import packages

Table of contents

```
1 fertility_rate
               2
3
2 mortality_density
3
3 pop_decline
               5
4 pop_growth
               6
import pandas as pd
import sqlite3
import matplotlib.pyplot as plt
import seaborn as sns
```

0.1 connect to SQL

```
conn = sqlite3.connect('../data/wdi_data.db')
```

1 fertility_rate

1.1 table

	country	fertility_rate	ado_fertility_rate
0	Mexico	1.940	0.061111
1	Colombia	1.663	0.060175
2	Brazil	1.629	0.042881
3	Argentina	1.482	0.025767

```
plt.figure(figsize=(12, 6))
sns.scatterplot(
    data=df1,
    x='fertility_rate', y='ado_fertility_rate',
    hue='country',
    s = 300
)

plt.grid(True)
plt.xlim(1.4, 2.2)
plt.title('Adolescent vs. overall fertility rate')
plt.ylabel('Births per female aged 15-19')
```

```
plt.xlabel('Births per female')
plt.tight_layout()
plt.savefig('../figures/fertility_rate.png')
```


2 mortality_density

2.1 table

	country	population_density	under_5_mortality_rate
0	Argentina	16.592272	9.8
1	Colombia	46.631766	12.4
2	Mexico	66.160712	12.9
3	Brazil	25.161868	14.6

```
plt.figure(figsize=(12, 6))
sns.barplot(
    data=df2,
    x='country', y='under_5_mortality_rate'
)

plt.title('Child mortality across countries')
plt.ylabel('Deaths under 5 y.o. per 1,000 live births')
plt.xlabel('Country')
plt.tight_layout()
plt.savefig('../figures/child_mortality.png')
```


3 pop_decline

3.1 table

_				
	country	$birth_rate$	$death_rate$	$circle_of_life$
0	Argentina	10.926	8.797	2.129
1	Brazil	12.555	7.539	5.016
2	Colombia	13.731	5.881	7.850
3	Mexico	16.041	6.521	9.520

```
# Melt the dataframe to long format

df_melted = pd.melt(
    df3,
    id_vars='country',
    value_vars=['birth_rate', 'death_rate'],
    var_name='rate_type',
    value_name='rate'
)

# Plot
plt.figure(figsize=(12, 6))
```

```
sns.barplot(
    data=df_melted,
    x='country', y='rate',
    hue='rate_type'
)

plt.title('Birth Rate vs Death Rate')
plt.ylabel('Rate per 1,000 People')
plt.xlabel('Country')
plt.tight_layout()
plt.savefig('../figures/pop_decline.png')
```


4 pop_growth

4.1 table

```
# SQL query
query = """
SELECT
    country,
    urban_population_percent,
    rural_population_percent,
```

```
population_growth
FROM wdi_data
WHERE
    urban_population_percent IS NOT NULL
    AND population_growth IS NOT NULL
"""

df4 = pd.read_sql_query(query, conn)

display(pd.read_sql(query, conn))
```

	country	$urban_population_percent$	rural_population_percent	population_growth
0	Colombia	82.050	17.950	1.068293
1	Argentina	92.347	7.653	0.210809
2	Mexico	81.300	18.700	0.753117
3	Brazil	87.555	12.445	0.360181

```
plt.figure(figsize=(10, 6))
sns.scatterplot(
    data=df4,
    x="urban_population_percent",
    y="population_growth",
    hue="country",
    s = 300
)

plt.xlabel("Urban Population (%)")
plt.ylabel("Population Growth Rate (%)")
plt.title("Urbanization vs Population Growth Rate")
plt.tight_layout()
plt.savefig('../figures/pop_growth.png')
```

