УДК 550.4

Эколого-геохимическое изучение урболандшафтов г. Киев с учетом их типизации

Жук Е. А., Жук А. М. Институт геохимии, минералогии и рудообразования НАН Украины, Киев

В стажье изложены результаты исследования урбовандшафтов г. Киев с учетом их гивизации.

Введение. Решение экологических проблем городов в рамках концепции устойчивого развития территорий невозможно без оценки эколого-геохимического состояния почвенного покрова. Одна из важнейших характеристик его состояния на урбанизированных территориях — уровень техногенного химического загрязнения.

В техногенном загрязнении г. Киева ведущее место принадлежит тяжелым металлам (ТМ), продуцентами которых выступают многочисленные предприятия и автотранспорт. В большинстве случаев один и тот же участок грунта подвергается воздействию нескольких источников загрязнения, что ведет к образованию гетерогенных ореолов загрязнения, обладающих сложной зональностью строения и высокой контрастностью концентрации ТМ. Предыдущими исследованиями [3, 4, 7, 10] были выделены приоритетные металлы загрязнители: Zn, Pb, Cu.

Для изучения эколого-геохимической обстановки в городе с учетом многообразия источников загрязнения нами изучен более широкий спектр химических элементов. Получение количественных результатов по возможности большего набора элементов позволяет установить аномалии малоизученных элементов.

Цель исследований — выделение приоритетных элементов-загрязнителей на территории г. Киева с различной степенью техногенной нагрузки, уточнение эколого-геохимической ситуации в городе для малоизученных элементов.

Объекты и методы. Почвенный покров территории города изначально был представлен преимущественно комплексом дерново-подзолистых почв с легким гранулометрическим составом. Наиболее распространены дерново-слабоподзолистые песчаные и глинисто-песчаные почвы на древнеаллювиальных и флювиогляциальных отложениях. В целом, почвенный покров города представляет собой заметно преобразованные механически и химически дерново-подзолистые грунты, а также искусственно созданные, не имеющие в большинстве случаев разделения на генетические горизонты, с высоким содержанием антропогенного материала. К приоритетным факторам трансформации почв города относятся: механическое нарушение при строительстве, подсыпка грунта (иногда с использованием промышленного мусора) и создание нового почвенного слоя, атмосферные выпадения.

Изучение образцов грунта проводилось по трем выборкам с учетом типизации урбанизированных ландшафтов.

К первой выборке отнесены пробы, отобранные на правом и левом берегу р. Днепр (г. Киев), на территориях, прилегающих к промышленной зоне с различной специализацией (выборка 1). Ко второй выборке принадлежат образцы грунта, отобранные на территориях, подверженных влиянию автодорог с асфальтовым покрытием (выборка 2). В третью выборку объединены пробы грунта из рекреационной зоны города парки Партизанской Славы и Голосеевский (выборка 3). Всего отобрано 189 почвенных образцов. Отбор проб производили с глубины 0-5 см. Также на левом берегу в районе ТЭЦ-6 был заложен почвенный разрез, из которого послойно отбирали пробы для изучения вертикального распределения элементов-загрязнителей.

В образцах грунта общепринятыми методами [1] определяли физико-химические свойства. Определенные средние показатели физико-химических свойств грунтов разных выборок схожи, их параметры изменяются в незначительном интервале (pH — от 6,95 до 7,2, Eh — от 265 до 340 mV). Валовое количество металлов определялось эмиссионным спектральным анализом. Количество подвижных (кислоторастворимых) форм приоритетных металлов загрязнителей определялось методом атомной абсорбции на спектрофотометре С—115 и "Сатурн".

Для учета суммарного влияния на почву ТМ был использован интегральный коэффициент накопления по тринадцати элементам (Zc) [9]. В качестве фона были использованы данные из работы [4].

