	Utech
Name:	
Roll No.:	To deposit (by Executing and Explaint)
Invigilator's Signature :	

CS/B.Tech (FT)/SEM-7/FT-703A/2010-11 2010-11 ENZYME TECHNOLOGY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Lipase is the example of
 - a) Oxidoreductase
- b) Transferase
- c) Hydrola
- d) Ligase.
- ii) In case of non-competitive inhibition, change in
 - a) both K_m and V_m lower down
 - b) increase both V_m and K_m
 - c) increase V_m , but K_m remains constant
 - d) increase K_m , but V_m remains constant.

7220 [Turn over

CS/B.Tech (FT)/SEM-7/FT-703A/2010-11

iii)	k_{La}	depends on		4										
	a)	agitation	b)	liquid depth										
	c)	power number	d)	all of these.										
iv)	Peni	cillin is the example of												
	a) growth associated product													
	b)	non-growth associated product												
	c) mixed growth associated product													
	d)	none of these.												
v)	Whe	n metal ion is tightly	bour	nd with enzyme that is										
	calle	ed												
	a)	metalozyme	b)	metal enzyme										
	c)	holoenzyme	d)	metazyme.										
vi)	The	binding force in phy	/sical	adsorption method of										
	enzy	me immobilization is												
	a)	weak	b)	moderate										
	c)	strong	d)	very strong.										
7220		2												

- vii) Which of the following processes is based on specific chemical interactions between solute molecules and ligands?
 - a) Adsorption chromatography
 - b) Ion-exchange chromatography
 - c) Affinity chromatography
 - d) HPLC.
- viii) Electrodialysis is a/an
 - a) membrane separation process
 - b) electrolytic separation process
 - c) physical separation process
 - d) none of these.
- ix) Precipitation of proteins can be achieved by adding
 - a) PEG-Dextran
- b) Ammonium sulphate
- c) Sucrose
- d) None of these.
- x) Which of the following techniques can be used to remove bacterial cells ($0\!\cdot\!1$ to 10 μm in width) from the process fluid ?
 - a) Ultrafiltration
- b) Reverse osmosis
- c) Microfiltration
- d) Dialysis.

CS/B.Tech (FT)/SEM-7/FT-703A/2010-11

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. Write the advantages of enzyme immobilization. Write four applications of immobilized enzymes. 3+2
- 3. Discuss the application of recombinant DNA technique to enzyme technology.
- 4. What factors would you consider for scaling up a fermenter? What do you mean by chemostat and terbidostat?
- 5. a) "It is easy to purify an extracellular enzyme than an intracellular enzyme." Justify.
 - b) Why is immobilized enzyme beneficial than free enzyme? 2+3
- 6. What are the major steps involved in the separation and purification of intracellular enzymes?

7220 4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 7. a) The kinetics of inactivation of polyphenol oxidase in mushroom to be first order and the rate constants at 50° C, 55° C and 60° C are 0.019 min⁻¹, 0.054 min⁻¹ and 0.134 min⁻¹ respectively. Calculate activation energy, z value and Q_{10} value for the inactivation of polyphenol oxidase in mushrooms.
 - b) What do you know about enzymatic inhibition ?

 Describe different types of enzymatic inhibition with schematic diagrams.
 - c) The following data were obtained from enzymatic reaction at different substrate concentrations.

S (mg/	L).	10	20	30	50	60	80	90	110	130	140	150
V (mg/L	–h)	5	7.5	10	12.5	13.7	15	15	12.5	9.5	7.5	5.7

- i) What type of inhibition is this?
- ii) Determine the constants V_m , K_m and K_{si} .
- iii) Determine the reaction rate at [S] = 70 mg/L.

4 + 5 + 6

- 8. a) Prove that $D = \mu$, under steady state condition in a continuous type bioreactor, where D is dilution rate and μ is the specific growth rate.
 - b) Consider the scale-up of a fermentation from a 10 L to 10,000 L vessel. The small fermenter has a height to diameter ratio of 3. The impeller diameter is 30% of the tank diameter. Agitator speed is 500 rpm and three Ruston impellers are used. Determine the dimensions of the large fermenter and agitator speed for
 - i) constant P/V
 - ii) constant impeller tip speed
 - iii) constant Reynolds number.
 - c) The air supply to a fermenter was turned off for a short period of time and then restarted. A value for C^* of $7.3 \, \text{mg/L}$ has been determined for the operating conditions. Use the tabulated measurements of dissolved oxygen (DO) values to estimate the oxygen uptake rate and k_{La} in this system.

	Air off						Air on											
Time (min)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
DO (mg/L)	3.3	2.4	1.3	0.3	0.1	0.0	0.0	0.3	1.0	1.6	2.0	2.4	2.7	2.9	3.0	3.1	3.2	3.2

3 + 4 + 8

7220 6

- 9. What should be the characteristics of an ideal matrix? How Volumetric Oxygen Transfer Coefficient k_{La} is determined by sulphite oxidation method. What are the disadvantages of this method? 5 + 7 + 3
- 10. Draw a neat sketch of a reactor. What is the function of a sparger and impeller in a reactor? With diagram show the difference between Bubble column and Loop reactor. 5+5+5
- 11. What are the methods of immobilization ? Prove during centrifugation terminal velocity of the particle is $U_O = \left[gDp^2\rho_p \rho_f\right]/18\mu. \qquad \qquad 8+7$

7220 7 [Turn over