Mathematical Induction

Use induction to prove that $n^2-5n+6>0\,$ for all positive integers n>3 .

Let P(n) denote the proposition that $n^2-5n+6>0$, where n is a positive integer, n>3 .

BASIS STEP: P(4) is true since $2 = 4^2 - 5 \cdot 4 + 6 > 0$.

INDUCTIVE STEP: Let us assume P(n), that is $n^2 - 5n + 6 > 0$ is true for an arbitrary positive integer n > 3. This is our inductive hypothesis.

We have to show that P(n+1), $(n+1)^2-5(n+1)+6>0$ is also true assuming the inductive hypothesis P(n).

Proof:

$$(n+1)^2 - 5(n+1) + 6 = (n^2 - 5n + 6) + (2n - 5) > 0 + 1 > 0$$

since $n^2 - 5n + 6 > 0$ by the inductive hypothesis and 2n - 5 > 1 when n > 3.

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $n^2 - 5n + 6 > 0$ for all positive integers n > 3.