Cryptography Final Report PRIMES is in P

臺灣大學資訊工程學系 B04902012 劉瀚聲

在得知這學期的密碼學報告可以自選相關主題時,腦海中浮現的第一選擇,便是這篇「PRIMES is in P」。質數在大多數的密碼系統中,往往是相當重要的一環。身爲一個資工系學生,目前的研究領域又是關於演算法與複雜度,這篇論文一直在我的 Wishing List 的前幾位。PRIMES 屬於 coNP 相當顯然,但 PRIMES 在 NP内並不直觀。可以想像,這篇論文的在 2002 年的發表震驚了多少猜測 PRIMES 屬於 NP-Complete 或 coNP-Complete 的學者。

一些教授和網路上大多數的網友對這篇論文的評價都是「直白易懂」、「半小時 内可以讀完」之類。但我親自讀之後,並不覺得它有傳聞中的那麼簡單。除了某些 引理用到了一些我不曾學過的定義和性質(如分圓多項式等),相對影響較大的, 是裡面某些推導或敘述並沒有給出詳細的原因,試著把敘述的正確性證明一次,卻 發現原因並不顯然等諸如此類的情況。像這樣的心得,會以腳註的方式寫在報告 中。

爲了證明自己有學到東西,這篇報告是用中文寫成,至少能表示有理解論文的内容而不是抄襲而得。此外,也把證明的架構改成自己比較喜歡的形式。我所讀過的論文,大多是 Top-down 的架構。在這篇報告中,定理會在後面的其他節證明,而引理會在當節的最後證明。如此一來,讀者在熟悉整個證明之前,便可以先了解證明的架構、知道每一個定理與引理在證明中的地位,之後再選擇想了解的定理與引理閱讀其證明。

0 Notation

1 Overview

Algorithm 1.1 判定質數的算法

O Input: integer n > 1.

- 1 If $n=a^b$ for some $a\in\mathbb{N}$ and b>1, output COMPOSITE.
- 2 Find the smallest r such that $o_r(n) > \lg^2 n$.
- 3 If 1 < (a,n) < n for some $a \le r$, output COMPOSITE.
- 4 If $n \leq r$, output PRIME.
- 5 For a from 1 to $\lfloor \sqrt{\phi(r)} \lg n \rfloor$ do: If $(X+a)^n \not\equiv X^n + a \pmod{X^r-1,n}$, output COMPOSITE
- 6 Output PRIME.

Theorem 1.2 當算法 1.1 輸出 COMPOSITE 時,n 爲合數

第2節爲定理1.2之證明。

Theorem 1.3 當算法 1.1 輸出 PRIME 時,n 爲質數

第3節爲定理1.3之證明。

Theorem 1.4 算法 1.1 的時間複雜度爲 $O(\lg^{12} n)$

第4節爲定理1.4之證明。

定理 1.2 及定理 1.3 保證了算法的正確性。而由於輸入規模爲 $\lg n$,定理 1.4 保證了算法的運行時間爲多項式時間。故算法 1.1 是一個 PRIME 的多項式時間算法。

2 Correctness When Output COMPOSITE

當算法在第 1 步或第 3 步輸出 COMPOSITE 時,n 是合數,因爲第 1 步的 a 和第 3 步的 (a,n) 會是一個 n 的非平凡因數。

Lemma 2.1
$$a \in \mathbb{Z}$$
, $n \in \mathbb{N}$, $n \ge 2$, $(a, n) = 1$,那麼 n 為質數若且唯若
$$(X + a)^n \equiv X^n + a \pmod n$$

當算法在第 5 步輸出 COMPOSITE 時,表示 $(X+a)^n \not\equiv X^n + a \pmod{X^r} - 1, n$,因此 $(X+a)^n \not\equiv X^n + a \pmod{n}$ 。根據引理 2.1,n 爲合數。

2.1 Proof to Lemma 2.1

根據二項式定理, $\forall 0 < i < n$, $(X+a)^n$ 中 X^i 的係數為 $C_i^n a^{n-i}$,而 X^n 的係數顯然同餘。

(1) n 爲質數

由於 $\forall 0 < i < n$, $C_i^n = \frac{n!}{i!(n-i)!}$, $n \mid (n!)$, $n \nmid (i!(n-i)!)$, 故 $C_i^n a^{n-i} \equiv 0$ (mod n) 。 根據費瑪小定理, $a^n \equiv a \pmod{n}$ 。 故 $(X+a)^n \equiv X^n + a \pmod{n}$ 。 (2) n 為合數

對於 n 的任何一個質因數 q,若 $q^k \mid n$ 但 $q^{k+1} \nmid n$,那麼由於 $C_q^n = \frac{n(n-1)...(n-q+1)}{q(q-1)(q-2)...(1)}$,而 $q^k \nmid \frac{n}{q}$,且分子及分母中之其他項皆與 q 互質,故 $n \nmid C_q^n$ 。亦即, $C_q^n a^{n-q} \not\equiv 0 \pmod n$ 。

