

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии» (ИУ7)
НАПРАВЛЕНИЕ ПОДГОТОВКИ <u>0</u> 9.03.04 «Программная инженерия»

ОТЧЕТ по лабораторной работе № 4

Название	Методология разработки и верификац	ии ускорителей	вычислений
на платфо	рме Xilinx Alveo		
па платфој	PMC ATTIA ATVCO		
Дисципли	на Архитектура элекронно-вычислител	ьных машин	
Студент:			Козлова И.В.
		подпись, дата	Фамилия, И.О.
Преподава	тель:		Попов А. Ю
		подпись, дата	Фамилия, И. О.

Оглавление

Цель работы	2
Основные теоретические сведения	3
Копии экранов моделирования исходного п	роекта VINC(исходная
программа)	5
Копии экранов моделирования исходного п	роекта VINC(измененная
программа)	7
Сборка проекта	9
Тестирование	10
Контрольные вопросы	11
Заключение	13
Приложение 1	14
Приложение 2	19
Приложение 3	25

Цель работы

Изучение архитектуры гетерогенных вычислительных систем и технологии разработки ускорителей вычислений на базе ПЛИС фирмы Xilinx.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- изучить основные сведения о платформе Xilinx Alveo U200;
- разработать RTL (Register Transfer Language, язык регистровых передач) описание ускорителя вычислений по индивидуальному варианту;
- выполнить генерацию ядра ускорителя;
- выполнить синтез и сборку бинарного модуля ускорителя;
- разработать и отладить тестирующее программное обеспечение на серверной хост-платформе;
- провести тесты работы ускорителя вычислений.

Основные теоретические сведения

В ходе лабораторной работы будет использован базовый шаблон так называемого RTL проекта VINC, который может быть создан в IDE Xilinx Vitis и САПР Xilinx Vivado. Шаблон VINC выполняет попарное сложение чисел исходного массива и сохраняет результаты во втором массиве. Проект VINC включает:

Проект ПО хоста, выполняющий инициализацию аппаратного ядра и его тестирование через OpenCL вызовы.

Синтезируемый RTL проект ядра ускорителя на языках Verilog и SystemVerilog.

Функциональный тест ускорителя VINC на языке SystemVerilog.

Все перечисленные проекты создаются автоматически посредством запуска мастера RTL проектов в IDE Xilinx Vitis, и могут далее модифицироваться как через тот же мастер, так и в ручном режиме в САПР Xilinx Vivado, или обычном текстовом редакторе. Ряд проектных процедур необходимо запустить из консоли ОС Linux.

Проект VINC представляет собой аппаратное устройство, связанное шиной AXI4 MM (Memory mapped) с DDR[i] памятью, и получающее настроечные параметры по интерфейсу AXI4 Lite от программного обеспечения хоста (см. рисунок 1). В рамках всей системы используется единое 64-х разрядное адресное пространство, в котором формируются адреса на всех AXI4 шинах.

Рисунок 1 — Размещение проекта на ПЛИС хси
200-fsgd2104-2-е карты Alveo U200

В каждой карте U200 имеется возможность подключить ускоритель к любому DDR[i] контроллеру в том регионе, где будет размещен проект. Всего для пользователя доступны 3 динамических региона: SLR0,1,2, для которых выделены каналы локальной памяти DDR[0], DDR[2], DDR[3] соответственно. Вся подключенная память DDR[0..3] доступна со стороны статического региона, в котором размещена аппаратная часть XRT.

Память DDR[1] доступна для использования как в статическом регионе, так и в динамическом регионе SLR1.

Предполагается, что эта память может служить для организации эффективной подсистемы памяти ускорительной карты: буферизации данных, передаваемых между хост-системой и ускорителем.

Копии экранов моделирования исходного проекта VINC (исходная программа)

По умолчанию, в диаграмму (которую необходимо получить в приложении Vivado) добавлены сигналы шины АХІ4 ММ, представляющие собой 5 независимых каналов передачи сообщений, которые представлены в таблице 1.

Канал передачи	Группы сигналов
Канал чтения адреса от ведущего к ведомому	m00_axi_ar*
Канал чтения данных от ведомого к ведущему	m00_axi_r*
Канал записи адреса записи от ведущего к ведомому	m00_axi_aw*
Канал запись данных от ведущего к ведомому	m00_axi_w*
Канал записи ответа от ведомого к ведущему	$m00$ axi b^*

Таблица 1 – Результаты замеров времени.

Каналы позволяют сформировать конвейерные транзакции чтения и записи. Последовательность событий транзакции чтения можно представить следующим образом: ARVALID→ ARREADY→ RVALID→ RREADY.

Последовательность событий транзакции записи: AWVALID \rightarrow AWREADY \rightarrow WVALID \rightarrow WREADY \rightarrow BVALID \rightarrow BREADY.

На рисунке 2 приведена транзакция чтения данных вектора на шине AXI4 MM из DDR памяти.

Рисунок 2 — Транзакция чтения данных вектора на шине AXI4 MM из DDR памяти

На рисунке 3 приведена транзакция записи результата инкремента данных на шине AXI4 MM.

Рисунок 3 — Транзакция записи результата инкремента данных на шине $AXI4\ MM$

Ha рисунке 4 приведен фрагмент кода модуля rtl_kernel_wizard_0_example_a с выполнением инкрементирования данных.

```
// Adder function
always @(posedge s_axis_aclk) begin
for (i = 0; i < LP_NUM_LOOPS; i = i + 1) begin
d_tdata[i*C_ADDER_BIT_WIDTH+:C_ADDER_BIT_WIDTH] <= dl_tdata[C_ADDER_BIT_WIDTH*i+:C_ADDER_BIT_WIDTH] + dl_constant;
end
end</pre>
```

Pисунок 4 – Код модуля rtl_kernel_wizard_0_example_adder.v с выполнением инкрементирования данных

Копии экранов моделирования исходного проекта VINC (измененная программа)

В соответствии с вариантом 9 необходимо было изменить код проекта. Реализовать функцию 1

$$R[i] = min(A[i] - 4, 5) \tag{1}$$

На рисунке 5 приведен код измененнной программы.

```
// Adder function
| O always @(posedge s_axis_aclk) begin | for (i = 0; i < LP_NUM_LOOPS; i = i + 1) begin | if (d1_tdata[C_ADDER_BIT_WIDTH*i+:C_ADDER_BIT_WIDTH] - USER_C1 < USER_C2) | d2_tdata[i*C_ADDER_BIT_WIDTH+:C_ADDER_BIT_WIDTH] <= d1_tdata[C_ADDER_BIT_WIDTH*i+:C_ADDER_BIT_WIDTH] - USER_C1; | else | d2_tdata[i*C_ADDER_BIT_WIDTH+:C_ADDER_BIT_WIDTH] <= USER_C2; | end | end
```

Pисунок 5 – Измененный код модуля rtl kernel wizard 0 example adder.v

Константы, которые используются в данном коде, представлены на рисунке 6.

Рисунок 6 – Константы

На рисунке 7 приведена транзакция чтения данных вектора на шине AXI4 MM из DDR памяти.

Рисунок 7 – Транзакция чтения данных вектора на шине AXI4 MM из DDR памяти

На рисунке 8 приведена транзакция записи результата инкремента данных на шине AXI4 MM.

Рисунок 8 – Транзакция записи результата инкремента данных на шине AXI4 MM

Сборка проекта

Для сборки проекта необходимо было написать конфигурационный файл.

В конфигурационом файле указывается основная информация для работы компилятора v++:

- 1. Количество и условные имена экземпляров ядер.
- 2. Тактовая частота работы ядра.
- 3. Для каждого ядра: выбор области SLR (SLR[0..2]), выбор DDR (DDR[0..3]) памяти, выбор высокопроизводительной памяти PLRAM(PLRAM[0,1,2]).
- 4. Параметры синтеза и оптимизации проекта.

На рисунке 9 представлен конфигурационный файл для сборки проекта.

```
[connectivity]
nk=rtl_kernel_wizard_0:1:vinc0
slr=vinc0:SLR0
sp=vinc0.m00_axi:DDR[0]

[vivado]
prop=run.impl_1.STEPS.OPT_DESIGN.ARGS.DIRECTIVE=Explore
prop=run.impl_1.STEPS.PLACE_DESIGN.ARGS.DIRECTIVE=Explore
prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.IS_ENABLED=true
prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=AggressiveExplore
prop=run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
```

Рисунок 9 - Конфигурационный файл

Содержимое файлов v++*.log и *.xclbin.info. приведено в приложениях.

Тестирование

Для того, чтобы запустить тесты, необходимо изменить условие проверки в автоматически созданном программном модуле host example.cpp.

Часть кода модуля host_example.cpp приведена на рисунке 10. Было изменено условие проверки, на проверку, соответствующую моему варианту.

```
for (cl_uint i = 0; i < number_of_words; i++) {
    //printf("h_data[i] %d, h_output[i] %d", h_data[i], h_axi00_ptr0_output[i]);
    if (h_data[i] - 4 > 5) {
        h_data[i] = 5;
    } else {
        h_data[i] -= 4;
    }
    //printf("h_data[i] %d, h_output[i] %d", h_data[i], h_axi00_ptr0_output[i]);
    if (h_data[i] != h_axi00_ptr0_output[i]) {
        printf("ERROR in rtl_kernel_wizard_0::m00_axi - array index %d (host addr 0x%03x)
        - input=%d (0x%x), output=%d (0x%x)\n", i, i*4, h_data[i], h_data[i],
        h_axi00_ptr0_output[i], h_axi00_ptr0_output[i]);
        check_status = 1;
    }
    // printf("i=%d, input=%d, output=%d\n", i, h_axi00_ptr0_input[i],
        h_axi00_ptr0_output[i]);
}
```

Рисунок 10 – host example.cpp

Тесты запускались с помощью утилиты xgdb. Результаты тестирования приведены на рисунке 11.

```
Tureasgedisae:—/workspace/pl/Alveo_label_kernels/vivado_rtl_kernel_vizard_0_ex/exports$ xgdb --args rtl_kernel_vizard_0_ho st_example.exe /u_home/iu7039/workspace/pl/vinc.xclbin 30Ni gdb (1009 9.2
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLy91: GNU GPL version 3 or later shitp://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is No MARPANT; to the two-test permitted by law.
There is No MARPANT; to the two-test permitted by law.
Type "show configuration for co
```

Рисунок 11 - Тестирование

По результатам можно увидеть, что все тесты выполнены успешно.

Контрольные вопросы

1. Назовите преимущества и недостатки XDMA и QDMA платформ.

Преимущества QDMA:

- позволяет передавать поток данных непосредственно в логику FPGA параллельно с их обработкой.
- предоставляет разработчикам прямое потоковое соединение с низкой задержкой между хостом и ядрами.
- включает высокопроизводительный DMA, который использует несколько очередей, оптимизированных как для передачи данных с высокой пропускной способностью, так и для передачи данных с большим количеством пакетов.

