

UNIVERZITET U BEOGRADU – ELEKTROTEHNIČKI FAKULTET Katedra za Signale i sisteme

Istraživačka grupa za Biomedicinsku Instrumentaciju i Tehnologije

13E054ABS Analiza biomedicinske slike

Prostor intenziteta. Filtriranje.

Predavanje je bazirano na knjizi
Wolfgang Birkfellner "Applied Medical Image Processing", CRC Press,
2014.

2022/2023

Transformacija intenziteta Intensity Transfer Function (ITF)

Linearna transformacija

$$ho' = rac{
ho -
ho_{
m min}}{
ho_{
m max} -
ho_{
m min}} \omega_{
m target} +
ho'_{
m min}$$

Transformisani intenzitet

Originalni intenzitet

Pitanje: ako će nova slika da ima elemente čije su vrednosti -127 do 127, koliko treba zadati da bude ω_{target} ?

 $ho_{ ext{min}},
ho_{ ext{max}}$

Minimalna, maksimalna vrednost sivog na originalnog slici

Broj nivoa sivog u novom prostoru (uzimajući u obzir ciljanu bitsku dubinu)

Transformacija intenziteta Intensity Transfer Function (ITF)

Prozorovanje:
Primer primene
"prozora" na CT sken

Tkivo	[HU]
Vazduh	-1000
Pluća	-900200
Voda	0
Jetra	20 60
Kosti	50 3072
Bubrezi	4050

Transformacija intenziteta Intensity Transfer Function (ITF)

Sigmoid funkcija (Logistička funkcija)

$$S(\rho) = 255 \frac{1}{1 + e^{-\frac{\rho - \omega}{\sigma}}}$$

 σ - sa porastom nagib se smanjuje

 ω - pomeranje levo-desno

 ρ ... Originalna vrednost intenziteta

 ω ... Centar distribucije vrednosti intenziteta (za 8-bitnu sliku je 127)

 σ ... Širina distribucije vrednosti intenziteta

Histogram slike

Širina bina = broj nivoa sivog / broj binova

Ekvalizacija histograma

8-bit grayscale image

$\lceil 52 \rceil$	55	61	59	70	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79	77	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

Korak 1

Value	Count								
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		,
62	1	70	4	79	2	106	1		
63	2	71	2	83	1	109	1		

Piksel vrednosti 52 se pojavljuje 1 put Piksel vrednosti 55 se pojavljuje 3 puta Piksel vrednosti 58 se pojavljuje 2 puta

Piksel vrednosti 154 se pojavljuje 1 put

Preuzeto sa linka

Korak 2

Korak 3

Ekvalizacija histograma

1+2+3=6

Value	Count								
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		
62	1	70	4	79	2	106	1		
63	2	71	2	83	1	109	1		

$$h(v) = ext{round} \left(rac{cdf(v) - cdf_{min}}{(M imes N) - cdf_{min}} imes (L-1)
ight)$$

cdf –cumulative distribution function (funkcija raspodele) cdf_{min} – minimum različit od nule M, N – dimenzije matrice (ovde: M=N=8) L=broj nivoa sivog (obično L=256)

v, Pixel Intensity	cdf(v)	h(v), Equalized v		
52	1	0		
55	4	12		
58	6	20		
59	9	32		
60	10	36		
61	14	53		
62	15	57		
63	17	65		
64	19	73		
65	22	85		
66	24	93		
67	25	97		
68	30	117		
69	33	130		
70	37	146		

Ekvalizacija histograma

Korak 4

8-bit	grays	cale i	mage				
[52]	55	61	59	70	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79	77	66	58	75

55

61

85

64 58

65 83

78

	0	12	53	32	146	53	174	53
l	57	32	12	227	219	202	32	154
l	65	85	93	239	251	227	65	158
١	73	146	146	247	255	235	154	130
l	97	166	117	231	243	210	117	117
١	117	190	36	190	178	93	20	170
l	130	202	73	20	12	53	85	194
L	146	206	73 130	117	85	166	182	215

v, Pixel Intensity	cdf(v)	h(v), Equalized v
52	1 (0
55	4	12
58	6	20
59	9	32
60	10	36
61	1/	52

Ekvalizacija histograma

Rad prema uputstvu u Matlab/Octave

 Slediti korake date u uputstvo_Prostor_intenziteta.pdf iz direktorijuma primeri_Matlab_prostor_intenziteta.

Ekvalizacija – Python zadatak 1/1

Implementirati ekvalizaciju histograma u Python-u (mogu se koristiti pomoćne instrukcije sa ovog slajda) i primeniti je na rendgenski snimak pluća hequalization_input.png: direktorijum prakticni_deo_za_samostalni_rad_Python.

