10/512046

IT OUT SUUT Rec'd PCT/DT

PCT/JP03/05615

本 庁 国

02.05.03

JAPAN PATENT **OFFICE**

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2002年 5月10日

REC'D 2 7 JUN 2003

番 Application Number:

特願2002-135469

WIPO PCT

[ST.10/C]:

願

出

[JP2002-135469]

Ш 人 Applicant(s):

出光石油化学株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 6月 6日

符 許 庁 長 官 Commissioner, Japan Patent Office 八和

【書類名】

特許願

【整理番号】

IDS1416A

【提出日】

平成14年 5月10日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

C08F 4/654

C08F 4/658

C08F 10/00

【発明者】

【住所又は居所】

千葉県市原市姉崎海岸1番地1

【氏名】

棚瀬 省二朗

【発明者】

【住所又は居所】 千葉県市原市姉崎海岸1番地1

【氏名】

貞嶋 孝典

【発明者】

【住所又は居所】

千葉県市原市姉崎海岸1番地1

【氏名】

蔵本 正彦

【発明者】

【住所又は居所】

千葉県市原市姉崎海岸1番地1

【氏名】

船橋 英雄

【特許出願人】

【識別番号】

000183657

【氏名又は名称】

出光石油化学株式会社

【代理人】

【識別番号】

100086759

【弁理士】

【氏名又は名称】

渡辺 喜平

【手数料の表示】

【予納台帳番号】

013619

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0200132

【プルーフの要否】

明細書

【発明の名称】 オレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法

【特許請求の範囲】

【請求項1】 下記化合物(a)、(b)及び(d)、又は下記化合物(a)、(b)、(c)及び(d)を反応させて得られるオレフィン重合用固体触媒成分。

- (a) ハロゲン含有チタン化合物
- (b) 金属マグネシウム、アルコール、及び前記金属マグネシウム1モルに対して0.0001グラム原子以上のハロゲン原子を含むハロゲン及び/又はハロゲン含有化合物を反応させて得られるアルコキシ基含有マグネシウム化合物
- (c) ハロゲン含有ケイ素化合物
- (d) 下記一般式(I) で表される電子供与性化合物

【化1】

[式中、nは、 $2\sim10$ の整数であり、 $R^1\sim R^8$ は、相互に独立であり、炭素、水素、酸素、N口ゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意の $R^1\sim R^8$ は、共同してベンゼン環以外の環を形成してもよく、主鎖中に炭素以外の原子が含まれてもよい。]

【請求項2】 前記ハロゲンがヨウ素である請求項1に記載のオレフィン重合用固体触媒成分。

【請求項3】 前記ハロゲン含有化合物が塩化マグネシウムである請求項1 に記載のオレフィン重合用固体触媒成分。

【請求項4】 前記金属マグネシウム、アルコール、及びハロゲン及び/又はハロゲン含有化合物の反応温度が30~90℃である請求項1~3のいずれか

【請求項5】 前記金属マグネシウム、アルコール、及びハロゲン及び/又はハロゲン含有化合物の反応温度が30~60℃である請求項4に記載のオレフィン重合用固体触媒成分。

【請求項6】 前記ハロゲン含有ケイ素化合物(c)が四塩化ケイ素である 請求項1~5のいずれか一項に記載のオレフィン重合用固体触媒成分。

【請求項7】 前記電子供与性化合物(d)が1,3-ジエーテル化合物である請求項1~6のいずれか一項に記載のオレフィン重合用固体触媒成分。

【請求項8】 前記化合物(a)、(b)、(c)及び(d)を反応させる際、前記化合物(b)と前記化合物(c)とを接触させた後、前記化合物(d)を接触させ、その後、前記化合物(a)を接触させる請求項1~7のいずれか一項に記載のオレフィン重合用固体触媒成分。

【請求項9】 下記成分[A]、[B]、又は下記成分[A]、[B]、 [C] を含むオレフィン重合用触媒。

- [A] 請求項1~8のいずれかに一項に記載のオレフィン重合用固体触媒成分
- [B] 有機アルミニウム化合物
- [C] 電子供与性化合物

【請求項10】 請求項9に記載のオレフィン重合用触媒を用いてオレフィンを重合するオレフィン重合体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、αーオレフィンの単独重合体又は共重合体を製造するためのオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法に関する。

[0002]

【従来技術】

一般に、オレフィン重合体は、チタン化合物と有機アルミニウム化合物からなるチーグラー・ナッタ触媒により重合されている。例えば、オレフィン重合体の

[0003]

例えば、オレフィン重合体の粒径及び形状等のモルフォロジーを改良することを目的として、特開昭63-280707号公報等では、シリカ等の無機酸化物上にマグネシウム化合物を担持させる方法、また、特開昭58-000811号公報等では、マグネシウム化合物を一旦アルコール等の溶媒に溶解させた後、再び析出させたものを用いる方法が開示されている。

しかし、これらの方法は、マグネシウム化合物の担持、溶解及び析出等の処理 が必須となるため、工程的に極めて煩雑であった。また、これらの方法は、重合 初期の触媒活性のみが高くなるため、触媒の性能安定性に欠けるという欠点や、 重合時の触媒活性及びオレフィン重合体の立体規則性の面で十分な性能を発現で きないという欠点があった。

[0004]

そこで、これらの欠点を改良する手法として、特開平2-413883号公報等では、金属マグネシウム、アルコール及び特定量のハロゲンの反応生成物を触媒の担体として用いる方法、また、特公平7-025822号公報では、アルコキシマグネシウム、ハロゲン化剤及びアルコキシチタンの反応生成物に有機酸エステルを加え、さらにハロゲン化チタンを反応させて得られる固体触媒成分を含むチーグラー・ナッタ触媒を用いるオレフィン重合体の製造方法が開示されている。しかし、これらの方法は、重合時の触媒活性及びオレフィン重合体の立体規則性が依然として十分ではなかった。

[0005]

一方、特開平4-96910号公報では、アルコキシマグネシウム化合物、ポリエーテル化合物及びチタン化合物を接触させて得られる固体触媒成分が開示さ

[0006]

【発明が解決しようとする課題】

本発明は、重合活性が高く、立体規則性及びパウダー形態に優れたオレフィン重合体が得られるオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法を提供することを目的とする。

[0007]

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ハロゲン含有チタン化合物、特定のアルコキシ基含有マグネシウム化合物、及び特定の電子供与性化合物を反応させて得られるオレフィン重合用固体触媒成分を用いることにより、前記の課題が解決できることを見出し、本発明を完成させた。

[0008]

【課題を解決するための手段】

本発明の第一の態様によれば、下記化合物(a)、(b)及び(d)、又は下記化合物(a)、(b)、(c)及び(d)を反応させて得られるオレフィン重合用固体触媒成分が提供される。

