

Document Version: 0.1 Date: 2004/10/18

Product Functional Specification

19.0 inch SXGA Color TFT LCD Module Model Name: M190EN04 V5

(U) Preliminary Specification() Final Specification

Note: This Specification is subject to change without notice.

AU OPTRONICS CORPORATION

Product Specification

19.0" SXGA Color TFT-LCD Module

Model Name: M190EN04 V5

Approved by	Prepared by
CCChiu	Wang, YoHang

DDBU Marketing Division / AU Optronics corporation

Customer	Checked & Approved by

Contents

1.0 Handling Precautions	6
2.0 General Description	
2.1 Display Characteristics	7
2.2 Optical Characteristics	
3.0 Functional Block Diagram	
4.0 Absolute Maximum Ratings	
4.1 TFT LCD Module	12
4.2 Backlight Unit	12
4.3 Absolute Ratings of Environment	
5.0 Electrical characteristics	
5.1 TFT LCD Module	
5.1.1 Power Specification	13
5.1.2 Signal Electrical Characteristics	
5.2 Backlight Unit	
6.0 Signal Characteristic	
6.1 Pixel Format Image	
6.2 The input data format	
6.3 Signal Description	18
6.4 Timing Characteristics	19
6.5 Power ON/OFF Sequence	21
7.0 Connector & Pin Assignment	22
7.1 TFT LCD Module	
7.2 Backlight Unit	
7.3 Signal for Lamp connector	23
8.0 Reliability	23
9.0 Environment	24
9.1 Temperature and Humidity	24
9.1.1 Operating Conditions	24
9.1.2 Shipping Conditions	
9.2 Atmospheric Pressure	24
9.3 Thermal Shock	24
10.0 Reliability	25
10.1 Failure Criteria	
10.2 Failure Rate	
10.2.1 Usage	25

10.2.1 Component De-rating	25
10.3 On/OFF Cycle	25
11.0 Safety	25
11.1 Sharp Edge Requirements	25
11.2 Materials	25
11.2.1 Toxicity	25
11.2.2 Flammability	26
11.3 Capacitors	26
12.0 Other requirement	26
12.1 National Test Lab Requirement	26
12.2 Label	26
13.0 Mechanical Characteristics	27

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 2004/10/18	2004/10/18 All First Edition for Customer		All	

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press or pat the panel surface by fingers, hand or tooling
- 9) Do not press the reflector sheet at the back of the module to any directions.
- 10) In case if a module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL reflector edge softly. Otherwise the TFT module may be damaged.
- 11) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT module.
- 12) After installation of the TFT module into an enclosure (Desktop monitor Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT module from outside. Otherwise the TFT module may be damaged.

2.0 General Description

This specification applies to the 19.0 inch Color TFT-LCD Module M190EN04.

The display supports the SXGA (1280(H) x 1024(V)) screen format and 16.2M colors (RGB 6-bits data+FRC data). All input signals are 2 Channel LVDS interface compatible.

This module does not contain an inverter card for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

ITEMS	Unit	SPECIFICATIONS	
Screen Diagonal	[mm]	480 (19.0")	
Active Area	[mm]	376.32 (H) x 301.06 (V)	
Pixels H x V		1280(x3) x 1024	
Pixel Pitch	[mm]	0.294 (per one triad) x 0.294	
Pixel Arrangement		R.G.B. Vertical Stripe	
Display Mode		Normally White	
White Luminance (Center)	[cd/m ²]	270 (center, Typ) @ 7mA	
Contrast Ratio		550 : 1 (Typ)	
Optical Response Time	[msec]	8 ms(Typ, on/off)	
Color Saturation		72% NTSC	
Nominal Input Voltage VDD	[Volt]	+5.0 V	
Power Consumption	[Watt]	28W(Typ)	
(VDD line + CCFL line)		(w/o Inverter, All black pattern)	
Weight	[Grams]	2700 (Max)	
Physical Size	[mm]	396 (H) x 324 (V) x 18 (D) (Typ)	
Electrical Interface		Dual channel LVDS	
Support Color		16.2M colors (RGB 6-bit data+FRC data)	
Temperature Range			
Operating	[°C]	0 to +50	
Storage (Shipping)	[°C]	-20 to +60	
TCO'03 compliance		TCO'03 compliance	Note
Surface Treatment		Hard-coating (3H), Non-Glare treatment	

Note: Tuning the brightness and contrast function in OSD let the luminance to 125 cd/m2. When tuning the brightness to 125cd/m2, the function on OSD should not restrict our V-T curve. In other word, the higher contrast, the range of panel's V-T curve will be more extensive to get the better performance. If it is not possible to achieve the test luminance by this procedure it is suitable to tune contrast higher and brightness lower.

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C:

Item	Unit	Conditions	Min.	Тур.	Max.	Note
Viewing Angle	[degree]	Horizontal (Right)	65	70	-	
	[degree]	CR = 10 (Left)	65	70	-	
	[degree]	Vertical (Up)	70	75	-	
	[degree]	CR = 10 (Down)	55	60	-	
Contrast ratio		Normal Direction	350	550		
Response Time	[msec]	Raising Time	-	5.6	8.4	Note 1
	[msec]	Falling Time	1	2.4	3.6	Note 1
	[msec]	Rising + Falling	-	8	12	Note 1,2
Color / Chromaticity Coordinates (CIE)		Red x	0.604	0.634	0.664	
Coordinates (CIL)		Red y	0.324	0.354	0.384	
		Green x	0.257	0.287	0.317	
		Green y	0.591	0.621	0.651	
		Blue x	0.108	0.138	0.168	
		Blue y	0.047	0.077	0.107	
Color Coordinates (CIE) White		White x	0.283	0.313	0.343	
		White y	0.299	0.329	0.359	
White Luminance at CCFL 7.0mA (central point)	[cd/m ²]		215	270	-	
Luminance Uniformity	[%]		70	75	-	Note 3
Crosstalk (in75Hz)	[%]				1.5	Note 4
Flicker	DB				-20	Note 5

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (PR 880, BM-5A,

BM 7 ,CS-1000, & EZContrast*)

Aperture Test Point Environment $1^{\circ}~$ with 100cm viewing distance (VD) or $2^{\circ}~$ with 50cm viewing distance (VD) Center (VESA point 9)

*' EZ Contrast is different measurement tool with very close viewing distance.

Note 1: Definition of Response time

The output signals of photodetector are measured when the input signals are changed from "Black" to "White" (risir time), and from "White" to "Black "(falling time), respectively. The response time is interval between the 10% ar 90% of amplitudes.

Note 2: Panel has to warm about 1hr with system under environment temperature 25°C.

Note 3: Brightness uniformity of these 9 points is defined as below

Uniformity =
$$\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}} \times 100\%$$

Note 4: Crosstalk is defined as below:

I L_A - $L_{A'}$ I / L_A x 100%= 1.5% max., L_A and L_B are brightness at location A and B I L_B - $L_{B'}$ I / L_B x 100%= 1.5% max., $L_{A'}$ and $L_{B'}$ are brightness at location A' and B'

Note5: Test Paterm: Subchecker Pattern

Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at } 30 \text{ Hz)}}{DC \text{ Level}}$$

3.0 Functional Block Diagram

The following diagram shows the functional block of the 19.0 inches Color TFT/LCD Module:

JAE FI-XB30SSL-HF15

Mating Type: FI-X30HL

JST BHSR-02VS-1

Mating Type: SM02B-BHSS-1-TB

4.0 Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

4.1 TFT LCD Module

Item	Symbol	Min	Min Max		Conditions
Logic/LCD Drive	VIN	-0.3	+5.5	[Volt]	Note 1,2

4.2 Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICFL	-	7.6	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Humidity	HOP	8	95	[%RH]	Note
Storage Temperature	TST	-20	+60	[°C]	Note
Storage Humidity	HST	8	95	[%RH]	Note

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Relative Humidity %

(C) Copyright AU Optronics 2004 All Rights Reserved.

12/29

5.0 Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	4.5	5	5.5	[Volt]	±10%
IDD	VDD current	1	1500	1900	[mA]	Vin=5V, All Black Pattern, +30%, at frame rate 75Hz
Irush	LCD Inrush Current	-	-	2.5	[A]	Note
PDD	VDD Power		7.5	9.75	[Watt]	Vin=5V, All Black Pattern +30%, at frame rate 75Hz
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	
VDDns	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

Note: Measurement conditions:

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when Vin is off It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition						
VTH	Differential Input High	_		+100	[mV]	VICM = 1.2V						
VIII	Threshold	-	- +10	- -	+100	+100	+100	+100	+100	+100	[IIIV]	Note
VTL	Differential Input Low	-100			[m\/]	VICM = 1.2V						
VIL	Threshold	-100	-		[mV]	Note						
VID	Input Differential Voltage	100	400	600	[mV]	Note						
VICM	Differential Input Common	.4.0	.4.0	. 4 5	r\ /1	VTH/VTL = ±100MV						
VICM	Mode Voltage	+1.0	+1.2	+1.5	[V]	Note						

Note: LVDS Signal Waveform

5.2 Backlight Unit

Parameter guideline for CCFL Inverter

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
ISCFL	CCFL standard current	6.5	7.0	7.5	[mA] rms	(Ta=25°C) Note 1
IRCFL	CCFL operation range	3.0	7.0	7.5	[mA] rms	(Ta=25°C)
FCFL	CCFL Frequency	40	50	60	[KHz]	(Ta=25°C) Note 2
ViCFL (0°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1800	-		[Volt] rms	(Ta=0°C) Note 3
ViCF (25°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1500	-		[Volt] rms	(Ta=25°C) <i>Note 3</i>
VCFL	CCFL Operation Voltage		700 @7mA	860 @6.5mA	[Volt] rms	(Ta=25°C) Note 4
PCFL	CCFL Power consumption (for reference)	-	19.6	22	[Watt]	(Ta=25°C) <i>Note 5</i>
LTCFL	CCFL life Time	40,000	50,000	-	[Hour]	(Ta=25°C) Note 6

- **Note 1:** CCFL standard current is measured at 25±2°C.
- Note 2: CCFL Frequency should be carefully determined to avoid interference between inverter and TFT LCD
- **Note 3:** ViCFL means Ignition Voltage for both ends of the lamp, and CCFL inverter should be able to give out a power that has a generating capacity of over ViCFL for ignition
- Note 4: CCFL operation voltage is measured at 25±2°C.
- **Note 5:** The variance of CCFL power consumption is $\pm 10\%$. Power is calculated for reference (ICFL×VCFL×4=PCFL).
- **Note 6:** Definition of life: brightness becomes 50% or less than the minimum luminance value of CCFL..The typical life time of CCFL is on the condition at 7.0 mA lamp current.

6.0 Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1			2									1	27	9	12	280	C
1st Line	R	G	В	R	G	В		 •						 R	G	В	R	G	В
		•			-					-					-	•		·	
					•										•			•	
		٠			-					-					-			٠	
		:			-					•					•			•	
		٠			•					٠					•			•	
		•			•					•					•			•	
		•			•					•					•			•	
1024 Line	R	G	В	R	G	В	•		•		 •	•	•	R	G	В	R	G	В

6.2 The input data format

Note 1: R/G/B data 7:MSB, R/G/B data 0:LSB

O = "First Pixel Data"

E = "Second Pixel Data"

6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN#	SIGNAL NAME	DESCRIPTION
1	RxO0-	Negative LVDS differential data input (Odd data)
2	RxO0+	Positive LVDS differential data input (Odd data)
3	RxO1-	Negative LVDS differential data input (Odd data)
4	RxO1+	Positive LVDS differential data input (Odd data)
5	RxO2-	Negative LVDS differential data input (Odd data, H-Svnc,V-Svnc,DSPTMG)
6	RxO2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
7	GND	Power Ground
8	RxOC-	Negative LVDS differential clock input (Odd clock)
9	RxOC+	Positive LVDS differential clock input (Odd clock)
10	RxO3-	Negative LVDS differential data input (Odd data)
11	RxO3+	Positive LVDS differential data input (Odd data)
12	RxE0-	Negative LVDS differential data input (Even clock)
13	RxE0+	Positive LVDS differential data input (Even data)
14	GND	Power Ground
15	RxE1-	Positive LVDS differential data input (Even data)
16	RxE1+	Negative LVDS differential data input (Even data)
17	GND	Power Ground
18	RxE2-	Negative LVDS differential data input (Even data)
19	RxE2+	Positive LVDS differential data input (Even data)
20	RxEC-	Negative LVDS differential clock input (Even clock)
21	RxEC+	Positive LVDS differential clock input (Even clock)
22	RxE3-	Negative LVDS differential data input (Even data)
23	RxE3+	Positive LVDS differential data input (Even data)
24	GND	Power Ground
25	NC	-
26	NC	-
27	NC	-
28	POWER	Power
29	POWER	Power
30	POWER	Power

