Тема Проектування мережі абонентського доступу

Завдання

Метою проекту ϵ організація мережевої платформи надання послуг (включаючи широкосмугові). Поставлена мета досягається вирішенням таких проєктних завдань:

- 1. Планування мережі доступу для житлового району (розрахунок трафіку, що генерується абонентами району; формування топологічної структури мережі, вибір технології підключення абонентів).
- 2. Синтез структури магістральної ділянки мережі (оцінка навантаження на канали мережі, формування зонової структури)
 - 3. Вибір обладнання для всіх рівної ієрархії.

Вихідні дані

Таблиця 1 Характеристики груп користувачів

Груп користувачів k	Клас користувачі в q _к	Кількість викликів у ΓHH $W_{_{qk}}^{(k)}$	Тривалість піку або сеансу зв'язку
1 Телефонія	КС	5	120
	ДС	25	240
2 Передача даних	КС	12,0	1800
	ДС	12,0	1800
3 Triple Play	КС	85% від загального числа	3600
(Відео)		абонентів	

Таблиця 2 Розподіл груп користувачів у % (відповідно до останньої цифри залікової книжки):

	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	3	4	5	6	2
2	65	55	70	60	75	70	60	55	65	75
3	40	45	35	50	55	40	35	45	55	50

Таблиця 3 Загальна кількість абонентів житлового району (у тис.) (відповідно до останньої цифри залікової книжки):

	1	2	3	4	5	6	7	8	9	10
Nаб	12	12	9	10,5	8,5	8	11,5	10	13	11

Матриця відстаней між будинками в м.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	-	90	70	60	120	85	95	105	110	80	90	75	130	125	115
2	90	-	80	75	90	110	105	100	70	125	120	130	105	100	75
3	70	80	-	100	75	80	95	100	140	130	125	110	95	90	105
4	60	75	100	-	60	120	135	105	90	70	50	85	115	140	125
5	120	90	75	60	-	70	55	120	90	75	115	75	85	130	60
6	85	110	80	120	70	-	75	85	95	100	135	115	120	65	70
7	95	105	95	135	55	75	-	80	105	115	85	90	100	70	65
8	105	100	100	105	120	85	80	-	95	120	65	70	80	90	100
9	110	70	140	90	90	95	105	95	-	100	110	90	85	70	65
10	80	125	130	70	75	100	115	120	100	-	95	75	65	70	60
11	90	120	125	50	115	135	85	65	110	95	-	100	80	70	60
12	75	130	110	85	75	115	90	70	90	75	100	-	70	75	115
13	130	105	95	115	85	120	100	80	85	65	80	70	-	90	110
14	125	100	90	140	130	65	70	90	70	70	70	75	90	-	85
15	115	75	105	125	60	70	65	100	65	60	60	115	110	85	-

Тип технологій:

PON - якщо остання цифра залікової книжки парна (2, 4, 6, 8, 0)

FTTH - якщо остання цифра залікової книжки не парна (1, 3, 5, 7, 9)

Таблиця 4 Затухання, яке вноситься сплітерами

Параметр	Затухання, дБ
Загасання, що вноситься в лінію зварним з'єднанням	0,05
Втрати в оптичному волокні (1310nm), на км	0,36
Втрати в оптичному волокні (1490/1550nm), на км	0,22
Затухання, що вноситься у лінію роз'ємними	0,25
з'єднаннями	
Загасання в 1:2 оптичному сплітері	3
Загасання в 1:4 оптичному спліттері	6
Загасання в 1:8 оптичному спліттері	9
Затухання в 1:16 оптичному спліттері	12
Затухання в 1:32 оптичному спліттері	15
Затухання в 1:64 оптичному спліттері	18

Таблиця 5 - Кількість зварних з'єднань у лінії (визначається останньою цифрою списку академічного журналу)

	1	2	3	4	5	6	7	8	9	10
N33	1	2	3	4	2	1	3	4	2	3

Таблиця 6 - Характеристики трафіку мережевих застосувань

Клас застосування Qi	Застосування	Середній обсяг трафіку за сеанс	Мінімально рекомендована пропускна здатність каналу, С _{ітіп}
1	Відеоконференція	50 Мбайт	512 Кбіт∖с
2	Електронна пошта	256 Кбайт	25 Кбіт∖с
3	Web	2 Мбайт	128 Кбіт\с
4	Обмін файлами (файловий сервер)	2 Мбайт	128 Кбіт∖с
5	VoIP	1 Мбайт	128 Кбіт\с
6	IPTV	1 Гбайт	8096 Кбіт∖с
7	Інтернет пейджинг (Viber, Skype)	100 кбайт	32 Кбіт∖с
8	Вилучений доступ (Team Viewer)	2 Мбайт	512 Кбіт∖с
9	Спільна робота з файлами	512 Кбайт	64 Кбіт∖с
10	Дистанційне навчання (Е- навчання)	200 Мбайт	2048 Кбіт∖с
11	P2P	1,5 Гбайт	10000 Кбіт∖с
12	Службовий трафік DHCP	15 Кбайт	32 Кбіт∖с
13	Службовий трафік DNS	10 Кбайт	32 Кбіт∖с
14	Авторизація ААА	100 Кбайт	128 Кбіт\с

Таблиця 7 - Склад трафіку передачі даних (обирається відповідно до останньої цифри списку академічного журналу)

	1	2	3	4	5	6	7	8	9	10
Клас	1,2,3,	1,2,3,4,	1,2,3,4,	1,2,3	1,2,3	2,3,4,	2,3,	2,3,4,	2,3,4,	2,3,4,
	4,			,4,	,4,		4,			
застосування	7,10	7,8,9,11	10,11	7,11	7,10	7,10,11	7,1 1	10,11	7,10	7,10,1 1
Qi										

Кількість поверхів у будинках - 16;

Висота поверху 4 м;

Ширина поверхової клітки - 12 м.

