concours externe SESSION DE 1991 de recrutement de professeurs agrégés

composition de mathématiques appliquées

PROBABILITÉS ET STATISTIQUES

Le but du problème est de mettre en évidence certains comportements asymptotiques de la suite des images d'un vecteur de \mathbb{R}^2 par une succession de déplacements au hasard indépendants.

Avertissement.

A.1., A.2., A.3. utilisent des notations et des définitions spécifiques et peuvent être abordées avant la lecture du préambule. B.1., B.3., C sont indépendantes de A. C n'intervient pas dans la résolution des questions ultérieures.

PRÉAMBULE

L'espace vectoriel \mathbb{R}^2 est identifié à sa représentation par des matrices colonnes dans la base canonique (e_1, e_2) , il est muni de sa structure euclidienne canonique, le produit scalaire et la norme étant notés $\langle \cdot, \cdot \rangle$ et $\| \cdot \|$.

On appelle SO(2) le groupe multiplicatif des matrices de rotations de \mathbb{R}^2 et e son élément neutre, matrice identité de \mathbb{R}^2 . Si $u, v \in SO(2)$ et $y \in \mathbb{R}^2$, uv, uy, u^* désignent respectivement les produits matriciels de u par v, de u par y et la transposée de u. La bijection de [0, 1] sur SO(2) qui, à $s \in [0, 1]$, associe la rotation d'angle $2\pi s$ est notée ρ et l'on pose $\theta = \rho^{-1}$.

G est le groupe obtenu en munissant $SO(2) \times \mathbb{R}^2$ du produit :

$$(u, y) (v, z) = (uv, y + uz),$$

il s'identifie au groupe des déplacements de \mathbb{R}^2 par la formule :

$$x \in \mathbb{R}^2$$
, $(u, y) \in G$, $(u, y)x = ux + y$.

Soit (Ω , \mathcal{F} , P) un espace de probabilité et E l'opérateur d'espérance associé.

L'expression : variable aléatoire définie sur (Ω, F, P) à valeurs dans H, sera abrégée en : v.a. de H.

Si M_d est l'espace des matrices à coefficients réels à 2 lignes et d colonnes, d=1 ou 2, une v.a. de M_d est une fonction Z de Ω dans M_d dont les applications composantes $Z_{i,j}$, $1 \le i \le 2$, $1 \le j \le d$, sont des v.a. réelles. Z est dite intégrable (resp. de carré intégrable) si les v.a. $Z_{i,j}$ sont intégrables (resp. de carrés intégrables). Lorsque Z est intégrable, E[Z] est l'élément de M_d dont les coefficients sont $E[Z_{i,j}]$. On remarquera que, si Y est une v.a. intégrable de \mathbb{R}^2 et si $X \in \mathbb{R}^2$,

$$E[\langle x, Y \rangle] = \langle x, E[Y] \rangle$$
.

Une v.a. de G est la donnée d'un couple (U, Y) où Y est une v.a. de \mathbb{R}^2 et U une v.a. de SO(2), c'est-à-dire une v.a. dè M_2 à valeurs dans SO(2).

Si X_1 , X_2 sont des v.a. de G, U_1 , U_2 des v.a. de SO(2) et Y une v.a. de \mathbb{R}^2 , les v.a. X_1X_2 de G, U_1^* et U_1U_2 de SO(2), X_1Y et U_1Y de \mathbb{R}^2 sont définies par :

$$X_1X_2(\omega) = X_1(\omega)X_2(\omega), \qquad U_1^{\bullet}(\omega) = U_1(\omega)^{\bullet}, \qquad U_1U_2(\omega) = U_1(\omega)U_2(\omega),$$
$$X_1Y(\omega) = X_1(\omega)Y(\omega), \qquad U_1Y(\omega) = U_1(\omega)Y(\omega).$$

Dans ce qui suit, $X_n = (U_n, Y_n)$, $n \in \mathbb{N}^*$, désignent les termes d'une suite de v.a. de G, indépendantes et de même loi; l'objet de l'étude est la suite $(L_n x)_{n \ge 0}$ où $x \in \mathbb{R}^2$ et $(L_n)_{n \ge 0}$ est la suite de v.a. de G définie par :

$$L_0 = (e, 0)$$
 et, pour $n \ge 1$, $L_n = X_n L_{n-1}$.

