

Universidade Federal de Santa Catarina Centro Tecnológico – CTC Departamento de Engenharia Elétrica

"EEL7020 – Sistemas Digitais"

Prof. Eduardo Augusto Bezerra

Eduardo.Bezerra@eel.ufsc.br

Florianópolis, agosto de 2011.

Sistemas Digitais

"Prática: Chaves e Luzes"

Arquivo: lab1_VHDL.pdf parte I

Chaves e Luzes

- Placa DE2 possui 18 LEDs vermelhos denominados LEDR₁₇₋₀ e
 18 chaves denominadas SW₁₇₋₀
- As conexões entre esses componentes e os pinos do FPGA da placa estão definidas no arquivo DE2_pin_assignments.csv
- São utilizados "vetores" para facilitar o acesso aos LEDs e chaves da placa
- Exemplo: SW[0] é o elemento 0 do vetor SW, e está conectado ao pino PIN_N25 do FPGA
- No código em VHDL, usar sempre os nomes definidos no arquivo DE2_pin_assignments.csv

Chaves e Luzes

Código VHDL para "leitura" das chaves e "escrita" nos LEDs

```
library ieee;
use ieee.std_logic_1164.all;
entity part1 is
   port ( SW : in std_logic_vector(17 downto 0);
         LEDR: out std_logic_vector(17 downto 0)
end part1;
architecture behavior of part1 is
begin
   LEDR <= SW;
end behavior;
```

Tarefa a ser realizada na aula prática

Tarefa - Parte 1

- 1. Usar o tut_quartus_intro_vhdl.pdf como apoio.
- 2. Criar um novo projeto no Quartus II para o circuito VHDL.
- 3. Criar um novo arquivo VHDL, e usar a entity/architecture fornecida
- 4. Associar o arquivo *DE2_pin_assignments.csv* ao projeto e compilar o novo projeto.
- 5. Realizar o download do arquivo gerado para o FPGA da DE2 e testar a funcionalidade.

Tarefa – Parte 2

Alterar o código VHDL de forma a acender os LEDs verdes (LEDG) com as chaves 0 a 7, e os LEDs vermelhos (LEDR) com as chaves 8 a 15. Os demais LEDs vermelhos devem permanecer apagados.

```
library ieee;
use ieee.std logic 1164.all;
entity part1 is
   port ( SW : in std_logic_vector(17 downto 0);
         LEDR: out std logic vector(17 downto 0)
end part1;
architecture behavior of part1 is
begin
   LEDR <= SW;
end behavior;
```

Dicas para realizar as tarefas

Dicas Quartus II

- 1. File -> New Project Wizard
- 2. No "project wizard", seguir exatamente os mesmos passos do tutorial da última aula
- 3. File -> New -> VHDL File
- 4. Copiar o fonte VHDL do slide anterior para esse novo arquivo, e salvar.
- 5. Assignments -> Import Assigments (procurar e importar o arquivo DE2_pin_assignments.csv)
- 6. Com isso, os pinos do FPGA foram associados aos sinais da entity do VHDL
- 7. Compilar o VHDL (síntese)
- 8. ATENÇÃO!!! Verificar se o nome da entity é o mesmo nome do projeto, para evitar erros na síntese.
- 9. A compilação resulta em cerca de 400 warnings devido aos pinos não conectados do arquivo .csv

Para ir além: uso do LCD


```
library ieee;
use ieee.std_logic_1164.all;
entity LCD is
port (
   LCD_DATA: out std_logic_vector(7 downto 0);
               out std_logic;
   LCD RW:
   LCD EN:
               out std logic;
               out std logic;
               out std logic;
   LCD BLON: out std logic;
  SW:
               in std logic vector(17 downto 0)
end LCD;
architecture LCD WR of LCD is
begin
       LCD ON
                     <= SW(17);
                     <= SW(16);
       LCD_BLON
                    <= SW(7 downto 0);
       LCD DATA
       LCD RS
                     <= SW(8);
       LCD_EN
                     <= SW(9);
       LCD RW
                     <= SW(10);
                           EEL7020 - Sistemas Digitais
```

Passos para inicializar (configurar) o LCD:

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0011 1000	Comando
8	0	LCD_RS (0 = controle)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

- · ligar LCD
- ativar cursor e piscar

Passos para inicializar (configurar) o LCD:

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0000 1111	Comando
8	0	LCD_RS (0 = controle)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

- ligar LCD
- ativar cursor e piscar

Passos para inicializar (configurar) o LCD:

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0000 0110	Comando
8	0	LCD_RS (0 = controle)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

- ligar LCD
- ativar cursor e piscar

Passos para escrita (DADOS) no LCD:

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0100 0001	Dado 'A'
8	1	LCD_RS (1 = dados)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

Passos para limpar (apagar) o LCD:

Chave (SW)	Valor (posição da chave)	Efeito
17	1	LCD_ON
16	1	LCD_BLON
70	0000 0001	Comando
8	0	LCD_RS (0 = controle)
9	$0 \rightarrow 1 \rightarrow 0$	LCD_EN
10	0	LCD_RW

Tutorial

http://www.feng.pucrs.br/~jbenfica/curso/tutorial_lcd.pdf

http://www.lisha.ufsc.br/~bezerra/disciplinas/Microprocessadores/tools/LCD/LCD APLICATIVO.html

