Bioinformatics, statistics & transcriptomics

Yi Jin **LIEW**Aranda Lab
080218

Outline

- Morning session
 - 9.00—10.00
 - Intro to bioinformatics
 - Why use Linux?
 - Why you shouldn't fear the command line
 - 10.20—12.10
 - Statistics in transcriptomics
 - Q&A
- Lunch!
- Afternoon session (1330—1700)

Outline

- Afternoon session (make sure you have a functioning terminal!)
 - Process raw sequencing reads: 1 hour
 - Read mapping and quantification with kallisto: 30 mins
 - Intermission II: 10 mins
 - Normalisation with sleuth: 30 mins
 - Functional enrichment with topGO: 50 mins

Part 0: ... bioinformatics?

Bioinformatics (= computational biology)

- Using computers to understand biological data
- Earliest bioinformatics problems were:
 - Aligning protein sequences (protein sequencing pioneered 1950s)
 - Studying bacteriophage genomes (DNA sequencing pioneered 1970s), reinforced concepts of codons, open reading frames etc.

Fred Sanger (1918 – 2013)

Bioinformatics (= computational biology)

 Data-driven hypothesis Data **Experiments** Hypothesis

Explosive growth in data

Growth of DNA Sequencing

Exponential growth in computing power

New sequencing technologies

- 1. Sanger sequencer
- 2. Next-generation sequencing (Illumina / SOLiD / 454)
- 3. Single molecule sequencing (Pacific Bio / Ion Torrent)

New sequencing technologies

Genome sequencing cost as estimated by NHGRI (September 2001 to April 2014)

Explosive growth in papers

Growth of bioinformatics papers on Google Scholar that mention "big data".

Modern examples of bioinformatics

Sequence analysis

- Sequence searches: infer function of unknown DNA sequence
- Comparative genomics: infer evolutionary trees from conserved proteins
- Evolutionary biology: detect gene duplication / horizontal gene transfer
- Mutational analysis: detect predisposition to diseases via SNP patterns

Expression studies

- Microarrays / RNA-seq: detect upregulated or downregulated genes
- Protein mass spectrometry: deduce function, quantify expression

Structural studies

• Protein X-ray crystallography: calculate most likely structure of enzymes

Modern examples of bioinformatics

Systems biology

- "Interactome": deduce key proteins from map of protein interactions
- Pathway analysis: deduce presence/absence of conserved pathways in new genomes
- Image analysis
 - Track movement of cells, flies, fish, humans...
- Data mining
 - IBM's "Watson" supercomputer chomps thru medical literature, helps provide diagnosis and detect whether drug combinations have bad side effects

Part I: Why Linux?

Popular Operating Systems

- Bioinformatics programs are **PREDOMINANTLY** written for Linux
- Why?
 - Openness: anyone can read source code of bioinformatics software

```
GitHub, Inc. [US] https://github.com/pachterlab/kallisto/blob/master/src/main.cpp
         Std::String ret(asctime(timeInto));
         // chomp off the newline
         return ret.substr(0, ret.size() - 1);
1058
       int main(int argc, char *argv[]) {
         std::cout.sync with stdio(false);
         setvbuf(stdout, NULL, _IOFBF, 1048576);
         if (argc < 2) {
          usage();
          exit(1);
         } else {
          auto start_time(get_local_time());
           ProgramOptions opt;
1070
```

- Bioinformatics programs are **PREDOMINANTLY** written for Linux
- Why?
 - Server architecture: most large servers in universities run Linux

Top 10 positions of the 50th TOP500 in November 2017 ^[15]									
Rank ¢	Rmax Rpeak \$ (PFLOPS)	Name		Model 4	Processor +	Interconnect +	Vendor +	Site ¢	Operating system
1	93.015 125.436	Sunway TaihuLight		Sunway MPP	SW26010	Sunway ^[16]	NRCPC	National Supercomputing Center in Wuxi China, 2016 ^[16]	Linux (Raise)
2	33.863 54.902	Tianhe-2		TH-IVB-FEP	Xeon E5–2692, Xeon Phi 31S1P	TH Express-2	NUDT	National Supercomputing Center in Guangzhou China, 2013	Linux (Kylin)
3	19.590 25.326	Piz Daint		Cray XC50	Xeon E5-2690v3, Tesla P100	Aries	Cray	Swiss National Supercomputing Centre Switzerland, 2016	Linux (CLE)
4	19.136 28.192	Gyoukou		ZettaScaler-2.2 HPC system	Xeon D-1571, PEZY-SC2	Infiniband EDR	ExaScaler	Japan Agency for Marine-Earth Science and Technology Japan, 2017	Linux (CentOS)
5	17.590 27.113	Titan		Cray XK7	Opteron 6274, Tesla K20X	Gemini	Cray	Oak Ridge National Laboratory United States, 2012	Linux (CLE, SLES based)
6	17.173 20.133	Sequoia		Blue Gene/Q	A2	Custom	IBM	Lawrence Livermore National Laboratory United States, 2013	Linux (RHEL and CNK)
7	14.137 43.902	Trinity		Cray XC40	Xeon E5–2698v3, Xeon Phi	Aries	Cray	Los Alamos National Laboratory United States, 2015	Linux (CLE)
8	14.015 27.881	Cori		Cray XC40	Xeon Phi 7250	Aries	Cray	National Energy Research Scientific Computing Center United States, 2016	Linux (CLE)
9	13.555 24.914	Oakforest- PACS		Fujitsu	Xeon Phi 7250	Intel Omni-Path	Fujitsu	Kashiwa, Joint Center for Advanced High Performance Computing Japan, 2016	Linux
10	10.510 11.280	K computer		Fujitsu	SPARC64 VIIIfx	Tofu	Fujitsu	Riken, Advanced Institute for Computational Science (AICS) Japan, 2011	Linux