La seconde composante de L_n , soit S_n , est donnée par les formules :

$$S_0 = 0$$
 et, pour $n \ge 1$, $S_n = \sum_{k=1}^{n} U_{n,k+1} Y_k$

où $U_{n,n+1} = e$ et, pour l, $1 \le l \le n$, $U_{n,l} = U_{n,l+1} U_l$, soit encore:

$$S_n = Y_n + U_n Y_{n-1} + ... + U_n ... U_2 Y_1$$
.

Il est utile, pour l'étude de $(S_n)_{n>0}$, d'introduire la suite $(Z_n)_{n>0}$ de v.a. de \mathbb{R}^2 , seconde composante de la suite $(R_n)_{n>0}$ de v.a. de G définie par :

$$R_0 = (e, 0)$$
 et, pour $n \ge 1$, $R_n = R_{n-1}X_n$

dont les termes se calculent par les formules :

$$Z_0 = 0$$
 et, pour $n \ge 1$, $Z_n = \sum_{k=1}^n \check{U}_{k-1} Y_k$

où $\check{\mathbf{U}}_0 = e$ et, pour l, $1 \le l$, $\check{\mathbf{U}}_l = \check{\mathbf{U}}_{l-1} \mathbf{U}_l$, soit encore:

$$Z_n = Y_1 + U_1 Y_2 + ... + U_1 ... U_{n-1} Y_n$$

La résolution de certaines questions fera intervenir la propriété d'adaptation, définie dans le préliminaire A, de la probabilité γ sur [0,1], loi de la v.a. $\theta(U_1)$. Il sera toujours supposé que $\gamma(\{0\}) < 1$ et que $P([Y_1 = 0]) < 1$.

On rappelle la convention inf $\emptyset = +\infty$ et les notations : 1_A pour la fonction indicatrice de l'ensemble A, $[X \in B]$ pour l'image réciproque de B par X, lim p.s. pour la limite presque sûre.

Δ

Ce préliminaire nécessite de nouvelles définitions et notations.

On rappelle \mathbb{T} le groupe obtenu en munissant [0, 1] de l'addition modulo 1, notée \oplus ; pour $r \in \mathbb{N}^*$, H, est le sous-groupe de \mathbb{T} engendré par $\frac{1}{r}$.

 $\mathscr C$ désigne l'espace vectoriel des restrictions à $\mathbb T$ des fonctions continues de période 1 sur $\mathbb R$ et $\mathbb J$ la norme de la convergence uniforme sur $\mathbb T$ des éléments de $\mathscr C$.

 $\mathcal F$ est la tribu trace sur $\mathbb T$ de la tribu borélienne de $\mathbb R$ et m la restriction à $\mathcal F$ de la mesure de Lebesgue sur $\mathbb R$. L'ensemble des probabilités sur $(\mathbb T,\mathcal F)$ est noté $\mathscr P$.

Si μ , $\nu \in \mathcal{P}$, leur produit de convolution est $\mu \star \nu \in \mathcal{P}$, défini par :

$$A \in \mathcal{F}$$
, $\mu \star \nu(A) = \int I_A(s \oplus t) d\mu(s) d\nu(t)$;

pour $l \in \mathbb{N}^*$, μ^{*l} désigne le produit de convolution de l termes égaux à μ ; l'on conviendra que μ^{*0} est la probabilité portée par $\{0\}$.

Les coefficients de Fourier de $\mu \in \mathscr{P}$ sont les complexes $\hat{\mu}(k), k \in \mathbb{Z}$, définis par :

$$\hat{\mu}(k) = \int e^{2i\pi ks} d\mu(s).$$

On dira que $\mu \in \mathscr{P}$ est adaptée si, pour tout $r \in \mathbb{N}^*$, $\mu(H_r) < 1$.

