Amendments to the Claims:

Listing of Claims:

1. (Original) A compound of formula I:

and salts, solvates and chemically protected forms thereof, wherein:

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted

C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (I), where the R^7 groups or R^8 groups of each monomers form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH; or any pair of adjacent groups from R^6 to R^9 together form a group -O-(CH₂)_p-O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group;

R¹¹ is an oxygen protecting group; and

R² is a labile leaving group.

- 2. (Original) A compound according to claim 1, wherein R⁹ is H.
- 3. (Currently Amended) A compound according to either claim 1-or-claim 2, wherein R⁶ is selected from H, OH, OR, SH, NH₂, nitro and halo.
- 4. (Currently Amended) A compound according to any one of the preceding claims 1, wherein R¹⁰ is Troc.

- 5. (Currently Amended) A compound according to any one of the preceding claims 1, wherein R¹¹ is a silyl oxygen protecting group or THP.
- 6. (Currently Amended) A compound according to any one of the preceding claims 1, wherein R² is triflate.
- 7. (Currently Amended) A compound according to any one of the preceding claims 1, wherein R⁷ and R⁸ are independently selected from H, OH, OR, SH, NH₂, NHR, NRR' and halo.
- 8. (Currently Amended) A compound according to any one of claims 1-to 6, wherein the compound is a dimer with each monomer being of formula (I), where the R^7 groups or R^8 groups of each monomer form together a dimer bridge having the formula -O-(CH₂)_n-O- linking the monomers, where n is from 3 to 12.
- 9. (Original) A compound according to claim 8, wherein n is from 3 to 7.
- 10. (Currently Amended) A compound according to either-claim 8-or claim 9, wherein the substituents R⁸ join to form the dimer bridge.
- 11. (Previously presented) A compound of formula III:

and salts, solvates, chemically protected forms and prodrugs thereof, wherein: R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted

C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or any pair of adjacent groups from R⁶ to R⁹ together form a group

-O- $(CH_2)_p$ -O-, where p is 1 or 2; R^{10} is a carbamate-based nitrogen protecting group; and R^{16} is O- R^{11} , wherein R^{11} is an oxygen protecting group, and R^{15} is R.

- 12. (Original) A compound according to claim 11, wherein when R⁷ and R⁸ are OMe, R⁶ and R⁹ are H, and R¹⁵ is R, R is selected from the group 3-methoxyphenyl, 4-biphenyl, 4-phenoxyphenyl, 3,4-methylenedioxyphenyl, trans-2-(4-methylphenyl)vinyl, trans-propenyl, 4-dimethylaminophenyl, 4-methylthiophenyl, 4-vinylphenyl, 3,4-dichlorophenyl, 4-trifluoromethylphenyl, 4-isopropylphenyl, 4-cyanophenyl, 3-pyridinyl, 4-pyridinyl, 4-formylphenyl, 4-carboxylphenyl, 2,6-dimethoxyphenyl, 4-acetanilide, 4-aminophenyl, 1-naphthyl, 5-indole, 3-aminophenyl, 2,6-difluorophenyl, 1-pyrenyl, 4-hydroxyphenyl and trans-hexenyl.
- 13. (Currently Amended) A compound according to either-claim 11-or claim-12, wherein when R^7 and R^8 are OMe, R^6 and R^9 are H, and R^{15} is R, R is selected from a C_{3-20} heterocyclyl group having a nitrogen ring atom, C_{5-20} aryl group having a nitrogen-containing substituent, or a C_{5-20} heteroaryl group having a nitrogen ring atom or a nitrogen-containing substituent.
- 14. (Previously presented) A compound of formula III:

and salts, solvates, chemically protected forms and prodrugs thereof, wherein: R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted

 C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups;

the compound is a dimer with each monomer being of formula (I), where the R⁸ groups of each monomer form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C₃₋₁₂ alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH, and R⁷ is selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or any pair of adjacent groups from R^6 to R^9 together form a group $-O-(CH_2)_0-O-$, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group; and

 R^{16} is O- R^{11} , wherein R^{11} is an oxygen protecting group, and R^{15} is an optionally substituted C_{5-20} aryl group.

