庁. 日 **OFFICE**

JUN 2 7 2002 🕏 と記載されている事項は下記の出願書類に記載されて であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 7月 3 日

出願

Application Number:

特願2001-202309

[ST.10/C]:

[JP2001-202309]

人 出 Applicant(s):

株式会社リコー

2002年 5月14日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

0102861

【提出日】

平成13年 7月 3日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

G02B 26/10

B41J 2/44

【発明の名称】

光走査装置及び画像形成装置

【請求項の数】

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

天田 琢

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

宮武 直樹

【特許出願人】

【識別番号】

000006747

【氏名又は名称】 株式会社リコー

【代表者】

桜井 正光

【手数料の表示】

【予納台帳番号】

003724

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光走査装置及び画像形成装置

【特許請求の範囲】

【請求項1】 等間隔にアレイ状に並んだ複数個(n個)の発光点を有する少なくとも2つの半導体レーザアレイと、該2つの半導体レーザアレイからの出射光を各々カップリングするための少なくとも2つのカップリングレンズ及びそれらを一体的に保持する保持部材からなる光源装置と、該光源装置から出射される光ビームを偏向するための偏向器と、上記光源装置から出射される光ビーム(2n個)を上記偏向器の偏向反射面に主走査に長い線像として結蔵させるための結像光学系と、上記偏向器により偏向された光ビームを、被走査面上を光スポットとして走査させるための走査光学系とからなる光走査装置において、

走査開始タイミングを決定するための同期信号を検出するための検出手段を有し、上記2つの半導体レーザアレイのうちの一の半導体レーザアレイにおいては、上記同期信号を一つの発光点から出射される光ビームから得て、他の発光点から出射される光ビームの走査開始タイミングは、上記一つの発光点から出射される光ビームから得られる同期信号から特定のディレイ時間だけずらして決定する光走査装置であって、

上記光源装置を、出射される光ピームの光軸に略平行な回転軸回りに回転させて上記被走査面における走査密度を切り替える手段を有することを特徴とする光 走査装置。

【請求項2】 請求項1の光走査装置において、下記条件式(1)及び(2))を満足することを特徴とする光走査装置。

条件式(1)

 $\Delta R Y = \{ (n-1) \times (2n-1) / 2 \} \times \{ (q \times cos \phi \times mY \times d)$ $/ (f_{col} \times t an \theta \times mZ) \} \leq d/4$

条件式(2)

 $\Delta R Z = - \{ (n-1) \times (2n-1) / 2 \} \times \{ (q \times s i n \phi \times d) / (f_{col} \times t a n \theta) \} \le d / 4$

ただし、上記条件式(1)及び(2)において、

- d は走査線間隔、
- nは一つの半導体レーザアレイの発光点の数
- g は発光点間隔、
- ø は半導体レーザアレイの配置角度
- mYは主走査倍率、
- mΖは副走査倍率、
- f_{col}はカップリングレンズの焦点距離、
- 2θは交差角度、

ΔRYは被走査面における、同一の半導体レーザアレイの両端の光スポット間隔の変動量(主走査方向成分)

ΔRZは同じく副走査方向成分である。

【請求項3】 請求項2の光走査装置において、上記走査密度の切り替えに、上記被走査面での走査密度が高いあるいは走査線間隔が小さい側で、各光スポットの走査開始位置が同一になるように上記ディレイ時間を設定したことを特徴とする光走査装置。

【請求項4】 請求項1の光走査装置において、上記走査密度の切り替えに 応じて、上記ディレイ時間を可変としてなることを特徴とする光走査装置。

【請求項5】 請求項1ないし4のいずれかの光走査装置を用いたことを特徴とする電子写真方式の画像形成装置。

【請求項6】 請求項5の画像形成装置であって、被走査面となる感光手段を複数有し、これら複数の感光手段に対応する光走査装置の少なくとも一つが請求項1ないし4のいずれかの光走査装置であることを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、レーザプリンタ、デジタル複写機、レーザファクシミリ等の電子写 真方式を用いた画像形成装置と、これにレーザ書込光学系の光書込ユニットとし て用い得る光走査装置に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】

複数の半導体レーザから射出される光ビームを合成して被走査面上を走査する 光走査装置における、走査線間隔を調整するための技術に関しては、例えば下記 のような例が公知である。

