MARKET BASKET INSIGHTS

MEMBER: N.DHIVYA (922121106010)

PHASE 3 SUBMISSION DOCUMENT: DEVELOPMENT PART 1

PROJECT: Market basket insights

Phase 3: Development Part 1

In this part we will begin building your project by loading and preprocessing the dataset. We start the market basket insights project by loading and preprocessing the transaction data. Load the transaction dataset and preprocess the data for association analysis.

Dataset Link: https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis

About Dataset

Market Basket Analysis

Introduction

Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

An Example of Association Rules

Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them.

- bought Computer Mouth => bought Mat for Mouse
- support = P(Mouth & Mat) = 8/100 = 0.08
- confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89
- lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9

This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

Strategy

- Data Import
- Data Understanding and Exploration
- Transformation of the data so that is ready to be consumed by the association rules algorithm
- Running association rules
- Exploring the rules generated
- Filtering the generated rules
- Visualization of Rule

Dataset Description

File name: Assignment-1_Data

List name: retaildataFile format: . xlsx

• Number of Row: 522065

Number of Attributes: 7

- BillNo: 6-digit number assigned to each transaction. Nominal.
- Itemname: Product name. Nominal.
- Quantity: The quantities of each product per transaction. Numeric.
- Date: The day and time when each transaction was generated. Numeric.
- Price: Product price. Numeric.
- CustomerID: 5-digit number assigned to each customer. Nominal.
- Country: Name of the country where each customer resides. Nominal.

536365 RED WOOLLY HOTTIE WHITE HEART.

6 | 01.12.2010 08:26 | 3,39 | 17850 | United Kingdom

Libraries in R

First, we need to load required libraries. Shortly I describe all libraries.

arules - Provides the infrastructure for representing,
 manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).

- arulesViz Extends package 'arules' with various visualization.
 techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
- tidyverse The tidyverse is an opinionated collection of R packages designed for data science.
- readxl Read Excel Files in R.
- plyr Tools for Splitting, Applying and Combining Data.
- ggplot2 A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
- knitr Dynamic Report generation in R.
- magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%.
 This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
- dplyr A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
- tidyverse This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

After we will clear our data frame, will remove missing values.

To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in one row. Below lines of code will combine all products from one BillNo and Date and combine all products from that BillNo and Date as one row, with each item, separated by (,)

.....

We don't need BillNo and Date, we will make it as Null. Next, you have to store this transaction data into .csv This how should look transaction data before we will go to next step.

Interactive Scatter-Plot:

We can have a look for each rule (interactively) and view all quality measures (support, confidence and lift).

Graph - Based Visualization and Group Method:

Graph plots are a great way to visualize rules but tend to become congested as the number of rules increases. So, it is better to visualize a smaller number of rules with graph-based visualizations. We can see as well group method for top 10 items.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
import seaborn as sns
%matplotlib inline
import plotly.express as px

import warnings
warnings.filterwarnings('ignore')

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

/kaggle/input/market-basket-analysis/Assignment-1_Data.xlsx
/kaggle/input/market-basket-analysis/Assignment-1_Data.csv
```

[2]:

	BillNo	Itemname	Quantity	Date	Price	CustomerID	Country
0	536365	WHITE HANGING HEART T- LIGHT HOLDER	6	01.12.2010 08:26	2,55	17850.0	United Kingdom
1	536365	WHITE METAL LANTERN	6	01.12.2010 08:26	3,39	17850.0	United Kingdom
2	536365	CREAM CUPID HEARTS COAT HANGER	8	01.12.2010 08:26	2,75	17850.0	United Kingdom
3	536365	KNITTED UNION FLAG HOT WATER BOTTLE	6	01.12.2010 08:26	3,39	17850.0	United Kingdom
4	536365	RED WOOLLY HOTTIE WHITE HEART.	6	01.12.2010 08:26	3,39	17850.0	United Kingdom

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 522064 entries, 0 to 522063
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- 0 BillNo 522064 non-null object
```

```
Itemname
                 520609 non-null object
2
                 522064 non-null int64
     Quantity
3
    Date
                 522064 non-null object
    Price
                 522064 non-null object
5
    CustomerID 388023 non-null float64
6
     Country
                 522064 non-null object
dtypes: float64(1), int64(1), object(5)
memory usage: 27.9+ MB
                                                                      Out[4]:
BillNo
                   0
Itemname
                1455
Quantity
                   0
Date
                   0
Price
                   0
CustomerID
              134041
Country
dtype: int64
1-2. Dropping data with negative or zero quantity
                                                                      In [6]:
df=df.loc[df['Quantity']>0]
1-3. | Dropping data with zero price
                                                                      In [8]:
df=df.loc[df['Price']>'0']
1-4. | Dropping Non-product data.
                                                                     In [10]:
df=df.loc[(df['Itemname']!='POSTAGE')&(df['Itemname']!='DOTCOM
POSTAGE')&(df['Itemname']!='Adjust bad debt')&(df['Itemname']!='Manual')]
1-5. | Filling null data
                                                                     In [12]:
df=df.fillna('-')
df.isnull().sum()
                                                                     Out[12]:
BillNo
              0
Itemname
              0
Quantity
              0
Date
```

