Introduction to Machine Learning 2021 Term Project Final Report

Group 168 Kai Hartzell

Predicting npf events

In this project, I used NB classifier to predict event and nonevent days. The training data, $npf_train.csv$, included 104 columns and 458 observations in total. The test data, $npf_test_hidden.csv$, included 965 unclassified observations. There were columns id, date, class4, partlybad and 100 other variables measured.

I dropped out columns id, date and partlybad of both train and test data, because id and date did not have any impact on the results, and the value of partlybad was always false. The class4 column indicated the observed class, and it was one of these: II, Ia, Ib, nonevent.

The binary classification task was to identify nonevent and event classes, ie. II, Ia, Ib. The hidden test data did not contain the class values, but I replaced the NA values with a placeholder nonevent. I factored the training data classes as II, Ia, Ib, nonevent.

Next, I constructed a data frame and table of the class sd and mean values:

class_non.mea	athass_non.sdclas	ssII.meanclassII.sd	${\it class} Ia. mean {\it class} Ia. {\it sd}$	${\it classIb.mearclassIb.sd}$
CO2168.mean383.3257592	12.0163656 379	0.78165589.6374969	377.39836207.9319611	377.53859388.5728401
CO2168.std 3.8076389	3.7136048 3.46	647404 3.0638298	1.8811666 3.3126275	3.3173097 3.0186016
CO2336.mean383.3010772	$12.0127173 \ 379$	0.83550829.6230363	377.47147197.8794670	377.60370998.5602995
CO2336.std 3.5851381	3.4501180 3.24	415884 2.8516257	1.7707188 3.1835412	3.1055142 2.7644834
CO242.mean 384.3454936	$11.4029920\ 380$	0.56722389.4285409	378.05455347.3849728	378.41112688.3496778
CO242.std 4.5978001	4.4815486 4.27	714589 3.9259490	2.1576477 3.4830427	4.2127625 4.3486898
CO2504.mean383.1770183	$12.0503130\ 379$	0.75017489.6367019	377.42363307.8790896	377.52673488.5898615
CO2504.std 3.4192060	3.1583781 2.99	971388 2.5841796	1.6631054 3.0425304	2.8382270 2.4519342
Glob.mean 124.1843709	108.2884333265	5.411477796.6022100	217.4514936136.509043	34 73.836265294.1315775
Glob.std 100.3933153	$89.5181144\ 196$	3.397250870.2540049	148.317928497.8803925	5197.614956570.4300363
H2O168.mean 8.3952240	4.2909264 - 6.68	839081 3.2319905	4.7256178 3.0865356	6.1144060 2.7852484
H2O168.std 0.5305522	0.4666248 0.68	812579 0.4348018	0.3949500 0.3097822	0.6062125 0.3944818
H2O336.mean 8.3234504	4.2414113 6.60	003523 3.1875941	4.6750551 3.0275964	6.0381327 2.7308122
	0.4655487 0.67	725026 0.4262756	0.3950264 0.3053176	0.6076353 0.3960382
H2O42.mean 8.5241697	4.3895086 6.84	414829 3.3113565	4.8100257 3.1670608	6.2500283 2.8805575
H2O42.std 0.5447998			0.4007320 0.3314933	0.6189761 0.3851627
H2O504.mean 8.2824671	4.2084802 6.54	496678 3.1622404	4.6486063 2.9945831	5.9924726 2.7011730
H2O504.std 0.5274781	0.4679204 0.66	699628 0.4251228	0.3928798 0.3059966	0.6094654 0.3996900
H2O672.mean 8.2507405	4.1830761 6.51	114863 3.1356407	4.6267247 2.9575198	5.9550852 2.6803969
H2O672.std 0.5299801	0.4680479 0.66	695066 0.4254028	0.3879299 0.3077983	0.6088883 0.4012817
	4.3504865 6.76	679388 3.2783437	4.7685026 3.1332267	6.1851300 2.8420338
H2O84.std 0.5398556	0.4769061 0.69	954969 0.4453180	0.3943370 0.3208854	0.6118577 0.3918308
NET.mean 80.5261547	74.3785508 167	7.833736873.0851478	3128.541307693.6546789	171.690150773.6059595
	78.6126033 174	1.570522562.2764092		0 172.493228764.8169662
			0.0840824 0.1708901	0.0618202 0.0845130
			0.0756751 0.0743735	0.1103664 0.1480846
			0.0906982 0.1825832	0.0630157 0.0884501
NO336.std 0.0903346	0.0772049 0.08	800398 0.0558533	0.0763280 0.0787067	0.0865659 0.0772434

