

Agenda

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Control

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Control

Knowledge:

- ► Derive dynamical state-space models of robots as control systems
- Analyze the stability of low dimensional linear and nonlinear systems
- ► Analyze the observability and controllability of linear control systems
- Use a variety of controllers for underactuated robots

Skills:

- Implement simulations of control systems in software
- Create concise technical reports presenting solutions to proposed problems

Competencies:

- ► Choose appropriate modern control techniques to solve control problems in robotics
- Apply modern control techniques to control simulated underactuated robots

Introduction Course Plan

- ► Lesson 1: Newton-Euler Modelling
- ► Lesson 2: Euler-Lagrange Modelling
- ► Lesson 3: Simulation of Robot Dynamics
- ► Lesson 4: Stability Analysis
- ► Lesson 5: Optimal Control
- ► Lesson 6: Energy Shaping Control
- ► Lesson 7: Feedback Linearisation
- ► Lesson 8: Sliding Mode Control
- ► Lesson 9: Simulation and Implementation of Control Systems
- ► Lesson 10: Optimization-Based Control
- ► Lesson 11:
- Lesson 12:

Optimal control is the branch of control which tries to find a control law/input that maximises/minimises some optimality criterion.

Find the velocity profile of a car to go from Odense to Copenhagen in a minimum time, accounting for

- ► Only one velocity limit (or you get a speeding ticket)
- ► Acceleration limits (your car engine)
- Acceleration/deceleration limits are the same

The solution is:

- 1. Maximum acceleration until you reach the velocity limit
- Maintain velocity to maximum allowed velocity (i.e. zero acceleration if there is no friction)
- 3. Maximum deceleration when you are arriving

PID control enables to place poles of the closed-loop system.

Pole placement enables to place all the poles of the closed-loop system, but

- ► Some controllers might not be easy to implement
- ► Fast response requires good actuators
- ► Limits on the actions, bounds on the state.
- Sensitivity to system's parameters
- ► Need full state estimation (effects of noise)

Optimal control enables 'optimal' gain selection

- ➤ You must define optimality criterion (maximise or minimise), e.g. time, energy, control effort, error
- ► You can trade-of different factors (time/energy, error/control effort)
- Optimise as a function of what?
 - ► Control signal (control program)
 - ► Controller (e.g. LQR)
- Requires controllability
- ► Requires full state knowledge (Linear Quadratic Gaussian Controller)

Introduction

Optimal Control Problem (1)

In optimisation problems we need to provide a function to optimise (cost). Given a state evolution x(t) and an input u(t) we can define L(x,u) to minimise

$$\mathcal{J} = h(x(t_f)) + \int_0^{t_f} L(x(t), u(t)) dt$$

where L(x(t), u(t)) is the cost of being at state x(t) and executing action u(t), $h(x(t_f))$ is the cost of ending at state $x(t_f)$.

Optimal Control Problem (1)

In optimisation problems we need to provide a function to optimise (cost). Given a state evolution x(t) and an input u(t) we can define L(x,u) to minimise

$$\mathcal{J} = h(x(t_f)) + \int_0^{t_f} L(x(t), u(t)) dt$$

where L(x(t), u(t)) is the cost of being at state x(t) and executing action u(t), $h(x(t_f))$ is the cost of ending at state $x(t_f)$.

Problem: Find x(t) and u(t) that minimise the cost (for our system).

Introduction

Optimal Control Problem (2)

Optimize

$$\mathcal{J} = h(x(t_f)) + \int_0^{t_f} L(x(t), u(t)) dt$$

Classes of problems

- ► Regulation problem: $x(t_f) = 0$ (or $x_e(t_f) = x(t_f) x_d$)
- Finite vs infinite time optimal control $t_f = \infty$
- ightharpoonup Mathematically $\mathcal J$ is called functional (a function of a function)
- Related to Calculus of Variations (like Lagrange equations)

Introduction to Optimization

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Contro

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Contro

Find $x^* = \arg\min_x f(x)$ (i.e. find x^* such that $f(x) > f(x^*)$)

This is a **fundamental** problem.

Many problems can be stated as optimisation problems, e.g. training a neural network, Linear regression, Gaussian Processes.

