GEOMETRY OF k-FUNCTORS

1. Introduction

In these notes we provide functorial approach to algebraic geometry. Our aim is to show that functorial and geometrical techniques are interrelated in a very efficient way.

Throughout these notes k is a fixed commutative ring and \mathbf{Alg}_k denote the category of commutative k-algebras. If A, B are k-algebras, then we denote by $\mathrm{Mor}_k(A,B)$ the set of all morphisms $A \to B$ of k-algebras. Similarly if X, Y are k-schemes (i.e. schemes together with morphism to $\mathrm{Spec}\,k$), then we denote by $\mathrm{Mor}_k(X,Y)$ the set of all morphisms $X \to Y$ of k-schemes (morphisms of schemes that preserve structure morphisms to $\mathrm{Spec}\,k$).

2. k-functors

Definition 2.1. The category $Fun(Alg_k, Set)$ of copresheaves on Alg_k is called *the category of k-functors*.

If \mathfrak{X} and \mathfrak{Y} are k-functors, then we denote by $\mathrm{Mor}_k(\mathfrak{X},\mathfrak{Y})$ the class of morphisms $\mathfrak{X} \to \mathfrak{Y}$ of k-functors. If $\sigma : \mathfrak{X} \to \mathfrak{Y}$ is a morphism of k-functors, then for every k-algebra A we denote by σ^A the corresponding component of σ .

Let $\mathfrak X$ and $\mathfrak Y$ be A-functors for some k-algebra A. Then we denote by $\operatorname{Mor}_A(\mathfrak X,\mathfrak Y)$ the class of morphisms of A-functors $\mathfrak X \to \mathfrak Y$. For every A-algebra B and a morphism $\sigma: \mathfrak X \to \mathfrak Y$ of A-functors we denote by $\mathfrak X_B$, $\mathfrak Y_B$, σ_B the restrictions $\mathfrak X_{|\mathbf{Alg}_B}$, $\mathfrak Y_{|\mathbf{Alg}_B}$, $\sigma_{|\mathbf{Alg}_B}$ of these entities to the category of B-algebras.

Fact 2.2. Let \mathfrak{X} and \mathfrak{Y} be k-functors. Assume that A is a k-algebra, B is an A-algebra, C is an B-algebra. Then the composition of maps of classes

$$\operatorname{Mor}_{A}\left(\mathfrak{X}_{A},\mathfrak{Y}_{A}\right)\xrightarrow{\sigma\mapsto\sigma_{B}}\operatorname{Mor}_{B}\left(\mathfrak{X}_{B},\mathfrak{Y}_{B}\right)\xrightarrow{\sigma\mapsto\sigma_{C}}\operatorname{Mor}_{C}\left(\mathfrak{X}_{C},\mathfrak{Y}_{C}\right)$$

equals

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A}) \xrightarrow{\sigma \mapsto \sigma_{C}} \operatorname{Mor}_{C}(\mathfrak{X}_{C},\mathfrak{Y}_{C})$$

Proof. Left to the reader.

Definition 2.3. Let \mathfrak{X} and \mathfrak{Y} be k-functors and suppose that for every k-algebra A the class $\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. We define

$$\mathcal{M}$$
or _{k} $(\mathfrak{X},\mathfrak{Y})(A) = \operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A})$

for every k-algebra A. This is a k-functor. Indeed, for every k-algebra A and A-algebra B we can compose a morphism $\sigma: \mathfrak{X}_A \to \mathfrak{Y}_A$ of k-functors with the forgetful functor $\mathbf{Alg}_B \to \mathbf{Alg}_A$. This induces a map

$$\mathcal{M}$$
or_k $(\mathfrak{X},\mathfrak{Y})(A) \ni \sigma \mapsto \sigma_B \in \mathcal{M}$ or_k $(\mathfrak{X},\mathfrak{Y})(B)$

and according to Fact 2.2 these maps make \mathcal{M} or $_k(\mathfrak{X},\mathfrak{Y})$ a k-functor. The k-functor \mathcal{M} or $_{\mathcal{C}}(\mathfrak{X},\mathfrak{Y})$ is called a hom k-functor of \mathfrak{X} and \mathfrak{Y} .

1

3. ZARISKI LOCAL k-FUNCTORS AND ZARISKI SHEAVES

In this part we use the notion of a Grothendieck topology on a category. For this notion we refer the reader to [Mon19a].

Definition 3.1. Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of k-schemes. We say that $\{f_i\}_{i \in I}$ is a *Zariski covering of X* if the following conditions are satisfied.

- (1) For every $i \in I$ morphism f_i is an open immersion of schemes.
- (2) Morphism $\coprod_{i \in I} X_i \to X$ induced by $\{f_i\}_{i \in I}$ is surjective.

The collection of all Zariski coverings on \mathbf{Sch}_k is a Grothendieck pretopology.

Definition 3.2. We call the Grothendieck topology generated by the pretopology consisting of Zariski coverings on \mathbf{Sch}_k the Zariski topology on \mathbf{Sch}_k . A presheaf on \mathbf{Sch}_k that is a sheaf with respect to Zariski topology on \mathbf{Sch}_k is called a Zariski sheaf.

Let \mathfrak{X} be a presheaf on the category of k-schemes. Recall that by [Mon19a, Theorem 3.5] \mathfrak{X} is a Zariski sheaf if and only if for every k-scheme X and for every Zariski covering $\{f_i : X_i \to X\}$ of X the diagram

$$\mathfrak{X}(X) \xrightarrow{(\mathfrak{X}(f_i))_{i \in I}} \prod_{i \in I} \mathfrak{X}(X_i) \xrightarrow{(\mathfrak{X}(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} \mathfrak{X}(X_i \times_X X_j)$$

is a kernel of a pair of arrows, where for every $(i,j) \in I \times I$ morphisms f'_{ij} and f''_{ij} form a cartesian square

$$X_{i} \times_{X} X_{j} \xrightarrow{f''_{ij}} X_{j}$$

$$\downarrow^{f_{ij}} \qquad \downarrow^{f_{j}} X_{i} \xrightarrow{f_{i}} X$$

Now we repeat this definitions for *k*-algebras and *k*-functors.

Definition 3.3. Let $\{f_i : A \to A_i\}_{i \in I}$ be a family of morphisms of k-algebras. We say that $\{f_i\}_{i \in I}$ is a *Zariski covering of A* if the following conditions are satisfied.

- (1) For every $i \in I$ morphism Spec f_i is an open immersion of schemes.
- (2) Morphism $\coprod_{i \in I} \operatorname{Spec} A_i \to \operatorname{Spec} A$ induced by $\left\{ \operatorname{Spec} f_i \right\}_{i \in I}$ is surjective.

The collection of all Zariski coverings on \mathbf{Alg}_k induces on its opposite category \mathbf{Aff}_k of affine k-schemes a Grothendieck pretopology.

Definition 3.4. We call the Grothendieck topology generated by the pretopology consisting of Zariski coverings on \mathbf{Aff}_k the Zariski topology on \mathbf{Aff}_k . A k-functor that is a sheaf with respect to Zariski topology on \mathbf{Aff}_k is called a Zariski local k-functor.

