Vo Ngoc Bich Uyen

Exercise 1: Show that $j(x) = \frac{1}{x}$ is not integrable on [0,1]Proof: + Take $j_n(x) = \frac{1}{x} I_{-\frac{1}{n}}$, $j_n(x)$. We have $j_n(x) \to j_n(x)$ as $n \to \infty$ almost everywhere.

+ Applying the monotone convergence theorem, we have

$$\lim \int_{\mathcal{I}} f_n(x) \mu(dx) = \int \lim_{x \to \infty} f(x) \mu(dx) = \int_{\mathcal{I}} f(x) \mu(dx) = \int_{\mathcal{I}} \frac{1}{x} dx = \infty$$

$$[0,1] \qquad [0,1] \qquad [0,1]$$

Here $\frac{1}{x}$ is non-negative on [0,1] a.e.

Since $\lim_{n\to\infty} \int y_n(x) \mu(dx)$ is injinite, y(x) is not integrable on [0,1]

Exercise 2: Let E, y be independent random variables on (-2, F, P) E[IEI] <∞, E[I] <∞. Prove that E[E] = E[E]. E[] Proof: + In the case that E = IA for A EF and 2 = IB for BEF We have $A \in \sigma(\mathcal{E})$; $B \in \sigma(\mathcal{I})$. Then $E(E_7) = E(I_A.I_B) = E(I_{AB}) = P(AB) = P(AB) = P(A).P(B) = E(I_A).E(I_B) =$ + In the case that E and n are general non-negative realizablued r.v. Let \mathcal{E}' , γ' be positive simple real-valued r.v. that $\sigma(\mathcal{E})$ and $\sigma(\gamma)$ measurable. We have $\mathcal{E}' = \sum_{k=1}^{N} \alpha_k I_{Ak}$; $\gamma' = \sum_{k=1}^{N} \beta_k I_{Bk}$. Then IE (E'n') = E ((\(\bar{\Sigma}_{k=1} \delta_k \I_{A_k}\)(\(\bar{\Sigma}_{l=1} \beta_l \I_{B_l}\)) = IE (\(\bar{\Sigma}_{k=1} \bar{\Sigma}_{l=1} \delta_k \beta_l\) = \(\sum_{k=1} \sum_{l=1} \alpha_k \beta_l \cdot P(\A_k \cappa_k) = \sum_{k=1} \sum_{l=1} \alpha_k \beta_l \cdot P(\A_k) \cdot P(\B_l) = \(\sum_{k=1} \sum_{l=1} \alpha_k \beta_l \cdot P(\A_k) \cdot P(\B_l) = \) $= \left(\sum_{k=1}^{n} \alpha_{k} P(A_{k})\right) \left(\sum_{\ell=1}^{m} \beta_{\ell} P(B_{\ell})\right) = E\left(\sum_{k=1}^{n} \alpha_{k} I_{A_{k}}\right) \cdot E\left(\sum_{\ell=1}^{n} \beta_{\ell} I_{B_{\ell}}\right) = E(E') \cdot E(P')$ + We can jind & non-decreasing sequences { En In EN and In In En of positive simple r.v. with $\xi_n \to \xi$ and $\eta_n \to \eta$ as $n \to \infty$; i.e. $\mathcal{E}(\omega) = \lim_{n \to \infty} \mathcal{E}_n(\omega)$ and $\eta(\omega) = \lim_{n \to \infty} \mathring{\eta}_n(\omega)$ for all $\omega \in \Omega$ We can show that $\xi_n \in \sigma(\xi)$ and $\eta_n \in \sigma(\eta) \ \forall n \in \mathbb{N}$. Indeed, $\mathcal{E}_{n}(\mathbf{e}\omega) = \sum_{k=0}^{\infty} k.2^{n} I_{\mathbf{A}_{k}n}(\omega)$ where $A_{\mathbf{k}^{n}} = \sqrt{\frac{k}{2^{n}}} \leq \mathcal{E} < \frac{k+1}{2^{n}}$ $; k \neq n 2^n$ $j k = n.2^n$ Each A_k is a $\sigma(\mathcal{E})$ -measure, since $\sigma(\mathcal{E})$ is generated by the preimages of \mathcal{E} under borel sets And your characteristic junction measurable is and only is set measurable and pointwise sum of measurable junctions is measurable, we have that \mathcal{E}_n is $\sigma'(\mathcal{E})$ measurable $\forall n \in \mathbb{N}$

Similarly, n is a o(n)-meanirable \n ∈ N.

