Bemerkung 1. Die Polynomalgebra $R[x_1,...,x_d]$ über R lässt sich wie folgt als Tensorprodukt darstellen:

$$R[x_1,...,x_n] = \bigotimes_{i \in \{1,...,n\}} R[x_i]$$

Genauer gilt für zwei Polynomalgebren $A = R[x_1,...,x_{n_A}], B = R[y_1,...,y_{n_B}]$ über R:

$$A \otimes_R B = R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}]$$

Skizziere den Beweis.

Beweis. Zeige, dass für $g:A\oplus B\longrightarrow R[x_1,...,x_{n_A},y_1,...,y_{n_B}]$, $(a,b)\longmapsto a\cdot b$ die Universelle Eigenschaft des Tensorproduktes gilt:

$$A \oplus B \xrightarrow{g} R[x_1,...,x_{n_A},y_1,...,y_{n_B}]$$

$$\downarrow \exists ! \varphi$$

$$\downarrow M$$

Es ist leicht nachzurechnen, dass es sich bei φ um folgende Funktion handeln muss:

$$\varphi: R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}] \longrightarrow M, (x_i \cdot y_j) \longmapsto f(x_i, 1) \cdot f(1, y_i)$$

Korrolar 2. Sei $S = R[x_1, ..., x_n]$ eine Polynomalgebra über R. Dann gilt:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} S\langle d_S(x_i) \rangle$$

Wobei $S\langle d_S(x_i)\rangle$ das von $d_S(x_i)$ erzeugt Modul über S ist.

Beweis. Wie in bemerkung 1 gezeigt, können wir S als $\bigotimes_{i \in \{1,...,n\}} R[x_i]$ schreiben. In **Kählerdifferenzial des Kolimes von R-Algebren** haben wir gezeigt, wie das Differenzial eines solchen Tensorproduktes aussieht:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} \Omega_{R[x_i]/R})$$

Da $R[x_i]$ die aus dem Element x_i erzeugte Algebra über R ist, folgt [vlg. BE-MERKUNG ZU ENDLICH ERZEUGTEN ALGEBREN]:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} \left(S \otimes_{R[x_i]} R[x_i] \langle d_{S[x_i]}(x_i) \rangle \right) \simeq \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle$$

Für die letzte Isomorphie nutze, dass wegen $R[x_i] \subseteq S$ zum Einen $d_{R[x_i]}$ als Einschränkung von d_S gesehen werden kann und zum Anderen $S \otimes_{R[x_i]} R[x_i] \simeq S$ gilt.

Korrolar 3. Sei E eine R-Algebra und $T := S[x_1, ..., x_n]$ eine Polynomalgebra über S. Dann gilt:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_R(x_i) \rangle$$

Beweis. Betrachte T als Tensorprodukt über R-Algebren und wende anschließend Kählerdifferenzial des Kolimes von R-Algebren an:

$$T \simeq S \otimes_R R[x_1, ..., x_n]$$

$$\Rightarrow T \simeq (T \otimes_S \Omega_{S/R}) \otimes_T (T \otimes_{R[x_1, ..., x_n]} \Omega_{R[x_1, ..., x_n]/R})$$

Zuletzt nutze den soeben gezeigten ?? an und nutze schließlich $R[x_1,...,x_n] \subseteq T$ um das Tensorprodukt zu vereinfachen:

$$T \otimes_{R[x_1,...,x_n]} \Omega_{R[x_1,...,x_n]/R}$$

$$\simeq T \otimes_{R[x_1,...,x_n]} \bigoplus_{i \in \{1,...,n\}} R[x_1,...,x_n] \langle d_{R[x_i]}(x_i) \rangle$$

$$\simeq \bigoplus_{i \in \{1,...,n\}} T \langle d_R(x_i) \rangle$$