Уравнения матфизики

Конспект специальности «прикладная математика»

(лектор Козловская И.С.)

Оглавление

	Hpe	дисловие				
1	Кла	ссификация дифференциальных уравнений с частными производны-				
	МИ					
	1.1	Общие понятия о дифференциальных уравнениях с частными производными				
	1.2	Классификация дифференциальных уравнений 2-го порядка с двумя неза-				
	1.0	висимыми переменными				
	1.3	Дифференциальные уравнения с частными производными 1-го порядка				
	1.4	Квазилинейное дифференциальное уравнения 1-го порядка				
	1.5	Системы дифференциальных уравнений с частными производными				
	1.6	Замена независимых переменных в уравнении 2-го порядка с 2 независимы-				
		ми переменными				
	1.7	Приведение к каноническому виду ДУ 2-го порядка с двумя независимыми				
		переменными				
	1.8	Классификация ДУ 2-го порядка с п независимыми переменными				
	1.9	Приведение к каноническому виду ДУ 2-го порядка с п независимыми пе-				
	4.40	ременными				
	1.10	Исключение младших производных в уравнениях 2-го порядка с постоянны-				
		ми коэффициентами				
	1.11	Нахождение общих решений простейших ДУ с частными производными				
2	Зад	Задача Коши				
	2.1	Корректная постановка задачи Коши				
	2.2	Метод характеристик решения задачи Коши для волнового уравнения				
	2.3	Корректность задачи Коши для волнового уравнения				
	2.4	Пример Адамара некорректно поставленной задачи				
	2.5	Физическая и геометрическая интерпретация формулы Д'Аламбера				
	2.6	Метод Дюамеля для решения задачи Коши для неоднородного волнового				
		уравнения				
	2.7	Решение задачи Коши для волнового уравнения				
	2.8	Метод Римана для решения обобщённой задачи Коши				
	2.9	Решение задачи Коши на полуограниченной прямой. Метод продолжений				
	2.10	Задача Коши для волнового уравнения в пространстве				
	2.11	Метод усреднения				
	2.12	Метод спуска				
	2.13	Корректная постановка задачи Коши для уравнения теплопроводности				
	2.14	Метод интегральных преобразований для решения задачи Коши для урав-				
		нения теплопроводности				
	2.15	Принцип максимума и минимума для уравнения теплопроводности				
	2.16	Корректность задачи Коши для уравнения теплопроводности				
	2.17	Метод последовательных приближений для решения задачи Гурса				

3	CME	ешанные задачи для уравнении гипероолического и параоолического	O
	тип	ОВ	61
	3.1	Смешанные задачи для уравнений гиперболического типа	61
	3.2	Постановка смешанных задач для уравнения теплопроводности	
	3.3	Задача Штурма-Лиувилля	
	3.4	Свойства собственных значений и собственных функций задачи Штурма-	
	5.4	Лиувилля	67
	2.5	v	
	3.5	Общая схема метода разделения переменных	. 70
	3.6	Решение методом разделения переменных первой смешанной задачи для	
		волнового уравнения	72
	3.7	Сведение смешанных задач с неоднородными граничными условиями к за-	
		дачам с однородными граничными условиями	. 75
	3.8	Решение методом разделения переменных смешанных задач для неоднород-	
		ного уравнения	. 78
	3.9	Решение методом разделения переменных первой смешанной задачи для	
		уравнения теплопроводности	. 81
	3 10	Корректность первой смешанной задачи для уравнения теплопроводности .	
		Решение первой смешанной задачи для уравнения теплопроводности в пла-	. 00
	0.11	стине	. 87
	2 10		
		Решение смешанной задачи для волнового уравнения в четверти плоскости .	. 90
	3.13	Метод разделения переменных для решения смешанной задачи с неоднород-	
		ными граничными условиями для уравнения теплопроводности	93
	3.14	Метод разделения переменных для решения смешанной задачи для уравне-	
		ния теплопроводности в случае неоднородного уравнения	97
	3.15	Задача о распространении тепла в шаре	. 98
4		евые задачи для уравнения эллиптического типа	100
	4.1	Формулы Грина	
	4.2	Интегральные формулы Грина	102
	4.3	Свойства гармонических функций	103
	4.4	Принцип максимума и минимума для гармонических функций	105
	4.5	Постановка краевых задач для уравнения эллиптического типа. Внутренняя	
		задача Дирихле	107
	4.6	Постановка краевых задач для уравнения эллиптического типа. Внешняя	
	1.0	задача Дирихле	108
	4.7	Постановка краевых задач для уравнения эллиптического типа. Задача Ней-	100
	4.1		110
	4.0	мана	
	4.8	Решение задачи Дирихле для круга методом разделения переменных	
	4.9	Решение задачи о распространении тепла в однородном шаре	
		Решение задач Дирихле и Неймана с помощью функций Грина	
		Построение функции Грина для полупространства	
	4.12	Построение функции Грина для шаровой области	122
	4.13	Теория потенциалов	123
	4.14	Потенциалы простого и двойного слоя	124
		Сведение задачи Дирихле для уравнения Лапласа к интегральному уравне-	
		нию с помощью поверхностных потенциалов	126
	4 16	Сведение задачи Неймана для уравнения Лапласа к интегральному уравне-	
	1.10	нию с помощью теории потенциалов	199
		nano e nomonipio reopara norenitativos	. 140

5	Mo,	делирование физических процессов	130
	5.1	Вывод уравнения колебания струны	130
	5.2	Вывод уравнения теплопроводности	132
	5.3	Уравнения гидродинамики. Уравнение движения жидкости	134
	5.4	Уравнения гидродинамики. Уравнения неразрывности и сохранения жидко-	
		СТИ	137
	5.5	Уравнения электродинамики	139
6	Спе	ециальные функции математической физики	144
	6.1	Цилиндрические функции Бесселя	144
	6.2	Сферические функции. Функции Лежандра. Присоединённые функции Ле-	
		жандра	147
		TZ	1.40
	6.3	Краевые задачи для уравнения Бесселя	148

Предисловие

В конспекте рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.

В первой главе изучаются основные классификации уравнений с частными производными, а также рассматриваются некоторые подходы для решения подобных уравнений. Во второй главе рассматривается постановка и корректность задачи Коши для уравнений гиперболического и параболического типов на примере уравнений колебания струны и теплопроводности, а также подходы разрешимости этих уравнений. В третьей главе рассматривается смешанная задача для уравнений гиперболического, параболического и эллиптического типов.

В основу конспекта положены лекции, написанные по двухсеместровому курсу уравнений математической физики, который был прочитан на потоке прикладной математики в 2022-2023 годах Козловской Инессой Станиславовной. Он был дополнен тремя параграфами прочитанными на потоке прикладной математики в 2023-2024 годах Козловской Инессой Станиславовной и главой по специальным функциям математической физики. Также, независимыми источником информации выступали книга А.Н.Тихонов, А.А.Самарский "Уравнения математической физики"и электронный учебно-методический комплекс И.С. Козловская "Уравнения математической физики".

Отдельная благодарность выражается потоку прикладной информатики за пример структуризации конспекта.

Выражается благодарность авторам, редакторам и графическим дизайнерам конспекта:

Автор, редактор и графический дизайнер – Каркоцкий Александр Геннадьевич (karkotskiy.alexander@yandex.by).

Редактор – Тышко Юлия Юрьевна.

Редактор – Шевцов Евгений Олегович.

Редактор – Осипчик Анна Андреевна.

Редактор – Толстой Ян Николаевич.

Редактор – Сергеев Аким Викторович.

В случае обнаружения ошибок или описок, а также появления каких-либо дополнений к изложенному материалу, просьба обращаться по приложенным выше контактам.

Глава 1

Классификация дифференциальных уравнений с частными производными

Дифференциальные уравнения с частными производными обобщают обыкновенные дифференциальные уравнения на случай функций многих переменных.

Различают три основных типа дифференциальных уравнений с частными производными:

- 1. Уравнение гиперболического типа. К уравнениям гиперболического типа относится волновое.
- 2. Уравнение параболического типа. К уравнениям параболического типа относится уравнение теплопроводности.
- 3. Уравнение эллиптического типа. К уравнениям эллиптического типа относится уравнение Лапласа.

1.1 Общие понятия о дифференциальных уравнениях с частными производными

Рассмотрим Евклидово пространство \mathbb{R}^n и точку $x \in \mathbb{R}^n, x = (x_1, x_2, \dots, x_n)$. Выделим область $\Omega \subset \mathbb{R}^n$ и определим функцию $u(x) = u(x_1, x_2, \dots, x_n)$ в области Ω .

Определение 1.1.1. *Частной производной* по переменной x_i функции u в фиксированной точке $x \in \Omega$ называется предел

$$\frac{\partial u}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{u(x_1, x_2, \dots, x_i + \Delta x_i, \dots, x_n) - u(x_1, x_2, \dots, x_i, \dots, x_n)}{\Delta x_i}$$

Если предел существует в каждой точке области Ω , то функция u(x) называется $\partial u \phi$ -ференцируемой по переменной x_i во всей области Ω , а функция $\frac{\partial u}{\partial x_i}$ определена во всей области Ω (обозначение: $\frac{\partial u}{\partial x_i} = u_{x_i}$). Производные более высоких порядков определяются по индукции:

$$\frac{\partial^2 u(x)}{\partial x_i \partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_i} \right) = \frac{\partial g(x)}{\partial x_i},$$
где $g(x) = \frac{\partial u(x)}{\partial x_i}$

Определение 1.1.2. Множество $C^m(\Omega)$ называется пространством m раз непрерывно $\partial u \phi \phi e p e h u u p y e m ы x \phi y h k u u u$ в области Ω . Функция $u(x) \in C^m(\Omega)$, если все частные производные $\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}, \frac{\partial^2 u}{\partial x_i \partial x_j}, \dots, \frac{\partial^m u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}, \sum_{i=1}^n \alpha_i = m$ до порядка m включительно определены и непрерывны в области Ω .

Рассмотрим функцию $F(x_1,x_2,\ldots,x_n,z_1,z_2,\ldots,z_N)\in C(\mathbb{R}^{n+N})$. Пусть F имеет непрерывные производные ∂z_i , т.е. $\frac{\partial F}{\partial z_i},\frac{\partial F}{\partial z_i}\in C(\mathbb{R}^{n+N})$ и $\frac{\partial F}{\partial z_N}\neq 0,\,i=\overline{1,N-1}$.

Определение 1.1.3. Уравнение

$$F\left(x, u, \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n}, \frac{\partial^2 u}{\partial x_1^2}, \dots, \frac{\partial^m u}{\partial x_n^m}\right) = 0$$

называется дифференциальным уравнением с частными производными.

Порядком уравнения называется порядок старшей производной, входящей в дифференциальное уравнение. Если ввести дифференциальный оператор $Lu = F(x, u, \dots, \frac{\partial^m u}{\partial x_n^m}), L : C^m(\Omega) \to C(\Omega)$, то дифференциальное уравнение с частными производными можно записать в виде Lu = f(x).

Дифференциальное уравнение называется линейным, если выполняется:

$$L(\alpha u) = \alpha Lu; \alpha = const, u \in C^m(\Omega)$$

$$L(u_1 + u_2) = Lu_1 + Lu_2; u_1, u_2 \in C^m(\Omega)$$

Введём мультииндекс $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), |\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n.$

Линейное дифференциальное уравнение порядка m можно записать в виде:

$$\sum_{0 \le \alpha_1 + \alpha_2 + \dots + \alpha_n \le m} a_{\alpha(\alpha_1, \alpha_2, \dots, \alpha_n)}(x) \frac{\partial^{\alpha_1 + \alpha_2 + \dots + \alpha_n} u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}} = f(x)$$
(1.1.1)

Введём дифференциальные операторы

$$D_i = \frac{\partial}{\partial x_i}, D_i^{\alpha_i} = \frac{\partial^{\alpha_i}}{\partial x_i^{\alpha_i}}, D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2} \dots D_n^{\alpha_n}$$

Тогда уравнение (1.1.1) можно записать в виде

$$\sum_{0 \le |\alpha| \le m} a_{\alpha}(x) D^{\alpha} u = f(x) \tag{1.1.2}$$

Определение 1.1.4. Часть уравнения, содержащая только старшие производные называется *главной частью* уравнения. Тогда главной частью уравнения (1.1.2) является

$$L_0 u = \sum_{|\alpha| = m} a_{\alpha}(x) D^{\alpha} u$$

Линейное дифференциальное уравнение 2-го порядка с n независимыми переменными имеет вид:

$$\sum_{i=1}^{n} \sum_{i=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u = f(x)$$

Линейное дифференциальное уравнение 2-го порядка с двумя независимыми переменными можно записать как:

$$a_{11}(x,y)\frac{\partial^2 u}{\partial x^2} + 2a_{12}(x,y)\frac{\partial^2 u}{\partial x \partial y} + a_{22}(x,y)\frac{\partial^2 u}{\partial y^2} + a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y)u = f(x,y) \quad (1.1.3)$$

Главная часть уравнения (1.1.3) имеет вид:

$$L_0 u = a_{11} \frac{\partial^2 u}{\partial x^2} + 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2}$$

Поставим в соответствие:

$$\frac{\partial}{\partial x} \to \xi_1$$

$$\frac{\partial}{\partial u} \to \xi_2$$

Тогда получим уравнение вида

$$P(x,\xi) = a_{11}\xi_1^2 + 2a_{12}\xi_1\xi_2 + a_{22}\xi_2^2$$

где
$$x = (x, y), \xi = (\xi_1, \xi_2).$$

Данное уравнение называется характеристическим уравнением (1.1.3), является квадратичной формой и служит для классификации ДУ с ЧП.

1.2 Классификация дифференциальных уравнений 2-го порядка с двумя независимыми переменными

Рассмотрим дифференциальное уравнение 2-го порядка с 2-мя независимыми переменными:

$$a_{11}(x,y)\frac{\partial^2 u}{\partial x^2} + 2a_{12}(x,y)\frac{\partial^2 u}{\partial x \partial y} + a_{22}(x,y)\frac{\partial^2 u}{\partial y^2} + a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y)u = f(x,y) \quad (1.2.1)$$

Введём функцию $D = a_{12}^2 - a_{11}a_{22}$. Проведём классификацию:

- 1. Уравнение (1.2.1) называется уравнением *гиперболического типа* в точке (x,y), если D>0 в этой точке.
- 2. Уравнение (1.2.1) называется уравнением *параболического типа* в точке (x,y), если D=0 в этой точке.
- 3. Уравнение (1.2.1) называется уравнением эллиптического типа в точке (x,y), если D<0 в этой точке.

Если D сохраняет знак во всей области Ω , то исходное уравнение называется соответственно уравнением гиперболического, параболического или эллиптического типа во всей области Ω .

Если область Ω разбивается на несколько областей:

$$\Omega = \Omega_1 \cup \overline{\Omega_0} \cup \Omega_2$$
, где

 Ω_1 -область, в которой уравнение (1.2.1) является уравнением гиперболического типа.

 Ω_0 -область, в которой уравнение (1.2.1) является уравнением параболического типа.

 Ω_2 -область, в которой уравнение (1.2.1) является уравнением эллиптического типа.

В таких случаях исходное уравнение называется уравнением смешанного типа.

Примеры:

1. Уравнение гиперболического типа Волновое, в частности, уравнение колебания струны:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2},$$

где u – смещение колебания струны в момент времени t.

2. Уравнение параболического типа

Уравнение теплопроводности:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2},$$

где u — температура.

Уравнение описывает изменение температуры в тонком стержне.

3. Уравнение эллиптического типа

Уравнение Лапласа:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

1.3 Дифференциальные уравнения с частными производными 1-го порядка

В общем виде дифференциальное уравнение 1-го порядка можно записать в виде

$$F(x, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}) = 0$$

Рассмотрим линейное однородное ДУ 1-го порядка с n независимыми переменными:

$$\sum_{i=1}^{n} a^{(i)}(x) \frac{\partial u}{\partial x_i} = 0 \tag{1.3.1}$$

и попытаемся найти его общее решение.

В соответствии с (1.3.1) запишем систему ОДУ:

$$\frac{dx_1}{a^{(1)}} = \frac{dx_2}{a^{(2)}} = \dots = \frac{dx_n}{a^{(n)}}$$
 (1.3.2)

Полагаем, что коэффициенты уравнения (1.3.1) $a^{(i)}(x)$ определены и непрерывны в некоторой точке $\Omega(x^{(0)})$ и одновременно не обращаются в 0 в этой точке, т.е.

$$(a^{(1)}(x^{(0)}))^2 + (a^{(2)}(x^{(0)}))^2 + \dots + (a^{(n)}(x^{(0)}))^2 \neq 0$$

Полагаем, что $a^{(n)}(x^{(0)}) \neq 0$ Тогда систему (1.3.2) можно переписать в виде (n-1) ОДУ:

$$\frac{dx_1}{dx_n} = \frac{a^{(1)}}{a^{(n)}}, \quad \frac{dx_2}{dx_n} = \frac{a^{(2)}}{a^{(n)}}, \dots, \frac{dx_{n-1}}{dx_n} = \frac{a^{(n-1)}}{a^{(n)}}$$
(1.3.3)

Данная система имеет (n-1) независимых интеграла $\psi_1, \psi_2, \dots, \psi_{n-1}$ — определённых в $\widetilde{\Omega}(x^{(0)}) \subset \Omega(x^{(0)})$.

Теорема 1.3.1. Всякий интеграл системы (1.3.3) является решением уравнения (1.3.1).

Доказательство:

Пусть $\psi(x)$ – интеграл системы (1.3.3), тогда $d\psi \equiv 0$.

Это значит, что

$$d\psi = \frac{\partial \psi}{\partial x_1} dx_1 + \frac{\partial \psi}{\partial x_2} dx_2 + \dots + \frac{\partial \psi}{\partial x_n} dx_n$$

Из системы (1.3.3) следует, что

$$dx_1 = \frac{a^{(1)}}{a^{(n)}} dx_n, dx_2 = \frac{a^{(2)}}{a^{(n)}} dx_n, \dots, dx_{n-1} = \frac{a^{(n-1)}}{a^n} dx_n$$

Подставляем в наше последнее выражение и имеем:

$$d\psi = \frac{\partial \psi}{\partial x_1} \frac{a^{(1)}}{a^{(n)}} dx_n + \frac{\partial \psi}{\partial x_2} \frac{a^{(2)}}{a^{(n)}} dx_n + \dots + \frac{\partial \psi}{\partial x_{n-1}} \frac{a^{(n-1)}}{a^{(n)}} dx_n + \frac{\partial \psi}{\partial x_n} dx_n =$$

$$= \left(\sum_{i=1}^n a^{(i)} \frac{\partial \psi}{\partial x_i}\right) \frac{dx_n}{a^{(n)}} \equiv 0$$

Отсюда имеем, что

$$\sum_{i=1}^{n} a^{(i)} \frac{\partial \psi}{\partial x_i} = 0$$

И следовательно ψ является решением уравнения (1.3.1).

Введём обратную теорему.

Теорема 1.3.2. Если функция $\psi(x)$ является решением (1.3.1), то $\psi(x)$ является первым интегралом системы (1.3.3).

Доказательство:

Аналогично теореме 1.3.1.

Теорема 1.3.3. Если $\psi_1, \psi_2, \dots, \psi_{n-1}$ являются независимыми первыми интегралами системы (1.3.3), то функция $F(\psi_1, \psi_2, \dots, \psi_{n-1})$ – определённая и имеющая непрерывные производные $\frac{\partial F}{\partial \psi_i}$ в области $\Omega(x^{(0)})$ является решением (1.3.1).

Доказательство:

Рассмотрим

$$\sum_{i=1}^{n} a^{(i)} \frac{\partial F}{\partial x_i} = \sum_{i=1}^{n} a^{(i)} \sum_{j=1}^{n-1} \frac{\partial F}{\partial \psi_j} \frac{\partial \psi_j}{\partial x_i} = \sum_{j=1}^{n-1} \frac{\partial F}{\partial \psi_j} \sum_{i=1}^{n} a^{(i)} \frac{\partial \psi_j}{\partial x_i} = 0$$

Следовательно $F(\psi_1, \psi_2, \dots, \psi_{n-1})$ – является решением (1.3.1) и называется общим решением уравнения.

Таким образом, чтобы построить общее решение линейного уравнения 1-го порядка, необходимо:

- 1. С помощью дифференциалов независимых переменных и коэффициентов уравнения (1.3.1) записать систему (1.3.3).
- 2. Найти первые интегралы системы (1.3.3).
- 3. Выбрать произвольную, достаточно гладкую функцию от этих интегралов, которая и будет решением уравнения (1.3.1).

1.4 Квазилинейное дифференциальное уравнения 1-го порядка

На экзамене будут спрашивать 3 теоремы из предыдущего параграфа, а именно теоремы 1.3.1, 1.3.2, 1.3.3(прим. редактора).

Рассмотрим квазилинейное дифференциальное уравнение 1-го порядка:

$$\sum_{i=1}^{n} a^{(i)}(x, u) \frac{\partial u}{\partial x_i} = f(x, u)$$
(1.4.1)

Полагаем, что, аналогично предыдущему параграфу, коэффициенты уравнения (1.4.1) $a^{(i)}(x)$ определены и непрерывны в некоторой точке $\Omega(x^{(0)})$ и одновременно не обращаются в 0 в этой точке.

Решение уравнения (1.4.1) будем искать в виде неявной функции:

$$V(x_1, x_2, ..., x_n, u) = 0 (1.4.2)$$

Существование $\frac{\partial V}{\partial u}$ влечёт разрешимость относительно u.

Вычислим всевозможные производные от V по x_i , рассматривая их как

$$\frac{\partial V}{\partial x_i} + \frac{\partial V}{\partial u} \frac{\partial u}{\partial x_i} = 0$$

Тогда,

$$\frac{\partial u}{\partial x_i} = -\frac{\frac{\partial V}{\partial x_i}}{\frac{\partial V}{\partial x_i}}$$

Подставим значение производной в (1.4.1):

$$-\sum_{i=1}^{n} a^{(i)}(x,u) \frac{\frac{\partial V}{\partial x_i}}{\frac{\partial V}{\partial u}} - f(x,u) = 0$$

Тогда:

$$\sum_{i=1}^{n} a^{(i)}(x, u) \frac{\partial V}{\partial x_i} + f(x, u) \frac{\partial V}{\partial u} = 0$$
(1.4.3)

Получили линейное однородное дифференциальное уравнение 1-го порядка, зависящее от п независимых переменных. А с ними мы работали в предыдущем параграфе.

Записываем систему (1.3.2) и получаем:

$$\frac{dx_1}{a^{(1)}} = \frac{dx_2}{a^{(2)}} = \dots = \frac{dx_n}{a^{(n)}} = \frac{du}{f}$$
 (1.4.4)

Находим n первых интегралов, которые зависят от $x(x_1,...,x_n)$ и u, т.е. $\psi_1(x,u),...,\psi_n(x,u)$, которые являются решениями уравнения (1.4.3) по теореме 1.3.1, а далее формируем функцию $F(\psi_1(x,u),\psi_2(x,u),...,\psi_n(x,u))=0$ и разрешаем относительно u.

1.5 Системы дифференциальных уравнений с частными производными

Рассмотрим к неизвестных функций:

$$u_1(x_1,...,x_n), u_2(x_1,...,x_n),...,u_k(x_1,...,x_n)$$

и рассмотрим систему из k вспомогательных функций:

$$\begin{cases} F_1(x_1, x_2, ..., x_n, z_1, z_2, ..., z_{N_1}), \\ F_2(x_1, x_2, ..., x_n, z_1, z_2, ..., z_{N_2}), \\ \\ F_k(x_1, x_2, ..., x_n, z_1, z_2, ..., z_{N_k}) \end{cases}$$

Системой с частными производными называется система вида:

Записанная выше система является системой ДУ с частными производными. Рассмотрим линейную систему 1-го порядка относительно двух функций, где $u_1 = u, u_2 = v, x_1 = x, x_2 = y$:

$$\begin{cases} b_{11}\frac{\partial u}{\partial x} + b_{12}\frac{\partial u}{\partial y} + c_{11}\frac{\partial v}{\partial x} + c_{12}\frac{\partial v}{\partial y} + b_{1}u + c_{1}v = f_{1} \\ b_{21}\frac{\partial u}{\partial x} + b_{22}\frac{\partial u}{\partial y} + c_{21}\frac{\partial v}{\partial x} + c_{22}\frac{\partial v}{\partial y} + b_{2}u + c_{2}v = f_{2} \end{cases}$$

Представим данную систему в матричном виде:

$$Lu = f$$
,

где:

$$L = \begin{bmatrix} b_{11}\frac{\partial}{\partial x} + b_{12}\frac{\partial}{\partial y} + b_1 & c_{11}\frac{\partial}{\partial x} + c_{12}\frac{\partial}{\partial y} + c_1 \\ b_{21}\frac{\partial}{\partial x} + b_{22}\frac{\partial}{\partial y} + b_2 & c_{21}\frac{\partial}{\partial x} + c_{22}\frac{\partial}{\partial y} + c_2 \end{bmatrix}$$

$$u = \begin{bmatrix} u \\ v \end{bmatrix}, \ f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

Выпишем главную часть:

$$L_0 u = f$$

$$L_{0} = \begin{bmatrix} b_{11}\frac{\partial}{\partial x} + b_{12}\frac{\partial}{\partial y} & c_{11}\frac{\partial}{\partial x} + c_{12}\frac{\partial}{\partial y} \\ b_{21}\frac{\partial}{\partial x} + b_{22}\frac{\partial}{\partial y} & c_{21}\frac{\partial}{\partial x} + c_{22}\frac{\partial}{\partial y} \end{bmatrix}$$

Поставим в соответствие производной $\frac{\partial}{\partial x} \to \xi_1, \frac{\partial}{\partial y} \to \xi_2,$ и запишем характеристическую матрицу

$$A = \begin{bmatrix} b_{11}\xi_1 + b_{12}\xi_2 & c_{11}\xi_1 + c_{12}\xi_2 \\ b_{21}\xi_1 + b_{22}\xi_2 & c_{21}\xi_1 + c_{22}\xi_2 \end{bmatrix},$$

Запишем характеристический многочлен (определитель матрицы A):

$$P(\xi) = \det A = a_{11}\xi_1^2 + 2a_{12}\xi_1\xi_2 + a_{22}\xi_2^2,$$

где

$$a_{11} = b_{11}c_{21} - b_{21}c_{11}, \quad a_{22} = b_{12}c_{22} - b_{22}c_{12}$$

$$a_{12} = \frac{1}{2}(b_{11}c_{22} + b_{12}c_{21} - b_{21}c_{12} - b_{22}c_{11})$$

Классификация данной системы ДУ 1-го порядка для двух функций проводится аналогично классификации дифференциального уравнения 2-го порядка с двумя переменными по дискриминанту:

$$D = a_{12}^2 - a_{11}a_{22}$$

- 1. Если D>0 то система гиперболического типа.
- 2. Если D=0 то система параболического типа.
- 3. Если D < 0 то система эллиптического типа.

Пример. Определить тип системы

$$\begin{cases} 2\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} - 3\frac{\partial v}{\partial y} + u = 0\\ -\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + xy = 0 \end{cases}$$

Записываем сразу главную часть

$$L_0 u = \begin{bmatrix} 2\frac{\partial}{\partial x} + 3\frac{\partial}{\partial y} & 0\frac{\partial}{\partial x} - 3\frac{\partial}{\partial y} \\ -\frac{\partial}{\partial x} + \frac{\partial}{\partial y} & \frac{\partial}{\partial x} + 0\frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 0$$

Записываем характеристическую матрицу:

$$A = \begin{bmatrix} 2\xi_1 + 3\xi_2 & -3\xi_2 \\ -\xi_1 + \xi_2 & \xi_1 \end{bmatrix}$$

и записываем характеристический многочлен:

$$P(\xi) = 2\xi_1^2 + 3\xi_1\xi_2 - 3\xi_1\xi_2 + 3\xi_2^2 = 2\xi_1^2 + 3\xi_2^2$$

D = -6 < 0 – исходная система эллиптического типа.

1.6 Замена независимых переменных в уравнении 2-го порядка с 2 независимыми переменными

Рассмотрим уравнение 2-го порядка с двумя независимыми переменными:

$$a_{11}(x,y)\frac{\partial^2 u}{\partial x^2} + 2a_{12}(x,y)\frac{\partial^2 u}{\partial x \partial y} + a_{22}(x,y)\frac{\partial^2 u}{\partial y^2} + a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y)u = f(x,y) \quad (1.6.1)$$

Уравнение (1.6.1) рассматриваем в области $\Omega \subset \mathbb{R}^2$, $a_{ij} \in C^2(\Omega)$.

Введём функции:

$$\begin{cases} \xi = \varphi(x, y) \\ \eta = \psi(x, y) \end{cases}$$

$$\begin{vmatrix} \varphi_x & \varphi_y \\ \psi_x & \psi_y \end{vmatrix} \neq 0 \text{ (преобразование невырожденное)}, \quad \varphi(x,y), \psi(x,y) \in C^2(\Omega)$$

Находим производные от u, считая, что теперь u зависит от ξ и η , т.е. $u(\xi(x,y),\eta(x,y))$.

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x \\ u_y &= u_\xi \xi_y + u_\eta \eta_y \\ u_{xx} &= u_{\xi\xi} \xi_x^2 + 2u_{\xi\eta} \xi_x \eta_x + u_{\eta\eta} \eta_x^2 + u_{\xi} \xi_{xx} + u_\eta \eta_{xx} \\ u_{yy} &= u_{\xi\xi} \xi_y^2 + 2u_{\xi\eta} \xi_y \eta_y + u_{\eta\eta} \eta_y^2 + u_{\xi} \xi_{yy} + u_\eta \eta_{yy} \\ u_{xy} &= u_{\xi\xi} \xi_x \xi_y + u_{\xi\eta} (\xi_x \eta_y + \xi_y \eta_x) + u_{\eta\eta} \eta_x \eta_y + u_{\xi} \xi_{xy} + u_\eta \eta_{xy} \end{split}$$

Подставляя в уравнение (1.6.1) и получаем уравнение вида:

$$\overline{a_{11}}u_{\xi\xi} + 2\overline{a_{12}}u_{\xi\eta} + \overline{a_{22}}u_{\eta\eta} + \overline{a}u_{\xi} + \overline{b}u_{\eta} + cu = f \tag{1.6.2}$$

$$\begin{cases}
\overline{a_{11}} = a_{11}\xi_x^2 + 2a_{12}\xi_x\xi_y + a_{22}\xi_y^2 \\
\overline{a_{22}} = a_{11}\eta_x^2 + 2a_{12}\eta_x\eta_y + a_{22}\eta_y^2 \\
\overline{a_{12}} = a_{11}\xi_x\eta_x + a_{12}(\xi_x\eta_y + \xi_y\eta_x) + a_{22}\xi_y\eta_y
\end{cases}$$
(1.6.3)

Мы вводим замену, чтобы максимально упростить выражение:

$$a_{11} \left(\frac{\partial z}{\partial x} \right)^2 + 2a_{12} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + a_{22} \left(\frac{\partial z}{\partial y} \right)^2 = 0$$
 (1.6.4)

В соответствии с уравнением (1.6.1) (т.е. используя его коэффициенты) записываем характеристическое уравнение в полных дифференциалах:

$$a_{11}(dy)^2 - 2a_{12}dydx + a_{22}(dx)^2 = 0 (1.6.5)$$

Оно распадается на два уравнения ($D = a_{12}^2 - a_{11}a_{22}$):

$$\begin{cases} \frac{dy}{dx} = \frac{a_{12} + \sqrt{D}}{a_{11}} = \lambda_1(x, y) \\ \frac{dy}{dx} = \frac{a_{12} - \sqrt{D}}{a_{11}} = \lambda_2(x, y) \end{cases}$$
(1.6.6)

Теорема 1.6.1. Если $\varphi(x,y)$ является первым интегралом одного из уравнений (1.6.6) в области Ω , то $\varphi(x,y)$ является решением уравнения (1.6.4).

