Instruction: Circle carefully the above course session* you register and hand your answer script together with this question paper as a cover page. Marks will not be recorded without the question paper or with the wrong session you attend or circle.

1. Compute the following elementary integrals.

(a)
$$\int_{0}^{\pi/2} \sin^2 3x \cos 3x \, dx$$
 [7]
(b)
$$\int_{0}^{4x+5} \frac{4x+5}{\sqrt{2x+1}} dx$$
 [7]

(b)
$$\int \frac{4x+5}{\sqrt{2x+1}} dx$$
 [7]

(c)
$$\int_0^2 e^{|-x+1|} dx$$
 [6]

2. Evaluate the following indefinite integrals.

$$(a) \int \sqrt{x^2 - 4} \ dx$$
 [12]

$$(b) \int \sqrt{x} \ln x \, dx \tag{8}$$

(b)
$$\int \sqrt{x} \ln x \, dx$$
 [8]
(c) $\int \frac{5x^2}{(x-2)(x^2-6x+13)} \, dx$

- 3. (a) Find the area of the region bounded by the parabola $y = 3x^2 2$ and the straight line y = x. [10]
 - (b) Compute the area of the surface generated by rotating the curve segment $y = \sqrt{4 x^2}$, $0 \le x \le 1$, about the x-axis. [10]
- 4. (a) Determine the projection vector of $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ on $\vec{b} = -3\vec{i} + \vec{j} 2\vec{k}$. [8]
 - (b) Find the equation of the plane containing A(-1,0,2), B(2,1,-3) and C(0,1,3). [14]

- END -

Brief Table of Integrals

brief Table of Integrals	
$\int x^p dx = \frac{x^{p+1}}{p+1} + C, p \neq -1$	$\int \frac{1}{x} dx = \ln x + C$
$\int e^x dx = e^x + C$	$\int \sec^3 x dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln \sec x + \tan x + C$
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$
$\int \sec^2 x dx = \tan x + C$	$\int \csc^2 x dx = -\cot x + C$
$\int \sec x \tan x dx = \sec x + C$	$\int \csc x \cot x dx = -\csc x + C$
$\int \sec x dx = \ln \sec x + \tan x + C$	$\int \csc x dx = -\ln \csc x + \cot x + C$
$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$

NOT TO BE TAKEN AWAY