Приклад виконання проекту

1. Планування мережі доступу для житлового району

1.1 Формування топології мережі

Для формування топології мережі потрібно визначити, відповідно до варіанта, кількість будинків у районі та обрати відповідну матрицю суміжності А.

Для визначення кінцевої структури топологічної моделі мережі (графа) потрібно провести операцію множення матриці суміжності А і матриці відстаней L, та отримати робочу матрицю ваг W.

Після того як сформовано матрицю ваг W, потрібно навести графову модель планованої мережі.

Наступним етапом потрібно визначити місце розташування опорного вузла, через який здійснюватиметься підключення до рівня агрегації та вихід до магістральної мережі.

Для визначення місця розташування опорного вузла потрібно застосувати відомий алгоритм знаходження медіани графа.

1.2 Розрахунок трафіку, що генерується абонентами

Необхідна пропускна здатність для планування мережі житлового району визначається за формулою:

$$C = 1.2 * \sum_{i=1}^{N} c_i;$$

де С - необхідна пропускна здатність каналу Мб/с на одного користувача;

 c_i - розрахована пропускна здатність;

1,2 - коефіцієнт запасу на розширюваність мережі;

У таблиці 6 вказано мінімальну необхідну пропускну здатність без урахування службових даних (заголовків пакетів, контрольних сум тощо). Сьогодні на канальному рівні використовується технологія Ethernet, а на мережевому IP/MPLS, отже необхідно врахувати службові дані в розрахунку навантаження:

$$\begin{aligned} c_i &= c_{imin} + (\mu*(preamble + frame \ delimiter + ETHheader + IFG + MPLS \\ &- TPheader) \end{aligned}$$

де C_{imin} - мінімальна пропускна здатність для обслуговування і-го типу трафіку (визначається з таблиці 6);

 μ - розрахована інтенсивність обслуговування пак/с;

preamble - преамбула в передачі Ethernet кадру 7 байт, 56 біт;

frame delimiter - роздільник кадрів 1 байт, 8 біт;

Eth header - заголовок Ethernet 18 байт, 144 біт;

IFG - міжкадровий інтервал 12 байт, 96 біт;

MPLS-TP header - дві мітки MPLS-TP по 8 байт, 32 біти кожна.

$$\mu = \frac{V_i}{V_{EF} * T_c}$$

де V_i - середній обсяг даних, що передаються протягом сеансу (вибирається з таблиці 6)

 T_c - середня тривалість сеансу зв'язку (таблиця 1 для квартирного сектора) V_{EF} - обсяг (довжина) кадру Ethernet - 1500 байт.

Розрахунок необхідно провести для трьох класів абонентів - у першому класі враховуємо тільки телефонію, у другому - телефонію і передачу даних (згідно з варіантом за таблицею 7), у третьому - телефонію, передачу даних і ІРТV.

Наприклад, у нас варіант номер 5, відповідно до таблиці 7 користувачі використовують класи додатків під номерами 1,2,3,4,7,10. Цим номерам за таблицею 6 відповідають такі додатки.

Клас застосуванняQi	Застосування
1	Відеоконференція
2	Електронна пошта
3	Web
4	Обмін файлами (файловий сервер)
7	Інтернет пейджинг (Viber, Skype)
10	Дистанційне навчання (E-learning)

Для кожного з цих додатків розраховуємо C_i .

Важеливо: під час розрахунку необхідно не забувати, що в мережі присутній трафік службових застосунків, отже, незалежно від варіанта всі повинні включити в розрахунок навантаження і розрахунок для службових застосунків (рядки 12-14 таблиці 6).

1.3 Вибір технології доступу та розрахунок бюджету оптичної лінії

Користувачі мережі залежно від варіанту підключаються або за технологією PON, або за технологією FTTH. В обох випадках до абонента прокладається оптичний кабель, тільки у випадку з технологією PON до одного

волокну підключається до 32 абонентів (смуга пропускання розділяється між ними рівномірно), а у випадку з технологією FTTH - одне волокно для одного абонента.

У моделі оптичної лінії присутні два типи з'єднань, які вносять втрати - це роз'ємне з'єднання і нероз'ємне (зварне) з'єднання. У таблиці 5 вказано число зварних з'єднань у лінії.

Число роз'ємних з'єднань для будь-якого типу технології становить 4 одиниці (див. рис.1)

Рис. 1 - Загальна модель оптичної лінії

У таблиці 4 вказано розмір втрат, які вносять роз'ємта нероз'ємні з'єднання в лінію.

