DS 6 version B

Exercice 1.

Déterminer deux réels a et b pour que 1 soit racine multiple (de multiplicité au moins égale à 2) du polynôme

$$P = X^5 + aX^2 + bX.$$

Factoriser alors ce polynôme en produit d'irréductibles de $\mathbb{R}[X]$.

Exercice 2.

Nous considérons dans cet exercice un entier naturel n et un polynôme P de $\mathbb{R}_n[X]$ tel que

$$\forall k \in [0, n] \quad P(k) = \frac{1}{k+1}.$$

Nous souhaitons calculer P(n+1).

- 1. Première méthode.
 - (a) Justifier qu'il existe une constante λ telle que

$$(X+1)P(X) - 1 = \lambda \prod_{k=0}^{n} (X-k).$$

- (b) En évaluant en un point bien choisi, calculer λ .
- (c) Conclure.
- 2. <u>Seconde méthode</u>.

Retrouver le résultat en utilisant l'interpolation de Lagrange.

Exercice 3.

Soit le polynôme

$$P = 2X^{13} - 4X^{12} + 666.$$

Ce polynôme possède 13 racines dans \mathbb{C} (comptées avec multiplicité).

Sans chercher à calculer ces nombres, donner leur somme et leur produit.

Exercice 4.

On considère dans cet exercice le polynôme

$$P = X^{2n} + 1.$$

Pour k dans [0, 2n-1], on note $\varphi_k = \frac{\pi}{2n} + \frac{k\pi}{n}$ et $\omega_k = e^{i\varphi_k}$.

1. Montrer que

$$P = \prod_{k=0}^{2n-1} (X - \omega_k).$$

2. Prouver, pour tout $k \in [0, 2n-1]$, l'égalité $\overline{\omega_k} = \omega_{2n-k-1}$. Écrire la décomposition de P en produit d'irréductibles de $\mathbb{R}[X]$.

Problème. Polynômes de Tchebychev.

On définit par récurrence une suite $(T_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$:

$$T_0 = 1 \quad T_1 = X$$

$$\forall n \in \mathbb{N} \quad T_{n+2} = 2XT_{n+1} - T_n.$$

- 1. Premières propriétés. Soit $n \in \mathbb{N}$.
 - (a) Calculer T_2 , T_3 et T_4 .
 - (b) Montrer que T_n est un polynôme de degré n.
 - (c) Déterminer (en justifiant) le coefficient dominant de T_n .
 - (d) Montrer que $T_n(-X) = (-1)^n T_n(X)$.
- 2. La relation fondamentale
 - (a) Soit $z \in \mathbb{C}^*$ et $n \in \mathbb{N}$. Montrer que

$$T_n\left(\frac{1}{2}\left(z+\frac{1}{z}\right)\right) = \frac{1}{2}\left(z^n + \frac{1}{z^n}\right).$$

(b) En déduire que

$$\forall \alpha \in \mathbb{R} \qquad T_n(\cos \alpha) = \cos(n\alpha)$$

- (c) Soit $P \in \mathbb{R}[X]$ tel que pour tout $\alpha \in \mathbb{R}$ on ait $P(\cos \alpha) = \cos(n\alpha)$. Montrer que $P = T_n$.
- 3. Factorisation de T_n

Soit $n \in \mathbb{N}^*$.

- (a) En utilisant \bullet , déterminer les $\alpha \in \mathbb{R}$ tels que $\cos(\alpha)$ est racine de T_n .
- (b) Factoriser T_n en produit d'irréductibles de $\mathbb{R}[X]$.

- 4. Calcul des bornes $\sup_{x \in [-1,1]} |T_n(x)|$ et $\sup_{x \in [-1,1]} |T'_n(x)|$
 - (a) En utilisant la relation ♥, justifier que

$$\sup_{x \in [-1,1]} |T_n(x)| = 1.$$

(b) En utilisant la relation ♥, établir que

$$\forall n \in \mathbb{N} \quad \forall \alpha \in]0, \pi[\quad T'_n(\cos \alpha) = n \frac{\sin(n\alpha)}{\sin \alpha}.$$

- (c) Montrer que pour tout $n \in \mathbb{N}$, $T'_n(1) = n^2$.
- (d) En raisonnant par récurrence, montrer que

$$\forall n \in \mathbb{N} \quad \forall \alpha \in \mathbb{R} \quad |\sin(n\alpha)| \le n |\sin(\alpha)|.$$

(e) Conclure que

$$\sup_{x \in [-1,1]} |T'_n(x)| = n^2.$$

5. Un théorème de Tchebychev.

Soit P un polynôme unitaire de degré $n \in \mathbb{N}^*$. On souhaite démontrer que

$$\sup_{x \in [-1,1]} |P(x)| \ge \frac{1}{2^{n-1}}.$$

On raisonne par l'absurde et on suppose que $\sup_{x \in [-1,1]} |P(x)| < \frac{1}{2^{n-1}}$.

On pose $Q := P - \frac{1}{2^{n-1}} T_n$, où T_n est le polynôme de Tchebychev d'ordre n, ainsi que $x_k = \cos \frac{k\pi}{n}$ pour $0 \le k \le n$.

- (a) Soit $k \in [0, n]$. Calculer $T_n(x_k)$. Pour $0 \le k \le n-1$, justifier que $Q(x_k)$ et $Q(x_{k+1})$ ne sont pas de même signe, et sont non nuls.
- (b) En déduire que le polynôme Q possède n racines deux à deux distinctes.
- (c) Exhiber une contradiction.