Parameter estimation for text analysis - 笔记

冯柏淋

2018年10月23日

目录

1	引入	•	2	
2	基本问题与贝叶斯公式			
	2.1	两类基本问题	2	
	2.2	贝叶斯公式	2	
	2.3	记号	2	
3	极大似然估计 MLE 2			
	3.1	参数估计	2	
	3.2	预测	3	
	3.3	一个例子	3	
4	最大后验概率 MAP			
	4.1	参数估计	3	
	4.2	预测	4	
	4.3	一个例子	4	
5	贝叶斯估计			
	5.1	参数估计	4	
	5.2	预测	5	
	5.3	一个例子	5	

1 引入 2

1 引入

此笔记是本人在阅读论文 Gregor Heinrich: Parameter estimation for text analysis 的过程的一点笔记,大多是对于原文的翻译和摘录。另有一部分自己的理解,因而可能存在错误。

2 基本问题与贝叶斯公式

2.1 两类基本问题

- 估计 估计分布的参数以解释观测值
- 预测/回归 基于以往观测值, 预测新的观测值的概率

2.2 贝叶斯公式

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta) \cdot p(\theta)}{p(\mathcal{X})} \tag{1}$$

对以上公式中的每一部分,我们有如下名称:

$$posterior = \frac{likelihood \cdot prior}{evidence}$$
 (2)

2.3 记号

数据集:

$$\mathcal{X} \triangleq \{x\}_i^{|\mathcal{X}|}$$

3 极大似然估计 MLE

3.1 参数估计

极大似然函数:

$$L(\theta; \mathcal{X}) \triangleq p(\mathcal{X} \mid \theta) = \prod_{x \in \mathcal{X}} p(x \mid \theta)$$
 (3)

极大似然估计 (MLE):

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} \mathcal{L}(\theta; \mathcal{X}) = \arg \max_{\theta} \sum_{x \in \mathcal{X}} \log p(x \mid \theta)$$
 (4)

3.2 预测

对于新的观测值的概率估计过程如下: 1

$$p(\tilde{x} \mid \mathcal{X}) = \int_{\theta \in \Theta} p(\tilde{x} \mid \theta) \cdot p(\theta \mid \mathcal{X}) \, d\theta$$
 (5)

$$\approx \int_{\theta \in \Theta} p(\tilde{x} \mid \hat{\theta}_{\text{MLE}}) \cdot p(\theta \mid \mathcal{X}) \, d\theta \tag{6}$$

$$= p(\tilde{x} \mid \hat{\theta}_{\text{MLE}}). \tag{7}$$

3.3 一个例子

暂时略。

4 最大后验概率 MAP

4.1 参数估计

$$\hat{\theta}_{\text{MAP}} = \arg\max_{\theta} \, p(\theta \mid \mathcal{X}) \tag{8}$$

$$= \arg \max_{\theta} \frac{p(\mathcal{X} \mid \theta) \cdot p(\theta)}{p(\mathcal{X})} \tag{9}$$

$$= \arg \max_{\theta} \ p(\mathcal{X} \mid \theta) \cdot p(\theta) \tag{10}$$

$$= \arg \max_{\theta} \left\{ \mathcal{L}(\theta \mid \mathcal{X}) + \log p(\theta) \right\} \tag{11}$$

$$= \arg\max_{\theta} \left\{ \sum_{x \in \mathcal{X}} \log p(x \mid \theta) + \log p(\theta) \right\}$$
 (12)

MAP 相比于 MLE 而言,添加了关于先验分布的额外信息 $p(\theta)$ 。实践中,可以通过假定一些简单的先验分布 $p(\theta)$ 来防止过拟合。²

 $^{^1}$ 此处, $p(\tilde{x} \mid \hat{\theta}_{\mathrm{MLE}})$ 视为常数,并且 $\int_{\theta \in \Theta} p(\theta \mid \mathcal{X}) \, \mathrm{d}\theta = 1$

 $^{^2}$ Occam's razor 原理

5 贝叶斯估计 4

4.2 预测

$$p(\tilde{x} \mid \mathcal{X}) \approx \int_{\theta \in \Theta} p(\tilde{x} \mid \hat{\theta}_{MAP}) \cdot p(\theta \mid \mathcal{X}) d\theta$$
 (13)

$$= p(\tilde{x} \mid \hat{\theta}_{MAP}). \tag{14}$$

4.3 一个例子

暂时略。

5 贝叶斯估计

5.1 参数估计

贝叶斯估计是对 MAP 的一个拓展。MAP 对于参数只产生一个确定的估计值 $\hat{\theta}_{MAP}$,而贝叶斯估计则产生对于参数的一个分布。从而,贝叶斯分布则提供了关于参数的额外信息,比如期望和方差。

主要步骤为计算后验分布:

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta) \cdot p(\theta)}{p(\mathcal{X})}$$
 (15)

在前述的 MAP 方法中,只需要最大化此式,则无需求出分母 $p(\mathcal{X})$,而在此处则需要计算,且:

$$p(\mathcal{X}) = \int_{\theta \in \Theta} p(\mathcal{X}|\theta) \cdot p(\theta) \, d\theta \tag{16}$$

因为没最大化参数的过程,参数估计的过程也就不是一个具体的值,而是求 取参数的分布:

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta) \cdot p(\theta)}{p(\mathcal{X})}$$
(17)

$$= \frac{p(\mathcal{X} \mid \theta) \cdot p(\theta)}{\int_{\theta \in \Theta} p(\mathcal{X} \mid \theta) \cdot p(\theta) \, d\theta}$$
 (18)

5 贝叶斯估计 5

5.2 预测

$$p(\tilde{x} \mid \mathcal{X}) = \int_{\theta \in \Theta} p(\tilde{x} \mid \theta) \cdot p(\theta \mid \mathcal{X}) d\theta$$
 (19)

$$= \int_{\theta \in \Theta} p(\tilde{x} \mid \theta) \cdot \frac{p(\mathcal{X} \mid \theta) \cdot p(\theta)}{p(\mathcal{X})} d\theta.$$
 (20)

5.3 一个例子

暂时略。