AGLA II / Geometrie

Stefan Wiedmann / Verena Spratte – Sommersemester 2021

Aufgabenblatt 9

Vorname	Nachname	1	2	3	4	Σ

Gruppenabgabe im Stud.IP: Mittwoch 09.06.2021 bis 18 Uhr.

Geben Sie bitte jede Aufgabe in einzelnen Dateien in den zugehörigen Abgabeordner im Stud.IP ab. Verwenden Sie außschließlich die Formate

- NachnameBlatt9A1.pdf und NachnameBlatt9A1.ggb für Aufgabe 1.
- NachnameNachnameBlatt9A3.pdf bzw. NachnameNachnameNachnameBlatt9A2uA4.pdf für die Aufgaben 2,3 und 4.

Bevor Sie eine .ggb-Datei abgeben, prüfen Sie im Konstruktionsprotokoll und an der Objektliste, ob Sie unnötige Objekte gelöscht haben.

Aufgabe 9.1. (20 Punkte, Einzelabgabe) Wir betrachten den euklidischen Raum \mathbb{R}^n bezüglich des Standard-Skalarprodukts und mit der Basis $\mathcal{E} = [e_1, e_2, e_3]$. Seien d_i für $i \in \{1, 2, 3\}$ die (mathematisch positiv orientierten) Drehungen um die Gerade $\mathbb{R}e_i$ mit Drehwinkel $\frac{\pi}{2}$. Seien $\sigma = d_3d_2$ und $\tau = d_1^{-1}d_2d_1$.

- 1) Stellen Sie σ und τ in Geogebra dar, indem Sie das Dreieck verfolgen, das von $e-1, e_2, e_3$ aufgespannt wird.
- 2) Stellen Sie daraus (ohne Rechnung) die Abbildungsmatrizen von A_{σ} und A_{τ} auf. Bestimmen Sie (geometrisch oder rechnerisch) die Drehachsen von σ und τ .
- 3) Bestimmen Sie in Geogebra den Drehwinkel von σ und τ . (Tipp: Schieberegler)
- 4) Überprüfen Sie Ihr Ergebnis rechnerisch.

Geben Sie die Geogebra-Konstruktion als .ggb, die Rechnungen als .pdf ab.

Aufgabe 9.2. (20 Punkte)

Diese Aufgabe baut auf Aufgabe 9.3 auf - lösen Sie die also zuerst.

Schreiben Sie mittels quadratischer Ergänzung falls möglich die folgenden Ausdrücke über dem jeweiligen Körper K als Summe von Vielfachen von Quadraten:

- 1) $x^2 + 2xy + y^2$ wobei K beliebig.
- 2) $x^2 + xy + y^2$ wobei $K = \mathbb{R}$.
- 3) xy wobei $K = \mathbb{R}$.
- 4) $x^2 + 2xy + 2xz + y^2 + z^2$ wobei $K = \mathbb{R}$.
- 5) $x^2 + 2xy + 2xz + 2yz + y^2 + z^2$ wobei $K = \mathbb{R}$.
- 6) $x^2 + 2xy + 2xz + 2xy + y^2 + z^2$ wobe
i $K = \mathbb{Z}/3\mathbb{Z}.$
- 7) $x^2 + 2xy + 2xz + 2xy + y^2 + z^2$ wobei $K = \mathbb{Z}/5\mathbb{Z}$.

Aufgabe 9.3. (20 Punkte)

Die folgenden Aufgaben stammen aus dem Training Klassenarbeiten. Lambacher Schweizer, Mathematik für Gymnasien, Klasse 8 (Seite 46).

2 (2 + 2 + 2 VP) Kreuze alle richtigen Antworten an. a) Wenn man die Parabel mit der Gleichung $f(x) = (x + 2)^2$, $x \in \mathbb{R}$, an der y-Achse spiegelt, so heißt die Gleichung der Bildkurve: $g(x) = -(x+2)^2$ $g(x) = (-x+2)^2$ $g(x) = -(x-2)^2$ Keine Antwort ist $g(x) = (x - 2)^2$ richtig. b) Die Parabel mit der Gleichung $f(x) = (x + 1)^2 - 3$, $x \in \mathbb{R}$, hat die Symmetrieachse mit der Gleichung: $\chi = -3$ y = -3 $\sqrt{y} = 1$ $\chi = 1$ Keine Antwort ist richtig. c) Der Scheitel der Parabel mit der Gleichung $f(x) = ax^2 + c$, $x \in \mathbb{R}$, $a, c \in \mathbb{R}$, liegt unterhalb der x-Achse, falls \square a < 0 und c > 0 \square a > 0 und c < 0 \square a > 0 und c > 0 \square a < 0 und c < 0 Keine Antwort ist richtig. 3 (3 VP) Lies aus der Zeichnung die Gleichungen der drei Parabeln p₁, p₂, p₃ ab.

- 1) Lösen Sie die Aufgaben.
- 2) Eine quadratische Funktion $f \colon \mathbb{R} \to \mathbb{R}$ lässt sich in drei Standardformen darstellen:
 - Normalform $f(x) = ax^2 + bx + c$ für $a, b, c \in \mathbb{R}$
 - Scheitelpunktform $f(x) = r(x-s)^2 + t$ für $r, s, t \in \mathbb{R}$
 - über Linearfaktoren f(x) = u(x v)(x w) für $u, v, w \in \mathbb{R}$

Geben Sie für alle 6 möglichen Umrechnungswege an, wie sich die neuen Koeffizienten bestimmen lassen. Sie dürfen sich auf echte quadratische Funktionen beschränken (also solche, die keine Geraden sind).

Aufgabe 9.4. (20 Punkte)

Sei (V, \langle , \rangle) ein unitärer Raum mit dim V = n. Sei $f: V \to V$ eine \mathbb{C} -lineare Abbildung und sei $f^t: V \to V$ die dazu adjungierte Abbildung, die duch die Eigenschaft

$$\langle f(v), w \rangle = \langle v, f^t(w) \rangle \quad \forall v, w \in V$$

eindeutig bestimmt ist. Zeigen Sie

- $1) (f^t)^t = f$
- 2) $\operatorname{Kern}(f^t) = \operatorname{Bild}(f)^{\perp}$
- 3) Bild $(f^t) = \text{Kern}(f)^{\perp}$
- 4) $\operatorname{Rang}(f) = \operatorname{Rang}(f^t)$
- 5) f ist injektiv $\iff f^t$ ist surjektiv und f ist surjektiv $\iff f^t$ ist injektiv
- 6) $(f+g)^t = f^t + g^t \text{ und } (\lambda f)^t = \overline{\lambda} f^t$
- $7) \ (f \circ g)^t = g^t \circ f^t$
- 8) $\chi_{f^t}(\lambda) = \overline{\chi_f(\lambda)}$

Für 6), 7), 8) sei dabei $g:V\to V$ eine weitere $\mathbb C$ -lineare Abbildung.

Hinweis: Für Teil 8) können Sie verwenden, dass für eine ONB \mathcal{B} von V und für die Abbildungsmatrix $A = M_{\mathcal{B}}(f)$ gilt, dass $\overline{A}^T = M_{\mathcal{B}}(f^t)$ ist.