Multivariable Calculus

Day 22

Vector Calculus: Line integrals (cont.)

Recap: Worksheet

Work done by a force field along a path is

$$W = \int_C \mathbf{F} \cdot d\mathbf{r}.$$

A force field is given $\mathbf{F}(x,y) = x^2\mathbf{i} - xy\mathbf{j}$. Suppose we want to move a particle along the quarter circle $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j}$, $0 \le t \le \pi/2$. Compute the work done.

1

Fundamental Theorem for line integrals

Theorem (Fundamental Theorem for line integrals)

Let C be a smooth curve given by the parametrization $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then,

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Worksheet

lacksquare Find the work done by the gravitational field in \mathbb{R}^3

$$\mathbf{F}(\mathbf{x}) = -\frac{-mMG}{|\mathbf{x}|^3}\mathbf{x}$$

in moving a particle with mass m from $(3,4,12) \rightarrow (2,2,0)$ along a straight line.

3

Closed curves

Definition

A **closed curve** is a curve that starts and ends at the same point.

A simple closed curve is a closed curve that never crosses itself.

Corollary

If C is a closed curve and $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function, then

$$\oint_C \nabla f \cdot d\mathbf{r} = 0.$$

Conservative vector fields

Definition

A vector field \mathbf{F} is called a **conservative vector field** if it is the gradient of some scalar function, that is there exists a function f such that

$$\nabla f = \mathbf{F}$$
.

Worksheet

True or False? If **F** is a conservative vector field, then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0.$$

Independence of path

Worksheet

Evaluate

$$\int_C y^2 dx + x dy, \qquad i = 1, 2$$

- where C is the line segment from $(-5, -3) \rightarrow (0, 2)$
- ② where C is the arc of the parabola $x = 4 y^2$ from $(-5, -3) \rightarrow (0, 2)$.
- repeat the above two steps with

$$P = x$$
, $Q = y$.

Definition

Let F be a continuous vector field with domain D, we say that the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

is independent of path if

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

Independence of path and conservative vector fields

Theorem

 $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.