1

```
Price 0
CustomerID 0
Country 0
dtype: int64
```

1-6. | Splitting data into year and month

```
df['Year']=df['Date'].apply(lambda x:x.split('.')[2])
df['Year']=df['Year'].apply(lambda x:x.split(' ')[0])
df['Month']=df['Date'].apply(lambda x:x.split('.')[1])
df.head()
```

Out[13]:

In [13]:

	BillNo	Itemnam e	Quantity	Date	Price	Custome rID	Country	Year	Month
0	536365	WHITE HANGIN G HEART T-LIGHT HOLDER	6	01.12.20 10 08:26	2,55	17850.0	United Kingdom	2010	12
1	536365	WHITE METAL LANTERN	6	01.12.20 10 08:26	3,39	17850.0	United Kingdom	2010	12
2	536365	CREAM CUPID HEARTS COAT HANGER	8	01.12.20 10 08:26	2,75	17850.0	United Kingdom	2010	12
3	536365	KNITTED UNION FLAG HOT WATER BOTTLE	6	01.12.20 10 08:26	3,39	17850.0	United Kingdom	2010	12
4	536365	RED WOOLLY HOTTIE WHITE HEART.	6	01.12.20 10 08:26	3,39	17850.0	United Kingdom	2010	12

1-7. | Creating a Total price column

```
In [14]:

df['Price']=df['Price'].str.replace(',','.').astype('float64')

df['Total price']=df.Quantity*df.Price

df.head()
```

Out[14]:

	BillNo	Itemna me	Quantit y	Date	Price	Custom erID	Country	Year	Month	Total price
0	536365	WHITE HANGIN G HEART T-LIGHT HOLDER	6	01.12.2 010 08:26	2.55	17850.0	United Kingdo m	2010	12	15.30
1	536365	WHITE METAL LANTER N	6	01.12.2 010 08:26	3.39	17850.0	United Kingdo m	2010	12	20.34
2	536365	CREAM CUPID HEARTS COAT HANGE R	8	01.12.2 010 08:26	2.75	17850.0	United Kingdo m	2010	12	22.00
3	536365	KNITTE D UNION FLAG HOT WATER BOTTLE	6	01.12.2 010 08:26	3.39	17850.0	United Kingdo m	2010	12	20.34
4	536365	RED WOOLL Y HOTTIE WHITE HEART.	6	01.12.2 010 08:26	3.39	17850.0	United Kingdo m	2010	12	20.34

1-8. | Checking the Total price in each month.

df.groupby(['Year','Month'])['Total price'].sum()

Out[15]:

In [15]:

Year	Month	
2010	12	778386.780
2011	01	648311.120
	02	490058.230
	03	659979.660
	04	507366.971
	05	721789.800
	06	710158.020
	07	642528.481
	80	701411.420
	09	981408.102
	10	1072317.070

11 1421055.630 12 606953.650

Name: Total price, dtype: float64

It is appropriate to look at 12-month increments to implement data analytics properly, so I'll drop the data for 2020 Dec.

In [16]:

df=df.loc[df['Year']!='2010']

2. | Exploratoty Data Analysis

2-1. | Sales amount and quantity

2468101200.2M0.4M0.6M0.8M1M1.2M1.4M

CountryAustraliaBelgiumFranceGermanyGreeceHong

KonglcelandIsraelItalyLebanonNetherlandsPolandPortugalSingaporeSpainSwedenSwitzerlandUnited KingdomAustriaJapanNorwaySaudi ArabiaUnited Arab

EmiratesBrazilusAunspecifiedBahrainMaltaRsAMonthly sales amount in each country in 2021MonthSales amount

Most of the sales amounts are occupied by the UK.

