1. Introduction

Throughout this notes k denote a field and G denote a group scheme over k. We also fix a k-scheme X equipped with an action of G determined by morphism $a : G \times_k X \to X$.

2. CATEGORICAL AND GEOMETRIC QUOTIENTS

Definition 2.1. Let $q: X \to Y$ be a morphism of k-schemes such that the diagram

$$\mathbf{G} \times_k X \xrightarrow{g} X \xrightarrow{q} Y$$

is a cokernel in the category of *k*-schemes. Then $q: X \to Y$ is a categorical quotient of X.

Definition 2.2. Consider a cokernel

$$\mathbf{G} \times_k X \xrightarrow{g} X \xrightarrow{q} Y$$

in the category of locally ringed spaces over k. If Y is a scheme, then $q: X \to Y$ is a geometric quotient of X.

Fact 2.3. Every geometric quotient is categorical.

Proof. Categorical quotient is a cokernel in the category of k-schemes. On the other hand geometric quotient is a cokernel in the category of locally ringed spaces and hence it also satisfies cokernel property in its full subcategory of k-schemes. Thus every geometric quotient is categorical

Corollary 2.4. Let $q: X \to Y$ be a morphism of schemes. The following assertions are equivalent.

(i) The diagram

$$\mathbf{G} \times_k X \xrightarrow{pr_X} X \xrightarrow{q} Y$$

is a cokernel diagram of underlying topological spaces and the diagram

$$\mathcal{O}_{Y} \xrightarrow{q^{\#}} q_{*}\mathcal{O}_{X} \xrightarrow{q_{*}\mathbf{pr}_{X}^{\#}} q_{*} \left(\mathbf{pr}_{X}\right)_{*} \mathcal{O}_{\mathbf{G}\times_{k}X} = q_{*}a_{*}\mathcal{O}_{\mathbf{G}\times_{k}X}$$

is a kernel diagram in the category of sheaves on Y.

(ii) q is a geometric quotient of X.

Proof. This is a consequence of [Monygham, 2019, Theorem 2.9].

Let $q: X \to Y$ be a morphism of k-schemes such that $q \cdot \operatorname{pr}_X = q \cdot a$. For a morphism $g: Y' \to Y$ of k-schemes consider the cartesian square

1

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

Then there exists a unique action $a' : \mathbf{G} \times_k X' \to X'$ of \mathbf{G} on X' such that the square above consists of \mathbf{G} -equivariant morphism (we consider Y, Y' as \mathbf{G} -schemes equipped with trivial \mathbf{G} -actions). Keeping this in mind we have the following.

Definition 2.5. A morphism $q: X \to Y$ is a uniform categorical (geometric) quotient of X if for every flat morphism $g: Y' \to Y$ its base change $q': X' \to Y'$ is a categorical (geometric) quotient of X'.

Definition 2.6. A morphism $q: X \to Y$ is a universal categorical (geometric) quotient of X if for every morphism $g: Y' \to Y$ its base change $q': X' \to Y'$ is a categorical (geometric) quotient of X'.

3. Types of actions and criterion for smoothness of universal geometric ouotients

Definition 3.1. The action of **G** on *X* is *separated* if the morphism $\langle a, \operatorname{pr}_X \rangle : \mathbf{G} \times_k X \to X \times_k X$ has closed set-theoretic image.

Theorem 3.2. Let $q: X \to Y$ be a geometric quotient of X. Assume that q is universally submersive. Then the following assertions are equivalent.

- (i) The action of G on X is separated.
- (ii) Y is separated.

Proof. We have a cartesian square

$$\begin{array}{ccc}
X \times_{Y} X & \longrightarrow & X \times_{k} X \\
\downarrow & & \downarrow & \downarrow \\
Y & \longrightarrow & Y \times_{k} Y
\end{array}$$

It follows that $X \times_Y X \hookrightarrow X \times_k X$ is a locally closed immersion. Since q is a geometric quotient, we derive that $\langle a, \operatorname{pr}_X \rangle$ factors as a surjective morphism $\mathbf{G} \times_k X \twoheadrightarrow X \times_Y X$ followed by the immersion $X \times_Y X \hookrightarrow X \times_k X$. Thus the action of \mathbf{G} on X is separated if and only if $X \times_Y X$ is a closed subscheme of $X \times_k X$. Since q is universally submersive, we derive that $q \times_k q$ is submersive. As the square above is cartesian we derive that $\Delta_Y(Y) \subseteq Y \times_k Y$ is closed if and only if $X \times_Y X \subseteq X \times_k X$ is closed. Therefore, Y is separated if and only if the action of \mathbf{G} on X is separated.

The following result which concerns complete local rings is very useful.

