EE5311 - Digital IC Design

Assignment 4 - Schematic of a signed 8-bit Carry Save Multiplier

Member 1: Srivenkat A(EE18B038)

Member 2: Hemanth Ram G K (EE18B132)

Member 3: Sidesh S(EE18B032)

Schematic of CSM

Multiplier Testbench

Simulation output for 127 * -128

Interpreted voltage values for 127 * -128

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=127y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=-128z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=-16256

Interpreted voltage values for -128 * 127

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=-128y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=127z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=-16256

Interpreted voltage values for 0 * 127

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=0y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=127z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=0

Interpreted voltage values for -128 * 0

x: (round(v(x7))*(-128) + round(v(x6))*64 + round(v(x5))*32 + round(v(x4))*16 + round(v(x3))*8 + round(v(x2))*4 + round(v(x1))*2 + round(v(x0))*1)=-128y: (round(v(y7))*(-128) + round(v(y6))*64 + round(v(y5))*32 + round(v(y4))*16 + round(v(y3))*8 + round(v(y2))*4 + round(v(y1))*2 + round(v(y0))*1)=0z: (round(v(z15))*(-32768) + round(v(z14))*16384 + round(v(z13))*8192 + round(v(z12))*4096 + round(v(z11))*2048 + round(v(z10))*1024 + round(v(z9))*512 + round(v(z8))*256 + round(v(z7))*128 + round(v(z6))*64 + round(v(z5))*32 + round(v(z4))*16 + round(v(z3))*8 + round(v(z2))*4 + round(v(z1))*2 + round(v(z0))*1)=0

Interpreted voltage values for -12 * 13

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=-12}
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=13}
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=-156}
```

Interpreted voltage values for -1 * -1

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=-1
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=-1
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=1
```

Interpreted voltage values for -128 * -128

```
x: (\text{round}(v(x7))^*(-128) + \text{round}(v(x6))^*64 + \text{round}(v(x5))^*32 + \text{round}(v(x4))^*16 + \text{round}(v(x3))^*8 + \text{round}(v(x2))^*4 + \text{round}(v(x1))^*2 + \text{round}(v(x0))^*1) = -128
y: (\text{round}(v(y7))^*(-128) + \text{round}(v(y6))^*64 + \text{round}(v(y5))^*32 + \text{round}(v(y4))^*16 + \text{round}(v(y3))^*8 + \text{round}(v(y2))^*4 + \text{round}(v(y1))^*2 + \text{round}(v(y0))^*1) = -128
z: (\text{round}(v(z15))^*(-32768) + \text{round}(v(z14))^*16384 + \text{round}(v(z13))^*8192 + \text{round}(v(z12))^*4096 + \text{round}(v(z11))^*2048 + \text{round}(v(z10))^*1024 + \text{round}(v(z9))^*512 + \text{round}(v(z8))^*256 + \text{round}(v(z7))^*128 + \text{round}(v(z6))^*64 + \text{round}(v(z5))^*32 + \text{round}(v(z4))^*16 + \text{round}(v(z3))^*8 + \text{round}(v(z2))^*4 + \text{round}(v(z1))^*2 + \text{round}(v(z0))^*1) = 16384
```

Interpreted voltage values for 103 * -57

```
x: (\text{round}(v(x7))^*(-128) + \text{round}(v(x6))^*64 + \text{round}(v(x5))^*32 + \text{round}(v(x4))^*16 + \text{round}(v(x3))^*8 + \text{round}(v(x2))^*4 + \text{round}(v(x1))^*2 + \text{round}(v(x0))^*1)=103
y: (\text{round}(v(y7))^*(-128) + \text{round}(v(y6))^*64 + \text{round}(v(y5))^*32 + \text{round}(v(y4))^*16 + \text{round}(v(y3))^*8 + \text{round}(v(y2))^*4 + \text{round}(v(y1))^*2 + \text{round}(v(y0))^*1)=-57
z: (\text{round}(v(z15))^*(-32768) + \text{round}(v(z14))^*16384 + \text{round}(v(z13))^*8192 + \text{round}(v(z12))^*4096 + \text{round}(v(z11))^*2048 + \text{round}(v(z10))^*1024 + \text{round}(v(z9))^*512 + \text{round}(v(z8))^*256 + \text{round}(v(z7))^*128 + \text{round}(v(z6))^*64 + \text{round}(v(z5))^*32 + \text{round}(v(z4))^*16 + \text{round}(v(z3))^*8 + \text{round}(v(z2))^*4 + \text{round}(v(z1))^*2 + \text{round}(v(z0))^*1)=-5871
```

Interpreted voltage values for -50 * 50

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=-50}
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=50}
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=-2500}
```

Interpreted voltage values for 79 * 81

