Unsupervised learning Part I: Clustering

Jing Wang

Outline

- ☐ Introduction of Unsupervised Learning
- ☐ Introduction of Clustering
 - ➤ What is clustering
 - **≻**Applications
- ☐K-means Algorithm
 - ➤ What is k-means
 - ➤ How does k-means work
 - >Loss function
 - ➤ Strengths and weakness

Introduction of unsupervised learning

Supervised learning vs. Unsupervised learning

<u>Supervised learning:</u> discover patterns in the data that relate data attributes with a target (class) attribute.

These patterns are then utilized to predict the values of the target attribute in future data instances.

Examples: Regression, Classification

Unsupervised learning: The data have no target attribute.

➤ We want to explore the data to find some intrinsic structures in them.

Examples: Clustering, Dimensionality reduction

Clustering

What is clustering?

Clustering is to group a set of objects such that similar objects are in the same group and dissimilar objects are separated into different groups

-Customer categorisation

-Image compression

Number of possible colours: $256^3 = 16777216$

From scikit-learn (https://scikit-learn.org/stable/index.html) sample images

-Image compression

Input color space: 16 million possible colors

-Image compression

-Image compression

16-color Image

Types of clustering

- **1. Hierarchical algorithms**: find successive clusters using previously established clusters.
 - Agglomerative("bottom-up"): begin with each element as a separate cluster and merge them into successively larger clusters.
 - Divisive("top-down"): begin with the whole set and proceed to divide it into successively smaller clusters.

- K-means
- Fuzzy c-means clustering

K-means

What is k-means?

The k-means algorithm is an algorithm to cluster m objects based on attributes into k clusters, where k < m.

Each cluster has a cluster center, called centroid.

 The centroid of the cluster is the mean of the value of the data points that belong to the cluster

• *k* is specified by the user

How does K-means work?

- Step 1: Begin with a decision of the value of *k*
- Step 2: randomly select initial cluster centroids
 Repeat
- Step 3: calculate distance from each object to each cluster centroid.
- Step 4: Assign each object to the closest cluster
- Step 5: Compute the new centroid for each cluster until no change in clusters

A simple example of implementation of k-means (using k=2)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Step 1:

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

Step 2:

- Thus, we obtain two clusters containing:
 - {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

 $m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$
 $= (4.12, 5.38)$

Individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1,2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2,2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Step 3:

 Now using these centroids we compute the Euclidean distance of each object, as shown in table.

• Therefore, the new clusters are:

Next centroids are:
 m1=(1.25,1.5) and m2 =
 (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

• <u>Step 4</u>:

The clusters obtained are:

{1,2} and {3,4,5,6,7}

- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

Loss function

Data (m examples): $\boldsymbol{x}^{(0)}$, $\boldsymbol{x}^{(1)}$, ..., $\boldsymbol{x}^{(m-1)} \in \mathbb{R}^n$ The centroid of ℓ -th cluster: $\pmb{\mu}^{[\ell]} \in \mathbb{R}^n$ ($\ell=0,1,\ldots,k-1$) Cluster indicator: $\mathbf{z}^{(i)} \in \mathbb{R}^k$ (an one hot vector, i = 0, 1, ..., m - 1). $z_{\ell}^{(i)} = \begin{cases} 1 & \text{if the } i\text{-th example belongs to the } \ell\text{-th cluster,} \\ 0 & \text{otherwise.} \end{cases}$ Loss function $J(\mu^{[0]}, \mu^{[1]}, ..., \mu^{[k-1]}, z^{(0)}, z^{(1)}, ..., z^{(m-1)})$ $\coloneqq \sum_{i} \sum_{\ell} \mathbf{z}_{\ell}^{(i)} \| \mathbf{x}^{(i)} - \boldsymbol{\mu}^{[\ell]} \|^{2}$

 $\overline{i=0}$ $\ell=0$ Non-zero only for the cluster $x^{(i)}$ belongs to

Loss function

Data (m examples): $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m-1)} \in \mathbb{R}^n$ The centroid of ℓ -th cluster: $\mathbf{\mu}^{[\ell]} \in \mathbb{R}^n$ ($\ell = 0, 1, \dots, k-1$) Cluster label: $\mathbf{z}^{(i)} \in \mathbb{R}^k$ (an one hot vector, $i = 0, 1, \dots, m-1$). $\mathbf{z}^{(i)}_{\ell} = \begin{cases} 1 & \text{if the } i\text{-th example belongs to the } \ell\text{-th cluster,} \\ 0 & \text{otherwise.} \end{cases}$

Loss function
$$J(\mu^{[0]}, \mu^{[1]}, ..., \mu^{[k-1]}, z^{(0)}, z^{(1)}, ..., z^{(m-1)})$$

$$\coloneqq \sum_{i=0}^{m-1} \sum_{\ell=0}^{k-1} z_{\ell}^{(i)} \|x^{(i)} - \mu^{[\ell]}\|^2$$

