Homework 2

- 1. Show that the following k are PD functions:
 - (a) $k(x,y) = \cos(x-y)$ over $\mathbb{R} \times \mathbb{R}$.
 - (b) $k(x,y) = (x+y)^{-1}$ over $(0,+\infty) \times (0,+\infty)$.
- 2. Consider two kernels k_1, k_2 and let $k = k_1 + k_2$. Show that

$$||f||_{\mathcal{H}_k}^2 = \min_{f=f_1+f_2} \left\{ ||f_1||_{\mathcal{H}_{k_1}}^2 + ||f_2||_{\mathcal{H}_{k_2}}^2 \right\}.$$

3. Suppose k is a bounded kernel with $\sup_x \sqrt{k(x,x)} \leq B$. Let $\mathcal{H}_C = \{h|\|h\|_{\mathcal{H}_k} \leq C\}$. Prove that

$$\operatorname{Rad}_n(\mathcal{H}_C) \le \frac{CB}{\sqrt{n}}.$$

(Hint: use the reproducing property $f(x) = \langle f, k(\cdot, x) \rangle$)