UJIAN AKHIR SEMESTER PRAKTIKUM DAA1

Anggota Kelompok 4:

- Johana Sihotang (211401035)
- Muhammad Dhafin Rizqilla Lubis (211401046)
- Dea Yunias Waoma (211401047)

A. ALGORITMA STRUKTUR DATA STATIS

1. Pada sesi pilih menu, pilih opsi 1 untuk menuju data statis

```
Silahkan pilih menu.
1. Struktur Data Statis
2. Struktur Data Dinamis
3. Keluar
Opsi: 1
```

2. User akan dibawa ke menu selanjutnya, pilih opsi 1 untuk meng-input data

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 1
```

3. Input data sesuai format yang diberikan

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 1
Nama : Kasey
Nilai : 86
KOM : A
```

4. Setelah menginput data, program akan Kembali ke menu "Silahkan pilih masukan". Pilih opsi 1 untuk menginput data ke-2 . Lakukan proses tersebut berulang-kali untuk memasukkan data sebanyak 5 inputan

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 1
Nama : Noemi
Nilai : 97
KOM : B
```

```
Silahkan pilih masukan:

    Input Data

2. Tampilkan Data
Update Data
4. Delete Data
Kembali
Opsi : 1
Nama : Essie
Nilai : 79
KOM : C
Silahkan pilih masukan:

    Input Data

2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 1
Nama : Lawanda
Nilai : 92
KOM : A
Silahkan pilih masukan:

    Input Data

2. Tampilkan Data
3. Update Data
4. Delete Data
```

5. Kembali Opsi : 1 Nama : Wendi Nilai : 83 KOM : B 5. Untuk menampilkan data, pilih opsi 2

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 2
```

6. Pilih opsi Y/y untuk menampilkan data yang telah disorting. Data yang disorting berdasarkan nilai yang paling besar akan muncul dan diberi label "Data ke 1 sampai 5"

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 2
Apakah data ingin disorting berdasarkan nilai? (Y/T) :
```

```
Data ke-1:
Nama : Noemi
Nilai : 97
KOM : B
Data ke-2:
Nama : Lawanda
Nilai : 92
KOM : A
Data ke-3:
Nama : Kasey
Nilai : 86
KOM : A
Data ke-4:
Nama : Wendi
Nilai : 83
KOM : B
Data ke-5:
Nama : Essie
Nilai : 79
KOM : C
```

7. Pilih opsi 3 untuk update data.

Pilih data ke berapa yang ingin di update, misalkan kita ingin update data ke-3.

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 3
Pilih data yang ingin diupdate : 3
Nama : Kasey
Nilai : 93
KOM : C
```

8. Untuk menghapus data, pilih opsi 4 dan input data keberapa yang akan dihapus

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 4
Pilih data yang ingin dihapus : 5
```

9. Tampilkan data yang telah di update dan hapus dengan memilih opsi 2. Kemudian shorting data sesuai nilai terbesar dengan memilih opsi Y/y

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
Kembali
Opsi : 2
Apakah data ingin disorting berdasarkan nilai? (Y/T) : y
Data ke-1:
Nama : Noemi
Nilai : 97
KOM : B
Data ke-2:
Nama : Kasey
Nilai : 93
KOM : C
Data ke-3:
Nama : Lawanda
Nilai : 92
KOM : A
Data ke-4:
Nama : Wendi
Nilai : 83
KOM : B
```

B. ALGORITMA STRUKTUR DATA DINAMIS

1. Untuk ke struktur data dinamis pilih opsi 5 untuk Kembali dan opsi 2 untuk struktur data dinamis

```
Silahkan pilih masukan:
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 5
```

```
Silahkan pilih menu.
1. Struktur Data Statis
2. Struktur Data Dinamis
3. Keluar
Opsi: 2
```

- 2. Pilih opsi 2 untuk menginput data dan masukkan data sama seperti data pada struktur data dinamis
- 3. Untuk menampilkan data pilih opsi 3 dan pilih opsi y untuk menampilkan data yang dishorting berdasarkan nilai paling kecil

```
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 2
Apakah data ingin disorting berdasarkan nilai? (Y/T) : Y
Nama: Essie
Nilai: 79
KOM: C
Nama: Wendi
Nilai: 83
KOM: B
Nama: Kasey
Nilai: 86
KOM: A
Nama: Lawanda
Nilai: 92
KOM: A
Nama: Noemi
Nilai: 97
KOM: A
```

