#### Задача 1. Ridge Regression

Ridge regression — модель, идентичная обычной линейной регрессии, но с добавленной  $L_2$  регуляризацией. Обозначим  $X:n\times m$  матрицу признаковых описаний объектов, Y:n — вектор значений целевой переменной,  $\mathbf{w}$  — вектор весов (параметров модели),  $\lambda$  — параметр регуляризации. Покажите, что оптимальное  $\mathbf{w}$  выражается как

$$\mathbf{w} = (XX^T + \lambda I)^{-1}XY$$

### Задача 2. Softmax классификатор

Для того чтобы распространить логистическую регрессию на случай задачи классификации с m классами, смоделируем вероятность принадлежности к  $k \in 1 \dots m$  классу с помощью softmax-функции

$$p(y_k|x) = \frac{\exp(a_k)}{\sum_{j=1}^m \exp(a_j)}, \quad a_k = \mathbf{w}_k^T \mathbf{x}$$

Для такой модели выпишите функцию правдоподобия и выражение для ее градиента.

### Задача 3. SVM

Сопоставьте формулировки задач SVM (слева) и полученные разделяющие поверхности (справа). Аргументируйте свой ответ.



## Задача 4. Naive Bayes

 ${\bf C}$  помощью алгоритма Naive Bayes предскажите значение целевой переменной  $buy\_computer$  для объекта со следующими значениями признаков:

```
age <= 30 & income = medium & student = yes & credit-rating = fair
```

Для обучения модели используйте данные из таблицы и сглаживане Лапласа.

| RID | age   | income | student | credit_rating | Class: buys_computer |
|-----|-------|--------|---------|---------------|----------------------|
| 1   | <=30  | high   | no      | fair          | no                   |
| 2   | <=30  | high   | no      | excellent     | no                   |
| 3   | 31 40 | high   | no      | fair          | yes                  |
| 4   | >40   | medium | no      | fair          | yes <sub>.</sub>     |
| 5   | >40   | low    | yes     | fair          | yes                  |
| 6   | >40   | low    | yes     | excellent     | no                   |
| 7   | 31 40 | low    | yes     | excellent     | yes                  |
| 8   | <=30  | medium | no      | fair          | no                   |
| 9   | <=30  | low    | yes     | fair          | yes                  |
| 10  | >40   | medium | yes     | fair          | yes                  |
| 11  | <=30  | medium | yes     | excellent     | yes                  |
| 12  | 31 40 | medium | no      | excellent     | yes                  |
| 13  | 31 40 | high   | yes     | fair          | yes                  |
| 14  | >40   | medium | no      | excellent     | no                   |

# Задача 5. Решающие деревья

С помощью алгоритма CART постройте первые два уровня дерева решений на основании представленных данных. Используйте gini impurity.

| medium | skiing   | design     | single  | twenties | no  | -> | highRisk |
|--------|----------|------------|---------|----------|-----|----|----------|
| high   | golf     | trading    | married | forties  | yes | -> | lowRisk  |
| low    | speedway | transport  | married | thirties | yes | -> | medRisk  |
| medium | football | banking    | single  | thirties | yes | -> | lowRisk  |
| high   | flying   | media      | married | fifties  | yes | -> | highRisk |
| low    | football | security   | single  | twenties | no  | -> | medRisk  |
| medium | golf     | media      | single  | thirties | yes | -> | medRisk  |
| medium | golf     | transport  | married | forties  | yes | -> | lowRisk  |
| high   | skiing   | banking    | single  | thirties | yes | -> | highRisk |
| low    | golf     | unemployed | married | forties  | yes | -> | highRisk |

#### Задача 6. Bias-Variance tradeoff

Рассмотрим N пар  $(x_i, y_i) \in (\mathcal{X}, \mathcal{Y})$ , выбранных независимо в соответствии с распределнием

$$x_i \sim h(x)$$
$$y_i = f(x_i) + \varepsilon_i$$
$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Пусть функция, используемая для предсказания, линейна по  $y_i$ 

$$\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0, \mathcal{X}) y_i$$

Заметим, что веса  $l_i(x_0,\mathcal{X})$  не зависят от  $y_i$ , но зависят от всей выборки  $\mathcal{X}.$ 

- 1. Покажите, что KNN и линейная регрессия являются членами этого семейтсва моделей. Выпишите веса  $l_i$  в явном виде.
- 2. Выпишите среднеквадратичную ошибку

$$E_{\mathcal{Y}|\mathcal{X}}(f(x_0) - \hat{f}(x_0))^2$$

в виде суммы variance и квадрата bias.