```
x: (\text{round}(v(x7))*(-128) + \text{round}(v(x6))*64 + \text{round}(v(x5))*32 + \text{round}(v(x4))*16 + \text{round}(v(x3))*8 + \text{round}(v(x2))*4 + \text{round}(v(x1))*2 + \text{round}(v(x0))*1)=79
y: (\text{round}(v(y7))*(-128) + \text{round}(v(y6))*64 + \text{round}(v(y5))*32 + \text{round}(v(y4))*16 + \text{round}(v(y3))*8 + \text{round}(v(y2))*4 + \text{round}(v(y1))*2 + \text{round}(v(y0))*1)=81
z: (\text{round}(v(z15))*(-32768) + \text{round}(v(z14))*16384 + \text{round}(v(z13))*8192 + \text{round}(v(z12))*4096 + \text{round}(v(z11))*2048 + \text{round}(v(z10))*1024 + \text{round}(v(z9))*512 + \text{round}(v(z8))*256 + \text{round}(v(z7))*128 + \text{round}(v(z6))*64 + \text{round}(v(z5))*32 + \text{round}(v(z4))*16 + \text{round}(v(z3))*8 + \text{round}(v(z2))*4 + \text{round}(v(z1))*2 + \text{round}(v(z0))*1)=6399
```

Critical Path of CSM modelled separately

Inputs to Full Adders in Critical Path

- 1. Input Cin is closer than A, B to output and critical input is connected to Cin in every full adder.
- 2. For an edge in Cin, sum delay for different combinations of A, B in a Full Adder:

Inputs to (A,B) \ Cin Edge Type	Rising	Falling	
00	28.5ps	44.8ps	
01	41.1ps	28.5ps	
10	38.8ps	28.9ps	
11	75 6ns	18 7ns	

So, for both rising edge in Cin, A=1, B=1 and for falling edge in Cin, A=0, B=0 for max delay in sum propagation

3. For an edge in Carry in, Full Adder should be in propagation stage for max delay. Delays for different combinations of A/B in Full Adder:

Inputs to (A, B) \ Cin Edge Type	Rising	Falling	
01	29.9ps	10.6ps	
10	28.4ps	10.5ps	

So, for rising/falling edge in Cin, A=0, B=1 for max delay in carry propagation

Schematic of Full Adder used

Schematic of NAND gate used

Schematic of Inverter used

Schematic of AND gate used

Simulation of Critical Path Delay swept across possible gate size combinations

Simulation of Vector Merge outputs for critical input

Critical Path Delay tabulated across gate size combinations

				Output Delay	From	То
1	wc=1	ws=1	wg=1	3.92E-10	1.05E-09	1.44E-09
2	wc=2	ws=1	wg=1	3.53E-10	1.05E-09	1.40E-09
3	wc=3	ws=1	wg=1	3.56E-10	1.05E-09	1.41E-09
4	wc=1	ws=2	wg=1	4.04E-10	1.05E-09	1.45E-09
5	wc=2	ws=2	wg=1	3.24E-10	1.05E-09	1.37E-09
6	wc=3	ws=2	wg=1	3.06E-10	1.05E-09	1.36E-09
7	wc=1	ws=3	wg=1	4.49E-10	1.05E-09	1.50E-09
8	wc=2	ws=3	wg=1	3.36E-10	1.05E-09	1.39E-09
9	wc=3	ws=3	wg=1	3.06E-10	1.05E-09	1.36E-09
10	wc=1	ws=1	wg=2	3.87E-10	1.05E-09	1.44E-09
11	wc=2	ws=1	wg=2	3.46E-10	1.05E-09	1.40E-09
12	wc=3	ws=1	wg=2	3.48E-10	1.05E-09	1.40E-09
13	wc=1	ws=2	wg=2	3.96E-10	1.05E-09	1.45E-09
14	wc=2	ws=2	wg=2	3.14E-10	1.05E-09	1.36E-09
15	wc=3	ws=2	wg=2	2.96E-10	1.05E-09	1.35E-09
16	wc=1	ws=3	wg=2	4.39E-10	1.05E-09	1.49E-09
17	wc=2	ws=3	wg=2	3.25E-10	1.05E-09	1.37E-09
18	wc=3	ws=3	wg=2	2.93E-10	1.05E-09	1.34E-09
19	wc=1	ws=1	wg=4	3.86E-10	1.05E-09	1.44E-09
20	wc=2	ws=1	wg=4	3.44E-10	1.05E-09	1.39E-09
21	wc=3	ws=1	wg=4	3.45E-10	1.05E-09	1.40E-09
22	wc=1	ws=2	wg=4	3.92E-10	1.05E-09	1.44E-09
23	wc=2	ws=2	wg=4	3.10E-10	1.05E-09	1.36E-09
24	wc=3	ws=2	wg=4	2.87E-10	1.05E-09	1.34E-09
25	wc=1	ws=3	wg=4	4.34E-10	1.05E-09	1.48E-09
26	wc=2	ws=3	wg=4	3.19E-10	1.05E-09	1.37E-09
27	wc=3	ws=3	wg=4	2.87E-10	1.05E-09	1.34E-09

Chosen Gate sizes

Full Adder:

Cout-bar: 3x

Sum-bar: 2x

Standard Cells:

NAND, AND, INV: 4x

