Simulation results

General model:

$$\mu(t|Z) = f(t, \beta_0^\top Z) g(\gamma_0^\top Z),$$

where for fixed $x \in \mathbb{R}$, $f(\cdot, x)$ is an unspecified density function on $[0, \tau]$, and g(x) is unknown but monotone in x. We assume $||\beta_0|| = ||\gamma_0|| = 1$.

Simulation settings used in the paper:

- Z is generated from a multivariate truncated normal distribution satisfying $Z \sim N_2(0, I_2)$ and $||Z|| \leq 1$.
- Censoring time is an exponential distribution with mean $10 \cdot (1 + |z_1|)$.
- Recurrent event times are generated from Poisson process with rate functions:

M1:
$$\mu(t|Z) = \mu_0(t) \exp(\gamma_0^{\top} Z)$$

•
$$\mu_0(t) = \frac{2}{1+t}$$
.

•
$$\beta_0 = (\beta_1, \beta_2) = (0, 0), \ \gamma_0 = (\gamma_1, \gamma_2) = (0.28, 0.96).$$

M2:
$$\mu(t|Z) = \mu_0(t) + \alpha_0^{\top} Z$$

•
$$\mu_0(t) = e^{0.1t}$$
.

•
$$\beta_0 = \gamma_0 = \alpha_0 = (0.6, 0.8).$$

M3:
$$\mu(t|Z) = \mu_0 \{ t \exp(\alpha_0^{\top} Z) \}$$

•
$$\mu_0(t) = e^{-t}$$
.

•
$$\beta_0 = \gamma_0 = \alpha_0 = (0.6, 0.8).$$

M4:
$$\mu(t|Z) = \mu_0\{t, \exp(\beta_0^{\top} Z)\} \exp(\gamma_0^{\top} Z)$$

•
$$\mu_0(t,x) = \frac{t \cdot (1-t)^{1+x}}{B(2,1+x)}$$

• $\beta_0 = (0.6, 0.8), \gamma_0 = (0.28, 0.96)$

•
$$\beta_0 = (0.6, 0.8), \gamma_0 = (0.28, 0.96)$$

• Set $\tau = 10$ for M1, M2, M3 and $\tau = 1$ for M4.

Table 1: Point estimator (PE) and empirical standard error (ESE) for M1 to M4. Sample size is n = 200, with 1000 replications. **M1-ind** assumes $\beta_0 = (0, 0)$ and shape-independence.

	M1		M1-ind		M2		M3		M4	
	PE	ESE	PE	ESE	PE	ESE	PE	ESE	PE	ESE
β_1	0.192	0.669	0.000	0.000	-0.584	0.219	-0.584	0.185	-0.585	0.238
β_2	0.204	0.689	0.000	0.000	-0.761	0.208	-0.778	0.177	-0.770	0.249
γ_1	0.273	0.054	0.272	0.052	0.608	0.062	-0.603	0.070	0.279	0.087
γ_2	0.961	0.015	0.961	0.014	0.789	0.048	-0.793	0.054	0.956	0.025

Table 2: Bias and empirical standard error (ESE) for (γ_1, γ_2) in the above models. Sample size is n = 100, with 500 replications.

		Prop	osed	coxph		
Model		Bias	ESE	Bias	ESE	
M1	γ_1	0.002	0.042	-2.319	0.050	
	γ_2	0.010	0.028	-0.094	0.034	
M2	γ_1	0.043	0.130	-0.687	0.059	
	γ_2	0.107	0.360	-0.908	0.042	
M3	γ_1	-0.010	0.118	-1.107	0.076	
	γ_2	0.051	0.142	-0.700	0.055	
M4	γ_1	0.010	0.049	1.502	0.107	
	γ_2	0.021	0.104	-1.983	0.073	
M5	γ_1	0.048	0.096	-0.184	0.058	
	γ_2	0.014	0.159	0.092	0.042	
M6	γ_1	0.099	0.357	0.002	0.058	
	γ_2	-0.086	0.369	-0.002	0.035	
M7	γ_1	0.000	0.018	-1.815	0.060	
	γ_2	0.002	0.037	0.902	0.041	