

Lecture 11 Optimization

Ye Ding (丁烨)

Email: y.ding@sjtu.edu.cn

School of Mechanical Engineering Shanghai Jiao Tong University

Motivation: On Choices

R. Battiti: Everybody carries on his shoulders the responsibility of his choices. It is a heavy weight.

Motivation: from Robotics

$$\min_{\mathbf{v}(t)} \int_0^{\mathsf{T}} L(\mathbf{z}) dt, \quad \text{s.t. } g(\mathbf{z}) \le 0.$$

where $L(\mathbf{z})$ is the square of the norm of the input vector.

Motivation: from Mechanical Design

Find
$$\mathbf{X}(t) = \begin{cases} b(t) \\ d(t) \end{cases}$$
 which minimizes

$$f[\mathbf{X}(t)] = \rho \int_0^l b(t) \ d(t) \ dt$$

subject to the constraints

$$\delta_{\text{tip}}[\mathbf{X}(t)] \le \delta_{\text{max}}, \qquad 0 \le t \le l$$

$$b(t) \ge 0, \qquad 0 \le t \le l$$

$$d(t) \ge 0, \qquad 0 \le t \le l$$

- References for Optimization
 - [1] J. Nocedal, and S. J. Wright, Numerical Optimization, 2nd ed., New York: Springer, 2006. Chapters 2, 3, 6
 - [2] Timothy Sauer, Numerical analysis, 2nd ed., Pearson Education, 2012. Chapter 13
 - [3] Singiresu S. Rao, Engineering Optimization: Theory and Practice, 4th ed., John Wiley & Sons, Inc., 2009. Chapters 5, 6
 - [4] 袁亚湘,非线性优化计算方法,科学出版社,2008.

General Mathematical Programming Problem

```
minimize f(\mathbf{x})

subject to h_i(\mathbf{x}) = 0, i = 1, 2, ..., m

g_j(\mathbf{x}) \le 0, j = 1, 2, ..., r

\mathbf{x} \in S.
```

- $ightharpoonup \mathbf{x}$ is an *n*-dimensional vector of unknowns; $f, h_i, i = 1, 2, ..., m$, and $g_j, j = 1, 2, ..., r$, are real-valued functions of \mathbf{x} ;
- ➤ f is the *objective function*; the equations, inequalities, and set restrictions are *constraints*.

- One-Dimensional Minimization
 - **➤** Golden Section Search
 - > Newton's Method
 - > Inaccurate Line Search
- Unconstrained Optimization
 - > Steepest Descent Method
 - > Newton's Method
 - **➤ Quasi-Newton Method**
- ☐ Linear Programming
 - > Geometry of Linear Programming
 - **➤ The Simplex Method**

General One-Dimensional Optimization Problem

$$\min_{x \in \mathbb{R}} f(x)$$

where
$$x \in \mathbb{R}, f(x) \in \mathbb{R}$$

$$\min_{\alpha \in \mathbb{R}} f(\mathbf{x} + \alpha \mathbf{d})$$

where
$$\mathbf{x} \in \mathbb{R}^n$$
, $\mathbf{d} \in \mathbb{R}^n$, $f(\mathbf{x}) \in \mathbb{R}$

Unimodal Function: Definition

A unimodal function is one that has only one valley (minimum) in a given interval.

There is unique $x^* \in [a, b]$ such that $f(x^*)$ is minimum of f on [a, b], and f is strictly decreasing for $x \le x^*$, strictly increasing for $x^* \le x$.

Golden Section Search: Geometric View Given *f* **unimodal with minimum in [0,1]**

Golden Section Search: Basic IdeaGiven f unimodal with minimum in [0,1]

- (a) Make them symmetric with respect to the interval $x_1 = 1 x_2$
- (b) No matter which choice is made for the new interval, both x_1 and x_2 are used in the next step $x_1 = x_2^2$

$$x_2^2 + x_2 - 1 = 0$$
 $x_2 = g = (\sqrt{5} - 1)/2$

Golden Section Search: Pseudo-code

Given f unimodal with minimum in [a, b]

```
for i = 1, 2, 3, ...

g = (\sqrt{5} - 1)/2

if f(a + (1 - g)(b - a)) < f(a + g(b - a))

b = a + g(b - a)

else

a = a + (1 - g)(b - a)

end

end
```

The final interval [a,b] contains a minimum.

Golden Section Search: Pseudo-code

```
Given f(x) unimodal with minimum in [a,b]
g = (\text{sqrt}(5)-1)/2;
x_1 = a + (1 - g)(b - a); f_1 = f(x_1);
x_2 = a + g(b - a); f_2 = f(x_2);
while (b - a) > TOL
                                                                         x_2
                                                                    x_1
   if (f_1 > f_2)
      a = x_1; x_1 = x_2; f_1 = f_2;
      x_2 = a + g(b - a); f_2 = f(x_2);
                                                            x_1
    else
                                                                    x_2
      b = x_2; x_2 = x_1; f_2 = f_1;
      x_1 = a + (1 - g)(b - a); f_1 = f(x_1);
    end
                                                            x_2
                                                       x_1
end
```


Golden Section Search: Example 1

Find the minimum of

$$f(x) = x^6 - 11x^3 + 17x^2 - 7x + 1$$

on the interval [0,1].

step	a	x_1	x_2	b
0	0.0000	0.3820	0.6180	1.0000
1	0.0000	0.2361	0.3820	0.6180
2	0.0000	0.1459	0.2361	0.3820
3	0.1459	0.2361	0.2918	0.3820
4	0.2361	0.2918	0.3262	0.3820
5	0.2361	0.2705	0.2918	0.3262
6	0.2705	0.2918	0.3050	0.3262
7	0.2705	0.2837	0.2918	0.3050
8	0.2705	0.2786	0.2837	0.2918
9	0.2786	0.2837	0.2868	0.2918
10	0.2786	0.2817	0.2837	0.2868
11	0.2817	0.2837	0.2849	0.2868
12	0.2817	0.2829	0.2837	0.2849
13	0.2829	0.2837	0.2841	0.2849
14	0.2829	0.2834	0.2837	0.2841
15	0.2834	0.2837	0.2838	0.2841

Golden Section Search: Example 2

Find the root of (Example 1 of Lecture 3 Revisited)

$$f(x) = x^3 + x - 1 = 0, x \in [0,1]$$

Golden Section Search: Example 2

Find the root of (Example 1 of Lecture 3 Revisited)

$$f(x) = x^3 + x - 1 = 0, x \in [0,1]$$

Exact solution $x^* = 0.682327803828019$

Bisection Method:

$$k = 14;$$

$$XC =$$

0.6823425

Golden Section:

$$k = 14;$$

$$x_gss =$$

0.6824858

- One-Dimensional Minimization
 - **➤** Golden Section Search
 - > Newton's Method
 - > Inaccurate Line Search
- **☐** Unconstrained Optimization
 - > Steepest Descent Method
 - > Newton's Method
 - Quasi-Newton Method
- ☐ Linear Programming
 - **✓** Geometry of Linear Programming
 - ✓ The Simplex Method

Newton's Method: Review

An Equation:
$$f(x) = 0$$

Newton's Method: $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
Taylor Expansion:

Taylor Expansion:

$$f(x) \approx f(x_i) + f'(x_i)(x - x_i) = 0$$

Newton's Method for Optimization

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Newton's Method for Optimization: Pseudo-code

Step 1. Given
$$x_0 \in \mathbb{R}$$
, $\varepsilon > 0$, $k := 0$;

Step 2. Caculate
$$f'(x_k), f''(x_k)$$
;

Step 3. If
$$|f'(x_k)| < \varepsilon$$
, stop;

Solve

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Step 4. k := k + 1, goto Step 2.

Newton's Method: Example 3

$$\min_{x \in \mathbb{R}} f(x) = 0.65 - \frac{0.75}{1 + x^2} - 0.65x \tan^{-1} \frac{1}{x}$$

$$f'(x) = \frac{1.5x}{\left(1+x^2\right)^2} + \frac{0.65x}{1+x^2} - 0.65 \tan^{-1} \frac{1}{x}$$

$$f''(x) = \frac{2.8 - 3.2x^2}{\left(1 + x^2\right)^3}$$

Use
$$x_0 = 0.1$$
, $\varepsilon = 0.01$

xList =

0.10000000000000 0.377240355518724 0.465119791648128 0.480408724516480

Quasi-Newton's Method for Optimization

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Finite difference formulas

Finite Difference Formulas: Review

Three-point centered-difference formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(c)$$

where x - h < c < x + h.