Сумарні втрати в лінії визначаються за формулою: Сумарні втрати в лінії РОN можна обчислити за формулою:

$$A_{\Sigma} = l_{\Sigma} * a + N_{P} * A_{P} + N_{C} * A_{C} + (A_{PA31} + ... + A_{PA3i})$$
(3.1)

де A_{Σ} - сумарні втрати в лінії (між OLT і ONU) дБ;

 $oldsymbol{l}_{oldsymbol{arSigma}}$ - сумарна довжина оптичної лінії, км;

а - коефіцієнт втрат в оптичному кабелі, дБ/км (див табл. 4);

 N_P - кількість роз'ємних з'єднань;

 A_{P} - середні втрати в роз'ємному з'єднанні, дБ;

 N_C - кількість зварних з'єднань;

 $A_{\mathcal{C}}$ - середні втрати в зварному з'єднанні, дБ;

 A_{PA3i} - втрати в і-му оптичному сплітері, дБ (див табл.

4); У випадку з лінією типу FTTH формула набуває вигляду:

$$A_{\Sigma} = l_{\Sigma} * a + N_P * A_P + N_C * A_C$$

$$(3.2)$$

Визначення типу і числа сплітерів для лінії РОМ:

Одне волокно може підключати до 32 абонентів, а нові специфікації підключають і 64 абонента на волокно. Таким чином можна організувати лінію або на 32 абонента, або на 64. Наприклад, нам необхідно під'єднати 32 абоненти, отже, ми можемо використовувати сплітер 1х4 (розділить потік на 4), а потім сплітер 1х8 (розділить кожен потік на 8), у сумі отримаємо 4 * 8 = 32 абоненти (рис. 2).

Рис 2 - Приклад оптичної лінії PON

Для визначення числа типу сплітерів нам необхідно знати число будинків і загальне число абонентів (табл. 3).

Нехай у нас буде 16 будинків і 12 тисяч абонентів. Усі будинки мають 16 поверхів. Визначимо скільки абонентів на один будинок:

 $N_{Ab1b}=N$ $/N_{Ab\Sigma b}=12000/16=750$ абонентів

Далі визначимо число абонентів на 1 поверх

 $N_{A B 1 \Pi o B} = N \ / N_{A B 1 B \Pi o B} = 750 / 16 = 47$ абонентів

Отже, на одному поверсі 47 абонентів, отже, ми можемо використовувати одну лінію з максимальним числом абонентів 64 або дві лінії з максимальним числом абонентів 32.

Нехай у нас буде одна лінія на 64 абонента. Тоді я можу використовувати один сплітер 1x64 або ланцюжок 1x2 і 1x32 тощо.

Таким чином, для підключення одного поверху достатньо одного волокна, а для всього будинку потрібно 16 волокон (для інших варіантів розрахунок аналогічний)

Розрахунок довжини лінії

Довжина лінії складається з двох частин:

- 1. магістральної частини її довжина визначається як відстань між центральним вузлом (медіаною графа) та найвіддаленішим будинком. Визначається за матрицею відстаней, яку отримали під час визначення медіани (вважаємо найгірший варіант).
- 2. Внутрішній сегмент лінія, прокладена всередині будинку. Довжину цього сегмента рахуємо в такий спосіб. Висота поверху становить $h_{\text{пов}} = 4 \text{ м}$, ширина сходової клітки $l_{\text{ск}} = 12 \text{ м}$. Волокно заводиться у квартиру абонента. Тоді визначимо довжину сегмента таким чином:

$$N_{\text{пов}} * h_{\text{пов}} + I_{\text{ск}} / 2$$

Рахуємо найгірший варіант - для 16-го поверху.

Далі підсумовуємо магістральний і внутрішній сегмент і отримуємо сумарну довжину лінії.

Тепер використовуючи формулу 3.1 або 3.2 можна розрахувати загальне значення втрат в оптичній лінії. Якщо бюджет втрат перевищує 50 дБ, то лінія не працюватиме, і тоді в кожному будинку необхідно буде додавати проміжний пункт, тобто вводити рівень розподілу.

2. Синтез магістральної мережі

Проектована мережа має ієрархічну структуру. Кожна мережа доступу (спроектована в пункті 1) під'єднується до регіонального (обласного) вузла агрегації, які, своєю чергою, під'єднуються до зональних вузлів (одна зона концентрує (об'єднує) кілька областей), які під'єднуються до центрального вузла (ядра). Таким чином, магістральна мережа являє собою ієрархічну деревоподібну структуру, показану на рис.

Вузли агрегації - ставляться в кожній області, зональні вузли підключають кілька областей, а центральний вузол об'єднує зональні вузли.

До задачі синтезу магістральної мережі належать такі етапи:

- 1. Визначення місця розташування зональних вузлів.
- 2. Визначення навантаження, що генерується кожним вузлом агрегації.
- 3. Визначення навантаження, яке будуть генерувати зональні вузли.

2.1 Визначення оптимального місця розташування зональних вузлів.

