Dec., 2023 | 1

Authorship Verification

John Nerbonne Rijksuniversiteit Groningen & Albert-Ludwigs-Universität, Freiburg

Tübingen WS 2023-24

Authorship verification

- > Focus to-date on authorship attribution
 - Select which author wrote document d from $n \ (n \ll 10)$ candidates
 - Who wrote the Federalist No. 10? Jay, Hamilton or Madison?
 - Fixed set of candidates
- > In AUTHORSHIP VERIFICATION, the candidate set is less fixed. Did J.K. Rowling write *The Cuckoo's Calling*?
 - Published under the name 'Galbraith'

Verification is harder

- > ... than attribution
 - In attribution, we have a closed world of n candidates.
 - In attribution, it's enough to say that candidate x is more likely (than others)
 - In authorship verification, we might have to say, "No, the document was written by none of the candidates"
- > Also attracts less attention, \(\rightarrow \) for this reason.
- > Koppel, M., & Winter, Y. (2014). Determining if two documents are written by the same author. *Journal of the Association for Information Science and Technology*, 65(1), 178-187.
- > K&W stick w. "similarity-based methods"
 - All the Δ -methods, all of what we've looked at

Data

> 1,000s of bloggers, 38 blogs/author, data over several yrs.

- > Data in ordered pairs < X, Y >, where X first 500 wd. of a blog, Y last 500
 - X, Y may come from the same blogger
 - 500 wd. is a relatively short doc
- > Corpus has 500 pairs $\langle X, Y \rangle$
- > Task: judge whether X and Y are by the same author
- > Preprocessing: separate texts into 4-grams
 - The quick brown fox jumped ... => 'Theq', 'hequ', 'equi', 'quic', 'uick' ...
 - Spaces ignored! Why?
 - Collect frequencies of 100,000 most freq. 4-grams into vector

Processing

- > Given texts separated into 4-grams
 - Frequencies of 100,000 most freq. 4-grams into vector

- > Baseline1 (no training)
 - Compare vectors w. cosine (see earlier lectures) or MINMAX:

$$Sim(X,Y) = minmax(\vec{X}, \vec{Y}) = \frac{\sum_{i=1}^{n} \min(x_i, y_i)}{\sum_{i=1}^{n} \max(x_i, y_i)}$$

- Minmax tends to emphasize large differences
- Accuracy in development: 70.6% cosine, 74.2% minmax

Processing

- > Baseline 2 (with training)
 - Given < X, Y >, define $diff(X, Y) = <|x_1 y_1|, |x_2 y_2|, ... |x_n y_n| >$
 - Assign each $\langle X, Y \rangle$ to same-author or different-author
 - Use an ML classifier to learn same- vs. different

- In fact SVM was used (Tübingen capital of SVM learning)
- Experimented w. many parameters, best realized 79.8%

Many candidates problem

faculty of arts

> Number of candidates crucial!

clcg

> Note baselines: 0.02% \le chance \le 2%

Many candidates

- > 5K writers, judged same or different using most similar frequency vector, chance 0.02%
 - Using minmax for similarity
 - . 32.5% accurate!
- > Inadequate for application
- > Instead, repeatedly choose best candidate based on randomly selected feature subset
 - A bit like the BOOTSTRAP method

Algorithm

- > Given snippet to be assigned, known texts (candidates C)
 - Repeat k times
 - Randomly choose ½ of features (4-grams)
 - Find best match using minmax, candidate c_i
 - Increment c_i 's score of best matches

- For candidate c_i
 - Score (c_i) = proportion of times c_i is best match
- > If max Score(c_i) $\geq \sigma^*$, then Output: argmax Score(c_i) Else Output 'Don't Know'
- > Typically $100 \le k \le 1000$, σ^* depends on confidence needed

Idea of many candidates attack

faculty of arts

- > Reduce dependence on specific words
 - Precision %-age correct attributions,
 - Recall %-age texts attributed correctly
 - Dark dot: $\sigma^* = 0.8$
 - Results:
 - Recall low!

Even harder problem?

