CENG 424 - Logic for Computer Science 2023-1

Homework 1

Anıl Eren Göçer e2448397@ceng.metu.edu.tr

October 18, 2023

1. (a)

A	B	$\neg B$	$A \wedge \neg B$	$A \longrightarrow B$	$\neg (A \land \neg B)$
0	0	1	0	1	1
0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	1

Observe that the last two columns which belongs to $A \longrightarrow B$ and $\neg (A \land \neg B)$ respectively are equal. So, these expressions are logical equivalences.

(b)

A	B	$\neg A$	$\neg B$	$\neg A \lor B$	$\neg B \lor A$	$A \longleftrightarrow B$	$(\neg A \lor B) \land (\neg B \lor A)$
0	0	1	1	1	1	1	1
0	1	1	0	1	0	0	0
1	0	0	1	0	1	0	0
1	1	0	0	1	1	1	1

Observe that the last two columns which belongs to $A \longleftrightarrow B$ and $(\neg A \lor B) \land (\neg B \lor A)$ respectively are equal. So, these expressions are logical equivalences.

(c)

A	B	$\neg A$	$\neg A \longrightarrow B$	$A \longrightarrow (\neg A \longrightarrow B)$	1
0	0	1	0	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	1	0	1	1	1

Observe that the last two columns which belongs to $A \longrightarrow (\neg A \longrightarrow B)$ and 1 respectively are equal. So, these expressions are logical equivalences.

(d)

A	B	C	$\neg A$	$\neg B$	$A \vee \neg B$	$\neg A \wedge B$	$(A \vee \neg B) \longrightarrow C$	$(\neg A \land B) \lor C$
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	1	1
0	1	0	1	0	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	0	0	0
1	0	1	0	1	1	0	1	1
1	1	0	0	0	1	0	0	0
1	1	1	0	0	1	0	1	1

Observe that the last two columns which belongs to $(A \vee \neg B) \longrightarrow C$ and $(\neg A \wedge B) \vee C$ respectively are equal. So, these expressions are logical equivalences.

2. In the following questions, \implies symbol is used to represent conversions.

(a)
$$A \land (\neg A \longrightarrow A) \Longrightarrow$$

 $A \land (A \lor A) \Longrightarrow$
 $A \land A \Longrightarrow$

The resulting expression is a literal, so it is a CNF. It can be easily converted to conjunctions of disjunctions of literals. For example, A is logically equivalent to $(A \lor A) \land (A \lor A)$.

(b)
$$(A \longrightarrow B) \longrightarrow ((A \longrightarrow \neg B) \longrightarrow \neg A) \Longrightarrow$$

 $(A \longrightarrow B) \longrightarrow (\neg (A \longrightarrow \neg B) \vee \neg A) \Longrightarrow$
 $(A \longrightarrow B) \longrightarrow (\neg (\neg A \vee \neg B) \vee \neg A) \Longrightarrow$
 $(A \longrightarrow B) \longrightarrow ((A \wedge B) \vee \neg A) \Longrightarrow$
 $\neg (\neg A \vee B) \vee ((A \wedge B) \vee \neg A) \Longrightarrow$
 $(A \wedge \neg B) \vee ((A \wedge B) \vee \neg A) \Longrightarrow$
 $(A \wedge \neg B) \vee (A \wedge B) \vee \neg A \Longrightarrow$
 $(A \wedge \neg B) \vee (A \wedge B) \vee \neg A \Longrightarrow$
 $(A \wedge \neg B) \vee (A \wedge B) \vee \neg A \Longrightarrow$
 $(A \wedge \neg B) \vee (A \wedge B) \vee \neg A \Longrightarrow$
 $(A \wedge \neg B) \vee (A \wedge B) \vee \neg A \Longrightarrow$

The resulting expression is true, so it is a CNF. It can be easily converted to conjunctions of disjunctions of literals. For example, \top is logically equivalent to $(A \vee \neg A) \wedge (B \vee \neg B)$.

(c)
$$(A \longrightarrow (B \lor \neg C)) \land \neg A \land B \Longrightarrow$$

 $(\neg A \lor (B \lor \neg C)) \land \neg A \land B \Longrightarrow$
 $(\neg A \lor B \lor \neg C) \land \neg A \land B$

T

The resulting expression is conjunction of disjunction of literals and literals itself, so it is a CNF. In order see clearly, we can convert it to conjunctions of disjunctions of literals. For example, the resulting expression is logically equivalent to $(\neg A \lor B \lor \neg C) \land (\neg A \lor \neg A) \land (B \lor B)$.

All branches are closed, so given logical forms are NOT mutually consistent.

4. (bonus question)

(a)

1. $(A \longrightarrow C) \lor (B \longrightarrow C)$	premise
$ 2. A \wedge B $	assumption
$ \ \ \ 3. \ A \longrightarrow C$	assumption
4. A	\wedge elimination, 2
5. <i>C</i>	$\longrightarrow elimination, 3, 4$
$ \ \ \ 6. \ B \longrightarrow C $	assumption
7. <i>B</i>	$\land elimination, 2$
8. C	$\longrightarrow elimination, 6, 7$
9. C	\vee elimination 1, 3-5, 6-8
$10. (A \land B) \longrightarrow C$	\longrightarrow introduction, 2-9

(b)

