Medtronic MiniMed

ADDENDUM TO TEST REPORT 94428-15

Insulin Pump Model: MiniMed 640G

Tested To The Following Standards:

FCC Part 15 Subpart C Section 15.247 and RSS-210 Issue 8

Report No.: 94428-15A

Date of issue: December 4, 2013

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 44 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
-6dBc Occupied Bandwidth	7
15.247(b)(3) Maximum Power Output	12
15.247(d) TX Spurious Emissions	17
15.247(e) Power Spectral Density	26
RSS - 210	31
99% Bandwidth	31
TX Spurious Emissions	34
Supplemental Information	43
Measurement Uncertainty	43
Fmissions Test Details	43

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Medtronic MiniMedMorgan Tramontin18000 Devonshire StreetCKC Laboratories, Inc.Northridge, CA 91325-12195046 Sierra Pines DriveMariposa, CA 95338

REPRESENTATIVE: Bob Vitti Project Number: 94428

Customer Reference Number: 4500087631

DATE OF EQUIPMENT RECEIPT:Septmenber 16, 2013 **DATE(S) OF TESTING:**Septmenber 16 - 17, 2013

Revision History

Original: Testing of the Insulin Pump, MiniMed 640G to FCC Part 15 Subpart C Section 15.247 and RSS-210 Issue 8. **Addendum A:** In the following sections, maximum output power and spectral density, a change in the calculations was implemented. No new testing was performed.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Below

Page 3 of 44 Report No.: 94428-15A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	A-0148

Page 4 of 44 Report No.: 94428-15A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C / RSS-210 Issue 8

Description	Test Procedure/Method	Results
-6dBc Occupied Bandwidth	FCC Part 15 Subpart C Section 15.247(a)(2) / FHSS – DA00-705, DTS – KDB558074, ANSI C63.4	Pass
99% Bandwidth	RSS-210 Section A8.2(a)	Pass
TX Spurious Emissions	RSS – 210 Section A8.5	Pass
Maximum Power Output	FCC Part 15 Subpart C Section 15.247(b)(3) / FHSS – DA00-705, DTS – KDB558074, ANSI C63.4	Pass
TX Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d)/ FHSS – DA00-705, DTS – KDB558074, ANSI C63.4	Pass
Power Spectral Density	FCC Part 15 Subpart C 15.247(e)/ FHSS – DA00-705, DTS – KDB558074, ANSI C63.4	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 44 Report No.: 94428-15A

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Insulin Pump

Manuf: Medtronic MiniMed Model: MiniMed 640G Serial: NG1007075U

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 6 of 44 Report No.: 94428-15A

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

-6dBc Occupied Bandwidth

Test Conditions / Setup

Engineer Name: Rodney MacInnes

Test Conditions: Temp: 22°C Humidity: 51% Pressure: 101.6kPa Freq: 2420-2480MHz

EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. EUT is on top of a Styrofoam table, 80cm over the ground plane and whose ports are populated. New battery per FCC 15.31(e).

Frequency	6dB
(MHz)	Bandwidth
2420	1.64MHz
2450	1.54MHz
2480	1.60MHz

Test Equipment									
Asset#	Asset# Description Model Manufacturer Cal Date Cal Due								
03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015				
01467	Horn Antenna	3115	EMCO	10/19/2011	10/19/2013				
P05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015				
P05547	Cable	Heliax	Andrews	9/7/2012	9/7/2014				
02871	Spectrum Analyzer	E4440A	Agilent	7/19/2013	7/19/2015				

Page 7 of 44 Report No.: 94428-15A

Test Plots

Low

Middle

High

Test Setup Photos

X - Axis

Y - Axis

Z - Axis

15.247(b)(3) Maximum Power Output

Test Conditions / Setup

Engineer Name: Rodney MacInnes

Test Conditions: Temp: 22°C Humidity: 52% Pressure: 101.6kPa Freq: 2420-2480MHz

EUT's antenna is non-removable, thus the data will be gathered through radiated measurements.

The formula shown below will be used to calculate the EIRP. EUT is connected to a laptop which is located on top of a Styrofoam table, 80cm over the ground plane.

New battery per FCC 15.31(e).

Plots do not have corrections applied to them see correction factors in table below.

 $P = (Ed)^2 / (30 * G)$

E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P = The power in watts for which we are solving.

EUT Serial Number	Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, Amplifiers and antennas (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Conducted Power (mW)
0927F	2420	91.3	-0.1	91.2	0.5	0.35
0927F	2450	90.9	0.0	90.9	0.5	0.33
0927F	2480	89.3	+0.1	89.4	0.5	0.23

Test Equipment									
Asset#	Asset# Description Model Manufacturer Cal Date Cal Due								
03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015				
01467	Horn Antenna	3115	EMCO	10/19/2011	10/19/2013				
P05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015				
P05547	Cable	Heliax	Andrews	9/7/2012	9/7/2014				
02871	Spectrum Analyzer	E4440A	Agilent	7/19/2013	7/19/2015				

Page 12 of 44 Report No.: 94428-15A

Test Plots

Low

Middle

High

Test Setup Photos

X - Axis

Y - Axis

Z - Axis

15.247(d) TX Spurious Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 94428
 Date: 9/16/2013

