Concept	1-Categorical construction	∞ -Categorical construction	Intuition
F-Cartesian edge	$F: X \to S$ a functor, $f: x \to y$ a morphism in X is F -cartesian if the induced map $ X_{/f} \to X_{/y} \times_{S_{/F(y)}} S_{/F(f)} $ is an isomorphism of categories. $([\mathrm{nLa25a}], \mathrm{Prop}\ 2.4)$	$F: X \to S$ an inner fibration of simplicial sets, $f: x \to y$ an edge in X is F -cartesian if the induced map $ X_{/f} \to X_{/y} \times_{S_{/F(y)}} S_{/F(f)} $ is a trivial Kan fibration. ([Lur09], Def 2.4.1.1)	In the model structure on sSet, the fibrations are Kan fibrations and the weak equivalences are weak homotopy equivalences ([Lur09], A.2.7). A trivial fibration in a model category is a map which is both a fibration and a weak equivalence, which in sSet is equivalent to the definition given in this table. Thus, being related by a Kan fibration is a higher categorical notion of 'sameness'. Why not a categorical equivalence? [Lur09] Rem 1.2.5.5 implies this is stronger, which would match more with the fact that the 1-categorical version is defined in terms of an isomorphism (not equivalence) of categories.
Category	Collection of objects C , set $\operatorname{Hom}(X,Y)$ for every $X,Y\in C$, associative composition and identity morphisms	Simplicial set $C: \Delta^{op} \to \mathbf{Set}$ satisfying the inner horn filling condition. ([Lur09], Def 1.1.2.4)	Category with objects C_0 , morphisms C_1 , morphisms between morphisms C_2 , etc. Inner horn filling defines a non-unique composition.
Colimit	A colimit for $F: J \to \mathcal{C}$ is an initial cone on F .	A colimit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is an initial object of $\mathcal{C}_{F/}$. ([Lur09], Def 1.2.13.4)	??
Essentially surjective functor	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every $D \in \mathcal{D}$, there exists some $C \in \mathcal{C}$ with $FC \cong D$.	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if $hF: hC \to h\mathcal{D}$ is essentially surjective. ([Lur09], Def 1.2.10.1)	Essentially surjective up to homotopy.
Faithful functor	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is injective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $hF: h\mathcal{C} \to h\mathcal{D}$ is faithful. ([Lur09], Def 1.2.10.1)	Faithful up to homotopy.
Final object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C' \to C$.	Object $C \in \mathcal{C}$ such that C is final in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C' \to C$.
Full functor	$F: \mathcal{C} \to \mathcal{D}$ is full if $\operatorname{Hom}(X, Y) \to \operatorname{Hom}(FX, FY)$ is surjective for all $X, Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is full if $hF: h\mathcal{C} \to h\mathcal{D}$ is full. ([Lur09], Def 1.2.10.1)	Full up to homotopy.
Functor	Functor.	Natural transformation of simplicial sets. ([Lur09], 1.2.7)	-
Groupoid	Category whose morphisms are all invertible.	Kan complex.	Not only can you find (non-unique) 'composites', but you can also fill in diagrams like $C \xrightarrow{\mathrm{id}} C C \xrightarrow{\mathrm{id}} D$
Initial object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C \to C'$.	Object $C \in \mathcal{C}$ such that C is initial in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C \to C'$.

