Zaman Serisileri Analizi - Temel Konular

Zaman Serileri Analizi

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

12 Mart 2021

Taslak

- Motivasyon
- Veri Çeşitleri ve Özellikleri
 - Yatay-Kesit Verisi
 - Zaman Serileri Verisi
 - Havuzlanmış Yatay-Kesit Verisi
 - Panel Veri
- Zaman Serileri Verisi
 - Zaman Serileri Verisinin Özellikleri
 - Stokastik Süreç
- Zaman Serisi Modelleri: Örnekler
 - Statik Modeller
 - FDL Modelleri

Motivasyon

Bu bölümde sırasıyla aşağıdaki konular incelenecektir.

- Veri çeşitlerinin gözden geçirilmesi
- Zaman serisi verilerinin özellikleri
- Yaygın olarak kullanılan zaman serileri modellerinden örnekler
- Zaman serilerinin kullanıldığı doğrusal regresyon modellerinde klasik varsayımlar (CDR.1-CDR.8) altında Sıradan En Küçük Kareler (SEKK) parametre tahmincilerinin sonlu örneklem özellikleri
- Zaman serisi modellerinde tahmin ve çıkarsama (hipotez testleri)
- Zaman serilerinde trent ve mevsimsellik (seasonality)

Veri Çeşitleri ve Özellikleri

- Zaman serileri verisinin özelliklerini detaylı olarak incelemeden önce diğer veri çeşitlerini hatırlamamız faydalı olacaktır.
- Ekonometrik analizlerde temel olarak kullanılan 4 çesit veri türü vardır.
 - Yatay-kesit verisi (Cross-sectional data)
 - Zaman Serileri verisi (Time series data)
 - Havuzlanmış yatay-kesit verisi (Pooled cross-section data)
 - Panel veri (Panel Data)

Yatay-Kesit Verisi

- Yatay-kesit verisi değişken(ler)e ait verilen zamanın belirli bir kesitinde farklı birimlerden olusan veri türüdür.
- Şekil 1'deki veri tablosu bireylerin özelliklerini gösteren yatay-kesit verisine bir örnektir.

TABLE 1.1	A Cross-Sectional	Data Set on Wa	ages and Other I	ndividual Chara	cteristics
obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
525	11.56	16	5	0	1
526	3.50	14	5	1	0

Şekil 1: Yatay-Kesit Verisi Örneği 1

Yatay-Kesit Verisi

• Şekil 2'deki veri tablosu ülkelerin ekonomik büyüme oranlarını ve ülke özelliklerini gösteren yatay-kesit verisine bir başka örnektir.

TABLE 1.2 A Data Set on Economic Growth Rates and Country Characteristics						
obsno	country	gpcrgdp	govcons60	second60		
1	Argentina	0.89	9	32		
2	Austria	3.32	16	50		
3	Belgium	2.56	13	69		
4	Bolivia	1.24	18	12		
61	Zimbabwe	2.30	17	6		

Şekil 2: Yatay-Kesit Verisi Örneği 2

6/23

Zaman Serileri Verisi

- Zaman Serileri verisi değişken(ler)e ait verilen aynı birimin farklı zamanlarından oluşan veri türüdür.
- Şekil 3'deki veri tablosu Porto Riko'daki minimum maaş, işsizlik ve benzer istatistikleri gösteren zaman serileri verisine bir örnektir.

TABLE 1.3	Minimum Wage, U	nemployment, ar	nd Related Data	for Puerto Rico	
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

Şekil 3: Zaman Serileri Verisi Örneği 1

Havuzlanmış Yatay-Kesit

- Havuzlanmış yatay-kesit verisi değişken(ler)e ait verilen farklı zamanlarındaki yatay-kesit verilerinin birleştirilmesiyle oluşan veri türüdür.
- Şekil 4'deki veri tablosu iki farklı yıldaki havuzlanmış (bir araya getirilmiş) ev fiyatlarını gösteren havuzlanmış yatay-kesit verisine bir örnektir.

