Correzione III Appello 10 settembre 2009

• Mostrare se i sequenti di seguito sono derivabili o meno in LI e LC:

1.

$$A \vee B \vdash \neg B \rightarrow \neg A$$

non è derivabile in LC, e neppure in LI.

Per provarlo, basta vedere che nella tabella di verità di

$$\neg (A \lor B) \lor (\neg B \to \neg A)$$

se si dà valore 1 ad A e valore O a B allora $A \vee B$ risulta 1, mentre $\neg B \to \neg A$ è 0 e quindi $\neg (A \vee B) \vee (\neg B \to \neg A)$ risulta di valore 0.

2.

$$\vdash \neg \neg (\neg A \lor A) \lor \bot$$

è derivabile in LI e quindi in LC ad esempio come segue

$$\frac{\text{ax-id}}{A \vdash A} \xrightarrow{A \lor A} \lor -\text{re}_{2} \quad \text{ax-id} \\
\frac{\bot \vdash \bot}{\bot \vdash \bot} \to -\text{re}$$

$$\frac{\neg(\neg A \lor A), A \vdash \bot}{\neg(\neg A \lor A) \vdash \neg A} \neg -\text{F}} \xrightarrow{\neg(\neg A \lor A) \vdash \neg A \lor A} \lor -\text{re}_{1} \quad \text{ax-id} \\
\frac{\bot \vdash \bot}{\bot \vdash \bot} \to -\text{re}^{*}$$

$$\frac{\neg(\neg A \lor A) \vdash \bot}{\vdash \neg \neg(\neg A \lor A)} \neg -\text{F}} \xrightarrow{\vdash \neg \neg(\neg A \lor A) \lor \bot} \lor -\text{re}_{2}$$

3.

$$\exists x \, C(x) \lor \forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)$$

è derivabile in LI e quindi in LC ad esempio come segue

$$\begin{array}{ccc} \operatorname{ax-id} & \operatorname{ax-id} \\ \underline{C(x) \vdash C(x)} & \vee - \operatorname{re}_1 & \underline{C(x) \vdash C(x)} & \vee - \operatorname{re}_1 \\ \underline{C(x) \vdash \exists x \, (C(x) \lor \bot)} & \exists - \operatorname{re} & \underline{C(x) \vdash \exists x \, (C(x) \lor \bot)} & \exists - \operatorname{re} \\ \underline{\exists x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \exists - \operatorname{F} & \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\exists x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \exists - \operatorname{F} & \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_1 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash \exists x \, (C(x) \lor \bot)} & \forall - \operatorname{re}_2 \\ \underline{\forall x \, C(x) \vdash$$

ove l'applicazione di $\exists -F$ è possibile perchè x non è libera nel resto del sequente.

4.

$$\vdash \forall x (x = y \& \bot)$$

NON è derivabile in LC e quindi nemmeno in LI.

Per dimostrarlo mostriamo che

$$\forall x (x = y \& \bot) \vdash \bot$$

è derivabile in LC come segue

$$\frac{\overset{\text{id-ax}}{\bot \vdash \bot}}{x = y \& \bot \vdash \bot} \& -\text{re}_2$$

$$\forall x (x = y \& \bot) \vdash \bot \forall -\text{re}$$

Chiamiamo π_1 tale derivazione.

Ora se esistesse una derivazione π_2 di $\vdash \forall x \, (x = y \& \bot)$ otterremmo che in LC è derivabile il falso, in quanto in LC con composizioni, equivalente a LC, si otterrebbe una derivazione del falso come segue

$$\begin{array}{cccc}
\pi_{2} & \pi_{1} \\
\vdots & \vdots \\
\vdash \forall x (x = y \& \bot) & \forall x (x = y \& \bot) \vdash \bot \\
\hline
\vdash \vdash & & \text{comp}_{sx}
\end{array}$$

Ma sappiamo che LC è consistente, ovvero non deriva il falso, e dunque avendo trovato una contraddizione dalla supposta esistenza di π_2 si conclude che la derivazione π_2 NON esiste.

5.

$$\vdash \forall x \; \exists y \; (x = y \lor \bot)$$

è derivabile in LI e quindi in LC per esempio come segue:

$$\begin{array}{c} = -ax \\ \vdash x = x \\ \hline \vdash x = x \lor \bot \\ \vdash \exists y \ (x = y \lor \bot) \\ \vdash \forall x \ \exists y \ (x = y \lor \bot) \end{array} \forall -re$$

ove l'applicazione di \forall -F è possibile perchè x non è libera nel resto del sequente.

- L'esercizio di formalizzare in sequente alcune argomentazioni si svolge come segue:
 - 1. L'argomentazione

Chi legge molto sa molto.

Chi non legge molto non sa molto.

ove si consiglia di usare:

L(x)=x legge molto

S(x)=x sa molto

si formalizza come segue:

$$\forall x \ (L(x) \to S(x)) \vdash \forall x \ (\neg L(x) \to \neg S(x))$$

Tale sequente NON è derivabile in LC, e quindi neppure in LI, poichè se esistesse una sua derivazione, diciamo π , in LC, per il teorema di sostituzione allora esisterebbe una derivazione $\pi[L(x)/P,S(x)/Q]$

$$\forall x\ (\ P \to Q\) \vdash \forall x\ (\ \neg P \to \neg Q\)$$

ottenuta sostituendo in π le formule L(x), S(x) rispettivamente con COSTANTI PROPOSIZIONALI P, Q che non dipendono da x.

