UPSSITECH F.S.I.

EXAMEN DE ROBOTIQUE – Spécialité SRI

Avril 2022 - 1h 30 – Documents autorisés

Nom: Prénom:

— IL NE SERA RÉPONDU À AUCUNE QUESTION. SI TOUTEFOIS VOUS CONSIDÉREZ ÊTRE EN PRÉSENCE D'UNE AMBIGUÏTÉ, EXPLIQUEZ EN QUOI ELLE CONSISTE ET INDIQUEZ EXPLICITEMENT PAR QUEL CHOIX VOUS LA RÉSOLVEZ.

— UNE PRÉSENTATION SOIGNÉE EST L'ASSURANCE D'UNE CORRECTION PLUS INDULGENTE...

1. Modèle Géométrique Direct

On considère le robot manipulateur représenté sur la Figure 1 pour lequel l'opérateur décrit la tâche à l'aide des coordonnées de position du point O_6 dans le repère \mathcal{R}_0 et de l'orientation de \mathcal{R}_5 par rapport à \mathcal{R}_0 . Les constantes de longueur m_i sont connues.

Figure 1 – Robot manipulateur PRRRP

- (a) Placer les repères affines \mathcal{R}_1 à \mathcal{R}_5 liés aux corps mobiles de ce robot en suivant la méthode développée en cours. Si l'orientation et/ou le sens d'un vecteur sont ambigus, les choix AVANT, DROITE ou HAUT seront privilégiés.
- (b) En déduire la table des paramètres de Denavit et Hartenberg Modifiés, ainsi que les valeurs des coordonnées généralisées de ce robot pour la configuration de la figure.
- (c) Calculer les matrices de passage homogènes élémentaires $T_{1,2}(q_2)$ et $T_{4,5}(q_5)$ et vérifier les pour la configuration figure.
- (d) Pour la configuration de la figure donner la valeur de votre matrice $T_{0,5}$ (ne pas calculer le produit des $T_{i-1,i}$). Justifier votre réponse.

2. Modèle Différentiel Direct

On considère un robot manipulateur représenté de type PRPRR pour lequel l'opérateur décrit la tâche à l'aide des coordonnées (cartésiennes) de position du point O_6 dans le repère \mathcal{R}_0 et de l'orientation de \mathcal{R}_5 par rapport à \mathcal{R}_0 (cosinus directeurs partiels).

La modélisation du robot donne les résultats suivants :

	1	2	3	4	5
σ_i	1	0	1	0	0
a_{i-1}	0	0	0	0	0
α_{i-1}	0	0	$-\Pi/2$	$\Pi/2$	$-\Pi/2$
r_i	q_1	0	q_3	0	0
θ_i	0	q_2	0	q_4	q_5
$q_i(figure)$	> 0	0	> 0	0	0

$$T_{01} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & q_1 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \qquad T_{12} = \begin{pmatrix} c2 & -s2 & 0 & 0 & 0 \\ s2 & c2 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \qquad T_{23} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & q_3 \\ \hline 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_{34} = \begin{pmatrix} c4 & -s4 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ \hline s4 & c4 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \qquad T_{45} = \begin{pmatrix} c5 & -s5 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline -s5 & -c5 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Calculer la matrice jacobienne préférentielle $J_{3(2)}(q)$.

3. Génération de mouvements

Pour la commande d'un axe de robot on impose les profils de vitesse $\dot{q}(t)$ et d'accélération $\ddot{q}(t)$ de la figure 2. On impose que le temps d'accélération égale le temps de décélération et on suppose que la vitesse maximale V_m est toujours atteinte avec ce profil en triangle (voir figure 2).

On désire calculer les profils en position/vitesse/accélération entre configurations avec des vitesses initiales et finales non nulles. On connaît : q(0), $q(t_f)$, $\dot{q}(0)$, $\dot{q}(t_f)$ et V_m . On sait que $t_f = 2 \times t_1$.

Figure 2 – Profils en vitesse et accélération

- (a) Calculer le temps t_f et t_1 .
- (b) Calculer les valeurs d'accélération A (entre t = 0 et t_1) et de décélération B (entre t_1 et t_f).
- (c) Calculer les équations de mouvements q(t), $\dot{q}(t)$ et $\ddot{q}(t)$.
- (d) Quel problème pratique ce type de profil peut-il poser?