Доказательство:

Если $\varphi(x,y)$ является первым интегралом для полного дифференциального уравнения, то $\varphi(x,y) \in C^1(\Omega), \operatorname{grad}(\varphi) \neq 0$ и $\varphi(x,y(x)) = C$.

Возьмём произвольную точку $M_0 \in \Omega$ и построим решение уравнения $\frac{dy}{dx} = \lambda_1(x,y)$ в этой точке, удовлетворяющее условию $y(x_0) = y_0$.

Согласно теореме Пикара-Линделёфа, решение такого уравнения существует и единственно в окрестности точки M_0 .

Тогда $\varphi(x, y(x)) = C_0$, где $C_0 = \varphi(x_0, y_0)$.

Возьмём производную по x:

$$\begin{split} \frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{\partial y}{\partial x} \bigg|_{y=y(x)} &= 0 \\ \frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{\partial y}{\partial x} \bigg|_{M_0} &= 0 \end{split}$$

Если в этой точке $\frac{\partial \varphi}{\partial y}=0$, то получаем, что $\frac{\partial \varphi}{\partial x}=0$, но это противоречит условию 1-го интеграла по определению, т.к. $grad(\varphi)\neq 0$. Значит $\frac{\partial \varphi}{\partial y}\neq 0$. Тогда выражаем:

$$\frac{dy}{dx} = -\frac{\frac{\partial \varphi}{\partial x}}{\frac{\partial \varphi}{\partial y}}$$

Уравнение (1.6.5) можно записать в виде:

$$a_{11} \left(\frac{dy}{dx}\right)^2 - 2a_{12}\frac{dy}{dx} + a_{22} = 0$$

Подставим в него $\frac{\partial y}{\partial x}$, и получим:

$$a_{11} \left(\frac{\frac{\partial \varphi}{\partial x}}{\frac{\partial \varphi}{\partial y}} \right)^2 + 2a_{12} \frac{\partial \varphi}{\partial x} \frac{\partial y}{\partial \varphi} + a_{22} = 0$$

Домножив на $\left(\frac{\partial \varphi}{\partial y}\right)^2$, получим:

$$a_{11} \left(\frac{\partial \varphi}{\partial x} \right)^2 + 2a_{12} \frac{\partial \varphi}{\partial x} \frac{\partial \varphi}{\partial y} + a_{22} \left(\frac{\partial \varphi}{\partial y} \right)^2 = 0$$

T.e. функция $\varphi(x,y)$ является решением уравнения в точке M_0 .

Мы доказали, что первые интегралы уравнения:

$$a_{11}(dy)^2 - 2a_{12}dydx + a_{22}(dx)^2 = 0,$$

являются решениями ОДУ:

$$a_{11} \left(\frac{\partial z}{\partial x} \right)^2 + 2a_{12} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + a_{22} \left(\frac{\partial z}{\partial y} \right)^2 = 0$$

Замечание 1.

Приведение неоднозначно.

Замечание 2.

Существование решения обеспечивает теорема Ковалевской, а теорема, в свою очередь, доказывает существование решения в некоторой малой окрестности точки. Значит мы приводим решение в окрестности каждой точки, а не во всей области.

1.7 Приведение к каноническому виду ДУ 2-го порядка с двумя независимыми переменными

Рассматриваем уравнение 2-го порядка:

$$a_{11}\frac{\partial^2 u}{\partial x^2} + 2a_{12}\frac{\partial^2 u}{\partial x \partial y} + a_{22}\frac{\partial^2 u}{\partial y^2} + a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} + cu = f(x, y)$$
(1.7.1)

Запишем характеристическое уравнение в полных дифференциалах:

$$a_{11}(dy)^2 - 2a_{12}dydx + a_{22}(dx)^2 = 0 (1.7.2)$$

Рассмотрим три случая.

Гиперболический тип:

$$D = a_{12}^2 - a_{11}a_{22} > 0$$

Тогда уравнение (1.7.2) имеет два первых интеграла:

$$\begin{cases} \varphi(x,y) = C_1 \\ \psi(x,y) = C_2 \end{cases}$$

Эти функции, согласно теореме (1.6.1), являются решениями уравнения:

$$a_{11} \left(\frac{\partial z}{\partial x} \right)^2 + 2a_{12} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + a_{22} \left(\frac{\partial z}{\partial y} \right)^2 = 0$$

Следовательно, если в качестве замены взять:

$$\begin{cases} \xi = \varphi(x, y) \\ \eta = \psi(x, y) \end{cases},$$

то, согласно (1.6.3) получаем, что $\overline{a_{11}} = 0$, $\overline{a_{22}} = 0$, $\overline{a_{12}} \neq 0$.

Таким образом, мы доказали, что первым каноническим видом уравнения гиперболического типа будет:

$$\overline{a_{12}}\frac{\partial^2 u}{\partial \xi \partial \eta} = F\left(\xi, \eta, u, \frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \eta}\right)$$

Т.к. $\overline{a_{12}} \neq 0$, то мы можем разделить на $\overline{a_{12}}$, и таким образом получить второй канонический вид уравнения гиперболического типа:

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = F\left(\xi, \eta, u, \frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \eta}\right)$$

Замечание 1.

При невырожденном преобразовании тип уравнения сохраняется.

Замечание 2.

Если $\varphi(x,y) = C_1$ и $\psi(x,y) = C_2$ разрешить относительно y: $y = f_1(x,C_1)$, $y = f_2(x,C_2)$, то получим два семейства линий, которые называются характеристическими линиями для уравнения гиперболического типа.

Параболический тип:

$$D = a_{12}^2 - a_{11}a_{22} = 0$$

Тогда имеем 1 первый интеграл:

$$\varphi(x,y) = C_1$$

В силу теоремы 1.6.1 этот интеграл является решением уравнения (1.6.4). Введём замену:

$$\begin{cases} \xi = \varphi(x, y) \\ \eta = \psi(x, y) \end{cases},$$

где $\psi(x,y)$ — произвольная, достаточно гладкая функция, такая что замены удовлетворяют условию:

$$\begin{vmatrix} \varphi_x & \varphi_y \\ \psi_x & \psi_y \end{vmatrix} \neq 0$$

В силу теоремы получаем, что только $\overline{a_{11}} = 0$.

Т.е. мы имеем, что

$$a_{11}(\varphi_x)^2 + 2a_{12}\varphi_x\varphi_y + a_{22}(\varphi_y)^2 = 0$$

Но, из того, что D=0 следует, что:

$$a_{12} = \sqrt{a_{11}a_{22}} \implies a_{11}(\varphi_x)^2 + 2\sqrt{a_{11}a_{22}}\varphi_x\varphi_y + a_{22}(\varphi_y)^2 = (\sqrt{a_{11}}\varphi_x + \sqrt{a_{22}}\varphi_y)^2 = 0 \quad (1.7.3)$$

Теперь рассмотрим $\overline{a_{12}}$ и воспользуемся тем, что D=0:

$$\overline{a_{12}} = a_{11}\varphi_x\psi_x + a_{12}(\varphi_x\psi_y + \psi_x\varphi_y) + a_{22}\varphi_y\psi_y =$$

$$= \sqrt{a_{11}}\varphi_x(\sqrt{a_{11}}\psi_x + \sqrt{a_{22}}\psi_y) + \sqrt{a_{22}}\varphi_y(\sqrt{a_{11}}\psi_x + \sqrt{a_{22}}\psi_y) =$$

$$= (\sqrt{a_{11}}\varphi_x + \sqrt{a_{22}}\varphi_y)(\sqrt{a_{11}}\psi_x + \sqrt{a_{22}}\psi_y) = 0$$

В силу (1.7.3) получаем, что $\overline{a_{12}} = 0$. Значит $\overline{a_{22}} \neq 0$.

Таким образом получаем канонический вид уравнения параболического типа:

$$\frac{\partial^2 u}{\partial \eta^2} = F\left(\xi, \eta, u, \frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \eta}\right)$$

Если уравнение $\varphi(x,y) = C_1$ разрешить относительно $y: y = f_1(x,C_1)$, то получим одно семейство линий, называемых характеристическими линиями для уравнения параболического типа.

Эллиптический тип:

$$D = a_{12}^2 - a_{11}a_{22} < 0$$

В таком случае имеем уравнение:

$$\frac{\partial y}{\partial x} = \frac{a_{12} \pm i\sqrt{-D}}{a_{11}}$$

Т.е. мы имеем комплекснозначные 1-е интегралы $\varphi_1(x,y)$ и $\varphi_2(x,y)$, которые являются сопряженными. Поэтому, если взять полусумму этих интегралов, то мы получим действительную часть, а если полуразность, то мнимую.

Возьмём в качестве:

 $\varphi(x,y) = Re(\varphi_1(x,y)), \ \psi(x,y) = Im(\varphi_1(x,y)).$ Т.е. функция $\phi(x,y) = \varphi(x,y) + i\psi(x,y)$ является решением уравнения (1.6.4). Подставляем функцию в уравнение:

$$a_{11} \left(\frac{\partial z}{\partial x}\right)^2 + 2a_{12}\frac{\partial z}{\partial x}\frac{\partial z}{\partial y} + a_{22} \left(\frac{\partial z}{\partial y}\right)^2 = 0$$

В силу теоремы 1.6.1 наша функция является решением уравнения (1.6.4) и мы имеем:

$$a_{11}(\varphi_x + i\psi_x)^2 + 2a_{12}(\varphi_x + i\psi_x)(\varphi_y + i\psi_y) + a_{22}(\varphi_y + i\psi_y)^2 = 0$$

$$(a_{11}(\varphi_x)^2 + 2a_{12}\varphi_x\varphi_y + a_{22}(\varphi_y)^2) - (a_{11}(\psi_x)^2 + 2a_{12}\psi_x\psi_y + a_{22}(\psi_y)^2) +$$

$$+2i(a_{11}\varphi_x\psi_x + a_{12}(\varphi_x\psi_y + \varphi_y\psi_x) + a_{22}\varphi_y\psi_y) = 0$$

$$\xi = \varphi(x, y), \ \eta = \psi(x, y)$$

В силу формулы (1.6.3) мы получаем, что:

$$\overline{a_{11}} - \overline{a_{22}} + 2i\overline{a_{12}} = 0$$

Следовательно $\overline{a_{11}} = \overline{a_{22}}$, а $\overline{a_{12}} = 0$, и получаем канонический вид уравнения эллиптического типа:

$$\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} = F\left(\xi, \eta, u, \frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \eta}\right)$$

Уравнение эллиптического типа характеристических линий не имеет.

1.8 Классификация ДУ 2-го порядка с n независимыми переменными

Рассмотрим в области $\Omega \subset \mathbb{R}^n$ линейное дифференциальное уравнение 2-го порядка с n независимыми переменными:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u = f(x)$$

$$(1.8.1)$$

Считаем, что $a_{ij} \in C^2(\Omega)$, $a_{ij} = a_{ji}$. Выделим главную часть уравнения (1.8.1):

$$L_0 u = \sum_{i=1}^n \sum_{j=1}^n a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j}$$

Возьмём n независимых переменных $\xi_1, \xi_2, \dots, \xi_n$ и поставим в соответствие:

$$\frac{\partial}{\partial x_i} \to \xi_i$$

$$\frac{\partial^2}{\partial x_i \partial x_j} \to \xi_i \xi_j$$

Запишем следующее уравнение:

$$P(\xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \xi_i \xi_j, \qquad (1.8.2)$$

которое называется характеристическим уравнением для уравнения (1.8.1).

Рассмотрим поверхность Γ , которая задаётся уравнением $\varphi(x_1, x_2, \dots, x_n) = 0$. Возьмём $\xi_i = \frac{\partial \varphi}{\partial x_i}$, т.е. $\xi = grad(\varphi)$. Поверхность Γ , называется характеристической поверхностью для уравнения (1.8.1), если

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial \varphi}{\partial x_i} \frac{\partial \varphi}{\partial x_j} = 0,$$

т.е. полином от градиента равен 0.

Характеристический многочлен (1.8.2) представляет собой квадратичную форму. Известно, что существует невырожденное преобразование приводящее квадратичную форму к каноническому виду.

Пусть C – это преобразование, приводящее квадратичную форму к каноническому виду, т.е.

$$\xi_i = \sum_{j=1}^n c_{ij} \mu_j,$$

где c_{ij} — элементы матрицы преобразования.

Тогда:

$$\xi_i = \sum_{k=1}^n c_{ik} \mu_k, \ \xi_j = \sum_{s=1}^n c_{js} \mu_s$$

Подставим в квадратичную форму (1.8.2) и получим:

$$P(\xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} c_{ik} \mu_k \sum_{s=1}^{n} c_{js} \mu_s = \sum_{k=1}^{n} \sum_{s=1}^{n} A_{ks} \mu_k \mu_s,$$

где
$$A_{ks} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} c_{ik} c_{js}$$
.

Известно, что существует невырожденное преобразование, которое приводит квадратичную форму (1.8.2) к каноническому виду:

$$\sum_{i=1}^{n} a_i \mu_i^2, \quad a_i = 0, -1, 1, \tag{1.8.3}$$

где количество 0, -1, 1 не зависит от выбранного преобразования.

Т.е. мы имеем, что:

$$A_{ks} = 0, k \neq s;$$
$$A_{ii} = a_i$$

Мы выписали для исходного уравнения характеристический многочлен (1.8.2), рассмотрели его, как квадратичную форму, привели к каноническому виду и получили (1.8.3).

Классификация уравнения (1.8.1) проводится по каноническому виду квадратичной формы (1.8.3):

- 1. Если в каноническом виде квадратичной формы (1.8.3) все коэффициенты $a_i = 1$ или $a_i = -1$, $i = \overline{1,n}$, т.е. все коэффициенты ненулевые и одного знака, то исходное уравнение (1.8.1) эллиптического типа в точке x_0 .
- 2. Если $a_1=1, a_i=-1, \ i=\overline{2,n}$ или $a_1=-1, a_i=1, \ i=\overline{2,n}$, то исходное уравнение (1.8.1) гиперболического типа в точке x_0 .
- 3. Если $a_1=0, a_i=1, i=\overline{2,n}$ или $a_1=0, a_i=-1, i=\overline{2,n}$, то исходное уравнение (1.8.1) параболического типа в точке x_0 .

Замечание 1.

Этими тремя видами классификация не исчерпывается, это основные.

1.9 Приведение к каноническому виду ДУ 2-го порядка с n независимыми переменными

Привести к каноническому виду дифференциальное уравнение 2-го порядка с n независимыми переменными можно только в случае постоянных коэффициентов.

Рассмотрим уравнение:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i} \frac{\partial u}{\partial x_{i}} + cu = f(x).$$

$$(1.9.1)$$

Введём в исходном уравнении (1.9.1) замену:

$$x_i = \sum_{j=1}^n c_{ji} y_j,$$

где c_{ji} – элементы транспонированный матрицы, приводящей характеристический многочлен к каноническому виду (1.8.3).

T.е., алгоритмически, у нас есть уравнение, мы для него выписываем характеристический многочлен и приводим его к каноническому виду, выписываем матрицу преобразования и транспонируем её.

Тогда

$$\frac{\partial u}{\partial x_i} = \sum_{k=1}^n c_{ik} \frac{\partial u}{\partial y_k}$$

И

$$\frac{\partial^2 u}{\partial x_i \partial x_j} = \sum_{k=1}^n \sum_{s=1}^n c_{ik} c_{js} \frac{\partial^2 u}{\partial y_k \partial y_s}$$

Подставляем в исходное уравнение (1.9.1) и получаем:

$$\sum_{k=1}^{n} \sum_{s=1}^{n} A_{ks} \frac{\partial^{2} u}{\partial y_{k} \partial y_{s}} + \sum_{k=1}^{n} A_{k} \frac{\partial u}{\partial y_{k}} + cu = f,$$

$$(1.9.2)$$

где

$$A_{ks} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} c_{ik} c_{js},$$

$$A_k = \sum_{i=1}^n a_i c_{ik}.$$

Таким образом, видно, что коэффициенты преобразованного уравнения (1.9.2) полностью совпадают с коэффициентами в приведенной квадратичной форме.

Таким образом, чтобы привести ДУ 2-го порядка с n независимыми переменными к каноническому виду, необходимо:

- 1. Выписать характеристический многочлен исходного уравнения, который представляет собой квадратичную форму.
- 2. Привести эту квадратичную форму к каноническому виду.
- 3. Выписать матрицу преобразования, приводящую квадратичную форму к каноническому виду.
- 4. Протранспонировать эту матрицу.
- 5. С помощью транспонированной матрицы ввести замену в исходном уравнении.
- 6. Посчитать производные и подставить в уравнение.

Канонический вид уравнения второго порядка при n=3:

1. Гиперболический тип

$$\frac{\partial^2 u}{\partial y_1^2} - \frac{\partial^2 u}{\partial y_2^2} - \frac{\partial^2 u}{\partial y_3^2} = F\left(y, u, \frac{\partial u}{\partial y_1}, \frac{\partial u}{\partial y_2}, \frac{\partial u}{\partial y_3}\right)$$

2. Эллиптический тип

$$\frac{\partial^2 u}{\partial y_1^2} + \frac{\partial^2 u}{\partial y_2^2} + \frac{\partial^2 u}{\partial y_3^2} = F\left(y, u, \frac{\partial u}{\partial y_1}, \frac{\partial u}{\partial y_2}, \frac{\partial u}{\partial y_3}\right)$$

3. Параболический тип

$$\frac{\partial^2 u}{\partial y_2^2} + \frac{\partial^2 u}{\partial y_3^2} = F\left(y, u, \frac{\partial u}{\partial y_1}, \frac{\partial u}{\partial y_2}, \frac{\partial u}{\partial y_3}\right)$$

1.10 Исключение младших производных в уравнениях 2-го порядка с постоянными коэффициентами

Рассмотрим следующие уравнения

1. Гиперболического типа

$$\frac{\partial^2 u}{\partial \xi \partial \eta} + a \frac{\partial u}{\partial \xi} + b \frac{\partial u}{\partial \eta} + cu = f(\xi, \eta)$$
(1.10.1)

2. Параболического типа

$$\frac{\partial^2 u}{\partial \xi^2} + a \frac{\partial u}{\partial \xi} + b \frac{\partial u}{\partial \eta} + cu = f(\xi, \eta)$$
 (1.10.2)

3. Эллиптического типа

$$\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + a \frac{\partial u}{\partial \xi} + b \frac{\partial u}{\partial \eta} + cu = f(\xi, \eta)$$
(1.10.3)

4. Уравнение с n независимыми переменными

$$\sum_{i=1}^{n} a_i \frac{\partial^2 u}{\partial y_i^2} + \sum_{i=1}^{n} \lambda_i \frac{\partial u}{\partial y_i} + cu = f(y), a_i \in \{0, -1, 1\}$$

$$(1.10.4)$$

Можно проделать дальнейшее упрощение и исключить младшие производные, по которым есть старшие.

В уравнениях (1.10.2) - (1.10.4) можно ввести замену (выписываем для (1.10.4)):

$$u(y) = v(y)e^{-\frac{1}{2}\sum_{i=1,a_i\neq 0}^{n}\frac{\lambda_i}{a_i}y_i}$$

Введём замену для (1.10.1):

$$u(\xi, \eta) = v(\xi, \eta)e^{\alpha \xi + \beta \eta},$$

где α , β — пока неизвестные величины.

$$u_{\xi} = v_{\xi}e^{\alpha\xi + \beta\eta} + v\alpha e^{\alpha\xi + \beta\eta} = (v_{\xi} + \alpha v)A, \quad A = e^{\alpha\xi + \beta\eta}$$
$$u_{\eta} = (v_{\eta} + \beta v)A$$
$$u_{\xi\eta} = (v_{\xi\eta} + \alpha v_{\eta})A + (\beta v_{\xi} + \alpha\beta v)A = (v_{\xi\eta} + \alpha v_{\eta} + \beta v_{\xi} + \alpha\beta v)A$$

Подставим в исходное уравнение и получим

$$v_{\xi\eta} + \beta v_{\xi} + \alpha v_{\eta} + \alpha \beta v + a v_{\xi} + a \alpha v + b v_{\eta} + \beta b v + c v = \overline{f}(\xi, \eta), \text{ где } \overline{f}(\xi, \eta) = \frac{f(\xi, \eta)}{e^{\alpha \xi + \beta \eta}}$$
$$v_{\xi\eta} + (\beta + a) v_{\xi} + (\alpha + b) v_{\eta} + (\alpha \beta + a \alpha + b \beta + c) v = \overline{f}$$

Так как задача была избавиться от младших производных, то параметры выберем следующим образом: $\alpha = -b, \ \beta = -a.$

Тогда при замене $u=ve^{-b\xi-a\eta}$ получим уравнение следующего вида:

$$v_{\xi\eta} + (c - ab)v = \overline{f}$$

1.11 Нахождение общих решений простейших ДУ с частными производными

Рассмотрим уравнение гиперболического типа и уравнение эллиптического типа.

1. Уравнение гиперболическое типа.

Гиперболическое уравнение второго порядка с двумя независимыми переменными и постоянными коэффициентами может быть приведено к виду:

$$\frac{\partial^2 u}{\partial x \partial y} + cu = f(x, y)$$

Полагая c = 0, получим:

$$\frac{\partial^2 u}{\partial x \partial y} = f(x, y) \tag{1.11.1}$$

Найдем общее решение, интегрируя данное уравнение сперва по x, а затем по y.

Заметим, что при интегрировании появляются константы, которые, вообще говоря, являются функциями зависящими от переменной, отличной от той, по которой проводится интегрирование, т.е.

$$\frac{\partial u}{\partial y} = \int_{0}^{x} f(\xi, y) d\xi + C(y)$$

$$u(x,y) = \int_{0}^{y} \int_{0}^{x} f(\xi,\eta) \, d\xi \, d\eta + \int_{0}^{y} C(\eta) \, d\eta + C_{1}(x)$$

Интеграл $\int\limits_0^y C(\eta)\,d\eta$ можно переобозначить за другую функцию, зависящую от y.

Тогда общее решение будет иметь вид:

$$u(x,y) = \int_{0}^{y} \int_{0}^{x} f(\xi,\eta) d\xi d\eta + C_1(x) + C_2(y), \qquad (1.11.2)$$

где $C_1(x)$, $C_2(y)$ — произвольные непрерывно дифференцируемые функции.

Очевидно, для однородного уравнения

$$\frac{\partial^2 u}{\partial x \partial y} = 0$$

общее решение будет иметь вид:

$$u(x,y) = C_1(x) + C_2(y)$$

Замечание.

Вместо 0 в нижнем пределе интегрирования может быть произвольное число из области Ω .

2. Уравнение эллиптического типа.

Уравнение эллиптического типа с постоянными коэффициентами может быть преобразовано к виду:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + cu = f(x, y)$$

Полагая c = 0, f = 0, получим уравнение Лапласа:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, (1.11.3)$$

В общем виде общее решение построить нельзя, поэтому для построения частных решений используются аналитические функции комплексного переменного.

Пусть f(z) — произвольная аналитическая функция комплексного переменного z = x + iy в области Ω . Выделим действительную и мнимую части функции f(z), то есть представим её в виде:

$$f(z) = u(x, y) + iv(x, y)$$

Для любой аналитической функции комплексного переменного выполняются условия Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0\\ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = 0 \end{cases}$$
(1.11.4)

Продифференцируем первое уравнение по x, второе по y, и сложим:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Аналогично, продифференцируем первое по y, второе по x, и вычтем:

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Таким образом, функции u(x,y) и v(x,y) являются частными решениями уравнения Лапласа.

Примеры:

- 1. $f(z) = e^z = e^{x+iy} = e^x(\cos y + i\sin y)$. Тогда функции $u(x,y) = e^x \cos y$ и $v(x,y) = e^x \sin y$ - являются частными решениями уравнения Лапласа на плоскости.
- 2. $f(z) = \ln \frac{1}{z z_0}$, где $z_0 = x_0 + iy_0 = const$ Запишем комплексное число $z-z_0$ как $z-z_0=re^{i\varphi}$, где $r=\sqrt{(x-x_0)^2+(y-y_0)^2}$. $\varphi = \operatorname{arctg} \frac{y - y_0}{x - x_0}.$ Тогда $f(z) = \ln \frac{1}{r} - i \operatorname{arctg} \frac{y - y_0}{x - x_0}$.

Следовательно, функции $\ln \frac{1}{r}$ и $\arctan \frac{y-y_0}{x-x_0}$ являются частными решениями уравнения Лапласа.

Умножив u на $\frac{1}{2\pi}$, получим фундаментальное решение уравнения Лапласа на плос- $\kappa ocmu \mathbb{R}^2$:

$$u(x,y) = G(M, M_0) \equiv \frac{1}{2\pi} \ln \frac{1}{R_{MM_0}} = \frac{1}{2\pi} \ln \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}, \ M(x,y) \neq M_0(x_0, y_0).$$
(1.11.5)

В случае трехмерного пространства \mathbb{R}^3 уравнение Лапласа имеет вид:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0, \tag{1.11.6}$$

Тогда фундаментальное решение уравнения Лапласа в \mathbb{R}^3 будет иметь вид:

$$u(x,y,z) = G(M,M_0) \equiv \frac{1}{4\pi R_{MM_0}} = \frac{1}{4\pi \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}, \quad (1.11.7)$$

где x_0,y_0,z_0 — координаты фиксированной точки M_0 . Убедимся, что $u(x,y,z)=\frac{1}{4\pi R_{MM_0}}$ в самом деле является решением уравнения Ла-

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{4\pi R_{MM_0}} \right) = -\frac{2(x - x_0)}{8\pi (\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2})^3} = -\frac{x - x_0}{4\pi R_{MM_0}^3}$$

Аналогично:

$$\frac{\partial u}{\partial y} = -\frac{y-y_0}{4\pi R_{MM_0}^3}, \ \frac{\partial u}{\partial z} = -\frac{z-z_0}{4\pi R_{MM_0}^3}.$$

Тогда:

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= \frac{1}{4\pi} \left(-\frac{1}{R_{MM_0}^3} + \frac{3(x - x_0)^2}{R_{MM_0}^5} \right), \\ \frac{\partial^2 u}{\partial y^2} &= \frac{1}{4\pi} \left(-\frac{1}{R_{MM_0}^3} + \frac{3(y - y_0)^2}{R_{MM_0}^5} \right), \\ \frac{\partial^2 u}{\partial z^2} &= \frac{1}{4\pi} \left(-\frac{1}{R_{MM_0}^3} + \frac{3(z - z_0)^2}{R_{MM_0}^5} \right). \end{split}$$

Подставляя эти производные второго порядка в уравнение Лапласа для \mathbb{R}^3 получаем тождество:

$$\frac{1}{4\pi} \left(-\frac{3}{R_{MM_0}^3} + \frac{3(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}{R_{MM_0}^5} \right) = 0,$$

$$\frac{1}{4\pi} \left(-\frac{3}{R_{MM_0}^3} + \frac{3}{R_{MM_0}^3} \right) = 0,$$

$$0 = 0.$$

Следовательно, $u(x,y,z) = \frac{1}{4\pi R_{MM_0}}$ в самом деле является фундаментальным решением уравнения Лапласа во всех точках \mathbb{R}^3 , кроме $M=M_0$.

Глава 2

Задача Коши

2.1 Корректная постановка задачи Коши

Определение 2.1.1. Задача Коши для уравнения второго порядка с двумя независимыми переменными в области $D \in \mathbb{R}^2$ формулируется как:

$$L(u) \equiv a_{11} \frac{\partial^2 u}{\partial x^2} + 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + cu = f(x, y), \tag{2.1.1}$$

$$u|_{(x,y)\in\Gamma} = \varphi(x,y), \quad \frac{\partial u}{\partial \vec{n}}\Big|_{(x,y)\in\Gamma} = \psi(x,y),$$
 (2.1.2)

где D — плоская область в R^2 , Γ — линия внутри области D, $u \in C^2(D)$, $\Gamma \in C^2$, φ и ψ — функции, заданные на линии Γ .

Для уравнений (2.1.1) и (2.1.2) рассмотрим следующие пространства функций:

- 1. $V_1(\Gamma)$ пространство начальных функций φ .
- 2. $V_2(\Gamma)$ пространство начальных функций ψ .
- 3. $V({\rm D})$ пространство функций u, в котором отыскивается решение задачи (2.1.1), (2.1.2).

Если мы ищем общее решение в классическом виде, то $V(D) \in C^2(D)$.

Будем предполагать, что пространства V_1, V_2, V являются метрическими, то есть наделены метриками $\rho_1(\varphi_1, \varphi_2), \ \rho_2(\psi_1, \psi_2), \ \rho_3(u_1, u_2)$ между двумя функциями в, соответственно, пространствах V_1, V_2, V .

Если пространства нормированные, то

$$\rho_1(\varphi_1, \varphi_2) = \|\varphi_1 - \varphi_2\|_{V_1}, \quad \rho_2(\psi_1, \psi_2) = \|\psi_1 - \psi_2\|_{V_2}, \quad \rho_3(u_1, u_2) = \|u_1 - u_2\|_{V}.$$

Рассмотрим две задачи Коши с различными начальными функциями. Запишем уравнения в операторном виде:

$$L(u_i) = f, (2.1.3)$$

$$u_i|_{(x,y)\in\Gamma} = \varphi_i, \quad \frac{\partial u_i}{\partial \vec{n}}\Big|_{(x,y)\in\Gamma} = \psi_i, \quad i = 1, 2$$
 (2.1.4)

Определение 2.1.2. Решение задачи (2.1.3), (2.1.4) называется устойчивым по начальным данным, если:

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \rho_1(\varphi_1, \varphi_2) < \delta, \; \rho_2(\psi_1, \psi_2) < \delta \implies \rho_3(u_1, u_2) < \varepsilon \tag{2.1.5}$$

Это означает, что с малым изменением начальных параметров, решение также изменяется на малую величину.

Определение 2.1.3. Итак, задача (2.1.1), (2.1.2) считается *корректно поставленной*, если:

- 1. $\forall \varphi \in V_1, \ \forall \psi \in V_2$ существует решение $\exists u \in V$.
- 2. $\forall \varphi \in V_1, \ \forall \psi \in V_2$ решение задачи $u \in V$ единственно.
- 3. Решение и устойчиво по начальным данным.

2.2 Метод характеристик решения задачи Коши для волнового уравнения

Рассмотрим задачу Коши для однородного уравнения колебания струны

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0, \ \mathbb{D} = \{ -\infty < x < +\infty, |t| \le T \}, \quad u(x,t) \in C^2(\mathbb{D})$$
 (2.2.1)

$$u|_{t=0} = \varphi(x), -\infty < x < +\infty, \quad \varphi \in C^2(\mathbb{R}^1)$$
(2.2.2)

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x), -\infty < x < +\infty, \quad \psi \in C^1(\mathbb{R}^1)$$
 (2.2.3)

где $a = \sqrt{\frac{N}{p}}$, N — натяжение струны, p — линейная плотность струны, t — временная переменная, x — пространственная переменная.

Уравнение (2.2.1) – описывает колебания бесконечной струны (под струной понимают тонкую, упругую нить).

u(x,t) — задаёт отклонение (смещение) точки с координатой x в момент времени t, т.е. задаёт график колебания струны в момент времени t.

Уравнение (2.2.2) задаёт положение струны в начальный момент времени.

Уравнение (2.2.3) задаёт скорость в начальный момент времени.

Решать будем методом характеристик, который состоит в следующем:

- 1. Уравнение приводится к каноническому виду.
- 2. Находится общее решение.
- 3. Определяется явный вид функций из условий (2.2.2) и (2.2.3).

