Plan du cours

l.	Activités d'introduction	1
11.	Définition et unités1. Définition2. Les conversions	
	Déterminer l'aire d'une figure 1. 1ère Méthode	

I. Activités d'introduction

Activité 1 : Unité d'aire

- 1. Que peux-tu dire de l'aire des trois figures bleues ?
- 2. L'aire de chacune de ces figures est la même que celle d'un carré de côté 1 cm. On dit que l'aire mesure 1 centimètre carré, on le note 1 cm².
 - a. Recopie et complète :

Un centimètre carré (cm²) est la surface occupée par un carré de côté

- b. Définis de la même façon le mètre carré, le décimètre carré, le millimètre carré et le kilomètre carré.
- 1) On remarque que les 3 aires bleues sont identiques.
- 2) **Un centimètre carré** (cm^2) est la surface occupée par un carré de côté 1 cm.

Un mètre carré (m^2) est la surface occupée par un carré de côté 1 m.

Un décimètre carré (dm^2) est la surface occupée par un carré de côté 1 dm.

Un millimètre carré (m^2) est la surface occupée par un carré de côté 1 mm.

Activité 2 : L'aire d'un triangle

Jeanne veut réaliser un chapeau recouvert sur le devant de paillettes pour le carnaval. Le chapeau est représenté sur le schéma ci-contre. Sur le tube de paillettes de 5 g, il est écrit qu'il faut 5 g de paillettes pour 20 cm². Elle ne sait pas combien de tubes acheter. Elle téléphone à son amie lpek et lui décrit la forme du chapeau.

lpek lui répond : « Il doit y avoir un rectangle dont l'aire est le double de ton chapeau. »

Combien de tubes de paillettes devra acheter Jeanne ?

- Calcul de l'aire du triangle :

D'après l'énoncé, on sait que le double de l'aire de ce chapeau correspond à l'aire d'un rectangle.

$$A_{rectangle} = L \times I$$

 $A_{rectangle} = 15 \times 20$
 $A_{rectangle} = 300 cm^2$

Donc,
$$A_{triangle} = \frac{A_{rectangle}}{2}$$

$$A_{triangle} = \frac{300}{2}$$

$$A_{triangle} = 150 cm^{2}$$

- Calcul du nombre de tubes de paillettes :

D'après l'énoncé, on sait qu'il faut 5 g de paillettes pour une surface de 20 cm².

lci, la surface du chapeau est de 150 cm^2 . Nous allons poser la division euclidienne de 150 par 20. $150 = 20 \times 7 + 10$

Il faudra donc 8 tubes de paillettes.

II. Définition et unités

1. Définition

Définition

L'aire d'une "figure fermée" est la mesure de sa surface, c'est à dire de la partie recouvrant l'intérieur de cette figure.

2. Les conversions

L'unité d'aire du Système international de mesure est le mètre carré, noté m^2 .

Les mesures d'aires

km ²		hm²		dam ²		m ²		dm ²		cm ²		mm ²	
d	u	d	u	d	u	d	u	d	u	d	u	d	u

On a donc :

$$1km^2 = 100 \ hm^2$$

$$1hm^2 = 100 \ dam^2$$

$$1 dam^2 = 100 m^2$$

$$1m^2=100~dm^2$$

$$1dm^2 = 100 \text{ cm}^2$$

$$1cm^2 = 100 mm^2$$

$$1km^2 = 1\ 000\ 000\ m^2$$

$$1m^2 = 1000000$$

 mm^2

Les unités agraires : (qui servent à évaluer la grandeur des terrains, des champs, des bois ...)

$$1ha = 1hm^2$$

$$1a = 1 dam^2$$

$$1ca = 1m^2$$

Apprendre à convertir des m^2 :

- Exemple 1:

Convertir 25 m^2 en cm^2 .

