

Sean \mathbb{S}_1 y \mathbb{S}_2 los subespacios definidos por

$$\mathbb{S}_1 = \{ x \in \mathbb{R}^4 : x_1 - x_3 = 0, \ x_2 + x_4 = 0 \},\$$

$$\mathbb{S}_2 = \{ x \in \mathbb{R}^4 : x_1 + x_3 = 0, \ x_2 - x_4 = 0 \} .$$

Un subespacio T tal que

$$\mathbb{S}_1 \oplus \mathbb{T} = \mathbb{S}_2 \oplus \mathbb{T} = \mathbb{R}^4$$
 es

Select one:

- o. Ninguna de las otras es correcta
- e. $\operatorname{gen}\left\{ \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}^T \right\}$

The correct answer is:

Un conjunto generador minimal de

$$\mathbb{S} = \left\{ p \in \mathbb{R}_3[x] : \int_{-1}^1 p(x) dx = 0, \int_{-1}^1 (x - 1) p(x) dx \right\}$$

es

Select one:

- $a. \{3x^2 1, 5x^2 3x\}$
- o. $\{3x^2 1, 5x^3 3x\}$
- d. Ninguna de las otras es correcta

e. $\{3x^2 - x, 5x^2 - 3x\}$

The correct answer is:

$$\{3x^2-1, 5x^3-3x\}$$

Pregunta

Correcta

Marcar

Puntúa como 1

pregunta

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal definida por

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

La imagen por T del paralelogramo generado por $3e_1 + 6e_2$ y $6e_1 - 3e_2$ es:

Seleccione una:

a. El segmento de recta que une a los puntos $\begin{bmatrix} 4 & 5 \end{bmatrix}^T$ y $\begin{bmatrix} 3 & 0 \end{bmatrix}^T$

b. Ninguna de las otras es correcta

c. El triángulo de vértices $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 4 & 5 \end{bmatrix}^T$ y $\begin{bmatrix} 3 & 0 \end{bmatrix}^T$

d. El paralelogramo generado por [4 5]^T y [3 0]^T ✓ e. El paralelogramo generado por $\begin{bmatrix} 5 & 4 \end{bmatrix}^T$ y $\begin{bmatrix} 0 & 3 \end{bmatrix}^T$

La respuesta correcta es: El paralelogramo generado por $\begin{bmatrix} 4 & 5 \end{bmatrix}^T$ y $\begin{bmatrix} 3 & 0 \end{bmatrix}^T$

Pregunta **5**

Incorrecta

Puntúa como 1

Marcar pregunta Sea $L:C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ el operador diferencial

$$L = (D - I)(D + I)$$

La solución general de la ecuación diferencial $L[y] = e^{-x}$ es

Seleccione una:

⊚ a.
$$y = -\frac{1}{2}e^{-x} + \text{gen}\{e^x, e^{-x}\}$$
 ×

o b.
$$y = -\frac{1}{2}xe^{-x} + gen\{e^x, e^{-x}, xe^{-x}\}$$

o c.
$$y = -\frac{1}{2}xe^{-x} + gen\{e^x, e^{-x}\}$$

$$\bigcirc$$
 e. $y = e^x - e^{-x} + \text{gen}\{xe^{-x}\}\$

La respuesta correcta es: $y = -\frac{1}{2}xe^{-x} + gen\{e^x, e^{-x}\}$

Pregunta 6

Incorrecta

Puntúa como 1

Marcar pregunta En $\mathbb{R}^{2\times 2}$ con el producto interno

$$\langle A, B \rangle = \frac{1}{2} tr(B^T A)$$

se considera el subespacio

$$\mathbb{S} = \operatorname{gen} \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}.$$

Entonces, la distancia de $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ a \$ es:

Seleccione una:

- O a 2
- O b. 4
- c. √8
- d. Ninguna de las otras es correcta
- e. √2 x

La respuesta correcta es: 2

Pregunta **7**

Incorrecta

Puntúa como 1

Sea $L:C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ el operador diferencial

$$L = (D - I)(D + I)$$

La solución general de la ecuación diferencial $L[y] = e^{-x}$ es

Cologgiana una:

Pregunta Incorrecta Puntúa como 1

y sea $T \in \mathcal{L}(\mathbb{V})$ la transformación lineal definida por

 $T(v_1) = v_1, T(v_2) = v_1 + v_2, T(v_3) = -v_1.$

Sea \mathbb{V} un \mathbb{K} -espacio vectorial, sea $B = \{v_1, v_2, v_3\}$ una base de \mathbb{V} ,

La matriz, con respecto a la base B, de la simetría de $\mathbb V$ con respecto a $\mathrm{Im}(T)$ en la dirección de $\mathrm{Nu}(T)$ es:

Seleccione una:

- a. $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
- o c. $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- d. Ninguna de las otras es correcta X

La respuesta correcta es: $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

Question 12

Incorrect

Marked out of 1

P Flag question

Sea $\langle x,y \rangle = y^T G x$ el producto interno en \mathbb{R}^2 tal que:

$$G = \begin{bmatrix} 1 & 3/2 \\ 3/2 & 9 \end{bmatrix}$$
,

entonces

Select one:

- a. La base canónica de R2 es una base ortogonal con respecto al mencionado producto interno
- b. El triángulo de vértices 0, e1, e2 es equilátero
- © c. La longitud del vector e₂ es 9 veces la longitud del vector e₁
 X
- d. El triángulo de vértices 0, e₁, e₂ tiene un ángulo interior igual a [§]
- e. Ninguna de las otras es correcta

The correct answer is: El triángulo de vértices 0, e_1 , e_2 tiene un ángulo interior igual a $\frac{\pi}{3}$