REAL ESTATE TRENDS & INVESTIGATING RELATIONSHIPS WITH COVID-19

Data Science Capstone Project Exploratory Data Analytics Report

Date:

[11/23/2020]

Team Members: 4

Name: Lawrence Love

Name: Gustavo Ferreira

Name: Frank Zhao

Name: Yan Li

Analysis the basic metrics of variables

House for Sale

Discrete Variables: baths_full, baths, beds, photo_count, baths_half, agent_id

Continuous Variables: price, lat, lon, building size(sqft), lot size(sqft)

Categorical Variables: property_id, prop_type, prop_sub_type, prop_status, city, line, state_code, county, neighborhood name, agent name, brand name, postal code

Size: 9562 instances, 23 Features

Statistics of the Price Variable:

Mean	Standard	Min	Max	25%	50%	75%
	Deviation			Percentiles	Percentiles	Percentiles
381703.56	559604.07	6000	25000000	156250	265000	434900

House for Rent

Discrete Variables: year_built, beds, baths_full, baths, photo_count, garage

Continuous Variables: price, lat, lon, building size(sqft), lot size(sqft)

Categorical Variables: property_id, prop_type, list_date, last_update, city, line, state_code, county, neighborhood_name, status, brand_name, broker_name, postal_code

Size: 5277 instances, 25 Features

Statistics of the Price Variable:

Mean	Standard	Min	Max	25%	50%	75%
	Deviation			Percentiles	Percentiles	Percentiles
1808.65	881.32	334	12000	1300	1625	2070

Sold Houses

Discrete Variables: total_homes_sold, median_days_to_close, total_new_listings,

average_new_listings, inventory, total_active_listing, age_of_inventory,

median days on market

Continuous Variables: median_sale_price, price_drops,

percent_active_listings_with_price_drops, pending_sales, median_new_listing_price,

homes_delisted, median_active_list_price,avg_offer_to_list, months_of_supply, percent_total_price_drops_of_inventory

Categorical Variables: period begin, period end, duration

Size: 200 instances, 21 Features

Statistics of the median_sale_price Variable:

Mean	Standard	Min	Max	25%	50%	75%
	Deviation			Percentiles	Percentiles	Percentiles
206690.14	24408.54	143000	260000	189800	204950	220062.5

COVID-19 Cases by zip code – There were 14 different COVID-19 datasets used in this project. This is the main dataset of focus is below:

Discrete Variable: zip code

Categorical Variable: covid_status

Continuous Variable: count

Size: 116 instances, 3 features

Statistics of count variable:

Mean	Standard	Min	Max	25%	50%	75%
	Deviation			Percentiles	Percentiles	Percentiles
6946.81	8902.00	143000	34922	370.50	1775.00	12522.00

Non-graphical and graphical univariate analysis

House for Sale

Figure 1 Distribution of price, baths_full, baths, beds, photo_count, baths_half, building_size(sqft), lot_size(sqft)

 $Figure\ 2\ Boxlpots\ of\ price,\ baths_full,\ baths,\ beds,\ photo_count,\ baths_half,\\ building_size(sqft),\ lot_size(sqft)$

counts counts prop_type prop_sub_type condo 7078 townhomes 5072 1182 land condos 1186 720 multi_family duplex_triplex 792 single_family 582

Figure 3 Unique Values of prop type

Figure 4 Unique Values of prop_sub_type

counts

neighborhood_name	counts	postal_code
Center City	1728	19146
South Philadelphia	833	19147
West Philadelphia	609	19148
Lower North	458	19121
Far Northeast Philadelphia	356	19123
Kensington	353	19125
Upper North Philadelphia	353	19122
North Delaware	329	19103
lear Northeast Philadelphia	287	19145
Point Breeze	287	19134

Figure 5 TOP 10 Unique Values of neighborhood name

Figure 6 TOP 10 Unique values of postal_code

House for Rent

Figure 7 Distribution of price, baths_full, baths, beds, photo_count, year_built, building_size(sqft), lot_size(sqft)

Figure 8 Boxplots of price, baths_full, baths, beds, photo_count, year_built, building_size(sqft), lot_size(sqft)

	counts		counts
	oounto	postal_code	
prop_type		19103	800
condo	3217	19107	469
townhome	1116	19106	389
		19146	356
apartment	638	19121	346
single_family	214	19102	343
duplex_triplex	86	19147	334
other	4	19130	308
Other	7	19123	272
multi_family	2	19122	234

