

INDIVIDUAL ASSIGNMENT

NAME (TP NUMBER)	:	Koo Wai Kit (TP081761)
INTAKE CODE	:	APUMF2406CYS
MODULE TITLE	:	Research Methodology in Computing and Engineering (102024-SIL)
MODULE LECTURER	:	Assoc. Prof. Dr. Shahrinaz binti Ismail
SUPERVISOR NAME	:	Ts. Dr. Vinesha A/P Selvarajah
PROJECT TITLE		Assignment 1: Literature Review Paper
DATE ASSIGNED	:	7 November 2024
DATE COMPLETED	:	3 January 2025

Analysis of Vulnerabilities Leading to Denial-of-Service Attacks in Wi-Fi Networks and Effective Mitigation: A Literature Review

Abstract

This literature review looks at the weaknesses of Wi-Fi networks to Denial-of-Service (DoS) attacks and studies different ways to improve their security. Wi-Fi technology is essential for global connectivity, making it a target for attackers who want to disrupt services for legitimate users. The review identifies key weaknesses in Wi-Fi networks. These weaknesses include vulnerabilities in the Wi-Fi protocols, problems with hardware and firmware, configuration mistakes, weaknesses at the physical layer, and human factors that increase the risk of DoS attacks. It also evaluates current protective measures. These measures include Protected Management Frames (PMF), stronger security protocols, 802.1X authentication with RADIUS servers, wireless intrusion detection and prevention systems (WIDS/WIPS), Wi-Fi beacon protection, and anti-jamming techniques. The discussion also addresses the need for future research, focusing on the need to study newer Wi-Fi standards and their advanced features. It is also important to consider backward compatibility for older devices and to develop lightweight intrusion detection systems for IoT environments. Overall, this review aims to offer insights into reducing risks related to Wi-Fi DoS attacks and to point out areas needing further research to improve Wi-Fi security.

Keywords: 802.11; Denial-of-service (DoS); Wi-Fi security; Wi-Fi vulnerabilities; Wi-Fi exploits; Defense mechanisms against DoS attacks; Future improvements in Wi-Fi security

1. Introduction

Wi-Fi, also known as Wireless Local Area Network (WLAN), is a technology that uses the IEEE 802.11 standard to connect devices wirelessly. Today, Wi-Fi is used to connect billions of devices to the internet. This includes devices like smartphones, laptops, and Internet of Things (IoT) devices. The technology is important for both work and personal activities as it provides easy access to online information. Wi-Fi also plays a major role in handling internet protocol (IP) traffic. This includes all forms of online communication. By

2022, Wi-Fi was expected to handle the majority of global IP traffic, which surpasses both wired Ethernet and cellular networks. This shows how Wi-Fi has shaped the way we communicate wirelessly (Pahlavan & Krishnamurthy, 2021).

However, since Wi-Fi is used by so many people, these networks are often targeted by hackers, especially those who launch Denial-of-Service (DoS) attacks. When hackers perform DoS attacks, they try to block regular users from getting online or using network services, and this may lead to serious consequences.

The main objective of this paper is to analyse how Wi-Fi networks can be attacked by DoS attacks and what can be done to reduce the risks. To achieve this, the paper will answer the following research questions:

- a. What are the main weaknesses in Wi-Fi networks that allow DoS attacks to happen?
- b. What methods are currently available to protect against Wi-Fi DoS attacks?
- c. What should future studies focus on to improve Wi-Fi security?

The structure of the paper is divided into five sections. It starts by exploring the vulnerabilities that make Wi-Fi networks easy targets for DoS attacks. The next section covers ways to defend against these attacks. Then, it points out areas that need more research to improve the security of Wi-Fi networks. The paper finishes with a summary of findings as the conclusion.

2. Key Themes in Wi-Fi DoS Vulnerabilities

2.1 Protocol Vulnerabilities

Four-way Handshake Vulnerabilities

Several protocol-level weaknesses in Wi-Fi networks can lead to Denial-of-Service (DoS) attacks, especially during the important four-way handshake process that secures Wi-Fi connections.

One major vulnerability is the blocking of message 4 during a four-way handshake between a client and an access point (AP). This message is important because it helps complete the secure connection process between a client and the AP. Attackers can stop the handshake from completing by preventing the transmission of message 4. After the client sends message 4, it sets up a pairwise key and will only accept encrypted messages. If the AP does not receive message 4, it will resend message 3 without encryption. However, the client

will reject this unencrypted message, which causes the handshake to time out (Vanhoef & Piessens, 2017). This is a significant issue in modern networks. In these networks, clients frequently move between different APs. As a result, they often need to perform the 4-way handshake repeatedly to establish a secure connection (Schepers et al, 2022).

Another problem occurs due to a race condition during the handshake. The client sets the security key after sending message 4, while the AP installs it after receiving that message. Attackers can take advantage of this timing difference by jamming the messages. This prevents the AP from receiving message 4 and setting the key, stopping the handshake (Lounis & Zulkernine, 2020).

Also, attackers can take advantage of a weakness in the message 1 of the 4-way handshake. This message does not have encryption or authentication, making it vulnerable. Attackers can exploit this vulnerability by sending a modified message with incorrect information about the key data (Schepers et al, 2022). This can cause some clients to stop the handshake and disconnect from the network if they receive message 1 with invalid data, such as an invalid PMKID (Vanhoef & Piessens, 2017).

In addition, many implementations do not follow the 802.11 standard regarding plaintext EAPOL frames. The standard says that message 4 should be sent without encryption during the initial handshake. However, some systems mistakenly send message 4 with encryption after the pairwise key is set. This causes the AP to reject the frame since it has not installed the key yet (Vanhoef & Piessens, 2017).

Attackers can also launch DoS attacks by repeatedly sending deauthentication frames to devices operating under the 802.11w standard. This attack interferes with the handshake process between the client and the AP, thus disrupting the normal connection process between the devices (Pisarev, 2020).

