CONCOURS D'ADMISSION 2004

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Solutions périodiques d'équations différentielles

On se propose, dans ce problème, d'étudier les solutions de certaines équations différentielles, et, en particulier, leurs solutions périodiques.

On désigne par T un nombre réel > 0, par P l'espace vectoriel des fonctions définies sur \mathbf{R} , réelles, continues et T-périodiques, et enfin par a un élément de P. On pose

$$A = \int_0^T a(t)dt , \qquad g(t) = \exp\left(\int_0^t a(u)du\right);$$

on munit P de la norme définie par

$$||x|| = \sup_{t \in \mathbf{R}} |x(t)|.$$

Première partie

1. Dire pour quelle(s) valeur(s) de A l'équation différentielle

$$x'(t) = a(t)x(t) \tag{E1}$$

admet des solutions T-périodiques non identiquement nulles.

On désigne maintenant par b un élément de P, et on s'intéresse à l'équation différentielle

$$x'(t) = a(t)x(t) + b(t). (E2)$$

- 2.a) Décrire l'ensemble des solutions maximales de (E2) et préciser leurs intervalles de définition.
- **2.b)** Décrire l'ensemble des solutions maximales de (E2) qui sont T-périodiques, en supposant d'abord A non nul, puis A nul.

- **3.** On suppose que $T=2\pi$ et que la fonction a est une constante k.
- **3.a**) Supposant k non nul, exprimer les coefficients de Fourier $\hat{x}(n), n \in \mathbf{Z}$, d'une solution x de (E2) appartenant à P, en fonction de k et des coefficients de Fourier de b. Préciser le mode de convergence de la série de Fourier de x.
 - **3.b)** Que se passe-t-il lorsque k = 0?

Deuxième partie

Dans cette partie on désigne par H une fonction réelle, de classe C^1 , définie sur \mathbb{R}^2 , et on s'intéresse à l'équation différentielle

$$x'(t) = a(t)x(t) + H(x(t), t)$$
 (E3)

4. Vérifier qu'une fonction x est solution de (E3) si et seulement si elle satisfait la condition

$$x(t) = g(t)(x(0) + \int_0^t g(s)^{-1} H(x(s), s) ds).$$

5. On suppose que H est T-périodique par rapport à la seconde variable, et que A est non nul. Montrer que, pour toute fonction $x \in P$, la formule

$$(U_H x)(t) = \frac{e^A}{1 - e^A} g(t) \int_t^{t+T} g(s)^{-1} H(x(s), s) ds$$

définit effectivement une fonction $U_H x$ de P, et que x est solution de (E3) si et seulement si l'on a $U_H x = x$.

Dans la suite du problème, on désigne par F une fonction réelle, de classe C^1 , définie sur \mathbf{R}^2 , T-périodique par rapport à la seconde variable; pour tout $\varepsilon > 0$ on pose $H_{\varepsilon} = \varepsilon F$ et $U_{\varepsilon} = U_{H_{\varepsilon}}$ de sorte que l'équation différentielle s'écrit

$$x'(t) = a(t)x(t) + \varepsilon F(x(t), t) . \tag{E4}$$

On suppose $A \neq 0$. Pour tout r > 0 on note B_r la boule fermée de centre 0, de rayon r dans l'espace normé P. On se propose de démontrer l'assertion suivante : pour tout r > 0 il existe $\varepsilon_1 > 0$ tel que, pour tout $\varepsilon \leqslant \varepsilon_1$, l'équation différentielle (E4) admette une unique solution x appartenant à B_r ; on la notera x_{ε} .

On note α_r (resp. β_r) la borne supérieure de l'ensemble des nombres |F(v,s)| (resp. $|\frac{\partial F}{\partial v}(v,s)|$) où $v \in [-r,r]$ et $s \in [0,T]$.

- **6.a)** Déterminer un réel $\varepsilon_0 > 0$ tel que, pour tout $\varepsilon \leqslant \varepsilon_0$, on ait $U_{\varepsilon}(B_r) \subset B_r$.
- **6.b)** Déterminer un réel $\varepsilon_1 \leqslant \varepsilon_0$ tel que, pour tout $\varepsilon \leqslant \varepsilon_1$, la restriction de U_{ε} à B_r soit une contraction de B_r .
 - **6.c)** Conclure.

- 7. Étudier le comportement de la fonction x_{ε} lorsque ε tend vers 0, le nombre r étant fixé.
- **8.** On suppose maintenant que la fonction a est une constante $k \neq 0$ et que la fonction F est de la forme F(v,s) = f(v). Déterminer la solution x_{ε} de (E4).

[On pourra mettre en œuvre la méthode des itérations successives en partant d'une fonction constante $x_0(t) = c_0$].

9. On prend maintenant T=1, k=-1 et $f(v)=v^2$; l'équation différentielle (E4) s'écrit donc

$$x'(t) = -x(t) + \varepsilon x(t)^{2}. \tag{E5}$$

- **9.a)** Indiquer des valeurs possibles pour ε_0 et ε_1 .
- **9.b)** Déterminer la solution x_{ε} de (E5).
- **9.c)** Soit α un nombre réel. Démontrer qu'il existe une unique solution maximale φ_{α} de (E5) telle que $\varphi_{\alpha}(0) = \alpha$. Déterminer précisément cette solution. Représenter quelques-unes de ces solutions sur un même graphique.

Troisième partie

Dans cette partie, on s'intéresse à l'équation différentielle

$$x'(t) = kx(t) + \varepsilon f(x(t)) \tag{E6}$$

en supposant k < 0, f de classe C^1 et nulle en 0; on pose

$$\lambda = \sup_{u \in [-1,1]} |f'(u)|$$

et on suppose $\varepsilon \lambda < -k$.

On se propose de démontrer le résultat suivant : si x est une solution maximale de (E6) telle que |x(0)| < 1, alors elle est définie sur $[0, +\infty[$ et on a, pour tout $t \ge 0$

$$|x(t)| \leq |x(0)|e^{(k+\varepsilon\lambda)t}$$
.

On pourra admettre ce qui suit : soit φ une fonction positive continue sur un intervalle $[0,\theta]$ satisfaisant une inégalité de la forme

$$\varphi(t) \leqslant \eta + \zeta \int_0^t \varphi(s) ds$$

où η est réel et $\zeta \geqslant 0$; alors

$$\varphi(t) \leqslant \eta e^{\zeta t}$$
.

10. Dans cette question, on suppose que l'ensemble des t pour lesquels |x(t)| > 1 est non vide et on note θ sa borne inférieure. Montrer que, pour tout $t \in [0, \theta]$, on a

$$|x(t)| \leq |x(0)|e^{(k+\varepsilon\lambda)t}$$
.

11. Conclure.

 ${\bf N.B.}$ Ce résultat exprime ce que l'on appelle la « stabilité » et la « stabilité asymptotique » de la solution nulle de l'équation différentielle (E6).

* *

*