Finite Computation of Gröbner Bases for Ol-Modules

Michael Hanson Morrow

University of Kentucky

2021

Michael Morrow (UKY)

Classical motivation

- Classical motivation
- Preliminary notions
 - The category OI
 - Ol-algebras and Ol-modules
 - Direct sums and submodules
 - Orbits and generation of submodules

- Classical motivation
- Preliminary notions
 - The category OI
 - Ol-algebras and Ol-modules
 - Direct sums and submodules
 - Orbits and generation of submodules
- Gröbner bases
 - Free OI-modules
 - Monomials
 - Initial modules

- Classical motivation
- Preliminary notions
 - The category OI
 - OI-algebras and OI-modules
 - Direct sums and submodules
 - Orbits and generation of submodules
- Gröbner bases
 - Free OI-modules
 - Monomials
 - Initial modules
- Computation
 - Division Algorithm
 - OI-Factorization Lemma
 - OI-Buchberger's Criterion and Algorithm

• Let K be a field, and let $R = K[x_1, \dots, x_n]$.

- Let K be a field, and let $R = K[x_1, \ldots, x_n]$.
- ② Consider the free *R*-module R^s for some $s < \infty$.

- **1** Let K be a field, and let $R = K[x_1, \ldots, x_n]$.
- ② Consider the free *R*-module R^s for some $s < \infty$.
- **1** Let M be a finitely generated submodule of R^s .

- **1** Let K be a field, and let $R = K[x_1, \ldots, x_n]$.
- 2 Consider the free *R*-module R^s for some $s < \infty$.
- **3** Let M be a finitely generated submodule of R^s .
- Buchberger's Algorithm (see [Eis95, 15.9]) allows one to compute a finite Gröbner basis for M in finite time.

- **1** Let K be a field, and let $R = K[x_1, \ldots, x_n]$.
- ② Consider the free *R*-module R^s for some $s < \infty$.
- **1** Let M be a finitely generated submodule of R^s .
- Buchberger's Algorithm (see [Eis95, 15.9]) allows one to compute a finite Gröbner basis for M in finite time.

Question

Consider a sequence of modules M_0, M_1, M_2, \ldots over polynomial rings P_0, P_1, P_2, \ldots respectively. Can we find finitely many finite Gröbner bases $G \subseteq M_i$ such that any module M_j has a finite Gröbner basis expressable in terms of the G if $i \leq j$?

Michael Morrow (UKY) 2021

Preliminary Notions: Ol-Algebras

- Let $[n] = \{1, ..., n\}$ for $n \in \mathbb{N}$ and set $[0] = \emptyset$.
- Let OI denote the category whose objects are [n] for $n \in \mathbb{Z}_{\geq 0}$ and whose morphisms are strictly increasing maps.
- Let K be a field, and denote by K-Alg the category of commutative, associative, unital K-algebras whose morphisms are unital K-algebra homomorphisms.

Preliminary Notions: Ol-Algebras

- Let $[n] = \{1, ..., n\}$ for $n \in \mathbb{N}$ and set $[0] = \emptyset$.
- Let OI denote the category whose objects are [n] for $n \in \mathbb{Z}_{\geq 0}$ and whose morphisms are strictly increasing maps.
- Let *K* be a field, and denote by *K*-Alg the category of commutative, associative, unital *K*-algebras whose morphisms are unital *K*-algebra homomorphisms.

Definition

An OI-algebra over K is a covariant functor $\mathbf{A}: OI \longrightarrow K$ -Alg such that $\mathbf{A}(\varnothing) = K$.

Michael Morrow (UKY) 2021 4/34

Preliminary Notions: OI-Algebras

- For an object $[n] \in OI$ and any functor F out of OI, we write F_n instead of F([n]).
- We write Hom(m, n) instead of $Hom_{OI}([m], [n])$.

Preliminary Notions: Ol-Algebras

- For an object [n] ∈ OI and any functor F out of OI, we write F_n instead of F([n]).
- We write Hom(m, n) instead of $Hom_{OI}([m], [n])$.

Example

Fix $c \in \mathbb{N}$ and define an Ol-algebra **P** as follows:

• For m > 0 set

$$P_m = K[x_{i,j} : i \in [c], j \in [m]].$$

2 For $\varepsilon \in \text{Hom}(m, n)$ define

$$P(\varepsilon): P_m \longrightarrow P_n \text{ via } x_{i,j} \longmapsto x_{i,\varepsilon(j)}.$$

Preliminary Notions: Ol-Algebras

- For an object [n] ∈ OI and any functor F out of OI, we write F_n instead of F([n]).
- We write Hom(m, n) instead of $Hom_{OI}([m], [n])$.

Example

Fix $c \in \mathbb{N}$ and define an Ol-algebra **P** as follows:

• For m > 0 set

$$\mathbf{P}_m = K[x_{i,j} : i \in [c], j \in [m]].$$

2 For $\varepsilon \in \text{Hom}(m, n)$ define

$$P(\varepsilon): P_m \longrightarrow P_n \text{ via } x_{i,j} \longmapsto x_{i,\varepsilon(j)}.$$

Example

If c = 1, we can think of **P** as the sequence

$$K, K[x_1], K[x_1, x_2], K[x_1, x_2, x_3], \dots$$

■ Let *K*-Vect denote the category of vector spaces over *K* whose morphisms are *K*-linear maps.

■ Let *K*-Vect denote the category of vector spaces over *K* whose morphisms are *K*-linear maps.

Definition

An Ol-module over an Ol-algebra A is a covariant functor

M : OI \longrightarrow K-Vect such that:

- **1** Each \mathbf{M}_m is an \mathbf{A}_m -module.
- **②** For each $\varepsilon \in \text{Hom}(m, n)$ and any $a \in \mathbf{A}_m$, the diagram

$$\begin{array}{ccc} \mathbf{M}_{m} & \xrightarrow{\mathbf{M}(\varepsilon)} & \mathbf{M}_{n} \\ & & & \downarrow \cdot \mathbf{A}(\varepsilon)(a) \\ \mathbf{M}_{m} & \xrightarrow{\mathbf{M}(\varepsilon)} & \mathbf{M}_{n} \end{array}$$

commutes.

We often refer to **M** as an **A**-module.

Example

Let $d \ge 0$ be an integer, and define an Ol-module $\mathbf{F}^{\mathrm{Ol},d}$ over \mathbf{A} as follows:

• For $m \geq 0$, set

$$\mathbf{F}_m^{\mathsf{OI},d} = igoplus_{\pi \in \mathsf{Hom}(d,m)} \mathbf{A}_m \mathbf{e}_\pi \cong (\mathbf{A}_m)^{inom{m}{d}}.$$

2 For $\varepsilon \in \text{Hom}(m, n)$ define

$$\mathbf{F}^{\mathrm{OI},d}(arepsilon): \mathbf{F}^{\mathrm{OI},d}_m \longrightarrow \mathbf{F}^{\mathrm{OI},d}_n \quad \mathrm{via} \quad e_\pi \longmapsto e_{arepsilon\circ\pi}.$$

The module $\mathbf{F}^{OI,d}$ is an example of a *free* OI-module over \mathbf{A} .

