$Lybid\ organization\ of\ Khvarints\ of\ Ishkiru$ 

# THINGS COMPILATION

# Library

# Pinky Krista Dvina

 ${\it Main Department of Galerado} \\ {\it Kacheto-44}$ 

# Зміст

| 1 | Intr | on     |                                                         |   |
|---|------|--------|---------------------------------------------------------|---|
| 2 | Дис  | скретн | а математика 1                                          |   |
|   | 2.1  | Метод  | ц математичної індукції.                                |   |
|   | 2.2  | Теорія | и множин                                                |   |
|   |      | 2.2.1  | Потужність скінченної множини                           | - |
|   |      | 2.2.2  | Декартів добуток множин                                 |   |
|   | 2.3  | Теорія | н відношень                                             |   |
|   |      | 2.3.1  | Способи поданчі бінарних відношень:                     |   |
|   |      | 2.3.2  | Операції над бінарними відношеннями                     |   |
|   |      | 2.3.3  | Властивості бінарних відношень                          |   |
|   |      | 2.3.4  | Відношення еквівалентності                              |   |
|   |      | 2.3.5  | Замикання відношення                                    |   |
|   |      | 2.3.6  | Функціональні відношення                                | 4 |
|   |      | 2.3.7  | Властивості відношень                                   | 4 |
|   |      | 2.3.8  | Відношення часткового порядку                           |   |
|   |      | 2.3.9  | Діаграма Хассе (Гессе) (Hasse)                          |   |
|   |      | 2.3.10 | Індуковані порядки                                      | 4 |
|   |      | 2.3.11 | Порядки                                                 | 4 |
|   |      | 2.3.12 | Спеціальні види функціональних відношень                |   |
|   |      | 2.3.13 | Характеристичі функції множини                          | , |
|   |      | 2.3.14 | Зліченність і незліченність                             | , |
|   |      | 2.3.15 | Зліченність та не зліченність                           | , |
|   | 2.4  |        | льнення поняття множини                                 | , |
|   |      | 2.4.1  | Мультимножини                                           | , |
|   |      | 2.4.2  | Операції над мультипідмножинами                         | , |
|   |      | 2.4.3  | Нечіткі множини                                         | , |
|   | 2.5  | Вступ  | до комбінаторики                                        |   |
|   |      | 2.5.1  | Основні комбінаторні конфігурації                       | , |
|   |      | 2.5.2  | Представлення комбінаторних операцій через відображення | • |
|   |      | 2.5.3  | Кількість розбиттів                                     | 4 |
|   |      | 2.5.4  | Лінійні діофантові рівняння                             | 4 |
|   |      | 2.5.5  | Біном Нютона                                            | 4 |
|   |      | 2.5.6  | Властивості біноміальних коефіціентів                   | 4 |
|   |      | 2.5.7  | Трикутник паскаля                                       | 4 |

|     | 2.5.8  | Згортка Вандермонда                             | 42 |
|-----|--------|-------------------------------------------------|----|
| 2.6 | Булеві | функції                                         | 43 |
|     | 2.6.1  | Булеві функції                                  | 43 |
|     | 2.6.2  | Алгебраїчні властивості бітових операцій        | 44 |
|     | 2.6.3  | Нормальна форма булевих функцій                 | 46 |
|     | 2.6.4  | побудова ДДНФ                                   | 47 |
|     | 2.6.5  | Побудова двоїстої функції за таблицею істиності | 48 |
|     | 2.6.6  | Побудова ДКНФ                                   | 49 |
|     | 2.6.7  | Алгебраїчні нормальні форми                     | 49 |
|     | 2.6.8  | Поліном Жегалкіна                               | 50 |
|     | 2.6.9  | Побудова АНФ за ДНФ                             | 50 |
|     | 2.6.10 | Побудова АНФ за таблицею істиності              | 52 |
|     | 2.6.11 | Замкнені класи булевих функцій                  | 52 |
|     | 2.6.12 | Класи функцій                                   | 53 |
|     | 2.6.13 | Критерій повноти системи булевих функцій        | 53 |
| 2.7 | Вступ  | до теорії графів                                | 55 |
| 2.8 | Абстра | актні автомати                                  | 55 |
| 2.9 | Форма  | альні граматики                                 | 55 |

# Розділ 1

# Introduction

The book is a compilation of different, useful and not, lections from the university. It should be a ukrainian book, but there might be some english parts. The main reason is to create a book, which will be staying on a shelf, and collecting dust. My relatives are saing that the university will be useful and knowledge isn't something you will be carign on my back. I want to prove that it is not a true. The main theme of the book is math and cryptography. Hovewer, there will be a lot of monothone useless chapters of some unrelated subjects, only because it was easy to append. If one want to read a useful book on cryptography, just google some other or choose "The graduate course in cryptography" of Boneh et.al. [BS15]. It is a good book.

# Розділ 2

# Дискретна математика 1

| Contents |        |                                          |    |
|----------|--------|------------------------------------------|----|
| 2.1      |        | од математичної індукції                 | 5  |
| 2.2      | Teop   | оія множин                               | 7  |
|          | 2.2.1  | Потужність скінченної множини            | 10 |
|          | 2.2.2  | Декартів добуток множин                  | 14 |
| 2.3      | Teop   | рія відношень                            | 15 |
|          | 2.3.1  | Способи поданчі бінарних відношень:      | 15 |
|          | 2.3.2  | Операції над бінарними відношеннями      | 16 |
|          | 2.3.3  | Властивості бінарних відношень           | 16 |
|          | 2.3.4  | Відношення еквівалентності               | 19 |
|          | 2.3.5  | Замикання відношення                     | 21 |
|          | 2.3.6  | Функціональні відношення                 | 22 |
|          | 2.3.7  | Властивості відношень                    | 23 |
|          | 2.3.8  | Відношення часткового порядку            | 24 |
|          | 2.3.9  | Діаграма Хассе (Гессе) (Hasse)           | 26 |
|          | 2.3.10 | Індуковані порядки                       | 26 |
|          | 2.3.11 | Порядки                                  | 28 |
|          | 2.3.12 | Спеціальні види функціональних відношень | 29 |
|          | 2.3.13 | Характеристичі функції множини           | 30 |
|          | 2.3.14 | Зліченність і незліченність              | 31 |
|          | 2.3.15 | Зліченність та не зліченність            | 32 |
| 2.4      | Узаг   | гальнення поняття множини                | 33 |
|          | 2.4.1  | Мультимножини                            | 33 |
|          | 2.4.2  | Операції над мультипідмножинами          | 34 |
|          | 2.4.3  | Нечіткі множини                          | 35 |
| 2.5      | Всту   | уп до комбінаторики                      | 36 |

|     | 2.5.1  | Основні комбінаторні конфігурації                       | 36        |
|-----|--------|---------------------------------------------------------|-----------|
|     | 2.5.2  | Представлення комбінаторних операцій через відображення | 38        |
|     | 2.5.3  | Кількість розбиттів                                     | 40        |
|     | 2.5.4  | Лінійні діофантові рівняння                             | 41        |
|     | 2.5.5  | Біном Нютона                                            | 41        |
|     | 2.5.6  | Властивості біноміальних коефіціентів                   | 42        |
|     | 2.5.7  | Трикутник паскаля                                       | 42        |
|     | 2.5.8  | Згортка Вандермонда                                     | 42        |
| 2.6 | Буле   | еві функції                                             | <b>43</b> |
|     | 2.6.1  | Булеві функції                                          | 43        |
|     | 2.6.2  | Алгебраїчні властивості бітових операцій                | 44        |
|     | 2.6.3  | Нормальна форма булевих функцій                         | 46        |
|     | 2.6.4  | побудова ДДНФ                                           | 47        |
|     | 2.6.5  | Побудова двоїстої функції за таблицею істиності         | 48        |
|     | 2.6.6  | Побудова ДКНФ                                           | 49        |
|     | 2.6.7  | Алгебраїчні нормальні форми                             | 49        |
|     | 2.6.8  | Поліном Жегалкіна                                       | 50        |
|     | 2.6.9  | Побудова АНФ за ДНФ                                     | 50        |
|     | 2.6.10 | Побудова АНФ за таблицею істиності                      | 52        |
|     | 2.6.11 | Замкнені класи булевих функцій                          | 52        |
|     | 2.6.12 | Класи функцій                                           | 53        |
|     | 2.6.13 | Критерій повноти системи булевих функцій                | 53        |
| 2.7 | Всту   | л до теорії графів                                      | <b>55</b> |
| 2.8 | Абст   | грактні автомати                                        | <b>55</b> |
| 2.9 | Фор    | мальні граматики                                        | <b>55</b> |

# 2.1 Метод математичної індукції.

**Definition 2.1.1** (Аксіоматика Парно). *Аксіоматика Парно* – це аксіоматика що задовільняє наступним умовам.

- 1.  $1 \in \mathbb{N}$ ,
- 2.  $a \in \mathbb{N} \Rightarrow S(a) \in \mathbb{N}$ ,
- 3.  $\not\exists a \in \mathbb{N} : S(a) = 1$ ,
- 4.  $S(a) = C \wedge S(b) = c \Leftrightarrow a = b$ ,
- 5.  $P(1) \wedge P(k) \Rightarrow P(S(k)) \Rightarrow \forall n \in \mathbb{N} : P(n),$

де S – функція наступного числа (S(x)=x+1), P – предикат, P(1) – база індукції, P(S(k)) – перехід.

**Definition 2.1.2** (Метод математичної індукції). *Метод математичної індукції* – це алгоритм, що виглядає наступним чином.

- 1. Перевірити, що тверждення виконується для 1.
- 2. Припустити, що твердження виконується для деякого k, довести, що воно виконується для k+1.

**Example 2.1.** Довести що  $n^3 + 5n : 6$  для будь якгого n.

Доведення. Доведемо методом математичної індукції.

- 1. n = 1,  $1^3 + 5 = 6 : 6$ .
- 2. Нехай вірно для k, тоді  $k^3 + 5k : 6$ .
- 3. Доведемо, що  $(k+1)^3 + 5(k+1) \vdots 6$ .

$$k^3 + 3k^2 + 3k + 1 + 5k + 5 = (k^3 + 5k) + (1 + 5) + 3k(k + 1)$$
, де  $(k^3 + 5k) \vdots 6$ ,  $(1 + 5) \vdots 6$ ,  $3k(k + 1) \vdots 6$ 

**Example 2.2.** Довести, наступне твердження.

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Доведення. Доведемо методом математичної індукції.

- 1. n = 1,  $1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}$ .
- 2. Нехай вірно для k, тоді

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}.$$

3. Доведемо, для (k+1).

$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$
$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\frac{k(k+1)(2k+1)}{6} + (k+1) = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$(k+1)(k+2)(2k+3) + 6k^2 + 12k + 6 = (k^2 + 3k + 2)(2k+3)$$

$$= (k^2 + k)(2k+1) + 6k^2 + 12k + 6$$

$$= 2k^3 + 3k^2 + 6k^2 + 9k + 4k + 6$$

$$= 2k^3 + k^2 + 2k^2 + k + 6k^2 + 12k + 6$$

**Example 2.3.** Довести, що для довільного  $n \ge 3$ ,  $2^n > 2n + 1$ .

Доведення. Доведемо методом математичної індукції.

- 1. Для n = 3,  $2^3 > 7 \Leftarrow 8 > 7$ .
- 2. Нехай вірно для k, тоді  $2^k > 2k + 1$ .
- 3. Доведемо, що  $2^{k+1} > 2(k+1) + 1$ .

$$2^{k+1} + 1 = 2k + 3 = (2k+1) + 2$$
$$2^{k} + 2 > (2k+1) + 2, 2^{k+1} > 2^{k} + 2, 2^{k} > 2, k \ge 3$$

## 2.2 Теорія множин

**Definition 2.2.1** (Множина). Множина (set) – це певна сукупність об'єктів, які ми можемо розрізнити між собою, які не повторюються, та об'єднані в одне ціле нашим бажанням.

Існують наступні способи подання множин.

- 1. Явний,  $A = \{a, b, ..., z\}$ .
- 2. Не явний, нехай P(x) певна властивість (предикат),

$$X = \{x : P(x)\} = \{x \mid P(x)\}.$$

3. Графічний (діаграма Ойлера Венна).

Ось список стандартних числових множин.

- Ø порожня множина.
- U універсум (всі об'єкти).
- $\mathbb{N} = \{1, 2, 3, ...\}$  –натуральні числа (не 0).
- $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$  усі невід'ємні цілі числа.
- $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$  усі цілі числа.
- $\mathbb{Q} = \{\frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$  раціональні числа.
- С комплексні числа.

Основні позначення в теорії множин.

- Належність  $a \in A$ .
- Не належність  $a \notin A$ .
- Включення  $A \subseteq B$  (всі елементи A належать B).

$$(A \subseteq B) \Leftrightarrow (\forall a \quad a \in A \Rightarrow a \in B).$$

• Строге включення  $A \subset B$  (всі елементи A належать B).

$$(A \subset B) \Leftrightarrow (A \subseteq B) \& (\exists b \in B : b \notin A)$$

• Рівність A = B, якщо A і B складається з однакових елементів.

$$(A = B) \Leftrightarrow (A \subseteq B) \& (B \subseteq A).$$

Основні операції над множинами.

1. Об'єднання:

$$C = A \cup B = \{x : (x \in A) \lor (x \in B)\}.$$

2. Перетин:

$$D = A \cap B = \{x : (x \in A) \land (x \in B)\}.$$

3. Різниця:

$$E = A \backslash B = \{x : (x \in A) \land (x \notin B)\}.$$

4. Симетрична різниця:

$$F = A\Delta B = (A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (B \cap A).$$

5. Доповнення (до універсуму U):

$$\overline{A} = \{x : x \notin A\}.$$

**Claim 2.1** (Парадокс Бертрана). *Нехай*  $Y = \{X : X \notin X\}$ , *де* X – *це множина множин і/чи елементів, що не належить собі. Тоді, з'являється питання*  $Y \in Y$ ? Алгебраїчні властивості операцій над множинами

1. Ідемпотентність

$$A \cup A = A$$
$$A \cap A = A$$

5. Дистрибутивність

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$$

2. Інволютивність

$$\overline{\overline{A}} = A$$

6. Правило поглинання

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

3. Комутативність

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$
$$A \triangle B = B \triangle A$$

7. Закон Деморгана

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

4. Асоціативність

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$
$$A \triangle (B \triangle C) = (A \triangle B) \triangle C$$

8. Інші

$$A \cup \mathbb{U} = \mathbb{U} \quad A \cap \mathbb{U} = A$$

$$A \cup \emptyset = A \quad A \cap \emptyset = \emptyset$$

$$A \backslash A = \emptyset \quad A \triangle A = \emptyset$$

$$A \cup \overline{A} = \mathbb{U} \quad A \cap \overline{A} = \emptyset$$

**Claim 2.2** (Принцип двоїстості). Якщо є істинне твердження, що використовує об'єднання та доповнення множин, і в цьому твердженні ми замінимо всі об'єднання на перетини, а універсуми на порожні множини, то одержимо істинне твердження.