Недостатки XDMA:

• требует, чтобы данные сначала были полностью перемещены из памяти хоста в память FPGA (DDRx4 DIMM или PLRAM), прежде чем логика FPGA сможет начать обработку данных, что влияет на задержку на запуска задачи.

2. Назовите последовательность действий, необходимых для инициализации ускорителя со стороны хост-системы.

- 1. Хост получает все платформы.
- 2. Хост выбирает имя платформы Xilinx.
- 3. Хост получает Id устройства.
- 4. Хост получает информацию об устройстве.
- 5. Создается контекст для переменных.
- 6. Создается команда для устройста-ускорителя.

3. Какова процедура запуска задания на исполнения в ускорительном ядре VINC.

- 1. Данные из .xclbin копируются из ОЗУ в локальную память ускорителя посредством DMA.
- 2. В памяти устройства-ускорителя создается исполняемый файл.
- 3. Те данные, которые подлежат обработке, копируются из ОЗУ в локальную память усокрителя посредством DMA.
- 4. Указываются необходимые параметры и запускается программа на ускорителе.
- 5. В конце выполняется чтение готовых данных.

4. Опишите процесс линковки на основании содержимого файла v++ *.log.

- 1. Анализ профиля устройства. Анализ конфигурационного файла. Поиск необходимых интерфейсов.
- 2. FPGA linking synthesized kernels to platform
- 3. FPGA logic optimization (оптимизация логики ПЛИС) для минимизации задержки.
- 4. FPGA logic placement (размещение логики ПЛИС, то есть выбор конкретного мета для определенного логического блока).
- 5. FPGA routing (маршрутизация Π ЛИС)
- 6. FPGA bitstream generation (генерация битового потока ПЛИС, то есть генерация файла [*.xclbin]).

Заключение

Изучены архитектуры гетерогенных вычислительных систем и технологии разработки ускорителей вычислений на базе ПЛИС фирмы Xilinx.

Были выполнены следующие задачи:

- изучены основные сведения о платформе Xilinx Alveo U200;
- разработано RTL (Register Transfer Language, язык регистровых передач) описание ускорителя вычислений по индивидуальному варианту;
- выполнена генерация ядра ускорителя;
- выполнены синтез и сборка бинарного модуля ускорителя;
- разработано и отлажено тестирующее программное обеспечение на серверной хост-платформе;
- проведены тесты работы ускорителя вычислений.

Поставленная цель достигнута.

