

TS94x, TS94xA, TS94xB

Output rail-to-rail micropower operational amplifiers

Features

- Rail-to-rail output voltage swing
- Micropower consumption (1.2 µA)
- Single supply operation (2.5 V to 10 V)
- CMOS inputs
- Ultra low input bias current (1 pA)
- ESD protection (2 kV)
- Latch-up immunity (class A)
- Available in SOT23-5 micropackage

Applications

- Battery-powered systems (alarm)
- Portable communication systems (pagers)
- Smoke/gas/fire detectors
- Instrumentation and sensoring
- PH meter

Description

The TS94x (single, dual and quad) series are operational amplifiers characterized for 2.5 V to 10 V operation over a -40° C to +85° C temperature range.

They exhibit excellent consumption -1.2 μ A, while featuring 10 kHz gain bandwidth product, 1.5 mA output capability and output rail-to-rail operation - 2.85 V typical at 3 V with R_I =10 k Ω

The TS94x op-amps are ideal for battery-powered systems, where very low supply current and output rail-to-rail are required. Their very low - 1 pA typical input bias current and constant supply current over supply voltage enhance the devices' performance near the end of the battery charge or battery life.

Table 1. Device summary

Table II Device cummary						
Reference	Selection on offset voltage					
TS94x	TS941, TS942, TS944					
TS94xA	TS941A, TS942A, TS944A					
TS94xB	TS941B, TS942B, TS944B					

1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	12	V
V _{id}	Differential input voltage (2)	± V _{CC}	V
V _{in}	Input voltage range (3)	V _{DD} -0.3 to V _{CC} +0.3	V
T _{stg}	Storage temperature range	-65 to +150	°C
Tj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14	250 125 103 120 100	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾ SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14	81 40 31 37 32	°C/W
	HBM: human body model ⁽⁵⁾	2	kV
	MM: machine model ⁽⁶⁾ (TS941, TS942)	200	V
ESD	CDM: charged device model ⁽⁷⁾ TS941 - TS944IDT TS942 - TS944IPT	1.5 1	kV
	Latch-up immunity	200	mA
	Lead temperature (soldering, 10sec)	250	°C

- 1. All voltage values, except differential voltage are with respect to network terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of input and output voltages must never exceed V_{CC} +0.3 V.
- 4. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values.
- 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

2/18 Doc ID 6972 Rev 6

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 10	V
V _{icm}	Common mode input voltage range	V _{DD} -0.2 to V _{CC} -1.3	٧
T _{oper}	Operating free air temperature range	-40 to + 85	ç

2 Electrical characteristics

Table 4. V_{CC} = +2.5 V, V_{DD} = 0 V, R_L connected to $V_{CC}/2$, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage TS941/2/4 TS941/2/4A TS941/2/4B			10 5 2	mV
ΔV _{io}	Input offset voltage drift		7		μV/°C
I _{io}	Input offset current (1)		1	100	pА
I _{ib}	Input bias current (1)		1	150	pA
CMR	Common mode rejection ratio	60	85		dB
SVR	Supply voltage rejection ratio	50	78		dB
A _{vd}	Large signal voltage gain $V_O = 2 V_{pp}, R_L = 1 M\Omega$		100		dB
V _{OH}	High level output voltage $V_{ID} = 100 \text{ mV}, R_L = 1 \text{ M}\Omega$ $R_L = 10 \text{ k}\Omega$	2.45 2.3	2.49 2.4		V
V _{OL}	Low level output voltage $V_{ID} = \text{-}100 \text{ mV}, R_L = 1 \text{ M}\Omega$ $R_L = 10 \text{ k}\Omega$		1 100	5 200	mV
Io	Output source current $V_{ID} = 100 \text{ mV}, \ V_O = V_{DD}$ Output sink current $V_{ID} = -100 \text{ mV}, \ V_O = V_{CC}$	350 280	650 500		μА
I _{CC}	Supply current (per amplifier), A _{VCL} = 1, no load		1.2	1.8	μΑ
GBP	Gain bandwidth product, $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$		10		kHz
SR	Slew rate, $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$	3	4.5		V/ms
φm	Phase margin, C _L = 50 pF		65		Degrees