PortugalItalyHong

Sales amount in each country in 2021 Country Sales amount

2-2. | Category

Top 10 highest sales amount items

5	ENAMEL BREAD BIN CREAM	6585.93
6	WHITE HANGING HEART T-LIGHT HOLDER	6563.80
7	DOORMAT KEEP CALM AND COME IN	6385.09
8	SPOTTY BUNTING	6262.40
9	RED RETROSPOT CAKE STAND	6035.29

0	REGENCY CAKESTAND 3 TIER	24653.67
1	PARTY BUNTING	9416.13
2	SET OF 3 CAKE TINS PANTRY DESIGN	7621.05
3	CREAM SWEETHEART MINI CHEST	6836.38
4	SET/4 WHITE RETRO STORAGE CUBES	6714.75
5	ENAMEL BREAD BIN CREAM	6585.93
6	WHITE HANGING HEART T-LIGHT HOLDER	6563.80
7	DOORMAT KEEP CALM AND COME IN	6385.09
8	SPOTTY BUNTING	6262.40
9	RED RETROSPOT CAKE STAND	6035.29

Top 10 most purchased items

	Itemname	Quantity
520583	PAPER CRAFT , LITTLE BIRDIE	80995
59999	MEDIUM CERAMIC TOP STORAGE JAR	74215
405138	WORLD WAR 2 GLIDERS ASSTD DESIGNS	4800
198929	SMALL POPCORN HOLDER	4300
94245	EMPIRE DESIGN ROSETTE	3906
260928	ESSENTIAL BALM 3.5g TIN IN ENVELOPE	3186
51228	FAIRY CAKE FLANNEL ASSORTED COLOUR	3114
154834	FAIRY CAKE FLANNEL ASSORTED COLOUR	3114
416997	SMALL CHINESE STYLE SCISSOR	3000

Out[21]:

280572 ASSORTED COLOUR BIRD ORNAMENT 288	2880
--	------

Top 10 most frequently purchased items

Out[30]:

										t[30].
	anteced ents	conseq uents	anteced ent support	conseq uent support	support	confidence	lift	leverag e	conv ictio n	zhan gs_m etric
0	(ALARM CLOCK BAKELIK E GREEN)	(ALARM CLOCK BAKELI KE RED)	0.05	0.05	0.03	0.64	12.41	0.03	2.64	0.97
1	(ALARM CLOCK BAKELIK E RED)	(ALARM CLOCK BAKELI KE GREEN)	0.05	0.05	0.03	0.59	12.41	0.03	2.32	0.97
2	(GARDE NERS KNEELIN G PAD KEEP CALM)	(GARDE NERS KNEELI NG PAD CUP OF TEA)	0.05	0.05	0.03	0.60	13.23	0.03	2.40	0.98
3	(GARDE NERS KNEELIN G PAD CUP OF TEA)	(GARDE NERS KNEELI NG PAD KEEP CALM)	0.05	0.05	0.03	0.72	13.23	0.03	3.39	0.97
4	(PINK REGENC Y TEACUP AND SAUCER	(GREEN REGEN CY TEACUP AND SAUCER	0.04	0.05	0.03	0.82	15.50	0.03	5.25	0.98

3-2. | The top 5 of the highest support value of items(antecedents)

Support(item) = Transactions comprising the item / Total transactions

Out[32]:

			000[02].
	antecedents	consequents	support
13	frozenset({'JUMBO BAG RED RETROSPOT'})	frozenset({'JUMBO BAG PINK POLKADOT'})	0.05
12	frozenset({'JUMBO BAG PINK POLKADOT'})	frozenset({'JUMBO BAG RED RETROSPOT'})	0.05
16	frozenset({'JUMBO STORAGE BAG SUKI'})	frozenset({'JUMBO BAG RED RETROSPOT'})	0.04

17	frozenset({'JUMBO BAG RED RETROSPOT'})	frozenset({'JUMBO STORAGE BAG SUKI'})	0.04
15	frozenset({'JUMBO SHOPPER VINTAGE RED PAISLEY'})	frozenset({'JUMBO BAG RED RETROSPOT'})	0.04

In the top support value of purchase, it means that "JUMBO BAG PINK RETROSPOT" is present in 5% of all purchases.

3-3. | The top 5 of the highest confidence value of items

Confidence = Transactions comprising antecedent and consequent / Transactions comprising antecedent

Out[33]:

	antecedents	consequents	confidence
4	frozenset({'PINK REGENCY TEACUP AND SAUCER'})	frozenset({'GREEN REGENCY TEACUP AND SAUCER'})	0.82
30	frozenset({'PINK REGENCY TEACUP AND SAUCER'})	frozenset({'ROSES REGENCY TEACUP AND SAUCER'})	0.78
6	frozenset({'GREEN REGENCY TEACUP AND SAUCER'})	frozenset({'ROSES REGENCY TEACUP AND SAUCER'})	0.75
7	frozenset({'ROSES REGENCY TEACUP AND SAUCER'})	frozenset({'GREEN REGENCY TEACUP AND SAUCER'})	0.73
3	frozenset({'GARDENERS KNEELING PAD CUP OF TEA'})	frozenset({'GARDENERS KNEELING PAD KEEP CALM'})	0.72

In the top confidence value of the purchase, it means that 82% of the customers who bought "PINK REGENCY TEACUP AND SAUCER" also bought "GREEN REGENCY TEACUP AND SAUCER".

3-4. The top 5 of the highest lift value of items

Lift = Confidence (antecedent -> consequent) / Support(antecedent)

In [34]:

rules[['antecedents','consequents','lift']].sort_values('lift',ascending=F
alse)[:5].style.background_gradient(cmap=cm).set_precision(2)

Out[34]:

	antecedents	consequents	lift	
4	frozenset({'PINK REGENCY TEACUP AND SAUCER'})	frozenset({'GREEN REGENCY TEACUP AND SAUCER'})	15.50	
5	frozenset({'GREEN REGENCY TEACUP AND SAUCER'})	frozenset({'PINK REGENCY TEACUP AND SAUCER'})	15.50	
31	frozenset({'ROSES REGENCY TEACUP AND SAUCER'})	frozenset({'PINK REGENCY TEACUP AND SAUCER'})	14.36	
30	frozenset({'PINK REGENCY TEACUP AND SAUCER'})	frozenset({'ROSES REGENCY TEACUP AND SAUCER'})	14.36	

frozenset({'GREEN REGENCY TEACUP AND SAUCER'}) frozenset({'ROSES REGENCY TEACUP AND SAUCER'})	13.86
--	-------

In the top list value of the purchase, it means that customers are 15.5 times more likely to buy "GREEN REGENCY TEACUP AND SAUCER" if you sell "PINK REGENCY TEACUP AND SAUCER".

3-5. | The best combination of the items

Out[35]:

	anteced ents	conseq uents	anteced ent support	conseq uent support	support	confide nce	lift	leverag e	convicti on	zhangs_me tric
4	frozens et({'PIN K REGENC Y TEACUP AND SAUCER '})	frozens et({'GRE EN REGENC Y TEACUP AND SAUCER '})	0.04	0.05	0.03	0.82	15.50	0.03	5.25	0.98
30	frozens et({'PIN K REGENC Y TEACUP AND SAUCER '})	frozens et({'ROS ES REGENC Y TEACUP AND SAUCER '})	0.04	0.05	0.03	0.78	14.36	0.03	4.24	0.97
6	frozens et({'GRE EN REGENC Y TEACUP AND SAUCER '})	frozens et({'ROS ES REGENC Y TEACUP AND SAUCER '})	0.05	0.05	0.04	0.75	13.86	0.04	3.78	0.98
7	frozens et({'ROS ES REGENC Y TEACUP AND SAUCER '})	frozens et({'GRE EN REGENC Y TEACUP AND SAUCER '})	0.05	0.05	0.04	0.73	13.86	0.04	3.55	0.98

3	frozens et({'GA RDENER S KNEELI NG PAD CUP OF TEA'})	frozens et({'GA RDENER S KNEELI NG PAD KEEP CALM'})	0.05	0.05	0.03	0.72	13.23	0.03	3.39	0.97
---	---	--	------	------	------	------	-------	------	------	------

Monthly sales amount in each country in 2021

Sales amount in each country in 2021

