Махало на Максуел

Васил Николов (25.12.2021)

І. ЦЕЛ НА УПРАЖНЕНИЕТО

Да се изследва поведението на махалото на Максуел и да се измери инерчният му момент, както и този на пръстените, които могат да се прикачат към него.

II. ЕКСПЕРИМЕНТАЛНА УСТАНОВКА

Махалото на Максуел представлява метален цилиндър, през центъра на който преминава тънка метална ос с фиксиран радиус. На оста от двете страни са намотани тънки неразтегливи нишки. Горните краища на нишките са закрепени на една и съща височина, а между тях има електромагнит и фотоклетка, която засича кога махалото е пуснато, и пуска таймер. В долната част на уреда има втора фотоклетка, която засича преминаването на махалото и спира таймера. Тъи като махалото има значим инерчен момент то пада с ускорение а, значително по малко от земното ускорение $g.\ a$ зависи от лесно измерими параметри на системата като радиусът на оста на навиване на нишката R и масата на махалото m. Ускорението зависи и от инерчният момент на махалото, и когато измерим времето за падане от фиксирана височина може да се намери ускорението и оттам инерчният момент.

III. ТЕОРЕТИЧЕН АНАЛИЗ

Нека инерчният момент на махалото е I, радиусът на оста, около която се навиват нишките е R и сумата от две-

те сили на опън е T. Ако системата се движи с ускорение a. то

$$mg - T = ma$$

$$TR = I\frac{a}{R}$$

$$\Rightarrow I = mR^{2}(\frac{g}{a} - 1)$$
 (1)

Тъй като движението е равноускорително

$$a = 2\Delta h/t^2 \tag{2}$$

където Δh е височината, от която пада махалото, а t е времето, отчетено от установката.

IV. ЕКСПЕРИМЕНТАЛНИ РЕЗУЛТАТИ

Използвайки формули (1) и (2) можем да пресметнем инерчните моменти на махалото при окачени различни дискове. Резултатите са представени в Таблица 1.

Таблица I. Експериментални данни

Маса диск, g	на	Време за па- дане, s	Ускорение, $cm.s^{-2}$	Общ инерчен момент
0		1.341	46.69	9.36×10^{-5}
255.9		2.044	19.61	5.43×10^{-4}
395		2.177	16.96	9.28×10^{-5}
514		2.205	16.318	1.04×10^{-3}