In [28]:

```
import plotly.graph_objects as go
import plotly.express as px
import plotly.io as pio
pio.templates.default = "plotly_dark"
from plotly.subplots import make_subplots
import folium
from folium import plugins
from tqdm.notebook import tqdm as tqdm
import matplotlib.pyplot as plt
from matplotlib import ticker
import numpy as np
import pandas as pd
```

In [29]:

```
TodaysData_Country = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVI
D-19/web-data/data/cases_country.csv')
TodaysData_Country.head()
```

Out[29]:

	Country_Region	Last_Update	Lat	Long_	Confirmed	Deaths	Recovered	Active
0	Australia	2020-06-01 02:32:46	-25.0000	133.0000	7202.0	103.0	6618.0	481.0
1	Austria	2020-06-01 02:32:46	47.5162	14.5501	16731.0	668.0	15593.0	470.0
2	Canada	2020-06-01 02:32:46	60.0010	-95.0010	92479.0	7374.0	49213.0	35892.0
3	China	2020-06-01 02:32:46	30.5928	114.3055	84146.0	4638.0	79389.0	119.0
4	Denmark	2020-06-01 02:32:46	56.2639	9.5018	11869.0	574.0	10560.0	735.0
4								•

In [30]:

```
ColumnToClean = ['Confirmed', 'Deaths', 'Recovered', 'Active']
# filling missing values
TodaysData_Country[['Country_Region']] = TodaysData_Country[['Country_Region']].fillna(
'')
TodaysData_Country[ColumnToClean] = TodaysData_Country[ColumnToClean].fillna(0)
TodaysData_Country.loc[TodaysData_Country['Country_Region'] == "United Kingdom", "Country_Region"] = "UK"
TodaysData_Country.head()
```

Out[30]:

	Country_Region	Last_Update	Lat	Long_	Confirmed	Deaths	Recovered	Active
0	Australia	2020-06-01 02:32:46	-25.0000	133.0000	7202.0	103.0	6618.0	481.0
1	Austria	2020-06-01 02:32:46	47.5162	14.5501	16731.0	668.0	15593.0	470.0
2	Canada	2020-06-01 02:32:46	60.0010	-95.0010	92479.0	7374.0	49213.0	35892.0
3	China	2020-06-01 02:32:46	30.5928	114.3055	84146.0	4638.0	79389.0	119.0
4	Denmark	2020-06-01 02:32:46	56.2639	9.5018	11869.0	574.0	10560.0	735.0

In [31]:

```
# Top 10 Countries
Top10_Countries_death = TodaysData_Country.drop(['Last_Update', 'Lat','Long_','Incident
_Rate','People_Tested','People_Hospitalized','Mortality_Rate','UID','ISO3'], axis=1)
Top10_Countries_death = Top10_Countries_death.nlargest(10, 'Deaths')
Top10_Countries_death.head(10)
```

Out[31]:

	Country_Region	Confirmed	Deaths	Recovered	Active
17	US	1790172.0	104381.0	444758.0	1295795.0
16	UK	276156.0	38571.0	1190.0	236395.0
10	Italy	232997.0	33415.0	157507.0	42075.0
21	Brazil	514849.0	29314.0	206555.0	278980.0
6	France	189009.0	28805.0	68473.0	91731.0
18	Spain	239479.0	27127.0	150376.0	61976.0
19	Mexico	90664.0	9930.0	63772.0	16962.0
39	Belgium	58381.0	9467.0	15887.0	33027.0
7	Germany	183410.0	8540.0	165352.0	9518.0
94	Iran	151466.0	7797.0	118848.0	24821.0

In [32]:

```
Top10_Countries_Confirmed = TodaysData_Country.drop(['Last_Update', 'Lat', 'Long_', 'Inci
dent_Rate', 'People_Tested', 'People_Hospitalized', 'Mortality_Rate', 'UID', 'ISO3'], axis=1
)
Top10_Countries_Confirmed = Top10_Countries_Confirmed.nlargest(10, 'Confirmed')
Top10_Countries_Confirmed.head(10)
```

Out[32]:

	Country_Region	Confirmed	Deaths	Recovered	Active
17	US	1790172.0	104381.0	444758.0	1295795.0
21	Brazil	514849.0	29314.0	206555.0	278980.0
13	Russia	405843.0	4693.0	171883.0	229267.0
16	UK	276156.0	38571.0	1190.0	236395.0
18	Spain	239479.0	27127.0	150376.0	61976.0
10	Italy	232997.0	33415.0	157507.0	42075.0
92	India	190609.0	5408.0	91852.0	93349.0
6	France	189009.0	28805.0	68473.0	91731.0
7	Germany	183410.0	8540.0	165352.0	9518.0
22	Peru	164476.0	4506.0	67208.0	92762.0

In [33]:

```
Top10_Countries_Recovered = TodaysData_Country.drop(['Last_Update', 'Lat','Long_','Inci
dent_Rate','People_Tested','People_Hospitalized','Mortality_Rate','UID','ISO3'], axis=1
)
Top10_Countries_Recovered = Top10_Countries_Recovered.nlargest(10, 'Recovered')
Top10_Countries_Recovered.head(10)
```

Out[33]:

	Country_Region	Confirmed	Deaths	Recovered	Active
17	US	1790172.0	104381.0	444758.0	1295795.0
21	Brazil	514849.0	29314.0	206555.0	278980.0
13	Russia	405843.0	4693.0	171883.0	229267.0
7	Germany	183410.0	8540.0	165352.0	9518.0
10	Italy	232997.0	33415.0	157507.0	42075.0
18	Spain	239479.0	27127.0	150376.0	61976.0
175	Turkey	163942.0	4540.0	127973.0	31429.0
94	Iran	151466.0	7797.0	118848.0	24821.0
92	India	190609.0	5408.0	91852.0	93349.0
3	China	84146.0	4638.0	79389.0	119.0

In [34]:

```
Top10_Countries_Active = TodaysData_Country.drop(['Last_Update', 'Lat','Long_','Inciden
t_Rate','People_Tested','People_Hospitalized','Mortality_Rate','UID','ISO3'], axis=1)
Top10_Countries_Active = Top10_Countries_Active.nlargest(10, 'Active')
Top10_Countries_Active.head(10)
```

Out[34]:

	Country_Region	Confirmed	Deaths	Recovered	Active
17	US	1790172.0	104381.0	444758.0	1295795.0
21	Brazil	514849.0	29314.0	206555.0	278980.0
16	UK	276156.0	38571.0	1190.0	236395.0
13	Russia	405843.0	4693.0	171883.0	229267.0
92	India	190609.0	5408.0	91852.0	93349.0
22	Peru	164476.0	4506.0	67208.0	92762.0
6	France	189009.0	28805.0	68473.0	91731.0
18	Spain	239479.0	27127.0	150376.0	61976.0
20	Chile	99688.0	1054.0	42727.0	55907.0
137	Pakistan	69496.0	1483.0	25271.0	42742.0

In [35]:

```
fig = px.bar(Top10_Countries_death.sort_values('Deaths',ascending=False)[:20][::-1],x=
'Deaths',y='Country_Region',title='Top 10 Countries with highest number of Death Cases'
,text='Deaths', height=900, orientation='h')

#image_bytes = fig.to_image(format='png', , width=1200, height=700, scale=1) # you can
    use other formats as well (like 'svg','jpeg','pdf')
img_bytes = fig.to_image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img_bytes)
#fig.show()
```

Out[35]:

In [53]:

```
fig = make subplots(
    rows=2, cols=2,
    specs=[[{"type": "bar"}, {"type": "bar"}],
           [{"type": "bar"}, {"type": "bar"}]],
    subplot titles=("Top 10 Countries with Confirmed Cases", "Top 10 Countries with Deat
h Cases", "Top 10 Countries with Recovered Cases", "Top 10 Countries with Active Cases"
)
fig.add trace(go.Bar(name='Confirmed',text='Confirmed', x=Top10 Countries Confirmed['Co
untry_Region'], y=Top10_Countries_Confirmed['Confirmed']),
              row=1, col=1)
fig.add trace(go.Bar(name='Deaths',text='Deaths', x=Top10 Countries death['Country Regi
on'], y=Top10 Countries death['Deaths']),
              row=1, col=2)
fig.add trace(go.Bar(name='Recovered', text='Recovered',x=Top10 Countries Active['Count
ry_Region'], y=Top10_Countries_Active['Recovered']),
              row=2, col=1)
fig.add_trace(go.Bar(name='Active',text='Active', x=Top10_Countries_Recovered['Country_
Region'], y=Top10_Countries_Recovered['Active']),
              row=2, col=2)
fig.update layout(height=900,width=1200,title_text="World top 10 countries with Covid-1
9 Cases", showlegend=False)
#fig.show()
img bytes = fig.to image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img bytes)
```

