BCC33B/LT34E - Arquitetura e Organização de Computadores Prof. Paulo C. Gonçalves Atividade_05

Obs: Para resolução desta atividade é necessario a leitura dos capítulos do livro, Slides a serem apresentados na próxima aula e assistir o vídeo interativo - Projeto de Sistemas Computacionais - Aula 05 - Unidade Lógica e Aritmética - UNIVESP.

 Converta os números binários abaixo para hexadecimal e decimal: a) 00001101
D_{16}
13_{10}
b) 10100111
$A7_{16}$
16710
2. Realize as seguintes conversões:
a) 15 para hexadecimal
F_{16}
b) 16 para hexadecimal
10_{16}
3. Converta os números abaixo para decimal:
a) 4A _H
74_{10}
b) F4 _н
244_{10}
4. Represente o número -12 ₁₀ nas seguintes representações de dados:
a) Sinal-Magnitude
11100 ₂
b) Complemento de Um 10011 ₂
c) Complemento de Dois
10100 ₂

BCC33B/LT34E - Arquitetura e Organização de Computadores Prof. Paulo C. Gonçalves Atividade_05

d) Excesso de 128 01110100₂

5. Por as representações em Sinal-Magnitude e em Complemento de Um não são as representações mais utilizadas nos microprocessadores atuais? Exemplifique sua resposta.

As duas representações possuem dois valores binários para o número zero, podendo acarretar em erros de programação, necessitando de hardwares mais complexos para compará-los.

6. Qual é o efeito prático de se usar a representação em excesso?

O mesmo descola o número representado, de forma que, os valores negativos correspondem à representação com todos os bits em zero, enquanto os positivos em 1.

7. Por que se utiliza a representação em Ponto Flutuante? Dê exemplos.

É utilizado para representar números onde o ponto binário não é fixo.

8. Por que foi definida uma normalização para representação de números em Ponto Flutuante? Dê exemplo.

Utilizamos a normalização para representar números que ocupam mais de 32 bits, por exemplo, número muito grande ou muito pequeno.

9. O que é padrão IEEE 754?

É um padrão que facilitou programas portarem números com ponto flutuante. Sua representação é dada via expressão: (-1)^S x (1+Fração)x2^(Expoente + Bias). Veja abaixo onde representamos o número 1,0_{bin}x2⁻¹, utilizando bias 127.

S	Expoente									Fração																					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Calculo de Fração →								2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20	2-21	2-22	2-23

10. Faça a conversão do número decimal 3,248 x 10⁴ para um número binário no formato de ponto flutuante de precisão simples do padrão IEEE 754.

 $3,248x10^4 \qquad \rightarrow \qquad 1,11111011100000_{bin} \ x \ 2^{14} \qquad \qquad \rightarrow \qquad (1)^0 \ x \ (1 + 0.982421875_{bin}) x 2^{141}$

S	Expoente									Fração																					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	1	1	0	1	1	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calculo de Fração →								2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2 ⁻¹²	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20	2 ⁻²¹	2-22	2-23	