Devoir Libre : Thermodynamique des systèmes ouverts Éléments de correction

N°	Elts de rép.
00-00	titre
0	
01-02	Etude du diagramme des frigoristes
1	Isothermes et isobares sont confondus dans la zone d'équilibre entre liquide et vapeur. Ce sont des segments de droite horizontaux.
2	Pour un gaz parfait H ne dépend que de T donc h aussi donc les isothermes sont des segments de droite verticales. Ce n'est pas le cas sur le diagramme fourni mais on s'en rapproche pour les faibles pressions.
03-05	Etude du cycle haute pression
3	Pour le tracé on part de 1 - sur la courbe d'ébullition (liquide saturant) et à la pression $p_1 = 15$ bar. De 1 à 2 suivre isenthalpe (sans partie mobile, adiabatique) jusqu'à $p_2 = 4,0$ bar. De 2 à 3 suivre isobare (séparateur mélangeur isobare) jusqu'à la courbe de rosée (sortie vapeur saturante). De 3 à 4 suivre isentropes (compression adiabatique réversible) jusqu'à $p_4 = p_1 = 15$ bar (condenseur isobare). De 4 à 1 suivre isobare jusqu'à état 1.
5	état 1 : $h_1 = 245 \text{ kJ.kg}^{-1}$, $p_1 = 15 \text{ bar}$, $T_1 = 36 \text{ °C}$, $x_1 = 0$ état 2 : $h_2 = 245 \text{ kJ.kg}^{-1}$, $p_2 = 4 \text{ bar}$, $T_2 = -11 \text{ °C}$, $x_2 = 0, 36$ état 3 : $h_3 = 343 \text{ kJ.kg}^{-1}$, $p_3 = 4 \text{ bar}$, $T_3 = -11 \text{ °C}$, $x_3 = 1$ état 4 : $h_4 = 366 \text{ kJ.kg}^{-1}$, $p_4 = 15 \text{ bar}$, $T_4 = 44 \text{ °C}$, $x_4 = ?$ vapeur sèche théorème des moments $(1-x)(h_2 - h_L) = x(h_G - h_2)$ donc $x = \frac{h_2 - h_L}{h_G - h_L} = 0, 37$
06-07	Etude du cycle basse pression
6	état 5 sur la courbe d'ébullition (sortie liquide saturant du séparateur mélangeur) à $p_5 = 4,0$ bar. De 5 à 6, suivre isenthalpique (sans partie mobile, adiabatique) jusqu'à $p_6 = 1,5$ bar. De 6 à 7 suivre isobare jusqu'à la courbe de rosée. De 7 à 8 suivre isentropes (adiabatique, réversible) jusqu'à $p_8 = 4,0$ bar
7	On effectue une lecture sur le diagramme état $5: h_5 = 188 \text{ kJ.kg}^{-1}, p_5 = 4 \text{ bar}, T_5 = -11 \text{ °C}, x_5 = 0$ état $6: h_6 = 188 \text{ kJ.kg}^{-1}, p_6 = 1, 5 \text{ bar}, T_6 = -37 \text{ °C}, x_6 = 0, 16$ état $7: h_7 = 328 \text{ kJ.kg}^{-1}, p_7 = 1, 5 \text{ bar}, T_7 = -37 \text{ °C}, x_7 = 1$
	état 8 : $h_8 = 347 \text{ kJ.kg}^{-1}$, $p_8 = 4 \text{ bar}$, $T_8 = 3 \text{ °C}$, $x_8 = \text{vapeur sèche}$
08-11	état $8: h_8 = 347 \text{ kJ.kg}^{-1}, p_8 = 4 \text{ bar}, T_8 = 3 ^{\circ}\text{C}, x_8 = \text{vapeur sèche}$ Bilan énergétique
08-11	

10)	$COP = \frac{\Phi_{evap}}{P_{CPHP} + P_{CPBP}} = 2,49$
1.	1	$COP_{Carnot} = \frac{1}{\frac{T_c}{T_t} - 1} = 3,23.$ donc $r = \frac{COP}{COP_{Carnot}} = 0,77$, rendement inférieur
		à 1 ou efficacité toujours inférieure à l'efficacité de Carnot. Pour une machine
		réelle on veut de la puissance de froid donc transformation dans condenseur
		forcément irréversible sinon elle prendrait un temps infinie.