UC Berkeley Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 5

Fall 2014

Issued: Friday, October 10 Due: Thursday, October 16 (beginning of class)

Problem 5.1

If X_1, \ldots, X_n are i.i.d. from $N(\theta, \theta)$, then two natural estimators of θ are the sample mean \bar{X} and the sample variance S^2 . Determine the asymptotic relative efficiency of S^2 with respect to \bar{X} .

Problem 5.2

Let X_1, \ldots, X_n be i.i.d. from an exponential distribution with unit failure rate.

- 1. Suppose we are interested in the limiting distribution for $X_{(2)}$, the second order statistic. Naturally, $X_{(2)} \stackrel{p}{\to} 0$ as $n \to \infty$. For an interesting limit theory we should scale $X_{(2)}$ by an appropriate power of n, but the correct power is not 1/2. Suppose x > 0. Find a value p so that $P(n^p X_{(2)} \le x)$ converges to a value between 0 and 1. (If p is too small, the probability will tend to 1, and if p is too large the probability will tend to 0.)
- 2. Determine the limiting distribution for $X_{(n)} \log n$.

Problem 5.3

Consider the loss function

$$L(\theta, a) = \begin{cases} k_1 & |\theta - a| & \text{if } a \le \theta \\ k_2 & |\theta - a| & \text{if } a > \theta \end{cases}$$

where $k_1 > 0$ and $k_2 > 0$ are constants. In a Bayesian setting, suppose that the random variable $(\theta \mid X = x)$ has finite mean for each x. Show that under this loss function, Bayes estimators are p^{th} quantiles of the posterior distribution, where p is a suitable function of k_1 and k_2 .

Problem 5.4

Given a fixed known integer r > 1, let X_{ij} , j = 1, ..., r and i = 1, ..., n be i.i.d. samples from $N(\mu_i, \sigma^2)$. Find the MLE of $\theta = (\mu_1, ..., \mu_n, \sigma^2)$, and show that it is inconsistent for σ^2 as $n \to +\infty$.

Problem 5.5

Let (X_1, \ldots, X_n) be an i.i.d. sample from the mixture distribution with density

$$f_{\theta}(x) = \theta f_1(x) + (1 - \theta) f_2(x),$$

where f_i , i = 1, 2 are two different known densities, and $\theta \in (0, 1)$ is unknown.

(a) Show that the conditions

$$\frac{1}{n} \sum_{i=1}^{n} \frac{f_1(X_i)}{f_2(X_i)} > 1$$
 and $\frac{1}{n} \sum_{i=1}^{n} \frac{f_2(X_i)}{f_1(X_i)} > 1$

are necessary and sufficient for the score equation (setting the derivative of the log likelihood to zero) to have a unique solution. Show that if there is a solution, then it is the MLE.

(b) Derive the MLE of θ when the score equation has no solution.