Таблица 1. Распределение химических элементов по выборке 1

Элемент	Содержана	40, Mr/Kr	Коэффициент концентрации					
	min-max	фон	средний	максимальный				
Mn	80-10000	450	2,6	22,2				
Ni	8-200	7	5,6	28,6				
Ti	400-2000	3200	0,6	1,5				
Cr	3-300	20	3,6	7,5				
Nb	5-10	16	0,6	1,9				
Qu	6-100	16	3,8	6,3				
Pb	1-500	10	9,8	50				
Bi	2-4	1,2	1,9	3,3				
Zn	60-300	30	5,3	10				
Sn	4-10	1,9	1,1	2,1				
Be	0,5-1	1,5	0,8	1,3				
Y	15-60	12	2,7	5				

Таблица 2. Распределение химических элементов по выборке 2

Эпемент	Содержа	Me, WE/KE	Коэффициент концентрации					
	min-max	фон	средний	максимальный				
Mn	100-350	450	0,4	2,2				
N	4-20	7	1,2	2,9				
TI	1000-4000	3200	0,6	1,3				
Cr	6-60	20	1,2	3,0				
Nb	5-20	16	0,6	1,3				
QJ	10-150	16	2,9	9,4				
Pb	10-200	10	4,9	20,0				
Bì	1-5	1,2	2,2	4,2				
Zh.	9-1000	30	5,4	33,3				
Sn	1-5	1,9	0,7	2,6				
Be	1-2	1,5	0,7	1,3				
Y	20-50	12	3,2	4,2				

Таблица 3. Распределение химических элементов по выборке 3

Эпеменя	Содержан	ие, мг/кт	Коэффициент концентрации					
	min-max	фон	средний	MARCHMESTEREM				
Mn	10-600	450	0,7	2,2				
Ni	1-15	7	1,3	2,1				
Ti	1000-6000	3200	0,9	1,9				
Or	10-100	20	1,9	5,0				
No	5-10	16	0,6	0,6				
Oii	10-40	16	1,4	2,5				
Pb	1-60	10	2,8	6,0				
B	2-6	1,2	3,4	5,0				
Zn	35-100	30	2,6	3,3				
Sn	0-10	1,9	1,1	5,3				
Be	0,5-1	1,5	0,6	0,7				
Y	15-60	12	3,6	5,0				

Об избыточном накоплении химического элемента судили по величине коэффициента концентрации (К_c > 1), рассчитанного относительно фона. Полученные данные представлены в табл. 1–3. Построены корреляционные матрицы по трем выборкам (табл. 4–6), коэффициент парной корреляции рассчитывался по формуле 3.19 из работы [5].

Результаты и обсуждение. Наши исследования позволили уточнить сложившиеся на основании результатов ранее проведенных работ представления об ассоциации химических элементов-загрязнителей. Для каждой выборки получен типоморфный ряд, построенный по значениям коэффициента концентрации в порядке убывания: выборка 1 - Pb - Ni - Zn - Cu - Cr - Y - Mn; выборка 2 - Zn - Pb - Y - Cu - Bi - Ni; выборка 3 - Bi - Pb - Zn - Cr - Ni.

Следует отметить, что для выборки 1 практически все элементы, наиболее сильно загрязняющие почву, содержатся в количестве, превышающем гигиенический норматив [6], а коэффициент концентрации всех изучаемых элементов за исключением Ве, Nb, Ti, превышает единицу (K_c (средний) > 1).

Для выборки 2 превышение гигиенического норматива наблюдается для трех элементов (Zn, Pb, Cu), K_c (cp) > 1характерен для никеля, хрома, меди, свинца, висмута, цинка, олова и иттрия.

Для выборки 3 значения концентрации химических элементов, превышающие ПДК, не зафиксированы, К_с (ср) > 1наблюдается для цинка, никеля, хрома, меди, свинца, олова, иттрия, что может быть объяснено близостью мест пробоотбора к автодорогам.

