Da Vinci Robot Haptic Feedback Glove

Team

Paloma Laso, Michael Luchini, Julio Membreño, Sara Perez, Jenna Saiontz

Problem Statement

Although Minimally Invasive Surgical (MIS) robots, such as the da Vinci Surgical System, have reduced post-op care and recovery time, the robot does not provide haptic feedback to surgeons.

Project Description

Our goal is to design soft robotic gloves that provide haptic feedback when the pressure applied by the Da Vinci's Cadiere Forceps approaches the maximum pressure that human tissue can safely withstand.

Benchmarking - Pressure Sensors

Drawing Inspiration from the Literature

"A Tactile Feedback System for Robotic Surgery" by Martin O. Cultaj, et al.

Benchmarking - Actuator

Existing Research & Design Inspiration

Existing Research & Design Inspiration

King, C. et. al. ASME Digital Collection

King, C. et. al. ASME Digital Collection

Preliminary Design Concept

Preliminary Design Concept Overview

Preliminary Pressure Sensor Design

FlexiForce A101 Sensor

- Easy to use with Arduino
- Acts as a resistor in the circuit
 - \circ When unloaded \rightarrow Very High R
 - When loaded → Decrease in R

7.6 mm (.30 in.) Sensing Area 3.8 mm (.15 in.) diameter 3.7 mm (.15 in.)

15.6 mm (.62 in.)

Preliminary Actuator Design

Preliminary Actuator Design

Feasibility Demonstration

Selection of Feasibility

- Two Functionalities: Actuator & Sensor
- Feasibility: Combining the two systems
 - Tested with FSR402 Pressure Sensor
 - Need to prove that sensor could detect pressure, relay to Arduino, and activate pump to inflate actuator
 - Proof-of-Concept: Pressure from sensor relays to pressure in balloon

Demonstration Set-Up

Goals:

- 1. Detect pressure in appropriate range and designate threshold pressure
- 2. Inflate/deflate balloon with sufficient air pressure when threshold pressure is applied to sensor

Equipment:

- Arduino
- FSR402 Sensor
- 12V Air pump
- \circ 10k Ω resistor
- Balloon
- Tubing
- 12V battery

Results & Analysis

Progress

- FSR402 Sensor appropriately sensed threshold pressure
- Pump produced sufficient pressure to inflate balloon
- Successfully deflated balloon after pressure was relieved

Points of Improvement

- Implement the custom molded actuator
- Deflating the balloon
 - Implementation of a solenoid
- Addition of pulling force sensor
 - Capacitive sensor
- Calibrate sensors
 - Non-Inverting Op-Amp

Looking Ahead - Next Steps In 2020

Non-Inverting Op-Amp Circuit

Progress

 Ordered MCP6004 op-amp and FlexiForce Sensor

Why?

- To achieve excellent linearity in voltage output with respect to force applied
- Adjust the sensitivity to increase/decrease the max force that can be measured over the FS dynamic range

Capacitive Sensor to Detect Pulling Force

- Originally considered a strain gauge, but ultimately selected a capacitive sensor instead
- The strain gauge would only measure pulling "tension" if it was placed on the organ itself
- The capacitive sensor measures small magnitudes of force

- As the organ is pulled, d decreases and the capacitance changes.
- Measure the pulling force with the change in capacitance

Gantt Chart

Questions?