Large-Scale Machine Learning

From DistBelief To TensorFlow

Overview of this Presentation

- Review two large-scale machine learning systems from Google
 - DistBelief
 - TensorFlow

Background: Massive Success of Deep Learning

- Various real-world applications
 - Image recognition
 - Speech recognition
 - Natural language processing
 - Game play (e.g., Go)
 - 0 ...
- Beating existing machine-learning algorithms

Challenges

- Require large amount of computational and storage resources
 - Increasing dataset size
 - Increasing number of neurons and connections
- Require rapid iteration on new learning algorithm development
 - Hot research topic that many people are actively working on
- Do not fit well with existing parallel/distributed programming models
 - o E.g.) Mapreduce, Spark, graph execution engine, ...

What Google Has Been Building

- DistBelief (2012)
 - Parallel and distributed execution of large-scale deep network

- TensorFlow (2015-)
 - More generalized data-flow execution engine
 - Still specialized for machine learning

DistBelief

Before Diving Into...

- What is deep learning?
 - The modern reincarnation of Artificial Neural Networks from the 1980s and 90s
 - A collection of simple trainable mathematical units, which collaborates to compute a complicated function
 - Compatible with supervised, unsupervised, and reinforcement learning

What is Neural Network?

- Approximate some function f*
- Typically represented by composing many different functions

$$\circ f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$$

Example: XOR

$$f(x) = \begin{bmatrix} 1 & -2 \end{bmatrix} \max\{0, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \end{bmatrix}\}$$

Example Deep Neural Networks

Accuracy Improvement with Deeper Networks

Example: Transcribe multi-digit numbers from photographs of addresses

How Can We Train a Neural Network?

while not done:

```
pick a random training case (x, y)
run a neural network on input x
modify connection weights to make prediction closer to y
```

How to Modify Connections?

Follow the gradient of the error w.r.t. the connection (e.g., weight parameters)

Gradient points in direction of improvement

Compute Gradient with "Back-Propagation"

Use the chain rule of calculus:

- Backtrack a network from output to input
- Memorize intermediate results to avoid recalculation

Compute Gradient with "Back-Propagation"

Use the chain rule of calculus:

- Backtrack a network from output to input
- Memorize intermediate results to avoid recalculation

Stochastic Gradient Descent (SGD) Learning

• Estimate the gradient with a small set of samples (minibatch)

```
Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}

end while
```

Loss function

How Can We Train Large Neural Nets Quickly?

- Exploit many kinds of parallelism
 - Model parallelism
 - Data parallelism

- Note: bad fit with MapReduce
 - Mutation to learning parameters
 - Non-deterministic result
 - "Weak" correctness guarantee
 - OK if we can train a model accurately
 - 0 ...

Model Parallelism

- Partition model across machines
 - The most densely connected areas are on the same partition
 - Up to 144 partitions with significant speedups

Data Parallelism

- Distribute training across multiple model instances
- Propose two algorithms
 - Downpour SGD (= variant of asynchronous SGD)
 - Sandblaster L-GFGS

Downpour SGD

- Divide the training data into a number of subsets
- Run a copy of the model on each of these subsets
- Communicate updates through a centralized parameter server

Asynchronous Communication Between Servers

- Model replicas run independently of each other
- Parameter server shards also run independently of one another

- Pros: Can continue processing even when one machine is down
- Cons: Additional stochasticity in the optimization procedure
 - o E.g.) A model replica computes its gradients based on out-of-date parameters

Optimizing Downpour SGD

- Fetch & pull parameters only every N steps
- "Warmstart" model training with only a single model replica before unleashing the other replicas
- Apply a non-fixed learning rate
 - "Adagrad" adaptive learning rate procedure

$$\eta_{i,K} = \gamma / \sqrt{\sum_{j=1}^{K} \Delta w_{i,j}^2}$$

Sandblaster L-BFGS

- Avoid high-frequent, high-bandwidth communication
 - Coordinator issues "commands" to Parameter Servers.
 - Parameter Servers execute commands and store results
 - Coordinator dynamically assigns tasks to Model Replicas
 - Multiple copies of work can be scheduled to address a slow bottleneck machine

Evaluation: Model Parallelism

- Mean time to process a min-batch for a simple SGD
- The largest model benefits the most
 - More than 12x speedup using 81 machines

Evaluation: Data Parallelism

Speech model in a variety of configurations

Summary of DistBelief

- Parallel and distributed execution of deep learning with SGC
 - Partition model across machines
 - Distribute training across multiple model instances

Individual techniques are not surprising, but achieved very good results

TensorFlow

Lesson Learned From DistBelief

- Need a better abstraction layer
 - o E.g.) Allow users to add new primitives or without changing DistBelief core
- Need one system for both large-scale training and small-scale deployment
 - E.g.) Experiment a new algorithm on a single machine first and then use the same code for large-scale deployment
- Need to support heterogeneous hardware
 - GPU, custom ASIC (e.g., TensorFlow Processing Unit)

TensorFlowTM

- Second-generation system for the implementation and deployment of large-scale machine learning models
- Takes computations with a dataflow-like model and maps them onto a wide variety of different hardware platforms
 - o Inference on mobile device platforms
 - Modest-sized training and inference on single machines with GPUs
 - Large-scale training on >100 specialized machines with >1000 GPUs

Expressing High-Level ML Computations

- Core in C++
 - Very low overhead
- Different front ends for specifying/driving the computation
 - Python and C++ today, easy to add more

Example TensorFlow Program (in Python)

```
import tensorflow as tf
b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random uniform([784,100],-1,1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [\ldots]
s = tf.Session()
for step in xrange(0, 10):
  input = ...construct 100-D input array ...
  result = s.run(C, feed dict={x: input})
  print step, result
```

Representation of Computation Graph

```
import tensorflow as tf
b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random_uniform([784,100],-1,1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [\ldots]
                                                             ReLU
s = tf.Session()
for step in xrange(0, 10):
                                                              Add
  input = ...construct 100-D input array ...
  result = s.run(C, feed dict={x: input})
  print step, result
                                                    b
                                                            MatMul
```

Graph for Computing Gradients

By Representing Gradient Computation as Graph...

