Modul 2: forelæsning 1 Differensligninger Matematik og modeller 2018

Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

15. maj 2018 — Dias 1/22

ØBENHAVNS UNIVERSITET

Modeleksempler

- På en konto står 5000 kr.
 - Der indsættes hvert år 1000 kr. sidst på året.
 - Kapitalen forrentes med 2% p.a.
 - Lad x_t være kapitalen efter t år. Differencen (eller tilvæksten) er

$$x_{t+1} - x_t = 0.02 x_t + 1000,$$

så der gælder

$$x_{t+1} = 1.02 x_t + 1000 \mod x_0 = 5000.$$

2 En model for antallet af smittede personer (S_t) i en gruppe på N personer (gennemgås senere i dag):

$$S_{t+1} = (1-a)S_t + bS_t \left(1 - \frac{S_t}{N}\right)$$

KØBENHAVNS UNIVERSITET

Oversigt

- 1. ordens differensligninger
- 2 Autonome differensligninger. Ligevægt og stabilitet
- 3 Epidemimodel

Dias 2/22

KØBENHAVNS UNIVERSITE

Eksempel på en differensligning

$$x_{t+1}=2x_t, t=0,1,\ldots$$

t	0	1	2	3	
x _t x _t	3	3 · 2	$3 \cdot 2^2$	$3 \cdot 2^3$	
x_t	С	$c \cdot 2$	$c \cdot 2^2$	$c \cdot 2^3$	

"Gættet" løsningsformel for x_t : $x_t = c \cdot 2^t$.

Eksempler på differensligninger

A
$$x_{t+1} = 2x_t$$
 for $t = 0, 1, ...$

B
$$x_{t+1} = \frac{t+2}{t+1} x_t$$
 for $t = 0, 1, ...$

$$x_{t+1} = 2x_t - 1 \text{ for } t = 0, 1, \dots$$

$$\sum x_{t+1} = 2x_t + t \text{ for } t = 0, 1, \dots$$

E
$$x_{t+1} = \cos(x_t^3)e^{-x_t} + \cos(t)$$
 for $t = 0, 1, ...$

$$x_0 = 2$$

$$x_1 = \cos(x_0^3)e^{-x_0} + \cos(0) = \cos(2^3)e^{-2} + \cos(0) \simeq 0.98$$

$$x_2 = \cos(x_1^3)e^{-x_1} + \cos(1) = \cos(0.98^3)e^{-0.98} + \cos(1) \simeq 0.76$$
 osv.

R kan bruges:

> f <- function(t,x) $\{\cos(x^3)*\exp(-x)+\cos(t)\}$

> x0 <- 2

> X <- x0

> x <- x0; for (t in (0:9)) $\{x<-f(t,x);X<-c(X,x)\}$

> X

[1] 2.000000000 0.980308712 0.760956744 0.006443875 0.003584346

[6] 0.342778449 0.992882029 1.166921025 0.748234760 0.286786062

[11] -0.160666762

Dias 5/22

KØBENHAVNS UNIVERSITET

Lineær 1. ordens differensligning

Definition: Lineær 1. ordens differensligning

En lineær 1. ordens differensligning er på formen

$$x_{t+1} = a_t x_t + b_t, t = 0, 1, 2, ...,$$

hvor a_t og b_t er givne følger af tal.

- Ligningen kaldes homogen, hvis $b_t = 0$ for alle t.
- Ligningen kaldes *inhomogen*, hvis $b_t \neq 0$ for nogle t.

Opgave: Hvilke er lineære og hvilke er homogene?

