Report

Name: Bhavesh Sood

Roll No: 2019355

Name: Vishwajeet Kumar

Roll No: 2019128

1. Data Visualisation

Train data:

	111	- 6: ::: -	- 6:
Binar	y labels	Definition1	Definition2
0	1	predictive models are involved with predicting	predict a value based on other values in the d
1	1	predict a value based on other values in the \ensuremath{d}	involved with predicting a value based on othe
2	1	predicting one value (the target variable) usi	predictive models are involved with predicting
3	1	predictive models are involved with predicting	predict value based on other values in data se
4	0	predict a value based on other values in the d	predict value based on other values in data se
7545	0	- flow of distance of line of sight in an elec	network analysis is used in many different app
7546	0	involves linear features or network of linear	the study of the nodes (vertices) and edges (l
7547	1	calculates the shortest route from a source to	network analysis is used in many different app
7548	0	involves linear features or network of linear	network analysis is used in many different app
7549	0	calculates the shortest route from a source to	the study of the nodes (vertices) and edges (I
7550 rows × 3	columns		

Test data:

	Binary labels	Definition1	Definition2
0	0	must be both relevant and accurate to achieve	a list of all external data needed for the use
1	0	-any data that the program receives while it i	the data values that are scanned by a program
2	1	vulnerability exists but wasn't detected by vu	a security incident that isn't detected or rep
3	0	vulnerability exists but wasn't detected by vu	an error in which you are not alerted to a sit
4	1	vulnerability exists but wasn't detected by vu	term for when a scan fails to find real vulner
1352	0	ensures that only authorized personnel can acc	the generation, storage, distribution, deletio
1353	0	- needs to be managed - should be a formal pro	the generation, storage, distribution, deletio
1354	0	- needs to be managed - should be a formal pro	involves proper storing and management of keys
1355	1	method of properly issuing, maintaining and or	the methods for creating and managing cryptogr
1356	0	method of properly issuing, maintaining and or	ensures that only authorized personnel can acc
1357 rov	ws × 3 columns		

1357 rows x 3 columns

Validation data:

	Binary labels	Definition1	Definition2
0	0	time elapsed between clock readings	math symbol: Δt (delta t)
1	0	how much time it takes for something to happen	elapsed time, or the time that has gone by
2	0	a knowledge based system that acts on a user's	-special purpose knowledge based info system
3	0	these use built-in and learned knowledge to ma	programs that work in the background without d
4	1	software programs that use a built-in or learn	programs that work in the background without d
1270	1	concerned with the general structure of the so	overall structure of the system, how system sh
1271	0	how a software system should be organized and \dots	once the interactions between the software sys
1272	1	first set of activities in the up's design dis	the process that selects and describes the exa
1273	1	where you identify the overall structure of th	where you identify the structure of the system
1274	0	concerned with the overall structure of a syst	concerned with the general structure of the so
1275 rd	ws × 3 columns		

275 rows × 3 columns

Number of examples of each type:

We notice that the data is almost equally balanced, specially in the training dataset.

Also we notice that in each dataset Not Paraphrase is more as compared to the Paraphrased examples. Thus simply outputting Not Paraphrase would give an accuracy of 50 %, however that would be wrong, and thus we should also look at F1 score for a better model.

2. Architecture

```
(transformer): DistilBertModel(
  (embeddings): Embeddings(
    (word_embeddings): Embedding(30522, 768, padding_idx=0)
    (position_embeddings): Embedding(512, 768)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  (transformer): Transformer(
    (layer): ModuleList(
      (0): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
(q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out lin): Linear(in features=768, out features=768, bias=True)
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
          (activation): GELUActivation()
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (1): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out lin): Linear(in features=768, out features=768, bias=True)
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
          (activation): GELUActivation()
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (2): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True) (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v lin): Linear(in features=768, out features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
          (activation): GELUActivation()
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
```

```
(3): TransformerBlock(
       (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
       (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
       (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
          (activation): GELUActivation()
       (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
     (4): TransformerBlock(
       (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
       (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
       (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
         (lin1): Linear(in_features=768, out_features=3072, bias=True) (lin2): Linear(in_features=3072, out_features=768, bias=True)
          (activation): GELUActivation()
       (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
     (5): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q lin): Linear(in_features=768, out_features=768, bias=True)
(k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in features=3072, out features=768, bias=True)
          (activation): GELUActivation()
       (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(attention): MultiheadAttention(
 (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
(fc1): Linear(in_features=768, out_features=300, bias=True)
(fc2): Linear(in_features=300, out_features=100, bias=True)
(fc3): Linear(in features=100, out features=50, bias=True)
(fc4): Linear(in features=50, out features=1, bias=True)
```

My Model:

So after the output of the DistilBert Transformer we get a 768 embedding of each word of input, we then pass it through a self-attention layer(dropout of 0.2) where we get again an 768 word embedding of each token. Then we take the <cls> token embedding and use it as a sentence embedding and pass it to the Feed Forward Net as shown above using Tanh as activation and a normalise layer.

