TOR AERONAUTICS

145 1923 MAILED

TECHNICAL NOTES

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

No. 128

TESTS ON AN AIRPLANE MODEL, AEG D I OF THE ALLGEMEINE ELEKTRICITATS GESELLSCHAFT, A.G., AIRPLANE CONSTRUCTION SECTION CONDUCTED AT THE GÖTTINGEN MODEL TESTING

LABORATORY FOR AERODYNAMICS.

By Max Munk and Wilhelm Molthafi.

From Technische Berichte, Volume III, Part 2.

MATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 128.

TESTS ON AN AIRPLANE MODEL AEG D I OF THE ALLGEMEINE

ELEKTRICITATS GESELLSCHAFT, A.-G., AIRPLANE CONSTRUCTION SECTION

CONDUCTED AT THE GÖTTINGEN MODEL TESTING

LABORATORY FOR AERODYNAMICS.

By Max Munk and Wilhelm Molthan.

Tests were carried out in the small wind tunnel of the Göttingen establishment, on a complete model of the AEG D I Airplane (See Fig. 1). The agreement between the model and the complete airplane applies particularly to the wings, which have ribs cut out of sheet metal, and built up in exactly the same manner as in the actual airplane. These ribs are assembled upon a steel spar and secured by intermediate soldered strips with the individual ribs set at the correct angle of incidence. Instead of using a fabric covering for the wing framing, the spaces between the individual ribs were filled with plaster of Paris.

All control surfaces were adjustable and could be placed at any desired angle; while a spirit-level, placed in the interior of the wooden body of the model so as to be visible from the outside, was set coincident with a horizontal engine crankshaft axis, thereby facilitating the placing of the model in the correct position. The model was not fitted with a propeller,

^{*} From Technische Berichte, Volume III, Part 2.

so that the effect it would produce does not appear in the accompanying test data. Figure 1 shows the principal dimensions of the model, as well as particulars regarding the more important angles of incidence.

Numerous series of tests were carried out with this model, in which one or other of the control surfaces were adjusted to various angles, while the others remained in their neutral positions.

During the first three series of tests, the stabilizer was set at a positive angle of 3° 45' relative to the axis of the engine crankshaft, in accordance with the data given on the drawings - after which further tests at a 6° 30' angle were made. Finally, the model was tested with the tail group removed.

With the elevators set in the prescribed positions, the lift, the drag, and the moments about an axis passing through the center of gravity and perpendicular to the plane of symmetry were measured. All three sets of readings are given as absolute coefficients, (See tables 1 to 4). In order to obtain these coefficients, the readings obtained for the lift and the drag have been divided by the product of q/100 and the area of the entire supporting surface $S = 1480 \text{ cm}^2 (229.4 \text{ in}^2)$ - the area representing the space occupied by the fuselage on the lower wing, i.e., the product of the body width and the chord of the lower wing, being included in the total wing area. The moments, similarly, refer

to this surface and the maximum chord of the upper wings, peing divided by the product of the wing area and the maximum upper wing chord, $S c = 17908 \text{ cm}^3 (1092.82 \text{ in}^3)$.

In these tests, where one of the other control surfaces was deflected from its neutral position, the moment produced by that adjustment of the surface was also measured. The rolling moment (C_l) is about an axis passing through the center of gravity and parallel to the axis of the engine crankshaft. The axis of the yawing moment (C_n) passes through the center of gravity, perpendicular to the axis referred to above, and is considered positive in an upward direction.

The coefficients for both these latter moments are cotained by dividing the readings obtained by the same product of the maximum upper wing chord and the wing area, as when determining the pitching moment C_m . The moments are considered positive if the rotation produced by them, when observed in the direction of

their positive axis, is clockwise.

The yawing moment produced by the setting of the ailerons was not measured, since it is negligible compared with the moment produced by the rudder, attaining a maximum of lonly $l\frac{1}{2}$ units.

The data obtained are plotted in Figures 2 to 5, so that the lift curves for the several positions of the control surfaces are always on the left, while the corresponding moment values, dependent upon these lift coefficients, are to the right.

Table 1.

Experiments with Variation in the Elevator Adjustment.

Stabilizer 30 45'.

