Homework Assignment 12 [30 points]

STAT430 Unsupervised Learning - Fall 2021

<u>Due</u>: Friday, November 19 on Compass at 11:59pm CST.

<u>Case Study 1 and 2:</u> See Jupyter notebooks.

Parts 3 and 4: See this pdf.

Problem	Points		
Case St			
1.1	1		
1.2	0.75		
1.3	1		
1.4	1.5		
1.5	1		
1.6	1		
1.7	1.5		
2.1	2		
2.2	0.5		
Case Study 2			
1	0.25		
2.1	0.5		
2.2	0.75		
3.1	0.75		
3.2	0.25		
3.3	1		
3.4.1	0.5		
3.4.2	0.75		
3.5	0.5		
3.6	2		
Part 3			
3.1	4		
3.2	1		
Part 4			
4.1	2		
4.2	1.5		
4.3	2		
4.4	2		

Part 3: Mini-Batch k-Means Clustering ("By Hand")

Basic Parameters

We would like to cluster the following full dataset below using Mini-Batch k-Means:

- into k=2 clusters,
- using random batches of size 3.

Centroid Reassignment Subroutine

We would also like to use the version of Mini-Batch k-Means that uses the centroid reassignment subroutine.

- We are using a reassignment ratio of 1/3.
- If this subroutine is activated for a given centroid, then you should "randomly" re-assign that centroid to one of the objects in the current batch and reset the centroid counter $v[c_k]$ for that centroid to be 0.
- For the purpose of this assignment, if you have to "randomly" re-assign a centroid, then you should assign it to first object in the current random batch (ie. the object with the lowest index).

	Dataset		
	х	у	
Object 1	0	0	
Object 2	0	1	
Object 3	0.5	0.5	
Object 4	0.5	1	
Object 5	1	0	
Object 6	2	1	
Object 7	2.5	1	
Object 8	2.5	1.5	
Object 9	3	1	
Object 10	3	2	

We have already run several iterations (ie. random batches) of the algorithm. The current values of the following objects in the algorithm are given below.

a) Centroids:

$$c_1 = (1.2, 0.75)$$

o
$$c_2 = (1.75, 1.5)$$

b) Centroid Counters:

$$v[c_1] = 70$$

o
$$v[c_2] = 20$$

- **#3.1.** Suppose we have now just begun the *last* iteration of the algorithm. Our final random batch is comprised of objects 1, 2, and 10. Complete the rest of this iteration and give:
 - a) the final location of the two centroids c_1 and c_2 and
 - b) the final centroid counter values $v[c_1]$ and $v[c_2]$.

#3.2. Now that we have completed the final iteration of the Mini-Batch k-Means algorithm, we would like to read in ALL of the objects from the dataset one final time and give each of these objects a final cluster label using the method that we described in class. Give the final cluster labels for each of the 10 objects below.

Part 4: Spectral Clustering ("By Hand")

We would like to cluster the following dataset below using spectral clustering methods.

	Dataset	
	x	У
Object 1	1	0
Object 2	2	0
Object 3	3	0
Object 4	4	0
Object 5	4	0.5
Object 6	5	0.5
Object 7	6	0.5
Object 8	7	0.5

First, we would like to cluster this dataset, by using an affinity matrix generated using the 0/1 KNN approach.

#4.1. First, create an affinity matrix from this numerical dataset using the 0/1 KNN approach with k=3. After you have created this affinity matrix, force it to be symmetric using the method that we described in class. This *symmetric* affinity matrix will be the one that we use for the rest of part 2.1.

#4.2. Represent this symmetric affinity matrix from 2.1.1 as a weighted complete graph, where only the edges with non-zero edge weights are visualized. Next to each of the non-zero edge weights write down the corresponding edge weight.

#4.3. Given the graph in 4.2, out of all possible bi-partitions of the 8 objects that you could make (ie. all possible clusterings with 2 clusters), what bi-partition will create the minimum normalized cut? What is this minimum normalized cut value?
#4.4. Calculate the normalized Laplacian of the affinity matrix from 4.2.