Aprendizado Profundo (Deep Learning)

Introduction

Dario Oliveira (dario.oliveira@fgv.br)

The Team

- Instructor: Dário Oliveira (dario.oliveira@fgv.br)
- Tutors:
 - Laura Cue
 - Daliana Torres

Me

dario.oliveira@tum.de

BSc Electrical Engineering

Rio de Janeiro State University

MSc Electrical Engineering

Pontifical Catholic University of Rio de Janeiro (Instituto Superior Técnico - Portugal)

PhD Electrical Engineering

Pontifical Catholic University of Rio de Janeiro (Leibniz Universität Hannover - Germany)

Postdoctoral Researcher

University of São Paulo

Research Scientist

General Electric Global Research Center

Research Scientist

IBM Research

Research Associate

University of Wisconsin-Madison

Guest Professor

Technische Universität München

Professor

School of Applied Mathematics - FGV

The Class

- How about you?
- Interests on ML/DL?
- Any prior python/colab knowledge?
- Any prior ML/DL knowledge?

Deep Learning

Detection

Segmentation

Classical Machine Learning vs Deep Learning

"End-to-end" refers to automatically learning features and classification parameters jointly (vs. step-by-step) straight from the data.

Classical Machine Learning vs Deep Learning

Classical Machine Learning vs Deep Learning

Deep Learning History

Game Changers

1998 LeCun et al.

MNIST digit recognition dataset 10⁷ pixels used in training

2012 Krizhevsky et al.

ImageNet image recognition dataset 10¹⁴ pixels used in training

Starting a Deep Learning Revolution

What made that possible?

Models know where to learn from

Models are trainable

Models are complex

Deep Learning Recognition

ACM Turing Award 2019 (Nobel Prize of Computing) Yann LeCun, Geoffrey Hinton, and Yoshua Bengio

Deep Learning (R)evolution

Deep Learning (R)evolution

Object Detection

Self-driving cars

AlphaGo

Machine translation

Healthcare, cancer detection

GauGAN – from <u>sketch</u> to image

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

mixing sparkling chemicals as mad scientists shopping for groceries working on new AI research

in the style of ukiyo-e as a one-line drawing in ancient Egypt

DALL-E 2

Dall-E 2 Image generation from text

Agricultural Mapping for a Geographic Region

a) STFCsp classification map

Deep Learning Market

Revenue forecast in 2030 USD 526.7 billion

Deep Learning Market

Deep Learning Job Perspective

- Excellent Job Perspectives!
 - Automation requires ML/DL -> growth!
 - Top-notch companies are aggressively looking for you!
- Many industries now:
- IT-Companies
- Cars, Logistic, Health Care, etc... Manufacturing / Robotics, etc...

But it is also challenging

- High-level understanding is not enough
- Need proper theory background
- Need proper practical skillsets
- Can be competitive!
- Many people being trained
- Downloading scripts / running code not enough :)
- Deeper understanding often requires more intensive courses

Preliminary Syllabus

- Introduction to DL
- Convolutional Neural Networks
- Training CNNs
- Optimization of CNNs
- Generalization with CNNs
- CNN Architectures

- Semantic Segmentation
- Detection and Location
- Recurrent Neural Networks
- Generative Adversarial Networks
- Autoencoders
- Self-Supervised Learning

Lecture Structure

• Theory lectures

Every Tuesdays 14:20-16:00

- Interactive sessions please don't be shy!
- Practical sessions

Every Thursdays 14:20-16:00

- Explanatory part
- Practical exercises

Grading System

- Programming Assignments (PA)
- One Written Examination (WE)
- 1 Final Project (PR): Paper + Presentation

Final Grades:

```
A1 = AVG(PA)

A2 = (WE + PR) / 2
```

Infrastructure

- Zoom (for online classes)
- Google Colab
- E-Class

Office Hours

- Thursdays 11:00-13:00
- My room (505)

References

- Class slides
- Books:
 - Ian Goodfellow, Y. Bengio, A. Courvile, Deep Learning, MIT, 2016
 - Rajalingappaa Shanmugamani, Deep Learning for Computer Vision, 2018
 - Antonio Gulli, Sujit Pal, Deep Learning with Keras, 2017

Next Lecture

Lecture 1

Introduction to Deep Learning

See you next class!

