Máquina de Atwood Experimento 4

F 229 GRUPO 1

XX de XX, 2014

Integrantes:

Henrique Noronha Facioli RA: 157986 Guilherme Lucas da Silva RA: 155618 Beatriz Sechin Zazulla RA: 154779 Lucas Alves Racoci RA: 156331 Isadora Sophia Garcia Rodopoulos 158018

1 Resumo

Neste experimento, estudamos uma *Máquina de Atwood*, um sistema físico que consiste de: um cilindro de latão funcionando como polia, ou seja, com liberdade de girar em torno de um eixo fixo; um fio que será considerado leve - ou seja, com massa irrelevante -, inestensível - isto é, inelástico; dois corpos (1 e 2) que são pendurados na polia por meio do fio anteriormente citado, onde:

- O corpo 1 consiste de um sub-corpo de massa m_1 e mais n_1 de 5 sub-corpos;
- O corpo 2 consiste de um sub-corpo de massa m_2 e mais n_2 de 5 sub-corpos;
- Os valores de n_1 e n_2 são tais que $n_1 + n_2 = 5$;
- As massas dos corpos 1 e 2 serão chamadas respectivamente de m_1 e m_2 .

Sabemos que a diferença entre as massas dos dois corpos gera um torque não nulo na polia, o que nos permite estudar seu Momento de Inércia I_0 e a aceleração da grávidade g, através da fórmula a seguir:

$$\Delta_m = \frac{2h}{gR^2} (I + MR^2) \frac{1}{t^2} + \frac{\tau_a}{gR}$$
 (1)

2 Objetivo

Este experimento tem como principal objetivo o estudo da máquina de Atwood através da determinação do momento de inércia da polia e do torque da força de atrito, possibilitados a partir da manipulação de um sistema inserido no modelo de estudo.

3 Procedimentos e coleta de dados

Na realização deste experimento foram utilizados os seguintes materiais:

- 1. Polia de latão com eixo;
- 2. Barbante;
- 3. Conjunto de discos metálicos;
- 4. Trena;
- 5. Paquímetro;
- 6. Balança de precisão;
- 7. Cronômetro.

Tabela 1: Modelo de tabela

	Massa (Kg)
Medida	1,2790
Erro Instrumental	0,0001

4 Análise dos resultados

Para determinar o momento de inercia I e o torque da força de atrito τ_a através da equação (1), precisamos escolher quem será X e Y e depois, se necessário linearizar a fórmula, mas nesse caso, se fizermos: $\underbrace{\Delta m}_{Y} = \underbrace{\frac{2h}{gR^2}(I + MR^2)}_{a} \underbrace{\frac{1}{t^2}}_{X} + \underbrace{\frac{\tau_a}{gR}}_{b}$ a equção já fica em sua forma linearizada. Assim, variando Δm e t obtemos os valores de I e τ_a a partir de a, b, h, g, R, e $M = m_1 + m_2$. Mas para

Tabela 1: Correspondencia adotada entre os símbolos e as massas experimentalmente medidas

Símbolos	Massas [Kg]
а	$(9,6\pm0,1) \cdot 10^{-3}$
b	$(1,97\pm0,01) \cdot 10^{-2}$
С	$(1,93\pm0,01)$. 10^{-2}
d	$(9,3\pm0,1) \cdot 10^{-3}$
e	$(9,8\pm0,1)$. 10^{-3}
\widetilde{m}_1	$(8,934\pm0,001)$. 10^{-1}
\widetilde{m}_2	$(8,934\pm0,001)$ \bullet 10^{-1}

Tabela 2: Massas obtidas experimentalmente

N	1	2	3	4	5
$m_1[Kg]$	$\widetilde{m_1} + a + b + c + d + e$	$\widetilde{m_1} + a + b + c + d$	$\widetilde{m_1} + a + b + c$	$\widetilde{m_1} + a + b + c + e$	$\widetilde{m_1} + a + c + e$
$m_1[Kg]$	$(9,611\pm0,002)\cdot10^{-1}$	$(9,513\pm0,002)\cdot10^{-1}$	$(9,420\pm0,002)\cdot10^{-1}$	$(9,518\pm0,002)\cdot10^{-1}$	$(9,321\pm0,002)\cdot10^{-1}$
$m_2[Kg]$	$\widetilde{m_2}$	$\widetilde{m_2} + e$	$\widetilde{m_2} + d + e(\pm) \cdot 10^{-1}$	$\widetilde{m_2} + d$	$\widetilde{m_2} + b + d$
$m_2[Kg]$	$(8,934 \pm 0,001) \cdot 10^{-1}$	$(9,032\pm0,001)\cdot10^{-1}$	$(9,125\pm0,001)\cdot10^{-1}$	$(9,027\pm0,001)\cdot10^{-1}$	$(9,224\pm0,002)\cdot10^{-1}$
Δm	$(6,77\pm0,03)\cdot10^{-2}$	$(4,81\pm0,03)\cdot10^{-2}$	$(2,95\pm0,03)\cdot10^{-2}$	$(4,91\pm0,03)\cdot10^{-2}$	$(9,7\pm0,3)\cdot10^{-3}$

obter a e b precisa-se realizar o Método dos Mínimos Quadrados, e para isso precisamos achar um valor de t para cada valor de Δm .

Calculando primeiro cada um dos 5 Δm 's tem-se:

Para o calculo do erro em m_i :

$$\sigma_{m_i}^2 = \sum_{k=1}^{n_i} \left(\left(\frac{\partial m_i}{\partial m_k} \right)^2 \cdot (\sigma_{m_k})^2 \right)$$
 (2)

mas todos os σ_{m_k} 's são iguais, pois se trata do erro experimental, então:

$$\sigma_{m_i}^2 = \sum_{k=1}^{n_i} \left(\left(\frac{\partial m_i}{\partial m_k} \right)^2 \cdot (\sigma_m)^2 \right) = \sum_{k=1}^{n_i} \left(\left(\frac{\partial m_i}{\partial m_k} \right)^2 \right) \cdot (\sigma_m)^2$$

Sabemos também que $m_i = \sum_{j=1}^{t} (m_j)$ portanto:

$$\frac{\partial m_i}{\partial m_k} = \frac{\partial}{\partial m_k} \left(\sum_{j=1}^t (m_j) \right) = \sum_{j=1}^t \left(\frac{\partial m_j}{\partial m_k} \right) = 1$$

porque $\frac{\partial m_j}{\partial m_k} = 0$, exceto quando j = k, quando $\frac{\partial m_j}{\partial m_k} = \frac{\partial m_k}{\partial m_k} = 1$ Assim:

$$\sigma_{m_i}^2 = \sum_{k=1}^{n_i} \left(\left(\frac{\partial m_i}{\partial m_k} \right)^2 \right) \cdot (\sigma_m)^2 = \sigma_{m_i}^2 = \sum_{k=1}^{n_i} \left(1^2 \right) \cdot (\sigma_m)^2 = n \cdot (\sigma_m)^2 \Leftrightarrow$$

$$\sigma_{m_i} = \sigma_m \sqrt{n_i} \tag{3}$$

Para Δm o resultado é ainda mais interessante: $\Delta m = m_1 - m_2$ portanto o erro é

$$\sigma_{\Delta m}^{2} = \sigma_{m_{1}}^{2} \left(\frac{\partial \Delta m}{\partial m_{1}}\right)^{2} + \sigma_{m_{2}}^{2} \left(\frac{\partial \Delta m}{\partial m_{2}}\right)^{2} = \sigma_{m_{1}}^{2} (1)^{2} + \sigma_{m_{2}}^{2} (-1)^{2} = \sigma_{m_{1}}^{2} + \sigma_{m_{2}}^{2} = \sigma_{m}^{2} \cdot n_{1} + \sigma_{m}^{2} \cdot n_{2} = \sigma_{m}^{2} (n_{1} + n_{2})$$

$$\sigma_{\Delta m} = \sigma_m \sqrt{n_1 + n_2} = \sigma_m \sqrt{n} \tag{4}$$

que é um valor constante porque o número de massas utilizadas não muda.