Elevator	o° -	Rudder 0°	- Ailer	on 0°
Angle of incidence with ref- erence to the crank-shaft axis.	${f c}^{f r}$	c _D	C _m	L/D
-9 -6 -4.5 -3.5 -1.5 -1.34.6 92	334 081 .024 .130 .234 .342 .439 .549 .650 .756 .942 1.058	.106 .0654 .0574 .0521 .0507 .0530 .0583 .0672 .0760 .0900 .128 .183	041 C17 C12 C07 .C01 .011 .017 .C28 .036 .055 .087	-3.2 -1.24564526438 6.4526438
Elevator	5 ⁰ -	Rudder O ^O	_ Ailer	on 0°
9 -6 -4.5 -3.5 -1.5 0 1.5 4.5 6 9	308 055 051 .158 .258 .371 .473 .582 .676 .787 .966 1.080	.104 .0674 .0578 .0539 .0534 .0563 .0626 .0719 .0821 .0976 .139 .199	012 .011 .016 .022 .038 .039 .051 .058 .067 .084 .109	-3.0 -0.8 0.9 2.8 6.6 7.6 8.0 7.4

· 中国的基础的 19 40人数据据 1000 · ·

Table 1 (Contd.)

Experiments with Variation in the Elevator Adjustment.

Stabilizer 30 451.

Elevator 10)° - F	ludder 00	Aileron	00	;
Angle of incidence with ref- erence to the \$rank-shaft axis.	, c ^r	c _D	. C _m	E/D	
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	510 057 . 051 . 156 . 262 . 375 . 487 . 592 . 691 . 734 . 977 1,080	.104 .0643 .0580 .0530 .0535 .0585 .0650 .0756 .0862 .101 .142 .206	.019 .043 .047 .059 .067 .077 .083 .098 .103 .130 .150	-3.0 -0.9 0.9 0.9 3.4 6.7 7.9 8.7 6.5	
Elevator 1 -9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 13	- 285 - 028 - 028 - 078 - 188 - 294 - 405 - 505 - 619 - 711 - 819 1,000 1,102	Rudder 0° .105 .0710 .0599 .0570 .0578 .0638 .0720 .0824 .0933 .110 .152 .218	- Aileron .083 .135 .131 .140 .138 .156 .164 .173 .181 .190 .217 .259	-2.6 -0.4 1.3 3.1 5.1 7.5 7.6 7.6 5.1	3. 中国 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1 (Cont.)

Experiments with Variation in the Elevator Adjustment.

Stabilizer 30 45'

Elevator 2	0 ⁰ – F	Rudder OO	_ Aileron	. 0 ⁰
Angle of incidence with reference to the crank-shaft axis.	c ^r	c _D	C _m	L/D
-9° -6 -4.5 -3.5 0.5 3.5 6.9 12	266 007 . 093 . 205 . 307 . 421 . 525 . 632 . 737 . 840 1. 020 1. 120	.105 .0703 .0652 .0619 .0642 .0698 .0776 .0893 .102 .116 .161	.115 .161 .163 .180 .185 .197 .209 .216 .229 .234 .253 .281	-2.5 -1.4 3.8 6.8 7.3 7.3 4.9
Elevator	25 ⁰ -	Rudder 0°	- Ailero	n O ^O
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	242 .011 .120 .234 .334 .447 .548 .658 .750 .854 1.035 1.122	.109 .0771 .0716 .0691 .0723 .0773 .0862 .0975 .109 .124 .169 .237	. 180 . 209 . 217 . 235 . 234 . 248 . 258 . 268 . 267 . 272 . 284 . 318	-2.2 0.17 3.46 8.38 6.99 6.17

Table 1 (Cont.) Experiments with Variation in the Elevator Adjustment. Stabilizer 3° 45'.

Elevator 3	20° -;	Rudder 0°	- Aile	ron 0°
Angle of incidence with ref-erence to the crank-shaft axis.	$\mathtt{c}_\mathtt{L}$	c_{D}	C _m	L/D
-9° -6 -4.5 -3.5 01.5 3.4.6 913	201 051 .160 .270 .382 .486 .594 .699 .790 .893 1.062 1.158	.115 .0842 .0785 .0773 .0801 .0871 .0968 .109 .120 .134 .180	. 235 . 270 . 276 . 294 . 304 . 317 . 324 . 319 . 323 . 325 . 378	2.60586246697 2.345666654
Elevator -	1 -5 ⁰ – F	 udder 0 ⁰	- Ailer	on 00
-9° -6 -4,5 -3 -1,5 0 1.5 3 4,5 6 9 12	331 051 +. 029 .130 .241 .350 .450 .563 .665 .767 .946 1.046	.108 .0691 .0588 .0552 .0552 .0585 .0642 .0730 .0840 .0965 .138 .200	076 057 052 046 043 035 032 018 009 .009	-3,0 -0.7 0.5 2.0 4.4 6.0 7.7 7.9 8.9 5.2

Table 1 (Contd)

Experiments with Variation in the Elevator Adjustment.