Приложение 1

Листинг 1 – Содержимое файла host_example.cpp

```
// This is a generated file. Use and modify at your own risk
   4
   Vendor: Xilinx
6
   Associated \ Filename: main.c
   \#Purpose: This example shows a basic vector add +1 (constant) by manipulating
            memory inplace.
10
11 #include < fcntl.h>
12 #include <stdio.h>
13 #include <iostream >
14 #include <stdlib.h>
15 #include <string.h>
16 #include <math.h>
17 #ifdef _WINDOWS
18 #include <io.h>
19 #else
20 #include <unistd.h>
21 #include < sys/time.h>
22 #endif
23 #include <assert.h>
24 #include <stdbool.h>
25 #include < sys / types . h>
26 #include <sys/stat.h>
27 #include <CL/opencl.h>
28 #include <CL/cl ext.h>
29 #include "xclhal2.h"
30
31
   32
33 #define NUM_WORKGROUPS (1)
34 #define WORKGROUP SIZE (256)
35 #define MAX_LENGTH 8192
36 #define MEM_ALIGNMENT 4096
37 #if defined (VITIS PLATFORM) &&! defined (TARGET DEVICE)
38 #define STR_VALUE(arg)
                                 #arg
39 #define GET STRING(name) STR VALUE(name)
40\,\big|\,\texttt{\#define}\,\,\, \texttt{TARGET\_DEVICE}\,\,\, \texttt{GET\_STRING}\,(\,\texttt{VITIS\_PLATFORM}\,)
41 #endif
42
43
   cl_uint load_file_to_memory(const char *filename, char **result)
^{46}
47
       cl uint size = 0;
       FILE *f = fopen(filename, "rb");
48
       if (f == NULL) {
49
50
            *\; \mathbf{r}\; \mathbf{e}\; \mathbf{s}\; \mathbf{u}\; \mathbf{l}\; \mathbf{t} \;\; = \;\; \mathbf{NULL}\; ;
51
            \mathbf{return} -1; // -1 means file opening fail
52
53
       fseek (f, 0, SEEK END);
       size = ftell(f);
54
55
       fseek(f, 0, SEEK\_SET);
56
       *result = (char *) malloc(size+1);
57
       if (size != fread(*result, sizeof(char), size, f)) {
            free (* result);
58
            {f return} -2; // -2 means file reading fail
59
60
61
       fclose(f);
62
       (*result)[size] = 0;
63
       return size;
64
65
   \mathbf{int} \hspace{0.3cm} \mathtt{main} \hspace{0.1cm} (\hspace{0.1cm} \mathbf{int} \hspace{0.3cm} \mathtt{argc} \hspace{0.1cm}, \hspace{0.1cm} \mathbf{char} ** \hspace{0.1cm} \mathtt{argv} \hspace{0.1cm} )
66
67
68
       cl_int err;
                                                  // error code returned from api calls
69
70
       cl\_uint check\_status = 0;
71
       {f const} cl_uint number_of_words = 4096; // 16KB of data
72
73
       cl platform_id platform_id;
                                               // platform id
       cl_device_id device_id;
                                               // compute device id
```

```
76
                cl context context;
                                                                                            // compute context
 77
                {\tt cl\_command\_queue\ commands}\,;
                                                                                            // compute command queue
                                                                                            // compute programs
 78
                cl_program program;
 79
                cl kernel kernel;
                                                                                            // compute kernel
  80
  81
                cl_uint* h_data;
                                                                                                                     // host memory for input vector
  82
                char cl platform vendor[1001];
                char target_device_name[1001] = TARGET_DEVICE;
 83
 84
                \verb|cl_uint*| h_axi00_ptr0_output| = (|cl_uint*|) \\ aligned_alloc(MEM_ALIGNMENT, MAX_LENGTH * \\ \textbf{sizeof}(|cl_uint*|)); \\ |cl_uint*| \\ h_axi00_ptr0_output| = (|cl_uint*|) \\ |cl_uint*| \\ |
 85
                         // host memory for output vector
                {\tt cl\_mem} \ {\tt d\_axi00\_ptr0}\;;
 86
                                                                                                               // device memory used for a vector
  87
                if (argc != 2) {
  88
  89
                        printf("Usage: \cupy{sclbin}\n", argv[0]);
  90
                        return EXIT_FAILURE;
 91
                }
 92
                // Fill our data sets with pattern
 93
                \verb| h_data = (cl_uint*) a ligned_alloc (MEM_ALIGNMENT, MAX_LENGTH * sizeof(cl_uint*)); \\
 94
                \label{eq:for_continuous} \textbf{for} \hspace{0.1cm} (\hspace{0.1cm} \text{cl} \hspace{0.1cm} \underline{\text{uint}} \hspace{0.1cm} i \hspace{0.1cm} = \hspace{0.1cm} 0 \hspace{0.1cm} ; \hspace{0.1cm} i \hspace{0.1cm} < \hspace{0.1cm} \text{MAX\_LENGTH} \hspace{0.1cm} ; \hspace{0.1cm} i \hspace{0.1cm} + \hspace{0.1cm} +) \hspace{0.1cm} \{
 95
 96
                        h_data[i] = i;
 97
                        h_axi00_ptr0_output[i] = 0;
 98
  99
                }
100
101
                // Get all platforms and then select Xilinx platform
                cl platform id platforms [16];
102
                                                                                        // platform id
                cl_uint platform_count;
103
104
                cl\_uint\ platform\_found\ =\ 0;
105
                {\tt err} \ = \ {\tt clGetPlatformIDs} \, (\, 16 \, , \ {\tt platforms} \, , \, \, \& {\tt platform\_count} \, ) \, ;
106
                if \ (\, {\tt err} \ != \ {\tt CL\_SUCCESS}) \ \{\,
107
                        printf("ERROR: \_Failed\_to\_find\_an\_OpenCL\_platform! \setminus n");
                         printf("ERROR: \_Test\_failed \n");
108
109
                        return EXIT_FAILURE;
110
                printf("INFO: \_Found \_\%d \_platforms \ n", platform count);
111
112
113
                // Find Xilinx Plaftorm
                114
                         {\tt err} = {\tt clGetPlatformInfo(platforms[iplat], CL\_PLATFORM\_VENDOR, 1000, (\textbf{void} *) cl\_platform\_vendor, }
115
                                 NULL);
116
                         if (err != CL SUCCESS) {
                                 p \ rintf("ERROR: \ \_clGetPlatformInfo(CL\_PLATFORM\_VENDOR) \ \_failed \ !\ \ n");
117
                                 printf("ERROR: _Test_failed \n");
118
                                 return EXIT_FAILURE;
119
120
                          if \ (strcmp(cl_platform_vendor, \ "Xilinx") == 0) \ \{ \\
121
                                  printf("INFO: \_Selected\_platform\_\%d\_from\_\%s \ 'n", iplat, cl\_platform\_vendor); \\
122
123
                                 {\tt platform\_id} \ = \ {\tt platforms[iplat]};
124
                                 p \, lat form \, \underline{\hspace{1em}} found \, = \, 1 \, ;
125
                        }
126
127
                if (!platform_found) {
128
                        printf("ERROR: _Platform _Xilinx_not_found._Exit.\n");
129
                        {\tt return} \ {\tt EXIT\_FAILURE} \ ;
130
                }
131
132
                // Get Accelerator compute device
133
                cl_uint num_devices;
134
                {\tt cl\_uint \ device\_found = 0;}
135
                \verb|cl_device_id| | | devices[16]; | // | | compute| | | device| | id|
                char cl_device_name[1001];
                err = clGetDevicelDs(platform_id , CL_DEVICE_TYPE_ACCELERATOR, 16, devices, &num_devices); printf("INFO:_Found_%d_devices\n", num_devices);
137
138
                if (err != CL SUCCESS) {
139
                        printf("ERROR: \_Failed\_to\_create\_a\_device\_group! \setminus n");
140
141
                         printf("ERROR: _Test_failed n");
142
                        {\tt return} \ -1\,;
143
                }
144
                //iterate all devices to select the target device.
146
                for (cl uint i=0; i < num devices; i++) {
                         err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, 1024, cl_device_name, 0);
147
148
                         if (err != CL SUCCESS) {
                                 p \ rintf("ERROR: \ \ Failed\ \ to\ \ get\ device\ \ name\ \ for\ \ device\ \ \%d! \ \backslash n"\ , \quad i\ )\ ;
149
                                 printf("ERROR: Test failed \n");
150
151
                                 return EXIT_FAILURE;
152
                        }
153
                         p \; r \; i \; n \; t \; f \; (\;"CL\_DEVICE\_NAME\_\%s \setminus n \; " \; , \; \; cl\_device\_name \; ) \; ;
                         if (strcmp(cl_device_name, target_device_name) == 0) {
                                 device id = devices[i];
155
```

```
156
                     device found = 1;
157
                      printf("Selected\_\%s\_as\_the\_target\_device \setminus n", cl\_device\_name);\\
158
                }
159
           }
160
161
           if (!device_found) {
                printf("ERROR: Target_device_%s_not_found._Exit.\n", target device name);
162
163
                return EXIT FAILURE;
164
           }
165
166
           // Create a compute context
167
168
           context = clCreateContext(0, 1, &device id, NULL, NULL, &err);
169
           if (!context) {
170
                printf("ERROR: _Failed_to_create_a_compute_context!\n");
                printf("ERROR: _Test_failed \n");
171
                return EXIT_FAILURE;
172
173
           }
174
           // Create a command commands
175
176
          commands = clCreateCommandQueue(context\ ,\ device\_id\ ,\ CL\_QUEUE\_PROFILING\_ENABLE\ |\ |
                \label{eq:cl_Queue_out_of_order_exec_mode_enable} \text{CL\_QUEUE\_OUT\_OF\_ORDER\_EXEC\_MODE\_ENABLE}, \ \& \texttt{err} \ ) \ ;
177
           if (!commands) {
178
                p\:ri\:n\:t\:f\:(\:"ERROR: \, \_\:F\:ail\:e\:d\: \_\:t\:o\: \_\:c\:re\:at\:e\: \_\:a\: \_\:command\: \_\:command\:s\:!\setminus n\:"\:)\:;
                printf("ERROR: _code_%i\n",err);
179
                printf("ERROR: _Test_failed \n");
180
181
                return EXIT FAILURE;
           }
182
183
184
           cl_int status;
185
186
           // Create Program Objects
           // Load binary from disk
187
           unsigned char *kernelbinary;
188
189
           \mathbf{char} * \mathbf{xclbin} = \mathbf{argv}[1];
190
191
           // xclbin
192
193
194
           p\, \hbox{rint} \, f\, (\,\hbox{\tt "INFO}:\, \_\, \hbox{\tt loading}\, \_\, x\, \hbox{\tt clbin}\, \_\% s\, \backslash n\, \hbox{\tt "}\,\,, \quad x\, \hbox{\tt clbin}\,\,)\,\,;
195
           cl_uint n_i0 = load_file_to_memory(xclbin, (char **) &kernelbinary);
           \mathbf{i}\,\mathbf{f}\ (\,\mathrm{n}_{-}\mathrm{i}\,0\ <\ 0\,)\ \{\,
196
197
                printf("ERROR: _failed_to_load_kernel_from_xclbin: _%s\n", xclbin);
198
                printf("ERROR: \_Test\_failed \n");
199
                return EXIT FAILURE;
200
           }
201
202
          size_t n0 = n_i0;
203
204
           // Create the compute program from offline
205
           program \, = \, clCreateProgramWithBinary (\, context \, , \, \, 1 \, , \, \, \&device\_id \, , \, \, \&n0 \, ,
           (const unsigned char **) & kernelbinary, & status, & err);
206
207
           free (kernelbinary);
208
209
           if ((!program) || (err!=CL SUCCESS)) {
                printf("ERROR: \_Failed\_to\_create\_compute\_program\_from\_binary\_\%d! \setminus n", err);\\
210
                printf("ERROR: _Test_ failed n");
211
212
                return EXIT FAILURE;
213
           }
214
215
216
           // Build the program executable
217
          11
218
           err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
219
           if (err != CL_SUCCESS) {
220
                \mathtt{size\_t} \ \ \mathtt{len} \ ;
                {\bf char}\  \  \, {\rm buffer}\,\,[\,2\,\,0\,\,4\,\,8\,\,]\,;
221
222
223
                printf("ERROR: \_Failed\_to\_build\_program\_executable! \setminus n");\\
224
                {\tt clGetProgramBuildInfo(program\,,\;\; device\_id\,,\;\; CL\_PROGRAM\_BUILD\_LOG,\;\; \textbf{sizeof}(\texttt{buffer})\,,\;\; \texttt{buffer}\,,\;\; \& \texttt{len})\,;}
                p\,r\,i\,n\,t\,f\,\left(\,{}^{\shortmid\prime}\%\,s\,\backslash\,n\,{}^{\prime\prime}\,\,,\quad b\,u\,f\,f\,e\,r\,\,\right)
225
                printf("ERROR: _Test_failed \n");
226
227
                return EXIT FAILURE;
228
          }
229
           // Create the compute kernel in the program we wish to run
230
231
           kernel = clCreateKernel(program, "rtl_kernel_wizard_0", &err);
232
233
           if (!kernel || err != CL_SUCCESS) {
234
                printf("ERROR: \_Failed\_to\_create\_compute\_kernel! \setminus n");
                printf("ERROR: _Test_ failed n");
236
                return EXIT FAILURE;
```

```
237
        }
238
239
        // Create structs to define memory bank mapping
240
        cl_mem_ext_ptr_t mem_ext;
        mem\_ext.obj = \overline{NULL};
241
242
        mem_ext.param = kernel;
244
        mem ext.flags = 1;
245
        246
             number_of_words, &mem_ext, &err);
        \mathbf{i}\,\mathbf{f}\ (\,\mathtt{err}\ !=\ \mathtt{CL\_SUCCESS})\ \{
247
248
             std::cout << "Return_code_for_clCreateBuffer_flags=" << mem ext.flags << ":_" << err << std::endl;
249
250
251
252
        if (!(d axi00 ptr0)) {
253
             printf("ERROR: Failed to allocate device memory!\n");
             printf("ERROR: _Test_failed \n");
254
255
             \mathbf{return} \ \mathrm{EXIT} \_\mathrm{FAILURE} \ ;
256
        }
257
258
259
        err = clEnqueueWriteBuffer(commands, d_axi00_ptr0, CL_TRUE, 0, sizeof(cl_uint) * number_of_words,
             h_data, 0, NULL, NULL);
        if (err != CL SUCCESS) {
260
261
            printf("ERROR: Failed_to_write_to_source_array_h data: d axi00 ptr0: %d!\n", err);
             printf("ERROR: Test_failed \n");
262
             {\tt return} \ {\tt EXIT\_FAILURE} \ ;
263
264
        }
265
266
267
        // Set the arguments to our compute kernel
268
        // cl_uint vector_length = MAX_LENGTH;
269
        err = 0;
270
        cl uint d num = 0;
        271
        err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_axi00_ptr0);
272
273
        if (err != CL\_SUCCESS) {
274
275
             p\,rin\,t\,f\,(\,\hbox{``ERROR:}\,\,\lrcorner\,F\,ail\,e\,d\,\,\lrcorner\,t\,o\,\,\lrcorner\,s\,e\,t\,\,\lrcorner\,k\,e\,r\,n\,e\,l\,\,\lrcorner\,arg\,u\,m\,e\,n\,t\,s\,\,!\,\,\lrcorner\%d\,\backslash\,n\,\,\hbox{''}\,\,,\quad e\,r\,r\,\,)\,\,;
276
             printf("ERROR: _Test_failed \n");
277
             return EXIT_FAILURE;
278
279
        size_t global[1];
280
        size t local[1];
281
        // Execute the kernel over the entire range of our 1d input data set
282
        // using the maximum number of work group items for this device
283
284
285
        global[0] = 1;
286
        local[0] = 1;
        err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, (size t*)&global, (size t*)&local, 0, NULL,
287
             NULL);
288
        if (err) {
            printf("ERROR: Failed to execute kernel! %d\n", err);
289
             printf("ERROR: _Test_failed \n");
290
             return EXIT FAILURE;
291
292
293
294
        clFinish (commands);
295
296
297
        // Read back the results from the device to verify the output
298
        cl event readevent;
299
300
301
        err = 0;
        err |= clEnqueueReadBuffer( commands, d_axi00_ptr0, CL_TRUE, 0, sizeof(cl_uint) * number_of_words,
302
             \label{eq:h_axi00_ptr0_output} \verb| h_axi00_ptr0_output|, 0, NULL, & readevent );
303
304
305
        if (err != CL SUCCESS) {
            printf("ERROR: Failed to read output array! %d\n", err);
306
             printf("ERROR: _Test_failed \n");
307
308
             return EXIT FAILURE;
309
        clWaitForEvents (1, &readevent);
310
        // Check Results
311
312
        for (cl\_uint i = 0; i < number\_of\_words; i++) {
313
             //printf("h data[i] %d, h output[i] %d", h data[i], h axi00 ptr0 output[i]);
314
```

```
if (h_data[i] - 4 > 5) {
315
                                                                h_{data[i]} = 5;
316
317
                                                        else {
                                                                h_{data[i]} = 4;
318
319
320
                                                  //printf("h_data[i] %d, h_output[i] %d", h_data[i], h_axi00_ptr0_output[i]);
                                                321
322
                                                                                  (0\,x\%x)\,, \_output = \%d\_(0\,x\%x)\,\backslash\,n^{\,\shortparallel}\,, \quad i\,, \quad i\,*\,4\,, \quad h\_data\,[\,i\,]\,, \quad h\_data\,[\,i\,]\,, \quad h\_axi00\_ptr0\_output\,[\,i\,]\,, \quad 
                                                                                  h_axi00_ptr0_output[i]);
                                                                check\_status = 1;
323
324
                                                 // \quad printf("i=\%d, \ input=\%d, \ output=\%d, \ n", \ i, \quad h\_axi00\_ptr0\_input[i], \ h\_axi00\_ptr0\_output[i]);
325
326
                                 }
327
328
329
330
                                 ..
// Shutdown and cleanup
331
332
                                 {\tt clReleaseMemObject(d\_axi00\_ptr0)}\;;
333
334
                                 \mathtt{free} \; (\; \mathsf{h} \; \_\mathtt{axi00} \, \_\mathtt{ptr0} \, \_\mathtt{output} \, ) \; ;
335
336
337
338
                                 free(h_data);
339
                                 clReleaseProgram (program);
                                 clReleaseKernel (kernel);
340
341
                                clReleaseCommandQueue(commands);
342
                                 clReleaseContext(context);
343
                                if (check_status) {
    printf("ERROR: Test_failed \n");
344
345
346
                                                return EXIT_FAILURE;
347
                                 } else {
                                                printf("INFO: _Test_completed_successfully.\n");
348
                                                return EXIT SUCCESS;
349
350
351
352
353 } // end of main
```

