REPUBLIQUE TUNISIENNE

Ministère de l'Enseignement Supérieur Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session : Juin 2001

Concours Mathématiques-Physique et Physique-Chimie Epreuve de Sciences et Techniques de l'Ingénieur

Date: Lundi 11 juin 2001

Heure: 8 H

Durée: 3 H

Nombre de pages: 12

Barème: Partie A: 5 points

Partie B: 10 points

Partie C: 5 points

Remarques

1/ Les parties A. B. et C stat multipendantes et deiveux être rédigées sur des fembes séparées 2/ Les documents répanses (pages 2/12, 3/12 et 4/12) sont à rendre en fin d'épreuve.

PRESSE DE FORGEAGE

Présentation

La figure 1 (page 11/12) représente le dessin d'ensemble simplifié d'une presse de forgeage dont le schema cinématique minimal est illustré par la figure 2 (page 12/12). Les principaux éléments de cette presse sont :

- le bâti (0)
- l'arbre d'entrée (1) en liaison pivot d'axe (O, \vec{Z}_0) avec le bâti
- la bielle (2) en liaison pivot d'axe (A, Z_0) avec le bâti, et reliée à l'arbre d'entrée (1) par l'intermédiaire du solide (S)
- le solide (S) en liaison glissière avec la bielle (2) d'axe (A, X_2) et en liaison rotule de centre P avec l'arbre d'entrée (1)
- le levier (4) en liaison pivot d'axe (B, Z_0) avec le bâti
- le coulisseau porte marteau (5) en liaison linéaire annulaire d'axe (F,X,I) avec le levier (4) et en liaison glissière d'axe (C,Y,0) avec le bâti (0).

Le levier (4) et la bielle (2) sont reliés entre eux par un élément élastique formé de deux ressorts identiques et du support de guidage (3). Ce support est en liaison pivot d'axe (D, \vec{Z}_0) avec le levier (4), il est également en liaison linéaire annulaire d'axe (E, \vec{Y}_3) avec la bielle (2).

Principe de fonctionnement

La rotation imposée à l'arbre d'entrée (1) par le moteur non représenté (M) est transformée au moyen du solide (S) en mouvement d'oscillation de la bielle (2). Ce mouvement est transmis par l'intermédiaire de l'élément élastique (les deux ressorts + le support de guidage (3)) au levier (4) et par la suite au coulisseau porte marteau (5) qui assure le forgeage de la pièce désirée.

Partie B : ETUDE MECANIQUE

Dans cette partie on se reportera à la figure 2 (page 12/12)

Repères et paramétrage

Les repères et les paramètres adoptés pour le mécanisme sont d'ante sonne suit :

- $R_0(0, X_0, Y_0|Z_0)$ repère lié au bâti (0) supposé gahié.
- $R_1(0|X_1,Y_1,Z_0)$ repère lié à l'arbre d'entrée (1), tel $q=(1,X_1,X_1)=(Y_0,Y_1)$;
- $R_2(A, X_2, Y_2, Z_0)$ repère lié à la bielle (2), tel que : $\beta = X_1 Z_2 = Y_0 Y_2$;
- $R_3(D, \overrightarrow{X}_3, \overrightarrow{Y}_3 | \overrightarrow{Z}_0)$ repère lié au support de guidage (3), $\overrightarrow{y} = (\overrightarrow{X}_0, \overrightarrow{X}_3) = (\overrightarrow{Y}_0, \overrightarrow{Y}_3)$;
- $R_4(B, X_4, Y_4, Z_d)$ repère lié au levier (4), tel que: $\gamma = X_4, Z_4 = Z_4, Z_4 = Z_4$;

