- 1 Find and simplify the first three terms in the expansion of $(2-3x)^6$ in ascending powers of x. [4]
- 2 A sequence u_1, u_2, u_3, \dots is defined by

$$u_1 = 3$$
 and $u_{n+1} = 1 - \frac{1}{u_n}$ for $n \ge 1$.

- (i) Write down the values of u_2 , u_3 and u_4 . [3]
- (ii) Describe the behaviour of the sequence. [1]

3

The diagram shows a sector AOB of a circle with centre O and radius 8 cm. The area of the sector is $48 \, \text{cm}^2$.

- (i) Find angle *AOB*, giving your answer in radians. [2]
- (ii) Find the area of the segment bounded by the arc AB and the chord AB. [3]
- 4 The cubic polynomial $ax^3 4x^2 7ax + 12$ is denoted by f(x).
 - (i) Given that (x-3) is a factor of f(x), find the value of the constant a. [3]
 - (ii) Using this value of a, find the remainder when f(x) is divided by (x + 2). [2]

© OCR 2008 4722/01 Jun08

5

The diagram shows the curve $y = 3 + \sqrt{x+2}$.

The shaded region is bounded by the curve, the y-axis, and two lines parallel to the x-axis which meet the curve where x = 2 and x = 14.

(i) Show that the area of the shaded region is given by

$$\int_{5}^{7} (y^2 - 6y + 7) \, \mathrm{d}y. \tag{3}$$

(ii) Hence find the exact area of the shaded region.

[4]

6

In the diagram, a lifeboat station is at point A. A distress call is received and the lifeboat travels 15 km on a bearing of 030° to point B. A second call is received and the lifeboat then travels 27 km on a bearing of 110° to arrive at point C. The lifeboat then travels back to the station at A.

(i) Show that angle
$$ABC$$
 is 100° . [1]

(ii) Find the distance that the lifeboat has to travel to get from
$$C$$
 back to A . [2]

(iii) Find the bearing on which the lifeboat has to travel to get from
$$C$$
 to A . [4]

7 (a) Find
$$\int x^3(x^2 - x + 5) dx$$
. [4]

(b) (i) Find
$$\int 18x^{-4} dx$$
. [2]

(ii) Hence evaluate
$$\int_2^\infty 18x^{-4} dx$$
. [2]