36-710: Advanced Statistical Theory

Fall 2018

Lecture 2: August 29

Lecturer: Alessandro Rinaldo Scribes: Natalia Lombardi de Oliveira

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Examples regarding last lecture

Example 2.1 (Linear Discriminant Analysis) Let $P_j \sim N(\mu_j, \Sigma)$, j = 1, 2 and $X \in \mathbb{R}^d$ with distribution P_x . Goal: test $H_0: P_x = P_1$ vs $H_a: P_x = P_2$. Let's use the Likelihood Ratio test statistic $(\log \frac{dP_1}{dP_2}(X))$, in which we reject H_0 if LR > 1. This is equivalent to $\psi(X) = \langle \mu_1 - \mu_2, \Sigma^{-1}(X - \frac{\mu_1 - \mu_2}{2}) \rangle < 0$. Assuming $P_x = .5P_1 + .5P_2$, the overall error $Err(\psi) = .5\mathbb{P}_1(\psi(X) \leq 0) + .5\mathbb{P}_2(\psi(X) \geq 0)$.

If $\Sigma = \mathbb{I}_d$, we have $\phi(-\gamma/2)$, in which $\gamma = ||\mu_1 - \mu_2||$ and ϕ the cdf of a normal(0,1). Now, observe n samples from P_1, X_1, \ldots, X_n and n samples form P_2, Y_1, \ldots, Y_n , and let $\hat{\mu}_1$ and $\hat{\mu}_2$ be the respective sample means. Using the plug-in rule, $\hat{\psi}(X) = \langle \hat{\mu}_1 - \hat{\mu}_2, (x - \frac{\hat{\mu}_1 - \hat{\mu}_2}{2}) \rangle < 0$ and evaluate its error $Err(\hat{\psi})$. It's possible to show that $Err(\hat{\psi}) \xrightarrow{p} \Phi(\frac{-\gamma^2}{2\sqrt{\gamma^2 + 2\alpha}})$, where $\alpha = \lim_{n \to \infty} \frac{dn}{n}$. If $\alpha = 0$, then \xrightarrow{p} higher error. If $\alpha = \infty$, then $\xrightarrow{p} 1/2$.

Example 2.2 (Many normal means problem) Let $X \sim N_n(\mu, I_n), \mu \in \mathbb{R}, d = n$.

Under square error loss, the mle X is not optimal estimator of μ ($n \geq 3$). (Option: use James-Stein estimator.) Now let's think about the problem of testing $H_0: \mu = 0$ vs $H_a: \mu \neq 0$, which is equivalent to

$$H_0: \cap_{i=1}^n H_{0i} \text{ vs } \cup_{i=1}^n H_{ai},$$

in which $H_{0i}: \mu_i = 0$ and $H_{ai}: \mu_i \neq 0$. Two cases:

- 1. **needle in haystack problem**: there exists one coordinate such that $\mu_i \neq 0$ and $\mu_j = 0, j \neq i$. Optimal statistic is $\max_i |X_i| > t_\alpha$ and it is optimal if $\mu_i \geq (1 \epsilon)\sqrt{2logn}$ for any fixed α and any $\epsilon > 0$ for $t_\alpha = \sqrt{2logn}$. (Optimal here means that power goes to 1 as $n \to \infty$.) If $|\mu_i| \leq (1 \epsilon)\sqrt{2logn}$, any $\epsilon > 0$, then the sum of type I and type II errors goes to 1 for any test as $n \to \infty$.
- 2. signal is weak but spread out: use χ^2 test statistic and reject if $||X||^2$ is large.

2.2 Basic concentration inequalities

Motivation: $X_1, \ldots, X_n \sim (\mu, \sigma^2)$, iid, $\bar{X}_n \stackrel{p}{\to} \mu$, $\bar{X}_n = \mu + o_p(1)$. We want to know how fast, $\forall t, P(|\bar{X}_n - \mu| \ge t) \to 0$.

By CLT, $\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \xrightarrow{d} Z$, $Z \sim N(0, 1)$, so it's root-n consistent $(\bar{X}_n = \mu + O_p(1/\sqrt{n}))$.

2-2 Lecture 2: August 29

 $\forall \epsilon > 0, \exists t = t(\epsilon) \text{ and } N = N(\epsilon, t) \text{ s.t. } P(|\bar{X}_n - \mu| \ge t\sigma/\sqrt{n}) \le \epsilon. \text{ Then, } \lim_{n \to \infty} P(\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \ge t) = P(Z \ge t) \le .5e^{-t^2/2} \text{ (HW1)}.$

Goal: X_1, \ldots, X_n independent. Let $Z = f(X_1, \ldots, X_n)$. We want to establish upper bounds on $P(|Z-m| \ge t)$ for some m ($\mathbb{E}(Z)$, $median(Z), \ldots$) at each finite n. Typically, $f(X) = \frac{\sum_{i=1}^n X_i}{n}$. We want to be agnostic with respect to the distribution of X_1, \ldots, X_n .