TABLE 1.4 Pooled Cross Sections: Two Years of Housing Prices						
obsno	year	hprice	proptax	sqrft	bdrms	bthrms
1	1993	85,500	42	1600	3	2.0
2	1993	67,300	36	1440	3	2.5
3	1993	134,000	38	2000	4	2.5
250	1993	243,600	41	2600	4	3.0
251	1995	65,000	16	1250	2	1.0
252	1995	182,400	20	2200	4	2.0
253	1995	97,500	15	1540	3	2.0
520	1995	57,200	16	1100	2	1.5

Şekil 4: Havuzlanmış Yatay-Kesit Verisi Örneği

8/23

Panel Veri

- Panel veri değişken(ler)e ait verilen farklı birimlerin farklı zamanlarından oluşan veri türüdür.
- Şekil 5'deki veri tablosu iki farklı yıldaki suç istatistiklerini gösteren panel veriye bir örnektir.

TABLE 1.5	A Two-Year Pa	nel Data Set	on City Crime	Statistics		
obsno	city	year	murders	population	unem	police
1	1	1986	5	350,000	8.7	440
2	1	1990	8	359,200	7.2	471
3	2	1986	2	64,300	5.4	75
4	2	1990	1	65,100	5.5	75
297	149	1986	10	260,700	9.6	286
298	149	1990	6	245,000	9.8	334
299	150	1986	25	543,000	4.3	520
300	150	1990	32	546,200	5.2	493

Şekil 5: Panel Veri Örneği

Zaman Serileri Verisinin Özellikleri

- Zaman serilerinde veriler, yatay-kesit verisinden farklı olarak belli bir zaman sıralaması izlemektedir.
- Şekil 6'deki veri tablosu ABD'deki enflasyon ve işsizlik oranlarını gösteren zaman serileri verisine bir başka örnektir.

TABLE 10.1 Partial Listing of D	ata on U.S. Inflation and Unen	ployment Rates, 1948–2003
Year	Inflation	Unemployment
1948	8.1	3.8
1949	-1.2	5.9
1950	1.3	5.3
1951	7.9	3.3
1998	1.6	4.5
1999	2.2	4.2
2000	3.4	4.0
2001	2.8	4.7
2002	1.6	5.8
2003	2.3	6.0

Şekil 6: Zaman Serileri Verisi Örneği 2

Zaman Serileri Verisinin Özellikleri

- Zaman serileri analizinde geçmiş değerler gelecekteki değerleri etkilemektedir fakat bunun tersi geçerli değildir.
 - Yani Şekil 7'deki zaman serileri verisinde 2000 yılındaki enflasyon verisi ilerleyen yıllardaki enflasyon verilerini etkilerken geçmiş yıllardaki enflasyon verilerini etkileyemez.

TABLE 10.1 Partial Listing of D	ata on U.S. Inflation and Unen	nployment Rates, 1948–2003
Year	Inflation	Unemployment
1948	8.1	3.8
1949	-1.2	5.9
1950	1.3	5.3
1951	7.9	3.3
1998	1.6	4.5
1999	2.2	4.2
2000	3.4	4.0
2001	2.8	4.7
2002	1.6	5.8
2003	2.3	6.0

Şekil 7: Zaman Serileri Verisi Örneği 2 (Tekrar)

Zaman Serileri Verisinin Özellikleri

- Yatay-kesit verisinde örneklem ilgili anakütleden rassal örnekleme yoluyla elde ediliyordu.
- Farklı örneklemler farklı gerçekleşmeler üreteceğinden, bu örneklemler yardımıyla ulaşılan SEKK parametre tahmin değerleri de farklılık sergileyebiliyordu.
- Bu yüzden SEKK parametre tahmincilerini rassal değişken olarak değerlendirebiliyorduk.
- Peki zaman serilerindeki rassallığı nasıl yorumlamamız gerekir?
- Zaman serisi değişkenlerinin (enflasyon, işsizlik, gayri safi yurtiçi hasıla, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz.

