Functorial Aggregation

David I. Spivak

Workshop on Polynomial Functors 2022 March 18

Outline

- 1 Introduction
 - Databases and aggregation
 - Purity of methods
 - Plan of the talk
- 2 Background on Poly
- 3 Cat[‡], home of data migration
- **4** Aggregation
- 5 Conclusion

Why think about databases?

I'm interested in sense-making. How do we make sense of the world?

- We're here together, each with our own purpose and abilities.
- We're engaged in the activity of collective sense-making.
- I'm want to spread a *sense* of how **Poly** relates to information.

Imagine that sense is "contained" somewhere and that it can be transferred.

- If our ability to deal effectively with the world were contained...
- ...in our brain, then we could ask "what's the brain's data structure?"
- And if our data structures are different, then how is info transferred?
- Are you getting this? If so, what's the story of *how that works*?

I think of mathematical fields as accounting systems.

- Arithmetic accounts for the flow of quantities, as in finance.
- Hilbert spaces account for the states of elementary particles, as in QM.
- Probability distributions account for likelihoods, as in game theory.
- What's a good accounting system for how we collectively make sense?

Categorical databases

When I first started out on this question, I began with databases.

- Their mundane and humble but widely-used and easily conceptualized.
- The way I conceptualized them was as copresheaves $F: \mathcal{C} \to \mathbf{Set}$.
- The site *C* is called the *schema* and the copresheaf is the *instance*.

Employee	FName	WorksIn	Mngr	String
1	Alan	101	2	Alan
2	Ruth	101	2	IT
3	Kris	102	3	
Department	DName	e Admin	Bdgt	x: \$
Department 101	DName Sales	e Admin	Bdgt \$10	<u>x:\$</u>
		e Admin		x: \$

- The schema holds the *structure* of your knowledge...
- ...and the instance holds all your examples within that structure.

For those who don't care about databases, this talk is about copresheaves 21

Querying and aggregating

The two most common thing to do with databases is *query and aggregate*.

- Querying a database means performing a limit operation.
 - Example: find all pairs of people with the same favorite book.

$$Q \longrightarrow P$$

$$\downarrow \qquad \qquad \downarrow f$$

$$P \longrightarrow B$$

- This is called a *conjunctive query*, "an X and a Y where..."
- More generally a disjoint union of conj'ive queries (duc-query)...
- ... is a coproduct of these, e.g. same favorite book or movie.
- Aggregating is "integrating along compact fibers".
 - Assign to each $b \in B$ the number of people whose fave book is b.

$$P \xrightarrow{s} \mathbb{R}$$

$$f \downarrow \qquad (\text{sum } s)_f$$

- Or assign to b the total salary of everyone whose fave is b.
- Rather than searching, this is summarizing, reporting.

Beauty and the beast

Both querying and aggregating are crucial, but one is cat'ly better behaved.

- Querying is part of a larger story called data migration.
- Given two categories (DB schemas) C, \mathcal{D} , a data migration functor...
- \blacksquare ... $\mathcal{C} \triangleleft \longrightarrow \mathcal{D}$ is a parametric right adjoint $\mathcal{D}\text{-Set} \rightarrow \mathcal{C}\text{-Set}$.
- These have nice characterizations, some of which we'll discuss, and...
- ... have been implemented in open-source categorically-minded code.

In contrast, aggregation has seemingly not received a categ'al formulation.

- It's not even clear what sort of properties are desirable.
- For example, aggregation is not natural wrt. copresheaf morphisms.
- Consider: what is preserved by a commutative square $f' \rightarrow f$?

$$P' \longrightarrow P \xrightarrow{s} \mathbb{R}$$

$$f' \downarrow \qquad f \downarrow \qquad \uparrow \qquad (\text{sum } s)_f$$

$$B' \longrightarrow B$$

Can you make a match between beauty and the beast? "Be my guest!"

Poly-amory: could one category be enough?

I've lately been totally enamored with **Poly** and its comonoids $\mathbb{C}\mathbf{at}^{\sharp}$.

