

Texas A&M University

Monitoring Industrial Contaminants Release to Russian Arctic Rivers

Analytical Report

Office of Naval Research

1995

19960426 003

DUIC CONTINUE INSERTION :

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

I. BACKGROUND

Reports suggest that over 100 billion metric tons of mixed industrial wastes have been dumped or disposed of in the Northern and Arctic regions of the former Soviet Union in crude landfill facilities or directly into rivers. These materials were dumped in such a manner that they may have been transported to the Arctic ocean basin. Initial contaminant transport estimates from simple Russian physical hydrographic (circulation) models suggest transport across the Russian Arctic Ocean in 3-5 years. GERG has undertaken studies in two of the principal river systems transporting contaminants from large watersheds to the Arctic Ocean and Kara Seas, and has obtained samples of sediment and biota for analysis. In the current phase of the study, 20 surficial sediments down each of the axis of the Ob and Yenisey Rivers into the Kara Sea were analyzed for industrially derived trace organic compounds (hydrocarbons, pesticides, PCBs) and trace metals. Twenty sediments from the two rivers were subjected to high resolution GC/MS analysis for dioxins, furans and coplanar PCBs to determine the concentrations of these industrial pollutants. In addition, similar analyses were conducted on 10 tissue samples (fish and other invertebrate animals) down the axis of each river.

II. STANDARD OPERATING PROCEDURES

The PCB, Pesticide, Aliphatics and PAH analytes for samples listed in Table 1 (Tissues) and Table 2 (Sediments) were determined following extraction using gas chromatography with electron capture detection (GC/ECD), gas chromatography with flame ionization detection (GC/FID), and gas chromatography/mass spectrometry in the selective ion monitoring mode (GC/MS-SIM). Concentrations of the seventeen 2,3,7,8-substituted dioxin and furan isomers, and the three coplanar PCB isomers were determined by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS). Trace metals were determined after acid digestion followed by a combination on inductively coupled plasma (ICP), neutron activation, and atomic adsorption spectrometry. Mercury was determined using cold vaper techniques. All samples were analyzed under GERG's Quality Assurance Project Plan (QAPP) which includes analysis of duplicates, blanks, matrix spikes, and standard reference materials.

III. ANALYSIS of TISSUES for POLYNUCLEAR AROMATIC HYDROCARBONS, PESTICIDES and PCBs.

A. Extraction

Ten tissue samples were extracted as set M881 and analyzed for PAHs, pesticides and PCBs. The PAH surrogate recoveries fell below the required QC limits, and eight of the ten samples were re-extracted as set M1442 and re-analyzed. Two tissue samples from M881 (C11952 and C11954) had insufficient sample left for re-extraction. There are no PAH data reported for these two samples, and the associated data tables are flagged with "NA", not available. The pesticide/PCB analytes for these two samples are reported from the original extraction set M881. An additional ten tissue samples were extracted as set M959 and analyzed for PAHs, pesticides and PCBs.

B. Surrogate Recoveries

Of the twenty tissue samples reported, six had low recoveries for the surrogate d_{12} -perylene. d_{12} -Perylene is an advisory surrogate only and no corrective action was necessary.

One sample had high recovery of surrogate PCB198, and one sample had high recovery of surrogate PCB103. Because the other PCB surrogates in those two samples were within QC acceptance criteria, no corrective action was deemed necessary.

Matrix interference with the Internal Standard, TCMX, in sample C11951 caused excessively high recoveries for all three Pesticide/PCB surrogates. Those recoveries have been flagged with an "M". Analyte concentrations were not affected by the interference. Only one of the target Pesticide/PCB analytes (dieldrin) was detected in the sample at a concentration greater than three times the MDL.

Recoveries outside the QC acceptance criteria are flagged with a "Q" in the data tables.

C. Laboratory Blanks

Each of the three extraction sets included one Laboratory Blank (BLANK) sample. The associated sample numbers are Q6198 (set M881), Q9732 (set M1422), and Q7929 (set M959). None of the target analytes were detected in the Laboratory Blanks at concentrations greater than three times the Method Detection Limit (MDL).

D. Laboratory Duplicates

Each of the three extraction sets included one Laboratory Duplicate (DUP) sample. The associated sample numbers are Q6196/C11955 (set M881), Q9733/C11955 (set M1422), and Q7928/C13787 (set M959).

Duplicate analyses of sample Q7928/C13787 (set M959) had high Relative Percent Differences (RPDs) for benzo(e)pyrene (54%) and for perylene (80%). Duplicate analyses of sample Q9733/C11955 (set M1422) had a high RPD for PCB41/64 (71%). Otherwise, analytes with concentrations greater than three times the MDL had RPDs

within the QC acceptance criteria. RPDs outside the QC acceptance criteria are flagged with a "Q" in the data tables.

E. Matrix Spikes

Two of the three extraction sets included one Matrix Spike (MS) sample. The associated sample numbers are Q6199/C11955 (set M881) and Q9735/C11955 (set M1422).

Sample Q6199 (set M881) had an average percent recovery of 109% for the Pesticide/PCB analytes. Sample Q9735 (set M1422) had an average percent recovery of 96% for the PAH analytes and 108% for the Pesticide/PCB analytes. Individual analytes with recoveries outside the target range are flagged with a "Q" in the data tables.

F. Laboratory Blank Spikes

Each of the three extraction sets included one Laboratory Blank Spike (LBS) sample. The associated sample numbers are Q6197 (set M881), Q9734 (set M1422), and Q7930 (set M959).

Sample Q6197 (set M881) had an average percent recovery of 106% for the Pesticide/PCB analytes. Sample Q9734 (set M1422) had an average percent recovery of 102% for the PAH analytes and 109% for the Pesticide/PCB analytes. Sample Q7930 (set M959) had an average percent recovery of 90% for the PAH analytes and 86% for the Pesticide/PCB analytes.

Individual analytes with recoveries outside the target range are flagged with a "Q" in the data tables.

G. Analytical Difficulties

Other than the re-extraction of set M881 discussed above, no analytical difficulties were encountered with these analyses.

IV. ANALYSIS of SEDIMENTS for POLYNUCLEAR AROMATIC HYDROCARBONS, ALIPHATIC HYDROCARBONS, PESTICIDES and PCBs.

A. Extraction

A total of forty sediment samples were extracted in four analytical QC batches designated M748 (10 samples), M749 (10 samples), M2065 (9 samples) and M2075 (11 samples). No significant analytical difficulties were reported during the extraction procedures.

B. Surrogate Recoveries

Of the forty sediment samples reported, four had low recoveries for the surrogate d_{12} -perylene. d_{12} -Perylene is an advisory surrogate only and no corrective action was necessary. Three samples also had low recoveries for surrogate d_{12} -chrysene, however insufficient sample remained for re-extraction.

In three of the forty sediment samples all three Pesticide/PCB surrogates had high recoveries. Most target analytes were either not detected or were present at concentrations less than three times the MDL so no corrective action was deemed necessary.

In eight of the forty sediment samples the C30-alkane surrogate standard exceeded the QC acceptance criteria due to matrix interferences. Because of the limited availability of additional sample, corrective action was not initiated.

Recoveries outside the QC acceptance criteria are flagged with a "Q" in the data tables. An "M" in the data tables indicates matrix interferences that co-eluted with the affected analyte.

C. Laboratory Blanks

Each of the four extraction sets included one Laboratory Blank (BLANK) sample. The associated sample numbers are Q7069 (set M748), Q7074 (set M749), Q9003 (set M2065), and Q9084 (set M2075). Two extraction sets also included a sodium sulfate blank (NaSO4 BLANK). The associated sample numbers are Q7068 (set M748) and Q7073 (set M749).

The C10-, C11-, and C12-alkanes were detected in sodium sulfate blank Q7068 at concentrations greater than three times the MDL. Otherwise, none of the target analytes were detected in the Laboratory Blanks or the sodium sulfate blanks at concentrations greater than three times the MDL.

D. Laboratory Duplicates

Each of the four extraction sets included one Laboratory Duplicate (DUP) sample. The associated sample numbers are Q7071/C12911 (set M748), Q7076/C12921 (set M749), Q9002/C13771 (set M2065), and Q9083/C13781 (set M2075).

Duplicate analyses of sample Q7071/C12911 (set M748) had high Relative Percent Differences for most of the aliphatic analytes due to losses of the original sample

in the extraction lab. Re-extraction could not be initiated because of limited sample size; those data are not included in the tables.

Duplicate analyses of sample Q7076/C12921 (set M749) had high RPDs for C19-alkanes (49%). In the duplicate analyses of sample Q9002/C13771 (set M2065) RPDs could not be calculated for the aliphatic analytes because most target analytes were either not detected or fell below the MDL. Duplicate analyses of sample Q9083/C13781 (set M2075) had RPDs for the aliphatics that were within QC acceptance criteria for all target analytes.

RPDs could not be calculated for the PAH and Pesticide/PCB analytes because most target analytes were either not detected or fell below the MDL. RPDs outside the QC acceptance criteria are flagged with a "Q" in the data tables.

E. Matrix Spikes

Each of the four extraction sets included one Matrix Spike (MS) sample. The associated sample numbers are Q7070/C12911 (set M748), Q7075/C12921 (set M749), Q9001/C13771 (set M2065), and Q9082/C13781 (set M2075).

Sample Q7070 (set M748) had an average percent recovery of 115% for the Aliphatics, 85% for the PAHs, and 97% for the Pesticide/PCB analytes. Sample Q7075 (set M749) had an average percent recovery of 121% for the Aliphatics, 78% for the PAHs, and 81% for the Pesticide/PCB analytes.

Sample Q9001 (set M2065) had an average percent recovery of 98% for the Aliphatics, 85% for the PAHs, and 89% for the Pesticide/PCBs. Sample Q9082 (set M2075) had an average percent recovery of 74% for the Aliphatics, 80% for the PAHs, and 105% for the Pesticide/PCBs.

Individual analytes with recoveries outside the target range are flagged with a "Q" in the data tables.

F. Laboratory Blank Spikes

Two of the four extraction sets included one Laboratory Blank Spike (LBS) sample. The associated sample numbers are Q9004 (set M2065) and Q99085 (set M2075).

Sample Q9004 (set M2065) had an average percent recovery of 99% for the Aliphatics, 83% for the PAHs, and 92% for the Pesticide/PCB analytes. Q99085 (set M2075) had an average percent recovery of 96% for the Aliphatics, 86% for the PAHs, and 104% for the Pesticide/PCB analytes.

Individual analytes with recoveries outside the target range are flagged with a "Q" in the data tables.

G. SRM Samples

Two of the four extraction sets included one aliquot of Standard Reference Material (SRM) 1941. The associated sample numbers are Q7067 (set M748) and Q7072 (set M749).

Office of Naval Research Ob and Yenisey River Project Page vi

Concentrations of the target analytes measured in the two SRM samples are tabulated in the Quality Control section of this report. Certified concentrations are not available for most of the target analytes, therefore the results from these analyses are considered advisory only.

H. Analytical Difficulties

Other than the unusually high surrogate recoveries discussed above, no analytical difficulties were encountered with these analyses.

V. ANALYSIS of TISSUES for DIOXINS, FURANS and COPLANAR PCBs

A. Extraction

A total of eleven tissue and twenty sediment samples were extracted in four analytical QC batches designated DX0170 (11 tissues), DX0173 (7 sediments), DX0180 (7 sediments) and DX0183 (6 sediments). No significant analytical difficulties were reported during the extraction procedures. All sample extracts were analyzed for the seventeen dioxin/furan target analytes and the three coplanar-PCB analytes.

B. Surrogate Recoveries

All dioxin/furan and coplanar-PCB surrogate recoveries were within QC acceptance criteria in the eleven tissue samples extracted and analyzed. Six of the twenty sediments analyzed had one or more dioxin/fuan or coplanar-PCB surrogate recoveries outside the QC acceptance criteria. Because of the limited availability of additional sample, re-extraction was not initiated.

Recoveries outside the QC acceptance criteria are flagged with a "Q" in the data tables.

C. Laboratory Blanks

Each of the four extraction sets included one Laboratory Blank (BLANK) sample. The associated sample numbers are Q9071 (set DX0170), Q11192 (set DX0173), Q10021 (set DX0180), and Q10054 (set DX0183).

None of the target analytes were detected in the Laboratory Blanks at concentrations greater than three times the MDL.

D. Laboratory Duplicates

Each of the four extraction sets included one Laboratory Duplicate (DUP) sample. The associated sample numbers are Q9073/C11962 (set DX0170), Q11196/C12911 (set DX0173), Q10022/C16684 (set DX0180), and Q10055/C16718 (set DX0183).

RPDs could not be calculated for dioxin/furan and coplanar-PCB analytes because most target analytes were either not detected or fell below the MDL

E. Matrix Spikes

Each of the four extraction sets included one Matrix Spike (MS) sample. The associated sample numbers are Q9072/C11962 (set DX0170), Q11194/C12911 (set DX0173), Q10024/C16684 (set DX0180), and Q10057/C16718 (set DX0183).

The recoveries of the coplanar-PCB analytes in the tissue and sediment MS samples were all within QC acceptance criteria. Tissue MS sample Q9072 (set DX0170) had high recoveries for four dioxin/furan target analytes and sediment MS sample Q11194 had high recoveries for one dioxin/furan target analyte. All other dioxin/furan analytes had recoveries within the QC acceptance criteria in the tissue and sediment MS samples.

Individual analytes with recoveries outside the target range are flagged with a "Q" in the data tables.

F. Laboratory Blank Spikes

Each of the four extraction sets included one Laboratory Blank Spike (LBS) sample. The associated sample numbers are Q9074 (set DX0170), Q11195 (set DX0173), Q10026 (set DX0180), and Q10058 (set DX0183).

Laboratory Blank Spike sample Q11195 had high recoveries for two dioxin/furan target analytes. All other dioxin/furan and coplanar-PCB analytes had recoveries within the QC acceptance criteria in the LBS samples.

Individual analytes with recoveries outside the target range are flagged with a "Q" in the data tables.

G. SRM Samples

Two of the four extraction sets included one aliquot of Standard Reference Material (SRM) 1941. The associated sample numbers are Q7067 (set M748) and Q7072 (set M749).

Concentrations of the target analytes measured in the two SRM samples are tabulated in the Quality Control section of this report. Certified concentrations are not available for any of the target analytes, therefore the results from these analyses are considered advisory only.

H. Analytical Difficulties

Other than the outliers discussed above, no analytical difficulties were encountered with these analyses.

VI. ANALYSIS of TISSUES and SEDIMENTS for TRACE METALS

A. Analysis Request

Twenty tissue samples and forty-three sediment samples were transferred to the Trace Element Research Lab (TERL) at Texas A&M University for analysis of the nineteen requested trace metal analytes. TERL results for all analytical and Quality Control samples are tabulated at the end of this data package.

B. Laboratory Blanks

Three Laboratory Blanks (designators BLK5B001, BLK5B002, and BLK5B003) were digested and analyzed with the twenty tissue samples. Three Laboratory Blanks (designators BLK-001, BLK-002, and BLK-003) were digested and analysed with the forty-three sediment samples. None of the target analytes were detected in the six Laboratory Blank samples at concentrations greater than the MDL.

C. Laboratory Duplicates

One tissue sample, C11955, was digested and analyzed in duplicate. One analyte, manganese, had a RPD of 67%. Otherwise all target analytes had RPDs below 30%. Two other tissue samples, C17716 and C11949, were analyzed in duplicate for mercury. The concentration of mercury in sample C17716 was below the MDL and no RPD could be calculated. The RPD for mercury in sample C11949 was 0%.

Three sediment samples, C12906, C13771, and C16732, were digested and analyzed in duplicate. All analytes with concentrations greater than three times the MDL had RPDs below 30%. One sample, C12915, was analyzed in duplicate for mercury with a RPD of 0%.

D. Matrix Spikes

One tissue sample, C11962, was digested and analyzed as a MS/MSD pair. All analyte recoveries fell between 80% and 109%. All RPDs were 12% or less. Sample C17719 was analyzed as a MS/MSD pair for mercury. Percent recoveries were 76% and 58%, respectively.

Three sediment samples, C12906, C13771, and C16732, were digested and analyzed as MS samples. All analyte recoveries fell between 91% and 118%. Sample C12916 was analyzed as a MS sample for mercury with a percent recovery of 93%.

E. Laboratory Blank Spikes

Three LBS samples (designators BS5B001, BS5B002, and BS5B003) were digested and analyzed with the tissue samples. All analyte recoveries were within QC acceptance criteria.

Three LBS samples (designators BS-001, BS-002, and BS-003) were digested and analyzed with the sediment samples. All analyte recoveries were within QC acceptance criteria.

F. Standard Reference Materials

Three aliquots of Standard Reference Material (SRM) DORM-2 NRCC were digested and analyzed with the tissue samples. Two aliquots of SRM DORM-1 NRCC were analyzed for mercury. All analyte recoveries were within QC acceptance criteria.

Three aliquots of SRM MESS-2 NRCC were digested and analyzed with the sediment samples. Recoveries for aluminum, barium, beryllium, vanadium, boron, molybdenum, and selenium fell below 65%. All other analyte recoveries were acceptable.

This data package is certified to be in compliance with the terms and conditions of the project QAPP, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data has been authorized by the management of GERG as verified by the following signatures:

12/13/95

Laura Chambers 12/13/95

Environmental Project Administrator

Guy Denoux, Ph.D.

Manager, Project Administration

GERG ID	Station	Organism		8	se		•	
			PAHs	Aliphatics	Pesticides /PCBs	Dioxins	cp-PCBs	Metals
C11961	05	Liver (Sturg)				•	•	•
C11965	05	Liver (Sturg)						•
C11946	08	Isopods	•		•	•	•	
C11954	09	Liver	i		•			
C11952	10	Isopods			•			
C11953	10	Liver						•
C11953	10	Liver	•		•	•	•	
C11956	14	Bivalves				•	•	
C17713	14	Isopods						•
C11947	15	Bivalves	•		•	-		
C17718	15	Isopods						•
C11948	16	Isopods	•		•	•	•	•
C11949	16	Worm Tube	•		•			•
C11950	17	Amphipods	•		•	•	•	•
C17714	17	Mussel						•
C17715	17	Isopods						•
C13786	19	Bivalves	•		•			
C13787	19	Isopods	•		•			
C16751	19	Amphipods				•	•	•
C17716	19	Worm						•
C11951	20	Bivalves	•		•			
C16752	20	Bivalves				•	•	•
C17712	20	Worm						•
C11959	21	Worm Tube						•
C13788	21	Isopods	•		•			
C13789	21	Bivalves	•		•			
C11962	21-3	Livers				•	•	•
C11955	24	Liver	•		•	•	•	•
C13790	35	Nephthys	•		•			
C17717	35	Starfish						•
C17719	35	Maldanidae						•
C13791	38	Sipanclid	•		•			
C13792	45	Sipanclid	•		•			
C13793	48	Nephthys	•		•			
C13794	54	Isopods	•		•			
C16753	54	Nephthys				•	•	•
C13795	56	Sipanclid	•		•			

A garage							
GERG ID	Station		tics	ides	· 6	Ba	
		PAHs	Aliphatics	Pesticides /PCBs	Dioxins	cp-PCBs	Metals
C12905	02	•	•	•			
C12906	05	•	•	•	•	•	•
C12907	07	•	•	•			
C16679	08A				•	•	•
C13766	09	•	•	•			•
C16684	10				•	•	•
C12908	12	•	•	•	•	•	•
C12909	14	•	•	•	•	•	•
C13767	16	•	•	•	•	•	•
C16703	17				•	•	.•
C16701	18				•	•	•
C16704	19				•	•	•
C12917	20	•	•	•	•	•	•
C12911	21	•	•	•	•	•	•
C13768	22	•	•	•			•
C12910	25	•	•	•			•
C13769	27	•	•	•			•
C13770	29	•	•	•	•	•	•
C13771	32	•	•	•			•
C16718	33				•	•	•
C12918	35	•	•	•			•
C13772	36	•	•	•	~		•
C13773	38	•	•	•	•	•	•
C12919	40	•	•	•			•
C13774	41	•	•	•			•
C13775	42	•	•	•			•
C16732	44				•	•	•
C12920	45	•	•	•			•
C13776	47	•	•	•			
C13777	48	•	•	•		<u> </u>	•
C13778	49	•	•	•		<u> </u>	•
C13779	51	•	•	•			•
C13780	53	•	•	•			•
C13781	54	•	•	•	•	•	•
C13782	55	•	•	•			•
C13783	56	•	•	•	•	•	•
C13784	57	•	•	•			•
C12912	58	•	•	•	•	•	•
C12913	59	•	•	•			•
C12914	60	•	•	•			•
C12915	61	•	•	•	•	•	•
C12916	62	•	•	•			•
C12921	66	•	•	•			
C12922	71	•	•	•			
C16747	71A				•	•	
C12923	75	•	•	•		ļ	•
C13785	76	•	•	•			•
C12924	77	•	•	•			•

Table 2. Sediments.

Misc	Tissues:	Comments:	Y Y	Sample Logbook	
Samples	17		Hab Program		Surrogate #
TISSUE	MIOS STURGERLING	LINE STORRIN TO	14 Tiss (cs 1953)		Spike # 200 000 000 000 000 000 000 000 000 0
				PAH Past F	PCB NOTH-ALM-ALVERAL
File #	bescription	Wet Wt (g): Volume (l):	Dry Wt Dry Wt	Comments.	
1 (11946	6 93.00.01, STAS	1808	-		JA 0015 05:03
2 611947	7 93.00.01,57415	1.044	21.6	Ischos	Sample Prep Date Initial
3 (11448	93.00.01, STA16	2.069	26.25	8.001005	SY1, \$1, 50, J Extraction
4 (11949	43-00,01, 57416	10.056	(287)	Locken A Lanten	Date Initial A Date
5 (11950	93-00-01,5TA17	3.340	00.00	20 L T 4 0 12"	Concentration Date Initial
156/13	93-00-01, STA20	5.545	white aroung	A straight 1970s	Si/Al Colu
7 611952	93-00-01,57810	2.200	23.5	Browlers Recount.	91693 Am
8 6/1953	93-00-01,57410	6.6.19	34 14	でいっしょう	Concentration Date Initial
9 611954	43.00.01,5749	0.880	211.08	***	HPLC
10 €//555	93.00-01,57834	72.70	13,07	Austras Lock	9/18/93 Initial
11 24196	15-00-01, = 1927 QA/UL	0.6877	42.7%	STURESTOLISMS	Concentration Q q q d 3
12 3 6197	5pk. 84.10				GC/ECD Prep
13 9 4198.	Blank				9/20/93 Initial
14 9 1/99	Spike Sample	0.7%	pc ch		GC/MS Prep 9 / Date Initial
1992-JF01. Misc Tissue Log				80	ID P
	Pate Alta las		Date	Sate Initials	Date Initial
					M 881

CC: Gruy Denoux Hink Im Brooks Date: 7-19-94 Wender Sample Action Request Form Type of Action: Rerun : _____ Dilute: _____ Re-Extract: ____ Folder ID # Sample # Comments on sample Others Surrogate recoveries for PAHS Nu low. Please RX entire set for m881 all 011952 C11554 Channel # and Comments: Insufer, I have not Seen the OC data for these samples yet. Please prep for OC (pest & PCB) in case those recoveries are low too. Jennifer's Comments: Thanks, Laura Jose's Comments: Terry Wade Comments:

Project: Siberian Jessues

NOMA. M. A. A. 45 *PK 108-(8-19-94 (s. Prm Extraction/Spike Withess 14/94 | ADC/VTS HONA-54- AR-67 100-1 201 AE 20001 9-2-94 | Prep Concentration GC/ECD Prep Received GC / MS STANK Coplanar Column - 9-2-94 GC/MS Prep Spike # \$70C. FPE GC Internal STD St TCMX Dog 3 Out 19 Received GC / FID Surrogate # Srd X-25-94 76/25/80 45 Ker 37 9-Say z `≻ S B Z } TAMPICES & advos villat chapter Tines SA2(OC-Pest/AR-PAH): Pentane/50:50 (mL): בוֹאל, היטיו ייז ידים SA1 (AL-Aliphatics): two Comments mbospado: stangeon liver Ran through broadless. - ND Samp left. Sample Storage blyaturo - no samp legs Mopado - samper musoing Dry Weights: Content day or bail la Copas somple nussing Lipids: SA2 Thurson have WOVEN THEE Moport Tissue Type: " ... , amphipads 3 SAI Dry Wt. .229 , 383 6 . 239 ,22 1.344 . 536 6.33 180 633 Dry Wt. QA/QC Officer 40.45 63.00 41.49 26.49 3 41.12 26.84 18.92 31.95 31.41 新名 Wet Wt カイナー Date 552 0.581 1.447 3.02D 8ha.01 **(b**) 0.562 5.000 0.182 2.014 o Ö Project/SDG#: Showld Initials Brown C 11955 13-00-01-548 8 Client Descriptor Hoom M881. Lab Manager 43-00-012 stany CTASSA 95-00-01, SAC 10 93-D0-01, 5/2 10 93-D0-01, 54a 20 93.00-01, sta 16 93-DO-01, 512 17 C119552 43-100-017 542 21 93.Do.01, sta 15 93-20-01, sta 14 MISC Analysis: AR अस्त्राम् १३-१०-०। जुर dup 0,1955 Comments: a 97341 sok blank 09735 SOKSampa. 4/4/94 re-ext. blank TISSUE 1993-53c.WKK Misc Tissues 10 9732 Sample 0 9733 CIIGHOR CIIGHTR C11948R CIPSOR C11953R 0 C11921R 9

æ

Laboratory Sample Logbook

1422

Σ

Page 1 of 2

PANEL INTRIES Extraction / Spike Witness GC/WS Prep Column Coplanar Column Concentration Received GC / MS Sample Prep Received GC / FID GC/FID Prep Concentration GC/ECD Prep Concentration) HPLC GC Internal STD Surrogate # Spike # z ` ≻ Z ≻ SA2(OC-Pest/AR-PAH): Pentane/50:50 (mL): SA1 (AL-Aliphatics): Comments Dry Weights: Laboratory Sample Logbook Lipids: HALLAN BA Dry Wt. **6** Tissue Type: Dry Wt. (%) Wet Wt **6** Client Descriptor Project/SDG#; Comments: MISC Analysis: TISSUE Sample 币 16 17 18 6

೪

2

ខ

23

24

25

92

27

1422 Page 2 of 2

11/1

1993-53c.WKK Misc Tissues

							. 1											
Surrogate # 10000 Stocks Spike # 10000 Stocks Spike # 10000 Stocks Sold Bandard Sold Ban	GC Internal STD St TCMk 100 M St TCMk 100 M	mple Pr	Date Initial	Extraction Date	Concentra	4		5-10-94 CW + H Concentration	Date Initial	HPLC Trittal	ncentra	Date Initial	/ECD P	/MS	5-16-94	/FII		M 959
S PCB English	Comments:	BIVELONED NO SAMPLE LEFT MOVE HOLD ZONE IN		BI WE WE BOILER TOWN		123 124 Z		Separation of the separation o	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	TACOCCO IN	Sipar column Sipar ched		1497 7kmins on	Cramios Amb		OA/OC Officer	Date Initials	
Srian Ties	Dry Wt Dry Wt (g)	PE1.0 PE-1	800. 6 OH-R	201-15 Serios	059.0 30:1	156 3.277		33.45 0.06 1.950	\top	+-	2		0.405			0	Da	
Comments: SiDerican Tissues * 6xtra Carefue! No sample Left PAH P	Wet Wt (g): V Dry	1.605 at 8.	10.474 PICH-01	1.712	2.407	です	Strike IND CI	*	Care 1 (59) (0	CHO. 140		CW 4-36 47	10.1			Lab Manager	Initials	
Issues: Right Assets Separations Separat	Sample W Description Vo	Startion 19	Station 19	5 tabion 21	Station 21	Stuting 35	5+4.1cm 38			Stutien Sy			DUP 5 Swrien 19	Blank	Spike Sample		Date	
Samples TISSUE	File #	1 613786	, 2 टाउन्हा	3 (2)88	4 C13789	5 C1340	6 C13791	7 4.3792	8. C13793	9 6,3794	10 C13795 C	11	0 8eb/0 26 11	138 97939.	134 B 7830	1992-JF01.Mise Tissue Log		

S. E.	Misc Samples SEDIMENT	Sediments:	Comments:	tory S ERIAN CON	amp	Oratory Sample Logbook SIREPLAN SELS 93-DO-01 RUSH CONP. A H. ARI, PEST	Sur	b
-	hile #	Sample Description			日夏	امتحال استحال المتحال	GC Internal SID:	
20 8 4			9.00				Sample Bros	
7 0	UUI	54. Him	10.20 10.20 10.20	31.63 36.98 82.44	1 w 80 0 0 0 v 0 0 0		Date Initial Extraction	
8 0	519515 519515	St. A. D. S.	CW/O.37+10.04	19.75	2.60		Concentration	
五岁岁!	1,16240 9116240 5116240	100 to 15		27.42	2.38		Si/Al Column Date Initial	
7387	हम्प्रसम् हम्प्रदान् हम्प्रदान्						Cohcentration Date U/21/43 II/21/43 GC/ECD Prep	
	2000 C. 2000 C	N SE	0)(25)				Date Initial CASA Prep CASA CAS Prep CASA CASA CASA CASA CASA CASA CASA CAS	
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A 7070 Sp 1992-JF02-Mise Sediment Log 707 (20-4)	Blank like Sample (12) W	ab-Manager initials is cpm 10.10	62.45 6	Date Date 6.29	GA/QC Officer	N 748	

51 #	#MI2	1	ory S	ample	Laboratory Sample Logbook		The second secon	13.00 m
5	ing.	Comments: S(BERIAN SEUS. Box Care	S(BERUP Box	12 K	55. 93-50-61		Surrogate #: 30c	Q
2 2	water:	PAH, #LL			•	chmus	Spike #: Sold Set Represt	
	Sample Description	Bry Wt (g): Volume (l):	iry Wt		Comments:	nexan	GC Internal STD:	
a	14		25.91	2.61				
"	station 62	00.00	9-	N 7 31 L			QA	
	17	02:01	16:03	6.38			Sample Prep	
2970	Station 40	20.0	M				Date Initial	
	14	10.0X	50.53		bolled low.		//-/r Extraction	ı
1	١	(S) (S)	42.25	4.23			Catters Civil	
7 7 7 7 7 7	Station 75	10.13	78.73	7.98		T	Concentration	1
J	Edudion 1)	100	7	5.95		Ť	I Pate 193 Initial	_
							Si/Al Column	T-
							Date Initial	
							Concentration	1085
							Date Initial	RA
						T	GC/ECD Pred	45/
	-					Ī	Date Initial	
							GC/MS Pren	800
		201			-		Date Initial	11-2943
-	2×VM 1941	149.3				1	GC/FID Prep	
4	Mank						Date 19.93 Initial	
Ø	21 ple 12 d	ab Manager	50.50 5	5.10 gA/Q	GA/QC Officer			
	<u> </u>	10.18	50.39 5	5.13			IVI /49	
							•	,

Laboratory Sample Logbook

00111	Matrix	Project: Saberie	THE	No Kordo	525:062097 74:130374F	SA1 ((())) Pentane vol.		במצוננ	12/20
ンCIM	Sediments	Comments:	(t. 1.	200100	G. Liferent	SA2 (Res/PAH) SA3	zz		1 2
SEDIMENT Water	□Water	Compine	Act of the same	Ne court	Campier for samples to praduce +20 grams			7 3	(·)
# elle	Sample ID	(g) Wt (g) ☐ Volume (L)	Dry Wt. (%)	Dry Wt. (g)	Comments	ents		(4)	addred
	926		1 1 1		Interced come of the ext Almost 104 - 200	- ext- Hancot Tic	suct fra	V DATE INITIALS Sample Prep	
3 C13767	SK 16	26,02 20		5 774				5-15-94 K +CT	
4 C13769	54 27	1/iz (3)	53.68	164.33	EXTRACTS S	PLIT		2-16-94 CJ+R	
نان	St. 32	\$ 20.24	85 60	7	17325 IN HALF	, com		Conceptration	
2	Stx 36	1 2 ada	47.21	1	9.673	0	T	10-94	
663	1 38 V	# 2024 # 203a	31.60	14.39	14.388			24 4 44 Column	
10 1/3 275	St. 42	\$2037	47.18	П	9.611			5-23-94	
								50, 5.20.94 Apin &	
12	c			<	1 0 0 0 V			1000	
14	Sample.	#1 12	extrac	ad u	5/N 620 T. K			5-24-94 DW	
15					CC)			GC / MS Prep	
16					301.44			5-24-94 DW	
18								GC/FID Prep	
61								12.24-94 NW	
20					-			Received GC / MS	
10000 1211	MS C13771 Skp1		85.44	17.33	17.327			5-25-94 CWY	
7 200 0 22	C13771 Jun 2	\$ 20,47	85.44	17.77	77.470			Received GC / FID	
37.20 9063	BUNK SOLVE 311							5/24/94 000	
1000 A	SMAC DIAMS								
	Lab	Lab Manager	QA/QC Offi	C Officer	AC Samp	Sample Storage			

ate s Iphials SA1

1993-53h, YL Misc Sediments

341 2. SA2. MKS | MISA

M 2065

Laboratory Sample Logbook

Y / N Surrogate # 200 1 K + K + N	GC Internal STD	DATE INITIALS Sample Prep	5-24-94 MT	5-26-94 17	entrai		Column	(HOG) MA HA-LE-G	Concentration	5-30-94 CRS	GC / ECD Prep	DE-30-94	GC/MS Prep	5-30-94 DW	GO / FID Prep	5-30-94 JW	Received GC / MS	(" MO 170 W ")	Bacalyad GC/FID		
SA1 (All) Y Pentane vol. SA2 (Pes/PAH) Y SA3	Comments	At 2300 will a sather they tractions																			
Siberia Tost Sauls Saulses reed to 16	(b) Dry Wt. Dry Wt. (g)	50.97 1708	21 92		75.49 15.156	16.11	1.89 13	33.63 6.743	11.51 17.635	ere ereiten i menterbina (militaria). Est etter i mentermente grand i demokratik								5	12.42 14.880		20,00
Matrix Project: XSediments Comments:	Sample ID Swet Wt (g)	2a 9 18.09	4) 5/4 40 20.14	1 3a 5 20.10	15 50 60 50 50 50 50 50 50 50 50 50 50 50 50 50	2 Sta 55 10.03.	3 5ta 56 2006.	,	710 2002									士	01.00 187510 70 16	Marie Bland	A COCCO
MISC	Elle #	2 015 46	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	5 27.33	なながっている。	8 C1348	3000 c	のイングない。	0	2	5 7	382	78	W	*2	BQ 20	" (1000 P	30 2000 B	

ACMIST MISS BANG

Date ____ Initials

- Date Initials

1993-53h.YL Misc Sediments

TO CONTRACTOR OF THE PARTY OF T	Sample 1996	Analysis lybe			/		11 V 1	
Sep. 0.4/48150	Tissue: X	CDIVOTE: X IEH	Is has octon DIO	XINIX	Adoa	Surrogate #:	PCB EU-0418-35 COJ 11/10/00	100 2
Catalog #:	Sed: Water:	AHH:	SS	SAMPLE LOGBOOK	LOGB	Spike #:	Prairies 21 20 20 11/0/94	
Sibena	Other:	Other				Ciean Up Side:		
# Sample ID	31	Client Descriptor	Wet Wt (g) ⊠ Volume (l)	Dry Wt (%)	Dry Wt (9)	* Commer	112000	Juo Juo
1 0 46 71	BLANK				2.0		Sample	
2 611546	/ Station	8 150 Pools	4.035	30.45	1,229	ماه دهسه او اد اد		L
3 C11948		Station 16 150 PODS	¥ 5.235	23.32	1.22		11/10/94	CAME/DOW
4 (11950	Station	17 AMPhipad	8 10.000	28.02	2.802		Concentration	
5 011953	5+4+ion 1	O Liver	10.488	34.00	3,566		Si / Ai Column	
8 0/1955	5 S+4+io~	24 Liver	812.01	44.29	4,526	ъ. д	Concentration	
7	6 Station	14 BIVALVES		25.93	1,050	Nomore Sample left	HPLC/	
+		Station S Stugenlive #3	5,591	14.71	2.500		Consentration	
15±910 6		Station 19 Amphil pop		29.48	2,960		- 1	
10 (16752	- Statio-	20 BIVAL VES	2.220	24.69	1.209		Pertition 11/15/94	Ş
11 616753	Statio-	Stubom- MERHTHYS, 360	HTHYS. 360	25.53	1.368		Concentration 11 110/94	\$
12 CTUTES		Station 21. 30 Fish times					SI / H2504/ KOH Column 1. 1.0 /04	2446
2 +5 (11962	3+4	21-3093-00-61	780.01	27.19	2,742		0 /	200
14							Alumine /	S.
15							77/30	SMI
16							Concentration 11/2/194	- Put
17							Charcos 11/22/44	\$
18							Concentration 11/192/04	Ι.
19							Final Evaporation 11/93/0/L	
20						•		
17							_	0
2	MS 43-00	54421-30	10.163	26.79	2.723			18 PT 18
d	MOD AB.	43 - 001, 544 21- 30	10.210	26.18	2.673		Archive	
24 Q 9074	BLANK							
Surrogate #:			JAIL		A STATE OF SEA	The second of th	The state of the s	RELATED PAGE
Internal Std #:			11/22/94 PUT	1	本女(もこa	destroated on most your	how-subl	1
Spike #:	18011 KBKS 1108 1		E.F.		Marke	been in sample torex	ction	A JOXO
Form 1993-35 Dioxin Lab Sample Log	n Lab Sample Log							

ū

100

Form 1993-35. Dioxin Lab Sample Log

めるろ

路 11/30/94 75G/STNS 6 Surrogate #: 16/31CS-21894294 (1173) May 4 Relay SMS SHS RELATED PAGE **DX 0173** 古 SMS き DATE DATE 12/08/94 5145 Documentation 12/15/94 25/25/11 12/09/194 भार्यक 12/10/94 12/00/94 Concentration 12/11/94 2/14/94 あした 13194 Line adjusted the second of th कित क्या एक प्राप्त 81 / H₂8O₄ / KOH Column Concentration Concentration Concentration Concentration GC / HRM8 Prep / Storage Alumine Column Concentration Concentration Extraodion Final Evaporation Archive ... Acid Swirl Partition Semple Charcoal SI / Al Column HPLC/ GPC Run on HRM8 Internal Std #: Spike #: (c) Comments DIOXIN LABORATORY SAMPLE LOGBOOK NO CLERNUP STD. !!! Day Wit 13.06 26.34 4.57 23.62 19.04 27.54 14.95 41.16 <u>(</u> 5.09 15.30 20.1 S. **Dt**√ **Xt** 63.77 8.46 62.96 40.10 63.77 35.61 56.19 8 63.77 00 Internal Std #: 104 EPAIL 155 161. 121992 12/15/194 PCH Wet Wt (g) 🔯 Volume (I) 42.03 38.54 47.48 23.45 41.95 40.77 20A8 24.00 5.09 DATE C Type Amalysis Type
Cobcop: X
Cobcop: X
Copcop: X Client Descriptor PHEP BY 200 Other: Station 58 20 AHH Station 21 Station 61 Station 14 いなたろう Station S **BLANK SPIKE** SRM 1941A state MSCAL CIMI Form 1993-35. Dioxin Lab Sample Log BLANK MSD acecia/ord other: Sample ID CAROCI Clado C12915 011192 C129 1.1 いなら Q11196 26 Q119 B C12912 22008 Q11194 011193 28 64114 Surrogate #: Spike #: 4 12 15 18 .**≠**⊭ 5 13 7 16 19 S စ 6 7 1 2 က 9 2

=

	- 3 O	Project/SDG#:	Sample Type Tissue: Sed: Water:	Type Analysis Type copone X		DIOXIN LABORATORY SAMPLE LOGBOOK	ABOR,	ATORY 300K	Surrogate #:		माना का कार्याहा ने व्यक्त कार्यात	
		ΙĿ		Olliar.	A A SECTION IN				Clean Up Stdf:		144	
	#	Samble ID	est and	Clent Descriptor		av Si Si					IT OAR WE	AL POST
	-	Q 10071	BLANK	X	7 (I) ewinio	(%)	-			8	Documentation	
	7	Cles		86	K7 21		+			Sample	DATE ST IN	A S
	က	C16132	Sign of	ま	40 BO	63.66	4			Extraction	1302/44 SIMS	्रेन व
	4	C13733		R	10 C	70.07	-				702	2/17
	2	C13713	SARSE	. 95		000	12:24			Consentation	12/08/194	2
	9	C16684		0		0/2/2	27:17			Column		
	~	्राक्रकाः	3	4/ 8	101 (0)	07:06	35. 41			Concentration	c	
	8	506913	F-18-74	18. F	77.77	33.40	50,00			HPLC/		T
	6	Q10072	C110684	1+	7 2076	0000	35.50			Concentration		
	10				26.17	84.36	155.31			A Pick		7
	=									Partition	12/11/34 Su	SmS
	12									Concentration	12/12/2	1
	13		-							81/H2SO4/ KOH Column	12/12/04	y
	14									Concentration	10/6/	
	15									Alumine	112/44	75
	16									Column	12/15/14	SMS
	12									Concentration	12/16/94	Pet
	18									Column		Pett
	19									Concentration	9	1
	20									Final	7	1
0		Q 100m	SRM AU	AHIA	1.31	- 00	121			QC/HRMS		1
 =		grant	MS C	MS CILLOSH	4110	843	21 77			Run on		1
,	h	-	-MSD	28		200.0	71:10			CHANG		Т
7	K	\$(00%;	BEANK	BLANK SPIKE V.			200			Archive		
	Surro	Surrogate #:		PREPRY	DATE		10°		The state of the s			
	Intern		Out Epa 16	13 TCC 101 00100	19/10/61		Mary Comment of the State of th	A THE STREET STREET, THE STREET	adam da kanan dan Tal	THE PERSON NAMED IN	MELAIED PAGE	w .
*	Spike #:		10pl PCBRS 1108-19(45/61/C1 (19) 361-8011	1110	# <u>7</u>						_
	orm 199	93-35.Dioxin L	Form 1993-35. Dioxin Lab Sample Log			-					DX 0180	***

٥	Declare RDO#.									1. E	100
18		Tissue:	COD/COF: X	ב	INIXC	Agoay	7007	Surrogate #:	1613.465	क जान	S. S.
ال	Catalog #:		AHH: Other:	S	AMPLE	SAMPLE LOGBOOK	90K		16.13 South 30, 100, 100, 100, 100, 100, 100, 100,	16.8.C) 70 16.8.C) 70 16.8.C) 70	ms x
***	Sample ID	* 45000 5	Client Descriptor	Wet Wt (g)	3 Dry Wt	M (6)	Comments			OA)	
-	Q10054	BLANK				7 9%			2000年	PA DATE	INITIALS
7	C16704	STA 19		46.10	19 5	12.87			Prep	15 09 94	Sus
က	C16718	STA 33		76.44	6818	30.07			Extraction	12/09/94	SMS
4	C 16747	pes;		45.89	40.48	12 5. E.			Concentration		¥1,5
20	C13767	1 STATIC		82,19	30.3/	24 91			St / Al		
۳		*		48,39	78.81	38110			Concentration		
^	C13781	* STA 54		14.59	73.62	119 1.2			No.		
80	(210055		₽n⊄	45. Jol	68.18	11 20			apc		
6					2	7.17			Concentration		
9									Acid Swiri	12 15 9	SMS
11									1	101010	
12										44/44	芝
13									KOH Column		
4									Concentration		
5									Alumine		
16									Concentration		
=									Chercosi		
2									Column		
5									Concentration		-
8									Final		
र्द	10056	SRM 1941A	HA	6,30	100	120			GC / HRMS Prep / Storage		
à	19,0057		216718		8	7385			Run on HRMS		
23		-DENH		1		1,01			Archive		T
4	010058	BLANK SPIKE	IKE	1		-02					
Sur	Surrogate #:		РЯЕР ВУ	DATE			E LUCAL TERMENT COMMENTS	The state of the s		MELATED PAGE	PAGE
Inter	Internal Std #:				*	Samples	we spike	5 LX1	13		
Spik	Spike #:				1	12.9.94.	wrong da	rte Writte	mabor.		3
	Form 1993-35 Diavin I at Samula I at	ob Completo					0		£121194	DX 0 183	n Ö
5	I SECTOD FICTION	an Sample Log									

₽ 5

Monitoring Industrial Contaminants Release to Russian Arctic Rivers
Analytical Laboratory Quality Assurance Report

PAHs, PCBs, and Pesticides in Tissues Analytical Sample Data

SIBERIA TISSUES - GENERAL INFORMATION - 93-D0-01

T3470.00#					
INVEST#:	STA 8	STA 15	STA 16	STA 16	STA 17
ID:	ISOPODS	BIVALVES	ISOPODA #3	WORMTUBE	AMPHIPODS
LABSAMNO:	C11946	C11947	C11948	C11949	C11950
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	08/10/93	08/14/93	08/15/93	08/15/93	08/18/93
RECEIPT DATE:	09/03/93	09/03/93	09/03/93	09/03/93	09/03/93
QCBATCH:	M1422	M1422	M1422	M1422	M1422
EXTRACTION DATE:	08/22/94	08/22/94	08/22/94	08/22/94	08/22/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	09/08/94	09/08/94	09/08/94	09/08/94	09/08/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	09/29/94	09/28/94	09/28/94	09/28/94	09/28/94
MATRIX:	TISSUE	TISSUE	TISSUE	TISSUE	TISSUE
SUBMAT:					
WETWT:	2.01	1.45	2.02	10.05	5.01
DRYWT:	0.63	0.38	0.54	6.33	1.34
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	31.4%	26.5%	26.5%	63.0%	26.8%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:	8.47	11.54	0.97	0.03	9.55
Surrogate Recoverie	es				
PAH's:					
NAPHD8:	53	57	64	47	40
ACEND10:	67	63	66	51	47
PHEND10:	61	66	72	55	53
CHRYD12:	53	57	57	56	55
PERYD12:	43	34 Q	39 Q	38 Q	30 O
PESTICIDES & PCB's	:		-		30 %
DBOFB:	56	112	63	62	55
PCB#103:	76	115	68	54	46
PCB#198:	73	144 Q	68	62	55

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STA 8	STA 15	STA 16	STA 16	STA 17
ID:	ISOPODS	BIVALVES	ISOPODA #3	WORMTUBE	AMPHIPODS
LABSAMNO:	C11946	C11947	C11948	C11949	C11950
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL				
NAPHTHALENE	60.9	132.0	35.8	6.3	30.1
C1-NAPHTHALENES	53.5	94.1	36.1	8.2	18.1
C2-NAPHTHALENES	ND	65.3	38.5	6.9	19.2
C3-NAPHTHALENES	ND	ND	64.0	11.7	50.5
C4-NAPHTHALENES	ND	ND	ND	5.8	ND
BIPHENYL	10.8 J	22.7 J	12.7 J	2.6	6.6 J
ACENAPHTHYLENE	2.0 J	2.0 J	2.9 J	0.3 J	1.0 J
ACENAPHTHENE	6.0 J	8.4 J	5.8 Ĵ	0.3 J	2.1 J
FLUORENE	7.2 J	7.5 J	5.8 J	· 1.2 J	5.4 J
C1-FLUORENES	ND	17.2 J	ND	2.4 J	ND
C2-FLUORENES	ND	ND	ND	11.3	ND
C3-FLUORENES	ND	ND	ND	8.5	ND
PHENANTHRENE	18.1	23.3	14.5	6.7	23.7
ANTHRACENE	3.0 J	0.8 J	0.3 J	0.3 J	1.0 J
C1-PHEN ANTHR	ND	23.0 J	12.2 J	6.5	13.8
C2-PHEN ANTHR	ND	40.0 J	19.5 J	8.4	31.0
C3-PHEN ANTHR	ND	63.4	ND	5.8	ND
C4-PHEN_ANTHR	ND	81.3	ND	4.0	ND
DIBENZOTHIO	5.3 J	9.1 J	2.8 J	1.0	3.7
C1-DIBEN	ND	ND	ND	1.5	3.8 J
C2-DIBEN	ND	ND	ND	2.7	17.7
C3-DIBEN	ND	ND	ND	2.0	ND
FLUORANTHENE	4.5 J	15.3	5.0 J	2.6	14.3
PYRENE	3.9	8.8	5.1	2.8	10.9
C1-FLUORAN_PYR	ND	ND	ND	0.4 J	12.5
BENAANTHRACENE	1.7 J	1.7 J	0.7 J	1.3	6.7
CHRYSENE	2.3 J	14.9 J	2.1 J	2.6	6.4
C1-CHRYSENES	ND	ND	ND	3.2	3.6 J
C2-CHRYSENES	ND	ND	ND	2.9	3.6 J
C3-CHRYSENES	ND	ND	ND	ND	ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	1.0 J	8.0 J	0.7 J	1.8	4.2 J
BENKFLUORAN	1.0 J	8.0 J	0.7 J	1.8	4.2 J
BENePYRENE	3.0 J	10.9	2.6 J	2.2	3.2
BENaPYRENE	0.3 J	0.8 J	0.2 J	0.6 J	1.5 J
PERYLENE	13.8	87.8	3.5 J	18.2	3.2 J
I123cdPYRENE	0.6 J	1.9 J	0.4 J	0.7	2.0
DBahANTHRA	0.6 J	0.7 J	0.6 J	0.2 J	0.4 J
BghiPERYLENE	1.6 J	3.8 J	0.9 J	1.6	2.1
TOTAL PAH's	187.1	664.6	269.9	128.9	302.9
(w/o PERYLENE					

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STA 8	STA 15		STA 16	STA 16	STA 17
ID:	ISOPODS	BIVALVES		ISOPODA #3	WORMTUBE	AMPHIPODS
LABSAMNO:	C11946	C11947		C11948	C11949	C11950
UNIT:	ng/g	ng/g		ng/g	ng/g	ng/g
Analyte (Cont)	Conc DE	3 QUAL Conc	DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
2-METHYLNAPH	30.2	55.9		15.1 J	5.1	10.3
1-METHYLNAPH	23.2	38.1		21.0	3.1	7.7
2,6-DIMETHNAPH	6.7 J	9.8	J	11.3 J	2.4	5.9 J
1,6,7-TRIMETHNAPH	14.1 J	7.7	J	6.9 J	1.6 J	3.4 J
1-METHYLPHEN	9.6 J	4.6	J	1.8 J	1.4	2.7 J
Surrogate Recoveries						
NAPHD8:	53	57		64	47	40
ACEND10:	67	63		66	51	47
PHEND10:	61	66		72	55	53
CHRYD12:	53	57		57	56	55
PERYD12:	43	34	Q	39 Q	38 Q	30 Q

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	STA 8	STA 15	STA 16	STA 16	STA 17
ID:	ISOPODS	BIVALVES	ISOPODA #3	WORMTUBE	AMPHIPODS
LABSAMNO:	C11946	C11947	C11948	C11949	C11950
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
		0	0		
TOTAL BHCs	5.2 J	7.1 J	0.0 ND	0.6 Ј	13.2
TOT CHLORDANES (ALL)	3.2 J	9.1 J	10.5 J	0.2 J	88.6
TOT CHLORDANES (S&T)	2.4 J	7.1 J	5.6 J	0.2 J	48.3
TOTAL DDTs	49.3	66.3	1.4 J	0.5 J	340.9
TOTAL PCBs	56.0 J	220.9 J	75.9 J	2371.8	290.0
ALPHA-BHC	5.2	4.9	0.0 ND	. 0.0 MD	5.9
HCB	7.4	2.8	1.2 J	0.0 ND	13.4
BETA-BHC	0.0 ND	0.0 ND	0.0 ND	0.6	4.5
GAMMA-BHC	0.0 ND	2.2 J	0.0 ND	0.0 ND	2.7
DELTA-BHC	0.0 ND				
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	0.0 ND	1.2 J	1.8 J	0.0 ND	5.4
OXYCHLORDANE	0.0 ND	1.0 J	3.2	0.0 ND	28.8
GAMMA-CHLORDANE	0.0 ND	0.5 J	0.0 ND	0.0 ND	3.4
ALPHA-CHLORDANE	0.0 ND	3.0	0.0 ND	0.0 ND	8.4
TRANS-NONACHLOR	2.4	2.8	3.8	0.2 J	34.5
CIS-NONACHLOR	0.7 J	0.5 J	1.7 J	0.0 ND	8.1
ALDRIN	0.0 ND	2.6 J	0.0 ND	0.2 J	0.0 ND
DIELDRIN	0.0 ND	4.8	2.3	0.0 ND	24.0
ENDRIN	0.0 ND	0.0 ND	0.0 ND	0.0 ND	1.6
MIREX	0.0 ND	2.3 J	0.0 ND	0.0 ND	1.1
2,4'DDE (O,P'DDE)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.4 J
4,4'DDE (P,P'DDE)	4.4	15.1	1.4 J	0.1 J	247.2
2,4'DDD (0,P'DDD)	0.0 ND	0.9 J	0.0 ND	0.0 ND	0.7 J
4,4'DDD (P,P'DDD)	32.8	31.2	0.0 ND	0.4	50.9
2,4'DDT (0,P'DDT)	4.4	0.0 ND	0.0 ND	0.0 NTD	2.7
4,4'DDT (P,P'DDT)	7.7	19.1	0.0 ND	0.0 ND	38.9

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	STA 8	STA 15	STA 16	STA 16	STA 17
ID:	ISOPODS	BIVALVES	ISOPODA #3	WORMTUBE	AMPHIPODS
LABSAMNO:	C11946	C11947	C11948	C11949	C11950
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND				
18 (CL3)	0.0 ND				
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.3
44 (CL4)	0.0 ND				
52 (CL4)	0.0 ND	1.1 J	0.0 ND	0.0 ND	2.2
66 (CL4)	0.0 ND	2.3 J	0.0 IND	0.0 ND	2.3
101 (CL5)	0.0 ND	5.3	3.7 J	0.0 NTD	27.0
105 (CL5)	0.0 ND	2.1 J	1.2 J	0.0 ND	7.2
110/77 (CL5/4)	0.0 ND	7.6	0.0 ND	0.0 ND	4.3
118/108/149(CL5/5/6)	4.6	1.7 J	3.0 J	0.0 ND	21.7
128 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.6
138 (CL6)	5.9	3.9 Ј	3.2 J	0.1 J	31.9
126 (CL5)	0.0 NTD	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
153 (CL6)	3.9	4.9 J	5.2	0.0 ND	53.0
170 (CL7)	1.6 J	4.0 J	1.9 J	0.1 J	3.9
180 (CL7)	1.7 J	0.8 J	0.7 J	0.0 ND	8.2
187/182/159(CL7/7/6)	0.0 ND	O.O ND	0.0 ND	0.0 ND	2.8
195 (CL8)	0.0 NTD	O.O NTD	0.0 ND	0.0 ND	0.0 ND
206 (CL9)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
209 (CL10)	0.0 ND				
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND	1.2 J	0.0 NTD	0.0 NTD	0.6 J
15 (CL2)	0.0 ND	O.O NTD	0.0 ND	0.0 ND	0.7 J
24 (CL3)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
16/32 (CL3)	0.0 ND	0.0 NTD	0.0 NTD	0.0 NTD	0.0 ND
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.7 J
26 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
25 (CL3)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
50 (CL4)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
33 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
22 (CL3)	O.O ND	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD
15 (CL4)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
16 (CL4)	0.0 ND	0.0 NTD	0.0 NTD	0.0 NTD	0.0 ND
19 (CL4)	0.0 ND	1.0 J	0.0 ND	0.0 NTD	0.0 ND
17/48 (CL4)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
37/42 (CL4)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
11/64 (CL4)	34.9 M	134.2 M	54.9 M	2371.6 M	21.4 M
10 (CL4)	0.0 ND				
74 (CL4)	O.O ND	0.0 ND	0.0 ND	0.0 ND	3.3

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	STA 8	STA 15	STA 16	STA 16	STA 17
ID:	ISOPODS	BIVALVES	ISOPODA #3	WORMTUBE	AMPHIPODS
LABSAMNO:	C11946	C11947	C11948	C11949	C11950
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)				,	
70 (CL4)	0.0 ND	1.0 J	0.0 ND	0.0 ND	0.0 ND
88 (CL5)	0.0 ND	0.4 J	0.0 ND	0.0 ND	2.1
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.1
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.5
99 (CL5)	3.3	4.0 J	2.1 J	0.0 ND	24.4
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	. 0.0 ND	0.0 ND
97 (CL5)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
87 (CL5)	0.0 ND	1.1 J	0.0 ND	0.0 ND	0.0 ND
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
82 (CL5)	0.0 NTD	1.7 J	0.0 ND	0.0 ND	11.3
151 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.9 J
107/108/144(CL5/5/6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
149 (CL6)	0.0 ND	2.1 J	0.0 ND	0.0 ND	1.9
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
146 (CL6)	0.0 ND	40.5	0.0 ND	0.0 ND	4.8
141 (CL6)	0.0 ND	0.7 J	0.0 ND	0.0 ND '	27.1
137 (CL6)	0.0 ND	1.0 J	0.0 ND	0.0 ND	4.4
UNK (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND 1.0 J
158 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND 0.0 ND	0.0 ND
129 (CL6)	0.0 ND	0.0 ND	0.0 ND 0.0 ND	0.0 ND	0.0 ND
178 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	8.2
183 (CL7)	0.0 NTD 0.0 NTD	0.4 J 0.0 ND	0.0 ND	0.0 ND	0.9 J
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
185 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
174 (CL7) 177 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.9 J
	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.1
156/171/202(CL6/7/8) 200 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.6 J
172 (CL7)	0.0 ND	0.3 J	0.0 ND	0.0 ND	0.0 ND
172 (CL7) 191 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
201 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
196 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
189 (CL7)	0.0 ND	0.0 ND	0.0 ND	O.O ND	0.0 ND
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.5 J
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
Surrogate Recoveries	3				
DBOFB%:	56	112	63	62	55
PCB#103%:	76	115	68	54	46
PCB#198%:	73	144 Q	68	62	55

INVEST#:	STA 20	STA 10	STA 10	STA 9	STA 24
ID:	BIVALVES	ISOPODS	STURGEON	CORREGONUS MUKS	OM STURGEON
LABSAMNO:	C11951	C11952	C11953	C11954	C11955
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	08/19/93	08/11/93	08/11/93	08/11/93	08/25/93
RECEIPT DATE:	09/03/93	09/03/93	09/03/93	09/03/93	09/03/93
QCBATCH:	M1422	M881	M1422	M881	M881
EXTRACTION DATE:	08/22/94	09/15/94	08/22/94	09/15/94	09/15/93
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	09/08/94		09/08/94		
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	09/29/94	11/11/94	09/29/94	11/11/94	11/12/94
MATRIX:	TISSUE	TISSUE	TISSUE	TISSUE	TISSUE
SUBMAT:				•	
WETWT:	0.18	2.20	0.56	0.88	0.68
DRYWT:	0.05	0.51	0.18	0.21	0.29
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	26.4%	23.1%	32.0%	24.1%	43.1%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:	No Sample Left	1.77	46.20		26.50
Surrogate Recoveri	.es				
PAH's:					
NAPHD8:	48	NA	58	NA	NA
ACEND10:	47	NA	66	NA	NA
PHEND10:	48	NA	67	NA	NA
CHRYD12:	49	NA	64	NA	NA
PERYD12:	23 Q	NA	52	NA	NA
PESTICIDES & PCB's	: :				
DBOFB:	710 M	67	57	73	77
PCB#103:	3859 M	128 Q	69	72	70
PCB#198:	5355 M	103	69	86	90

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STA 20	STA 10	STA 10	STA 9	STA 24
ID:	BIVALVES	ISOPODS	STURGEON	CORREGONUS MUKSOM	STURGEON
LABSAMNO:	C11951	C11952	C11953	C11954	C11955
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	281.0	NA	126.7	NA	NA
C1-NAPHTHALENES	286.0 J	NA	114.1	NA	NA
C2-NAPHTHALENES	ND	NA	ND	NA	NA
C3-NAPHTHALENES	ND	NA	ND	NA	NA
C4-NAPHTHALENES	ND	NA	ND	NA	NA
BIPHENYL	97.3 J	NA	43.9 J	NA	NA
ACENAPHTHYLENE	6.7 J	NA	6.7 J	NA	NA
ACENAPHTHENE	46.4 J	NA	7.0 J	NA	NA
FLUORENE	32.1 J	NA	19.0 J	. NA	NA
C1-FLUORENES	ND	NA	ND	NA	NA
C2-FLUORENES	ND	NA	ND	NA	NA
C3-FLUORENES	ND	NA	ND	NA	NA
PHENANTHRENE	152.9	NA	45.8	NA	NA
ANTHRACENE	27.0 J	NA	1.8 J	NA	NA
C1-PHEN_ANTHR	ND	NA	ND	NA	NA
2-PHEN_ANTHR	ND	NA	ND	NA	NA
C3-PHEN_ANTHR	ND	NA	ND	NA	NA
C4-PHEN_ANTHR	ND	NA	ND	NA	NA
DIBENZOTHIO	31.3 J	NA	7.3 J	NA	NA
C1-DIBEN	ND	NA	ND	NA	NA
C2-DIBEN	ND	NA	ND	NA	NA
C3-DIBEN	ND	NA	ND	NA	NA
FLUORANTHENE	43.0 J	NA	10.7 J	NA	NA
PYRENE	41.2 J	NA	12.8	NA	NA
C1-FLUORAN_PYR	ND	NA	ND	NA	NA
BENAANTHRACENE	9.1 J	NA	2.2 J	NA	NA
CHRYSENE	23.2 J	NA	12.8 J	NA	NA
C1-CHRYSENES	ND	NA	ND	NA	NA
C2-CHRYSENES	ND	NA	ND	NA	NA
C3-CHRYSENES	ND	NA	ND	NA	NA
C4-CHRYSENES	ND	AN	ND	NA	NA
BENDFLUORAN	3.9 J	NA	2.4 J	NA	NA
BENKFLUORAN	3.9 J	NA	2.4 J	NA	NA
BENEPYRENE	18.3 J	NA	3.5 J	NA	NA
BENAPYRENE	7.0 J	AN	0.7 J	NA	NA
ERYLENE	19.7 J	NA	3.3 J	NA	NA
123cdPYRENE	1.0 J	AN	0.9 J	NA	NA
DBahANTHRA	1.1 J	NA	1.7 J	NA	NA
BghiPERYLENE	2.2 J	NA	2.5 J	NA	AN
TOTAL PAH's	1114.3 J	NA	424.9	NA	NA
(w/o PERYLENE)					

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STA 20		STA 10		STA 10		STA 9	STA 24	
ID:	BIVALVES		ISOPODS		STURGEON		CORREGONUS MUKSON		
LABSAMNO:	C11951		C11952		C11953		C11954	C11955	
UNIT:	ng/g		ng/g		ng/g		ng/g	ng/g	
Analyte (Cont)	Conc	DB QUAL	Conc	DB QUAL	Conc D	DB QUAL	Conc DB QUAL	Conc	DB QUAI
2-METHYLNAPH	181.0	J		NA	72.0		NA		NA
1-METHYLNAPH	105.1			NA	42.1		NA		NA
2,6-DIMETHNAPH	39.7	J		NA	24.2 J	J	NA		NA
1,6,7-TRIMETHNAPH	22.3	J		NA	18.5 J	ī	NA		NA
1-METHYLPHEN	59.5	J		NA	3.0 J	ī	. NA		NA
Surrogate Recoverie	es							'	
NAPHD8:	48			NA	58		NA		NA
ACEND10:	47			NA	66		NA		NA
PHEND10:	48			NA	67		NA		NA
CHRYD12:	49			NA	64		NA		NA
PERYD12:	23	Q		NA	52		NA		NA

LABNAME: GERG/TAMU

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	STA 20	STA 10	STA 10	STA 9	STA 24
ID:	BIVALVES	ISOPODS	STURGEON	CORREGONUS MUKSOM	STURGEON
LABSAMNO:	C11951	C11952	C11953	C11954	C11955
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
TOTAL BHCs	0.0 ND	5.2 J	11.9 J	42.3	21.8
TOT CHLORDANES (ALL	0.0 ND	3.8 J	5.9 J	12.8 J	26.8
TOT CHLORDANES (S&T	0.0 ND	2.7 J	5.9 J	10.6 J	16.2
TOTAL DDTs	0.0 ND	38.1	1010.6	98.4	800.9
TOTAL PCBs	0.0 ND	27.6 J	173.8 J	85.5 J	485.5 J
ALPHA-BHC	0.0 ND	5.2	11.9	- 0.0 ND	10.4
HCB	0.0 ND	4.0	17.7	11.3	15.3
BETA-BHC	0.0 ND	0.0 ND	0.0 ND	5.3	4.9
GAMMA-BHC	0.0 ND	0.0 ND	0.0 ND	31.4	6.4
DELTA-BHC	0.0 ND	0.0 ND	0.0 ND	5.5	0.0 ND
HEPTACHLOR	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
HEPTA-EPOXIDE	0.0 ND	0.0 ND	0.0 ND	1.6 J	2.8 J
OXYCHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.9 J	2.5 J
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.8
ALPHA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	5.9	5.7
TRANS-NONACHLOR	0.0 ND	2.7	5.9	3.1 J	7.6
CIS-NONACHLOR	0.0 ND	1.1 J	0.0 ND	1.3 J	4.3
ALDRIN	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
DIELDRIN	36.5	0.0 NTD	0.0 ND	2.3 J	7.1
ENDRIN	0.0 ND	0.0 ND	0.0 ND	0.0 ND	25.1
MIREX	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.6 J
2,4'DDE (O,P'DDE)	0.0 ND	0.0 ND	2.7 Ј	0.0 ND	8.5
4,4'DDE (P,P'DDE)	0.0 ND	9.2	475.3	38.4	368.1
2,4'DDD (0,P'DDD)	0.0 ND	0.6 J	29.9	2.6 J	24.2
4,4'DDD (P,P'DDD)	0.0 ND	22.7	405.0	57.4	309.9
2,4'DDT (O,P'DDT) 4,4'DDT (P,P'DDT)	0.0 ND 0.0 ND	0.0 NTD 5.7	55.9 41.8	0.0 ND 0.0 ND	32.3 57.9

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	STA 20	STA 10	STA 10	STA 9	STA 24
ID:	BIVALVES	ISOPODS	STURGEON	CORREGONUS MUKSOM	STURGEON
LABSAMNO:	C11951	C11952	C11953	C11954	C11955
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Cone DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB # (CLORINATION)				· · · · · · · · · · · · · · · · · · ·	
NOAA S&T PCBs					
8 (CL2)	0.0 ND	0.0 ND	0.0 ND	1.9 J	0.0 ND
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	6.1 J	12.0
44 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.7 J
52 (CL4)	0.0 ND	0.0 ND	0.0 NTD	5.2 J	12.9
66 (CL4)	0.0 ND	0.0 ND	9.0 J	0.0 ND	3.8 J
101 (CL5)	0.0 ND	0.0 ND	9.3 J	. 6.0 J	22.0
105 (CL5)	0.0 ND	0.0 ND	8.7 J	0.0 ND	18.3
110/77 (CL5/4)	0.0 ND	0.0 ND	24.9	8.8 J	79.5
118/108/149(CL5/5/6)	0.0 ND	2.7 J	12.8	2.3 J	31.4
128 (CL6)	0.0 ND	0.0 ND	6.5 J	0.0 ND	10.4
138 (CL6)	14.5 J	6.8	26.6	12.3	50.0
126 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
153 (CL6)	0.0 ND	4.2	26.9	0.0 ND	47.0
170 (CL7)	5.6 J	11.5	0.0 NTD	17.3	27.2
180 (CL7)	0.0 ND	0.0 ND	5.6 J	0.0 ND	9.2
187/182/159(CL7/7/6)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	4.0 J
195 (CL8)	0.0 ND	0.0 NTD	0.0 NTD	0.0 NTD	0.6 J
206 (CL9)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	1.0 J
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.2 J
OTHER PCB CONGENERS					
7 (CL2)	9.3 J	0.0 ND	0.0 NTD	0.0 ND	0.9 J
15 (CL2)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
24 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
16/32 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
29 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
26 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	4.9 J	11.5
50 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.5 J
33 (CL3)	0.0 ND	0.0 ND	0.0 ND	8.4 J	2.8 J
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.8 J
45 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
46 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
49 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
47/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
37/42 (CL4)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
41/64 (CL4)	5229.0 M	0.0 ND	234.8 M	0.0 ND	1.6 J
40 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
74 (CL4)	0.0 NTD	0.0 NTD	0.0 ND	0.0 NTD	4.6 J

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	STA 20	STA 10	STA 10	STA 9	STA 24
ID:	BIVALVES	ISOPODS	STURGEON	CORREGONUS MUKSOM	
LABSAMNO:	C11951	C11952	C11953	C11954	C11955
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	4.7 J
88 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.4 J
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	6.2 J
99 (CL5)	0.0 ND	2.5 J	14.2	6.2 J	24.0
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
97 (CL5)	0.0 ND	0.0 ND	0.0 ND	1.5 J	8.4
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	1.4 J	9.6
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	5.0 J
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
82 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.8 J
151 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	4.5 J
L07/108/144 (CL5/5/6)		0.0 ND	0.0 ND	0.0 ND	3.8 J
49 (CL6)	0.0 ND	0.0 ND	6.8 J	0.7 J	14.6
188 (CL7)	0.0 ND	0.0 ND	19.0	0.0 NTD	2.2 J
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.6 J
141 (CL6)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	8.8
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.8 J
UNK (CL6) 158 (CL7)	0.0 ND 0.0 ND	0.0 NTD 0.0 NTD	0.0 NTD 0.0 NTD	0.0 ND 0.0 ND	1.9 J 3.2 J
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	1.1 J
129 (CLO) 178 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	1.4 J
178 (CL7) 183 (CL7)	0.0 ND	0.0 ND	3.7 J	3.1 J	4.7 J
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.8 J
185 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
174 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	2.3 J
177 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	1.8 J
156/171/202(CL6/7/8)		0.0 ND	0.0 ND	0.0 ND	10.5
200 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
172 (CL7)	0.0 ND	0.0 ND	0.0 ND	1.2 J	1.4 J
191 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
201 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
196 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
L89 (CL7)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.8 J
194 (CL8)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.4 J
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
Surrogate Recoveries	3				
DBOFB%:	710 M	67	57	73	77
PCB#103%:	3859 M	128 Q	69	72	70
PCB#198%:	5355 M	103	69	86	90

SIBERIA TISSUES - GENERAL INFORMATION - 93-D0-01

INVEST#:	STA 24	Station 19	Station 19	Station 21	Station 21
ID:	STURGEON	Bivalves	Isopods	Bivalves	Isopods
LABSAMNO:	C11955	C13786	C13787	C13788	C13789
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	08/25/93	08/19/93	08/19/93	08/20/93	08/20/93
RECEIPT DATE:	09/03/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M1422	M959	M959	M959	M959
EXTRACTION DATE:	08/22/94	04/26/94	04/26/94	04/26/94	04/26/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	09/08/94	05/31/94	05/31/94	05/31/94	05/31/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	09/28/94	06/24/94	06/24/94	06/24/94	06/24/94
MATRIX:	TISSUE	TISSUE	TISSUE	TISSUE	TISSUE
SUBMAT:				•	
WETWT:	0.58	1.61	10.47	1.71	2.81
DRYWT:	0.24	0.14	2.01	0.47	0.06
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DR
PCTSOLIDS:	41.1%	8.7%	19.2%	28.0%	2.2%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:	59.44	8.30	4.68	3.88	2.24
Surrogate Recoveri	Les				
PAH's:					
NAPHD8:	47	64	49	57	66
ACEND10:	55	64	58	59	64
PHEND10:	56	61	58	65	62
CHRYD12:	48	55	72	74	61
PERYD12:	35 Q	43	46	47	47
PESTICIDES & PCB's	3 :				
DBOFB:	59	65	70	67	67
PCB#103:	61	76	77	78	77
PCB#198:	65	71	77	77	75

DATE: 23-Jan-95

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STA 24	Station 19	Station 19	Station 21	Station 21
ID:	STURGEON	Bivalves	Isopods	Bivalves	Isopods
LABSAMNO:	C11955	C13786	C13787	C13788	C13789
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	90.6	111.2	10.5	29.7	2.2 J
C1-NAPHTHALENES	100.7	91.9 J	9.7	26.2 J	2.1 J
C2-Naphthalenes	120.5	ND	ND	ND	ND
C3-NAPHTHALENES	288.9	ND	ND	ND	ND
C4-NAPHTHALENES	ND	ND	ND	ND	ND
BIPHENYL	32.9 J	21.2 J	2.1 J	7.3 J	0.8 J
ACENAPHTHYLENE	4.0 J	10.5 J	0.6 J	1.1 J	0.3 J
ACENAPHTHENE	13.0 J	5.7 J	1.2 J	3.2 J	0.2 J
FLUORENE	16.9 J	16.3 J	1.4 J	2.6 J	0.2 J
C1-FLUORENES	ND	ND	ND	ND	ND
C2-FLUORENES	ND	ND	ND	ND	NTD
C3-FLUORENES	ND	. ND	ND	ND	ND
PHENANTHRENE	37.1	18.1 J	2.8	6.2 J	0.6 J
ANTHRACENE	2.3 J	5.2 J	0.3 J	1.2 J	0.6 J
C1-PHEN ANTHR	ND	ND	NTD	1.2 U	NTD
22-PHEN ANTHR	ND	ND	ND	ND	ND
3-PHEN ANTHR	ND	ND	ND	ND	ND ND
C4-PHEN ANTHR	ND	ND	ND		
OIBENZOTHIO	17.0	9.4 J	1.0 J	ND	ND
C1-DIBEN	ND	ND	ND ND	1.8 J	0.2 J
C2-DIBEN	ND	ND	ND ND	ND	ND
C3-DIBEN	ND	ND	ND ND	ND	ND
FLUORANTHENE	11.0 J	9.5 J	1.7 J	ND	ND
PYRENE	9.6	7.9 J		7.0 J	0.3 J
C1-FLUORAN_PYR	ND	7.9 J ND	1.3	4.0 J	0.3 J
BENAANTHRACENE	2.0 J		ND	ND	ND
CHRYSENE	2.0 J	3.9 J 27.5 J	0.4 J	4.0 J	0.1 J
C1-CHRYSENES			1.1 J	6.9 J	0.2 J
	ND	ND	ND	ND	ND
C2-CHRYSENES	ND	· ND	ND	ND	ND
C3-CHRYSENES	ND	ND	ND	ND	ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	1.2 J	6.0 J	0.3 J	4.3 J	0.1 J
BENKFLUORAN	1.2 J	6.0 J	0.3 J	4.3 J	0.0 J
BENEPYRENE	4.4 J	8.6 J	3.6	5.7	0.4 J
BENa PYRENE	0.7 J	8.8 J	0.3 J	0.7 J	0.1 J
PERYLENE	2.4 J	14.1 J	5.1	28.6	0.3 J
123cdPYRENE	0.7 J	5.3 J	0.6 J	1.4 J	0.2.J
DBahanthra	1.0 J	7.0 J	0.2 J	1.5 J	0.1 J
Bghi PERYLEN E	1.1 J	7.5 J	0.2 J	2.6 J	0.1 J
TOTAL PAH's	760.4	387.2 J	39.3	121.4	8.7
(w/o PERYLENE)		and the second second	and the second		

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#: ID: LABSAMNO: UNIT:	STA 24 STURGEON Cl1955 ng/g	Station 19 Bivalves C13786 ng/g	Station 19 Isopods C13787 ng/g	Station 21 Bivalves C13788 ng/g	Station 21 Isopods C13789 ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	
2-METHYLNAPH	50.5	53.6 J	5.2	17.0 Ј	1.1 J
1-METHYLNAPH	50.2	38.3 J	4.5	9.1 J	1.1 J
2,6-DIMETHNAPH	29.6 J	21.7 J	1.9 J	5.5 J	0.6 J
1,6,7-TRIMETHNAPH	7.1 J	14.8 J	0.6 J	2.8 J	0.7 J
1-METHYLPHEN	2.0 J	6.1 J	0.9 J	· 2.8 J	0.2 J
Surrogate Recoverie	es				
NAPHD8:	47	64	49	57	66
ACEND10:	55	64	58	59	64
PHEND10:	56	61	58	65	62
CHRYD12:	48	55	72	74	61
PERYD12:	35 Q	43	46	47	47

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	STA 24	Station 19	Station 19	Station 21	Station 21
ID:	STURGEON	Bivalves	Isopods	Bivalves	Isopods
LABSAMNO:	C11955	C13786	C13787	C13788	C13789
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	20.5	12.8 J	4.9	7.5 J	0.5 J
TOT CHLORDANES (ALL)	25.9 J	10.2 J	9.8	2.7 J	0.5 J
TOT CHLORDANES (S&T)	16.6 J	6.1 J	4.9	1.5 J	0.2 J
TOTAL DDTs	649.7	6.6 J	0.5 J	3.9 J	0.0 ND
TOTAL PCBs	455.9 J	33.2 J	10.9 J	9.4 J	0.3 J
ALPHA-BHC	14.4	8.3	1.8	2.9	0.2 J
HCB	18.9	2.4 J	0.7	0.7 J	0.1 J
BETA-BHC	0.0 ND	0.0 ND	2.7	1.1 J	0.3 J
GAMMA-BHC	6.0	4.5 J	0.4 J	1.2 J	0.0 ND
DELTA-BHC	0.0 NTD	0.0 ND	0.0 ND	2.3	0.0 NTD
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	3.8 J	2.1 J	1.6	0.5 J	0.1 J
OXYCHLORDANE	2.2 J	1.1 J	2.5	0.8 J	0.2 J
GAMMA-CHLORDANE	4.2 J	1.6 J	0.2 J	0.4 J	0.0 ND
ALPHA-CHLORDANE	5.7	1.8 J	0.2 J	0.4 J	0.0 ND
TRANS-NONACHLOR	7.2	2.3 J	3.1	0.6 J	0.1 J
CIS-NONACHLOR	2.8 J	1.4 J	2.2	0.0 ND	0.1 J
ALDRIN	0.0 ND	3.9 J	0.2 J	0.9 J	0.0 ND
DIELDRIN	8.6	5.8 J	1.5	2.7	0.1 J
ENDRIN	0.0 ND	1.5 J	0.0 ND	0.0 ND	0.0 ND
MIREX	0.0 ND	0.5 J	0.1 J	0.2 J	0.0 NTD
2,4'DDE (0,P'DDE)	3.9 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
4,4'DDE (P,P'DDE)	258.2	4.3 J	0.0 ND	1.5 J	0.0 ND
2,4'DDD (0,P'DDD)	17.8	0.0 ND	0.0 ND	0.2 J	0.0 ND
4,4'DDD (P,P'DDD)	306.4	2.3 J	0.5 J	1.7 J	0.0 ND
2,4'DDT (0,P'DDT)	28.7	0.0 ND	0.0 ND	0.6 J	0.0 ND
4,4'DDT (P,P'DDT)	34.7	0.0 ND	0.0 ND	0.0 NTD	0.0 ND

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	STA 24	Station 19	Station 19	Station 21	Station 21
D:	STURGEON	Bivalves	Isopods	Bivalves	Isopods
LABSAMNO:	C11955	C13786	C13787	C13788	C13789
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB # (CLORINATION)					· · · · · · · · · · · · · · · · · · ·
NOAA S&T PCBs					
8 (CL2)	0.0 ND	0.0 ND	0.7 J	0.6 J	0.0 ND
18 (CL3)	0.0 ND				
28 (CL3)	10.5	0.0 ND	0.2 J	0.0 ND	0.0 ND
44 (CL4)	4.6 J	0.0 ND	0.1 J	0.3 J	0.0 ND
52 (CL4)	9.5	0.0 ND	0.1 J	0.3 J	0.0 ND
66 (CL4)	20.7	0.0 ND	0.2 J	0.0 ND	0.0 ND
101 (CL5)	27.5	1.1 J	1.1	- 0.3 J	0.0 ND
105 (CL5)	16.6	0.0 ND	0.3 J	0.0 ND	0.0 ND
110/77 (CL5/4)	69.9	1.6 J	0.0 ND	0.9 J	0.0 ND
118/108/149(CL5/5/6)	30.9	1.0 J	1.6	0.3 J	0.1 J
128 (CL6)	9.4	1.0 J	0.1 J	0.0 ND	0.0 ND
138 (CL6)	41.7	1.4 J	1.6	1.3 J	0.0 NTD
126 (CL5)	0.0 ND	0.8 J	0.0 ND	0.0 ND	0.0 ND
153 (CL6)	45.0	0.0 ND	2.0	0.0 ND	0.1 J
170 (CL7)	4.1 J	2.2 J	0.9 Ј	1.0 J	0.1 J
180 (CL7)	7.9 J	0.9 J	0.3 J	0.6 J	0.0 ND
187/182/159 (CL7/7/6)	3.8 J	0.6 J	0.0 ND	0.1 J	0.0 ND
195 (CL8)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	O.O NTD
209 (CL10)	0.0 ND	0.2 J	0.0 ND	O.O NTD	0.0 ND
OTHER PCB CONGENERS					
7 (CL2)	0 0 300	0.0.10	0.0 100	2 2 37	
	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
15 (CL2)	0.0 ND	4.7 J	0.2 J	2.1 J	0.0 ND
24 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
16/32 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
29 (CL3)	0.0 ND				
26 (CL3)	1.9 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
25 (CL3)	10.6	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
50 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
33 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
22 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
15 (CL4)	0.0 ND				
16 (CL4)	0.0 ND				
19 (CL4)	0.0 NTD	9.7 J	0.0 NTD	0.6 J	0.0 ND
47/48 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	O.O ND
37/42 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.8 J	0.0 ND
41/64 (CL4)	2717.0 M	0.0 ND	0.0 ND	0.0 ND	0.0 ND
40 (CL4)	0.0 ND	0.0 ND	. 0.0 ND	0.0 ND	0.0 NTD
74 (CL4)	5.7 J	0.0 NTD	0.3 J	0.0 NTD	0.0 ND

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#: ID:	STA 24 STURGEON	Station 19 Bivalves	Station 19 Isopods	Station 21 Bivalves	Station 21 Isopods
LABSAMNO:	C11955	C13786	C13787	C13788	C13789
INIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)					
70 (CL4)	4.3 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
88 (CL5)	0.0 ND	0.0 ND	0.1 J .	0.0 ND	0.0 ND
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	15.0	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
84? (CL5)	7.8 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
99 (CL5)	25.4	0.0 ND	1.2	0.0 ND	0.0 ND
83 (CL5)	0.0 ND	5.3 J	0.0 ND	. 0.3 J	0.0 ND
97 (CL5)	8.0 J	0.0 ND	0.0 ND	0.2 J	0.0 ND
87 (CL5)	8.9	0.0 ND	0.0 ND	0.0 ND	0.0 ND
85 (CL5)	0.0 ND	0.0 ND	0.2 J	0.0 ND	0.0 ND
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
82 (CL5)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
151 (CL6)	3.9 J	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
107/108/144 (CL5/5/6)	4.1 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
149 (CL6)	13.1	0.0 ND	0.0 ND	0.0 ND	0.0 ND
188 (CL7)	11.8	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
146 (CL6)	8.4	0.0 ND	0.0 ND	0.0 ND	0.0 ND
141 (CL6)	7.6 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
137 (CL6)	4.1 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
UNK (CL6)	2.3 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
158 (CL7)	2.7 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
178 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
183 (CL7)	3.2 J	0.0 ND	0.5 J	0.2 J	0.0 ND
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD 0.0 NTD
185 (CL7)	0.0 ND	U 8.0	0.0 ND	0.0 ND	0.0 ND
174 (CL7)	1.5 J	0.0 ND	0.0 ND 0.0 ND	0.0 ND 0.0 ND	0.0 ND
177 (CL7)	1.2 J) 5.8 J	0.0 ND 0.0 ND	0.0 ND	0.0 ND	0.0 ND
156/171/202(CL6/7/8	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
200 (CL8)	0.0 ND	1.8 J	0.1 J	0.0 ND	0.0 ND
172 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
191 (CL7) 201 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
201 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
189 (CL7)	0.6 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
Surrogate Recoverie	s				
DBOFB%:	59	65	70	67	67
PCB#103%:	61	76	77	78	77
PCB#198%:	65	71	77	77	75

INVEST#:	Station 35	Station 38	Station 45	Station 48	Station 54
ID:	Nephthys	Sipanclid	Sipanclid	Nephthys	Isopods #3
LABSAMNO:	C13790	C13791	C13792	C13793	C13794
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	09/04/93	09/04/93	09/06/93	09/06/93	09/08/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M959	M959	M959	M959	M959
EXTRACTION DATE:	04/26/94	04/26/94	04/26/94	04/26/94	04/26/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	05/31/94	05/31/94	05/31/94	05/31/94	05/31/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	06/25/94	06/25/94	06/25/94	06/25/94	06/26/94
MATRIX:	TISSUE	TISSUE	TISSUE	TISSUE	TISSUE
SUBMAT:					
WETWT:	5.90	10.84	5.83	0.63	7.60
DRYWT:	3.28	1.72	1.95	0.28	2.39
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DR
PCTSOLIDS:	55.6%	15.8%	33.4%	43.6%	31.5%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
LIPIDS:	1.82	5.64	0.71	4.26	4.71
Surrogate Recoveri	es				
PAH's:					
NAPHD8:	48	60	64	64	54
ACEND10:	52	61	67	60	56
PHEND10:	48	52	63	55	55
CHRYD12:	41	52	56	50	48
PERYD12:	40	49	47	42	44
PESTICIDES & PCB's	:				
DBOFB:	48	67	68	65	54
PCB#103:	59	80	75	73	61
PCB#198:	58	77	74	73	55

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

NAPHTHALENE	INVEST#:	Station 35	Station 38	Station 45	Station 48	Station 54
UNIT:	ID:	Nephthys	Sipanclid	Sipanclid	Nephthys	Isopods #3
PNA Analyte Conc DB QUAL Con	LABSAMNO:	C13790	C13791	C13792	C13793	C13794
NAPHTHALENE 5.2 10.9 7.0 74.3 18.4 CL-MAPHTHALENES 6.4 11.0 5.4 J 33.0 J 9.9 CZ-NAPHTHALENES 6.4 11.0 5.4 J 33.0 J 9.9 CZ-NAPHTHALENES ND 22.2 ND	UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C1-NAPHTHALENES 6.4 11.0 5.4 J 33.0 J 9.9 C2-NAPHTHALENES ND 22.2 ND ND ND 6.6 J ND 6.6 J ND 6.6 J ND ND 6.6 J ND ND 6.6 J ND	PNA Analyte	Conc DB QUAL				
C2-NAPHTHALENES ND 22.2 ND ND 6.6 J C3-NAPHTHALENES ND 33.8 ND ND ND ND C3-NAPHTHALENES ND 18.6 ND ND ND ND SIPPRENT 1.4 J 4.5 J 2.5 J 9.7 J 2.0 J ACENAPHTHALENES ND 18.6 ND ND ND ND SIPPRENT 1.4 J 4.5 J 2.5 J 9.7 J 2.0 J ACENAPHTHALENE 0.6 J 0.5 J 0.6 J 1.8 J 0.2 J ACENAPHTHENE 0.8 J 1.1 J 0.8 J 4.2 J 2.2 J FLUORENE 0.5 J 3.0 J 0.7 J 4.4 J 0.8 J FLUORENE ND 2.6 J ND ND ND ND ND 4.4 J 0.8 J C1-FLUORENES ND ND ND ND ND ND ND 6.7 J SIPPRENTITERNE 1.1 J 4.2 2.1 10.9 J 1.9 PHENANTHERNE 1.1 J 4.2 2.1 10.9 J 1.9 PHENANTHERNE ND 4.5 J ND ND ND ND 16.3 C2-PHEN ANTHR ND ND ND ND ND ND 16.3 C2-PHEN ANTHR ND ND ND ND ND ND 5.8 J C4-PHEN ANTHR ND	NAPHTHALENE	5.2	10.9	7.0	74.3	18.4
C3-NAPHTHALENES	C1-NAPHTHALENES	6.4	11.0	5.4 J	33.0 J	9.9
C4-NAPHTHALENES	C2-NAPHTHALENES	ND	22.2	ND	ND	6.6 J
BIPHENYIL 1.4 J 4.5 J 2.5 J 9.7 J 2.0 J	C3-NAPHTHALENES	ND	33.8	ND	ND	ND
ACEMAPHTHYLENE 0.6 J 0.5 J 0.6 J 1.8 J 0.2 J ACEMAPHTHENE 0.8 J 1.1 J 0.8 J 4.2 J 2.2 J FLOORENE 0.5 J 3.0 J 0.7 J 4.4 J 0.8 J 2.2 J 1.0 D.8 J 0.7 J 4.4 J 0.8 J 0.7 J 4.4 J 1.9 J 1.0 J 1.2 J 1.1 J 1	C4-NAPHTHALENES	ND	18.6	ND	ND	ND
ACENAPHTHENE 0.8 J 1.1 J 0.8 J 4.2 J 2.2 J FLUORENE 0.5 J 3.0 J 0.7 J 4.4 J 0.8 J C1-FLUORENE 0.5 J 3.0 J 0.7 J 4.4 J 0.8 J C1-FLUORENES ND 2.6 J ND ND ND ND ND 4.4 J 0.6 7 J 4.4 J 0.8 J C1-FLUORENES ND	BIPHENYL	1.4 J	4.5 J	2.5 J	9.7 J	2.0 J
FLUORENE	ACENAPHTHYLENE	0.6 J	0.5 J	0.6 J	1.8 J	0.2 J
C1-FLUCRENES ND 2.6 J ND ND 4.4 J C2-FLUCRENES ND ND ND ND 6.7 J C3-FLUCRENES ND ND ND ND ND 19.3 PHENANTHRENE 1.1 J 4.2 2.1 10.9 J 1.9 ANTHRACENE 0.2 J 0.8 J 0.3 J 8.3 J 0.6 J 1.9 ANTHRACENE ND ND ND ND ND ND 16.3 C3-FHEN_ANTHR ND 4.5 J ND ND ND ND 16.3 C3-FHEN_ANTHR ND ND 5.5 J ND ND ND ND 5.8 J 0.3 J 8.3 J 0.6 J 7.8 C4-PHEN_ANTHR ND	ACENAPHTHENE	0.8 J	1.1 J	0.8 J	4.2 J	2.2 J
C2-FLUORENES ND ND ND ND ND 19.3 73-FLUORENES ND ND ND ND ND 19.3 PHERNATHREME 1.1 J 4.2 2.1 10.9 J 1.9 ANTHRACENE 0.2 J 0.8 J 0.3 J 8.3 J 0.6 J C1-PHEN_ANTHR ND 4.5 J ND ND ND 16.3 C2-PHEN_ANTHR ND 5.5 J ND ND ND 16.3 C3-PHEN_ANTHR ND ND ND ND ND 7.8 C4-PHEN_ANTHR ND	FLUORENE	0.5 J	3.0 J	0.7 J	- 4.4 J	0.8 J
C3 - FLUORENES	C1-FLUORENES	ND	2.6 J	ND	ND	4.4 J
### PHENANTHRENE	C2-FLUORENES	ND	ND	ND	ND	6.7 J
ANTHRACENE 0.2 J 0.8 J 0.3 J 8.3 J 0.6 J C1-PHEN_ANTHR ND 4.5 J ND ND 16.3 C2-PHEN_ANTHR ND 5.5 J ND ND ND 5.8 J C3-PHEN_ANTHR ND ND ND ND ND 7.8 C4-PHEN_ANTHR ND	C3-FLUORENES	ND	ND	ND	ND	19.3
C1-PHEM_ANTHR	PHENANTHRENE	1.1 J	4.2	2.1	10.9 J	1.9
C2-PHEN_ANTHR ND 5.5 J ND ND 5.8 J C3-PHEN_ANTHR ND ND ND ND ND 7.8 C4-PHEN_ANTHR ND	ANTHRACENE	0.2 J	0.8 J	0.3 J	8.3 J	0.6 J
C3-PHEN_ANTHR ND ND ND ND ND ND 7.8 C4-PHEN_ANTHR ND	C1-PHEN_ANTHR	ND	4.5 J	ND	ND	16.3
C4-PHEN_ANTHR ND	C2-PHEN_ANTHR	ND	5.5 J	ND	ND	5.8 J
DIBENZOTHIO 0.7 J 2.4 0.9 J 8.3 J 0.8 J C1-DIBEN ND	C3-PHEN_ANTHR	ND	ND	ND	ND	7.8
C1-DIBEN ND	C4-PHEN_ANTHR	ND	ND	ND	ND	ND
ND	DIBENZOTHIO	0.7 J	2.4	0.9 J	8.3 J	0.8 J
C3-DIBEN ND ND ND ND ND ND ND ND PFLUORANTHENE 0.9 J 3.0 J 1.2 J 16.2 J 0.9 J 0.6 J 1.1 J 7.8 J 0.6 J 0.6 J 0.7 DEBENAANTHRACENE 0.4 J 1.9 1.0 J 6.7 J 0.4 J 0.6 J 0.7 C1-CHRYSENE 0.4 J 1.9 1.0 J 6.7 J 0.4 J 0.7 C1-CHRYSENE 0.8 J 1.5 J 5.9 J 1.1 J 0.6 C2-CHRYSENES ND 3.0 J ND	C1-DIBEN	ND	ND	ND	ND	ND
FLUORANTHENE 0.9 J 3.0 J 1.2 J 16.2 J 0.9 J PYRENE 1.1 2.0 1.1 J 7.8 J 0.6 J 0	C2-DIBEN	ND	ND	ND	ND	ND .
PYRENE 1.1 2.0 1.1 J 7.8 J 0.6 J C1-FLUCRAN_PYR ND 2.9 J ND ND ND ND BENAANTHRACENE 0.4 J 1.9 1.0 J 6.7 J 0.4 J CHRYSENE 2.8 2.8 J 1.5 J 5.9 J 1.1 J CHRYSENES ND 3.0 J ND ND ND ND C2-CHRYSENES ND ND ND ND ND ND ND ND C4-CHRYSENES ND ND <td>C3-DIBEN</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	C3-DIBEN	ND	ND	ND	ND	ND
C1-FLUORAN_PYR ND 2.9 J ND	FLUORANTHENE	0.9 J	3.0 J	1.2 J	16.2 J	0.9 J
BENAANTHRACENE 0.4 J 1.9 1.0 J 6.7 J 0.4 J CHRYSENE 2.8 J 1.5 J 5.9 J 1.1 J CHRYSENE 2.8 J 1.5 J 5.9 J 1.1 J J C1-CHRYSENES ND 3.0 J ND	PYRENE	1.1	2.0	1.1 J	7.8 J	0.6 J
CHRYSENE 2.8 2.8 J 1.5 J 5.9 J 1.1 J C1-CHRYSENES ND 3.0 J ND ND ND ND C2-CHRYSENES ND ND ND ND ND ND ND ND C3-CHRYSENES ND ND ND ND ND ND ND ND ND C4-CHRYSENES ND EBENDFLUORAN 0.4 J 3.9 J 2.1 J 5.5 J 0.6 J BENRFLUORAN 0.2 J 1.7 J 0.6 J 5.5 J 0.6 J BENRPYRENE 0.6 J 2.8 1.2 J 10.7 1.6 BENRPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdPYRENE 0.4 J 1.6 1.0 1.8 J 0.6 J DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BRIPPREYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J	C1-FLUORAN_PYR	ND	2.9 J	ND	ND	ND
C1-CHRYSENES ND 3.0 J ND ND ND ND ND ND ND C2-CHRYSENES ND 3.4 J ND	BENAANTHRACENE	0.4 J	1.9	1.0 J	6.7 J	0.4 J
C2-CHRYSENES ND 3.4 J ND	CHRYSENE	2.8	2.8 J	1.5 J	5.9 J	1.1 J
C3-CHRYSENES ND	C1-CHRYSENES	ND	3.0 J	ND	ND	ND
C4-CHRYSENES ND ND ND ND ND ND ND ND ND BENDFLUORAN 0.4 J 3.9 J 2.1 J 5.5 J 0.6 J BENKFLUORAN 0.2 J 1.7 J 0.6 J 5.5 J 0.6 J BENEPYRENE 0.6 J 2.8 1.2 J 10.7 1.6 BENAPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdpyrene 0.4 J 1.6 1.0 1.8 J 0.6 J DBahanthra 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J Bghiperylene 0.5 J 2.0 1.1 J 8.3 J 0.8 J	C2-CHRYSENES	ND	3.4 J	ND	ND	ND
BENDFLUORAN 0.4 J 3.9 J 2.1 J 5.5 J 0.6 J BENKFLUORAN 0.2 J 1.7 J 0.6 J 5.5 J 0.6 J BENEPYRENE 0.6 J 2.8 1.2 J 10.7 1.6 BENAPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdpyrene 0.4 J 1.6 1.0 1.8 J 0.6 J DBahanthra 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J Bghiperylene 0.5 J 2.0 1.1 J 8.3 J 0.8 J	C3-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN 0.4 J 3.9 J 2.1 J 5.5 J 0.6 J BENKFLUORAN 0.2 J 1.7 J 0.6 J 5.5 J 0.6 J BENEPYRENE 0.6 J 2.8 1.2 J 10.7 1.6 BENAPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdpyrene 0.4 J 1.6 1.0 1.8 J 0.6 J DBahanthra 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J Bghiperylene 0.5 J 2.0 1.1 J 8.3 J 0.8 J	C4-CHRYSENES	ND	ND	ND	ND	ND
BENKFLUORAN 0.2 J 1.7 J 0.6 J 5.5 J 0.6 J BENEPYRENE 0.6 J 2.8 1.2 J 10.7 1.6 BENAPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdPYRENE 0.4 J 1.6 1.0 1.8 J 0.6 J DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J		0.4 J			5.5 J	. 0.6 J
BENEPYRENE 0.6 J 2.8 1.2 J 10.7 1.6 BENAPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdPYRENE 0.4 J 1.6 1.0 1.8 J 0.6 J DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J						0.6 J
BENAPYRENE 0.2 J 0.9 J 0.5 J 3.9 J 0.2 J PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdPYRENE 0.4 J 1.6 1.0 1.8 J 0.6 J DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J	BENEPYRENE			1.2 J	10.7	1.6
PERYLENE 1.1 J 14.5 5.5 19.5 J 2.6 I123cdPYRENE 0.4 J 1.6 1.0 1.8 J 0.6 J DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J	BENapyrene		0.9 J	0.5 J	3.9 J	0.2 J
DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J	PERYLENE	1.1 J	14.5		19.5 J	2.6
DBahANTHRA 0.5 J 0.9 J 0.3 J 3.4 J 0.2 J BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J					1.8 J	0.6 J
BghiPERYLENE 0.5 J 2.0 1.1 J 8.3 J 0.8 J						0.2 J
		0.5 J				0.8 J
10120 101 0 07:1 10:0 01:3 00:0 0 11:4 0	TOTAL PAH's	24.7	158.0	31.9	230.5 J	111.1 J

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	Station 35	Station 38	Station 45	Station 48	Station 54
ID:	Nephthys	Sipanclid	Sipanclid	Nephthys	Isopods #3
LABSAMNO:	C13790	C13791	C13792	C13793	C13794
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
2-methylnaph	3.2	6.1	3.1 J	15.8 J	5.9
1-METHYLNAPH	3.1	4.8	2.4 J	17.2 J	4.0
2,6~DIMETHNAPH	1.5 J	6.4	2.3 J	19.1 J	2.5 J
1,6,7-TRIMETHNAPH	1.1 J	5.6 J	0.8 J	3.5 J	2.3 J
1-METHYLPHEN	0.7 J	1.9 J	۵.9 گ	- 5.6 J	1.4 J
Surrogate Recoveri					
NAPHD8:	48	60	64	64	54
ACEND10:	52	61	67	60	56
PHEND10:	48	52	63	55	55
CHRYD12:	41	52	56	50	48
PERYD12:	40	49	47	42	44

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	Station 35	Station 38	Station 45	Station 48	Station 54
ID:	Nephthys	Sipanclid	Sipanclid	Nephthys	Isopods #3
LABSAMNO:	C13790	C13791	C13792	C13793	C13794
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	1.4	1.8 J	0.9 J	0.0 ND	3.3
TOT CHLORDANES (ALL)	0.3 J	0.5 J	0.2 J	1.1 J	5.7
TOT CHLORDANES (S&T)	0.3 J	0.3 J	0.2 J	1.1 J	2.9
TOTAL DDTs	1.7 J	1.9 J	0.2 J	5.1 J	0.9 J
TOTAL PCBs	2.5 J	13.8 J	4.0 J	6.2 J	6.4 J
ALPHA-BHC	0.6	1.0	0.7	. 0.0 ND	1.3
HCB	0.3 J	0.4 J	0.1 J	1.4 J	1.1
BETA-BHC	0.2 J	0.4 J	0.0 ND	0.0 ND	1.6
GAMMA-BHC	0.6	0.4 J	0.2 J	0.0 ND	0.4 J
DELTA-BHC	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
HEPTACHLOR	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
HEPTA-EPOXIDE	0.0 ND	0.2 J	0.0 ND	0.0 ND	0.6
OXYCHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	1.7
GAMMA-CHLORDANE	0.0 ND	0.1 J	0.0 ND	0.0 ND	0.0 NTD
ALPHA-CHLORDANE	0.2 J	0.1 J	0.2 J	0.7 J	0.3 Ј
TRANS-NONACHLOR	0.1 J	0.0 NTD	0.0 ND	0.4 J	2.0
CIS-NONACHLOR	0.0 ND	0.1 J	0.0 ND	0.0 ND	1.0
ALDRIN	0.3	0.3 J	0.2 J	2.5 J	0.1 J
DIELDRIN	0.4	1.6	0.4 J	3.4 J	1.2
ENDRIN	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
MIREX	0.1 J	0.0 ND	0.0 ND	0.5 J	0.1 J
2,4'DDE (0,P'DDE)	0.0 ND	0.0 ND	0.0 ND	0.2 J	0.0 ND
4,4'DDE (P,P'DDE)	1.0	0.4 J	0.2 J	2.5 J	0.1 J
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
4,4'DDD (P,P'DDD)	0.7	0.8	0.0 ND	1.6 J	0.8
2,4'DDT (0,P'DDT)	0.0 ND	0.2 J	0.0 ND	0.3 J	0.0 ND
4,4'DDT (P,P'DDT)	0.0 ND	0.4 J	0.0 ND	0.6 J	0.0 ND

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#: ID:	Station 35 Nephthys	Station 38 Sipanclid	Station 45 Sipanclid	Station 48 Nephthys	Station 54 Isopods #3
LABSAMNO:	C13790	C13791	C13792	C13793	C13794
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.3 J	0.2 J	0.0 ND	0.0 ND	0.0 ND
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.1 J
44 (CL4)	0.3 J	0.1 J	0.1 J	0.0 ND	0.3 J
52 (CL4)	0.3 J	0.0 ND	0.2 J	0.9 J	0.3 J
66 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.1 J
101 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.2 J	0.7 J
105 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
110/77 (CL5/4)	0.0 ND	0.0 ND	0.0 ND	0.2 J	0.0 ND
118/108/149(CL5/5/6)	0.1 J	0.0 ND	0.0 ND	0.2 J	0.6 J
128 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.1 J
138 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.8 J
126 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
153 (CL6)	0.2 J	0.2 J	0.1 J	0.2 J	0.8
170 (CL7)	0.4 J	0.9 J	0.4 J	1.0 J	1.0
180 (CL7)	0.1 J	0.0 ND	0.0 ND	0.0 ND	0.5 J
187/182/159(CL7/7/6)	0.0 ND	0.0 ND	0.0 ND	0.0 J	0.0 ND
195 (CL8)	O.O NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
15 (CL2)	0.4 J	0.0 ND	0.0 ND	1.5 J	0.3 J
24 (CL3)	0.0 ND	0.2 J	0.0 ND	0.0 ND	0.0 ND
16/32 (CL3)	0.0 ND	0.6 J	0.1 J	0.0 ND	0.0 ND
29 (CL3)	0.0 NTD	0.0 ND	0.1 J	0.0 ND	0.0 ND
26 (CL3)	0.0 ND	0.5 J	0.1 J	0.0 ND	0.0 ND
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
50 (CL4)	0.0 ND	0.0 ND	0.5 J	0.0 ND	0.0 ND
33 (CL3)	0.0 ND	0.1 J	0.1 J	0.0 ND	0.0 ND
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	1.1 J	0.0 ND
45 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
46 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
49 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
47/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	O.O NTD	0.0 ND
37/42 (CL4)	0.5 J	9.5	2.0	0.4 J	0.0 ND
41/64 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
40 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
74 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 NTD

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	Station 35	Station 38	Station 45	Station 48	Station 54
ID:	Nephthys	Sipanclid	Sipanclid	Nephthys	Isopods #3
LABSAMNO:	C13790	C13791	C13792	C13793	C13794
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND				
88 (CL5)	0.0 ND				
60/56 (CL5)	0.0 ND				
92? (CL5)	0.0 ND				
34? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.1 J
99 (CL5)	0.2 J	0.0 NTD	0.0 ND	0.0 ND	0.5 J
83 (CL5)	0.1 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
97 (CL5)	0.0 ND				
37 (CL5)	0.0 ND				
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
136 (CL6)	0.0 ND				
32 (CL5)	0.0 ND	0.7 J	0.1 J	0.0 ND	0.2 J
L51 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
L07/108/144(CL5/5/6)	0.0 ND	0.3 J	0.0 ND	0.0 ND	0.0 ND
149 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
L88 (CL7)	0.0 ND				
L46 (CL6)	0.0 ND				
41 (CL6)	0.0 ND	0.0 ND	0.0.ND	0.0 ND	0.0 ND
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.0 ND
JNK (CL6)	0.0 ND				
158 (CL7)	0.0 ND	0.5 J	0.3 J	0.0 ND	0.0 ND
129 (CL6)	0.0 ND	0.0 ND	0.1 J	0.1 J	0.0 NTD
178 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
183 (CL7)	0.0 ND				
167 (CL6)	0.0 ND				
185 (CL7)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
174 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
177 (CL7)	0.0 ND	0.0 ND	0.0 ND	O.O ND	0.0 ND
156/171/202 (CL6/7/8)		0.0 NTD	0.0 ND	0.0 ND	0.0 ND
200 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
172 (CL7)	0.0 ND	0.3 J	0.0 ND	0.0 ND	0.0 ND
191 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.2 J	0.0 ND
201 (CL8)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
196 (CL8)	0.0 ND				
189 (CL7)	0.0 ND				
194 (CL8)	0.0 ND				
205 (CL9)	0.0 ND				
Surrogate Recoveries	S				
DBOFB%:	48	67	68	65	54
PCB#103%:	59	80	75	73	61
PCB#198%:	58	77	74	73	55

SIBERIA TISSUES - GENERAL INFORMATION - 93-D0-01

INVEST#:	Station 56
ID:	Sipanclid
LABSAMNO:	C13795
SAMPLE TYPE:	SAMP
COLLECTION DATE:	09/08/93
RECEIPT DATE:	09/26/93
QCBATCH:	M959
EXTRACTION DATE:	04/26/94
METHOD:	GCMS
ANALYSIS DATE:	05/31/94
METHOD:	GCECD
ANALYSIS DATE:	06/26/94
MATRIX:	TISSUE
SUBMAT:	
WETWT:	8.71
DRYWT:	2.55
WTUNITS:	GRAMS DRY
PCTSOLIDS:	29.2%
VOL:	
VOLUNITS:	LITERS
Lipid Weight	
% LIPIDS:	1.39
Surrogate Recoverie	es
PAH's:	
NAPHD8:	65
ACEND10:	69
PHEND10:	65
CHRYD12:	53
PERYD12:	56
PESTICIDES & PCB's	:
DBOFB:	70
PCB#103:	73
PCB#198:	63

LABNAME: GERG/TAMU DATE: 23-Jan-95

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	Station 56	
ID:	Sipanclid	
LABSAMNO:	C13795	
UNIT:	ng/g	
PNA Analyte	Conc D	QUAL
NAPHTHALENE	7.6	
C1-NAPHTHALENES	6.5 J	
C2-NAPHTHALENES	N	
C3-NAPHTHALENES	N	
C4-NAPHTHALENES	N	,
BIPHENYL	1.6 J	
ACENAPHTHYLENE	0.3 J	
ACENAPHTHENE	0.4 J	
FLUORENE	0.8 J	
C1-FLUORENES	N	
C2-FLUORENES	N	
C3-FLUORENES	N)
PHENANTHRENE	1.6	
ANTHRACENE	0.3 J	
C1-PHEN_ANTHR	N	
C2-PHEN_ANTHR	N	
C3-PHEN_ANTHR	N	
C4-PHEN_ANTHR	NI O 7 T)
DIBENZOTHIO	0.7 J	
C1-DIBEN	N	
C2-DIBEN	N	
C3-DIBEN	NI 16 T	1
FLUORANTHENE	1.6 J	
PYRENE	0.8 J N	,
C1-FLUORAN_PYR BENAANTHRACENE	1.0 J	
CHRYSENE	1.0 J	
C1-CHRYSENES	1.2 U	,
C2-CHRYSENES	N	
C3-CHRYSENES	N	
C4-CHRYSENES	N	
BENDFLUORAN	1.5 J	
BENKFLUORAN	0.7 J	
BENEPYRENE	1.1	
BENAPYRENE	0.4 J	
PERYLENE	4.0	
I123cdPYRENE	0.9	
DBahANTHRA	0.3 J	
BghiPERYLENE	0.5 J	
SHILDKINDHE	0.5 0	
TOTAL PAH's	29.9	
(w/o PERYLENE)		
(W/O PERIDENE)		

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	Station 56		
ID:	Sipanclid		
LABSAMNO:	C13795		
UNIT:	ng/g		
Analyte (Cont)	Conc DB QUAL		
2-METHYLNAPH	3.4 J		
1-METHYLNAPH	3.1		
2,6-DIMETHNAPH	1.8 J		
1,6,7-TRIMETHNAPH	0.5 J		
1-METHYLPHEN	0.7 J		
Surrogate Recoverie	es	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NAPHD8:	65		
ACEND10:	69		
PHEND10:	65		
CHRYD12:	53		
PERYD12:	56		

LABNAME: GERG/TAMU DATE: 23-Jan-95

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	Station 56	
ID:	Sipanclid	
LABSAMNO:	C13795	
UNIT:	ng/g	
Analyte (Cont)	Conc DB	QUAL
DODL 210		
TOTAL BHCs	0.5 J	
TOT CHLORDANES (ALL)		
TOT CHLORDANES (S&T)		
TOTAL DDTs	0.2 J	
TOTAL PCBs	2.1 J	
11 DVA		
ALPHA-BHC	0.3 J	
HCB	0.5	
BETA-BHC	0.2 J	
GAMMA-BHC	0.0 ND	
DELTA-BHC	0.0 ND	
HEPTACHLOR	. 0.0 ND	
HEPTA-EPOXIDE	0.0 ND	
OXYCHLORDANE	0.0 ND	
GAMMA-CHLORDANE	0.0 ND	
ALPHA-CHLORDANE	0.0 ND	
TRANS-NONACHLOR	0.0 ND	
CIS-NONACHLOR	0.0 ND	
ALDRIN	0.5	
DIELDRIN	0.7	
ENDRIN	0.0 ND	
MIREX	0.2 J	
2,4'DDE (O,P'DDE)	0.0 ND	
4,4'DDE (P,P'DDE)	0.2 J	
2,4'DDD (O,P'DDD)	0.0 ND	
4,4'DDD (P,P'DDD)	0.0 NTD	
2,4'DDT (O,P'DDT)	0.0 ND	
4,4'DDT (P,P'DDT)	0.0 ND	

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	Station 56	
ID:	Sipanclid	
LABSAMNO:	C13795	
UNIT:	ng/g	
Analyte (Cont)	Conc DB QUAL	
PCB # (CLORINATION)		
NOAA S&T PCBs		
8 (CL2)	0.6 J	
18 (CL3)	0.1 J	
28 (CL3)	0.0 ND	
44 (CL4)	0.0 ND	
52 (CL4)	0.0 ND	
66 (CL4)	0.0 ND	
101 (CL5)	0.0 ND	
105 (CL5)	0.0 ND	
110/77 (CL5/4)	0.0 ND	
118/108/149(CL5/5/6) 0.0 ND	
128 (CL6)	0.0 ND	
138 (CL6)	0.0 ND	
126 (CL5)	0.0 ND	
153 (CL6)	0.0 ND	
170 (CL7)	0.4 J	
180 (CL7)	0.0 ND	
187/182/159(CL7/7/6) 0.0 ND	
195 (CL8)	0.0 ND	
206 (CL9)	0.0 ND	
209 (CL10)	0.0 ND	
omina aca concentratio		
OTHER PCB CONGENERS		
7 (CL2) 15 (CL2)	0.0 ND 0.0 ND	
24 (CL3)	0.0 ND	
16/32 (CL3)	0.3 J	
29 (CL3)	0.3 J	
26 (CL3)	0.3 J	
25 (CL3)	0.0 ND	
50 (CL4)	0.0 ND	
33 (CL3)	0.0 ND	
22 (CL3)	0.0 ND	
45 (CL4)	0.0 ND	
46 (CL4)	0.0 ND	
49 (CL4)	0.0 ND	
47/48 (CL4)	0.0 ND	
37/42 (CL4)	0.5 J	
41/64 (CL4)	0.0 ND	
40 (CL4)	0.0 ND	
74 (CL4)	0.0 ND	
•		

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	Station 56	
ID:	Sipanclid	
LABSAMNO:	C13795	
UNIT:	ng/g	
Analyte (Cont)	Conc DB QUAL	
PCB #(CHLORINATION)		
70 (CL4)	0.0 ND	
88 (CL5)	0.0 ND	
60/56 (CL5)	0.0 ND	
92? (CL5)	0.0 ND	
84? (CL5)	0.0 ND	
99 (CL5)	0.0 ND	
83 (CL5)	0.0 ND	
97 (CL5)	0.0 ND	
87 (CL5)	0.0 ND	
85 (CL5)	0.0 ND	
136 (CL6)	0.0 ND	
82 (CL5)	0.3 J	
151 (CL6)	0.0 NTD	
107/108/144 (CL5/5/6)		
149 (CL6)	0.0 NTD	
188 (CL7)	0.0 ND	
146 (CL6)	0.0 NTD	
141 (CL6)	0.0 ND	
137 (CL6)	0.0 NTD	
UNK (CL6)	0.0 ND	
158 (CL7)	0.0 ND	
129 (CL6)	0.0 ND	
178 (CL7)	0.0 ND	
183 (CL7)	0.0 ND	
167 (CL6)	0.0 ND	
185 (CL7)	0.0 ND	
174 (CL7)	0.0 ND	
.77 (CL7)	0.0 ND	
.56/171/202(CL6/7/8)	0.0 ND	
00 (CL8)	0.0 ND	
.72 (CL7)	0.0 ND	
.91 (CL7)	0.0 ND	
01 (CL8)	0.0 ND	
96 (CL8)	0.0 ND	
89 (CL7)	0.0 ND	
.94 (CL8)	0.0 ND	
05 (CL9)	0.0 ND	
urrogate Recoveries		
BOFB%:	70	
CB#103%:	73	
CB#198%:	63	

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> PAHs, PCBs, and Pesticides in Tissues Quality Control Sample Data

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK	STURGEON	STA 24
LABSAMNO:	Q6198	Q6197	C11955	Q6199
SAMPLE TYPE:	BLANK	LBS	SAMP	MS
COLLECTION DATE:			08/25/93	
RECEIPT DATE:			09/03/93	
QCBATCH:	M881	M881	M881	M881
EXTRACTION DATE:	09/15/93	09/15/93	09/15/93	09/15/93
METHOD:	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:				
METHOD:	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	11/12/94	11/12/94	11/12/94	11/12/94
MATRIX:	TISSUE	TISSUE	TISSUE	TISSUE
SUBMAT:				•
WETWT:			0.68	0.77
DRYWT:	10.00	1.00	0.29	0.33
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:			43.1%	42.7%
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Lipid Weight				
% LIPIDS:			26.50	, 28.58
Surrogate Recoveri	ies			
PAH's:				
NAPHD8:	NA	NA	NA	NA
ACEND10:	NA	NA	NA	NA
PHEND10:	NA	NA	NA	NA
CHRYD12:	NA	NA	NA	NA
PERYD12:	NA	NA	NA	NA
PESTICIDES & PCB's	3 :			
DBOFB:	66	74	77	75
PCB#103:	70	71	70	67
PCB#198:	74	84	90	88

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK	STURGEON	STA 24	
LABSAMNO:	Q6198	Q6197	C11955	Q6199	
UNIT:	ng/g	*	ng/g	%	
PNA Analyte	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
NAPHTHALENE					
C1-NAPHTHALENES	QCBATCH M881 Aron	atic Recoveries we	ere low for these s	amples	
C2-NAPHTHALENES	Aromatic data is	not reported here.	Re-Extracted: See	QCBATCH M1422	
C3-NAPHTHALENES					
C4-naphthalenes					
BIPHENYL					
CENAPHTHYLENE					
CENAPHTHENE					
LUORENE				•	
1-FLUORENES					
2-FLUORENES					
3-FLUORENES					
PHENANTHRENE					
NTHRACENE					
1-PHEN_ANTHR					
2-PHEN_ANTHR					
3-PHEN_ANTHR					
4-PHEN_ANTHR					
IBENZOTHIO					
1-DIBEN					
2-DIBEN					
3-DIBEN					
LUORANTHENE					
YRENE					
1-FLUORAN_PYR					
ENAANTHRACENE					
HRYSENE					
1-CHRYSENES					
2-CHRYSENES					
3-CHRYSENES					
4-CHRYSENES					
ENDFLUORAN					
ENKFLUORAN					
ENePYRENE					
ENapyrene					
ERYLENE					
123cdPYRENE					
BahANTHRA					
BghiPERYLENE					
OTAL PAH's					
(w/o PERYLENE)					

LABNAME: GERG/TAMU DATE: 23-Jan-95

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK	STURGEON	STA 24
LABSAMNO:	Q6198	Q6197	C11955	Q6199
UNIT:	ng/g	%	ng/g	*
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL

2-METHYLNAPH

QCBATCH M881 Aromatic Recoveries were low for these samples

1-METHYLNAPH

Aromatic data is not reported here. Re-Extracted: See QCBATCH M1422

2,6-DIMETHNAPH

1,6,7-TRIMETHNAPH

1-METHYLPHEN

NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA
	NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA NA

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK	STURGEON	STA 24
LABSAMNO:	Q6198	Q6197	C11955	Q6199
UNIT:	ng/g	8	ng/g	¥
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
TOTAL BHCs	0.0 ND		21.8	
TOT CHLORDANES (ALL)			26.8	
TOT CHLORDANES (S&T)		AVERAGE %	16.2	AVERAGE %
TOTAL DDTs	0.3 J	RECOVERY	800.9	RECOVERY
TOTAL PCBs	6.1 J	106	485.5 J	109
ALPHA-BHC	0.0 ND	120	10.4	123 Q
HCB	0.1 J	85	15.3	63
BETA-BHC	0.0 ND	84	4.9	86
GAMMA-BHC	0.0 ND	122 Q	6.4	125 Q
DELTA-BHC	0.0 ND	113	0.0 ND	120
HEPTACHLOR	0.0 ND	90	0.0 ND	95
HEPTA-EPOXIDE	0.0 ND	95	2.8 J	101
OXYCHLORDANE	0.0 ND	118	2.5 J	116
GAMMA-CHLORDANE	0.0 ND	103	3.8	110
ALPHA-CHLORDANE	0.0 ND	109	5.7	106
TRANS-NONACHLOR	0.0 ND	100	7.6	105
CIS-NONACHLOR	0.0 ND	101	4.3	104
ALDRIN	0.0 ND	111	0.0 ND	117
DIELDRIN	0.0 ND	96	7.1	108
ENDRIN	0.0 ND	87	25.1	117
MIREX	0.0 ND	99	0.6 J	110
2,4'DDE (0,P'DDE)	0.0 ND	96	8.5	95
4,4'DDE (P,P'DDE)	0.3	114	368.1	118
2,4'DDD (0,P'DDD)	0.0 ND	113	24.2	132 Q
4,4'DDD (P,P'DDD)	0.0 ND	122 Q	309.9	146 Q
2,4'DDT (0,P'DDT)	0.0 ND	104	32.3	101
4,4'DDT (P,P'DDT)	0.0 ND	105	57.9	112

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:		LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK	STURGEON	STA 24
ABSAMNO:	Q6198	Q6197	C11955	Q6199
NIT:	ng/g	8	ng/g	8
alyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
# (CLORINATION)				
AA S&T PCBs				
(CL2)	0.0 ND	95	0.0 ND	95
(CL3)	0.0 ND	94	0.0 ND	99
(CL3)	0.0 ND	109	12.0	108
(CL4)	0.0 ND	105	3.7 J	102
(CL4)	0.0 ND	97	12.9	98
(CL4)	0.0 ND	109	3.8 J	110
(CL5)	0.1 J	104	22.0	. 93
(CL5)	0.0 ND	118	18.3	109
/77 (CL5/4)	0.0 ND	116	79.5	108
3/108/149(CL5/5/6)	0.0 ND	115	31.4	118
(CL6)	0.0 ND	119	10.4	126 Q
3 (CL6)	1.8	119	50.0	117
(CL5)	0.0 ND	118	0.0 ND	122 Q
(CL6)	0.0 ND	83	47.0	85
(CL7)	3.2	122 Q	27.2	112
(CL7)	0.2 J	115	9.2	120
/182/159(CL7/7/6)		106	4.0 J	113
(CL8)	0.0 ND	119	0.6 J	132 Q
(CL9)	0.0 ND	105	1.0 J	117
(CL10)	0.0 ND	109	0.2 J	118
R PCB CONGENERS				
CL2)	0.2	NA	0.9 J	NA
(CL2)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
32 (CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	AK	0.0 ND	NA
(CL3)	0.0 ND	NA	11.5	NA
(CL4)	0.3	98	2.5 J	101
(CL3)	0.0 ND	NA	2.8 J	NA
(CL3)	0.0 ND	NA	0.8 J	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.3	NA	0.0 ND	NA
/48 (CL4)	0.0 ND	NA	0.0 ND	NA
/42 (CL4)	0.0 ND	NA	0.0 ND	NA
/64 (CL4)	0.0 ND	NA	1.6 J	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	4.6 J	NA

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK	STURGEON	STA 24	
LABSAMNO:	Q6198	Q6197	C11955	Q6199	
UNIT:	ng/g	8	ng/g	*	
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
PCB #(CHLORINATION)					-,
70 (CL4)	0.0 ND	NA	4.7 J	NA	
88 (CL5)	0.0 ND	NA	2.4 J	NA	
60/56 (CL5)	0.0 ND	NA	0.0 ND	NA	
92? (CL5)	0.0 ND	NA	0.0 ND	NA	
84? (CL5)	0.0 ND	NA	6.2 J	NA NA	
99 (CL5)	0.0 ND	NA	24.0	. NA	
83 (CL5)	0.0 ND	NA	0.0 ND	NA	
97 (CL5)	0.0 ND	NA	8.4	NA	
87 (CL5)	0.0 ND	109	9.6	108	
85 (CL5)	0.0 ND	NA	5.0 J	NA	
136 (CL6)	0.0 NTD	NA	0.0 ND	NA	
82 (CL5)	0.0 ND	NA	3.8 J	NA	
151 (CL6)	0.0 NTD	NA	4.5 J	NA	
107/108/144(CL5/5/6)		NA	3.8 J	NA	
149 (CL6)	0.0 ND	NA	14.6	NA	
188 (CL7)	0.0 ND	101	2.2 J	100	
146 (CL6)	0.0 ND	NA	3.6 J	NA	
141 (CL6)	0.0 NTD	NA	8.8	NA NA	
137 (CL6)	0.0 ND	NA	3.8 J	NA	
UNK (CL6)	0.0 ND	NA NA	1.9 J	NA NA	
158 (CL7)	0.0 ND	NA	3.2 J	NA	
129 (CL6)	0.0 ND	NA NA	1.1 J	NA NA	
178 (CL7)	0.0 NTD	NA NA	1.4 J 4.7 J	NA NA	
183 (CL7)	0.0 NTD	NA NA	0.8 J	NA NA	
167 (CL6)	0.0 ND 0.0 ND	NA NA	0.0 ND	NA NA	
185 (CL7)	0.0 ND	NA NA	2.3 J	NA NA	
174 (CL7)	0.0 ND	NA NA	1.8 J	NA NA	
177 (CL7) 156/171/202(CL6/7/8		NA NA	10.5	NA NA	
200 (CL8)	0.0 ND	NA NA	0.0 ND	NA NA	
172 (CL7)	0.2	NA	1.4 J	NA NA	
172 (CL7) 191 (CL7)	0.0 ND	NA NA	0.0 ND	NA	
201 (CL8)	0.0 ND	NA	0.0 ND	NA.	
196 (CL8)	0.0 ND	NA NA	0.0 ND	NA	
189 (CL7)	0.0 ND	NA.	0.8 J	NA.	
194 (CL8)	0.0 ND	NA	0.4 J	NA	
205 (CL9)	0.0 ND	NA	0.0 ND	NA	
	3. · · · ·				
Surrogate Recoverie DBOFB%:	s 66	74	77	75	
DBOFB%: PCB#103%:	70	71	70	67	
で CDUTO2.9:	70	84	90	88	

INVEST#:	STA 24	LAB QA SAMPLE
ID:	STURGEON	STA 24
LABSAMNO:	C11955	Q6196
SAMPLE TYPE:	SAMP	DUP
COLLECTION DATE:	08/25/93	
RECEIPT DATE:	09/03/93	
QCBATCH:	M881	M881
EXTRACTION DATE:	09/15/93	09/15/93
METHOD:	GCMS	GCMS
ANALYSIS DATE:		
METHOD:	GCECD	GCECD
ANALYSIS DATE:	11/12/94	11/12/94
MATRIX:	TISSUE	TISSUE
SUBMAT:		
WETWT:	0.68	0.68
DRYWT:	0.29	0.29
WTUNITS:	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	43.1%	42.8%
VOL:		
VOLUNITS:	LITERS	LITERS
Lipid Weight		
% LIPIDS:	26.50	28.43
Surrogate Recoverie	es	
PAH's:		
NAPHD8:	NA	NA
ACEND10:	NA	NA
PHEND10:	NA	NA
CHRYD12:	NA	NA
PERYD12:	NA	NA
PESTICIDES & PCB's	:	
DBOFB:	77	80
PCB#103:	70	74

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#: STA 24 LAB QA SAMPLE ID: STURGEON STA 24 LABSAMNO: C11955 Q6196 UNIT: ng/g ng/g PNA Analyte Conc DB QUAL Conc DB QUAL % RPD NAPHTHALENE QCBATCH M881 Aromatic Recoveries were low for these samples C1-NAPHTHALENES C2-NAPHTHALENES Aromatic data is not reported here. Re-Extracted: See QCBATCH M1422 C3-NAPHTHALENES C4-NAPHTHALENES BIPHENYL ACENAPHTHYLENE ACENAPHTHENE FLUORENE C1-FLUORENES C2-FLUORENES C3-FLUORENES PHENANTHRENE ANTHRACENE C1-PHEN_ANTHR C2-PHEN_ANTHR C3-PHEN_ANTHR C4-PHEN_ANTHR DIBENZOTHIO C1-DIBEN C2-DIBEN C3-DIBEN FLUORANTHENE PYRENE C1-FLUORAN PYR BENAANTHRACENE CHRYSENE C1-CHRYSENES C2-CHRYSENES C3-CHRYSENES C4-CHRYSENES BENDFLUORAN BENKFLUORAN BENePYRENE BENAPYRENE PERYLENE I123cdPYRENE DBahANTHRA **BghiPERYLENE** TOTAL PAH's

(w/o PERYLENE)

DATE: 23-Jan-95 LABNAME: GERG/TAMU

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE	
ID:	STURGEON	STA 24	
LABSAMNO:	C11955	Q6196	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD
2-METHYLNAPH	QCBATCH M881 Aron	matic Recoveries we	re low for these samples
1-METHYLNAPH	Aromatic data is	not reported here.	Re-Extracted: See QCBATCH M1422
2,6-DIMETHNAPH			
-,			
1,6,7-TRIMETHNAPH			
1-METHYLPHEN			-
Surrogate Recoverie	s		
NAPHD8:	NA	NA	
ACEND10:	NA	NA	
PHEND10:	NA	NA	
CHRYD12:	NA	NA	
PERYD12:	NA	NA	

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE		
ID:	STURGEON	STA 24		
LABSAMNO:	C11955	Q6196		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
TOTAL BHCs	21.8	21.2	2	
TOT CHLORDANES (ALL)	26.8	26.2	2	
TOT CHLORDANES (S&T)	16.2	15.7	3	
TOTAL DDTs	800.9	756.6	6	
TOTAL PCBs	485.5 J	486.1 J		
ALPHA-BHC	10.4	10.3	1	
HCB	15.3	15.7	3	
BETA-BHC	4.9	5.0	2	
GAMMA-BHC	6.4	5.9	8	
DELTA-BHC	0.0 ND	0.0 ND		
HEPTACHLOR	0.0 ND	0.0 ND		
HEPTA-EPOXIDE	2.8 J	2.9 J		
OXYCHLORDANE	2.5 J	2.4 J		
GAMMA-CHLORDANE	3.8	4.7	22	
ALPHA-CHLORDANE	5.7	5.5	3	
TRANS-NONACHLOR	7.6	7.3	5	
CIS-NONACHLOR	4.3	3.4 J	23	
ALDRIN	0.0 ND	0.0 ND		
DIELDRIN	7.1	8.2	14	
ENDRIN	25.1	25.6	2	
MIREX	0.6 J	0.7 J		
2,4'DDE (O,P'DDE)	8.5	7.1	19	
4,4'DDE (P,P'DDE)	368.1	347.9	6	
2,4'DDD (0,P'DDD)	24.2	23.5	3	
4,4'DDD (P,P'DDD)	309.9	288.2	7	
2,4'DDT (0,P'DDT)	32.3	31.2	3	
4,4'DDT (P,P'DDT)	57.9	58.7	1	

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE		
ID:	STURGEON	STA 24		
LABSAMNO:	C11955	Q6196		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB (QUAL Conc DB QUAL	% RPD	
PCB # (CLORINATION)				
NOAA S&T PCBs				
8 (CL2)	0.0 ND	0.0 ND		
18 (CL3)	0.0 ND	0.0 ND		
28 (CL3)	12.0	12.8	6	
44 (CL4)	3.7 J	3.8 J		
52 (CL4)	12.9	9.7	28	
66 (CL4)	3.8 J	3.4 J		
101 (CL5)	22.0	21.5	2	
105 (CL5)	18.3	16.3	12	
110/77 (CL5/4)	79.5	81.3	2	
118/108/149 (CL5/5/6)	31.4	29.9	5	
128 (CL6)	10.4	10.3	1	
138 (CL6)	50.0	53.2	6	
126 (CL5)	0.0 ND	0.0 ND		
153 (CL6)	47.0	46.7	1	
170 (CL7)	27.2	31.9	16	
180 (CL7)	9.2	9.4	2	
187/182/159 (CL7/7/6)	4.0 J	3.5 ♂		
195 (CL8)	0.6 J	0.6 J		
206 (CL9)	1.0 J	0.9 J		
209 (CL10)	0.2 J	0.2 J		
OTHER PCB CONGENERS				
7 (CL2)	0.9 J	0.8 J		
15 (CL2)	0.0 ND	0.0 ND		
24 (CL3)	0.0 ND	0.0 ND		
16/32 (CL3)	0.0 ND	0.0 ND		
29 (CL3)	0.0 ND	0.0 ND		
26 (CL3)	0.0 ND	0.0 ND		
25 (CL3)	11.5	11.5	0	
50 (CL4)	2.5 J	3.1 J		
33 (CL3)	2.8 J	2.9 J		
22 (CL3)	0.8 J	1.0 J		
45 (CL4)	0.0 ND	0.0 ND		
46 (CL4)	0.0 ND	0.0 ND		
49 (CL4)	0.0 ND	0.0 ND		
47/48 (CL4)	0.0 ND	0.0 NTD		
37/42 (CL4)	0.0 ND	0.0 NTD		
41/64 (CL4)	1.6 J	1.4 J		
40 (CL4)	0.0 ND	0.0 ND		
74 (CL4)	4.6 J	4.2 J		

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE		
ID:	STURGEON	STA 24		
LABSAMNO:	C11955	Q6196		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUA	L Conc DB QUAL	% RPD	
PCB #(CHLORINATION)				
70 (CL4)	4.7 J	3.9 J		
88 (CL5)	2.4 J	2.4 J		
60/56 (CL5)	0.0 ND	0.0 ND		
92? (CL5)	0.0 ND	0.0 ND		
84? (CL5)	6.2 J	5.3 J		
99 (CL5)	24.0	22.6	6	
83 (CL5)	0.0 ND	0.0 ND		
97 (CL5)	8.4	9.8	16	
87 (CL5)	9.6	10.7	11	
85 (CL5)	5.0 J	4.9 J		
136 (CL6)	0.0 ND	O.O ND		
82 (CL5)	3.8 J	4.2 J		
151 (CL6)	4.5 J	4.5 J		
107/108/144 (CL5/5/6)	3.8 J	3.6 J		
149 (CL6)	14.6	13.2	10	
188 (CL7)	2.2 J	2.2 J		
146 (CL6)	3.6 J	3.5 J		
141 (CL6)	8.8	8.8	0	
137 (CL6)	3.8 J	3.6 J		
UNK (CL6)	1.9 J	2.4 J		
158 (CL7)	3.2 J	3.8 J		
129 (CL6)	1.1 J	1.0 J		
178 (CL7)	1.4 J	1.4 J		
183 (CL7)	4.7 J	4.3 J		
167 (CL6)	0.8 J	0.8 J		
185 (CL7)	0.0 ND	0.0 ND		
174 (CL7)	2.3 J	2.3 J		
177 (CL7)	1.8 J	1.8 J		
156/171/202 (CL6/7/8		9.1	14	
200 (CL8)	0.0 ND	0.0 ND		
172 (CL7)	1.4 J	1.4 J		
191 (CL7)	0.0 NTD	0.0 ND		
201 (CL8)	0.0 ND	0.0 ND		
196 (CL8)	0.0 ND	0.0 ND		
189 (CL7)	0.8 J	0.7 J		
194 (CL8)	0.4 J	0.4 J		
205 (CL9)	0.0 ND	0.0 ND		
Surrogate Recoverie	S			
DBOFB%:	77	80		
PCB#103%:	70	74		
PCB#198%:	90	91		

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK
LABSAMNO:	Q7929	Q7930
SAMPLE TYPE:	BLANK	LBS
COLLECTION DATE:		
RECEIPT DATE:		
QCBATCH:	M959	M959
EXTRACTION DATE:	04/26/94	04/26/94
METHOD:	GCMS	GCMS
ANALYSIS DATE:	05/31/94	05/31/94
METHOD:	GCECD	GCECD
ANALYSIS DATE:	06/26/94	06/26/94
MATRIX:	TISSUE	TISSUE
SUBMAT:		
WETWT:		
DRYWT:	10.00	1.00
WTUNITS:	GRAMS DRY	GRAMS DRY
PCTSOLIDS:		
VOL:		
VOLUNITS:	LITERS	LITERS
Lipid Weight		
% LIPIDS:		
Surrogate Recoverie	es	
PAH's:		
NAPHD8:	68	69
ACEND10:	69	67
PHEND10:	66	72
CHRYD12:	53	63
PERYD12:	38 Q	30 Q
PESTICIDES & PCB's:	:	
DBOFB:	68	73
PCB#103:	74	77
PCB#198:	69	68

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK	
LABSAMNO:	Q7929	Q7930	
UNIT:	ng/g	8	
PNA Analyte	Conc DB QUAL	Recovery DB QUAL	
NAPHTHALENE	0.8 J	101	
C1-NAPHTHALENES	0.8 J	NA	
C2-NAPHTHALENES	ND	NA	
C3-NAPHTHALENES	ND	NA	
C4-NAPHTHALENES	ND	NA	
BIPHENYL	0.3 J	99	
ACENAPHTHYLENE	0.1 J	98	
ACENAPHTHENE	0.3 J	98	
FLUORENE	0.3 J	94	
C1-FLUORENES	ND	NA	
C2-FLUORENES	ND	NA	
C3-FLUORENES	ND	NA	
PHENANTHRENE	0.2 J	81	
ANTHRACENE	0.0 J	74	
C1-PHEN_ANTHR	ND	NA	
C2-PHEN_ANTHR	ND	NA .	
C3-PHEN_ANTHR	ND	NA	
C4-PHEN_ANTHR	ND	NA	
DIBENZOTHIO	0.1 J	81	
C1-DIBEN	ND	NA .	
C2-DIBEN	ND	NA	
C3-DIBEN	ND	NA	
FLUORANTHENE	0.1 J	80	
PYRENE	0.1 J	79	
C1-FLUORAN_PYR	ND	NA	
BENAANTHRACENE	0.1 J	77	
CHRYSENE	0.0 J	117	
C1-CHRYSENES	ND	NA .	
C2-CHRYSENES	ND	NA	
C3-CHRYSENES	ND	NA	
C4-CHRYSENES	ND	NA	
BENDFLUORAN	0.0 J	98	
BENKFLUORAN	0.0 J	90	
BENePYRENE	0.1 J	107	
BENapyrene	0.1 J	92	
PERYLENE	0.1 J	99	
I123cdPYRENE	0.1 J	73	
DBahANTHRA	0.1 J	74	
BghiPERYLENE	0.1 J	83	
TOTAL PAH's	3.4 J	AVG % RECOV	
(w/o PERYLENE)		90	

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK
LABSAMNO:	Q7929	Q7930
UNIT:	ng/g	*
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL
2 MEMILIET NA DIV	0.4.7	0.
2-METHYLNAPH	0.4 J	91
1-METHYLNAPH	0.4 J	96
2,6-DIMETHNAPH	0.2 J	98
1,6,7-TRIMETHNAPH	0.1 J	92
1-METHYLPHEN	0.1 J	78
Surrogate Recoverie	s	. <u> </u>
NAPHD8:	68	69
ACEND10:	69	67
PHEND10:	66	72
CHRYD12:	53	63
PERYD12:	38. Q	30 Q

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK
LABSAMNO:	Q7929	Q7930
UNIT:	ng/g	8
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL
TOTAL BHCs	O.O ND	
TOT CHLORDANES (ALL)		
TOT CHLORDANES (S&T)	0.0 ND	AVERAGE %
TOTAL DDTs	0.0 ND	RECOVERY
TOTAL PCBs	0.4 J	86
ALPHA-BHC	0.0 ND	82
НСВ	0.0 ND	70
BETA-BHC	0.0 ND	70
GAMMA-BHC	0.0 ND	86
DELTA-BHC	0.0 ND	72
HEPTACHLOR	0.0 ND	85
HEPTA-EPOXIDE	0.0 ND	60
OXYCHLORDANE	0.0 ND	124 Q
GAMMA-CHLORDANE	0.0 ND	93
ALPHA-CHLORDANE	0.0 ND	89
TRANS-NONACHLOR	0.0 ND	85
CIS-NONACHLOR	0.0 ND	94
ALDRIN	0.3	80
DIELDRIN	0.0 ND	70
ENDRIN	0.0 ND	64
MIREX	0.0 ND	93
2,4'DDE (O,P'DDE)	0.0 ND	66
4,4'DDE (P,P'DDE)	0.0 ND	69
2,4'DDD (0,P'DDD)	0.0 ND	65
4,4'DDD (P,P'DDD)	0.0 ND	80
2,4'DDT (0,P'DDT)	0.0 ND	91
4,4'DDT (P,P'DDT)	0.0 ND	82

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK
LABSAMNO:	Q7929	Q7930
UNIT:	ng/g	*
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL
	<u></u>	
PCB # (CLORINATION)		
NOAA S&T PCBs		
8 (CL2)	0.0 ND	103
18 (CL3)	0.0 NTD	98
28 (CL3)	0.0 ND	90
44 (CL4)	0.0 ND	96
52 (CL4)	0.0 ND	101
66 (CL4)	0.0 ND	85
101 (CL5)	0.0 ND	93
105 (CL5)	0.0 ND	83
110/77 (CL5/4)	0.0 ND	92
118/108/149 (CL5/5/6	0.0 ND	88
128 (CL6)	0.0 ND	93
138 (CL6)	0.0 ND	91
126 (CL5)	0.0 ND	83
153 (CL6)	0.0 NTD	69
170 (CL7)	0.4	90
180 (CL7)	0.0 ND	78
187/182/159 (CL7/7/6		87
195 (CL8)	0.0 ND	85
206 (CL9)	0.0 ND	83
209 (CL10)	0.0 ND	95
()		
OTHER PCB CONGENERS		
7 (CL2)	0.0 ND	NA
15 (CL2)	0.0 ND	NA NA
		NA NA
24 (CL3)	0.0 ND	
16/32 (CL3)	0.0 ND	NA NA
29 (CL3)	0.0 ND	NA
26 (CL3)	0.0 ND	NA
25 (CL3)	0.0 ND	NA
50 (CL4)	0.0 ND	109
33 (CL3)	0.0 ND	NA
22 (CL3)	0.0 ND	NA
45 (CL4)	0.0 ND	NA
46 (CL4)	0.0 ND	NA
49 (CL4)	0.0 ND	NA
47/48 (CL4)	0.0 ND	NA
37/42 (CL4)	0.0 ND	NA
41/64 (CL4)	0.0 ND	NA
40 (CL4)	0.0 ND	NA
74 (CL4)	0.0 ND	NA

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK	
LABSAMNO:	Q7929	Q7930	
UNIT:	ng/g	8	
Analyte (Cont)		Recovery DB QUAL	
PCB #(CHLORINATION)			
()			
70 (CL4)	0.0 ND	NA	
88 (CL5)	0.0 ND	NA	
60/56 (CL5)	0.0 ND	NA	
92? (CL5)	0.0 ND	NA	
84? (CL5)	0.0 ND	NA .	
99 (CL5)	0.0 ND	NA .	
83 (CL5)	0.0 ND	NA	
97 (CL5)	0.0 ND	NA.	
87 (CL5)	0.0 ND	138 Q	
85 (CL5)	0.0 ND	NA	
136 (CL6)	0.0 ND	NA	
82 (CL5)	0.0 ND	NA	
151 (CL6)	0.0 ND	NA	
107/108/144 (CL5/5/6		NA	
149 (CL6)	0.0 ND	NA	
188 (CL7)	0.0 ND	58	
146 (CL6)	0.0 ND	NA	
141 (CL6)	0.0 ND	NA	
137 (CL6)	0.0 ND	NA	
UNK (CL6)	0.0 ND	NA	
158 (CL7)	0.0 ND	NA	
129 (CL6)	0.0 ND	NA	
178 (CL7)	0.0 ND	NA	
183 (CL7)	0.0 ND	NA	
167 (CL6)	0.0 ND	NA	
185 (CL7)	0.0 ND	NA	
174 (CL7)	0.0 ND	NA	
177 (CL7)	0.0 ND	NA	
156/171/202(CL6/7/8) 0.0 ND	NA	
200 (CL8)	0.0 ND	NA	
172 (CL7)	0.0 ND	NA	
191 (CL7)	0.0 ND	NA	
201 (CL8)	0.0 ND	NA	
196 (CL8)	0.0 NTD	NA	
189 (CL7)	0.0 ND	NA	
194 (CL8)	0.0 ND	NA	
205 (CL9)	0.0 ND	NA	
Surrogate Recoverie	s		
DBOFB%:	68	73	
PCB#103%:	74	77	
PCB#198%:	69	68	

Station 19	LAB QA SAMPLE
Isopods	Station 19
C13787	Q7928
SAMP	DUP
08/19/93	08/19/93
09/26/93	09/26/93
M959	M959
04/26/94	04/26/94
GCMS	GCMS
05/31/94	05/31/94
GCECD	GCECD
06/24/94	06/26/94
TISSUE	TISSUE
10.47	10.09
2.01	1.94
GRAMS DRY	GRAMS DRY
19.2%	19.2%
LITERS	LITERS
4.68	4.64
es	
49	67
58	69
58	58
72	54
46	50
:	
70	67
77	73
	Isopods C13787 SAMP 08/19/93 09/26/93 M959 04/26/94 GCMS 05/31/94 GCECD 06/24/94 TISSUE 10.47 2.01 GRAMS DRY 19.2% LITERS 4.68 es 49 58 58 72 46 : 70

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	Station 19	LAB QA SAMPLE		
ID:	Isopods	Station 19		
LABSAMNO:	C13787	Q7928		
UNIT:	ng/g	ng/g		
PNA Analyte	Conc DB QUAL	Conc DB QUAL	% RPD	
NAPHTHALENE	10.5	9.1	14	
C1-NAPHTHALENES	9.7	8.6 J	11	
C2-NAPHTHALENES	ND	11.8	-	
C3-NAPHTHALENES	ND	ND		
C4-NAPHTHALENES	ND	ND		
BIPHENYL	2.1 J	2.2 J		
ACENAPHTHYLENE	0.6 J	0.5 J		
ACENAPHTHENE	1.2 J	0.9 J		
FLUORENE	1.4 J	0.8 J	•	
C1-FLUORENES	ND ND	ND		
C2-FLUORENES	ND	ND		
C3-FLUORENES	ND	ND		
PHENANTHRENE	2.8	2.7	6	
ANTHRACENE	0.3 J	0.6 J	•	
C1-PHEN_ANTHR	ND	NTD		
C2-PHEN_ANTHR	ND	ND		
C3-PHEN_ANTHR	ND	ND		
C4-PHEN_ANTHR	ND	ND		
DIBENZOTHIO	1.0 J	0.8 J		
C1-DIBEN	ND	NTD		
C2-DIBEN	ND	ND		
C3-DIBEN	ND	ND		
FLUORANTHENE	1.7 J	1.5 J		
PYRENE	1.3	1.6	17	
C1-FLUORAN_PYR	ND	ND		
BENAANTHRACENE	0.4 J	1.4 J		
CHRYSENE	1.1 J	7.6	151	
C1-CHRYSENES	ND	ND ND	151	
C2-CHRYSENES C3-CHRYSENES	ND	ND		
C3-CHRYSENES C4-CHRYSENES	ND ND	ND ND		
	0.3 J	ND 2.0 J		
BENDFLUORAN BENDELLIORAN	0.3 J	2.0 J		
BENKFLUORAN BENepyrene	3.6	6.2	54	
BENEFIKENE BENAPYRENE	0.3 J	1.4 J	24	
PERYLENE		1.4 5	80	
I123cdPYRENE	5.1 0.6 J	0.6 J	60	
	0.6 J 0.2 J	0.6 J 0.3 J		
DBahANTHRA BghiPERYLENE	0.2 J	0.3 J 0.4 J		
	20.5	60 B =	,	
TOTAL PAH's	39.3	62.7 J	46	
(w/o PERYLENE)				

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	Station 19	LAB QA SAMPLE		
ID:	Isopods	Station 19		
LABSAMNO:	C13787	Q7928		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
2-methylnaph	5.2	5.1 J	2	
1-METHYLNAPH	4.5	3.5 J	23	
2,6-DIMETHNAPH	1.9 J	2.9 J		
1,6,7-TRIMETHNAPH	0.6 J	1.3 J		
1-methylphen	0.9 J	1.1 J		
Surrogate Recoverie	es			
NAPHD8:	49	67		
ACEND10:	58	69		
PHEND10:	58	58		
CHRYD12:	72	54		
PERYD12:	46	50		

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	Station 19	LAB QA SAMPLE		
ID:	Isopods	Station 19		
LABSAMNO:	C13787	Q7928		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
TOTAL BHCs	4.9	4.7	5	
TOT CHLORDANES (ALL)	9.8	10.6	8	
TOT CHLORDANES (S&T)	4.9	5.1	4	
TOTAL DDTs	0.5 J	0.5 J		
TOTAL PCBs	10.9 J	10.9 J		
				•
ALPHA-BHC	1.8	1.8	0	
HCB	0.7	0.7	9	
BETA-BHC	2.7	2.5	9	
GAMMA-BHC	0.4 J	0.4 J		
DELTA-BHC	O.O ND	0.0 ND		
HEPTACHLOR	0.0 ND	0.0 ND		
HEPTA-EPOXIDE	1.6	1.6	1	
OXYCHLORDANE	2.5	3.0	17	
GAMMA-CHLORDANE	0.2 J	0.2 J		
ALPHA-CHLORDANE	0.2 J	0.2 J		
TRANS-NONACHLOR	3.1	3.3	7	
CIS-NONACHLOR	2.2	2.3	7	
ALDRIN	0.2 J	0.2 J		
DIELDRIN	1.5	2.0	26	
ENDRIN	O.O ND	0.0 ND		
MIREX	0.1 J	0.1 J		
2,4'DDE (O,P'DDE)	O.O ND	0.0 ND		
4,4'DDE (P,P'DDE)	0.0 ND	0.0 NTD		
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND		
4,4'DDD (P,P'DDD)	0.5 J	0.5		
2,4'DDT (O,P'DDT)	0.0 ND	0.0 ND		
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND		

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	Station 19	LAB QA SAMPLE		
ID:	Isopods	Station 19		
LABSAMNO:	C13787	Q7928		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
PCB # (CLORINATION)	***	A		
NOAA S&T PCBs				
8 (CL2)	0.7 J	0.7 J		
18 (CL3)	0.0 ND	0.0 ND		
28 (CL3)	0.2 J	0.2 J		
44 (CL4)	0.1 J	0.1 J		
52 (CL4)	0.1 J	0.2 J		
66 (CL4)	0.2 J	0.2 J		
101 (CL5)	1.1	1.4	22	
105 (CL5)	0.3 J	0.3 J		
110/77 (CL5/4)	0.0 ND	0.0 ND		
118/108/149(CL5/5/6	1.6	1.3	17	
128 (CL6)	0.1 J	0.1 J		
138 (CL6)	1.6	1.6	1	
L26 (CL5)	0.0 ND	0.0 ND		
.53 (CL6)	2.0	1.9	5	
70 (CL7)	0.9 J	1.3		
180 (CL7)	0.3 J	0.3 J		
187/182/159(CL7/7/6	0.0 ND	0.0 ND		
195 (CL8)	0.0 ND	0.0 ND		
206 (CL9)	0.0 ND	0.0 ND		
209 (CL10)	0.0 ND	0.0 ND		
OTHER PCB CONGENERS				
7 (CL2)	0.0 ND	0.0 ND		
L5 (CL2)	0.2 J	0.2 J		
24 (CL3)	0.0 ND	0.0 ND		
16/32 (CL3)	0.0 ND	0.0 ND		
29 (CL3)	0.0 ND	0.0 ND		
26 (CL3)	0.0 ND	0.0 ND		
25 (CL3)	0.0 ND	0.0 ND		
50 (CL4)	0.0 ND	0.0 ND		
33 (CL3)	0.0 ND	0.0 ND		
22 (CL3)	0.0 ND	0.0 ND		
15 (CL4)	0.0 ND	0.0 ND		
16 (CL4)	0.0 ND	0.0 NTD		
19 (CL4)	0.0 ND	0.0 ND		
47/48 (CL4)	0.0 ND	0.0 ND		
37/42 (CL4)	0.0 ND	0.0 IND		
41/64 (CL4)	0.0 ND	0.0 ND		
40 (CL4)	0.0 ND	0.0 ND		
74 (CL4)	0.3 J	0.2 J		

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	Station 19	LAB QA SAMPLE	
ID:	Isopods	Station 19	
LABSAMNO:	C13787	Q7928	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD
PCB #(CHLORINATION)			
70 (CL4)	0.0 ND	0.0 ND	
88 (CL5)	0.1 J	0.1 J	
60/56 (CL5)	0.0 ND	0.0 ND	
92? (CL5)	0.0 ND	0.0 ND	
84? (CL5)	0.0 ND	O.O ND	
99 (CL5)	1.2	1.0 J	
83 (CL5)	0.0 ND	0.0 NTD	•
97 (CL5)	0.0 ND	0.0 ND	
87 (CL5)	0.0 ND	0.0 ND	
85 (CL5)	0.2 J	0.2 J	
136 (CL6)	0.0 NTD	0.0 ND	
82 (CL5)	0.0 ND	0.0 ND	
151 (CL6)	0.0 NTD	0.0 ND	
107/108/144 (CL5/5/6)	0.0 ND	0.0 ND	
149 (CL6)	0.0 ND	0.0 ND	
188 (CL7)	0.0 ND	0.0 ND	
146 (CL6)	0.0 ND	0.0 NTD	
141 (CL6)	O.O ND	0.0 NTD	
137 (CL6)	0.0 ND	0.0 ND	
UNK (CL6)	0.0 ND	0.0 NTD	
158 (CL7)	0.0 NTD	0.0 NTD	
129 (CL6)	0.0 ND	0.0 ND	
178 (CL7)	0.0 ND	0.0 ND	
183 (CL7)	0.5 J	0.4 J	
167 (CL6)	0.0 ND	0.0 ND	
185 (CL7)	0.0 ND	0.0 ND	
174 (CL7)	0.0 ND	0.0 ND	
177 (CL7)	0.0 ND	0.0 ND	
156/171/202 (CL6/7/8	0.0 ND	O.O ND	
200 (CL8)	0.0 ND	0.0 ND	
172 (CL7)	0.1 J	0.1 J	
191 (CL7)	0.0 ND	0.0 ND	
201 (CL8)	0.0 ND	0.0 ND	
196 (CL8)	0.0 ND	0.0 ND	
189 (CL7)	0.0 ND	0.0 ND	
194 (CL8)	0.0 ND	0.0 ND	
205 (CL9)	0.0 ND	0.0 ND	
Surrogate Recoverie	s		
DBOFB%:	70	67	
PCB#103%:	77	73	
PCB#198%:	77	65	

