

POLITECHNIKA ŚLĄSKA WYDZIAŁ AUTOMATYKI, ELEKTRONIKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA

Projekt inżynierski

Sprzętowa implementacja regulatora MPC

Autor: Szymon Zosgórnik

Kierujący pracą: dr hab. inż., prof. PŚ Jarosław Śmieja

Lorem ipsum.	Streszczenie

Spis treści

1	1.1		
2	2.1 2.2	regulatora MPC First	
3	Zało 3.1 3.2 3.3 3.3	Architektura systemu	3 3 3 3 3 3 3 4 4 4
4	Impl 4.1	lementacja rozwiązania	5 5
5	_	/kładowe wyniki Dużo wyników	6
6	6.1 6.2	sumowanie Wyniki	7
	datk		8
Δ	.lak	zrobie jakieś fajen porównania to tu dam	q

Rozdział 1. Wstęp

1.1 Motywacja projektu

Lorem ipsum.

1.2 Cel pracy

Rozdział 2. Idea regulatora MPC

2.1 First

Lorem ipsum.

2.2 Second

Lorem ipsum.

2.3 Third

Rozdział 3. Założenia projektowe i wykorzystane narzędzia

3.1 Założenia projektowe

liniowy układ

3.2 Architektura systemu

Lorem ipsum. Cokolwiek o STMie / ARMie.

3.2.1 Platforma STM

Lorem ipsum.

3.2.2 Procesor - architektura ARM

Lorem ipsum.

3.3 Narzędzia programistyczne

3.3.1 Języki programowania C/C++

A gdzie Rust?!

3.3.2 Język programowania Python

pytong

3.3.3 Środowisko MATLAB

matlablabla

3.3.4 Biblioteka HAL

hal

3.3.5 **CMake**

cmake

3.3.6 Kompilator i linker

arm none eabi gcc

3.4 Przykład referencyjny

Lorem ipsum.

3.5 Sposób testowania

Rozdział 4. Implementacja rozwiązania

4.1 Ogólny schemat programu

Todooo.

4.2 Problemy napotkane podczas realizacji

Ło panie.

Rozdział 5. Przykładowe wyniki

5.1 Dużo wyników

Wiyncyj wyników.

Rozdział 6. Podsumowanie

6.1 Wyniki

No działa.

6.2 Wnioski

Jak wyżej.

6.3 Pomysły na rozwój projektu

Jak wyżej.

Dodatki

Dodatek A. Jak zrobię jakieś fajen porównania to tu dam

Spis rysunków

Spis tablic

Spis listingów

Bibliografia

[1] Rolf Findeisen Markus Kögel. A fast gradient method for embedded linear predictive control. *Proceedings of the 18th World Congress The International Federation of Automatic Control*, strony 1362–1367, 28.08 - 02.09.2011.