ZEN (blue edition) 3.1 Image Analysis

Dr. Marion LangProduct Management 2019-11-04

Image Analysis

Customer requirements:

- How many cells are positive/negative for...?
- How big is...?
- What percentage is...?
- What is the intensity of...?

Solution: Automatic Quantification!

"Image analysis is the extraction of meaningful information from images." --- Wikipedia

Image Analysis with ZEN blue 3.1

Image Analysis Module

Wizard to guide you through the **setup** step-by-step

Analyze the images interactively

(if you have defined "Interactive" steps during setup)

When "Interactive" is active in a step, the analysis workflow will pause for you to interactively adapt parameters for the current image.

Analyze the complete .czi (without pause)

Image Analysis using ZEN blue 2.6

Image Analysis Wizard

Classes Frame Automatic
Segmentation Region Filter Interactive
Segmentation Features Preview

Define the **objects** of interest:

- How many
- Relationship between objects

Naming the objects

Define color mask for each object

Define **where** the analysis will be performed

Define how to treat objects on the edge of the frame Segment the object of interest from the background

- Threshold
- Variance
- Dynamic
- Intellesis

Further process the binary mask

Apply conditions to refine and limit the segmented objects:

- Size
- Intensity
- Shape
- ..

Manually segment objects if needed:

- Add
- Remove
- Cut
- Merge
- Fill

Define what to measure for each objects and object groups:

- Size
- Intensity
- Shape
- ...

Preview the detected objects and results

Image Analysis Step 1: Define Objects (Classes)

Classes Frame Segmentation Region Filter Segmentation Features Results Preview 6

Classes vs. Class (always created in pairs!)

- "Class" contains single objects: e.g. a single nucleus.
 You can measure the mean intensity, area, compactness of this single nucleus.
- "Classes" contains a group of objects: e.g. all the nuclei in a frame.

 You can measure the number, total area, total intensity of nuclei inside a frame.

Class vs Subclass:

- Each "Class" represents a object of interest, and **each Class is independent** E.g. white and red blood cells in a blood smear.
- A "Subclass" is a object that is part of the primary "Class":
 E.g. a FISH image where the nucleus is stained with DAPI, as the primary "Class"; while the HER2 dots is a "Subclass" for each nucleus.
 You can specifically count how many HER2 dots "Subclass" are there in each nucleus "Class".

Image Analysis: Class/Classes

Classes vs. Class

Classes **Nuclei: Statistical Features of** Nuclei all single nuclei Nucleus DAPI Sp100 Stat Sp100 EGFP Number of all objects Mean Area of all objects Mean Intensity of all objects Nucleus: Features of each individual nucleus Area 1 Area 2 Area n Intensity 1 Intensity 2 Intensity n Circularity 1 Circularity 2 Circularity n

Image Analysis: Class/Classes

Classes Sp100 Stat: Statistical features of all Nuclei Nucleus DAPI green spots in one cell Sp100 Stat Sp100 EGFP Number of Spots Mean Area of Spots Mean Intensity of Spots **Sp100: Features of each individual spot** Area 1 Area 2 Area n Intensity 1 Intensity 2 Intensity n

Image Analysis Step 1: Define Objects (Classes)

Classes examples

Classes

Frame

Automatic Segmentatio

Region Filter

Interactive Segmentatior

Features

Results Preview

One class

- Cell counting
- Wound healing

Two independent classes

- Calculate white blood cell/red blood cell ratio
- Calculate ratio tissue vs. blood vessels

One class and one subclass

 Quantify HER2/PML bodies/SP100 dots per cell nucleus

ZOI (Zone Of Influence)

- Measure mitochondria expression level per cell
- Calculate translocation ratio

Image Analysis Step 3: Segmentation

The most critical step

Classes Frame Automatic Region Filter Interactive Segmentation Results Preview

Segmentation: partitioning a digital image into multiple segments. Binary process: the object of interest is 1, the rest is 0. The result is a "mask" of the segmented objects.

