Suite récurrente, modèle logistique, introduction au chaos

Considérons une fonction $f:\mathcal{D}\to\mathbb{R}$ et $a\in\mathcal{D}$. On appelle suite récurrente de fonction itératrice f et de germe a, si elle existe, l'unique suite (u_n) déterminée par les conditions $u_0=a$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. Pour qu'une telle suite existe, il faut que $u_n\in\mathcal{D}$ pour tout $n\in\mathbb{N}$, de sorte de pouvoir calculer u_{n+1} . Une condition suffisante d'existence est qu'on ait tout simplement $f(x)\in\mathcal{D}$ pour tout $x\in\mathcal{D}$. La suite (u_n) a alors pour terme général $u_n=f^{\circ n}(a)$ en notant $f^{\circ n}=f\circ f\circ ...\circ f$ (produit à n termes). L'application $f^{\circ n}$ est appelée $n^{i\hat{e}me}$ itérée de la fonction f. En pratique, il est rare de savoir expliciter concrètement $f^{\circ n}(x)$, ceci empêche d'étudier la suite (u_n) à partir de l'expression de son terme général. Pour étudier celle-ci, il faut alors adopter des démarches adaptées. Dans cet article, nous allons présenter des outils descriptifs et les appliquer à l'étude du modèle logistique.

Pour la suite, on se donne une fonction itératrice $f: \mathcal{D} \to \mathcal{D}$ de classe \mathcal{C}^1 , un germe $a \in \mathcal{D}$ et on étudie la suite (u_n) définie par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

Représentation:

Pour visualiser l'évolution de cette suite, il est usuel de représenter graphiquement la courbe d'équation y = f(x) accompagnée de la première bissectrice du plan (droite d'équation y = x). Le germe $u_0 = a$ étant donné en abscisse, le point correspondant de la courbe y = f(x) a pour ordonnée $u_1 = f(a)$. En prenant alors appui sur la première bissectrice, on peut reporter u_1 en abscisse puis reprendre le processus pour déterminer u_2, u_3, \ldots C'est ainsi qu'on parvient aux figures classiques :

[figure 1 et figure 2]

Point fixe, point attractif, point répulsif :

Si la suite (u_n) converge vers un réel $x_0 \in \mathcal{D}$, en passant la relation $u_{n+1} = f(u_n)$ à la limite, on obtient $f(x_0) = x_0$. Un tel point x_0 est dit *point fixe* de la fonction f. Graphiquement, on observe alors une accumulation des termes de la suite vers l'affixe d'un point intersection de la courbe y = f(x) et de la première bissectrice.

Considérons un point fixe x_0 de f, nous convenons d'appeler voisinage de x_0 tout domaine de la forme $[x_0-\alpha,x_0+\alpha]\cap\mathcal{D}$ avec $\alpha>0$.

S'il existe un voisinage de x_0 tel que pour tout germe dans celui-ci, il y a convergence de la suite vers x_0 , le point x_0 est dit attractif. En revanche, le point x_0 est dit répulsif lorsqu'il existe un voisinage de x_0 tel que, pour tout germe dans celui-ci, la suite s'éloigne de x_0 jusqu'à sortir de ce voisinage au bout d'un certain temps (ce qui ne lui interdit pas d'y revenir plus tard).

Notons $m = f'(x_0)$. Pour tout $x \in \mathcal{D}$, le théorème des accroissements finis assure l'existence d'un réel ξ_x intermédiaire à x_0 et x tel que $f(x) - x_0 = f'(\xi_x)(x - x_0)$. Exploitons cette relation :

Supposons |m| < 1 et considérons un réel ρ tel que $|m| < \rho < 1$. Il existe un voisinage de x_0 sur lequel $|f'(x)| \le \rho$. Pour tout x dans ce voisinage on a alors $|f(x) - x_0| \le \rho |x - x_0|$. On observe alors que x_0 est un point attractif.

En fait, on peut même voir que si m>0 alors la suite va converger vers x_0 avec une représentation en escalier, ceci car la fonction itératrice est alors croissante au voisinage de x_0 (c'est le cas de la figure 1). En revanche, si

m < 0, il y a convergence avec un enroulement en colimaçon car cette fois-ci la fonction itératrice est décroissante au voisinage de x_0 (c'est le cas de la figure 2).

Notons que plus |m| est petit, plus la convergence vers x_0 est rapide. En particulier, lorsque m=0, on dit que le point x_0 est super attractif.

Supposons maintenant |m| > 1. Par la même démarche que ci-dessus, on observe cette fois-ci un éloignement systématique au voisinage de x_0 , le point est répulsif.

Cycle attractif, cycle répulsif.

Il n'y a malheureusement pas toujours convergence des suites récurrentes mais parfois apparaissent des phénomènes périodiques.

On appelle cycle de longueur p de la fonction f toute suite x_1, x_2, \ldots, x_p d'éléments deux à deux distincts de \mathcal{D} tels que $x_2 = f(x_1), \ldots, x_p = f(x_{p-1}), x_1 = f(x_p)$.

Les éléments d'un cycle de longueur p sont points fixes de $f^{\circ p}$.

Si le germe de la suite récurrente appartient à un cycle de longueur p, celle-ci s'avérera être p périodique.

Un cycle de longueur p est dit attractif (resp. répulsif) ssi chacun de ses points est point attractif (resp. répulsif) de $f^{\circ p}$. Lorsque le germe est choisi proche d'un terme d'un cycle attractif, la suite récurrente correspondante paraît « converger vers une suite périodique », on dit alors qu'elle est asymptotiquement périodique.

Pour déterminer la nature d'un cycle $x_1, x_2, ..., x_p$, on introduit $m = f'(x_1)f'(x_2)...f'(x_p)$ appelé coefficient multiplicateur du cycle.

En fait
$$m = (f^{\circ p})'(x_1) = (f^{\circ p})'(x_2) = \dots = (f^{\circ p})'(x_p)$$
.

Par conséquent, si |m| < 1, tous les points du cycle sont attractifs et donc le cycle l'est. En revanche si |m| > 1, le cycle est répulsif.

[figure 3]

Modèle logistique

On désire modéliser l'évolution au cours du temps d'une espèce vivant sans prédateurs extérieurs et trouvant sa nourriture en abondance. Pour cela, notons p_n la population (quantifiée par un réel et non un entier) de l'espèce étudiée à la date n. Un premier modèle consiste à évaluer la population à la date n+1 par la formule $p_{n+1}=(1+\alpha)p_n$ avec $\alpha>0$. Le réel α modélise le taux de progression propre à l'espèce. On obtient rapidement $p_n=(1+\alpha)^n p_0$ et p_n tend très rapidement vers l'infini.

Ce modèle n'est en fait satisfaisant que pour les petites valeurs de p_n pour lesquelles on veut bien accepter que la population trouve sa nourriture en abondance. Corrigeons celui-ci en ajoutant maintenant l'hypothèse de l'existence d'une population optimale \bar{p} déterminée à partir des conditions extérieures (comme la quantité de nourriture réellement disponible,...) Considérons alors que la population à la date n+1 est déterminée par

$$p_{n+1}=(1+\alpha\frac{(\overline{p}-p_n)}{\overline{p}})p_n$$
 . Ce modèle est appelé modèle logistique

Dans cette optique la fonction itératrice considérée est $x\mapsto (1+\alpha\frac{(\overline{p}-x)}{\overline{p}})x$ et \overline{p} apparaît comme étant un point fixe de celle-ci. Lorsque $p_n>\overline{p}$, on observe que $p_{n+1}\leq p_n$ et lorsque $p_n<\overline{p}$, on a $p_{n+1}\geq p_n$. Le réel \overline{p} apparaît bien comme la population optimale vers laquelle on semble tendre. Notons aussi que si $p_n\ll\overline{p}$, le modèle logistique est proche du modèle initial.

Pour simplifier l'étude posons $u_n = \frac{p_n}{\overline{p}}$ de sorte qu'on ait la relation $u_{n+1} = (1 + \alpha(1 - u_n))u_n$. La fonction itératrice est $f: x \mapsto (1 + \alpha - \alpha x)x$.