- (a) ハロゲン含有チタン化合物
- (b) 金属マグネシウム、アルコール、及び前記金属マグネシウム1モルに対して 0.001グラム原子以上のハロゲン原子を含むハロゲン及び/又はハロゲン含有化合物を反応させて得られるアルコキシ基含有マグネシウム化合物
- (c) ハロゲン含有ケイ素化合物
- (d)下記一般式(I)で表される電子供与性化合物 【化2】

$$R^{1} - C - C - C - R^{6}$$

$$R^{3} - C - C - R^{5}$$

$$R^{5} - R^{7}$$

$$R^{6} - R^{8}$$

$$R^{7} - R^{8}$$

[式中、nは、 $2\sim10$ の整数であり、 $R^1\sim R^8$ は、相互に独立であり、炭素、水素、酸素、ハロゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意の $R^1\sim R^8$ は、共同してベンゼン環以外の環を形成してもよく、主鎖中に炭素以外の原子が含まれてもよい。]

[0009]

本発明の第二の態様によれば、下記成分[A]、[B]、又は下記成分[A]、[B]、[C]を含むオレフィン重合用触媒が提供される。

- [A] 上記のオレフィン重合用固体触媒成分
- [B] 有機アルミニウム化合物
- [C] 電子供与性化合物

[0010]

本発明の第三の態様によれば、上記のオレフィン重合用触媒を用いてオレフィンを重合するオレフィン重合体の製造方法が提供される。

[0011]

【発明の実施の形態】

次に、本発明の各触媒成分、製造方法、重合方法等について説明する。以下に 示すのは好適例であり、本発明はこれらに限定されるものではない。

1. 触媒成分

[A] オレフィン重合用固体触媒成分

[0012]

(a) ハロゲン含有チタン化合物

ハロゲン含有チタン化合物としては、下記一般式 (II) で表される化合物を好ましく用いることができる。

$$TiX^{1}_{p}(OR^{9})_{4-p}$$
 ... (II) [0013]

上記一般式(II)において、 \mathbf{X}^1 はハロゲン原子を示し、その中でも塩素原子及び臭素原子が好ましく、塩素原子が特に好ましい。 \mathbf{R}^9 は炭化水素基であって、飽和基や不飽和基であってもよく、直鎖状のものや分岐鎖を有するもの、ある

[0014]

上記一般式 (II) で示されるハロゲン含有チタン化合物の具体例としては、四塩化チタン、四臭化チタン、四ヨウ化チタン等のテトラハロゲン化チタン;メトキシチタントリクロリド、エトキシチタントリクロリド、プロポキシチタントリクロリド、ロープトキシチタントリクロリド、エトキシチタントリブロミド等のトリハロゲン化アルコキシチタン;ジメトキシチタンジクロリド、ジエトキシチタンジクロリド、ジイソプロポキシチタンジクロリド、ジーnープロポキシチタンジクロリド、ジエトキシチタンジブロミド等のジハロゲン化ジアルコキシチタン;トリメトキシチタンクロリド、トリエトキシチタンクロリド、トリイソプロポキシチタンクロリド、トリーnープトキシチタンクロリド、トリーnープロポキシチタンクロリド、トリーnーブトキシチタンクロリド等のモノハロゲン化トリアルコキシチタン等が挙げられる。これらの中で、重合活性の面から、高ハロゲン含有チタン化合物は、それぞれ単独で用いてもよく、また2種以上を組み合わせて用いてもよい。

[0015]

(b) アルコキシ基含有マグネシウム化合物

本発明では、アルコキシ基含有マグネシウム化合物(b)として、オレフィン 重合体のパウダー形態、触媒の重合活性及び立体規則性の面から、金属マグネシウム、アルコール、及び金属マグネシウム1モルに対して0.001グラム原 子以上のハロゲン原子を含むハロゲン及び/又はハロゲン含有化合物を、通常、30~90℃、特に好ましくは30~60℃で反応させて得られる化合物を用いる。

尚、反応温度については特に限定されないが、上記の温度範囲で行うと、オレフィン重合体のパウダー形態や触媒の重合活性が改良される場合があるので好ましい。

[0016]

金属マグネシウムの形状等は特に限定されない。従って、任意の粒径の金属マグネシウム、例えば、顆粒状、リボン状、粉末状等の金属マグネシウムを用いることができる。また、金属マグネシウムの表面状態も特に限定されないが、表面に水酸化マグネシウム等の被膜が生成されていないものが好ましい。

[0017]

アルコールは、炭素数1~6の低級アルコールを用いることが好ましい。特に、エタノールを用いると、触媒性能の発現を著しく向上させる固体生成物が得られるので好ましい。アルコールの純度及び含水量は特に限定されないが、含水量の多いアルコールを用いると、金属マグネシウムの表面に水酸化マグネシウムの被膜が生成するので、含水量が1%以下、特に、2,000ppm以下のアルコールを用いることが好ましい。さらに、より良好なモルフォロジーを得るためには、水分が少なければ少ないほど好ましく、一般的には200ppm以下が望ましい。

[0018]

ハロゲンは、塩素、臭素又はヨウ素、特にヨウ素が好適に使用される。

また、ハロゲン含有化合物のハロゲン原子は、塩素、臭素又はヨウ素が好ましい。また、ハロゲン含有化合物の中ではハロゲン含有金属化合物が特に好ましい。ハロゲン含有化合物として、具体的には、 $MgCl_2$ 、 MgI_2 、 $Mg(OEt)Cl_3$ 、Mg(OEt)I、 $MgBr_2$ 、 $CaCl_2$ 、NaCl、KBr等を好適に使用できる。これらの中では、特に $MgCl_2$ が好ましい。これらの状態、形状、粒度等は特に限定されず、任意のものでよく、例えば、アルコール系溶媒(例えば、エタノール)中の溶液で用いることができる。

アルコールの使用量は、金属マグネシウム1モルに対して、好ましくは2~100モル、特に好ましくは5~50モルである。アルコールの使用量が多すぎると、モルフォロジーの良好なアルコキシ基含有マグネシウム化合物(b)の収率が低下する場合があり、少なすぎる場合は、反応槽での攪拌がスムーズに行われなくなる場合がある。しかし、そのモル比には限定されない。

[0020]

ハロゲン又はハロゲン含有化合物の使用量は、金属マグネシウム1モルに対してハロゲン又はハロゲン含有化合物中のハロゲン原子が0.0001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは0.001グラム原子以上となる量である。0.0001グラム原子未満の場合、得られたアルコキシ基含有マグネシウム化合物(b)を触媒の担体として用いた場合、触媒活性やオレフィン重合体のモルフォロジー等が不良となる。

[0021]

本発明においては、ハロゲン及びハロゲン含有化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、ハロゲンとハロゲン含有化合物を組み合わせて用いてもよい。ハロゲンとハロゲン含有化合物を組み合わせて用いる場合、ハロゲン及びハロゲン含有化合物中の全ハロゲン原子の量を金属マグネシウム1モルに対して0.001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは0.001グラム原子以上とする

[0022]

尚、ハロゲン及び/又はハロゲン含有化合物の使用量の上限については特に定めないが、本発明で用いるアルコキシ基含有マグネシウム化合物 (b) が得られる範囲で適宜選択すればよく、一般には、0.06グラム原子未満とすることが好ましい。

[0023]

本発明では、ハロゲン及び/又はハロゲン含有化合物の使用量を適宜選択することにより、アルコキシ基含有マグネシウム化合物(b)の製造時において、そ

. [0024]