Суммарный коэффициент накопления Zc изменяется от 9 (выборка 3) до 12 (выборка 2) и 26 (выборка 1). Парный корреляционный анализ показал, что для выборки 3 карактерно наличие сильной корреляционной связи между иттрием и титаном. В выборке 2 можно отметить появление сильной связи между хромом, медью, свинцом, бериллием и никелем, медью и свинцом, свинцом и оловом, а также очень сильной связи между оловом, бериллием, свинцом. Для выборки 1 отмечено возрастание количества сильных и очень сильных связей. Особо отметим наличие очень сильной корреляционной связи между свинцом и иттрием (г = 0,87), в то время, как для выборок 2 и 1 коэффициент корреляции изменяется от < 0,1 до 0,21 соответственно.

Изучая почвенный разрез в районе ТЭЦ-6, отметим уменьшение значения концентрации изучаемых ТМ в первых пяти сантиметрах, что соответствует мощности почвенного покрова, лежащего на аллювиальных песках.

Вместе с изучением валового содержания проводилось изучение подвижных (экстрагируемых децинормальной соляной кислотой) форм для четырех элементов (никеля, меди, цинка, кобальта). Установлено, что их распределение, как латеральное, так и по разрезу, отличается от распределения валового содержания. Наибольшая глубина проникновения ПФ меди достигает 15 см, никеля и цинка — 10, кобальта — 5 см.

Для интерпретации результатов изучения распределения ПФ ТМ необходима наработка большего количества материала по вертикальному распределению.

Табинна 4.

Табинца 5.

Табянца б.

Коэффициенты парной корредяции химических элементов для выборки 1

Mh	1											
N	0,89	1	<u> </u>	_								
Ti	0,92	40,1	1		_							
C)	0,89	` 0,81	0,94	1	<u></u>							
Nb	0,96	0,83	0,77	0,93	1							
Cu	-0,27	-0,06	0,51	-0,15	-0,22	1		_				
Pb	<0,10	0,05	0,91	0,30	<0,10	0,54	1	<u> </u>				
Bi	-0,35	-0,26	-0,10	-0,24	-0,33	-0,19	-0,18	1				
Zn	-0,21	0,15	0,53	-0,06	-0,21	0,67	Q.66	0,07	1			
Sn	<0,10	0,09	0,86	0,32	0,18	0,46	0,67	-0,41	0,40	1		
Вe	-0,23	-0,11	0,91	0,12	<0,10	0,72	0,87	-0,17	0,67	0,80	1	
Y	-0,27	-0,14	0,89	<0,10	-0,16	0,64	0,81	0,11	0,78	0,50	0,70	1
Эпемент	Mh	Ni	π	C r	Nb	Qu	Pb	Bi	Zn	Sm	Be	Y

Примечание. Здесь и в таби. 5, 6 курсивом выделена сильная корреляционная связь (r - 0,55-0,75), жирным шрифтом – очень сильная (r - 0,76-1,0).

Коэффициенты парной корреляции химических элементов для выборки 2

Mi 7 0.32 Ti 0,36 0,38 <0,10 0,60 0.51 a 0,49 0,40 No 0,23 0,69 Q <0,10 0,69 **⊲**0,10 0,39 0,15 1 Pb 0,10 0,65 0,12 0,33 0,51 0,61 Bi -0,41 -0,31 -0,38 -0,40 -0,47 -0,13 -0,21 1 <0,10 -0,21 -0,19 <0,10 <0,10 0,11 **40,1** Zn -0,10 1 -0,41 0,32 0,42 0,49 0,45 0,42 0,80 0,25 0,64 1 Sn. <0,10 0,18 0,63 -0,40 0,77 Be 0,47 0,53 0,80 0,39 0,79 -0,19 <0,10 0,31 0,11 0,21 0.65 0,31 0,56 <0,10 -0,28 0.21 1 Эпемент Mn N Τī **C**r Nb Cu Pb Bi Zη Sn Вe

