Performance Modeling and Design of Computer Systems- Ch 12 Transition to Continuous-Time Markov

Chains

Debobroto

Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs

Performance Modeling and Design of Computer Systems- Ch 12 Transition to Continuous-Time Markov Chains

Debobroto Das Robin

Kent State University

Spring 2020

drobin@kent.edu

Overview

Modeling and Design of Computer Systems- Ch 12 Transition to Continuous-Time Markov Chains

Performance

Debobroto Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs Continuous-Time Markov Chain (CTMC)

Solving CTMCs

Continuous-Time Markov Chain (CTMC) Definition

Modeling and
Design of
Computer
Systems- Ch
12
Transition to
Continuous-

Performance

Time Markov Chains Debobroto Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs • Continuous-Time Markov Chain (CTMC): a continuous-time stochastic process $\{X(t), t \geq 0\}$ s.t., $\forall s, t \geq 0$ and $\forall i, j, x(u)$,

$$P\{X(t+s) = j | X(s) = i, X(u) = x(u), 0 \le u \le s\}$$

$$= P\{X(t+s) = j | X(s) = i\}(byM.P.)$$

$$= P\{X(t) = j | X(0) = i\} = P_{ij}(t)(stationarity)$$

- We assume throughout that the state space is countable (though continuous)
- τ_i = time until the CTMC leaves state i, given that it is currently in state i.
- ullet au_i is memoryless and exponentially distributed

Continuous-Time Markov Chain (CTMC)-2 Explanation

Performance
Modeling and
Design of
Computer
Systems- Ch
12
Transition to

Time Markov

Chains Debobroto Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs

A CTMC

- The amount of time the process spends in state i before making a transition is Exponentially distributed with some rate (v_i).
- When the process leaves state i, it will next enter state j with probability (p_{ij}) independent of the time spent at state i.
- p_{ij} , probability of when we leave i we next go to state j, is and independent of time, t, (by stationarity property).
- p_{ij} is independent of the time spent in state i, τ_i (by the Markovian property).

Continuous-Time Markov Chain (CTMC) Example

Performance
Modeling and
Design of
Computer
Systems- Ch
12
Transition to

Chains

Debobroto

Das Robin

Time Markov

Continuous-Time Markov Chain (CTMC)

Solving CTMCs • Suppose we are in state i, where $i \ge 1$. Then the next event is either an arrival or a departure.

- $X_A =$ time to next arraival. $X_A \sim Exp(\lambda)$ regardless of how long we are in the current state.
- $X_D=$ time to the next departure. Then $X_D\sim Exp(\mu)$ regardless of how long we are in current state. X_A & X_D are independent of each other.
- Arrival & departure events happen in parallel. One of these, will occur first. So, $\tau_i =$ ime until we leave state i, has the distribution: $\tau_i \sim Exp(\lambda + \mu) \rightarrow v_i = \lambda + \mu$)
- probability of when we leave state i we will next go to state (i+1) is $P\{X_A < X_D\} = \frac{\lambda}{\lambda \pm \mu}$

Solving CTMCs-1

Modeling and
Design of
Computer
Systems- Ch
12
Transition to
ContinuousTime Markov

Performance

Chains

Debobroto

Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs

- Goal: Finding $\tau_j = \lim_{t\to\infty} P_{ij}(t) =$ limiting probability of being in state j
- Solution: Model CTMC as DTMC and find solution
- We are not discussing full details of derivation
- Balance Equation: the rate at which jobs leave state j in the CTMC = the rate at which jobs enter state j in the CTMC, for each state j.

$$\pi_j v_j = \sum_i \pi_i Q_{ij}$$

• LHS=total rate of transitions leaving state j= limiting probability of being in state j(π_j) * rate the MC leaves state j given that it is in state $j(v_j)$).

Solving CTMCs -2

Modeling and
Design of
Computer
Systems- Ch
12
Transition to
ContinuousTime Markov

Performance

Chains

Debobroto

Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs

- RHS= total rate of transitions entering state j from any state= $\sum \forall i$ (limiting probability of being in state $i(\pi_i)$ * rate the MC leaves state i to go to state j given that it is in state i (q_{ij})
- Balance Equation Become

$$\Rightarrow \pi_j \sum_i \pi_i Q_{ij} = \sum_i \pi_i Q_{ij}$$

 Just solve the balance equation to find the limiting probability

Summary Theorem for CTMCs

Modeling and
Design of
Computer
Systems- Ch
12
Transition to
ContinuousTime Markov

Performance

Chains

Debobroto

Das Robin

Continuous-Time Markov Chain (CTMC)

Solving CTMCs

- CTMCs can basically be viewed as DTMCs in which the time step goes to zero $(t \to 0)$, \Rightarrow all the ergodicity theory that we developed for DTMCs carries over to CTMCs.
- Summary Theorem for CTMCs: Given an irreducible CTMC, suppose $\exists \pi_i$ s.t. $\forall j$,

$$\pi_j v_j = \sum_i \pi_i q_{ij}$$

and

$$\sum_{i} \pi_i = 1$$

• In an irreducible Markov Chain, the process can go from any state to any state, whatever be the number of steps it requires.