- Bioinformatics programs are **PREDOMINANTLY** written for Linux
- Why?
 - Ease at manipulating large files: nowadays, files > 1 GB are extremely common. Handling large files in Windows/OS X is extremely clunky!
 - Programming philosophy: modular vs monolithic

Linux

Windows/OS X

- Bioinformatics programs are **PREDOMINANTLY** written for Linux
- Why?
 - Text input/output, not silly proprietary filetypes (try opening a Word document in TextEdit/Notepad)
 - Piping: output of a tool can be "piped" as the input into another tool

When bioinformaticians put several programs together to produce the desired output, they say they've built a "pipeline"

Part II: Command-line-o-philia

Command-line vs. GUI

 GUIs used to be launched from the command-line

 Command-lines are now launched from GUIs


```
Windows PowerShell
                                                                                              PS C:\> Get-AzureRmADServicePrincipal -SearchString "AzureKeysRollerDaemon
DisplayName
                               Type
                                                              ObjectId
AzureKeysRollerDaemon
                                                              672f1afa-526a-4ef6-819c-975c7cd79022
PS C:\> New-AzureRmRoleAssignment -ObjectId 672f1afa-526a-4ef6-819c-975c7cd79022 -RoleDefinitionName
Contributor -Scope /subscriptions/c276fc76-9cd4-44c9-99a7-4fd71546436e
RoleAssignmentId : /subscriptions/c276fc76-9cd4-44c9-99a7-4fd71546436e/providers/Microsoft.Author
                     ization/roleAssignments/9182ae32-4219-4c26-a80b-891ba649ae36
                  : /subscriptions/c276fc76-9cd4-44c9-99a7-4fd71546436e
DisplayName
                   : AzureKeysRollerDaemon
SignInName
RoleDefinitionName : Contributor
RoleDefinitionId : b24988ac-6180-42a0-ab88-20f7382dd24c
ObjectId
                  : 672f1afa-526a-4ef6-819c-975c7cd79022
ObjectType
                   : ServicePrincipal
PS C:\>
```

```
chris@ubuntu: ~
chris@ubuntu:~$ ping google.com
PING google.com (216.58.216.142) 56(84) bytes of data.
64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp seq=1 ttl
=35.8 \text{ ms}
64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp seq=2 ttl
=51.5 ms
^Z
[1]+ Stopped
                               ping google.com
chris@ubuntu:~$ fq ping
ping google.com
64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp seq=3 ttl
=38.0 ms
64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp seq=4 ttl
=37.0 ms
```

```
Command Prompt
  Directory of C:\Users\Jon\AppData\Local\BrawlBox
04/28/2016 11:20 AM
04/28/2016 11:20 AM
04/28/2016 11:20 AM
                                                       BrawlBox.exe_Url_nlhqq3eg1xy4so4t2xnh5x0n
o5j5q4iv
                     Ø File(s)
                                                     0 bytes
\label{local-brawlbox-brawlbox-exe\_Url_nlhqq3eglxy4s} Directory of C:\Users\Jon\AppData\Local\BrawlBox\BrawlBox.exe\_Url_nlhqq3eglxy4s o4t2xnh5x0no5j5q4iv
04/28/2016 11:20 AM
04/28/2016 11:20 AM
                                                      0.71.5111.26120
04/28/2016 11:20 AM
                     Ø File(s)
Directory of C:\Users\Jon\AppData\Local\BrawlBox\BrawlBox.exe_Url_nlhqq3eglxy4s o4t2xnh5x0no5,j5q4iv\0.71.5111.26120
04/28/2016 11:20 AM
04/28/2016 11:20 AM
04/28/2016 11:20 AM
                                 <DIR>
                                              1,111 user.config
                     1 File(s)
                                               1.111 bytes
  Directory of C:\Users\Jon\AppData\Local\Broadcom
04/18/2015 09:19 AM
04/18/2015 09:19 AM
04/18/2015 09:19 AM
                                                      Bluetooth Software
                     0 File(s)
  Directory of C:\Users\Jon\AppData\Local\Broadcom\Bluetooth Software
04/18/2015 09:19 AM
04/18/2015 09:19 AM
04/18/2015 09:19 AM
                                                    sync
Ø bytes
                     Ø File(s)
  Directory of C:\Users\Jon\AppData\Local\Broadcom\Bluetooth Software\sync
```

