Topic: Triangles

Lesson Objectives

By the end of this lesson, students should be able to:

- Identify and classify different types of triangles
- Construct triangles given sides and angles
- Inscribe and circumscribe circles in triangles

1. What is a Triangle?

A triangle is a closed plane figure with three sides and three angles.

It is the **simplest polygon** and forms the basis of many geometrical constructions.

2. Types of Triangles

Triangles can be classified by:

a) Sides

Type of Triangle	Description	Example
Equilateral Triangle	e All three sides are equal; all angles are 60°	Triangular warning sign
Isosceles Triangle Two sides are equal, and two angles are equal Roof trusses		
Scalene Triangle	No sides are equal; all angles are different	Irregular triangular object

b) Angles

Type of Triangle Description Example

Acute-angled Triangle All angles are **less than 90°** Standard roof design

Right-angled Triangle One angle is **exactly 90°** L-shaped bracket, carpenter square

Obtuse-angled Triangle One angle is **more than 90°** Decorative patterns

3. Construction of Triangles

Tools Required:

- Compass
- Ruler
- Protractor
- Pencil (2H or HB)

a) Constructing a Triangle When Three Sides Are Known (SSS)

Steps:

- 1. Draw the longest side as a base.
- 2. Use the **compass** to draw arcs from each endpoint of the base using the other two side lengths.
- 3. The point where the arcs **intersect** is the **third vertex**.
- 4. Join the sides to form the **triangle**.

b) Constructing a Triangle When Two Sides and One Angle Are Known (SAS)

Steps:

- 1. Draw one of the given sides.
- 2. At one end, use a **protractor** to measure the given angle.
- 3. Draw the second side from the angle.
- 4. Use the **compass** to measure and cut the remaining side to meet the other side.

c) Constructing a Right-angled Triangle

Steps:

1. Draw the base.

- 2. Use a **set square** to draw a **90° angle** at one end.
- 3. Mark the length of the other side along the perpendicular line.
- 4. Connect the top of this side to the other end of the base.

4. Inscribing and Circumscribing Circles in Triangles

a) Inscribed Circle (Incircle)

An **inscribed circle** is a circle that **fits perfectly inside a triangle**, touching all three sides.

Steps to Construct an Incircle:

- 1. **Bisect two angles** of the triangle.
- The point where the angle bisectors meet is the center of the incircle (incenter).
- 3. Use a **compass** to draw a circle from the center, with radius equal to the **distance from** the incenter to one side of the triangle.

b) Circumscribed Circle (Circumcircle)

A circumscribed circle is a circle that passes through all three vertices of a triangle.

Steps to Construct a Circumcircle:

- 1. **Perpendicularly bisect two sides** of the triangle.
- 2. The intersection of the bisectors is the center of the circumcircle (circumcenter).
- 3. Use a **compass** to draw a circle from this center, passing through all three triangle corners.

5. Real-Life Applications of Triangles

Use Example

Construction and Architecture Roof trusses, bridges

Engineering Gears, supports

Design Art, tiling patterns

Use Example

Navigation and Mapping Triangulation

Safety Signs Triangular road signs

6. Importance of Triangles in Technical Drawing

• Structural stability: Triangles provide strength in design.

• **Geometric construction:** Many drawings begin with basic triangles.

• Engineering and architecture: Triangles distribute force efficiently.

7. Summary of Key Points

Concept Details

Triangle 3-sided polygon with 3 angles

Types (Sides) Equilateral, Isosceles, Scalene

Types (Angles) Acute, Right, Obtuse

Construction Methods SSS, SAS, Right-angled

Circle in Triangle Incircle (inscribed), Circumcircle (circumscribed)