Ora si noti che

$$\frac{\text{ax-id}}{P \to Q \vdash P \to Q}$$
$$\frac{P \to Q \vdash \forall x \ (P \to Q)}{P \to Q \vdash \forall x \ (P \to Q)} \ \forall -F$$

è una derivazione, diciamo π_1 , in LC (visto che x non compare in P, Q si può applicare senza problemi $\forall -F$).

Parimenti si ottiene una derivazione π_2 di

$$\frac{\text{ax-id}}{\neg P \to \neg Q \vdash \neg P \to \neg Q} \frac{\neg P \to \neg Q}{\forall x \ (\neg P \to \neg Q) \vdash \neg P \to \neg Q} \ \forall -\text{re}$$

Allora componendo si otterrebbe una derivazione in LC con composizioni del tipo

$$\begin{array}{c}
\pi_{1} & \pi[L(x)/P, S(x)/Q] \\
\vdots & \vdots \\
P \to Q \vdash \forall x \ (P \to Q) & \forall x \ (P \to Q) \vdash \forall x \ (\neg P \to \neg Q) \\
\hline
P \to Q \vdash \vdash \forall x \ (\neg P \to \neg Q) & \vdots \\
& \forall x \ (\neg P \to \neg Q) \vdash \neg P \to \neg Q \\
\hline
P \to Q \vdash \neg P \to \neg Q & \text{comp}_{sx}
\end{array}$$

Ma in realtà il sequente

$$P \to Q \vdash \neg P \to \neg Q$$

NON è derivabile in LC. Infatti ispezionando le tabelle di verità delle formule coinvolte, se si pongono i valori $P=0,\ Q=1$ allora $P\to Q$ risulta di valore 1 mentre $\neg P\to \neg Q$ di valore 0 e dunque

$$\neg (P \to Q) \lor (\neg P \to \neg Q)$$

assume valore 0.

Dunque il sequente iniziale NON è derivabile in LC in quanto dall'assunzione della sua derivabilità siamo giunti ad una contraddizione.

2. L'argomentazione

Le persone che non amano gli animali approvano la caccia.

Giorgio non approva la caccia.

Giorgio ama gli animali.

ove si consiglia di usare:

A(x)= x ama gli animali

C(x)=x approva la caccia

g= Giorgio

si formalizza come segue:

$$\forall x \ (\neg A(x) \to C(x)), \neg C(g) \vdash A(g)$$

e si può derivare in LC, ad esempio come segue:

$$\frac{\neg -\operatorname{ax}_{dx2} \qquad \neg -\operatorname{ax}_{sx2}}{\neg C(g) \vdash \neg A(g), A(g) \qquad \neg C(g), C(g) \vdash A(g)} \rightarrow -\operatorname{S}$$

$$\frac{\neg C(g), \neg A(g) \rightarrow C(g) \vdash A(g)}{\neg C(g), \forall x \ (\neg A(x) \rightarrow C(x)) \vdash A(g)} \forall -\operatorname{re}$$

$$\frac{\neg C(g), \forall x \ (\neg A(x) \rightarrow C(x)), \neg C(g) \vdash A(g)}{\forall x \ (\neg A(x) \rightarrow C(x)), \neg C(g) \vdash A(g)} \forall -\operatorname{re}$$

Ma il sequente sopra NON è derivabile in LI. Per mostrarlo basta ricordare che per il teorema di sostituzione se esistesse una derivazione π di

$$\forall x \ (\neg A(x) \to C(x)), \neg C(g) \vdash A(g)$$

allora esisterebbe una derivazione $\pi[A(x)/K, C(x)/\neg K]$ del sequente

$$\forall x \ (\neg K \to \neg K), \neg \neg K \vdash K$$

ottenuta sostituendo in π la formula A(x) con una COSTANTE PROPOSIZIONALE K che non dipende da x e C(x) con $\neg K$.

Ora si noti che

$$\frac{\text{ax-id}}{\neg K \vdash \neg K} \rightarrow -F$$

$$\vdash \neg K \rightarrow \neg K \rightarrow -F$$

$$\vdash \forall x \ (\neg K \rightarrow \neg K)$$

è una derivazione, diciamo π_1 in LI, (visto che x non compare in K si può applicare senza problemi $\forall -F$).

Allora componendo si otterrebbe una derivazione in LI con composizioni del tipo

$$\begin{array}{c}
\pi_{1} & \pi[A(x)/K, C(x)/\neg K] \\
\vdots & \vdots \\
\vdash \forall x \ (\neg K \to \neg K) & \forall x \ (\neg K \to \neg K), \ \neg \neg K \vdash K \\
\hline
\frac{\neg \neg K \vdash K}{\vdash \neg \neg K \to K} \to -F
\end{array}$$
 comp_{sx}

Ma ciò non è possibile perchè non esiste in LI con composizioni (essendo equivalente a LI) una derivazione della legge della doppia negazione ovvero di $\vdash \neg \neg K \to K$. Dunque il sequente iniziale non è derivabile in LI, in quanto dall'assunzione della sua derivabilità siamo giunti ad una contraddizione.

• L'esercizio di formalizzare la seguente argomentazione in sequente e derivare quest'ultimo in LC:

Il programma non si ferma su un'unico input.

Il programma non si ferma su zero.

Zero è diverso da uno.

Zero è uguale a zero più zero.

