Describing Data: Graphical

Dr. Md. Israt Rayhan
Associate Professor
Institute of Statistical Research and Training (ISRT)
University of Dhaka

Email: <u>israt@isrt.ac.bd</u>

Types of Data

Measurement Levels

Differences between measurements, true zero exists

Ratio Data

Quantitative Data

Differences between measurements but no true zero

Interval Data

Ordered Categories (rankings, order, or scaling)

Ordinal Data

Qualitative Data

Categories (no ordering or direction)

Nominal Data

Graphical Presentation of Data

(continued)

Techniques reviewed in this chapter:

Categorical Variables

- Frequency distribution
- Bar chart
- Pie chart

Numerical Variables

- Line chart
- Frequency distribution
- Histogram and ogive
- Stem-and-leaf display

The Frequency Distribution Table

Summarize data by category

Example: Hospital Patients by Unit

Hospital Unit	Number of Patients
Cardiac Care	1,052
Emergency	2,245
Intensive Care	340
Maternity	552
Surgery	4,630

(Variables are categorical)

Bar and Pie Charts

- Bar charts and Pie charts are often used for qualitative (category) data
- Height of bar or size of pie slice shows the frequency or percentage for each category

Bar Chart Example

Hospital Unit	Number of Patients		
Cardiac Care	1,052		
Emergency	2,245		
Intensive Care	340		
Maternity	552		
Surgery	4,630		

Hospital Patients by Unit

Pie Chart Example

Hospital Unit	Number of Patients	% of Total	Hospital Patients by Unit
Cardiac Care	1,052	11.93	Tiospital Latterits by Offic
Emergency	2,245	25.46	Cardiac Care
Intensive Care	340	3.86	12%
Maternity	552	6.26	
Surgery	4,630	52.50	
			Surgery 53% Intensive Ca
		(Percenta are round the neares percent)	ed to Maternity

Graphs for Time-Series Data

- A line chart (time-series plot) is used to show the values of a variable over time
- Time is measured on the horizontal axis
- The variable of interest is measured on the vertical axis

Line Chart Example

Graphs to Describe Numerical Variables

Frequency Distributions

What is a Frequency Distribution?

- A frequency distribution is a list or a table ...
- containing class groupings (categories or ranges within which the data fall) ...
- and the corresponding frequencies with which data fall within each class or category

Class Intervals and Class Boundaries

- Each class grouping has the same width
- Determine the width of each interval by

```
w = interval \ width = \frac{largest \ number - smallest \ number}{number \ of \ desired \ intervals}
```

- Use at least 5 but no more than 15-20 intervals
- Intervals never overlap
- Round up the interval width to get desirable interval endpoints

Frequency Distribution Example

Example: A manufacturer of insulation randomly selects 20 winter days and records the daily high temperature

24, 35, 17, 21, 24, 37, 26, 46, 58, 30,

32, 13, 12, 38, 41, 43, 44, 27, 53, 27

Frequency Distribution Example

(continued)

- Sort raw data in ascending order:
 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58
- Find range: 58 12 = 46
- Select number of classes: 5 (usually between 5 and 15)
- Compute interval width: 10 (46/5 then round up)
- Determine interval boundaries: 10 but less than 20, 20 but less than 30, ..., 60 but less than 70
- Count observations & assign to classes

Frequency Distribution Example

(continued)

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Interval	Frequency	Relative Frequency	Percentage
10 but less than 20	3	.15	15
20 but less than 30	6	.30	30
30 but less than 40	5	.25	25
40 but less than 50	4	.20	20
50 but less than 60	2	.10	10
Total	20	1.00	100

Histogram

- A graph of the data in a frequency distribution is called a histogram
- The interval endpoints are shown on the horizontal axis
- the vertical axis is either frequency, relative frequency, or percentage
- Bars of the appropriate heights are used to represent the number of observations within each class

Histogram Example

Interval	Frequency
10 but less than 20	3
20 but less than 30	6
30 but less than 40	5
40 but less than 50	4
50 but less than 60	2

Histogram: Daily High Temperature

(No gaps between bars)

The Cumulative Frequency Distribuiton

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Class	Frequency	Percentage	Cumulative Frequency	Cumulative Percentage
10 but less than 20	3	15	3	15
20 but less than 30	6	30	9	45
30 but less than 40	5	25	14	70
40 but less than 50	4	20	18	90
50 but less than 60	2	10	20	100
Total	20	100		

The Ogive Graphing Cumulative Frequencies

Interval	Upper interval endpoint	Cumulative Percentage
Less than 10	10	0
10 but less than 20	20	15
20 but less than 30	30	45
30 but less than 40	40	70
40 but less than 50	50	90
50 but less than 60	60	100

Ogive: Daily High Temperature

Stem-and-Leaf Diagram

 A simple way to see distribution details in a data set

METHOD: Separate the sorted data series into leading digits (the stem) and the trailing digits (the leaves)

Example

Data in ordered array:

21, 24, 24, 26, 27, 27, 30, 32, 38, 41

Here, use the 10's digit for the stem unit:

	Stem	Leaf
21 is shown as ——	→ 2	1
38 is shown as ——	→ 3	8

Example

(continued)

Data in ordered array:

21, 24, 24, 26, 27, 27, 30, 32, 38, 41

Completed stem-and-leaf diagram:

Stem	Leaves					
2	1	4	4	6	7	7
3	0	2	8			
4	1					

Data Presentation Errors

(continued)

- Unequal histogram interval widths
- Compressing or distorting the vertical axis
- Providing no zero point on the vertical axis
- Failing to provide a relative basis in comparing data between groups

Reference

 Statistics for Business and Economics (2007, 6th edition) by Paul Newbold.