Pour que le modèle écologique soit cohérent il faut que la fonction f soit à valeurs positives (de sorte qu'il n'y ait pas de population négative). Cela nous oblige à nous positionner sur $\mathcal{D} = \left[0, \frac{1+\alpha}{\alpha}\right]$. Pour être assuré que les termes de la suite ne sortent pas de ce domaine, il faut que la restriction de f à \mathcal{D} soit à valeurs dans \mathcal{D} . Sachant que f est positive sur \mathcal{D} et que sa valeur maximale est en $\frac{1+\alpha}{2\alpha}$, cela conduit à la condition $\alpha \leq 3$.

Etude de cas particuliers

Etudions l'évolution de (p_n) dans les cas $\alpha = 1$ et $\alpha = 3$.

Pour $\,\alpha=1$, la relation étudiée est $\,u_{\scriptscriptstyle n+1}=2u_{\scriptscriptstyle n}-u_{\scriptscriptstyle n}^2\,$ avec $\,u_{\scriptscriptstyle 0}\in\mathcal{D}=[0,2]$.

Si $u_0 = 0$ alors $u_1 = 0$ puis $\forall n \in \mathbb{N}, u_n = 0$.

Si $u_0 = 2$ alors $u_1 = 0$ puis $\forall n \in \mathbb{N}^*, u_n = 0$.

Reste à étudier le cas général $u_0 \in]0,2[$. Pour cela introduisons (v_n) définie par $v_n=1-u_n$. On a $v_{n+1}=(v_n)^2$ d'où $\forall n \in \mathbb{N}$, $v_n=(v_0)^{2^n}$ avec $v_0=1-u_0 \in]-1,1[$. Puisque $|v_0|<1$, $v_n\to 0$ puis $u_n\to 1$. On observe ici le comportement attendu de convergence vers la population optimale. Notons de plus qu'ici la convergence est rapide.

Pour $\alpha=2$, la fonction itératrice est décroissante sur [3/4,9/8] et est à valeurs dans lui-même. On parvient à montrer que les termes de la suite sont dans cet intervalle à partir d'un certain rang. Les suites (u_{2p}) et (u_{2p+1}) sont monotones et convergentes et ne peuvent tendre que vers 1.

$$\begin{aligned} &\text{Posons} \ \ v_{\scriptscriptstyle n} = u_{\scriptscriptstyle n} - 1 \,, \ v_{\scriptscriptstyle n+1} = -v_{\scriptscriptstyle n} - 2v_{\scriptscriptstyle n}^2 \sim -v_{\scriptscriptstyle n} \,, \ a_{\scriptscriptstyle n} = v_{\scriptscriptstyle 2n} \,, \ a_{\scriptscriptstyle n+1} = a_{\scriptscriptstyle n} - 8a_{\scriptscriptstyle n}^3 - 8a_{\scriptscriptstyle n}^4 \,, \ \frac{1}{a_{\scriptscriptstyle n+1}^2} - \frac{1}{a_{\scriptscriptstyle n}^2} \rightarrow 16 \ \ \text{puis via C\'esaro} \\ &\frac{1}{na_{\scriptscriptstyle n}^2} \rightarrow 16 \ \ \text{puis} \ \ a_{\scriptscriptstyle n} \sim \frac{1}{4\sqrt{n}} \,. \end{aligned}$$

Pour $\alpha=3$, la relation étudiée est $u_{n+1}=4u_n-3u_n^2$ avec $u_0\in\mathcal{D}=\left[0,4/3\right]$. Posons $v_n=3u_n$, on obtient la relation $v_{n+1}=4v_n-v_n^2=-(v_n-2)^2+4$. Posons ensuite $w_n=2-v_n$, on obtient $w_{n+1}=w_n^2-2$. Puisque $u_n\in\mathcal{D}$, on a $w_n\in\left[-2,2\right]$ ce qui permet d'écrire $w_n=2\cos\theta_n$. La relation de récurrence donne alors $\cos\theta_{n+1}=\cos(2\theta_n)$. Ceci permet alors de montrer $\forall n\in\mathbb{N}, w_n=2\cos(2^n\theta_0)$. Cette fois, il n'y a pas convergence mais on observe plutôt une répartition aléatoire des valeurs de u_n à l'intérieur de \mathcal{D} , d'ailleurs cette idée est parfois exploitée pour générer des nombres aléatoires.