[0003]

特開2000-75227号公報に開示のマルチビーム光源装置は、2つの半導体レーザアレイから出射される光ビームを被走査面上に走査する走査光学系において、光源装置を走査光学系の光軸を回動中心として回動調整することにより、被走査面における走査線間隔を調整することを可能としている。このような光源装置を備えた光走査装置は、被走査面における走査密度切り替え可能であるが、その副作用として、被走査面における同一の半導体レーザアレイに対応するビームスポット列の主走査方向の位置ずれが発生するおそれがある。すなわち、光源装置を光軸回りに回転することにより走査密度を切り替える方式の場合、光源装置を光軸回りに回転することにより走査密度を切り替える方式の場合、光源装置の回転(半導体レーザアレイの公転)に伴い半導体レーザも回転(自転)するため、被走査面において、同一の半導体レーザアレイのビームスポット配列の主走査方向の位置ずれが発生してしまう。この主走査方向の位置ずれが、画像出力装置による出力画像の品質劣化をもたらすおそれがある。

[0004]

また特開2000-255097号公報に開示の画像形成装置は、複数の半導体レーザアレイから出射される光ビームをビーム合成手段にて合成する光源装置を備えた画像形成装置において、半導体レーザアレイとビーム合成手段との間の光路中に、結像位置(副走査方向)を調整可能な調整部材を有することを特徴としている。この装置においては、調整部材を駆動する機構が必要となり、装置の大型化、コストアップ、信頼性の低下等を招くおそれがある。

[0005]

本発明は、上記従来の問題点にかんがみ、装置の大型化、コストアップ、信頼 性低下等を招くことなく、走査密度(ビームピッチ)切り替え時に主走査方向の 走査開始位置ずれを発生することのない光走査装置を提供することを目的とする [0006]

【課題を解決するための手段】

本発明の請求項1に係る光走査装置は、上記目的を達成するために、等間隔にアレイ状に並んだ複数個(n個)の発光点を有する少なくとも2つの半導体レーザアレイと、該2つの半導体レーザアレイからの出射光を各々カップリングするための少なくとも2つのカップリングレンズ及びそれらを一体的に保持する保持部材からなる光源装置と、該光源装置から出射される光ビームを偏向するための偏向器と、上記光源装置から出射される光ビーム(2n個)を上記偏向器の偏向反射面に主走査に長い線像として結蔵させるための結像光学系と、上記偏向器により偏向された光ビームを、被走査面上を光スポットとして走査させるための走査光学系とからなる光走査装置において、走査開始タイミングを決定するための同期信号を検出するための検出手段を有し、上記2つの半導体レーザアレイのうちの一の半導体レーザアレイにおいては、上記同期信号を一つの発光点から出射される光ビームから得て、他の発光点から出射される光ビームの走査開始タイミングは、上記一つの発光点から出射される光ビームから得られる同期信号から特定のディレイ時間だけずらして決定する光走査装置であって、

上記光源装置を、出射される光ピームの光軸に略平行な回転軸回りに回転させ て上記被走査面における走査密度を切り替える手段を有することを特徴とする。

[0007]

同請求項2に係るものは、上記目的を達成するために、請求項1の光走査装置 において、

条件式(1)

 $\Delta R Y = \{ (n-1) \times (2n-1) / 2 \} \times \{ (q \times cos \phi \times mY \times d)$ $/ (f_{col} \times t \ an \ \theta \times mZ) \} \leq d/4$

条件式(2)

 $\Delta R Z = - \{ (n-1) \times (2n-1) / 2 \} \times \{ (q \times s i n \phi \times d) / (f_{col} \times t a n \theta) \} \leq d / 4$

ただし、上記条件式(1)及び(2)において、

d は走査線間隔、

nは一つの半導体レーザアレイの発光点の数

q は発光点間隔、

φは半導体レーザアレイの配置角度

mYは主走査倍率、

mZは副走査倍率、

f_{col}はカップリングレンズの焦点距離、

2θは交差角度、

ΔRYは被走査面における、同一の半導体レーザアレイの両端の光スポット間 隔の変動量(主走査方向成分)

ΔRZは同じく副走査方向成分、

を満足することを特徴とする。

[0008]