Let \mathfrak{X} be a k-functor. Again by [Mon19a, Theorem 3.5] \mathfrak{X} is a Zariski local k-functor if and only if for every k-algebra A and for every Zariski covering $\{f_i : A \to A_i\}$ of A the diagram

$$\mathfrak{X}(A) \xrightarrow{(\mathfrak{X}(f_i))_{i \in I}} \prod_{i \in I} \mathfrak{X}(A_i) \xrightarrow{(\mathfrak{X}(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} \mathfrak{X}(A_i \otimes_A A_j)$$

is a kernel of a pair of arrows, where for every $(i, j) \in I \times I$ morphisms f'_{ij} and f''_{ij} form a cocartesian square

$$A \xrightarrow{f_{j}} A_{j}$$

$$\downarrow f_{ji}$$

$$A_{i} \xrightarrow{f'_{ij}} A_{i} \otimes_{A} A_{j}$$

Now we state the main result of this section.

Theorem 3.5. Let

$$\widehat{\mathbf{Sch}_k} \longrightarrow \text{the category of } k\text{-functors}$$

be the restriction of presheaves on \mathbf{Sch}_k to copresheaves on \mathbf{Alg}_k (k-functors) induced by the contravariant functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Then it induces an equivalence of categories between Zariski sheaves on \mathbf{Sch}_k and Zariski local k-functors.

Proof. Note that \mathbf{Aff}_k with Zariski topology is a dense subsite ([Mon19a, definition 4.4]) of \mathbf{Sch}_k with Zariski topology. Hence the result is a special case of a more general theorem [Mon19a, Theorem 4.6].

4. Schemes and their functors of points

Let X be a k-scheme. We define a k-functor \mathfrak{P}_X by formula

$$\mathfrak{P}_X(A) = \operatorname{Mor}_k(\operatorname{Spec} A, X)$$

That is \mathfrak{P}_X is the restriction of the presheaf on \mathbf{Sch}_k represented by X to the category \mathbf{Alg}_k along the functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Next if $f: X \to Y$ is a morphism of k-schemes, then \mathfrak{P}_f is the restriction of a morphism of presheaves on \mathbf{Sch}_k represented by f to the category of k-algebras along $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Thus we have a functor

$$\mathbf{Sch}_k \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

V

Fact 4.1. Functor

$$\mathbf{Sch}_k \xrightarrow{\quad \mathfrak{P} \quad} \mathbf{the \ category \ of} \ k\text{-functors}$$

is full, faithful and its image consists of Zariski local k-functors. Moreover, \$\Pi\$ preserves limits.

Proof. Note that the presheaf h_X on \mathbf{Sch}_k represented by X is a Zariski sheaf. Indeed, this just rephrases standard fact that morphism of schemes can be glued in Zariski topology. Next according to Theorem 3.5 the functor $\operatorname{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$ induces an equivalence between the category of Zariski sheaves and the category of local Zariski k-functors. Thus \mathfrak{P}_X is a local Zariski k-functor and \mathfrak{P} it is full and faithful. Note that Yoneda embedding $h: \mathbf{Sch}_k \to \overline{\mathbf{Sch}_k}$ and the functor

$$\widehat{\mathbf{Sch}_k} \xrightarrow{\mathbf{induced by Spec}} \mathbf{the category of } k$$
-functors

preserve limits. Thus their composition ${\mathfrak P}$ also preserves limits.

Definition 4.2. Let *X* be a *k*-scheme. Then \mathfrak{P}_X is called *the k-functor of points of X*.

Finally note that for every k-algebra A we have an identification $\mathfrak{P}_{\operatorname{Spec} A} = \operatorname{Hom}_k(A, -)$ and this identification is natural with respect to A. In other words $\mathfrak{P} \cdot \operatorname{Spec}$ is the (co)Yoneda embedding of Alg_k into the category of k-functors.

Suppose now that A is a k-algebra and $\mathfrak{a} \subseteq A$ is an ideal. Then we define $V(\mathfrak{a}) = \operatorname{Spec} A/\mathfrak{a}$ as a closed subscheme $\operatorname{Spec} A$ induced by the quotient morphism $A \to A/\mathfrak{a}$. We define an open subscheme $D(\mathfrak{a}) = \operatorname{Spec} A \setminus V(\mathfrak{a})$ of $\operatorname{Spec} A$.

Definition 4.3. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist an ideal \mathfrak{a} in A and a morphism $\tau': \mathfrak{P}_{D(\mathfrak{a})} \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{P}_{D(\mathfrak{a})} \xrightarrow{\tau'} \mathfrak{X} \\
\downarrow^{\sigma} \\
\mathfrak{P}_{\text{Spec } A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian. Then σ is an open immersion of k-functors.

Fact 4.4. *The class of open immersions of k-functors is closed under base change and composition.*

Proof. Left to the reader.

Definition 4.5. Let \mathfrak{X} be a k-functor and $\{\sigma_i : \mathfrak{X}_i \to \mathfrak{X}\}_{i \in I}$ be a family of open immersions. Then for every k-algebra A and $x \in \mathfrak{X}(A)$ we have a family of ideals $\{\mathfrak{a}_i\}_{i \in I}$ defined by cartesian squares

$$\mathfrak{P}_{D(\mathfrak{a}_i)} \xrightarrow{\tau'} \mathfrak{X}_i \\
\downarrow \sigma_i \\
\mathfrak{P}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{X}$$

in which bottom vertical morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{X}$ corresponds to x. We say that $\{\sigma_i\}_{i\in I}$ is an open cover of \mathfrak{X} if for every k-algebra A and $x \in \mathfrak{X}(A)$ we have

$$\operatorname{Spec} A = \bigcup_{i \in I} D(\mathfrak{a}_i)$$

or in other words $A = \sum_{i \in I} \mathfrak{a}_i$.

Theorem 4.6. Let \mathfrak{X} be a k-functor. Then the following are equivalent.

- (i) \mathfrak{X} is isomorphic with functor of points of some k-scheme.
- (ii) $\mathfrak X$ is a Zariski local k-functor and there exists an open cover $\{\sigma_i:\mathfrak P_{X_i}\to\mathfrak X\}_{i\in I}$ of k-functors for some family $\{X_i\}_{i\in I}$ of k-schemes.
- (iii) \mathfrak{X} is a Zariski local k-functor and there exists an open cover $\{\sigma_i : \mathfrak{P}_{\operatorname{Spec} A_i} \to \mathfrak{X}\}_{i \in I}$ of k-functors for some family $\{A_i\}_{i \in I}$ of k-algebras.

The proof depends on two lemmas. Check [Mon19a, Definition 7.1] for the notion of a locally surjective morphism.

Lemma 4.6.1. Let $f: X \to Y$ be a morphism of k-schemes. Suppose that f is surjective morphism and an open immersion locally on X. Then \mathfrak{P}_f is a locally surjective morphism of Zariski local k-functors.

Proof of the lemma. Let A be a k-algebra and $g: \operatorname{Spec} A \to Y$ be a morphism of k-schemes. Since f is surjective and an open immersion locally on X, there exist a Zariski cover $\{f_i: A \to A_i\}_{i \in I}$ and a family $\{g_i: \operatorname{Spec} A_i \to X\}_{i \in I}$ of morphisms of k-schemes such that $f \cdot g_i = g \cdot \operatorname{Spec} f_i$ for every $i \in I$.

