

УЧЕБЕН ПРОЕКТ

ПО

Диференциални уравнения и приложения спец. Софтуерно инженерство, 2 курс, летен семестър, учебна година 2020/2021

Тема № СИ21-П-130

София	Ф. No. 62473	
	Група 5	
	Опенка:	

13.06.2021

Изготвил: Ирина Цветанова Христова

СЪДЪРЖАНИЕ

1. Тема (задача) на проекта	1
2. Решение на Задачата	2
2.1. Теоретична част	2
2.2. MatLab код и получени в командния прозорец резултати при изпълнението му	4
2.3. Графики (включително от анимация)	7
2.4. Коментари към получените с MatLab резултати	8

(номерата на страниците са примерни!)

1. Тема (задание) на проекта

Учебен проект по "Диференциални уравнения и приложения" спец. Софтуерно инженерство, 2 курс, летен семесътр, уч. год. 2020-2021

Име	
Ф. No	група

Тема СИ21-П-130. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$\begin{aligned} u_t &= \frac{1}{40} u_{xx}, & t > 0, \ 0 < x < 60, \\ u|_{t=0} &= \begin{cases} [e^{(x-40)(x-50)} - 1]^3, & x \in [40, 50] \\ 0, & x \in [0, 40) \cup (50, 60], \end{cases} \\ u|_{x=0} &= 0, \quad u|_{x=60} = 0, \quad t \ge 0. \end{aligned}$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=1}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Направете на MAT LA B анимация на изменението на температурата в пръта за $t \in [0, 12]$, като използвате 41-та частична сума на реда за u(x,t). Начертайте с червен цвят в един прозорец една под друга графиките в началния, крайния и един междинен момент от направената анимация, като означете коя графика за кое t се отнася.

2. Решение на Задачата.

2.1. Теоретична част

2.2. MatLab код и получени в командния прозорец резултати при изпълнението му

```
function tema130
% Въвеждаме необходимите параметри
a=1/sqrt(40);
L=60;
tmax=12;
x=0:L/100:L;
t=0:tmax/100:tmax;
% Декларираме функцията фи
function y=phi(x)
for i=1:length(x)
if x(i) > = 40 \&\& x(i) < = 50 y(i) = ((exp((x-40)*(x-50)))-1)^3;
else
y(i)=0;
end
end
end
% Декларираме функцията u(x,t)
function y=u(x,t)
y=0;
% Изчисляваме 41-та частична сума на реда за u(x,t)
for k=0:40
Xk=exp((((k*x)/L)-40)*(((k*x)/L)-50))-1;
Ak=2*trapz(x,phi(x)*Xk)/L;
Tk=Ak*exp(-(((a*k)/L)^2)*t);
y=y+(Xk*Tk);
end
end
% Генерират се графиките за анимацията
for n=1:length(t)
plot(x,u(x,t(n)),'LineWidth',5);
axis([0,L,-1.5,0.5])
grid on M(n)=getframe;
end movie(M,1)
% Чартае в един прозорец графиките от анимацията
% в моментите t1=0, t2=1, t3=12
subplot(3,1,1) plot(x,u(x,0),'LineWidth',2) title('При t=0')
grid on
subplot(3,1,2)
plot(x,u(x,1),'LineWidth',2) title('При t=1')
grid on
subplot(3,1,3)
```

plot(x,u(x,12),'LineWidth',2) title('При t=12') grid on end