Estructuras Discretas

Lógica Proposicional

Liliana Reyes

Universidad Nacional Autónoma de México Facultad de Ciencias

23 de marzo de 2023

- El concepto de expresiones equivalentes es imprescindible para todo tipo de razonamiento.
- Dos expresiones son equivalentes si y sólo si en todos y cada uno de sus posibles estados se evalúan a lo mismo.

Ejemplo

Podemos comprobar usando una tabla de verdad, que las expresiones $\neg \neg P$ y P son equivalentes:

P	$\neg P$	$\neg(\neg P)$
T	F	T
F	T	F

Renglón por renglón, el valor correspondiente a P es el mismo que el valor correspondiente a $\neg \neg P$.

No se interprete esta definición como que estamos exigiendo tener el mismo valor en todos los renglones, esto es, que todos los renglones valieran ${\cal F}$ o todos los renglones valieran ${\cal T}$.

En el caso de expresiones lógicas el concepto de equivalencia está relacionado con un tipo particular de tautología. Si tenemos una bicondicional $(A \leftrightarrow B)$ que es una tautología, entonces decimos que tenemos una equivalencia lógica.

Definición

Sean A,B dos fórmulas. Si $A \leftrightarrow B$ es una tautología, entonces decimos que A y B son lógicamente equivalentes y lo denotamos por $A \equiv B$. Esto es lo mismo que decir

 $A \equiv B$ si y sólo si $\models A \leftrightarrow B$.

Reglas de equivalencia

Asociatividad :	$(P \land Q) \land R \equiv P \land (Q \land R)$	(1)
	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$	(2)
Identidad :	$P \lor False \equiv P$	(3)
	$P \wedge True \equiv P$	(4)
Idempotencia:	$P \lor P \equiv P$	(5)
	$P \wedge P \equiv P$	(6)
Dominación :	$P \lor True \equiv True$	(7)
	$P \wedge False \equiv False$	(8)
Conmutatividad :	$P \vee Q \equiv Q \vee P$	(9)
	$P \wedge Q \equiv Q \wedge P$	(10)
Tercero excluido :	$P \lor \neg P \equiv True$	(11)
Contradicción :	$P \land \neg P \equiv False$	(12)
Doble negación :	$\neg \neg P \equiv P$	(13)
Distributividad :	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	(14)
	$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	(15)

Reglas de equivalencia

De Morgan :	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	(16)
	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	(17)
Eliminación de operadores :	$P \to Q \equiv \neg P \lor Q$	(18)
	$P \leftrightarrow Q \equiv (\neg P \lor Q) \land (P \lor \neg Q)$	(19)
	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$	(20)
	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$	(21)
Leyes de absorción :	$P \lor (P \land Q) \equiv P$	(22)
	$P \wedge (P \vee Q) \equiv P$	(23)
Leyes de simplificación :	$(P \land Q) \lor (\neg P \land Q) \equiv Q$	(24)
	$(P \lor Q) \land (\neg P \lor Q) \equiv Q$	(25)

Regla de Leibniz

$$\frac{X = Y}{E[z := X] = E[z := Y]}$$

Ejemplo

Para poder comprobar las reglas de equivalencia, el método más simple es realizar la tabla de verdad, por ejemplo, para comprobar que la regla 1 se cumple lo siguiente:

$$\models (P \land Q) \land R \leftrightarrow P \land (Q \land R)$$

P	Q	R	$(P \wedge Q) \wedge R$	\leftrightarrow	$P \wedge (Q \wedge R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F
Т	F	Т	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	F	Т	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F
F	F	F	F	Т	F

Ejemplo

Para poder comprobar las regla de equivalencia 16 tenemos lo siguiente:

$$\models \neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$$

P	Q	$\neg (P \land Q)$	\leftrightarrow	$\neg P \lor \neg Q$
Т	Т	F	Т	F
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	T	Т

Álgebra de equivalencias lógicas

- Análogamente al razonamiento aritmético ecuacional que es la base del álgebra, las expresiones lógicas generan un álgebra.
- Esta manipula variables y constantes que representan valores de verdad.
- Podemos emplear equivalencias lógicas para deducir o simplificar nuevas expresiones a partir de otras ya conocidas.

Álgebra de equivalencias lógicas

Ejemplo

Utilizaremos este método de tomar a uno de los equivalentes y derivar, a partir de él, al otro. Consideremos la expresión $P \lor (P \land Q) \equiv P$. Como el de la izquierda tiene más estructura, es el que tomamos como punto de partida.

- 1 $P \lor (P \land Q)$ Usando la identidad (4) tenemos:
- 2 $(P \wedge True) \vee (P \wedge Q)$ Usando la identidad (15) de distrubutividad tenemos:
- 3 $P \land (True \lor Q)$ Usando la identidad (7) de dominación tenemos:
- 4 $P \wedge (True)$ Usando de nuevo la identidad (4) tenemos:
- 5 P

- Aplicamos todos los conocimientos previos de lógica para cumplir con nuestro propósito fundamental
- El análisis de correctud de un argumento lógico proposicional
- Un argumento es correcto si y sólo si su fórmula asociada es una tautología

- Para decidir la correctud podemos construir la tabla de verdad
- El método de tablas de verdad puede evitarse al usar esquemas
- Una vez que se prueba que un argumento es correcto, él mismo genera un esquema, llamado regla de inferencia
- Cada instancia de esta regla será, a su vez, un argumento correcto

Ejemplo

Si tenemos el argumento $P \to Q, \ Q \to R/ \therefore P \to R$, tenemos que decidir si éste es correcto, para ello basta ver que $\models (P \to Q) \land (Q \to R) \to (P \to R)$. Lo cual realizaremos por tabla de verdad.

