

Queda livre

Trabalho realizado por:

Sara Santos, nº 34983

Rúben Peixoto, nº 37514

Frederico Correia, nº 37732

Gonçalo Barreto, nº 37752

Ana Catarina Pires, nº 37967

1. Objetivo

O objetivo desta experiência laboratorial é determinar a aceleração gravítica de duas esferas de diferentes massas.

2. Introdução

Com este trabalho laboratorial vamos, a partir da representação gráfica de $\Delta y/t$ e t, verificar que a relação entre estas grandezas é linear.

Duas esféricas metálicas foram libertadas, separadamente, de um eletroíman.

À medida que fomos aumentando o espaçamento entre as células fotoelétricas mantivemos o primeiro *photogate* imóvel durante toda a experiência.

O inicio e o fim da contagem do tempo com o auxilio do cronometro, é dado pela passagem das esferas pelos *photogates* A e B.

 $\Delta y = v_A t + (1/2)gt^2$ é a equação que traduz o movimento uniformemente acelerado unidimensional da esfera que cai livremente.

3. Material Utilizado

- 2 photogates
- Eletroíman
- Esfera com 16,6g
- Esfera com 28,1g
- Fio com um peso
- Régua
- Lápis
- Calculadora
- Medidor de Diâmetro

4. Esquema de montagem

Fig. - Cronómetro

Fig.3- Suporte com eletroíman e dois photogates

Fig.2- Fonte de Alimentação

Fig.4- Medidor de diâmetro

5. Tratamento dos dados

Esfera 1

d(cm)	t1(s)	t2(s)	t3(s)	t4(s)	t5(s)	t6(s)	t(s)	dt
10.0	0.0969	0.0968	0.0968	0.0968	0.0968	0.0968	0.0968	103,3058
20.0	0.1556	0.1556	0.1555	0.1556	0.1555	0.1555	0.1555	128,6174
30.0	0.2003	0.1991	0.2030	0.1997	0.1994	0.1995	0.1997	150,2253
40.0	0.2351	0.2351	0.2351	0.2351	0.2349	0.2352	0.2351	170,1404
50.0	0.2696	0.2696	0.2699	0.2686	0.2688	0.2686	0.2691	185,8045
60.0	0.2974	0.2974	0.2973	0.2969	0.2978	0.2975	0.2974	201,7485

Esfera 2

d(cm)	t1(s)	t2(s)	t3(s)	t4(s)	t5(s)	t6(s)	t(s)	dt
10.0	0.1008	0.1009	0.1009	0.1010	0.1007	0.1008	0.1009	99,11
20.0	0.1603	0.1610	0.1603	0.1601	0.1603	0.1603	0.1604	124,7
30.0	0.2045	0.2045	0.2045	0.2046	0.2042	0.2047	0.2045	146,7
40.0	0.2400	0.2401	0.2340	0.2397	0.2395	0.2400	0.2399	166,7
50.0	0.2731	0.2737	0.2737	0.2738	0.2736	0.2735	0.2736	182,7
60.0	0.3030	0.3024	0.3025	0.3023	0.3025	0.3026	0.3026	198,3

6. Resultados

Neste trabalho laboratorial verificou-se que independentemente do peso das esferas a aceleração gravítica se aproxima de 9,81m/s⁻². O que significa que se por exemplo largarmos dois corpos de massas diferentes de uma determinada altura "d" e desprezando quaisquer forças de resistência, tal como Galileu testou, verificaremos que os corpos em questão irão atingir o solo ao mesmo tempo.

7. Comentários/Crítica

Nesta experiência houve alguns erros instrumentais, sistemáticos e acidentais:

- O eletroíman poder ter dado um pequeno impulso ao largar a esfera. Na experiência consideramos esse possível impulso desprezível.
- A possibilidade de os *photogates* não detetarem a esfera quando esta intersecta os *photogates*, também consideramos desprezível.
- Ao calibrarmos os *photogates* estes podem não ter ficado 100% paralelos, consideramos desprezível.
- Ao afastarmos os *photogates* estes podem não ter ficado à distância pretendida (10cm, 20cm, 30cm, 40cm, 50cm e 60cm). Para diminuir esse problema o grupo, antes de cada experiência, mediu a distância entre os *photogates* e só se aumentou o espaçamento entre os *photogates* após serem testados cada um dos tempos para as duas esferas.

8.Bibliografia

- Atividade experimental n°1 (Queda Livre)