Three-point centered-difference formula for second derivative

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} - \frac{h^2}{12}f^{(iv)}(c)$$

for some c between x - h and x + h.

Quasi-Newton's Method for Optimization

$$\min_{x \in \mathbb{R}} f(x)$$

Newton's Method

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Finite difference formulas

$$x_{k+1} = x_k - \frac{\Delta x [f(x_k + \Delta x) - f(x_k - \Delta x)]}{2[f(x_k + \Delta x) - 2f(x_k) + f(x_k - \Delta x)]}$$

Quasi-Newton's Method: Example 4

$$\min_{x \in \mathbb{R}} f(x) = 0.65 - \frac{0.75}{1 + x^2} - 0.65x \tan^{-1} \frac{1}{x}$$

Newton's Method:

Use
$$x_0 = 0.1$$
, $\varepsilon = 0.01$

xList = 0.100000000000000 0.377240355518724 0.465119791648128 0.480408724516480

Quasi-Newton's Method:

Use
$$x_0 = 0.1$$
, $\varepsilon = 0.01$, $\Delta x = 0.01$

Quasi-Newton's Method: Example 5

Find the minimum of

$$f(x) = x^6 - 11x^3 + 17x^2 - 7x + 1$$

with
$$x_0 = 0.1$$
, $\Delta x = 0.01$.

xStar = 0.283716504125462

0.100000000000000

0.243452676259928

0.280842873920272

0.283699846068886

0.283716504125462

Golden Section Search

step	a	x_1	x_2	b
0	0.0000	0.3820	0.6180	1.0000
1	0.0000	0.2361	0.3820	0.6180
2	0.0000	0.1459	0.2361	0.3820
3	0.1459	0.2361	0.2918	0.3820
4	0.2361	0.2918	0.3262	0.3820
5	0.2361	0.2705	0.2918	0.3262
6	0.2705	0.2918	0.3050	0.3262
7	0.2705	0.2837	0.2918	0.3050
8	0.2705	0.2786	0.2837	0.2918
9	0.2786	0.2837	0.2868	0.2918
10	0.2786	0.2817	0.2837	0.2868
11	0.2817	0.2837	0.2849	0.2868
12	0.2817	0.2829	0.2837	0.2849
13	0.2829	0.2837	0.2841	0.2849
14	0.2829	0.2834	0.2837	0.2841
15	0.2834	0.2837	0.2838	0.2841

- One-Dimensional Minimization
 - **➤** Golden Section Search
 - > Newton's Method
 - > Inaccurate Line Search
- **☐** Unconstrained Optimization
 - > Steepest Descent Method
 - > Newton's Method
 - Quasi-Newton Method
- ☐ Linear Programming
 - **✓** Geometry of Linear Programming
 - ✓ The Simplex Method

Inaccurate Line Search: Motivation

$$\min_{\alpha \in \mathbb{R}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$
 where $\mathbf{x}_k \in \mathbb{R}^n$, $\mathbf{d}_k \in \mathbb{R}^n$, $f(\mathbf{x}_k) \in \mathbb{R}$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

Beginning at \mathbf{X}_0 , to generate a sequence of iterates

$$\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_{k-1}, \mathbf{X}_k, \cdots, \mathbf{X}^*$$
, such that

$$f(\mathbf{x}_0) > f(\mathbf{x}_1) > \dots > f(\mathbf{x}_k) > \dots > f(\mathbf{x}^*)$$

Inaccurate Line Search: Motivation

$$\min_{\alpha \in \mathbb{R}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

where $\mathbf{x}_k \in \mathbb{R}^n$, $\mathbf{d}_k \in \mathbb{R}^n$, $f(\mathbf{x}_k) \in \mathbb{R}$

$$k = 0, x_0$$

for $k = 1, 2, 3, ...$

- (1) determine d_k at x_k
- (2) calculate the step α_k from $\min_{\alpha \in \mathbb{D}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$
- $(3) \mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{\alpha}_k \mathbf{d}_k$
- (4) check the termination criterion

end

The exact line search is expensive!