#### Приклад доведень тверджень

**Example 2.4.** Доведіть твердження  $A \setminus B = A \cap \overline{B}$ .

Доведення.

$$\forall x: \quad x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in \overline{B} \end{array} \right. \Leftrightarrow x \in A \cap \overline{B} \Rightarrow A \backslash B = A \cap \overline{B}$$

**Example 2.5.** Доведіть наступні два твердження.

$$A\triangle B = (A \backslash B) \cup (B \backslash A)$$
$$A\triangle B = (A \cup B) \backslash (B \cap A)$$

Доведення.

$$A\triangle B = (A \backslash B) \cup (B \backslash A)$$

$$= (A \cap \overline{B}) \cup (B \cap \overline{A})$$

$$= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$$

$$= ((B \cup A) \cap (B \cup \overline{B})) \cap ((\overline{A} \cup A) \cap (\overline{A} \cup \overline{B}))$$

$$= (A \cup B) \cap (\overline{A} \cup \overline{B})$$

$$= (A \cup B) \cap (\overline{A} \cap \overline{B})$$

$$= (A \cup B) \backslash (A \cap B)$$

**Example 2.6.**  $A \circ B = A$ .

Доведення. а) Доведемо  $A \cup (A \cap B) \subset A$ , тобто  $\forall x, x \in A \cup (A \cap B)$ :

$$x \in A \cup (A \cap B) \Rightarrow \begin{cases} x \in A \\ x \in A \cap B \end{cases} \Rightarrow \begin{bmatrix} x \in A \\ x \in A \\ x \in B \end{cases}$$
$$\Rightarrow \begin{bmatrix} x \in A \\ x \in A \end{cases} \Rightarrow x \in A \Rightarrow A \cup (A \cap B) \subseteq A$$

б) Доведемо  $A \subset A \cup (A \cap B)$ , тобто  $\forall x, x \in A$ :

$$x \in A \Rightarrow \begin{cases} x \in A \\ x \in \mathbb{U} \end{cases} \Rightarrow \begin{cases} x \in A \\ x \in B \end{cases} \Rightarrow \begin{bmatrix} \begin{cases} x \in A \\ x \in B \end{cases} \\ \begin{cases} x \in A \\ x \in B \end{cases} \end{cases}$$
$$\Rightarrow \begin{bmatrix} \begin{cases} x \in A \\ x \in B \end{cases} \end{cases} \Rightarrow \begin{bmatrix} x \in A \cap B \\ x \in A \end{cases} \Rightarrow \begin{bmatrix} x \in A \cap B \\ x \in A \end{cases} \Rightarrow x \in A \cup (A \cap B)$$
$$\Rightarrow A \subseteq A \cup (A \cap B)$$

в) Доведемо фінальне твердження.

$$\left\{ \begin{array}{l} A\subseteq A\cup (A\cap B)\\ A\cup (A\cap B)\subseteq A \end{array} \right. \Rightarrow A=A\cup (A\cap B).$$

**Example 2.7.** Показати, що  $A \cup (B \triangle C) \neq (A \cup B) \triangle (A \cup C)$ 

Доведення. Доведемо правильність даного твердження навівши контрприклад

$$A = \{1, 2, 3\}, B = \{2, \bigstar\}, C = \{3, \heartsuit\}.$$

$$A \cup (B \triangle C) = \{1, 2, 3\} \cup \{2, 3, \bigstar, \heartsuit\} = \{1, 2, 3, \bigstar, \heartsuit\}.$$

$$(A \cup B) \triangle (A \cup C) = \{1, 2, 3, \bigstar\} \cup \{1, 2, 3, \heartsuit\} = \{\bigstar, \heartsuit\}.$$

#### 2.2.1 Потужність скінченної множини

**Definition 2.2.2** (Потужність скінченної множини). Потужність скінченної множини  $A(|A|, \# A \ (oктотор \ A))$  — це кількість елементів множини A.

**Definition 2.2.3** (Дизюнктне об'єднання множин). Об'єднання двох множин називають дизюнктним, якщо ці множини не перетинаються.

$$C = A \sqcup B \Leftrightarrow \left\{ \begin{array}{l} C = A \cup B \\ A \cap B = \emptyset \end{array} \right.$$

**Theorem 2.1** (Потужність дизюнктного об'єднання).

$$C = A \sqcup B \Rightarrow |C| = |A| + |B|$$

Corollary 2.1.1 (Потужність дизюнктного об'єднання).

$$A_1 \bigsqcup_{\dots} A_n = A_1 \sqcup A_2 \sqcup \dots \sqcup A_n \Rightarrow |A| = \sum_{i=1}^n |A_i| = |A_1| + |A_2| + \dots + |A_n|$$

**Theorem 2.2** (Потужність різниці множин).

$$|A \backslash B| = |A| - |A \cap B|$$

Доведення.

$$X = A \backslash B \quad Y = A \cap B.$$

$$X \cup Y = (A \backslash B) \cup (A \cap B) = (A \cap \overline{B}) \cup (A \cap B) = A \cap (\overline{B} \cup B) = A \cap \mathbb{U} = A.$$

$$X \cap Y = (A \backslash B) \cap (A \cap B) = A \cap \overline{B} \cap A \cap B = A \cap \emptyset = \emptyset.$$

$$\Rightarrow A = X \sqcup Y \Rightarrow |A| = |X| + |Y| = |A \backslash B| + |A \cap B|.$$

$$|A| = |A \backslash B| + |A \cap B|.$$

$$|A \backslash B| = |A| - |A \cap B|.$$

**Theorem 2.3** (Потужність об'єднання двож множин).

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Доведення.

$$A \cup B = B \sqcup (A \backslash B) \Rightarrow |A \cup B| = |B| + |A \backslash B| = |B| + |A| - |A \cap B|$$

Theorem 2.4 (Теорема включень-виключень).

$$\left|\bigcup_{i=1}^n A_1\right| = \sum_{i=1}^n |A_i| - \sum_{1\leqslant i\leqslant j\leqslant n} |A_i\cap A_j| + \sum_{1\leqslant i\leqslant j\leqslant k\leqslant n} |A_i\cap A_j\cap A_k| - \ldots + (-1)^{n-1}|A_1\cap\ldots\cap A_n|$$

Доведення. TODO: Доведення не наведено в повній мірі. доробити.

$$n = 1 \quad |A_1| = |A_1|$$

$$n = 2 \quad |A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

Нехай для n формула вірна

$$B = \bigcup_{i=1}^{n} A_i$$

$$|B \cup A_{n+1}| = |B| + |A_{n+1}| - |B \cap A_{n+1}| = \left| \bigcup_{i=1}^{n} A_{i} \right| + |A_{n+1}| - \left| \left( \bigcup_{i=1}^{n} A_{i} \right) \cap A_{n+1} \right| = \left| \bigcup_{i=1}^{n} A_{i} \right| + |A_{n+1}| - \left| \bigcup_{i=1}^{n} A_{i} \cap A_{n+1} \right| = -\sum_{i=1}^{n} |A_{i} \cap A_{n+1}| + \sum_{1 \le i \le j \le n} |A_{i} \cap A_{n+1} \cap A_{j}| - \sum_{1 \le i \le j \le k \le n} |A_{i} \cap A_{n+1} \cap A_{j} \cap A_{k}| + \dots + (-1)^{n} |A_{1} \cap A_{2} \cap \dots \cap A_{n+1}|$$

Example 2.8. Скільки чисел від 1 до N ділиться на 2, 3 або 5 (N : 36)

$$\frac{N}{2} + \frac{N}{3} + \frac{N}{5} - \frac{N}{6} - \frac{N}{10} - \frac{N}{15} + \frac{N}{30} \approx N \cdot 0.7333$$

**Example 2.9.** Ckinbku ichye чисел від 1 до N, які взаємно прості з N

$$\varphi(N) = |\{x \in \mathbb{N} \mid 1 \leqslant x \leqslant N, \gcd(x, N) = 1\}|$$

 $\partial e \ \varphi$  — це Функція Ейлера,  $N=p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_n^{\alpha_n}$  — канонічний розклад числа на прості множники.

$$A_i = \{ x \in \mathbb{N} \mid 1 < x \leqslant N, x_i \vdots p_i \}$$

$$\varphi(N) = N - |A_1 \cup A_2 \cup \dots \cup A_n|$$

$$|A_i| = \frac{n}{p_i} \quad |A_i \cap A_j| = \frac{N}{p_i p_j} \quad |A_i \cap A_j \cap A_k| \frac{N}{p_i p_j p_k}$$

$$\varphi(N) = N - \sum_{i=1}^{t} \frac{N}{p_i} + \sum_{1 \le i \le j \le t} \frac{N}{p_i p_j} - \sum_{1 \le i \le j \le k \le t} \frac{N}{p_i p_j p_k} + \dots + (-1)^t \frac{N}{p_1 p_2 \dots p_t}$$
$$= N(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})(1 - \frac{1}{p_3}) \cdot \dots \cdot (1 - \frac{1}{p_t})$$

**Definition 2.2.4** (Булеан множини). *Булеан множини* A (Boolean) – множина всіх підмножин A. Позначають  $2^A$ , B(A).

$$2^{A} = \{ B \mid B \subseteq A \},\$$
$$\emptyset \in 2^{A}, A \in 2^{A}.$$

**Theorem 2.5** (Про потужність булеану). Якщо A – скінченна, то  $|2^A| = 2^{|A|}$ . Тобто, якщо |A| = n то  $|2^A| = 2^n$ .

Доведення. 1-й спосіб

$$n = 0$$
  $2^{\varnothing} = {\varnothing}, |2^{\varnothing}| = 1 = 2^{0}$ 

Нехай для всіх множин A де |A| = n, це вірно.

$$B = \{b_1, b_2, ..., b_n, b_{n+1}\}$$

Якщо  $B_1 \subseteq B$  і  $b_{n+1} \notin B$  то  $\#B_1 = 2^n$  за припущенням

Якщо  $B_2\subseteq B$  і  $b_{n+1}\in B_2$  то  $B_2\backslash\{b_{n+1}\}\backslash\{b_1,...,b_n\}\Rightarrow\#B_2=2^n$  за припущенням індукції  $\Rightarrow |2^B|=2^n+2^n=2\cdot 2^n=2^{n+1}$ 

Доведення. 2-й спосіб

$$A = \{a_1, a_2, ..., a_n\}$$

$$\left\{ \begin{array}{ll} B \subseteq A & \bigcirc |\bigcirc|...| \\ C \subseteq A & \underbrace{\bigcirc \bigcirc\bigcirc|...|}_{n} \end{array} \right. \Rightarrow |2^{A}| = 2^{n}$$

**Definition 2.2.5** (Перекриття множини). Перекриття множини A (over) – це система множин  $\Delta \subseteq 2^A$ ,  $\Delta = \{T_1, T_2, ..., T_n\}$ , що задовільняє наступним властивостям.

- 1.  $T_2 \neq \emptyset$ . 2.  $\bigcup_{i=1}^{n} T_i = A$ .

**Definition 2.2.6** (Розбиття множини). Розбиття множини A (partion) – це система множин  $\Pi = \{T_1, T_2, ..., T_n\}$ ,  $\Pi \subseteq 2^A$ , що задовільняє наступним властивостям.

- 1.  $\Pi$   $no\kappa pumms$ .
- 2.  $\forall i \neq j \quad T_i \cap T_j = \varepsilon$ .

#### Example 2.10.

$$\mathbb{N} = 2\mathbb{N} \sqcup (2\mathbb{N} - 1)$$

- 1.  $\Pi = \{2\mathbb{N}, 2\mathbb{N} 1\}$  Розбиття N
- 2.  $\mathbb{N} = npocmi$  числа  $\square$  складені числа  $\square$   $\{1\}$
- 3.  $A_0 = \{3k \mid k \in \mathbb{Z}\}, A_1 = \{3k+1 \mid k \in \mathbb{Z}\}, A_2 = \{3k+2 \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_1, A_2\} = \{3k \mid k \in \mathbb{Z}\}, \{A_0, A_$ розбиття  $\mathbb{Z}$ .
- 4.  $C_1 = \{ [k, k+1] \mid k \in \mathbb{Z} \} no\kappa pumms \mathbb{R}$  $C_2 = \{[k,k+1) \mid k \in \mathbb{Z}\}$  – розбиття  $\mathbb R$  $C_3 = \{(k, k+1) \mid k \in \mathbb{Z}\}$  – ні те ні те, бо невистачає елементів множини  $\mathbb{Z}$ (в основному, цілих чисел).

#### 2.2.2 Декартів добуток множин

**Definition 2.2.7** (Декартовий добуток множин). Декартовий добуток множин A та B – множина всіх пар виду (a,b), де  $a \in A$ ,  $b \in B$ .

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

**Definition 2.2.8** (Декартів добуток множин). Декартів добуток множин  $A_1, A_2, ..., A_n$  це:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}$$

**Definition 2.2.9** (Декартів степінь). Декартів степінь множини А

$$A^n = \underbrace{A \times A \times \dots \times A}_{n}$$

**Example 2.11.** *Площина:*  $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$ 

**Example 2.12.**  $\Pi pocmip \mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ 

Example 2.13. n-вимірний простір  $\mathbb{R}^n$ 

**Example 2.14.** Множина раціональних чисел  $\mathbb{Q}$ .  $\mathbb{Q}$  – це дорби скорочень.  $\left(\frac{1}{2} \neq \frac{2}{4}\right)$ .

$$\mathbb{Q} = \left\{ \begin{array}{c|c} m & m \in \mathbb{Z} \\ \hline n & n \in \mathbb{N} \end{array} \right\}, \mathbb{Q} \sim \mathbb{Z} \times \mathbb{N}.$$

**Theorem 2.6** (Про потужність декартового добутку). Якщо  $A \ ma \ B - cкінченні \ mo$ 

$$|A \times B| = |A| \times |B|.$$

Corollary 2.6.1.  $|A_1 \times A_1 \times ... \times A_1| = |A_1| \times |A_1| \times ... \times |A_1|$ .

Corollary 2.6.2.  $|A^n| = |A|^n$ .

**Definition 2.2.10** (Алфавіт). *Алфавіт А* – довільна множина елементів.

**Definition 2.2.11** (Символ). Символ  $a \ (a \in A)$  – це довільний елемент алфавіту A.

**Definition 2.2.12** (Слово). Слово довжини n – це довільна послідовність символів алфавіту A довжини n. Позначають як  $(a_1, a_2, ..., a_n)$  або просто  $a_1a_2...a_n$ .

**Definition 2.2.13** (Словник слів заданої довжини).  $A^n$  – множина всіх слів довжини n.

**Definition 2.2.14** (Порожне слово).  $\varepsilon$  – порожене слово (слово що не містить жо-дної літери)

Remark 2.1.  $A^0 = \{\varepsilon\}.$ 

**Definition 2.2.15** (Замикання алфавіту (зірка Клікі)). Замикання алфавіту (зірка Клікі) (Kleene closure, Kleene star) – це наступна множина.

$$A^* = A^0 \cup A^1 \cup A^2 \cup \dots = \bigcup_{n=0}^{\infty} A^n$$

**Definition 2.2.16** (Формальна мова). Формальна мова над алфавітом A – це множина  $L \subseteq A^*$ .

## 2.3 Теорія відношень

**Definition 2.3.1** (m-арне відношення). m-арне відношення на множинах  $A_1$ ,  $A_2$ , ...,  $A_n$  – це множина:

$$R \subseteq A_1 \times A_2 \times \dots \times A_m$$
.

**Definition 2.3.2** (m-арне відношення). m-арне відношення на множині A – це множина  $R \subseteq A^m$ .

**Definition 2.3.3** (Унітарне відношення). Унітарні відношення:  $R \subseteq A, m = 1$ 

**Example 2.15** (Унітарне відношення). Прості числа в  $\mathbb{N}$ .

**Definition 2.3.4** (Бінарне відношення). *Бінарні відношення:*  $R \subseteq A \times B$ , m = 2.

**Example 2.16** (Бінарні відношення). *Бінарні відношення, які часто використовуються*.

- <, =,  $\neq$  на числах.
- $\subseteq$ , $\subset$  на множинах.
- $\in$  на елементах та множинах.
- $\parallel, \perp$  на прямих чи на площинах.

