#### Аннотация

Данный курс посвящён решению задач школьной планиметрии. Он будет охватывать такие темы как: счёт углов, ортоцентр треугольника, степень точки, движения плоскости, гомотетия и другие. Темы выходят за рамки школьного курса геометрии, поэтому этот курс поможет по-новому взглянуть на знакомые темы и задачи, а при решении новых, покажет "незнакомые" пути решения.

Курс подойдет для школьников, которые уже знакомы с понятие "вписанные углы" или "вписанные четырехугольники".

# Содержание

| 1          | Счет          | гуглов                          | 1  |
|------------|---------------|---------------------------------|----|
| 2          | Площади       |                                 | 2  |
| 3          |               | оцентр треугольника             | 2  |
|            | 3.1           | Окружность Эйлера               | 5  |
| 4          | Под           | обие треугольников              | 6  |
| 5          | Степень точки |                                 | 6  |
|            | 5.1           | Радикальная ось                 | 7  |
| 6          |               |                                 | 10 |
|            | 6.1           | Параллельный перенос            | 10 |
|            | 6.2           | Поворот                         | 10 |
|            | 6.3           | Симметрии                       | 10 |
| 7          | Гомо          | тетия                           | 10 |
| <b>3</b> a | дачи          |                                 | 11 |
|            | i             | Счёт углов                      | 11 |
|            | ii            | Площади                         | 12 |
|            | iii           | Свойства ортоцентра             | 12 |
|            | iv            | Подобие                         | 14 |
|            | V             | Степень точки и радикальная ось | 14 |
|            | vi            | Движения плоскости              | 15 |
|            | vii           | Гомотетия                       | 15 |

### 1 Счет углов

Под этим названием скрывается, не побоюсь этого слова, самый (!) используемый метод в решении задач. В каждой он встречается в том или ином виде. Поэтому, если вы хотите решать задачи, вам нужно его знать. В основном "считаются" углы, связанные с окружностями, но бывает и что-то другое.

Для примера, давайте дакажем, что высоты треугольника пересекаются в одной точке. Для этого вспомним «вписанные углы»

**Теорема 1.1.** Высоты треугольника конкурентны $^{1}$ .



Рис. 1: Высоты треугольника пересекаются в одной точке.

**Лемма 1.2.** Четырехугольник ABCD является вписанным, если  $\angle ABC$  равен смежному углу  $\angle ADC$ .



<sup>&</sup>lt;sup>1</sup>Пересекаются в одной точке.



Рис. 2: Угол между касательной и хордой.

**Утверждение 1.3.** Пусть АВ – хорда окружности, а С – точка касания касательной к окружности. Тогда угол между касательной и хордой равен вписанному углу, операющему на ту же дугу, что и хорда. То есть

$$\angle ACB = \frac{\widehat{AB}}{2}.$$

Доказательство. Пусть O – центр окружности. Тогда отрезки OB и равны как радиусы. При том, угол  $∠BOC = 2 \cdot ∠BAC$ . Радиус OC перпенидкулярен касательной в точке C. Значит угол между касательной и хордой равен:

$$90^{\circ} - \frac{180^{\circ} - 2 \cdot \angle BAC}{2} = \angle BAC.$$

# 2 Площади

## 3 Ортоцентр треугольника

Ортоцентр – это такая особенная точка: конструкции, в которых используются его **симметрии** относительно чего-либо, **замечательно** связанны с описанной окружностью, и наоборот!

**Определение 3.1.** Ортоцентр **(H)** – это точка пересечения высот треугольника.

Я всегда буду ортоцентр треугольника *ABC* обозначать **большой зеленой точ-кой** (просто я так решил), а центр описанной окружности как выколотую (так уже более принято).