A
$$x_{t+1} = 2x_t$$

B
$$x_{t+1} = \frac{t+2}{t+1} x_t$$

$$c$$
 $x_{t+1} = 2x_t - 1$

$$\sum x_{t+1} = 2x_t + t$$

E
$$x_{t+1} = \cos(x_t^3)e^{-x_t} + \cos(t)$$

Definition: 1. ordens differensligning og løsning

- Form af ligning: $x_{t+1} = f(t, x_t)$.
- En løsning til ligningen er en talfølge $(x_t) = (x_0, x_1, x_2, ...)$, som får ligningen til at stemme for alle t, når den indsættes.
- Den fuldstændige løsning er alle mulige løsninger.
- En løsning $(x_0, x_1, x_2, ...)$ er givet, når x_0 er kendt:

$$x_1 = f(0, x_0), \quad x_2 = f(1, x_1), \quad x_3 = f(2, x_2)$$
 osv.

(Dette kaldes *iterativ* eller *succesiv* udregning af x_t .)

• I mange tilfælde kan man ikke opskrive et løsningsudtryk.

Opgave

Hvad er f(t,x) i Eksemplerne A-E?

Dias 6/22

KØBENHAVNS UNIVERSITE

Sætning: Homogen lineær 1. ordens differensligning

(a) (Homogen ligning med konstant koefficient.)
Ligningen

$$x_{t+1} = ax_t$$

har den fuldstændige løsning

$$x_t = ca^t$$
 $(c \in \mathbb{R}).$

(b) (Homogen ligning generelt.) Ligningen $x_{t+1} = a_t x_t$ har den fuldstændige løsning

$$x_t = cE_t \quad (c \in \mathbb{R}),$$

hvor
$$E_t = a_{t-1} a_{t-2} \cdots a_0$$
.

Sætning: Inhomogen lineær 1. ordens differensligning

(c) (Inhomogen ligning med konstante koefficienter.) Ligningen

$$x_{t+1} = ax_t + b$$

har den fuldstændige løsning (for $a \neq 1$)

$$x_t = ca^t + \frac{b}{1-a}$$
 $(c \in \mathbb{R}).$

(d) (Inhomogen ligning generelt.) Ligningen

$$x_{t+1} = a_t x_t + b_t$$

har den fuldstændige løsning givet ved (panser-)formlen

$$x_t = E_t \left(c + \sum_{s=0}^{t-1} b_s / E_{s+1} \right) \qquad (c \in \mathbb{R}),$$

hvor $E_t = a_{t-1} a_{t-2} \cdots a_0$.

Som regel er formlen ubrugelig!

Dias 9/22

Vink til Opgave 2.7

(1) $x_{t+1} = 2x_t + t^2$. Gæt:

$$\varphi_{t} = At^{2} + Bt + C$$

$$\varphi_{t+1} = A(t+1)^{2} + B(t+1) + C$$

$$= At^{2} + 2At + A + Bt + B + C$$

$$= At^{2} + (2A + B)t + (A + B + C)$$

(2) $x_{t+1} = 2x_t + 3^t$. Gæt:

$$\varphi_t = A3^t$$
$$\varphi_{t+1} = A3^{t+1} = 3A3^t$$

Gætte- eller nålestiksmetoden

- FIL = fuldstændig inhomogen løsning x_t .
- FHL = fuldstændig homogen løsning ca^t .

Sætning: $FIL = \varphi_t + FHL$

Ligningen (med $a_t = a$ konstant)

$$x_{t+1} = ax_t + b_t$$

har den fuldstændige løsning x_t givet ved formlen

$$x_t = \varphi_t + ca^t \quad (c \in \mathbb{R})$$
 (dvs. $FIL = \varphi_t + FHL$),

hvor φ_t er en (partikulær) løsning til den inhomogene ligning.

Man kan gætte på φ_t som et udtryk "af samme slags" som b_t :

$$b_t = d^t \quad (d \neq a) \qquad \qquad \varphi_t = Ad^t$$

$$\varphi_t = Ad^t$$

$$b_t = a^t$$

$$\varphi_t = Ata$$

$$b_t = polynomium$$

$$\varphi_t = \text{polynomium af samme grad}$$

Dias 10/22

Autonome differensligninger og ligevægte

Definition: Autonom differensligning

En 1. ordens differensligning kaldes autonom, hvis der gælder

$$x_{t+1} = f(x_t).$$

(Ingen direkte afhængighed af t på højre side.)