Число зон, на які необхідно розділити магістральну мережу, визначаються останньою цифрою номера заліковки

Таблиця 2.1 - Кількість зон (визначається останньою цифрою залікової книжки)

Остання цифра студ. квитка	Кількість зон, т	Центри зон _{Jmp}
1	7	Львів, Чернівці, Житомир, Суми, Луганськ,
		Одеса, Сімферополь
2	4	Херсон, Донецьк, Львів, Вінниця
3	5	Львів, Київ, Полтава, Запоріжжя, Сімферополь
4	6	Тернопіль, Київ, Полтава, Миколаїв, Донецьк,
		Ужгород
5	6	Ужгород, Хмельницький, Черкаси, Одеса,
		Донецьк, Харків
6	5	Луганськ, Сімферополь, Чернігів,
		Хмельницький, Львів
7	4	Львів, Київ, Одеса, Луганськ
8	6	Тернопіль, Черкаси, Донецьк Хмельницький,
		Херсон, Запоріжжя,
9	7	Луцьк, Чернігів, Сімферополь, Луганськ,
		Чернівці, Харків, Кіровоград
0	5	Луцьк, Хмельницький, Суми, Одеса, Донецьк

Завдання може бути вирішене так: нехай наша мережа представлена графом, де вершини - це обласні центри, а ребра - це відстані між обласними центрами (задано в таблиці 2.2). Обласні вузли комутації розбиваються на задану за варіантом кількість зон. Закріплення і-го обласного вузла за ј-м зональним центром здійснюється за критерієм тіп відстані до зонального вузла. Після того як закінчено формування зонової мережі, здійснюється синтез магістральної мережі. Для цього кожен зональний вузол з'єднується радіальним зв'язком із центральним вузлом, розташованим у м. Києві.

Таблиця 2.2. - Матриця відстаней між обласними центрами України (у км.)

		Вінн иця	Дніпр опетр овськ	Доне цьк	Жито	Запор іжжя	Ів. Фран ківсь к	Київ	Кіров оград	Луга нськ	Луць к	Львів	Мико лаїв	Одес	Полт ава	Рівне	Сімф еропо ль	Суми	Терн опіль	Ужго род	Харкі в	Херс он	Хмел ьниць кий	Черка си	Черні гів	Черні вці
	Місто	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	Вінниця		645	868	125	748	366	256	316	1057	382	360	471	428	593	311	844	602	232	575	734	521	120	343	396	247
2	Дніпропетровсь к	645		252	664	81	901	533	294	394	805	975	343	468	196	957	446	430	877	1130	213	376	765	324	672	892
3	Донецьк	868	252		858	217	1171	727	520	148	1111	1221	611	731	390	1045	591	706	1100	1391	335	560	988	547	867	1115
4	Житомир	125	664	858		738	431	131	407	1182	257	423	677	557	468	187	803	477	298	671	690	624	185	321	271	470
5	Запоріжжя	748	81	217	738		1119	607	303	365	681	833	377	497	270	925	365	477	977	1488	287	297	875	405	747	876
6	Ів. Франківськ	366	901	1171	431	1119		561	618	1402	328	135	847	627	898	296	1070	908	134	280	1040	798	246	709	701	143
7	Київ	256	533	727	131	607	561		298	811	388	550	490	489	337	318	972	346	427	806	478	551	315	190	149	601
8	Кіровоград	316	294	520	407	303	618	298		668	664	710	174	294	246	627	570	506	547	883	387	225	435	126	363	581
9	Луганськ	1057	394	148	1182	365	1402	811	668		1199	1379	857	977	474	1129	739	253	1289	1539	333	806	1177	706	951	1259
10	Луцьк	382	805	1111	257	681	328	388	664	1199		152	780	856	725	70	1052	734	159	413	866	869	263	578	949	286
11	Львів	360	975	1221	423	833	135	550	710	1379	152		850	970	891	232	1173	896	128	261	1028	1141	240	740	690	278
12	Миколаїв	471	343	611	677	377	747	490	174	857	780	850		120	420	864	282	681	754	999	556	51	590	300	640	604
13	Одеса	428	468	731	557	497	627	489	294	977	856	970	120		540	741	392	800	660	1009	831	171	548	420	529	499
14	Полтава	593	196	390	468	270	898	337	246	474	725	891	420	540		655	635	261	825	1149	141	471	653	279	477	808
15	Рівне	311	957	1045	187	925	296	318	627	1129	70	232	864	741	655		1157	664	162	484	805	834	193	508	458	332
16	Сімферополь	844	446	591	803	365	1070	972	570	739	1052	1173	282	392	635	1157		896	1097	1363	652	221	964	696	1112	927
17	Суми	602	430	706	477	477	908	346	506	253	734	896	681	800	261	664	896		774	1138	190	732	662	540	350	838
18	Тернопіль	232	877	1100	298	977	134	427	547	1289	159	128	754	660	825	162	1097	774		338	987	831	112	575	568	170
19	Ужгород	575	1130	1391	671	1488	280	806	883	1539	413	261	999	1009	1149	484	1363	1138	338		1299	1065	455	984	951	406
20	Харків	734	213	335	690	287	1040	478	387	333	866	1028	556	831	141	805	652	190	987	1299		576	854	420	608	970
21	Херсон	521	376	560	624	297	798	551	225	806	869	1141	51	171	471	834	221	732	831	1065	576		641	351	691	655
22	Хмельницький	120	765	988	185	875	246	315	435	1177	263	240	590	548	653	193	964	662	112	455	854	641		463	455	176
23	Черкаси	343	324	547	321	405	709	190	126	706	578	740	300	420	279	508	696	540	575	984	420	351	463		330	692
24	Чернігів	396	672	867	271	747	701	149	363	951	949	690	640	529	477	458	1112	350	568	951	608	691	455	330		741
25	Чернівці	247	892	1115	470	876	143	601	581	1259	286	278	604	499	808	332	927	838	170	406	970	655	176	692	741	