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	BLANK SPIKE	STURGEON	STA 24
LABSAMNO:	Q9732	Q9734	C11955	Q9735
SAMPLE TYPE:	BLANK	LBS	SAMP	MS
COLLECTION DATE:			08/25/93	08/25/93
RECEIPT DATE:			09/03/93	09/03/93
QCBATCH:	M1422	M1422	M1422	M1422
EXTRACTION DATE:	08/22/94	08/22/94	08/22/94	08/22/94
METHOD:	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	09/07/94	09/07/94	09/08/94	09/07/94
METHOD:	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	09/28/94	09/28/94	09/28/94	09/28/94
MATRIX:	TISSUE	TISSUE	TISSUE	TISSUE
SUBMAT:				-
WETWT:			0.58	0.55
DRYWT:	10.00	1.00	0.24	0.22
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:			41.1%	40.4%
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Lipid Weight				
% LIPIDS:			59.44	58.19
Surrogate Recoveri	es			
PAH's:				
NAPHD8:	63	52	47	53
ACEND10:	59	53	55	61
PHEND10:	54	65	56	67
CHRYD12:	48	58	48	61
PERYD12:	21 Q	15 Q	35 Q	19 Q
PESTICIDES & PCB's	:			
DBOFB:	52	56	59	56
PCB#103:	68	59	61	. 62
PCB#198:	70	65	65	69

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
D:	PROC BLANK	BLANK SPIKE	STURGEON	STA 24
LABSAMNO:	Q9732	Q9734	C11955	Q9735
JNIT:	ng/g	8	ng/g	%
PNA Analyte	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
APHTHALENE	2.5	120	90.6	109
C1-NAPHTHALENES	1.3 J	NA	100.7	NA
C2-NAPHTHALENES	ND	NA	120.5	NA
C3-NAPHTHALENES	ND	NA	288.9	NA
C4-NAPHTHALENES	ND	NA	ND	NA
BIPHENYL	1.3 J	113	32.9 J	101
ACENAPHTHYLENE	0.1 J	113	4.0 J	98
CENAPHTHENE	0.1 J	109	13.0 J	101
FLUORENE	0.6 J	120	16.9 J	104
C1-FLUORENES	ND	NA	ND	NA
C2-FLUORENES	ND	NA	ND	NA
3-FLUORENES	ND	NA	ND	NA
PHENANTHRENE	1.1	97	37.1	95
NTHRACENE	0.1 J	81	2.3 J	73
C1-PHEN_ANTHR	ND	NA	ND	NA
C2-PHEN_ANTHR	ND	NA	ND	NA
3-PHEN_ANTHR	ND	NA	ND	NA
4-PHEN_ANTHR	ND	NA	ND.	NA
IBENZOTHIO	0.2 J	85	17.0	80
1-DIBEN	ND	NA	ND	NA
2-DIBEN	ND	NA	ND	NA
3-DIBEN	ND	NA	ND	NA
LUORANTHENE	0.4 J	109	11.0 J	106
YRENE	0.2 J	96	9.6	98
C1-FLUORAN_PYR	ND	NA	ND	NA
BENAANTHRACENE	0.1 J	99	2.0 J	103
CHRYSENE	0.7 J	111	3.8 J	114
C1-CHRYSENES	ND	NA	ND	NA.
C2-CHRYSENES	ND	NA	ND	NA
3-CHRYSENES	ND	NA	ND	NA
C4-CHRYSENES	ND	NA	ND	NA
ENDFLUORAN	0.2 J	89	1.2 J	84
BENKFLUORAN	0.2 J	89	1.2 J	84
BENEPYRENE	0.1 J	110	4.4 J	110
BENA PYRENE	0.1 J	81	0.7 J	73
PERYLENE	0.1 J	115	2.4 J	98
123cdPYRENE	0.0 J	68	0.7 J	67
DBahANTHRA	0.1 J	69	1.0 J	62
3ghiPERYLENE	0.1 J	91	1.1 J	90
OTAL PAH's	9.3 J	AVG % RECOV	760.4	AVG % RECOV
(w/o PERYLENE)		102		96

LABNAME: GERG/TAMU

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	BLANK SPIKE	STURGEON	STA 24
LABSAMNO:	Q9732	Q9734	C11955	Q9735
UNIT:	ng/g	*	ng/g	%
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
2-METHYLNAPH	0.7 J	113	50.5	108
1-METHYLNAPH	0.6 J	117	50.2	117
2,6-DIMETHNAPH	0.4 J	114	29.6 J	99
1,6,7-TRIMETHNAPH	0.2 J	127	7.1 J	112
1-METHYLPHEN	0.1 J	112	2.0 J	. 115
Surrogate Recoveries	3			
NAPHD8:	63	52	47	53
ACEND10:	59	53	55	61
PHEND10:	54	65	56	67
CHRYD12:	48	58	48	61
PERYD12:	21 Q	15 Q	35 Q	19 Q

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
ID:	PROC BLANK	BLANK SPIKE	STURGEON	STA 24
LABSAMNO:	Q9732	Q9734	C11955	Q9735
UNIT:	ng/g	*	ng/g	*
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
TOTAL BHCs	0.0 ND		20.5	
TOT CHLORDANES (ALL)	0.0 ND		25.9 J	
TOT CHLORDANES (S&T)	0.0 ND	AVERAGE %	16.6 J	AVERAGE %
TOTAL DDTs	0.0 ND	RECOVERY	649.7	RECOVERY
TOTAL PCBs	0.0 M	109	3172.9	108
ALPHA-BHC	0.0 ND	86	14.4	76
нсв	0.0 ND	101	18.9	105
BETA-BHC	0.0 ND	85	0.0 ND	91
GAMMA-BHC	0.0 ND	100	6.0	93
DELTA-BHC	0.0 ND	88	0.0 ND	90
HEPTACHLOR	0.0 ND	102	0.0 ND	106
HEPTA-EPOXIDE	0.0 ND	94	3.8 J	87
OXYCHLORDANE	0.0 ND	116	2.2 J	114
GAMMA-CHLORDANE	0.0 ND	109	4.2 J	109
ALPHA-CHLORDANE	0.0 ND	108	5.7	97
TRANS-NONACHLOR	0.0 NTD	108	7.2	110
CIS-NONACHLOR	0.0 ND	108	2.8 J	105
ALDRIN	0.0 ND	95	0.0 ND	97
DIELDRIN	0.0 ND	99	8.6	95
ENDRIN	0.0 ND	103	0.0 ND	110
MIREX	0.0 ND	112	0.0 ND	123 Q
2,4'DDE (O,P'DDE)	0.0 ND	99	3.9 J	77
4,4'DDE (P,P'DDE)	0.0 ND	101	258.2	109
2,4'DDD (0,P'DDD)	0.0 ND	102	17.8	105
4,4'DDD (P,P'DDD)	0.0 ND	114	306.4	132 Q
2,4'DDT (0,P'DDT)	0.0 ND	108	28.7	100
4,4'DDT (P,P'DDT)	0.0 ND	118	34.7	113

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE
D:	PROC BLANK	BLANK SPIKE	STURGEON	STA 24
ABSAMNO:	Q9732	Q9734	C11955	Q9735
NIT:	ng/g	*	ng/g	8
nalyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
B # (CLORINATION)	**************************************			
AA S&T PCBs				
(CL2)	0.0 ND	98	0.0 ND	109
(CL3)	0.0 ND	114	0.0 ND	119
(CL3)	0.0 ND	117	10.5	115
(CL4)	0.0 ND	114	4.6 J	114
2 (CL4)	0.0 ND	117	9.5	116
(CL4)	0.0 ND	114	20.7	109
)1 (CL5)	0.0 NTD	116	27.5	112
5 (CL5)	0.0 ND	119	16.6	110
0/77 (CL5/4)	0.0 ND	132 Q	69.9	136 Q
3/108/149(CL5/5/6)	0.0 ND	119	30.9	119
3 (CL6)	0.0 ND	119	9.4	116
3 (CL6)	0.0 ND	119	41.7	111
(CL5)	0.0 ND	129 Q	0.0 ND	126 Q
3 (CL6)	0.0 ND	90	45.0	89
0 (CL7)	0.7	112	4.1 J	117
(CL7)	0.0 NTD	111	7.9 J	119
/182/159(CL7/7/6)	0.0 NTD	118	3.8 J	114
(CL8)	0.0 ND	119	0.0 ND	119
(CL9)	0.0 ND	102	0.0 ND	101
(CL10)	0.0 ND	116	0.0 ND	116
HER PCB CONGENERS				
(CL2)	0.0 NTD	NA	0.0 ND	NA
(CL2)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
32 (CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 NTD	NA	1.9 J	NA
(CL3)	0.0 ND	NA	10.6	NA
(CL4)	0.0 ND	112	0.0 ND	116
(CL3)	0.0 ND	NA	0.0 ND	NA
(CT3)	O.O ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
/48 (CL4)	0.0 ND	NA	0.0 ND	NA
/42 (CL4)	0.0 ND	NA	0.0 ND	NA
/64 (CL4)	518.0 M	NA	2717.0 M	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	5.7 J	NA

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STA 24	LAB QA SAMPLE	
ID:	PROC BLANK	BLANK SPIKE	STURGEON	STA 24	
ABSAMNO:	Q9732	Q9734	C11955	Q9735	
JNIT:	ng/g	*	ng/g	8	
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUA	L Recovery DB QUAL	
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	NA	4.3 J	NA.	
88 (CL5)	0.0 ND	NA	0.0 ND	NA	
50/56 (CL5)	1.6	NA	0.0 ND	NA	
92? (CL5)	0.0 ND	NA	15.0	NA	
34? (CL5)	0.0 ND	NA	7.8 J	NA NA	
99 (CL5)	0.0 ND	NA	25.4	NA	
33 (CL5)	0.0 ND	NA	0.0 ND	NA NA	
97 (CL5)	0.0 ND	NA	8.0 J	NA	
37 (CL5)	0.0 ND	113	8.9	108	
35 (CL5)	0.0 ND	NA	0.0 ND	NA	
36 (CL6)	0.0 ND	NA	0.0 ND	NA	
32 (CL5)	0.0 ND	NA	0.0 ND	NA	
.51 (CL6)	0.0 ND	NA	3.9 J	NA	
.07/108/144 (CL5/5/6)		NA	4.1 J	NA	
.49 (CL6)	0.0 ND	NA	13.1	NA	
88 (CL7)	0.0 ND	113	11.8	116	
.46 (CL6)	0.0 ND	NA	8.4	NA	
.41 (CL6)	0.0 ND	NA	7.6 J	NA	
.37 (CL6)	0.0 ND	NA	4.1 J	NA	
NK (CL6)	0.0 ND	NA	2.3 J	NA	
L58 (CL7)	0.0 ND	NA	2.7 J	AA	
.29 (CL6)	0.0 ND	NA	0.0 ND	AN	
L78 (CL7)	0.0 ND	NA	0.0 ND	NA	
183 (CL7)	0.0 ND	NA	3.2 J	NA	
167 (CL6)	0.0 ND	NA	0.0 ND	NA	
L85 (CL7)	0.0 ND	NA	0.0 ND	NA	
.74 (CL7)	0.0 ND	NA	1.5 J	NA	
.77 (CL7)	0.0 ND	NA	1.2 J	NA	
156/171/202 (CL6/7/8)		NA	5.8 J	NA	
00 (CL8)	0.0 ND	NA	0.0 ND	NA	
.72 (CL7)	0.0 ND	NA	0.0 ND	NA	
.91 (CL7)	0.0 ND	NA	0.0 ND	NA	
201 (CL8)	0.0 ND	NA	0.0 ND	NA	
.96 (CL8)	0.0 ND	NA	0.0 ND	NA	
.89 (CL7)	0.0 ND	NA	0.6 J	NA	
.94 (CL8)	0.0 ND	NA	0.0 ND	NA	
205 (CL9)	0.0 ND	NA	0.0 ND	NA	
Surrogate Recoveries	3				
DBOFB%:	52	56	59	56	
PCB#103%:	68	59	61	62	
PCB#198%:	70	65	65	69	

INVEST#:	STA 24	LAB QA SAMPLE
ID:	STURGEON	STA 24
LABSAMNO:	C11955	Q9733
SAMPLE TYPE:	SAMP	DUP
COLLECTION DATE:	08/25/93	08/25/93
RECEIPT DATE:	09/03/93	09/03/93
QCBATCH:	M1422	M1422
EXTRACTION DATE:	08/22/94	08/22/94
METHOD:	GCMS	GCMS
ANALYSIS DATE:	09/08/94	09/07/94
METHOD:	GCECD	GCECD
ANALYSIS DATE:	09/28/94	09/28/94
MATRIX:	TISSUE	TISSUE
SUBMAT:		
WETWT:	0.58	0.55
DRYWT:	0.24	0.23
WTUNITS:	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	41.1%	41.5%
VOL:		
VOLUNITS:	LITERS	LITERS
Lipid Weight		
% LIPIDS:	59.44	55.35
Surrogate Recoverie	s	
PAH's:		•
NAPHD8:	47	49
ACEND10:	55	69
PHEND10:	56	57
CHRYD12:	48	57
PERYD12:	35 Q	41
PESTICIDES & PCB's:		
DBOFB:	59	56
PCB#103:	61	71
PCB#198:	65	73

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STA 24		LAB QA SA	MPLE		
ID:	STURGEON		STA 24			
LABSAMNO:	C11955		Q9733			
UNIT:	ng/g		ng/g			
PNA Analyte	Conc	DB QUAL	Conc	DB QUAL	% RPD	
NAPHTHALENE	90.6		75.8		18	
C1-NAPHTHALENES	100.7		88.8		13	
C2-NAPHTHALENES	120.5		164.5		31	
C3-NAPHTHALENES		ND		ND		
C4-NAPHTHALENES		ND		ND		
BIPHENYL	32.9		22.7			
ACENAPHTHYLENE	4.0		4.6			
ACENAPHTHENE	13.0		6.0			
FLUORENE	16.9		20.1			
C1-FLUORENES		ND		ND		
C2-FLUORENES		ND		ND		
C3-FLUORENES		ND		ND		
PHENANTHRENE	37.1		45.1		20	
ANTHRACENE	2.3	J	5.5	J		
C1-PHEN_ANTHR		ND		ND		
C2-PHEN_ANTHR		ND		ND		
C3-PHEN_ANTHR		ND		ND		
C4-PHEN_ANTHR		ND		ND		
DIBENZOTHIO	17.0		9.8	J		
C1-DIBEN		ND		ND		
C2-DIBEN		ND		ND		
C3-DIBEN		ND		ND		
FLUORANTHENE	11.0	J	10.6	J		
PYRENE	9.6		8.9	J		
C1-FLUORAN_PYR		ND		ND		
BENAANTHRACENE	2.0	J	1.2	J		
CHRYSENE	3.8	J	7.9	J		
C1-CHRYSENES		ND		ND		
C2-CHRYSENES		ND		ND		
C3-CHRYSENES		ND		ND		
C4-CHRYSENES		ND		ND		
BENDFLUORAN	1.2	J	2.6	J		
BENKFLUORAN	1.2	J	2.6	J		
BENePYRENE	4.4		2.8	J		
BENAPYRENE	0.7		0.9			
PERYLENE	2.4		4.2			
I123cdPYRENE	0.7		1.6		,	
DBahANTHRA	1.0		0.5			
BghiPERYLENE	1.1		2.0			
		~	2.0	-	-	
TOTAL PAH's	471.5		484.4		3	
(w/o PERYLENE)						
(

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE			
ID:	STURGEON	STA 24			
LABSAMNO:	C11955	Q9733			
UNIT:	ng/g	ng/g			
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD		
2-METHYLNAPH	50.5	40.7 J			
1-METHYLNAPH	50.2	48.1	4		
2,6-DIMETHNAPH	29.6 J	30.1 J			
1,6,7-TRIMETHNAPH	7.1 J	10.2 J			
1-METHYLPHEN	2.0 J	24.1 J		-	
Surrogate Recoverie	es				
NAPHD8:	47	49			
ACEND10:	55	69			
PHEND10:	56	57			
CHRYD12:	48	57			
PERYD12:	35 Q	41			

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE		
ID:	STURGEON	STA 24		
LABSAMNO:	C11955	Q9733		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
MOMPL DVIG-			_	
TOTAL BHCs	20.5	20.7	1	
TOT CHLORDANES (ALL)		24.9 J		
TOT CHLORDANES (S&T)		16.0 J	_	
TOTAL DDTs	649.7	659.6	2	
TOTAL PCBs	455.9 J	478.4 J	5	
ALPHA-BHC	14.4	13.9	4	
HCB	18.9	18.2	4	
BETA-BHC	0.0 ND	0.0 ND		
GAMMA-BHC	6.0	6.9	13	
DELTA-BHC	0.0 ND	0.0 ND	13	
HEPTACHLOR	0.0 ND	0.0 ND		
HEPTA-EPOXIDE	3.8 J	3.2 J		
OXYCHLORDANE	2.2 J	2.1 J		
GAMMA-CHLORDANE	4.2 J	4.2 J		
ALPHA-CHLORDANE	5.7	5.9	5	
TRANS-NONACHLOR	7.2	6.9	4	
CIS-NONACHLOR	2.8 J	2.6 J		
ALDRIN	O.O NO	0.0 ND		
DIELDRIN	8.6	7.7	11	
ENDRIN	0.0 ND	0.0 ND		
MIREX	0.0 ND	0.0 ND		
2,4'DDE (0,P'DDE)	3.9 J	4.0 J		
4,4'DDE (P,P'DDE)	258.2	256.3	1	
2,4'DDD (0,P'DDD)	17.8	17.9	1	
4,4'DDD (P,P'DDD)	306.4	311.0	2	
2,4'DDT (0,P'DDT)	28.7	32.5	12	
4,4'DDT (P,P'DDT)	34.7	37.8	8	

SIBERIA TISSUES - PCB DATA - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE		
ID:	STURGEON	STA 24		
LABSAMNO:	C11955	Q9733		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Cone DB QUAL	Conc DB QUAL	% RPD	
PCB # (CLORINATION)				
NOAA S&T PCBs				
8 (CL2)	0.0 ND	0.0 ND		
18 (CL3)	0.0 ND	0.0 ND		
28 (CL3)	10.5	9.6	9	
44 (CL4)	4.6 J	4.2 J		
52 (CL4)	9.5	9.8	3	
66 (CL4)	20.7	19.4	7	
101 (CL5)	27.5	31.8	14	
105 (CL5)	16.6	17.8	7	
110/77 (CL5/4)	69.9	72.1	3	
118/108/149(CL5/5/6)	30.9	33.0	6	
128 (CL6)	9.4	10.5	11	
138 (CL6)	41.7	45.5	9	
126 (CL5)	0.0 ND	O.O ND	_	
153 (CL6)	45.0	47.9	6	
170 (CL7)	4.1 J	4.2 J		
180 (CL7)	7.9 J	7.9 J		
187/182/159(CL7/7/6)		3.6 J		
195 (CL8)	0.0 ND	0.0 ND		
206 (CL9)	0.0 ND	0.0 ND		
209 (CL10)	0.0 ND	0.0 ND		
OTHER PCB CONGENERS				
7 (CL2)	0.0 ND	0.0 ND		
15 (CL2)	0.0 ND	0.0 ND		
24 (CL3)	0.0 ND	0.0 ND		
16/32 (CL3)	0.0 ND	0.0 ND		
29 (CL3)	0.0 ND	0.0 ND		
26 (CL3)	1.9 J	2.0 J		
25 (CL3)	10.6	12.8	18	
50 (CL4)	0.0 ND	0.0 NTD		
33 (CL3)	0.0 ND	0.0 NTD		
22 (CL3)	0.0 ND	0.0 ND		
45 (CL4)	0.0 ND	0.0 ND		
46 (CL4)	0.0 ND	0.0 ND		
49 (CL4)	0.0 ND	0.0 ND		
47/48 (CL4)	0.0 ND	0.0 ND		
37/42 (CL4)	0.0 ND	0.0 ND		
41/64 (CL4)	2717.0 M	1292.3 M	71	
40 (CL4)	0.0 ND	0.0 ND		
74 (CL4)	5.7 J	5.8 J		

SIBERIA TISSUES - PCB DATA (Cont) - 93-D0-01

INVEST#:	STA 24	LAB QA SAMPLE			
ID:	STURGEON	STA 24			
LABSAMNO:	C11955	Q9733			
UNIT:	ng/g	ng/g			
Analyte (Cont)	Conc DB	QUAL Conc DB QUAL	% RPD		
PCB #(CHLORINATION)					
70 (CL4)	4.3 J	3.9 J			
88 (CL5)	0.0 NTD	0.0 ND			
60/56 (CL5)	0.0 ND	0.0 ND			
92? (CL5)	15.0	16.2	8		
84? (CL5)	7.8 J	9.1			
99 (CL5)	25.4	26.1	2		
83 (CL5)	0.0 ND	0.0 ND		•	
97 (CL5)	8.0 J	8.1 J			
87 (CL5)	8.9	9.5	7		
85 (CL5)	0.0 ND	0.0 ND			
136 (CL6)	0.0 ND	0.0 ND			
82 (CL5)	0.0 ND	0.0 ND			
151 (CL6)	3.9 J	3.7 J			
107/108/144 (CL5/5/6)	4.1 J	3.9 J			
149 (CL6)	13.1	14.6	11		
188 (CL7)	11.8	11.1	6		
146 (CL6)	8.4	7.3 J			
141 (CL6)	7.6 J	9.0			
137 (CL6)	4.1 J	4.8 J			
UNK (CL6)	2.3 J	2.5 J			
158 (CL7)	2.7 J	3.1 J			•
129 (CL6)	0.0 ND	0.0 ND			
178 (CL7)	0.0 ND	0.0 ND			
183 (CL7)	3.2 J	3.1 J			
167 (CL6)	0.0 ND	0.0 ND			
185 (CL7)	0.0 ND	0.0 ND			
174 (CL7)	1.5 J	1.7 J			
177 (CL7)	1.2 J	1.1 J			
156/171/202(CL6/7/8)	5.8 J	4.9 J			
200 (CL8)	0.0 ND	0.0 ND			
172 (CL7) 191 (CL7)	0.0 ND	0.0 ND			
201 (CL8)	0.0 NTD	0.0 ND			
196 (CL8)	0.0 ND	0.0 ND			
189 (CL7)	0.6 J	0.0 ND 0.6 J			
194 (CL8)	0.6 J	0.6 J			
205 (CL9)	0.0 ND	0.0 ND			
Surrogate Recoveries					
DBOFB%:	59	56			
PCB#103%:	61	71			
PCB#198%:	65	73			

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPL
ID:	GERG STD CHK III	GERG STD CHK	GERG STD CHK	GERG STD CHK	GERG STD CHK
LABSAMNO:	LABORATORY	W1828	W1080	W1082	W1084
SAMPLE TYPE:	RUNNING	REF	REF	REF	REF
COLLECTION DATE:	AVERAGE				
RECEIPT DATE:					
CBATCH:		M1422	M959	M959	M959
XTRACTION DATE:					
ETHOD:		GCMS	GCMS	GCMS	GCMS
NALYSIS DATE:		09/07/94	05/31/94	05/31/94	05/31/94
ETHOD:		GCECD	GCECD	GCECD	GCECD
NALYSIS DATE:					
ATRIX:		OIL	OIL	OIL	OIL
UBMAT:					
ETWT:					
RYWT:					
TUNITS:					
CTSOLIDS:					
OL:		1.0	1.0	1.0	1.0
OLUNITS:		AMPOULE	AMPOULE	AMPOULE	AMPOULE
ipid Weight					
LIPIDS:					
urrogate Recoveries	3				
AH's:					
APHD8:		NA	NA	NA	NA
CEND10:		NA	NA	NA	NA
HEND10:		NA	NA	NA	NA
HRYD12:		NA	NA	NA	NA
ERYD12:		NA	NA	NA	NA
ESTICIDES & PCB's:					
BOFB:		NA	NA	NA	NA
CB#103:		NA	NA	NA	NA
CB#198:		NA	NA	NA	NA

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LABORATORY		LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPLE
ID:	RUNNING		GERG STD CHK	GERG STD CHK	GERG STD CHK	GERG STD CHK
LABSAMNO:	AVERAGE		W1828	W1080	W1082	W1084
UNIT:			ng/amp	ng/amp	ng/amp	ng/amp
PNA Analyte	Average Sto	d Dev.	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	576.2	20.2	491.0	523.3	535.3	556.8
C1-NAPHTHALENES	2434.8	125.9	2024.8	2197.3	2225.4	2276.9
C2-NAPHTHALENES	1902.8	160.0	2034.8	2157.8	2158.2	2145.2
C3-NAPHTHALENES	1440.7	217.6	1828.8	1855.8	1793.1	1769.9
C4-NAPHTHALENES	789.3	158.7	1137.0	835.6	1050.1	1071.4
BIPHENYL	193.9	20.4	174.8	213.5	211.9	223.3
ACENAPHTHYLENE	1.3	0.5	1.0 J	0.5 J	0.5 J	0.9 J
ACENAPHTHENE	17.4	1.7	15.5 J	20.6	17.9 J	19.5 J
FLUORENE	93.2	7.6	85.8	102.2	98.8	99.8
C1-FLUORENES	213.3	31.4	226.8	244.4	206.4	232.6
C2-FLUORENES	343.7	35.0	437.4	433.4	394.9	408.8
C3-FLUORENES	370.1	61.6	572.1	520.6	480.7	478.0
PHENANTHRENE	266.0	23.0	248.3	258.7	277.1	269.5
ANTHRACENE	5.9	2.8	5.5 J	4.8 J	4.9 J	5.9 J
C1-PHEN_ANTHR	583.2	91.0	728.3	596.8	611.7	610.9
C2-PHEN ANTHR		106.3	875.5	705.3	719.1	694.1
C3-PHEN ANTHR		128.7		589.9	602.4	
C4-PHEN_ANTHR	212.4	75.3	566.1	233.9	192.3	571.7
DIBENZOTHIO	218.9	22.1	167.7	207.8		233.4
C1-DIBEN	414.9	66.3	384.0	400.8	215.3	215.0
C2-DIBEN		106.8	649.6	580.7	420.5 618.9	412.6
C3-DIBEN	506.5	90.8	732.1	472.9	502.3	601.4
FLUORANTHENE	5.0	1.1	3.8 J	3.1 J		489.6
PYRENE	13.1	2.3			4.4 J	3.5 J
			15.1 J	11.0 J	11.6 J	11.2 J
C1-FLUORAN_PYR	94.0	18.2	125.7	76.8	87.4	78.4
BENAANTHRACENE	5.6	1.0	5.3 J	3.9 Ј	5.2 J	5.7 J
CHRYSENE	52.4	5.4	44.8	57.4	60.4	61.7
C1-CHRYSENES	91.4	63.5	94.1	76.6	85.8	85.5
C2-CHRYSENES	115.5	77.6	167.4	84.4	89.1	84.1
C3-CHRYSENES	30.4	22.2	41.7	11.5 J	14.5 J	15.4 J
C4-CHRYSENES	21.5	18.0	18.8 J	4.6 J	8.7 J	7.7 J
BENDFLUORAN	3.5	0.4	3.6 J	3.8 J	4.2 J	4.1 J
BENKFLUORAN	3.5	0.4		3.8 J	4.2 J	4.1 J
BENEPYRENE	11.3	1.1		11.7 J	11.6 J	11.3 J
BENapyrene	2.0	0.7		2.2 J	2.4 J	2.9 J
PERYLENE	2.0	0.6		2.1 J	2.9 J	2.6 J
I123cdPYRENE	0.9	0.3		0.8 J	1.2 J	0.4 J
DBahanthra	1.8	0.5	1.6 J	1.4 J	2.1 J	1.3 J
BghiPERYLENE	4.2	0.9	3.5 J	1.9 J	2.9 J	2.4 J
TOTAL PAH's	12750.2		14856.8	13511.5	13733.3	13766.9
(w/o PERYLENE)						

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LABORATORY		LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPLE	LAB QA SAMPLE
ID:	RUNNING		GERG STD CHK	GERG STD CHK	GERG STD CHK	GERG STD CHK
LABSAMNO:	AVERAGE		W1828	W1080	W1082	W1084
UNIT:	ng/amp		ng/amp	ng/amp	ng/amp	ng/amp
Analyte (Cont)	Average S	td Dev.	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
2-METHYLNAPH	1347.9	70.7	1108.4	1203.5	1218.8	1239.6
1-METHYLNAPH	1086.9	58.1	916.4	993.8	1006.6	1037.3
2,6-DIMETHNAPH	775.3	64.6	714.1	846.6	826.0	865.9
1,6,7-TRIMETHNAPH	438.9	30.2	406.0	468.6	457.9	461.7
1-METHYLPHEN	177.6	21.4	189.2	139.2	174.8	150.5
Surrogate Recoverie	s					
NAPHD8:			NA	NA	NA	NA
ACEND10:			NA	NA	NA	NA
PHEND10:			NA	NA	NA	NA
CHRYD12:			NA	NA	NA	NA
PERYD12:			NA	NA	NA	NA

SIBERIA TISSUES - PESTICIDE DATA - 93-D0-01

INVEST#:		
ID:		
LABSAMNO:		
UNIT:		
Analyte (Cont)		
TOTAL BHCs		
TOT CHLORDANES (ALL)		
TOT CHLORDANES (S&T)		
TOTAL DDTs		
TOTAL PCBs		
ALPHA-BHC		
HCB		
BETA-BHC		
GAMMA-BHC		
DELTA-BHC		
HEPTACHLOR		
HEPTA-EPOXIDE		
OXYCHLORDANE		
GAMMA-CHLORDANE		
ALPHA-CHLORDANE		
TRANS-NONACHLOR		
CIS-NONACHLOR		
ALDRIN		
DIELDRIN		
ENDRIN		
MIREX		
2,4'DDE (O,P'DDE)		
4,4'DDE (P,P'DDE)		
2,4'DDD (O,P'DDD)		
4,4'DDD (P,P'DDD)		
2,4'DDT (O,P'DDT)		
4,4'DDT (P,P'DDT)		

```
INVEST#:
ID:
LABSAMNO:
UNIT:
Analyte (Cont)
PCB # (CLORINATION)
NOAA S&T PCBs
8 (CL2)
18 (CL3)
28 (CL3)
44 (CL4)
52 (CL4)
66 (CL4)
101 (CL5)
105 (CL5)
110/77 (CL5/4)
118/108/149(CL5/5/6)
128 (CL6)
138 (CL6)
126 (CL5)
153 (CL6)
170 (CL7)
180 (CL7)
187/182/159(CL7/7/6)
195 (CL8)
206 (CL9)
209 (CL10)
OTHER PCB CONGENERS
7 (CL2)
15 (CL2)
24 (CL3)
16/32 (CL3)
29 (CL3)
26 (CL3)
25 (CL3)
50 (CL4)
33 (CL3)
22 (CL3)
45 (CL4)
46 (CL4)
49 (CL4)
47/48 (CL4)
37/42 (CL4)
41/64 (CL4)
40 (CL4)
74 (CL4)
```

```
INVEST#:
ID:
LABSAMNO:
UNIT:
Analyte (Cont)
PCB # (CHLORINATION)
70 (CL4)
88 (CL5)
60/56 (CL5)
92? (CL5)
84? (CL5)
99 (CL5)
83 (CL5)
97 (CL5)
87 (CL5)
85 (CL5)
136 (CL6)
82 (CL5)
151 (CL6)
107/108/144 (CL5/5/6)
149 (CL6)
188 (CL7)
146 (CL6)
141 (CL6)
137 (CL6)
UNK (CL6)
158 (CL7)
129 (CL6)
178 (CL7)
183 (CL7)
167 (CL6)
185 (CL7)
174 (CL7)
177 (CL7)
156/171/202(CL6/7/8)
200 (CL8)
172 (CL7)
191 (CL7)
201 (CL8)
196 (CL8)
189 (CL7)
194 (CL8)
205 (CL9)
Surrogate Recoveries
DBOFB%:
PCB#103%:
PCB#198%:
```

SIBERIA TISSUES - GENERAL INFORMATION - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAM
ID:	GERG STD CHK III	
LABSAMNO:	LABORATORY	W9538
SAMPLE TYPE:	RUNNING	REF
COLLECTION DATE:	AVERAGE	
RECEIPT DATE:		
QCBATCH:		M881
EXTRACTION DATE:		
METHOD:		GCMS
ANALYSIS DATE:		09/29/93
METHOD:		GCECD
ANALYSIS DATE:		
MATRIX:		OIL
SUBMAT:		
WETWT:		
DRYWT:		
WTUNITS:		
PCTSOLIDS:		
VOL:		1.0
VOLUNITS:		AMPOULE
Lipid Weight		
% LIPIDS:		
Surrogate Recoverie	s	
PAH's:		
NAPHD8:		N
ACEND10:		N
PHEND10:		N
CHRYD12:		N
PERYD12:		N
PESTICIDES & PCB's:		
DBOFB:		N
PCB#103:		N
PCB#198:		N

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LABORATORY		LAB QA SA	MPLE
ID:	RUNNING		GERG STD	CHK
LABSAMNO:	AVERAGE		W9538	
UNIT:			ng/amp	
PNA Analyte	Average S	td Dev.	Conc	DB QUAL
NAPHTHALENE	576.2	20.2	545.0	
C1-NAPHTHALENES	2434.8	125.9	2127.3	
C2-NAPHTHALENES	1902.8	160.0	2035.5	
C3-NAPHTHALENES	1440.7	217.6	1617.8	
C4-NAPHTHALENES	789.3	158.7	942.8	
BIPHENYL	193.9	20.4	206.7	
ACENAPHTHYLENE	1.3	0.5	2.9	J
ACENAPHTHENE	17.4	1.7	16.9	J
FLUORENE	93.2	7.6	93.6	
C1-FLUORENES	213.3	31.4	221.1	
C2-FLUORENES	343.7	35.0	342.2	
C3-FLUORENES	370.1	61.6	334.5	
PHENANTHRENE	266.0	23.0		
ANTHRACENE	5.9	2.8	6.1	J
C1-PHEN_ANTHR	583.2	91.0		
C2-PHEN_ANTHR	656.2	106.3		
C3-PHEN_ANTHR	481.9	128.7		
C4-PHEN_ANTHR	212.4	75.3		
DIBENZOTHIO	218.9	22.1		
C1-DIBEN	414.9	66.3		
C2-DIBEN	571.6	106.8		
C3-DIBEN	506.5	90.8		
FLUORANTHENE	5.0	1.1		J
PYRENE	13.1	2.3		
C1-FLUORAN PYR	94.0	18.2		
BENAANTHRACENE	5.6	1.0		J
CHRYSENE	52.4	5.4		
C1-CHRYSENES	91.4	63.5		
C2-CHRYSENES	115.5	77.6		
C3-CHRYSENES	30.4	22.2		
C4-CHRYSENES	21.5	18.0		J
BENDFLUORAN	3.5	0.4		
BENKFLUORAN	3.5	0.4		
BENe PYRENE	11.3	1.1		
BENAPYRENE	2.0	0.7		
PERYLENE	2.0	0.6		
I123cdPYRENE	0.9	0.3		
DBahANTHRA	1.8	0.5		
BghiPERYLENE	4.2	0.9		
DYNIPERILENE	4.2	0.9	3.5	J
TOTAL DAU'S	12750 2		12100 0	
TOTAL PAH'S	12750.2		12189.0	
(w/o PERYLENE)				

SIBERIA TISSUES - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LABORATORY		LAB QA SAMPLE			
ID:	RUNNING		GERG STD CHK			
LABSAMNO:	AVERAGE		W9538			
UNIT:	ng/amp		ng/amp			
Analyte (Cont)	Average S	td Dev.	Conc DB QUAL		_	
2-METHYLNAPH	1347.9	70.7	1171.8			
1-METHYLNAPH	1086.9	58.1	955.4			
2,6-DIMETHNAPH	775.3	64.6	826.3			
1,6,7-TRIMETHNAPH	438.9	30.2	456.0			
1-METHYLPHEN	177.6	21.4	153.4	-		
Surrogate Recoverie	es					
NAPHD8:			NA			
ACEND10:			NA			
PHEND10:			NA			
CHRYD12:			NA			
PERYD12:			NA			

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

PAHs, Aliphatics, PCBs and Pesticides in Sediments Analytical Sample Data

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID:					
LABSAMNO:	C12905	C12906	C12907	C12908	C12909
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	08/04/93	08/05/93	08/08/93	08/13/93	08/13/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
CBATCH:	M748	M748	M748	M748	M748
EXTRACTION DATE:	11/11/93	11/11/93	11/11/93	11/11/93	11/11/93
ETHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
NALYSIS DATE:	01/18/94	01/18/94	01/18/94	01/19/94	01/19/94
ETHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
NALYSIS DATE:	12/06/93	12/06/93	12/06/93	12/06/93	12/06/93
ETHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
NALYSIS DATE:	06/08/94	06/08/94	06/08/94	06/08/94	06/08/94
ATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
UBMAT:					
ETWT:	10.15	10.16	10.16	10.21	10.27
RYWT:	7.34	5.50	4.08	4.05	3.80
TUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DR
CTSOLIDS:	72.3%	54.1%	40.2%	39.7%	37.0%
OL:					
OLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
ipid Weight					
LIPIDS:					
urrogate Recoveri	ies				
LKANES:					
12ALKD:	86	87	100	74	83
20ALKD:	81	97	109	73	79
24ALKD:	81	101	104	75	82
30ALKD:	104	125 M	149 M	137 Q	141 M
AH's:					•
APHD8:	69	77	82	70	72
CEND10:	74	79	86	74	74
HEND10:	75	80	84	77	73
HRYD12:	17 M	9 M	10 M	58	57
ERYD12:	7 M	7 M	5 M	57	54
ESTICIDES & PCB's	s :				
BOFB:	61	83	71	110	80
PCB#103:	60	80	68	105	77
PCB#198:	58	81	67	109	78

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID:	010005	G10005			
LABSAMNO:	C12905	C12906	C12907	C12908	C12909
Alkanes and	G DD 07737	Q DD 01111			
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
JNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
210	327	280	181	289	181
211	746	100	51	58	46
212	977	100	65	90	60
213	39	31 J	33 J	40 J	36 J
214	48	71	63	80	64
215	59	93	98	70	83
216	55	71	79	- 80	71
217	196	245	390	206	203
PRISTANE	69	60	54	53	64
218	51	134	145	116	109
PHYTANE	75	71	71	45	35 J
19	94	243	304	241	239
20	74	261	345	238	234
21	241	816	1127	947	803
22	145	669	914	575	608
223	510	2152	2894	1926	1824
24	157	1544	1057	669	712
25	775	3393	3914	2788	2471
226	187	864	1041	699	661
27	1768	8608	8760	6643	5264
28	270	801	1072	658	618
29	1236	6527	6486	5436	
230	130	626	727		4151
231	1501	8681	7690	559	568
232	74	493		7152	4594
233	569	3022	572	439	411
234	11 J	108	2815 208	2374 250	1435 391
TOT ALKANES	10384	40066	41159	32720	25934
	20303	40000	41133	32720	23734
NIT:	ug/g	ug/g	ug/g	ug/g	ug/g
JCM	5.8 J	0.5 J	8.7 J	6.6 J	0.0 ND
urrogate Recove	eries				
C12ALKD:	86	87	100	74	83
20ALKD:	81	97	109	73	79
24ALKD:	81	101	104	75	82
30ALKD:	104	125 M	149 M	137 M	141 M

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID:					
LABSAMNO:	C12905	C12906	C12907	C12908	C12909
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	12.2 J	19.7 J	29.2	36.0	24.4 J
C1-NAPHTHALENES	13.2 J	28.1 J	30.3 J	40.1 J	29.3 J
C2-NAPHTHALENES	10.5 J	23.2 J	24.0 J	31.0 J	23.0 Ј
C3-NAPHTHALENES	11.4 J	22.4	25.3	32.4	23.4 Ј
C4-NAPHTHALENES	7.0 J	11.7 J	13.1 J	15.2 J	13.5 J
BIPHENYL	5.6 J	17.0	15.8 J	18.1 J	14.5 J
ACENAPHTHYLENE	1.1 J	0.4 J	3.9 J	3.7 J	2.2 J
ACENAPHTHENE	0.9 J	4.1 J	2.0 J	2.9 Ј	1.8 J
FLUORENE	3.0 J	9.8	8.5 J	9.7 J	6.2 J
C1-FLUORENES	3.5 J	11.3 J	10.1 J	10.2 J	8.4 J
C2-FLUORENES	3.5 J	8.7 J	9.9 J	11.4 J	9.1 J
C3-FLUORENES	6.1 J	6.4 J	9.3 J	10.0 J	8.9 J
PHENANTHRENE	11.9	33.4	38.3	44.8	32.3
ANTHRACENE	1.5 J	1.6 J	3.5 J	4.7 J	3.2 J
C1-PHEN ANTHR	9.1 J	26.7	29.1 J	33.4	26.8 J
22-PHEN ANTHR	7.2 J	16.9 J	22.7 J	25.2 J	21.2 J
C3-PHEN_ANTHR	6.7 J	13.3 J	21.7 J	20.9 J	16.9 J
C4-PHEN_ANTHR	11.0 J	19.9 J	34.6	28.9 J	20.8 J
DIBENZOTHIO	1.1 J	3.4 J	2.9 J	3.3 J	2.8 J
C1-DIBEN	1.2 J	2.7 J	3.3 J	3.6 J	3.2 J
C2-DIBEN	1.7 J	2.5 J	3.8 J	4.7 J	3.5 J
C3-DIBEN	1.5 J	1.7 J	3.2 J	3.6 J	3.6 J
FLUORANTHENE	6.8	6.7	18.9	28.5	19.3
PYRENE	6.3	6.8 J	17.3	24.2	17.1
C1-FLUORAN_PYR	4.0 J	9.1 J	10.8 J	16.4 J	11.7 J
BENAANTHRACENE	7.7	5.8	2.9 J	16.7	10.5
CHRYSENE	24.0	73.0	117.0	31.4	25.3
C1-CHRYSENES	22.7	193.0	147.9	20.6 J	17.2 J
C2-CHRYSENES	21.2	65.1	105.2	19.8 J	15.7 J
C3-CHRYSENES	ND	ND	ND	ND ND	ND ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	1.7 J	2.6 J	4.1 J	3.2 J	2.5 J
BENKFLUORAN	1.7 J	2.6 J	4.1 J	3.2 J	2.5 J
BENEPYRENE	9.1	4.3 J	22.9	12.1	10.4
BENAPYRENE	0.2 J	0.0 J	1.6 J	4.6 J	5.2 Ĵ
PERYLENE	31.6 J	19.8 J	184.9	254.1	223.5
I123cdPYRENE	31.6 J 2.4 J	0.8 J	3.0 J	0.2 J	0.1 J
	2.4 J 1.2 J	0.5 J	0.8 J	0.2 J 0.1 J	0.1 J
DBah ANTHRA BghiPERYLENE	0.7 J	1.8 J	9.2	8.9	10.5
TOTAL PAH's	240.3	657.1	810.3	583.6	447.6
(w/o PERYLENE)					-

LABNAME: GERG/TAMU

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID:					
LABSAMNO:	C12905	C12906	C12907	C12908	C12909
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
2-methylnaph	8.2 J	17.1	18.4	24.5	18.2 J
1-METHYLNAPH	5.0 J	11.0 J	11.9 J	15.6 J	11.1 J
2,6-DIMETHNAPH	5.3 J	12.9 J	12.6 J	15.1 J	11.6 J
1,6,7-TRIMETHNAPH	2.7 J	6.9 J	7.4 J	9.0 J	6.3 J
l-methylphen	3.0 J	10.4 J	11.0 J	- 11.6 J	8.4 J
Surrogate Recoverie	s				
NAPHD8:	69	77	82	70	72
ACEND10:	74	79	86	74	74
PHEND10:	75	80	84	77	73
CHRYD12:	17 M	9 M	10 M	58	57
PERYD12:	7 M	7 M	5 M	57	54

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID:					
LABSAMNO:	C12905	C12906	C12907	C12908	C12909
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	0.2 J	0.2 J	0.3 J	0.4 J	0.5 J
TOT CHLORDANES (ALL)	0.0 ND	0.1 J	0.1 J	0.1 J	0.1 J
TOT CHLORDANES (S&T)	0.0 ND	0.1 J	0.1 J	0.1 J	0.1 J
TOTAL DDTs	0.8 J	0.2 J	1.2 J	0.6 J	0.8 J
TOTAL PCBs	0.1 J	0.7 J	0.3 J	0.5 J	0.5 J
ALPHA-BHC	0.1 J	0.1 J	0.1 J	- 0.2 J	0.2 J
HCB	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
BETA-BHC	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.1 J
GAMMA-BHC	0.0 ND	0.0 ND	0.1 J	0.1 J	0.1 J
DELTA-BHC	0.1 J				
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	0.0 ND				
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 ND				
ALPHA-CHLORDANE	0.0 ND				
TRANS-NONACHLOR	0.0 ND				
CIS-NONACHLOR	0.0 ND				
ALDRIN	0.0 ND				
DIELDRIN	0.0 ND	0.0 ND	0.1 J	0.0 ND	0.1 J
ENDRIN	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.1 J
MIREX	0.0 ND				
2,4'DDE (0,P'DDE)	0.0 ND	0.0 ND	0.1 J	0.1 J	0.1 J
4,4'DDE (P,P'DDE)	0.0 ND	0.0 ND	0.1 J	0.1 J	0.1 J
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND	0.0 J	0.0 ND	0.0 ND
4,4'DDD (P,P'DDD)	0.1 J	0.0 ND	0.3	0.3	0.3
2,4'DDT (0,P'DDT)	0.0 ND	0.0 ND	0.0 J	0.0 ND	0.0 ND
4,4'DDT (P,P'DDT)	0.6	0.0 ND	0.7	0.1 J	0.2 J

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID: LABSAMNO:	C12905	C12906	G10007	G10000	61000
UNIT:			C12907	C12908	C12909
	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND				
18 (CL3)	0.0 ND				
28 (CL3)	0.0 ND				
44 (CL4)	0.0 ND				
52 (CL4)	0.0 ND				
66 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
101 (CL5)	0.0 ND				
105 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
110/77 (CL5/4)	0.0 NTD	0.0 ND	0.0 ND	0.1 J	0.1 J
118/108/149(CL5/5/6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
128 (CL6)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
138 (CL6)	0.0 ND	0.5	0.1 J	0.1 J	0.1 J
126 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
153 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
170 (CL7)	0.1 J	0.0 ND	0.1 J	0.1 J	0.1 J
180 (CL7)	0.0 ND	0.0 ND	0.0 J	0.0 NTD	0.0 NTD
187/182/159(CL7/7/6)	0.0 ND				
195 (CL8)	0.0 ND				
206 (CL9)	0.0 ND				
209 (CL10)	0.0 ND				
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
15 (CL2)	0.0 ND				
24 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
16/32 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
29 (CL3)	O.O NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
26 (CL3)	0.0 ND				
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
50 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
33 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
45 (CL4)	O.O NID	0.0 ND	0.0 ND	0.0 ND	0.0 ND
46 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
49 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
47/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
37/42 (CL4)	0.0 ND				
41/64 (CL4)	0.0 ND				
40 (CL4)	0.0 ND				
74 (CL4)	0.0 ND				

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 2	STATION 5	STATION 7	STATION 12	STATION 14
ID: LABSAMNO:	C1290E	C12005	G12007		
UNIT:	C12905	C12906	C12907	C12908	C12909
	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
88 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
99 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
83 (CL5)	0.0 ND	0.0 NTD	0.0 NTD	- 0.0 ND	0.0 ND
97 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
85 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
136 (CL6)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
32 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 NTD
L51 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
L07/108/144 (CL5/5/6)		0.0 ND	0.0 ND	0.0 NTD	0.0 ND
149 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
141 (CL6)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
UNK (CL6) 158 (CL7)	0.0 NTD 0.0 NTD	0.0 ND 0.0 ND	0.0 ND	0.0 ND	0.0 ND
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
178 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
183 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND 0.0 ND	0.0 ND 0.0 ND
L85 (CL7)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
L74 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
177 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
L56/171/202(CL6/7/8)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
200 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
172 (CL7)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
191 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
201 (CL8)	O.O ND	0.0 ND	0.0 ND	0.0 NTD	O.C ND
196 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
89 (CL7)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
205 (CL9)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
Surrogate Recoveries					
DBOFB%:	61	83	71	110	80
PCB#103%:	60	80	68	105	77
PCB#198%:	58	81	67	109	78

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID:					
LABSAMNO:	C12910	C12911	C12912	C12913	C12914
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	08/26/93	08/20/93	09/10/93	09/11/93	09/11/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M748	M748	M748	M748	M748
EXTRACTION DATE:	11/11/93	11/11/93	11/11/93	11/11/93	11/11/93
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	01/19/94	01/19/94	01/19/94	01/19/94	01/19/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	12/06/93	12/06/93	12/06/93	12/06/93	12/06/93
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	06/08/94	06/08/94	06/08/94	06/08/94	06/08/94
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
SUBMAT:					
WETWT:	10.31	10.10	10.04	10.37	10.14
DRYWT:	8.50	6.29	2.60	1.99	2.98
WTUNITS:	GRAMS DRY				
PCTSOLIDS:	82.4%	62.3%	25.9%	19.2%	29.4%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:					
Surrogate Recoveri	ies				
ALKANES:					
C12ALKD:	79	85	102	79	113
C20ALKD:	84	95	99	81	105
C24ALKD:	86	85	100	84	108
C30ALKD:	109	230 M	159 M	145 M	193 M
PAH's:		•			
NAPHD8:	70	78	82	74	85 -
ACEND10:	71	83	85	78	84
PHEND10:	68	79	86	76	84
CHRYD12:	70	79	92	79	90
PERYD12:	20 Q	71	81	81	87
PESTICIDES & PCB's	s:				
DBOFB:	89	82	80	69	77
PCB#103:	85	76	78	67	75
PCB#198:	84	77	78	64	73

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID:					
LABSAMNO:	C12910	C12911	C12912	C12913	C12914
Alkanes and	G DD 01131	A			
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
NIT:	ng/g	ng/g	ng/g	ng/g	ng/g
210	191	290	573	641	268
211	138	648	1484	183	108
212	104	962	2374	227	177
213	10 J	28 J	69 J	34 J	21 J
114	24	33	74	76 J	48 J
215	30	34 J	41 J	180	91
216	28	26	66	124	110
217	231	69	103	811	460
RISTANE	16 J	53 J	144	49 J	20 J
218	79	37	92	228	157
PHYTANE	33	ОЈ	13 J	77	29 J
:19	261	172	347	550	531
20	342	166	358	671	768
21	1123	476	1084	2144	2244
22	1164	330	987	2191	2504
23	2931	981 J	2698	6353	6696
24	1181	490	1090	2749	3039
25	3246	1627	3038	7735	7869
26	1097	537 J	1240	2548	2716
27	4339	1722 J	4177	13286	10897
28	675	410 J	734	2163	1873
29	3126	1739	3266	11633	8983
30	631	259 J	561	1884	1629
31	3480	1607	3341	11131	8090
32	332	265 J	509	659	
33	1234	459	979	3398	964 2600
34	57	293 J	148	122	2600 17 J
	2.	253 0	140	122	17 0
COT ALKANES	26104	13712	29587	71849	62908
NIT:	ug/g	ug/g	ug/g	ug/g	ug/g
JOM	11.8	2.6 J	9.1 J	17.7 J	21.4
urrogate Recove	ries			· · · · · · · · · · · · · · · · · · ·	
C12ALKD:	. 79	85	102	79	113
20ALKD:	84	95	99	81	105
24ALKD:	86	85	100	84	108
30ALKD:	109	230 M	159 M	145 M	193 M

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID: LABSAMNO:	C12010	C12011	C12032	G1 2 0 1 2	G1001:
	C12910	C12911	C12912	C12913	C12914
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL				
NAPHTHALENE	3.3 J	7.3 J	10.7 J	18.1 J	18.3 J
C1-NAPHTHALENES	2.8 J	7.6 J	9.0 J	17.2 J	18.2 J
C2-NAPHTHALENES	2.0 J	4.5 J	8.6 J	14.2 J	10.3 J
C3-NAPHTHALENES	3.6 J	6.5 J	13.3 J	11.7 J	15.4 J
C4-NAPHTHALENES	1.3 J	3.1 J	6.1 J	10.9 J	ND
BIPHENYL	1.8 J	3.7 J	6.8 J	8.8 J	8.4 J
ACENAPHTHYLENE	0.1 J	0.1 J	0.6 J	1.0 J	1.0 J
ACENAPHTHENE	0.3 J	0.5 J	1.7 J	2.4 J	1.2 J
FLUORENE	0.6 J	1.5 J	4.0 J	- 4.5 J	4.8 J
C1-FLUORENES	ND	1.6 J	4.0 J	7.7 J	5.2 J
C2-FLUORENES	ND	3.9 J	6.4 J	15.9 J	10.5 J
C3-FLUORENES	ND	5.8 J	6.7 J	15.0 J	15.2 J
PHENANTHRENE	1.6 J	3.7 J	6.6 J	10.5 J	9.3 J
ANTHRACENE	0.1 J	0.5 J	0.7 J	2.1 J	2.1 J
C1-PHEN_ANTHR	1.3 J	3.9 J	7.0 J	12.1 J	10.1 J
C2-PHEN_ANTHR	1.2 J	3.1 J	5.9 J	1.4 J	9.6 J
C3-PHEN_ANTHR	ND	3.0 J	4.1 J	8.9 J	7.8 J
C4-PHEN ANTHR	ND	2.6 J	ND	14.2 J	5.4 J
DIBENZOTHIO	0.2 J	0.5 J	1.0 J	1.8 J	1.2 J
C1-DIBEN	ND	0.6 J	0.9 J	2.9 J	1.4 J
C2-DIBEN	ND	1.0 J	1.6 J	4.1 J	2.6 J
C3-DIBEN	ND	1.0 J	ND	5.0 J	1.6 J
FLUORANTHENE	0.3 J	2.5 J	6.3 J	10.7 J	7.3 J
PYRENE	0.4 J	1.8 J	4.5 J	11.0 J	6.8 J
C1-FLUORAN_PYR	ND	1.9 J	3.9 J	11.8 J	7.3 J
BENAANTHRACENE	0.1 J	1.1 J	0.7 J	1.5 J	3.8 J
CHRYSENE	0.4 J	2.3 J	6.5 J	16.7 J	11.4 J
C1-CHRYSENES	ND	2.8 J	7.5 J	12.4 J	9.1 J
C2-CHRYSENES	ND	3.3 J	10.5 J	17.3 J	18.0 J
C3-CHRYSENES	ND	ND	ND	ND	ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	0.1 J	1.7 J	3.7 J	11.6 J	7.4 J
BENKFLUORAN	0.1 J	1.7 J	3.7 J	11.6 J	7.4 J
BENepyrene	0.1 J	1.2 J	2.6 J	8.4 J	5.4 J
BENapyrene	0.0 J	0.8 J	2.1 J	5.2 J	3.0 J
PERYLENE	2.1 J	27.6 J	66.9 J	602.6	469.1
I123cdPYRENE	0.1 J	2.1 J	4.1 J	13.9 J	9.3 J
DBahANTHRA	0.0 J	0.9 J	1.2 J	2.7 J	1.8 J
Bghi PERYLENE	0.1 J	2.5 J	6.0 J	14.5	11.6
TOTAL PAH's	22.1 J	92.6 J	169.1 J	339.6 J	269.2 J
		,		002.0	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID:					
LABSAMNO:	C12910	C12911	C12912	C12913	C12914
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
			· · · · · · · · · · · · · · · · · · ·		·
2-METHYLNAPH	1.7 J	4.5 J	5.5 J	11.0 J	11.4 J
1-METHYLNAPH	1.1 J	3.1 J	3.5 J	6.1 J	6.7 J
2,6-DIMETHNAPH	1.2 J	2.9 J	4.5 J	8.2 J	5.4 J
1,6,7-TRIMETHNAPH	0.7 J	1.2 J	2.8 J	4.3 J	2.2 J
1-methylphen	0.3 J	1.2 Ј	2.2 J	- 4.8 J	4.2 J
Surrogate Recoverie	s				
NAPHD8:	70	78	82	74	85
ACEND10:	71	83	85	78	84
PHEND10:	68	79	86	76	84
CHRYD12:	70	79	92	79	90
PERYD12:	20 Q	71	81	81	87

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID:					
LABSAMNO:	C12910	C12911	C12912	C12913	C12914
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
TOTAL BHCs	0.2 J	0.2 J	0.5 J	0.0.7	
TOTAL BACS TOT CHLORDANES (ALL)		0.2 J 0.1 J		0.8 J	0.6 J
TOT CHLORDANES (S&T)		0.1 J	0.1 J	0.2 J	0.1 J
TOTAL DDTs	0.0 ND 0.2 J	0.1 J	0.1 J	0.2 J	0.1 J
TOTAL PCBs	0.2 J		0.3 J	0.8 J	0.4 J
TOTAL FCBS	V.2 U	0.3 J	0.5 J	0.7 J	0.3 J
ALPHA-BHC	0.1 J	0.1 J	0.2 J	- 0.2 J	0.1 J
HCB	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
BETA-BHC	0.1 J	0.1 J	0.1 J	0.3 J	0.3 J
GAMMA-BHC	0.0 ND	0.0 NTD	0.1 J	0.1 J	0.1 J
DELTA-BHC	0.1 J	0.1 ND	0.1 J	0.2 J	0.1 J
HEPTACHLOR	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.0 ND
HEPTA-EPOXIDE	0.0 ND	0.0 ND	0.1 J	0.1 J	0.1 J
OXYCHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
ALPHA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
TRANS-NONACHLOR	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
CIS-NONACHLOR	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
ALDRIN	0.0 ND	0.0 ND	0.0 NTD	0.1 J	0.0 ND
DIELDRIN	0.0 ND	0.1 J	0.1 J	0.2 J	0.1 J
ENDRIN	0.0 ND	0.0 ND	0.1 J	0.1 J	0.1 J
MIREX	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
2,4'DDE (O,P'DDE)	0.0 ND	0.0 ND	0.1 J	0.2 J	0.1 J
1,4'DDE (P,P'DDE)	0.0 ND	0.0 ND	0.1 J	0.1 J	0.0 ND
2,4'DDD (O,P'DDD)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
4,4'DDD (P,P'DDD)	0.1 J	0.0 ND	0.1 J	0.3 J	0.1 J
2,4'DDT (O,P'DDT)	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.0 J
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND	0.1 J	0.1 J	0.1 J

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID:					
LABSAMNO:	C12910	C12911	C12912	C12913	C12914
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
44 (CL4)	0.0 NTD	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
52 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
66 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
101 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
105 (CL5)	0.0 ND	O.O ND	0.0 NTD	0.0 ND	0.0 ND
110/77 (CL5/4)	0.0 NTD	0.0 ND	0.0 NTD	0.1 J	0.0 ND
118/108/149(CL5/5/6)		O.O ND	0.0 ND	0.0 ND	0.0 ND
128 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
138 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.1 J
126 (CL5)	O.O ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
153 (CL6)	0.0 ND	O.O ND	0.0 ND	0.0 ND	0.0 ND
170 (CL7)	0.1 J	O.O NTD	0.1 J	0.2 J	0.1 J
180 (CL7)	O.O ND	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD
187/182/159 (CL7/7/6)		0.0 ND	0.0 ND	0.0 ND	0.0 ND
195 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
15 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
24 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
16/32 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	O.O ND
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
26 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
25 (CL3)	O.O ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
50 (CL4) 33 (CL3)	0.0 ND 0.0 ND	0.0 ND 0.0 ND	0.1 J	0.1 J	0.0 NTD
			0.0 ND	0.0 ND	0.0 NTD
22 (CL3) 15 (CL4)	0.0 ND 0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
16 (CL4)		0.0 ND	0.0 MD	0.0 ND	0.0 ND
19 (CL4)	0.0 NTD	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
19 (CL4) 17/48 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
37/42 (CL4)	0.0 ND	0.1 J	0.1 J	0.0 ND	0.0 ND
41/64 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
10 (CL4)	0.0 MTD 0.0 MTD	0.0 NTD	0.0 ND 0.0 ND	0.0 ND 0.0 ND	0.0 ND 0.0 ND

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60
ID: LABSAMNO:	C12910	C12011	(12012	C12012	C12014
	C12910	C12911	C12912	C12913	C12914
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND				
88 (CL5)	0.0 ND				
60/56 (CL5)	0.0 ND				
92? (CL5)	0.0 ND				
84? (CL5)	0.0 ND				
99 (CL5)	0.0 ND				
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	- 0.0 ND	0.0 ND
97 (CL5)	0.0 ND				
87 (CL5)	0.0 ND				
85 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
136 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
82 (CL5)	0.0 NID	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
151 (CL6)	0.0 ND				
107/108/144(CL5/5/6)	0.0 ND	0.0 ND	0.1 J	0.0 ND	0.0 ND
149 (CL6)	0.0 ND				
L88 (CL7)	0.0 1000	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
146 (CL6)	0.0 ND				
141 (CL6)	0.0 ND				
137 (CL6)	0.0 ND	0.0 ND	O.O NTD	0.0 NTD	0.0 ND
UNK (CL6)	0.0 ND				
158 (CL7)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
129 (CL6)	0.0 ND				
178 (CL7)	0.0 ND				
183 (CL7)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
167 (CL6)	0.0 ND				
185 (CL7)	0.0 ND	0.0 ND	O.O ND	0.0 ND	0.0 ND
174 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
177 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
156/171/202(CL6/7/8)	0.0 ND				
200 (CL8)	0.0 ND				
172 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
191 (CL7)	0.0 ND				
201 (CL8)	0.0 ND				
196 (CL8)	0.0 ND				
189 (CL7)	0.0 ND				
194 (CL8)	0.0 ND				
205 (CL9)	0.0 ND				
Surrogate Recoveries	3				
DBOFB%:	89	82	80	69	77
PCB#103%:	85	76	78	67	75
PCB#198%:	84	77	78	64	73

LABNAME: GERG/TAMU DATE: 23-Jan-95

INVEST#:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
ID:					
LABSAMNO:	C12915	C12916	C12917	C12918	C12919
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	09/11/93	09/12/93	08/19/93	09/03/93	09/04/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M749	M749	M749	M749	M749
EXTRACTION DATE:	11/12/93	11/12/93	11/12/93	11/12/93	11/12/93
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	05/12/94	05/13/94	05/13/94	05/13/94	05/13/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	12/07/93	12/07/93	12/07/93	12/07/93	12/07/93
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	06/07/94	06/07/94	06/08/94	06/08/94	06/08/94
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
SUBMAT:					
WETWT:	10.08	10.19	10.14	10.30	10.19
ORYWT:	2.61	2.50	4.73	6.38	8.23
NTUNITS:	GRAMS DRY				
PCTSOLIDS:	25.9%	24.5%	46.6%	61.9%	80.8%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
LIPIDS:					
Surrogate Recoveri	ies				
ALKANES:					
C12ALKD:	47	46	45	54	66
C20ALKD:	46	44	46	56	68
C24ALKD:	48	49	47	58	70
C30ALKD:	105	96	89	57	106
PAH's:					
NAPHD8:	67	68	59	55	75
ACEND10:	70	72	60	59	80
PHEND10:	72	80	68	67	83
CHRYD12:	77	82	73	70	81
PERYD12:	72	66	57	66	66
PESTICIDES & PCB's	3:				
DBOFB:	35 Q	60	69	80	152 Q
PCB#103:	49	69	77	85	138 Q
PCB#198:	45	67	77	84	142 0

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
ID:					
LABSAMNO:	C12915	C12916	C12917	C12918	C12919
Alkanes and					
Isoprenoids	Conc DB QUAL				
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	885	983	398	257	229
C11	26 J	0 ND	13 J	8 J	5 J
C12	29 J	19 J	18 J	11 J	5 J
C13	0 ND	O ND	6 J	5 J	0 ND
C14	30 J	20 J	13 J	8 J	5 J
C15	48 J	37 J	21 J	15 J	8 J
C16	43 J	28 J	22 J	- 15 J	3 J
C17	170	105	20 J	15 J	3 J
PRISTANE	15 J	29 J	15 J	15 J	7 J
C18	76	89	33	26	10 J
PHYTANE	0 ND	7 Ј	3 J	0 ND	0 ND
C19	144	168	22	25	19
C20	241	253	37	26	31
C21	662	843	102	64	39
C22	717	823	92	50	43
C23	1974	2261	259	150	41
C24	801	891	112	58	36
C25	2285	2583	326	179	38
C26	790	849	110	65	24 J
C27	3402	3819	443	258	36 J
C28	699	547	54 J	35 J	17 J
C29	3888	3648	468	217	31 J
C30	603	548	64	14 J	6 J
C31	3729	4579	407	231	21 J
C32	349	428	52	29	4 J
C33	1183	1292	121	71	5 J
C34	56	0 ND	0 ND	0 ND	0 NTD
TOT ALKANES	22844	24846	3227	1847	667
UNIT:	ug/g	ug/g	ug/g	ug/g	ug/g
UCM	85.9	66.1	23.8	16.8	4.4 J
Surrogate Recove	eries				
C12ALKD:	47	46	45	54	66
C20ALKD:	46	44	46	56	68
C24ALKD:	48	49	47	58	70
C30ALKD:	105	96	89	57	106

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#: ID:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
LABSAMNO:	C12915	C12916	C12917	C12010	G10010
UNIT:	ng/g	ng/g	ng/g	C12918	C12919
PNA Analyte	Conc DB QUAL	Conc DB QUAL		ng/g	ng/g
	Conc DD Qui	LAUD Ed SILOS	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
NAPHTHALENE	14.0 J	11.7 J	9.5 J	11.3 J	4.2 J
C1-NAPHTHALENES	8.8 J	8.8 J	8.1 J	9.6 J	2.2 J
C2-NAPHTHALENES	9.0 J	6.3 J	5.7 J	6.6 J	ND
C3-NAPHTHALENES	9.7 J	7.7 J	5.2 J	6.9 J	ND
C4-naphthalenes	ND	ND	ND	ND	ND
BIPHENYL	5.4 J	5.5 J	4.8 J	4.7 J	1.3 J
CENAPHTHYLENE	0.6 Ј	0.6 J	0.3 J	0.3 J	0.1 J
CENAPHTHENE	1.6 J	2.9 J	0.8 J	0.3 J	0.4 J
FLUORENE	3.1 J	2.2 J	1.6 J	1.3 J	0.3 J
1-FLUORENES	ND	ND	ND	ND	ND
22-FLUORENES	ND	ND	ND	ND	ND
3-FLUORENES	ND	ND	ND	ND	ND
PHENANTHRENE	6.8 J	6.6 J	5.1 J	6.4 J	1.2 J
NTHRACENE	1.1 J	0.3 J	0.2 J	0.3 J	0.0 J
1-PHEN_ANTHR	8.5 J	6.6 J	6.6 J	7.0 J	ND
2-PHEN_ANTHR	8.5 J	7.9 J	4.4 J	6.5 J	ND
3-PHEN_ANTHR	6.5 J	ND	ND	ND	ND
4-PHEN_ANTHR	ND	ND	ND	ND	ND
IBENZOTHIO	1.2 J	0.9 J	0.6 J	0.9 J	0.2 J
1-DIBEN	ND	ND	ND	ND	ND
2-DIBEN	ND	ND	ND	ND	ND
3-DIBEN	ND	ND	ND	ND	ND
LUORANTHENE	5.6 J	5.1 J	2.9 J	2.7 J	0.2 J
YRENE	5.1 J	4.6 J	2.0 J	2.3 J	0.4 J
1-FLUORAN_PYR	4.9 J	6.9 J	2.4 J	4.4 J	ND
ENAANTHRACENE	1.3 J	1.3 J	0.9 J	0.6 J	0.1 J
HRYSENE	5.7 J	4.6 J	1.7 J	2.4 J	0.2 J
1-CHRYSENES	3.7 J	3.9 J	1.7 J	2.3 J	ND
2-CHRYSENES	7.0 J	6.3 J	1.9 J	1.9 J	ND
3-CHRYSENES	ND	ND	ND	ND	ND
4-CHRYSENES	ND	ND	ND	ND	ND
ENDFLUORAN	7.0 J	5.7 J	1.9 J	1.8 J	0.2 J
ENKFLUORAN	7.0 J	5.7 J	1.9 J	1.8 J	0.2 J
ENepyrene	4.0 J	3.9 J	1.5 J	1.4 J	0.2 J
ENapyrene	3.1 J	2.6 J	0.9 J	0.7 J	0.0 J
ERYLENE	154.5	132.5	16.8 J	17.1 J	0.6 J
123cdPYRENE	5.8 J	4.4 J	1.8 J	1.6 J	0.1 J
Bahanthra	1.2 J	1.1 J	0.3 J	0.3 J	0.1 J
ghiPERYLENE	6.7 J	5.3 J	1.9 J	2.0 J	0.1 J
OTAL PAH's	152 0 7	120 5 7	76 7 7		
JIML PAR'S	152.8 J	129.5 J	76.7 J	88.0 J	11.7 J

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
ID:					
LABSAMNO:	C12915	C12916	C12917	C12918	C12919
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
2-METHYLNAPH	5.6 J	5.4 J	4.6 J	5.7 J	1.3 J
1-METHYLNAPH	3.2 J	3.4 J	3.5 J	3.9 J	0.9 J
2,6-DIMETHNAPH	5.3 J	4.3 J	3.1 J	3.7 J	0.4 J
1,6,7-TRIMETHNAPH	2.1 J	1.0 J	1.1 J	0.9 J	0.1 J
1-methylphen	2.6 J	2.0 J	1.9 J	· 2.1 J	0.1 J
Surrogate Recoverie	es				
NAPHD8:	67	68	59	55	75
ACEND10:	70	72	60	59	80
PHEND10:	72	80	68	67	83
CHRYD12:	77	82	73	70	81
PERYD12:	72	66	57	66	66

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
ID:					
LABSAMNO:	C12915	C12916	C12917	C12918	C12919
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	0.0 ND	0.1 J	0.0 ND	0.0 ND	0.0 ND
TOT CHLORDANES (ALL)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
TOT CHLORDANES (S&T)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
TOTAL DDTs	0.5 J	0.2 J	0.0 ND	0.0 ND	0.0 ND
TOTAL PCBs	21.3 J	3.0 J	2.4 J	1.5 J	0.8 J
ALPHA-BHC	0.0 ND				
HCB	0.0 ND				
BETA-BHC	0.0 ND	0.1 J	0.0 ND	0.0 ND	0.0 ND
GAMMA-BHC	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
DELTA-BHC	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
ALPHA-CHLORDANE	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
TRANS-NONACHLOR	0.0 ND				
CIS-NONACHLOR	0.0 ND				
ALDRIN	0.0 ND				
DIELDRIN	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
ENDRIN	0.0 ND				
MIREX	0.0 ND				
2,4'DDE (0,P'DDE)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
4,4'DDE (P,P'DDE)	0.5	0.2 J	0.0 ND	0.0 ND	0.0 ND
2,4'DDD (0,P'DDD)	0.0 ND	O.O INTO	0.0 ND	0.0 ND	0.0 ND
4,4'DDD (P,P'DDD)	0.0 ND				
2,4'DDT (0,P'DDT)	0.0 ND				
4,4'DDT (P,P'DDT)	0.0 ND				

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
ID:					
LABSAMNO:	C12915	C12916	C12917	C12918	C12919
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
18 (CL3)	0.0 ND	0.0 ND	0.0 100	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	O.O ND	0.0 ND
44 (CL4)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
52 (CL4)	0.0 ND				
66 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
101 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
105 (CL5)	O.O NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
110/77 (CL5/4)	0.0 ND				
118/108/149(CL5/5/6)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
128 (CL6)	0.0 ND				
138 (CL6)	0.9	0.7 J	0.5	0.4	0.1 J
126 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
153 (CL6)	0.0 ND				
170 (CL7)	20.4	2.3	0.9	1.1	0.7
180 (CL7)	0.0 ND	0.0 ND	0.0 J	0.0 NTD	0.0 ND
187/182/159 (CL7/7/6)	0.0 ND	0.0 ND	0.0 NTD	O.O ND	0.0 ND
195 (CL8)	0.0 ND	0.0 ND	0.3 J	0.0 ND	0.0 ND
206 (CL9)	0.0 ND	0.0 NTD	O.O NED	0.0 NTD	0.0 ND
209 (CL10)	0.0 ND	0.0 NTD	0.2 J	0.0 ND	0.0 ND
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND				
15 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
24 (CL3)	0.0 ND				
16/32 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
29 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
26 (CL3)	0.0 ND	0.0 ND	0.0 ND	O.O ND	0.0 ND
25 (CL3)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
50 (CL4)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
33 (CL3)	0.0 ND	O.O ND	0.0 ND	0.0 ND	0.0 ND
22 (CL3)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
45 (CL4)	0.0 ND				
46 (CL4)	0.0 ND				
	0.0 ND				
49 (CL4) 47/48 (CL4)	0.0 ND				
47/48 (CL4)	0.0 ND				
37/42 (CL4)				0.0 ND	0.0 ND
41/64 (CL4)	0.0 NTD	0.0 ND	0.0 ND	•	
40 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 MD	0.0 ND
74 (CL4)	0.0 ND	O.O ND	0.0 ND	0.0 ND	0.0 ND

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40
ID: LABSAMNO:	C12015	71 000 0			
UNIT:	C12915	C12916	C12917	C12918	C12919
	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
88 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
99 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
97 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
136 (CL6)	0.0 ND	0.0 ND ,	0.0 ND	0.0 ND	0.0 ND
32 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.51 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.07/108/144 (CL5/5/6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
.49 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.88 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
46 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
41 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
37 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
NK (CL6)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
58 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
29 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
78 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
83 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
67 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
85 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
74 (CL7)	0.0 ND	0.0 ND	0.3 J	0.0 ND	0.0 ND
77 (CL7)	0.0 NTD	0.0 ND	0.0 NTD	O.O ND	0.0 ND
56/171/202 (CL6/7/8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
00 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
72 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
91 (CL7)	0.0 ND	0.0 ND	0.2 J	0.0 ND	0.0 ND
01 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
96 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
89 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
94 (CL8)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
05 (CL9)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
urrogate Recoveries					
BOFB%:	35 Q	60	69	80	152 Q
CB#103%:	49	69	77	85	138 Q
CB#198%:	45	67	77	84	142 Q

INVEST#:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
ID:					
LABSAMNO:	C12920	C12921	C12922	C12923	C12924
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	09/11/93	09/13/93	09/14/93	09/14/93	09/14/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M749	M749	M749	M749	M749
EXTRACTION DATE:	11/12/93	11/12/93	11/12/93	11/12/93	11/12/93
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	05/13/94	05/13/94	05/13/94	05/13/94	05/13/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
NALYSIS DATE:	12/07/93	12/08/93	12/08/93	12/08/93	12/08/93
ETHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
NALYSIS DATE:	06/08/94	06/08/94	06/08/94	06/08/94	06/08/94
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
SUBMAT:					
ETWT:	10.03	10.25	10.00	10.13	10.04
RYWT:	4.63	5.18	4.23	7.98	5.95
TUNITS:	GRAMS DRY				
CTSOLIDS:	46.2%	50.5%	42.3%	78.8%	59.3%
OL:					
OLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
ipid Weight					
LIPIDS:					
urrogate Recoveri	.es				
LKANES:					
12ALKD:	58	51	60	50	46
20ALKD:	59	54	61	51	51
24ALKD:	59	54	61	51	49
30ALKD:	119	103	103	87	97
AH's:					
APHD8:	75	72	77	75	62
CEND10:	73	73	87	80	69
HEND10:	78	80	83	77	76
HRYD12:	66	77	78	73	85
ERYD12:	50	56	53	42	60
ESTICIDES & PCB's	::				
BOFB:	154 Q	72	82	59	66
PCB#103:	143 Q	80	87	68	74