Key Management Vulnerability

Key Reinstallation Attacks (KRACK) exploit a flaw in the way session keys are installed. This flaw occurs when devices reset their nonce and packet counters. Attackers can use this weakness to replay broadcast and multicast UDP packets, allowing them to take control of commands in IoT networks. Attackers can use this to disrupt the normal operation of these networks (Thankappan et al, 2022).

Management Frame Vulnerability

IEEE 802.11 management frames are exchanged during the phases of network discovery, authentication, and association. They are vulnerable because they are sent before security keys are negotiated. This means these frames are not protected by security protocols. As a result, they can be easily spoofed by attackers (Thankappan et al, 2022). For example, an attacker could set up a fake AP that sends probe responses to a client. If the client receives this fake probe response before it gets the legitimate response from the real AP, it may stop the authentication process and disconnect from the network (Lounis & Zulkernine, 2020).

Networks that use Protected Management Frames (PMF) have a security feature called Security Association (SA) Query. Attackers can trick the AP into using this feature. They can send fake association or reassociation frames to make the AP issue an SA query request. If the attacker then jams the client's responses, the AP might reset the connection. This causes the AP to disconnect the device, but the device cannot reconnect (Thankappan et al, 2022).

Wi-Fi Beacon Vulnerability

Wi-Fi beacons are messages that APs send to announce their presence. These messages are not protected, which means attackers can easily create fake beacons. Attackers can use fake beacons to disrupt Wi-Fi networks in different ways. One type of attack is the Quiet Attack, where fake beacons with the "quiet" information element force clients to stop their transmissions. This can significantly impact older devices, even though it is less effective against modern ones. Attackers can also create fake beacons that tell devices to reduce their transmission power, which in turn disrupts their connections. Also, attackers can create fake beacons that change the way devices access the network. This can slow down or completely stop the network for certain devices (Vanhoef et al., 2020).

The Battery Depletion attack tricks devices into frequently checking for data, which drains their battery. Attackers can also disrupt the sleep-wake cycles of devices by sending fake timestamps. They can also create the illusion that there is no data available for devices in sleep mode, which prevents them from receiving important information. Spoofed beacons can also send out fake Channel Switch Announcements (CSAs), forcing clients to change channels and disrupting their connectivity. Attackers might also change bandwidth-related information, making clients transmit on unsupported bandwidths. This can interfere with their communication and potentially allow the attacker to intercept information (Vanhoef et al., 2020).

WPA3-SAE Protocol Vulnerability

The Simultaneous Authentication of Equals (SAE) protocol, used in WPA3-Personal, has weaknesses that can be exploited by attackers. In a clogging attack, an attacker floods the AP with many fake SAE frames that have fake source MAC addresses. This flood of invalid frames can overwhelm the AP, preventing it from serving legitimate clients trying to connect to the network (Chatzoglou et al., 2022).

Additionally, there is a vulnerability called "bad-token" that targets the WPA3-SAE handshake. This problem happens when the AP stops the authentication process after getting a bad token during the message exchange for establishing a shared key. Attackers can exploit this by sending a fake "commit" message with a bad token between the client and the AP. If this fake message arrives first, the AP ends the real authentication attempt. The client then has to start the process again. By repeatedly sending bad token messages, attackers can block the client's ability to authenticate, preventing it from connecting to the network. This is an effective attack because the AP trusts the first message it receives. Attackers only need a slight advantage in timing to succeed. This causes the client to have constant connection problems (Lounis & Zulkernine, 2019).

Vendor-Specific Vulnerabilities

Attacks can also target weaknesses in how different manufacturers implement the 802.11 standard. These attacks usually involve sending frames with errors to the AP. This causes the AP to respond in an unexpected way and disconnect legitimate users from the network. For example, an attacker can send a fake authentication frame to a WPA2 AP. This frame has a specific value in the "authentication algorithm" field. This can cause the AP to disconnect the targeted client. Similarly, sending a fake SAE Confirm frame with a specific value can also disconnect the client from a WPA3 AP. Additionally, sending a fake Authentication or SAE frame with a specific sequence number can disconnect the client from an AP made by Qualcomm (Chatzoglou et al., 2022).

2.2 Hardware and Firmware Weaknesses

Weaknesses in APs

APs have several weaknesses that can be exploited for DoS attacks. Low-end APs often have limited processing power and memory. This limitation makes them easy targets for flooding attacks, like those that exploit the SAE handshake. Attacks like "Cookie Guzzler"

and "Memory Omnivore" show how these weaknesses can successfully disrupt low-end devices (Chatzoglou et al., 2022).

Many APs have outdated firmware. This outdated firmware can contain security flaws that attackers can exploit for DoS attacks. Even though these flaws are often fixed with updates, many devices remain unpatched. In addition, modern APs often support different security modes, like WPA2 and WPA3. This can introduce additional vulnerabilities. For instance, attackers may exploit the transition mode of WPA3 to execute dictionary attacks against WPA2 clients. This could allow them to steal passwords and compromise the WPA3 network (Chatzoglou et al., 2022).

Weaknesses in Clients

Many Wi-Fi clients have security flaws in their firmware. One major concern is unpatched firmware flaws, similar to those found in APs. These flaws can be used by attackers to compromise security. For example, one serious vulnerability can cause a Wi-Fi client to install an all-zero encryption key instead of a valid key during the 4-way handshake, allowing attackers to easily decrypt sensitive information. This exposes the client to further attacks and weakens the overall security of the network (Thankappan et al., 2022).

