The Zariski-Nagata theorem in mixed characteristic

¹Alessandro De Stefani ²Eloísa Grifo* ³Jack Jeffries

¹The University of Nebraska – Lincoln

²The University of Virginia

³The University of Michigan

AMS Meeting in Columbus, Ohio 2018

Let Q be a prime ideal in a noetherian ring R.

Symbolic Powers

The n-th symbolic power of Q is the ideal

$$Q^{(n)}=Q^nR_Q\cap R.$$

= smallest Q-primary ideal containing Q^n

= Q-primary component in a decomposition of Q^n

Theorem (Zariski–Nagata: order of vanishing)

Let Q be a prime ideal in a polynomial ring $R = K[x_1, ..., x_d]$ over a field K. Then

$$Q^{(n)} = \bigcap_{\substack{\mathfrak{m} \ maximal \ \mathfrak{m} \supseteq Q}} \mathfrak{m}^n.$$

GEOMETRICALLY: $Q^{(n)}$ consists of the functions that vanish to order at least n on each point in $\mathcal{V}(Q)$.

Theorem (Zariski–Nagata: order of vanishing)

Let Q be a prime ideal in a polynomial ring $R = K[x_1, ..., x_d]$ over a field K. Then

$$Q^{(n)} = \bigcap_{\substack{\mathfrak{m} \ maximal \\ \mathfrak{m} \supseteq Q}} \mathfrak{m}^n.$$

A closely related statement characterizes symbolic powers in terms of differential operators. This is the version of Zariski–Nagata that we are interested in.

Theorem (Zariski–Nagata: characteristic zero)

Let Q be a prime ideal in a polynomial ring $R = K[x_1, \dots, x_d]$ over a field K of characteristic zero. Then

$$Q^{(n)} = \{ f \in R \mid \forall \partial \in D^{n-1}_{R|K}, \ \partial(f) \in Q \},$$

where $D_{R|K}^{i}$ is the set of differential operators of order at most i:

$$D_{R|K}^{i} = \bigoplus_{0 \leq a_1 + \dots + a_d \leq i} R \frac{\partial^{a_1}}{\partial x_1^{a_1}} \cdots \frac{\partial^{a_d}}{\partial x_d^{a_d}}.$$

Theorem (Zariski–Nagata: characteristic zero)

$$Q^{(n)} = \{ f \in R \mid \forall \partial \in D^{n-1}_{R|K}, \ \partial(f) \in Q \}.$$

Example

Let X be a 3×3 matrix of indeterminates, R=K[X], and $P=I_2(X)$ be the ideal of 2×2 minors of X. Then, $\frac{\partial}{\partial x_{11}}\det(X)=x_{22}x_{33}-x_{23}x_{32}\in P$. By symmetry, $D^1_{R|K}\cdot\det(X)\subseteq P$, so $\det(X)\in P^{(2)}$.

$$Q^{(n)} = \{ f \in R \mid \forall \partial \in D^{n-1}_{R|K}, \ \partial(f) \in Q \}.$$

The fails in characteristic p > 0:

$$\frac{\partial}{\partial x_1}(x_1^p) = px_1^{p-1} = 0 \qquad \frac{\partial}{\partial x_i}(x_1^p) = 0 \text{ for } i > 1$$

so every operator $\partial \in \bigoplus_{a_1,\dots,a_d\geqslant 0} R \, \frac{\partial^{a_1}}{\partial x_1^{a_1}} \cdots \frac{\partial^{a_d}}{\partial x_d^{a_d}} \, {\rm satisfies} \, \partial (x_1^p) \in (x_1^p).$

The previous version of Zariski–Nagata would say that $x_1^p \in (x_1)^{(n)} = (x_1^n)$ for all n > 0, which is false.

$$Q^{(n)} = \{ f \in R \mid \forall \partial \in D^{n-1}_{R|K}, \ \partial(f) \in Q \}.$$

The fails in characteristic p > 0:

$$\frac{\partial}{\partial x_1}(x_1^p) = px_1^{p-1} = 0 \qquad \frac{\partial}{\partial x_i}(x_1^p) = 0 \text{ for } i > 1$$

so every operator $\partial \in \bigoplus_{a_1,\dots,a_d\geqslant 0} R \, \frac{\partial^{a_1}}{\partial x_1^{a_1}} \cdots \frac{\partial^{a_d}}{\partial x_d^{a_d}} \, {\rm satisfies} \, \partial (x_1^p) \in (x_1^p).$

The previous version of Zariski–Nagata would say that $x_1^p \in (x_1)^{(n)} = (x_1^n)$ for all n > 0, which is false.