アルコキシ基含有マグネシウム化合物(b)の製造は、水素ガスの発生が認められなくなるまで(通常、1~30時間)行う。具体的には、ハロゲンとしてヨウ素を用いる場合には、金属マグネシウム、アルコール中に固体状のヨウ素を投入した後、加熱して反応させる方法、金属マグネシウム及びアルコール中に、ヨウ素のアルコール溶液を滴下した後、加熱して反応させる方法、及び金属マグネシウム、アルコール溶液を滴下した後、加熱して反応させる方法、及び金属マグネシウム、アルコール溶液を加熱しながらヨウ素のアルコール溶液を滴下して反応させる方法等により製造できる。

[0025]

尚、いずれの方法も、不活性ガス(例えば、窒素ガス、アルゴンガス)雰囲気下で、場合により不活性有機溶媒(例えば、n-ヘキサン等の飽和炭化水素)を 用いて行うことが好ましい。

[0026]

また、金属マグネシウム、アルコール及びハロゲンの投入については、最初から各々全量投入しておく必要はなく、分割して投入してもよい。特に好ましい形態は、アルコールを最初から全量投入しておき、金属マグネシウムを数回に分割して投入する方法である。このようにした場合、水素ガスの一時的な大量発生を防ぐこともでき、安全性の面から非常に望ましい。また、反応槽も小型化することが可能となる。さらには、水素ガスの一時的な大量発生により引き起こされるアルコールやハロゲンの飛沫同伴を防ぐことも可能となる。分割する回数は、反応槽の規模を勘案して決めればよく、特に問わないが、操作の煩雑さを考えると通常5~10回が好適である。

[0027]

また、反応自体は、バッチ式、連続式のいずれでもよい。さらには、変法として、最初から全量投入したアルコール中に金属マグネシウムを先ず少量投入し、 反応により生成した生成物を別の槽に分離して除去した後、再び金属マグネシウムを少量投入するという操作を繰り返すことも可能である。

[0028]

アルコキシ基含有マグネシウム化合物(b)を、固体触媒成分[A]の調製に用いる場合、乾燥させたものを用いてもよく、また、濾過後、ヘプタン等の不活性溶媒で洗浄したものを用いてもよい。いずれの場合においても、アルコキシ基含有マグネシウム化合物(b)は、粉砕あるいは粒径分布をそろえるための分級操作をすることなく以下の工程に用いることができる。また、アルコキシ基含有マグネシウム化合物(b)は、球状に近く、しかも粒径分布がシャープである。さらには、粒子一つ一つをとってみても、球形度のばらつきは小さい。

[0029]

また、これらのアルコキシ基含有マグネシウム化合物(b)は単独でもよいし、2種以上組み合わせて用いてもよい。さらに、シリカ、アルミナ、ポリスチレン等の支持体に担持して用いてもよく、ハロゲン等との混合物として用いてもよい。

[0030]

このようなアルコキシ基含有マグネシウム化合物(b)としては、下記一般式(III)で表される化合物を好ましく用いることができる。

Mg
$$(OR^{10})_{q}R^{11}_{2-q} \cdots (III)$$
[0031]

上記一般式(III)において、 R^{10} は炭化水素基を示し、 R^{11} はハロゲン原子を示す。ここで、 R^{10} の炭化水素基としては、炭素数 $1\sim 12$ のアルキル基、シクロアルキル基、アリール基、アラルキル基等が挙げられ、 R^{11} のハロゲン原子としては、塩素、臭素、ヨウ素、フッ素等が挙げられる。 OR^{10} 又は R^{11} が複数存在する場合には、それらは互いに同一でも異なってもよい。 Qは $1\sim 2$ の整数を示す。

[0032]

上記一般式(III)で示されるアルコキシ基含有マグネシウム化合物の具体例としては、ジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、ジスキシロキシマグネシウム、ジオクトキシマグネシウム、ジフェノキシマグネシウム、ジシクロヘキシロキシマグネシウム等のジアルコキシマグネシウム及びジアリーロキシマグネシウム:ブトキシ

[0033]

(c) ハロゲン含有ケイ素化合物

本発明のオレフィン重合用固体触媒成分には、必要に応じてハロゲン含有ケイ素化合物(c)が用いられる。このようなハロゲン含有ケイ素化合物(c)としては、下記一般式(IV)で表される化合物を用いることができる。

Si
$$(OR^{\frac{1}{2}})_{r}X^{\frac{2}{4-r}}$$
 · · · (IV)

ハロゲン含有ケイ素化合物 (c) を用いることにより、重合時の触媒活性、立体規則性の向上及びオレフィン重合体中に含まれる微粉量を低減することができる場合がある。

[0035]

上記一般式(IV)において、 X^2 はハロゲン原子を示し、これらの中で塩素原子及び臭素原子が好ましく、塩素原子が特に好ましい。 R^{12} は炭化水素基であって、飽和基や不飽和基であってもよく、直鎖状のものや分岐鎖を有するもの、あるいは環状のものであってもよく、さらにはイオウ、窒素、酸素、ケイ素、リン等のヘテロ原子を含むものであってもよい。このうち、炭素数 $1\sim10$ の炭化水素基、特にアルキル基、アルケニル基、シクロアルケニル基、アリール基及びアラルキル基等が好ましい。 OR^{12} が複数存在する場合には、それらは互いに同じでも異なってもよい。 R^{12} の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、n-プロピル基、n-ペンチル基、n-ペースト

[0036]

上記一般式(IV)で示されるハロゲン含有ケイ素化合物の具体例としては、四塩化ケイ素、メトキシトリクロロシラン、ジメトキシジクロロシラン、トリメトキシクロロシラン、エトキシトリクロロシラン、ジエトキシジクロロシラン、トリエトキシクロロシラン、プロポキシトリクロロシラン、ジプロポキシジクロロシラン、トリプロポキシクロロシラン等が挙げられる。これらの中では、特に四塩化ケイ素が好ましい。これらのハロゲン含有ケイ素化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

[0037]

(d) 電子供与性化合物

本発明では、電子供与性化合物として、下記一般式(I)で表されるジエーテル化合物を用いる。

[0038]

【化3】

[式中、nは、 $2\sim10$ の整数であり、 $R^1\sim R^8$ は、相互に独立であり、炭素、水素、酸素、ハロゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意の $R^1\sim R^8$ は、共同してベンゼン環以外の環を形成してもよく、主鎖中に炭素以外の原子が含まれてもよい。]

[0039]

上記一般式(I)において、nは、好ましくは $2\sim5$ である。また、 $R^1\sim R^8$ は、好ましくは炭素、水素、ケイ素、ハロゲン,酸素から選択される少なくとも1種の元素を有する置換基である。

[0040]