Definition 3.3. Let x be a k-point of X. Suppose that the morphism $\mathbf{G} \to X$ given by the composition

$$\mathbf{G} = \mathbf{G} \times_k \operatorname{Spec} k \xrightarrow{\operatorname{induced} \operatorname{by} x} \mathbf{G} \times_k X \longrightarrow X$$

is a closed immersion. Then the action of G on X has a closed free orbit at x.

Proposition 3.4. Let (A, \mathfrak{m}, k) be a complete local noetherian k-algebra and let $\sigma : A \to A[[x_1, ..., x_n]]$ be a local morphism into a ring of formal power series over A. Assume that the composition

$$A \xrightarrow{\sigma} A[[x_1, ..., x_n]] \xrightarrow{f \mapsto f \bmod (x_1, ..., x_n)} A$$

is the identity and the composition

$$A \xrightarrow{\sigma} A[[x_1,...,x_n]] \xrightarrow{f \mapsto f \bmod \mathfrak{m}} (A/\mathfrak{m})[[x_1,...,x_n]] = k[[x_1,...,x_n]]$$

is surjective. Consider elements $y_1,...,y_n$ of A such that $\sigma(y_i) \mod \mathfrak{m} = x_i$ for i=1,...,n. Then the composition

$$A \xrightarrow{\sigma} A[[x_1,...,x_n]] \xrightarrow{f \mapsto f \bmod (y_1,...,y_n)} (A/(y_1,...,y_n))[[x_1,...,x_n]]$$

is an isomorphism.

Proof. For convienience let ϕ denote the morphism given by the rule $a \mapsto \sigma(a) \mod (y_1, ..., y_n)$. According to assumptions we have

$$\sigma(y_i) = x_i + y_i + \sum_{j=1}^n x_j \cdot \mathfrak{m}[[x_1, ..., x_n]]$$

for each i. Thus $\phi(y_i) = \sum_{j=1}^n f_{ij} \cdot x_j$ where $f_{ij} \in A/(y_1,...,y_n)$ are elements such that the matrix $[f_{ij}]_{1 < i,j < n}$ is invertible in $A/(y_1,...,y_n)$. Hence

$$(A/(y_1,...,y_n))[[x_1,...,x_n]] = (A/(y_1,...,y_n))[[\phi(y_1),...,\phi(y_n)]]$$

and ϕ composed with $(A/(y_1,...,y_n))[[\phi(y_1),...,\phi(y_n)]] \rightarrow A/(y_1,...,y_n)$ is the quotient morphism $A \rightarrow A/(y_1,...,y_n)$. From this observations we derive that ϕ is surjective. It remains to prove that it is injective. Consider z in A such that $\phi(z) = 0$. Suppose that $z \in (y_1,...,y_n)^m$ for some $m \in \mathbb{N}$. Write

$$z = \sum_{\alpha \in \Lambda} c_{\alpha} \cdot y_1^{\alpha_1} ... y_n^{\alpha_n}$$

for some $c_{\alpha} \in A$ where $\Lambda = \{\alpha \in \mathbb{N}^n \mid \alpha_1 + ... + \alpha_n = m\}$. Hence

$$0 = \phi(z) = \sum_{\alpha \in \Lambda} \phi(c_{\alpha}) \cdot \phi(y_1)^{\alpha_1} ... \phi(y_n)^{\alpha_n}$$

Thus $\phi(c_{\alpha}) \in (\phi(y_1),...,\phi(y_n))$ for every $\alpha \in \Lambda$. Since ϕ composed with $(A/(y_1,...,y_n))$ $[[\phi(y_1),...,\phi(y_n)]] \twoheadrightarrow A/(y_1,...,y_n)$ is the quotient morphism $A \twoheadrightarrow A/(y_1,...,y_n)$, we derive that

$$c_{\alpha} \mod (y_1, ..., y_n) = \phi(c_{\alpha}) \mod (\phi(y_1), ..., \phi(y_n)) = 0$$

for every $\alpha \in \Lambda$. Thus $c_{\alpha} \in (y_1, ..., y_n)$ for every $\alpha \in \Lambda$, which implies that $z \in (y_1, ..., y_n)^{m+1}$. Thus we proved that

$$\phi(z) = 0 \text{ and } z \in (y_1, ..., y_n)^m \Rightarrow z \in (y_1, ..., y_n)^{m+1}$$

By m-adic completeness of A this implies that $\phi(z)=0$ if and only if z=0. Hence ϕ is also injective.

REFERENCES

 $[Monygham, 2019]\ Monygham\ (2019).\ Locally\ ringed\ spaces.\ \textit{github\ repository:}\ "Monygham/Pedo-mellon-a-minno".$