EXPERIMENT-5

AIM: To find the wavelength of He-Ne laser source using transmission diffraction grating

APPARATUS: Laser Source with its holder, diffraction grating with its mount, screen, scale and optical bench

THEORY: When monochromatic radiation of wavelength 'lambda' is diffracted by diffraction grating then the nth order principal maxima if formed at angle 'theta' given by:

OBSERVATION: Grating sheet=600 lines/mm

Wavelength of he-ne laser(actual) = 632.8nm

S. No	Order of	Position of	Distance from		Sin(theta)	
	diffraction(n)	screen(x)	central spot			
			Right	Left	Right	Left
1.	1	15.9cm	6.2cm	6.5cm	0.36	0.38
2.	2	15.9cm	18cm	18.5cm	0.74	0.75
3.	1	12cm	5.2cm	5.1cm	0.39	0.39
4.	2	12cm	15cm	14.3cm	0.78	0.76

CALCULATIONS:

$$(a+b) \sin \theta = n\lambda$$

$$= \lambda_1 = \sin \theta \quad mm$$

$$600 \cdot n$$

$$= \lambda_1 = 0.36 \, mm = 600 \, nm \quad ; \lambda_5 = 0.39 \, mm = 650 \, mm$$

$$600 \quad 600$$

$$\lambda_2 = 0.38 \, mm = 643 \, nm \quad ; \lambda_6 = 0.39 \, mm = 650 \, nm$$

$$600 \quad 600$$

$$\lambda_3 = 0.74 \, mm = 616 \, nm \quad ; \lambda_7 = 0.78 \, mm = 650 \, nm$$

$$600 \times 2 \quad 1200$$

$$\lambda_4 = 0.75 \, mm = 625 \, nm \quad ; \lambda_8 = 0.76 \, mm = 633 \, nm$$

$$600 \times 2 \quad 1200$$

$$\lambda mean = \lambda_1 + \lambda_2 + - + \lambda_8$$

$$= 632.8$$

$$= 0.15 \, \%$$

RESULT: The wavelength of he-ne laser light is 633.75nm.

Percentage error is 0.15%.

PRECAUTIONS: 1) Never stare directly at the laser source, it may damage your eyes.

- 2) Before switching on the laser source, the system must be properly aligned.
- 3) Laser should neither be too close nor too far from the screen.

By: Amogh Garg

2020UCO1688

COE(Section-3)