1.3 HW3 Jordan Canonical Form

Excercise 1.3.1.

1. Choose basis $\{\mathbf{e}_i\} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} i\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\i \end{bmatrix} \right\}$, and then

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}.$$

Therefore $\det(A - \lambda I) = (1 - \lambda)(-1 - \lambda)^3$, i.e. A has eigenvalue $\lambda_1 = 1$ and $\lambda_2 = -1$ with algebraic mutiplicity 1 and 3 respectively. For λ_1 we have

$$\operatorname{Ker}(A - \lambda_1 I) = \operatorname{Ker} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & -2 \end{bmatrix} = \operatorname{Span} \left\{ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

And for λ_2 ,

$$\operatorname{Ker}(A - \lambda_2 I) = \operatorname{Ker} \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \operatorname{Span} \left\{ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 4 \\ 4 \end{bmatrix} \right\},$$

Note that $\mathbf{v}_3 = (A - \lambda_2 I)\mathbf{v}_4$, therefore the Jordan canonical form of A is

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

under the new basis $\{\mathbf{v}_i\}$, or equally $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\i\end{bmatrix},\begin{bmatrix}2\\4+4i\end{bmatrix},\begin{bmatrix}1+4i\\0\end{bmatrix}\right\}$.

2. Choose basis $\{\mathbf{e}_i\} = \{1, x, x^2, x^3, x^4\}$, and then

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Therefore $\det(A - \lambda I) = \lambda^2 (1 - \lambda)(\sqrt{2} - \lambda)(-\sqrt{2} - \lambda)$, i.e. A has eigenvalue $\lambda_1 = 0$ with algebraic mutiplicity 2 and eigenvalues $\lambda_{2,3,4} = 1, \pm \sqrt{2}$ with algebraic mutiplicity 1 respectively. For λ_1 we have

$$\operatorname{Ker}(A - \lambda_1 I) = \operatorname{Ker} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \operatorname{Span} \left\{ \mathbf{v}_1 = \begin{bmatrix} 12 \\ -12 \\ 0 \\ 4 \\ 0 \end{bmatrix} \right\},$$

And for $\lambda_{2,3,4}$,

$$\operatorname{Ker}(A - \lambda_2 I) = \operatorname{Ker} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} = \operatorname{Span} \left\{ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\},$$

$$\operatorname{Ker}(A - \lambda_3 I) = \operatorname{Ker} \begin{bmatrix} 1 - \sqrt{2} & 1 & 0 & 0 & 0 \\ 0 & -\sqrt{2} & 2 & 0 & 0 \\ 0 & 1 & -\sqrt{2} & 3 & 0 \\ 0 & 0 & 0 & -\sqrt{2} & 4 \\ 0 & 0 & 0 & 0 & -\sqrt{2} \end{bmatrix} = \operatorname{Span} \left\{ \mathbf{v}_4 = \begin{bmatrix} 2 + \sqrt{2} \\ \sqrt{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\},$$

$$\operatorname{Ker}(A - \lambda_4 I) = \operatorname{Ker} \begin{bmatrix} 1 + \sqrt{2} & 1 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 2 & 0 & 0 \\ 0 & 1 & \sqrt{2} & 3 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 4 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{bmatrix} = \operatorname{Span} \left\{ \mathbf{v}_5 = \begin{bmatrix} 2 - \sqrt{2} \\ -\sqrt{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

Note that $\mathbf{v}_1 = (A - \lambda_1 I)\mathbf{v}_2$, therefore the Jordan canonical form of A is

 $\text{under the new basis } \{\mathbf{v}_i\}, \text{ or equally } \{12-12x+4x^3, 12-6x^2+x^4, 1, 2+\sqrt{2}+\sqrt{2}x+x^2, 2-\sqrt{2}-\sqrt{2}x+x^2\}.$

3. $\det(A - \lambda I) = (\lambda^2 - a_1 a_4)(\lambda^2 - a_2 a_3)$, i.e. (in terms of complex field) A has eigenvalues $\lambda_{1,2} = \pm \sqrt{a_1 a_4}$, and $\lambda_{3,4} = \pm \sqrt{a_2 a_3}$, each with algebraic mutiplicity 1.

Consider the invariant subspace Span
$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
, where the submap A_1 is represented as
$$\begin{bmatrix} 0&a_1\\a_4&0 \end{bmatrix}.$$

There are three different cases depending on the values of a_1 and a_4 .

- 1) If both are non-zero, then we have the Jordan form of A_1 as $\begin{bmatrix} \sqrt{a_1 a_4} & 0 \\ 0 & -\sqrt{a_1 a_4} \end{bmatrix}$, under the basis $\begin{bmatrix} \sqrt{a_1} \\ 0 \\ 0 \\ \sqrt{a_4} \end{bmatrix}$, $\begin{bmatrix} \sqrt{a_1} \\ 0 \\ 0 \\ -\sqrt{a_4} \end{bmatrix}$. That's actually two Jordan blocks.
- 2) If both are zero, then we have the Jordan form of A_1 as $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, under the basis $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$. That's actually two Jordan blocks, too.

3) If one of them say
$$a_4$$
 is 0 and the other is not, then we have the Jordan form of A_1 as $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, under the basis $\left\{ \begin{bmatrix} a_1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

The submap A_2 in subspace Span $\left\{ \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$ is similar. Hence we get the final answer by directly combining them.

Excercise 1.3.2.

1. One is the transpose of the other, because for any a_i , J_{a_i} contributes one to each of $\{\dim \operatorname{Ker}(A^j) - \dim \operatorname{Ker}(A^{j-1}) | 1 \leq j \leq a_i\}$, like this (suppose $\{a_i\}$ is in the order from large to small):

- 2. A partition of n is self-conjugate if and only if the dot diagram is symmetric, so the number of dots either in the first column or in the first row is $b_1 = 2a_1 1$ in total, which is odd. Now get rid of the first column and the first row and we get a new symmetric diagram. Do it repeatedly and we have the second odd number $b_2 = 2(a_2 1) 1 < b_1$, the third $b_3 = 2(a_3 2) 1 < b_2 \dots$ until no dots left. By this means each self-conjugate partition $\{a_i\}$ gives a partition into distinct odd numbers $\{b_i\}$, and vice versa, so the numbers of the two partitions are equal.
- 3. It almost surely corresponds to the partition 4 = 4. Just look at A^3 , whose (1,4) entry is a non-trivial and complicated polynomial of all (i,j) entries of A where i < j, and thus it is almost never zero. On the other hand, A^3 is not a zero matrix if and only if the Jordan canonical form of A corresponds to the partition 4 = 4.