Out[53]:

In [52]:

```
fig = go.Figure(data=[
    go.Bar(name='Confirmed', x=Top10_Countries_death['Country_Region'], y=Top10_Countri
es_death['Confirmed']),
    go.Bar(name='Deaths', x=Top10_Countries_death['Country_Region'], y=Top10_Countries
    _death['Deaths']),
    go.Bar(name='Recovered', x=Top10_Countries_death['Country_Region'], y=Top10_Countries_death['Recovered']),
])
# Change the bar mode
fig.update_layout(barmode='group', width= 1200)
#fig.show()
img_bytes = fig.to_image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img_bytes)
```

Out[52]:

In [38]:

```
cleaned_data = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/w
eb-data/data/cases_time.csv')
```

cleaned_data.head()

Out[38]:

	Country_Region	Last_Update	Confirmed	Deaths	Recovered	Active	Delta_Confirmed	D
0	Afghanistan	1/22/20	0	0	NaN	NaN	0.0	
1	Afghanistan	1/23/20	0	0	NaN	NaN	0.0	
2	Afghanistan	1/24/20	0	0	NaN	NaN	0.0	
3	Afghanistan	1/25/20	0	0	NaN	NaN	0.0	
4	Afghanistan	1/26/20	0	0	NaN	NaN	0.0	
4								•

In [51]:

```
formated gdf = cleaned data.groupby(['Report Date String', 'Country Region'])['Confirme
d'l.max()
formated gdf = formated gdf.reset index()
formated gdf['Report Date String'] = pd.to datetime(formated gdf['Report Date String'])
formated gdf['Report Date String'] = formated gdf['Report Date String'].dt.strftime('%)
m/%d/%Y')
formated gdf['size'] = formated gdf['Confirmed'].pow(0.3)
fig = px.scatter_geo(formated_gdf, locations="Country_Region", locationmode='country_na
mes',
                     color="Confirmed", size='size', hover_name="Country_Region",
                     range color= [0, 1500],
                     projection="natural earth", animation_frame="Report_Date_String",
                     title='COVID-19: Spread Over Time', color_continuous_scale="portla"
nd" ,width=1200)
# fig.update(layout coloraxis showscale=False)
img bytes = fig.to image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img_bytes)
#fig.show()
```

Out[51]:

In [39]:

```
owid_covid_data = pd.read_csv('https://raw.githubusercontent.com/owid/covid-19-data/mas
ter/public/data/owid-covid-data.csv')
owid_covid_data_Selected = owid_covid_data[['date','new_cases','new_deaths']]
#Set 0 for NAN
#ColumnNan = ['new_cases','new_deaths']
#owid_covid_data_Selected[ColumnNan] = owid_covid_data_Selected[ColumnNan].fillna(0)
owid_covid_data_Selected.tail()
#owid_covid_data.head()
# W weekly frequency
```

Out[39]:

	date	new_cases	new_deaths
20971	2020-02-28	0	0
20972	2020-02-29	0	2
20973	2020-03-01	0	0
20974	2020-03-02	0	0
20975	2020-03-10	-9	1

In [16]:

```
owid_covid_newcases = owid_covid_data_Selected.groupby(['date'])['new_cases'].sum()
owid_covid_newcases = owid_covid_newcases.reset_index()
owid_covid_newcases['date'] = pd.to_datetime(owid_covid_newcases['date'])
owid_covid_newcases['date'] = owid_covid_newcases['date'].dt.strftime('%m/%d/%Y')
owid_covid_newcases.head()

owid_covid_newdeaths = owid_covid_data_Selected.groupby(['date'])['new_deaths'].sum()
owid_covid_newdeaths = owid_covid_newdeaths.reset_index()
owid_covid_newdeaths['date'] = pd.to_datetime(owid_covid_newdeaths['date'])
owid_covid_newdeaths['date'] = owid_covid_newdeaths['date'].dt.strftime('%m/%d/%Y')
owid_covid_newdeaths.head()
```