Join Left cone	$ \begin{array}{c} \mathcal{C}\star\mathcal{D} \text{ has objects ob}\mathcal{C}\sqcup\text{ob}\mathcal{D},\\ \text{and } \operatorname{Hom}_{\mathcal{C}\star\mathcal{D}}(X,Y) \text{ is given by:}\\ \left\{ \begin{aligned} \operatorname{Hom}_{\mathcal{C}}(X,Y) & X,Y\in\mathcal{C},\\ \operatorname{Hom}_{\mathcal{D}}(X,Y) & X,Y\in\mathcal{D},\\ \emptyset & X\in\mathcal{D},Y\in\mathcal{C},\\ * & X\in\mathcal{C},Y\in\mathcal{D}. \end{aligned} \right. \\ \left([\operatorname{Lur}09],\ 1.2.8 \right) $	$ \begin{array}{l} \mathcal{C}\star\mathcal{D} \text{ has } n\text{-simplicies } (\mathcal{C}\star\mathcal{D}) = \\ \mathcal{C}_n\cup\mathcal{D}_n\cup\bigcup_{i+j=n-1}\mathcal{C}_i\times\mathcal{D}_j. \text{ The } \\ i\text{th boundary map } d_i:(\mathcal{C}\star\mathcal{D})_n\to \\ (\mathcal{C}\star\mathcal{D})_{n-1} \text{ is defined on } \mathcal{C}_n \text{ and } \\ \mathcal{D}_n \text{ using the } i\text{th boundary map } \\ \text{on } \mathcal{C} \text{ and } \mathcal{D}. \text{ Given } \sigma\in S_j, \tau\in T_k, \\ d_i(\sigma,\tau) \text{ is given by } \\ \begin{cases} (d_i\sigma,\tau) & i\leq j,\ j\neq 0, \\ (\sigma,d_{i-j-1}\tau) & i>j,\ k\neq 0. \end{cases} \\ \text{If } j=0, \text{ then } d_0(\sigma,\tau)=\tau, \text{ and } \\ \text{if } k=0, \text{ then } d_n(\sigma,\tau)=\sigma. \\ ([\text{Lur09}], \text{Def } 1.2.8.1\ /\ [\text{nLa25b}]) \\ \mathcal{C}^{\lhd}:=\Delta^0\star\mathcal{C}. ([\text{Lur09}], \text{ Not } \\ 1.2.8.4) \\ \end{array} $	Objects are in both cases disjoint unions of objects from the two categories being joined. Morphisms are also exactly the same in both cases (you get all the morphisms from \mathcal{C} and \mathcal{D} , plus a morphism from $c \to d$ for every pair $(c,d) \in \mathcal{C}_0 \times \mathcal{D}_0$). Whenever you have an n -simplex in \mathcal{C} and an m -simplex in \mathcal{D} , you get an $(m+n+1)$ -simplex in $c \star \mathcal{D}$, so in particular $c \star \mathcal{D}$ and $c \star \mathcal{D}$ are point of $c \star \mathcal{D}$, with a map from that cone point to every other vertex in $c \star \mathcal{D}$, but adds nothing else (ex-
Left Kan extension (along the inclusion of a full subcate- gory)	Given a commutative diagram $ \begin{array}{c} \mathcal{C}^0 \stackrel{F_0}{\longrightarrow} \mathcal{D} \\ \downarrow \downarrow \qquad \qquad$	Given a commutative diagram $C^0 \xrightarrow{F_0} \mathcal{D}$ F , F is a left Kan extension of F_0 along ι if for all $C \in \mathcal{C}$, the induced diagram $C^0_{/C} \xrightarrow{F_C} \mathcal{D}$ exhibits FC as $(C^0_{/C})^{\triangleright}$ a colimit of F_C . ([Lur09], Def 4.3.2.2)	cept degenerate simplicies). ??
Limit	A limit for $F: J \to \mathcal{C}$ is a terminal cone on F .	A limit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is a final object of $\mathcal{C}_{/F}$. ([Lur09], Def 1.2.13.4)	??
Opposite category	$\mathcal{C}^{\mathrm{op}}$ has the same objects as \mathcal{C} , and $\mathrm{Hom}_{\mathcal{C}^{\mathrm{op}}}(X,Y)=\mathrm{Hom}_{\mathcal{C}}(Y,X).$	$C_n^{\text{op}} = C([n]^{\text{op}}), \text{ where } \{0 < 1 < < n\}^{\text{op}} = \{0 > 1 > > n\}.$ ([Lur09], 1.2.1)	A map $x \to y$ is an edge $\Delta^1 \to \mathcal{C}$ where $0 \mapsto x$ and $1 \mapsto y$. In \mathcal{C}^{op} 0 and 1 swap roles, so we instead get a map $y \to x$.
Overcategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{/C}$ satisfies the following universal property: for any category \mathcal{D} , there is a bijection $\operatorname{Hom}(\mathcal{D},\mathcal{C}_{/C}) \simeq \operatorname{Hom}_C(\mathcal{D} \star [0],\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $\mathcal{D} \star [0] \to \mathcal{C}$ whose restriction to $[0]$ consides with C . ([Lur09], 1.2.9)	For $f: S \to \mathcal{C}$, S a simplicial set and \mathcal{C} an ∞ -category, the ∞ -category $\mathcal{C}_{/f}$ satisfies the following universal property: for any simplicial set X , there is a bijection $\operatorname{Hom}(X,\mathcal{C}_{/f}) \simeq \operatorname{Hom}_f(X \star S,\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $X \star S \to \mathcal{C}$ whose restriction to S consides with f . ([Lur09], Prop 1.2.9.2)	??
Right cone	$\mathcal{C}^{\triangleright} := \mathcal{C} \star [0].$	$\mathcal{C}^{\triangleright} := \mathcal{C} \star \Delta^{0}.$ ([Lur09], Not 1.2.8.4)	Adds an extra vertex (cone point) to \mathcal{C} , with a map from every other vertex in \mathcal{C} to that cone point, but adds nothing else (except degenerate simplicies).