Opgave: Hvilke er autonome?

A
$$x_{t+1} = 2x_t$$

B
$$x_{t+1} = \frac{t+2}{t+1} x_t$$

$$c$$
 $x_{t+1} = 2x_t - 1$

$$\sum x_{t+1} = 2x_t + t$$

$$\mathbf{E} x_{t+1} = \cos(x_t^3)e^{-x_t} + \cos(t)$$

Definition: Ligevægt for autonom ligning

Et tal x^* kaldes en *ligevægt* for $x_{t+1} = f(x_t)$, hvis $x^* = f(x^*)$.

Eksempel: Grafisk illustration af ligevægt

- Differensligning: $x_{t+1} = 0.75x_t^2 2x_t + 2.25$.
- Ligningen skrives $x_{t+1} = f(x_t)$, hvor $f(x) = 0.75x^2 2x + 2.25$.
- Ligevægte:

$$f(x^*) = x^* \Leftrightarrow 0 = 0.75(x^*)^2 - 3x^* + 2.25$$

 $\Leftrightarrow x^* = 1$ eller $x^* = 3$.

Grafisk illustration:

Dias 13/22

KØBENHAVNS UNIVERSITET

Sætning: Stabilitet

Lad x^* være en ligevægt for differensligningen $x_{t+1} = f(x_t)$. Da gælder:

- Ligevægten er stabil, hvis $|f'(x^*)| < 1$.
- Ligevægten er ikke stabil, hvis $|f'(x^*)| > 1$.

Eksempel: Stabilitet

Lad $x_{t+1} = f(x_t)$, hvor

$$f(x) = 0.75x^2 - 2x + 2.25.$$

Vi har

$$f'(x) = 1.5x - 2.$$

- Er ligevægten $x^* = 1$ stabil? f'(1) = -0.5.
- Er ligevægten $x^* = 3$ stabil? f'(3) = 2.5.

KØBENHAVNS UNIVERSITE

Stabilitet

Definition: Stabil ligevægt

En ligevægt x^* for en autonom differensligning $x_{t+1} = f(x_t)$ kaldes *stabil*, hvis der gælder følgende:

For alle startværdier x_0 *i nærheden af* x^* skal de tilsvarende værdier x_t konvergere mod x^* for $t \to \infty$.

At en ligevægt *ikke* er stabil (eller er *ustabil*) betyder altså, at der findes startværdier x_0 vilkårligt tæt på ligevægten, hvor de tilsvarende tal x_t *ikke* konvergerer mod ligevægten.

Løsere sagt: selv små ændringer i startværdien kan betyde meget i det lange løb.

Spørgsmål

Hvordan kan vi se om en ligevægt er stabil?

Dias 14/22

KØBENHAVNS UNIVERSITE

Eksempel: Grafisk illustration af (u)stabilitet (x2,x3) (x1,x2) (x1,

Epidemimodel

Udbredelse af en smitsom sygdom i en population:

- Populationens størrelse er *N* individer, som alle er modtagelige overfor smitten.
- S_t antallet af smittede til tiden t.

Mål: at udtrykke S_{t+1} ved S_t :

$$S_{t+1} = \text{gamle tilfælde} + \text{nye tilfælde}$$

Gamle tilfælde:

• Antagelse: en fast brøkdel $a \pmod{0 \le a \le 1}$ af de smittede bliver raske til tiden t+1, dvs. antallet af stadigt smittede til tiden t+1 er $S_t - aS_t$:

gamle tilfælde =
$$S_t - aS_t = (1 - a)S_t$$
.

Parameteren a kaldes raskhedsraten.

