Math 435 09/24/2025 Notes

September 24, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. Let (X, \mathcal{U}_x) be a space and let A be a set. Given a surjective map $p: X \to A$, the quotient topology \mathcal{U}_p on A is:

$$A \supseteq U \in \mathscr{U}_p \iff p^{-1}(U) \in \mathscr{U}_x. \tag{1}$$

Today

• Examples of quotient spaces!

Example 1. Let us have \mathbb{R} under the standard topology. Let \mathbb{Z} be our set. Let p(x) = x if $x \in \mathbb{Z}$ and p(x) = n if n is an odd integer and $x \in (n-1,n+1)$. (I.e., p sends $x \in \mathbb{R}$ to the nearest odd integer if $x \notin \mathbb{Z}$ and p is the identity map if $x \in \mathbb{Z}$.) If $n \in \mathbb{Z}$ is odd, then $p^{-1}(n) = (n-1,n+1)$ which is open. If $n \in \mathbb{Z}$ is even, then $p^{-1}(n) = \{n\}$ which is closed in \mathbb{R} . Unions between odd integers are open, for example, $p^{-1}(\{-1,0,1\}) = (-2,2)$ is open.

Definition 2. A collection $\{U_{\alpha}\}_{\alpha}$ of subsets $U_{\alpha} \subset A$ covers A if $\bigcup_{\alpha} U_{\alpha} = A$.

Definition 3. Let A be a set and let B be a collection of disjoint nonempty subsets of A that cover A. B is a partition of A.

Observation: Given a space X and a partition X^* of X, there exists a natural surjection given by mapping each element to the unique set containing it.

Example 2. Let $X = \{a, b, c, d, e\}$, with $\mathcal{U} = \{\emptyset, \{a\}, \{a, b\}, \dots, X\}$. Let $X^* = \{\{a, b\}, \{c, d, e\}\}$ be a partition (not a topology) of X. What is the quotient topology \mathcal{U}_p on X^* ? Let $p: X \to X^*$ with

- $p(a), p(b) = \{a, b\} = A$
- $p(c), p(d), p(e) = \{c, d, e\} = B$

Then notice that $p^{-1}(A) = \{a, b\}$ and $p^{-1}(B) = \{c, d, e\}$ and $P^{-1}(\{A, B\}) = X$ and $p^{-1}(\emptyset) = \emptyset$. Since $\{c, d, e\}$ is not open in \mathscr{U}_x , but X is, we find that the topology induced by p on X^* , $\mathscr{U}_p = \{\{A\}, \{A, B\}\}.$