Institute of Engineering & Management Department of Computer Science & Engineering Computer Architecture Laboratory for 2nd year 4th semester 2017 Code: CS 493

Date: 20/01/18

WEEK-1

Assignment-1: Implementation of AND, OR, NOT, XOR, NAND, NOR gates using Xilinx ISE.

Objective: To implement OR gate

Software used:

Property Name	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

INI	INPUT							
A	В	Y						
0	0	0						
0	1	1						
1	0	1						
1	1	1						

Behavioral Model:

Data flow Model:

Code:

1. Behavioral Model Code:

```
entity orgate is: port( a: in std_logic;
    b: in std_logic;
    c: out std_logic);
end orgate;
architectural behaviour of orgate is:
begin Process(a,b)
begin
if(a='0' and b='0')
then c<='0';
else c<='1';
end if;
end process;
end behavioral;
```

2. Data flow Model Code:

Output:

Current Simulation Time: 1000 ns		100 ns	L	ı	200	ns	ı	1	300	ns 	1	1	40	0 ns	1	1	5 0	00 ns
ģ∬ a	1																	
ó,∐ b	1																	
o_∐ c	1																	

Objective: To implement AND gate

Software used:

<u>Property Name</u>	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

INI	INPUT							
A	В	Y						
0	0	0						
0	1	0						
1	0	0						
1	1	1						

Behavioral Model:

Data flow Model:

Code:

1. Behavioral Model Code:

```
entity andgate is:

port( a: in std_logic;

b: in std_logic;

c: out std_logic);

end andgate;

architectural behaviour of andgate is:

begin Process(a,b)

begin

if(a='1' and b='1') then

c<='1';

else c<='0';

end if;
```

```
end process;
end behavioral;
```

```
entity andgate is:
port( a: in std_logic;
    b: in std_logic;
    c: out std_logic);
end andgate;
architectural Dataflow of andgate is:
begin
c<=a and b;
end Dataflow;</pre>
```

Output:

Current Simulation Time: 1000 ns		100 ns 200 ns 300 ns 400 ns 500 ns
த் la	1	
g l p	1	
த்∬с	1	

Objective: To implement NOT gate

Software used:

Property Name	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

INPUT	OUTPUT
A	В
0	1
1	0

Behavioral Model:

Data flow Model:

Code:

1. Behavioral Model Code:

```
entity notgate is:

port( a: in std_logic;

c: out std_logic);
end notgate;
architectural behaviour of notgate is:
begin
Process(a)
begin
if(a='1')
```

```
then
c<='0';
else c<='1';
end if;
end process;
end behavioral;
```

Output:

	0 ns	I	10 0	ns 	Ι	1	200	ns 	I	; I	30 0	ns		1	40	0 ns	S	50	0 ns
1	en en																		
0	35 72																		
	1	0 ns	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Objective: To implement NOR gate

Software used:

<u>Property Name</u>	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

INI	INPUT							
A	В	Y						
0	0	1						
0	1	0						
1	0	0						
1	1	0						

Behavioral Model:

Data flow Model:

Code:

1. Behavioral Model Code:

```
entity norgate is:

port( a: in std_logic;
    b: in std_logic;
    c: out std_logic);
end norgate;
architectural behaviour of norgate is:
begin
Process(a,b)
```

```
begin
if(a='0' and b='0')
then
c<='1';
else c<='0';
end if;
end process;
end behavioral;
```

Output:

Current Simulation Time: 1000 ns		100 ns	1 1	20 0	ns	1	I	30 0	ns 	ı	ı	40	0 ns	ı	ı	500 ns
ஞ்∐a	1															
b اِلرَّي	1			è												
<u>ا</u> لوٰۃ c	0								100				2-2			

Objective: To implement NAND gate

Software used:

<u>Property Name</u>	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

INPUT		OUTPUT
A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Behavioral Model:

Data flow Model:

Code:

1. Behavioral Model Code:

```
entity nandgate is:

port( a: in std_logic;
    b: in std_logic;
    c: out std_logic);
end nandgate;
architectural behaviour of nandgate is:
```

```
begin
Process(a,b)
begin
if(a='1' and b='1')
then
c<='0';
else c<='1';
end if;
end process;
end behavioral;
```

```
entity nandgate is:
port( a: in std_logic;
    b: in std_logic;
    c: out std_logic);
end nandgate;
architectural Dataflow of nandgate is:
begin
c<=a nand b;
end Dataflow;</pre>
```

Output:

urrent Simulation Time: 1000 ns		100 ns	ı	200 ns	1 1	ŀ	300 ns	1	I	400	ns I	1	1	500 ns
ஞ்∄ a	1													
b الرة	1													
iģ,∐ c	0													

Objective: To implement XOR gate

Software used:

<u>Property Name</u>	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

INI	OUTPUT	
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Beh	aviora	lΝ	lod	el:
	uilli		LUU	~

Data flow Model:

Code:

1. Behavioral Model Code:

```
entity xorgate is:
  port( a: in std_logic;
     b: in std_logic;
     c: out std_logic);
end xorgate;
architectural behaviour of xorgate is:
```

```
begin
Process(a,b)
Begin
if(a= b)
then
c<='0';
else c<='1';
end if;
end process;
end behavioral;
```

```
entity xorgate is:
port( a: in std_logic;
    b: in std_logic;
    c: out std_logic);
end xorgate;
architectural Dataflow of xorgate is:
begin
c<=a xor b;
end Dataflow;</pre>
```

Output:

1 1		1 1	1 1	300 n		1	400	ns	I	ī	500	ns
	**							-				

Assignment-2: Implementation of Half Adder and Full Adder using Xilinx ISE.

Objective: To implement Half Adder

Software used:

<u>Property Name</u>	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value of 'c' (c<= a and b) and 's' (s<= a xor b) for dataflow and behavioral model using if and else statements with required conditions.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

]	NPUT	OUTPUT			
A	В	S	Cout		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

Data flow Model:	
Behavioral Model:	
<u>Code:</u>	
1. Behavioral Model Code: entity halfadder is:	
•	

```
port( a: in std_logic;
    b: in std_logic;
    s: out std_logic;
    c: out std_logic);
end halfadder;
architectural behaviour of halfadder is:
begin
Process(a,b)
begin if(a=b) then
s<=a;
c<=a;
else s<='1';
c <= '0';
end if;
end process;
end behavioral;
```

```
entity halfadder is:

port( a: in std_logic;
    b: in std_logic;
    s: out std_logic;
    c: out std_logic);
end halfadder;
architectural Dataflow of halfadder is:
begin
    s<=a xor b;
c<=a and b;
end Dataflow;
```

Output:

Current Simulation Time: 1000 ns		100 ns	200 ns	1 1	300 ns	, 	400 ns	500 ns
த்∬a	1							
b إيرة	1							
الرؤة	0							
c الرف	1		14.51					

Objective: To implement Full Adder

Software used:

Property Name	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value of s (s<= a xor b xor c) and C_0 (c<=(a and) or (b and c) or (c and a)) for both behavioral and dataflow model using if and else statement.
- iii. Make test bench and check for the given input.

Truth Table:

	INPUT	OUTPUT			
A	В	Cin	S	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Data flow Model:

Behavioral Model:

Code:

1. Behavioral Model Code:

```
entity fulladder is:
port( a: in std_logic;
     b: in std_logic;
     cin: in std_logic;
     s: out std_logic;
     c: out std_logic);
end fulladder;
architectural behaviour of fulladder is:
begin
Process(a,b,cin)
begin
if(a=b) then
s<=cin; c<=a;
else
<=(not cin);
c<=cin;
end if;
end process;
end behavioral;
```

2. Data flow Model Code:

```
entity fulladder is:
port( a: in std_logic;
    b: in std_logic;
    cin: in std_logic;
    s: out std_logic;
    c: out std_logic);
end fulladder;
architectural Dataflow of fulladder is:
begin
s<=(a xor b) xor cin; c<=(a and b) or (b and c) or (a and c);
end Dataflow;</pre>
```

Output:

Current Simulation Time: 1000 ns		100 ns	200 ns	300 ns	400 ns	500 ns	600 ns	700 ns	800 ns	900 ns
a إلوٰ	0									100
p اِلوَّةِ	0			7				9		
jo_∐ c	0									
s اِلْوَٰ	0				8					
c0 آڻو	0					100				19