2.3 Configuration Vulnerabilities

Insecure Configuration of 802.1x and WPA-Enterprise

The way 802.1x and WPA-Enterprise are set up can create security problems in Wi-Fi networks. Eduroam is a common Wi-Fi network used in universities. It uses 802.1x with TLS tunnels for authentication. However, if devices are not configured correctly or users are careless, attackers can exploit this by setting up rogue APs. A major concern is that users are responsible for configuring their own devices. This is different from corporate networks where IT teams manage these settings. This often leads to outdated or incorrect configuration guides and pre-configured profiles, which results in security risks.

Lack of PMF Support

The absence of Protected Management Frames (PMF) support is a significant configuration weakness in Wi-Fi networks. PMF is designed to protect important management frames from being exploited in DoS attacks. These management frames are essential for starting and ending network sessions (Kwon & Choi. 2020). However, PMF is optional in WPA2, and many devices, especially IoT devices, do not support it. This is partly

because PMF was initially implemented differently by different vendors, which led to inconsistent support across different devices. A survey found that about 87% of routers do not fully comply with PMF standards (Thankappan et al, 2022).

2.4 Physical Layer Weaknesses

Constant jamming attacks are a simple and effective way to launch DoS attacks. These attacks involve continuously sending strong signals over Wi-Fi channels. This brute-force method overwhelms real signals, making it hard for Wi-Fi devices to decode packets and access the channel. Some jamming attacks target a specific part of the Wi-Fi communication process called the Request to Send/Clear to Send (RTS/CTS) handshake. Attackers can interfere with this process by corrupting messages. This causes devices to retransmit data, which wastes network resources and can lead to DoS. Jammers can also take advantage of weaknesses in rate adaptation algorithms, making the network run at lower data rates. This change reduces throughput and further impacts network performance (Pirayesh & Heng, 2022).

In addition, modern Wi-Fi standards like 802.11ac and 802.11ax use a technology called MU-MIMO. This technology allows multiple devices to communicate simultaneously. Jammers can disrupt this technology by interfering with the signals used to determine the best way to transmit data. This reduces the speed of the network and can cause DoS. Some jammers can also send fake signals that mimic real traffic. This tricks APs into using resources for these false signals, which takes away bandwidth from legitimate users. These attacks are easier to carry out because Wi-Fi channels are not always protected, letting malicious devices send disruptive traffic without following access control rules (Pirayesh & Heng, 2022). Furthermore, smart jamming techniques that have been created and shown to work effectively while also avoiding detection. However, these attacks require the attacker to be physically close to the target. They also typically target only a single cell in a network (Pelechrinis et al., 2010, as cited in Xin & Starobinski, 2021).

2.5 Human Factors

Human error and a lack of security awareness significantly impact the security of Wi-Fi networks. One common issue is that users often connect to Wi-Fi networks simply based on the SSID without checking if it is legitimate. Attackers exploit this by setting up fake APs that mimic real networks. Once connected, users become vulnerable to having their information stolen, their internet traffic intercepted, and their network access disrupted by the

rogue AP (Palamà et al, 2023). Another problem is that users often ignore or dismiss certificate warnings, especially on devices like Android phones. When users do not check these warnings, it allows attackers to create malicious connections (Palamà et al, 2023).

Many users also use weak passwords for their networks. These passwords are easy to guess, making it easier for attackers to gain unauthorised access and exploit network resources, potentially causing service disruptions (Kwon & Choi, 2020). Additionally, many users lack awareness about the risks of using unsecured networks and do not follow safe practices. This lack of knowledge makes them more vulnerable to social engineering attacks, which can give attackers access to the networks (Palamà et al, 2023).

3. Key Themes in Defense Mechanisms Against Wi-Fi DoS Attacks

3.1 Protected Management Frames (PMF)

PMFs are critical defense against Wi-Fi DoS attacks. It was introduced in the IEEE 802.11w standard, and it improves the security of management frames by adding authentication, encryption, and data integrity checks (Lounis & Zulkernine, 2020). Starting in 2018, PMF became a requirement for devices certified under the WPA2 and WPA3 standards, significantly boosting the security of modern Wi-Fi networks (Thankappan et al., 2022).

However, PMF is not a perfect solution and faces some challenges in real-world use. One major issue is compatibility. PMF only protects against DoS or man-in-the-middle (MitM) attacks if all APs and client devices in the network fully support it. Networks with older devices that do not support PMF can create security gaps (Thankappan et al., 2022).

PMF also has its own vulnerabilities. For example, it is affected by key reinstallation attacks (KRACK), such as the one identified in CVE-2017-13081. This weakens its ability to secure communication. Additionally, PMF cannot prevent certain DoS attacks like Wi-Fi jamming or beacon spoofing. These attacks disrupt network availability or trick devices into connecting to fake APs. Another limitation is its ineffectiveness against insider threats. Even with PMF enabled, authorised users with malicious intent can exploit weaknesses to carry out deauthentication or disassociation attacks, bypassing PMF's protections (Thankappan et al., 2022).

3.2 Stronger Security Protocols

The transition from WEP to WPA, and then to WPA2 and WPA3, shows a strong effort to improve wireless security. Each new version brings important upgrades in encryption methods, key management, and authentication processes (Moissinac et al, 2021).

The WPA2 security mechanism included a new key called Pairwise Transient Key (PTK). This key was used to protect messages sent to individual devices. Similarly, the IEEE 802.11w standard added a key called Integrity Group Transient Key (IGTK) to protect broadcast management frames. These encryption keys block attackers from exploiting management frames, which is a common tactic in Wi-Fi DoS attacks (Pisarev, 2020).

Moreover, the IEEE 802.11w standard also added a security feature called Security Association Query (SA Query). This feature checks if a device is allowed to connect to the network. The device and the AP exchange messages to verify the connection request. If the messages are incorrect, the connection is blocked. This helps prevent attacks that try to overload the network with fake connection requests. Another significant change is Timeout Information Element (TIE), which helps reduce DoS risks. It allows the AP to set a time limit for devices to respond during the connection process. This prevents the AP from being overloaded by fake connection requests from malicious devices (Pisarev, 2020).