Not enough differential operators (in this sense)!

If $R = A[x_1, \dots, x_d]$, we define

$$D_{R|A}^{i} = \bigoplus_{0 \leqslant a_1 + \dots + a_d \leqslant i} R \frac{1}{a_1!} \frac{\partial^{a_1}}{\partial x_1^{a_1}} \cdots \frac{1}{a_d!} \frac{\partial^{a_d}}{\partial x_d^{a_d}}.$$

This makes sense even if the a_i 's are not units, since if we differentiate a monomial by a variable a_i times, we either pick up a_i consecutive integers as coefficients, or run out of that variable.

This is a special case of Grothendieck's notion of differential operators.

Let R be an A-algebra.

Definition (Differential operators)

The A-linear differential operators of order 0 on R are given by

$$D_{R|A}^0 = \operatorname{Hom}_R(R,R).$$

The A-linear differential operators of order n on R are given by

$$D^n_{R|A} = \{ \partial \in \mathsf{Hom}_A(R,R) \, | \, \forall r \in D^0_{R|A}, \ \partial \circ r - r \circ \partial \in D^{n-1}_{R|A} \}.$$

Theorem (Zariski–Nagata: characteristic zero or p > 0)

Let Q be a prime ideal in a polynomial ring $R = K[x_1, \ldots, x_d]$ over a field K (of characteristic 0 or p > 0). Assume that the field extension $K \hookrightarrow R_Q/QR_Q$ is separable. Then

$$Q^{(n)} = \{ f \in R \mid \forall \partial \in D^{n-1}_{R|K}, \ \partial(f) \in Q \}.$$

where $D_{R|K}^{i}$ is the set of differential operators of order at most i:

$$D_{R|K}^{i} = \bigoplus_{0 \leqslant a_1 + \dots + a_d \leqslant i} R \frac{1}{a_1!} \frac{\partial^{a_1}}{\partial x_1^{a_1}} \cdots \frac{1}{a_d!} \frac{\partial^{a_d}}{\partial x_d^{a_d}}.$$

Even with the correct notion of differential operators, the version of Zariski–Nagata we have seen fails in mixed characteristic.

Example

Let $R = \mathbb{Z}[x]$, p be a prime integer, and Q = (p). Every \mathbb{Z} -linear differential operator $\partial \in D^i_{R|\mathbb{Z}}$ on R satisfies

$$\partial(p) = p\partial(1) \in (p) = Q.$$

The previous version of Zariski–Nagata would say that $p \in Q^{(n)} = (p^n)$ for all n, which is false.

First version of Zariski–Nagata in mixed characteristic:

Theorem (De Stefani – G – Jeffries)

Let A be either \mathbb{Z} or a DVR of mixed characteristic. Let $R = A[x_1, \dots, x_d]$. If Q is a prime ideal in R such that $Q \cap A = (0)$, then for all $n \ge 1$,

$$Q^{(n)} = \{ f \in R \mid \forall \partial \in D^{n-1}_{R|A}, \ \partial(f) \in Q \}.$$

So what is the problem?

If our prime ideal $Q \ni p$, we need "differential operators" that decrease p-adic order.

- $p^n \in (p^n) = (p)^{(n)}$, so for a "differential operator" δ of order n-1 we should have $\delta(p^n) \in (p)$.
- $p^{n-1} \notin (p^n) = (p)^{(n)}$, so $\delta(p^{n-1}) \notin (p)$ for some "differential operator" δ of order n-1.

In particular, a "differential operator" of order 1 should decrease p-adic order by 1.

Definition (Buium, Joyal)

We say that a set-theoretic map $\delta_p:S\to S$ is a *p-derivation* if $\delta_p(1)=0$ and δ_p satisfies the following identities for all $x,y\in S$:

$$\delta_p(xy) = x^p \delta_p(y) + y^p \delta_p(x) + p \delta_p(x) \delta_p(y)$$

and

$$\delta_p(x+y) = \delta_p(x) + \delta_p(y) + C_p(x,y),$$

$$C_p(X,Y) = \frac{X^p + Y^p - (X+Y)^p}{p} \in \mathbb{Z}[X,Y].$$

Definition (Buium, Joyal)

We say that a set-theoretic map $\delta_p:S\to S$ is a *p-derivation* if $\delta_p(1)=0$ and δ_p satisfies the following identities for all $x,y\in S$:

$$\delta_{p}(xy) = x^{p}\delta_{p}(y) + y^{p}\delta_{p}(x) + p\delta_{p}(x)\delta_{p}(y)$$

and

$$\delta_p(x+y) = \delta_p(x) + \delta_p(y) + C_p(x,y),$$

$$C_p(X,Y) = \frac{X^p + Y^p - (X+Y)^p}{p} \in \mathbb{Z}[X,Y].$$

Definition (Buium, Joyal)