2.2 Розрахунок пропускної здатності магістральної мережі

На цьому етапі синтезована структура нашої мережі має такий вигляд:

Для визначення навантаження, що генерується абонентами однієї області, застосуємо такий підхід:

Інтенсивність трафіка (біт/с), що генерується абонентами і-го об'єкта, визначається як сумарний інформаційний потік, що надходить в обласний вузол комутації від усіх служб у годину найбільшого навантаження (ГНН):

$$\gamma_i^{\Sigma} = \sum_{k=1}^{\hat{E}} \gamma_i^k, i = 1, 2, ..., 25;$$
 (1)

де k — номер рядка відповідної служби в табл. 1; K — загальна кількість цих служб; γ_i^k — матриця інтенсивності трафіку в ГНН на i-му об'єкті і k-ї служби:

$$\gamma_i^k = B^k \psi_i^k \ , \tag{2}$$

де B^k – пікова швидкість B_p^k для трафіку категорії сервісу CBR (Constant Bit Rate) або середня бітова швидкість передавання B_m^k для трафіка категорій сервісів VBR (Variable Bit Rate) і ABR (Available Bit Rate) в біт/с. Величина B_p^k значення береться з табл. 3 безпосередньо, величина B_m^k визначається за формулою:

$$B_m^k = \frac{B_p^k}{pch(q_k)},\tag{3}$$

де $pch(q_{\kappa})$ – пачечність.

До CBR відноситься трафік, для якого $T_p = T_c$, тобто тривалість піку дорівнює тривалості сеансу зв'язку (див. в табл. 3).

Безрозмірна величина ψ_i^k у формулі (2) означає відносний усереднений по класах користувачів усередині кожної k-ої служби і приведений до однієї секунди час

активності k-ої служби i-го об'єкту (області) в ЧНН; визначається за формулою:

$$\psi_{i}^{k} = \frac{\sum_{q_{k}} N_{q_{k}}^{i} W_{q_{k}}^{i} T_{q_{k}}^{i}}{\tau}, \tag{4}$$

де q_k – клас користувачів кожної k-ї служби згідно з табл. 3; наприклад, служба 1 (телефонія) має три класи: КС – квартирний сектор, ДС – діловий сектор, УАТС;

 $N_{q_k}^i$ — кількість одночасно працюючих в мережі абонентів класу в k-ій службі на i- му об'єкті; визначається з урахуванням загального числа абонентів відповідних об'єктів і служб, а також умовно заданим відсотком від їх загального числа (згідно з табл. 4);

 $W_{q_k}^i$ — число викликів у ГНН від користувачів класу q_k k -ї служби на i-му об'єкті;

 $T_{q_k}^i$ — середня тривалість сеансу зв'язку користувача класу q_k в k-ій службі на i-му об'єкті (сек);

т – кількість секунд в одній годині (сек).

Служба	Клас користув ачів	Пікова швидкіс	Пачечніс	Трива піку або се	,	Кількість викликів
k	\mathbf{q}_{κ}	ть _{вк} біт/с	ТЬ	$T_{\mathfrak{p}}$,	T _c , c	у ГНН
1	КС	64K	1	100	100	$\mathbf{W} \sum_{q_k} (k)$
Телефонія	ДС	64K	1	100	100	25
2 Передача	КС	10M	15	1000	1000	22
дані	ДС	10M	15	1000	1000	32
3 потрійний Грати (Відео)	КС	20M	200	3600	3600	0,1% від загального числа користуєте сь лей

Розподіл груп користувачів за службами показано в таблиці 2. Відсоток одночасно працюючих користувачів w

Таблиця 6 (обирається відповідно до останньої цифри списку академічного журналу)

	1	2	3	4	5	6	7	8	9	10
W	2	3	4	5	6	7	2	3	4	5

Розподіл користувачів за класами показано в табл. 7 (за останньою цифрою заліковки)

Таблиця 7

Служба	Категорія	1	2	3	4	5	6	7	8	9	10
1	КС	35	42	44	30	31	45	47	32	33	40
	ДС	65	58	56	70	69	55	53	68	67	60
2	КС	65	55	70	60	75	70	60	55	65	75
	ДС	35	45	30	40	25	30	40	45	35	25
3	КС	100	100	100	100	100	100	100	100	100	100

Табл. 8 Число потенційних абонентів мережі (брали до уваги населення віком від 10 до 75 років)

№ об'єкта		Кількість потенційних
мережі	Область	абонентів, тис. осіб.
1	Вінницька	772,4
2	Дніпропетровська	1567,6
3	Донецька	841,1
4	Житомирська	389,5
5	Запорізька	929,2
6	Івано-Франківська	409,8
7	Київська	3439,2
8	Кіровоградська	633,1
9	Луганська	546,2
10	Волинська (Луцьк)	560,7
11	Львівська	726,5
12	Миколаївська	664,7
13	Одеська	1469
14	Полтавська	630,1

15	Рівненська	673,3
16	АР Крим	413,2
17	Сумська	599,7
18	Тернопільська	642,4
19	Закарпатська (Ужгород)	758,3
20	Херсонська	814,2
21	Харківська	975,1
22	Хмельницька	730,8
23	Черкаська	602,9
24	Чернігівська	645,3
25	Чернівецька	522,8

Приклад розрахунку

Розглянемо розрахунок на прикладі Одеської області. Остання цифра залікової книжки нехай дорівнюватиме 4.

