

Träd

Betrakta ett **träd** som består av N **noder**, numrerade från 0 till N-1.

Nod 0 kallas för **roten**. Varje nod, förutom roten, har en enda **förälder**. För varje i, sådan att $1 \le i < N$, gäller att föräldern till nod i är nod P[i], där P[i] < i. Vi antar också att P[0] = -1.

För varje nod i ($0 \le i < N$), så är **subträdet** för i mängden av följande noder:

- *i*, och
- alla noder vars förälder är i, och
- alla noder vars förälders förälder är i, och
- ullet alla noder vars förälders förälder är i,
- OSV.

Bilden nedan visar ett exempelträd som består av N=6 noder. Varje pil förbinder en nod med dess förälder, förutom roten som inte har någon förälder. Subträdet för nod 2 innehåller 2,3,4 och 5 . Subträdet för nod 0 innehåller alla 6 noder i trädet och subträdet för nod 4 innehåller endast nod 4 .

Varje nod tilldelas en **vikt** som är ett icke-negativt heltal. Vi betecknar vikten av nod i ($0 \le i < N$) som W[i].

Din uppgift är att skriva ett program som kommer att svara på Q frågor, där varje fråga består av ett par av heltal (L,R). Svaret på frågan bör beräknas enligt följande.

Låt oss tilldela ett heltal som kallas en **koefficient**, till varje nod i trädet. En sådan tilldelning beskrivs av en sekvens $C[0],\ldots,C[N-1]$, där C[i] ($0\leq i< N$) är koefficienten som är tilldelad nod i. Låt oss kalla denna sekvens för en **koefficientsekvens**. Observera att elementen i koefficientsekvensen kan vara negativa, 0 eller positiva.

För en fråga (L,R), är en koefficientsekvens **giltig** om, för varje nod i ($0 \le i < N$), gäller följande villkor: summan av koefficienterna för noderna i subträdet till nod i är inte mindre än L och inte större än R.

För en given koefficientsekvens $C[0],\ldots,C[N-1]$, så är **kostnaden** för en nod i lika med $|C[i]|\cdot W[i]$, där |C[i]| anger det absoluta värdet av C[i]. Slutligen är **totalkostnaden** summan av kostnaderna för alla noder. Din uppgift är att för varje fråga beräkna den **minsta totalkostnaden** som kan uppnås med någon giltig koefficientsekvens.

Det kan bevisas att för varje fråga finns åtminstone en giltig koefficientsekvens.

Implementationsdetaljer

Harry rekommenderar starkt att du implementerar följande två funktioner:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arrayer med heltal av längd N som anger föräldrarna och vikterna för varje nod.
- Denna procedur kallas exakt en gång i början av interaktionen mellan gradern och ditt program i varje testfall.

```
long long query(int L, int R)
```

- *L*, *R*: heltal som beskriver en fråga.
- Denna procedur kallas Q gånger efter anropet av init i varje testfall.
- Denna procedur bör returnera svaret på den givna frågan.

Begränsningar

- $1 \le N \le 200\,000$
- $1 \le Q \le 100\,000$
- P[0] = -1
- $0 \le P[i] < i$ för alla i sådan att $1 \le i < N$
- $0 \le W[i] \le 1\,000\,000$ för alla i sådan att $0 \le i < N$
- $1 \leq L \leq R \leq 1\,000\,000$ för varje fråga

Subtasks

Grupp	Poäng	Ytterligare begränsningar	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ för alla i sådan att $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ för alla i sådan att $0 \leq i < N$	
5	11	$W[i] \leq 1$ för alla i sådan att $0 \leq i < N$	
6	22	L=1	
7	19	Inga ytterligare begränsningar.	

Examplen

Pondera på följande anrop:

Trädet består av 3 noder: roten och rotens 2 barn. Alla noder har vikten 1.

I den här frågan gäller L=R=1, vilket innebär att summan av koefficienterna i varje subträd måste vara lika med 1. Låt oss använda koefficientsekvensen [-1,1,1]. Trädet och dess korresponderande koefficienter (i skuggade rektanglar) är illusterade nedan.

För varje nod i ($0 \le i < 3$), är summan av alla koefficienter av alla noder i subträdet för i lika med 1. Därför är denna koefficientsekvensen giltig. Den totala kostnaden är beräknad på följande vis:

Nod	Vikt	Koefficient	Kostnad
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	1 ·1 = 1

Den totala kostnaden för det här fallet är 3. Det här är även den enda giltiga koefficientsekvensen, därför borde detta anrop returnera 3.

```
query(1, 2)
```

Den minsta totala kostnaden för denna fråga är 2, vilket kan uppnås genom att använda koefficientsekvensen $\left[0,1,1\right]$.

Exempelgrader

Inputformat:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

där L[j] och R[j] (för $0 \leq j < Q$) är funktionsparametrarna i det j:te anropet till query . Observera att den andra raden i inmatningen innehåller **endast** N-1 **heltal**, eftersom exempelgradern inte läser värdet på P[0] .

Outputformat:

```
A[0]
A[1]
...
A[Q-1]
```

där A[j] (för $0 \leq j < Q$) är värdet som returneras av j:te anropet till query.