Uncertainty Quantification for Complex Systems

Paul W. Talbot¹, Anil K. Prinja¹, Cristian Rabiti²

¹University of New Mexico ²Idaho National Laboratory

BYU-Idaho Physics Colloquium, February 26th 2015

Outline

Discussion Points

- Sources of Uncertainty
- 2 Analytic Methods
- 3 Numerical Methods
- 4 Results
- 5 Extra: Sensitivity Analysis

Introduction

Who is this guy?

Current:

- Ph.D Nuclear Engineering student, UNM
- Idaho National Laboratory (RAVEN, MOOSE)

Past:

- M.S. Nuclear Engineering, Oregon State University
- B.S. Physics, BYU-Idaho (2010)

Uncertainty

Two Types

- Aleatory True Randomness
 - Quantum effects
 - Particle-Material interactions (gold foil)
 - Brownian Motion

- Epistemic Unmeasured Uncertainty
 - Tool Accuracy
 - Complicated Dependencies (arrow, double pendulum)
 - Documentation

Example Stochastic Problem

Projectile Motion

$$y(t) = y_i + v \sin(\theta)t - \frac{1}{2}gt^2,$$

$$x(t) = v \cos(\theta)t.$$

Solution:
$$x_f = \frac{v\cos\theta}{g} \left(v\sin\theta + \sqrt{v^2\sin^2\theta + 2gy_i} \right)$$

Example Stochastic Problem

Solved!

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

- initial height $y_i = 2 \text{ m}$
- initial velocity v = 35 m/s
- initial trajectory $\theta = 35^{\circ}$
- **accel.** gravity g = -9.81 m/s/s

Solution: $x_f \approx 120 \text{ m}$

Example Stochastic Problem

Uncertainty

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

- initial height $y_i = 1 \pm 1$ m
- initial velocity $v = 35.5 \pm 2.5$ m/s
- initial trajectory $\theta = 45 \pm 10^{\circ}$
- \blacksquare accel. gravity $g=9.7988\pm0.0349$ m/s/s

Solution: $x_f = ?$

Methods

Methods

- Min-Max
 - Good for monotonic problems

Methods

- Min-Max
 - Good for monotonic problems
- Sandwich Formula
 - Good for analytic solutions

Methods

- Min-Max
 - Good for monotonic problems
- Sandwich Formula
 - Good for analytic solutions
- Perturbation
 - Valid for small uncertainty

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

Min-Max

$$\begin{split} x_{f,\text{min}} &= \frac{(33)(0.5736)}{9.8337} \left((33)(0.8192) + \sqrt{(33)^2(0.8192)^2 + 2(9.8337)(0)} \right) = 105.46 \text{ m} \\ x_{f,\text{max}} &= \frac{(55)(0.8192)}{9.7369} \left((55)(0.5736) + \sqrt{(55)^2(0.5736)^2 + 2(9.8337)(2)} \right) = 142.17 \text{ m} \end{split}$$

Result: $x_f \approx 124 \pm 18.3 \text{ m}$

$$x_f = \frac{v\cos\theta}{g}\left(v\sin\theta + \sqrt{v^2\sin^2\theta + 2gy_i}\right)$$

Min-Max

Idaho National Laboratory

$$\begin{split} x_{f, \text{min}} &= \frac{(33)(0.5736)}{9.8337} \left((33)(0.8192) + \sqrt{(33)^2(0.8192)^2 + 2(9.8337)(0)} \right) = 105.46 \text{ m} \\ x_{f, \text{max}} &= \frac{(55)(0.8192)}{9.7369} \left((55)(0.5736) + \sqrt{(55)^2(0.5736)^2 + 2(9.8337)(2)} \right) = 142.17 \text{ m} \end{split}$$

Result: $x_f \approx 124 \pm 18.3 \text{ m}$

Flawed Reasoning

 $\blacksquare \theta$ not monotonic!

