Exploring London, the Big Ben city

Introduction

The aim of the project is to identify and analyze places in London based on average prices and rating. In this notebook, we will identify various venues in the city of London to help customers select the restaurants that suit them the best.

Whenever a user is visiting a city they start looking for places to visit during their stay. They primarily look for places based on the venue ratings across all venues and the average prices such that the locations fits in their budget. Once we have the plot with the venues, any company can launch an application using the same data and suggest users such information.

A little more about London

London is the capital and largest city of England and the United Kingdom. Standing on the River Thames in the south-east of England, at the head of its 50-mile (80 km) estuary leading to the North Sea, London has been a major settlement for two millennia. Londinium was founded by the Romans.

The City of London, London's ancient core – an area of just 1.12 square miles (2.9 km2) and colloquially known as the Square Mile - retains boundaries that follow closely its medieval limits. The City of Westminster is also an Inner London borough holding city status. Greater London is governed by the Mayor of London and the London Assembly.

London is considered to be one of the world's most important global cities and has been termed the world's most powerful, most desirable, most influential, most visited, most expensive, innovative, sustainable, most investment friendly, and most popular for work city in the world. London exerts a considerable impact upon the arts, commerce, education, entertainment, fashion, finance, healthcare, media, professional services, research and development, tourism and transportation. London ranks 26 out of 300 major cities for economic performance. It is one of the largest financial centres and has either the fifth or sixth largest metropolitan area GDP. It is the most-visited city as measured by international arrivals and has the busiest city airport system as measured by passenger traffic.

```
In [18]:
```

```
LD_LATITUDE = 51.50986
LD LONGITUDE = -0.118092
print('The geograpical coordinates of London are {}, {}.'.format(LD_LATITUDE, LD_LONGITUDE))
```

The geograpical coordinates of London are 51.50986, -0.118092.

In [19]:

```
##Creating a London map
#!conda install -c conda-forge folium=0.5.0 --yes
import folium
ld_map = folium.Map(location = [LD_LATITUDE, LD_LONGITUDE], zoom_start = 10)
folium.Marker([LD_LATITUDE, LD_LONGITUDE]).add_to(ld_map)
ld_map
```

Solving environment: done

Package Plan

environment location: /opt/conda/envs/Python36

added / updated specs:

- folium=0.5.0

The following packages will be downloaded:

package	build		
altair-3.2.0 branca-0.3.1 vincent-0.4.4 folium-0.5.0	py36_0 py_0 py_1 py_0	25 KB 28 KB	conda-forge conda-forge conda-forge
	Total:	868 KB	

The following NEW packages will be INSTALLED:

altair: 3.2.0-py36_0 conda-forge branca: 0.3.1-py_0 conda-forge folium: 0.5.0-py 0 conda-forge vincent: 0.4.4-py_1 conda-forge

Downloading and Extracting Packages

altair-3.2.0	770 KB	#######################################	100%
branca-0.3.1	25 KB	#######################################	100%
vincent-0.4.4	28 KB	#######################################	100%
folium-0.5.0	45 KB	#######################################	100%

Preparing transaction: done Verifying transaction: done Executing transaction: done

Out[19]:

Data that will be used

In this section we will configure the Foursquare API and the Zomato API, that is a popular platform in London to see ratings and other informations.

