1 point possible (ungraded)
Question # 1: Consider the polynomial $p_{25}\left(x ight)$. What will be the dimension of the vector space?
<u></u>
<u></u>
It cannot be determined as information is incomplete.
None of the above .
Overation # 2
Question # 2
1 point possible (ungraded)
Question # 2: Suppose a polynomial is given as $p_5\left(x ight)$. Which of the following is correct?
$igoriant{igoriant}$ The basis is $\{1,x,x^2,x^3,x^4,x^5\}$
\bigcirc The basis is $\{1,a,a^2,a^3,a^4,a^5\}$.
$igcap$ The basis is $\{x,x^2,x^3,x^4,x^5\}$.
None of the above .
Question # 3
1 point possible (ungraded)
Question # 3: Suppose $x_1=5/8$ and $x_2=7/8$. If the computer reads up to 3 digits after the decimal point, their product will be rounded to
0.101
0.1000
0.10001

Question #1

None of the above

Question # 4	
1 point possible (ungraded)	
A Vandermonde matrix is of order $6 imes 6$. What is the degree of the corresponding	g polynomial?
4	
o 5	
<u> </u>	
None of the above	
Question # 5	
1 point possible (ungraded)	
Question # 5: Suppose you have 92.25×10^{16} no. of electrons. You want to store th maximum and minimum storage range of 639.25×10^{17} and 2.8×10^{-20} respectidata, the machine will	
Stores the number.	
Ounderflow.	
OverFlow.	
None of the above.	
Question # 6	øedit 4 1 mi
	<i>&</i> ΓΩΙΙ 4
Question # 6	
1 point possible (ungraded)	
Question # 6: A function $f\left(x ight)$ is interpolated by a polynomial $p_{10}\left(x ight)$. The value of $ f $ point x_{2} is	$f(x)-p_{10}\left(x ight) $ at the nodal
Olt cannot be determined. Need more information.	
lt will be a positive fractional value	
0 .	
$\bigcirc \infty$.	

Question # 7:
point possible (ungraded)
Question # 7: It is given that $eta=2$, $m=4$ and $e\in[-2,2]$. What will be the highest possible value that can be generated using the normalized form of the floating point representation?
\bigcirc $\frac{31}{4}$.
$\bigcirc \frac{31}{16}$.
$\bigcirc \frac{31}{2}$.
None of the above.
Question # 8
1 point possible (ungraded)
Question # 8: It is given that $eta=2$, $m=4$ and $e\in[-2,2]$. What will be the highest possible value that can be generated using the Floating point representation given in the Course Note by Anthony Yeats?
$\bigcirc \frac{15}{2}$.
$\bigcirc \frac{15}{8}$.
$\bigcirc \frac{15}{16}$.
None of the above.
Question # 0
Question # 9 1 point possible (ungraded)
Question # 9: It is given that $\beta=2$, $m=3$ and $e\in[-1,2]$. What will be the machine epsilon value that can be generated using the Denormalized form of the Floating point representation?
$\bigcirc \frac{1}{8}$.
$\bigcirc \frac{1}{2}$.
\bigcirc $\frac{1}{16}$.
None of the above.

Question # 10

1 point possible (ungraded)

It is given that $\beta=2$, m=4 and $e\in[-1,2]$. What will be the Machine Epsilon for the Normalized form of the Floating point representaion?

$\boxed{\bigcirc \frac{1}{16}}.$
\bigcirc $\frac{1}{32}$.
$\bigcirc \frac{1}{8}$.
None of the above.
Question # 11: According to the IEEE standard for Double precision, what is the number of bits assigned for precision?
<u></u>
<u> </u>
<u></u>
None of the above
Question # 12: How many significant digits does the floating point number $0.02180 imes 10^{-3}$ has?
<u></u> 6
<u></u>
a 4
None of the above

Question # 13: You are working with a hypothetical binary computer that stores integers as unsigned 5-bit words. What is the largest non-negative integer that can be represented on this computer?
○ 31
○ 64
None of the above
Question # 14: Which of the following statements is true?
Loss of significance occurs when subtracting two values which are very close.
Machine Epsilon is the minimum scale in variant error.
igcirc In case of machine epsilon, we consider the max value of $ x $.
All of above are false.
Question # 15: According to the form of the Floating point representation given in the notes by Anthony Yeats, and for $m=3$ and $\beta=2$, your computer will round the value of 0.100110101 to 3 bits after the decimal point. Which one o the following is the correct rounded output?
○ 0.1001.
0 .101.
<u>0.100.</u>
None of the above.

Question # 16: A student suggested that we should always take the maximum value of the exponent for calculating the Machine Epsilon for normalized number systems. Do you agree with the student?
No, since exponent does not matter while calculating the machine epsilon value.
No, since we need to take the minimum value.
Yes I agree completely since maximum value of e will result in maximum machine epsilon value.
Not enough information given.
Question # 17: Which of the following is the degree of the Interpolating polynomial for $n-1$ nodes?
Question # 17: Which of the following is the degree of the Interpolating polynomial for $n-1$ nodes?
$\bigcirc n+1$.
$\bigcap n + 1$.