Example

Let $d \ge 0$ be an integer, and define an Ol-module $\mathbf{F}^{\text{Ol},d}$ over \mathbf{A} as follows:

• For $m \ge 0$, set

$$\mathbf{F}_m^{\mathsf{OI},d} = igoplus_{\pi \in \mathsf{Hom}(d,m)} \mathbf{A}_m \mathbf{e}_\pi \cong (\mathbf{A}_m)^{inom{m}{d}}.$$

2 For $\varepsilon \in \text{Hom}(m, n)$ define

$$\mathbf{F}^{\mathrm{OI},d}(arepsilon): \mathbf{F}^{\mathrm{OI},d}_m \longrightarrow \mathbf{F}^{\mathrm{OI},d}_n \quad \mathrm{via} \quad e_\pi \longmapsto e_{arepsilon\circ\pi}.$$

The module $\mathbf{F}^{OI,d}$ is an example of a *free* OI-module over \mathbf{A} .

Example

If c = 1 and d = 2, we can think of $\mathbf{F}^{Ol,2}$ over \mathbf{P} as the sequence

$$0, 0, K[x_1, x_2], K[x_1, x_2, x_3]^3, K[x_1, x_2, x_3, x_4]^6, \dots$$

Michael Morrow (UKY) 2021

Definition

A subset of an OI-module **M** is a subset of $\coprod_{m>0} \mathbf{M}_m$, and therefore an element of **M** is an element of \mathbf{M}_m for some $m \geq 0$.

Definition

A *subset* of an Ol-module \mathbf{M} is a subset of $\coprod_{m\geq 0} \mathbf{M}_m$, and therefore an *element* of \mathbf{M} is an element of \mathbf{M}_m for some $m\geq 0$.

Definition

Let M and N be OI-modules over an OI-algebra A.

■ The *direct sum* $\mathbf{M} \oplus \mathbf{N}$ of \mathbf{M} and \mathbf{N} is the OI-module given by $(\mathbf{M} \oplus \mathbf{N})_m = \mathbf{M}_m \oplus \mathbf{N}_m$ for $m \geq 0$, and $(\mathbf{M} \oplus \mathbf{N})(\varepsilon) = \mathbf{M}(\varepsilon) \oplus \mathbf{N}(\varepsilon)$ whenever $\varepsilon \in \text{Hom}(m, n)$.

Michael Morrow (UKY)

Definition

A *subset* of an OI-module \mathbf{M} is a subset of $\coprod_{m\geq 0} \mathbf{M}_m$, and therefore an *element* of \mathbf{M} is an element of \mathbf{M}_m for some $m\geq 0$.

Definition

Let M and N be OI-modules over an OI-algebra A.

- The *direct sum* $\mathbf{M} \oplus \mathbf{N}$ of \mathbf{M} and \mathbf{N} is the Ol-module given by $(\mathbf{M} \oplus \mathbf{N})_m = \mathbf{M}_m \oplus \mathbf{N}_m$ for $m \ge 0$, and $(\mathbf{M} \oplus \mathbf{N})(\varepsilon) = \mathbf{M}(\varepsilon) \oplus \mathbf{N}(\varepsilon)$ whenever $\varepsilon \in \text{Hom}(m, n)$.
- We say M is a *submodule* of N if $M \subseteq N$ and N induces an A-module structure on M.

Michael Morrow (UKY)

Definition

A *subset* of an OI-module \mathbf{M} is a subset of $\coprod_{m\geq 0} \mathbf{M}_m$, and therefore an *element* of \mathbf{M} is an element of \mathbf{M}_m for some $m\geq 0$.

Definition

Let M and N be OI-modules over an OI-algebra A.

- The direct sum $\mathbf{M} \oplus \mathbf{N}$ of \mathbf{M} and \mathbf{N} is the OI-module given by $(\mathbf{M} \oplus \mathbf{N})_m = \mathbf{M}_m \oplus \mathbf{N}_m$ for $m \ge 0$, and $(\mathbf{M} \oplus \mathbf{N})(\varepsilon) = \mathbf{M}(\varepsilon) \oplus \mathbf{N}(\varepsilon)$ whenever $\varepsilon \in \text{Hom}(m, n)$.
- We say M is a *submodule* of N if $M \subseteq N$ and N induces an A-module structure on M.
- For $f \in \mathbf{M}_m$, we say f has width m, written w(f) = m. We call \mathbf{M}_m the width m component of \mathbf{M} .

Michael Morrow (UKY) 2021

Definition

Let $B \subseteq \mathbf{M}$. Denote by $\langle B \rangle_{\mathbf{M}}$ the smallest submodule of \mathbf{M} containing B. We call it the submodule *generated by* B. If B can be taken finite, then we say $\langle B \rangle_{\mathbf{M}}$ is *finitely generated*.

Definition

Let $B \subseteq \mathbf{M}$. Denote by $\langle B \rangle_{\mathbf{M}}$ the smallest submodule of \mathbf{M} containing B. We call it the submodule *generated by* B. If B can be taken finite, then we say $\langle B \rangle_{\mathbf{M}}$ is *finitely generated*.

Example

- $\mathbf{F}^{\text{OI},d}$ is finitely generated by a single element $e_{\text{id}_{[d]}}$.
- $\mathbf{F}^{\mathrm{OI},d}$ is not isomorphic to a direct sum of copies of \mathbf{A} if $d \geq 1$. This is because $\mathbf{A}_0 = K$ but $\mathbf{F}_0^{\mathrm{OI},d} = 0$ if $d \geq 1$. Thus, there are more free OI-modules over \mathbf{A} than just sums of copies of \mathbf{A} .

Definition

Let $B\subseteq \mathbf{M}$. Denote by $\langle B\rangle_{\mathbf{M}}$ the smallest submodule of \mathbf{M} containing B. We call it the submodule *generated by* B. If B can be taken finite, then we say $\langle B\rangle_{\mathbf{M}}$ is *finitely generated*.

Example

- $\mathbf{F}^{\text{OI},d}$ is finitely generated by a single element $e_{\text{id}_{[d]}}$.
- $\mathbf{F}^{\mathrm{OI},d}$ is not isomorphic to a direct sum of copies of \mathbf{A} if $d \geq 1$. This is because $\mathbf{A}_0 = K$ but $\mathbf{F}_0^{\mathrm{OI},d} = 0$ if $d \geq 1$. Thus, there are more free Ol-modules over \mathbf{A} than just sums of copies of \mathbf{A} .
- Let c=1 and consider $x_1, x_2 \in \mathbf{P}_2$. Then $I=\langle x_1x_2\rangle_{\mathbf{P}}$ is an ideal of \mathbf{P} with $I_n=\langle x_ix_j : 1 \leq i < j \leq n \rangle$.