Agora temos que achar um valor único de t para associar com cada valor de Δm . Como fizemos 5 medidas de t pra cada Δm , então para achar o valor único pra t e seu erro devemos fazer:

$$t = \bar{t} \pm \sigma_t$$
 onde \bar{t} é a média aritmética $\frac{\sum\limits_{i=1}^5 t_i}{5}$; e σ_t é o erro total $\sqrt{\sigma_{t_{inst}}^2 + \sigma_{t_{estat}}^2} = \sqrt{\sigma_{t_{inst}}^2 + \frac{1}{5} \frac{1}{4} \sum\limits_{i=1}^5 (t_i + \bar{t})^2}$ Ou seja:

Tabela 3: Tempos de descida medidos experimentalmente

	Δm_1	Δm_2	Δm_3	Δm_4	Δm_5
$t_1 \pm \sigma_{t_{inst}}[s]$	$2,66 \pm 0,01$	$3,22 \pm 0,01$	$4,28 \pm 0,01$	$3,25 \pm 0,01$	$7,72 \pm 0,01$
$t_2 \pm \sigma_{t_{inst}}[s]$	$2,56 \pm 0,01$	$3,25 \pm 0,01$	$4,28 \pm 0,01$	$3,22 \pm 0,01$	$7,32 \pm 0,01$
$t_3 \pm \sigma_{t_{inst}}[s]$	$2,68 \pm 0,01$	$3,12\pm0,01$	$4,19 \pm 0,01$	$3,19 \pm 0,01$	$7,78 \pm 0,01$
$t_4 \pm \sigma_{t_{inst}}[s]$	$2,59 \pm 0,01$	$3,25 \pm 0,01$	$4,18 \pm 0,01$	$3,19 \pm 0,01$	$7,56 \pm 0,01$
$t_5 \pm \sigma_{t_{inst}}[s]$	$2,65 \pm 0,01$	$2,28 \pm 0,01$	$4,22 \pm 0,01$	$3,22 \pm 0,01$	$7,53 \pm 0,01$
$t = \bar{t} \pm \sigma_t[s]$	$2,63 \pm 0,02$	$3,22 \pm 0,03$	$4,21 \pm 0,02$	$3,21 \pm 0,02$	$7,58 \pm 0,08$

Agora temos uma relação bem clara entre Δm e t:

Fazendo $X = \frac{1}{t^2}$ o erro fica

$$\sigma_X^2 = \sigma_t^2 \left(\frac{\partial X}{\partial t} \right)^2 \Leftrightarrow \sigma_X = \left| -2t^{-3} \sigma_t \right| = \frac{2}{t^3} \sigma_t$$

que não será usado porque o Métodos dos Mínimos Quadrados que está sendo usado não considera erro em X, e $Y = \Delta m$ o erro será:

$$\sigma_{Y}^{2} = \sigma_{\Delta m}^{2} \Leftrightarrow \sigma_{Y} = \sigma_{\Delta m} \tag{5}$$

Fazendo o Método dos Mínimos Quadrados com esses dados obtem-se o gráfico da reta:

Cujos coeficientes angular e linear são respectivamente:

Figura 1: Gráfico de $\Delta m \times \frac{1}{t^2}$ COMPLETAR

$$\begin{cases} a = \frac{2h}{gR^2}(I + MR^2) & (angular) \\ b = \frac{\tau_a}{gR} & (linear) \end{cases} \Leftrightarrow \begin{cases} agR^2 = 2h(I + MR^2) \\ bgR = \tau_a \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \frac{agR^2}{2h} = I + MR^2 \\ \tau_a = bgR \end{cases} \Leftrightarrow \begin{cases} I = \frac{agR^2}{2h} - MR^2 \\ \tau_a = bgR \end{cases}$$