P	Q	R	$(P \rightarrow Q)$	٨	$(Q \rightarrow R)$	\rightarrow	$(P \rightarrow R)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	F
T	F	T	F	F	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Mostrar la correctud del argumento

$$r \to s \lor \neg t$$

$$(r \to s \lor \neg t) \to \neg p \land (q \lor w)$$

$$\therefore \neg p \land (q \lor w)$$

La tabla de verdad para este análisis tendría $2^6 = 64$ renglones, dado que tenemos seis variables. Formalmente tenemos que

$$(P \land (P \to Q) \to Q)[P, Q := r \to s \lor \neg t, \neg p \land (q \lor w)] =$$

= $((r \to s \lor \neg t) \land ((r \to s \lor \neg t) \to (\neg p \land (q \lor w)) \to (\neg p \land (q \lor w))$

Ejemplo

P	Q	$(P \rightarrow Q)$	٨	P	\rightarrow	Q
T	T	T	T	T	T	T
T	F	F	F	T	T	F
F	T	T	F	F	T	T
F	F	T	F	F	T	F

y como $\models P \land (P \rightarrow Q) \rightarrow Q$ podemos concluir que

$$\models ((r \rightarrow s \vee \neg t) \wedge ((r \rightarrow s \vee \neg t) \rightarrow (\neg p \wedge (q \vee w)) \rightarrow (\neg p \wedge (q \vee w))$$

- El uso de una tabla de verdad para analizar la correctud de un argumento es una muy mala idea en general.
- Construir la tabla de verdad para una fórmula resulta, en la mayoría de los casos, innecesario.
- El concepto de consecuencia lógica supone que las premisas son ciertas y bajo este supuesto muestra que la conclusión también lo es.

Teorema

El argumento $A_1, ..., A_n / : B$ es lógicamente correcto si y sólo si

$$\{A_1,\ldots,A_n\} \models B$$

es decir, si la conclusión es consecuencia lógica de las premisas.

De acuerdo a las propiedades de la consecuencia lógica, existen dos formas para demostrar la correctud de un argumento, el método directo y el indirecto.

Método directo

Método directo:

Probar la consecuencia $A_1, \ldots, A_n \models B$. Para esto se supone la existencia de una interpretación I que sea modelo de todas las premisas y se argumenta, usando esta información y la definición de interpretación, que la conclusión B también se satisface con I

Método indirecto

Método indirecto:

Probar que es insatisfacible el conjunto $\{A_1,\ldots,A_n,\neg B\}$. Para esto se supone que hay una interpretación I que hace verdaderas a todas las premisas y a la negación de la conclusión $\neg B$ o bien, equivalentemente, hace falsa a la conclusión B. Apelando a este supuesto y a la definición de interpretación, se trata de mostrar que tal interpretación no puede existir; esto se logra mostrando que cierta fórmula está forzada a ser verdadera y falsa al mismo tiempo.

Ejemplo método directo

Mostrar la correctud del argumento $p \to q, \neg q / \therefore \neg p$, Para lograr esto mostramos la consecuencia lógica $p \to q, \neg q \models \neg p$.

- 1. $I(p \rightarrow q) = T$ Hipótesis
- 2. $I(\neg q) = T$ Hipótesis
- 3. I(q) = F Por 2, tenemos $I(\neg q) = T$
- 4. I(p) = F Por 1 y 3, tenemos $I(p \rightarrow q) = T$ y I(q) = F,
- $\therefore I(p)$ no puede ser T en conclusión $I(\neg p) = T$.

Ejemplo método indirecto

Mostar la correctud del argumento $t \wedge k \to b, \neg t \to f, \neg f \wedge k / \therefore b$. Por el método indirecto.

- 1. $I(t \land k \rightarrow b) = T$ Hipótesis.
- 2. $I(\neg t \rightarrow f) = T$ Hipótesis.
- 3. $I(\neg f \land k) = T$ Hipótesis.
- 4. I(b) = F Refutación.
- 5. I(k) = T Por 3, $I(p \land q) = T$, I(p) = T y I(q) = T.
- 6. $I(t \wedge k) = F \quad \text{Por 4 y 1, } I(t \wedge k) = F.$
- 7. I(t) = F Por 5 y 6, I(k) = T; si $I(t \land k) = F$, I(t) = F.
- 8. $I(\neg t) = T \text{ Por 7.}$
- 9. I(f) = T Por 2 y 8.
- 10. $I(\neg f) = T \text{ Por } 3, I(\neg f) = T \text{ y } I(k) = T.$
- 11. I(f) = F Por 10.

El conjunto $\Gamma \cup \{\neg b\}$ insatisfacible y el argumento es correcto.