上記一般式(I)で表されるジエーテル化合物としては、具体的には、2-(2-エチルヘキシル)-1, 3-ジメトキシプロパン、2-イソプロピル-1, 3-ジメトキシプロパン、2-ブチルー1, 3-ジメトキシプロパン、2-s-ブチルー1, 3-ジメトキシプロパン、2-シクロヘキシルー1, 3-ジメトキ シプロパン、2-フェニルー1,3-ジメトキシプロパン、2-クミルー1,3 ージメトキシプロパン、2-(2-フェニルエチル)-1,3-ジメトキシプロ パン、2-(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-(p-クロロフェニル)-1,3-ジメトキシプロパン、2-(ジフェニルメチ ル) -1, 3-ジメトキシプロパン、2-(1-ナフチル) <math>-1, 3-ジメトキシプロパン、2-(2-フルオロフェニル)-1,3-ジメトキシプロパン、2 - (1-デカヒドロナフチル)-1,3-ジメトキシプロパン、2-(p-t-ブチルフェニル) -1,3-ジメトキシプロパン、2,2-ジシクロヘキシルー 1, 3-ジメトキシプロパン、2, 2-ジシクロペンチル-1, 3-ジメトキシ プロパン、2, 2-ジエチルー1, 3-ジメトキシプロパン、2, 2-ジプロピ ルー1, 3-ジメトキシプロパン、2, 2-ジイソプロピルー1, 3-ジメトキ シプロパン、2,2ージブチルー1,3ージメトキシプロパン、2ーメチルー2 ープロピルー1, 3ージメトキシプロパン、2ーメチルー2ーベンジルー1, 3 ージメトキシプロパン、2ーメチルー2ーエチルー1,3ージメトキシプロパン 、2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、2-メチル-2-フェニル-1, 3-ジメトキシプロパン、2-メチル-2-シクロヘキシル -1, 3-ジメトキシプロパン、2, 2-ビス (p-クロロフェニル)-1, 3ージメトキシプロパン、2,2ービス(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-メチル-2-イソブチル-1,3-ジメトキシプロパ ン、2-メチル-2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、 2, 2-ジイソブチルー1, 3-ジメトキシプロパン、 <math>2, 2-ジフェニルー1, 3-ジメトキシプロパン、2, 2-ジベンジル-1, 3-ジメトキシプロパン 、2, 2-ビス(シクロヘキシルメチル)-1, 3-ジメトキシプロパン、2, 2-ジイソブチルー1,3-ジエトキシプロパン、2,2-ジイソブチルー1, 3-ジブトキシプロパン、2-イソブチル-2-イソプロピル-1, 3-ジメト

キシプロパン、2-(1-メチルブチル)-2-イソプロピルー1,3-ジメト キシプロパン、2-(1 -メチルブチル)-2-s-ブチル-1,3-ジメトキ シプロパン、2,2ージーsーブチルー1,3ージメトキシプロパン、2,2-ジーtーブチルー1, 3ージメトキシプロパン、2, 2ージネオペンチルー1, 3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメ トキシプロパン、2-フェニルー2-イソプロピルー1,3-ジメトキシプロパ ン、2-フェニル-2-s-ブチル-1,3-ジメトキシプロパン、2-ベンジ ルー2ーイソプロピルー1,3ージメトキシプロパン、2ーベンジルー2ーsー ブチルー1,3ージメトキシプロパン、2ーフェニルー2ーベンジルー1,3-ジメトキシプロパン、2-シクロペンチル-2-イソプロピル-1,3-ジメト キシプロパン、2-シクロペンチルー2-s-ブチルー1,3-ジメトキシプロ パン、2-シクロヘキシル-2-イソプロピル-1,3-ジメトキシプロパン、 2-シクロヘキシル-2-s-ブチル-1,3-ジメトキシプロパン、2-イソ プロピルー2-s-ブチルー1, 3-ジメトキシプロパン、2-シクロヘキシル -2-シクロヘキシルメチル-1,3-ジメトキシプロパン、2,3-ジフェニ ルー1, 4 - ジェトキシブタン、<math>2, 3 - ジシクロヘキシルー<math>1, 4 - ジェトキシブタン、2,2-ジベンジルー1,4-ジエトキシブタン、2,3-ジシクロ ヘキシル-1, 4-ジエトキシブタン、2, 3-ジイソプロピル-1, 4-ジエ トキシブタン、2, 2-ビス(p-メチルフェニル)-1, 4-ジメトキシブタ ン、2,3-ビス(p-クロロフェニル)-1,4-ジメトキシブタン、2,3 ーピス (p-フルオロフェニル) -1, 4-ジメトキシブタン、2, 4-ジフェ ニルー1, 5ージメトキシペンタン、2, 5ージフェニルー1, 5ージメトキシ ヘキサン、2,4-ジイソプロピル-1,5-ジメトキシペンタン、2,4-ジ イソブチルー1, 5ージメトキシペンタン、2, 4ージイソアミルー1, 5ージ メトキシペンタン、3-メトキシメチルテトラヒドロフラン、3-メトキシメチ ルジオキサン、1,3-ジイソブトキシプロパン、1,2-ジイソブトキシプロ パン、1,2-ジイソブトキシエタン、1,3-ジイソアミロキシプロパン、1 , 3-ジイソネオペンチロキシエタン、1,3-ジネオペンチロキシプロパン、 2, 2ーテトラメチレン-1, 3ージメトキシプロパン、2, 2ーペンタメチレ

ンー1, 3-ジメトキシプロパン、2, 2-ヘキサメチレン-1, 3-ジメトキ シプロパン、1,2-ビス(メトキシメチル)シクロヘキサン、2,8-ジオキ サスピロ[5, 5]ウンデカン、3,7-ジオキサビシクロ[3,3,1]ノナ ン、3,7-ジオキサビシクロ[3,3,0]オクタン、3,3-ジイソブチル -1,5-オキソノナン、6,6-ジイソブチルジオキシヘプタン、1,1-ジ メトキシメチルシクロペンタン、1, 1-ビス(ジメトキシメチル)シクロヘキ サン、1,1-ビス(メトキシメチル)ビシクロ[2,2,1]ヘプタン、1, 1ージメトキシメチルシクロペンタン、2ーメチルー2ーメトキシメチルー1, 3-ジメトキシプロパン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロパン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメ トキシプロパン、2,2-ジイソブチル-1,3-ジメトキシシクロヘキサン、 2-イソプロピル-2-イソアミル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシルー2ーメトキシメチルー1,3ージメトキシシクロヘキサン、2 ーイソプロピルー2ーメトキシメチルー1,3-ジメトキシシクロヘキサン、2 ーイソブチルー2-メトキシメチルー1,3-ジメトキシシクロヘキサン、2-シクロヘキシルー2ーエトキシメチルー1,3-ジエトキシシクロヘキサン、2 ーシクロヘキシルー2ーエトキシメチルー1,3ージメトキシシクロヘキサン、 2-イソプロピルー2-エトキシメチルー1,3-ジエトキシシクロヘキサン、 2ーイソプロピルー2ーエトキシメチルー1,3ージメトキシシクロヘキサン、 2 ーイソブチルー2ーエトキシメチルー1, 3 ージエトキシシクロヘキサン、2 ーイソブチルー2ーエトキシメチルー1,3ージメトキシシクロヘキサン、9, **9ービス(メトキシメチル)フルオレン、トリス(p-メトキシフェニル)ホス** フィン、メチルフェニルビス(メトキシメチル)シラン、ジフェニルビス(メト キシメチル)シラン、メチルシクロヘキシルピス(メトキシメチル)シラン、ジ ーt-ブチルビス(メトキシメチル)シラン、シクロヘキシル-t-ブチルビス **(メトキシメチル)シラン、i-プロピル-t-ブチルビス(メトキシメチル)** シラン等が挙げられる。

