI	SERV2	2000	RHOVI	H31C	1191	VEL A1
662	PROPC	ė	P 60 V	SERVS	DEDI	Idran				
663	1030	•	PRBII	PROV	SERI	SERV	SINT			
564	WPRPI	•	PROIL	PROV	SERI	STRIB	SINT	21080	9RP 11	
665	RM018	•	RMOI1 Servs RMOS7	RHOV RHOS16	RHOV1 ASIND	TSPV OVECT	DACA IMUS &	HATT MARROC	SERI MTRX1	SERVE
9	RNOTC	•	RA BIL Sirres	RHOV RHOS19	RHOV1 AVECT	TSPW	DPGV MTRX1	INTY	SERI RHOS7	SERV2
199	RMOTO	•	RMOI MTRX1	RHOIL XY2RTC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	SERV2 RHOS7	SERVS	VINI	STRV	RM0 S18
999	RNOTE	•	R40I R40S7	HHH	TSPV	SERVS	RHOI1	A 0 1 4	RNO SSE	RH0518
699	RNOST	•	RHOIL	RHOV1	THOIT	7011	SERI	SERVZ	MSSRRR	HTRXI
673	RM0 S18	•	RHOI	DPGV	RKOV	SERV	SINT			
671	THOTS	•	THOIL	THOIZ	TH072 H31R	THOIS	THOY THOS9	0PGV TM0S10	TSPV	FNV
672	TMOTC	•	THOI	THOV	0P6V TM0S19	TSPV	SERVS	TH0511	4318	TH0512
673	THOTO	•	SERI	SERII	SERVI	SERVZ	SERV3 THOV2	ITIII Senis	TTIV	PFRV

ESURF	THOSES	THO 1.1 H31R THO 510	SIND					SCFD	SERVZ	H31R	STRV2	STRV2	ATANO		
err2 rand1	#31.R	THEI THOSIS GOTOFA.	AVECT					VSDRT		M31C	SERV2	\$72V 0050	SQRT.	SINT	
SQRT. DUPBLY	THOSIL	ENVV2 RHDV1 VSGRT	UVECT					SERV2	ENC	SERV2	SERI	SEAV2 SIND	HTRXI	GOTOER.	
DPDM GUTCR.	SERVS	EXCV AMBV AVECT	OVECT		ESURF			ENV	>40	ENVVZ	ENV	SERI SORT.	H31.R	SERV	ERRZ
xTOI.	186	TSPV THOV2 HTRX1	ACOSD		0800	XTOI.		TN0V2	THOVE	RNGV1	TH0 V 2 COSD	THOVE	1011	1404	SENY
POLY1 COSO	N940	SERV4 THOV THOS14	ENV		ONIS	HTRX6	CACA	735	TROS	>012	THO V	THOY HTRK1	THOIS	THOVE	SENIS
CP AZ Sĩ NŨ	THOV THOST 8	SERV2 THOI3 SCFD	SERV2		433646	SERV2	BL ANK	THOIS	THOIL SORT.	AERV	THOIS	THOTS	ENVV	THOIS	SERVS
M31C Gfblu Outgi.	T40I THES10	SERI THOIZ H31C	SERI	sart.	SERV3	SERV	BLANK	12821	T40I HTRX1	110	THOIL	74071 ENVI	SCRI	THOIS	SERV2
	•	•	•	•	ŧ	•	•	•	•	•	•	•	•	•	•
	THOTE	TONT	CPAZ	CSDCC	OPON	DUPOLY	THINTS	1 30 S 9	T#8510	TMBS11	TH0512	TMOSES	TH8514	TM0518	SENSC
	429	675	979	677	678	679	9	661	8 8 9	683	9	685	999	289	6 8 8