Command-lines are different!

 OS X and Linux have similar command lines

- Windows command lines are very different
 - cmd: more UNIX-like
 - PowerShell: manipulates objects instead of text

Mini-demo

• Commands covered:

Command	Function
Is	List files
cd	Change directory
cat	Concatenate files, print to standard output
less	View contents of a file
nano	Edit contents of a file

Intermission I: Questions?

CGP Grey - How Machines Learn

https://www.youtube.com/watch?v=R9OHn5ZF4Uo

Part III: Statistics in transcriptomics

Statistics: why learn it?

Allows one to quantify whether data is interesting!

Understand your data!

Is this parametric, or non-parametric?

Why use normal data?

- Allows the use of parametric tests:
 - Student's *t*-test
 - ANOVAs
 - Pearson correlation (r^2)
 - z-scores
- While not compulsory,
 - PCAs are more meaningful
 - Prettier graphs
- Much much easier to imagine normally-distributed data!

Do I need to transform my data?

• Especially for expression data, raw values tend to not be normal

Do I need to transform my data?

After log-transformation:

• This implies original data was log-normal!

"Differential"

- If a gene is said to be "differentially expressed under heat stress relative to control", what does it mean? What about numerically?
 - Also think about the corollary: how do you know the gene is <u>NOT</u> differentially expressed?

Short-Term Acute Exposure Of Healthy Humans To Particulate Matter Induces

Differential Gene Expression In Lung Immune Cells

AY Meliton, T Cho, RB Hamanaka... - C103. OUTDOOR AIR ..., 2017 - Am Thoracic Soc Rationale: mortality. Current levels of PM in American cities are estimated to be responsible for 50,000 to 60,000 excess deaths per year in the US; however, the mechanisms by which PM causes adverse health effects are not completely understood. Experimental exposure of

☆ 99 👀

[HTML] Differential gene expression in brain and peripheral tissues in depression across the life span: A review of replicated findings

LG Ciobanu, PS Sachdev, JN Trollor... - Neuroscience & ..., 2016 - Elsevier

Abstract There is a growing body of research investigating the **gene expression** signature of depression at the genome-wide level, with potential for the discovery of novel pathophysiological mechanisms of depression. However, heterogeneity of depression,

☆ 55 Cited by 2 Related articles All 7 versions Web of Science: 2

"significant"

- "p < 0.05": what do the *p* values **mean**?
 - Can you think of situations where heat stress values are very different from control, yet not considered statistically significant?

68-95-99 rule

• *p* < 0.05 implies data point is 2 SD outside of the mean

- e.g. IQ scores: 100 ± 15 (s.d.)
 - (at what IQ is one significantly smarter than the general pop?)

Student's t-test (two-sample, two-tailed)

- Tests whether observations have a significantly different mean from an expected baseline
 - e.g. IQ of sampled KAUSTians (*n* = 10) are 120 ± 10 (s.d.)
 - Is our IQ significantly different to that of a random sample (*n* = 10) from the population?

QuickCalcs

1. Select category

Choose calculator

3. Enter data

4. View results

Unpaired t test results

P value and statistical significance:

The two-tailed P value equals 0.0025

By conventional criteria, this difference is considered to be very statistically significant.

Confidence interval:

The mean of General pop minus KAUSTians equals -20.00 95% confidence interval of this difference: From -31.98 to -8.02

Intermediate values used in calculations:

t = 3.5082 df = 18 standard error of difference = 5.701

Learn more:

GraphPad's web site includes portions of the manual for GraphPad Prism that can help you learn statistics. First, review the meaning of <u>P values</u> and <u>confidence intervals</u>. Then learn how to interpret results from an <u>unpaired</u> or <u>paired</u> t test. These links include GraphPad's popular <u>analysis checklists</u>.

Review your data:

Group	General pop	KAUSTians
Mean	100.00	120.00
SD	15.00	10.00
SEM	4.74	3.16
N	10	10

Student's t-test

Very commonly done in scientific papers!