Les positions des différents centres de liaison sont décrites par la maine vectorielles suivantes :

$$\overrightarrow{OA} = -a\overrightarrow{X}_0 + b\overrightarrow{Y}_0, \quad \overrightarrow{BC} = c\overrightarrow{X}_0, \quad \overrightarrow{OP} = r\overrightarrow{Y}_1, \quad \overrightarrow{AP} = (A+L_2)\overrightarrow{X}_2, \quad \overrightarrow{AE} = 2L_2\overrightarrow{X}_2,$$

$$\overrightarrow{ED} = (y+L_0)\overrightarrow{Y}_3, \quad \overrightarrow{BD} = L_4\overrightarrow{X}_4, \quad \overrightarrow{BF} = \mu-1 \quad \overrightarrow{J}_2 = \overrightarrow{CF} = \eta\overrightarrow{Y}_0$$

Les angles α , β , θ et γ sont les paramètres de rotation du mesque mant aux paramètres de translation ils sont définis par : y, λ , μ et η où y est l'allongement x in the deux ressorts (les ressorts sont complètement relâchés à y=0).

Les caractéristiques géométriques : a, b, c, L0, L2, L4 et r du mezeure son constantes.

Partie B-I: CINEMATIQUE

Les centres d'inertie du levier (4) et du coulisseau (5) sont respectivement G₄ et G₅. G₄ est confondu avec le point D.

- I-1. Déterminer les vecteurs rotations instantanées par rapport au bâti (0) des solides suivants :
 - 1.a/ arbre d'entrée (1);
 - 1.b/ bielle (2);
 - 1.c/ support de guidage (3);
 - 1.d/ levier (4);
- I-2. Calculer les vecteurs vitesses suivants :
 - 2.a/ $\overrightarrow{V}(P \in I/R_0)$ l'exprimer dans la base $(\overrightarrow{X}_I, \overrightarrow{Y}_I, \overrightarrow{Z}_0)$;
 - 2.b/ $\overrightarrow{V}(P \in 2/R_0)$ et $\overrightarrow{V}(E \in 2/R_0)$ les exprimer dans la base $(\overrightarrow{X}_2, \overrightarrow{Y}_2, \overrightarrow{Z}_0)$;
 - 2.c/ $\overrightarrow{V}(D \in 4/R_0)$ l'exprimer dans la base $(\overrightarrow{X}_4, \overrightarrow{Y}_4, \overrightarrow{Z}_0)$;
 - 2.d/ $\overrightarrow{V}(E \in 3/R_0)$ l'exprimer dans la base $(\overrightarrow{X}_3, \overrightarrow{Y}_3, \overrightarrow{Z}_0)$ (on utilisera $\overrightarrow{V}(D \in 4/R_0)$);
- I-3. Calculer les vecteurs accélérations suivants :
 - 3.a/ $\overrightarrow{\Gamma}(G_4/R_0)$ l'exprimer dans la base $(\overrightarrow{X}_4, \overrightarrow{Y}_4, \overrightarrow{Z}_4)$;
 - 3.b/ $\overrightarrow{\Gamma}(G_5/R_0)$ l'exprimer dans la base $(\overrightarrow{X}_0, \overrightarrow{Y}_0, \overrightarrow{Z}_0)$.

Partie B-II: ENERGETIQUE

On considère le sous ensemble {E₁} formé de l'arbre d'entrée (1), du solide intermédiaire (S) et de la bielle (2).

Les caractéristiques d'inertie des éléments constitutifs de {E₁} sont les suivantes :

- arbre d'entrée (1)
 - matrice d'inertie au point O exprimée dans la base $(\vec{X}_1, \vec{Y}_1, \vec{Z}_0)$ est de la forme :

$$I_{O}(1) = \begin{bmatrix} A_{I} & 0 & 0 \\ 0 & B_{I} & -D_{I} \\ 0 & -D_{I} & C_{I} \end{bmatrix}_{\mathcal{V}}$$