Il programma si ferma su uno e non si ferma su zero più zero.

ove si consiglia di usare:

P(x)= Il programma si ferma sull'input x

0=zero

0+0= zero più zero 1=uno

si può svolgere come segue:

una sua formalizzazione risulta essere

$$\exists x\, \neg P(x) \,\,\&\,\, \forall y \forall z (\, \neg P(y) \& \neg P(z) \to y = z\,)\,,\, \neg P(0)\,,\, 0 \neq 1\,,\, 0 = 0 + 0 \vdash P(1) \& \neg P(0 + 0)$$

che è derivabile in LC ad esempio come segue:

$$\begin{array}{c}
\pi_1 \\
\vdots \\
\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(0)\&\neg P(1), P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, 0 = 1 \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \neg P(0)\&\neg P(1), P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \neg P(0)\&\neg P(1) \to 0 = 1 \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \forall z(\neg P(0)\&\neg P(z) \to 0 = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \forall z(\neg P(0)\&\neg P(z) \to 0 = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

$$\begin{array}{c}
\neg P(0), 0 \neq 1, 0 = 0 + 0, \exists x \neg P(x)\&\forall y\forall z(\neg P(y)\&\neg P(z) \to y = z) \vdash P(1)\&\neg P(0 + 0)
\end{array}$$

ove π_1 è la seguente derivazione

$$\begin{array}{c} \text{ax-id}^* & \pi_2 \\ \neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(0), P(1) \& \neg P(0 + 0) & \vdots \\ \hline \neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(1), P(1) \& \neg P(0 + 0) \\ \hline \hline \neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(0) \& \neg P(1), P(1) \& \neg P(0 + 0) \\ \end{array} \& - \mathbf{D}$$

e π_2 è la seguente derivazione

$$\frac{\text{ax-id}^*}{\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash P(1), \neg P(1)} \frac{\neg P(0), 0 \neq 1 \vdash \neg P(0), \neg P(1)}{\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(0 + 0), \neg P(1)} = -F$$

$$\frac{\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash P(1) \& \neg P(0 + 0), \neg P(1)}{\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(1), P(1) \& \neg P(0 + 0)} \text{sc}_{sx}$$

$$\frac{\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(1), P(1) \& \neg P(0 + 0)}{\neg P(0), 0 \neq 1, 0 = 0 + 0 \vdash \neg P(1), P(1) \& \neg P(0 + 0)} \text{sc}_{sx}$$

- Nell'aritmetica di Heyting $HA = LI + comp_{sx} + comp_{dx}$ si mostra che:
 - 8. $\vdash \forall x \ (x + 0 = x \cdot 0)$ NON è derivabile perchè in HA è derivabile

$$\forall x (x+0=x\cdot 0) \vdash \perp$$

Chiamiamo π una sua derivazione (vedi sotto).

Ora se esistesse una derivazione π_0 di $\vdash \forall x \ (x + 0 = x \cdot 0)$ in HA otterremmo che in HA è derivabile il falso ad esempio come segue

$$\begin{array}{ccc}
\pi_{0} & \pi \\
\vdots & \vdots \\
\vdash \forall x (x+0=x\cdot 0) & \forall x (x+0=x\cdot 0) \vdash \bot \\
\hline
\vdash \bot & \text{comp}_{sx}
\end{array}$$

Ma sappiamo che HA è consistente, ovvero non deriva il falso, e dunque avendo trovato una contraddizione dalla supposta esistenza di π_0 si conclude che la derivazione π_0 NON esiste. Infine mostriamo una derivazione di

$$\forall x (x+0=x\cdot 0) \vdash \perp$$

che possiamo scegliere come la derivazione π menzionata sopra. Essa è la seguente

$$\begin{array}{ccc}
\pi_2 & \pi_1 \\
\vdots & \vdots \\
1+0=1\cdot 0\vdash 1=0 & 1=0\vdash \bot \\
\hline
\frac{1+0=1\cdot 0\vdash \bot}{\forall x\;(x+0=x\cdot 0)\vdash \bot}\;\forall -\text{re}
\end{array}$$

ove π_1 è la seguente derivazione

$$\frac{1 = 0, s(0) \neq 0 \vdash \bot}{1 = 0, \forall x (s(x) \neq 0) \vdash \bot} \forall -\text{re} \\
\frac{\vdash \text{Ax 1.} \quad 1 = 0, \forall x (s(x) \neq 0) \vdash \bot}{1 = 0, \forall x (s(x) \neq 0) \vdash \bot} \text{comp}_{sx}$$

ricordando che $1 \equiv s(0)$ e π_2 è la seguente derivazione

e π_3 è la seguente derivazione

$$\begin{array}{c} \text{ax-id} \\ \frac{1+0=1\vdash 1+0=1}{\forall x\;(x+0=x)\vdash 1+0=1}\;\forall -\text{re} \\ \frac{\vdash \text{Ax 3.}}{} \frac{\text{Ax 3.}\vdash 1=1+0}{} \text{comp}_{sx} \end{array}$$

mentre π_4 è la seguente derivazione

$$\begin{array}{c}
 \text{ax-id} & \pi_5 \\
 1+0 = 1 \cdot 0 \vdash 1 + 0 = 1 \cdot 0 & \vdots \\
 \hline
 1+0 = 1 \cdot 0 \vdash 1 + 0 = 0 & \text{tr} - r
 \end{array}$$

ove π_5 è la seguente derivazione

$$\begin{array}{c} \text{ax-id} \\ 1 \cdot 0 = 0 \vdash 1 \cdot 0 = 0 \\ \hline \vdash \text{Ax 5.} \quad \overline{\forall x \ (x \cdot 0 = 0) \vdash 1 \cdot 0 = 0} \\ \hline \vdash 1 \cdot 0 = 0 \end{array} \quad \forall -\text{re} \\ \text{comp}_{sx}$$

- 9. $\vdash 0 = 4 + 0$ NON è derivabile perchè in HA è derivabile

$$0 = 4 + 0 \vdash \perp$$

Chiamiamo π una sua derivazione (vedi sotto).

