Formule e Teoremi utili

Probabilità

Distribuzione della trasformata

Sia $f_X(x)$ e y = g(x).

- Se g crescente: $F_Y(y) = F_X(g^{-1}(y))$
- Se g decrescente: $F_Y(y) = 1 F_X(g^{-1}(y))$
- Se g^{-1} derivabile: $f_Y(y) = f_X(g^{-1}(y))|\dot{g}^{-1}(y)|$

Varianza

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Marginali, Congiunte e Condizionate

$$f_{x,y} = f_{x|y} f_y$$
$$f_x = \int f_{x,y} dy$$

Media e Varianza Condizionati

$$\begin{split} \mathbb{E}[X] &= \mathbb{E}[\mathbb{E}[X|Y]] \\ Var[X] &= \mathbb{E}[Var[X|Y]] + Var[\mathbb{E}[X|Y]] \end{split}$$

Legge Forte Grandi Numeri

Sia
$$X_1, \ldots, X_n$$
 iid con μ, σ^2 , allora: $\bar{X}_n \stackrel{q.c.}{\to} \mu$

Teorema centrale del limite

Sia
$$X_1, \ldots, X_n$$
 iid con μ, σ^2 , allora: $\sqrt{n}(\bar{X}_n - \mu) \stackrel{L}{\longrightarrow} N(0, \sigma^2)$

Metodo delta

Sia $X_1, ..., X_n$ iid con μ, σ^2 , tali che: $\sqrt{n}(\bar{X}_n - \mu) \stackrel{L}{\to} N(0, \sigma^2)$ Prendiamo una funzione g(x):

- Se $g'(x) \neq 0$: $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \xrightarrow{L} N(0, \sigma^2 g'(\mu)^2)$
- Se Se g'(x) = 0: $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \xrightarrow{L} \frac{\sigma^2}{2} g''(\mu) \chi^2(1)$

Statistiche sufficienti

Definizione

Una statistica T è sufficiente per θ se: $f(\vec{x}|T=t) \perp \!\!\! \perp \!\!\! \mid \theta \quad \forall t$

Teorema di Fattorizzazione

Data la congiunta $f(\vec{x}, \theta), T(x)$ è suff se: $f(\vec{x}, \theta) = h(\vec{x})g(T(x), \theta)$ Questo vale anche per trasformazioni **biunivoche** di T

Famiglia Esponenziale

Se ho una distribuzione della FE: $f(\vec{x}, \theta) = h(\vec{x})c(\theta) \exp\left\{\sum_{i=1}^k w_i(\theta)t_i(x)\right\}$ Allora $T = (\sum_j t_1(X_j), \dots, \sum_j t_k(X_j))$ è sufficiente

Statistiche sufficienti e minimali

Definizione

Una statistica sufficiente T viene detta minimale se tutte le altre statistiche sufficienti sono funzioni di essa.

Lehmann-Scheffè sulla minimalità

Sia
$$f(\vec{x},\theta)$$
 e T stat suff. T è minimale se:
$$\frac{f(\vec{x},\theta)}{f(\vec{y},\theta)} = K \text{ con } K \text{ costante } \Longleftrightarrow T(x) = T(y)$$

Statistiche complete

Definizione

Sia T(x) una statistica e $f(t,\theta)$ la sua legge. Diciamo T(x) completa se:

$$\mathbb{E}_{\theta}[g(T)] = 0 \,\forall \theta \implies \mathbb{P}(g(T) = 0) = 1$$

Di solito usiamo la derivata rispetto a θ :

$$\frac{d}{d\theta}\mathbb{E}_{\theta}[g(T)] = 0 = h'(\theta)\underline{\mathbb{E}_{\theta}[g(T)]} + h(\theta)[g(t)f_T(t)]$$

Avremo: