

Chapitre VI – Primitives et équations différentielles

Bacomathiques — https://bacomathiqu.es

TABLE DES MATIÈRES	
I – Primitives de fonctions continues	1
1. Définition	1
2. Primitive de fonctions usuelles	2
3. Opérations sur les primitives	2
II – Équations différentielles	4
1. Qu'est-ce-qu'une équation différentielle?	4
2. Résolution d'équations différentielles de la forme $y' = ay \dots \dots$	4
3. Résolution d'équations différentielles de la forme $y' = ay + b \dots$	5

I – Primitives de fonctions continues

1. Définition

À RETENIR 🧣

Définition

Soit f une fonction définie et continue sur un intervalle I. On appelle **primitive** de f, toute fonction F définie sur I et qui vérifie pour tout $x \in I$: F'(x) = f(x).

ÀLIRE 00

Note

Une primitive est toujours définie à une constante près.

En effet. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par f(x) = 2x. Alors, $F_1: x \mapsto x^2 + 1$ est une primitive de la fonction f (car pour tout x, F'(x) = 2x = f(x)).

Mais F_1 n'est pas la seule primitive de f! On peut citer par exemple $F_2: x \mapsto x^2 + 10$ et $F_3: x \mapsto x^2 + 3$ qui sont également des primitives de f.

C'est pour cette raison que l'on dit que les primitives sont définies à une constante près (lorsque l'on dérive, la constante devient nulle).

Ainsi, toute **fonction continue** sur un intervalle admet **une infinité de primitives** d'une forme particulière sur cet intervalle. Plus formellement :

À RETENIR 💡

Infinité de primitives

Une fonction continue f sur un intervalle I admet une infinité de primitives sur I de la forme $x \mapsto F_0(x) + c$ avec $c \in \mathbb{R}$ (où F_0 est une primitive de f).

DÉMONSTRATION (

Infinité de primitives

Soit *F* une autre primitive de f sur *I*. On a pour tout $x \in I$:

 $(F - F_0)'(x) = F'(x) - F'_0(x) = f(x) - f(x) = 0$ (car F_0 et F sont deux primitives de f).

Donc il existe une constante réelle c telle que $F-F_0=c$. D'où pour tout $x\in I$, $F(x)=F_0(x)+c$: ce qu'il fallait démontrer.

2. Primitive de fonctions usuelles

Le tableau suivant est à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

Fonction	Primitive	Domaine de définition de la primitive
λ	λx	R
e^x	e^x	R
$\frac{1}{x}$	ln(x)	\mathbb{R}_+^*
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	\mathbb{R}_+^*
x^a avec $a \in \mathbb{R}$ et $a \neq -1$	$\frac{1}{a+1}x^{a+1}$	\mathbb{R}_+^*
$\sin(x)$	$-\cos(x)$	R
$\cos(x)$	$\sin(x)$	R

3. Opérations sur les primitives

Le tableau suivant est également à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

À RETENIR 💡

Soit u une fonction continue.

Fonction	Primitive	Domaine de définition
		de la primitive
$u'e^u$	e^u	En tout point où <i>u</i> est dé-
		finie.
$\frac{u'}{}$	$\ln(u)$	En tout point où <i>u</i> est dé-
u		finie et est non-nulle. On
		peut retirer la valeur ab-
		solue si <i>u</i> est positive.
u'		
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	En tout point où <i>u</i> est
		définie et est strictement positive.
	_	positive.
$u'(u)^a$ avec $a \in \mathbb{R}$ et $a \neq a$	$\frac{1}{u^{a+1}}u^{a+1}$	En tout point où <i>u</i> est dé-
	a+1	finie.
-1		
$u'\sin(u)$	$-\cos(u)$	En tout point où <i>u</i> est dé-
		finie.
$u'\cos(u)$	$\sin(u)$	En tout point où <i>u</i> est dé-
		finie.

II - Équations différentielles

1. Qu'est-ce-qu'une équation différentielle?

Commençons cette partie par quelques définitions.

À RETENIR 💡

Définition

- Une **équation différentielle** est une égalité liant une fonction inconnue y à ses dérivées successives (y', y'', ...) contenant éventuellement d'autres fonctions connues.
- Une **solution** d'une équation différentielle est une fonction vérifiant l'égalité décrite précédemment.

