Temporal Netkat

Eric Campbell

Ryan Beckett Michael Greenberg Dave Walker

My Research

My Research

My Research

Software Defined Networking

Netkat

Predicates

```
a,b ::= 1 id
| 0 drop
| f = n test
| a + b or
| a ; b and
| ¬ a negation
```

Policies

Packet History

Packet History is a list of packets:

```
sw = A
pt = 1
src = 1.0.0.1
dst = 9.0.0.9
```

```
sw = A
pt = 2
src = 1.0.0.1
dst = 9.0.0.9
```

```
sw = B
pt = 2
src = 1.0.0.1
dst = 9.0.0.9
```

A policy denotes a function from a packet history to a set of packet histories

[p]: Hist $\rightarrow 2^{Hist}$

Predicates

```
a,b ::=
...
| ○ a last
| a S b since
| ◇ a ever
| □ a always
| start beginning of time
```

Predicates

```
a,b ::=
...
| ○ a last
| a S b since
| ○ a = 1 S a
| □ a = ¬ ○ ¬ a
| start = ¬ ○ 1
```

Oa last

$$\Diamond (f_1=v_{47}) = True$$

 \Box (f₁=v₄₇) = False

□a always

What about the start of time?

start:= ¬O1

start := $\neg\bigcirc 1$ is True!

start:= ¬○1

start := $\neg\bigcirc 1$ is False

What can Temporal Netkat do?

Waypointing in Netkat

prog := (pol;top;dup)*

WTS

dup;prog ≤ dup;prog; sw=m₁;prog;sw=m₂;prog

Waypointing in TNK

prog := (pol;top)*
query := \diamondsuit (sw=m₂; \diamondsuit (sw=m₁))

WTS prog ≡ prog; query

Highly Modular!

Isolation in TNK

```
prog := (pol;top)*

query := [(m_1+m_3+m_0+m_6) + (m_2+m_4+m_5+m_0+m_6)]
```

 m_1 m_0 m_5 m_6 m_2

WTS prog ≡ prog; query

Highly Modular!

Proof Theory

Proof Theory

Packet Axioms

 $f \leftarrow v; f' = v' \equiv f' = v'; f \leftarrow v$

 $f \leftarrow v; f = v \equiv f \leftarrow v$

Semiring Laws

$$p + (q + r) \equiv (p + q) + r$$

 $p + q \equiv q + p$
 $p + 0 \equiv p$
 $p + p \equiv p$
 $p;(q;r) \equiv (p;q);r$
 $1;p \equiv p;1 \equiv p$
 $p;(q + r) \equiv p;q + p;r$
 $(p + q);r \equiv p;r + q;r$
 $0;p \equiv 0$
 $p;0 \equiv 0$

Boolean Subalgebra

$$a + (b;c) \equiv (a + b);(a + c)$$

$$a + 1 \equiv 1$$

$$a + \neg a \equiv 1$$

$$a;b \equiv b;a$$

$$a; \neg a \equiv 0$$

$$a; \neg a \equiv 0$$

$$a; \neg a \equiv 0$$

$$a; \neg a \equiv a$$

$$f = v; f = v' \equiv 0$$

$$1 + p; p * \equiv p *$$

$$1 + p *; p = p *$$

$$1 + p *; p = p *$$

$$q + p; r \leq r \Rightarrow p *; r \leq r$$

$$p + q; r \leq q \Rightarrow p; r * \leq q$$

LTL_f Axioms

$$(a;b) \equiv (a;b)$$

$$(a+b) \equiv (a+b)$$

$$a \leq b + a; (a \leq b)$$

$$a \leq a;b \Rightarrow a \leq b$$

$$a \leq b \Rightarrow a \leq b$$

Packet LTL_f

$$f \leftarrow v$$
; start $\equiv 0$
 $f \leftarrow v$; $\bigcirc a \equiv a$; $f \leftarrow v$

Removed from NetKAT

$$f=v; f\leftarrow v \equiv f=v$$

 $f\leftarrow v; f\leftarrow v' \equiv f\leftarrow v'$
 $f\leftarrow v; f'\leftarrow v' \equiv f'\leftarrow v'; f\leftarrow v$

Metatheory

Metatheory

What we have (PLDI 2016)

- Soundness
- Whole Network Completeness
- A Fast Temporal Netkat compiler

Coming Soon

- Compositional Completeness
- Decidability
- A new proof method for KATS

Metatheory

Netkat

Soundness

If $p \equiv q$, then [p] = [q]

Completeness

If [p] = [q], then $p \equiv q$

Temporal Netkat

Soundness

If $p \equiv q$, then [p] = [q]

Network-Wide Completeness

If [[start;p]] = [[start;q]],
then start;p ≡ start;q

The goal for my thesis: get a full completeness result!