Ora se esistesse una derivazione π_0 di $\vdash 0 = 4 + 0$ in HA otterremmo che in HA è derivabile il falso ad esempio come segue

$$\begin{array}{cccc}
\pi_0 & \pi \\
\vdots & \vdots \\
\vdash 0 = 4 + 0 & 0 = 4 + 0 \vdash \bot \\
\hline
\vdash \bot & \operatorname{comp}_{sx}
\end{array}$$

Ma sappiamo che HA è consistente, ovvero non deriva il falso, e dunque avendo trovato una contraddizione dalla supposta esistenza di π_0 si conclude che la derivazione π_0 NON esiste. Infine mostriamo una derivazione di

$$0 = 4 + 0 \vdash \perp$$

che possiamo scegliere come la derivazione π menzionata sopra. Essa è la seguente

ove π_1 è la seguente derivazione

$$-4x 1. \quad \frac{4 = 0, s(3) \neq 0 \vdash \bot}{4 = 0, \forall x (s(x) \neq 0) \vdash \bot} \quad \forall -re \atop 4 = 0 \vdash \bot \quad comp_{sx}$$

ricordando che $4 \equiv s(3)$ e π_2 è la seguente derivazione

e π_3 è la seguente derivazione

$$\begin{array}{c} \text{ax-id} \\ 4 + 0 = 4 \vdash 4 + 0 = 4 \\ \hline \forall x \; (x + 0 = x) \vdash 4 + 0 = 4 \\ \hline \vdash \text{Ax 3.} & \text{Ax 3.} \vdash 4 = 4 + 0 \\ \hline \vdash 4 = 4 + 0 & \text{comp}_{sx} \end{array}$$

- 10. $\vdash \forall x \ (2 = x \rightarrow s(x) = s(2))$ si può derivare ad esempio come segue:

$$cf^*$$

$$\frac{2 = x \vdash s(2) = s(x)}{2 = x \vdash s(x) = s(2)} \text{ sy - r}$$

$$\frac{1}{\vdash 2 = x \rightarrow s(x) = s(2)} \rightarrow -F$$

$$\vdash \forall x \ (2 = x \rightarrow s(x) = s(2)) \rightarrow -F$$

- 11. $\vdash 3 = 2 + 1$ si può derivare ad esempio come segue:

ove π_1 è la derivazione seguente:

$$\begin{array}{c} \text{ax-id} \\ 2+1 = s(2+0) \vdash 2+1 = s(2+0) \\ \hline \forall y \; (2+s(y) = s(2+y)) \vdash 2+1 = s(2+0) \\ \hline \vdash \text{Ax 4.} \quad \overline{\forall x \; \forall y \; (x+s(y) = s(x+y)) \vdash 2+1 = s(2+0)} \quad \forall \text{-re} \\ \hline \vdash 2+1 = s(2+0) \end{array}$$

ricordando che $1 \equiv s(0)$, mentre π_2 è la seguente derivazione

$$\begin{array}{c}
\text{cf}^* \\
2 + 0 = 2 \vdash s(2+0) = s(2) \\
\vdash \forall x \ (x+0=x) \vdash s(2+0) = s(2) \\
\vdash s(2+0) = s(2)
\end{array} \forall -\text{re} \\
\text{comp}_{sx}$$

- 12. $\vdash 2 \cdot 1 = 2$ si può derivare ad esempio come segue:

ove π_1 è la derivazione seguente:

$$\begin{array}{c} \text{ax-id} \\ \frac{2 \cdot 1 = 2 \cdot 0 + 2 \vdash 2 \cdot 1 = 2 \cdot 0 + 2}{\forall y \ (2 \cdot s(y) = 2 \cdot y + 2) \vdash 2 \cdot 1 = 2 \cdot 0 + 2} \ \forall -\text{re} \\ \frac{\vdash \text{Ax 6.}}{\forall x \ \forall y \ (x \cdot s(y) = x \cdot y + x) \vdash 2 \cdot 1 = 2 \cdot 0 + 2} \ \forall -\text{re} \\ \vdash 2 \cdot 1 = 2 \cdot 0 + 2 \end{array}$$

ricordando che $1 \equiv s(0)$, mentre π_2 è la seguente derivazione

ove π_3 è la derivazione seguente:

$$\begin{array}{c} = -ax \\ & \vdash 0 + 2 = 0 + 2 \\ \hline sym^* & 0 = 2 \cdot 0 \vdash 2 \cdot 0 + 2 = 0 + 2 \\ \hline 2 \cdot 0 = 0 \vdash 0 = 2 \cdot 0 \\ \hline & 2 \cdot 0 = 0 \vdash 2 \cdot 0 + 2 = 0 + 2 \\ \hline \forall x \ (x \cdot 0 = 0) \vdash 2 \cdot 0 + 2 = 0 + 2 \\ \hline \vdash 2 \cdot 0 + 2 = 0 + 2 \\ \hline \end{array} \quad \begin{array}{c} \text{comp}_{sx} \\ \forall -\text{re} \\ \text{comp}_{sx} \end{array}$$

mentre π_4 è la derivazione seguente:

$$\begin{array}{ccc}
\vdots & & \vdots \\
\pi_5 & & \pi_6 \\
 & \vdash \forall x \ (0+x=x) & \forall x \ (0+x=x) \vdash 0+2=2 \\
\hline
 & \vdash 0+2=2
\end{array} \text{ tr - r}$$

