

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A parallel architecture digital filter receiving p input signals ($I_0, \dots, I_i, \dots, I_{p-1}$) and delivering p output signals ($S_0, \dots, S_i, \dots, S_{p-1}$) which are the sums of the input signals weighted with M coefficients (C_0, C_1, \dots, C_{M-1}), this filter comprising p parallel channels ($V_0, \dots, V_i, \dots, V_{p-1}$) receiving the input signals ($I_0, \dots, I_i, \dots, I_{p-1}$), characterized in that it comprises r+1 stages ($E_0, \dots, E_j, \dots, E_r$), where r is the integer portion of ratio $(M+p-2)/2$, the stage of rank j delivering p intermediate signals ($R_0^j, \dots, R_i^j, \dots, R_{p-1}^j$) which are the weighted sums of the input signals defined by:

$$R_i^j = \sum_{q=0}^{p-1} (C_{M-i-q+i-jp}) I_{q+jp}$$

$$R_i^j = \sum_{q=0}^{p-1} (C_{M-i-q+i-jp}) I_{q+jp}$$

the filter further comprising a summing means \sum receiving said intermediate signals (R_i^j) and delivering p sums defined by:

$$S_i = \sum_{j=0}^r R_i^j$$

these p sums forming p output signals ($S_0, \dots, S_i, \dots, S_{p-1}$).

2. (Currently amended) The digital filter according to claim 1, wherein the number of channels p is equal to 2, the filter then comprising a first channel with first storing means (R^p) for storing the samples of the input signals of even rank (I_k^p, I_{k-1}^p, \dots) and a second channel with second storing means (R^i) for storing the samples of the input signals of odd rank (I_k^i, I_{k-1}^i, \dots),

and each channel further comprising first ($M_0^P, \dots, M_1^P, \dots, ADD^P$) and second ($M_0^i, \dots, M_1^i, \dots, ADD^i$) means respectively, for respectively calculating even (S_k^P) and odd (S_k^i) weighted sums, respectively.

3. (Currently amended) The filter according to claim 2, wherein the first and the second means for calculating the even and odd weighted sums each comprise multipliers ($M_1^P, M_3^P, \dots, M_0^i, M_2^i \dots$) each receiving a respective sample of the input signals ($I_{k-1}^P, I_k^P, \dots, I_{k-1}^i, I_k^i \dots$) and a respective weighting coefficient (C_1, C_3, C_0, C_2) (C_0, C_2, C_1, C_3), and an adder (ADD^i, ADD^P) connected to the multipliers.

4. (Currently amended) The filter according to claim 2, wherein the first and the second storing means each comprises a first (R^P) and a second (R^i) shift register, respectively.

5. (Currently amended) The filter according to claim 4, wherein each shift register (R^P, R^i) comprises cells (B^P) (B^i) arranged in series, each cell consisting of a flip-flop with a an input (D) and a direct output (Q), wherein the input of a flip-flop of rank k is connected to the direct output (Q) of the flip-flop of rank $k-1$ and the direct output (Q) of a the flip-flop of rank k is connected to the input of the flip-flop of rank $k+1$, each flip-flop further comprising a complemented output (\bar{Q}), each of the multipliers then being a multiplexers (MPX^P) (MPX^i) with two inputs connected to the direct (Q) and complemented (\bar{Q}) outputs of the flip-flops, respectively, each multiplier multiplexer further comprising a control input receiving a positive or negative control signal (C_0, C_1, \dots, C_{m-1}) and an output, which is either connected to a one of the two inputs, or to the other, according to the sign of the control signal.

6. (Currently amended) A receiver for direct sequence spread spectrum signals comprising:

- at least an analog/digital converter (CAN(I), CAN(Q)) receiving a spread spectrum signal and delivering digital samples of this signal,
- at least a digital filter (F(I), F(Q)) with coefficients (C_j) adapted to the a spread spectrum sequence, this filter receiving the digital samples delivered by the digital/analog analog/digital converter and delivering a filtered signal,
- means (DD, Inf/H, D) for processing the filtered signal able to restore the transmitted data (d), this receiver being characterized in that the digital filter (F(I), F(Q)) is a parallel architecture digital filter according to any of claims 1 to 5.

7. (Currently amended) The receiver according to claim 6, comprising first and second channels in parallel, the first (I) for processing a signal in phase with a carrier and the second (Q) for processing a signal in phase quadrature with said carrier, each channel comprising said a respective parallel architecture digital filter (F(I), F(Q)) with, for the first channel (I), notably, first and second adders (ADD(I)^P, ADD(I)ⁱ) delivering first and second weighted sums (S(I)_k^P, S(I)_kⁱ) and, for the second channel (Q), notably, first and second adders (ADD(Q)^P, ADD(Q)ⁱ) delivering first and second weighted sums (S(Q)_k^P, S(Q)_kⁱ).

8. (Currently amended) The receiver according to claim 7, wherein the first channel (I) comprises a first differential demodulation circuit (DD(I)) and the second channel (Q) comprises a second differential demodulation circuit (DD(Q)), the first differential demodulation circuit (DD(I)) receiving the first weighted sums (S(I)_k^P, S(Q)_k^P) delivered by the respective parallel architecture digital filters (F(I), F(Q)) of the first and second channels (I), (Q), and delivering two a first DOT and a first CROSS signals (DOT^P, CROSS^P), the second differential demodulation

circuit (DD(Q)) receiving the second weighted sums ($S(I)_k^i$) and ($S(Q)_k^i$) delivered by the respective parallel architecture digital filters ($F(I)$, $F(Q)$) of the first and second channels (I , Q) and delivering ~~two~~ a second DOT and a second CROSS signals (DOT^i , $CROSS^i$).

9. (Currently amended) The receiver according to claim 8, comprising a clock and an information circuit (Inf/H) receiving each of the first and second DOT and CROSS signals (DOT^p , $CROSS^p$), (DOT^i , $CROSS^i$),~~signals~~ delivered by the first and second differential demodulation circuits ($DOTDD(I)$, $DD(Q)$) and delivering ~~two~~ even and odd information signals (S_{inf}^p), (S_{inf}^i), a clock signal (SH) and a parity signal (Sp/i).