In [20]:

```
FOURSQUARE CLIENT ID = '22ICIZCDAVBEMVZCJWDNV15DSJNKILQCTH3P3SN4MP3X2MAC'
FOURSQUARE_CLIENT_SECRET = 'UYOQ2IYGVROAWXB2PQWGV225VBZAPWPQKFO2AWSG40GG5ALD'
RADIUS = 3000 #SPECIFYING 3 KM
NO OF VENUES = 80
VERSION = '20191016' # Current date
def get_category_type(row):
    try:
        categories_list = row['categories']
    except:
        categories list = row['venue.categories']
    if len(categories list) == 0:
        return None
    else:
        return categories list[0]['name']
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib. colors as colors
from pandas. io. json import json_normalize
import requests
pd. set option ('display. max rows', None)
offset = 0
total venues = 0
foursquare venues = pd. DataFrame (columns = ['name', 'categories', 'lat', 'lng'])
while (True):
   url = ('https://api.foursquare.com/v2/venues/explore?client id={}'
           '&client secret={}&v={}&ll={}, {}&radius={}&limit={}&offset={}').format(FOURSQUARE C
LIENT_ID,
                                                                        FOURSQUARE CLIENT SECRET
                                                                        VERSION,
                                                                        LD LATITUDE,
                                                                        LD LONGITUDE,
                                                                        RADIUS,
                                                                        NO OF VENUES,
                                                                        offset)
    result = requests.get(url).json()
    venues fetched = len(result['response']['groups'][0]['items'])
    total_venues = total_venues + venues_fetched
    print("Total {} venues fetched within a total radius of {} Km".format(venues_fetched, RADIU
S/1000))
    venues = result['response']['groups'][0]['items']
    venues = json normalize(venues)
    # Filter the columns
    filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.
    venues = venues.loc[:, filtered columns]
```

```
# Filter the category for each row
    venues['venue.categories'] = venues.apply(get category type, axis = 1)
    # Clean all column names
    venues.columns = [col.split(".")[-1] for col in venues.columns]
    foursquare_venues = pd. concat([foursquare_venues, venues], axis = 0, sort = False)
    if (venues fetched < 100):
        break
    else:
       offset = offset + 100
foursquare_venues = foursquare_venues.reset_index(drop = True)
print("\nTotal {} venues fetched".format(total_venues))
```

Total 80 venues fetched within a total radius of 3.0 Km

Total 80 venues fetched

In [21]:

```
## Configuring ZOMATO API
#The Zomato API allows using its search API to search for any given venue based on certain searc
h filters such as query, latitude, longitude and more. Zomato also requires a Zomato user key wh
ich can be accessed with a developer account.
#We'll use the name, lat, and lng values of various venues fetched from Foursquare API to use th
e search API and get more information regarding each venue.
#The query will be the name of the venue.
#The start defines from what offset we want to start, so we'll keep it at 0.
#The count defines the number of restaurants we want to fetch. As we have the exact location coo
rdinates, we'll fetch only one.
#We will supply the latitude and longitude values.
#We will set the sorting criteria as real distance so each time we get the venue we're searching
based on location coordinates.
headers = {'user-key': '01a1d975fe585f4c3ec664b163ef6e44'}
venues information = []
for index, row in foursquare venues.iterrows():
    print("Fetching data for venue: {}".format(index + 1))
    venue = []
    url = ('https://developers.zomato.com/api/v2.1/search?q={}' +
          '&start=0&count=1&lat={}&lon={}&sort=real_distance').format(row['name'], row['lat'],
row['lng'])
    result = requests.get(url, headers = headers).json()
    if (len(result['restaurants']) > 0):
        venue. append (result['restaurants'][0]['restaurant']['name'])
        venue.append(result['restaurants'][0]['restaurant']['location']['latitude'])
        venue. append(result['restaurants'][0]['restaurant']['location']['longitude'])
        venue.append(result['restaurants'][0]['restaurant']['average_cost_for_two'])
        venue. append(result['restaurants'][0]['restaurant']['price_range'])
        venue. append(result['restaurants'][0]['restaurant']['user_rating']['aggregate_rating'])
        venue. append (result['restaurants'][0]['restaurant']['location']['address'])
        venues information. append (venue)
    else:
        venues information. append (np. zeros (6))
    zomato venues = pd. DataFrame (venues information,
                                  columns = ['venue', 'latitude',
                                             'longitude', 'price_for_two',
                                              'price_range', 'rating', 'address'])
```

Fetching data for venue: 1 Fetching data for venue: 2 Fetching data for venue: 3 Fetching data for venue: 4 Fetching data for venue: 5 Fetching data for venue: 6 Fetching data for venue: 7 Fetching data for venue: 8 Fetching data for venue: 9 Fetching data for venue: 10 Fetching data for venue: 11 Fetching data for venue: 12 Fetching data for venue: 13 Fetching data for venue: 14 Fetching data for venue: 15 Fetching data for venue: 16 Fetching data for venue: 17 Fetching data for venue: 18 Fetching data for venue: 19 Fetching data for venue: 20 Fetching data for venue: 21 Fetching data for venue: 22 Fetching data for venue: 23 Fetching data for venue: 24 Fetching data for venue: 25 Fetching data for venue: 26 Fetching data for venue: 27 Fetching data for venue: 28 Fetching data for venue: 29 Fetching data for venue: 30 Fetching data for venue: 31 Fetching data for venue: 32 Fetching data for venue: 33 Fetching data for venue: 34 Fetching data for venue: 35 Fetching data for venue: 36 Fetching data for venue: 37 Fetching data for venue: 38 Fetching data for venue: 39 Fetching data for venue: 40 Fetching data for venue: 41 Fetching data for venue: 42 Fetching data for venue: 43 Fetching data for venue: 44 Fetching data for venue: 45 Fetching data for venue: 46 Fetching data for venue: 47 Fetching data for venue: 48 Fetching data for venue: 49 Fetching data for venue: 50 Fetching data for venue: 51 Fetching data for venue: 52 Fetching data for venue: 53 Fetching data for venue: 54 Fetching data for venue: 55 Fetching data for venue: 56 Fetching data for venue: 57 Fetching data for venue: 58 Fetching data for venue: 59 Fetching data for venue: 60 Fetching data for venue: 61

Fetching data for venue: 62 Fetching data for venue: 63 Fetching data for venue: 64 Fetching data for venue: 65 Fetching data for venue: 66 Fetching data for venue: 67 Fetching data for venue: 68 Fetching data for venue: 69 Fetching data for venue: 70 Fetching data for venue: 71 Fetching data for venue: 72 Fetching data for venue: 73 Fetching data for venue: 74 Fetching data for venue: 75 Fetching data for venue: 76 Fetching data for venue: 77 Fetching data for venue: 78 Fetching data for venue: 79 Fetching data for venue: 80

In [22]:

```
##Data cleaning and foursquare data validation
ld_map = folium.Map(location = [LD_LATITUDE, LD_LONGITUDE], zoom_start = 13)
for name, latitude, longitude in zip(foursquare_venues['name'], foursquare_venues['lat'], fours
quare_venues['lng']):
   label = '{}'.format(name)
    label = folium. Popup(label, parse_html = True)
    folium.CircleMarker(
        [latitude, longitude],
       radius = 5,
        popup = label,
        color = 'green',
        fill = True,
        fill_color = '#3186cc',
        fill_opacity = 0.7,
        parse_html = False).add_to(ld_map)
1d_map
```

Out[22]:

Combining the foursquare and ZOMATO datasets

In [23]:

```
foursquare_venues['lat'] = foursquare_venues['lat'].apply(lambda lat: round(float(lat), 4))
foursquare_venues['lng'] = foursquare_venues['lng'].apply(lambda lng: round(float(lng), 4))
zomato_venues['latitude'] = zomato_venues['latitude'].apply(lambda lat: round(float(lat), 4))
zomato_venues['longitude'] = zomato_venues['longitude'].apply(lambda lng: round(float(lng), 4))

dataset = pd. concat([foursquare_venues, zomato_venues], axis = 1)
dataset['lat_diff'] = dataset['latitude'] - dataset['lat']
dataset['lng_diff'] = dataset['longitude'] - dataset['lng']

selected_venues = dataset[(abs(dataset['lat_diff']) <= 0.0004) & (abs(dataset['lng_diff']) <= 0.0004)].reset_index(drop = True)
selected_venues
```

Out[23]:

	name	categories	lat	Ing	venue	latitude	longitude	price_for_two
0	Lyceum Theatre	Theater	51.5116	-0.1198	Lyceum Tavern	51.5113	-0.1197	3ξ
1	The Savoy Hotel	Hotel	51.5104	-0.1209	The Lounge Bar - The Strand Palace Hotel	51.5107	-0.1210	5(
2	National Theatre	Theater	51.5074	-0.1148	National Theatre Espresso Bar	51.5071	-0.1149	18
3	SUSHISAMBA Covent Garden	Sushi Restaurant	51.5122	-0.1224	Pisco Bar @ LIMA Floral	51.5121	-0.1224	4ξ
4	Covent Garden Market	Shopping Plaza	51.5120	-0.1228	Ladurée	51.5121	-0.1228	6ξ
5	Gordon's Wine Bar	Wine Bar	51.5079	-0.1233	Gordon's Wine Bar	51.5079	-0.1235	5(
6	Sticks'n'Sushi	Sushi Restaurant	51.5110	-0.1237	Sticks 'n' Sushi	51.5112	-0.1236	6ξ
7	Flat Iron	Steakhouse	51.5108	-0.1241	Flat Iron	51.5108	-0.1240	3ξ
8	Ladurée	Dessert Shop	51.5120	-0.1233	Creme De La Crepe	51.5121	-0.1230	20
9	Southbank Centre	Performing Arts Venue	51.5058	-0.1170	Feng Sushi	51.5058	-0.1168	38