 Test Type:
 Maximized Emissions
 Time: 16:12:02

Equipment: Insulin Pump Sequence#: 1

Manufacturer: Medtronic MiniMed Tested By: Rodney MacInnes

Model: MiniMed 640G S/N: NG1007075U

Test Equipment:

 сы Бүшү	mui.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T2	AN01996	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
Т3	ANP05360	Cable	RG214	12/3/2012	12/3/2014
T4	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
T5	ANP05546	Cable	Heliax	3/27/2013	3/27/2015
T6	AN02673	Spectrum Analyzer	E4446A	5/11/2012	5/11/2014
T7	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
Т8	ANP05547	Cable	Heliax	9/7/2012	9/7/2014
Т9	AN03209	Preamp	83051A	3/5/2013	3/5/2015
T10	AN01467	Horn Antenna-ANSI	3115	10/19/2011	10/19/2013
		C63.5 Calibration			
T11	AN02741	Active Horn Antenna	AMFW-5F-	12/18/2012	12/18/2014
			12001800-20-10P		
T12	AN02742	Active Horn Antenna	AMFW-5F-	12/17/2012	12/17/2014
			18002650-20-10P		
T13	AN02763-69	Waveguide	Multiple	6/7/2012	6/7/2014
T14	ANP05422	Cable	PE35591-72	6/8/2012	6/8/2014
T15	ANP05428	Cable	PE35591-60	6/8/2012	6/8/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Insulin Pump*	Medtronic MiniMed	MiniMed 640G	NG1007075U

Support Devices:

Function	Manufacturer	Model #	S/N	

Page 17 of 44 Report No.: 94428-15A

Test Conditions / Notes:

Temp: 23°C Humidity: 52% Pressure: 101.7kPa

Freq: 9kHz-24.8GHz

EUT's antenna is non-removable, thus the data will be gathered through radiated measurements.

EUT is located on top of a Styrofoam table, 80cm over the ground plane.

CISPR BW used.

Emissions investigated from three orthogonal axis and 3 channels (low, mid, high) of the equipment.

Low = 2.42GHz Mid = 2.45GHz High = 2.48GHz

FCC 15.31(e) Freshly charged battery is installed

Ext Attn: 0 dB

EXLA	ittn: 0 dB										
Measu	rement Data:		eading lis					est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	7349.940M	28.6	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Horiz
			+3.1	+0.0	+0.0	+4.3	360		Mid, 3rd ha	armonic	119
			-28.2	+35.9	+0.0	+0.0					
			+0.0	+0.0	+0.0						
2	4839.970M	36.7	+0.0	+0.0	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Horiz
			+2.2	+0.0	+0.0	+3.5			Low, 2nd h	armonic	119
			-30.9	+32.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
3	24800.000	40.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.9	54.0	-11.1	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	-12.4	223		High, 10th		119
			+0.2	+8.6	+6.3				Harmonic		
4	7259.955M	27.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	54.0	-11.4	Horiz
			+3.0	+0.0	+0.0	+4.3	360		Low, 3rd H	Iarmonic	119
			-28.2	+35.7	+0.0	+0.0					
			+0.0	+0.0	+0.0						
5	9680.000M	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	54.0	-11.6	Horiz
			+3.4	+0.0	+0.0	+4.8	360		Low, 4th H	larmonic	119
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
6	24200.000	40.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	-13.5	355		Low, 10th		119
			+0.1	+8.6	+6.4				Harmonic		
7	4899.970M	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.0	54.0	-12.0	Horiz
			+2.2	+0.0	+0.0	+3.6			Mid, 2nd h	armonic	119
			-30.8	+32.2	+0.0	+0.0					
			+0.0	+0.0	+0.0						

