Design of Simple Machine Elements

ME 310: Mechanical Design

Sappinandana Akamphon

Department of Mechanical Engineering, TSE

Outline

Simple Machine Elements

Beam Design

Column Design

Shaft Design

Not-so-simple Machine Elements

- · Most elements have multiple loads at once
- · What do we do?
- · Relax. That's what we are here to find out.

Outline

Simple Machine Elements

Beam Design

Column Design

Shaft Design

Fully Stressed Beams

Fully Stressed Cantilever Beam

$$\sigma(x) = \frac{My}{I} = \frac{Fx(h/2)}{bh^3/12} = \frac{6Fx}{bh^2}$$

Shape of Fully Stressed Cantilever Beam

Let
$$\sigma(x) = S_y$$
 for all x
$$\frac{6Fx}{bh^2} = S_y$$

$$bh^2 = \frac{6Fx}{S_y} = cx$$

Shape of Fully Stressed Cantilever Beam

• Set b as a constant = constant width

Shape of Fully Stressed Cantilever Beam

• Set h as a constant = constant thickness

Exercise: Fully Stressed Simply-supported Beams

- · Find shapes for a simply supported beam with midpoint load
 - 1. constant h
 - 2. constant *b*

Fully Stressed Beam in 3D

Structural sections of beams

Beam design constraints

- Stress
- Deformation

Which of the conditions is mandatory? Why?

Stress Constraint

From beam and safety factor equations

$$\sigma = \frac{My}{I} = \frac{M}{S}$$

$$N_S = \frac{S_y}{\sigma}$$

We have

$$S = \frac{N_s M}{S_y}$$

Deformation Constraint

$$\delta = k \frac{FL^3}{EI}$$
$$I = k \frac{FL^3}{E\delta}$$

k depends on loading and support conditions

Example: Gantry Crane

Select a proper section to build a 3-ton gantry crane of 4-m span. The maximum deflection should be less than 1 cm.

$$S_y = 300 \text{ MPa}$$

$$\delta = \frac{FL^3}{48EI}$$

Section Properties

	Mass	Flange Axis 1-1				Axis 2-2						
Designation	per meter	Area	Depth	Web thickness	Width	Average thickness	I	S	r	I	S	r
	kg	mm ²	mm	mm	mm	mm	$\times~10^6~\mathrm{mm}^4$	$\times 10^3 \text{mm}^3$	mm	$\times~10^6~\text{mm}^4$	$\times 10^3 \mathrm{mm}^3$	mm
S 610 × 149	149	18900	610	18.9	184	22.1	991	3260	229	19.7	215	32.3
S 610 × 119	119	15200	610	12.7	178	22.1	874	2870	241	17.5	197	34.0
S 510 × 143	143	18200	516	20.3	183	23.4	695	2700	196	20.8	228	33.8
S 510 × 112	112	14200	508	16.1	162	20.2	533	2100	194	12.3	152	29.5
S 460 × 104	104	13200	457	18.1	159	17.6	384	1690	170	10.0	126	27.4
S 460 × 81.4	81.4	10300	457	11.7	152	17.6	333	1460	180	8.62	113	29.0
S 380 × 74	74.0	9480	381	14.0	143	15.8	202	1060	146	6.49	90.6	26.2
S 380 × 64	64.0	8130	381	10.4	140	15.8	186	973	151	5.95	85.0	26.9
S 310 × 74	74.0	9420	305	17.4	139	16.7	126	829	116	6.49	93.2	26.2
S 310 × 52	52.0	6580	305	10.9	129	13.8	94.9	624	120	4.10	63.6	24.9
S 250 × 52	52.0	6650	254	15.1	125	12.5	61.2	482	96.0	3.45	55.1	22.8
S 250 × 37.8	37.8	4810	254	7.90	118	12.5	51.2	403	103	2.80	47.4	24.1
S 200 × 34	34.0	4360	203	11.2	106	10.8	26.9	265	78.5	1.78	33.6	20.2
S 200 × 27.4	27.4	3480	203	6.88	102	10.8	23.9	236	82.8	1.54	30.2	21.0
S 150 × 25.7	25.7	3260	152	11.8	90.7	9.12	10.9	143	57.9	0.953	21.0	17.1
S 150 × 18.6	18.6	2360	152	5.89	84.6	9.12	9.16	120	62.2	0.749	17.7	17.8
\$ 100 × 14.1	14.1	1800	102	8.28	71.1	7.44	2.81	55.4	39.6	0.369	10.4	14.3
\$ 100 × 11.5	11.5	1460	102	4.90	67.6	7.44	2.52	49.7	41.7	0.311	9.21	14.6

