

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

III ETAP WOJEWÓDZKI

15 LUTEGO 2018 r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

Zadanie 1. (1 pkt)

Poniżej podano wzory związków organicznych:

Wskaż zdanie prawdziwe:

- A. Związki opisane wzorami I i II są względem siebie izomerami.
- B. Związki opisane wzorami I i II są alkanami.
- C. Związek opisane wzorami I i II są względem siebie homologami.
- D. Wzory I i II opisują ten sam związek.

Zadanie 2. (1 pkt)

Produktem addycji HCl do 2-metylopent-2-enu realizowanej w środowisku o odczynie $kwasowym(H_2SO_4)$ jest:

- A. 2-metylo-2-chloropentan
- B. 2-chloro-2-metylopentan
- C. 4-chloro-4-metylopentan
- D. 4-metylo-4-chloropentan

Zadanie 3. (1 pkt)

Związek organiczny o podanym poniżej wzorze strukturalnym ma nazwę systematyczną:

- A. propanian etylu
- B. etanian propylu
- C. pentan-2-ol
- D. pentan-3-ol

Zadanie 4. (1 pkt)

Bakterie odgrywają istotną rolę w przemianie materii oraz obiegu pierwiastków w przyrodzie. Rozkład związków organicznych zawierających pierwiastki: C, H, N, O, S, P przez drobnoustroje w obecności tlenu nazywa się rozkładem aerobowym, a bez udziału tlenu rozkładem anaerobowym. W zależności od przeprowadzonego rozkładu produktami końcowymi mogą być m. in.: CH_4 , NH_3 , CO_2 , NH_4^+ , H_2O , NO_3^- , H_2S , SO_4^{2-} oraz PH_3 .

Na podstawie: G. W. van Loon, S. J. Duffy, Environmental Chemistry: A Global Perspective 2/e, Oxford University Press, 2007

Spośród poniższych odpowiedzi wskaż tę, która zawiera wyłącznie produkty beztlenowego(anaerobowego) rozkładu materii organicznej:

- A. PH_{3} , $H_{2}S$, NH_{4}^{+} , NH_{3} ;
- B. CH₄, NH₃, SO₄²⁻, NH₄⁺;
- C. CO_2 , H_2O , NO_3^- , PH_3 ;
- D. H₂S, SO₄²-CH₄, NH₃;

Zadanie 5. (1 pkt)

Wskaż odpowiedź (A-D) odpowiadającą jednemu z izotopów pierwiastka, którego wodne roztwory rozpuszczalnych soli barwią płomień palnika na kolor różowofioletowy.

Odnowied*	Liczba			
Odpowiedź	Protonów	neutronów	Elektronów	
A	29	35	29	
В	19	20	19	
С	17	20	17	
D	11	12	11	

Zadanie 6. (1 pkt)

Spośród poniższych wzorów substancji chemicznych wskaż tę, która ma najwyższą temperaturę wrzenia.

- A. $C_5H_{12(c)}$
- B. NH_{3(aq)}
- C. $H_2O_{(c)}$
- D. $C_2H_5OH_{(c)}$

Zadanie 7. (1 pkt)

Alotropia to zjawisko:

- A. Występowania różnych pierwiastków posiadających te same właściwości fizyczne i chemiczne.
- B. Występowania tych samych pierwiastków różniących się liczbą neutronów w jądrze.
- C. Występowania różnych pierwiastków o tej samej masie atomowej.
- D. Występowania tego samego pierwiastka w formach różniących się właściwościami fizycznymi i chemicznymi.

Zadanie 8. (1 pkt)

Przeprowadzono trzy doświadczenia opisane poniższym schematem.

Wodorosole otrzymano w doświadczeniu numer:

- A. I. i III.
- B. II. i III.
- C. I. i II.
- D. I., II. i III.

Zadanie 9. (1 pkt))

Wskaż zdanie prawdziwe:

- A. W czystym powietrzu(tzw. suchym powietrzu) występuje para wodna.
- B. Woda krzepnie w temperaturze 4°C.
- C. Tlen w związkach chemicznych przyjmuje wyłącznie stopień utlenienia –II.
 Jednym z produktów reakcji roztworu glukozy ze świeżo strąconym
- D. wodorotlenkiem miedzi(II) przeprowadzonej w podwyższonej temperaturze jest pomarańczowe ciało stałe.

Zadanie 10. (1 pkt)

Spośród poniżej wymienionych pierwiastków wskaż ten, który może występować w związkach chemicznych na – IV stopniu utlenienia.