ÀLIRE 00

Exemple

La fonction logarithme est une solution de l'équation différentielle $y' = \frac{1}{x}$.

La fonction exponentielle est une solution de l'équation différentielle y' = y, mais aussi de l'équation différentielle y'' = y, etc.

2. Résolution d'équations différentielles de la forme y' = ay

Nous allons donner une formule permettant de résoudre des équations différentielles de la forme y' = ay.

À RETENIR 💡

Formule

On pose (E): y' = ay (où a est un réel). Alors l'ensemble des solutions de (E) est l'ensemble des fonctions $x \mapsto ce^{ax}$ où $c \in \mathbb{R}$.

DÉMONSTRATION

Vérifions tout d'abord que les fonctions $x \mapsto ke^{ax}$ sont solutions de (E). Soit $c \in \mathbb{R}$, posons pour tout $x \in \mathbb{R}$, $y_c(x) = ce^{ax}$.

Alors pour tout $x \in \mathbb{R}$, $y'_c(x) = ace^{ax}$ et $ay_c(x) = ace^{ax}$. Donc $y'_c = ay_c : y_c$ est bien solution de (E).

Montrons que les fonctions y_c sont les seules solutions de (E). Soit y une solution quelconque de (E) sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on pose $z(x) = y(x)e^{-ax}$. En dérivant :

$$z'(x) = y'(x)e^{-ax} + y(x)(-ae^{-ax}) = e^{-ax}(y'(x) - ay(x))$$

De plus, comme y est solution de (*E*), on a y' - ay = 0, donc z' = 0.

Ainsi, il existe une constante réelle c telle que z=c. C'est-à-dire que pour tout $x\in\mathbb{R}$:

 $c = y(x)e^{-ax} \iff y(x) = ce^{ax}$. Ce qui termine la preuve.

À RETENIR

Théorème

Pour tout réels x_0 et y_0 , il existe une **unique** fonction y solution de l'équation différentielle (E) telle que $y(x_0) = y_0$.

ÀLIRE 99

Exemple

Résolvons l'équation différentielle (E): y' - 5y = 0 sous condition d'avoir y(0) = 1.

Dans un premier temps, on écrit l'équation sous une meilleure forme : $y' - 5y = 0 \iff y' = 5y$. On a donc a = 5. Les solutions de l'équation (E) sont les fonctions définies $x \mapsto ce^{5x}$ où $c \in \mathbb{R}$.

Maintenant, il faut trouver la fonction y qui vaut 1 en 0. Soit donc y une telle solution de (E). Alors :

 $y(0) = 1 \iff ce^{5\times 0} = 1 \iff c = e^{-1}$. La solution recherchée est donc la fonction $y: x \mapsto e^{-1}e^{5x}$.

3. Résolution d'équations différentielles de la forme y' = ay + b

Nous allons donner une formule permettant de résoudre des équations différentielles de la forme y' = ay + b.

À RETENIR 💡

Formule

On pose (E): y' = ay + b (où a est un réel non-nul et b est un réel). Alors l'ensemble des solutions de (E) est l'ensemble des fonctions $x \mapsto ce^{ax} - \frac{b}{a}$ où $c \in \mathbb{R}$.

À RETENIR '

Théorème

Pour tout réels x_0 et y_0 , il existe une **unique** fonction y solution de l'équation différentielle (E) telle que $y(x_0) = y_0$.

ÀLIRE 00

Exemple

Résolvons l'équation différentielle (E): y' = 2y - 1 sous condition d'avoir y(1) = 0.

On a donc a=2 et b=-1. Les solutions de l'équation (E) sont les fonctions définies $x\mapsto ce^{2x}+\frac{1}{2}$ où $c\in\mathbb{R}$.

Maintenant, il faut trouver la fonction y qui vaut 0 en 1. Soit donc y une telle solution de (E). Alors :

 $y(1)=0 \iff ce^{2\times 1}+\frac{1}{2}=0 \iff c=-\frac{1}{2e^2}$. La solution recherchée est donc la fonction $y:x\mapsto -\frac{e^{2x}}{2e^2}+\frac{1}{2}$.