3. Freeze All Layers of Distil Bert

```
model = DistilBertModel.from_pretrained('distilbert-base-uncased').to(device)
for param in model.parameters():
    param.requires_grad = False
```

We freeze all the layers of the transformer like this.

```
class Net (nn.Module) :
   def __init__ (self,transformer):
      super().__init__()
      # define the layers here
      self.transformer=transformer
```

Now even though the first layer of our model is the transformer, its weight would stay freezed and gradient would not flow back, thus only Our FF Network would fine tune itself to the data.

a. Accuracy and F1 Score are:

```
The accuracy score is: 0.6624907885040531
The weighted F1_score is : 0.6571899848528812
The classification report is :
               precision
                            recall f1-score
                                               support
                  0.75
                            0.53
                                       0.62
                                                  707
                  0.61
                             0.80
                                       0.69
                                                  650
   accuracy
                                       0.66
                                                 1357
  macro avg
                  0.68
                             0.67
                                       0.66
                                                 1357
weighted avg
                  0.68
                             0.66
                                       0.66
                                                 1357
(0.6624907885040531, 0.6571899848528812)
```

b. Train and Validation Loss Plots are:

c. 2 Misclassified Examples are:

```
[0
'-any data that the program receives while it is running -from file or user input -is typically &"un-meaningful&" until &"processed&" -data that is typed on a keyboard'
'the data values that are scanned by a program']
[0 "vulnerability exists but wasn't detected by vulnerability scanner"
'an error in which you are not alerted to a situation when you should be alerted due to which, you miss crucial things.']
```

Both sentences have some identical words in same context and also the second example is a false negative type of sentence, Both the definition are saying something and then denyng it using "was not" type of words. So the model is not able to capture their context completely.

4. Freeze Some Layers of Distil Bert

```
model_some_freeze_2 = DistilBertModel.from_pretrained('distilbert-base-uncased').to(device)
    # We freeze here the embeddings of the model
for param in model_some_freeze_2.embeddings.parameters():
        param.requires_grad = False
cnt=0
for i in model_some_freeze_2.transformer.layer:
    cnt+=1
    for j in i.parameters():
        j.requires_grad = False
        if(cnt==4) : break
net_some_freez_2=Net(model_some_freeze_2).to(device)
```

Here we Freeze the embedding layers and the first 4 transformer blocks of the DistilBert Transformer, the rest of the transformer is open to be fine tuned to the dataset. a. Accuracy and F1 Score are:

```
The accuracy score is: 0.7030213706705969
The weighted F1_score is : 0.7029004337197505
The classification report is:
               precision
                            recall f1-score
                                                support
                   0.71
                             0.72
                                       0.72
                                                   707
                   0.69
                             0.68
                                       0.69
                                                   650
   accuracy
                                       0.70
                                                  1357
  macro avg
                   0.70
                             0.70
                                       0.70
                                                  1357
weighted avg
                   0.70
                             0.70
                                       0.70
                                                  1357
(0.7030213706705969, 0.7029004337197505)
```

We get an F1 score of above 70 % (weighted avg), otherwise for 0 class it is of 72%.

b. Train and Validation Loss Plots are:

c. 2 Misclassified Examples are:

```
[0
'-any data that the program receives while it is running -from file or user input -is typically &"un-meaningful&" until &"processed&" -data that is typed on a keyboard'
'the data values that are scanned by a program']
[0 "vulnerability exists but wasn't detected by vulnerability scanner"
'an error in which you are not alerted to a situation when you should be alerted due to which, you miss crucial things.']
```

Both sentences have some identical words in same context and also the second example is a false negative type of sentence, Both the definition are saying something and then denyng it using "was not " type of words. So the model is not able to capture their context completely. We notice same examples like in q3, this is because these two examples are containing almost same words in their context.

