Mapa de Instrumentos de Principales Plataformas de Deep Learning

Estilo	O PyTorch	TensorFlow	Claves Laborales
Prototipado (explorar ideas, probar arquitecturas, investigación aplicada)	- Sintaxis muy cercana a Python, más intuitiva Control total del ciclo de entrenamiento (forward, backward) Fácil debugging (usa print, pdb, integración con notebooks) Ecosistema para investigación: TorchVision, TorchAudio, TorchGeometric.	- Keras API muy concisa (model.fit, model.predict) Rápido de levantar modelos estándar Buenas herramientas de visualización (TensorBoard) Integración con Google Colab y TPU.	- PyTorch es preferido en investigación y prototipos exploratorios TensorFlow/Keras facilita armar "demos rápidas" para mostrar resultados.
Hackathon (tiempo limitado, equipos diversos, resultados rápidos y claros)	- Requiere más código "manual" → puede ser más lento Torch Lightning acelera, pero hay curva de aprendizaje extra Gran comunidad open-source para copiar ejemplos.	- Keras = rapidez: en 10–15 líneas tienes un modelo funcional Muchas plantillas listas (ej. transfer learning en 3–4 líneas) Integración con Hugging Face y TF Hub simplifica el acceso a modelos.	- TF/Keras es más productivo en plazos cortos PyTorch es competitivo si el equipo ya maneja Lightning o repos listos.
Producción (despliegue, escalamiento, mantenimiento)	- TorchScript, ONNX → exportar a C++, móviles, edge PyTorch Serve para inferencia Mejor en escenarios edge/embebidos Adoptado cada vez más por Meta, Microsoft, OpenAI.	- TensorFlow Serving, TFLite, TensorFlow.js → ecosistema muy sólido en despliegue Excelente para móviles (Android/iOS) y nube (Google Cloud) Estándar en corporaciones grandes.	- TF sigue fuerte en infraestructura empresarial PyTorch gana terreno en edge + startups tecnológicas.