תורת החבורות – תרגיל בית 7 -- פתרון

שאלה 1

ים
$$SL_n(F) \le GL_n(F)$$
 מי

$$I \in SL_n(F) \Leftarrow det(I) = 1$$
 (1)

מתקיים
$$A,B\in SL_{n}\left(F
ight)$$
 מתקיים

$$AB^{-1} \in SL_n(F) \iff det(AB^{-1}) = \frac{det(A)}{det(B)} = 1$$

יט
$$\left\{A \in GL_n(F) \middle| a_{ij} = 0 \text{ for all } i > j \right\} \le GL_n(F)$$
 כי

- משולשת עליונה; I
- מכפלת מטריצות משולשות עליונות היא משולשת עליונה;
- 3) המטריצה ההפכית של מטריצה משולשת עליונה גם היא משולשת עליונה.

שאלה 2

נוכיח את הסעיף ב), ואז הסעיף הראשון הוא מקרה פרטי של הסעיף ב).

$$.e\in \bigcap_{i\in I}H_{j} \ \leftarrow \ e\in H_{j} \ j\in I$$
 תחילה נציין כי לכל

-תת
$$H_j$$
 כי $xy^{-1} \in H_j \ \ \, \Leftarrow \ \ \, x,y \in H_j \ \, j \in I$ כי , אז לכל אז לכל , $x,y \in \bigcap_{i \in I} H_j$ כי

. וסיימנו
$$xy^{-1}\in\bigcap_{j\in I}H_{j}\ \Leftarrow\ xy^{-1}\in H_{j}\ j\in I$$
 וסיימנו . $j\in I$ אסיימנו . וחבורה לכל

שאלה 3

$$z,a\in\mathbb{Z}$$
 לכל $z\cdot a=z+a$ עייי $X=\mathbb{Z}$ פועלת על ($\mathbb{Z},+$) הוכח כי

נסמן (
$$\mathbb{Z},+$$
) ו- \mathbb{Z} עייי $\mathbb{Z}\cdot a$ עייי להוכיח כי $\mathbb{G}=(\mathbb{Z},+)$

- $\mathbf{Z} \in G$ אינה תמורה על בכל
- $a \in X$ לכל (z+w)(a) = z(w(a)) $z, w \in G$ לכל
 - מתקיים $a,b \in X$ מתקיים (1

$$z(a) = z(b) \iff z + a = z + b \iff a = b$$

z עייי $a \in X$ המקור של $a \in X$ על: לכל $a \in X$

מתקיים $z, w \in G$ ולכל $a \in X$ מתקיים

$$(z+w)(a)=(z+w)+a=z+(w+a)=z(w(a))$$

שאלה 4

 $a \in A$, A הפועלת על קבוצה G חבורה תהי

הוכח כי כל אחת מהקבוצות הבאות היא תת-חבורה:

$$g\left(a
ight)$$
 עייי $g\cdot a$ - ו $H riangleq \left\{g\in G\middle|g\cdot a=a
ight.
ight\}$ אי נסמן (מ

e(x)=x (פונקצית הות), ובפרט פעולה – היא הומומורפיזם, לכן לכל e(x)=x (פונקצית פעולה – $e\in H$

. $gh\in H$, ומכאן , $\big(gh\big)\big(a\big)=g\big(h\big(a\big)\big)=g\big(a\big)=a$ אז , $g,h\in G$ יהיי

 $g^{-1} \in H$ מכאן, $g^{-1}(a) = a \iff g(a) = a$ אז יהיי, $g \in G$ יהיי

. $x\in A$ נסמן g(x) עייי $g\cdot x$ ו- $H\triangleq \{g\in G | g\cdot x=x \text{ for all } x\in A\}$ נסמן g(x) נסמן $g\cdot x=x$ ווא פעולה g(x) איי $g\cdot x=x$ פעולה g(x) היא פונקצית $g\cdot x=x$ מכאן $g\cdot x=x$ היא הומומורפיזם. כמו כן אם לכל $g\cdot x=x$ ולכן $g\cdot x=x$ היא פונקצית $g\cdot x=x$ זהות. מכאן $g\cdot x=x$ הינו גרעין של הומורפיזם, ולכן תת-חבורה.

בדרך ישירה (מבלי להשתמש בעובדה כי גרעין של הומומורפיזם הינו תת-חבורה):

(פונקצית זהות), לכן e(x)=x $x\in A$ פעולה – היא הומומורפיזם, לכן לכל

. e ∈ H

או לכל $g^{-1}(x)=x \iff g(x)=x \quad x\in X$ לכל או לכל , ומכאן , או לכל , ומכאן , ומכאן . $g^{-1}\in H$