Grundlagen Lineare Trennung Nichtlineare Klassifikation Soft Margin Hyperebene Abschließende Betrachtungen

Support Vector Machines (SVM)

Jasmin Fischer

Universität Ulm

12. Juni 2007

Lineare Trennung Nichtlineare Klassifikation Soft Margin Hyperebene Abschließende Betrachtungen

Inhalt

- Grundlagen
- Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Grundlagen Lineare Trennung Nichtlineare Klassifikation Soft Margin Hyperebene Abschließende Betrachtungen

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Grundlagen

Ausgangslage:

N Trainingsdaten
$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$
 mit $x_i \in \mathbb{R}^g$ und $y_i \in \{+1, -1\}$ $(i=1, 2, ..., N)$

Idee:

Unterteile eine Menge von Objekten durch eine Hyperebene in zwei Klassen

Grundlagen

Vorgehensweise

- Suche $f: \mathbb{R}^g \to \{-1, +1\}$, so dass $f(x_i) = y_i$
 - im Fall der Trennbarkeit $\forall i = 1, ..., N$
 - sonst für zumindest "viele" i
 - erfüllt ist.
- ② Klassen-Zuordnung neuer Punkte x_{neu} durch $f(x_{neu})$

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- 4 Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtunger
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Fragestellung

Voraussetzung: Die Trainingsdaten sind linear trennbar.

Aber: Wie genau ist die Hyperebene zu wählen?

Idee

Erhalte einen möglichst breiten Rand um die Klassengrenzen herum \Rightarrow "large - margin - classification"

Definition der Hyperebene

Eine **trennende Hyperebene** \mathcal{H} ist folgendermaßen definiert:

$$\mathcal{H} := \{ x \in \mathbb{R}^{g} | \langle w, x \rangle + b = 0 \}$$

mit den bestimmenden Elementen

-w $\in \ \mathbb{R}^g$ orthogonal zu \mathcal{H}

 $-b \in \mathbb{R}$ (Verschiebung)

Trennende Hyperebene - Skalierung

Problem: Keine eindeutige Beschreibung der Hyperebene:

$$\mathcal{H} = \{x \in \mathbb{R}^g | \langle aw, x \rangle + ab = 0\} \quad \forall \ a \in \mathbb{R} \setminus \{0\}$$

⇒ Ausweg durch **Skalierung**:

 $(w,b) \in \mathbb{R}^g \times \mathbb{R}$ heißt kanonische Form der Hyperebene, wenn gilt:

$$\min_{i=1,\dots,N} |\langle w, x_i \rangle + b| = 1$$

Definition Rand

Als *Rand* bezeichnet man nun den Abstand der kanonischen Hyperebene zu dem Punkt, der ihr am nächsten liegt.

Er lässt sich zu $\frac{1}{\|w\|}$ berechnen. Beweis:

$$\langle w, x_1 \rangle + b = +1$$

$$\langle w, x_2 \rangle + b = -1$$

$$\Rightarrow \langle w, (x_1 - x_2) \rangle = 2$$

$$\Rightarrow \langle \frac{w}{\|w\|}, (x_1 - x_2) \rangle = \frac{2}{\|w\|}$$

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- 3 Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Das Optimierungsproblem

Aufgabenstellung:

- maximiere den Rand \leftrightarrow minimiere $||w||^2$
- die Entscheidungsfunktion $f(x) = sgn(\langle w, x \rangle + b)$ erfülle

$$f(x_i) = y_i \iff y_i(\langle x_i, w \rangle + b) \ge 1 \quad \forall i = 1, ..., N$$

Primales Programm:

$$\begin{array}{ll}
\text{minimiere} & \frac{1}{2} \|w\|^2 \\
w \in \mathbb{R}^g, b \in \mathbb{R} & \frac{1}{2} \|w\|^2
\end{array}$$

NB:
$$y_i(\langle x_i, w \rangle + b) \ge 1 \quad \forall i = 1, ..., N$$

Lagrange-Funktion

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{N} \alpha_i (y_i(\langle x_i, w \rangle + b) - 1)$$

mit $\alpha = (\alpha_1, ..., \alpha_N)$ und $\alpha_i \geq 0$ (Lagrange Multiplikatoren)

- ullet bezüglich lpha zu maximieren
- bezüglich w und b zu minimieren, d.h.

