INTRODUCTORY APPLIED MACHINE LEARNING

Yan-Fu Kuo

Dept. of Biomechatronics Engineering National Taiwan University

Today:

- Review of probability
- Review of inferential statistics

Outline

- Goal of the lecture
- Univariate statistics
- Distributions and significance
- Multivariate statistics

Goals

- After this, you should be able to:
 - Be familiar with probability terminologies
 - Understand basic random variable operation
 - Conduct univariate and multivariate statistical analysis
 - Perform hypothesis test

Univariate Statistics

- Univariate means a single variable
- For example, the height, weight, and test score, of a population

Random Variable

- A variable whose value is subject to variations due to chance (i.e., randomness, in a mathematical sense)
- Also called stochastic variable
- Two types of random variable: <u>discrete</u> and <u>continuous</u>
- Example: die roll

Probability Density Function (PDF)

- The area under a probability distribution
- The graphical form:

Introductory Applied Machine Learning

- Histogram for a discrete random variable
- Smooth curve for continuous random variable

https://en.wikipedia.org/wiki/Random variable

Measures of Random Variables

Expected value μ (mean of probability distribution)

$$\mu = E[x] = \int x \, p(x)$$

- Variance σ^2
 - A measure of how far a set of data is spread out
 - Defined as the expected value of $(x \mu)^2$, i.e.,

$$\sigma^2$$
=Var(x) = $E[(x - \mu)^2] = \int (x - \mu)^2 p(x)$

- Standard deviation σ
 - Square root of the variance

Normal Distribution

Also called Gaussian distribution

$$N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

where μ is the mean and σ^2 is the variance

 Probability density function (PDF) of normal distribution

8

Effect of Varying Parameters μ & σ

Normal distributions differ by mean and standard deviation

 This was a problem back to the time when there was no computer – properties of normal distribution was precalculated and printed on table

Standard Normal Distribution

- A normal distribution with μ = 0 and σ = 1
- A random variable with a standard normal distribution is usually denoted by the symbol z
- Standardization can be performed by the formula $z = \frac{x-\mu}{\sigma}$

Standardized Normal Distribution

Expected Value of New Random Variable

- Suppose there are two random variables w and x, and their relationship is w = ax + b
- Knowing that the expected value of x is μ_x , what is the expected value of w?

$$\mu_w = E[w] = E[ax + b] = \int (ax + b)p(x)$$
$$= \int axp(x) + \int bp(x) = a \int xp(x) + b \int p(x)$$
$$= aE[x] + b = a\mu_x + b$$

Variance of New Random Variable

- Suppose the relationship between two random variables, w and x, is w = ax + b
- Knowing that the expected value of x is μ_x , what is the expected value of the variance of w?

$$\sigma_w^2 = \int (ax + b - (a\mu_x + b))^2 p(x)$$

$$= \int (a(x - \mu_x))^2 p(x) = \int a^2 (x - \mu_x)^2 p(x)$$

$$= a^2 \int (x - \mu_x)^2 p(x) = a^2 \sigma_x^2$$

Statistical Methodologies

Methods to make estimates, decisions, and predictions using sample data

Statistical Hypothesis Testing

- A method of making decisions using data
- Example: The mean of a population is equal to θ_0 ?
- Typical hypothesis:

•
$$H_0$$
: $\theta = \theta_0$ v.s. H_1 : $\theta \neq \theta_0$

•
$$H_0$$
: $\theta \ge \theta_0$ v.s. H_1 : $\theta < \theta_0$

•
$$H_0$$
: $\theta \leq \theta_0$ v.s. H_1 : $\theta > \theta_0$

where H_0 is null hypothesis, and H_1 is alternative hypothesis

Decision Rules and Terminology

- The hypothesis testing checks if samples randomly from the population are consistent with the statistics or not
- Base upon the sample statistic, one can
 - 1. Either <u>reject null hypothesis</u> H_0 and conclude that alternative hypothesis is substantiated
 - 2. Or <u>retain null hypothesis</u> H_0 and conclude that alternative hypothesis fails to be substantiated

Hypothesis Testing Procedure

- 1. Determine a probability, say 0.95, for the hypothesis test
- 2. Find the 95% "confidence Interval" of the H_0
- Check if your score falls into the interval

Terminology in Hypothesis Testing

- Determine a probability, say 0.95, for the hypothesis test
- Find the 95% "confidence Interval" of the H_0
- Check if your score falls into the interval
- Terminology:
 - Confidence interval
 - Confidence level (1α)
 - Significance level α
 - p-value

Distinguishing 2 Populations

Normals

Dwarfs

The Result

Are they different?

What about these 2 Populations?

The Result

Are they different?

Student's t-test

- Formally allows you to calculate the probability that 2 sample means are the same
- If the t-Test statistic gives you a p = 0.4, and the $\alpha = 0.05$, the mean of the 2 populations
 - p = 0.4, and the $\alpha = 0.05$, the mean of the 2 populations are the same
- If the t-Test statistic gives you a p=0.04, and the $\alpha=0.05$, the mean of the 2 populations are different
- Paired and unpaired t-Tests are available

Distinguishing 3+ Populations

Dwarfs

Elves

The Result

Are they different?

Distinguishing 3+ Populations

The Result

Are they different?

ANOVA

- <u>An</u>alysis <u>of variance</u> $F = \frac{Variance\ between\ groups}{Variance\ within\ groups}$
- Used to determine if the means of 3 or more populations are different

Multivariate Statistics

- Multivariate means multiple variables
- If you measure a population using multiple measures at the same time such as height, weight, hair color, etc., you are performing multivariate statistics
- Multivariate statistics requires more complex, multidimensional analyses or dimensional reduction methods

Bivariate Gaussian

- Let $x_1 \sim N(\mu_1, \sigma_1^2)$ and $x_2 \sim N(\mu_2, \sigma_2^2)$
- Suppose x_1 and x_2 are independent

$$p(x_1, x_2) = \frac{1}{2\pi(\sigma_1^2 \sigma_2^2)^{1/2}} \exp\left(-\frac{1}{2} \{\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\}\right)$$
Let $\mathbf{x} = {x_1 \choose x_2} \cdot \mathbf{\mu} = {\mu_1 \choose \mu_2} \cdot \mathbf{\Sigma} = {\sigma_1^2 \choose 0 \sigma_2^2}$

$$p(\mathbf{x}) = \frac{1}{2\pi |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \{(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\}\right)$$

Bivariate Gaussian

What If There Is Correlation?

- Two random variables might not be independent
- Example: plot of weight vs. height for a population
- Let ρ be the correlation between x_1 and x_2
- Covariance between two random variables:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T] = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Covariance between two random variables:

$$p(\mathbf{x}) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2(1-\rho^2)} \left\{ \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right\} \right)$$

Summary

- In stochastic models, variable states are not described by unique values, but rather by probability distributions
- T-tests and ANOVA are parametric statistical techniques that are widely used to compare group means
- ANOVA is used to test differences in means between more than three groups
- In multivariate statistical analysis, there can exist interaction between variables

References

 D. Montgomery and G. Runger, Applied Statistics and Probability for Engineers