

Algoritma & Pemrograman 1

Model Data pada C++

Pengertian

- Tipe Data :
- Jenis data berdasarkan isi dan sifatnya
- Logika: Kotak Kosong dibuat khusus untuk suatu benda dengan jenis tertentu
- Variabel :
 - Tempat untuk menyimpan data dengan tipe tertentu yang isinya bisa diubah-ubah sesuai dengan tipenya.
 - Setiap Variabel hanya bisa menyimpan satu buah nilai.
 - Dapat diberi nama sesuka hati.
- Konstanta :

Suatu Variabel yang ditentukan nilai standarnya (default) dari awal dan nilainya tidak berubah.

Variable

- Berbeda dengan pendeklarasian variabel di bahasa pemrograman lain, dalam C++ sebelum mendeklarasikan variabel, hal pertama yang harus dideklarasikan adalah tipe data yang akan digunakan untuk menampung data.
- Format penulisannya adalah :

```
Tipe_data pengenal = nilai ;

Contoh : int a;

float nomor;

int a = 10;

char s = 'a';
```

• Jika hendak mendeklarasikan beberapa variabel sekaligus dengan tipe data yang sama, dapat dilakukan dengan 2 cara, yaitu :

```
    int a;
    int b;
    int c;
```

Variable

• Contoh Program :


```
// bekerja dengan variabel
#include <iostream>
Using namespace std;
int main ()
    // inisialisasi variabel :
    int a, b;
    int hasil;
    // proses :
    a = 5;
    b = 2;
    a = a + 1;
    hasil = a - b;
    cout << hasil; // cetak hasilnya :</pre>
    return 0; // menghentikan program :
```

Konstanta

- Konstanta mirip dengan variable, namun memiliki nilai tetap.
- Konstanta dapat berupa nilai Integer, Float, Karakter dan String. Pendeklarasian konstanta dapat dilakukan dengan 2 cara :
 - 1. Menggunakan (#define)
 - Pendeklarasian dengan #define tanpa diperlukan adanya tanda = untuk memasukkan nilai ke dalam pengenal dan juga tanpa diakhiri dengan tanda semicolon(;).
 - Format penulisannya adalah :

```
#define pengenal_nilai
Contoh: #define phi 3.14159265
#define Newline \\n'
#define lebar 100
```

2. Menggunakan (const)

```
Contoh: const int lebar = 100;

const char tab = '\t';

const zip = 1212; //Tanpa tipe data, otomatis menjadi tipe int.
```


Operator Assign (=)

Operator (=), akan memberikan nilai ke dalam suatu variable.

• Keterangan :

- Artinya memberikan nilai 5 ke dalam variable a.
- Ivalue harus selalu berupa variable,
- rvalue dapat berupa variable, nilai, konstanta, hasil operasi atau kombinasinya.

Operator Aritmatika (+, -, *, /, %)

Operator % = Modulus, yaitu untuk mengetahui sisa hasil bagi.

Misal: a = 11 % 3, maka isi variable a = 2 karena sisa hasil bagi 11 dan 3 adalah 2.

- Operator Majemuk (+=, -=, *=, /=, %=, <<=, >>=, &=, |=)
 - Menyederhanakan perhitungan dengan format penulisan Operator Majemuk

Contoh:

```
a += 5 sama artinya dengan a = a+5
a *= 5 sama artinya dengan a = a*5
a /= 5 sama artinya dengan a = a/5
a %= 5 sama artinya dengan a = a % 5
```

- Operator Penaikan dan Penurunan (++ dan --)
 - Operator penaikan (++) akan menaikkan atau menambahkan 1 nilai variable. Sedangkan operator (--) akan menurunkan atau mengurangi 1 nilai variable.

```
Misalnya: a++;
a+=1;
a=a+1;
```


- Operator Relasional (==, !=, >, <, >=, <=)
 - ❖ Yang dihasilkan dari operator ini bukan berupa sebuah nilai, yang berupa bilangan bool yaitu benar atau salah.

Operator	Keterangan
==	Sama Dengan
!=	Tidak Sama Dengan
>	Lebih besar dari
<	Kurang dari
>=	Lebih besar dari atau sama dengan
<=	Kurang dari atau sama dengan

Contoh:

(7==5) hasilnya adalah false

(5>4) hasilnya adalah true

(5<5) hasilnya adalah false

- Operator Logika (!, &&, ||)
 - Operator logika juga digunakan untuk memberikan nilai atau kondisi true dan false.
 - ❖ Biasanya operator logika dipakai untuk membandingkan dua kondisi.
 - Operator Logika &&

Contoh: ((5==5) && (3>6)) mengembalikan nilai false, karena (true && false)

Operator Logika NOT (!)

Contoh: !(5==5) akan mengembalikan nilai false, karena !(true).

Operator Kondisional

- Operator Kondisional (?)
 - Format penulisan operator kondisional adalah :

kondisi? hasil1: hasil2

Jika kondisi benar maka yang dijalankan adalah hasil1 dan jika kondisi salah, maka akan dijalankan hasil2.