Stabilizer 3° 45'.

Elevator -	-10°	Rudder 0°	_ Ailero	on 0°
Angle of incidence with ref- 0 erence to the grank-shaft axis.	С _Г	c _D	C _m	L/D
-9° -6.5 -3.5 -1.5 0.5 3.5 6.9	349093 .006 .118 .217 .328 .431 .543 .651 .756 .940 1.035	.109 .0582 .0581 .0540 .0526 .0554 .0617 .0693 .0303 .0928 .133 .192	121 -, 103 098 089 086 076 068 055 048 028 . 002 . 053	-3.2 -1.4 0.1 2.2 4.9 7.8 7.8 8.2 7.4
· Elevator	 -15 ⁰	Rudder 0°	_ Ailer	on 00
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	377122011 .095 .198 .306 .410 .521 .631 .737 .917 1.020	.115 .074 .063 .058 .057 .058 .064 .072 .082 .096 .133 .193	183171161150150135132115104089046 .015	-3.3 -1.6 -0.2 1.6 3.4 5.2 6.4 7.3 7.8 7.7 6.8 5.3

Table 1 (Cont.)

Experiments with Variation in the Elevator Adjustment.

Stabilizer 5' 45'.

Elevator .	-3C ₀ -	Rudder 00	- Ailer	on 0°	
Angle of incidence with rerect to the grank-spaft aris.	C _L	. c _D	C _m	L/D	
-9° -6	392 133 030 .071 .183 .296 .397 .508 .604 .714 .900	. 121 .0780 .0690 .0619 .0603 .0624 .0670 .0735 .0815 .0943 .131	226 213 207 199 191 176 173 159 147 124 081 012	-3.8 -1.8 -0.2 -0.3 -0.8994693 5.677.655	THE
Elevator -	-25 ⁰ -	Rudder O ^O	- Ailer	on 0 ⁰	-
-9° -6 5 5 -3 5 5 5 5 9 12	410 165 053 . 053 . 157 . 273 . 373 . 486 . 594 . 694 . 878 . 990	.128 .0850 .0754 .0682 .0666 .0685 .0728 .0795 .0878 .0997 .134 .192	275 262 256 242 244 230 220 206 182 181 153 057	-3. 2 -1. 9 -0. 8 -0. 8 2. 4 5. 1 6. 8 6. 5 5. 1	開発を表示。、4日前人は上水の水の水の水の水の水

Table 1 (Cont.)

Experiments with Variation in the Elevator Adjustment.

Stabilizer 3° 45'.

Elevator -	-30 ⁰	Rudder O ^O	- Aile	ron C ^O
Angle of incidence with ref- erence to the crank-shaft axis.	\cdot c^{Γ}	$\mathtt{c}_{\mathtt{D}}$	С _т	L/D ´
-9° -6 -4.5 -3 -1.5 0 1.5 4.5 6 9 12	428 181 076 032 . 136 . 246 . 350 . 459 . 560 . 665 . 858 . 982	.142 .0997 .0876 .0803 .0773 .0777 .0810 .0875 .0948 .106 .141	328 324 323 312 311 300 290 274 270 258 218 133	-3.0 -1.8 -0.9 0.4 1.8 3.2 4.3 5.9 6.1 5.0

Table 2.

Experiments with Variation in the Rudder Adjustment, Stabilizer 30 45'.

Elevato	, °00 x	– Rud	der -10°		Aileron	1 00	
Angle of incidence with reference to the crank-shaft axis.	G [™]	$\mathbf{c}_{\mathtt{D}}$	C _m	C _l	C _n	L/D	
-9° -6 -4.5 -3 -1.5 0.5 3.5 6 9 12 15	300 057 .049 .154 .351 .362 .457 .563 .659 .766 .939 1.038 1.020	.102 .0652 .0550 .0513 .0518 .0558 .0612 .0709 .0799 .0940 .134 .191	- 0449 - 0220 - 0100 - 0056 - 0018 - 0104 - 0174 - 0268 - 0407 - 0685 - 0894 - 140 - 218		.0491 .0445 .0434 .0425 .0440 .0432 .0428 .0404 .0399 .0369 .0419 .0399	9 9 9 0 9 5 5 9 2 1 0 4 1 -0 0 3 4 6 7 7 8 8 7 5 3	= -
Elevator -9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12 15	0° 297 - 061 - 039 - 139 - 242 - 337 - 438 - 542 - 640 - 730 - 900 1.006 - 995	Rudd: .0980 .0619 .0534 .0485 .0485 .0505 .0573 .0656 .0761 .0885 .125 .125	0413 0153 0113 0025 . 0062 . 0097 . 0199 . 0261 . 0364 . 0541 . 0912 . 138 . 208		Aileron O .0351 .0311 .0300 .0302 .0288 .0289 .0285 .0273 .0268 .0252 .0273 .0248 .0436	0079077343262 -102567886753	では、「「「「「」」」では、「「」」では、「」では、「

