

بطاهة تربوية

المستوى: السنـة الثانيـة علـوم تجريبيــة

المجال: الميكانيك و الطاقة

المحدة: العمل و الطاقة الحركية

نوع النشاط درس

الموضوع: العمل و الطاقة الحركية حالة الحركة الانسحابية

التوقيت: 7 سا

التاريخ: 08 سبتمبر 2009

الكفاءات المستمدفة

- * يكشف عن مختلف أشكال الطاقة و أنماط تحويلها من أجل وضعيات مختلفة و حسب الجملة المختارة.
 - * ينجز كيفيا حصيلة طاقوية و يعبر عنها بالكتابة الرمزية
 - *. يكتب في أمثلة مختلفة المعادلة المعبرة عن انحفاظ الطاقة.
 - * التفسير المجهري لظاهرة طاقوية.

الوسائل التعليمية و المراجع

• المراجع: منهاج العلوم الفيزيائية و الوثيقة المرافقة

عراحل سير الدرس

** عمل قوة ثابتة

- 1 * عمل قوة ثابتة في حالة حركة مستقيمة انسحابية
 - 2 * العمل المحرك و العمل المقاوم
 - 3 * عمل الثقل

التقويم الملاحظات

نعتبر في الفيزياء أن قوة أنجزت عملا إذا انتقلت نقطة تطبيقها.

** عمل قوة ثابتة:

1 * عمل قوة ثابتة في حالة حركة مستقيمة انسحابية:

نشاط (2):

سرعة إلى الموضع B.

2- و يكون ترتيب القوى حسب تأثير ها كما يلي:

 $.F_1 ; F_2 ; F_4 ; F_3$

تعريف عمل قوة:

يعرف عمل قوة F ثابتة عند انتقال نقطة تطبيقها وفق مسار مستقيم AB بالعلاقة:

 $W(F) = F \cdot AB = F \cdot AB \cdot \cos \alpha$

** متى يكون عمل قوة معدوما؟

.

 $W(F) = F \cdot AB = F \cdot AB \cdot \cos 90^{\circ} = 0$ $F \perp AB \star_{\bullet}$

 $W(F) = F \cdot AB = F \cdot AB \cdot \cos \alpha = 0$ AB = 0 *2

2* العمل المحرك و العمل المقاوم:

نشاط (1):

 α =0 القوة مساعدة على الحركة لأن جهتها في نفس جهة الحركة.

 $W(F) = F.AB = F.AB.\cos \alpha$ عمل القوة: -2

 $W(F) = 1000 * 100 = 10^5 J$

الإشارة (+) تدل على أن عمل القوة محرك (مساعد)

نشاط (2):

1-القوة المطبقة معيقة للحركة لأنها عكس جهة الحركة.

 $W(F) = F.AB = F.AB.\cos\alpha$ عمل القوة: -2

 $W(F) = 500.50.\cos 180^{\circ} = -25.10^{3} \text{ J}$

الإشارة (-) تدل على أن عمل القوة مقاوم (معيق).

الاستنتاج:

تكون القوة المطبقة على متحرك في جهة الحركة مساعدة لحركته و تكون إشارة هذه القوة موجبة و ندعوه عملا محركا.

تكون القوة المطبقة على متحرك في الاتجاه المعاكس للحركة معيقة لحركته و تكون إشارة عمل هذه القوة سالبة و ندعوه عملا مقاوما (معيقا)

3 * عمل الثقل:

1- سقوط الكربة شاقوليا:

الجملة الميكانيكية: الكربة

القوى المؤثرة على الجملة: P

$$W(F) = F.AB = F.AB.\cos\alpha$$
, $\alpha = 0$ $W(P) = P.AS = P.AS.\cos\alpha$
; $AS = h$ $W(P) = P.AS = P.h$

2-قذف الكربة أفقيا:

الجملة الميكانيكية: الكرية

القوى المؤثرة على الجملة: P

$$AC = d_1$$
 دینان $CE = d_2$ $EG = d_3$ $W(P) = P. d = P. d. \cos \alpha$ $W_1(P) = P. d_1 \cos \alpha_1 \dots \dots \dots \dots (1)$ $W_2(P) = P. d_2 \cos \alpha_2 \dots \dots \dots (2)$ $W_3(P) = P. d_3 \cos \alpha_3 \dots \dots \dots (3)$ $W_j(P) = P. d_j \cos \alpha_j$ (4) $W(P) = \sum_{n=1}^{n=j} W_n(P) = W_1(P) + W_2(P) + W_3(P) + \dots + W_j(P)$ $\cos \alpha_1 = \frac{h_1}{d_1}$; $\cos \alpha_2 = \frac{h_2}{d_2}$; $\cos \alpha_3 = \frac{h_3}{d_3}$; $\cos \alpha_j = \frac{h_j}{d_j}$ $W_1(P) = P. d_1 \cos \alpha_1 = P. d_1. \frac{h_1}{d_2} = P. h_1. \dots \dots (5)$

$$W_2(P) = P. d_2 \cos \alpha_2 = P. d_2. \frac{h_2}{d_2} = P. h_2 \dots \dots \dots (6)$$

$$W_3(P) = P. d_3 \cos \alpha_3 = P. d_3. \frac{h_3}{d_3} = P. h_3 \dots (7)$$

$$W_j(P) = P. d_j \cos \alpha_j = P. d_j. \frac{h_j}{d_j} = P. h_j (8)$$

بتعويض (5) , (6) , (5) في العلاقة (4) نجد:

$$W(P) = \sum_{n=1}^{n=j} W_n(P) = P \cdot h_1 + P \cdot h_2 + P \cdot h_3 + \dots + P \cdot h_j$$

$$W(P) = \sum_{n=1}^{n=j} W_n(P) = P.(h_1 + h_2 + h_3 + \dots + h_j)$$

$$W(P) = P.h$$

 $\overline{W(P)} = P.h$ عند تدحرج الكرية على المستوي المائل نجد نفس عبارة العمل W(P)

الاستنتاج:

h عمل الثقل لا يتعلق بالطريق المتبع من طرف المتحرك بل يتعلق بشدة الثقل و الفرق في الارتفاع w=P.h .

بطاهة تربوية

المستوى: السنــة الثانيــة علــوم تجريبيـــة

المجال: الميكانيك و الطاقة

الوحدة: العمل و الطاقة الحركية

نوع النهاد: أعمال تطبيقية

الموضوع: العمل و الطاقة الحركية حالة الحركة الانسحابية

التوقيت: 4 سا

التاريخ: 08 أكتوبر 2009

الكفاءات المستمدفة

- * يكشف عن مختلف أشكال الطاقة و أنماط تحويلها من أجل وضعيات مختلفة و حسب الجملة المختارة.
 - * ينجز كيفيا حصيلة طاقوية و يعبر عنها بالكتابة الرمزية
 - *. يكتب في أمثلة مختلفة المعادلة المعبرة عن انحفاظ الطاقة.
 - * التفسير المجهري لظاهرة طاقوية.

الوسائل التعليمية و المراجع

• المراجع: منهاج العلوم الفيزيائية و الوثيقة المرافقة

مراحل سير الدرس

** العمل و الطاقة الحركية:

1 * نشاط (1) : مقاربة أولية لعبارة الطاقة الحركية .

 $K_{
m c}$ نشاط $({f 2})$: تحدید الثابت ${f *2}$

الملاحظات

K_c النشاط (2): تحدید الثابت

الجزء (أ):

الجملة المدروسة: العربة

الطاقة الابتدائية للجملة: E_{c1}

 $\mathrm{E}_{\mathrm{c}2}$: الطاقة في لحظة كيفية

$$E_{c1} + W_m = E_{c2}$$

$$W_m = E_{c2}$$

$$K_c M V^2 = W$$

مبدأ انحفاظ الطاقة:

یکون:

 $K_{\rm c}$ M V² = W نجد: E_c في العبارة نجد

الجزء (ب):

حساب سرعة العربة في مختلف المواضع:

 $1~cm \rightarrow 2.77~cm$

سلم الرسم<u>:</u>

$$V_2 = \frac{M_1 M_3}{2\tau} = \frac{0.6 * 2.77}{0.08}$$

$$V_2 = 0.21 \,\mathrm{m/s}$$

$$:V_2$$
 – U_2

$$V_4 = \frac{M_3 M_5}{2\tau} = \frac{0.9 * 2.77}{0.08}$$

$$V_4 = 0.31 \text{m/s}$$

$$:V_4$$
 حساب

$$V_6 = \frac{M_5 M_7}{2\tau} = \frac{1.2 \times 2.77}{0.08}$$

$$V_6 = 0.41 \,\mathrm{m/s}$$

$$:V_6$$
 حساب

$$V_8 = \frac{M_7 M_9}{2\tau} = \frac{1.5 * 2.77}{0.08}$$

$$V_8 = 0.52 \text{ m/s}$$

$$:V_8$$
 حساب

$$V_{10} = \frac{M_9 M_{11}}{2\tau} = \frac{1.8 \cdot 2.77}{0.08}$$

$$V_{10} = 0.62 \text{ m/s}$$

$$:V_{10}$$
 حساب

$$V_{12} = \frac{M_6 M_8}{2\tau} = \frac{5 \times 2.77}{0.08}$$

$$V_{12} = m/s$$

3 – التحقق من ثبات القوة المطبقة:

$$\Delta V_3 = V_4 - V_2$$
 , $\Delta V_3 = 0.1 \, \text{m/s}$
 $\Delta V_5 = V_6 - V_4$, $\Delta V_5 = 0.1 \, \text{m/s}$
 و

$$\Delta V_5 = V_6 - V_4$$
 , $\Delta V_5 = 0.1 \, \text{m/s}$

$$\Delta V_7 = V_8 - V_6$$
 , $\Delta V_7 = 0.1 \text{ m/s}$

$$\Delta V_9 = V_{10} - V_8$$
 , $\Delta V_9 = 0.1 \; m/s$ $_{}$

بما أن قيمة ΔV ثابتة فان F قوة ثابتة.

ملأ الجدول:

 $M = 0.6 \, Kg$ و $F = 0.67 \, N$

		0 -			
الموضع	d(m) المسافة	V(m/s) السرعة	$MV^2(J)$	W = Fd(J)	
2	$1.66 * 10^{-2}$	0.21	0.026	0.01	
4	$3.60*10^{-2}$	0.31	0.057	0.024	
6	$3.65 * 10^{-2}$	0.41	0.1	0.044	
8	$10.25 * 10^{-2}$	0.52	0.16	0.067	
10	$14.68 * 10^{-2}$	0.62	0.23	0.094	

الجزء ج:

$$MV^2 = f(W)$$
 رسم المنحنى البيانى -1

المنحنى عبارة عن خط مستقيم يمر من المبدأ

$$MV^2 = a W$$
 :معادلته من الشكل

2 - حساب ميل المنحنى:

$$a = \tan \alpha = \frac{\Delta(MV^2)}{\Delta W}$$
 :لدينا

$$a = \frac{0.1 - 0.057}{0.044 - 0.024} = 2.15$$

3 – استنتاج قيمة عK:

$$E_c = \frac{1}{2} MV^2$$

 $K_{\rm c} = \frac{1}{a} = \frac{1}{2.15} = 0.46 \implies K_{\rm c} = 0.5$

 $W = K_c M V^2$

 $W = \frac{1}{a} MV^2$

 $E_c = rac{1}{2} \, MV^2$ ومنه تصبح عبارة الطاقة الحركية بالشكل

الجزء (د):

تمثيل الحصيلة الطاقوية للعربة:

بإهمال قوى الاحتكاك:

العلاقة بين الطاقة الحركية و عمل القوى المؤثرة:

$$E_{c1} + W_m = E_{c2}$$
 : لدينا

$$W_m = E_{c2} - E_{c1}$$
 يكون

$$W_m = \Delta E_c$$
 : نجد

الاستنتاج:

عندما ينسحب جسم ذو كتلة M بسرعة V تكون طاقته الحركية $\frac{E_c=\frac{1}{2}\ MV^2}{1}$ تغير الطاقة الحركية للعربة بين موضعين يساوي عمل القوى المؤثرة على هذه العربة بين هذين الموضعين.

بطابتة تربوية

المستوى: السنـة الثانيـة علـوم تجريبيــة

المجال: الميكانيك و الطاقة

الوححة: العمل و الطاقة الحركية

نوع النهاا: أعمال تطبيقية

الموضوع: معايرة قارورة بلاستيكية

التوقيت: 2ســا

التاريخ: 22 أكتوبر 2009

الكفاءات المستمدفة

- * يكشف عن مختلف أشكال الطاقة و أنماط تحويلها من أجل وضعيات مختلفة و حسب الجملة المختارة.
 - * ينجز كيفيا حصيلة طاقوية و يعبر عنها بالكتابة الرمزية
 - *. يكتب في أمثلة مختلفة المعادلة المعبرة عن انحفاظ الطاقة.
 - * التفسير المجهري لظاهرة طاقوية.

