Apellidos______ Nombre____

- **1.-** Dado el filtro del siguiente esquema, suponiendo que el amplificador operacional es ideal, y que su salida no llega a saturarse, deducir:
- a) (2 puntos) La ganancia de tesión, $A_v(j\omega) = v_o/v_i$;
- b) (1 punto) la expresión de $A_v(j\omega)$ en forma módulo-argumento.

- **2.-** En el circuito del esquema adjunto, suponiendo que el amplificador operacional es ideal, y que su salida no llega a saturarse, obtener:
- a) (2 puntos) La expresión de la característica de transferencia, es decir, la tensión de salida (v_0) en función de las tensiones de entrada (v_1 y v_2) y de los valores nominales de las resistencias (R_A y R_B);
- b) (1 punto) La corriente que suministra el amplificador operacional a través de su terminal de salida (i_o) para un valor dado de resistencia de carga (R_L).

Datos: $v_1 = 10$ mV, $v_2 = 30$ mV, $R_A = 5$ K Ω , $R_B = 10$ K Ω , $R_L = 1$ K Ω .

3.- De cada uno de los siguientes circuitos (a y b), suponiendo que los amplificadores operacionales son ideales, y que su salida no llega a saturarse, encontrar su característica de transferencia [tensión de salida como función de la tensión de entrada, $v_o(v_i)$].

Sugerencia: Emplear no más de 15 minutos en la resolución de cada uno de los dos primeros ejercicios, y no más de 20 minutos en la del ejercicio 3.