ove π_6 è la derivazione seguente:

$$\begin{array}{c} \text{ax-id} \\ 0 + 2 = 2 \vdash 0 + 2 = 2 \\ \forall x \ (0 + x = x) \vdash 0 + 2 = 2 \end{array} \forall -F$$

mentre π_5 è la seguente derivazione ottenuta usando l'assioma di induzione:

$$\begin{array}{c} \vdots \\ \pi_7 \\ \vdash 0+0=0 \;\&\; \forall x\; (0+x=x) \vdash \forall x\; (0+x=x) \\ \hline + \text{Ax}\; 7_{A(x)\; \equiv\; 0+x=x} \\ \hline \\ \vdash \forall x\; (0+x=x) \\ \hline \end{array} \rightarrow -\text{re}$$

ove posto

Ax
$$7 \cdot A(x) \equiv 0 + x = x$$
 $\equiv 0 + 0 = 0 \& \forall x (0 + x = x \to 0 + s(x) = s(x)) \to \forall x (0 + x = x)$

poi π_7 è costruito come segue:

ove π_8 è la seguente derivazione

$$\begin{array}{c} \text{ax-id} \\ \underline{0+0=0 \vdash 0+0=0} \\ \vdash \text{Ax 3.} & \underline{\text{Ax 3.} \vdash 0+0=0} \\ \vdash 0+0=0 & \text{comp}_{sx} \end{array} \forall -\text{re}$$

mentre π_9 è la seguente derivazione

$$\frac{\text{ax-id}}{0+s(x)=s(0+x)\vdash 0+s(x)=s(0+x)} \forall -\text{re} \\ \frac{\forall y\ (0+s(y)=s(0+y))\vdash 0+s(x)=s(0+x)}{\text{Ax }4.\vdash 0+s(x)=s(0+x)} \text{ comp}_{sx} \qquad \text{cf*} \\ \frac{\vdash 0+s(x)=s(0+x)}{0+x=x\vdash s(0+x)=s(x)} \to -\text{F} \\ \frac{\vdash 0+x=x\to 0+s(x)=s(x)}{\vdash 0+x=x\to 0+s(x)=s(x)} \forall -\text{F} \\ \text{ove l'applicazione di } \forall -\text{F è possibile perchè } x \text{ non compare libera nella premessa.}$$

ove l'applicazione di \forall -F è possibile perchè x non compare libera nella premessa.

• Siano T_{aul}^i e T_{aul}^c le teoria ottenute rispettivamente estendendo LI e LC con composizioni dx e sx con la formalizzazione dei seguenti assiomi indicata a fianco ove si consiglia di usare:

 $E(x,y) = x \ e$ in y

S(x) = x è studente

L(x) = x sta seguendo la lezione

R(x) = x ha i capelli rossi

p=Pietro

c=Carlo

a=aula A

b=aula B

- Ax1. Tutti gli studenti in aula A stanno seguendo la lezione.

$$\forall x \ (S(x)\&E(x,a) \to L(x))$$

- Ax2. Carlo è uno studente.

- Ax3. Se Carlo è in aula A allora Pietro è in aula B.

$$E(c,a) \to E(p,b)$$

- Ax4. Pietro è uno studente e non è in aula B.

$$S(p)\&\neg E(p,a)$$

- Ax5. Ogni studente è in aula A o in aula B.

$$\forall x \ (S(x) \to E(x, a) \lor E(x, b))$$

- Ax6. C'è un unico studente in aula B.

$$\exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \to y = z)$$

ove
$$SB(x) \equiv S(x)\&E(x,b)$$

- Ax7. Non si dà il caso che non ci siano studenti con i capelli rossi in aula B.

$$\neg\neg\exists x (S(x)\&(R(x)\&E(x,b)))$$

- Ax8. L'aula A è diversa dall'aula B.

$$a \neq b$$

- 9. Pietro è in aula A.

si può derivare in T_{aul}^i ad esempio come segue:

$$\begin{array}{c} \operatorname{ax-id} * & \neg -\operatorname{ax}_{sx2} \\ \neg E(p,b), E(p,a) \vdash E(p,a) & \neg E(p,b), E(p,b) \vdash E(p,a) \\ \hline - E(p,b), E(p,a) \lor E(p,b), E(p,b) \vdash E(p,a) \\ \hline & \frac{\neg E(p,b), E(p,a) \lor E(p,b) \vdash E(p,a)}{E(p,a) \lor E(p,b), \neg E(p,b) \vdash E(p,a)} \operatorname{sc}_{sx} \\ \hline & E(p,a) \lor E(p,b), S(p) \& \neg E(p,b) \vdash E(p,a) \\ \hline & E(p,a) \lor E(p,b), S(p) \& \neg E(p,b) \vdash E(p,a) \\ \hline & E(p,a) \lor E(p,b) \vdash E(p,a) \\ \hline & & - - \operatorname{re} \\ \hline & E(p,a) \lor E(p,b), E(p,a) \\ \hline & & - \operatorname{re} \\ \hline & & & - \operatorname{re} \\ \hline & & & & - \operatorname{re} \\ \hline & & & & - \operatorname{re} \\ \hline &$$

- 10. Pietro sta seguendo la lezione.