Subcategory	Subcategory $C' \subseteq C$.	Subsimplicial set $\mathcal{C}' \subseteq \mathcal{C}$ arising as	??
		$\mathcal{C}' \longrightarrow \mathcal{C}$	
		a pullback	
		$N(hC)' \longrightarrow N(hC)$	
		where $(hC)' \subseteq hC$ is a subcategory.	
		([Lur09], 1.2.11)	
Undercategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{C/}$ sat-	For $f: S \to \mathcal{C}$, S a simplicial	??
	isfies the following universal prop-	set and \mathcal{C} an ∞ -category, the ∞ -	
	erty: for any category \mathcal{D} , there is	category $\mathcal{C}_{f/}$ satisfies the following	
	a bijection	universal property: for any simpli-	
		cial set X , there is a bijection	
	$ \operatorname{Hom}(\mathcal{D}, \mathcal{C}_{C/}) \simeq \operatorname{Hom}_C([0] \star \mathcal{D}, \mathcal{C}),$		
		$\operatorname{Hom}(X, \mathcal{C}_{f/}) \simeq \operatorname{Hom}_f(S \star X, \mathcal{C}),$	
	where the subscript on the right	- ,	
	indicates that we consider only	where the subscript on the right	
	those functors $[0] \star \mathcal{D} \to \mathcal{C}$ whose	indicates that we consider only	
	restriction to $[0]$ consides with C .	those functors $S \star X \to \mathcal{C}$ whose	
	([Lur09], 1.2.9)	restriction to S consides with f .	
		([Lur09], Prop 1.2.9.2)	

Equivalences		
Name	Between	Definition
Strong equivalence	Topological categories \mathcal{C}, \mathcal{D}	$\mathcal{C} \to \mathcal{D}$ is an equivalnce in the sense of enriched category theory. ([Lur09], Def 1.1.3.1)
(Weak) equivalence	Topological categories \mathcal{C}, \mathcal{D}	The induced functor $hC \to hD$ is an equivalence of \mathcal{H} -enriched categories. ([Lur09], Def 1.1.3.6)
Categorical equivalence	Simplicial sets X, S	The induced functor $hX \to hS$ is an equivalence of \mathcal{H} -enriched categories. ([Lur09], Def 1.1.5.14)
Weak (homotopy) equivalence	Simplicial sets X, S	The induced map $ X \rightarrow S $ is a weak homotopy equivalence of topological spaces. ([Lur09], 1.1.4)
Equivalence	Simplicial categories \mathcal{C}, \mathcal{D}	The induced functor $hC \to hD$ is an equivalence of \mathcal{H} -enriched categories. ([Lur09], Def 1.1.4.4)

Fibrations and anodyne morphisms		
Name	Describes	Definition
Acyclic Kan fibration	$f: X \to S$ map of simplicial sets	see: trivial Kan fibration. ([nLa23])
Anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ a Kan fibration,
		$X \longrightarrow Y$
		$f \mid p$
		$S \xrightarrow{\checkmark} T$
		there exists a dotted lift. ([Lur09], Ex 2.0.0.1)
Cartesian fibration	$f: X \to S$ map of simplicial sets	F is an inner fibration such that for every edge
		$g: x \to y$ of S and every vertex \tilde{y} of X with
		$f(\tilde{y}) = y$, there exists an f-cartesian edge \tilde{g} :
		$\tilde{x} \to \tilde{y} \text{ with } f(\tilde{g}) = g. \text{ ([Lur09], Def } 2.4.2.1)$

