Universidade do Minho

Problemas de Mecânica Analítica e Ondas

Série 8 – Vibrações Livres e Forçadas de Sistemas Físicos

- 1 Um objeto de massa 1 g suspenso de uma mola de massa desprezável é induzido em movimento oscilatório. No instante t=0 o desvio é de 43.785 cm e a aceleração de -1.7514 cm s⁻². Calcule o valor da constante elástica da mola.
- 2- Um cilindro de diâmetro de comprimento L flutua num líquido, sendo l < Lo comprimento da sua parte mergulhada no mesmo. Considera-se que não há amortecimento e que no instante t=0o cilindro é empurrado para baixo, de uma distância A,e em seguida libertado.
- (a) Qual a expressão da frequência angular da oscilação induzida em termos das outras quantidades do sistema?
- (b) Produza um gráfico representativo da velocidade em função do tempo, desde t=0 até t=T, onde T designa o período da oscilação. Os valores da amplitude e fase da velocidade devem ser indicados (na sua representação em termos da função coseno).
- 3 Um objeto de massa 0.2 Kg é suspenso de uma mola de massa desprezável e constante elástica 80 N m^{-1} . O objeto está sujeito a uma força resistiva de amortecimento dada por -bv, onde v é a sua velocidade em metros por segundo.
- (a) Sabendo que a razão da frequência angular amortecida e frequência angular natural é dada por $\sqrt{3}/2$, determine o valor da constante b.
 - (b) Calcule ainda o valor da qualidade do sistema Q.
- 4 Derive a solução de estado estacionário da equação de movimento,

$$m\frac{d^2x}{dt^2} = -k x + F_0 \sin(\omega t),$$

representativa de um oscilador forçado constituido por um objeto de massa m suspenso de uma mola de massa desprezável e constante elástica k.

5 - Considere um oscilador amortecido de massa m=0.2 Kg, constante de amortecimento b=4 Nm⁻¹s e constante elástica k=80 Nm⁻¹. Considere que ao oscilador é aplicada uma força $F=F_0\cos(\omega t)$, onde $F_0=2$ N e a frequência

angular é dada por $\omega = 30$ radianos s^{-1} .

- (a) Quais são os valores de A e δ da vibração do estado estacionário descrita por $x = A\cos(\omega t \delta)$?
 - (b) Qual é a potência média fornecida durante um ciclo?
- 6 Uma corda uniforme de comprimento $L=2.5~\mathrm{m}$ e massa $M=0.01~\mathrm{Kg}$ é sujeita a uma tensão de $T=10~\mathrm{N}.$
 - (a) Qual é a frequência do seu modo fundamental?
- (b) Se a corda for puxada transversalmente, de modo a vibrar, e em seguida um dos seus pontos a 0.5 m de um dos extremos for fixado, quais as frequências que persistirão para as vibrações do segmento da corda entre esse ponto e o correspondente extremo?

Dados auxiliares

Aceleração da gravidade $g = 9.8 \text{ m s}^{-2}$

Conversão de unidades

$$1 \text{ N} = 1 \text{ Kg m s}^{-2}$$

 $1 \text{ dyn} = 1 \text{ g cm s}^{-2} = 10^{-5} \text{ N} = 10^{-5} \text{ Kg m s}^{-2}$
 $1 \text{ J} = 1 \text{ Nm} = 1 \text{ Kg m}^2 \text{ s}^{-2}$
 $1 \text{ W} = 1 \text{ J s}^{-1} = 1 \text{ Kg m}^2 \text{ s}^{-3}$

Faz-se notar que no problema 4 a diferença relativamente ao caso considerado nas aulas teóricas é que a força sinusoidal aplicada ao objeto é dada por $F = F_0 \sin(\omega t)$ em vez de $F = F_0 \cos(\omega t)$.