Basics in Language and Probability

Philipp Koehn (lecture given by Shuoyang Ding)

7 September 2017

Quotes

It must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

Noam Chomsky, 1969

Whenever I fire a linguist our system performance improves. Frederick Jelinek, 1988

Conflicts?

rationalist vs. empiricist

scientist vs. engineer

insight vs. data analysis

explaining language vs. building applications

language

A Naive View of Language

- Language needs to name
 - nouns: objects in the world (dog)
 - verbs: actions (jump)
 - adjectives and adverbs: properties of objects and actions (brown, quickly)
- Relationship between these have to specified
 - word order
 - morphology
 - function words

A Bag of Words

quick

fox

brown

lazy

dog

jump

Relationships

Marking of Relationships: Word Order

quick brown fox jump lazy dog

Marking of Relationships: Function Words

quick brown fox jump over lazy dog

Marking of Relationships: Morphology

quick brown fox jumps over lazy dog

Some Nuance

the quick brown fox jumps over the lazy dog

Marking of Relationships: Agreement

• From Catullus, First Book, first verse (Latin):

Cui dono lepidum novum libellum arida modo pumice expolitum ? Whom I-present lovely new little-book dry manner pumice polished ?

(To whom do I present this lovely new little book now polished with a dry pumice?)

• Gender (and case) agreement links adjectives to nouns

Marking of Relationships to Verb: Case

• German:

• Case inflection indicates role of noun phrases

Case Morphology vs. Prepositions

- Two different word orderings for English:
 - The woman gives the man the apple
 - The woman gives the apple **to** the man

• Japanese:

• Is there a real difference between prepositions and noun phrase case inflection?

Words

This is a simple sentence words

Morphology

Parts of Speech

PART OF SPEECH	NN	77	DT	VBZ	DT
WORDS	sentence	simple	a	is	This
MORPHOLOGY				be	
				3sg	
				present	

Syntax

Semantics

Discourse

Why is Language Hard?

- Ambiguities on many levels
- Rules, but many exceptions
- No clear understand how humans process language

• Can we learn everything about language by automatic data analysis?

data

Data: Words

- Definition: strings of letters separated by spaces
- But how about:
 - punctuation: commas, periods, etc. typically separated (tokenization)
 - hyphens: high-risk
 - clitics: Joe's
 - compounds: website, Computerlinguistikvorlesung
- And what if there are no spaces:
 伦敦每日快报指出,两台记载黛安娜王妃一九九七年巴黎 死亡车祸调查资料的手提电脑,被从前大都会警察总长的 办公室里偷走.

Word Counts

Most frequent words in the English Europarl corpus

any word

nouns

Token	Frequency in text	Content word
the	129,851	European
,	110,072	Mr
•	98,073	commission
of	71,111	president
to	67,518	parliament
and	64,620	union
in	58,506	report
that	57,490	council
is	54,079	states
a	49,965	member
	the , of to and in that is	the 129,851 , 110,072 . 98,073 of 71,111 to 67,518 and 64,620 in 58,506 that 57,490 is 54,079

Word Counts

But also:

There is a large tail of words that occur only once.

33,447 words occur once, for instance

- cornflakes
- mathematicians
- Tazhikhistan

Zipf's law

$$f \times r = k$$

f = frequency of a word r = rank of a word (if sorted by frequency) k = a constant

Zipf's law as a graph

frequency

Why a line in log-scale?

$$fr = k \implies f = \frac{k}{r} \implies \log f = \log k - \log r$$

statistics

Probabilities

• Given word counts we can estimate a probability distribution:

$$P(w) = \frac{count(w)}{\sum_{w'} count(w')} \blacksquare$$

- This type of estimation is called *maximum likelihood estimation*. Why? We will get to that later.
- Estimating probabilities based on frequencies is called the *frequentist approach* to probability.
- This probability distribution answers the question: If we randomly pick a word out of a text, how likely will it be word w?

