5

5

1. Find the area of the triangle determined by the points P(-2,2,0), Q(0,1,-1) and R(-1,2,-2).

Solution. The area of the triangle with two sides \overrightarrow{PQ} and \overrightarrow{PR} is half the area of the parallelogram determined by \overrightarrow{PQ} and \overrightarrow{PR} , which is $\overrightarrow{PQ} \times \overrightarrow{PR}$.

Note that
$$\overrightarrow{PQ} = \langle 2, -1, -1 \rangle$$
 and $\overrightarrow{PR} = \langle 1, 0, -2 \rangle$

Note that
$$\overrightarrow{PQ} = \langle 2, -1, -1 \rangle$$
 and $\overrightarrow{PR} = \langle 1, 0, -2 \rangle$.
Then, $\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -1 \\ 1 & 0 & -2 \end{vmatrix} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$

So, the area of the triangle
$$=\frac{1}{2}\left|\overrightarrow{PQ}\times\overrightarrow{PR}\right|=\frac{1}{2}\sqrt{4+9+1}=\frac{\sqrt{14}}{2}.$$

2. Find parametric equations for the line through $\mathbf{Q}(-1,1,3)$ that is perpendicular to the vectors $\mathbf{u} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$.

> Solution. We need a point on the line and a vector pointing along the line. To find the vector we use $\mathbf{u} \times \mathbf{v}$, since it is perpendicular to both \mathbf{u} and \mathbf{v} .

The vector is
$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 3 & 4 & 5 \end{vmatrix} = -2i + 4j - 2k.$$

Since the line is through $\mathbf{Q}(-1,1,3)$, the equations are

$$x = -1 - 2t, \ y = 1 + 4t, \ z = 3 - 2t$$

where $-\infty < t < \infty$