

Probeklausur Logik

10. Juli 2025

$$\varphi = \mathbf{A}_1 \vee (\neg \mathbf{A}_2 \rightarrow (\mathbf{A}_1 \vee \mathbf{A}_3))$$

A_1	A_2	A_3	$A_1 \vee A_3$	$\neg A_2$	$ eg \mathcal{A}_2 ightarrow (\mathcal{A}_1 ee \mathcal{A}_3)$	φ
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

$$\varphi = \mathbf{A}_1 \vee (\neg \mathbf{A}_2 \rightarrow (\mathbf{A}_1 \vee \mathbf{A}_3))$$

A_1	A_2	A_3	$A_1 \vee A_3$	$\neg A_2$	$ eg abla \mathcal{A}_2 ightarrow (\mathcal{A}_1 ee \mathcal{A}_3)$	φ
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	0	1	1
1	1	1	1	0	1	1

- Was sind Hornformeln?
- Wie kann man überprüfen, ob φ äquivalent zu einer Hornformel ist?

Wie kann man überprüfen ob φ äquivalent zu einer Hornformel ist?

- mittels Schnitteigenschaft: Wenn $I_1, I_2 \in Mod(\varphi)$ dann auch $I_1 \cap I_2 \in Mod(\varphi)$
- φ äquivalent zu einer Hornformel gdw. φ besitzt die Schnitteigenschaft

Hat $A_1 \vee (\neg A_2 \rightarrow (A_1 \vee A_3))$ die Schnitteigenschaft?

– Wann gilt $\varphi \models \psi$?

- Wann gilt $\varphi \models \psi$?
- Wie können wir Modelle von φ und ψ bestimmen?

Gilt
$$\neg (A_1 \land \neg A_2) \land (\neg A_1 \rightarrow A_2) \land \neg A_2 \models A_3$$
?

Wie können wir die Interpolante zweier Formeln φ und ψ bestimmen?

Wie können wir die Interpolante zweier Formeln φ und ψ bestimmen?

$$\varphi = (\neg A_3 \to (\neg A_1 \land \neg A_2)) \land (A_3 \to (A_1 \leftrightarrow A_2))$$

$$s(\varphi) \setminus s(\psi) = \{A_3\}$$

$$\xi = \varphi[\bot/A_3] \lor \varphi[\top/A_3]$$

$$= \left((\neg \bot \to (\neg A_1 \land \neg A_2)) \land (\bot \to (A_1 \leftrightarrow A_2)) \right)$$

$$\lor \left((\neg \top \to (\neg A_1 \land \neg A_2)) \land (\top \to (A_1 \leftrightarrow A_2)) \right)$$

$$\equiv (\neg \bot \to (\neg A_1 \land \neg A_2)) \lor (\top \to (A_1 \leftrightarrow A_2))$$

$$\equiv (\neg A_1 \land \neg A_2) \lor (A_1 \leftrightarrow A_2)$$

Allgemeines Vorgehen bei strukturellen Induktionen:

Allgemeines Vorgehen bei strukturellen Induktionen:

IA: Zeigt die Aussage für atomare Formeln.

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

Allgemeines Vorgehen bei strukturellen Induktionen:

für
$$\mathcal{X}$$

IA: Zeigt die Aussage für atomare Formeln.

$$A \in \mathcal{A}$$

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

$$\varphi \oplus \psi$$

Allgemeines Vorgehen bei strukturellen Induktionen:

für aussagenlogische Formeln

IA: Zeigt die Aussage für atomare Formeln.

$$A \in \mathcal{A}$$

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

$$\neg \varphi, \ \varphi \lor \psi, \ \mathsf{und} \ \varphi \land \psi$$

Allgemeines Vorgehen bei strukturellen Induktionen:

für prädikatenlogische Formeln

IA: Zeigt die Aussage für atomare Formeln.

$$P(t_1,\ldots,t_n)$$
 $t_1=t_2$

- IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.
- IS: Zeigt die Aussage für Formeln, die φ und ψ mit einem Junktor verknüpfen.

$$\neg \varphi$$
, $\varphi \lor \psi$, und $\varphi \land \psi$, sowie $\exists x \varphi$ und $\forall x \varphi$.