**Definition 2.3.5** (Тернарне відношення). *Тернарне відношення:*  $R \subseteq A \times B \times C$ , m = 3.

Для двох відношень однакової арності, на однакових множинах, можна застосувати операції  $\cup$ ,  $\cap$ ,  $\setminus$ ,  $\triangle$ , в результаті, одержавши відношення.

Універсум (Область визначення, домен), в даному випадку, це множина:

$$A_1 \times A_2 \times ... \times A_m$$

#### 2.3.1 Способи поданчі бінарних відношень:

Явний

$$A = \{a, b, c, d\},$$
  

$$B = \{0, 1, 2\},$$
  

$$A = \{(a, 0), (a, 1)(b, 2)\}.$$

Стрілкова діаграма

Матричне представлення

|   | 0 | 1 | 2 |
|---|---|---|---|
| a | 1 | 1 | 0 |
| b | 0 | 0 | 1 |
| c | 0 | 0 | 1 |
| d | 0 | 0 | 0 |

#### 2.3.2 Операції над бінарними відношеннями

 $Remark\ 2.2.$  Якщо a стоїть у відношенні з b, тобто  $(a,b)\in R$ , то замість  $(a,b)\in R$  можна написати aRb.

Нехай  $R \subseteq A \times B$ .

Definition 2.3.6 (Обернене відношення). Обернене відношення (reverce)

$$R^{-1} \subseteq B \times A$$

$$R^{-1} \subseteq \{b, a \mid (a, b) \in R\}$$

Нехай  $R_1 \subseteq A \times B$ , Нехай  $R_2 \subseteq B \times C$ .

**Definition 2.3.7** (Композиція відношень). Композиція (composition) відношень  $R_1$  та  $R_2$  – це відношення:

$$R_3 = R_1 \circ R_2 \subseteq A \times C$$
  
 $R_3 = R_1 \circ R_2 = \{(a, c) \mid \exists b \in B : aR_1b, bR_2c\}$ 

Example 2.17.

$$A = \{a, b, c, d\}, B = \{0, 1, 2\}, C = \{\zeta, \varkappa, \varpi, \Xi\}$$

$$R_1 = \{(a, 0), (a, 1), (b, 2), (c, 2)\}$$

$$R_2 = \{(0, \zeta), (1, \varpi), (1, \Xi)\}$$

$$R_3 = \{(a, \zeta), (a, \varpi), (a, \Xi)\}$$

**Definition 2.3.8** (Степінь відношення). Степенем відношення  $R \subseteq A^2$ :

$$R^n = R \circ R \circ \dots \circ R$$

## 2.3.3 Властивості бінарних відношень

- 1. Рефлексивність  $\forall a \in A \quad aRa$
- 2. Іррефлексивність  $\forall a \in A \quad aRa$
- 3. Нерефлексивність  $\exists a \in A \quad a\overline{R}a$
- 4. Симетричність  $\forall a, b \in A : aRb \Rightarrow bRa$
- 5. Антисиметричність  $\forall a, b \in A : aRb, bRa \Rightarrow a = b$

- 6. Асиметричність  $\forall a, b \in A : aRb \Rightarrow b\overline{R}a$
- 7. Несиметричність  $\exists a, b \in A : aRb \Rightarrow b\overline{R}a$
- 8. Транзитивність  $\forall a, b, c \in A : aRb, bRc \Rightarrow aRc$
- 9. Нетранзитивність  $\forall a, b, c \in A : aRb, bRc \Rightarrow a\overline{R}c$
- 10. Зв'язність  $\forall a, b \in A : aRb \lor bRa$
- 11. Слабка зв'язність  $\forall a, b \in A \quad a \neq b \rightarrow aRb \vee bRa$

**Definition 2.3.9** (Діагональ множини). Діагональ множини – це множина:

$$i_A = \Delta_A = \{(a, a) \mid \forall a \in A\}$$

**Theorem 2.7.**  $R \subseteq A^2$  – рефлексивне  $\Leftrightarrow i_A \subseteq R$   $R \subseteq A^2$  – іррефлексивне  $\Leftrightarrow i_A \cap R = \varnothing$ 

**Lemma 2.1.**  $R \subseteq A^2$  – симетричне  $\Leftrightarrow R = R^{-1}$   $R \subseteq A^2$  – антисиметричне  $\Leftrightarrow R \cap R^{-1} \subseteq i_A$   $R \subseteq A^2$  – асиметричне  $\Leftrightarrow R \cap R^{-1} \subseteq \varnothing$ 

**Theorem 2.8.**  $R \subseteq A^2$  – транзитивне  $\Leftrightarrow R^2 \subseteq R$ 

**Example 2.18.**  $<\mathbb{Z}, \equiv_n>, \ (\partial e\equiv_n-piвнicmь\ за\ модулем\ n,\ mобто\ (x\equiv_n y)\Leftrightarrow (x\equiv y\ mod\ n)).$ 

рефлексивність

$$x \equiv_n x \Leftrightarrow (x - x) \Leftrightarrow 0 \equiv n$$

 $cuмempuчнicmb\ x \equiv_n y \Rightarrow y \equiv_n x$ 

$$x \equiv_{n} y \Rightarrow (x - y) \vdots n$$

$$\Rightarrow \exists k \in \mathbb{Z} \quad (x - y) = kn$$

$$\Rightarrow \exists k \in \mathbb{Z} \quad (y - x) = -kn$$

$$\Rightarrow (y - x) \vdots n$$

$$\Rightarrow y \equiv_{n} x$$

транзитивність  $x \equiv_n y, y \equiv_n z \Rightarrow x \equiv_n z$ 

$$x \equiv_n y, y \equiv_n z \implies \begin{cases} x - y = kn \\ y - z = tn \end{cases}$$
  

$$\Rightarrow (x - z) = (x - y) + (y - z) = (k + t)n$$
  

$$\Rightarrow x \equiv_n z$$

Example 2.19.  $\langle \mathbb{N}_1, : \rangle, (x : y) \Leftrightarrow (\exists k \in \mathbb{N} \ x = ky)$ 

рефлексивність  $x = 1x \Rightarrow x : x$ 

антисиметричність

$$x : y, y : x \Rightarrow \exists a, b \in \mathbb{N} : x = ay, y = bx$$
  
 $\Rightarrow y = bay$   
 $\Rightarrow 1 = ba$   
 $\Rightarrow b = 1, a = 1$   
 $\Rightarrow x = y$ 

**Theorem 2.9.**  $R \subseteq A^2$  – антисиметричне  $R \cap R^{-1} \subseteq i_A$ 

Доведення.  $(\Rightarrow)$  Нехай R – антисиметричне відношення

$$\forall a, b \in A \quad aRb, bRa \Rightarrow a = b$$

$$\forall (a,b) \in R \quad (a,b) \in R \cap R^{-1} \quad \Rightarrow \quad \begin{array}{l} (a,b) \in R \\ (a,b) \in R^{-1} \end{array}$$

$$\Rightarrow \quad \begin{array}{l} aRb \\ bRa \\ \Rightarrow \quad a = b \\ \Rightarrow \quad (a,b) \in i_A \end{array}$$

Отже:

$$R \cap R^{-1} \subseteq i_A$$

 $(\Leftarrow)$  Нехай  $R \cap R^{-1} \subseteq i_A$ .

$$\forall a, b \in A \quad aRb, bRa \quad \Rightarrow \quad \begin{array}{l} aRb \\ aR^{-1}b \\ \\ \Rightarrow \quad (a,b) \in R \cap R^{-1} \\ \\ \Rightarrow \quad (a,b) \in i_A \\ \\ \Rightarrow \quad a = b \end{array}$$

Отже R – антисиметричне.

Theorem 2.10.  $R \subseteq A^2$  – транзитивне  $\Leftrightarrow R \circ R \in R$ .

Доведення.  $(\Rightarrow)$  Нехай R – транзитивне

$$\forall a, b, c \in A \quad aRb, bRc \Rightarrow aRc$$

$$\begin{aligned} \forall (a,c) \in R^2 \exists b \in A : aRb, bRc & \Rightarrow aRc \\ & \Rightarrow (a,c) \in R \end{aligned}$$

Отже  $R^2 \subseteq R$ .

 $(\Leftarrow)$  Нехай  $R^2 \subseteq R$ .

$$\forall a, b, c \in A \quad aRb, bRc \implies aR^2c$$

А отже: R – транзитивне.

#### 2.3.4 Відношення еквівалентності

**Definition 2.3.10** (Відношення еквівалентності). Бінарне відношення  $R \subseteq A^2$  – це відношення еквівалентності, якщо воно рефлексивне, симетричне і транзитивне. Часто позначають як ~ тильда

 $a \sim b$ , або, ще: a, b – еквівалентні, або a еквівалентне b.

**Definition 2.3.11** (Клас еквівалентності). *Клас еквівалентності елементу*  $a \in A$ :

$$[a] = \{b \in A \mid b \sim a\}$$

**Definition 2.3.12** (Фактор множина). Фактор множина це:

$$A / \sim = \{ [a] \mid \forall a \in A \}$$

**Example 2.20.**  $< \mathbb{N}, =>, [x] = \{x\}$ 

$$\mathbb{N}_{=} = \{\{1\}, \{2\}, \{3\}, ...\}$$

Example 2.21.  $\langle \mathbb{Z}, \equiv_n \rangle$ ,  $x \equiv_n y \Leftrightarrow (x - y) \stackrel{.}{:} n$ 

$$[0] = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$$

$$\begin{bmatrix} 0 \end{bmatrix} = \{kn \mid k \in \mathbb{Z}\} \\ [1] = \{kn+1 \mid k \in \mathbb{Z}\} \\ [2] = \{kn+2 \mid k \in \mathbb{Z}\} \\ \vdots \\ [n-1] = \{kn+n-1 \mid k \in \mathbb{Z}\} \}$$

$$\mathbb{Z}_{1} = \{[0], [1], ..., [n-1]\} = \mathbb{Z}_{m}$$

Example 2.22.  $\mathbb{L}$  – множина прямих на площині

$$<\mathbb{L},\parallel>$$

l = ax + by + c = 0

$$[l] = \{ax + by + d = 0 \mid \forall d \in \mathbb{R}^2\}$$
$$\mathbb{L}_{||} = \{[l_{ab}] \forall a, b \in \mathbb{R}\}$$

page 21

Lemma 2.2.  $a \sim b \Leftrightarrow [a] = [b]$ 

Доведення.

$$a \sim b \Leftrightarrow a \sim b = b \sim a \Leftrightarrow [a] = [b]$$

**Theorem 2.11.** Нехай  $\sim$  це відношення еквівалентності на A, то  $A / \sim$  – розбит-тя A.

Доведення. 1)  $a \in [a] \rightarrow [a] \subseteq \varnothing$ .

$$\bigcup_{a \in A} [a] = A.$$

3)  $a, b \in A$ . Нехай  $[a] \cap [b] \neq \emptyset$ .

$$\exists x \in [a] \cap [b] \Rightarrow \begin{array}{c} x \sim a \\ x \sim b \end{array} \Rightarrow \begin{array}{c} a \sim x \\ x \sim b \end{array} \Rightarrow a \sim b \Rightarrow [a] = [b].$$

Якщо  $a \not\sim b$ , то  $[a] \cap [b] = \emptyset$ .

**Theorem 2.12.** Hexaй  $A = T_1 \sqcup T_2 \sqcup ... \sqcup T_k$  то існує відношення еквівалентності  $\sim$ , що

$$A/\sim = \{T_1, T_2, ..., T_k\}$$

**Definition 2.3.13.** Hexaŭ  $a \sim b \Leftrightarrow \exists i : a \in T_i, b \in T_i$ .

рефлексивність:  $a \in t_i, a \in T_i \Rightarrow a \sim a$  симетричність:  $a \sim b \Rightarrow \exists a \in T_i, b \in T_i \Rightarrow b \sim a$  транзитивність:  $\forall a, b, c \quad a \sim b, b \sim c \Rightarrow \exists i, j : \begin{vmatrix} a \in T_i \\ b \in T_i \end{vmatrix} \begin{vmatrix} b \in T_j \\ c \in T_j \end{vmatrix} \Rightarrow i = j \Rightarrow a \sim c$ 

#### Example 2.23.

$$A^2 = \{(a,b) \mid \forall a, b \in A\}$$

R – бінарне відношення на  $A^2$ .

$$(a,b)R(x,y) \Leftrightarrow \begin{bmatrix} (a,b) = (x,y) \\ (a,b) = (y,x) \end{bmatrix}$$

$$[(a,b)] = \{(a,b),(b,a)\}$$

$$[a,a] = \{(a,a)\}$$

 $A^{(2)}$  – множина невпорядкованих пар.

$$A^{(2)} = {A^2}/{R}$$

**Example 2.24.**  $\mathbb{Z} \times \mathbb{N}$   $\sim: (m_1, n_1) \sim (m_2, n_2) \Leftrightarrow m_1 \cdot n_2 = m_2 \cdot n_1.$ 

$$\mathbb{Q} = (\mathbb{Z} \times \mathbb{N}) / \sim$$

#### 2.3.5 Замикання відношення

**Definition 2.3.14** (Замикання). Замикання об'єкта за властивістю — це інший об'єкт, що включає в себе даний об'єкт та має цю властивість, якщо можливо.

**Definition 2.3.15** (Рефлексивне замикання). *Рефлексивне замикання* 

$$R^{=} = R^{r} = i_{A} \cup R.$$

**Definition 2.3.16** (Симетричне замикання). Симетричне замикання

$$R^S = R \cup R^{-1}.$$

**Definition 2.3.17** (Транзитивне замикання). Транзитивне замикання

$$R^{+} = R^{t} = R \cup R^{2} \cup ... \cup R^{n} = \bigcup_{n=1}^{\infty} R^{n}.$$

 $Remark\ 2.3.$  Якщо для деякого  $k,\ R^k=R^{k+1}$  то

$$R^t = \bigcup_{n=1}^k R^n$$

**Definition 2.3.18** (Замикання передпорадку). Замикання передпорадку

$$R^* = R^{rt}$$

**Definition 2.3.19** (Замикання еквівалентності). Замикання еквівалентності

$$R^{\equiv} = R^{\varepsilon} = R^{rst}$$

Claim 2.3.

$$R^{rt} = R^{tr}$$

Claim 2.4.

$$R^{rs} = R^{sr}$$

Claim 2.5.

$$R^{st} \supseteq R^{ts}$$
.