Michael Morrow (UKY) 2021

Definition

Let $B \subseteq \mathbf{M}$ and let $m \ge 0$. The *m*-orbit of an element $b \in B$ is the set

$$\operatorname{Orb}(b, m) = {\mathbf{M}(\varepsilon)(b) : \varepsilon \in \operatorname{Hom}(w(b), m)}.$$

The *m-orbit* of *B* is then defined to be

$$Orb(B, m) = \bigcup_{b \in B} Orb(b, m).$$

Definition

Let $B \subseteq \mathbf{M}$ and let $m \ge 0$. The *m*-orbit of an element $b \in B$ is the set

$$\operatorname{Orb}(b,m) = \{ \mathbf{M}(\varepsilon)(b) : \varepsilon \in \operatorname{Hom}(w(b),m) \}.$$

The *m-orbit* of *B* is then defined to be

$$Orb(B, m) = \bigcup_{b \in B} Orb(b, m).$$

Remark

Let $B \subseteq \mathbf{M}$. Then $\langle B \rangle_{\mathbf{M}}$ can be realized as the submodule of \mathbf{M} given by

$$(\langle B \rangle_{\mathbf{M}})_m = \langle \mathsf{Orb}(B, m) \rangle$$

for $m \ge 0$, where the RHS is generated as an \mathbf{A}_m -submodule of \mathbf{M}_m .

■ OI is the category of ordered sets [n] with morphisms given by strictly increasing maps.

2021

- OI is the category of ordered sets [n] with morphisms given by strictly increasing maps.
- **P** is an Ol-algebra over *K* consisting of polynomial rings with increasingly many variables.

Michael Morrow (UKY) 2021 11/34

- OI is the category of ordered sets [n] with morphisms given by strictly increasing maps.
- **P** is an OI-algebra over *K* consisting of polynomial rings with increasingly many variables.
- $\mathbf{F}^{\text{OI},d}$ is a free OI-module over an OI-algebra \mathbf{A} that is finitely generated by a single element $e_{\text{id}_{[d]}}$.

- OI is the category of ordered sets [n] with morphisms given by strictly increasing maps.
- **P** is an OI-algebra over *K* consisting of polynomial rings with increasingly many variables.
- $\mathbf{F}^{\text{OI},d}$ is a free OI-module over an OI-algebra \mathbf{A} that is finitely generated by a single element $e_{\text{id}_{[d]}}$.
- If **M** is an OI-module and $B \subseteq \mathbf{M}$, then $\langle B \rangle_{\mathbf{M}}$ is the submodule of **M** generated by B.

- OI is the category of ordered sets [n] with morphisms given by strictly increasing maps.
- **P** is an OI-algebra over *K* consisting of polynomial rings with increasingly many variables.
- $\mathbf{F}^{\text{OI},d}$ is a free OI-module over an OI-algebra \mathbf{A} that is finitely generated by a single element $e_{\text{id}_{[d]}}$.
- If **M** is an OI-module and $B \subseteq \mathbf{M}$, then $\langle B \rangle_{\mathbf{M}}$ is the submodule of **M** generated by B.
- The *m*-orbit of an element $b \in B$ is the set of all $\mathbf{M}(\varepsilon)(b)$ where $\varepsilon \in \operatorname{Hom}(w(b), m)$.

- OI is the category of ordered sets [n] with morphisms given by strictly increasing maps.
- **P** is an Ol-algebra over *K* consisting of polynomial rings with increasingly many variables.
- $\mathbf{F}^{\text{Ol},d}$ is a free Ol-module over an Ol-algebra \mathbf{A} that is finitely generated by a single element $e_{\text{id}_{[d]}}$.
- If **M** is an OI-module and $B \subseteq \mathbf{M}$, then $\langle B \rangle_{\mathbf{M}}$ is the submodule of **M** generated by B.
- The *m*-orbit of an element $b \in B$ is the set of all $\mathbf{M}(\varepsilon)(b)$ where $\varepsilon \in \operatorname{Hom}(w(b), m)$.

We now turn our attention to Gröbner bases.

Gröbner Bases: Free Ol-Modules

Definition

In general, we define a *free* OI-module over **A** to be a direct sum $\bigoplus_{\lambda \in \Lambda} \mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.

Gröbner Bases: Free Ol-Modules

Definition

In general, we define a *free* Ol-module over **A** to be a direct sum $\bigoplus_{\lambda \in \Lambda} \mathbf{F}^{\text{Ol},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.

Remark

If $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\mathsf{OI},d_i}$ is a free OI-module, then

$$\mathbf{F}_m = \bigoplus_{\substack{1 \leq i \leq s \\ \pi \in \operatorname{Hom}(d_i, m)}} \mathbf{A}_m e_{\pi, i} \cong (\mathbf{A}_m)^{\sum_{i=1}^s \binom{m}{d_i}} \quad \text{for } m \geq 0.$$

Gröbner Bases: Free OI-Modules

Definition

In general, we define a *free* OI-module over **A** to be a direct sum $\bigoplus_{\lambda \in \Lambda} \mathbf{F}^{\mathrm{OI}, d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.

Remark

If $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{OI},d_i}$ is a free OI-module, then

$$\mathbf{F}_m = igoplus_{\substack{1 \leq i \leq s \\ \pi \in \operatorname{Hom}(d_i, m)}} \mathbf{A}_m e_{\pi, i} \cong (\mathbf{A}_m)^{\sum_{i=1}^s \binom{m}{d_i}} \quad \text{for } m \geq 0.$$

■ **F** is generated by the $e_{id_{[d_i]},i}$, and we call these elements the *basis* elements of **F**.

Gröbner Bases: Free Ol-Modules

Definition

In general, we define a *free* OI-module over **A** to be a direct sum $\bigoplus_{\lambda \in \Lambda} \mathbf{F}^{\mathrm{OI}, d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.

Remark

If $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\mathsf{OI},d_i}$ is a free OI-module, then

$$\mathbf{F}_m = igoplus_{\substack{1 \leq i \leq s \\ \pi \in \operatorname{Hom}(d_i, m)}} \mathbf{A}_m e_{\pi, i} \cong (\mathbf{A}_m)^{\sum_{i=1}^s \binom{m}{d_i}} \quad \text{for } m \geq 0.$$

- **F** is generated by the $e_{id_{[d_i]},i}$, and we call these elements the *basis* elements of **F**.
- The $e_{\pi,i} \in \mathbf{F}_m$ are called the *local basis elements* of \mathbf{F}_m .

Gröbner Bases: Free Ol-Modules

Definition

In general, we define a *free* OI-module over **A** to be a direct sum $\bigoplus_{\lambda \in \Lambda} \mathbf{F}^{\mathrm{OI}, d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.