8	9800.000M	33.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0 -12.2	Horiz
			+3.2	+0.0	+0.0	+4.9	360		Mid, 4th Harmonic	119
			+0.0	+0.0	+0.0	+0.0				
	= 100 0 103 f	2	+0.0	+0.0	+0.0	0.0	0.0	11.0		** .
9	7439.942M	26.3	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0 -12.2	Horiz
			+3.2	+0.0	+0.0	+4.4	360		High, 3rd Harmonic	119
			-28.2	+36.1	+0.0	+0.0				
10	24500.000	20.5	+0.0	+0.0	+0.0	. 0. 0	. 0. 0	41.0	540 122	77 '
10	24500.000	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0 -12.2	Horiz
	M		+0.0 +0.0	$+0.0 \\ +0.0$	+0.0 +0.0	+0.0 -12.9	70		Mid, 10th	110
			+0.0	+8.7	+6.4	-12.9	70		Harmonic	119
11	9262.000M	25.5	+0.1	+0.0	+0.4	+0.0	+0.0	41.6	54.0 -12.4	Horiz
11	9262.000M	23.3	+3.3	+0.0 +0.0	+0.0 +0.0	$+0.0 \\ +4.7$	+0.0 360	41.0	High, Y-axis	119
			+3.3 -27.7	+35.8	+0.0	+0.0	300		riigii, 1-axis	119
			+0.0	+0.0	+0.0	+0.0				
12	9920.000M	33.0	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0 -13.0	Horiz
12	7720.000W	33.0	+3.1	+0.0	+0.0	+4.9	193	71.0	High, 4th Harmonic	119
			+0.0	+0.0	+0.0	+0.0	173		mgn, 4m marmome	11)
			+0.0	+0.0	+0.0	10.0				
13	19360.000	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.8	54.0 -14.2	Horiz
13	M	30.1	+0.0	+0.0	+0.0	+0.0	10.0	37.0	31.0 11.2	TIOTIE
	1.1		+0.0	+0.0	+0.0	-13.3			Low, 8th Harmonic	119
			+1.5	+7.7	+5.5				,	-
14	4959.961M	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	39.7	54.0 -14.3	Horiz
			+2.3	+0.0	+0.0	+3.6			High, 2nd	119
			-30.8	+32.3	+0.0	+0.0			Harmonic	
			+0.0	+0.0	+0.0					
15	19840.000	37.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	54.0 -15.4	Horiz
	M		+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	-13.4	285		High, 8th Harmonic	119
			+0.9	+7.9	+5.7					
16	19600.000	37.0	+0.0	+0.0	+0.0	+0.0	+0.0	38.4	54.0 -15.6	Horiz
	M		+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	-13.3	88		Mid, 8th Harmonic	119
			+1.3	+7.8	+5.6					
17	17360.000	38.0	+0.0	+0.0	+0.0	+0.0	+0.0	37.1	54.0 -16.9	Horiz
	M		+4.5	+0.0	+0.0	+6.9				
			+0.0	+0.0	-12.3	+0.0	322		High, 7th Harmonic	119
	10.550 000	44.5	+0.0	+0.0	+0.0			2::	7.1 0 1 = 1	** .
18	13672.000	41.3	+0.0	+0.0	+0.0	+0.0	+0.0	36.1	54.0 -17.9	Horiz
	M		+3.8	+0.0	+0.0	+6.0			ī 7 ·	110
			+0.0	+0.0	-15.0	+0.0			Low, Z-axis	119
10	12662 500	40.0	+0.0	+0.0	+0.0	.00	.00	25.7	540 102	TT
19	13663.500	40.9	+0.0	+0.0	+0.0	+0.0	+0.0	35.7	54.0 -18.3	Horiz
	M		+3.8	+0.0	+0.0	+6.0	240		High Varia	110
			+0.0	+0.0	-15.0	+0.0	249		High, Y-axis	119
20	21780.000	27.0	+0.0	+0.0	+0.0	10.0	10.0	25 /	540 106	Uoria
20		37.0	+0.0	+0.0	+0.0	+0.0	+0.0	35.4	54.0 -18.6	Horiz
	M		+0.0 +0.0	$^{+0.0}_{+0.0}$	+0.0 +0.0	+0.0 -16.1	358		Low, 9th Harmonic	119
			+0.0	+8.3		-10.1	336		Low, 7th Harmoffic	117
			+0.2	+8.3	+6.0					

21	16940.000	36.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.9	54.0 -19.1	Horiz
~.	M	50.7	+4.4	+0.0	+0.0	+6.5	. 0.0	5	20 17.11	110111
	4.4		+0.0	+0.0	-12.9	+0.0			Low, 7th Harmonic	119
			+0.0	+0.0	+0.0	10.0				11)
22	215.040M	39.0	-27.2	+10.1	+0.9	+0.9	+0.0	24.0	43.5 -19.5	Horiz
			+0.3	+0.0	+0.0	+0.0	334		High, Z-axis	150
			+0.0	+0.0	+0.0	+0.0			<i>C</i> ,	
			+0.0	+0.0	+0.0					
23	17150.000	35.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	54.0 -19.7	Horiz
	M		+4.4	+0.0	+0.0	+6.7				
			+0.0	+0.0	-12.7	+0.0	81		Mid, 7th Harmonic	119
			+0.0	+0.0	+0.0					
24	22050.000	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	54.0 -19.8	Horiz
	M		+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	-16.5	357		Mid, 9th Harmonic	119
			+0.2	+8.3	+6.1					
25	215.040M	38.6	-27.2	+10.1	+0.9	+0.9	+0.0	23.6	43.5 -19.9	Horiz
			+0.3	+0.0	+0.0	+0.0	26		Mid, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
	2222	2 - 2	+0.0	+0.0	+0.0		0.0	22.0	7.1.0 7.7. :	** .
26	22320.000	36.3	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	54.0 -20.1	Horiz
	M		+0.0	+0.0	+0.0	+0.0	102		II'.1 Od II	110
			+0.0	+0.0	+0.0	-16.8	102		High, 9th Harmonic	119
27	01504035	20.0	+0.1	+8.3	+6.0	.00	.0.0	22.0	42.5	TT '
27	215.040M	38.0	-27.2	+10.1	+0.9	+0.9	+0.0	23.0	43.5 -20.5	Horiz
			+0.3	+0.0	+0.0	+0.0	290		Low, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
20	14700 000	27.0	+0.0	+0.0	+0.0	10.0	+0.0	22.4	540 207	IIe ::-
28	14700.000	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	33.4	54.0 -20.6	Horiz
	M		+4.2	+0.0	+0.0	+6.3	360		Mid 6th Hammani-	110
			+0.0	+0.0	-14.9	+0.0	360		Mid, 6th Harmonic	119
29	610.472M	28.5	+0.0	+0.0	+0.0	+1.8	+0.0	24.3	46.0 -21.7	Vert
29	010.4/2IVI	28.3	-28.3 +0.6	$+20.1 \\ +0.0$	+1.0 +0.0	+1.8 $+0.0$	+0.0	24.3		150
			+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0 +0.0			High, X-axis	130
			+0.0 +0.0	+0.0	+0.0	+0.0				
30	14880.000	36.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	54.0 -21.9	Horiz
30	M	50.0	+4.0	+0.0 +0.0	+0.0	+6.3	+0.0	34.1	J 4 .0 -21.9	110112
	171		+0.0	+0.0	-14.8	+0.0	225		High, 6th Harmonic	119
			+0.0	+0.0	+0.0	10.0	223		ingn, our marmonic	11)
31	681.720M	27.3	-28.2	+20.6	+1.7	+1.9	+0.0	23.9	46.0 -22.1	Vert
31	001.7201	21.3	+0.6	+0.0	+0.0	+0.0	272	23.7	Low, Z-axis	150
			+0.0	+0.0	+0.0	+0.0	2,2		2011, 2 unis	150
			+0.0	+0.0	+0.0	. 0.0				
32	12400.000	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	54.0 -22.5	Horiz
32	M	50.1	+3.8	+0.0	+0.0	+5.7	. 0.0	51.5	20 22.3	110112
	1,1		+0.0	+0.0	-14.1	+0.0	187		High, 5th Harmonic	119
			+0.0	+0.0	+0.0	. 0.0				/
33	14520.000	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.1	54.0 -22.9	Horiz
	M	22.0	+4.4	+0.0	+0.0	+6.3		21.1	2 22.9	
	2.2		+0.0	+0.0	-15.1	+0.0			Low, 6th Harmonic	119
			+0.0	+0.0	+0.0	. 0.0				-1/
			10.0	10.0	10.0					

