UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

Escola	EACH	TURMA		Nota do aluno na PROVA
Curso	Sistemas de Informação			Nota do aluno na FROVA
Disciplina	Arquitetura de Computador	Data da Prova	12/11/20	
Professor	Clodoaldo Aparecido de Moraes Lima			
Aluno				
No. USP				

- 1ª Questão) Um processador RISC é implementado em duas versões de organização síncrona: uma monociclo, em que cada instrução executa em exatamente um ciclo de relógio, e uma versão pipeline de 5 estágios. Os estágios da versão pipeline são: (1) busca de instrução, (2) busca de operandos, (3) execução da operação, (4) acesso à memória e (5) atualização do banco de registradores. A frequência máxima de operação das organizações foi calculada em 100 MHz para a versão monociclo e 400 MHz para a versão pipeline. Um programa X que executa 200 instruções é usado para comparar o desempenho das organizações. Das 200 instruções, apenas 40% fazem acesso à memória, enquanto as demais operam apenas sobre registradores internos da organização. Assuma, que o programa não apresenta nenhum conflito de dados ou de controle entre instruções que podem estar simultaneamente dentro do pipeline da segunda organização. Calcule o tempo de execução do programa X nas organizações monociclo e pipeline.
- 2ª Questão) Supondo que melhoramos uma máquina fazendo as instruções de *adição* serem executadas 2 vezes mais rápidas, e as instruções de *multiplicação* 4 vezes mais rápidas. Se o tempo de execução de certo *benchmark* antes do melhoramento é de 100s, sendo 20s em adição e 40s em multiplicação.
- a) calcular o speedup
- b) calcular o fator de melhoramento total
- 3ª Questão) Suponhamos que melhoramos uma máquina fazendo todas as instruções de ponto-flutuante serem executadas 5 vezes mais rápido.
- a) Se o tempo de execução de certo benchmark antes do melhoramento é de 10s, qual seria o speedup se metade dos 10s é despendida em instruções de ponto-flutuante?
- b) Estamos procurando um benchmark para testar a nova unidade de ponto-flutuante acima, e queremos que o benchmark todo mostre um speedup de 3. Um benchmark é executado em 100s, com o antigo hardware de ponto-flutuante. Quanto do tempo de execução as instruções de ponto-flutuante devem corresponder nesse programa para que possamos produzir o speedup desejado nesse benchmark?
- 4ª Questão) Apresente os valores dos sinais de controle *ALUSrc*, *ALUOp*, *MemRead*, *MemWrite*, *RegWrite*, *MemtoReg* e *RegDst*, na implementação da instrução *addi* no MIPS pipeline, indicando em que estágio cada um desses sinais são usados.

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

5ª Questão) Por que a instrução addi não pode ser considerada uma instrução de formato R, com opcode igual 000000?

6ª Questão) Descreva detalhadamente o que cada código faz

```
.text
                                     .text
main:
                                    .qlobl main
li $v0, 5
                                     main:
syscal1
                                     li $a0, 5
move $t0, $v0
                                     jal Funcao
li $v0, 5
                                     move $s0, $v0
syscall
                                        $v0, 10
move $t1, $v0
                                     svscal1
bgt $t0, $t1, t0 bigger
                                     Funcao:
move $t2, $t1
                                     sub $sp,$sp,4
                                     sw $ra, 0($sp)
b endif
t0 bigger:
                                     li $t1, 1
move $t2, $t0
                                     slti $t0, $a0, 2
endif:
                                     beq $t0, $zero, Calcula
move $a0, $t2
                                     add $v0, $zero, $zero
li $v0, 1
                                     beq $a0, $zero, Sai
syscall
                                     add $v0, $t1, $zero
li $v0, 10
                                     Sai:
syscal1
                                     lw $ra, 0($sp)
                                     add $sp, $sp, 4
                                     jr $ra
                                     Calcula:
                                     add $a1, $a0, $zero
                                     Loop:
                                     sub $a1, $a1, $t1
                                     jal Multiplica
                                     add $a0, $v0, $zero
                                     bne $a1, $t1, Loop
                                     j Sai
                                     Multiplica:
                                     mult $a0, $a1
                                     mflo $v0
                                    ir $ra
```