Stokastik Süreç

Stokastik Sürec / Zaman Serisi Süreci

Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye/seriye **stokastik** süreç (stochastic process) ya da zaman serisi süreci (time series process) denir.

- Stokastik sözcüğü rassal ile aynı anlamda kullanılmaktadır.
- Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir.
- Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerşekleşmenin sonuçlarıdır.
- Unutulmamalıdır ki ilgilendiğimiz zaman serisi farkli tarihsel koşullar altında farklı olacaktır.
- Bu nedenle, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, zaman serisi analizinde, yatay-kesit verisindeki anakütlenin rolünü üstlenecektir.

Zaman Serisi Modelleri: Örnekler

 Bu bölümde zaman serileri analizi uygulamalarında yararlı olan ve SEKK Yöntemi ile kolayca tahmin edilebilen iki farklı zaman serisi modelini inceleyeceğiz.

- Statik Modeller
- Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models) FDL Modelleri

Statik Model

Statik Model

y ve z eşanlı (contemporaneously) zaman endeksi taşıyan iki zaman serisi olsun. y'yi z ile ilişkilendiren statik bir model aşağıdaki gibi yazılabilir.

$$y_t = \beta_0 + \beta_1 z_t + u_t, \quad t = 1, 2, \dots, n$$

• Statik model, değişkenlerin birinci farkları arasında da formüle edilebilir.

$$\Delta y_t = \beta_1 \Delta z_t + u_t, \quad t = 1, 2, \dots, n$$

- Buradaki statik kelimesi *y* ve *z* arasında eşanlı (yani aynı zamanlı) bir ilişki modellediğimizden dolayı kullanılmaktadır.
- Statik modeller genellikle z'de t zamanında oluşan bir değişikliğin y üzerindeki etkisi hemen (yani t zamanında) gözleniyorsa kullanılır.

$$\Delta y_t = \beta_1 \Delta z_t$$
, $\Delta u_t = 0$ iken

Statik Phillips Eğrisi Modeli (Basit Doğrusal Regresyon)

Statik Phillips eğrisini statik zaman serisi modeline bir örnek olarak kullanabiliriz.

Statik Phillips Eğrisi Modeli

$$inf_t = \beta_0 + \beta_1 unem_t + u_t$$

in f: enflasyon oranı; unem: işsizlik oranı

- Bu formadaki bir Phillips Eğrisi modeli doğal işsizlik oranı (natural rate of unemployment) ve **beklenen enflasyonun** (expected inflation) sabit olduğunu varsayar.
- Bu model aracılığıyla $in f_t$ ve $unem_t$ değişkenleri arasındaki **eşanlı ödünümü** (contemporaneous tradeoff) inceleyebiliriz.

Statik Cinavet Modeli (Coklu Doğrusal Regresyon)

- Statik bir regresyon modelinde çok sayıda bağımsız değişken bulunabilir.
- Aşağıdaki model yıllara göre bir şehirdeki cinayet oranını etkileyen faktörleri statik olarak açıklamaya çalışıyor.

Statik Cinayet Modeli

$$mrdrte_t = \beta_0 + \beta_1 convrte_t + \beta_2 unem_t + \beta_3 yngmle_t + u_t$$

mrdrte: şehirdeki 10000 kişi başına cinayet oranı; convrte: cinayetten hüküm giyme oranı; *unem*: işsizlik oranı; *ynqmle*: 18-25 yaşları arasındaki erkeklerin oranı

• Yukarıdaki statik modeli kullanarak cinayetten hüküm giyme oranı *convrte*'nın cinayet oranı mrdrte üzerindeki ceteris paribus (yalın) etkisini tahmin edebiliriz.