Волновое уравнение – уравнение гиперболического типа.

$$(dx)^2 - a^2(dt)^2 = 0$$

На основании характеристического уравнения найдем два семейства характеристик:

$$x - at = C_1, \qquad x + at = C_2$$

Выполним замену переменных:

$$\begin{cases} \xi = x - at \\ \eta = x + at \end{cases}$$

Находим частные производные от
$$u(\xi,\eta)$$
:
$$\frac{\partial u}{\partial t} = -a\frac{\partial u}{\partial \xi} + a\frac{\partial u}{\partial \eta}$$

$$\frac{\partial^2 u}{\partial t^2} = a^2\frac{\partial^2 u}{\partial \xi^2} - 2a^2\frac{\partial^2 u}{\partial \xi\partial \eta} + a^2\frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi\partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$
 Подставляя в исходное уравнение, получим:
$$-4a^2\frac{\partial^2 u}{\partial \xi\partial \eta} = 0.$$
 Тогла каноническим видом уравнения булет:

$$-4a^2 \frac{\partial^2 u}{\partial \xi \partial \eta} = 0.$$

Тогда каноническим видом уравнения будет:

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0.$$

Откуда общее решение будет иметь вид: $u(\xi, \eta) = C_1(\xi) + C_2(\eta)$.

Совершая обратную подстановку получим общее решение исходного однородного уравнения колебания струны:

$$u(x,t) = C_1(x-at) + C_2(x+at)$$

Для определения вида неизвестных функций C_1, C_2 воспользуемся начальными условиями (2.2.2) и (2.2.3).

$$\left\{ \begin{array}{l} C_1(x) + C_2(x) = \varphi(x) \\ -aC_1'(x) + aC_2'(x) = \psi(x) \end{array} \right.,$$
 где $C_{1,2}'(x)$ – это производные по аргументу, а не по x или t .

Интегрируем второе уравнение (на практике можно продифференцировать первое уравнение):

$$\begin{cases}
-C_1(x) + C_2(x) = \frac{1}{a} \int_{x_0}^x \psi(\xi) d\xi + C \\
C_1(x) + C_2(x) = \varphi(x)
\end{cases}$$

$$C_2(x) = \frac{1}{2a} \int_{x_0}^x \psi(\xi) d\xi + \frac{C}{2} + \frac{\varphi(x)}{2}$$

$$C_1(x) = \frac{\varphi(x)}{2} - \frac{1}{2a} \int_{x_0}^x \psi(\xi) d\xi - \frac{C}{2}$$

Подставляем полученные функции в общее решение:

$$u(x,t) = \frac{\varphi(x-at)}{2} - \frac{1}{2a} \int_{x_0}^{x-at} \psi(\xi)d\xi - \frac{C}{2} + \frac{1}{2a} \int_{x_0}^{x+at} \psi(\xi)d\xi + \frac{C}{2} + \frac{\varphi(x+at)}{2}$$

Тогда:

$$u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$
 (2.2.4)

Формула (2.2.4) называется формулой Д'Аламбера для решения задачи Коши волнового уравнения (для одномерного случая).

2.3 Корректность задачи Коши для волнового уравнения

В предыдущем параграфе мы рассмотрели задачу

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0, \ \mathbb{D} = \{ -\infty < x < +\infty, |t| < T \}$$
$$u|_{t=0} = \varphi(x), \ -\infty < x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), -\infty < x < +\infty$$

и получили формулу Д'Аламбера для её решения

$$u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi$$

Понятие корректной постановки задачи ввёл французский математик Ж. Адамар. Для корректной постановки задачи Коши по определению 2.1.3 необходимо показать существование и единственность решения, а также устойчивость решения от исходных данных. Сам вывод формулы Д'Аламбера (2.2.4) показывает, что решение существует и единственно, т.е. необходимо показать только устойчивость решения от начальных данных.

Введём метрики в пространствах $V_1,\,V_2$ и V соответственно:

$$V_1: \rho_1(\varphi_1, \varphi_2) = \sup_{-\infty < x < +\infty} |\varphi_1(x) - \varphi_2(x)|$$

$$V_2: \rho_2(\psi_1, \psi_2) = \sup_{-\infty < x < +\infty} |\psi_1(x) - \psi_2(x)|$$

$$V: \rho(u_1, u_2) = \sup_{-\infty < x < +\infty, |t| < T} |u_1(x, t) - u_2(x, t)|$$

Надо показать, что $\forall \varepsilon > 0 \; \exists \delta > 0$, такое, что, как только, $\rho_1(\varphi_1, \varphi_2) < \delta$, $\rho_2(\psi_1, \psi_2) < \delta$, то $\rho(u_1, u_2) < \varepsilon$.

Рассмотрим 2 задачи:

$$\begin{cases} \frac{\partial^2 u_i}{\partial t^2} = a^2 \frac{\partial^2 u_i}{\partial x^2}, i = 1, 2\\ u_i|_{t=0} = \varphi_i(x)\\ \frac{\partial u_i}{\partial t}\Big|_{t=0} = \psi_i(x) \end{cases}$$

Оценим разность u_1 и u_2 :

$$|u_1 - u_2| \le \frac{1}{2} |\varphi_1(x + at) - \varphi_2(x + at)| + \frac{1}{2} |\varphi_1(x - at) - \varphi_2(x - at)| + \frac{1}{2a} \int_{-1}^{x+at} |\psi_1(\xi) - \psi_2(\xi)| d\xi \le \frac{\delta}{2} + \frac{\delta}{2a} \int_{-1}^{x+at} d\xi = \delta + \delta |t| \le \delta (1 + T)$$

Если выбрать δ из промежутка $0 < \delta < \frac{\varepsilon}{1+T}$, то получим, что $\rho(u_1,u_2) < \varepsilon$. Таким образом доказываем устойчивость решения по начальным данным. Следовательно задача Коши для волнового уравнения поставлена корректно.

2.4 Пример Адамара некорректно поставленной задачи

Адамар рассмотрел задачу для эллиптического уравнения:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \mathbb{D} = \{ -\infty < x < +\infty, |y| \le T \}$$
 (2.4.1)

$$u\Big|_{y=0} = \varphi(x), -\infty < x < +\infty \tag{2.4.2}$$

$$\frac{\partial u}{\partial y}\Big|_{y=0} = \psi(x), -\infty < x < +\infty$$
 (2.4.3)

Ковалевская доказала разрешимость для случая $\Gamma(y=0)$.

Уравнение (2.4.1) является уравнением типа Ковалевской, т.е. решение этой задачи существует и единственно, по крайней мере локально.

Рассмотрим 2 задачи (проверка на корректность):

$$\begin{cases} \frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_1}{\partial y^2} = 0 \\ u_1|_{y=0} = 0 \\ \frac{\partial u_1}{\partial y}\Big|_{y=0} = 0 \end{cases} \begin{cases} \frac{\partial^2 u_2}{\partial x^2} + \frac{\partial^2 u_2}{\partial y^2} = 0 \\ u_2|_{y=0} = 0 \\ \frac{\partial u_2}{\partial y}\Big|_{y=0} = e^{-\sqrt{n}} cos(nx) \end{cases}$$

Введём метрики в пространствах $V_1,\,V_2$ и V соответственно:

$$V_{1}(\varphi) : \rho_{1}(\varphi_{1}, \varphi_{2}) = \sup_{-\infty < x < +\infty} |\varphi_{1}(x) - \varphi_{2}(x)|$$

$$V_{2}(\psi) : \rho_{2}(\psi_{1}, \psi_{2}) = \sup_{-\infty < x < +\infty} |\psi_{1}(x) - \psi_{2}(x)|$$

$$V(u) : \rho(u_{1}, u_{2}) = \sup_{-\infty < x < +\infty, |t| < T} |u_{1}(x, y) - u_{2}(x, y)|$$

Очевидно, что $u_1(x,y) \equiv 0$, а u_2 построил Адамар и $u_2(x,y) = \frac{1}{n}e^{-\sqrt{n}}cos(nx)sh(ny)$. Рассмотрим:

$$\rho_1(\varphi_1, \varphi_2) = 0 < \delta$$

$$\rho_2(\psi_1,\psi_2) = e^{-\sqrt{n}} < \delta \text{ (оцениваем } cos: |cos(nx)| < 1), \ n > (ln\delta)^2$$

$$\rho(u_1,u_2) \leq \frac{1}{n} e^{-\sqrt{n}} sh(nT)$$

Но

$$\lim_{n \to \infty} \frac{1}{n} e^{-\sqrt{n}} sh(nT) = \infty$$

Значит наше решение не устойчиво по начальным данным, и, следовательно, задача Коши поставлена некорректно.

2.5 Физическая и геометрическая интерпретация формулы Д'Аламбера

Имеем задачу Коши для волнового уравнения

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{2.5.1}$$

$$u|_{t=0} = \varphi(x) \tag{2.5.2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x) \tag{2.5.3}$$

и формулу Д'Аламбера

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$
 (2.5.4)

1. Физическая интерпретация формулы Д'Аламбера

Для того, чтобы получить формулу Д'Аламбера было построено общее решение:

$$u(x,t) = C_1(x-at) + C_2(x+at)$$

Положим, что $C_2 = 0$.

Тогда

$$u(x,t) = C_1(x-at)$$

Далее полагаем, что в начальный момент времени наблюдатель находится в точке с координатами x=C и начинает равномерное движение со скоростью равной a в положительном направлении оси x.

Значит для наблюдателя в момент времени t координата x = C + at. Значит x - at = C. Следовательно для наблюдателя профиль струны будет оставаться постоянным $C_1(C)$. Такое явление называется распространением прямой волны, а функция $C_2(x + at)$ описывает распространение обратной волны.

Итак, чтобы построить профиль струны в произвольный момент времени, необходимо построить $C_1(x)$ и $C_2(x)$, описывающие прямую и обратную волну в начальный момент времени, т.е. при t=0, а затем раздвигать эти кривые в противоположных направлениях с постоянной скоростью. Тогда профиль струны в произвольный момент времени получается, как алгебраическая сумма ординат раздвинутых кривых.

Возьмём начальное отклонение в виде равнобедренного треугольника и будем рассматривать изменение во времени $\Delta t = \frac{x_2 - x_1}{8a}$.

2. Геометрическая интерпретация формулы Д'Аламбера

Введём на фазовой плоскости точку $M_0(x_0,t_0)$ и покажем от чего зависит решение в этой точке.

Согласно формуле Д'Аламбера:

$$u(x_0, t_0) = \frac{\varphi(x_0 + at_0) + \varphi(x_0 - at_0)}{2} + \frac{1}{2a} \int_{x_0 - at_0}^{x_0 + at_0} \psi(\xi) d\xi$$

Проведём через точку M_0 две характеристики:

$$x - at = C_1, \quad x + at = C_2$$

Раз характеристики прошли через точки P и Q соответственно, то $C_1=x_1$ и $C_2=x_2$. И, так как точка M_0 принадлежит этим характеристикам (по построению), то

$$x_0 + at_0 = x_2, \quad x_0 - at_0 = x_1$$

Тогда имеем решение:

$$u(x_0, t_0) = \frac{\varphi(x_2) + \varphi(x_1)}{2} + \frac{1}{2a} \int_{x_1}^{x_2} \psi(\xi) d\xi,$$

а, следовательно, решение в точке (x_0,t_0) полностью определяется значениями функциями φ в точках $P(x_1,0)$ и $Q(x_2,0)$ и значениями функции ψ на отрезке $[x_1,x_2]$.

Треугольник M_0PQ называется характеристическим треугольником. Характеристический треугольник полностью определяет решение в точке M_0 . Это означает, что, если изменить точки за этим треугольником, то решение не изменится.

2.6 Метод Дюамеля для решения задачи Коши для неоднородного волнового уравнения

$$\frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + f(x, t), -\infty < x < +\infty, |t| < T$$
(2.6.1)

$$u|_{t=0} = \varphi(x), -\infty < x < +\infty \tag{2.6.2}$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), -\infty < x < +\infty$$
 (2.6.3)

Дюамель предложил рассмотреть вспомогательную задачу для функции $w_f(x,t,\tau)$:

$$\frac{1}{a^2} \frac{\partial^2 w_f}{\partial t^2} = \frac{\partial^2 w_f}{\partial x^2}, -\infty < x < +\infty, t > \tau, \tag{2.6.4}$$

$$w_f(x, \tau, \tau) = 0, t = \tau, -\infty < x < +\infty$$
 (2.6.5)

$$\frac{\partial w_f}{\partial t}(x, \tau, \tau) = f(x, \tau), -\infty < x < +\infty \tag{2.6.6}$$

Если в задаче (2.6.4)-(2.6.6) применить формулу Д'Аламбера, то получается сдвиг:

$$w_f(x,t,\tau) = w_f(x,t-\tau,\tau) = \frac{1}{2a} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi$$
 (2.6.7)

В то же время, решение задачи 2.6.1-2.6.3 можно записать в виде:

$$u(x,t) = \frac{\partial w_{\varphi}(x,t,0)}{\partial t} + w_{\psi}(x,t,0), \qquad (2.6.8)$$

где $w_{\varphi}(x,t,0)$ – это решение задачи 2.6.4-2.6.6 при $f=\varphi$ и $\tau=0,$ а w_{ψ} – это решение той же задачи при $f=\psi$ и $\tau=0.$

А теперь, используя формулу (2.6.7), получаем:

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$

Таким образом, мы показали, что формула 2.6.8 верна при однородной правой части.

Теорема 2.6.1. Решение задачи 2.6.1 - 2.6.3 с однородными начальными условиями представляется в виде

$$u(x,t) = a^{2} \int_{0}^{t} w_{f}(x,t,\tau)d\tau$$
 (2.6.9)

Доказательство:

Очевидно, что решение (2.6.9) удовлетворяет начальным условиям. Докажем, что оно также удовлетворяет исходному уравнению.

Возьмём производную:

$$\frac{\partial u}{\partial t} = a^2 w_f(x, t, t) + a^2 \int_0^t \frac{\partial w_f(x, t, \tau)}{\partial t} d\tau$$

Из условия (2.6.5) следует, что $w_f(x,t,t)=0.$

Тогда получаем, что $\frac{\partial u}{\partial t} = a^2 \int_0^t \frac{\partial w_f(x,t,\tau)}{\partial t} d\tau$

Считаем вторую производную:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial w_f(x, t, t)}{\partial t} + a^2 \int_0^t \frac{\partial^2 w_f(x, t, \tau)}{\partial t^2} d\tau$$

Из условия (2.6.6) следует, что $\frac{\partial w_f(x,t,t)}{\partial t} = f(x,t)$. Тогда получаем, что

$$\frac{\partial^2 u}{\partial t^2} = a^2 f(x,t) + a^2 \int_0^t \frac{\partial^2 w_f(x,t,\tau)}{\partial t^2} d\tau$$

Учитывая (2.6.4), получаем:

$$\frac{\partial^2 u}{\partial x^2} = a^2 \int_0^t \frac{\partial^2 w_f(x, t, \tau)}{\partial x^2} d\tau = \int_0^t \frac{\partial^2 w_f(x, t, \tau)}{\partial t^2} d\tau$$

Подставим в исходное уравнение и получим:

$$f(x,t) + \int_{0}^{t} \frac{\partial^{2} w_{f}(x,t,\tau)}{\partial t^{2}} d\tau = \int_{0}^{t} \frac{\partial^{2} w_{f}(x,t,\tau)}{\partial t^{2}} d\tau + f(x,t)$$

Таким образом, учитывая теорему 2.6.1 и формулу (2.6.8) решение задачи (2.6.1) – (2.6.3) представляется в виде:

$$u(x,t) = \frac{\partial w_{\varphi}(x,t,0)}{\partial t} + w_f(x,t,0) + a^2 \int_0^t w_f(x,t,\tau) d\tau,$$

а, учитывая (2.6.7), решение нашей исходной задачи представляется в виде:

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi + \frac{a}{2} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau)d\xi d\tau$$
 (2.6.10)

Формула (2.6.10) – формула Дюамеля для решения задачи Коши неоднородного волнового уравнения.

2.7 Решение задачи Коши для волнового уравнения

1. Одномерный случай

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{2.7.1}$$

$$u|_{t=0} = \varphi(x) \tag{2.7.2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x)$$
 (2.7.3)

Решение определяется по формуле Д'Аламбера:

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi$$
 (2.7.4)

2. Двумерный случай

$$\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \tag{2.7.5}$$

$$u|_{t=0} = \varphi(x, y) \tag{2.7.6}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x, y)$$
 (2.7.7)

Решение определяется по формуле Кирхгофа:

$$u(x,y,t) = \frac{1}{2\pi a} \frac{\partial}{\partial t} \left(\int_{|\xi-x| < at} \frac{\varphi(\xi)d\xi}{\sqrt{(at)^2 - |\xi-x|^2}} \right) + \frac{1}{2\pi a} \left(\int_{|\xi-x| < at} \frac{\psi(\xi)d\xi}{\sqrt{(at)^2 - |\xi-x|^2}} \right), (2.7.8)$$

где $\xi = \xi(\xi_1, \xi_2), \ x = x(x,y)$. Т.е. $\varphi(x,y) = x + y \to \varphi(\xi) = \xi_1 + \xi_2$. Интегрирование будем производить по кругу с центром M(x,y) радиуса $|\xi - t|$.

Для того, чтобы посчитать данный интеграл, круг необходимо сдвинуть. Перейдём к полярным координатам:

$$\xi_1 = x + r \cos \varphi$$

$$\xi_2 = y + r \sin \varphi$$

$$d\xi = r dr d\varphi$$

$$0 \le r \le at, \qquad 0 \le \varphi \le 2\pi$$

3. Трёхмерный случай

$$\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \tag{2.7.9}$$

$$u|_{t=0} = \varphi(x, y, z)$$
 (2.7.10)

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x, y, z)$$
 (2.7.11)

Решение определяется по формуле Пуассона:

$$u(x,y,z,t) = \frac{1}{4\pi a^2} \frac{\partial}{\partial t} \left(\frac{1}{t} \int_{|\xi-x|=at} \varphi(\xi) d\xi \right) + \frac{1}{4\pi a^2} \left(\frac{1}{t} \int_{|\xi-x|=at} \psi(\xi) d\xi \right), \tag{2.7.12}$$

где
$$x = x(x, y, z), \xi = \xi(\xi_1, \xi_2, \xi_3).$$

Интегрирование производится по сфере (фиксированный радиус) с центром в точке M(x, y, z)и радиусом at. Для этого перейдём к сферическим координатам:

$$\xi_1 = x + r \cos\varphi \sin\Theta$$

$$\xi_2 = y + r \sin\varphi \sin\Theta$$

$$\xi_3 = z + r \cos\Theta$$

$$d\xi = r^2 \sin\Theta d\Theta d\varphi$$

$$0 \le \varphi \le 2\pi, \qquad 0 \le \Theta \le \pi, \qquad r = at$$

В данном параграфе и в дальнейшем допущена ошибка. Литературно, в двумерном случае формула носит название формулы Пуассона, а в трёхмерном — формулы Кирхгофа. В курсе лекций у формул изменены местами названия. (прим. редактора).

Метод Римана для решения обобщённой задачи Ко-2.8ШИ

На плоскости Oxy рассмотрим линию y = g(x), которая является достаточно гладкой и удовлетворяет условию, что линии $x=x_0$ и $y=y_0$ пересекают её в одной точке. Рассмотрим следующую задачу:

$$\frac{\partial^2 u}{\partial x \partial y} + a(x, y) \frac{\partial u}{\partial x} + b(x, y) \frac{\partial u}{\partial y} + c(x, y) u = f(x, y)$$
(2.8.1)

$$u|_{y=q(x)} = \varphi(x) \tag{2.8.2}$$

$$u|_{y=g(x)} = \varphi(x)$$

$$\frac{\partial u}{\partial y}|_{y=g(x)} = \psi(x)$$
(2.8.2)

При этом $\varphi \in C^2[x_1; x_0], \ \psi \in C^1[x_1, x_0].$

Всякое уравнение гиперболического типа может быть приведено к виду (2.8.1). Задача (2.8.1)-(2.8.3) называется обобщённой задачей Коши для уравнения гиперболического типа.

Необходимо построить решение в точке $M(x_0, y_0)$.

Для нашей задачи (2.8.1)-(2.8.3) линии $x=x_0$ и $y=y_0$ являются характеристиками.

В условии (2.8.3) может вместо $\frac{\partial u}{\partial y}$ быть $\frac{\partial u}{\partial x}$.

Введём дифференциальный оператор Lu и сопряжённый к нему L^*v :

$$Lu = \frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + cu$$
$$L^*v = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial}{\partial x} (av) - \frac{\partial}{\partial y} (bv) + cv$$

Так как операторы сопряжённые, то разность $vLu-uL^*v$ можно представить в виде суммы частных производных по x и y от некоторых функций:

$$vLu - uL^*v = v\left(\frac{\partial^2 u}{\partial x \partial y} + a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} + cu\right) - u\left(\frac{\partial^2 v}{\partial x \partial y} - \frac{\partial}{\partial x}(av) - \frac{\partial}{\partial y}(bv) + cv\right) =$$

$$= v\frac{\partial^2 u}{\partial x \partial y} + av\frac{\partial u}{\partial x} + bv\frac{\partial u}{\partial y} + cvu - u\frac{\partial^2 v}{\partial x \partial y} + u\frac{\partial}{\partial x}(av) + u\frac{\partial}{\partial y}(bv) - cuv =$$

$$= \frac{1}{2}\frac{\partial}{\partial x}\left(v\frac{\partial u}{\partial y} - u\frac{\partial v}{\partial y} + 2auv\right) + \frac{1}{2}\frac{\partial}{\partial y}\left(v\frac{\partial u}{\partial x} - u\frac{\partial v}{\partial x} + 2buv\right) =$$

$$= \frac{\partial H}{\partial x} + \frac{\partial K}{\partial y}$$

Таким образом,

$$vLu - uL^*v = \frac{\partial H}{\partial x} + \frac{\partial K}{\partial y},$$

где

$$H = \frac{1}{2} \left(v \frac{\partial u}{\partial y} - u \frac{\partial v}{\partial y} + 2auv \right), \quad K = \frac{1}{2} \left(v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x} + 2buv \right)$$
 (2.8.4)

Применим к этой разности двумерную формулу Грина:

$$\iint\limits_{\Omega} (vLu - uL^*v) \, dxdy = [\text{т.Грина}] = \int\limits_{\partial\Omega} -Kdx + Hdy \tag{2.8.5}$$

Интеграл, который находится справа от равенства разобьём на три интеграла:

$$\int\limits_{\partial\Omega} -Kdx + Hdy = \int\limits_{MP} -Kdx + Hdy + \int\limits_{PQ} -Kdx + Hdy + \int\limits_{QM} -Kdx + Hdy = I_1 + I_2 + I_3$$

Вычислим интеграл I_1 . Вдоль MP меняется только x, y – фиксировано. Следовательно:

$$I_{1} = \int_{M}^{P} -Kdx + Hdy = -\int_{M}^{P} Kdx = -\frac{1}{2} \int_{M}^{P} \left(v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x} + 2buv \right) dx =$$

$$= \left[\frac{\partial (uv)}{\partial x} = v \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} \right] = -\frac{1}{2} \int_{M}^{P} \left(\frac{\partial (uv)}{\partial x} - 2u \frac{\partial v}{\partial x} + 2buv \right) dx =$$

$$= -\frac{1}{2} (uv) \Big|_{M}^{P} + \int_{M}^{P} u (\frac{\partial v}{\partial x} - bv) dx$$

Интеграл I_2 остаётся без изменений.

Вычислим интеграл I_3 . Вдоль QM меняется только y, x – фиксировано. Следовательно, по аналогии с I_1 :

$$I_3 = \int\limits_Q^M -K dx + H dy = \int\limits_Q^M H dy = \frac{1}{2} \int\limits_Q^M (v \frac{\partial u}{\partial y} - u \frac{\partial v}{\partial y} + 2auv) dy = \frac{1}{2} (uv) \Big|_Q^M - \int\limits_Q^M u (\frac{\partial v}{\partial y} - av) dy$$

Полагаем, что $L^*v=0$. По условию Lu=f. Тогда (2.8.1):

$$\int_{\Omega} v f dx dy = I_1 + I_2 + I_3 = -\frac{1}{2} (uv) \Big|_{M}^{P} + \frac{1}{2} (uv) \Big|_{Q}^{M} + \int_{PQ} -K dx + H dy + \int_{Q} -K dx + H dx + \int_{Q} -K dx + \int_{Q} -K dx + H dx + \int_{Q} -K dx + \int_{Q} -K dx + H dx + \int_{Q} -K dx + \int$$

За счёт выбора функции v сделаем равными 0 последние два интеграла. Получим, что v должно удовлетворять следующим условиям:

$$\frac{\partial v}{\partial x} - bv \Big|_{y=y_0} = 0$$
$$\frac{\partial v}{\partial y} - av \Big|_{x=x_0} = 0$$

Тогда из первого уравнения,

$$\frac{dv(x, y_0)}{v(x, y_0)} = b(x, y_0)dx$$

$$\ln v(x, y_0)\Big|_{x_0}^x = \int_{x_0}^x b(x, y_0)dx$$

Введём условие $v(x_0, y_0) = 1 - y$ словие согласованности. Отсюда $\ln v(x_0, y_0) = 0$. Тогда,

$$v|_{y=y_0} = e^{\int_{x_0}^x b(x,y_0)dx}$$

Аналогично из второго уравнения:

$$v|_{x=x_0} = e^{\int_{y_0}^{y} a(x_0, y) dy}$$

При этом $L^*v=0$.

Таким образом для v получаем следующую задачу:

$$\begin{cases}
L^*v = 0 \\
v|_{y=y_0} = e^{\int_0^x b(x,y_0)dx} \\
v|_{y=y_0} = e^{\int_0^y a(x_0,y)dy} \\
v|_{x=x_0} = e^{\int_0^y a(x_0,y)dy} \\
v(x_0,y_0) = 1
\end{cases} (2.8.6)$$

Таким образом получили задачу для функции v. В этой задаче условия заданы на характеристиках. Линии $x = x_0$ и $y = y_0$ являются xарактеристическими линиями.

Задача, в которой условия заданы на характеристиках, называется задачей Гурса. Из теории известно, что данная задача имеет единственное решение.

Функция $v = v(x, y, x_0, y_0)$ называется функцией Римана.

Вернёмся к функции (2.8.5) и учитывая выбор нашей функции v, получим:

$$\int_{\Omega} v f dx dy = -\frac{1}{2} (uv) \Big|_{M}^{P} + \frac{1}{2} (uv) \Big|_{Q}^{M} + \int_{PQ} -K dx + H dy$$

Остальные интегралы запишем за счёт выбора функции v из условий (2.8.6):

$$-\frac{1}{2}(uv)\Big|_{M}^{P} = -\frac{1}{2}(uv)\Big|_{P} + \frac{1}{2}u(x_{0}, y_{0})$$
$$\frac{1}{2}(uv)\Big|_{Q}^{M} = \frac{1}{2}u(x_{0}, y_{0}) - \frac{1}{2}(uv)\Big|_{Q}$$

В результате получим:

$$u(x_0, y_0) = \frac{1}{2}(uv)\Big|_{P} + \frac{1}{2}(uv)\Big|_{Q} + \int_{PQ} Kdx - Hdy + \int_{\Omega} vfdxdy$$

Подставим K и H и получим:

$$u(x_0, y_0) = \frac{1}{2}(uv)\Big|_{P} + \frac{1}{2}(uv)\Big|_{Q} + \frac{1}{2}\int_{PQ} \left(v\frac{\partial u}{\partial x} - u\frac{\partial v}{\partial x} + 2buv\right)dx - \left(v\frac{\partial u}{\partial y} - u\frac{\partial v}{\partial y} + 2auv\right)dy + \int_{\Omega} vfdxdy$$
(2.8.7)

Формула (2.8.7) называется формулой Римана для решения обобщённой задачи Коши (2.8.1)-(2.8.3).

Для того, чтобы решить задачу (2.8.1)-(2.8.3) методом Римана необходимо:

- 1. Выписать из исходного уравнения задачу Гурса (2.8.6) для функции Римана.
- 2. Решить эту задачу (найти функцию v).
- 3. Найти решение исходной задачи по формуле (2.8.7).

Формулы для практического применения, если условия даны вдоль кривой y = g(x) Рассмотрим:

$$u|_{y=q(x)} = \varphi(x)$$

Точка $P(x_1, y_0)$ – точка пересечения g(x) и $y = y_0$. Очевидно точка $P(x_1, y_0)$ находится на кривой g(x). Значит в этой точке выполняется

$$u(x_1, y_0) = u|_P = \varphi(x_1)$$

Аналогично для точки $Q(x_0, y_1)$

$$u(x_0, y_1) = u|_Q = \varphi(x_0)$$

Рассмотрим $u\Big|_{y=g(x)}$

$$u(x,g(x)) = \varphi(x)$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial g} \frac{\partial g}{\partial x} = \varphi'(x)$$

$$\frac{\partial u}{\partial y} = \psi, \quad \frac{\partial y}{\partial x} = g'(x) \implies$$

$$\frac{\partial u}{\partial x} = \varphi'(x) - \psi(x)g'(x)$$

В конце опустим нули в $u(x_0, y_0)$ и получим решение для каждой точки u(x, y).

Замечание 1.

Решение в точке M зависит только от значений функций φ и ψ на отрезке PQ. Следовательно треугольник MPQ, называемый xapakmepucmuчeckum mpeyroльником, полностью определяет решение в точке M.

Замечание 2.

Если линии $x=x_0$ и $y=y_0$ пересекают линию y=g(x) не в одной точке, к примеру, в случае параболы, в точках Q_1,Q_2,P , то решение в точке M определяется либо характеристическим треугольником MQ_1P , либо характеристическим треугольником MQ_2P , а следовательно решение определяется неоднозначно.

2.9 Решение задачи Коши на полуограниченной прямой. Метод продолжений

Рассмотрим задачу Коши для волнового уравнения на полуограниченной прямой:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{0 < x < +\infty, t > 0\}, \quad u(x, t) \in C^2(\mathbb{D})$$
 (2.9.1)

$$u|_{t=0} = \varphi(x), \ 0 \le x < +\infty, \quad \varphi \in C^2(\mathbb{R}^1)$$
 (2.9.2)

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x < +\infty, \quad \psi \in C^1(\mathbb{R}^1)$$
 (2.9.3)

Так как мы рассматриваем полуограниченную прямую, то необходимо наличие одного из двух граничных условий:

1. 1-го рода: $u|_{x=0} = \mu(t), t \ge 0$

2. 2-го рода:
$$\frac{\partial u}{\partial x}\Big|_{x=0} = \nu(t), \ t \ge 0$$

Также возможно наличие граничного условия 3-го рода, которое представляет из себя комбинацию граничных условий 1-го и 2-го рода. Однако в рамках данного параграфа, внимание на данном типе граничного условия заостряться не будет. Подробнее граничные условия рассмотрим в дальнейшем в главе 3.

Таким образом имеем задачу Коши (2.9.1)-(2.9.3) на полуограниченной прямой.

Лемма 2.9.1. Если начальные условия, т.е. функции $\varphi(x)$ и $\psi(x)$ в задаче Коши на неограниченной прямой

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{-\infty < x < \infty, t > 0\}$$
$$u|_{t=0} = \varphi(x), \ -\infty < x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ -\infty < x < +\infty$$

являются нечётными функциями, относительно некоторой точки $x=x_0$, то решение в этой точке равно 0, т.е. $u\Big|_{x=x_0}=0$.

Доказательство:

Рассмотрим задачу

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{-\infty < x < +\infty, t > 0\}$$
$$u|_{t=0} = \varphi(x), \ -\infty < x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ -\infty < x < +\infty$$

В качестве точки x_0 возьмём точку $x_0 = 0$.

Тогда по условию данной леммы:

$$\varphi(x) = -\varphi(-x)$$

$$\psi(x) = -\psi(-x)$$

Решение данной задачи представляется по формуле Д'Аламбера:

$$u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$

Тогда,

$$u|_{x=0} = \frac{\varphi(-at) + \varphi(at)}{2} + \frac{1}{2a} \int_{-at}^{at} \psi(\xi) d\xi$$

Отсюда первое слагаемое равно 0 в силу нечётности. Второе слагаемое равно 0, как интеграл по симметричному промежутку от нечётной функции.

