Jerome Dumortier

Overview

Truncation

Censoring

Count Models

Limited Dependent Variable Models

Jerome Dumortier

23 March 2023

Jerome Dumortier

Overview

Truncatio

Censoring

Count Model

Overview

Packages and Files

Overview

Truncatio

Count Models

Required packages:

- AER
- censReg
- foreign
- MASS
- pscl
- truncreg

Required files:

data("NMES1988",package="AER")

Jerome Dumortier

Overview

Truncatio

Count Mode

Topics Covered

Regression models in which the dependent variable is somehow limited:

- Truncated data: Values above and/or below particular points are not reported
- Censored data: Values above and/or below particular points are reported at those points
- Count data: Discrete, integer count value
- Survival/duration data: Time to a certain event

Jerome Dumortier

Overview

Truncation

Censoring

Count Models

Truncation

Concept

Value above and/or below a certain point are not part of the data

Examples

- Low income household studies
- On-site visitation data (unobserved non-visitors)
- Employment data on hours worked (excludes unemployed)

Simulated data

- "True" Coefficients: $\beta_0 = -2$ and $\beta_1 = 0.5$
- Values y < 0 are not reported in the data

Next slide: The green regression line is "correct" whereas the "red" is the line obtained from a regression model which ignores the truncation.

Jerome Dumortier

Overview

Truncation

Censoring

Count Models

Graphical Illustration


```
Limited
Dependent
Variable
Models
```

Overview

Truncation

Censoring

```
Setup for truncation Data
```

```
truncation1 = truncation[c("y_real","x")]
truncation2 = subset(truncation,y_obs>0,select=c("y_obs","x"))
bhat_real = lm(y_real~x,data=truncation1)
bhat_truncated = lm(y_obs~x,data=truncation2)
```

Required package to estimate a truncated model

truncreg

Additional variable output sigma:

Related to the truncated normal distribution

```
Limited
Dependent
Variable
Models
```

Overview

Truncation

Count Mode

Results: Complete Data

```
##
## Call:
## lm(formula = v real ~ x. data = truncation1)
##
## Residuals:
##
     Min
         10 Median
                           30
                                 Max
## -1.9198 -0.6360 -0.1532 0.3463 2.4094
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
##
## x
          0.50153 0.05501 9.116 4.78e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9821 on 48 degrees of freedom
## Multiple R-squared: 0.6339, Adjusted R-squared: 0.6263
## F-statistic: 83.11 on 1 and 48 DF, p-value: 4.783e-12
```

```
Limited
Dependent
Variable
Models
```

Overview

Truncation

Count Mode

Results: Truncated Data with Regular OLS

```
##
## Call:
## lm(formula = v obs ~ x. data = truncation2)
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -1.4247 -0.5086 -0.1122 0.3488 2.0413
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.14606   0.48297 -0.302   0.764
## x
            0.31074 0.06605 4.705 3.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8543 on 37 degrees of freedom
## Multiple R-squared: 0.3743, Adjusted R-squared: 0.3574
## F-statistic: 22.13 on 1 and 37 DF, p-value: 3.499e-05
```

```
Limited
Dependent
Variable
Models
```

Overview

Truncation

Results: Correcting for Truncation

```
##
## Call:
## truncreg(formula = y_obs ~ x, data = truncation2, point = 0,
      direction = "left")
##
##
## BFGS maximization method
## 22 iterations, Oh:Om:Os
## g'(-H)^-1g = 7.28E-09
##
##
##
## Coefficients :
         Estimate Std. Error t-value Pr(>|t|)
##
## (Intercept) -0.716370 0.668897 -1.0710 0.2842
## x
          ## sigma 0.889160 0.119117 7.4646 8.349e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -46.315 on 3 Df
```

Jerome Dumortier

Overview

Truncation

Count Mode

Achievement Scores: Data Load and Description

Loading the data using the package foreign

```
url = "https://stats.idre.ucla.edu/stat/data/truncreg.dta"
achievement = read.dta(url)
```

Description of the data from UCLA Source:

"A study of students in a special GATE (gifted and talented education) program wishes to model achievement as a function of language skills and the type of program in which the student is currently enrolled. A major concern is that students are required to have a minimum achievement score of 40 to enter the special program. Thus, the sample is truncated at an achievement score of 40."

```
Limited
Dependent
Variable
Models
```

Overview

Truncation

Censorin

Count Mode

```
Achievement Scores: Regular OLS Estimation
```

```
##
## Call:
## lm(formula = achiv ~ langscore + prog, data = achievement)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                        Max
## -16.9413 -5.7033 -0.8462
                             5.2205 21.3010
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 27.63965 3.70639 7.457 4.01e-12 ***
## langscore 0.46319 0.06792 6.820 1.45e-10 ***
## progacademic 2.97343 1.44889 2.052 0.0416 *
## progvocation -0.52118 1.72739 -0.302 0.7632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.534 on 174 degrees of freedom
## Multiple R-squared: 0.3054, Adjusted R-squared: 0.2934
## F-statistic: 25.5 on 3 and 174 DF, p-value: 1.01e-13
```

```
Limited
Dependent
Variable
Models
```

Overview

Truncation

Censoring

Count Mode

Achievement Scores: Truncated Model

```
##
## Call:
## truncreg(formula = achiv ~ langscore + prog, data = achievement,
##
      point = 40, direction = "left")
##
## BEGS maximization method
## 57 iterations. Oh:Om:Os
## g'(-H)^-1g = 2.5E-05
##
##
##
## Coefficients :
              Estimate Std. Error t-value Pr(>|t|)
##
## (Intercept) 11.29942 6.77173 1.6686
                                           0.09519 .
## langscore 0.71267 0.11446 6.2264 4.773e-10 ***
## progacademic 4.06267 2.05432 1.9776 0.04797 *
## progvocation -1.14422 2.66958 -0.4286 0.66821
## sigma
               8.75368 0.66647 13.1343 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -591.31 on 5 Df
```

Jerome Dumortier

Overview

Truncation

Censoring

Count Model

Censoring

Overview

Concept

Value above and/or below a certain point are not part of the data

Examples

- Capacity constrained data, e.g., class enrollments or ticket sales
- Hours worked (or leisure demand), which is essentially capacity constrained
- Commodity purchases (non-negative)

Simulated data

- "True" Coefficients: $\beta_0 = -2$ and $\beta_1 = 0.5$
- Values y < 0 are reported at 0

R package censReg to reduce bias

Jerome Dumortier

Overviev

Truncatio

Censoring

Count Model

Graphical Illustration


```
Limited
Dependent
Variable
Models
```

Overvie

Truncat

Censoring

Count Mode

```
Results: Full Data
```

```
##
## Call:
## lm(formula = yreal ~ x, data = censoring)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -2.36075 -0.52032 0.04652 0.40126 2.62549
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
##
## x
         0.54628 0.04704 11.612 1.52e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9074 on 48 degrees of freedom
## Multiple R-squared: 0.7375, Adjusted R-squared: 0.732
## F-statistic: 134.8 on 1 and 48 DF, p-value: 1.522e-15
```

```
Limited
Dependent
Variable
Models
```

Overvie

Truncat

Censoring

Count Mode

Results: Censored Data with Regular OLS

```
##
## Call:
## lm(formula = y ~ x, data = censoring)
##
## Residuals:
##
      Min
               10 Median
                                      Max
## -1.19126 -0.47822 -0.03578 0.35424 2.17113
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
##
## x
            0.2884 0.0355 8.123 1.43e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6847 on 48 degrees of freedom
## Multiple R-squared: 0.5789, Adjusted R-squared: 0.5701
## F-statistic: 65.99 on 1 and 48 DF, p-value: 1.434e-10
```

```
Limited
Dependent
Variable
Models
```

Overviev

Truncati

Censoring

```
Count Mode
```

```
##
## Call:
## censReg(formula = v ~ x, data = censoring)
##
## Observations:
##
           Total Left-censored
                                   Uncensored Right-censored
##
              50
                             19
                                           31
                                                           0
##
## Coefficients:
              Estimate Std. error t value Pr(> t)
##
## (Intercept) -2.10846   0.44764   -4.710   2.48e-06 ***
         0.48898 0.06582 7.429 1.09e-13 ***
## x
## logSigma -0.18013 0.12993 -1.386 0.166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Newton-Raphson maximisation, 6 iterations
## Return code 1: gradient close to zero (gradtol)
## Log-likelihood: -46.05041 on 3 Df
```

Estimation of a Censored Model

Jerome Dumortier

Overviev

Truncation

Censoring

Count Models

Count Models

Variable Models				
Jerome Dumortier				
Overview				
Truncation				
Censoring				
Count Models				

Limited Dependent

Overview

Dependent variable

Discrete, integer count data

Examples

- What are the number of arrests for a person?
- What determines the number of credit cards a person owns?

Three count data models

- Poisson regression
- Quasi-Poisson Regression Model
- 3 Negative Binomial Regression Model

Choice criteria: Presence or absence of overdispersion

- Overdispersion Variance of the dependent variable is larger than its mean.
 - Poisson model is not suitable for overdispersion

Jerome Dumortier

Overvie

Truncatio

Censoring

Count Models

Packages

The main package used is pscl. There is also an additional resource with more theoretical details on the topic: Regression Models for Count Data in R. A more up-to-date version of the document may be found with the pscl package documentation.

