ST2132

Jia Cheng

Jan 2022

1 Limit Theorems

Properties of weak convergence (Also known as convergence in probability)

Additivity Suppose $A_n \to_P \alpha, B_n \to_P \beta$ for sequences of random variables $(A_n), (B_n)$. Then,

$$P(|(A_n+B_n)-(\alpha+\beta)|>\epsilon)\leq P(|A_n-\alpha|+|B_n+\beta|>\epsilon)\leq P(\{|A_n-\alpha|>\frac{\epsilon}{3}\}\cup\{|B_n-\beta|>\frac{\epsilon}{3}\})\to 0+0=0$$

Therefore, $A_n + B_n \to_P \alpha + \beta$.

Here, we use the inequalities $|A_n - \alpha| + |B_n - \beta| \ge |A_n - \alpha + B_n - \beta|$ and $\epsilon > \frac{\epsilon}{3} + \frac{\epsilon}{3}$.

Closure under Continuity Suppose $X_n \to_P \alpha$. Let g be a continuous function. Then in particular, g is continuous at α .

For a fixed ϵ , let $\delta > 0$ be such that $|x - \alpha| \le \delta \implies |g(x) - g(\alpha)| \le \epsilon$. The converse then says that $|g(x) - g(\alpha)| > \epsilon \implies |x - \alpha| > \delta$, which is what we will use below.

$$P(|g(X_n) - g(\alpha)| > \epsilon) \le P(|X_n - \alpha| > \delta) \to 0$$

Hence, $g(X_n) \to_P g(\alpha)$.