**Теорема 3.2.** *Если отразить ортоцентр относительно стороны, то он попадет на описанную окружность.* 



**Теорема 3.3.** *Если ортоцентр отразить относительно середины стороны, то он попадет на описанную окружность.* 



**Следствие 3.3.1.** Точка из теоремы ?? диаметрально противоположна противолежащей стороне вершине.



Следствие 3.3.2. Расстояние от вершины треугольника до ортоцентра в 2 раза больше расстояния от центра описанной окружности до противолежащей стороны.



**Лемма 3.4** (Окружность Джонсона). (ABC) = (ABH), т.е. окружности, описанные вокруг  $\triangle ABC$  и  $\triangle ABH$  равны.



**Определение 3.5** (Изогональное сопряжение<sup>1</sup>). Точки P, Q называются изогонально сопряженными, если  $\angle PAB = \angle QAC$ ,  $\angle PBC = \angle QBA$ ,  $\angle PCB = \angle QCA$ .

**Теорема 3.6.** Ортоцентр и центр описанной окружности изогонально сопряжены.

**Определение 3.7.** Инцетр – это центр, вписанной в многоугольник окружности.

**Определение 3.8.** Ортотреугольник – это треугольник, вершины которого являются основаниями высот исходного треугольник.

**Лемма 3.9.** Ортоцентр является инцентром для ортотреугольника.



 $<sup>^{1}\</sup>mbox{Можно думать об изогональном сопряжении, как о симметрии относительно биссектрисы.$ 

Следствие 3.9.1. Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.



**Лемма 3.10.** Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.



**Лемма 3.11.** Если  $AA_1$  и  $BB_1$  – высоты треугольника ABC, то  $\triangle ABC$   $\sim \triangle A_1B_1C$ ,  $k=\cos \angle C$ .



### 3.1 Окружность Эйлера

Давайте соединим пару свойств, которые мы уже знаем (а именно по теореме 3.2 и теореме 3.3) и сделаем парочку незамысловатых размышлений. Получим окружность Эйлера или окружность девяти точек.

**Определение 3.12** (Окружность Эйлера). Окружностью Эйлера называют окружность, проходящую через основания высот, середины сторон и середины отрезков, соединяющих вершины с ортоцентром треугольника.

**Определение 3.13** (Прямая Эйлера). Точки O, O9, H, M лежат на одной прямой, называемой прямой Эйлера.

Теорема 3.14. Отрезки на прямой Эйлера хорошо относятся.

$$\overrightarrow{O_9M}: \overrightarrow{MO}: \overrightarrow{OH} = 1:2:(-3)$$



Рис. 3: Окружность Эйлера и прямая Эйлера.

# 4 Подобие треугольников

#### 5 Степень точки

**Определение 5.1** (Степень точки). Степень точки P, находящейся на расстоянии d от центра окружности  $\omega$  радиусом r, относительно этой же окружности:

$$pow(P, \omega) = d^2 - r^2.$$

**Теорема 5.2.** Если прямая  $\ell \ni P$  касается окружность в точке K, то

$$pow(P, \omega) = PK^2$$
.

**Теорема 5.3.** Если прямая  $\ell \ni P$  пересекает окружность  $\omega$  в точках A и B, тогда

$$pow(P,\omega) = \overrightarrow{PA} \cdot \overrightarrow{PB}.$$



**Следствие 5.3.1** (Теорема о касательной и секущей). *Если из точки P, проведена касательная PK к окружности \omega и прямая (\ell \ni P) пересекает окружность \omega в точках A и B, тогда* 

$$PK^2 = PA \cdot PB$$
.

**Теорема 5.4** (Главная теорема о степени точки). *Если через точку Р проходят две прямые, которые пересекают окружность*  $\omega$  в точках  $A_1, A_2$  и  $B_1, B_2$  соответственно, то

$$pow(P, \omega) = \overrightarrow{PA_1} \cdot \overrightarrow{PA_2} = \overrightarrow{PB_1} \cdot \overrightarrow{PB_2}.$$

### 5.1 Радикальная ось

**Теорема 5.5.** Геометрическое место точек (ГМТ), степени которых относительно двух неконцентрических окружностей равны, есть прямая, перпендикулярная линии центров этих окружностей.