34	12100.000	35.2	+0.0	+0.0	+0.0	+0.0	+0.0	30.7	54.0 -23.3	Horiz
	M		+3.8	+0.0	+0.0	+5.6				
			+0.0	+0.0	-13.9	+0.0			Low, 5th Harmonic	119
			+0.0	+0.0	+0.0				,	
35	12250.000	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	30.4	54.0 -23.6	Horiz
	M		+3.8	+0.0	+0.0	+5.7				
			+0.0	+0.0	-13.9	+0.0			Mid, 5th Harmonic	119
			+0.0	+0.0	+0.0					
36	34.368M	27.5	-28.0	+16.1	+0.3	+0.2	+0.0	16.2	40.0 -23.8	Vert
			+0.1	+0.0	+0.0	+0.0			High, Y-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
37	2269.000M	29.5	+0.0	+0.0	+0.0	+0.0	+0.0	29.3	54.0 -24.7	Horiz
			+1.3	+0.0	+0.0	+2.5	360		Low, X-axis	119
			-30.4	+26.4	+0.0	+0.0				
			+0.0	+0.0	+0.0					
38	153.550M	33.2	-27.6	+10.8	+0.8	+0.8	+0.0	18.3	43.5 -25.2	Horiz
			+0.3	+0.0	+0.0	+0.0	99		Mid, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
39	486.664M	27.7	-28.2	+17.8	+1.4	+1.6	+0.0	20.8	46.0 -25.2	Horiz
			+0.5	+0.0	+0.0	+0.0	5		Mid, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
40	150 5503 5	22.0	+0.0	+0.0	+0.0		0.0	10.1		** .
40	153.550M	33.0	-27.6	+10.8	+0.8	+0.8	+0.0	18.1	43.5 -25.4	Horiz
			+0.3	+0.0	+0.0	+0.0	342		Low, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
41	152 550M	22.2	+0.0	+0.0	+0.0	.0.0	.00	17.4	42.5 26.1	VIt
41	153.550M	32.3	-27.6	+10.8	+0.8	+0.8	+0.0	17.4	43.5 -26.1	Vert
			+0.3 +0.0	+0.0	+0.0	+0.0 +0.0	353		High, Z-axis	150
			+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0				
42	1.000M	28.9	+0.0	+0.0	+0.0	+0.0	-40.0	-1.2	27.6 -28.8	Horiz
42	1.0001	20.9	+0.0	+0.0	+9.8	+0.0	202	-1.2	Low, Y-axis	150
			+0.0	+0.0	+0.0	+0.1	202		Low, 1-axis	130
			+0.0	+0.0	+0.0	10.0				
43	1639.000M	27.8	+0.0	+0.0	+0.0	+0.0	+0.0	23.6	54.0 -30.4	Horiz
	1007.000111	27.0	+1.4	+0.0	+0.0	+2.1	360	23.0	Mid, X-axis	119
			-30.7	+23.0	+0.0	+0.0			,	
			+0.0	+0.0	+0.0	. 0.0				
44	71.706M	28.7	-28.0	+6.1	+0.5	+0.4	+0.0	7.9	40.0 -32.1	Vert
			+0.2	+0.0	+0.0	+0.0	360		Low, X-axis	150
			+0.0	+0.0	+0.0	+0.0	-		,	
			+0.0	+0.0	+0.0					
45	58.560M	28.2	-28.0	+5.7	+0.5	+0.4	+0.0	6.9	40.0 -33.1	Horiz
			+0.1	+0.0	+0.0	+0.0	360		Mid, Y-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
46	99.600k	51.0	+0.0	+0.0	+0.0	+0.0	-80.0	-19.4	27.6 -47.0	Horiz
			+0.0	+0.0	+9.6	+0.0	24		High, Z-axis	150
			+0.0	+0.0	+0.0	+0.0			-	
			+0.0	+0.0	+0.0					