	name	categories	lat	Ing	venue	latitude	longitude	price_for_two
10	Amorino	Ice Cream Shop	51.5115	-0.1258	Amorino	51.5115	-0.1259	2(
11	BFI IMAX	Movie Theater	51.5048	-0.1135	Benugo Bar & Kitchen	51.5049	-0.1137	6(
12	Dishoom	Indian Restaurant	51.5124	-0.1269	Dishoom	51.5124	-0.1272	38
13	Hawksmoor Seven Dials	Steakhouse	51.5134	-0.1259	Hawksmoor Seven Dials	51.5134	-0.1257	75
14	National Portrait Gallery	Art Gallery	51.5094	-0.1280	The Portrait Cafe	51.5094	-0.1281	1ξ
15	The London Eye	Scenic Lookout	51.5033	-0.1196	The County Hall Arms	51.5033	-0.1196	3(
16	Neal's Yard	Pedestrian Plaza	51.5144	-0.1264	Jacob the Angel	51.5145	-0.1264	15
17	Apex Temple Court Hotel	Hotel	51.5137	-0.1089	Chambers Restaurant - Apex Temple Court Hotel	51.5136	-0.1087	8(
18	Monmouth Coffee Company	Coffee Shop	51.5143	-0.1268	Monmouth Coffee Company	51.5144	-0.1268	15
19	Homeslice	Pizza Place	51.5145	-0.1265	Homeslice	51.5146	-0.1264	30
20	Sea Containers London	Hotel	51.5082	-0.1067	Rumpus Room - Mondrian London	51.5080	-0.1070	50

	name	categories	lat	Ing	venue	latitude	longitude	price_for_two
21	Rosewood London	Hotel	51.5175	-0.1178	Mirror Room - Rosewood Hotel	51.5174	-0.1179	6(
22	Fabrique	Bakery	51.5135	-0.1286	Fabrique	51.5136	-0.1284	15
23	Scarfes Bar	Hotel Bar	51.5178	-0.1182	Scarfes Bar - Rosewood Hotel	51.5174	-0.1179	45
24	The Hoxton Holborn	Hotel	51.5172	-0.1220	The Princess Louise	51.5173	-0.1216	35
25	Haymarket Hotel	Hotel	51.5083	-0.1313	Brumus - Haymarket Hotel	51.5083	-0.1311	90
26	Flat Iron	Steakhouse	51.5151	-0.1295	Flat Iron	51.5151	-0.1295	35
27	Ronnie Scott's Jazz Club	Jazz Club	51.5134	-0.1316	Ronnie Scott's	51.5134	-0.1315	60
28	Ole & Steen	Bakery	51.5092	-0.1326	Ole and Steen	51.5092	-0.1328	(
29	The Old Vic	Theater	51.5022	-0.1097	Penny	51.5022	-0.1095	2(
30	Soho House	Lounge	51.5140	-0.1329	Zenna	51.5140	-0.1330	60
31	Barrafina	Tapas Restaurant	51.5140	-0.1328	Barrafina	51.5142	-0.1328	60

	name	categories	lat	Ing	venue	latitude	longitude	price_for_two
32	British Museum	History Museum	51.5190	-0.1264	Court Cafe	51.5191	-0.1264	18
33	Alchemy	Coffee Shop	51.5135	-0.1027	Alchemy Cafe	51.5137	-0.1026	18
34	Ham Yard Hotel	Hotel	51.5112	-0.1347	Engawa	51.5112	-0.1347	12(
35	Lina Stores	Gourmet Shop	51.5123	-0.1342	Lina Stores	51.5123	-0.1341	18
36	Carpo Piccadilly	Gourmet Shop	51.5096	-0.1355	Carpo	51.5095	-0.1356	18
37	Waterstones	Bookstore	51.5093	-0.1361	5th View	51.5092	-0.1360	6(
38	Whole Foods Market	Grocery Store	51.5105	-0.1359	Bar Americain	51.5105	-0.1359	60
39	Tate Modern Viewing Level	Scenic Lookout	51.5074	-0.1001	Restaurant at Tate Modern	51.5077	-0.1000	6(
4								•

