Introduction

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

- Overview. What is the Internet? What is a protocol?
- Network edge
- Network core
- Performance: loss, delay, throughput
- Protocol layers, service models
- Security
- History

Class textbook:

Computer Networking: A TopDown Approach (8th ed.)

J.F. Kurose, K.W. Ross

Pearson, 2020

http://gaia.cs.umass.edu/kurose ross

How do packet delay and loss occur?

- packets queue in router buffers, waiting for turn for transmission
 - queue length grows when arrival rate to link (temporarily) exceeds output link capacity
- packet loss occurs when memory to hold queued packets fills up

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < microsecs</p>

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)

$$\frac{\mathbf{d}_{trans} = L/R}{\mathbf{d}_{trans}} \text{ and } \frac{\mathbf{d}_{prop}}{very \text{ different}}$$

d_{prop} : propagation delay:

- *d*: length of physical link
- s: propagation speed (~2x10⁸ m/sec)

Caravan analogy

- car ~ bit; caravan ~ packet; toll service ~ link transmission
- toll booth takes 12 sec to service car (bit transmission time)
- "propagate" at 100 km/hr
- Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr) = 1 hr
- A: 62 minutes

Caravan analogy

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?
 A: Yes! after 7 min, first car arrives at second booth; three cars still at first booth

Packet queueing delay (revisited)

- a: average packet arrival rate
- L: packet length (bits)
- R: link bandwidth (bit transmission rate)

$$\frac{L \cdot a}{R}$$
: arrival rate of bits "traffic service rate of bits intensity"

- La/R ~ 0: avg. queueing delay small
- La/R -> 1: avg. queueing delay large
- La/R > 1: more "work" arriving is more than can be serviced - average delay infinite!

 $La/R \rightarrow 1$

"Real" Internet delays and routes

- what do "real" Internet delay & loss look like?
- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination (with time-to-live field value of i)
 - router *i* will return packets to sender
 - sender measures time interval between transmission and reply

Real Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
3 delay measurements from
                                        gaia.cs.umass.edu to cs-gw.cs.umass.edu
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 4 delay measurements to border1-rt-fa5-1-0.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
                                                                     to border1-rt-fa5-1-0.gw.umass.edu
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms trans-oceanic link
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
                                                                          looks like delays
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 4
                                                                          decrease! Why?
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renatèr.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                   * means no response (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

^{*} Do some traceroutes from exotic countries at www.traceroute.org

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

^{*} Check out the Java applet for an interactive animation (on publisher's website) of queuing and loss

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: network scenario

10 connections (fairly) share backbone bottleneck link *R* bits/sec

- per-connection endend throughput: $min(R_c, R_s, R/10)$
- in practice: R_c or R_s is often bottleneck

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/

Introduction

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences University of Massachusetts

- Overview. What is the Internet? What is a protocol?
- Network edge
- Network core
- Performance: delay, loss, throughput
- Protocol layers, service models
- Security
- History

Class textbook: Computer Networking: A Top-Down Approach (8th ed.) J.F. Kurose, K.W. Ross Pearson, 2020 http://gaia.cs.umass.edu/kurose ross