We say that a set-theoretic map $\delta_p:S\to S$ is a *p-derivation* if $\delta_p(1)=0$ and δ_p satisfies the following identities for all $x,y\in S$:

$$\delta_{p}(xy) = x^{p}\delta_{p}(y) + y^{p}\delta_{p}(x) + p\delta_{p}(x)\delta_{p}(y)$$

and

$$\delta_{\rho}(x+y) = \delta_{\rho}(x) + \delta_{\rho}(y) + C_{\rho}(x,y),$$

$$C_p(X,Y) = \frac{X^p + Y^p - (X+Y)^p}{p} \in \mathbb{Z}[X,Y].$$

Definition (Buium, Joyal)

We say that a set-theoretic map $\delta_p:S\to S$ is a *p-derivation* if $\delta_p(1)=0$ and δ_p satisfies the following identities for all $x,y\in S$:

$$\delta_{p}(xy) = x^{p}\delta_{p}(y) + y^{p}\delta_{p}(x) + p\delta_{p}(x)\delta_{p}(y)$$

and

$$\delta_{\rho}(x+y) = \delta_{\rho}(x) + \delta_{\rho}(y) + C_{\rho}(x,y),$$

$$C_p(X,Y) = \frac{X^p + Y^p - (X+Y)^p}{p} \in \mathbb{Z}[X,Y].$$

Equivalently:

 δ_p is a p-derivation if $\phi_p(x) := x^p + p\delta_p(x)$ is a ring homomorphism.

Equivalently:

 δ_p is a p-derivation if $\phi_p(x) := x^p + p\delta_p(x)$ is a ring homomorphism.

In other words, $\phi_p(x)$ is a lift of the Frobenius map on S/pS.

Equivalently:

 δ_p is a p-derivation if $\phi_p(x) := x^p + p\delta_p(x)$ is a ring homomorphism.

In other words, $\phi_p(x)$ is a lift of the Frobenius map on S/pS.

Given a lift ϕ_p of the Frobenius map on S/pS,

$$\delta_p(x) = \frac{\phi_p(x) - x^p}{p}$$

is a p-derivation.

Warning

Not all rings have a p-derivation!

But the following rings S do have p-derivations:

- $S = \mathbb{Z}$,
- $S = \mathbb{Z}_p$, the *p*-adic integers,
- S is a polynomial ring over a ring B that admits a p-derivation, or
- S is p-adically complete and formally smooth over a ring B that admits a p-derivation.

There is only one *p*-derivation over \mathbb{Z}

$$\delta_p(n)=\frac{n-n^p}{p}.$$

Every p-derivation on a ring S of characteristic 0 extends this one.

These are the maps we are looking for

A *p*-derivation δ does indeed decrease *p*-adic order:

$$\delta_p(p^n) = \frac{p^n - p^{np}}{p} = p^{n-1} - p^{np-1} \in (p^{n-1}) \setminus (p^n).$$

Definition (De Stefani – G – Jeffries)

Let $A = \mathbb{Z}$ or a DVR of mixed characteristic, and $R = A[x_1, \dots, x_d]$. Let ∂_p be a p-derivation on R. The mixed differential operators of order i are

$$D_{R|A}^{i,\mathrm{mix}} = \{\underbrace{\delta_p \circ \cdots \circ \delta_p}_{a \text{ times}} \circ \partial \mid \partial \in D_{R|A}^b, \ a+b \leqslant i\}$$

Theorem (De Stefani – G – Jeffries)

Let $A=\mathbb{Z}$ or a DVR of mixed characteristic with a p-derivation, and $R=A[x_1,\ldots,x_d]$. Let Q be a prime ideal of R that contains p, and assume that the field extension $A/pA\hookrightarrow R_Q/QR_Q$ is separable. Then for all $n\geqslant 1$,

$$Q^{(n)} = \{ f \in R \mid \forall \delta \in D_{R|A}^{n-1, \text{mix}}, \ \delta(f) \in Q \}.$$

$$D_{R|A}^{i,\text{mix}} = \{\underbrace{\delta_p \circ \cdots \circ \delta_p}_{a \text{ times}} \circ \partial \mid \partial \in D_{R|A}^b, \ a + b \leqslant i\};$$

 Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$
- Show $Q^{\langle n \rangle_{\text{mix}}}$ is a Q-primary ideal.