- A. Azot
- B. Wegiel
- C. Siarka
- D. Bar

Zadanie 11. (2 pkt)

Jedną z metod otrzymywania alkenów jest eliminacja HX z odpowiednich halogenoalkanów. Główny produkt reakcji powstaje zgodnie z regułą Zajcewa jednak możliwe jest również otrzymanie niewielkich ilości produktu ubocznego powstającego niezgodnie z regułą Zajcewa.

a)	Podaj z 2-bro		-	strukturalny(grup pentanu.	owy)	główneg	go	produktu	eliminacji	HBr
b)	Podaj z 2-bro	nazw mo-2-m		systematyczną pentanu.	ubo	cznego	pr	<u>oduktu</u>	eliminacji	HBr
								•••••		

Zadanie 12. (1 pkt)

Kwas deoksyrybonukleinowy zwany potocznie DNA zbudowany jest z czterech rodzajów nukleotydów, w skład których wchodzą zasady organiczne: adenina(skrót: A), guanina(skrót: G), cytozyna(skrót: C) oraz tymina(skrót: D). Pojedyncza cząsteczka DNA zbudowana jest z dwóch łańcuchów(nici), splecionych ze sobą w podwójną spiralę. Reszty tyminy(T) jednej nici połączone są tylko z resztami adeniny(T) drugiej nici, a reszty cytozyny(T), z resztami guaniny(T).

Na podstawie: Encyklopedia szkolna. Chemia, Zielona Sowa, 2006.

Zakładając, że fragment cząsteczki DNA jednej z nici zawiera podane zasady w następującej kolejności:

GGTCATAGAT

Podaj oznaczenia literowe sekwencji zasad będących w drugiej, komplementarnej nici.
Zadanie 13. (2 pkt)

Reakcja Wurtza(synteza Wurtza) to jedna z laboratoryjnych metod otrzymywania alkanów. Polega na działaniu metalicznym sodem na odpowiednie halogenki alkilowe(halogenoalkany). Syntezę tę stosuje się najczęściej do otrzymywania symetrycznych węglowodorów o parzystej liczbie atomów węgla w cząsteczce. Zachodzi wówczas reakcja rodnikowa opisana równaniem:

$$2R-X + 2Na \rightarrow R-R + 2NaX$$

Działając sodem na mieszaninę dwóch różnych halogenoalkanów otrzymuje się zawsze mieszaniną trzech różnych węglowodorów zgodnie z równaniem:

$$3R_1 - X + 3R_2 - X + 6Na \rightarrow R_1 - R_1 + R_1 - R_2 + R_2 - R_2 + 6NaX$$

Na podstawie: Encyklopedia szkolna. Chemia, Zielona Sowa, Kraków 2006

W naczyniu reakcyjnym zmieszano 1 mol chlorometanu i 1 mol chloroetanu, a następnie wrzucono nadmiar metalicznego sodu. Podaj wzory półstrukturalne(grupowe) oraz nazwy systematyczne wszystkich produktów organicznych, które mogą powstać podczas zachodzącej reakcji.

Zadanie 14. (1 pkt)

Glukoza to monosacharyd(cukier prosty) o wzorze sumarycznym $C_6H_{12}O_6$ zaliczany do aldoheksoz. Glukoza jest białym, drobnokrystalicznym ciałem stałym dobrze rozpuszczalnym w wodzie.

Na podstawie: R. Hassa, J. Mrzigod, J. Nowakowski, Podręczny słownik chemiczny, 2004

Narysuj cząsteczkę glukozy(izomer L lub D) w projekcji Fishera.

Informacja do zadań 15–16

Estry to związki organiczne szeroko rozpowszechnione w przyrodzie. Z chemicznego punktu widzenia są to produkty reakcji alkoholi z kwasami karboksylowymi lub tlenowymi kwasami nieorganicznymi prowadzonej w podwyższonej temperaturze i katalizowanej kwasem siarkowym(VI). Estry kwasów karboksylowych są na ogół trudno rozpuszczalne w wodzie jednak dodatek odrobiny kwasu lub zasady powoduje ich reakcję rozkładu(hydrolizę) do odpowiednich produktów. Estry odznaczają się przyjemnymi zapachami kwiatów lub owoców dlatego często stosuje się je w przemyśle kosmetycznym i spożywczym.

Na podstawie: W. Danikiewicz, Chemia. Związki organiczne, Oficyna wydawnicza Krzysztof Pazdro, 2003

W poniższej tabeli wymieniono kilka nazw estrów i towarzyszące im zapachy.