This implies that $\mathfrak{P}_f(g_i) = \mathfrak{P}_Y(f_i)(g)$ for every $i \in I$. Thus \mathfrak{P}_f is a locally surjective morphism of Zariski local k-functors.

Lemma 4.6.2. Let $X = \coprod_{i \in I} X_i$, $R = \coprod_{i,j \in I} R_{ij}$ be disjoint sums of k-schemes and let $p,q:R \to X$ be morphisms of k-schemes such that the following conditions are satisfied.

- **(1)** For any $i, j \in I$ morphism $p_{|R_{ij}}$ induces an open immersion $R_{ij} \hookrightarrow X_i$ and morphism $q_{|R_{ij}}$ induces an open immersion $R_{ij} \hookrightarrow X_j$.
- **(2)** For every $i \in I$ morphisms $p_{|R_{ii}}$ and $q_{|R_{ii}}$ are equal and induce an isomorphisms $R_{ii} \to X_i$.
- **(3)** Triple (R, p, q) is an equivalence relation on X in the category of k-schemes.

Then there exist a k-scheme Y and a morphism $f: X \to Y$ of k-schemes such that

$$\mathfrak{P}_R \xrightarrow{\mathfrak{P}_p} \mathfrak{P}_X \xrightarrow{\mathfrak{P}_f} \mathfrak{P}_Y$$

is a cokernel of a pair $(\mathfrak{P}_p, \mathfrak{P}_q)$ in the category of Zariski local k-functors.

Proof of the lemma. Let

$$R \xrightarrow{p \atop q} X \xrightarrow{f} Y$$

be a cokernel in the category of ringed spaces. It exists according to [Mon19b, Remark 2.3]. Moreover, [Mon19b, Theorem 3.2] states that for every $i \in I$ subset $f(X_i)$ is open in Y and we have an isomorphism of ringed spaces $X_i \cong f(X_i)$ induced by f. Therefore, Y is a k-scheme and $f: X \to Y$ is a morphism of k-schemes.

Now we verify that \mathfrak{P}_f is the quotient in the category of Zariski local k-functors. For this note that we proved above that f is open immersion of k-schemes locally on X and it is surjective. Thus by Lemma 4.6.1 we derive that \mathfrak{P}_f is a locally surjective morphism of Zariski local k-functors. Therefore ([Mon19a, Theorem 7.3]), it suffices to show that the square

$$\begin{array}{ccc}
\mathfrak{P}_R & \xrightarrow{\mathfrak{P}_q} & \mathfrak{P}_X \\
\mathfrak{P}_p & & & \downarrow \mathfrak{P}_f \\
\mathfrak{P}_X & \xrightarrow{\mathfrak{P}_f} & & \mathfrak{P}_Y
\end{array}$$

is cartesian. Since \mathfrak{P} preserves limits (Fact 4.1), we derive that it suffices to check that

$$\begin{array}{ccc}
R & \xrightarrow{q} & X \\
\downarrow p & & \downarrow f \\
X & \xrightarrow{f} & Y
\end{array}$$

is cartesian square of *k*-schemes. By [Mon19b, Remark 2.3] we have $R_{ij} = X_i \times_Y X_j$ for every $i, j \in I$ and hence

$$X \times_Y X = \left(\coprod_{i \in I} X_i\right) \times_Y \left(\coprod_{i \in I} X_i\right) = \coprod_{i,j \in I} \left(X_i \times_Y X_j\right) = \coprod_{i,j \in I} R_{ij} = R$$

Thus the result follows.

Proof of the theorem. If (i) holds, then we may assume that $\mathfrak{X} = \mathfrak{P}_Y$ for some k-scheme Y. Fact 4.1 states that \mathfrak{P}_Y is a Zariski local k-functor and clearly $1_{\mathfrak{P}_Y} : \mathfrak{P}_Y \to \mathfrak{P}_Y$ is an open cover. Thus (i) \Rightarrow (ii).

Every functor of points of a k-scheme admits open cover by functors of points of affine k-schemes. Indeed, it suffices to take open affine subschemes that cover given k-scheme and apply \mathfrak{P} . This implies that every open cover of a k-functor \mathfrak{X} by functors of points of k-schemes admits refinement by open cover of functors of points of affine k-schemes. Therefore, implication (ii) \Rightarrow (iii) holds.

Suppose that a k-functor $\mathfrak X$ is Zariski local and $\{\sigma_i: \mathfrak P_{\operatorname{Spec} A_i} \to \mathfrak X\}_{i \in I}$ is an open cover of $\mathfrak X$. Note that for every $i,j \in I$ there exist a k-scheme R_{ij} and open immersions $p_{ij}: R_{ij} \to \operatorname{Spec} A_i$, $q_{ij}: R_{ij} \to \operatorname{Spec} A_j$ such that the square

$$\mathfrak{P}_{R_{ij}} \xrightarrow{\mathfrak{P}_{q_{ij}}} \mathfrak{P}_{\operatorname{Spec} A_j}$$
 $\mathfrak{P}_{p_{ij}} \downarrow \qquad \qquad \downarrow \sigma_i$
 $\mathfrak{P}_{\operatorname{Spec} A_i} \xrightarrow{\sigma_i} \mathfrak{X}$

is cartesian. Consider k-scheme $X = \coprod_{i \in I} \operatorname{Spec} A_i$ and morphism $\sigma : \mathfrak{P}_X \to \mathfrak{X}$ induced by $\{\sigma_i\}_{i \in I}$. Moreover, consider k-scheme $R = \coprod_{i,j \in I} R_{ij}$ and morphisms $p,q:R \to X$ induced by $\{p_{ij}\}_{i,j \in I}$ and $\{q_{ij}\}_{i,j \in I}$, respectively. Note that the square

$$\begin{array}{ccc}
\mathfrak{P}_R & \xrightarrow{\mathfrak{P}_q} & \mathfrak{P}_X \\
\mathfrak{P}_p & & \downarrow^{\sigma} \\
\mathfrak{P}_X & \xrightarrow{\sigma} & \mathfrak{X}
\end{array}$$

is cartesian and hence $(\mathfrak{P}_R, \mathfrak{P}_p, \mathfrak{P}_q)$ is an equivalence relation. By Lemma 4.6.2 there exist a k-scheme Y and a morphism $f: X \to Y$ such that

$$\mathfrak{P}_R \xrightarrow{\mathfrak{P}_p} \mathfrak{P}_X \xrightarrow{\mathfrak{P}_f} \mathfrak{P}_Y$$

is a cokernel of $(\mathfrak{P}_p, \mathfrak{P}_q)$. Moreover, σ is locally surjective morphism of Zariski local k-functors and hence also

$$\mathfrak{P}_R \xrightarrow{\mathfrak{P}_p} \mathfrak{P}_X \xrightarrow{\sigma} \mathfrak{X}$$

is a cokernel of $(\mathfrak{P}_p, \mathfrak{P}_q)$. Thus \mathfrak{P}_Y is isomorphic with \mathfrak{X} . This proves (iii) \Rightarrow (i).

Proposition 4.7. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a monomorphism of k-functors and \mathfrak{Y} be a Zariski local k-functor. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist a Zariski local k-functor \mathfrak{Z} that fits into a cartesian square

Then \mathfrak{X} is a Zariski local k-functor.

