BIỂU DIỄN ĐỒ THỊ TRÊN MÁY TÍNH

- Danh sách kề
- Ma trận kề

DANH SÁCH KỀ

- Danh sách kề của đỉnh u: Adj $(u) = \{v \in V \mid (u, v) \in E\}$
- Có thể biểu diễn đồ thị G = (V, E) như một tập các danh sách kề bằng cách lưu trữ mỗi đỉnh u ∈ V cùng với danh sách các đỉnh kề với u

DANH SÁCH KỀ

Ví dụ 1: Đồ thị vô hướng

DANH SÁCH KÊ C++

DANH SÁCH KỀ C++

```
void Initialize(GRAPH &G)
  int i,x,y,v;
  LIST t;
  cout < < "given number of edges and vertices of graph:";
  cin > m > n;
  for(i=1;i<=n;i++) G[i]=NULL;
  for(i=1;i<=m;i++)
       cout << "given edge "<< i<< "(x, y):"; cin>>x>>y;
       t=new(node); t->v=x; t->next=G[y]; G[y]=t;
       t=new(node); t->v=y; t->next=G[x]; G[x]=t;
```

Cho đơn đồ thị G = (V, E), với tập đỉnh V = {1, 2,..., n}, ma
 trận kề của G là

$$A = \{a_{ij} \mid i, j = 1, 2, ..., n\}, a_{ij} = 0 \text{ n\'eu } (i, j) \notin E \text{ và } a_{ij} = 1$$

 $n\text{\'eu } (i, j) \in E$

Nếu G là đa đồ thị thì

 $a_{ij} = 0$ nếu $(i, j) \notin E$ và $a_{ij} = k$ nếu có k cạnh nối hai đỉnh i và j

Ví dụ 1: Đồ thị vô hướng

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Ví dụ 2: Đồ thị có hướng

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Ma trận kề của đồ thị vô hướng đối xứng

$$a_{ij} = a_{ji}$$
, $i, j = 1, 2, 3, ..., n$

Tổng các phần tử trên dòng i (cột j) của ma trận kề là bậc của
 đỉnh i (đỉnh j)

MA TRẬN KỀ C++

MA TRẬN KỀ C++

```
void Initialize(GRAPH &g) // undirected simple graph
 cout << "Given number of vertices of graph:"; cin>>g.numv;
 cout < < "Enter adjacent matrix of graph:\n";
 for(int i=1;i < g.numv;i++)
    for(int j=i+1;j <=g.numv;j++)
       cout << "A[" << i << "," << j << "] ="; cin >> g.A[i][j];
       g.A[j][i]=g.A[i][j];
   g.A[i][i]=0; cout<<"\n";
```

- Đồ thị có trọng số (weighted graph) là đồ thị mà mỗi cạnh (i, j)
 được gán một số thực w(i, j)
- Một đồ thị có trọng số với n đỉnh có thể được biểu diễn bởi ma trận trọng số

```
C = \{c_{ij}: i, j = 1, 2, ..., n\}, trong đó c_{ij} = w(i, j) nếu có cạnh (i, j) và c_{ij} = 0, \infty, hoặc -\infty nếu không có cạnh (i, j)
```

Ví dụ 3: Ma trận trọng số của đồ thị vô hướng

SO SÁNH CÁC CÁCH BIỂU DIỄN

Biểu diễn đồ thị vô hướng bằng danh sách và ma trận

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

SO SÁNH CÁC CÁCH BIỂU DIỄN

Biểu diễn đồ thị có hướng bằng danh sách và ma trận

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

SO SÁNH CÁC CÁCH BIỂU DIỄN

- Chi phí bộ nhớ cho ma trận là $O(|V|^2)$ và cho danh sách là O(|V| + 2|E|)
- Chi phí xử lý khi dùng ma trận là O(1) và khi dùng danh sách là O|V|