- Allow Users to easily implement new algorithms for computing gradients
 - C.f.) Implementing the "momentum" algorithm in DistBelief required change to to the C++
 parameter server and execution of arbitrary code in write operations

TensorFlow Execution Model

Vertex (= operation)

- An atomic unit of computation
- May have *mutable* state that can be shared between different executions of the graph
- o E.g.) Add, MatMul, Variable, ReLU, Save, Merge, ...

• Edge (= flow of tensors)

- Input from or output to a vertex
- E.g.) Matrix multiplication takes two 2-D tensors and produces a 2-D tensor
- o E.g.) Mini-batch 2-D convolution takes two 4-D tensors and produces another 4-D tensor

Parallel and Concurrent Execution

- Client specifies a *subgraph* that should be executed
 - Zero or more edges to **feed** input tensors
 - One or more edges to **fetch** output tensors
- Multiple subgraphs are executed concurrently

Concurrent Execution in a Training Application

- I/O subgraph: Read records (e.g., images) from a distributed file system
- Preprocessing subgraph: Transform individual input records
 - E.g.) Decode images and apply random distortions
- Taining subgraph: Update the model based on different input batches
 - Implement data-parallel training
 - Consist of many concurrent steps
- Checkpointing subgraph: Run periodically for fault tolerance

Distributed Execution

- 1. Place operations on *feasible* devices (e.g., CPU, GPU)
 - E.g.) Only place this node on a device of type GPU
- 2. Partition operations into per-device subgraphs
 - o Per-device subgraph contains all of the operations assigned to the device, with Send and Recv

Dynamic Control Flow

- Most evaluation in TensorFlow is strict
 - All inputs to an operation must be computed before the operation executes
- However, some advanced algorithms requires *non-strict* evaluation
 - E.g.) efficient training of a recurrent neural network

Dynamic Control Flow

- Introduce Switch and Merge
- Can also express iteration

Implementation Sketch

Master-worker architecture

Optimizations & Challenges

- Typical compiler optimizations
 - Common subexpression elimination
 - Fusion (e.g., replace multiple loops with a single one)
- Lossy compression
 - Convert a 32-bit float to a 16-bit float when sending data between devices
 - Not IEEE 16-bit floating point standard, but with 16 bits less precision in the significand
- Synchronous replica coordination
- Node placement and scheduling
-

$$1.2345 = \underbrace{12345}_{ ext{significand}} imes \underbrace{10^{-4}}_{ ext{base}}$$

Synchronous Replica Coordinations

- Is synchronous training really a bad idea?
 - o GPUs enable training with hundreds (not thousands) of machines

- Synchronous replication with backup workers
 - o Improve throughput by up to 15% by addressing stragglers

Basic Node Placement Algorithm

- 1. Compute the feasible set of devices for each node
- 2. Compute the graph components that must be placed together
 - Use union-find on the graph of colocation constraints
- 3. Compute the intersection of the feasible device sets for each component
- 4. Run the placement simulator

Greedy Heuristic Placement Simulator

- Examines the completion time of a node on each possible device
 - Estimated (or measured) execution time of the operation
 - Communication cost for transmitting inputs to the node
- Selects the device where the node's operation would finish soonest

Optimizations of Node Placement and Scheduling

- Scheduling of RECV nodes for reading remote values
 - Estimate when to start the RECV nodes by analyzing the critical paths
 - Perform as-soon-as-possible/as-late-as-possible (ASAP/ALAP) calculation
- Memory management for "back-propagation" gradient calculation
 - Manage GPU memory when iterating over long sequences in the input data
 - E.g.) keeping intermediate data v.s. recomputing
- ...
- ...

Note on Engineering Efforts

- Great engineering accomplishment!
 - Complex mathematical operations
 - Heterogeneous environments
 - Stochastic behavior
 - Parallel and distributed execution
 - 0 ..

- Various supporting tools developed
 - Graph visualization
 - Performance visualization

Evaluation: Single Machine Benchmarks

- Comparable performance
 - TensorFlow and Torch use the same version of the cuDNN library
 - The Neon library uses hand-optimized convolutional kernels

	Training step time (ms)			
Library	AlexNet	Overfeat	OxfordNet	GoogleNet
Caffe [36]	324	823	1068	1935
Neon [56]	87	211	320	270
Torch [17]	81	268	529	470
TensorFlow	81	279	540	445

Evaluation: Image Classification

- Investigate the scalability of training Google's Inception v-3 model
 - 17 Parameter Server tasks and a varying number of worker tasks
 - Each Parameter Server task has 8 IvyBridge cores
 - Each worker task has 5 lvyBridge and one NVIDIA K40 GPU
- Throughput improves to 2,300 images per second (with 200 workers)

Summary

- Two large-scale machine learning systems
 - DistBelief
 - TensorFlow

- TensorFlow is available at https://www.tensorflow.org/
 - Used by various researchers and companies (e.g., UBER, Snapchat, ARM, Airbus)

References

- http://research.google.com/pubs/jeff.html
 - TensorFlow: A system for large-scale machine learning (2016)
 - TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems (2015)
 - Large Scale Distributed Deep Networks (2012)
 - 0 ...
- http://www.deeplearningbook.org/