- > Suppose that the real author is not among the candidates. Harder?
- > NO! At $\sigma^* = 0.8, 3.7\%$ false positives of 5K candidates, 5.5% for 500 cand., 8.4% for 50
- > Smaller candidate sets raise chance of consistently more similar text, leading to incorrect attribution!
- > To be leveraged in the verification problem

Strategy of attack

- > Verification: given < X, Y >, are they by the same author?
- > We reduce this to the many-candidates problem (discussed above), which asks which $c \in C$ wrote a given doc d
 - Introduce set "imposters" (*Hochstapler*) for $Y: \{Y_1, ..., Y_m\}$
 - Comp: $Score_X(Y) = %$ feat. $sets \ni Sim(X,Y) > Sim(X,Y_i)$
 - Similarly, gen. imposters for $X: \{X_1, ..., X_m\}$
 - ...and comp. $Score_Y(X)$ analogously
 - . If $(Score_X(Y) + Score_Y(X))/2 \ge \sigma^*$, then < X, Y > are co-authored

Parameters in approach

faculty of arts

- > How to choose imposters
 - Fixed: no special relation to doc pair
 - On-the-fly: based on docs returned by Google queries on med. freq. words from $\langle X, Y \rangle$ [same content]
 - No knowledge needed
 - Blogs [same genre]
 - More imposters →
 - More false negative
 - Fewer false positives

Experiments: Blogging

faculty of arts

- > Generate imposters: take the m most similar docs and randomly select n from these [potential vs. actual]
- > Experiments with cosine & minmax thresholds, SVM (after training), imposters using both On-the-fly and Blog
- > Detecting co-authors
- > In Blog method
 - Where Precision=0.9
 - Recall=0.83
 - $\sigma^* = 0.13$
- > Diff. auth. lower scores

clcg

- > Most pairs $\langle X, Y \rangle$ not co-authored, so scores are high
- > Average over σ^*
- > Accuracy improves as longer texts are chosen

faculty of arts

> Little sensitivity to number of potential/actual imposters

Blog imposters

Experiment 2: Plagiarism detection

faculty of arts

- > Similar to authorship verification, but not identical
 - Intentional distortions of authorship signal could make this different
- > 4 essays each from 950 students, initial 500 wd. used
- > 4 diff. topics, but all < X, Y > pairs had diff. topics
- > 2000 < X, Y > pairs, imposters from same-topic essays
- > Harder problem
- > Imposters still best!

- > Wilhelmus is Dutch national anthem
 - Anonymously written ca. 1570 (early in 80-yr war)
 - Popular since 18th cent., banned by Napoleon
 - Official national anthem since 1932
 - Usually attributed to Marnix of Antwerp
 - Very brief, only 15 couplets
- > Examined stylometrically
 - Kestemont, M., Stronks, E., De Bruin, M., & De Winkel, T. (2017). Van wie is het Wilhelmus?: de auteur van het Nederlandse volkslied met de computer onderzocht. Amsterdam University Press/ICAS Pubs.

Stylometry applied

> Added PoS tags to MFW, he-PRO, can-ModVb, ...

- > In addition to Marnix, Kestemont et al. examine 5 other contemporaries using usual stylometric methods
- > "Imposters" method used
- > Clear results point to Dathenus, never earlier a candidate
 - Best known for translating the Psalms
 - Referred to as "donkey-eared", for his poor poetry
- Verification solved a mystery, since Dathenus was present at the siege of Chartres, where the music originated

Application to new ms.

- Newly discovered anonymous ms. in Vatican Library, Compendiosa expositio, discussion of Plato's works
- > Stylometry, "imposters"
- Apuleius of Madauros (today Algeria) singled out
- > Stover, J. A., et al. (2016) Computational auth. verification [...] attributes new work to 2nd century African author. *J. Assoc. Inf. Sci. & Tech. 67*(1), 239-242.

Summing up

New efforts to overcome problems of limited scope are underway and promising

- > They are shedding light on the applied problems of identifying blog authors and plagiarism, but also on authorship in classical (Apuleius) and early modern times (Wilhelmus)
- > Next
 - Stylo Exercise
 - Bayesian foundations
 - Information theory (sometime)
 - Other views of identifying typical words