WHAT IS CLAIMED IS:

1

1	1. A method for forming self-pinned abutted junction heads, comprising:
2	forming a free layer having a first end and a second end defining a width selected
3	to form a desired trackwidth; and
4	forming an extended self-pinned bias layer extending beyond the ends of the free

- 5 layer, the self-pinned bias layer extending beyond the free layer increasing the volume of 6 the extended self-pinned bias layer to provide greater thermal stability and stronger 7 pinning of the free layer.
- 1 2. The method of claim 1 further comprising forming a self-pinned layer on a 2 side of the free layer opposite the self-pinned bias layer, the self-pinned layer extending 3 beyond the ends of the free layer wherein the free layer is disposed at a central region of the self-pinned layer. 4
- 1 3. The method of claim 2, wherein the forming the self-pinned bias layer and 2 the self-pinned layer further comprises forming a self-pinned bias layer and a self-pinned 3 layer having increased stress anisotropy.
- 1 4. The method of claim 1 further comprising forming a spacer layer between 2 the free layer and the self-pinned bias layer.

- 5. The method of claim 1 further comprising forming a first shield layer 1 interleaving the self-pinned layer between the first shield layer and the free layer and 2 forming a second shield layer interleaving the self-pinned bias layer between the second 3 4 shield layer and the free layer. 1 6. The method of claim 5 further comprising forming a first seed layer 2 between the first shield layer and the self-pinned layer and forming a second seed layer 3 between the self-pinned bias layer and the second shield layer. 1 7. The method of claim 1, wherein the forming the extended self-pinned bias 2 layer further comprises forming the extended self-pinned bias layer with a large negative 3 magnetostriction.
- 1 8. The method of claim 7 further comprising forming a self-pinned layer on a 2 side of the free layer opposite the self-pinned bias layer, the self-pinned layer having a
- 3 large positive magnetostriction.

1	9. A self-pinned abutted junction magnetic read sensor, comprising:	
2	a free layer having a first end and a second end defining a width selected to form	
3	a desired trackwidth; and	
1	an extended self-pinned bias layer extending beyond the ends of the free layer, the	
5	self-pinned bias layer extending beyond the free layer increasing the volume of the	
3	extended self-pinned bias layer to provide greater thermal stability and stronger pinning	
7	of the free layer.	
1	10. The sensor of claim 9 further comprising a self-pinned layer formed on a	
2	side of the free layer opposite from the self-pinned bias layer, the self-pinned layer	
3	extending beyond the ends of the free layer wherein the free layer is disposed at a central	
4	region of the self-pinned layer.	
1	11. The sensor of claim 10, wherein the self-pinned bias layer and the self-	
2	pinned layer have increased stress anisotropy.	
1	12. The sensor of claim 9 further comprising a spacer layer formed between	
2	the free layer and the self-pinned bias layer.	
1	13. The sensor of claim 9 further comprising a first shield layer interleaving	
2	the self-pinned layer between the first shield layer and the free layer and a second shield	
3	layer interleaving the self-pinned bias layer between the second shield layer and the free	
4	layer.	

1	14. The sensor of claim 13 further comprising a first seed layer formed
2	between the first shield layer and the self-pinned layer and a second seed layer formed
3	between the self-pinned bias layer and the second shield layer.
1	15. The sensor of claim 9, wherein the extended self-pinned bias layer further
2	comprises a large negative magnetostriction.
1	16. The sensor of claim 15 further comprising a self-pinned layer formed on a
2	side of the free layer opposite the self-pinned bias layer, the self-pinned layer having a
3	large positive magnetostriction.
1	17. A magnetic storage system, comprising:
2	a moveable magnetic storage medium for storing data thereon;
3	an actuator positionable relative to the moveable magnetic storage medium; and
4	a magnetoresistive sensor, coupled to the actuator, for reading data from the
5	magnetic recording medium when position to a desired location by the actuator, wherein
6	the magnetoresistive sensor further comprises:
7	a free layer having a first end and a second end defining a width selected
8	to form a desired trackwidth; and
9	an extended self-pinned bias layer extending beyond the ends of the free
10	layer, the self-pinned bias layer extending beyond the free layer increasing the volume of
11	the extended self-pinned bias layer to provide greater thermal stability and stronger
12	pinning of the free layer.
	•

1 18. The magnetic storage system of claim 17 further comprising a self-pinned 2 layer formed on a side of the free layer opposite from the self-pinned bias layer, the self-3 pinned layer extending beyond the ends of the free layer wherein the free layer is 4 disposed at a central region of the self-pinned layer. 1 19. The magnetic storage system of claim 18, wherein the self-pinned bias 2 layer and the self-pinned layer have increased stress anisotropy. 1 20. The magnetic storage system of claim 17 further comprising a spacer layer 2 formed between the free layer and the self-pinned bias layer. 1 21. The magnetic storage system of claim 17 further comprising a first shield 2 layer interleaving the self-pinned layer between the first shield layer and the free layer 3 and a second shield layer interleaving the self-pinned bias layer between the second 4 shield layer and the free layer. 1 The magnetic storage system of claim 21 further comprising a first seed 22. 2 layer formed between the first shield layer and the self-pinned layer and a second seed 3 layer formed between the self-pinned bias layer and the second shield layer.

Page 28

pinned bias layer further comprises a large negative magnetostriction.

The magnetic storage system of claim 17, wherein the extended self-

23.

1

2

1	24. The magnetic storage system of claim 23 further comprising a self-pinned
2	layer formed on a side of the free layer opposite the self-pinned bias layer, the self-pinned
3	layer having a large positive magnetostriction.
1	25. A self-pinned abutted junction magnetic read sensor, comprising:
2	means for sensing having a first end and a second end defining a width selected to
3	form a desired trackwidth; and
4	means for biasing the means for sensing, the means for biasing the means for
5	sensing extending beyond the ends of the means for sensing, the extension of the means
6	for biasing the means for sensing increasing the volume of the means for biasing to
7	provide greater thermal stability and stronger pinning of the free layer.

1	26. A magnetic storage system, comprising:
2	a moveable magnetic storage means for storing data thereon;
3	an actuator positionable relative to the moveable magnetic storage medium; and
4	a magnetoresistive sensor, coupled to the actuator, for reading data from the
5	magnetic recording medium when position to a desired location by the actuator, wherein
6	the magnetoresistive sensor further comprises:
7	means for sensing having a first end and a second end defining a width
8	selected to form a desired trackwidth; and
9	means for biasing the means for sensing, the means for biasing the means
10	for sensing extending beyond the ends of the means for sensing, the extension of the
11	means for biasing the means for sensing increasing the volume of the means for biasing
12	to provide greater thermal stability and stronger pinning of the free layer.