ijijiji Updated upstream ====== ¿¿¿¿¿¿¿ Stashed changes

Modular arithmetic facts

Learning Objectives. By the end of class, students will be able to:

• Prove basic facts about modular arithmetic. .

Definition $(a \equiv b \pmod{m})$. Let $a, b, m \in \mathbb{Z}$ with m > 0. From Friday, we have the following equivalent definitions of congruence modulo m:

- (a) $a \equiv b \pmod{m}$ if and only if $m \mid b a$ (standard definition, generalizing even/odd based on divisibility)
- (b) $a \equiv b \pmod{m}$ if and only if a and b have the same remainder with divided by m. That is, That is, there exists unique $q_1, q_2, r \in \mathbb{Z}$ such that $a = mq_1 + r$, $b = mq_2 + r$, $0 \le r < m$. (definition generalizing even/odd based on remainder)
- (c) $a \equiv b \pmod{m}$ if and only if a and b differ by a multiple of m. That is, b = a + mk for some $k \in \mathbb{Z}$. (arithmetic progression definition)

Different statements of the definition will be useful in different situations

Proposition 1. Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0, then:

- (a) $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$
- (b) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $a + c \equiv b + d \pmod{m}$
- (c) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $ac \equiv bd \pmod{m}$.
- (d) $a \equiv b \pmod{m}$ and $d \mid m, d > 0$ implies $a \equiv b \pmod{d}$
- (e) $a \equiv b \pmod{m}$ implies $ac \equiv bc \pmod{mc}$ for c > 0.

Proof Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0.

(a) Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then using the second definition of equivalence, there exists $q_1, q_2, q_3, r \in \mathbb{Z}$ such that

$$a = mq_1 + r,$$
 $0 \le r < m,$
 $b = mq_2 + r,$ $0 \le r < m,$
 $c = mq_3 + r,$ $0 < r < m.$

Thus, a and c have the same remainder when divided by m, so $a \equiv c \pmod{m}$.

???/?? Assume $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Then by the third definition of equivalence, there exists $j, k \in \mathbb{Z}$ such that b = a + mj and d = c + mk. Thus,

$$b+d=a+c+m(j+k), \qquad \text{and} \\ bd=ac+m(ak+cj+mjk).$$

Thus, $a + c \equiv b + d \pmod{m}$ and $ac = bd \pmod{m}$.

(d) Assume $a \equiv b \pmod{m}$, and d > 0 with $d \mid m$. From the first definition of equivalence modulo $m, m \mid b - a$. Since division is transitive, $d \mid b - a$, so $a \equiv b \pmod{d}$.

Learning outcomes: Author(s): Claire Merriman all definitions are if and only if (e) Assume $a \equiv b \pmod{m}$, and c > 0. From the third definition of equivalence modulo m, there exists $k \in \mathbb{Z}$ such that b = a + mk. Thus, bc = ac + mck, so $ac \equiv bc \pmod{mc}$.

Example 1. Note that $2 \equiv 5 \pmod{3}$. Then $4 \equiv 10 \pmod{3}$ by Proposition ????, since $2 \equiv 2 \pmod{3}$. From part ??, $4 \equiv 10 \pmod{6}$, but $2 \not\equiv 5 \pmod{6}$.