- 1. Soit $\mu \in \mathscr{P}$ et $(\mu_n)_{n \ge 1}$ une suite de \mathscr{P} , prouver l'équivalence des assertions suivantes :
 - a. pour tout $k \in \mathbb{Z}$, $\lim_{n \to \infty} \hat{\mu}_n(k) = \hat{\mu}(k)$;
 - b. pour tout $f \in \mathcal{C}$, $\lim_{n \to \infty} \int f d\mu_n = \int f d\mu$.
- 2. Montrer que pour que $\mu \in \mathscr{S}$ soit adaptée il faut et il suffit que, pour tout $k \in \mathbb{Z}^*$,

$$\int (1 - \cos(2\pi ks)) d\mu(s) > 0.$$

3. On pose: $\mu_n = \frac{1}{n} \sum_{l=0}^{n-1} \mu^{*l},$

montrer que, si μ est adaptée, on a, pour tout $f \in \mathcal{C}$,

 $\lim_{n} \int f d\mu_{n} = \int f dm.$

<u>AGREGATION</u> <u>de MATHEMATIQUES:</u> option-probabilités et statistiques 1991 3/6

4. Soit $(\Theta_n)_{n\geq 1}$ une suite de v.a. de $\mathbb T$ indépendantes de loi μ adaptée et Q une forme bilinéaire symétrique sur $\mathbb R^2$ de matrice $[q_{i,j}]_{i,j=1,2}$, montrer que, pour tout $x,y\in\mathbb R^2$, la suite de terme général :

$$\overline{Q}_{n}(x, y) = \frac{1}{n} \{ Q(x, y) + \sum_{k=1}^{n-1} E[Q(\rho(\Theta_{1} + ... + \Theta_{k})x, \rho(\Theta_{1} + ... + \Theta_{k})y)] \}, \quad n \geq 2,$$

converge et identifier sa limite $\overline{Q}(x, y)$.

- 1. Soit, pour $n \ge 1$, h_n une application mesurable de \mathbb{R}^2 dans \mathbb{R}^2 , on note $\tilde{Y}_n = h_n(Y_n)$ et $\tilde{X}_n = (U_n, \tilde{Y}_n)$.
 - a. Montrer que, si f est une fonction numérique mesurable définie sur G^{n+1} telle que :

$$E[|f(\tilde{X}_1,...,\tilde{X}_{n+1})|] < + \infty$$

et si \mathscr{F}_n est la tribu engendrée par $(\tilde{X}_1, ..., \tilde{X}_n)$, on a :

$$E[f(\tilde{X}_1,...,\tilde{X}_n,\tilde{X}_{n+1})|\mathcal{F}_n] = \varphi(\tilde{X}_1,...,\tilde{X}_n) \text{ p.s.},$$

où φ est définie pour $(g_1, ..., g_n) \in G^n$ tel que $E[|f(g_1, ..., g_n, \tilde{X}_{n+1})|] < + \infty$ par:

$$\varphi(g_1,...,g_n) = \mathbb{E}\{f(g_1,...,g_n,\tilde{X}_{n+1})\}.$$

On suppose jusqu'à la fin de cette question que \tilde{Y}_n est de carré intégrable et que $E[\tilde{Y}_n] = 0$.

- b. Montrer que, pour i = 1, 2 et $n \ge 1$, $E[\langle \check{\mathbf{U}}_{n-1} \tilde{\mathbf{Y}}_n, e_i \rangle] = 0$.
- c. On pose, pour $p, q \in \mathbb{N}$, $1 \le p \le q$ et i, j = 1, 2,

$$\tilde{\mathbf{C}}(p,\,q,\,i,\,j) \,=\, \mathbf{E}[\langle\,\check{\mathbf{U}}_{p-1}\hat{\mathbf{Y}}_p\,,\,e_i\,\rangle\,\langle\,\check{\mathbf{U}}_{q-1}\hat{\mathbf{Y}}_q\,,\,e_j\,\rangle],$$

prouver que, si $p \neq q$, $\tilde{C}(p, q, i, j) = 0$, tandis que :

$$\tilde{\mathbf{C}}(p, q, i, j) = \mathbf{E}[\mathbf{Q}_{p}(\check{\mathbf{U}}_{p-1}^{*}e_{i}, \check{\mathbf{U}}_{p-1}^{*}e_{j})],$$
$$\mathbf{Q}_{n}(x, y) = \mathbf{E}[\langle x, \check{\mathbf{Y}}_{n} \rangle \langle y, \check{\mathbf{Y}}_{p} \rangle].$$

