2

MATB16

Laboratório de Inteligência Artificial

Algoritmos

Tatiane Nogueira Rios Ricardo Araújo Rios

LabIA Instituto de Computação - UFBA

Agenda

- Introdução
- Algoritmos Particionais
 - K-means
- Algoritmos Hierárquicos
 - Single-link
 - Average-link
 - Complete-link

Introdução

- Análise dos dados para identificação de estruturas similares organizadas como clusters;
- Cada algoritmo de agrupamento emprega um critério de agrupamento, que impõe uma estrutura aos dados.
- Os algoritmos de agrupamento são divididos em:
 - Particionais
 - Hierárquicos
 - o Baseados em grid
 - o Baseados em densidade

Introdução

- Conjunto de dados $X = \{x_1, x_2, ..., x_n\}$
- Para um **agrupamento** do tipo **hard** tem-se:
 - Uma partição de X em k clusters sendo $\pi = \{C_l, C_2, ..., C_k\}$, com k < n tal que:

$$Cj \neq \emptyset$$
, $j = 1, ..., k$

$$U^k_{j=I} C_j = X$$

Algoritmos Particionais

- Técnicas iterativas:
- Passos gerais:
 - Criação de uma partição inicial;
 - Instâncias são movidas entre clusters para melhorar o critério de agrupamento;
 - Computacionalmente eficientes;

Algoritmos Particionais

- Critério de agrupamento:
 - o Erro quadrático (compactação dos grupos);
- Objetivo:
 - Obter um particionamento que minimiza o erro quadrático para um número fixo de clusters
 - Minimizar o erro quadrático = Maximizar a variação entre grupos;

$$E = \sum_{j=1}^{k} \sum_{x_i \in C_j} d(x_i, \bar{x}^{(j)})^2$$

$$\bar{x}_j = \frac{1}{n_k} \sum_{x_i \in C_k} x_i$$

Algoritmos Particionais

- Exemplos:
 - K-means
 - k-means ótimo
 - k-means sequencia
 - o SOM
 - CLICK

Algoritmos Particionais

- Objetivo: encontrar uma partição contendo k clusters (fixo) que minimiza E;
- Partição resultante é chamada de partição de variância mínima;
- Minimizar E é um problema NP-hard;
- Algoritmos gulosos => convergência ótimos locais;

K-means

- Algoritmo mais conhecido;
- Técnica de realocação iterativa;
- Pode convergir para um ótimo local;
- Versão tradicional: clusters compactos e com formato esférico;
- Versão com distância de mahalanobis => clusters hiper-elipsoidais;

K-means

- Execução Geral
 - o Inicialização (ex. aleatória) de k centróides para os clusters;
 - Cada objeto da base de dados é associado a um centróide mais próximo;
 - Centróides são recalculados de acordo com os objetos mais próximos;
 - o Algoritmo para quando não há mais atualização dos centróides;
 - o Complexidade: O(n)

K-means

- A atualização dos centróides pode ser realizada calculando a distância média dos objetos do grupo.
- A cada passo do algoritmo:
 - Centróides são movidos na direção dos objetos associados;
 - O Algoritmo para quando não houver variação dos centróides;

K-means

- Limitações:
 - o Escolha do valor para k
 - o Grupos com formatos não esféricos
 - o Outliers influenciam a movimentação dos clusters

Algoritmos hierárquicos

- Geram, a partir de uma matriz de proximidade, uma sequência de partições aninhadas.
- Podem ser divididos em duas abordagens:
 - Aglomerativa
 - Divisiva

- Abordagem Aglomerativa
 - Começa com *n* clusters com um único objeto e forma a sequência de partições agrupando os clusters sucessivamente
- Abordagem Divisiva
 - Começa com um cluster com todos os objetos e forma a sequência dividindo os clusters sucessivamente

Algoritmos hierárquicos

- Aspectos positivos:
 - Flexibilidade com respeito ao nível de granularidade
 - Fácil utilização de qualquer forma de similaridade ou distância
 - Possibilidade de utilizar qualquer tipo de atributo

- Aspectos negativos
 - Critério de terminação vago
 - Não há melhoria nos clusters: uma vez criado, permanece até o final

Algoritmos hierárquicos

- Abordagens clássicas utilizam métricas de integração (linkage metrics):
 - Medidas de distância entre clusters
- Técnicas aglomerativas
 - agrupam os pares de clusters mais próximos, de acordo com uma métrica de integração.
- Técnicas divisivas
 - Dividem os grupos que possam gerar partições diferentes.