**Claim 2.6.** Відношення  $R^{\equiv}$  – мінімальне відношення еквівалентності, що включає R.

Example 2.25. < R, (<) >

$$(<)^r = (\leqslant)$$

$$(<)^s = (\neq)$$

$$(<)^t = (<)$$

**Example 2.26** (Транспортна мережа). R – відношення сусудства  $R^r$  – відношення самодосяжності  $R^s$  – відношення пов'язаності  $R^t$  – відношення досяжності

 $R^E$  – задає розбиття на компоненти зв'язності

 $R^*$  – розбиття на компоненти сильної зв'язності

#### 2.3.6 Функціональні відношення

 $f \subseteq A \times B$ 

Definition 2.3.20 (Область визначення). Область визначення відношення

$$Dom(f) = \{ \overline{a} \in A \mid \exists b \in B \quad (a, b) \in f \}$$

**Definition 2.3.21** (Область значень). Область значень

$$Range(f) = Im(f) = \{b \in B \mid a \in f \mid a, b \in f\}$$

**Definition 2.3.22** (Образ елемента). Образ елемента

$$a \in Af(a) = \{b \in B \mid (a, b) \in f\}$$

**Definition 2.3.23** (Повністю визначене бінарне відношення). Повністю визначене бінарне відношення (left - total)

$$f \subseteq a \times B$$
 
$$Dom(f) = A$$
 
$$\forall a \in A \quad \exists b \in B \quad (a, b) \in f$$

**Definition 2.3.24** (Функціональне відношення). Функціональне відношення

$$\forall a \in A | f(a) | \leqslant$$
 
$$\forall a \in A (\exists! b \in B(a,b) \in f) \lor (\nexists b \in B(a,b) \in f)$$

**Definition 2.3.25** (Відображення). *Відображення (mapping) – повністю визначене функціональне відношення* 

Замість  $(a, b) \in f$  або afb, пишемо b = f(a).

Замість  $f \subseteq A \times B$ , пишемо  $f : A \to B$ .

**Definition 2.3.26** (Функція). Функція це часткове відображення

**Definition 2.3.27** (Кардинальний степінь).  $Кардинальний степінь <math>A^B$ :

$$A^B = \{f \mid f : B \to A - відображення \}$$

**Theorem 2.13** (Про потужність кардинального степеня). Якщо A та B – cкінченні, то

$$|A^B| = |A|^{|B|}$$

#### 2.3.7 Властивості відношень

Definition 2.3.28 (Ін'єктивність). Ін'єктивність

$$\forall x_1, x_2 \quad x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$$

Definition 2.3.29 (Сюр'єктивність). Сюр'єктивність

$$f: A \to B \quad Im(f) = B.$$

або

$$\forall b \in B \quad \exists a \in A \quad f(a) = b.$$

**Definition 2.3.30** (Бієктивність). *Бієктивність* – це інєктивність та сюр'єктивність одночасно.

**Example 2.27.**  $f: R \to R$  — відображення,  $f: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to R$  — інективне,  $f: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$  — бієктивне,  $f: \left[0; \pi\right] \to \left[0; 1\right]$  — сюр'єктивне.

#### Операції

**Definition 2.3.31** (Обернене функціональне відношення).  $f^{-1}$  – обернене функціональне відношення, не обовязково є функціональним.

**Definition 2.3.32** (Композиція). *Композиція*  $f \circ g$ 

$$h(x) = z \Leftrightarrow \exists y : (f(x) = y) \& (g(y) = z).$$

**Theorem 2.14** (Про бієктивні відображення). 1) Якщо f – бієкція, то  $f^{-1}$  також бієкція.

2) Якщо f та g – бієкція, то  $h=f\circ g$  – бієктивне.

Доведення. 1)

Нехай 
$$f:A\to B$$
 – бієкція  $\Rightarrow$  
$$\begin{cases} \forall a_1,a_2\in A & a_1\neq a_2\Rightarrow f(a_1)\neq f(a_2)\\ \forall b\in B & \exists a\in A & f(a)=b\\ \forall b_1,b_2\in B & b_1\neq b_2\Rightarrow f^{-1}(b_1)\neq f^{-1}(b_2)\\ \forall a\in A & \exists b\in Bf^{-1}(b)=a\\ \Rightarrow f^{-1}-\text{бієкція} \end{cases}$$

2) Нехай f і g – бієкції,  $h = f \circ g$ :

$$\begin{cases} h = \{(a,c) \mid \exists b \quad b = f(a) \quad c = g(b)\} \\ f,g - \text{бієкції} \end{cases} \Rightarrow h = \{(a,c) \mid \exists !b \quad b = f(a) \quad c = g(b)\} \\ \Rightarrow \begin{cases} \forall a_1,a_2 \quad a_1 \neq a_2 \Rightarrow h(a_1) \neq h(a_2) \\ \forall c \quad \exists a \quad h(a) = c \end{cases} \\ \Rightarrow h - \text{бієкція}.$$

**Theorem 2.15** (Теорема  $\Phi$ ). *Нехай А та В – скінченні множини, тоді:* 

Якщо  $\exists f: A \to B$  – інекція, то  $|A| \leq |B|$ . Якщо  $\exists f: A \to B$  – сюрекція, то  $|A| \geq |B|$ . Якщо  $\exists f: A \to B$  – бієкція, то |A| = |B|.

**Theorem 2.16.** A та B – еквівалентні (в тому числі і рівнопотужні), якщо  $\exists F: A \to B$  – бієкція.

**Definition 2.3.33** (Нескінченна множина (за Додекіндом)). A – це нескінченна множина (за Додекіндом), якщо A еквівалентна власній підмножині

$$A$$
 – нескінченна  $\Leftrightarrow \exists B \quad (B \subset A) \& (A \sim B)$ 

**Definition 2.3.34** (Скінченна множина). *Скінченна множина – це множина, що* не еквівалентна своїм підмножинам (жодній з них)

**Definition 2.3.35** (Потужність множини (кардинальне число)). Потужність множини (або кардинальне число) — це клас еквівалентності за  $\sim$  до якого відноситься множина.

Для скінченних множин потужність позначається натуральним числом. Для нескінченних множин – трансфінітні числа: № – алеф

Claim 2.7.  $\mathbb{N}$  – нескінченна множина

Доведення.

$$2\mathbb{N} = \{2n \mid \forall x \in \mathbb{N}\} \subset \mathbb{N}$$
  $f(n) = 2n \quad f: \mathbb{N} \to 2\mathbb{N}$   $f$  — бієкція.

Remark 2.4.

$$|\mathbb{N}| = \aleph_0$$

**Definition 2.3.36** (Зліченна множина). Зліченна множина – це множина, що еквівалентна множині  $\mathbb{N}$ .

**Theorem 2.17.** Довільна під множина натуральних чисел або скінченна або зліченна (не більш ніж зліченна)

$$\forall B: (B \subseteq \mathbb{N}) \Rightarrow |B| \leqslant \aleph_0$$

#### 2.3.8 Відношення часткового порядку

 $R \subseteq A^2$ 

**Definition 2.3.37** (Передпорядок). R – (рефлексивне та транзитивне) це передпорядок (preorder) або квазіпорядок (quasiorder).

**Definition 2.3.38** (Частковий порядок). R – частковий порядок, якщо воно рефлексивне, антисиметричне i транзитивне.

**Definition 2.3.39** (Строгий порядок). – строгий порядок (strict partial order), якщо воно іррефлексивне і транзитивне.

**Lemma 2.3.** Якщо  $R \subseteq A^2$  – іррефлексивне і транзитивне, то R – асиметричне.

Доведення. Нехай R – симетричне

 $(\forall a, k \in A \quad aRb, bRa \Rightarrow aRa \Rightarrow$  протиріччя)

 $\Rightarrow R$  – не симетричне.

Нехай R – антисиметричне ( $\forall a, b \quad aRb, bRa \Rightarrow a = b \Rightarrow$  протиріччя)

 $\Rightarrow R$  – не антисиметричне

Hexaй R – несиметричне

 $((\exists a, b \quad aRb \Rightarrow a\overline{R}b\&aRb) \Rightarrow aRa \Rightarrow$  протиріччя)

 $\Rightarrow R$  – не несиметричне

R – асиметричне

 $\langle A, R \rangle$  – (Частково) впорядкована множина (partially ordered set (or [[paset]]))

**Example 2.28.** 1)  $< 2^{A^*}, \pi > L_A \pi L_2 \Leftrightarrow nepernad довільного тексту <math>L_1$  на  $L_2$   $\pi$  – nepednopядок

**Example 2.29.**  $< R, \le >$  – частковий порядок < R, <> – строгий порядок

**Example 2.30.**  $< 2^A, \subseteq >$  – частковий порядок  $< 2^A, \subseteq >$  – строгий порядок

Example 2.31.  $<\mathbb{Z}, >$  – частковий порядок

**Claim 2.8.** Якщо R це частковий порядок на A, то  $R^{-1}$  – також частковий порядок на A.

Доведення. Нехай R – частковий порядок на A, тоді

$$R$$
 – частковий порядок на  $A$   $\Rightarrow$  
$$\begin{cases} \forall a \in A \quad aRa \\ \forall a,b \in A \quad aRb,bRa \Rightarrow a=b \\ \forall a,b,c \in A \quad aRb,bRc \Rightarrow aRc \end{cases}$$
 
$$\Rightarrow \begin{cases} \forall a \in A \quad aR^{-1}a \\ \forall a,b \in A \quad aR^{-1}b,bR^{-1}a \Rightarrow a=b \\ \forall a,b,c \in A \quad aR^{-1}b,bR^{-1}c \Rightarrow aR^{-1}c \end{cases}$$
 
$$\Rightarrow R^{-1}$$
 – частковий порядок

### 2.3.9 Діаграма Хассе (Гессе) (Hasse)

- 1. Не малюємо петель
- 2. Малюємо зв'язок тільки між сусідніми елементами Елементи а та b – сусідні (за  $\mathbb{R}$ ) якщо:
  - (a) aRa.
  - (6)  $\nexists c$   $c \neq b, c \neq a \Rightarrow aRc, cRb$ .

**Example 2.32.**  $\mathbb{N}_6 = \{1, 2, 3, 4, 5, 6\}$ 

 $<\mathbb{N}_6, |> x \mid d \Leftrightarrow d : x$ 

Example 2.33.  $\langle \mathbb{N}_6, \leqslant \rangle$ 

< A, R > - частково впорядкована множина

 $a \in A$  — мінімальний  $\Leftrightarrow \nexists b \in A$  bRa

 $a \in A$  — найменший  $\Leftrightarrow \forall b \in A \quad aRb$ 

 $a \in A$  — максимальний  $\Leftrightarrow \nexists b \in A$  aRb

 $a \in A$  — найбільший  $\Leftrightarrow \forall b \in A \quad bRa$ 

**Example 2.34.** *мінімальне* – *1* 

найменше - 1

максимальне – 4, 6, 5

найбільше – undefined

**Claim 2.9.** Впорядкована множина A, R > Mae не білше одного найбільшого (найменшого) елементу

Доведення. Нехай a та a'  $(a \neq a')$  – найменші елементи  $A \Rightarrow$ 

$$\begin{cases} aRa' \\ a'Ra \end{cases} \Rightarrow a = a' \Rightarrow \text{протиріччя}$$

## 2.3.10 Індуковані порядки

Нехай  $< A_i, \le_i >, i = \overline{1,n}$  – впорядковані множини  $A = A_1 \times A_2 \times ... \times A_n$ .

**Definition 2.3.40.** Відношення домінування  $\langle A, \leqslant \rangle$ .

$$(a_1,...,a_n) \leqslant (b_1,...,b_n) \Leftrightarrow a_i \leqslant b_i.$$

**Definition 2.3.41.** Строге домінування  $\langle A, \langle \rangle$ .

$$(a_1, ..., a_n) < (b_1, ..., b_n) \Leftrightarrow ((a_1, ..., a_n) \leq (b_1, ..., b_n)) \& (\exists i \ a_i \neq b_i).$$

**Definition 2.3.42** (Лексикографічний порядок). Лексикографічний порядок задаеться множиною A та відображенням  $\leq_l$ :  $\langle A, \leq_l \rangle$ .

$$(a_1, ..., a_n) \leq_l (b_1, ..., b_n) \Leftrightarrow (a_1 \leq b_1) \vee ((a_1 = b_1) \wedge (a_1 \leq b_1)) \vee ...$$
  
...  $\vee ((a_1 = b_1) \wedge ... \wedge (a_{n-1} = b_{n-1}) \wedge (a_n \leq a_n)).$ 

Claim 2.10. Відношення домінування є відношенням строгого порядку

Доведення. Нехай R – відношення домінування на A, тоді

$$((a_1,...,a_n)\leqslant (b_1,...,B_n)\Leftrightarrow \forall i\quad a_i\leqslant b_i))\Rightarrow \forall a\in A\quad aRa\Rightarrow r$$
 – рефлексивне

$$(\forall a, b, c \quad aRb, bRc \Rightarrow aRc) \Rightarrow R$$
 – транзитивне

$$((a_1...a_n) \leqslant (b_1...b_n) \Leftrightarrow \forall i \quad a_i \leqslant b_i) \Rightarrow$$

$$(\neq ((a_1...a_n) \leqslant (b_1...b_n)) \Leftrightarrow \forall i \quad b_i \leqslant a_i) \Rightarrow$$

$$\forall a, b \quad aRb, bRa \Rightarrow a = b \Rightarrow R$$
— антисиметричне.

**Claim 2.11.** R – відношення часткового порядку.

Доведення. Нехай R – лексикографічний порядок на A.

$$\Big( (a_1,...,a_n) \leqslant_l (b_1,...,b_n) \Leftrightarrow (a_1 \leqslant b_1) \vee ((a_1 = b_1) \& (a_1 \leqslant b_1)) \vee ...$$
 ...  $\vee ((a_1 = b_1) \& ... \& (a_{n-1} = b_{n-1}) \& (a_n \leqslant a_n)) \Big) \Rightarrow$  
$$\forall a \in A \quad aRa \Rightarrow R \text{-- рефлексивне}$$

З означення випливає, що якщо елементи різні, то вони співставляються один з одним знаком  $\leqslant \Rightarrow aRb, bRa \Rightarrow a=b \Rightarrow R$ . – антисиметричне.

З означення випливає, що якщо  $\forall a,b,c \quad aRb,bRc$ , то  $aRc \Rightarrow R$  – транзитивне.

R – відношення часткового порядку

#### 2.3.11 Порядки

**Definition 2.3.43** (Лінійний порядок). Лінійні порядки — зв'язний частковий порядок.

**Definition 2.3.44** (Строгий лінійний порядок). Строгий лінійний порядок – слаб-козвязний строгий порядок.

Example 2.35.  $< \mathbb{N}, \leqslant >$  – лінійний порядок.

Example 2.36.  $< 2^A, \subseteq >$  – не лінійний порядок.

Example 2.37.  $\leq$  – не зберігає лінійність.

**Example 2.38.**  $\leq_l$  – зберігає лінійність.

**Definition 2.3.45.** < A, R > - цілком впорядкована (wel-ordered set), якщо

1. R – частковий порядок.

2.  $\forall B \subseteq A$  – ма $\epsilon$  найменший елемент за R.

**Example 2.39.**  $< \mathbb{N}, \leqslant > -$  цілком впорядкована.

**Example 2.40.**  $<\mathbb{Z}, \leqslant>$  – не цілком впорядкована множина.

**Lemma 2.4.** < A, R > - цілком впорядкована, тоді R – лінійний порядок.

Доведення. Якщо A – цілком впорядкована множина ⇒ R – частковий порядок.

Так як  $\forall B \subseteq A$  – має найменший елемент  $\Rightarrow R$  – лінійний порядок

**Theorem 2.18** (Теорема Цермело). Довільну множину можна цілком впорядкувати.

**Claim 2.12.** < A, R > - скінченна множина, частково впорядкована, тоді завжди можна довизначити до лінійного.

Нехай < A, R > - цілком впорядкована множина

 $a_0$  — найбільний елемент A.