同請求項3に係るものは、上記目的を達成するために、請求項2の光走査装置において、上記走査密度の切り替えに、上記被走査面での走査密度が高いあるいは走査線間隔が小さい側で、各光スポットの走査開始位置が同一になるように上記ディレイ時間を設定したことを特徴とする。

[0009]

同請求項4に係るものは、上記目的を達成するために、請求項1の光走査装置 において、上記走査密度の切り替えに応じて、上記ディレイ時間を可変としてな ることを特徴とする。

[0010]

本発明の請求項5に係る画像形成装置は、上記目的を達成するために、請求項 1ないし4のいずれかの光走査装置を用いたことを特徴とする。

[0011]

同請求項6に係るものは、上記目的を達成するために、請求項5の画像形成装置であって、被走査面となる感光手段を複数有し、これら複数の感光手段に対応する光走査装置の少なくとも一つが請求項1ないし4のいずれかの光走査装置であることを特徴とする。

[0012]

【発明の実施の形態及び実施例】

以下本発明の実施の形態及び実施例を図面を参照して説明する。

[0013]

<第1実施形態>

まず第1の実施形態として、等間隔 (q) でアレイ状に並んだ発光点をn個有する2つの半導体レーザアレイ (LDアレイ)からの出射ビームによる、2n個のビーム走査装置に係る構成、動作を、n=4の場合について説明する。

<符号の説明>

なお以下の説明において、

11a、11b:半導体レーザアレイ(LDアレイ)

12a、12b:カップリングレンズ

13:シリンドリカルレンズ

14:ポリゴンミラー(偏向器)

15:走査光学系

16:感光体ドラム(被走査面)

17:ビーム合成プリズム

18:光源装置

19:同期信号を検出する手段

a1~a4:被走査面16におけるLDアレイ11aのビームスポット

b1~b4:被走査面16におけるLDアレイ11bのビームスポット

Ca、Cb:被走査面16におけるLDアレイ11a及び11bのビームスポ

ットの中心位置

QY、QZ:被走査面16における同一LDアレイの隣接するビームスポットの間隔

PY、PZ:中心位置CaとCbの間隔(センタ間ピッチ)

である。また添字Y、Zはそれぞれ主走査方向、副走査方向を示す。

また、

q:LDアレイの発光点間隔

n:一つのLDアレイの発光点の数

φ:LDアレイの配置(傾き)角度

f col:カップリングレンズの焦点距離

 $\theta: 2$ つのLDアレイから出射されたレーザビームが偏向反射面付近で交差する角度の半分(1/2)

 $\Delta \phi$ 、 γ :光源装置 18の略光軸回りの回転角度である。

[0014]

図1において、第1のLDアレイ11a及び第2のLDアレイ11bから出射されたレーザ光は、各々対応するカップリングレンズ12a、12bにより各々カップリングされ、図示しないアパーチャ (開口)により整形される。上記LDアレイ11aと11b及びカップリングレンズ12a、12b及びそれらを保持する保持部材から少なくとも構成される部分を光源装置18と言う。LDアレイ11a、11bとカップリングレンズ12a、12bとの位置合わせ(相対位置関係の調整)は、所望のコリメート性及び射出方向(光軸方向)が得られるように調整、固定する。

[0015]

図1においては、LDアレイ11a、11bの保持部材については図示を省略 してあるが、図2に示すような構造を採用できる。

図2 (A) は、特開2001-4941号公報に開示された光源として汎用の 半導体レーザを2個用いたマルチビーム走査装置の光源部構成を示す斜視図であ る。この図において、2個の半導体レーザ101、102はアルミダイキャスト 製のベース部材103の裏側に主走査方向に8mm間隔(カップリングレンズを 並列して配設可能な距離)で隣接形成された嵌合穴に各々圧入され支持されてい る。また、カップリングレンズ104、105は各々の半導体レーザ101、1 02から射出される光ビームが所定の発散性を有する光束となるようにX方向の 位置を合わせ、また、所定のビーム射出方向となるようにY、Z方向の位置を合 わせて、半導体レーザ101、102と対に形成したU字状の支持部103bと の隙間にUV硬化接着剤を充填して固定されている。これらの半導体レーザ10 1、102とベース部材103とカップリングレンズ104、105とを主体と して光源部106が構成されている。