47	16.946M	9.8	+0.0	+0.0	+0.0	+0.0	-40.0	-21.4	29.5	-50.9	Horiz
			+0.0	+0.0	+8.7	+0.1	216				150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
48	189.900k	32.0	+0.0	+0.0	+0.0	+0.0	-80.0	-38.5	22.0	-60.5	Horiz
			+0.0	+0.0	+9.5	+0.0	235		mid, Y-axis		150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
49	67.940k	36.2	+0.0	+0.0	+0.0	+0.0	-80.0	-34.2	31.0	-65.2	Horiz
			+0.0	+0.0	+9.6	+0.0	358		Mid, X-axis		150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
50	11.930k	43.2	+0.0	+0.0	+0.0	+0.0	-80.0	-21.3	46.1	-67.4	Horiz
			+0.0	+0.0	+15.5	+0.0	358		Mid, Y-axis		150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

CKC Laboratories, Inc. Date: 9/16/2013 Time: 16:12:02 Medtronic MiniMed WO#: 94428 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz Sequence#: 1 Ext ATTN: 0 dB

Test Plots

Low Band Edge

High Band Edge

Test Setup Photos

X - Axis

Y - Axis

Z - Axis

15.247(e) Power Spectral Density

Test Conditions / Setup

Engineer Name: Rodney MacInnes

Test Conditions: Temp: 22°C Humidity: 50% Pressure: 101.6Pa Freq: 2420-2480MHz

EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. The formula shown below will be used to calculate the Power Spectral Density. EUT is located on top of a Styrofoam table, 80cm over the ground plane and whose ports are populated. New battery per FCC 15.31(e).

$P = (Ed)^2 / (30 * G)$

E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P = The power in watts for which we are solving

Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, amplifiers, antennas and Bandwidth (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Spectral Density (dBm)
2420	87.0	-0.1	86.9	0.5	-8.8
2450	85.4	0.0	85.4	0.5	-10.3
2480	84.8	+0.1	84.9	0.5	-10.9

	Test Equipment								
Asset#	Asset# Description Model Manufacturer Cal Date Cal Due								
03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015				
01467	Horn Antenna	3115	EMCO	10/19/2011	10/19/2013				
P05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015				
P05965	Cable	Heliax	Andrew	8/26/2011	8/26/2013				
02871 Spectrum Analyzer		E4440A	Agilent	7/19/2013	7/19/2015				

Test Plots

Low

Middle

High

Test Setup Photos

X - Axis

Y - Axis

Z - Axis

RSS - 210

Test Conditions / Setup

99% Bandwidth

Engineer Name: Rodney MacInnes

Test Conditions: Temp: 22°C Humidity: 51% Pressure: 101.6kPa Freq: 2420-2480MHz

EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. EUT is on top of a Styrofoam table, 80cm over the ground plane and whose ports are populated. New battery per FCC 15.31(e).

Frequency (MHz)	99% Bandwidth
2420	2.51MHz
2450	2.50MHz
2480	2.52MHz

	Test Equipment								
Asset# Description Model Manufacturer Cal Date Cal Do									
03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015				
01467	Horn Antenna	3115	EMCO	10/19/2011	10/19/2013				
P05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015				
P05547	Cable	Heliax	Andrews	9/7/2012	9/7/2014				
02871	Spectrum Analyzer	E4440A	Agilent	7/19/2013	7/19/2015				

Page 31 of 44 Report No.: 94428-15A

Test Plots

Low

Middle

High

TX Spurious Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: RSS-210 Issue 8 Radiated Spurious Emissions

 Work Order #:
 94428
 Date: 9/16/2013

 Test Type:
 Maximized Emissions
 Time: 16:12:02

Equipment: Insulin Pump Sequence#: 1

Manufacturer: Medtronic MiniMed Tested By: Rodney MacInnes

Model: MiniMed 640G S/N: MG1007075U

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T2	AN01996	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
Т3	ANP05360	Cable	RG214	12/3/2012	12/3/2014
T4	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
T5	ANP05546	Cable	Heliax	3/27/2013	3/27/2015
Т6	AN02673	Spectrum Analyzer	E4446A	5/11/2012	5/11/2014
T7	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
Т8	ANP05547	Cable	Heliax	9/7/2012	9/7/2014
Т9	AN03209	Preamp	83051A	3/5/2013	3/5/2015
T10	AN01467	Horn Antenna-ANSI	3115	10/19/2011	10/19/2013
		C63.5 Calibration			
T11	AN02741	Active Horn Antenna	AMFW-5F-	12/18/2012	12/18/2014
			12001800-20-10P		
T12	AN02742	Active Horn Antenna	AMFW-5F-	12/17/2012	12/17/2014
			18002650-20-10P		
T13	AN02763-69	Waveguide	Multiple	6/7/2012	6/7/2014
T14	ANP05422	Cable	PE35591-72	6/8/2012	6/8/2014
T15	ANP05428	Cable	PE35591-60	6/8/2012	6/8/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Insulin Pump*	Medtronic MiniMed	MiniMed 640G	NG1007075U	

Support Devices:

Function	Manufacturer	Model #	S/N
1 direction	1,1411414614161	1110401 11	D/11

Page 34 of 44 Report No.: 94428-15A

Test Conditions / Notes:

Temp: 23°C Humidity: 52% Pressure: 101.7kPa

Freq: 9kHz-24.8GHz

EUT's antenna is non-removable, thus the data will be gathered through radiated measurements.