A Bit More Formal

- We introduce a **random variable** W.
- We define a **probability distribution** p, that tells us how likely the variable W is the word w:

$$prob(W = w) = p(w)$$

Joint Probabilities

- Sometimes, we want to deal with two random variables at the same time.
- Example: Words w_1 and w_2 that occur in sequence (a **bigram**) We model this with the distribution: $p(w_1, w_2)$
- If the occurrence of words in bigrams is **independent**, we can reduce this to $p(w_1, w_2) = p(w_1)p(w_2)$. Intuitively, this not the case for word bigrams.
- We can estimate **joint probabilities** over two variables the same way we estimated the probability distribution over a single variable:

$$p(w_1, w_2) = \frac{count(w_1, w_2)}{\sum_{w_{1'}, w_{2'}} count(w_{1'}, w_{2'})}$$

Conditional Probabilities

Another useful concept is conditional probability

$$p(w_2|w_1)$$

It answers the question: If the random variable $W_1 = w_1$, how what is the value for the second random variable W_2 ?

• Mathematically, we can define conditional probability as

$$p(w_2|w_1) = \frac{p(w_1, w_2)}{p(w_1)}$$

• If W_1 and W_2 are independent: $p(w_2|w_1) = p(w_2)$

Chain Rule

• A bit of math gives us the chain rule:

$$p(w_2|w_1) = \frac{p(w_1, w_2)}{p(w_1)}$$
$$p(w_1) \ p(w_2|w_1) = p(w_1, w_2)$$

• What if we want to break down large joint probabilities like $p(w_1, w_2, w_3)$? We can repeatedly apply the chain rule:

$$p(w_1, w_2, w_3) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_1, w_2)$$

Bayes Rule

• Finally, another important rule: **Bayes rule**

$$p(x|y) = \frac{p(y|x) \ p(x)}{p(y)}$$

• It can easily derived from the chain rule:

$$p(x,y) = p(x,y)$$

$$p(x|y) p(y) = p(y|x) p(x)$$

$$p(x|y) = \frac{p(y|x) p(x)}{p(y)}$$

Expectation

ullet We introduced the concept of a random variable X

$$prob(X = x) = p(x)$$

- Example: Roll of a dice. There is a $\frac{1}{6}$ chance that it will be 1, 2, 3, 4, 5, or 6.
- We define the **expectation** E(X) of a random variable as:

$$E(X) = \sum_{x} p(x) x$$

• Roll of a dice:

$$E(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$$

Variance

• Variance is defined as

$$Var(X) = E((X - E(X))^2) = E(X^2) - E^2(X)$$

 $Var(X) = \sum_{x} p(x) (x - E(X))^2$

- Intuitively, this is a measure how far events diverge from the mean (expectation)
- Related to this is **standard deviation**, denoted as σ .

$$Var(X) = \sigma^2$$
$$E(X) = \mu$$

Variance

• Roll of a dice:

$$Var(X) = \frac{1}{6}(1 - 3.5)^{2} + \frac{1}{6}(2 - 3.5)^{2} + \frac{1}{6}(3 - 3.5)^{2}$$

$$+ \frac{1}{6}(4 - 3.5)^{2} + \frac{1}{6}(5 - 3.5)^{2} + \frac{1}{6}(6 - 3.5)^{2}$$

$$= \frac{1}{6}((-2.5)^{2} + (-1.5)^{2} + (-0.5)^{2} + 0.5^{2} + 1.5^{2} + 2.5^{2})$$

$$= \frac{1}{6}(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25)$$

$$= 2.917$$

Standard Distributions

- **Uniform**: all events equally likely
 - $\forall x, y : p(x) = p(y)$
 - example: roll of one dice
- Binomial: a serious of trials with only only two outcomes
 - probability p for each trial, occurrence r out of n times: $b(r;n,p)=\binom{n}{r}p^r(1-p)^{n-r}$
 - a number of coin tosses

Standard Distributions

- Normal: common distribution for continuous values
 - value in the range $[-\inf,x]$, given expectation μ and standard deviation σ : $n(x;\mu,\sigma)=\frac{1}{\sqrt{2\pi}\mu}e^{-(x-\mu)^2/(2\sigma^2)}$
 - also called Bell curve, or Gaussian
 - examples: heights of people, IQ of people, tree heights, ...