Inaccurate Line Search

Define the function

$$\phi(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

The essential idea is that the rule should first guarantee that the selected α is not too large, and next it should not be too small.

$$\alpha = 0$$
: $\phi(0) = f(x_k), \ \phi'(0) = \nabla f(x_k)^T d_k < 0$
 $\alpha = 1$: $\phi(1) = f(x_k + d_k)$

Inaccurate Line Search: Armijo-Goldstein Rule

Define the function

$$\phi(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

Inaccurate Line Search: backtracking approach Backtracking Line Search

Step 1. Given
$$0 < \varepsilon < 0.5$$
, $0 < L < U < 1$, set $\alpha = 1$.

Step 2. Test

$$f(\mathbf{x}_k + \alpha \mathbf{d}_k) \le f(\mathbf{x}_k) + \varepsilon \alpha \nabla f(\mathbf{x}_k)^T \mathbf{d}_k$$

If it is satisfied, $\alpha_k = \alpha$ and $x_{k+1} = x_k + \alpha_k d_k$. otherwise, go to Step 3.

Step 3. Set $\alpha = w\alpha$, $w \in [L,U]$, go to Step 2.

Generally, $\varepsilon \in [10^{-4}, 0.2]$, w = 0.5, L = 0.15, U = 0.85.

Inaccurate Line Search: Quadratic interpolation

In Step 3 of Backtracking Line Search

$$\phi(\alpha) = f(x_k + \alpha d_k)$$

$$\alpha = 0: \ \phi(0) = f(x_k), \ \phi'(0) = \nabla f(x_k)^T d_k$$

$$\alpha = 1: \ \phi(1) = f(x_k + d_k)$$

$$\phi(\alpha) \ is \ approximated \ by$$

$$m(\alpha) = [\phi(1) - \phi(0) - \phi'(0)]\alpha^2 + \phi'(0)\alpha + \phi(0)$$

$$m'(\alpha) = 0$$

$$\hat{\alpha} = -\frac{\phi'(0)}{(1 - \phi(0))^2}$$

Inaccurate Line Search: Quadratic interpolation

Suppose that the initial guess α_0 is given, on $[0, \alpha_0]$

$$\phi_q(\alpha) = \left(\frac{\phi(\alpha_0) - \phi(0) - \alpha_0 \phi'(0)}{\alpha_0^2}\right) \alpha^2 + \phi'(0)\alpha + \phi(0)$$

satisfying the interpolation conditions

$$\phi_q(0) = \phi(0), \phi'_q(0) = \phi'(0), \text{ and } \phi_q(\alpha_0) = \phi(\alpha_0)$$

- One-Dimensional Minimization
 - **→** Golden Section Search
 - > Newton's Method
 - > Inaccurate Line Search
- Unconstrained Optimization
 - > Steepest Descent Method
 - > Newton's Method
 - **➤ Quasi-Newton Method**
- ☐ Linear Programming
 - **✓** Geometry of Linear Programming
 - ✓ The Simplex Method

Unconstrained Optimization

Steepest Descent Method

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

where $f(\mathbf{x}) \in \mathbb{R}$ has continuous first partial derivatives

The gradient $\nabla f(\mathbf{x})$ (or g) is defined as a n-dimensional *column* vector.

$$\nabla f = \begin{cases} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{cases}$$

Steepest Descent Method: Basic Idea

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

Suppose that f(x) is continuously differentiable near x_k and $g(x_k) \neq 0$.

From the Taylor expansion

$$f(x) = f(x_k) + (x - x_k)^T g_k + o(||x - x_k||)$$

Let $x-x_k=\alpha d_k$, the direction d_k satisfying $d_k^Tg_k<0$ is called a descent direction, such that

$$f(x) < f(x_k)$$

Steepest Descent Method: Basic Idea

From the Taylor expansion

$$f(x) = f(x_k) + (x - x_k)^T g_k + o(||x - x_k||)$$

Let $x - x_k = \alpha d_k$, the direction d_k satisfying $d_k^T g_k < 0$ is called a descent direction, such that

$$f(x) < f(x_k)$$

$$|d_k^T g_k| \le ||d_k|| ||g_k||$$

$$d_k^T g_k$$
 is the smallest $d_k = -g_k$

$$d_k =$$

the steepest descent direction

Steepest Descent Method: Pseudo-code

- Step 0. Let $0 < \varepsilon \ll 1$ be the termination tolerance. Given an initial point $x_0 \in \mathbb{R}^n$. Set k = 0.
- Step 1. If $||g_k|| \le \varepsilon$, stop; otherwise let $d_k = -g_k$.
- Step 2. Find the steplength factor α_k , such that

$$f(x_k + \alpha_k d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k);$$

- Step 3. Compute $x_{k+1} = x_k + \alpha_k d_k$.
- Step 4. k := k + 1, return to Step 1.