Introduction to Optimization Optimization Methods

There are many optimisation algorithms:

- ▶ Gradient Based
 - ► Find local solutions
 - ► Fast convergence
 - Conjugate Gradient, Quasi-Newton Methods
- ▶ Gradient Free
 - Can find global solutions
 - ► Slow convergence
 - ► Genetic algorithms, Stochastic annealing, Particle Swam Optimisation

Introduction to Optimization Constrained Optimization Problem

The graph of a cost function is illustrated below, with constraint indicated by triangle.

A constrained optimization problem is given by

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g(x) = 0 \\ & h(x) \geq 0 \end{array}$$

Introduction to Optimization Linear Programming Problem

A *Linear Programming Problem* (LP) can be expressed in the *standard form*

 $\begin{array}{ll} \text{minimize} & c^Tx\\ \text{subject to} & Ax \leq b\\ & x \in \mathbb{R}^n\\ & c \in \mathbb{R}^n,\, A \in \mathbb{R}^{m \times n},\, b \in \mathbb{R}^m \end{array}$

Introduction to Optimization Linear Programming Exercise

Solve the following linear programming problem

$$\begin{array}{ll} \text{minimize} & 225x + 200y \\ \text{subject to} & y \geq 25 \\ & x \geq 40 \\ & x + y \leq 150 \end{array}$$

Use YALMIP in MATLAB to formulate the optimization problem. Download it here: https://yalmip.github.io/download/

Introduction to Optimization Quadratic Programming

A *Quadratic Programming Problem* (QP) is given by

where $B=B^T\in\mathbb{R}^{n\times n},\,A_1\in\mathbb{R}^{m\times n},\,A_2\in\mathbb{R}^{p\times n},\,b\in\mathbb{R}^n,\,c\in\mathbb{R}^m,\,d\in\mathbb{R}^p,$ and the minimization is over the decision variable $x\in\mathbb{R}^n.$ The inequality $A_2x\leq d$ is interpreted componentwise.

Introduction to Optimization Quadratic Programming Exercise

Solve the following optimization problem graphically

$$\begin{array}{ll} \text{minimize} & (x_1-2)^2+(x_2-2)^2\\ \text{subject to} & 2x_1+4x_2\leq 28\\ & 5x_1+5x_2\leq 50\\ & x_1\leq 8\\ & x_2\leq 6\\ & x_1\geq 0\\ & x_2\geq 0 \end{array}$$

Introduction to Optimization Quadratic Programming Exercise

Solve the following optimization problem graphically

$$\begin{array}{ll} \text{minimize} & (x_1-2)^2+(x_2-2)^2\\ \text{subject to} & 2x_1+4x_2\leq 28\\ & 5x_1+5x_2\leq 50\\ & x_1\leq 8\\ & x_2\leq 6\\ & x_1\geq 0\\ & x_2\geq 0 \end{array}$$

Introduction to Optimization Sequential Quadratic Programming (Motivation)

Optimizations problems are often nonlinear and given by

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g(x) = 0 \\ & h(x) \geq 0 \end{array}$$

Can a QP be used for solving such optimization problem?

Introduction to Optimization Sequential Quadratic Programming

Sequential Quadratic Programming Problem (SQP) solves an quadratic approximation to the nonlinear problem at each iteration x_k , i.e.

$$\begin{array}{ll} \text{minimize} & f(x_k) + \nabla f(x_k)^T \delta + \frac{1}{2} \delta^T H \mathcal{L}(x_k, \lambda_k, \sigma_k) \delta \\ \text{subject to} & g(x_k) + \nabla g(x_k)^T \delta \geq 0 \\ & h(x_k) + \nabla h(x_k)^T \delta = 0 \end{array}$$

where H is the Hessian of f and $\mathcal L$ is the Lagrangian $\mathcal L=f(x)-\lambda g(x)-\sigma h(x).$

Introduction to Optimization Sequential Quadratic Programming Algorithm

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Control

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Contro

We consider a linear control system of the form:

$$\begin{array}{rcl} \dot{x} & = & Ax & + & Bu \,, \quad x(0) = x_0 \\ y & = & Cx \end{array}$$

A control law for such a system is said to be *optimal*, if it minimizes the cost functional:

$$\mathcal{J} = \int_0^\infty x^T Q x + u^T R u \ dt$$

where Q is a positive semi-definite matrix ($Q = Q^T \succeq 0$) and R is a positive definite matrix ($R = R^T \succ 0$).