Estimation Revisited

We introduced last lecture an estimation of probabilities based on frequencies:

$$P(w) = \frac{count(w)}{\sum_{w'} count(w')}$$

- Alternative view: Bayesian: what is the most likely model given the data p(M|D)
- Model and data are viewed as random variables
 - model *M* as random variable
 - data *D* as random variable

Bayesian Estimation

• Reformulation of p(M|D) using Bayes rule:

$$p(M|D) = \frac{p(D|M) \ p(M)}{p(D)}$$

$$argmax_M \ p(M|D) = argmax_M \ p(D|M) \ p(M)$$

- p(M|D) answers the question: What is the most likely model given the data
- p(M) is a prior that prefers certain models (e.g. simple models)
- The frequentist estimation of word probabilities p(w) is the same as Bayesian estimation with a uniform prior (no bias towards a specific model), hence it is also called the **maximum likelihood estimation**

Entropy

• An important concept is **entropy**:

$$H(X) = \sum_{x} -p(x) \log_2 p(x)$$

• A measure for the degree of disorder

One event

$$p(a) = 1$$

$$H(X) = -1\log_2 1$$
$$= 0$$

2 equally likely events:

$$p(a) = 0.5$$
$$p(b) = 0.5$$

$$H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5$$
$$= -\log_2 0.5$$
$$= 1$$

4 equally likely events:

$$p(a) = 0.25$$

 $p(b) = 0.25$
 $p(c) = 0.25$
 $p(d) = 0.25$

$$H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25$$
$$-0.25 \log_2 0.25 - 0.25 \log_2 0.25$$
$$= -\log_2 0.25$$
$$= 2$$

4 equally likely events, one more likely than the others:

$$p(a) = 0.7$$

 $p(b) = 0.1$
 $p(c) = 0.1$
 $p(d) = 0.1$

$$H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1$$

$$-0.1 \log_2 0.1 - 0.1 \log_2 0.1$$

$$= -0.7 \log_2 0.7 - 0.3 \log_2 0.1$$

$$= -0.7 \times -0.5146 - 0.3 \times -3.3219$$

$$= 0.36020 + 0.99658$$

$$= 1.35678$$

4 equally likely events, one much more likely than the others:

$$p(a) = 0.97$$
 $p(b) = 0.01$
 $p(c) = 0.01$
 $p(d) = 0.01[1cm]$

$$H(X) = -0.97 \log_2 0.97 - 0.01 \log_2 0.01$$

$$-0.01 \log_2 0.01 - 0.01 \log_2 0.01$$

$$= -0.97 \log_2 0.97 - 0.03 \log_2 0.01$$

$$= -0.97 \times -0.04394 - 0.03 \times -6.6439$$

$$= 0.04262 + 0.19932$$

$$= 0.24194$$

Examples

$$H(X) = 0$$

$$H(X) = 3$$

$$H(X) = 1$$

$$H(X) = 1.35678$$

$$H(X) = 2$$

$$H(X) = 0.24194$$

Intuition Behind Entropy

- A good model has low entropy
- \rightarrow it is more certain about outcomes
 - For instance a translation table

e	f	p(e f)
the	der	0.8
that	der	0.2

is better than

e	f	p(e f)
the	der	0.02
that	der	0.01
•••	•••	•••

• A lot of statistical estimation is about reducing entropy

Information Theory and Entropy

- ullet Assume that we want to encode a sequence of events X
- Each event is encoded by a sequence of bits
- For example
 - Coin flip: heads = 0, tails = 1
 - 4 equally likely events: a = 00, b = 01, c = 10, d = 11
 - 3 events, one more likely than others: a = 0, b = 10, c = 11
 - Morse code: e has shorter code than q
- Average number of bits needed to encode $X \ge$ entropy of X

The Entropy of English

- We already talked about the probability of a word p(w)
- But words come in sequence. Given a number of words in a text, can we guess the next word $p(w_n|w_1,...,w_{n-1})$?
- Assuming a model with a limited window size

Model	Entropy
0th order	4.76
1st order	4.03
2nd order	2.8
human, unlimited	1.3

Next Lecture: Language Models

• Next time, we will expand on the idea of a model of English in the form

$$p(w_n|w_1, ..., w_{n-1}) (1)$$

- Despite its simplicity, a tremendously useful tool for NLP
- Nice machine learning challenge
 - sparse data
 - smoothing
 - back-off and interpolation