Additionally, WPA2-Enterprise is a version of WPA2 that provides better security features, which can help reduce risks related to DoS attacks. One important change is the use of unique per-session keys for each connection. Unlike WPA2-PSK, which depends on a shared key, WPA2-Enterprise creates keys from random numbers given by both the client and the RADIUS server. This method lowers the risks linked to shared keys and improves overall network security (Moissinac et al, 2021).

WPA2-Enterprise uses a RADIUS server to check user logins. This means all logins are handled in one place, and this makes it harder for unauthorised people to get in. Another important feature of WPA2-Enterprise is AP authentication. It uses special digital certificates so devices can be sure they are talking to the right AP, which can help to stop evil twin attacks (Moissinac et al, 2021).

Furthermore, WPA3 has several advancements that greatly boost protection against Wi-Fi DoS attacks. It focuses on secure authentication and encryption methods. One key change is the move from the PSK exchange used in WPA2 to the SAE protocol. This new protocol is

designed to resist offline dictionary attacks. This makes it much harder for attackers to figure out passwords from captured network traffic. By making it harder to crack passwords, WPA3 significantly reduces the risk of unauthorised network access, which is often the first step in launching DoS attacks. Another key feature of WPA3 is the mandatory use of Protected Management Frames (PMF), which has been discussed under Section 3.1 (Kwon & Choi. 2020).

WPA3 also enhances security for open Wi-Fi networks. It introduces Opportunistic Wireless Encryption (OWE). This feature provides a basic level of encryption and protection, this helps even when passwords are not used. This helps reduce the risks of open networks facing simple DoS attacks. This helps reduce the risks of open networks facing simple DoS attacks. This improvement is especially important in public places where users often connect to unprotected networks. OWE helps protect sensitive information and keeps the network safe (Moissinac et al, 2021). Moreover, WPA3 addresses vulnerabilities in device provisioning. It replaces the weak Wi-Fi Protected Setup (WPS) with the more secure Device Provisioning Protocol (DPP). This change makes defenses stronger against DoS attacks that target weaknesses in the device provisioning process. It ensures that devices can be added to the network safely without exposing it to possible threats (Kwon & Choi. 2020).

3.3 802.1X Authentication with RADIUS servers

Implementing 802.1X authentication with Remote Authentication Dial-In User Service (RADIUS) servers improves Wi-Fi security by providing strong authentication and centralised control. This system replaces basic pre-shared keys (PSK) with individual user authentication using unique credentials. This makes it harder for attackers to get unauthorised access to the network. This extra layer of security helps prevent DoS attacks that target weaker authentication systems (Palamà et al, 2023).

In addition, 802.1X with RADIUS allows for flexible implementation of advanced security features. This helps protect against DoS attacks. Protocols like EAP-TTLS and PEAP create secure tunnels between the user and the authentication server. This keeps user credentials safe during transmission and lowers the risk of credential theft that attackers can use for DoS attacks. EAP-TLS uses digital certificates for mutual authentication between the user and the authentication server. This makes it much harder for attackers to pretend to be legitimate entities and carry out DoS attacks (Palamà et al, 2023).

3.4 Wireless Intrusion Detection and Prevention Systems (WIDS/WIPS)

WIDS/WIPS watch the wireless network for signs of unauthorised activity. These systems can help defend against Wi-Fi DoS attacks. They do this by alerting administrators to potential security problems and taking automatic steps to reduce threats (Mughal, 2022). These systems also consider the human element in security. However, intruders can exploit human weaknesses to bypass WIDS defenses. For example, attackers can intentionally trigger a series of alerts. This confuses security personnel and makes it difficult to respond effectively to genuine threats (Pisarev, 2020).

WIDS utilises a variety of analytical methods, including advanced machine learning techniques. These techniques automate the detection of attacks and identify malicious activities within the network. This automation significantly enhances the system's ability to recognize and respond to potential DoS attacks. Additionally, WIDS makes use of a mix of traditional algorithms and modern approaches for traffic analysis. These include clustering and anomaly-based detection. Conventional algorithms like Random Forest and AdaBoost work alongside Artificial Neural Networks (ANN), which are effective at examining network traffic flow. This combination of techniques helps WIDS find unusual patterns that might signal a DoS attack (Pisarev, 2020).

3.5 Wi-Fi Beacon Protection

Wi-Fi networks can be made more secure by authenticating beacon frames, which helps reduce various DoS attacks. Each beacon frame includes a special code called a Message Integrity Code (MIC). The AP generates this code using a secret key and a unique number. Clients receive this secret key when they connect to the network. They use this key to verify the MIC in each beacon frame. If the MIC is incorrect, the client ignores the beacon. This protects the client from potential attacks. This mechanism helps prevent several types of attacks. Clients can verify the authenticity of beacons, which prevents attacks that force them to stop transmitting. It also prevents attacks that try to change the device's transmission power. This mechanism also helps devices maintain their normal network speed by rejecting fake parameters. In addition, clients can also avoid attacks that drain their battery and ensure they stay connected to the network. Beacon protection guards against fake bandwidth information that could disrupt connections. The system also allows devices to report any suspicious APs. This helps network administrators quickly identify and address potential threats (Vanhoef et al, 2020).

