COMP3420: Advanced Databases and Data Mining

Classification and prediction: Bayesian classification and evaluating classifier accuracy

- A statistical classifier: performs *probabilistic prediction*, *i.e.*, predicts class membership probabilities
- Foundation: Based on Bayes' Theorem
- Performance: A simple Bayesian classifier, called naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Works incremental: Each training example (training record) can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data
- Standard: even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Lecture outline

- Bayesian classification
- Bayesian theorem
- Naïve Bayesian classifier
- Naïve Bayesian classifier example
- Zero-probability problem
- · Comments on naïve Bayesian classifier
- Bayesian belief networks
- Measuring classifier accuracy
- · Evaluating the accuracy of a classifier

Bayesian theorem: Basics

- Let X be a data sample ("evidence"): class label is unknown
- Let H be a hypothesis that X belongs to class C
- Classification is to determine P(H|X), the probability that the hypothesis holds given the observed data sample X
- \bullet P(H) (prior, or a priori probability): The initial probability
- For example, **X** will buy computer, regardless of age, income, ...
- P(X): Probability that sample data is observed
- P(X|H): The probability of observing the sample X, given that the hypothesis holds
 - For example, given that **X** will buy computer, the probability that **X** is of age 31..40, has medium income, etc.

Bayesian theorem

 Given training data X, the posteriori probability of a hypothesis H, P(H|X), follows the Bayes Theorem

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

- Predicts data sample \mathbf{X} belongs to class \mathbf{C}_{j} if probability $P(\mathbf{C}_{j}|\mathbf{X})$ is the highest among all the $P(\mathbf{C}_{k}|\mathbf{X})$ for all the classes k
- Practical difficulty: requires initial knowledge of many probabilities, and significant computational costs

Derivation of naïve Bayesian classifier

• A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

 $P(X|C_i) = \prod_{k=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$

- This greatly reduces the computation cost: Only counts the class distribution
- If attribute A_k is categorical, $P(x_k|C_l)$ is the number of tuples in C_i that have value x_k for A_k divided by $|C_{i,D}|$ (number of tuples of C_i in D)
- If A_k is a continuous-valued attribute, $P(x_k|C_i)$ is usually computed based on Gaussian (normal) distribution
 - Formulas 8.13 and 8.14 in text book, page 352

Towards naïve Bayesian classifier

- Let **D** be a training set of tuples and their associated class labels, and each tuple is represented by an n-dimensional attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- Suppose there are *m* classes: C₁, C₂, ..., C_m (often, m=2)
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i|\mathbf{X})$
- This can be derived from Bayes' theorem

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

• Since P(X) is constant for all classes, only needs to be maximised $P(C_i|X) = P(X|C_i)P(C_i)$

Naïve Bayesian classifier: Training data set

Classes:

C1: buys_computer = "yes"

C2: buys_computer = "no"

Data sample (test record):

X = (age <="30", income = "medium", student = "yes", credit_rating = "fair")

age	income	student	credit rating	buys compute
<=30			fair	
	high	no		no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian classifier: An example

- $P(C_i)$: P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute $P(X|C_i)$ for each class:

```
\begin{split} &P(age="<=30" \mid buys\_computer="yes")=2/9=0.222\\ &P(age="<=30" \mid buys\_computer="no")=3/5=0.6\\ &P(income="medium" \mid buys\_computer="yes")=4/9=0.444\\ &P(income="medium" \mid buys\_computer="no")=2/5=0.4\\ &P(student="yes" \mid buys\_computer="yes)=6/9=0.667\\ &P(student="yes" \mid buys\_computer="no")=1/5=0.2\\ &P(credit\_rating="fair" \mid buys\_computer="yes")=6/9=0.667\\ &P(credit\_rating="fair" \mid buys\_computer="no")=2/5=0.4\\ \end{split}
```

*X = (age <= "30", income = "medium", student = "yes", credit rating = "fair")

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044

P(X|buys\_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019

P(X|C_i)^*P(C_i): P(X|buys\_computer = "yes") * P(buys\_computer = "yes") = 0.028

