- 1. Calculate the exact reflection and transmission coefficients, without assuming $\mu_1 = \mu_2 \approx \mu_{\circ}$. Confirm that $I_R + I_T = I_{\circ}$.
- 2. While deriving the reflection and transmission coefficients for normal incidence, it was assumed (implicitly) that the reflected and the transmitted waves have the same polarization as the incident wave (along \hat{x} or \hat{i}). Prove that it must be so.

[Hint: Let the polarization vectors of the transmitted and the reflected waves be

$$\hat{n}_T = \cos \theta_T \hat{i} + \sin \theta_T \hat{j}, \ \hat{n}_R = \cos \theta_R \hat{i} + \sin \theta_R \hat{j}.$$

and prove from the boundary conditions that $\theta_T = \theta_R = 0$.]

- 3. Suppose $Ae^{iax} + Be^{ibx} = Ce^{icx}$ for some nonzero constants A, B, C, a, b, c, and for all x. Prove that a = b = c and A + B = C.
- 4. How does the wave equation transform under Galilean transformation? What about Lorentz transformation?