Table 2 (Cont.)

Experiments with Variation in the Rudder Adjustment.

Stabilizer 30 451.

Elevato	r 0°	- Rud	der O ^O	-	Aileron O	0	
Angle of incidence with ref- erence to the crank-shaft axis.	C ^L	, c _D	C .m	c _l .	∵C _n	L/D	
-9° -6 -4.5 -3.5 0.5 3.5 6 9 125	285 025 . 066 . 163 . 260 . 370 . 467 . 569 . 366 . 765 . 943 1. 040 1. 024	.0964 .0591 .0525 .0482 .0480 .0522 .0582 .0665 .0775 .0886 .130 .187	0332 0997 .0051 0.0000 .0089 .0149 .0215 .0336 .0403 .0586 .102 .135	0357 0280 0314 0397 0342 0361 0269 0267 0318 0318 0311	.0077 .0061 .0051 .0051 .0035 .0035 .0028 .0018 .0006 .0009 .0028 .0016	-3.0 0.8 1.4 5.4 7.0 8.6 8.6 7.6 3.1	
Elevato -9° -6.5 -3.5 -1.5 -3.5 912	284 040 . 053 . 160 . 251 . 361 . 454 . 560 . 654 . 752 . 925 1. 035	Rude . 106 . 0668 . 0596 . 0532 . 0538 . 0575 . 0654 . 0756 . 0861 . 101 . 142 . 202	der 5° 0325 .0005 .0044 .0127 .0172 .0256 .0335 .0427 .0520 .0681 .0979 .145		Aileron 0 .0009 0050 0049 0083 0097 0102 0097 0132 0152 0152 0169 0190	-2.7 -0.9 -0.9 3.7 6.9 7.6 7.5 5.1	一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一

Table 3 (Cont.)

Experiments with Variation in the Rudder Adjustment.

Stabilizer 30 451.

Elevato	r 0° -	- Rud	ler 10 ^{0.}		Aileron	o ^o	
Angle of incidence with ref-erence to the crank-shaft axis.	a^{Γ} ,	С _D	C _m	Cl	CO _n	L/D	
9 6 1-4,5 10 13 4,6 9 12	282 044 . 056 . 153 . 250 . 359 . 452 . 563 . 649 . 752 . 921 1. 030	.105 .0668 .0582 .0529 .0544 .0593 .0668 .0765 .0873 .103 .143	0326 0043 . 0029 . 0080 . 0196 . 0251 . 0289 . 0433 . 0485 . 0644 . 0913 . 141	 	0252 0290 0266 0318 0318 0344 0328 0352 0352 0373 0400	7 7 9 9 4.1 7 7 6.0 7 7 6.0 5	
Elevato	r 0 ⁰ -	Rud	der 15°	-	Aileron	00	
-9° -6 -4.5 -3 1.5 0.5 3.4.5 6 9 12	283 046 .056 .158 .248 .362 .450 .555 .645 .745 .915	.107 .0700 .0617 .0560 .0558 .0600 .0680 .0773 .0870 .102 .142	0340 0083 0009 . 0089 . 0152 . 0256 . 0270 . 0390 . 0507 . 0620 . 0940 . 144		0480 0454 0447 0492 0509 0514 0557 0563 0591 0609 0631	-2.6 -0.9 2.85 6.8 7.4 7.34 5.1	この 神 神楽の 人をしている 一覧 利力

Table 2 (Cont.)

Experiments with Variation in the Rudder Adjustment.

Stabilizer 30 451.