**Определение 5.6** (Радикальная ось). Прямая, состоящая из точек, степени которых относительно двух данных окружностей равны, называется радикальной осью этих окружностей.



Рис. 4: Радикальная ось двух окружностей.

**Теорема 5.7** (Радикальный центр). *Радикальные оси трех окружностей либо конкурентны, либо параллельны.* 



Рис. 5: Радикальный центр трех окружностей.

**Теорема 5.8.**  $AC \perp BD^{1}$ , если

$$pow(B, \omega_a) - pow(B, \omega_c) = pow(D, \omega_a) - pow(D, \omega_c)$$



 $<sup>^1</sup>$ Типа крутая ??

- 6 Движения плоскости
- 6.1 Параллельный перенос
- 6.2 Поворот
- 6.3 Симметрии
- 7 Гомотетия

#### Задачи

#### і Счёт углов

- 1. (Лемма Фусса) Окружности  $\omega_1$  и  $\omega_2$  пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность  $\omega_1$  в точке  $A_1$  и окружность  $\omega_2$  в точке  $A_2$ . Точки  $B_1$  и  $B_2$  для прямой через точку B определяются аналогично. Докажите, что  $A_1B_1 \parallel A_2B_2$ .
- 2. В равнобедренном треугольник ABC (AB = AC) на меньшей дуге AB окружности (ABC) взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат по одну сторону относительно прямой BC. Окружность (BDE) пересекает прямую AB в точке F. Докажите, что  $EF \parallel BC$ .
- 3. В трапеции ABCD проведена окружность, проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности.
- 4. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть  $B_1$  и  $C_1$  проекции точки P на прямые AC и AB соответственно.
  - (a) Докажите, что точки B, C,  $B_1$ ,  $C_1$  концикличны.
  - (b) Докажите, что отрезок, соединяющий проекции точек  $B_1$  и  $C_1$ , на прямые AB и AC соответственно, параллелен стороне BC.
- 5. В остроугольном треугольнике ABC проведена высота AD. Пусть точки K и L проекции точки D на стороны AB и AC соответственно. Известно, что  $\angle BAC = 72^\circ$ ,  $\angle ABL = 30^\circ$ . Чему равен угол  $\angle DKC$ ?
- 6. (Окружность Тейлора) Докажите, что шесть точек в виде шести проекций трёх оснований высот треугольника, пересекающих каждую сторону, на две оставшиеся стороны лежат на одной окружности.
- 7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки  $C_1$ ,  $B_1$  и  $A_1$  соответственно. Докажите, что окружности  $(AB_1C_1)$ ,  $(A_1BC_1)$  и  $(A_1B_1C)$  пересекаются в одной точке.

- (b) (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке.
- 8. В треугольнике ABC точки  $B_1$  и  $C_1$  основания высот, проведенных из вершин B и C соответственно. Точка D проекция точки  $B_1$  на сторону AB, точка E пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком  $BB_1$ . Докажите, что  $EC_1 \perp BB_1$ .
- 9. На гипотенузе AC прямоугольного треугольника ABC во внешнюю сторону построен квадрат с центром в точке O. Докажите, что BO биссектриса угла ABC.
- 10. В треугольнике ABC угол A равен  $60^\circ$ . Биссектрисы треугольника  $BB_1$  и  $CC_1$  пересекаются в точке I. Докажите, что  $IB_1 = IC_1$ .
- 11. Прямая  $\ell$  касается описанной окружности треугольника ABC в точке B. Точки  $A_1$  и  $C_1$  проекции точки  $P \in \ell$  на прямые AB и BC соответственно. Докажите, что  $A_1C_1 \perp AC$ .
- 12. Окружности  $\omega_1$  и  $\omega_2$  пересекаются в точках A и B. Прямая  $\ell$  касается окружностей  $\omega_1$  и  $\omega_2$  в точках P и Q соответственно (точка  $B^1$  лежит внутри треугольника APQ). Прямая BP вторично пересекает  $\omega_2$  в точке T. Докажите, что AQ биссектриса угла  $\angle PAT$ .
- 13. Пусть  $AA_1$ ,  $BB_1$  и  $CC_1$  высоты остроугольного треугольника ABC. Докажите, что проекции точки  $A_1$  на прямые AB, AC,  $BB_1$ ,  $CC_1$  коллинеарны.
- 14. В треугольнике ABC точки D и E основания биссектрис из углов A и C соответственно, а точка I центр вписанной в треугольник ABC окружности. Точки P и Q пересечения прямой DE с (AIE) и (CID) соответственно, причем  $P \neq E, Q \neq D$ . Докажите, что  $\angle EIP = \angle DIQ$ .

#### іі Площади

#### ііі Свойства ортоцентра

15. В треугольнике ABC проведены высоты  $BB_1$  и  $CC_1$ , а также отмечена точка M – середина стороны BC. Точка H – его ортоцентр, а точка P –

 $<sup>^{1}</sup>$ Точка B называется точкой Шалтая треугольника APQ.

- пересечения луча (!) MH с окружностью (ABC). Докажите, что точки  $P,A,B_1,C_1$  концикличны.
- 16. Во вписанном четырехугольнике ABCD точка P точка пересечения диагоналей AC и BD. Точка O центр окружности (ABP). Докажите, что  $OP \perp CD$ .
- 17. (Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C лежат на полуокружности с диаметром AD. Точка M середина отрезка BC. Точка N такова, что точка M середина отрезка AN, докажите что  $BC \perp ND$ .
- 18. В треугольнике ABC проведена высота AD и отмечен центр описанной окружности O. Пусть точки E и F проекции точек B и C на прямую AO. N точка пересечения прямых AC и DE, а M точка пересечения прямых AB и DF. Докажите, что точки A, D, N, M концикличны.
- 19. (Baltic Way, 2019, problem 12) Let ABC be a triangle and H its orthocenter. Let D be a point lying on the segment AC and let E be the point on the line BC such that  $BC \perp DE$ . Prove that  $EH \perp BD$  if and only if BD bisects AE.
- 20. Докажите теорему об окружности девяти точек с помощью леммы о трезубце и внешней леммы о трезубце.
- (a) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек.
  - (b) Докажите, что прямые Эйлера треугольников *ABC*, *HBC*, *AHC* и *ABH* пересекаются в одной точке.
  - (c) Докажите, что центры описанных окружностей треугольников *ABC*, *HBC*, *AHC* и *ABH* образуют четырехугольник, симметричный четырехугольнику *HABC*.
- 22. Высоты BD и CE треугольника ABC пересекаются в точке H. Продолжения сторон AB и AC пересекают окружность BHC в точках P и Q. Докажите, что отрезок PQ в два раза больше отрезка DE.
- 23. (Заключительный этап ВСОШ, 2015, 9.7) Остроугольный треугольник ABC (AB < AC) вписан в окружность  $\omega$ . Пусть M его центроид $^1$ , а D основании высоты, опущенной из вершины A. Луч MD пересекает  $\omega$  в точке E. Докажите, что окружность (BDE) касается AB.

<sup>&</sup>lt;sup>1</sup>Точка пересечения медиан.

- 24. (Высшая проба, 2013, 9.5) Пусть  $AA_1$ ,  $BB_1$  и  $CC_1$  высоты остроугольного треугольника ABC. На стороне AB выбрана точка P так, что окружность  $(PA_1B_1)$  касается стороны AB. Найдите  $PC_1$ , если PA=30 и PB=10.
- 25. Треугольник высекает на своей окружности Эйлера три туги. Докажите, что одна из этих дуг равна сумме двух других.

