TD 19 - FONCTIONS À PLUSIEURS VARIABLES

1. Etudier l'existence et la valeur éventuelle d'une limite en (0;0) pour les fonctions suivantes, définies sur un ouvert U de \mathbb{R}^2 :

a.
$$f(x;y) = \frac{xy}{x^2 + xy + y^2}$$

b.
$$f(x,y) = \frac{\sin x \sin y}{xy}$$

c.
$$f(x,y) = \frac{x^2}{x+y}$$

d.
$$f(x,y) = \frac{e^{xy} - 1}{e^x - 1}$$

e.
$$f(x,y) = \frac{x^3y^4}{x^8 + y^6}$$

f.
$$f(x,y) = \frac{xy^4}{x^4 + y^6}$$

2. Etudier la continuité en (0;0) ainsi que l'existence et la continuité des dérivées partielles première en (0;0) pour les fonctions de deux variables réelles suivantes :

a.
$$f(x;y) = xy \sin\left(\frac{1}{x^2 + y^2}\right), \quad f(0,0) = 0$$

b.
$$f(x,y) = \frac{x^3y^4}{x^4 + y^6}, \quad f(0,0) = 0$$

c.
$$f(x,y) = \frac{x^2y}{x^2 + y^2 - xy}$$
, $f(0,0) = 0$

3. Déterminer les extrema locaux des applications f suivantes, définies sur \mathbb{R}^2 :

a.
$$f(x,y) = x^3 + y^3$$

b.
$$f(x,y) = 3x^2 + y^2 + 2x^3$$

c.
$$f(x,y) = x^2 + xy - y^3$$

d.
$$f(x,y) = 5x^5 + 10x^3y + 9xy^2 + 3y^2$$