Unique motor plans facilitate learning during task switching, but at the expense of greater switch costs

Matthew J. Crossley^{1, 2}, J. Vincent Filoteo^{3, 4}, W. Todd Maddox⁵, and F. Gregory Ashby⁶

¹School of Psychological Sciences, Macquarie University, Sydney, Australia ²Macquarie University Performance and Expertise Research Centre, Macquarie University, Sydney, Australia

 $^3{\rm Research}$ Service, VA San Diego Health
Care System $^4{\rm Departments}$ of Psychiatry and Neuroscience, School of Medicine, University of California San Diego

 5 Cognitive Design and Statistical Consulting, Austin, Texas 6 Department of Psychological & Brain Sciences, University of California, Santa Barbara

Author Notes: The research described in this article was supported in part by AFOSR grant FA9550-06-1-0204 PI: Maddox.

Correspondence: Matthew J. Crossley, PhD, School of Psychological Sciences, Macquarie University, Australian Hearing Hub, 16 University Ave, Macquarie University, NSW 2109, Australia. Email: matthew.crossley@mq.edu.au