SENVE		TSPV	1607	PLANK CRAL	CRAL		FNCI		INSO TROTP TRAKPA	INS6	outci.	SPGV ENVV OUTCI
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TEBV	CVCII	BL ANK SENT	xTOI.		CONT		NESCH COLOR	PRNCN	LOCF	OPG11 9L ANK DATEC
SERVE STRVS O STRO		SINT	TSPV CINDIN	TGOV	INTVI		STRI		INSS SENSO CONTRO	A FN F0	00101.	CYCV BLANK LINE
SENU SERV NJJRCR		SERI Intsi	MPER	CYCII	VINI	SERV	SENI	GBNTRY.	INSE SESPIO FREPO	TSPV	INTV	SERVS INFV PRNCN
SERIA SERV H315		SERV GOTOER.	SERV Ints1	TSPV	SERVZ	BLANK	THOR	PRICE	LUNS LUNS AERKP CVCXP	160% 0UTCI.	SERVI	SERVE INFII OPGXP
SENIJ SERI HJJGRA		INTV1 BLANK	SERI Intri	SERI XTOI.	SERV	BLANK	CYCI1	END.	DP62P PRRT1 AERP13 OPGXP	SERVS ENDFIL.	SERVA	SERI1 INTW CYCXP
SENT TSPV TSPV TSUCOR		INTY	INTV1 BLANK	IN A CALL	INTV2	INTRI	SERI PROI	SERVS	L Q Q T D K K K E K C T C O G G E	SERV4 OUTBI.	SEALL	SERI INTIL PRNT3
STRI STRAT STRAT	SERVS	INTEL	INTV BLANK	INTV	INTIL	INT	INTV AERI Modx35	CB M 36	SULLY PRNT3 TREETP	SERII Ins3	SERI Linef	PCOM TGOV Servs
•	•	•	•	•	•	•	•	•	•	•	•	•
SENSD	SANDE	INTXB	INTXC	INTXD	ADMZI	INTS1	CINDIA	TRP36	A C N	INSB	LINE	Pant1
6	969	169	269	693	169	695	969	269	86	66	60	1.

702	PRNT2	•	INFIL	BL ANK TSPV	BL ANK CYCV	SERI1 OUTCI.	SERV3 CPTINE	SERVE	SERVS	160
703	PRNT 3	•	SERVS	PRNCN						
707	PRNTG	•								
705	CVCXP	•	CYCV	LINE						
706	OPGXP	•	DPGV	I, I NE						
707	0P62P	•	DP2I	11940						
708	TRAKP	•	TRAI	TRAV	TRAVI	LINE				
709	TRAKP3	•	TRAI	TRAI5	TRAVS	LINE				
710	TRAKP	•	TRAI	TRAKP3	TRAKP					
711	STRTP	•	18.	STRV	STRV1	STRV2	STRV3	DPGV	LINE	
712	CONTP2	•	INTV	CONI	CON	LINE				
713	DATEC	•	183S	SERVZ	ENVI4	CALD				
714	ENVRP	•	> N	ENVZ	ENVIS	SERV	ENVIL	ENVIG	ENAV1	LINE
715	AERNP	•	AERI	AERV	AERU	AERV2	AERV 3	ENV	ENVII	LINE
716	AE2P13	•	AERI	AERV	AERVI	AERV2	AERV3	ENYII	ENV	LINE
717	98099	•	PROI	PROIT	7029	SERI	STRV3	LINE		
718	RMOTP	•	RHOV	RHOI	LINE					
719	THOTP	•	THOES	THGV	THOVE	140 %2	LINE			
720	SENSP	•	SENI	SENVS	SENII	SENV	SENVI	SENV3	LINE	
721	SENSP3	•	SENI	SENV	LINE					

722	JUNKP	٠	JUNA	LINE						
723	INS3	•	INFI1 GOTOER.	INFV1	SERI1	INFV	VINI	INSE	ENDFIL.	INST
724	†SNI	•	BLANK Gral	3L ANK	SERI	SERI1	SERV	ALNI	BUFOUY.	outci.
725	INSS	•	BLANK OUTCI.	BLANK	SERI	SERI1	SERV	SERV2	INFIL	VANI
726	MOMP	•	SERI	SERI1	INTV	INTV1	OUTBI.	REMIND.		
727	SURRY	•	BLANK TGDV OUTCI.	BL ANK SERVI	INTIL	INTV	SERI1 OP2I	SERV4 OP2V	SERVS OTSL18	T X VEH
728	ESNI	•	BLANK INFV1 TMOV1	BL ANK SENV4 THOV2	ITIV CYCII INTV	PFR ENVII SERIT	PCGN ENVV OUTCR.	TSPV ENVV2 GOTOER.	INFI1 THOIL AUXF	INFV TMOV OUTCI.
729	PFRPH	•	END.	рғқр	QBNTRY.					
730	SERI	1								
731	SERI1	•								
732	SERV	•								
733	SERV1	•								
734	SERV2	•								
735	SERV3	•								
736	SERV4	•								
737	SERVS	•								
738	TRAV	•								
739	PFRI	1								

THE PROPERTY OF THE PROPERTY O

。 1912年,1918年,191

																			WRITEC	
														MVSEND		REWIND.			¥ ₽	
														ITEV		outer.	CRAL	MASEND	PFRV1	
														PFRV1		ENDFIL.	GETADO	ITEV	SERI	
														SERV		INPBI.	MASEND	SERV	BL ANK	
														SERI	רדנ	PFRV1	PFRY1	SERI	BL ANK	
														BL ANK	GOTOER.	SERII	9L ANK	BL ÁNK	ECSOM2 Locf	
														BLANK	UTL	MVSEND	BLANK	BLANK	ECS04 READEC	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PF~I1	PFRV	PFRV1	ITEI	ITEI1	ITEV	ITEV1	IIII	11111	ITIV	MPEI	MPEI1	HPEV	MASEND	AUGH	BABT	COVRDM	CRAL2	OMTXO	ECINF	11
240	741	242	743	446	745	746	747	748	749	750	751	752	753	1,2%	755	756	151	158	759	760
									г.	12										

و چر م	SERV2 LTL	PFRI1 OUTCI.	SERV	SERI1 SOLV	SERI Sert.	BL ANK MVSE4D	BLANK PF2V1	• •	H T X X X X X X X X X X X X X X X X X X	776
SERV3 BACKSP	SERV2 OUTCR.	SERVI ITIII GRAL	SERV PFRV1 OUTCI.	SERII PFRV REWIND.	SERI PFRI1 Inpbi.	BLANK PFRI EOF	BLANK Serva Inpbr.	•	HDRO	774
PFRII	SERV2 XY2RTC	SERV1 BABT	SERV OUTCI.	SERIT	SERI	BL ANK ITEV	BLANK PF2V1	•	APQECI	773
PFRV	PFRI1	PFRI	SERV2	SERV GOS.	SERI ITEV	BL ANK ITEI1	BLANK PFRV1	•	APCVN	172
PFRI1 CRAL	PFRI GETADO	SERV OUTCI.	SERI PFRS1	PCOM	SERI1 MVSEND	BL ANK PFRV1	BLANK	•	PF2P8	77.1
PFRV1 STOP.	PFRU PFR1	PFRI1 END.	PFRI HPSV OBNTRY.	SERII ITIV CRAL2	PCGK ITII1 PFRPB	BLANK ITEV NHTX	BLANK ITEI1 OUTCI.	•	TRP41	770
								•	UTL	769
PFRV1	PFRV	PFR11	PFRI CPTIME	SERV2 TIN2GO	SERW OUTCI.	SERII	SERI	•	TREMS	708
	Sart.	outer.	SERV2	SERV1	SERV	SERII	SERI	٠	SYMQR	767
	sart.	MVSEND	PFRV1	SERV	SERI	BL AN	BLANK	t	STATS	766
		GOT OER.	SERV 3	SERV2	SERVI	SERV	SERI	٠	ATOS	765
St. ANK	BLANK	PFRVI	PFRI1	SERV2	SERV	SERI OUTCI.	SERIT Mysend	•	PSIGZ	164
	ECINF	HODELS	GOTOER.	LOADOV	PFRV	HPEV	PFRI	•	PFRP	763
				GOTOER.	outer.	SERII	SERI	•	MTXPR	292
			outer.	ENTOL	BLANK	BL ANK	SERI1	•	HODELS	761

and he was the sale have that the

and carbaba and administration of the same some common and a supplicable of the same some some common and some some some some common and some some common and

()