[0041]

これらのうち、1,3-ジエーテル化合物が好ましく用いられ、特に、2-イ

ソブチルー2ーイソプロピルー1, 3ージメトキシプロパン、9, 9ービス(メトキシメチル)フルオレン、2, 2ージシクロペンチルー1, 3ージメトキシプロパン、2, 1ージストキシプロパン、2, 2ージンクロペキシプロパン、2, 2ージシクロヘキシプロパン、2, 2ージシクロヘキシルー2ーイソペンチルー1, 3ージメトキシプロパン、2, 2ービス(シクロヘキシルメチル)ー1, 3ージメトキシプロパン、2, 2ービス(シクロヘキシルメチル)ー1, 3ージメトキシプロパン、2ーシクロヘキシルー2ーイソプロピルー1, 3ージメトキシプロパン、2ーイソプロピルー2ーsーブチルー1, 3ージメトキシプロパン、2ーシクロペンチルー2ーイソプロピルー1, 3ージメトキシプロパン、2ーシクロペンチルー2ーイソプロピルー1, 3ージメトキシプロパンが好ましく用いられる。また、これらの化合物はそれぞれ単独で用いてもよいし、2種以上を組み合わ

[0042]

せて用いてもよい。

[B] 有機アルミニウム化合物

本発明に用いられる有機アルミニウム化合物 [B] としては、特に制限はないが、アルキル基、ハロゲン原子、水素原子、アルコキシ基を有するもの、アルミノキサン及びそれらの混合物を好ましく用いることができる。具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム等のトリアルキルアルミニウム;ジエチルアルミニウムモノクロリド、ジイソプロピルアルミニウムモノクロリド、ジオクチルアルミニウムモノクロリド、ジオクチルアルミニウムセノクロリド、ジオクチルアルミニウムセノクロリド等のジアルキルアルミニウムモノクロリド;エチルアルミニウムセスキクロリド等のアルキルアルミニウムマスキハライド;メチルアルミノキサン等の鎖状アルミノキサン等が挙げられる。これらの有機アルミニウム、特にトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム及びトリイソブチルアルミニウムが好ましい。これらの有機アルミニウム化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

[0043]

[C] 電子供与性化合物

[0044]

アルコキシ基を有する有機ケイ素化合物の具体例としては、トリメチルメトキ シシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチル エトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチ ルイソプロピルジメトキシシラン、プロピルイソプロピルジメトキシシラン、ジ イソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、イソプロピル イソブチルジメトキシシラン、ジーt-ブチルジメトキシシラン、t-ブチルメ チルジメトキシシラン、tーブチルエチルジメトキシシラン、tーブチルプロピ ルジメトキシシラン、 t ーブチルイソプロピルジメトキシシラン、 t ーブチルブ チルジメトキシシラン、tーブチルイソブチルジメトキシシラン、tーブチル (s ープチル) ジメトキシシラン、 t ープチルアミルジメトキシシラン、 t ープチ ルヘキシルジメトキシシラン、 t ーブチルヘプチルジメトキシシラン、 t ーブチ ルオクチルジメトキシシラン、 t ーブチルノニルジメトキシシラン、 t ーブチル デシルジメトキシシラン、tーブチル(3,3,3-トリフルオロメチルプロピ ル)ジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシ ルエチルジメトキシシラン、シクロヘキシルプロピルジメトキシシラン、シクロ ヘキシルイソブチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シ クロヘキシルーt-ブチルジメトキシシラン、シクロペンチルメチルジメトキシ シラン、シクロペンチルエチルジメトキシシラン、シクロペンチルプロピルジメ トキシシラン、シクロペンチルーーt-ブチルジメトキシシラン、ジシクロペン チルジメトキシシラン、シクロペンチルシクロヘキシルジメトキシシラン、ビス (2-メチルシクロペンチル) ジメトキシシラン、ビス (2,3-ジメチルシク ロペンチル)ジメトキシシラン、 α ーナフチルー1, 1, 2ートリメチルプロピ ルジメトキシシラン、n-テトラデカニル-1, 1, 2-トリメチルプロピルジ

メキシシラン、1, 1, 2ートリメチルプロピルメチルジメトキシシラン、1, 1, 2-トリメチルプロピルエチルジメトキシシラン、1, 1, 2-トリメチル プロピルイソプロピルジメトキシシラン、1,1,2ートリメチルプロピルシク ロペンチルジメトキシシラン、1, 1, 2-トリメチルプロピルシクロヘキシル ジメトキシシラン、1, 1, 2-トリメチルプロピルミリスチルジメトキシシラ ン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリ エトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチ ルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラ ン、イソプロピルトリメトキシシラン、ブチルトリメトキシシラン、ブチルトリ エトキシシラン、イソブチルトリメトキシシラン、 t ープチルトリメトキシシラ ン、 s -ブチルトリメトキシシラン、アミルトリメトキシシラン、イソアミルト リメトキシシラン、シクロペンチルトリメトキシシラン、シクロヘキシルトリメ トキシシラン、ノルボルナントリメトキシシラン、インデニルトリメトキシシラ ン、2-メチルシクロペンチルトリメトキシシラン、エチルトリイソプロポキシ シラン、メチルシクロペンチル (t ーブトキシ) ジメトキシシラン、イソプロピ ル(t ーブトキシ)ジメトキシシラン、 t ーブチル(t ーブトキシ)ジメトキシ シラン、(イソブトキシ)ジメトキシシラン、 t ーブチル (t ーブトキシ) ジメ トキシシラン、ピニルトリエトキシシラン、ビニルトリブトキシシラン、クロロ トリエトキシシラン、γークロロプロピルトリメトキシシラン、γーアミノプロ ピルトリエトキシシラン、1, 1, 2-トリメチルプロピルトリメトキシシラン 、1,1,2-トリメチルプロピルイソプロポキシジメトキシシラン、1,1, 2-トリメチルプロピル (t-ブトキシ) ジメトキシシラン、テトラメトキシシ ラン、テトラエトキシシラン、テトラブトキシシラン、テトライソブトキシシラ ン、ケイ酸エチル、ケイ酸ブチル、トリメチルフェノキシシラン、メチルトリア リロキシシラン、ビニルトリス (βーメトキシエトキシ) シラン、ビニルトリス アセトキシシラン、ジメチルテトラエトキシジシロキサン等が挙げられる。これ らの有機ケイ素化合物はそれぞれ単独で用いてもよいし、2種以上を組み合わせ て用いてもよい。

[0045]

[0046]

[0047]

リン含有化合物の具体例としては、トリエチルホスファイト、トリュープロピルホスファイト、トリイソプロピルホスファイト、トリューブチルホスファイト、トリイソブチルホスファイト、ジエチルコーブチルホスファイト、ジエチルフェニルホスファイト等の亜リン酸エステル類等が挙げられる。

[0048]