- First, it is an excellent setting for thinking about things I care about.
 - It is a natural setting for interacting dynamical systems.
 - And thanks to the results of Ahman-Uustalu and Garner...
 - ...it is a natural setting for databases and data migration.
- Both of these seem relevant when accounting for sense-making.
- Second, Poly has loads and loads of structure.
 - Coproducts and products that agree with usual polynomial arithmetic;
 - All limits and colimits:
 - At least three orthogonal factorization systems;
 - A symmetric monoidal structure \otimes distributing over +;
 - A cartesian closure a^p and monoidal closure [p, q] for \otimes :
 - Another nonsymmetric monoidal structure

 that's duoidal with ∅:
 - A left \triangleleft -coclosure $\begin{bmatrix} \\ \end{bmatrix}$, meaning $Poly(p, q \triangleleft r) \cong Poly(\begin{bmatrix} r \\ p \end{bmatrix}, q)$;
 - An indexed right d-coclosure (Myers?), i.e. $\operatorname{Poly}(p, q \triangleleft r) \cong \sum_{f \colon o(1) \to o(1)} \operatorname{Poly}(p \not \cap q, r)$;

 - An indexed right \otimes -coclosure (Niu?), i.e. $\operatorname{Poly}(p, q \otimes r) \cong \sum_{f : o(1) \to o(1)} \operatorname{Poly}(p \not \nearrow q, r);$
 - At least eight monoidal structures in total:
 - <-monoids generalize plain operads:</p>
- For the above and more, see "A reference for categorical structures on Poly", arXiv: 2202.00534

It was love at first sight. I'm committed to solving problems as a team. $_{5/21}$

Aggregation poses a "purity of methods" problem

"Solving aggregation" is not well-defined.

- Given a map $E \to B$ and a map $E \to \mathbb{R}$, you "just integrate".
- It's hard to know what problem needs solving.

According to Detlefsen & Arana, "purity of methods" has a long tradition.

- Aristotle, Newton, Lagrange, Gauss, Bolzano, Frege,... all sought it.
- Erdös wanted a non- \mathbb{C} proof of Hadamard's prime number thm $(\frac{n}{\log n})$.
- Bolzano phrased it as searching for "a thorough way of thinking."

So this suggests a ways forward.

- Since **Poly** is great for thinking about data migration (as I'll discuss)...
- ...it is a "purity of methods" issue to get aggregation into Poly as well.
- So the goal is to give an account of aggregation using...
- ...only monoidal/universal structures available in the Poly ecosystem.
- Pursuing it led to several new structures, which I'll tell you about.

Plan of the talk

Now that I've introduced the topic, here's the plan for my remaining time.

- Give background on **Poly**, its monoidal closure and mon'l coclosure.
- Discuss $\mathbb{C}\mathbf{at}^{\sharp} = \mathbb{C}\mathbf{omon}(\mathbf{Poly})$, natural home of data migration.
- Show how aggregation-useful structures on **Poly** generalize to ℂat[‡].
- Explain aggregation with the structures we've explored.
- Conclude with a summary.

Outline

- Introduction
- 2 Background on Poly
 - Poly: polynomials in one variable
 - Relevant categorical structures
- **3** Cat[♯], home of data migration
- 4 Aggregation
- **5** Conclusion

Poly: coproducts of representables $\mathbf{Set} \to \mathbf{Set}$

A polynomial functor is a coproduct of representables $\mathbf{Set} \to \mathbf{Set}$:

- For any set E, denote the functor it represents by $y^E := \mathbf{Set}(E, -)$.
- E.g. $y = y^1$ is identity, $y^0 = 1$ is constant, and $y^E(1) \cong 1$ for any E.
- A polynomial is a disjoint union of representables $p \cong \sum_{b \in B} y^{E_b}$.
- Note that $p(1) \cong B$ so, we can denote polynomials as follows:

$$p := \sum_{I \in p(1)} y^{p[I]}$$

Morphisms $p \xrightarrow{\varphi} q$ are just natural transformations **Set** $\xrightarrow{r} q$ **Set**

- Combinatorially, a map φ : $p \rightarrow q$ can be given in two parts:
- A function $\varphi_1 : p(1) \to q(1)$ "forward on positions" and...
- ...for each $I \in p(1)$, a function $q[\varphi_1 I] \to p[I]$ "backward on directions"

A polynomial can be viewed as a functor or just as a combinatorial object.

- Polynomials can be viewed as functors; this is like "querying".
- The functor p "migrates data", sending $X \in \mathbf{Set}$ to $p(X) \in \mathbf{Set}$.
- But it's often helpful just to think of p as a data structure.