$$\frac{\partial}{\partial b}L(w,b,\alpha) = 0, \quad \frac{\partial}{\partial w}L(w,b,\alpha) = 0$$

Damit folgt

$$\sum_{i=1}^{N} \alpha_i y_i = 0 \quad \text{und} \quad w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

Definition: Support Vektoren

Sattelpunkt-Bedingungen laut Kuhn-Tucker:

$$\alpha_{i}[y_{i}(\langle x_{i}, w \rangle + b) - 1] = 0 \ \forall \ i = 1, ..., N$$

Damit gilt:

- Punkte mit $\alpha_i > 0$ liegen direkt auf dem Rand.
 - (Support Vectors ("Stützvektoren"))
- Die restlichen Trainingspunkte haben keinen Einfluss auf \mathcal{H} ($\alpha_i = 0$)

$$\Rightarrow w = \sum_{\{i \in \{1,...,N\}: x_i \text{ Support vector}\}} \alpha_i y_i x_i$$

Das Duale Programm

Zugehöriges duales Programm:

unter den Bedingungen

$$\alpha_i \geq 0 \quad \forall i = 1, ..., N$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

Vorgehensweise einer SVM

- f 0 Berechne die Lagrange-Multiplikatoren $lpha_i$ der Support Vektoren durch das duale Programm
- ② Bestimme damit den Vektor $w = \sum_{i=1}^{N} \alpha_i y_i x_i$ der kanonischen Hyperebene
- **3** Die Verschiebung ergibt sich zu $b = y_j \sum_{i=1}^{N} y_i \alpha_i \langle x_j, x_i \rangle$
- Stelle die gesuchte Entscheidungsfunktion $f(x) = sgn(\langle w, x \rangle + b)$ folgendermaßen auf:

$$f(x) = sgn\Big(\sum_{i=1}^{N} \alpha_i y_i \langle x, x_i \rangle + b\Big)$$

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- 4 Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Voraussetzung: nicht linear trennbare Trainingsdaten

Idee:

- Überführe die Trainingsdaten in einen Raum M mit so hoher Dimension, dass sich die Trainingsdaten dort linear trennen lassen.
- Die kanonische trennende Hyperebene kann in M bestimmt werden.
- ⇒ Bei der Rücktransformation in den ursprünglichen Raum wird die Hyperebene zu einer nicht-linearen Trennfläche.

Beispiel

ursprüngliche Daten

höher dimensionaler Raum \mathcal{M} (hier: $\mathcal{M}=\mathbb{R}^3$)

nichtlineare Entscheidungsfläche im ursprünglichen Raum.

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- 4 Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtungen
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Der Kern-Trick

Problematik:

Im höherdimensionalen Raum sind Skalarprodukt-Berechnungen der Form $\langle \Phi(x_i), \Phi(x_j) \rangle$ nötig.

⇒ Sehr komplex und rechenlastig.

Ausweg:

Benutze eine sog. Kern-Funktion k, die sich wie ein Skalarprodukt in \mathcal{M} verhält:

$$k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$$

Wdh.: Eigenschaften der Kern-Funktion

- $k: \mathbb{R}^g \times \mathbb{R}^g \to \mathcal{M}$ wobei \mathcal{M} mit einem Skalarprodukt versehen sein soll
- k symmetrisch und positiv definit
- typische Funktionen:
 - POLYNOMIELL VOM GRAD d: $k(x_i, x_j) = (c + \langle x_i, x_j \rangle)^d$ für c konstant
 - RADIAL BASIS: $k(x_i, x_j) = \exp(-\frac{\|x_i x_j\|^2}{c})$ für c > 0
 - NEURONALES NETZWERK: $k(x_i, x_j) = \tanh(\kappa \langle x_i, x_j \rangle + \theta)$ wobei $\kappa > 0$ und $\theta \in \mathbb{R}$

Beispiel

Betrachte

- zwei Trainingsdaten (x_1, y_1) und (x_2, y_2) , wobei $y_1, y_2 \in \{\pm 1\}$ und $x_1, x_2 \in \mathbb{R}^2$, d.h. $x_1 = (x_{11}, x_{12})$ und $x_2 = (x_{21}, x_{22})$
- ullet polynomieller Kern zweiten Grades mit c=1

Dann gilt:

$$k(x_1, x_2) = (1 + \langle x_1, x_2 \rangle)^2$$

$$= (1 + x_{11}x_{21} + x_{12}x_{22})^2$$

$$= 1 + 2x_{11}x_{21} + 2x_{12}x_{22} + (x_{11}x_{21})^2 + (x_{12}x_{22})^2 + 2x_{11}x_{21}x_{12}x_{22}$$