[0016]

またベース部材103は保持部材107にねじ108により固定され、その光軸Cを中心軸とした円筒部外周107aを光学ハウジングに形成した側壁109の嵌合穴109aに係合させてして位置決めされ、スプリング110を通して圧縮し、リング状の押え部材111をつば部107bに引っ掛けて、圧縮力により側壁109に当接するように支持されている。また、スプリング110の立ち曲げ部110aを押え部材111の穴111aに係合させ、反対側の腕110bを側壁109の突起109bに引っ掛けて時計回りのねじり力を発生させ保持部材107に形成した回転止め部107cを調節ねじ112に突き当てて、調節ねじ112により光軸回りの回転調節を可能としている。調節ねじ112は側壁109に形成したねじ(図示せず)により保持されている。

[0017]

図2(B)は、図2に示した光源装置を 7 回転させるための機構を示す分解斜 視図であり、図中211は光源装置、212はマルチビーム走査装置のハウジン グ、213は摺動部材、214はモータブラケット、215はバネ押え板、21 8はバネ、219はバネ押圧板、220はステッピングモータ、221はガイド 、226はスイッチである。

[0018]

上記構造と同様に、本実施形態においてもLDアレイ11 a、11 bは保持部材に圧入により固定するが、押さえ板を用いてねじ止め等により固定する方法等でも構わない。またカップリングレンズ12 a、12 bは紫外線硬化型接着剤により保持部材に設けたU字型の突起部に接着固定するが、別の方法として、カップリングレンズ12 a、12 bを雄ねじ部を有するレンズセル内に固定し、これを保持部材に設けた雌ねじ部に螺合させる方法等でも構わない。

[0019]

上述のように固定、保持する2つのLDアレイ11 a、11 b は主走査方向に離れて配置され、カップリングレンズ12 a、12 b により各々カップリングされた光ビーム(すなわち2つのLDアレイ11 a、11 b の光学軸)は、ポリゴ

ンミラー14の偏向反射面付近で互いに交差する。交差する角度は2θに設定する。

[0020]

光源装置18から出射した8本の光ビームは、シリンドリカルレンズ13の作用により偏向器(ポリゴンミラー)14の偏向反射面上に、主走査方向に長い(副走査方向に結像した)線像として結像され、偏向反射された後、走査光学系15の作用により被走査面(感光体ドラム)16上を光スポットとして走査される。なお光源装置18において、図3に示すようなビーム合成手段(例えばビーム合成プリズム17)を用いてビームを合成する構成とすることで、上記の角度20を小さくすることができる。この構成により両LDアレイ(11a、11b)の被走査面16での光スポットの光学特性の偏差を低減することができる。

[0021]

LDアレイ11 a、11 b (発光点間隔: q) は一般には図4に示すように配置角度 ϕ だけ傾けて配置されるが、この場合、被走査面16上では図示のように、光学系の倍率(主走査方向:mY、副走査方向:mZ)により拡大され、隣接する光スポットの間隔(QY、QZ)は、

 $QY = q \times s i n \phi \times mY$

 $QZ = q \times c \circ s \phi \times m Z$

となる。従って最も離れた光スポットの間隔(RY、RZ)は、

 $RY = (n-1) QY = (n-1) \times q \times s i n \phi \times mY$

 $RZ = (n-1) QZ = (n-1) \times q \times cos \phi \times mZ$ で表される。

[0022]

なお既存の走査光学系(偏向器以降の光学系を従来機と共通使用する)を用いて光走査装置を構成する場合には、走査光学系の倍率(及び焦点距離)を変更することは困難であるが、偏向器以前の光学系(カップリングレンズ及びシリンドリカルレンズ)の焦点距離を適宜設定することにより、所望の倍率(mY及びmZ)を得ることができる。

[0023]

被走査面16における光スポットを配置する方法として、図5に示す方法がある。

図5 (A) は、第1のLDアレイ11 aの光スポットと第2のLDアレイ11 bの光スポットを互い違いに配置する方法である。第1のLDアレイ11 aの光スポット配列及び第2のLDアレイ11 bの光スポット配列11 bの中央位置C a及びC b との距離(以下、センタ間距離と言う。)の副走査方向成分PZは、一走査線間隔(d)となっている。

