

GIS 5572 Cole Anderson

Problem

 Distance is not the only movement concern for pedestrians with mobility difficulties. A short distance with a steep slope will take as much energy as a long distance gradual slope. Create a code interface that finds the route with the lowest total "energy" cost between any two network points for eventual web app integration.

Data

- MN GeoSpatial Commons Road Centerlines (GACS)
 - Includes roadlines for Anoka, Carver, Chisago, Dakota, Hennepin, Isanti,
 Ramsey, Sott, Sherburne and Washington counties.
 - NAD83 UTM 15 in meters
- MN Geospatial Commons Minnesota Digital Elevation Model: 30m
 - USGS 1:24000 Level 2 DEM
 - NAD83 UTM 15 in feet (vert.) and meters (horiz.)

Methods: 1

Data Retrieval

Create feature dataset

GDB Import

Find street elevations from DEM

- > arcpy.AddSurfaceInformation
- > Zmax & Zmin

Standardize Units

- > Convert roadlines from meters to feet
- CalculateField_management

Find Slope & Energy Cost

- Slope = (Zmax-Zmin)/Leng_FT
- Energy = Slope*Leng_FT

Methods: 2

Create Network and Travel Mode

- arcpy.na.CreateNetworkDataset
- Travel Mode: use Energy for impedance

Create layer with start/end points

Cursor inserts user defined points in new FC

Route Solver

- Create ND_layer from network
- Add input/stops layer
- Initialize arcpy.nax.Route
- > Set solver properties
 - > Travel Modes
 - > Time/Accumulation
 - Directions
- > Route.solve

Results

Result evaluation

- Is the algorithm delivering the LEAST ENERGY route?
 - Unsure about testing this exactly (heuristically is ok)
 - Length should be >= shortest distance route
 - Energy should be <= shortest distance route
 - 10,305.53 m (343.48 E) vs 8,418.63 m (380.12 E)
- Is this route feasible for PEDESTRIANS?
 - I.e., that last route across Washington Ave. Bridge
 - Interstate w/o sidewalks, same level (calculating as 'car')
 - 2000 barriers exceeded issue

Conclusion

- Network quality is good
- Some routes are inaccurate despite correct vertical connectivity
 - We cannot assume all roads have accompanying and similar sidewalks. The algorithm is still running on only the roads, effectively a vehicle
- Uses elements of routing, ETL, table data modification
- Would like to add just a general map that shows E-cost of each street in different colors
- Can the energy formula be improved to reflect needs?