Визначимо число абонентів для кожної служби. Загальна кількість абонентів 1469 тисяч.

Згідно з таблиці 2 (в початку) у нас такий розподіл абонентів за службами: Телефонія 5%, тоді число абонентів: $N_{T\Phi} = 1469~000~*0,05 = 73450$ Передача даних 60%, тоді число абонентів: $N_{\Pi Д} = 1469~000~*0,6 = 881400$

Triple Play 50% тоді число абонентів: $N_{TP} = 1469\ 000\ *0,5 = 734500$ Розподілимо число абонентів служб за сект. орами, для цього використовуємо дані таблиці 7.

Для телефонії:

$$N_{T\Phi KC} = 73450*0,3=22035 \ N_{T\Phi JC} = 73450*0,7=51415$$

Для передачі даних:

$$N_{\Pi Д K C} = 881400 *0,6 = 528840 N_{\Pi Д Д C} = 881400 *0,4 = 352560$$

Для Triple Play розрахунок проводити немає необхідності, оскільки у нас тільки один клас абонентів КС.

Далі визначимо, яке число абонентів працює одночасно, для цього використаємо значення з табл. 6. W=5%.

Для телефонії:

$$N_{OT\Phi KC} = 22035*0,05 = 110 \ N_{OT\Phi JC} = 51415*0,05 = 2570$$

Для передавання даних:

 $N_{\text{ОПДКС}} = 528840*0,05=26442$

 $N_{\text{ОПДДС}} = 352560*0,05=17678$

Для Triple Play:

$$N_{OTP} = 734500 * 0.05 = 36725$$

Розрахуємо значення ψ_i^k

Для телефонії треба взяти до уваги два доданки КС і ДС

$$\psi = (^{NOT\Phi KC*TTT\Phi KC*WT\Phi KC} + ^{NOT\Phi JC*TT\Phi JC*WT\Phi JC})/3600 = (110*100*5+2570*100*25)/3600 = 1801,4$$

Для передавання даних треба взяти до уваги два доданки КС і ДС
$$\psi = (^{\text{NОПДКС*ТПДКС*WKC}} + \frac{\text{NОПДДС*ТПДДС*WПДДC}}{1000*22+17678*1000*32})/3600 = 318727$$

Для Triple Play треба взяти до уваги тільки КС, так само треба враховувати, що кількість викликів у ГНН становить 3% від числа абонентів, які одночасно працюють:

$$\psi = (N *T *W_{OTPTPTP})/3600 = (36725*3600*0,001*36725)/3600 = 1348725,625$$

Визначимо швидкості для кожної служби:

Телефонія: $B_{T\Phi} = 64 \text{ к/1} = 64 \text{ к}$

Для передачі даних: $B_{\Pi J} = 10M/15 = 0,66M$

Для Triple Play: $B_{\Pi J} = 20M/200 = 0,1 M$

Проведемо розрахунок навантаження:

 $\gamma^{\text{Одеса}} = 64 \text{ к*}1801,4+318727*0,66M+1348725,625*0,1M= 354347,7 \text{ Mбit/c} = 354, 3 \Gamma \text{бit/c}.$

Таким чином, отримали, що на обласному рівні (в обласний вузол) входить навантаження в 354,3 Гбіт/с. Аналогічно розраховуємо для інших обласних центрів. Результати розрахунку звести в таблицю.

Далі визначимо, яке навантаження буде йти до зональних центрів. Для цього скористаємося такими міркуваннями:

- 1. Трафік Triple Play на магістральний рівень не виходить, оскільки трансляцію послуги здійснюють місцеві провайдери.
- 2. На магістраль йде трафік передавання даних і телефонії, який розділяється в пропорції 30/70 30% трафіку замикається всередині, а 70% трафіку йде в зовнішній світ.

До зонального центру від області йтиме навантаження: $(\gamma^{\Pi Q} + \gamma^{T\Phi}) * 0,7$

Від зонального центру до ядра буде йти навантаження $(\Sigma_i (\gamma^{\Pi \mathcal{I}}_{+\gamma})^{T\Phi})$ *0,7, де і - кількість областей, що входять до зони.

2.3 Вибір обладнання для реалізації проєкту

Як уже зазначалося вище, проєктована мережа має трирівневу ієрархічну структуру - рівень доступу (агрегація трафіку), зональний рівень (розподіл трафіку) і рівень ядра.

Рівень доступу забезпечує підключення кінцевих користувачів до послуг мережі та доставку їхнього трафіку до мережевих сервісних платформ (серверів), які реалізують функціонування тих чи інших послуг.

Таким чином рівень доступу реалізується для кожного обласного центру і має бути реалізований на базі обладнання з урахуванням двох чинників - внутрішнього потоку трафіку і потоку вихідного трафіку.