2.2.1 Basic bounds

- Markov: Let $X \ge 0$ and t > 0. $P(X \ge t) \le \mathbb{E}(X)/t$.
- Chebyshev: Let X be a RV with finite variance and t > 0. $P(|X \mathbb{E}(X)| \ge t) \le V(X)/t^2$. Also, $P(|X \mathbb{E}(X)| \ge t) \le \min_{k \in \mathbb{N}} (X \mathbb{E}(X))^k / t^k$.

2.2.2 Chernoff bounds

Let t > 0 and assume that the function $\lambda \in \mathbb{R} \mapsto \psi_{X-\mu}(\lambda) = log(\mathbb{E}(e^{\lambda(X-\mu)}))$ exists $\forall \lambda \in (-b,b), b < \infty$. Then, for all $\lambda \in [0,b)$,

$$P(X - \mu \ge t) = P(e^{X - \mu} \ge e^t)$$

$$\le P(e^{\lambda(X - \mu)} \ge e^{\lambda t})$$

$$\le \mathbb{E}[e^{\lambda(X - \mu)}]e^{-\lambda t}$$

$$= e^{\psi_{X - \mu}(\lambda) - \lambda t}$$

$$\implies P(X - \mu \ge t) \le \exp{-\psi_{X - \mu}^*(t)},$$

where $\psi_{X-\mu}^* = \sup_{\lambda \in [0,b)} e^{\lambda t - \psi_{X-\mu}(\lambda)}$.

In fact, we can extend the supremum over all $\lambda \in (-b,b)$ because $\psi_{X-\mu}(0) = 0, \psi_{X-\mu}^*(t) \geq 0, \forall t$, and $\psi_{X-\mu}(\lambda) \geq \lambda \mathbb{E}[X-\mu]$ by Jensen's inequality. Now we can get a concentration inequality:

$$P(|X - \mu| \ge t) \le 2 \exp{-\psi_{X-\mu}^*(t)}$$
.

Example 2.3 (Normal) $X \sim N(\mu, \sigma^2)$.

$$\mathbb{E}[e^{\lambda X}] = e^{\mu \lambda + \sigma^2 \lambda^2 / 2}, \lambda \in \mathbb{R}.$$

$$\sup_{\lambda > 0} \lambda t - \psi_{X-\mu}(\lambda) = \frac{t^2}{2\sigma^2} \implies P(|X - \mu| \ge t) \le 2 \exp \frac{-t^2}{2\sigma^2}.$$

$$\sup_{t>0} P(Z \ge t) \exp \frac{t^2}{2\sigma^2}$$

Remark: bound is of the form $c_1 \exp -t^2 c_2$, so we call it a Gaussian tail bound.

Definition 2.4 (Sub-gaussian RV) A R.V. X s. t. $\mu = \mathbb{E}[X]$ exists and is sub-gaussian with parameter σ^2 , $X \in SG(\sigma^2)$, when $\mathbb{E}[e^{\lambda(X-\mu)}] \leq \exp{\frac{\lambda^2\sigma^2}{2}}, \forall \lambda \in \mathbb{R}$

Remarks:

- 1. $X \in SG(\sigma^2)$, then $-X \in SG(\sigma^2)$
- 2. Repeating the calculation for gaussian case: $\forall t > 0, P(|X \mu| \ge t) \le 2 \exp{\frac{-t^2}{2\sigma^2}}$.

Lecture 2: August 29 2-3

3. For R.V. X, let $\sigma = \sigma(X) = \inf_{\sigma>0} : \mathbb{E}[\exp \lambda(X-\mu)] \le \exp \frac{\lambda^2 \sigma^2}{2}, \forall \lambda \in \mathbb{R}$. It turns out $V(X) \le \sigma^2$ and, in some cases, $V(X) < \sigma^2$.

Properties of $SG(\sigma^2)$:

- 1. $V(X) \le \sigma^2$;
- 2. if $a \le X \mu \le b$, a, b finite, then $X \in SG((\frac{b-a}{2})^2)$;
- 3. if $X \in SG(\sigma^2)$, then $\alpha X \in SG(\alpha^2\sigma^2), \alpha \in \mathbb{R}$;
- 4. if $X \in SG(\sigma^2)$ and $Y \in SG(\tau^2)$, then $X + Y \in SG((\sigma + \tau)^2)$. If X and Y are independent, $X + Y \in SG(\sigma^2 + \tau^2)$.