Gradient Segmentation

Segmentation

- To quantify cell shape and motion, cells must be identified in 3D and then tracked over time
 - Velocity
 - Distance
 - Dendrite Extension
 - Cell-Cell interacions
- Many programs exist to do this, with varying levels of success

Imaris Algorithm

- On 1 channel, set a threshold separating foreground and background
- Smooth off corners, filter small objects
- Watershed transform to separate touching objects
 - Relies on indentation points

Problems with Imaris Segmentation

- Assumes spherical cells that are slightly touching
- Assumes sharp change in intensity on cell boundaries

- Aortic Macrophages:
 - Low resolution
 - 0-1 pixels between cells
 - Many true double positives, with small difference in ratio of fluorophores
 - Thresholding on GFP or YFP will always pick up both cells
 - Using GFP/YFP or YFP/GFP ratio is very noisy and condenses all double positives into a small range
 - Dendritic-shaped with indentation points that do not correlate to cell boundaries

Imaris Segmentation- Giant Errors

Errors

Errors

Macrophage Segmentation

 Often the boundary between cells isn't defined by a sharp change in GFP or YFP intensity, but a change in the apparent color

- Need a segmentation algorithm that:
 - Uses both GFP and YFP information simultaneously (NOT the ratio)
 - Blind to shape

Dynamic Color Gradient Segmentation

Unsupervised color image segmentation using a dynamic color gradient thresholding algorithm

Guru Prashanth Balasubramanian*^a, Eli Saber^a, Vladimir Misic^b, Eric Peskin^a, Mark Shaw^c

Human Vision and Electronic Imaging XIII, edited by Bernice E. Rogowitz, Thrasyvoulos N. Pappas, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6806, 68061H, © 2008 SPIE-IS&T · 0277-786X/08/\$18

Original

Segmented

Dynamic Color Gradient Segmentation

- Uses multiple color gradients simultaneously
- Includes "texture" (measure of variance within a cell)
 - Dim cells have more "texture" than bright cells

- My adaptations:
 - 3D instead of 2D
 - Does not process background pixels to greatly increase efficiency
 - Multiple rounds of processing to better incorporate known facts about cells

Algorithm Overview

Fig. 2. Flowchart of the proposed algorithm.

1- Remove Background

- In Imaris, make surfaces over GFP+YFP channel to cover cell volume
- Mask those pixels and force all background pixels to be 0
- Import the cleaned GFP and YFP data into Matlab

2- Calculate 2D dual color gradient maps

- For each pixel calculate the total gradient in both colors in 2D
- Set all background pixels to 0 without calculating

3- Enhance the Gradient Map

- Using a combination of high, low, and middle thresholds, increase the contrast on the gradient map
 - Some are set automatically, some are set manually and will need to be tweaked

4- Seed generation

- Find regions below a threshold on the 2D gradient map (even color in raw data)
- These are the starting seeds of region growing
 - Size and threshold can be adjusted

5- Region Growing

- Increase the max threshold on the gradient map
- For each newly selected area, decide if it should be merged with an existing region or start it's own region
 - Based on size and comparison of median intensity of GFP and YFP

6- Region Merging Round 1

- Region growing results in a highly oversegmented image (~3000 regions / timepoint in this example)
 - If neighboring cells are merged here, stop and change some variables
- In 3D, make a graph of all adjacent neighbor regions
- For each touching pair, compute a similarity measure:

$$S_{A,B} = (\mu_A - \mu_B)^T * inv(cov_A + cov_B) * (\mu_A - \mu_B)$$
 Difference in mean Texture, or covariance intensities in both channels between GFP and YFP

Lower means more similar

 Result is a list of similarities measurements between touching regions

6- Region Merging

- Merge the most similar regions (balance efficiency vs accuracy)
- Iteratively repeat calculating connections graph and similarity measurements until smallest similarity measure is above a threshold
 - Most sensitive variable in the program

• Regions are now in 3D

7- Smart Region Clean Up

- Forcibly merge regions to most similar touching neighbor that fail certain criteria:
 - Minimum size
 - Landlocked- Completely enclosed by one or more cells
 - Does not apply to all potential imaging, but does work for atherosclerotic macrophages

8- Region Merging Round 2

 Repeat merging procedure on "cleaned up" regions to the same threshold

9- Form Surfaces

- For each identified region, import the intensity of the voxels back into Imaris, and have Imaris create a surface around it
 - Smoother than having Matlab do it

Improvements with this algorithm

Improvements

Errors in this algorithm

Raw

Imaris Default

Color Gradient