Remark

If $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\mathsf{OI},d_i}$ is a free OI-module, then

$$\mathbf{F}_m = igoplus_{\substack{1 \leq i \leq s \\ \pi \in \operatorname{Hom}(d_i, m)}} \mathbf{A}_m e_{\pi, i} \cong (\mathbf{A}_m)^{\sum_{i=1}^s \binom{m}{d_i}} \quad \text{for } m \geq 0.$$

- **F** is generated by the $e_{id_{[d_i]},i}$, and we call these elements the *basis* elements of **F**.
- The $e_{\pi,i} \in \mathbf{F}_m$ are called the *local basis elements* of \mathbf{F}_m .
- The second index in $e_{\pi,i}$ is for distinguishing which direct summand the local basis elements come from (we may have $d_i = d_j$ for some $i \neq j$).

■ From now on, we consider finitely generated free OI-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{OI},d_i}$ over \mathbf{P} .

Definition

A monomial in **F** is an element of the form

$$x^u e_{\pi,i} \in \mathbf{F}_m$$

where $\pi \in \text{Hom}(d_i, m)$ and x^u is a monomial in \mathbf{P}_m . Elements of \mathbf{F} can be expressed as K-linear combinations of monomials.

■ From now on, we consider finitely generated free OI-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{OI,d_i}$ over \mathbf{P} .

Definition

A monomial in **F** is an element of the form

$$x^u e_{\pi,i} \in \mathbf{F}_m$$

where $\pi \in \text{Hom}(d_i, m)$ and x^u is a monomial in \mathbf{P}_m . Elements of \mathbf{F} can be expressed as K-linear combinations of monomials.

Definition

Let $\mu, \nu \in \mathbf{F}$ be monomials. We say ν is Ol-*divisible* by μ if ν is divisible by an element of $\mathrm{Orb}(\mu, w(\nu))$.

Michael Morrow (UKY) 2021

Definition

A monomial order on **F** is a total order < on the monomials of **F** such that if μ and ν are monomials in **F**_m with $\mu < \nu$, then:

- $\ \, \textbf{0} \ \, \mu < \mathbf{x}^{\mathbf{p}}\mu < \mathbf{x}^{\mathbf{p}}\nu \,\, \text{for any monomial} \,\, \mathbf{1} \neq \mathbf{x}^{\mathbf{p}} \in \mathbf{P}_{\mathit{m}}; \,\, \text{and}$
- $\mathbf{Q} \quad \mu < \mathbf{F}(\varepsilon)(\mu) < \mathbf{F}(\varepsilon)(\nu) \text{ whenever } \varepsilon \in \operatorname{Hom}(m,n) \text{ and } m < n.$

Definition

A monomial order on **F** is a total order < on the monomials of **F** such that if μ and ν are monomials in **F**_m with $\mu < \nu$, then:

- $\ \, \textbf{0} \ \, \mu < \mathbf{x}^{\mathbf{p}}\mu < \mathbf{x}^{\mathbf{p}}\nu \,\, \text{for any monomial} \,\, \mathbf{1} \neq \mathbf{x}^{\mathbf{p}} \in \mathbf{P}_{\mathit{m}}; \,\, \text{and}$
- $2 \mu < \mathbf{F}(\varepsilon)(\mu) < \mathbf{F}(\varepsilon)(\nu) \text{ whenever } \varepsilon \in \mathrm{Hom}(m,n) \text{ and } m < n.$

Example (Lexicographic Order)

Order the monomials in each \mathbf{P}_m lexicographically with $x_{i',j'} < x_{i,j}$ if either j' < j or j' = j and i' < i. Define $e_{\rho,j} < e_{\pi,i}$ if i < j. For a fixed i, identify a monomial $e_{\pi,i} \in \mathbf{F}_m^{\mathrm{Ol},d_i}$ with a vector $(m,\pi(1),\ldots,\pi(d_i)) \in \mathbb{N}^{d_i+1}$ and order such monomials using the lexicographic order on \mathbb{N}^{d_i+1} . Finally, for $x^a e_{\pi,i}$ and $x^b e_{\rho,j}$ in \mathbf{F} , define $x^b e_{\rho,j} < x^a e_{\pi,i}$ if $e_{\rho,j} < e_{\pi,i}$ or $e_{\pi,i} = e_{\rho,j}$ and $x^b < x^a$ in \mathbf{P} .

Michael Morrow (UKY) 2021 14/34

■ It turns out that any monomial order on **F** is a well-order (see [Nag21, 5.3b] and [NR19, 6.5]).

■ It turns out that any monomial order on **F** is a well-order (see [Nag21, 5.3b] and [NR19, 6.5]).

Definition

Fix a monomial order < on \mathbf{F} , and let $f = \sum c_{\mu}\mu \in \mathbf{F}_m$ for some $m \in \mathbb{N}_0$, some monomials $\mu \in \mathbf{F}_m$ and some coefficients $c_{\mu} \in \mathcal{K}$. If $f \neq 0$:

- Define its *leading monomial* Im(f) to be the largest monomial μ that has a nonzero coefficient c_{μ} .
- ② We call c_{μ} the leading coefficient of f, denoted lc(f).
- **3** Define the *leading term* of f to be lt(f) = lc(f)lm(f).

For a subset $E \subseteq \mathbf{F}$, write Im(E) for the set of all leading monomials of elements of E.

Michael Morrow (UKY)

■ It turns out that any monomial order on **F** is a well-order (see [Nag21, 5.3b] and [NR19, 6.5]).

Definition

Fix a monomial order < on \mathbf{F} , and let $f = \sum c_{\mu}\mu \in \mathbf{F}_m$ for some $m \in \mathbb{N}_0$, some monomials $\mu \in \mathbf{F}_m$ and some coefficients $c_{\mu} \in \mathcal{K}$. If $f \neq 0$:

- Define its *leading monomial* Im(f) to be the largest monomial μ that has a nonzero coefficient c_{μ} .
- ② We call c_{μ} the leading coefficient of f, denoted lc(f).
- **3** Define the *leading term* of f to be lt(f) = lc(f)lm(f).

For a subset $E \subseteq \mathbf{F}$, write Im(E) for the set of all leading monomials of elements of E.

■ The properties of a monomial order allow one to deduce that $\mathbf{F}(\varepsilon)(\operatorname{Im}(f)) = \operatorname{Im}(\mathbf{F}(\varepsilon)(f))$ for any $f \in \mathbf{F}_m$ and any $\varepsilon \in \operatorname{Hom}(m,n)$ with $m \le n$.

Gröbner Bases: Initial Modules

Definition

Let < be a monomial order on \mathbf{F} . For any submodule \mathbf{M} of \mathbf{F} , the *initial module* of \mathbf{M} is

$$in(\mathbf{M}) = \langle Im(\mathbf{M}) \rangle_{\mathbf{F}}.$$

A subset $B \subseteq \mathbf{M}$ is called a *Gröbner basis* of \mathbf{M} (w.r.t. <) if

$$in(\mathbf{M}) = \langle Im(B) \rangle_{\mathbf{F}}.$$

Gröbner Bases: Initial Modules

Definition

Let < be a monomial order on \mathbf{F} . For any submodule \mathbf{M} of \mathbf{F} , the *initial module* of \mathbf{M} is

$$in(\mathbf{M}) = \langle Im(\mathbf{M}) \rangle_{\mathbf{F}}.$$

A subset $B \subseteq \mathbf{M}$ is called a *Gröbner basis* of \mathbf{M} (w.r.t. <) if

$$in(\mathbf{M}) = \langle Im(B) \rangle_{\mathbf{F}}.$$

Remark

One can simply take $B = \mathbf{M}$, but the more interesting cases are when B is finite.

