

- Métodos computacionales: Alejandro Segura
- Estadística
  - a) Incluir el código Notebook (.ipynb).
  - b) Guardar la información en una carpeta llamada Semana15\_Nombre1\_Nombre2
  - c) Hacer una sola entrega por grupo.

### Contents

| 1 | $\mathbf{Est}$ | adística | n e e e e e e e e e e e e e e e e e e e | 3 |
|---|----------------|----------|-----------------------------------------|---|
|   | 1.1            | Bonda    | d del ajuste para pseudo-generadores    | 4 |
|   |                | 1.1.1    | Uniformidad en $d=2$                    | 4 |
|   |                | 1.1.2    | Uniformidad en d=3 $\dots$              | 4 |

# List of Figures

| 1 | Distribución $\chi_{99}^2$ , el valor observado es menor que el valor crítico de la distribución.  | p $-$ |   |
|---|----------------------------------------------------------------------------------------------------|-------|---|
|   | $value = 0.111$ , se acepta $H_0$                                                                  |       | 5 |
| 2 | Distribución $\chi^2_{999}$ , el valor observado es menor que el valor crítico de la distribución. | p -   |   |
|   | $value = 0.190$ , se acepta $H_0$                                                                  |       | 5 |

## 1 Estadística

#### 1.1 Bondad del ajuste para pseudo-generadores

¿Sabías que el generador de números de Numpy (Mersenne - Twister 1998), tiene uniformidad en d=623 dimensiones al 95% de nivel de confianza?

- 1. Para probar la uniformidad de los números aleatorios generados por pseudo-generadores es posible realizar una prueba de hipótesis. Por lo cuál, se tienen las siguientes hipótesis:
  - a)  $H_0$ : La secuencia de números sigue una distribución uniforme en k-dimensiones.
  - b)  $H_1$ : La secuencia de números no sigue una distribución uniforme en k-dimensiones.

#### 1.1.1 Uniformidad en d=2

En el caso 2D, se divide el espacio entre [0,1] en  $k^d$  celdas de igual área, luego se genera una muestra aleatoria de tamaño 2n (note que el número de eventos es par), podemos construir n pares no solapados  $(x_0, x_1), (x_2, x_3), ..., (x_{2n-1}, x_{2n})$  y estimar la frecuencia observada de puntos en cada celda. Si suponemos que la hipótesis nula es verdadera, la frecuencia esperada de puntos en cada celda es:

$$f_e^i = \frac{n}{k^d} \tag{1}$$

El estadístico de prueba que mide la discrepancia entre la frecuencia esperada y observada está dado por el estadístico  $\chi^2$ :

$$\chi^2 = \sum_{i=1}^k \frac{(f_o^i - f_e^i)^2}{f_e^i} \tag{2}$$

Calcule el valor crítico de la distribución  $\chi^2_{\alpha,k^d-1}$ , donde la significancia es  $\alpha=0.05$ . k es el número de celdas en las que se divide el dominio. Note que los grados de libertad son  $gl=k^d-1$ .

- (a) Genere una muestra de 2 \* (1000) números aleatorios con el generador de Numpy.
- (b) Use una partición de k = 10 celdas.
- (c) Calcule las frecuencias observadas y estadístico de prueba. Guardar los conteos en objetos M = np.array((k,k)). En este caso, es posible usar histogramas 2D para contar los puntos en cada celda.
- (d) Calcule el p-value de la observación.
- (e) ¿Valida o rechaza la hipótesis al 95% de nivel de confianza de que los números tienen una distribución uniforme en d=2 dimensiones?

#### 1.1.2 Uniformidad en d=3

En el caso 3D, se divide el espacio entre [0,1] en  $k^d$  celdas de igual volumen, luego se genera una muestra aleatoria de tamaño 3n (note que el número de eventos es multiplo de 3), podemos construir n pares no solapados  $(x_0,x_1,x_2),(x_3,x_4,x_5),...,(x_{3n-2},x_{3n-1},x_{3n})$  y estimar la frecuencia observada de puntos en cada celda. Si suponemos que la hipótesis nula es verdadera, la frecuencia esperada de puntos en cada celda es:

$$f_e^i = \frac{n}{k^d} \tag{3}$$



Figure 1: Distribución  $\chi_{99}^2$ , el valor observado es menor que el valor crítico de la distribución. p-value=0.111, se acepta  $H_0$ .

El estadístico de prueba que mide la discrepancia entre la frecuencia esperada y observada está dado por el estadístico  $\chi^2$ :

$$\chi^2 = \sum_{i=1}^k \frac{(f_o^i - f_e^i)^2}{f_e^i} \tag{4}$$

Calcule el valor crítico de la distribución  $\chi^2_{\alpha,k^d-1}$ , donde la significancia es  $\alpha=0.05$ . k es el número de celdas en las que se divide el dominio. Note que los grados de libertad son  $gl=k^d-1$ .

- (a) Genere una muestra de 3 \* (1000) números aleatorios con el generador de Numpy.
- (b) Use una partición de k = 10 celdas.
- (c) Calcule las frecuencias observadas y estadístico de prueba. Guardar los conteos en objetos M = np.array((k,k,k)).
- (d) Calcule el p-value de la observación.
- (e) ¿Valida o rechaza la hipótesis al 95% de nivel de confianza de que los números tienen una distribución uniforme en d=3 dimensiones?



Figure 2: Distribución  $\chi^2_{999}$ , el valor observado es menor que el valor crítico de la distribución. p-value=0.190, se acepta  $H_0$ .