

AUTOMATION SYSTEMS – INDUSTRIAL ROBOTS

Prof. Dr.-Ing. Thomas Wich

1 - INTRODUCTION

TECHNISCHE HOCHSCHULE LÜBECK

Learning outcomes of this lecture

- According to the module description:
 - Knowledge of the basic methods for modeling, analyzing and controlling robots
 - Application of these methods to various systems of industrial robotics
 - Knowledge of:
 - Functional principles of different sensors
 - basic control concepts
 - Analysis of control concepts with respect to their static and dynamic behavior
 - Programming of an industrial robot, taking into account the advantages and disadvantages of different methods

Learning outcomes of this lecture

- This is what I would like to convey to you:
 - Wide range of applications for robotics (and how does it affect our working lives)
 - Programming of robots with different tools:
 - Python
 - Combination with image processing (Recommendation: Module "Machine Vision" by Ralph Hänsel, https://lernraum.thluebeck.de/course/view.php?id=4412)
 - Teach-in with cobots
 - Solid basic knowledge
 - Hands-on!

Contents and structure of this course

- Chapters:
 - Introduction
 - Basics of robotics (structure, hardware, software, handling techniques, etc.)
 - Kinematics (Coordinate systems, calculation methods...)
 - Sensors and image processing
 - Control and programming of robots (classic concepts, combination with image processing)
 - Programming with ROS

Contents and structure of this course

- Structure:
 - lecture: basic knowledge
 - exercise:
 - Calculation, especially Denavit-Hardenberg
 - Programming tasks with Python
 - Introduction to Python (in combination with control technology)
 - Robot control with Python (implementation of coordinate transformation)
 - project work
 - portfolio exam part 1: coordinate transformation test
 - portfolio exam part 2: project work in small groups

TECHNISCHE HOCHSCHULE LÜBECK

Literature

Siciliano B., Khatib, O.;
 Handbook of Robotics; Springer Verlag

- Hesse, Stefan; Taschenbuch Robotik –
 Montage Handhabung; HanserVerlag
- Maier, Helmut; Grundlagen der Robotik; VDE Verlag
- Weber, Wolfgang; Industrieroboter: Methoden der Steuerung und Regelung; Hanser Verlag
- Husty, M., Karger, A., Sachs, H., Steinhilper, W.; Kinematik und Robotik;
 Springer Verlag

Required tools

- project work: we work in small groups (~4 students, depending on the number of participants)
- robotics is IT-heavy!
- you need a computer with:
 - python installation
 - helpful:
 - use a virtual machine (e.g. VMware Workstation)
 - accordingly, memory and processor!
 - linux is appreciated
 - if necessary, you can use a pc from the lab
- calculator

Timetable

Date:	25.09.2023
Week	Topic
1	Introduction
2	Fundamentals of Robotics
3	Kinematics - 1
4	Kinematics - 2
5	Kinematics - 3
6	Exercises: Forward transformation
<mark>7</mark>	Test, Backward transformation
8	Exercises: Backward transformation
9	Sensors and image processing
10	Sensors and image processing
11	Exercises: image processing
12	Control & programming
13	Control & programming
14	Introduction to ROS
15	Introduction to ROS

Evolution of robotics

- History (1st generation, 1960-1975)
 - "Rossum's Universal Robots" (1920)
 (drama by Karel Čapek) coined the term robot
 from "robota" = hard work
 - 1946: Development of a control unit by G.C. Devol, with which signals could be recorded and replayed (for machine control)
 - 1951: first remote-controlled handling devices (teleoperation)
 - 1960: first industrial robots (hydraulic drives, NC control)
 - From 1973 on: development of specialized programming languages (WAVE, VAL etc.)

Evolution of robotics

- History:
 - 2nd generation, until the 80s):
 - combination with sensors (force, image)
 - further development of programming languages
 - low robot intelligence
 - 3rd generation (from mid-80s):
 - Computing power increases significantly due to microelectronics
 - Increasing use of sensor technology
 - Development towards autonomy
 - Future:
 - Autonomous robots
 - Mobile robots
 - Al-based sensor data processing

Robotics - old-fashioned vs. modern

- Features of a classic robot systems:
 - repetitive tasks ("assembly line work")
 - stationary systems
 - great forces
 - high (repeat) accuracy
 - fast movements
- But:
 - low flexibility
 - Adaptation to new tasks required (programming)
 - expensive (> 100.000 €)

Robotics - old-fashioned vs. modern

- Complementary and new features of modern robot systems:
 - complex tasks (sensors, image processing)
 - collaboration with people
 - mobile systems
 - intuitive parameterization
 - low-cost (from 15.000 €)
- Thus:
 - Wide range of applications
 - high flexibility
 - easy to use
 - automation of technically demanding activities becomes economical

Robotics and Industry 4.0 – How do they link together?

Hitherto:

Automation replaces human work

Robotics and Industry 4.0 – How do they link together?

- Hitherto:
 - Automation replaces human work

man productive control man

- Currently:
 - robotics replaces basic activities
 - Industry 4.0 supports people in control
 - IT is spreading!

Robotics and Industry 4.0 – How do they link together?

- Hitherto:
 - Automation replaces human work

man productive control man

- Currently:
 - robotics replaces basic activities
 - Industry 4.0 supports people in control
 - IT is spreading!

- Perspectively:
 - Control through "Big Data" and Artificial Intelligence (AI)

TECHNISCHE HOCHSCHULE

What is robotics?

- Included areas of expertise:
 - Mechanical engineering (mechanics, construction, design)
 - Electrical engineering (drive technology, sensors, control)
 - Control technology (position and path control)
 - Computer Science (Programming and Simulation)
 - Production engineering (applications)
 - Artificial intelligence (machine learning, machine vision, speech recognition...)
 - Politics and philosophy (robot displaces humans)

TECHNISCHE HOCHSCHULE

What are robots?

- Definition according to VDI guideline 2860:
 - Industrial robots are universally applicable motion machines,
 - whose movement is freely programmable in terms of sequence of movements and paths or angles - i.e. without mechanical intervention and, if necessary, sensor-guided.
 - They can be equipped with grippers, tools or other means of production and
 - are able to perform handling and manufacturing tasks.

What are robots?

(stationary) Industrial robots, according to VDI guideline 2860

What are robots?

- Mobile robots
 - not permanently mounted at a specific point
 - (autonomous) free movement in a specific environment
 - Independent decisions despite incomplete knowledge
 - key words: self localisation, path planning

• Industrial robots: Pick-Place

• Industrial robots: welding

• Industrial robots: painting

Insustrial robots: pick-place food industry

• Industrial robots: nuclear power plant

• Industrial robots: cobots

• Industrial robots: mobile platforms

• mobile robots for surveillance and exploration

• Autonomous robot

• Autonomous robots, combined with a robot arm

30

Fundamental requirements

- What requirements for the robot can you derive from the images in the script?
- Which special topics of robotics are affected?
- How can these requirements be met?

 Categorize the answers to the above questions and try to derive questions for this lecture.

• Sales of industrial robots worldwide in the years 2004 to 2020 and forecast by 2024 in 1000 pcs. (Source: statista.com)

 Sales of industrial robots worldwide in the years from 2018 to 2025 (in billions of US dollars); Source: statista.de

Robots by application area / industry

•

Trends

Robot industry market projections through 2035

TECHNISCHE HOCHSCHULE LÜBECK

Summary

• What goals are we pursuing through the use of robots?