Out[16]:

	date	new_deaths
0	12/31/2019	0
1	01/01/2020	0
2	01/02/2020	0
3	01/03/2020	0
4	01/04/2020	0

In [50]:

```
fig = go.Figure(data=[
    go.Line(x=owid covid newcases['date'], y=owid covid newcases['new cases'], mode='lin
es', name='New Case'),
     go.Line(x=owid covid newdeaths['date'], y=owid covid newdeaths['new deaths'], mode=
'lines', name='Death'),
1)
fig.update layout(
    title="TrendLine - World Death and new cases over the time",
    yaxis title="New or Death Cases",
    xaxis title="Date",
    showlegend=True,
    width=1200
)
#fig.show()
img bytes = fig.to image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img bytes)
```

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\plotly\graph_objs_
deprecations.py:385: DeprecationWarning:

plotly.graph_objs.Line is deprecated.
Please replace it with one of the following more specific types
 plotly.graph_objs.scatter.Line
 plotly.graph_objs.layout.shape.Line

- etc.

Out[50]:

In [43]:

```
Top10 Countries = Top10 Countries death[['Country_Region']]
Top10 Countries.loc[Top10 Countries['Country Region'] == "UK", "Country Region"] = "Uni
ted Kingdom"
Top10 Countries.loc[Top10 Countries['Country Region'] == "US", "Country Region"] = "Uni
ted States"
filter list = Top10 Countries['Country Region']. values. tolist()
owid Top10 Countries = owid covid data.loc[owid covid data['location'].isin(filter list
)]
Top10 gdp per capita = owid Top10 Countries.groupby(['location'])['gdp per capita'].ma
x().to_frame(name = 'gdp_per_capita').reset_index()
Top10 cvd death rate = owid Top10 Countries.groupby(['location'])['cvd death rate'].ma
x().to frame(name = 'cvd death rate').reset index()
Top10_diabetes_prevalence = owid_Top10_Countries.groupby(['location'])['diabetes_preva
lence'].max().to frame(name = 'diabetes prevalence').reset index()
Top10 female smokers = owid Top10 Countries.groupby(['location'])['female smokers'].ma
x().to frame(name = 'female smokers').reset index()
Top10 male smokers = owid Top10 Countries.groupby(['location'])['male smokers'].max().
to frame(name = 'male smokers').reset index()
Top10_hospital_beds_per_100k = owid_Top10_Countries.groupby(['location'])['hospital_be
ds per 100k'].max().to frame(name = 'hospital beds per 100k').reset index()
Top10 cvd death rate.head()
```

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\pandas\core\indexin
g.py:670: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\ipykernel_launcher.
py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\ipykernel_launcher.
py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

Out[43]:

	location	cvd_death_rate
0	Belgium	114.898
1	Brazil	177.961
2	France	86.060
3	Germany	156.139
4	Iran	270.308