Dirichlet product \otimes and its closure

Poly admits many monoidal structures, e.g. coproduct and product $(+, \times)$.

- Among the most useful is Dirichlet product \otimes ; its unit is y.
- lacksquare If you think of a polynomial p as a bundle, $\left(\sum_{I\in p(1)}p[I]\right)
 ightarrow p(1)...$
- ...then $p \otimes q$ is just product of base and total spaces for $p, q \in \textbf{Poly}$.

$$p \otimes q \cong \sum_{(I,J) \in p(1) \times q(1)} y^{p[I] \times q[J]}$$

The \otimes -structure has a closure: $\mathbf{Poly}(p \otimes q, r) \cong \mathbf{Poly}(p, [q, r])$:

$$[q,r]\cong\sum_{arphi\in\mathsf{Poly}(q,r)}y^{\sum\limits_{J\in q(1)}r[arphi_1J]}$$

Like so much in **Poly**, both \otimes and [-,-] generalize to $\mathbb{C}\mathbf{at}^{\sharp}$.

- The polynomial y is a dualizing object: for any $A \in \mathbf{Set}$...
- ...we have isomorphisms $[Ay, y] \cong y^A$ and $[y^A, y] \cong Ay$.
- We write $\overline{Ay} \cong y^A$. This generalizes to an important part of our story.

Substitution product < and its coclosure

The other important monoidal product is called *substitution* or *composition*.

- The composite $p \triangleleft q := p \circ q$ of polynomial functors is a polynomial.
- E.g. if $p = y^2$ and q = y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- There are many reasons for d instead of o. One is that we want to reserve o for morphisms; d is "composing" objects!)
- This monoidal product <> preserves equalizers in both variables.
- It and \otimes are duoidal: $(p_1 \triangleleft p_2) \otimes (q_1 \triangleleft q_2) \rightarrow (p_1 \otimes q_1) \triangleleft (p_2 \otimes q_2)$.

In fact, < has a right coclosure (Myers?) and an indexed left coclosure.

- We'll only need the former, $\operatorname{\textbf{Poly}}(p,q \triangleleft p') \cong \operatorname{\textbf{Poly}}\left(\left[\begin{smallmatrix}p'\\p\end{smallmatrix}\right],q\right)$.
- For any $p \in \textbf{Poly}$ the polynomial $\begin{bmatrix} p \\ p \end{bmatrix}$ is a \triangleleft -comonoid (Meyers).
- We'll see that <-comonoids are categories; which one is this?
- It's the *full internal subcat'y of* Set^{op} (Jacobs) spanned by *p*-fibers.

We'll rely heavily on this in a special case: $u = \text{List} = \sum_{N \in \mathbb{N}} y^N$.

- Then $\begin{bmatrix} u \\ u \end{bmatrix}$ is a skeleton of **Fin**^{op}.
- Later we'll get its opposite as the dual, $\begin{bmatrix} u \\ u \end{bmatrix} \simeq \mathbf{Fin}$.

Outline

- 1 Introduction
- 2 Background on Poly
- 3 Cat[‡], home of data migration
 - Shulman, Ahman-Uustalu, Garner
 - Databases for intuition
 - Categorical structures
- 4 Aggregation
- 5 Conclusion

$\mathbb{C}\mathsf{at}^\sharp \coloneqq \mathbb{C}\mathsf{omon}(\mathsf{Poly})$

Shulman: if equipment \mathbb{P} has good equalizers, \mathbb{C} omon(\mathbb{P}) is an equipment.

- An equipment is a kind of double cat'y, where 2-cells can be "cartesian."
- Any bicat'y—and hence any monoidal category—is one, called *globular*.
- So (**Poly**, y, \triangleleft) is a equipment! It happens to be vertically-trivial.
- lacktriangle We said **Poly** has "good equalizers": i.e. they are preserved by \triangleleft .
- Shulman tells us that $\mathbb{C}\mathbf{at}^\sharp := \mathbb{C}\mathbf{omon}(\mathbf{Poly})$ is also an equipment.

Ahman-Uustalu: the objects of \mathbb{C} omon(Poly) are categories.

