

16TH EUROPEAN CONFERENCE ON COMPUTER VISION WWW.ECCV2020.EU

Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation

Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

Johns Hopkins University, Google Research

Convolution

Local square

$$y_o = \sum_{n=1}^{\infty} W_{p-o} x_p$$

Method	Stand-Alone	Long-Range
Convolution	✓	×

LeCun, Y., et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998.

Non-Local (a.k.a. self-attention)

Local square

$$y_o = \sum_{p \in \mathcal{N}_{m \times m}(o)} W_{p-o} x_p$$

Method	Stand-Alone	Long-Range
Convolution	✓	×
Non-Local	×	\checkmark

Wang, X., et al. Non-local neural networks. CVPR 2018. Vaswani, et al. Attention is all you need. NeurIPS 2017.

Non-Local (a.k.a. self-attention)

Local square

$$y_o = \sum_{p \in \mathcal{N}_{m \times m}(o)} W_{p-o} x_p$$

Method	Stand-Alone	Long-Range
Convolution Non-Local	✓ ×	×

Whole image

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

Query $q_o = W_Q x_o$ Key $k_p = W_K x_p$ Value $v_p = W_V x_p$

Non-Local (a.k.a. self-attention)

Local square

$$y_o = \sum_{p \in \mathcal{N}_{m \times m}(o)} W_{p-o} x_p$$

Method	Stand-Alone	Long-Range
Convolution Non-Local	✓ ×	×

Whole image

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

$$O(H^2W^2)$$

Stand-Alone Self-Attention

Local square

$$y_o = \sum_{p \in \mathcal{N}_{m \times m}(o)} W_{p-o} x_p$$

Method	Stand-Alone	Long-Range
Convolution	✓	X
Non-Local	×	\checkmark
Stand-Alone	✓	X

Whole image

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

Local square

$$y_o = \sum_{p \in \mathcal{N}_{m \times m}(o)} \operatorname{softmax}_p(q_o^T k_p) v_p$$

Ramachandran, P., et al. Stand-alone self-attention in vision models. NeurIPS 2019. Hu, H., et al. Local relation networks for image recognition. ICCV 2019.

Axial-DeepLab

Whole image

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

• Whole width-axis $y_o = \sum_{p \in \mathcal{N}_{1 \times m_e}(o)} \operatorname{softmax}_p(q_o^T k_p) v_p$

Ho, J., et al. Axial Attention in Multidimensional Transformers. arXiv 2019. Huang, Z., et al. Ccnet: Criss-cross attention for semantic segmentation. ICCV 2019.

Axial-DeepLab

Whole image

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

• Whole width-axis $y_o = \sum_{p \in \mathcal{N}_1 \times \mathbf{m}_c(o)} \operatorname{softmax}_p(q_o^T k_p) v_p$

Ho, J., et al. Axial Attention in Multidimensional Transformers. arXiv 2019. Huang, Z., et al. Ccnet: Criss-cross attention for semantic segmentation. ICCV 2019.

Axial-DeepLab

Local square

$$y_o = \sum_{p \in \mathcal{N}_{m \times m}(o)} W_{p-o} x_p$$

Method	Stand-Alone	Long-Range
Convolution	✓	X
Non-Local	×	\checkmark
Stand-Alone	✓	X
Axial-DeepLab	✓	✓

Whole image

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

$$O(H^2W^2)$$

Whole width-axis
$$y_o = \sum_{p \in \mathcal{N}_1 \times m_i(o)} \operatorname{softmax}_p(q_o^T k_p) v_p$$

O(mHW)

Ho, J., et al. Axial Attention in Multidimensional Transformers. arXiv 2019. Huang, Z., et al. Ccnet: Criss-cross attention for semantic segmentation. ICCV 2019.