Следовательно:

$$u|_{x=0} = \frac{\varphi(-at) + \varphi(at)}{2} + \frac{1}{2a} \int_{-at}^{at} \psi(\xi) d\xi = 0$$

Пемма 2.9.2. Если начальные условия, т.е. функции $\varphi(x)$ и $\psi(x)$ в задаче Коши на неограниченной прямой

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{-\infty < x < +\infty, t > 0\}$$
$$u|_{t=0} = \varphi(x), \ -\infty < x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ -\infty < x < +\infty$$

являются чётными функциями, относительно некоторой точки $x=x_0, \ mo \left. \frac{\partial u}{\partial x} \right|_{x=x_0} = 0.$

Доказательство:

Рассмотрим задачу

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{ -\infty < x < +\infty, t > 0 \}$$
$$u|_{t=0} = \varphi(x), \ -\infty < x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ -\infty < x < +\infty$$

В качестве точки x_0 возьмём точку $x_0 = 0$.

Тогда по условию данной леммы:

$$\varphi(x) = \varphi(-x)$$
$$\psi(x) = \psi(-x)$$
$$\varphi'(x) = -\varphi'(-x)$$

Последнее условие исходит из того, что производная чётной функции есть функция нечётная.

Решение данной задачи представляется по формуле Д'Аламбера:

$$u(x,t) = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$

Продифференцируем его по х и получим:

$$\frac{\partial u}{\partial x} = \frac{\varphi'(x-at) + \varphi'(x+at)}{2} + \frac{1}{2a}(\psi(x+at) - \psi(x-at))$$

Тогда,

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = \frac{\varphi'(-at) + \varphi'(at)}{2} + \frac{1}{2a} (\psi(at) - \psi(-at))$$

Отсюда первое слагаемое равно 0 в силу нечётности производной от функции. Второе слагаемое равно 0 в силу чётности функции.

Следовательно:

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = \frac{\varphi'(-at) + \varphi'(at)}{2} + \frac{1}{2a} (\psi(at) - \psi(-at)) = 0$$

Вернёмся к задаче (2.9.1)-(2.9.3).

Рассмотрим исходную задачу с однородным граничным условием 1-го рода:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{0 < x < +\infty, t > 0\}$$
$$u|_{t=0} = \varphi(x), \ 0 \le x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x < +\infty$$
$$u|_{x=0} = 0, \ t \ge 0$$

Наши функции определены для $x \ge 0$.

Построим нечётные продолжения функций φ и ψ :

$$\Phi(x) = \begin{cases} \varphi(x), & x > 0 \\ -\varphi(-x), & x < 0 \end{cases} \quad \Psi(x) = \begin{cases} \psi(x), & x > 0 \\ -\psi(-x), & x < 0 \end{cases}$$

Тогда по формуле Д'Аламбера имеем следующее решение нашей задачи:

$$u(x,t) = \frac{\Phi(x+at) + \Phi(x-at)}{2} + \frac{1}{2a} \int_{x}^{x+at} \Psi(\xi)d\xi$$

Причём в силу леммы 2.9.1 $u|_{x=0} = 0$.

Учитывая исходные условия (2.9.2) и (2.9.3) имеем для нашего решения, что:

$$u|_{t=0} = \varphi(x), \ x > 0$$

 $\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ x > 0$

Функции φ и ψ определены для x>0, но для функции $\Phi(x-at)$ может быть, что x<0. Тогда решение исходной задачи будет иметь вид:

$$u(x,t) = \begin{cases} \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi, \ t < \frac{x}{a}, \ x > 0 \\ \frac{\varphi(x+at) - \varphi(at-x)}{2} + \frac{1}{2a} \int_{at-x}^{x+at} \psi(\xi) d\xi, \ t > \frac{x}{a}, \ x > 0 \end{cases}$$

Таким образом, чтобы решить задачу Коши на полуограниченной прямой с граничным условием 1-го рода, необходимо начальные условия продолжить нечётным образом.

Теперь рассмотрим исходную задачу с однородным граничным условием 2-го рода:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ \mathbb{D} = \{0 < x < +\infty, t > 0\}$$
$$u|_{t=0} = \varphi(x), \ 0 \le x < +\infty$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x < +\infty$$
$$\frac{\partial u}{\partial x}\Big|_{x=0} = 0, \ t \ge 0$$

Наши функции определены для x > 0.

Построим чётные продолжения функций φ и ψ :

$$\Phi(x) = \begin{cases} \varphi(x), & x > 0 \\ \varphi(-x), & x < 0 \end{cases} \quad \Psi(x) = \begin{cases} \psi(x), & x > 0 \\ \psi(-x), & x < 0 \end{cases}$$

Тогда по формуле Д'Аламбера имеем следующее решение нашей задачи:

$$u(x,t) = \frac{\Phi(x+at) + \Phi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \Psi(\xi) d\xi$$

Причём в силу леммы $2.9.2 \left. \frac{\partial u}{\partial x} \right|_{x=0} = 0.$

Тогда по аналогии с граничным условием 1-го рода решение исходной задачи с граничным условием 2-го рода будет иметь вид:

$$u(x,t) = \begin{cases} \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi, \ t < \frac{x}{a}, \ x > 0 \\ \frac{\varphi(x+at) + \varphi(at-x)}{2} + \frac{1}{2a} \int_{0}^{x+at} \psi(\xi) d\xi + \frac{1}{2a} \int_{0}^{x+at} \psi(\xi) d\xi, \ t > \frac{x}{a}, \ x > 0 \end{cases}$$

Таким образом, чтобы решить задачу Коши на полуограниченной прямой с граничным условием 2-го рода, необходимо начальные условия продолжить чётным образом.

2.10 Задача Коши для волнового уравнения в пространстве

$$\Delta u = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} - f(M, t); M(x, y, z), -\infty < x, y, z < +\infty, t > 0$$
$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}, -\infty < x, y, z < +\infty$$

В случае рассмотрения задачи на плоскости:

$$M(x,y), -\infty < x, y < +\infty$$

Тогда оператор Лапласа примет вид:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, -\infty < x, y < +\infty$$

Рассмотрим задачу Коши для волнового уравнения в неограниченном пространстве:

$$\Delta u = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} - f(M, t), M(x, y, z)$$
(2.10.1)

$$u|_{t=0} = \varphi(x, y, z)$$
 (2.10.2)

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x, y, z)$$
 (2.10.3)

Решением задачи (2.10.1)-(2.10.3) будем называть функцию непрерывную со своими производными, входящими в уравнение (2.10.1), и удовлетворяющую условиям (2.10.2)-(2.10.3). Рассмотрим частное решение для однородного уравнения:

$$\Delta u = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$$

Такое частное решение обладает центральной симметрией относительно точки M_0 , т.е. u(M,t)=u(r,t), где $r=r_{MM_0}$ – расстояние между точками M и M_0 .

Тогда можно показать, что v=ru удовлетворяет одномерному волновому уравнению. Запишем оператор Лапласа в сферических координатах:

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} \left(sin(\theta) \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 sin^2(\theta)} \frac{\partial^2 u}{\partial \varphi^2}$$

Но, так как мы рассматриваем функцию не зависящую от φ и θ , а только от r, то получим:

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) = \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial^2}{\partial r^2} (ru)$$

Осуществим проверку:

$$\frac{\partial}{\partial r}(ru) = r\frac{\partial u}{\partial r} + u$$

$$\frac{\partial^2}{\partial r^2}(ru) = \frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} + r\frac{\partial^2 u}{\partial r^2} = 2\frac{\partial u}{\partial r} + r\frac{\partial^2 u}{\partial r^2}$$

Таким образом получили левую часть.

$$\frac{1}{a^2}\frac{\partial^2 u}{\partial t^2} = \frac{1}{a^2}\frac{1}{r}\frac{\partial^2}{\partial t^2}(ru)$$

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(ru) = \frac{1}{ra^2}\frac{\partial^2}{\partial t^2}(ru)$$

Таким образом получили правую часть.

Если теперь ввести замену v = ru, то получим:

$$\frac{\partial^2 v}{\partial r^2} = \frac{1}{a^2} \frac{\partial^2 v}{\partial t^2}$$

Запишем теперь исходную задачу в виде:

$$\Delta u = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$$
$$u|_{t=0} = \varphi(r)$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(r)$$

Тогда для v получим задачу:

$$\begin{cases} \frac{\partial^2 v}{\partial r^2} = \frac{1}{a^2} \frac{\partial^2 v}{\partial t^2} \\ v|_{t=0} = r\varphi(r) \\ \frac{\partial v}{\partial t}\Big|_{t=0} = r\psi(r) \end{cases}$$
(2.10.4)

И, если функция u ограничена при r=0, то получаем, что v(0,t)=0.

А это задача для полуограниченной прямой.

Мы знаем, что общее решение задачи (2.10.4) представимо в виде:

$$v(r,t) = f_1\left(t - \frac{r}{a}\right) + f_2\left(t + \frac{r}{a}\right)$$

Тогда, возвращаясь к функции u, получаем:

$$u(r,t) = \frac{1}{r} f_1 \left(t - \frac{r}{a} \right) + \frac{1}{r} f_2 \left(t + \frac{r}{a} \right)$$

Функция называется расходящейся сферической волной, если она имеет вид:

$$u_1 = \frac{1}{r} f_1 \left(t - \frac{r}{a} \right)$$

Функция называется сходящейся в точку 0 сферической волной, если она имеет вид:

$$u_2 = \frac{1}{r} f_2 \left(t + \frac{r}{a} \right)$$

Таким образом решение представимо в виде суммы сферических волн.

Но, если использовать условие, что $v\Big|_{r=0}=0$, мы получим, что $f_1(t)+f_2(t)=0$. Т.е. $f_2(t)=-f_1(t)=f(t)$

Тогда решение будет иметь вид:

$$u(r,t) = \frac{1}{r}f\left(t + \frac{r}{a}\right) - \frac{1}{r}f\left(t - \frac{r}{a}\right)$$

Если устремить $r \times 0$, то получим производную:

$$u(0,t) = \frac{2}{a}f'(t)$$
 (2.10.5)

2.11Метод усреднения

Рассмотрим задачу:

$$\Delta u = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$$

$$u|_{t=0} = \varphi(M)$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(M)$$
(2.11.1)

Зафиксируем некоторую точку M_0 и введём сферическую систему координат с центром в точке M_0 .

Далее рассмотрим следующую функцию:

$$\widetilde{u}(r,t) = \frac{1}{4\pi r^2} \iint\limits_{S_z} u ds = \frac{1}{4\pi} \iint\limits_{S_z} u d\Omega,$$

где $ds = r^2 d\Omega$, $d\Omega = sin(\theta) d\varphi d\theta$.

Функция \widetilde{u} называется средним значением по сфере.

Можно показать, что функция $v=r\widetilde{u}$ будет удовлетворять одномерному уравнению. Для этого возьмём уравнение $\Delta u=\frac{1}{a^2}\frac{\partial^2 u}{\partial t^2}$ и проинтегрируем его по объёму шара K_r ограниченного сферой S_r :

$$\iiint\limits_K \Delta u d\tau = \frac{1}{a^2} \iiint\limits_K \frac{\partial^2 u}{\partial t^2} d\tau$$

Для преобразования левой части воспользуемся формулой Грина:

$$\iiint\limits_{D} (v\Delta u - u\Delta v)d\tau = \iint\limits_{S} \left(v\frac{\partial u}{\partial n} - u\frac{\partial v}{\partial n}\right)ds,$$

где D – область ограниченная поверхностью Γ (гамма), а n – нормаль поверхности Γ . Возьмём v=1.

Тогда

$$\iiint\limits_{D} \Delta u d\tau = \iint\limits_{S} \frac{\partial u}{\partial n} ds$$

В нашем случае нормаль к сфере – это радиус, т.е. $\frac{\partial u}{\partial n} = \frac{\partial u}{\partial r}$. Тогда получим, что по нашему шару:

$$\iiint_{K_r} \Delta u d\tau = \iint_{S_r} \frac{\partial u}{\partial r} ds = \iint_{S_r} \frac{\partial u}{\partial r} r^2 d\Omega = r^2 \iint_{S_r} \frac{\partial u}{\partial r} d\Omega = 4\pi r^2 \frac{\partial \widetilde{u}}{\partial r}$$
(2.11.2)

Теперь рассмотрим правую часть:

$$\frac{1}{a^2} \iiint_{K_r} \frac{\partial^2 u}{\partial t^2} d\tau = \frac{1}{a^2} \int_0^r \rho^2 d\rho \iint_{S_r} \frac{\partial^2 u}{\partial t^2} d\Omega = \frac{4\pi}{a^2} \int_0^r \rho^2 \frac{\partial^2 \widetilde{u}}{\partial t^2} d\rho$$
 (2.11.3)

Теперь, если продифференцировать (2.11.2) и (2.11.3) по r и ввести замену $v=r\widetilde{u}$, то опять получим, что $\frac{\partial^2 v}{\partial r^2}=\frac{1}{a^2}\frac{\partial^2 v}{\partial t^2}$, т.е. то же, что получили в предыдущем параграфе. Тогда для \widetilde{u} можно записать решение:

$$\widetilde{u}(r,t) = \frac{1}{r}f\left(t + \frac{r}{a}\right) - \frac{1}{r}f\left(t - \frac{r}{a}\right) \tag{2.11.4}$$

Вернёмся к нашему усреднению. Имеем сферическую систему координат в точке M_0 и функцию $\widetilde{u}(r,t)=\frac{1}{4\pi r}\int\limits_{S}\int u ds.$

Тогда $u(M_0, t_0) = \widetilde{u}(0, t_0).$

Используя из предыдущего параграфа формулу (2.10.5) и учитывая (2.11.4), получим:

$$\widetilde{u}(0,t_0) = \frac{2}{a}f'(t_0)$$

Возьмём от формулы Пуассона следующую конструкцию:

$$(r\widetilde{u})_r + \frac{1}{a}(r\widetilde{u})_t = \frac{1}{a}f'\left(t + \frac{r}{a}\right) + \frac{1}{a}f'\left(t - \frac{r}{a}\right) + \frac{1}{a}f'\left(t + \frac{r}{a}\right) - \frac{1}{a}f'\left(t - \frac{r}{a}\right) = \frac{2}{a}f'\left(t + \frac{r}{a}\right)$$

Таким образом получаем:

$$(r\widetilde{u})_r + \frac{1}{a}(r\widetilde{u})_t = \frac{2}{a}f'\left(t + \frac{r}{a}\right)$$

$$r = at_0, t = 0$$

$$\left[(r\widetilde{u})_r + \frac{1}{a}(r\widetilde{u})_t\right]_{r=at_0, t=0} = \frac{2}{a}f'(t_0) = \widetilde{u}(0, t_0) = u(M_0, t_0)$$

Т.е. мы построили решение задачи (2.11.1) в произвольной точке (M_0, t_0) . Таким образом имеем:

$$u(M_0, t_0) = \left[(r\widetilde{u})_r + \frac{1}{a} (r\widetilde{u})_t \right]_{r=at_0, t=0}$$
$$\widetilde{u} = \frac{1}{4\pi} \iint_{S_r} u d\Omega$$

$$u(M_0, t_0) = \left[\frac{1}{4\pi} \iint_{S_r} \frac{\partial}{\partial r} (ru) d\Omega + \frac{1}{4\pi a} \iint_{S_r} \frac{\partial}{\partial t} (ru) d\Omega \right]_{r=at_0, t=0}$$

Помним, что:

$$u\Big|_{t=0} = \varphi$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi$$

Подставляя, получим:

$$u(M,t) = \frac{1}{4\pi} \left(\frac{\partial}{\partial t} t \iint_{S_{at}} \varphi d\Omega + t \iint_{S_{at}} \psi d\Omega \right)$$
 (2.11.5)

Таким образом мы получили формулу Пуассона в случае трёх пространственных переменных методом усреднения.

Т.е. мы получили такую же формулу, как

$$u(M,t) = \frac{1}{4\pi a^2} \left(\frac{\partial}{\partial t} \frac{1}{t} \iint_{S_{at}} \varphi ds + \frac{1}{t} \iint_{S_{at}} \psi ds \right)$$

2.12 Метод спуска

Рассмотрим задачу Коши в случае двух пространственных переменных:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$$
$$u|_{t=0} = \varphi(x, y)$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x, y)$$

Для этой задачи функции φ и ψ не зависят от z, а следовательно интегрирование в формуле Пуассона по сфере можно заменить на интегрирование по кругу, который получается проектированием верхней полусферы на плоскости:

$$d\sigma = dscos(\gamma)$$
$$cos(\gamma) = \frac{\sqrt{(at)^2 - \rho^2}}{at}$$

Аналогично, интегрирование нижней полусферы можно заменить интегрированием по этому же кругу, т.е. взять интеграл дважды.

Т.е. из формулы Пуассона получим:

$$u(x,y,t) = \frac{1}{2\pi a} \frac{\partial}{\partial t} \int_{C_{ct}} \frac{\varphi(\xi,\eta) d\xi d\eta}{\sqrt{(at)^2 - (\xi - x)^2 - (\eta - y)^2}} + \frac{1}{2\pi a} \int_{C_{ct}} \frac{\psi(\xi,\eta) d\xi d\eta}{\sqrt{(at)^2 - (\xi - x)^2 - (\eta - y)^2}},$$

где C_{at} – круг.

Получили формулу Кирхгоффа для решения задачи Коши для волнового уравнения в случае двух пространственных переменных.

Рассмотрим задачу Коши для одномерного волнового уравнения:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$$
$$u|_{t=0} = \varphi(x)$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x)$$

Опять за основу берём формулу Пуассона, но введём сферическую систему координат, направив полярную систему координат вдоль оси \mathbf{x} :

$$\xi = x + r\cos(\theta)$$

$$ds = r^2 sin(\theta) d\theta d\varphi$$

r – фиксированный

Если мы направим вдоль оси x, то мы можем записать :

$$d\xi = -r\sin(\theta)d\theta$$

$$ds = -rd\xi d\varphi$$

Тогда в формуле Пуассона мы проинтегрируем сначала по φ (от 0 до 2π). Тогда останется один интеграл:

$$u(x,t) = \frac{1}{2a} \frac{\partial}{\partial t} \int_{x-at}^{x+at} \varphi(\xi) d\xi + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi$$

Теперь, если продифференцировать первый интеграл по t, то получим:

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2a} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$

Таким образом получили формулу Д'Аламбера для решения задачи Коши в случае одной пространственной переменной.

Формулы Пуассона, Кирхгоффа и Д'Аламбера описывают соответственно сферические, цилиндрические и плоские системы координат.

Метод спуска решает не только гиперболические, но и другие виды уравнений.

2.13 Корректная постановка задачи Коши для уравнения теплопроводности

Рассмотрим уравнение теплопроводности:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{2.13.1}$$

Это уравнение описывает распространение тепла в тонком стержне.

В данном случае $a^2 = \frac{k}{c\rho}$, где k – коэффициент теплопроводности, c – удельная теплоём-кость, ρ – удельная плотность материала.

Уравнение теплопроводности – это уравнение параболического типа.

Запишем уравнение в более общем варианте:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u + f(x, t)$$
 (2.13.2)

Запишем для него задачу Коши:

$$u|_{t=0} = \varphi(x) \tag{2.13.3}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x) \tag{2.13.4}$$

Уравнение (2.13.2) не является уравнением типа Ковалевской. Сложно утверждать существование и единственность решения.

Уравнение параболического типа имеет одно семейство характеристик, а именно t=C. И наше условие получается задано на характеристике, что создаёт определённые проблемы

с разрешимостью.

Рассмотрим уравнение (2.13.2) при t = 0:

$$\psi(x) = \alpha \varphi''(x) + \beta \varphi'(x) + \gamma \varphi + f(x, 0)$$
(2.13.5)

Т.е. если у нас задана функция φ , то функция ψ должна удовлетворять условию (2.13.5), а следовательно не может быть произвольным. Следовательно, для корректной постановки задачи, условие (2.13.4) – лишнее.

Значит, для корректной постановки, задача будет иметь вид:

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u + f(x, t) \\ u|_{t=0} = \varphi(x) \end{cases}$$
 (2.13.6)

Именно в таком виде мы и будем решать задачу в дальнейшем.

2.14 Метод интегральных преобразований для решения задачи Коши для уравнения теплопроводности

Рассмотрим задачу Коши для однородного уравнения теплопроводности:

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u, \ \mathbb{D} = \{ -\infty < x < +\infty, \ t > 0 \} \\ u|_{t=0} = \varphi(x) \end{cases}$$
 (2.14.1)

Введём пространства:

$$V_1 = \{ \varphi \in C_0(-\infty < x < +\infty) \}$$
$$V = \{ u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}}) \}$$

Решать задачу будем методом интегральных преобразований Фурье.

Допустим, у нас имеются два функциональных пространства H_1 и H_2 . И функционал преобразующий H_1 в H_2 , т.е. $\hat{f} = A(f), f = A^{-1}(\hat{f})$.

Оператор являющийся интегральным, называется интегральным оператором.

Конкретно в нашем случае мы будем применять прямое и обратное преобразования Фурье. Прямое преобразование Фурье:

$$\hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{i\lambda x} dx, \ \hat{f}(\lambda) \in L_2(\mathbb{R}^1), \ -\infty < \lambda < +\infty$$

Обратное преобразование Фурье:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\lambda) e^{-i\lambda x} d\lambda, \ f(x) \in L_2(\mathbb{R}^1), \ -\infty < x < +\infty$$

Таким образом имеем полное преобразование Фурье.

Если условие задано на полуограниченной прямой, то применяется разложение либо только по sin, либо только по cos.

Тогда прямое преобразование Фурье по *cos* примет вид:

$$\hat{f}^c(\lambda) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(x) \cos(\lambda x) dx, \ \hat{f}^c(\lambda) \in L_2(\mathbb{R}^1_+), \ 0 \le \lambda < +\infty$$

Обратное преобразование Фурье по *cos* примет вид:

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \hat{f}^{c}(\lambda) cos(\lambda x) d\lambda, \ f(x) \in L_{2}(\mathbb{R}^{1}_{+}), \ 0 \leq x < +\infty$$

Аналогично прямое преобразование Фурье по sin примет вид:

$$\hat{f}^s(\lambda) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(x) \sin(\lambda x) dx, \ \hat{f}^s(\lambda) \in L_2(\mathbb{R}^1_+), \ 0 \le \lambda < +\infty$$

Обратное преобразование Фурье по sin примет вид:

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \hat{f}^{s}(\lambda) \sin(\lambda x) d\lambda, \ f(x) \in L_{2}(\mathbb{R}^{1}_{+}), \ 0 \leq x < +\infty$$

Соответственно, если задано граничное условие первого рода, то применяется sin преобразование Фурье, а если задано граничное условие второго рода, то cos преобразование Фурье.

Некоторые табличные интегралы, необходимые для преобразований:

$$\int_{-\infty}^{+\infty} e^{-z^2} dz = \sqrt{\pi}$$

$$\int_{-\infty}^{+\infty} e^{-z^2} \cos(\beta z) dz = \sqrt{\pi} e^{-\frac{\beta^2}{4}}$$

$$\int_{-\infty}^{+\infty} e^{-\alpha z^2} \cos(\beta z) dz = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\beta^2}{4}}$$

$$\int_{-\infty}^{+\infty} e^{-z^2} \sin(\beta z) dz = 0$$

$$\int_{-\infty}^{+\infty} e^{-\alpha z^2} \sin(\beta z) dz = 0$$

$$\int_{-\infty}^{+\infty} e^{-\alpha z^2} \sin(\beta z) dz = 0$$

Начнём применять интегральные преобразования для решения нашей задачи. Введём образ нашей функции:

$$\hat{u}(\lambda,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(x,t)e^{i\lambda x} dx$$

Домножим наше уравнение (2.14.1) на ядро преобразования $\frac{1}{\sqrt{2\pi}}e^{i\lambda x}$ и проинтегрируем от $-\infty$ до $+\infty$:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial u}{\partial t} e^{i\lambda x} dx = \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 u}{\partial x^2} e^{i\lambda x} dx + \frac{\beta}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial u}{\partial x} e^{i\lambda x} dx + \frac{\gamma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u e^{i\lambda x} dx$$

Интеграл слева не зависит от t, так что можем вынести производную по t, т.е.:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial u}{\partial t} e^{i\lambda x} dx = \frac{\partial \hat{u}}{\partial t}$$

Первый интеграл справа проинтегрируем по частям:

$$\frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 u}{\partial x^2} e^{i\lambda x} dx = \frac{\alpha}{\sqrt{2\pi}} \left(\frac{\partial u}{\partial x} e^{i\lambda x} \Big|_{-\infty}^{+\infty} - i\lambda \int_{-\infty}^{+\infty} \frac{\partial u}{\partial x} e^{i\lambda x} dx \right) =$$

$$= \frac{\alpha}{\sqrt{2\pi}} \left(\frac{\partial u}{\partial x} e^{i\lambda x} \Big|_{-\infty}^{+\infty} - i\lambda u e^{i\lambda x} \Big|_{-\infty}^{+\infty} - \lambda^2 \int_{-\infty}^{+\infty} u e^{i\lambda x} dx \right)$$

Т.к. это физические величины, следовательно:

$$u \xrightarrow[x \to \pm \infty]{} 0$$

$$\frac{\partial u}{\partial x} \xrightarrow[x \to \pm \infty]{} 0$$

Значит первый и второй члены равны нулю. Остаётся третий. Следовательно:

$$\frac{\alpha}{\sqrt{2\pi}} \left(\frac{\partial u}{\partial x} e^{i\lambda x} \Big|_{-\infty}^{+\infty} - i\lambda u e^{i\lambda x} \Big|_{-\infty}^{+\infty} - \lambda^2 \int_{-\infty}^{+\infty} u e^{i\lambda x} dx \right) = -\alpha \lambda^2 \hat{u}(\lambda, t)$$

Следовательно:

$$\frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 u}{\partial x^2} e^{i\lambda x} dx = -\lambda^2 \alpha \hat{u}(\lambda, t)$$

Аналогично вычисляем второй интеграл справа:

$$\frac{\beta}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial u}{\partial x} e^{i\lambda x} dx = \frac{\beta}{\sqrt{2\pi}} \left(u e^{i\lambda x} \Big|_{-\infty}^{+\infty} - i\lambda \int_{-\infty}^{+\infty} u e^{i\lambda x} dx \right) = -i\lambda \beta \hat{u}(\lambda, t)$$

Следовательно:

$$\frac{\beta}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial u}{\partial x} e^{i\lambda x} dx = -i\lambda \beta \hat{u}(\lambda, t)$$

Последний интеграл справа — это преобразование Фурье для самой функции, т.е.:

$$\frac{\gamma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u e^{i\lambda x} = \gamma \hat{u}$$

Т.е. в итоге имеем:

$$\frac{\partial \hat{u}(\lambda, t)}{\partial t} = -\lambda^2 \alpha \hat{u}(\lambda, t) - i\beta \lambda \hat{u}(\lambda, t) + \gamma \hat{u}(\lambda, t)$$

Т.е. если рассматривать λ как параметр, то мы получаем ОДУ:

$$\frac{\partial \hat{u}(\lambda, t)}{\partial t} = (-\lambda^2 \alpha - i\beta \lambda + \gamma)\hat{u}(\lambda, t)$$

Применяя начальное условие $u\Big|_{t=0} = \varphi(x)$ и интегрируя от $-\infty$ до $+\infty$, получаем:

$$\hat{u}|_{t=0} = \hat{\varphi}(\lambda)$$

$$\hat{\varphi}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \varphi(y) e^{i\lambda y} dy$$

Получаем тогда, что:

$$\hat{u}(\lambda, t) = \hat{\varphi}(\lambda)e^{(-\lambda^2\alpha - i\beta\lambda + \gamma)t}$$

Однако мы получили не само решение, а его образ. Для нахождения решения применяем обратное преобразование Фурье. Значит искомая функция, которая является решением исходной задачи будет иметь вид:

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{\varphi}(\lambda) e^{-\alpha\lambda^2 t - i\beta\lambda t + \gamma t - i\lambda x} d\lambda =$$

 $\hat{\varphi}(\lambda)$ и переставим местами интегрирование.] =

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\varphi(y)\int_{-\infty}^{+\infty}e^{-\alpha\lambda^2t-i\beta\lambda t+\gamma t-i\lambda x+i\lambda y}d\lambda dy=\int_{-\infty}^{+\infty}\varphi(y)G(x-y,t)dy,$$

где
$$G(x-y,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\alpha \lambda^2 t - i(\beta t + x - y)\lambda} e^{\gamma t} d\lambda$$
.

Тогда получается, что:

$$G(x-y,t) = \frac{e^{\gamma t}}{2\pi} \int_{-\infty}^{+\infty} e^{-\alpha \lambda^2 t} cos((\beta t + x - y)\lambda) d\lambda =$$

= [Начнём применять интегралы Пуассона (2.14.2).] =

$$=\begin{bmatrix} z^2 = \alpha \lambda^2 t & dz = \sqrt{\alpha t} d\lambda \\ z = \sqrt{\alpha t} \lambda & d\lambda = \frac{1}{\sqrt{\alpha t}} dz \end{bmatrix} = \frac{e^{\gamma t}}{2\pi \sqrt{\alpha t}} \int_{-\infty}^{+\infty} e^{-z^2} \cos\left(\frac{\beta t + x - y}{\sqrt{\alpha t}}z\right) dz = \frac{e^{\gamma t}}{2\sqrt{\alpha \pi t}} e^{-\frac{(\beta t + x - y)^2}{4\alpha t}}$$

Функция G(x-y,t) называется фундаментальным решением уравнения теплопроводности.

Таким образом решение представляется в виде:

$$u(x,t) = \int_{-\infty}^{+\infty} \varphi(y)G(x-y,t)dy$$

Рассмотрим стандартную задачу для теплопроводности стержня:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

$$u|_{t=0} = \varphi(x)$$

Используя фундаментальное решение, получим:

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(y)e^{-\frac{(x-y)^2}{4a^2t}} dy$$

Полученная функция называется интегралом Пуассона.

2.15 Принцип максимума и минимума для уравнения теплопроводности

На плоскости (x,t) рассмотрим открытую область $\Omega = \{a < x < b, \ 0 < t \le T\}$ и замкнутую область $\overline{\Omega} = \Omega \cup l$, где $l = DA \cup AB \cup BC$.

В области Ω рассмотрим однородное уравнение теплопроводности:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{2.15.1}$$

Решение данного уравнения обладает экстремальными свойствами на l.

Теорема 2.15.1. (принцип максимума и минимума для уравнения теплопроводности) Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega})$, удовлетворяет уравнению теплопроводности (2.15.1). То-гда своего минимального и максимального значений, уравнение достигает на l, т.е. $\min_{(x,t)\in l} u(x,t) \leq \max_{(x,t)\in \overline{\Omega}} u(x,t)$.

Доказательство:

Докажем для max методом от противного. Предполагаем, что max достигается в некоторой внутренней точке $M_0(x_0, t_0)$. Т.е., если мы обозначим максимум на линии за $m = \max_{(x,t)\in I} u(x,t)$, то $u(M_0) = m + \varepsilon$, $\varepsilon > 0$.

Введём дополнительную функцию:

$$v(x,t) = u(x,t) + k(t_0 - t), 0 < k < \frac{\varepsilon}{2T},$$

где ε выше, а T – верхняя граница, которая не входит в область.

$$v(x_0, t_0) = u(x_0, t_0) = m + \varepsilon$$

Произведём оценку на линии l:

$$v(x,t) \le \max_{(x,t)\in l} u(x,t) + \frac{\varepsilon}{2T}T$$

Причём $|t_0 - t| \le T$ – внутри области.

T.e.:

$$v(x,t) \le \max_{(x,t)\in l} u(x,t) + \frac{\varepsilon}{2T}T \le m + \frac{\varepsilon}{2}$$

Т.е максимум достигается не на линии.

Возьмём некоторую точку $M_1 \in \Omega$ в которой достигается максимум функции v. Возможны два варианта:

1. Если $M_1 \in \{a < x < b, 0 < t < T\}$. Тогда по свойству max, будет:

$$\frac{\partial v(M_1)}{\partial t} = 0, \ \frac{\partial^2 v(M_1)}{\partial x^2} \le 0$$

2. Если точка принадлежит линии $M_1 \in \{a < x < b, t = T\}$. Тогда:

$$\frac{\partial v(M_1)}{\partial t} \ge 0, \ \frac{\partial^2 v(M_1)}{\partial x^2} \le 0$$

Вычислим производную:

$$\frac{\partial v}{\partial t} = \frac{\partial u}{\partial t} - k \ge 0$$

T.e.:

$$\frac{\partial u}{\partial t} \ge k > 0,$$

a

$$\frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 u}{\partial x^2} \le 0$$

Тогда, если посмотреть на уравнение (2.15.1), то:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2},$$

где $\frac{\partial u}{\partial t} > 0$, а $a^2 \frac{\partial^2 u}{\partial x^2} \le 0$.

Таким образом получили противоречие. Для min аналогично, необходимо домножить на -1.

Следствие 2.15.1. Пусть $u_1, u_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ удовлетворяют однородному уравнению теплопроводности $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$. Тогда, если

$$u_1 \geq u_2, x, t \in l$$

mo

$$u_1 \ge u_2, \ (x,t) \in \overline{\Omega}$$

Т.е. если условие выполняется на линии, то оно будет выполняться и во всей области.

Доказательство:

$$u = u_1 - u_2 \ge \min_{(x,t) \in l} |u_2 - u_1| \ge 0$$

Т.е. условие будет выполняться во всей области.

Следствие 2.15.2. Пусть $u_1, u_2, u_3 \in C^2(\Omega) \cap C(\overline{\Omega})$ удовлетворяют однородному уравнению теплопроводности $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$.

Тогда, если

$$u_1 \ge u_2 \ge u_3, \ x, t \in l,$$

mo

$$u_1 \ge u_2 \ge u_3, \ (x,t) \in \overline{\Omega}$$

Доказательство:

Доказательство сводится к дважды применению следствия 2.15.1.

Следствие 2.15.3. Пусть $u, v \in C^2(\Omega) \cap C(\overline{\Omega})$ удовлетворяют однородному уравнению теплопроводности $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$.

Тогда, если

$$|u| \le v, \ x, t \in l,$$

mo

$$|u| \le v, \ (x,t) \in \overline{\Omega}$$

Доказательство:

Доказательство следует из следствия 2.15.2, при условии, что -v и v соответствуют u_1 и u_3 , а $u=u_2$.

Следствие 2.15.4. Пусть $u\in C^2(\Omega)\cap C(\overline{\Omega})$ удовлетворяет однородному уравнению теплопроводности $\frac{\partial u}{\partial t}=a^2\frac{\partial^2 u}{\partial x^2}.$

Тогда, если

$$|u| \leq \varepsilon, \ x, t \in l,$$

mo

$$|u| \le \varepsilon, \ (x,t) \in \overline{\Omega}$$

Доказательство:

Доказательство следует из следствия 2.15.3.

2.16 Корректность задачи Коши для уравнения теплопроводности

Рассматриваем задачу:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \, \mathbb{D} = \{ -\infty < x < +\infty, \, t > 0 \}$$

$$u|_{t=0} = \varphi(x)$$
(2.16.1)

Введём пространства для функций φ и u:

$$\varphi \in V_1 = \{C_0(\mathbb{R}^1)\}$$
$$u \in V = \{C^2(\mathbb{D}) \cap C_0(\overline{\mathbb{D}})\}$$

Для задачи (2.16.1) ранее было получено решение:

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(y)e^{-\frac{(x-y)^2}{4a^2t}} dy$$
 (2.16.2)

Осуществим исследование на корректность постановки задачи, а именно на существование решения, единственность решения и устойчивую зависимость решения от исходных данных.

1. Существование решения.

Для того, чтобы показать, что функция (2.16.2) является решением задачи (2.16.1), необходимо, чтобы она удовлетворяло уравнению и предельному условию:

$$\lim_{t \to 0} u(x, t) = \varphi(x)$$

Можно показать, что функция (2.16.2) ограничена.

T.к. по условию функция φ ограничена и непрерывна, тогда положим, что

$$|\varphi| \le C$$

И

$$|u(x,t)| \le \frac{C}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2}{4a^2t}} dy = \begin{bmatrix} z^2 = \frac{(x-y)^2}{4a^2t} & dz = \frac{1}{2a\sqrt{t}} dy \\ z = \frac{y-x}{2a\sqrt{t}} & dy = 2a\sqrt{t} dz \end{bmatrix} = \frac{C}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-z^2} 2a\sqrt{t} dz = \frac{C}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} dz = C$$

Следовательно функция u(x,t) ограничена.

Мы вводили функцию $G(x-y,t) = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{(x-y)^2}{4a^2t}}$. При этом решение представлялось в виде:

$$u(x,t) = \int_{-\infty}^{+\infty} \varphi(y)G(x-y,t)dy,$$

где G(x-y,t) – фундаментальное решение уравнения теплопроводности. Так как функция (2.16.2) бесконечно раз дифференцируема, то получаем:

$$L(u) = \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2}$$

$$L(u) = \int_{-\infty}^{+\infty} \varphi(y) L(G(x-y,t)) dy$$

G – удовлетворяет уравнению теплопроводности, а значит и исходному.

2. Единственность решения.

Теорема 2.16.1. Если существует классическое решение из пространства V задачи (2.16.1), то оно единственно.

Доказательство:

Доказательство произведём от противного.

Пусть существуют два решения u_1 и u_2 .

Тогда $w(x,t) = u_1 - u_2$. Но u_1 и u_2 решение (2.16.1). Тогда

$$\frac{\partial w}{\partial t} = a^2 \frac{\partial^2 w}{\partial x^2}$$

$$w|_{t=0} = 0$$

Введём ещё одну функцию:

$$v(x,t) = \frac{2C}{b^2} \left(\frac{x^2}{2} + a^2 t \right)$$

Эта функция удовлетворяет уравнению теплопроводности. Мы полагаем, по первому пункту, что:

$$u_1 \leq C_1$$

$$u_2 \leq C_2$$

Тогда

$$w \le |u_1| + |u_2| \le C_1 + C_2 = C$$

Пусть b — произвольная положительная константа.

Сравним функции v и w в области $\overline{\Omega}_b = \{-b \leq x \leq b, 0 \leq t \leq T\}$. Сравнение будем проводить на границе этой области.

Воспользуемся линиями из теоремы о принципе максимума и минимума 2.15.1. Сравниваем при t=0:

$$w = 0, v > 0$$

Сравниваем при $x = \pm b$:

Таким образом, на границе нашей области, при t=0 и $x=\pm b$, получаем, что $|w| \le v$. Тогда, по следствию 2.15.3 из теоремы о принципе максимума и минимума, получается, что это выполняется и во всей области $\overline{\Omega}_b$. А это означает, что $|w| \le \frac{2C}{b^2}(\frac{x^2}{2} + a^2t)$. Устремим b к бесконечности, получим, что |w| = 0, а, следовательно, решение единственно и $u_1 = u_2$.

По теореме получаем, что решение единственно.

3. Устойчивость или непрерывная зависимость решения от исходных данных.

Полагаем, что

$$\frac{\partial u_i}{\partial t} = a^2 \frac{\partial^2 u_i}{\partial x^2}$$
$$u_i|_{t=0} = \varphi_i(x)$$
$$i = 1, 2$$

Полагаем, что

$$|\varphi_1 - \varphi_2| \le \varepsilon$$

Т.е. φ_1 и φ_2 отличаются на небольшую величину. Тогда:

$$|u_1 - u_2| \le \int_{-\infty}^{+\infty} |\varphi_1 - \varphi_2| G(x - y, t) dy \le \varepsilon \int_{-\infty}^{+\infty} G(x - y, t) dy =$$

$$= [\int\limits_{-\infty}^{+\infty} G(x-y,t) dy = 1$$
, что было показано в первом пункте, когда производилась замена.] $= \varepsilon$

Итак, подводя итог, можно утверждать, что задача Коши для уравнения теплопроводности поставлена корректно.

2.17 Метод последовательных приближений для решения задачи Гурса

 $\it Задача$ $\it Гурса$ – это задача, условия в которой заданы на характеристиках.

Рассмотрим уравнение:

$$\frac{\partial^2 u}{\partial x \partial y} = f(x, y)$$

Его множество характеристик имеет вид:

$$x = C_1$$
$$y = C_2$$

Таким образом возьмем следующие условия:

$$u|_{r=0} = \varphi_1(y)$$

$$u|_{y=0} = \varphi_2(x)$$

Таким образом получим следующую задачу:

$$\frac{\partial^2 u}{\partial x \partial y} = f(x, y) \tag{2.17.1}$$

$$u|_{x=0} = \varphi_1(y) \tag{2.17.2}$$

$$u|_{y=0} = \varphi_2(x) \tag{2.17.3}$$

Такую задачу можно решить в явном виде, проинтегрировав последовательно уравнение (2.17.1) по x и по y.

Проинтегрируем сначала по x и получим:

$$u_y(x,y) = u_y(0,y) + \int_{0}^{x} f(\xi,y)d\xi$$

Теперь проинтегрируем по y и получим:

$$u(x,y) = u(0,y) + u(x,0) - u(0,0) + \int_{0}^{y} \int_{0}^{x} f(\xi,\eta) d\xi d\eta$$

Используя начальные условия (2.17.2) и (2.17.3), получим решение:

$$u(x,y) = \varphi_1(y) + \varphi_2(x) - \varphi_1(0) + \int_0^y \int_0^y f(\xi,\eta) d\xi d\eta$$

Т.е., если уравнение в задаче задано без младших производных, то решение можно построить в явном виде.

Рассмотрим вместо задачи (2.17.1)-(2.17.3) задачу:

$$\frac{\partial^2 u}{\partial x \partial y} = a(x, y) \frac{\partial u}{\partial x} + b(x, y) \frac{\partial u}{\partial y} + c(x, y) u + f(x, y)$$
(2.17.4)

$$u|_{x=0} = \varphi_1(y) \tag{2.17.5}$$

$$u|_{y=0} = \varphi_2(x) \tag{2.17.6}$$

В этом случае, если интегрировать уравнение (2.17.4) и использовать условия (2.17.5)-(2.17.6), то мы получим интегро-дифференциальное уравнение:

$$u(x,y) = \varphi_1(y) + \varphi_2(x) - \varphi_1(0) + \int_0^y \int_0^x f(\xi,\eta) d\xi d\eta + \int_0^y \int_0^x \left(a(\xi,\eta) \frac{\partial u}{\partial \xi} + b(\xi,\eta) \frac{\partial u}{\partial \eta} + c(\xi,\eta) u \right) d\xi d\eta$$

Каким образом применять в таком случае метод последовательных приближений. Берём $u_0 = 0$.

Тогда:

$$u_1(x,y) = \varphi_1(y) + \varphi_2(x) - \varphi_1(0) + \int_0^y \int_0^x f(\xi,\eta) d\xi d\eta$$

Соответственно, имеем:

$$u_n(x,y) = u_1(x,y) + \int_0^y \int_0^x \left(a(\xi,\eta) \frac{\partial u_{n-1}}{\partial \xi} + b(\xi,\eta) \frac{\partial u_{n-1}}{\partial \eta} + c(\xi,\eta) u_{n-1} \right) d\xi d\eta$$

Если мы докажем сходимость последовательности u_n , то, таким образом, построим решение исходной задачи.

Глава 3

Смешанные задачи для уравнений гиперболического и параболического типов

3.1 Смешанные задачи для уравнений гиперболического типа

На плоскости рассмотрим полуограниченную полосу:

$$\mathbb{D} = \{ 0 < x < l, \, t > 0 \}$$

1. Первая смешанная задача.

В области \mathbb{D} рассмотрим волновое уравнение:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{3.1.1}$$

Начальные условия:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x \le l$$
(3.1.2)

Граничные условия 1-го рода:

$$u|_{x=0} = \mu_1(t), t \ge 0$$

$$u|_{x=l} = \mu_2(t), t \ge 0$$
(3.1.3)

Первая смешанная задача состоит в следующем.

При заданных функциях:

$$f_{xx} \in C(\overline{D}), \ \varphi \in C^2(0 \le x \le l), \ \psi \in C^1(0 \le x \le l), \ \mu_i \in C^2(t \ge 0), \ i = 1, 2$$

Необходимо найти функцию:

$$u \in C^2(\overline{\mathbb{D}})$$

Эта функция должна удовлетворять функции (3.1.1), начальным условиям (3.1.2) и граничным условиям первого рода (3.1.3).

Уравнение (3.1.1) описывает процесс колебания струны. Т.е. u – это смещение. Первое начальное условие задаёт профиль струны в начальный момент времени, второе начальное условие задаёт скорость в начальный момент времени, а физический смысл граничных

условий первого рода заключается в том, что концы струны закреплены на определённой высоте, причём высота может меняться со временем, т.к. правая часть граничных условий — функция, зависящая от t.

Для того, чтобы решение было классическим, т.е. $u \in C^2(\overline{\mathbb{D}})$, необходимо выполнение условия согласования в угловых точках (точках стыка), т.е.:

$$\varphi(0) = \mu_1(0), \ \varphi(l) = \mu_2(0)$$

$$\psi(0) = \mu_1'(0), \, \psi(l) = \mu_2'(0)$$

А, так как решение должно принадлежать $C^2(\overline{\mathbb{D}})$, то необходимы непрерывности вторых производных, т.е.:

$$\mu_1''(0) - a^2 \varphi''(0) = f(0,0)$$

$$\mu_2''(0) - a^2 \varphi''(l) = f(l, 0)$$

2. Вторая смешанная задача.

В области \mathbb{D} рассмотрим волновое уравнение:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{3.1.4}$$

Начальные условия:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x \le l$$
(3.1.5)

Граничные условия 2-го рода:

$$\frac{\partial u}{\partial x}\Big|_{x=0} = \mu_1(t), \ t \ge 0$$

$$\frac{\partial u}{\partial x}\Big|_{x=1} = \mu_2(t), \ t \ge 0$$
(3.1.6)

Вторая смешанная задача состоит в следующем.

При заданных функциях:

$$f_{xx} \in C(\overline{D}), \ \varphi \in C^2(0 \le x \le l), \ \psi \in C^1(0 \le x \le l), \ \mu_i \in C^2(t \ge 0), \ i = 1, 2$$

Необходимо найти функцию:

$$u \in C^2(\overline{\mathbb{D}})$$

Эта функция должна удовлетворять функции (3.1.4), начальным условиям (3.1.5) и граничным условиям второго рода (3.1.6).

Уравнение (3.1.4) описывает процесс колебания струны. Т.е. u – это смещение. Первое начальное условие задаёт профиль струны в начальный момент времени, второе начальное условие задаёт скорость в начальный момент времени, а физический смысл граничных условий второго рода заключается в том, что на концы струны действуют заданные силы. Для того, чтобы решение было классическим, т.е. $u \in C^2(\overline{\mathbb{D}})$, необходимо выполнение условия согласования в угловых точках (точках стыка), т.е.:

$$\varphi'(0) = \mu_1(0), \ \varphi'(l) = \mu_2(0)$$

$$\psi'(0) = \mu_1'(0), \ \psi'(l) = \mu_2'(0)$$

А, так как решение должно принадлежать $C^2(\overline{\mathbb{D}})$, то необходимы непрерывности вторых производных, т.е.:

$$\mu_1''(0) - a^2 \varphi''(0) = f(0,0)$$

$$\mu_2''(0) - a^2 \varphi''(l) = f(l, 0)$$

3. Третья смешанная задача.

В области \mathbb{D} рассмотрим волновое уравнение:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{3.1.7}$$

Начальные условия:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x \le l$$
(3.1.8)

Граничные условия 3-го рода:

$$\frac{\partial u}{\partial x} - h(t)u\Big|_{x=0} = \mu_1(t), t \ge 0$$

$$\frac{\partial u}{\partial x} + h(t)u\Big|_{x=l} = \mu_2(t), t \ge 0$$
(3.1.9)

Третья смешанная задача состоит в следующем.

При заданных функциях:

$$f_{xx} \in C(\overline{D}), \ \varphi \in C^2(0 \le x \le l), \ \psi \in C^1(0 \le x \le l), \ \mu_i \in C^2(t \ge 0), \ i = 1, 2; \ h \in C^1(t \ge 0), \ h(t) > 0$$

Необходимо найти функцию:

$$u \in C^2(\overline{\mathbb{D}})$$

Эта функция должна удовлетворять функции (3.1.7), начальным условиям (3.1.8) и граничным условиям третьего рода (3.1.9).

Уравнение (3.1.6) описывает процесс колебания струны. Т.е. u – это смещение. Первое начальное условие задаёт профиль струны в начальный момент времени, второе начальное условие задаёт скорость в начальный момент времени, а физический смысл граничных условий третьего рода заключается в том, что на концы струны действуют упругие силы, т.е. концы движутся, но упругие силы возвращают их в исходное положение.

Для того, чтобы решение было классическим, т.е. $u \in C^2(\overline{\mathbb{D}})$, необходимо выполнение условия согласования в угловых точках (точках стыка), т.е.:

$$\varphi'(0) - h(0)\varphi(0) = \mu_1(0)$$

$$\varphi'(l) + h(0)\varphi(l) = \mu_2(0)$$

$$\psi'(0) - h'(0)\varphi(0) - h(0)\psi(0) = \mu'_1(0)$$

$$\psi'(l) + h'(0)\varphi(l) + h(0)\psi(l) = \mu'_2(0)$$

А, так как решение должно принадлежать $C^2(\overline{\mathbb{D}})$, то необходимы непрерывности вторых производных, т.е.:

$$\mu_1''(0) - a^2 \varphi''(0) = f(0,0)$$

$$\mu_2''(0) - a^2 \varphi''(l) = f(l,0)$$

4. Обобщённая смешанная задача.

В области \mathbb{D} рассмотрим волновое уравнение:

$$\rho \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) + qu = f(x, t)$$
(3.1.10)

Начальные условия:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x \le l$$
(3.1.11)

Обобщённые граничные условия:

$$\alpha_1 \frac{\partial u}{\partial x} - \beta_1 u \Big|_{x=0} = \mu_1(t), \ t \ge 0$$

$$\alpha_2 \frac{\partial u}{\partial x} - \beta_2 u \Big|_{x=l} = \mu_2(t), \ t \ge 0$$
(3.1.12)

Необходимо найти функцию $u \in C^2(\overline{\mathbb{D}})$, которая должна удовлетворять функции (3.1.10), начальным условиям (3.1.11) и обобщенным граничным условиям (3.1.12).

Уравнение (3.1.10) описывает процесс колебания неоднородной струны. Т.е. u – это смещение. Первое начальное условие задаёт профиль струны в начальный момент времени, второе начальное условие задаёт скорость в начальный момент времени, а граничные условия обобщенного рода включают в себя граничные условия первого, второго и третьего рода в зависимости от значений коэффициентов α_1 , α_2 , β_1 , β_2 .

3.2 Постановка смешанных задач для уравнения теплопроводности

На плоскости рассмотрим полуограниченную полосу:

$$\mathbb{D} = \{0 < x < l, \, t > 0\}$$

1. Первая смешанная задача.

В области $\mathbb D$ рассмотрим уравнение теплопроводности:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{3.2.1}$$

Начальное условие:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$
 (3.2.2)

Граничные условия 1-го рода:

$$u|_{x=0} = \mu_1(t), t \ge 0$$

$$u|_{x=l} = \mu_2(t), t \ge 0$$
(3.2.3)

Первая смешанная задача состоит в следующем.

При заданных функциях:

$$f \in C(\overline{D}), \varphi \in C(0 \le x \le l), \mu_i \in C(t \ge 0), i = 1, 2$$

Необходимо найти функцию:

$$u \in C^{2,1}_{x,t}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$$

$$C^{2,1}_{x,t} \Longleftrightarrow u, u_x, u_{xx}, u_t$$
 – непрерывны.

Эта функция должна удовлетворять функции (3.2.1), начальному условию (3.2.2) и граничным условиям первого рода (3.2.3).

Уравнение (3.2.1) описывает процесс распространения тепла в тонком стержне. Функция u(x,t) задаёт температуру стержня в сечении x в момент времени t. Начальное условие

(3.2.2) задаёт температуру стержня в каждом сечении x в начальный момент времени t=0, а физический смысл граничных условий первого рода (3.2.3) заключается в том, что на концах стержня поддерживаются заданные температуры $\mu_1(t)$ и $\mu_2(t)$.

Для того, чтобы решение было классическим, т.е. $u \in C^{2,1}_{x,t}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, необходимо выполнение условия согласования в угловых точках (точках стыка), т.е.:

$$\varphi(0) = \mu_1(0), \ \varphi(l) = \mu_2(0)$$

2. Вторая смешанная задача.

В области \mathbb{D} рассмотрим уравнение теплопроводности:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{3.2.4}$$

Начальное условие:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$
 (3.2.5)

Граничные условия 2-го рода:

$$\frac{\partial u}{\partial x}\Big|_{x=0} = \mu_1(t), t \ge 0$$

$$\frac{\partial u}{\partial x}\Big|_{x=1} = \mu_2(t), t \ge 0$$
(3.2.6)

Вторая смешанная задача состоит в следующем.

При заданных функциях:

$$f \in C^{1}(\overline{D}), \varphi \in C^{1}(0 \le x \le l), \mu_{i} \in C(t \ge 0), i = 1, 2$$

Необходимо найти функцию:

$$u \in C^{2,1}_{x,t}(\mathbb{D}) \cap C^1(\overline{\mathbb{D}})$$

$$C_{x,t}^{2,1} \Longleftrightarrow u, u_x, u_{xx}, u_t$$
 – непрерывны.

Эта функция должна удовлетворять функции (3.2.4), начальному условию (3.2.5) и граничным условиям второго рода (3.2.6).

Уравнение (3.2.4) описывает процесс распространения тепла в тонком стержне. Функция u(x,t) задаёт температуру стержня в сечении x в момент времени t. Начальное условие (3.2.5) задаёт температуру стержня в каждом сечении x в начальный момент времени t=0, а физический смысл граничных условий второго рода (3.2.6) заключается в том, что на концы стержня подаётся заданный тепловой поток.

Для того, чтобы решение было классическим, т.е. $u \in C^{2,1}_{x,t}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, необходимо выполнение условия согласования в угловых точках (точках стыка), т.е.:

$$\varphi'(0) = \mu_1(0), \ \varphi'(l) = \mu_2(0)$$

3. Третья смешанная задача.

В области \mathbb{D} рассмотрим уравнение теплопроводности:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{3.2.7}$$

Начальное условие:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$
 (3.2.8)

Граничные условия 3-го рода:

$$\frac{\partial u}{\partial x} - h(t)u\Big|_{x=0} = \mu_1(t), t \ge 0$$

$$\frac{\partial u}{\partial x} + h(t)u\Big|_{x=l} = \mu_2(t), t \ge 0$$
(3.2.9)

Третья смешанная задача состоит в следующем.

При заданных функциях:

$$f \in C^{1}(\overline{D}), \varphi \in C^{1}(0 \le x \le l), \mu_{i} \in C(t \ge 0), i = 1, 2; h \in C(t \ge 0)$$

Необходимо найти функцию:

$$u \in C^{2,1}_{x,t}(\mathbb{D}) \cap C^1(\overline{\mathbb{D}})$$

$$C_{x,t}^{2,1} \Longleftrightarrow u, u_x, u_{xx}, u_t$$
 – непрерывны.

Эта функция должна удовлетворять функции (3.2.7), начальному условию (3.2.8) и граничным условиям третьего рода (3.2.9).

Уравнение (3.2.7) описывает процесс распространения тепла в тонком стержне. Функция u(x,t) задаёт температуру стержня в сечении x в момент времени t. Начальное условие (3.2.8) задаёт температуру стержня в каждом сечении x в начальный момент времени t=0, а физический смысл граничных условий третьего рода (3.2.9) заключается в том, что на концах стержня происходит теплообмен с внешней средой.

Для того, чтобы решение было классическим, т.е. $u \in C^{2,1}_{x,t}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, необходимо выполнение условия согласования в угловых точках (точках стыка), т.е.:

$$\varphi'(0) - h(0)\varphi(0) = \mu_1(0)$$

$$\varphi'(l) + h(0)\varphi(l) = \mu_2(0)$$

Деление на типы смешанных задач происходит по виду граничных условий.

3.3 Задача Штурма-Лиувилля

На экзамене будут спрашивать формулировки свойств собственных значений и собственных функций из следующего параграфа, а именно свойства 3.4.1, 3.4.2, 3.4.3, 3.4.4, 3.4.5, 3.4.6(прим. редактора).

Задача Штурма-Лиувилля является задачей для обыкновенного ДУ и служит вспомогательной задачей для решения смешанных задач методом разделения переменных.

Рассмотрим ДУ 2-го порядка:

$$\frac{d}{dx}\left(k(x)\frac{dX}{dx}\right) - q(x)X(x) + \lambda\rho(x)X(x) = 0$$
(3.3.1)

Уравнение рассматривается на отрезке прямой 0 < x < l, при условии $k(x) \in C^1(0 \le x \le l)$, $q(x) \in C(0 \le x \le l)$ и $\rho \in C(0 \le x \le l)$. Причём k(x) > 0, $q(x) \ge 0$, $\rho(x) > 0$. Функция $X(x) \in C^2(0 < x < l) \cap C^1(0 < x < l)$.

К уравнению (3.3.1) присоединим граничные условия вида:

$$\alpha_1 X'(x) - \beta_1 X(x) \Big|_{x=0} = 0$$
 (3.3.2)

$$\alpha_2 X'(x) + \beta_2 X(x) \Big|_{x=l} = 0$$
 (3.3.3)

Причём α_i , $\beta_i \geq 0$, $\alpha_i^2 + \beta_i^2 \neq 0$, i = 1, 2.

Задача Штурма-Лиувилля состоит в нахождении собственных значений λ уравнения (3.3.1) и соответствующих им собственных функций $X(x) \not\equiv 0$.

Введём дифференциальный оператор:

$$L(X) = \frac{d}{dx} \left(k(x) \frac{dX}{dx} \right) - q(x)X(x)$$

Тогда те же значения λ из задач (3.3.1)-(3.3.3), для которых существуют нетривиальные функции X(x), составляют спектр этого дифференциального оператора, а задача (3.3.1)-(3.3.3) распадается на три задачи:

1.
$$\begin{cases} L(X) + \lambda \rho X(x) = 0 \\ X(0) = 0 \\ X(l) = 0 \end{cases}$$

2.
$$\begin{cases} L(X) + \lambda \rho X(x) = 0 \\ X'(0) = 0 \\ X'(l) = 0 \end{cases}$$

3.
$$\begin{cases} L(X) + \lambda \rho X(x) = 0 \\ \alpha_1 X'(0) - \beta_1 X(0) = 0 \\ \alpha_2 X'(l) + \beta_2 X(l) = 0 \end{cases}$$

3.4 Свойства собственных значений и собственных функций задачи Штурма-Лиувилля

Рассмотрим в общей постановке задачу Штурма-Лиувилля:

$$\begin{cases} L(X) + \lambda \rho X(x) = 0\\ \alpha_1 X'(0) - \beta_1 X(0) = 0\\ \alpha_2 X'(l) + \beta_2 X(l) = 0 \end{cases}$$
(3.4.1)

Рассмотрим свойства собственных значений и собственных функций задачи Штурма-Лиувилля (3.4.1).

Свойство 3.4.1. Существует бесконечная дискретная последовательность собственных значений λ_n , $n=1,2,\ldots$ и собственных функций X_n , $n=1,2,\ldots$, которые являются решением задачи:

$$\begin{cases} L(X_n) + \lambda_n \rho X_n(x) = 0 \\ \alpha_1 X'_n(0) - \beta_1 X_n(0) = 0 \\ \alpha_2 X'_n(l) + \beta_2 X_n(l) = 0 \end{cases}$$

Свойство 3.4.2. Каждому собственному значению соответствует только одна собственная функция, определённая с точностью до постоянного множителя.

Свойство 3.4.3. Собственные функции задачи Штурма-Лиувилля (3.4.1) образуют ортогональную систему функций с весом $\rho(x)$, т.е. $\int_{0}^{l} X_{n}(x)X_{m}(x)\rho(x)dx = ||X_{n}||^{2}\delta_{nm}$. Доказательство:

Рассмотрим операторную функцию:

$$vL(u) - uL(v), u, v \in C^2(0 < x < l) \cap C^1(0 < x < l)$$

$$vL(u) - uL(v) = v\frac{d}{dx}\left(k(x)\frac{du}{dx}\right) - vqu - u\frac{d}{dx}\left(k(x)\frac{du}{dx}\right) + uqv = \frac{d}{dx}\left(k(x)\left(v\frac{du}{dx} - u\frac{v}{dx}\right)\right)$$

Теперь проинтегрируем полученную функцию от 0 до l:

$$\int_{0}^{l} (vL(u) - uL(v))dx = \left(k(x)\left(v\frac{du}{dx} - u\frac{dv}{dx}\right)\right)\Big|_{x=0}^{x=l}$$

Таким образом получили формулу Грина для этого оператора.

Теперь возьмём в качестве $v = X_n(x)$, а в качестве $u = X_m(x)$. Т.е. собственные функции задачи Штурма-Лиувилля.

Получим:

$$\int_{0}^{l} (X_n L(X_m) - X_m L(X_n)) = k(l)(X_n(l)X'_m(l) - X_m(l)X'_n(l)) - k(0)(X_n(0)X'_m(0) - X_m(0)X'_n(0))$$

Если имеем граничные условия первого или второго рода, то справа очевидно 0. Покажем справедливость для граничного условия третьего рода.

Из уравнения задачи Штурма-Лиувилля имеем:

$$L(X_n) = -\lambda_n \rho X_n$$

Из граничных условий будем иметь:

$$X'_n(0) = \frac{\beta_1}{\alpha_1} X_n(0), \ X'_m(0) = \frac{\beta_1}{\alpha_1} X_m(0)$$

И

$$X'_n(l) = -\frac{\beta_2}{\alpha_2} X_n(l), X'_m(l) = -\frac{\beta_2}{\alpha_2} X_m(l)$$

Тогда получаем, что:

$$\int\limits_0^l (-X_n\lambda_m X_m \rho(x) + X_m\lambda_n X_n \rho(x)) dx =$$

$$= k(l) \underbrace{\left(-\frac{\beta_2}{\alpha_2} X_m(l) X_n(l) + \frac{\beta_2}{\alpha_2} X_m(l) X_n(l)\right)}_{\text{очевидно равно 0}} - k(0) \left(X_n(0) \frac{\beta_1}{\alpha_1} X_m(0) - X_m(0) \frac{\beta_1}{\alpha_1} X_n(0)\right)$$

Итого имеем:

$$(\lambda_n - \lambda_m) \int_0^l \rho(x) X_n(x) X_m(x) dx = 0$$

Т.е., если $\lambda_n \neq \lambda_m$, тогда получаем, что

$$\int_{0}^{l} \rho X_n X_m dx = 0,$$

а, если $\lambda_n = \lambda_m$, тогда получаем, что

$$\int_{0}^{l} \rho(x) X_{n}^{2} dx = ||X_{n}||^{2}$$

Свойство 3.4.4. Все собственные значения задачи Штурма-Лиувилля являются действительными числами.

Свойство 3.4.5. Все собственные значения λ_n задачи Штурма-Лиувилля являются положительными числами $\lambda_n > 0$ и равны нулю, если граничными условиями являются граничные условия второго рода.

Доказательство:

Рассмотрим операторное уравнение:

$$L(X_n) + \lambda_n \rho X_n = 0$$

Домножим это уравнение на X_n и проинтегрируем от 0 до l:

$$\int_{0}^{l} L(X_n)X_n dx + \lambda_n \int_{0}^{l} \rho X_n^2 dx = 0$$

Получаем, что:

$$\lambda_n \|X_n\|^2 = -\int_0^l \frac{d}{dx} \left(k(x) \frac{dX_n}{dx} \right) X_n(x) dx + \int_0^l q(x) X_n^2 dx =$$

$$= -\left(k(x) \frac{dX_n}{dx} X_n(x) \right) \Big|_0^l + \int_0^l k(x) (X_n')^2 dx + \int_0^l q(x) X_n^2 dx = [\text{по предыдущему доказательству}] =$$

$$= k(l) \frac{\beta_2}{\alpha_2} \underbrace{X_n^2(l)}_{\geq 0} + k(0) \frac{\beta_1}{\alpha_1} \underbrace{X_n^2(0)}_{\geq 0} + \underbrace{\int_0^l k(x) (X_n')^2 dx}_{\geq 0} + \underbrace{\int_0^l q(x) \|X_n\|^2 dx}_{\geq 0}$$

Т.е. вся правая часть ≥ 0 . Тогда получаем, что $\lambda_n \geq 0$. Возникает вопрос, когда может быть равно 0. Положим:

$$\lambda_0 = 0, \ q = 0, \ k \neq 0, \ X_0' = 0, \ \text{r.e.} \ X_0 = const$$

Для того, чтобы $\lambda_0=0$, необходимо, например, чтобы $\beta_1=0$ и $\beta_2=0$, что является условием второго рода.

Т.е., только при условиях второго рода, $\lambda_0=0$ является собственным значением. Тогда собственные функции постоянны.

Свойство 3.4.6. (Теорема Стеклова)

Если есть функция:

$$f(x) \in C^2(0 < x < l) \cap C^1(0 \le x \le l), f'' \in L_2(0, l)$$

u

$$\begin{cases} \alpha_1 f'(0) - \beta_1 f(0) = 0 \\ \alpha_2 f'(l) + \beta_2 f(l) = 0 \end{cases},$$

то функция f(x) раскладывается в равномерно сходящийся ряд по собственным функциям $f(x) = \sum_{n=1}^{\infty} f_n X_n(x)$, где $f_n = \frac{1}{\|X_n\|^2} \int\limits_0^l f(x) \rho(x) X_n(x) dx$.

3.5 Общая схема метода разделения переменных

Рассмотрим смешанную задачу для уравнения гиперболического типа:

$$\rho(x)\frac{\partial^2 u}{\partial t^2} - L(u) = 0 \tag{3.5.1}$$

$$u|_{t=0} = \varphi(x)$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x)$$
(3.5.2)

$$\alpha_1 \frac{\partial u}{\partial x} - \beta_1 u \Big|_{x=0} = 0$$

$$\alpha_2 \frac{\partial u}{\partial x} + \beta_2 u \Big|_{x=l} = 0$$
(3.5.3)

Рассмотрим уравнение (3.5.1) и однородное граничное условие (3.5.3). Решение ищем в виде произведения функций:

$$u(x,t) = X(x)T(t),$$

где $X(x)\not\equiv 0,\, T(t)\not\equiv 0.$ Подставим операторную функцию

$$L(u) = \frac{d}{dx} \left(k(x) \frac{du}{dx} \right) - qu$$

в уравнение

$$\rho(x)T''X - L(X)T = 0$$

Делим полученное выражение на ρXT и получаем:

$$\frac{T''}{T} = \frac{L(X)}{\rho X}$$

Так как слева функция зависит только от t, а справа только от x, то это может быть только константа. Переобозначим:

$$\frac{T''}{T} = \frac{L(X)}{\rho X} = -\lambda$$

Получаем два уравнения:

$$T'' + \lambda T = 0 \tag{3.5.4}$$

$$L(X) + \lambda \rho X = 0 \tag{3.5.5}$$

Подставляем представление решения в первое граничное условие (3.5.3):

$$(\alpha_1 X'(0) - \beta_1 X(0))T(t) = 0$$

Так как $T(t) \not\equiv 0$, то получаем условие:

$$\alpha_1 X'(0) - \beta_1 X(0) = 0 \tag{3.5.6}$$

Аналогично для второго граничного условия (3.5.3) получаем:

$$\alpha_2 X'(l) + \beta_2 X(l) = 0 \tag{3.5.7}$$

Таким образом получаем, что (3.5.5)-(3.5.7) — задача Штурма-Лиувилля для исходной задачи.

Пусть λ_n – собственные значения для этой задачи, а X_n – собственные функции.

Если $\lambda_0 = 0$ является собственным значением, то полагаем, что $X_0 = 1$. Если $\lambda_0 = 0$ не является собственным значением, то полагаем, что $X_0 = 0$.

Для найденных собственных значений λ_n решаем уравнение (3.5.4) для T:

$$T_n'' + \lambda_n T_n = 0$$

Так как мы доказали, что λ_n – положительны, то это значит, что корни характеристического уравнения комплексно сопряжённые. Тогда

$$\nu_n^2 = -\lambda_n \qquad \nu_n = \pm \sqrt{\lambda_n} i$$

$$T_n(t) = A_n \cos\left(\sqrt{\lambda_n}t\right) + B_n \sin\left(\sqrt{\lambda_n}t\right)$$

Если $\lambda_0 = 0$ является собственным значением, то для T_0 имеем уравнение $T_0''(t) = 0$, и его общее решение имеет вид $T_0 = A_0 t + B_0$. Тогда имеем для исходного уравнение общее решение вида $u_0 = A_0 t_n + B_0$.

Таким образом имеем множество частных решений:

$$u_n = \left(A_n \cos\left(\sqrt{\lambda_n}t\right) + B_n \sin\left(\sqrt{\lambda_n}t\right)\right) X_n(x)$$

Так как исходное уравнение однородно, то решение будем искать как сумму однородного и частных решений:

$$u(x,t) = A_0 t + B_0 + \sum_{n=1}^{\infty} \left(A_n \cos\left(\sqrt{\lambda_n}t\right) + B_n \sin\left(\sqrt{\lambda_n}t\right) \right) X_n(x)$$

В данном решении не известны коэффициенты A_n и B_n .

Для их нахождения используем начальные условия (3.5.2).

Подставляем в первое начальное условие:

$$u|_{t=0} = B_0 + \sum_{n=1}^{\infty} A_n X_n(x) = \varphi(x)$$

Раскладываем в ряд Фурье по собственным функциям:

$$\varphi_n = \frac{1}{\|X_n\|^2} \int_0^l \varphi(x) \rho(x) X_n(x) dx$$

Откуда

$$A_n = \varphi_n, \ n = 1, \dots$$
$$B_0 = \varphi_0$$

Подставляем во второе начальное условие:

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = A_0 + \sum_{n=1}^{\infty} \sqrt{\lambda_n} B_n X_n(x) = \psi(x)$$

Раскладываем в ряд по собственным функциям:

$$\psi(x) = \sum_{n=1}^{\infty} \psi_n X_n, \quad A_0 = \psi_0, \quad B_n = \frac{\psi_n}{\sqrt{\lambda_n}}$$

Таким образом построили решение:

$$u(x,t) = \psi_0 t + \varphi_0 + \sum_{n=1}^{\infty} \left(\varphi_n \cos\left(\sqrt{\lambda_n}t\right) + \frac{\psi_n}{\sqrt{\lambda_n}} \sin\left(\sqrt{\lambda_n}t\right) \right) X_n(x)$$

Но, для того, чтобы этот ряд был решением смешанной задачи (3.5.1)-(3.5.3), необходимо, чтобы этот ряд сходился. Покажем это в дальнейшем.

3.6 Решение методом разделения переменных первой смешанной задачи для волнового уравнения

Смешанная задача — это задача, получаемая присоединением к начальным условиям граничных.

Рассмотрим задачу с однородным граничным условием:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \, \mathbb{D} = \{t > 0, \, 0 < x < l\}$$
(3.6.1)

$$u|_{x=0} = 0, t \ge 0$$

 $u|_{x=l} = 0, t \ge 0$ (3.6.2)

Если на границах задана сама функция, то это граничное условие первого рода, если производная — второго рода, если их комбинация — третьего рода. Соответственно вводятся понятия первой, второй и третьей смешанной задачи.

Подробнее эти понятия рассматривались в начале этой главы.

В данном случае рассматриваем первую смешанную задачу, со следующими начальными условиями:

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \ 0 \le x \le l$$
(3.6.3)

Введём пространства, которые необходимы для разложения в ряд Фурье:

$$V_1 = \{ \varphi \in C^2(0, l); \varphi'' \in L_2(0, l); \varphi''(0) = \varphi''(l) = \varphi(0) = \varphi(l) = 0 \}$$

$$V_2 = \{ \psi \in C^1(0, l); \psi'' \in L_2(0, l); \psi(0) = \psi(l) = 0 \}$$

$$V = \{ u \in C^2(\overline{\mathbb{D}}) \}$$

Метод разделения переменных.

Будем искать решение в виде:

$$u(x,t) = X(x) \cdot T(t)$$
, где $X(x) \not\equiv 0, T(t) \not\equiv 0$

Подставляя это представление в уравнение (3.6.1), получим:

$$XT'' = a^2TX''$$

Разделим полученное уравнение на a^2XT :

$$\frac{T''}{a^2T} = \frac{X''}{X}$$

Таким образом получили, что слева функция зависит только от t, а справа только от x. Т.е. это может быть только константа. Обозначим её за $-\lambda$. Но, так как по свойству (3.4.5) $\lambda > 0$, то переобозначим $\lambda = \lambda^2$ и получим:

$$\frac{T''}{a^2T} = \frac{X''}{X} = -\lambda^2 = const$$

Из этого уравнения получаем два дифференциальных уравнения:

$$T'' + \lambda^2 a^2 T = 0$$
$$X'' + \lambda^2 X = 0$$

Подставим представление нашего решения в граничные условия (3.6.2):

$$u|_{x=0}=X(0)T(t)=0$$
 Из того, что $T(t)\not\equiv 0\Rightarrow X(0)=0$
$$u|_{x=l}=X(l)T(t)=0\Rightarrow X(l)=0$$

Присоединяя эти условия к уравнению для X, получим:

$$\begin{cases} X'' + \lambda^2 X = 0 \\ X(0) = 0 \\ X(l) = 0 \end{cases}$$
 (3.6.4)

Таким образом получили (3.6.4) – **задачу Штурма-Лиувилля** или задачу на нахождение собственных значений λ и собственных функций X.

Задача Штурма-Лиувилля и ОДУ составляет характеристическое уравнение:

$$\nu^2 + \lambda^2 = 0$$

Т.к. корни комплексно сопряжённые, то:

$$X(x) = A\cos(\lambda x) + B\sin(\lambda x)$$

Подставим полученное в условия задачи Штурма-Лиувилля:

$$X(0) = A = 0$$
$$X(l) = B\sin(\lambda l) = 0$$

Но, если B=0, получаем тривиальное решение $(X(x)\equiv 0)$. Тогда:

$$sin(\lambda l) = 0$$

$$\lambda_n l = \pi n, \quad n = 1, 2, 3 \dots$$

$$\lambda_n = \frac{\pi n}{l}, \quad n = 1, 2, 3 \dots$$

Таким образом получили собственные значения нашей задачи Штурма-Лиувилля. Значит:

$$X_n = Bsin\left(\frac{\pi n}{l}x\right)$$

Положим, без нормировки, B = 1. Тогда:

$$X_n = \sin\left(\frac{\pi n}{l}x\right)$$

Собственные функции образуют ортогональную систему, которую можно разложить в ряд Фурье.

Теперь рассмотрим однородное уравнение:

$$T_n'' + a^2 \lambda_n^2 T_n = 0$$

ОДУ – линейное, корни – комплексно сопряжённые:

$$T_n = A_n cos(a\lambda_n t) + B_n sin(a\lambda_n t)$$

Имеем множество частных решений:

$$u_n(x,t) = X_n T_n$$

Это множество удовлетворяет исходному уравнению и граничным условиям.

Так как исходное уравнение линейное и однородное, то решение можно найти как сумму частных решений неоднородного уравнения:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} X_n T_n = \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{\pi na}{l}t\right) + B_n \sin\left(\frac{\pi na}{l}t\right) \right) \sin\left(\frac{\pi n}{l}x\right)$$

Нам неизвестны коэффициенты A_n и B_n для построения решения. Их мы найдём из начальных условий (3.6.3). Там мы имеем следующее:

$$u|_{t=0} = \sum_{n=1}^{\infty} A_n \sin\left(\frac{\pi n}{l}x\right) = \varphi(x)$$

Так как $sin\left(\frac{\pi n}{l}x\right)$ — система ортогональных функций, то раскладываем функцию в ряд Фурье:

$$\varphi(x) = \sum_{n=1}^{\infty} \varphi_n \sin\left(\frac{\pi n}{l}x\right)$$

$$\varphi_n = \frac{2}{l} \int_0^l \varphi(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

Отсюда следует, что $A_n = \varphi_n$.

Таким образом, имеем разложение функции $\varphi(x)$ в ряд Фурье:

$$\varphi(x) = \sum_{n=1}^{\infty} \varphi_n X_n$$

Умножим скалярно и получаем:

$$(\varphi, X_m) = \sum_{n=1}^{\infty} \varphi_n(X_n, X_m)$$

$$(X_n, X_m) = \begin{cases} 0, n \neq m \\ ||X_n||^2, n = m \end{cases}$$

Тогда получаем, что у нас останется:

$$\varphi_m = \frac{(\varphi, X_m)}{\|X_m\|^2} = \frac{\int\limits_0^l \varphi X_m dx}{\|X_m\|^2}$$

Значит

$$\int_{0}^{l} \sin\left(\frac{2\pi n}{l}x\right) dx = \frac{l}{2} = \frac{1}{\frac{2}{l}}$$

Таким образом получили квадрат нормы.

Теперь рассмотрим второе начальное условие:

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \sum_{n=1}^{\infty} B_n \frac{\pi n a}{l} sin\left(\frac{\pi n}{l}x\right) = \psi(x)$$

Функцию $\psi(x)$ аналогично раскладываем в ряд Фурье по собственным значениям. В нашем случае:

$$\psi(x) = \sum_{n=1}^{\infty} \psi_n \sin\left(\frac{\pi n}{l}x\right)$$

Приравниваем и получаем:

$$B_n = \frac{l}{\pi na} \psi_n$$

Таким образом:

$$\psi_n = \frac{2}{l} \int_0^l \psi(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

В итоге получаем:

$$u(x,t) = \sum_{n=1}^{\infty} \left(\varphi_n \cos\left(\frac{\pi na}{l}t\right) + \frac{l}{\pi na} \psi_n \sin\left(\frac{\pi na}{l}t\right) \right) \sin\left(\frac{\pi n}{l}x\right)$$

Таким образом мы построили решение нашей задачи (3.6.1)-(3.6.3). Однако это формальное решение. Чтобы это было действительным, необходимо показать, что ряд сходится. Метод разделения ещё называют методом Фурье.

3.7 Сведение смешанных задач с неоднородными граничными условиями к задачам с однородными граничными условиями

Рассмотрим смешанную задачу с неоднородными граничными условиями:

$$\rho(x)\frac{\partial^2 u}{\partial t^2} - L(u) = f(x, t)$$
$$u|_{t=0} = \varphi(x)$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x)$$

$$\alpha_1 \frac{\partial u}{\partial x} - \beta_1 u\Big|_{x=0} = \mu_1(t)$$

$$\alpha_2 \frac{\partial u}{\partial x} + \beta_2 u\Big|_{x=1} = \mu_2(t)$$

Решение задачи будем искать в виде суммы двух функций:

$$u(x,t) = w(x,t) + v(x,t)$$

За счёт выбора функции w можно задать задачу для v с однородными граничными условиями.

Получаем:

$$\rho(x)\frac{\partial^2 v}{\partial t^2} - L(v) = \overline{f}(x,t)$$

$$v|_{t=0} = \overline{\varphi}(x)$$

$$\frac{\partial v}{\partial t}|_{t=0} = \overline{\psi}(x)$$

$$\alpha_1 \frac{\partial v}{\partial x} - \beta_1 v\Big|_{x=0} = \overline{\mu_1}(t)$$

$$\alpha_2 \frac{\partial v}{\partial x} + \beta_2 v\Big|_{x=l} = \overline{\mu_2}(t)$$

Где

$$\overline{f}(x,t) = f(x,t) - \rho(x) \frac{\partial^2 w}{\partial t^2} + L(w)$$

Т.е. здесь, в зависимости от w, может появиться неоднородность.

$$\overline{\varphi}(x) = \varphi(x) - w(x,0)$$

$$\overline{\psi}(x) = \psi(x) - \frac{\partial w(x,0)}{\partial t}$$

$$\overline{\mu_1} = \mu_1 - \left(\alpha_1 \frac{\partial w(0,t)}{\partial x} - \beta_1 w(0,t)\right)$$

$$\overline{\mu_2} = \mu_2 - \left(\alpha_2 \frac{\partial w(l,t)}{\partial x} + \beta_2 w(l,t)\right)$$

Так как мы хотим, чтобы $\overline{\mu_1}$ и $\overline{\mu_2}$ стали равны 0, то w выбирается из условий:

$$\begin{cases} \alpha_1 \frac{\partial w}{\partial x} - \beta_1 w \Big|_{x=0} = \mu_1(t) \\ \alpha_2 \frac{\partial w}{\partial x} + \beta_2 w \Big|_{x=1} = \mu_2(t) \end{cases}$$

Если $\mu_i, i=1,2$ и f не зависят от t, то можно построить задачу, но в общем случае w выбирается из этих условий.

Тогда

$$w(x,t) = a(t)x + b(t)$$

$$\begin{cases} x = 0 : \\ \alpha_1 a - \beta_1 b = \mu_1 \\ x = l : \\ \alpha_2 a + \beta_2 a l + \beta_2 b = \mu_2 = (\alpha_2 + \beta_2 a) l + \beta_2 b \end{cases}$$

Тогда

$$a = \frac{\mu_1 \beta_2 + \mu_2 \beta_1}{\alpha_1 \beta_2 + \beta_1 (\alpha_2 + \beta_2 l)}$$
$$b = \frac{\alpha_1 \mu_2 - (\alpha_2 + \beta_2 l) \mu_1}{\alpha_1 \beta_2 + \beta_1 (\alpha_2 + \beta_2 l)}$$

Если имеем граничное условие второго рода, т.е. $\beta_1 = 0$ и $\beta_2 = 0$ и система вырождена, т.е. det = 0, то искать в таком виде нельзя.

Для граничного условия второго рода можно искать в виде:

$$w(x,t) = a(t)x^2 + b(t)x$$

Для граничного условия первого рода можно искать в виде:

$$w(x,t) = \mu_1(t) + \frac{x}{l}(\mu_2(t) - \mu_1(t))$$

Для v необходимо выписывать начальные задачи, остальное без изменений. Если функции f, μ_1 и μ_2 не зависят от t, т.е. f = f(x), а μ_1 и μ_2 – константы, тогда решение мы ищем в виде:

$$u(x,t) = v(x,t) + w(x,t)$$

Для v мы получаем следующую задачу:

$$\rho(x)\frac{\partial^2 v}{\partial t^2} - L(v) = \overline{f}$$

$$v|_{t=0} = \overline{\varphi}$$

$$\frac{\partial v}{\partial t}\Big|_{t=0} = \overline{\psi}$$

$$\alpha_1 \frac{\partial v}{\partial x} - \beta_1 v\Big|_{x=0} = \overline{\mu_1}$$

$$\alpha_2 \frac{\partial v}{\partial x} + \beta_2 v\Big|_{x=l} = \mu_2$$

Где наши функции имеют вид:

$$\overline{f} = f(x) + L(w)$$

$$\overline{\varphi} = \varphi(x) - w(x)$$

$$\overline{\psi} = \psi(x)$$

$$\overline{\mu}_1 = \mu_1 - \left(\alpha_1 \frac{\partial w}{\partial x} - \beta_1 w\right) \Big|_{x=0}$$

$$\overline{\mu}_2 = \mu_2 - \left(\alpha_1 \frac{\partial w}{\partial x} + \beta_2 w\right) \Big|_{x=l}$$

Таким образом мы сделаем так, чтобы наши функции равнялись 0. Т.е.:

$$\overline{f} = 0, \quad \overline{\mu_1} = 0, \quad \overline{\mu_2} = 0$$

Следовательно, мы получили следующую задачу Коши для w:

$$\begin{cases} L(w) = -f \\ \alpha_1 \frac{\partial w}{\partial x} - \beta_1 w \Big|_{x=0} = \mu_1 \\ \alpha_2 \frac{\partial w}{\partial x} + \beta_2 w \Big|_{x=l} = \mu_2 \end{cases}$$

Т.е. для нахождения функции w мы получаем задачу Коши для w. В таком случае для v мы получаем заведомо однородное уравнение.

3.8 Решение методом разделения переменных смешанных задач для неоднородного уравнения

В предыдущих параграфах мы показали, что любую смешанную задачу можно свести к задаче вида:

$$\rho(x)\frac{\partial^2 u}{\partial t^2} - L(u) = f(x,t) \tag{3.8.1}$$

$$u|_{t=0} = \varphi(x) \tag{3.8.2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x) \tag{3.8.3}$$

$$\alpha_1 \frac{\partial u}{\partial x} - \beta_1 u \Big|_{x=0} = 0 \tag{3.8.4}$$

$$\alpha_2 \frac{\partial u}{\partial x} + \beta_2 u \Big|_{x=l} = 0 \tag{3.8.5}$$

Под сведением подразумевается создание однородности в граничных условиях. В случае, если у нас задача с неоднородным уравнением, решение ищем в виде:

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) X_n(x),$$
(3.8.6)

где $X_n(x)$ – есть собственные функции соответствующей задачи Штурма-Лиувилля для задачи (3.8.1)-(3.8.5) в предположении, что уравнение однородное:

$$\begin{cases} L(X) + \lambda \rho X = 0 \\ \alpha_1 X'(0) - \beta_1 X(0) = 0 \\ \alpha_2 X'(l) + \beta_2 X(l) = 0 \end{cases}$$

Т.е. эти граничные условия записываются по виду граничных условий исходной задачи. Выписывается задача Штурма-Лиувилля и ищутся собственные значения и собственные функции, и подставляются в представление (3.8.6), считая, что T_n – неизвестны. Затем, полученное представление, подставляем в (3.8.1)-(3.8.3), предварительно разложив f(x,t), $\varphi(x)$ и $\psi(x)$ в ряд Фурье по собственным функциям:

$$\frac{f(x,t)}{\rho(x)} = \sum_{n=1}^{\infty} g_n(t) X_n(x)$$

$$g_n(t) = \frac{1}{\|X_n\|^2} \int_0^l f(x,t) X_n(x) dx$$

$$\varphi(x) = \sum_{n=1}^{\infty} \varphi_n(x) X_n(x)$$

$$\varphi_n = \frac{1}{\|X_n\|^2} \int_0^l \varphi(x) \rho(x) X_n(x) dx$$

$$\psi(x) = \sum_{n=1}^{\infty} \psi_n X_n(x)$$

$$\psi_n = \frac{1}{\|X_n\|^2} \int_0^l \psi(x) \rho(x) X_n(x) dx$$

Подставим полученное представление в (3.8.1)-(3.8.3) и получим:

$$\rho \sum_{n=1}^{\infty} T_n'' X_n(x) - \sum_{n=1}^{\infty} T_n L(X_n(x)) = \rho \sum_{n=1}^{\infty} g_n X_n(x)$$

Из уравнения задачи Штурма-Лиувилля следует, что:

$$L(X_n) = -\lambda_n \rho X_n$$

Т.е. мы имеем:

$$\rho \sum_{n=1}^{\infty} T_n'' X_n(x) + \rho \sum_{n=1}^{\infty} \lambda_n T_n X_n(x) = \rho \sum_{n=1}^{\infty} g_n X_n(x)$$

Так как собственные функции образуют ортогональную систему, т.е. они линейно независимы, значит мы можем приравнять ряды, и, соответствующие коэффициенты, в силу линейной независимости, совпадут:

$$T_n'' + \lambda_n T_n = g_n \tag{3.8.7}$$

Подставляем представление (3.8.6) в первое начальное условие (3.8.2):

$$\sum_{n=1}^{\infty} T_n(0) X_n = \sum_{n=1}^{\infty} \varphi_n X_n$$

Т.е. имеем условие:

$$T_n(0) = \varphi_n \tag{3.8.8}$$

Аналогично подставляем представление во второе начальное условие (3.8.3):

$$\sum_{n=1}^{\infty} T_n'(0)X_n = \sum_{n=1}^{\infty} \psi_n X_n$$

Т.е. имеем условие:

$$T_n'(0) = \psi_n (3.8.9)$$

Итого, имеем задачу Коши (3.8.6)-(3.8.9) для ОДУ для нахождения T_n :

$$\begin{cases} T_n'' + \lambda_n T_n = g_n \\ T_n(0) = \varphi_n \\ T_n'(0) = \psi_n \end{cases}$$

Решаем ОДУ. Решение будет состоять из двух слагаемых:

$$T_n(t) = T_n^{\text{одн.}} + T_n^{\text{неодн.}}$$

Тогда решение однородного получается из следующей системы:

$$T_n^{\text{одн.}} = A_n cos \left(\sqrt{\lambda_n} t\right) + B_n sin \left(\sqrt{\lambda_n} t\right)$$

$$T_n^{\text{одн.}}\Big|_{t=0} = A_n = \varphi_n$$

$$T_n^{'\text{одн.}}\Big|_{t=0} = \sqrt{\lambda_n} B_n = \psi_n$$

Откуда получаем:

$$A_n = \varphi_n$$

$$B_n = \frac{\psi_n}{\sqrt{\lambda_n}}$$

Таким образом наше однородное решение будет иметь вид:

$$T_n^{\text{\tiny OQH-}} = \varphi_n cos \left(\sqrt{\lambda_n} t \right) + \frac{\psi_n}{\sqrt{\lambda_n}} sin \left(\sqrt{\lambda_n} t \right)$$

В случае неоднородного, решение уже было получено ранее методом последовательных приближений и имеет вид:

$$T_n^{\text{неодн.}} = \frac{1}{\sqrt{\lambda_n}} \int_0^t g_n(\tau) sin\left(\sqrt{\lambda_n}(t-\tau)\right) d\tau$$

Итак, решение всей задачи будет иметь вид:

$$u(x,t) = \sum_{n=1}^{\infty} \left(\varphi_n \cos\left(\sqrt{\lambda_n}t\right) + \frac{\psi_n}{\sqrt{\lambda_n}} \sin\left(\sqrt{\lambda_n}t\right) \right) X_n(x) + \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{\lambda_n}} \int_0^t g_n(\tau) \sin\left(\sqrt{\lambda_n}(t-\tau)\right) d\tau \right) X_n(x)$$

Это решение получается в случае, если у нас $\lambda_0=0$ не является собственным значением. Нам уже известно, что $\lambda_0=0$ является собственным значением, в случае, если β_1 и β_2 равны 0, т.е., если мы имеем граничные условия второго рода. Если $\lambda_0=0$ – собственное значение, то берём $X_0=1$. Тогда:

$$\begin{cases} T_0'' = g_0 \\ T_0(0) = \varphi_0 \\ T_0'(0) = \psi_0 \end{cases}$$

Тогда решение имеет вид:

$$T_0 = \underbrace{\psi_0 t + \varphi_0}_{\text{однородная часть}} + \underbrace{\int\limits_0^t g_0(au)(t- au)d au}_{\text{неоднородная часть}}$$

Значит, если мы имеем граничное условие второго рода, то решение исходной задачи будет иметь вид:

$$u(x,t) = \varphi_0 t + \psi_0 + \int_0^t g_0(\tau)(t-\tau)d\tau + \sum_{n=1}^\infty \left(\varphi_n \cos\left(\sqrt{\lambda_n}t\right) + \frac{\psi_n}{\sqrt{\lambda_n}}\sin\left(\sqrt{\lambda_n}t\right)\right) X_n(x) + \sum_{n=1}^\infty \left(\frac{1}{\sqrt{\lambda_n}} \int_0^t g_n(\tau)\sin\left(\sqrt{\lambda_n}(t-\tau)\right)d\tau\right) X_n(x)$$

Т.е. добавилось одно слагаемое со собственной функцией равной 1.

3.9 Решение методом разделения переменных первой смешанной задачи для уравнения теплопроводности

Рассмотрим для однородного уравнения теплопроводности первую смешанную задачу:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \, \mathbb{D} = \{0 < x < l, \, 0 < t < \infty\}$$
(3.9.1)

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$
 (3.9.2)

$$u|_{x=0} = 0, \ t \ge 0 \tag{3.9.3}$$

$$u|_{x=l} = 0, \ t \ge 0 \tag{3.9.4}$$

Так как в дальнейшем мы будем доказывать корректность, сразу введём пространства для функций φ и u:

$$V_0 = \{ \varphi(x) \in C(0 \le x \le l), \ \varphi'(x) \in L_2(0, l), \ \varphi(0) = \varphi(l) = 0 \}$$
$$V = \{ u(x, t) \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}}) \}$$

Т.е. будем искать классическое решение при условии на функции φ . Ищем решение следующим способом:

- 1. Смотрим на граничные условия они однородные.
- 2. Смотрим на начальную функцию (3.9.1) она однородная.

Значит решение ищем в виде:

$$u(x,t) = X(x)T(t)$$

Подставляем это представление в исходное уравнение (3.9.1):

$$T'X = a^2TX''$$

Делим полученное равенство на a^2XT :

$$\frac{T'}{a^2T} = \frac{X''}{X}$$

A, так как слева функция, зависящая только от T, а справа только от X, то это может быть только константа. Переобозначим:

$$\frac{T'}{a^2T} = \frac{X''}{X} = -\lambda$$

Таким образом получаем уравнения для T и X соответственно:

$$T' + \lambda a^2 T = 0 \tag{3.9.5}$$

$$X'' + \lambda X = 0 \tag{3.9.6}$$

Подставляем первое граничное условие (3.9.3) и получаем:

$$X(0)T(t) = 0$$

A, так как $T(t) \not\equiv 0$, получаем:

$$X(0) = 0 (3.9.7)$$

Аналогично, подставляем второе граничное условие (3.9.4) и получаем:

$$X(l)T(t) = 0$$

А, так как, опять же, $T(t) \not\equiv 0$, получаем:

$$X(l) = 0 (3.9.8)$$

Таким образом получаем задачу (3.9.6)-(3.9.8) – задачу Штурма-Лиувилля или задачу на собственные значения и собственные функции:

$$\begin{cases} X'' + \lambda X = 0 \\ X(0) = 0 \\ X(l) = 0 \end{cases}$$

Для этой задачи получаем решение:

$$X(x) = A\cos\left(\sqrt{\lambda}x\right) + B\sin\left(\sqrt{\lambda}x\right)$$

Подставляем полученное решение в условие (3.9.7). Тогда:

$$A=0$$
 и $Bsin\left(\sqrt{\lambda}l\right)=0$

Так как B=0 нас не устраивает, потому что приводит к тривиальному решению, значит $B \neq 0$. Тогда получаем следующие собственные значения:

$$\sqrt{\lambda}l = \pi n, n = 1, 2, \dots$$

$$\lambda_n = \left(\frac{\pi n}{l}\right)^2, n = 1, 2, \dots$$

Тогда, полагая без нормировки, B = 1, получаем следующие собственные функции:

$$X_n = sin\left(\frac{\pi n}{l}x\right), n = 1, 2, \dots$$

Таким образом получили решение задачи Штурма-Лиувилля.

Рассмотрим уравнение (3.9.5).

Решение этого уравнения:

$$T_n' + \left(\frac{\pi na}{l}\right)^2 T_n = 0$$

будет иметь вид:

$$T_n(t) = A_n e^{-(\frac{\pi na}{l})^2 t}$$

Таким образом мы получили множество частных решений:

$$u_n(x,t) = A_n e^{-\left(\frac{\pi na}{l}\right)^2 t} sin\left(\frac{\pi n}{l}x\right)$$

Данное множество удовлетворяет однородному уравнению (3.9.1) и граничным условиям (3.9.3) и (3.9.4).