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-DO-01

INVEST#: ID:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
LABSAMNO:	C12920	G1000-			
Alkanes and	022520	C12921	C12922	C12923	C12924
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	419	318			
C11	9 Ј	7 J	537	115	157
C12	9 Ј	9 J	12 J	5 J	7 J
C13	0 ND	0 NTD	13 Ј	6 J	11 J
C14	0 ND	8 J	7 J	O ND	5 J
C15	18 J		13 J	5 J	9 Ј
C16	4 J	11 J	20 Ј	5 J	10 J
C17	10 J	5 J	12 J	· 2 J	11 J
PRISTANE	21 J	9 J	14 J	3 J	14 J
C18	9 J	4 J	6 J	3 J	8 J
PHYTANE	20 Ј	12 J	15 J	4 J	19 J
219	574	0 ND	0 ND	0 ND	0 ND
20	23	23	21	4 J	33
21	63	25	22	8 J	37
22	74	77	49	19	118
23	178	77	50 J	22 J	155
24	92	184	105	51	307
25	237	93	55	26	1080
26	97	240	134	70	1026
27	333	90	52 J	27 J	187
28	78	352	180	94	647
29		68	46 J	19 J	107
30	353	356	193	97	743
31	52	63	29 J	17 J	78
32	305	356	210	127	634
33	29	26	19 J	12 J	63
34	93	120	65	42	195
	0 ND	0 ND	2 Ј	3 Ј	13 J
OT ALKANES	3099	2532	1881	786	5675
IIT:	ug/g	ug/g	ug/g	ug/g	ug/g
M	8.3 J	3.9 Ј	0.1 J	4.4 J	24.0
rrogate Recoveries					
2ALKD:	58	51	60		
OALKD:	59	54	60	50	46
4ALKD:	59	54	61	51	51
OALKD:	119		61	51	49
		103	103	87	97

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
ID:					
LABSAMNO:	C12920	C12921	C12922	C12923	C12924
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL				
NAPHTHALENE	10.4 J	6.4 J	8.1 J	6.1 J	7.4 J
C1-NAPHTHALENES	9.0 J	4.9 J	9.3 J	3.6 J	4.7 J
C2-NAPHTHALENES	7.0 J	4.5 J	8.1 J	1.9 J	4.4 J
C3-NAPHTHALENES	6.5 J	4.4 J	7.5 J	2.3 J	5.1 J
C4-NAPHTHALENES	ND	ND	ND	ND	ND
BIPHENYL	6.5 J	3.5 J	6.2 J	1.8 J	3.2 J
ACENAPHTHYLENE	0.1 J	0.2 J	0.3 J	0.0 J	0.1 J
ACENAPHTHENE	0.5 J	0.8 J	1.0 J	0.2 J	0.7 J
FLUORENE	1.9 J	1.5 J	2.8 J	0.4 J	1.3 J
C1-FLUORENES	ND	ND	ND	ND	ND
C2-FLUORENES	ND	ND	ND	ND	ND
C3-FLUORENES	ND	ND	ND	ND	ND
PHENANTHRENE	6.7 J	4.7 J	11.2 J	1.9 J	5.2 J
ANTHRACENE	0.3 J	0.2 J	0.3 J	0.1 J	0.5 J
C1-PHEN_ANTHR	6.9 J	4.8 J	10.5 J	1.7 J	5.8 J
C2-PHEN ANTHR	5.3 J	3.0 J	6.9 J	1.3 J	4.5 J
C3-PHEN ANTHR	ND	ND	ND	ND	ND
C4-PHEN ANTHR	ND	ND	ND	ND	ND
DIBENZOTHIO	0.9 J	0.4 J	0.9 J	0.2 J	0.5 J
C1-DIBEN	ND	ND	ND	ND	1.1 J
C2-DIBEN	ND	ND	ND	ND	1.4 J
C3-DIBEN	ND	ND	ND	ND	ND
FLUORANTHENE	2.5 J	1.7 J	3.6 J	0.7 J	3.4 J
PYRENE	2.3 J	2.5 J	2.7 J	0.6 J	2.1 J
C1-FLUORAN PYR	2.8 J	2.8 J	4.4 J	ND	2.3 J
BENAANTHRACENE	1.0 J	0.5 J	0.9 J	0.2 J	0.6 J
CHRYSENE	2.6 J	2.2 J	4.7 J	0.6 J	2.0 J
C1-CHRYSENES	ND	1.9 J	4.2 J	ND	1.9 J
C2-CHRYSENES	ND	1.4 J	5.0 J	ND	2.4 J
C3-CHRYSENES	ND	ND	ND	ND	ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	0.6 J	0.7 J	0.8 J	0.3 J	0.7 J
BENKFLUORAN	0.6 J	0.7 J	0.8 J	0.3 J	0.7 J
BENePYRENE	1.6 J	1.3 J	2.7 J	0.5 J	1.3 J
BENapyrene	0.8 J	0.6 J	1.0 J	0.2 J	0.9 J
PERYLENE	15.8 J	16.9 J	28.5 J	4.0 J	25.1 J
I123cdPYRENE	0.1 J	0.1 J	0.0 J	0.0 J	0.0 ND
DBahANTHRA	0.1 J	0.1 J	0.3 J	0.0 J	0.1 J
BghiPERYLENE	1.2 J	1.4 J	2.3 J	0.5 J	1.8 J
TOTAL PAH's	78.2 J	57.0 J	106.7 J	25.6 J	65.9 J
(w/o PERYLENE)		2	200 0	20.00	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
ID:					
LABSAMNO:	C12920	C12921	C12922	C12923	C12924
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
2-METHYLNAPH	5.2 J	2.8 J	5.6 J	2.2 J	2.8 Ј
1-METHYLNAPH	3.8 J	2.0 J	3.7 J	1.3 J	1.8 J
2,6-DIMETHNAPH	2.9 J	1.8 J	4.1 J	0.4 J	2.2 J
1,6,7-TRIMETHNAPH	1.4 J	0.4 J	0.5 J	0.2 J	0.6 J
1-METHYLPHEN	1.2 J	1.3 J	2.1 J	- 0.4 J	1.3 J
Surrogate Recoverie	es				
NAPHD8:	75	72	77	75	62
ACEND10:	73	73	87	80	69
PHEND10:	78	80	83	77	76
CHRYD12:	66	77	78	73	85
PERYD12:	50	56	53	42	60

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
ID:					
LABSAMNO:	C12920	C12921	C12922	C12923	C12924
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
TOTAL BHCs	0.0 ND				
TOT CHLORDANES (ALL)	0.0 ND				
TOT CHLORDANES (S&T)	0.0 ND				
TOTAL DDTs	0.0 ND				
TOTAL PCBs	0.3 J	0.2 J	0.4 J	0.1 J	234.5 M
V					
ALPHA-BHC	0.0 ND				
HCB	0.0 ND				
BETA-BHC	0.0 ND				
GAMMA-BHC	0.0 ND				
DELTA-BHC	0.0 ND				
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	0.0 ND				
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 ND				
ALPHA-CHLORDANE	0.0 ND				
TRANS-NONACHLOR	0.0 ND				
CIS-NONACHLOR	0.0 ND				
ALDRIN	0.0 ND				
DIELDRIN	0.0 ND				
ENDRIN	0.0 ND				
MIREX	0.0 ND				
2,4'DDE (O,P'DDE)	0.0 ND				
4,4'DDE (P,P'DDE)	0.0 ND				
2,4'DDD (0,P'DDD)	0.0 ND				
4,4'DDD (P,P'DDD)	0.0 ND				
2,4'DDT (0,P'DDT)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
4,4'DDT (P,P'DDT)	0.0 ND				

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
ID:					
LABSAMNO:	C12920	C12921	C12922	C12923	C12924
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Cone DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND				
18 (CL3)	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
14 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
52 (CL4)	0.0 ND				
66 (CL4)	0.0 ND				
101 (CL5)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
105 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
110/77 (CL5/4)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
118/108/149(CL5/5/6)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
128 (CL6)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
138 (CL6)	0.1 J	0.1 J	0.1 J	0.0 ND	1.2
126 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
153 (CL6)	0.0 ND				
L70 (CL7)	0.2 J	0.1 J	0.1 J	0.1 J	228.1 M
180 (CL7)	0.0 ND				
187/182/159(CL7/7/6)	0.0 ND				
195 (CL8)	0.0 ND	0.0 ND	0.1 J	0.0 ND	0.0 ND
206 (CL9)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
L5 (CL2)	0.0 ND				
24 (CL3)	0.0 ND				
16/32 (CL3)	0.0 ND				
29 (CL3)	0.0 ND				
26 (CL3)	0.0 ND				
25 (CL3)	0.0 ND				
50 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.2 J
33 (CL3)	0.0 ND				
22 (CL3)	0.0 ND				
15 (CL4)	0.0 ND				
16 (CL4)	0.0 ND				
19 (CL4)	0.0 ND				
17/48 (CL4)	0.0 ND				
37/42 (CL4)	0.0 MD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
41/64 (CL4)	0.0 ND				
40 (CL4)	0.0 ND				
74 (CL4)	0.0 ND				

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 45	STATION 66	STATION 71	STATION 75	STATION 77
ID:	C1 7000	G10000	G12000	G10000	
LABSAMNO:	C12920	C12921	C12922	C12923	C12924
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
88 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
99 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
97 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
82 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
151 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
107/108/144 (CL5/5/6)		0.0 ND	0.0 ND	0.0 ND	0.0 ND
149 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
141 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
UNK (CL6)	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
158 (CL7)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
178 (CL7)	0.0 NTD	0.0 NTD	0.0 ND	0.0 NTD	0.0 NTD
183 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
185 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 MD	0.0 ND
174 (CL7)	0.0 ND	0.0 ND	0.1 J 0.0 ND	0.0 ND	0.0 IND 0.0 IND
177 (CL7) 156/171/202(CL6/7/8)	0.0 ND	0.0 ND 0.0 ND	0.0 ND	0.0 ND 0.0 ND	0.0 ND
200 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
172 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
	0.0 ND	0.0 ND	0.0 ND	0.0 ND	3.5
191 (CL7) 201 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	1.5
201 (CL8) 196 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
189 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	O.O ND
Surrogate Recoveries					
DBOFB%:	154 Q	72	82	59	66
PCB#103%:	143 Q	80	87	68	74
PCB#198%:	151 Q	76	86	64	96

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	08/10/93	08/15/93	08/22/93	09/01/93	09/01/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M2075	M2065	M2065	M2065	M2065
EXTRACTION DATE:	05/26/94	05/16/94	05/16/94	05/16/94	05/16/94
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	06/09/94	06/15/94	06/15/94	06/15/94	06/15/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	06/02/94	06/01/94	06/01/94	06/01/94	06/01/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	07/09/94	07/08/94	07/08/94	07/08/94	07/08/94
MATRIX:	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
SUBMAT:					
WETWT:	18.09	20.36	20.43	20.11	20.66
DRYWT:	7.71	5.77	6.13	10.80	16.63
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	42.6%	28.3%	30.0%	53.7%	80.5%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:					
Surrogate Recoveri	es				
ALKANES:					
C12ALKD:	70	83	88	86	96
C20ALKD:	69	79	81	82	87
C24ALKD:	70	78	85	86	93
C30ALKD:	77	80	86	85	93
PAH's:					
NAPHD8:	76	80	60	72	71
ACEND10:	78	84	65	75	70
PHEND10:	85	80	71	71	77
CHRYD12:	82	77	73	79	79
PERYD12:	70	65	62	61	63
PESTICIDES & PCB's	:				
DBOFB:	71	73	67	69	98
PCB#103:	77	77	72	73	96

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	9 Ј	27 J	18 J	17	9 J
C11	3 J	5 J	5 J	0 NTD	0 ND
C12	4 J	7 J	. 7 J	4 J	2 J
C13	2 J	0 ND	0 ND	0 ND	0 ND
C14	3 Ј	15 J	0 ND	8 J	O ND
C15	14 J	15 J	17 J	12	5 J
C16	6 J	2 J	5 J	. 3 Ј	O ND
C17	38	7 J	11 J	6 J	O ND
PRISTANE	9 J	12 J	21 J	4 J	0 N D
C18	13 J	6 J	9 J	4 J	O NTD
PHYTANE	8 J	1 J	8 J	1 J	O NTD
C19	37	20	23	13	O ND
20	38	20	24	14	O NTD
221	153	66	87	52	8
222	121	57	69	46	9 J
223	417	159	209	132	23
224	139	57	72	43	12
C25	589	174	268	150	27
C26	146	54	75	47	10 J
227	1320	285	480	243	44
C28	124	34 J	50	33	6 J
229	860	184	292	152	29
230	70	16 J	25 J	16	0 ND
231	788	140	228	125	25
232	34	7 J	12 J	8	O NTD
233	265	42	64	39	2 J
C34	13 J	0 ND	0 ND	2 J	0 ND
TOT ALKANES	5224	1411	2078	1172	211
UNIT:	ug/g	ug/g	ug/g	ug/g	ug/g
JCM	5.7 J	1.6 J	3.5 J	0.6 Ј	0.4 J
Surrogate Recover	ries				
C12ALKD:	70	83	88	86	96
C20ALKD:	69	79	81	82	87
C24ALKD:	70	78	85	86	93
C30ALKD:	77	80	86	85	93

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL				
NAPHTHALENE	11.8 J	7.1 J	8.8 J	3.7 J	1.1 J
C1-NAPHTHALENES	13.9 J	10.3 J	12.3 J	5.3 J	1.7 J
C2-NAPHTHALENES	12.7 J	11.7 J	4.9 J	5.2 J	1.4 J
C3-NAPHTHALENES	14.6	8.8 J	15.5 J	7.8 J	3.2 J
C4-NAPHTHALENES	7.9 J	ND	ND	ND	ND
BIPHENYL	5.3 J	4.3 J	5.3 J	2.7 J	0.7 J
ACENAPHTHYLENE	1.4 J	0.4 J	0.6 J	0.5 J	0.1 J
ACENAPHTHENE	0.7 J	0.4 J	1.7 J	0.2 J	0.1 J
FLUORENE	2.6 J	2.4 Ј	2.2 J	0.9 J	0.1 J
C1-FLUORENES	5.1 J	ND	ND	ND	ND
C2-FLUORENES	7.7 J	ND	ND	ND	ND
C3-FLUORENES	7.8 J	ND	ND	ND	ND
PHENANTHRENE	10.9	6.6 J	8.6 J	3.8 J	0.9 J
ANTHRACENE	0.8 J	0.7 J	1.1 J	0.3 J	0.0 J
C1-PHEN_ANTHR	9.4 J	7.0 J	7.6 J	4.1 J	1.5 J
C2-PHEN_ANTHR	6.2 J	7.1 J	6.5 J	4.1 J	1.1 J
C3-PHEN_ANTHR	6.6 J	5.4 J	4.5 J	2.4 J	ND
C4-PHEN_ANTHR	9.7 J	ND	ND	ND	ND
DIBENZOTHIO	1.5 J	1.1 J	1.8 J	0.6 J	0.2 J
C1-DIBEN	2.1 J	ND	3.0 J	ND	ND
C2-DIBEN	2.7 J	ND	2.2 J	ND	ND
C3-DIBEN	3.2 J	ND	ND	ND	ND
FLUORANTHENE	6.7	4.3 J	5.0	2.0 J	0.4 J
PYRENE	5.9 J	3.5 J	4.7 J	1.7 J	0.4 J
C1-FLUORAN_PYR	5.7 J	5.0 J	7.1 J	3.2 J	ND
BENAANTHRACENE	2.8 J	1.6 J	2.1 J	0.4 J	0.1 J
CHRYSENE	4.7 J	2.8 J	2.4 J	1.0 J	0.2 J
C1-CHRYSENES	2.7 J	2.7 J	3.0 J	1.6 J	ND
C2-CHRYSENES	5.7 J	3.0 J	3.5 J	1.6 J	ND
C3-CHRYSENES	0.7 J	ND	ND	ND	ND
C4-CHRYSENES	1.2 J	ND	ND	ND	ND
BENDFLUORAN	3.3 J	2.4 J	2.4 J	1.1 J	0.2 J
BENKFLUORAN	7.2 J	2.4 J	2.4 J	1.1 J	0.2 J
BENepyrene	3.1 J	2.2 J	2.1 J	0.8 J	0.2 J
BENapyrene	1.7 J	1.3 J	1.4 J	0.4 J	0.1 J
PERYLENE	104.5	21.7 J	31.6 J	13.3 J	2.5 J
1123cdPYRENE	1.9 J	1.4 J	1.3 J	0.7 J	0.1 J
DBahANTHRA	0.4 J	0.6 J	0.2 J	0.1 J	0.0 J
BghiPERYLENE	2.6 J	2.1 J	1.8 J	0.8 J	0.2 J
TOTAL PAH's	200.8	108.6 J	125.9 J	57.9 J	14.1 J
(w/o PERYLENE)		_			

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Cone DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
2-METHYLNAPH	8.6 J	6.4 J	7.9 J	2.9 J	1.0 Ј
1-METHYLNAPH	5.3 J	4.0 J	4.5 J	2.3 J	0.7 J
2,6-DIMETHNAPH	4.3 J	3.0 J	4.5 J	2.2 J	0.8 J
1,6,7-TRIMETHNAPH	3.1 J	2.0 J	2.8 J	0.4 J	0.4 J
1-METHYLPHEN	2.4 J	1.2 J	1.8 J	- 0.9 J	0.3 J
Surrogate Recoverie	s		-		
NAPHD8:	76	80	60	72	71
ACEND10:	78	84	65	75	70
PHEND10:	85	80	71	71	77
CHRYD12:	82	77	73	79	79
PERYD12:	70	65	62	61	63

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	0.2 J	0.0 ND	0.0 ND	0.0 ND	0.0 ND
TOT CHLORDANES (ALL)	0.0 ND				
TOT CHLORDANES (S&T)	0.0 ND				
TOTAL DDTs	0.7 J	0.0 ND	0.4 J	0.2 J	0.1 J
TOTAL PCBs	0.6 J	1.4 J	1.8 J	0.5 J	0.2 J
ALPHA-BHC	0.0 ND				
HCB	0.1 J	0.1 J	0.0 ND	0.0 ND	0.0 ND
BETA-BHC	0.0 ND				
GAMMA-BHC	0.2	0.0 ND	0.0 ND	0.0 ND	0.0 ND
DELTA-BHC	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
HEPTACHLOR	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
HEPTA-EPOXIDE	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
ALPHA-CHLORDANE	0.0 ND				
TRANS-NONACHLOR	0.0 ND				
CIS-NONACHLOR	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
ALDRIN	0.0 ND				
DIELDRIN	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
ENDRIN	0.0 ND				
MIREX	0.0 ND				
2,4'DDE (O,P'DDE)	0.0 ND				
4,4'DDE (P,P'DDE)	0.2	0.0 ND	0.2 J	0.1 J	0.0 ND
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
4,4'DDD (P,P'DDD)	0.5	0.0 ND	0.3	0.1	0.0 ND
2,4'DDT (O,P'DDT)	0.0 ND				
4,4'DDT (P,P'DDT)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB # (CLORINATION)		_			
NOAA S&T PCBs		•			
8 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
44 (CL4)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
52 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
66 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
101 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
105 (CL5)	0.0 ND	0.0 ND	0.0 ND	O.O NTD	O.O ND
110/77 (CL5/4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
118/108/149(CL5/5/6)		0.0 ND	0.0 NTD	0.0 ND	0.0 ND
128 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
138 (CL6)	0.1 J	0.1 J	0.2 J	0.1 J	0.0 ND
126 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
153 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
170 (CL7)	0.5	0.8	1.6	0.3	0.2
180 (CL7)	0.0 NTD	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
187/182/159 (CL7/7/6)		0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
195 (CL8)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
206 (CL9)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0.10	0.0.170
15 (CL2)	0.0 ND			0.0 ND	0.0 ND
24 (CL3)		0.5	0.0 ND	0.0 ND	0.0 ND
	0.0 ND 0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
16/32 (CL3)		0.0 ND	0.0 ND	0.0 ND	0.0 ND
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
26 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
50 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
33 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
15 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
16 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
19 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
47/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
37/42 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
41/64 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
40 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
74 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29
ID:					
LABSAMNO:	C13766	C13767	C13768	C13769	C13770
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND				
88 (CL5)	0.0 ND				
60/56 (CL5)	0.0 ND				
92? (CL5)	0.0 ND				
84? (CL5)	0.0 ND				
99 (CL5)	0.0 ND				
83 (CL5)	0.0 ND				
97 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
87 (CL5)	0.0 ND				
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
136 (CL6)	0.0 ND				
82 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
151 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
107/108/144(CL5/5/6)	O.O ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
149 (CL6)	0.0 ND				
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
141 (CL6)	0.0 ND				
137 (CL6)	0.0 ND				
JNK (CL6)	0.0 ND				
L58 (CL7)	0.0 ND	0.0 ND	0.0 INTO	0.0 NTD	0.0 ND
129 (CL6)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
L78 (CL7)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
183 (CL7)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
167 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
.85 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.0 ND
174 (CL7)	0.0 ND				
177 (CL7)	0.0 ND				
.56/171/202 (CL6/7/8)	0.0 ND				
00 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
.72 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
.91 (CL7)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
01 (CL8)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
.96 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
.89 (CL7)	O.O ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
194 (CL8)	O.O ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
205 (CL9)	0.0 ND				
Surrogate Recoveries	3				
OBOFB%:	71	73	67	69	98
PCB#103%:	77	77	72	73	96
PCB#198%:	76	73	69	71	95

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	09/01/93	09/03/93	09/04/93	09/04/93	09/06/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M2065	M2065	M2065	M2065	M2065
EXTRACTION DATE:	05/16/94	05/16/94	05/16/94	05/16/94	05/16/94
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	06/15/94	06/15/94	06/15/94	06/15/94	06/15/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	06/01/94	06/01/94	06/01/94	06/01/94	10/01/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	07/09/94	07/09/94	07/09/94	07/09/94	07/09/94
MATRIX:	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
SUBMAT:					
WETWT:	20.24	20.49	20.74	20.38	20.37
DRYWT:	17.33	9.67	6.55	14.39	9.61
WTUNITS:	GRAMS DRY				
PCTSOLIDS:	85.6%	47.2%	31.6%	70.6%	47.2%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:					
Surrogate Recoverie	es				
ALKANES:					
C12ALKD:	95	94	101	92	94
C20ALKD:	86	88	92	82	86
C24ALKD:	88	90	94	90	91
C30ALKD:	91	91	96	90	90
PAH's:					
NAPHD8:	81	70	69	66	72
ACEND10:	83	74	72	70	73
PHEND10:	86	82	74	74	80
CHRYD12:	80	83	81	80	75
PERYD12:	63	62	64	69	59
PESTICIDES & PCB's	:				
DBOFB:	81	77	77	76	79
PCB#103:	83	81	82	81	80
PCB#198:	82	80	84	85	78

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	7 J	13 J	10 J	8 J	14 J
211	0 ND	0 ND	0 ND	0 ND	2 J
212	1 J	3 J	5 J	2 Ј	4 J
213	0 ND				
214	0 ND	0 MD	0 ND	0 ND	0 ND
215	5 J	7 J	10 J	4 J	9 J
216	0 ND	0 ND	0 ND	. 0 ND	0 ND
217	0 ND	0 ND	0 NTD	0 ND	O ND
PRISTANE	0 ND	4 J	0 ND	0 ND	0 ND
C18	0 ND	0 ND	0 NTD	0 ND	0 ND
PHYTANE	0 ND				
219	0 ND	0 ND	0 ND	3 J	0 ND
220	O NTD	0 ND	0 NTD	0 ND	0 ND
221	0 ND	19	17 J	5 Ј	13
222	O ND	19 Ј	17 Ј	13 Ј	19 J
223	O ND	49	44	15 J	37
224	0 ND	21	21 J	17	29
C25	O NTD	56	59	20	46
C26	O ND	24 J	22 J	8 Ј	19 J
227	4 J	82	82	27 J	60
C28	O NTD	13 J	14 J	5 J	11 J
C29	3 Ј	54	53	19 J	41
C30	O ND	3 Ј	0 ND	0 ND	0 ND
231	O ND	40	37	7 J	28
C32	0 ND	0 ND	0 ND	0 ND	O ND
233	0 NTD	11 J	11 J	O NTD	7 J
234	0 ND				
TOT ALKANES	20	417	401	153	338
UNIT:	ug/g	ug/g	ug/g	ug/g	ug/g
JCM	0.2 J	0.7 J	0.3 🗸	0.0 ND	0.7 J
Surrogate Recoveri	es	··			,
C12ALKD:	95	94	101	92	94
20ALKD:	86	88	92	82	86
C24ALKD:	88	90	94	90	91
C30ALKD:	91	91	96	90	90

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL				
NAPHTHALENE	0.7 J	2.5 J	3.2 J	1.0 J	1.7 J
C1-NAPHTHALENES	0.8 J	3.6 J	5.0 J	1.6 J	2.7 J
C2-NAPHTHALENES	ND	4.4 J	4.3 J	ND	3.7 J
C3-NAPHTHALENES	ND	4.5 J	ND	ND	ND
C4-NAPHTHALENES	ND	ND	ND	ND	ND
BIPHENYL	0.5 J	1.7 J	1.8 J	0.6 J	1.3 J
ACENAPHTHYLENE	0.1 J	0.2 J	0.2 J	0.1 J	0.1 J
ACENAPHTHENE	0.2 J	0.4 J	0.4 J	0.2 J	0.3 J
FLUORENE	0.1 J	0.8 J	0.9 J	- 0.2 J	0.2 J
C1-FLUORENES	ND	ND	ND	ND	ND
C2-FLUORENES	ND	ND	ND	ND	ND
C3-FLUORENES	ND	ND	ND	ND	ND
PHENANTHRENE	0.3 J	33.5	2.2 J	0.7 J	1.3 J
ANTHRACENE	0.1 J	0.3 J	0.2 J	0.1 J	0.0 J
C1-PHEN_ANTHR	ND	2.1 J	2.6 J	ND	ND
C2-PHEN_ANTHR	ND	2.3 J	2.7 J	ND	ND
C3-PHEN_ANTHR	ND	ND	ND	ND	ND
C4-PHEN_ANTHR	ND	ND	ND	ND	ND
DIBENZOTHIO	0.1 J	0.4 J	0.4 J	0.3 J	0.3 J
C1-DIBEN	ND	NTD	ND	ND	ND
C2-DIBEN	ND	ND	ND	ND	ND
C3-DIBEN	ND	ND	ND	ND	ND
FLUORANTHENE	0.1 J	4.0	1.2 J	0.4 J	0.8 J
PYRENE	0.2 J	1.0 J	0.9 Ј	0.3 J	0.5 J
C1-FLUORAN_PYR	ND	ND	ND	ND	ND
BENAANTHRACENE	0.1 J	3.0	0.3 J	0.2 J	0.2 J
CHRYSENE	0.0 J	5.8 J	0.6 J	0.2 J	0.5 J
C1-CHRYSENES	ND	ND	1.4 J	ND	ND
C2-CHRYSENES	ND	ND	2.0 J	ND	ND
C3-CHRYSENES	ND	ND	ND	ND	ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	0.1 J	0.7 J	0.6 J	0.2 J	0.4 J
BENKFLUORAN	0.1 J	0.7 J	0.6 J	0.2 J	0.4 J
BENepyrene	0.1 J	0.7 J	0.5 J	0.2 J	0.4 J
BENapyrene	0.2 J	0.1 J	0.3 J	0.0 J	0.2 J
PERYLENE	0.3 J	5.5 J	5.5 J	1.3 J	3.1 J
1123cdPYRENE	0.1 J	0.4 J	0.3 Ј	0.1 J	0.3 J
DBahANTHRA	0.0 J	0.1 J	0.2 J	0.1 J	0.0 J
BghiPERYLENE	0.0 Ј	0.4 J	0.4 J	0.2 J	0.3 J
TOTAL PAH's	3.7 J	73.2	33.1 J	6.7 J	15.6 J
(w/o PERYLENE)				- · · -	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
2-METHYLNAPH	0.5 J	2.2 J	2.8 Ј	1.0 Ј	1.5 J
1-METHYLNAPH	0.2 J	1.4 J	2.1 J	0.6 J	1.2 J
2,6-DIMETHNAPH	0.3 J	1.2 J	1.3 J	0.8 J	1.3 J
1,6,7-TRIMETHNAPH	0.1 J	0.7 J	0.3 J	0.4 J	0.8 J
1-METHYLPHEN	0.1 J	0.4 J	0.4 J	. 0.1 J	0.3 J
Surrogate Recoverie	s				
NAPHD8:	81	70	69	66	72
ACEND10:	83	74	72	70	73
PHEND10:	86	82	74	74	80
CHRYD12:	80	83	81	80	75
PERYD12:	63	62	64	69	59

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
				7	
TOTAL BHCs	0.0 ND	0.1 J	O.O ND	0.0 ND	0.0 ND
TOT CHLORDANES (ALL)		0.0 NTD	0.0 ND	0.0 ND	0.0 ND
TOT CHLORDANES (S&T)		0.0 NTD	0.0 ND	0.0 ND	0.0 ND
TOTAL DDTs	0.0 ND	0.1 J	0.0 ND	0.0 ND	0.0 ND
TOTAL PCBs	0.4 J	3.1 J	1.3 J	0.8 J	1.0 J
ALPHA-BHC	0.0 ND				
HCB	0.0 ND				
BETA-BHC	0.0 ND				
GAMMA-BHC	0.0 ND	0.1 J	0.0 NTD	0.0 ND	0.0 ND
DELTA-BHC	0.0 ND				
HEPTACHLOR	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
HEPTA-EPOXIDE	0.0 ND				
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 MD	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
ALPHA-CHLORDANE	0.0 ND				
TRANS-NONACHLOR	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
CIS-NONACHLOR	0.0 ND				
ALDRIN	0.0 ND				
DIELDRIN	0.0 ND				
ENDRIN	0.0 ND				
MIREX	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 NTD
2,4'DDE (O,P'DDE)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
4,4'DDE (P,P'DDE)	0.0 ND	0.1 J	0.0 ND	0.0 ND	0.0 ND
2,4'DDD (O,P'DDD)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
4,4'DDD (P,P'DDD)	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND
2,4'DDT (O,P'DDT)	0.0 ND				
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND

SIBERIAN SEDIMENTS - PCB DATA - 93-DO-01

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND				
18 (CL3)	0.0 ND				
28 (CL3)	0.0 ND				
44 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
52 (CL4)	0.0 ND				
66 (CL4)	0.0 ND				
101 (CL5)	0.0 ND				
105 (CL5)	0.0 ND				
110/77 (CL5/4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
118/108/149(CL5/5/6)	0.0 ND	0.0 ND	O.O NTD	0.0 ND	0.0 ND
128 (CL6)	0.0 ND				
138 (CL6)	0.0 ND	0.2 J	0.2 J	0.1 J	0.0 ND 0.1 J
126 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
153 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
170 (CL7)	0.4	1.1	1.1	0.7	0.0 ND
180 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	
187/182/159(CL7/7/6)		0.0 ND	0.0 ND	0.0 ND	0.0 ND
195 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND 0.0 ND
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	
209 (CL10)	0.0 ND	0.0 ND	0.0 ND		0.0 NTD
		0.0 115	0.0 MD	0.0 ND	0.0 NTD
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND				
15 (CL2)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
24 (CL3)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
16/32 (CL3)	0.0 ND				
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.1 J	0.0 ND
26 (CL3)	0.0 ND				
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
50 (CL4)	0.0 ND				
33 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
22 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
5 (CL4)	0.0 ND				
6 (CL4)	0.0 ND				
9 (CL4)	0.0 ND				
17/48 (CL4)	0.0 ND	1.4	0.0 ND	0.0 ND	0.0 ND
37/42 (CL4)	0.0 ND				
11/64 (CL4)	0.0 ND	O.O ND	0.0 ND	0.0 ND	0.0 ND
10 (CL4)	0.0 ND				
					0.0 445

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-DO-01

INVEST#:	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42
ID:					
LABSAMNO:	C13771	C13772	C13773	C13774	C13775
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 MD	0.0 ND
88 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
60/56 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
99 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	- 0.0 ND	0.0 ND
97 (CL5)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
87 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
32 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
L51 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
107/108/144 (CL5/5/6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
149 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 MD
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
141 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
L37 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
JNK (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
158 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
129 (CL6)	0.0 ND	0.4	0.0 ND	0.0 ND	0.0 ND
178 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
183 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
L67 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
185 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
174 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.77 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.56/171/202 (CL6/7/8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
200 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.72 (CL7)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
191 (CL7)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
201 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
196 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
.89 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	O.O ND
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
Surrogate Recoveries				· · · · · · · · · · · · · · · · · · ·	
DBOFB%:	81	77	77	76	79
PCB#103%:	83	81	82	81	80
PCB#198%:	82	80	84	85	78

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
ID:					
LABSAMNO:	C13776	C13777	C13778	C13779	C13780
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	09/06/93	09/06/93	09/07/93	09/07/93	09/07/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M2075	M2075	M2075	M2075	M2075
EXTRACTION DATE:	05/26/94	05/26/94	05/26/94	05/26/94	05/26/94
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	06/09/94	06/09/94	06/10/94	06/10/94	06/10/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	06/02/94	06/02/94	06/02/94	06/02/94	06/02/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	07/09/94	07/09/94	07/09/94	07/10/94	07/10/94
MATRIX:	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
SUBMAT:					
WETWT:	20.10	20.14	20.16	20.10	20.05
DRYWT:	10.25	12.94	13.49	8.75	15.14
WTUNITS:	GRAMS DRY				
PCTSOLIDS:	51.0%	64.3%	66.9%	43.5%	75.5%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:					
Surrogate Recoveri	es				
ALKANES:					
C12ALKD:	76	76	67	82	80
C20ALKD:	68	66	61	74	67
C24ALKD:	70	74	66	74	76
C30ALKD:	69	73	66	75	71
PAH's:					
NAPHD8:	67	67	70	70	75
ACEND10:	64	69	72	73	77
PHEND10:	66	74	77	70	78
CHRYD12:	68	81	81	72	77
PERYD12:	60	62	62	54	70
PESTICIDES & PCB's	:				. •
DBOFB:	70	108	81	82	93
PCB#103:	74	110	84	88	95
PCB#198:	80	120	87		, ,

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
ID:					
LABSAMNO:	C13776	C13777	C13778	C13779	C13780
Alkanes and					
Isoprenoids	Conc DB QUAL				
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	9 J	9 J	0 ND	11 J	106
C11	0 NTD	0 ND	0 ND	O ND	0 ND
C12	O ND	0 ND	0 ND	3 J	3 J
C13	0 ND	0 ND	0 ND	0 ND	10 J
C14	0 ND	0 ND	0 ND	O NTD	0 ND
C15	O ND	28	0 ND	15 J	344
C16	0 ND	O ND	0 ND	- 0 NTD	0 ND
C17	2 J	O NTD	O ND	0 ND	0 ND
PRISTANE	20	O ND	O ND	4 J	0 ND
C18	2 J	O ND	0 ND	O ND	5 J
PHYTANE	0 ND				
C19	4 J	3 Ј	O ND	6	4
C20	6 J	5	O ND	6 J	3 J
C21	18	20	14	18	16
C22	18 J	24	19	20 J	21
C23	53	62	53	45	54
C24	25	33	28	25	32
C25	66	79	68	57	65
C26	29	31	26	21 J	25
C27	89	106	96	81	93
C28	17 J	19 J	16 J	13 J	16 J
C29	61	81	69	54	66
C30	7 J	9 J	6 J	6 J	7 J
C31	42	56	54	36	45
C32	0 ND	3 Л	O ND	0 ND	O ND
C33	12 J	16	15	8 J	13
C34	0 ND				
TOT ALKANES	479	581	465	427	928
UNIT:	ug/g	ug/g	ug/g	ug/g	ug/g
UCM	0.0 ND	0.4 J	0.1 J	0.4 J	0.0 ND
Surrogate Recoveries	s		5.		
C12ALKD:	76	76	67	82	80
C20ALKD:	68	66	61	74	67
C24ALKD:	70	74	66	74	76
C30ALKD:	69	73	66	75	71

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
LABSAMNO:	C13776	C13777	C13778	C13779	C1270^
UNIT:	ng/g	ng/g	ng/g	ng/g	C13780
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL		ng/g
-			CONC DB QUAL	Conc DB QUAL	Conc DB QUAI
NAPHTHALENE	2.1 J	1.7 J	2.1 J	2.5 J	1.2 J
C1-NAPHTHALENES	2.7 J	2.5 J	2.9 Ј	3.2 Ј	1.6 J
C2-NAPHTHALENES	3.4 J	2.2 J	2.3 Ј	4.1 J	2.6 J
C3-NAPHTHALENES	3.5 J	4.7 J	4.4 J	5.4 J	4.5 J
C4-NAPHTHALENES	ND	ND	ND	ND	ND
BIPHENYL	1.2 J	1.1 J	1.0 J	1.6 J	0.6 J
ACENAPHTHYLENE	0.4 J	0.1 J	0.2 J	0.2 J	0.2 J
ACENAPHTHENE	0.3 J	0.3 J	0.4 J	0.5 J	0.2 J
FLUORENE	0.5 J	0.6 J	0.4 J	0.7 J	0.4 J
C1-FLUORENES	ND	ND	0.9 J	1.0 J	ND
C2-FLUORENES	ND	ND	1.4 J	2.6 J	ND
C3-FLUORENES	ND	ND	2.7 J	3.5 J	ND
PHENANTHRENE	1.5 J	1.4 J	1.2 J	2.0 J	0.8 J
ANTHRACENE	0.5 J	0.3 J	0.2 J	0.5 J	0.2 J
C1-PHEN_ANTHR	2.2 J	2.0 J	1.3 J	2.1 J	1.0 J
C2-PHEN_ANTHR	2.0 J	1.1 J	1.3 J	1.8 J	1.0 J
C3-PHEN_ANTHR	ND	ND	0.8 J	1.2 Ј	NTD
C4-PHEN_ANTHR	ND	ND	0.8 J	ND	ND
DIBENZOTHIO	0.5 J	0.3 J	0.3 J	0.5 J	0.2 J
C1-DIBEN	ND	ND	0.5 J	ND ND	ND
C2-DIBEN	ND	ND	ND	ND	ND
C3-DIBEN	ND	ND	ND	ND	ND
FLUORANTHENE	0.9 J	0.8 J	0.7 J	1.2 J	0.6 J
PYRENE	0.7 J	0.6 J	0.5 J	1.0 J	0.4 J
C1-FLUORAN_PYR	1.3 J	1.1 J	0.9 J	1.7 J	ND
BENAANTHRACENE	0.3 J	0.3 J	0.2 J	0.3 J	0.2 J
CHRYSENE	0.6 J	0.4 J	0.4 J	0.8 J	0.2 J
C1-CHRYSENES	ND	0.4 J	0.4 J	0.7 J	
C2-CHRYSENES	ND	0.7 J	1.1 J	0.7 J	ND
C3-CHRYSENES	ND	ND	ND		ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	0.6 J	0.4 J	0.4 J	ND	ND 0.3.T
ENKFLUORAN	0.6 J	0.9 J	0.4 J	0.6 J 1.2 J	0.3 J
BENepyrene	0.5 J	0.4 J	0.4 J	1.2 J 0.7 J	0.6 J
BENapyrene	0.2 J	0.2 J	0.4 J		0.4 J
PERYLENE	3.9 J	3.9 J	3.9 J	0.2 J 5.4 J	0.1 J 2.8 J
123cdPYRENE	0.3 J	0.3 J	0.3 J		
Bahanthra	0.1 J	0.1 J	0.1 J	0.2 J	0.2 J
BghiPERYLENE	0.4 J	0.1 G 0.3 J	0.1 J	0.2 J 0.4 J	0.0 J 0.3 J
TOTAL PAH's	27.2 Ј	25.0 J	31.2 J	43.2 J	17.6 J
(w/o PERYLENE)			J1.2 U	73.4 U	T1.0 J

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
ID:					
LABSAMNO:	C13776	C13777	C13778	C13779	C13780
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
2-METHYLNAPH	1.6 J	1.4 J	1.8 J	1.5 J	0.8 Ј
1-METHYLNAPH	1.1 J	1.1 J	1.1 J	1.7 J	0.8 J
2,6-DIMETHNAPH	0.9 J	0.9 Ј	1.1 J	1.4 J	0.7 J
1,6,7-TRIMETHNAPH	0.3 J	0.5 J	0.4 J	0.5 J	0.4 J
1-METHYLPHEN	0.6 J	0.5 J	0.3 J	0.6 J	0.4 J
Surrogate Recoverie	es	Modfe			
NAPHD8:	67	67	70	70	75
ACEND10:	64	69	72	73	77
PHEND10:	66	74	77	70	78
CHRYD12:	68	81	81	72	77
PERYD12:	60	62	62	54	70

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
ID:					
LABSAMNO:	C13776	C13777	C13778	C13779	C13780
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	0.3 J	0.2 J	0.0 ND	0.0 ND	0.0 ND
TOT CHLORDANES (ALL)	0.0 ND				
TOT CHLORDANES (S&T)	0.0 ND				
TOTAL DDTs	0.0 ND				
TOTAL PCBs	0.8 Ј	0.4 J	0.2 J	0.4 J	0.6 J
ALPHA-BHC	0.0 ND	0.2	0.0 ND	0.0 ND	0.0 ND
HCB	0.0 ND				
BETA-BHC	0.3	0.0 ND	0.0 ND	0.0 ND	0.0 ND
GAMMA-BHC	0.0 ND				
DELTA-BHC	0.0 ND				
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	0.0 ND				
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
ALPHA-CHLORDANE	0.0 ND				
TRANS-NONACHLOR	0.0 ND				
CIS-NONACHLOR	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
ALDRIN	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
DIELDRIN	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
ENDRIN	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
MIREX	0.0 ND				
2,4'DDE (O,P'DDE)	0.0 ND				
4,4'DDE (P,P'DDE)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
2,4'DDD (0,P'DDD)	0.0 ND				
4,4'DDD (P,P'DDD)	0.0 ND				
2,4'DDT (0,P'DDT)	0.0 ND				
4,4'DDT (P,P'DDT)	0.0 ND				

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
ID:					
LABSAMNO:	C13776	C13777	C13778	C13779	C13780
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB # (CLORINATION)					
NOAA S&T PCBs					•
8 (CL2)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
44 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
52 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
66 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
101 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
105 (CL5)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
110/77 (CL5/4)	O.O ND	0.0 NTD	0.0 ND	0.0 ND	O.O ND
118/108/149(CL5/5/6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
128 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
138 (CL6)	0.0 ND	0.0 J	0.0 ND	0.0 ND	0.0 ND
126 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
L53 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
L70 (CL7)	0.4	0.3	0.2	0.3	0.6
180 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
187/182/159(CL7/7/6)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
195 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND		0 0 177		
15 (CL2)		0.0 ND	0.0 ND	0.0 ND	0.0 NTD
24 (CL3)	0.0 ND 0.0 ND	0.0 ND	O.0 NTD	0.0 ND	0.0 ND
16/32 (CL3)		0.0 ND	0.0 ND	0.0 ND	0.0 ND
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
26 (CL3) 25 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
50 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
33 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
5 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
6 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
9 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
17/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
37/42 (CL4)	0.4	0.0 ND	0.0 ND	0.0 ND	0.0 ND
11/64 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
10 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND
4 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 ND

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 47	STATION 48	STATION 49	STATION 51	STATION 53
ID: LABSAMNO:	C13776	C13777	C13778	C13779	C13780
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Cone DB QUAL
					CONC 22 2012
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND				
88 (CL5)	0.0 ND				
60/56 (CL5)	0.0 ND				
92? (CL5)	0.0 ND				
84? (CL5)	0.0 ND				
99 (CL5)	0.0 ND				
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	- 0.0 ND	0.0 ND
97 (CL5)	0.0 ND				
87 (CL5)	0.0 ND				
85 (CL5)	0.0 ND				
136 (CL6)	0.0 ND				
82 (CL5)	0.0 ND				
151 (CL6)	0.0 ND				
L07/108/144 (CL5/5/6)	0.0 ND				
149 (CL6)	0.0 ND				
188 (CL7)	0.0 ND				
146 (CL6)	0.0 ND				
141 (CL6)	0.0 ND				
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	O.O ND	0.0 ND
UNK (CL6)	0.0 ND				
158 (CL7)	0.0 ND				
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	O.O NO	0.0 ND
178 (CL7)	0.0 ND				
183 (CL7)	0.0 ND				
167 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
185 (CL7)	0.0 ND				
174 (CL7)	0.0 ND				
177 (CL7)	O.O ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
156/171/202(CL6/7/8)	0.0 ND				
200 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 NTD
172 (CL7)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
191 (CL7)	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
201 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
196 (CL8)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
189 (CL7)	0.0 ND				
194 (CL8)	0.0 ND				
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
Surrogate Recoveries	5				
DBOFB%:	70	108	81	82	93
PCB#103%:	74	110	84	88	95
PCB#198%:	80	120	87	91	100

SIBERIAN SEDIMENTS - GENERAL INFORMATION - 93-D0-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
ID:					
LABSAMNO:	C13781	C13782	C13783	C13784	C13785
SAMPLE TYPE:	SAMP	SAMP	SAMP	SAMP	SAMP
COLLECTION DATE:	09/08/93	09/08/93	09/08/93	09/10/93	09/14/93
RECEIPT DATE:	09/26/93	09/26/93	09/26/93	09/26/93	09/26/93
QCBATCH:	M2075	M2075	M2075	M2075	M2075
EXTRACTION DATE:	05/26/94	05/26/94	05/26/94	05/26/94	05/26/94
METHOD:	GCFID	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	06/10/94	06/10/94	06/10/94	06/10/94	06/10/94
METHOD:	GCMS	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	06/03/94	06/03/94	06/03/94	06/03/94	06/03/94
METHOD:	GCECD	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	07/10/94	07/10/94	07/10/94	07/10/94	07/10/94
MATRIX:	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
SUBMAT:					
WETWT:	20.07	20.03	20.06	20.05	20.03
DRYWT:	14.86	15.00	13.82	6.74	14.28
WTUNITS:	GRAMS DRY				
PCTSOLIDS:	74.0%	74.9%	68.9%	33.6%	71.3%
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Lipid Weight					
% LIPIDS:					
Surrogate Recoveri	es				
ALKANES:					
C12ALKD:	82	84	84	79	86
C20ALKD:	73	79	75	. 75	76
C24ALKD:	77	87	78	79	78
C30ALKD:	76	82	75	80	77
PAH's:					
NAPHD8:	81	69	70	67	76
ACEND10:	78	70	72	71	82
PHEND10:	80	72	78	78	76
CHRYD12:	73	67	73	88	73
PERYD12:	62	56	62	71	65
PESTICIDES & PCB's	:				
DBOFB:	91	82	129 Q	94	98
PCB#103:	93	85	127 Q	97	99
PCB#198:	97	87	137 Q	103	105

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-DO-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
ID:	G1 2 7 0 1	G1 2 7 0 0			
LABSAMNO:	C13781	C13782	C13783	C13784	C13785
Alkanes and	0			_	
Isoprenoids	Conc DB QUAL				
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	8 J	6 J	12 J	19 J	3 Ј
C11	0 ND	0 ND	0 ND	2 J	0 ND
C12	0 ND	0 ND	3 J	4 J	2 J
C13	0 ND	0 ND	0 ND	0 NTD	0 ND
C14	0 ND	0 ND	0 ND	O ND	0 ND
C15	18	11 J	12 J	20 J	11 J
C16	0 ND	O NTD	0 ND	0 ND	O ND
C17	0 ND	0 ND	0 ND	73	0 ND
PRISTANE	O ND	0 ND	0 ND	0 M D	0 ND
C18	0 ND	0 ND	0 ND	15 J	0 ND
PHYTANE	0 ND	0 ND	0 ND	9 J	0 ND
C19	4	21	15	38	0 ND
C20	3 J	O NTD	5	53	5
C21	12	11	17	198	17
C22	13 J	19	23	211	18 J
C23	38	38	52	605	44
C24	18	30	19	236	18
C25	49	52	64	767	57
C26	20	25	25	242	22
C27	66	74	86	1197	83
C28	11 J	21	15 J	167	13 J
C29	46	51	61	825	63
C30	0 ND	10 J	5 J	89	5 J
C31	30	36	45	651	43
C32	0 ND	4 J	0 ND	39	0 ND
C33	0 ND	11	0 ND	223	11
C34	0 ND	0 ND	0 ND	21	0 NTD
TOT ALKANES	334	420	457	5703	414
UNIT:	ug/g	ug/g	ug/g	ug/g	ug/g
UCM	0.3 J	0.2 J	0.6 J	4.5 J	0.6 J
Surrogate Recoverie	es				
C12ALKD:	82	84	84	79	86
C20ALKD:	73	79	75	75	76
C24ALKD:	77	87	78	79	78
C30ALKD:	76	82	75	80	77

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
ID:					
LABSAMNO:	C13781	C13782	C13783	C13784	C13785
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Cone DB QUAL	Conc DB QUAL
NAPHTHALENE	1.2 J	1.2 J	1.3 J	4.0 J	1.1 J
C1-NAPHTHALENES	2.1 J	1.7 J	2.0 J	5.0 J	1.3 J
C2-NAPHTHALENES	1.5 J	1.7 J	1.9 J	5.2 J	2.0 J
C3-NAPHTHALENES	4.3 J	4.4 J	ND	9.2 J	ND
C4-NAPHTHALENES	ND	ND	ND	ND	ND
BIPHENYL	0.7 J	0.6 J	0.8 J	1.8 J	0.5 J
ACENAPHTHYLENE	0.1 J	0.1 J	0.1 J	0.3 J	0.2 J
ACENAPHTHENE	0.4 J	0.3 J	0.2 J	0.8 J	0.3 J
FLUORENE	0.4 J	0.4 J	0.5 J	1.1 J	0.3 J
C1-FLUORENES	ND	ND	ND	1.9 J	ND
C2-FLUORENES	ND	ND	ND	5.4 J	ND
C3-FLUORENES	ND	ND	ND	6.0 J	ND
PHENANTHRENE	0.8 J	0.7 J	0.8 J	2.5 J	0.6 J
ANTHRACENE	0.1 J	0.1 J	0.1 J	0.5 J	0.1 J
C1-PHEN_ANTHR	0.9 J	0.8 J	0.9 J	3.6 J	0.8 J
C2-PHEN_ANTHR	1.1 J	1.1 J	1.2 J	4.9 J	ND
C3-PHEN ANTHR	ND	ND	ND	4.0 J	ND
C4-PHEN ANTHR	ND	ND	ND	4.3 J	ND
DIBENZOTHIO	0.2 J	0.3 J	0.3 J	0.5 J	0.1 J
C1-DIBEN	ND	ND	ND	1.8 J	ND
C2-DIBEN	ND	ND	ND	2.2 J	ND
C3-DIBEN	ND	ND	ND	3.8 Л	ND
FLUORANTHENE	0.5 J	0.5 J	0.6 J	2.9 Л	0.5 J
PYRENE	0.4 J	0.4 J	0.3 Ј	2.7 J	0.3 J
C1-FLUORAN_PYR	ND	ND	ND	3.4 J	ND
BENAANTHRACENE	0.1 J	0.1 J	0.2 J	0.9 J	0.1 J
CHRYSENE	0.4 J	0.4 J	0.4 J	2.5 J	0.3 J
C1-CHRYSENES	ND	0.3 J	ND	1.5 J	ND
C2-CHRYSENES	ND	ND	ND	4.4 J	ND
C3-CHRYSENES	ND	ND	ND	ND	ND
C4-CHRYSENES	ND	ND	ND	ND	ND
BENDFLUORAN	0.3 J	0.3 J	0.4 J	2.7 Ј	0.4 Ј
BENKFLUORAN	0.6 J	0.6 J	0.7 J	5.4 J	0.7 J
BENePYRENE	0.3 J	0.3 J	0.3 J	2.3 J	0.3 J
BENapyrene	0.1 J	0.1 J	0.2 J	0.9 J	0.1 J
PERYLENE	2.2 J	2.1 J	3.0 J	108.9	3.0 J
I123cdPYRENE	0.2 J	0.2 J	0.2 J	1.6 J	0.2 J
DBahANTHRA	0.1 J	0.1 J	0.1 J	0.3 J	0.1 J
BghiPERYLENE	0.2 J	0.3 J	0.3 J	2.1 J	0.2 J
TOTAL PAH'S	16.7 J	16.8 J	13.6 J	101.9 Ј	10.3 J
	20.70	20.00	20.00	202.3 0	20.0

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
ID:					
LABSAMNO:	C13781	C13782	C13783	C13784	C13785
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
2-METHYLNAPH	1.2 Ј	0.9 J	1.1 J	2.8 Ј	0.7 J
1-methylnaph	0.8 J	0.8 J	0.9 J	2.2 J	0.6 J
2,6-DIMETHNAPH	0.4 J	0.7 J	0.6 J	2.1 J	.0.3 J
1,6,7-TRIMETHNAPH	0.5 J	0.3 J	0.2 J	0.8 J	0.4 J
1-METHYLPHEN	U.S.0	0.1 J	0.3 J	0.9 J	0.4 J
Surrogate Recoveries	;				
NAPHD8:	81	69	70	67	76
ACEND10:	78	70	72	71	82
PHEND10:	80	72	78	78	76
CHRYD12:	73	67	73	88	73
PERYD12:	62	56	62	71	65

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
ID:					
LABSAMNO:	C13781	C13782	C13783	C13784	C13785
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL				
TOTAL BHCs	0.0 ND	0.1 J	0.0 ND	1.3	0.0 NTD
TOT CHLORDANES (ALL)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
TOT CHLORDANES (S&T)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
TOTAL DDTs	O.O ND	0.0 ND	0.0 ND	0.4 J	0.0 ND
TOTAL PCBs	0.2 J	0.3 J	0.2 J	0.8 J	0.2 J
ALPHA-BHC	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
HCB	0.0 ND	0.0 NTD	0.0 ND	0.1 J	0.0 ND
BETA-BHC	0.0 ND	0.1 J	0.0 ND	0.5	0.0 ND
GAMMA-BHC	0.0 ND				
DELTA-BHC	0.0 ND	0.0 ND	0.0 ND	0.8	0.0 ND
HEPTACHLOR	0.0 ND				
HEPTA-EPOXIDE	0.0 ND				
OXYCHLORDANE	0.0 ND				
GAMMA-CHLORDANE	0.0 ND				
ALPHA-CHLORDANE	0.0 ND				
TRANS-NONACHLOR	0.0 ND				
CIS-NONACHLOR	0.0 ND				
ALDRIN	0.0 ND				
DIELDRIN	0.0 ND				
ENDRIN	0.0 ND				
MIREX	0.0 ND				
2,4'DDE (O,P'DDE)	0.0 ND				
4,4'DDE (P,P'DDE)	0.0 ND				
2,4'DDD (0,P'DDD)	0.0 ND				
4,4'DDD (P,P'DDD)	0.0 ND	0.0 ND	0.0 ND	0.4	0.0 ND
2,4'DDT (O,P'DDT)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND	0.0 NTD	O.O NTD	0.0 ND

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
ID: LABSAMNO:	C1 2701	G* 2.7.0.2			
UNIT:	C13781	C13782	C13783	C13784	C13785
Analyte (Cont)	ng/g	ng/g	ng/g	ng/g	ng/g
Analyce (cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
PCB # (CLORINATION)					
NOAA S&T PCBs					
8 (CL2)	0.0 ND				
18 (CL3)	0.0 ND				
28 (CL3)	0.0 ND				
44 (CL4)	0.0 ND				
52 (CL4)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
66 (CL4)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
101 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
105 (CL5)	0.0 ND				
110/77 (CL5/4)	0.0 ND				
118/108/149(CL5/5/6)	0.0 ND				
128 (CL6)	0.0 ND				
138 (CL6)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 ND
126 (CL5)	0.0 ND				
153 (CL6)	0.0 ND				
170 (CL7)	0.2	0.2	0.2	0.7	0.2
180 (CL7)	0.0 ND				
187/182/159 (CL7/7/6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
195 (CL8)	0.0 ND				
206 (CL9)	0.0 ND				
209 (CL10)	0.0 ND				
OTHER PCB CONGENERS					
7 (CL2)	0.0 ND				
15 (CL2)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
24 (CL3)	0.0 ND				
16/32 (CL3)	0.0 ND				
29 (CL3)	0.0 ND				
26 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
25 (CL3)	0.0 ND				
50 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
33 (CL3)	0.0 ND				
22 (CL3)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
45 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
46 (CL4)	0.0 ND				
49 (CL4)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
17/48 (CL4)	0.0 NTD	0.0 ND	0.0 ND	0.0 ND	0.0 ND
37/42 (CL4)	0.0 ND	0.1 J	0.0 ND	0.0 ND	0.0 ND
41/64 (CL4)	0.0 ND				
40 (CL4)	0.0 ND				
74 (CL4)	0.0 ND				

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	STATION 54	STATION 55	STATION 56	STATION 57	STATION 76
D: .absamno:	C13781	C13782	C13783	C12704	013705
UNIT:	ng/g	ng/g	ng/g	C13784	C13785
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL		ng/g	ng/g
Analyte (cont)	COME DE QUAL	COME DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND				
88 (CL5)	0.0 ND				
60/56 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 NTD
92? (CL5)	0.0 ND				
84? (CL5)	0.0 ND				
99 (CL5)	0.0 ND				
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	. 0.0 ND	0.0 NTD
97 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
85 (CL5)	0.0 ND				
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
32 (CL5)	0.0 ND	0.0 NTD	0.0 ND	0.0 NTD	0.0 ND
L51 (CL6)	0.0 ND				
.07/108/144(CL5/5/6)	0.0 ND				
.49 (CL6)	0.0 ND				
188 (CL7)	0.0 ND				
.46 (CL6)	0.0 ND				
141 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
137 (CL6)	0.0 ND	0.0 NTD	0.0 ND	0.0 ND	0.0 ND
JNK (CL6)	0.0 ND				
L58 (CL7)	0.0 ND				
129 (CL6)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
L78 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
.83 (CL7)	0.0 ND				
.67 (CL6)	0.0 ND	0.0 ND	0.0 NTO	0.0 ND	0.0 ND
L85 (CL7)	0.0 ND				
.74 (CL7)	0.0 ND	0.0 ND	0.0 ND	0.0 ND	0.0 NTD
.77 (CL7)	0.0 ND				
.56/171/202(CL6/7/8)	0.0 ND				
:00 (CL8)	0.0 ND	0.0 ND	0.0 ND	0.0 NTD	0.0 ND
.72 (CL7)	0.0 ND				
.91 (CL7)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
01 (CL8)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
.96 (CL8)	0.0 ND	0.0 ND	0.0 NTD	0.0 ND	0.0 ND
.89 (CL7)	0.0 ND	0.0 NTD	0.0 NTD	0.0 ND	0.0 NTD
.94 (CL8)	0.0 ND				
205 (CL9)	0.0 ND				
Surrogate Recoveries					
BOFB%:	91	82	129 Q	94	98
PCB#103%:	93	85	127 Q	97	99
PCB#198%:	97	87	137 Q	103	105

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

PAHs, Aliphatics, PCBs and Pesticides in Sediments Quality Control Sample Data

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 21
LABSAMNO:	Q7068	Q7069	C12911	Q7070
SAMPLE TYPE:	BLANK	BLANK	SAMP	MS
COLLECTION DATE:			08/20/93	08/20/93
RECEIPT DATE:			09/26/93	09/26/93
QCBATCH:	M748	M748	M748	M748
EXTRACTION DATE:	11/11/93	11/11/93	11/11/93	11/11/93
METHOD:	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	01/18/94	01/18/94	01/19/94	01/18/94
METHOD:	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	12/05/93	12/05/93	12/06/93	12/05/93
METHOD:	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	06/09/94	06/09/94	06/08/94	06/09/94
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
SUBMAT:				
WETWT:			10.10	10.21
DRYWT:	10.00	10.00	6.29	6.38
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:			62.3%	62.5%
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Lipid Weight				
% LIPIDS:				
Surrogate Recoveri	es			
ALKANES:				
C12ALKD:	78	78	85	84
C20ALKD:	77	79	95	93
C24ALKD:	79	79	85	94
C30ALKD:	170 M	136 M	230 M	144 M
PAH's:				
NAPHD8:	75	66	78	72
ACEND10:	75	67	83	79
PHEND10:	78	68	79	89
CHRYD12:	74	63	79	85
PERYD12:	15 Q	12 Q	71	74
PESTICIDES & PCB's	:			
DBOFB:	86	114	82	79
PCB#103:	82	106	76	78
PCB#198:	81	110	77	80

LABNAME: GERG/TAMU DATE: 23-Jan-95

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE	
ID:	NaSO4 BLNK	PROC BLANK		STATION 21	
LABSAMNO:	Q7068	Q7069	C12911	Q7070	
Alkanes and		•			
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL	
UNIT:	ng/g	ng/g	ng/g	£	
C10	140	49	290	NA	
C11	216	9 J	648	NA	
C12	350	19	962	42.6	
C13	13 J	0 ND	28 J	NA	
C14	20	13 J	33	NA	
C15	13 J	9 J	34 J	103.8	
C16	26	6 Ј	26	. NA	
C17	7 J	17	69	103.4	
PRISTANE	0 ND	0 ND	53 J	100.1	
C18	0 ND	16	37	97.3	
PHYTANE	0 ND	0 ND	0 Ј	NA	
C19	15	16	172	NA	
C20	5 J	5 J	166	86.1	
C21	9 J	5 J	476	71.7	
C22	12 J	12 J	330	NA	
C23	6 J	13 J	981 J	NA	
224	12 J	36	490	91.0	
C25	33	11 J	1627	NA NA	
C26	31	0 ND	537 J	NA NA	
227	13 J	7 J	1722 J	NA NA	
228	9 J	10 J	410 J	81.5	
C29	5 J	7 J	1739	NA	
230	8 J	0 ND	259 J	113.5	
231	O ND	O ND	1607	NA NA	
C32	0 ND	0 ND	265 J	113.4	
233	0 ND	0 NTD	459	NA	
234	0 ND	0 ND	293 J	120.7 Q	
TOT ALKANES	946	260	13712	NA	
INIT:	ug/g	ug/g	ug/g		
				AVG % RECOV	
JCM	0.0 ND	0.0 ND	2.6 J	94	
Surrogate Recoveries					
12ALKD:	78	78	85	84	
20ALKD:	77	79	95	93	
24ALKD:	79	79	85	94	
30ALKD:	170 M	136 M	230 M	144 M	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK	G# 0.0	STATION 21
LABSAMNO:	Q7068	Q7069	C12911	Q7070
UNIT:	ng/g	ng/g	ng/g	*
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL
NAPHTHALENE	1.7 J	1.6 J	7.3 J	66
C1-NAPHTHALENES	1.7 J	1.6 J	7.6 J	NA
C2-NAPHTHALENES	1.4 J	1.6 J	4.5 J	NA
C3-NAPHTHALENES	1.8 J	2.0 J	6.5 J	NA
C4-naphthalenes	ND	ND	3.1 J	NA
BIPHENYL	1.3 J	1.1 J	3.7 J	79
ACENAPHTHYLENE	0.0 J	0.1 J	0.1 J	65
ACENAPHTHENE	0.2 J	0.1 J	0.5 J	75
FLUORENE	0.4 J	0.3 J	1.5 J	88
C1-FLUORENES	ND	ND	1.6 J	NA
C2-FLUORENES	MD	ND	3.9 J	NA
C3-FLUORENES	ND	ND	5.8 J	NA
PHENANTHRENE	0.8 J	0.7 J	3.7 J	73
ANTHRACENE	0.1 J	0.2 J	0.5 J	81
C1-PHEN_ANTHR	ND	ND	3.9 J	NA
C2-PHEN_ANTHR	ND	ND	3.1 J	NA
C3-PHEN_ANTHR	ND	ND	3.0 J	NA
C4-PHEN_ANTHR	ND	ND	2.6 J	NA
DIBENZOTHIO	0.2 J	0.1 J	0.5 J	55
C1-DIBEN	ND	ND	0.6 J	NA
C2-DIBEN	ND	ND	1.0 J	NA
C3-DIBEN	ND	ND	1.0 J	AN
FLUORANTHENE	0.2 J	0.2 J	2.5 J	73
PYRENE	0.3 J	0.3 J	1.8 J	66
C1-FLUORAN_PYR	ND	ND	1.9 J	NA
BENAANTHRACENE	0.1 J	0.1 J	1.1 J	151 Q
CHRYSENE	0.2 J	0.2 J	2.3 J	93
C1-CHRYSENES	ND	ND	2.8 J	NA
C2-CHRYSENES	ND	ND	3.3 J	NA
C3-CHRYSENES	ND	ND	ND	NA
C4-CHRYSENES	ND	ND	ND	NA
BENDFLUORAN	0.1 J	0.0 J	1.7 J	83
BENKFLUORAN	0.1 J	0.0 J	1.7 J	83
BENepyrene	0.0 J	0.1 J	1.2 J	61
BENapyrene	0.1 J	0.1 J	0.8 J	93
PERYLENE	0.2 J	0.2 J	27.6 J	0 NA
I123cdPYRENE	0.0 J	0.1 J	2.1 J	122 Q
DBahANTHRA	0.1 J	0.1 J	0.9 J	174 Q
BghiPERYLENE	0.1 J	0.1 J	2.5 J	105
TOTAL PAH's	10.8 J	10.7 J	92.6 J	AVG % RECOV
(w/o PERYLENE)		· · · -		85

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE	
LABSAMNO:	NaSO4 BLNK	PROC BLANK		STATION 21	
	Q7068	Q7069		Q7070	
UNIT:	ng/g	ng/g	ng/g	%	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL	
2-METHYLNAPH	1.1 J	1.1 J	4.5 J	115	
1-METHYLNAPH	0.6 J	0.5 J	3.1 J	77	
2,6-DIMETHNAPH	0.6 J	0.8 J	2.9 J	85	
1,6,7-TRIMETHNAPH	. 0.5 J	0.1 J	1.2 J	90	
1-METHYLPHEN	0.3 J	0.4 J	1.2 J	. 82	
Surrogate Recoveries	5				
NAPHD8:	75	66	78	72	
ACEND10:	75	67	83	79	
PHEND10:	78	68	79	89	
CHRYD12:	74	63	79	85	
PERYD12:	15 Q	12 Q	71	74	

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 21
LABSAMNO:	Q7068	Q7069	C12911	Q7070
UNIT:	ng/g	ng/g	ng/g	8
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL
TOTAL BHCs	1.5	0.4 J	0.2 J	
TOT CHLORDANES (ALL		0.2 J	0.1 J	AVERAGE %
TOT CHLORDANES (S&T		0.1 J	0.1 J	RECOVERY
TOTAL DDTs	1.2	0.3 J	0.1 J	97
TOTAL PCBs	0.5 J	0.2 J	0.1 U	<i>31</i>
			0.00	
ALPHA-BHC	0.3	0.1 J	0.1 J	- 99
нсв	0.0 ND	0.0 ND	0.0 ND	70
BETA-BHC	0.3	0.1 J	0.1 J	73
GAMMA-BHC	0.3	0.1 J	0.0 ND	97
DELTA-BHC	0.6	0.1	0.1 J	109
HEPTACHLOR	0.2	0.1 J	0.0 ND	76
HEPTA-EPOXIDE	0.3	0.1 J	0.0 ND	74
OXYCHLORDANE	0.0 ND	0.0 ND	0.0 ND	107
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	92
ALPHA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	80
TRANS-NONACHLOR	0.0 ND	0.0 ND	0.0 ND	77
CIS-NONACHLOR	0.1	0.0 ND	0.0 ND	91
ALDRIN	0.2	0.1 J	0.0 ND	87
DIELDRIN	0.4	0.1	0.1 J	78
ENDRIN	0.3	0.1	0.0 ND	100
MIREX	0.0 ND	0.0 ND	0.0 ND	60
2,4'DDE (0,P'DDE)	0.4	0.1 J	0.0 ND	77
4,4'DDE (P,P'DDE)	0.2	0.0 ND	0.0 ND	81
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND	0.0 ND	81
4,4'DDD (P,P'DDD)	0.3	0.1 J	0.0 ND	88
2,4'DDT (0,P'DDT)	0.1	0.0 ND	0.0 ND	79
4,4'DDT (P,P'DDT)	0.2	0.1 J	0.0 ND	85

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 21
LABSAMNO:	Q7068	Q7069	C12911	Q7070
UNIT:	ng/g	ng/g	ng/g	*
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL
DOD # (GLODINATION)				
PCB # (CLORINATION) NOAA S&T PCBs				
8 (CL2)	0.1 J	0.0 ND	0.0 ND	91
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	77
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	99
44 (CL4)	0.0 NTD	0.0 ND	0.0 ND	89
52 (CL4)	0.0 ND	O.O ND	0.0 ND	95
66 (CL4)	0.0 ND	0.0 ND	0.0 ND	93
101 (CL5)	0.0 ND	0.0 ND	0.0 ND	- 82
105 (CL5)	0.0 ND	0.0 ND	0.0 ND	89
110/77 (CL5/4)	0.0 ND	0.0 ND	0.0 ND	127 Q
118/108/149(CL5/5/6)		0.0 ND	0.0 ND	93
128 (CL6)	0.0 ND	0.0 ND	0.0 ND	89
138 (CL6)	0.2 J	0.1 J	0.0 ND	90
126 (CL5)	0.0 ND	O.O NTD	0.0 ND	118
153 (CL6)	O.O ND	0.0 ND	0.0 ND	64
170 (CL7)	0.0 ND	O.O NTD	0.0 ND	517 Q
180 (CL7)	0.0 ND	0.0 ND	0.0 ND	87
187/182/159 (CL7/7/6)		0.0 ND	0.0 ND	88
195 (CL8)	0.0 ND	0.0 ND	0.0 ND	93
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	63
209 (CL10)	0.0 ND	0.0 ND	0.0 ND	88
OTHER PCB CONGENERS				
7 (CL2)	0.0 ND	0.0 ND	0.0 NTD	NA
15 (CL2)	0.0 ND	0.0 ND	0.0 ND	NA
24 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
16/32 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
26 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
50 (CL4)	0.1 J	0.0 ND	0.0 ND	109
33 (CL3)	0.0 ND	0.0 NTD	0.0 ND	NA
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
45 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
46 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
49 (CL4)	0.1 J	0.0 ND	0.0 ND	NA
47/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
37/42 (CL4)	0.0 ND	0.0 ND	0.1 J	NA
41/64 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
40 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
74 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 21	LAB QA SAMPLE	
ID:	NaSO4 BLNK	PROC BLANK		STATION 21	
LABSAMNO:	Q7068	Q7069	C12911	Q7070	
UNIT:	ng/g	ng/g	ng/g	8	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL	
PCB #(CHLORINATION)					
70 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA	
88 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
99 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	- NA	
97 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	88	
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
136 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
82 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA	
151 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
107/108/144 (CL5/5/6)		0.0 ND	0.0 ND	NA	
149 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	87	
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
141 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
UNK (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
158 (CL7)	0.0 ND	0.0 NTD	0.0 ND	NA	
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
178 (CL7)	0.0 ND	0.0 ND	0.0 NTD	NA	
183 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA	
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA	
185 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA	
174 (CL7)	0.0 ND	0.0 ND 0.0 ND	0.0 ND	NA NA	
177 (CL7) 156/171/202(CL6/7/8)	0.0 ND		0.0 ND	NA NA	
156/171/202(CL6/7/8)		0.0 ND	0.0 ND	NA NA	
200 (CL8) 172 (CL7)	0.0 ND 0.0 ND	0.0 ND 0.0 ND	0.0 ND 0.0 ND	NA NA	
172 (CL7) 191 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA NA	
201 (CL8)	0.0 ND	0.0 ND	0.0 ND	NA NA	
196 (CL8)	0.0 ND	0.0 ND	0.0 ND	NA NA	
189 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA NA	
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	NA NA	
205 (CL9)	0.0 ND	0.0 ND	0.0 ND	NA NA	
Surrogate Recoveries	3				
DBOFB%:	86	114	82	79	
PCB#103%:	82	106	76	78	
PCB#198%:	81	110	77	80	

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 66	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 66
LABSAMNO:	Q7073	Q7074	C12921	Q7075
SAMPLE TYPE:	BLANK	BLANK	SAMP	MS
COLLECTION DATE:			09/13/93	09/13/93
RECEIPT DATE:		•	09/26/93	09/26/93
QCBATCH:	M749	M749	M749	M749
EXTRACTION DATE:	11/12/93	11/12/93	11/12/93	11/12/93
METHOD:	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	05/12/94	05/12/94	05/13/94	05/12/94
METHOD:	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	12/07/93	12/09/93	12/08/93	12/07/93
METHOD:	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	06/08/94	06/08/94	06/08/94	06/08/94
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
SUBMAT:				
WETWT:			10.25	10.10
DRYWT:	10.00	10.00	5.18	5.10
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:			50.5%	50.5%
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Lipid Weight		•		
% LIPIDS:				
Surrogate Recoveri	es			
ALKANES:				
C12ALKD:	60	114	51	54
C20ALKD:	58	114	54	53
C24ALKD:	60	117	54	53
C30ALKD:	110	60	103	88
PAH's:				
NAPHD8:	78	55	72	66
ACEND10:	80	66	73	72
PHEND10:	85	82	80	82
CHRYD12:	64	119	77	80
PERYD12:	13 Q	9 Q	56	48
PESTICIDES & PCB's	:			
DBOFB:	97	21 Q	72	85
PCB#103:	97	33 Q	80	88
PCB#198:	96	31 Q	76	87

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 66	LAB QA SAMPLE	
ID:	NaSO4 BLNK	PROC BLANK		STATION 66	
LABSAMNO:	Q7073	Q7074	C12921	Q7075	
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL	
UNIT:	ng/g	ng/g	ng/g	%	
C10	223	159	318.	NA	
C11	0 ND	0 ND	7 J	NA	
C12	0 ND	3 J	9 J	104	
C13	0 ND	0 ND	0 ND	NA	
C14	2 J	0 ND	8 J	NA	
C15	8 J	0 NTD	11 J	105	
C16	0 ND	0 ND	5 J	. NA	
C17	0 ND	0 ND	9 J	106	
PRISTANE	0 ND	0 NTD	4 J	105	
C18	5 J	0 ND	12 J	100	
PHYTANE	0 ND	0 ND	O NTD	NA NA	
C19	0 ND	0 ND	23	NA NA	
C20	O NID	0 ND	25	93	
C21	0 ND	0 ND	77	89	
C22	0 ND	1 J	77	NA.	
C23	3 J	0 ND	184	NA NA	
C24	3 J	1 J	93	97	
C25	0 ND	0 ND	240	NA NA	
C26	0 ND	0 ND	90	NA NA	
C27	3 J	0 ND	352	NA NA	
C28	3 J	0 ND	68	107	
C29	5 J	0 ND	356	NA NA	
C30	0 ND	0 ND	63	169 Q	
C31	0 ND	0 ND	356	NA	
C32	0 ND	O ND	26	179 Q	
C33	0 ND	O ND	120		
C34	0 ND	0 ND	0 ND	NA 193 Q	
TOT ALKANES	254	164	2532	NA	
UNIT:	ug/g	ug/g	ug/g		
				AVG % RECOV	
JCM	4.1 J	1.0 J	3.9 J	121 Q	
Surrogate Recoveries	3				
C12ALKD:	60	114	51	54	
C20ALKD:	58	114	54	53	
C24ALKD:	60	117	54	53	
C30ALKD:	110	60	103	88	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 66	LAB QA SAMPLE	
ID:	NaSO4 BLNK	PROC BLANK		STATION 66	
LABSAMNO:	Q7073	Q7074	C12921	Q7075	
UNIT:	ng/g	ng/g	ng/g	%	
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL	
NAPHTHALENE	2.5 J	1.6 J	6.4 J	64	
C1-NAPHTHALENES	1.5 J	1.2 J	4.9 J	NA	
C2-NAPHTHALENES	ND	ND	4.5 J	NA	
C3-NAPHTHALENES	ND	ND	4.4 J	NA	
C4-NAPHTHALENES	ND	ND	ND	NA	
BIPHENYL	1.4 J	0.6 J	3.5 J	74	
ACENAPHTHYLENE	0.1 J	0.1 J	0.2 J	62	
ACENAPHTHENE	0.2 J	0.4 J	0.8 J	77	
FLUORENE	0.3 J	0.4 J	1.5 J	- 86	
C1-FLUORENES	ND	ND	ND	NA	
C2-FLUORENES	ND	ND	ND	NA	
C3-FLUORENES	ND	ND	ND	NA	
PHENANTHRENE	0.5 J	0.6 J	4.7 J	66	
ANTHRACENE	0.1 J	0.2 J	0.2 J	75	
C1-PHEN_ANTHR	ND	ND	4.8 J	NA	
C2-PHEN_ANTHR	ND	ND	3.0 J	NA	
C3-PHEN_ANTHR	МD	ND	ND	. NA	
C4-PHEN_ANTHR	ND	ND	ND	NA	
DIBENZOTHIO	0.2 J	0.1 J	0.4 J	51	
C1-DIBEN	ND	ND	ND	NA	
C2-DIBEN	ND	ND	ND	NA	
C3-DIBEN	ND	ND	ND	NA	
FLUORANTHENE	0.1 J	0.4 J	1.7 J	74	
PYRENE	0.2 J	0.7 J	2.5 J	72	
C1-FLUORAN_PYR	ND	ND	2.8 J	NA	
BENAANTHRACENE	0.1 J	0.1 J	0.5 J	80	
CHRYSENE	0.0 J	0.2 J	2.2 J	77	
C1-CHRYSENES	ND	ND	1.9 J	NA	
C2-CHRYSENES	ND	ND	1.4 J	NA	
C3-CHRYSENES	ND	ND	ND	NA	
C4-CHRYSENES	ND	ND	ND	NA	
BENDFLUORAN	0.0 J	0.1 J	0.7 J	74	
BENKFLUORAN	0.0 J	0.1 J	0.7 J	75	
BENepyrene	0.0 J	0.1 J	1.3 J	75	
BENapyrene	0.2 J	0.1 J	0.6 J	94	
PERYLENE	0.9 J	0.8 J	16.9 J	57	
I123cdPYRENE	0.1 J	0.4 J	0.1 J	96	
DBahANTHRA	0.1 J	0.2 J	0.1 J	100	
BghiPERYLENE	0.0 J	0.2 J	1.4 J	94	
TOTAL PAH's	7.9 J	7.9 J	57.0 J	AVG % RECOV	
(w/o PERYLENE)				78	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#: ID: LABSAMNO:	LAB QA SAMPLE NaSO4 BLNK Q7073	LAB QA SAMPLE PROC BLANK	STATION 66	LAB QA SAMPLE STATION 66	
UNIT:	-	Q7074	C12921	Q7075	
	ng/g	ng/g	ng/g	*	
Analyte (Cont)	Cone DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL	
2-METHYLNAPH	1.0 J	0.8 J	2.8 Ј	106	
1-METHYLNAPH	0.5 J	0.4 J	2.0 J	74	
2,6-DIMETHNAPH	0.6 J	0.4 J	1.8 J	81	
1,6,7-TRIMETHNAPH	0.1 J	0.2 J	0.4 J	93	
1-METHYLPHEN	0.1 J	0.3 J	1.3 J	65	
Surrogate Recoveries					
NAPHD8:	78	55	72	. 66	
ACEND10:	80	66	73	72	
PHEND10:	85	82	80	82	
CHRYD12:	64	119	77	80	
PERYD12:	13 Q	9 Q	56	48	