Sandwich Formula (simplified):

$$\sigma_{x_f} = \sqrt{\left(\frac{\partial x_f}{\partial y_i}\right)^2 \sigma_{y_i}^2 + \left(\frac{\partial x_f}{\partial v}\right)^2 \sigma_v^2 + \left(\frac{\partial x_f}{\partial g}\right)^2 \sigma_g^2 + \left(\frac{\partial x_f}{\partial \theta}\right)^2 \sigma_\theta^2}$$

Works well for simple functions

- Simple derivatives
- Analytic solution
- Assumes mean is reference value

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

Sandwich Formula:

$$\sigma_{x_f} = \sqrt{\left(\frac{\partial x_f}{\partial y_i}\right)^2 \sigma_{y_i}^2 + \left(\frac{\partial x_f}{\partial v}\right)^2 \sigma_v^2 + \left(\frac{\partial x_f}{\partial g}\right)^2 \sigma_g^2 + \left(\frac{\partial x_f}{\partial \theta}\right)^2 \sigma_\theta^2}$$

Result: $x_f = 120 \pm 62.44 \text{ m}$

Air Resistance

With Air Resistance:

$$y(t) = rac{v_T}{g}(v\sin\theta + v_T)\left(1 - e^{-gt/v_T}\right) - v_T t,$$
 $x(t) = rac{vv_T\cos\theta}{g}\left(1 - e^{-gt/v_T}\right).$ $v_T = rac{mg}{D}, \qquad D = rac{
ho CA}{2}, \qquad A = \pi r^2$

Solve numerically to get x_f (Forward Euler).

Aside: Forward Euler

Take small Δ_t time steps while $y^t > 0$: $t = t + \Delta_t$,

$$a_{x}^{(t+\Delta_{t})} = \frac{-D}{m} v^{(t)} v_{x}^{(t)}, \qquad a_{y}^{(t+\Delta_{t})} = -g - \frac{D}{m} v^{(t)} v_{x}^{(t)},$$

$$v_x^{(t+\Delta_t)} = v_x^{(t)} + a_x^{(t+\Delta_t)} \Delta_t, \qquad v_y^{(t+\Delta_t)} = v_y^{(t)} + a_y^{(t+\Delta_t)} \Delta_t,$$

$$x^{(t+\Delta_t)} = x^{(t)} + v_x^{(t+\Delta_t)} \Delta_t + \frac{1}{2} a_x^{(t+\Delta_t)} \Delta_t^2,$$

 $y^{(t+\Delta_t)} = y^{(t)} + v_y^{(t+\Delta_t)} \Delta_t + \frac{1}{2} a_y^{(t+\Delta_t)} \Delta_t^2.$

(video)

Uncertainty Summary

$$y_i = 1 \pm 1 \text{ m},$$

 $v = 35.5 \pm 2.5 \text{ m/s},$
 $\theta = 45 \pm 10^o,$
 $g = 9.7988 \pm 0.0349 \text{ m/s/s},$
 $m = 0.145 \pm 0.0725 \text{ kg},$
 $r = 0.0336 \pm 0.00336 \text{ m},$
 $C = 0.5 \pm 0.5,$
 $\rho_{\text{air}} = 1.2 \pm 0.1 \text{ kg/m}^3.$

▶ Sensitivity Study

Equation Summary

$$y(t) = \frac{v_T}{g}(v\sin\theta + v_T)\left(1 - e^{-gt/v_T}\right) - v_T t,$$

$$x(t) = rac{v v_T \cos heta}{g} \Big(1 - e^{-gt/v_T} \Big).$$

$$v_T = \frac{mg}{D}, \qquad D = \frac{\rho CA}{2}, \qquad A = \pi r^2$$

Complicated Problems

How do we quantify uncertainty for problems without simple analytic solutions?