Steepest Descent Method: Example 6

Locate the minimum of the function

$$f(x, y) = 5x^4 + 4x^2y - xy^3 + 4y^4 - x$$

The gradient is

$$\nabla f = (20x^3 + 8xy - y^3 - 1, 4x^2 - 3xy^2 + 16y^3)^T$$

step	x	y	f(x, y)
0	1.000000000000000	-1.000000000000000	11.000000000000000
5	0.40314579518113	-0.27992088271756	-0.41964888830651
10	0.49196895085112	-0.36216404374206	-0.45750680523754
15	0.49228284433776	-0.36426635686172	-0.45752161934016
20	0.49230786417532	-0.36428539567277	-0.45752162263389
25	0.49230778262142	-0.36428556578033	-0.45752162263407

Steepest Descent Method: Example 6

Locate the minimum of the function

$$f(x, y) = 5x^4 + 4x^2y - xy^3 + 4y^4 - x$$

Newton's Method: Basic Idea

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

where $f(\mathbf{x}) \in \mathbb{R}$ has continuous second partial derivatives.

Approximate f by the truncated Taylor series:

$$f(\mathbf{x}) \simeq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_k)^T \mathbf{F}(\mathbf{x}_k) (\mathbf{x} - \mathbf{x}_k)$$

The right-hand side is minimized at

the Hessian matrix

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{F}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Newton's Method: Damping Parameter

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

where $f(\mathbf{x}) \in \mathbb{R}$ has continuous second partial derivatives.

The right-hand side is minimized at

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{F}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Step-Length Parameter α

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k [\mathbf{F}(\mathbf{x}_k)]^{-1} \mathbf{\nabla} f(\mathbf{x}_k)$$

Newton's Method: Pseudo-code

- Step 1. Initial step: given $x_0 \in \mathbb{R}^n, \epsilon > 0$, set k := 0.
- Step 2. Compute g_k . If $||g_k|| \le \epsilon$, stop and output x_k ; otherwise go to Step 3.
- Step 3. Solve $F_k d = -g_k$ for d_k .
- Step 4. Line search step: find α_k such that

$$f(x_k + \alpha_k d_k) = \min_{\alpha \ge 0} f(x_k + \alpha d_k).$$

Step 5. Set $x_{k+1} = x_k + \alpha_k d_k$, k := k + 1, go to Step 2.

Newton's Method: Example 7

Locate the minimum of the function

$$f(x, y) = 5x^4 + 4x^2y - xy^3 + 4y^4 - x$$

The gradient is

$$\nabla f = (20x^3 + 8xy - y^3 - 1, 4x^2 - 3xy^2 + 16y^3)^T$$

The Hessian is

$$H_f(x,y) = \begin{bmatrix} 60x^2 + 8y & 8x - 3y^2 \\ 8x - 3y^2 & -6xy + 48y^2 \end{bmatrix}$$

Newton's Method: Example 7

Locate the minimum of the function

$$f(x, y) = 5x^4 + 4x^2y - xy^3 + 4y^4 - x$$

step	x	y	f(x, y)	
0	1.000000000000000	1.000000000000000	11.000000000000000	
1	0.64429530201342	0.63758389261745	1.77001867827422	
2	0.43064034542956	0.39233298702231	0.10112006537534	
3	0.33877971433352	0.19857714160717	-0.17818585977225	
4	0.50009733696780	-0.44771929519763	-0.42964065053918	
5	0.49737350571430	-0.37972645728644	-0.45673719664708	
6	0.49255000651877	-0.36497753746514	-0.45752009007757	
7	0.49230831759106	-0.36428704569173	-0.45752162262701	
8	0.49230778672681	-0.36428555993321	-0.45752162263407	
9	0.49230778672434	-0.36428555992634	-0.45752162263407	
10	0.49230778672434	-0.36428555992634	-0.45752162263407	