酸素含有化合物の具体例としては、2,2,5,5ーテトラメチルテトラヒドロフラン、2,2,5,5ーテトラエチルテトラヒドロフラン等の2,5ー置換テトラヒドロフラン類;1,1ージメトキシー2,3,4,5ーテトラクロロシクロペンタジエン、9,9ージメトキシフルオレン、ジフェニルジメトキシメタン等のジメトキシメタン誘導体等が挙げられる。

また、酸素含有化合物としては、上記の電子供与性化合物(d)のジェーテル 化合物も使用できる。これらのうち、特に好ましいのは、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペン チル-1,3-ジメトキシプロパン、9,9-ビス(メトキシメチル)フルオレ ン、2,2-ジシクロペンチル-1,3-ジメトキシプロパン、2,2-ジシク

[0049]

2. [A] 固体触媒成分の調製方法

固体触媒成分 [A] の調製方法としては、例えば、上記のハロゲン含有チタン化合物(a)、アルコキシ基含有マグネシウム化合物(b)及び電子供与性化合物(d)、及び必要に応じてハロゲン含有ケイ素化合物(c)を接触・反応させた後、好ましくは再度(1回以上)、ハロゲン含有チタン化合物(a)を接触・反応させる方法が挙げられる。その他の接触順序については特に問わない。

[0050]

これらの各成分は、炭化水素等の不活性溶媒の存在下で接触させてもよいし、 予め炭化水素等の不活性溶媒で各成分を希釈して接触させてもよい。この不活性 溶媒としては、例えば、オクタン、デカン、エチルシクロヘキサン等の脂肪族炭 化水素又は脂環式炭化水素、トルエン、エチルベンゼン、キシレン等の芳香族炭 化水素、及びクロロベンゼン、テトラクロロエタン、クロロフルオロ炭素類等の ハロゲン化炭化水素又はこれらの混合物が挙げられる。これらの中では、脂肪族 炭化水素、芳香族炭化水素が好ましく、脂肪族炭化水素が特に好ましく使用され る。

[0051]

ここで、ハロゲン含有チタン化合物(a)は、アルコキシ基含有マグネシウム化合物(b)のマグネシウム1モルに対して、通常、0.5~100モル、好ましくは、1~50モル使用する。このモル比が前記範囲を逸脱すると触媒活性が不十分となることがある。

[0052]

また、電子供与性化合物(d)は、アルコキシ基含有マグネシウム化合物(b)のマグネシウム1モルに対して、通常、0.01~10モル、好ましくは、0.05~1.0モル使用する。0.01モル未満では、ポリマーの立体規則性が低下する場合がある。一方、10モルを越えると、チタン当たりの重合活性が低下する場合がある。

[0053]

[0054]

さらに、上記の化合物(a)、(b)及び(d)、又は化合物(a)、(b)、(c)及び(d)の接触反応は、これらを全て加えた後、通常、90~150℃、好ましくは125~140℃の温度範囲で行う。この接触温度が前記範囲外では、触媒活性や立体規則性の向上効果が十分に発揮されない場合がある。また、接触は、通常、1分~24時間、好ましくは、10分~6時間行われる。このときの圧力は、溶媒を使用する場合は、その種類、接触温度等により変化するが、通常、0~5MPa、好ましくは0~1MPaの範囲で行う。また、接触操作中は、接触の均一性及び接触効率の面から攪拌を行うことが好ましい。尚、これらの接触条件は、2回目以降のハロゲン含有チタン化合物(a)の接触反応についても同様である。

[0055]

尚、化合物(a)~(d)の接触順序については特に限定されないが、化合物(a)、(b)及び(d)を接触させる際には、まず、化合物(a)及び化合物(b)を接触させた後、化合物(d)を接触させると、重合活性が高くなる場合がある。また、化合物(a)、(b)、(c)及び(d)を接触させる際には、化合物(b)と化合物(c)を接触させ、次に、化合物(d)を接触させ、最後に化合物(a)を接触させると重合活性が高くなる場合がある。尚、化合物(d)と化合物(a)の接触順序は逆であってもよい。

[0056]

ハロゲン含有チタン化合物(a)の接触操作において、溶媒を使用するときは、ハロゲン含有チタン化合物(a)1モルに対して、通常、5,000ミリリットル以下、好ましくは、10~1,000ミリリットルの溶媒を使用する。この比が前記範囲を逸脱すると接触の均一性や接触効率が悪化することがある。

さらに、1回目の化合物(a)、(b)及び(d)、又は化合物(a)、(b)、(c)及び(d)の接触・反応後は、通常、90~150℃、好ましくは120~140℃の温度の不活性溶媒で洗浄する。洗浄温度が上記範囲外では、触媒活性や立体規則性の向上効果が十分発揮されない場合がある。この不活性溶媒としては、例えば、オクタン、デカン等の脂肪族炭化水素、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、クロルベンゼン、テトラクロロエタン、クロロフルオロ炭素類等のハロゲン化炭化水素又はこれらの混合物が挙げられる。これらの中では、脂肪族炭化水素、芳香族炭化水素が好ましく使用される。

[0058]

尚、2回目以降のハロゲン含有チタン化合物(a)の接触・反応後の洗浄温度 については特に限定されないが、立体規則性の面からは $90\sim150$ で、特に好 ましくは $120\sim140$ での温度で不活性溶媒で洗浄した方がよい場合もある。

[0059]

洗浄方法としては、デカンテーション、濾過等の方式が好ましい。不活性溶媒の使用量、洗浄時間、洗浄回数についても特に制限はないが、マグネシウム化合物1モルに対して、通常、100~100,000ミリリットル、好ましくは、100~50,000ミリリットルの溶媒を使用し、通常、1分~24時間、好ましくは、10分~6時間行われる。この比が前記範囲を逸脱すると洗浄が不完全になることがある。

[0060]

このときの圧力は、溶媒の種類、洗浄温度等により変化するが、通常、0~5 MPa、好ましくは、0~1 MPaの範囲で行う。また、洗浄操作中は、洗浄の均一性及び洗浄効率の面から攪拌を行うことが好ましい。尚、得られた固体触媒成分[A]は、乾燥状態又は炭化水素等の不活性溶媒中で保存することもできる

[0061]

3. オレフィン重合体の製造方法

[0062]

有機アルミニウム化合物 [B] は、アルミニウム/チタン原子比が、通常1~1,000、好ましくは10~1000の範囲になるような量が用いられる。この原子比が前記範囲を逸脱すると、触媒活性が不十分となることがある。

[0063]

また、電子供与性化合物 [C] を用いるときは、 [C] / [B] (モル比)が、通常 0.001~5.0、好ましくは 0.01~2.0、より好ましくは 0.05~1.0の範囲になるような量が用いられる。このモル比が前記範囲を逸脱すると、十分な触媒活性及び立体規則性が得られないことがある。ただし、予備重合を行う場合は、電子供与性化合物 [C] の使用量をさらに低減することができる。

[0064]

本発明に用いられるオレフィンとしては、一般式 (V) で表される α - オレフィンが好ましい。

$$R^{13}-CH=CH_2$$
 ... (V)