Приложение 2

Листинг 2 – Содержимое log-файла

```
1 INFO: [v++60-1306] Additional information associated with this v++ link can be found at:
   2 Reports: /iu_home/iu7039/workspace/p1/_x/reports/link
   3 Log files: /iu_home/iu7039/workspace/p1/_x/logs/link
          INFO: [v++60-1548] \ Creating \ build \ summary \ session \ with \ primary \ output \ /iu\_home/iu7039/workspace/p1/vinc.
                              \verb|xclbin.link_summary|, | at Sat Nov 20 | 11:42:41 | 2021|
    5 INFO: [v++ 60-\overline{13}16] Initiating connection to rulecheck server, at Sat Nov 20 11:42:42 2021
   ++ link vinc guidance html', at Sat Nov 20 11:43:00 2021
          INFO: [v++ 60-895] Target platform: /opt/xilinx/platforms/xilinx_u200_xdma_201830_2/
                             xilinx_u200_xdma_201830_2.xpfm
   8 INFO: [v++ 60-1578] This platform contains Device Support Archive '/opt/xilinx/platforms/
                               xilinx\_u200\_xdma\_201830\_2/hw/xilinx\_u200\_xdma\_201830\_2.dsa'
   9 INFO: [v++74-74] Compiler Version string: 2020.2
10 \mid \text{NFO: [v++} \mid 60-1302] \mid \text{Platform 'xilinx\_u200\_xdma\_201830\_2.xpfm' has been explicitly enabled for this release}
11 INFO: [v++60-629] Linking for hardware target
                                                                                                Target device: xilinx_u200_xdma_201830_2
13 INFO: [v++60-1332] Run 'run link' status: Not started
14 INFO: [v++ 60-1443] [11:43:51] Run run link: Step system link: Started
15 \ \text{INFO:} \ [\text{v++} \ 60 - 1453] \ \text{Command Line:} \ \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 7039 / \text{workspace/p1/Alveo\_lab01\_kernels/src/} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{iu\_home/iu} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{system\_link} \ --\text{xo} \ / \text{system\_link} \\ 15 / \text{system\_link} \ --\text{xo} \ / \text{syste
                               xilinx_u200_xdma_201830_2.xpfm --target hw --output_dir /iu_home/iu7039/workspace/p1/_x/link/int --
                                temp\_dir /iu\_home/iu7039/workspace/p1/\_x/link/sys\_link
16 \ \text{INFO: [v++60-1454] Run Directory: /iu\_home/iu7039/workspace/p1/\_x/link/run\_link}
 17 NFO: [SYSTEM_LINK 60-1316] Initiating connection to rulecheck server, at Sat Nov 20 11:44:04 2021
18 NFO: [SYSTEM_LINK 82-70] Extracting xo v3 file /iu_home/iu7039/workspace/p1/Alveo_lab01_kernels/src/
vitis_rtl_kernel/rtl_kernel_wizard_0/rtl_kernel_wizard_0.xo

19 INFO: [SYSTEM_LINK 82-53] Creating IP database /iu_home/iu7039/workspace/p1/_x/link/sys_link/_sysl/.cdb/
                              xd_ip db.xml
20 \mid \text{NFO: [SYSTEM\_LINK } 82 - 38] \quad [11:44:06] \quad \text{build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{bin/build\_xd\_ip\_db} \quad \text{started: } / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{data/Xilinx/Vitis/} \\ 2020.2 / \text{data/Ailinx/Vitis/} \\ 2020.2 / \text{data/Ailinx/
                               -ip_search 0 -sds-pf /iu_home/iu7039/workspace/p1/_x/link/sys_link/xilinx_u200_xdma_201830_2.hpfm -
                                \verb|clkid| 0 - ip / iu \_home / iu 7039 / workspace / p1 / \_x / link / sys \_ link / iprepo /
                                my company\_com\_kernel\_rtl\_kernel\_wizard\_0\_1\_0, rtl\_kernel\_wizard\_0 - o /iu\_home/iu7039/workspace/p1/\_x/2000 - o /iu\_home/iu7039/workspace/p1/_x/2000 - o /iu7039/workspace/p1/_x/2000 - o /iu7039/workspace/-y/2000 - o /iu7039/workspace/p1/_x/2000 - o /iu7039/workspace/-o /iu7039/workspace/p1/_x/2000 - o /iu7039/workspace/-o /iu7039/workspace/-o /iu7039/workspace/-o /iu7039/workspace/-o /iu7039/workspace/-o /iu7039/workspace/-o /iu7039/workspace/-o /iu7039/wo
link/sys_link/_sysl/.cdb/xd_ip_db.xml
21 INFO: [SYSTEM_LINK 82-37] [11:44:36] build_xd_ip_db finished successfully
22 Time (s): cpu = 00:00:31 ; elapsed = 00:00:30 . Memory (MB): peak = 1557.891 ; gain = 0.000 ; free
                             physical = 264561; free virtual = 290855
23 INFO: [SYSTEM LINK 82-51] Create system connectivity graph
24 INFO: [SYSTEM_LINK 82-102] Applying explicit connections to the system connectivity graph: /iu_home/iu7039
                               / \, workspace/p1/\_x/link/sys\_link/cfgraph/cfgen\_cfgraph.xml
25 \left\lceil \text{INFO: [SYSTEM\_LINK } 82 - 38 \right\rceil \left[ 11 : 44 : 36 \right] \ \text{cfgen started: } / \text{data} / \text{Xilinx} / \text{Vitis} / 2020 . 2 / \text{bin} / \text{cfgen } - \text{nk} / \text{cfgen }
                               rtl\_kernel\_wizard\_0:1:vinc0-slr-vinc0:SLR0-sp-vinc0.m00\_axi:DDR[0]-dmclkid-0-r-/iu\_home/iu7039/slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0-slr-vinc0
                                 workspace/p1/_x/link/sys_link/_sysl/.cdb/xd_ip_db.xml -o /iu_home/iu7039/workspace/p1/_x/link/sys_link
                                /cfgraph/cfgen\_cfgraph.xml
26 INFO: [CFGEN 83-0] Kernel Specs:
27 INFO: [CFGEN 83-0]
                                                                                                 kernel: rtl_kernel_wizard_0, num: 1 {vinc0}
28 INFO: [CFGEN 83-0] Port Specs:
30 INFO: [CFGEN 83-0] SLR Specs:
31 INFO: [CFGEN 83-0] instance: vinc0, SLR: SLR0
32 NFO: [CFGEN 83-2228] Creating mapping for argument vinc0.axi00_ptr0 to DDR[0] for directive vinc0.m00_axi
                                :DDR[0]
33 INFO: [SYSTEM LINK 82-37] [11:45:01] cfgen finished successfully
34 Time (s): cpu = 00:00:25 ; elapsed = 00:00:25 . Memory (MB): peak = 1557.891 ; gain = 0.000 ; free
                              physical = 264560 ; free virtual = 290846
35 NFO: [SYSTEM_LINK 82-52] Create top-level block diagram
36 \left\lceil \text{INFO: [SYSTEM\_LINK } 82 - 38] \right\rceil \left[ 11:45:01 \right] \\ \text{ cf2bd started: } / \text{data} / \text{Xilinx} / \text{Vitis} / 2020.2 / \text{bin} / \text{cf2bd} \\ -- \text{linux } -- \text
                               trace\_buffer 1024 --input\_file /iu\_home/iu7039/workspace/p1/\_x/link/sys\_link/cfgraph/cfgen\_cfgraph.xml
                                   --\mathrm{ip\_db\ /iu\_home/iu7039/workspace/p1/\_x/link/sys\_link/\_sysl/.cdb/xd\_ip\_db.xml\ --cf\_name\ dr\ --cf\_name\ d
                                 working_dir /iu_home/iu7039/workspace/p1/_x/link/sys_link/_sysl/.xsd --temp_dir /iu_home/iu7039/
                                 workspace/p1/_x/link/sys_link --output_dir_/iu_home/iu7039/workspace/p1/_x/link/int --target_bd
37 NFO: [CF2BD 82-31] Launching cf2xd: cf2xd -linux -trace-buffer 1024 -i /iu home/iu7039/workspace/p1/x/
                              link/sys_link/cfgraph/cfgen_cfgraph.xml-r_/iu_home/iu7039/workspace/pl/_x/link/sys_link/_sysl/.cdb/
                               xd ip db.xml -o dr.xml
38 INFO: [CF2BD 82-28] cf2xd finished successfully
39 NFO: [CF2BD 82-31] Launching cf_xsd: cf_xsd -disable-address-gen -bd pfm_dynamic.bd -dn dr -dp /iu_home/
                             iu7039/workspace/p1/_x/link/sys_link/_sysl/.xsd
40 INFO: [CF2BD 82-28] cf_xsd finished successfully
 41 INFO: [SYSTEM_LINK 82-37] [11:45:16] cf2bd finished successfully
 42 Time (s): cpu = 00:00:13 ; elapsed = 00:00:14 . Memory (MB): peak = 1557.891 ; gain = 0.000 ; free
                               physical = 264525 \;\; ; \;\; free \;\; \mathbf{virtual} = 290816
 43 NFO: [v++ 60-1441] [11:45:16] Run run_link: Step system_link: Completed
```

```
44 Time (s): cpu = 00:01:24 ; elapsed = 00:01:25 . Memory (MB): peak = 1553.914 ; gain = 0.000 ; free
                     physical = 264582 ; free virtual = 290868
  45 INFO: [v++ 60-1443] [11:45:16] Run run_link: Step cf2sw: Started
  46 \ | \ INFO: \ [v++\ 60-1453] \ Command \ Line: \ cf2sw -sdsl \ / iu\_home/iu7039/workspace/pl/\_x/link/int/sdsl.dat -rtd / line -rtd / 
                      iu\_home/iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu\_home/iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu_home/iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu_home/iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu_home/iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu_home/iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu7039/workspace/p1/\_x/link/int/cf2sw.rtd -nofilter /iu
                        cf2\,sw\_full.rtd\_-xclbin\_/iu\_home/iu7039/workspace/p1/\_x/link/int/xclbin\_orig.xml\_-o\_/iu\_home/iu7039/workspace/p1/\_x/link/int/xclbin\_orig.xml\_-o\_/iu\_home/iu7039/workspace/p1/\_x/link/int/xclbin\_orig.xml\_-o\_/iu\_home/iu7039/workspace/p1/\_x/link/int/xclbin\_orig.xml\_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml\_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml\_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu\_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu_home/iu7039/workspace/p1/_x/link/int/xclbin\_orig.xml_-o\_/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-orig.xml_-o\_/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-orig.xml_-o\_/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-orig.xml_-o\_/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-orig.xml_-o-/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o-/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o-/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu_home/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu7039/workspace/p1/_x/link/int/xclbin_-o--/iu7039/workspace/p1/_xclbin_-o--/iu7039/workspace/p1/_xclbin_-o--/iu7039/workspace/p1/_xclbin_-o--/iu7039/workspace/p1/_x
                        workspace/p1/ x/link/int/xclbin orig.1.xml
         INFO: [v++ 60-1454] Run Directory: /iu_home/iu7039/workspace/p1/_x/link/run_link
  48 INFO: [v++ 60-1441] [11:45:33] Run run_link: Step cf2sw: Completed
  physical = 264551 ; free virtual = 290847
  50 NFO: [v++ 60-1443] [11:45:33] Run run_link: Step rtd2_system_diagram: Started
  51 INFO: [v++ 60-1453] Command Line: rtd2SystemDiagram
  52 NFO: [v++ 60-1454] Run Directory: /iu_home/iu7039/workspace/p1/_x/link/run_link
  53 INFO: [v++ 60-1441] [11:45:40] Run run_link: Step rtd2_system_diagram: Completed
  physical = 263964; free virtual = 290259
  55 INFO: [v++ 60-1443] [11:45:40] Run run link: Step vpl: Started
  56 NFO: [v++ 60-1453] Command Line: vpl -t hw -f xilinx_u200_xdma_201830_2 --remote_ip_cache /iu_home/iu7039