Dias 17/22

KØBENHAVNS UNIVERSITET

Epidemimodel - ligevægte

- Model $S_{t+1} = f(S_t)$, hvor $f(S) = (1 + b a)S \frac{b}{N}S^2$.
- Ligevægte *S**:

$$S^* = f(S^*) = (1 + b - a)S^* - \frac{b}{N}(S^*)^2 \Leftrightarrow$$

$$0 = (b - a)S^* - \frac{b}{N}(S^*)^2 \Leftrightarrow$$

$$0 = S^* \left(b - a - \frac{b}{N}S^*\right) \Leftrightarrow$$

$$S^* = 0 \quad \text{eller} \quad \frac{b}{N}S^* = b - a$$

$$S^* = 0 \quad \text{eller} \quad S^* = N(1 - \frac{a}{L})$$

Bemærkning

 $S^* = N(1 - \frac{a}{b})$ er positiv og dermed biologisk meningsfuld, når a < b dvs. når infektionsraten er større end raskhedsraten.

KØBENHAVNS UNIVERSITE

Epidemimodel - fortsat

Nye tilfælde:

- Hvor mange nye smittede til tiden t+1? Sygdommen smitter ved kontakt mellem rask og smittet, dvs.
 - jo flere raske til tiden t, jo flere smittede til tiden t+1,
 - jo flere smittede til tiden t, jo flere smittede til tiden t+1.

Antagelse: antal nye tilfælde er proportional med både S_t og $N - S_t$

nye tilfælde =
$$kS_t(N - S_t) = bS_t\left(1 - \frac{S_t}{N}\right)$$
.

Parameteren $b \mod 0 \le b \le 1$ kaldes infektionsraten.

Konklusion:

$$S_{t+1}$$
 = gamle tilfælde + nye tilfælde
 = $(1-a)S_t + bS_t (1 - \frac{S_t}{N})$
 = $(1+b-a)S_t - \frac{b}{N}S_t^2$.

Dias 18/22

KØBENHAVNS UNIVERSITE

Epidemimodel - stabilitet af ligevægte

$$f(S) = (1 + b - a)S - \frac{b}{N}S^{2}$$

 $f'(S) = 1 + b - a - \frac{2b}{N}S$

• Ligevægten $S^* = 0$ er stabil, hvis |f'(0)| < 1:

$$|1+b-a| < 1 \Leftrightarrow -1 < 1+b-a \text{ og } 1+b-a < 1$$

 $\Leftrightarrow a-2 < b \text{ og } b < a \Leftrightarrow b < a \text{ (da } a < 1).$

• Tilsvarende for ligevægten $S^* = N(1 - \frac{a}{b})$.

Konklusion

$$S^* = 0$$
 er $\begin{cases} ext{stabil} & ext{når } b < a \\ ext{ikke stabil} & ext{når } b > a \end{cases}$ $S^* = N(1-rac{a}{b})$ er $\begin{cases} ext{stabil} & ext{når } a < b \\ ext{ikke stabil} & ext{når } a > b \end{cases}$

Epidemimodel – taleksempel

Lad $N = 10\,000$, a = 0.1 og b = 0.6, dvs. $S_{t+1} = 1.5\,S_t - \frac{0.6}{10000}\,S_t^2$.

Ligevægten

$$S^* = N(1 - \frac{a}{b}) = 10000(1 - \frac{0.1}{0.6}) \approx 8333.33$$

er stabil fordi a < b < a + 2.

Fremskrivninger med R bekræfter at 8333.33 er en stabil ligevægt:

```
> f <- function(S)(1.5*S-0.6*S^2/10000)
> S0 <- 1000
> X <- S0
> S <- S0
> for (t in (1:50)){S<-f(S);X<-c(X,S);}
> round(X[1:5],2)  # S_0, ..., S_4 med to decimaler
[1] 1000.00 1440.00 2035.58 2804.76 3735.14
> round(X[47:51],2)  # S_46, ..., S_50 med to decimaler
[1] 8333.33 8333.33 8333.33 8333.33
```

KØBENHAVNS UNIVERSITE

Variationer af epidemimodellen

• Antal nye tilfælde er

$$kS_t^{\alpha}(N-S_t),$$

hvor $\alpha > 0$ er en parameter.

• Immunitet efter sygdom leder til et *system* af differensligninger! (Næste gang.)

Dias 21/22 Dias 22/22