=) $\forall n \in \mathbb{N}$, from (1) we have $|\mathbb{E}(\xi_n, \gamma_n)| = \mathbb{E}(\xi_n) \cdot \mathbb{E}(\gamma_n)$ By monotone $\Rightarrow (2) \mid n \to \infty \quad |(3) \quad |(4) \quad |$ convergence theorem $\mathbb{E}(\xi_n) \quad \mathbb{E}(\xi) \quad \mathbb{E}(\gamma_n)$ $E(\xi, \gamma)$ $E(\xi)$ $E(\gamma)$

(2): because {En7n} new is increasing sequence; (3)&(4) by Monotone similarly (2) Thus $\mathbb{E}(\mathcal{E}_2) = \mathbb{E}(\mathcal{E}) \cdot \mathbb{E}(\mathcal{I})$

Proof: + Define $f_A(x) = f(x) I_{1x: f_f(x)/A}(x) \forall A > 0$. We can see that f_A is bounded by A and it's measurable because $f_A: |f(x)| < A_3$ is a measurable set.

+ Consider a sequence $g_n = |j-j_n|$; g_n is measurable and $|g_n| \le |j|$ because $g_n(x) = 0 \rightarrow 0$ a.e. since $g_n(x)$ doesn't converge to j(x) only j(x)

is & injinite and since of is integrable - only true for some mull set of points.

Thus, we have $\lim_{n \to \infty} \int g_n d\lambda = \int \lim_{n \to \infty} g_n d\lambda = 0$

+
$$\forall \frac{\varepsilon}{2}$$
 70, $\exists n : \int g_n d\lambda = \int |j-j_n| d\lambda < \frac{\varepsilon}{2}$

+ According to Luzin theorem, $\forall \mathcal{E}_1 = \frac{\mathcal{E}}{4n} > 0$, \exists continuous junction $l(x) \in C([a,b])$ that $\lambda(\exists x : \exists_n(x) \neq l(x) \}) < \mathcal{E}_1 = \frac{\mathcal{E}}{4n}$

+ According to Tietze extension theorem, there exits such continuous junction less that is bounded by n and its extension can also be chosen to be bounded by the same constant. Thus,

 $\int |l-j|d\lambda \leq \int (|l-j_n|+|j_n-j|)d\lambda = \int |l-j_n|d\lambda + \int |j_n-j|d\lambda =$ $[a,b] \qquad [a,b] \qquad [a,b]$

$$= \int |\ell - j_n| dx + \int |j_n - j| d\lambda < \int 2n d\lambda + \frac{\varepsilon}{2} < 2n \cdot \frac{\varepsilon}{4n} + \frac{\varepsilon}{2} = \varepsilon$$