[0024]

図5 (B) は、第1のLDアレイ11aの光スポットと第2のLDアレイ11 bの光スポットを直列に配置する方法である。各々の光スポット配列のセンタ間 距離の副走査方向成分PZは、(2n-1) dとなっている。

[0025]

本実施形態の光走査装置においては、走査開始タイミングを決定するための同期信号を検出するための検出手段19を有し、各LDアレイ11a、11bにおいて、上記同期信号を一つの発光点から出射される光ビームから得て、他の発光点から出射される光ビームの走査開始タイミングは、上記一つの発光点から出射される光ビームから得られる同期信号から特定の時間(ディレイ時間)だけずらして決定されるようにする。このことで、各光ビームの走査を同じ位置(主走査方向)から開始することが可能となる。

[0026]

上述のように2つのLDアレイ11a、11bから出射される光ビームは、角度2 0にてポリゴンミラー14の偏向反射面付近にて交差する構成になっている。従って、光源装置18を図2で示したような構造を用いて、その射出光軸に略平行な回転軸回りに回転調整することにより、2つのLDアレイ11a、11bから出射される光ビームの副走査方向の光軸偏差が発生し、その結果、被走査面16における2つの光スポットの中央位置Ca、Cbのセンタ間距離の副走査方向成分PZを調整することができる。すなわち図5(A)の光スポット配列を図5(B)のように変更して走査密度を切り替え得る。図示の例の場合、1200dpiと600dpiでの変更ができる。図5(A)においては、各走査線の間

隔は、d=21. $1 \mu m$ (走査密度は1200 dpi) であり、図5 (B) においては各走査線の間隔は、2 d=42. $3 \mu m$ (走査密度は600 dpi) となっている。

[0027]

ところで、光源装置 180γ 回転により、200 LDアレイ 11a、11b は 公転するとともに自転することになる。そのため図 6 に示すように、-00 LD アレイの被走査面 16 における光スポット配列(主走査方向の間隔:RY、副走査方向の間隔:RZ)が、初期値から変動することになる。いま光源装置 1800 γ 回転量を $\Delta \phi$ とすると、被走査面 16 における光スポット配列の変動量(主走査方向の間隔の変動量: ΔRY 、副走査方向の間隔の変動量: ΔRZ)はそれぞれ、

で表される。なお図中

 $QY' = QY - \Delta QY$

 $RY' = RY - \Delta RY$

 $QZ' = QZ - \Delta QZ$

 $RZ' = RZ - \Delta RZ$

である。

[0028]

例えば第1実施形態に係る実施例の構成として、図7に示す諸元が与えられて いた場合、

 $\Delta \phi = 0.7$ [°]

 $\Delta R Y = 2$. 8 [μ m]

 $\Delta RZ = -4.5 [\mu m]$

となる。いま本実施形態の光走査装置を、電子写真プロセスを用いた画像出力装

置の光走査装置として使用した場合の光スポット配列の変動量の許容値を、走査 線間隔の1/4 (= d/4)とすると、

 $d/4 = 5.3 [\mu m]$

であり、主走査方向(Δ RY)、副走査方向(Δ RZ)ともに、許容値以内となる。従って、

 $\Delta R Y = \{ (n-1) \times (2n-1) / 2 \} \times \{ (q \times cos \phi \times mY \times d)$ $/ (f_{col} \times t an \theta \times mZ) \} \leq d/4$

 $\Delta RZ = -\{(n-1) \times (2n-1)/2\} \times \{(q \times s i n \phi \times d)/(f_{col} \times t a n \theta)\} \le d/4$

という条件式1、2を満足する光走査装置を使用した画像出力装置による出力画像は、高品質な画像となる。

[0029]

なお上記条件式1、2の右辺は小さい方がより望ましく、d/4以下としたが、要求される画像品質により、また現像、転写、定着の条件等により、d/2以下程度の範囲としても構わない。

[0030]