EUT is located on top of a Styrofoam table, 80cm over the ground plane.

CISPR BW used.

Emissions investigated from three orthogonal axis and 3 channels (low, mid, high) of the equipment.

Low = 2.42GHz Mid = 2.45GHz High = 2.48GHz

FCC 15.31(e) Freshly charged battery is installed

Ext Attn: 0 dB

	ittn: o ab										
	rement Data:		eading lis	•	_	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	7349.940M	28.6	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Horiz
			+3.1	+0.0	+0.0	+4.3	360		Mid, 3rd ha	armonic	119
			-28.2	+35.9	+0.0	+0.0					
			+0.0	+0.0	+0.0						
2	4839.970M	36.7	+0.0	+0.0	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Horiz
			+2.2	+0.0	+0.0	+3.5			Low, 2nd h	armonic	119
			-30.9	+32.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
3	24800.000	40.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.9	54.0	-11.1	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	-12.4	223		High, 10th		119
			+0.2	+8.6	+6.3				Harmonic		
4	7259.955M	27.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	54.0	-11.4	Horiz
			+3.0	+0.0	+0.0	+4.3	360		Low, 3rd H	Iarmonic	119
			-28.2	+35.7	+0.0	+0.0					
			+0.0	+0.0	+0.0						
5	9680.000M	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	54.0	-11.6	Horiz
			+3.4	+0.0	+0.0	+4.8	360		Low, 4th H	[armonic	119
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
6	24200.000	40.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	-13.5	355		Low, 10th		119
			+0.1	+8.6	+6.4				Harmonic		
7	4899.970M	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.0	54.0	-12.0	Horiz
			+2.2	+0.0	+0.0	+3.6			Mid, 2nd h	armonic	119
			-30.8	+32.2	+0.0	+0.0					
			+0.0	+0.0	+0.0						

_										
8	9800.000M	33.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0 -12.2	Horiz
			+3.2	+0.0	+0.0	+4.9	360		Mid, 4th Harmonic	119
			+0.0	+0.0	+0.0	+0.0				
	5 400 0 403 f	2	+0.0	+0.0	+0.0	0.0	0.0	11.0		** .
9	7439.942M	26.3	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0 -12.2	Horiz
			+3.2	+0.0	+0.0	+4.4	360		High, 3rd Harmonic	119
			-28.2	+36.1	+0.0	+0.0				
10	24500 000	20.5	+0.0	+0.0	+0.0	. 0. 0	. 0. 0	41.0	540 122	77 '
10	24500.000	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0 -12.2	Horiz
	M		+0.0 +0.0	$+0.0 \\ +0.0$	+0.0 +0.0	+0.0 -12.9	70		Mid, 10th	110
			+0.0	+8.7	+6.4	-12.9	70		Harmonic	119
11	9262.000M	25.5	+0.1	+0.0	+0.4	+0.0	+0.0	41.6	54.0 -12.4	Horiz
11	9262.000M	23.3	+3.3	+0.0 +0.0	+0.0 +0.0	$+0.0 \\ +4.7$	+0.0 360	41.0	High, Y-axis	119
			+3.3 -27.7	+35.8	+0.0	+0.0	300		riigii, 1-axis	119
			+0.0	+0.0	+0.0	+0.0				
12	9920.000M	33.0	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0 -13.0	Horiz
12	7720.000W	33.0	+3.1	+0.0	+0.0	+4.9	193	71.0	High, 4th Harmonic	119
			+0.0	+0.0	+0.0	+0.0	173		riigii, +iii riariiioine	11)
			+0.0	+0.0	+0.0	10.0				
13	19360.000	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.8	54.0 -14.2	Horiz
15	M	50.1	+0.0	+0.0	+0.0	+0.0	10.0	37.0	31.0	HOHE
	1.1		+0.0	+0.0	+0.0	-13.3			Low, 8th Harmonic	119
			+1.5	+7.7	+5.5				,	-
14	4959.961M	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	39.7	54.0 -14.3	Horiz
			+2.3	+0.0	+0.0	+3.6			High, 2nd	119
			-30.8	+32.3	+0.0	+0.0			Harmonic	
			+0.0	+0.0	+0.0					
15	19840.000	37.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	54.0 -15.4	Horiz
	M		+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	-13.4	285		High, 8th Harmonic	119
			+0.9	+7.9	+5.7					
16	19600.000	37.0	+0.0	+0.0	+0.0	+0.0	+0.0	38.4	54.0 -15.6	Horiz
	M		+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	-13.3	88		Mid, 8th Harmonic	119
			+1.3	+7.8	+5.6					
17	17360.000	38.0	+0.0	+0.0	+0.0	+0.0	+0.0	37.1	54.0 -16.9	Horiz
	M		+4.5	+0.0	+0.0	+6.9	225		***	
			+0.0	+0.0	-12.3	+0.0	322		High, 7th Harmonic	119
10	10.000 000	44.0	+0.0	+0.0	+0.0		0.0	251	740 47°	** .
18	13672.000	41.3	+0.0	+0.0	+0.0	+0.0	+0.0	36.1	54.0 -17.9	Horiz
	M		+3.8	+0.0	+0.0	+6.0			I 7	110
			+0.0	+0.0	-15.0	+0.0			Low, Z-axis	119
10	12662 500	40.0	+0.0	+0.0	+0.0	ι Ο Ο	100	257	540 102	Lior!=
19	13663.500	40.9	+0.0	+0.0	+0.0	+0.0 +6.0	+0.0	35.7	54.0 -18.3	Horiz
	M		+3.8 +0.0	$^{+0.0}_{+0.0}$	+0.0 -15.0	+6.0 +0.0	249		High, Y-axis	119
			+0.0 +0.0	+0.0 +0.0	+0.0	+0.0	∠47		111gii, 1-axis	119
20	21780.000	37.0	+0.0	+0.0	+0.0	-1 O O	+0.0	35.4	54.0 -18.6	Horiz
20	M	37.0	+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0	33.4	J4.U -18.0	HOHZ
	141		+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0 -16.1	358		Low, 9th Harmonic	119
			+0.0	+8.3	+6.0	-10.1	330		Low, Jui Haimoille	117
			+∪.∠	+0.3	+0.0					