Adding the price information

```
In [24]:
```

```
selected_venues['average_price'] = selected_venues['price_for_two']/2
selected_venues = selected_venues.drop(columns = ['name', 'lat', 'lng', 'lat_diff', 'lng_diff',
'price_for_two'])
selected_venues.head(10)
```

Out[24]:

	categories	venue	latitude	longitude	price_range	rating	address	average_price
0	Theater	Lyceum Tavern	51.5113	-0.1197	2	3.3	354 Strand, Covent Garden, London WC2R 0HS	17.5
1	Hotel	The Lounge Bar - The Strand Palace Hotel	51.5107	-0.1210	3	3.3	The Strand Palace Hotel, 372 Strand, Strand, L	25.0
2	Theater	National Theatre Espresso Bar	51.5071	-0.1149	1	3.3	National Theatre, South Bank, London SE1 9PX	7.5
3	Sushi Restaurant	Pisco Bar @ LIMA Floral	51.5121	-0.1224	3	0	14 Garrick Street, Covent Garden, London WC2E 9BJ	22.5
4	Shopping Plaza	Ladurée	51.5121	-0.1228	3	4.7	1 The Market, Covent Garden, London WC2E 8RA	32.5
5	Wine Bar	Gordon's Wine Bar	51.5079	-0.1235	3	4.7	47 Villiers Street, Strand, London WC2N 6NE	25.0
6	Sushi Restaurant	Sticks 'n' Sushi	51.5112	-0.1236	3	4.8	Henrietta Street, Covent Garden, London WC2	32.5
7	Steakhouse	Flat Iron	51.5108	-0.1240	2	4.8	17-18 Henrietta Street, Covent Garden, London	17.5

	categories	venue	latitude	longitude	price_range	rating	address	average_price
8	Dessert Shop	Creme De La Crepe	51.5121	-0.1230	2	4.1	Unit 29, The Piazza, Covent Garden, London WC2	10.0
9	Performing Arts Venue	Feng Sushi	51.5058	-0.1168	2	3.6	Unit 9, Festival Terrace, South Bank Centre, B	17.5

Here we can see that there is a lot of restaurants over 15 in the average price.

But we need to exclude the rating 0 places, that is probably new

In [25]:

```
selected_venues = selected_venues[selected_venues['rating'] != 0.0]
print("Total venues available: {}". format(selected_venues.shape[0]))
```

Total venues available: 36

Methodology section

We will aim at identifying the venues in London based on their rating and average costs. This would enable any visitor to identify the venues he/she wants to visit based on their rating and cost preference. As a first step, we retrieved the data from two APIs (Foursquare and Zomato). We extract venue information from the center of London, upto a distance of 3 Km. The latitude and longitude values are then used to fetch venue rating and price from Zomato.

After, we then explored the data retrieved from the two APIs on the map and identified the top category types. The data from the two sources is carefully combined based on the name, latitude and longitude values from the two sources. The final dataset would include the rating and price values for each venue. Next, we'll analyse the data that we created based on the ratings and price of each venue. We'll identify places where many venues are located so that any visitor can go to one place and enjoy the option to choose amongst many venue options. We'll also explore areas that are high rated and those that are low rated while also plotting the map of high and low priced venues. Lastly, we'll cluster the venues based on the available information of each venue. This will allow us to clearly identify which venues can be recommended and with what characteristics.

Finally, we'll discuss and conclude which venues to be explored based on visitor requirement of rating and cost.