	PFR1	•	BLANK SERV4 DATKO COVROM	BLANK PFRI SOLV COS.	SERI PFRI1 AUGH APCWM	SERI1 PFRV UTL CRAL2	SERV PFRV1 SORT.	SERV1 ITEI1 Apqeci	SEQU2 ITEV MTXPR	SERV3 WVSEND GUTCI.
PFRS1	겼	•	BLANK PF211	BL ANK PFRV	SERI PFRV1	SERI1 Horo	SER¥ OUTCR.	SERV1 OUTCI.	SERV2 CRAL	PFRI
TRP42	45	•	END.	PFRP1	QSNTRY.					
PFRP1	T	•	BLAN SERAK ITIII GAKPR VSBK	BL ANK SERV¢ ITEV BNDGHK PFR2	PCCON HTTRI MYNNH MYNNH	SERI MPERII SART. OUTCI.	SERII PFRV MVSEND SOLV PSIGZ	SERV GHRRVI GUGBU COVA	SERVI ITERI TRENS EIGANL HAKS	SERV2 ITEI1 PROQ QGMKR EDIT
8 0 0	BNDGMK	•	BLANK ITEI1	BL ANK ITEV	SERI	SERI1 OUTCI.	SERV	SERV2	PFRIL	PFRV1
COVA	4	•	BLANK Serve Inpbi.	BLANK Pfri Rewind.	SERI PFRI1	SERI1 PFRV	SERV PFRV1	SERV1 ITEV	SER 42 MV SEND	SERV3 Inpor.
λO	DYNHT	•	BLANK	BL ANK GUTCI.	SERI	SERII	SERV	PFRV	PFRV1	11111
EOST	L	•	BLANK PF211	BL ANK PFRV	SERI PFRV1	SERII ITEW	SERV ITII1	SERVI	SERV2 OUTCI.	PFRI XTOI.
E 16	EIGANL	•	PFRI1 MVSEND LTL	PFRY BLANK	PFRV1 BLANK	ITEV HTRX5	SERI BABT	SERII HTXPR	SERV OUTCI.	SERV2 Symar
¥ 5	GMKPR	•	BLANK	BL ANK OUTCI.	SERI	SERI1	SERV	SERV2	PFRV1	ITEI1
Ē	GMKPU	•	SERII	BL ANK	BL ANK	SERV	ITEI1	ITEV	outci.	
HAKS	S	•	ITEI1 Serv3 HVSEND	BLANK SERV4 OUTBI.	BLANK PFRI SORT.	SERI PFRÎ1 EOF	SERI1 PFRV INPBI.	SERV PFRV1 REWIND.	Servi Itev	SERV2 ITIV
PFR2	22	•	BLANK	3L ANK	SERI	SERV	PFR11	PFRVI	ITEV	HVSEND

THE PROPERTY OF THE PROPERTY O

Ū

	outci.	INPBI.	TARC CARRA DATES	PFRI Revind.	PFRV1 OUTCI.		9L ANK	outci.		PFRII			SERV2
	MVSERD	MVSEND	PFRI1 END. AKFXR OUTCI.	SERV2 Mysend	PFRI1 COS.		9L A N K	SYMOS		PFRI REWIND.			SERVI
MVSEND	ITEV	ITEV	PFRI MVSEND PSIG2 MATHBR	SERV	SERV2 SQRT.		SERII Babt	ATAN2.	NVSEND	SERV2 Inpbi.			SERV LTL
ITEV	PFRV1	PFR	SERII PFRV1 COVROM LPGHR	SERI1 ITII1	SERV ATAN2.		SERI OUTCI.	MVSEND	PFRV1	SERV Inder.	outer.		SERI1 OUTCI.
PFRV1	PFRV	PFRV	SERI RTIK HTKCV PR	SERI	SERI1 RADPC	ITEV	ITEV	SERV2	PFRV	SERI1 MVSEND	SERV2		9L ANK NT XPR
PFRV	SERV	SERV	PSOM ITILL RCVMTX DPVQ	BL ANK PFRV1 Inpbi.	SERI EIGEN	ITEI1	PFRV1 STATS	00 00 00 00 00 00 00 00 00 00 00 00 00	SERV	SEST	SERV		BLANK
SERV	SERI1	SERII	BLANK ITEV HTRX5 BABT Q&NTRY•	BL ANK PFRV EOF	3LANK RADPS	9L ANK	PFRV	SERII	SERI	BL ANK PFRV1	SERII	outer.	PFRV1 NVSEVD
SERI	SET	SERI REWIND.	BLANK ITEI1 DVCPR STATS LTL	ITEI1 PFRI1 Inpbr.	BL ANK MVSEND	BL ANK	PFRI1 MVSEND	SERI SORT.	ITEV	BLANK	SERI	SERI1	PFRI1 SERI
•	•	•	•	•	•	٠	•	•	•	•	•	•	•
PROQ	QGMKR	YSak	1RP43	AKFXR	CSEPS	DAAG	OVCPR	EIGEN	LPGHR	HATHB?	RADPC	ZABPS	RCVHTX
190	791	792	7 93	161	795	795	197	198	199	800	801	802	80 0

THE PARTY OF THE P

Ū

INDEX

The index will be supplied at a later date.