class_non.meachass_non.scclassII.meanclassII.sd			classIa.meanclassIa.sd		classIb.meamlassIb.sd			
NO42.mean 0	0.0708654	0.0952515	0.0372286	0.0413754	0.0679048	0.1414973	0.0495214	0.0668548
NO42.std 0	0.0985503	0.1232974	0.0735775	0.0415377	0.0749556	0.0684068	0.1128484	0.1676579
NO504.mean 0	0.0886274	0.1226654	0.0490583	0.0586438	0.0893289	0.1906810	0.0615647	0.0863516
	0.0905429	0.0839672	0.0763539	0.0406231	0.0748648	0.0805113	0.0839574	0.0689388
	0.0871272	0.1183312	0.0482930	0.0574997			0.0599156	0.0845935
	0.0914093	0.0878955	0.0744356	0.0396351		0.0788534		0.0706539
	0.0696912	0.1038470	0.0393163		0.0749010	0.1535954		0.0760259
	0.0797140	0.0603073	0.0729624		0.0751914	0.0719955		0.1160699
NOx168.mean 1		1.6301601	0.8619501		1.4469960		1.0933323	0.8587382
	0.5197397	0.4535324	0.4625667		0.3706119			0.3910069
NOx336.mean 1		1.6180526	0.8485011		1.4394845		1.0824423	0.8536414
	0.5499471	0.5687775	0.3930678	0.3140737		0.3367659		0.3590915
	.8093522	1.6224146	0.8625380		1.4401144		1.1101887	0.8502164
	0.6384147	0.7791902	0.4397016		0.3895916		0.6164194	0.8641324
NOx504.mean 1		1.5945210	0.8390183		1.4176531		1.0648497	0.8472283
	0.5897877	0.6577056	0.4328458	0.6036045		0.3312644		0.3432988
NOx672.mean 1		1.5703224	0.8313492	0.7164193			1.0594163	0.8493411
	0.5487984	0.5379051	0.3815342		0.3555551	0.3316057		0.3522673
	7905142	1.6296561	0.8608148	0.7053100	1.4411304	1.8118328	1.0974465	0.8517585
	0.5127998	0.4434093	0.4490562		0.3744475	0.3504128	0.4846042	0.4074471
	3.9563955	8.7015444	37.1354305		35.5817172		38.1966494	
	3.5209114	2.3207539	4.0125807	2.2471876	3.1157460	2.1628869	4.0468967	2.3752102
	7.7531718	8.5799124	35.9105184		34.7646199		37.1545134	
	3.9320093	2.5715429	4.5629995	2.5121122	3.4300530	2.2983362	4.5916329	2.6110586
	0.9223688	8.7826482	38.1124111		36.1765368	9.4885172	38.9206969	
	3.3379269	2.1808745	3.6198586	2.0168362	2.9581700	2.1895254		2.1572885
	0.2570159	8.8153168	38.4638542		36.4179137			7.4083422
	3.2974286	2.1320519	3.4793625	1.8999729	2.8855798	2.2111996	3.5270694	2.0859228
	3.2974280 3.2950117	8.6449395	36.4847757		35.2079586		37.6702692	
	3.6818176	2.4325495	4.2321932	2.3653424	3.1852934	2.1710969		2.4787015
Pamb0.mean 98			992.4344221				4.2557071 3 993.8398014	
	0.9036629	0.7414164	1.1832659	0.8141691		0.6889135		0.8041929
	2.1034293						3 6 33.1584717	
	1.6516309						1 3 86.9933144	
	0.0013185	0.0072903	-	0.0047814	-	0.0053309	-	0.0031918
1 1 G.mean 0	.0010100	0.0012505	0.0005988	0.0041014	0.0007118	0.0000000	0.0016611	0.0001310
PTG.std 0	0.0067485	0.0064188		0.0058381		0.0069848	0.0010011	0.0054228
RGlob.mean 18							38.3190568	
	3.7137875						24.4001760	
RHIRGA168.mg							555.8371629	
RHIRGA168.stő			11.6976471				12.1942132	
RHIRGA336.186							356.0733062	
RHIRGA336.stő							11.9648446	
RHIRGA42.m86							56.8580399	
RHIRGA42.std5			12.4831364				13.0917220	
RHIRGA504.r86							15.0917220	
RHIRGA504.stő		4.6848747	11.1521853				11.5776651	
RHIRGA672.r8							11.5770051	
RHIRGA672.stő		4.6333869	10.9344953				11.2599693	
RHIRGA84.m86							256.0668416	
RHIRGA84.std5			12.1984752				12.7443155	
RPAR.mean 14							24.4094019	
nran.iileaii 14	1.10000099	12.0020017	ZZ.0100995	13.2100729	20.0202100	11.0999198	24.4094019	9.0104401

