Rethinking False Spring Risk

Chamberlain, Wolkovich

January 5, 2017

Outline

1 Introduction

Plants that grow in temperate environments are at risk of being exposed to late spring freezes, which can be detrimental to plant growth. Species or individuals that leaf out before the last frost are at risk of damaging wood tissue, leaf loss, and slowed or stalled canopy development (Gu et al., 2008; Hufkens et al., 2012). Therefore, temperate deciduous tree species must have plastic phenological responses in the spring in order to optimize photosynthesis and minimize frost or drought risk (Polgar & Primack, 2011). These late spring freezing events are known as false springs. False spring events can result in highly detrimental ecological and economic consequences (Ault et al., 2013; Knudson, 2012).

Climate change is expected to increase damage from false spring events around the world due to earlier spring onset and greater fluctuations in temperature (Martin et al., 2010; Inouye, 2008; Cannell & Smith, 1986). Temperate forest species around the world are initiating leaf out about 4.6 days earlier per degree Celsius (Polgar et al., 2014; Wolkovich et al., 2012). It is anticipated that there will be a decrease in false spring frequency overall but the magnitude of temperature variation is likely to increase, therefore amplifying the expected intensity of false spring events (Allstadt et al., 2015; Kodra et al., 2011). Mulitple studies have documented false spring events in recent years (Augspurger, 2013; Knudson, 2012; Augspurger, 2009; Gu et al., 2008) and some have linked this to climate change (Muffler et al., 2016; Xin, 2016; Allstadt et al., 2015; Ault et al., 2013).

Due to these reasons, it is crucial for researchers to properly evaluate the effects of false spring events on temperate forests and agricultural crops in order to make more accurate predictions on future trends.

2 Defining False Spring

According to Gu et al. 2008, there are two phases involved in late spring freezing: rapid vegetative growth prior to the freeze and the post freeze setback. This combined process is known as a false spring. Freeze and thaw fluctuations can cause xylem embolism and decreased xylem conductivity which can result in crown dieback (Gu et al., 2008).

Spring frosts during the vegetative growth phenophases impose the greatest freezing threat to deciduous tree species (Sakai & Larcher, 1987).

References

- Allstadt, A.J., Vavrus, S.J., Heglund, P.J., Pidgeon, A.M., Wayne, E. & Radeloff, V.C. (2015) Spring plant phenology and false springs in the conterminous U. S. during the 21st century. *Environmental Research Letters (submitted)* **10**, 104008.
- Augspurger, C.K. (2009) Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology 23, 1031–1039.
- Augspurger, C.K. (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. *Ecology* **94**, 41–50.
- Ault, T.R., Henebry, G.M., de Beurs, K.M., Schwartz, M.D., Betancourt, J.L. & Moore, D. (2013) The False Spring of 2012, Earliest in North American Record. Eos, Transactions American Geophysical Union 94, 181–182.
- Cannell, M. & Smith, R. (1986) Climatic Warming, Spring Budburst and Forest Damage on Trees Author (s): M. G. R. Cannell and R. I. Smith Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/2403090 JSTOR is a not-for-profit service that helps schol. *Journal of Applied Ecology* 23, 177–191.
- Gu, L., Hanson, P.J., Post, W.M., Kaiser, D.P., Yang, B., Nemani, R., Pallardy, S.G. & Meyers, T. (2008) The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World. *BioScience* 58, 253.
- Hufkens, K., Friedl, M.A., Keenan, T.F., Sonnentag, O., Bailey, A., O'Keefe, J. & Richardson, A.D. (2012)
 Ecological impacts of a widespread frost event following early spring leaf-out. Global Change Biology 18, 2365–2377.
- Inouye, D.W. (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. *Ecology* **89**, 353–362.

- Knudson, W. (2012) The economic impact of the spring's weather on the fruit and vegetable sectors. The Strategic Marketing Institute Working Paper.
- Kodra, E., Steinhaeuser, K. & Ganguly, A.R. (2011) Persisting cold extremes under 21st-century warming scenarios. *Geophysical Research Letters* **38**, 1–5.
- Martin, M., Gavazov, K., Körner, C., Hattenschwiler, S. & Rixen, C. (2010) Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric co 2. *Global Change Biology* **16**, 1057–1070.
- Muffler, L., Beierkuhnlein, C., Aas, G., Jentsch, A., Schweiger, A.H., Zohner, C. & Kreyling, J. (2016) Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the northern hemisphere. *Global Ecology and Biogeography* 25, 1061–1071.
- Polgar, C., Gallinat, A. & Primack, R.B. (2014) Drivers of leaf-out phenology and their implications for species invasions: Insights from Thoreau's Concord. New Phytologist 202, 106–115.
- Polgar, C.A. & Primack, R.B. (2011) Leaf-out phenology of temperate woody plants: From trees to ecosystems. New Phytologist 191, 926–941.
- Sakai, A. & Larcher, W. (1987) Frost Survival of Plants. Springer-Verlag.
- Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau, S., Regetz, J., Davies, T.J., Kraft, N.J.B., Ault, T.R., Bolmgren, K., Mazer, S.J., McCabe, G.J., McGill, B.J., Parmesan, C., Salamin, N., Schwartz, M.D. & Cleland, E.E. (2012) Warming experiments underpredict plant phenological responses to climate change. *Nature* 485, 18–21.
- Xin, Q. (2016) A risk-benefit model to simulate vegetation spring onset in response to multi-decadal climate variability: Theoretical basis and applications from the field to the Northern Hemisphere. *Agriculture and Forest Meteorology* pp. 139–163.