

Feature Transformation in ML Discretization & Binarization

YIJIE (EJAY) GUO YU CHEN

Noise Reduction

[1] Linear Models are more sensitive towards out layers, noises and fluctuates in the data. The discretization and binarization improve signal-to-noise ratio and smooth out the noises.

[2] Non-linear models are not so sensitive towards the noises and very likely to be more overfitting.

Input layer All layers are fully connected but not drawn Output layer (reconstruction of input layer)

Quantization

[1] More Model Choices

[2] Memory and Computation Reduction

[3] Compressing the floating point input/output values in DNN to a fixed point representation, like 8-bit or 16-bit integers.

Binary Neural Network

Inputs, outputs and weights are all binary values. By binary here, we mean Bipolar Binary, i.e. +1 & -1 values.

for i in width: C += A[row][i] * B[i][col]

for i in width:
 C += popcount(XNOR(A[row][i], B[i][col]))