Poisson Regression Model

Recall Poisson distribution:

$$Pr(Y = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$

Equidispersion as key characteristics:

- Mean and variance equal to λ , i.e., $E(Y) = \lambda$ and $Var(Y) = \lambda$
- Poisson regression: $\lambda = exp(\beta_0 + \beta_1 \cdot x_1 + \cdots + \beta_k \cdot x_k)$.

Jerome Dumortier

Overvie

Truncat

Censorii

Count Models

NHTS Example: Number of Vehicles (hhpub)

Data source

- 2017 National Household Travel Survey
- Survey quantifying trip and travel habits across the United States
- Example use: Quantifying intra-day electricity demand from electric vehicles

Outcome of interest

 Number of vehicles based on household income, home ownership, and urban/rural household location

Data preparation

- Elimination of missing and unknown data value
- Conversion of income to 1,000 dollars

```
Limited
Dependent
Variable
Models
```

Overview

Censoring

Count Models

Data Preparation

hhpubdata	=	<pre>subset(hhpub,HHFAMINC %in% c(1:11) & HOMEOWN %in% c(1,2) & URBRUR %in% c(1,2) & HHVEHCNT %in% c(0:12))</pre>
HHFAMINC	=	c(1:11)
INCOME	=	c(10,12.5,20,30,42.5,57.5,82.5,112.5,137.5, 175,200)
INCOME	=	data.frame(HHFAMINC,INCOME)
hhpubdata	=	merge(hhpubdata,INCOME)
hhpubdata\$RURAL	=	hhpubdata\$URBRUR-1
hhpubdata\$RENT	=	hhpubdata\$HOMEOWN-1

Jerome Dumortier

Overview

Truncati

Count Models

Poisson Model Execution

Preliminary step: Calculation of mean and variance of dependent variable mean(hhpubdata\$HHVEHCNT)

```
## [1] 1.981142
```

var(hhpubdata\$HHVEHCNT)

```
## [1] 1.386027
```

Similar values and thus, Poisson regression model as an appropriate first step.

```
Limited
Dependent
Variable
Models
```

Overview

Truncati

Censorin

Count Models

Results

```
##
## Call:
## glm(formula = HHVEHCNT ~ INCOME + RENT + RURAL, family = poisson,
      data = hhpubdata)
##
## Deviance Residuals:
      Min
                1Q Median
                                 30
                                         Max
## -2.6889 -0.5568 -0.1558
                             0.3590
                                      5.5063
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.654e-01 4.292e-03 108.43
                                            <2e-16 ***
## INCOME
               2.986e-03 3.601e-05
                                     82.93
                                            <2e-16 ***
## RENT
              -3.733e-01 5.797e-03 -64.39
                                            <2e-16 ***
## RURAI.
               2.224e-01 4.616e-03 48.19
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 86505 on 124400 degrees of freedom
## Residual deviance: 68533 on 124397 degrees of freedom
## AIC: 370161
## Number of Fisher Scoring iterations: 5
```

Jerome Dumortier

Overvie

Count Models

Interpretation

Sign of coefficients as an indication of the direction of influence on the outcome variable, i.e., the number of cars.

- Association of higher income and rural living with a higher number of car
- Association of renting with lower number of vehicles.
- Possible correlation between income and renting

General coefficient interpretation using $\exp(\beta)$, i.e., every unit increase in X has a multiplicative effect of $\exp(\beta)$ on the mean of Y, i.e., λ :

- $\beta = 0 \Rightarrow \exp(\beta) = 1$: Y and X are not related.
- $\beta > 0 \Rightarrow \exp(\beta) > 1$: Expected count E(y) is $\exp(\beta)$ times larger than when X = 0
- $\beta < 0 \Rightarrow \exp(\beta) < 1$: Expected count E(y) is $\exp(\beta)$ times smaller than when X = 0

Jerome Dumortier

Overview

Truncatio

Count Models

Testing for Overdispersion I

Function overdispersion() from the package AER:

• Tests the null hypothesis of equidispersion (i.e., assuming no overdispersion)

Executed after the main regression using glm(...,family=poisson)

```
Limited
Dependent
Variable
Models
```

Overview

Truncati

Censorin

Count Models

Testing for Overdispersion II

dispersiontest(bhat_pois)

```
##
## Overdispersion test
##
## data: bhat_pois
## z = -115.75, p-value = 1
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 0.5670593
```

Given the *p*-value, the null hypothesis cannot be rejected. If the data suggests overdispersion, two alternative regression models can be used: (1) Quasi-Poisson and (2) Negative Binomial.

Jerome Dumortier

Overview

Truncat

Censorii

Count Models

Quasi-Poisson Regression Model

Dataset blm from article Black Lives Matter: Evidence that Police-Caused Deaths Predict Protest Activity.

