ETH zürich

- 1. Motivation
- 2. The moduli space of tori
- 3. Torus partition function
- 4. Modular invariance
- 5. URLs and links

ETH zürich Department of Physics 16.5.2022 1/19

1. Motivation

- 2. The moduli space of tori
- 3. Torus partition function
- 4. Modular invariance
- 5. URLs and links

ETH zürich Department of Physics 16.5.2022 2/19

Interactions and observables

In the study of string interactions, the ultimate goal will be the assignment of a probability for a certain process and the prediction of a physical cross section.

As outlined in Section 22, the computation of an observable cross section involves a series of steps:

- 1. Canonical representation of string diagram through moduli space
- 2. Compute scattering amplitude by means of conformal field theory
- 3. Convert scattering amplitude into a cross section

ETH zürich Department of Physics 16.5.2022 3/19

Loop amplitudes in string theory

In order to obtain accurate scattering amplitudes of processes, one needs to include contributions from loops in string diagrams.

These loops can be seen as contributions from the next higher order pertubation. Graphically we consider the following processes:

ETH zürich Department of Physics 16.5.2022 4/19

Ultraviolet divergence

Amplitudes from virtual processes as depicted before can lead to ultraviolet (UV) divergences in quantum field theory (QFT).

Whereas QFT must employ complex renormalizations to deal with these UV divergences, we do not encounter these problems in string theory.

ETH zürich Department of Physics 16.5.2022 5/19

- 1. Motivation
- 2. The moduli space of tori
- 3. Torus partition function
- 4. Modular invariance
- 5. URLs and links

ETH zürich Department of Physics 16.5.2022 6/19

One-loop open strings

Before approaching the moduli space of tori, lets consider a one-loop open string with light-cone momentum p^+ . This will serve as an intuitive analogon. The light-cone diagram is:

 $2\pi\alpha'p_{2}^{+}$ $2\pi\alpha'p_{1}^{+}$ $2\pi\alpha'p_{1}^{+}$

For fixed external momentum p^+ we find the two parameters: $\Delta T \in (0, \infty)$ and $p_1^+ \in (0, p^+)$. \rightarrow The class of Riemann surfaces of this process has two moduli.

ETH zürich Department of Physics 16.5.2022 7/19

Canonical annulus

Use $w = \tau + i\sigma$ and apply conformal transformations:

- 1. Exponential map: $z = exp[\frac{w}{2\alpha'p^+}]$
- 2. Linear fractional transformation: $\eta = \frac{1+iz}{1-iz}$
- 3. Canonical annulus: A region in $\mathbb C$ that is topologically an annulus can be mapped conformally to a canonical annulus

Rectangular torus

In order to apply the concept of moduli spaces to a torus, we need to assure that a torus is indeed a Riemann surface.

Consider a rectangular region of $\mathbb C$. By applying the analytic identifications $z\sim z+L_1$ and $z\sim z+iL_2$ we obtain a torus. This shows that the region remains a Riemann surface. Graphically:

Colors

You need to pick these colors

- titlefgcolor (the box on the title page)
- titlebgcolor (the background on the title page, in case you don't use an image)
- accentcolor (alert text, blocks)

Use these commands at the beginning of the document

```
\colorlet{titlefgcolor}{ETHblue}
\colorlet{titlebgcolor}{ETHblue!60!black} % Use only multiples of 20%
\colorlet{accentcolor}{ETHred}
```


Old ETH colors (ETH1, ..., ETH9) are deprecated and should not be used. They are available as oldETH1, ..., oldETH9 for backward compatibility.

ETH zürich

Department of Physics

Title Subtitle

Text and some alert text

$$m_a^{\top} h(\cdot)$$

- list one
- list another one
 - test 1
 - test 2

- 1. Motivation
- 2. The moduli space of tori
- 3. Torus partition function
- 4. Modular invariance
- 5. URLs and links

ETH zürich Department of Physics 16.5.2022 12/19

Title with no subtitle

Large box

Notice that blocks are a bit larger than the text, that's intended.

Column environments also eat some margins. Use the option <code>[onlytextwidth]</code> if you want to align columns to the wide blocks.

Small box

With some more text

Think outside the box!

ETH zürich Department of Physics 16.5.2022 13/19

- 1. Motivation
- 2. The moduli space of tori
- 3. Torus partition function
- 4. Modular invariance
- 5. URLs and links

ETH zürich Department of Physics 16.5.2022 14/19

And, of course, figures!

ETH zürich Department of Physics 16.5.2022 15/19

Free overlay

The package textpos is also enabled in case you want to overlay content freely in the slide.

This text is located at position (1,3): \begin{textblock}{3}(1,3) ... \end{textblock} (1 unit equals to the left text margin)

The upper left corner of this image is at the slide center point: \begin{textblock*}{40mm}(0.5\paperwidth,0.5\paperheight) \includegraphics[width=20mm]{example-image-a} \end(textblock*}

ETH zürich Department of Physics 16.5.2022 16/19

Tables Don't use vanilla LATEX tables please

Item		
Animal	Description	Price (\$)
Gnat	per gram each	13.65 0.01
Gnu Emu Armadillo	stuffed stuffed frozen	92.50 33.33 8.99

ETH zürich Department of Physics 16.5.2022 17/19

- 1. Motivation
- 2. The moduli space of tori
- 3. Torus partition function
- 4. Modular invariance
- 5. URLs and links

ETH zürich Department of Physics 16.5.2022 18/19

Clickable links

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation...

http://control.ee.ethz.ch
Automatic Control Laboratory
name@ethz.ch

ETH zürich Department of Physics 16.5.2022 19/19

Professor John Doe Role of person giving presentation beat.muster@abcd.ethz.ch

ETH Zurich Organisational unit Building Room Street House number 0000 Town, Country http://www.abcd.ethz.ch

You can edit the content of the closingframe environment to design your own closing frame. Example:

Author name name@ethz.ch