Exploratory analysis based on openVA output

November 12, 2018

"We are finally at the last step...except, it is not our last step."

Example 1: Cause-specific mortality fractions by year

Example 1: Cause-specific mortality fractions by year

Table: Response to VA indicator on road traffic accident reported in verbal autopsy for each death by year in which the verbal autopsy was conducted

Road traffic	Year of death						
accident reported in VA	2003-2005	2006-2008	2009-2011	2012-2013			
Yes	5,219	3,323	87	73			
No	270	212	4,298	2,417			
Missing	0	2,536	990	902			

Example 1: Cause-specific mortality fractions by year

Table: Percentage of deaths with road traffic accident reported in verbal autopsy by year in which the verbal autopsy was conducted

Road traffic	Year of death					
accident reported in VA	2003-2005	2006-2008	2009-2011	2012-2013		
Yes	95.1	54.7	1.6	2.2		
No	4.9	3.5	80.0	71.3		
Missing	0	41.8	18.4	26.6		

Example 1: Cause-specific mortality fractions by year

Example 2: Cause-specific mortality fractions by HIV status

Example 2: Cause-specific mortality fractions by HIV status

Graph: Cause-specific mortality fractions in adults, by HIV status (comparison site)

Example 2: Cause-specific mortality fractions by HIV status

Example 2: Cause-specific mortality fractions by HIV status

Table: Percentage of deaths with classic HIV/AIDS symptoms reported in verbal autopsy by HIV status

	HIV positive	HIV negative	HIV status unknown
Weight loss	61.3	42.6	54.9
Diarrhoea	73.5	68.0	71.3
Acute respiratory tract infection	16.6	11.1	14.1
Oral Candidiasis	N/A	N/A	N/A
Abscesses/sores	21.6	11.3	15.5
Wasting	32.6	16.5	29.6
Recent TB	22.7	13.2	15.5

Example 2: Cause-specific mortality fractions by HIV status

Table: Percentage of deaths with classic HIV/AIDS symptoms reported in verbal autopsy

	% of total population	% in comparison population with similar HIV prevalence
Weight loss	49.5	48.8
Diarrhoea	69.9	24.3
Acute respiratory tract infection	13.0	2.0
Oral Candidiasis	N/A	9.9
Abscesses/sores	14.6	12.2
Wasting	22.9	9.0
Recent TB	15.9	10.2

Example 3: Non communicable disease mortality rates over time

Graph: NCD mortality rates in adults, by age and calendar year

Example 3: Non communicable disease mortality rates over time

Graph: NCD mortality rates in adults, by age and calendar year

What other data can we use to assess plausibility?

We can assess the **plausibility of our cause-specific mortality fractions** (CSMFs) by looking at:

- Comparison of CSMFs from different algorithms
- Distribution of causes of death by basic demographic characteristics and changes over time
- Symptom patterns for certain causes of death

Sometimes, we can draw on additional data sources to help assess the quality of cause of death assignments – can you think of any of these?

Plausibility of CSMFs

- ➤ Physician review
- ➤ Data from morbidity surveys
- ➤ Clinical record data
- ➤ Minimally invasive autopsies
- ➤ Conventional autopsy

Plausibility of CSMFs

- **≻**Physician review
- ➤ Data from morbidity surveys
- ➤ Clinical record data
- ➤ Minimally invasive autopsies
- ➤ Conventional autopsy

Physician review

Verbal autopsies are reviewed by two physicians, with a third physician consulted in cases where there is disagreement

Discuss the advantages and disadvantages of physician review compared with algorithms?

Advantages	Disadvantages			

Example: Agreement of InSilicoVA and physician review (population level)

What conclusions would you draw on the basis of this graph?

Graph: Cause-specific mortality fractions in adults, by age group and method of assigning cause of death

Example: Agreement of InSilicoVA and physician review (population level)

Graph: Cause-specific mortality fractions in adults, by age group and method of assigning cause of death

Example: Agreement of InSilicoVA and physician review (individual level)

Table: Number of deaths by cause assigned by physician review and cause assigned by InSilicoVA

	Physician main cause of death							
InSilicoVA main cause	, _		Other			Direct		
of death	HIV/AIDS	ТВ	communicable	NCD	External	obstetric	Unknown	TOTAL
HIV/AIDS	294	3	6	22	0	0	7	332
ТВ	96	30	8	50	0	1	7	192
Other communicable	82	6	167	196	10	5	62	528
NCD	90	12	62	592	22	4	109	891
External	3	0	2	17	109	0	9	140
Direct obstetric	3	0	0	4	0	38	2	47
Indeterminate	4	0	1	6	0	0	0	11
TOTAL	572	51	246	887	141	48	196	2141

What conclusions would you draw on the basis of this table?

Example: Agreement of InSilicoVA and physician review (individual level)

Table: Number of deaths by cause assigned by physician review and cause assigned by InSilicoVA

	Physician main cause of death							
InSilicoVA main cause of death	HIV/AIDS	ТВ	Other communicable	NCD	External	Direct obstetric	Unknown	TOTAL
HIV/AIDS	294	3	6	22	0	0	7	332
ТВ	96	30	8	50	0	1	7	192
Other communicable	82	6	167	196	10	5	62	528
NCD	90	12	62	592	22	4	109	891
External	3	0	2	17	109	0	9	140
Direct obstetric	3	0	0	4	0	38	2	47
Indeterminate	4	0	1	6	0	0	0	11
TOTAL	572	51	246	887	141	48	196	2141

Take-away message? Useful at the population level, but not at individual level...

Conclusions:

- Checking the plausibility of the cause-specific mortality fractions (CSMF) is critical, as errors can be introduced during any one of the many steps involved in VA.
- There are a number of ways to explore suspicious findings:
 - ➤ Check the coding of input data relating to that cause of death (Example 1: injury deaths)
 - ➤ Check the prevalence of certain symptoms in your population with those in another population (Example 2: HIV/AIDS deaths)
 - Look at the influence a particular input might be having on the CSMFs, by rerunning the data leaving that particular input black (Example 3: NCD deaths)
- >NOTE: Many of the issues that have arisen across study sites are related to changes in questionnaires over time and/or small sample sizes.