où, pour $x, y \in \mathbb{R}^2$,

- 2. On suppose Y_1 de carré intégrable, $E[Y_1] = 0$ et γ adaptée, montrer que la matrice de covariance de \overline{C}_n de $\frac{1}{\sqrt{n}}Z_n$ converge vers $\sigma^2 e$, où $\sigma^2 = \frac{1}{2} E[\|Y_1\|^2]$.
- 3. On suppose Y_1 intégrable mais non plus centrée; pour $a \in \mathbb{R}^2$, on note τ_a la translation de \mathbb{R}^2 définie par $\tau_a(x) = x + a$ et l'on pose : $X_n^\circ = \tau_n X_n \tau_{-n}, X_n^\circ = (U_n^\circ, Y_n^\circ).$
 - a. Montrer qu'il existe a_0 tel que $E[Y_n^o] = 0$.
 - b. $(Z_n^\circ)_{n\geq 0}$ étant définie à partir de $(X_n^\circ)_{n\geq 1}$ comme $(Z_n)_{n\geq 0}$ à partir de $(X_n)_{n\geq 1}$, quelle relation existe-t-il entre Z_n et Z_n° , $n \ge 0$?

On rappelle que, si $(u_n)_{n\geq 1}$ est une suite de \mathbb{R}^2 telle que la série $\sum_{n\geq 1} \frac{1}{n} u_n$ converge, on a :

$$\lim_{n} \frac{1}{n} (u^{1} + ... + u_{n}) = 0.$$

On suppose Y_1 intégrable et, sauf dans la dernière question, $E[Y_1] = 0$.

On pose:

$$\mathbf{Y}'_n = \mathbf{Y}_n \mathbf{1}_{\{\mathbf{I}\mathbf{Y}_n\} \leq n\}}, \ \tilde{\mathbf{Y}}_n = \mathbf{Y}'_n - \mathbf{E}[\mathbf{Y}'_n]$$

et, pour
$$p, q \in \mathbb{N}$$
, $1 \le p < q$, $\tilde{Z}_{p,p} = 0$, $\tilde{Z}_{p,q} = \sum_{n=1}^{q} \frac{1}{n} \check{U}_{n-1} \tilde{Y}_n$.

1. a. Prouver que, si $\sigma_{p,q}^2 = E[\|\tilde{Z}_{p,q}\|^2]$, on a, pour $1 \le p < q$,

$$\sigma_{pq}^2 = \sum_{n=p+1}^q \frac{1}{n^2} E[\|\tilde{\mathbf{Y}}_n\|^2].$$

AGREGATION de MATHEMATIQUES: option-probabilités et statistiques

page 25 1991 **4/**6

b. Utiliser la partition de Ω par les événements :

$$[Y_1 = 0], [k-1 < ||Y_1|| \le k], k \ge 1,$$

et l'inégalité $\sum_{n=1}^{\infty} \frac{1}{n^2} < \frac{2}{k}$, $k \ge 1$, pour établir que : $\sum_{n=1}^{\infty} \frac{1}{n^2} E[\|Y_1\|^2 1_{\{[Y_1]^1 \le n\}}] < + \infty$.

$$\sum_{n \ge 1} \frac{1}{n^2} E[\|Y_1\|^2 1_{\{\|Y_1\| \le n\}}] < + \infty.$$

- c. On pose, pour $p \ge 1$, $\sigma_p^2 = \sup \{ \sigma_{p,q}^2 : q \ge p \}$, montrer que $\sigma_p^2 < + \infty$ et que $(\sigma_p^2)_{p \ge 1}$ tend vers () en décroissant.
- 2. a. Soient ε , p et q tels que $\varepsilon > 0$, $\sigma_{\rho}^2 < \varepsilon^2$ et q > p, si:

$$T = \inf\{k : p < k \le q, \|\tilde{Z}_{p,k}\| > 2\varepsilon\},\$$

montrer que:

$$P([\|\tilde{Z}_{p,q}\| \geq \varepsilon]) \geq \sum_{k=n+1}^{q} P([T = k]) P([\|\tilde{Z}_{k,q}\| < \varepsilon])$$

et en déduire que :

$$P(\lceil \max\{\|\hat{Z}_{p,k}\|: p \leq k \leq q\} > 2\varepsilon]) \leq \frac{\sigma_p^2}{\varepsilon^2 - \sigma_p^2}.$$

b. Montrer que la série :

$$\sum_{n=1}^{\infty} \tilde{\mathbf{U}}_{n-1} \tilde{\mathbf{Y}}_{n}$$

converge p.s.