si può derivare in T^i_{aul} ad esempio come segue:

$$\begin{array}{c} \operatorname{ax-id} & \vdots \\ S(p) \vdash S(p) & \pi \\ \vdash E(p,a) & \operatorname{comp}_{sx} & \operatorname{ax-id} \\ \hline S(p) \vdash S(p) \& E(p,a) & L(p) \vdash L(p) \\ \hline \\ S(p) \& E(p,a) \to L(p), S(p) \vdash L(p) & & -\operatorname{re} \\ \hline \\ S(p) \& E(p,a) \to L(p), S(p) \& \neg E(p,b) \vdash L(p) & & \operatorname{sc}_{sx} \\ \hline \\ Ax \ 4., S(p) \& E(p,a) \to L(p) \vdash L(p) & \forall -\operatorname{re} \\ \hline \\ Ax \ 4., \forall x \ (S(x) \& E(x,a) \to L(x)) \vdash L(p) & \operatorname{comp}_{sx} \\ \hline \\ \vdash \operatorname{Ax} \ 1. & & \operatorname{Ax} \ 1. \vdash L(p) & \operatorname{comp}_{sx} \end{array}$$

ove π è la derivazione di 9.

- 11. Carlo non è in aula A.

$$\neg E(c, a)$$

si può derivare in T^i_{aul} ad esempio come segue:

$$\begin{array}{c} \operatorname{ax-id} & \neg \operatorname{-ax}_{sx2} \\ E(c,a) \vdash E(c,a) & \neg E(p,b), E(p,b) \vdash \bot \\ \hline \neg E(p,b), E(c,a) \to E(p,b), E(c,a) \vdash \bot & \operatorname{sc}_{sx} \\ \hline E(c,a) \to E(p,b), \neg E(p,b), E(c,a) \vdash \bot & \operatorname{sc}_{sx} \\ \hline E(c,a) \to E(p,b), \neg E(p,b), E(c,a) \vdash \bot & \operatorname{sc}_{sx} \\ \hline E(c,a) \to E(p,b), \neg E(p,b) \vdash \neg E(c,a) & & -\operatorname{re}_{2} \\ \hline E(c,a) \to E(p,b), S(p) \& \neg E(p,b) \vdash \neg E(c,a) & \operatorname{sc}_{sx} \\ \hline \vdash \operatorname{Ax} 4. & \operatorname{Ax} 4., E(c,a) \to E(p,b) \vdash \neg E(c,a) & \operatorname{comp}_{sx} \\ \hline \vdash \operatorname{Ax} 3. & & \operatorname{Ax} 3. \vdash \neg E(c,a) & \operatorname{comp}_{sx} \end{array}$$

- 12. Carlo è in aula B.

si può derivare in T_{aul}^i ad esempio come segue:

ove π_1 è la derivazione di 11.

- 13. Carlo ha i capelli rossi.

si può derivare in T_{aul}^c ad esempio come segue:

$$\begin{array}{c} \vdots \\ \pi_{4} \\ \vdash \operatorname{Ax} 7. \quad E(c,b), S(c), \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z), \operatorname{Ax} 7. \vdash R(c) \\ E(c,b), S(c), \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \vdots \\ \pi_{3} \\ \vdash E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b) \\ \vdash \operatorname{Ax} 6. & \underbrace{\begin{array}{c} E(c,b), \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall y \, \forall z \, (SB(y) \& SB(z) \rightarrow y = z) \vdash R(c) \\ \hline E(c,b), \exists x \, SB(x) \, \& \, \forall x \, \forall x$$

ove π_3 è la derivazione di 12 e π_4 è la seguente derivazione:

$$\begin{array}{c} \vdots \\ \pi_5 \\ E(c,p), S(c), S(x), E(x,b) \vdash SB(x) \& SB(c) \\ \hline \\ R(x) \vdash R(x) \\ \hline \\ R(x), x = c \vdash R(c) \\ \hline \\ R(x), SB(x) \& SB(c) \rightarrow x = c, E(c,p), S(c), S(x), E(x,b) \vdash R(c) \\ \hline \\ R(x), E(c,p), S(c), S(x), E(x,b), SB(x) \& SB(c) \rightarrow x = c \vdash R(c) \\ \hline \\ R(x), E(c,p), S(c), S(x), R(x), E(x,b), SB(x) \& SB(c) \rightarrow x = c \vdash R(c) \\ \hline \\ E(c,p), S(c), S(x), R(x), E(x,b), \forall x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), S(x), R(x), E(x,b), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), S(x), R(x), E(x,b), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ E(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \& SB(x) \rightarrow x = x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall y \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall x \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall x \vdash x \in SB(x) \\ \hline \\ F(c,p), S(c), \forall x \vdash x \in SB(x) \\ \hline \\$$

ove \exists -F si può applicare perchè x non appare libera nel resto del sequente e π_5 è la seguente derivazione

$$\begin{array}{c} \vdots \\ \pi_{6} \\ E(c,p),S(c),S(x),E(x,b) \vdash S(x)\&E(x,b) \\ \hline E(c,p),S(c),S(x),E(x,b) \vdash S(c)\&E(c,b) \\ \hline E(c,p),S(c),S(x),E(x,b) \vdash SB(x)\&SB(c) \end{array} \& -\mathrm{F}$$

e π_6 è la seguente derivazione

$$\frac{\text{ax-id *}}{E(c,p), S(c), S(x), E(x,b) \vdash S(x)} \frac{\text{ax-id *}}{E(c,p), S(c), S(x), E(x,b) \vdash E(x,b)} & \&-\text{F}$$

e π_7 è la seguente derivazione

$$\frac{\text{ax-id }^* \quad \text{ax-id }^*}{E(c,b),S(c),S(x),E(x,b) \vdash S(c) \quad E(c,b),S(c),S(x),E(x,b) \vdash E(c,b)}}{E(c,b),S(c),S(x),E(x,b) \vdash S(c)\&E(c,b)} \&-\text{F}$$

