Национальный исследовательский Университет ИТМО Мегафакультет информационных и трансляционных технологий Факультет инфокоммуникационных технологий

Математика

Типовая работа №4а

Работу выполнил: В.Д. Козлов

Группа: K3120 **Преподаватель:**

C.A.

Александрова

 $ext{Caнкт-} \Pi$ етербург 2020

Содержание

1.	Дано				
2.	Решение				
	2.1. Область определения				
	2.2. Тип функции				
	2.3. Рост функции				
	2.4. Выпуклость функции				
	2.5. Нахождение асимптот				
	2.5.1. Вертикальные асимптоты				
	2.5.2. Горизонтальные асимптоты				
	2.6. Найдем точки пересечения ф-ции с координатными осями				
	2.7. Найдем дополнительные точки				
	2.8. Начертим график				
3.	3. Листинг				
За	ключение				
Ct	тисок использованных исполников				

1. Дано

Проанализировать функцию

$$y = \frac{5x}{4 - x^2} \tag{1}$$

2. Решение

2.1. Область определения

Ф-ция определена при $\mathbf{x} \in \mathbb{R} \setminus \{-2; 2\}$

2.2. Тип функции

Ф-ция не явяляется переодической. Проверим ф-цию на четность четность/нечетность: $f(-x) = \frac{-5x}{4-x^2} \Rightarrow (f(-x) \neq f(x)) \cap (f(-x) = -f(x)) \Rightarrow$ ф-ция является нечетной

2.3. Рост функции

$$f' = \frac{(5x)'(4-x^2) - 5x(4-x^2)'}{(4-x^2)^2} = \frac{(5(4-x^2) - 5x(-2x))}{(4-x^2)^2} = \frac{20 - 5x^2 + 10x^2}{(4-x^2)^2} = \frac{5(x^2+4)}{(4-x^2)^2}$$

Таким образом,

$$f' = \frac{5(x^2+4)}{(4-x^2)^2}$$

График Данной функции будет выглядеть следющим образом [1]

Рисунок 2.1. График производной

Как видно из рис. 2.1, так и из самой функции производной можно с легкостью сделать вывод, что фунция возрастает на всей области определения

2.4. Выпуклость функции

Возьмем вторую производную, чтобы узнать промежутки, в которых ф-ция выпукла вверх/вниз

$$y'' = \frac{5((x^2+4)'(4-x^2)^2 - (x^2+4)((4-x^2)^2)')}{(4-x^2)^4} = \frac{10x(x^2+12)}{4-x^2}$$
$$y'' = \frac{10x(x^2+12)}{4-x^2}$$

График данной функции будет выглядеть следющим образом [1]

Рисунок 2.2. График второй производной

Из этого можно сделать вывод, что ф-ция выпукла вверх при $x \in (-\infty; -2) \cup (2; +\infty)$, а вниз во всех остальных точках определения ф-ции

2.5. Нахождение асимптот

2.5.1. Вертикальные асимптоты

 ${
m T. \kappa.}$ ф-ция не определена при $x=\pm 2,$ то целесообразно проверить эти точки на наличиеа асимптот:

$$\lim_{x \to 2-0} \frac{5x}{4 - x^2} = +\infty \qquad (2) \qquad \lim_{x \to 2+0} \frac{5x}{4 - x^2} = -\infty \qquad (3)$$

Из (2) и (3) следует, что x=2 - вертикальная асимптота.[2]

$$\lim_{x \to -2 - 0} \frac{5x}{4 - x^2} = +\infty \tag{4}$$

$$\lim_{x \to -2 + 0} \frac{5x}{4 - x^2} = -\infty \tag{5}$$

Из (4) и (6) следует, что x = -2 - вертикальная асимптота.

2.5.2. Горизонтальные асимптоты

Проверим существованит (найдем) горизонатальные асимптоты:

$$\lim_{x \to \infty} \frac{5x}{4 - x^2} = \frac{5}{\infty} = 0 \tag{6}$$

Из (6) следует, что у=0 - горизонатальная асимптота

2.6. Найдем точки пересечения ф-ции с координатными осями

$$Ox: \frac{5x}{4-x^2} = 0 \Rightarrow x = 0$$
 $Oy: y(0) = 0$

2.7. Найдем дополнительные точки

X	1	1.5	3	5
Y	$\frac{5}{3}$	$\frac{30}{7}$	-3	$-\frac{25}{21}$

Нам этих точек хватит, так как ф-ция нечетная, что мы выяснили в секции 2.2

2.8. Начертим график

Рисунок 2.3. график для (1)

3. Листинг

Это код, который был использован для создания рис. 2.3

```
def f(x):
1
         return (5*x / (4-x**2))
2
3
     def main():
         #init figure
5
         fig = plt.figure()
         y = f(x)
         #clear vert. asymptots
         y[y>30] = np.inf
9
         y[y \leftarrow 30] = -np.inf
10
         #plot main graphic
11
         plt.plot(x, y)
12
         #plot horizontal asymptots
13
         for i in [-2, 2]:
14
             plt.axvline(x=i, linestyle='dashed', color="black")
15
         #plot vertical asymptots
16
         plt.axhline(0, linestyle='dashed', color="black")
17
         #configuring plot size
18
         plt.xlim(-5, 5)
19
         plt.ylim(-20, 20)
20
         #saving picture
21
         fig.savefig("mainPlot.eps", format = "eps", dpi = 1200)
22
23
24
     if __name__ = '__main__':
25
         main()
26
```

Листинг 1: Питон - в массы)))

Заключение

В ходе проделанной типовой работы я смог проанализировать поведение ф-ции и построить её график, используя matplotlib

Список использованных источников

- $1. \quad \text{Matplotlib Documentations.} \text{URL:} \\ \text{https://matplotlib.org/3.3.3/contents.html/.} \\$