## More Capacitors

· Recall the capacitors-in-parallel scenario



If  $C_1 = | \mu F_1, C_2 = 2 \mu F_2$ , and  $V = 10 V_1$ , then:

What about capacitors in series?

Notice that 
$$Q_1 = Q_2 = Q_{eff}$$
 and  $V_1 + V_2 = V$ .

This means  $\frac{Q_1}{C_1} + \frac{Q_2}{C_2} = \frac{Q_{eff}}{C_{eff}} \rightarrow \frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2}$  or  $\frac{Q_1}{C_{eff}} = \frac{N}{C_1} = \frac{N}{C_2} = \frac{N}{C_2}$ 

If  $C_1 = 1\mu F$ ,  $C_2 = 2\mu F$ , and V = 10V, then:

$$C_{eff} = 0.67 \mu F$$
,  $Q_{eff} = C_{eff} \times V = 6.7 \mu C$ ,  $Q_1 = 6.7 \mu C$ ,  $Q_2 = 6.7 \mu C$ ,  $V_1 = \frac{Q_1}{C_1} = 6.7 V$ ,  $V_2 = \frac{Q_2}{C_2} = 3.4 V$ 

· Combo circuit.

$$\begin{array}{cccc}
C_1 & C_2 & C$$

If  $C_1 = 1 \mu F$ ,  $C_2 = 2 \mu F$ ,  $C_3 = 3 \mu F$ , and V = 10 V, then:

$$C_{eff} = 0.83 \mu F$$
,  $Q_{eff} = C_{eff} \times V = 8.3 \mu C$ ,  $Q_1 = Q_{eff} = 8.3 \mu C$ ,  $V_1 = \frac{Q_1}{C_1} = 8.3 V$ ,  $C_{13} = 5 \mu F$   
 $Q_{13} = Q_{eff} = 8.3 \mu C$ ,  $V_2 = \frac{Q_{23}}{C_{23}} = 1.66 V$ ,  $Q_3 = 1.66 V$ ,  $Q_4 = 3.32 \mu C$ ,  $Q_3 = 4.98 \mu C$ 

Potential energy stored in a capacitor:

Q<sub>13</sub> = Q<sub>eff</sub> = &3
$$\mu$$
C, V<sub>1</sub> =  $\frac{Q_{23}}{C_{23}}$  = 1.66 $\nu$ , V<sub>3</sub> = 1.66 $\nu$ , Q<sub>2</sub> = 3.3 $\frac{1}{2}\mu$ C, Q<sub>3</sub> = 4.98 $\mu$   
Intial energy stored in a capacitor:
$$W = \int_{0}^{1} dq E \times d = \int_{AE_{0}}^{ad} dq = \frac{d}{AE_{0}} \int_{0}^{a} q dq = \frac{a^{2}d}{2AE_{0}} = \frac{Q^{2}}{2C}$$

$$V = \frac{1}{2}\frac{Q^{2}}{C} = \frac{1}{2}CV^{2}$$