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 66	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 66
LABSAMNO:	Q7073	Q7074	C12921	Q7075
UNIT:	ng/g	ng/g	ng/g	*
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL
TOTAL BHCs	0.0 ND	0.0 ND	0.0 ND	
TOT CHLORDANES (ALL	0.0 ND	0.0 ND	0.0 ND	AVERAGE %
TOT CHLORDANES (S&T)	0.0 NTD	0.0 ND	0.0 ND	RECOVERY
TOTAL DDTs	0.0 ND	0.1 J	0.0 ND	81
TOTAL PCBs	3.6 J	0.3 J	0.2 J	
ALPHA-BHC	0.0 ND	0.0 ND	0.0 ND	. 77
HCB	0.0 ND	0.0 NTD	0.0 ND	75
BETA-BHC	0.0 ND	0.0 ND	0.0 ND	69
GAMMA-BHC	0.0 ND	0.0 ND	0.0 ND	73
DELTA-BHC	0.0 ND	0.0 ND	0.0 ND	76
HEPTACHLOR	0.0 ND	0.0 ND	0.0 ND	70
HEPTA-EPOXIDE	0.0 ND	0.0 ND	0.0 ND	67
OXYCHLORDANE	0.0 ND	0.0 ND	0.0 ND	94
GAMMA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	84
ALPHA-CHLORDANE	0.0 ND	0.0 ND	0.0 ND	74
TRANS-NONACHLOR	0.0 ND	0.0 ND	0.0 ND	72
CIS-NONACHLOR	0.0 ND	0.0 ND	0.0 ND	84
ALDRIN	0.0 ND	0.0 ND	0.0 ND	72
DIELDRIN	0.0 ND	0.0 ND	0.0 ND	64
ENDRIN	0.0 ND	0.0 NTD	0.0 ND	72
MIREX	0.0 ND	0.0 ND	0.0 ND	75
2,4'DDE (0,P'DDE)	0.0 ND	0.0 ND	0.0 ND	70
4,4'DDE (P,P'DDE)	0.0 ND	0.1 J	0.0 ND	69
2,4'DDD (O,P'DDD)	0.0 ND	0.0 NTD	0.0 ND	71
4,4'DDD (P,P'DDD)	0.0 ND	0.0 ND	0.0 ND	83
2,4'DDT (0,P'DDT)	0.0 ND	0.0 NTD	0.0 ND	76
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND	0.0 ND	73

SIBERIAN SEDIMENTS - PCB DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 66	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 66
LABSAMNO:	Q7073	Q7074	C12921	Q7075
UNIT:	ng/g	ng/g	ng/g	8
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL
PCB # (CLORINATION)				
NOAA S&T PCBs				
8 (CL2)	0.0 ND	0.0 ND	0.0 ND	94
18 (CL3)	0.0 ND	0.0 ND	0.0 ND	87
28 (CL3)	0.0 ND	0.0 ND	0.0 ND	89
44 (CL4)	0.0 ND	0.0 ND	0.0 ND	87
52 (CL4)	0.0 ND	0.0 ND	0.0 ND	92
66 (CL4)	0.0 ND	0.0 ND	0.0 ND	87
101 (CL5)	0.0 ND	0.0 ND	0.0 ND	- 85
105 (CL5)	0.0 ND	0.0 ND	0.0 ND	83
110/77 (CL5/4)	0.0 ND	0.0 ND	0.0 NTD	113
118/108/149(CL5/5/6)	0.0 ND	0.0 ND	0.0 NTD	91
128 (CL6)	0.0 ND	0.0 ND	0.0 NTD	95
138 (CL6)	0.4	0.1 J	0.1 J	75
126 (CL5)	0.0 ND	0.0 ND	0.0 ND	108
153 (CL6)	0.0 ND	0.0 ND	0.0 ND	70
170 (CL7)	0.6	0.2	0.1 J	72
180 (CL7)	0.0 ND	0.0 NTD	0.0 ND	84
187/182/159(CL7/7/6)	0.0 ND	0.0 ND	0.0 ND	86
195 (CL8)	0.8	0.0 NTD	0.0 ND	83
206 (CL9)	0.0 ND	0.0 ND	0.0 ND	74
209 (CL10)	0.3	0.0 ND	0.0 ND	83
OTHER PCB CONGENERS				
7 (CL2)	0.0 ND	0.0 ND	0.0 NTD	NA
15 (CL2)	0.0 ND	0.0 ND	0.0 ND	NA
24 (CL3)	0.0 ND	O.O ND	0.0 ND	NA
16/32 (CL3)	0.0 ND	O.O ND	0.0 ND	NA
29 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
26 (CL3)	0.0 NTD	0.0 ND	0.0 ND	NA
25 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
50 (CL4)	0.0 ND	O.O ND	0.0 ND	113
33 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
22 (CL3)	0.0 ND	0.0 ND	0.0 ND	NA
15 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
16 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
19 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
17/48 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
37/42 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
1/64 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA
10 (CL4)	0.0 ND	0.0 ND	0.0 NTD	NA
74 (CL4)	0.0 ND	0.0 ND	0.0 ND	NA

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 66	LAB QA SAMPLE
ID:	NaSO4 BLNK	PROC BLANK		STATION 66
LABSAMNO:	Q7073	Q7074	C12921	Q7075
UNIT:	ng/g	ng/g	ng/g	*
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Recovery DB QUAL
PCB #(CHLORINATION)				
70 (CL4)	O.O ND	0.0 ND	0.0 ND	NA.
88 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA .
60/56 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA .
92? (CL5)	0.0 ND	0.0 ND	0.0 ND	NA
84? (CL5)	0.0 ND	0.0 ND	0.0 ND	NA
99 (CL5)	0.0 ND	0.0 NTD	0.0 ND	NA
83 (CL5)	0.0 ND	0.0 ND	0.0 ND	. NA
97 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA
87 (CL5)	0.0 ND	0.0 ND	0.0 ND	87
85 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA
136 (CL6)	0.0 ND	0.0 NTD	0.0 ND	NA
82 (CL5)	0.0 ND	0.0 ND	0.0 ND	NA
151 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA
107/108/144(CL5/5/6)	0.0 ND	0.0 ND	0.0 ND	NA
149 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA
188 (CL7)	0.0 ND	0.0 ND	0.0 ND	77
146 (CL6)	0.0 ND	0.0 ND	0.0 ND	AN
141 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA
137 (CL6)	0.0 ND	0.0 ND	0.0 ND	AN
UNK (CL6)	0.0 ND	0.0 ND	0.0 ND	AN
158 (CL7)	0.0 ND	0.0 ND	0.0 ND	AN
129 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA
178 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA
183 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA
167 (CL6)	0.0 ND	0.0 ND	0.0 ND	NA
185 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA
174 (CL7)	0.8	0.0 ND	0.0 ND	NA
177 (CL7)	0.0 ND	0.0 ND	0.0 ND	AM
156/1 71/2 02(CL6/7/8)	0.0 ND	0.0 ND	0.0 ND	AN
200 (CL8)	0.0 ND	0.0 ND	0.0 ND	NA
172 (CL7)	0.0 ND	0.0 ND	0.0 ND	NA
191 (CL7)	0.8	0.0 ND	0.0 ND	NA
201 (CL8)	0.0 ND	0.0 NTD	0.0 ND	AN
196 (CL8)	0.0 ND	0.0 NTD	0.0 ND	AN
189 (CL7)	0.0 NTD	0.0 ND	0.0 ND	AN
194 (CL8)	0.0 ND	0.0 ND	0.0 ND	NA
205 (CL9)	0.0 ND	O.O ND	0.0 ND	NA
Surrogate Recoveries	3			Marie de la companya
DBOFB%:	97	21 Q	72	85
PCB#103%:	97	33 Q	80	88
PCB#198%:	96	31 Q	76	87

INVEST#:	STATION 66	LAB QA SAMPLE
ID:		STATION 66
LABSAMNO:	C12921	Q7076
SAMPLE TYPE:	SAMP	DUP
COLLECTION DATE:	09/13/93	09/13/93
RECEIPT DATE:	09/26/93	09/26/93
QCBATCH:	M749	M749
EXTRACTION DATE:	11/12/93	11/12/93
METHOD:	GCFID	GCFID
ANALYSIS DATE:	05/13/94	05/12/94
METHOD:	GCMS	GCMS
ANALYSIS DATE:	12/08/93	12/07/93
METHOD:	GCECD	GCECD
ANALYSIS DATE:	06/08/94	06/09/94
MATRIX:	SEDIMENT	SEDIMENT
SUBMAT:		
WETWT:	10.25	10.18
DRYWT:	5.18	5.13
WTUNITS:	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	50.5%	50.4%
VOL:		
VOLUNITS:	LITERS	LITERS
Lipid Weight		
% LIPIDS:		
Surrogate Recoveri	es	
ALKANES:		
C12ALKD:	51	46
C20ALKD:	54	60
C24ALKD:	54	58
C30ALKD:	103	88
PAH's:		
NAPHD8:	72	57
ACEND10:	73	67
PHEND10:	80	69
CHRYD12:	77	73
PERYD12:	56	52
PESTICIDES & PCB's		
DBOFB:	72	58
PCB#103:	80	69
PCB#198:	76	68

LABNAME: GERG/TAMU DATE: 23-Jan-95

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 66	LAB QA SAMPLE			
ID:		STATION 66			
LABSAMNO:	C12921	Q7076			
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	% RPD		
UNIT:	ng/g	ng/g			
C10	318	445	33		
C11	7 J	7 J			
C12	9 J	10 J			
C13	0 ND	0 ND			
C14	8 J	9 J			
C15	11 J	12 J			
C16	5 J	4 J		-	
C17	9 Ј	8 Ј			
PRISTANE	4 J	4 J			
C18	12 J	8 J			
PHYTANE	0 ND	O ND			
C19	23	14	49		
220	25	26	6		
221	77	77	1		
222	77	75	3		
223	184	183	0		
224	93	93	0		
225	240	235	2		
226	90	96	6		
227	352	320	10		
28	68	70	3		
229	356	302	16		
230	63	54	15		
231	356	285	22		
32	26	25 J			
233	120	91	27		
234	O ND	4 J			
TOT ALKANES	2532	2456	3		
INIT:	ug/g	ug/g			•
JCM	3.9 J	6.1 J			
Surrogate Recover	ries				
C12ALKD:	51	46			
20ALKD:	54	60			
24ALKD:	54	58			
30ALKD:	103	88			

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 66	LAB QA SAMPLE	
ID:		STATION 66	
LABSAMNO:	C12921	Q7076	
UNIT:	ng/g	ng/g	
PNA Analyte	Conc DB QUAL		% RPD
NAPHTHALENE	6.4 J	9.1 J	
C1-NAPHTHALENES	4.9 J	6.4 J	
C2-NAPHTHALENES	4.5 J	5.9 J	
C3-NAPHTHALENES	4.4 J	5.5 J	
C4-NAPHTHALENES	ND	ND	
BIPHENYL	3.5 J	4.0 J	
ACENAPHTHYLENE	0.2 J	0.2 J	
ACENAPHTHENE	0.8 J	0.5 J	
FLUORENE	1.5 J	1.3 J	•
C1-FLUORENES	ND	ND	
C2-FLUORENES	ND	ND	
C3-FLUORENES	ND	ND	
PHENANTHRENE	4.7 J	4.6 J	
ANTHRACENE	0.2 J	0.4 J	
C1-PHEN_ANTHR	4.8 J	4.9 J	
C2-PHEN_ANTHR	3.0 J	3.9 J	
C3-PHEN_ANTHR	, ND	ND	
C4-PHEN_ANTHR	ND	ND	
DIBENZOTHIO	0.4 J	0.4 J	
C1-DIBEN	ND	ND	
C2-DIBEN	ND	ND	
C3-DIBEN	ND	ND	
FLUORANTHENE	1.7 J	1.5 J	
PYRENE	2.5 J	2.6 J	
C1-FLUORAN_PYR	2.8 J	3.4 J	
BENaANTHRACENE	0.5 J	0.5 J	
CHRYSENE	2.2 Ј	2.2 J	
C1-CHRYSENES	1.9 J	ND	
C2-CHRYSENES	1.4 J	ND	
C3-CHRYSENES	ND	ND	
C4-CHRYSENES	ND	ND	
BENDFLUORAN	0.7 J	1.9 J	
BENKFLUORAN	0.7 J	1.9 J	
BENEPYRENE	1.3 J	1.6 J	
BENapyrene	0.6 J	0.5 J	
PERYLENE	16.9 J	14.8 J	
123cdPYRENE	0.1 J	1.6 J	
Bahanthra	0.1 J	0.6 J	
BghiPERYLENE	1.4 J	1.5 J	
TOTAL PAH's	57.0 J	67.2 J	
(w/o PERYLENE)			

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 66	LAB QA SAMPLE		
ID:		STATION 66		
LABSAMNO:	C12921	Q7076		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
2-METHYLNAPH	2.8 J	4.0 J		
1-METHYLNAPH	2.0 J	2.3 J		
2,6-DIMETHNAPH	1.8 J	2.6 J		
1,6,7-TRIMETHNAPH	0.4 J	0.6 J		
l-methylphen	1.3 J	1.0 J		
Surrogate Recoverie	s			
NAPHD8:	72	57		
ACEND10:	73	67		
PHEND10:	80	69		
CHRYD12:	77	73		
	56	52		

SIBERIAN SEDIMENTS - PESTICIDE DATA - 93-D0-01

INVEST#:	STATION 66	LAB QA SAMPLE		
ID:		STATION 66		
LABSAMNO:	C12921	Q7076		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
TOTAL BHCs	0.0 ND	0.0 ND		
TOT CHLORDANES (ALL)	0.0 ND	0.0 ND		
TOT CHLORDANES (S&T)	0.0 ND	0.0 ND		
TOTAL DDTs	0.0 ND	0.0 ND		
TOTAL PCBs	0.2 J	0.2 J		
ALPHA-BHC	0.0 ND	0.0 ND		•
нсв	0.0 ND	0.0 ND		
BETA-BHC	0.0 ND	0.0 ND	,	
GAMMA-BHC	0.0 ND	0.0 ND		
DELTA-BHC	0.0 ND	0.0 ND		
HEPTACHLOR	0.0 NTD	0.0 ND		
HEPTA-EPOXIDE	0.0 ND	O.O NTD		
OXYCHLORDANE	0.0 ND	0.0 ND		
GAMMA-CHLORDANE	0.0 ND	0.0 ND		
ALPHA-CHLORDANE	0.0 ND	0.0 ND		
TRANS-NONACHLOR	0.0 NTD	0.0 ND		
CIS-NONACHLOR	0.0 ND	O.O NTD		
ALDRIN	0.0 ND	0.0 NTD		
DIELDRIN	0.0 ND	0.0 ND		
ENDRIN	0.0 ND	0.0 ND		
MIREX	0.0 ND	0.0 ND		
2,4'DDE (0,P'DDE)	0.0 ND	0.0 ND		
4,4'DDE (P,P'DDE)	0.0 ND	0.0 ND		
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND		
4,4'DDD (P,P'DDD)	0.0 ND	0.0 ND		
2,4'DDT (0,P'DDT)	0.0 ND	0.0 ND		
4,4'DDT (P,P'DDT)	0.0 ND	0.0 NTD		

INVEST#:	STATION 66	LAB QA SAMPLE	
ID:		STATION 66	
LABSAMNO:	C12921	Q7076	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD
PCB # (CLORINATION)			
NOAA S&T PCBs			
8 (CL2)	0.0 ND	0.0 ND	
18 (CL3)	0.0 ND	0.0 ND	
28 (CL3)	0.0 ND	0.0 ND	
44 (CL4)	0.0 ND	0.0 ND	
52 (CL4)	0.0 ND	0.0 ND	
66 (CL4)	0.0 ND	0.0 ND	
101 (CL5)	0.0 ND	0.0 ND	•
105 (CL5)	0.0 NTD	0.0 ND	
110/77 (CL5/4)	0.0 ND	0.0 ND	
118/108/149(CL5/5/6)	0.0 ND	0.0 ND	
128 (CL6)	0.0 ND	0.0 ND	
138 (CL6)	0.1 J	0.1 J	
126 (CL5)	0.0 ND	0.0 ND	
153 (CL6)	0.0 ND	0.0 ND	
170 (CL7)	0.1 J	0.1 J	
180 (CL7)	0.0 ND	0.0 ND	
187/182/159 (CL7/7/6)	0.0 NTD	0.0 ND	
195 (CL8)	0.0 ND	0.0 ND	
206 (CL9)	0.0 ND	0.0 ND	
209 (CL10)	0.0 ND	0.0 ND	
OTHER DCD CONCENERS			
OTHER PCB CONGENERS	0.0.100	0.0.100	
7 (CL2)	0.0 NTD 0.0 NTD	O.O NTO	
15 (CL2)		0.0 ND	
24 (CL3)	0.0 NTD	0.0 NTD 0.0 NTD	
16/32 (CL3) 29 (CL3)	0.0 ND		
	0.0 ND	0.0 ND	
26 (CL3)	0.0 ND	0.0 ND	
25 (CL3)	0.0 NTD	0.0 ND	
50 (CL4)	0.0 ND	0.0 ND	
33 (CL3)	0.0 ND	O.O NTD	
22 (CL3)	0.0 ND	0.0 NTD	
45 (CL4)	0.0 ND	0.0 NTD	
46 (CL4)	0.0 ND	0.0 NTD	
49 (CL4)	0.0 ND	0.0 ND	
47/48 (CL4)	0.0 ND	0.0 ND	
37/42 (CL4)	0.0 ND	0.0 ND	
41/64 (CL4)	0.0 ND	0.0 ND	
40 (CL4)	0.0 NTD	0.0 ND	
74 (CL4)	0.0 ND	0.0 ND	

INVEST#:	STATION 66	LAB QA SAMPLE
ID:		STATION 66
LABSAMNO:	C12921	Q7076
UNIT:	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL % RPD
PCB #(CHLORINATION)		
70 (CL4)	0.0 NTD	0.0 ND
88 (CL5)	0.0 ND	0.0 ND
60/56 (CL5)	0.0 ND	0.0 ND
92? (CL5)	0.0 ND	0.0 ND
84? (CL5)	0.0 ND	0.0 ND
99 (CL5)	0.0 ND	0.0 ND
83 (CL5)	0.0 ND	0.0 ND -
97 (CL5)	0.0 ND	0.0 ND
87 (CL5)	0.0 ND	0.0 ND
85 (CL5)	0.0 ND	0.0 ND
136 (CL6)	0.0 ND	0.0 ND
82 (CL5)	0.0 ND	0.0 ND
151 (CL6)	0.0 ND	0.0 ND
107/108/144 (CL5/5/6)		0.0 ND
149 (CL6)	0.0 ND	0.0 ND
188 (CL7)	0.0 ND	0.0 ND
146 (CL6)	0.0 ND	0.0 ND
141 (CL6)	0.0 ND	0.0 ND
137 (CL6)	0.0 ND	0.0 ND
UNK (CL6)	0.0 ND	0.0 ND
158 (CL7)	0.0 ND	0.0 ND
129 (CL6)	0.0 ND	0.0 ND
178 (CL7)	0.0 ND	0.0 ND
183 (CL7)	0.0 ND	0.0 ND
167 (CL6)	0.0 ND	0.0 ND
185 (CL7)	0.0 ND	0.0 ND
174 (CL7)	0.0 ND	0.0 ND
177 (CL7)	0.0 ND	0.0 ND
156/171/202(CL6/7/8)		O.O NTD
200 (CL8)	0.0 ND	O.O NTD
172 (CL7)	0.0 ND	0.0 ND
191 (CL7)	0.0 ND	O.O NTD
201 (CL8)	0.0 NTD	0.0 ND
196 (CL8)	0.0 ND	0.0 ND
189 (CL7)	0.0 ND	0.0 ND
194 (CL8)	0.0 ND	0.0 ND
205 (CL9)	0.0 ND	0.0 ND
Surrogate Recoveries	S	
DBOFB%:	72	58
PCB#103%:	80	69
PCB#198%:	76	68

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK		STATION 32
LABSAMNO:	Q9003	Q9004	C13771	Q9001
SAMPLE TYPE:	BLANK	LBS	SAMP	MS
COLLECTION DATE:			09/01/93	09/01/93
RECEIPT DATE:			09/26/93	09/26/93
QCBATCH:	M2065	M2065	M2065	M2065
EXTRACTION DATE:	05/16/94	05/16/94	05/16/94	05/16/94
METHOD:	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	06/14/94	06/14/94	06/15/94	06/14/94
METHOD:	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	05/31/94	05/31/94	06/01/94	06/01/94
METHOD:	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	07/09/94	07/09/94	07/09/94	07/09/94
MATRIX:	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
SUBMAT:				
WETWT:			20.24	20.28
DRYWT:	10.00	10.00	17.33	17.33
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:			85.6%	85.5%
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Lipid Weight				
% LIPIDS:				
Surrogate Recoveri	es			
ALKANES:				
C12ALKD:	88	89	95	92
C20ALKD:	80	83	86	90
C24ALKD:	83	83	88	89
C30ALKD:	86	84	91	91
PAH's:				
NAPHD8:	65	74	81	70
ACEND10:	63	76	83	72
PHEND10:	68	89	86	81
CHRYD12:	67	78	80	78
PERYD12:	36 Q	56	63	64
PESTICIDES & PCB's	:			
DBOFB:	73	102	81	80
PCB#103:	76	102	83	86
PCB#198:	76	106	82	90

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 32	
LABSAMNO:	Q9003	Q9004	C13771	Q9001	
Alkanes and					
Isoprenoids	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
UNIT:	ng/g	8	ng/g	ê	
C10	8 J	NA	7 J	NA	
C11	0 ND	NA	0 ND	NA	
C12	3 Ј	101	1 J	99	
C13	0 NTD	NA	0 ND	NA	
C14	0 ND	NA	0 ND	NA	
C15	7 J	111.	5 J	108	
C16	0 ND	NA	O ND	- NA	
C17	0 ND	112	0 ND	111	
PRISTANE	0 ND	108	0 ND	108	
C18	O ND	99	O ND	99	
PHYTANE	0 ND	NA	0 ND	NA NA	
C19	0 ND	NA	0 ND	NA NA	
C20	0 ND	93	0 ND	93	
C21	0 ND	91	0 ND	91	
C22	0 ND	NA	O ND	NA NA	
C23	0 ND	NA	0 ND	NA NA	
C24	0 ND	97	0 ND	97	
C25	0 ND	NA	0 ND	NA.	
C26	0 ND	NA	0 ND	NA NA	
227	0 ND	NA.	4 J	NA NA	
C28	O ND	95	0 ND	96	
C29	O ND	NA	3 J	NA.	
C30	0 ND	96	O ND	96	
231	0 ND	NA.	O ND	NA NA	
C32	0 ND	88	O ND	NA 89	
C33	0 ND	NA.	O ND		
234	0 ND	91	0 ND	NA 92	
TOT ALKANES	18	NA	20	NA	
JNIT:	ug/g		ug/g		
		AVG % RECOV		AVG % RECOV	
JCM	1.3 J	99	0.2 J	98	
Surrogate Recover	ies				
C12ALKD:	88	89	95	92	
C20ALKD:	80	83	86	90	
C24ALKD:	83	83	88	89	
C30ALKD:	86	84	91	91	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-DO-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 32	
LABSAMNO:	Q9003	Q9004	C13771	Q9001	
UNIT:	ng/g	8	ng/g	8	
PNA Analyte	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
NAPHTHALENE	1.0 J	101	0.7 J	97	
C1-NAPHTHALENES	2.2 J	NA	0.8 J	NA	
C2-NAPHTHALENES	ND	NA	ND	NA	
C3-NAPHTHALENES	ND	NA	ND	NA	
C4-NAPHTHALENES	ND	NA	ND	NA	
BIPHENYL	1.0 J	99	0.5 J	95	
ACENAPHTHYLENE	0.6 J	90	0.1 J	94	
ACENAPHTHENE	0.4 J	96	0.2 J	100	
FLUORENE	0.4 J	96	0.1 J	. 96	
C1-FLUORENES	ND	NA	ND	NA	
C2-FLUORENES	ND	NA	ND	NA	
C3-FLUORENES	ND	NA	ND	NA	
PHENANTHRENE	0.6 J	79	0.3 J	84	
ANTHRACENE	0.2 J	57	0.1 J	54	
C1-PHEN_ANTHR	ND	MA	ND	NA	
C2-PHEN_ANTHR	ND	NA	ND	NA	
C3-PHEN_ANTHR	ND	NA	ND	NA	
C4-PHEN_ANTHR	ND	NA	ND	NA	
DIBENZOTHIO	0.5 J	60	0.1 J	61	
C1-DIBEN	ND	NA	ND	NA	
C2-DIBEN	ND	NA	ND	NA	
C3-DIBEN	ND	NA	ND	NA	
FLUORANTHENE	0.1 J	90	0.1 J	93	
PYRENE	0.3 J	84	0.2 J	94	
C1-FLUORAN_PYR	ND	NA	ND	NA	
BENAANTHRACENE	0.1 J	74	0.1 J	82	
CHRYSENE	0.1 J	91	0.0 J	94	
C1-CHRYSENES	ND	NA	ND	NA	
C2-CHRYSENES	ND	NA	ND	NA	
C3-CHRYSENES	ND	NA	ND	NA	
C4-CHRYSENES	ND	NA	ND	NA	
BENDFLUORAN	0.0 J	89	0.1 J	101	
BENKFLUORAN	0.0 J	95	0.1 J	84	
BENepyrene	0.2 J	89	0.1 J	97	
BENAPYRENE	0.1 J	75	0.2 J	75	
PERYLENE	0.1 J	76	0.3 J	72	
I123cdPYRENE	0.1 J	55	0.1 J	60	
DBahANTHRA	0.0 J	54	0.0 J	55	
BghiPERYLENE	0.0 J	71	0.0 3	71	
TOTAL PAH's	7.8 J	AVG % RECOV	3.7 J	AVG % RECOV	
(w/o PERYLENE)		83		85	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 32	
LABSAMNO:	Q9003	Q9004	C13771	Q9001	
UNIT:	ng/g	*	ng/g	Si Si	
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
2-METHYLNAPH	1.1 J	91	0.5 J	85	
1-METHYLNAPH	1.1 J	100	0.2 J	100	
2,6-DIMETHNAPH	0.7 J	88	0.3 Ј	91	
1,6,7-TRIMETHNAPH	0.7 J	85	0.1 J	89	
1-METHYLPHEN	0.2 J	78	0.1 J	- 88	
Surrogate Recoveries	s				
NAPHD8:	65	74	81	70	
ACEND10:	63	76	83	72	
PHEND10:	68	89	86	81	
CHRYD12:	67	78	80	78	
PERYD12:	36 Q	56	63	64	

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK		STATION 32
LABSAMNO:	Q9003	Q9004	C13771	Q9001
UNIT:	ng/g	8	ng/g	*
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
TOTAL BHCs	0.0 ND		0.0 ND	
TOT CHLORDANES (ALL)	0.0 ND	AVERAGE %	0.0 ND	AVERAGE %
TOT CHLORDANES (S&T)	0.0 ND	RECOVERY	0.0 ND	RECOVERY
TOTAL DDTs	0.0 ND	92	0.0 ND	8 9
TOTAL PCBs	0.8 J		0.4 J	
ALPHA-BHC	0.0 ND	89	0.0 ND	- 82
HCB	0.0 ND	88	0.0 NTD	83
BETA-BHC	0.0 ND	73	0.0 ND	71
GAMMA-BHC	0.0 ND	90	0.0 NTD	83
DELTA-BHC	0.0 ND	94	0.0 NTD	91
HEPTACHLOR	0.0 ND	81	0.0 NTD	75
HEPTA-EPOXIDE	0.0 ND	76	0.0 ND	77
OXYCHLORDANE	0.0 ND	103	0.0 ND	94
GAMMA-CHLORDANE	0.0 ND	94	0.0 ND	90
ALPHA-CHLORDANE	0.0 ND	88	0.0 ND	86
TRANS-NONACHLOR	0.0 ND	84	0.0 ND	81
CIS-NONACHLOR	0.0 ND	95	0.0 ND	93
ALDRIN	0.0 ND	83	0.0 ND	79
DIELDRIN	0.0 ND	82	0.0 ND	80
ENDRIN	0.0 ND	97	0.0 ND	94
MIREX	0.0 ND	89	0.0 ND	88
2,4'DDE (O,P'DDE)	0.0 ND	75	0.0 ND	74
4,4'DDE (P,P'DDE)	0.0 ND	80	0.0 ND	77
2,4'DDD (0,P'DDD)	0.0 ND	79	0.0 ND	77
4,4'DDD (P,P'DDD)	0.0 ND	96	0.0 NTD	95
2,4'DDT (O,P'DDT)	0.0 ND	96	0.0 NTD	90
4,4'DDT (P,P'DDT)	0.0 ND	90	0.0 ND	82

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK		STATION 32
ABSAMNO:	Q9003	Q9004	C13771	Q9001
NIT:	ng/g	§	ng/g	8
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
# (CLORINATION)				
AA S&T PCBs				
(CL2)	0.0 ND	101	0.0 ND	95
8 (CL3)	0.0 ND	94	0.0 ND	89
(CL3)	0.0 ND	95	0.0 ND	89
(CL4)	0.0 ND	98	0.0 ND	94
(CL4)	0.0 ND	98	0.0 ND	95
(CL4)	0.0 ND	96	0.0 ND	94
1 (CL5)	0.0 ND	94	0.0 ND	94
5 (CL5)	0.0 ND	94	0.0 ND	91
)/77 (CL5/4)	0.0 ND	118	0.0 ND	118
8/108/149(CL5/5/6)	0.0 ND	99	0.0 ND	99
3 (CL6)	0.0 ND	99	0.0 ND	92
8 (CL6)	0.1 J	98	0.0 ND	92
(CL5)	0.0 NTD	110	0.0 ND	110
(CL6)	0.0 ND	77	0.0 ND	77
(CL7)	0.7	109	0.4	89
(CL7)	0.0 ND	92	0.0 ND	92
/182/159(CL7/7/6)	0.0 ND	97	0.0 ND	96
(CL8)	0.0 ND	96	0.0 ND	95
(CL9)	0.0 ND	86	0.0 ND	85
(CL10)	0.0 ND	97	0.0 ND	96
HER PCB CONGENERS				
(CL2)	0.0 ND	NA	0.0 ND	NA
(CL2)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 NTD	NA
32 (CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 NTD	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	98	0.0 ND	94
(CL3)	0.0 ND	NA	0.0 ND	NA
(CL3)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 NTD	NA
/48 (CL4)	0.0 ND	NA	0.0 ND	NA
42 (CL4)	0.0 ND	NA	0.0 ND	NA
/64 (CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 ND	NA
(CL4)	0.0 ND	NA	0.0 NTD	NA

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-DO-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 32	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK		STATION 32
LABSAMNO:	Q9003	Q9004	C13771	Q9001
UNIT:	ng/g	8	ng/g	8
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
PCB #(CHLORINATION)			_	
70 (CL4)	0.0 ND	NA	0.0 ND	NA
88 (CL5)	0.0 ND	NA	0.0 ND	NA
60/56 (CL5)	0.0 ND	NA	0.0 ND	NA
92? (CL5)	0.0 ND	NA	0.0 NTD	NA
84? (CL5)	0.0 ND	NA	0.0 ND	NA
99 (CL5)	0.0 ND	NA	0.0 ND	NA
83 (CL5)	0.0 NTD	NA	0.0 ND	NA NA
97 (CL5)	0.0 ND	NA	0.0 ND	NA
87 (CL5)	0.0 ND	96	0.0 ND	94
85 (CL5)	0.0 ND	NA	0.0 ND	NA
136 (CL6)	0.0 ND	NA	0.0 ND	NA
82 (CL5)	0.0 ND	NA	0.0 ND	NA
151 (CL6)	0.0 ND	NA	0.0 ND	NA
107/108/144 (CL5/5/6)	0.0 ND	NA	0.0 ND	NA
L49 (CL6)	0.0 ND	NA	0.0 ND	NA
L88 (CL7)	0.0 ND	96	0.0 ND	98
146 (CL6)	0.0 ND	NA	0.0 ND	NA
L41 (CL6)	0.0 ND	NA	0.0 ND	NA
137 (CL6)	0.0 ND	NA	0.0 ND	NA
UNK (CL6)	0.0 ND	NA	0.0 ND	NA
158 (CL7)	0.0 ND	NA	0.0 ND	NA
129 (CL6)	0.0 ND	NA	0.0 ND	NA
178 (CL7)	0.0 ND	NA	0.0 ND	NA
183 (CL7)	0.0 ND	NA	0.0 ND	NA
167 (CL6)	0.0 ND	NA	0.0 ND	NA
185 (CL7)	0.0 ND	NA	0.0 ND	NA.
174 (CL7)	0.0 ND	NA	0.0 ND	NA
177 (CL7)	0.0 ND	NA	0.0 ND	NA
156/171/202(CL6/7/8)	0.0 ND	NA	0.0 ND	NA
200 (CL8)	0.0 ND	NA	0.0 ND	NA
172 (CL7)	0.0 ND	NA	0.0 ND	NA
191 (CL7)	0.0 ND	NA	0.0 NTD	NA
201 (CL8)	0.0 ND	NA	0.0 NTD	NA
196 (CL8)	0.0 ND	NA	0.0 ND	NA
189 (CL7)	0.0 ND	NA	0.0 NTD	NA
194 (CL8)	0.0 ND	NA	0.0 ND	NA
205 (CL9)	0.0 ND	NA	0.0 ND	NA
Surrogate Recoveries	3			
OBOFB*:	73	102	81	80
PCB#103%:	76	102	83	86
PCB#198%:	76	106	82	90

STATION 32	LAB QA SAMPLE
	STATION 32
C13771	Q9002
SAMP	DUP
09/01/93	09/01/93
09/26/93	09/26/93
M2065	M2065
05/16/94	05/16/94
GCFID	GCFID
06/15/94	06/14/94
GCMS	GCMS
06/01/94	06/01/94
GCECD	GCECD
07/09/94	07/09/94
	SEDIMENTS
20.24	20.47
	17.49
	GRAMS DRY
	85.4%
	001.21
LITERS	LITERS
	2220
60	
95	90
	85
	86
	83
31	03
01	75
	77
	78
	72
	60
	80
83	83
82	83
	C13771 SAMP 09/01/93 09/26/93 M2065 05/16/94 GCFID 06/15/94 GCMS 06/01/94 GCECD

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 32	LAB QA SAMPLE	
ID:		STATION 32	
LABSAMNO:	C13771	Q9002	
Alkanes and			
Isoprenoids	Conc DB QUAL	Conc DB QUAL	% RPD
UNIT:	ng/g	ng/g	
C10	7 J	4 J	
C11	0 ND	0 ND	
C12	1 J	1 J	
C13	0 ND	0 ND	
C14	0 ND	0 ND	
C15	5 J	4 J	
C16	0 ND	0 ND	•
C17	0 ND	0 ND	
PRISTANE	0 ND	0 ND	
C18	0 ND	0 ND	
PHYTANE	0 ND	0 ND	
C19	0 ND	0 ND	
C20	0 ND	0 ND	
C21	0 ND	0 ND	
C22	0 ND	2 J	
C23	0 ND	2 Ј	
C24	0 ND	4 J	
C25	0 ND	0 ND	
C26	0 ND	0 ND	
C27	4 J	4 J	
C28	0 ND	1 J	
C29	3 J	3 Ј	
C30	0 ND	0 ND	
C31	0 ND	0 ND	
C32	. 0 ND	O ND	
C33	0 ND	0 ND	
C34	0 ND	O ND	
TOT ALKANES	20	25	19
UNIT:	ug/g	ug/g	
UCM	0.2 J	0.4 J	
Surrogate Recoveri	es		
C12ALKD:	95	90	
C20ALKD:	86	85	
C24ALKD:	88	86	
C30ALKD:	91	83	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 32	LAB QA SAMPLE	
ID:		STATION 32	
LABSAMNO:	C13771	Q9002	
UNIT:	ng/g	ng/g	
PNA Analyte	Conc DB QUAL	Conc DB QUAL	% RPD
NAPHTHALENE	0.7 J	0.6 J	
C1-NAPHTHALENES	0.8 J	0.9 J	
C2-NAPHTHALENES	ND	ND	
C3-NAPHTHALENES	ND	ND	
C4-NAPHTHALENES	ND	ND	
BIPHENYL	0.5 J	0.4 J	
ACENAPHTHYLENE	0.1 J	0.1 J	
ACENAPHTHENE	0.2 J	0.2 J	
FLUORENE	0.1 J	0.2 J	•
C1-FLUORENES	ND	ND	
C2-FLUORENES	ND	ND	
C3-FLUORENES	ND	ND	
PHENANTHRENE	0.3 J	0.3 J	
ANTHRACENE	0.1 J	0.2 J	
C1-PHEN_ANTHR	ND	ND	
C2-PHEN_ANTHR	ND	ND	
C3-PHEN_ANTHR	ND	ND	
C4-PHEN_ANTHR	ND	ND	
DIBENZOTHIO	0.1 J	0.1 J	
C1-DIBEN	ND	ND	
C2-DIBEN	ND	ND	
C3-DIBEN	ND	ND	
FLUORANTHENE	0.1 J	0.2 J	
PYRENE	0.2 J	0.1 J	
C1-FLUORAN_PYR	ND	ND	
BENAANTHRACENE	0.1 J	0.0 J	
CHRYSENE	0.0 J	0.1 J	
C1-CHRYSENES	ND	ND	
C2-CHRYSENES	ND	ND	
C3-CHRYSENES	ND	ND	
C4-CHRYSENES	ND	ND	
BENDFLUORAN	0.1 J	0.1 Ј	
BENKFLUORAN	0.1 J	0.1 J	
BENePYRENE	0.1 J	0.0 J	
BENapyrene	0.2 J	0.0 J	
PERYLENE	0.3 J	0.3 J	
I123cdPYRENE	0.1 J	0.1 J	
DBahANTHRA	0.0 J	0.0 J	
BghiPERYLENE	0.0 J	0.0 J	
TOTAL PAH's	3.7 J	3.7 J	
(w/o PERYLENE)			

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

STATION 32	LAB QA SAMPLE			
	STATION 32			
C13771	Q9002			
ng/g	ng/g			
Conc DB QUAL	Conc DB QUAL	% RPD		
0.5 J	0.6 J			
0.2 Ј	0.2 J			
0.3 J	0.4 J			
0.1 J	0.6 J			
0.1 J	0.1 J		•	
81	75			
83	77			
86	78			
80	72			
63	60			
	C13771 ng/g Conc DB QUAL 0.5 J 0.2 J 0.3 J 0.1 J 0.1 J	STATION 32 C13771 Q9002 ng/g ng/g Conc DB QUAL Conc DB QUAL 0.5 J 0.6 J 0.2 J 0.2 J 0.3 J 0.4 J 0.1 J 0.6 J 0.1 J 0.1 J	STATION 32 C13771 Q9002 ng/g ng/g Conc DB QUAL Conc DB QUAL % RPD 0.5 J 0.6 J 0.2 J 0.2 J 0.3 J 0.4 J 0.1 J 0.6 J 0.1 J 0.1 J	STATION 32 C13771 Q9002 ng/g ng/g Conc DB QUAL Conc DB QUAL % RPD 0.5 J 0.6 J 0.2 J 0.2 J 0.3 J 0.4 J 0.1 J 0.6 J 0.1 J 0.1 J

INVEST#:	STATION 32	LAB QA SAMPLE		
ID:		STATION 32		
LABSAMNO:	C13771	Q9002		
UNIT:	ng/g	ng/g		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD	
TOTAL BHCs	0.0 ND	0.0 ND		
TOT CHLORDANES (ALL)	0.0 ND	0.0 ND		
TOT CHLORDANES (S&T)	0.0 ND	0.0 ND		
TOTAL DDTs	0.0 ND	0.0 ND		
TOTAL PCBs	0.4 J	0.4 J		
ALPHA-BHC	0.0 ND	0.0 ND		
HCB	0.0 ND	0.0 ND		
BETA-BHC	0.0 ND	0.0 ND		
GAMMA-BHC	0.0 ND	0.0 ND		
DELTA-BHC	0.0 ND	0.0 ND		
HEPTACHLOR	0.0 ND	0.0 ND		
HEPTA-EPOXIDE	0.0 ND	0.0 ND		
OXYCHLORDANE	0.0 ND	0.0 ND		
GAMMA-CHLORDANE	0.0 ND	0.0 ND		
ALPHA-CHLORDANE	0.0 ND	0.0 ND		
TRANS-NONACHLOR	0.0 ND	0.0 ND		
CIS-NONACHLOR	0.0 ND	0.0 ND		
ALDRIN	0.0 ND	0.0 ND		
DIELDRIN	0.0 ND	0.0 ND		
ENDRIN	0.0 ND	0.0 ND		
MIREX	0.0 ND	0.0 ND		
2,4'DDE (0,P'DDE)	0.0 ND	0.0 ND		
4,4'DDE (P,P'DDE)	0.0 ND	0.0 ND		
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND		
4,4'DDD (P,P'DDD)	0.0 ND	0.0 ND		
2,4'DDT (0,P'DDT)	0.0 ND	0.0 ND		
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND		

INVEST#:	STATION 32	LAB QA SAMPLE
ID:		STATION 32
LABSAMNO:	C13771	Q9002
UNIT:	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL % RPD
PCB # (CLORINATION)		
NOAA S&T PCBs		
8 (CL2)	0.0 ND	0.0 ND
18 (CL3)	0.0 ND	0.0 ND
28 (CL3)	0.0 ND	0.0 ND
44 (CL4)	0.0 ND	0.0 ND
52 (CL4)	0.0 ND	0.0 ND
66 (CL4)	0.0 ND	0.0 ND
101 (CL5)	0.0 ND	0.0 ND
105 (CL5)	0.0 ND	0.0 ND
110/77 (CL5/4)	0.0 ND	0.0 ND
118/108/149(CL5/5/6	0.0 ND	0.0 ND
128 (CL6)	0.0 ND	0.0 ND
138 (CL6)	0.0 ND	0.0 ND
126 (CL5)	0.0 ND	0.0 ND
153 (CL6)	0.0 ND	0.0 ND
170 (CL7)	0.4	0.4
180 (CL7)	0.0 ND	0.0 ND
187/182/159(CL7/7/6	0.0 ND	0.0 ND
195 (CL8)	0.0 ND	0.0 ND
206 (CL9)	0.0 ND	0.0 ND
209 (CL10)	0.0 ND	0.0 ND
OTHER PCB CONGENERS		
7 (CL2)	0.0 ND	0.0 ND
15 (CL2)	0.0 ND	0.0 ND
24 (CL3)	0.0 ND	0.0 ND
16/32 (CL3)	0.0 ND	0.0 ND
29 (CL3)	0.0 ND	0.0 ND
26 (CL3)	0.0 NTD	0.0 ND
25 (CL3)	0.0 ND	0.0 ND
50 (CL4)	0.0 ND	0.0 ND
33 (CL3)	0.0 ND	0.0 ND
22 (CL3)	0.0 ND	0.0 ND
45 (CL4)	0.0 ND	0.0 ND
46 (CL4)	0.0 ND	0.0 ND
49 (CL4)	0.0 ND	0.0 ND
47/48 (CL4)	0.0 ND	0.0 ND
37/42 (CL4)	0.0 ND	0.0 ND
41/64 (CL4)	0.0 ND	0.0 ND
40 (CL4)	0.0 ND	0.0 MD
74 (CL4)	0.0 ND	0.0 ND

INVEST#:	STATION 32	LAB QA SAMPLE	
ID:		STATION 32	
LABSAMNO:	C13771	Q9002	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Cone DB QUAL	% RPD
PCB #(CHLORINATION)			
70 (CL4)	0.0 ND	0.0 ND	
88 (CL5)	0.0 ND	0.0 ND	
60/56 (CL5)	0.0 ND	0.0 ND	
92? (CL5)	0.0 ND	0.0 ND	
84? (CL5)	0.0 ND	0.0 ND	
99 (CL5)	0.0 ND	O.O NID	
83 (CL5)	0.0 NTD	O.O ND	•
97 (CL5)	0.0 NTD	0.0 ND	
87 (CL5)	0.0 ND	0.0 ND	
85 (CL5)	0.0 ND	0.0 ND	
136 (CL6)	0.0 ND	0.0 ND	
82 (CL5)	0.0 ND	O.O ND	
151 (CL6)	0.0 ND	O.O ND	
107/108/144 (CL5/5/6)	0.0 ND	0.0 ND	
149 (CL6)	0.0 ND	0.0 ND	
188 (CL7)	0.0 NTD	0.0 ND	
146 (CL6)	0.0 ND	0.0 ND	
141 (CL6)	0.0 ND	0.0 ND	
137 (CL6)	0.0 ND	0.0 ND	
UNK (CL6)	0.0 ND	0.0 ND	
158 (CL7)	0.0 ND	0.0 ND	
129 (CL6)	0.0 NTD	0.0 ND	
178 (CL7)	0.0 NTD	0.0 ND	
183 (CL7)	0.0 NTD	0.0 ND	
167 (CL6)	0.0 ND	0.0 ND	
185 (CL7)	0.0 ND	0.0 ND	
174 (CL7)	0.0 ND	0.0 ND	
177 (CL7)	0.0 ND	0.0 ND	
156/171/202 (CL6/7/8)	0.0 ND	0.0 ND	
200 (CL8)	0.0 ND	0.0 ND	
172 (CL7)	0.0 ND	0.0 NTD	
191 (CL7)	0.0 ND	0.0 ND	
201 (CL8)	0.0 ND	0.0 ND	
196 (CL8)	0.0 ND	0.0 ND	
189 (CL7)	0.0 ND	0.0 ND	
194 (CL8)	0.0 ND	0.0 ND	
205 (CL9)	0.0 ND	0.0 ND	
Surrogate Recoveries	5		
DBOFB%:	81	80	
PCB#103%:	83	83	
PCB#198%:	82	83	

TATEOR!	TAN OR CAMPIT	TAR ON CAMPTE	CERTACINE CA	
INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 54	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK	G1 2 7 0 1	STATION 54
LABSAMNO:	Q9084	Q9085	C13781	Q9082
SAMPLE TYPE:	BLANK	LBS	SAMP	MS
COLLECTION DATE:			09/08/93	09/08/93
RECEIPT DATE:			09/26/93	09/26/93
QCBATCH:	M2075	M2075	M2075	M2075
EXTRACTION DATE:	05/26/94	05/26/94	05/26/94	05/26/94
METHOD:	GCFID	GCFID	GCFID	GCFID
ANALYSIS DATE:	06/09/94	06/09/94	06/10/94	06/09/94
METHOD:	GCMS	GCMS	GCMS	GCMS
ANALYSIS DATE:	06/02/94	06/03/94	06/03/94	06/02/94
METHOD:	GCECD	GCECD	GCECD	GCECD
ANALYSIS DATE:	07/10/94	07/10/94	07/10/94	07/10/94
MATRIX:	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
SUBMAT:				
WETWT:			20.07	20.13
DRYWT:	10.00	10.00	14.86	14.90
WTUNITS:	GRAMS DRY	GRAMS DRY	GRAMS DRY	GRAMS DRY
PCTSOLIDS:			74.0%	74.0%
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Lipid Weight				
: LIPIDS:				
Surrogate Recoveri	es			
ALKANES:				
C12ALKD:	75	81	82	82
C20ALKD:	69	84	73	79
C24ALKD:	74	82	77	78
C30ALKD:	73	83	76	81
PAH's:				
NAPHD8:	80	80	81	69
ACEND10:	77	81	78	68
PHEND10:	75	98	80	84
CHRYD12:	73	84	73	80
PERYD12:	23 Q	51	62	64
PESTICIDES & PCB's	:			
DBOFB:	100	83	91	105
PCB#103:	98	88	93	107
PCB#198:	105	93	97	115

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 54	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 54	
LABSAMNO:	Q9084	Q9085	C13781	Q9082	
Alkanes and					
Isoprenoids	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
UNIT:	ng/g	*	ng/g	¥	
C10	0 ND	NA	8 J	NA	
C11	O NTD	NA	0 ND	NA	
C12	0 ND	95	0 ND	73	
C13	0 ND	NA	0 ND	NA	
C14 .	O ND	NA	0 ND	NA	
C15	31	105	18	79	
C16	0 ND	NA	O ND	NA	
C17	. O ND	108	0 ND	83	
PRISTANE	0 ND	106	O ND	81	
C18	O ND	96	O ND	74	
PHYTANE	0 ND	NA	0 ND	NA	
C19	0 ND	NA	4	NA	
C20	0 ND	91	3 J	70	
C21	0 ND	89	12	68	
C22	O ND	NA	13 J	NA	
C23	3 J	NA	38	NA	
C24	5 J	96	18	72	
C25	5 J	NA	49	NA	
C26	4 J	NA	20	NA	
C27	3 J	NA	66	NA	
C28	0 ND	93	11 J	72	
C29	0 ND	NA	46	NA	
C30	0 ND	94	0 ND	74	
C31	0 ND	NA	30	NA	
C32	0 ND	87	0 ND	68	
C33	0 ND	NA	0 ND	NA	
C34	0 ND	88	0 ND	69	
TOT ALKANES	51	NA	334	NA	
UNIT:	ug/g		ug/g		
		AVG % RECOV		AVG % RECOV	
UCM	2.6 J	96	0.3 J	74	
Surrogate Recove	eries	10-			
C12ALKD:	75	81	82	82	
C20ALKD:	69	84	73	79	
C24ALKD:	74	82	77	78	
C30ALKD:	73	83	76	81	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE PROC BLANK	LAB QA SAMPLE SPIKE BLANK	STATION 54	LAB QA SAMPLE STATION 54	
LABSAMNO:	Q9084	Q9085	C13781	Q9082	
UNIT:	ng/g	8	ng/g	8	
PNA Analyte		Recovery DB QUAL		Recovery DB QUAL	
NAPHTHALENE	1.3 Ј	98	1.2 J	97	·
C1-NAPHTHALENES	1.0 J	NA	2.1 J	NA	
C2-NAPHTHALENES	ND	NA	1.5 J	NA	
C3-NAPHTHALENES	ND	NA	4.3 J	NA	
C4 - NAPHTHALENES	ND	NA	ND	NA	
BIPHENYL	0.6 J	93	0.7 J	100	
ACENAPHTHYLENE	0.2 J	86	0.1 J	89	
ACENAPHTHENE	0.7 J	92	0.4 J	98	
FLUORENE	0.4 J	91	0.4 J	97	
C1-FLUORENES	ND	NA	ND	NA	
C2-FLUORENES	ND	NA	ND	NA	
C3-FLUORENES	ND	NA	ND	NA	
PHENANTHRENE	0.3 J	75	0.8 J	78	
ANTHRACENE	0.2 J	66	0.1 J	53	
C1-PHEN_ANTHR	ND	NA	0.9 J	NA	
C2-PHEN_ANTHR	ND	NA	1.1 J	NA	
C3-PHEN_ANTHR	ND	NA	ND	NA	
C4-PHEN_ANTHR	ND	NA	ND	NA	
DIBENZOTHIO	0.2 J	71	0.2 J	59	
C1-DIBEN	ND	NA	ND	NA	
C2-DIBEN	ND	NA	ND	NA	
C3-DIBEN	ND	NA	ND	NA	
FLUORANTHENE	0.3 J	85	0.5 J	92	
PYRENE	0.2 J	84	0.4 J	89	
C1-FLUORAN_PYR	ND	NA	ND	NA	
BENAANTHRACENE	0.1 J	95	0.1 J	73	
CHRYSENE	0.2 J	92	0.4 J	88	
C1-CHRYSENES	ND	NA	ND	NA	
C2-CHRYSENES	ND	NA	ND	NA	
C3-CHRYSENES	ND	NA	ND	NA	
C4-CHRYSENES	ND	NA	ND	NA	
BENDFLUORAN	0.0 J	87	0.3 J	83	
BENKFLUORAN	0.1 J	87	0.6 J	85	
BENepyrene	0.0 J	91	0.3 J	87	
BENapyrene	0.0 ND	81	0.1 J	73	
PERYLENE	0.1 J	98	2.2 J	77	
I123cdPYRENE	0.1 J	74	0.2 J	63	
DBahANTHRA	0.1 J	72	0.1 J	41	
BghiPERYLENE	0.1 J	78	0.2 J	50	
TOTAL PAH's	6.0 J	AVG % RECOV	16.7 J	AVG % RECOV	
(w/o PERYLENE)		86		80	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 54	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 54	
LABSAMNO:	Q9084	Q9085	C13781	Q9082	
UNIT:	ng/g	*	ng/g	*	
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
2-METHYLNAPH	0.6 J	91	1.2 J	84	
1-METHYLNAPH	0.4 J	98	0.8 J	95	
				•	
2,6-DIMETHNAPH	0.4 J	93	0.4 J	96	
1,6,7-TRIMETHNAPH	0.4 J	94	0.5 J	84	
1-METHYLPHEN	0.3 J	76	0.3 J	· 78	
Surrogate Recoveries	3				
NAPHD8:	80	80	81	69	
ACEND10:	77	81	78	68	
PHEND10:	75	98	80	84	
CHRYD12:	73	84	73	80	
PERYD12:	23 Q	51	62	64	

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 54	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 54	
LABSAMNO:	Q9084	Q9085	C13781	Q9082	
UNIT:	ng/g	*	ng/g	*	
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
	-	***			
TOTAL BHCs	0.0 ND		0.0 ND		
TOT CHLORDANES (ALL)	0.0 ND	AVERAGE %	0.0 ND	AVERAGE %	
TOT CHLORDANES (S&T)	0.0 ND	RECOVERY	0.0 ND	RECOVERY	
TOTAL DDTs	0.0 ND	104	0.0 ND	105	
TOTAL PCBs	0.2 J		0.2 J		
ALPHA-BHC	0.0 ND	93	0.0 ND	- 99	
HCB	0.0 ND	97	0.0 NTD	99	
BETA-BHC	0.0 ND	80	0.0 ND	82	
GAMMA-BHC	0.0 ND	97	0.0 ND	103	
DELTA-BHC	0.0 ND	103	0.0 ND	107	
HEPTACHLOR	0.0 ND	93	0.0 ND	82	
HEPTA-EPOXIDE	0.0 ND	88	0.0 NTD	92	
OXYCHLORDANE	0.0 ND	116	0.0 ND	114	
GAMMA-CHLORDANE	0.0 ND	105	0.0 NTD	105	
ALPHA-CHLORDANE	0.0 ND	101	0.0 ND	101	
TRANS-NONACHLOR	0.0 ND	96	0.0 ND	97	
CIS-NONACHLOR	0.0 ND	107	0.0 ND	106	
ALDRIN	0.0 ND	92	0.0 ND	95	
DIELDRIN	0.0 ND	94	0.0 ND	96	
ENDRIN	0.0 ND	99	0.0 ND	105	
MIREX	0.0 ND	107	0.0 ND	104	
2,4'DDE (O,P'DDE)	0.0 ND	86	0.0 NTD	86	
4,4'DDE (P,P'DDE)	0.0 ND	90	0.0 ND	93	
2,4'DDD (0,P'DDD)	0.0 ND	88	0.0 ND	92	
4,4'DDD (P,P'DDD)	0.0 ND	107	0.0 ND	116	
2,4'DDT (O,P'DDT)	0.0 ND	112	0.0 ND	102	
4,4'DDT (P,P'DDT)	0.0 ND	106	0.0 ND	91	

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 54	LAB QA SAMPLE
ID:	PROC BLANK	SPIKE BLANK		STATION 54
LABSAMNO:	Q9084	Q9085	C13781	Q9082
UNIT:	ng/g	*	ng/g	8
Analyte (Cont)	Conc DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL
PCB # (CLORINATION)				
NOAA S&T PCBs				
8 (CL2)	0.0 ND	106	0.0 ND	106
18 (CL3)	0.0 ND	104	0.0 ND	104
28 (CL3)	0.0 ND	108	0.0 ND	106
44 (CL4)	0.0 ND	112	0.0 ND	112
52 (CL4)	0.0 ND	112	0.0 ND	111
66 (CL4)	0.0 ND	109	0.0 ND	110
101 (CL5)	0.0 ND	111	0.0 ND	. 109
105 (CL5)	0.0 ND	110	0.0 ND	109
110/77 (CL5/4)	0.0 ND	129 Q	0.0 ND	129 Q
118/108/149(CL5/5/6)	0.0 ND	116	0.0 ND	119
128 (CL6)	0.0 ND	114	0.0 ND	115
138 (CL6)	0.0 NTD	108	0.0 ND	110
126 (CL5)	0.0 ND	125 Q	0.0 ND	124 Q
153 (CL6)	0.0 ND	91	0.0 ND	90
170 (CL7)	0.2 J	111	0.2	107
180 (CL7)	0.0 ND	107	0.0 ND	108
187/182/159(CL7/7/6)	0.0 NTD	114	0.0 ND	113
195 (CL8)	0.0 ND	113	0.0 ND	113
206 (CL9)	0.0 ND	97	0.0 ND	101
209 (CL10)	0.0 ND	114	0.0 ND	114
OTHER PCB CONGENERS				
7 (CL2)	0.0 ND	NA	0.0 ND	NA
15 (CL2)	0.0 ND	NA	0.0 ND	NA
24 (CL3)	0.0 ND	NA	0.0 ND	NA
16/32 (CL3)	0.0 ND	NA	0.0 ND	NA
29 (CL3)	0.0 ND	NA	0.0 ND	NA
26 (CL3)	0.0 ND	NA	0.0 ND	NA
25 (CL3)	0.0 ND	NA	0.0 ND	NA
50 (CL4)	0.0 ND	110	0.0 ND	110
33 (CL3)	0.0 ND	NA	0.0 ND	NA
22 (CL3)	0.0 ND	NA	0.0 ND	NA
45 (CL4)	0.0 ND	NA	0.0 ND	NA
46 (CL4)	0.0 ND	NA	0.0 ND	NA.
49 (CL4)	0.0 ND	NA	0.0 NTD	NA .
47/48 (CL4)	0.0 ND	NA	0.0 ND	NA
37/42 (CL4)	0.0 ND	NA	0.0 NTD	NA
41/64 (CL4)	0.0 ND	NA	0.0 ND	NA.
40 (CL4)	0.0 ND	NA	0.0 ND	NA.
74 (CL4)	0.0 ND		0.0 ND	= -= =

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	STATION 54	LAB QA SAMPLE	
ID:	PROC BLANK	SPIKE BLANK		STATION 54	
LABSAMNO:	Q9084	Q9085	C13781	Q9082	
UNIT:	ng/g	*	ng/g	9	
Analyte (Cont)	Cor.c DB QUAL	Recovery DB QUAL	Conc DB QUAL	Recovery DB QUAL	
PCB #(CHLORINATION)					M
70 (CL4)	0.0 ND	NA	0.0 ND	NA	
88 (CL5)	0.0 ND	NA	0.0 ND	NA	
60/56 (CL5)	0.0 ND	NA	0.0 ND	NA	
92? (CL5)	0.0 ND	NA	0.0 ND	NA	
84? (CL5)	0.0 ND	NA	0.0 ND	NA	
99 (CL5)	0.0 ND	NA	0.0 ND	NA	
83 (CL5)	0.0 ND	NA	0.0 ND	· NA	
97 (CL5)	0.0 ND	NA	0.0 ND	NA	
87 (CL5)	0.0 ND	110	0.0 ND	111	
85 (CL5)	0.0 ND	NA	0.0 ND	NA	
136 (CL6)	0.0 ND	NA	0.0 ND	NA	
82 (CL5)	0.0 ND	NA	0.0 ND	NA	
151 (CL6)	0.0 ND	NA	0.0 ND	NA	
107/108/144 (CL5/5/6)	0.0 ND	NA	0.0 ND	NA	
149 (CL6)	0.0 ND	NA	0.0 ND	NA	
188 (CL7)	0.0 ND	114	0.0 ND	111	
146 (CL6)	0.0 ND	NA	0.0 ND	NA	
141 (CL6)	0.0 ND	NA	0.0 ND	NA	
137 (CL6)	0.0 ND	NA	0.0 ND	NA	
UNK (CL6)	0.0 ND	NA	0.0 ND	NA	
158 (CL7)	0.0 ND	NA	0.0 ND	NA	
129 (CL6)	0.0 ND	NA	0.0 ND	NA	
178 (CL7)	0.0 ND	NA	0.0 ND	NA	
183 (CL7)	0.0 ND	NA	0.0 ND	NA	
167 (CL6)	0.0 ND	NA	0.0 ND	NA	
185 (CL7)	0.0 ND	NA	0.0 ND	NA	
174 (CL7)	0.0 ND	NA	0.0 ND	NA	
177 (CL7)	0.0 ND	NA	0.0 ND	NA	
156/171/202(CL6/7/8)		NA	0.0 ND	NA	
200 (CL8)	0.0 ND	NA	0.0 ND	NA	
172 (CL7)	0.0 ND	NA NA	0.0 ND	NA NA	
191 (CL7)	0.0 ND	NA	0.0 ND	NA NA	
201 (CL8)	0.0 ND	NA	0.0 ND	NA NA	
196 (CL8)	0.0 ND	NA	0.0 ND	NA NA	
189 (CL7)	0.0 ND	NA NA	0.0 ND	NA NA	
194 (CL8) 205 (CL9)	0.0 ND 0.0 ND	NA NA	0.0 ND	NA NA	
Surrogate Recoveries	5				
DBOFB%:	100	83	91	105	
PCB#103%:	98	88	93	107	
PCB#198%:	105	93	97	115	

INVEST#:	STATION 54	LAB QA SAMPLE
ID:		STATION 54
LABSAMNO:	C13781	Q9083
SAMPLE TYPE:	SAMP	DUP
COLLECTION DATE:	09/08/93	09/08/93
RECEIPT DATE:	09/26/93	09/26/93
QCBATCH:	M2075	M2075
EXTRACTION DATE:	05/26/94	05/26/94
METHOD:	GCFID	GCFID
ANALYSIS DATE:	06/10/94	06/09/94
METHOD:	GCMS	GCMS
ANALYSIS DATE:	06/03/94	06/02/94
METHOD:	GCECD	GCECD
ANALYSIS DATE:	07/10/94	07/10/94
MATRIX:	SEDIMENTS	SEDIMENTS
SUBMAT:		
WETWT:	20.07	20.16
DRYWT:	14.86	14.90
WTUNITS:	GRAMS DRY	GRAMS DRY
PCTSOLIDS:	74.0%	73.9%
VOL:	71.00	,3.56
VOLUNITS:	LITERS	LITERS
Lipid Weight	DITERS	LILERS
% LIPIDS:		
Surrogate Recoveri	.es	
ALKANES:	22	53
C12ALKD:	82	73
C20ALKD:	73	67
C24ALKD:	77	70
C30ALKD:	76	72
PAH's:		
NAPHD8:	81	86
ACEND10:	78	82
PHEND10:	80	83
CHRYD12:	73	75
PERYD12:	62	65
PESTICIDES & PCB's	:	
DBOFB:	91	80
PCB#103:	93	83
PCB#198:	97	85

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 54	LAB QA SAMPLE		
ID:		STATION 54		
LABSAMNO:	C13781	Q9083		
Alkanes and	010101	25000		
Isoprenoids	Conc DB QUAL	Conc DB QUAL	% RPD	
UNIT:	ng/g	ng/g		
C10	8 J	11 J		
C11	0 ND	0 ND		
C12	O ND	3 J		
C13	0 ND	0 ND		
C14	0 ND	0 ND		
C15	18	23	22	
C16	0 ND	0 ND		
C17	0 ND	0 ND		
PRISTANE	O ND	6 J		
C18	0 ND	2 J		
PHYTANE	O ND	0 NTD		
C19	4	1 J		
C20	3 Ј	4 J		
C21	12	13	12	
C22	13 J	12 J		
C23	38	37	3	
C24	18	18	4	
C25	49	47	4	
C26	20	17 J		
C27	66	65	2	
C28	11 J	11 J		
C29	46	48	4	
C30	O ND	6 J		
C31	30	38	23	
C32	O ND	3 J		
C33	O ND	11		
C34	0 ND	0 ND		
TOT ALKANES	334	374	11	
UNIT:	ug/g	ug/g		
UCM	0.3 J	0.0 ND		
Surrogate Recoveri	es			
C12ALKD:	82	73		
C20ALKD:	73	67		
C24ALKD:	77	70		
C30ALKD:	76	72		

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	STATION 54	LAB QA SAMPLE	
ID:		STATION 54	
LABSAMNO:	C13781	Q9083	
UNIT:	ng/g	ng/g	
PNA Analyte	Conc DB QUAL	Conc DB QUAL	% RPD
NAPHTHALENE	1.2 J	1.3 J	
C1-NAPHTHALENES	2.1 J	1.6 J	
C2-NAPHTHALENES	1.5 J	1.7 J	
C3-NAPHTHALENES	4.3 J	ND	
C4-NAPHTHALENES	ND	ND	
BIPHENYL	0.7 J	0.7 J	
ACENAPHTHYLENE			
	0.1 J	0.2 J	
ACENAPHTHENE	0.4 J	0.1 J	
FLUORENE	0.4 J	0.3 J	
C1-FLUORENES	ND	ND	
C2-FLUORENES	ND	ND	
C3-FLUORENES	ND	ND	
PHENANTHRENE	0.8 J	0.8 J	
ANTHRACENE	0.1 J	0.1 J	
C1-PHEN_ANTHR	0.9 J	0.9 J	
C2-PHEN_ANTHR	1.1 J	0.8 J	
C3-PHEN_ANTHR	ND	ND	
C4-PHEN_ANTHR	ND	ND	
DIBENZOTHIO	0.2 J	0.2 J	
C1-DIBEN	ND	ND	
C2-DIBEN	ND	ND	
C3-DIBEN	ND	ND	
FLUORANTHENE	0.5 J	0.6 J	
PYRENE	0.4 J	0.4 J	
C1-FLUORAN_PYR	ND	ND	
BENAANTHRACENE	0.1 J	0.2 J	
CHRYSENE	0.4 J	0.4 J	
C1-CHRYSENES	ND	ND	
C2-CHRYSENES	ND	ND	
C3-CHRYSENES	ND	ND	
C4-CHRYSENES	ND	ND	
BENDFLUORAN	0.3 J	0.3 J	
BENKFLUORAN	0.6 J	0.7 J	
BENepyrene	0.3 J	0.3 J	
BENapyrene	0.1 J	0.1 J	
PERYLENE	2.2 J	2.3 J	
I123cdPYRENE	0.2 J	0.2 J	
DBahANTHRA	0.1 J	0.1 J	
BghiPERYLENE	0.2 J	0.3 J	
TOTAL PAH's	16 7 7	12.3 J	
	16.7 J	12.3 0	
(w/o PERYLENE)			

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	STATION 54	LAB QA SAMPLE	
ID:		STATION 54	
LABSAMNO:	C13781	Q9083	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD
2-METHYLNAPH	1.2 J	0.9 J	
1-METHYLNAPH	0.8 J	0.8 J	
2,6-DIMETHNAPH	0.4 J	0.4 J	
1,6,7-TRIMETHNAPH	0.5 J	0.4 J	
1-METHYLPHEN	0.3 J	0.2 J	-
Surrogate Recoverie	es		
NAPHD8:	81	86	
ACEND10:	78	82	
PHEND10:	80	83	
CHRYD12:	73	75	
PERYD12:	62	65	

INVEST#:	STATION 54	LAB QA SAMPLE
ID:		STATION 54
LABSAMNO:	C13781	Q9083
UNIT:	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL % RPD
TOTAL BHCs	0.0 ND	0.0 ND
TOT CHLORDANES (ALL)	0.0 ND	0.0 ND
TOT CHLORDANES (S&T)	0.0 ND	0.0 ND
TOTAL DDTs	0.0 ND	0.0 ND
TOTAL PCBs	0.2 J	0.3 J
ALPHA-BHC	0.0 ND	0.0 ND -
HCB	0.0 ND	0.0 ND
BETA-BHC	0.0 ND	0.0 ND
GAMMA-BHC	0.0 NTD	0.0 ND
DELTA-BHC	0.0 ND	0.0 ND
HEPTACHLOR	0.0 ND	0.0 ND
HEPTA-EPOXIDE	0.0 NTD	0.0 ND
OXYCHLORDANE	0.0 NTD	0.0 ND
GAMMA-CHLORDANE	0.0 ND	0.0 ND
ALPHA-CHLORDANE	0.0 NTD	0.0 ND
TRANS-NONACHLOR	0.0 ND	0.0 ND
CIS-NONACHLOR	0.0 ND	0.0 ND
ALDRIN	0.0 ND	0.0 ND
DIELDRIN	0.0 ND	0.0 ND
ENDRIN	0.0 ND	0.0 ND
MIREX	0.0 ND	0.0 ND
2,4'DDE (0,P'DDE)	0.0 NTD	0.0 ND
4,4'DDE (P,P'DDE)	0.0 NTD	0.0 ND
2,4'DDD (0,P'DDD)	0.0 ND	0.0 ND
4,4'DDD (P,P'DDD)	O.O ND	0.0 ND
2,4'DDT (0,P'DDT)	0.0 ND	0.0 ND
4,4'DDT (P,P'DDT)	0.0 ND	0.0 ND

INVEST#:	STATION 54	LAB QA SAMPLE	
ID:		STATION 54	
LABSAMNO:	C13781	Q9083	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD
PCB # (CLORINATION)			
NOAA S&T PCBs			
8 (CL2)	0.0 ND	0.0 ND	
18 (CL3)	0.0 ND	0.0 ND	
28 (CL3)	0.0 ND	0.0 ND	
44 (CL4)	0.0 ND	0.0 ND	
52 (CL4)	0.0 ND	0.0 ND	
66 (CL4)	0.0 ND	0.0 ND	
101 (CL5)	0.0 ND	0.0 ND	•
105 (CL5)	0.0 ND	0.0 ND	
110/77 (CL5/4)	0.0 ND	0.0 ND	
118/108/149(CL5/5/6)	0.0 ND	0.0 ND	
128 (CL6)	0.0 ND	0.0 ND	
138 (CL6)	0.0 ND	0.1 J	
126 (CL5)	0.0 ND	0.0 ND	
153 (CL6)	0.0 ND	0.0 ND	
170 (CL7)	0.2	0.2	5
180 (CL7)	0.0 ND	0.0 NTD	
187/182/159(CL7/7/6)	0.0 ND	0.0 NTD	
195 (CL8)	0.0 ND	0.0 NTD	
206 (CL9)	0.0 ND	0.0 ND	
209 (CL10)	0.0 ND	0.0 ND	
OTHER PCB CONGENERS			
7 (CL2)	0 0 100	0 0 170	
15 (CL2)	0.0 ND	0.0 ND	
24 (CL3)	0.0 ND	0.0 ND	
16/32 (CL3)	0.0 ND	0.0 ND	
29 (CL3)	0.0 ND	0.0 ND	
26 (CL3)	0.0 ND 0.0 ND	0.0 ND	
25 (CL3)	0.0 ND	0.0 ND	
50 (CL4)		0.0 ND	
33 (CL3)	0.0 ND	0.0 ND	
22 (CL3)	0.0 ND	0.0 ND	
	0.0 ND	0.0 ND	
45 (CL4)	0.0 ND	0.0 ND	
46 (CL4)	0.0 ND	0.0 ND	
49 (CL4) 47/48 (CL4)	0.0 ND	0.0 ND	
	0.0 ND	0.0 ND	
37/42 (CL4)	0.0 ND	0.0 ND	
41/64 (CL4)	0.0 ND	0.0 ND	
40 (CL4) 74 (CL4)	0.0 ND	0.0 ND	

INVEST#:	STATION 54	LAB QA SAMPLE	
ID:		STATION 54	
LABSAMNO:	C13781	Q9083	
UNIT:	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	% RPD
PCB #(CHLORINATION)			
70 (CL4)	0.0 ND	0.0 ND	
88 (CL5)	0.0 ND	0.0 ND	
60/56 (CL5)	0.0 NTD	0.0 ND	
92? (CL5)	0.0 ND	0.0 ND	
84? (CL5)	0.0 ND	0.0 ND	
99 (CL5)	0.0 NTD	0.0 ND	
83 (CL5)	0.0 NTD	0.0 ND	
97 (CL5)	0.0 ND	0.0 ND	
87 (CL5)	0.0 ND	0.0 ND	
85 (CL5)	0.0 ND	0.0 ND	
136 (CL6)	0.0 ND	0.0 ND	
82 (CL5)	0.0 ND	0.0 ND	
151 (CL6)	0.0 ND	0.0 ND	
107/108/144 (CL5/5/6)	0.0 NTD	0.0 ND	
149 (CL6)	0.0 ND	0.0 ND	
188 (CL7)	0.0 ND	0.0 ND	
146 (CL6)	0.0 ND	0.0 ND	
141 (CL6)	0.0 ND	0.0 ND	
137 (CL6)	0.0 ND	0.0 ND	
UNK (CL6)	0.0 ND	0.0 ND	
158 (CL7)	0.0 ND	0.0 ND	
129 (CL6)	0.0 ND	0.0 ND	
178 (CL7)	0.0 ND	0.0 ND	
183 (CL7)	0.0 ND	0.0 ND	
167 (CL6)	0.0 ND	0.0 NTD	
185 (CL7)	0.0 ND	0.0 ND	
174 (CL7)	0.0 ND	0.0 ND	
177 (CL7)	0.0 ND	0.0 ND	
156/171/202(CL6/7/8	0.0 ND	0.0 ND	
200 (CL8)	0.0 ND	0.0 ND	
172 (CL7)	0.0 ND	0.0 ND	
191 (CL7)	0.0 ND	0.0 ND	
201 (CL8)	0.0 ND	0.0 ND	
196 (CL8)	0.0 ND	0.0 ND	
189 (CL7)	0.0 ND	0.0 ND	
194 (CL8)	0.0 ND	0.0 NTD	
205 (CL9)	0.0 ND	0.0 ND	
Surrogate Recoverie	s		
DBOFB%:	91	80	
PCB#103%:	93	83	
PCB#198%:	97	85	