In [44]:

```
Bottom10 Countries death = TodaysData Country.drop(['Last Update', 'Lat', 'Long ', 'Incid
ent Rate', 'People Tested', 'People Hospitalized', 'Mortality Rate', 'UID', 'ISO3'], axis=1)
Bottom10 Countries death = Bottom10 Countries death.loc[(Bottom10 Countries death['Deat
hs'] >= 1)].nsmallest(10, 'Deaths')
Bottom10 Countries death.head(10)
Bottom10 Countries = Bottom10 Countries death[['Country Region']]
Bottom10 Countries.loc[Bottom10 Countries['Country Region'] == "UK", "Country Region"]
= "United Kingdom"
Bottom10_Countries.loc[Bottom10_Countries['Country_Region'] == "US", "Country_Region"]
= "United States"
filter list = Bottom10 Countries['Country Region']. values. tolist()
owid Bottom10 Countries = owid covid data.loc[owid covid data['location'].isin(filter l
ist)]
Bottom10 gdp per capita = owid Bottom10 Countries.groupby(['location'])['gdp per capit
a'].max().to_frame(name = 'gdp_per_capita').reset_index()
Bottom10 cvd death rate = owid Bottom10 Countries.groupby(['location'])['cvd death rat
e'].max().to frame(name = 'cvd death rate').reset index()
Bottom10 diabetes prevalence = owid Bottom10 Countries.groupby(['location'])['diabetes
_prevalence'].max().to_frame(name = 'diabetes_prevalence').reset_index()
Bottom10 female smokers = owid Bottom10 Countries.groupby(['location'])['female smoker
s'].max().to_frame(name = 'female_smokers').reset_index()
Bottom10 male smokers = owid Bottom10 Countries.groupby(['location'])['male smokers'].
max().to_frame(name = 'male_smokers').reset_index()
Bottom10 hospital beds per 100k = owid Bottom10 Countries.groupby(['location'])['hospi
tal_beds_per_100k'].max().to_frame(name = 'hospital_beds_per_100k').reset_index()
Bottom10 gdp per capita.head(10)
4
```

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\pandas\core\indexin
g.py:670: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\ipykernel_launcher.
py:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\shyju_sasimohanan\Anaconda3\lib\site-packages\ipykernel_launcher.
py:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[44]:

	location	gdp_per_capita
0	Belize	7824.362
1	Botswana	15807.374
2	Brunei	71809.251
3	Burundi	702.225
4	Central African Republic	661.240
5	Gambia	1561.767
6	Liechtenstein	NaN
7	Rwanda	1854.211
8	Suriname	13767.119
9	Western Sahara	NaN

In [48]:

```
fig = make subplots(
   rows=1, cols=2,
   specs=[[{"type": "bar"}, {"type": "bar"}]],
   subplot titles=("Top 10 Countries with Death Cases", "Bottom 10 Countries with Death
Cases")
)
fig.add trace(go.Bar(name='Deaths',text='Deaths', x=Top10 Countries death['Country Regi
on'], y=Top10_Countries_death['Deaths']),
              row=1, col=1)
fig.add trace(go.Bar(name='Deaths',text='Deaths', x=Bottom10 Countries death['Country R
egion'], y=Bottom10_Countries_death['Deaths']),
              row=1, col=2)
fig.update layout(height=900, width=1200, title text="Comaprison - COVID Death Cases", sh
owlegend=False)
#fig.show()
img bytes = fig.to image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img_bytes)
```

Out[48]:

In [46]:

```
fig = make subplots(
    rows=3, cols=2,
    specs=[[{"type": "bar"}, {"type": "bar"}],
           [{"type": "bar"}, {"type": "bar"}],
            [{"type": "bar"}, {"type": "bar"}]],
    subplot titles=("GDP Comaprison Top 10 Countries with Death Cases VS Bottom 10", "Di
abetes Prevalence Comaprison Top 10 Countries with Death Cases VS Bottom 10", "Female s
mokers Comaprison Top 10 Countries with Death Cases VS Bottom 10", "Male smokers Comapr
ison Top 10 Countries with Death Cases VS Bottom 10", "Hospital beds per 100k Comaprison
Top 10 Countries with Death Cases VS Bottom 10", "Covid death rate Comaprison Top 10 Co
untries with Death Cases VS Bottom 10")
)
fig.add_trace(go.Bar(name='gdp_per_capita', text='gdp_per_capita', x=Top10_gdp_per_capit
a['location'], y=Top10 gdp per capita['gdp per capita']),
              row=1, col=1)
fig.add trace(go.Bar(name='gdp_per_capita',text='gdp_per_capita', x=Bottom10_gdp_per_ca
pita['location'], y=Bottom10 gdp per capita['gdp per capita']),
              row=1, col=1)
fig.add_trace(go.Bar(name='diabetes_prevalence',text='diabetes_prevalence', x=Top10_dia
betes_prevalence['location'], y=Top10_diabetes_prevalence['diabetes_prevalence']),
              row=1, col=2)
fig.add_trace(go.Bar(name='diabetes_prevalence', text='diabetes_prevalence',x=Bottom10_
diabetes prevalence['location'], y=Bottom10 diabetes prevalence['diabetes prevalence'
]),
              row=1, col=2)
fig.add_trace(go.Bar(name='female_smokers',text='female_smokers', x=Top10_female_smoker
s['location'], y=Top10 female smokers['female smokers']),
              row=2, col=1)
fig.add trace(go.Bar(name='female smokers',text='female smokers', x=Bottom10 female smo
kers['location'], y=Bottom10 female smokers['female smokers']),
              row=2, col=1)
fig.add trace(go.Bar(name='male smokers',text='male smokers', x=Top10 male smokers['loc
ation'], y=Top10_male_smokers['male_smokers']),
              row=2, col=2)
fig.add trace(go.Bar(name='male smokers', text='male smokers',x=Bottom10 male smokers[
'location'], y=Bottom10 male smokers['male smokers']),
              row=2, col=2)
fig.add_trace(go.Bar(name='hospital_beds_per_100k',text='hospital_beds_per_100k', x=Top
```

```
10 hospital beds per 100k['location'], y=Top10 hospital beds per 100k['hospital beds pe
r_100k']),
              row=3, col=1)
fig.add_trace(go.Bar(name='hospital_beds_per_100k',text='hospital_beds_per_100k', x=Bot
tom10 hospital beds per 100k['location'], y=Bottom10 hospital beds per 100k['hospital b
eds_per_100k']),
              row=3, col=1)
fig.add_trace(go.Bar(name='cvd_death_rate',text='cvd_death_rate', x=Top10_cvd_death_rat
e['location'], y=Top10_cvd_death_rate['cvd_death_rate']),
              row=3, col=2)
fig.add_trace(go.Bar(name='cvd_death_rate', text='cvd_death_rate',x=Bottom10_cvd_death_
rate['location'], y=Bottom10_cvd_death_rate['cvd_death_rate']),
              row=3, col=2)
fig.update_layout(height=1200,width=1800, title_text="Comaprison - Top 10 Countries wit
h Death Cases VS Bottom 10", showlegend=False)
#fig.show()
img bytes = fig.to image(format="png")
#instead of using fig.show()
from IPython.display import Image
Image(img bytes)
```

Out[46]:

In [47]:

```
owid_covid_data.iloc[:,:].corr().style.background_gradient(cmap='Blues').format("{:.3f}
")
```

Out[47]:

	total_cases	new_cases	total_deaths	new_deaths	total_c
total_cases	1.000	0.914	0.990	0.798	
new_cases	0.914	1.000	0.893	0.930	
total_deaths	0.990	0.893	1.000	0.796	
new_deaths	0.798	0.930	0.796	1.000	
total_cases_per_million	0.060	0.039	0.069	0.042	
new_cases_per_million	0.027	0.045	0.022	0.038	
total_deaths_per_million	0.087	0.048	0.135	0.081	
new_deaths_per_million	0.042	0.054	0.056	0.101	
total_tests	0.901	0.707	0.811	0.561	
new_tests	0.876	0.811	0.770	0.641	
total_tests_per_thousand	0.112	0.042	0.115	0.026	
new_tests_per_thousand	0.131	0.094	0.130	0.067	
new_tests_smoothed	0.889	0.804	0.773	0.636	
new_tests_smoothed_per_thousand	0.147	0.097	0.147	0.070	
stringency_index	0.092	0.110	0.093	0.103	
population	0.561	0.642	0.547	0.603	
population_density	-0.017	-0.020	-0.017	-0.020	
median_age	0.028	0.023	0.038	0.034	
aged_65_older	0.029	0.021	0.044	0.040	
aged_70_older	0.028	0.020	0.044	0.040	
gdp_per_capita	0.017	0.014	0.019	0.018	
extreme_poverty	-0.026	-0.028	-0.027	-0.029	
cvd_death_rate	-0.035	-0.033	-0.048	-0.050	
diabetes_prevalence	0.013	0.018	-0.000	0.004	
female_smokers	0.005	-0.001	0.017	0.013	
male_smokers	-0.003	-0.005	-0.010	-0.015	
handwashing_facilities	0.015	0.019	0.015	0.018	
hospital_beds_per_100k	-0.005	-0.010	-0.007	-0.011	