                       /work space/p1/.ipcache --output\_dir /iu\_home/iu7039/work space/p1/\_x/link/int --log\_dir /iu_home/iu7039/work space/p1/\_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1/_x/link/iu7039/work space/p1
                        /workspace/p1/_x/logs/link --report_dir /iu_home/iu7039/workspace/p1/_x/reports/link --config /iu_home
                        /iu7039/workspace/p1/\_x/link/int/vplConfig.ini -k /iu_home/iu7039/workspace/p1/\_x/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/kernel_infoliant/link/int/ker
                          dat --webtalk flag Vitis --temp dir /iu home/iu7039/workspace/p1/ x/link --no-info --iprepo /iu home/
                        iu7039/workspace/p1/_x/link/int/xo/ip_repo/mycompany_com_kernel_rtl_kernel_wizard_0_1_0 --messageDb /
                        iu_home/iu7039/workspace/p1/_x/link/run_link/vpl.pb/iu_home/iu7039/workspace/p1/_x/link/int/dr.bd.tcl
         INFO: [v++ 60-1454] Run Directory: /iu_home/iu7039/workspace/p1/_x/link/run_link
  58
           ***** vpl v2020.2 (64-bit)
  59
  60 **** SW Build (by xbuild) on 2020-11-18-05:13:29
  61 ** Copyright 1986-2020 Xilinx, Inc. All Rights Reserved.
  62
  63 NFO: [VPL 60-839] Read in kernel information from file '/iu_home/iu7039/workspace/p1/_x/link/int/
                     kernel info.dat'
  64 INFO: [VPL 74-74] Compiler Version string: 2020.2
          INFO: \ [VPL \ 60-423] \qquad Target \ device: \ xilinx\_u200\_xdma\_201830\_2
  66 INFO: [VPL 60-1032] Extracting hardware platform to /iu home/iu7039/workspace/p1/ x/link/vivado/vpl/.local
                       /hw platform
         WARNING: \ / \, data / \, Xilin\,x / \, Vitis / \, 2020.2 / \, tps / \, lnx\, 64 / \, jre\, 9.0.4 \ does \ \textbf{not} \ exist.
  68 [11:50:52] Run vpl: Step create_project: Started
  69 Creating Vivado project.
  70 [11:51:19] Run vpl: Step create_project: Completed
  71
           [11:51:19] Run vpl: Step create_bd: Started
  72 [11:53:03] Run vpl: Step create_bd: RUNNING.
           [\,1\,1\,:\,5\,4\,:\,4\,1\,] \  \, Run\  \, v\,p\,l\,: \  \, S\,tep\  \, c\,reate\_\,b\,d\,: \  \, RUNNING\ldots
  74 [11:56:18] Run vpl: Step create bd: RUNNING...
          [11:58:08] Run vpl: Step create_bd: RUNNING...
  75
          [11:59:44] Run vpl: Step create_bd: RUNNING...
          [\,1\,2:0\,0:2\,0\,]\ Run\ vpl:\ Step\ create\_\,bd:\ Completed
  77
  78
           [12:00:20] Run vpl: Step update_bd: Started
  79 [12:00:22] Run vpl: Step update_bd: Completed
  80
           [\,1\,2\,:\,0\,0\,:\,2\,2\,]\ Run\ vpl:\ Step\ generate\_target:\ Started
           [12:01:58] Run vpl: Step generate_target: RUNNING...
  82
           [12:03:27] Run vpl: Step generate target: RUNNING...
           [12:04:52] Run vpl: Step generate_target: RUNNING...
           [\,1\,2\,:\,0\,6\,:\,2\,4\,]\ Run\ vpl:\ Step\ generate\_target:\ RUNNING\dots
  85 [12:07:51] Run vpl: Step generate_target: RUNNING...
          [\,1\,2:0\,9:2\,6\,]\ Run\ vpl:\ Step\ generate\_target:\ RUNNING\dots
  86
  87
           [1\,2\,:\,1\,0\,:\,5\,6\,]\ Run\ vpl:\ Step\ generate\_target:\ RUNNING\dots
  88 [12:11:30] Run vpl: Step generate_target: Completed
           [12:11:30] Run vpl: Step config_hw_runs: Started
  89
           [\,1\,2\,:\,1\,3\,:\,0\,2\,] \ Run\ vpl:\ Step\ config\_hw\_runs:\ Completed
  90
           [12:13:02] Run vpl: Step synth: Started
  91
           [12:15:38] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
  93
           [12:16:13] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
           [12:16:51] \ \ Block-level \ \ synthesis \ \ in \ \ progress \,, \ \ 0 \ \ of \ \ 66 \ \ jobs \ \ complete \,, \ \ 8 \ \ jobs \ \ running \,.
  94
           [1\,2\,:\,1\,7\,:\,2\,9\,] \quad \textbf{Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.}
  95
           [12:18:07] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
  96
  97
           [12:18:43] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
  98
           [12:19:22] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
  aal
           [1\,2:1\,9:5\,7]\ \ Block-level\ \ synthesis\ \ in\ \ progress\ ,\ \ 0\ \ of\ \ 66\ \ jobs\ \ complete\ ,\ \ 8\ \ jobs\ \ running\ .
100
           [12:20:36] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
101
           [12:21:12] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
           [12:21:52] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
103 [12:22:27] Block-level synthesis in progress, 0 of 66 jobs complete, 8 jobs running.
104 [12:23:06] Block-level synthesis in progress, 5 of 66 jobs complete, 3 jobs running.
          [1\,2\,:\,2\,3\,:\,4\,2\,] \quad Block-level \quad synthesis \quad in \quad progress \;, \quad 6 \quad of \quad 66 \quad jobs \quad complete \;, \quad 2 \quad jobs \quad running \;.
105
           [1\,2:2\,4:2\,1] \ \ Block-level \ \ synthesis \ \ in \ \ progress \ , \ \ 6 \ \ of \ \ 66 \ \ jobs \ \ complete \ , \ \ 7 \ \ jobs \ \ running \ .
106
107
           [12:24:56] Block-level synthesis in progress, 6 of 66 jobs complete, 8 jobs running.
108
           [1\,2\,:\,2\,5\,:\,3\,5\,] \ \ Block-level \ \ synthesis \ \ in \ \ progress \,, \ \ 6 \ \ of \ \ 66 \ \ jobs \ \ complete \,, \ \ 8 \ \ jobs \ \ running \,.
109
           [12:26:13] Block-level synthesis in progress, 8 of 66 jobs complete, 6 jobs running.
           [12:26:51] Block-level synthesis in progress, 8 of 66 jobs complete, 6 jobs running.
           [12:27:27] Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.
```

```
112 [12:28:05] Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.
    \hbox{\tt [12:28:41] Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.}
113
    [12:29:19] Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.
114
    [12:29:55] Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.
115
    [12:30:33] Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.
116
               Block-level synthesis in progress, 8 of 66 jobs complete, 8 jobs running.
117
    [12:31:10]
               Block-level synthesis in progress, 12 of 66 jobs complete, 4 jobs running.
    [12:31:49]
               Block-level synthesis in progress, 13 of 66 jobs complete, 3 jobs running.
    [12:32:25]
    [12:33:04] Block-level synthesis in progress, 13 of 66 jobs complete, 8 jobs running.
120
    [12:33:40] Block-level synthesis in progress, 13 of 66 jobs complete, 8 jobs running.
121
122
    [12:34:18] Block-level synthesis in progress, 14 of 66 jobs complete, 7 jobs running.
    [12:34:54] Block-level synthesis in progress, 15 of 66 jobs complete, 6 jobs running.
123
    [12:35:33] Block-level synthesis in progress, 15 of 66 jobs complete, 8 jobs running.
124
    [12:36:09] Block-level synthesis in progress, 16 of 66 jobs complete, 7 jobs running.
125
126
    [12:36:47]
               Block-level synthesis in progress, 16 of 66 jobs complete, 7 jobs running.
    [12:37:23] Block-level synthesis in progress, 16 of 66 jobs complete, 8 jobs running.
128
    [12:38:02]
                Block-level synthesis in progress, 16 of 66 jobs complete, 8 jobs running.
    [12-38-38]
                Block-level synthesis in progress, 16 of 66 jobs complete, 8
                                                                                 jobs running.
                Block-level synthesis in progress, 16 of 66 jobs complete, 8 jobs running.
    [12:39:17]
130
    [12:39:53] Block-level synthesis in progress, 16 of 66 jobs complete, 8 jobs running.
131
    [1\,2:4\,0:3\,1] \ \ Block-level \ \ synthesis \ \ in \ \ progress \,, \ \ 19 \ \ of \ \ 66 \ \ jobs \ \ complete \,, \ \ 5 \ \ jobs \ \ running \,.
132
133
    [12:41:08] Block-level synthesis in progress, 19 of 66 jobs complete, 5 jobs running.
    [12:41:47]
               Block-level synthesis in progress, 19 of 66 jobs complete, 8 jobs running.
134
135
    [12:42:23] Block-level synthesis in progress, 19 of 66 jobs complete, 8 jobs running.
    [12:43:02] Block-level synthesis in progress, 20 of 66 jobs complete, 7 jobs running.
               Block-level synthesis in progress, 22 of 66 jobs complete, 5 jobs running.
    [12:43:40]
138
    [1\,2:4\,4:1\,8]\ \ Block-level\ \ synthesis\ \ in\ \ progress\ ,\ \ 22\ \ of\ \ 66\ \ jobs\ \ complete\ ,\ \ 6\ \ jobs\ \ running\ .
    [12:44:54] Block-level synthesis in progress, 23 of 66 jobs complete, 7 jobs running.
139
    [12:45:32] Block-level synthesis in progress, 23 of 66 jobs complete, 7 jobs running.
140
    [12\!:\!46\!:\!09] Block-level synthesis in progress, 23 of 66 jobs complete, 8 jobs running.
141
    [12:46:47] Block-level synthesis in progress, 23 of 66 jobs complete, 8 jobs running.
142
    [12:47:23] Block-level synthesis in progress, 23 of 66 jobs complete, 8 jobs running.
143
144
    [12:48:01]
               Block-level synthesis in progress, 23 of 66 jobs complete, 8 jobs running.
    [12:48:38] Block-level synthesis in progress, 23 of 66 jobs complete, 8 jobs running.
145
146
    [12:49:17]
               Block-level synthesis in progress, 23 of 66 jobs complete, 8 jobs running.
    [12\!:\!49\!:\!54] \ Block-level \ synthesis \ in \ progress \,, \ 25 \ of \ 66 \ jobs \ complete \,, \ 6 \ jobs \ running \,.
    [12:50:32] Block-level synthesis in progress, 25 of 66 jobs complete, 6 jobs running.
148
    [12:51:10] Block-level synthesis in progress, 25 of 66 jobs complete, 8 jobs running.
149
    [12:51:49] Block-level synthesis in progress, 28 of 66 jobs complete, 5 jobs running.
150
    [12:52:26] Block-level synthesis in progress, 28 of 66 jobs complete, 5 jobs running.
151
152
    [12:53:06] Block-level synthesis in progress, 29 of 66 jobs complete, 7 jobs running.
153
    [12:53:42] Block-level synthesis in progress, 30 of 66 jobs complete, 6 jobs running.
    [12:54:20] Block-level synthesis in progress, 31 of 66 jobs complete, 6 jobs running.
154
    [12:54:58]
               Block-level synthesis in progress, 31 of 66 jobs
                                                                    complete, 7 jobs running.
155
    [12:55:34] Block-level synthesis in progress, 31 of 66 jobs complete, 8 jobs running.
    [12:56:10]
                Block-level synthesis in progress, 31 of 66 jobs complete, 8 jobs running.
157
    [12:56:48] Block-level synthesis in progress, 31 of 66 jobs complete, 8
                                                                                 jobs running.
158
                Block-level synthesis in progress, 31 of 66 jobs complete, 8 jobs running.