Elevato	or 0° -	- Rud	der 20°	_	Aileron	0 ⁰	
Angle of incidence with ref- erence to the crank-shaft axis.	c ^r	C _D	C _m	° c	C _n	L/D	
-9° -6 -4,5 -3,5 -1,5 5 -1,5 6 9 12	274 050 048 . 150 . 252 . 357 . 447 . 559 . 643 . 752 . 917 1. 020	.109 .0716 .0630 .0598 .0596 .0640 .0711 .0817 .0900 .106 .149 .206	0392 0026 0018 .0010 .0069 .0184 .0220 .0340 .0445 .0555 .0967 .122		0694 0689 0695 0683 0718 0718 0707 0726 0738 0727 0744	-2.67 -0.52 -0.52 -0.53 -0.53 -0.12 -0.53 -0.12 -0.53	
Elevato	or 0° .	l - Rud	der 25 ⁰		Aileron	0 0	
-9° -6 -4.5 -3 -1.5 01.5 34.5 912	291 049 .048 .148 .240 .351 .449 .549 .645 .750 .911	.118 .079 .070 .0661 .0652 .0698 .0769 .0862 .0960 .112 .152 .213	05330223015800750008 .0106 .0173 .0280 .0380 .0475 .0792 .125		088 0894 0890 0876 0903 0901 0920 0921 0968 0952 0927 0928	-2.5 -0.7 -0.7 2.7 5.8 6.7 6.0 4.8	The state of the s

Table 3. Experiments with Variations in the Aileron Adjustment. Stabilizer $3^{\rm O}$ $45^{\rm I}$.

Elevato	or 0° -	Rudder	00 - \	Aileron	-10 ⁰	
Angle of incidence with reference to the crank-shaft axis.	, C _L	$\mathtt{c}_{\mathtt{D}}$	C _m	c _i	r/D	
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12 15	277026066 .175 .266 .382 .500 .575 .680 .772 .960 1.030 1.015	.100 .0641 .0560 .0517 .0530 .0578 .0662 .0730 .0837 .0970 .137 .194	0440 0138 0086 .0017 .0031 .0154 .0322 .0336 .0419 .0558 .0905 .128 .207	198 214 206 217 215 226 237 242 242 243 254 257 088	-2.4 -0.2 -0.3 5.6 7.9 8.0 5.3 5.3	
Elevat	or 0° -	Rudde	r 0° -	Aileron	-5°	
-9° -6 -4.5 -3.5 01.5 4.5 9 12 15	286 037 .061 .166 .270 .378 .475 .583 .678 .778 .951 1.050 .982	.0980 .0638 .0538 .0498 .0490 .0538 .0600 .0685 .0793 .0922 .130 .188	-, 0349 -, 0102 -, 0012 . 0038 . 0105 . 0222 . 0277 . 0386 . 0481 . 0652 . 103 . 150 . 215	109129138133140143148147149140088 .012	-2.602500954350 -3.5.7.8.8.8.7.5.3.	

Table 3 (Cont.)

Experiments with Variations in the Aileron Adjustment.

Stabilizer 30 45'.

Elevato	r 0° -	Rudder	o° –	Aileron 5	50	
Angle of incidence with reference to the crank-shaft axis.	$\mathtt{G}^{\mathbf{L}}$	$\mathbf{c}_{ extsf{D}}$	C _m	C	L/D	
-9° -6,5 -3,5 0,5 3,5 6 9 12 15	303 061 .045 .149 .349 .350 .444 .550 .648 .744 .926 1.030 1.026	.108 .0685 .0624 .0554 .0540 .0562 .0625 .0740 .0361 .0980 .140 .197	0356 0068 0008 .0095 .0149 .0249 .0340 .0417 .0513 .0650 .0940 .141 .195	.0399 .0507 .0505 .0520 .0570 .0544 .0586 .0530 .0547 .0537 .0453 .0371 .0121	-2.977621456620 -7.456620	
Elevato	r 0° -	Rudder	00 -	Aileron l	.0 ⁰	
90 -6 5 -1 5 -1 5 -1 5 -1 5 -1 5 -1 6 9 12	-,290 -,039 .061 .162 .260 .370 .453 .565 .655 .757 .928 1,023	.108 .0592 .0599 .0554 .0566 .0590 .0665 .0764 .0858 .102 .143	0327 0050 .0036 .0124 .0214 .0308 .0344 .0458 .0590 .0713 .0982 .158	.104 .115 .114 .128 .122 .119 .122 .118 .118 .118 .109 .086	2.7609638477451 -0.09638477451	Marie Caracian de la companya della companya della companya de la companya della

Table 3 (Cont.)

Experiments with Variations in the Aileron Adjustment.

Stabilizer 3 45'.