Allgemeines Vorgehen bei strukturellen Induktionen:

für
$$\mathcal{X}$$

IA: Zeigt die Aussage für atomare Formeln.

$$A \in \mathcal{A}$$

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

$$\varphi \oplus \psi$$

Existiert in \mathcal{X} eine Formel äquivalent zu $\neg A_1$?

Existiert in \mathcal{X} eine Formel äquivalent zu $\neg A_1$?

Nein. Sei *I* die Interpretation, die alle Atome zu falsch auswertet.

Es gilt $\mathit{I}(\neg \mathit{A}_1) = 1$ und wir wissen, dass für alle Formeln φ in $\mathcal X$

$$I(\varphi) = 0.$$

Probeklausur Logik | 4. Prädikatenlogik: Modelle, Normalformen

$$\varphi = \exists y \bigg(R(x,y) \land \exists z R(y,z) \bigg) \rightarrow \exists y \bigg(P(y) \land R(y,x) \bigg).$$

Sei a folgende Struktur:

- $U^{\mathfrak{A}} = \{a, b, c, d\},\$
- $R^{\mathfrak{A}} = \{(a,b), (b,c), (c,d)\},\$
- $P^{\mathfrak{A}} = \{a, b, c\}.$

Sei
$$\beta(\mathbf{x}) = \beta(\mathbf{y}) = \beta(\mathbf{z}) = \mathbf{b}$$
.

- 1. Ist (\mathfrak{A}, β) ein Modell von φ ?
- 2. Geben Sie eine Belegung γ an, sodass (\mathfrak{A},γ) kein Modell von φ ist.
- 3. Überführen Sie φ in Negationsnormalform.

Wendet den Resolutionsalgorithmus an:

$$\{\{\textbf{A}_1,\textbf{A}_2\},\{\textbf{A}_1,\neg \textbf{A}_2,\textbf{A}_3\},\{\neg \textbf{A}_1,\textbf{A}_3\},\{\neg \textbf{A}_1,\neg \textbf{A}_3\},\{\neg \textbf{A}_2,\neg \textbf{A}_3\}\}.$$

Wendet den Unifikationsalgorithmus an:

R(z, y, g(y, z)) und R(c, f(v), g(f(v), v)).

Bildet eine Resolvente:

$$\{P(z,f(y)),R(z,y,g(y,z)),\neg Q(z,z)\}$$

$$\{\neg R(c, f(v), g(f(v), v)), Q(v, f(v))\}$$

Probeklausur Logik | 6. Prädikatenlogik: Äquivalenzen

Sei $x \notin \operatorname{frei}(\varphi)$ und $y \notin \operatorname{frei}(\psi)$. Zeigt, dass

$$\forall \mathbf{x} \exists \mathbf{y} (\varphi \wedge \psi) \equiv \exists \mathbf{y} \forall \mathbf{x} (\varphi \wedge \psi).$$

Probeklausur Logik | 6. Prädikatenlogik: Äquivalenzen

Beweisen oder widerlegen Sie: Es existiert ein erfüllbarer prädikatenlogischer Satz φ dessen Modelle alle überabzählbar sind.

Probeklausur Logik | 6. Prädikatenlogik: Äquivalenzen

Beweisen oder widerlegen Sie: Es existiert ein erfüllbarer prädikatenlogischer Satz φ dessen Modelle alle überabzählbar sind.

Gilt nicht. Angenommen φ ist ein prädikatenlogischer Satz, der nur überabzählbare Modelle besitzt. Dann existiert nach Löwenheim-Skolem auch ein abzählbares Modell. (Widerspruch)

Probeklausur Logik |

Überprüft, dass bei euch im Moodle mindestens 60 Punkte eingetragen sind.

Klausur am 25. Juli 8:30 - 9:30.

Probeklausur Logik |

Noch Fragen?

Moodle-Forum schoenherr@informatik.uni-leipzig.de