HOW COMPUTERS WORK? MEMORY MANAGEMENT

HOW COMPUTERS WORK?

MADE OF <u>CIRCUITS</u>/<u>SWITCHES</u>

STATE REPRESENTATION

NUMBER SYSTEMS

BASE $\underline{2} = 2$ DIGITS (0, 1) BINARY

BASE <u>8</u> = 8 DIGITS (0, 1, 2, 3, 4, 5, 6, 7) OCTAL

BASE <u>10</u> = 10 DIGITS (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) DECIMAL

BASE <u>16</u> = 10 DIGITS + 6 LETTERS (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) HEXADECIMAL

DECIMAL

HUMAN UNDERSTANDABLE VALUES

EASY TO USE AND REMEMBER

EASY TO PERFORM CERTAIN OPERATIONS ON

\$80K/YEAR FOR A PROGRAMMER SALARY

JOHN OWES ME \$50

21% TAXES FOR \$5000 SALARY = 5000*21/100 = \$1050

BINARY

HEXADECIMAL

USED TO REPRESENT BIG NUMBERS (MEMORY ADDRESS FOR EXAMPLE)

2FE HEX

/ - DIVISION WITHOUT REMAINDER 25/2 = 12

% - MODULO - REMAINDER OF DIVISION 12*2=24; 25%2=25-24=1

0 2 % 16 = 2 => 2

BASE 10 TO BASE N GENERALIZED

```
<u>n</u> - Decimal number
n/B
n % B
                  B - Base
n = n / B on every iteration
Do this until n / B == 0
```


BASE 10 TO BASE N EXAMPLE

BASE N TO BASE 10 GENERALIZED

BASE N TO BASE 10 EXAMPLE

- 14*16⁰ + 11*16¹ + 10³
 - + 10*16² = 275

N = 2 0110 1010 1010 0111

- $1*2^{0}$ + $1*2^{1}$ + $1*2^{2}$ + $0*2^{3}$ + $0*2^{4}$ + $1*2^{5}$ + $0*2^{6}$ + $1*2^{7}$ + $0*2^{8}$

EXAMPLES & CONVERSIONS

<u>10</u>: 115

<u>2</u>: 01110011 <u>16</u>: 73

<u>16</u>:3AB

<u>2</u>: 0000001110101011 <u>10</u>: 939

<u>2</u>: 11110010

16:F2 10: 242

<u>2</u>: 11111111

6:FF <u>10</u>: 255

<u>16</u>: ABC

<u>2</u>:0000101010111100 <u>10</u>: 2748

ASCII & UTF-8 (ENCODING SCHEMES)

84

1B ASCII / EXTENDED ASCII

 $0-127 = 2^{(8*1-1)-1} - 7$ BITS

 $0-255 = 2^{(8*1)} - 1 - 8$ BITS

4B UTF-8

 $0-4,294,967,295 = 2^{(8*4)-1} - 8$ BITS

ENCODING & DECODING EXAMPLE

HELLO

72 69 76 76 79

WORLD!

87 79 82 76 68 33

EXAMPLES & CONVERSIONS

72

Н

01001000

228 184 173

11100100 101111000 10101101

72 69 76 76 79

HELLO

01001000 01000101 01001100 01001100 01001111

PERSONAL ENCODING (STEVENC)

Steve 1	Steve 2	Meaning
Hand up	Hand down	Bring bear
Hand down	Hand up	Bring soda
Hand Up	Hand up	Bring bear & soda
Hand down	Hand down	Do not disturb

SUMMARY

HOW COMPUTERS WORK?

NUMBER SYSTEMS

ENCODING SCHEMES