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

Table 5. V_{CC} = +3 V, V_{DD} = 0 V, R_L connected to $V_{CC}/2$, T_{amb} = 25° C (unless otherwise specified) (1)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage TS941/2/4 TS941/2/4A TS941/2/4B			10 5 2	mV
ΔV_{io}	Input offset voltage drift		7		μV/°C
I _{io}	Input offset current (2)		1	100	pA
I _{ib}	Input bias current (2)		1	150	pA
CMR	Common mode rejection ratio	60	85		dB
SVR	Supply voltage rejection ratio	50	85		dB
A _{vd}	Large signal voltage gain $V_O = 2 V_{pp}, R_L = 1 M\Omega$		100		dB
V _{OH}	High level output voltage V_{ID} = 100 mV, R_L = 1 MΩ R_L = 10 kΩ	2.9 2.8	2.99 2.85		V
V _{OL}	Low level output voltage $V_{ID} = \text{-}100 \text{ mV}, R_L = 1 \text{ M}\Omega$ $R_L = 10 \text{ k}\Omega$		1 100	5 200	mV
I _o	Output source current $V_{ID} = 100 \text{ mV}, V_O = V_{DD}$ Output sink current $V_{ID} = -100 \text{ mV}, V_O = V_{CC}$	680 650	1500 1300		μΑ
I _{CC}	Supply current (per amplifier), A _{VCL} = 1, no load		1.2	1.8	μΑ
GBP	Gain bandwidth product, $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$		10		kHz
SR	Slew rate, $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$	3	4.5		V/ms
φm	Phase margin, C _L = 50 pF		65		Degrees

^{1.} All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.

^{2.} Maximum values include unavoidable inaccuracies of the industrial tests.

Table 6. V_{CC} = +5 V, V_{DD} = 0 V, R_L connected to $V_{CC}/2$, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage TS941/2/4 TS941/2/4A TS941/2/4B			10 5 2	mV
ΔV_{io}	Input offset voltage drift		7		μV/°C
I _{io}	Input offset current (1)		1	100	pA
I _{ib}	Input bias current (1)		1	150	pA
CMR	Common mode rejection ratio	60	85		dB
SVR	Supply voltage rejection ratio	50	85		dB
A _{vd}	Large signal voltage gain $V_O = 2 V_{pp}, R_L = 1 M\Omega$		100		dB
V _{OH}	High level output voltage V_{ID} = 100 mV, R_L = 1 MΩ R_L = 10 kΩ	4.9 4.8	4.99 4.85		V
V _{OL}	Low level output voltage $V_{ID} = \text{-}100 \text{ mV}, R_L = 1 \text{ M}\Omega$ $R_L = 10 \text{ k}\Omega$		1 100	5 150	mV
I _o	Output source current $V_{ID} = 100 \text{ mV}, V_O = V_{DD}$ Output sink current $V_{ID} = -100 \text{ mV}, V_O = V_{CC}$	3	4.5 5		mA
I _{CC}	Supply current (per amplifier), A _{VCL} = 1, no load		1.2	1.85	μΑ
GBP	Gain bandwidth product, $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$		10		kHz
SR	Slew rate, $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$	3	4.5		V/ms
φm	Phase margin, C _L = 50 pF		65		Degrees

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

Figure 1. Supply current per amplifier vs. supply voltage in overdrive

Figure 2. Supply current per amplifier vs. supply voltage

Figure 3. Output short-circuit current vs. temperature

Figure 4. Supply current per amplifier vs. temperature

Figure 5. Output short-circuit current vs. supply voltage

Figure 6. Output short-circuit current vs. output voltage

Figure 7. Output short-circuit current vs. output voltage

Figure 8. High level output voltage vs. supply voltage

Figure 9. Output short-circuit current vs. output voltage

Figure 10. Low level output voltage vs. supply voltage

Figure 11. Output short-circuit current vs. output voltage

Figure 12. Gain and phase vs. frequency

8/18 Doc ID 6972 Rev 6

Figure 13. Small signal transient response

Figure 14. Gain and phase versus frequency

Figure 15. Slew rate positive and negative vs. Figure 16. Large signal transient response temperature

