2017年全国硕士研究生招生考试 计算机科学与技术学科联考 计算机学科专业基础综合试题

- 一、单项选择题:1~40 小题,每小题 2 分,共 80 分。下列每题给出的 四个选项中,只有一个选项符合题目要求。
- 1. 下列函数的时间复杂度是

```
int func (int n)
   int i = 0, sum = 0;
     while (sum < n) sum +=++i;
     return i;
```

A. $O(\log n)$ B. $O(n^{1/2})$ C. O(n) D. $O(n\log n)$

- 2. 下列关于栈的叙述中,错误的是
 - I 采用非递归方式重写递归程序时必须使用栈
 - Ⅱ. 函数调用时,系统要用栈保存必要的信息
 - Ⅲ. 只要确定了人栈次序,即可确定出栈次序
 - IV. 栈是一种受限的线性表,允许在其两端进行操作

A. 仅 I

B. 仅 I、II、III

C. 仅I、II、IV

- D. 仅II、II、IV
- 3. 适用于压缩存储稀疏矩阵的两种存储结构是
 - A. 三元组表和十字链表
- B. 三元组表和邻接矩阵
- C. 十字链表和二叉链表
- D. 邻接矩阵和十字链表
- 4. 要使一棵非空二叉树的先序序列与中序序列相同,其所有非叶结点 须满足的条件是
 - A. 只有左子树 B. 只有右子树

- C. 结点的度均为 1 D. 结点的度均为 2
- 5. 已知一棵二叉树的树形如下图所示,其后序序列为 e,a,c,b,d,g,f, 树中与结点 a 同层的结点是

A. c

B. d

C. f D. g

6. 已知字符集 | a, b, c, d, e, f, g, h | , 若各字符的哈夫曼编码依次是 0100, 10, 0000, 0101, 001, 011, 11, 0001, 则编码序列 0100011001001011110101 的译码结果是

A. acgabfh

B. adbagbb

C. afbeagd

D. afeefgd

7. 已知无向图 6 含有 16 条边,其中度为 4 的顶点个数为 3,度为 3 的 顶点个数为4,其他顶点的度均小于3。图 6 所含的顶点个数至 少是

A. 10

B. 11

C. 13

- D. 15
- 8. 下列二叉树中,可能成为折半查找判定树(不含外部结点)的是

B.

- 9. 下列应用中,适合使用 B⁺树的是
 - A. 编译器中的词法分析
- B. 关系数据库系统中的索引

- C. 网络中的路由表快速查找 D. 操作系统的磁盘空闲块管理
- 10. 在内部排序时,若选择了归并排序而没有选择插入排序,则可能的 理由是
 - 1. 归并排序的程序代码更短
 - Ⅱ. 归并排序的占用空间更少
 - Ⅲ. 归并排序的运行效率更高
 - A. 仅 Ⅱ

- 11. 下列排序方法中,若将顺序存储更换为链式存储,则算法的时间效 率会降低的是
- Ⅰ 插入排序 Ⅱ. 选择排序 Ⅲ. 起泡排序
- Ⅳ. 希尔排序 V. 堆排序
- A. 仅 I、Ⅱ B. 仅 Ⅱ、Ⅲ C. 仅 Ⅲ、Ⅳ D. 仅 Ⅳ、V

- 12. 假定计算机 M1 和 M2 具有相同的指令集体系结构(I SA), 主频分 别为 1.5 GHz 和 1.2 GHz。在 M1 和 M2 上运行某基准程序 P,平均 CP I 分别为 2 和 1,则程序 P 在 M1 和 M2 上运行时间的比值是
 - A. 0.4
- B. 0.625
- C. 1.6
- 13. 某计算机主存按字节编址,由 4 个 64M×8 位的 DRAM 芯片采用交 叉编址方式构成,并与宽度为32位的存储器总线相连,主存每次 最多读写 32 位数据。若 double 型变量 x 的主存地址为 804 001AH,则读取 x 需要的存储周期数是
 - A. 1
- B. 2
- C. 3

D. 4

14. 某 C 语言程序段如下:

```
for (i = 0; i < = 9; i++)
temp = 1:
     for(j=0; j <= i; j++) temp * = a[j];
     sum += temp;
```

下列关于数组 a 的访问局部性的描述中,正确的是

- A. 时间局部性和空间局部性皆有
- B. 无时间局部性,有空间局部性

- C. 有时间局部性, 无空间局部性
- D. 时间局部性和空间局部性皆无
- 15. 下列寻址方式中,最适合按下标顺序访问一维数组元素的是
 - A. 相对寻址 B. 寄存器寻址 C. 直接寻址 D. 变址寻址
- 16. 某计算机按字节编址,指令字长固定且只有两种指令格式,其中三 地址指令29条,二地址指令107条,每个地址字段为6位,则指令 字长至少应该是

- A. 24 位 B. 26 位 C. 28 位 D. 32 位
- 17. 下列关于超标量流水线特性的叙述中,正确的是
 - I 能缩短流水线功能段的处理时间
 - Ⅱ.能在一个时钟周期内同时发射多条指令
 - Ⅲ. 能结合动态调度技术提高指令执行并行性

- 18. 下列关于主存储器(MM)和控制存储器(CS)的叙述中,错误的是
 - A. MM 在 CPU 外, CS 在 CPU 内
 - B. MM 按地址访问, CS 按内容访问
 - C. MM 存储指令和数据, CS 存储微指令
 - D. MM 用 RAM 和 ROM 实现, CS 用 ROM 实现
- 19. 下列关于指令流水线数据通路的叙述中,错误的是
 - A. 包含生成控制信号的控制部件
 - B. 包含算术逻辑运算部件(ALU)
 - C. 包含通用寄存器组和取指部件
 - D. 由组合逻辑电路和时序逻辑电路组合而成
- 20. 下列关于多总线结构的叙述中,错误的是
 - A. 靠近 CPU 的总线速度较快
 - B. 存储器总线可支持突发传送方式
 - C. 总线之间须通过桥接器相连
 - D. PC I -Express×16 采用并行传输方式
- 21. I/O 指令实现的数据传送通常发生在
 - A. I/O 设备和 I/O 端口之间 B. 通用寄存器和 I/O 设备之间

- C. I/O 端口和 I/O 端口之间 D. 通用寄存器和 I/O 端口之间
- 22. 下列关于多重中断系统的叙述中,错误的是
 - A. 在一条指令执行结束时响应中断
 - B. 中断处理期间 CPU 处于关中断状态
 - C. 中断请求的产生与当前指令的执行无关
 - D. CPU 通过采样中断请求信号检测中断请求
- 23. 假设 4 个作业到达系统的时刻和运行时间如下表所示。

作业	到达时刻 t	运行时间
J1	0	3
J2	1	3
J3	1	2
J4	3	1

系统在 t=2 时开始作业调度。若分别采用先来先服务和短作业优 先调度算法,则选中的作业分别是

A. J2 J3 B. J1 J4 C. J2 J4 D. J1 J3

24. 执行系统调用的过程包括如下主要操作:

① 返回用户态 ② 执行陷入(trap)指令

③ 传递系统调用参数 ④ 执行相应的服务程序

正确的执行顺序是

A. $(2) \rightarrow (3) \rightarrow (1) \rightarrow (4)$

B. $(2) \to (4) \to (3) \to (1)$

C. $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$

D. $3 \rightarrow 4 \rightarrow 2 \rightarrow 1$

25. 某计算机按字节编址,其动态分区内存管理采用最佳适应算法,每 次分配和回收内存后都对空闲分区链重新排序。当前空闲分区信 息如下表所示。

分区起始地址	20 K	500 K	1000 K	200 K
分区大小	40 KB	80 KB	100 KB	200 KB

回收起始地址为60 K、大小为140 KB的分区后,系统中空闲分区 的数量、空闲分区链第一个分区的起始地址和大小分别是

A. 3,20 K,380 KB

B. 3,500 K,80 KB

C. 4,20 K,180 KB

D. 4,500 K,80 KB

26. 某文件系统的簇和磁盘扇区大小分别为 1 KB 和 512 B。若一个文 件的大小为 1 026 B,则系统分配给该文件的磁盘空间大小是

A. 1026 B

B. 1536 B

C. 1538 B D. 2048 B

27. 下列有关基于时间片的进程调度的叙述中,错误的是

- A. 时间片越短,进程切换的次数越多,系统开销也越大
- B. 当前进程的时间片用完后,该进程状态由执行态变为阻塞态
- C. 时钟中断发生后,系统会修改当前进程在时间片内的剩余时间
- D. 影响时间片大小的主要因素包括响应时间、系统开销和进程数 量等
- 28. 与单道程序系统相比,多道程序系统的优点是

I. CPU 利用率高

Ⅱ. 系统开销小

Ⅲ. 系统吞吐量大

IV. I/O 设备利用率高

A. 仅 I、III

B. 仅I、IV

C. 仅 II、III

D. 仅I、II、IV

- 29. 下列选项中,磁盘逻辑格式化程序所做的工作是
 - I. 对磁盘进行分区
 - Ⅱ. 建立文件系统的根目录
 - Ⅲ. 确定磁盘扇区校验码所占位数
 - IV. 对保存空闲磁盘块信息的数据结构进行初始化

A. 仅 II

B. 仅 II 、IV

C. 仅III、IV

D. 仅 I、II、IV

30. 某文件系统中,针对每个文件,用户类别分为4类:安全管理员、文 件主、文件主的伙伴、其他用户;访问权限分为5种:完全控制、执 行、修改、读取、写入。若文件控制块中用二进制位串表示文件权 限,为表示不同类别用户对一个文件的访问权限,则描述文件权限 的位数至少应为 6

	D 0	0 10	D 20
		C. 12	
			f1 和 f2,获得对应的文
		下列叙述中,正确	的是
I f1 和 f2	的读写指针位的	置保持相同	
	2 共享同一个内		
		自的用户打开文件	
A. 仅 III	B. 仅Ⅱ、Ⅲ	C. 仅 I 、	 D. I、Ⅱ和Ⅲ
32. 系统将数	居从磁盘读到内	存的过程包括以一	下操作:
① DMA Ž	它制器发出中断	请求	
②初始化	DMA 控制器并	启动磁盘	
③ 从磁盘	传输一块数据到	则内存缓冲区	
④ 执行"」	OMA 结束"中断	服务程序	
正确的执	行顺序是		
A. ③→①	$\rightarrow 2 \rightarrow 4$	B. ②→€	$0 \rightarrow 0 \rightarrow 0$
C. ②→①	$\rightarrow 3 \rightarrow 4$	D. ①→②	$2\rightarrow 4\rightarrow 3$
33. 假设 OS I	参考模型的应用	用层欲发送 400 B	的数据(无拆分),除物
理层和应	用层之外,其他	各层在封装 PDU	时均引入 20 B 的额外开
销,则应月	月层数据传输效	率约为	
A. 80%	B. 83%	C. 87%	D. 91%
34. 若信道在	无噪声情况下	的极限数据传输	前速率不小于信噪比为
30 dB 条个	牛下的极限数据	传输速率,则信号	状态数至少是
A. 4	B. 8	C. 16	D. 32
35. 在下图所;	示的网络中,若主	机 H 发送一个封	装访问Internet 的 IP 分组
			址2和地址3分别是
	((P))		
H ((e))			
//	F AP	00-12-34-56-78-9c	Internet
	A		\mathbb{R}
00-12-34-56-78-9	00-12-34-56-	78-9b	

 \dot{A} . 00-12-34-56-78-9a, 00-12-34-56-78-9b, 00-12-34-56-78-9c

- B. 00-12-34-56-78-9b, 00-12-34-56-78-9a, 00-12-34-56-78-9c
- C. 00-12-34-56-78-9b, 00-12-34-56-78-9c, 00-12-34-56-78-9a
- D. 00-12-34-56-78-9a, 00-12-34-56-78-9c, 00-12-34-56-78-9b
- 36. 下列 IP 地址中,只能作为 IP 分组的源 IP 地址但不能作为目的 IP 地址的是

A. 0.0.0.0

B. 127.0.0.1

C. 200.10.10.3

D. 255.255.255.255

37. 直接封装 RIP、OSPF、BGP 报文的协议分别是

A. TCP UDP IP

B. TCP , IP , UDP

C. UDP TCP IP

D. UDP IP TCP

38. 若将网络 21.3.0.0/16 划分为 128 个规模相同的子网,则每个子网可分配的最大 IP 地址个数是

A. 254

B. 256

C. 510

D. 512

39. 若甲向乙发起一个 TCP 连接,最大段长 MSS=1 KB,RTT=5 ms,乙 开辟的接收缓存为 64 KB,则甲从连接建立成功至发送窗口达到 32 KB,需经过的时间至少是

A. 25 ms

B. 30 ms

C. 160 ms

D. 165 ms

- 40. 下列关于 FTP 协议的叙述中,错误的是
 - A. 数据连接在每次数据传输完毕后就关闭
 - B. 控制连接在整个会话期间保持打开状态
 - C. 服务器与客户端的 TCP 20 端口建立数据连接
 - D. 客户端与服务器的 TCP 21 端口建立控制连接
- 二、综合应用题:41~47 小题,共70 分。
- 41. (15分)请设计一个算法,将给定的表达式树(二叉树)转换为等价的中缀表达式(通过括号反映操作符的计算次序)并输出。例如, 当下列两棵表达式树作为算法的输入时:

输出的等价中缀表达式分别为(a+b)*(c*(-d))和(a*b)+(-(c-d))。

二叉树结点定义如下:

typedef struct node

char data[10]; // 存储操作数或操作符 struct node * left, * right;

BTree;

要求:

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。
- 42. (8分)使用 Prim(普里姆)算法求带权连通图的最小(代价)生成树 (MST)。请回答下列问题。
 - (1) 对下列图 G,从顶点 A 开始求 G 的 MST,依次给出按算法选出的边。
 - (2) 图 G 的 MST 是唯一的吗?

- (3) 对任意的带权连通图,满足什么条件时,其 MST 是唯一的?
- 43. (13 分)已知 $f(n) = \sum_{i=0}^{n} 2^{i} = 2^{n+1} 1 = 11 \cdots 1B$, 计算 f(n) 的 C 语言函数 f1 如下:

将 f1 中的 int 都改为 float,可得到计算 f(n) 的另一个函数 f2。假设 unsigned 和 int 型数据都占 32 位,float 采用 IEEE 754 单精度标准。请回答下列问题。

- (1) 当 n=0 时, f1 会出现死循环, 为什么? 若将 f1 中的变量 i 和 n 都定义为 int 型,则 f1 是否还会出现死循环? 为什么?
- (2) f1(23)和f2(23)的返回值是否相等?机器数各是什么(用十 六进制表示)?
- (3) f1(24)和f2(24)的返回值分别为 33 554 431 和 33 554 432.0, 为什么不相等?
- (4) $f(31) = 2^{32} 1$, 而 f1(31) 的返回值却为-1, 为什么? 若使 f1(n) 的返回值与f(n) 相等,则最大的n 是多少?
- (5) f2(127)的机器数为 7F80 0000H,对应的值是什么? 若使f2(n)的结果不溢出,则最大的 n 是多少? 若使f2(n)的结果 精确(无舍人),则最大的 n 是多少?
- 44. (10分)在按字节编址的计算机 M 上,题 43 中 fl 的部分源程序 (阴影部分)与对应的机器级代码(包括指令的虚拟地址)如下:

int fl (unsigned n) 00401020 55 1 push ebp for (unsigned i=0; i <= n-1; i++) El Cir Cylinava, 11 St 0040105E 39 4D F4 cmp dword ptr [ebp-0Ch], ecx 20 power * = 2; 23 00401066 D1 E2 shl edx,1 return sum; 35 0040107F C3 ret

其中,机器级代码行包括行号、虚拟地址、机器指令和汇编指令。请回答下列问题。

- (1) 计算机 M 是 RISC 还是 CISC? 为什么?
- (2) fl 的机器指令代码共占多少字节? 要求给出计算过程。
- (3) 第 20 条指令 cmp 通过 i 减 n-1 实现对 i 和 n-1 的比较。执行 f1(0) 过程中,当 i=0 时,cmp 指令执行后,进/借位标志 CF 的 内容是什么?要求给出计算过程。
- (4) 第 23 条指令 shl 通过左移操作实现了 power * 2 运算,在 12 中能否也用 shl 指令实现 power * 2? 为什么?
- 45. (7分)假定题 44 给出的计算机 M 采用二级分页虚拟存储管理方式,虚拟地址格式如下:

页目录号(10位)	页表索引(10位)	页内偏移量(12位)
-----------	-----------	------------

请针对题 43 的函数 f1 和题 44 中的机器指令代码,回答下列问题。

(1) 函数 f1 的机器指令代码占多少页?

- (2) 取第 1 条指令(push ebp)时,若在进行地址变换的过程中需要 访问内存中的页目录和页表,则会分别访问它们各自的第几 个表项(编号从 0 开始)?
- (3) M 的 I/O 采用中断控制方式。若进程 P 在调用 f1 之前通过 scanf()获取 n 的值,则在执行 scanf()的过程中,进程 P 的状态会如何变化? CPU 是否会进入内核态?
- 46. (8分)某进程中有3个并发执行的线程 thread1、thread2 和 thread3, 其伪代码如下所示。

```
//复数的结构类型定义
                             thread1
                                                 thread3
typedef struct
                               cnum w;
                                                  cnum w;
  float a:
                                w = add(x, y);
                                                  w.a = 1;
  float b;
                                                   w.b = 1;
enum;
                                                  z = add(z, w);
cnum x, y, z; // 全局变量
                                                  y = add(y, w);
                              thread2
//计算两个复数之和
cnum add( cnum p, cnum q)
                                cnum w;
                                w = add(y, z);
  cnum s;
  s.a = p.a + q.a;
  s.b = p.b+q.b;
  return s;
```

请添加必要的信号量和 P、V(或 wait()、signal())操作,要求确保 线程互斥访问临界资源,并且最大程度地并发执行。

47. (9分)甲乙双方均采用后退 N 帧协议(GBN)进行持续的双向数据传输,且双方始终采用捎带确认,帧长均为 1000 B。Sx,y 和 Rx,y 分别表示甲方和乙方发送的数据帧,其中:x 是发送序号;y 是确认序号(表示希望接收对方的下一帧序号);数据帧的发送序号和确

认序号字段均为 3 比特。信道传输速率为 100 Mbps, RTT = 0.96 ms。下图给出了甲方发送数据帧和接收数据帧的两种场景, 其中 t。为初始时刻,此时甲方的发送和确认序号均为 0, t, 时刻甲方有足够多的数据待发送。

请回答下列问题。

- (1) 对于图(a), t_0 时刻到 t_1 时刻期间,甲方可以断定乙方已正确接收的数据帧数是多少?正确接收的是哪几个帧(请用Sx,y形式给出)?
- (2) 对于图(a),从 t₁时刻起,甲方在不出现超时且未收到乙方新的数据帧之前,最多还可以发送多少个数据帧?其中第一个帧和最后一个帧分别是哪个(请用 Sx,y 形式给出)?
- (3) 对于图(b),从 t₁时刻起,甲方在不出现新的超时且未收到乙方新的数据帧之前,需要重发多少个数据帧? 重发的第一个帧是哪个(请用 Sx,y 形式给出)?
- (4) 甲方可以达到的最大信道利用率是多少?