Para calcular os erros tem-se:

$$\sigma_{I}^{2} = \sigma_{a}^{2} \left(\frac{\partial I}{\partial a}\right)^{2} + \sigma_{g}^{2} \left(\frac{\partial I}{\partial g}\right)^{2} + \sigma_{R}^{2} \left(\frac{\partial I}{\partial R}\right)^{2} + \sigma_{h}^{2} \left(\frac{\partial I}{\partial h}\right)^{2} + \sigma_{M}^{2} \left(\frac{\partial I}{\partial M}\right)^{2}$$

$$\sigma_{I} = \sqrt{\sigma_{a}^{2} \left(\frac{gR^{2}}{2h}\right)^{2} + \sigma_{g}^{2} \left(\frac{aR^{2}}{2h}\right)^{2} + \sigma_{R}^{2} \left(\frac{Rag}{h} - 2RM\right)^{2} + \sigma_{h}^{2} \left(\frac{-agR^{2}}{2h^{2}}\right)^{2} + \sigma_{M}^{2} \left(-R^{2}\right)^{2}}$$

$$(6)$$

Já para o torque da força de atrito o processo é um pouco mais simples:

$$\sigma_{\tau_a}^2 = \sigma_b^2 \left(\frac{\partial I}{\partial b}\right)^2 + \sigma_g^2 \left(\frac{\partial I}{\partial g}\right)^2 + \sigma_h^2 \left(\frac{\partial I}{\partial h}\right)^2$$

$$\sigma_{\tau_a} = \sqrt{(\sigma_b g h)^2 + (b\sigma_g h)^2 + (bg\sigma_h)^2}$$
(7)

Portanto:

$$I = \bar{I} \pm \sigma_I = (2,00 \pm 0,07) \cdot 10^{-1} Kg \cdot m^2$$

$$\tau_a = \overline{\tau_a} \pm \sigma_{\tau_a} = (1, 5 \pm 0, 2) \cdot 10^{-2} N \cdot m$$

5 Conclusão

Para termos um parâmetro de comparação podemos usar a massa e o raio do cilindro de metal para calcular o valor do Momento de Inércia teórico I_T e comparar com o que obtivemos experimentalmente:

$$I_T = M_{polia} \cdot R^2 = 2,05330 \cdot (4,995 \cdot 10^{-1})^2 = 2,5615 \cdot 10^{-1}$$

Para o erro, como não foi informado o erro para M_{polia} , supomos somente o erro instrumental de $10^{-4} Kg$ da mesma balança analítica:

$$\sigma_{I_T}^2 = \sigma_{M_{polia}}^2 \left(\frac{\partial I}{\partial M_{polia}}\right)^2 + \sigma_R^2 \left(\frac{\partial I}{\partial R}\right)^2$$

$$\sigma_{I_T} = \sqrt{\sigma_{M_{polia}}^2 (R^2)^2 + \sigma_R^2 (2MR)^2}$$
(8)

Ou seja, temos que:

$$I_T = (2,6 \pm 0,5) \cdot 10^{-1} Kg \cdot m^2$$

$$I = (2,00 \pm 0,07) \cdot 10^{-1} Kg \cdot m^2$$

Se usarmos todas as casas decimais e não somente as mostradas aqui temos:

$$I_T - \sigma_{I_T} = 2,05 \cdot 10^{-1} Kg \cdot m^2 \le 2,07 \cdot 10^{-1} Kg \cdot m^2 = I + \sigma_I$$

Nosso resultado pode ser considerado dentro do esperado por esse tipo de parâmetro, mas não pelo parâmetro formalizado em aula, que não considera as casas decimais de erro não significativos. Alguns fatores podem justificar o valor longe, ainda que muito perto do esperado, tais como:

- O fio não ser inextensível;
- O escorregamento do fio no cilindro de latão;

O que pode ser feito para resolver esses problemas numa próxima realização é:

- Considerar o fio extensível.
- Usar uma superfície que tenha um alto coeficiente de atrito estático com o fio;