А, так как исходное уравнение однородно и линейно, то решение всей задачи можем искать в виде суммы частных решений:

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{\pi n a}{l}\right)^2 t} sin\left(\frac{\pi n}{l}x\right)$$

В данном представлении неизвестны коэффициенты A_n . Их найдём из начального условия (3.9.2):

$$u|_{t=0} = \sum_{n=1}^{\infty} A_n \sin\left(\frac{\pi n}{l}x\right) = \varphi(x)$$

Для этого функцию φ , как обычно, раскладываем в ряд Фурье по собственным функциям:

$$\varphi_n = \frac{2}{l} \int_{0}^{l} \varphi(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

Тогда

$$A_n = \varphi_n, n = 1, 2, \dots$$

И тогда решение нашей задачи будет иметь вид:

$$u(x,t) = \sum_{n=1}^{\infty} \varphi_n e^{-(\frac{\pi na}{l})^2 t} sin\left(\frac{\pi n}{l}x\right)$$

$$\varphi_n = \frac{2}{l} \int_{0}^{l} \varphi(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

3.10 Корректность первой смешанной задачи для уравнения теплопроводности

Рассмотрим для однородного уравнения теплопроводности первую смешанную задачу:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \, \mathbb{D} = \{0 < x < l, \, 0 < t < \infty\}$$
(3.10.1)

$$u|_{t=0} = \varphi(x), \ 0 \le x \le l$$
 (3.10.2)

$$u|_{x=0} = 0, \ t \ge 0 \tag{3.10.3}$$

$$u|_{x=l} = 0, t \ge 0 (3.10.4)$$

Введём пространства для функций φ и ψ соответственно:

$$V_0 = \{ \varphi(x) \in C[0, l], \ \varphi'(x) \in L_2(0, l), \ \varphi(0) = \varphi(l) = 0 \}$$
$$V = \{ u(x, t) \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}}) \}$$

Решение задачи (3.10.1)-(3.10.4) в предыдущем параграфе мы получили в виде ряда:

$$u(x,t) = \sum_{n=1}^{\infty} \varphi_n e^{-\left(\frac{\pi n a}{l}\right)^2 t} \sin\left(\frac{\pi n}{l}x\right)$$
(3.10.5)

$$\varphi_n = \frac{2}{l} \int_0^l \varphi(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

Итак, для того, чтобы показать корректность задачи, необходимо:

1. Для $\forall \varphi \in V_0$ показать *существование* решения $u \in V$.

- 2. Для $\forall \varphi \in V_0$ показать единственность решения $u \in V$.
- 3. Для $\forall \varphi \in V_0$ показать устойчивость решения $u \in V$ по входным данным.

1. Существование решения.

Решение построено по формуле (3.10.5), но необходимо показать, что оно является классическим, т.е. $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$.

Лемма 3.10.1. Если функция $\varphi \in C[0,l]$, то функция u(x,t), представленная рядом (3.10.5), любое число раз непрерывно дифференцируема по переменным x u t s области $\Omega = \{-\infty < x < \infty, \ 0 < t < \infty\}$.

Доказательство:

Если $\varphi \in C[0,l]$, то полагаем, что функция ограничена, т.е. $|\varphi(x)| \leq C$. Тогда:

$$\varphi_n = \frac{2}{l} \int_{0}^{l} \varphi(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

И

$$|\varphi_n| \le \frac{2}{l} \int_0^l C dx = 2C$$

Возьмём k-ую производную по переменной t от функции u(x,t):

$$\frac{\partial^k u}{\partial t^k} = \sum_{n=1}^{\infty} \varphi_n(x) (-1)^k \left(\frac{\pi na}{l}\right)^{2k} e^{-(\frac{\pi na}{l})^2 t} sin\left(\frac{\pi n}{l}x\right)$$

Дифференцировать ряд можно, если он сходится равномерно. Построим мажорантный ряд при $t_0 \le t < \infty$:

$$\left|\frac{\partial^k u}{\partial t^k}\right| \leq \left[\sin \leq 1\right] \leq \sum_{n=1}^{t_0 \leq t < \infty} |\varphi_n| \left|\frac{\pi na}{l}\right|^{2k} e^{-(\frac{\pi na}{l})^2 t_0} < \left[|\varphi_n| < C\right] < \infty$$

Следовательно мажорантный ряд сходится. Тогда исходный ряд сходится равномерно. И тогда возможно дифференцирование под бесконечной суммой. А в силу произвольности t_0 , можно утверждать, что это справедливо и во всей области.

Аналогично можно доказать существование любых производных, вида:

$$\frac{\partial^{\alpha_1 + \alpha_2} u}{\partial t^{\alpha_1} \partial x^{\alpha_2}} = \sum_{n=1}^{\infty} \frac{\partial^{\alpha_1 + \alpha_2} u_n}{\partial t^{\alpha_1} \partial x^{\alpha_2}}$$

Следствие 3.10.1. Если в исходном уравнении (3.10.1) ввести дифференциальный оператор $Lu = \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2}$, то мы получим, что $Lu = \sum_{n=1}^{\infty} Lu_n = 0$, так как u_n – частное решение уравнения (3.10.1).

T.е. мы показали, что $u \in C^2(\mathbb{D})$.

Необходимо показать теперь, что $u \in C(\overline{\mathbb{D}})$.

Рассмотрим наш коэффициент φ_n и проинтегрируем его по частям:

$$\varphi_n = \frac{2}{l} \int\limits_0^l \varphi(x) sin\left(\frac{\pi n}{l}x\right) dx = \frac{2}{l} \left(-\frac{l}{\pi n} \varphi(x) cos\left(\frac{\pi n}{l}x\right)\Big|_0^l + \frac{l}{\pi n} \int\limits_0^l \varphi'(x) cos\left(\frac{\pi n}{l}x\right) dx\right) =$$

$$= [\text{Используя условие } \varphi(0) = \varphi(l) = 0, \text{ получим в первом слагаемом } 0.] = \frac{l}{\pi n} \psi_n,$$

где
$$\psi_n = \frac{2}{l} \int_0^l \varphi'(x) \cos\left(\frac{\pi n}{l}x\right) dx.$$

Таким образом получили коэффициенты разложения в ряд Фурье функции φ' по собственным функциям $cos\left(\frac{\pi n}{l}x\right)$, т.е.:

$$\varphi' = \sum_{n=1}^{\infty} \psi_n \cos\left(\frac{\pi n}{l}x\right)$$

Если функция раскладывается в ряд Фурье по собственным функциям, то для неё справедливо неравенство Бесселя:

$$\sum_{n=1}^{\infty} |\psi_n|^2 \le \|\varphi'\|^2 = \int\limits_0^l (\varphi')^2 dx < [\text{По условию } \varphi' \in L_2(0,l).] < \infty$$

Таким образом мы показали, что:

$$\sum_{n=1}^{\infty} |\psi_n|^2 < \infty$$

Возвращаясь к нашему решению по формуле (3.10.5), необходимо показать, что эта функция непрерывна на границе. Для этого покажем равномерную сходимость. Строим для функции u(x,t) мажоранту:

$$|u| \leq \sum_{n=1}^{\infty} |\varphi_n| e^{-(\frac{\pi n a}{l})^2 t} \leq \frac{l}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} |\psi_n| \leq$$

$$\leq [\text{По неравенству Коши-Буняковского.}] \leq \frac{l}{\pi} \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |\psi_n|^2 \right)^{\frac{1}{2}} <$$

$$< [\text{Так как } \sum_{n=1}^{\infty} |\psi_n|^2 < \infty.] < \infty$$

Т.е. мажорантный ряд сходится. Значит равномерно сходится исходный ряд. А равномерно сходящийся ряд из непрерывных функций, является непрерывной функцией. А значит непрерывно примыкает к границам $t=0,\,x=0,\,x=l.$

Таким образом показано, что наше решение является классическим, т.е. $u \in C^2(\mathbb{D}) \cap C(\mathbb{D})$.

2. Единственность решения.

Лемма 3.10.2. Если решение существует, то оно единственно.

Доказательство:

Полагаем, что существует два решения $u_1(x,t)$ и $u_2(x,t)$ задачи (3.10.1)-(3.10.4).

Введём функцию:

$$v(x,t) = u_1(x,t) - u_2(x,t)$$

Тогда функция v будет удовлетворять однородному уравнению, однородному начальному условию и однородным граничным условиям:

$$\frac{\partial v}{\partial t} = a^2 \frac{\partial^2 v}{\partial x^2}$$
$$v|_{t=0} = 0$$
$$v|_{x=0} = 0 \qquad v|_{x=l} = 0$$

Функция v(x,t) удовлетворяет однородному уравнению теплопроводности и теореме 2.15.1 о принципе максимума и минимума, т.е.:

$$\max_{x=0,x=l,t=0}v(x,t)=[$$
на границах] = 0

$$\min_{x=0,x=l,t=0}v(x,t)=[$$
на границах $]=0$

Но тогда v=0 и, следовательно, $u_1(x,t)=u_2(x,t)$.

3. Устойчивость или непрерывная зависимость решения от исходных данных.

Рассмотрим две задачи:

$$\begin{split} \frac{\partial u^{(i)}}{\partial t} &= a^2 \frac{\partial^2 u^{(i)}}{\partial x^2} \\ u^{(i)} \Big|_{t=0} &= \varphi^{(i)}(x) \\ u^{(i)} \Big|_{x=0} &= \mu_1^{(i)}(t) \\ u^{(i)} \Big|_{x=l} &= \mu_2^{(i)}(t) \end{split}$$

Необходимо показать, что:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) :$$

$$|\varphi^{(1)} - \varphi^{(2)}| < \delta$$

$$|\mu_1^{(1)} - \mu_1^{(2)}| < \delta$$

$$|\mu_2^{(1)} - \mu_2^{(2)}| < \delta$$

Наше решение:

$$|u^{(1)} - u^{(2)}| < \varepsilon$$

Возьмём:

$$v = u^{(1)} - u^{(2)}$$

$$\overline{\varphi} = \varphi^{(1)} - \varphi^{(2)}$$

$$\overline{\mu}_1 = \mu_1^{(1)} - \mu_1^{(2)}$$

$$\overline{\mu}_2 = \mu_2^{(1)} - \mu_2^{(2)}$$

Тогда функция v удовлетворяет задаче:

$$\frac{\partial v}{\partial t} = a^2 \frac{\partial^2 v}{\partial x^2}$$

$$v|_{t=0} = \overline{\varphi}(x)$$

$$v|_{x=0} = \overline{\mu}_1(t)$$

$$v|_{x=l} = \overline{\mu}_2(t)$$

Положим, что наши функции:

$$\overline{\varphi} < \delta, \quad \overline{\mu}_1 < \delta, \quad \overline{\mu}_2 < \delta$$

Т.е. получаем, что наша функция v удовлетворяет однородному уравнению теплопроводности, т.е. при $t=0, x=0, x=l \Longrightarrow |v|<\delta$.

И по следствию 2.15.3 из теоремы о принципе максимума и минимума, получим:

$$|v(x,t)| < \delta, \, \forall (x,t) \in \overline{\mathbb{D}}$$

Т.е., если взять в качестве $\delta = \varepsilon$, то мы получим, что, как только:

$$|\varphi^{(1)} - \varphi^{(2)}| < \varepsilon$$

$$|\mu_1^{(1)} - \mu_1^{(2)}| < \varepsilon$$

$$|\mu_2^{(1)} - \mu_2^{(2)}| < \varepsilon$$

Решение также будет отличаться на небольшую величину:

$$|u^{(1)} - u^{(2)}| < \varepsilon$$

Таким образом устойчивость решения в зависимости от входных данных показана благодаря теореме 2.15.1 о принципе максимума и минимума.

3.11 Решение первой смешанной задачи для уравнения теплопроводности в пластине

Вообще говоря, разделять переменные можно только в хороших областях, однако данный вопрос мы рассмотрим в дальнейшем.

1. Спектральная задача для эллиптического оператора.

Пусть есть пространство \mathbb{R}^n , $x(x_1,\ldots,x_n)$. Рассмотрим область $\Omega\subset\mathbb{R}^n$, ограниченную достаточно гладкой поверхностью Γ (гамма).

Пусть L – эллиптический дифференциальный оператор.

Рассмотрим задачу:

$$\begin{cases} L(u) + \lambda u = 0 \\ u|_{\Gamma} = 0 \end{cases}$$
 (3.11.1)

Данная задача носит название спектральной задачи для эллиптического оператора или задачи на нахождение собственных значений λ и соответствующих им нетривиальных собственных функций.

Задача (3.11.1) является обобщением задачи Штурма-Лиувилля и для всех собственных

значений и собственных функций справедливы все те же свойства (3.4.1)-(3.4.6), что и для собственных значений и собственных функций задачи Штурма-Лиувилля. Примером эллиптического оператор является оператор Лапласа.

2. Задача теплопроводности в прямоугольной пластине.

Рассмотрим задачу теплопроводности в прямоугольной пластине:

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \ \mathbb{D} = \{0 < x < l_1, \ 0 < y < l_2, \ 0 < t < \infty\}$$

$$u|_{t=0} = \varphi(x,y)$$

$$u|_{\partial\Omega} = 0, \ \Omega = \{0 < x < l_1, \ 0 < y < l_2\}, \ \partial\Omega - \text{граница области }\Omega$$

Искать решение будем с помощью метода разделения переменных. Однако, в данном случае, имеем три переменные.

Тогда решение будем искать в виде:

$$u(x, y, t) = T(t)V(x, y)$$

Подставляя в исходное уравнение данное представление, получим:

$$T'V = a^2 \Delta V T,$$

где Δ – оператор Лапласа.

Разделим полученное уравнение на a^2TV и получим:

$$\frac{T'}{a^2T} = \frac{\Delta V}{V} = -\lambda$$

Таким образом получаем уравнение:

$$T' + \lambda a^2 T = 0 \tag{3.11.2}$$

А также, подставляя в начальные условия, получаем спектральную задачу:

$$\begin{cases} \Delta V + \lambda V = 0 \\ V \Big|_{\partial \Omega} = 0 \end{cases} \tag{3.11.3}$$

Таким образом, для V получили спектральную задачу для уравнения эллиптического типа.

Решение задачи (3.11.3) ищем методом разделения переменных.

Для этого решение ищем в виде:

$$V(x, y) = X(x)Y(y)$$

Подставляя в уравнение задачи (3.11.3) и разделяя переменные, получим:

$$\frac{X''}{X} = -\frac{Y''}{Y} - \lambda$$

Учитывая, что слева функция зависящая только от X, а справа только от Y, то это может быть только константа:

$$\frac{X''}{X} = -\frac{Y''}{Y} - \lambda = -\mu^2$$

Тогда получаем следующие два уравнения:

$$X'' + \mu^2 X = 0$$

$$Y'' + \nu^2 Y = 0,$$

где $\nu^2 = -\mu^2 + \lambda$. Т.е. $\lambda = \nu^2 + \mu^2$. Разобьём нашу область по границам, т.е. учтём $u\Big|_{\delta\Omega} = 0$, и получим уравнения:

$$v|_{x=0} = 0$$

 $v|_{x=l_1} = 0$
 $v|_{y=0} = 0$
 $v|_{y=l_2} = 0$

Тогда, если мы подставим v = X(x)Y(y), в силу того, что мы ищем нетривиальное решение, получим:

$$X(0) = 0 \ X(l_1) = 0 \ \}$$
 из первого и второго уравнения $Y(0) = 0 \ Y(l_2) = 0 \ \}$ из третьего и четвёртого уравнения

Таким образом получаем две задачи Штурма-Лиувилля:

$$\begin{cases} X'' + \mu^2 X = 0 \\ X(0) = 0 \\ X(l_1) = 0 \end{cases} \qquad \begin{cases} Y'' + \nu^2 Y = 0 \\ Y(0) = 0 \\ Y(l_2) = 0 \end{cases}$$

Решение этих задач были нами получены ранее.

Из первой задачи мы получаем, соответственно, собственные функции и собственные значения:

$$X_n = \sin\left(\frac{\pi n}{l_1}x\right), \ n = 1, 2, \dots$$
$$\mu_n = \frac{\pi n}{l_1}, \ n = 1, 2, \dots$$

Из второй задачи мы получаем, соответственно, собственные функции и собственные значения:

$$Y_m = \sin\left(\frac{\pi m}{l_2}y\right), \ m = 1, 2, \dots$$
$$\nu_m = \frac{\pi m}{l_2}, \ m = 1, 2, \dots$$

Таким образом, мы получаем, соответственно, множество собственных функций и собственных значений:

$$V_{nm} = \sin\left(\frac{\pi n}{l_1}x\right) \sin\left(\frac{\pi m}{l_2}y\right)$$
$$\lambda_{nm} = \left(\frac{\pi n}{l_1}\right)^2 + \left(\frac{\pi m}{l_2}\right)^2$$

Эти собственные значения и собственные функции являются решениями спектральной задачи (3.11.3).

Решаем уравнение:

$$T_{nm}' + \lambda_{nm} a^2 T_{nm} = 0$$

Общее решение этого уравнение имеет вид:

$$T_{nm} = C_{nm}e^{-\lambda_{nm}a^2t}$$

Таким образом, получаем множество частных решений исходной задачи:

$$u_{nm} = C_{nm} sin\left(\frac{\pi n}{l_1}x\right) sin\left(\frac{\pi m}{l_2}y\right) e^{-\lambda_{nm}a^2t}$$

Данное множество удовлетворяет исходному уравнению и граничным условиям. Тогда сумма частных решений имеет вид:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} u_{nm} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{nm} sin\left(\frac{\pi n}{l_1}x\right) sin\left(\frac{\pi m}{l_2}y\right) e^{-\lambda_{nm}a^2t},$$

Эта сумма также будет удовлетворять граничным условиям. Коэффициенты C_{nm} находим из начального условия, т.е.:

$$u|_{t=0} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{nm} sin\left(\frac{\pi n}{l_1}x\right) sin\left(\frac{\pi m}{l_2}y\right) = \varphi(x,y)$$

Учитывая, что функции являются ортогональными, то:

$$\int_{0}^{l_{1}} \int_{0}^{l_{2}} V_{nm} V_{ks} dy dx = \|V_{nm}\|^{2} \delta_{nk} \delta_{ms}$$

Раскладываем функцию $\varphi(x,y)$ в ряд Фурье по собственным функциям. Тогда:

$$C_{nm} = \frac{4}{l_1 l_2} \int_{0}^{l_1} \int_{0}^{l_2} \varphi(x, y) \sin\left(\frac{\pi n}{l_1} x\right) \sin\left(\frac{\pi m}{l_2} y\right) dy dx$$

Ряд сходится абсолютно и равномерно, т.е. является решением исходной задачи.

3.12 Решение смешанной задачи для волнового уравнения в четверти плоскости

Рассматриваем смешанную задачу для волнового уравнения в четверти плоскости:

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= a^2 \frac{\partial^2 u}{\partial x^2}, \ Q = \{0 < x < \infty, \ 0 < t < \infty\} \\ u|_{t=0} &= \varphi(x), \ 0 \le x < \infty \\ \frac{\partial u}{\partial t}\Big|_{t=0} &= \psi(x), \ 0 \le x < \infty \\ u|_{x=0} &= \mu(t), \ 0 \le t < \infty \end{split}$$

Рассматриваемая область имеет вид:

Приведём уравнение ко второму каноническому виду. Составим характеристическое уравнение:

$$(dx)^2 - a^2(dt)^2 = 0$$

Имеем два семейства характеристик:

$$x - at = C_1 x + at = C_2$$

Откуда, проделывая изученный нами ранее действия, получаем следующий второй канонический вид:

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$$

Тогда, находя общее решение, получаем:

$$u(x,t) = u^{(1)}(x - at) + u^{(2)}(x + at)$$

В случае, когда у нас была неограниченная прямая, т.е. отрезок $-\infty < x < +\infty$, мы получали формулу Д'Аламбера:

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$

Так как в рассматриваемой задаче функции φ и ψ определены только для положительного аргумента, то мы не можем использовать эту формулу, потому что для случая a>0, аргумент x+at — больше нуля, а аргумент x-at может быть как больше нуля, так и меньше нуля. А функции φ и ψ не определены в случае отрицательных аргументов. Таким образом, в общем решении, мы должны определить $u^{(1)}$ от отрицательного аргумента.

Разобьём область Q характеристикой x=at на две подобласти:

Таким образом получаем подобласти:

$$Q^{(1)} = \{x, t | x - at > 0\}$$

$$Q^{(2)} = \{x, t | x - at < 0\}$$

Тогда, если рассматривать область $Q^{(1)}$, то в ней решение можно построить по формуле Д'Аламбера:

$$Q^{(1)}: \ u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$
 (3.12.1)

Т.е. в области $Q^{(1)}$ решение мы построили.

Теперь нам необходимо определить $u^{(1)}$ от отрицательного аргумента.

Для этого используем граничное условие:

$$Q^{(2)}: u|_{x=0} = u^{(1)}(-at) + u^{(2)}(at) = \mu(t)$$

Тогда получаем, что:

$$u^{(1)}(-s) = \mu(\frac{s}{a}) - u^{(2)}, \tag{3.12.2}$$

где s = at. Получаем систему:

$$\begin{cases} u^{(1)}(x) + u^{(2)}(x) = \varphi(x) \\ -a\frac{du^{(1)}(x)}{dx} + a\frac{du^{(2)}(x)}{dx} = \psi(x) \\ -u^{(1)} + u^{(2)} = \frac{1}{a} \int_{0}^{x} \psi(\xi)d\xi + C \end{cases}$$

Из этой системы находим $u^{(2)}$:

$$u^{(2)}(x) = \frac{1}{2}\varphi(x) + \frac{1}{2a} \int_{0}^{x} \psi(\xi)d\xi + \frac{C}{2}$$

Или, производя замену от произвольного аргумента:

$$u^{(2)}(s) = \frac{1}{2}\varphi(s) + \frac{1}{2a} \int_{0}^{s} \psi(\xi)d\xi + \frac{C}{2}$$

Тогда, получаем:

$$u^{(1)}(-s) = \mu(\frac{s}{a}) - \frac{1}{2}\varphi(s) - \frac{1}{2a} \int_{0}^{s} \psi(\xi)d\xi - \frac{C}{2}$$

А теперь, подставляя $u^{(1)}(-s)$ и $u^{(2)}(s)$ в общее решение, мы получим:

$$Q^{(2)}: \ u(x,t) = \mu\left(\frac{at-x}{a}\right) - \frac{1}{2}\varphi(at-x) + \frac{1}{2a}\int_{at-x}^{0} \psi(\xi)d\xi - \frac{C}{2} + \frac{1}{2}\varphi(x+at) + \frac{1}{2a}\int_{0}^{x+at} \psi(\xi)d\xi + \frac{C}{2} + \frac{1}{2}\varphi(x+at) + \frac$$

Таким образом получаем, что решение в областях $Q^{(1)}$ и $Q^{(2)}$ имеет вид:

$$Q^{(1)}: \ u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)d\xi$$
 (3.12.3)

$$Q^{(2)}: \ u(x,t) = \mu\left(\frac{at-x}{a}\right) + \frac{\varphi(x+at) - \varphi(at-x)}{2} + \frac{1}{2a} \int_{at-x}^{x+at} \psi(\xi)d\xi \tag{3.12.4}$$

Таким образом, мы построили отдельно решение в области $Q^{(1)}$ и отдельно в области $Q^{(2)}$. Но, так как мы ищем классическое решение, то $u(x,t) \in C^2(\overline{Q})$.

T.e. необходимо, чтобы при переходе через границу x=at оставались непрерывны $u, \frac{\partial u}{\partial t}$ $\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial t^2}.$ Это будет выполняться, если предусмотреть условия согласования:

$$\varphi(0) = \mu(0), \quad \mu'(0) = \psi(0), \quad \mu''(0) = a^2 \varphi''(0)$$

T.e. эти условия рассматриваются при $x \to at$.

Рассмотрим необходимость первого условия согласования:

$$Q_{x\to at}^{(1)}: \ u(x,t) = \frac{\varphi(2x) + \varphi(0)}{2} + \frac{1}{2a} \int_{0}^{2x} \psi(\xi) d\xi$$
$$Q_{x\to at}^{(2)}: \ u(x,t) = \frac{\varphi(2x) - \varphi(0)}{2} + \frac{1}{2a} \int_{0}^{2x} \psi(\xi) d\xi + \mu(0)$$

Приравнивая эти значения, получим:

$$\varphi(0) = \mu(0)$$

Рассмотрим необходимость второго условия согласования:

$$Q^{(1)}: \frac{\partial u}{\partial t}\Big|_{at=x} = \frac{a\varphi'(2x) - a\varphi'(0)}{2} + \frac{1}{2}(\psi(2x) + \psi(0))$$
$$Q^{(2)}: \frac{\partial u}{\partial t}\Big|_{at=x} = \frac{a\varphi'(2x) - a\varphi'(0)}{2} + \frac{1}{2}(\psi(2x) - \psi(0)) + \mu'(0)$$

Приравнивая эти значения, получим:

$$\psi(0) = \mu'(0)$$

Необходимость третьего условия согласования показывается аналогичным образом.

Теорема 3.12.1. Если функции $\varphi \in C^2$, $\mu \in C^2$, $\psi \in C^1$ и выполняются условия согласования $\varphi(0)=\mu(0), \ \varphi'(0)=\psi(0), \ \mu''(0)=a^2\varphi''(0), \ mo \ функция \ u(x,t), \ onpedeляемая$ формулой (3.12.3) в области $Q^{(1)}$ и формулой (3.12.4) в области $Q^{(2)}$, является классическим решением исходной задачи, т.е. $u(x,t) \in C^2(\overline{Q})$.

3.13 Метод разделения переменных для решения смешанной задачи с неоднородными граничными условиями для уравнения теплопроводности

Рассмотрим смешанную задачу для уравнения теплопроводности:

$$\begin{cases}
\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t), & 0 < x < l, \ t > 0 \\
u|_{t=0} = \varphi(x), & 0 \le x \le l \\
L_1(u)|_{x=0} = \mu_1(t), & t \ge 0 \\
L_2(u)|_{x=l} = \mu_2(t), & t \ge 0
\end{cases} , \tag{3.13.1}$$

где

$$L_1(u) = \alpha_1 \frac{\partial u}{\partial x} - \beta_1 u$$
$$L_2(u) = \alpha_2 \frac{\partial u}{\partial x} + \beta_2 u$$

Решение задачи (3.13.1) ищем в виде суммы:

$$u(x,t) = v(x,t) + w(x,t)$$

При этом функция w(x,t) удовлетворяет условиям:

$$\begin{cases} L_1(w)|_{x=0} = \mu_1(t) \\ L_2(w)|_{x=l} = \mu_2(t) \end{cases}$$

Тогда относительно функции v(x,t) получаем следующую задачу:

$$\begin{cases} \frac{\partial v}{\partial t} - a^2 \frac{\partial^2 v}{\partial x^2} = f(x, t) - \frac{\partial w}{\partial t} + a^2 \frac{\partial^2 w}{\partial x^2} \\ v|_{t=0} = \varphi(x) - w(x, 0) \\ L_1(v)|_{x=0} = 0 \\ L_2(v)|_{x=l} = 0 \end{cases}$$

Пример. Рассмотрим смешанную задачу для уравнения теплопроводности:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + 1 + \sin\left(\frac{\pi}{2l}x\right) \\ u|_{t=0} = x \\ u|_{x=0} = t \\ \frac{\partial u}{\partial x}|_{x=l} = 1 \end{cases}$$

Представим решение задачи в виде:

$$u(x,t) = v(x,t) + w(x,t)$$

Функция w(x,t) удовлетворяет условиям:

$$\begin{cases} w|_{x=0} = t \\ \frac{\partial w}{\partial x}|_{x=l} = 1 \end{cases}$$

Пусть функция w(x,t) имеет вид:

$$w(x,t) = A(t)x^2 + B(t)x + C(t)$$

Подставляя в условия для функции w(x,t), получим:

$$\begin{cases} w(0,t) = C(t) = t\\ \frac{\partial w}{\partial x}(l,t) = 2A(t)l + B(t) = 1 \end{cases}$$

Примем A(t) = 0.

Таким образом, получаем:

$$\begin{cases} A(t) = 0 \\ B(t) = 1 \\ C(t) = t \end{cases}$$

Тогда функция w(x,t) принимает вид:

$$w(x,t) = x + t$$

Таким образом, задача относительно v(x,t) принимает вид:

$$\begin{cases}
\frac{\partial v}{\partial t} - a^2 \frac{\partial^2 v}{\partial x^2} = \sin\left(\frac{\pi}{2l}x\right) \\
v|_{t=0} = 0 \\
v|_{x=0} = 0 \\
\frac{\partial v}{\partial x}|_{x=l} = 0
\end{cases}$$
(3.13.2)

Для полученной смешанной задачи составляем соответствующую задачу Штурма-Лиувилля:

$$\begin{cases} X''(x) + \lambda^2 X = 0 \\ X(0) = 0 \\ X'(l) = 0 \end{cases}$$

Построим решение полученной задачи Штурма-Лиувилля:

$$X(x) = A\cos(\lambda x) + B\sin(\lambda x)$$
$$X(0) = A = 0$$
$$X'(l) = B\lambda\cos(\lambda l) = 0$$

Так как $\lambda \neq 0$ и принимая B = 1, получаем:

$$cos(\lambda l) = 0 \Longrightarrow \lambda_n = \frac{\pi}{2l} + \frac{\pi n}{l}, \quad n = 0, 1, 2, \dots$$

Соответственно, решение задачи Штурма-Лиувилля принимает вид:

$$\lambda_n = \frac{\pi(2n+1)}{2l}, \quad n = 0, 1, 2, \dots$$

$$X_n(x) = \sin\left(\frac{\pi(2n+1)}{2l}x\right), \quad n = 0, 1, 2, \dots$$

Тогда решение задачи (3.13.2) представимо в виде ряда:

$$v(x,t) = \sum_{n=0}^{\infty} T_n(t) sin\left(\frac{\pi(2n+1)}{2l}x\right)$$

Подставляя полученное представление в уравнение задачи (3.13.2), получим:

$$\sum_{n=0}^{\infty} \left(T_n' + \left(\frac{\pi(2n+1)}{2l} a \right)^2 T_n \right) \sin \left(\frac{\pi(2n+1)}{2l} x \right) = \sin \left(\frac{\pi}{2l} x \right)$$

Так как ряд по собственным функциям равен одной из них, то справедливы следующие равенства:

$$T'_0 + \left(\frac{\pi}{2l}a\right)^2 T_0 = 1$$

$$T'_n + \left(\frac{\pi(2n+1)}{2l}a\right) T_n = 0, \quad n = 1, 2, \dots$$

Если рассмотреть начальные условия, то имеем, соответственно, $T_n(0) = 0, \quad n = 0, 1, 2, \dots$ Таким образом, имеем следующие две задачи Коши:

$$\begin{cases} T_0' + \left(\frac{\pi}{2l}a\right)^2 T_0 = 1 \\ T_0(0) = 0 \end{cases} \qquad \begin{cases} T_n' + \left(\frac{\pi(2n+1)}{2l}a\right)^2 T_n = 0 \\ T_n(0) = 0 \end{cases}, \ n = 1, 2, \dots$$

Вторая задача, очевидно, имеет только нулевое решение, т.е. $T_n \equiv 0$. Решим первую задачу.