INVEST#:	NIST SRM 1941	LAB QA SAMPLE	LAB QA SAMPLE
ID:	CERTIFIED VALUES	SRM 1941	SRM 1941
LABSAMNO:		Q7067	Q70 7 2
SAMPLE TYPE:	SRM	SRM	SRM
COLLECTION DATE:			
RECEIPT DATE:			
QCBATCH:		M748	M749
EXTRACTION DATE:		11/11/93	11/12/93
METHOD:		GCFID	GCFID
ANALYSIS DATE:		01/18/94	05/12/94
METHOD:		GCMS	GCMS
ANALYSIS DATE:		12/17/93	12/07/93
METHOD:		GCECD	GCECD
ANALYSIS DATE:		06/08/94	06/08/94
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT
SUBMAT:			
WETWT:			
DRYWT:		0.56	0.54
WTUNITS:		GRAMS DRY	GRAMS DRY
PCTSOLIDS:			
VOL:			
VOLUNITS:		LITERS	LITERS
Lipid Weight			
% LIPIDS:			
Surrogate Recoverie	s		
ALKANES:			
C12ALKD:		181 M	90
C20ALKD:		199 M	68
C24ALKD:		201 M	77
C30ALKD:		118	111
PAH's:			
NAPHD8:		85	72
ACEND10:		107	75
PHEND10:		91	94
CHRYD12:		117	90
PERYD12:		76	85
PESTICIDES & PCB's:			
DBOFB:		42	147 Q
PCB#103:		43	134 Q
PCB#198:		37 Q	156 Q

SIBERIAN SEDIMENTS - ALIPHATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	LAB QA SAMPLE	LAB QA SAMPLE	
ID:	SRM 1941	SRM 1941	
LABSAMNO:	Q7067	Q7072	
Alkanes and			
Isoprenoids	Conc DB QUAL	Conc DB QUAL	
UNIT:	ng/g	ng/g	<u> </u>
C10	1162	3670	
C11	652	314 J	
C12	681	269	
C13	516	263 J	
C14	583	263 J	
C15	930	610	
C16	575	518	
C17	2383	1880	
PRISTANE	1980	1282	
C18	504	439	
PHYTANE	1485	750	
C19	1489	347	
C20	808	221	
C21	1517	401	
C22	632	476	
C23	1347	748	
C24	1538	673	
C25	2499	898	
C26	787	652	
C27	2072	923	
C28	701	402 J	
C29	2718	1969	
C30	1431	711	
C31	980	2373	
C32	539	554	
C33	464	1088	
C34	1469	236	
TOT ALKANES	32446	22929	
UNIT:	ug/g	ug/g	
UCM	2092.1	1799.0	
Surrogate Recoveries			
C12ALKD:	181 M	90	
C20ALKD:	199 M	68	
C24ALKD:	201 M	77	
C30ALKD:	118	111	

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA - 93-D0-01

INVEST#:	NIS	T SRM	1941	LAB QA SAMPLE	LAB QA SAMPLE
ID:	CER	TIFIED	VALUES	SRM 1941	SRM 1941
LABSAMNO:				Q7067	Q7072
UNIT:		ng/g		ng/g	ng/g
PNA Analyte	V	alues	Range	Conc DB QUAL	Cone DB QUAL
NAPHTHALENE	NC	1322	+/-14	673.3	912.5
C1-NAPHTHALENES	•			361.6	423.0
C2-NAPHTHALENES				224.8 J	242.4 J
C3-NAPHTHALENES				286.1	213.3
C4-NAPHTHALENES				232.2	127.7 J
BIPHENYL	NC	115	+/-15	77.8 J	92.9 J
ACENAPHTHYLENE	NC	115	+/-10	55.5 J	63.1 J
ACENAPHTHENE	NC	52	+/-2	34.3 J	39.2 J
FLUORENE		1220	+/-240	58.8 J	86.8 J
C1-FLUORENES				86.9 J	91.9 J
C2-FLUORENES				182.5	170.6 J
C3-FLUORENES				226.2	232.8
PHENANTHRENE		577	+/-59	468.2	508.8
ANTHRACENE		202	+/-42	150.8	163.4
C1-PHEN_ANTHR				339.3	399.8
C2-PHEN_ANTHR				335.9	346.5
C3-PHEN_ANTHR				320.4	307.7
C4-PHEN_ANTHR				206.8 J	224.3 J
DIBENZOTHIO				33.9 J	37.8 J
C1-DIBEN				54.5 J	58.6 J
C2-DIBEN				116.2 J	122.7 J
C3-DIBEN				120.9 J	131.6 J
FLUORANTHENE		1220	+/-240	1088.3	1136.9
PYRENE		1080	+/-200	975.3	985.4
C1-FLUORAN_PYR				517.1	436.6
BENAANTHRACENE		550	+/-79	416.9	464.9
CHRYSENE	NC	449		531.4	677.1
C1-CHRYSENES				329.7	354.6
C2-CHRYSENES				181.2 J	236.9 Ј
C3-CHRYSENES				22.8 J	53.0 J
C4-CHRYSENES				60.9 J	69.3 J
BENDFLUORAN		780	+/-190	483.2	786.2
BENKFLUORAN		444	+/-49		786.2
BENepyrene		573		402.5	512.1
BENapyrene		670	+/-130	466.2	653.5
PERYLENE		422	+/-33		273.5 J
I123cdPYRENE		569	+/-40		693.6
DBahanthra				80.3 J	138.6
BghiPERYLENE		516	+/-83		619.2
TOTAL PAH'S				11435.1	13601.3
(w/o PERYLENE)					
,, - : =/					

SIBERIAN SEDIMENTS - AROMATIC HYDROCARBON DATA (CONT) - 93-D0-01

INVEST#:	NIS	T SRM	1941	LAB QA SAMPLE	LAB QA SAMPLE	
ID:	CER	TIFIED	VALUES	SRM 1941	SRM 1941	
LABSAMNO:				Q7067	Q7072	•
UNIT:		ng/g		ng/g	ng/g	
Analyte (Cont)		Conc I	OB QUAL	Conc DB QUAL	Conc DB QUAL	
2-METHYLNAPH	NC	406	+/-36	234.8	276.6	
1-METHYLNAPH	NC	229	+/-19	126.8 J	146.5	
2,6-DIMETHNAPH	NC	198	+/-23	120.6 J	166.7	
1,6,7-TRIMETHNAPH				66.6 J	71.3 J	
1-methylphen	NC	109	+/-6	86.0 J	74.6 J	
Surrogate Recoverie	es					
NAPHD8:				85	72	
ACEND10:				107	75	
PHEND10:				91	94	
CHRYD12:				117	90	
PERYD12:				76	85	

INVEST#:	NIST SRM	1941	LAB QA SAMPLE	LAB QA SAMPLE	
ID:	CERTIFIE	D VALUES	SRM 1941	SRM 1941	
LABSAMNO:			Q7067	Q7072	
UNIT:	ng/g		ng/g	ng/g	
Analyte (Cont)	Values	Range	Conc DB QUAL	Conc DB QU	AL
TOTAL BHCs			2.6 J	0.0 ND	
TOT CHLORDANES (ALL)		2.6 J	1.7 J	
TOT CHLORDANES (S&T)		1.5 J	1.1 J	
TOTAL DDTs			7.9 J	7.0 J	
TOTAL PCBs			157.7 J	213.9 J	
агрна-внс			0.5 J	0.0 ND	-
HCB			10.9	11.5	
BETA-BHC			0.5 J	0.0 ND	
GAMMA-BHC			0.5 J	0.0 ND	
DELTA-BHC			1.0 J	0.0 ND	
HEPTACHLOR			0.3 J	0.0 ND	
HEPTA-EPOXIDE	NC .23	+/02	0.7 J	0.4 J	
OXYCHLORDANE			0.3 J	0.3 J	
GAMMA-CHLORDANE		•	0.4 J	0.0 ND	
ALPHA-CHLORDANE			0.4 J	0.5 J	
TRANS-NONACHLOR	NC .97	+/03	0.2 J	0.3 J	
CIS-NONACHLOR	NC 2.06	+/05	0.5 J	0.4 J	
ALDRIN			0.0 NTD	0.0 ND	
DIELDRIN	NC .63	+/03	1.5 J	1.5 J	
ENDRIN			0.7 J	0.0 ND	
MIREX			0.0 ND	0.0 ND	
2,4'DDE (O,P'DDE)			0.9 J	0.0 ND	
4,4'DDE (P,P'DDE)	NC 9.71	+/17	3.5	3.7	
2,4'DDD (0,P'DDD)			0.3 J	0.4 J	
4,4'DDD (P,P'DDD)	NC 10.3	+/1	2.5	2.9	
2,4'DDT (0,P'DDT)			0.2 J	0.0 NTD	
4,4'DDT (P,P'DDT)	NC 1.13	+/05	0.4 J	0.0 ND	

INVEST#:	NIST SRM 1941	LAB QA SAMPLE	LAB QA SAMPLE	
ID:	CERTIFIED VALUES	SRM 1941	SRM 1941	
LABSAMNO:		Q7067	Q7072	
UNIT:	ng/g	ng/g	ng/g	
Analyte (Cont)	Values Range	Conc DB QUAL	Conc DB QUAL	
PCB # (CLORINATION)			
NOAA S&T PCBs	,			
8 (CL2)		0.6 J	0.7 J	
18 (CL3)	NC 9.9 +/25	1.8 J	1.7 J	
28 (CL3)	NC 16.1 +/4	4.6	5.8	
44 (CL4)		4.0	4.4	
52 (CL4)	NC 10.4 +/4	9.5	9.8	
66 (CL4)	NC 22.4 +/7	5.3	6.3	
101 (CL5)	NC 22.0 +/7	9.3	10.7	
105 (CL5)	NC 5.76 +/23	1.8 J	2.5 J	
110/77 (CL5/4)		18.9	30.2	
118/108/149(CL5/5/	6) NC 15.2 +/7	5.8	7.6	
128 (CL6)	,	0.2 J	2.4 J	
138 (CL6)	NC 24.9 +/-1.8	8.0	9.6	
126 (CL5)		0.0 ND	4.2	
153 (CL6)	NC 22.0 +/-1.4	11.1	12.5	
170 (CL7)	NC 7.29 +/26	0.0 ND	13.4	
180 (CL7)	NC 14.3 +/3	5.5	6.6	
187/182/159(CL7/7/		3.6	3.6 J	
195 (CL8)	NC 1.51 +/1	0.7 J	0.9 J	
206 (CL9)	NC 4.81 +/15	0.5 J	1.1 J	
209 (CL10)		1.9 J	2.6 J	
	•			
OTHER PCB CONGENER 7 (CL2)	S	O.O NID	0.0 ND	
7 (CL2) 15 (CL2)		1.4 J	1.7 J	
24 (CL3)		0.1 J	0.0 ND	
16/32 (CL3)		0.0 ND	0.0 ND	
29 (CL3)		0.0 ND	0.0 ND	
26 (CL3)		0.3 J	0.0 ND	
25 (CL3)		1.1 J	1.5 J	
50 (CL4)		1.1 J	3.7 J	
33 (CL3)		1.1 J	2.8 J	
22 (CL3)		0.7 J	0.0 ND	
45 (CL4)		0.1 J	0.0 ND	
45 (CL4) 46 (CL4)		0.1 J	0.0 ND	
46 (CL4) 49 (CL4)		6.7	6.0	
		1.7 J	4.9	
47/48 (CL4)				
37/42 (CL4)		2.3 J	3.8	
41/64 (CL4)		3.1 J	2.5 J	
40 (CL4)		0.2 J	0.6 J	
74 (CL4)		4.4	3.8	

SIBERIAN SEDIMENTS - PCB DATA (Cont) - 93-D0-01

INVEST#:	NIST SRM	1941	LAB QA SAMPLE	LAB QA SAMPLE
ID:	CERTIFIED	VALUES	SRM 1941	SRM 1941
LABSAMNO:			Q7067	Q7072
UNIT:	ng/g		ng/g	ng/g
Analyte (Cont)	Values	Range	Conc DB QUAL	Conc DB QUAL
PCB #(CHLORINATION)				
70 (CL4)			10.0	7.2
88 (CL5)			1.2 J	1.3 J
60/56 (CL5)			8.3	5.2
92? (CL5)			0.8 J	1.4 J
84? (CL5)			1.7 J	2.7 J
99 (CL5)			3.4 J	4.1
83 (CL5)			0.5 J	1.1 J
97 (CL5)			1.7 J	2.2 J
87 (CL5)			1.9 J	2.4 J
85 (CL5)			0.6 J	0.9 J
136 (CL6)			0.4 J	0.0 ND
82 (CL5)			1.0 J	1.1 J
151 (CL6)			1.5 J	1.9 J
107/108/144(CL5/5/6)			0.0 ND	2.5 J
149 (CL6)			4.8	7.0
188 (CL7)			0.0 ND	0.0 ND
146 (CL6)			1.1 J	0.6 J
141 (CL6)			1.9 J	1.8 J
137 (CL6)			0.1 J	0.0 NTD
UNK (CL6)			0.3 J	0.0 ND
158 (CL7)			0.2 J	0.0 NTD
129 (CL6)			0.3 J	0.0 ND
178 (CL7)			0.3 J	0.2 J
183 (CL7)			0.8 J	0.6 J
167 (CL6)			0.0 ND	0.0 ND
185 (CL7)			0.0 ND	0.0 ND
174 (CL7)			1.3 J	1.6 J
177 (CL7)			0.7 J	1.9 J
156/171/202(CL6/7/8)			0.5 J	0.0 ND
200 (CL8)			0.2 J	0.0 ND
172 (CL7)			0.8 J	1.0 J
191 (CL7)			1.3 J	1.2 J
201 (CL8)			1.6 J	2.0 J
196 (CL8)			1.6 J	2.1 J
189 (CL7)			0.0 ND	0.0 ND
194 (CL8)			1.0 J	1.2 J
205 (CL9)			0.3 J	0.0 ND
Surrogate Recoveries				
DBOFB%:			42	147 Q
PCB#103%:			43	134 Q
PCB#198%:			37 Q	156 Q

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Coplanar-PCBs in Tissues Analytical Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C11946					
CLIENT SAMPLE ID	Station 8 Isopods					
STRUMENT DATA FILE	50215LCA01-	50215LCA01-S25				
WET WEIGHT	4.04					
DRY WEIGHT	1.23					
PERCENT SOLIDS	30.45					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/15/95			•		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	103	11.4	83.0			
PCB#126	*	30.8	81.4	ND		
PCB#169	*	10.0	84.6	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries	% necov	DB Quai				
% Recoveries						
13C-PCB#77	76					
13C-PCB#126	75					
13C-PCB#169	74					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C11948					
CLIENT SAMPLE ID	Station 16 Ison	Station 16 Isopods				
STRUMENT DATA FILE	50215LCA01-					
WET WEIGHT	5.24					
DRY WEIGHT	1.22					
PERCENT SOLIDS	23.32					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/15/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
202 // 27						
PCB#77	35.2	14.7	83.5	J		
PCB#126	12.2 *	4.83	81.9	J		
PCB#169	•	10.3	85.2	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	77					
13C-PCB#126	73					
13C-PCB#169	67					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C11950					
CLIENT SAMPLE ID	Station 17 Amphipods					
STRUMENT DATA FILE	50215LCA01-9					
WET WEIGHT	10.00					
DRY WEIGHT	2.80					
PERCENT SOLIDS	28.02					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94		·			
ANALYSIS DATE	02/15/95			-		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	83.8	7.83	36.4			
PCB#126	64.7 *	2.28	35.7			
PCB#169	*	3.50	37.1	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	62					
13C-PCB#126	66					
13C-PCB#169	61					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C11953					
CLIENT SAMPLE ID	Station 10 Liv	er				
STRUMENT DATA FILE	50215LCA01-S28					
WET WEIGHT	10.49					
DRY WEIGHT	3.57					
PERCENT SOLIDS	34.00					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/16/95			•		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	45.5	4.99	28.6			
PCB#126	14.8	1.70	28.0	J		
PCB#169	38.7	3.35	29.2			
Internal Standard	% Recov	DB Qual				
% Recoveries						
100 DOD#77	00					
13C-PCB#77	68					
13C-PCB#126	72					
13C-PCB#169	75					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C11955				
CLIENT SAMPLE ID	Station 24 Live	er			
STRUMENT DATA FILE	50215LCA01-	S29			
WET WEIGHT	10.22				
DRY WEIGHT	4.53				
PERCENT SOLIDS	44.29				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/16/95			•	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	89.9	4.59	22.5		
PCB#126	26.4	1.76	22.1		
PCB#169	38.2	2.16	23.0		
Internal Standard	% Recov	DB Qual			
% Recoveries	75 110007	DD Quui			
13C-PCB#77	68				
13C-PCB#126	88				
13C-PCB#169	108				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C11956					
CLIENT SAMPLE ID		Station 14 Bivalves				
STRUMENT DATA FILE	50215LCA01-	S30				
WET WEIGHT	4.05					
DRY WEIGHT	1.05					
PERCENT SOLIDS	25.93					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/16/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
		47.0				
PCB#77	33.2	17.3	97.1	J		
PCB#126	*	4.81	95.2	ND		
PCB#169	*	9.08	99.0	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	62					
13C-PCB#126	71					
13C-PCB#169	71					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C11961				
CLIENT SAMPLE ID	Station 5 Sturgen Liver #3				
STRUMENT DATA FILE	50215LCA01-9				
WET WEIGHT	5.59				
DRY WEIGHT	2,50				
PERCENT SOLIDS	44.71				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/16/95) i	-	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)	•	
PCB#77	118	4.05	40.8		
PCB#126	28.1	2.07	40.0	J	
PCB#169	65.9	5.01	41.6		
Internal Standard	% Recov	DB Qual			
% Recoveries					
				WELL AT MINUSER MANY A MANY AND ADDRESS.	
13C-PCB#77	74				
13C-PCB#126	66				
13C-PCB#169	61				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C11962				
CLIENT SAMPLE ID	Station 21-30 Fish Livers				
STRUMENT DATA FILE	50215LCA01-				
WET WEIGHT	10.09				
DRY WEIGHT	2.74				
PERCENT SOLIDS	27.19				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/16/95			-	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	63.1	7.44	37.2		
PCB#126	21.6	2.94	36.5	J	
PCB#169	*	4.82	37.9	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	63				
13C-PCB#126	66				
13C-PCB#169	76				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers						
LAB SAMPLE ID	C16751			-			
CLIENT SAMPLE ID	Station 19 Am	Station 19 Amphipods					
STRUMENT DATA FILE	50215LCA01-						
WET WEIGHT	10.04						
DRY WEIGHT	2.96						
PERCENT SOLIDS	29.48						
CALCULATION BASIS	DRY						
SAMPLE TYPE	SAMP						
MATRIX	TISSUE						
QC BATCH	DX0170						
EXTRACTION DATE	11/10/94						
ANALYSIS DATE	02/16/95						
	Conc	EDL	LMCL	DBQual			
Compound Name	(pg/g)	(pg/g)	(pg/g)				
PCB#77	112	4.63	34.5				
PCB#126	42.1	2.71	33.8				
PCB#169	22.3	4.80	35.1	J			
Internal Standard	% Recov	DB Qual					
% Recoveries	70 110001	<i>55</i> C aa.					
70 11000 101100							
13C-PCB#77	60						
13C-PCB#126	66						
13C-PCB#169	68						

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C16752					
CLIENT SAMPLE ID	Station 20 Bivalves					
STRUMENT DATA FILE	50215LCA01-9	333				
WET WEIGHT	5.22					
DRY WEIGHT	1.29					
PERCENT SOLIDS	24.69					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94		•			
ANALYSIS DATE	02/16/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)	***************************************		
202 // 27	*	22.7	70.4			
PCB#77	*	30.7	79.1	ND		
PCB#126	*	4.14	77.6	ND		
PCB#169	*	6.25	80.7	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries	70 110001					
70 11000101100						
13C-PCB#77	61					
13C-PCB#126	68					
13C-PCB#169	73					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C16753				
CLIENT SAMPLE ID	Station 54 Worm-Nephthys				
STRUMENT DATA FILE	50215LCA01-9				
WET WEIGHT	5.36				
DRY WEIGHT	1.37				
PERCENT SOLIDS	25.53				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/16/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	16.7	11.0	74.6		
PCB#77	10.7	11.0 4.85	74.6 73.1	J	
PCB#120	*	9.05	73.1 76.0	ND ND	
FCB#103		9.05	70.0	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	63				
13C-PCB#126	69				
13C-PCB#169	76				

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Coplanar-PCBs in Tissues Quality Control Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q9071				
CLIENT SAMPLE ID					
STRUMENT DATA FILE	50215LCA01-	524			
WET WEIGHT					
DRY WEIGHT	2.00				
PERCENT SOLIDS					
CALCULATION BASIS	DRY				
SAMPLE TYPE	BLANK				
MATRIX					
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/15/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	14.4	8.50	51.0	J	
PCB#126	*	3.11	50.0	ND	
PCB#169	*	6.11	52.0	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries	70 NECOV	DB Quai			
76 Necoveries					
13C-PCB#77	77				
13C-PCB#126	71				
13C-PCB#169	68				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	E Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	Ω9073	•				
CLIENT SAMPLE ID	Station 21-30	Fish Livers				
STRUMENT DATA FILE		50215LCA01-S37				
WET WEIGHT	10.21					
DRY WEIGHT	2.67					
PERCENT SOLIDS	26.18					
CALCULATION BASIS	DRY					
SAMPLE TYPE	DUP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/16/95			-		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
		*				
PCB#77	86.8	3.13	38.2			
PCB#126	33.8	2.39	37.4	J		
PCB#169	15.7	3.23	38.9	J		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	65					
13C-PCB#126	66					
13C-PCB#169	67					

CLIENT NAME	Office of Naval Research			
PROJECT NAME	Contaminants Releas	e to Russian	Arctic	Rivers
PURCHASE ORDER NO.				
LAB SAMPLE ID	C11962	Q9073		
CLIENT SAMPLE ID	Station 21-30 Fish Li	v Station 21	-30 Fis	h Liver
STRUMENT DATA FILE	50215LCA01-S35	50215LCA		
WET WEIGHT	10.09	10.21		
DRY WEIGHT	2.74	2.67		
PERCENT SOLIDS	27.19	26.18		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	TISSUE	TISSUE		
QC BATCH	DX0170	DX0170		
EXTRACTION DATE	11/10/94	11/10/94		
ANALYSIS DATE	02/16/95	02/16/95	•	
	Conc	Conc	RPD	DB
Compound Name	(pg/g)	(pg/g)	(%)	Qual
PCB#77	63.1	86.8	32	a
PCB#126	21.6	33.8	44	a
PCB#169	*	15.7	NA	
Internal Standard				
% Recoveries				
13C-PCB#77				
13C-PCB#126				
13C-PCB#169				
100 1 05# 100				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Ω9072				
CLIENT SAMPLE ID	Station 21-30	Fish Livers			
STRUMENT DATA FILE		50215LCA01-S36			
WET WEIGHT	10.16				
DRY WEIGHT	2.72				
PERCENT SOLIDS	26.79				
CALCULATION BASIS	DRY				
SAMPLE TYPE	MS				
MATRIX	TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/16/95			•	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	844	5.08	37.5		
PCB#126	826	2.81	36.7		
PCB#169	815	5.44	38.2		
Internal Standard	% Recov	DB Qual			
% Recoveries					
				·	
13C-PCB#77	61				
13C-PCB#126	67				
13C-PCB#169	63				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Contamir	Research elease to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID STRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	C11962 Station 21 50215LCA 10.09 2.74 27.19 DRY SAMP TISSUE DX0170 11/10/94 02/16/95		Q9072 Station 21 50215LC/ 10.16 2.72 26.79 DRY MS TISSUE DX0170 11/10/94		
	Conc	pike Amn	02/16/95 Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
PCB#77 PCB#126 PCB#169	63.1 21.6 *	742 734 760	844 826 815	105 110 107	
Internal Standard					
% Recoveries					
13C-PCB#77 13C-PCB#126 13C-PCB#169					

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Coplanar-PCBs in Sediments Analytical Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C12906				
CLIENT SAMPLE ID	Station 5 Sedi	ment			
STRUMENT DATA FILE	50216LCA01-	S22			
WET WEIGHT	42.03				
DRY WEIGHT	23.62				
PERCENT SOLIDS	56.19				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	SEDIMENT	SEDIMENT			
QC BATCH	DX0173				
EXTRACTION DATE	11/30/94				
ANALYSIS DATE	02/17/95			•	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	2.45	0.19	4.32	J	
PCB#126	0.36	0.03	4.23	j	
PCB#169	*	*	4.40	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	89				
13C-PCB#126	116				
13C-PCB#169	155	Ω			
100-1 05# 109	100	-			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C12908					
CLIENT SAMPLE ID	Station 12 Sec	diment				
STRUMENT DATA FILE	50216LCA01-	50216LCA01-S23				
WET WEIGHT	58.54	58.54				
DRY WEIGHT	26.34					
PERCENT SOLIDS	45.00	45.00				
CALCULATION BASIS	DRY	DRY				
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0173					
EXTRACTION DATE	11/30/94					
ANALYSIS DATE	02/17/95		-			
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	4.54	0.08	3.87			
PCB#126	0.71	0.06	3.80	J		
PCB#169	*	0.05	3.95	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DD Q 00.				
13C-PCB#77	118					
13C-PCB#126	124					
13C-PCB#169	148	Q				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.						
LAB SAMPLE ID	C12909					
CLIENT SAMPLE ID	Station 14 Sed	liment				
STRUMENT DATA FILE	50216LCA01-	50216LCA01-S24				
WET WEIGHT	47.48					
DRY WEIGHT	19.04	19.04				
PERCENT SOLIDS	40.10					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0173					
EXTRACTION DATE	11/30/94					
ANALYSIS DATE	02/17/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	5.31	0.20	5.36	J		
PCB#126	1.13	0.09	5.25	J		
PCB#169	*	0.12	5.46	ND		
Latera d Otan dand	0/ Danes	DB Qual				
Internal Standard	% Recov	DB Quai				
% Recoveries						
13C-PCB#77	122					
13C-PCB#126	139	Q				
13C-PCB#169	167	Q				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C12911				
CLIENT SAMPLE ID	Station 21 Sec	liment			
STRUMENT DATA FILE	50216LCA01-	50216LCA01-S25			
WET WEIGHT	23.45				
DRY WEIGHT	14.95				
PERCENT SOLIDS	63.77				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	SEDIMENT	SEDIMENT			
QC BATCH	DX0173				
EXTRACTION DATE	11/30/94				
ANALYSIS DATE	02/17/95			-	
,	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	3.39	0.31	6.82	J	
PCB#126	0.79	0.07	6.69	J	
PCB#169	*	0.10	6.96	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries	70 TICCOV	DD Quai			
/0 11000 VC11C3					
13C-PCB#77	174	Q			
13C-PCB#126	329	Q	•		
13C-PCB#169	460	Q			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C12912					
CLIENT SAMPLE ID	Station 58 Sec	liment				
STRUMENT DATA FILE	50216LCA01-	50216LCA01-S26				
WET WEIGHT	41.95	41.95				
DRY WEIGHT	21.17					
PERCENT SOLIDS	50.46	50.46				
CALCULATION BASIS	DRY	DRY				
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0173					
EXTRACTION DATE	11/30/94					
ANALYSIS DATE	02/17/95		-			
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	2.33	0.24	4.82	J		
PCB#126	0.82	0.08	4.72	J		
PCB#169	*	0.08	4.91	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	99					
13C-PCB#126	152	Q				
13C-PCB#169	217	Q				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C12915					
CLIENT SAMPLE ID	Station 61 Sediment					
STRUMENT DATA FILE	50216LCA01-	50216LCA01-S27				
WET WEIGHT	40.77					
DRY WEIGHT	14.52					
PERCENT SOLIDS	35.61	35.61				
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0173					
EXTRACTION DATE	11/30/94		•			
ANALYSIS DATE	02/17/95			•		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	2.82	0.24	7.02	J		
PCB#126	0.43	0.14	6.89	J		
PCB#169	•	0.12	7.16	ND		
Internal Standard	% Recov	DB Qual		-		
% Recoveries	76 Necov	DB Quai				
70 necovenes				***************************************		
13C-PCB#77	129					
13C-PCB#126	224	Q				
13C-PCB#169	333	Q				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C12917				
CLIENT SAMPLE ID	Station 20 Sec	Station 20 Sediment			
STRUMENT DATA FILE	50216LCA01-S28				
WET WEIGHT	43.74	43.74			
DRY WEIGHT	27.54	27.54			
PERCENT SOLIDS	62.96				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	SEDIMENT				
QC BATCH	DX0173				
EXTRACTION DATE	11/30/94				
ANALYSIS DATE	02/17/95		· · · · · · · · ·		
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	2.03	0.15	3.70	J	
PCB#126	0.30	0.05	3.63	J	
PCB#169	*	0.09	3.78	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	92				
13C-PCB#126	99				
13C-PCB#169	90				

LAB SAMPLE ID C13773 CLIENT SAMPLE ID Station 38 Sediment STRUMENT DATA FILE 50217LCA03-S7 WET WEIGHT 60.51 DRY WEIGHT 23.54 PERCENT SOLIDS 38.90 CALCULATION BASIS DRY SAMPLE TYPE SAMP	CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
STRUMENT DATA FILE 50217LCA03-S7 WET WEIGHT 60.51 DRY WEIGHT 23.54 PERCENT SOLIDS 38.90 CALCULATION BASIS DRY SAMPLE TYPE SAMP	LAB SAMPLE ID	C13773			,	
WET WEIGHT 60.51 DRY WEIGHT 23.54 PERCENT SOLIDS 38.90 CALCULATION BASIS DRY SAMPLE TYPE SAMP	CLIENT SAMPLE ID	Station 38 Sediment				
DRY WEIGHT 23.54 PERCENT SOLIDS 38.90 CALCULATION BASIS DRY SAMPLE TYPE SAMP	STRUMENT DATA FILE	50217LCA03-S7				
PERCENT SOLIDS 38.90 CALCULATION BASIS DRY SAMPLE TYPE SAMP	WET WEIGHT	60.51				
CALCULATION BASIS DRY SAMPLE TYPE SAMP	DRY WEIGHT	23.54				
SAMPLE TYPE SAMP	PERCENT SOLIDS	38.90				
	CALCULATION BASIS	DRY				
	SAMPLE TYPE	SAMP				
MATRIX SEDIMENT	MATRIX	SEDIMENT				
QC BATCH DX0180	QC BATCH	DX0180				
EXTRACTION DATE 12/02/94	EXTRACTION DATE	12/02/94				
ANALYSIS DATE 02/18/95	ANALYSIS DATE	02/18/95			-	
		Conc	EDL	LMCL	DBQual	
Compound Name (pg/g) (pg/g) (pg/g)	Compound Name	(pg/g)	(pg/g)	(pg/g)		
POD#77 0.00 4.00 4.00	000 #77	2.22	4.00	4.00		
PCB#77 3.36 1.28 4.33 J		0.00			_	
FCB#120 1.04 4.25 ND		-				
PCB#169 * 1.23 4.42 ND	PCB#169	*	1.23	4.42	ND	
Internal Standard % Recov DB Qual	Internal Standard	% Recov	DB Qual	A-10-		
% Recoveries	% Recoveries					
13C-PCB#77 92						
13C-PCB#126 79						
13C-PCB#169 94	13C-PCB#169	94				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C13783					
CLIENT SAMPLE ID	Station 56 Sec	Station 56 Sediment				
STRUMENT DATA FILE	50217LCA03-	S8				
WET WEIGHT	49.45					
DRY WEIGHT	34.17					
PERCENT SOLIDS	69.11					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0180					
EXTRACTION DATE	12/02/94					
ANALYSIS DATE	02/18/95		-			
_	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	1.72	1.10	2.99	J		
PCB#126	*	0.90	2.93	ND		
PCB#169	*	1.14	3.04	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	77					
13C-PCB#126	65					
13C-PCB#169	79					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C16679				
CLIENT SAMPLE ID	Station 8A Sediment				
STRUMENT DATA FILE	50217LCA03-	S5			
WET WEIGHT	57.21				
DRY WEIGHT	36.42				
PERCENT SOLIDS	63.66				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	SEDIMENT				
QC BATCH	DX0180				
EXTRACTION DATE	12/02/94				
ANALYSIS DATE	02/17/95			-	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	2.39	1.05	2.80	J	
PCB#126	*	0.76	2.75	ND	
PCB#169	*	1.11	2.86	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	83				
13C-PCB#126	65				
13C-PCB#169	84				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C16684					
CLIENT SAMPLE ID	Station 10 Sediment					
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S9				
WET WEIGHT	39.96					
DRY WEIGHT	33.71					
PERCENT SOLIDS	84.36					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0180					
EXTRACTION DATE	12/02/94					
ANALYSIS DATE	02/18/95			-		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
DOD#33	4.05	0.00				
PCB#77	1.25	0.90	3.03	J		
PCB#126		0.75	2.97	ND		
PCB#169	•	0.85	3.09	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries	•					
13C-PCB#77	96					
13C-PCB#126	77					
13C-PCB#169	96					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C16701				
CLIENT SAMPLE ID	Station 17 Sediment				
STRUMENT DATA FILE	50217LCA03-	S10			
WET WEIGHT	61.61				
DRY WEIGHT	20.63				
PERCENT SOLIDS	33.48				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	SEDIMENT				
QC BATCH	DX0180				
EXTRACTION DATE	12/02/94				
ANALYSIS DATE	02/18/95		-		
_	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	4.87	1.82	4.94	J	
PCB#126	₩.	1.42	4.85	ND	
PCB#169	*	2.01	5.04	ND	
Internal Standard	% Recov	DB Qual	10.10.4		
% Recoveries					
13C-PCB#77	66				
13C-PCB#126	52				
13C-PCB#169	63				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C16703					
CLIENT SAMPLE ID	Station 18 Sec	Station 18 Sediment				
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S11				
WET WEIGHT	41.44					
DRY WEIGHT	33.30					
PERCENT SOLIDS	80.36					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0180					
EXTRACTION DATE	12/02/94					
ANALYSIS DATE	02/18/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
DCD#77	1.40	0.77	0.00			
PCB#77 PCB#126	1.48	0.77	3.06	J		
PCB#126 PCB#169	*	0.57	3.00	ND		
PCB# 109		0.80	3.12	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	75					
13C-PCB#126	64					
13C-PCB#169	82					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C16732					
CLIENT SAMPLE ID	Station 44 Sediment					
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S6				
WET WEIGHT	40.70	40.70				
DRY WEIGHT	18.13					
PERCENT SOLIDS	44.54					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0180					
EXTRACTION DATE	12/02/94					
ANALYSIS DATE	02/17/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
DCD#77	4.00	0.40				
PCB#77	4.32	2.19	5.63	J		
PCB#126	*	1.50	5.52	ND		
PCB#169	*	1.83	5.74	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
	,					
13C-PCB#77	89					
13C-PCB#126	76					
13C-PCB#169	92					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C13767					
CLIENT SAMPLE ID	Station 16 Sediment					
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S23				
WET WEIGHT	82.19					
DRY WEIGHT	24.91					
PERCENT SOLIDS	30.31					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/18/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
202 // 27	4.07					
PCB#77	4.37	0.65	4.09			
PCB#126	1.20	0.49	4.01	J		
PCB#169	*	0.56	4.18	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	84					
13C-PCB#126	68					
13C-PCB#169	83					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C13770					
CLIENT SAMPLE ID	Station 29 Sediment					
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S24				
WET WEIGHT	48.39					
DRY WEIGHT	38.16					
PERCENT SOLIDS	78.86					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/18/95					
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
000#77	4.00					
PCB#77	1.08	0.39	2.67	J		
PCB#126	0.42	0.29	2.62	J		
PCB#169	*	0.33	2.73	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	73					
13C-PCB#126	60					
13C-PCB#169	75					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C13781					
CLIENT SAMPLE ID	Station 54 Sec	Station 54 Sediment				
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S25				
WET WEIGHT	67.41					
DRY WEIGHT	49.63					
PERCENT SOLIDS	73.62					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP	SAMP				
MATRIX	SEDIMENT					
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/18/95			•		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	0.75	0.34	2.06	J		
PCB#126	0.20 *	0.24	2.01	J		
PCB#169	*	0.27	2.10	ND		
Internal Standard	% Recov	DB Qual		 		
% Recoveries						
13C-PCB#77	83					
13C-PCB#126	68					
13C-PCB#169	86					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.					
LAB SAMPLE ID	C16704			-	
CLIENT SAMPLE ID	Station 19 Sediment				
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S20			
WET WEIGHT	46.10				
DRY WEIGHT	22.82				
PERCENT SOLIDS	49.50				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	SEDIMENT				
QC BATCH	DX0183				
EXTRACTION DATE	12/09/94				
ANALYSIS DATE	02/18/95		-		
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	2.45	0.66	4.47	1	
PCB#126	2.45 *	0.48	4.47 4.38	J ND	
PCB#120	*	0.54	4.56	ND	
PCD#109		0.54	4.50	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
100 000#77	20				
13C-PCB#77	88				
13C-PCB#126	69				
13C-PCB#169	95				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C16718					
CLIENT SAMPLE ID	Station 33 Sec	Station 33 Sediment				
STRUMENT DATA FILE	50217LCA03-	50217LCA03-S21				
WET WEIGHT	44.36	44.36				
DRY WEIGHT	30.24	30.24				
PERCENT SOLIDS	68.18	68.18				
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/18/95			•		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	2.32	0.71	3.37	J		
PCB#126	0.42	0.36	3.31	J		
PCB#169	*	0.49	3.44	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries	,					
13C-PCB#77	71					
13C-PCB#126	59					
13C-PCB#169	76					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	C16747			
CLIENT SAMPLE ID	Station 71A S	ediment		
STRUMENT DATA FILE	50217LCA03-	S22		
WET WEIGHT	45.89			
DRY WEIGHT	18.58			
PERCENT SOLIDS	40.48			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH	DX0183			
EXTRACTION DATE	12/09/94		*,	
ANALYSIS DATE	02/18/95			-
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
PCB#77	3.87	1.00	F 40	
PCB#126	3.67	1.00 0.61	5.49 5.38	ND J
PCB#120	*	0.57	5.60	ND
FCB#103		0.57	5.60	NU
Internal Standard	% Recov	DB Qual		
% Recoveries				
100 pop#77	0.7			
13C-PCB#77 13C-PCB#126	87			
13C-PCB#126	74			
130-705#109	93			

Monitoring Industrial Contaminants Release to Russian Arctic Rivers
Analytical Laboratory Quality Assurance Report

Coplanar-PCBs in Sediments Quality Control Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q11192				
CLIENT SAMPLE ID					
STRUMENT DATA FILE	50216LCA01-	S21			
WET WEIGHT					
DRY WEIGHT	20.00				
PERCENT SOLIDS					
CALCULATION BASIS	DRY				
SAMPLE TYPE	BLANK				
MATRIX					
QC BATCH	DX0173				
EXTRACTION DATE	11/30/94				
ANALYSIS DATE	02/17/95				
_	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
000477	4 4 4	0.45	5.40		
PCB#77	1.11	0.15	5.10	J	
PCB#126	0.41	0.03	5.00	J	
PCB#169	*	-	5.20	ND	
Internal Standard	% Recov	DB Qual		***************************************	
% Recoveries					
13C-PCB#77	85				
13C-PCB#126	70				
13C-PCB#169	28				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q11196				
CLIENT SAMPLE ID	Station 21 Sediment				
STRUMENT DATA FILE	50216LCA01-	50216LCA01-S29			
WET WEIGHT	20.48				
DRY WEIGHT	13.06				
PERCENT SOLIDS	63.77				
CALCULATION BASIS	DRY				
SAMPLE TYPE	DUP				
MATRIX	SEDIMENT				
QC BATCH	DX0173				
EXTRACTION DATE	11/30/94		•		
ANALYSIS DATE	02/17/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	2.60	0.16	7.81	J	
PCB#126	0.56	0.16	7.66	J	
PCB#169	*	0.09	7.96	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	94				
13C-PCB#126	115				
13C-PCB#169	174	a			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	C12911	Q11196		
CLIENT SAMPLE ID	Station 21 Sediment	Station 21	Sedim	ent
STRUMENT DATA FILE	50216LCA01-S25	50216LCA	01-529	9
WET WEIGHT	23.45	20.48		
DRY WEIGHT	14.95	13.06		
PERCENT SOLIDS	63.77	63.77		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	SEDIMENT	SEDIMENT		
QC BATCH	DX0173	DX0173		
EXTRACTION DATE	11/30/94	11/30/94		
ANALYSIS DATE	02/17/95	02/17/95	-	
	Conc	Conc	RPD	DB
Compound Name	(pg/g)	(pg/g)	(%)	Qual
PCB#77	3.39	2.60	-26	
PCB#126	0.79	0.56	-34	
PCB#169	*	*	NA	
Internal Standard				
% Recoveries				
13C-PCB#77				
13C-PCB#126				
13C-PCB#169				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q11195				
CLIENT SAMPLE ID					
STRUMENT DATA FILE	50216LCA01-S32				
WET WEIGHT					
DRY WEIGHT	20.00				
PERCENT SOLIDS					
CALCULATION BASIS	DRY				
SAMPLE TYPE	LBS				
MATRIX	DV0470				
QC BATCH	DX0173				
EXTRACTION DATE	11/30/94				
ANALYSIS DATE	02/17/95 Conc	EDL	LMCL	DBQual	
Compound Name			(pg/g)	DBQuai	
Compound Name	(pg/g)	(pg/g)	(pg/g/		
PCB#77	106	0.29	5.10		
PCB#126	109	0.19	5.00		
PCB#169	99.4	0.34	5.20		
Internal Standard	% Recov	DB Qual			
% Recoveries	70 11.0001				
				-	
13C-PCB#77	71				
13C-PCB#126	86				
13C-PCB#169	108				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID	Q11192		Q11195		
STRUMENT DATA FILE WET WEIGHT	50216LCA	01-S21	50216LCA01-S32		
DRY WEIGHT PERCENT SOLIDS	20.00		20.00		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	BLANK		LBS		
MATRIX					
QC BATCH	DX0173		DX0173		
EXTRACTION DATE	11/30/94		11/30/94		
ANALYSIS DATE	02/17/95		02/17/95	-	
	Conc	pike Amn	Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
PCB#77	1.11	101.00	106	104	
PCB#126	0.41	100.00	109	109	
PCB#169	*	103.50	99.4	96	
Internal Standard					
% Recoveries					
	· · · · · · · · · · · · · · · · · · ·			· . ·	
13C-PCB#77					
13C-PCB#126					
13C-PCB#169					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	Q11194					
CLIENT SAMPLE ID	Station 21 Sec	Station 21 Sediment				
STRUMENT DATA FILE	50216LCA01-S31					
WET WEIGHT	24.00					
DRY WEIGHT	15.30					
PERCENT SOLIDS	63.77					
CALCULATION BASIS	DRY					
SAMPLE TYPE	MS					
MATRIX	SEDIMENT	SEDIMENT				
QC BATCH	DX0173					
EXTRACTION DATE	11/30/94					
ANALYSIS DATE	02/17/95					
	Conc	EDL	LMCL	DBQuai		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
DOD #33	440	4.00				
PCB#77	146	1.28	6.67			
PCB#126	135	0.55	6.54			
PCB#169	116	3.94	6.80			
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	80					
13C-PCB#126	97					
13C-PCB#169	127					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C12911		Q11194		
CLIENT SAMPLE ID	Station 21	Sediment	Station 21	Sedime	ent
STRUMENT DATA FILE	50216LCA	01-S25	50216LCA		
WET WEIGHT	23.45		24.00		
DRY WEIGHT	14.95		15.30		
PERCENT SOLIDS	63.77		63.77		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP		MS		
MATRIX	SEDIMENT		SEDIMENT		
QC BATCH	DX0173		DX0173		
EXTRACTION DATE	11/30/94		11/30/94		
ANALYSIS DATE	02/17/95		02/17/95		
	Conc	pike Amn	Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
POP //77	0.00	400	4.40	400	
PCB#77	3.39	132	146	108	
PCB#126	0.79	131	135	103	
PCB#169	•	135	116	86	
Internal Standard			············	-	
% Recoveries					
13C-PCB#77		•			
13C-PCB#126					
13C-PCB#169					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	Q11193					
CLIENT SAMPLE ID	1941A					
STRUMENT DATA FILE	50216LCA01-	S30				
WET WEIGHT	5.09					
DRY WEIGHT	5.09					
PERCENT SOLIDS	100.00					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SRM					
MATRIX	SEDIMENT					
QC BATCH	DX0173					
EXTRACTION DATE	11/30/94					
ANALYSIS DATE	02/17/95			-		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
DOD#77	000	0.00	00.0			
PCB#77	938	0.86	20.0			
PCB#126	66.6 *	0.24	19.6	ND		
PCB#169	-	0.36	20.4	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	88					
13C-PCB#126	102					
13C-PCB#169	132	Q				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10021				
CLIENT SAMPLE ID					
STRUMENT DATA FILE	50217LCA03-S4	ļ			
WET WEIGHT					
DRY WEIGHT	20.00				
PERCENT SOLIDS					
CALCULATION BASIS	DRY				
SAMPLE TYPE	BLANK				
MATRIX					
QC BATCH	DX0180				
EXTRACTION DATE	12/02/94				
ANALYSIS DATE	02/17/95		· ·		
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	*	2.73	5.10	ND	
PCB#126	*	1.99	5.00	ND	
PCB#169	*	2.58	5.20	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
				-	
13C-PCB#77	82				
13C-PCB#126	67				
13C-PCB#169	88				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q10022			
CLIENT SAMPLE ID	Station 10 Sediment			
STRUMENT DATA FILE	50217LCA03-	S12		
WET WEIGHT	39.37			
DRY WEIGHT	33.21			
PERCENT SOLIDS	84.36			
CALCULATION BASIS	DRY			
SAMPLE TYPE	DUP			
MATRIX	SEDIMENT			
QC BATCH	DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/18/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
PCB#77	1.52	0.84	3.07	
PCB#126	*	0.84	3.07	J ND
PCB#169	*	1.16	3.13	ND
1 05# 100		1.10	3.13	ND
Internal Standard	% Recov	DB Qual		
% Recoveries				
100				
13C-PCB#77	77			
13C-PCB#126	63			
13C-PCB#169	78			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	C16684	Q10022		
CLIENT SAMPLE ID	Station 10 Sediment	Station 10	Sedim	ent
STRUMENT DATA FILE	50217LCA03-S9 50217LCA03-S12			2
WET WEIGHT	39.96	39.37		
DRY WEIGHT	33.71	33.21		
PERCENT SOLIDS	84.36	84.36		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	SEDIMENT	SEDIMENT		
QC BATCH	DX0180	DX0180		
EXTRACTION DATE	12/02/94	12/02/94		
ANALYSIS DATE	02/18/95	02/18/95		
	Conc	Conc	RPD	DB
Compound Name	(pg/g)	(pg/g)	(%)	Qual
000 #77	4.05			
PCB#77	1.25	1.52	19	
PCB#126		*	NA	
PCB#169	*	*	NA	
Internal Standard				
% Recoveries				
13C-PCB#77				
13C-PCB#126				
13C-PCB#169				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10025				
CLIENT SAMPLE ID					
STRUMENT DATA FILE	50217LCA03-S15				
WET WEIGHT					
DRY WEIGHT	20.00				
PERCENT SOLIDS	DDV				
CALCULATION BASIS SAMPLE TYPE	DRY				
MATRIX	LBS				
QC BATCH	DX0180				
EXTRACTION DATE	12/02/94				
ANALYSIS DATE	02/18/95				
7,117,121,010,07,112	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	107	1.62	5.10		
PCB#126	109	1.11	5.00		
PCB#169	94.2	2.12	5.20		
Internal Standard	% Recov	DB Qual			
% Recoveries	70 11000V	DD Quai			
70 1.000 701100					
13C-PCB#77	77				
13C-PCB#126	63				
13C-PCB#169	78				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID	Q10021		Q10025		
STRUMENT DATA FILE WET WEIGHT	50217LCA03-S4		50217LCA03-S15		
DRY WEIGHT PERCENT SOLIDS	20.00		20.00		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	BLANK		LBS		
MATRIX					
QC BATCH	DX0180		DX0180		
EXTRACTION DATE	12/02/94		12/02/94		
ANALYSIS DATE	02/17/95		02/18/95		
	Conc	pike Amn	Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
202 #77	*	404			
PCB#77	-	101	107	106	
PCB#126		100	109	109	
PCB#169	*	104	94.2	91	
Internal Standard					
% Recoveries					
13C-PCB#77					
13C-PCB#126					
13C-PCB#169					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10024				
CLIENT SAMPLE ID	Station 10 Sediments				
STRUMENT DATA FILE	50217LCA03-S14				
WET WEIGHT	41.16	41.16			
DRY WEIGHT	34.72				
PERCENT SOLIDS	84.36				
CALCULATION BASIS	DRY				
SAMPLE TYPE	MS				
MATRIX	SEDIMENT				
QC BATCH	DX0180				
EXTRACTION DATE	12/02/94				
ANALYSIS DATE	02/18/95			-	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	72.1	0.77	2.94		
PCB#126	62.4	0.59	2.88		
PCB#169	50.6	1.07	3.00		
Internal Standard	% Recov	DB Qual			
% Recoveries	70 110001				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
13C-PCB#77	88				
13C-PCB#126	68				
13C-PCB#169	89				
· · · · · · · · · · · · · · · · · · ·					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C16684		Q10024		
CLIENT SAMPLE ID	Station 10	Sediment	Station 10	Sedime	ents
STRUMENT DATA FILE	50217LCA	03-S9	50217LCA	03-\$14	1
WET WEIGHT	39.96		41.16		
DRY WEIGHT	33.71		34.72		
PERCENT SOLIDS	84.36		84.36		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP	MS			
MATRIX	SEDIMENT		SEDIMENT	•	
QC BATCH	DX0180		DX0180		
EXTRACTION DATE	12/02/94		12/02/94		
ANALYSIS DATE	02/18/95		02/18/95	-	
	Conc	pike Amn	Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
PCB#77	1.25	58.2	72.1	122	
PCB#126	*	57.6	62.4	108	
PCB#169	•	59.6	50.6	85	
Internal Standard					
% Recoveries					
13C-PCB#77					•
13C-PCB#126					
13C-PCB#169					

GERG/TAMU Date: 3/31/95

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10023				
CLIENT SAMPLE ID	1941A				
STRUMENT DATA FILE	50217LCA03-9	613			
WET WEIGHT	6.31				
DRY WEIGHT	6.31				
PERCENT SOLIDS	100.00				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SRM				
MATRIX	SEDIMENT				
QC BATCH	DX0180				
EXTRACTION DATE	12/02/94		•		
ANALYSIS DATE	02/18/95			-	
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	999	5.05	16.2		
PCB#126	70.6	3.19	15.8		
PCB#169	*	3.91	16.5	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	77				
13C-PCB#126	60				
13C-PCB#169	84				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10054				
STRUMENT DATA FILE WET WEIGHT	50217LCA03-S19				
DRY WEIGHT PERCENT SOLIDS	20.00				
CALCULATION BASIS	DRY				
SAMPLE TYPE	BLANK				
MATRIX					
QC BATCH	DX0183				
EXTRACTION DATE	12/09/94				
ANALYSIS DATE	02/18/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
PCB#77	*	0.88	5.10	ND	
PCB#126	*	0.56	5.00	ND	
PCB#169	*	0.78	5.20	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	73				
13C-PCB#126	57				
13C-PCB#169	76				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	Q10055					
CLIENT SAMPLE ID	Station 33 Sediment					
STRUMENT DATA FILE	50217LCA03-	S26				
WET WEIGHT	61.24					
DRY WEIGHT	41.75					
PERCENT SOLIDS	68.18	68.18				
CALCULATION BASIS	DRY					
SAMPLE TYPE	DUP					
MATRIX	SEDIMENT					
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/18/95			-		
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
PCB#77	1.84	0.23	2.44	J		
PCB#126	0.73	0.14	2.40	J		
PCB#169	*	0.24	2.49	ND		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-PCB#77	87					
13C-PCB#126	74					
13C-PCB#169	93					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	C16718	Q10055		-
CLIENT SAMPLE ID	Station 33 Sediment	Station 33	Sedim	ent
STRUMENT DATA FILE	50217LCA03-S21	50217LCA	03-S2	6
WET WEIGHT	44.36	61.24		
DRY WEIGHT	30.24	41.75		
PERCENT SOLIDS	68.18	68.18		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	SEDIMENT	SEDIMENT		
QC BATCH	DX0183	DX0183		
EXTRACTION DATE	12/09/94	12/09/94		
ANALYSIS DATE	02/18/95	02/18/95		
	Conc	Conc	RPD	DB
Compound Name	(pg/g)	(pg/g)	(%)	Qual
000#77	0.00	4.04	00	
PCB#77	2.32	1.84	-23	•
PCB#126	0.42	0.73 *	54	Q
PCB#169	•	•	NA	
Internal Standard				
% Recoveries				
13C-PCB#77				
13C-PCB#126				
13C-PCB#169				
100-1 05# 103				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID CLIENT SAMPLE ID	Q10058					
STRUMENT DATA FILE WET WEIGHT	50217LCA03-S29					
DRY WEIGHT PERCENT SOLIDS	20.00					
CALCULATION BASIS	DRY					
SAMPLE TYPE	LBS	LBS				
MATRIX						
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/18/95			-		
•	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)	25434		
PCB#77	405					
PCB#126	105	0.71	5.10			
PCB#169	109	0.43	5.00			
rCb#109	95.3	0.73	5.20			
Internal Standard	% Recov	DB Qual		· · · · · · · · · · · · · · · · · · ·		
% Recoveries	75 1.000	DB Quai				
120 000 "==				N		
13C-PCB#77	78					
13C-PCB#126	63					
13C-PCB#169	81					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10054		Q10058		
STRUMENT DATA FILE WET WEIGHT	50217LCA03-S19		50217LCA03-S29		
DRY WEIGHT PERCENT SOLIDS	20.00		20.00		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	BLANK		LBS		
MATRIX					
QC BATCH	DX0183		DX0183		
EXTRACTION DATE	12/09/94		12/09/94		
ANALYSIS DATE	02/18/95		02/18/95	-	
	Conc	pike Amn	Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
PCB#77	*	101	105	104	
PCB#126	*	100	109	109	
PCB#169	*	104	95.3	92	
Internal Standard					
% Recoveries					
13C-PCB#77					
13C-PCB#126					
13C-PCB#169					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants		sian Arctic Rive	ers
LAB SAMPLE ID	Q10057			
CLIENT SAMPLE ID	Station 33 Sed	liment		
STRUMENT DATA FILE	50217LCA03-	S28		
WET WEIGHT	64.32			
DRY WEIGHT	43.85			
PERCENT SOLIDS	68.18			
CALCULATION BASIS	DRY			
SAMPLE TYPE	MS			
MATRIX	SEDIMENT			
QC BATCH	DX0183			
EXTRACTION DATE	12/09/94			
ANALYSIS DATE	02/18/95		_	
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
PCB#77	47.1	0.34	2.33	
PCB#126	48.5	0.27	2.28	
PCB#169	42.4	0.41	2.37	
1 05// 100	72.7	0.41	2.07	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-PCB#77	89			
13C-PCB#126	72			
13C-PCB#169	100			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C16718		Q10057		
CLIENT SAMPLE ID	Station 33	Sediment	Station 33 Sediment		
STRUMENT DATA FILE	50217LCA	.03-S21	50217LCA	NO3-S28	3
WET WEIGHT	44.36		64.32		
DRY WEIGHT	30.24		43.85		
PERCENT SOLIDS	68.18		68.18		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP MS				
MATRIX	SEDIMENT		SEDIMENT		
QC BATCH	DX0183		DX0183		
EXTRACTION DATE	12/09/94		12/09/94		
ANALYSIS DATE	02/18/95		02/18/95		
	Conc	pike Amn		Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
PCB#77	2.32	46.1	47.1	97	
PCB#126	0.42	45.6	48.5	105	
PCB#169	*	47.2	42.4	90	
Internal Standard					
% Recoveries					
13C-PCB#77					
13C-PCB#126					
13C-PCB#169			•		

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	Q10056				
CLIENT SAMPLE ID	1941A				
STRUMENT DATA FILE	50217LCA03-S27				
WET WEIGHT	6.30				
DRY WEIGHT	6.30				
PERCENT SOLIDS	100.00				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SRM				
MATRIX	SEDIMENT				
QC BATCH	DX0183				
EXTRACTION DATE	12/09/94				
ANALYSIS DATE	02/18/95		-		
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
202,477	000	0.00	40.0		
PCB#77	906	2.06	16.2		
PCB#126	70.7 *	1.32	15.9		
PCB#169	•	1.57	16.5	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries					
13C-PCB#77	89				
13C-PCB#126	78				
13C-PCB#169	101				

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Dioxins and Furans in Tissues Analytical Sample Data

	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID C1	1946				
CLIENT SAMPLE ID St	ation 8 Isopod	s			
	203LCA01-5				
WET WEIGHT 4.0	04				
DRY WEIGHT 1.	23				
PERCENT SOLIDS 30	.5				
CALCULATION BASIS DF	RY				
SAMPLE TYPE SA	MP				
MATRIX TIS	SSUE				
QC BATCH DX	(0170				
EXTRACTION DATE 11	/10/94				
ANALYSIS DATE 02	/03/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
2,3,7,8-TCDF	9.46	11.3	8.14		
1,2,3,7,8-PeCDF	10.1	4.67	40.7	J	
2,3,4,7,8-PeCDF	4.21	4.99	40.7	J	
1,2,3,4,7,8-HxCDF	*	3.61	40.7	ND	
1,2,3,6,7,8-HxCDF	4.10	2.94	40.7	J	
2,3,4,6,7,8-HxCDF	*	4.00	40.7	ND	
1,2,3,7,8,9-HxCDF	4.70	4.73	40.7	J	
1,2,3,4,6,7,8-HpCDF	*	4.14	40.7	ND	
1,2,3,4,7,8,9-HpCDF	*	5.09	40.7	ND	
OCDF	*	14.0	81.4	ND	
	_				
2,3,7,8-TCDD	*	7.03	8.14	ND	
1,2,3,7,8-PeCDD	11.7 *	9.68	40.7	J	
1,2,3,4,7,8-HxCDD	*	4.84	40.7	ND	
1,2,3,6,7,8-HxCDD	*	4.86	40.7	ND	
1,2,3,7,8,9-HxCDD	*	5.09	40.7	ND	
1,2,3,4,6,7,8-HpCDD	*	6.54	40.7	ND	
OCDD		9.51	81.4	ND	
Internal Standard % Recoveries	% Recov	DB Qual			
13C-2,3,7,8-TCDF	78				
13C-1,2,3,7,8-PeCDF	92				
13C-2,3,4,7,8-PeCDF	97				
13C-1,2,3,4,7,8-HxCDF	69				
13C-1,2,3,6,7,8-HxCDF	73				
13C-2,3,4,6,7,8-HxCDF	66				
13C-1,2,3,7,8,9-HxCDF	69				
13C-1,2,3,4,6,7,8-HpCDF	79				
13C-1,2,3,4,7,8,9-HpCDF	103				
.00 ,,2,0,1,,0,0 ,,000.					
13C-2,3,7,8-TCDD	75				
13C-1,2,3,7,8-PeCDD	90				
13C-1,2,3,4,7,8-HxCDD	73				
13C-1,2,3,6,7,8-HxCDD	68				
3C-1,2,3,4,6,7,8-HpCDD	72				
13C-OCDD	7 <u>9</u>				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	C11948 Station 16 Isop 50203LCA01-0 5.24 1.22 23.3 DRY SAMP TISSUE DX0170 11/10/94 02/03/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
2,3,7,8-TCDF	*	7.52	8.19	ND	
1,2,3,7,8-PeCDF	7.50	3.76	41.0	J	
2,3,4,7,8-PeCDF	*	4.50	41.0	ND	
1,2,3,4,7,8-HxCDF	*	3.96	41.0	ND	
1,2,3,6,7,8-HxCDF	2.09	3.15	41.0	J	
2,3,4,6,7,8-HxCDF	*	4.33	41.0	ND	
1,2,3,7,8,9-HxCDF	4.35	5.42	41.0	J	
1,2,3,4,6,7,8-HpCDF	*	2.99	41.0	ND	
1,2,3,4,7,8,9-HpCDF	*	4.16	41.0	ND	
OCDF	*	11.7	81.9	ND	
2,3,7,8-TCDD	*	6.75	8.19	ND	
1,2,3,7,8-PeCDD	*	8.57	41.0	ND	
1,2,3,4,7,8-HxCDD	*	5.55	41.0	ND	
1,2,3,6,7,8-HxCDD	*	5.30	41.0	ND	
1,2,3,7,8,9-HxCDD	₩	5.68	41.0	ND	
1,2,3,4,6,7,8-HpCDD	, *	8.12	41.0	ND	
OCDD	0/ 5	6.68	81.9	ND	
Internal Standard	% Recov	DB Qual			
% Recoveries 13C-2,3,7,8-TCDF	73				
13C-1,2,3,7,8-PeCDF	73 89				
13C-2,3,4,7,8-PeCDF	87				
13C-1,2,3,4,7,8-HxCDF	67				
13C-1,2,3,6,7,8-HxCDF	69				
13C-2,3,4,6,7,8-HxCDF	67				
13C-1,2,3,7,8,9-HxCDF	69				
13C-1,2,3,4,6,7,8-HpCDF	71				
13C-1,2,3,4,7,8,9-HpCDF	83				
. 30 1,2,0,1,1,0,0 11,0001					
13C-2,3,7,8-TCDD	70				
13C-1,2,3,7,8-PeCDD	76				
13C-1,2,3,4,7,8-HxCDD	70				
13C-1,2,3,6,7,8-HxCDD	63				
3C-1,2,3,4,6,7,8-HpCDD	60				
13C-OCDD	70				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	C11950 Station 17 Am 50203LCA01-10.00 2.80 28.0 DRY SAMP TISSUE DX0170 11/10/94 02/03/95	• •			
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
2,3,7,8-TCDF	8.78	4.85	3.57		
1,2,3,7,8-PeCDF	*	2.09	17.8	ND	
2,3,4,7,8-PeCDF	*	2.31	17.8	ND	
1,2,3,4,7,8-HxCDF	*	1.42	17.8	ND	
1,2,3,6,7,8-HxCDF	1.79	1.18	17.8	J	
2,3,4,6,7,8-HxCDF	2.09	1.47	17.8	J	
1,2,3,7,8,9-HxCDF	2.80	1.71	17.8	J	
1,2,3,4,6,7,8-HpCDF	4.03	1.66	17.8	J	
1,2,3,4,7,8,9-HpCDF	*	2.19	17.8	ND	
OCDF	*	5.55	35.7	ND	
	w.			- 1	
2,3,7,8-TCDD	*	2.34	3.57	ND	
1,2,3,7,8-PeCDD	*	2.37	17.8	ND	
1,2,3,4,7,8-HxCDD	*	2.42	17.8	ND	
1,2,3,6,7,8-HxCDD	*	2.29	17.8	ND	
1,2,3,7,8,9-HxCDD		2.47	17.8	ND	
1,2,3,4,6,7,8-HpCDD OCDD	4.37 6.76	2.29 2.74	17.8 35.7	J	
Internal Standard	% Recov	DB Qual	35.7	J	
% Recoveries	70 NECOV	DB Quai			
13C-2,3,7,8-TCDF	77				
13C-1,2,3,7,8-PeCDF	94				
13C-2,3,4,7,8-PeCDF	97			•	
13C-1,2,3,4,7,8-HxCDF	73				
13C-1,2,3,6,7,8-HxCDF	72				
13C-2,3,4,6,7,8-HxCDF	68				
13C-1,2,3,7,8,9-HxCDF	80				
13C-1,2,3,4,6,7,8-HpCDF	75				
13C-1,2,3,4,7,8,9-HpCDF	88				
13C-2,3,7,8-TCDD	80				
13C-1,2,3,7,8-PeCDD	94				
13C-1,2,3,4,7,8-HxCDD	73				
13C-1,2,3,6,7,8-HxCDD	65 63				
3C-1,2,3,4,6,7,8-HpCDD	62 67				
13C-OCDD	67				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants	l Research Release to Russ	sian Arctic Rive	ers
LAB SAMPLE ID	C11953			
CLIENT SAMPLE ID	Station 10 Live	er		
INSTRUMENT DATA FILE	50203LCA01-8	3		
WET WEIGHT	10.49			
DRY WEIGHT	3.57			
PERCENT SOLIDS	34.0			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	TISSUE			
QC BATCH	DX0170			
EXTRACTION DATE	11/10/94			
ANALYSIS DATE	02/03/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	20.2	2.63	2.80	
1,2,3,7,8-PeCDF	2.09	1.32	14.0	J
2,3,4,7,8-PeCDF	*	1.45	14.0	ND
1,2,3,4,7,8-HxCDF	*	1.39	14.0	ND
1,2,3,6,7,8-HxCDF	*	1.20	14.0	ND
2,3,4,6,7,8-HxCDF	*	1.52	14.0	ND
1,2,3,7,8,9-HxCDF	*	1.87	14.0	ND
1,2,3,4,6,7,8-HpCDF	*	1.09	14.0	ND
1,2,3,4,7,8,9-HpCDF	*	1.42	14.0	ND
OCDF	•	3.68	28.0	ND
2 2 7 0 TCDD	*	2.42	2.00	ND
2,3,7,8-TCDD	*	3.12 2.28	2.80	ND
1,2,3,7,8-PeCDD	*	2.28 1.73	14.0 14.0	ND
1,2,3,4,7,8-HxCDD	*	1.70	14.0	ND
1,2,3,6,7,8-HxCDD	*			ND
1,2,3,7,8,9-HxCDD		1.80 2.01	14.0 14.0	ND
1,2,3,4,6,7,8-HpCDD OCDD		3.04	28.0	ND ND
Internal Standard	% Recov	DB Qual	20.0	ואט
% Recoveries	70 NECOV	DB Quai	i	
13C-2,3,7,8-TCDF	69			
13C-1,2,3,7,8-PeCDF	79			
13C-2,3,4,7,8-PeCDF	84			
13C-1,2,3,4,7,8-HxCDF	59			
13C-1,2,3,6,7,8-HxCDF	57			
13C-2,3,4,6,7,8-HxCDF	55			
13C-1,2,3,7,8,9-HxCDF	62			
13C-1,2,3,4,6,7,8-HpCDF	67			
13C-1,2,3,4,7,8,9-HpCDF	81			
	-			
13C-2,3,7,8-TCDD	68			
13C-1,2,3,7,8-PeCDD	77			
13C-1,2,3,4,7,8-HxCDD	60			
13C-1,2,3,6,7,8-HxCDD	55			
3C-1,2,3,4,6,7,8-HpCDD	57			
13C-OCDD	60			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	C11955			
CLIENT SAMPLE ID	Station 24 Liver			
INSTRUMENT DATA FILE	50203LCA01-9			
WET WEIGHT	10.22			
DRY WEIGHT	4.53			
PERCENT SOLIDS	44.3			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	TISSUE			
QC BATCH	DX0170			
EXTRACTION DATE	11/10/94			
ANALYSIS DATE	02/03/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	46.9	0.93	2.21	
1,2,3,7,8-PeCDF	3.43	0.45	11.0	J
2,3,4,7,8-PeCDF	2.70	0.46	11.0	J
1,2,3,4,7,8-HxCDF	1.46 *	0.38	11.0	J
1,2,3,6,7,8-HxCDF		0.62	11.0	ND
2,3,4,6,7,8-HxCDF	0.56	0.40	11.0	Ĵ
1,2,3,7,8,9-HxCDF	1.59	0.50	11.0	J
1,2,3,4,6,7,8-HpCDF	0.67 *	0.38	11.0	J
1,2,3,4,7,8,9-HpCDF	*	0.44	11.0	ND
OCDF	-	1.03	22.1	ND
2,3,7,8-TCDD	2.33	0.66	2.21	
1,2,3,7,8-PeCDD	2.33	0.71	11.0	ND
1,2,3,4,7,8-HxCDD	*	0.58	11.0	ND
1,2,3,6,7,8-HxCDD	*	0.55	11.0	ND
1,2,3,7,8,9-HxCDD	*	0.59	11.0	ND
1,2,3,4,6,7,8-HpCDD	0.80	0.44	11.0	J
OCDD	0.98	0.86	22.1	Ĵ
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	81			
13C-1,2,3,7,8-PeCDF	116			
13C-2,3,4,7,8-PeCDF	128			
13C-1,2,3,4,7,8-HxCDF	69	•		
13C-1,2,3,6,7,8-HxCDF	67			
13C-2,3,4,6,7,8-HxCDF	67			
13C-1,2,3,7,8,9-HxCDF	73			
13C-1,2,3,4,6,7,8-HpCDF	73			
13C-1,2,3,4,7,8,9-HpCDF	100			
100 0 0 7 0 7000	00			
13C-2,3,7,8-TCDD	86 115			
13C-1,2,3,7,8-PeCDD	115			
13C-1,2,3,4,7,8-HxCDD	73 64			
13C-1,2,3,6,7,8-HxCDD	64 70			
3C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	70 77			
130-000	11			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT	C11956 Station 14 Bivs 50203LCA01- 4.05 1.05				
PERCENT SOLIDS	25.9				
CALCULATION BASIS	DRY				
SAMPLE TYPE	SAMP				
MATRIX	TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE ANALYSIS DATE	11/10/94 02/03/95				
ANALTSIS DATE	02/03/95 Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)	DBQuai	
2,3,7,8-TCDF	*	5.51	9.52	ND	
1,2,3,7,8-PeCDF	*	2.08	47.6	ND	
2,3,4,7,8-PeCDF	*	2.22	47.6	ND	
1,2,3,4,7,8-HxCDF	*	1.60	47.6	ND	
1,2,3,6,7,8-HxCDF	*	1.39	47.6	ND	
2,3,4,6,7,8-HxCDF	*	1.68	47.6	ND	
1,2,3,7,8,9-HxCDF	4.86	2.09	47.6	J	
1,2,3,4,6,7,8-HpCDF	2.15	2.17	47.6	J	
1,2,3,4,7,8,9-HpCDF	*	2.77	47.6	ND	
OCDF	*	4.40	95.2	ND	
	_				
2,3,7,8-TCDD	*	3.11	9.52	ND	
1,2,3,7,8-PeCDD	5.94 *	2.91	47.6	J	
1,2,3,4,7,8-HxCDD	*	2.32	47.6	ND	
1,2,3,6,7,8-HxCDD	*	2.26 2.42	47.6	ND	
1,2,3,7,8,9-HxCDD	*	2.42 5.00	47.6 47.6	ND ND	
1,2,3,4,6,7,8-HpCDD OCDD	10.8	5.21	95.2	J	
Internal Standard	% Recov	DB Qual	33.2	<u> </u>	
% Recoveries	70 110001	DD Q 00,			
13C-2,3,7,8-TCDF	82				
13C-1,2,3,7,8-PeCDF	104				
13C-2,3,4,7,8-PeCDF	112				
13C-1,2,3,4,7,8-HxCDF	75				
13C-1,2,3,6,7,8-HxCDF	69				
13C-2,3,4,6,7,8-HxCDF	68				
13C-1,2,3,7,8,9-HxCDF	76				
13C-1,2,3,4,6,7,8-HpCDF	83				
13C-1,2,3,4,7,8,9-HpCDF	104				
13C-2,3,7,8-TCDD	84				
13C-1,2,3,7,8-PeCDD	101				
13C-1,2,3,4,7,8-HxCDD	82				
13C-1,2,3,6,7,8-HxCDD	66				
3C-1,2,3,4,6,7,8-HpCDD	80				
13C-OCDD	78				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS	C11961 Station 5 Stury 50203LCA01- 5.59 2.50 44.7				
CALCULATION BASIS	DRY				
SAMPLE TYPE MATRIX	SAMP TISSUE				
QC BATCH	DX0170				
EXTRACTION DATE	11/10/94				
ANALYSIS DATE	02/04/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
2,3,7,8-TCDF	39.7	0.90	4.00		
1,2,3,7,8-PeCDF	4.91 3.04	0.73 0.80	20.0 20.0	J	
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	3.04	1.41	20.0	ND ND	
1,2,3,6,7,8-HxCDF	*	1.12	20.0	ND	
2,3,4,6,7,8-HxCDF	*	0.51	20.0	ND	
1,2,3,7,8,9-HxCDF	*	2.32	20.0	ND	
1,2,3,4,6,7,8-HpCDF	*	0.89	20.0	ND	
1,2,3,4,7,8,9-HpCDF	*	0.88	20.0	ND	
OCDF	*	1.90	40.0	ND	
2,3,7,8-TCDD	*	1.10	4.00	ND	
1,2,3,7,8-PeCDD	*	1.09	20.0	ND	
1,2,3,4,7,8-HxCDD	*	0.65	20.0	ND	
1,2,3,6,7,8-HxCDD	*	0.61	20.0	ND	
1,2,3,7,8,9-HxCDD	*	0.66	20.0	ND	
1,2,3,4,6,7,8-HpCDD	1.26	1.35	20.0	J	
OCDD	* 0/ Pages	1.64	40.0	ND	
Internal Standard % Recoveries	% Recov	DB Qual			
13C-2,3,7,8-TCDF	80				
13C-1,2,3,7,8-PeCDF	103				
13C-2,3,4,7,8-PeCDF	108				
13C-1,2,3,4,7,8-HxCDF	70				
13C-1,2,3,6,7,8-HxCDF	63				
13C-2,3,4,6,7,8-HxCDF	68				
13C-1,2,3,7,8,9-HxCDF	76				
13C-1,2,3,4,6,7,8-HpCDF	. 72				
13C-1,2,3,4,7,8,9-HpCDF	91				
400 0 0 7 0 7077	00				
13C-2,3,7,8-TCDD	80				
13C-1,2,3,7,8-PeCDD	92				
13C-1,2,3,4,7,8-HxCDD	77 65				
13C-1,2,3,6,7,8-HxCDD 3C-1,2,3,4,6,7,8-HpCDD	66				
13C-0CDD	64				
100-0000	V-T				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT	C11962 Station 21-30 93-D0-01 50203LCA01-15 10.09			
DRY WEIGHT	2.74			
PERCENT SOLIDS	27.2			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	TISSUE			
QC BATCH	DX0170			
EXTRACTION DATE	11/10/94			
ANALYSIS DATE	02/04/95	FD1	11101	
Company d Name	Conc	EDL (no (n)	LMCL ·	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	4
2,3,7,8-TCDF 1,2,3,7,8-PeCDF	4.08 *	0.75	3.65	ND
		0.42 0.47	18.2 18.2	ND J
2,3,4,7,8-PeCDF	0.96	1.66	18.2	
1,2,3,4,7,8-HxCDF	0.75	0.24	18.2	ND J
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.75	0.24	18.2	J
1,2,3,7,8,9-HxCDF	1.98	0.34	18.2	J
1,2,3,4,6,7,8-HpCDF	0.73	0.40	18.2	J
1,2,3,4,7,8,9-HpCDF	*	0.51	18.2	ND
OCDF	*	1.21	36.5	ND
Gebi		1.21	30.3	ND
2,3,7,8-TCDD	*	0.49	3.65	ND
1,2,3,7,8-PeCDD	*	2.52	18.2	ND
1,2,3,4,7,8-HxCDD	1.18	0.38	18.2	J
1,2,3,6,7,8-HxCDD	0.35	0.38	18.2	Ĵ
1,2,3,7,8,9-HxCDD	*	0.40	18.2	ND
1,2,3,4,6,7,8-HpCDD	1.05	0.58	18.2	J
OCDD	*	1.43	36.5	ND
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	67			
13C-1,2,3,7,8-PeCDF	94			
13C-2,3,4,7,8-PeCDF	95			
13C-1,2,3,4,7,8-HxCDF	9	Q		
13C-1,2,3,6,7,8-HxCDF	54			
13C-2,3,4,6,7,8-HxCDF	59			
13C-1,2,3,7,8,9-HxCDF	65			
13C-1,2,3,4,6,7,8-HpCDF	62			
13C-1,2,3,4,7,8,9-HpCDF	81			
120 2 2 7 9 700	69			
13C-2,3,7,8-TCDD	84			
13C-1,2,3,7,8-PeCDD	70			
13C-1,2,3,4,7,8-HxCDD	55			
13C-1,2,3,6,7,8-HxCDD 3C-1,2,3,4,6,7,8-HpCDD	60			•
13C-OCDD	58			
130-0000	30			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX	C16751 Station 19 Apl 50203LCA01- 10.04 2.96 29.5 DRY SAMP TISSUE	•		
QC BATCH EXTRACTION DATE	DX0170 11/10/94			
ANALYSIS DATE	02/04/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	9.28	1.32	3.38	
1,2,3,7,8-PeCDF	*	0.49	16.9	ND
2,3,4,7,8-PeCDF	*	0.54	16.9	ND
1,2,3,4,7,8-HxCDF	*	0.44	16.9	ND
1,2,3,6,7,8-HxCDF	1.02	0.39	16.9	J
2,3,4,6,7,8-HxCDF	*	0.48	16.9	ND
1,2,3,7,8,9-HxCDF	1.48	0.55	16.9	J
1,2,3,4,6,7,8-HpCDF	0.90	0.54	16.9	J
1,2,3,4,7,8,9-HpCDF	*	0.66	16.9	ND
OCDF	*	1.37	33.8	ND
2,3,7,8-TCDD	*	0.67	3.38	ND
1,2,3,7,8-PeCDD	2.17	0.90	3.36 16.9	J
1,2,3,4,7,8-HxCDD	Z.17 *	0.74	16.9	ND
1,2,3,6,7,8-HxCDD	*	0.75	16.9	ND
1,2,3,7,8,9-HxCDD	*	0.79	16.9	ND
1,2,3,4,6,7,8-HpCDD	2.38	0.98	16.9	J
OCDD	3.72	1.43	33.8	J
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	78			
13C-1,2,3,7,8-PeCDF	109			
13C-2,3,4,7,8-PeCDF	110			
13C-1,2,3,4,7,8-HxCDF	81			
13C-1,2,3,6,7,8-HxCDF	71			
13C-2,3,4,6,7,8-HxCDF	70			
13C-1,2,3,7,8,9-HxCDF	84			
13C-1,2,3,4,6,7,8-HpCDF	78			
13C-1,2,3,4,7,8,9-HpCDF	104			
13C-2,3,7,8-TCDD	79			
13C-1,2,3,7,8-PeCDD	99			
13C-1,2,3,4,7,8-HxCDD	86			
13C-1,2,3,6,7,8-HxCDD	68			
3C-1,2,3,4,6,7,8-HpCDD	77			
13C-OCDD	69	-		

