Metódy dôkazov v matematike

1. Úvod

Živý jazyk je príliš bohatý pre potreby matematiky. Význam jednotlivých slov je výsledkom dlhého historického vývoja. Jedno slovo môže mať rôzny význam (napr. hlavička je časť klinca, ale aj o múdrom človeku môžeme povedať " To je ale hlavička!"), alebo jedna vec môže byť označená viacerými pojmami (napr. chyba je omyl). Niekedy závisí od situácie, ktorý pojem je vhodné použiť (napr. väčšina domčekov je zároveň budovami, ale nie každá budova je domčekom). Preto nie vždy rozumieme všetci to isté, keď počujeme nejaké slovo alebo vetu.

V matematike existuje spôsob, ako predísť takýmto nedorozumeniam – celá matematika je postavená na niekoľkých základných pojmoch (množina, bod, číslo, ...) a niekoľkých tvrdeniach (výrokoch) o nich. Tieto tvrdenia sa nazývajú axiómy. Všetky ostatné pojmy, ktoré sa v matematike používajú, je treba definovať, t.j. popísať pomocou základných pojmov alebo iných – predtým definovaných – pojmov. Rozlišujte pojmy definícia – definíciou sa popisuje nový pojem – a matematická veta – veta je tvrdenie o vlastnostiach pojmov. Všetky tvrdenia v matematike treba dokázať (odvodiť) pomocou axióm alebo iných predtým dokázaných tvrdení.

Pomocou tohto učebného textu sa dozviete, ktoré metódy sa používajú pri dokazovaní matematických tvrdení a ako treba pri dokazovaní postupovať.

1. úloha:

Zopakujte si, čo je výrok, pravdivostná hodnota výroku, negácia výroku, hypotéza, implikácia, obmena implikácie. Ako symbolicky zapíšeme *pre všetky*, *existuje*, *z toho vyplýva*, *číslo n je prirodzené*, *číslo 4 je deliteľom čísla n* ?

2. úloha:

Na základnej škole ste používali pojem *poučka*. Odôvodnite, či sú *poučky* definície alebo matematické vety.

2. Priamy dôkaz

Je to najjednoduchší spôsob dôkazu. Dôkaz tvrdenia (vety) T pozostáva len z konečného reťazca implikácií, $T_1 \Rightarrow T_2 \Rightarrow T_3 \Rightarrow ... \Rightarrow T_n \Rightarrow T$, pričom prvý člen T_1 je axióma, alebo už dokázané tvrdenie a každé ďalšie tvrdenie (T_2 až T_n) logicky vyplýva z predchádzajúceho tvrdenia.

Príklad 1:

Dokážte, že súčet ktorýchkoľvek piatich po sebe idúcich párnych prirodzených čísel je deliteľný číslom desať.

<u>Riešenie</u>: Párne prirodzené číslo môžeme označiť 2n (prečo?) \Rightarrow päť po sebe idúcich párnych prirodzených čísel označíme 2n, 2n + 2, 2n + 4, 2n + 6 a $2n + 8 \Rightarrow$ ich súčet je potom 2n + (2n + 2) + (2n + 4) + (2n + 6) + (2n + 8) = 10n + 20 = 10. (n + 2) \Rightarrow súčet je 10-násobok čísla $n + 2 \Rightarrow$ súčet je deliteľný číslom 10.

3. úloha:

Symbolicky zapíšte a dokážte nasledujúce tvrdenia :

a) Súčet troch za sebou idúcich prirodzených čísel je deliteľný číslom 3. Riešenie: 3 za sebou idúce čísla ... 3.n, 3.n+1, 3.n+2

Súčet 3 za sebou:
$$(3n)+(3n+1)+(3n+2) = 9n+3=3.(3n+2)$$

3 / 3.(3n+2) \Rightarrow 3 / (3n)+(3n+1)+(3n+2) \Rightarrow 3 / súčet 3 za sebou idúcich čísel

b) Druhá mocnina nepárneho čísla je tiež nepárna.

```
Nepárne číslo: 2n+1, n \in \mathbb{N}
Druhá mocnina: (2n+1)^2 = (2n+1).(2n+1) = 4n^2 + 2n + 2n + 1 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1 = 2 k + 1 \dots 2n^2 + 2n = k \in \mathbb{N}
\Rightarrow 2 k + 1 je nepárne číslo, preto aj (2n+1)^2 je nepárne číslo
```

- c) Súčin troch po sebe idúcich prirodzených je deliteľný číslom 6.
- d) Súčin štyroch po sebe idúcich prirodzených je deliteľný číslom 24.

