

Binary Black Hole Mergers

Charles Njoroge

TABLE OF CONTENTS

O1 INTRODUCTION

What are binary black holes?

O3Methodology/Approach

Einstein toolkit

02Background

When were they discovered and why they matter

Q4Results

Simulations

INTRODUCTION

A binary black hole is a system of two black holes that orbit closely

Discovering black holes was and is very challenging due to the nature of black holes

Gravitational waves are 'ripples' in spacetime produced by some of the most violent events in the cosmos, such as the collisions and mergers of massive stars.

WHOAI

First detected by Laser Interferometer Gravitational-Wave Observatory (LIGO) detected that picked up on the distinct gravitational signature of GW150914 1.3 billion light-years away

For the final **20 ms** of spiraling inward and merging, **GW150914** released around **3 solar masses** as gravitational energy, which is **more wattage** than the **combined power of all light radiated** by all the stars in the **observable universe** put together

•

•

Experimentation Review

Einstein Toolkit

A comprehensive, open-source computational infrastructure for relativistic astrophysics.

Simulates the gravitational wave event GW150914 by modeling the dynamics of two merging black holes

GW150914 Simulation

Core tools

Utilizes specialized modules like Two Punctures for initial data generation, Carpet for mesh refinement. AHFinderDirect for horizon tracking, and McLachlan for solving Einstein's equations.

Grid / Refinement

Defines a multi-level grid structure with dynamic mesh refinement to capture high-resolution

Outputs

Generates data, including gravitational waveforms, apparent horizon metrics, and spacetime curvature,

Incorporates symmetry checks and parameter logging to promote robust scientific research

Validation

Results

Pending simulations take 3-4 days to run

Current Setup 3 caslake nodes , with ~128 cores

Discussion

- Thinking through how GPUs can be used to speed up the calculations due to mesh refinement
- Grid Calculations: GPUs can speed up solving equations on a grid, like calculating derivatives in spacetime.
- Time Stepping: Methods like Runge-Kutta, numerical analysis iterative methods, for advancing the simulation in time are ideal for GPU acceleration because each step can run in parallel.
- Wave Signal Analysis: Extracting gravitational waves (e.g., \(\Psi_4\)) from the simulation, which involves lots of math, runs faster on GPUs.
- Horizon Finding and Interpolation: Detecting black hole horizons and interpolating data between grids are heavy tasks that GPUs handle efficiently.