上記一般式 (V) において、R ¹³ は水素原子又は炭化水素基であって、炭化水素基は、飽和基や不飽和基であってもよいし、直鎖状のものや分岐鎖を有するもの、あるいは環状のものであってもよい。具体的には、エチレン、プロピレン、1ーブテン、1ーペンテン、1ーペナン、1ーペンテン、1ーオクテン、1ーデセン、3ーメチルー1ーペンテン、4ーメチルー1ーペンテン、ビニルシクロヘキサン、ブタジエン、イソプレン、ピペリレン等が挙げられる。これらのオレフィンは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。前記オレフィンの中で、特にエチレン、プロピレンが好適である。

[0066]

本発明におけるオレフィンの重合においては、重合時の触媒活性、オレフィン

[0067]

この本重合における重合形式については特に制限はなく、溶液重合、スラリー重合、気相重合、バルク重合等のいずれにも適用可能であり、さらに、回分式重合や連続重合のどちらにも適用可能であり、異なる条件での2段階重合や多段階重合にも適用可能である。

[0068]

さらに、反応条件については、その重合圧は、特に制限はなく、重合活性の面から、通常、大気圧 $\sim 8\,\mathrm{MPa}$ 、好ましくは $0.2\sim 5\,\mathrm{MPa}$ 、重合温度は、通常、 $0\sim 2\,0\,0\,\mathrm{C}$ 、好ましくは、 $3\,0\sim 1\,0\,0\,\mathrm{C}$ の範囲で適宜選ばれる。重合時間は原料のオレフィンの種類や重合温度によるが、通常、 $5\,\mathrm{G}\sim 2\,0\,\mathrm{B}$ 間、好ましくは、 $1\,0\,\mathrm{G}\sim 1\,0\,\mathrm{B}$ 間程度である。

[0069]

オレフィン重合体の分子量は、連鎖移動剤の添加、好ましくは水素の添加を行うことで調節することができる。また、窒素等の不活性ガスを存在させてもよい。また、本発明における触媒成分については、固体触媒成分 [A]、有機アルミニウム化合物 [B] 及び電子供与性化合物 [C] を所定の割合で混合して接触させた後、ただちにオレフィンを導入して重合を行ってもよいし、接触後、O. 2~3時間程度熟成させたのち、オレフィンを導入して重合を行ってもよい。さらに、この触媒成分は不活性溶媒やオレフィン等に懸濁して供給することができる。本発明においては、重合後の後処理は常法により行うことができる。即ち、気相重合法においては、重合後、重合器から導出されるポリマー粉体に、その中に含まれるオレフィン等を除くために、窒素気流等を通過させてもよいし、また、所望に応じて押出機によりペレット化してもよく、その際、触媒を完全に失活さ

[0070]

【実施例】

次に、実施例により本発明を具体的に示すが、本発明は下記の実施例に限定されるものではない。尚、固体触媒成分のTi担持量、重合体の固有粘度[n]及び立体規則性[mmmm]、重合パウダーの平均粒径(D₅₀)、微粉量、粗粉量及び嵩密度は次のようにして求めた。

[0071]

(1) 重合体の固有粘度 [η]: 重合体をデカリンに溶解し、135℃で測定した。

[0072]

(2) 重合体の立体規則性 [mmmm] : 重合体を1, 2, 4ートリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶液に溶解し、¹³C-NMR(日本電子(株)製、商品名:LA-500)を用いて、130℃でプロトン完全デカップリング法により測定したメチル基のシグナルを用いて定量した。

[0073]

尚、アイソタクチックペンタッド分率 [mmmm] とは、エイ・ザンベリ(A. Zambelli)等が、マクロモレキュールズ(Macromolecules) 誌 第6巻 925頁(1973)で提案した、 ¹³C-NMRスペクトルから求められるポリプロピレン分子鎖中のペンタッド単位におけるアイソタクチック分率を意味する。

また、¹³C-NMRスペクトルのピークの帰属決定法は、エイ・ザンベリ(A. Zambelli)等が、マクロモレキュールズ(Macromolecules) 誌 第8巻 687頁(1975)で提案した帰属に従った。

[0074]

(3) 重合パウダーの平均粒径(D₅₀)、微粉量、粗粉量:篩を用いて測定した粒径分布を対数正規確率紙上にプロットし、50%粒子径を平均粒径として求

[0075]

(4) 重合パウダーの嵩密度 (AD): JIS K 6721に準拠して測定した

[0076]

実施例1

(1) アルコキシ基含有マグネシウム化合物の調製

窒素で置換した内容積 0. 5リットルの攪拌器付三つ口フラスコに、脱水処理 したエタノール122g(2.64グラム原子)、ヨウ素 0.9g(7.1ミリ グラム原子)及び金属マグネシウム8g(0.33グラム原子)を投入し、系内 から水素が発生しなくなるまで 78℃で攪拌(350rpm)して反応させ、ア ルコキシ基含有マグネシウム化合物(ジエトキマグネシウム)を得た。

[0077]

(2) 固体触媒成分の調製

内容積 0. 5 リットルの攪拌機付きの三つロフラスコを窒素ガスで置換した後、脱水処理したオクタン 8 0 ミリリットル、及び、担体として、上記(1)で調製したジエトキシマグネシウム 1 6 g(0. 140モル)を加えた。40℃に加熱し、四塩化ケイ素 2. 4 ミリリットルを加えて 20分間攪拌した後、内部ドナー(電子供与性化合物)として、2ーイソブチルー2ーイソプロピルー1,3ージメトキシプロパン(IPIBMP)2.9ミリリットルを添加した。この溶液を65℃まで昇温し、引き続き、四塩化チタンを77ミリリットル滴下し、内温125℃で、2時間攪拌して接触操作を行った。その後、脱水オクタンを用いて充分洗浄した。その後、四塩化チタンを122ミリリットル加え、内温125℃で、2時間攪拌して接触操作を行った後、脱水オクタンによる洗浄を十分に行い、固体触媒成分を得た。

[0078]

(3) プロピレン重合

内容積1リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し、窒

素置換の後、室温で脱水処理したヘプタン400ミリリットルを加えた。トリエチルアルミニウム2.0ミリモル、上記(2)で調製した固体触媒成分を、Ti原子換算で0.0025ミリモル加え、水素を0.02MPa張り込み、続いてプロピレンを導入しながら、80℃、全圧0.8MPaまで昇温昇圧してから、1時間重合を行った。

その後、降温、脱圧し、内容物を取り出し、2リットルのメタノールに投入し、触媒失活を行った。それを濾別し、真空乾燥して、プロピレン重合体を得た。 結果を表1に示す。

[0079]

実施例2

実施例1(2)において、2ーイソブチルー2ーイソプロピルー1,3ージメトキシプロパン(2.9ミリリットル)を、9,9ービス(メトキシメチル)フルオレン(FLUMP)(3.5ミリリットル)に変更した以外は、実施例1(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

[0080]

実施例3

実施例1(2)において、ヨウ素の使用量を0.27gとし、反応温度を40 ℃にして調製したジエトキシマグネシウムを使用した以外は、実施例1(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

[0081]

実施例4

実施例3において、2ーイソブチルー2ーイソプロピルー1,3ージメトキシ プロパン(2.9ミリリットル)を、9,9ーピス(メトキシメチル)フルオレン(3.5ミリリットル)に変更した以外は、実施例3と同様にして固体触媒成分を調製してプロピレンの重合を行った。結果を表1に示す。