Nazwa estru	Zapach
Metanian propylu	Śliwkowy
Etanian propylu	Gruszkowy
Etanian butylu	Jabłkowy
Etanian pentylu	Bananowy
Butanian butylu	Ananasowy

Zadanie 15. (2 pkt)

Korzystając z informacji do zadania zaprojektuj doświadczenie, w którym otrzymasz ester o charakterystycznym jabłkowym zapachu. W tym celu narysuj schemat doświadczenia uwzględniający warunki przeprowadzenia reakcji i niezbędne odczynniki chemiczne.

Schemat doświadczenia uwzględniającego odczynniki i warunki przebiegu reakcji:

Zadanie 16. (1 pkt)	
Używając wzorów półstrukturalnych(grupowych) zapisz równanie reakcji o charakterystycznym śliwkowym zapachu z wodorotlenkiem potasu.	estru
Zadonia 17 (2 pkt)	
Zadanie 17. (3 pkt)	

Sacharoza to disacharyd(dwucukier) zbudowany z dwóch cukrów redukujących połączonych wiązaniem O-glikozydowym. Sacharoza jest białym, drobnokrystalicznym ciałem stałym dobrze rozpuszczalnym w wodzie.

Na podstawie: R. Hassa, J. Mrzigod, J. Nowakowski, Podręczny słownik chemiczny, 2004

Przeprowadzono dwuetapowe doświadczenie opisane poniższym schematem:

a) Podaj cząsteczkowe(sumaryczne) równanie reakcji zachodzącej podczas <u>etapu I</u> przedstawionego doświadczenia.

.....

b) Sformułuj dwie różne obserwacje(<u>na początku</u> oraz <u>po dłuższym czasie</u> ogrzewania roztworu) towarzyszące przebiegowi etapu II opisanego doświadczenia

I.	
II.	

Zadanie 18. (3 pkt)

Metan i etan to bezbarwne i bezwonne gazy należące do szeregu homologicznego alkanów. W zależności od ilości dostępnego tlenu ulegają różnym reakcjom spalania. Poniżej przedstawiono równania reakcji całkowitego spalania metanu i etanu, w których gazowymi produktami są tlenek węgla(IV) i woda.

$$2CH_{4(g)} + 4O_{2(g)} \rightarrow 2CO_{2(g)} + 4H_2O_{(g)}$$

 $2C_2H_{6(g)} + 7O_{2(g)} \rightarrow 4CO_{2(g)} + 6H_2O_{(g)}$

Na podstawie: W. Danikiewicz, Chemia. Związki organiczne, Oficyna wydawnicza Krzysztof Pazdro, 2003

Mieszaninę metanu i etanu zajmującą w warunkach normalnych(T=0°C, p=1013hPa) 1,2 dm³ spalono całkowicie otrzymując 1,9 dm³ tlenku węgla(IV) odmierzonego w temperaturze 20°C pod tym samym ciśnieniem. Oblicz zawartość procentową(% objętościowy) metanu w wyjściowej mieszaninie gazów.

UWAGA:

Obliczenia prowadź z dokładnością do trzech miejsc po przecinku, a wynik końcowy podaj w zaokrągleniu do liczb całkowitych.

Stala gazowa, $R=83,14 \text{ hPa} \times dm^3 \times mol^{-1} \times K^1$

Zadanie 19. (3 pkt)

Mangan należy do pierwiastków słabo rozpowszechnionych w przyrodzie. Ze względu na swoje położenie w układzie okresowym, strukturę i właściwości chemiczne tworzy związki, w których występuje na różnych stopniach utlenienia. Najważniejszym mineralem manganu jest braunsztyn, MnO_2 – brunatne ciało stałe o charakterze amfoterycznym. Wodne roztwory soli manganu(VII) tzw. manganiany(VII) mają barwę fioletową, a jony manganianowe(VII), MnO_4 , w zależności od środowiska(kwasowe, obojętne, zasadowe,) w obecności reduktora (np. Na_2SO_3) przekształcają się odpowiednio w związki manganu $II(Mn^{2+})$, manganu $IV(MnO_2)$

lub manganu $VI(MnO_4^{2-})$.

Na podstawie: A. Czerwiński, A. Czerwińska, M. Jelińska-Kazimierczuk, K. Kuśmierczyk, Chemia. Podręcznik, WSiP, 2002

Napisz jonowe skrócone równanie reakcji wodnego roztworu manganianiu(VII) potasu z wodnym roztworem siarczanu(IV) sodu w środowisku obojętnym, którego produktem jest między innymi tlenek manganu(IV). Współczynniki stechiometryczne dobierz metodą bilansu elektronowego zapisując odpowiednie równania reakcji utlenienia i redukcji.

a)	Równanie reakcji utlenienia:
•••	
b)	Równanie reakcji redukcji:
 c)	Jonowe skrócone równanie reakcji:

Zadanie 20. (1 pkt)

Fluoroapatyt to minerał o wzorze $CaF_2 \cdot 3Ca_3(PO_4)_2$ występujący w praktycznie każdej skale magmowej. Śladowe ilości fluoroapatytu można znaleźć również w ludzkich zębach wystawionych na działanie jonów fluorkowych np. pochodzących ze stosowania pasty do zębów zawierającej fluor. Minerał ten stosuje się między innymi w produkcji nawozów sztucznych jako podstawowe źródło fosforu, a w reakcji z wodnym roztworem kwasu siarkowego(VI) tworzy gips krystaliczny(siarczan(VI) – woda 1/2) oraz kwas tlenowy i beztlenowy.

Na podstawie: Fluorapatite, Wikipedia. The Free Encyklopedia, https://en.wikipedia.org/wiki/Fluorapatite

Podaj cząsteczkowe równanie reakcji fluoroapatytu z wodnym roztworem kwasu siarkowego(VI)

.....

Zadanie 21. (3 pkt)

W poniższej tabeli wymieniono kilka wskaźników kwasowo zasadowych wraz z ich barwami w odpowiednich środowiskach oraz zakresem pH zmiany barwy.

	Barwa 1	Zakres pH		
Wskaźnik	poniżej wartości pH z zakresu zmiany barwy	powyżej wartości pH z zakresu zmiany barwy	zmiany barwy wskaźnika	
Czerwień metylowa	czerwona	żółta	4,5-6,2	
Czerwień fenolowa	żółta	czerwona	6,6 - 8,0	
Błękit tymolowy	czerwona	żółta	1,2-2,8	
Błękit bromotymolowy	żółta	niebieska	6,0-7,6	

Na podstawie: W. Mizerski, Tablice chemiczne, Wydawnictwo Adamantan, Warszawa, 2003

Uzupełnij poniższą tabelę wpisując odczyn substancji (kwasowy, obojętny, zasadowy) oraz odpowiednią barwę(kolor) podanego wskaźnika jaką przyjmie on w wodnych roztworach wymienionych substancji o stężeniu 0,1 mol × dm⁻³.

Wzór	Barwa			
związku	Czerwień metylowa	Błękit bromotymolowy	Odczyn roztworu	
K ₂ CO ₃				
HNO ₃				
NaCl				

Zadanie 22. (2 pkt)

Poniżej przedstawiono stosunki mas wybranych nuklidów.

$$\frac{^{151}Eu}{^{133}Cs} = 1,136$$

$$\frac{^{133}Cs}{^{127}I} = 1,047$$

$$\frac{^{127}I}{^{12}C} = 10,575$$

Na podstawie: W. Mizerski, Tablice chemiczne, Wydawnictwo Adamantan, Warszawa, 2003

Wiedząc, że masa atomowa izotopu ¹²C wynosi 12,000u oblicz masę atomową nuklidu ¹⁵¹Eu. Obliczenia oraz wynik podaj z dokładnością do trzech miejsc po przecinku.

Miejsce na rozwiązanie:		
	161	

Zadanie 23. (2 pkt)

Przeprowadzono ciąg reakcji opisanych poniższym schematem:

$$ZnCO_{3(s)} \xrightarrow{T} ZnO_{(s)} \xrightarrow{H_{(aq)}^{+}} Zn_{(aq)}^{2+}$$

$$O! [Zn(OH)_4]_{(aq)}^{2-}$$

a) Podaj jonowe skrócone równanie reakcji tlenku cynku z roztworem mocnej zasady.

b) Określ charakter chemiczny tlenku cynku.

.....

Informacja do zadania 24 – 25

Poniżej przedstawiono wykres rozpuszczalności soli w zależności od temperatury.

Źródło: J.Banaś, W. Solarski, *e-chemia. Podstawy*, Akademia Górniczo-Hutnicza w Krakowie, http://zasoby1.open.agh.edu.pl/dydaktyka/chemia/a_e_chemia

Zadanie 24. (1 pkt)

Podaj nazwę systematyczną soli mającą największą rozpuszczalność w temperaturze 20°C.

.....