Analyzing the places category

In [26]:

```
venue_distribution = selected_venues['categories'].value_counts()
colors = cm. rainbow(np. linspace(0, 1, len(venue_distribution.index)))
plt.figure(figsize = (20, 12))
plt.xticks(rotation = 90)
plt.xlabel("Venue category", fontsize = 16)
plt.ylabel("Count", fontsize = 16)
plt.title("Count of venues of each category", fontsize = 16)
plt.bar(venue_distribution.index, venue_distribution.values)
```

Out [26]:

<BarContainer object of 24 artists>

We can conclude that the majority venues are Cafe and Indian Restaurant

Analyzing the rates

In [27]:

```
selected_venues['rating'] = selected_venues['rating'].astype(float)
rating = selected_venues['rating'].value_counts().sort_index()
plt.figure(figsize = (20, 12))
plt.bar(rating.index, rating.values)
plt.xlabel("Rating", fontsize = 16)
plt.ylabel("Count", fontsize = 16)
plt.title("Count of venues with given rating", fontsize = 16)
```

Out[27]:

Text (0.5, 1.0, 'Count of venues with given rating')

Here we can see that the majority of ratings is between 3 and 5

Now let's create some categories: 2 to 3 3 to 4 4 to 5 5 to 6

In [28]:

```
bins = [1.0, 2.0, 3.0, 4.0, 5.0]
labels = ['Low', 'Okay', 'Good', 'Very good']
selected_venues['rating_bin'] = pd. cut(selected_venues['rating']. astype(float), bins = bins, lab
els = labels, include_lowest = True)
```

And now let's add it into the map

In [29]:

```
color map = {'Low': 'red', 'Okay': 'yellow', 'Good': 'green', 'Very good': 'blue'}
ld_map = folium.Map(location = [LD_LATITUDE, LD_LONGITUDE], zoom_start = 13)
for name, address, latitude, longitude, rating bin in zip(selected venues['venue'],
                                                           selected_venues['address'],
                                                           selected_venues['latitude'],
                                                           selected_venues['longitude'],
                                                           selected_venues['rating_bin']):
    label = '{}, {}'.format(name, address)
    label = folium. Popup(label, parse html = True)
    folium. Marker (
        [latitude, longitude],
        icon = folium. Icon(color = color_map[rating_bin]),
        popup = label).add_to(ld_map)
1d_map
```

Out [29]:

Here we can conclude that the best places are in the left side of the bridge (to the west). More specifically at the Covent Garden neighborhood.

Now we will do the clusters

In [30]:

```
from sklearn.cluster import KMeans
NO_OF_CLUSTERS = 2
clustering = selected_venues.drop(['venue', 'address', 'rating_bin', 'categories'], 1)
kMeans = KMeans(n_clusters = NO_OF_CLUSTERS, random_state = 0).fit(clustering)
selected_venues.insert(0, 'cluster_labels', kMeans.labels_)
selected_venues.head(5)
```

Out[30]:

	cluster_labels	categories	venue	latitude	longitude	price_range	rating	address	ave
0	0	Theater	Lyceum Tavern	51.5113	-0.1197	2	3.3	354 Strand, Covent Garden, London WC2R 0HS	
1	1	Hotel	The Lounge Bar - The Strand Palace Hotel	51.5107	-0.1210	3	3.3	The Strand Palace Hotel, 372 Strand, Strand, L	
2	0	Theater	National Theatre Espresso Bar	51.5071	-0.1149	1	3.3	National Theatre, South Bank, London SE1 9PX	
4	1	Shopping Plaza	Ladurée	51.5121	-0.1228	3	4.7	1 The Market, Covent Garden, London WC2E 8RA	
5	1	Wine Bar	Gordon's Wine Bar	51.5079	-0.1235	3	4.7	Villiers Street, Strand, London WC2N 6NE	
4									•

And then analyze this two clusters

```
In [31]:
```

```
result = selected_venues[selected_venues['cluster_labels'] == 0]
print("Cluster 0")
result.head(10).reset_index(drop = True)
```

