I kursen studerar vi tekniska/fysikaliska system och deras egenskaper. Vi kan till exempel vara intresserade av hur de reagerar på olika exciteringar (insignaler). Vi begränsar oss till system med en in- och en utsignal. In- och utsignaler kan vara ex. kraft, tryck, spänning, ström o.s.v. Vi använder oss av matematiska modeller för att beskriva signaler (funktioner) och system (ekvationer).

0.1 Klassificering av signaler

0.1.1 Diskret/Kontinuerlig signal

Kontinuerlig (tid) signal x(t) där $t \in \mathbb{R}$

Diskret (tid/oberoende variabel) signal x[n] där $n \in \mathbb{Z}$

Kontinuerlig amplitud $x(t), x[n] \in \mathbb{R}$

Diskret amplitud x(t), x[n] kvantiserad

Digital signal betecknar vanligen en signal som är diskret både i tid och amplitud.

0.1.2 Jämn/Udda signal

Jämn signal $\forall t, x(t) = x(-t)$ kallas vanligtvis $x_e(t)$

Udda signal $\forall t, x(t) = -x(-t)$ kallas vanligtvis $x_o(t)$

Sats 1. En godtycklig signal x(t) kan alltid delas upp i en jämn signal $x_e(t)$ och en udda signal $x_o(t)$. Den jämna delen $x_e(t) = \frac{1}{2}(x(t) + x(-t))$ och den udda delen $x_o(t) = \frac{1}{2}(x(t) - x(-t))$

Bevis.
$$x_e(-t) = \frac{1}{2}(x(-t) + x(t)) = x_e(t)$$
 och $x_o(-t) = \frac{1}{2}(x(-t) - x(t)) = -\frac{1}{2}(x(t) - x(-t)) = -x_o(t)$. Summan $x_e(t) + x_o(t) = \frac{1}{2}(x(t) + x(-t) + x(t) - x(-t)) = x(t)$.

0.1.3 Periodisk signal

Periodisk signal $\forall t, x(t) = x(t+T)$ där T är en konstant period för signalen.

Exempelvis sinusformad signal, fyrkantsvåg, triangelvåg o.s.v.

Periodisk diskret signal $\forall n, x[n] = x[n+N]$ där $N \in \mathbb{Z}^+$ och konstant.

0.1.4 Deterministisk (Känd, förutsägbar)/Slumpmässig (Stokastisk) signal

En signal kallas slumpmässig om den inte kan förutsägas helt.

Def. 1 (Energisignal). Låt den totala energin vara
$$E=\lim_{T\to\infty}\int\limits_{-\frac{T}{2}}^{\frac{T}{2}}|x(t)|^2\mathrm{d}t$$
 alt.

$$E = \sum_{n = -\infty}^{\infty} |x[n]|^2$$
. Om $0 < E < \infty$ är x en energisignal.

Def. 2 (Effektsignal). Låt medeleffekten
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$
 alt. $P =$

$$\lim_{T \to \infty} \frac{1}{2N+1} \sum_{n=-\infty}^{N} |x[n]|^2. \text{ Om } 0 < P < \infty \text{ är } x \text{ en effektsignal}.$$

Notera att för en energisignal gäller $P \to 0$ eftersom $E < \infty$ och på samma sätt gäller att för en effektsignal går $E \to \infty$.

0.2 Signalmanipulering

0.2.1 Amplitudskalning

y[n]=ax[n]+b där vi exempelvis kan kalla a för förstärkning och b inom elektronik för DC-skift. a,b är konstanter. På samma sätt för kontinuerliga signaler y(t)=ax(t)+b.

0.2.2 Åndra tidsskala

$$y(t) = x(at), a \in \mathbb{R} \text{ och } y[n] = x[kn], k \in \mathbb{Z}$$

0.2.3 Spegling

$$\forall t, y(t) = x(-t) \text{ och } \forall n, y[n] = x[-n]$$

0.2.4 (Tids)skift

$$y(t) = x(t - t_0) \text{ och } y[n] = x[n - n_0]$$

0.2.5 Samtida operationer

Låt x(t) vara en signal.