- A comonoid in (**Poly**, y, \triangleleft) consists of (c, ϵ , δ) where c ∈ **Poly** and...
- ... ϵ : $c \to y$ and δ : $c \to c \triangleleft c$ are (counital & coassoc'tive) maps.
- This turns out to force $c \cong \sum_{a \in Ob(C)} y^{C[a]}$ for some category C,...
- ...where $C[a] := \sum_{a' \in Ob(C)} Hom_C(a, a')$. Say c is C's outfacing poly'l.
- \blacksquare Then ϵ gives identities and δ gives codomains and composition.

Garner: horizontal morphisms of \mathbb{C} omon(Poly) are data migrations.

- He didn't say it that way. He said that a bicomodule $C \triangleleft \stackrel{p}{\longleftarrow} \circlearrowleft \mathfrak{D}...$
- ...is a parametric right adjoint $\mathbf{Set}^{\mathcal{D}} \to \mathbf{Set}^{\mathcal{C}}$. I'll explain soon.
- I denote the cat'y of (c, d)-bicomodules by c-**Set**[d].

PolyFun and Span as subequipments of Cat#

To understand $\mathbb{C}at^{\sharp} \coloneqq \mathbb{C}omon(Poly)$, let's start with something familiar.

- Gambino-Kock showed that sets, functions, and multi-variate poly's...
- ...form an equipment, called **PolyFun**. (And similarly for arbitrary LCC cat'y in place of Set).
- It sits inside $\mathbb{C}at^{\sharp}$ as the full subequipment spanned by discrete caty's.
- Discrete caty's are those whose outfacing poly'l is linear, Iy for $I \in \mathbf{Set}$.

All the "activity" is subsumed under the def'n of comonoid, comodule. The usual double cat'y of spans sits inside: $\mathbb{S}pan \subseteq \mathbb{P}olyFun \subseteq \mathbb{C}at^{\sharp}$.

- \mathbb{S} pan $\subseteq \mathbb{C}$ at $^{\sharp}$ is the subequipment where every poly is linear!
- Discrete carrier makes: a cat'y be discrete, a bicomodule be a span.

Database schemas and Duc-queries

We can get more intuition for $\mathbb{C}\mathbf{at}^{\sharp}$ by thinking about databases.

- The indexing cat'y for graphs is $\mathcal{G} := \boxed{ \bullet \implies }$, carried by $g := y^3 + y$.
- Bicomodules $c \stackrel{X}{\hookleftarrow} 0$ can be ident'd with copresheaves $c \stackrel{X}{\rightarrow} \mathbf{Set}$.
- So a graph is just a bicomodule $g \triangleleft \stackrel{X}{\longleftarrow} \triangleleft 0$. Call X a g-set or G-set.
- lacksquare Think of G as a database *schema*, an arrangement for sets, and...
- ...think of $X: \mathcal{G} \to \mathbf{Set}$ as a \mathcal{G} -instance, some sets so-arranged.

We can move data between database schemas using duc-queries.

- The cat'y of *conjunctive queries on* C is (C-**Set**)^{op}. Idea:
 - For $Q \in C$ -Set we have a functor C-Set(Q, -): C-Set \to Set.
 - We think of Q as a query: find me all Q-shapes in -. Contravariant in Q.
 - E.g. there's a graph Q_n for which \mathcal{G} -**Set** $(Q_n, -)$ returns length-n paths.
 - If we want all paths, we need a disjoint union of conjunctive query's.

A data migration (bicomod) $C \stackrel{p}{\longleftarrow} \emptyset$ is a C-indexed duc-query on \emptyset .

- It functorially assigns a duc-query on \mathcal{D} to each $c \in \mathcal{C}$.
- Given a \mathcal{D} -instance $\mathcal{D} \triangleleft \longrightarrow 0$, composition returns a \mathcal{C} -instance.

Adjoint prafunctors

Data migrations = Bicomodules = parametric right adjoint functors.

- A bicomodule $c \triangleleft \stackrel{p}{\longleftarrow} \triangleleft d$ is a prafunctor d-**Set** $\rightarrow c$ -**Set**.
- It is also a *c*-indexed duc-query on *d*. This can be helpful.
- **E**.g., a profunctor $c^{op} \times d \rightarrow \mathbf{Set}$ is a special case of prafunctor.
- It can be identified with a *c*-indexed *conjunctive* query on *d*, no sums.

When is a prafunctor $c \Leftrightarrow^{p} d$ a right adjoint in $\mathbb{C}\mathbf{at}^{\sharp}$?

- Two conditions: it is a right adjoint functor $d extstyle{-}\mathbf{Set} o c extstyle{-}\mathbf{Set}$ and...
- ...the associated left adjoint $c ext{-Set} o d ext{-Set}$ is also a prafunctor.
- For example for any functor $F: c \to d$, we have $\Delta_F \dashv \Pi_F$.
- For $c \triangleleft \stackrel{p}{\longrightarrow} d$, I denote its left adjoint by $d \triangleleft \stackrel{p^{\frac{1}{+}}}{\longrightarrow} c$.

In the subcategory \mathbb{P} **olyFun** = \mathbb{C} **at** $_{disc}^{\sharp}$, adjoints are easy to characterize:

- Left adjoints are those *p* with linear carrier (spans), and...
- ...right adjoints are the profunctors, i.e. *c*-indexed conjunctive queries.

External and internal \otimes

The equipment $\mathbb{C}\mathbf{at}^{\sharp}$ has lots of structure, e.g. it is monoidal.

- There is a double functor \otimes : $\mathbb{C}at^{\sharp} \times \mathbb{C}at^{\sharp} \to \mathbb{C}at^{\sharp}$.
- It is an (external) symmetric monoidal structure on ℂat[‡].
- On objects, $c \otimes d$ is the usual product of categories.

It also has local ⊗-monoidal structures.

- For any $c, d \in \mathbb{C}\mathbf{at}^{\sharp}$ the cat'y $c\text{-}\mathbf{Set}[d]$ has an induced \otimes -structure.
- That is, for any two bicomodules $c \triangleleft \stackrel{p,q}{\smile} d$, there is...
- ...a bicomodule $c \triangleleft p_c \otimes_d q \triangleleft d$. The local unit is $c(1)y^{d(1)}$.
- These fit together "duoidally":

$$c_0 \begin{tabular}{ll} $\stackrel{p_1}{=}$ & c_1 & $\stackrel{p_2}{=}$ & c_2 & \sim & c_0 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & c_2 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & c_2 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & c_2 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & c_2 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & c_2 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & c_2 & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} p_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} {}_{c_0} \otimes_{c_2} (q_1 \triangleleft_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} (q_1 \bowtie_{c_1} q_2)$ & $\stackrel{(p_1 \triangleleft_{c_1} q_2)}{=} (q_1 \bowtie_{c_1} q_2$$

Local closures and dualizing object

The local ⊗-structures have closures.

■ That is, for $p, q, r \in c$ -**Set**[d], there is a natural isomorphism

$$c\text{-Set}[d](p_c \otimes_d q, r) \cong c\text{-Set}[d](p, c[q, r]_d)$$

■ Wanted: other equip's with local (duoidal) monoidal-closed structure. For any sets C, D, there's a dualizing object in C-**Set**[D]=**Poly**_{GK}(C, D).

- It's the terminal span, $C \leftarrow (C \times D) \rightarrow D$, i.e. $Cy \triangleleft \stackrel{CDy}{\longrightarrow} \triangleleft Dy$.
- Calling it $\bot := CDy$, the functor $\overline{\cdot} := C[-, \bot]_D$ provides a duality...
- If $p \in C$ -**Set**[D] is linear then $[p, \bot]$ is conjunctive, and vice versa.
- In particular $\overline{p} \cong p$ for any linear or conjunctive p.
- It generalizes $[Ay, y] \cong y^A$ from earlier.

Transposing a span, "oppositing" a category

The idea of \overline{p} is that it transforms $\Sigma_F \circ \Delta_G$ into $\Pi_F \circ \Delta_G$.

- That's not its adjoint!
- The adjoint of $\Sigma_F \circ \Delta_G$ is $\Pi_G \circ \Delta_F$.
- So what is the adjoint of the dual or the dual of the adjoint?
- Answer: $\Sigma_F \circ \Delta_G \mapsto \Pi_F \circ \Delta_G \mapsto \Sigma_G \circ \Delta_F$. (The other works too.)

On the level of spans, this is the transpose!

- The transpose operation is a composite of two more primitive ones.
- This doesn't happen within Span; kind of like contour integrals.

Similarly, the opposite of a category is a composite of two operations.

