```
In [1]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
In [2]:
         # load the data into pandas dataframes
         demographic_data = pd. read_excel("Table 1.xlsx")
         genitive_plurals = pd.read_excel("Table 2.xlsx")
         demographic_data.head()
Out[2]:
                                                        Length of interview (1 = less 30 min, 2 = 30 min to
                                                                                                      Village
                                 Religion Gender Age
                       Speaker
                                                           1 hour,3=1 hour to 2 hours, 4=over two hours)
         O Cases\\Speakers\\B10
                                  Skotadi
                                            Male
                                                                                                      Bonriki
                                                   53
         1 Cases\\Speakers\\B11
                                Drepadian
                                          Female
                                                   51
                                                                                                      Bonriki
         2 Cases\\Speakers\\B12
                                Drepadian
                                            Male
                                                                                                     Bonriki
                                                    60
                                                                                                   2 Bonriki
         3 Cases\\Speakers\\B13
                                 Thalassic
                                            Male
                                                   45
                                                                                                   2 Bonriki
         4 Cases\\Speakers\\B14
                                 Thalassic
                                            Male
                                                   48
In [3]:
         # extract the 'nid' column from 'speaker' column of table_1
         demographic_data['Nid'] = demographic_data['Speaker'].str.split('\\').str[-1]
         # drop the 'Speaker' column since it's no longer needed
         demographic_data. drop(columns=['Speaker'], inplace=True)
In [4]:
         # Check for missing values in demographic_data
         missing values = demographic data.isnull().sum()
         print(missing values)
         # Check for missing values in genitive_plurals
         missing_values = genitive_plurals.isnull().sum()
         print(missing_values)
         Religion
         0
         Gender
         0
         Age
         0
         Length of interview (1 = less 30 min, 2 = 30 min to 1 hour, 3=1 hour to 2 hours, 4=over two hour
         _{\rm S})
         Village.
         0
         Nid
         dtype: int64
         Nid
                   0
                   0
         A7.
         B7.
                   0
         C7.
                   0
         D7
                   0
         E7.
                   0
         F7
                   0
         G7.
                   0
         H7.
                   0
         17
                   0
         Total
                   0
         dtype: int64
         # Check the tables
In [5]:
         print(demographic_data)
         print(genitive_plurals)
```

```
Religion Gender
                                   Age
         0
                Skotadi
                            Male.
                                    53.
         1
              Drepadian Female
                                    51
         2
              Drepadian.
                            Male
                                    60
                                   45
         3
              Thalassic
                            Male
         4
              Thalassic
                            Male
                                   48
                    . . .
             Drepadian Female
         57
                                   67
         58
                Skotadi
                         Female.
                                   49
         59
             Drepadian Female
                                    73
         60
                Skotadi Female
                                    54
         61
             Drepadian Female
                                    30
             Length of interview ( 1 = less 30 min, 2 = 30 min to 1 hour, 3=1 hour to 2 hours, 4=over two
         0.
                                                                   2.
                                                                   2
                                                                   2
         3
                                                                   2
                                                                   3
         58
                                                                   2
         59
                                                                   4
         60
                                                                   2
         61
                                                                   4
                 Village Nid
         0
                 Bonriki
                           B10
                 Bonriki
                           B11
         1
         2
                 Bonriki B12
         3
                 Bonriki
                           B13
         4
                 Bonriki
                           B14
                           . . .
         . .
             Nawerewere.
                           Z10.
         57.
         58.
                            Z2.
             Nawerewere
         59
             Nawerewere
                            Z4.
         60
                            Z5.
             Nawerewere
         61
             Nawerewere
                            Z7.
         [62 rows x 6 columns]
                     A7.
                          B7.
                              C7.
                Nid
                                   D7
                                       E7.
                                           F7
                                                G7
                                                    H7
                                                         17
                                                             Total
         0
                B10
                           2
                               0
                                   0
                                        0
                                                     0
                                                          0
         1
                B11
                      0
                           0
                               0
                                    0
                                        0
                                            0
                                                 0
                                                     0
                                                          0
                                                                 0
         2
                B12
                      0
                           0
                               0
                                    0
                                        0
                                            0
                                                 0
                                                     0
                                                          0
                                                                 0
         3
                B13
                      0
                           0
                               0
                                    0
                                        0
                                            0
                                                 0
                                                     0
                                                                 0
                                        0
                                                 0
                                                     0
                                                                  2
                B14
                           1.
                               0
                                    0
                      1
         58
                 Z2
                           0
                               0
                                    0
                                        0
                                                     0
         59.
                 Z4.
                      3.
                           1
                               0
                                    0
                                        1
                                            0
                                                 1
                                                     0
                                                          0
                                                                 6
         60
                 Z5.
                      0
                           0
                                    0
                                        0
                                                 0
                               0
                                            0
                                                     0
                                                          0
                                                                 0
         61
                 Z7.
                      0
                           0
                               0
                                    0
                                        0
                                            0
                                                 0
                                                     0
                                                          0
                                                                 0
         62
             Total
                     98
                         32
                                    1
                                       46
                                             2
                                                 9
                                                     5
                                                          1
                                                               196
         [63 rows x 11 columns]
         # merge the two tables on the 'Mid' column
In [6]:
         merged_table = pd.merge(demographic_data, genitive_plurals, on='Nid')
         merged_table
In [7]:
```