Ändra tidsskala så att $t \to at \implies x(at)$ sen en tidsskift $t \to t - t_0' \implies x(a(t-t_0')) = x(at-at_0')$. Nu ändrar vi först tidsskift $t \to t - t_0 \implies x(t-t_0)$ och sen tidsskalan $t \to at \implies x(at-t_0)$. Notera att det är blir olika beroende på i vilken ordning det tas i. För att det ska vara lika måste $at_0' = t_0$.

0.3 Signalmodeller

0.3.1 Komplex exponential (kontinuerlig)

 $x(t)=Ce^{at}$ där $C,a,x\in\mathbb{C}$. Komplexa tal förekommer oftast inte i fysikaliska system men är mycket användbara som matematiska modeller. Den fysikaliska signalen kan fås ur $\text{Re}\{x(t)\}$ eller $\text{Im}\{x(t)\}$. Jämför $j\omega$ -metoden (phasors) för beräkning av stationära växelströmskretsar.

0.4 Lite repetition av komplexa tal

$$\cos(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2} \text{ och } \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}.$$

Tidsvariation $\theta = \omega t$

0.5 Några olika fall

0.5.1 Fall 1

Anta $C, a \in realn$. Då är $x(t) = Ce^{at}$. För a < 0 och C > 0 beskriver x ett exponentiellt avtagande förlopp. För a > 0 beskriver x ett exponentiellt stigande förlopp. Om a = 0 är x(t) = C.

0.5.2 Fall 2

 $a, C \in \mathbb{C}$ och $\operatorname{Re}\{a\} = 0$. Låt $a = j\omega_0$ och $C = Ae^{j\Phi}(= A \angle \Phi)$. $x(t) = Ae^{j\Phi}e^{j\omega_0t} = Ae^{j(\omega_0t+\Phi)} = A\cos(\omega_0t+\Phi) + jA\sin(\omega_0t+\Phi)$. $\operatorname{Re}\{x(t)\}$ är sinusformad med amplitud A och fasförskjutning Φ . Det är en odämpad sinusformad signal.

0.5.3 Fall 3

 $C, a \in \mathbb{C}$. Låt $C = Ae^{j\Phi}$ och $a = \sigma_0 + j\omega$. Då är $x(t) = Ae^{j\Phi}e^{(\sigma_0 + j\omega_0)t} = Ae^{\sigma_0 t}e^{j(\omega_0 t + \Phi)} = Ae^{\sigma_0 t}\cos(\omega_0 t + \Phi) + jAe^{\sigma_0 t}\sin(\omega_0 t + \Phi)$. Om $\sigma_0 < 0$ blir signalen en dämpad sinusformad signal. Om $\sigma_0 > 0$ blir signalen en anti-dämpad sinusformad signal. Om $\sigma_0 = 0$ är det bara fall 2 igen.

0.6 Diskret exponential

Låt $x[n] = Ca^n$. Allmänt är $C, a, x \in \mathbb{C}$ och $n \in \mathbb{Z}$.

0.6.1 Fall 1

 $C, a \in \mathbb{R}$. Då gäller $x[n] = Ca^n$. För olika intervall ser graferna ut precis som man kan tänka sig. a < 0 gör att tecknet på x[n] växlar och är negativt för udda n.

0.6.2 Fall 2

 $C,a\in\mathbb{C}$ men |a|=1. Låt $a=e^{j\Omega_0}$ och $C=Ae^{j\Phi}.$ Då är $Ae^{j\Phi}e^{j\Omega_0n}=Ae^{j(\Omega_0n+\Phi)}=A\cos(\Omega_0n+\Phi)+jA\sin(\Omega_0n+\Phi).$ x[n] är då en diskret odämpad sinusformad signal.

0.6.3 Fall 3

 $C,a\in\mathbb{C}$. Låt $C=Ae^{j\Phi}$ och $a=e^{\Sigma_0}e^{j\Omega_0}=e^{\Sigma_0+j\Omega_0}$. Då är $x[n]=Ae^{j\Phi}e^{(\Sigma_0+j\Omega_0)n}=Ae^{\Sigma_0n}e^{j(\Sigma_0n+\Phi)}$. Σ_0 bestämmer om signalen blir dämpad eller anti-dämpad.