Student's t-test

- Alternative tests with the same idea
 - Testing something, but with preconceived idea of which direction the effect should be in? One-tailed *t*-test
 - Testing something, but against a fixed value instead of another distribution?
 One-sample t-test
 - More than two groups? ANOVA
 - Non-parametric data? Mann-Whitney U

• Is this observation **statistically significant**?

• ... depends on which bag of M&Ms you used!

p > 0.05

- For the heck of it, let's calculate some p values:
 - M&M website says that pack has ~50 candies
 - There are 5 colours, R G Y B O
 - We expect 10 green per packet
 - Cookie has 10 green M&Ms
- Set up Fisher's exact table

	Green M&M	Non-green M&M
Cookie	10	0
Not-on- cookie	0	40

Scientific Software

Data Analysis

QuickCalcs

Select category

Choose calculator

3. Enter data

4. View results

Analyze a 2x2 contingency table

green non-green			Total
cookie	10	0	10
not-on-cookie	0	40	40
Total	10	40	50

Fisher's exact test

The two-tailed P value is less than 0.0001

The association between rows (groups) and columns (outcomes)

is considered to be extremely statistically significant.

Learn how to interpret the P value.

• If we want precise p values, we can use R:

```
R Console
> fishers matrix <- matrix(c(10,0,0,40), nrow=2)
> fishers matrix
     [,1] [,2]
[2,]
> fisher.test(fishers matrix)
        Fisher's Exact Test for Count Data
data: fishers matrix
p-value = 9.735e-11 <
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
47.75873
               Inf
sample estimates:
odds ratio
       Inf
```

- Let's look at a more biological example
 - Perform a heat stress experiment
 - Obtain genes that were upregulated under stress
 - Check GO terms associated with these genes

	Genes with GO:0016209	Genes without GO:0016209
Upregulated	10	0
Not upregulated	0	40

• *p* = ?

... GO:0016209?

antioxidant activity

... GO:0016209?

- In academic-ese, what I showed is termed "functional enrichment"
- Also known as "GO term enrichment analysis"

The effect of mechanical **stress** on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells

NE Paul, B Denecke, BS Kim, A Dreser... - Journal of tissue ..., 2017 - Wiley Online Library

... These data suggest that the impact of mechanical **stress** on gene expression persisted over the treatment period of 10 days. **Functional enrichment** analyses were performed with genes that are at least 1.5-fold regulated (adjusted p < 0.01) by stretching compared with a static ...

☆ ワワ Cited by 5 All 3 versions

- Back in plain English: Fisher's exact tests calculates the probability of observing something, given that the overall distribution (i.e. universe) has a quantifiable distribution
- Alternative tests with the same idea
 - More than 2x2 table? Chi-squared
 - 2x2, but values are absurdly large? Chi-squared
 - Proportions of universe known, but not exact values? Binomial test

Multiple testing correction

WE FOUND NO

WE FOUND NO

LINK BETWEEN

WE FOUND NO

LINK BETWEEN

LILAC JELLY

WE FOUND NO

I INK BETWEEN

BEANS AND ACNE

CYAN JELLY

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05)

WE FOUND NO

WE FOUND NO

WE FOUND NO

LINK BETWEEN

Multiple testing correction

- Benjamini-Hochberg (1995)
 - How to correct p value

- Benjamini-Yekutieli (2001)
 - How to make sure corrected list have the same ranking as the uncorrected one

[PDF] Controlling the false discovery rate: a practical and powerful approach to multiple testing

More powerful procedures for multiple significance testing

[PDF] The control of the false discovery rate in multiple testing under dependency Y Benjamini, D Yekutieli - Annals of statistics, 2001 - JSTOR

Benjamini and Hochberg suggest that the false discovery rate may be the appropriate error rate to control in many applied multiple testing problems. A simple procedure was given there as an FDR controlling procedure for independent test statistics and was shown to be

☆ 59 Cited by 5452 Related articles All 20 versions Web of Science: 3466

No. 10 Per No. 10 P

Multiple testing correction

• R: p.adjust()

• Manually:

Gene	Uncorrected <i>p</i>	Correction factor	Corrected p
F	0.0001	x6/1	0.0006
Е	0.001	x 6 / 2	0.003
С	0.01	x 6 / 3	0.02
Α	0.04	x 6 / 4	0.06
В	0.08	x 6 / 5	0.096
D	0.2	x 6 / 6	0.2

End of morning session: Questions?

SEE, THEY ASKED HOW MUCH MONEY
I SPEND ON GUM EACH WEEK, SO I
WROTE, "\$500." FOR MY AGE, I PUT
"43", AND WHEN THEY ASKED WHAT MY
FAVORITE FLAVOR IS, I WROTE
"GARLIC/CURRY."

