Natanael Magalhães Cardoso, nUSP: 8914122

Item 1.a

Figura 1: Diagrama do circuito

Circuito DC			
$V_{\rm E}$	V_{R}	V_{B}	
10V	7.6923V	2.3077V	

Tabela 1: Valores simulados de tensão

Item 1.b

Os valores obtidos satisfazem a segunda lei de Kirchhoff, pois $V_E = V_R + V_B$

Item 1.c

Figura 2: Diagrama do circuito

Figura 3: Simulação do circuito da figura 2.

Circuito AC (V_p)			
V_{E}	V_{R}	V_{B}	
4.9852V	2.9593V	3.2979V	

Tabela 2: Tensão de pico em E, R e B.

Item 1.d

Pelo gráfico abaixo, percebe-se que a curva $V_R + V_B$ é coincidente com a curva V_E . Isso significa que a soma das tensões instantâneas de V_R e V_B do circuiuto são sempre iguais a V_E . Portanto, para este circuito, a Segunda Lei de Kirchhoff é válida. Mas isso não se aplica quando se analisa apenas a tesão de pico.

Figura 4: Simulação incluindo $V_R + V_B$.

Figura 5: Simuação das tensões $V_E,\,V_B$ e $V_R.$

Item 2.a

t [s]	V_E [V]	V_B [V]	V_R [V]	$V_B + V_R$ [V]
$1.9689 \cdot 10^{-6}$	0.0619	0.0615	0.0004	0.0619
$8.5382 \cdot 10^{-5}$	2.5555	2.0259	0.5296	2.5555
$2.1038 \cdot 10^{-4}$	4.8459	2.7158	2.1301	4.8459
$5.2288 \cdot 10^{-4}$	-0.7163	-2.2905	1.5741	-0.7163
$8.0413 \cdot 10^{-4}$	-4.7135	-1.9288	-2.7847	-4.7135

Tabela 3: Pontos escolhidos

Figura 6: Visualização dos pontos escolhidos no gráfico da figura 5.

Item 2.b

Figura 7: Simulação com a curva MATH.

Item 2.c

A curva $MATH = V_E - V_R$ é coincidente com a curva V_B .

Item 2.d

 $\acute{\rm E}$ possível concluir que a Segunda Lei de Kirchhoff não se aplica às tensões de pico, mas sim às tensões instantâneas nos circuitos com fase.

Item 3.a

Frequência [Hz]	V_E [V]	V_R [V]	V_B [V]	Fase $[\circ]$ $(V_R \to V_E)$	Fase $[\circ]$ $(V_B \to V_E)$
100	4.9970	3.8208	2.2154	-4.6971	14.901
500	4.9952	3.5459	2.1815	-22.376	38.350
1k	4.9900	2.9627	3.2979	-39.408	34.904

Tabela 4: Parâmetros para determinação dos fasores.

Item 3.b

Fasor	f [Hz]	Forma Polar	Forma Cartesiana
	100	4.9970	4.9970
\widehat{V}_E	500	4.9952	4.9952
	1 k	4.9900	4.9900
	100	$3.8208e^{-4.6971^{\circ}}$	$3.8208\cos(-4.6971^{\circ}) + j3.8208\sin(-4.6971^{\circ})$
\widehat{V}_R	500	$3.5459e^{-22.376^{\circ}}$	$3.5459\cos(-22.376^{\circ}) + j3.5459\sin(-22.376^{\circ})$
	1 k	$2.9627e^{-39.408^{\circ}}$	$2.9627\cos(-39.408^{\circ}) + j2.9627\sin(-39.408^{\circ})$
	100	$2.2154e^{14.901}^{\circ}$	$2.2154\cos(14.901^{\circ}) + j2.2154\sin(14.901^{\circ})$
\hat{V}_B	500	$2.1815e^{38.350^{\circ}}$	$2.1815\cos(38.350^{\circ}) + j2.1815\sin(38.350^{\circ})$
	1 k	$3.2979e^{34.904^{\circ}}$	$3.2979\cos(34.904^{\circ}) + j3.2979\sin(34.904^{\circ})$

Tabela 5: Representação fasorial.

Item 4.a e 4.c

Frequência	V_E [V]	V_R [V]	V_B [V]
100 Hz	4.9970	3.8204	1.2151
500 Hz	4.9902	3.5495	2.1783
1 kHz	4.9881	3.2979	2.9622

Tabela 6: Tensão de Pico.

Frequência	V_E [V]	V_R [V]	V_B [V]	$ heta_E$	θ_B
100 Hz	3.5334	2.7014	0.8592	3.9800°	16.5850°
500 Hz	3.5286	2.5099	1.5403	22.3847°	60.7405°
1 kHz	3.5271	2.3320	2.0950	34.9023°	74.4725°

Tabela 7: Tensão RMS.

Item 4.b

Item 5

f [Hz]	V_B [V]	V_R [V]	Fase [°] $(V_B \to V_R)$	$I_B [\mathrm{mA}]^{\dagger}$	$Z_B \left[\Omega ight]^{\ddagger}$
100	1.1252	3.8226	160.399	3.8226	$294.3546e^{\pm j160.399^{\circ}}$
200	1.3984	3.8658	144.429	3.8658	$361.7362e^{\pm j144.429^{\circ}}$
500	2.1818	3.5448	119.269	3.5448	$615.4931e^{\pm j119.269^{\circ}}$
1 k	3.2975	2.9638	105.689	2.9638	$1112.5919e^{\pm j105.689^{\circ}}$
2 k	4.2869	1.9344	97.982	1.9344	$2216.1394e^{\pm j97.982^{\circ}}$
5 k	4.8479	0.8620	93.222	0.8620	$5624.0139e^{\pm j93.222^{\circ}}$
10 k	4.9472	0.4371	91.6143	0.4371	$11318.2338e^{\pm j91.6143^{\circ}}$

Tabela 8: Resultados das simulações e cálculo de I_B e Z_B .

- † Calculado usando $I_B=\frac{V_B}{Z_B}.$ † Calculado usando $Z_B=|Z_B|e^{j\theta_B},$ com os valores de $|Z_B|$ na tabela 9.

f [Hz]	$ Z_B = R \frac{V_B}{V_R}$
100	294.3546
200	361.7362
500	615.4931
1 k	1112.5919
2 k	2216.1394
5 k	5624.0139
10 k	11318.2338

Tabela 9: Cálculos intermediários para a tabela 8.

Figura 8: Gráfico Módulo da Impedância x Frequência usando a tebela 9.

Figura 9: Gráfico Fase x Frequência usando a tebela 8.