https://github.com/lauriluca99/LAR-TGW-3D

LINEAR ALGEBRAIC RAPRESENTATION:

LAR è uno schema rappresentativo per modelli geometrici e topologici, il dominio di questo schema consiste in complessi di cellule formati a loro volta da matrici sparse (matrici con grande affluenza di zeri). L'analisi di questi complessi cellulari è fatta attraverso semplici operazioni algebriche lineari, la più comune è la moltiplicazione sparsa matrice/vettore.

Dato che LAR permette una computazione efficiente di qualsiasi modello topologico è stato ritenuto necessario affiancarlo ad un linguaggio, anch'esso efficiente e veloce, che sia in grado di sfruttare tutte le sue potenzialità.

Perché LAR?

Scegliamo LAR in quanto l'aumento della complessità dei dati geometrici e dei modelli topologici richiedono una migliore rappresentazione e un modello matematico appropriato per tutte le strutture topologiche è proprio un complesso co-chain formato da collezioni di matrici sparse.

Un complesso chain consiste in una sequenza di moduli dove la singola immagine di ognuno è contenuta nel nucleo della successiva. (successivo conosce precedente)

$$\cdots \stackrel{d_0}{\longleftarrow} A_0 \stackrel{d_1}{\longleftarrow} A_1 \stackrel{d_2}{\longleftarrow} A_2 \stackrel{d_3}{\longleftarrow} A_3 \stackrel{d_4}{\longleftarrow} A_4 \stackrel{d_5}{\longleftarrow} \cdots$$

Figure 1: This is the caption

Un complesso co-chain è la stessa cosa ma con direzioni opposte.

$$\cdots \xrightarrow{d^{-1}} A^0 \xrightarrow{d^0} A^1 \xrightarrow{d^1} A^2 \xrightarrow{d^2} A^3 \xrightarrow{d^3} A^4 \xrightarrow{d^4} \cdots$$

Figure 2: This is the caption

TGW-3D:

L'algoritmo Topological Gift Wrapping ha come obiettivo il calcolare le d-celle di una partizione di spazio generate da loro partendop da un oggetto geometrico d-1 dimensionale.

TGW prende una matrice sparsa di dimensione d-1 in input e produce in output la matrice sparsa di dimensione d sconosciuta aumentata dalle celle esterne.

SPATIAL ARRANGEMENT:

Figure 3: This is the caption

Calcola la partizione dei complessi cellulari dati, con scheletro di dimensione 2, in 3D.

Un complesso cellulare è partizionato quando l'intersezione di ogni possibile paio di celle del complesso è vuota e l'unione di tutte le celle è l'insieme dello spazio Euclideo. La funzione ritorna la partizione complessa come una lista di vertici V e una catena di bordi EV, FE, CF.

SPATIAL ARRANGEMENT_1:

Si occupa del processo di frammentazione delle facce per l'utilizzo del planar arrangement.

1. compute FV:

Ritorna l'array FV di tipo Lar. Cells dal prodotto di due array sparsi in input di tipo Lar. Chain Op.

2. Spaceindex:

Dato un modello geometrico, calcola le intersezioni tra i bounding box. Nello specifico, la funzione calcola le 1-celle e il loro bounding box attraverso la funzione boundingBox. Si suddividono le coordinate x e y in due dizionari chiamando la funzione coordintervals. Per entrambe le coordinate x e y, si calcola un intervalTree cioè una struttura dati che contiene intervalli. La funzione boxCovering viene chiamata per calcolare le sovrapposizioni sulle singole dimensioni dei bounding Box. Intersecando quest'ultime, si ottengono le intersezioni effettive tra bounding box. La funzione esegue lo stesso procedimento sulla coordinata z se presente. Infine, si eliminano le intersezioni di ogni bounding box con loro stessi.

3. frag face:

Effettua la trasformazione in 2D delle facce fornite come parametro sigma, dopo di che ogni faccia sigma si interseca con le facce presenti in sp_index sempre fornito come parametro della funzione.

4. skel_merge:

effettua l'unione di due scheletri che possono avere 1 o 2 dimensioni.

5. merge vertices:

effettua l'unione dei vertici, dei lati e delle facce vicine.

BICONNECTED COMPONENTS:

calcola le componenti biconnesse del grafo EV rappresenato da bordi, ovvero coppie di vertici.

1. an_edge:

funzione che, dato in input un punto, prende un lato connesso ad esso

2. get_head:

funzione che, dato in input un lato e la coda, fornisce la testa

3. v_to_vi:

funzione che, dato un vertice in input, ritorna falso se la prima occerrenza della matrice è pari a 0 oppure ritorna il valore trovato.

4. push!:

inserisce uno o più oggetti nella matrice.

5. pop!:

rimuove l'ultimo oggetto nella matrice e lo ritorna.

6. sort:

ordina la matrice e ne ritorna una copia.

SPATIAL ARRANGEMENT 2:

Effettua la ricostruzione delle facce permettendo il wrapping spaziale 3D.

1. minimal_3cycles:

funzione che riporta i parametri dati in input in 3 dimensioni e calcola le nuove celle adiacenti per estendere i bordi della figura geometrica. Infine ritorna la matrice sparsa tridimensionale.

2. build_copFC:

funzione alternativa alla precedente.