CÁLCULO 1

Prof. Dr. Milton Kist

Universidade Federal da Fronteira Sul Curso: Ciência da Computação UFFS – Câmpus Chapecó milton.kist@uffs.edu.br

Integral Indefinida

1 Tabelas de Integrais Indefinidas

$$\int cf(x) dx = c \int f(x) dx \qquad \int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int k dx = kx + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \quad \int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int sen x dx = -\cos x + C \qquad \int cos x dx = sen x + C$$

$$\int sec^2 x dx = tg x + C \qquad \int cossec^2 x dx = -\cot g x + C$$

$$\int sec x tg x dx = sec x + C \qquad \int cossec x \cot g x dx = -x + C$$

$$\int \frac{1}{x^2 + 1} dx = tg^{-1}x + C \qquad \int \frac{1}{\sqrt{1 - x^2}} dx = sen^{-1}x + C$$

$$\int senh x dx = cosh x + C \qquad \int cosh x dx = senh x + C$$

Nesta seção usaremos as identidades trigonométricas para integrar certas combinações de funções trigonométricas. Começaremos com as potências de seno e cosseno.

Exemplo 1: Encontre o $\int \text{sen}^5 x \cos^2 x \, dx$.

SOLUÇÃO: Poderíamos converter $\cos^2 x$ em 1 – $\sin^2 x$, mas obteríamos uma expressão em termos de sen x sem nenhum fator extra $\cos x$. Em vez disso, separamos um único fator de seno e reescrevemos o fator $\sin^4 x$ restante em termos de $\cos x$:

 $sen^5 x cos^2 x = (sen^2 x)^2 cos^2 x sen x = (1 - cos^2 x)^2 cos^2 x sen x$

Substituindo $u = \cos x$, temos $du = -\sin x \, dx$ e, assim,

$$\int \operatorname{sen}^5 x \cos^2 x \, dx = \int (\operatorname{sen}^2 x)^2 \cos^2 x \operatorname{sen} x \, dx$$

$$= \int (1 - \cos^2 x)^2 \cos^2 x \sin x \, dx$$

$$= \int (1 - u^2)^2 u^2 (-du) = -\int (u^2 - 2u^4 + u^6) du$$

$$= -\left(\frac{u^3}{3} - 2\frac{u^5}{5} + \frac{u^7}{7}\right) + C$$

$$=-\frac{1}{3}\cos^3 x + \frac{2}{5}\cos^5 x - \frac{1}{7}\cos^7 x + C$$

Exemplo 2: Calcule $\int_0^{\pi} \sin^2 x \, dx$.

SOLUÇÃO: Se escrevermos sen $^2x = 1 - \cos^2x$, a integral não é mais simples de calcular. Usando a fórmula do ângulo-metade para sen 2x , contudo, temos

$$\int_0^{\pi} \sin^2 x \, dx = \frac{1}{2} \int_0^{\pi} (1 - \cos 2x) \, dx$$

$$= \left[\frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) \right]_0^{\pi}$$

$$= \frac{1}{2} \left(\pi - \frac{1}{2} \sin 2\pi \right) - \frac{1}{2} \left(0 - \frac{1}{2} \sin 0 \right) = \frac{1}{2} \pi$$

Observe que mentalmente fizemos a substituição u = 2x quando integramos cos 2x.

Para resumirmos, listamos as regras que devem ser seguidas ao calcular integrais da forma $\int sen^m x cos^n x dx$, em que $m \ge 0$ e $n \ge 0$ são inteiros.

ESTRATÉGIA PARA CALCULAR $\int \operatorname{sen}^m x \cos^n x \ dx$

(a) Se a potência do cosseno é impar (n = 2k + 1), guarde um fator cosseno e use $\cos^2 x = 1 - \sin^2 x$ para expressar os fatores restantes em termos de seno:

$$\int \operatorname{sen}^{m} x \cos^{2k+1} x \, dx = \int \operatorname{sen}^{m} x (\cos^{2} x)^{k} \cos x \, dx$$
$$= \int \operatorname{sen}^{m} x (1 - \sin^{2} x)^{k} \cos x \, dx.$$

A seguir, substitua u = sen x.

(b) Se a potência do seno é impar (m = 2k + 1), guarde um fator seno e use $sen^2x = 1 - cos^2x$ para expressar os fatores restantes em termos de cosseno:

$$\int \operatorname{sen}^{2k+1} x \, \operatorname{cos}^n x \, dx = \int (\operatorname{sen}^2 x)^k \, \operatorname{cos}^n x \, \operatorname{sen} x \, dx$$
$$= \int (1 - \operatorname{cos}^2 x)^k \, \operatorname{cos}^n x \, \operatorname{sen} x \, dx.$$

A seguir, substitua $u = \cos x$. [Observe que se ambas as potências de seno e cosseno forem ímpares, podemos usar (a) ou (b).]