    [12:57:25]
159
    [12\!:\!58\!:\!04] Block-level synthesis in progress, 31 of 66 jobs complete, 8 jobs running.
160
161
    [12:58:40] Block-level synthesis in progress, 33 of 66 jobs complete, 6 jobs running.
162
    [12:59:19] Block-level synthesis in progress, 33 of 66 jobs complete, 6 jobs running.
    [12:59:56] Block-level synthesis in progress, 33 of 66 jobs complete, 8 jobs running.
163
               Block-level synthesis in progress, 35 of 66 jobs
                                                                    complete, 6 jobs running.
164
    [13:00:33]
    [13:01:10] Block-level synthesis in progress, 37 of 66 jobs complete, 4 jobs running.
               Block-level synthesis in progress, 37 of 66 jobs complete, 8 jobs running.
    [13:01:50]
    [13:02:26] Block-level synthesis in progress, 40 of 66 jobs complete, 5 jobs running.
167
               Block-level synthesis in progress, 42 of 66 jobs complete, 3 jobs running.
    [13:03:05]
168
    [13:03:42] Block-level synthesis in progress, 42 of 66 jobs complete, 6 jobs running.
169
    [13:04:20] Block-level synthesis in progress, 42 of 66 jobs complete, 8 jobs running.
170
171
    [13:04:57] Block-level synthesis in progress, 44 of 66 jobs complete, 6 jobs running.
    [13:05:36] Block-level synthesis in progress, 44 of 66 jobs complete, 6 jobs running.
179
    [13:06:13]
               Block-level synthesis in progress, 44 of 66 jobs
                                                                    complete, 8 jobs running.
173
               Block-level synthesis in progress, 45 of 66 jobs
                                                                    complete, 7 jobs running.
    [13:06:52]
    [13:07:29]
               Block-level synthesis in progress, 46 of 66 jobs complete, 6 jobs running.
    [13:08:08] \ \ Block-level \ \ synthesis \ \ in \ \ progress \, , \ \ 46 \ \ of \ \ 66 \ \ jobs \ \ complete \, , \ \ 7 \ \ jobs \ \ running \, .
176
    [13:08:45]
                Block-level synthesis in progress, 47 of 66 jobs complete, 7 jobs running.
177
    [13:09:24] Block-level synthesis in progress, 48 of 66 jobs complete, 6 jobs running.
178
    [13:10:01]
               Block-level\ synthesis\ in\ progress\ ,\ 48\ of\ 66\ jobs\ complete\ ,\ 7\ jobs\ running\ .
179
180
    [13:10:38] Block-level synthesis in progress, 48 of 66 jobs complete, 8 jobs running.
181
    [13:11:15] Block-level synthesis in progress, 51 of 66 jobs complete, 5 jobs running.
    [13 11 54]
               Block-level synthesis in progress, 53 of 66 jobs complete, 3 jobs running.
182
    [13:12:32] Block-level synthesis in progress, 53 of 66 jobs complete, 7 jobs running.
183
    [13:13:10] Block-level synthesis in progress, 54 of 66 jobs complete, 7 jobs running.
    [13:13:46] Block-level synthesis in progress, 58 of 66 jobs complete, 3 jobs running.
    [13:14:26] Block-level synthesis in progress, 58 of 66 jobs complete, 6 jobs running.
186
    [13:15:03] \ \ Block-level \ \ synthesis \ \ in \ \ progress \,, \ 58 \ \ of \ \ 66 \ \ jobs \ \ complete \,, \ 8 \ \ jobs \ \ running \,.
187
    [13:15:42] Block-level synthesis in progress, 60 of 66 jobs complete, 6 jobs running.
188
    [13:16:21] \ \ Block-level \ \ synthesis \ \ in \ \ progress \, , \ \ 60 \ \ of \ \ 66 \ \ jobs \ \ complete \, , \ \ 6 \ \ jobs \ \ running \, .
189
190
    [13:16:59] Block-level synthesis in progress, 60 of 66 jobs complete, 6 jobs running.
    [13:17:37] Block-level synthesis in progress, 60 of 66 jobs complete, 6 jobs running.
191
    [13:18:17] Block-level synthesis in progress, 60 of 66 jobs complete, 6 jobs running.
    [13:18:55] Block-level synthesis in progress, 61 of 66 jobs complete, 5 jobs running.
```

```
194 [13:19:35] Block-level synthesis in progress, 61 of 66 jobs complete, 5 jobs running.
195 [13:20:13] Block-level synthesis in progress, 62 of 66 jobs complete, 4 jobs running.
196 [13:20:53] Block-level synthesis in progress, 63 of 66 jobs complete, 3 jobs running.
197
   [13:21:31] Block-level synthesis in progress, 63 of 66 jobs complete, 3 jobs running.
[13:22:48] Block-level synthesis in progress, 64 of 66 jobs complete, 2 jobs running.
   [13:23:29] Block-level synthesis in progress, 64 of 66 jobs complete, 2 jobs running.
201
   [13:24:08] Block-level synthesis in progress, 65 of 66 jobs complete, 1 job running.
202 [13:24:48] Block-level synthesis in progress, 66 of 66 jobs complete, 0 jobs running.
203 [13:25:26] Block-level synthesis in progress, 66 of 66 jobs complete, 0 jobs running.
204 [13:26:06] Top-level synthesis in progress.
205 [13:26:44] Top-level synthesis in progress.
206
   [13:27:25] Top-level synthesis in progress.
207 [13:28:03] Top-level synthesis in progress.
208
    [13:28:43] Top-level synthesis in progress
209 [13:29:21] Top-level synthesis in progress.
210 [13:30:01] Top-level synthesis in progress.
211
   [13:30:38] Top-level synthesis in progress.
212 [13:31:19] Top-level synthesis in progress.
213 [13:31:57] Top-level synthesis in progress.
214 [13:32:38] Top-level synthesis in progress.
215
   [13:33:16] Top-level synthesis in progress.
216 [13:33:56] Top-level synthesis in progress.
217
    [13:34:33] Top-level synthesis in progress.
   [13:35:14] Top-level synthesis in progress.
   [13:35:51] Top-level synthesis in progress.
   [13:36:31] Top-level synthesis in progress.
221
   [13:36:55] Run vpl: Step synth: Completed
222 [13:36:55] Run vpl: Step impl: Started
223 [14:39:18] Finished 2nd of 6 tasks (FPGA linking synthesized kernels to platform). Elapsed time: 02h 53m
        26s
224
225
   [14:39:18] Starting logic optimization..
   [14:45:53] Phase 1 Generate And Synthesize MIG Cores
226
   [15:23:12] Phase 2 Generate And Synthesize Debug Cores
   [15:49:15] Phase 3 Retarget
229 [15:52:00] Phase 4 Constant propagation
230 [15:53:22] Phase 5 Sweep
231 [15:58:08] Phase 6 BUFG optimization
   [16:00:12] Phase 7 Shift Register Optimization
232
233 [16:00:55] Phase 8 Post Processing Netlist
    [16:14:55] Finished 3rd of 6 tasks (FPGA logic optimization). Elapsed time: 01h 35m 37s
234
235
   [16:14:55] Starting logic placement..
236
237 [16:19:40] Phase 1 Placer Initialization
238 [16:19:40] Phase 1.1 Placer Initialization Netlist Sorting
   [16:31:40] Phase 1.2 IO Placement/ Clock Placement/ Build Placer Device
239
240 [16:39:35] Phase 1.3 Build Placer Netlist Model
   [16:52:12] Phase 1.4 Constrain Clocks/Macros
241
242 [16:53:37] Phase 2 Global Placement
243
   [16:53:37] Phase 2.1 Floorplanning
244 [16:57:14] Phase 2.1.1 Partition Driven Placement
   [16:57:14] Phase 2.1.1.1 PBP: Partition Driven Placement
245
246 [16:59:27] Phase 2.1.1.2 PBP: Clock Region Placement
   [17:04:04] Phase 2.1.1.3 PBP: Compute Congestion
248 [17:05:23] Phase 2.1.1.4 PBP: UpdateTiming
249 [17:06:52] Phase 2.1.1.5 PBP: Add part constraints
250 [17:06:52] Phase 2.2 Update Timing before SLR Path Opt
251 [17:07:34] Phase 2.3 Global Placement Core
252
   [17:39:57] Phase 2.3.1 Physical Synthesis In Placer
253 [17:53:24] Phase 3 Detail Placement
    [17:53:24] Phase 3.1 Commit Multi Column Macros
254
   [17:54:12] Phase 3.2 Commit Most Macros & LUTRAMs
255
256
   [17:59:15] Phase 3.3 Small Shape DP
   [17:59:15] Phase 3.3.1 Small Shape Clustering
257
258 [18:01:34] Phase 3.3.2 Flow Legalize Slice Clusters
259 [18:02:18] Phase 3.3.3 Slice Area Swap
260 [18:07:36] Phase 3.4 Place Remaining
261
    [18:08:19] Phase 3.5 Re-assign LUT pins
262 [18:09:49] Phase 3.6 Pipeline Register Optimization
    [18:09:49] Phase 3.7 Fast Optimization
263
   [18:14:21] Phase 4 Post Placement Optimization and Clean-Up
264
   [18:14:21] Phase 4.1 Post Commit Optimization
   [18:23:07] Phase 4.1.1 Post Placement Optimization
267
   [18:23:53] Phase 4.1.1.1 BUFG Insertion
268 [18:23:53] Phase 1 Physical Synthesis Initialization
269 [18:26:48] Phase 4.1.1.2 BUFG Replication
270
   [18:29:44] Phase 4.1.1.3 Replication
271 [18:36:11] Phase 4.2 Post Placement Cleanup
   [18:36:56] Phase 4.3 Placer Reporting
272
   [18:36:56] Phase 4.3.1 Print Estimated Congestion
274 [18:38:24] Phase 4.4 Final Placement Cleanup
```

```
275 [19:46:20] Finished 4th of 6 tasks (FPGA logic placement). Elapsed time: 03h 31m 24s
276
277
                [19:46:20] Starting logic routing..
278
                [19:51:30] Phase 1 Build RT Design
279 [20:01:57] Phase 2 Router Initialization
                [20:02:44] Phase 2.1 Fix Topology Constraints
                [20:02:44] Phase 2.2 Pre Route Cleanup
282
                [20:03:26] Phase 2.3 Global Clock Net Routing
                [20:06:31] Phase 2.4 Update Timing
283
                [20:19:59] Phase 2.5 Update Timing for Bus Skew
284
285
                [20:19:59] Phase 2.5.1 Update Timing
                [20:25:04] Phase 3 Initial Routing
286
287
                 [20:25:04] Phase 3.1 Global Routing
                 [20:29:31] Phase 4 Rip-up And Reroute
288
289
                 [20:29:31] Phase 4.1 Global Iteration 0
                [20:55:43] Phase 4.2 Global Iteration 1
291
                [21:08:17] Phase 4.3 Global Iteration 2
292
               [21:12:46] Phase 5 Delay and Skew Optimization
               [21:12:46] Phase 5.1 Delay CleanUp
293
294 [21:12:46] Phase 5.1.1 Update Timing
295 \mid [21:19:22] Phase 5.2 Clock Skew Optimization
296
                 [21:20:08] Phase 6 Post Hold Fix
297
               [21:20:08] Phase 6.1 Hold Fix Iter
298
                 [21:20:51] Phase 6.1.1 Update Timing
                [21:25:57] Phase 7 Route finalize
                [21:26:38] Phase 8 Verifying routed nets
                [21:28:07] Phase 9 Depositing Routes
                [21:31:51] Phase 10 Route finalize
302
303 [21:32:33] Phase 11 Post Router Timing
304 [21:39:06] Finished 5th of 6 tasks (FPGA routing). Elapsed time: 01h 52m 46s
305
306 [21:39:06] Starting bitstream generation.
                 [23:33:58] Creating bitmap . . .
307
                [00:21:31] Writing bitstream ./pfm_top_i_dynamic_region_my_rm_partial.bit...
308
                 [00:22:18] Finished 6th of 6 tasks (FPGA bitstream generation). Elapsed time: 02h 43m 11s
                [00:26:12] Run vpl: Step impl: Completed
              [00:26:30] Run vpl: FINISHED. Run Status: impl Complete!
311
312 INFO: [v++ 60-1441] [00:27:12] Run run_link: Step vpl: Completed
313 Time (s): cpu = 00:41:43 ; elapsed = 12:41:31 . Memory (MB): peak = 1553.914 ; gain = 0.000 ; free