Početak:

```
import numpy as np
import imageio
from PIL import Image
from matplotlib import pyplot as plt

img = Image.open('hequalization_input.png').convert('L')
img.show()

img1 = np.asarray(img)
```

Pomoćne instrukcije:

np.flatten() - transformacija matrice u niz

np.histogram() – kreiranje histograma sa 256 binova, opseg 0 do 255

cumsum() – računanje funkcije raspodelenp.ma.masked_equal() – maskiranjeelemenata niza koji imaju vrednost 0

np.ma.filled().astype('uint8') - popunjavanje
nulom maskiranih vrednosti

np.reshape() – promena dimenzija matricenp.asarray() – konverzija 2D u imageshow() – prikaz slike

Filtriranje

Filter je funkcija koja modifikuje ulazni signal

- Prostorno i frekvencijsko filtriranje
- Linearni i nelinearni filtri

Funkcija širenja tačke (Point Spread Function, PSF)

- Primena PSF na svaki piksel pojedinačno, utiče i na okolne piksele
- Kernel mala matrica (PSF)

Prostorno filtriranje

Konvolucija u prostornom domenu

F_1	F_2	F_3
F_4	F_5	F_6
F_7	F_8	F_9

I(i-1,j-1)	I(i-1,j)	I(i-1,j+1)
I(i,j-1)	I(i,j)	I(i,j+1)
I(i+1,j-1)	I(i+1,j)	I(i+1,j+1)

kernel (filter)

deo slike oko I(i, j) piksela

$$I_{new}(i,j) = F_1 * I(i-1,j-1) + F_2 * I(i-1,j) + F_3 * I(i-1,j+1)$$

$$+ F_4 * I(i,j-1) + F_5 * I(i,j) + F_6 * I(i,j+1)$$

$$+ F_7 * I(i+1,j-1) + F_8 * I(i+1,j) + F_9 * I(i+1,j+1)$$

Zamagljivanje (smoothing) – "moving average"

$$K_{\text{blur}} = \frac{1}{10} \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

- Numerička aproksimacija dvodimenzionalne Gausove krive
- Koristi se za supresiju šuma

ulazna slika

"zamagljena" slika

Zamagljivanje (smoothing) - Gaussian blur

$$K_{5\times 5\,\text{Gauss}} = \frac{1}{256} \left(\begin{array}{ccccc} 1 & 4 & 6 & 4 & 1\\ 4 & 16 & 24 & 16 & 4\\ 6 & 24 & 36 & 24 & 16\\ 4 & 16 & 24 & 16 & 4\\ 1 & 4 & 6 & 4 & 1 \end{array} \right)$$

Izoštravanje slike (Unsharp masking)

$$K_{\text{Unsharp Mask}} = \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\text{Unity operator}} -w * K_{\text{blur}}$$
 Adaptivno filtriranje: sama slika utiče na filtriranje

Izoštravanje slike (Sharpening)

$$K_{\mathrm{sharp}} = \left(\begin{array}{ccc} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{array} \right)$$
 Koliko povezanih suseda koristi K_{sharp} ? 8 (eight-connected)

Numeričko diferenciranje – detekcija ivica

Forward diferenciranje

$$\frac{df(x)}{dx} = \frac{\rho_{i+1} - \rho_i}{\Delta x}$$

$$\frac{df(x)}{dx} = \frac{\rho_{i+1} - \rho_i}{\Delta x} \qquad K_{\text{x-forward}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Centralno diferenciranje:

$$\frac{df(x)}{dx} = \frac{1}{2} \left(\underbrace{\rho_{i+1} - \rho_{i}}_{\text{Forward } \Delta} + \underbrace{\rho_{i} - \rho_{i-1}}_{\text{Backward } \Delta} \right)$$

$$\Delta x = 1$$

$$K_{\text{X-central}} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$K_{\text{Y-central}} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$K_{\text{x-central}} = \frac{1}{2} \left(\begin{array}{ccc} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

$$K_{\text{y-central}} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Totalno diferenciranje:

$$\sqrt{(K_{\text{x-central}} \star I(x,y))^2 + (K_{\text{y-central}} \star I(x,y))^2}$$

Sobel kernel: među najboljima za detekciju ivica

Prostorni filtri – granične vrednosti?

0	0	0	0	0	0	0	0	0	D	0
0	0	0	2	5	7	3	10	9	0	0
0	0	11	1	4	8	8	2	0	0	0
0	0	0	12	10	9	7	4	5	0	0
0	0	1	9	7	В	13	11	0	0	0
0	0	5	10	14	6	2	1	f.	0	0
0	٥	7	6	11	3	13	8	4	0	0
0	0	3	9	6	12	7	10	5	0	0
0	0	0	0	0	0	D	0	0	0	0

- (a) A 7-by-7 input image.
- (b) Padding with zeros.