- lacktriangle A category $\mathcal C$ can be viewed as a monad in $\mathbb S$ pan, and its adjoint is...
- ...a comonoid $c(1)y \triangleleft \stackrel{c}{\smile} \triangleleft c(1)y$, which is a cat'y in a different way!
- And the dual of that comonoid is again a monad in \mathbb{S} **pan**, namely $\mathcal{C}^{\mathsf{op}}$.
- In particular, with $u = \sum_{N \in \mathbb{N}} y^N$, we will use (twice) that $\overline{\left[\begin{smallmatrix} u \\ u \end{smallmatrix} \right]} \simeq \mathbf{Fin}$.

Outline

- 1 Introduction
- 2 Background on Poly
- **3** Cat[♯], home of data migration
- **4** Aggregation
 - Finitary instances
 - Commutative monoids
 - Putting it together
- 5 Conclusion

Finitary instances

For $X: c \to \mathbf{Set}$, i.e. $c \Leftrightarrow^X = 0$, the following are equivalent

- the copresheaf X is *finitary*, i.e. it factors through **Fin** \subseteq **Set**.
- there exists a function $\lceil X \rceil$: $c(1) \rightarrow u(1)$ with

■ There exists a monad map $\lceil X \rceil_1$ as shown here:

for which the c^{\downarrow} -algebra induced by \overline{u} is X.

I know that's impossible to follow; sorry! The gist: "everything works!" 18/21

Commutative monoids as Fin-algebras

A database schema assigns a comm've monoid (M_a, \circledast_a) to each $a \in c(1)$.

- Assigning the set M_a to each $a \in c(1)$ is a bicomodule $y \triangleleft My \triangleleft Ay$.
- Consider the following diagram that coerces ⊗ into the picture:

- The composite $u(1) \triangleleft \stackrel{u}{\longrightarrow} y \triangleleft \stackrel{My}{\longrightarrow} c(1)y$ assigns...
- ... to each $N \in \mathbb{N}$ and $a \in c(1)$ the set $(M_a)^N$.

So what does the 2-cell say, and what does being a $\frac{u}{u}$ -module mean?

- Given a function $f: N \to N'$, an object $a \in c(1)$, and $m \in (M_a)^N$...
- ...there is an induced $(\circledast m)_f \in (M_a)^{N'}$. Integration along fibers.
- $u \triangleleft My$ being a $\begin{bmatrix} u \\ u \end{bmatrix}$ -algebra means it works with ids and composites.

Aggregation

The thing we've worked so hard for is as follows.

- Suppose we have a category c and a copresheaf $X: c \rightarrow \mathbf{Set}$ and...
- ...a commutative monoid M_a and a map s_a : $X_a o M_a$ for each $a \in c(1)$.
- Then given $f: a \rightarrow b$ in c, and given $y \in X(b)$, we want:
- ... to take the fiber $\{x \in X(a) \mid x.f = y\}$ and "add 'em up".
- That is, take $\circledast_{\{x|x,f=y\}} s_a(x)$. $x_a \xrightarrow{s_a} M_a$ $x_{f\downarrow} \xrightarrow{\nearrow} X_f$ $\chi_{h} \xrightarrow{(\circledast s_a)} X_h$

We have accomplished this now, using pieces we've collected.

Outline

- 1 Introduction
- 2 Background on Poly
- **3** Cat[♯], home of data migration
- 4 Aggregation
- 5 Conclusion
 - Summary

Summary

Aggregation is of central importance in database practice.

- Add up salaries, count things, collect each fiber into a set, etc.
- If we also have "calculated fields" (not too hard), you can...
- ... take averages, plot graphs, etc. Aggregation is very powerful.

There's a really nice categorical story for data migration.

- It is that $\mathbb{C}at^{\sharp} = \mathbb{C}omon(Poly)$ is categories and prafunctors.
- And prafunctors are data migrations (e.g. find all paths in a graph).
- But a categorical formulation of aggregation has been missing.

But **Poly** is so highly-structured, we asked if it might include aggregation.

- Using adjoint prafunctors, local monoidal closures, and coclosures...
- ...we found a way to say what we needed to say.
- It's not as plain and simple as I'd like, but there's likely a better way.
- We tested the mettle of **Poly** and it was indeed up to the task!

Thank you for your time; questions and comments welcome!