BAYESIAN CHANGEPOINT DETECTION

MINE OGRETIR mine.ogretir@aalto.fi

ONUR POYRAZ onur.poyraz@aalto.fi

AALTO UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

FEBRUARY 21, 2020

- Introduction
- 2 Model Descriptions
- 3 Analysis and Results
- 4 Discussion

- 1 Introduction
- 2 Model Descriptions
- 3 Analysis and Results
- (4) Discussion

MOTIVATING PROBLEM

Given a sequential data

We might interest in;

Changes in the streamed data

Assume:

- Data is a result of such a generative process
- Generative process is changing in the changepoints

Goal;

• Find the changes in the parameters of the generative process

DATASET

- 1 Introduction
- 2 Model Descriptions
- 3 Analysis and Results
- (4) Discussion

MODELS

Comparable Implemented Models

- Poisson-Gamma Single Changepoint Model (SCM) [2, 3]
- Poisson-Gamma Double Changepoint Model (DCM) [2, 3]

Other Implemented Model

Bayesian Online Changepoint Detection Algorithm (BOCM)[1]

POISSON-GAMMA CHANGEPOINT DETECTION MODELS

Single Changepoint Model

Means of the Intervals

$$e \sim Gamma\left(1,1\right)$$

$$l \sim Gamma(1,1)$$

Changepoint

$$s \sim Uniform(1,T)$$

$$X_t \sim Poisson(\lambda)$$

$$\lambda = \left\{ \begin{array}{ll} e & \text{if} \ t < s_1 \\ l & \text{if} \ s_1 <= t < s_2 \end{array} \right.$$

Double Changepoint Model

Means of the Intervals

$$e \sim Gamma(1,1)$$

$$l \sim Gamma(1,1)$$

$$m \sim Gamma(1,1)$$

Changepoints

$$s_1 \sim Uniform(1,T)$$

$$s_2 \sim Uniform(1,T)$$

$$\lambda = \begin{cases} e & \text{if } t < s_1 \\ l & \text{if } s_1 <= t < s_2 \\ m & \text{else} \end{cases}$$

BAYESIAN ONLINE CDM

Figure 1: Run Length¹[4]

Model

$$\alpha_{1:T} \sim Gamma(1, 1)$$
 $X_t \mid r_t \sim Poisson(\alpha_{t-r_t})$

Changepoint Prior

$$P\left(r_{t}|r_{t-1}\right) = \begin{cases} H\left(r_{t-1}+1\right) & \text{if } r_{t}=0\\ 1-H\left(r_{t-1}+1\right) & \text{if } r_{t}=r_{t-1}+1\\ 0 & \text{otherwise} \end{cases}$$

$$H(\tau) = 0.01$$

- Introduction
- 2 Model Descriptions
- 3 Analysis and Results
- 4 Discussion

CONVERGENCE OF ALGORITHM

Convergence Diagnostics

- All \hat{R} values are 1.
- $n_{eff}/n_{transitions} > 0.001$ for all parameters.
- All of the
 - tree depth
 - E-BFMI
 - divergences

are looking good.

loo comparison	elpd diff	se diff
sigle model	0.0	0.0
double model	-3.2	5.7
hierarchical model	-5.0	6.4

Table 1: Result of loo comparison

POSTERIOR INFERENCE - CHANGEPOINT ESTIMATIONS

Changepoint Samples for Double CD

Posterior Inference - Run Length Estimations

Synthetic Data - Analytical solution

Coal Mining Dataset - MCMC posterior samples

Synthetic Data - MCMC posterior samples

- 1 Introduction
- 2 Model Descriptions
- 3 Analysis and Results
- 4 Discussion

DISCUSSION

Conclusion and Future Work

- The second changepoint is controversial
- Overall, Bayesian Online Changepoint Model is superior to other models.
- More generic versions of the MCMC solutions for Online Bayesian CD Model

More results at;

https://github.com/onurpoyraz/bcpm-stan/

REFERENCES I

- R. P. Adams and D. J. MacKay. Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742, 2007.
- C. Fonnesbeck, A. Patil, D. Huard, and J. Salvatier. Pymc user's guide.
- S. U. Guide.
 Change point models.
- G. Gundersen.Bayesian online changepoint model.

APPENDIX

Marginal Predictive Distribution

$$P\left(x_{t+1} \mid \boldsymbol{x}_{1:t}\right) = \sum_{\boldsymbol{x}} P\left(x_{t+1} \mid r_{t}, \boldsymbol{x}_{t}^{(r)}\right) P\left(r_{t} \mid \boldsymbol{x}_{1:t}\right)$$

Recursive Run Length Estimation

$$P(r_{t}, \boldsymbol{x}_{1:t}) = \sum_{t=1}^{n} P(r_{t} \mid r_{t-1}) P(x_{t} \mid r_{t-1}, \boldsymbol{x}_{t}^{(r)}) P(r_{t-1}, \boldsymbol{x}_{1:t-1})$$