

Data Advanced

Hoofdstuk 3

Machine Learning

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Elfde-Liniestraat 24 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

Inhoud

- 1. Inleiding
- 2. Historiek
- 3. ML problemen herkennen
- 4. Het ML proces
 - 1. Type ML problemen
 - 2. Data
 - 3. ML algoritme
- 5. Types van ML problemen
 - 1. Supervised: Classificatie
 - 2. Supervised: Regressie
 - 3. Unsupervised: Clustering
 - 4. Recommendations

1. Inleiding (pg 117)

- Frequent gehoorde term
- Machines zelfstandig taken uitvoeren leert van informatie en zoekt patronen
- Wiskunde statistiek?
- Soorten:

2. Historiek (pg 118)

- Arthur Samuel (jaren '50): schaakspel
- Frank Rosenblatt: perceptron (1958) = 1^{ste} kunstmatige neurale netwerk
- Stanford University (1979): bewegende robot

3. ML problemen herkennen (pg 120)

Voorbeeld: Alien

Klassieke aanpak

ML aanpak

Defintie: ML is het proces waarbij een computerprogramma of systeem in staat is te leren hoe een taak uit te voeren en dit door ervaring. Ervaring voor een computer = DATA

3. ML problemen herkennen (pg 123)

Rule based: je past een aantal statische regels toe op de huidige context (tijdstip, dag, ...).

- **ML**: Ook in de ML benadering pas je een aantal regels toe maar het verschil is dat deze regels (automatisch) geüpdatet worden op basis van nieuwe data.
- 3 stappen:
 - verzamel een grote set data
 - Gebruik een algoritme dat "zelfstandig" een verband vindt
 - Update dit verband voortdurend mbv nieuwe data

3. ML problemen herkennen (pg 124)

Netflix

- E-mail: spam ⇔ geen spam
- Zelfrijdende auto
- Slimme thermostaat
- Gezichtsherkenning

3. ML problemen herkennen (pg 126)

Vuistregels gebruik ML:

• het is moeilijk om het probleem te gieten in regels

je beschikt over een grote set historische data

de patronen of relaties tussen de data zijn dynamisch

4. Het ML proces (pg 127 - 129)

Type

Supervised: input EN output

- inputvariabelen $(x_1, x_2, ..., x_n)$ EN outcome variabele y is aanwezig in de training data set
- functie f die het verband geeft nl $y = f(x_1, x_2, ..., x_n)$
- functie f voorspelt op basis van een nieuwe income $(x_1, x_2, ..., x_n)$ de outcome y
- de functie f wordt continu bijgestuurd

4. Het ML proces (pg 127 - 129)

- Type
 Unsupervised: enkel input
 - Enkel de inputvariabele $(x_1, x_2, ..., x_n)$ is aanwezig in de training data set (geen outcome y)
 - Het algoritme brengt patronen, structuren, groepen, ... naar voren die op voorhand niet opgenomen zijn in de dataset.
- Data
- Algoritme

5. ML problemen uitgewerkt(pg 130)

• 5.1 Supervised ML: Classificatie

5.2 Supervised ML: Regressie

5.3 Unsupervised ML: Clustering

• 5.4 Recommendations

5.1 Classificatie (pg 131)

Doel

Soorten:

- binary classificatie
- multi-class classificatie
- multi-label classificatie
- multi-output classificatie

5.1 Classificatie (pg 131)

Classifier

Features

Training data

Testing data

5.1. Classificatie (pg 133)

6 verschillende classificatie algoritmes:

- 5.1.1 Naive Bayes algoritme
- 5.1.2 Support Vector Machine algoritme
- 5.1.3 Decision Tree algoritme
- 5.1.4 Logistic Regression algoritme
- 5.1.5 Linear Discriminant Analysis
- 5.1.6 Nearest Neighbour algoritme

5.1.1 Naive Bayes (pg 134)

Basis: Voorwaardelijke kans + regel van Bayes

Vb: Persoon classificatie (pg 134)

Vb: Sentiment Analysis (pg 136)

Naive Bayes – Persoon classificatie

Politieagent – jogger?