■ Free OI-modules are sums of $\mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.

- Free OI-modules are sums of $\mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.
- We consider finitely generated free OI-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{OI},d_i}$ over \mathbf{P} .

Michael Morrow (UKY) 2021 17/34

- Free OI-modules are sums of $\mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.
- We consider finitely generated free Ol-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{Ol},d_i}$ over \mathbf{P} .
- Monomials of **F** are elements of the form $x^u e_{\pi,i}$ where x^u is a monomial in **P**.

2021

- Free OI-modules are sums of $\mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.
- We consider finitely generated free OI-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{OI},d_i}$ over \mathbf{P} .
- Monomials of **F** are elements of the form $x^u e_{\pi,i}$ where x^u is a monomial in **P**.
- Monomial orders are total orders that respect multiplication and are preserved by $\mathbf{F}(\varepsilon)$ whenever $\varepsilon \in \operatorname{Hom}(m,n)$.

- Free OI-modules are sums of $\mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.
- We consider finitely generated free Ol-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{Ol},d_i}$ over \mathbf{P} .
- Monomials of **F** are elements of the form $x^u e_{\pi,i}$ where x^u is a monomial in **P**.
- Monomial orders are total orders that respect multiplication and are preserved by $\mathbf{F}(\varepsilon)$ whenever $\varepsilon \in \operatorname{Hom}(m, n)$.
- If **M** is a submodule of **F**, then a subset $B \subseteq \mathbf{M}$ is a Gröbner basis of **M** (with respect to some monomial order) if $\operatorname{in}(\mathbf{M}) = \langle \operatorname{Im}(B) \rangle_{\mathbf{F}}$.

- Free OI-modules are sums of $\mathbf{F}^{\text{OI},d_{\lambda}}$ for integers $d_{\lambda} \geq 0$.
- We consider finitely generated free OI-modules $\mathbf{F} = \bigoplus_{i=1}^{s} \mathbf{F}^{\text{OI},d_i}$ over \mathbf{P} .
- Monomials of **F** are elements of the form $x^u e_{\pi,i}$ where x^u is a monomial in **P**.
- Monomial orders are total orders that respect multiplication and are preserved by $\mathbf{F}(\varepsilon)$ whenever $\varepsilon \in \operatorname{Hom}(m, n)$.
- If **M** is a submodule of **F**, then a subset $B \subseteq \mathbf{M}$ is a Gröbner basis of **M** (with respect to some monomial order) if $\operatorname{in}(\mathbf{M}) = \langle \operatorname{Im}(B) \rangle_{\mathbf{F}}$.

We're now ready to look at computation of Gröbner bases.

Michael Morrow (UKY) 2021

• Our main tool for doing computation is the division algorithm.

Definition

Let $B \subseteq \mathbf{F}$ and pick $f \in \mathbf{F}_m$. Suppose $f = \sum a_i f_i + r$ for some $a_i \in \mathbf{P}_m$, some $f_i \in \mathrm{Orb}(B, m)$ and some $r \in \mathbf{F}_m$ such that:

- either r = 0 or Im(r) is not OI-divisible by any element of Im(B);
- ② lm(r) < lm(f) whenever $r \neq f$ and $f, r \neq 0$; and

Then r is called a remainder of f modulo B.

Our main tool for doing computation is the division algorithm.

Definition

Let $B \subseteq \mathbf{F}$ and pick $f \in \mathbf{F}_m$. Suppose $f = \sum a_i f_i + r$ for some $a_i \in \mathbf{P}_m$, some $f_i \in \mathrm{Orb}(B, m)$ and some $r \in \mathbf{F}_m$ such that:

- either r = 0 or Im(r) is not OI-divisible by any element of Im(B);
- ② Im(r) < Im(f) whenever $r \neq f$ and $f, r \neq 0$; and

Then r is called a remainder of f modulo B.

Remark

If f has a remainder of zero modulo B, then $f \in \langle B \rangle_{\mathbf{F}}$.

• Our main tool for doing computation is the division algorithm.

Definition

Let $B \subseteq \mathbf{F}$ and pick $f \in \mathbf{F}_m$. Suppose $f = \sum a_i f_i + r$ for some $a_i \in \mathbf{P}_m$, some $f_i \in \mathrm{Orb}(B, m)$ and some $r \in \mathbf{F}_m$ such that:

- either r = 0 or Im(r) is not OI-divisible by any element of Im(B);
- ② Im(r) < Im(f) whenever $r \neq f$ and $f, r \neq 0$; and

Then r is called a remainder of f modulo B.

Remark

If f has a remainder of zero modulo B, then $f \in \langle B \rangle_{\mathbf{F}}$.

Algorithm (Division Algorithm)

A remainder of $f \in \mathbf{F}_m$ modulo $B \subseteq \mathbf{F}$ can be computed in finite time.

Michael Morrow (UKY) 2021

Example

Let c = 1, let $\mathbf{F} = \mathbf{F}^{\text{OI},1}$, and let $B = \{x_1^2 e_{\text{id}_{[1]}}, x_2^2 e_{\rho} + x_1 x_2 e_{\rho}\}$ where $\rho : [1] \longrightarrow [2]$ is given by $\rho(1) = 2$.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\text{OI},1}$, and let $B=\{x_1^2e_{\text{id}_{[1]}},x_2^2e_{\rho}+x_1x_2e_{\rho}\}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

■ Let $b_1 = x_1^2 e_{id_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{Ol},1}$, and let $B=\{x_1^2e_{\mathrm{id}_{[1]}},x_2^2e_{\rho}+x_1x_2e_{\rho}\}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- Let $b_1 = x_1^2 e_{id_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- lacksquare Fix the lex order < on lacksquare. Then $\mathrm{Im}(b_1)=x_1^2e_{\mathrm{id}_{[1]}}$ and $\mathrm{Im}(b_2)=x_2^2e_{
 ho}$.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{Ol},1}$, and let $B=\{x_1^2e_{\mathrm{id}_{[1]}},x_2^2e_{\rho}+x_1x_2e_{\rho}\}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- Let $b_1 = x_1^2 e_{\mathsf{id}_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- lacksquare Fix the lex order < on lacksquare. Then $\mathrm{Im}(b_1)=x_1^2e_{\mathrm{id}_{[1]}}$ and $\mathrm{Im}(b_2)=x_2^2e_{
 ho}$.
- We wish to compute a remainder of $f = x_1 x_2^2 e_\rho + x_2 e_\pi$ modulo B where $\pi : [1] \longrightarrow [2]$ is given by $\pi(1) = 1$.

