# Preliminary Processing of NGS Data

Mark Dunning: Sheffield Bioinformatics Core Director (sbc.shef.ac.uk)

23 January 2018

## Practical setup

#### Go to one of following Galaxy servers

- Surnames: A-K
  - https://bioinf-galaxian.erasmusmc.nl/galaxy/
- ► Surnames: L-N
  - https://galaxy.hidelab.org/
- Surnames: O-Z
  - http://services.cbib.u-bordeaux.fr/galaxy/

## Data Upload

- ▶ Go Get Data
  - Upload File (may be a different place on the menu depending which server you connect to!)



Figure 1

## Data Upload

- Choose local file
  - Select JoeBlogsBRCAPanel\_R1.fastq,JoeBlogsBRCAPanel\_R2.fastq and click Start



#### Outline

- ► The *Fastq* format for sequencing reads
- Quality assessment of fastq files
- ▶ The *bam* format for representing *aligned* reads
- ► Stage 1 of an analysis *pipeline*



Figure 3

## The sequencing process

- https://www.youtube.com/embed/HMyCqWhwB8E for a nice video
- sequencing consists of a series of cycles (e.g. 100), at each cycle we try and incorporate different bases (A, T, C, G)
- ► the base that is successfully added will illuminate brightly in a particular colour



## **Imaging**

- much of the sequening time is spent taking images of the flowcell
- it is these images that are used to discover what fragments of DNA were sequenced
- this process is not perfect and can introduce uncertainty



## Scale of data

| Instrument        | No. of Reads     | Size      |
|-------------------|------------------|-----------|
| Ion Torrent PGM   | 5 million reads  | 1Gb       |
| MiSeq             | 25 million reads | 6GB       |
| HiSeq rapid run   | 600 million      | 150GB (*) |
| HiSeq high-output | 4 billion        | 1 TB      |
|                   |                  |           |

- ► Equivalent to **40** HD movies
- ▶ File sizes are for 100 bp reads, unzipped
- ▶ Number of reads from thermofisher.com and illumina.com

# Fastq format

- a text file
- can be compressed as a gz file
- four lines per read
- the sequenced is most interesting, there are two other lines that we potentially investigate

# Sequence ID Sequenced Read @SRR081708.237649/1 GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGTTAGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG

Figure 6

## Sequence ID

#### Can contain the following

- name of sequencer
- ▶ flow cell *lane*
- coordinates of the read on the flow cell
- whether this is a paired read and whether it is read 1, or 2
- which biological sample the read came from (if multiple samples were sequenced on the same lane)

## Quality scores

- base-calling has some probability (p) that we make a mistake.
- the quality score expresses our confidence in a particular base-call; higher quality score, higher confidence
- one such score for each base of sequencing. i.e. 100 scores for 100 bases of sequencing
- these are of importance if we want to call SNVs etc.
  - need to be sure that differences detected from the reference genome are real, and not caused by sequencing error

# Deriving the Quality Score

First of all, we convert the base-calling probability (p) into a  $\mathbb Q$  score using the formula

Quality scores

$$Q = -10\log_{10}p$$

- ightharpoonup Q = 30, p=0.001
- ightharpoonup Q = 20, p=0.01
- ightharpoonup Q = 10, p=0.1
- These numeric quanties are encoded as ASCII code
  - At least 33 to get to meaningful characters (https://en.wikipedia.org/wiki/FASTQ\_format)

# Quality Scores to probabilities

- look-up the ASCII code for each character
- subtract the offset to get the Q score
- convert to a probability using the formula:-

$$p = 10^{-Q/10}$$

## Worked Example

for our particular example:

```
N?>:<9>>>:=;>>?<>:@?>;==@@@>?=AAA<>=A@?6>4B=<>>.@>?<@;?###
```

it works out as follows:-

|    | Character | Code | Minus.Offset33 | Probability |
|----|-----------|------|----------------|-------------|
| 1  | N         | 78   | 45             | 0.00003     |
| 2  | ?         | 63   | 30             | 0.00100     |
| 3  | >         | 62   | 29             | 0.00126     |
| 4  | :         | 58   | 25             | 0.00316     |
| 5  | <         | 60   | 27             | 0.00200     |
| 6  | 9         | 57   | 24             | 0.00398     |
| 7  | >         | 62   | 29             | 0.00126     |
| 8  | >         | 62   | 29             | 0.00126     |
| 9  | >         | 62   | 29             | 0.00126     |
| 10 | :         | 58   | 25             | 0.00316     |
|    |           |      |                |             |

. . .