Contoh: 7==5?4:3 hasilnya adalah 3, karena 7 tidak sama dengan 5

5>3? a:b hasilnya adalah a, karena 5 lebih besar dari 3

```
#include <iostream.h>
void main()
{
   int m = 26, n = 82;
   int min = m < n ? m : n;
   cout<<"Bilangan terkecil adalah "<<min<<endl;
}</pre>
```

Bilangan terkecil adalah 26

Outputnya:

- Bilangan Bulat (Integer, Short, Long)
 - ✓ Digunakan untuk data angka yang tidak mengandung angka dibelakang koma. Misalnya 3, 21, 78

Tipe Data	Byte	Jangkauan	Deklarasi
Integer	2	-32.768,, 32.767	int, signed int signed
Short	1	-128,, 127	short short int
Long	4	-2.147.435.648,, 2.147.435.647 (2.1 Milyar)	long, long int signed long
Unsigned Int	2	0,, 65.535	unsigned int unsigned
Unsigned Long	4	0,, 4,294,967,595	unsigned long unsigned long int

Catatan : 1 Byte = 8 Bit, 2 Byte = 16 Bit, 4 Byte = 32 Bit

- Bilangan Bulat (Integer, Short, Long)
 - ✓ Unsigned digunakan untuk data yang positif
 - ✓ Contoh: #include <iostream> int main() int x; //mendeklarasikan variabel x dengn tipe data int x=3; //melakukan assigment terhadap variabel x cout <<"Nilai x adalah "<<x;</pre> return o;

- Bilangan Desimal (Floating Point)
 - ✓ Data bilangan yang mengandung angka dibelakang koma.
 - ✓ Terdiri dari :
 - Single Precision (32 bit atau 4 byte)
 - Double Precision (64 80 bit atau 8 10 byte)
 - ✓ Meggunakan notasi Exponensial "e" atau "E"
 - Contoh: $3.14E5 = 3.14 \times 10^5$

Tipe Data	Byte	Jangkauan	Deklarasi	Jumlah Digit
Float	4	3.4 x E-38,, 3.4 x E+38	float	5-7
Double	8	1.7 x E-308,, 1.7 x E+308	double	15 - 16
Long Double	10	3.4 x E-4932,, 1.1 x E+4932	long double	19

Bilangan Desimal (Floating Point)

```
✓ Contoh:
 #include <iostream>
 using namespace std;
 int main()
         float a;
         int b;
                       //melakukan assigment terhadap variabel a
         a = 29.51;
         cout << "Nilai a adalah "<<a;
         b = int(a); //merubah nilai float ke integer
         cout <<"\nNilai b adalah "<<b;
         return o;
```


Karakter & String

- ✓ Merepresentasikan data berupa karakter (char)
- ✓ String dinyatakan dengan pointer dari tipe char yaitu char*.
- ✓ Karakter digunakan untuk menyimpan sebuah karakter
- ✓ Karakter adalah turunan dari integer (menggunakan kode *ASCII*).
- ✓ String adalah gabungan dari karakter

Tipe Data	Byte	Jangkauan	Deklarasi
Character	1	-128,, 127	char
Unsigned Char	1	0,, 255	unsigned char

```
char kata[4];

kata[0] = 'c';

kata[1] = '+';

kata[2] = '+';

kata[3] = '\0";
```


Karakter & StringContoh :

```
#include <iostream>
using namespace std;
int main()
   char c = A';
   int k;
    //konversi string ke int
    k = (int) c_i
    cout <<"Nilai konfersi adalah <<k;
   return o;
```

Table ASCII

TABEL ASCII (0 - 127), karakter dasar ASCII dalam 7 bit (bit ke-8 / paling kiri = 0)

Cyber	
ersity	

ASCI	Char	ASCII	Char	ASCI	Char	Kode ASCII	Char	ASCII	Cha
0	NULL	32	Spasi	58	1	91	[123	- (
1		33	1	59		92	1	124	i
2		34	70	60	4	93	j	125	3
3		35		61	=	94	^	126	**
4		36	e l	62		95		127	
5		37	# 55 e	63	>?	96	· T	/	_
6		38		64	9				
123456789	bell	39	-		29				
8	33.5	40	(65	A	97	a		
	tab	41)	66	В	98	b		
10	line feed	42	*	67	C	99	d		
11	home	43	+	68		100	d		
12	form feed	44	,	69	D E F	101	e		
13	Carriage	45	-	70	F	102	f		
	return	46		71	G	103	g		
14		47	1	72	G H I	104	h I		
15			:85	73	I	105	I		
16				74	J	106	5		
17		48	0	75	K	107	k		
18		49	1 2 3	76	L	108	1		
19		50	2	77	M	109	m		
20		51	3	78	N	110	n		
21		52	5	79	0	111	0		
22		53	5	80	P	112	P		
23		54	6	81	Q	113	P		
24		55	7	82	R	114	r		
25		56	8	83	S	115	8		
26		57	9	84	T	116	t		
27	and the last			85	U	117	u		
28	cursor ke			86	v	118	v		
	kanan			87	W	119	W		
29	ke kiri			88	x	120	x		
30	ke atas			89	Y	121	У		
31	ke bawah			90	Z	122	Z		

Tipe Logika (Boolean)

Merepresentasikan data-data yang hanya mengandung dua buah nilai, yaitu nilai logika

(boolean) terdiri dari :

- True : Nilai benar (nilai 1)

- False : Nilai salah (nilai o).

Operator	Arti
&&	And
II	Or
I	Not

Operator Logika biasa digunakan untuk menghubungkan ungkapan suatu relasi

Operand 1	Operand 2	Hasil	
		II	&&
False	False	False	False
False	True	True	False
True	False	True	False
True	True	True	True

Tipe Logika (Boolean)

Merepresentasikan data-data yang hanya mengandung dua buah nilai, yaitu nilai logika

(boolean) terdiri dari :

- True: Nilai benar (nilai 1)

- False : Nilai salah (nilai o).

Operator	Arti
&&	And
II	Or
I	Not

Operator Logika biasa digunakan untuk menghubungkan ungkapan suatu relasi

Operand 1	Operand 2	Hasil	
		II	&&
False	False	False	False
False	True	True	False
True	False	True	False
True	True	True	True

Terimakasih