Proof. Suppose that A is a k-algebra and S is a covering sieve on A with respect to Zariski topology. Recall that by [Mon19a, page 2] we may consider S as a subcopresheaf of $\mathfrak{P}_{\operatorname{Spec} A}$. Suppose that $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ and $m: S \to \mathfrak{X}$ are morphisms of k-functors such that $\sigma \cdot m$ is equal to the composition of $S \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ with τ . Next there exists a Zariski local k-functor \mathfrak{Z} that fits into a cartesian square

of *k*-functors. By universal property of cartesian squares there exists a unique morphism $n: S \to \mathfrak{Z}$ of *k*-functors such that the diagram

is commutative. Since $\mathfrak Z$ is Zariski local, there exists a morphism $\rho: \mathfrak P_{\operatorname{Spec} A} \to \mathfrak Z$ such that $\rho_{|S} = n$. Then $(\tau' \cdot \rho)_{|S} = \tau' \cdot n = m$ and hence matching family m admits an amalgamation. Since σ is a monomorphism, this suffices to prove that $\mathfrak X$ is a Zariski local k-functor.

5. Representable morphisms of k-functors

Definition 5.1. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist a k-scheme X, a morphism $f: X \to \operatorname{Spec} A$ and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X} \\
\mathfrak{P}_{f} \downarrow \qquad \qquad \downarrow^{\sigma} \\
\mathfrak{P}_{Spec A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian. Then σ is a representable morphism of k-functors.

Fact 5.2. *The class of representable morphisms of k-functors is closed under base change and composition.*

Proof. Left to the reader.

Proposition 5.3. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a representable morphism of Zariski local k-functors. Fix a k-scheme Y and a morphism $\tau: \mathfrak{P}_Y \to \mathfrak{Y}$. Then there exist a k-scheme X, a morphism $f: X \to Y$ and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ such that the square

$$\mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{P}_{f} \downarrow \qquad \qquad \downarrow \sigma$$

$$\mathfrak{P}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian.

Proof. Let

$$3 \xrightarrow{\tau'} \mathfrak{X}$$

$$\downarrow^{\sigma}$$

$$\mathfrak{P}_{\gamma} \longrightarrow \mathfrak{Y}$$

be a cartesian square. According to [Mon19a, Theorem 2.12] k-functor \mathfrak{J} is Zariski local. Suppose that $\{f_i: \operatorname{Spec} A_i \to Y\}_{i \in I}$ is an open cover of Y. Then $\{\mathfrak{P}_{f_i}: \mathfrak{P}_{\operatorname{Spec} A_i} \to \mathfrak{P}_Y\}_{i \in I}$ is an open cover of \mathfrak{P}_Y and hence its base change $\{\tau_i: \mathfrak{Z}_i \to \mathfrak{Z}\}_{i \in I}$ is an open cover of \mathfrak{Z} . Since σ is representable, we deduce that \mathfrak{Z}_i is a functor of points of some k-scheme for $i \in I$. Now by Theorem 4.6 we derive that there exists a k-scheme X such that \mathfrak{Z} is isomorphic with \mathfrak{P}_X . This proves the result.

Definition 5.4. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec}_A} \to \mathfrak{Y}$ of k-functors there exist an ideal \mathfrak{a} in A and morphism $\tau': \mathfrak{P}_{V(\mathfrak{a})} \to \mathfrak{X}$ such that the square

$$\mathfrak{P}_{V(\mathfrak{a})} = \mathfrak{P}_{\operatorname{Spec} A/\mathfrak{a}} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{P}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian, where $q: A \to A/\mathfrak{a}$ is the quotient map. Then σ is a closed immersion of k-functors.

Fact 5.5. The class of closed immersions of k-functors is closed under base change and composition.

Proposition 5.6. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a closed (open) immersion of k-functors. Fix a k-scheme Y and a morphism $\tau: \mathfrak{P}_Y \to \mathfrak{Y}$. Then there exist a k-scheme X, a closed (open) immersion $f: X \to Y$ of schemes and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X} \\
\mathfrak{P}_{f} \downarrow \qquad \qquad \downarrow^{\sigma} \\
\mathfrak{P}_{Y} \longrightarrow \mathfrak{Y}$$

is cartesian.

Proof. According to Fact 5.5 (Fact 4.4) pullback $\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{P}_Y \to \mathfrak{P}_Y$ of σ along τ is a closed (open) immersion of k-functors. Since \mathfrak{P}_Y is a Zariski local k-functor by Fact 4.1 and closed (open) immersions are monomorphisms, we derive by Proposition 4.7 that a fiber-product $\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{P}_Y$ of σ and τ is a Zariski local k-functor. Since closed (open) immersions of k-functors are representable, we deduce by Proposition 5.3 that there exists a k-scheme X, a morphism $f: X \to Y$ of k-schemes and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{P}_{Y} \cong \mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X} \downarrow_{\sigma} \downarrow_{\sigma}$$

$$\mathfrak{P}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian and \mathfrak{P}_f is a closed (open) immersion of k-functors. Since the functor

$$\widehat{\mathbf{Sch}_k} \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

preserves finite limits, it follows that for every open affine subset V of Y we have a cartesian square

$$\mathfrak{P}_{f^{-1}(V)} \longleftrightarrow \mathfrak{P}_{X} \\
\mathfrak{P}_{f_{V}} \downarrow \qquad \qquad \downarrow \mathfrak{P}_{f}$$

$$\mathfrak{P}_{V} \longleftrightarrow \mathfrak{P}_{V}$$

where $f_V: f^{-1}(V) \to V$ is the restriction of f. Next as \mathfrak{P}_f is a closed (open) immersion and V is affine, we derive that f_V is a closed (open) immersion of schemes. Since this holds for every affine open subset V of Y, we deduce that f is a closed (open) immersion.

The next result is frequently used in the theory of algebraic spaces.

Proposition 5.7. Let $\mathfrak Y$ be a k-functor such that the diagonal $\mathfrak Y \to \mathfrak Y \times \mathfrak Y$ is representable. Then every morphism $\sigma:\mathfrak X \to \mathfrak Y$ of k-functors is representable.

Proof. Fix a morphism of k-functors $\sigma: \mathfrak{X} \to \mathfrak{Y}$. Let Y be a k-scheme and let $\tau: \mathfrak{P}_Y \to \mathfrak{Y}$ be a morphism of k-functors. Consider the cartesian square

$$3 \xrightarrow{\tau'} \mathfrak{X} \\
\downarrow^{\sigma} \\
\mathfrak{P}_{\Upsilon} \xrightarrow{\tau} \mathfrak{Y}$$

Then there exists a cartesian square

Since the diagonal of $\mathfrak Y$ is representable, we derive that $\mathfrak Z$ is isomorphic with functor of points of some k-scheme. This finishes the proof.

6. Example: Grassmannians

In this section we use abstract results from previous sections to prove the existence of k-scheme representing grassmanian k-functor (to be defined below). We start by recalling the notion of quotient.

