## 2.3 Accessing SAGE As A Web Service

101

- The ways in which SAGE can be used are as flexible as its architecture. Most 102
- SAGE beginners, however, will first use SAGE as a web service which is accessed 103
- using a web browser. Any copy of SAGE can be configured to provide this web 104
- 105 service. Drawing 2.1 shows 3 SAGE web service scenarios:



Drawing 2.1: Three SAGE web service scenarios.

## 2.3.1 Accessing SAGE As A Web Service Using Scenario 1

- 106 SAGE currently works best with the Firefox web browser and if you do not yet
- 107 have Firefox installed on your computer, it can be obtained at
- 108 <u>http://mozilla.com/firefox</u>.
- 109 The SAGE development team provides a public SAGE web service at
- 110 (http://sagenb.com) and this service can also be accessed from the top of the
- 111 SAGE homepage. We will now walk through the steps that are needed to sign up
- 112 for an account on this public SAGE web service.
- Open a Firefox browser window and enter the following into the URL bar:
- 114 http://sagenb.com
- 115 The service will then display a Welcome page (see Drawing 2.2)

## **S** ■ Mathematics Software: Welcome!

SAGE is a different approach to mathematics software.

#### The SAGE Notebook

With the SAGE Notebook anyone can create, collaborate on, and publish interactive worksheets. In a worksheet, one can write code using SAGE, Python, and other software included in SAGE.

**General and Advanced Pure and Applied Mathematics**Use SAGE for studying calculus, elementary to very advanced number theory, cryptography, commutative algebra, group theory, graph theory, numerical and exact linear algebra, and more.

#### Use an Open Source Alternative

By using SAGE you help to support a viable open source alternative to Magma, Maple, Mathematica, and MATLAB. SAGE includes many high-quality open source math packages.

#### Use Most Mathematics Software from Within SAGE

SAGE makes it easy for you to use most mathematics software together. SAGE includes GAP, GP/PARI, Maxima, and Singular, and dozens of other open packages.

## Use a Mainstream Programming Language

You work with SAGE using the highly regarded scripting language Python. You can write programs that combine serious mathematics with anything else.

Drawing 2.2: SAGE Welcome screen.

| Sign into the SAGE Notebook                          |  |  |
|------------------------------------------------------|--|--|
| Username:                                            |  |  |
| Password:                                            |  |  |
| Sign In                                              |  |  |
| <del></del>                                          |  |  |
| Sign up for a new SAGE Notebook account              |  |  |
| Browse published SAGE worksheets (no login required) |  |  |
|                                                      |  |  |
|                                                      |  |  |
|                                                      |  |  |

- 116 The SAGE web service is called a SAGE **Notebook** because it simulates the kind
- of notebook that mathematicians traditionally use to perform mathematical
- calculations. Before you can access the Notebook, you must first sign up for a
- 119 Notebook account. Select the **Sign up for a new SAGE Notebook account**
- link and a registration page will be displayed. (see Drawing 2.3)

# Sign up for the SAGE Notebook.

| I I            |              |
|----------------|--------------|
| Username:      |              |
| Password:      |              |
| Email Address: |              |
|                | Register Now |
|                |              |
|                |              |

Cancel and return to the login page

Drawing 2.3: Signup page.

- 121 Enter a username and password in the Username and Password text boxes and
- then press the **Register Now** button. A page will then be displayed that
- indicates that the registration information was received and that a confirmation
- message was sent to the email address that you provided.
- Open this email and select the link that it contains. This will complete the
- registration process and then you may go back to the Notebook's **Welcome** page
- 127 and log in.
- 128 After successfully logging into your Notebook account, a **worksheet**
- management page will be displayed. (see Drawing 2.4)



Drawing 2.4: Worksheet management page.

- 130 Physical mathematics notebooks contain worksheets and therefore SAGE's
- 131 virtual notebook contains worksheets too. The worksheet management page
- allows worksheets to be created, deleted, published on the Internet, etc. Since
- this is a newly created Notebook, it does not contain any worksheets yet.
- 134 Create a new worksheet now by selecting the **New Worksheet** link. A
- worksheet can either use special mathematics fonts to display mathematics in
- traditional form or it can use images of these fonts. If the computer you are
- working on does not have mathematics fonts installed, the worksheet will display
- a message which indicates that it will use its built-in image fonts as an
- 139 alternative. (see Drawing 2.5)

No jsMath TeX fonts found -- using image fonts instead.

These may be slow and might not print well.

Use the jsMath control panel to get additional information.

[jsMath Control Panel] Hide this Message]



Drawing 2.5: jsMath No TeXfonts alert.

- 140 The image fonts are not as clear as normal mathematics fonts, but they are
- 141 adequate for most purposes. Later you can install mathematics fonts on your
- computer if you would like, but for now just press the **Hide this Message**
- button and a page which contains a blank worksheet will be shown. (see Drawing
- 144 2.6)



Drawing 2.6: Blank worksheet.

- 145 Worksheets contain 1 or more **cells** which are used to enter source code that will
- be executed by SAGE. Cells have rectangles drawn around them as shown in
- 147 Figure 6 and they are able to grow larger as more text is entered into them.
- 148 When a worksheet is first created, an initial cell is placed at the top of its work
- area and this is where you will normally begin entering text.

# 2.4 Entering Source Code Into A SAGE Cell

- 151 Lets begin exploring SAGE by using it as a simple calculator. Place your mouse
- 152 cursor inside of the cell that is at the top of your worksheet. Notice that the
- 153 cursor is automatically placed against the left side of a new cell. You must
- always begin each line of SAGE source code at the left side of a cell with no
- indenting (unless you are instructed to do otherwise).
- 156 Type the following text, but do not press the enter key:
- 157 2 + 3

150

158 your worksheet should now look like Drawing 2.7.



Drawing 2.7: Entering text into a cell.

- 159 At this point you have 2 choices. You can either press the **enter key** <enter> or
- 160 you can hold down the shift key and press the enter key <shift><enter>. If
- 161 you simply press the enter key, the cell will expand and drop the cursor down to
- the next line so you can continue entering source code.
- 163 If you press **shift** and **enter**, however, the Worksheet will take all the source
- 164 code that has been typed into the cell and send it to the SAGE server through the
- network so the server can **execute** the code. When SAGE is given source code
- to execute, it will first process it using software called the **SAGE preprocessor**.
- 167 The preprocessor converts SAGE source code into Python source code so that it
- 168 can be executed using the Python environment that SAGE is built upon.
- 169 The converted source code is then passed to the Python environment where it is
- 170 compiled into a special form of machine language called **Python bytecode**. The
- bytecode is then executed by a program that emulates a hardware CPU and this
- program is called the **Python interpreter**.
- 173 Sometimes the server is able to execute the code quickly and sometimes it will
- take a while. While the code is being executed by the server, the Worksheet will
- display a small green vertical bar beneath the cell towards the left side of the
- 176 window as shown in Drawing 2.8.



Drawing 2.8: Executing the text in a cell.

- 177 When the server is finished executing the source code, the green bar will
- 178 disappear. If a displayable result was generated, this result is sent back to the
- 179 Worksheet and the Worksheet then displays it in the area that is directly beneath
- 180 the cell that the request was submitted from.
- 181 Press **shift** and **enter** in your cell now and in a few moments you should see a
- 182 result that looks like Drawing 2.9.



Drawing 2.9: The results of execution are displayed.

183 If code was submitted for execution from the bottom cell in the Notebook, a

- blank cell is automatically added beneath this cell when the server has finished
- 185 executing the code.
- Now enter the source code that is shown in the second cell in Drawing 2.10 and
- 187 execute it.



Drawing 2.10: A more complex calculation