CS738: Advanced Compiler Optimizations Interprocedural Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Interprocedural Analysis: WHY?

main

read a.b

r = a * b

c₁ call p

t = a * b

print t

e₁ EXIT

How to avoid data flowing along invalid paths? main

Infeasible Paths

 $r_1 \rightarrow c_1 \rightarrow r_2 \rightarrow b_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow r_1$

Is a * b available at IN of n_1 ?

 r_2 if (a == 0)

 $b_2 | a = a - 1$

c₂ call p

 $n_2 t = a * b$

e₂ return

Two Approaches

Functional approach

main

read a.b

|r = a * b

c₁ call p

t = a * b

print t

e₁ EXIT

Recursion

- procedures as structured blocks
- input-output relation (functions) for each block
- function used at call site to compute the effect of procedure on program state

How to handle Infinite paths?

 $\ldots \to \textit{r}_2 \to \textit{c}_2 \to \textit{r}_2 \to \textit{c}_2 \to \textit{r}_2 \ldots$

р

 f_2 if (a == 0)

 $b_2 \ a = a - 1$

c₂ call p

 $n_2 \mid t = a * b$

e₂ return

- ► Call-strings approach
 - single flow graph for whole program
 - value of interest tagged with the history of unfinished procedure calls

M. Sharir, and A. Pnueli. Two Approaches to Inter-Procedural Data-Flow Analysis. In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981

Notations and Terminology

► Target of a function can not be determined statically

Dynamically created functions (in functional languages)

► Function Pointers (including virtual functions)

double (*fun) (double arg);

fun = sqrt;

fun = fahs:

Function Variables

if (cond)

else

fun(x);

No static control flow graph!

Control Flow Graph

Infeasible paths

Function pointers and virtual functions

Dynamic functions (functional programs)

► Recursion

Challenges

One per procedure

р r_2 if (a == 0) $b_2 | a = a - 1$ c₂ call p $n_2 t = a * b$ e₂ return

Control Flow Graph for Procedure p

- ► Single instruction basic blocks
- ▶ Unique exit block, denoted e_n
- ► Unique entry block, denoted r_p (root block)
- ► Edge (m, n) if direct control transfer from (the end of) block m to (the start of) block n
- ▶ Path: $(n_1, n_2, ..., n_k)$
 - $ightharpoonup (n_i, n_{i+1}) \in \text{Edge set for } 1 \leq i < k$
 - ightharpoonup path G(m,n): Set of all path in graph G=(N,E) leading

Data Flow Equations

 $x_r = BoundaryInfo$

$$x_n = \bigwedge_{(m,n) \in F} f_{(m,n)}(x_m) \quad n \in N-r$$

► MFP solution, approximation of MOP

$$y_n = \bigwedge \{f_p(BoundaryInfo) : p \in path_G(r, n)\} \quad n \in N$$

Functional Approach to Interprocedural Analysis

Assumptions

- Parameterless procedures, to ignore the problems of

 - recursion stack for formal parameters
- ► No procedure variables (pointers, virtual functions etc.)

Data Flow Framework

- ► (L, F): data flow framework
- L: a meet-semilattice
- Largest element Ω
- F: space of propagation functions
 - Closed under composition and meet
 - ▶ Contains $id_L(x) = x$ and $f_{\Omega}(x) = \Omega$
- $f_{(m,n)} \in F$ represents propagation function for edge (m,n)of control flow graph G = (N, E)
 - ► Change of DF values from the *start* of *m*, through *m*, to the start of n

Functional Approach

- > Procedures treated as structures of blocks
- ► Computes relationship between DF value at entry node and related data at any internal node of procedure
- ► At call site, DF value propagated directly using the computed relation

Interprocedural Flow Graph

First Representation:

 $G = \bigcup \{G_p : p \text{ is a procedure in program}\}\$

 $G_D = (N_p, E_p, r_p)$

 N_D = set of all basic block of p

 $r_p = \text{root block of } p$

set of edges of p

 $= E_D^0 \cup E_D^1$

 $(m, n) \in E_n^0 \Leftrightarrow \text{direct control transfer from } m \text{ to } n$

 $(m, n) \in E_n^1 \Leftrightarrow m$ is a call block, and n immediately follows m

Interprocedural Flow Graph: 1st Representation main read a, b r_2 if (a == 0)r = a * b E_p^0 $b_2 = a - 1$ c₁ call p c₂ call p t = a * b n_1 print t E_p^1 $n_2 t = a * b$ E_p^0 e₁ EXIT e₂ return

Second representation

Interprocedural Flow Graph

$$G^* = (N^*, E^*, r_1)$$

$$r_1 = \text{root block of main}$$

$$N^* = \bigcup_{p} N_p$$

$$E^* = E^0 \cup E^1$$

$$E^0 = \bigcup_{p} E_p^0$$

$$R) \in E^1 \implies (m, p) \text{ is either a call}$$

$$(m,n) \in E^1 \Leftrightarrow (m,n)$$
 is either a *call* edge or a *return* edge

Interprocedural Flow Graph

- ► Call edge (m, n):
 - ▶ m is a call block, say calling p
- n is root block of p
- ► Return edge (m, n):
 - m is an exit block of p
 - n is a block immediately following a call to p
- ▶ Call edge (m, r_p) corresponds to return edge (e_q, n)
 - ightharpoonup if p = q and
 - ▶ $(m, n) \in E_s^1$ for some procedure s

Interprocedural Flow Graph: 2nd Representation

- \triangleright set of all interprocedurally valid paths q in G^* from r_p to n

► G* ignores the special nature of call and return edges

▶ do not represent potentially valid execution paths

 \triangleright IVP (r_1, n) : set of all interprocedurally valid paths from r_1 to

▶ iff sequence of all E¹ edges in q (denoted q₁) is proper

► Each call edge has corresponding return edge in q restricted to E1

Proper sequence

- ▶ q₁ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - i > 1; and

 - ▶ $q_1[i-1]$ is call edge corresponding to $q_1[i]$; and ▶ q_1' obtained from deleting $q_1[i-1]$ and $q_1[i]$ from q_1 is

Interprocedurally Valid Complete Paths

Interprocedurally Valid Paths

► Not all paths in G* are feasible

▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)

- ▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$

IVPs

$$q \in \mathsf{IVP}(r_{\mathsf{main}}, n)$$

$$\begin{array}{ll} q & = & q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j \\ & \text{where for each } i < j, q_i \in \mathsf{IVP}_0(r_{p_i}, c_i) \text{ and } q_j \in \mathsf{IVP}_0(r_{p_i}, n) \end{array}$$