Cluster 0

Out[31]:

	cluster_labels	categories	venue	latitude	longitude	price_range	rating	address
0	0	Theater	Lyceum Tavern	51.5113	-0.1197	2	3.3	354 Strand, Covent Garden, London WC2R 0HS
1	0	Theater	National Theatre Espresso Bar	51.5071	-0.1149	1	3.3	National Theatre, South Bank, London SE1 9PX
2	0	Steakhouse	Flat Iron	51.5108	-0.1240	2	4.8	17-18 Henrietta Street, Covent Garden, London
3	0	Dessert Shop	Creme De La Crepe	51.5121	-0.1230	2	4.1	Unit 29, The Piazza, Covent Garden, London WC2
4	0	Performing Arts Venue	Feng Sushi	51.5058	-0.1168	2	3.6	Unit 9, Festival Terrace, South Bank Centre, B
5	0	Ice Cream Shop	Amorino	51.5115	-0.1259	2	4.7	7 Garrick Street, Covent Garden, London WC2E 9AR
6	0	Indian Restaurant	Dishoom	51.5124	-0.1272	2	4.9	12 Upper St Martin's Lane, Covent Garden, Lond
7	0	Art Gallery	The Portrait Cafe	51.5094	-0.1281	1	3.3	National Portrait Gallery, 2 St Martin's Place
8	0	Scenic Lookout	The County Hall Arms	51.5033	-0.1196	2	3.6	County Hall, Riverside Building, Westminster B
9	0	Coffee Shop	Monmouth Coffee Company	51.5144	-0.1268	1	4.6	27 Monmouth Street, Covent Garden, London WC2H
4								•

In [32]:

```
print("These venues for cluster 0 have mean price range of {:.02f} and rating spread around {:.
02f}".
      format(result['price_range'].mean(), result['rating'].astype(float).mean()))
```

These venues for cluster 0 have mean price range of 1.56 and rating spread around 3.94

Cluster 1

```
In [33]:
```

```
result = selected_venues[selected_venues['cluster_labels'] == 1]
print("Cluster 1")
result.head(10).reset_index(drop = True)
```

Cluster 1

Out[33]:

	cluster_labels	categories	venue	latitude	longitude	price_range	rating	address
0	1	Hotel	The Lounge Bar - The Strand Palace Hotel	51.5107	-0.1210	3	3.3	The Strand Palace Hotel, 372 Strand, Strand, L
1	1	Shopping Plaza	Ladurée	51.5121	-0.1228	3	4.7	1 The Market, Covent Garden, London WC2E 8RA
2	1	Wine Bar	Gordon's Wine Bar	51.5079	-0.1235	3	4.7	47 Villiers Street, Strand, London WC2N 6NE
3	1	Sushi Restaurant	Sticks 'n' Sushi	51.5112	-0.1236	3	4.8	Henrietta Street, Covent Garden, London WC2
4	1	Movie Theater	Benugo Bar & Kitchen	51.5049	-0.1137	3	3.7	BFI Southbank, Waterloo, London SE1 8XT
5	1	Steakhouse	Hawksmoor Seven Dials	51.5134	-0.1257	4	4.7	11 Langley Street, Covent Garden, London WC2H 9JG
6	1	Hotel	Chambers Restaurant - Apex Temple Court Hotel	51.5136	-0.1087	4	3.4	Apex Temple Court Hotel, 1-2 Serjeants' Inn, F
7	1	Hotel	Rumpus Room - Mondrian London	51.5080	-0.1070	3	3.5	Mondrian London, 20 Upper Ground, South Bank,
8	1	Hotel	Mirror Room - Rosewood Hotel	51.5174	-0.1179	3	3.9	Rosewood Hotel, 252 High Holborn, Holborn, Lon

	cluster_labels	categories	venue	latitude	longitude	price_range	rating	address
9	1	Hotel Bar	Scarfes Bar - Rosewood Hotel	51.5174	-0.1179	3	3.9	Rosewood Hotel, 252 High Holborn, Holborn, Lon
4								•

In [34]:

```
print("These venues for cluster 1 have mean price range of {:.02f} and rating spread around {:.
02f}".
      format(result['price_range'].mean(), result['rating'].astype(float).mean()))
```

These venues for cluster 1 have mean price range of 3.22 and rating spread around 4.00

Results and discussions

Conclusions:

The main goal of the project was explore London venues. The venues have been identified using Foursquare and Zomato API and have been plotted on the map. The analysis finish with two clusters considering rating and price, so you can choose the best place to go to get a nice and not so expensive place.

And we can conclude that the cluster 0 has