Mit
$$\Phi(x_1) = \Phi((x_{11}, x_{12})) \mapsto (1, \sqrt{2}x_{11}, \sqrt{2}x_{12}, x_{11}^2, x_{12}^2, \sqrt{2}x_{11}x_{12})$$
 folgert:

$$\langle \Phi(x_1), \Phi(x_2) \rangle = k(x_1, x_2)$$

Nicht-lineare Lösung

Damit ergibt sich nun

- ullet Der Raum ${\mathcal M}$ muss nicht bekannt sein. Die Kern-Funktion als Maß der Ähnlichkeit ist für alle Berechnungen ausreichend.
- Die Lösung des optimalen Programms ergibt sich durch Ersetzen des ursprl. Skalarproduktes durch die Kern-Funktion.
- Die Entscheidungsfunktion hat dann die folgende Form:

$$f(x) = sgn\left(\sum_{i=1}^{N} \alpha_i y_i k(x, x_i) + b\right)$$

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtunger
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtunger
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Bisherige Problematik

Ein einzelner Ausreißer in den Trainingsdaten kann die Ausprägung der Hyperebene stark beeinflussen (→ höherdimensionale Berechnungen)

⇒ Oft nützlich eine bestimmte Anzahl an Ausreißern/ Fehlern zuzulassen

Idee:

Erlaube, aber bestrafe derartige Fehleinordnungen

Grundidee

Vorgehen:

• Schwäche die Randbedingung ab, d.h. führe die sogenannten Schlupfvariablen $\xi_i \geq 0$ ein mit

$$y_i(\langle x_i, w \rangle + b) \geq 1 - \xi_i \quad \forall i = 1, ..., N$$

• Lege eine Strafe in Form des Kostenterms $\gamma \xi_i$ fest. γ kann als *Fehlergewicht* interpretiert werden.

- $\xi_i = 0$ für korrekt klassifizierte Trainingsdaten
- $0 < \xi_i \le 1$ für korrekt klassifizierte Daten innerhalb des Randes
- ullet $\xi_i > 1$ für Trainingsdaten auf der falschen Seite von ${\cal H}$

Bemerkungen

- Schlupfvariablen drücken folgendes aus:
 - Bevorzugung eines Randes, der die Trainingsdaten korrekt klassifiziert
 - Abschwächung der Nebenbedingungen, so dass im nicht-trennbaren Fall die Strafe propotional zum Ausmaß der Misklassifikation ist
- ullet γ kontrolliert die Gewichtung zwischen den konkurrierenden Zielen
 - breiter Rand mit großen Fehlern
 - kleine Fehler, aber schmaler Rand

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- 3 Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- 5 Abschließende Betrachtunger
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Zugehöriges Optimierungsproblem

Aufnahme des Strafterms in das Minimierungsproblem führt zu

$$\underset{w \in \mathcal{M}, b \in \mathbb{R}, \xi \in \mathbb{R}^N}{\text{minimiere}} \frac{1}{2} ||w||^2 + \gamma \sum_{i=1}^N \xi_i$$

unter den Bedingungen

$$\xi_i \geq 0$$

 $y_i(\langle x_i, w \rangle + b) \geq 1 - \xi_i \quad \forall i = 1, ..., N$

Minimierung der Lagrange-Funktion

$$L(w, b, \alpha, \mu) = \frac{1}{2} ||w||^2 + \gamma \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (\langle x_i, w \rangle + b) - (1 - \xi_i)) - \sum_{i=1}^{N} \mu_i \xi_i$$

bezüglich w, b und ξ_i ergibt analog zu oben die Lösung:

$$w = \sum_{i=1}^{N} \alpha_i x_i y_i$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i$$

$$\alpha_i = \gamma - \mu_i \qquad \forall i = 1, ..., N$$

wobei die α_i durch Lösen des quadratischen Programmes

NB:

$$0 \le \alpha_i \le \gamma \quad \forall i = 1, ..., N$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

bestimmt werden können.