Is this all you need?

$$y_o = \sum_{p \in \mathcal{N}_{1 \times m}(o)} \operatorname{softmax}_p(q_o^T k_p) v_p$$

Is this all you need? NO!

$$y_o = \sum_{p \in \mathcal{N}_{1 \times m}(o)} \operatorname{softmax}_p(q_o^T k_p) v_p$$

Position Unaware

Method	Position
Convolution	
Non-Local	X

$$y_o = \sum_{p \in \mathcal{N}} W_{p-o} x_p$$
$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

Position Aware

Method	Position
Convolution	√
Non-Local	X
Stand-Alone	✓

Query-dependent positional bias

$$y_o = \sum_{p \in \mathcal{N}} W_{p-o} x_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q) v_p$$

Alternatives

Method	Position
Convolution	✓
Non-Local	×
Stand-Alone	✓

- Query-dependent positional bias
- Key-dependent positional bias

$$y_o = \sum_{p \in \mathcal{N}} W_{p-o} x_p$$
$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

$$y_o = \sum \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q)v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p + k_p^T r_{p-o}^k) v_p$$

Alternatives

Method	Position
Convolution	│ ✓
Non-Local	×
Stand-Alone	✓

- Query-dependent positional bias
- Key-dependent positional bias
- Content-based position retrieval

$$y_o = \sum_{p \in \mathcal{N}} W_{p-o} x_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q) v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p + k_p^T r_{p-o}^k) v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) (v_p + r_{p-o}^v)$$

Position Sensitive

Method	Position
Convolution	✓
Non-Local	×
Stand-Alone	✓
Axial-DeepLab	/ //

$$y_o = \sum_{p \in \mathcal{N}} W_{p-o} x_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p) v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q) v_p$$

$$y_o = \sum_{p \in \mathcal{N}} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q + k_p^T r_{p-o}^k)(v_p + r_{p-o}^v)$$

 $p \in \mathcal{N}$

Summary

Method	Stand-Alone	Long-Range	Position
Convolution	/	×	√
Non-Local	×	\checkmark	×
Stand-Alone	✓	×	\checkmark
Axial-DeepLab	√	✓	///

$$y_o = \sum_{p \in \mathcal{N}_{1 \times m}(o)} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q + k_p^T r_{p-o}^k)(v_p + r_{p-o}^v)$$

Is this all you need?

$$y_o = \sum_{p \in \mathcal{N}_{1 \times m}(o)} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q + k_p^T r_{p-o}^k)(v_p + r_{p-o}^v)$$

Stand-Alone Axial Block

He, K., et al. Deep residual learning for image recognition. CVPR 2016.

Results: ImageNet Classification

Method	Params	M-Adds	Top-1
ResNet-50 Stand-Alone Self-Attention	25.6M 18.0M	4.1B 3.6B	76.9 77.6
Position-Sensitive Axial-Attention	12.5M	3.3B	78.1

$$y_o = \sum_{p \in \mathcal{N}_{1 \times \mathcal{T}_{0}}(o)} \operatorname{softmax}_{p} (q_o^T k_p + q_o^T r_{p-o}^q + k_p^T r_{p-o}^k) (v_p + r_{p-o}^v)$$

Russakovsky, O., et al. Imagenet large scale visual recognition challenge. IJCV 2015. He, K., et al. Deep residual learning for image recognition. CVPR 2016. Ramachandran, P., et al. Stand-alone self-attention in vision models. NeurIPS 2019.

Is this all you need? YES!

$$y_o = \sum_{p \in \mathcal{N}_{1 \times m}(o)} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q + k_p^T r_{p-o}^k)(v_p + r_{p-o}^v)$$

Backbone	ASPP	PS	Params	M-Adds	PQ	AP	mIoU
ResNet-50			24.8M	374.8B	58.1	30.0	73.3
ResNet-50	✓		30.0M	390.0B	59.8	32.6	77.8

Backbone	ASPP	PS	Params	M-Adds	PQ	AP	mIoU
ResNet-50 ResNet-50 Stand-Alone Stand-Alone	\ \square \		24.8M 30.0M 17.3M 22.5M	374.8B 390.0B 317.7B 332.9B	58.1 59.8 58.7 60.9	30.0 32.6 31.9 30.0	73.3 77.8 75.8 78.2
Stand-Alone Stand-Alone		√ √	17.3M 22.5M	326.7B 341.9B	59.9 61.5	32.2 33.1	76.3 79.1

