Corso di Laurea in Informatica - A.A. 2016 - 2017 Esame di Fisica - 24/07/2017

Esercizio 1

In un sistema di assi cartesiano (x, y) siano dati i punti A=(2,4), B=(6,1) e C=(6,4). Scrivere i vettori: \vec{r}_{AB} che va dal punto A al punto B, \vec{r}_{AC} che va dal punto A al punto C. Calcolare inoltre il prodotto scalare $\vec{r}_{AB} \cdot \vec{r}_{AC}$.

Esercizio 2

Nel piano xy vi è una carica q_1 in (0,0) ed una seconda carica q_2 in (a,b), con a,b>0, inizialmente ferme. Risolvere i seguenti punti.

- a) Calcolare il vettore campo elettrico in (0,0) dovuto alla carica q_2 , ossia $\vec{E_2}(0,0)$.
- b) Calcolare il potenziale elettrico generato dalla carica q_1 nel punto dove si trova la carica q_2 .
- c) Quanto vale la carica q_2 se il lavoro fatto contro il campo elettrico per portarla dall'infinito a (a,b), quando la carica in (0,0) è già presente, è $L=k_e\frac{q_1^2}{a}$?

Si consideri ora il caso in cui le cariche si muovono con velocità $\vec{v_1} = V_1 \vec{j}$ (carica q_1) $\vec{v_2} = V_2 \vec{j}$ (carica q_2).

- d) Calcolare il vettore campo magnetico $\vec{B}_2(0,0)$ generato dalla carica q_2 nell'origine.
- e) Calcolare la forza dovuta al campo magnetico sulla carica q_1 .

Esercizio 3

Nel circuito in figura tutti i resistori valgono $R=10~\mathrm{k}\Omega$, le f.e.m. valgono rispettivamente $\varepsilon_1=V_0$, $\varepsilon_2=2V_0$ con $V_0=20~\mathrm{V}$ e le capacità $C=10~\mathrm{nF}$.

Inizialmente l'interruttore T è chiuso in posizione A ed il circuito è in condizioni stazionarie. Successivamente l'interruttore T viene aperto portandolo in posizione B. Determinare la potenza erogata dalla f.e.m. ε_1 e la corrente nel resistore R_3 nei seguenti istanti:

- a) immediatamente prima dell'apertura di T;
- b) subito dopo l'apertura di T;
- c) quando si raggiunge la nuova condizione di stazionarietà.

(Sostituire i valori numerici solo alla fine dello svolgimento).