Use the Galaxy tool Text Manipulation -> Select last



- print the last 12 lines from the file JoeBlogsBRCAPanel\_R2.fastq
- how many reads are shown in the result?
- ► Look at the last read and write down the first five and last five ASCII characters
  - ▶ is the quality greater at the start, or the end of the read?

Use the Galaxy tool Text Manipulation -> Line/Word/Character count



- count how many lines are in the file JoeBlogsBRCAPanel\_R2.fastq in total
- how many reads does this correspond to?

# FastQC: Quality Assessment of fastq files

- FastQC from the Babraham Institute Bioinformatics Core has emerged as the standard tool for performing quality assessment on sequencing reads;
- https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- The manual for FastQC is available online and is very comprehensive
- ▶ A "traffic light" system is used to draw your attention to sections of the report that require further investigation.
- fastqc will not actually do anything to your data. If you decide to trim or remove contamination for your samples, you will need to use another tool.
- it doesn't know what type of sequencing has been performed (WGS, exome, RNA-seq), which can affect interpretation of some of the plots

#### 1. Basic Statistics



| Measure                           | Value                   |  |  |
|-----------------------------------|-------------------------|--|--|
| Filename                          | sample.fastq            |  |  |
| File type                         | Conventional base calls |  |  |
| Encoding                          | Illumina 1.5            |  |  |
| Total Sequences                   | 9053                    |  |  |
| Sequences flagged as poor quality | 0                       |  |  |
| Sequence length                   | 36                      |  |  |
| %GC                               | 50                      |  |  |

2. Per-base sequence quality



Figure 11

Ideally, the plot should look something like following:-

## Per base sequence quality



#### 3. Per-sequence quality scores

## Per sequence quality scores



[Per-base sequence content]





Figure 14

using the Galaxy Tool NGS: QC and manipulation -> FastQC Read Quality reports



Figure 15

- generate a QC report for the file JoeBlogsBRCAPanel\_R2.fastq
- ▶ look at the basic statistics for the file
  - does the number of reads agree with your previous answer?
- is there any evidence for a decrease in quality as the read length increases?
- See https://www.bioinformatics.babraham.ac.uk/projects/ fastqc/Help/3%20Analysis%20Modules/ for descriptions of various sections of report

# The SAM / BAM format

- we don't really spend much time look at fastq files
- most of our time is spent with aligned reads
  - ▶ i.e. we have used some software to tell us whereabouts in the genome each read belongs to
  - we will have a go at this in the practical

## The .sam file

- Sequence Alignment/Map (sam)
- ▶ The output from an aligner such as bwa or bowtie
- Same format regardless of sequencing protocol (i.e. RNA-seq, ChIP-seq, DNA-seq etc)
- May contain un-mapped reads
- Official specification can be found online http://samtools.github.io/hts-specs/SAMv1.pdf
- ▶ We normally work on a compressed version called a .bam file. See later.

## The .sam file

Comprises a *tab-delimited* section that describes the alignment of each sequence in detail.

| 1                 | 10     | 2      | 3         | 4        | 5     | 6            | 7      | 8         | 9      | 11                                            |
|-------------------|--------|--------|-----------|----------|-------|--------------|--------|-----------|--------|-----------------------------------------------|
| SRR081708.237649  | 10     | 163    | 1         | 10003    | 6     | 1S67M        | =      | 10041     | 105    | 11                                            |
| GACCCTGACCCTAACCC | TGACCC | TGACCO | TAACCCTGA | CCCTGACC | CTAAC | CCTGACCCTAAG | CCTA   | A S=<==== | <<>>=> | =?=? ==@??;?>@@@=??@@????@??@?>?@@<@>@'@=?=?? |
| =<=>?>?=Q Z       | A:Z:<& | ;0;0;; | 308;68M;6 | 8><@;0;0 | ;;27; | ;>MD:Z:5A11/ | 45A11A | A5A11A13  | RG:Z   | :SRR081708 NM:i:6 OQ:Z:GEGFFFEGGGDGDGGGDGA?   |
| DCDD:GGGDGDCFGFDD | FFFCCC | BEBFDA | BDD-D:EEE | E=D=DDDD | C:    |              |        |           |        |                                               |
|                   |        |        |           |          |       |              |        |           |        |                                               |

