

1

AVL Tree Definition

An AVL Tree is a balanced binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1 (Height-

Balance Property)

2

- ◆ Fact: The height of an AVL tree storing n keys is O(log n).
- Proof: Let us bound n(h): the minimum number of internal nodes of an AVL tree of height h.
- We easily see that n(1) = 1 and n(2) = 2
- ◆ For n > 2, an AVL tree of height h contains the root node, one AVL subtree of height n-1 and another of height n-2.
- \bullet That is, n(h) = 1 + n(h-1) + n(h-2)
- \bullet Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction), n(h) > 2ⁱn(h-2i)
- ◆ Solving the base case we get: n(h) > 2 h/2-1
- ◆ Taking logarithms: h < 2log n(h) +2</p>
- Thus the height of an AVL tree is O(log n)

Insertion

Insertion is as in a binary search tree

before insertion

AVL Trees 4

after insertion

Violation of HBP

Assume that "z" is the first unbalanced node encountered after insertion

The height of "z" will become n+3 after insertion!

AVL Trees 5

Case I. Node w is added to P

Case II. Node w is added to Q

Case I-1: R: n+1, S: n (w is added to R)

Case I-2: R : n, S : n+1 (w is added to S)

Case II-1: R: n+1, S: n (w is added to R)

Case II-2: R : n, S : n+1 (w is added to S)

Trinode Restructuring

- Let z be the first node we encounter in going up from w towards the root
- Let y be the child of z with higher height (y must be an ancestor of w)
- Let x be the child of y with higher height
 - There cannot be a tie and node x must be an ancestor of w including itself

Trinode Restructuring (Cont'd)

- Let a, b, c be a left-to-right (inorder) listing of the nodes x, y, z.
- ◆ Let T₀, T₁, T₂, T₃ be a left-to-right (inorder) listing of the four subtrees of x, y, and z
- Make node b as the new root.
- ◆ Let a be the left child of b and let T₀ and T₁ be the left and right child of a, respectively.
- ◆ Let c be the right child of b and let T₂ and T₃ be the left and right child of c, respectively.

AVL Trees 13

Case I-1:
Restructure → Single Rotation Right

Case I-2:
Restructure → Double Rotation Left-Right

Case II-1:
Restructure → Double Rotation Right-Left

Case II-2:
Restructure → Single Rotation Left

Insertion Example (Cont'd)

Removal

- Removal begins as in a binary search tree. However, its parent, w, may cause an imbalance.
- Example:

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform restructure(x) to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

AVL Tree Performance

- ◆ a single restructure takes O(1) time
 - using a linked-structure binary tree
- get takes O(log n) time
 - height of tree is O(log n), no restructures needed
- put takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- ◆ remove takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)