4. Pilih opsi 4 untuk update data, input data keberapa yang ingin di update

```
Silahkan pilih masukan:

1. Input Data

2. Tampilkan Data

3. Update Data

4. Delete Data

5. Kembali

Opsi : 3

Data yang ingin diganti : 1

Nama : Essie

Nilai : 81

KOM : C
```

- 5. Untuk hapus data pilih opsi 4, data dengan urutan terakhir akan otomatis terhapus
- 6. Pilih opsi 2 untuk menampilkan data yang sudah diupdate dan dihapus. Pilih opsi y untuk menampilkan data yang dishorting berdasarkan nilai terbesar

```
1. Input Data
2. Tampilkan Data
3. Update Data
4. Delete Data
5. Kembali
Opsi : 2
Apakah data ingin disorting berdasarkan nilai? (Y/T) : y
Nama: Essie
Nilai: 81
KOM: C
Nama: Wendi
Nilai: 83
KOM: B
Nama: Kasey
Nilai: 86
KOM: A
Nama: Lawanda
Nilai: 92
KOM: A
Nama: Noemi
Nilai: 97
KOM: A
```

C. KOMPRESI DATA : ALGORITMA END TAGGED DENSE CODE

String: "Kasey 86 A Noemi 97 B Essie 79 C Lawanda 92 A Wendi 83 B"

Tabel Data Sebelum dikompresi:

Char	Freq	ASCII Code	Bit	Bit x Freq
space	14	00100000	8	112
a	4	01100001	8	32
e	4	01100101	8	32
S	3	01110011	8	24
i	3 3 3	01101001	8	24
9		00111001	8	24
8	2	00111000	8	16
A	2	01000001	8	16
7	2	00110111	8	16
В	2 2 2 2 2 2 2	01000010	8	16
n	2	01101110	8	16
d	2	01100100	8	16
K	1	01001011	8	8
У	1	01111001	8	8
6	1	00110110	8	8
N	1	01001110	8	8
0	1	01101111	8	8
m	1	01101101	8	8
Е	1	01000101	8	8
С	1	01000011	8	8
L	1	01001100	8	8
W	1	01110111	8	8
2	1	00110010	8	8
W	1	01010111	8	8
3	1	00110011	8	8
	448			

b yang digunakan adalah 3.

i	Char	Freq	ETDC	Bit	Bit x Freq
0	space	14	100	3	42
1	a	4	101	3	12
2	e	4	110	3	12
3	S	4 3 3 3	111	3	9
4	i	3	000100	6	18
5	9	3	000101	6	18
6	8	2 2	000110	6	12
7	A		000111	6	12
8	7	2	001100	6	12
9	В	2	001101	6	12
10	n	2	001110	6	12
11	d	2 2 2	001111	6	12
12	K	1	010100	6	6
13	у	1	010101	6	6
14	6	1	010110	6	6
15	N	1	010111	6	6
16	О	1	011100	6	6
17	m	1	011101	6	6
18	Е	1	011110	6	6
19	С	1	011111	6	6
20	L	1	000000100	9	9
21	W	1	000000101	9	9
22	2	1	000000110	9	9
23	W	1	000000111	9	9
24	3	1	000001100	9	9
		276			

String Bit:

|String bit|: 276 bit: 8 = 34,5. Menyisakan 4 agar habis dibagi 8.

Padding: 4 bit = 0000

Flag : 8 bit = 00000100 (Binary dari 4)

Hasil Kompresi:

 $|String\ bit|: 276 + 4(Padding) + 8(Flag) = 288$

Compression Ratio(Cr):

$$Cr = \frac{ukuran \ bit \ sebelum \ dikompresi}{ukuran \ bit \ setelah \ dikompresi}$$

$$Cr = \frac{448}{276} = 1.62$$

Space Savings

$$SS = \left(1 - \frac{\text{ukuran bit setelah dikompresi}}{\text{ukuran bit sebelum dikompresi}}\right) \times 100\%$$

$$SS = \left(1 - \frac{276}{448}\right) \times 100\%$$

$$SS = (1 - 0.616) \times 100\%$$

$$SS = 38.4\%$$

D. KOMPRESI DATA: ALGORITMA END TAGGED DENSE CODE

0: Menambah Data

1: Menampilkan Data

2: Mengupdate Data

3: Menghapus Data

Minimum Spanning Tree:

