

10/565418
IAP6 Rec'd PCT/PTO 23 JAN 2006

SEQUENCE LISTING

<110> Monaci, Paolo
Gallo, Pasquale
Nuzzo, Maurizio

<120> SYNTHETIC GENE ENCODING HUMAN EPIDERMAL
GROWTH FACTOR 2/NEU ANTIGEN AND USES THEREOF

<130> ITR0065YP

<150> PCT/EP2004/008234
<151> 2004-04-20

<150> 60/489,237
<151> 2003-07-21

<160> 14

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3768
<212> DNA
<213> Artificial Sequence

<220>
<223> HER2opt

<400> 1
atggagctgg ccgcacctgtg ccgctggggc ctgctgctgg ccctgctgcc cccccggcgcc 60
gccagcaccc aggtgtgcac cggcaccgac atgaagctgc gcctgcccgc cagccccgag 120
acccacactgg acatgctgcg ccacactgtac cagggtgtgcc aggtggtgca gggcaacctg 180
gagctgacct acctgcccac caacgccagc ctgagcttcc tgcaggacat ccaggaggtg 240
cagggtacg tgctgatcgc ccacaaccag gtgcgccagg tgccctgtca ggcctgcgc 300

atcgtgcgcg gcacccagct gttcgaggac aactacgccc tggccgtgct ggacaacggc 360
 gacccctga acaacaccac ccccgtgacc ggccgcagcc ccggcggcct gcgcgagctg 420
 cagctgcgc a gcctgaccga gatcctgaag ggccggcgtgc tgatccagcg caaccccccag 480
 ctgtgctacc aggacaccat cctgtgaaag gacatcttcc acaagaacaa ccagctggcc 540
 ctgaccctga tcgacaccaa ccgcagccgc gcctgccacc cctgcagccc catgtgcaag 600
 ggcagccgct gctggggcga gagcagcggag gactgccaga gcctgaccgg caccgtgtgc 660
 gccggcggct gcgcccgctg caagggcccc ctgcccaccc actgctgcca cgagcagtgc 720
 gccggcggct gcacccggcc caagcacagc gactgcctgg cctgcctgca cttcaaccac 780
 agcggcatct gcgagctgca ctgccccgccc ctggtgaccc acaacacccga caccttcgag 840
 agcatgccc accccgaggg ccgctacacc ttccggcgcca gctgcgtgac cgccctgcccc 900
 tacaactacc tgagcaccga cgtgggcagc tgcaccctgg tgtgccccct gcacaaccag 960
 gaggtgaccc cgaggacgg caccgcgc tgcgagaagt gcagcaagcc ctgcgcccgc 1020
 gtgtgctacg gcctggcat ggagcacctg cgcgaggtgc ggcgcgtgac cagcgccaac 1080
 atccaggagt tcgcggctg caagaagatc ttccggcagcc tggccttcct gcccggagagc 1140
 ttccgacggcg accccgccc accacaccgc cccctgcagc ccgagcagct gcaggtgttc 1200
 gagaccctgg aggagatcac cggctacctg tacatcagcg cctggccga cagcctgccc 1260
 gacctgagcg tgttccagaa cctgcaggtg atccgcggcc gcattctgca caacggcgcc 1320
 tacagcctga ccctgcaggg cctggcatc agctggctgg gcctgcgcag cctgcgcgag 1380
 ctggcagcg gcctggccct gatccaccac aacacccacc tgcgatccgt gcacaccgtg 1440
 ccctgggacc agctgttccg caaccccccac cagggccctgc tgcacacccgc caaccgcccc 1500
 gaggacgagt gcgtggcgga gggcctggcc tgccaccagc tgtgcgcccc cggccactgc 1560
 tggggccccg gcccaccca gtgcgtgaac tgcagccagt tcctgcgcgg ccaggagtgc 1620
 gtggaggagt ggcgcgtgat gcagggcctg ccccgcgagt acgtgaacgc cggccactgc 1680
 ctgcctgccc accccgagtg ccagcccccag aacggcagcg tgcacccgtt cggcccccgg 1740
 gccgaccagt ggcgtggcctg cgcccactac aaggacccccc cttctgcgt ggcccgctgc 1800
 cccagcggcg tgaagcccga cctgagctac atgcccattt ggaagttccc cgacgaggag 1860
 ggccgcctgcc agccctgccc catcaactgc acccacagct gcgtggaccc ggacgacaag 1920
 ggctgccccg ccgagcagcg cgccagccccc ctgaccagca tcatcagcgc cgtggtgccc 1980
 atccctgtgg tggtggtgat gggcgtggc ttccggcatcc tgatcaagcg cccgcagcag 2040
 aagatccgca agtacaccat ggcggcctg ctgcaggaga ccgagctggt ggagccctg 2100
 acccccccagcg ggcgcattgcc caaccaggcc cagatgcgc tccctgaagga gaccgagctg 2160
 cgcaagggtga aggtgctggg cagcggcgcc ttccggcaccg tgtacaaggat catctggatc 2220
 cccgacggcg agaacgtgaa gatccccgtg gccatgcgc tgctgcgcga gaacaccagc 2280
 cccaaaggccca acaaggagat cctggacccag gcctacgtga tggccggcgt gggcagcccc 2340
 tacgtgagcc gcctgctggg catctgcctg accagcaccg tgcagctggt gaccgcgtg 2400
 atgccttacg gctgcctgat ggaccacgtg cgcgagaacc gcggccgcct gggcagccag 2460
 gacctgctga actggtgcat gcagatcgcc aaggccatga gctacccgtt ggacgtgcgc 2520

ctgggtgcacc ggcacccggc cggccgcaac gtgctggta agagccccaa ccacgtgaag 2580
 atcaccgact tcggcctggc ccgcctgctg gacatcgacg agaccgagta ccacgcccac 2640
 ggccggcaagg tgcccatcaa gtggatggcc ctggagagca tcctgcgccc cccgttcaacc 2700
 caccagagcg acgtgtggag ctacggcgtg accgtgtggg agctgatgac cttcggcgcc 2760
 aaggccctacg acggcatccc cgcccgccgag atccccgacc tgctggagaa gggcgagcgc 2820
 ctgccccagc ccccccattctg caccatcgac gtgtacatga tcatggtaa gtgctggatg 2880
 atcgacagcg agtgcgcgccc ccgcattccgc gagctggtaa gcgcaggtag ccgcattggcc 2940
 cgcgcacccccc agcgcttcgt ggtatccag aacgaggacc tggggccccc cagccccctg 3000
 gacagcacct tctaccgcag cctgctggag gacgacgaca tgggcgaccc ggtggacgcc 3060
 gaggagtacc tggtgcccca gcagggcttc ttctgccccg acccccccc cggcgccggc 3120
 ggcatggtgc accaccgcgc cccgcgcgc agcaccgcgc gggcgccggc cgcacccgtacc 3180
 ctgggcctgg agcccgacgaa ggaggaggcc cccgcgcgc ccctgccccc cagcgaggcc 3240
 gccggcagcg acgtgttcga cggcgacccgt ggcattggcc cgcgcaggcc cctgcagagc 3300
 ctgcccccc accgacccccc cccctgcag cgctacagcg aggacccac cgtgcacccctg 3360
 cccagcgaga ccgacggcta cgtggccccc ctgacctgca gccccccagcc cgagtacgtg 3420
 aaccagcccc acgtgcgcgc ccagcccccc agccccccgcg agggccccct gccccccgc 3480
 cgcgcgcgcg ggcacccct ggagcgcccc aagaccctga gccccccgaa gaacggcggt 3540
 gtgaaggacg tttcgccctt cggcgccgcgt gtggagaacc cgcgcgcgcgtt gaccccccac 3600
 ggccggagctg ctcctcagcc tcaccctcca cctgctttca gcccgcgtt cgacaacccctg 3660
 tactactggg accaggaccc tcctgagagg ggtgcctcctc ctagcacctt caagggcacc 3720
 cccaccgcgc agaaccccgaa gtacccggc ctggacgtgc ccgtgtaa 3768

<210> 2

<211> 1255

<212> PRT

<213> Homo Sapiens, HER2

<400> 2

Met	Glu	Leu	Ala	Ala	Leu	Cys	Arg	Trp	Gly	Leu	Leu	Leu	Ala	Leu	Leu
1															

5															15
---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Pro	Pro	Gly	Ala	Ala	Ser	Thr	Gln	Val	Cys	Thr	Gly	Thr	Asp	Met	Lys

20															30
----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Leu	Arg	Leu	Pro	Ala	Ser	Pro	Glu	Thr	His	Leu	Asp	Met	Leu	Arg	His

35															45
----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Leu	Tyr	Gln	Gly	Cys	Gln	Val	Val	Gln	Gly	Asn	Leu	Glu	Leu	Thr	Tyr

50															60
----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Leu	Pro	Thr	Asn	Ala	Ser	Leu	Ser	Phe	Leu	Gln	Asp	Ile	Gln	Glu	Val

65	70	75	80
Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu			
85	90	95	
Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr			
100	105	110	
Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro			
115	120	125	
Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser			
130	135	140	
Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln			
145	150	155	160
Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn			
165	170	175	
Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys			
180	185	190	
His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser			
195	200	205	
Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys			
210	215	220	
Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys			
225	230	235	240
Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu			
245	250	255	
His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val			
260	265	270	
Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg			
275	280	285	
Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu			
290	295	300	
Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln			
305	310	315	320
Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys			
325	330	335	
Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu			
340	345	350	
Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys			
355	360	365	

Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp
 370 375 380
 Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe
 385 390 395 400
 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
 405 410 415
 Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg
 420 425 430
 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu
 435 440 445
 Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly
 450 455 460
 Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val
 465 470 475 480
 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr
 485 490 495
 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
 500 505 510
 Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
 515 520 525
 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys
 530 535 540
 Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys
 545 550 555 560
 Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys
 565 570 575
 Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp
 580 585 590
 Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu
 595 600 605
 Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln
 610 615 620
 Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys
 625 630 635 640
 Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser
 645 650 655
 Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly

660	665	670
Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg		
675	680	685
Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly		
690	695	700
Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu		
705	710	715
Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys		
725	730	735
Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile		
740	745	750
Ala Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu		
755	760	765
Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg		
770	775	780
Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu		
785	790	795
Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg		
805	810	815
Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly		
820	825	830
Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala		
835	840	845
Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe		
850	855	860
Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp		
865	870	875
Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg		
885	890	895
Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val		
900	905	910
Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala		
915	920	925
Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro		
930	935	940
Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met		
945	950	955
		960

Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe
 965 970 975

Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu
 980 985 990

Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu
 995 1000 1005

Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu
 1010 1015 1020

Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Ala Gly
 1025 1030 1035 1040

Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly
 1045 1050 1055

Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Ala Pro Arg
 1060 1065 1070

Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser Asp Val Phe Asp Gly
 1075 1080 1085

Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Thr His
 1090 1095 1100

Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu
 1105 1110 1115 1120

Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln
 1125 1130 1135

Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro
 1140 1145 1150

Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu
 1155 1160 1165

Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val
 1170 1175 1180

Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln
 1185 1190 1195 1200

Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala
 1205 1210 1215

Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala
 1220 1225 1230

Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr
 1235 1240 1245

Leu Gly Leu Asp Val Pro Val

1250 1255

<210> 3
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 3
ccagtttaaaa catttaaatg ccgccaccat ggagctggcg gcc 43

<210> 4
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
gccgtcgact ttacactggc acgtccagac cca 33

<210> 5
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> HER2 Peptide

<400> 5
Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser
1 5 10 15
Phe Leu Gln

<210> 6
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> HER2 Peptide

<400> 6
Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
1 5 10 15
Asn Gln Leu

<210> 7
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> HER2 Peptide

<400> 7
Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro
1 5 10 15

<210> 8
<211> 9
<212> DNA
<213> Artificial Sequence

<220>

<223> Kozak Sequence

<400> 8

gccggccacc

9

<210> 9

<211> 2028

<212> DNA

<213> Artificial Sequence

<220>

<223> HER2ECDTMopt

<400> 9

atggagctgg ccgcacctgtg ccgctggggc ctgctgctgg ccctgctgcc ccccgccgcc 60
gccagcaccc aggtgtgcac cggcaccgc acatgaagctgc gcctgcccgc cagccccgag 120
acccacacctgg acatgctgctgac ccacacctgtac cagggctgccc aggtggtgca gggcaacactg 180
gagctgacacct acctgcccac caacgcccacg ctgagcttcc tgcaggacat ccaggaggtg 240
cagggctacg tgctgatcgc ccacaaccagg gtgcgcagg tgcccttgca gcgcctgcgc 300
atcgtgcgcgc gcacccagct gttcgaggac aactacgccc tggccgtgct ggacaacggc 360
gacccacctga acaacaccac ccccgtaacc ggcgcgcgc ccggccggcct gcgcgagctg 420
cagctgcgcgc gcctgaccga gatcctgaag ggcggcgtgc tgatccagcg caaccccccag 480
ctgtgctacc aggacaccat cctgtggaaag gacatcttcc acaagaacaa ccagctggcc 540
ctgaccacctga tcgacaccaa ccgcagccgc gcctgcccacc cctgcagccc catgtgcaag 600
ggcagccgcgt gctggggcga gagcagcgcag gactgccaga gcctgaccgc caccgtgtgc 660
gcggccggcgt gcgcggcgtg caagggccccc ctgcccaccgc actgctgccca cgagcagtgc 720
gcggccggcgt gcacccggccc caagcacagc gactgcctgg cctgcctgca cttcaaccac 780
agcggcatct gcgcagctgca ctgcggccgc ctggtgacact acaacaccga caccttcgag 840
agcatgccc accccggaggcc cgcctacacc ttggcgccca gctgcgtgac gcgcctgccc 900
tacaactacc tgagcaccga cgtgggcagc tgcaccctgg tgtgccccct gcacaaccag 960
gaggtgaccgc cggaggacgg caccgcgc tgcgagaagt gcagcaagcc ctgcgcggcgc 1020
gtgtgctacg gcctggcat ggagcacctg cgcgcggcgtgc gcgcgcgtgac cagcgccaaac 1080
atccaggagt tcgcggcgtg caagaagatc ttggcgccgc tggccttcct gcccggagagc 1140
ttcgacggcg accccggccag caacaccgc cccctgcgcgc cggagcagct gcaggtgttc 1200
gagaccctgg aggagatcac cggctacctg tacatcagcg cctggcccga cagcctgccc 1260
gacctgagcg tggtccagaa cctgcagggtg atccggccgc gcattctgca caacggccgc 1320
tacagcctgca ccctgcaggc cctggcattc agctggctgg gcctgcgcag cctgcgcgag 1380

ctgggcagcg gcctggccct gatccaccac aacacccacc tgtgcttcgt gcacaccgtg 1440
 ccctgggacc agctgttccg caaccccccac caggccctgc tgcacaccgc caaccgcccc 1500
 gaggacgagt gcgtgggca gggcctggcc tgccaccagc tgtgcgcgg cggccactgc 1560
 tggggccccg gccccaccca gtgcgtgaac tgcagccagt tcctgcgcgg ccaggagtgc 1620
 gtggaggagt gccgcgtgct gcagggcctg ccccgcgagt acgtaacgc cggccactgc 1680
 ctgccctgcc accccgagtg ccagccccag aacggcagcg tgacctgctt cggcccccag 1740
 gccgaccagt gcgtggcctg cgcccactac aaggaccccc cttctgcgt ggcccgctgc 1800
 cccagcggcg tgaagcccga cctgagctac atgcccattt ggaagttccc cgacgaggag 1860
 ggccctgccc agccctgccc catcaactgc acccacagct gcgtggacct ggacgacaag 1920
 ggctgccccg ccgagcagcg cgccagcccc ctgaccagca tcatcagcgc cgtggtggc 1980
 atccctgctgg tggtgtgct gggcgtggc ttccggcatcc tgatctga 2028

<210> 10

<211> 2028

<212> DNA

<213> Artificial Sequence

<220>

<223> HER2ECDTMwt

<400> 10

atggagctgg cggccttggc ccgctggggg ctccctcctcg ccctcttgc ccccgagcc 60
 gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccgag 120
 acccacctgg acatgctccg ccacctctac caggcgtgcc aggtggtgca gggaaacctg 180
 gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaggatat ccaggaggtg 240
 caggcgtacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
 attgtgcgag gcacccagct cttttaggac aactatgccc tggccgtgct agacaatgga 360
 gacccgctga acaataccac ccctgtcaca gggcctccc caggaggcct gcgggagctg 420
 cagttcgaa gcctcacaga gatctgaaa ggaggggtct tgatccagcg gaaccccccag 480
 ctctgctacc aggacacgat tttgtggaaag gacatcttcc acaagaacaa ccagctggct 540
 ctcacactga tagacaccaa ccgctctcg gcctgccacc cctgttctcc gatgtgtaaag 600
 ggctcccgct gctggggaga gagttctgag gattgtcaga gcctgacgcg cactgtctgt 660
 gccgggtggct gtgcccgtg caaggggcca ctgcccactg actgctgcca tgagcagtgt 720
 gctgccggct gcacgggccc caagcactt gactgcctgg cctgcctcca cttcaaccac 780
 agtggcatct gtgagctgca ctgcccagcc ctggtcaccc acaacacaga cacgtttgag 840
 tccatgcccatacc atcccgaggg ccggtatatac ttccggcgccta gctgtgtgac tgcctgtccc 900
 tacaactacc tttctacgga cgtgggatcc tgcaccctcg tctgccccct gcacaaccaa 960

gaggtgacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtgcccga 1020
 gtgtgctatg gtctggcat ggagcacttg cgagaggtga gggcagttac cagtgc当地 1080
 atccaggagt ttgctggctg caagaagatc tttgggagcc tggatttct gccggagagc 1140
 tttgatgggg acccagcctc caacactgcc ccgctccagc cagagcagct ccaagtgtt 1200
 gagactctgg aagagatcac aggttaccta tacatcttag catggccgga cagcctgc当地 1260
 gacccatcg cg tcttcagaa cctgcaagta atccggggac gaattctgca caatggcgcc 1320
 tactcgctga ccctgcaagg gctggcatc agctggctgg ggctgc当地 actgaggaa 1380
 ctggc当地 agtggccct catccaccat aacacccacc tctgcttcgt gcacacggc 1440
 ccctggacc agctcttcg gaacccgcac caagctctgc tccacactgc caaccggcca 1500
 gaggacgagt gtgtggcga gggcctggcc tgccaccaggc tgtgc当地 agggcactgc 1560
 tggggtccag gccccaccca gtgtgtcaac tgc当地 ccaggagtgc 1620
 gtggaggaat gccgagtaact gcaggggctc cccaggaggat atgtaatgc caggcactgt 1680
 ttgccgtgcc accctgagtg tcagccccag aatggcttag tgacctgtt tggaccggag 1740
 gctgaccaggat gtgtggcctg tgcccactat aaggaccctc cttctgc当地 ggccc当地 1800
 cccagcggc当地 tgaaacctga cctctccat atgccc当地 ggaagttcc agatgaggag 1860
 ggccatgcc agccttgc当地 catcaactgc acccactct gtgtggaccc ggatgacaag 1920
 ggctgccccg ccgagcagag agccagccct ctgacgtcca tcatctctgc ggtggttggc 1980
 attctgctgg tcgtggctt gggggatcc tttggatcc tcatctga 2028

<210> 11
 <211> 3778
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> hHER2opt + Kozak

<400> 11
 gccgccacca tggagctggc cgccctgtgc cgctggggcc tgctgctggc cctgctgccc 60
 cccggc当地 ccagcaccca ggtgtgc当地 ggcaccgaca tgaagctgc当地 cctgcccccc 120
 agccccgaga cccacctgga catgctgc当地 cacctgtacc agggctgcca ggtggc当地 180
 ggcaacctgg agctgaccta cctgccc当地 aacgccc当地 tgagcttc当地 gcaggacatc 240
 caggaggtgc agggctacgt gctgatgc当地 cacaaccagg tgccgc当地 aggtggcc 300
 cgccctgc当地 tcgtgc当地 caccagctg ttccgaggaca actacgccc当地 ggccgtgc当地 360
 gacaacggcg accccctgaa caacaccacc cccgtgaccg gccc当地 gccc当地 420
 cgccgagctgc agctgc当地 cctgaccgag atcctgaagg gccc当地 gccc当地 480
 aacccccc当地 tgc当地 tgc当地 ggacaccatc ctgtggagg acatcttcca caagaacaac 540

cagctggccc tgaccctgat cgacaccaac cgcaGCCGCG cctGCCACCC ctgcAGCCCC 600
 atgtgcaagg gcagccgctg ctggggcgag agcagcgagg actGCCAGAG cctGACCCGC 660
 accgtgtgcg ccggccggctg cggccGCTGC aaggGGCCCCC tgcccACCGA ctgctGCCAC 720
 gagcagtgcg ccggccggctg caccGGCCCC aagcacAGCG actGCCCTGGC ctgcctGCAC 780
 ttcaaccaca gcggcatctg cgagctgcac tgccccGCCc tggtaaccta caacaccgac 840
 accttcgaga gcatGCCAA ccccGAGGGC cgctacacct tcggCGCCAG ctgcgtGACC 900
 gcctGCCCT acaactacct gagcaccGAC gtgggcagct gcaccctGGT gtGCCCCCTG 960
 cacaaccagg aggtgaccgc cgaggacGGC acccAGCGCT gcgagaAGTG cagcaAGCCC 1020
 tgcGCCGCG tggctacgg cctggcatg gagcacctGC gcgaggTGC CGCCGTGACC 1080
 agcgccaaca tccaggagtt cgccggctgc aagaagatct tcggcagcct ggccTTCTG 1140
 cccgagagct tcgacggcga ccccGCCAGC aacaccGCC CCCTGCAGCC cgagcagCTG 1200
 caggtgttcg agaccCTGGA ggagatcacc ggctacctGT acatcagcgc ctggCCCCGAC 1260
 agcctGCCCG acctgagcgt gttccagaac ctgcaggTGA tccggGGCCG catcctGCAC 1320
 aacggcgcct acagcctgac cctgcaggGC ctggcatca gctggctGGG CCTGCGCAGC 1380
 ctgcgcgagc tggcagcgg cctggCCCTG atccaccaca acacccacct gtgctTCGTG 1440
 cacaccgtgc cctgggacca gctgttCCGC aacccccacc agggccTGT gcacaccGCC 1500
 aaccGCCCG aggacgagtg cgtgggcag ggctggcct gccaccAGCT gtgcGCCCGC 1560
 ggccactgtc gggGGGGGG ccccaccAG tgctgtact gcagccAGTT CCTGCGCGC 1620
 caggagtgcg tggaggagtg ccgcgtGCTG cagggcctGC cccgcgAGTA cgtgaacGCC 1680
 cgccactgCC tggccCTGCCA ccccgagtgC cagccccaga acggcagcgt gacctgCTTC 1740
 ggccccGAGG ccgaccAGTG cgtggcCTGC gcccactACA aggacCCCCC CTTCTGCGTG 1800
 gcccGCTGCC ccagccggcgt gaagccccAC ctgagctACA tgcccataCTG gaagttcccc 1860