Zadanie 25. (3 pkt) Przygotowano 150g nasyconego roztworu azotanu(V) potasu w temperaturze 50°C, o następnie ochłodzono go do temperatury 30°C.
Oblicz masę soli użytej do sporządzenia 150g nasyconego roztworu azotanu(V) potast w temp. 50°C, a następnie masę substancji jaka wytrąci się w roztworze po chłodzeniu go do temp. 30°C.
Masa soli użytej do przygotowania nasyconego roztworu wynosiła
Masa wytrąconej soli po ochłodzeniu roztworu wyniosła

Brudnopis

UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH

masy atomowe pierwiastków podano w atomowych jednostkach masy [u] (dolna liczba, wydrukowana większą czcionką pod symbolem w krateczce pierwiastka)

₁ Н 1																	₂ He 4
₃ Li 7	₄ Be 9											₅ B 11	₆ C 12	₇ N 14	₈ O 16	₉ F 19	10Ne 20
11Na 23	12Mg 24											13Al 27	14Si 28	15P 31	16S 32	17Cl 35,5	18Ar 40
₁₉ K 39	₂₀ Ca 40	21Sc 45	₂₂ Ti 48	23V 51	₂₄ Cr 52	₂₅ Mn 55	₂₆ F 56		28Ni 59	₂₉ Cu 64	₃₀ Zn 65	31Ga 70	32Ge 73	33As 75	₃₄ Se 79	35Br 80	36Kr 84
37Rb 85	₃₈ Sr 88	₃₉ Y 89	₄₀ Zr 91	41Nb 93	₄₂ Mo 96	43Tc 97	44R 10			47Ag 108	48Cd 112	49In 115	₅₀ Sn 119	51Sb 122	₅₂ Te 128	₅₃ I 127	₅₄ Xe 131
55Cs 133	₅₆ Ba 137	57La 139 (*)	₇₂ Hf 178	73Ta 181	₇₄ W 184	75Re 186	₇₆ O 190			₇₉ Au 197	₈₀ Hg 201	81Tl 204	82Pb 207	83Bi 209	₈₄ Po 209	85At 210	86Rn 222
87Fr 223	₈₈ Ra 226	89Ac 227 (**)	104Rf 261	105Db 262	106Sg 266	₁₀₇ Bh 272	108F 27			111Rg 280	112Cn 285	113 284	114 289	115 288	116 292		118 294
	(*) lantanowce		Ce ₅₉ F 0 14		-		Sm 50	₆₃ Eu 152	₆₄ Gd 157	₆₅ Tb 159	66Dy 163	₆₇ Ho 165	₆₈ Er 167	₆₉ Tn 169			Lu 75
(**) aktynowce		90Te 23					Pu 44	₉₅ Am 243	₉₆ Cm 251	₉₇ Bk 247	₉₈ Cf 251	₉₉ Es 252	₁₀₀ Fm 257	101Me			₃ Lr 62

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE W TEMPERATURZE 25°C

	CIT	Br-	г	N03	CH ₃ COO	S^{2-}	SO32-	SO ₄ 2-	CO32-	SiO ₃ ²⁻	CrO ₄ ²⁻	PO43-	OH
Na ⁺	R	R	R	R	R	R	R	R	R	R	R	R	R
K*	R	R	R	R	R	R	R	R	R	R	R	R	R
NH ₄ ⁺	R	R	R	R	R	R	R	R	R	_	R	R	R
Cu ²⁺	R	R	-	R	R	N	N	R	1	N	N	N	N
Ag ⁺	N	N	N	·R	R	N	N	T	N	N	N	N	_
Mg ²⁺ Ca ²⁺	R	R	R	·R	R	R	R	R	N	N.	R	N.	N
Ca ²⁺	R	R	R	R	R	T	N	T	N	N	T	N	T
Ba ²⁺	R	R	R	R	R	R	N	N	- N	N	N	N	R
Zn ² *	R	R	R	R	R	N	T	R	N	N	T	N	N
A13+	R	R	R	R	R	-		R		N	N	N	N
Sn ²⁺	R	R	R	R	R	N	-	R	1-	N.	N	N	N
Pb ²⁺	T	T	N	R.	R	N	N	N	N	N	N	N	N
Mn ²⁺	R	R	R	R	R	N	N	R	N	N	N	N	N
Fe ²⁺	R	R	R	R	R	N	N	R	N	N	-	N	'N
Fe ³⁺	R	R	_	R	R	N		R		N	N	N	N

R- substancja rozpuszczalna; T- substancja trudno rozpuszczalna (strąca się ze stęż. roztworów); N- substancja nierozpuszczalna; – oznacza, ze dana substancja albo rozkłada się w wodzie, albo nie została otrzymana

Żródło: W. Mizerski. Tablice Chemiczne. Adamantan. 2004