Príklad 2:

Dokážte, že pre všetky prirodzené čísla n platí : $4 \mid n^4 + 3n^2$.

Riešenie: Dôkaz rozdelíme na dve časti:

• Predpokladajme najskôr, že n je párne číslo, t.j.

 $n = 2k \Rightarrow n^4 + 3n^2 = n^2(n^2 + 3) = 4k^2(4k^2 + 3) \Rightarrow v$ ýraz $n^4 + 3n^2$ je násobkom čísla 4.

- Ak n je nepárne číslo, t.j. $n = 2k + 1 \Rightarrow n^4 + 3n^2 = n^2(n^2 + 3) = (2k + 1)^2[(2k + 1)^2 + 3] = (2k + 1)^2(4k^2 + 4k + 4) \Rightarrow$ druhý činiteľ je násobkom čísla $4 \Rightarrow$ výraz $n^4 + 3n^2$ je násobkom čísla 4.
- Dokázali sme platnosť tvrdenia ⇒ PLATÍ

4. úloha:

Dokážte, že pre všetky prirodzené čísla n platí:

- a) $2 | (n^2 3n)$
- b) $3 | (n^3 + 2n^2)$

Pomôcka : Rozoberte možnosti, že n je deliteľné 3, n dáva po delení tromi zvyšok 1, n dáva po delení tromi zvyšok 2.

- c) * Súčet tretích mocnín troch za sebou idúcich prirodzených čísel je násobkom čísla deväť. Pomôcka : čísla zapíšte ako n −1, n a n + 1.
- d) * 36 $|2n^6 n^4 n^2|$

Pomôcka : rozložte výraz $2n^6 - n^4 - n^2$ na súčin.

Pri dokazovaní implikácie A⇒B, postupujeme ako pri priamom dokazovaní tvrdenia, ibaže v tomto prípade si vezmeme za východisko tvrdenie A a snažíme sa logickými úvahami dospieť k tvrdeniu B.

5. úloha:

Dokážte, že pre všetky prirodzené čísla n platí :

- a) Ak n nie je deliteľné troma, tak jeho druhá mocnina dáva po delení tromi zvyšok jedna.
- b) Ak prirodzené číslo končí číslicou 5, tak jeho druhá mocnina končí dvojčíslím 25.

3. Nepriamy dôkaz

Zložený **výrok B'** \Rightarrow **A'** sa nazýva obmena implikácie $A \Rightarrow B$. Obmenu implikácie vytvoríme tak, že vymeníme poradie výrokov v implikácii a výroky A a B nahradíme ich negáciami.

Daná implikácia : Ak je druhá mocnina čísla n párna, tak aj číslo n je párne.

Obmena implikácie : Ak je číslo n **nepárne**, tak aj jeho druhá mocnina je **nepárna**. Nemýľte si negáciu implikácie s obmenou implikácie.

6. úloha:

Dokážte, že implikácia a jej obmena majú vždy rovnakú pravdivostnú hodnotu. Pomôcka : tabuľka pravdivostných hodnôt.

7. úloha:

Napíšte (ak sa dá aj symbolicky) obmeny implikácii :

- a) Ak tretia mocnina prirodzeného čísla n je nepárna, tak aj číslo n je nepárne.
- b) Ak číslo 3 nedelí číslo n, tak n² nie je deliteľné číslom 9.
- c) $10 \mid (n-1) \cdot (n+1) \Rightarrow 5 \text{ nedel in}$

Princíp nepriameho dôkazu spočíva v tom, že namiesto implikácie ktorú chceme dokázať, dokážeme jej obmenu. Nepriamy dôkaz používame vtedy, keď prvý výrok v im-plikácii je zložitejší ako druhá časť implikácie.

Príklad 3:

Dokážte, že pre všetky prirodzené čísla n platí : ak 5 nedelí $n^3-6n^2+2n-10$, tak n nie je deliteľné 5.

Riešenie: Obmenou danej implikácie je výrok $5 \mid n \Rightarrow 5 \mid n^3 - 6n^2 + 2n - 10$. $5 \mid n \Rightarrow n = 5k \Rightarrow$ po dosadení $n^3 - 6n^2 + 2n - 10 = ...$ pokračovanie už zvládnete sami ©.

8. úloha:

Dokážte, že tvrdenia z predchádzajúcej úlohy platia pre všetky prirodzené čísla n.

