Online, November 27th, 2018



grasshopper • EN

# Imaginary Grasshopper (grasshopper)

Luca is attending a course about graph algorithms but he is a bit bored: the lectures are covering pretty basic topics on graphs, which have been already explained many times.

To kill time, Luca starts playing with his imagination and dreams a grasshopper jumping on graph nodes. Everyone knows that dreams are often an exaggeration of the reality: the grasshopper, in this dream, does not jump directly from a vertex on the graph to an adjacent vertex. Instead, it always jumps *two* vertices at a time: when it passes on the vertex in the middle, it's still "flying"!





Among the attachments of this task you may find a template file grasshopper.\* with a sample incomplete implementation.

### Input

The first line contains two integers N and M, respectively the number of vertices and the number of edges of the graph. The following M lines contain two integers  $A_i$  and  $B_i$  each, representing a directed edge from the vertex  $A_i$  to the vertex  $B_i$ .

### Output

You need to write a single line with an integer: the number of reachable vertices by the grasshopper.

#### **Constraints**

- $2 \le N \le 100000$ .
- 1 < M < 1000000.
- $0 < A_i, B_i < N 1$  for each  $i = 0 \dots M 1$ .
- The graph is directed, thus (u, v) and (v, u) are different edges.
- There can be *loops*, which are edges of the (u, u) kind.
- There are no duplicate edges.

### **Scoring**

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples.

grasshopper Page 1 of 2

| - <b>Subtask 2</b> (10 points) | The graph is a "line" which starts with the vertex 0 (as in the first sample case). |
|--------------------------------|-------------------------------------------------------------------------------------|
| - Subtask 3 (30 points)        | The graph is a tree (thus it does not contain cycles).                              |
| - Subtask 4 (25 points)        | $N \le 1000 \text{ and } M \le 10000.$                                              |
| - <b>Subtask 5</b> (35 points) | No additional limitations.                                                          |

### **Examples**

| input | output |
|-------|--------|
| 2.0   | 0      |
| 3 2   | 2      |
| 0 1   |        |
| 1 2   |        |
|       |        |
| 4 6   | 4      |
| 0 2   |        |
| 3 2   |        |
| 2 3   |        |
| 0 0   |        |
| 0 1   |        |
| 3 3   |        |

## **Explanation**

In the **first sample case**, described in the following picture, the grasshopper can reach the vertex 0 (as it stars from there) and the vertex 2 (jumping from 0 to 2, through 1). In total, two vertices are reachable.



The **second sample case** is represented in the following picture.



Every vertex is reachable. For example, a possible way to reach all vertices is:

- Vertex 0 is the starting point;
- Vertex 3 is reachable from 0 through (0,2) and (2,3);
- Vertex 2 is reachable from 3 (which is reachable) through (3,3) and (3,2);
- Vertex 1 is reachable from 0 through (0,0) and (0,1).

grasshopper Page 2 of 2