Outline

Simple Machine Elements

Beam Design

Column Design

Shaft Design

Column constraints

- Theoretically we have $P = \frac{\pi^2 EI}{L_e^2}$
- · Shouldn't that be enough?
- yielding vs buckling

Real World Columns

Theory

- · perfectly straight
- consistent properties
- · centroidal load

Real World

- · not true
- never true
- · does not happen ever

Column Dimensions and Design Equations

· Allowable stress depends on beam slenderness ratio

$$\lambda = \frac{KL}{r_g}$$

- Need to find a 'critical slenderness ratio' $\lambda_{\rm c}$ where the same load can cause buckling or yielding

Steel Column Critical Slenderness Ratio

- Critical slenderness ratio λ_c where the same load causes buckling and yielding

$$S_y = \frac{\pi^2 E}{\lambda_c^2}$$

$$\lambda_c = \sqrt{\frac{\pi^2 E}{S_y}}$$

 \cdot longer beams o buckling, shorter beams o yielding

Column with Eccentric Loads (or Bending Loads)

- · What if the column is taking a bending load as well?
- · For short columns

$$\sigma_{\text{max}} = \frac{P}{A} + \frac{My}{I}$$

And for longer columns?

· Use interaction formula

$$A_{a} = \frac{P}{(\sigma_{a})_{allow}}$$

$$A_{b} = \frac{My}{(\sigma_{b})_{allow}r_{g}^{2}}$$

$$A \geqslant A_{a} + A_{b}$$

$$\frac{\sigma_{a}}{(\sigma_{a})_{allow}} + \frac{\sigma_{b}}{(\sigma_{b})_{allow}} \leqslant 1$$

Example: Column with Bending Load(s)

Reconsider the gantry crane column example, but now the beam is fixed to the columns. The new safety factor should be 3.

Solution: Column with Bending Loads

- · Maximum stress happens when the weight is in the middle.
- The compressive load is that each column takes is $\frac{F}{2}$ = 50000 N.
- The bending moment caused by midpoint load is $\frac{FL}{8}$ = 50000 N-m

Calculating the ratio

- We need to determine the ratio $\frac{\sigma_a}{(\sigma_a)_{allow}} + \frac{\sigma_b}{(\sigma_b)_{allow}}$
- For steel, $(\sigma_a)_{allow} = (\sigma_b)_{allow} = \sigma_{allow}$
- · As a sample calculation,

$$\begin{split} \sigma_a &= \frac{50000.0}{0.0189} = 2645502.6455026455 \text{ Pa} \\ \sigma_b &= \frac{50000}{0.00326} = 15337423.312883437 \text{ Pa} \\ \frac{\sigma_a + \sigma_b}{\sigma_{allow}} &= 0.18 \end{split}$$

Solution

Use data table to generate results

Designation	Axial Stress	Bending Stress	$\frac{\sigma_a + \sigma_b}{\sigma_{allow}}$
S610 x 149	2.65e+06	1.53e+07	0.18
S510 x 143	2.75e+06	1.85e+07	0.21
S460 x 104	3.79e+06	2.96e+07	0.33
S380 x 74	5.27e+06	4.72e+07	0.52
S310 x 74	5.31e+06	6.03e+07	0.66
S250 x 52	7.52e+06	1.04e+08	1.11

In this case, S310 x 74 is our pick.

Outline

Simple Machine Elements

Beam Design

Column Design

Shaft Design

Shaft Loading Conditions

- Torque
- \cdot Bending \Longrightarrow radial load from torque transmission

$$F = \frac{T}{r\cos\theta} \qquad F = \frac{T}{r} \qquad F_1 - F_2 = \frac{T}{r}$$

Example: Timing Belt Shaft

Size the shaft (AISI 1040, S_y = 400 MPa, S_{ut} = 600 MPa) using

- 1. MDET
- 2. Soderberg theory

General Guidelines

- 1. shaft should be as short as possible
- 2. avoid sharp step
- 3. round shaft if possible
- 4. to save weight \rightarrow hollow shaft

Typical Shaft Design Equation

Using stress constraints and MDET

$$d = \left(\frac{4N_s}{\pi S_y} \sqrt{(8M + Fd)^2 + 48T^2}\right)^{1/3}$$