Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = \frac{a_1 + a_3}{2} \Rightarrow 2a_2 = a_1 + a_3$	3p
	$a_1 + a_2 + a_3 = 3a_2 \Leftrightarrow 30 = 3a_2 \Leftrightarrow a_2 = 10$	2 p
2.	f(3) = 0	2p
	$(f \circ f)(3) = f(f(3)) = f(0) = 9$	3 p
3.	$(x-6)(x+6) = 2^6 \Rightarrow x^2 - 36 = 64 \Rightarrow x^2 - 100 = 0$	3 p
	x = -10, care nu convine; $x = 10$, care convine	2 p
4.	Cifra zecilor, fiind nenulă, se poate alege în 5 moduri	2p
	Pentru fiecare alegere a cifrei zecilor, cifra unităților se poate alege în câte 5 moduri, deci se pot forma $5.5 = 25$ de numere	3 p
5.	$\overrightarrow{CE} = \frac{1}{2}\overrightarrow{CD} + \frac{1}{2}\overrightarrow{CB}$	3p
	Cum $\overrightarrow{CD} = \frac{1}{2}\overrightarrow{CA}$, obținem $\overrightarrow{CE} = \frac{1}{4}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB} = \frac{1}{4}\overrightarrow{CA} - \frac{1}{2}\overrightarrow{BC}$	2p
6.	$C = \pi - (A + B) = \frac{\pi}{3} \Rightarrow \sin C = \frac{\sqrt{3}}{2}$	3 p
	$\frac{AB}{\sin C} = 2R \Rightarrow R = 2$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 1 \end{vmatrix} = $ $= 4 + (-1) + 2 - 4 - (-1) - 2 = 0$	2p 3p
b)	$det(A(a)) = 2(a^2 - 1)$, pentru orice număr real a	2p
	$\begin{vmatrix} 2 & 1 \\ 4 & 1 \end{vmatrix} \neq 0$, deci matricea $A(a)$ are rangul $2 \Leftrightarrow \det(A(a)) = 0$, de unde obținem $a = -1$ sau $a = 1$	3 p
c)	Sistemul are soluție unică (x_0, y_0, z_0) , deci $a \in \mathbb{R} \setminus \{-1, 1\}$ și soluția sistemului este	
	$\left(\frac{2}{a+1},1,\frac{2}{a+1}\right)$	3р
	$\left(\frac{2}{a+1}\right)^2 + 1 + \left(\frac{2}{a+1}\right)^2 = 3 \text{ si, cum } a \in \mathbb{R} \setminus \{-1,1\}, \text{ obținem } a = -3$	2 p

2.a)	$x * y = xy - \frac{x}{2} - \frac{y}{2} + \frac{1}{4} + \frac{1}{2} =$	2p
	$= x\left(y - \frac{1}{2}\right) - \frac{1}{2}\left(y - \frac{1}{2}\right) + \frac{1}{2} = \left(x - \frac{1}{2}\right)\left(y - \frac{1}{2}\right) + \frac{1}{2}, \text{ pentru orice numere reale } x \text{ si } y$	3p
b)	$\left(\frac{1}{x} - \frac{1}{2}\right)\left(x - \frac{1}{2}\right)\left(\frac{1}{x} - \frac{1}{2}\right) = \left(x - \frac{1}{2}\right)\left(\frac{1}{x} - \frac{1}{2}\right)\left(x - \frac{1}{2}$	1p
	$\frac{1}{x} - \frac{1}{2} = 0 \Rightarrow x = 2$	1p
	$x - \frac{1}{2} = 0 \Rightarrow x = \frac{1}{2}$	1p
	$\frac{1}{x} - x = 0 \Rightarrow x = -1 \text{ sau } x = 1$	2p
c)	Presupunem că există x și y numere întregi, astfel încât x să fie simetricul lui y , deci	
	$x * y = e$, de unde obţinem $\left(x - \frac{1}{2}\right)\left(y - \frac{1}{2}\right) + \frac{1}{2} = \frac{3}{2}$	2 p
	$\left(x - \frac{1}{2}\right)\left(y - \frac{1}{2}\right) = 1 \Rightarrow (2x - 1)(2y - 1) = 4, \text{ ceea ce nu convine, decarece } x \text{ si } y \text{ sunt}$	3 p
	numere întregi și 4 este număr par	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2x - 8 + \frac{8}{x} =$	3p
	$= \frac{2x^2 - 8x + 8}{x} = \frac{2(x - 2)^2}{x}, \ x \in (0, +\infty)$	2p
b)	Dreapta este paralelă cu tangenta la graficul funcției f în punctul de abscisă $x=2$, deci are panta egală cu $f'(2)$	2p
	Cum $f'(2) = 0$, ecuația dreptei este $y = 3$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este crescătoare pe $(0, +\infty)$ și, cum $f(2) = 0$, obținem $f(a) \ge 0$, pentru orice $a \in [2, +\infty)$	2p
	$f(a) \ge 0 \Rightarrow g(a) \ge h(a) \Rightarrow b \ge c$, pentru orice $a \in [2, +\infty)$	3 p
2.a)	$\int_{0}^{1} (x^{2} + 4) f(x) dx = \int_{0}^{1} (x^{2} - 4) dx = \left(\frac{x^{3}}{3} - 4x\right) \Big _{0}^{1} =$	3 p
	$=\frac{1}{3}-4=-\frac{11}{3}$	2 p
b)	$F'(x) = f(x) = \frac{x^2 - 4}{x^2 + 4}$, $F''(x) = f'(x) = \frac{16x}{(x^2 + 4)^2}$, $x \in \mathbb{R}$, unde F este o primitivă a lui f	3p
	$F''(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci funcția F este concavă pe $(-\infty, 0]$	2 p
c)	$x \in [1,2] \Rightarrow x^n \left(x^2 - 4\right) \le 0$ și $\frac{1}{x^2 + 4} \ge \frac{1}{8}$, deci $x^n f(x) \le \frac{1}{8} x^n \left(x^2 - 4\right)$	2p
	$I_n \le \int_{1}^{2} \frac{1}{8} x^n \left(x^2 - 4 \right) dx = \frac{1}{8} \left(\frac{x^{n+3}}{n+3} - \frac{4x^{n+1}}{n+1} \right) \Big _{1}^{2} = \frac{1}{8} \left(-\frac{2^{n+4}}{(n+3)(n+1)} - \frac{1}{n+3} + \frac{4}{n+1} \right)$	2 p
	Cum $\lim_{n \to +\infty} \frac{2^{n+4}}{(n+3)(n+1)} = +\infty$, obţinem $\lim_{n \to +\infty} I_n = -\infty$	1p