P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.007
```

Therefore, the naïve Bayesian classifier predicts **X** belongs to class: "buys computer = yes"

Naïve Bayesian classifier: Some comments

- Advantages
 - · Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - · Assumption: class conditional independence, therefore loss of accuracy
 - · Practically, dependencies exist among variables
 - For example:
 - · Hospital patients with attributes age, family history, etc.
 - Symptoms: fever, cough etc.
 - Diseases: lung cancer, diabetes, etc.
 - · Dependencies among these cannot be modeled by naïve Bayesian classifier
- How to deal with these dependencies?
 - · Bayesian Belief Networks

Avoiding the Zero-probability problem

 Naïve Bayesian prediction requires each conditional probability to be non-zero, as otherwise the predicted probability will be zero:

 $P(X|C_i) = \prod_{k=1}^{n} P(x_k|C_i)$

- For example, suppose a data set with 1000 tuples
- income= "low" (0), income= "medium" (990), income = "high" (10)
- Use Laplacian correction (or Laplacian estimator)
- · Adding 1 to each case

Prob(income = "low") = 1/1003

Prob(income = "medium") = 991/1003

Prob(income = "high") = 11/1003

 The "corrected" probability estimates are close to their "uncorrected" counterparts

Bayesian belief networks

- Bayesian belief network allows a subset of the variables conditionally independent
- A graphical model of causal relationships
- Represents dependency among the variables
- · Gives a specification of joint probability distribution

- Nodes: random variables (attributes)
- · Links: dependency
- *X* and *Y* are the parents of *Z*, and *Y* is the parent of *P* (*P* is dependent on *Y*)
- No dependency between Z and P
- · Has no loops or cycles

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Measuring classifier accuracy

• Classification of new tuples/records results in a *confusion* matrix with positive and negative examples

Predicted class

		<i>C</i> ,	C_2	
True	C ₁	True positive	False negative	
class	C,	False positive	True negative	

- Given m classes, $C_{i,j}$ (an entry in a confusion matrix) indicates the number of tuples in class i that are labeled by the classifier as class j
- Accuracy of a classifier M, acc(M) is the percentage of test set tuples that are correctly classified by the model M
 - accuracy = (true_pos + true_neg) / (all_class_pos + all_class_neg)
- Error rate (misclassification rate) of M = 1 acc(M)

Training Bayesian networks

- Several scenarios:
 - Given both the network structure and all variables observable: learn only the CPTs
 - If network structure known, some hidden variables: gradient descent (greedy hill-climbing) method, analogous to neural network learning
 - If network structure unknown, all variables observable: search through the model space to reconstruct network topology
 - If unknown structure, all hidden variables: No good algorithms known for this purpose

Classifier accuracy measures

classes	buy_computer = yes	buy_computer = no	total	recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.42

- Accuracy in example here is: (6954+2588) / 10000 = 95.42%
- Ideally, non-diagonal entires should be zero or close to it
- Alternative accuracy measures:
 - sensitivity = true_pos / all_true_pos (true positive recognition rate) (also called recall), with all_true_pos = true_pos+false_neg
 - specificity = true_neg / all_true_neg (true negative recognition rate)
- precision = true_pos / (true_pos + false_pos) (also called positive predictor value)
- This model can also be used for cost-benefit analysis

Evaluating the accuracy of a classifier (1)

- · Holdout method
 - · Given data is randomly partitioned into two independent sets
 - Training set (for example, 2/3 of all records in data) for model construction
 - Test set (for example, 1/3 of all records in data) for accuracy estimation
 - · Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = average of the accuracies obtained
- Cross-validation (k-fold, where k=10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = number of tuples, for small sized data
 - Stratified cross-validation: folds are stratified so that class distribution in each fold is approximately the same as that in the initial data
- 'Partition' box in Rattle: training/testing/validation

What now... things to do

- No lab next week (last lab 6 in two weeks)
- Start reading chapter 8 in text book (Sections 8.1 to 8.3, and 8.5), as well as Section 9.1
- Continue working on assignment 2!
 Due Thursday 19 May 5 pm

Evaluating the accuracy of a classifier (2)

- · Bootstrap method
 - · Works well with small data sets
 - Samples the given training tuples (records) uniformly with replacement
 - Each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is *.632* bootstrap
 - Suppose we are given a data set of d tuples (records), which is sampled d times (with replacement) resulting in a training set of d samples
 - Records that did not make it into the training set end up forming the test set. About 63.2% of the original data will end up in the *bootstrap* (training set), and the remaining 36.8% will form the test set (since $(1-1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure *k* times, overall accuracy of the model:

$$acc(M) = \sum_{i=1}^{K} (0.632 \times acc(M_i)_{testset} + 0.368 \times acc(M_i)_{trainset})$$