Hashing

Unit 3: Lecture 02

Set Representation by Dictionary/Hashing

A dictionary may be implemented by using a **hash function** where each element of the dictionary is mapped into positions in a **hash table**

If the set member has key value x, it is **stored in the position f(x)**: f() is the hash function

In order to search a member with key value x in the hash table, simply f(x) is estimated and the **position** f(x) is **checked**: a match states a successful search or a failure otherwise

How to choose a hash function?

Hash Function

When the set members are **numbers**, the key values are the numbers themselves however **for non-numeric members**, the key values are to be **estimated (how?)**

For character strings, the key value may be **estimated by using some character coding** (converting the strings into numbers)

When the key range is too large, a table is used with number of positions less than the key range: each position is called a **bucket**

For numeric keys (obtained directly or by coding), the **simplest hash function** is to use a modulo operator:

$$f(x)=x \mod N$$

here N is the number of buckets (size of the hash table)

Hash Function (contd.)

Although modulo operator is a simple operator, it results is **collision** (mapping more than one keys to same position)

Hash Function (contd.)

After inserting 80, 40, 65 (initially) followed by 24 successfully, when 58 is to be inserted at position 3 (58 mod 11) a **collision occurs**

If each bucket is capable to store multiple members (how?), a collision may be handled by filling the bucket until it is full- a **full bucket** ultimately results in **an overflow**

As a simple solution to the collision, the key is placed at next available position (called **linear probing**) and thus the key 58 is placed at position 4 (the available position)

Hash Function (contd.)

Similarly, the key 35 expects the position 2 (35 mod 11) which is already filled and thus the key is placed at next available position, i.e., 5 (next positions 3 and 4 are also already filled)

When using the hash function $f(x)=x \mod N$, the **divisor N must be neither even** nor divisible by small odd numbers (why?)

If N is even, f(x) maps all even keys to even positions and odd keys to odd positions

The **ideal choice** for N is to be a **prime number** however, if there is no prime number closer to the size of the table, it is suggested to choose N in such a manner that it is not divisible by any number **between 2 and 19** (a guideline)

Searching a Hash Table

In the hash table with linear probing:

Searching starts with the position mapped by the hash function and continues to examine successive buckets in the table treating the table as circular until

- a bucket containing the key is reached (indicates a successful search) OR
- an empty bucket is reached OR
- the initial key position is encountered without finding the key in the table

The later 2 cases indicate a failure (an unsuccessful search)

Deletion from the Table

In a table with linear probing, **direct deletion** is not allowed as it may result an unstable table

Deletion must leave behind a table on which search operation works efficiently accordingly, the deletion may require to move several keys

The **search for the keys to move** begins just after the bucket vacated by the deleted key and proceeds to successive buckets until

- either the empty bucket is encountered OR
- the bucket from which deletion took place is reached again (circularly)

When the keys are moved up, it is always taken care not to move any key **blindly** (how?)

Deletion from the Table (contd.)

A blind deletion (without matching for the position) would cause a **failure of search** for such a key in future

Example: In the given example, deletion of 58 must be followed by moving up 35 otherwise the search for 35 would always be a failure

There are alternatives of such complex deletion operations (explore...)

Performance of Linear Probing

The time to initialize the table of size N is O(N)

The worst case insert and search time is $\Theta(n)$ where n is the number of keys present in the table (the worst case occurs when all n keys are mapped to the same position)

Hashing with Chains

The **alternative** to the linear probing is using a **chain**: a **linear list** attached with each bucket (of infinite length!)

Such an arrangement will handle the collisions without overflow (theoretically)

To **search** for a key, the position is obtained by division function f(x) followed by the search through the chain

To **insert** a key, first it is verified that the element is not already existing in the chain of appropriate position

To **delete** a key, the chain is searched for the key and deleted directly

Exercise

Implement hash table with chaining and estimate the time complexity of search operation

Reference Book

Data Structures, Algorithms and Applications in C++, Sartaj Sahni (2nd Ed.), 2008 University Press Hyderabad.