3. a. Montrer que:

$$\lim_{n} \text{ p.s. } \frac{1}{n} \sum_{k=1}^{n} \check{\mathbf{U}}_{k-1} \, \mathbf{Y}'_{k} = 0 \, .$$

- b. Montrer que P ($\lim_{n} \inf [Y'_n = Y_n]$) = 1 et en déduire que $\lim_{n} p.s. \frac{1}{n} Z_n = 0$.
- 4. On ne suppose plus $E[Y_1] = 0$, déterminer la limite p.s. de la suite $\left(\frac{1}{n} Z_n\right)_{n \ge 1}$ puis, en considérant $(U_{n,1})^* L_n x$, celle de $\left(\frac{1}{n} L_n x\right)_{n \ge 1}$, $x \in \mathbb{R}^2$.

D

On suppose γ adaptée, Y_1 de carré intégrable et, sauf dans la dernière question, $E[Y_1] = 0$. La fonction caractéristique Φ_n de $\frac{1}{\sqrt{n}} Z_n$ est définie sur \mathbb{R}^2 par :

$$\Phi_n(x) = E\left[\exp\left(i\left\langle x, \frac{1}{\sqrt{n}}Z_n\right\rangle\right)\right];$$

 \overline{C}_k et σ^2 étant définis comme en **B.**2., on désigne par \overline{Q}_k la forme quadratique de matrice \overline{C}_k et l'on pose :

$$\rho_k = \sup \{ \| (\overline{C}_k - \sigma^2 e) x \| : x \in \mathbb{R}^2, \| x \| = 1 \}.$$

Jusqu'en 5.a., k est un entier strictement positif fixé.

1. a. Montrer que:

$$\Phi_k(x) = 1 - \frac{1}{2} \overline{Q}_k(x) + ||x||^2 \varepsilon_k^1(x)$$

où
$$\lim_{x\to 0} \varepsilon_k^1(x) = 0$$
.

page 26 <u>AGREGATION de MATHEMATIQUES:</u> 1991 5/6 option-probabilités et statistiques

- b. Soient $(l_m)_{m>1}$ une suite de \mathbb{N} telle que $\lim_m l_m = +\infty$ et $(\lambda_m)_{m>1}$ une suite de \mathbb{R}_+ telle que $\lim_m \lambda_m^2 l_m = 1$, déterminer la limite de la suite $([\Phi_k(\lambda_m x)]^{l_m})_{m>1}$.
- 2. Prouver que, pour $p, q \in \mathbb{N}^*$, on a :

$$\Phi_{p+q}(\sqrt{p+q} x) = E[\exp(i\langle x, Z_p \rangle) \Phi_q(\sqrt{q} \check{\mathbf{U}}_p^* x)].$$

3. a. Montrer qu'il existe une fonction ε_k définie sur \mathbb{R}^2 telle que $\lim_{x \to 0} \varepsilon_k(x) = 0$ et, pour tout $x \in \mathbb{R}^2$,

$$\sup \{ |\Phi_k(x) - \Phi_k(\nu x)| : \nu \in SO(2) \} \le (\rho_k + \varepsilon_k(x)) \|x\|^2.$$

b. Établir (par récurrence sur n) l'inégalité, pour tout $x \in \mathbb{R}^2$ et $n \ge 1$,

$$|\Phi_{kn}(\sqrt{n} x) - (\Phi_{k}(x))^{n}| \le (n-1)(\rho_{k} + \varepsilon_{k}(x)) ||x||^{2}.$$

4. Montrer que, pour tout $x \in \mathbb{R}^2$,

$$\lim_{n} \sup \left\{ \left| \Phi_{kn+r}(x) - \Phi_{kn} \left(\sqrt{\frac{kn}{kn+r}} x \right) \right| : r = 0, ..., k-1 \right\} = 0.$$

5. a. Prouver que:

$$\limsup_{m} \left| \Phi_{m}(x) - \exp\left(-\frac{1}{2} \overline{Q}_{k}(x)\right) \right| \leq \rho_{k} \|x\|^{2}.$$

- b. Conclure que $\left(\frac{1}{\sqrt{n}} Z_n\right)_{n \ge 1}$ converge en loi et identifier sa limite.
- 6. On ne suppose plus $E[Y_1] = 0$.

Étudier la convergence en loi de $\left(\frac{1}{\sqrt{n}} Z_n\right)_{n \ge 1}$, puis celle de $\left(\frac{1}{\sqrt{n}} L_n x\right)_{n \ge 1}$, $x \in \mathbb{R}^2$.

