Set theory, relations, and functions

1. Set theory

1.1. What is a set?

• A *set* is an abstract collection of distinct objects. Those objects are the *members/elements* of this set. In set theory, the concept 'set' is *extensional* (not *intensional*), namely, we don't bother about the ways in which the members of a set are chosen.

Exercise: Which of the following expressions correctly describe the features of set members?

a. Distinct to each other

c. Relevant to each other

b. Ordered

d. The overall quantity is finite

- Some special sets
 - Singleton set: A set with exactly one member. E.g. $\{a\}$, $\{\{a,b\}\}$
 - *Empty/null set*: the set that has no member. Written as \emptyset or $\{\ \}$.
- Convention of set-theoretic notations
 - (1) a. (Ordinary) sets: *A*, *B*, *C*, ...
 - b. Members of a set: a, b, c, ..., x, y, z
 - c. Sets of sets: \mathcal{A} , \mathcal{B} , \mathcal{C}
 - d. Cardinality of A: |A| or #(A)
 - e. membership relation: \in

Exercise: What is the cardinality of the set $\{a, a, b, b, c\}$?

Is $\{\emptyset\}$ a singleton set or an empty set? What about $\{\emptyset,\emptyset\}$?

- Ways to define a set
 - list/roster notation: listing all its members

(2)
$$E = \{4, 6, 8, \dots \}$$

Note: The order of the elements doesn't matter. Elements can be listed multiple times.

 predicate/abstraction notation: stating a condition that is satisfied by all and only the elements of the set to be defined

Schema: $\{x \mid P(x)\}$, where x is a variable, and P is a predicate.

- (3) a. $\{x \mid x \text{ is an even number greater than 3}\}$ Read as: "the set of all x such that x is an even number greater than 3"
 - b. $\{x \mid x \text{ is evenly divisible by 2 and is greater than or equal to 4}\}$
- recursive rules: using rules which generates/defines the members of this set.

(4) a. $4 \in E$

(the basis of recursion)

b. If $x \in E$, then $x + 2 \in E$

(to generate new elements from the elements defined before)

c. Nothing else belongs to *E*.

(to restrict the defined set to the elements generated by rules a and b)

1.2. Set-theoretic relations and operations

• Relations of sets

(5) a. **Identity/Equality**

Two sets are identical/equal iff they have exactly the same members.

A = B iff for every x: $x \in A$ iff $x \in B$.

b. Subsets

i. *A* is a *subset* of *B* iff every element of *A* is an element of *B*.

 $A \subseteq B$ iff for every x: if $x \in A$, then $x \in B$.

ii. *A* a *proper subset* of *B* iff *A* is a subset of *B* but not identical to *B*.

 $A \subset B \text{ iff } A \subseteq B \text{ and } A \neq B.$

c. Supersets

i. *A* is a *superset* of *B* iff every element of *B* is an element of *A* (or say, *B* is a subset of *A*).

 $A \supseteq B \text{ iff } B \subseteq A$

ii. *A* a *proper superset* of *B* iff *B* is a proper subset of *A*.

 $A \subset B \text{ iff } B \subset A$

d. Power sets

- i. Given a set A, the set of all the subsets of A is called the *power set* of A, written as $\mathcal{P}(A)$.
- ii. \emptyset is a subset of every set.

Exercise: Let *S* be an arbitrary set, consider:

- a. is S a member of $\{S\}$?
- b. is $\{S\}$ a member of $\{S\}$?
- c. is $\{S\}$ a subset of $\{S\}$?
- d. what is the set whose only member is $\{S\}$?

• Operations on sets

(6) a. Union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

(or equivalently: $\bigcup \{A, B\}$)

b. Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

(or equivalently: $\bigcap \{A, B\}$)

c. Difference

$$A - B = \{x \mid x \in A \text{ and } x \notin B\}$$

also called: the (*relative*) *complement* of *B* in *A*

d. (Absolute) Complement

$$A' = U - A$$

= $\{x \mid x \in U \text{ and } x \notin A\}$

Other notations: CA, A^{C} , or \overline{A}

We can use Venn diagrams to illustrate these operations.

Union $A \cup B$

Intersection $A \cap B$

Difference A - B

Complement A'

Exercise: Simplify the following set-theoretic notations

(7) a.
$$\{x \mid x = a\}$$

b.
$$\{x \mid x \neq x\}$$

c.
$$(A - B) - B'$$

1.3. Applications of set theory in natural language semantics

• The following categories denote sets of individuals:

- common noun (*flower*, *cat*)

$$[cat] = \{x \mid x \text{ is a cat}\}$$

- predictive adjective (happy, gray)

$$[gray] = \{x \mid x \text{ is gray}\}$$

- VP and intransitive verb (*wears a hat, run, meow*)

$$\llbracket \text{wears a hat} \rrbracket = \{x \mid x \text{ wears a hat} \}$$

• Quantificational determiners (e.g., every, some) denote relations of sets

(8) a. Every cat meows.

$$\{x \mid x \text{ is a cat}\} \subseteq \{x \mid x \text{ meows}\}$$

b. Some cat meows.

$$\{x \mid x \text{ is a cat}\} \cap \{x \mid x \text{ meows}\} \neq \emptyset$$

Exercise: Use set-theoretic notations to represent the meaning of the following sentences.

- (9) a. Every gray cat meows.
 - b. No cat barks.
 - c. Two cats are meowing.

2. Relations

2.1. Ordered pairs and Cartesian products

• The elements of a set are not ordered. To describe functions and relations we will need the notion of an **ordered pair**, written as $\langle a, b \rangle$ (or (a, b)), where a is the first element of the pair and b is the second. Compare,

(10) If
$$a \neq b$$
, then $\{a, b\} = \{b, a\}$, but $\langle a, b \rangle \neq \langle b, a \rangle$
 $\{a, a\} = \{a, a, a\}$, but $\langle a, a \rangle \neq \langle a, a, a \rangle$

• The **Cartesian product** of two sets A and B (written as $A \times B$) is the set of ordered pairs which take an element of A as the first member and an element of B as the second member.

3

(11)
$$A \times B = \{\langle x, y \rangle \mid x \in A \text{ and } y \in B\}$$

E.g. Let $A = \{1, 2\}, B = \{a, b\}, \text{ then } A \times B = \{\langle 1, a \rangle, \langle 1, b \rangle, \langle 2, a \rangle, \langle 2, b \rangle\},$
 $B \times A = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle\}$

2.2. Relations, domain, and range

- A *relation* is a set of ordered pairs. For example:
 - Relations in math: =, >, \neq , ...
 - Relations in natural languages: the instructor of, the capital city of, ...
 - (12) a. [[the capital city of]] = { $\langle USA, Washington \rangle$, $\langle China, Beijing \rangle$, $\langle France, Paris \rangle$, ...} = { $\langle x, y \rangle \mid y$ is the capital city of x} b. [[invited]] = { $\langle Andy, Billy \rangle$, $\langle Cindy, Danny \rangle$, $\langle Emily, Flori \rangle$, ...} = { $\langle x, y \rangle \mid x$ invited y}
- R is a relation from A to B iff R is a subset of the Cartesian product $A \times B$, written as $R \subseteq A \times B$. R is a relation in A iff R is a subset of the Cartesian product $A \times A$, written as $R \subseteq A \times A$.
 - (13) a. [the capital city of] $\subseteq \{x \mid x \text{ is a country }\} \times \{y \mid y \text{ is a city}\}$ b. [the mother of] $\subseteq \{x \mid x \text{ is a human }\} \times \{y \mid y \text{ is a human}\}$
- We can use a *mapping diagram* to illustrate a relation:

- *A* and *B* are the **domain** and **range** of *R* respectively, iff $A \times B$ is the **smallest** Cartesian product of which *R* is a subset. For example:
 - (14) Let $R = \{\langle 1, a \rangle, \langle 1, b \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}$, then: Dom $(R) = \{1, 2, 3\}$, Range $(R) = \{a, b\}$

Discussion: Why is that the following definitions are problematic? Provide some counterexamples.

- (15) a. *A* and *B* are the domain and range of *R* iff $R = A \times B$.
 - b. *A* and *B* are the domain and range of *R* iff $R \subseteq A \times B$.

2.3. Properties of relations

• Reflexivity, symmetry, and transitivity

Given a set A and a relation R in A, ...

- − R is *reflexive* iff for every x in A, $\langle x, x \rangle \in R$; otherwise R is *nonreflexive*. If there is no pair of the form $\langle x, x \rangle$ in R, then R is *irreflexive*.
- R is *symmetric* iff for every xy in A, if $\langle x,y\rangle \in R$, then $\langle y,x\rangle \in R$; otherwise R is *nonsymmetric*. If there is no pair $\langle x,y\rangle$ in R such that the pair $\langle y,x\rangle$ is in R, then R is *asymmetric*.
- R is *transitive* iff for every xyz in A, if $\langle x,y\rangle \in R$ and $\langle y,z\rangle \in R$, then $\langle x,z\rangle \in R$; otherwise R is *nontransitive*.

If there are no pairs $\langle x, y \rangle$ and $\langle y, z \rangle$ in R such that the pair $\langle x, z \rangle$ is in R, then R is *intransitive*.

<u>Exercise</u>: Identify the properties of the following relations w.r.t. reflexivity, symmetry, and transitivity. (Make the strongest possible statement. For example, call a relation 'irreflexive' instead of 'nonreflexive', if satisfied.)

- (16) a. = reflective, symmetric, transitve
 - b. ≤
 - c. ≠
 - d. ⊂
- (17) a. is a sister of
 - b. is a child of
- It is helpful in assimilating the notions of reflexivity, symmetry and transitivity to represent them in *relational diagrams*. If x is related to y (namely, $\langle x, y \rangle \in R$), an arrow connects the corresponding points.

$$R = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle c, c \rangle \}$$

$$\downarrow a \longrightarrow b$$

$$\downarrow b$$

3. Functions

3.1. What is a function?

- A relation is a function iff each element in the domain is paired with **just one** element in the range.
 - $(18) \quad f(x) = x^2 \text{ for } x \in \mathbb{N}$
 - a function *f* is *from A* (*in*)*to B* (written as '*f*: *A* → *B*') iff Dom(f) = A and Range(f) $\subseteq B$.
 - a function f is from A onto B iff Dom(f) = A and Range(f) = B.
- We may specify functions with lists, tables, or words. (Don't confuse 'tables' with 'mapping diagrams'.)

5

(19) a.
$$F = \{\langle a, b \rangle, \langle c, b \rangle, \langle d, e \rangle$$

b. $F = \begin{bmatrix} a \to b \\ c \to b \\ d \to e \end{bmatrix}$

c. *F* is a function f with domain $\{a,b,c\}$ such that f(a) = f(c) = b and f(d) = e.

<u>Exercise</u>: Define negation *it is not the case that* and conjunctive *and* as functions.

3.2. Characteristic function

• Recall that the following categories can be interpreted as sets of individuals: common nouns, predicative adjectives, intransitive verbs, VPs, ...

Annie

Betty

Cindy

(20) a.
$$[wears a hat] = {Andy, Betty}$$

b.
$$\llbracket \text{wears a hat} \rrbracket = \{ x \mid x \text{ wears a hat} \}$$

Alternatively, the semantics of these expressions can also be modeled as functions from the set of individual entities to the set of truth values.

$$(21) \quad \text{a. } \ \llbracket \text{wears a hat} \rrbracket = \{ \langle \mathsf{Andy}, 1 \rangle, \langle \mathsf{Betty}, 1 \rangle, \langle \mathsf{Cindy}, 0 \rangle \}$$

b.
$$\llbracket \text{wears a hat} \rrbracket = \left[egin{array}{c} \mathsf{Andy}
ightarrow 1 \\ \mathsf{Betty}
ightarrow 1 \\ \mathsf{Cindy}
ightarrow 0 \end{array} \right]$$

c. $\llbracket \text{wears a hat} \rrbracket = \text{the function } f \text{ from individual entities to truth values such that}$ f(x) = 1 if x wears a hat, and f(x) = 0 otherwise.

Characteristic function: a function whose range is the set of possible truth values $\{1,0\}$.

Exercise: provide the characteristic function for wears a bowtie.

• Relations as functions into sets: since a relation can be defined as a set of pairs, and any set has a characteristic function, relations can be equivalently conceptualized as functions from pairs to truth values.

(22) a. [is next to] = {
$$\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle$$
}

a.
$$[[\text{is next to}] = \{ \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle \}$$
b. $[[\text{is next to}] = \begin{bmatrix} \langle a, b \rangle \to 1 \\ \langle b, a \rangle \to 1 \\ \langle b, c \rangle \to 1 \\ \langle c, b \rangle \to 1 \\ \langle a, c \rangle \to 0 \\ \langle c, a \rangle \to 0 \end{bmatrix}$

c. \llbracket is next to \rrbracket = the function f from pairs of individual entities to truth values such that f(x,y) = 1 if x is next to y, and f(x,y) = 0 otherwise.

6