 gacgaggagg ggcctGCCA gcccTGCCCC atcaactGCA cccacAGCTG cgtggacCTG 1920
 gacgacaagg gctGCCCGC CGAGCAGCGC gccAGCCCC TGACCAGCAT CATCAGCGCC 1980
 gtgggtggca tcctgctGGT ggtggTGTG ggctgtggGT tcggcatcct gatcaAGCGC 2040
 cgccAGCAGA agatccgcaa gtacaccatG cgcgcctGC tgcaggAGAC cgagctGGTG 2100
 gagccccCTGA cccccAGCGG CGCCATGCC ACCAGGGCC AGATGCGCAT CCTGAAGGAG 2160
 accgagCTGC gcaaggTGA GGTGCTGGC AGCGGCGCT tcggcaccGT gtacaaggGC 2220
 atctggatCC ccgacggcga gaacgtGAAG atccccGTGG ccataGCCGT GCTGCGCGAG 2280
 aacaccAGCC ccaaggCCAA caaggAGATC ctggacGAGG CCTACGTGAT ggccGGCGTG 2340
 ggcaggCCCT acgtgagCCG CCTGCTGGC ATCTGCCtGA ccagcaccGT cgagctGGTG 2400
 acccAGCTGA tggccCTACGG CTGCTGCTG GACCACGTG GCAGAGAACCG CGGCCGCCCTG 2460
 ggcaggCCAGG acctgctGA GGTGCTGATC cagatcGCCA AGGGCATGAG CTACCTGGAG 2520
 gacgtgcGCC tggTGCACCG CGACCTGCC GCCCGCAACG TGCTGGTGA GAGCCCCAAC 2580
 cacgtGAAGA tcaccGAACTT CGGCCTGCC CGCCTGCTGG ACATCGACGA GACCAGTAC 2640
 cacGCCGACG GCGGCAAGGT GCCCATCAAG TGGATGGCCC TGGAGAGCAT CCTGCGCCGC 2700
 cgcttcacCC accagAGCGA CGTGTGGAGC tacggcgtGA CGTGTGGGA GCTGATGACC 2760

ttcggcgcca agccctacga cggcatcccc gcccgcgaga tccccgacct gctggagaag 2820
 ggcgagcgcc tgccccagcc ccccatctgc accatcgacg tgtacatgtat catggtgaag 2880
 tgctggatga tcgacagcga gtgccgcccc cgcttcccgcg agctggtagg cgagttcagc 2940
 cgcattggccc gcgaccccca ggcgttcgtg gtgatccaga acgaggacct gggccccgcc 3000
 agccccctgg acagcacctt ctaccgcagc ctgctggagg acgacgacat gggcgacctg 3060
 gtggacgcgg aggagtacct ggtgcggccag cagggtttct tctgccccga ccccgcccc 3120
 ggcgccggcg gcatggtgca ccaccgcac cgcagcagca gcacccgcag cggcgccggc 3180
 gacctgaccc tgggcctgga gcccagcggag gaggaggccc cccgcagccc cctggcccc 3240
 agcgagggcg ccggcagcga cgtgttcgac ggcgacctgg gcatggcgcc cgccaagggc 3300
 ctgcagagcc tgcccaccca cgaccccagc cccctgcagc gctacagcga ggacccacc 3360
 gtgccccctgc ccagcgagac cgacggctac gtggccccc tgacctgcag ccccgagccc 3420
 gagtacgtga accagcccga cgtgcgcggc cagcccccga gccccgcga gggcccccctg 3480
 cccgcccccc gccccgcgg cgccaccctg gagcgccccca agaccctgag ccccgccaag 3540
 aacggcgtgg tgaaggacgt gttcgccctc ggccggcgccg tggagaaccc cgagtacctg 3600
 acccccccagg gcggagctgc tcctcagcct cacccctccac ctgcttcag ccctgcttc 3660
 gacaacctgt actactggga ccaggacct cctgagaggg gtgctcctcc tagcaccttc 3720
 aagggcaccc ccaccgcga gaaccccgag tacctggcc tggacgtgcc cgtgtaaa 3778