7ª Questão) Considere o seguinte loop em MIPS

```
LOOP: slt $t2, $0, $t1
beq $t2, $0, DONE
subi $t1, $t1, 1
addi $s2, $s2, 2
j LOOP
DONE:
```

a)Assuma que o registrador \$t1 é inicializado com o valor 0. Qual é o valor no registrador \$S2 assumindo que \$S2 inicialmente possui valor zero.

b)Para o código escrito em assembly MIPS, escreva a rotina equivalente em C. Assuma que os registradores \$\$1, \$\$2, \$\$t1 e \$\$t2 são inteiros A, B, i e temp, respectivamente.

8ª Questão) Traduza o seguinte código em C para assembly MIPS. Use o número mínimo de instruções. Assuma que os valores de a, b, i e j estão armazenados nos registradores \$s0, \$s1, \$t0 e \$t1 respectivamente. Também, assuma que registrador \$s2 armazene o endereço base da vetor D

```
for (i=0; i<a; i++)
for (j=0; j<b; j++)
D[4*j] = i + j;
```

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

9ª Questão) Traduza o seguinte loop para C. Assuma que o inteiro i é armazenado no registrador \$t1, \$s2 armazena o inteiro chamado result, e \$s0 armazena o endereço base do inteiro MemArray

addi \$t1, \$0, \$0 LOOP: Iw \$s1, 0(\$s0) add \$s2, \$s2, \$s1 addi \$s0, \$s0, 4 addi \$t1, \$t1, 1 slti \$t2, \$t1, 100 bne \$t2, \$s0, LOOP

10ª Questão) Os problemas neste exercício referem-se a seguinte sequência de instruções, e suponha que seja executada em um pipeline de 5 estágios:

add \$5, \$2, \$1

lw \$3.4(\$5)

lw \$2,0(\$2)

or \$3, \$5, \$3

sw \$3.0(\$5)

a)Se não houver encaminhamento ou detecção de conflito, insira nops para garantir a execução correta.

b)Use nops apenas quando um conflito não puder ser evitado alterando ou reorganizando essas instruções. Você pode assumir o registro \$7 pode ser usado para manter valores temporários em seu código modificado.

c)Se o processador tem encaminhamento, mas esquecemos de implementar a unidade de detecção de conflito, o que acontece quando este código é executado?

11ª Questão) Os problemas neste exercício referem-se a seguinte sequência de instruções, e suponha que seja executada em um pipeline de 5 estágios:

add \$5, \$2, \$1

or \$3, \$5, \$3

lw \$3,4(\$5)

lw \$2,0(\$2)

sw \$3,0(\$5)

a)Se não houver encaminhamento ou detecção de conflito, insira nops para garantir a execução correta.

b)Use nops apenas quando um conflito não puder ser evitado alterando ou reorganizando essas instruções. Você pode assumir o registro \$7 pode ser usado para manter valores temporários em seu código modificado.

c)Se o processador tem encaminhamento, mas esquecemos de implementar a unidade de detecção de conflito, o que acontece quando este código é executado?

12ª Questão) Assuma que o seguinte código é executado sobre um processador pipeline com 5 estágio, com adiantamento e um preditor de desvio (o qual assume que todo desvio para trás é tomado)

Label1: lw \$1, 40 (\$6)

beq \$2, \$3, Label2 //tomado

add \$1, \$6, \$4

Label2: beq \$1, \$2, Labe11// não tomado

sw \$2, 20 (\$4) and \$1, \$1, \$4

a)Desenhe o diagrama de execução para este código, assumindo que não há slots de atraso e o que desvio executa no estágio MEM

b)Qual é o speed-up alcançado ao mover a execução de desvio para o estagio DI. Assuma que a comparação no estágio DI não afeta o tempo de ciclo de clock.