                                   physical = 230667; free virtual = 258886
314 INFO: [v++60-1443] [00:27:12] Run run_link: Step rtdgen: Started
315 INFO: [v++60-1453] Command Line: rtdgen
316\ [NFO: [v++\ 60-1454]\ Run\ Directory: /iu\_home/iu7039/workspace/p1/\_x/link/run\_link]
              INFO: [v++ 60-991] clock name 'clkwiz_kernel_clk_out1' (clock ID '0') is being mapped to clock name '
                                 DATA CLK' in the xclbin
               INFO: [v++ 60-991] clock name 'clkwiz kernel2 clk out1' (clock ID '1') is being mapped to clock name
318
                                KERNEL CLK' in the xclbin
               INFO: [v++60-1230] The compiler selected the following frequencies for the runtime controllable kernel
319
                                   clock(s) \hspace{0.1in} \textbf{and} \hspace{0.1in} scalable \hspace{0.1in} system \hspace{0.1in} clock(s) \colon \hspace{0.1in} Kernel \hspace{0.1in} (DATA) \hspace{0.1in} clock \colon \hspace{0.1in} clkwiz\_kernel\_clk\_out1 \hspace{0.1in} = \hspace{0.1in} 300 \hspace{0.1in}, \hspace{0.1in} Kernel \hspace{0.1in} (CATA) \hspace{0.1in} clock \mapsto \hspace{0.1in} (CATA) \hspace{0
                                 KERNEL) \quad \verb|clock|: \quad \verb|clkwiz_kernel2_clk_out1| = 500
320 \mid \text{INFO}: \quad [\text{v}++ \ 60-1453] \quad \text{Command Line}: \quad \text{cf2sw} \quad -\text{a} \quad /\text{iu} \quad \text{home}/ \\ \text{iu} \quad 7039 / \text{workspace}/ \\ \text{pl}/ \quad \text{x}/ \quad \text{link}/ \quad \text{int}/ \quad \text{address} \quad \text{map.} \\ \text{xml} \quad -\text{sdsl}/ \quad \text{sdsl}/ \quad \text{map.} \quad \text{map.} \quad \text{xml} \quad -\text{sdsl}/ \quad \text{map.} \quad \text{m
                                   /iu\_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu\_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu\_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu\_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu\_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu\_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu_home/iu7039/workspace/p1/\_x/link/int/sdsl.dat -xclbin /iu_home/iu7039/workspace/p1/_x/link/int/sdsl.dat -xclbin /iu7039/workspace/p1/_x/link/int/sdsl.dat -xclbin /iu7039/work
                                   xclbin orig xml -rtd /iu home/iu7039/workspace/p1/ x/link/int/vinc rtd -o /iu home/iu7039/workspace/p1
                                   /_x/link/int/vinc.xml
321 INFO: [v++60-1652] Cf2sw returned exit code: 0
322 INFO: [v++ 60-2311] HPISystemDiagram::writeSystemDiagramAfterRunningVivado, rtdInputFilePath:/iu.home/
                                   iu7039 / workspace / p1 / _x / link / int / vinc.rtd
323 INFO: [v++ 60-2312] HPISystemDiagram::writeSystemDiagramAfterRunningVivado, systemDiagramOutputFilePath: /
                                  iu\_home/iu7039/workspace/p1/\_x/link/int/systemDiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBaseAddress.jsonachiagramModelSlrBas
324 INFO: [v++ 60-1618] Launching
325 INFO: [v++ 60-1441] [00:27:27] Run run link: Step rtdgen: Completed
              Time (s): cpu = 00:00:14; elapsed = 00:00:15. Memory (MB): peak = 1553.914; gain = 0.000; free
                                   physical = 230695; free virtual = 258914
              INFO: [v++60-1443] [00:27:27] Run run link: Step xclbinutil: Started
328 INFO: [v++ 60-1453] Command Line: xclbinutil --add-section DEBUG IP LAYOUT: JSON:/iu home/iu7039/workspace/
                                   p1/\_x/link/int/debug\_ip\_layout.rtd --add-section BITSTREAM: R\overline{AW}:/iu\_home/iu7039/workspace/p1/\_x/link/int/debug\_ip\_layout.rtd --add-section BITSTREAM: R\overline{AW}:/iu\_home/iu7039/workspace/p1/\_x/link/int/debug_ip\_layout.rtd --add-section BITSTREAM: R\overline{AW}:/iu\_home/iu7039/workspace/p1/\_x/link/int/debug_ip\_layout.rtd --add-section BITSTREAM: R\overline{AW}:/iu\_home/iu7039/workspace/p1/_x/link/int/debug_ip\_layout.rtd --add-section BITSTREAM: Raw --add
                                   int/partial.bit --force --target hw --key-value SYS:dfx_enable:true --add-section :JSON:/iu_home/
                                   iu7039/workspace/p1/_x/link/int/vinc.rtd --append-section :JSON:/iu_home/iu7039/workspace/p1/_x/link/
                                   \textbf{int} / \texttt{append Section.rtd} -- \texttt{add-section} \cdot \texttt{CLOCK\_FREQ\_TOPOLOGY: JSON:} / \texttt{iu\_home} / \texttt{iu7039} / \texttt{workspace} / \texttt{p1/\_x} / \texttt{link} / \textbf{int/pology: JSON:} / \texttt{iu\_home} / \texttt{iu7039} / \texttt{workspace} / \texttt{p1/\_x} / \texttt{link} / \textbf{int/pology: JSON:} / \texttt{pology: JSON:} / \texttt{pology:} / \texttt{pology:
                                   vinc\_xml.rtd\_--add-section\_BUILD\_METADATA: JSON: /iu\_home / iu7039 / workspace / p1/\_x / link / int / vinc\_build.rtd
                                        --add-section EMBEDDED_METADATA:RAW:/iu_home/iu7039/workspace/p1/_x/link/int/vinc.xml --add-section
                                  SYSTEM METADATA:RAW:/iu home/iu7039/workspace/p1/ x/link/int/systemDiagramModelSlrBaseAddress.json -
                                   output /iu home/iu7039/workspace/p1/vinc.xclbin
330 XRT Build Version: 2.8.743 (2020.2)
331 Build Date: 2020-11-16 00:19:11
332 | Hash ID: 77d5484b5c4daa691a7f78235053fb036829b1e9
333 Creating a default 'in-memory' xclbin image
334
335 Section: 'DEBUG_IP_LAYOUT'(9) was successfully added.
 336 Size : 440 bytes
337 Format : JSON
```

```
File
                           : '/iu home/iu7039/workspace/p1/ x/link/int/debug ip layout.rtd'
338
339
          S\,ection: \ \ 'BITSTREAM'\,(\,0\,) \ \ was \ \ successfully \ \ ad\,ded\,.
340
341
          Size
                           : 43430742 bytes
          Format : RAW
342
                           : '/iu_home/iu7039/workspace/p1/_x/link/int/partial.bit'
          Section: 'MEM TOPOLOGY'(6) was successfully added.
345
          Format : JSON
346
          File : 'mem_topology'
347
348
          Section: 'IP LAYOUT' (8) was successfully added.
349
350
          Format : JSON
351
          File : 'ip_layout'
352
          Section: 'CONNECTIVITY' (7) was successfully added.
354
          {\tt Format} \; : \; {\tt JSON}
          File
                            : 'connectivity'
355
          Section: 'CLOCK FREQ TOPOLOGY' (11) was successfully added.
356
                          : 274 bytes
357
          Size
358 Format : JSON
359
          File
                                  '/iu\_home/iu7039/workspace/p1/\_x/link/int/vinc\_xml.rtd'
360
          Section: 'BUILD METADATA' (14) was successfully added.
361
          Size
                                   3025 bytes
362
363
                                  '/iu home/iu7039/workspace/p1/ x/link/int/vinc build.rtd'
          Section:
364
                                   'EMBEDDED METADATA'(2) was successfully added.
          Size
                                 2754 bytes
365
366
          Format : RAW
367
          File
                                  '/iu_home/iu7039/workspace/p1/_x/link/int/vinc.xml'
368
          Section:
                                   'SYSTEM METADATA' (22) was successfully added.
369 Size
                            : 6254 bytes
370
          Format
                            : RAW
          File : \ '' iu\_home / iu7039 / workspace / p1 / \_x / link / int / system Diagram Model Slr Base Address. json' in the properties of the 
371
           Section:
                                   'IP_LAYOUT'(8) was successfully appended to.
          Format : JSON
374 File : 'ip_layout'
375 Successfully wrote (43453522 bytes) to the output file: /iu home/iu7039/workspace/pl/vinc.xclbin
376 Leaving xclbinutil.
377 \left[ \text{INFO: [v++ 60-1441] [00:27:30] Run run\_link: Step xclbinutil: Completed } \right]
physical = 230646 ; free virtual = 258906
379 INFO: [v++ 60-1443] [00:27:30] Run run_link: Step xclbinutilinfo: Started
380 NFO: [v++ 60-1453] Command Line: xclbinutil --quiet --force --info /iu_home/iu7039/workspace/p1/vinc.
                     xclbin.info ---input /iu home/iu7039/workspace/p1/vinc.xclbin
         INFO: \ [v++\ 60-1454] \ Run \ Directory: \ /iu\_home/iu7039/workspace/p1/\_x/link/run\_link \ Annual Control C
382 INFO: [v++ 60-1441] [00:27:34] Run run link: Step xclbinutilinfo: Completed
383 Time (s): cpu = 00.00.03; elapsed = 0\overline{0}.00.04. Memory (MB): peak = 1553.914; gain = 0.000; free
                      physical = 230622 ; free virtual = 258883
384 INFO: [v++ 60-1443] [00:27:34] Run run_link: Step generate_sc_driver: Started
385 INFO: [v++ 60-1453] Command Line:
386 INFO: [v++ 60-1454] Run Directory: /iu_home/iu7039/workspace/p1/_x/link/run_link
         INFO: [v++ 60-1441] [00:27:34] Run run link: Step generate sc driver: Completed
387
         Time (s): cpu = 00:00:00; elapsed = 00:00:00:00.06. Memory (MB): peak = 1553.914; gain = 0.000; free
                    physical = 230618 ; free virtual = 258879
389 INFO: [v++ 60-244] Generating system estimate report..
390 \mid INFO: \quad [v++60-1092] \quad Generated \quad system \quad estimate \quad report: \\ /iu\_home/iu7039/workspace/p1/\_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/space/p1/_x/reports/link/spa
                      system estimate vinc.xtxt
391 \left | \text{INFO: } \left[ \text{v++} \ 60 - 586 \right] \right. \text{Created } / \text{iu\_home/iu7039/workspace/p1/vinc.ltx}
392 INFO: [v++60-586] Created vinc.xclbin
393 INFO: [v++ 60-1307] Run completed. Additional information can be found in:
          Guidance: /iu\_home/iu7039/workspace/p1/\_x/reports/link/v++\_link\_vinc\_guidance.html
394
395 Timing Report: /iu home/iu7039/workspace/p1/x/reports/link/imp/
                    impl_1_xilinx_u200_xdma_201830_2_bb_locked_timing_summary_routed.rpt
396 | Vivado Log: /iu_home/iu7039/workspace/p1/_x/logs/link/vivado.log
397 Steps Log File: /iu_home/iu7039/workspace/p1/_x/logs/link/link.steps.log
398 NFO: [v++ 60-2343] Use the vitis_analyzer tool to visualize and navigate the relevant reports. Run the
                     following command.
399
          vitis\_analyzer - /iu\_home/iu7039/workspace/p1/vinc.xclbin.link\_summary
400 INFO: [v++60-791] Total elapsed time: 12h 46m 1s
401 INFO: [v++60-1653] Closing dispatch client
```