Newton's Method: Example 7

Locate the minimum of the function

$$f(x, y) = 5x^4 + 4x^2y - xy^3 + 4y^4 - x$$

Quasi-Newton Method

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

f(x) is twice continuously differentiable

$$f(x) \approx f(x_{k+1}) + g_{k+1}^T(x - x_{k+1}) + \frac{1}{2}(x - x_{k+1})^T \underline{G_{k+1}}(x - x_{k+1})$$

the Hessian matrix

$$g(x) \approx g_{k+1} + G_{k+1}(x - x_{k+1})$$

$$x = x_k, s_k = x_{k+1} - x_k \text{ and } y_k = g_{k+1} - g_k$$

$$G_{k+1}^{-1}y_k \approx s_k$$

Inverse Hessian $G_{k+1}^{-1}y_k \approx s_k$ approximation?

$$H_{k+1}y_k = s_k$$

Quasi-Newton Method

Quasi-Newton Method: Pseudo-code

Given $x_0 \in R^n$ an initial point, $H_0 \in R^{n \times n}$ a symmetric and positive definite matrix, $\epsilon > 0$ a termination scalar, k := 0.

For
$$k = 0, 1, \dots,$$

- 1. If $||g_k|| \leq \epsilon$, stop.
- 2. Compute $d_k = -H_k g_k$.
- 3. Compute the step size α_k .
- 4. Set $s_k = \alpha_k d_k$, $x_{k+1} = x_k + s_k$, $y_k = g_{k+1} g_k$, and

$$H_{k+1} = H_k + \frac{s_k s_k^T}{s_k^T y_k} - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k}.$$

5. k := k + 1, go to Step 1.

Quasi-Newton Method: Example 8

Locate the minimum of the function

$$f(x, y) = 5x^4 + 4x^2y - xy^3 + 4y^4 - x$$

Optimization

- One-Dimensional Minimization
 - **➢** Golden Section Search
 - > Newton's Method
 - > Inaccurate Line Search
- **☐** Unconstrained Optimization
 - > Steepest Descent Method
 - > Newton's Method
 - Quasi-Newton Method
- ☐ Linear Programming
 - **✓** Geometry of Linear Programming
 - ✓ The Simplex Method

Standard Form

A linear program (LP) is an optimization problem in which the objective function is linear in the unknowns and the constraints consist of linear equalities and linear inequalities.

Standard Form: Compact Vector Notation

minimize $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geqslant \mathbf{0}$

where x is an n-dimensional column vector, \mathbf{c}^T is an n-dimensional row vector, \mathbf{A} is an $m \times n$ matrix, and \mathbf{b} is an m-dimensional column vector. The vector inequality $\mathbf{x} \geq 0$ means that each component of \mathbf{x} is nonnegative.

Linear Programming: Example 9

minimize $z = -x_1 - 2x_2$ subject to $-2x_1 + x_2 \le 2$ $-x_1 + 2x_2 \le 7$ $x_1 < 3$ $x_1, x_2 > 0.$ 3 -Feasible set

Linear Programming: Example 9

Graphical solution: $z = -x_1 - 2x_2$

Linear Programming: Example 9

In standard form

minimize
$$z = -x_1 - 2x_2$$

subject to $-2x_1 + x_2 + x_3 = 2$
 $-x_1 + 2x_2 + x_4 = 7$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$.

Linear Programming: Example 9

minimize
$$z = -x_1 - 2x_2$$

subject to $-2x_1 + x_2 + x_3 = 2$
 $-x_1 + 2x_2 + x_4 = 7$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$.

To find a basic feasible solution

$$x_B = (x_3, x_4, x_5)^T$$
 and $x_N = (x_1, x_2)^T$.
 $(x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5)^T = (0 \quad 0 \quad 2 \quad 7 \quad 3)^T$

Linear Programming: Example 9

For the basic feasible solution [Ite #0]:

$$x_B = (x_3, x_4, x_5)^T$$
 and $x_N = (x_1, x_2)^T$.
 $(x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5)^T = (0 \quad 0 \quad 2 \quad 7 \quad 3)^T$

the basic variables expressed in terms of the nonbasic variables:

$$x_3 = 2 + 2x_1 - x_2$$

 $x_4 = 7 + x_1 - 2x_2$
 $x_5 = 3 - x_1$.

Linear Programming: Example 9

The basic variables expressed in terms of the nonbasic variables:

$$x_3 = 2 + 2x_1 - x_2$$

 $x_4 = 7 + x_1 - 2x_2$
 $x_5 = 3 - x_1$.