Available segmentation methods:

- Segmentation by global thresholding
 One global thresholding is performed for the whole image
- Segmentation with background subtraction
 background subtraction is performed before thresholding
- Variance-based thresholding

 edge detection: detects changes in pixel intensities,
 independent of the absolute intensity
- Segment binary images simple binary segmentation
- Dynamic thresholding
 adaptive thresholding to the surrounding of the object
- Intellesis machine learning

Image Analysis Step 3: Segmentation

Examples for different segmentation methods

Classes

Frame

Automatic Segmentation

Region Filter

Interactive Segmentation

Features

Results Preview

Threshold (intensity based)

- Fluorescence images

Variance (change in intensity)

- Brightfield images

Dynamic (local threshold)

- Inhomogeneous shading

Intellesis (machine learning)

- Everything (but slow)
- Nothing else works
- Ease of use

Image Analysis Step 3: Segmentation

The most critical step

Classes Frame Automatic Region Filter Interactive Segmentation Results Preview

Further refine the segmentation mask

- Min. Area: Remove small objects
- Binary Options
 - Dilate
 - Erode
 - Open
 - Close
- Separate Objects
- Watershed
- Morphology

Image Analysis Step 4: Region Filter

Refine/Limit detected objects by conditions

Classes

Frame

Automatic Segmentation

Region Filter

Interactive Segmentation

Features

Results Preview

- Region Filters allow to further refine/limit the segmented objects.
- Detect only specific objects, that fulfill certain criteria rather than all segmented objects
 - Only mitotic cells
 - Only nicely separated cells, not clusters

• ...

Define Features

Define what to measure for the detected objects

Classes

Frame

Automatic

Region Filter

Interactive Segmentatior

Features

Results Preview

You can define features for "Nuclei" and "Nucleus" independently Select features from a list of ~ 100 features

- Geometry
- Intensity
- Image
- Position

"Nuclei"

Image Scene Container Name: A5

• Count: 151

"Nucleus"

• Area: 2.49 um²

Mean Intensity: 154

• Roundness: 0.8

Define Features

ZEISS

Define what to measure for the detected objects

Classes Frame Segmentation Region Filter Segmentation Features Results Preview

View results after Image Analysis

ZEN Module Image Analysis: Plotting

Histogramm and Scatterplot

Histogram "Area" of cell nulei

Scatter Plot "Area" vs "Intensity Mean DAPI" of cell nuclei

Display of Image Analysis Results

Time Series

Time-series plot: Area percentage over Time

Display of Image Analysis Results

Heatmaps

96-well plate: Mean Intensity value of "EGFP"

1586-well plate

Display of Image Analysis Results

Export plots

MEAN.Intensity Mean Value of channel 'EGFP'

Export plots as *.png, *.tiff, *.bmp, *.jpg Choose between Screen Resolution (96 ppi) or printing resolution (300 ppi) Either with transparent background or as-is.

Export data after Image Analysis

Generate result tables

The subsequent data can be saved as .csv

If the input data has higher dimension, e.g. time series,
multi-positions, the final data will be concatenated!

Highlight a specific "Classes"/"Class" to export data for this "Classes"/"Class" only (one table only)

Export data all individual "Classes" and "Class" in separate tables.

In this case, 4 separate data sets:

Export two data sets where all tables for "Classes" and "Class", respectively, are concatenated (2 data tables)

Export data after Image Analysis

Export into *.csv format

Right-click on tab containing the table

Select "Save As CZI..."

Select *.csv

Zone-of-Influence (ZOI) Image Analysis

Typical ZOI Applications

Applications in cell biology, drug discovery, in-vitro assays, endpoint assays, That require to detect objects outside of the object used for segmentation, e.g.:

- Cytoplasm-Nucleus Translocation
- Protein Localization
- Actin, Mitochondria....

e.g. quantify the total green structures (area and intensity) per cell

Creating an Image Analysis Setting using ZOI

Segmentation Method

Set up an Image Analysis Setting using ZOI

The ZOI-method will create the necessary classes automatically:

- **ZOIs/ZOI**: the area (zone of influence) that is attributed to the primary objects
- Primary Objects/Primary Object: the objects that identify the cell (e.g. nuclei)
- Ring/Ring Element: automatically generated around each primary object to measure parameters or to detect subobjects
- Optional: Ring sub-object: objects you want to measure per cell other than the nucleus

Adjust Ring Parameters

Set Width and Distance

Attribute Ring-Features to Primary Object

Copy "Ring"/"Actin_stat" features to the nucleus

Results

Features for "Nucleus"

The results table for "Nucleus" also contains the copied features of "Ring" and "Actin_stat"

Application Example: Translocation

Human U2OS cells cytoplasm-nucleus translocation

Inhibition of nuclear export of Forkhead

- 96-well plate, human osteosarcoma cells (U2OS), nuclei stained with DRAQ
- Cytoplasm-to-nucleus translocation of the Forkhead (FKHR-EGFP) fusion protein
- In proliferating cells, FKHR is localized in the cytoplasm (constantly moving into the nucleus, but is transported out again by export proteins).
- Upon inhibition of nuclear export, FKHR accumulates in the nucleus
- Export is inhibited by blocking PI3 kinase / PKB with Wortmannin or LY294002.

Of wall plata

		96-weii piate											
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	Neg. Ctrl	39688	0.977	1.95	3.91	7.81	15.63	31.25	62.5	125	250	Pos. Ctrl	
В	Neg. Ctrl	empty	0.977	1.95	3.91	7.81	15.63	31.25	62.5	125	250	Pos. Ctrl	
С	Neg. Ctrl	empty	0.977	1.95	3.91	7.81	15.63	31.25	62.5	125	250	Pos. Ctrl	
D	Neg. Ctrl	empty	0.977	1.95	3.91	7.81	15.63	31.25	62.5	125	250	Pos. Ctrl	
E	Pos. Ctrl	empty	0.31	0.63	1.25	2.5	5	10	20	40	80	Neg. Ctrl	
F	Pos. Ctrl	empty	0.31	0.63	1.25	2.5	5	10	20	40	80	Neg. Ctrl	
G	Pos. Ctrl	empty	0.31	0.63	1.25	2.5	5	10	20	40	80	Neg. Ctrl	
Н	Pos. Ctrl	empty	0.31	0.63	1.25	2.5	5	10	20	40	80	Neg. Ctrl	
	Wortmannin		LY294	.002 i	n μM								

Data set BBBC013v1 by Ilya Ravkin, available from the Broad Bioimage Benchmark Collection [Ljosa et al., Nature Methods, 2012]

Software Demo

Set up an image analysis and check the results:

→ Image Data: Translocation_comb_96_5ms.czi

→ Image Analysis Setting: Translocation_26.czias

Human U2OS cells cytoplasm-nucleus translocation

Calculate Translocation Ratio

- Create tables for "Primary Object" and export to *.csv format
- Calculate the Translocation-Ratio (T) for each cell
- Calculate the mean value of the Translocation-Ratio for each well

Translocation Ratio (per cell):

$$T = \frac{I_{\text{Mean, Nucleus}}}{I_{\text{Mean, Ring}}}$$

Data set <u>BBBC013v1</u> by Ilya Ravkin, available from the Broad Bioimage Benchmark Collection [<u>Ljosa et al., Nature Methods, 2012</u>]

OAD Script for automatization

Tasks to perform:

- 1. Load load the image file (*.csv) and image anlaysis setting (*.czias)
- 2. Run the image analysis
- 3. Extract the image analysis results as *.csv
- 4. Start the python script (test_wellplate_from_ZEN.PY)

- Read in data
- 6. Calculate the translocation Ratio
- 7. Generate heatmaps for different features (e.g. Translocation Ratio)
- 8. Save heatmaps as PNG files

9. Load PNG files in ZEN

Plot Results

Heatmap of the 96-well plate

Results (mean translocation ratio)

Treatment with different concentrations of Wortmannin

- Plot results (e.g. via Excel)
- Mean translocation ratio (for rows A to D)