Sonlu Dağıtılmış Gecikme Modeli (FDL Modeli)

1. Dereceden FDL Modeli

 y_t 'yi z_t ve z_t 'nin birinci gecikmesi (z_{t-1}) ile ilişkilendiren 1. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + u_t, \quad t = 1, 2, \dots, n$$

2. Dereceden FDL Modeli

 y_t 'yi z_t ve z_t 'nin birinci ve ikinci gecikmeleri (z_{t-1} ve z_{t-2}) ile ilişkilendiren 2. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• FDL modellerinde, bağımlı değişken y_t 'yi eşanlı ve gecikmeli olarak etkilyen bir çok farklı bağımsız değişken olabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + u_t$$

Vergi Muafiyetinin Doğurganlığa Etkisi

2. Dereceden FDL Modeli: Vergi Muafiyeti

$$gfr_t = \alpha_0 + \delta_0 p e_t + \delta_1 p e_{t-1} + \delta_2 p e_{t-2} + u_t$$

qfr: doğurganlık oranı (doğurganlık yaşındaki 1000 kadına düşen bebek sayısı); *pe*: çocuk sahibi olmayı özendirmek içiçn getirilen vergi muafiyeti

 Vergi muafiyetinin doğurganlığa etkisini ele alan yukarıdaki model 2. sıradan FDL modeline örnektir.

Etki Carpanı

2. Dereceden FDL Modeli

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• Yukarıda verilen 2. dereceden FDL modelindeki parametreleri yorumlayabilmek için, varsayalım ki t zamanından önceki tüm dönemlerde z sabit ve c'ye eşit. Fakat t zamanında bir birim artarak c + 1 oluyor ve t + 1 zamanında tekrar eski değerine dönüyor. Yani z'de geçici bir artış var.

$$\ldots$$
, $z_{t-2} = c$, $z_{t-1} = c$, $z_t = c + 1$, $z_{t+1} = c$, $z_{t+2} = c$, \ldots

Bu değişimin y'de yaratacağı ceteris paribus (yalın) etkiye, etki çarpanı ya da etki çoğaltanı (impact multiplier) denir

Etki Çarpanın Hesaplanması

2. Dereceden FDL Modeli

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• 2. dereceden FDL modelinde etki çarpanının hesaplanması.

 $y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

 $y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

• z'nin y üzerindeki ceteris paribus (yalın) etkisine odaklanabilmek için her zaman periodunda hata terimi u_t 'nin sıfır olduğunu varsayalım.

21/23

$$y_t = \alpha_0 + \delta_0(c+1) + \delta_1 c + \delta_2 c \qquad (zaman: t)$$

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1(c+1) + \delta_2 c \qquad (zaman: t+1)$$

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2(c+1) \qquad (zaman: t+2)$$

(zaman: t-1)

(zaman: t + 3)

Etki Çarpanın Hesaplanması

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$
 (zaman: $t - 1$)

$$y_t = \alpha_0 + \delta_0 (c + 1) + \delta_1 c + \delta_2 c$$
 (zaman: t)

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1 (c + 1) + \delta_2 c$$
 (zaman: $t + 1$)

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 (c + 1)$$
 (zaman: $t + 2$)

$$y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$
 (zaman: $t + 3$)

- İlk iki denklemden $y_t y_{t-1} = \delta_0$ olduğu rahatlıkla görülebilir.
- δ_0 , t döneminde (cari) z'deki bir birim artışın y üzerindeki ani etkisini gösterir.
- δ_0 , etki çarpanı olarak adlandırılır.
- Benzer şekilde y'deki değişime, geçici değişmenin olduğu t döneminden bir dönem sonra $y_{t+1} - y_{t-1} = \delta_1$ 'e, iki dönem sonra ise $y_{t+2} - y_{t-1} = \delta_2$ 'ye eşit olacaktır.
- t + 3 döneminde y eski değerine geri dönecektir. Yani, $y_{t+3} = y_{t-1}$
- Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran 2. dereceden FDL modeli olmasıdır.

23 / 23

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Güriş, S. (2005). Ekonometri: Temel Kavramlar. Der Yayınevi.

Stock, J.H. ve M.W. Watson (2015). Introduction to Econometrics.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.