P(a)  $a \in A$  – твердження

**Theorem 2.19** (Про трансфінітну індукцію). Якщо

- 1.  $P(a_0)$  icmunhe
- 2.  $\forall x \in A \quad ((\forall (y,x) \in R \quad y \neq x \Rightarrow P(y)icmuhhe) \Rightarrow P(x)icmuhhe).$   $To \partial i \Rightarrow P(a) icmuhhe \ \forall a \in A.$

Доведення.

$$A^-=\{\overline{a}:P(a)$$
 — хибне  $\}\subseteq A$   $\Rightarrow$   $\exists\overline{a}\in A^-$  — найменший  $\Rightarrow$   $\overline{a}\neq a_0$   $\Rightarrow$   $\forall b$   $bR\overline{a}$   $\Rightarrow$   $P(b)$  — істинне  $\Rightarrow$   $P(\overline{a})$  — істинне  $\Rightarrow$  протиріччя

2.3.12 Спеціальні види функціональних відношень

**Definition 2.3.46** (Послідовність над множиною). Послідовність над множиною A, (де A можливо скінченна):

$$f: \mathbb{N}_n \to A$$

$$f: \mathbb{N} \to A$$

$$f: \mathbb{N}_0 \to A$$

$$f(n) = f_n$$

**Definition 2.3.47** (матриця над множиною).  $p \times q$  – матриця над множиною  $\mathbb L$ 

$$m: \mathbb{N}_p \times \mathbb{N}_q \to A$$

$$m(i,j) = m_{ij}$$

$$M = ||m_{ij}||_{i=\overline{1,p}}^{i=\overline{1,p}}$$

$$M = (m_{ij})_{j=\overline{1,q}}^{i=\overline{1,p}}$$

**Definition 2.3.48** (m-арна операція). m-арна операція над A, це відображення виду:

$$\circledast: A^m \to A.$$

**Definition 2.3.49** (m-арний предикат). m-арний предикат над A, це відображення виду:

$$P: A^m \to \{0, 1\}.$$

**Example 2.41** (Нуль-арна операція). *Нуль-арна операція – це певна константа* 

**Example 2.42** (Унарна операція). Унарна операція: ++, -x,  $x^2$ ,  $\overline{A}$ , ditA.

**Example 2.43** (Бінарні операції). *Бінарні операції:*  $+, -, \div, \land, \setminus, \land, \oplus$ .

Example 2.44 (Тернарні операції). Tернарні операції: x?y: z.

**Example 2.45** (Дужки Айверсона). *Нехай*  $P - \partial eяке твердження (предикат).$ 

$$[P] = \begin{cases} 1 - icmuna \\ 0 - xu \delta a \end{cases}.$$

**Example 2.46** (Дельта Кронекера). Дельта Кронекера:

$$\sigma_{xy} = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases} = [x = y].$$

**Definition 2.3.50** (алгебра (алгебраїчна система)). Нехай A – множина, W – множина операцій над A (можливо  $\varnothing$ ), R – множина відношень над A (можливо  $\varnothing$ ), але W i R не порожні одночасно, тоді < A, W, R > – алгебра (алгебраїчна система) над A.

**Example 2.47.**  $< A, \{\cup, \cap, \setminus, \triangle, \overline{B}\}, \{\subseteq, \subset, =, \neq\}, \{\varnothing, \mathbb{U}\} > -$  алгебра множин.

**Example 2.48.**  $< \mathbb{Z}_n, +, \cdot >, \ \partial e + - \partial o \partial a B a h h я за модулем <math>n, \cdot - M$  ноження за модулем n.

Example 2.49.  $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ 

Example 2.50.  $\langle \mathbb{C}, +, -, \cdot, \div \rangle$ ,  $\partial e$ 

$$\mathbb{C} = \{ a + ib \mid \forall a, b \in \mathbb{R} \} \quad \mathbb{C} \sim \mathbb{R}^2$$

Якщо  $z_1 = a + ib$ ,  $z_2 = c + id$  mo:

$$z_1 \pm z_2 = (a \pm c) + i(b \pm d)$$
$$z_1 \cdot z_2 = (a + ib)(c + id) = (ac - bd) + i(bc + ad)$$

### 2.3.13 Характеристичі функції множини

Нехай  $\mathbb{U}$  – універсум,  $A \subseteq \mathbb{U}$ .

**Definition 2.3.51** (Характеристична функція). *Характеристична функція це функція вигляду*  $\chi_A(x): \mathbb{U} \to \{0,1\}:$ 

$$\chi(a) = \begin{cases} 1 & a \in A \\ 0 & a \notin A \end{cases} = [a \in A].$$

Характеристичні функції – це інший спосіб представлення множин

**Theorem 2.20.** 1.  $\chi_{A \cup B}(a) = \max{\{\chi_A(a), \chi_B(a)\}}$ 

- 2.  $\chi_{A \cap B}(a) = \min{\{\chi_A(a), \chi_B(a)\}}$
- 3.  $\chi_{\overline{A}}(a) = 1 \chi_A(a)$
- 4.  $\chi_{A \setminus B}(a) = \min{\{\chi_A(a), 1 \chi_B(a)\}}$
- 5.  $\chi_{A \triangle B}(a) = \max\{\min\{\chi_A(a), 1 \chi_B(a)\}, \min\{1 \chi_A(a), \chi_B(a)\}\}\$

#### 2.3.14 Зліченність і незліченність

Вважаємо, що  $|\mathbb{N}| = \aleph_0$ .

**Definition 2.3.52** (Формальний порядок на потужностях). *Формальний порядок на потужностях*:

$$|X| \leqslant |Y| \Leftrightarrow \exists f: X \to Y$$
 – інекція

**Theorem 2.21** (Кантор Берштейн). X, Y – множини,

$$\begin{cases} \exists f: X \to Y - ine\kappa uis \\ \exists g: Y \to X - ine\kappa uis \end{cases} \Rightarrow |X| = |Y|.$$

Remark 2.5.

$$X \subseteq Y \Rightarrow |X| \leqslant |Y|$$
.

**Theorem 2.22.** *Нехай A та B – зліченні множини, тоді A \times B – зліченна множина.* 

Доведення. Номер пари = кількість кроків черепахи на шляху до пари. Отже, це бієкція на  $\mathbb{N}$ . □

#### Corollary 2.22.1.

 $\forall m \in \mathbb{N} \quad A_i$ - зліченна,  $i = \overline{1, m} \Rightarrow A_1 \times A_2 \times ... \times A_m$ - зліченна множина

Theorem 2.23.

$$A_1, A_2, ..., A_m$$
– зліченні  $\Rightarrow \bigcup_{i=1}^m A_i$ – зліченна множина.

**Theorem 2.24.** *Hexaŭ*  $A_i$  – зліченна,  $i < \aleph_0$ , тоді  $\bigcup_{i=1}^{\infty} A_i$  – зліченна

Доведення. Доведення випливає з аксіоматики теорії множин і аксіоми вибору.

Claim 2.13 (Аксіома вибору).  $\{x\}$  – система множини  $\Rightarrow \exists$  функція f, що  $\forall X$  :  $f(X) \in X$ .

**Claim 2.14** (Аксіома зліченного вибору).  $\exists \ \phi y h \kappa u i \pi \ f, \ u o \ \forall X : f(X) \in X \Rightarrow \{x\} -$  зліченна система множин.

#### Corollary 2.24.1.

$$|\mathbb{Z}| = |\mathbb{N}| = \mathbb{N} \cup (-\mathbb{N}) \cup \{0\}.$$
  
 $|\mathbb{Q}| = |\mathbb{N}|, \quad \mathbb{Q} \subseteq \mathbb{Z} \times \mathbb{N}.$   
 $A$  – зліченна  $\Rightarrow A[x]$  – зліченна

$$\mathcal{A}[x] = \{a_n x^n + a_{n+1} x^{n+1} + \dots \mid n \in \mathbb{N}_a, a \in A\}$$

**Definition 2.3.53** (Поліном). Поліном – це многочлен, сума декількох одночленів.

#### 2.3.15 Зліченність та не зліченність

Claim 2.15. A – зліченна  $\Rightarrow A^*$  – зліченна.

**Definition 2.3.54** (Алгебраїчні числа). Алгебраїчні числа – корені всіх рівнянь виду

$$q_n x^n + q_{n-1} x^{n-1} + \dots + q_1 x + q_0, n \in \mathbb{N}_0, q_i \in \mathbb{Q}$$

**Definition 2.3.55** (множина всіх алгебраїчних чисел).  $\mathbb{A}$  – множина всіх алгебраїчних чисел.

 $\mathbb{A}$  – зліченна.

**Definition 2.3.56** (Обчислювані числа). Обчислювані числа – існує алгоритм обчислення із наперед заданою точністю, – зліченна кількість кроків.

**Theorem 2.25** (Теорема Кантор). *Множина*  $\{0,1\}^{\mathbb{N}}$  – назліченна.

Доведення. Нехай  $\{0,1\}^{\mathbb{N}}$  – зліченна, пронумеруїм їх

 $b = b_1, b_2, b_3, \dots$ 

Який номер має b.

$$\forall i \quad b_i = 1 - a_i^{(i)}$$

b – не співпадає з жодною  $\overline{a}^{(i)}$ 

Corollary 2.25.1.  $A - \leqslant -$  зліченна  $\Rightarrow A^{\mathbb{N}} -$  незліченна.

Corollary 2.25.2. A – зліченна множина.

$$A[[x]] = \{\sum_{n=0}^{\infty} a_n x^n \mid a_n \in A\}$$
– незліченна

Corollary 2.25.3. A – зліченна  $\Rightarrow 2^A$  – незліченна

$$B \subseteq A \Leftrightarrow \chi_b$$

Corollary 2.25.4.  $\mathbb{R}$  – незліченна

1. 
$$\mathbb{R} \sim (0,1)$$

2. 
$$x \in (0,1) \Rightarrow x = 0, x_1, x_2, ..., \Rightarrow \mathbb{R} \sim 2^{\mathbb{N}}, \quad |\mathbb{R}| = 2^{\aleph}$$

Corollary 2.25.5.  $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$  – множина ірраціональних чисел.

 $\mathbb{R} = \mathbb{Q} \cup \mathbb{I} \Rightarrow \mathbb{I}$  – незліченна

 $|\mathbb{R}| = \mathfrak{C}$  – потужність континум.

 $A \sim \mathbb{R}$  множина потужність континум або конинуальна множина

Theorem 2.26 (Теорема Кантор).

$$\forall A: |A| < |2^A|.$$

Розглянемо  $B = \{ \{a\} \mid a \in A \}.$ 

$$\begin{cases} B \sim A \\ B \subset 2^A \end{cases} |A| \subseteq |2^A|.$$

Нехай  $A \sim 2^A \Rightarrow \exists \varphi: A \to 2^A$  – бієкція.  $\forall a \in A \quad \varphi(a) \subseteq A$ .

a – жовтий  $\Leftrightarrow a \in \varphi(a)$ .

b – блакитний  $\Leftrightarrow a \notin \varphi(a)$ .

 $\varphi^{-1}(\varnothing)$  – блакитний  $\varphi^{-1}(A)$  – жовтий

Нехай  $A_0$  – множина всіх блакитних елементів  $a_0 = \varphi^{-1}(A_0)$ .

a – жовте  $\Rightarrow a_0 \in \varphi(a_0) \Rightarrow a_0 \in A_0 \Rightarrow$  протиріччя

b – блакитне  $\Rightarrow a_0 \notin \varphi(a_0) \Rightarrow a_0 \notin A_0 \Rightarrow$  протичіччя

Отдже  $|A| < 2^A$ .

**Hypothesis 2.1** (Континум гіпотеза). У множині дійсних чисел всі підмножини скінченні, зліченні або континуальні (між  $\aleph_0$  та  $\mathfrak{C} = 2^{\aleph_0}$  не існує жодних інших кардинальних чисел).

Hypothesis 2.2 (Узагальнення континум гіпотези).

$$\forall A, B, \quad |A| > |B| \geqslant \aleph_0 \Rightarrow |A| \geqslant |2^B|.$$

**Theorem 2.27** (Теорема К1). *Множина*  $\{0,1\}^{\mathbb{N}}$  – *незліченна*.

**Theorem 2.28** (Теорема К1.5). *Множина* A – *зліченна*  $\Rightarrow 2^A$  *булеан* – *незліченний*.

**Theorem 2.29** (Теорема K1.75).  $\mathbb{R}$  – незліченна.

**Theorem 2.30** (Теорема K2).  $\forall A : |2^A| > |A|$ .

### 2.4 Узагальнення поняття множини

### 2.4.1 Мультимножини

1970 рік де Брюейн (Le Brujin)

**Definition 2.4.1** (Мультимножини). *Мультимножини (mult set)* A = < A(A) :  $\chi_A >$ .

**Definition 2.4.2** (множина носій). S(A) – множина носій.

**Definition 2.4.3** (функція кратності (кількість елементів)).  $\chi_A S(A) \Rightarrow \mathbb{N}_0 - \phi y$ нкція кратності (кількість елементів).

#### Definition 2.4.4.

$$A = \{a, a, a, b, b, c\}$$
$$A = \{a^3, b^2, c^1\}$$
$$A = \{(a, 3), (b, 2), (c, 1)\}$$

#### 2.4.2 Операції над мультипідмножинами

1. Об'єднання  $A \cup B$ :

$$\forall a \quad \chi_{A \cup B}(a) = \max{\{\chi_A(a), \chi_B(a)\}}.$$

2. Перетин  $A \cap B$ :

$$\forall a \quad \chi_{A \cap B}(a) = \min\{\chi_A(a), \chi_B(a)\}.$$

3. Різниця  $A \backslash B$ :

$$\forall a \quad \chi_{A \setminus B}(a) = \chi_A(a) \div \chi_B(a).$$

- 4. Симетрична різниця не визначається
- 5. Доповнення мультмножини не визначається
- 6. Сума A + B:

$$\forall a: \chi_{A+B}(a) = \chi_A(a) + \chi_B(a).$$

7. Включення

$$A \subseteq B \Leftrightarrow \forall a : \chi_A(a) \leqslant \chi_B(a).$$
$$A \subset B \Leftrightarrow (A \subseteq B) \& (\exists a : \chi_A(a) < \chi_B(a)).$$

8. Декартів добуток

$$C = A \times B \Leftrightarrow (S(c) = S(a) \times S(b)) \& (\chi_C(a, b) = \chi_A(a) \cdot \chi_B(b)).$$

- 9. Булеан  $\mathcal{B}(A)$  множина мультипідмножин.
- 10. Потужність мультимножини.

$$a = \sum_{a \in S(A)} \chi_A(a).$$

Theorem 2.31.

$$|\mathcal{B}(A)| = \prod_{a \in S(A)} (\chi_A(a) + 1).$$

 $\mathcal{A}$ оведення.  $a \in S(A)$  може входити  $0,1,...,\chi_A(a)$  раз  $\Rightarrow \chi_A(a)+1$  способів.

Example 2.51.

$$C = \{a^6 m b^5 m c^5 n d^4\}.$$
$$|\mathcal{B}(C)| = 7 \cdot 6 \cdot 6 \cdot 5 = 1260.$$

#### 2.4.3 Нечіткі множини

**Definition 2.4.5** (Нечітка множина (fussy set)). *Нечітка множина (1965 рік, Лорті Зоде) – це впорядкована пара (fussy set)* 

$$A = \langle S(A), \chi_A \rangle$$

S(A) – множина носій,  $\chi_a:S(A)\to [0,1]$  – степінь входження елемента.

Сфера використання

- 1. Математична лінгвістика
- 2. Теорія прийняття рішень
- 3. Біоінформатика
- 4. Кластерний аналіз
- 5. Нечітка логіка

Способи подання

$$A = \{(a, 0.1), (b, 0.9), (c, 0.9998), (d, 0.5)\}$$

Класична множина – це чітка множина.

