Resumo Ciências 1

A Teoria Atômica de Dalton

ANA NUNES

"Você vai longe na vida na medida em que for afetuoso com os jovens, piedoso com os idosos, solidário com os perseverantes e tolerante com os fracos e com os fortes. Porque, em algum momento de sua vida, você terá sido todos eles."

— George W. Carver

Compiled 11 de agosto de 2020

Este material é uma das ferramentas desenvolvidas por mim, a fim de que o ensino remoto seja satisfatório e proveitoso. Leiam com atenção para a realização da atividade posteriormente. Um bom estudo a todos!

I. INTRODUÇÃO

A palavra **átomo** vem do grego e significa "indivisível". Com base em argumentos filosóficos alguns gregos propunham que todas as porções da matéria eram formadas por partículas muito pequenas e indivisíveis. Essas especulações foram puramente teóricas. Já Dalton baseou-se nos resultados de experimentos feitos por ele e por outros cientistas que o antecederam. Alguns pontos da teoria de Dalton são:

- Todas as substâncias são formadas por átomos.
- Os átomos de um mesmo elemento químico são iguais em suas características (por exemplo, tamanho e massa).
- Os átomos dos diferentes elementos químicos são diferentes entre si (por exemplo, possuem massas diferentes).
- As substâncias simples são formadas por átomos de um mesmo elemento químico.
- As substâncias compostas são formadas por átomos de dois ou mais elementos químicos diferentes, que se combinam sempre numa mesma proporção.

Os átomos não são criados nem destruídos.

• Nas reações químicas, os átomos se recombinam.

Fig. 1. Exemplo da relação entre átomos, substâncias simples e substâncias compostas

II. SÍMBOLOS E FÓRMULAS

II.I. Os símbolos Representam Elementos

São conhecidos atualmente mais de 100 elementos químicos. Cada um deles tem um **nome** e um **símbolo** diferente. Os símbolos dos elementos são formados por uma ou duas letras. A primeira é sempre maiúscula e a segunda, caso exista, é sempre minúscula. O símbolo de um elemento vem de uma ou duas letras tiradas de seu nome em latim ou grego. Por causa disso, nem todos os símbolos têm relação lógica com o nome do elemento em português.

Elemento	Símbolo	Elemento	Símbolo	Elemento	Símbolo	Elemento	Símbolo
		233 1270 2270 2270 2370 2370 2370 2370	31110010	Elemento	SHIDOIO	Figurento	SHIDOIO
Alumínio	Al	Crômio	Cr	Iodo	I	Ouro	Au
Bromo	Br	Enxofre	S	Magnésio	Mg	Oxigênio	0
Cálcio	Ca	Ferro	Fe	Manganês	Mn	Platina	Pt
Carbono	С	Flúor	F	Mercúrio	Hg	Potássio	K
Cloro	Cl	Fósforo	. P	Níquel	Ni	Prata	Ag
Cobre	Cu	Hidrogênio	Н	Nitrogênio	N	Sódio	Na

Fig. 2. tabela de símbolos de alguns elementos

II.II. Fórmulas Representam Substâncias

Todas as substâncias são formadas por átomos. As substâncias simples são formadas por átomos de um único elemento, e as substâncias compostas são formadas por átomos de dois ou mais elementos diferentes.

As **moléculas** são entidades formadas pela união de dois ou mais átomos. Para representar as moléculas de uma substância, seja ela simples ou composta, os químicos utilizam **fórmulas**. Alguns exemplos de fórmulas são: $H_2O(\text{água})$, $CO_2(\text{gás carbônico})$, $O_2(\text{gás oxigênio})$ etc.

Na fórmula que representa a molécula de uma substância são colocados os símbolos dos elementos que tomam parte de sua composição e números, os **índices de atomicidade**, que indicam quantos átomos de cada elemento estão presentes na molécula. Se o índice de atomicidade não for escrito, o seu valor é 1. Alguns exemplos são:

- H₂O: substância cujas moléculas são formadas por dois átomos de hidrogênio e um átomo de oxigênio;
- CO₂: substância cujas moléculas são formadas por um átomo de carbono e dois de oxigênio;
- O_2 : substância cujas moléculas são formadas por dois átomos de oxigênio.

Resumo Ciências 4

Fig. 3. esquema da diferença entre símbolo e fórmula

III. DISTINÇÃO ENTRE SUBSTÂNCIA SIMPLES E SUBSTÂNCIA COMPOSTA CON-SIDERANDO A COMPOSIÇÃO QUÍMICA

As substâncias simples são formadas por átomos de apenas um elemento e as substâncias compostas, por átomos de dois ou mais elementos.

Assim, as substâncias simples são consideradas substâncias elementares pois têm em sua constituição átomos de um único elemento químico.

REFERÊNCIAS

1. E. L. do Canto and L. C. Canto, Ciências Naturais (Moderna).