E

On suppose γ adaptée et Y_1 de carré intégrable. N désigne une variable gaussienne centrée de \mathbb{R}^2 de matrice de covariance $\sigma^2 e$.

Pour $x \in \mathbb{R}^2$ et r > 0, on pose:

$$B(x, r) = \{y : y \in \mathbb{R}^2, ||x - y|| < r\}, B_r = B(0, r),$$

 $B'(x, r) = SO(2) \times B(x, r), B'_r = SO(2) \times B_r.$

$$\mathbf{B}(\mathbf{x}, \mathbf{r}) = \mathbf{SO}(2) \times \mathbf{B}(\mathbf{x}, \mathbf{r}), \quad \mathbf{B}_{\mathbf{r}} = \mathbf{SO}(2) \times \mathbf{B}_{\mathbf{r}}$$

1. Montrer que, pour tout ε , $\varepsilon > 0$, $\lim_{n \to \infty} \frac{1}{n \varepsilon^2} \sum_{k=1}^{n} P\left(\left[\sqrt{\frac{k}{n}} N \in B_{\varepsilon}\right]\right)$

existe et que, cette limite étant notée $\alpha(\epsilon)$, on a $\lim_{\epsilon \to 0} \alpha(\epsilon) = + \infty$.

- 2. Soit CK (\mathbb{R}^2) l'espace des fonctions numériques continues à supports compacts sur \mathbb{R}^2 muni de la norme de la convergence uniforme notée $\|\cdot\|_{\infty}$. Pour $g \in CK(\mathbb{R}^2)$ et t > 0, on pose $g_t(x) = g(\sqrt{t} x)$.
 - a. Montrer que, pour $c, 0 < c < 1, K = \{g_i : t \in [c, 1]\}$ est un compact de CK (\mathbb{R}^2).
 - b. Prouver que, pour c, 0 < c < 1,

$$\lim_{n} \sup \left\{ \left| E \left[g_{t} \left(\frac{1}{\sqrt{n}} Z_{n} \right) \right] - E \left[g_{t}(N) \right] \right| : t \in [c, 1] \right\} = 0,$$

puis que, si l'on pose :

$$d_n = \frac{1}{n} \sum_{k=1}^{n} \left| \mathbb{E} \left[g_{\frac{k}{n}} \left(\frac{1}{\sqrt{k}} Z_k \right) \right] - \mathbb{E} \left[g_{\frac{k}{n}} (\mathbf{N}) \right] \right|,$$

 $\lim d_n = 0.$

3. Montrer que:

$$\lim_{\varepsilon \to 0} \liminf_{n} \frac{1}{n\varepsilon^{2}} E\left[\sum_{k=1}^{n} 1_{B_{\varepsilon}} \left(\frac{1}{\sqrt{n}} Z_{k} \right) \right] = + \infty.$$

4. On pose, pour $g \in G$, A borélien de G et B borélien de \mathbb{R}^2 ,

$$V(g, A) = E\left[\sum_{n \geq 0} 1_A(gR_n)\right] \in \mathbb{R}_+ \cup \{+\infty\}, H(B) = V((e, 0), SO(2) \times B).$$

a. Si T = inf $\{n : n \ge 0, gR_n \in A\}$, montrer que, pour $k \in \mathbb{N}$,

$$\mathrm{E}\left[\mathbf{1}_{[T=k]}\sum_{n\geq 0}\mathbf{1}_{A}(g\mathbf{R}_{n})\right]=\mathrm{E}\left[\mathbf{1}_{[T-k]}\mathbf{V}(g\mathbf{R}_{k},\mathbf{A})\right],$$

en déduire que, pour tout $g \in G$,

$$V(g, A) \leq \sup \{V(h, A) : h \in A\}.$$

b. Prouver que, pour tout r, r > 0, et $x \in \mathbb{R}^2$,

$$H(B(x, r)) \leq H(B_{2r})$$

puisqu'il existe une constante C telle que, pour tout r et a, r > 0, a > 1,

$$H(B_{ar}) \leq Ca^2 H(B_{2r}).$$

c. Utiliser 3. pour conclure que, pour tout r, r > 0,

$$E\left[\sum_{n\geq 0} 1_{B_r}(L_n 0)\right] = + \infty.$$