Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Prof. Dr.-Ing. S. Müller

Seite 2

Neuartige Aktoren Übersicht

Physikalischer Effekt	Technische Daten (Anhaltswerte)	Anwendungen		
	Piezoelektrische Aktoren			
Bei Anlegen einer elekt- rischen Spannung an ei- nen scheibenförmigen Pie- zokristall tritt aufgrund des reziproken piezoelektri- schen Effektes eine Dicken- änderung auf.	Nennspannung 800–1500 V Nennstellweg 70–200 µm Steifigkeit bis 2000 N/ µm Eigenfrequenz 2–50 kHz	Stapel- und Streifentrans- latoren, Biegeelemente, Inchworm-Motor, Ultraschall-Motor, Tintentropfenerzeugung	Ursache: Anwendungsbsp.:	
Bei Anlegen eines magnetischen Feldes an ferromagnetische Kristalle tritt aufgrund des magnetostriktiven Effektes eine volumeninvariante Längenänderung auf.	Magnetostriktive Aktoren Stromstärke 2 A Erregung 50 kA/m Nennstellweg 50 μm Last 500 N Eigenfrequenz > 1 kHz	Translatoren (keine Stapelbauweise erforderlich), Wurmmotor, Einspritzventil für Dieselkraftstoff, aktive Schwingungsdämpfer		

Prof. Dr.-Ing. S. Müller

Seite 3

Neuartige Aktoren Übersicht

Physikalischer Effekt	Technische Daten (Anhaltswerte)	Anwendungen		
E	Elektrorheologe Aktoren (El	RA)	⊏ ff a let.	
Bei Anlegen eines elekt- rischen Feldes zeigen be- stimmte Flüssigkeiten eine Erhöhung der Viskosität.	Scherspannung pro Feldstärke 600–800 Pa/(kV/mm)	schaltbare Kupplungen, Ventile, Motorlager, Stoßdämpfer	Effekt:	
Magnetorheologe Aktoren (MRA)			Ursache:	
Bei Anlegen eines magne- tischen Feldes zeigen be- stimmte Flüssigkeiten eine Erhöhung der Viskosität.		ähnlich ERA	Anwendungsbsp.:	

Neuartige Aktoren Übersicht

Physikalischer Effekt	Technische Daten (Anhaltswerte)	Anwendungen		
	Thermobimetall-Aktoren			
Bei einer Erwärmung krümmen sich zwei fest miteinander verbundene Metalle unterschiedlicher Wärmedehnung.	spezifische Krümmung $28, 5 \cdot 10^{-6} 1/\mathrm{K}$ Elastizitätsmodul $170 \cdot 10^3 \ \mathrm{N/mm^2}$ zulässige Biegespannung $200 \ \mathrm{N/mm^2}$	Thermoschalter aller Art für kleine Stellkräfte	Effekt: Ursache:	
Aktoren	mit Formgedächtnislegierunge	en (FGL)		
Die bei Raumtemperatur aufgebrachte Verformung eines Bauteils aus einer FGL verschwindet bei Erwärmung.	Die bei Raumtemperatur ufgebrachte Verformung effekt möglich. Umwandlungstemperatur ca100 °C bis +100 °C		Anwendungsbsp.:	
	Dehnstoff-Aktoren			
Bei Erwärmung treten bei Dehnstoffen starke Volu- menvergrößerungen auf.	Arbeitstemperaturen ca20 °C bis +120 °C Hub 5-25 mm Stellkraft 250-1500 N Reaktionszeit 8-50 s	einfache Stellantriebe für Heizkörper, Starteinrich- tung für Vergasermotoren		

Neuartige Aktoren Gegenüberstellung

Prof. Dr.-Ing. S. Müller Seite 6

Grundlagen piezoelektrischer Aktoren Entdeckung des piezoelektrischen Effektes

1880 entdeckten die Brüder **Pierre und Jacque Curie**, dass z.B. Quarz (SiO₂, Grundmaterial für Herstellung Keramik, Si ist Halbmetall (Si: *Silicia* (lat) – "Kieselerde" bzw. *Silex* (lat.) – "Kieselstein") **mechanische Beanspruchungen zu Ladungen** (Piezoeffekt) und **elektrische Felder zu Verformungen** (inverser Piezoeffekt) führen.

Grundlagen piezoelektrischer Aktoren Entdeckung des piezoelektrischen Effektes

A²* (Pb, Ba) Blei oder Barium (2+)

Sauerstoff (2-)

B (Ti,Zr) Titan oder Zirkum (4+)

Beispiele für piezokeramische Elemente

Bariumtitanat, -zirkonat oder Blei-Zirkonat-Titanat (PZT)

Grundlagen piezoelektrischer Aktoren Phasendiagramm – Blei-Zirkonat-Titanat (PZT)

Oberhalb der Curie-Temperatur (kubisches Gitter)

Grundlagen piezoelektrischer Aktoren Polarisation

Für die Nutzung des piezoelektrischen Effektes müssen die Elementarzellen zunächst polarisiert werden.

Grundlagen piezoelektrischer Aktoren Wirkungsweise

Grundlagen piezoelektrischer Aktoren Physikalische Grundbeziehungen

Prof. Dr.-Ing S. Müller

Seite 12

Grundlagen piezoelektrischer Aktoren Grundgleichungen

Grundlagen piezoelektrischer Aktoren Analyse des grundsätzlichen Verhaltens

Grundlagen piezoelektrischer Aktoren Analyse des grundsätzlichen Verhaltens

$$\begin{cases} \Delta l \\ U \end{cases} = \begin{bmatrix} -\frac{l}{E_{33}A} & d_{33} \\ -\frac{d_{33}l}{A\varepsilon_0\varepsilon_r} & 1 \end{bmatrix} \begin{cases} F \\ U_e \end{cases}$$

Typische Materialwerte und Abmessungen

(PZT Keramik PXE 52)
$$\varepsilon_{0}\varepsilon_{r} = 3 \cdot 10^{-8} \frac{As}{Vm} \qquad l = 2 \cdot 10^{-2} m$$

$$E_{33} = 110 \cdot 10^{9} \frac{N}{m^{2}} \qquad A = 1 \cdot 10^{-4} m^{2}$$

$$d_{33} = 580 \cdot 10^{-12} \frac{As}{N}$$

Sonderfall 1:

$$(50 \, \mu m) = 580 \cdot 10^{-12} \, \frac{As}{N} \, 86 \, kV)$$

Sonderfall 2:

$$(220 N) = 0.319 \frac{As}{m} (690 V)$$

Sonderfall 3 (Sensorfunktion):

$$(3.9V) = 3.9 \frac{V}{N} 1N)$$

Prof. Dr.-Ing. S. Müller Seite 15

Betriebsverhalten piezoelektrischer Aktoren Randbedingungen

- > Vermeidung einer Depolarisation durch
- zu hohe Zug-/Druckbeanspruchung
- zu hohe elektrische Spannung (Betriebsbereich meist < 1000V)
- zu hohe Temperaturen (PZT: Curie-Temperatur bei ca. 350-500°C)
- > Vermeidung von Zug- und Schubbeanspruchungen (z.B. durch mechanische Vorspannung)

Betriebsverhalten piezoelektrischer Aktoren Dehnung und Hysterese von PZT

Katalog, Pl Ceramic

Betriebsverhalten piezoelektrischer Aktoren Verschiebungsverhalten von PZT

Prof. Dr.-Ing. S. Müller Seite 18

Bauformen piezoelektrischer Aktoren Verschiebungsverhalten von PZT

- > Stapelaktoren
- Streifenaktoren
- Biegeaktoren
- Hybridaktoren

Bauformen piezoelektrischer Aktoren Stapelaktoren

Katalog, PI Ceramic

- elektrisch parallel (gleiche Spannung)
- > mechanisch in Reihe (gleiche Kraft)

Bauformen piezoelektrischer Aktoren Streifenaktoren

Katalog, PI Ceramic

> Querkontraktion durch piezoelektrischen Quereffekt

Bauformen piezoelektrischer Aktoren Biegeaktoren

Bestellnummer*	Betriebs- spannung [V]	Auslenkung [μm] ±20%	Freie Länge [mm]***	Abmessungen L x W x T [mm]	Blockier- kraft [N] ±20%	El. Kapazität [μF] ±20%	Resonanz- frequenz [Hz] ±20%
PL112.10**	0-60 (±30)	±80	12	$17,8 \times 9,6 \times 0,65$	2,0	2 x 1,1	> 1000
PL122.10	0-60 (±30)	±250	22	$25,0 \times 9,6 \times 0,65$	1,1	2 x 2,4	660
PL127.10	0-60 (±30)	±450	27	$31,0 \times 9,6 \times 0,65$	1,0	2 x 3,4	380
PL128.10**	0-60 (±30)	±450	28	35,5 x 6,3 x 0,75	0,5	2 x 1,2	360
PL140.10	0-60 (±30)	±1000	40	45,0 x 11,0 x 0,60	0,5	2 x 4,0	160

> Biegung durch unterschiedliches Kontraktionsverhalten

Bauformen piezoelektrischer Aktoren Hybridaktoren

Prof. Dr.-Ing. S. Müller

Seite 23

Anwendungen piezoelektrischer Aktoren Ultraschall-Piezo-Drehmotor

Anwendungen piezoelektrischer Aktoren Inch-Worm-Motor

Stellweg 6...200 mm Wegauflösung 2...4 nm Geschwindigkeit 0,5...2 mm/s $(v_{max}/v_{min} = 5 \cdot 10^5)$ Axiale Last 0,5...1,5 kg Prof. Dr.-Ing. S. Müller

Seite 25

Vielen Dank für Ihre Aufmerksamkeit!