Внутрішній трафік - відповідає всьому внутрішньому трафіку, що генерується об'єктом. Наприклад, для прикладу, розглянутого вище, внутрішній трафік для одеської зони дорівнює Одесса 354, 3 Гбіт/с. Таким чином нам необхідно припустимо 36 портів зі швидкістю 10 Гбіт/с кожен - можна використовувати комутатори Сіsco 3850 с 12 портами по 10 Гбіт/с кожен - загалом потрібно три таких комутатори.

Вихідний трафік - це трафік, який буде йти на зональний рівень. Як зазначалося вище, на зональний рівень буде йти (□ПД+□ТФ)*0,7. Вибираємо відповідну швидкість і число портів (тут необхідно обумовити те, що ми вважаємо, що трафік Triple Play віщається

тільки всередині області і на магістраль не виходить - у реальних умовах це не так).

Рахуємо для кожної області.

Зональний рівень. Тут беремо області, які входять у зону, вибираємо, у якій області максимальний вихідний потік - він визначає необхідну швидкість, а кількість областей у зоні визначає необхідну кількість портів (не забуваємо про резервування).

Далі визначаємо, який потік буде йти до ядра: ми визначили вище, що вихідний потік до ядра дорівнює $(\Sigma_i (\gamma^{\Pi J}_{+\gamma})^{T\Phi}))*0,7$, де і - кількість областей, що входять у зону.

Це визначає необхідну швидкість.

Рівень ядра - число портів дорівнює числу зон. Швидкість визначається потоком (вихідним із зони), який має максимальне значення. Не забуваємо про резервування.

Внизу наводимо таблицю із зазначенням типу обладнання (кількості, числа портів, типу порту) для кожного рівня.

$N_{\underline{0}}$	Об'єкт	Тип	Тип порту	Число	Число
		обладнання		обладнання	портів

Література

- 1. Воробієнко П.П. Телекомунікаційні та інформаційні мережі: Підручник для вищих навчальних закладів [Текст]/ П.П. Воробієнко, Л.А. Нікітюк, П.І. Резніченко. К.:САММІТ-КНИГА, 2010. 640 с.
 - 2. Нікітюк Л.А. Архітектура інформаційних мереж. Одеса: УДАЗ, 2000.
- 3. Нікітюк Л.А. Елементи синтезу та аналізу телекомунікаційних мереж. Одеса, УДАЗ, 2000.
- 4. Нікітюк Л.А. Телекомунікаційні технології цифрових мереж. Одеса: УДАЗ, 2000.
 - 5. Захарченко Н.В. и др. Системы электросвязи. Т. 1. К.: Техніка, 1998.
- 6. Гепко А.І. Мобильная связь и телекоммуникации. Словарьсправочник / А.І. Гепко, В.И. Гупал, І.В. Аблазов, Е.А Женчур. Под ред. проф. В. І. Гупала. К.: «Макро Пак», 2001. 196 с.

Карта України

Матриці суміжності ((відповідно до останньої цифри залікової книжки)

1.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	-	1	1	0	0	1	1	0	1	1	0	1	1	0	0
2	1	-	1	0	0	1	0	1	0	1	0	0	0	0	0
3	1	1	-	1	1	0	1	0	1	1	0	0	0	0	1
4	0	0	1	-	0	1	0	1	0	0	1	1	0	0	0
5	0	0	1	0	-	1	1	0	0	0	1	0	1	1	1
6	1	1	0	1	1	-	0	0	1	1	0	1	0	0	1
7	1	0	1	0	1	0	-	1	0	1	0	1	1	0	0
8	0	1	0	1	0	0	1	-	0	0	1	0	1	0	1
9	1	0	1	0	0	1	0	0	-	0	0	1	1	0	0
10	1	1	1	0	0	1	1	0	0	-	1	1	1	0	0
11	0	0	0	1	1	0	0	1	0	1	-	0	0	0	0
12	1	0	0	1	0	1	1	0	1	1	0	-	0	0	1
13	1	0	0	0	1	0	1	1	1	1	0	0	-	1	1
14	0	0	0	0	1	0	0	0	0	0	0	0	1	-	1
15	0	0	1	0	1	1	0	1	0	0	0	1	1	1	-

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	-	0	1	0	0	0	1	0	1	1	0	1	1	0	1	
2	0	-	1	0	0	0	0	1	0	1	0	0	0	0	0	
3	1	1	-	1	1	0	1	0	1	0	0	0	1	0	1	
4	0	0	1	-	0	1	0	1	0	0	1	1	0	0	0	
5	0	0	1	0	-	1	1	0	0	0	1	0	1	1	1	
6	0	0	0	1	1	-	0	0	1	1	0	1	0	0	1	
7	1	0	1	0	1	0	-	1	0	1	0	1	1	0	0	
8	0	1	0	1	0	0	1	-	0	0	1	0	1	0	1	
9	1	0	1	0	0	1	0	0	-	0	0	1	1	0	0	
10	1	1	0	0	0	1	1	0	0	-	1	1	1	0	0	
11	0	0	0	1	1	0	0	1	0	1	-	0	0	0	0	
12	1	0	0	1	0	1	1	0	1	1	0	-	0	0	1	
13	1	0	1	0	1	0	1	1	1	1	0	0	-	1	0	
14	0	0	0	0	1	0	0	0	0	0	0	0	1	-	1	
15	1	0	1	0	1	1	0	1	0	0	0	1	0	1	-	