Michael Morrow (UKY) 2021 19/34

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{Ol},1}$, and let $B=\{x_1^2e_{\mathrm{id}_{[1]}},x_2^2e_{\rho}+x_1x_2e_{\rho}\}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- Let $b_1 = x_1^2 e_{id_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- Fix the lex order < on **F**. Then $\operatorname{Im}(b_1) = x_1^2 e_{\operatorname{id}_{[1]}}$ and $\operatorname{Im}(b_2) = x_2^2 e_{\rho}$.
- We wish to compute a remainder of $f = x_1 x_2^2 e_\rho + x_2 e_\pi$ modulo B where $\pi : [1] \longrightarrow [2]$ is given by $\pi(1) = 1$.
- We have $Im(f) = x_1 x_2^2 e_{\rho} = x_1 F(\rho)(Im(b_1))$ so we define $r = f x_1 F(\rho)(b_1) = x_2 e_{\pi}$.

Michael Morrow (UKY) 2021 19/34

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{OI},1}$, and let $B=\{x_1^2e_{\mathrm{id}_{[1]}},x_2^2e_{\rho}+x_1x_2e_{\rho}\}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- Let $b_1 = x_1^2 e_{id_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- lacksquare Fix the lex order < on lacksquare. Then $\mathrm{Im}(b_1)=x_1^2e_{\mathrm{id}_{[1]}}$ and $\mathrm{Im}(b_2)=x_2^2e_{
 ho}$.
- We wish to compute a remainder of $f = x_1 x_2^2 e_\rho + x_2 e_\pi$ modulo B where $\pi : [1] \longrightarrow [2]$ is given by $\pi(1) = 1$.
- We have $Im(f) = x_1 x_2^2 e_{\rho} = x_1 F(\rho)(Im(b_1))$ so we define $r = f x_1 F(\rho)(b_1) = x_2 e_{\pi}$.
- Since $Im(r) = x_2 e_{\pi}$ is not OI-divisible by either $Im(b_1)$ or $Im(b_2)$, we are done, and r is a remainder of f modulo B.

Michael Morrow (UKY) 2021

Example (Continued)

■ Since $\text{Im}(f) = x_1 x_2^2 e_\rho = x_1 \text{Im}(b_2)$, we could have also defined $r = f - x_1 b_2 = -x_1^2 x_2 e_\rho + x_2 e_\pi$.

Michael Morrow (UKY) 2021 20 / 34

Example (Continued)

- Since $\text{Im}(f) = x_1 x_2^2 e_\rho = x_1 \text{Im}(b_2)$, we could have also defined $r = f x_1 b_2 = -x_1^2 x_2 e_\rho + x_2 e_\pi$.
- Since $Im(r) = -x_1^2 x_2 e_{\rho}$ is not OI-divisible by either $Im(b_1) = x_1^2 e_{id_{[1]}}$ or $Im(b_2) = x_2^2 e_{\rho}$, we are done, and r is a remainder of f modulo B.

Michael Morrow (UKY) 2021

Example (Continued)

- Since $\text{Im}(f) = x_1 x_2^2 e_\rho = x_1 \text{Im}(b_2)$, we could have also defined $r = f x_1 b_2 = -x_1^2 x_2 e_\rho + x_2 e_\pi$.
- Since $Im(r) = -x_1^2 x_2 e_{\rho}$ is not OI-divisible by either $Im(b_1) = x_1^2 e_{id_{[1]}}$ or $Im(b_2) = x_2^2 e_{\rho}$, we are done, and r is a remainder of f modulo B.
- As we can see, remainders modulo B need not be unique.

■ The division algorithm pairs nicely with Gröbner bases.

Proposition

Let **M** be a submodule of **F** with Gröbner basis $B \subseteq \mathbf{M}$. Then:

■ if $f \in \mathbf{M}$, applying the division algorithm to f will result in a remainder of zero modulo B.

Michael Morrow (UKY) 2021 21/34

■ The division algorithm pairs nicely with Gröbner bases.

Proposition

Let **M** be a submodule of **F** with Gröbner basis $B \subseteq M$. Then:

- if $f \in M$, applying the division algorithm to f will result in a remainder of zero modulo B.
- B generates **M**, i.e. $\mathbf{M} = \langle B \rangle_{\mathbf{F}}$.

Computation: OI-Factorization

■ With a division algorithm, we can start working toward a criterion for determining when a set forms a Gröbner basis.

Computation: Ol-Factorization

- With a division algorithm, we can start working toward a criterion for determining when a set forms a Gröbner basis.
- The following result will be crucial for finiteness arguments.

OI-Factorization Lemma (M-Nagel)

Let $\sigma \in \operatorname{Hom}(k_1, m)$ and $\tau \in \operatorname{Hom}(k_2, m)$ for some $k_1, k_2, m \in \mathbb{N}$ with $k_1, k_2 \leq m$. Then for $\ell = |\operatorname{im}(\sigma) \cup \operatorname{im}(\tau)|$, there are maps $\widetilde{\sigma} \in \operatorname{Hom}(k_1, \ell)$, $\widetilde{\tau} \in \operatorname{Hom}(k_2, \ell)$ and $\rho \in \operatorname{Hom}(\ell, m)$ such that

$$\sigma = \rho \circ \widetilde{\sigma} \quad \text{and} \quad \tau = \rho \circ \widetilde{\tau}.$$

Michael Morrow (UKY) 2021 22 / 34

Computation: OI-Factorization

Example

Let
$$\sigma:[2] \longrightarrow [6]$$
 and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Michael Morrow (UKY)

Computation: OI-Factorization

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

23 / 34

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2,3,5,6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Michael Morrow (UKY) 2021

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2, 3, 5, 6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}:[2]\longrightarrow [4]$ and $\widetilde{\tau}:[3]\longrightarrow [4]$ via

i	1	2	and
$\widetilde{\sigma}(i)$			anu

i	1	2	3
$\widetilde{\tau}(i)$			

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2,3,5,6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}: [2] \longrightarrow [4]$ and $\widetilde{\tau}: [3] \longrightarrow [4]$ via

i	1	2	
$\widetilde{\sigma}(i)$	2		

and

i	1	2	3
$\widetilde{ au}(i)$			

Example

Let $\sigma: [2] \longrightarrow [6]$ and $\tau: [3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2, 3, 5, 6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}:[2]\longrightarrow [4]$ and $\widetilde{\tau}:[3]\longrightarrow [4]$ via

i	1	2	
$\widetilde{\sigma}(i)$	2	4	

and

i	1	2	3
$\widetilde{\tau}(i)$			

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2, 3, 5, 6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}:[2]\longrightarrow [4]$ and $\widetilde{\tau}:[3]\longrightarrow [4]$ via

i	1	2	
$\widetilde{\sigma}(i)$	2	4	

and

i	1	2	3
$\widetilde{\tau}(i)$	1		

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2,3,5,6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}: [2] \longrightarrow [4]$ and $\widetilde{\tau}: [3] \longrightarrow [4]$ via