The Algebraic Riccati Equation

An Algebraic Riccati Equation (ARE) is a second order matrix equation in an indeterminate $P = P^T \in \mathbb{R}^{n \times n}$ of the form:

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are matrices, $R = R^T \in \mathbb{R}^{m \times m}$ is a positive definite matrix, and $Q = Q^T \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix.

The Algebraic Riccati Equation

An Algebraic Riccati Equation (ARE) is a second order matrix equation in an indeterminate $P = P^T \in \mathbb{R}^{n \times n}$ of the form:

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are matrices, $R = R^T \in \mathbb{R}^{m \times m}$ is a positive definite matrix, and $Q = Q^T \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix.

The matrix P is called a *stabilizing solution* to the ARE, if it satisfies the equation, and further satisfies that the eigenvalues of $A - BR^{-1}B^{T}P$ are in the open left half plane.

Linear Quadratic Regulation Optimal State Feedback Control

THEOREM. Consider a linear system of the form:

$$\begin{array}{rcl} \dot{x} & = & Ax & + & Bu \,, \quad x(0) = x_0 \\ y & = & Cx \end{array}$$

Let P be a stabilizing solution to the ARE:

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

Then the optimal state feedback law is given by:

$$u = Fx$$
 where $F = -R^{-1}B^TP$

Linear Quadratic Regulation Output Variance Minimization

By introducing y = Cx into a cost functional of the type

$$\mathcal{J} = \int_0^\infty \rho y^T y + u^T u \, dt \,, \quad \rho \in \mathbb{R}$$

the optimal control problem can be written as

$$\mathcal{J} = \int_0^\infty \rho y^T y + u^T u \, dt$$

$$= \int_0^\infty \rho x^T C^T C x + u^T u \, dt$$

$$= \int_0^\infty x^T Q x + u^T R u \, dt \,, \quad Q = \rho C^T C \,, R = I$$

Linear Quadratic Regulation Tuning using Bryson's Rule

Alternatively, use a cost functional of the type

$$\mathcal{J} = \int_0^\infty x^T Q x + u^T R u \, dt$$

where ${\it Q}$ and ${\it R}$ are diagonal matrices with this can be written as an optimal control problem

$$Q_{ii} = \frac{1}{\text{maximum acceptable value of } x_i^2}$$
 $R_{jj} = \frac{1}{\text{maximum acceptable value of } u_j^2}.$

Optimal Control Example

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Control

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Contro

Optimal Control Example (1)

We consider once again the system

$$\dot{x} = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} x + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} -3 & 2 \end{bmatrix} x$$

Computing an optimal state feedback for the cost functional:

$$\mathcal{J} = \int_0^\infty \rho y^T y + u^T u \ dt$$

with $\rho = 800$ can be done with the MATLAB command

$$Fopt = -lqr(A,B,rho*C'*C,1)$$

Optimal Control Example (2)

```
29
```

```
1 %% System Definition
2 A = [2 -3;4 -5];
3 B = [2; 3];
4 C = [-3 2];
5 m = size(B,2);
6 sys = ss(A,B,C,0);
7 %% Linear Quadratic Regulation
8 rho = 800;
9 Fopt = -lgr(sys.A,sys.B,rho*sys.C'*sys.C,eye(m))
```

Optimal Control Example (3)

This yields the result:

$$F_{\mathsf{opt}} = \begin{bmatrix} 69.3536 & -47.8542 \end{bmatrix}$$

In comparison, a pole assignment with the poles $\{-4, -8\}$ leads to the gain:

$$F = \begin{bmatrix} 72 & -51 \end{bmatrix}$$

A first glance would suggest that the pole assignment with its larger gains would have faster dynamics. However, the optimal feedback assigns complex poles, giving a better rise-time.

Optimal Control

Consider the system model

$$\dot{x} = Ax + Bu$$

where

$$A = \begin{bmatrix} -13 & -6 & 6 \\ -6 & -16 & -5 \\ 6 & -5 & -8 \end{bmatrix}$$
$$B = \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$$

Design a linear quadratic regulator for the system, where Q = I and R = I.