- 14. Pietro è diverso da Carlo.

$$p \neq c$$

si può derivare in T^i_{aul} ad esempio come segue:

$$\begin{array}{c} \neg \text{-}\text{ax}_{sx2} \\ \neg E(p,a), E(p,a) \vdash \bot \\ \hline \neg E(c,a), E(p,a), p = c \vdash \bot \\ \neg E(c,a), E(p,a) \vdash p \neq c \\ \hline \vdots \\ \pi \\ \vdash \neg E(c,a) \\ \hline \vdash E(p,a) \\ \hline \vdash p \neq c \\ \end{array} = -\mathbf{F} \\ \neg E(c,a), E(p,a) \vdash p \neq c \\ \hline \vdash \neg E(c,a) \\ \hline \vdash p \neq c \\ \hline \end{array}$$

• Dare la definizione induttiva dell'insieme delle derivazioni di L^{\exists} con connettivo \exists di LI. Enunciare il loro principio di induzione.

Svolgimento: L'insieme delle derivazioni di L^{\exists} è generato induttivamente come segue:

$$-\frac{\operatorname{ax-id}}{A \vdash A} \in Der(L^{\exists})$$

$$\pi$$

$$-\operatorname{se} \quad \vdots \quad \in Der(L^{\exists})$$

$$\Gamma, A(x) \vdash C$$

$$\exists \operatorname{allora} \quad \frac{\Gamma, A(x) \vdash C}{\Gamma, \exists x \, A(x) \vdash C} \, \exists -\operatorname{F} \, (x \not\in VL(\Gamma, C)) \in Der(L^{\exists}).$$

$$-\operatorname{se} \quad \vdots \quad \in Der(L^{\exists})$$

$$\Gamma \vdash A(t)$$

$$\pi_{1}$$

$$\exists \operatorname{allora} \quad \vdots \quad \in Der(L^{\exists})$$

$$\Gamma \vdash A(t) \quad \exists -\operatorname{re} \quad \in Der(L^{\exists})$$

Il principio di induzione sulle derivazioni di L^{\exists} è il seguente:

Sia $P(\pi)$ proprietà su derivazione $\pi \in Der(L^{\exists})$.

Se valgono le seguenti:

- caso base:
$$P(\begin{array}{c} \text{ax-id} \\ A \vdash A \end{array})$$
 vale

- caso induttivo: se
$$P(\begin{tabular}{c} \pi \\ \Gamma,A(x) \vdash C \\ \text{allora} \\ \hline P(\begin{tabular}{c} \vdots \\ \Gamma,A(x) \vdash C \\ \hline \Gamma,\exists x\,A(x) \vdash C \\ \hline \Gamma,\exists x\,A(x) \vdash C \\ \hline \end{array} \exists \text{-F} \ (x \not\in VL(\Gamma,C)) \\ \text{- caso induttivo: se } P(\begin{tabular}{c} \vdots \\ \Gamma \vdash A(t) \\ \hline \hline \end{array} \) \ \text{vale.} \\ \hline \begin{bmatrix} \Gamma \vdash A(t) \\ \hline \Gamma \vdash \exists x\,A(x) \\ \hline \end{bmatrix} \exists \text{-re} \\ \end{array}$$

allora $P(\pi)$ vale per ogni derivazione di L^{\exists} .

• Dimostriamo per induzione sulle derivazioni di L^{\exists} che "se $\Gamma \vdash \Delta$ è derivabile in L^{\exists} allora Δ contiene almeno una formula" Consideriamo la proprietà su una derivazione π di L^{\exists}

 $P(\pi) \equiv$ la radice di π ha conclusioni che contengono almeno una formula

Ora proviamo per induzione che vale su ogni derivazione π mostrando che vale sulle ipotesi induttive:

- caso base:
$$P(\begin{array}{c} \operatorname{ax-id} \\ A \vdash A \end{array})$$
 vale perchè A è conclusione.

- caso induttivo: se $P(\begin{array}{c} x \\ \vdots \\ \Gamma, A(x) \vdash C \end{array})$ vale
$$\begin{array}{c} \pi \\ \vdots \\ \Gamma, A(x) \vdash C \end{array}$$
allora $P(\begin{array}{c} \pi \\ \vdots \\ \Gamma, A(x) \vdash C \end{array})$ vale perchè c'e' C nella conclusione.

- caso induttivo: se $P(\begin{array}{c} \pi \\ \vdots \\ \Gamma \vdash A(t) \end{array})$ vale
$$\begin{array}{c} \pi \\ \Gamma \vdash A(t) \end{array}$$
allora $P(\begin{array}{c} \pi_1 \\ \vdots \\ \Gamma \vdash A(t) \end{array})$ vale perchè c'e' $\exists x \, A(x)$ nella conclusione.

$$\begin{array}{c} \pi_1 \\ \vdots \\ \Gamma \vdash A(t) \end{array}$$
allora $P(\begin{array}{c} \Gamma \vdash A(t) \\ \hline \Gamma \vdash \exists x \, A(x) \end{array})$ vale perchè c'e' $\exists x \, A(x)$ nella conclusione.

Allora per il principio di induzione per le derivazioni in $Der(L^{\exists})$ la proprietà $P(\pi)$ vale per ogni derivazione di L^{\exists} .

