





## Centro Universitario de Ciencias Exactas e Ingenierías

Asignatura: Seminario Inteligencia Artificial

Sección: D04

#### **Actividad 7**

Alumno: Luis Jaime Portillo Correa

Código: 217546155

Profesor: Javier Enrique Gómez Ávila

Fecha: 19/10/2023

## **Resultados Ejercicio 1**

Para este primer ejercicio utilicé la función de Griewank propuesta en el pdf, esto con la finalidad de ver cómo se comporta el algoritmo con funciones un poco más complejas y que involucren multiplicatorias u operaciones un poco más complejas. Los resultados fueron los siguientes, utilizando el algoritmo de colonia de abejas:

$$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$$

$$f(\mathbf{x}_g) = 0, \ \mathbf{x}_g = (0, \dots, 0)$$





# **Resultados Ejercicio 2**

Para este segundo ejercicio utilicé la función de Rastrigin propuesta en el pdf, esto con la finalidad de ver cómo se comporta el algoritmo con funciones un poco más complejas. Los resultados fueron los siguientes, utilizando el algoritmo de colonia de abejas artificial:

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i)]$$

$$f(\mathbf{x}_g) = 0, \ \mathbf{x}_g = (0, \cdots, 0)$$





# **Resultados Ejercicio 3**

Finalmente, para este tercer ejercicio utilicé la función de Sphere propuesta en el pdf, esto con la finalidad de ver cómo se comporta el algoritmo con funciones un poco más complejas. Los resultados fueron los siguientes, utilizando el algoritmo de PSO:

$$f(\mathbf{x}) = \sum_{i=1}^{d} x_i^2$$

$$f(\mathbf{x}_g) = 0, \ \mathbf{x}_g = (0, \cdots, 0)$$



