

密级状态: 绝密() 秘密() 内部() 公开(√)

RK3399Pro NPU 上电及启动介绍

(技术部,第二系统产品部)

文件状态:	当前版本:	V1.0
[] 正在修改	作 者:	周为新
[√] 正式发布	完成日期:	2019-05-10
	审核:	黄祖芳
	完成日期:	2019-05-17

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Electronics Co., Ltd

(版本所有,翻版必究)

版本历史

版本号	作者	修改日期	修改说明	备注
V1.00	周为新	2019.05.10	初版发布	

目 录

前	言	1
1	硬件框架	2
2	功能流程说明	2
	2.1 npu_upgrade 自启动服务,包含 npu 的上电及升级	2
	2.2 npu_upgrade 上电部分 npu_powerctrl	2
	2.3 npu_upgrade 升级部分 upgrade_tool	3
	2.4 usb 枚举到 npu 设备,表示 npu 启动正常。	3
	2.5 自动休眠	4
3	npu 启动失败分析	4
	3.1 确认 npu 是否正常进入烧写模式	4
	3.2 休眠死机	6
	3.3 相关 debug 命令	7

前言

概述

本文档主要介绍 Rockchip RK3399Pro npu 上电及升级控制介绍,及相关 debug 方法。

产品版本

芯片名称	内核版本
RK3399Pro	Linux4.4

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

1 硬件框架

3399pro 系统端(android/linux)为 host

npu 端(linux)为 device

host 控制 npu 的上电久固件升级,通过 usb2.0 升级固件,通过 usb3.0 传输模型数据。

2 功能流程说明

2.1 npu_upgrade 自启动服务,包含 npu 的上电及升级

rk3399pro:/ # cat vendor/etc/init/npu_upgrade.rc

service npu_upgrade vendor/bin/npu_upgrade MiniLoaderAll.bin uboot.img trust.img boot.img

class core

oneshot

seclabel u:r:npu_upgrade:s0

2.2 npu_upgrade 上电部分 npu_powerctrl

rk3399pro:/ #cat vendor/bin/npu_upgrade

/vendor/bin/npu_powerctrl -i

/vendor/bin/npu_powerctrl -o

这部分控制 npu 上电,如果上电正常,usb 会枚举到 180a 设备,npu 进入烧写模式

[4.437235] usb 3-1: New USB device found, idVendor=2207, idProduct=180a

rk3399pro:/ # npu_powerctrl

Usage:npu_powerctrl [-s] [-r] [-o] [-i] [-d]

- -s npu enter sleep
- -r wakup npu
- -o power up or reset npu
- -i gpio init
- -d power down

2.3 npu_upgrade 升级部分 upgrade_tool

指定固件路径: DIR="/vendor/etc/npu_fw"

指定升级工具路径: UPGRADE_TOOL=/vendor/bin/upgrade_tool

烧写 log: data/npu.log

正常烧写完后 npu 自动启动

注意: npu fw 没有提供源码,只有提供固件

2.4 usb 枚举到 npu 设备,表示 npu 启动正常。

[14.265132] usb 4-1: New USB device found, idVendor=2207, idProduct=1808

2.5 自动休眠

默认配置 npu 空闲 15s 自动休眠

rk3399pro:/ # getprop |grep npu.in

[npu.inactivity.sleep.secs]: [15]

关闭自动休眠:

"setprop npu.inactivity.sleep.secs 0"

查看设备状态及手动唤醒:

rk3399pro:/ # Isusb //休眠后无法查看到 npu 设备

rk3399pro:/ # npu_powerctrl -r //手动唤醒 npu

rk3399pro:/ # Isusb

Bus 004 Device 003: ID 2207:1808

3 npu 启动失败分析

3.1 确认 npu 是否正常进入烧写模式

rk3399pro:/ # dmesg | grep 180a

4.437235] usb 3-1: New USB device found, idVendor=2207, idProduct=180a

a.以下电源没有供会导致无法识别 180a

b.logcat -s NPU_POWER 确认上电控制是否正常, 比如相关的 gpio 是否有 request 错误的, 状态是否正常。

cat /d/gpio 查看相关的电源 gpio 是否正确,是否有被复用的

#define NPU_VDD_0V8_GPIO "4" //GPIO0_PA4

#define NPU_VDD_LOG_GPIO "10" //GPIO0_PB2

#define NPU_VCC_1V8_GPIO "11" //GPIO0_PB3

#define NPU_VDD_CPU_GPIO "54" //GPIO1_PC6

#define NPU_VCCIO_3V3_GPIO "55" //GPIO1_PC7

#define NPU_VDD_GPIO "56" //GPIO1_PD0

#define CPU_RESET_NPU_GPIO "32" //GPIO1_PA0

#define NPU_PMU_SLEEP_GPIO "35" //GPIO1_A3

#define CPU_INT_NPU_GPIO "36" //GPIO1_A4

以下是正常 maskrom 状态 io

rk3399pro:/ # cat d/gpio |grep sysfs

gpio-4 (|sysfs) out hi
gpio-10 (|sysfs) out hi

gpio-11 (|sysfs) out hi

gpio-32 (|sysfs) out hi

gpio-35 (|sysfs) in hi

gpio-36 (|sysfs) out lo

gpio-54 (|sysfs) out hi

gpio-55 (|sysfs) out hi

gpio-56 (|sysfs) out hi

rk3399pro:/ # cat /sys/kernel/debug/clk/clk_wifi_pmu/clk_rate

rk3399pro:/ # cat /sys/kernel/debug/clk/clk_wifi_pmu/clk_enable_count

1

3.2 休眠死机

休眠: rk3399pro:/ # npu_powerctrl -s

唤醒: rk3399pro:/ # npu_powerctrl -r

a.休眠需要外部的 32k 时钟,确认电阻有贴

确认 clk 有打开

cat d/clk/rk808-clkout2/clk_enable_count

echo r 0xf2 > sys/rk8xx/rk8xx_dbg bit8 enable:1

b.是否使用了 cif camera, isp0_flash 与 cpu_int_npu 复用,会导致 io 异常无法唤醒。

3.3 相关 debug 命令

a. 手动上电烧写

start npu_upgrade

或者

vendor/bin/npu_upgrade MiniLoaderAll.bin uboot.img trust.img boot.img

b. 上电进入烧录模式

rk3399pro:/#npu_powerctrl -o

rk3399pro:/# [9419.717848] usb 1-1: new high-speed USB device number 64 using xhci-hcd

[9419.839635] usb 1-1: New USB device found, idVendor=2207, idProduct=180a

[9419.839720] usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=0

[9419.848262] rk-hdmi-dp-sound hdmi-dp-sound: ASoC: CPU DAI (null) not registered