3 Correctness When Output PRIME

當算法在第 4 步輸出 PRIME 時,n 爲質數。因爲第 3 步和 $n \le r$ 保證了 $\forall a < n$,(a, n) = 1。以下證明算法在第 6 步輸出 PRIME 的正確性。

由於 $o_r(n) > 1$,n 必定有質因數 p 滿足 $o_r(p) > 1$ 。又因爲通過了第 3 步和第 4 步的檢驗,所以 (r,n) = 1,且 p > r,故 $p,n \in \mathbb{Z}_r^*$ 。另外,令 $l = \lfloor \sqrt{\phi(r)} \lg n \rfloor$ 。在第 5 步中,算法檢驗了 l 個等式。由於第 5 步沒有輸出 COMPOSITE,因此對於所有的 0 < a < l,都有:

$$(X+a)^n \equiv X^n + a \pmod{X^r - 1, n}$$

由於p是n的因數,故:

$$(X+a)^n \equiv X^n + a \pmod{X^r - 1, n}$$

Lemma 3.1
$$(X + a)^{\frac{n}{p}} \equiv X^{\frac{n}{p}} + a \pmod{X^r - 1, p}$$
 °

對於多項式函數 f 和自然數 m,定義 m 對於 f 是幂同構的,如果 $f(X)^m \equiv f(X^m) \pmod{X^r-1,p}$ 。由上面的敘述可知,對所有的 $0 \le a \le l$, $n \cdot p \cdot \frac{n}{p}$ 對於 (X+a) 都是幂同構的。

Lemma 3.2 如果 $m_1 imes m_2$ 對於 f(X) 都是幂同構的,那麼 $m_1 m_2$ 對於 f(X) 也是幂同構的。

Lemma 3.3 如果 m 對於 $f_1(X) \setminus f_2(X)$ 都是幂同構的,那麼 m 對於 $f_1(X)f_2(X)$ 也是幂同構的。

Lemma 3.4 $|\mathcal{G}| \geq {t+l \choose t-1}$ °

Lemma 3.5 若 n 不是 p 的幂次,則 $|\mathcal{G}| \leq n^{\sqrt{t}}$ 。

根據引理 3.4,

4 Time Complexity of Algorithm

第 1 步枚舉 b 自 1 至 $\lg n$,二分搜尋對應的 a,檢驗 a^b 與 n 的關係。時間複雜度 $O(\lg^3 n)$ 。

第 2 步自 1 開始枚舉 r,檢驗是否 $\forall 1 \leq i \leq \lg^2 n$, $n^i \not\equiv 1 \pmod{r}$ 。時間複雜 度 $O(r \lg n)$ 。

第 3 步枚舉 a 自 1 至 r,計算 (a,n)。時間複雜度 $O(r \lg n)$ 。

第 4 步時間複雜度 O(1)。

第 5 步每次迭代可用快速幂在 $\lg n$ 次多項式乘法内算出 $(X+a)^n\pmod{X^r-1},n$ 的值,而多項式的次數不超過 r,故時間複雜度爲 $O((\sqrt{\phi(r)}\lg n)(r^2\lg n))=O(r^{\frac{5}{2}}\lg^2 n)$ 。

第 6 步時間複雜度 O(1)。

故整體時間瓶頸爲第 5 步,複雜度爲 $O(r^{\frac{5}{2}}\lg^2 n)$ 。故只須證明 r 的上界。

$$\diamondsuit \ B = \lceil \lg^5 n \rceil \cdot S = n^{\lfloor \lg B \rfloor} \prod_{i=1}^{\lfloor \lg^2 n \rfloor} (n^i - 1) \circ$$

$$S < n^{\lfloor \lg B \rfloor} \prod_{i=1}^{\lfloor \lg^2 n \rfloor} (n^i) = n^{\lfloor \lg B \rfloor + \frac{1}{2} \lg^2 n (\lg^2 n - 1)} \le n^{\lg^4 n} \le 2^B \circ$$

考慮 $R=\min\{R'|R'\nmid S\}$,由於 $\forall i\in[1,\lfloor\lg^2n\rfloor],R\nmid(n^i-1)$,故 $o_R(n)>\lg^2n$,亦即 R 是 r 的一個上界。

Lemma 4.1 (Nair [1]) 令 LCM(m) 表示前 m 個自然數的最小公倍數,那麼對於 $m \geq 7$, $LCM(m) \geq 2^m$ 。

假設 R > B,那麼 $\forall i \leq B$, $i \mid S$,亦即 $S \mid LCM(B)$,但根據引理 4.1, $LCM(B) > 2^B > S$,矛盾,故 R < B。從而, $r < \lg^5 n$,定理得證。

5 References

[1] M. Nair. On Chebyshev-type inequalities for primes. *Amer. Math. Monthly* 89:126-129, 1982.