Приложение 3

Листинг 3 – Содержимое xclbin.info-файла

```
XRT Build Version: 2.8.743 (2020.2)
   Build Date: 2020-11-16 00:19:11
   Hash ID: 77d5484b5c4daa691a7f78235053fb036829b1e9
   xclbin Information
                                 v++ (2020.2) on 2020-11-18-05:13:29
   Generated by:
10
   Version:
                                 2.8.743
11 Kernels:
                                 {\tt rtl\_kernel\_wizard\_0}
12 Signature:
                                 Bitstream
13 Content:
                                 {\tt f48ab827-3033-4124-9be2-3e2b03b06a1f}
14 UUID (xclbin):
                                 {\tt DEBUG\_IP\_LAYOUT}, \ {\tt BITSTREAM}, \ {\tt MEM\_TOPOLOGY}, \ {\tt IP\_LAYOUT},
16 CONNECTIVITY, CLOCK_FREQ_TOPOLOGY, BUILD_METADATA,
   EMBEDDED_METADATA, SYSTEM_METADATA,
18 GROUP CONNECTIVITY, GROUP TOPOLOGY
19
20 Hardware Platform (Shell) Information
21
22 Vendor:
                                 xilinx
                                 u 2 0 0
23 Board:
                                 xdma
24 Name:
25 Version:
                                 2\ 0\ 1\ 8\ 3\ 0\ .\ 2
26 Generated Version:
                                 Vivado 2018.3 (SW Build: 2568420)
                                 Tue Jun 25 06:55:20 2019
27 Created:
28 FPGA Device:
                                 x c u 200
29 Board Vendor:
                                 xilinx.com
30 Board Name:
                                 xilinx.com: au200:1.0
                                 xilinx.com: au200: part0:1.0
31 Board Part :
32 Platform VBNV:
                                 \mathtt{xilinx} \, \underline{\quad} \mathtt{u200} \, \underline{\quad} \mathtt{xdma} \, \underline{\quad} 201830 \, \underline{\quad} 2
33
   Static UUID:
                                 c\,1\,0\,2\,e\,7\,a\,f\,{-}\,b\,2\,b\,8\,{-}\,4\,3\,8\,1\,{-}\,9\,9\,2\,b\,{-}\,9\,a\,0\,0\,c\,c\,3\,8\,6\,3\,e\,b
34 Feature ROM TimeStamp: 1561465320
35
37
38 Name:
                DATA CLK
39
   Index:
                DATA
40
   Type:
41 Frequency: 300 MHz
42
43 Name:
                 KERNEL CLK
44
   Index:
                 KERNEL
45 Type:
46 Frequency: 500 MHz
47
48 Memory Configuration
49
50 Name:
                    bank0
51 Index:
                    0
52 Type:
                    MEM_DDR4
53 Base Address: 0x4000000000
54 Address Size: 0x400000000
55 Bank Used:
57
   Name:
                    bank1
58 Index:
                    MEM DDR4
59 Type:
60 Base Address: 0x500000000
61 \, \middle| \, Address \quad Size: \quad 0 \, x \, 40 \, 00 \, 00 \, 00 \, 0
62 Bank Used:
                    bank2
65 Index:
                   MEM DDR4
66
   Type:
67 Base Address: 0x6000000000
68 Address Size: 0x400000000
69 Bank Used:
                    Νo
70
71 Name:
                    bank3
72 Index:
73 Type:
                    MEM DDR4
74 Base Address: 0x7000000000
75 Address Size: 0x400000000
```

```
76 Bank Used:
                                  Νo
 77
 78 Name:
                                  PLRAM[0]
 79
      Index:
  80 Type:
                                  MEM_DRAM
       Base Address: 0x300000000
      Address Size: 0x20000
  83 Bank Used:
 84
                                  PLRAM [1]
 85 Name:
 86 Index:
                                 MEM DRAM
  87
      Type:
  88 Base Address: 0x3000200000
  89 Address Size: 0x20000
  90 Bank Used:
 92
                                  PLRAM [2]
      Name:
 93
       Index:
                                  6
                                 MEM DRAM
 94
       Type:
       Base Address: 0x3000400000
 95
       Address \quad Size: \quad 0x20000
 96
 97
       Bank Used:
                                  Nο
 98
 99
       Kernel: rtl_kernel_wizard_0
100
101
102
       Signature: rtl kernel wizard 0 (uint num, int * axi00 ptr0)
103
104
105
       Ports
106
                                     s_axi_control
107
       Port.
108
       Mode:
109 Range (bytes): 0x1000
110
       Data Width:
                                    32 bits
       Port Type:
                                    addressable
112
       Port:
113
                                    m00 axi
114 Mode:
                                    master
       {\tt Range} \ (\, {\tt bytes} \,): \ 0xFFFFFFFFFFFFFFFF
115
116
       Data Width:
                                    512 bits
117
       Port Type:
                                    addressable
118
119
120 Instance:
121 Base Address: 0x1c00000
122
123
       Argument:
                                           num
       Register Offset:
124
                                           0 \times 010
125 Port :
                                            s \,\underline{\ }\, a\, x\, i\, \underline{\ }\, c\, o\, n\, t\, r\, o\, l
126
       Memory:
                                            <not applicable >
127
128
       Argument:
                                            axi00 ptr0
       Register Offset:
130
       Port:
                                            m00 axi
                                            bank0 (MEM DDR4)
131
      Memory:
132
133
       Generated By
134
135
136 | Version:
                                    2020.2 - 2020-11-18-05:13:29 (SW BUILD: 0)
        {\tt Command\ Line:} \quad v++--config\ / iu\_home/iu7039/workspace/p1/Alveo\_lab01.cfg\ --connectivity.nk, and the control of the 
137
                rtl kernel wizard 0:1:vinc0 -- connectivity.slr vinc0:SLR0 -- connectivity.sp vinc0.m00 axi:DDR[0] --
                input_files /iu_home/iu7039/workspace/p1/Alveo_lab01_kernels/src/vitis_rtl_kernel/rtl_kernel_wizard_0/
                rtl_kernel_wizard_0.xo --link --optimize 0 --output vinc.xclbin --platform xilinx_u200_xdma 201830 2
                --report_level 0 --target hw --vivado.prop run.impl_1.STEPS.OPT_DESIGN.ARGS.DIRECTIVE=Explore --vivado
                 .prop_run.impl_1.STEPS.PLACE_DESIGN.ARGS.DIRECTIVE=Explore --vivado.prop_run.impl_1.STEPS
                A\,ggressive\,E\,xplore\,\,--vivado\,.\,prop\,\,run\,.\,impl\_1\,.\,STEPS\,.ROUTE\_DESIGN\,.ARGS\,.DIRECTIVE=E\,xplore\,\,A\,ggressive\,E\,xplore\,\,Argorbian
138
                                    --config \ /iu\_home/iu7039/workspace/p1/Alveo\_lab01.cfg
139
        --connectivity.nk rtl_kernel_wizard_0:1:vinc0
        ---connectivity.slr vinc0:SLR0
141
          -connectivity.sp vinc0.m00 axi:DDR[0]
        --input_files /iu_home/iu7039/workspace/p1/Alveo_lab01_kernels/src/vitis_rtl_kernel/rtl_kernel_wizard_0/
142
               rtl\_kernel\_wizard\_0.xo
        ——link
143
144
       -- optimize 0
145
       --output vinc.xclbin
146
       --platform xilinx_u200_xdma_201830_2
        --report_level 0
147
        --target hw
        --vivado.prop run.impl 1.STEPS.OPT DESIGN.ARGS.DIRECTIVE=Explore
```

```
--vivado.prop run.impl_1.STEPS.PLACE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.IS_ENABLED=true
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=AggressiveExplore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=AggressiveExplore
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=AggressiveExplore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore
```