Definition 6.1. Let \mathcal{C} be a category and let X be an object of \mathcal{C} . Suppose that $f_1: X \twoheadrightarrow X_1$ and $f_2: X \twoheadrightarrow X_2$ are epimorphisms in \mathcal{C} . We say that f_1 and f_2 are equivalent if there exists a commutative triangle

in C in which horizontal arrow is an isomorphism. Class of epimorphisms with domain in X which are equivalent with respect to the relation above is called *a quotient of* X.

Definition 6.2. Let *V* be a *k*-module and let *n* be a positive integer. For *k*-algebra *A* we define

$$Grass_{V,n}(A) = \begin{cases} Quotients \text{ of } A \otimes_k V \text{ represented by epimorphisms} \\ \text{with codomains that are projective } A\text{-modules of rank } n \end{cases}$$

Note that if $f: A \to B$ is a morphism of k-algebras (making B into an A-algebra), then the functor $B \otimes_A (-)$ induces the canonical map

$$Grass_{V,n}(f): Grass_{V,n}(A) \rightarrow Grass_{V,n}(B)$$

This makes $Grass_{V,n}$ into a k-functor. We call it the grassmannian k-functor of quotients of rank n of V

Theorem 6.3. Let V be a k-module and let n be a positive integer. Then the k-functor $Grass_{V,n}$ is representable and if V is finitely generated, then it is represented by a scheme locally of finite type over k.

We start with the following general result.

Lemma 6.3.1. Let X be a locally ringed space and $\phi : \mathcal{P} \to Q$ be a morphism of \mathcal{O}_X -modules such that \mathcal{P} is of finite type and Q is locally free of finite rank. Then for every point x in X the following assertions are equivalent.

- (i) $1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x$ is an isomorphism of vector spaces over k(x).
- (ii) ϕ_x is an isomorphism of $\mathcal{O}_{X,x}$ -modules.

Moreover, the subset

$$\{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\}$$

of X is open.

Proof of the lemma. Suppose that $\mathcal{K} = \ker(\phi)$, $\mathcal{L} = \operatorname{coker}(\phi)$. Note first that \mathcal{L} is \mathcal{O}_X -module of finite type as the homomorphic image of Q. Fix a point x in X such that $1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_X$ is an isomorphisms of k(x) vector spaces. This implies that $k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{L}_x = 0$ and hence by Nakayama lemma we derive that $\mathcal{L}_x = 0$. Thus we have a short exact sequence

$$0 \longrightarrow \mathcal{K}_x \longrightarrow \mathcal{P}_x \xrightarrow{\phi_x} Q_x \longrightarrow 0$$

Facts that Q_x is finitely presented and \mathcal{P}_x is finitely generated over $\mathcal{O}_{X,x}$ imply that \mathcal{K}_x is finitely generated over $\mathcal{O}_{X,x}$. Since Q_x is free, we derive that the sequence above is split exact. Therefore, also the sequence

$$0 \longrightarrow k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{K}_x \longrightarrow k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{P}_x \xrightarrow{1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x} k(x) \otimes_{\mathcal{O}_{X,x}} Q_x \longrightarrow 0$$

is exact and hence $k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{K}_x = 0$. Nakayama lemma implies that $\mathcal{K}_x = 0$. Thus we derive that $1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x$ is an isomorphisms of k(x) vector spaces if and only if ϕ_x is an isomorphisms of $\mathcal{O}_{X,x}$ -modules. In other words

$$\{x \in X \mid 1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x \text{ is an isomorphism of vector spaces over } k(x)\} =$$

$$= \{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\}$$

Note that

 $\{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\} \subseteq \{x \in X \mid \phi_x \text{ is an epimorphism of } \mathcal{O}_{X,x}\text{-modules}\}$ and

$$\{x \in X \mid \phi_x \text{ is an epimorphism of } \mathcal{O}_{X,x}\text{-modules}\} = X \setminus \text{supp}(\mathcal{L})$$

Since \mathcal{L} is finitely generated, we derive that $supp(\mathcal{L})$ is closed and $X \setminus supp(\mathcal{L})$ is open. Now there is a short exact sequence

$$0 \longrightarrow \mathcal{K}_{|X \setminus \text{supp}(\mathcal{L})} \longrightarrow \mathcal{P}_{|X \setminus \text{supp}(\mathcal{L})} \stackrel{\phi_{|X \setminus \text{supp}(\mathcal{L})}}{\longrightarrow} Q_{|X \setminus \text{supp}(\mathcal{L})} \longrightarrow 0$$

It follows that $\mathcal{K}_{|X \setminus \text{supp}(\mathcal{L})}$ is \mathcal{O}_X -module of finite type. Thus

$$\{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\} = (X \setminus \text{supp}(\mathcal{L})) \setminus \text{supp}(\mathcal{K}_{\mid X \setminus \text{supp}(\mathcal{L})})$$
 is an open subset of X .

Let *V* be a free *k*-module and let *n* be a positive integer. Consider a morphism $u: k^{\oplus n} \to V$ of *k*-modules. Now we define a *k*-subfunctor Grass_V^u of $\operatorname{Grass}_{V,n}^u$ by formula

$$\operatorname{Grass}_{V}^{u}(A) = \begin{cases} \operatorname{Elements} \text{ of } \operatorname{Grass}_{V,n}(A) \text{ which are represented by epimorphisms } \phi: A \otimes_{k} V \to U \\ \text{ such that the composition } \phi \cdot (1_{A} \otimes_{k} u) \text{ is an isomorphism} \end{cases}$$

for every *k*-algebra. Next we proceed in steps.

Lemma 6.3.2. Let V be a free k-module and let n be a positive integer. Then

$$\left\{\mathsf{Grass}_V^u \hookrightarrow \mathsf{Grass}_{V,n}\right\}_{u \in \mathsf{Hom}_k(k^{\oplus n},V)}$$

is an open cover of $Grass_{V,n}$.

Proof of the lemma. Let A be a k-algebra. Consider a morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \operatorname{Grass}_{V,n}$ that corresponds to some quotient of $A \otimes_k V$ that is represented by an epimorphism $\phi: A \otimes_k V \to U$ of A-modules with projective A-module U of rank n. Let $u: k^{\oplus n} \to V$ be a morphism of k-modules. Consider a cartesian square

$$\mathfrak{X} \longrightarrow \operatorname{Grass}_{V}^{u}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathfrak{P}_{\operatorname{Spec} A} \longrightarrow_{\tau} \operatorname{Grass}_{V,n}$$

Pick a k-algebra B and a morphism $f:A\to B$ of k-algebras. Note that f makes B into an A-algebra. Then $f\in\mathfrak{X}(B)$ if and only if $(1_B\otimes_A\phi)\cdot(1_B\otimes_ku)$ is an isomorphism of B-modules. Thus by Lemma 6.3.1 we deduce that $f\in\mathfrak{X}(B)$ if and only if Spec $f:\operatorname{Spec} B\to\operatorname{Spec} A$ factors through an open subscheme

$$W_{u} = \left\{ \mathfrak{q} \in \operatorname{Spec} A \,\middle|\, \left(\phi \cdot (1_{A} \otimes_{k} u) \,\right)_{\mathfrak{q}} \text{ is an isomorphism of } A_{\mathfrak{q}} \text{-modules} \right\} =$$

$$= \left\{ \mathfrak{q} \in \operatorname{Spec} A \,\middle|\, k(\mathfrak{q}) \otimes_{A_{\mathfrak{q}}} \left(\phi \cdot (1_{A} \otimes_{k} u) \,\right)_{\mathfrak{q}} \text{ is an isomorphism of } k(\mathfrak{q}) \text{-vector spaces} \right\}$$

This implies that $\mathfrak{X} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ is isomorphic to an open immersion $\mathfrak{P}_{W_u} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$.