- masse M_1 , centre d'inertie G_1 , tel que : $\overrightarrow{OG}_1 = y_1 \overrightarrow{Y}_1 + z_1 \overrightarrow{Z}_0$
- bielle (2)
 - moment d'inertie par rapport à l'axe (A, Z_0) I_2 masse M_2
 - centre d'inertie G_2 , tel que : $\overrightarrow{AG}_2 = x_2 \overrightarrow{X}_2$
- levier (4)
 - moment d'inertie par rapport à l'axe (B, Z_0) I_4
 - mas

- coulisseau porte marteau (5),
- masse Ms

- solide intermédiaire (S)
 - masse et inertie négligeables

- ず、一つか
- (A) L'arbre d'entrée est soumis à un couple $\overrightarrow{C}_m = C_m \overrightarrow{Z}_0$. L'action de rappel des ressorts sur la bielle (2), au point E, est de la forme : $\overrightarrow{F}_r = 2ky\overrightarrow{Y}_3$, où k est la raideur de l'un des ressorts. L'action du support de guidage (3) sur la bielle au point E est représentée par le torseur : $k \cdot 3 \longrightarrow 2$

$$\{\tau_{3/2}\}_E = \begin{cases} \vec{F}_E = X_E \vec{X}_3\\ \vec{M}_E = \vec{0} \end{cases}$$

L'accélération de la pesanteur est : $\vec{g} = -g\vec{Y}_0$

Pour simplifier les calculs on admettra que toutes les liaisons sont parfaites.--

- II.1 Calculer relativement au repère galiléen $R_0(O, \overrightarrow{X}_0, \overrightarrow{Y}_0, \overrightarrow{Z}_0)$ l'énergie cinétique de $\{E_1\}$.
- II.2 Faire l'inventaire et le bilan des actions extérieures appliquées à $\{E_1\}$.
- II.3 Calculer la puissance de toutes les actions extérieures et intérieures appliquées à $\{E_1\}$ dans son mouvement par rapport à $R_0(O, \overrightarrow{X}o, \overrightarrow{Y}o, \overrightarrow{Z}o)$.
- II.4 Ecrire la relation qui découle du théorème de l'énergie cinétique appliqué à $\{E_1\}$ dans son mouvement par rapport à $R_0(O,\overrightarrow{X}_0,\overrightarrow{Y}_0,\overrightarrow{Z}_0)$.

Partie B-III: DYNAMIQUE

L'action du bâti sur le levier (4) au point B est représentée par le torseur :

$$\left\{\tau_{0/4}\right\}_{B} = \left\{\overrightarrow{F}_{B} = X_{B} \overrightarrow{X}_{0} + Y_{B} \overrightarrow{Y}_{0} + Z_{B} \overrightarrow{Z}_{0}\right\}$$

$$\overrightarrow{M}_{B} = L_{B} \overrightarrow{X}_{0} + M_{B} \overrightarrow{Y}_{0}$$

L'action de la pièce à forger sur le coulisseau porte marteau (5) est représentée par : $\overrightarrow{F}_0 = F_0 \overrightarrow{Y}_0$

- III.1 L'élément élastique (support (3) + les 2 ressorts) est supposé de masse et d'inertie négligeables.

 1 a/ Ecrire les équations qui découlent du théorème de la résultante dynamique appliqué à l'élément élastique dans son mouvement par rapport à $R_0(O, X_0, Y_0, Z_0)$;
 - 1.b/ Ecrire les équations qui découlent du théorème du moment dynamique appliqué à l'élément élastique dans son mouvement par rapport à $R_0(O, \overrightarrow{X}o, \overrightarrow{Y}o, \overrightarrow{Z}o)$;
 - 1.c/ Déterminer en fonction de k et y, l'action en D du levier sur l'élément élastique, ainsi que la composante de force X_E .
- III.2 On considère le sous ensemble $\{E_2\}$ formé du levier (4) et du coulisseau porte marteau (5)
 - 2.a/ Faire l'inventaire et le bilan de toutes les actions extérieures appliquées à $\{E_2\}$;
 - 2.b/ Appliquer le théorème de la résultante dynamique en projection sur \overrightarrow{Y}_0 à $\{E_2\}$ dans son mouvement par rapport à $R_0(O, \overrightarrow{X}_0, \overrightarrow{Y}_0, \overrightarrow{Z}_0)$.

Partie C: AUTOMATIQUE

N.B.: On présentera les résultats sous forme littérale avant d'effectuer l'application numérique. L'objet de l'étude suivante est l'analyse du comportement en vitesse du moteur dont le schéma fonctionnel est donné par la figure suivante:

Schéma fonctionnel du moteur

Partie C-I: DETERMINATION DES PARAMETRES DU MOTEUR

I.1 Déterminer $G_1(p)$ sachant que la réponse $C_m(t)$ à la grandeur U_e en échelon unitaire est représentée par la figure ci-dessous :

I.2 Le diagramme asymptotique de Bode (courbe d'amplitude) de la fonction de transfert $G_2(p)$ est donné par la figure suivante :

Determiner $G_2(p)$.

Avec:

I.3 Le moteur est maintenant décrit par le schéma fonctionnel suivant :

Schéma fonctionnel du moteur

U Ω C _m C _r R	 : Tension d'alimentation du moteur; : Vitesse de rotation de l'arbre du moteur; : Couple moteur; : Couple résistant; : Résistance aux bornes de l'induit; 	K _∞ K₊	: Inductance aux bornes de l'induit; : Inertie totale sur l'arbre du moteur: : Constante du couple; : Constante de force contre électromotrice. : Coefficient de frottement visqueux.
---	---	----------------------	---

3.a/ En deduire des questions I.1 et I.2, pour R = 1,15 Ohm, les paramètres du moteur K_m , L, f et J. 3.b/ Mettre le schéma fonctionnel du moteur sous la forme suivante :

Partie C-II: REGULATION DE LA VITESSE

Le système régule est donné par le schéma ci-dessous :

Schema d'asservissement de la vitesse

 Ω_c etant la vitesse de consigne. Dans la suite on prendra : L=8,3.10⁻³ H; f=0,011;J=191.10⁻³ Kg.m²; K_m=0,83 N.m/A; K_c=0,47 V.s/rd; R=1,15 Ohm.

- II. 1 On considere que le correcteur proportionnel $C(p)=K_a$
 - 1.a/ Déterminer la valeur de K_a permettant d'avoir une erreur statique égale à 5% pour un échelon de Ω_c d'amplitude 100 rd/s et un couple résistant nul.
 - 1.b/ Pour la même valeur de K_a , trouvée dans la question 1.a/, calculer l'erreur statique pour une grandeur d'entrée Ω_c en échelon d'amplitude 100 rd/s et une grandeur d'entrée C_r en échelon d'amplitude 10 N.m.
- II.2 On se propose maintenant d'étudier l'asservissement avec un correcteur proportionnel intégral de la forme : $C(p)=K_b+\frac{K_1}{p}$
 - 2.a/ Donner les conditions que doivent vérifier les paramètres K_b et K_i pour que le système en boucle fermée soit stable;
 - 2.b/ Tracer la courbe K_i=f(K_b) représentant le domaine de stabilité obtenu à la question 2.a/;
 - 2.c/ Calculer l'erreur statique pour une grandeur d'entrée Ω_c en échelon d'amplitude 100 rd/s et une grandeur d'entrée C_r en échelon d'amplitude 10 N.m. Conclure;
 - 2.d/ Dans la suite, on néglige l'inductance du moteur. Montrer que l'équation caractéristique du système en boucle fermée peut s'écrire sous la forme :

$$p^2+2.m.\omega_0.p+\omega_0^2=0$$

Déterminer K_b et K_i pour avoir $m = \frac{\sqrt{2}}{2}$ et $\omega_0 = 2rd/s$.

Figure 1: dessin d'ensemble

Figure 2 : schéma cinématique