Операції над нечіткими множинами

1. Об'єднання  $A \cup B$ :

$$\forall a \quad \chi_A(a) = \max\{\chi_A(a), \chi_B(a)\}.$$

2. Перетин  $A \cap B$ :

$$\forall a \quad \chi_A(a) = \min\{\chi_A(a), \chi_B(a)\}.$$

3. Доповнення  $\overline{A}$ :

$$\forall a \quad \chi_{\overline{A}}(a) = 1 - \chi_A(a).$$

4. Різниця  $A \backslash B$ :

$$\chi_{A \setminus B}(a) = \chi_A(a) - \chi_B(a).$$

$$A \setminus B = A \cap \overline{B} \quad \chi_{A \cap B}(a) = \min\{\chi_A(a), 1 - \chi_B(a)\}.$$

5. Добуток  $A \cdot B$ :

$$\forall a: \quad \chi_{A \cdot B}(a) = \chi_A(a) \cdot \chi_B(a).$$

6. Сума A + B:

$$\forall a \quad \chi_{A+B}(a) = \chi_A(a) + \chi_B(a) - \chi_A(a) \cdot \chi_B(a).$$

7. Включення:

$$A \subseteq B \Leftrightarrow \forall a \quad \chi_A(a) \leqslant \chi_B(a).$$
  
$$A \subset B \Leftrightarrow (A \subseteq B) \& (\exists a \quad \chi_A(a) < \chi_B(a)).$$

8. Нечітка рівність:

$$E(A \equiv_E B) = 1 - \max(\chi_A(a) - \chi_B(a))$$

9. Нечітке включення  $A \subseteq_E B$ 

#### Claim 2.16.

$$C = A + B \Leftrightarrow \overline{C} = \overline{A} \cdot \overline{B}$$
.

Доведення.

$$\overline{C} = \overline{A} \cdot \overline{B} \Rightarrow \forall a \quad \chi_C(a) = \chi_A(a) \cdot \chi_B(a) 
\Rightarrow \forall a \quad 1 - \chi_C(a) = (1 - \chi_A(a)) \cdot (1 - \chi_B(a)) 
\Rightarrow \quad 1 - \chi_C(a) = 1 - \chi_A(a) - \chi_B(a)) + \chi_A(a) \cdot \chi_B(a)) 
\Rightarrow \quad \forall a \quad \chi_C(a) = \chi_A(a) + \chi_B(a)) - \chi_A(a) \cdot \chi_B(a)) 
\Rightarrow \quad C = A + B.$$

# 2.5 Вступ до комбінаторики

**Definition 2.5.1** (Комбінаторика (Комбінаторний аналіз)). Комбінаторика (Комбінаторний аналіз) – напрямок дискретної математики, що займається такими питаннями:

- 1. Існування об'єктів у заданій системі умов та обмежень.
- 2. Підрахунок кількості об'єктів.
- 3. Алгоритми ефективного перебору.
- 4. Комбінаторна оптимізація.
- 5. Екстримальні задачі.

Комбінаторна конфігурація:

- 1. Процедура побудова об'єкту.
- 2. Результати роботи.

Сlaim 2.17 (Головні принципи комбінаторних операцій). 1. Правило суми: якщо A будується n способами a B – k способами, i способи не перетинаються, то A або B будується n+k способами.

- 2. Правило добутку: якщо A будується n способами a B k способами, то A i B будується n=k способами.
- 3. Правило Діріхле: при розташуванні k об'єктів по n комірках (k > n) існує комірки  $s \ge 2$  об'єктами.

# 2.5.1 Основні комбінаторні конфігурації

Один зі способів опису комбінаторної конфігурації – розташування об'єктів по комірках.

Об'єкти та комірки можуть бути пронумеровані (розрізнювані) або ні.

У комірці може розташовуватись обмежена або не обмежена кількість об'єктів.

**Definition 2.5.2** (Розміщення із повторенням).  $\overline{A}_n^k$  – кількість розміщень з повторенням п об'єктів на k комірок

$$\overline{A}_n^k = n^k.$$

**Definition 2.5.3** (Розміщення без повторень).  $A_n^k = n^k - \kappa i n \kappa i c m b$  без повторень n об'єктів по k комірках

$$A_n^k = \frac{n!}{(n-k)!}.$$

**Definition 2.5.4** (Перестановки: розміщення без повторень).

$$\overline{P}_n = A_n^n = \frac{n!}{0!} = n!$$

**Definition 2.5.5** (Підстановка). Підстановка – бієктивне відображення  $\pi: X \to X$ .

**Definition 2.5.6** (Перестановка з повторенням (Permutation)). *Нехай е мультимно-* жина  $A = \{a_2^{n_1}, a_2^{n_2}, ..., a_k^{n_k}\}, \ mo\partial i \ P_n^{n_1 n_2 ... n_k} - \kappa i n b \kappa i c m b \ nepecmanosok.$ 

Claim 2.18.

$$P_n^{n_1 n_2 \dots n_k} = \frac{n!}{n_1! n_2! \dots n_k!}, \quad n = |A|$$

Доведення. нехай всі елементи A є різними  $\mathcal{P}$  – множина всіх перестановок A

$$|\mathcal{P}| = n!$$

Введемо  $\sim_1 \pi_1 \sim_1 \pi_2 \Leftrightarrow \pi_1$  і  $\pi_2$  відрізняються взаємними розташуванням елементів  $a_1 \Rightarrow$  Кожен клас еквівалентності містить n! елементів.

$$\mathcal{P}' = \mathcal{P} / \sim_1, \quad |\mathcal{P}'| = \frac{n!}{n_1!}$$

вводимо  $\sim_2$  – розташування об'єктів  $a_2$ .

$$\mathcal{P}'' = \mathcal{P}' / \sim_2, \quad |\mathcal{P}''| = \frac{n!}{n_1! n_2!}$$

**Example 2.52.** Скільки існує шляхів від (0,0) до (n,k) якщо можна ходити вверх і вправо.

Кількість шляхів:

$$P_{n+k}^{n,k} = \frac{(n+k)!}{n!k!}$$

**Definition 2.5.7** (Вибірки без повторень). Вибірки без повторень: розташування без повторень але комірки є нерозрізнюваними  $\Rightarrow k$ -вибірки  $\Rightarrow$  підмножина розміру k.

 $C_n^k$  – кількість вибірок з n no k.

Claim 2.19.

$$C_n^k = \frac{n!}{k!(n-k)!}, \quad 0 \leqslant k \leqslant n$$

 $\mathcal{A}$ оведення. Нехай  $\mathcal{G}_n^k$  – множина всіх розміщень без повторень з n об'єктів по k.

$$|\mathcal{G}_n^k| = A_n^k$$

вводимо  $\sim$  відношення розпорядкування на  $d_n^k a_1 \sim a_2 \Leftrightarrow$  розміщення  $a_1$  і  $a_2$  відрізняється лише взаємним порядком елементів  $\Rightarrow$  кожен клас еквівалентності складається

з 
$$P_k$$
 елементів  $\Rightarrow C_n^k = |d_n^k/\sim| = \frac{A_n^k}{P_k} = \frac{n!}{k!(n-k)!}$ 

**Definition 2.5.8** (Вибірки з повторенням). Можна обрати об'єкт кілька разів  $\Rightarrow f$  – вибірка з повторенням = мультипідмножина потужності k у звичайній множині.

Claim 2.20.

$$\overline{C}_n^k = c_{n+k-1}^k$$

Доведення.

$$A = \{a_1, a_2, ..., a_n\}$$

$$B \subseteq A \quad B = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\} \quad \forall i : h_i \geqslant 0$$

$$k_1 + k_2 + k_3 + \dots + k_n = k$$

$$\underbrace{111\dots 1}_{k_1} 0 \underbrace{111\dots 1}_{k_2} 0 \underbrace{111\dots 1}_{k_3} 0 \dots 0 \underbrace{111\dots 1}_{k_n}$$

k одиниць, (n-1) нулів.

 $\overline{C}_n^k$  - Кількість таких бітових векторів

$$\overline{C}_n^k = P_{n+k-1}^{n+1,k} = \frac{(n+k-1)!}{k!(n-1)!} = C_{n+k-1}^k$$

# 2.5.2 Представлення комбінаторних операцій через відображення

Табл. 2.1: Дванадцятковий шлях (Джак Карл Фота). Тут Y – це Комірки (місця), X – це об'єкти (мітки). X – це впорядкована або ні, Y – це впорядкована або ні, f – це довільне відображення, інєкція, сюрєкція.

| Y | X | f-довільна | $f$ -ін $\epsilon$ ктивна | f-сюрєктивна |
|---|---|------------|---------------------------|--------------|

| Y   | X   | f-довільна         | f-інєктивна                 | <i>f</i> -сюрєктивна                    |
|-----|-----|--------------------|-----------------------------|-----------------------------------------|
| ВП  | ВП  | Розміщення з       | Розміщення без              | Впорядковані розбиття                   |
|     |     | повторенням        | повторення                  | M( 1-)                                  |
|     |     | $n^k$              | n!                          | M(n,k)                                  |
|     |     | 76                 | $A_n^k = \frac{n!}{(n-k)!}$ |                                         |
|     |     |                    | ,                           |                                         |
|     | НВП | Вибірка з          | Вибірка без повторення      | Вибірка з повторенням,                  |
|     |     | повторенням        | $C_n^k$                     | включаючи всю $Y$                       |
|     |     | $\overline{C}_n^k$ | $C_n$                       | pass                                    |
|     |     | $C_n$              |                             | pass                                    |
|     |     |                    |                             |                                         |
| НВП | ВП  | Розбиття $X$ на    | Вироджений випадок          | Розбиття $X$ на $n$                     |
|     |     | довільну           | 1 . 1                       | частин                                  |
|     |     | кількість          | $1 \rightarrow 1$           | S(k,n)                                  |
|     |     | частин             |                             | $\mathcal{S}(n,n)$                      |
|     |     | B(k)               |                             |                                         |
|     |     | , ,                |                             |                                         |
|     |     | Розбиття числа     | D                           | Doofwang waguna waya                    |
|     | НВП | на доданки (в $n$  | Вироджений випадок          | Розбиття натурального числа на доданків |
|     |     | на доданки (в п    | $1 \rightarrow 1$           | ънсла па додапків                       |
|     |     |                    |                             | pass                                    |
|     |     | pass               |                             |                                         |
|     |     |                    |                             |                                         |
|     |     |                    |                             |                                         |

Кількість сюрєктивних відображень на рисунку = кількість розташувань з повторенням які використовують всі об'єкти

Властивість  $P_i: y_i \notin f(X)$ 

Сюрєктивна функція – не задовільняє  $P_i$ 

Нехай 
$$A_i = \{f: X \to Y \mid f$$
 задовольняє  $P_i\}$ 

$$\Rightarrow M(n,k) = |Y^X| - |A_1 \cup A_2 \cup ... \cup A_n|$$

$$\forall i \quad |A_i| = (n-1)^k$$

$$\forall i, j \quad |A_i \cap A_j| = (n-2)^k$$

$$|A_1 \cap \dots \cap A_t| = (n-t)^k$$

$$M(n,k) = n^k - C_n^1(n-1)^k + C_n^2(n-2)^k - C_n^3(n-3)^k + \dots (-1)^n C_n^n(n-n)^k$$
$$= \sum_{t=0}^n (-1)^t C_n^t(n-t)^k.$$

**Definition 2.5.9** (Число Моргана). Число Моргана M(n, k) це:

- 1. Кількість сюр'єктивних відображень з k елементної множини на n елементну множину.
- 2. Кількість впорядкованих розбиттів (композицій) к елементної множини на п частини.

#### 2.5.3 Кількість розбиттів

**Definition 2.5.10** (Число Стірлінга II роду). Число Стірлінга II роду S(n,k) – це кількість розбиттів n елементної множини на k частин.

$$S(n,k) = \frac{1}{k!}M(k,n).$$

Theorem 2.32.

$$S(n + 1, k) = S(n, k - 1) + kS(n, k)$$
$$S(n, 1) = S(n, n) = 1$$

Доведення.  $\Pi_1 = \{A\} \Rightarrow S(n,1) = 1$ ,

$$\Pi_2 = \{\{a_1\}, \{a_2\}, ..., \{a_n\}\} \Rightarrow S(n, n) = 1,$$

$$A' = \{a_1, a_2, ..., a_n, a_{n+1}\},\$$

S(n+1,k) – кількість розбиттів на k частин,

- 1.  $\Pi = \{\{a_{n+1}\}, \text{ розбиття } A = \{a_1, a_2, ..., a_n\}$ наk-1 частин  $\} \Rightarrow S(n, k-1)$  розбиттів
- 2.  $\Pi = \{\{A_{n+1}, ...\}, ...\}$ . Якщо вилучимо  $A_{n+1}$  розбиття A на k частин  $\Rightarrow S(n, k)$ . Повертаємо  $A_{n+1} \to k \times S(n, k)$ .

$$S(n+1,k) = S(n,k-1) + k + S(n,k)$$

**Definition 2.5.11** (Число Белла). Число Белла B(n) – це загальна кількість розбиттів елементної множини.

$$B(n) = \sum_{k=1}^{n} S(n, k).$$

Theorem 2.33.

$$B(n+1) = \sum_{k=0}^{n} C_n^k B(n-k), \quad B(0) = 1$$

Доведення.  $A = \{a_1, a_2, ..., a_{n+1}\}$ 

$$\Pi = \{ \{a_{n+1}, \dots a_{n+t}\}, \dots \}, \quad t \in \{0, 1, \dots, n\}.$$

Таких  $\Pi$  існує  $C_n^t B(n-t)$ .

Загальна кількість розбиттів 
$$B(n+1) = \sum_{t=1}^{n} C_n^t B(n-t)$$

Розбиття числа на доданки

- не існує аналітичної формули
- не існує скінченної рекурентної формули
- існує асимптотична формула

#### 2.5.4 Лінійні діофантові рівняння

$$x_1 + x_2 = \dots + x_k = n$$
$$x_1, x_2, \dots, x_n \in \mathbb{Z}$$
$$n \in \mathbb{N}$$

1.  $x \ge 1$ 

Кількість розвязків = кількість способів розбити n на k доданків - впорядковано, тобто (1+2) та (2+1) – різні. Метод паличок

$$\underbrace{\widetilde{III...I}}^{x_1} + \underbrace{\widetilde{III...I}}_{N} + ... + \underbrace{\widetilde{III...I}}_{N}$$

треба переставити (k-1) знак + на (n-1) місце  $\Rightarrow C_{n-1}^{k-1}$  розв'язків

2.  $x \ge 0$  (де 1 + 0 + 2 і 1 + 2 + 0 -різні)

можна поставити декілька + на одне місце. Отже маємо (k-1) руfr +, та (n+1) місце, а отже:

$$\overline{C_{n+1}^{k-1}}=C_{n+1+k-1-1}^{k-1}=C_{n+k-1}^{k-1}$$
 розв'язків.

Remark 2.6. Альтернативне доведення другого пункту через перший:

$$y_i = x_i + 1, y_i \ge 1, y_1 + y_2 + \dots + y_n = n + k.$$

Отже, маємо  $C_{n+k-1}^{k-1}$  розвязків.

#### 2.5.5 Біном Нютона

$$(a+b)^n = \sum_{k=1}^n C_n^k a^{n-k} b^k$$
 (2.1)

 $C_n^k$  – біноміальні коефіціанти.

