- Casos particulares de problemas de transporte
 - todas as capacidades e demandas são unitárias, isto é,

portanto **m=n**.

 Assim o problema resume-se a determinar a qual destino estará associado a cada uma das origens

 Exemplo 1 :Quatro nadadores têm os tempos (100m) para cada um dos quatro estilos mostrados na tabela abaixo.
 Devemos determinar qual a composição ideal desses nadadores para uma prova de revezamento de 400m medley, de maneira que o tempo total seja o menor possível.

Tempo em s (100m)

Nadador	Livre	Peito	Borboleta	Costas
1	54	54	51	53
2	51	57	52	52
3	50	53	54	56
4	56	54	55	53

- Algoritmo Húngaro:
- 1. Crie um novo quadro subtraindo de todos os elementos de cada linha o menor valor da linha. Repita o processo para cada coluna.

2. Encontre o número mínimo de linhas (horizontais e/ou verticais) necessárias para cobrir todos os zeros no quadro. Se o número de linhas for < m, a resposta não é ótima, e devemos seguir para o próximo passo. Se o número de linhas for = m, as designações ótimas são dadas pelos 0s do quadro.</p>

3. Determine o menor elemento ≠ 0 dentre os elementos não cobertos por linhas, subtraia esse valor de cada elemento não-coberto por linhas, e adicione esse valor aos elementos nas intersecções das linhas. Volte ao passo anterior.


```
3 1 0 1
0 4 1 0
0 1 4 5
4 0 3 0
```

```
Nadador 1 \rightarrow borboleta - 51
Nadador 2 \rightarrow costas - 52
Nadador 3 \rightarrow livre - 50
Nadador 4 \rightarrow peito - 54
```

$$Z = 207$$

• Exemplo 2, (Maximizar)

	1	2	3	4
A	48	48	50	44
В	56	60	60	68
С	96	94	90	85
D	42	44	54	46

Resposta

A-2

B-4

C-1

D-3

z = 266

		•		•		•	•			
ľ	\ /I	1	n	١.	n	\sim 1	7	1	r	•
ı	VI	ı	ш	П	11		L	а		
-		-					_	т.	•	-

		2			5
Α	3	9	2	3 6	7
В	6	1	5	6	6
C	9	4	7	10	3
D	2	5	4		1
Ε	9	4 5 6	2	4	6

Minimizar:

	1	2	3	4	5	6
A	20	15	26	40	32	12
В	15	32	46	26	28	20
С	18	15	2	12	6	14
D	8	24	12	22	22	20
Ε	20 15 18 8 12	20	18	10	22	15

- Resposta
- A-1
- B-2
- C-5
- D-4
- E 3
- Z=11