Linear Temporal Logic over Finite Traces

LTLf — Syntax

```
a,b ::= 1 true
| 0 false
| a → b implication
| ○a last
| a S b since
| ◇a ever
| □a always
| start start of time
```

LTLf — Semantics

Definition. Finite Kripke Structure, written Kⁿ, is a finite tuple of valuation functions:

The function K_i^n : $LTL_f \rightarrow 2$ evaluates an LTL_f term at point *i*

LTLf — Semantics

$$\square(a + b) \qquad \diamondsuit(start) \qquad \square(b \rightarrow a)$$

$$K^5 = \begin{pmatrix} a & b & a & b & b & start \\ b & start & start & b & start \end{pmatrix}, b & start & b & start \\ b & start & b & start & b & start & st$$

Definition (Validity).

Given a formula a, write \models a if For every Kⁿ, and i = 1, ..., n, Kⁿ_i(a) = True

LTL_f — Proof Theory

LTL_f — Proof Theory

A weird Quirk:

$$a \vdash b \vdash a \rightarrow b$$

$$a \vdash b \text{ iff } \vdash (\Box a) \rightarrow b$$

LTL_f — Metatheory

Soundness

If \vdash a, then \vDash a

Proof. By induction ✓

Completeness

If ⊨ a, then ⊢a

Proof. By making a graph

Decidability

Satisfiability is decidable

Proof. By making a tableau

Theorem. Completeness

If ⊨ a, then ⊢a

Positive-Negative Pair P = (PNP)

form(P) =
$$\prod a$$
; $\prod \neg b$

P is called *inconsistent* if **Incomplete** Form (P) and *consistent* otherwise.

Theorem. Completeness If \models a, then \vdash a

A terminal node has start in the positive set

A *terminal path* starts at the root and ends in a terminal node

Theorem. Completeness

If ⊨ a, then ⊢a

Lemma 1.

Consistent PNP ⇒
Existence of Terminal Path

$$K^3 = (b a)$$

Theorem. Completeness

If ⊨ a, then ⊢a

Lemma 3.

P consistent \Rightarrow form(P) sat Not proves not form(P) \Rightarrow not models not form(P)

LTL_f — Metatheory

Soundness

If $\vdash a$, then $\vDash a$

Proof. By induction ✓

Completeness

If ⊨ a, then ⊢a

Proof. By making a graph ✓

Decidability!

Satisfiability is decidable

Proof. By making a tableau

Construct a Tableau using PNPs as the nodes.

Find a path that ends in a terminal node

LTL_f — Decidability

If we find a term like □a in the positive set of P, Create a successor P' just like P. Add a and •□a to the positive set of P', remove □a

If we find a term like \square a in the negative set of P, Create successors P_L and P_R just like P. Add a to the negative set of P_L , remove \square a Add \bigcirc \square a to the negative set of P_R , remove \square a.

$$\square$$
a \equiv a; \bullet \square a

$$\neg \Box a \equiv \neg a + \neg \bullet \Box a$$

If we find a term like \bigcirc a in the positive set in P, Create a successor P' just like P. Remove all variables, 0, and 1 from P'. Add a to the positive set, remove \bigcirc a

LTL_f — Decidability

If we find a term like start in the positive set in P, Create a successor P' just like P. Drop all temporal operators of P'.

$$drop(1) = 1$$

$$drop(0) = 0$$

$$drop(\Box a) = a$$

$$drop(\Diamond a) = a$$

$$drop(\bigcirc a) = 0$$

$$drop(\Rightarrow b) = drop(a) \rightarrow drop(b)$$

LTL_f — Decidability

Procedure for Tableau Creation

Take a PNP P.