Attribuut	Politieagent	jogger
Handboeien	6	0
sportschoenen	2	8
Wapen	9	0
badge	8	3
Walkietalkie	8	0

Stap 1: bereken $P(jogger \mid handboeien, badge)$ via de wet van Bayes

Stap 2: bereken *P*(*politieagent* | *handboeien*, *badge*) via de wet van Bayes

Stap 3: vergelijk deze kansen

Naive Bayes – Sentiment Analysis

- Term frequency representation
 - Lijst met ALLE woorden uit training data:

(hallo, dit, zijn, alle, woorden, die, kunnen, voorkomen, in, een, tekst, en, ook, is)

– Te analyseren tekst:

(hallo, dit, is, een, tekst, en, een, tekst) \rightarrow (1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 1)

Trainingsfase

Income	Outcome
tekst 1 $\stackrel{term freq repr}{=\!=\!=\!=}$ (1,0,3,1,,0)	Positief
tekst 2 $\stackrel{term\ freq\ repr}{=\!=\!=\!\to}$ (1,1,2,1,,1)	Positief
tekst 3 $\stackrel{term\ freq\ repr}{=\!=\!=\!=\!=}$ (2,0,1,0,,0)	Negatief
tekst 1000 $\stackrel{term\ freq\ repr}{=\!=\!=\!=\!=}$ (1,0,2,2,,3)	Positief

Naive Bayes – Sentiment Analysis

Positiviteitskans elk woord via wet van Baves

$$P_{blij} = P(blij|Pos\ tekst)$$

$$= \frac{Som\ van\ alle\ woordfreq\ van\ blij\ in\ pos\ teksten}{Som\ van\ alle\ woordfreq\ van\ blij\ in\ hele\ training\ data}$$

	, ••
	Positiviteitskans
blij	0.92
geweldig	0.95
pxl	0.81
data	0.99
saai	0.1
moeilijk	0.33

Testfase: vb: data is geweldig

✓
$$PosScore = P_{data} * P_{geweldig} * P_{o} = 0.99 * 0.95 * 0.55 = 0.51$$

$$\checkmark NegScore = (1 - P_{data}) * (1 - P_{geweldig}) * (1 - P_{O}) = 0.01 * 0.05 * 0.45$$

$$= 0.000225$$

5.1.2 Support Vector Machine (pg 141)

- Basis: grensvlak
- Vb: reclame detectie

5.1.2 Support Vector Machine (pg 141)

Vb: reclame detectie

20

5.1.3 Decision Tree (pg 143)

Basis: Boomstructuur

Jupyter notebook: Machine_Learning_1_Classification_Iris

5.1.4 Logistic Regression (pg 144)

• Basis: Logistic function $y = \frac{e^{b_0 + b_1 x}}{1 + e^{b_0 + b_1 x}}$

$$y = \frac{e^{b_0 + b_1 x}}{1 + e^{b_0 + b_1 x}}$$

Binary classification

Jupyter notebook: Machine_Learning_2_Classification_Titanic

5.1.5 Linear Discriminant (pg 145)

• Basis: maximalisatie van afstanden

5.1.5 Linear Discriminant (pg 145)

Slechte keuze...

5.1.5 Linear Discriminant (pg 145)

Beste keuze...

5.1.6 Nearest Neighbor (pg 147)

• Basis: Minimalisatie van afstand

K - nearest neighbor classificatie

Radius nearest neighbor classificatie

5.2 Regressie (pg 148)

- Supervised ML: input + output in dataset
- Doel: continue variabele voorspellen

• Eenvoudige lineaire regressie mbv de methode van

de kleinste kwadraten

Jupyter notebook: Machine_Learning_3_Regression_Boston

5.3 Clustering (pg 153)

- Unsupervised ML
- Doel: items groeperen (clusters = niet gekend)
- Basisidee
- Globale werkwijze

5.3 Clustering (pg 153)

Globale werkwijze

5.3 Clustering (pg 155)

- Bestaande clustering algoritmes
 - K means clustering
 - K median clustering
 - Hiërarchical clustering
 - Density-based clustering
 - Distribution-based clustering

5.3 Clustering (pg 156)

K – Means algoritme voor het clusteren van documenten

- Dataset
- Features
- Algoritme
 - Stap 1

5.3 Clustering (pg 156)

K – Means algoritme voor het clusteren van documenten

- Algoritme
 - Stap 2
 - Stap 3

5.3 Clustering (pg 156)

K – Means algoritme voor het clusteren van documenten

- Algoritme
 - Convergentie

5.4 Recommendations (pg 158)

- Doel:
 - Aanbevelingen doen
 - Klanten trouw laten zijn aan
- Voorbeeld
 - Netflix Spotify
 - Dynamische websites

5.4 Recommendations (pg 158)

 Hoe vinden we de top 10 films die interessant zijn voor een gebruiker?

Definitie Collaborative Filtering

Basisaanname Collaborative Filtering

Jupyter Notebook: Machine_Learning_4_Recommendations_Movie