- Monte Carlo sampling
- Stochastic Collocation

Monte Carlo

- Let u(Y) be any system, like $x_f(y_i, v, \theta, g, m, r, C, \rho)$
- Randomly sample input parameters, record outputs
- Repeat M times
- Calculate moments (mean, variance, skew, kurtosis)

Mean:
$$\bar{u} \approx \frac{1}{M} \sum u(Y^{(m)})$$

(video)

Stochastic Collocation

- Let u(Y) be any system, like $x_f(y_i, v, \theta, g, m, r, C, \rho)$
- Represent original model with polynomials
- Calculate moments (mean, variance, skew, kurtosis)

$$u(Y) \approx \sum_{k \in \Lambda} c_k \Phi_k(Y),$$

$$\Phi_k(Y) = \phi_{k_1}(Y_1) \cdot \phi_{k_2}(Y_2) \cdot \ldots \cdot \phi_{k_N}(Y_N)$$

Stochastic Collocation

Our case:

$$x_f(y_i, v, \theta, g, m, r, C, \rho) \approx \sum_{k \in \Lambda} c_k \Phi_k(y_i, v, \theta, g, m, r, C, \rho),$$

$$\Phi_k(y_i, v, \theta, g, m, r, C, \rho) = \phi_{y_i}(y_i) \cdot \phi_v(v) \cdot \dots \cdot \phi_\rho(\rho).$$

$$c_k = \frac{\int \int \int \int \int \int \int \int x_f \Phi d(y_i, v, \theta, g, m, r, C, \rho)}{\int \int \int \int \int \int \int \int \Phi^2 d(y_i, v, \theta, g, m, r, C, \rho)}.$$

Combining polynomials?

For example, let ϕ be monomials $(1, x, x^2, x^3, x^4, ...)$.

$$\Lambda = \left\{ \begin{array}{l} (0,0,0,0,0,0,0,0),\\ (1,0,0,0,0,0,0,0),\\ (0,1,0,0,0,0,0,0),\\ & \dots\\ (1,2,3,4,5,6,7,8),\\ & \dots \end{array} \right\}$$

$$\frac{k}{(0,0,0,0,0,0,0,0,0,0)} \frac{y_{i}^{0} \cdot v^{0} \cdot \theta^{0} \cdot g^{0} \cdot m^{0} \cdot r^{0} \cdot C^{0} \cdot \rho^{0} = 1}{(1,2,3,4,5,6,7,8)} \frac{y_{i}^{1} \cdot v^{2} \cdot \theta^{3} \cdot g^{4} \cdot m^{5} \cdot r^{6} \cdot C^{7} \cdot \rho^{8}}{y_{i} \cdot v \cdot \theta \cdot g \cdot m \cdot r \cdot C \cdot \rho}$$

Stochastic Collocation

Comparison

Monte Carlo	Stochastic Collocation	
Dimension-independent	Calculations grow with dimension*	
Slow converging	Very fast convergence*	
	Can replace original model	

Results: pdf

Figure: Probability Distributions

Results: Expected Value, Values

Results: Expected Value, Errors

Figure: Error in $\mathbb{E}[x_f]$

Polynomial Expansion Revisited

Recall: $u(Y) \approx \sum_{k \in \Lambda} c_k \Phi_k(Y)$, so for $x_f(y_i, v, \theta, g, m, r, C, \rho)$:

$$x_f \approx c_{(0,0,0,0,0,0,0,0)}$$

$$+ c_{(1,0,0,0,0,0,0,0)} y_i + c_{(0,1,0,0,0,0,0,0)} v + c_{(0,0,1,0,0,0,0,0)} \theta + \dots$$

+
$$c_{(2,0,0,0,0,0,0,0)}y_i^2 + c_{(1,1,0,0,0,0,0,0)}y_i \cdot v + c_{(1,0,1,0,0,0,0,0)}y_i \cdot \theta + \dots$$

+
$$c_{(3,0,0,0,0,0,0,0)}y_i^3 + c_{(1,1,0,0,0,0,0,0)}y_i \cdot v \cdot \theta + \dots$$

. . .

