

Business Statistics

Introduction

Dr M K BARUA

DEPARTMENT OF MANAGEMENT STUDIES

- Random Variables
- Discrete Probability Distributions
- Expected Value and Variance
- Binomial Distribution
- Poisson Distribution
- Hypergeometric Distribution

Random Variables

A <u>random variable</u> is a numerical description of the outcome of an experiment.

A <u>discrete random variable</u> may assume either a **finite number** of values or an **infinite sequence** of values.

A <u>continuous random variable</u> may assume any numerical value in an interval or collection of intervals.

Example: JSL Appliances

• Discrete random variable with a <u>finite</u> number of values

Let x = number of TVs sold at the store in one day, where x can take on 5 values (0, 1, 2, 3, 4)

Example: JSL Appliances

 Discrete random variable with an <u>infinite</u> sequence of values

Let x = number of customers arriving in one day, where x can take on the values 0, 1, 2, . . .

We can count the customers arriving, but there is <u>no</u> <u>finite upper limit</u> on the number that might arrive.

Random Variables

	Question	Random Variable x	Туре
>	Family size	x = Number of dependents reported on tax return	
>	Distance from home to store	x = Distance in miles from home to the store site	
>	Own dog or cat	 x = 1 if own no pet; = 2 if own dog(s) only; = 3 if own cat(s) only; = 4 if own dog(s) and cat(s) 	

Random Variables

>	Question	Random Variable x	Туре	
	Family size	x = Number of dependents reported on tax return	Discrete	
>	Distance from home to store	x = Distance in miles from home to the store site	Continuous	
>	Own dog or cat	 x = 1 if own no pet; = 2 if own dog(s) only; = 3 if own cat(s) only; = 4 if own dog(s) and cat(s) 	Discrete	

The <u>probability distribution</u> for a random variable describes how **probabilities are distributed** over the values of the **random** variable.

We can describe a discrete probability distribution with **a table**, **graph**, **or equation**.

The probability distribution is defined by a probability function, denoted by f(x), which provides the probability **for each value of the random variable**.

The required conditions for a discrete probability function are:

$$f(x) \ge 0$$

$$\Sigma f(x) = 1$$

- Using past data on TV sales, ...
- a tabular representation of the probability distribution for TV sales was developed.

	Number		80/200
Units Sold	of Days	$\underline{\mathcal{X}}$	$\frac{f(x)}{.40}$
0	80	0	.40
1	50	1	.25
2	40	2	.20
3	10	3	.05
4	20	4	10
	200		1.00

• Graphical Representation of Probability Distribution

Discrete Uniform Probability Distribution

The <u>discrete uniform probability distribution</u> is the simplest example of a discrete probability distribution given by a formula.

The <u>discrete uniform probability function</u> is

$$f(x) = 1/n$$

the values of the random variable are equally likely

where:

n = the number of values the random variable may assume

No of dots on upside when rolling a die.

$$f(x) = 1/n$$

X	f(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Expected Value and Variance

The <u>expected value</u>, or mean, of a random variable is a measure of its central location.

$$E(x) = \mu = \sum x f(x)$$

The <u>variance</u> summarizes the variability in the values of a random variable.

$$Var(x) = \sigma^2 = \Sigma(x - \mu)^2 f(x)$$

The <u>standard deviation</u>, σ , is defined as the positive <u>square root</u> of the variance.

Expected Value and Variance

• Expected Value

<u>x</u>	f(x)	$\underline{x}f(x)$
0	.40	.00
1	.25	.25
2	.20	.40
3	.05	.15
4	.10	<u>.40</u>
	E(x) =	1.20

expected number of TVs sold in a day

Expected Value and Variance

Variance and Standard Deviation

	/	/	/	<u></u>					
x	χ - μ	$(x - \mu)^2$	f(x)	$(x - \mu)^2 f(x)$					
0	-1.2	1.44	.40	.576					
1	-0.2	0.04	.25	.010					
2	0.8	0.64	.20	.128					
3	1.8	3.24	.05	.162					
4	2.8	7.84	.10	.784 TV	2				
Variance of daily sales = $\sigma^2 = 1.660$ squared									

Standard deviation of daily sales = 1.2884 TVs

Binomial Distribution: describes discrete, not continues, data resulting from an experiment know as Bernoulli process.

• Four Properties of a Binomial Experiment

1. The experiment consists of a sequence of n identical trials.

2. Two outcomes, <u>success</u> and <u>failure</u>, are possible on each trial.

3. The probability of a success, denoted by p, does not change (remains fixed) from trial to trial.

4. The trials are independent.

stationarity assumption

 \triangleright Our interest is in the <u>number of successes</u> occurring in the n trials.

We let x denote the number of successes occurring in the n trials.