Out[7]:		Religion	Gender	Age	Length of interview (1 =less 30 min, 2 = 30 min to 1 hour,3=1 hour to 2 hours, 4=over two hours)	Village	Nid	Α7	В7	C 7	D7	E7	F7	G7	Н7	17	Total
	0	Skotadi	Male	53	2	Bonriki	B10	2	2	0	0	0	0	0	0	0	4
	1	Drepadian	Female	51	1	Bonriki	B11	0	0	0	0	0	0	0	0	0	0
	2	Drepadian	Male	60	2	Bonriki	B12	0	0	0	0	0	0	0	0	0	0
	3	Thalassic	Male	45	2	Bonriki	B13	0	0	0	0	0	0	0	0	0	0
	4	Thalassic	Male	48	2	Bonriki	B14	1	1	0	0	0	0	0	0	0	2
	•••	•••	•••		•••	•••											
	57	Drepadian	Female	67	3	Nawerewere	Z10	1	0	0	0	0	0	1	0	0	2
	58	Skotadi	Female	49	2	Nawerewere	Z2	0	0	0	0	0	0	0	0	0	0
	59	Drepadian	Female	73	4	Nawerewere	Z4	3	1	0	0	1	0	1	0	0	6
	60	Skotadi	Female	54	2	Nawerewere	Z5	0	0	0	0	0	0	0	0	0	0
	61	Drepadian	Female	30	4	Nawerewere	Z 7	0	0	0	0	0	0	0	0	0	0

62 rows × 16 columns

```
In [8]:
         # Compute summary statistics for age
         age_summary = merged_table['Age']. describe()
         print(age_summary)
         # Compute summary statistics for the number of times each form was used
         form counts = merged table. iloc[:, -10:-1]. sum()
         form_summary = form_counts.describe()
         print(form_summary)
         # Plot a histogram of age
         plt. hist(merged_table['Age'])
         plt. title('Age Distribution')
         plt. xlabel('Age')
         plt. ylabel('Frequency')
         plt. show()
         # Plot a histogram of Religion
         plt. hist(merged_table['Religion'])
         plt. title('Religion Distribution')
         plt. xlabel('Religion')
         plt. ylabel('Frequency')
         plt. show()
         # Plot a bar chart of gender
         gender_counts = merged_table['Gender']. value_counts()
         plt. bar(gender_counts. index, gender_counts. values)
         plt. title('Gender Distribution')
         plt. xlabel('Gender')
         plt. ylabel('Count')
         plt. show()
```

count 62.00000
mean 60.806452
std 13.048257
min 30.000000
25% 52.000000
50% 64.000000
75% 71.000000
max 80.000000
Name: Age, dtype: float64
count 9.000000
count 9.000000
count 9.000000 mean 21.777778
count 9.000000 mean 21.777778 std 32.771092
count 9.000000 mean 21.777778 std 32.771092 min 1.000000
count 9.000000 mean 21.777778 std 32.771092 min 1.000000 25% 2.000000
count 9.000000 mean 21.777778 std 32.771092 min 1.000000 25% 2.000000 50% 5.000000

Age

Gender Distribution 40 30 10 Female Gender Male

```
In [9]: # Calculate the correlation matrix
    corr_matrix = merged_table.iloc[:, -10:-1].corr()

# Plot a heatmap of the correlation matrix
    sns. heatmap(corr_matrix, annot=True, cmap='coolwarm')
    plt. title('Correlation Matrix')
    plt. show()
```



```
In [10]: # Group by gender and calculate the sum of counts for each form
    gender_counts = merged_table.groupby('Gender')[['A7', 'B7', 'C7', 'D7', 'E7', 'F7', 'G7', 'H7',

# Plot a bar chart of the counts by gender
    gender_counts.plot(kind='bar')
    plt. title('Counts by Gender')
    plt. xlabel('Form')
    plt. ylabel('Count')
    plt. show()
```



```
In [11]: # Group by Religion and calculate the sum of counts for each form
Religion_counts = merged_table.groupby('Religion')[['A7', 'B7', 'C7', 'D7', 'E7', 'F7', 'G7', '
# Plot a bar chart of the counts by Religion
Religion_counts.plot(kind='bar')
plt.title('Counts by Religion')
plt.xlabel('Form')
plt.ylabel('Count')
plt.show()
```



```
In [12]: # Group by Length of interview and calculate the sum of counts for each form
    Length_counts = merged_table. groupby('Length of interview ( 1 =less 30 min, 2 = 30 min to 1 hou

# Plot a bar chart of the counts by Length of interview
    Length_counts. plot(kind='bar')
    plt. title('Counts by Length of interview')
    plt. xlabel('Form')
    plt. ylabel('Form')
    plt. show()
```



```
In [13]: # Group by Length of interview and calculate the sum of counts for each form
   Village_counts = merged_table. groupby('Village')[['A7', 'B7', 'C7', 'D7', 'E7', 'F7', 'G7', 'H7']

# Plot a bar chart of the counts by Length of interview
   Village_counts. plot(kind='bar')
   plt. title('Village')
   plt. xlabel('Form')
   plt. ylabel('Count')
   plt. show()
```


In []: