Latent Diffusion Model

(stable diffusion)

Problem

- Training diffusion models consumes hundreds of GPU days
- Inference is expensive due to sequential evaluations (e.g 50k samples take 5 days on a single A100 GPU

Goal: reduce computational complexity

Ideas

Run diffusion in the latent space using autoencoder (pretrained on our data):

- Compress with encoder
- Run diffusion process
- Decompress with decoder

Result: near-optimal point between complexity reduction and details preservation

Autoencoder

$$x \in \mathcal{R}^{H \times W \times 3}, z \in \mathcal{R}^{h \times w \times c}, z = \mathcal{E}(x)$$

$$f = H/h = W/w = 2^m$$
 — downsampling factor

Important: we have 2D representation, so image-specific inductive bias can be applied (U-net)

Avoiding high-variance in the latent space

[training autoencoder]

- KL-reg: A small KL penalty towards a $\mathcal{N}(0,1)$ over the learned latent (like in VAE)
- VQ-reg: Vector quantisation layer within the decoder (like in VQGAN)

Diffusion models

Diffusion models learn data distribution p(x) by denoising a $\mathcal{N}(?,?)$ by learning reverse process of a fixed Markov Chain

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2 \right],$$

with t uniformly sampled from $\{1, \ldots, T\}$.

Key moments

low-dimensional latent space allows:

- model can focus on important bits of data (no high frequency details in data)
- model can train in computationally efficient space

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right].$$

 $\epsilon_{\theta}(.,t)$ — time conditional UNet

Time conditional UNet

Conditioning

DMs can model p(z | y) by modeling $\epsilon_{\theta}(z_t, t, y)$ with NNs

Authors use UNet with cross-attention mechanism.

$$\tau_{\theta}(y) \in \mathbb{R}^{M \times d_{\tau}}$$
 - cond. inf. encoding (e.g CLIP)

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$
, with

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_{\theta}(y), \ V = W_V^{(i)} \cdot \tau_{\theta}(y)$$

$$\varphi_i(z_t) \in \mathbb{R}^{N \times d_{\epsilon}^i}$$
 — flattened representation from UNet

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y))\|_2^2 \right]$$

Denoising model

U-net with cross-attention mechanism for conditional information (CI)

For CI use domain-specific encoder

Attention: queries are latent pictures, keys and values from encoded CI

Putting it all together, the model works as follow during inference process:

Text-to-Image Synthesis on LAION. 1.45B Model. 'A street sign that reads 'An image of an animal 'An illustration of a slightly 'A painting of a 'A watercolor painting of a 'A shirt with the inscription: 'A zombie in the "Latent Diffusion" ' style of Picasso' half mouse half octopus' squirrel eating a burger' chair that looks like an octopus' "I love generative models!" ' conscious neural network' LATENT Gonoractive Moodel The state of the s ATETEN **DIFFUSION** Generative Models!

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the LAION [78] database. Samples generated with 200 DDIM steps and $\eta = 1.0$. We use unconditional guidance [32] with s = 10.0.

Figure 6. Analyzing the training of class-conditional *LDMs* with different downsampling factors f over 2M train steps on the ImageNet dataset. Pixel-based *LDM-1* requires substantially larger train times compared to models with larger downsampling factors ($LDM-\{4-16\}$). Too much perceptual compression as in LDM-32 limits the overall sample quality. All models are trained on a single NVIDIA A100 with the same computational budget. Results obtained with 100 DDIM steps [84] and $\kappa = 0$.

CelebA-HQ 256×256				FFHQ 256×256			
Method	FID↓	Prec. ↑	Recall ↑	Method	FID ↓	Prec. ↑	Recall ↑
DC-VAE [63]	15.8	-	-	- ImageBART [21]		-	-
VQGAN+T. [23] (k=400)	10.2	-	 U-Net GAN (+aug) [77] 		10.9 (7.6)	-	-
PGGAN [39]	8.0	-	-	UDM [43]	5.54	-	-
LSGM [93]	7.22	-	-	- StyleGAN [41]		0.71	0.46
UDM [43]	<u>7.16</u>	-	-	ProjectedGAN [76]	3.08	0.65	0.46
LDM-4 (ours, 500-s†)	5.11	0.72	0.49	LDM-4 (ours, 200-s)	4.98	0.73	0.50
LSUN-Churches 256 × 256				LSUN-Bedrooms 256 × 256			

LSUN-Churches 256 × 256				LSUN-Bedrooms 256×256			
Method	FID↓	Prec. ↑	Recall ↑	Method	FID ↓	Prec. ↑	Recall ↑
DDPM [30]	7.89	-	-	ImageBART [21]	5.51	-	-
ImageBART [21]	7.32	-	-	DDPM [30]	4.9	-	-
PGGAN [39]	6.42	-	-	UDM [43]	4.57	-	-
StyleGAN [41]	4.21	-	-	StyleGAN [41]	2.35	0.59	0.48
StyleGAN2 [42]	3.86	-	-	ADM [15]	1.90	0.66	0.51
ProjectedGAN [76]	1.59	0.61	0.44	ProjectedGAN [76]	1.52	0.61	0.34
LDM-8* (ours, 200-s)	4.02	0.64	0.52	LDM-4 (ours, 200-s)	2.95	0.66	0.48

Classifier-free guidance

discard conditional data at random step, so $\epsilon_{\theta}(x_t, t) = \epsilon_{\theta}(x_t, t, y = \emptyset)$

Text-Conditional Image Synthesis					
Method	FID↓	IS↑	$N_{ m params}$		
CogView [†] [17]	27.10	18.20	4B	self-ranking, rejection rate 0.017	
LAFITE [†] [109]	26.94	26.02	75M		
GLIDE* [59]	12.24	-	6B	277 DDIM steps, c.f.g. [32] $s = 3$	
Make-A-Scene* [26]	11.84	-	4B	c.f.g for AR models [98] $s=5$	
LDM-KL-8	23.31	20.03±0.33	1.45B	250 DDIM steps	
LDM- KL - 8 - G *	12.63	$30.29 \!\pm\! \scriptscriptstyle{0.42}$	1.45B	250 DDIM steps, c.f.g. [32] $s = 1.5$	

Table 2. Evaluation of text-conditional image synthesis on the 256×256 -sized MS-COCO [51] dataset: with 250 DDIM [84] steps our model is on par with the most recent diffusion [59] and autoregressive [26] methods despite using significantly less parameters. †/*:Numbers from [109]/ [26]