3.6 Anti-Jamming Techniques

According to Pirayesh and Heng (2022), several anti-jamming techniques can defense against Wi-Fi jamming attacks:

- i. **Channel Hopping**: This method quickly switches between available Wi-Fi channels. It makes it harder for jammers to keep attacking. It works well against narrow-band and reactive jammers that need to target one channel.
- ii. Spread Spectrum Techniques: These techniques spread the Wi-Fi signal across a wider range of frequencies. This makes it more difficult for narrowband jammers to interfere with the signal. However, these techniques can reduce the speed of the network.
- iii. **MIMO-Based Mitigation**: This technique multiple-input and multiple-output technology. It uses multiple antennas to separate the desired signal from interference. This is effective but requires accurate information about the channel and is limited by the number of antennas.
- iv. **Rate Adaptation and Power Control**: These techniques adjust the transmission speed and power based on the quality of the channel. They can help reduce the effects of low-power jamming. Transmission strength can be increased to fight low-power jamming, but it must follow regulations.
- v. **Jamming Detection Mechanisms**: These techniques are used to identify jamming attacks. They analyse signal patterns, channel activity, and error rates to differentiate jamming from other types of interference. Machine learning algorithms are being developed to improve the accuracy of these techniques.

4. Implications for Future Research

Future research on DoS attacks in Wi-Fi networks should look at newer standards like 802.11ac, 802.11ad, and 802.11ax. These standards include advanced features such as beamforming and multi-user multiple-input multiple-output (MU-MIMO) technology. Researchers should investigate how attacks on one network can affect other networks. This research will help to improve the resilience of Wi-Fi networks (Xin & Starobinski, 2021). Additionally, MIMO technology shows promise in reducing jamming attacks. Most modern Wi-Fi devices also use MIMO, making it an important area for further study. Developing effective jamming mitigation techniques for MIMO networks will significantly improve their resistance to interference (Pirayesh & Heng, 2022).

Many devices still use older Wi-Fi standards like WPA-TKIP. Therefore, future defense measures should ensure backward compatibility. This is important because it may not always be possible to update the security of older devices. Finally, developing lightweight and effective systems for detecting intrusions for IoT environments should be a priority. A good intrusion detection strategy is likely the best way to reduce DoS attacks in these resource-limited settings (Thankappan et al, 2022).

5. Conclusion

This literature review highlights key advancements in defending against Wi-Fi DoS attacks. Key measures include Protected Management Frames (PMF), improved encryption protocols like WPA3, 802.1X authentication with RADIUS, and Wireless Intrusion Detection and Prevention Systems (WIDS/WIPS). Features such as Opportunistic Wireless Encryption (OWE), Device Provisioning Protocol (DPP), and advanced anti-jamming methods provide targeted ways to reduce vulnerabilities. However, challenges still exist. These challenges include compatibility issues with legacy devices, limitations in countering advanced threats like jamming, and the growing complexity of attack methods.

Future research should prioritise lightweight and scalable intrusion detection systems for resource-limited IoT environments. It is also important to ensure that these systems work with older devices. Researchers should also investigate vulnerabilities in modern Wi-Fi standards. Refining MIMO-based jamming mitigation techniques will further strengthen defenses. Combining advanced technologies with strong security protocols is essential to addressing evolving Wi-Fi DoS threats and ensuring the reliability of wireless communication networks.

References

- Chatzoglou, E., Kambourakis, G., & Kolias, C. (2022). How is your Wi-Fi connection today?

 DoS attacks on WPA3-SAE. *Journal of Information Security and Applications*, 64, 103058.
- Kwon, S., & Choi, H. K. (2020). Evolution of Wi-Fi protected access: security challenges. *IEEE Consumer Electronics Magazine*, 10(1), 74-81.
- Lounis, K., & Zulkernine, M. (2019, September). Bad-token: denial of service attacks on WPA3. In *Proceedings of the 12th International Conference on Security of Information and Networks* (pp. 1-8).

- Lounis, K., & Zulkernine, M. (2020, November). Exploiting race condition for Wi-Fi denial of service attacks. In *13th International Conference on Security of Information and Networks* (pp. 1-8).
- Moissinac, K., Ramos, D., Rendon, G., & Elleithy, A. (2021, January). Wireless encryption and WPA2 weaknesses. In 2021 IEEE 11th Annual computing and communication workshop and conference (CCWC) (pp. 1007-1015). IEEE.
- Mughal, A. A. (2022). Well-architected wireless network security. *Journal of Humanities and Applied Science Research*, 5(1), 32-42.
- Pahlavan, K., & Krishnamurthy, P. (2021). Evolution and impact of Wi-Fi technology and applications: A historical perspective. *International Journal of Wireless Information Networks*, 28, 3-19.
- Palamà, I., Amici, A., Bellicini, G., Gringoli, F., Pedretti, F., & Bianchi, G. (2023). Attacks and vulnerabilities of Wi-Fi Enterprise networks: User security awareness assessment through credential stealing attack experiments. *Computer Communications*, 212, 129-140.
- Pisarev, D. (2020). Overview of wireless connection security standards in company's digital infrastructure and their weaknesses. In CEUR Workshop Proceedings (CEUR-WS. org) (pp. 1-13).
- Pirayesh, H., & Zeng, H. (2022). Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey. *IEEE communications surveys & tutorials*, 24(2), 767-809.
- Schepers, D., Ranganathan, A., & Vanhoef, M. (2022, May). On the robustness of Wi-Fi deauthentication countermeasures. In *Proceedings of the 15th ACM conference on security and privacy in wireless and mobile networks* (pp. 245-256).
- Thankappan, M., Rifà-Pous, H., & Garrigues, C. (2022). Multi-Channel Man-in-the-Middle attacks against protected Wi-Fi networks: A state of the art review. *Expert Systems with Applications*, 210, 118401.
- Vanhoef, M., & Piessens, F. (2017, November). Denial-of-service attacks against the 4-way wi-fi handshake. In 9th International Conference on Network and Communications Security (NCS).
- Vanhoef, M., Adhikari, P., & Pöpper, C. (2020, July). Protecting wi-fi beacons from outsider forgeries. In *Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks* (pp. 155-160).

Xin, L., & Starobinski, D. (2021). Countering cascading denial of service attacks on Wi-Fi networks. *IEEE/ACM Transactions on Networking*, 29(3), 1335-1348.