# Властивості біноміальних коефіціентів

1. 
$$C_n^k = C_n^{n-k}$$
.

$$\frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!(n-(n-k))!}.$$

2. 
$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$$
.

# Трикутник паскаля

#### 1. Трикутник паскаля

$$2. \ C_k^k + C_{k+1}^k + C_{k+2}^k + \ldots + C_n^k = C_{n+1}^{k+1}. \\ 3. \ C_{n+2}^{k+2} = C_n^{k+2} + 2C_n^{k+1} + C_n^k.$$

3. 
$$C_{n+2}^{k+2} = C_n^{k+2} + 2C_n^{k+1} + C_n^{k}$$

#### 2.5.8 Згортка Вандермонда

$$C_{n+m}^{k} = \sum_{t=0}^{k} C_{m}^{t} C_{n}^{k-t}$$
(2.2)

• для 
$$1 - C_m^0 C_n^k$$

• для 
$$2 - C_m^1 C_n^{k-1}$$

• для 
$$1 - C_m^0 C_n^k$$
  
• для  $2 - C_m^1 C_n^{k-1}$   
• для  $3 - C_m^2 C_n^{k-2}$   
• для  $t - C_m^t C_n^{k-t}$ 

• для 
$$t - C_m^t C_n^{k-t}$$

$$f(x) = (1+x)^n = \sum_{k=0}^n C_n^k x^k.$$

$$x = 1$$
  $2^n = \sum_{k=0}^n C_n^k$ 

$$x = -1$$
  $0 = \sum_{k=0}^{n} (-1)^k C_n^k \Rightarrow C_n^0 + c_N^2 = C_n^1 + C_n^3 + \dots$ 

$$f'(x) = n(1+x)^{n-1} = \sum_{k=0}^{n} C_n^k k x^{k-1}$$

$$x = 1$$
  $n2^{n-1} = \sum_{k=1}^{n} kC_n^k$ 

$$x = -1$$
  $0 = \sum_{k=1}^{n} (-1)^k k C_n^k$ 

$$\int x \, \mathrm{d}x = \frac{x^{n-1}}{n+1} + const$$

$$\int f(x) \, \mathrm{d}x = \left. \frac{f(x)^{n+1}}{(n+1)} \right|_0^x = \frac{(1+x)^n - 1}{n+1} = \sum_{k=0}^n \frac{C_N^k - x^{n+1}}{k+1}$$

$$x = 1$$
 
$$\sum_{k=0}^{n} \frac{C_n^k}{k+1} = \frac{2^{n+1}-1}{n+1}$$

$$x = -1$$
 
$$\sum_{k=0}^{n} \frac{(-1)^{k+1} C_1^k}{k+1} = -\frac{1}{n+1}$$

# 2.6 Булеві функції

Нехай  $V_n = \{0,1\}^n$  – булевий вектор.

## 2.6.1 Булеві функції

**Definition 2.6.1** (Одновиміна булева функція). *Одновиміна булева функція від п* змінних

$$f: V_n \to \{0, 1\}$$
:

 $BF_n$  – множина всіх булевих функцій від n змінних

**Definition 2.6.2** (m-вимірна булева функція). m-вимірна булева функція від n змінних:

$$F: V_n \to V_m$$

 $BF_{n,m}$  – множина усіх булевих функцій

Remark 2.7. Кожна m-вимірна булева функція може бути подана як

$$F(x_1, x_2, ..., x_n) = (f(x_1, ..., x_n), f_2(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$$

де  $f_i$  – координати функції. Звідси

$$BF_{n,m} \sim \underbrace{BF_n \times BF_n \times ... \times BF_n}_{m}$$

Lemma 2.5.

$$|BF_n| = |\{0,1\}^{V_n}| = |\{0,1\}|^{|V_n|} = 2^{2^n}$$
  
 $|BF_{n,m}| = (2^m)^{2^m}$ 

**Definition 2.6.3** (Таблиця інцидентності). *Таблиця інцидентності* – це таблиця співставлення всіх можливих вхідних значень, та відповідних їм значень булевої функції

Зазвичай види значень розташовані лексикографічно, наприклад як на таблиці 2.2.

Вектор значень  $T_f = (t_0, t_1, t_2, ..., t_{2^n-1})$ 

 $t_i = f$  (вектор, що відповідає запису числа i у двійковій системі числення)

1. Нульарна булева функція: 0 та 1.

| X | У | $\mathbf{Z}$ | maj |
|---|---|--------------|-----|
| 0 | 0 | 0            | 0   |
| 0 | 0 | 1            | 0   |
| 0 | 1 | 0            | 0   |
| 0 | 1 | 1            | 1   |
| 1 | 0 | 0            | 0   |
| 1 | 0 | 1            | 1   |
| 1 | 1 | 0            | 1   |
| 1 | 1 | 1            | 1   |

Табл. 2.2: maj – повертає 1, якщо одиниць більше ніж нулів.

#### 2. унарні булеві функції

| $x \mid$ | 0 | 1 | x | $\overline{x}$ |
|----------|---|---|---|----------------|
| 0        | 0 | 0 | 1 | 1              |
| 1        | 0 | 1 | 0 | 1              |

Remark 2.8.  $\overline{x}$ ,  $\neg x$ , not x,  $\overline{x} = 1 - x$ .

#### 3. Бінарні булеві функції

| x               | y |    |     |              |     | $x \to y$ |                  |     |      |
|-----------------|---|----|-----|--------------|-----|-----------|------------------|-----|------|
| $\underline{x}$ | y | OR | AND | $x \equiv y$ | XOR | IMPLY     | $x \leftarrow y$ | NOR | NAND |
| 0               | 0 | 0  | 0   | 1            | 0   | 1         | 1                | 1   | 1    |
| 0               | 1 | 1  | 0   | 0            | 1   | 1         | 0                | 0   | 1    |
| 1               | 0 | 1  | 0   | 0            | 1   | 0         | 1                | 0   | 1    |
| 1               | 1 | 1  | 1   | 1            | 0   | 1         | 1                | 0   | 0    |

- $x \vee y$  дизюнкція (логічне або (OR), disjunction)
- $x \wedge y$  конюкція (логічне та (AND), conjunction)
- $x \equiv y, x \sim y, x \leftrightarrow y$  еквівалентність  $(x \oplus y = \neg(x \sim y))$
- $x \oplus y$  виключне або (exclusive or, (XOR)), додавання за модулем 2
- $x \rightarrow y$  імплікація
- $x \leftarrow y$  зворотна імплікація
- $x \downarrow y$  стрілка Пірса (NOR)  $(x \downarrow y = \neg(x \lor y))$
- x|y штрих Шефера (NAND)
- – константи 0 і 1
- – проектори  $Pr_1(x,y) = x, Pr_2(x,y) = y$
- – заперечення проекторів  $f(x,y) = \overline{x}, f(x,y) = \overline{y}$
- - заперечення імплікації

#### 2.6.2 Алгебраїчні властивості бітових операцій

**Definition 2.6.4** (Булева алгебра).  $\langle \{0,1\}, \{\lor, \&, \sim, \rightarrow, \leftarrow, \downarrow, |, \neg, 0, 1, ...\} \rangle$  – булева алгебра

Remark 2.9. Булева алгебра дуже подібна до алгебри множин:

$$\bullet$$
  $\cup \equiv \lor$ 

$$\bullet$$
  $\varnothing \equiv 0$ 

$$\bullet \cap \equiv \land$$

$$\bullet \subset \equiv \rightarrow$$

• 
$$\mathfrak{U} \equiv 1$$

1. 
$$x \lor x = x \land x = x$$

$$\overline{x} = x$$

$$x \lor (x \& y) = x$$

$$x \& (x \lor y) = x$$
2. 
$$x \lor y = y \lor x$$

$$x \& y = y \& x$$

$$x \oplus y = y \oplus x$$

$$x \land y = y \Rightarrow x$$

$$x \land y \Rightarrow y \Rightarrow x$$

$$x \lor y \Rightarrow y \Rightarrow x$$

$$x \lor$$

Нехай  $\mathcal{F} \subseteq BF_n$ . Формула над  $\mathcal{F}$  – символічний вираз який будується за такими правилами

 $x \sim y = (x \rightarrow y) \& (x \leftarrow y)$ 

1. Будь яка змінна – це формула (літерал)

 $x\&(y\oplus z) = (x\&) \oplus (x\&z)$ 

- 2. Якщо  $t \in \mathcal{F}$ , а  $f_1, f_2, ..., f_n$  це формули, то вираз  $f(f_1, f_2, ..., f_n)$  це також формула (суперпозиція)
- 3. Інших формул не існує

#### Example 2.53.

$$f(x, y, z) = \underbrace{x \vee (y \& x)}_{\mathcal{F}} = \{\lor, \&\}$$
$$g_1(x, y) = x \vee y$$
$$g_2(x, y) = x \& y$$
$$f(x, y, z) = g_1(x, g_2(y, z))$$

Формула  $\varphi$  реалізує булеві функції  $f_i$  які мають однакові таблиці істиності. Еквівалентні формули реалізують одну булеву функцію.

Клас функцій  $\mathcal{F} \subseteq BF_n$  має нормальну форму, якщо існує клас  $\hat{\mathcal{F}} \subseteq BF_n \ \forall f \in \mathcal{F}$  має унікальне представлення формулою над  $\hat{\mathcal{F}}$ .  $\Rightarrow$  перевірка еквівалентності стає простою, – треба перевірити, що відповідні формули над  $\hat{\mathcal{F}}$  співпадають

Формули над  $\hat{\mathcal{F}}$  називають нормальними формами булевих функцій  $f \in \mathcal{F}$ 

#### 2.6.3 Нормальна форма булевих функцій

Нехай  $x \in V_n$ ,  $x = (x_1, x_2, ..., x_n)$ ,  $f(x_1, x_2, ..., x_n) = f(x)$ .

Підфункція булевої функції f – булева функція, яка одержана фіксацією певних вхідних змінних певним значенням.

 $f \in BF_n, f'$  – підфункція одержана фіксацією k зміних  $(f' \in BF_{n-k})$ .

$$f \in BF_n, f_0(x_2, x_3, ..., x_n) = f(0, x_2, ..., x_n), f_1(x_2, x_3, ..., x_n) = f(1, x_2, ..., x_n).$$

**Theorem 2.34** (Розклад Шенона, Розклад Буля).  $\forall f \in BF_n$ 

$$f(x_1, x_2, ..., x_n) = x_1 f_1(x_2, x_3, ..., x_n) \vee \overline{x}_1 f_0(x_2, x_3, ..., x_n).$$

Доведення. Obvious by looking on the function table.

Corollary 2.34.1. Hexaŭ  $a, b \in \{0, 1\}$ ,  $mo\partial i \ a^b = \begin{bmatrix} a, & b = 1 \\ \overline{a}, & b = 0 \end{bmatrix}$ .

$$\Rightarrow f(x_1, x_2, ..., x_n) = \bigvee x_1^{a_1} x_2^{a_2} ... x_k^{a_k} f(a_1, ..., a_k, x_{k+1}, ..., x_n).$$

Corollary 2.34.2. Hexaŭ  $x, u \in V_n$ , modi  $x^u = x_1^{u_1} x_2^{u_2} ... x_n^{u_n}$ .

$$\Rightarrow f(x) = \bigvee_{u \in V_n} f(u)x^u$$

**Definition 2.6.5** (Досконала диз'юнктивна нормальна форма (ДДНФ) функції).

$$\Rightarrow f(x) = \bigvee_{u \in V_n} f(u) x^u$$
 — досконала диз'юнктивна нормальна форма функції

**Corollary 2.34.3.** Довільну булеву функцію можна представити формулою над системою  $\{\lor,\&,\neg\}$ .

Доведення. Якщо  $f(x) \not\equiv 0$ , то такою формулою є ДДНФ. Якщо  $f(x) \equiv 0$ , то  $f(x) = x_1 \& \overline{x}_1$ .

**Definition 2.6.6** (Канонічний базис). *Система*  $\mathcal{F} = \{\lor, \&, \neg\}$  – *канонічний базис* (базис *TA-ABO-HI*).

## 2.6.4 побудова ДДНФ

- 1. Початкова формула порожня
- 2. Для всіх  $u \in V_n$ , для яких f(u) = 1, додає ще через V доданок  $x^u$ . Якщо  $u_i = 1$  ставимо  $x_i$ . Якщо  $u_i = 0$  ставимо  $\overline{x_i}$ .
- 3. Якщо формула залишилась 0, то f константний нуль, що не має ДДНФ

#### Example 2.54.

$$maj(x_1, x_2, x_3) = \overline{x}_1 x_2 x_3 \vee x_1 \overline{x}_2 x_3 \vee x_1 x_2 \overline{x}_3 \vee x_1 x_2 x_3.$$

| $x_1$ | $x_2$ | $x_3$ | $maj(x_1, x_2, x_3)$ |
|-------|-------|-------|----------------------|
| 0     | 0     | 0     | 0                    |
| 0     | 0     | 1     | 0                    |
| 0     | 1     | 0     | 0                    |
| 0     | 1     | 1     | 1                    |
| 1     | 0     | 0     | 0                    |
| 1     | 0     | 1     | 1                    |
| 1     | 1     | 0     | 1                    |
| 1     | 1     | 1     | 1                    |

Елементарна конюнкція – формула, яка містить лише змінні ¬, &.

Дизюнктивна нормальна форма – формула, яка складається з функцій елементарних конюкцій

ДДН $\Phi$  є досконалою, якщо кожний доданок містить кожну змінну або її заперечення.

**Lemma 2.6.** Існує  $2^{3^n}$  ДНФ від n змінних але лише  $2^{2^n}$  ДДНФ

Існують алгоритми мінімізації ДДНФ

**Example 2.55.**  $f(a, b, c) = (a \downarrow b) \oplus (a|b)$ .

- 1.  $a \downarrow b = \overline{a \lor b} = \overline{a} \land \overline{b} = \overline{a}\overline{b}$ .
- 2.  $a|b = \overline{a \wedge b} = \overline{a} \vee \overline{b}$ .
- 3.  $u \oplus v = \overline{u} \vee \overline{v}$ .
- 4.  $(a \downarrow b)(\overline{a} \lor \overline{c}) = \overline{(a \downarrow b)}(a|c) \lor (a \downarrow b)\overline{(a|c)} = (a \lor b)(\overline{a} \lor \overline{C}) \lor \overline{a}\overline{b}ac = (a \lor b)(\overline{a} \lor \overline{c}) \lor \overline{a}\overline{b}ac = a\overline{a} \lor a\overline{c} \lor b\overline{a} \lor \overline{b}\overline{c} = a\overline{c} \lor \overline{a}b \lor b\overline{c}.$
- 5.  $a\overline{c} = a\overline{c}(b \vee \overline{b})$ .

**Definition 2.6.7** (Двоїста функція булевої функції). Двоїста функція булевої функції  $f \in BF_n$ .

$$f^*(x_1, x_2, ..., x_n) = \neg f(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n). \tag{2.3}$$

Example 2.56. Двойста функція булевой функції.

- 1.  $f(x) = \overline{x} \Rightarrow f^*(x) = \neg f(\overline{x}) = \neg(\overline{\overline{x}}) = \overline{x}$ .
- 2.  $f(x,y) = x \vee y \Rightarrow f^*(x,y) = \neg f(\overline{x},\overline{y}) = \neg (\overline{x} \vee \overline{y}) = \overline{\overline{x}} \& \overline{\overline{y}} = xy$ .