Algoritmos hierárquicos

Algoritmos hierárquicos

- Vários algoritmos se baseiam na ideia de um objeto representativo que resume as informações contidas no cluster.
- Um elemento representativo bastante usado é o centróide:
 - Seja um cluster $C_k = \{x_1, x_2, ..., x_{nk}\}$, com n_k objetos, o centróide do clust $\bar{x}^{(k)} = \frac{1}{n_k} \sum_{i \in C_k} x_i$

- Considere dois clusters $C_1 = \{x_1, x_2, ..., x_{nl}\}$ e $C_2 = \{x_1, x_2, ..., x_{n2}\}$, com os respectivos centróides c^1 e c^2
- Para quantificar distâncias entre os clusters, podem ser utilizadas distâncias como Euclidiana ou Manhattan entre os centróides, ou pares de objetos dos dois clusters.

Algoritmos hierárquicos

- Métricas de integração:
 - Single-link: distância mínima entre quaisquer dois objetos, um de cada cluster.
 - Average-link: distância média entre os objetos dos dois clusters
 - Complete-link: distância entres os objetos mais distantes dos dois clusters.

Algoritmos hierárquicos

Single-link (ligação mínima)

$$d(C_1, C_2) = \min_{\substack{x_i \in C_1, \\ x_i \in C_2}} d(x_i, x_j)$$

Algoritmos hierárquicos

Single-link (ligação mínima)

$$d(C_1, C_2) = \min_{\substack{x_i \in C_1, \\ x_i \in C_2}} d(x_i, x_j)$$

Indicados para manipular formas não elípticas, mas é bastante sensível a ruídos e outliers. Em geral, favorece clusters finos e alongados.

Average-link (ligação média)

$$d(C_1, C_2) = \frac{1}{n_1 n_2} \sum_{\substack{x_i \in C_1, \\ x_i \in C_2}} d(x_i, x_j)$$

Algoritmos hierárquicos

Complete-link (ligação máxima)

$$d(C_1, C_2) = \max_{\substack{x_i \in C_1, \\ x_j \in C_2}} d(x_i, x_j)$$

Algoritmos hierárquicos

Complete-link (ligação máxima)

$$d(C_1, C_2) = \max_{\substack{x_i \in C_1, \\ x_j \in C_2}} d(x_i, x_j)$$

Menos suscetível a ruídos e outliers, mas tende a quebrar clusters grandes e tem problemas com formas convexas. Em geral, favorece a obtenção de clusters esféricos.

Algoritmos hierárquicos

Distância entre centróides

- As soluções são tipicamente representadas por um dendograma, que consiste em uma árvore binária que representa uma hierarquia de partições.
 - Um dendograma é formado por camadas de nós, cada uma representando um cluster.
 - Linhas conectam nós representando clusters aninhados.
 - O corte de um dendograma na horizontal representa uma partição.

Algoritmos hierárquicos

ramificações, em geral, é proporcional à distância dos clusters que foram agrupados/dividido s

Algoritmos hierárquicos

Cortes em cada nível do dendograma representam diferentes partições dos dados, com diferentes números de clusters.

Exemplos de Datasets

- UCI (https://archive.ics.uci.edu/ml/datasets.html);
- UCI KDD Archive (http://kdd.ics.uci.edu/summary.data.application.html);
- Statlib (http://lib.stat.cmu.edu/);
- Delve (http://www.cs.utoronto.ca/~delve/);
- LETOR
 (http://research.microsoft.com/en-us/um/beijing/projec ts/letor/index.html);

Referências

- Faceli et al., Inteligência Artificial Uma Abordagem de Aprendizado de Máquina, LTC, 2015.
- Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.
- Witten et al., Data Mining Practical Machine Learning Tools and Techniques, 3d edition, Elsevier, 2011.
- Xu, R. and Wunsch, D.C., Clustering, 1a ed, Wiley, 2009
- J. Han; M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

