Fișier de Sinteză - Laborator 4: Analiza Corelațiilor de Mediu

1. Descrierea Îmbunătătirii fată de Experimentul 1

Experimentul inițial s-a concentrat pe modelarea tendinței generale a schimbării medii globale a temperaturii folosind **regresia liniară simplă**, având ca variabilă independentă anul și ca variabilă dependentă schimbarea temperaturii. Scopul principal a fost predicția acestei tendințe.

Pentru Experimentul 2, s-a ales o abordare de **îmbunătățire și extindere a analizei**, mergând dincolo de simpla predicție a tendinței temperaturii și investigând **relația dintre această tendință și consecințele sale / indicatori de mediu relevanți**. Modul de îmbunătățire se încadrează în următoarele categorii din cerințe:

- 1. **Creșterea setului de date:** Analiza a fost îmbogățită prin integrarea unor seturi de date externe, cruciale pentru contextul climatic:
 - o Date privind Nivelul Mediu Global al Mării (GMSL Global Mean Sea Level).
 - Date privind anomaliile masei gheţarilor din Antarctica (pierderea de masă).
 - Date privind anomaliile masei gheţarilor din Groenlanda (pierderea de masă).
 Acest lucru a transformat analiza dintr-una univariată (timp -> temperatură)
 într-una multivariată, axată pe corelaţii.

2. Folosirea unor metode mai robuste și informative:

- În loc de calculul manual al regresiei simple, s-au utilizat funcții din biblioteci specializate (scipy.stats.linregress, pandas, seaborn) pentru a calcula:
 - Coeficienți de corelație Pearson: Pentru a cuantifica relația liniară între toate variabilele.
 - Metrici de regresie detaliate: Pentru fiecare relație (ex: Temperatură vs. Nivelul Mării), s-au calculat panta (slope), R-squared și valoarea p (p-value). Valoarea p adaugă o dimensiune de robustețe prin evaluarea semnificației statistice a relației observate, aspect absent în Experimentul 1.
 - Calculul tendințelor individuale: S-a calculat tendința liniară (panta vs. an) și semnificația acesteia pentru *fiecare* variabilă (temperatură, nivelul mării, masa gheții), nu doar pentru temperatură.
- 3. **Schimbarea obiectivului:** Obiectivul principal nu mai este *predicția* simplă a temperaturii viitoare bazată exclusiv pe timp, ci *înțelegerea și cuantificarea legăturilor* dintre tendința de încălzire observată și impacturi fizice majore (topirea gheții, creșterea nivelului mării) în perioada acoperită de date.

2. Valori Metricilor Calculate (Experiment 2)

Pe baza analizei corelațiilor de mediu, utilizând datele agregate anual pentru perioada comună disponibilă, s-au calculat următoarele metrici:

Matricea de Corelație:

- Se observă corelații foarte puternice: pozitivă între Temp şi GMSL (+0.90), negative între Temp şi masele de gheață (-0.88, -0.86), şi extrem de puternice (pozitive sau negative) între GMSL şi masele de gheață.
- Metrici de Relație (vs. Avg Temperature Change):
 - GMSL mm:
 - Panta (Slope): +110.26 mm / °C (Creștere estimată a nivelului mării per grad Celsius de încălzire)
 - R-squared: 0.815 (81.5% din variația nivelului mării este explicată liniar de variația temperaturii)
 - P-value: 9.25e-09 (Relație extrem de semnificativă statistic)

AntarcticaMass Gt:

- Panta (Slope): -4080.88 Gt / °C (Pierdere estimată de masă în Antarctica per grad Celsius)
- R-squared: 0.768 (76.8% din variația masei Antarcticii explicată liniar de temperatură)
- P-value: 8.80e-08 (Relație extrem de semnificativă statistic)

GreenlandMass Gt:

■ Panta (Slope): -7674.60 Gt / °C (Pierdere estimată de masă în Groenlanda per grad Celsius)

- R-squared: 0.733 (73.3% din variația masei Groenlandei explicată liniar de temperatură)
- P-value: 3.79e-07 (Relație extrem de semnificativă statistic)
- Metrici de Tendință Generală (vs. An):
 - AvgTempChange:
 - Panta (Trend): +0.026 °C/an
 - P-value: 2.45e-07 (Tendință de creștere extrem de semnificativă)
 - GMSL_mm:
 - Panta (Trend): +3.595 mm/an
 - P-value: 1.91e-18 (Tendință de creștere extrem de semnificativă)
 - AntarcticaMass Gt:
 - Panta (Trend): -135.936 Gt/an
 - P-value: 5.23e-16 (Tendință de scădere (pierdere) extrem de semnificativă)
 - GreenlandMass Gt:
 - Panta (Trend): -265.451 Gt/an
 - P-value: 2.62e-22 (Tendință de scădere (pierdere) extrem de semnificativă)