الوسائل التعليمية و المراجع

• المراجع: منهاج العلوم الفيزيائية و الوثيقة المرافقة

مراحل سير الدرس

1** جهاز معايرة (القارورة البلاستيكية)

1 * **1** * جهاز الكتلة المتغيرة.

1 * 2 * الربيعة.

2** المعايرة

الملاحظات التقويم

الهدف: صناعة جهاز ذي استعمالين

1** جهاز معايرة (القارورة البلاستيكية)

1 * جهاز الكتلة المتغيرة:

$$ho = \frac{m}{V} = 1$$
لاينا الكتلة الحجمية للماء: الماء:

m = V : و منه نجد

.(
$$g$$
) الماء (cm^3) الماء (V من الماء (V من الماء)

$$V = 100ml$$
 \Rightarrow $m = 100 g$:مثال

2 * جهاز الربيعة:

كل جسم تقابله كتلة و كل كتلة تقابلها قوة .

$$P = m * g$$
 العلاقة التي تربط الكتلة بالقوة هي:

$$V = 100ml$$
 : مثلا من أجل

$$m = 100 g$$
 : نكون

$$F=P=m*g=0.05*9.8=0.49$$
 و تكون القوة $P=0.49~N$

2** المعايرة:

الهدف: معايرة خيط مطاطي.

الأدوات المستعملة: - خيط مطاطى.

- قارورة بالستيكية مدرجة معايرة بالنيوتن.
 - نابض مرن.

العمل التجريبي:

- 1- نعلق نابض مرن طوله الأصلي l_0 شاقوليا في حامل.
- 2- نثبت المسطرة بحيث نهاية النابض تكون عند صفرها.
- 3- نملأ القارورة بحجم من الماء V الموافق للقوة F فيستطيل النابض بمقدار x الذي تتم قراءته مباشرة على المسطرة.
- 4- نكرر العملية من أجل حجوم مختلفة و نسجل في كل مرة قيم الاستطالات الموافقة في الجدول التالي:

$m\left(g ight)$ الكتلة	50	100	200	300	400	500
F(N) القوة	0.49	0.98	1.96	2.94	3.92	4.9
(m) الاستطالة $x = l - l_0$	0.013	0.023	0.049	0.079	0.100	0.120

** رسم منحنى تغيرات شدة القوة F بدلالة الاستطالة \boldsymbol{x}

$$1~cm$$
 $ightarrow$ $10^{-2} \mathrm{m}$:سلم الرسم

$$1 cm \rightarrow \frac{1}{2} N$$

و

F=a*x المنحنى عبارة عن خط مستقيم يمر من المبدأ معادلته من الشكل:

معامل توجيه المستقيم . a

$$a = \tan \alpha = \frac{\Delta F}{\Delta x} = \frac{3.43 - 1.47}{0.087 - 0.036} = 38.43$$
 و لحسابه:

المعنى الفيزيائي لميل المنحنى : a

K فيزيائيا ثابت مرونة النابض و يرمز له بالرمز α

النتيجة:

F = K * x القوة المطبقة من طرف النابض هي:

حالة المطاط:

$m\left(g ight)$ الكتلة	100	250	300	400	500
القوة (F(N)	0.98	1.96	2.94	3.92	4.9
(m) الاستطالة $x = l - l_0$	0.017	0.07	0.094	0.15	0.2

$$1 cm \rightarrow 10^{-2} m$$

<u> سلم الرسم:</u>

$$1 cm \rightarrow \frac{1}{2} N$$

و

F=a*x المنحنى عبارة عن خط مستقيم يمر من المبدأ معادلته من الشكل:

$$a = \tan \beta = \frac{\Delta F}{\Delta x} = \frac{2.45}{0.07} = 35$$
 و لحسابه:

F=a*x العلاقة التي تربط شدة القوة F بالاستطالة x هي علاقة خطية المقارنة:

كلا المنحنيين عبارة عن خط مستقيم يمر من المبدأ و ثابت مرونة النابض يختلف عن ثابت مرونة المطاط (فالمطاط هنا يلعب دور نابض).

 ** و القارورة تلعب دور ربيعة و ذلك بتدريجها بوحدة القوى (N) و هذا يكفي ملأ القارورة إلى مستوى معين للحصول على قيمة قوة معينة .