Matrix Inverse

A square matrix $S \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix $S^{-1} \in \mathbb{R}^{n \times n}$ such that

$$S^{-1}S = I$$
 and $SS^{-1} = I$.

The matrix S^{-1} is called the inverse of S.

- ▶ An invertible matrix is also called non-singular. A matrix is called non-invertible or singular if it is not invertible.
- lacktriangle A matrix $S \in \mathbb{R}^{n \times n}$ cannot have two different inverses. In fact, if $X, Y \in \mathbb{R}^{n \times n}$ are two matrices with XS = I and SY = I.

$$X = XI = X(SY) = (XS)Y = IY = Y.$$

- ▶ If $S \in \mathbb{R}^{n \times n}$ is invertible, then Sx = f implies $x = S^{-1}Sx = S^{-1}f$, i.e., for every f the linear system Sx = f has a solution $x = S^{-1}f$. The linear system Sx = f cannot have more than one solution because Sx = f and Sy = f imply S(x-y) = Sx - Sy = f - f = 0 and $x - y = S^{-1}0 = 0$. Hence if S is invertible, then for every f the linear system Sx = fhas the unique solution $x = S^{-1}f$.
- \blacktriangleright We will see later that if for every f the linear system Sx=f has a unique solution x, then S is invertible.

M. Heinkenschloss - CAAM335 Matrix Analysis

Matrix Inverse and LU Decomp

Want inverse of

$$S = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}.$$

Use Gaussian Elimination to solve the systems

 $SX_{::1} = e_1, SX_{::2} = e_2, SX_{::3} = e_3$ for the three columns of $X = S^{-1}$

$$\begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 2 & -1 & 3 & 0 & 1 & 0 \\ 4 & 1 & 8 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -4 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & 0 & -1 & -6 & 1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & -11 & 2 & 2 \\ 0 & -1 & 0 & 4 & 1 & 0 \\ 0 & 0 & -1 & -6 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -11 & 2 & 2 \\ 0 & 1 & 0 & -4 & -1 & 0 \\ 0 & 0 & 1 & 6 & -1 & -1 \end{pmatrix}.$$

$$S^{-1} = \begin{pmatrix} -11 & 2 & 2 \\ -4 & -1 & 0 \\ 6 & -1 & -1 \end{pmatrix}.$$

Computation of the Matrix Inverse

We want to find the inverse of $S \in \mathbb{R}^{n \times n}$, that is we want to find a matrix $X \in \mathbb{R}^{n \times n}$ such that SX = I.

Let $X_{:,i}$ denote the *j*th column of X, i.e., $X = (X_{:,1}, \ldots, X_{:,n})$. Consider the matrix-matrix product SX. The jth column of SX is the matrix-vector product $SX_{::i}$, i.e., $SX = (SX_{::1}, \dots, SX_{::n})$. The jth column of the identity I is the jth unit vector $e_i = (0, \dots, 0, 1, 0, \dots, 0)^T$. Hence $SX = (SX_{1}, \dots, SX_{n}) = (e_{1}, \dots, e_{n}) = I$ implies that we can compute the columns $X_{::1}, \ldots, X_{::n}$ of the inverse of S by solving n systems of linear equations

$$SX_{:,1} = e_1,$$

$$\vdots$$

$$SX_{:,n} = e_n.$$

Note that if for every f the linear system Sx = f has a unique solution x, then there exists a unique $X = (X_{1}, \dots, X_{n})$ with SX = I.

M. Heinkenschloss - CAAM335 Matrix Analysis

LU-Decomposition

Consider

$$S = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}.$$

Express Gaussian Elimination using Matrix-Matrix-multiplications

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -4 & 0 & 1 \end{pmatrix}}_{=E_1} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}}_{=S} = \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix}}_{=E_1S}$$

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}}_{=E_2} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix}}_{=E_1S} = \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{=E_2E_1S=U}$$

Inverses of E_1 and E_2 can be easily computed:

$$E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}, \quad E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

We have

$$E_2E_1S = U$$

Hence

$$E_1S = E_2^{-1}U$$
, and $S = E_1^{-1}E_2^{-1}U$.

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}}_{=S} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}}_{=E_1^{-1}} \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}}_{=E_2^{-1}} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{=U}$$

$$= \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & -1 & 1 \end{pmatrix}}_{=E_1^{-1}E_2^{-1}=L} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{=U}$$

Hence we have the LU-Decomposition of S.

$$S = LU$$
,

where L is a lower triangular matrix and U is an upper triangular matrix. In Matlab compute using [L,U]=lu(S).

M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition

In Matlab the matrix inverse is computed using the LU decomposition. Given S, we want to compute S^{-1} . Recall that the columns $X_{:,1},\dots,X_{:,n}$ of the inverse $S^{-1}=X$ are the solutions of

$$SX_{:,1} = e_1,$$

$$\vdots$$

$$SX_{:,n} = e_n.$$

If we have computed the LU decomposition

$$S = LU$$
,

then we can use it to solve the n linear systems $SX_{:,j} = e_j$, $j = 1, \ldots n$. Use the LU decomposition to compute the inverse of

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}}_{-C} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & -1 & 1 \end{pmatrix}}_{-T} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{-T}$$

What do you think of the following approach to solve Sx = f:

If we have computed the LU decomposition

$$S = LU$$
.

then we can use it to solve

$$Sx = f$$
.

We replace S by LU,

$$LUx = f$$
,

and introduce y=Ux. This leads to the two linear systems

$$Ly = f$$
 and $Ux = y$.

Since L is lower triangular and U is upper triangular, these two systems Example:

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}}_{Q} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & -1 & 1 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{Q}, \quad f = \begin{pmatrix} -4 \\ -6 \\ -15 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & -1 & 1 \end{pmatrix}}_{=L} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \underbrace{\begin{pmatrix} -4 \\ -6 \\ -15 \end{pmatrix}}_{=f} \quad \Rightarrow \quad \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}}_{=U} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \underbrace{\begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix}}_{=u} \quad \Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$

M. Heinkenschloss - CAAM335 Matrix Analysis

Execute the following:

```
= input('Problem size = ');
     = rand(n,n);
     = rand(n,1);
ntry = 50;
tic
for i = 1:ntry
    x = S \setminus f;
end
toc
tic
for i = 1:ntry
    Sinv = inv(S):
          = Sinv*f;
end
toc
tic
[L,U] = lu(S);
for i = 1:ntry
    x = U \setminus (L \setminus f);
end
toc
```