Noyau, énergie et masse

 $m(_0^1n) = 1,00866u$; $m(_1^1p) = 1,00728u$; $m(\beta) = 5,48579.10^{-4}u$; $1MeV = 1,6022.10^{-13}J$; Unité de masse atomique : $1u = 1,66055.10^{-27}kg = 931,5MeV/c^2$; Constante d'Avogadro $N_A = 6,022.10^{23}mol^{-1}$;

Exercice 1 :La désintégration d'un nucléide

La désintégration du nucléide ${}_{17}^{36}Cl$ donne naissance au nucléide ${}_{18}Ar$.

- 1. Donner la composition du noyau 36
- 2. Calculer en MeV l'énergie de liaison du noyau du chlore 36. Masse de Chlore 36 M(Cl) =35,9590 g/mol

Exercice 2 : l'énergie de liaison

Masse du noyau du Radon 222 : 221,9703u , De la désintégration de l'Uranium 238 $^{238}_{92}U$, résulte le Radon $_{86}Rn$ et des particules α et β^- .

- 1. Donner la composition du noyau $^{222}_{86}Rn$.
- 2. Calculer en (MeV) l'énergie de liaison du noyau $^{222}_{86}Rn.$
- 3. Déterminer le nombre de désintégration de type α et de type β^- produites par cette transformation nucléaire

Exercice 3 : l'énergie de liaison par nucléon

Masse du noyau d'Uranium 238 : 238,00031 u , Masse du noyau du Plomb 206 : 205,92949
u Energie de liaison par nucléon du Plomb 206 : $\mathcal{E}(Pb)=7,87\mathrm{Mev/nucléon}$

Calculer l'énergie de liaison par nucléon de l'Uranium 238, et vérifier que le noyau $^{206}_{82}Pb$ est 238 plus stable que le noyau $^{238}_{92}U$

Exercice 4 :La désintégration du noyau de cobalt

La désintégration du noyau de cobalt ${}^{60}_{27}Co$ donne un noyau de nickel ${}_{28}Ni$ et une particule X.

La masse du noyau $_{27}^{60}Co$: 59,91901 u , La masse du noyau $_{28}^{60}Ni$: 59,91543 u.

L'énergie de liaison par nucléon du noyau $^{56}_{28}Ni$: 8,64MeV/nucléon

- 1. Identifier la particule X, puis déterminer le type de désintégration du cobalt 60.
- 2. Calculer, en MeV, l'énergie libérée E_{lib} au cours de cette désintégration.
- 3. Déterminer, en MeV/nucléon, l'énergie de liaison par nucléon $\mathscr E$ du noyau $^{60}_{28}Ni$, puis déduire parmi les deux noyaux $^{60}_{28}Ni$ et $^{56}_{28}Ni$, lequel est le plus stable.

Exercices Supplémentaires

Exercice 5 : Application de la radioactivité dans la médecine

L'histoire de la médecine nucléaire a toujours été lié au progrès de la physique nucléaire. Dans plusieurs cas la médecine nucléaire consiste à injecter des produits radioactifs dans le corps humain pour diagnostiquer et remédier à la maladie. L'isotope $^{99}_{43}Tc$ du technétium est parmi les noyaux les plus utilisés dans le domaine de la médecine à cause de sa durée de vie courte, ses effets radioactifs minimal, son cout très bas, et la facilite de sa mise à disponibilité des médecins. Cet exercice a pour but l'étude d'une des utilisations du technétium dans le domaine médical.

• Énergie de liaison :

$$E_L(^{99}_{43}Tc) = 852,53 MeV \; ; \; E_L(^{97}_{43}Tc) = 836,28 MeV$$

- La demi-vie du technétium $^{99}_{43}Tc$ est $t_{1/2} = 6h$.
- 1. Les noyaux ${}_{43}Tc$ et ${}_{43}Tc$ sont deux isotopes de Technétium.
- 1.1. Donner la composition de l'isotope $^{99}_{43}Tc$ du noyau de technétium.
- 1.2. Quel est le noyau le plus stable ? Justifier votre réponse.
- **1.3.** Le technétium $^{99}_{43}Tc$ est produit par la désintégration d'un noyau du molybdène $^{99}_{42}Mo$, préciser le type de la désintégration radioactive.
- 2. Le technétium ${}^{99}_{43}Tc$ est utilisé dans le domaine de la radiologie, on injecte à un malade une dose de technétium ${}^{99}_{43}Tc$ puis on prend les cliches de ces os.
- À l'instant $t_0 = 0$ on injecte a un patient une dose d'activité radioactive $a_0 = 5.10^8 Bq$, puis on prend une image-radio des os à l'instant t1, l'activité radioactive devient $a_1 = 0, 6a_0$.
- **2.1** Vérifier que la valeur de la constante d'activité radioactive du technétium $^{99}_{43}Tc$ est $\lambda = 3, 21.10^{-5}s^{-1}$.
- **2.2** Déterminer la valeur N_0 , le nombre de noyaux injectés dans le corps à l'instant $t_0 = 0$. **2.3** Déterminer en heure (h) la valeur de t.

Exercice 6 :La radioactivité dans le tabac

Le tabac est l'une des causes principales du cancer du poumon, cette cause est dû essentiellement a des effets chimiques et peu de rayonnement nucléaire car le tabac contient l'isotope $^{210}_{84}Po$ de l'élément polonium radioactif

Le noyau	Thallium	Hélium	Plomb	Bismuth	Polonium
Le symbole	$^{206}_{81}Tl$	${}^{4}_{2}He$	$^{206}_{82}Pb$	$^{209}_{83}Bi$	$^{210}_{84}Po$
Masse du noyau (u)	205,9317	4,0015	205,9295	208,9348	209,9368
$t_{1/2} \operatorname{du} {}^{210}_{84} Po$					138jours

- 1. Le noyau du polonium $^{210}_{84}Po$ est radioactif α . Écrire l'équation de désintégration du noyau du polonium en déterminant le noyau fils.
- 2. Vérifier que la constante radioactive du noyau polonium $^{210}_{84}Po$ est $\lambda = 5,81.10^{-8}s^{-1}$.
- 3. On dispose d'un échantillon radioactif du polonium $^{210}_{84}Po$ son activité à l'instant t est $a_0=10^{-1}Bq$
- **3.1.** Déterminer la valeur de N le nombre de noyaux de polonium $^{210}_{84}Po$ dans l'échantillon à l'instant t .
- **3.2.** Calculer en MeV, la valeur de l'énergie libérée ELibérée durant la désintégration de N noyaux de polonium $^{210}_{84}Po$