Finite-Horizon Linear Quadratic Regulation

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Contro

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Control

Finite-Horizon Linear Quadratic Regulation

Consider a linear control system of the form

$$\begin{array}{rcl} \dot{x} & = & Ax & + & Bu \,, \quad x(0) = x_0 \\ y & = & Cx \end{array}$$

A control law for such a system is said to be *optimal*, if it minimizes the cost functional:

$$\mathcal{J} = x_f^T Q_f x_f + \int_0^{t_f} x^T Q x + u^T R u \ dt$$

where Q and Q_f are positive semi-definite matrices ($Q=Q^T\succeq 0, Q_f=Q_f^T\succeq 0$) and R is a positive definite matrix ($R=R^T\succ 0$).

Finite-Horizon Linear Quadratic Regulation The Differential Riccati Equation

The continuous-time *Differential Riccati Equation* is a first order differential equation depending on second order matrix expressions in an indeterminate $S(t) = S^T(t) \in \mathbb{R}^{n \times n}$ of the form:

$$-\dot{S}(t) = A^{T}S(t) + S(t)A - S(t)BR^{-1}B^{T}S(t) + Q$$

with terminal constraint

$$S(t_f) = Q_f$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are matrices, $R = R^T \in \mathbb{R}^{m \times m}$ is a positive definite matrix, and $Q = Q^T \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix.

Finite-Horizon Linear Quadratic Regulation The Differential Riccati Equation

The continuous-time *Differential Riccati Equation* is a first order differential equation depending on second order matrix expressions in an indeterminate $S(t) = S^T(t) \in \mathbb{R}^{n \times n}$ of the form:

$$-\dot{S}(t) = A^{T}S(t) + S(t)A - S(t)BR^{-1}B^{T}S(t) + Q$$

with terminal constraint

$$S(t_f) = Q_f$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are matrices, $R = R^T \in \mathbb{R}^{m \times m}$ is a positive definite matrix, and $Q = Q^T \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix.

The matrix function S(t) is called a *stabilizing solution* to the differential Riccati equation, if it satisfies the equation, and further satisfies that the eigenvalues of $A - BR^{-1}B^TS(t)$ are in the open left half plane for all t.

Finite-Horizon Linear Quadratic Regulation Optimal State Feedback Control

THEOREM. Consider a linear system of the form:

$$\begin{array}{rcl} \dot{x} & = & Ax & + & Bu \,, \quad x(0) = x_0 \\ y & = & Cx \end{array}$$

Let S(t) be a stabilizing solution to the differential Riccati equation:

$$-\dot{S}(t) = A^{T}S(t) + S(t)A - S(t)BR^{-1}B^{T}S(t) + Q$$

Then the optimal state feedback law is given by:

$$u = F(t)x$$
 where $F(t) = -R^{-1}B^{T}S(t)$

Finite-Horizon Linear Quadratic Regulation Strict Final Boundary Value Condition

To impose constraints at the final time t_f of the type

$$x(t_f) = x_f$$

the terminal weight Q_f can be set to infinite. This requires a change of variables where $P(t) = S(t)^{-1}$ is used.

One may now find a solution to the differential Riccati equation

$$-\dot{P}(t) = -P(t)A^{T} - AP(t) + BR^{-1}B^{T} - P(t)QP(t)$$

with terminal constraint

$$P(t_f) = 0$$

This equation can be solved backwards in time.

Linear Quadratic Optimal Tracking

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Control

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Contro

Linear Quadratic Optimal Tracking

Consider a system of the form

$$\dot{x} = f(x, u)$$

and a nominal trajectory $(x_d(t), u_d(t))$.

A control law for such a system is said to be optimal, if it minimizes the cost functional:

$$\mathcal{J} = (x - x_d(t_f))^T Q_f(x - x_d(t_f)) + \int_0^{t_f} (x - x_d)^T Q(x - x_d) + (u - u_d)^T R(u - u_d) dt$$

where Q and Q_f are positive semi-definite matrices ($Q=Q^T\succeq 0, Q_f=Q_f^T\succeq 0$) and R is a positive definite matrix ($R=R^T\succ 0$).

Linear Quadratic Optimal Tracking

Consider a system of the form

$$\dot{x} = f(x, u)$$

and a nominal trajectory $(x_d(t), u_d(t))$.

A linearization of the system about the nominal trajectory is given by

$$\dot{\hat{x}} = \dot{x} - x_d = f(x, u) - f(x_d, u_d)$$

This implies that

$$\dot{\hat{x}} \approx f(x_d, u_d) + \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial u}\hat{u} - f(x_d, u_d)$$
$$\approx A(t)\hat{x} + B(t)\hat{u}$$

where

$$A(t) = \frac{\partial f}{\partial x}(x_d, u_d)$$
 $B(t) = \frac{\partial f}{\partial u}(x_d, u_d)$

THEOREM. Consider a time-varying linear system of the form:

$$\begin{array}{rcl} \dot{x} & = & A(t)x & + & B(t)u \,, \quad x(0) = x_0 \\ y & = & Cx \end{array}$$

Then the optimal tracking state feedback control law is given by:

$$u = u_d(t) - R^{-1}B^T[S_{xx}(t)x + s_x(t)]$$

where

$$-\dot{S}_{xx}(t) = A^T S_{xx}(t) + S_{xx}(t)A - S_{xx}(t)BR^{-1}B^T S_{xx}(t) + Q$$
$$-\dot{s}_x(t) = -Qx_d(t) + [A^T - S_{xx}BR^{-1}B^T]s_x(t) + S_{xx}(t)Bu_d(t)$$
$$-\dot{s}_0(t) = x_d^T(t)Qx_d(t) - s_x^T(t)BR^{-1}B^T s_x(t) + 2s_x(t)^T Bu_d(t)$$

with boundary conditions $S_{xx}(t_f) = Q_f$, $s_x(t_f) = -Q_f x_d(t_f)$, $s_0(t_f) = x_d^T(t_f)Q_f x_d(t_f)$.

Discrete-Time Linear Quadratic Regulation

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Contro

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Contro

Discrete-Time Linear Quadratic Regulation

We consider a discrete-time linear control system of the form:

$$\begin{array}{rcl} x[k+1] & = & Ax[k] & + & Bu[k] \,, & x[0] = x_0 \\ y[k] & = & Cx[k] \end{array}$$

A control law for such a system is said to be *optimal*, if it minimizes the cost functional:

$$\mathcal{J} = \sum_{k=0}^{N-1} x^{T}[k]Qx[k] + u^{T}[k]Ru[k]$$

where Q is a positive semi-definite matrix ($Q = Q^T \succeq 0$) and R is a positive definite matrix ($R = R^T \succ 0$).

Discrete-Time Linear Quadratic Regulation The Riccati Difference Equation

The *Riccati Difference Equation* is a second order matrix equation in an indeterminate $P = P^T \in \mathbb{R}^{n \times n}$ of the form:

$$A^{T}S[k]A - (A^{T}S[k]B)(R + B^{T}S[n]B)^{-1}(A^{T}S[k]B)^{T} + Q = S[k-1]$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are matrices, $R = R^T \in \mathbb{R}^{m \times m}$ is a positive definite matrix, and $Q = Q^T \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix.

Discrete-Time Linear Quadratic Regulation The Riccati Difference Equation

The *Riccati Difference Equation* is a second order matrix equation in an indeterminate $P = P^T \in \mathbb{R}^{n \times n}$ of the form:

$$A^{T}S[k]A - (A^{T}S[k]B)(R + B^{T}S[n]B)^{-1}(A^{T}S[k]B)^{T} + Q = S[k-1]$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are matrices, $R = R^T \in \mathbb{R}^{m \times m}$ is a positive definite matrix, and $Q = Q^T \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix.

