Problem 5.18. Show that the Post Correspondence Problem is undecidable over the binary alphabet $\Sigma = 0, 1$.

Proof. Let $PCP_b = \{\langle P \rangle \mid P \text{ is an instance of } PCP \text{ over binary alphabet } \Sigma = \{0,1\}\}$. To show that PCP_b is undecidable, we give a reduction from PCP to PCP_b . Let Σ_{PCP} be a finite set of symbols a_1, a_2, \ldots, a_n , where $n \geq 1$. Let g be a function that maps each symbol a_i to the binary representation of its index i using $\lfloor log_2 n \rfloor + 1$ characters. A reduction f from PCP to PCP_b can be constructed using g that converts an instance of PCP to PCP_b . As PCP is undecidable and $PCP \leq_m PCP_b$, so according to the Corollary 5.23, PCP_b is also undecidable.