To minimize the objective function

$$z = -x_1 - 2x_2$$

- to *increase* a nonbasic variable?

Linear Programming: Example 9

The basic variables expressed in terms of the nonbasic variables:

$$x_3 = 2 + 2x_1 - x_2$$

 $x_4 = 7 + x_1 - 2x_2$
 $x_5 = 3 - x_1$.

To minimize the objective function

$$z = -x_1 - 2x_2$$

-we choose to increase x_2 rather than x_1

Linear Programming: Example 9

The basic variables expressed in terms of the nonbasic variables:

$$x_3 = 2 + 2x_1 - x_2$$

 $x_4 = 7 + x_1 - 2x_2$
 $x_5 = 3 - x_1$.

$$x_3 = 0$$
 when $x_2 = 2$
 $x_4 = 0$ when $x_2 = \frac{7}{2}$

To minimize the objective function

$$z = -x_1 - 2x_2$$

-we choose to increase x_2 rather than x_1

 $-x_2$ can only be increased to the value $x_2 = 2$

Linear Programming: Example 9

The new basic feasible solution is [Ite #1]:

$$(x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5)^T = (0 \quad 2 \quad 0 \quad 3 \quad 3)^T$$

where
$$x_B = (x_2, x_4, x_5)^T$$
 and $x_N = (x_1, x_3)^T$.

The linear program has the new form:

minimize
$$z = -4 - 5x_1 + 2x_3$$

subject to
$$x_2 = 2 + 2x_1 - x_3$$

 $x_4 = 3 - 3x_1 + 2x_3$
 $x_5 = 3 - x_1$

-we choose to increase x_1 as $x_1 = 1$

Linear Programming: Example 9

The new basic feasible solution is [Ite #2]:

$$(x_1 x_2 x_3 x_4 x_5)^T = (14002)^T$$

where
$$x_B = (x_1 x_2 x_5)^T$$
, $x_N = (x_3 x_4)^T$

The linear program has the new form:

-we choose to increase x_3 as $x_3 = 3$

min
$$z = -9 - x_3 + x_4$$

$$s.t. \quad x_1 = 1 + \frac{2}{3}x_3 - \frac{1}{3}x_4$$

$$x_2 = 4 + \frac{1}{3}x_3 - \frac{2}{3}x_4$$

$$x_5 = 2 - \frac{2}{3}x_3 + \frac{1}{3}x_4$$

Linear Programming: Example 9

The new basic feasible solution is [Ite #3]:

$$(x_1 \ x_2 \ x_3 \ x_4 \ x_5)^T = (35300)^T$$
 optimal solution

where
$$x_B = (x_1 x_2 x_3)^T$$
, $x_N = (x_4 x_5)^T$

The linear program has the new form:

$$\min \quad z = -13 + x_4 + 2x_5$$
s.t. ...

Now, we cannot improve the objective!

The Simplex Method: Definition

Given the set of m simultaneous linear equations in n unknowns (m < n)

$$Ax = b$$

let B be any nonsingular $m \times m$ submatrix made up of columns of A.

Then, if all n-m components of x not associated with columns of B are set equal to zero, the solution to the resulting set of equations is said to be a basic solution to Ax = b with respect to the basis B. The components of x associated with columns of B are called basic variables.

The Simplex Method: Definition

A vector x satisfying

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} \geqslant \mathbf{0},$$

$$(**)$$

is said to be feasible for these constraints. A feasible solution to the constraints (**) that is also basic is said to be a basic feasible solution; if this solution is also a degenerate basic solution, it is called a degenerate basic feasible solution.

The Simplex Method: Procedure

Suppose we have a basic feasible solution

$$(\mathbf{x_B}, \mathbf{0}) = (y_{10}, y_{20}, \dots, y_{m0}, 0, 0, \dots, 0)$$

with a tableau having an identity matrix appearing in the first *m* columns

\mathbf{a}_1	\mathbf{a}_2	• • •	\mathbf{a}_{m}	$\mathbf{a}_{\mathrm{m+1}}$	• • •	\mathbf{a}_{n}	b
1	0		0	$y_{1, m+1}$	• • •	y_{1n}	y_{10}
0	1		_	$y_{2,m+1}$	• • •	y_{2n}	y_{20}
•	•		•	•		•	•
•				•		•	•
			•	•		•	•
0	0		1	$\mathcal{Y}_{m,m+1}$	• • •	y_{mn}	y_{m0}