- Dependent variable: Total number of protests in a city
- Note that the paper includes a significant number of supplementary materials which allows for the replication of the results and much more.

First step: Calculation of mean and variance of the variable *totalprotests*:

```
mean(blm$totprotests)
```

```
## [1] 0.4959529
```

var(blm\$totprotests)

```
## [1] 6.35326
```

Jerome Dumortier

Overvie

Truncation

Count Models

Presence of Overdispersion

The variance is significantly higher than the mean which suggests overdispersion. In a first step, a regular Poisson model is estimated.

```
Limited
Dependent
Variable
Models
```

Overview

Truncatio

Censoring

Count Models

Estimation Results

```
##
## Call:
## glm(formula = eq1, family = poisson, data = blm)
##
## Deviance Residuals:
      Min
                     Median
                                 30
                                          Max
## -4.6571 -0.5238 -0.3008 -0.1632
                                      6.5795
##
## Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                        -2.001e+01 6.327e-01 -31.625 < 2e-16 ***
## log(pop)
                         1 129e+00 4 007e-02
                                              28 170 < 2e-16 ***
## log(popdensity)
                        -1.831e-01 8.654e-02 -2.116
                                                       0.0343 *
## percentblack
                       1.697e-02 3.104e-03 5.467 4.59e-08 ***
## blackpovertyrate
                        1.461e-01 2.636e-02 5.541 3.02e-08 ***
## I(blackpovertyrate^2) -1.552e-03 3.985e-04 -3.895 9.82e-05 ***
## percentbachelor
                         3.893e-02 3.918e-03 9.935 < 2e-16 ***
## collegeenrollpc
                         9.305e-03 2.377e-03 3.914 9.06e-05 ***
## demshare
                         4.301e-02 5.293e-03 8.126 4.43e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 3204.6 on 1225 degrees of freedom
## Residual deviance: 787.4 on 1217 degrees of freedom
    (133 observations deleted due to missingness)
## ATC: 1242 9
## Number of Fisher Scoring iterations: 6
```

```
Limited
Dependent
Variable
Models
```

Overvie

Truncati

Censorin

Count Models

Testing for Overdispersion

```
##
## Overdispersion test
##
## data: bhat1
## z = 1.4052, p-value = 0.07998
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 2.212733
```

Null hypothesis rejected at 10% but not 5% significance level. The Quasi-Poisson Regression Model handles overdispersion by adjusting standard errors but leaving the coefficient estimates the same.

```
Limited
Dependent
Variable
Models
```

Overview

Truncati

Censorin

Count Models

Estimation Results: Quasipoisson

```
##
## Call:
## glm(formula = eq1, family = quasipoisson, data = blm)
## Deviance Residuals:
      Min
                10 Median
                                        Max
## -4.6571 -0.5238 -0.3008 -0.1632 6.5795
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       -2.001e+01 9.841e-01 -20.332 < 2e-16 ***
## log(pop)
                      1.129e+00 6.232e-02 18.111 < 2e-16 ***
## log(popdensity)
                       -1.831e-01 1.346e-01 -1.360 0.173942
## percentblack
                      1.697e-02 4.828e-03 3.515 0.000457 ***
## blackpovertyrate
                      1.461e-01 4.100e-02 3.562 0.000382 ***
## I(blackpovertyrate^2) -1.552e-03 6.198e-04 -2.504 0.012403 *
## percentbachelor
                        3.893e-02 6.094e-03 6.387 2.40e-10 ***
## collegeenrollpc
                        9.305e-03 3.697e-03 2.517 0.011975 *
## demshare
                        4.301e-02 8.233e-03 5.225 2.05e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 2.419275)
##
      Null deviance: 3204.6 on 1225 degrees of freedom
## Residual deviance: 787.4 on 1217 degrees of freedom
    (133 observations deleted due to missingness)
## ATC: NA
##
## Number of Fisher Scoring iterations: 6
```

Jerome Dumortier

Overvie

Truncat

Censorii

Count Models

Negative Binomial Regression Model

The Negative Binomial Regression Model can be used in the presence of count data and overdispersion. Below, the results from the article Black Lives Matter: Evidence that Police-Caused Deaths Predict Protest Activity are recreated using the negative binomial models presented in the paper.

Three models:

- Resource mobilization and opportunity structure
- Adding black death
- 3 Adding all police-caused deaths instead (victims of any race)

Jerome Dumortier

Overview

Truncation

Censoring

Count Models

BLM Model I

bhat3 = glm.nb(eq1,data=blm,link=log)

Jerome Dumortier

Overview

Truncation

Count Models

bhat.4

BLM Model II

Jerome Dumortier

Overviev

Truncation

bhat.5

Count Models

BLM Model III