BANA4095: Decision Models – Spring 2020 Linear Optimization, Part 2

Sam Heshmati

Adjunct Instructor of Operations and Business Analytics

Review

- Optimization
- Excel Solver
- Types of Optimization Problems
- Linear Optimization/Programming (LP)

- 3

Outline

- Review HW4
- Binding/Non-Binding Constraints
- Marginal Value
- Sensitivity Analysis
- Modeling Tips

Example - Sidneyville Desk Mfg.

- Allocation/Product Mix Problem
- Produces two types of desk
- Using three types of wood in every desk (measured in board feet, b.f.)

Туре	Profit/desk	
Rolltop	\$115	
Regular	\$90	

	Amount Used		
Wood	Rolltop	Regular	Amount Available
Pine	10	20	200
Cedar	4	16	128
Maple	15	10	220

Sidneyville Linear Programming (LP) Formulation

max $115x_1 + 90x_2$

Maximize Total Profit

s.t. $10x_1 + 20x_2 \le 200$

Pine

 $4x_1 + 16x_2 \le 128$

Cedar

 $15x_1 + 10x_2 \le 220$

Maple

 $X_1, X_2 \ge 0$

Non-negative

5

Binding vs. Non-Binding Constraints

Example: Sidneyville

- Binding Constraint
 - » Left Hand Side = Right Hand Side
- Non-Binding Constraint
 - » Left Hand Side not equal to Right Hand Side
 - » Slack = RHS LHS
- · Marginal Value of a Resource
 - » If a constraint is non-binding then the marginal value of its corresponding resource is . . . ?

6

Marginal Value / Shadow Price

- The change in the optimal objective value for one additional unit of a resource.
 - » Increases for maximization problems
 - » Decreases for minimization problems
 - » For LPs the marginal value is constant over a range
- What is the "economic value" of obtaining an additional amount of this resource?
- What would you be willing to pay for an additional amount of this resource?
- Example: Sidneyville

LP Optimization Sensitivity Report

- Provides sensitivity information for the optimal solution
 - » Decision Variables,
 - » Objective Coefficients, and
 - » Constraints
- Decision Variable (DV) Reduced Cost (RC)
 - » The RC for a DV is the shadow price associated with the nonnegativity constraint for the DV. RC = 0 indicates the DV may be positive in an optimal solution; RC > 0 indicates the DV must be 0 in an optimal solution.
 - » If a DV = 0 and its RC = 0, there may be multiple optimal solutions.
 - Methods to find alternate solutions

16

LP Optimization Sensitivity Report

- Objective Coefficient Allowable Increase/Decrease
 - » Indicates the range of coefficient values over which the current solution remains optimal
- Constraint Shadow Price
 - » The marginal value or marginal cost of the right-hand-side (RHS) of the constraint
- Constraint Allowable Increase/Decrease
 - » Indicates the range of RHS values over which the current shadow price remains constant
- Any change outside of an allowable range requires re-optimization of the model

LP Optimization Sensitivity Report

LP Optimization Sensitivity Report

- Answer the following questions using only the optimization sensitivity report on the previous slide. How does the optimal solution change when . . .
 - 1. The profit for each Regular desk is increased by \$20?
 - 2. The sales price for each Rolltop desk increases by \$25?
 - 3. There is 15 additional board feet of Pine?
 - 4. There is 100 additional board feet of Cedar?
 - We can purchase 40 additional board feet of Maple at a cost of \$3 per board foot.

Modeling Tip: SUMPRODUCT() Function · Very useful for LP modeling **A**1 B1 SUMPRODUCT(A1:A3, B1:B3) A2 B2 =A1*B1+A2*B2+A3*B3 A3 В3 A1 B1 C1 SUMPRODUCT(A1:C1, A2:C2) A2 B2 C2 = A1*A2+B1*B2+C1*C2 A1 B1 A2 B2 SUMPRODUCT(A1:B2,C3:D4) = A1*C3+B1*D3+A2*C4+B2*D4

C3 D3

10

20

Modeling Tip: Range Constraints

- Can use a range of cells for left-hand and/or right/hand side of a constraint to model multiple constraints
 - » D10:D15 >= E5
 - Each cell in the range D10:D15 must be >= E5
 - » D10:D15 >= E10:E15
 - Each cell in the range D10:D15 must be >= the corresponding cell in the range E10:E15

Modeling Tip: Designing LP Spreadsheets

- · Organize the LP model in a series of rows
- Each column of the model corresponds to a Decision Variable
- · Decision Variables and Objective Coefficients at the top
- Constraints in a separate section below the DVs and Objective
- · List similar constraints together

22

Modeling Tip: Debugging

- Debugging optimization models can be difficult
- · Read the error message carefully
 - » It may provide a clue about which model element(s) are generating the error
- · Audit all the optimization model settings
- Are all the cell addresses/ranges accurate and complete?
 - » Min/Max? Assume Non-negative?
- Review/audit all the formulas in the spreadsheet
 - » Are they correctly computing the appropriate values?

Summary

- Review HW4
- Binding/Non-Binding Constraints
- Marginal Value
- Sensitivity Analysis
- Modeling Tips

22