Exercícios do Elon

Renan Wenzel June 23, 2022

Contents

1	Cap	oítulo 3															;
	1.1	Exercício 1	 														
	1.2	Exercício 2	 														
	1.3	Exercício 3	 														
	1.4	Exercício 4	 														
2	Cap	oítulo 7															(

1 Capítulo 3

1.1 Exercício 1

Enunciado. Seja $f: X \to Y$ uma função. A imagem inversa por f de um conjunto $B \subset Y$ é o conjunto $f^{-1}(B) = x \in X: f(x) \in B$. Prove que vale sempre $A \subset f^{-1}(f(A))$ para todo $A \subset X$ e $f(f^{-1}(B)) \subset B$ para todo $B \subset Y$. Prove também que f é injetora se, e somente se, $f^{-1}(f(A)) = A$ para todo $A \subset X$. Analogamente, mostre que f é sobrejetora se, e somente se, $f(f^{-1}(B)) = B$ para todo $B \subset Y$.

1.2 Exercício 2

Enunciado. $f: X \to Y$ é injetora se, e somente se, existe uma função $g: Y \to X$ tal que g(f(x)) = x para todo $x \in X$.

Comecemos pela implicação

```
" Se f: X \to Y é injetora, então existe uma função g: Y \to X tal que g(f(x)) = x para todo x \in X."
```

A ideia aqui é que nós definamos uma "coisa" $g: Y \to X$ tal que g(f(x)) = x para todo $x \in X$ que nós ainda não sabemos se é uma função ou não. A partir disso, vamos mostrar que, de fato, essa g é uma função. Em outras palavras, mostrar que ela é bem-definida (o que significa que se $y_1 = y_2$, então $g(y_1) = g(y_2)$).

A priori, suponha que $y_1 = y_2$, mas $g(y_1) \neq g(y_2)$. Suponha também que y_1, y_2 pertencem à imagem da função f. Em outras palavras, $y_1 = f(x_1), y_2 = f(x_2)$ para algum $x_1, x_2 \in X$. Neste caso, se $g(y_1) \neq g(y_2)$, então $g(f(x_1)) = x_1 \neq x_2 = g(f(x_2))$. No entanto, isso é uma contradição, pois f é injetora, tal que $y_1 = y_2$ implica que $f(x_1) = f(x_2)$.

Agora, lidemos com o caso em que y_1, y_2 não pertencem à imagem de f. Com isso, podemos definir a função g da maneira que desejarmos, pois o caso que importa é quando ela é aplicada a algum elemento da imagem de f. Assim, definindo, por exemplo, g(y) = 1 para todo y fora da imagem de f. Então, se $y_1 = y_2$, segue que $g(y_1) = 1 = g(y_2)$, tal que a função está, de fato, bemdefinida.

Resta lidar com a outra implicação, isto é,

Se existe uma função $g:Y\to X$ tal que g(f(x))=x para todo $x\in X,$ então f é injetora.

Explicitamente, precisamos mostrar que se $f(x_1) = f(x_2)$, então $x_1 = x_2$. De fato, suponha que $f(x_1) = f(x_2)$. Aplicando g, segue que:

$$x_2 = g(f(x_2)) = g(f(x_1)) = x_1.$$

Portanto, a função é injetora. □

1.3 Exercício 3

Enunciado. Se $f: X \to Y$ é sobrejetora, então existe uma função $g: Y \to X$ tal que f(g(y)) = y para todo $y \in Y$.

Vamos mostrar que se $f: X \to Y$ é sobrejetora, existe uma função $g: Y \to X$ tal que f(g(x)) = x para todo $x \in X$ de maneira análoga ao exercício anterior. Com efeito, suponha que $g(y_1) \neq g(y_2)$. Então, $y_1 = f(g(y_1)) \neq f(g(y_2)) = y_2$, tal que g está bem-definida para todo y em Y, pois ambos eram arbitrários, completando a prova.

Por outro lado, suponha que existe uma função $g:Y\to X$ tal que f(g(y))=y para todo $y\in Y$. Note que g(y) é, por definição de g, um elemento de X. Em outras palavras, dado $y\in Y$, podemos escrever y como f(g(y)), ou seja, todo elemento de Y pode ser escrito como a f aplicada a um elemento de X. Portanto, f é sobrejetora. \square

1.4 Exercício 4

Enunciado. Dada uma função $f: X \to Y$ e $g, h: Y \to X$ tais que g(f(x)) = x para todo $x \in X$ e f(h(y)) = y para todo $y \in X$. Prove que g = h.

Seja $y \in Y$. Como h é tal que f(h(y)) = y, segue que f é sobrejetora. Analogamente, como g é tal que g(f(x)) = x, f é injetora. Assim, temos:

$$h(y) = g(f(h(y))) = g(y).$$

Portanto, como y era um elemento qualquer, segue que h = g. \square

2 Capítulo 7

Enunciado. Diz-se que o número real α é uma raíz de multiplicidade m do polinômio p(x) quando se tem $p(x) = (x - \alpha)^m q(x)$, com $q(\alpha) \neq 0$. Se m = 1 ou m = 2, ela é chamada raíz simples ou dupla, respectivamente. Prove que α é uma raíz simples se, e somente se, $p(\alpha) = 0$ e $p'(\alpha) \neq 0$ e que α é uma raíz dupla se, e somente se, $p(\alpha) = p'(\alpha) = 0$ e $p''(\alpha) \neq 0$. Generalize.

Suponha que é válido para n-1, isto é, α é uma raíz de multiplicidade n-1. Explicitamente, isso significa que

$$p(x) = (x - \alpha)^{n-1}q(x)$$

implica em $p^{(n-1)}(\alpha)=(n-1)!q^{(n-1)}(\alpha)\neq 0$. Suponha que α é uma raíz de multiplicidade n. Então, $p^i(x)=i!(x-\alpha)^{n-1-i}q^i(\alpha)$, tal que

$$p^{i}(\alpha) = i!(\alpha - \alpha)^{n-1-i}q^{i}(\alpha) = 0.$$

No entanto, em i = n, temos:

$$p^n(\alpha) = n!q^n(\alpha) \neq 0$$
,

mostrando o que queríamos. Por outro lado, suponha que $p^i(\alpha)=0$ para todo $0 \le i < n$ e $p^n(\alpha) \ne 0$. Então, disto segue:

$$p(x) = (x - \alpha)^m.$$

Definindo q(x) = 1, temos $p(x) = (x - \alpha)^m q(x)$ com $q(\alpha) \neq 0$. Portanto, α é uma raíz de multiplicidade n do polinômio p(x).