Appendix A. Literature Review Matrix

Author /	Research	Methodology	Analysis and	Conclusions	Implications
Article Title,	Question(s) /		Results		for
Journal Title,	Hypotheses				Future
and					Research /
Publication					Practice
Details					
Chatzoglou,	Examine if	Conducted	Discovered 7	Multiple	Advocate for
E.,	WPA3-SAE	manual fuzz	generic DoS	vulnerabilitie	stateless Anti-
Kambourakis,	implementati	testing on	techniques that	s in WPA3-	Clogging
G., & Kolias,	on flaws can	WPA3-	exploit WPA3-	SAE result	Mechanism
C. (2022).	enable DoS	capable	SAE flaws,	from	(ACM) to
How is your	attacks.	devices to	disrupting AP-	improper	strengthen
Wi-Fi		uncover	STA	implementati	WPA3-SAE
connection		vulnerabilitie	communication	on and	against DoS
today?		s.		outdated	attacks.
DoS attacks				standards.	
on WPA3-					
SAE. Journal					
of Information					
Security and					
Applications,					
64, 103058.					
Kwon, S., &	Identify	Review the	Explain how	State that	Emphasise
Choi, H. K.	vulnerabilitie	development	WPA3 features	WPA3 fixes	the need for
(2020).	s in older	of security	like Dragonfly	many issues	ongoing
Evolution of	WPA	features in	protect against	from WPA2	updates to
Wi-Fi	versions and	different	offline	but still needs	Wi-Fi
protected	see how	WPA	password	improvement	security
access:	WPA3	versions to	guessing	s against DoS	protocols to
security	improves	find	attacks.	attacks and	keep up with
challenges.	security.	weaknesses.		better	new threats.

IEEE				security	
Consumer				validation.	
Electronics					
Magazine,					
10(1), 74-81.					
Lounis, K., &	Find and	Analyse the	Looks at how	Shows that	Device
Zulkernine, M.	study	WPA3-SAE	attackers can	the identified	manufacturer
(2019,	weaknesses in	protocol and	use the "bad-	vulnerabilitie	s need to
September).	the WPA3-	create attack	token"	s can be used	implement
Bad-token:	SAE	scenarios	vulnerability	to launch	countermeasu
denial of	protocol,	using	and WPA2-	DoS attacks	res against
service attacks	focusing on	Raspberry Pi	related attacks	on WPA3	these
on	the "bad-	to show how	to disrupt	networks,	vulnerabilitie
WPA3. In	token"	these	network	blocking	s, and more
Proceedings of	vulnerability	weaknesses	connections.	legitimate	research is
the 12th	and WPA2-	can be		clients and	needed to
International	related DoS	exploited.		disconnecting	find other
Conference on	attacks.			existing ones.	potential
Security of					attack
Information					methods and
and Networks					their effects
(pp. 1-8).					on Wi-Fi IoT
					applications.
Lounis, K., &	Aim to show	Set up an	The attacks	DoS attacks	Add
Zulkernine, M.	three new	experimental	take advantage	are a serious	intelligence to
(2020,	attack	environment	of weaknesses	threat to Wi-	the
November).	scenarios that	with laptops,	in Wi-Fi	Fi networks,	authentication
Exploiting	use a race	smartphones,	authentication	especially as	process so
race condition	condition	tablets, a Wi-	protocols,	Wi-Fi use	devices
for Wi-Fi	vulnerability	Fi AP, and a	where devices	grows in IoT	evaluate
denial	to stop users	desktop for	act on the first	applications.	multiple
of service	from	monitoring to	message	They	messages
attacks. In	connecting to	test and	received	highlight that	before
13th	real Wi-Fi	analyze the	without proper	the attack	proceeding.
International	networks and	attacks using	verification.	scenarios are	
Conference on	suggest ways	an evil twin		easy to carry	

Security of	to prevent	attack		out with few	
Information	these attacks.	scheme.		resources.	
and Networks					
(pp. 1-8).					
Moissinac, K.,	Looks at the	Use a Kali	The simulation	The authors	Future
Ramos, D.,	security of	Linux virtual	shows that the	conclude	research
Rendon, G., &	wireless	machine to	proposed	their solution	should focus
Elleithy, A.	communicati	simulate	solution would	offers strong	on creating a
(2021,	on, especially	WPA2-	triple the AP	encryption	more precise
January).	WPA2	Enterprise	load compared	for home and	model by
Wireless	weaknesses,	components	to WPA2-PSK,	small	testing the
encryption	and suggests	with tools	but the authors	business	solution on
and WPA2	that WPA2-	like Aircrack-	argue this	users without	devices like
weaknesses. In	Enterprise	ng,	increase is	needing	Raspberry Pi,
2021 IEEE	features can	FreeRADIUS	minor since	complex	integrating it
11th Annual	improve	, and an	authentication	systems,	with Linux
computing and	security for	Apache web	happens rarely.	making it a	APs, and
communicatio	home and	server for		practical way	managing
n workshop	small	SSL		to improve	public key
and	business	handshakes.		wireless	certificates to
conference	users.			security.	prevent man-
(CCWC) (pp.					in-the-middle
1007-1015).					attacks.
IEEE.					
Mughal, A. A.	Aims to	Examines the	Real-world	The article	For
(2022). Well-	explore	complexities	case studies	summarises	practitioners,
architected	wireless	of wireless	show how	key findings,	the research
wireless	network	security	security	emphasizing	offers a
network	security,	architecture	concepts apply,	the need for a	framework
security.	focusing on	and outlines	including a	comprehensiv	and guidance
Journal of	fundamental	steps for	large	e, multi-	for secure
Humanities	principles and	designing and	enterprise's	layered	wireless
and	best practices	managing	secure wireless	approach to	network
Applied	for enterprise	secure	network and	wireless	management.
Science	environments.	wireless	security	network	For
			challenges	security.	researchers, it

Research,		networks in	faced by small-		points to
5(1), 32-42.		businesses.	to-medium-		areas needing
			sized		further study,
			businesses.		like new
					security
					protocols and
					technologies.
Pahlavan, K.,	Explores the	The authors	The authors	The study	The industry
&	growth of	categorize the	found that Wi-	concludes	is looking for
Krishnamurth	Wi-Fi	history of Wi-	Fi is favored	that the	new
y, P. (2021).	technology	Fi technology	for	proliferation	applications
Evolution and	and its	into three	smartphones	of Wi-Fi	of Wi-Fi
impact of Wi-	applications,	eras: before	due to its high	devices has	signals to
Fi technology	focusing on	1985, from	data rates,	enabled	improve
and	how its	1985 to 1997,	reliable indoor	significant	cyberspace
applications:	popularity in	and from	connections,	advancement	intelligence,
A historical	indoor	1997 to now,	and lower	s in	with future
perspective.	settings	while also	costs, and	cyberspace	efforts
International	drives interest	discussing	noted that the	applications.	focused on
Journal of	in new	market	WLAN		combining
Wireless	cyberspace	evolution and	industry led the		RSS signals
Information	applications.	applications	development of		with sensor
Networks, 28,		from their	key wireless		data to
3-19.		perspective as	technologies.		enhance
		researchers.	They also		positioning
			identified Wi-		accuracy and
			Fi positioning,		flexibility.
			popularized by		
			the iPhone, as a		
			major		
			innovation.		
Palamà, I.,	Aims to	The	The findings	Although	Future work
Amici, A.,	evaluate the	researchers	showed that	802.1x is	should focus
Bellicini, G.,	security of	conducted	many users	meant for	on creating
Gringoli, F.,	802.1x	two	lacked security	secure	technologies
Pedretti, F., &	authentication	experiments:	awareness and	authenticatio	to help users

	mechanisms	one with a	had vulnerable	n, it is	•
(2023). in			nad vulliciable	11, 11 18	recognise
	in Wi-Fi	controlled	device	ineffective in	attacks,
Attacks e	enterprise	group at the	configurations,	practice due	promote
and n	networks,	University of	with over one-	to user	security
vulnerabilities f	focusing on	Rome where	third of	behavior and	awareness,
of Wi-Fi	vulnerabilitie	participants'	participants	device	and improve
Enterprise s	s in the	credentials	losing	vulnerabilitie	security
networks:	Eduroam	were captured	credentials in	s, indicating a	protocols.
User security s	service and	using a rogue	the controlled	need for	Manufacturer
awareness a	assessing user	Eduroam AP,	experiment.	better	s should
assessment s	security	and another at	The in-the-wild	security	restrict forced
through	awareness.	the	attack revealed	measures and	connections
credential		University of	that many users	user	when
stealing attack		Brescia	were at risk	education.	certificates
experiments.		involving	due to		change, and
Computer		real-world	misconfiguratio		organizations
Communicatio		attacks with	ns, and		should
ns, 212, 129-		rogue APs in	Android		provide
140.		crowded	devices were		current
		areas to	generally more		security
		evaluate user	vulnerable than		guides and
		vulnerability	Apple devices.		awareness
					campaigns for
					users.
Pisarev, D.	Aims to	The authors	The analysis	The	Future studies
(2020). r	review	conduct a	shows that	researchers	should use
Overview of v	wireless	literature	many studies	conclude that	updated data
wireless s	security	review to	have flaws, like	the 802.11	and practical
connection s	standards,	compare how	using old data	standard still	tests to
security f	focusing on	well machine	and lacking	has security	compare
standards in V	Wireless	learning and	real-world	weaknesses,	detection
company's I	Intrusion	deep learning	testing, which	even in its	methods,
digital I	Detection	techniques	affect their	latest version,	while
infrastructure S	Systems	detect attacks	findings.	and a	companies
illiastructure		on wireless		stronger	should
	(WIDS), and	on whereas		stronger	5110 0110
and their ((WIDS), and identify	networks.		WIDS is	improve their

CEUR	weaknesses to			needed to	security
Workshop	prevent			protect	measures and
Proceedings	cyberattacks.			against data	stay updated
(CEUR-WS.				leaks.	on new
org) (pp. 1-					threats.
13).					
Pirayesh, H.,	Aims to	Reviews	Examine	Despite	More
& Zeng, H.	provide a	existing	different types	improvement	research on
(2022).	clear	research on	of jamming	s in wireless	better anti-
Jamming	overview of	jamming	attacks and	technology,	jamming
attacks and	jamming	attacks and	categorise anti-	many	methods,
anti-jamming	attacks and	anti-jamming	jamming	systems are	especially in
strategies in	anti-jamming	strategies	techniques,	still at risk	areas like
wireless	strategies in	across	providing	from	MIMO
networks: A	different	various	tables that	jamming	techniques,
comprehensiv	wireless	wireless	summarise	attacks due to	cross-domain
e survey. IEEE	networks to	networks,	both for each	limited anti-	designs,
communicatio	encourage	organising	wireless	jamming	flexible
ns surveys &	more research	techniques	network type.	techniques	resource
tutorials,	and help	and		that are	allocation,
24(2), 767-	design better	comparing		practical and	and using
809.	wireless	them with		effective.	machine
	systems.	previous			learning for
		surveys.			anti-jamming
					solutions.
Schepers, D.,	Studies how	Examines the	Found	MFP does not	Creating
Ranganathan,	well Wi-Fi	IEEE 802.11	problems in the	provide	stronger
A., &	deauthenticati	standard's	standard, such	enough	defenses
Vanhoef, M.	on	rules for	as unclear rules	protection	against
(2022, May).	countermeasu	handling	and	against	deauthenticati
On the	res work in	deauthenticati	vulnerabilities	deauthenticati	on attacks
robustness of	the IEEE	on frames and	that could lead	on attacks	and
Wi-Fi	802.11	tested how	to denial-of-	and	improving the
deauthenticati	standard and	MFP is	service attacks.	emphasised	IEEE 802.11
on	whether	implemented	It showed that	the need for	standard.
countermeasur	Management	in different	many systems,	better	