Коэффициенты парной корредяции химических элементов для выборки 3

		козффи	писнты :	парнок к	оррежиц	HN XUMU	іеских эл	exentor.	ATU BPEDO	рки 3		
Mh	1											
N	0,66	1										
Ti	0,47	0,40	1									
C _T	Q58	0,57	0,64	1								
Nb	0,49	0,46	0,59	0,45	1		_					
Cu	-0,10	0,37	-0,15	<0,10	-0,10	1						
Pb	-0,09	0,21	⊲0,10	<0,10	<0,10	0,25	1					
Bi	0,09	0,13	<0,10	0,23	-0,18	<0,10	0,19	1				
Zn	-0,15	0,31	-0,24	<0,10	-0,15	0,39	0,50	-0,22	1			
Si	<0,10	0,20	0,15	<0,10	<0,10	0,22	0,23	0,40	<0,10	1		
Be	0,25	0,58	0,33	0,32	<0,10	0,23	0,50	0,50	0,32	0,24	1	
Y	0,48	0,65	0,76	0,69	0,49	<0,10	0,21	0,31	0,05	0,09	0,68	1
Эпемент	Mn	Ni.	Ti	۵r	Nb	Cu	Pb	Bi	Zn	Sn	Be	Y

При изучении литогеохимических аномалий Киева обращает на себя внимание наличие иттрия (третий класс опасности, экологически и биологически малоизучен, на производстве токсичен, некоторые изотопы обладают выраженным канцерогенным действием [2]), возможно, как следствие эмиссий с ТЭЦ. Его коэффициент накопления повсеместно превышает единицу, что может быть связано с неточностью при выборе фо-

новых значений. Коэффициент корреляции иттрия с приоритетными металлами-поллютантами — свинцом, цинком, медью, достаточно высокий. Этот факт, на наш взгляд, требует дополнительного изучения.

Выводы. По значению валового содержания химических элементов возможно разграничение геохимических полей влияния различных источников загрязнения. Набор химических элементов в почвах геохимических аномалий разных техногенных источников в ббольшинстве случаев идентичен. Однако, разделение полей их влияния возможно на основании типоморфных рядов с учетом коэффициентов концентрации и кореляционных связей между элементами.

Наиболее плотные корреляционные связи свойственны элементам аномальных полей более интенсивных и мощных источников загрязнения. Эти результаты подтверждают правильность выбранного подхода к изучению урболандшафтов с учетом их типизации.

Наличие среди основных поллютантов слабоизученного иттрия не позволяет полностью оценить эколого-геохимическую обстановку в городе. Поэтому изучение источников поступления иттрия в элементы экосистемы может стать одной из актуальных задач экологии урболандшафтов.

- 1. Аринушкина Е. В. Руководство по химическому анализу почв. М.: Изд-во Московского ун-та, 1970. 487 с.
- 2. Вредные химические вещества: Неорганические соединения / А.Л. Бандман, Б.А. Ивин и др. Л.: Химия, 1988—1989.
 - 3. Екологічний атлас Києва. К.: ТОВ "Агентство інтермедія", 2003. 60 с.
- 4. Жовинский Э. Я., Маничев В. Й., Кураева И. В. и др. Эколого-геохимическое исследование природных сред в условиях городской агломерации: Препр., Киев, 1991. 57 с.
 - 5. Жуков М. Н. Статистичний анавіз геологічних даних. К., 1995. С. 145
- 6. Ильин В. Б. Система показателей для оценки загрязненности почв тяжелыми металлами // Агрохимия. 1995. № 1. С. 94–99.
- 7. Котвицкая И. М. Тяжелые металлы в почвах Киевского метаполиса // Поисковая и экологическая геохимия. ~ 2003. - № 2/3. - С. 79-81.
- 8. Летников Ф. А. Флюидный режим литосферы и проблема рудоносности магматических пород. // Проблема рудоносности магматических пород. Иркутск: Изл-во СО АН СССР, 1987. С. 15—19.
 - 9. Сает Ю. Е., Ревич Б. А., Янин Е. Т. и др. Геохимия окружающей среды. -- М.: Недра, 1990. -- 126 с.
- 10. Самчук А. И., Егоров О. С., Стадник В. А. и др. Оценка экологического состояния урболандшафтов на примере парковой зоны Киева // Минерал. журн. – 2002. – 24, № 1. – С. 34–42.

Викладені результати дослідження урболандшафтіїв м. Київ із врахуванням їхньої типізації.

The results of research of different types of city's soils are presented in this article.