Support Vektoren

Mit den Kuhn-Tucker-Bedingungen

$$\alpha_{i}[y_{i}(\langle x_{i}, w \rangle + b) - (1 - \xi_{i})] = 0$$

$$\mu_{i}\xi_{i} = 0$$

$$y_{i}(\langle x_{i}, w \rangle + b) - (1 - \xi_{i}) \geq 0 \quad \forall i = 1, .., N$$

ergeben sich zwei mögliche Arten von Support Vektoren:

- Punkte direkt auf dem Rand (mit $\xi_i = 0$ und daraus folgend $0 < \alpha_i < \gamma$)
- Punkte jenseits ihres Randes (mit $\xi_i > 0$ und $\alpha_i = \gamma > 0$)

Bemerkungen

- die Schlupfvariablen verschwinden aus dem dualen Problem
- die Konstante γ taucht dort nur noch als zusätzliche Beschränkung der Lagrange-Multiplikatoren α_i auf
- auch im Fall der Soft-Margin-Klassifikation kann der Kern-Trick angewendet werden
- Entscheidungsfunktion f und Verschiebung b bestimmen sich analog zu oben.

Die Konstante γ

Bisher wurde keine Aussage über die Wahl von γ gemacht.

- γ groß \leadsto hohes Fehlergewicht \leadsto kleiner Rand \leadsto Fokusierung auf Punkte nahe $\mathcal H$
- \bullet γ klein \leadsto schwaches Fehlergewicht \leadsto breiter Rand \leadsto Einbeziehung ferner Punkte
- \Rightarrow Intuitive Bestimmung von γ schwierig

Üblicherweise wird dazu Kreuzvalidierung genutzt.

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- 3 Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- Samme betrachtungen beitrachtungen beitrachtung betrachtung betrachtung betrachtung beitrachtung beitrachtung
 - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Mehrklassige SVM

 \rightsquigarrow Einteilung in M Klassen (mit M > 2)

One Versus the Rest

• Bilde eine Klassifikatoren-Menge $f^1, ..., f^M$ durch jeweiliges Trennen einer Klasse von den Restlichen

•
$$f(x) := \underset{j=1,...,M}{\operatorname{arg max}} g^j(x)$$
, wobei $g^j(x) = \sum_{i=1}^N y_i \alpha_i^j k(x, x_i) + b^j$

Paarweise Klassifikation

- Bilde Klassifikatoren für jedes mögliche Paar von Klassen $(\rightsquigarrow \frac{M(M-1)}{2}$ Stück)
- Einordnung eines neuen Datenpunktes in diejenige Klasse, die die höchste Anzahl an *Stimmen* (d.h. Klassifikatoren, die den Datenpunkt in diese Klasse einordnen) aufweisen kann

• Error-Correcting Output Coding

- Generiere L binäre Klassifikatoren f¹, ..., f^L durch Aufteilung der ursprünglichen Trainingsdaten in jeweils zwei disjunkte Klassen
- Die Auswertung eines Datenpunktes anhand aller L Funktionen bestimmt seine Klasse eindeutig (\rightsquigarrow Jede Klasse entspricht einem eindeutigen Vektor in $\{\pm 1\}^L$)
- Für M Klassen ergibt sich damit die sogenannte $decoding\ matrix\ \mathcal{D}\ \in\ \{\pm 1\}^{M\times L}$
- ullet Ein neuer Datenpunkt wird durch Vergleich von dessen L-dimensionalem Vektor mit den Zeilen der Matrix $\mathcal D$ einer Klasse zugeteilt.

- Grundlagen
- 2 Lineare Trennung
 - Aufstellung der Hyperebenengleichung
 - Optimierungsproblem und Lösung
- 3 Nichtlineare Klassifikation
 - Grundlegende Idee
 - Der Kern-Trick
- Soft Margin Hyperebene
 - Grundlagen
 - Mathematische Ausformulierung
- - Multi-Klassen-Einteilung
 - Vor- und Nachteile der SVM

Zusammenfassung

Vorteile:

- Klassifikation sehr schnell möglich
 (→ basierend auf wenigen Support Vektoren)
- hohe Generalisierungsfähigkeit
 (→ gute Anwendbarkeit auf reale Probleme)
- Arbeiten in hohen Dimensionen möglich

Zusammenfassung

Nachteile:

- neues Training für neue (verschiedene) Eingabedaten erforderlich
- Umgang mit nicht-linear separierbaren Problemen trickreich (→ Größe der Dimension)
- Wahl des Kerns schwierig
 (→ muss empirisch gesucht werden)

Fragen?

Vielen Dank für die Aufmerksamkeit.