Elevato	r 0° -	Rudder	o ^o -	Aileron	15 ⁰	
Angle of incidence with ref-erence to the crank shaft axis.	. C _L	c _D	C _m	С.	L/D	
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	291 045 048 .156 .257 .351 .447 .552 .639 .735 .911	.133 .0738 .0645 .0612 .0627 .0653 .0701 .0798 .0893 .104 .137	0515 0069 0012 .0079 .0094 .0242 .0311 .0383 .0514 .0584 .0942 .157	.196 .217 .209 .210 .212 .233 .231 .236 .222 .212 .204 .175	2.57604482170 2.57604565.7.6.0	
Elevat	or 0° -	Rudde	l r 0° –	Aileron	aō°	Ę
-9° -6 -4.5 -3.5 0.5 3.4.5 6 9 12	290 055 .045 .149 .251 .355 .450 .554 .646 .740 .910	,115 .0795 .0695 .0660 .0658 .0690 .0743 .0860 .0954 .108 .149	0380 0102 0066 .0027 .0068 .0194 .0261 .0352 .0455 .0584 .0869 .138	. 239 . 260 . 262 . 264 . 273 . 271 . 274 . 288 . 268 . 260 254 . 202	2.76382158919 -0.023566664	・ はいました。・ はいました。

Table 3 (Cont.)

Experiments with Variations in the Aileron Adjustment.

Stabilizer 3° 45'.

Elevator	c 0 ⁰ –	Rudder	o ^o –	Aileron	25 ⁰
Angle of incidence with reference to the crank-shaft axis.	С ^Г	$\mathtt{c}_{\mathtt{D}}$. C _m	Cı	L/D
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	296 068 036 .149 .244 .352 .450 .550 .638 .731 .896 1.005	.126 .0820 .0794 .0746 .0738 .0814 .0853 .0954 .105 .118 .157	0464 0210 0110 0015 .0027 .0118 .0189 .0324 .0370 .0564 .0812 .135	. 258 . 324 . 321 . 322 . 320 . 319 . 319 . 318 . 310 . 308 . 303 . 263	-2.4 -0.8 -0.4 -0.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3

Table 4.

Experiments with Variation in the Elevator Adjustment and also without Tail Group.

Stabilizer 6° 30'.

Elevator	-30° -	Rudder 0°	- Ai	leron O ^O	
Angle of incidence with ref- erence to the crank-shaft axis.	.c ^I	${\tt G}^{f \Gamma}$	C _m	L/D	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 463 - 197 - 095 - 021 - 132 - 246 - 349 - 470 - 568 - 685 - 685 - 680 1.020	.154 .106 .0925 .0845 .0800 .0812 .0830 .0930 .100 .113 .146 .201	332 310 311 296 286 279 257 252 241 -, 222 170 078	-3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1	Ĭ
Flevator	-25° -	Rudder O ^O	- Ai	l leron O ^O	T. T.
964.31.01.34.692	443 195 069 . 043 . 151 . 262 . 370 . 490 . 587 . 706 . 901 1. 033	.143 .0963 .0336 .0756 .0723 .0745 .0776 .0852 .0927 .107 .143 .200	294 265 260 248 238 230 220 204 190 169 125 2044	3.08616873632 -0.2345632	医生活性原始性的原则性的原则

Table 4 (Ccnt.)

Experiments with Variations in the Elevator Adjustment and also without Tail Group.

Stabilizer 6° 30°.

Elevator	-20° -	Rudder 0°	- Ail	Leron O ^O	
Angle of incidence with ref-erence to the crank-shaft axis.	$\mathbf{c}_{\mathbf{L}}$	с _D	C _m	L/D	-
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	416 161 048 .066 .176 .288 .394 .517 .618 .733 .932 1.056	.132 .0890 .0759 .0682 .0671 .0687 .0730 .0812 .0895 .104 .142 .201	228 207 205 186 180 170 165 143 132 109 061 031	-3.8 -1.6 -0.6 2.4 5.4 6.7 6.2 5.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Elevator	_15 ⁰ _	Rulder 0°	- Ai	leron 0°	
-9° -6.5 -3.5 -1.5 -1.5 -3.5 912	404138023088 .191 .314 .411 .535 .633 .746 .934 1.130	.125 .0809 .0700 .0650 .0618 .0640 .0690 .0780 .0870 .101 .139	183 153 146 134 123 114 105 092 078 060 021 . 046	-3.7 -1.3 -0.4 -0.9 -1.9 -1.9 -1.9 -1.9 -1.7 -1.7 -1.7 -1.7	而是

Table 4 (Cont.)

Experiments with Variations in the Elevator Adjustment and also without Tail Group.

Stabilizer 6° 30'.

-10 ^o -	Rudder 00	- Ai3	Leron 0 ⁰	
C _L ,	G ^D	C _m	L/D	
372 112 .001 .113 .219 .333 .432 .555 .653 .768 .965 1.080	,119 .0763 .0646 .0601 .0586 .0515 .0673 .0770 .0866 .101 .143	117 088 078 075 067 058 052 035 025 008 .030	-3.1 -1.5097.4 -3.7.56.8 -7.6.8 5.4	_ *
-5° -	Rudder 00	- Ai	leron 0°	
-, 355	. 116	067	-3.1	á
088 .015 .130 .235 .351 .455 .569 .670 .782 .978	.0732 .0638 .0570 .0567 .0602 .0660 .0759 .0861 .102 .133	039 032 026 020 013 005 . 006 . 018 . 034 . 078 . 116	-1.2 0.2.3 4.5.9 7.7.7 7.4 5.3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	C _L 372 112 001 113 319 333 432 555 653 768 965 1. 080 50 355 088 015 088 015 130 235 235	C _L C _D 3721121120763 .001 .0646 .113 .0601 .219 .0586 .333 .0615 .432 .0673 .555 .0770 .653 .0866 .768 .101 .965 .143 .060 .201 -5° - Rudder 0° 355 .0732 .015 .0638 .130 .0570 .235 .0567 .351 .0602 .455 .0660 .569 .0759 .670 .0861 .782 .978 .133	C _L C _D C _m 372 112 . 0763 . 088 . 001 . 0646 . 078 . 113 . 0601 . 075 . 219 . 0586 . 0673 . 333 . 0615 . 058 . 432 . 0673 . 052 . 555 . 0770 . 035 . 653 . 0866 . 025 . 768 . 101 . 965 . 143 . 030 1. 080 . 201 - 355 - 088 . 0732 . 088 - 032 . 130 . 0570 - 088 . 0732 . 039 . 015 . 0638 . 032 . 130 . 0570 - 026 . 235 . 0567 - 020 . 351 . 0602 . 351 . 0602 . 355 . 0660 . 005 . 569 . 0759 . 006 . 670 . 0861 . 018 . 782 . 102 . 034 . 978 . 133 . 078	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 4 (Cont.)

Experiments with Variations in the Elevator Adjustment and also without Tail Group.

Stabilizer 60 301.

Elevator	o° -	Rudder 0 ⁰	- Ailer	on O ^O	
Angle of incidence with reference to the crank-shaft axis.	c^{r}	, c _D	C _m	L/D	
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	344 072 .042 .153 .259 .377 .482 .599 .698 .812 1.003 1,119	.113 .0721 .0618 .0579 .0575 .0617 .0682 .0796 .0900 .106 .150	025 015 . 023 . 029 . 035 . 047 . 058 . 068 . 078 . 094 . 127 . 183	-3.1 -1.0 0.7 2.6 4.5 6.1 7.7 7.6 7.7 6.7 5.3	
Elevator	50 -	Rudder O ^O	- Ailer	on O ^O	Author.
-9° -6 -4.5 -3.5 -1.5 5 -1.5 9 12	311 049 .059 .174 .281 .397 .496 .619 .721 .830 1.020 1.140	.112 .0722 .0643 .0581 .0600 .0639 .0710 .0829 .0947 .112 .156	.012 .057 .060 .071 .077 .088 .096 .109 .119 .134 .165	-2.8 -0.7 0.9 4.2 7.5 6.5 5.5 4.5	これの 1987年の 1987年 1988年

Table 4 (Cont.)

Experiments with Variations in the Elevator Adjustment and also without Tail Group.

Stabilizer 6 30'.

Elevator	10° -	Rudder 0°	- Ailer	con 0°
Angle of incidence with ref- erence to the crank-shaft axis.	c^{Γ}	c ^D	C _m	I./
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	312 038 .078 .182 .299 .417 .519 .644 .740 .849 1.030 1.150	.113 .0739 .0554 .0622 .0633 .0690 .0770 .0998 .100 .118 .173	.063 .105 .112 .127 .133 .149 .156 .172 .186 .203 .216 .277	-2.8 -0.5 1.2 2.9 4.0 6.7 7.2 7.4 7.0 5.1
Elevator	15 ⁰ –	Rudder 0°	_ Aile	ron 0°
96-4.5 -01.5 -01.34.692	288 016 . 093 . 206 . 314 . 430 . 537 . 648 . 750 . 861 1. 050 1. 165	.114 .0757 .0679 .0655 .0660 .0705 .0790 .0910 .104 .134 .168 .234	.105 .141 .150 .162 .175 .192 .200 .210 .224 .233 .260 .309	-2.5 -2.0 1.4 3.1 4.7 6.1 6.8 7.3 7.0 6.3 5.0

Table 4 (Cont.)