Pick now $\mathfrak{q} \in \operatorname{Spec} A$ and an epimorphism $\theta : k^{\oplus I} \twoheadrightarrow V$ for some set I. Then there exist $J \subseteq I$ with $\operatorname{card}(J) = n$ such that the restriction to $k(\mathfrak{q})^{\oplus J}$ of the morphism

$$1_{k(\mathfrak{q})} \otimes_{A_{\mathfrak{q}}} \left(\phi \cdot (1_A \otimes \theta) \right)_{\mathfrak{q}} : k(\mathfrak{q})^{\oplus I} \to k(\mathfrak{q}) \otimes_{A_{\mathfrak{q}}} U_{\mathfrak{q}}$$

is an isomorphism of $k(\mathfrak{q})$ -vector spaces. Let $u: k^{\oplus n} \to V$ be a morphism given as the composition of the canonical monomorphism $k^{\oplus n} = k^{\oplus J} \hookrightarrow k^{\oplus I}$ with θ . Then

$$\left(1_{k(\mathfrak{q})} \otimes_{A_{\mathfrak{q}}} \left(\phi \cdot (1_A \otimes u)\right)_{\mathfrak{q}}\right)$$

is an isomorphism of $k(\mathfrak{q})$ -vector spaces. Note that module $U_{\mathfrak{q}}$ is a free $A_{\mathfrak{q}}$ -module of rank n. Hence by Lemma 6.3.1 we derive that

$$(\phi \cdot (1_A \otimes u))_{\mathfrak{q}}$$

is an isomorphism of $A_{\mathfrak{q}}$ -modules. Thus $\mathfrak{q} \in W_u$. Since \mathfrak{q} is arbitrary, we deduce that

$$\operatorname{Spec} A = \bigcup_{u \in \operatorname{Hom}_k(k^{\oplus n}, V)} W_u$$

This finishes the proof.

Lemma 6.3.3. Let V be a k-module and let n be a positive integer. Suppose that $u: k^{\oplus n} \to V$ is a morphism of k-modules. Then $Grass_V^u$ is representable by a k-scheme. Moreover, if V is finitely generated over k, then it is represented by a k-scheme of finite type.

Proof of the lemma. Pick k-algebra A and let $\phi: A \otimes_k V \twoheadrightarrow U$ be a morphism of A-modules that represents an element of $\operatorname{Grass}^u_V(A)$. Let v be an inverse of A-module isomorphism $\phi \cdot (1_A \otimes_k u)$. Then $\theta = v \cdot \phi: A \otimes_k V \twoheadrightarrow A^{\oplus n}$ represents the same element of $\operatorname{Grass}^u_V(A)$ as ϕ . Moreover, it is a unique representative of this element having the property that $\theta \cdot (1_A \otimes_k u) = 1_{A^{\oplus n}}$. Thus we derive that

$$Grass_{V}^{u}(A) = \left\{\theta : A \otimes_{k} V \twoheadrightarrow A^{\oplus n} \middle| \theta \cdot (1_{A} \otimes_{k} u) = 1_{A^{\oplus n}}\right\}$$

is natural identification. Note that for every *k*-algebra we have a cartesian square of sets

$$\operatorname{Grass}_{V}^{u}(A) \xrightarrow{\qquad \qquad } \mathbf{1}$$

$$\downarrow \qquad \qquad \downarrow^{1_{A^{\oplus n}}}$$

$$\operatorname{Hom}_{A}\left(A \otimes_{k} V, A^{\oplus n}\right) \xrightarrow[\operatorname{Hom}_{A}\left(u, 1_{A^{\oplus n}}\right)]{} \operatorname{Hom}_{A}\left(A^{\oplus n}, A^{\oplus n}\right)$$

These cartesian squares induce cartesian square of *k*-functors. Thus it suffices to prove that *k*-functors

$$\mathbf{Alg}_{k}\ni A\mapsto \mathrm{Hom}_{A}\left(A\otimes_{k}V,A^{\oplus n}\right)\in\mathbf{Set},\,\mathbf{Alg}_{k}\ni A\mapsto \mathrm{Hom}_{A}\left(A^{\oplus n},A^{\oplus n}\right)\in\mathbf{Set}$$

are representable. For this it suffices to prove that for every *k*-module *W* a *k*-functor

$$\mathbf{Alg}_k \ni A \mapsto \mathrm{Hom}_A \left(A \otimes_k W, A^{\oplus n} \right) \in \mathbf{Set}$$

Indeed, we have chain of bijections

$$\mathfrak{P}_{\underbrace{\operatorname{Spec}\operatorname{Sym}(W)\times_{k}...\times_{k}\operatorname{Spec}\operatorname{Sym}(W)}_{n \text{ times}}}(A) \cong \operatorname{Mor}_{k} \left(\operatorname{Spec} A, \operatorname{Spec}\operatorname{Sym}(W)\right)^{n} \cong$$

$$\cong \operatorname{Hom}_{k}(W, A)^{n} \cong \operatorname{Hom}_{k}(W, A^{\oplus n}) \cong \operatorname{Hom}_{A}(A \otimes_{k} W, A^{\oplus n})$$

natural in *k*-algebra *A*. Note that if *W* is finitely generated, then

$$\underbrace{\operatorname{Spec}\operatorname{Sym}(W)\times_k...\times_k\operatorname{Spec}\operatorname{Sym}(W)}_{n \text{ times}}$$

is of finite type over *k*.

Lemma 6.3.4. Let X be a locally ringed space, let \mathcal{F} be a sheaf of \mathcal{O}_X -modules and let $\{U_i\}_{i\in I}$ be an open cover of X. Fix a positive integer n. Suppose that for each $i\in I$ there is an epimorphism $\phi_i:\mathcal{F}_{|U_i}\twoheadrightarrow\mathcal{O}_{U_i}^{\oplus n}$ such that for any $i,j\in I$ there exists a commutative triangle

with dotted arrow that is an isomorphism of $\mathcal{O}_{U_i\cap U_j}$ -modules. Then there exists a locally free sheaf \mathcal{U} of rank n and an epimorphism $\phi:\mathcal{F} \twoheadrightarrow \mathcal{U}$ such that there are commutative triangles

with isomorphisms ψ_i for every $i \in I$. Moreover, ϕ with these properties determine a unique quotient of \mathcal{F} .

Proof of the lemma. By assumption for every pair $i, j \in I$ there exists an isomorphism θ_{ij} such that the triangle

is commutative. Note that θ_{ij} is a unique isomorphism that makes the triangle commutative. Thus $\{\theta_{ij}\}_{i,j\in I}$ satisfy cocycle condition. Hence there exists a unique locally free sheaf $\mathcal U$ of rank n with $\{\theta_{ij}\}_{i,j\in I}$ as the family of transition isomorphisms. Moreover, $\{\phi_i\}_{i\in I}$ induce an epimorphism $\phi:\mathcal F\twoheadrightarrow\mathcal U$. This constructs ϕ with properties as in the statement.