Figure 9 Unique Values of prop_type

Figure 10 TOP 10 Unique values of postal_code

counts neighborhood_name **Center City** 1231 Rittenhouse 580 **Logan Square** 367 **North Central** 202 128 **Fishtown Graduate Hospital** 124 **Point Breeze** 120 Rittenhouse Square 101 97 **Queen Village East Kensington** 96

Figure 11 TOP 10 Unique Values of neighborhood_name

Sold Houses

Figure 12 Distribution of All the Numerical Variables

Figure 13 Boxplots of All the Numerical Variables

COVID-19 Cases by zip code

	covid_status	zip_code	count
0	NEG	19140	21439
1	POS	19127	156
2	NEG	19133	9398
3	POS	19146	1266
4	NEG	19138	13570
5	NEG	19152	19149
6	NEG	19188	6
7	POS	19115	1672
8	NEG	19144	21584
9	NEG	19141	12969

Figure 14 First ten rows of dataset

Figure 15 Barplot for positive cases by zip code

Missing value analysis and outlier analysis

Missing value

In our "house for sale" dataset, there are 9562 instances and 31 features after the first requesting, and 9562 instances and 18 features after removing unuseful ones. Among those 18 features, 7 features are containing missing values. As shown below:

property_id	0	beds	1182
prop_type	0	building_size	1381
prop_sub_type	2512	agents	94
address	0	last_update	0
branding	0	photo_count	0
prop_status	0	page_no	0
price	0	rank	0
baths_full	1760	lot_size	1593
baths	0	baths_half	6168

Figure 16 Missing Values

prop_sub_type: Since we have "prop_type" without missing values, we don't have to worry about it, and we can drop it.

Baths_full, beds, building_size, lot_size, and baths_half: For these numerical features, we fill up the missing value by 0. It's easy to understand that if a property has that missing values in those features, we can assume it doesn't have any in those features.

Agents: Since we don't include this feature in visualization, we just don't change anything to it. However, for our second stage, the model training, we may use this feature and by that time, we will remove the rows that have missing values in this feature. It won't affect that much by removal since there are only 94 missing values.

Historical and Current Listing Data

In conducting statistical analysis on the historical and current listing datasets, we used various tests for equal variance to help determine that we did not have equal variance. According to boxplots, both datasets had outliers for price ranging from ~\$1,000,000 up to ~\$25,000,000. Based on the visual provided by the boxplot, it was determined to consider all data with prices greater than \$899,999 outliers. After re-running the variance tests, we now had results to suggest equal variance between the datasets.

Feature engineering and analysis

This project contained no predictive modeling or machine learning. However, some feature engineering took place by creating two different "average price per sqft" variables and two different "price per square feet" variables. For these variables, we had data on "lot_size (sqft)" to measure the size of a lot, and "building_size (sqft)" to measure the space inside a building. We then took the price of each listing and divided it by that listing's respective "X_size (sqft)" to get "building price per sqft" and "lot price per sqft".

Additionally, the dataset contained data for postal codes. This allowed us to analyze regional data within Philadelphia. Using the postal codes, we were then able to use our new "price_per_sqft" to create and analyze data for the average price per sqft for both the lots and the buildings in each postal code.

We found that some properties have a value of zero in either "building_size" or "lot_size" which lead to a result of "inf" after applying division to get "building_price_per_sqft" and "lot_price_per_sqft". Thus, we remove properties with 0 in either "building_size" or "lot_size" to create a more balanced dataset for visualization. Every property will have no zeros in both "building_size" and "lot_size", and when calculating the average unit price in a postal code region, these two features will be counted.

Figure 17 Average building price per sqft by postal code (before removal)

Figure 18 Average lot price per sqft by postal code (before removal)

Figure 19 Average building price per sqft by postal code (After removal)

We can see that before removing property with zero in those two features, the region of 19123 shows a significantly high average value in "average lot size", which shows the most expensive region and does not make sense. By applying removal, we now see a more reasonable visualization.

Appendix

1.Code for Figure 1 Distribution of price, baths_full, baths, beds, photo_count, baths_half, building size(sqft), lot size(sqft)

2.Code for Figure 2 Boxplots of price, baths_full, baths, beds, photo_count, baths_half, building_size(sqft), lot_size(sqft)

Table of Contributions

The table below identifies contributors to various sections of this document.

	Section	Writing	Editing
1	Analysis the basic metrics of variables	L. Love, Y.Li	G.Ferreira
2	Non-graphical and graphical univariate analysis	L. Love, Y.Li, F.Zhao	G.Ferreira
3	Missing value analysis and outlier analysis	L.Love, F.Zhao	G.Ferreira
4	Feature engineering and analysis	L.Love, F.Zhao	G.Ferreira
5	Appendix	Y.Li	G.Ferreira