$$|n:\ell(x) \neq j_n(x) \qquad [a,b] \qquad |n:\ell(x) \neq j_n(x)|$$

Here I is our desired junction Je

(X, F, M) - measurable space with jirite measure u Exercise 4: $f: X \to \mathbb{R}$ - a measurable junction $A_n = \{x : |y(x)| \ge n \}; B_n = \{x : n \le |y(x)| \le n+1\}$ Show that the jollowing conditions are equivalent: + j is integrable w.r.t. u (1) + $\sum_{k=1}^{\infty} \kappa \mu(B_k) < \infty$ (2) $+\sum_{k=1}^{\infty}\mu(A_k)<\infty$ (3) Provide counterexamples jor equivalente ij μ is σ -jinite. Proof: +, (1) =) (2) Take $j_n(x) = \sum_{i=k}^n K I_{B_K}(x)$. We have $[j_n d\mu = \sum_{k=1}^n K \mu(B_k)]$. Since jn is non-decreasing sequence, sup Jndu = Supjndu < Stjldu < 00 Here supjn < |j| because jn < |j| \tan; j is integrable = |j| is integrable. Thus of Exu(Br) = sup Jondu = Sup Jondu < Styldu < 00 We have $\sum_{k=1}^{\infty} k \mu(B_k) < \infty$, it's also true that $\sum_{k=1}^{\infty} (k+1) \mu(B_k) < \infty$ because $\sum_{k=1}^{\infty} (k+1)\mu(B_k) \leq \sum_{k=1}^{\infty} 2k\mu(B_k) = 2\sum_{k=1}^{\infty} k\mu(B_k) < \infty$ Thus IJI is integrable => j is integrable w.r.t. xx u +) (2) =) (3) $J \sum_{k=1}^{\infty} K\mu(B_k) < \infty, \text{ then } \sum_{k=1}^{\infty} K\mu(B_k) = \sum_{k=1}^{\infty} \sum_{m=1}^{K} \mu(B_k) \sum_{k=1}^{\infty} \sum_{m=k}^{\infty} \mu(B_m) \sum_{k=1}^{\infty} \mu(A_k) < \infty$ The (*) can be done because $K\mu$ (bk) > 0, so the reodering is possible. (*2) can be done because $A_k = \bigcup_{m=k}^{\infty} \beta_m$. +) (3) => (2) $J \sum_{k=1}^{\infty} \mu(A_k) < \infty \text{ . Then } \sum_{k=1}^{\infty} \mu(A_k) = \sum_{k=1}^{\infty} \sum_{m=k}^{\infty} \mu(B_m) = \sum_{k=1}^{\infty} \kappa \mu(B_k) < \infty$ D · Counterexample: μ - σ - jinite; j is measurable $j(x) = \frac{2}{3}$. f is a simple junction =) $f d\lambda = \frac{2}{3}\lambda(R) = \infty$ However, $\sum_{k=1}^{\infty} \mu(A_k) = \sum_{k=1}^{\infty} k \mu(B_k) = 0$, since $\forall k > 1$, $\mu(A_k) = \mu(B_k) = 0$

Exercise 5: $\iint_{n=1}^{\infty} - \text{sequence of measurable junctions on } (x, F, \mu)$ $\mu - \sigma - \text{ jihite measure }; \quad \int_{n=1}^{\mu} f \text{ as } n \to \infty$.

Assume that $\exists \varphi(x) > 0$, such that $\int_{x}^{\infty} \varphi(x) \mu(dx) < \infty$ and $|f_{n}(x)| \leq \varphi(x) \mu - a.s. \quad \forall n \in \mathbb{N}$. Show that $\int_{x}^{\infty} |f_{n}(x) - f(x)| \mu(dx) \to 0 \quad \text{as } n \to \infty$

Proof: +, By Riesz theorem, we have that if $j_n(x) \xrightarrow{L} j(x)$ then $\exists i j_n(x) j$ so that $j_n(x) \rightarrow j(x)$; μ -a.s.

+) Take $A_k = \{x : | f_{n_k}(x) | > \psi(x) \}$; $B = \{x : f_{n_k}(x) \neq y(x) \}$ =) $\mu(A_k) = 0$; $\mu(B) = 0$ since almost everywhere convergence jollows from almost uniform convergence.

Take $C = B(1) \setminus A$, $A = \mu(C) = 0$ and inside $X \setminus C = A$.

Take $C = B \cup \bigcup_{k=1}^{\infty} A_k \rightarrow \mu(C) = 0$ and inside $X \setminus C : \lim_{k \to \infty} J \Rightarrow |J| \le \psi$ $\int_{M_k} \{ \psi \}$

+, Take & = | jnx - j |. Then & [| jnx | + | j | \le 2 | 4 |

+, According to Lebesgue's dominated convergence theorem, $\lim_{X \to \infty} \int k \, d\mu = \int \lim_{X \to \infty} k \, d\mu = 0.$

+, Suppose that In doesn't convergence to J.

There exists E > O and a subsequence In; such that $\int I_{nj} - I d\mu > E$.

But we know that since In, converges to I in measure, so it has some subsequence that converges to I in mean -, a contradiction.