#### iv Подобие

#### v Степень точки и радикальная ось

- 26. Докажите, что высоты треугольника конкурентны. 0\_0
- 27. Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник равносторонний.
- 28. Окружности  $\psi$  и  $\omega$  вписаны в вертикальный угол  $\angle nm$ ,  $\psi$  касается прямой n в точке N, а  $\omega$  касается прямой m в точке M. Докажите, что  $\psi$  и  $\omega$  высекают на NM равные отрезки.
- 29. (ММО, 2013, 11.3) Четырёхугольник ABCD такой, что AB = BC и AD = DC. Точки K, L и M середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведённый из точки A к прямой BC, пересекается с перпендикуляром, проведённым из точки C к прямой AD, в точке T. Докажите, что прямые  $KL \perp TM$ .
- 30. Точка D основание биссектрисы из точки A треугольника ABC. Окружность (ABD) повторно пересекает прямую AC в точке E, а окружность (ACD) повторно пересекает прямую BC в точке F. Докажите, что BF = CE.
- 31. Окружность  $\omega$  проходит через вершины A и D равнобокой трапеции ABCD и пересекает диагональ BD и боковую сторону CD в точках P и Q соответственно. Точки P' и Q' симметричны точкам P и Q относительно середин отрезков BD и CD соответственно. Докажите, что B, C, P' и Q' концикличны.
- 32. (ЈВМО Shortlist, 2022, G6) Пусть  $\Omega$  описанная окружность треугольника ABC. Взяты точки P и Q, так что P равноудалена от A и B, а Q равноудалена от A и C и углы PBC и QCB равны. Докажите, что касательная к  $\Omega$  в точке A, прямая PQ и BC пересекаются в одной точке.

- 33. Вневписанные окружности  $\omega_b$  и  $\omega_c$  треугольника ABC касаются сторон AC и AB соответственно в точках E и F. Прямая EF повторно пересекает окружности  $\omega_b$  и  $\omega_c$  в точках X и Y соответственно. Касательные в точках X и Y проведенные к окружностям  $\omega_b$  и  $\omega_c$  пересекают прямые AC и AB в точках K и L соответственно. Докажите, что середина отрезка KL равноудалена от точек E и F.
- 34. (а) Пусть  $C_1$  и  $B_1$  точки на сторонах AB и AC треугольника ABC соответственно. Докажите что, радикальная ось окружностей, построенных на  $BB_1$  и  $CC_1$  как на диаметре, проходит через ортоцентр треугольника ABC.
  - (b) (Ось Обера) Докажите, что четыре ортоцентра четырёх треугольников, образованных четырьмя попарно пересекающимися прямыми, никакие три из которых не проходят через одну точку<sup>1</sup>, коллинеарны.
  - (c) (Теорема Гаусса-Боденмиллера) Докажите, что прямая Гаусса<sup>2</sup> перпендикулярна оси Обера.
- 35. Чевианы AD, BE и CF треугольника ABC конкурентны. Прямая EF пересекает окружность (ABC) в точках P и Q. Докажите, что P, Q, D и середина отрезка BC концикличны.
- 36. В треугольнике ABC проведены высоты AD, BE, CF. Прямые DE, EF и DF пересекаются прямые AB, BC и AC. В точках  $C_1$ ,  $B_1$ ,  $A_1$  соответственно. Докажите, что точки  $A_1$ ,  $B_1$ ,  $C_1$  лежат на прямой  $^3$  перпендикулярной прямой  $^3$ йлера треугольник  $^3$

#### vi Движения плоскости

#### vii Гомотетия

 $<sup>^{1}</sup>$ Такие прямые образуют фигуру, называемую полным четырёхсторонником.

 $<sup>^2</sup>$ Прямой Гаусса полного четырёхсторонника называется прямая, проходящая через середины трех его диагоналей.

<sup>&</sup>lt;sup>3</sup>Такая прямая называется трилинейной полярой ортоцентра, или ортоцентрической осью, или центральной линией центра описанной окружности.