Will Lancer PHY 335 Fall 2024

PHY 335 Fall 2024

Problem 1. Answer the following problems:

- (a) Draw the Thevenin equivalent of this circuit (I'm not going to bother drawing the circuit, as the answer is literally always the same).
- (b) What is the cutoff frequency for a high-pass filter?
- (c) Write $\overline{A}\overline{B}$ without using the AND operation.
- (d) Which is correct: in an npn transistor, the base input is directly connected to...
 - \bullet one of the n-doped layers
 - both *n*-doped layers
 - the O_3 layer
 - \bullet the p layer.
- (e) Convert 27 to binary and hexadecimal.

Problem 2. "Figure": Flip-flop circuit feeding into a NAND; V_{in} input into CLK, $\overline{Q} \to D$, Q as one of the inputs of the NAND, V_{in} to the other.

Problem: draw CLK, Q, and V_{out} (where V_{out} is the output of the NAND).

Problem 3. Consider the following logic table.

A	В	C	OUT
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- (a) Find the logical expression corresponding to this table.
- (b) Simplify as much as possible.
- (c) Make this into a circuit using the normal gates (e.g. AND, OR, NOT, etc.).

Problem 4. AC-coupled emitter follower without R_C resistor. $I_C = 2\text{mA}$. $V_{CC} = 20\text{V}$. Output voltage $V_q = V_{CC}/2$. Assume $\beta \ge 100$.

- (a) Find R_E .
- (b) Find V_B , V_E , and V_C when things aren't moving.
- (c) Find R_2/R_1 .

Will Lancer PHY 335 Fall 2024

(d) Find the maximum values of R_1 and R_2 assuming we want the Thevenin resistance to be 1% of the load. (Don't forget β).

Problem 5. You're given an IC that's taped up. Your task is to investigate its features.

- (a) What's the number on your IC? (For grading purposes I assume).
- (b) Find the logic table of the IC. What kind of gate is it?
- (c) Connect all of the gates of the IC together, with B being an input to all of them (i.e. you have the input of one gate be another gate, and the other input is always B). What value of B gives makes the answer only dependent on A?
- (d) Put a logic pulse through your circuit to demonstrate this; show it to the professor beforehand to not blow up stuff.
- (e) Measure the propagation delay of the circuit; let the professor take a picture of the scope after you're done.
- (f) What's the propagation delay of an individual gate (with error)?