Figure 16

- 1:- Sequence ID
- 2:- Sequence quality expressed as a bitwise flag
- ▶ 3:- Chromosome that the read aligned to

# Fun with flags!

## The "flags" in the sam file can represent useful QC information

- Read is unmapped
- Read is paired / unpaired
- Read failed QC
- Read is a PCR duplicate (see later)

```
| 10003 6 1567M = 10041 105
| GACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCTGACCT
```

Figure 17

## Derivation

|                         | ${\sf ReadHasProperty}$ | Binary | ${\sf MultiplyBy}$ |
|-------------------------|-------------------------|--------|--------------------|
| Paired?                 | TRUE                    | 1      | 1                  |
| Properly Paired?        | TRUE                    | 1      | 2                  |
| Unmapped?               | FALSE                   | 0      | 4                  |
| Unmapped Mate?          | FALSE                   | 0      | 8                  |
| On Minus Strand?        | FALSE                   | 0      | 16                 |
| Mate on Minus Strand?   | TRUE                    | 1      | 32                 |
| Is First Read?          | FALSE                   | 0      | 64                 |
| Is Second Read?         | TRUE                    | 1      | 128                |
| Is Secondary Alignment? | FALSE                   | 0      | 256                |
| Is Not Passing QC?      | FALSE                   | 0      | 512                |
| Is Duplicate Read?      | FALSE                   | 0      | 1024               |

$$1x1 + 1x2 + 0x4 + 0x8 + 0x16 + 1x32 + 0x64 + 1x128 + 0x256 + 0x512 + 0x1024 = 163$$

https://broadinstitute.github.io/picard/explain-flags.html

The .sam file



Figure 18

- 4:- Start Position
- ▶ 5:- Mapping Quality; Confidence that an alignment is correct
  - higher is more confident
  - 0 means read maps to multiple locations
- 6:- CIGAR; Describes number of matches (M), insertions (I), deletions (D)

# CIGAR string

## Compact Idiosyncratic Gapped Alignment Report

- ► Value before **M** is number of consecutive mapping bases (can be mismatches)
- ▶ Value before I is number of bases inserted relative to reference
- ▶ Value before **D** is number of bases deleted relative to reference
  - e.g. 142M2I7M 2 bp insertion after 142 bases then 7 aligned bases

## The .sam file



Figure 19

- ▶ 7, 8, 9: Alignment information for the paired read (if available)
  - whether they align to the same chromosome
  - where the position of the paired read is
  - how far apart did they map?

The .sam file



Figure 20

- 10:- Sequence
- ▶ 11:- Base Qualities
- This is the same as the fastq file; so if you have aligned data you can always go back and re-align
- The file may also have additional (optional) information recorded by the aligner or analysis tool

## Sam and Bam

- sam is a human-readable file
  - which makes it quite large and unwieldy
- bam is the compressed binary version
  - needs special software to interrogate
  - better way of transferring data
- they contain same data
- the bam file needs to be indexed so we can access it more efficiently

NGS: QC and manipulation -> FASTQ Groomer



Figure 21

- Select file to groom as JoeBlogsBRCAPanel\_R1.fastq
  - press Execute
- Repeat with JoeBlogsBRCAPanel\_R2.fastq

► NGS: Mapping -> Bowtie2



Figure 22

- ▶ In Is this single-end or Paired-end? Select Paired-end
- ► Set FastQ file #1 and FastQ file #2 to the two files you created in the previous step
- Make sure the reference genome is set to Human (Homo sapiens)(b37):hg19
- Press Execute
- ► Wait!

#### Exercise: Visualisation of reads

▶ Download the bam file you have just created, and it's index file



## Exercise: Visualisation of reads

- Load into IGV
- ▶ Navigate to the BRCA1 gene and zoom-in to see the reads
- Can you see any possible mutations?
- ► Hover over particular reads to get information about the alignment of the read
- (if you didn't manage to align the data, the file JoeBlogsBRCAPanel\_bowtie2.bam can be used)