

CINÉTICA QUÍMICA

- ◆ Estudia las velocidades de las reacciones químicas y los mecanismos por los cuales se producen
- Si una reacción es termodinámicamente favorable puede ocurrir, aunque no necesariamente a una velocidad observable.

$$2 \text{ HCI}_{(ac)} + \text{Mg(OH)}_{2(s)} \rightarrow \text{MgCI}_{2(ac)} + 2\text{H}_2\text{O}_{(l)} \quad \Delta\text{G} = -97 \text{ KJ}$$

$$C_{(diam)}$$
 + $O_{2(g)}$ \rightarrow $CO_{2(g)}$ $\triangle G = -396 \text{ KJ}$

FACTORES QUE AFECTAN A LA VELOCIDAD DE UNA REACCIÓN.

- Naturaleza de los reactivos.
- Estado físico.
- Superficie de contacto o grado de pulverización (en el caso de sólidos)
- Concentración de los reactivos.
 - Al aumentar, aumenta la velocidad.
- Temperatura.
 - Al aumentar, aumenta la velocidad.
- Presencia de catalizadores.
 - Modifica la velocidad.

Cinética química

La **velocidad de reacción** es el cambio de la concentración de un reactivo o un producto por unidad de tiempo (M/s).

$$A \longrightarrow B$$

$$V = \frac{\Delta[A]}{\Delta t} \qquad \Delta[A] = \text{Cambio de concentración en A}$$
respecto a un periodo de tiempo Δt .

$$V = \frac{\Delta[B]}{\Delta t} \qquad \Delta[B] = \text{Cambio de concentración en B}$$
 respecto a un periodo de tiempo Δt .

La [A] decrece con el tiempo, entonces Δ [A] es negativo.

Medir
$$\Delta P$$
 respecto al tiempo

$$2 \text{ H}_2\text{O}_2 \text{ (ac)} \longrightarrow 2 \text{ H}_2\text{O} \text{ (I)} + \text{O}_2 \text{ (g)}$$

$$PV = nRT$$

$$P = \frac{n}{V} RT = [\text{O}_2]RT$$

$$[\text{O}_2] = \frac{1}{RT} P$$

$$\text{Veloc} = \frac{\Delta[\text{O}_2]}{\Delta t} = \frac{1}{RT} \frac{\Delta P}{\Delta t}$$

Velocidad de reacción y estequiometría

$$2A \rightarrow B$$

Dos moles de A desaparecen por cada mol de B que se forme.

$$V = -\frac{1}{2} \frac{\Delta[A]}{\Delta t} \qquad V = \frac{\Delta[B]}{\Delta t}$$

$$aA + bB \longrightarrow cC + dD$$

$$V = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

Escriba la expresión de velocidad para la siguiente reacción

$$CH_4(g) + 2\Phi_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

$$V = -\frac{\Delta[CH_4]}{\Delta t} = -\frac{1}{2}\frac{\Delta[O_2]}{\Delta t} = \frac{\Delta[CO_2]}{\Delta t} = \frac{1}{2}\frac{\Delta[H_2O]}{\Delta t}$$

Para la siguiente reacción, la velocidad de formación de H_2 es 0,078 M/s. a) A que velocidad se está formando el P_4 y b) con que velocidad esta reaccionado la PH_3 ?

$$4PH_3(g) \longrightarrow P_4(g) + 6H_2(g)$$

$$V = -\frac{1}{4} \frac{\Delta[PH_3]}{\Delta t} = \frac{\Delta[P_4]}{\Delta t} = \frac{1}{6} \frac{\Delta[H_2]}{\Delta t}$$

$$\frac{\Delta[P_4]}{\Delta t} = \frac{1}{6} \frac{\Delta[H_2]}{\Delta t} = \frac{1}{6} \quad 0.078 \text{ M/s} \quad = 0.013 \text{ M/s}$$

$$-\frac{\Delta[PH_3]}{\Delta t} = \frac{4}{6} \frac{\Delta[H_2]}{\Delta t} = \frac{4}{6} 0,078 \text{ M/s} = 0,052 \text{ M/s} \frac{\Delta[PH_3]}{\Delta t} = -0,052 \text{ M/s}$$

Ley de la velocidad

La **ley de la velocidad** expresa el producto de la concentración de los reactivos elevados a una potencia llamada orden de reacción.

$$aA + bB \longrightarrow cC + dD$$

$$V = k [A]^{(k)} [B]^{(k)}$$

La reacción es de orden x respecto a A

La reacción es de orden y respecto a B

La reacción general es de orden (x + y)

$$F_{2}(g) + 2CIO_{2}(g) \longrightarrow 2FCIO_{2}(g)$$
TABLE 13.2 Rate Data for the Reaction Between F₂ and CIO₂

$$V = k \ [F_{2}]^{x} [CIO_{2}]^{y}$$

$$\begin{bmatrix} F_{2}](M) & [CIO_{2}](M) & Initial Rate (M/s) \\ \hline 1. 0.10 & 0.010 & 1.2 \times 10^{-3} \\ 2. 0.10 & 0.040 & 4.8 \times 10^{-3} \\ 3. 0.20 & 0.010 & 2.4 \times 10^{-3} \end{bmatrix}$$

