1

AI1103-Assignment 2

Name: Asish sashank reddy, Roll Number: CS20BTECH11010

Download latex-tikz codes from

https://github.com/asishcs2011010/demo/blob/main/ Assignment-2/assignment-2(3).tex

OUESTION NO

Gate-EC Q-38

QUESTION

Let $X \in \{0, 1\}$ and $Y \in \{0, 1\}$ be two independent binary random variables. if P(X = 0) = p and P(Y = 0) = q, then $P(X + Y \ge 1)$ is equal to

1)
$$pq + (1-p)(1-q)$$

- 2) *pq*
- 3) p(1-q)
- 4) 1 pq

Solution

Given Pr(X = 0) = p, Pr(Y=0) = q and X and Y are independent binary random variables.

X	X = 0	X = 1
Pr	p	1-p

Y	Y = 0	Y = 1
Pr	q	1-q

Let Z be the convolution of X,Y.

$$Z = X + Y, \tag{0.0.1}$$

$$Pr(Z = z) = \sum_{k \in Z} Pr(X = k) \times Pr(Y = z - k)$$
 (0.0.2)

$$Pr(Z = 0) = Pr(X = 0) \times Pr(Y = 0) = pq$$
 (0.0.3)

$$Pr(Z = 1) = Pr(X = 0) \times Pr(Y = 1) + Pr(Z = 1) \times Pr(Y = 0) = p(1 - q) + q(1 - p) = p + q - 2pq$$

$$Pr(Z=2) = Pr(X = 1) \times Pr(Y = 1) = (1 - p)(1 - q) = 1 - p - q + pq$$

Z	Z = 0	Z = 1	Z = 2
Pr	pq	p+q-2pq	1 - p - q + pq

$$Pr(Z < 1) = P(Z = 0)(Z = 0, 1, 2)$$
 (0.0.4)

From equation (0.0.3), we get

$$Pr(Z = 0) = Pr(X = 0) \times Pr(Y = 0) = pq$$
 (0.0.5)

$$Pr(X + Y \ge 1) = 1 - Pr(X + Y < 1)$$
 (0.0.6)

$$Pr(Z \ge 1) = 1 - Pr(Z < 1) = 1 - pq \quad (0.0.7)$$

The correct option is option(4)