<210> 12

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 12

ccagatatcg aattcttagag ccgccaccat gga 33

<210> 13

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 13
gctgtcgact ttatcagatc aggatgccga acaccacgcc c 41

<210> 14
<211> 675
<212> PRT
<213> Artificial Sequence

<220>
<223> HER2ECDTM polypeptide

<400> 14

Met	Glu	Leu	Ala	Ala	Leu	Cys	Arg	Trp	Gly	Leu	Leu	Leu	Ala	Leu	Leu
1															15
Pro	Pro	Gly	Ala	Ala	Ser	Thr	Gln	Val	Cys	Thr	Gly	Thr	Asp	Met	Lys
														20	30
Leu	Arg	Leu	Pro	Ala	Ser	Pro	Glu	Thr	His	Leu	Asp	Met	Leu	Arg	His
														35	45
Leu	Tyr	Gln	Gly	Cys	Gln	Val	Val	Gln	Gly	Asn	Leu	Glu	Leu	Thr	Tyr
														50	60
Leu	Pro	Thr	Asn	Ala	Ser	Leu	Ser	Phe	Leu	Gln	Asp	Ile	Gln	Glu	Val
														65	80
Gln	Gly	Tyr	Val	Leu	Ile	Ala	His	Asn	Gln	Val	Arg	Gln	Val	Pro	Leu
														85	95
Gln	Arg	Leu	Arg	Ile	Val	Arg	Gly	Thr	Gln	Leu	Phe	Glu	Asp	Asn	Tyr
														100	110
Ala	Leu	Ala	Val	Leu	Asp	Asn	Gly	Asp	Pro	Leu	Asn	Asn	Thr	Thr	Pro
														115	125
Val	Thr	Gly	Ala	Ser	Pro	Gly	Gly	Leu	Arg	Glu	Leu	Gln	Leu	Arg	Ser
														130	140
Leu	Thr	Glu	Ile	Leu	Lys	Gly	Gly	Val	Leu	Ile	Gln	Arg	Asn	Pro	Gln
														145	160
Leu	Cys	Tyr	Gln	Asp	Thr	Ile	Leu	Trp	Lys	Asp	Ile	Phe	His	Lys	Asn
														165	175
Asn	Gln	Leu	Ala	Leu	Thr	Leu	Ile	Asp	Thr	Asn	Arg	Ser	Arg	Ala	Cys
														180	190
His	Pro	Cys	Ser	Pro	Met	Cys	Lys	Gly	Ser	Arg	Cys	Trp	Gly	Glu	Ser

195	200	205
Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys		
210	215	220
Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys		
225	230	235
Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu		
245	250	255
His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val		
260	265	270
Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg		
275	280	285
Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu		
290	295	300
Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln		
305	310	315
Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys		
325	330	335
Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu		
340	345	350
Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys		
355	360	365
Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp		
370	375	380
Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe		
385	390	395
Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro		
405	410	415
Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg		
420	425	430
Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu		
435	440	445
Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly		
450	455	460
Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val		
465	470	475
Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr		
485	490	495

Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
500 505 510
Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
515 520 525
Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys
530 535 540
Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys
545 550 555 560
Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys
565 570 575
Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp
580 585 590
Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu
595 600 605
Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln
610 615 620
Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys
625 630 635 640
Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser
645 650 655
Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly
660 665 670
Ile Leu Ile
675