• Risolviamo la seguente equazione definitoria:

$$\Gamma, A \circ B \vdash \Sigma$$
 sse $\Gamma, B, A \vdash \Sigma$

L'equazione suggerisce la regola di o-formazione da dx a sx

$$\frac{\Gamma, B, A \vdash \Sigma}{\Gamma, A \circ B \vdash \Sigma} \circ -F$$

e suggerisce una regole di o-riflessione implicita da sinistra a destra

$$\frac{\Gamma A \circ B \vdash \Sigma}{\Gamma, B, A \vdash \Sigma} \circ -\text{ri}$$

Chiamiamo Lbr_{\circ} la logica ottenuta con assioma identità

$$ax$$
-id $A \vdash A$

e composizioni a destra e a sinistra

$$\frac{\Gamma' \vdash A \quad \Gamma, A, \Gamma" \vdash B}{\Gamma, \Gamma', \Gamma" \vdash B} \text{ comp}_{sx} \qquad \frac{\Gamma \vdash \Sigma, A, \Sigma" \quad A \vdash \Sigma'}{\Gamma \vdash \Sigma, \Sigma', \Sigma"} \text{ comp}_{dx}$$

assieme alla regola di o-formazione e la regola di riflessione implicita.

Ora cerchiamo di ottenere una logica con regole belle che si semplificano dal basso verso l'alto. A tal fine banalizziamo la premessa della riflessione implicita ponendo $\Gamma \equiv \emptyset$ e $\Sigma \equiv A \circ B$ e otteniamo quindi l'assioma per \circ derivabile in Lbr_{\circ} come segue:

$$\begin{array}{c}
\text{ax-id} \\
A \circ B \vdash A \circ B \\
\hline
B, A \vdash A \circ B
\end{array} \circ -\text{ri}$$

Definiamo poi Lax_{\circ} la logica ottenuta con assioma identità e composizioni a destra e a sinistra, la regola di formazione per \circ e l'assioma

$$ax-\circ$$
 $B, A \vdash A \circ B$

Per costruzione vale chiaramente $Lax_{\circ} \subseteq Lbr_{\circ}$.

Ora cerchiamo delle regole belle componendo con gli assiomi come segue

$$\frac{\Gamma \vdash B}{F, \Gamma' \vdash A \circ B} \frac{\text{ax-} \circ}{\text{comp}_{sx}} \frac{\text{comp}_{sx}}{\text{comp}_{sx}}$$

Ora prendiamo questa regola come riflessione esplicita:

$$\frac{\Gamma \vdash B \quad \Gamma' \vdash A}{\Gamma, \Gamma' \vdash A \circ B} \circ -\text{re}$$

e chiamiamo Lbe_{\circ} la logica ottenuta estendendo l'assioma identità e le composizioni a dx e a sx con la regola di riflessione esplicita sopra e la regola di formazione per \circ .

Per costruzione vale chiaramente $Lbe_{\circ} \subseteq Lax_{\circ}$ e per transitività anche $Lbe_{\circ} \subseteq Lbr_{\circ}$ ovvero la regole della logica bella Lbe_{\circ} seguono dall'equazione definitoria tramite composizioni.

Ora mostriamo che le regole della logica bella Lbe_{\circ} sono potenti tanto quanto Lbr_{\circ} e quindi sono sufficienti a risolvere l'equazione definitoria tramite composizioni.

A tal fine mostriamo che $Lax_{\circ} \subseteq Lbe_{\circ}$:

$$\begin{array}{ccc}
\text{ax-id} & \text{ax-id} \\
B \vdash B & A \vdash A \\
\hline
B, A \vdash A \circ B
\end{array} \circ -\text{re}$$

dice che l'assioma o-ax, è derivabile in $Lbe_{\&}$. Dunque $Lax_{\circ}\subseteq Lbe_{\circ}$ vale.

Ora mostriamo che $Lbr_{\circ} \subseteq Lax_{\circ}$:

$$\frac{B, A \vdash A \circ B \qquad \Gamma, A \circ B \vdash \Sigma}{\Gamma, B, A \vdash \Sigma} \quad \text{comp}_{sx}$$

dice che la regola \circ -ri è derivata in Lax_{\circ} . Dunque $Lbr_{\circ} \subseteq Lax_{\circ}$.

Per transitività da $Lbr_{\circ} \subseteq Lax_{\circ}$ e $Lax_{\circ} \subseteq Lbe_{\circ}$ si conclude che $Lbr_{\circ} \subseteq Lbe_{\circ}$ e quindi le regole belle sono sufficienti per risolvere l'equazione definitoria in presenza di composizioni a destra e a sinistra.

Dal fatto che vale pure $Lbe_{\circ} \subseteq Lbr_{\circ}$ segue che le regole belle sono necessarie e sufficienti a risolvere l'equazione definitoria data tramite composizioni.

• L' equazione sopra è risolvibile in LI con composizioni a destra e a sinistra senza aggiungere un nuovo connettivo? è risolvibile in LC con composizioni a destra e a sinistra senza aggiunta di un nuovo connettivo? (ovvero l'esercizio consiste nel dire se $A \circ B$ è definibile in LI con composizioni e in caso positivo occorre mostrare che la definizione considerata di $A \circ B$ soddisfa in LI con composizioni l'equazione sopra; lo stesso dicasi per LC).

Svolgimento: A lezione è stato mostrato che sia in LI con composizioni che in LC con composizioni vale

$$\Gamma, B, A \vdash \Sigma$$
 sse $\Gamma, B \& A \vdash \Sigma$

da cui segue che ponendo

$$A \circ B \equiv B \& A$$

si risolve l'equazione data sia in LI con composizioni che in LC con composizioni