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT	C16752 Station 20 Bivalves 50203LCA01-13 5.22			
DRY WEIGHT	1.29			
PERCENT SOLIDS	24.7			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	TISSUE			
QC BATCH	DX0170			
EXTRACTION DATE	11/10/94			
ANALYSIS DATE	02/04/95	FDI	LMOL	550
Compound Name	Conc	EDL (pg/g)	LMCL	DBQual
2,3,7,8-TCDF	(pg/g) *	(pg/g) 2,27	(pg/g) 7.76	ND
1,2,3,7,8-PeCDF	*	1.31	38.8	ND
2,3,4,7,8-PeCDF	*	1.38	38.8	ND
1,2,3,4,7,8-HxCDF	# .	1.04	38.8	ND
1,2,3,6,7,8-HxCDF	*	0.93	38.8	ND
2,3,4,6,7,8-HxCDF	1.58	1.16	38.8	J
1,2,3,7,8,9-HxCDF	3.74	1.40	38.8	J
1,2,3,4,6,7,8-HpCDF	1.30	1.47	38.8	J
1,2,3,4,7,8,9-HpCDF	*	1.71	38.8	ND
OCDF	*	3.23	77.6	ND
0.0.7.0.7000	*	4.74	7.70	
2,3,7,8-TCDD		1.71	7.76	ND
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	*	2.90 1.75	38.8 38.8	ND ND
1,2,3,6,7,8-HxCDD	*	1.75	38.8	ND
1,2,3,7,8,9-HxCDD	*	1.86	38.8	ND
1,2,3,4,6,7,8-HpCDD	5.22	1.75	38.8	J
OCDD	24.7	3.34	77.6	Ĵ
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	80			
13C-1,2,3,7,8-PeCDF	108			
13C-2,3,4,7,8-PeCDF	112			
13C-1,2,3,4,7,8-HxCDF	78			
13C-1,2,3,6,7,8-HxCDF	71			
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	68 78			
13C-1,2,3,4,6,7,8-HpCDF	83			
13C-1,2,3,4,7,8,9-HpCDF	112			
,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
13C-2,3,7,8-TCDD	79			
13C-1,2,3,7,8-PeCDD	98			
13C-1,2,3,4,7,8-HxCDD	79			
13C-1,2,3,6,7,8-HxCDD	64			
3C-1,2,3,4,6,7,8-HpCDD	85			
13C-OCDD	81			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID	C16753	C16753				
CLIENT SAMPLE ID	Station 54 Wo	Station 54 Worm-Nephthys				
INSTRUMENT DATA FILE		50203LCA01-14				
WET WEIGHT	5.36					
DRY WEIGHT	1.37					
PERCENT SOLIDS	25.5					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/04/95 Conc	EDI	1.1401	550		
Compound Name		EDL (pg/g)	LMCL -	DBQual		
2,3,7,8-TCDF	(pg/g) *	(pg/g) 0.95	(pg/g) 7.31	ND		
1,2,3,7,8-PeCDF	*	1.05	36.5	ND		
2,3,4,7,8-PeCDF	*	1.18	36.5	ND		
1,2,3,4,7,8-HxCDF	*	0.64	36.5	ND		
1,2,3,6,7,8-HxCDF	*	1.15	36.5	ND		
2,3,4,6,7,8-HxCDF	*	0.74	36.5	ND		
1,2,3,7,8,9-HxCDF	*	3.32	36.5	ND		
1,2,3,4,6,7,8-HpCDF	1.25	0.98	36.5	J		
1,2,3,4,7,8,9-HpCDF	*	1.28	36.5	ND		
OCDF	*	1.70	73.1	ND		
2,3,7,8-TCDD	*	1.04	7.31	ND		
1,2,3,7,8-PeCDD	*	3.07	36.5	ND		
1,2,3,4,7,8-HxCDD	*	0.91	36.5	ND		
1,2,3,6,7,8-HxCDD	*	0.89	36.5	ND		
1,2,3,7,8,9-HxCDD	*	0.95	36.5	ND		
1,2,3,4,6,7,8-HpCDD	5.39	1.25	36.5	J		
OCDD	23.2	1.95	73.1	J		
Internal Standard	% Recov	DB Qual				
% Recoveries						
13C-2,3,7,8-TCDF	69					
13C-1,2,3,7,8-PeCDF	97					
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	96 67					
	67 62					
13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	60 60					
13C-1,2,3,7,8,9-HxCDF	67					
13C-1,2,3,4,6,7,8-HpCDF	65					
13C-1,2,3,4,7,8,9-HpCDF	84					
.30 1,2,3,4,7,0,0 Hpobl	J .					
13C-2,3,7,8-TCDD	70					
13C-1,2,3,7,8-PeCDD	84					
13C-1,2,3,4,7,8-HxCDD	69		.•			
13C-1,2,3,6,7,8-HxCDD	57					
3C-1,2,3,4,6,7,8-HpCDD	62			•		
13C-OCDD	60					

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Dioxins and Furans in Tissues Quality Control Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q9071			
CLIENT SAMPLE ID				
INSTRUMENT DATA FILE	50203LCA01-4	1		
WET WEIGHT DRY WEIGHT	2.00			
PERCENT SOLIDS	2.00			
CALCULATION BASIS	DRY			
SAMPLE TYPE	BLANK			
MATRIX				
QC BATCH	DX0170			
EXTRACTION DATE	11/10/94			
ANALYSIS DATE	02/03/95			
Companyed Name	Conc	EDL	LMCL	DBQual
Compound Name 2,3,7,8-TCDF	(pg/g) *	(pg/g) 11.1	(pg/g) 5.00	ND
1,2,3,7,8-PeCDF	*	5.59	25.0	ND
2,3,4,7,8-PeCDF	*	6.07	25.0	ND
1,2,3,4,7,8-HxCDF	*	4.51	25.0	ND
1,2,3,6,7,8-HxCDF	*	3.62	25.0	ND
2,3,4,6,7,8-HxCDF	*	4.74	25.0	ND
1,2,3,7,8,9-HxCDF	*	5.69	25.0	ND
1,2,3,4,6,7,8-HpCDF	*	5.31	25.0	ND
1,2,3,4,7,8,9-HpCDF	*	6.54	25.0	ND
OCDF	*	20.2	50.0	ND
2 2 7 9 TCDD	*	10.1	5.00	ND
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	*	10.1 8.86	5.00 25.0	ND ND
1,2,3,4,7,8-HxCDD	*	7.26	25.0	ND
1,2,3,6,7,8-HxCDD	*	7.12	25.0	ND
1,2,3,7,8,9-HxCDD	*	7.58	25.0	ND
1,2,3,4,6,7,8-HpCDD	*	7.02	25.0	ND
OCDD	*	10.8	50.0	ND
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	83 95			
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	95			
13C-1,2,3,4,7,8-HxCDF	71			
13C-1,2,3,6,7,8-HxCDF	76			
13C-2,3,4,6,7,8-HxCDF	71			
13C-1,2,3,7,8,9-HxCDF	74			
13C-1,2,3,4,6,7,8-HpCDF	76			
13C-1,2,3,4,7,8,9-HpCDF	97			
13C-2,3,7,8-TCDD	88			
13C-1,2,3,7,8-PeCDD	87			
13C-1,2,3,4,7,8-HxCDD	82 69			
13C-1,2,3,6,7,8-HxCDD 3C-1,2,3,4,6,7,8-HpCDD	69			
13C-OCDD	77			
,000 000				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE		Q9073 Station 21-30 93-D0-01 50203LCA01-17				
WET WEIGHT	10.21					
DRY WEIGHT	2.67					
PERCENT SOLIDS	26.2					
CALCULATION BASIS	DRY					
SAMPLE TYPE	DUP					
MATRIX	TISSUE					
QC BATCH	DX0170					
EXTRACTION DATE	11/10/94					
ANALYSIS DATE	02/04/95	·				
	Conc	EDL	LMCL	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
2,3,7,8-TCDF	6.48	1.41	3.74			
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	7.69 6.35	0.83 0.98	18.7	J		
1,2,3,4,7,8-HxCDF	4.08	0.98	18.7 18.7	J		
1,2,3,6,7,8-HxCDF	4.00 *	4.36	18.7	ND		
2,3,4,6,7,8-HxCDF	4.26	0.82	18.7	J		
1,2,3,7,8,9-HxCDF	4.62	1.01	18.7	Ĵ		
1,2,3,4,6,7,8-HpCDF	3.30	0.82	18.7	J		
1,2,3,4,7,8,9-HpCDF	*	1.10	18.7	ND		
OCDF	*	2.51	37.4	ND		
2,3,7,8-TCDD	*	1.01	3.74	ND		
1,2,3,7,8-PeCDD	8.44	1.01	18.7	J		
1,2,3,4,7,8-HxCDD	*	4.47	18.7	ND		
1,2,3,6,7,8-HxCDD	*	2.27	18.7	ND		
1,2,3,7,8,9-HxCDD		3.29	18.7	ND		
1,2,3,4,6,7,8-HpCDD OCDD	*	4.21 3.14	18.7 37.4	ND ND		
Internal Standard	% Recov	DB Qual	37.4	ND		
% Recoveries	/0 11CCOV	DD Quai				
13C-2,3,7,8-TCDF	64					
13C-1,2,3,7,8-PeCDF	88					
13C-2,3,4,7,8-PeCDF	83					
13C-1,2,3,4,7,8-HxCDF	64					
13C-1,2,3,6,7,8-HxCDF	56					
13C-2,3,4,6,7,8-HxCDF	58					
13C-1,2,3,7,8,9-HxCDF	62					
13C-1,2,3,4,6,7,8-HpCDF	65					
13C-1,2,3,4,7,8,9-HpCDF	83					
13C-2,3,7,8-TCDD	65					
13C-1,2,3,7,8-PeCDD	82					
13C-1,2,3,4,7,8-HxCDD	70					
13C-1,2,3,6,7,8-HxCDD	54					
3C-1,2,3,4,6,7,8-HpCDD	63 57					
13C-OCDD	57					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to	-	tic Rivers	
LAB SAMPLE ID	C11962	Ω9073		
CLIENT SAMPLE ID	Station 21-30 93-D0-01	Station 21-3	30 93-D0-01	
INSTRUMENT DATA FILE	50203LCA01-15	50203LCA0		
WET WEIGHT	10.09	10.21		
DRY WEIGHT	2.74	2.67		
PERCENT SOLIDS	27.2	26.2		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	TISSUE	TISSUE		
QC BATCH	DX0170	DX0170		
EXTRACTION DATE	11/10/94	11/10/94		
ANALYSIS DATE	02/04/95	02/04/95		
	Conc	Conc	RPD	DB
Compound Name	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	4.08	6.48	45	
1,2,3,7,8-PeCDF	*	7.69		
2,3,4,7,8-PeCDF	0.96	6.35	147	a
1,2,3,4,7,8-HxCDF	*	4.08		
1,2,3,6,7,8-HxCDF	0.75	*		
2,3,4,6,7,8-HxCDF	0.59	4.26	151	a
1,2,3,7,8,9-HxCDF	1.98	4.62	80	a
1,2,3,4,6,7,8-HpCDF	0.73	3.30	128	a
1,2,3,4,7,8,9-HpCDF	*	*		
OCDF	. *	*		
0.07.07000	*	*		
2,3,7,8-TCDD	-			
1,2,3,7,8-PeCDD	1.10	8.44		
1,2,3,4,7,8-HxCDD	1.18 0.35	*		
1,2,3,6,7,8-HxCDD	U.35 *	*		
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	1.05	*		
1,2,3,4,0,7,8-прСDD OCDD	*	*		
Internal Standard				
% Recoveries				
13C-2,3,7,8-TCDF				
13C-1,2,3,7,8-PeCDF				
13C-2,3,4,7,8-PeCDF				
13C-1,2,3,4,7,8-HxCDF				
13C-1,2,3,6,7,8-HxCDF				
13C-2,3,4,6,7,8-HxCDF				
13C-1,2,3,7,8,9-HxCDF				
13C-1,2,3,4,6,7,8-HpCDF				
13C-1,2,3,4,7,8,9-HpCDF				
•				
13C-2,3,7,8-TCDD				
13C-1,2,3,7,8-PeCDD				
13C-1,2,3,4,7,8-HxCDD				
13C-1,2,3,6,7,8-HxCDD				
3C-1,2,3,4,6,7,8-HpCDD				
13C-OCDD				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	Q9072 Station 21-30 50203LCA01- 10.16 2.72 26.8 DRY MS TISSUE DX0170 11/10/94			
ANALYSIS DATE	02/04/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	428	1.17	3.67	
1,2,3,7,8-PeCDF	1832	1.16	18.4	
2,3,4,7,8-PeCDF	2145	1.32	18.4	
1,2,3,4,7,8-HxCDF	1890	0.91	18.4	
1,2,3,6,7,8-HxCDF	1835	0.81	18.4	
2,3,4,6,7,8-HxCDF	1925	0.97	18.4	
1,2,3,7,8,9-HxCDF	1802	1.17	18.4	
1,2,3,4,6,7,8-HpCDF	1885	0.85	18.4	
1,2,3,4,7,8,9-HpCDF	1817	1.17	18.4	
OCDF	3907	2.58	36.7	
2,3,7,8-TCDD	288	1.20	3.67	
1,2,3,7,8-PeCDD	1784	1.59	18.4	
1,2,3,4,7,8-HxCDD	1700	1.17	18.4	
1,2,3,6,7,8-HxCDD	1760	1.13	18.4	
1,2,3,7,8,9-HxCDD	1865	1.21	18.4	
1,2,3,4,6,7,8-HpCDD	1765	1.16	18.4	
OCDD	3070	2.70	36.7	
Internal Standard	% Recov	DB Qual		
% Recoveries		-		
13C-2,3,7,8-TCDF	69			
13C-1,2,3,7,8-PeCDF	101			
13C-2,3,4,7,8-PeCDF	99			
13C-1,2,3,4,7,8-HxCDF	70			
13C-1,2,3,6,7,8-HxCDF	61			
13C-2,3,4,6,7,8-HxCDF	63			
13C-1,2,3,7,8,9-HxCDF	70			
13C-1,2,3,4,6,7,8-HpCDF	65			
13C-1,2,3,4,7,8,9-HpCDF	84			
400 0 0 7 0 7000	70			
13C-2,3,7,8-TCDD	72			
13C-1,2,3,7,8-PeCDD	90			
13C-1,2,3,4,7,8-HxCDD	75			
13C-1,2,3,6,7,8-HxCDD	60			
3C-1,2,3,4,6,7,8-HpCDD	62			
13C-OCDD	62		A***	

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C11962		Q9072		
CLIENT SAMPLE ID		30 93-D0-01		30 93-D0-01	
INSTRUMENT DATA FILE	50203LCA		50203LCA0		
WET WEIGHT	10.09		10.16		
DRY WEIGHT	2.74		2.72		
PERCENT SOLIDS	27.2		26.8		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP		MS		
MATRIX	TISSUE		TISSUE		
QC BATCH	DX0170		DX0170		
EXTRACTION DATE	11/10/94		11/10/94		
ANALYSIS DATE	02/04/95		02/04/95		
	Conc	Spike Amnt		Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	4.08	294	428	144	Q
1,2,3,7,8-PeCDF	*	1469	1832	125	
2,3,4,7,8-PeCDF	0.96	1469	2145	146	Q
1,2,3,4,7,8-HxCDF	*	1469	1890	129	
1,2,3,6,7,8-HxCDF	0.75	1469	1835	125	
2,3,4,6,7,8-HxCDF	0.59	1469	1925	131	Q
1,2,3,7,8,9-HxCDF	1.98	1469	1802	123	
1,2,3,4,6,7,8-HpCDF	0.73	1469	1885	128	
1,2,3,4,7,8,9-HpCDF	*	1469	1817	124	
OCDF	*	2938	3907	133	Q
2,3,7,8-TCDD	*	294	288	98	
1,2,3,7,8-PeCDD	*	1469	1784	121	
1,2,3,4,7,8-HxCDD	1.18	1469	1700	116	
1,2,3,6,7,8-HxCDD	0.35	1469	1760	120	
1,2,3,7,8,9-HxCDD	*	1469	1865	127	
1,2,3,4,6,7,8-HpCDD	1.05	1469	1765	120	
OCDD	*	2938	3070	104	
Internal Standard					
% Recoveries					
13C-2,3,7,8-TCDF					
13C-1,2,3,7,8-PeCDF					
13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,6,7,8-HxCDF					
13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF					
13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,6,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD					
13C-OCDD		4			

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Dioxins and Furans in Sediments Analytical Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	C12906 Station 5 Sedir 50203LCA01-3 42.03 23.62 56.2 DRY SAMP SEDIMENT DX0173 11/30/94 02/04/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	0.38	0.33	0.42	J
1,2,3,7,8-PeCDF	*	0.43	2.12	ND
2,3,4,7,8-PeCDF	*	0.50	2.12	ND
1,2,3,4,7,8-HxCDF	0.26	0.03	2.12	J
1,2,3,6,7,8-HxCDF	0.32	0.03	2.12	J
2,3,4,6,7,8-HxCDF	0.39	0.04	2.12	J
1,2,3,7,8,9-HxCDF	0.36	0.04	2.12	J
1,2,3,4,6,7,8-HpCDF	0.55	0.03	2.12	J
1,2,3,4,7,8,9-HpCDF	0.06	0.04	2.12	J
OCDF	0.10	0.05	4.23	J
2,3,7,8-TCDD	*	0.03	0.42	ND
1,2,3,7,8-PeCDD	*	0.36	2.12	ND
1,2,3,4,7,8-HxCDD	*	0.47	2.12	ND
1,2,3,6,7,8-HxCDD	*	0.27	2.12	ND
1,2,3,7,8,9-HxCDD	*	0.25	2.12	ND
1,2,3,4,6,7,8-HpCDD	1.27	0.04	2.12	J
OCDD	4.36	0.05	4.23	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	90			
13C-1,2,3,7,8-PeCDF	32	•		
13C-2,3,4,7,8-PeCDF	21	a		
13C-1,2,3,4,7,8-HxCDF	92			
13C-1,2,3,6,7,8-HxCDF	77			
13C-2,3,4,6,7,8-HxCDF	76 86	·		
13C-1,2,3,7,8,9-HxCDF	86			
13C-1,2,3,4,6,7,8-HpCDF	92 124			
13C-1,2,3,4,7,8,9-HpCDF	124			
13C-2,3,7,8-TCDD	98			
13C-1,2,3,7,8-PeCDD	17	Q		
13C-1,2,3,4,7,8-HxCDD	90			
13C-1,2,3,6,7,8-HxCDD	77			
3C-1,2,3,4,6,7,8-HpCDD	91			V
13C-OCDD	109			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS	C12908 Station 12 Sec 50203LCA01- 58.54 26.34 45.0 DRY			
SAMPLE TYPE MATRIX	SAMP SEDIMENT			
QC BATCH	DX0173			
EXTRACTION DATE	11/30/94			
ANALYSIS DATE	02/04/95			
Compound Name	Conc	EDL	LMCL	DBQual
Compound Name 2,3,7,8-TCDF	(pg/g) 0.43	(pg/g) 0.07	(pg/g)	
1,2,3,7,8-PeCDF	0.43 *	0.07	0.38 1.90	ND
2,3,4,7,8-PeCDF	*	0.55	1.90	ND ND
1,2,3,4,7,8-HxCDF	0.21	0.03	1.90	J
1,2,3,6,7,8-HxCDF	0.25	0.03	1.90	J
2,3,4,6,7,8-HxCDF	0.25	0.04	1.90	J
1,2,3,7,8,9-HxCDF	0.30	0.05	1.90	Ĵ
1,2,3,4,6,7,8-HpCDF	0.62	0.02	1.90	Ĵ
1,2,3,4,7,8,9-HpCDF	0.05	0.03	1.90	Ĵ
OCDF	0.66	0.04	3.80	Ĵ
2,3,7,8-TCDD	*	0.06	0.38	ND
1,2,3,7,8-PeCDD	*	0.77	1.90	ND
1,2,3,4,7,8-HxCDD	*	0.50	1.90	ND
1,2,3,6,7,8-HxCDD	0.23	0.02	1.90	J
1,2,3,7,8,9-HxCDD	0.21	0.02	1.90	J
1,2,3,4,6,7,8-HpCDD	1.80	0.02	1.90	J
OCDD	7.96	0.12	3.80	
Internal Standard	% Recov	DB Qual		
% Recoveries 13C-2,3,7,8-TCDF	00			***************************************
13C-1,2,3,7,8-PeCDF	88 24	Q		
13C-2,3,4,7,8-PeCDF	4	a		
13C-1,2,3,4,7,8-HxCDF	84	•		
13C-1,2,3,6,7,8-HxCDF	68			
13C-2,3,4,6,7,8-HxCDF	63			
13C-1,2,3,7,8,9-HxCDF	76			
13C-1,2,3,4,6,7,8-HpCDF	80			
13C-1,2,3,4,7,8,9-HpCDF	112			
13C-2,3,7,8-TCDD	94			
13C-1,2,3,7,8-PeCDD	5	a		
13C-1,2,3,4,7,8-HxCDD	88			
13C-1,2,3,6,7,8-HxCDD	73			
3C-1,2,3,4,6,7,8-HpCDD	105			
13C-OCDD	91			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS	C12909 Station 14 Sec 50203LCA01- 47.48 19.04 40.1 DRY			
SAMPLE TYPE	SAMP			
MATRIX QC BATCH	SEDIMENT DX0173			
EXTRACTION DATE	11/30/94			
ANALYSIS DATE	02/04/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	0.69	0.05	0.53	
1,2,3,7,8-PeCDF	*	0.95	2.63	ND
2,3,4,7,8-PeCDF	*	1.84	2.63	ND
1,2,3,4,7,8-HxCDF	*	0.67	2.63	ND
1,2,3,6,7,8-HxCDF	0.71	0.09	2.63	j
2,3,4,6,7,8-HxCDF	0.82	0.10	2.63	J
1,2,3,7,8,9-HxCDF	0.54	0.11	2.63	J
1,2,3,4,6,7,8-HpCDF	1.47	0.02	2.63	J
1,2,3,4,7,8,9-HpCDF	0.18	0.03	2.63	J
OCDF	1.02	0.04	5.25	J
2,3,7,8-TCDD	*	0.11	0.53	ND
1,2,3,7,8-PeCDD	*	1.08	2.63	ND
1,2,3,4,7,8-HxCDD	*	0.59	2.63	ND
1,2,3,6,7,8-HxCDD	*	0.37	2.63	ND
1,2,3,7,8,9-HxCDD	*	0.36	2.63	ND
1,2,3,4,6,7,8-HpCDD	2.90	0.02	2.63	
OCDD	12.6	0.12	5.25	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	99			
13C-1,2,3,7,8-PeCDF	13	Q		
13C-2,3,4,7,8-PeCDF	3	Q		
13C-1,2,3,4,7,8-HxCDF	90			
13C-1,2,3,6,7,8-HxCDF	68			
13C-2,3,4,6,7,8-HxCDF	76			
13C-1,2,3,7,8,9-HxCDF	93			
13C-1,2,3,4,6,7,8-HpCDF	97			
13C-1,2,3,4,7,8,9-HpCDF	125			
13C-2,3,7,8-TCDD	102			
13C-1,2,3,7,8-PeCDD	6	Q		
13C-1,2,3,4,7,8-HxCDD	93	-		
13C-1,2,3,6,7,8-HxCDD	77			
3C-1,2,3,4,6,7,8-HpCDD	92			
13C-OCDD	101			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	C12911 Station 21 Sec 50203LCA01- 23.45 14.95 63.8 DRY SAMP SEDIMENT DX0173 11/30/94			
ANALYSIS DATE	02/04/95			
C	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	0.44	0.09	0.67	J
1,2,3,7,8-PeCDF	*	0.40	3.34	ND
2,3,4,7,8-PeCDF		1.74	3.34	ND
1,2,3,4,7,8-HxCDF	0.48	0.06	3.34	J
1,2,3,6,7,8-HxCDF	0.70 *	0.06	3.34	J
2,3,4,6,7,8-HxCDF		1.43	3.34	ND
1,2,3,7,8,9-HxCDF	0.69	0.09	3.34	J
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.04	0.04 0.15	3.34	J
1,2,3,4,7,6,9-прСDF OCDF	0.27	0.15	3.34	ND
OCDF	0.27	0.06	6.69	J
2,3,7,8-TCDD	*	0.15	0.67	ND
1,2,3,7,8-PeCDD	*	*	3.34	ND
1,2,3,4,7,8-HxCDD	0.69	0.14	3.34	J
1,2,3,6,7,8-HxCDD	0.55	0.13	3.34	j
1,2,3,7,8,9-HxCDD	*	0.48	3.34	ND
1,2,3,4,6,7,8-HpCDD	6.29	0.05	3.34	110
OCDD	39.5	0.23	6.69	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	120			
13C-1,2,3,7,8-PeCDF	15	Q		
13C-2,3,4,7,8-PeCDF	6	Q		
13C-1,2,3,4,7,8-HxCDF	106			
13C-1,2,3,6,7,8-HxCDF	79			
13C-2,3,4,6,7,8-HxCDF	85			
13C-1,2,3,7,8,9-HxCDF	99			
13C-1,2,3,4,6,7,8-HpCDF	102			
13C-1,2,3,4,7,8,9-HpCDF	138			
120 2 2 7 9 7000	104			
13C-2,3,7,8-TCDD	124	0		
13C-1,2,3,7,8-PeCDD	5 102	Q		
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	102 84			
3C-1,2,3,4,6,7,8-HpCDD	104			
13C-OCDD	115			
130-0000	110			

CLIENT NAME	Office of Naval Research			
PROJECT NAME	Contaminants Release to Russian Arctic Rivers			
PURCHASE ORDER NO.				
LAB SAMPLE ID	C12912			
CLIENT SAMPLE ID	Station 58 Sec			
INSTRUMENT DATA FILE	50203LCA01-	26		
WET WEIGHT	41.95			
DRY WEIGHT	21.17			
PERCENT SOLIDS	50.5			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH	DX0173			
EXTRACTION DATE	11/30/94			
ANALYSIS DATE	02/04/95	en.	11161	
. Compound Name	Conc	EDL	LMCL	DBQual
Compound Name 2,3,7,8-TCDF	(pg/g) *	(pg/g)	(pg/g)	ND
1,2,3,7,8-PeCDF	*	0.29 0.41	0.47 2.36	ND ND
2,3,4,7,8-PeCDF	*	1.32	2.36	ND ND
1,2,3,4,7,8-HxCDF	0.69	0.05	2.36	
1,2,3,6,7,8-HxCDF	0.80	0.05	2.36	J
2,3,4,6,7,8-HxCDF	*	1.52	2.36	ND
1,2,3,7,8,9-HxCDF	0.58	0.07	2.36	J
1,2,3,4,6,7,8-HpCDF	1.40	0.03	2.36	J
1,2,3,4,7,8,9-HpCDF	0.19	0.04	2.36	J
0CDF	0.64	0.04	4.72	J
	0.04	0.04	7.72	3
2,3,7,8-TCDD	*	0.07	0.47	ND
1,2,3,7,8-PeCDD	*	3.49	2.36	ND
1,2,3,4,7,8-HxCDD	0.94	0.07	2.36	J
1,2,3,6,7,8-HxCDD	*	1.13	2.36	ND
1,2,3,7,8,9-HxCDD	1.80	0.08	2.36	J
1,2,3,4,6,7,8-HpCDD	22.7	0.04	2.36	
OCDD	383	0.10	4.72	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	102			
13C-1,2,3,7,8-PeCDF	9	Q		
13C-2,3,4,7,8-PeCDF	4	Q		
13C-1,2,3,4,7,8-HxCDF	96			
13C-1,2,3,6,7,8-HxCDF	74			
13C-2,3,4,6,7,8-HxCDF	77			
13C-1,2,3,7,8,9-HxCDF	92			
13C-1,2,3,4,6,7,8-HpCDF	101			
13C-1,2,3,4,7,8,9-HpCDF	135			
400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400			
13C-2,3,7,8-TCDD	106	•		
13C-1,2,3,7,8-PeCDD	3	a		
13C-1,2,3,4,7,8-HxCDD	101			
13C-1,2,3,6,7,8-HxCDD	73			
3C-1,2,3,4,6,7,8-HpCDD	103			
13C-OCDD	122			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	C12915 Station 61 Sec 50203LCA01-40.77 14.52 35.6 DRY SAMP SEDIMENT DX0173 11/30/94			
ANALYSIS DATE	02/04/95			
Compound Name	Conc (pg/g)	EDL (pg/g)	LMCL (pg/g)	DBQual
2,3,7,8-TCDF	*	0.32	0.69	ND
1,2,3,7,8-PeCDF	*	0.91	3.44	ND
2,3,4,7,8-PeCDF	*	3.04	3.44	ND
1,2,3,4,7,8-HxCDF	0.32	0.07	3.44	J
1,2,3,6,7,8-HxCDF	*	0.42	3.44	ND
2,3,4,6,7,8-HxCDF	0.34	0.08	3.44	J
1,2,3,7,8,9-HxCDF	*	0.53	3.44	ND
1,2,3,4,6,7,8-HpCDF	0.65	0.09	3.44	J
1,2,3,4,7,8,9-HpCDF	*	0.13	3.44	ND
OCDF	0.53	0.17	6.89	J
2,3,7,8-TCDD	*	0.21	0.69	ND
1,2,3,7,8-PeCDD	*	1.99	3.44	ND
1,2,3,4,7,8-HxCDD	1.01	0.14	3.44	J
1,2,3,6,7,8-HxCDD	0.75	0.12	3.44	J
1,2,3,7,8,9-HxCDD	1.19	0.14	3.44	J
1,2,3,4,6,7,8-HpCDD	12.5	0.11	3.44	
OCDD	84.1	0.41	6.89	
Internal Standard	% Recov	DB Qual		
% Recoveries	400			
13C-2,3,7,8-TCDF	100	•		
13C-1,2,3,7,8-PeCDF	11 4	a a		
13C-2,3,4,7,8-PeCDF	94	u		
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	75			
13C-2,3,4,6,7,8-HxCDF	73			
13C-1,2,3,7,8,9-HxCDF	89			
13C-1,2,3,4,6,7,8-HpCDF	102			
13C-1,2,3,4,7,8,9-HpCDF	127			
13C-2,3,7,8-TCDD	112			
13C-1,2,3,7,8-PeCDD	9	Q		
13C-1,2,3,4,7,8-HxCDD	105			
13C-1,2,3,6,7,8-HxCDD	83			
3C-1,2,3,4,6,7,8-HpCDD	97			
13C-OCDD	102			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	C12917			
CLIENT SAMPLE ID	Station 20 Sec	diments		
INSTRUMENT DATA FILE	50203LCA01-	28		
WET WEIGHT	43.74			
DRY WEIGHT	27.54			
PERCENT SOLIDS	63.0			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH	DX0173			
EXTRACTION DATE	11/30/94			
ANALYSIS DATE	02/04/95			
Comment Name	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g) *	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.45	0.36	ND
1,2,3,7,8-PeCDF		0.50	1.82	ND
2,3,4,7,8-PeCDF	0.16	2.41	1.82	ND
1,2,3,4,7,8-HxCDF	0.16 0.26	0.02	1.82	J
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.25	0.02 0.02	1.82	J
1,2,3,7,8,9-HxCDF	0.25	0.02	1.82 1.82	J
1,2,3,4,6,7,8-HpCDF	0.45	0.02	1.82	J
1,2,3,4,7,8,9-HpCDF	*	0.08	1.82	ND
OCDF	*	0.29	3.63	ND
005.		0.20	0.00	ND
2,3,7,8-TCDD	*	0.05	0.36	ND
1,2,3,7,8-PeCDD	*	0.96	1.82	ND
1,2,3,4,7,8-HxCDD	0.40	0.04	1.82	J
1,2,3,6,7,8-HxCDD	0.41	0.04	1.82	J
1,2,3,7,8,9-HxCDD	0.51	0.04	1.82	J
1,2,3,4,6,7,8-HpCDD	5.23	0.04	1.82	
OCDD	37.2	0.06	3.63	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	103			
13C-1,2,3,7,8-PeCDF	7	Q		
13C-2,3,4,7,8-PeCDF	2	Q		
13C-1,2,3,4,7,8-HxCDF	86			
13C-1,2,3,6,7,8-HxCDF	73 75			
13C-2,3,4,6,7,8-HxCDF	75 97			
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	85			
13C-1,2,3,4,7,8,9-HpCDF	117			
100-1,2,0, 1 ,7,0,3-11pcbr	117			
13C-2,3,7,8-TCDD	109			
13C-1,2,3,7,8-PeCDD	3	Q		
13C-1,2,3,4,7,8-HxCDD	95	_		
13C-1,2,3,6,7,8-HxCDD	69			
3C-1,2,3,4,6,7,8-HpCDD	84			
13C-OCDD	88			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	C13773 Station 38 Sec 50208LCA01-60.51 23.54 38.9 DRY SAMP SEDIMENT DX0180 12/02/94 02/08/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	DDQuai
2,3,7,8-TCDF	0.83	0.41	0.42	
1,2,3,7,8-PeCDF	*	0.18	2.12	ND
2,3,4,7,8-PeCDF	*	0.17	2.12	ND
1,2,3,4,7,8-HxCDF	*	0.26	2.12	ND
1,2,3,6,7,8-HxCDF	*	0.31	2.12	ND
2,3,4,6,7,8-HxCDF	*	0.41	2.12	ND
1,2,3,7,8,9-HxCDF	*	0.36	2.12	ND
1,2,3,4,6,7,8-HpCDF	0.55	0.33	2.12	J
1,2,3,4,7,8,9-HpCDF	*	0.43	2.12	ND
OCDF	*	0.71	4.25	ND
2,3,7,8-TCDD	*	0.22	0.42	ND
1,2,3,7,8-PeCDD	*	0.31	2.12	ND
1,2,3,4,7,8-HxCDD	0.69	0.24	2.12	J
1,2,3,6,7,8-HxCDD	*	0.57	2.12	ND
1,2,3,7,8,9-HxCDD	0.66	0.25	2.12	J
1,2,3,4,6,7,8-HpCDD	6.60	0.35	2.12	
OCDD	50.3	0.61	4.25	
Internal Standard	% Recov	DB Qual		
% Recoveries	<u> </u>			
13C-2,3,7,8-TCDF	65			
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	62 72			
	72			
13C-1,2,3,4,7,8-HxCDF	74 50			
13C-1,2,3,6,7,8-HxCDF	58 61			
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	61 67			
	68			
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	90			
130-1,2,3,4,7,0,3-прсог	90			
13C-2,3,7,8-TCDD	87			
13C-1,2,3,7,8-PeCDD	73			
13C-1,2,3,4,7,8-HxCDD	90			
13C-1,2,3,6,7,8-HxCDD	73			
3C-1,2,3,4,6,7,8-HpCDD	80			
13C-OCDD	79			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH	C13783 Station 56 Sec 50208LCA01-49.45 34.17 69.1 DRY SAMP SEDIMENT DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/08/95 Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	Docual
2,3,7,8-TCDF	0.20	0.28	0.29	J
1,2,3,7,8-PeCDF	*	0.14	1.46	ND
2,3,4,7,8-PeCDF	*	0.14	1.46	ND
1,2,3,4,7,8-HxCDF	*	0.29	1.46	ND
1,2,3,6,7,8-HxCDF	0.31	0.13	1.46	J
2,3,4,6,7,8-HxCDF	*	0.38	1.46	ND
1,2,3,7,8,9-HxCDF	0.31	0.17	1.46	J
1,2,3,4,6,7,8-HpCDF	0.63	0.20	1.46	J
1,2,3,4,7,8,9-HpCDF	*	0.24	1.46	ND
OCDF	*	0.35	2.93	ND
2,3,7,8-TCDD	*	0.11	0.29	ND
1,2,3,7,8-PeCDD	0.86	0.18	1.46	J
1,2,3,4,7,8-HxCDD	*	0.57	1.46	ND
1,2,3,6,7,8-HxCDD	*	0.43	1.46	ND
1,2,3,7,8,9-HxCDD	*	0.47	1.46	ND
1,2,3,4,6,7,8-HpCDD	4.39	0.23	1.46	
OCDD	29.5	0.35	2.93	
Internal Standard	% Recov	DB Qual		
% Recoveries 13C-2,3,7,8-TCDF	53	·····		
13C-1,2,3,7,8-PeCDF	50			
13C-2,3,4,7,8-PeCDF	58			
13C-1,2,3,4,7,8-HxCDF	62			
13C-1,2,3,6,7,8-HxCDF	47			
13C-2,3,4,6,7,8-HxCDF	47			
13C-1,2,3,7,8,9-HxCDF	59			
13C-1,2,3,4,6,7,8-HpCDF	51			
13C-1,2,3,4,7,8,9-HpCDF	72			
.,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_			
13C-2,3,7,8-TCDD	72			
13C-1,2,3,7,8-PeCDD	59			
13C-1,2,3,4,7,8-HxCDD	72			
13C-1,2,3,6,7,8-HxCDD	55			
3C-1,2,3,4,6,7,8-HpCDD	63			
13C-OCDD	64	44.400		

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	C16679 Station 8A Sec 50208LCA01-57.21 36.42 63.7 DRY SAMP SEDIMENT DX0180 12/02/94			
ANALYSIS DATE	02/08/95			
	Conc	EDL	LMCL -	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.60	0.27	ND
1,2,3,7,8-PeCDF	*	0.21	1.37	ND
2,3,4,7,8-PeCDF	*	0.24	1.37	ND
1,2,3,4,7,8-HxCDF	*	0.27	1.37	ND
1,2,3,6,7,8-HxCDF	*	0.28	1.37	ND
2,3,4,6,7,8-HxCDF	*	0.33	1.37	ND
1,2,3,7,8,9-HxCDF	*	0.42	1.37	ND
1,2,3,4,6,7,8-HpCDF	*	0.35	1.37	ND
1,2,3,4,7,8,9-HpCDF	*	0.47	1.37	ND
OCDF	*	0.68	2.75	ND
2,3,7,8-TCDD	*	0.28	0.27	ND
1,2,3,7,8-PeCDD	*	0.49	1.37	ND
1,2,3,4,7,8-HxCDD	*	0.44	1.37	ND
1,2,3,6,7,8-HxCDD	*	0.44	1.37	ND
1,2,3,7,8,9-HxCDD		0.47	1.37	ND
1,2,3,4,6,7,8-HpCDD	1.21	0.45	1.37	, J
OCDD	3.13	0.64	2.75	
Internal Standard % Recoveries	% Recov	DB Qual		
13C-2,3,7,8-TCDF	59			
13C-1,2,3,7,8-PeCDF	58			
13C-2,3,4,7,8-PeCDF	56			
13C-1,2,3,4,7,8-HxCDF	64			
13C-1,2,3,6,7,8-HxCDF	53			
13C-2,3,4,6,7,8-HxCDF	52			
13C-1,2,3,7,8,9-HxCDF	57			
13C-1,2,3,4,6,7,8-HpCDF	54			
13C-1,2,3,4,7,8,9-HpCDF	71			
13C-2,3,7,8-TCDD	78			
13C-1,2,3,7,8-PeCDD	57			
13C-1,2,3,4,7,8-HxCDD	81			
13C-1,2,3,6,7,8-HxCDD	61			
3C-1,2,3,4,6,7,8-HpCDD	62			
13C-OCDD	85			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	C16684 Station 10 Sed 50208LCA01-5 39.96 33.71 84.4 DRY SAMP SEDIMENT DX0180 12/02/94			
ANALYSIS DATE	02/08/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.18	0.30	ND
1,2,3,7,8-PeCDF	*	0.08	1.48	ND
2,3,4,7,8-PeCDF	*	0.07	1.48	ND
1,2,3,4,7,8-HxCDF	*	0.07	1.48	ND
1,2,3,6,7,8-HxCDF	*	0.12	1.48	ND
2,3,4,6,7,8-HxCDF	*	0.14	1.48	ND
1,2,3,7,8,9-HxCDF	0.19	0.09	1.48	J
1,2,3,4,6,7,8-HpCDF	0.19	0.15	1.48	J
1,2,3,4,7,8,9-HpCDF	*	0.18	1.48	ND
OCDF	*	0.22	2.97	ND
2,3,7,8-TCDD	*	0.12	0.30	ND
1,2,3,7,8-PeCDD	*	0.55	1.48	ND
1,2,3,4,7,8-HxCDD	*	0.37	1.48	ND
1,2,3,6,7,8-HxCDD	*	0.10	1.48	ND
1,2,3,7,8,9-HxCDD		0.11	1.48	ND
1,2,3,4,6,7,8-HpCDD	0.24	0.14	1.48	J
OCDD	0.74	0.19 DB Qual	2.97	J
Internal Standard	% Recov	DB Quai		
% Recoveries 13C-2,3,7,8-TCDF	55			
13C-1,2,3,7,8-PeCDF	54			
13C-2,3,4,7,8-PeCDF	64			
13C-1,2,3,4,7,8-HxCDF	64			
13C-1,2,3,6,7,8-HxCDF	49			
13C-2,3,4,6,7,8-HxCDF	51			
13C-1,2,3,7,8,9-HxCDF	60			
13C-1,2,3,4,6,7,8-HpCDF	52			
13C-1,2,3,4,7,8,9-HpCDF	78			
13C-2,3,7,8-TCDD	78			
13C-1,2,3,7,8-PeCDD	66			
13C-1,2,3,4,7,8-HxCDD	78			
13C-1,2,3,6,7,8-HxCDD	59			
3C-1,2,3,4,6,7,8-HpCDD	68			
13C-OCDD	71			

Date: 3/31/95

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT	C16701 Station 17 Sediments 50208LCA01-S12 61.61			
DRY WEIGHT	20.63			
PERCENT SOLIDS	33.5			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH	DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/08/95			
0	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	0.36	0.09 0.16	0.48	J
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	*	0.16	2.42	ND
1,2,3,4,7,8-HxCDF	*	0.17	2.42 2.42	ND ND
1,2,3,6,7,8-HxCDF	0.27	0.14	2.42	J
2,3,4,6,7,8-HxCDF	*	0.29	2.42	ND
1,2,3,7,8,9-HxCDF	0.44	0.19	2.42	J
1,2,3,4,6,7,8-HpCDF	0.61	0.15	2.42	J
1,2,3,4,7,8,9-HpCDF	*	0.20	2.42	ND
OCDF	0.47	0.27	4.85	J
2,3,7,8-TCDD	*	0.12	0.48	ND
1,2,3,7,8-PeCDD	1.49	0.17	2.42	J
1,2,3,4,7,8-HxCDD	0.75	0.13	2.42	J
1,2,3,6,7,8-HxCDD	*	0.58	2.42	ND
1,2,3,7,8,9-HxCDD	*	0.79	2.42	ND
1,2,3,4,6,7,8-HpCDD	5.76	0.15	2.42	
OCDD	39.4	0.24	4.85	
Internal Standard	% Recov	DB Quai		
% Recoveries				
13C-2,3,7,8-TCDF	58			
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	46 46			
13C-1,2,3,4,7,8-HxCDF	62			
13C-1,2,3,6,7,8-HxCDF	49			
13C-2,3,4,6,7,8-HxCDF	50			
13C-1,2,3,7,8,9-HxCDF	58			
13C-1,2,3,4,6,7,8-HpCDF	53			
13C-1,2,3,4,7,8,9-HpCDF	71			
•				
13C-2,3,7,8-TCDD	68			
13C-1,2,3,7,8-PeCDD	50			
13C-1,2,3,4,7,8-HxCDD	78			
13C-1,2,3,6,7,8-HxCDD	55			
3C-1,2,3,4,6,7,8-HpCDD	67			
13C-OCDD	70			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS	C16703 Station 18 Sec 50208LCA01- 41.44 33.30 80.4			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX QC BATCH	SEDIMENT DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/08/95		•	
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.13	0.30	ND
1,2,3,7,8-PeCDF	*	0.07	1.50	ND
2,3,4,7,8-PeCDF	*	0.06	1.50	ND
1,2,3,4,7,8-HxCDF	*	0.10	1.50	ND
1,2,3,6,7,8-HxCDF	0.10	0.05	1.50	J
2,3,4,6,7,8-HxCDF	0.13	0.06	1.50	J
1,2,3,7,8,9-HxCDF	0.19 *	0.07	1.50	J
1,2,3,4,6,7,8-HpCDF	*	0.20	1.50	ND
1,2,3,4,7,8,9-HpCDF OCDF	*	0.07 0.17	1.50 3.00	ND ND
OCDF		0.17	3.00	ND
2,3,7,8-TCDD	*	0.05	0.30	ND
1,2,3,7,8-PeCDD	*	0.41	1.50	ND
1,2,3,4,7,8-HxCDD	0.29	0.08	1.50	J
1,2,3,6,7,8-HxCDD	0.13	0.08	1.50	J
1,2,3,7,8,9-HxCDD	*	0.08	1.50	ND
1,2,3,4,6,7,8-HpCDD	0.54	0.09	1.50	J
OCDD	2.56	0.18	3.00	J
Internal Standard	% Recov	DB Qual		
% Recoveries		J. 14.1		
13C-2,3,7,8-TCDF	60			
13C-1,2,3,7,8-PeCDF	41			
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	49 69			
13C-1,2,3,4,7,8-HxCDF	5 4			
13C-2,3,4,6,7,8-HxCDF	54			
13C-1,2,3,7,8,9-HxCDF	65			
13C-1,2,3,4,6,7,8-HpCDF	54			
13C-1,2,3,4,7,8,9-HpCDF	81			
13C-2,3,7,8-TCDD	75			
13C-1,2,3,7,8-PeCDD	51			
13C-1,2,3,4,7,8-HxCDD	84			
13C-1,2,3,6,7,8-HxCDD	65			
3C-1,2,3,4,6,7,8-HpCDD	72			•
13C-OCDD	69			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT	C16732 Station 44 Sediments 50208LCA01-S8 40.70			
DRY WEIGHT	18.13			
PERCENT SOLIDS	44.5			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH EXTRACTION DATE	DX0180 12/02/94			
ANALYSIS DATE	02/08/95			
ANALTSIS DATE	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	DDQuai
2,3,7,8-TCDF	*	0.81	0.55	ND
1,2,3,7,8-PeCDF	*	0.47	2.76	ND
2,3,4,7,8-PeCDF	*	0.42	2.76	ND
1,2,3,4,7,8-HxCDF	*	0.43	2.76	ND
1,2,3,6,7,8-HxCDF	*	0.42	2.76	ND
2,3,4,6,7,8-HxCDF	*	0.55	2.76	ND
1,2,3,7,8,9-HxCDF	*	0.63	2.76	ND
1,2,3,4,6,7,8-HpCDF	*	0.43	2.76	ND
1,2,3,4,7,8,9-HpCDF	¥	0.51	2.76	ND
OCDF	*	1.14	5.52	ND
2,3,7,8-TCDD	*	0.34	0.55	ND
1,2,3,7,8-PeCDD	*	0.55	2.76	ND
1,2,3,4,7,8-HxCDD	*	0.65	2.76	ND
1,2,3,6,7,8-HxCDD	*	0.67	2.76	ND
1,2,3,7,8,9-HxCDD	*	0.70	2.76	ND
1,2,3,4,6,7,8-HpCDD	2.46	0.60	2.76	j
OCDD	13.6	0.89	5.52	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	61			
13C-1,2,3,7,8-PeCDF	63 76			
13C-2,3,4,7,8-PeCDF	76 74			
13C-1,2,3,4,7,8-HxCDF	74 58			
13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	57			
13C-1,2,3,7,8,9-HxCDF	67			
13C-1,2,3,4,6,7,8-HpCDF	58			
13C-1,2,3,4,7,8,9-HpCDF	86			
13C-2,3,7,8-TCDD	84			
13C-1,2,3,7,8-PeCDD	77			
13C-1,2,3,4,7,8-HxCDD	86			
13C-1,2,3,6,7,8-HxCDD	65			
3C-1,2,3,4,6,7,8-HpCDD	80			
13C-OCDD	79			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants	l Research Release to Russ	sian Arctic Riv	ers
LAB SAMPLE ID	C13767			
CLIENT SAMPLE ID	Station 16 Sec	diment		
INSTRUMENT DATA FILE	50205PGA02-	S7		
WET WEIGHT	82.19			
DRY WEIGHT	24.91			
PERCENT SOLIDS	30.3			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH	DX0183			
EXTRACTION DATE	12/09/94			
ANALYSIS DATE	02/06/95			
Company d Norma	Conc	EDL	LMCL	DBQual
Compound Name 2,3,7,8-TCDF	(pg/g)	(pg/g)	(pg/g)	
1,2,3,7,8-PeCDF	0.57 *	0.27 0.32	0.40 2.01	ND
2,3,4,7,8-PeCDF	*	0.32	2.01	ND ND
1,2,3,4,7,8-HxCDF	0.32	0.32	2.01	J
1,2,3,6,7,8-HxCDF	0.30	0.30	2.01	J
2,3,4,6,7,8-HxCDF	*	0.39	2.01	ND
1,2,3,7,8,9-HxCDF	*	0.39	2.01	ND
1,2,3,4,6,7,8-HpCDF	1.08	0.35	2.01	J
1,2,3,4,7,8,9-HpCDF	*	0.44	2.01	ND
OCDF	1.18	0.83	4.01	J
2,3,7,8-TCDD	*	0.22	0.40	ND
1,2,3,7,8-PeCDD	0.98	0.38	2.01	J
1,2,3,4,7,8-HxCDD	*	0.88	2.01	ND
1,2,3,6,7,8-HxCDD	*	0.48	2.01	ND
1,2,3,7,8,9-HxCDD	0.64	0.32	2.01	J
1,2,3,4,6,7,8-HpCDD	5.19	0.47	2.01	
OCDD	34.0	0.39	4.01	
Internal Standard	% Recov	DB Qual		
% Recoveries 13C-2,3,7,8-TCDF	57			
13C-1,2,3,7,8-PeCDF	57 51			
13C-2,3,4,7,8-PeCDF	61			
13C-1,2,3,4,7,8-HxCDF	58			
13C-1,2,3,6,7,8-HxCDF	47			
13C-2,3,4,6,7,8-HxCDF	49			
13C-1,2,3,7,8,9-HxCDF	62			
13C-1,2,3,4,6,7,8-HpCDF	55			
13C-1,2,3,4,7,8,9-HpCDF	72			
•				
13C-2,3,7,8-TCDD	74			
13C-1,2,3,7,8-PeCDD	69			
13C-1,2,3,4,7,8-HxCDD	73			
13C-1,2,3,6,7,8-HxCDD	58			
3C-1,2,3,4,6,7,8-HpCDD	68			
13C-OCDD	84			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH	C13770 Station 29 Sec 50205PGA02-48.39 38.16 78.9 DRY SAMP SEDIMENT DX0183			
EXTRACTION DATE ANALYSIS DATE	12/09/94 02/06/95			
AWALIOU DAIL	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.25	0.26	ND
1,2,3,7,8-PeCDF	*	0.24	1.31	ND
2,3,4,7,8-PeCDF	*	0.13	1.31	ND
1,2,3,4,7,8-HxCDF	*	0.28	1.31	ND
1,2,3,6,7,8-HxCDF	0.25	0.12	1.31	J
2,3,4,6,7,8-HxCDF	. *	0.30	1.31	ND
1,2,3,7,8,9-HxCDF	*	0.26	1.31	ND
1,2,3,4,6,7,8-HpCDF	0.46	0.17	1.31	J
1,2,3,4,7,8,9-HpCDF	*	0.18	1.31	ND
OCDF	*	0.44	2.62	ND
2,3,7,8-TCDD	*	0.11	0.26	ND
1,2,3,7,8-PeCDD		0.19	1.31	ND
1,2,3,4,7,8-HxCDD	-	0.17	1.31	ND
1,2,3,6,7,8-HxCDD	*	0.17	1.31	ND
1,2,3,7,8,9-HxCDD	0.70	0.18	1.31	ND
1,2,3,4,6,7,8-HpCDD OCDD	0.78 2.73	0.16 0.26	1.31 2.62	J
Internal Standard	% Recov	DB Qual	2.02	
% Recoveries	70 TIECOV	DD Quai		
13C-2,3,7,8-TCDF	55			
13C-1,2,3,7,8-PeCDF	51			
13C-2,3,4,7,8-PeCDF	62			
13C-1,2,3,4,7,8-HxCDF	57			
13C-1,2,3,6,7,8-HxCDF	47			
13C-2,3,4,6,7,8-HxCDF	49			
13C-1,2,3,7,8,9-HxCDF	57			1
13C-1,2,3,4,6,7,8-HpCDF	51			
13C-1,2,3,4,7,8,9-HpCDF	77			
13C-2,3,7,8-TCDD	73			
13C-1,2,3,7,8-PeCDD	70			
13C-1,2,3,4,7,8-HxCDD	72			
13C-1,2,3,6,7,8-HxCDD	57			
3C-1,2,3,4,6,7,8-HpCDD	71			
13C-OCDD	82			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT	C13781 Station 54 Sec 50205PGA02- 67.41			
DRY WEIGHT	49.63			
PERCENT SOLIDS CALCULATION BASIS	73.6 DRY			
SAMPLE TYPE	SAMP			
MATRIX	SEDIMENT			
QC BATCH	DX0183			
EXTRACTION DATE	12/09/94			
ANALYSIS DATE	02/06/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.12	0.20	ND
1,2,3,7,8-PeCDF	*	0.05	1.01	ND
2,3,4,7,8-PeCDF	*	0.05	1.01	ND
1,2,3,4,7,8-HxCDF	*	0.07	1.01	ND
1,2,3,6,7,8-HxCDF	*	0.11	1.01	ND
2,3,4,6,7,8-HxCDF	0.13	0.07	1.01	J
1,2,3,7,8,9-HxCDF	*	0.14	1.01	ND
1,2,3,4,6,7,8-HpCDF	*	0.24	1.01	ND
1,2,3,4,7,8,9-HpCDF	*	0.09	1.01	ND
OCDF	*	0.23	2.01	ND
2 2 7 0 TODD	*	0.05	0.00	115
2,3,7,8-TCDD		0.05	0.20	ND
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	0.39 0.27	0.12 0.09	1.01 1.01	J
1,2,3,6,7,8-HxCDD	U.27 *	0.20	1.01	ND
1,2,3,7,8,9-HxCDD	0.27	0.09	1.01	J
1,2,3,4,6,7,8-HpCDD	2.12	0.08	1.01	3
OCDD	13.8	0.11	2.01	
Internal Standard	% Recov	DB Qual	2.0.	
% Recoveries	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
13C-2,3,7,8-TCDF	60			
13C-1,2,3,7,8-PeCDF	56			
13C-2,3,4,7,8-PeCDF	65			
13C-1,2,3,4,7,8-HxCDF	62			
13C-1,2,3,6,7,8-HxCDF	49			
13C-2,3,4,6,7,8-HxCDF	50			
13C-1,2,3,7,8,9-HxCDF	67			
13C-1,2,3,4,6,7,8-HpCDF	56			
13C-1,2,3,4,7,8,9-HpCDF	75			
12C 2 2 7 9 TCDD	70			
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	78 75			
13C-1,2,3,4,7,8-HxCDD	75 75			
13C-1,2,3,6,7,8-HxCDD	58			
3C-1,2,3,4,6,7,8-HpCDD	73			
13C-OCDD	79			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	C16704 Station 19 Sec 50205PGA02-46.10 22.82 49.5 DRY SAMP SEDIMENT DX0183 12/09/94			
ANALYSIS DATE	02/06/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	₩	0.45	0.44	ND
1,2,3,7,8-PeCDF	*	0.33	2.19	ND
2,3,4,7,8-PeCDF	*	0.35	2.19	ND
1,2,3,4,7,8-HxCDF	*	0.38	2.19	ND
1,2,3,6,7,8-HxCDF	*	0.33	2.19	ND
2,3,4,6,7,8-HxCDF	0.41	0.40	2.19	J
1,2,3,7,8,9-HxCDF	0.42	0.48	2.19	J
1,2,3,4,6,7,8-HpCDF	*	0.64	2.19	ND
1,2,3,4,7,8,9-HpCDF	*	0.48	2.19	ND
OCDF	*	1.33	4.38	ND
2,3,7,8-TCDD		0.34	0.44	ND
1,2,3,7,8-PeCDD	*	0.60	2.19	ND
1,2,3,4,7,8-HxCDD	*	0.52	2.19	ND
1,2,3,6,7,8-HxCDD	*	0.52	2.19	ND
1,2,3,7,8,9-HxCDD		0.55	2.19	ND
1,2,3,4,6,7,8-HpCDD	2.51	0.58	2.19	
OCDD Internal Standard	16.5 % Recov	0.83 DB Qual	4.38	
% Recoveries	% necov	DB Quai		
13C-2,3,7,8-TCDF	66			
13C-1,2,3,7,8-PeCDF	53			
13C-2,3,4,7,8-PeCDF	56			
13C-1,2,3,4,7,8-HxCDF	73			
13C-1,2,3,6,7,8-HxCDF	64			
13C-2,3,4,6,7,8-HxCDF	65			
13C-1,2,3,7,8,9-HxCDF	71			
13C-1,2,3,4,6,7,8-HpCDF	65			
13C-1,2,3,4,7,8,9-HpCDF	75			
•				
13C-2,3,7,8-TCDD	83			
13C-1,2,3,7,8-PeCDD	69			
13C-1,2,3,4,7,8-HxCDD	86			
13C-1,2,3,6,7,8-HxCDD	71			
3C-1,2,3,4,6,7,8-HpCDD	72			
13C-OCDD	83			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	C16718 Station 33 Sec 50205PGA02-44.36 30.24 68.2 DRY SAMP SEDIMENT DX0183 12/09/94 02/06/95				
	Conc	EDL	LMCL	DBQual	
Compound Name	(pg/g)	(pg/g)	(pg/g)		
2,3,7,8-TCDF	*	0.44	0.33	ND	
1,2,3,7,8-PeCDF	*	0.28	1.65	ND	
2,3,4,7,8-PeCDF	*	0.24	1.65	ND	
1,2,3,4,7,8-HxCDF	*	0.26	1.65	ND	
1,2,3,6,7,8-HxCDF	*	0.25	1.65	ND	
2,3,4,6,7,8-HxCDF	*	0.31	1.65	ND	
1,2,3,7,8,9-HxCDF	*	0.39	1.65	ND	
1,2,3,4,6,7,8-HpCDF	* 0.57 1.65 N				
1,2,3,4,7,8,9-HpCDF	*	0.41	1.65	ND	
OCDF	*	1.03	3.31	ND	
2 2 7 9 TCDD	*	0.27	0.33	ND	
2,3,7,8-TCDD	*	0.27 0.72	0.33 1.65	ND ND	
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	*	0.40	1.65	ND	
1,2,3,6,7,8-HxCDD	*	0.37	1.65	ND	
1,2,3,7,8,9-HxCDD		0.40	1.65	ND	
1,2,3,4,6,7,8-HpCDD	1.83	0.49	1.65	ND	
0CDD	7.64	0.63	3.31		
Internal Standard	% Recov	DB Qual	0.01		
% Recoveries	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
13C-2,3,7,8-TCDF	48				
13C-1,2,3,7,8-PeCDF	42				
13C-2,3,4,7,8-PeCDF	52				
13C-1,2,3,4,7,8-HxCDF	54				
13C-1,2,3,6,7,8-HxCDF	45				
13C-2,3,4,6,7,8-HxCDF	43				
13C-1,2,3,7,8,9-HxCDF	48				
13C-1,2,3,4,6,7,8-HpCDF	46				
13C-1,2,3,4,7,8,9-HpCDF	59				
100 0 0 7 0 7000	60				
13C-2,3,7,8-TCDD	62 61				
13C-1,2,3,7,8-PeCDD	61 50				
13C-1,2,3,4,7,8-HxCDD	59 54				
13C-1,2,3,6,7,8-HxCDD	54 52				
3C-1,2,3,4,6,7,8-HpCDD	53 61				
13C-OCDD	61				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants	l Research Release to Russ	sian Arctic Rive	ers		
LAB SAMPLE ID	C16747					
CLIENT SAMPLE ID	Station 71A Se	Station 71A Sediment				
INSTRUMENT DATA FILE		50205PGA02-S6				
WET WEIGHT	45.89					
DRY WEIGHT	18.58					
PERCENT SOLIDS	40.5					
CALCULATION BASIS	DRY					
SAMPLE TYPE	SAMP					
MATRIX	SEDIMENT					
QC BATCH	DX0183					
EXTRACTION DATE	12/09/94					
ANALYSIS DATE	02/06/95					
	Conc	EDL	LMCL -	DBQual		
Compound Name	(pg/g)	(pg/g)	(pg/g)			
2,3,7,8-TCDF	*	0.51	0.54	ND		
1,2,3,7,8-PeCDF	*	0.47	2.69	ND		
2,3,4,7,8-PeCDF	*	0.36	2.69	ND		
1,2,3,4,7,8-HxCDF	0.53	0.46	2.69	j		
1,2,3,6,7,8-HxCDF	0.46	0.45	2.69	J		
2,3,4,6,7,8-HxCDF	0.51	0.57	2.69	J		
1,2,3,7,8,9-HxCDF	0.55	0.61	2.69	J		
1,2,3,4,6,7,8-HpCDF	0.88	0.48	2.69	J		
1,2,3,4,7,8,9-HpCDF	*	0.53	2.69	ND		
OCDF	*	1.48	5.38	ND		
	*					
2,3,7,8-TCDD	*	0.31	0.54	ND		
1,2,3,7,8-PeCDD	*	1.20	2.69	ND		
1,2,3,4,7,8-HxCDD		0.87	2.69	ND		
1,2,3,6,7,8-HxCDD	0.75	0.40	2.69	J		
1,2,3,7,8,9-HxCDD	0.95 7.32	0.42 0.56	2.69 2.69	J		
1,2,3,4,6,7,8-HpCDD OCDD	49.2	0.86	5.38			
Internal Standard	% Recov	DB Qual	5.36			
% Recoveries	70 Necov	DD Qdai				
13C-2,3,7,8-TCDF	60					
13C-1,2,3,7,8-PeCDF	53					
13C-2,3,4,7,8-PeCDF	71					
13C-1,2,3,4,7,8-HxCDF	64					
13C-1,2,3,6,7,8-HxCDF	52					
13C-2,3,4,6,7,8-HxCDF	52					
13C-1,2,3,7,8,9-HxCDF	60					
13C-1,2,3,4,6,7,8-HpCDF	54					
13C-1,2,3,4,7,8,9-HpCDF	80					
·						
13C-2,3,7,8-TCDD	77					
13C-1,2,3,7,8-PeCDD	78					
13C-1,2,3,4,7,8-HxCDD	75					
13C-1,2,3,6,7,8-HxCDD	62					
3C-1,2,3,4,6,7,8-HpCDD	73					
13C-OCDD	80					

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

> Dioxins and Furans in Sediments Quality Control Sample Data

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q11192			
CLIENT SAMPLE ID				
INSTRUMENT DATA FILE	50203LCA01-	21		
WET WEIGHT DRY WEIGHT	20.00			
PERCENT SOLIDS	20.00			
CALCULATION BASIS	DRY			
SAMPLE TYPE	BLANK			
MATRIX				
QC BATCH	DX0173			
EXTRACTION DATE	11/30/94			
ANALYSIS DATE	02/04/95			***************************************
Commound Name	Conc	EDL (==(=)	LMCL	DBQuai
Compound Name 2,3,7,8-TCDF	(pg/g) *	(pg/g) 0.27	(pg/g) 0.50	ND
1,2,3,7,8-PeCDF	*	0.26	2.50	ND
2,3,4,7,8-PeCDF	*	0.26	2.50	ND
1,2,3,4,7,8-HxCDF	*	0.06	2.50	ND
1,2,3,6,7,8-HxCDF	0.45	0.06	2.50	J
2,3,4,6,7,8-HxCDF	0.40	0.07	2.50	J
1,2,3,7,8,9-HxCDF	*	0.09	2.50	ND
1,2,3,4,6,7,8-HpCDF	0.46	0.07	2.50	J
1,2,3,4,7,8,9-HpCDF	*	0.09	2.50	ND
OCDF	*	0.17	5.00	ND
2,3,7,8-TCDD	*	0.09	0.50	ND
1,2,3,7,8-PeCDD	*	0.64	2.50	ND
1,2,3,4,7,8-HxCDD	*	0.14	2.50	ND
1,2,3,6,7,8-HxCDD	*	0.14	2.50	ND
1,2,3,7,8,9-HxCDD	*	0.15	2.50	ND
1,2,3,4,6,7,8-HpCDD	0.47	0.10	2.50	J
OCDD	*	0.22	5.00	. ND
Internal Standard	% Recov	DB Qual		
% Recoveries	87			
13C-1,2,3,7,8-PeCDF	28			
13C-2,3,4,7,8-PeCDF	25			
13C-1,2,3,4,7,8-HxCDF	88			
13C-1,2,3,6,7,8-HxCDF	71			
13C-2,3,4,6,7,8-HxCDF	74			
13C-1,2,3,7,8,9-HxCDF	76			
13C-1,2,3,4,6,7,8-HpCDF	92			
13C-1,2,3,4,7,8,9-HpCDF	122			
120 0 0 7 0 7000	0.2			
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	92 18	Q		
13C-1,2,3,4,7,8-HxCDD	90	u		
13C-1,2,3,6,7,8-HxCDD	69			
3C-1,2,3,4,6,7,8-HpCDD	89			
13C-OCDD	84			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE ANALYSIS DATE	Q11196 Station 21 Sec 50203LCA01- 20.48 13.06 63.8 DRY DUP SEDIMENT DX0173 11/30/94 02/04/95			
ANALTSIS DATE	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	DBQuai
2,3,7,8-TCDF	*	1.04	0.77	ND
1,2,3,7,8-PeCDF	*	2.40	3.83	ND
2,3,4,7,8-PeCDF	*	5.25	3.83	ND
1,2,3,4,7,8-HxCDF	*	0.48	3.83	ND
1,2,3,6,7,8-HxCDF	*	0.61	3.83	ND
2,3,4,6,7,8-HxCDF	*	0.68	3.83	ND
1,2,3,7,8,9-HxCDF	*	0.75	3.83	ND
1,2,3,4,6,7,8-HpCDF	0.98	0.03	3.83	J
1,2,3,4,7,8,9-HpCDF	*	0.04	3.83	ND
OCDF	0.41	0.07	7.66	J
2,3,7,8-TCDD	*	0.13	0.77	ND
1,2,3,7,8-PeCDD	*	5.21	3.83	ND
1,2,3,4,7,8-HxCDD	0.75	0.05	3.83	J
1,2,3,6,7,8-HxCDD	0.57	0.05	3.83	J
1,2,3,7,8,9-HxCDD	0.59	0.05	3.83	J
1,2,3,4,6,7,8-HpCDD	6.73	0.05	3.83	
OCDD	43.6	0.14	7.66	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	93			
13C-1,2,3,7,8-PeCDF	2	α		
13C-2,3,4,7,8-PeCDF	1	Q		
13C-1,2,3,4,7,8-HxCDF	86			
13C-1,2,3,6,7,8-HxCDF	65			
13C-2,3,4,6,7,8-HxCDF	65			
13C-1,2,3,7,8,9-HxCDF	80			
13C-1,2,3,4,6,7,8-HpCDF	92			
13C-1,2,3,4,7,8,9-HpCDF	119			
120 2 2 7 0 7000	00			
13C-2,3,7,8-TCDD	99 2	0		
13C-1,2,3,7,8-PeCDD		Q		
13C-1,2,3,4,7,8-HxCDD	94 71			
13C-1,2,3,6,7,8-HxCDD	91			
3C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	98			
130-000	30			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Researc Contaminants Release t		ic Rivers	
LAB SAMPLE ID	C12911	Q11196		
CLIENT SAMPLE ID	Station 21 Sediments	Station 21 S	ediment	
INSTRUMENT DATA FILE	50203LCA01-25	50203LCA0		
WET WEIGHT	23.45	20.48	. 20	
DRY WEIGHT	14.95	13.06		
PERCENT SOLIDS	63.8	63.8		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	SEDIMENT	SEDIMENT		
QC BATCH	DX0173	DX0173		
EXTRACTION DATE	11/30/94	11/30/94		
ANALYSIS DATE	02/04/95	02/04/95	555	
O	Conc	Conc	RPD	DB
Compound Name	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	0.44	•		
1,2,3,7,8-PeCDF	*	*		
2,3,4,7,8-PeCDF	*	*		
1,2,3,4,7,8-HxCDF	0.48	*		
1,2,3,6,7,8-HxCDF	0.70	*		
2,3,4,6,7,8-HxCDF	*	*		
1,2,3,7,8,9-HxCDF	0.69	*		
1,2,3,4,6,7,8-HpCDF	1.04	0.98	6	
1,2,3,4,7,8,9-HpCDF	*	*		
OCDF	0.27	0.41	41	
2,3,7,8-TCDD	*	*		
1,2,3,7,8-PeCDD	*	*		
1,2,3,4,7,8-HxCDD	0.69	0.75	8	
1,2,3,6,7,8-HxCDD	0.55	0.57	4	
1,2,3,7,8,9-HxCDD	*	0.59		
1,2,3,4,6,7,8-HpCDD	6.29	6.73	7	
OCDD	39.5	43.6	10	
Internal Standard				
% Recoveries				
13C-2,3,7,8-TCDF				
13C-1,2,3,7,8-PeCDF				
13C-2,3,4,7,8-PeCDF				
13C-1,2,3,4,7,8-HxCDF				
13C-1,2,3,6,7,8-HxCDF				
13C-2,3,4,6,7,8-HxCDF				
13C-1,2,3,7,8,9-HxCDF				
13C-1,2,3,4,6,7,8-HpCDF				
13C-1,2,3,4,7,8,9-HpCDF				
13C-2,3,7,8-TCDD				
13C-1,2,3,7,8-PeCDD				
13C-1,2,3,4,7,8-HxCDD				
13C-1,2,3,6,7,8-HxCDD				
3C-1,2,3,4,6,7,8-HpCDD				
13C-OCDD				
100-0000				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q11195			
CLIENT SAMPLE ID				
INSTRUMENT DATA FILE	50203LCA01-	32		
WET WEIGHT	20.00			
DRY WEIGHT PERCENT SOLIDS	20.00			
CALCULATION BASIS	DRY			
SAMPLE TYPE	LBS			
MATRIX	250			
QC BATCH	DX0173			
EXTRACTION DATE	11/30/94			
ANALYSIS DATE	02/04/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	51.4	0.29	0.50	
1,2,3,7,8-PeCDF	281	7.84	2.50	
2,3,4,7,8-PeCDF	276	11.9	2.50	
1,2,3,4,7,8-HxCDF	239	0.44	2.50	
1,2,3,6,7,8-HxCDF	244	0.45	2.50	
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	251 236	0.53 0.67	2.50	•
1,2,3,4,6,7,8-HpCDF	239	0.24	2.50 2.50	
1,2,3,4,7,8,9-HpCDF	233	0.30	2.50	
OCDF	479	0.37	5.00	
		0.07	0.00	
2,3,7,8-TCDD	37.6	0.09	0.50	
1,2,3,7,8-PeCDD	153	11.0	2.50	
1,2,3,4,7,8-HxCDD	196	0.11	2.50	
1,2,3,6,7,8-HxCDD	205	0.11	2.50	
1,2,3,7,8,9-HxCDD	215	0.12	2.50	
1,2,3,4,6,7,8-HpCDD	223	0.21	2.50	
OCDD	401	0.40	5.00	
Internal Standard	% Recov	DB Qual		
% Recoveries 13C-2,3,7,8-TCDF	88			
13C-1,2,3,7,8-PeCDF	2	Q		
13C-2,3,4,7,8-PeCDF	1	ā		
13C-1,2,3,4,7,8-HxCDF	93	•		
13C-1,2,3,6,7,8-HxCDF	70			
13C-2,3,4,6,7,8-HxCDF	70			
13C-1,2,3,7,8,9-HxCDF	80			
13C-1,2,3,4,6,7,8-HpCDF	82			
13C-1,2,3,4,7,8,9-HpCDF	108			
•				
13C-2,3,7,8-TCDD	94			
13C-1,2,3,7,8-PeCDD	1	Q		
13C-1,2,3,4,7,8-HxCDD	91			
13C-1,2,3,6,7,8-HxCDD	68			
3C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	83 80			
130-0000	80			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.		laval Researd nts Release t	ch o Russian Ard	ctic Rivers	
LAB SAMPLE ID	Q11192		Q11195		
INSTRUMENT DATA FILE WET WEIGHT	50203LCA	01-21	50203LCA0	01-32	
DRY WEIGHT PERCENT SOLIDS	20.00		20.00		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	BLANK		LBS		
MATRIX	DV0470		DV0470		
QC BATCH EXTRACTION DATE	DX0173 11/30/94		DX0173 11/30/94		
ANALYSIS DATE	02/04/95		02/04/95		
ANALISIS DATE	Conc	Spike Amn		Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	*	40	51.4	128	
1,2,3,7,8-PeCDF	*	200	281	141	Q
2,3,4,7,8-PeCDF	*	200	276	138	Q
1,2,3,4,7,8-HxCDF	*	200	239	119	
1,2,3,6,7,8-HxCDF	0.45	200	244	122	
2,3,4,6,7,8-HxCDF	0.40	200	251	126	
1,2,3,7,8,9-HxCDF	*	200	236	118	
1,2,3,4,6,7,8-HpCDF	0.46	200	239	119	
1,2,3,4,7,8,9-HpCDF	*	200	233	117	
OCDF	*	400	479	120	
2,3,7,8-TCDD	*	40	37.6	94	
1,2,3,7,8-PeCDD	*	200	153	76	
1,2,3,4,7,8-HxCDD	*	200	196	98	
1,2,3,6,7,8-HxCDD	*	200	205	102	
1,2,3,7,8,9-HxCDD	*	200	215	108	
1,2,3,4,6,7,8-HpCDD	0.47	200	223	111	
OCDD	*	400	401	100	
Internal Standard					
% Recoveries					
13C-2,3,7,8-TCDF					
13C-1,2,3,7,8-PeCDF					
13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,6,7,8-HxCDF					
13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF					
13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,6,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD					
13C-OCDD					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	Q11194 Station 21 Sed 50203LCA01-3 24.00 15.30 63.8 DRY MS SEDIMENTS DX0173 11/30/94			
ANALYSIS DATE	02/04/95			
0	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	68.1	0.65	0.65	
1,2,3,7,8-PeCDF	276	31.5	3.27	
2,3,4,7,8-PeCDF	358	34.6	3.27	
1,2,3,4,7,8-HxCDF	323	0.28	3.27	
1,2,3,6,7,8-HxCDF	316	0.28	3.27	
2,3,4,6,7,8-HxCDF	317 299	0.33	3.27	
1,2,3,7,8,9-HxCDF		0.34 0.51	3.27	
1,2,3,4,6,7,8-HpCDF	313 295	0.62	3.27 3.27	
1,2,3,4,7,8,9-HpCDF OCDF	605	0.85	6.54	
OCDF	605	0.85	0.54	
2,3,7,8-TCDD	49.5	0.78	0.65	
1,2,3,7,8-PeCDD	185	12.9	3.27	
1,2,3,4,7,8-HxCDD	271	0.72	3.27	
1,2,3,6,7,8-HxCDD	277	0.71	3.27	
1,2,3,7,8,9-HxCDD	310	0.76	3.27	
1,2,3,4,6,7,8-HpCDD	303	1.37	3.27	
OCDD	526	3.00	6.54	
Internal Standard	% Recov	DB Qual	0.01	
% Recoveries	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
13C-2,3,7,8-TCDF	93			
13C-1,2,3,7,8-PeCDF	3	Q		
13C-2,3,4,7,8-PeCDF	3	Q		
13C-1,2,3,4,7,8-HxCDF	95			
13C-1,2,3,6,7,8-HxCDF	77			
13C-2,3,4,6,7,8-HxCDF	79			
13C-1,2,3,7,8,9-HxCDF	102			
13C-1,2,3,4,6,7,8-HpCDF	89			
13C-1,2,3,4,7,8,9-HpCDF	115			
13C-2,3,7,8-TCDD	98			
13C-1,2,3,7,8-PeCDD	2	Q		
13C-1,2,3,4,7,8-HxCDD	95			
13C-1,2,3,6,7,8-HxCDD	71			
3C-1,2,3,4,6,7,8-HpCDD	86			
13C-OCDD	94			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers				
LAB SAMPLE ID	C12911		Q11194		
CLIENT SAMPLE ID	Station 21	Sediments	Station 21 S	Sediments	
INSTRUMENT DATA FILE	50203LCA		50203LCA0		
WET WEIGHT	23.45		24.00		
DRY WEIGHT	14.95		15.30		
PERCENT SOLIDS	63.8		63.8		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP		MS		
MATRIX	SEDIMENT		SEDIMENTS		
QC BATCH	DX0173		DX0173		
EXTRACTION DATE	11/30/94		11/30/94		
ANALYSIS DATE	02/04/95		02/04/95		
	Conc	Spike Amn	t Conc	Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	0.44	52	68.1	129	· · · · · · · · · · · · · · · · · · ·
1,2,3,7,8-PeCDF	*	261	276	106	
2,3,4,7,8-PeCDF	*	261	358	137	Q
1,2,3,4,7,8-HxCDF	0.48	261	323	123	
1,2,3,6,7,8-HxCDF	0.70	261	316	121	
2,3,4,6,7,8-HxCDF	*	261	317	121	
1,2,3,7,8,9-HxCDF	0.69	261	299	114	
1,2,3,4,6,7,8-HpCDF	1.04	261	313	119	
1,2,3,4,7,8,9-HpCDF	*	261	295	113	
OCDF	0.27	523	605	116	
2,3,7,8-TCDD	*	52	49.5	95	
1,2,3,7,8-PeCDD	*	261	185	71	
1,2,3,4,7,8-HxCDD	0.69	261	271	104	
1,2,3,6,7,8-HxCDD	0.55	261	277	106	
1,2,3,7,8,9-HxCDD	*	261	310	119	
1,2,3,4,6,7,8-HpCDD	6.29	261	303	113	
OCDD	39.5	523	526	93	
Internal Standard					
% Recoveries 13C-2,3,7,8-TCDF	***				
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,4,7,8-HxCDF			•		
13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF					
13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,6,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD			r.		
13C-OCDD					