- (a) écrire le nombre 25 dans les m^2 .
- (b) Et compléter jusqu'au cm^2 par des 0.

km ²	h	hm ²		dam ²		m ²		dm ²		cm ²		mm ²	
					2	5							
					2	5	0	0	0	0			

 $25 m^2 = 250 \ 000 \ cm^2$

- Exemple 2:

Convertir 703 m^2 en dam^2

- (a) écrire le nombre 703 dans les m^2 .
- (b) placer la virgule à droite du chiffre des unités des dam^2 .

km²		hm²		dam ²		m ²		dm ²		cm ²		mm ²	
					7	0	3						
					7,	0	3						

 $703 m^2 = 7,03 dam^2$

Exercice d'application 1 -

Compléter les égalités suivantes :

$$4hm^2 = 40000m^2$$

$$30a = 300000dm^2$$

$$13cm^2 = 0.0013m^2$$

$$94,5cm^2 = 9450mm^2$$

$$1,5ha = 0,015km^2$$

$$0,0015dam^2 = 0,15m^2$$

III. Déterminer l'aire d'une figure

1. 1ère Méthode

On choisit le carreau du quadrillage comme unité d'aire.

L'aire $\mathcal A$ d'une surface quelconque est égale au nombre de carreaux du quadrillage qu'elle recouvre.

Exemple:

Sachant qu'un carré fait 1 cm de côté, quelle est l'aire du polygone ci-contre :

En comptant le nombre de carré, on trouve que l'aire du polygone vaut 15 $c\,m^2$

2. 2ème Méthode

On peut aussi utiliser une formule.

Avant d'effectuer les calculs, il faut vérifier que les longueurs sont exprimées dans la même unité!

Exemples:

1. Quelle est l'aire d'un carré de côté 2,5 cm?

$$A_{carr} = c \times c$$

$$A_{carr} = 2, 5 \times 2, 5$$

$$A_{carr} = 6,25cm^2$$

2. Quelle est l'aire d'un rectangle de longueur 0,5 cm et de largeur 1 cm?

$$A_{rectangle} = L \times I$$

$$A_{rectangle} = 0,5 \times 1$$

$$A_{rectangle} = 0,5cm^2$$

3. Quelle est l'aire d'un disque de 20 m de diamètre?

$$A_{disque} = \pi \times r \times r$$

$$A_{disque} \approx 3,14 \times 10 \times 10$$

$$A_{disque} \approx 314m^2$$

4.

Quelle est l'aire du triangle ci-contre?

$$A_{triangle} = \frac{b \times h}{2}$$

$$A_{triangle} = \frac{4 \times 2}{2}$$

$$A_{triangle} = 4cm^2$$

Exercice d'application 2

1. Détermine l'aire des deux surfaces grisées (Les figures ne sont pas en vraie grandeur).

Figure 1:

On va découper cette figure en 3 figures usuelles : 2 triangles et un rectangle.

$$A_{DAH} = \frac{b \times h}{2}$$

$$A_{DAH} = \frac{3 \times 8}{2}$$

$$A_{CKB} = \frac{b \times h}{2}$$

$$A_{DCKH} = L \times I$$

$$A_{DAH} = \frac{3 \times 8}{2}$$

$$BK = 10 - 8 = 2 \text{ cm}$$

$$A_{DCKH} = 5 \times 8$$

$$A_{DAH} = \frac{24}{2}$$

$$A_{CKB} = \frac{2 \times 8}{2}$$

$$A_{DCKH} = 40cm^2$$

$$A_{DAH} = 12cm^2$$

$$A_{CKB} = \frac{16}{2}$$

$$A_{CKB} = 8cm^2$$

On va maintenant additionner toutes les aires :

$$A_{total} = A_{DAH} + A_{CKB} + A_{DCKH} = 12 + 8 + 40 = 60 cm^2$$

Figure 2:

On va calculer l'aire du grand rectangle HGFE et soustraire ensuite l'aire du petit rectangle ONML.

$$A_{HGFE} = L \times I$$

$$A_{ONML} = L \times I$$

$$A_{HGFE} = 10 \times 5$$

$$A_{ONML} = 4 \times 2$$

$$A_{HGFE} = 50cm^2$$

$$A_{ONML} = 8cm^2$$

$$A_{total} = A_{HGFE} - A_{ONML}$$

$$A_{total} = 50 - 8$$

$$A_{total} = 42cm^2$$