The square distance between $x^{(i)}$ and the centroid of the cluster $x^{(i)}$ belongs to

Update of cluster indicators:

$$\begin{aligned} \text{Minimise } &J(\mathbf{z}^{(0)}, \mathbf{z}^{(1)}, ..., \mathbf{z}^{(m-1)}, \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, ..., \boldsymbol{\mu}^{[k-1]}) \\ &\coloneqq \sum_{i=0}^{m-1} \sum_{\ell=0}^{k-1} z_{\ell}^{(i)} \big\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{[\ell]} \big\|^2 \\ &\text{w.r.t. } &\mathbf{z}^{(0)}, \mathbf{z}^{(1)}, ..., \mathbf{z}^{(m-1)} \text{ with } \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, ..., \boldsymbol{\mu}^{[k-1]} \text{ fixed} \\ &z_{\ell}^{(i)} \leftarrow \begin{cases} 1 & \text{if } \ell = \operatorname{argmin} \big\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{[\ell']} \big\|, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Update of cluster indicators:

$$\begin{aligned} \text{Minimise } &J(\boldsymbol{z}^{(0)}, \boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m-1)}, \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, \dots, \boldsymbol{\mu}^{[k-1]}) \\ &\coloneqq \sum_{i=0}^{m-1} \sum_{\ell=0}^{k-1} z_{\ell}^{(i)} \big\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{[\ell]} \big\|^2 \\ \text{w.r.t. } &\boldsymbol{z}^{(0)}, \boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m-1)} \text{ with } \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, \dots, \boldsymbol{\mu}^{[k-1]} \text{ fixed} \end{aligned}$$

$$z_{\ell}^{(i)} \leftarrow \begin{cases} 1 & \text{if } \ell = \operatorname{argmin} \| \mathbf{x}^{(i)} - \boldsymbol{\mu}^{[\ell']} \|, \\ 0 & \text{otherwise.} \end{cases}$$

Updating the cluster indicator $\mathbf{z}^{(i)}$ of $\mathbf{x}^{(i)}$ with the cluster that has the nearest centroid to $\mathbf{x}^{(i)}$.

Update of centroids:

$$\begin{aligned} \text{Minimise } &J(\boldsymbol{z}^{(0)}, \boldsymbol{z}^{(1)}, ..., \boldsymbol{z}^{(m-1)}, \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, ..., \boldsymbol{\mu}^{[k-1]}) \\ &\coloneqq \sum_{i=0}^{m-1} \sum_{\ell=0}^{k-1} z_{\ell}^{(i)} \big\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{[\ell]} \big\|^2 \\ &\text{w.r.t. } &\boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, ..., \boldsymbol{\mu}^{[k-1]} \text{ with } &\boldsymbol{z}^{(0)}, \boldsymbol{z}^{(1)}, ..., \boldsymbol{z}^{(m-1)} \text{fixed} \end{aligned}$$

The sum of the data points that belongs to cluster ℓ

$$\mu^{[\ell]} \leftarrow \frac{\sum_{i=0}^{m-1} z_{\ell}^{(i)} x^{(i)}}{\sum_{i=0}^{m-1} z_{\ell}^{(i)}}$$

The number of the data points that belongs to cluster ℓ

Update of centroids:

$$\begin{aligned} \text{Minimise } J(\boldsymbol{z}^{(0)}, \boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m-1)}, \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, \dots, \boldsymbol{\mu}^{[k-1]}) \\ \coloneqq \sum_{i=0}^{m-1} \sum_{\ell=0}^{k-1} z_{\ell}^{(i)} \big\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{[\ell]} \big\|^2 \\ \text{w.r.t. } \boldsymbol{\mu}^{[0]}, \boldsymbol{\mu}^{[1]}, \dots, \boldsymbol{\mu}^{[k-1]} \text{ with } \boldsymbol{z}^{(0)}, \boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m-1)} \text{fixed} \end{aligned}$$

The sum of the data points that belongs to cluster ℓ

$$\boldsymbol{\mu}^{[\ell]} \leftarrow \frac{\sum_{i=0}^{m-1} \boldsymbol{z}_{\ell}^{(i)} \boldsymbol{x}^{(i)}}{\sum_{i=0}^{m-1} \boldsymbol{z}_{\ell}^{(i)}}$$
 The mean of the data points that belongs to cluster ℓ

The number of the data points that belongs to cluster ℓ

Strengths and weakness

Strengths:

- Simple: easy to understand and to implement
- Efficient (linear complexity): Time complexity: O(mkt), where m is the number of data points, k is the number of clusters and t is the number of iterations.

Weakness:

- The k needs to be specified.
- Sensitive to outliers.
- Not suitable for data with hyper-sphere structure.

Sensitive to outliers

Unsuitable for hyper-sphere

35