(c) Se as potências de seno e cosseno forem pares, utilizamos as identidades dos ângulos-metade

$$sen^2x = \frac{1}{2}(1 - cos 2x),$$
 $cos^2x = \frac{1}{2}(1 + cos 2x).$

Algumas vezes é útil usar a identidade

$$\operatorname{sen} x \cos x = \frac{1}{2} \operatorname{sen} 2x$$
.

- Para calcular as integrais (a) ∫ sen mx cos nx dx, (b) ∫ sen mx sen nx dx ou
 (c) ∫ cos mx cos nx dx, use a identidade correspondente:
 - (a) sen $A \cos B = \frac{1}{2} \left[\operatorname{sen}(A B) + \operatorname{sen}(A + B) \right]$
 - (b) sen A sen $B = \frac{1}{2} [\cos(A B) \cos(A + B)]$
 - (c) $\cos A \cos B = \frac{1}{2} [\cos(A B) + \cos(A + B)]$

Exemplo 3: Calcule∫ sen 4x cos 5x dx.

Solução:

Essa integral poderia ser calculada utilizando a integração por partes, mas é mais fácil usar a identidade na Equação 2(a) como a seguir:

$$\int \sin 4x \cos 5x \, dx = \int \frac{1}{2} \left[\sec(-x) + \sec 9x \right] \, dx$$
$$= \frac{1}{2} \int \left(-\sec x + \sec 9x \right) \, dx$$
$$= \frac{1}{2} \left(\cos x - \frac{1}{9} \cos 9x \right) + C.$$

Podemos empregar uma estratégia semelhante para calcular integrais da forma $\int tg^m x \sec^n x \, dx$. Como (d/dx) tg $x = \sec^2 x$, podemos separar um fator $\sec^2 x$ e converter a potência (par) da secante restante em uma expressão envolvendo a tangente, utilizando a identidade $\sec^2 x = 1 + tg^2 x$. Ou, como (d/dx) sec $x = \sec x$ tg x, podemos separar um fator $\sec x$ tg x e converter a potência (par) da tangente restante para a secante.

Exemplo 4: Calcule $\int tg^6x \sec^4x dx$.

SOLUÇÃO: Se separamos um fator $\sec^2 x$, poderemos expressar o fator $\sec^2 x$ em termos de tangente, usando a identidade $\sec^2 x = 1 + \tan^2 x$. Podemos então calcular a integral, substituindo $u = \tan x$, de modo que $du = \sec^2 x \, dx$:

$$\int tg^{6}x \sec^{4}x \, dx = \int tg^{6}x \sec^{2}x \sec^{2}x \, dx$$

$$= \int tg^{6}x \, (1 + tg^{2}x) \sec^{2}x \, dx$$

$$= \int u^{6}(1 + u^{2}) du = \int (u^{6} + u^{8}) du$$

$$= \frac{u^{7}}{7} + \frac{u^{9}}{9} + C$$

$$= \frac{1}{7} tg^{7}x + \frac{1}{9} tg^{9}x + C$$

ESTRATÉGIA PARA CALCULAR $\int \operatorname{tg}^m x \operatorname{sec}^n x \, dx$

(a) Se a potência da secante é par $(n = 2k, k \ge 2)$, guarde um fator de $\sec^2 x$ e use $\sec^2 x = 1 + tg^2 x$ para expressar os fatores restantes em termos de tg x:

$$\int tg^m x \sec^{2k} x \, dx = \int tg^m x \left(\sec^2 x \right)^{k-1} \sec^2 x \, dx$$
$$= \int tg^m x \left(1 + tg^2 x \right)^{k-1} \sec^2 x \, dx.$$

A seguir, substitua $u = \operatorname{tg} x$.

(b) Se a potência da tangente for ímpar (m = 2k + 1), guarde um fator de sec x tg x e use $tg^2x = sec^2x - 1$ para expressar os fatores restantes em termos de sec x:

$$\int \operatorname{tg}^{2k+1} x \operatorname{sec}^{n} x \, dx = \int (\operatorname{tg}^{2} x)^{k} \operatorname{sec}^{n-1} x \operatorname{tg} x \, dx$$
$$= \int (\operatorname{sec}^{2} x - 1)^{k} \operatorname{sec}^{n-1} x \operatorname{sec} x \operatorname{tg} x \, dx.$$

A seguir, substitua $u = \sec x$.

Exemplo 5: Encontre ∫ tg³x dx.

SOLUÇÃO: Aqui apenas tg x ocorre, então usamos $tg^2x = sec^2x - 1$ para reescrever um fator tg^2x em termos de sec^2x :

$$\int tg^3x \, dx = \int tg \, x \, tg^2x \, dx = \int tg \, x \, (\sec^2x - 1) \, dx$$

$$= \int tg \, x \, \sec^2x \, dx - \int tg \, x \, dx$$

$$= \frac{tg^2x}{2} - \ln|\sec x| + C.$$

Na primeira integral substituímos mentalmente $u = \operatorname{tg} x$ de modo que $du = \sec^2 x \, dx$.