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

3.1 SOT23-5 package information

Figure 17. SOT23-5 package mechanical drawing

Table 7. SOT23-5 package mechanical data

			Dimen	sions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.90	1.20	1.45	0.035	0.047	0.057
A1			0.15			0.006
A2	0.90	1.05	1.30	0.035	0.041	0.051
В	0.35	0.40	0.50	0.013	0.015	0.019
С	0.09	0.15	0.20	0.003	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
D1		1.90			0.075	
е		0.95			0.037	
Е	2.60	2.80	3.00	0.102	0.110	0.118
F	1.50	1.60	1.75	0.059	0.063	0.069
L	0.10	0.35	0.60	0.004	0.013	0.023
K	0 degrees		10 degrees			

3.2 SO-8 package information

Figure 18. SO-8 package mechanical drawing

Table 8. SO-8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0		8°	1°		8°
CCC			0.10			0.004

3.3 TSSOP8 package information

Figure 19. TSSOP8 package mechanical drawing

Table 9. TSSOP8 package mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.20			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е		0.65			0.0256		
k	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1			0.039		
aaa			0.10			0.004	

3.4 SO-14 package information

Figure 20. SO-14 package mechanical drawing

Table 10. SO-14 package mechanical data

		<u> </u>	Dimensions				
Def		Millimeters			Inches		
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	1.35		1.75	0.05		0.068	
A1	0.10		0.25	0.004		0.009	
A2	1.10		1.65	0.04		0.06	
В	0.33		0.51	0.01		0.02	
С	0.19		0.25	0.007		0.009	
D	8.55		8.75	0.33		0.34	
E	3.80		4.0	0.15		0.15	
е		1.27			0.05		
Н	5.80		6.20	0.22		0.24	
h	0.25		0.50	0.009		0.02	
L	0.40		1.27	0.015		0.05	
k		8° (max.)					
ddd			0.10			0.004	

3.5 TSSOP14 package information

Figure 21. TSSOP14 package mechanical drawing

Table 11. TSSOP14 package mechanical data

		<u></u>		nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

4 Ordering information

Table 12. Order codes

Order code	Temperature range	Package	Packaging	Marking
TS941ID TS941IDT				TS941ID TS941IDT
TS941AID TS941AIDT		SO-8	Tube or Tape & reel	TS941AID
TS941BID TS941BIDT				TS941BID
TS941ILT				K201
TS941AILT		SOT23-5L	Tape & reel	K202
TS941BILT				K203
TS942ID TS942IDT				TS942ID TS942IDT
TS942AID TS942AIDT		SO-8	Tube or Tape & reel	TS942AID
TS942BID TS942BIDT	-40°C to +85°C			TS942BID
TS942IPT				TS942
TS942AIPT		TSSOP8	Tape & reel	942AI
TS942BIPT				942BI
TS944ID TS944IDT				TS944ID TS944IDT
TS944AID TS944AIDT		SO-14	Tube or Tape & reel	TS944AID TS944AIDT
TS944BID TS944BIDT				TS944BID TS944BIDT
TS944IPT				TS944IPT
TS944AIPT		TSSOP14	Tape & reel	TS944AI
TS944BIPT]			TS944BI

5 Revision history

Table 13. Document revision history

Date	Revision	Changes
01-Dec-2001	1	Initial release.
01-Dec-2004	2	Modifications on AMR table (explanation of V_{id} and V_{in} limits).
13-Mar-2008	3	CDM values added for TS944 in SO and TSSOP packages. Document reformatted.
09-Apr-2008	4	Corrected error in power consumption on cover page (1.2µA, not 1.2mA).
05-Mar-2009	5	Removed DIP package information and order codes in <i>Chapter 3</i> and <i>Chapter 4</i> . Updated all other package mechanical drawings and data in <i>Chapter 3</i> .
06-Oct-2009	6	Added root part numbers (TS94xA, TS94xB) and Table 1: Device summary on cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18 Doc ID 6972 Rev 6