∨ та & – пара двоїстих функцій.

#### Lemma 2.7.

$$f^{**}(x) = f(x)$$

Доведення.

$$f^*(x) = \neg f(\overline{x}) \Rightarrow f^{**}(x) = \neg f^*(\overline{x}) = \neg \neg f(\overline{\overline{x}}) = f(x).$$

#### 2.6.5 Побудова двоїстої функції за таблицею істиності

- 1. Перевернути вектор значень догори ногами.
- 2. Інвертуємо всі значення.

**Theorem 2.35** (Про двоїсті функції). Нехай  $\mathcal{F} = \{f\}$ ,  $\mathcal{F}^* = \{f^*\}$ . Якщо  $\varphi$  – це формула над  $\mathcal{F}$ , яка реалізовує функцію F, то функція  $\varphi^*$  одержана шляхом заміни всіх  $f_i$  на  $f_i^*$  реалізує  $F^*$ .

Доведення. Доводиться індукцією за побудовою суперпозиції

Corollary 2.35.1.  $\mathcal{F}_k^* = \mathcal{F}_k \Rightarrow якщо \ в \ ДНФ \ функції \ f \ замінити всі "ТА" на "АБО" і навпаки, то одержимо формулу для <math>f^*$ 

$$f^{*}(x) = \bigvee_{u \in V_{n}} f^{*}(u)x^{u} = \bigvee_{u \in V_{n}} f^{*}(u)x_{1}^{u_{1}}x_{2}^{u_{2}}...x_{n}^{u_{n}} \Rightarrow$$

$$f(x) = \bigwedge_{\substack{u \in V_{n} \\ f^{*}(u)=1}} (x_{1}^{u_{1}} \vee x_{2}^{u_{2}} \vee ... \vee x_{n}^{u_{n}})$$

$$= \bigwedge_{\substack{u \in V_{n} \\ f^{*}(\overline{u})=0}} (x_{1}^{u_{1}} \vee x_{2}^{u_{2}} \vee ... \vee x_{n}^{u_{n}})$$

$$= \bigwedge_{\substack{u \in V_{n} \\ f(\overline{u})=0}} (x_{1}^{u_{1}} \vee x_{2}^{u_{2}} \vee ... \vee x_{n}^{u_{n}})$$

$$f^{*}(u) = 1 \Rightarrow \neg f(\overline{u}) = 1 \Rightarrow f(\overline{u}) = 0$$

$$= \bigwedge_{\substack{u \in V_{n} \\ f(u)=0}} (x_{1}^{\overline{u_{1}}} \vee x_{2}^{\overline{u_{2}}} \vee ... \vee x_{n}^{\overline{u_{n}}})$$

$$f(u) = 0$$

$$\Rightarrow f(x) = \bigwedge_{\substack{u \in V_{n} \\ f(u)=0}} (\overline{x_{1}^{u_{1}}} \vee \overline{x_{2}^{u_{2}}} \vee ... \vee \overline{x_{n}^{u_{n}}})$$

– Досконала конюктивна нормальна форма булевої функції

## 2.6.6 Побудова ДКНФ

- 1. Початкова формула порожня
- 2. Для всіх  $u \in V_n$  таких, що f(u) = 0, ми множимо формулу на множник виду:
  - (a) якщо  $u_i = 1$ , то  $\overline{x}_1$ ,
  - (б) якщо  $u_i =$ , то  $x_1$ ,

Поєднуємо через АБО.

3. Якщо формула залишилась порожня, то формула – це константна 1 що не має ДКН $\Phi$ .

#### Example 2.57.

$$maj(x,x_2,x_3) = (x_1 \lor x_2 \lor x_3)(x_1 \lor x_2 \lor \overline{x_3})(x_1 \lor \overline{x_2} \lor x_3)(\overline{x_1} \lor x_2 \lor x_3)$$

| $x_1$ | $x_2$ | $x_3$ | maj |
|-------|-------|-------|-----|
| 0     | 0     | 0     | 0   |
| 0     | 0     | 1     | 0   |
| 0     | 1     | 0     | 0   |
| 0     | 1     | 1     | 1   |
| 1     | 0     | 0     | 0   |
| 1     | 0     | 1     | 1   |
| 1     | 1     | 0     | 1   |
| 1     | 1     | 1     | 1   |

#### Example 2.58.

$$F(x_1, x_2) = x_1 \to x_2.$$

- 1.  $\Delta \Delta H \Phi \overline{x}_1 \overline{x}_2 \vee \overline{x}_1 x_2 \vee x_1 x_2$ ,
- 2.  $AKH\Phi \overline{x}_1 \vee x_2$ .

**Definition 2.6.8** (Елементарна диз'юнкція). *Елементарна диз'юнкція* – формула, що містить лише змінні, заперечення та  $\vee$ .

**Definition 2.6.9** (Кон'юнктивна нормальна форма). *Кон'юнктивна нормальна форма* – формула, яка  $\epsilon$  кон'юнкцією елементарних диз'юнкцій.

**Definition 2.6.10** (КНФ досконала).  $KH\Phi$  досконала, якщо кожний множник містить змінну або її заперечення.

# 2.6.7 Алгебраїчні нормальні форми

**Definition 2.6.11** (Поліноміальний базис).  $\mathcal{F} = \{\&, \oplus, 1\}$  – поліноміальний базис.

**Theorem 2.36.** Будь яку булеву функцію можна представити у вигляду формули над  $\mathcal{F}$ .

Доведення.

$$\begin{array}{c} xy \to xy \\ \overline{x} \to x \oplus 1 \\ x \lor y \to x \oplus y \oplus xy \end{array}$$

 $\forall f \in BF_n$  – зображено формулою над  $\mathcal{F}_K \Rightarrow$  існує формула над  $\mathcal{F}_K$ 

#### 2.6.8 Поліном Жегалкіна

$$F(x_1, x_2, ..., x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus ... \oplus a_n x_n$$
$$\oplus a_{1,2} x_1 x_2 \oplus a_{1,3} x_1 x_3 \oplus ... \oplus a_{n-1,n} x_{n-1} x_n \oplus$$
$$\oplus a_{1,2,3} x_1 x_2 x_3 \oplus ...$$

де  $a_n \in \{0, 1\}.$ 

**Lemma 2.8.**  $ichye 2^{2^n}$  різних поліномів Жегалкіна від n змінних.

Доведення. 1.  $2^n$  – доданків  $\leq 2^{2^n}$  поліномів.

- 2. Два різних поліноми задають дві різні булеві функції
  - (a)  $\exists a \neq \Rightarrow n \neq 0$ .

Беремо найкоротший доданок і ставимо його 1, інші  $0 \Rightarrow$  цей доданок 1, інші  $0 \Rightarrow$  поліном Жегалкіна = 1.

Якщо два різні поліноми Жегалкіна ркалізують одну булеву функцію, то їх  $\oplus = 0$ , але сума різних поліномів Жегалкіна є поліномом жегалкіна із не нульовими коефіціентами  $\Rightarrow$  сума  $\neq 0$ .

**Theorem 2.37** (Жегалкіна). Кожна булева функція має представлення у виді полінома Жигалкіна.

Це представлення – це алгебраїчна нормальна форма булевих функцій.

Кожний полінома Жигалкіна – булева функція

Кількість поліномів Жигалкіна = кількості булевих функцій

⇒ кожна булева функція має власний поліном Жигалкіна

# 2.6.9 Побудова АНФ за ДНФ

- 1. Будуємо ДНФ
- 2. Всі ∨ замінюємо на ⊕.
- 3. Всі  $\overline{x}$  замінюємо на  $(1 \oplus x)$ .
- 4. Розкриваємо дужки

Lemma 2.9.  $x, u, v \in V_n, \quad u \neq v$ 

$$x^u \& x^v = 0$$
$$x^u \lor x^v = x^u \oplus x^v$$

Доведення. 1. 
$$u \neq v \Rightarrow x^u \neq x^v \Rightarrow x^u \& x^v = 0$$
  
2.  $u \neq v \Rightarrow x^u \neq x^v \Rightarrow x^u \lor x^v = 1$ ,  $u \neq v \Rightarrow x^u \neq x^v \Rightarrow x^u \oplus x^v = 1$ ,  $\Rightarrow x^u \lor xv = x^u \oplus x^v$ .

Example 2.59.

$$maj(x_{2}, x_{2}, x_{3}) = \overline{x}_{1}x_{2}x_{3} \lor x_{1}\overline{x}_{2}x_{3} \lor x_{1}x_{2}\overline{x}_{3} \lor x_{1}x_{2}x_{3}$$

$$= (1 \oplus x_{1})x_{2}x_{3} \oplus x_{1}(1 \oplus x_{2})x_{3} \oplus x_{1}x_{2}(1 \oplus x_{3}) \oplus x_{1}x_{2}x_{3}$$

$$= x_{2}x_{3} \oplus x_{1}x_{2}x_{3} \oplus x_{1}x_{3} \oplus x_{1}x_{2}x_{3} \oplus x_{1}x_{2} \oplus x_{1}x_{2}x_{3} \oplus x_{1}x_{2}x_{3}$$

$$= x_{2}x_{3} \oplus x_{1}x_{3} \oplus x_{1}x_{2}$$

$$a, b \in \{0, 1\}$$
  $a^b = \begin{cases} a & b = 1 \\ \overline{a} & b = 0 \end{cases}$ 

$$x, u \in V_n$$
  $x^u = x_1^{u_1} x_2^{u_2} ... x_n^{u_n}$ 

$$a^{(b)} = \begin{cases} a & b = 1\\ 1 & b = 0 \end{cases}$$

$$x, u \in V_n$$
  $x^{(u)} = x_1^{(u_1)} x_2^{(u_2)} ... x_n^{(u_n)}$ 

Example 2.60. 1.  $x^{101} = x_1 \overline{x}_2 x_3$ .

2. 
$$x^{1000} = \overline{x}_1 \overline{x}_2 \overline{x}_3$$
.

3. 
$$x^{(101)} = x_1 x_3$$
.

4. 
$$x^{1000()} = 1$$
.

$$\Rightarrow f(x) = \bigoplus_{u \in V_n} a_u x^{(u)} \tag{2.4}$$

Claim 2.21 (Твердження Шенона для поліноміального базису).

$$f(x_1, x_2, ..., x_n) = x_1(f_1(x_2, ..., x_n) \oplus f_0(x_2, ..., x_n)) \oplus f_0(x_2, ..., x_n)$$
(2.5)



Рис. 2.1: Перетворення в АНФ

Доведення.

$$f = x_1 f_1 \vee \overline{x}_1 f_0$$

$$= x_1 f_1 \oplus \overline{x}_1 f_0 \oplus x_1 \overline{x}_1 f_1 f_0$$

$$= x_1 f_1 \oplus \overline{x}_1 f_0$$

$$= x_1 f_1 \oplus (1 \oplus x_1) f_0$$

$$= x_1 (f_1 \oplus f_0) \oplus f_0$$

Theorem 2.38 (Теорема Мебіуса).

$$a_u = \bigoplus_{x \le u} f(x), \qquad f(x) = \bigoplus_{u \le x} a_u.$$
 (2.6)

## 2.6.10 Побудова АНФ за таблицею істиності

- 1. Ділимо стовичик значень навпіл,
- 2. Додаємо верхню частину до нижньої,
- 3. Повторюємо рекурсивно для верхньої і нижньої частин.

На виході: отримаємо вектор коефіцієнтів впорядкованих лексикографічно 2.1.

$$maj(x_1, x_2, x_3) = x_2x_3 \oplus x_1x_3 \oplus x_1x_2.$$

**Example 2.61.**  $a_{101}$  - ?  $Bermop\ 101\ домінує\ над\ 000,\ 100,\ 001\ ma\ 101.$ 

$$\Rightarrow a_{101} = f(000) \oplus f(001) \oplus f(100) \oplus f(101) = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

# 2.6.11 Замкнені класи булевих функцій

Замикання класу  $\mathcal{F}$  — множина всіх булевих функцій які реалізуються формулами над  $\mathfrak{F}$ ,  $[\mathcal{F}]$ 

Замкнений клас:  $[\mathfrak{F}] = \mathcal{F}$ 

Повний клас:  $\mathcal{F} = BF_n$ 

Базис – повний клас і  $\forall \mathcal{F}' \subset \mathcal{F}, ([\mathcal{F}'] \neq [\mathcal{F}])$ 

 $BF_n$  – замкнений клас

$$\mathcal{F}_A = \{\&, \oplus, 1\}$$
 — базис

$$\mathcal{F}_K = \{\&, \lor, \lnot\}$$
 — певний клас  $x \lor y = \lnot(x\& \overline{y}).$ 

$$\{\&, \neg\}$$
 і  $\{\lor, \neg\}$  – базиси.

## 2.6.12 Класи функцій

Клас функцій що зберігають нуль

$$T_0 = \{f | f(0, 0, ..., 0) = 0\}.$$

Клас функцій які збурігають одиницю

$$T_1 = \{f | f(1, 1, ..., 1) = 1\}.$$

Клас самодвоїстих функцій

$$S = \{ f | f = f^* \}.$$

Клас афінних (лінійних) функцій

$$A = \{f | f(x_1, x_2, ..., x_n) = a_0 \oplus a_1 x_1 \oplus ... \oplus a_n x_n\}, a \in \{0.1\}.$$

Клас монотонних функцій

$$M = \{ f | \forall x, y \in V_n x < y \Rightarrow f(x) \le f(y) \}.$$

**Lemma 2.10.** Класи  $T_0, T_1, S, A, M$  не вкладаються один y інший

# 2.6.13 Критерій повноти системи булевих функцій

Claim 2.22. *Класи*  $T_0$ ,  $T_1$ , S, A, M  $\epsilon$  замкнені.

Доведення. page 72 ————

- замкнений
- замкнений
- замкнений
- замкнений

- замкнений
- замкнений

Необхідна і достатня умова того, що система булевих функцій є повною

Якщо то з підстановкою або можна одержати константу

Приклад

Лемма 2 Якщо то підстановкою можна одержати

Монотонність Якщо та відрізняються лише у бітах, то можна побудувати послідовність

та, відрізняються в одному біті

Приклад

лемма<br/>3 Якщо тоді підстановкою або інвертуваннями її значення, можна отримати афінна  ${\rm AH}\Phi$  містить доданок із не менше ніж з двома змінними.

Нехай це змінна та

Нехай так, щоб

Якщо то Якщо то

Приклади

Теорема Пост

– повна

Необхідність

Якщо Якщо – замкнений, то

Достатність Побудуємо константи 0 та 1

Якщо, то То

Якщо За леммою змінимо на заперечення отриману константу

За лемою 2 з констант ми можемо одержати заперечення

За лемою 3 з констант, заперечення та отримуємо

Наслідок1 Класи — передповні класи (що не є повні, але будуть кошдобавити одну функцію)

За теоремою Поста не вистачає для повноти

Наслідок 2 Всі замкнені класи ж підмножинами хоча б одног з класів

Наслідок З З повного класу можна обрати повний підклас у якому буде не тільки ніж у функції

Приклади

- базис
- базис
- базиси

Теорма Пост Існує 40 типів замкнених класів булевих функцій Загальна кількість класів замкнених булевих функцій — зліченна Лемма

Теорема Уорд Ланель

Клейтман та Марковських

- 2.7 Вступ до теорії графів
- 2.8 Абстрактні автомати
- 2.9 Формальні граматики

# Бібліоґрафія

 $[\mathrm{BS}15]$  Dan Boneh and Victor Shoup. A graduate course in applied cryptography, 2015.