

Contrôle continu cinématique

Pince pneumatique

R est le repère fixe, R_{11} est le repère lié à (11), R_{12} est le repère lié à (12)

 $\overrightarrow{HD} = h.\overrightarrow{y}$

 $\overrightarrow{BH} = \lambda . \vec{x}$

 $\overrightarrow{CD} = d.\overrightarrow{x_{12}} - e.\overrightarrow{y_{12}}$

 $\overrightarrow{DK} = f.\overrightarrow{x_{12}}$

8: Piston

11, 14: Biellettes

12, 13: Branches de préhension

Hypothèses et données

- le problème est considéré comme plan
- les liaisons sont supposées parfaites et sans frottement

Questions

- 1) Exprimer $\overrightarrow{\Omega}_{11/R}$ et $\overrightarrow{\Omega}_{12/R}$
- 2) Exprimer $\vec{V}_{B~11/\mathbf{R}}$ en fonction de V, des paramètres géométriques et angulaires du système Quelle est la relation entre $\vec{V}_{B~8/\mathbf{R}}$ et $\vec{V}_{B~11/\mathbf{R}}$. Justifier
- 3) Exprimer $\vec{V}_{\mathcal{C}}$ 11/ $_{\mathbf{R}}$ en fonction de V, des paramètres géométriques et angulaires du système
- 4) Exprimer $\vec{V}_{K~12/\mathbf{R}}$ en fonction de V, des paramètres géométriques et angulaires du système
- 5) Exprimer $\vec{V}_{C~12/\mathbf{R}}$ en fonction de V, des paramètres géométriques et de β et ses dérivées
- 6) Le point C étant le centre de la liaison entre (11) et (12), démontrer que l'on a la relation : $\dot{\beta}^2[d^2+e^2-e.d.\sin(2\beta)]=V^2+\dot{\alpha}^2.b^2-2.V.b.\dot{\alpha}.\sin\alpha$
- 7) Exprimer $\vec{\varGamma}_{\mathcal{C}}$ 11/R en fonction des paramètres géométriques et angulaires du système
- 8) Exprimer $\vec{\varGamma}_{G~12/R}$ en fonction des paramètres géométriques et de β et ses dérivées