■ Binomial Probability Function

$$f(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{(n-x)}$$

where:

f(x) = the probability of x successes in n trials

n =the number of trials

p = the probability of success on any one trial

Binomial Probability Function

Number of experimental outcomes providing exactly **x successes in n trials**

Probability of a particular **sequence** of trial outcomes with x successes in *n* trials

■ Example: Evans Electronics

Evans is concerned about a low **retention** rate for employees. In recent years, management has seen a turnover of 10% of the hourly employees annually. Thus, for any hourly employee chosen at random, management estimates a **probability of 0.1** that the person will not be with the company next year.

Using the Binomial Probability Function

Choosing 3 hourly employees at random, what is the probability that 1 of them will **leave** the company this year?

Let:
$$p = 0.10$$
, $n = 3$, $x = 1$

$$f(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{(n-x)}$$

$$f(1) = \frac{3!}{1!(3-1)!} (0.1)^{1} (0.9)^{2} = 3(.1)(.81) = .243$$

Using Tables of Binomial Probabilities

		p									
n	$\boldsymbol{\chi}$.05	.10	.15	.20	.25	.30	.35	.40	.45	.50
3	0	.8574	7290	.6141	.5120	.4219	.3430	.2746	.2160	.1664	.1250
	1	.1354	.2430	.3251	.3840	.4219	.4410	.4436	.4320	.4084	.3750
		.0071									
	3	.0001	.0010	.0034	.0080	.0156	.0270	.0429	.0640	.0911	.1250

■ Expected Value

$$E(x) = \mu = np$$

■ Variance

$$Var(x) = \sigma^2 = np(1-p)$$

■ Standard Deviation

$$\sigma = \sqrt{np(1-p)}$$

■ Expected Value

$$E(x) = \mu = 3(.1) = 3$$
 employees out of 3

■ Variance

$$Var(x) = \sigma^2 = 3(.1)(.9) = 27$$

Standard Deviation

$$\sigma = \sqrt{3(.1)(.9)} = (.52)$$
 employees

Poisson Distribution:

The Poisson distribution and the binomial distribution have some **similarities** but also several **differences**.

The binomial distribution describes a distribution of **two possible outcomes** designated as successes and failures from a given number of trials.

The **Poisson distribution** focuses only on the number of **discrete occurrences** over some **interval** or continuum.

For example, whereas a binomial experiment might be used to determine *how many Indian-made cars are in a random sample of 20 cars*, a Poisson experiment might focus on the **number of cars randomly** arriving at an automobile **repair facility** during a 10-minute interval.

The Poisson distribution describes the occurrence of <u>rare events</u>. In fact, the Poisson formula has been referred to as the *law of improbable events*.

The Poisson Distribution Definitions

- You use the **Poisson distribution** when you are interested in the **number of times** an event occurs in a given **area of opportunity**.
- An **area of opportunity** is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur.
 - The number of scratches in a car's paint
 - The number of mosquito bites on a person
 - The number of computer crashes in a day

The Poisson Distribution

- Apply the Poisson Distribution when:
 - You wish to count the **number of times an event** occurs in a given area of **opportunity**
 - The probability that an event occurs in one area of opportunity is the **same** for all areas of opportunity
 - The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunity
 - The probability that **two or more events** occur in an area of opportunity **approaches zero as** the area of opportunity becomes smaller
 - The average number of events per unit is λ (lambda)

Poisson Distribution:

Is used to describe a number of processes, including the distribution of calls going **through a switchboard** system, the demand (needs) of patients for service at a **health institution**, arrival of **trucks and cars at** a toll booth, and the number of **accidents at an intersection**.

A Poisson distributed random variable is often useful in estimating the number of occurrences over a <u>specified interval of time or space</u>

It is a discrete random variable that may assume an <u>infinite sequence of values</u> (x = 0, 1, 2, ...

Poisson Distribution

Examples of a Poisson distributed random variable:

the number of knotholes in 14 linear feet of pine board

the number of vehicles arriving at a toll booth in **one hour**

Poisson Distribution

Characteristics of Poisson Prob Dis.

1. The mean no. of vehicles that arrive per rush hour can be **estimated** from **past** traffic data.

2. If we divide rush hour into periods (intervals) of one second each, we will find these statements to be true:

a) The prob that exactly **one vehicle** will arrive at a single booth **per second** is very **small** number and is **constant** for every **one - second interval**.

b) The prob that **two or more vehicles** will arrive **per second** is so **small that we can assign it a zero value.**

c) The no. of arrivals in any one - second is not dependent on the no. of arrivals in any other one - second interval.

Poisson Distribution

Poisson Probability Function

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

where:

f(x) = probability of x occurrences in an interval μ = mean number of occurrences in an interval e = 2.71828

