Introduction to Survival Analysis

Understanding Time-to-Event Data

Presented by:

Emmanuel DJEGOU
PhD Candidate in Statistics
Missouri S&T

What is Survival Analysis?

- Study of time until an event occurs
- Crucial in medicine, engineering, business, insurance, and beyond
- Events include:
 - 📴 Death

 - 🖸 Relapse
 - Name Customer churn
 - Morbidity
 - 💸 Retirement

Key Variables

Event Time (T):

Time until the event occurs.

Censoring (C):

Occurs when the event is not observed by the end of the observation period.

Status Indicator (δ):

- δ =1: Event observed.
- δ =0: Event censored.
- Data: (Y = min(T, C), δ): Observed time is Y=min(T,C), with indicator δ .

Study Start

Event

↑ Study End

Types of Censoring

- Right censoring (most common): event has not occurred yet
- Left censoring: event occurred before observation
- Interval censoring: event occurred in a time interval

Survival & Hazard Functions

• Definition:

$$S(t) = P(T > t) = 1 - F(t)$$

- F(t) is the CDF.
- The probability an individual survives past time t.
- Starts at 1, decreases over time
- If f(t) is the PDF:

$$S(t) = \int_{t}^{\infty} f(u) \ du = 1 - F(t)$$

• *Or*:

$$f(t) = -\frac{dS(t)}{dt}$$

Survival & Hazard Functions

Hazard Function:

$$\lambda(t) = \frac{f(t)}{S(t)}$$

- Think of it as: "If you're alive at time t, what's the risk you die instantly?"
- Cumulative Hazard function:

$$\Lambda(t) = \int_{0}^{t} \lambda(u) \, du$$

Relation to survival:

$$S(t) = \exp(-\Lambda(t))$$

- It is the total accumulated risk of experiencing the event up to time t.
- Think it as the "exposure to danger" that builds up over time.
- The longer you "survive," the more risk you've accumulated but not necessarily experienced yet.

Thank you!

