New York City Airbnb (Mini Project 2)

8 Feb 2022

By Derek Tan

Agenda

- Business Problem
- Data Science Problem
- Statistics for NYC Airbnb dataset
- Exploratory data analysis
- Machine Learning Model
- Machine Learning Model Evaluation
- Conclusion
- Future work
- Deployment

Business Problem

What is the recommended rental price to charge per day in New York City?

Data Science Problem

Price prediction using machine learning with Airbnb New York City Dataset

Statistics for NYC Airbnb dataset (Price)

Statistics for NYC Airbnb dataset(Price)

Let's Explore!

New York City

New York City(Room type)

Feature Observations

Feature Observations

Feature Observations

Preparing The Data

Preparing
The Data:
Independent
Variable

Latitude – Within New York City

Longitude – Within New York City

Room type – Entire home/apt, Private Room or Shared Room

Minimum Nights – Minimum nights renter needs to rent

Availability 365 – How many days available for rent.

Preparing The Data: Independent Variable

_						
Dep. Variable	price		R-squared:		0.08	15
Model	OLS		Adj. R-squared:		0.08	35
Method	Least Squares		F-statistic:		905	.4
Date	Mon, 07 Feb 2022		Prob (F-statistic):		0.0	00
Time	21:02:35		Log-Likelihood:		-3.3522e+0)5
No. Observations	48895		AIC:		6.704e+0)5
Df Residuals	48889		BIC:		6.705e+0)5
Df Model	:	5				
Covariance Type	nonrobust					
		-4-1		Ds Id	FO 00F	0.0751
	coef	std err		P> t	[0.025	0.975]
Intercept	-5.407e+04	1940.384	-27.863	0.000	-5.79e+04	-5.03e+04
latitude	204.6043	19.138	10.691	0.000	167.094	242.115
longitude	-620.8811	23.114	-26.862	0.000	-666.185	-575.578
room_type	-101.0187	1.942	-52.014	0.000	-104.825	-97.212
minimum_nights	0.0490	0.051	0.951	0.341	-0.052	0.150
availability_365	0.1766	0.008	22.030	0.000	0.161	0.192
Omnibus:	109722.610	Durbin-	Watson:		1.845	
Prob(Omnibus):	0.000	Jarque-Be	era (JB):	949954	485.480	
Skew:	21.148	48 Prob(JB) :		0.00		
Kurtosis:	684.538	684.538 Cond. No.		3.42e+05		

Dependent Variable Analysis: price

Dependent Variable Analysis: price

Model

Linear Regression

Model Evaluation

Model Evaluation

Model Evaluation

Model Score 0.124

Test Score with CV = [0.14674162 0.09000172 0.18408251 0.1600858 0.09915317] Train Score with CV = [0.0663044 0.14350955 0.09537528 0.06429441 0.06497465]

Conclusion

Prices have huge differences and lots of Outliers

Underfitting data model, having a model score of 0.124

Future work

Research

Research other relevant datasets to increase the number of features.
Perform feature engineering

Increase

Increase the complexity of the model

Analyze

Analyze alternative model such as PCA, decision tree, random forest, etc

Deployment: Prediction Demousing Flask