Duplicando $[F_2]$ con $[CIO_2]$ constante, la velocidad se duplica. Por lo tanto X = 1

Cuadruplicando [CIO₂] con [F₂] cte, la velocidad se aumenta 4 veces. Por lo tanto y = 1

$$V = k [F_2][CIO_2]$$

La reacción es de orden 1 con respecto a F₂

La reacción es de orden 1 con respecto a CIO₂

El orden global de la reacción es 2

Leyes de la velocidad

- Las leyes de la velocidad son determinadas experimentalmente.
- El orden de la reacción siempre es definido en términos de las concentraciones del reactivo (no del producto)
- La orden de un reactivo no está relacionado con el coeficiente estequiométrico del reactivo en la ecuación química balanceada.

Ejemplo: Indique los órdenes de reacción total y parciales de las reacciones:

$$H_{2 (g)} + I_{2 (g)} \rightarrow 2 HI_{(g)}$$
 $v = k \cdot [H_2] \cdot [I_2]$
 $H_{2 (g)} + Br_{2 (g)} \rightarrow 2 HBr_{(g)}$ $v = k \cdot [H_2] \cdot [Br_2]^{1/2}$

$$H_2(g) + I_2(g) \rightarrow 2 \text{ HI } (g)$$
 $v = k \cdot [H_2] \cdot [I_2]$

- Reacción de segundo orden (1 + 1)
- De primer orden respecto al H₂ y de primer orden respecto al I₂.

$$H_2(g) + Br_2(g) \rightarrow 2 HBr(g)$$
 $v = k \cdot [H_2] \cdot [Br_2]^{\frac{1}{2}}$

- Reacción de orden $\frac{3}{2}$ (1 + $\frac{1}{2}$)
- De primer orden respecto al H₂ y de orden ½ respecto al Br₂.

DETERMINACIÓN EXPERIMENTAL DE LA ECUACIÓN DE VELOCIDAD

<u>Ejemplo:</u> Determinar el orden de reacción :

$$\mathsf{CH_3\text{-}Cl}_{(g)} \ \ + \ \ \mathsf{H_2O}_{(g)} \ \ \to \ \ \ \mathsf{CH_3\text{-}OH}_{(g)} \ \ + \ \ \ \mathsf{HCl}_{(g)}$$

Experiencia	[CH ₃ -Cl] (mol/L)	[H ₂ O] (mol/L)	v (mol·L ⁻¹ ·s ⁻¹)
1	0,25	0,25	/ 2,83
2	0,50	0,25	5,67
3	0,25	0,5	11,35

usando los datos de la tabla. $v = k \cdot [CH_3 - CI] \cdot [H_2O]^2$

$$k = \frac{V}{[CH_3 - CI] \cdot [H_2O]^2} = 181,12 \frac{1}{M^2 S}$$

.

Considere una reacción química entre los compuestos A y B, que es de primer orden respecto de A y de segundo orden respecto de B. De la información dada abajo complete los espacios en blanco.

$$v = k \cdot [A] \cdot [B]^2$$

Experimento	Velocidad(M/s)	[A]	[B]
1	0.150	1.00M	0.200M
2	0.3	2.00M	0.200M
3	1.2	2.00M	0.400M

$$0.150 \text{ M/s} = k \cdot [1.\text{M}] \cdot [0.2\text{M}]^2$$

$$k = 3,75 \frac{1}{M^2 s}$$

Reacciones de orden cero:

para la reacción del tipo A → productos

$$v = k [A]^0 = k$$

Orden	Ley de velocidad	Unidades de K
0	v = k	M/s
1	v = k [A]	1/s
2	v = k [A] ²	1/(M.s)

TEORÍA DE LAS COLISIONES. ENERGÍA DE ACTIVACIÓN (E_a).

- ◆ El número de moléculas de productos es proporcional al número de choques entre las moléculas de los reactivos.
- ◆ De éstos choques, no todos son efectivos
 - porque no tienen la energía necesaria para constituir el "complejo activado".
 - porque no tienen la orientación adecuada.
- ◆ La energía de activación es la necesaria para formar el "complejo activado", a partir del cual la reacción transcurre de forma natural.

CATALIZADORES

- Intervienen en alguna etapa de la reacción pero no se modifican pues se recuperan al final y no aparece en la ecuación global ajustada.
- Modifican el mecanismo y por tanto E_a.
- Las reacciones catalizadas también pueden clasificarse en:
 - Homogéneos: en la misma fase que los reactivos.
 - Heterogéneos: se encuentra en distinta fase.

En una **catálisis heterogénea**, los reactivos y el catalizador están en diferentes fases.

- Síntesis de Haber para el amoniaco
- Proceso de Ostwald para la producción de ácido nítrico.
- Convertidores catalíticos

En una **catálisis homogénea**, los reactivos y el catalizador están dispersos en una sola fase, por lo regular líquida.

- Catálisis ácida
- · Catálisis básica o alcalina

Proceso Ostwald