Etude qualitative générale

En dehors des cas simples précédents, il est délicat de préciser le comportement de (u_n) . En revanche, on peut le visualiser à l'aide de l'outil informatique. Pour une valeur $\alpha \in]0,3]$ donnée en abscisse, on a représenté cidessous les points d'ordonnées u_n avec $200 \le n \le 250$ (on a choisi, arbitrairement, $u_0 = 0,5$).

Ce dessin permet de visualiser le comportement de (u_n) quand $n \to +\infty$.

[figure 4]

On observe que pour $0<\alpha<2$, il y a convergence de la suite vers 1. En fait, 1 est alors point fixe de la fonction itératrice f avec $f'(1)=1-\alpha\in]-1,1[$. Il s'agit donc d'un point attractif. On peut même souligner que celui-ci est super attractif lorsque $\alpha=1$.

Au-delà de 2, il y a apparition d'un cycle de longueur 2 et donc d'un phénomène périodique. En fait, à ce stade, le point fixe 1 est devenu répulsif alors qu'il apparaît un cycle de longueur 2 avec un coefficient multiplicateur égal à $5-\alpha^2$. Ce cycle est attractif tant que $\alpha < \sqrt{6} \simeq 2,45$.

Au-delà de $\sqrt{6}$ le cycle de longueur 2 devient répulsif et c'est un cycle de longueur 4 qui prend le relais, puis un cycle de longueur 8,... Ce phénomène de dédoublement se poursuit jusqu'à la valeur $\alpha \simeq 2,57$ appelée point de Feigenbaum (du non du mathématicien découvreur du phénomène vers 1970)

Au-delà du point de Feigenbaum la figure devient confuse, il n'y a plus de comportements périodiques visibles, c'est le chaos...

A l'intérieur de ce chaos apparaît néanmoins des ouvertures appelées fenêtres d'ordre. La plus visible est en $\alpha \simeq 2.83$.

Approfondissons la visualisation de celle-ci:

[figure 5]

On observe un cycle de longueur 3, qui se dédouble, etc... Si on s'attarde sur l'une des branches, on observe une figure semblable à la figure initiale. Cette fois c'est le concept fractal qui apparaît...

[figure 6]

Conclusion

Les phénomènes observés, que nous n'allons par approfondir plus à cause de leur complexité, sont généraux aux itérateurs dits quadratiques. C'est derniers ont couramment pour fonctions itératrices : $x \mapsto x^2 + c$, $x \mapsto \lambda x (1-x)$ ou $x \mapsto (1+\alpha(1-x))x$. Notons que ces fonctions ne sont ici rien d'autres que des fonctions polynomiales de degré 2 et pourtant celles-ci ont suffit pour introduire des comportements terriblement complexes.

Encadré:

Le modèle logistique a été introduit par le mathématicien belge Pierre-François Verhulst en 1845. La version étudiée ici est une modélisation discrète de l'évolution d'une population. Le modèle continu correspondant est défini par l'équation $y'=\alpha(1-y)y$. L'étude en est plus simple car cette équation différentielle est à variables séparables, on sait donc la résoudre. Les comportements correspondant ne sont alors que des comportements de convergence.

Figure 1 – Itération sous $f(x) = (1 + \alpha(1 - x))x$ avec $\alpha = 0,7$. Convergence en escalier

Figure 2 – Itération sous $f(x) = (1 + \alpha(1 - x))x$ avec $\alpha = 1,9$. Convergence en colimaçon

Figure 3 – Itération sous $f(x) = (1 + \alpha(1 - x))x$ avec $\alpha = 2,83$. Cycle de longueur 3

Figure 4 – Diagramme de bifurcation $0 < \alpha \le 3$.

Figure 5 – Diagramme de bifurcation $2,82 \leq \alpha \leq 2,86$.