Create a root PNP P' by injecting ♦ start into P.

Until no new nodes can be created:

Apply syntactic Rules for \rightarrow , S, \square , \diamondsuit

Stop when no rules apply

Apply a Rule for \bigcirc , start

No Consistency Requirement!

Find a terminal path in this Tableau

 \Box ((\bigcirc a) + b)

Node	Label	Contents
Q_0	0	$(\{ \diamondsuit \operatorname{end}, \Box(\bigcirc a \lor b) \}, \emptyset)$
Q_1	1	$(\{b\}, \{\bot, \bigcirc \top\})$
Q_2	2	$(\{a,b\},\{\bot,\bigcirc\top\})$
Q_3	3	$(\emptyset, \{ \neg \Box (\bigcirc a \lor b), \Box \neg end \})$
Q_4	4	$(\{\bot\}, \{\neg \Box (\bigcirc a \lor b)\})$
Q_5	5	$(\{ \diamondsuit \text{ end} \}, \{ \neg \Box (\bigcirc a \lor b) \})$
Q_6	6	$(\{a\}, \{\neg \Box (\bigcirc a \lor b), \Box \neg end\})$
Q_7	7	$(\{\bot, a\}, \{\neg \Box (\bigcirc a \lor b)\})$
Q_8	8	$(\{a, \diamond end\}, \{\neg \Box(\bigcirc a \lor b)\})$
Q_9	9	$(\{a, \Box(\bigcirc a \lor b)\}, \{\bot, \top\})$
Q_{10}	10	$(\{a\}, \{\top, \neg \Box (\bigcirc a \lor b)\})$
Q_{11}	11	$(\{\bigcirc a \lor b, \bullet \Box (\bigcirc a \lor b)\}, \{\Box \neg end\})$
Q_{12}	12	$(\{\bot\},\{\Box\negend\})$
Q_{13}	13	$(\{\Box(\bigcirc a \lor b)\}, \{\Box \neg end\})$
Q_{14}	14	$(\{ \bigcirc a \lor b, \bullet \Box (\bigcirc a \lor b) \}, \{\bot, \Box \neg end \})$
Q_{15}	15	$(\{\bot\},\{\bot,\Box\negend\})$
Q_{16}	16	$(\{\Box(\bigcirc a \lor b)\}, \{\bot, \Box \neg end\})$
Q_{17}	17	$(\{\bigcirc a,\bigcirc \diamondsuit \operatorname{end}\},\{\bot,\bigcirc \neg \Box(\bigcirc a \lor b)\})$
Q_{18}	18	$(\{\bigcirc a\}, \{\bot, \bigcirc \top \lor \bot, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
Q_{19}	19	$(\{\bigcirc a\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b), \Box \neg end\})$
Q_{20}	20	$(\{\bigcirc a\}, \{\bot, \bigcirc \top, \bigcirc \neg \Box(\bigcirc a \lor b)\})$
Q_{21}	21	$(\{\operatorname{end}, \bigcirc a\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b)\})$
Q_{22}	22	$(\{\bot, \Box(\bigcirc a \lor b)\}, \emptyset)$
Q_{23}	23	$(\{\bot,\bigcirc a\},\{\bot,\bigcirc\neg\Box(\bigcirc a\lor b)\})$
Q_{24}	24	$(\{\bigcirc a \lor b\}, \{\bigcirc \neg \Box (\bigcirc a \lor b), \Box \neg end\})$
Q_{25}	25	$(\{\bot, \bigcirc a \lor b\}, \{\Box \neg end\})$
Q_{26}	26	$(\{\bigcirc a \lor b\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b), \Box \neg end\})$
Q_{27}	27	$(\{\bot, \bigcirc a \lor b\}, \{\bot, \Box \neg end\})$
Q_{28}	28	$(\emptyset, \{\neg \bigcirc a, \bigcirc \neg \Box (\bigcirc a \lor b), \Box \neg end\})$
Q_{29}	29	$(\{b\}, \{\bigcirc \neg \Box (\bigcirc a \lor b), \Box \neg end\})$
Q_{30}	30	$(\emptyset, \{\bot, \neg \bigcirc a, \bigcirc \neg \Box(\bigcirc a \lor b), \Box \neg end\})$
Q_{31}	31	$(\{b\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b), \Box \neg end\})$