Polynomial Expansion Revisited

Rearrange:

$$X_{f} \approx C_{(0,0,0,0,0,0,0,0)} + c_{(1,0,0,0,0,0,0,0)} y_{i} + c_{(2,0,0,0,0,0,0,0)} y_{i}^{2} + c_{(3,0,0,0,0,0,0,0)} y_{i}^{3} + \dots + c_{(0,1,0,0,0,0,0,0)} v + c_{(0,2,0,0,0,0,0)} v^{2} + c_{(0,3,0,0,0,0,0,0)} v^{3} + \dots + c_{(1,1,0,0,0,0,0,0)} y_{i} \cdot v + c_{(1,2,0,0,0,0,0,0)} y_{i} \cdot v^{2} + \dots$$

ANOVA

ANOVA: [AN]alysis [O]f [VA]riance

■ How much does each input contribute to the variance?

Input	Variance	% Variance	Weight
С	0.523	0.6657	1
heta	0.236	0.3006	1/2
r	0.00868	0.0111	1/5
m	0.00862	0.0110	1/5
y i	0.00671	0.0085	1/5
ρ	0.00209	0.0027	1/6
V	0.000348	0.0004	1/7
g	2.83×10^{-6}	3.601×10^{-6}	1/12

Results: Expected Value, Values

Results: Expected Value, Errors

Figure: Error in $\mathbb{E}[x_f]$

Results: Second Moment, Values

Results: Second Moment, Errors

Conclusions

- Uncertainty Quantification methods
 - Analytic methods: good, but possible deceiving
 - Numerical methods: expensive, but robust
- Sensitivity Analysis
 - Reveals importance of parameters
 - Tighten uncertainty in experiment/model
- Areas of study
 - Adaptive sampling
 - Sparse quadrature integration
 - Improved Monte Carlo methods
 - Efficient statistics algorithms

Numerical UQ Methods

Extra: Sensitivity Analysis

Polynomial Index Sets

Choosing what polynomial degrees to use

■ Tensor Product:

$$\Lambda_{\mathsf{TP}}(L) = \Big\{ \bar{p} = [p_1, ..., p_N] : \max_{1 \le n \le N} p_n \le L \Big\}, \eta = (L+1)^N$$

Total Degree:

$$\Lambda_{TD}(L) = \left\{ \bar{p} = [p_1, ..., p_N] : \sum_{n=1}^{N} p_n \le L \right\}, \eta = {L + N \choose N}$$

Hyperbolic Cross:

$$\Lambda_{HC}(L) = \left\{ \bar{p} = [p_1, ..., p_N] : \prod_{n=1}^N p_n + 1 \le L + 1 \right\}, \eta \le (L+1)(1 + \log(L+1))^{N-1}$$

Polynomial Index Sets

2D Example

Figure: Index Set Examples: N = 2, L = 4

Calculating ck

Where the algorithmic rubber hits the mathematical road.

$$u(Y) \approx S_{N,\Lambda(L)}[u](Y) = \sum_{\substack{i \in \Lambda(L) \\ j=\{0,1\}^N, \\ i+j \in \Lambda(L)}} c(i) \bigotimes_{n=1}^N \mathcal{U}_{n,p(i_n)}[u](Y),$$

$$\bigotimes_{n=1}^{N} \mathcal{U}_{n,p(i_n)}[u](Y) \equiv \sum_{k_1=0}^{p(i_1)} \cdots \sum_{k_N=0}^{p(i_N)} u_h \Big(Y^{(k_1)}, \cdots, Y^{(k_N)}\Big) \prod_{n=1}^{N} \mathcal{L}_{k_n}(Y_n),$$

$$= \sum_{k}^{p(\vec{i})} u_h \Big(Y^{(k)}\Big) \mathcal{L}_k(Y),$$

Calculating c_k

2D Examples

Figure: Sparse Grids, N = 2, L = 4, p(i) = i, Legendre points

Calculating c_k

Some Numbers

		TP	TD		HC	
Ν	L	$ \Lambda(L) $	$ \Lambda(L) $	η	$ \Lambda(L) $	η
3	4	125	35	165	16	31
	8	729	165	2,097	44	153
	16	4,913	969	41,857	113	513
	32	35,737	6,545	1,089,713	309	2,181
5	2	293	21	61	11	11
	4	3,125	126	781	31	71
	8	59,049	1,287	28,553	111	481

Table: Index Set and Collocation Size Comparison