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$
- Show $Q^{\langle n \rangle_{\text{mix}}}$ is a Q-primary ideal.
- Show $Q^n \subseteq Q^{\langle n \rangle_{\text{mix}}}$.

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$
- Show $Q^{\langle n \rangle_{\text{mix}}}$ is a Q-primary ideal.
- Show $Q^n \subseteq Q^{\langle n \rangle_{\text{mix}}}$.

$$\Rightarrow Q^{(n)} \subseteq Q^{\langle n \rangle_{\min}}.$$

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$
- Show $Q^{\langle n \rangle_{\text{mix}}}$ is a Q-primary ideal.
- Show $Q^n \subseteq Q^{\langle n \rangle_{\text{mix}}}$.

$$\Rightarrow Q^{(n)} \subseteq Q^{\langle n \rangle_{\min}}.$$

• Show
$$Q^{\langle n \rangle_{\text{mix}}} R_Q = (QR_Q)^{\langle n \rangle_{\text{mix}}}$$
.

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$
- Show $Q^{\langle n \rangle_{\text{mix}}}$ is a Q-primary ideal.
- Show $Q^n \subseteq Q^{\langle n \rangle_{\text{mix}}}$.
 - $\Rightarrow Q^{(n)} \subseteq Q^{\langle n \rangle_{\min}}.$
- Show $Q^{\langle n \rangle_{\text{mix}}} R_Q = (QR_Q)^{\langle n \rangle_{\text{mix}}}$.
 - \Rightarrow It is enough to show that equality holds after localizing at Q.

- Broaden the statement from polynomial rings to smooth algebras essentially of finite type (so one can localize).
- Consider the ideal $Q^{\langle n \rangle_{\text{mix}}} = \{ f \in R \mid \forall \delta \in D_{R|K}^{n-1,\text{mix}}, \ \delta(f) \in Q \}.$
- Show $Q^{\langle n \rangle_{\text{mix}}}$ is a Q-primary ideal.
- Show $Q^n \subseteq Q^{\langle n \rangle_{\text{mix}}}$.
 - $\Rightarrow Q^{(n)} \subset Q^{\langle n \rangle_{\min}}.$
- Show $Q^{\langle n \rangle_{\text{mix}}} R_Q = (QR_Q)^{\langle n \rangle_{\text{mix}}}$.
 - \Rightarrow It is enough to show that equality holds after localizing at Q.
- Finally, show $\mathfrak{m}^{\langle n \rangle_{\text{mix}}} = \mathfrak{m}^n$ over a local ring (R, \mathfrak{m}) .

(same proof sketch appears in Dao–De Stefani–G–Huneke–Núñez Betancourt and Brenner–Jeffries–Núñez Betancourt)

Obrigada!

Example (The order matters!)

Take $R=\mathbb{Z}_p[x]$ and Q=(p,x). The lift of Frobenius that satisfies $\phi(x)=x^p$ induces a p-derivation δ on R such that $\delta(x)=0$, and $D^1_{R|\mathbb{Z}_p}=R\oplus R\frac{d}{dx}$. Note that $px\notin Q^{(3)}=Q^3$. And in fact

$$px \notin Q^{\langle 3 \rangle_{\text{mix}}} \text{ since } \left(\delta \circ \frac{d}{dx} \right) (px) \notin Q.$$

However,

$$\frac{d^2}{dx^2}(px), \left(\frac{d}{dx}\circ\delta\right)(px), \delta^2(px)\in Q.$$

Example (Not every ring has a p-derivation)

Let $S = \mathbb{Z}_p[x_1, \ldots, x_n]$, and R = S/(p-f), where $f \in (x_1, \ldots, x_n)^2$. Suppose that there is some p-derivation δ on R. Considering p = f in R, $\delta(p) = \delta(f) \in (x_1, \ldots, x_n, p)R$. However, $\delta(p) = 1 - p^{p-1}$, which yields a contradiction.

Warning!

The conclusion of Zariski-Nagata for fields fails if the extension $A/pA \hookrightarrow R_Q/QR_Q$ is not separable.

Example

Let
$$K = \mathbb{F}_p(t)$$
, $R = K[x]$, and $Q = (x^p - t)$.

Since
$$\frac{d}{dx}(x^p-t)=0\in Q$$
, and $D^1_{R|K}=R\oplus R\frac{d}{dx}$,

$$Q^{\langle 2 \rangle_K} = Q.$$

Then
$$Q^{(2)} = Q^2 \neq Q = Q^{\langle 2 \rangle_K}$$
.