The matrix S is a *fixed-point* of the Riccati difference equation if S[k] = S[k-1], i.e.

$$A^{T}SA - (A^{T}SB)(R + B^{T}SB)^{-1}(A^{T}SB)^{T} + Q = S$$

Linear Quadratic Regulation Optimal State Feedback Control

THEOREM. Consider a linear system of the form:

$$x[k+1] = Ax[k] + Bu[k], \quad x[0] = x_0$$

 $y[k] = Cx[k]$

Let S be a stabilizing solution to the DARE:

$$A^{T}SA - (A^{T}SB)(R + B^{T}SB)^{-1}(A^{T}SB)^{T} + Q = S,$$
 $S[N] = 0$

Then the optimal state feedback law (LQR) is given by:

$$u[k] = F[k]x[k]$$
 where $F = (R + B^TS[k]B)^{-1}B^TS[k]Ax[k]$

Discretized Optimal Control

Introduction

Introduction to Optimization

Linear Quadratic Regulation Example: Optimal Control

Finite-Horizon Linear Quadratic Regulation

Linear Quadratic Optimal Tracking

Discrete-Time Linear Quadratic Regulation

Discretized Optimal Control

Discretized Optimal Control Introduction

The optimal control problem in finite time for linear systems can be discretised (over time) and solved as an optimisation problem.

Given an initial state x_0 the actions u(t) $(u(t_k))$, we can determine the whole state space trajectory.

The cost function becomes a function of u(t) $(u(t_k))$ and the initial position x_0 .

New problem: Find $u(t_k)$ that optimises the cost function \mathcal{J} .

Discretized Optimal Control Reformulation of Optimal Control Problem

Consider a discrete time linear state space model

$$x_{k+1} = Ax_k + Bu_k$$

Discretized Optimal Control Reformulation of Optimal Control Problem

Consider a discrete time linear state space model

$$x_{k+1} = Ax_k + Bu_k$$

Problem: Find a control sequence u_k $k=0,1,\ldots,N-1$ that drives the system state from x_0 to x_N in N steps while minimizing the cost function

$$\mathcal{J} = \frac{1}{2} \sum_{k=0}^{N-1} \left(x_k^T Q x_k + u_k^T R u_k \right)$$

Discretized Optimal Control Time Evolution of State

Note that we can write

$$x_{1} = Ax_{0} + Bu_{0}$$

$$x_{2} = A^{2}x_{0} + ABu_{0} + Bu_{1}$$

$$x_{3} = A^{3}x_{0} + A^{2}Bu_{0} + ABu_{1} + Bu_{2}$$

$$\vdots$$

$$x_{N} = A^{N}x_{0} + \sum_{i=0}^{N-1} A^{i}Bu_{N-1-i}$$

Discretized Optimal Control Time Evolution of State (Matrix Form)

Define vectors $X = [x_1, x_2, \dots, x_N]^T$ and $U = [u_0, u_1, \dots, u_{N-1}]^T$ and define matrices

$$\Gamma = \begin{bmatrix} B & 0 & 0 & \cdots & 0 \\ AB & B & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & A^{N-3}B & \cdots & B \end{bmatrix}, \qquad \Omega = \begin{bmatrix} A \\ A^2 \\ \vdots \\ A^N \end{bmatrix}$$

Then we can write

$$X = \Omega X_0 + \Gamma U$$

where
$$X_0 = [x_0, x_0, \dots, x_0]^T$$
.

Discretized Optimal Control

Finite Time Linear Quadratic Regulation (Matrix Form)

The quadratic cost function from LQR can be written as

$$\mathcal{J} = b + U^T C + \frac{1}{2} U^T A U$$

where

$$b = \frac{1}{2} (X_0 \Omega)^T \mathbf{Q} \Omega X_0$$
$$C = \Gamma^T \mathbf{Q} \Omega X_0$$
$$A = \Gamma^T \mathbf{Q} \Gamma + \mathbf{R}$$

and
$$\mathbf{Q} = \operatorname{diag}(Q, Q, \dots, Q), \, \mathbf{R} = \operatorname{diag}(R, R, \dots, R).$$

Discretized Optimal Control Trajectory Optimization

Download OptimTraj – Trajectory Optimization Library that is available here (or via search in Add-On Explorer): https://se.mathworks.com/matlabcentral/fileexchange/54386-optimtraj-trajectory-optimization-library

Run the demo on the acrobot and do the following modifications

- ► Change the cost function to include the angular velocities of the joints (try different weights and see their effect).
- ► Change the final time to 4 s.
- ► Change the torque limit to 10 Nm.
- Change the torque limit to 10 Nm and use final time of 2 s.
- ► Change the torque limit to 20 Nm and change the objective to be minimum time.