Q_{32}	32	$(\{b, \bigcirc \diamond end\}, \{\bot, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
Q_{33}	33	$(\{b\}, \{\bot, \bigcirc \top, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
Q_{34}	34 35	$(\{\bot,b\},\{\bot,\bigcirc\neg\Box(\bigcirc a\lor b)\})$
Q_{35}	36	$(\{b, end\}, \{\bot, \bigcirc \neg \Box (\bigcirc a \lor b)\})$ $(\{b\}, \{\bot, \bigcirc \top \lor \bot, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
$Q_{36} \ Q_{37}$	37	$(\{a, \bigcirc a \lor b, \bullet \Box (\bigcirc a \lor b)\}, \{\bot, \Box \neg end\})$
Q_{38}	38	$(\{\bot, a\}, \{\bot, \Box \neg end\})$
Q_{39}	39	$(\{a, \Box(\bigcirc a \lor b)\}, \{\bot, \Box \neg end\})$
Q_{40}	40	$(\{\bot, a, \Box(\bigcirc a \lor b)\}, \{\bot\})$
Q_{41}	41	$(\{a, \bigcirc a, \bigcirc \lozenge \land b\}, \{\bot, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
Q_{42}	42	$(\{a, \bigcirc a\}, \{\bot, \bigcirc \top \lor \bot, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
Q_{43}	43	$(\{a, \bigcirc a\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b), \Box \neg end\})$
Q_{44}	44	$(\{a, \bigcirc a\}, \{\bot, \bigcirc \top, \bigcirc \neg \Box (\bigcirc a \lor b)\})$
Q_{45}	45	$(\{a, end, \bigcirc a\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b)\})$
Q_{46}	46	$(\{\bot, a, \bigcirc a\}, \{\bot, \bigcirc \neg \Box(\bigcirc a \lor b)\})$
Q_{47}	47	$(\{a, \bigcirc a \lor b\}, \{\bot, \bigcirc \neg \Box (\bigcirc a \lor b), \Box \neg end\})$
Q_{48}	48	$(\{\bot, a, \bigcirc a \lor b\}, \{\bot, \Box \neg end\})$
Q_{49}	49	$(\{a\},\{\bot,\neg \bigcirc a,\bigcirc \neg \Box(\bigcirc a \lor b),\Box \neg end\})$
Q_{50}	50	$(\{a,b\},\{\bot,\bigcirc\neg\Box(\bigcirc a\lor b),\Box\negend\})$
Q_{51}	51	$(\{a,b,\bigcirc\diamondsuitend\},\{\bot,\bigcirc\neg\Box(\bigcirca\vee b)\})$
Q_{52}	52	$(\{a,b\},\{\bot,\bigcirc\top,\bigcirc\neg\Box(\bigcirc a\lor b)\})$
Q_{53}	53	$(\{\bot,a,b\},\{\bot,\bigcirc\neg\Box(\bigcirc a\vee b)\})$
Q_{54}	54	$(\{a,b,end\},\{\bot,\bigcirc\lnot\Box(\bigcirc a\lor b)\})$
Q_{55}	55	$(\{a,b\},\{\bot,\bigcirc\top\lor\bot,\bigcirc\neg\Box(\bigcirc a\lor b)\})$

LTL_f — Metatheory

Soundness

If $\vdash a$, then $\vDash a$

Proof. By induction ✓

Completeness

If ⊨ a, then ⊢a

Proof. By making a graph ✓

Decidability!

Satisfiability is decidable

Proof. By making a tableau ✓

Tying it all together

Temporal Netkat Completeness

Then, $\sum a_i; m_i \equiv \sum b_j; n_j$ comes from completeness of LTL_f and Netkat

Summary!

- Temporal Netkat does cool stuff!
- So does LTLf
- LTL_f is Sound, Complete, and Decidable
- So is Netkat
- Our Normalization procedure lets us conclude that Temporal Netkat is also Sound, Complete, and Decidable

What's Next?

Generalize Pushback Procedure for KATS

Questions?