Backbone	ASPP	PS	Params	M-Adds	PQ	AP	mIoU
ResNet-50 ResNet-50 Stand-Alone Stand-Alone	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		24.8M 30.0M 17.3M 22.5M	374.8B 390.0B 317.7B 332.9B	58.1 59.8 58.7 60.9	30.0 32.6 31.9 30.0	73.3 77.8 75.8 78.2
Stand-Alone Stand-Alone Axial-DeepLab-S	<u>/</u>	\	17.3M 22.5M 12.1M	326.7B 341.9B 220.8B	59.9 61.5 62.6	32.2 33.1 34.9	76.3 79.1 80.5

Backbone	ASPP	PS	Params	M-Adds	PQ	AP	mIoU
ResNet-50			24.8M	374.8B	58.1	30.0	73.3
ResNet-50	✓		30.0M	390.0B	59.8	32.6	77.8
Stand-Alone			17.3M	317.7B	58.7	31.9	75.8
Stand-Alone	✓		22.5M	332.9B	60.9	30.0	78.2
Stand-Alone		/	17.3M	326.7B	59.9	32.2	76.3
Stand-Alone	✓	1	22.5M	341.9B	61.5	33.1	79.1
Axial-DeepLab-S		✓	12.1M	220.8B	62.6	34.9	80.5
Axial-DeepLab-M		1	25.9M	419.6B	63.1	35.6	80.3
Axial-DeepLab-L		1	44.9M	687.4B	63.9	35.8	81.0
Axial-DeepLab-XL		1	173.0M	2446.8B	64.4	36.7	80.6

Long-Range helps

$$y_o = \sum_{p \in \mathcal{N}_{1 \times m}(o)} \operatorname{softmax}_p(q_o^T k_p + q_o^T r_{p-o}^q + k_p^T r_{p-o}^k)(v_p + r_{p-o}^v)$$

Backbone	Span m	Params	M-Adds	PQ	AP	mIoU
ResNet-101	_	43.8M	530.0B	59.9	31.9	74.6
Axial-ResNet-L Axial-ResNet-L Axial-ResNet-L Axial-ResNet-L Axial-ResNet-L	$ \begin{array}{c c} 5 \times 5 \\ 9 \times 9 \\ 17 \times 17 \\ 33 \times 33 \\ 65 \times 65 \end{array} $	44.9M 44.9M 44.9M 44.9M 44.9M	617.4B 622.1B 631.5B 650.2B 687.4B	59.1 61.2 62.8 63.8 64.2	31.3 31.1 34.0 35.9 36.3	74.5 77.6 79.5 80.2 80.6

More Results

Dataset	Split	Metric	SOTA	Axial-DeepLab
Cityscapes	test	PQ	65.5	66.6 (+1.1)
COCO (bottom-up)	test	PQ	41.4	44.2 (+2.8)
Mapillary Vistas	val	PQ	40.3	41.1 (+0.8)
Mapillary Vistas	val	mIoU	57.6	58.4 (+0.8)

More Results

Dataset	Split	Metric	SOTA	Axial-DeepLab
Cityscapes	test	PQ	65.5	66.6 (+1.1)
COCO (bottom-up)	test	PQ	41.4	44.2 (+2.8)
Mapillary Vistas	val	PQ	40.3	41.1 (+0.8)
Mapillary Vistas	val	mIoU	57.6	58.4 (+0.8)

Auto-DeepLab-XL++

Examples

http://farm5.staticflickr.com/4134/4782858440 3885462451 z.jpg https://creativecommons.org/licenses/by/2.0/

Examples

http://farm4.staticflickr.com/3189/2947274789 a1a35b33c3 z.jpg https://creativecommons.org/licenses/by/2.0/

Examples

http://farm8.staticflickr.com/7127/7461110814 5dd1263b67 z.jpg https://creativecommons.org/licenses/by/2.0/

Scale stress test

 Robust to out-of-distribution scales (both <u>small</u> and <u>large</u>)

Conclusion

Method	Stand-Alone	Long-Range	Position
Convolution	✓	×	✓
Non-Local	×	\checkmark	×
Stand-Alone	✓	×	\checkmark
Axial-DeepLab	✓	✓	///