また走査密度切り替えにおいて、被走査面16での走査密度が高い(走査線間隔が小さい)側で、各光スポットの走査開始位置が同一になるようにディレイ時間を設定した光走査装置を構成することができる。このような光走査装置においては、高走査密度側(1200dpi)にて所望の光スポット配列にしておき、低走査密度側(600dpi)にて上記の変動量(ΔRY、ΔRZ)が発生するようにすることにより、出力画像に及ぼす光スポット配列誤差の影響がより大きい高走査密度側(より高品位な出力画像が得られる)にて、より正確な、すなわち主走査方向/副走査方向ともに配列誤差の小さい光スポット配列を確保することが可能となる。

[0031]

なお図7に示した諸元の場合、同一のLDアレイにおける隣接の光スポット配列の主走査方向成分は、

 $QY = q \times s i n (\phi) \times mY = 0. 197 mm$

であり、走査速度によっては4つの光ビームに対して同期信号を個別に検出できない場合がある。従って上述のように一つの発光点に対して同期信号を検出し、他の発光点についてはその同期信号から特定の時間(ディレイ時間)だけずらして、走査開始タイミングを設定すればよい。一方2つのLDアレイ11a、11bの光スポット配列の中央位置Ca及びCbの主走査方向成分PYは、

 $PY = FY \times (2 \theta) = 225 \times (5^{\circ} \times 2 \pi / 360^{\circ}) = 19.6 \text{ [mm]}$

であるため、両者の同期信号を個別に検出することは容易である。

[0032]

<第2実施形態>

次に本発明の第2の実施形態を説明する。第2実施形態の構成として、第1実 施形態に示した光走査装置において、その諸元が図8の場合を考える。

この第2実施例では、光源装置18の回転量 $\Delta \phi$ 、被走査面16における光スポット配列の変動量(主走査方向の間隔の変動量: $\Delta R Y$ 、副走査方向の間隔の変動量: $\Delta R Z$)はそれぞれ、

 $\Delta \phi = 3.6$ [°]

 $\Delta R Y = 39.3 [\mu m]$

 $\Delta RZ = 0.3 [\mu m]$

となる。すなわち光スポット配列の変動量の主走査方向成分RYが、RY=39.3 μ mとなり、上述の許容量 d/4=5.3 μ mを上回ることになる。副走査方向成分RZRZ=0.3 μ mなので、問題はない。

[0033]

このような場合には、走査密度の切り替えに応じてディレイ時間を適宜設定することで、各光ビームに対する走査開始位置(主走査方向)を一定にすることができる。両走査密度(1200dpi及び600dpi)に対するディレイ時間は、設計的に(計算にて)算出することができる。例えば、高走査密度側(1200dpi時)のディレイ時間を T_{1200} 、低走査密度側(1200dpi時)のディレイ時間を T_{1200} 、低走査密度側(1200dpi時)のディレイ時間を T_{1200} 、大査速度(等速走査の場合)を V_{1200} とすると、走査密度切り替え時のディレイ時間の変化量 Δ_{1200} で

 $\Delta T = T_{600} - T_{1200} = \Delta R Y / V s = 78.6 [n s]$ で表され、V s = 500 [m/s] の場合、

 $\Delta T = 78.6 [ns]$

となる。また光走査装置に光スポット配列の少なくとも主走査方向成分を検出する手段を設けることにより、検出結果に応じてディレイ時間をより正確に決定することが可能となる。

[0034]

さらに、本光走査装置を電子写真プロセスを用いた画像形成装置の光走査装置として使用した場合には、その出力画像として光スポット配列検出パターンを用意しておくことができる。ユーザまたはサービスマン等のオペレータ(操作者)が、上記光スポット配列検出パターンを観察することにより、走査密度切り替え前後のディレイ時間を決定することが可能となる。決定したディレイ時間は、機械本体に設けられた走査パネル等により入力すればよい。

[0035]

デジタルカラー複写機、カラープリンタ等の画像形成装置においては、各色(例えば、ブラック:K、シアン:C、マゼンタ:M、イエロー:Y)に対応する感光手段(例えば感光体ドラム1K、1C、1M、1Y)を、画像記録媒体(例えば紙)の搬送方向に直列に配列したタンデム方式が採用されることが多い。図9(A)に示すように、画像形成装置50に対して各色に対応する光走査装置を別体(10K、10C、10M、10Y)としても良いし、図9(B)に示すように共通体(10A)としても構わない。あるいは図9(C)、(D)に示すように光走査装置を二体化(10A1、10A2、10B1、10B2)した構成としても構わない。このような構成により、1感光体ドラム型の画像出力装置の場合(4色に対応して4回の書込が必要)と比較して、4倍の出力画像を得ることが可能となる。