3. _ _ _ _ _

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	-	0	1	1	1	0	1	0	0	1	0	0	1	1	0	
2	0	-	1	0	0	1	0	1	0	1	0	0	1	0	0	
3	1	1	-	1	1	0	1	0	1	0	0	0	1	0	1	
4	1	0	1	-	0	1	0	1	0	1	0	1	0	0	0	
5	1	0	1	0	-	1	0	0	0	0	1	0	1	1	1	
6	0	1	0	1	1	-	0	0	1	1	0	1	0	0	1	
7	1	0	1	0	0	0	-	1	0	1	0	1	1	0	0	
8	0	1	0	1	0	0	1	-	0	0	1	0	1	0	1	
9	0	0	1	0	0	1	0	0	-	0	0	1	1	0	0	
10	1	1	0	1	0	1	1	0	0	-	1	1	1	0	0	
11	0	0	0	0	1	0	0	1	0	1	-	0	0	0	0	
12	0	0	0	1	0	1	1	0	1	1	0	-	0	0	1	
13	1	1	1	0	1	0	1	1	1	1	0	0	-	1	0	
14	1	0	0	0	1	0	0	0	0	0	0	0	1	-	0	
15	0	0	1	0	1	1	0	1	0	0	0	1	0	0	-	

5. _ _ _

6.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	-	1	0	0	1	0	1	0	0	1	1	0	1	0	1	
2	1	-	1	0	0	1	0	1	0	1	0	0	1	0	0	
3	0	1	-	1	1	0	1	0	1	0	0	0	1	0	1	
4	0	0	1	-	0	0	0	1	0	1	0	1	0	0	0	
5	1	0	1	0	-	1	0	0	0	0	1	0	1	1	1	
6	0	1	0	0	1	-	0	0	1	1	0	1	0	0	1	
7	1	0	1	0	0	0	-	1	0	1	0	1	1	0	0	
8	0	1	0	1	0	0	1	-	0	0	1	0	1	0	1	
9	0	0	1	0	0	1	0	0	-	0	0	1	0	1	1	
10	1	1	0	1	0	1	1	0	0	-	1	1	1	0	0	
11	1	0	0	0	1	0	0	1	0	1	-	0	1	0	0	
12	0	0	0	1	0	1	1	0	1	1	0	-	0	0	1	
13	1	1	1	0	1	0	1	1	0	1	1	0	-	1	0	
14	0	0	0	0	1	0	0	0	1	0	0	0	1	-	1	
15	1	0	1	0	1	1	0	1	1	0	0	1	0	1	-	

7. -_ _ -

8.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	-	1	1	0	1	0	1	0	0	0	1	0	1	0	1	
2	1	-	0	0	0	1	0	1	0	1	0	1	1	0	0	
3	1	0	-	1	1	0	1	0	1	0	0	0	1	0	1	
4	0	0	1	-	0	1	0	1	0	1	0	1	0	0	0	
5	1	0	1	0	-	0	0	1	0	0	1	0	1	1	1	
6	0	1	0	1	0	-	1	0	0	1	0	1	0	0	1	
7	1	0	1	0	0	1	-	1	0	1	0	1	1	0	0	
8	0	1	0	1	1	0	1	-	1	0	1	0	1	0	1	
9	0	0	1	0	0	0	0	1	-	0	0	1	0	1	1	
10	0	1	0	1	0	1	1	0	0	-	1	1	1	0	0	
11	1	0	0	0	1	0	0	1	0	1	-	0	1	1	1	
12	0	1	0	1	0	1	1	0	1	1	0	-	0	0	1	
13	1	1	1	0	1	0	1	1	0	1	1	0	-	1	0	
14	0	0	0	0	1	0	0	0	1	0	1	0	1	-	0	
15	1	0	1	0	1	1	0	1	1	0	1	1	0	0	-	

9. _ _ _

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	-	1	0	1	1	1	0	0	1	1	0	0	1	0	1	
2	1	-	1	0	0	1	0	1	0	1	0	1	1	0	0	
3	0	1	-	1	1	1	1	0	1	0	0	0	1	0	1	
4	1	0	1	-	0	1	0	1	0	1	0	1	0	0	0	
5	1	0	1	0	-	0	0	1	0	0	1	0	1	1	1	
6	1	1	1	1	0	-	1	1	0	1	0	1	0	0	1	
7	0	0	1	0	0	1	-	1	0	0	0	1	1	0	0	
8	0	1	0	1	1	1	1	-	1	1	1	0	1	0	0	
9	1	0	1	0	0	0	0	1	-	1	0	1	0	1	1	
10	1	1	0	1	0	1	0	1	1	-	1	0	0	0	1	
11	0	0	0	0	1	0	0	1	0	1	-	0	1	0	1	
12	0	1	0	1	0	1	1	0	1	0	0	-	0	0	0	
13	1	1	1	0	1	0	1	1	0	0	1	0	-	1	1	
14	0	0	0	0	1	0	0	0	1	0	1	0	1	-	0	
15	1	0	1	0	1	1	0	0	1	1	1	0	1	0	-	