NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

Department of Computer Science and Engineering

ARTIFICIAL INTELLIGENCE IN ANTI-VIRUS TECHNOLOGY

Guide: Mr K Vinay Kumar

By: Team 09UG19

Madhuri Shanbhogue (09CO47)

Adarsh Pradhan JMT (09CO04)

M C Harshavardhana (09CO45)

PROBLEM DEFINITION AND OBJECTIVE

- Problem Definition: Currently used AI techniques detect large number of false positives
- Objective: Reduce the number of false positives using Learning techniques.

SIGNATURE BASED DETECTION

- Use of virus gene library
- 3,00,000 signatures
- Advantages
 - Fast
 - Available signatures
- Disadvantages
 - Cannot detect viruses without signatures

STATIC HEURISTIC SCANNING

- Search for behavior by static code analysis
- Challenges
 - Metamorphic (Obfuscation)
 - Polymorphic (Encryption)
- Obfuscation types
 - Register reassignment
 - Dead Code Insertion
 - Code Transposition
 - Code Substitution
- Obfuscation Handling
 - Regular Expression
 - Control Flow Graph
- Advantages
 - Not computation intensive


```
Code snippet

E800 0000 00(90)*

5B(90)* 8D4B

42(90)* 51(90)*

50(90)* 50(90)*

0F01 4C24 FE(90)*

5B(90)* 83C3 C(90)*

FA(90)*8B2B
```

DYNAMIC HEURISTIC SCANNING

- Decision parameters
 - System calls
 - Unusual destination
 - Analysis of file types and file system
 - Analysis of memory usage buffer overflow analysis, system registery
 - Access of executables, mutex
 - Access of disk
 - Replication
 - Attempts to hide other files
 - Attempts to terminate programs
 - Attempts to open other executables.

DYNAMIC HEURISTIC SCANNING

- Implementation Details
 - Sandbox Environment
 - Reports of malware binaries
- Advantages
 - Can detect encrypted viruses
 - Sandboxing helps in CPU emulation without affecting the system
- Disadvantages
 - CPU Emulation is expensive

MACHINE LEARNING

MACHINE LEARNING

- Prototype Extraction Gonzalez algorithm O (kn)
 - K number of prototypes, n number of reports
- Clustering using prototypes
 - Complete linkage O(k^2 log k + n)
 v/s
 - hierarchical clustering O(n^2 log n)
 - Speed-up factor of square root n/k
- Classification
 - Clustered malware classes used for training and learning behavior
 - O (kn)
- Incremental analysis
 - Better than batch analysis
 - Uses prototypes stored from previous runs
 - O(nm + k^2 log k)
 - M number of prototypes from previous run

RESULTS AND ANALYSIS

	Signature Matching	Static Heuristic Scanning	Dynamic Heuristic Scanning	Artificial Learning
Detection of known virus				
Detection of unknown viruses	Fails when signature is unavailable			62%
Robustness	Fails when signature is unavailable			
False positives	No false positives			Reduces false positives
High speed detection			Requires CPU emulation	Learning algorithms consume time
Detect metamorphic/ oligomorphic viruses	Fails since virus encrypts itself			Efficient only after detection by heuristic scanning
Obfuscation	Fails since virus obfuscates itself			After heuristic scanning

RESULTS AND ANALYSIS

Technique	F-measure	
Clustering using	0.950	
Prototype		
Classification using	0.981	
Prototype		
Classification using	0.807	
SVM and XML		

$$Precision = \frac{tp}{tp + fp}$$
$$Recall = \frac{tp}{tp + fn}$$

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- Precision how well individual clusters agree with malware classes
- Recall extent to which classes are scattered across clusters
- Inverse relation between Precision and Recall
- F-measure Combines Precision and Recall
 - 1 => perfect classification
 - 0 => completely incorrect classification

SCREENSHOTS

References

- Chamorro, E.; Jianchao Han; Beheshti, M.; , "The Design and Implementation of an Antivirus Software Advising System," *Information Technology: New Generations (ITNG)*, 2012 Ninth International Conference on , vol., no., pp.612-617, 16-18 April 2012
- Wei Wang; Pengtao Zhang; Ying Tan; Xingui He; , "A Hierarchical Artificial Immune Model for Virus Detection," *Computational Intelligence and Security, 2009. CIS '09. International Conference on*, vol.1, no., pp.1-5, 11-14 Dec. 2009
- Xiao-bin Wang; Guang-yuan Yang, Yi-chao Li, Dan Liu (2008). "Review on the application of artificial intelligence in antivirus detection system," *Proc of 2008 IEEE Conference on Cybernetics and Intelligent Systems*, 506-509.
- Charles P. Pfleeger, Shari Lawrence Pfleeger. "Program Security," in *Security in Computing*, 3rd ed., Prentice Hall, pp.15-67, Dec. 2002.
- *ClamAV User Manual*, 2007 2011 Sourcefire, Inc. Authors: Tomasz Kojm
- Symantec Corporation, Understanding Heuristics (1997). "Symantec's Bloodhound Technology," Symantec White Paper Series.

Appendix 1 - Implementation of Signature Based Detection

- Use of ClamAV engine
- Provides an API libClamAV
- Provides an inmemory database of signatures
- Provides regular updates to two database files
 - main.cvd
 - daily.cvd

Appendix 2 - DEPENDENCY BASED CLASSIFICATION

Computer Architecture Dependency

CPU Dependency

Operating System Dependency

File format Dependency

Date and Time Dependency

Multipartite viruses

Appendix 3 - BEHAVIOR BASED CLASSIFICATION

Appendix 4 - HEURISTIC SCANNING PARAMETERS

- Output using sample data
- Unusual destination
- File types and File System
- Memory Usage Buffer overflow analysis, system registry
- Access of executables
- Access of disk
- Replication
- Attempts to hide other files
- Source code content matched using wild card characters

Appendix 5 - IMPLEMENTATION OF HEURISTIC SCANNING

Heuristic Scanning Static Heuristic Scanning Dynamic Heuristic Scanning Scanning without executing Monitors calls to operating systems Static code analysis Requires CPU Emulation Exhaustive search of all code snippets Robust yet time consuming not possible