[0036]

各色に対応する光走査装置10K、10C、10M、10Yから出射されるビームの本数が各々1本の場合には、この光走査装置を適用した画像出力装置によりフルカラー(4色)画像を得ることができる。それに対し、4つの光走査装置

の少なくとも一つ(例えばブラックに対応する光走査装置10K)を上記実施形態の構成の4ビーム光走査装置とし、この光走査装置のみで光走査を行うことにより、フルカラー画像時と比較して4倍の高密度化が可能となる。あるいは記録媒体の搬送速度(及びプロセス速度)を4倍に変更すれば、画像出力枚数を4倍に増加することが可能となる。またフルカラー画像時においても、文字画像についてはブラックにて書き込むことが多く高解像度も要求されることが多いため、上記の4ビーム光走査装置10K(ブラック)に付加して、他の光走査装置(10C、10M、10Y;1ビーム)も同時に書き込むことにより、文字/写真/線画イメージ等が混在した画像においてもより高品位な出力画像を得ることが可能となる。

[0037]

【発明の効果】

請求項1に係る光走査装置は、以上説明してきたように、一つの半導体レーザアレイから出射される光ビームの走査開始タイミングを、その半導体レーザアレイの一つの発光点からの光ビームより検出される同期信号に基づき決定する一方で、他の発光点からの光ビームの走査開始タイミングは、上記一つの発光点からの光ビームの走査開始タイミングは、上記一つの発光点からの光ビームにより得られた同期信号から特定の時間(ディレイ時間)ずらすことで、すべての光ビームの走査開始位置を同じにすることができ、走査密度切り替え時には、光源装置の回転に伴うビームスポット配列の主走査方向の位置ずれ量に応じて、上記ディレイ時間を可変とすることで、すべての光ビームの走査開始位置を同じにすることができるので、単純な機構、構造的構成によって被走査面における走査密度を容易に切り替えることが可能となるという効果がある。

[0038]

請求項2に係る光走査装置は、以上説明してきたように、被走査面における、 同一の半導体レーザアレイの両端の光スポット間隔の変動量(主走査方向成分) と副走査方向成分が所定の条件を満たすようにすることにより、上記共通の効果 に加え、走査密度切り替え時に、ディレイ時間を変更することなく光学的に光ス ポット配列変動量を抑制することができるという効果がある。

[0039]

)

請求項3に係る光走査装置は、以上説明してきたように、上記走査密度の切り替えに、上記被走査面での走査密度が高いあるいは走査線間隔が小さい側で、各 光スポットの走査開始位置が同一になるように上記ディレイ時間を設定するので、上記共通の効果に加え、高品位な出力画像が得られる高走査密度側にて、光スポット配列誤差を抑制することができるという効果がある。

[0040]

請求項4に係る光走査装置は、以上説明してきたように、上記走査密度の切り替えに応じて、上記ディレイ時間を可変としてなるので、上記共通の効果に加え、走査密度切り替え時に、光学的に光スポット配列変動量を抑制することができない場合でも、ディレイ時間を変更することで光スポット配列変動量を抑制することができるという効果がある。

[0041]

請求項5に係る画像形成装置は、以上説明してきた光走査装置を用いるので、 請求項1記載の光走査装置を電子写真プロセスを用いた画像形成装置の光走査装 置として使用することにより、走査密度を切り替えることができ、高走査密度時 には高品位な出力画像を得ることができ、低走査密度時には画像出力速度の高速 化(プロセス速度を考慮しなければ、高走査密度時の2倍)を図ることができ、 走査密度の切り替えは、オペレータが機械本体に設けられた走査パネル等による 入力をして、その要求に応じて走査密度を切り替えることにより、出力画像の高 品質化あるいは高速化のいずれかを選択することができるという効果がある。ま た請求項2または請求項3記載の光走査装置を電子写真プロセスを用いた画像形 成装置の光走査装置として使用した場合には、光スポット配列を補正することな く高品位な出力画像を得ることができ、請求項2ないし請求項4のいずれかに記 載の光走査装置を電子写真プロセスを用いた画像形成装置の光走査装置として使 用した場合には、自動的にあるいは手動にて高品位な出力画像を得ることができ るという効果がある。