3. Concluzii și Discuții (Experiment 2)

- 1. **Confirmarea Puternică a Relațiilor:** Valorile numerice obținute în Experimentul 2 confirmă **cu tărie** și semnificativ statistic relațiile fizice așteptate:
 - Corelația pozitivă foarte puternică (+0.90) și panta +110 mm/°C subliniază legătura directă dintre încălzire și creșterea nivelului mării.
 - Corelațiile negative puternice (-0.88, -0.86) și pantele abrupte (mii de Gt/°C) indică o sensibilitate ridicată a maselor de gheață la creșterea temperaturii, ducând la pierderi substantiale.
- 2. Cuantificarea Precisă a Sensibilității și Tendințelor: Metricile oferă estimări cantitative clare: Nivelul mării crește cu aproximativ 3.6 mm/an, în timp ce Groenlanda pierde cca. 265 Gt/an și Antarctica cca. 136 Gt/an, în perioada analizată. Toate aceste tendințe, inclusiv cea a temperaturii (+0.026 °C/an), sunt extrem de semnificative statistic (p-values foarte mici).
- 3. **Explicativitate Ridicată:** Valorile R-squared între 0.73 și 0.82 pentru relația dintre temperatură și variabilele de mediu indică faptul că o proporție mare (73%-82%) din varianța observată în nivelul mării și pierderea de gheață poate fi explicată liniar de variația temperaturii medii globale în perioada studiată.
- 4. **Limitări:** Rămân valabile limitările mentionate anterior:
 - Perioada de timp specifică analizei (dictată de suprapunerea datelor, post-2002).
 - Presupunerea de liniaritate, deşi pare o bună aproximaţie conform R-squared.
 - o Corelatie vs. Cauzalitate (desi cauzalitatea este sustinută de fizică).
 - o Agregarea anuală și ignorarea explicită a incertitudinilor datelor sursă.

4. Comparații Rezultate (Experiment 2 vs. Experiment 1)

Caracteristică	Experiment 1 (Regresie Simplă Temp)	Experiment 2 (Analiză Corelații Mediu)
Scop Principal	Predicția tendinței temperaturii	Înțelegerea relațiilor Temp ↔ Mediu; Cuantificarea tendințelor
Date Utilizate	An, Temperatură medie anuală	An, Temp. medie, Nivelul Mării, Masa Gheață (Ant.+Gro.)
Complexitate	Simplă (bivariată)	Moderată (multivariată, corelații, trenduri multiple)
Metodologie	Calcul manual/simplu regresie (m, b)	pandas, scipy.stats (corelații, regresii multiple, p-value)
Metrici Cheie	MSE, MAE, R ² (pentru modelul Temp vs. An)	Matrice Corelație, Slope, R², P-value (Temp vs. Env), Trend Slopes
Nivel de Analiză	Focalizat pe o singură variabilă (Temp)	Contextual, relaţional, holistic
Robustețe	Fără testare de semnificație statistică	Include p-value pentru semnificație statistică (valori p < 0.001 obținute)
"Îmbunătățire"	-	Extindere date, metode mai robuste, analiză mai profundă

Concluzie Comparație: Experimentul 2 reprezintă o extensie substanțială față de Experimentul 1. Nu doar că utilizează date adiționale esențiale, dar aplică și metode statistice mai avansate pentru a cuantifica relații complexe și a evalua semnificația lor statistică. Rezultatele obținute (corelații puternice, R-squared ridicat, p-values extrem de mici) oferă o imagine mult mai completă și robustă a impactului încălzirii globale comparativ cu simpla analiză a tendinței temperaturii din Experimentul 1.

5. Comparații cu Literatura de Specialitate

Rezultatele numerice obținute în Experimentul 2 sunt **remarcabil de consistente** cu valorile raportate în literatura științifică recentă și rapoartele IPCC:

- 1. Rata Creşterii Nivelului Mării: Rata calculată de ~3.6 mm/an se încadrează perfect în estimările bazate pe altimetrie satelitară pentru perioada post-1993 (și în special post-2000), care indică o rată medie de peste 3 mm/an, posibil accelerând.
- 2. Rata Pierderii de Gheată:
 - Pentru **Groenlanda**, rata de **~ -265 Gt/an** este în centrul intervalului estimărilor publicate pentru perioada acoperită de GRACE/GRACE-FO.
 - Pentru Antarctica, rata de **~ -136 Gt/an** este de asemenea consistentă cu estimările medii din literatura de specialitate pentru aceeași perioadă, deși există variații regionale mari și incertitudini mai mari comparativ cu Groenlanda.

- 3. **Sensibilitatea (Slope Temp vs. Env):** Deși valorile specifice ale pantei pot varia între studii în funcție de perioada exactă și metodele folosite, magnitudinea și semnul acestora (+ pentru GMSL, pentru gheață) sunt universal acceptate.
- 4. **Semnificația Statistică:** Nivelurile extrem de ridicate de semnificație statistică (p-values foarte mici) obținute pentru toate tendințele și relațiile analizate reflectă nivelul înalt de încredere ("high confidence" sau "very high confidence" în limbajul IPCC) atribuit acestor observații în comunitatea științifică.

Referinte:

https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-9/

https://www.earthdata.nasa.gov/

Link collab