21	16940.000	36.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.9	54.0 -19.1	Horiz
	M		+4.4	+0.0	+0.0	+6.5			- · · · · · ·	
			+0.0	+0.0	-12.9	+0.0			Low, 7th Harmonic	119
			+0.0	+0.0	+0.0				, ========	/
22	215.040M	39.0	-27.2	+10.1	+0.9	+0.9	+0.0	24.0	43.5 -19.5	Horiz
			+0.3	+0.0	+0.0	+0.0	334		High, Z-axis	150
			+0.0	+0.0	+0.0	+0.0			<i>C</i> ,	
			+0.0	+0.0	+0.0					
23	17150.000	35.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	54.0 -19.7	Horiz
	M		+4.4	+0.0	+0.0	+6.7				
			+0.0	+0.0	-12.7	+0.0	81		Mid, 7th Harmonic	119
			+0.0	+0.0	+0.0					
24	22050.000	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	54.0 -19.8	Horiz
	M		+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0	-16.5	357		Mid, 9th Harmonic	119
			+0.2	+8.3	+6.1					
25	215.040M	38.6	-27.2	+10.1	+0.9	+0.9	+0.0	23.6	43.5 -19.9	Horiz
			+0.3	+0.0	+0.0	+0.0	26		Mid, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
26	22320.000	36.3	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	54.0 -20.1	Horiz
	M		+0.0	+0.0	+0.0	+0.0	100		*** 1 0.1 **	110
			+0.0	+0.0	+0.0	-16.8	102		High, 9th Harmonic	119
	215 0 403 5	20.0	+0.1	+8.3	+6.0	.0.0	.0.0	22.0	40.5	TT '
27	215.040M	38.0	-27.2	+10.1	+0.9	+0.9	+0.0	23.0	43.5 -20.5	Horiz
			+0.3	+0.0	+0.0	+0.0	290		Low, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
20	14700 000	27.0	+0.0	+0.0	+0.0	ι Ο Ο	+0.0	22.4	540 207	IIe:-
28	14700.000	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	33.4	54.0 -20.6	Horiz
	M		+4.2 +0.0	+0.0	+0.0	+6.3	360		Mid 6th Hammania	110
			+0.0 +0.0	+0.0	-14.9 0.0	+0.0	360		Mid, 6th Harmonic	119
29	610.472M	28.5	-28.3	+0.0	+0.0	+1.8	+0.0	24.3	46.0 -21.7	Vert
29	010.4/2IVI	20.3	-28.5 +0.6	+20.1	$^{+1.0}$	$^{+1.8}$	+0.0	24.3	High, X-axis	150
			+0.0 +0.0	+0.0 +0.0	+0.0	+0.0 +0.0			ingii, A-axis	130
			+0.0	+0.0	+0.0	10.0				
30	14880.000	36.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	54.0 -21.9	Horiz
30	M	50.0	+4.0	+0.0	+0.0	+6.3	10.0	22.1	57.0 -21.9	110112
			+0.0	+0.0	-14.8	+0.0	225		High, 6th Harmonic	119
			+0.0	+0.0	+0.0	. 3.0			.0,	/
31	681.720M	27.3	-28.2	+20.6	+1.7	+1.9	+0.0	23.9	46.0 -22.1	Vert
			+0.6	+0.0	+0.0	+0.0	272		Low, Z-axis	150
			+0.0	+0.0	+0.0	+0.0			,	
			+0.0	+0.0	+0.0					
32	12400.000	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	54.0 -22.5	Horiz
	M		+3.8	+0.0	+0.0	+5.7				
			+0.0	+0.0	-14.1	+0.0	187		High, 5th Harmonic	119
			+0.0	+0.0	+0.0				-	
33	14520.000	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.1	54.0 -22.9	Horiz
	M		+4.4	+0.0	+0.0	+6.3				
			+0.0	+0.0	-15.1	+0.0			Low, 6th Harmonic	119
			+0.0	+0.0	+0.0					