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

6.4 Timing Characteristics

Signal	Item	Symbol	MIN	TYP	MAX	Unit
DTCLK	Freq.	Fdck	50	67.5	70	MHz
DTCLK	Cycle	Tck	14.2	14.8	20	ns
+V-Sync	Frame Rate	1/Tv	56.25	75	77	Hz
+V-Sync	Cycle	Τv	13	13.33	17.78	ms
+V-Sync	Cycle	Τv	1035	1066	2047	lines
+V-Sync	Active level	Tva	3	3		lines
+V-Sync	V-back porch	Tvb	7	38	63	lines
+V-Sync	V-front porch	Tvf	1	1		lines
+DSPTMG	V-Line	m	-	1024	-	lines
+H-Sync	Scan rate	1/Th	-	80.06	-	KHz
+H-Sync	Cycle	Th	800	844	1023	Tck
+H-Sync	Active level	Tha (*1)	4	56		Tck
+H-Sync	Back porch	Thb (*1)	4	124		Tck
+H-Sync	Front porch	Thf	4	24		Tck
+DSPTMG	Display Pixels	n	-	640	-	Tck

Note: Typical value refer to VESA STANDARD

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

Note: Input Signals of odd and even clock should be the same timing

LVDS DATA Name	Description			
DSP	Display Timing: (DE mode) When the signal is high, the pixel data shall be valid to be displayed			
V-S	Vertical Sync: Both Positive and Negative polarity are acceptable			
H-S	H-S Horizontal Sync: Both Positive and Negative polarity are acceptable			

6.5 Power ON/OFF Sequence

Vin power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when Vin is off.

Symbol		Unit		
Symbol	Min	Тур	Max	Offic
T1	0	-	10	[ms]
T2	0.5	40	50	[ms]
Т3	200	-	-	[ms]
T4	200	-	-	[ms]
T5	0.5	16	50	[ms]
T6	0.5	-	10	[ms]
T7	1000	-	-	[ms]

7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	JAE or compatible
Type Part Number	FI-XB30SSL-HF15
Mating Housing Part Number	FI-X30HL

Pin#	Signal Name	Pin#	Signal Name
1	RxO0-	2	RxO0+
3	RxO1-	4	RxO1+
5	RxO2-	6	RxO2+
7	GND	8	RxOC-
9	RxOC+	10	RxO3-
11	RxO3+	12	RxE0-
13	RxE0+	14	GND
15	RxE1-	16	RxE1+
17	GND	18	RxE2-
19	RxE2+	20	RxEC-
21	RxEC+	22	RxE3-
23	RxE3+	24	GND
25	NC	26	NC
27	NC	28	Power
29	Power	30	Power

7.2 Backlight Unit

Connector Name / Designation	Lamp Connector / Backlight lamp
Manufacturer	JST
Type Part Number	BHSR-02VS-1
Mating Type Part Number	SM02B-BHSS-1-TB

7.3 Signal for Lamp connector

	Connector No.	Pin No.	Color	Function
	CNIA	1	Pink	High Voltage (Lamp 1)
	CN1	2	White	Low Voltage (Lamp 1)
Upper	CNIC	1	Pink	High Voltage (Lamp 2)
	CN2	2 White		Low Voltage (Lamp 2)
	ONIO	1	Pink	High Voltage (Lamp 3)
	CN3	2	White	Low Voltage (Lamp 3)
Lower	CN4	1	Pink	High Voltage (Lamp 4)
		2	White	Low Voltage (Lamp 4)

8.0 Reliability

Reliability test condition

Re	eliability test condition						
No	Test Item	Test Condition					
1	Temperature Humidity Bias (THB)	50℃, 80%, 300hours					
2	High Temperature Operation (HTO)	50℃, 300hours					
3	Low Temperature Operation (LTO)	0°C, 300hours					
4	High Temperature Storage (HTS)	60℃, 300hours					
5	Low Temperature Storage (LTS)	-20℃, 300hours					
6	Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles					
7	On/Off Test	On/10sec, Off/10sec, 30,000 cycles					
8	Shock Test (Non-Operating)	50G, 20ms, Half-sine wave (<u>+</u> X, <u>+</u> Y, <u>+</u> Z)					
9	Vibration Test (Non-Operating)	1.5G(10~200Hz P- P), 30 Minutes each Axis (X, Y, Z)					
10	ESD (ElectroStatic Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point					
		Air Discharge: ± 15KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point					
11	Altitude Test	Operation:10,000 ft					
		Non-Operation:30,000 ft					

The display module will meet the provision of this specification during operating condition or after storage or shipment condition specified below. Operation at 10% beyond the specified range will not cause physical damage to the unit.

9.1 Temperature and Humidity

9.1.1 Operating Conditions

The display module operates error free, when operated under the following conditions;

Temperature $0 \, ^{\circ}\text{C}$ to $50 \, ^{\circ}\text{C}$ Relative Humidity 8% to 95% Wet Bulb Temperature $39.0 \, ^{\circ}\text{C}$

9.1.2 Shipping Conditions

The display module operates error free, after the following conditions;

Temperature $-20\,^{\circ}\text{C}$ to $60\,^{\circ}\text{C}$ Relative Humidity 8% to 95% Wet Bulb Temperature $39.0\,^{\circ}\text{C}$

9.2 Atmospheric Pressure

The display assembly is capable of being operated without affecting its operations over the pressure range as following specified:

	Pressure	Note
Maximum Pressure	1040hPa	0m = sea level
Minimum Pressure	674hPa	3048m = 10.000 feet

Note: Non-operation attitude limit of this display module = 30,000 feet. = 9145 m.

9.3 Thermal Shock

The display module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again.

Thermal shock cycle -20 °C for 30min 60 °C for 30min

Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before powering on.

This display module and the packaging of that will comply following standards.

10.1 Failure Criteria

The display assembly will be considered as failing unit when it no longer meets any of the requirements stated in this specification. Only as for maximum white luminance, following criteria is applicable.

I Maximum white Luminance shall be 125cd/m² or more.

10.2 Failure Rate

The average failure rate of the display module (from first power-on cycle till 1,000 hours later) will not exceed 1.0°. The average failure rate of the display module from 1,000 hours until 16,000 hours will not exceed 0.7% per 1000 hours.

10.2.1 Usage

The assumed usage for the above criteria is:

- I 220 power-on hours per month
- I 500 power on/off cycles per month
- I Maximum brightness setting
- I Operation to be within office environment (25°C typical)

10.2.1 Component De-rating

All the components used in this device will be checked the load condition to meet the failure rate criteria.

10.3 On/OFF Cycle

The display module will be capable of being operated over the following ON/OFF Cycles.

ON/OFF	Value	Cycles
+Vin and CCFL power	30,000	10 seconds on / 10 seconds off

11.0 Safety

11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible ADT Toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

12.0 Other requirement

12.1 National Test Lab Requirement

The display module will satisfy all requirements for compliance to

UL 1950, First Edition
U.S.A. Information Technology Equipment
CSA C22.2 No.950-M89
Canada, Information Technology Equipment
International, Information Technology Equipment
International, Information Processing Equipment

(European Norm for IEC950)

12.2 Label

The label is on the panel as shown below:

13.0 Mechanical Characteristics

(C) Copyright AU Optronics 2004 All Rights Reserved. No Reproduction and Redistribution Allowed.

Ver 0.1

(C) Copyright AU Optronics2004 All Rights Reserved.No Reproduction and Redistribution Allowed.

Ver 0.1

(C) Copyright AU Optronics2004 All Rights Reserved.No Reproduction and Redistribution Allowed.