CMPT 419 A1

Yu Ke 3014I4915

1. Probability

$$P(A) = 0.01$$

$$P(B|A) = \frac{P(AB)}{P(A)} = 0.95 \quad P(B|A) = \frac{P(\overline{A}B)}{P(\overline{A})} = 0.05$$

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A) \times P(A)}{P(B)}$$

2.
$$A = \{ \text{rain} + \text{today} \} B = \{ \text{rain} + \text{tomorrow} \}$$

 $P(A) = 0.3 P(B) = 0.6 P(AB) = 0.25$

$$P(B|A) = \frac{P(AB)}{P(A)} = 0.83$$

3. P(win) = 0.1 + 0.2 + 0 = 0.3No, not fair

2. Weighted Squared Error

Error

Error

Error

To (w) = \frac{1}{2} \sum_{n=1}^{N} an \tan \tan - w^T \overline{\phi} (xn) \frac{1}{2}

 $\frac{\partial}{\partial w} E_{p}(w) = \sum_{n=1}^{N} a_{n} \{t_{n} - w^{T} \Phi(x_{n})\}^{2} \cdot (-\Phi(x_{n}))$

 $\nabla E_{DW}^{N} = \sum_{n=1}^{N} \left(a_{n} t_{n} - a_{n} w^{T} \hat{g}(x_{n}) \cdot (-\hat{g}(x_{n}))^{T} \right)$

Set gradient to 0

 $O^{T} = \sum_{n=1}^{N} -a_{n} t_{n} f(x_{n}) + \sum_{n=1}^{N} a_{n} w^{T} f(x_{n}) \cdot f(x_{n})$

$$\Phi = \left(\frac{\Phi_{s}(x_{0}) - \Phi_{M-1}(x_{0})}{\Phi_{o}(x_{0})}\right)$$

$$= -ant_{0}\Phi(x_{0})$$

$$= -(ant_{0})^{T} \cdot \Phi = -t^{T}a^{T} \cdot \Phi$$

$$= \Delta anw^{T}(\Phi(x_{0})\Phi(x_{0}))$$

$$= w^{T} \cdot an \cdot E\Phi_{o}(x_{0}) - \Phi_{m}(x_{0})$$

$$= w^{T} \cdot \Phi^{T} \cdot x^{T} \cdot \Phi$$

 $\Rightarrow W = (\Phi^T \alpha \Phi)^T \cdot \Phi^T \alpha t$

3. Training & Error

- 1. No. Because both training error and validation error are from sets which are randomly distributed. Training error will always underestimate validation error, but not less.
- 2. Yes. Because degree-10 contains degree-9, and degree-10 will fits better than degree-9 in unregularied regression.
- 3. No. Regularization reduces variance of the model, but it comes with a cost of increased bias in model.

For the tradeoff, you can not garvanteed that regularization must be better.

4 Regression

4.1 Getting started

1.

Iceland. The rate is 0.63%.

2.

San Marino. The rate is 0.18%.

3. *na_values='_'* puts those values which is '_'to NAN. Then separate the values from features and countries and convert them to a numpy matrix. Next get the mean values of each column and give them to NAN values.

4.2 Polynomial Regression

1.

Visulization of feature 11

Visulization of feature 12

Visulization of feature 13

4.3 Sigmoid Basis Functions

train error = 28.457937762731884

test error = 33.806724900990964

4.4 Regularized Polynomial Regression

Regularized Polynomial Regression

The x axis of the plot in the top is [0,.01,.1,1,10,100,1000] The x axis of the plot in the bottom is the sequence.

Average validation set error:

λ	Average validation set error
0	134.0872480012021
0.01	108.33938137985342
0.1	47.42014676706832
1	54.301530186869215,
10	45.617478912705465
100	28.827211650792673
1000	28.469223279788757
10000	44.06076704806574