34	12100.000	35.2	+0.0	+0.0	+0.0	+0.0	+0.0	30.7	54.0 -23.3	Horiz
	M		+3.8	+0.0	+0.0	+5.6				
			+0.0	+0.0	-13.9	+0.0			Low, 5th Harmonic	119
			+0.0	+0.0	+0.0					
35	12250.000	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	30.4	54.0 -23.6	Horiz
	M		+3.8	+0.0	+0.0	+5.7				
			+0.0	+0.0	-13.9	+0.0			Mid, 5th Harmonic	119
			+0.0	+0.0	+0.0					
36	34.368M	27.5	-28.0	+16.1	+0.3	+0.2	+0.0	16.2	40.0 -23.8	Vert
			+0.1	+0.0	+0.0	+0.0			High, Y-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
37	2269.000M	29.5	+0.0	+0.0	+0.0	+0.0	+0.0	29.3	54.0 -24.7	Horiz
			+1.3	+0.0	+0.0	+2.5	360		Low, X-axis	119
			-30.4	+26.4	+0.0	+0.0				
	4.50.5.5.5	20.5	+0.0	+0.0	+0.0			40.5	40.7	** .
38	153.550M	33.2	-27.6	+10.8	+0.8	+0.8	+0.0	18.3	43.5 -25.2	Horiz
			+0.3	+0.0	+0.0	+0.0	99		Mid, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
20	10000111	27.7	+0.0	+0.0	+0.0	,1.0	.00	20.0	46.0 27.2	II.
39	486.664M	27.7	-28.2	+17.8	+1.4	+1.6	+0.0	20.8	46.0 -25.2	Horiz
			+0.5 +0.0	$+0.0 \\ +0.0$	+0.0	+0.0 +0.0	5		Mid, Z-axis	150
					+0.0	+0.0				
40	153.550M	33.0	+0.0	+0.0	+0.0	+0.8	+0.0	18.1	43.5 -25.4	Horiz
40	133.330WI	33.0	+0.3	+10.8 $+0.0$	+0.8	+0.8 $+0.0$	+0.0 342	10.1	Low, Z-axis	150
			+0.0	+0.0	+0.0	+0.0	J -7 2		Low, Z-axis	130
			+0.0	+0.0	+0.0	10.0				
41	153.550M	32.3	-27.6	+10.8	+0.8	+0.8	+0.0	17.4	43.5 -26.1	Vert
	100.00001.1	02.0	+0.3	+0.0	+0.0	+0.0	353	1,	High, Z-axis	150
			+0.0	+0.0	+0.0	+0.0			8, —	
			+0.0	+0.0	+0.0					
42	1.000M	28.9	+0.0	+0.0	+0.0	+0.0	-40.0	-1.2	27.6 -28.8	Horiz
			+0.0	+0.0	+9.8	+0.1	202		Low, Y-axis	150
			+0.0	+0.0	+0.0	+0.0			•	
			+0.0	+0.0	+0.0					
43	1639.000M	27.8	+0.0	+0.0	+0.0	+0.0	+0.0	23.6	54.0 -30.4	Horiz
			+1.4	+0.0	+0.0	+2.1	360		Mid, X-axis	119
			-30.7	+23.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
44	71.706M	28.7	-28.0	+6.1	+0.5	+0.4	+0.0	7.9	40.0 -32.1	Vert
			+0.2	+0.0	+0.0	+0.0	360		Low, X-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					
45	58.560M	28.2	-28.0	+5.7	+0.5	+0.4	+0.0	6.9	40.0 -33.1	Horiz
			+0.1	+0.0	+0.0	+0.0	360		Mid, Y-axis	150
			+0.0	+0.0	+0.0	+0.0				
4.5	00.6001	£1.0	+0.0	+0.0	+0.0	.0.0	00.0	10.7	27.6	TT .
46	99.600k	51.0	+0.0	+0.0	+0.0	+0.0	-80.0	-19.4	27.6 -47.0	Horiz
			+0.0	+0.0	+9.6	+0.0	24		High, Z-axis	150
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0	+0.0					

47	16.946M	9.8	+0.0	+0.0	+0.0	+0.0	-40.0	-21.4	29.5	-50.9	Horiz
			+0.0	+0.0	+8.7	+0.1	216				150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
48	189.900k	32.0	+0.0	+0.0	+0.0	+0.0	-80.0	-38.5	22.0	-60.5	Horiz
			+0.0	+0.0	+9.5	+0.0	235		mid, Y-axis		150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
49	67.940k	36.2	+0.0	+0.0	+0.0	+0.0	-80.0	-34.2	31.0	-65.2	Horiz
			+0.0	+0.0	+9.6	+0.0	358		Mid, X-axis		150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
50	11.930k	43.2	+0.0	+0.0	+0.0	+0.0	-80.0	-21.3	46.1	-67.4	Horiz
			+0.0	+0.0	+15.5	+0.0	358		Mid, Y-axis		150
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

CKC Laboratories, Inc. Date: 9/16/2013 Time: 16:12:02 Medtronic MiniMed WO#: 94428 RSS-210 Issue 8 Radiated Spurious Emissions Test Distance: 3 Meters Horiz Sequence#: 1 Ext ATTN: 0 dB

Test Plots

Low

High

Test Setup Photos

X – Axis

Y - Axis

Z - Axis

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 43 of 44 Report No.: 94428-15A

SAMPLE CALCULATIONS								
	Meter reading (dBμV)							
+	Antenna Factor	(dB)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 44 of 44 Report No.: 94428-15A