es. In	Frame	operating	including	security	
Proceedings of	Protection	systems and	Linux and	measures,	
the 15th ACM	(MFP) is	wireless	Apple devices,	including	
conference on	enough to	devices, using	are still	beacon frame	
security and	stop	practical	vulnerable to	protection.	
privacy in	deauthenticati	experiments	deauthenticatio		
wireless and	on attacks.	to find	n attacks even		
mobile		vulnerabilitie	with MFP.		
networks (pp.		s.			
245-256).					
Thankappan,	Looks at	Reviews	Found that	Multi-	Focus on
M., Rifà-Pous,	Multi-	existing	Multi-Channel	Channel	creating
H., &	Channel	research on	MitM attacks	MitM attacks	lightweight
Garrigues, C.	MitM attacks	Multi-	can manipulate	are a serious	wireless
(2022). Multi-	that alter	Channel	wireless frames	threat to Wi-	intrusion
Channel Man-	encrypted	MitM attacks,	on WPA3	Fi security	detection
in-the-Middle	wireless	focusing on	networks,	because they	systems for
attacks against	frames	their effects	bypassing	can bypass	real Wi-Fi-
protected Wi-	between two	on WPA,	protections like	protections	based IoT
Fi networks: A	endpoints and	WPA2, and	PMF. They	and exploit	networks and
state of the art	evaluates how	WPA3	also noted that	weaknesses	improving
review. Expert	well current	networks, as	many Wi-Fi	in Wi-Fi	Wi-Fi
Systems with	protection	well as the	devices remain	protocols,	standards to
Applications,	mechanisms	difficulties in	unpatched and	highlighting	prevent
210, 118401.	work against	implementing	vulnerable due	that effective	Multi-
	these attacks.	protection	to delays in	defense	Channel
		methods.	releasing	mechanisms	MitM attacks
			updates.	are still	from
				needed,	bypassing
				especially in	protections.
				IoT contexts.	
Vanhoef, M.,	Studies the 4-	Tests	Found three	Two of the	Recommend
& Piessens, F.	way Wi-Fi	different	new denial-of-	attacks can be	changing
(2017,	handshake to	implementati	service attacks.	prevented by	implementati
November).	see if there	ons of the 4-	The first two	always	ons to send
Denial-of-	were	way	attacks exploit	sending	plaintext

service attacks	vulnerabilitie	handshake for	timing issues	plaintext	EAPOL
against the 4-	s that could	weaknesses	between the	EAPOL	frames during
way	lead to	and	client and AP,	frames during	key rekeying
wi-fi	denial-of-	performed a	causing failed	the initial	and
handshake. In	service	jamming	handshakes.	handshake,	modifying
9th	attacks.	attack on	The third attack	while the	clients to
International		OpenBSD's	involves	third attack	accept only
Conference on		rum driver to	sending a bad	can be	authenticated
Network and		check if the	message after	stopped by	messages
Communicatio		pairwise key	the handshake,	ignoring	during this
ns Security		(PTK) could	which	malformed	process.
(NCS).		be installed	disconnects	message 1's	
		before the	some clients	during the	
		fourth	from the	handshake.	
		message was	network.		
		sent.			
Vanhoef, M.,	Can an	Reviews	Many devices	Unprotected	Future
Adhikari, P.,	attacker	existing	are vulnerable	beacon	research
& Pöpper, C.	create fake	attacks with	to forged	frames pose	should
(2020, July).	beacons to	fake beacons,	beacons,	security risks,	address
Protecting wi-	perform	analyses	leading to	and the	insider
fi beacons	various	beacon	issues like	researchers	forgeries.
from outsider	attacks, and	information	denial of	demonstrated	Vendors
forgeries. In	can a low-	for	service and	attacks using	should
Proceedings of	bandwidth	vulnerabilitie	battery drain.	them. They	implement
the 13th ACM	method be	s, audits code	The proposed	proposed a	the protection
Conference on	developed to	and tests their	scheme	protective	scheme, and
Security and	authenticate	scheme on	prevents	scheme for	network
Privacy in	beacon	various	outside	outside	administrator
Wireless and	frames and	devices.	forgeries, is	forgeries that	s should
Mobile	stop these		efficient, and	is now part of	enable it on
Networks (pp.	attacks?		works with	the draft	their
155-160).			older systems	802.11	networks.
			but does not	standard.	
			protect against		
I	I	I.	I	l	

			insider		
			forgeries.		
Xin, L., &	Studies	The authors	The optimal	Cascading	Investigate
Starobinski,	cascading	used	packet duration	DoS attacks	cascading
D. (2021).	DoS attacks	analytical	can prevent	threaten Wi-	DoS attacks
Countering	on Wi-Fi	modeling,	cascading DoS	Fi networks,	in newer Wi-
cascading	networks and	simulations,	attacks and	but	Fi standards.
denial of	aims to	and	enhance	optimising	The study
service attacks	optimise	experiments.	throughput,	packet	emphasises
on Wi-Fi	packet	They created	varying with	durations can	considering
networks.	transmission	a model to	MAC	effectively	MAC
IEEE/ACM	times to	analyse	overhead.	mitigate them	overhead and
Transactions	reduce these	neighboring	Simulations	and improve	packet length
on	attacks while	nodes'	and	throughput.	for robust
Networking,	boosting	utilization	experiments		Wi-Fi
29(3), 1335-	throughput.	affected by	confirmed that		network
1348.		MAC	this method		design.
		overhead and	outperforms		
		conducted	RTS/CTS.		
		tests with ns-			
		3 and real			
		Wi-Fi cards.			