5	5	5	5	5	5	5	5	5	5	5
5	5	0	2	5	7	3	10	9	5	5
5	5	11	1	4	6	8	2	0	5	5
5	5	0	12	10	9	7	4	5	6	5
5	5	1	9	7	8	13	11	0	5	5
5	5	5	10	14	6	2	1	1	5	5
5	5	7	6	11	3	13	В	4	5	5
5	5	3	9	6	12	7	10	5	5	5
5	5	5	5	5	5	5	5	5	5	5

- 0
 0
 0
 2
 5
 7
 3
 10
 9
 9
 9

 0
 0
 0
 2
 6
 7
 3
 10
 9
 9
 9

 11
 11
 11
 1
 4
 6
 8
 2
 0
 0
 0
 0

 0
 0
 0
 12
 10
 9
 7
 4
 5
 5
 5

 1
 1
 1
 9
 7
 8
 13
 11
 0
 0
 0

 5
 5
 5
 10
 14
 6
 2
 1
 1
 1
 1

 7
 7
 7
 6
 11
 3
 13
 8
 4
 4
 4

 3
 3
 3
 9
 6
 12
 7
 10
 5
 5
 5
- (c) Padding with a constant.
- (d) Padding with nearest neighbor.

Dopuna za 3x5 filter?

- Dopuna nulama
- Dopuna konstantom
- Dopuna najbližim susedom
- Reflektovanje poslednjeg reda ili kolone

2	0	0	2	5	7	3	10	9	9	10
2	0	0	2	5	7	3	10	9	9	10
1	11	11	1	4	6	В	2	0	0	2
		0								
9	1	1	9	7	8	13	11	0	0	11
10	5	5	10	14	6	2	1	7	1	1
6	7	7	6	11	3	13	8	4	4	8
9	3	3	9	6	12	7	10	5	5	10
9	3	3	9	6	12	7	10	5	5	10

(e) Padding with reflect option.

- Primer 01 Implementirati sledeće filtre:
 - 5x5 Gaussian blur filter
 - K_{sharp} izoštravanje
 - K_x forward diferenciranje
 - K_{sobel x} , K_{sobel y} , K_{sobel centralno} detekcija ivica
 - K_{unsharp} izoštravanje

figure(2); imshow(img Gaus,[]); title('5x5 Gaussian blur')

clear all

end

i primeniti ih na slici u SKULLBASE.dcm datoteci.

Kompletno rešenje je u: p01_linearni_prostorni_filtri.m

```
close all
fp=fopen('SKULLBASE.DCM', 'r'); %%%%Može se koristiti i dicomread funkcija u Matlabu (za Octave je neophodno instalirati dodatnu dicom bibliotek
fseek(fp, 1622, 'bof');
img=zeros(512,512);
img(:)=fread(fp,(512*512),'short');
img=transpose(img);
fclose(fp);
figure(1); imshow(img,[]); title ('Original')
Kern Gaus = [1 4 6 4 1; 4 16 24 16 4; 6 24 36 24 16; 4 16 24 16 4; 1 4 6 4 1]/256;
img Gaus = zeros(512,512);
for i = 3:510
                                                                                            for j = 3:510
       for cnt1 = -2:2
           for cnt2 = -2:2
               img Gaus(i,j) = img Gaus(i,j) + img(i+cntl,j+cnt2)*Kern Gaus(cntl+3,cnt2+3);
```

Median filter

Šta je medijana za niz: 1, 9, 6, 3, 7, 3, 8?

Sortirati niz: 1, 3, 3, 6, 7, 8, 9. Medijana je 6.

Šta je medijana za niz: 1, 9, 3, 8, 2, 4, 6, 5?

Sortirati niz: 1, 2, 3, 4, 5, 6, 8, 9. Medijana je (4+5)/2=4.5

 Primer 02 - Implementirati median filtar i primeniti ga na slici u SKULLBASE.dcm datoteci.

```
mfimg=zeros(512,512);
  rhovect = zeros(25,1);
  for i=3:510
  for j=3:510
  idx = 1;
  for k = -2:2
   for 1 = -2:2
   rhovect(idx)=img((i+k),(j+l));
  idx = idx + 1;
  end
  end
  rhovect=sort(rhovect);
  mfimg(i,j) = rhovect(13,1);
  end
  end
  end
  end
  end
  end
  end
```

Kompletno rešenje je u: p02_nelinearni_prostorni_median_filter.m

Furijeova transformacija

2D Furijeova transformacija:

Sindbis virus

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx \ dy$$

Inverzna 2D Furijeova transformacija:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{i2\pi(ux+vy)} du \ dv$$