The Simplex Method: Procedure

The value of the objective function corresponding to any solution x is

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$(x_B, 0)$$

$$z_0 = \mathbf{c}_{\mathbf{B}}^T \mathbf{x}_{\mathbf{B}}$$

where
$$\mathbf{c}_{\mathbf{B}}^{T} = [c_{1}, c_{2}, \dots, c_{m}].$$

The Simplex Method: Procedure

From the tableau

$$x_{1} = y_{10} - \sum_{j=m+1}^{n} y_{1j}x_{j}$$

$$x_{2} = y_{20} - \sum_{j=m+1}^{n} y_{2j}x_{j}$$

•

•

•

$$x_m = y_{m0} - \sum_{j=m+1}^n y_{mj} x_j.$$

Eliminate them from the objective function.

The Simplex Method: Procedure

$$z = \mathbf{c}^{T} \mathbf{x} = z_0 + (c_{m+1} - z_{m+1}) x_{m+1}$$

+ $(c_{m+2} - z_{m+2}) x_{m+2} + \dots + (c_n - z_n) x_n$

where

$$z_j = y_{1j}c_1 + y_{2j}c_2 + \dots + y_{mj}c_m, \quad m+1 \le j \le n$$

If $\mathbf{r}_j = \mathbf{c}_j - \mathbf{z}_j$ is negative for some j, $m+1 \le j \le n$, then increasing \mathbf{x}_j from zero to some positive value would decrease the total cost, and therefore would yield a better solution.

The Simplex Method: Procedure

Determination of Vector to Leave Basis
Suppose we have the basic feasible solution

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_m \mathbf{a}_m = \mathbf{b} \ \ x_i > 0, \ i = 1, 2, \dots, m.$$

The representation the vector \mathbf{a}_q , q > m

$$\mathbf{a}_q = y_{1q}\mathbf{a}_1 + y_{2q}\mathbf{a}_2 + \dots + y_{mq}\mathbf{a}_m$$

$$(x_1 - \varepsilon y_{1q}) \mathbf{a}_1 + (x_2 - \varepsilon y_{2q}) \mathbf{a}_2 + \dots + (x_m - \varepsilon y_{mq}) \mathbf{a}_m + \varepsilon \mathbf{a}_q = \mathbf{b}$$

Set ε equal to the value corresponding to the first place where one (or more) of the coefficients vanishes. $\varepsilon = \min_{i} \{x_i/y_{iq} : y_{iq} > 0\}$

The Simplex Method: Algorithm

- Step 0. Form the tableau corresponding to a basic feasible solution. The relative cost coefficients can be found by row reduction.
- Step 1. If each $r_j \ge 0$, stop; the current basic feasible solution is optimal.
- Step 2. Select q such that $r_q < 0$ to determine which nonbasic variable is to become basic.
- Step 3. Calculate the ratios y_{i0}/y_{iq} for $y_{iq} > 0$, i = 1, 2, ..., m. If no $y_{iq} > 0$, stop; the problem is unbounded. Otherwise, select p as the index i corresponding to the minimum ratio.
- Step 4. Pivot on the pqth element, updating all rows including the last. Return to Step 1.

Linear Programming: Example 10

max
$$7x_1 + 5x_2$$

s.t. $3x_1 + 2x_2 \le 90$
 $4x_1 + 6x_2 \ge 200$
 $7x_2 \le 210$
 $x_1, x_2 \ge 0$

 $xStar = (14, 24)^T$

MATLAB Built-in Functions

- MATLAB Built-in Functions for Optimization
 - ✓ Find minimum of single-variable function on fixed interval: *fminbnd*
 - ✓ Find minimum of unconstrained multivariable function using derivative-free method: *fminsearch*
 - ✓ Find minimum of unconstrained multivariable function: *fminunc*
 - ✓ Find minimum of constrained nonlinear multivariable function: *fmincon*

Optimization

- One-Dimensional Minimization
 - **➤** Golden Section Search
 - > Newton's Method
 - > Inaccurate Line Search
- Unconstrained Optimization
 - > Steepest Descent Method
 - > Newton's Method
 - > Quasi-Newton Method
- ☐ Linear Programming
 - **✓** Geometry of Linear Programming
 - ✓ The Simplex Method

Thank You!