[0082]

比較例1

このようにして得られた均一溶液を室温まで冷却した後、-20℃に保持された四塩化チタン373ミリリットル中に1時間にわたって全量滴下した。滴下後、得られた均一溶液の温度を4時間かけて110℃に昇温し、110℃に達したところで2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン3.7ミリリットルを添加し、その後、110℃に保ちながら2時間攪拌した。2時間の反応終了後、熱時濾過で固体部を採取し、この固体部を275ミリリットルの四塩化チタンで再懸濁させた後、再び110℃で2時間加熱反応を行った。反応終了後、再び熱時濾過で固体部を採取し、110℃のデカン及びヘキサンを用いて洗浄した。この洗浄を、洗浄液中にチタン化合物が検出されなくなるまで行い、固体触媒成分を得た。

次に、この固体触媒成分を用い、実施例1 (3)と同様にしてプロピレンの重合を行った。結果を表1に示す。

[0083]

比較例2

比較例1において、2ーイソブチルー2ーイソプロピルー1,3ージメトキシプロパン(3.7ミリリットル)を、9,9ービス(メトキシメチル)フルオレン(4.4ミリリットル)に変更した以外は、比較例1と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

[0084]

比較例3

(1) アルコキシ基含有マグネシウム化合物の調製

実施例1 (1) において、ヨウ素を使用しなかった以外は、実施例1 (1) と同じ操作を繰り返して得られた固体生成物を、ボールミルで粉砕処理してジエト

キシマグネシウムを調製した。

(2) 固体触媒成分の調製

攪拌機付きの三つロフラスコを窒素ガスで置換した後、上記(1)で調製したジエトキシマグネシウムを3g投入し、これに2ーイソブチルー2ーイソプロピルー1,3ージメトキシプロパン5.6ミリリットル及び四塩化ケイ素37.5ミリリットルを加えて40℃に加熱し、1時間保持した。これを濾過した後に四塩化チタン120ミリリットルを加え、100℃に加熱し、2時間保持した。これを100℃で濾過し、熱デカンで2回洗浄した後、四塩化チタン120ミリリットルを加え、110℃に加熱し、2時間保持した。この後110℃で濾過し、熱デカンで2回洗浄し、36にnーヘキサンで5回洗浄し、固体触媒成分を得た

(3) プロピレン重合

実施例1(3)において、上記(2)で調製した固体触媒成分を用いた以外は、実施例1(3)と同様にしてプロピレンの重合を行った。結果を表1に示す

. [0085]

比較例4

比較例3(2)において、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン(5.6ミリリットル)を、2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン(IPMP)(6.0ミリリットル)に変更した以外は、比較例3(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す。

[0086]

比較例5

比較例3(2)において、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン(5.6ミリリットル)を、9-ビス(メトキシメチル)フルオレン(6.7ミリリットル)に変更した以外は、比較例3(2)及び(3)と同様にして固体触媒成分を調製し、プロピレンの重合を行った。結果を表1に示す

[0087]

【表1】

		宣合	[合体性状 ·		重合パウ	重合パウダー形態		固体触媒成分の構成	成
	鱼媒活件 (kg-pp/g-Ti)	[n] (dl/g)	[mmmm] (%)	D ₅₀ (μμ)	<250 µ m (wt%)	>2,500 µ m (wt%)	AD (g/ml)	担体	内部ドナー
東施例1	12.3	1.38	92.9	1,320	5.4	0.5	0.36	Mg(OEt) ₂ , 1 ₂ /Mg=0.022, 78°C	IPIBMP
実施例2	14.5	1.42	93.4	1,400	4.9	0.4	0.35	Mg(OEt) ₂ , I ₂ /Mg=0.022, 78°C	FLUMP
東施例3	14.2	1.42	92.9	630	2.2	0.2	0.42	Mg(OEt) ₂ , I ₂ /Mg=0.0065, 40°C	IPIBMP
東施例4	16.4	1.41	93.3	089	1.4	. 0.3	0.42	Mg(OEt) ₂ , I ₂ /Mg=0.0065, 40°C	FLUMP
比較例1	9.3	1.41	92.8	510	3.0	0.4	0.42	MgCl ₂	IPIBMP
比較例2	11.2	1.38	93.2	540	2.6	0.5	0.43	MgCl ₂	FLUMP
比較例3	4.5	1.34	92.7	840	12.5	3.8	0.28	Mg(OEt)2, 12/Mg=0, 78°C, 粉辞	IPIBMP
比較例4	5.1	1.36	92.8	870	11.8	4.0	0.30	Mg(OEt), I ₂ /Mg=0, 78°C, 粉砕	IPMP
比較例5	5.4	1.37	93.1	890	12.0	4.2	0.31	Mg(OEt), 1,/Mg=0, 78°C, 粉砕	FLUMP

Mg(OEt)2:ジエトキマグネシウム IPIBMP:2ーイソブチルー2ーイソプロピルー1, 3ージメトキシプロパン FLUMP:9, 9ービス(メトキシメチル)フルオレン IPMP:2ーインペンチルー2ーイソプロピルー1, 3ージメトキシプロパン

【発明の効果】

本発明によれば、重合活性が高く、立体規則性及びパウダー形態に優れたオレフィン重合体が得られるオレフィン重合用固体触媒成分、オレフィン重合用触媒 及びオレフィン重合体の製造方法を提供できる。

【図面の簡単な説明】

【図1】

本発明のオレフィン重合用触媒及びオレフィン重合体の製造方法を示す模式である。

[A]固体触媒成分

図面

【図1】

【書類名】

NDゲン及び/又はNDゲン含有化合物/Mg≥0.0001

(b)アルコキン基含有Mg化合物

(a)ハロゲン含有Ti化合物

(d)電子供与性化合物(ジェーテル化合物)

(c)ハロゲン含有Si化合物

[B]有機AI化合物

[C]電子供与性化合物

【書類名】

要約書

【要約】

【課題】重合活性が高く、立体規則性及びパウダー形態に優れたオレフィン重合体が得られるオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法を提供する。

【解決手段】下記化合物(a)、(b)及び(d)、又は下記化合物(a)、(b)、(c)及び(d)を反応させて得られるオレフィン重合用固体触媒成分。

- (a) ハロゲン含有チタン化合物
- (b) アルコキシ基含有マグネシウム化合物
- (c) ハロゲン含有ケイ素化合物
- (d) 下記一般式(I) で表される電子供与性化合物

【化1】

[式中、nは、 $2\sim10$ の整数であり、 $R^1\sim R^8$ は、炭素、水素、酸素、N口ゲン、窒素、イオウ、リン、ホウ素及びケイ素から選択される少なくとも1種の元素を有する置換基であり、任意の $R^1\sim R^8$ は、共同してベンゼン環以外の環を形成してもよい。]

【選択図】 図1

出願人履歴情報

識別番号

[000183657]

1. 変更年月日 2000年 6月30日

[変更理由] 住所変更

住 所 東京都墨田区横網一丁目6番1号,

氏 名 出光石油化学株式会社