Diskretna 2D Furijeova transformacija:

$$F(u,v) = \frac{1}{LK} \sum_{x=0}^{L-1} \sum_{y=0}^{K-1} f(x,y) e^{-i2\pi \left(\frac{ux}{L} + \frac{vy}{K}\right)}$$

Diskretna inverzna 2D Furijeova transformacija:

$$f(x,y) = \sum_{u=0}^{L-1} \sum_{v=0}^{K-1} F(u,v) e^{i2\pi \left(\frac{ux}{L} + \frac{vy}{K}\right)}$$

Magnituda 2D Furijeove transformacije:

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

Faza 2D Furijeove transformacije:

$$\theta(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$$

Snaga 2D Furijeove transformacije:

$$P(u,v) = R^{2}(u,v) + I^{2}(u,v) = |F(u,v)|^{2}$$

(u,v)

Furijeova transformacija

Primer 03 – Za sliku MouseCT.jpg prikazati izgled
 Furijeove transformacije (logaritamski skaliran).

```
Kompletno rešenje je u: p03 fft.m
close all
                                                       Original image
                                                                            2D Fourier transform of image
clear all
img = imread('MouseCT.jpg');
figure(1)
subplot (1,2,1);
imshow(img)
title ('Original image')
fimg = fft2(img);
fimg abs=abs(fimg);
fimg shift = fftshift(fimg abs);
f=log(fimg shift);
minint=min(min(f));
f=f-minint:
                                                              500
maxint=max(max(f));
f=f/maxint*64;
                                                              600
subplot (1,2,2);
image(f)
title ('2D Fourier transform of image')
                                                              700
colormap grav
                                                                      100
                                                                            200
                                                                                  300
                                                                                                          700
```

Frekvencijsko filtriranje

Niskopropusni filtri:

Idealni filter:

Euklidsko rastojanje od koordinatnog početka

$$H(u,v) = \begin{cases} 1, & \text{if } d(u,v) = \sqrt{(u-L/2)^2 + (v-K/2)^2} \\ 0, & \text{else} \end{cases}$$

Batervortov filter:

$$H(u,v) = \frac{1}{1 + \left(\frac{d(u,v)}{d_0}\right)^2}$$

Gausov filter:

$$H(u, v) = e^{\frac{-d^2(u,v)}{2d_0^2}}$$

Visokopropusni filtri: $H_{VF} = 1 - H_{NF}$

Idealni filter:

$$H(u,v) = \begin{cases} 0, & \text{if } d(u,v) \le d_0\\ 1, & \text{else} \end{cases}$$

Batervortov filter:

$$H(u,v) = \frac{1}{1 + \left(\frac{d_0}{d(u,v)}\right)^{2n}}$$

Gausov filter:

$$H(u,v) = 1 - e^{\frac{-d^2(u,v)}{2d_0^2}}$$

Frekvencijsko filtriranje

 Primer 04 – Implementirati Gausov niskofrekvencijski filter u frekvencijskom domenu i primeniti ga na MouseCT.jpg sliku za različite vrednosti sigma.

Kompletno rešenje je u: p04_frekvencijsko filtriranje.m

```
fimg = fftshift(fft2(img));
    L K

gs=zeros(733,733);
sigma=3;
for j=1:733
for k=1:733
gs(j,k)=exp(-((j-366)^2+(k-366)^2)/(2*sigma^2));
end
end

gs=fftshift(fft2(gs));

fimg_filt=gs.*fimg;
cimg=ifftshift(ifft2(fimg_filt));
```


Filtriranje – Python zadatak 1/3

```
import imageio
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage as ndi
```

Zadatak 1 Maskirati piksele intenziteta izmedju 50 i 100. Prikazati histograme originalne slike i maskirane slike. Prikazati sliku maske.

Čitanje imageio.imread()

Histogram ndi.histogram()

Maskiranje mask= logički uslov im_mask=np.where (mask,im,0)

Filtriranje – Python zadatak 2/3

Zadatak 2 Prikazati originalnu sliku "CT.jpg", kao i slike nastale filtriranjem *mean* filtrom i gausovim filtrom (za sigma=1 i za sigma=3). Prikazati i odgovarajuće maske definisane kao u **Zadatku 1**.

Filtriranje: ndi.convolve (svi težinski koeficijenti su 1/9=0.11) ndi.gaussian_filter

Filtriranje – Python zadatak 3/3

Zadatak 3 Detektovati horizontalne ivice, vertikalne ivice, gradijent magnitude (Pitagorina teorema primenjena na horizontalne i vertikalne ivice) na masku dobijenu gausovim filtrom (za sigma=3) u **Zadatku 2**.

Filtriranje: ndi.convolve, ndi.sobel

Podsetnik: težinski koeficijenti [[+1, +1, +1], filtra za horizontalne ivice [0, 0, 0], [-1, -1, -1]]