GERG/TAMU Date: 3/31/95

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS	Q11193 1941A 50203LCA01-3 5.09 5.09 100.0 DRY	30		
SAMPLE TYPE MATRIX	SRM SEDIMENTS			
QC BATCH	DX0173			
EXTRACTION DATE ANALYSIS DATE	11/30/94 02/04/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	97.3	0.49	1.96	
1,2,3,7,8-PeCDF	193 *	25.8	9.82	
2,3,4,7,8-PeCDF		32.1	9.82	ND
1,2,3,4,7,8-HxCDF	394	9.46	9.82	
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	105 57.5	9.16 11.1	9.82	
1,2,3,7,8,9-HxCDF	67.7	11.7	9.82 9.82	
1,2,3,4,6,7,8-HpCDF	512	0.81	9.82	
1,2,3,4,7,8,9-HpCDF	295	1.03	9.82	
1,2,3,4,7,6,9-прСDF ОСDF	5883	1.44	19.6	
OCDI	3003	1.44	13.0	
2,3,7,8-TCDD	*	0.37	1.96	ND
1,2,3,7,8-PeCDD	119	15.7	9.82	110
1,2,3,4,7,8-HxCDD	10.6	0.83	9.82	
1,2,3,6,7,8-HxCDD	24.9	0.81	9.82	
1,2,3,7,8,9-HxCDD	17.0	0.87	9.82	
1,2,3,4,6,7,8-HpCDD	508	1.16	9.82	
OCDD	6420	1.24	19.6	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	91			
13C-1,2,3,7,8-PeCDF	2	a		
13C-2,3,4,7,8-PeCDF	2	Q		
13C-1,2,3,4,7,8-HxCDF	96			
13C-1,2,3,6,7,8-HxCDF	73			
13C-2,3,4,6,7,8-HxCDF	73			
13C-1,2,3,7,8,9-HxCDF	91			
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	90 123			
130-1,2,3,4,7,0,3-npcor	123			
13C-2,3,7,8-TCDD	98			
13C-1,2,3,7,8-PeCDD	3	Q		
13C-1,2,3,4,7,8-HxCDD	111	_		
13C-1,2,3,6,7,8-HxCDD	76			
3C-1,2,3,4,6,7,8-HpCDD	93			
13C-OCDD	117	· · · · · · · · · · · · · · · · · · ·		

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q10021			
CLIENT SAMPLE ID				
INSTRUMENT DATA FILE	50208LCA01-	S6		
WET WEIGHT				
DRY WEIGHT	20.00			
PERCENT SOLIDS CALCULATION BASIS	DRY			
SAMPLE TYPE	BLANK			
MATRIX	DLANK			
QC BATCH	DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/08/95		·	
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.75	0.50	ND
1,2,3,7,8-PeCDF	*	0.56	2.50	ND
2,3,4,7,8-PeCDF	*	0.64	2.50	ND
1,2,3,4,7,8-HxCDF	*	0.49	2.50	ND
1,2,3,6,7,8-HxCDF	*	0.46	2.50	ND
2,3,4,6,7,8-HxCDF	*	0.58	2.50	ND
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	*	0.72 0.59	2.50 2.50	ND ND
1,2,3,4,7,8,9-HpCDF	*	0.82	2.50	ND
0CDF	*	2.91	5.00	ND
335.		2.0	3.00	110
2,3,7,8-TCDD	*	0.45	0.50	ND
1,2,3,7,8-PeCDD	*	0.93	2.50	ND
1,2,3,4,7,8-HxCDD	*	0.58	2.50	ND
1,2,3,6,7,8-HxCDD	*	0.58	2.50	ND
1,2,3,7,8,9-HxCDD	*	0.61	2.50	ND
1,2,3,4,6,7,8-HpCDD	*	1.08	2.50	ND
OCDD	*	1.56	5.00	ND
Internal Standard	% Recov	DB Qual		
% Recoveries	64			
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	62			
13C-2,3,4,7,8-PeCDF	60			
13C-1,2,3,4,7,8-HxCDF	76			
13C-1,2,3,6,7,8-HxCDF	65			
13C-2,3,4,6,7,8-HxCDF	61			
13C-1,2,3,7,8,9-HxCDF	69			
13C-1,2,3,4,6,7,8-HpCDF	61			
13C-1,2,3,4,7,8,9-HpCDF	75			
13C-2,3,7,8-TCDD	80			
13C-1,2,3,7,8-PeCDD	63			
13C-1,2,3,4,7,8-HxCDD	85			
13C-1,2,3,6,7,8-HxCDD	72			•
3C-1,2,3,4,6,7,8-HpCDD	67			
13C-OCDD	64			

LAB SAMPLE ID CILIENT SAMPLE ID Station 10 Sediments INSTRUMENT DATA FILE 50208LCA01-S14 WET WEIGHT 39.37 DRY WEIGHT 33.21 PERCENT SOLIDS 84.4 CALCULATION BASIS DRY SAMPLE TYPE DUP MATRIX SEDIMENT QC BATCH DX0180 EXTRACTION DATE 12/02/94 ANALYSIS DATE 02/08/95 Compound Name (pg/g) (pg/g) (pg/g) 2.3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PeCDF * 0.09 1.51 ND 1,2,3,4,7,8-PeCDF * 0.15 1.51 ND 1,2,3,4,7,8-HXCDF * 0.10 1.51 ND 1,2,3,4,7,8-HXCDF * 0.20 1.51 ND 1,2,3,4,7,8-HXCDF * 0.20 1.51 ND 1,2,3,4,7,8-HXCDF * 0.10 1.51 ND 1,2,3,4,7,8-HXCDF * 0.10 1.51 ND 1,2,3,4,7,8-HXCDF * 0.10 1.51 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HXCDD * 0.07 0.30 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HXCDD * 0.09 1.51 ND 1,2,3,7,8-HXCDD * 0.09 1.51 ND 1,2,3,7,8-HXCDD * 0.09 1.51 ND 1,2,3,7,8-PeCDD 50 1.2 ND 1,2,3,4,7,8-HXCDD * 0.09 1.51 ND 1,2,3,4,6,7,8-HXCDF 51 13C-1,2,3,4,7,8-HXCDF 55 13C-1,2,3,4,7,8-HXCDD 59 13C-1,2,3,4,7,8-HXCDD 59 13C-1,2,3,4,7,8-HXCDD 66 66	CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers					
INSTRUMENT DATA FILE	LAB SAMPLE ID	Q10022					
WET WEIGHT 39.37 33.21 PERCENT SOLIDS 23.21 PERCENT SOLIDS SAMPLE TYPE MATRIX SEDIMENT QC BATCH DX0180 EXTRACTION DATE ANALYSIS DATE ANALYSIS DATE C2/08/95 Conc Compound Name (pg/g) (pg/g) (pg/g) 2,3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PeCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.17 1.51 ND 1,2,3,4,7,8-HxCDF * 0.17 1.51 ND 1,2,3,4,8-HxCDF * 0.15 1.51 ND 1,2,3,4,8-HxCDF * 0.15 1.51 ND 1,2,3,4,8-HxCDF * 0.20 1.51 ND 1,2,3,4,7,8-HxCDF * 0.20 1.51 ND 1,2,3,4,7,8-HxCDF * 0.28 1.51 ND 1,2,3,4,7,8-HxCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDD * 0.07 0.30 ND 2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,8-HxCDD * 0.09 1.51 ND 13C-2,3,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 51 13C-2,3,4,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDD 59 13C-1,2,3,4,7,8-HxCDD 59 13C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,7,8-HxCDD 65			Station 10 Sediments				
DRY WEIGHT PERCENT SOLIDS 84.4 CALCULATION BASIS SAMPLE TYPE DUP SEDIMENT OC BATCH ANALYSIS DATE 02/08/95 CONC COMPOUND NAME (pg/g) (pg/g) (pg/g) (pg/g) 2,3,7,8-TCDF 0.06 0.30 ND 1.2,3,7,8-PCDF 0.10 1.51 ND 1.2,3,4,6,7,8-HxCDF 0.015 1.51 ND 1.2,3,4,6,7,8-HxCDF 0.015 1.51 ND 1.2,3,7,8-PCDF 0.015 1.51 ND 1.2,3,7,8-PCDF 0.015 1.51 ND 1.2,3,7,8-PCDF 0.015 1.51 ND 1.2,3,7,8,9-HxCDF 0.020 1.51 ND 1.2,3,7,8,9-HxCDF 0.020 1.51 ND 1.2,3,7,8-PCDF 0.020 1.51 ND 1.2,3,7,8-PCDF 0.020 1.51 ND 1.2,3,7,8-PCDF 0.020 1.51 ND 0.00 1.2,3,7,8-PCDD 0.00 1.00 1.51 ND 0.00 1.2,3,7,8-PCDD 0.00 1.00 1.51 ND 0.00 1.2,3,7,8-PCDD 0.00 1.00 1.51 ND 1.2,3,7,8-PCDD 0.00 1.00 1.51 ND 1.2,3,7,8-PCDD 0.00 1.2,3,4,7,8-HxCDD 0.00 1.2,3,4,7,8-HxCDD 0.00 1.2,3,4,7,8-HxCDD 0.00 1.2,3,4,7,8-HxCDD 0.00 1.2,3,4,7,8-PCDF 1.2,3,4,7,8-PCDD 1.2,3,4,7,8-PCDF 1.2,3,4,7			S14				
PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE DUP MATRIX CC BATCH EXTRACTION DATE ANALYSIS DATE Compound Name (pg/g) (pg/g) (pg/g) Compound Name (pg/g) (pg/g) (pg/g) 2,3,7,8-PeCDF 0.06 0.30 ND 1,2,3,7,8-PeCDF 0.09 1.51 ND 1,2,3,4,7,8-HxCDF 0.15 1.51 ND 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDB 13C-1,2,3,4,7,8-PeCDD							
CALCULATION BASIS SAMPLE TYPE MATRIX SEDIMENT QC BATCH DV0180 EXTRACTION DATE ANALYSIS DATE Conc Compound Name (pg/g) (pg/g) (pg/g) 2,3,7,8-TCDF Conc Compound Name (pg/g) (pg/g) (pg/g) 2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDD							
SAMPLE TYPE MATRIX OC BATCH DX0180 EXTRACTION DATE ANALYSIS DATE Compound Name (pg/g) (pg/g) (pg/g) 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDD 13C-1,2,3,4,6,							
MATRIX OC BATCH DX0180 EXTRACTION DATE 12/02/94 ANALYSIS DATE 02/08/95 Conc EDL LMCL DBQual (pg/g) (pg/g) (pg/g) 2,3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PCDF * 0.10 1.51 ND 2,3,4,7,8-P4CDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,4,6,7,8-HxCDF * 0.20 1.51 ND 1,2,3,4,6,7,8-HyCDF * 0.28 1.51 ND 1,2,3,4,6,7,8-HyCDF * 0.10 1.51 ND 1,2,3,4,7,8-P4CDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.28 1.51 ND 1,2,3,4,7,8-HxCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDD * 0.07 0.30 ND 1,2,3,7,8-PCDD * 0.07 0.30 ND 1,2,3,4,7,8-HxCDD * 0.07 0.30 ND 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,6,7,8-HyCDD * 0.09 1.51 ND 1,2,3,7,8-PCDD * 0.47 3.01 ND Internal Standard % Recov DB Qual % Recoveries 13C-2,3,4,8-HxCDF 55 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HyCDF 53 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 60 3C-1,2,3,4,7,8-HyCDD 66							
CC BATCH DX0180 12/02/94 ANALYSIS DATE 02/08/95							
EXTRACTION DATE ANALYSIS DATE 02/08/95 Compound Name (pg/g) (pg/g) (pg/g) (pg/g) 2.3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PeCDF * 0.09 1.51 ND 2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,7,8,9-HxCDF * 0.10 1.51 ND 1,2,3,4,7,8,9-HxCDF * 0.19 3.01 ND 2,3,7,8-TCDD * 0.07 0.30 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,6,7,8-HxCDD * 0.09 1.51 ND 1,2,3,6,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,7,8-HxCDD * 0.09 1.51 ND 1,2,3,4,7,8-HxCDD * 0.37 1.51 ND 1,2,3,4,7,8-HxCDD * 0.37 1.51 ND OCDD * 0.47 3.01 ND Internal Standard % Recov DB Qual % Recoveries 13C-1,2,3,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 55 13C-1,2,3,4,7,8-HxCDF 55 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,7,8-HxCDD 66							
ANALYSIS DATE O2/08/95 Conc EDL LMCL DBQual							
Compound Name Conc (pg/g) EDL (pg/g) LMCL (pg/g) DBQual (pg/g) 2,3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PeCDF * 0.09 1.51 ND 2,3,4,7,8-PeCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.20 1.51 ND 1,2,3,4,7,8,9-HpCDF * 0.20 1.51 ND 1,2,3,7,8,9-HpCDF * 0.10 1.51 ND 0CDF * 0.19 3.01 ND 1,2,3,7,8-PeCDD * 0.07 0.30 ND 1,2,3,7,8-PeCDD * 0.29 1.51 ND 1,2,3,7,8-PeCDD * 0.08 1.51 ND 1,2,3,7,8-PeCDD * 0.37 1.51 ND 1,2,3,7,8-PeCDF 56 13C-1,2,3,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 51 13C-1,2,3,4,7							
Compound Name (pg/g) (pg/g) (pg/g) 2,3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PeCDF * 0.09 1.51 ND 2,3,4,7,8-PeCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,6,7,8-HxCDF * 0.17 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,7,8,9-HxCDF * 0.28 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.28 1.51 ND 1,2,3,7,8,9-HpCDF * 0.10 1.51 ND 1,2,3,7,8-PeCDD * 0.19 3.01 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,6,7,8-HpCDD * 0.09 1.51 ND 1,2,3,7,8-PeCDD * 0.09 1.51 ND 1,2,3,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 56 <t< td=""><td>ANALTSIS DATE</td><td></td><td>EDI</td><td>I MCI</td><td>DROugl</td></t<>	ANALTSIS DATE		EDI	I MCI	DROugl		
2,3,7,8-TCDF * 0.06 0.30 ND 1,2,3,7,8-PeCDF * 0.09 1.51 ND 2,3,4,7,8-PeCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.28 1.51 ND 1,2,3,4,7,8-HpCDF * 0.10 1.51 ND 0CDF * 0.19 3.01 ND 2,3,7,8-TCDD * 0.07 0.30 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.29 1.51 ND 1,2,3,6,7,8-HxCDD * 0.09 1.51 ND 1,2,3,7,8-HxCDD * 0.09 1.51 ND 1,2,3,7,8-HyCDD * 0.37 1.51 ND 1,2,3,4,6,7,8-HyCDD * 0.37 1.51 ND 1,2,3,4,6,7,8-HyCDD * 0.37 1.51 ND 1,2,3,4,6,7,8-HyCDF 56 13C-1,2,3,4,7,8-HxCDF 55 13C-2,3,4,7,8-HxCDF 55 13C-2,3,4,7,8-HxCDF 55 13C-1,2,3,4,6,7,8-HyCDF 53 13C-1,2,3,4,6,7,8-HyCDF 53 13C-1,2,3,4,7,8-HyCDF 53 13C-1,2,3,4,7,8-HyCDF 53 13C-1,2,3,4,7,8-HyCDF 53 13C-1,2,3,4,7,8-HyCDF 53 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 60	Compound Name				DbQuai		
1,2,3,7,8-PeCDF * 0.09 1.51 ND 2,3,4,7,8-PeCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,6,7,8-HxCDF * 0.17 1.51 ND 2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.28 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.10 1.51 ND 1,2,3,4,7,8,9-HpCDF * 0.10 1.51 ND 0CDF * 0.19 3.01 ND 2,3,7,8-TCDD * 0.07 0.30 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.29 1.51 ND 1,2,3,4,7,8-HxCDD * 0.08 1.51 ND 1,2,3,7,8-HxCDD * 0.09 1.51 ND 1,2,3,7,8-HxCDD * 0.09 1.51 ND 1,2,3,7,8-PeCDD * 0.37 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.37 1.51 ND 1,2,3,4,6,7,8-HpCDF 55 13C-2,3,4,7,8-PeCDF 56 13C-1,2,3,7,8-PeCDF 55 13C-2,3,4,7,8-HxCDF 67 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HxCDF 59 13C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HxCDD 60					ND		
2,3,4,7,8-PeCDF * 0.10 1.51 ND 1,2,3,4,7,8-HxCDF * 0.15 1.51 ND 1,2,3,6,7,8-HxCDF * 0.17 1.51 ND 2,3,4,6,7,8-HxCDF * 0.15 1.51 ND 1,2,3,7,8,9-HxCDF * 0.20 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.28 1.51 ND 1,2,3,4,6,7,8-HpCDF * 0.10 1.51 ND 0CDF * 0.19 3.01 ND 2,3,7,8-PeCDD * 0.19 3.01 ND 2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.29 1.51 ND 1,2,3,6,7,8-HxCDD * 0.08 1.51 ND 1,2,3,6,7,8-HxCDD * 0.08 1.51 ND 1,2,3,7,8,9-HxCDD * 0.09 1.51 ND 1,2,3,4,6,7,8-HpCDD * 0.37 1.51 ND 0CDD * 0.47 3.01 ND Internal Standard % Recov DB Qual Recoveries 13C-2,3,7,8-PeCDF 55 13C-2,3,4,7,8-HxCDF 57 13C-1,2,3,6,7,8-HxCDF 57 13C-1,2,3,7,8-PeCDF 58 13C-1,2,3,4,7,8-HxCDF 57 13C-1,2,3,4,7,8-HxCDF 57 13C-1,2,3,4,7,8-HyCDF 57 13C-1,2,3,4,7,8-HyCDF 57 13C-1,2,3,4,7,8-HyCDF 57 13C-1,2,3,4,7,8-HyCDF 57 13C-1,2,3,4,7,8-HyCDF 57 13C-1,2,3,4,7,8-HyCDF 58 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-PeCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDF 59 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 59 13C-1,2,3,4,7,8-HyCDD 50 13C-1,2,3,4,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 60 3C-1,2,3,4,6,7,8-HyCDD 65		*					
1,2,3,4,7,8-HxCDF		*					
1,2,3,6,7,8-HxCDF		*	0.15	1.51			
1,2,3,7,8,9-HxCDF		*	0.17	1.51	ND		
1,2,3,4,6,7,8-HpCDF	2,3,4,6,7,8-HxCDF	*	0.15	1.51	ND		
1,2,3,4,7,8,9-HpCDF	1,2,3,7,8,9-HxCDF	*	0.20	1.51	ND		
OCDF * 0.19 3.01 ND 2,3,7,8-TCDD * 0.07 0.30 ND 1,2,3,7,8-PCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.29 1.51 ND 1,2,3,6,7,8-HxCDD * 0.08 1.51 ND 1,2,3,7,8,9-HxCDD * 0.09 1.51 ND 1,2,3,4,6,7,8-HpCDD * 0.37 1.51 ND OCDD * 0.47 3.01 ND Internal Standard % Recov DB Qual % Recoveries 13C-2,3,7,8-TCDF 58 13C-1,2,3,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 57 13C-2,3,4,7,8-HxCDF 57 13C-1,2,3,4,7,8-HxCDF 58 13C-1,2,3,4,7,8-HxCDF 58 13C-1,2,3,4,7,8-HxCDF 57 13C-1,2,3,4,7,8-HxCDF 58 13C-1,2,3,4,7,8-HxCDD 65 13C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HyCDD 65	1,2,3,4,6,7,8-HpCDF	*	0.28	1.51	ND		
2,3,7,8-TCDD * 0.19 3.01 ND 1,2,3,7,8-PeCDD 0.57 0.14 1.51 J 1,2,3,4,7,8-HxCDD * 0.29 1.51 ND 1,2,3,6,7,8-HxCDD * 0.08 1.51 ND 1,2,3,7,8,9-HxCDD * 0.09 1.51 ND 1,2,3,4,6,7,8-HpCDD * 0.37 1.51 ND OCDD * 0.47 3.01 ND Internal Standard % Recov DB Qual **Recoveries** 13C-2,3,7,8-PeCDF 55 13C-1,2,3,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,7,8-HxCDF 53 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-PeCDF 55 13C-1,2,3,4,7,8-HpCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HxCDF 53 13C-1,2,3,4,7,8-HpCDF 71	1,2,3,4,7,8,9-HpCDF	*	0.10	1.51	ND		
1,2,3,7,8-PeCDD	OCDF	*	0.19	3.01	ND		
1,2,3,7,8-PeCDD							
1,2,3,4,7,8-HxCDD * 0.29 1.51 ND 1,2,3,6,7,8-HxCDD * 0.08 1.51 ND 1,2,3,7,8,9-HxCDD * 0.09 1.51 ND 1,2,3,4,6,7,8-HpCDD * 0.37 1.51 ND OCDD * 0.47 3.01 ND Internal Standard % Recov DB Qual % Recoveries 13C-2,3,7,8-PcCDF 55 13C-1,2,3,7,8-PcCDF 56 13C-1,2,3,4,7,8-HxCDF 67 13C-1,2,3,6,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 55 13C-1,2,3,7,8,9-HxCDF 55 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,6,7,8-HpCDF 71 13C-2,3,4,6,7,8-HyCDF 59 13C-1,2,3,4,7,8-PcCDD 59 13C-1,2,3,4,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HyCDD 65							
1,2,3,6,7,8-HxCDD							
1,2,3,7,8,9-HxCDD							
1,2,3,4,6,7,8-HpCDD							
OCDD * 0.47 3.01 ND Internal Standard % Recov DB Qual % Recoveries 13C-2,3,7,8-TCDF 58 13C-1,2,3,7,8-PeCDF 55 13C-2,3,4,7,8-PeCDF 56 13C-1,2,3,6,7,8-HxCDF 67 13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,7,8,9-HxCDF 65 13C-1,2,3,4,6,7,8-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,4,7,8-HxCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,4,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65		*					
Internal Standard		*					
% Recoveries 13C-2,3,7,8-TCDF 58 13C-1,2,3,7,8-PeCDF 55 13C-2,3,4,7,8-PeCDF 56 13C-1,2,3,6,7,8-HxCDF 67 13C-1,2,3,6,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,6,7,8-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,4,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65		% Recov					
13C-1,2,3,7,8-PeCDF 55 13C-2,3,4,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 67 13C-1,2,3,6,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,7,8,9-HxCDF 53 13C-1,2,3,4,6,7,8-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-2,3,4,7,8-PeCDF 56 13C-1,2,3,4,7,8-HxCDF 67 13C-1,2,3,6,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,7,8,9-HxCDF 53 13C-1,2,3,4,6,7,8-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65	13C-2,3,7,8-TCDF	58					
13C-1,2,3,4,7,8-HxCDF 67 13C-1,2,3,6,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 65 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,7,8,9-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,4,7,8-HxCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65	13C-1,2,3,7,8-PeCDF	55					
13C-1,2,3,6,7,8-HxCDF 51 13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,7,8,9-HxCDF 65 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,7,8,9-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-2,3,4,6,7,8-HxCDF 53 13C-1,2,3,7,8,9-HxCDF 65 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,7,8,9-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-1,2,3,7,8,9-HxCDF 65 13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,7,8,9-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-1,2,3,4,6,7,8-HpCDF 53 13C-1,2,3,4,7,8,9-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-1,2,3,4,7,8,9-HpCDF 71 13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-2,3,7,8-TCDD 79 13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65	13C-1,2,3,4,7,8,9-HpCDF	/1					
13C-1,2,3,7,8-PeCDD 59 13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65	13C-2 2 7 8-TCDD	70					
13C-1,2,3,4,7,8-HxCDD 83 13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
13C-1,2,3,6,7,8-HxCDD 60 3C-1,2,3,4,6,7,8-HpCDD 65							
3C-1,2,3,4,6,7,8-HpCDD 65							
• • • • • •							
130-0000	13C-OCDD	66					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Researc Contaminants Release	• • • • • • • • • • • • • • • • • • • •	tic Rivers	
LAB SAMPLE ID	C16684	Q10022		
CLIENT SAMPLE ID	Station 10 Sediments	Station 10 S	ediments	
INSTRUMENT DATA FILE	50208LCA01-S11	50208LCA0		
WET WEIGHT	39.96	39.37	1-514	
DRY WEIGHT	33.71	33.21		
PERCENT SOLIDS	84.4	84.4		
CALCULATION BASIS	DRY	DRY		
SAMPLE TYPE	SAMP	DUP		
MATRIX	SEDIMENT	SEDIMENT		
QC BATCH	DX0180	DX0180		
EXTRACTION DATE	12/02/94	12/02/94		
ANALYSIS DATE	02/08/95	02/08/95		
ANALISIS DATE	Conc	Conc	RPD	DB
Compound Name				DB
2,3,7,8-TCDF	(pg/g) *	(pg/g)	(%)	Qual
	*	*	NA	
1,2,3,7,8-PeCDF	*	*	NA	
2,3,4,7,8-PeCDF	*	*	NA	
1,2,3,4,7,8-HxCDF	*	*	NA	
1,2,3,6,7,8-HxCDF	*	*	NA	
2,3,4,6,7,8-HxCDF			NA	
1,2,3,7,8,9-HxCDF	0.19		NA	
1,2,3,4,6,7,8-HpCDF	0.19		NA	
1,2,3,4,7,8,9-HpCDF	*	*	NA	
OCDF	•	•	NA	
2 2 7 8 7 6 7 6 7	*	*	NIA	
2,3,7,8-TCDD	*		NA	
1,2,3,7,8-PeCDD	*	0.57 *	NA	
1,2,3,4,7,8-HxCDD	*	*	NA	
1,2,3,6,7,8-HxCDD	*	*	NA	
1,2,3,7,8,9-HxCDD		*	NA	
1,2,3,4,6,7,8-HpCDD OCDD	0.24 0.74	*	NA NA	
Internal Standard	0.74		NA	
% Recoveries				
13C-2,3,7,8-TCDF			· · · · · · · · · · · · · · · · · · ·	
13C-1,2,3,7,8-PeCDF				
13C-2,3,4,7,8-PeCDF				
13C-1,2,3,4,7,8-HxCDF				
13C-1,2,3,6,7,8-HxCDF				
13C-2,3,4,6,7,8-HxCDF				
13C-1,2,3,7,8,9-HxCDF				
13C-1,2,3,4,6,7,8-HpCDF				
13C-1,2,3,4,7,8,9-HpCDF				
100-1,2,0, 1 ,7,0,9-προυΓ				
13C-2,3,7,8-TCDD				
13C-1,2,3,7,8-PeCDD				
13C-1,2,3,4,7,8-HxCDD				
13C-1,2,3,6,7,8-HxCDD				
3C-1,2,3,4,6,7,8-HpCDD				
13C-OCDD				
130-000				

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q10026			
CLIENT SAMPLE ID				
INSTRUMENT DATA FILE	50208LCA01-	·S17		
WET WEIGHT	00.00			
DRY WEIGHT	20.00			
PERCENT SOLIDS CALCULATION BASIS	DDV			
SAMPLE TYPE	DRY LBS			
MATRIX	LBS			
QC BATCH	DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/09/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	45.1	0.15	0.50	
1,2,3,7,8-PeCDF	209	0.08	2.50	
2,3,4,7,8-PeCDF	243	0.08	2.50	
1,2,3,4,7,8-HxCDF	218	0.15	2.50	
1,2,3,6,7,8-HxCDF	226	0.14	2.50	
2,3,4,6,7,8-HxCDF	221	0.17	2.50	
1,2,3,7,8,9-HxCDF	220	0.20	2.50	
1,2,3,4,6,7,8-HpCDF	216	0.19	2.50	
1,2,3,4,7,8,9-HpCDF	206	0.21	2.50	
OCDF	379	0.20	5.00	
2,3,7,8-TCDD	32.3	0.12	0.50	
1,2,3,7,8-PeCDD	210	0.12	2.50	
1,2,3,4,7,8-HxCDD	202	0.11	2.50	
1,2,3,6,7,8-HxCDD	202	0.11	2.50	
1,2,3,7,8,9-HxCDD	211	0.12	2.50	
1,2,3,4,6,7,8-HpCDD	202	0.11	2.50	
OCDD	348	0.20	5.00	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	50			
13C-1,2,3,7,8-PeCDF	52			
13C-2,3,4,7,8-PeCDF	55 56			
13C-1,2,3,4,7,8-HxCDF	56 42			
13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	42 44			
13C-1,2,3,7,8,9-HxCDF	50			
13C-1,2,3,4,6,7,8-HpCDF	45			
13C-1,2,3,4,7,8,9-HpCDF	65			
	30			
13C-2,3,7,8-TCDD	68			
13C-1,2,3,7,8-PeCDD	63			
13C-1,2,3,4,7,8-HxCDD	71			
13C-1,2,3,6,7,8-HxCDD	51			
3C-1,2,3,4,6,7,8-HpCDD	56			
13C-OCDD	60			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.		aval Research	•	ctic Rivers	
LAB SAMPLE ID	Q10021		Q10026		
INSTRUMENT DATA FILE WET WEIGHT	50208LCA	01-S6	50208LCA0)1-S17	
DRY WEIGHT PERCENT SOLIDS	20.00		20.00		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	BLANK		LBS		
MATRIX					
QC BATCH	DX0180		DX0180		
EXTRACTION DATE	12/02/94		12/02/94		
ANALYSIS DATE	02/08/95		02/09/95		
	Conc	Spike Amnt		Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	*	40	45.1	113	
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	*	200	209	104	
1,2,3,4,7,8-HxCDF	*	200 200	243 218	121	
1,2,3,4,7,8-HxCDF	*	200	216	109 113	
2,3,4,6,7,8-HxCDF	*	200	220	110	
1,2,3,7,8,9-HxCDF	*	200	220	110	
1,2,3,4,6,7,8-HpCDF	*	200	216	108	
1,2,3,4,7,8,9-HpCDF	*	200	206	103	
OCDF	*	400	379	95	
332.		.00	0,0	00	
2,3,7,8-TCDD	*	40	32.3	81	
1,2,3,7,8-PeCDD	*	200	210	105	
1,2,3,4,7,8-HxCDD	*	200	202	101	
1,2,3,6,7,8-HxCDD	*	200	202	101	
1,2,3,7,8,9-HxCDD	*	200	211	106	
1,2,3,4,6,7,8-HpCDD	*	200	202	101	
OCDD	*	400	348	87	
Internal Standard					
% Recoveries					
13C-2,3,7,8-TCDF					
13C-1,2,3,7,8-PeCDF					
13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF					
13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
100 1,2,0, 1 ,7,0,0-1 10001					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,6,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD					
13C-OCDD					

GERG/TAMU Date: 3/31/95

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Naval Research Contaminants Release to Russian Arctic Rivers			
LAB SAMPLE ID	Q10024			
CLIENT SAMPLE ID	Station 10 Sec	liment		
INSTRUMENT DATA FILE	50208LCA01-	S16		
WET WEIGHT	41.16			
DRY WEIGHT	34.72			
PERCENT SOLIDS	84.4			
CALCULATION BASIS	DRY			
SAMPLE TYPE	MS			
MATRIX	SEDIMENT			
QC BATCH	DX0180			
EXTRACTION DATE	12/02/94			
ANALYSIS DATE	02/09/95		TT 1440040404	
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	22.7	0.10	0.29	
1,2,3,7,8-PeCDF	110	0.55	1.44	
2,3,4,7,8-PeCDF	128	0.58	1.44	
1,2,3,4,7,8-HxCDF	112	0.05	1.44	
1,2,3,6,7,8-HxCDF	114	0.05	1.44	
2,3,4,6,7,8-HxCDF	113	0.06	1.44	
1,2,3,7,8,9-HxCDF	113	0.07	1.44	
1,2,3,4,6,7,8-HpCDF	115 112	0.13 0.15	1.44 1.44	
1,2,3,4,7,8,9-HpCDF OCDF	187	0.16	2.88	
OCDF	107	0.16	2.00	
2,3,7,8-TCDD	17.3	0.07	0.29	
1,2,3,7,8-PeCDD	116	0.11	1.44	
1,2,3,4,7,8-HxCDD	102	0.09	1.44	
1,2,3,6,7,8-HxCDD	112	0.09	1.44	
1,2,3,7,8,9-HxCDD	110	0.10	1.44	
1,2,3,4,6,7,8-HpCDD	105	0.12	1.44	
OCDD	183	0.26	2.88	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	63			
13C-1,2,3,7,8-PeCDF	63			
13C-2,3,4,7,8-PeCDF	66			
13C-1,2,3,4,7,8-HxCDF	69			
13C-1,2,3,6,7,8-HxCDF	53			
13C-2,3,4,6,7,8-HxCDF	56			
13C-1,2,3,7,8,9-HxCDF	67			
13C-1,2,3,4,6,7,8-HpCDF	58			
13C-1,2,3,4,7,8,9-HpCDF	80			
100 0 0 7 0 7000	00			
13C-2,3,7,8-TCDD	89 80			
13C-1,2,3,7,8-PeCDD	69 90			
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	62			
3C-1,2,3,4,6,7,8-HpCDD	72			
13C-0CDD	72 79			
130-0000	10			

Date: 3/31/95

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.		aval Research nts Release to		tic Rivers	
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE	C16684 Station 10 50208LCA0		Q10024 Station 10 \$ 50208LCA0	_	
WET WEIGHT	39.96		41.16		
DRY WEIGHT	33.71		34.72		
PERCENT SOLIDS	84.4		84.4		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP		MS		
MATRIX	SEDIMENT		SEDIMENT		
QC BATCH	DX0180		DX0180		
EXTRACTION DATE	12/02/94		12/02/94		
ANALYSIS DATE	02/08/95		02/09/95		
Compared Name	Conc	Spike Amnt		Recov	DB
Compound Name 2,3,7,8-TCDF	(pg/g) *	(pg/g) 23	(pg/g)	(%)	Qual
1,2,3,7,8-PeCDF	*	23 115	22.7 110	98 96	
2,3,4,7,8-PeCDF	*	115	128	111	
1,2,3,4,7,8-HxCDF	*	115	112	97	
1,2,3,6,7,8-HxCDF	*	115	114	99	
2,3,4,6,7,8-HxCDF	*	115	113	98	
1,2,3,7,8,9-HxCDF	0.19	115	113	98	
1,2,3,4,6,7,8-HpCDF	0.19	115	115	100	
1,2,3,4,7,8,9-HpCDF	*	115	112	97	
OCDF	*	230	187	81	
2,3,7,8-TCDD	*	23	17.3	75	
1,2,3,7,8-PeCDD	*	115	116	101	
1,2,3,4,7,8-HxCDD	*	115	102	88	
1,2,3,6,7,8-HxCDD	*	115	112	97	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	0.24	115 115	110 105	95 91	
1,2,3,4,0,7,8-прСDD OCDD	0.74	230	183	79	
Internal Standard	0.74	200	100	,,,	
% Recoveries					
13C-2,3,7,8-TCDF		***************************************			
13C-1,2,3,7,8-PeCDF					
13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,6,7,8-HxCDF					
13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF					
13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,4,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD					
13C-OCDD					

GERG/TAMU

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants	al Research Release to Russ	sian Arctic Riv	ers
LAB SAMPLE ID	Q10023			
CLIENT SAMPLE ID	1941A			
INSTRUMENT DATA FILE	50208LCA01-	S15		
WET WEIGHT	6.31			
DRY WEIGHT	6.31			
PERCENT SOLIDS	100.0			
CALCULATION BASIS	DRY			
SAMPLE TYPE	SRM			
MATRIX QC BATCH	SEDIMENT			
EXTRACTION DATE	DX0180			
ANALYSIS DATE	12/02/94 02/09/95		•	
ANALTSIS DATE	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	DECIDAL
2,3,7,8-TCDF	86.1	0.52	1.58	
1,2,3,7,8-PeCDF	155	1.45	7.92	
2,3,4,7,8-PeCDF	61.2	1.58	7.92	
1,2,3,4,7,8-HxCDF	338	9.59	7.92	
1,2,3,6,7,8-HxCDF	95.8	9.44	7.92	
2,3,4,6,7,8-HxCDF	51.0	11.4	7.92	4
1,2,3,7,8,9-HxCDF	61.1	13.3	7.92	
1,2,3,4,6,7,8-HpCDF	448	1.34	7.92	
1,2,3,4,7,8,9-HpCDF	285	1.98	7.92	
OCDF	4974	2.20	15.8	
2,3,7,8-TCDD	*	0.49	1.58	ND
1,2,3,7,8-PeCDD	8.98	0.89	7.92	
1,2,3,4,7,8-HxCDD	11.1	0.97	7.92	
1,2,3,6,7,8-HxCDD	23.2	1.00	7.92	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	18.6 450	1.05 1.35	7.92 7.92	
0CDD	5904	2.07	7. 5 2 15.8	
Internal Standard	% Recov	DB Qual	13.0	
% Recoveries	,0 110001	Quu		
13C-2,3,7,8-TCDF	53			
13C-1,2,3,7,8-PeCDF	49			
13C-2,3,4,7,8-PeCDF	50			
13C-1,2,3,4,7,8-HxCDF	60			
13C-1,2,3,6,7,8-HxCDF	45			
13C-2,3,4,6,7,8-HxCDF	45			
13C-1,2,3,7,8,9-HxCDF	56			
13C-1,2,3,4,6,7,8-HpCDF	50			
13C-1,2,3,4,7,8,9-HpCDF	62			
120 2 2 7 8 7000	70			
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	73 52			
13C-1,2,3,4,7,8-PeCDD	52 78		,	
13C-1,2,3,6,7,8-HxCDD	78 54		•	
3C-1,2,3,4,6,7,8-HpCDD	60			
13C-OCDD	69			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants	l Research Release to Russ	sian Arctic Riv	ers
LAB SAMPLE ID	Q10054			
CLIENT SAMPLE ID	50005 50 400	••		
INSTRUMENT DATA FILE WET WEIGHT	50205PGA02-	S 3		
DRY WEIGHT	20.00	•		
PERCENT SOLIDS				
CALCULATION BASIS	DRY			
SAMPLE TYPE	BLANK			
MATRIX QC BATCH	DX0183			
EXTRACTION DATE	12/09/94			
ANALYSIS DATE	02/06/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	*	0.46	0.50	ND
1,2,3,7,8-PeCDF	*	0.40	2.50	ND
2,3,4,7,8-PeCDF	*	0.43	2.50	ND
1,2,3,4,7,8-HxCDF	*	0.56	2.50	ND
1,2,3,6,7,8-HxCDF	*	0.53	2.50	ND
2,3,4,6,7,8-HxCDF	*	0.63	2.50	ND
1,2,3,7,8,9-HxCDF		0.79	2.50	ND
1,2,3,4,6,7,8-HpCDF		0.49	2.50	ND
1,2,3,4,7,8,9-HpCDF	*	0.60	2.50	ND
OCDF	•	1.61	5.00	ND
2,3,7,8-TCDD	*	0.35	0.50	ND
1,2,3,7,8-PeCDD	*	0.87	2.50	ND
1,2,3,4,7,8-HxCDD	*	0.50	2.50	ND
1,2,3,6,7,8-HxCDD	*	0.47	2.50	ND
1,2,3,7,8,9-HxCDD	*	0.51	2.50	ND
1,2,3,4,6,7,8-HpCDD	*	0.80	2.50	ND
OCDD	*	1.04	5.00	ND
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	55			
13C-1,2,3,7,8-PeCDF	45			
13C-2,3,4,7,8-PeCDF	47			
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	54 48			
13C-2,3,4,6,7,8-HxCDF	46 47			
13C-1,2,3,7,8,9-HxCDF	50			
13C-1,2,3,4,6,7,8-HpCDF	49			
13C-1,2,3,4,7,8,9-HpCDF	63			
.00 1/2/0/1/1/0/0 1/0001				
13C-2,3,7,8-TCDD	64			
13C-1,2,3,7,8-PeCDD	58			
13C-1,2,3,4,7,8-HxCDD	62			
13C-1,2,3,6,7,8-HxCDD	57			
3C-1,2,3,4,6,7,8-HpCDD	57			
13C-OCDD	67			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.		aval Research		ctic Rivers	
LAB SAMPLE ID	Q10054		Q10058		
CLIENT SAMPLE ID	5000 550 4		5000570		
INSTRUMENT DATA FILE WET WEIGHT	50205PGA	02-83	50205PGA	02-813	
DRY WEIGHT	20.00		20.00		
PERCENT SOLIDS					
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	BLANK		LBS		
MATRIX QC BATCH	DX0183		DX0183		
EXTRACTION DATE	12/09/94		12/09/94		
ANALYSIS DATE	02/06/95		02/06/95		
	Conc	Spike Amnt		Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	*	40.0	42.9	107	
1,2,3,7,8-PeCDF	*	200	213	107	
2,3,4,7,8-PeCDF	*	200	241	120	
1,2,3,4,7,8-HxCDF		200	204	102	
1,2,3,6,7,8-HxCDF	*	200	201	101	
2,3,4,6,7,8-HxCDF	*	200	206	103	
1,2,3,7,8,9-HxCDF	*	200 200	202	101	
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	*	200	210 207	105 104	
0CDF	*	400	332	83	
9651		400	332	03	
2,3,7,8-TCDD	*	40.0	33.5	84	
1,2,3,7,8-PeCDD	*	200	189	94	
1,2,3,4,7,8-HxCDD	*	200	181	91	
1,2,3,6,7,8-HxCDD	*	200	190	95	
1,2,3,7,8,9-HxCDD	*	200	204	102	
1,2,3,4,6,7,8-HpCDD	. *	200	192	96	
OCDD	*	400	334	83	
Internal Standard					
% Recoveries					
13C-2,3,7,8-TCDF					
13C-1,2,3,7,8-PeCDF					
13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,6,7,8-HxCDF					
13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
100-112,014,7,0,8-HPCDF					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,6,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD					
13C-OCDD					

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants	l Research Release to Rus	sian Arctic Riv	ers
LAB SAMPLE ID CLIENT SAMPLE ID INSTRUMENT DATA FILE WET WEIGHT DRY WEIGHT PERCENT SOLIDS CALCULATION BASIS SAMPLE TYPE MATRIX QC BATCH EXTRACTION DATE	Q10057 Station 33 Sec 50205PGA02- 64.32 43.85 68.2 DRY MS SEDIMENT DX0183 12/09/94			
ANALYSIS DATE	02/06/95			
	Conc	EDL	LMCL	DBQual
Compound Name	(pg/g)	(pg/g)	(pg/g)	
2,3,7,8-TCDF	18.4	0.08	0.23	
1,2,3,7,8-PeCDF	98.6	0.79	1.14	
2,3,4,7,8-PeCDF	109	0.71	1.14	
1,2,3,4,7,8-HxCDF	93.6	0.07	1.14	
1,2,3,6,7,8-HxCDF	92.4	0.07	1.14	
2,3,4,6,7,8-HxCDF	94.4	0.08	1.14	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	88.8 95.7	0.08 0.15	1.14	
1,2,3,4,7,8,9-HpCDF	91.9	0.19	1.14 1.14	
0CDF	144	0.19	2.28	
OCBF	144	0.19	2.28	
2,3,7,8-TCDD	14.7	0.11	0.23	
1,2,3,7,8-PeCDD	84.4	0.13	1.14	
1,2,3,4,7,8-HxCDD	83.0	0.23	1.14	
1,2,3,6,7,8-HxCDD	80.1	0.20	1.14	
1,2,3,7,8,9-HxCDD	86.5	0.23	1.14	
1,2,3,4,6,7,8-HpCDD	87.6	0.25	1.14	
OCDD	156	0.41	2.28	
Internal Standard	% Recov	DB Qual		
% Recoveries				
13C-2,3,7,8-TCDF	66			
13C-1,2,3,7,8-PeCDF	59			
13C-2,3,4,7,8-PeCDF	71			
13C-1,2,3,4,7,8-HxCDF	64			
13C-1,2,3,6,7,8-HxCDF	49			
13C-2,3,4,6,7,8-HxCDF	52			
13C-1,2,3,7,8,9-HxCDF	68			
13C-1,2,3,4,6,7,8-HpCDF	59			
13C-1,2,3,4,7,8,9-HpCDF	76			
13C-2,3,7,8-TCDD	87			
13C-1,2,3,7,8-PeCDD	83			
13C-1,2,3,4,7,8-HxCDD	84			
13C-1,2,3,6,7,8-HxCDD	63			
3C-1,2,3,4,6,7,8-HpCDD	74			
13C-OCDD	82			

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.		aval Research	n o Russian Arc	tic Rivers	
LAB SAMPLE ID	C16718		Q10057	,	
CLIENT SAMPLE ID	Station 33	Sediment	Station 33 S	ediment	
INSTRUMENT DATA FILE	50205PGA	02-S5	50205PGA0	2-S12	
WET WEIGHT	44.36		64.32		
DRY WEIGHT	30.24		43.85		
PERCENT SOLIDS	68.2		68.2		
CALCULATION BASIS	DRY		DRY		
SAMPLE TYPE	SAMP		MS		
MATRIX	SEDIMENT		SEDIMENT		
QC BATCH	DX0183		DX0183		
EXTRACTION DATE	12/09/94		12/09/94		
ANALYSIS DATE	02/06/95		02/06/95		
*	Conc	Spike Amnt		Recov	DB
Compound Name	(pg/g)	(pg/g)	(pg/g)	(%)	Qual
2,3,7,8-TCDF	*	18.2	18.4	101	
1,2,3,7,8-PeCDF	*	91.2	98.6	108	
2,3,4,7,8-PeCDF	*	91.2	109	119	
1,2,3,4,7,8-HxCDF	*	91.2	93.6	103	
1,2,3,6,7,8-HxCDF	*	91.2	92.4	101	
2,3,4,6,7,8-HxCDF	*	91.2	94.4	103	
1,2,3,7,8,9-HxCDF	*	91.2	88.8	97	
1,2,3,4,6,7,8-HpCDF	*	91.2	95.7	105	
1,2,3,4,7,8,9-HpCDF	*	91.2	91.9	101	
OCDF	*	182	144	79	
2,3,7,8-TCDD	*	18.2	14.7	81	
1,2,3,7,8-PeCDD	*	91.2	84.4	93	
1,2,3,4,7,8-HxCDD	*	91.2	83.0	91	
1,2,3,6,7,8-HxCDD	*	91.2	80.1	88	
1,2,3,7,8,9-HxCDD	*	91.2	86.5	95	
1,2,3,4,6,7,8-HpCDD	1.83	91.2	87.6	94	
OCDD	7.64	182	156	81	
Internal Standard					
% Recoveries					
13C-2,3,7,8-TCDF					
13C-1,2,3,7,8-PeCDF					
13C-2,3,4,7,8-PeCDF					
13C-1,2,3,4,7,8-HxCDF					
13C-1,2,3,6,7,8-HxCDF					
13C-2,3,4,6,7,8-HxCDF					
13C-1,2,3,7,8,9-HxCDF					
13C-1,2,3,4,6,7,8-HpCDF					
13C-1,2,3,4,7,8,9-HpCDF					
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD					
13C-1,2,3,4,7,8-HxCDD					
13C-1,2,3,6,7,8-HxCDD					
3C-1,2,3,4,6,7,8-HpCDD					
13C-OCDD					

GERG/TAMU Date: 3/31/95

CLIENT NAME PROJECT NAME PURCHASE ORDER NO.	Office of Nava Contaminants		ssian Arctic Riv
LAB SAMPLE ID	Q10056		
CLIENT SAMPLE ID	1941A		
INSTRUMENT DATA FILE	50205PGA02	·S11	
WET WEIGHT	6.30		
DRY WEIGHT	6.30		
PERCENT SOLIDS	100.0		
CALCULATION BASIS	DRY		
SAMPLE TYPE	SRM		
MATRIX	SEDIMENT		
QC BATCH	DX0183		
EXTRACTION DATE	12/09/94		
ANALYSIS DATE	02/06/95		
	Conc	EDL	LMCL
Compound Name	(pg/g)	(pg/g)	(pg/g)
2,3,7,8-TCDF	80.1	0.76	1.59
1,2,3,7,8-PeCDF	162	1.77	7.94
2,3,4,7,8-PeCDF	61.7	1.73	7.94
1,2,3,4,7,8-HxCDF	341	10.1	7.94 7.94
1,2,3,6,7,8-HxCDF	91.3	9.93	7.94 7.94
2,3,4,6,7,8-HxCDF	48.1 59.7	12.1 12.5	7.94 7.94
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	473	1.18	7.94 7.94
1,2,3,4,7,8,9-HpCDF	279	1.50	7.94 7.94
0CDF	4762	1.78	15.9
3021	4702	1.70	10.0
2,3,7,8-TCDD	*	0.49	1.59
1,2,3,7,8-PeCDD	9.38	0.82	7.94
1,2,3,4,7,8-HxCDD	11.5	0.90	7.94
1,2,3,6,7,8-HxCDD	26.9	0.92	7.94
1,2,3,7,8,9-HxCDD	20.3	0.97	7.94
1,2,3,4,6,7,8-HpCDD	443	1.02	7.94
OCDD	6124	1.70	15.9
Internal Standard	% Recov	DB Qual	
% Recoveries			
13C-2,3,7,8-TCDF	57		
13C-1,2,3,7,8-PeCDF	50		
13C-2,3,4,7,8-PeCDF	59		
13C-1,2,3,4,7,8-HxCDF	58		
13C-1,2,3,6,7,8-HxCDF	44		
13C-2,3,4,6,7,8-HxCDF	45		
13C-1,2,3,7,8,9-HxCDF	57 54		
13C-1,2,3,4,6,7,8-HpCDF	51		
13C-1,2,3,4,7,8,9-HpCDF	68		
12C-2 2 7 9 TCDD	75		
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	75 67		
13C-1,2,3,4,7,8-HxCDD	76		
13C-1,2,3,6,7,8-HxCDD	54		
3C-1,2,3,4,6,7,8-HpCDD	66		
13C-OCDD	79		•
.00000			

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

Trace Metals in Tissues

Gergid	ONR ID	ΙΨ	Ba	Be	Ċ	₂	Fe	Mg	Mn	ž	>	Zn	В	Mo	Sr	As	25	Pb	Se	Hg
	det. lim>	5	1	0.1	0.5	0.5	5	5	-	0.5	0.5	-	2	2	0.5	0.5	0.1	0.5	0.5	0.02
C17713	STATION 14 ISOPOD	2430	38	8.0	17.3	188	3260	7140	2480	4.3	8.01	63	6	4	1690	23.6	9.0	-	2	0.0
C17714	STATION 17 MUSSEL	3420	12	0.7	18.2	73.8	7370	0169	457	8.3	17.8	75	53	3	189	39.6	3	1.3	6.9	0.1
C17715	STATION 17 ISOPOD	1930	18	0.5	24.5	801	1980	7220	1470	6.5	8.9	74	35	<2 1	1710	35.6	4.9	1.1	1.8	0.08
C17716	STATION 19 WORM	4580	19	6.0	20.4	23.6	34200	3700	2030	10.5	84.7	27	36	4	130	566	0.2	2.4	3.2	<0.02
C17717	STATION 35 STARFISH	6280	19	0.4	28.2	17.9	7410 14300	14300	742	8.4	26.2	32	45	<2	914	10.9	3.7	2.4	9.0	0.04
C17718	STATION 15 ISOPOD	2300	31	0.2	21.8	195	3140	8410	2670	3.6	10.4	78	22	2 1	1910	38.7	8.0	9.9	1.8	0.1
C17719	STATION 35 MALDANIDAE	4310	19	0.3	10.8	9.6	10700	1540	5630	8.4	27.8	6	15	14	51.6	29.1	<0.1	1.7	0.5	0.02
C11948	STATION 16 ISOPODS	2470	13	0.1	10.4	128	1820	5920	716	1.9	9.9	70	8	<2 1	1530	30	1.6	1.2	1.8	0.16
C11949	STATION 16 WORM TUBE	21200 368	368	3.2	48.3	23.6	105000 10900	10900	20200	40.8	9.76	48	137	10	850	631	<0.1	5.8	<0.5	0.02
C11950	STATION 17 AMPHIPODS	1680	15	<0.1	10.4	87.4	2440	4720	220	3.3	6.4	82	12	<2 1	1130	5	0.7	9.5	1.7	0.07
C11953	STATION 10 LIVER	20	20	<0.1	<0.5	09	789	359	13	2.5	4.6	105	7	<2	2.4	3.9	6.4	<0.5	6.1	1.96
C11955	STATION 24 LIVER	24	4	€0.1	<0.5	36.7	265	208	-	0.7	1.4	74	7	77	<0.5	2	9.0	<0.5	1.4	0.69
C11959	STATION 21 WORM TUBES	16200	29	1.7	28.8	11.2	69200	2660	1470	22.2	56.7	37	65	3	170	209	<0.1	6.5	<0.5	0.04
C11961	STATION 5 STURGEON LIVER #	55	∞	<0.1	-	49.2	457	241	2	<0.5	1.6	96	7	<2	6.0	5	0.5	<0.5	2.1	0.41
C11962	STATION 21-3 FISH LIVER	17	▼	<0.1	<0.5	14.3	343	592	7	<0.5	<0.5	104	?	7	6.2	6.9	0.2	<0.5	2.9	0.19
C11965	STATION 5 STURGEON LIVER	24	3	9.0	1.6	40.3	396	268	6	2	2.7	110	3	7	1.5	4.3	0.5	<0.5	1.4	0.45
C16751	STATION 19 AMPHIPODS	416	6	<0.1	11.7	128	388	4800	135	1.3	3	103	∞	2	1140	41.1	1.8	4.8	1.8	0.07
C16752	STATION 20 BIVALVES	2940	13	0.1	19.9	28	5010	2680	1930	4.5	19.1	77	19	3	375	26.3	2.4	1.4	4.7	90.0
C16753	STATION 54 WORM-NEPHTHYS	9560	25	0.4	19.5	16.8	12000	4340	370	17.3	46.2	189	53	3	144	278	1.3	4.2	10.4	<0.02
C17712	STATION 20 WORM	5840	23	8.0	33	32.5	40300	4180	1480	10.7	77.4	38	39	3	144	223	0.2	3	3.2	<0.02

Gergid	ONR ID		Ψ	Ba	Be	ప	nO	Fe	Mg	Mn	ž	>	Zu	В	Mo	Sr	As	S	P	Se	Hg
	det.	det. lim>	5	-	0.1	0.5	0.5	5	5	1	0.5	0.5	-	2	2	0.5	0.5	0.1	0.5	0.5	0.02
QA																					
duplicates																					
C11955			24	4 <	<0.1	<0.5	36.7	265	208	1	0.7	1.40	74	7	∨	<0.5	2.0	9.0	<0.5	1.4	
C11955-DUP			22	4 <	<0.1	<0.5	38.3	280	213	2	6.0	1.50	92	<2	~	<0.5	1.8	9.0	<0.5	1.5	
rpd			6	0			4	9	2	<i>L</i> 9	25	7	3				=	0		7	
C11962-MS			84	7	3.5 1	14.60	28.6	969	1280	45	14.6	14.8	178	41	43 2	26.3	14.4	2.0	3.4	123	
C11962-MSD			87	7	3.7 1	15.50	29.8	722	1320	46	15.0	15.6	182	44	46 2	29.6	14.5	2.0	3.5	125	
pdı			4	0	9	9	4	4	3	2	3	5	2	7	7	12	-	0	3	2	
C17716																-				ľ	<0.02
C17716-DUP																				·	<0.02
rpd																-					
C11949																					0.02
C11949-DUP																					0.02
pdı																					0
matrix spikes																					
C11962			17	∨	<0.1	<0.5	14.3	343	592	7.00	<0.5	<0.5	104	?	<2	6.2	6.9	0.20	<0.5	2.9	
C11962-MS			84	7	3.5	14.6	28.6	969	1280	45	14.6	14.8	178	41	43 2	26.3	14.4	2.0	3.4	123	
spk amt			84	∞	4	17	17	418	837	42	17	17	84	42	42	23	∞	2	4	126	
rec (%)			08	84	84	87	85	84	82	91	87	88	88	86	103	87	06	98	81	96	
				\rightarrow						_					1						
C11962			17	₹	_		14.3	343	592	7		<0.5	104	7			6.9	0.7	<0.5	5.9	
C11962-MSD			82		3.7		29.8	722	1320	46	15.0	15.6	182	44	_		14.5	2.0	3.5	125	
spk amt			84	∞	4	17	17	420	840	42	17	17	84	42		23	∞	7	4	126	
rec (%)			83	83	88	32	92	96	87	93	8	93	93	105	109	101	06	98	83	26	
														1							
C17719	STATION 35 MALDANIDAE	Æ																			0.02
C17719-MS	STATION 35 MALDANIDAE	4E																			0.37
spk amt					+																0.46
rec (%)														_	+		-				26
				\dashv	\dashv	\dashv	-				1	-	1	\dashv	\dashv	\dashv	\dashv			\dashv	

Page 2 of 4

Gergid O	ONR ID		ΙV	Ba	Be	Cr	Cu	Fe	Mg	Mn	Ä	^	υZ	В	Mo	Sr	As	ਲ	Pb	Se	Hg
	det.	det. lim>	5	1	0.1	0.5	0.5	5	5		0.5	0.5	1	2	2	0.5	0.5	0.1	0.5	0.5	0.02
C11953																-					1.96
C11953-MS																					2.23
spk amt																					0.46
rec (%)																				-	28
blank spikes																					
BS5B001			21	2	6.0	3.9	4.0	103	181	01	4.0	4.0	19	10	11	5.4	1.8	0.4	6.0	25.2	0.54
spk amt			20	7		4	4	100	200	10	4	4	20	10	10	9	2	-	-	30	0.50
rec (%)			105	100	06	86	100	103	16	100	100	100	95	100	110	86	96	08	96	84	108
															_						
BS5B002			20	2	6.0	3.7	3.9	103	180	10	4.0	3.9	19	10	11	5.5	1.7	0.4	6.0	25.6	0.42
spk amt			20	2	1	4	4	100	200	10	4	4	20	10	10	9	2	-		30	0.50
rec (%)			100 100	001	06	93	86	103	06	100	100	86	95	100	110	100	85	80	06	85	84
					+	\dashv															
BS5B003			20		6.0	3.8	3.9	101	183	01	4.0	3.9	19	10	=	5.5	1.8	0.5	6.0	26.2	
rec (%)			100 100	8	8	95	86	101	92	100	100	86	95	100	110	100	90	100	06	87	
blanks																					
BLK5B001			<\$	<u>∨</u> !>	<0.1	<0.5	<0.5	<5	<>	5	<0.5	<0.5	<1	<2	<2 <	<0.5	<0.5	<0.1	<0.5	<0.5	<0.02
BLK5B002			<\$	∨ 	<0.1	<0.5	<0.5	<\$	<>	!	<0.5	<0.5	<1	<2	<2 <	<0.5	<0.5	<0.1	<0.5	<0.5	<0.02
BLK5B003			\$	▽ 	<0.1	<0.5 <	<0.5	\$	\$	⊽	<0.5	<0.5	~	7	2	<0.5	<0.5	<0.1	<0.5	<0.5	
					+	+								1							
SRM's				1																	
DORM-2 NRCC			10.9		,,,	34.7 2.	.34	142		3.66	19.4		25.6				18.0	0.04 0	0.07	1.40	
DORM25B001			10	2 <	<0.1 3	31.3	2.0	146	938	4	16.5	<0.5	24	?	7	1.6	18.1	<0.1	<0.5	1.4	
rec (%)			92	\dashv		96	85	103		109	85		94				101			100	
DORM25B002			6	2 <	<0.1 3	31.0	2.1	142	932	3	16.2	<0.5	24	~	<2	1.4	17.2 <	<0.1<	<0.5	1.1	
rec (%)			83			68	06	100		82	84		94				96			79	
				-											-						
DORM25B003			13	7	<0.1 2	_	2.8	145	916	3		<0.5	23	5	4	3.0	16.5 <	<0.1	<0.5	1.2	
rec (%)			119			83	120	102		82	88		90				92			98	
				_	\dashv	\dashv		-							-						

Gergid ONR ID	D.		Al Ba		ı	7	Cu Fe	Mg	Mn		Λ	Zn	BN						Se
		det. lim>	5	1 0	0.1 0	0.5 0	0.5			0.5	0.5	-	2 2	1	0.5	0.5	0.1	0.5 0	0.5 0.02
M-1 NRCC														-					0.7
DORM-1-1																			0.
rec (%)																			-
															_				
DORM-1-2															-				0.77
rec (%)																	_		-

Monitoring Industrial Contaminants Release to Russian Arctic Rivers Analytical Laboratory Quality Assurance Report

Trace Metals in Sediments

Hg	0.02	0.02	0.05	0.05	<0.02	0.05	0.05	0.05	0.03	0.03	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05	0.04	0.04	0.03	0.02	<0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.03	0.05	0.02	0.03	<0.02	0.03
Se	1	1 ∨	I ∨	 	<1>	 	⊽		⊽	⊽	⊽	⊽	⊽	<1	⊽	<1	⊽		⊽	7	- 	I >	-I	<1	1 >	<1	<1	<1	<1	7	<1	<1	<1	<-li>1>	<1	□		V	⊽
Pb	5	7	7	5	\$>	> 9	14	13	13	10	11	6	7	< <u>\$</u>	10	<\$	6	· 6	14	14	6	\$	<	> 01	14	> 9	12 <	7 <	<5 <	7	\$\ \	<\$	<	\$	8	7			15
	2	6	~	2		2						~	2				2	6			2							<u> </u>											
S	0.5	0.2	<0.2	<0.2	<0.2	<0.7	0.3	0.7	0.7	0.7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				<0.2
As	0.5	3.3	5.7	9.3	2.2	12.6	∞	7.4	8.9	4.8	13.1	19.5	12.8	2.4	44.1	7.1	8.5	5.3	32.6	18.9	11.2	4.7	4.1	48	38.7	10.2	36.2	8.4	26.8	16.1	8.6	12.1	11.9	13.9	5.8	7.1	5.4	1.6	47.2
Sr	5	168	146	79	28	42	51	20	20	42	49	41	36	<5	63	15	39	142	114	117	65	28	22	106	78	24	62	24	23	49	17	76	23	21	45	81	83	14	26
Mo	5	<>	\$	<5	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	6	\$	\$	<\$	\$	10	\$	<5	<>	10	6	<\$	9	\$	20	\$	\$	\$	<5	<	\$	\$	\$	\$	\$
B	10	10	20	20	<10	30	<10	<10	~10	20	70	20	30	<10	20	10	40	<10	09	20	30	10	<10	70	06	30	70	40	30	2	70	70	30	20	9	70	01	~ 1 0	8
Zn	5	98	83	51	16	35	78	98	73	19	99	44	33	\$	62	13	57	82	104	66	54	18	11	9	82	28	71	38	37	89	17	18	25	19	74	24	69	9	8
>	-	92	85	72	31	45	28	83	64	52	59	79	63	7	121	26	82	68	145	123	75	31	31	122	162	65	152	81	89	138	33	43	57	41	55	46	80	21	165
ž	5	59	53	33	11	19	45	48	43	38	33	24	20	\$	38	7	33	54	62	19	35	12	10	41	20	17	43	23	25	40	10	11	15	01	42	14	44	∞	49
Mn	5	722	1390	1480	123	069	1350	1290	1140	303	1520	1260	1170	11	6220	555	429	932	4690	5840	1960	380	804	12700	5010	641	3610	353	230	1640	252	1030	219	575	896	199	440	472	2560
g	10	0	,		0					0				0.		0:	0	0				0,	0					0	0(0,		0	0	0	0	0		
Mg		14600	13600	8510	1840	4640	2690	8750	7200	6270	6490	2860	4950	450	7810	1680	7610	13000	16600	15600	8290	2870	2010	8950	12000	3740	0266	4940	4900	0066	2370	2670	3410	2590	0889	3080	10600	1060	13200
Fe	10	40200	39000	27900	9700	22100	37300	40200	35500	21900	35600	28000	21200	1700	35100	7650	27700	40500	27600	50900	31000	11200	8410	41900	20000	15600	41600	19500	22100	39700	11000	13400	15500	12100	33900	10900	34700	7040	27500
l n	_	21	39		3	10	20	23		20	18	15	12	1	20	3	20	43	47	20	24	9	2	25	33	10	23	13	16	25	9	9	6	9		10	34		35
r Cu	1			5 21	9				7 21					1 <1		7							7												1 21				
C		19	55	36		24	48	28	47	38	36	31	23	1>	37		40	57	74	89	39	12		41	57	19	45	24	24	46	01	13	15	13	51	18	4		65
Be	0.2	1.8	1.5	1	0.4	0.0	1.6	1.9	1.7	2.2	1.4	-	9.0	<0.2	1.2	< 0.2	1:1	1.3	1.9	2.9	1.	0.2	<0.2	1.3	3.2	9.0	1.4	9.0	0.7	1.3	<0.2	0.2	0.4	0.2	2.8	0.5	1.1	<0.2	1.9
Ba	1	146	80	41	23	27	145	140	150	63	71	56	18	4	42	6	38	127	63	89	35	14	11	62	46	15	41	18	16	35	10	12	13	13	124	13	56	22	47
IV	10	32900	31200	18400	5730	11300	24300	28900	23500	17900	18400	14800	12000	720	17300	4050	18800	31400	38100	34900	19100	6780	3950	19800	26900	9020	23800	12100	12100	22300	5450	6040	7790	6210	23000	7130	25500	3020	32400
	det. lim>	S N.S	N 12	41 N	N 25	N 21	85 NO	98 NO	09 N	19 N(N 62	N 20	N 35)N 40	N 45	27 N(77 N.C	6 N.C	9N 16	N 22	N 27	N 29	N 32	N 36	38 NC	N 41	N 42	N 48	9N 49	N 51	N 53	N 54	3N 55	3N S6	N 57	9L N(N 8A	01 NC	71 NC
ONR ID	det.	STATION 5	STATION 12	STATION 14	STATION 25	STATION 21	STATION 58	STATION 59	STATION 60	STATION 61	STATION 62	STATION 20	STATION 35	STATION 40	STATION 45	STATION 75	STATION 77	STATION 9	STATION 16	STATION 22	STATION 27	STATION 29	STATION 32	STATION 36	STATION 38	STATION 41	STATION 42	STATION 48	STATION 49	STATION 51	STATION 53	STATION	STATION	STATION 56	STATION 57	STATION 76	STATION 8A	STATION 10	STATION
p			-	_									~			-	_		7	~		(3	_		7	2	6			2	~	-	2	6	+	
Gergid		12906	12908	12909	12910	12911	12912	12913	12914	12915	12916	12917	12918	12919	12920	12923	12924	13766	13767	13768	13769	13770	13771	13772	13773	13774	13775	13777	13778	13779	13780	13781	13782	13783	13784	13785	16679	16684	16701

1000										I			ľ	ŀ		ľ	ŀ	ŀ		
Gergid	ONR ID	IA	Ba	Be	ప	రే	Fe	Mg	Mn	Z	>	Zu	В	Mo	Sr	As	S	Pb	Se	Hg
	det. lim>	10	-	0.2	1	1	10	10	5	5	1	5	10	5	5	0.5	0.2	5	1	0.02
	STATION 18	1500	7	<0.2	3	2	4280	840	425	\$	13	9	<10	\$	6	5.6	<0.2	<\$	7	0.02
16704	STATION 19	19400	38	1.1	39	16	35100	1670	3760	32	110	57	09	<>	62	31.3	<0.2	7	! >	0.02
	STATION 33	17400	32	2.2	35	18	23200	6570	370	29	67	47	20	<>	52	7.2	<0.2	7	<1	0.03
	STATION 44	26600	73	2.2	54	29	49000	10600	6790	56	180	87	80	11	83	50.5	<0.2	15	7	0.02

Al Ba	Mg	4	> .	Zn						Se .
1 0.2 1 1	10 10	5 5		2	10	2	5 0.5	0.2	2	1 0.02
				+	+	+				
		+					4		-	
1.8 61	14600	-	92	98	10	_		0.2	7	<1 0.02
143 1.6 60 51	39800 14600 6	72 21	91	98	<10	<5 170	3.8	0.3	6	-
2 12 2 0	1 0	6 3	-	0			1 14	40	25	
-									-	0.04
										0.04
11 <0.2 7 2	8410 2010	804 10	31	=	<10	<5 22	4.1	<0.2	\$	<1 <0.02
10 <0.2 8 3	8800 1950	818 12	33	12	10	<5 22	4	<0.2	\$	<1 <0.02
10 13 4	40 5 3	2 18	9	6			0 2			
73 2.2 54 29	49000 10600	6790 56	180	87	08	11 83	51	<0.2	15	<1 0.02
70 2.1 51 26	49300 10600	6940 52	177	87	2	7 82	52	<0.2	14	▽
4 5 6	11 1 0	2 7	2	0	0	44	1 3		7	
146 1.8 61 5	51 40200 14600 7	722 59	92	98	10	<5 168	3.3	0.2	7	<1 0.02
246 12 113 10	100 41000 14900 12	1200 249	130	321	480 22	222 424	14	4.6	16 4	42 0.15
96 10 48	48 not spk'd not spk'd	481 192	96	241	481 2	241 241	1 12	5	12	48 0.14
104 101 108	102	66 66	102	86	86	92 106	06 9	91	75	87
										200
						-	-		+	0.07
										0.14
•		+	;	+	- ;			9		
<0.2 7	8410 2010		_	-	=1	_	4.1	<0.2	\$	<1 <0.02
113 10 60 5	53 7860 2000 13	1310 226	131	271	550 263	•	16	4.7	14 4	46
68 10 49	49 not spk'd not spk'd	490 196	86	245	490 2	245 245	5 12	5	12 '	49
104 106 108 10		103 110	102	106	112	107 104	4 100	96	114	94
73 2.2 54	49000 10600	95 0629	180	87	- 8	11 83	51	<0.2	15	<1 0.02
12 10	49600 10600 7:		276	٧.	•	.,		4.4	,	49
10 49	not spk'd not spk'd				_			5	_	49
100 98 98	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118 101	86	101	100	101	112	06	98 10	100

Page 3 of 4

Geraid	מו מועס	IV	B	å	ċ	Č	Fo	Ma	Man	NI:	7	72	٥	1	0	1	7	ž	5	
	21 1110		2	3	3	3	2	INIE	IIIII	7.	>	117	a	OIVI	2	AS	3	2	2	нв
	det. lim>	10	-	0.2	-	-	10	10	5	2	-	2	10	S	2	0.5	0.5	2	-	0.02
blank spikes																			-	
BS-001		<10	209	21	105	105	<10	<10	1050	428	204	522	1090	548	512	25	7	22	96	09.0
spk amt		not spk'd	200	20	100	001	not spk'd	not spk'd	1000	400	200	500	1000	200	200	25	01	25	100	0.50
rec (%)			105	103	105	105			105	107	102	104	109	110	102	86	71	88	06	120
																		-		
BS-002		<10	208	20	104	104	<10	<10	1040	429	202	523	1080	546	512	22	6	25	94	0.50
spk amt		not spk'd	200	20	100	100	not spk'd	not spk'd	1000	400	200	500	1000	200	200	25	10	25	100	0.50
rec (%)			104	102	104	104			104	107	101	105	108	109	102	68	93	100	94	100
BS-003		V-10	207	20	133	103	10	<10	1040	424	201	515	1090	524	519	23	6	21	90	0.47
spk amt		not spk'd	200	20	100	100	not spk'd	not spk'd	1000	400	200	500 1000		200	200	25	10	25	100	0.50
rec (%)			104	101	103	103			104	901	101	103	109	105	104	92	92	84	96	94
blanks																				
BLK-001		<10	⊽	<0.2	⊽	⊽	<10	<10	\$	\$	⊽	\$	<10	\$	\$	<0.5	<0.2	\$	⊽	<0.02
BLK-002		<10	-\ -	<0.2	⊽	⊽	<10	<10	\$	\$	⊽	\$	<10	\$	\$	<0.5	<0.2	\$	⊽	<0.02
BLK-003		<10	<1	<0.2	! >	I >	<10	<10	<\$	\$	⊽	\$	<10	\$	\$	<0.5	<0.2	\$	⊽	<0.02
																			-	
SRM's																				
MESS-2 NRCC	၁င	85737		2.32	106.0	39.3	43505		365	49.3	252	172	~	2.85	125	20.7 0	0.24	21.9 0	0.72	0.092
MESS-001		16900	307	2	30	40	34700	13200	351	49	29	147	40	\$	89	17	0.2	17	⊽	0.10
rec (%)		20		65	28	102	08		96	66	27	85			54	80	83	78		109
MESS-002		18100	306	2	32	40	33600	12900	332	20	20	145	40	\$	29	17	0.3	18	⊽	0.08
rec (%)		21		69	30	102	77		16	101	28	84			54	82	125	82		87
MESS-003		16600	291	7	78	38	33300	12700	335	49	99	144	30	\$	29	19	0.2	18	⊽	0.09
rec (%)		19		65	56	2	77		92	66	79	84			54	06	83	82		86
SRM CV (%)		4.6	3.0	3.8	6.7	2.9	2.2	1.9	3.0	1.2	3.1	-	15.7		6.0	6.6 24.7	4.7	3.3	\dashv	11.1