Experiments with Variations in the Elevator Adjustment and also without Tail Group.

Stabilizer 6 30'.

Elevator	20° -	Rudder 0°	_ Aile	ron 0°	= -
Angle of incidence with ref-erence to the crank-shaft axis.	${ m c}^{\Gamma}$	c _D	C _m	L/D	
-9° -6.5 -3.5 -1.5 0.5 3.6 92	254 . 015 . 127 . 242 . 348 . 462 . 571 . 684 . 787 . 894 1. 070 1. 180	.120 .0826 .0761 .0747 .0775 .0846 .0942 .106 .120 .137 .184 .244	. 185 . 227 . 236 . 251 . 257 . 270 . 282 . 293 . 304 . 312 . 324 . 374	-2.1 2.7 2.5 1.3.4.5 5.1 4.6 6.6 6.6 6.4.9	
Elevator	25°. –	Rudder 0°	_ Aile	ron 0°	in the Commen
-9° -6 -4,5 -3.5 -1.5 0.5 3.4.6 9.12	242 . 032 . 141 . 257 . 362 . 479 . 583 . 696 . 795 . 294 1. 020 1. 128	.125 .0885 .0843 .0816 .0843 .0901 .101 .112 .127 .143 .189 .258	. 222 . 267 . 272 . 290 . 301 . 315 . 318 . 331 . 332 . 336 . 348	9 4 7 2 3 3 8 2 3 3 7 6 1.34.55.66.654.	

Table 4 (Cont.)

Experiments with Variations in the Elevator Adjustment and also without Tail Group.

Stabilizer 6° 30°.

Elevator	: 30 ⁰ –	Rudder O ^O	- Aile	ron 0°
Angle of incidence with reference to the crank-shaft axis.	c _L	c _D	C _m	L/D
9° -6 -4.5 -3 -1.5 5 4.6 9 3	- 231 .049 .160 .275 .391 .500 .601 .710 .815 .919 1.100 1.200	.135 .100 .0921 .0910 .0939 .102 .112 .124 .139 .155 .197	.265 .306 .319 .334 .345 .353 .359 .369 .372 .372 .382 .412	-1,7 0.7 1,7 3,0 4,9 5,4 5,7 5,9 5,6 5
-9° -6 -4.5 -3 -1.5 01.5 4.6 912	Without Ele 301 049 . 050 . 152 . 244 . 349 . 447 . 547 . 644 . 731 . 908 1,005	.0995 .0621 .0530 .0488 .0481 .0516 .0578 .0652 .0747 .0871 .125	1 Group. .033 .044 .035 .034 .022 .019 .015 .013 .010010010011	3.891 -0.035.8746427 -0.035.8746427 5.78.88.75

Translated by the National Advisory Committee for Aeronautics.

a-773mm (36.43 in.) b-554nm (21.81 in.) c-310mm (8.27 in.) d-164mm (6.46 in.)

Angle of attack at Rib 7-3°30 \upper " 17-2°30 \wing " 14-3° 6' lower

Fuselage
Length 503 mm (19.80 in.)
Width 70 mm (2.76 in.)
Height 105 mm (4.13 in.)

	Maximum -			
	Span	Chord	Area	Mean gap
Upper wing Lower * Elevator Rudder Ailerons Stabilizer	773 mm 30.43 in. 735 mm 28.94 in. 210 mm 8.27 in. 107 mm 4.21 in. 195 mm 7.28 in. 195 mm 7.63 in.	121 mm	833 cm ² 129.11 in ² 582 cm ² 90.21 in ² 83.5 cm ²	135 mm 5.31 in.
Fin	**************************************	State to A character state	14.5 cm ² 2.25 in ²	
		-	~ *************************************	

Fig. 1

Model of the Aeg D1 airplane

Pitching moment coefficient

130

.80

.40

 $\mathtt{c}^{\mathtt{r}}$ 0

-.40

Fig.2a

80.

.16

 $G^{\mathbb{D}}$

Test data with varying rudder setting. Stabilizer 3045