4. Dôkaz sporom

Z predchádzajúcej kapitoly už iste viete ©, aký je vzťah medzi nasledujúcimi dvoma výrokmi: Ak je výrok (tvrdenie) T pravdivý, tak každý z neho odvodený výrok je pravdivý. Ak existuje nepravdivý výrok odvodený z tvrdenia T, tak aj tvrdenie T je nepravdivé. Druhý výrok popisuje základný princíp dôkazu sporom.

Postup pri dôkaze sporom:

- 1. Vyslovíme negáciu výroku, ktorý máme dokázať.
- 2. Z negácie odvodíme výrok, ktorý je nepravdivý (je v rozpore s niektorým predpokladom).
- 3. Ak sa dá z negácie odvodiť nepravdivý výrok, tak negácia je nepravdivá a pôvodný výrok (ktorý sme mali dokázať) je pravdivý.

Príklad 4:

Dokážte, že geometrický priemer dvoch ľubovoľných kladných reálnych čísel je menší alebo rovný ich aritmetickému priemeru.

<u>Riešenie</u>: Máme dokázať pravdivosť nerovnosti $\forall a,b \in \mathbb{R}^+$: $\sqrt{ab} \le \frac{a+b}{2}$. Vytvoríme najskôr

jej negáciu : ∃ a,b∈R⁺: $\sqrt{ab} > \frac{a+b}{2} \Rightarrow 2\sqrt{ab} > a+b \Rightarrow$ po umocnení 4ab > (a+b)² ⇒

 \Rightarrow 4ab > a² + 2ab + b² \Rightarrow 0 > a² - 2ab + b² \Rightarrow 0 > (a - b)² \leftarrow táto nerovnosť je určite nepravdivá, pretože druhá mocnina každého reálneho čísla je nezáporná \Rightarrow neplatí nerovnosť

 $\exists \ a,b \in R^+: \sqrt{ab} > \frac{a+b}{2} \implies \text{musi platit' tvrdenie} \ \forall a,b \in R^+: \ \sqrt{ab} \le \frac{a+b}{2} \ , \ \text{ktor\'e sme mali dok\'azat'}.$

9. úloha:

Bez použitia kalkulačky dokážte, že platí:

a)
$$5 + \sqrt{5} < \sqrt{55}$$

b)
$$\sqrt{11+\sqrt{10}} < 1+\sqrt{11-\sqrt{10}}$$
.

10. úloha:

- a) Dokážte, že pre každé kladné reálne číslo a platí : $a + \frac{1}{a} > 2$
- b) Dokážte, že pre každé reálne číslo x platí : $\frac{x^2}{1+x^4} \le \frac{1}{2}$
- c) *Dokážte, že pre všetky kladné reálne čísla a,b platí : $\frac{a+b}{2} < \frac{2(a^2+ab+b^2)}{3(a+b)}$
- d) *Dokážte, že najmenší spoločný násobok n(a,b) a najväčší spoločný deliteľ D(a,b) prirodzených čísel a,b spĺňajú nerovnosť a.D(a,b) + b.n(a,b)≥ 2ab. Zistite, pre ktoré čísla a,b sa táto nerovnosť zmení na rovnosť.

5. riešený príklad:

Dokážte, že číslo $\sqrt{2}$ nie je racionálne.

<u>Riešenie</u>: Použijeme dôkaz sporom – predpokladajme, že $\sqrt{2}$ je racionálne číslo $\Rightarrow \sqrt{2}$ môžeme napísať v tvare zlomku $\sqrt{2} = \frac{p}{q}$, kde p a q sú <u>nesúdeliteľné</u> čísla, $p \in Z$ a $q \in N$ \Rightarrow

po úprave a umocnení $2q^2 = p^2 \Rightarrow$ druhá mocnina čísla p je párne číslo \Rightarrow aj <u>p je párne číslo</u>, t.j. p = 2k, kde $k \in Z \Rightarrow$ po dosadení $2q^2 = 4k^2 \Rightarrow q^2 = 2k^2 \Rightarrow$ aj druhá mocnina čísla q je párne číslo \Rightarrow <u>q je párne číslo</u> \Rightarrow čísla p a q sú deliteľné dvoma \Rightarrow spor (rozpor) s predpokladom, že p a q sú <u>nesúdeliteľné</u> čísla \Rightarrow tvrdenie, že $\sqrt{2}$ je racionálne číslo, je nepravdivé.

11. úloha*:

Dokážte, že čísla $\sqrt{3}$ a $\sqrt{5}$ nie sú racionálne čísla.