Proof of the theorem. By Lemma 6.3.4 we derive that $Grass_{V,n}$ is a Zariski local k-functor. Now the theorem follows from Theorem 4.6 in the light of Lemma 6.3.2 and Lemma 6.3.3.

Definition 6.4. Let V be a k-module and let n be a positive integer. Then a k-scheme Gr(V, n) that represents the k-functor $Grass_{V,n}$ is called the *grassmannian scheme of rank n quotients of V*.

Theorem 6.5. Let V be a k-module and let n be a positive integer. Then the grassmannian k-scheme Gr(V,n) is separated over k.

For the proof we need one easy result.

Lemma 6.5.1. Let A be a commutative ring and let $\psi : W \to U$ be a morphism of A-modules. Suppose that U is projective and finitely generated. Let \mathfrak{X} be an k-subfunctor of $\mathfrak{P}_{Spec\ A}$ such that

$$\mathfrak{X}(B) = \left\{ f : A \to B \,\middle|\, 1_B \otimes_A \psi = 0 \right\}$$

Then \mathfrak{X} *is represented by a closed subscheme of* Spec A.

Proof of the lemma. Since every projective and finitely generated A-module is a direct summand of a finitely generated and free A-module, we may assume that $U = A^{\oplus n}$ for some positive integer n. Let $p_i : A^{\oplus n} \to A$ be the projection on i-th factor for $1 \le i \le n$. Then $\mathfrak X$ is represented by the vanishing locus of

$$\mathfrak{a} = \sum_{i=1}^{n} p_i \left(\psi \left(W \right) \right) \subseteq \operatorname{Spec} A$$

Proof of the theorem. For the proof it suffices to show that the diagonal

$$Grass_{V,n} \hookrightarrow Grass_{V,n} \times Grass_{V,n}$$

is a closed immersion of k-functors. Consider a k-algebra A and let morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \operatorname{Grass}_{V,n} \times \operatorname{Grass}_{V,n}$ of k-functors be determined by a pair of quotients of $A \otimes_k V$ given by

$$(\phi_1: A \otimes_k V_1 \twoheadrightarrow U_1, \phi_2: A \otimes_k V \twoheadrightarrow U_2)$$

Consider a cartesian square

Out goal is to show that the left hand side vertical arrow is a closed immersion. Suppose that $K_i = \ker(\phi_i)$ and $v_i : K_i \hookrightarrow A \otimes_k V$ is the canonical inclusion for i = 1, 2. Note that the short exact sequence

$$0 \longrightarrow K_i \xrightarrow{v_i} A \otimes_k V \xrightarrow{\phi_i} U_i \longrightarrow 0$$

is split exact for i = 1, 2. Indeed, this follows from the fact that U_i is projective for i = 1, 2. Thus for every A-algebra B given by a morphism of k-algebras $f : A \to B$ we have $f \in \mathfrak{X}(B)$ if and only if $B \otimes_A K_1$ and $B \otimes_A K_2$ are isomorphic as a subobjects of $B \otimes_k V$. Note that this holds precisely if and only if $1_B \otimes_A (\phi_1 \cdot v_2) = 0$ and $1_B \otimes_A (\phi_2 \cdot v_1)$ because these equalities are equivalent with

$$B \otimes_A K_1 \subseteq B \otimes_A K_2$$
, $B \otimes_A K_2 \subseteq B \otimes_A K_1$

Lemma 6.5.1 implies that *k*-functors \mathfrak{X}_1 , \mathfrak{X}_2 given by

$$\mathfrak{X}_1(B) = \{ f : A \to B \mid 1_B \otimes_A (\phi_1 \cdot v_2) = 0 \}, \ \mathfrak{X}_2(B) = \{ f : A \to B \mid 1_B \otimes_A (\phi_2 \cdot v_1) = 0 \}$$

are represented by closed subschemes of Spec A. Clearly $\mathfrak X$ is an intersection of $\mathfrak X_1$ and $\mathfrak X_2$ inside $\mathfrak P_{\operatorname{Spec} A}$ and hence this k-functor is represented by a closed subscheme of Spec A.

7. Closed immersions and hom k-functors

Definition 7.1. Let X be a k-scheme. Suppose that there exists an open affine cover $X = \bigcup_{i \in I} X_i$ such that k-algebra $\Gamma(X_i, \mathcal{O}_{X_i})$ is free as a k-module. Then we say that X is a locally free k-scheme.

Next theorem is the main result of this section.

Theorem 7.2. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of k-functors and X be a locally free k-scheme. Suppose that classes $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{Y}_A)$ are sets for every k-algebra A. Then classes $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{Y}'_A)$ are sets for every k-algebra A and the morphism

$$\mathcal{M}$$
or_k $(1_{\mathfrak{P}_{X}}, j) : \mathcal{M}$ or_k $(\mathfrak{P}_{X}, \mathfrak{P}') \to \mathcal{M}$ or_k $(\mathfrak{P}_{X}, \mathfrak{P})$

is a closed immersion of k-functors.

It is useful to isolate crucial steps in the argument. For this we proceed by proving some lemmas.

Lemma 7.2.1. Suppose that A is a commutative ring. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of A-functors and X be an affine A-scheme such that $\Gamma(X, \mathcal{O}_X)$ is a free A-module. Assume that $\tau: \mathfrak{P}_X \to \mathfrak{Y}$ is a morphism of A-functors. Then there exists an ideal $\mathfrak{a} \subseteq A$ such that for every A-algebra B the restriction τ_B factors through j_B if and only if the structure morphism $f: A \to B$ of B satisfies $\mathfrak{a} \subseteq \ker(f)$.

Proof of the lemma. Since j is a closed immersion of A-functors and X is affine k-scheme there exists an affine A-scheme X', a closed immersion $j': X' \to X$ of schemes and a cartesian square

of A-functors. Next let B be an A-algebra with the structure morphism $f:A \to B$. Then τ_B factors through j_B if and only if the projection Spec $B \times_{\operatorname{Spec} A} X \to X$ induced by f factors through X'. Let A[X] be the A-algebra of global regular functions on X and let \mathfrak{J} be an ideal in A[X] such that $A[X]/\mathfrak{J}=A[X']$ is the A-algebra of global regular functions of X'. With this notation we derive that the projection $\operatorname{Spec} B \times_{\operatorname{Spec} A} X \to X$ induced by f factors through X' if and only if the morphism $A[X] \to B \otimes_A A[X]$ induced by f sends every element of \mathfrak{J} to zero. Since A[X] is a free A-module, we write $A[X] = A^{\oplus I}$ for some index set f. Then the morphism f is just $f \in f$ induced by f is just $f \in f$. We have $f \in f$ if and only if f if $f \in f$ induced the commutative diagram

$$A^{\oplus I} \xrightarrow{f^{\oplus I}} B^{\oplus I}$$

$$pr_i^A \downarrow \qquad \qquad \downarrow pr_i^B$$

$$A \xrightarrow{f} B$$

In the diagram pr_i^A is the projection on i-th component. Diagram implies that $\left(pr_i^B \cdot f^{\oplus I}\right)(\mathfrak{J}) = \text{for every } i \in I$ if and only if $\left(f \cdot pr_i^A\right)(\mathfrak{J}) = 0$ for every $i \in I$. This is equivalent with the condition that $f(\mathfrak{a}) = 0$ for ideal \mathfrak{a} in A generated by $\sum_{i \in I} pr_i^A(\mathfrak{J})$. Thus the lemma is proved.