- 15. (Previously presented) A compound according to claim 14, wherein the dimer bridge has the formula $-O-(CH_2)_n-O-$ linking the monomers, where n is from 3 to 12.
- 16. (Previously presented) A compound according to claim 15, wherein n is from 3 to 7.
- 17. (Currently Amended) A compound according to any one of claims 14 to 16, wherein R¹⁰ and R¹⁶ together form a double bond between N10 and C11.
- 18. (Currently Amended) A compound according to any one of claims 11 to 17, wherein R⁹ is H.
- 19. (Currently Amended) A compound according to any one of claims 11 to 18, wherein R⁷ and R⁸ are independently selected from H, OH, OR, SH, NH₂, NHR, NRR' and halo.
- 20. (Canceled)
- 21. (Currently Amended) A pharmaceutical composition containing a compound of any one of claims 11 to 19, and a pharmaceutically acceptable carrier or diluent.
- 22. (Canceled)
- 23. (Currently Amended) A method of treatment of a proliferative disease, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of any one of claims 11 to 19.

24. (Original) A method of synthesising a compound of formula I:

from a compound of formula IIa:

$$R^{8}$$
 R^{9}
 R^{10}
 R^{11}
 R^{7}
 R^{6}
 R^{10}
 R^{13}
 R^{13}
 R^{12}

wherein:

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted

C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (I), where the R^7 groups or R^8 groups of each monomers form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH; or any pair of adjacent groups from R^6 to R^9 together form a group -O-(CH₂)_p-O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group;

R¹¹ is an oxygen protecting group;

R² is a labile leaving group; and

 R^{12} and R^{13} together form =0.

25. (Previously presented) A method according to claim 24, wherein the compound of formula **IIa** is synthesised from a compound of formula **IIb**:

$$R^{8}$$
 R^{9}
 R^{10}
 R^{10}
 R^{11}
 R^{7}
 R^{10}
 R^{10}
 R^{11}
 R^{13}
 R^{12}

wherein said compound of formula IIb has R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ defined according to claim 25, and for said compound of formula IIb

R¹² is O-R¹⁴, and R¹³ is H; and

R¹⁴ is an oxygen protecting group orthogonal to R¹¹.

- 26. (Previously presented) A method according to claim 25, wherein the compound of formula **IIa** is synthesised using an oxidation reaction performed under Swern conditions, or a method involving the TPAP or the Dess Martin reagents.
- 27. (Currently Amended) A method according to any-one-of-claims 24 to 26, wherein when R^2 in the compound of formula I is $-OSO_2CH_3$, $-OSO_2(C_nF_{2n+1})$ where n=0, 1 or 4, or $-OSO_2R^S$ where R^S is an optionally substituted phenyl group, then said compound of formula I is synthesised by using a treatment step with the appropriate R^2 anhydride.
- 28. (Currently Amended) A method according to any one of claims 24 to 26, wherein when R² in the compound of formula I is –I or -Br, then said compound of formula I is synthesised by using a reaction step involving hydrazine and iodine or bromine.
- 29. (Currently Amended) A method according to any one of claims 24 to 26, wherein when R² in the compound of formula I is –Cl, then said compound of formula I is synthesised by using a reaction step involving phosphorous oxychloride.
- 30. (Original) A method of synthesising a compound of formula III:

from a compound of formula I:

wherein

R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

R and R' are independently selected from optionally substituted

C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;

R⁷ and R⁸ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo,

or the compound is a dimer with each monomer being of formula (I), where the R^7 groups or R^8 groups of each monomers form together a dimer bridge having the formula -X-R"-X- linking the monomers, where R" is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms and/or aromatic rings, and each X is independently selected from O, S, or NH; or any pair of adjacent groups from R^6 to R^9 together form a group

-O- $(CH_2)_p$ -O-, where p is 1 or 2;

R¹⁰ is a carbamate-based nitrogen protecting group;

R² is a labile leaving group;

 R^{16} is either O- R^{11} , where R^{11} is an oxygen protecting group, or OH, or R^{10} and R^{16} together form a double bond between N10 and C11; and R^{15} is R.

- 31. (Previously presented) A method according to claim 30, wherein the synthesis of said compound of formula III uses a palladium catalysed coupling step.
- 32. (Previously presented) A method according to claim 31, wherein the palladium catalyst is Pd(PPh₃)₄, Pd(OCOCH₃)₂, PdCl₂ or Pd(dba)₃.
- 33. (Currently Amended) A method according to either claim 31-or claim-32, wherein the coupling reaction is performed under microwave conditions.

34.	(Currently Amended)	A method according to any one of claims 31-to 33, wherein the
palladium catalyst is solid supported.		