Questions

NUMBER SYSTEM

Q1: Assuming that following binary numbers are written in 10-bit 2's complement binary notation (6-bits for integer part, 4-bits for decimal part), **calculate** their decimal equivalents:

- a) 111101.0111
- b) 011110.0111

Q2: Write the following decimal numbers in 2's complement binary notation (Use 8-bits for integer part and 4-bits for decimal part):

- a) -66.0625
- b) 122.375

Q3: Calculate Octal equivalents of following Hexadecimal numbers

- a) DEAD.123A
- b) BEEF.ABCD

Q4: Perform the following conversion (Up to 4 digits after decimal point)

- a) $(56.36)_8 \rightarrow (?)_6$
- b) $(331.133)_4 \rightarrow (?)_{13}$

LOGIC GATES

Q1: Make truth table of following expressions:

Q2: Given the Boolean function F = x y'z' + x'z + xyz

- a. List the truth table
- b. Draw the logic diagram of the original function using 2-input gates
- c. Simplify the function using Boolean algebra
- d. List the truth table of the simplified function

Q3: Analyze following circuit to give truth table.

Q4:

Find the **minimal sum of products** and **minimal products of sum** expressions for following KMAP. Show your groupings on KMAP.

AB CD				
	1	0	0	1
	0	X	1	X
	0	1	1	0
	X	0	0	1

COMBINATIONAL CIRCUITS

Q1: Design a circuit for a A == B, where A and B are two 6-bit numbers.

Q2: Use 2-1 Multiplexers (and some logic gates if required) to design an 8-1 Multiplexer.

Q3: Design a 7-input priority encoder.

Q4: Design circuit diagram of a 3x3 Multiplier.

Q5: Design circuit diagram of a 7-bit adder. Underlying Adder must be carry select adder.

SEQUENTIAL CIRCUITS

Analyze the following circuit to give state table:

Develop state diagram of a binary sequence recognizer that takes one-bit input at every cycle and outputs 1 if binary sequence is 00101.

Construct logic circuit for following state diagram.

