MS864M – Physics AY19/20 S2

Mid-Semester Test

Time allowed: 1 hour

Instructions

Answer all 4 questions. Each question carries 25 marks.

This question paper consists of **2** pages. You can use the A4 handwritten formula sheet compiled by you.

You are reminded that cheating during test is a serious offence.

All working in support of your answer must be shown. Answers must be to appropriate significant figures. Take $g = 9.80 \text{ m/s}^2$.

- 1. a) In dimensional analysis, what is meant by a homogenous equation?
 - b) In the equation below, the SI units of x and x_0 are metres, t and t_0 are seconds, v_0 is m/s and a is m/s². Show whether this equation is homogenous or not.

$$x = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

c) The force on a current carrying conductor is given by $F = c (L \times B)$, where c = 2.0 amperes. Determine the force F on a conductor whose length vector is L = 1.0 i + 2.0 j and the conductor is in a magnetic field B = 0.10 k. The SI units of L and L are metre and tesla respectively.

(25 marks)

- 2. In the figure below, particles C and D move towards each other along the *x*-axis. At time t = 0, C is at x = -35.0 m and accelerates uniformly from rest at 2.00 m/s² while D is at x = 270 m and moving at constant speed 20.0 m/s.
 - a) When do the particles meet?
 - b) Where do the particles meet?
 - c) What is the speed of C when it meets D?
 - d) Sketch the position-time graphs of C and D using the same set of x-t axes.

MS864M – Physics AY19/20 S2

3. The position vector of a particle of mass 4.0 kg moving on the x-y plane is $r(t) = 2t \mathbf{i} + t^2 \mathbf{j}$, with r in metres and t in seconds. Calculate in component form the particle's

- a) average velocity from t = 0 to t = 1.0 s.
- b) instantaneous velocity at t = 1.0 s.
- c) instantaneous acceleration at t = 1.0 s.
- d) net force acting on the particle at t = 1.0 s.

(25 marks)

- 4. a) Three forces act on a particle of mass 3.0 kg such that it is at rest. Two of the forces are $F_1 = 2.0 i 7.0 j + 4.0 k$ N and $F_2 = 4.0 i + 1.0 k$ N while the third force F_3 is unknown.
 - i) Write the relationship between F_1 , F_2 and F_3 .
 - ii) Find F_3 .
 - b) The diagram below shows three blocks A, B and C attached by chords that loop over frictionless pulleys. Block B lies on a frictionless table. The masses of A, B and C are m_1 , m_2 and m_3 respectively and that $m_3 > m_2 > m_1$. The tension in the chord connecting A and B is T_1 while the tension in the chord connecting B and C is T_2 . When the blocks are released, they accelerate with a as shown. Find a and a in terms of a and a and

(25 marks)