5. Comparison

We notice that freezing only some layers of the transformed provided a better result in terms of both accuracy and F1 score. This could be due to the fact that keeping the embedding layers and initial transformer layers of the DistilBert Transformer freezed we use it as it is from the pretrained model of hugging face library which has been trained on the basis of general knowledge of English language. After that the last few layers that ultimately connect to our own FF network are left unfrozen so that they also learn from the data and update the weights accordingly. This allowed the final output of the DistilBert to be a little more customized to this particular task and thus we achieve slightly higher accuracy and F1 score.

Key differences:

Model	Accuracy	F1	Precision	Recall
All frozen	66.24	65.7	68	66
Some Frozen	70.3	70.29	70	70

We notice that also Precision and Recall increase slightly in the Fine Tuned DisitilBert model with only some Frozen Layers.

6. Various Hyperparameters Testing

Model with learning rate: 0.0003 and optimizer: SGD

The accuracy				Ģ.	5 - 55 - 1				
The weighted I	The weighted F1_score is : 0.3569269021382096								
The classification	ation report	is:							
	precision	recall	f1-score	support					
0	0.52	1.00	0.69	707					
1	0.00	0.00	0.00	650					
accuracy			0.52	1357					
macro avg	0.26	0.50	0.34	1357					
weighted avg	0.27	0.52	0.36	1357					

Model with learning rate: 0.001 and optimizer: SGD

		_score is : ion report :		9021362090		
		orecision		f1-score	support	
	0	0.52	1.00	0.69	707	
	1	0.00	0.00	0.00	650	
accura	ісу			0.52	1357	
macro a	vg	0.26	0.50	0.34	1357	
weighted a	vg	0.27	0.52	0.36	1357	

Model with learning rate: 0.01 and optimizer: SGD

The accuracy s The weighted I The classification	$F1_scoreis:$	0.356926		No.	
	precision		f1-score	support	
ø	0.52	1.00	0.69	707	
1	0.00	0.00	0.00	650	
accuracy			0.52	1357	
macro avg	0.26	0.50	0.34	1357	
weighted avg	0.27	0.52	0.36	1357	

Model with learning rate : 0.1 and optimizer : SGD

The accuracy score is: 0.63448784082535								
	The weighted F1_score is : 0.6161114280462696							
The class	sification	report	is :					
	pre	cision	recall	f1-score	support			
	0	0.78	0.42	0.54	707			
	1	0.58	0.87	0.70	650			
accur	racy			0.63	1357			
macro	avg	0.68	0.64	0.62	1357			
weighted	avg	0.68	0.63	0.62	1357			

Model with learning rate: 0.0003 and optimizer: AdamW

The accuracy score is : 0.6750184229918939 The weighted F1_score is : 0.6746925646078971 The classification report is :								
		precision		f1-score	support			
	0	0.68	0.70	0.69	707			
	1	0.67	0.64	0.65	650			
accur	acy			0.68	1357			
macro	avg	0.67	0.67	0.67	1357			
weighted	avg	0.67	0.68	0.67	1357			

Model with learning rate: 0.001 and optimizer: AdamW

The weigh	nted I	score is : 0.5 F1_score is : ation report i	0.356926			
****		precision		f1-score	support	
	0	0.52	1.00	0.69	707	
	1	0.00	0.00	0.00	650	
accui	racy			0.52	1357	
macro	avg	0.26	0.50	0.34	1357	
weighted	avg	0.27	0.52	0.36	1357	
						. 22

Model with learning rate: 0.01 and optimizer: AdamW

		score is : 0.5				
The weigh	nted	F1_score is :	0.356926	9021382096		
The class	sific	ation report i	is :			
		precision	recall	f1-score	support	
	0	0.52	1.00	0.69	707	
	1	0.00	0.00	0.00	650	
accur	racy			0.52	1357	
macro	avg	0.26	0.50	0.34	1357	
weighted	avg	0.27	0.52	0.36	1357	

Model with learning rate: 0.1 and optimizer: AdamW

The accuracy score is: 0.5210022107590273 The weighted F1_score is: 0.3569269021382096 The classification report is:								
	precision	recall	f1-score	support				
0	0.52	1.00	0.69	707				
1	0.00	0.00	0.00	650				
accuracy			0.52	1357				
macro avg	0.26	0.50	0.34	1357				
weighted avg	0.27	0.52	0.36	1357				

In General We observe that for some of the learning rates, we observe that accuracy and F1 come out to be same , as it might be jumping very big in the gradient curve and thus not able to move down the hill .

In general AdamW provided a better accuracy and F1 score.

And a smaller learning rate worked better for us.

BONUS:

Our best model as shown in Q4 has higher F1 than 70%.