Transition systems.

1 Transition systems.

Definition 1. A transition system is a tuple

$$TS = (S, Act, \rightarrow, I, AP, L)$$

where

- \triangleright S is the set of states;
- ▷ Act is the set of *actions*;
- ightharpoonup
 ightharpoonup S imes Act imes S the transition relation;
- $\triangleright I \subseteq S$ the set of *initial states*;
- ▷ AP is the set of atomic propositions;
- $\triangleright L: S \to \wp(AP) \cong \mathbf{2}^{AP}$ is the state labelling function.

We will write $s \xrightarrow{\alpha} s'$ when $(s, \alpha, s') \in \rightarrow$.

Example 1 (Beverage Vending Machine, BVM). We can model a beverage vending machine using a diagram like in figure 1. Here we have that:

- $\triangleright S = \{\text{pay}, \text{select}, \text{soda}, \text{beer}\},\$
- $\triangleright I = \{\mathsf{pay}\},$
- \triangleright Act = {ic, τ , gb, gs}.

Figure 1 | Transition system for the BVM

We can define the labels:

$$L(\mathsf{pay}) = \emptyset \quad L(\mathsf{soda}) = L(\mathsf{beer}) = \{\mathsf{paid}, \mathsf{drink}\} \quad L(\mathsf{select}) = \{\mathsf{paid}\},$$
 with $\mathsf{AP} = \{\mathsf{paid}, \mathsf{drink}\}.$

2 Program graphs.

The goal is to represent the evaluation of a program.

Definition 2 (Typed variables). ▷ A set Var of *variables*.

- \triangleright For each variable $x \in \text{Var}$, consider a set Dom(x).
- \triangleright Given $TV = (Var, (Dom(x))_{x \in Var})$, we define

$$\operatorname{Eval}(TV) = \prod_{x \in \operatorname{Var}} \operatorname{Dom}(x),$$

the set of valuations of the form $\eta: x \in \text{Var} \mapsto \eta(x) \in \text{Dom}(x)$ (in the sense of a dependent function type).

¹The meaning of the actions are the following: ic means *insert coin*, gb means *get beer* and gs for *get soda*.

Figure 2 | BVM as a program graph

Definition 3 (Program graph). A program graph is a tuple

$$PG = (Loc, Act, Effect, \hookrightarrow, Loc_0, g_0),$$

where

- ▷ Loc is the set of *locations* (lines of codes);
- ▷ Act is the set of *actions*;
- \triangleright Effect : Act \times Eval $(TV) \rightarrow$ Eval(TV);
- $ightharpoonup \hookrightarrow \subseteq \operatorname{Loc} \times \operatorname{Conditions} \times \operatorname{Act} \times \operatorname{Loc}$ where conditions are propositional formula built from atoms of the forms " $x \in D$ " for some variable x and some set $D \subseteq \operatorname{Dom}(x)$;
- \triangleright Loc₀ \subseteq Loc the set of *initial locations*;
- \triangleright g_0 is the initial condition.

We will write $\ell \stackrel{g:\alpha}{\longleftrightarrow} \ell'$ for $(\ell, g, \alpha, \ell') \in \hookrightarrow$.

Example 2 (BVM as a program graph). In figure 2, we use

 $\quad \triangleright \ \operatorname{Loc} = \{\mathsf{start}, \mathsf{select}\};$

```
 \forall \text{Var} = \{ \text{ns}, \text{nb} \}; 
 \Rightarrow \text{Act} = \{ \text{ic}, \text{nt}, \text{gs}, \text{gb}, \text{refill} \}; 
 \Rightarrow \text{Loc}_0 = \{ \text{start} \}; 
 \Rightarrow g_0 = \text{ns} \in \{ \text{max} \} \land \text{nb} \in \{ \text{max} \} 
 \Rightarrow \text{Effect} : \text{Act} \times \text{Eval}(TV) \longrightarrow \text{Eval}(TV) 
 \text{(refill}, \eta) \longmapsto [\text{ns} \mapsto \text{max}, \text{nb} \mapsto \text{max}] 
 \text{(gs}, \eta) \longmapsto \eta[\text{ns} \mapsto \eta(\text{ns}) - 1] 
 \text{(gb}, \eta) \longmapsto \eta[\text{nb} \mapsto \eta(\text{nb}) - 1]
```

3 Transition system of a program graph.

Definition 4. Given TV and PG a program graph, we define

$$TS(PG) := (S, \mathsf{Act}, \to, I, \mathsf{AP}, L)$$

where

 $\triangleright S = \text{Loc} \times \text{Eval}(TV);$

 \triangleright AP = Loc \cup Conditions;

 $\triangleright I = \{(\ell_0, \eta) \mid \ell_0 \in \operatorname{Loc}_0, \eta \models q_0\};$

 \triangleright \rightarrow is defined by:

$$\frac{\ell \overset{g:\alpha}{\longrightarrow} \ell' \quad \eta \models g}{(\ell, \eta) \overset{\alpha}{\longrightarrow} (\ell', \mathrm{Effect}(\alpha, \eta)),}$$

 $\quad \triangleright \text{ and } L(\ell, \eta) = \{\ell\} \cup \{g \mid \eta \models g\}.$

Figure 3 | Transition system of the BVM program graph

Example 3. The BVM program graph example seen in the previous example can be transformed as a transition system thanks to the previous definition; it is shown in figure 3. To simplify, we assume $\max = 1$.