Cofibration	$f: X \to S$ map of simplicial sets	f is a monomorphism. ([Lur09], A.2.7)
Inner anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ an inner fibration,
		V V
		$X \longrightarrow Y$
		$ \begin{array}{ccc} f \downarrow & \downarrow p \\ S \longrightarrow T \end{array} $
		$S \xrightarrow{\cdot} T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Inner Fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		0 < i < n,
		$\Lambda_i^n \longrightarrow X$
		$\int \int \int \int d^3r dr$
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow & X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow & S \end{array} $
		$\Delta^n \longrightarrow S$
		there exists a dotted lift.
Isofibration	$F: \mathcal{C} \to \mathcal{D}$ map of ∞ -categories	F is an inner fibration such that for all $C \in \mathcal{C}$ and every isomorphism $u: D \to FC$ in \mathcal{D}
		and every isomorphism $u: D \to FC$ in D (i.e. $[u]$ is an isomorphism in $h\mathcal{D}$) there exists
		an isomorphism $\overline{u}:\overline{D}\to C$ in $\mathcal C$ such that
		$F(\overline{u}) = u$. [Lur25, Def 01EN]
(Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$0 \le i \le n,$
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \end{array} $
		$\int \int $
		$\bigwedge^{\bullet} \stackrel{\checkmark}{\longrightarrow} \stackrel{\checkmark}{S}$
		there exists a detted lift ([Lun00] A 2.7)
Left anodyne	$f: X \to S$ map of simplicial sets	there exists a dotted lift. ([Lur09], A.2.7) For every solid arrow diagram as below, with
Left anodyne	$J: X \to S$ map of simplicial sets	$p: Y \to T$ a left fibration,
		$ \begin{array}{ccc} X & \longrightarrow Y \\ \downarrow f & & \downarrow p \\ S & \longrightarrow T \end{array} $
		$f \mid p$
		$S \xrightarrow{\checkmark} T$
Loft fibration	f. V \ C f -: 1: 1	there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Left fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i < n$,
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
		\downarrow \downarrow \downarrow \uparrow
		$\Delta^n \longrightarrow S$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Right anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ a right fibration,
		$V \longrightarrow V$
		$X \longrightarrow Y$
		$ \begin{array}{ccc} \uparrow & \downarrow p \\ S & \longrightarrow & T \end{array} $
		$S \longrightarrow T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
L	Ш	1 (1)

Right fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$0 < i \le n,$
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow^{f} \end{array} $
		$\Delta^n \longrightarrow S$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Serre fibration	$f: Y \to Z$ map of topological	For every solid arrow diagram as below,
	spaces	
		$\{0\} \times \Delta^n \longrightarrow Y$
		$\{0\} \times \Delta^n \longrightarrow Y$ $\downarrow \qquad \qquad \downarrow f$
		$[0,1] \times \Delta^n \longrightarrow Z$
		there exists a dotted lift. [Lur25, Def 021R]
Trivial (Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below,
		0.4 m 37
		$\partial \Delta^n \longrightarrow X$
		$\partial \Delta^n \longrightarrow X$ $\downarrow f$
		$\Delta^n \longrightarrow S$
		there exists a dotted lift. ([Lur25, Def 006W]/[Lur09], Def 2.0.0.2)

Nerves		
Name	Domain object	Definition
Nerve	Category \mathcal{C}	$(NC)_n = \{n\text{-composable strings of morphisms in } C\}.$
Simplicial nerve	Simplicial category $\mathcal C$	$(NC)_n = \operatorname{Hom}_{\mathbf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^n], \mathcal{C}), \text{ where } \mathfrak{C}[\Delta^n] \text{ is the category whose objects are the same as } [n], and \operatorname{Hom}_{\mathfrak{C}[\Delta^n]}(i,j) = \emptyset \text{ for } i < j \text{ and } N(P_{ij}) \text{ for } i \geq j \text{ (where } P_{ij} = \{I \subseteq [n] : (i,j \in I) \land (\forall k \in I, i \leq k \leq j)\}).$
Topological nerve	Topological category \mathcal{C}	The simplicial nerve of Sing \mathcal{C} .

Homotopy categories		
Domain object	Definition	
∞ -Category \mathcal{C}	The objects of hC are the vertices of C , and	
	$\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(X,Y)$ is the set of homotopy classes of edges	
	$X \to Y \text{ in } \mathcal{C}. \ ([Lur09], Prop 1.2.3.9)$	
Simplicial category \mathcal{C}	h C . ([Lur09], 1.1.4)	
Topological category \mathcal{C}	hC has the same objects as C , and $Hom_{hC}(X,Y) = 0$	
	$[Hom_{\mathcal{C}}(X,Y)].$ ($[Lur09], 1.1.3$)	

References

- [Lur09] Jacob Lurie. Higher Topos Theory. 2009.
- [Lur25] Jacob Lurie. Kerodon. https://kerodon.net. 2025.
- [nLa23] nLab (Urs Schreiber). acyclic Kan fibration. https://ncatlab.org/nlab/show/acyclic+Kan+fibration. Revision 5. 2023.
- $[nLa25a] \quad nLab \ authors. \ \textit{Cartesian morphism}. \ \texttt{https://ncatlab.org/nlab/show/Cartesian+morphism}. \\ \quad Revision \ 52. \ 2025.$
- [nLa25b] nLab authors. join of simplicial sets. https://ncatlab.org/nlab/show/join+of+simplicial+sets. Revision 62. 2025.
- [Rie16] Emily Riehl. Category Theory in Context. 2016. URL: https://emilyriehl.github.io/files/context.pdf.