Laboratorio de Simulação e Computação - Relatório do Trabalho 2

Daniel Caires

1 Sistema

Linguagem: python com biblioteca numpy

Como utilizar: O programa não requer nenhum tipo de entrada de dados. Basta rodar o script utilizando o python

Saída: o programa imprime no terminal a média da medida de dispersão escolhida para cada valor de n solicitado no enunciado do problema.

2 O problema

No quadrado $[0,1] \times [0,1]$ sorteie n pontos (x,y) aleatórios.

Divida o quadrado em 100 ladrilhos de áreas iguais e contabilize o número de pontos sorteados em cada ladrilho. Calcule uma medida de dispersão para o número de pontos por ladrilho.

Repita o experimento 100 vezes e calcule a média dos valores encontrados para a medida de dispersão escolhida.

O procedimento deve ser feito para $n=\{2^5,2^{10},2^{15},2^{20}\}$

Questão 1: Qual é a medida de dispersão adequada?

Questão 2: Mostre que a medida de dispersão escolhida decai conforme n aumenta.

3 Solução

Para gerar os pontos aleatórios, foi utilizada a função random.rand() da biblioteca numpy do python.

Essa função gera números pseudo-aleatórios entre 0 e 1. Uma vez que o par de númeromeros aleatórios (x,y) foi gerado, determinamos o ladrilho correspondente, simplesmente multiplicando o número aleatório encontrado por 10 e pegando apenas a parte inteira. Feito isso, incrementamos um ponto ao ladrilho correspondente numa matriz de ladrilhos.

Ao final do experimento contabilizamos o número de pontos em cada ladrihlo e calculamos a medida de dispersão.

Questão 1: A medida de dispersão escolhida foi o coeficiente de variação. Como nosso objetivo é comparar o comportamento da dispersão conforme o número de pontos cresce, essa medida é a mais adequada, pois para diferentesnúmeros de pontos, a ordem de grandeza da quantidade de pontos por ladrilho varia. Sendo assim, é adequado usarmos uma medida de dispersão ponderada pela média dos dados, no nosso caso, escolhemos o coeficiente de variação, também chamado de desvio padrão relativo, corresponde ao desvio padrão, dividido pela média.

Questão 2: O aumento no número de pontos representa um decréscimo significante no coeficiente de variação, como mostra a tabela abaixo que corresponde à saída de uma execução do programa:

n	Coeficiente de variação
2^{5}	1,76953092294
$2^{1}0$	0,308209693849
$2^{1}5$	0,0549925541159
$2^{2}0$	0,00960329854126