i	1	2	2
$\widetilde{\sigma}(i)$	2	4	aı

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $\operatorname{im}(\sigma) \cup \operatorname{im}(\tau) = \{2, 3, 5, 6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}: [2] \longrightarrow [4]$ and $\widetilde{\tau}: [3] \longrightarrow [4]$ via

i	1	2
$\widetilde{\sigma}(i)$	2	4

and

i	1	2	3
$\widetilde{ au}(i)$	1	3	4

Example

Let $\sigma:[2] \longrightarrow [6]$ and $\tau:[3] \longrightarrow [6]$ be given by

i	1	2
$\sigma(i)$	3	6

and

i	1	2	3
$\tau(i)$	2	5	6

Then $im(\sigma) \cup im(\tau) = \{2, 3, 5, 6\}$ so we define $\rho : [4] \longrightarrow [6]$ via

i	1	2	3	4
$\rho(i)$	2	3	5	6

Finally, we define $\widetilde{\sigma}: [2] \longrightarrow [4]$ and $\widetilde{\tau}: [3] \longrightarrow [4]$ via

i	1	2
$\widetilde{\sigma}(i)$	2	4

and

i	1	2	3
$\widetilde{\tau}(i)$	1	3	4

One checks that $\sigma = \rho \circ \widetilde{\sigma}$ and $\tau = \rho \circ \widetilde{\tau}$.

Definition

Let $x^a e_{\pi,i}$ and $x^b e_{\rho,j}$ be monomials in **F**. Define

$$\operatorname{lcm}(x^a e_{\pi,i}, x^b e_{\rho,j}) = egin{cases} \operatorname{lcm}(x^a, x^b) e_{\pi,i} & \text{if } e_{\pi,i} = e_{\rho,j} \\ 0 & \text{otherwise.} \end{cases}$$

Definition

Let $x^a e_{\pi,i}$ and $x^b e_{\rho,j}$ be monomials in **F**. Define

$$\operatorname{lcm}(x^a e_{\pi,i}, x^b e_{\rho,j}) = egin{cases} \operatorname{lcm}(x^a, x^b) e_{\pi,i} & \text{if } e_{\pi,i} = e_{\rho,j} \\ 0 & \text{otherwise.} \end{cases}$$

Definition

Let $f,g\in \mathbf{F}_m$ be nonzero. The S-polynomial of f and g is the combination

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(f)}f - \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(g)}g \in \mathbf{F}_m.$$

Definition

Let $x^a e_{\pi,i}$ and $x^b e_{\rho,j}$ be monomials in **F**. Define

$$\operatorname{lcm}(x^a e_{\pi,i}, x^b e_{\rho,j}) = egin{cases} \operatorname{lcm}(x^a, x^b) e_{\pi,i} & \text{if } e_{\pi,i} = e_{\rho,j} \\ 0 & \text{otherwise.} \end{cases}$$

Definition

Let $f,g\in \mathbf{F}_m$ be nonzero. The S-polynomial of f and g is the combination

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(f)}f - \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(g)}g \in \mathbf{F}_m.$$

Remark

We have Im(S(f,g)) < Icm(Im(f), Im(g)) for any monomial order < on F.

Michael Morrow (UKY) 2021 29 / 34

• We say a monomial $\mu \in \mathbf{F}$ involves the basis element $e_{\mathrm{id}_{[d_i]},i}$ provided $\mu = x^p e_{\pi,i}$ for some $\pi \in \mathrm{Hom}(d_i,w(\mu))$ and some $x^p \in \mathbf{P}_{w(\mu)}$. In this case we have $\mu = x^p \mathbf{F}(\pi)(e_{\mathrm{id}_{[d_i]},i})$.

- We say a monomial $\mu \in \mathbf{F}$ involves the basis element $e_{\mathrm{id}_{[d_i]},i}$ provided $\mu = x^p e_{\pi,i}$ for some $\pi \in \mathrm{Hom}(d_i,w(\mu))$ and some $x^p \in \mathbf{P}_{w(\mu)}$. In this case we have $\mu = x^p \mathbf{F}(\pi)(e_{\mathrm{id}_{[d_i]},i})$.
- Given $B \subseteq \mathbf{F}$, let $\mathcal{L}(B)$ denote the collection of all $(b_1, b_2) \in B \times B$ such that $Im(b_1)$ and $Im(b_2)$ involve the same basis element of \mathbf{F} .

Michael Morrow (UKY) 2021

- We say a monomial $\mu \in \mathbf{F}$ involves the basis element $e_{\mathrm{id}_{[d_i]},i}$ provided $\mu = x^p e_{\pi,i}$ for some $\pi \in \mathrm{Hom}(d_i,w(\mu))$ and some $x^p \in \mathbf{P}_{w(\mu)}$. In this case we have $\mu = x^p \mathbf{F}(\pi)(e_{\mathrm{id}_{[d_i]},i})$.
- Given $B \subseteq \mathbf{F}$, let $\mathscr{L}(B)$ denote the collection of all $(b_1, b_2) \in B \times B$ such that $Im(b_1)$ and $Im(b_2)$ involve the same basis element of \mathbf{F} .

Definition

Let $B \subseteq \mathbf{F}$, and define

$$\Omega(B) = \bigcup_{\substack{(b_1,b_2) \in \mathscr{L}(B) \\ m \in \omega(b_1,b_2)}} \mathsf{Orb}(b_1,m) \times \mathsf{Orb}(b_2,m)$$

where
$$\omega(b_1,b_2) = \{m \in \mathbb{N} \ : \ \max(w(b_1),w(b_2)) \leq m \leq w(b_1) + w(b_2)\}.$$

Remark

If B is finite, then $\Omega(B)$ is also finite.

Michael Morrow (UKY) 2021

Ol-Buchberger's Criterion (M-Nagel)

Let **M** be a submodule of **F** generated by $B \subseteq \mathbf{M}$. Then B forms a Gröbner basis for **M** if and only if any S-polynomial S(f,g) with $(f,g) \in \Omega(B)$ has a remainder of zero modulo B.

2021

Ol-Buchberger's Criterion (M-Nagel)

Let **M** be a submodule of **F** generated by $B \subseteq \mathbf{M}$. Then B forms a Gröbner basis for **M** if and only if any S-polynomial S(f,g) with $(f,g) \in \Omega(B)$ has a remainder of zero modulo B.

Key Idea

■ Let $(b_1, b_2) \in \mathcal{L}(B)$ and consider maps $\sigma \in \text{Hom}(w(b_1), m)$ and $\tau \in \text{Hom}(w(b_2), m)$ for some $m \ge \max(w(b_1), w(b_2))$. By the OI-Factorization Lemma, we can write

$$S(\mathbf{F}(\sigma)(b_1), \ \mathbf{F}(\tau)(b_2)) = \mathbf{F}(\rho)(S(\mathbf{F}(\widetilde{\sigma})(b_1), \ \mathbf{F}(\widetilde{\tau})(b_2)))$$

for some maps $\widetilde{\sigma} \in \operatorname{Hom}(w(b_1), \ell)$, $\widetilde{\tau} \in \operatorname{Hom}(w(b_2), \ell)$ and $\rho \in \operatorname{Hom}(\ell, m)$ where $\ell \leq w(b_1) + w(b_2)$.

Michael Morrow (UKY) 2021

Ol-Buchberger's Criterion (M-Nagel)

Let M be a submodule of F generated by $B \subseteq M$. Then B forms a Gröbner basis for M if and only if any S-polynomial S(f,g) with $(f,g) \in \Omega(B)$ has a remainder of zero modulo B.

Key Idea

■ Let $(b_1, b_2) \in \mathcal{L}(B)$ and consider maps $\sigma \in \text{Hom}(w(b_1), m)$ and $\tau \in \text{Hom}(w(b_2), m)$ for some $m \ge \max(w(b_1), w(b_2))$. By the OI-Factorization Lemma, we can write

$$S(\mathbf{F}(\sigma)(b_1), \ \mathbf{F}(\tau)(b_2)) = \mathbf{F}(\rho)(S(\mathbf{F}(\widetilde{\sigma})(b_1), \ \mathbf{F}(\widetilde{\tau})(b_2)))$$

for some maps $\widetilde{\sigma} \in \operatorname{Hom}(w(b_1), \ell)$, $\widetilde{\tau} \in \operatorname{Hom}(w(b_2), \ell)$ and $\rho \in \operatorname{Hom}(\ell, m)$ where $\ell \leq w(b_1) + w(b_2)$.

■ Thus, if B is finite, we can describe all S-polynomials by using only finitely many of them, since $(\mathbf{F}(\widetilde{\sigma})(b_1), \mathbf{F}(\widetilde{\tau})(b_2)) \in \Omega(B)$.

Michael Morrow (UKY) 2021

■ The OI-Buchberger's Criterion naturally leads to an algorithm for computing Gröbner bases if *B* is a finite set.

OI-Buchberger's Algorithm (M-Nagel)

Let M be a submodule of F finitely generated by a set $B \subseteq M$. Then a finite Gröbner basis (containing B) for M can be computed in finite time.

Michael Morrow (UKY) 2021

■ The OI-Buchberger's Criterion naturally leads to an algorithm for computing Gröbner bases if *B* is a finite set.

OI-Buchberger's Algorithm (M-Nagel)

Let M be a submodule of F finitely generated by a set $B \subseteq M$. Then a finite Gröbner basis (containing B) for M can be computed in finite time.

Remark

The algorithm terminates in finite time due to the noetherianity of \mathbf{F} which says that every strictly increasing sequence of submodules of \mathbf{F} must eventually stabilize (see [NR19, 6.17]).

Michael Morrow (UKY) 2021

■ We conclude with an example.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{Ol},1}$ and let $\mathbf{M}=\langle x_1^2e_{\mathrm{id}_{[1]}},\ x_2^2e_{\rho}+x_1x_2e_{\rho}\rangle_{\mathbf{F}}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

■ We conclude with an example.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{OI},1}$ and let $\mathbf{M}=\langle x_1^2e_{\mathrm{id}_{[1]}},\ x_2^2e_{\rho}+x_1x_2e_{\rho}\rangle_{\mathbf{F}}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

■ As before, let $b_1 = x_1^2 e_{\mathsf{id}_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.

■ We conclude with an example.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{OI},1}$ and let $\mathbf{M}=\langle x_1^2e_{\mathrm{id}_{[1]}},\ x_2^2e_{\rho}+x_1x_2e_{\rho}\rangle_{\mathbf{F}}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- As before, let $b_1 = x_1^2 e_{\mathsf{id}_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- Consider the lex order < on \mathbf{F} . Then $\operatorname{Im}(b_1) = x_1^2 e_{\operatorname{id}_{[1]}}$ and $\operatorname{Im}(b_2) = x_2^2 e_{\rho}$.

■ We conclude with an example.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{OI},1}$ and let $\mathbf{M}=\langle x_1^2e_{\mathrm{id}_{[1]}},\ x_2^2e_{\rho}+x_1x_2e_{\rho}\rangle_{\mathbf{F}}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- As before, let $b_1 = x_1^2 e_{\mathsf{id}_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- Consider the lex order < on \mathbf{F} . Then $\operatorname{Im}(b_1) = x_1^2 e_{\operatorname{id}_{[1]}}$ and $\operatorname{Im}(b_2) = x_2^2 e_{\rho}$.
- We have the S-polynomial $S(\mathbf{F}(\mathrm{id}_{[2]})(b_2), \mathbf{F}(\rho)(b_1)) = x_1x_2e_{\rho}$ which is not OI-divisible by either $\mathrm{Im}(b_1)$ or $\mathrm{Im}(b_2)$. Thus we append $b_3 := x_1x_2e_{\rho}$ to our generating set.

Michael Morrow (UKY) 2021 33 / 34

■ We conclude with an example.

Example

Let c=1, let $\mathbf{F}=\mathbf{F}^{\mathrm{OI},1}$ and let $\mathbf{M}=\langle x_1^2e_{\mathrm{id}_{[1]}},\ x_2^2e_{\rho}+x_1x_2e_{\rho}\rangle_{\mathbf{F}}$ where $\rho:[1]\longrightarrow[2]$ is given by $\rho(1)=2$.

- As before, let $b_1 = x_1^2 e_{\mathsf{id}_{[1]}}$ and let $b_2 = x_2^2 e_\rho + x_1 x_2 e_\rho$.
- Consider the lex order < on \mathbf{F} . Then $\operatorname{Im}(b_1) = x_1^2 e_{\operatorname{id}_{[1]}}$ and $\operatorname{Im}(b_2) = x_2^2 e_{\rho}$.
- We have the S-polynomial $S(\mathbf{F}(\mathrm{id}_{[2]})(b_2), \mathbf{F}(\rho)(b_1)) = x_1x_2e_{\rho}$ which is not OI-divisible by either $\mathrm{Im}(b_1)$ or $\mathrm{Im}(b_2)$. Thus we append $b_3 := x_1x_2e_{\rho}$ to our generating set.
- One checks that S(f,g) has a remainder of zero modulo $\{b_1,b_2,b_3\}$ for all $(f,g) \in \Omega(\{b_1,b_2,b_3\})$. Hence the OI-Buchberger's Criterion says $\{b_1,b_2,b_3\}$ forms a Gröbner basis for \mathbf{M} .

Michael Morrow (UKY) 2021

References

- [NR19] U. Nagel, T. Römer, Fl- and Ol-modules with varying coefficients, J. Algebra 535 (2019), 286-322.
- [Nag21] U. Nagel, Rationality of equivariant Hilbert series and asymptotic properties, Trans. Amer. Math. Soc. 374 (2021), no. 10, 7313-7357.
- [Eis95] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer (1995).

Michael Morrow (UKY) 2021