Monads and other abstractions

John Wiegley

4 Jul 2014

Mathematics

Meaning

There isn't any.

Abstraction

Structures, and relationships between structures.

"Stuff"

A set is a collection of elements.

"Stuff"

A set is a collection of elements.

```
type Set a = a -> Bool
```

Extensional

Can be defined by stating its elements.

{ True, False }

Intensional

Or by describing them.

```
\{ x \mid x \in \mathbb{N}, even(x) \}
```

Distinction

Values can be extensionally equal, but intensionally distinct.

$$n\mapsto 2(n+5)$$
$$n\mapsto 2n+10$$

Deceptively simple

With just a basic definition, and seven axioms (we've already seen two!), you can generate a good deal of mathematics.

Functions

As maps

Higher-order functions

id
$$x = x$$

$$(f\circ g)\ x=f(g(x))$$

Properties of functions

$$f: cod \rightarrow dom$$

Properties of functions

$$f: cod \rightarrow dom$$

Definition (Idempotent)

$$f \circ f = f$$

Properties of functions

 $f: cod \rightarrow dom$

Definition (Idempotent)

$$f \circ f = f$$

Definition (Involutive)

$$f \circ f = id$$

Homomorphism

"Structure preserving."

Isomorphism

An isomorphism is a pair of functions satisfying two equations:

$$f \circ g = id_{dom(f)}$$
 $g \circ f = id_{dom(g)}$

Isomorphism

In terms of the types involved:

$$A \cong B$$

$$g:A\rightarrow B$$

$$f:B\to A$$

Laws

Imposing structure

In the absence of meaning, laws create structure.

Principled restriction

Laws restrict how functions and values relate to each other.

Principled restriction

Laws restrict how functions and values relate to each other.

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a
```

Algebras

Algebraic

Structures

Magmas

Semigroups

Monoids

Groups

Type Algebras

Equational Reasoning

Quantification

Existential

$$\exists p, P(p)$$

Universal

 $\forall p, P(p)$

Universal

True?

 $\forall x, \exists y \rightarrow x = y$

Universal

True?

 $\forall \ x, \ \exists \ y \rightarrow x \neq y$

Parametricity

Curry-Howard

Isomorphism

Free objects

Category Theory

Functors

Applicatives

Monads

Free Monads