Lemma 7.2.2. Suppose that A is a commutative ring. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of A-functors and X be an A-scheme with open cover

$$X = \bigcup_{i \in I} X_i$$

Assume that $\tau: \mathfrak{P}_X \to \mathfrak{Y}$ is a morphism of A-functors. Fix an A-algebra B. Then τ_B factors through j_B if and only if $(\tau_{|\mathfrak{P}_{X_i}})_{\mathbb{R}}$ factors through j_B for every $i \in I$.

Proof of the lemma. If τ_B factors through j_B , then also $\left(\tau_{|\mathfrak{P}_{X_i}}\right)_B$ factors through j_B for every $i \in I$. It suffices to prove the converse. So suppose that $\left(\tau_{|\mathfrak{P}_{X_i}}\right)_B$ factors through j_B for every $i \in I$. Since j is a closed immersion of A-functors and X is an A-scheme, Proposition 5.6 implies that there exists a cartesian square

$$\mathfrak{P}_{X'} \longrightarrow \mathfrak{Y}'
\mathfrak{P}_{j'} \downarrow \qquad \qquad \downarrow j
\mathfrak{P}_{X} \longrightarrow \mathfrak{Y}$$

where $j': X' \to X$ is a closed immersion of A-schemes. For each $i \in I$ let $j_i': j'^{-1}(X_i) \to X_i$ be the restriction of j'. We have the induced cartesian square

$$\begin{array}{ccc} \mathfrak{P}_{j'^{-1}(X_i)} & \longrightarrow \mathfrak{Y}' \\ \mathfrak{P}_{j'_i} & & \downarrow j \\ \mathfrak{P}_{X_i} & \xrightarrow[\tau_{\mid \mathfrak{P}_{X_i}}]{} & \mathfrak{Y} \end{array}$$

Now $\left(\tau_{|\mathfrak{P}_{X_i}}\right)_B$ factors through j_B . This implies that $(\mathfrak{P}_{j_i'})_B$ admits a section for every $i \in I$. Then $(\mathfrak{P}_{j_i'})_B$ is an isomorphism for every $i \in I$. Thus $j_i' \times_{\operatorname{Spec} A} 1_{\operatorname{Spec} B}$ is an isomorphism for every $i \in I$ and hence $j' \times_{\operatorname{Spec} A} 1_{\operatorname{Spec} B}$ is an isomorphism of B-schemes. This means that τ_B factors through j_B .

Proof of the theorem. Let A be a k-algebra. The restriction functor $(-)_{|\mathbf{Alg}_A} = (-)_A$ preserves all closed immersions. Thus j_A is a closed immersion of A-functors and hence we derive that $j_A : \mathfrak{Y}'_A \to \mathfrak{Y}_A$ is a monomorphism of A-functors. Thus we have an injective map of classes

$$\operatorname{Mor}_{A}\left(1_{(\mathfrak{P}_{X})_{A}},j_{A}\right):\operatorname{Mor}_{A}\left((\mathfrak{P}_{X})_{A},\mathfrak{Y}_{A}'\right)\hookrightarrow\operatorname{Mor}_{A}\left((\mathfrak{P}_{X})_{A},\mathfrak{Y}_{A}\right)$$

Hence if $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{Y}_A)$ is a set, then $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{Y}'_A)$ is a set. All these facts imply that both internal homs

$$\mathcal{M}$$
or_k $(\mathfrak{P}_X, \mathfrak{Y}')$, \mathcal{M} or_k $(\mathfrak{P}_X, \mathfrak{Y})$

exist and morphism $\mathcal{M}\mathrm{or}_k(1_{\mathfrak{P}_X},j)$ of k-functors is a monomorphism. Our task is to prove that it is a closed immersion. For this consider a k-algebra A and a morphism $\sigma:\mathfrak{P}_{\operatorname{Spec} A}\to\mathcal{M}\mathrm{or}_k(\mathfrak{P}_X,\mathfrak{P})$ of k-functors that sends 1_A to some morphism $\tau:(\mathfrak{P}_X)_A\to\mathfrak{P}_A$ of A-functors. Consider a cartesian square

$$\mathfrak{U} \xrightarrow{\longrightarrow} \mathcal{M}\mathrm{or}_{k}\left(\mathfrak{P}_{X}, \mathfrak{P}'\right) \\
\downarrow \qquad \qquad \downarrow \mathcal{M}\mathrm{or}_{k}\left(1_{\mathfrak{P}_{X}, j}\right) \\
\mathfrak{P}_{\mathrm{Spec}\,A} \xrightarrow{\sigma} \mathcal{M}\mathrm{or}_{k}\left(\mathfrak{P}_{X}, \mathfrak{P}\right)$$

Since $\mathcal{M}\mathrm{or}_k\left(1_{\mathfrak{P}_X},j\right)$ is a monomorphism, we may consider \mathfrak{U} as a k-subfunctor of $\mathfrak{P}_{\mathrm{Spec}\,A}$. For every k-algebra B subset $\mathfrak{U}(B)\subseteq \mathrm{Mor}_k(A,B)=\mathrm{Mor}_k\left(\mathrm{Spec}\,B,\mathrm{Spec}\,A\right)$ consists of A-algebras B with structure morphisms $f:A\to B$ such that τ_B factors through $j_B:\mathfrak{Y}'_B\to\mathfrak{Y}_B$. Since X is a locally free k-scheme, we deduce that $(\mathfrak{P}_X)_A$ is a functor of points of a locally free A-scheme

$$\operatorname{Spec} A \times_{\operatorname{Spec} k} X$$

Pick an open affine cover $\bigcup_{i \in I} X_i$ of this A-scheme such that $\Gamma(X_i, \mathcal{O}_X)$ is a free A-module. Now Lemma 7.2.2 implies that τ_B factors through j_B if and only if $(\tau_{|X_i})_B$ factors through j_B for every $i \in I$. Next by Lemma 7.2.1 we deduce that $(\tau_{|X_i})_B$ factors through j_B for given $i \in I$ if and only if $f(\mathfrak{a}_i) = 0$ for some ideal $\mathfrak{a}_i \subseteq A$ independent of f. Thus \mathfrak{U} consists of all morphisms $f: A \to B$ of k-algebras such that $f(\mathfrak{a}) = 0$ where $\mathfrak{a} = \sum_{i \in I} \mathfrak{a}_i$. Therefore, $\mathfrak{U} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ is isomorphic with $\mathfrak{P}_{V(\mathfrak{a})} = \mathfrak{P}_{\operatorname{Spec} A/\mathfrak{a}} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ induced by the quotient map $A \to A/\mathfrak{a}$ and hence $\operatorname{Mor}_k(1_{\mathfrak{P}_X}, j)$ is a closed immersion of k-functors.

REFERENCES

[Mon19a] Monygham. Categories of sheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019. [Mon19b] Monygham. Locally ringed spaces. github repository: "Monygham/Pedo-mellon-a-minno", 2019.