[0042]

請求項6に係る画像形成装置は、請求項5の画像形成装置であって、被走査面 となる感光手段を複数有し、これら複数の感光手段に対応する光走査装置の少な くとも一つが請求項1ないし4のいずれかの光走査装置であるので、上記共通の 効果に加え、単色及び多色の出力画像の高密度化あるいは高速度化を図ることが できるという効果がある。

【図面の簡単な説明】

【図1】

本発明に係る光走査装置の一実施形態の概念的斜視図である。

【図2】

図1の実施形態に採用可能な、LDアレイの保持機構(A)と光源の回転機構(B)を示す分解斜視図である。

【図3】

図1の実施形態に採用可能な、光源装置の他の構成を示す概念的斜視図である

【図4】

図1の実施形態におけるLDアレイの配置角度を示す図である。

【図5】

図1の実施形態において、被走査面における光スポットの配置方法を示す図である。

【図6】

図1の実施形態において、光源装置のγ回転によりLDアレイの被走査面にお ける光スポット配列の変動を示す図である。

【図7】

図1の実施形態に係る実施例の構成諸元を示す図である。

【図8】

本発明の第2の実施形態に係る実施例の構成諸元を示す図である。

【図9】

本発明に係る光走査装置を用いた画像構成装置の構成を示す概念図である。

【符号の説明】

1 K、1 C、1 M、1 Y 感光体ドラム

10K, 10C, 10M, 10Y, 10A, 10A1, 10A2, 10B1,

10B2 光走查装置

- 11a、11b 半導体レーザアレイ (LDアレイ)
- 12a、12b カップリングレンズ
- 13 シリンドリカルレンズ
- 14 ポリゴンミラー(偏向器)
- 15 走査光学系
- 16 感光体ドラム(被走査面)
- 17 ビーム合成プリズム
- 18 光源装置
- 19 同期信号を検出する手段
- 50 画像形成装置
- al~a4、bl~b4 LDアレイのビームスポット
- Ca、Cb LDアレイのビームスポットの中心位置
- QY、QZ 同一LDアレイの隣接するビームスポットの間隔
- PY、PZ センタ間ピッチ
- q LDアレイの発光点間隔
- n 一つのLDアレイの発光点の数
- φ LDアレイの配置(傾き)角度
- f_{col} カップリングレンズの焦点距離
 - θ レーザビームが交差する角度の半分の角度
 - Δφ、γ 光源装置の略光軸回りの回転角度

【書類名】図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

走査線間隔	d	[21.2
一つの半導体レーザアレイの発光点の数	n	[個]	4
発光点間隔	q	[µm]	44
LDアレイの配置角度	Φ	[°]	70
主走査倍率	mY	[倍]	15
副走査倍率	mZ	[倍]	8:85
カップリングレンズの焦点距離	f col	[mm]	15
交差角度	2.θ	[°]	5
走査光学系の焦点距離(主走査方向)	FY	[mm]	225

[図8]

走査線間隔	d	[µm]	21.2
一つの半導体レーザアレイの発光点の数	n	[個]	4
発光点間隔	Q	[-14
LDアレイの配置角度	0	[°]	0
主走査倍率	mY	[倍]	15
副走査倍率	mZ	[倍]	3.03
カップリングレンズの焦点距離	f col	[mm]	.15
交差角度	2θ	[°]	3

【図9】

【書類名】

要約書

【要約】

【課題】 装置の大型化、コストアップ、信頼性低下等を招くことなく、走査密度 (ビームピッチ) 切り替え時に主走査方向の走査開始位置ずれを発生すること のない光走査装置を提供する。

【解決手段】 一つの半導体レーザアレイ11 aまたは11 bから出射される光ビームの走査開始タイミングを、その半導体レーザアレイの一つの発光点からの光ビームより検出される同期信号に基づき決定する一方で、他の発光点からの光ビームの走査開始タイミングは、一つの発光点からの光ビームにより得られた同期信号から特定の時間(ディレイ時間)だけずらす。

【選択図】 図1

出願人履歴情報

識別番号

[000006747]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

東京都大田区中馬込1丁目3番6号

氏 名

株式会社リコー