	Camlin Page Date / /
	Q1.
	time intervals of the time duration T into discrete
	time intervals of length h each, we then have n+1 time instances with x_i, v_i, a_i, k_i, p_i for each of them.
	time instances with x. y. a K. L. for each of them
5	
	Vi, hence we can set V. (velocity) and by (broking
	Vi, hence we can set V. (velocity) and pt, (braking power) as aux decision variables.
	The optimisation problem, then becomes the following:
10	
	$\min h \geq b_{r}$
	$s.t.$ $x_o = 0$
	$\chi^{u} \geqslant \chi^{t}$
15	$a_{\tau} \leq A \forall \tau = \{0, 1, 2,, n-1\}$ $0 \leq V_{\tau} \leq V \forall \tau = \{0, 1, 2,, n-1\}$
	0 = V = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$V_{\gamma} \leq V_{\zeta}$
	subject to
	$\chi_{r+1} = \chi_r + h \left(\frac{V_r + V_{r+1}}{2} \right) + \gamma = \{0, 1,, n-1\}$
20	
	$a_r = \underbrace{v_{r+1} - v_r} \forall r = \{0, 1, \dots, n-1\}$
	<u> </u>
	$p_{d,r} = c v_r^3 \qquad \forall r = \{0,1,2n-1\}$
25	$p_r = p_{b,r} + p_{d,r} + (\frac{k_{r+1} - k_r}{h}) \forall r = \{0, 1, n-1\}$
	$k_r = \frac{\sqrt{r^2}}{2} \forall r = \{0, 1, 2 \dots n\}$
	$\frac{\sqrt{1-\sqrt{1-1}}}{2}$
	2. Done in Code
20	3. The constrainets with equality are not assure:
30	$p_{x} = CV_{3}^{3}$ and $K_{x} = V_{x}^{2}/2$ I use whence the
	pd. 7 > @ CV, and K, > V2/2 which are conver on 11 - 2
	3. The constraints with equality are not convex i.e. $p_{d,r} = CV_r^3$ and $K_r = V_r^2/2$. If we rephrase them as: $p_{d,r} > CV_r^3$ and $K_r > V_r^2/2$, which are convex on $V_r > 0$. \Rightarrow At optimal case, inequalities will be tight,

Camlin Page Q2. Since we know that fx is non-decreasing have Ne * If (uk) duk is convex in ix Our optimisation problem is: minimize $\phi(i)$ s.t. Ai=0 with ie Rom Consider a dual variable associated as >: Ai = 0 and $\nabla \phi(i) + A^{T}b = 0$ Let v = To(i) and e = - b => Optimality conditions (dual): $A^{T}e = V$ $V_{k} = f_{k}(i_{k})$ k=1,2...mAi = 0

Some results (useful in circuit b' too):

For
$$V_{k} = V_{k} + i_{k} T_{k}$$

For $V_{k} = V_{k} + i_{k} T_{k}$

For circuit a':

$$\phi(i) = -V_{B} i_{B} + i_{B}^{2} 7/2 + i_{B}^{2} R_{B} + i_{B}$$

The primal and dual for the circuit 'a' are:

Primal: min $\phi(i)$ s.t. Ai = 0

Dual: max L(i,b)

s.t. Ai = 0 $A^Te = v$ (b = -e) $\Rightarrow A^Tb = -v$

and $V_k = \begin{cases} i_k R_k & \text{for } K = 1, 2...7 \end{cases}$

 $V_{K} + i_{K} \gamma_{K}$ for K = 8

Circuit 'b':

Given: $R_{12} = R_{23} = R_{25} = 1000 \Omega$

and R₄₅ = 100 Q

and for diodes D_{34} , D_{35} : $V_T = 30 \times 10^{-3} \text{ V}$ $I_S = 0.5 \text{ mA}$

⇒ i ∈ R7 and A ∈ R5x7

We obtain:

Δ =	1	0	0	0	0	0	-1
	-1	1	0	0	0	-	0
	0	-1	1	0	1	0	0
	0	0	-1	1	0	_	0
See a see	0		0			-1	1

for circuit b':

$$\phi(i) = -V_{7}i_{7} + i_{7}^{2}T + V_{7}\Gamma_{5}\left(\frac{1+i_{3}}{I_{5}}\right)\log\left(\frac{1+i_{3}}{I_{5}}\right) - i_{3}$$

$$+ V_{7}\Gamma_{5}\left(\frac{1+i_{5}}{I_{5}}\right)\log\left(\frac{1+i_{5}}{I_{5}}\right) - i_{5}$$

$$+ \sum_{i_{k}}i_{k}^{2}R_{k}$$

$$+ \sum_{k}i_{k}^{2}R_{k}$$

$$+ \sum_{k}i_{k}^{2}R_{k}$$

$$+ \sum_{k}i_{k}^{2}R_{k}$$

The primal and dual for circuit 'b' are:

Primal: min $\phi(i)$ s.t. Ai = 0

Dual: max L(i,b)

s.t.
$$Ai = 0$$
 $-v = A^Tb$

$$V_{k} = \begin{cases} i_{k}R_{k} & \text{for } k=1,2,4,6 \leftarrow \text{Resistor} \\ V_{k} + i_{k}T_{k} & \text{for } k=7 \leftarrow \text{Battery} \end{cases}$$

$$V_{k} = \begin{cases} i_{k}R_{k} & \text{for } k=1,2,4,6 \leftarrow \text{Resistor} \\ V_{k} + i_{k}T_{k} & \text{for } k=3,5 \leftarrow \text{Diode} \end{cases}$$