	$class_non.me \\ \textbf{whass}_non.s\\ \textbf{whass}II.me \\ anclass II.s \\ d$			classIa.meanclassIa.sd		classIb.mearclassIb.sd		
RPAR.std	10.5616485	8.7993333	15.8318446	7.3983849	15.2332906	6.8970832	16.9022109	6.0921322
SO2168.mear	0.2969173	0.4872757	0.1926844	0.1883541	0.1695263	0.1507744	0.2362119	0.3058720
SO2168.std	0.1529806	0.1386084	0.1577387	0.1276472	0.1289616	0.0805043	0.1684688	0.1246219
SWS.mean	901.2928793	39.4040349	915.2222334	418.7440739	923.128642	59.5964837	919.5428844	413.0544876
SWS.std	28.9825589	43.5319573	16.4777475	35.0055353	35.8773344	17.8563535	512.6442312	27.7441377
T168.mean	6.0779466	10.9514407	8.5962921	8.1833693	2.8687104	8.3095384	7.6928053	8.0038911
T168.std	1.3599286	0.9772331	2.3834288	0.8861056	2.0180805	1.1075181	2.4789441	0.9679934
T42.mean	6.1653770	10.9224699	8.6499311	8.2085590	2.9865494	8.2421630	7.7541718	8.0064785
T42.std	1.4646568	1.1112941	2.6472802	1.0024390	2.1859501	1.2825396	2.7393903	1.0755007
T504.mean	5.8160029	10.8954991	8.2703335	8.2021538	2.5531536	8.2892509	7.3368535	8.0393041
T504.std	1.2650820	0.9053966	2.1760562	0.8340721	1.8472449	1.0164464	2.2836336	0.9179909
T672.mean	5.6329681	10.8540661	8.0609689	8.1864121	2.3391703	8.2753919	7.1069544	8.0400739
T672.std	1.2171312	0.8754616	2.0874301	0.8033751	1.7835714	0.9649712	2.1963858	0.8942363
T84.mean	6.1500669	10.9556256	8.6976018	8.2085735	2.9538699	8.2793216	7.8076448	8.0135334
T84.std	1.4406672	1.0637270	2.5498165	0.9428052	2.1481955	1.1791491	2.6451795	1.0221479
UV_A.mean	7.6842886	6.1089685	14.5738046	5.0739380	11.3026124	6.9411607	14.7907621	5.0123836
$UV_A.std$	5.6597847	4.8468768	10.3911167	3.9771654	7.5590838	5.1088458	10.3899427	3.9910193
$UV_B.mean$	0.3258228	0.3044106	0.6028462	0.2732618	0.4214711	0.2929315	0.5940769	0.2781953
$UV_B.std$	0.2887586	0.2824756	0.5214276	0.2522659	0.3465650	0.2574466	0.5066760	0.2556018
CS.mean	0.0037101	0.0026296	0.0024940	0.0015237	0.0017976	0.0013724	0.0024524	0.0016285
CS.std	0.0006865	0.0005781	0.0006405	0.0006305	0.0004566	0.0004533	0.0006782	0.0004962

Laplace smoothing of 1 was used for the data. The estimated class probabilities for training data:

```
## ## nonevent II Ia Ib ## 0.49783550 0.25541126 0.06493506 0.18181818
```

Then I applied NB classifier to compute the class probabilities for all rows of testing data. The variables were considered as conditionally independent. The classifier predicted the probabilities of each class for each row. The row was identified as nonevent, if the probability was higher than the nb_class probability for that class.

The formula of NB Gaussian density was $\frac{e^{(-(x-\mu)^2/(2*\sigma^2))}}{\sqrt{2*\pi*\sigma^2}}$

I used some small coefficient adjustments and modifications for the multivariate classification problem. I quessed that the accuracy of the binary classification could be 0.73. The head of estimated classes and probabilities:

```
head(df, 10)
```

nb_class

```
##
## 1
          0.73
## 2
        class4
                  0.727504450479219
## 3
            Ιa
                  0.080463843559317
## 4
      nonevent
## 5
                  0.990897111743513
            Ιb
## 6
            II
                  0.991238939899939
## 7
      nonevent
                  0.120253990842419
## 8
            II
                  0.978951849227886
     nonevent 0.000677548460571997
## 10 nonevent 0.00245307701477748
```

This whole data frame was exported as a csv file. The predicted class distributions for testing data for classes nonevent, II, Ia, Ib:

- ## [1] 0.4611399
- ## [1] 0.2683938
- ## [1] 0.09948187
- ## [1] 0.1709845

Regarding the methods, I considered using cross-validation or SVM. The pros of NB are that it is a highly scalable and simple generative classifier. NB can usually be trained efficiently in supervised learning, and it often requires only a small number of training data.

After making some tweaks, I got the NB classifier to predict reasonable results, but there were initially some problems with the class distributions. I learned the effectiviness and usability of NB classifier.