Построим её общее однородное решение:

$$T_0^{\text{oo}}(t) = Ce^{-\left(\frac{\pi}{2l}a\right)^2 t}$$
$$T_0^{\text{oo}}(0) = C = 0$$
$$T_0^{\text{oo}}(t) = 0$$

По методу Лагранжа частное неоднородное решение принимает вид:

$$T_0^{\text{\tiny ЧН}}(t) = C(t)e^{-\left(\frac{\pi}{2l}a\right)t}$$

Подставляя вид частного неоднородного решения в уравнение рассматриваемой задачи Коши, имеем:

$$C'(t)e^{-\left(\frac{\pi}{2l}a\right)t} + \left(-\left(\frac{\pi}{2l}a\right)^2C(t) + \left(\frac{\pi}{2l}a\right)^2C(t)\right)e^{-\left(\frac{\pi}{2l}a\right)t} = 1$$

$$C'(t) = e^{\left(\frac{\pi}{2l}a\right)t}$$

$$C(t) = \left(\frac{2l}{\pi a}\right)^2e^{-\left(\frac{\pi}{2l}a\right)t} + D$$

$$C(0) = \left(\frac{2l}{\pi a}\right)^2 + D = 0$$

$$D = -\left(\frac{2l}{\pi a}\right)^2$$

Таким образом, получаем:

$$T_0^{\text{\tiny qH}} = \left(\frac{2l}{\pi a}\right)^2 \left(e^{\left(\frac{\pi a}{2l}\right)^2 t} - 1\right) e^{-\left(\frac{\pi a}{2l}\right)^2 t}$$

Тогда, соответственно, имеем:

$$T_0^{\text{oh}}(t) = T_0^{\text{oo}} + T_0^{\text{чн}} = \left(\frac{2l}{\pi a}\right)^2 \left(e^{\left(\frac{\pi a}{2l}\right)^2 t} - 1\right) e^{-\left(\frac{\pi a}{2l}\right)^2 t}$$

Тогда решение задачи (3.13.2) принимает вид:

$$u(x,t) = v(x,t) + w(x,t) = \left(\frac{2l}{\pi a}\right)^2 \left(e^{\left(\frac{\pi a}{2l}\right)^2 t} - 1\right) e^{-\left(\frac{\pi a}{2l}\right)^2 t} sin\left(\frac{\pi}{2l}x\right) + x + t$$

ряд построен формально. Чтобы решение было классическим, необходима сходимость.

3.14 Метод разделения переменных для решения смешанной задачи для уравнения теплопроводности в случае неоднородного уравнения

Рассмотрим смешанную задачу с однородными граничными условиями для неоднородного уравнения теплопроводности:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \\ u|_{t=0} = 0 \\ L_1(u)|_{x=0} = 0 \\ L_2(u)|_{x=l} = 0 \end{cases}$$
(3.14.1)

Для получения решения, составляем задачу Штурма-Лиувилля в предположении, что уравнение однородно:

$$\begin{cases} X'' + \lambda^2 X = 0 \\ L_1(X)|_{x=0} = 0 \\ L_2(X)|_{x=l} = 0 \end{cases}$$

Решаем полученную задачу Штурма-Лиувилля относительно λ_n и X_n . В этом случае, решение исходной задачи представимо в виде ряда:

$$u(x,t) = \sum_{n=1}^{\infty} T_n X_n$$

Подставляя представление решения в исходное уравнение, получаем:

$$\sum_{n=1}^{\infty} \left(T_n' + \lambda_n^2 a^2 T_n \right) X_n = f(x, t)$$

Правая часть представима в виде:

$$f(x,t) = \sum_{n=1}^{\infty} f_n(t) X_n(x),$$

где

$$f_n(t) = \frac{\int\limits_0^l f(x,t)X_n(x)dx}{\int\limits_0^l X_n(x)^2 dx}$$

Сравнивая соответствующие коэффициенты рядов Фурье, получаем следующую задачу Коши:

$$\begin{cases} T_n' + \lambda_n^2 a^2 T_n = f_n \\ T_n(0) = 0 \end{cases}$$

Разрешая полученную задачу Коши относительно T_n , находим решение задачи (3.14.1) в виде ряда.

Рассмотрим случай, когда задача имеет вид:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x) \\ u|_{t=0} = 0 \\ L_1(u)|_{x=0} = 0 \\ L_2(u)|_{x=l} = 0 \end{cases}$$
(3.14.2)

Тогда решение ищем в виде:

$$u(x,t) = v(x) + w(x,t)$$

Откуда получаем следующие две задачи относительно функций v(x,t) и w(x,t):

$$\begin{cases}
-a^{2}v''(x) = f(x) \\
v(0) = 0 \\
v(l) = 0
\end{cases} \begin{cases}
\frac{\partial w}{\partial t} - a^{2} \frac{\partial^{2}w}{\partial x^{2}} = 0 \\
w|_{t=0} = -v(x) \\
L_{1}(w)|_{x=0} = 0 \\
L_{2}(w)|_{x=l} = 0
\end{cases}$$

Разрешая эти задачи, находим, соответственно, функции v(x,t) и w(x,t). После этого получаем решение задачи (3.14.2).

3.15 Задача о распространении тепла в шаре

Рассмотрим задачу о распространении тепла в шаре, если на его поверхности поддерживается нулевая температура, а в начальный момент времени температура в шаре равна $u_0(r)$:

$$\begin{cases} \frac{\partial u}{\partial t} = \left(\frac{\partial^2 u}{\partial r^2} + \frac{2}{r}\frac{\partial u}{\partial r}\right) \\ u|_{t=0} = u_0(r) \\ u|_{r=R} = 0 \end{cases}$$

Введём следующую замену:

$$v = ru \Longrightarrow u = \frac{v}{r}$$

Найдём, соответственно, все частные производные, удовлетворяющие уравнению задачи о распространении тепла в шаре, учитывая полученную замену:

$$\frac{\partial u}{\partial r} = -\frac{1}{r^2}v + \frac{1}{r}\frac{\partial v}{\partial r}$$

$$\frac{2}{r}\frac{\partial u}{\partial r} = -\frac{2}{r^3}v + \frac{2}{r^2}\frac{\partial u}{\partial r}$$

$$\frac{\partial^2 u}{\partial r^2} = \frac{2}{r^3}v - \frac{1}{r^2}\frac{\partial u}{\partial r} - \frac{1}{r^2}\frac{\partial u}{\partial r} + \frac{1}{r}\frac{\partial^2 u}{\partial r^2}$$

$$\frac{\partial u}{\partial t} = \frac{1}{r}\frac{\partial v}{\partial t}$$

Тогда уравнение задачи о распространении тепла в шаре относительно функции v принимает вид:

$$\frac{1}{r}\frac{\partial u}{\partial t} = \frac{1}{r}\frac{\partial^2 v}{\partial r^2} \Longrightarrow \frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial r^2}$$

Отсюда получаем следующую задачу относительно функции v:

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial r^2} \\ v|_{t=0} = ru_0(r) \\ v|_{r=0} = 0 \\ v|_{r=R} = 0 \end{cases}$$

Решение полученной задачи представимо в виде:

$$v(r,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{\pi n}{R}\right)^2 t} sin\left(\frac{\pi n}{R}r\right),$$

где

$$A_n = \frac{2}{R} \int_{0}^{R} r u_0(r) \sin\left(\frac{\pi n}{R}r\right) dr$$

После нахождения решения задачи относительно функции v, решение исходной задачи получается подстановкой $u=\frac{v}{r}.$

Глава 4

Краевые задачи для уравнения эллиптического типа

4.1 Формулы Грина

Ранее мы рассматривали задачу Коши и смешанные задачи для уравнений параболического и гиперболического типов.

Для уравнения эллиптического типа рассматривается особый тип задач — *краевые задачи*. Рассмотрим поверхности:

$$D \subset \mathbb{R}^3 \qquad \qquad \Gamma = \delta D$$

Рассмотрим функции:

$$u \in C^2(D)$$
 $\Delta u = 0$

Функция u называется гармонической функцией.

Важную роль для уравнения эллиптического типа играют формулы Грина, связывающие значения функции внутри области и на её границах.

Для вывода формулы Грина, воспользуемся формулой из векторного анализа:

$$div(aA) = adiv(A) + (grad(a), A),$$

где a(x,y,z) — это скалярная функция, а $A(A_1(x,y,z),A_2(x,y,z),A_3(x,y,z))$ — векторное поле, div — дивергенция, grad — градиент. Имеем, что:

$$grad(a) = \left(\frac{\partial a}{\partial x}, \frac{\partial a}{\partial y}, \frac{\partial a}{\partial z}\right)$$

$$div(A) = \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}$$

Рассмотрим следующие функции:

$$u \in C^2(D) \cap C^1(\overline{D}), \ \Delta u \in L_2(D)$$

 $v \in C^1(\overline{D})$

И возьмём в качестве a и A функции:

$$a = v(x, y, z), \quad A = qrad(u)$$

Тогда:

$$div(vgrad(u)) = vdiv(grad(u)) + (grad(v), grad(u))$$
$$div(grad(u)) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \Delta u$$
$$div(vgrad(u)) = v\Delta u + (grad(v), grad(u))$$

Проинтегрируем по поверхности D:

$$\iiint\limits_{D}div(vgrad(u))dV = \iiint\limits_{D}(v\Delta u + (grad(v), grad(u)))dV$$

Воспользуемся формулой Остроградского-Гаусса:

$$\iiint\limits_{D}div(B)dV = \iint\limits_{\Gamma}(B,n)dS,$$

где n – это вектор единичной нормали (внешний) к поверхности Γ . Тогда интеграл примет вид:

$$\iiint\limits_{D}div(vgrad(u))dV = \iint\limits_{\Gamma}v\frac{\partial u}{\partial n}dS$$

При этом имеем, что:

$$(B,n) = (grad(u),n) = \frac{\partial u}{\partial x}n_1 + \frac{\partial u}{\partial y}n_2 + \frac{\partial u}{\partial z}n_3 = \frac{\partial u}{\partial n}$$

где n_1, n_2, n_3 — составляющие вектора нормали.

Итого, получаем:

$$\iint_{\Gamma} v(P) \frac{\partial u(P)}{\partial n_P} dS_P = \iiint_{P} \left(v(Q) \Delta u(Q) + \left(\operatorname{grad}(v(Q)), \operatorname{grad}(u(Q)) \right) \right) dV_Q, \tag{4.1.1}$$

где P – это точка поверхности Γ , а Q – это точка поверхности D.

Формула (4.1.1) носит название первой формулы Грина.

Теперь, в формуле (4.1.1) поменяем местами u и v, полагая, что $u, v \in C^2(D) \cap C^1(\overline{D})$ и $\Delta u, \Delta v \in L_2(D)$:

$$\iint_{\Gamma} u(P) \frac{\partial v(P)}{\partial n_P} dS_P = \iiint_{P} (u(Q)\Delta v(Q) + (grad(u(Q)), grad(v(Q)))) dV_Q$$
(4.1.2)

Вычтем из формулы (4.1.1) формулу (4.1.2):

$$\iint_{\Gamma} \left(u(P) \frac{\partial v(P)}{\partial n_P} - v(P) \frac{\partial u(P)}{\partial n_P} \right) dS_P = \iiint_{D} \left(u(Q) \Delta v(Q) - v(Q) \Delta u(Q) \right) dV_Q \tag{4.1.3}$$

Формула (4.1.3) носит название второй формулы Грина.

Если в формуле (4.1.1) положить v = u, то получим:

$$\iint_{\Gamma} u(P) \frac{\partial u(P)}{\partial n_P} dS_P = \iiint_{D} \left(u(Q) \Delta u(Q) + (grad(u(Q)))^2 \right) dV_Q \tag{4.1.4}$$

Формула (4.1.4) носит название *третьей формулы* Γ *рина*.

4.2 Интегральные формулы Грина

Рассмотрим вторую формулу Грина:

$$\iint_{\Gamma} \left(u(P) \frac{\partial v(P)}{\partial n_P} - v(P) \frac{\partial u(P)}{\partial n_P} \right) dS_P = \iiint_{D} \left(u(Q) \Delta v(Q) - v(Q) \Delta u(Q) \right) dV_Q \tag{4.2.1}$$

Возьмём в качестве функции v:

$$v(Q) = \frac{1}{4\pi R_{QM}}$$

Функция v — это фундаментальное решение уравнения Лапласа. Это было показано в первой главе. Т.е. $\Delta v = 0$.

Но, применить вторую формулу Грина мы не можем, так как при Q=M эта функция имеет особенность, а именно она не удовлетворяет основным условиям уравнения.

Однако, вторая формула Γ рина справедлива в том случае, если поверхность D ограничена несколькими плоскостями.

Тогда интегрирование в левой части формулы (4.2.1) проводится по всем ограничивающим плоскостям.

Для этого мы вокруг точки M опишем сферу радиуса Γ_{ε} :

Рассмотрим вторую формулу Грина в области D_{ε} заключённой между областями Γ_{ε} и Γ :

$$\iint_{\Gamma \cup \Gamma_{\varepsilon}} \left(u(P) \frac{\partial}{\partial n_{P}} \left(\frac{1}{4\pi R_{PM}} \right) - \frac{1}{4\pi R_{PM}} \frac{\partial u(P)}{\partial n_{P}} \right) dS_{P} = \left[\Delta v = 0 \right] = - \iiint_{D\varepsilon} \frac{\Delta u(Q)}{4\pi R_{QM}} dV_{Q}$$

Если Γ_{ε} – это сфера, то производная по внешней нормали в точке P имеет вид:

$$\frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{PM}} \right) = -\frac{\partial}{\partial R_{MP}} \left(\frac{1}{4\pi R_{MP}} \right) = \frac{1}{4\pi R_{MP}^2} = \frac{1}{4\pi \varepsilon^2}$$

Рассматриваемая нами нормаль n_P внутренняя, а необходимо было найти производную по внешней нормали. Поэтому мы изменили направление вектора нормали и появился, соответственно, минус.

Ho, если мы рассматриваем интеграл на границе Γ_{ε} , то имеем:

$$\iint\limits_{\Gamma_{\varepsilon}} \left(u(P) \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{MP}} \right) - \frac{1}{4\pi R_{MP}} \frac{\partial u(P)}{\partial n_P} \right) dS_P = \\ = \frac{1}{4\pi \varepsilon^2} \iint\limits_{\Gamma_{\varepsilon}} u(P) dS_P - \frac{1}{4\pi \varepsilon} \iint\limits_{\Gamma_{\varepsilon}} \frac{\partial u(P)}{\partial n_P} dS_P = [\text{по теореме о среднем}] = u(P^*) - \varepsilon \frac{\partial u(P^*)}{\partial n},$$

где P^* – некоторая средняя точка на сфере Γ_{ε} , а $\frac{1}{4\pi\varepsilon^2}$ – это площадь сферы. Тогда, в результате, получаем:

$$\iint\limits_{\Gamma} \left(u(P) \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{PM}} \right) - \frac{1}{4\pi R_{PM}} \frac{\partial u(P)}{\partial n_P} \right) dS_P + u(P^*) - \varepsilon \frac{\partial u(P^*)}{\partial n_P} = - \iint\limits_{D_{\varepsilon}} \frac{\Delta u}{4\pi R_{MQ}} dV_Q$$

Теперь устремим ε к 0. Тогда точка P^* устремится к точке M. Таким образом, будем иметь:

$$u(M) = \iint_{\Gamma} \left(\frac{1}{4\pi R_{MP}} \frac{\partial u(P)}{\partial n_P} - u(P) \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{PM}} \right) \right) dS_P - \iiint_{D} \frac{\Delta u}{4\pi R_{MQ}} dV_Q \qquad (4.2.2)$$

Формула (4.2.2) носит название *интегральной формулы* Грина. Используя формулу (4.2.2) можно получить значение функции в любой точке поверхности. Допустим, мы имеем задачу:

$$\Delta u = f$$
$$u|_{\Gamma} = \varphi$$

Данная задача носит название *задачи Пуассона* или *задачи Дирихле*. Допустим, мы имеем задачу:

$$\Delta u = f$$

$$\frac{\partial u}{\partial n}\Big|_{\Gamma} = \varphi$$

Данная задача носит название задачи Неймана.

Если же $\Delta u = 0$, то это уравнение является уравнением Лапласа и u – это гармоническая функция.

Для решения подобной задачи используется следующая функция:

$$u(M) = \iint_{\Gamma} \left(\frac{1}{4\pi R_{MP}} \frac{\partial u(P)}{\partial n_P} - u(P) \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{PM}} \right) \right) dS_P$$
 (4.2.3)

4.3 Свойства гармонических функций

Функция u называется гармонической, если $u \in C^2(\mathbb{D})$ и $\Delta u = 0$.

Свойство 4.3.1. Если функция и является гармонической, то она бесконечно раз дифференцируема по переменным x, y, z в области \mathbb{D} , т.е. $u \in C^{\infty}(\mathbb{D})$.

Доказательство:

Без ограничения общности, можно утверждать, что $u \in C^2(\overline{\mathbb{D}})$.

Воспользуемся интегральной формулой Грина для гармонических функций:

$$u(M) = \iint_{\Gamma} \left(\frac{1}{4\pi R_{PM}} \frac{\partial u(P)}{\partial n_P} - \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{PM}} \right) u(P) \right) dS_P$$
 (4.3.1)

Или же, записывая иначе. получим:

$$u(M) = \iint_{\Gamma} F(M, P) dS_P,$$

где F – некоторая функция.

Нам необходимо показать, что эта функция дифференцируема в области некоторой точки $M_0 \in \mathbb{D}$.

Для этого опишем сферу $S_{\varepsilon}^{M_0}$ с центром в точке M_0 и радиуса $\varepsilon.$

Рассмотрим шаровую область $K^{M_0}_{\varepsilon}\subset \mathbb{D}$, ограниченную сферой $S^{M_0}_{\varepsilon}$. Тогда для любой точки $M\in K^{M_0}_{\varepsilon}$ будет выполняться, что $R_{MP}\neq 0$, так как $M\in K^{M_0}_{\varepsilon}$, а $P\in \Gamma$.

Таким образом, имеем следующую область:

Тогда возможные производные:

$$\frac{\partial^{\alpha_1 + \alpha_2 + \alpha_3} F(M, P)}{\partial x^{\alpha_1} \partial y^{\alpha_2} \partial z^{\alpha_3}}$$

являются непрерывными функциями для любой точки $M \in K_{\varepsilon}^{M_0}$ в окрестности точки M_0 . Следовательно, имеем:

$$\frac{\partial^{\alpha_1+\alpha_2+\alpha_3}u}{\partial x^{\alpha_1}\partial y^{\alpha_2}\partial z^{\alpha_3}} = \iint\limits_{\Gamma} \frac{\partial^{\alpha_1+\alpha_2+\alpha_3}F(P,M)}{\partial x^{\alpha_1}\partial y^{\alpha_2}\partial z^{\alpha_3}} dS_P$$

В силу произвольности точки M_0 , свойство 4.3.1 доказано.

Свойство 4.3.2. Пусть функция и является гармонической в области \mathbb{D} ограниченной областью Γ . Тогда имеем, что:

$$\iint_{\Gamma} \frac{\partial u(P)}{\partial n_P} dS_P = 0.$$

(Данное свойство важно для разрешения задачи Неймана, которая задана на поверхности Γ значением своих производных.)

Доказательство:

Пусть функция $u \in C^2(\mathbb{D}) \cap C^1(\overline{\mathbb{D}})$.

Рассмотрим первую формулу Грина (4.1.1):

$$\iint_{\Gamma} v(P) \frac{\partial u(P)}{\partial n_P} dS_P = \iiint_{\mathbb{D}} \left(v(Q) \Delta u(Q) + \left(\operatorname{grad}(v(Q)), \operatorname{grad}(u(Q)) \right) dV_Q, \right)$$

где $v \in C^1(\overline{\mathbb{D}})$.

Возьмём в качестве функции v, функцию v = 1.

Так как функция u гармоническая, то $\Delta u = 0$.

Если v=1, то qrad(v)=0. Тогда получаем, что:

$$\iint_{\Gamma} \frac{\partial u(P)}{\partial n_P} dS_P = 0$$

Свойство 4.3.3. (Теорема о среднем)

 $\Pi y cm b \ u -$ гармоническая функция $u \ \Gamma_a^M -$ сфера радиуса а $c \$ центром $b \$ точке M.

$$u(M) = \frac{1}{|\Gamma_a^M|} \iint_{\Gamma_a^M} u(P) dS_P,$$

где $|\Gamma_a^M|=4\pi a^2$ – площадь поверхности сферы.

Доказательство:

Рассмотрим интегральную формулу Грина (4.2.3) для поверхности Γ_a^M , взяв в качестве точки M центр сферы:

$$u(M) = \iint_{\Gamma_M^M} \left(\frac{1}{4\pi R_{MP}} \frac{\partial u(P)}{\partial n_P} - \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{MP}} \right) u(P) \right) dS_P$$

Так как у нас сфера с центром в точке M радиуса a, а P на поверхности, то $R_{MP}=a$. Так как мы имеем сферу, то:

$$\frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{MP}} \right) = -\frac{1}{4\pi R_{MP}^2} = -\frac{1}{4\pi a^2}$$

В силу свойства 4.3.2:

$$\iint\limits_{\Gamma_{N}^{M}} \frac{\partial u(P)}{\partial n_{P}} dS_{P} = 0$$

А, следовательно, получаем:

$$u(M) = \iint\limits_{\Gamma_M^M} \left(\frac{1}{4\pi R_{MP}} \frac{\partial u(P)}{\partial n_P} - \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{MP}} \right) u(P) \right) dS_P = \frac{1}{4\pi a^2} \iint\limits_{\Gamma_M^M} u(P) dS_P$$

4.4 Принцип максимума и минимума для гармонических функций

Теорема 4.4.1. (принцип максимума и минимума для гармонических функций) Пусть функция и является гармонической функцией в области \mathbb{D} , ограниченной поверхностью Γ , причём $u \in C^2(\mathbb{D}) \cap C^1(\overline{\mathbb{D}})$. Своего максимального и минимального значения функция достигает на поверхности Γ . T.e.:

$$\min_{M \in \Gamma} u(M) \le u(M) \le \max_{M \in \mathbb{D}} u(M).$$

Доказательство:

Доказательство будем проводить для максимума от противного.

Пусть максимум достигается в некоторой точке $M_0 \in \mathbb{D}$.

Т.е. имеем:

$$u(M_0) \geq u(P'),$$

где $P' \in \Gamma$. Таким образом, рассматриваем следующую область:

Опишем около точки M_0 сферу $\Gamma_a^{M_0}$ с центром в точке M_0 и радиуса a. Тогда:

$$u(M_0) = \frac{1}{4\pi a^2} \iint_{\Gamma^{M_0}} u(P) dS_P,$$

где $P \in \Gamma_a^{M_0}$. Тогда получаем:

$$\iint_{\Gamma_a^{M_0}} w(P)dS_P = 0, \tag{4.4.1}$$

где $w(P) = u(M_0) - u(P) \ge 0$ – по нашему предположению.

Предположим, что в некоторой точке P выполняется w(P) > 0.

Но тогда существует такая окрестность $U_P \subset \Gamma_a^{M_0}$, что для всех точек $M \in U_P$ выполняется, что w(P) > 0.

Тогда имеем:

$$\iint\limits_{\Gamma_a^{M_0}} w(P)dS_P = \iint\limits_{\Gamma_a^{M_0} \setminus U_P} w(P)dS_P + \iint\limits_{U_P} w(P)dS_P \Longrightarrow [w(P) > 0] \Longrightarrow \iint\limits_{\Gamma_a^{M_0}} w(P)dS_P > 0$$

Однако это противоречит условию (4.4.1).

Следовательно, получаем, что:

$$w(P) = u(M_0) - u(P) = 0$$

Пока рассматриваем, что $P \in \Gamma_a^{M_0}$.

Теперь увеличиваем радиус сферы $\Gamma_a^{M_0}$ до такой степени, пока она не соприкоснётся со сферой Γ в некоторой точке P^* .

Получим, что:

$$u(M_0) - u(P^*) = 0$$

Таким образом, получаем:

$$u(M_0) = u(P^*)$$

Т.е. пришли к противоречию.

Следовательно, максимум достигается на поверхности Γ .

Следствие 4.4.1. Пусть гармонические в \mathbb{D} функции $u, v \in C^2(\overline{\mathbb{D}}) \cap C(\overline{\mathbb{D}})$ и пусть $u(P) \leq v(P)$ при $P \in \Gamma$. Тогда, $u(M) \leq v(M)$ для любой точки $M \in \overline{\mathbb{D}}$.

Следствие 4.4.2. Пусть гармонические в \mathbb{D} функции $u_1, u_2, u_3 \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ и $u_1(P) \leq du_2(P) \leq u_3(P)$ при $P \in \Gamma$. Тогда, $u_1(M) \leq u_2(M) \leq u_3(M)$ при $M \in \overline{\mathbb{D}}$.

Следствие 4.4.3. Пусть гармонические в \mathbb{D} функции $u, v \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ $u |u(P)| \leq v(P)$ при $P \in \Gamma$. Тогда, соответственно, $|u(M)| \leq v(M)$ при $M \in \overline{\mathbb{D}}$.

Следствие 4.4.4. Пусть гармоническая в \mathbb{D} функция $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ $u |u(P)| \leq \varepsilon$ при $P \in \Gamma$. Тогда, $|u(M)| \leq \varepsilon$ при $M \in \overline{\mathbb{D}}$.

4.5 Постановка краевых задач для уравнения эллиптического типа. Внутренняя задача Дирихле

Пусть имеется связная область \mathbb{D} , ограниченная поверхностью Γ .

Тогда внутренняя задача Дирихле имеет вид:

$$\Delta u = f(M), \ M \in \mathbb{D}$$

$$u|_{P \in \Gamma} = \varphi(P)$$
(4.5.1)

Если уравнение однородно, то оно называется уравнением Лапласа.

Если уравнение неоднородно, то оно называется уравнением Пуассона.

В данном параграфе мы рассматриваем задачу Дирихле для уравнения Пуассона.

Функцию $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, являющуюся решением задачи (4.5.1), будем называть классическим решением задачи (4.5.1).

Для обоснования корректной постановки задачи (4.5.1) необходимо выбрать пространство V для функции u и V_1 для функции φ , в которых решение существует и непрерывно зависит от исходных данных.

Лемма 4.5.1. Если существует классическое решение задачи (4.5.1), то оно единственно.

Доказательство:

Допустим существуют два решения u_1 и u_2 задачи (4.5.1).

Введём функцию $u = u_1 - u_2$.

Но, тогда функция u удовлетворяет однородному уравнению Лапласа, т.е. $\Delta u=0$ и, при этом, $u\Big|_{\Gamma}=0.$

Функция u является гармонической функцией и удовлетворяет теореме 4.4.1 о принципе максимума и минимума для гармонической функции.

Но, тогда получаем, что:

$$\max u|_{\Gamma} = 0$$

$$\min u|_{\Gamma} = 0$$

Из чего следует, что u=0.

Следовательно, классическое решение задачи (4.5.1) – единственно.

Пемма 4.5.2. Если существует классическое решение задачи (4.5.1), то оно непрерывно зависит от исходных данных.

Доказательство:

Рассмотрим две задачи:

$$\Delta u_i = f(M), \ M \in \mathbb{D}$$

$$u_i|_{P \in \Gamma} = \varphi_i(P)$$

$$i = 1, 2$$

Т.е. задачи различаются граничными условиями.

Нам необходимо показать, что:

$$\forall \varepsilon \ \exists \delta : \ |\varphi_1 - \varphi_2| < \delta, \ |u_1 - u_2| < \varepsilon$$

Введём функцию $\overline{\varphi} = \varphi_1 - \varphi_2$.

Положим, что функция $|\overline{\varphi}| \leq \varepsilon$.

T.e. мы имеем, что $|u_1 - u_2|_{\Gamma} \leq \varepsilon$.

Но тогда, по следствию 4.4.4 из теоремы о принципе максимума и минимума для гармонической функции, $|u_1-u_2|\leq \varepsilon$ во всей области $\overline{\mathbb{D}}$.

А следовательно, если взять в качестве $\delta=\varepsilon,$ то непрерывная зависимость от исходных данных доказана.

4.6 Постановка краевых задач для уравнения эллиптического типа. Внешняя задача Дирихле

1. Внешняя задача Дирихле в пространстве.

Рассмотрим область \mathbb{D} , ограниченную поверхностью Γ . Возьмём область $\mathbb{D}'=\mathbb{R}^3\setminus\overline{\mathbb{D}},$ внешнюю к поверхности Γ .

Запишем задачу Дирихле для уравнения Пуассона и условие о том, что функция равномерно стремится к нулю в точке, если точка стремиться к бесконечности:

$$\Delta u = f$$

$$u(P)\Big|_{P \in \Gamma} = \varphi(P)$$

$$u(M) \Longrightarrow_{M \to \infty} 0$$

$$(4.6.1)$$

Решением задачи (4.6.1), назовём функцию $u \in C^2(\mathbb{D}') \cap C(\mathbb{D}')$, удовлетворяющую уравнению Пуассона, начальному условию и условию о равномерном стремлении.

Отметим важность последнего условия задачи (4.6.1) для единственности решения.

Рассмотрим задачу Дирихле для уравнения Лапласа для внешности сферы:

$$\Delta u = 0$$

$$u|_{S_R} = f_0$$

Тогда её решениями могут быть функции:

$$u_1 = f_0 \qquad u_2 = f_0 \frac{R}{r}$$

Т.е., если нет последнего условия задачи (4.6.1), то решениями могут быть комбинации:

$$u = \alpha u_1 + \beta u_2$$

$$\alpha + \beta = 1$$

Т.е. решение не единственно.

Докажем единственность решения задачи (4.6.1).

Лемма 4.6.1. Если существует классическое решение задачи (4.6.1), то оно единственно.

Доказательство:

Предполагаем, что существует два решения u_1 и u_2 , для которых выполняется, что $u_1(M) \Longrightarrow_{M \to \infty}$

$$\underset{M\to\infty}{\Longrightarrow} 0$$
 и $u_2(M) \underset{M\to\infty}{\Longrightarrow} 0$.

Рассмотрим разность:

$$u = u_1 - u_2$$

Для функции u будет выполнятся, что $\Delta u = 0$, т.е. u – гармоническая функция. Таким образом, для u получим задачу:

$$\Delta u = 0$$

$$u|_{\Gamma} = 0$$

$$u(M) \Longrightarrow_{M \to \infty} 0$$

Последнее условие означает, что $\forall \varepsilon > 0$, $\exists R_0$, такое, что $R_{MM_0} > R_0$, $|u(M)| \le \varepsilon$. Рассмотрим следующую область:

Строим сферу Γ_{R_0} с радиусом R_0 и центром в точке M_0 .

Рассмотрим область $\mathbb{D}_{\Gamma \cup \Gamma_{R_0}}$, заключённую между сферами Γ и Γ_{R_0} .

Так как мы рассматриваем гармоническую функцию, то получаем, что:

$$u|_{\Gamma}=0$$

$$|u|_{\Gamma_{R_0}} \le \varepsilon$$

Таким образом, получаем, что:

$$|u|_{\Gamma \cup \Gamma_{R_0}} \le \varepsilon$$

Но тогда, по следствию 4.4.4 из теоремы о принципе максимума и минимума для гармонической функции, получаем, что $|u| \leq \varepsilon$ для области $\overline{\mathbb{D}}_{\Gamma\Gamma_{R_0}}$.

Устремляя ε к нулю, мы получаем, что $u=u_1-u_2=0$ и, соответственно, $u_1=u_2$.

Таким образом, единственность доказана.

2. Внешняя задача Дирихле на плоскости.

Рассмотрим область \mathbb{D} , ограниченную линией Γ . Возьмём область $\mathbb{D}' = \mathbb{R}^2 \setminus \overline{\mathbb{D}}$, внешнюю к линии Γ .

Запишем внешнюю задачу Дирихле на плоскости для уравнения Пуассона в области D':

$$\Delta u = f$$

$$u|_{\Gamma} = 0$$

$$|u| \le A$$

$$(4.6.2)$$

Последнее условие ослаблено в сравнение с внешней задачей Дирихле в пространстве. Это связано с тем, что при условии $u(M) \Longrightarrow_{M \to \infty} 0$ на плоскости, задача может быть неразрешима, т.к. выполняется только необходимость, однако не выполняется достаточность.

Лемма 4.6.2. Если существует классическое решение $u \in C^2(\mathbb{D}') \cap C(\overline{\mathbb{D}}')$, то оно единственно.

Доказательство:

Полагаем, что существует два решения u_1 и u_2 , причём $|u_1| \le A_1$ и $|u_2| \le A_2$. Тогда выполняется, что:

$$|u| = |u_1 - u_2| \le A_1 + A_2 = A_0$$

Тогда для функции u, которая является гармонической, получаем задачу:

$$\Delta u = 0$$

$$u|_{\Gamma} = 0$$

$$|u| \le A_0$$

Рассматриваем плоскую область, ограниченную линией Г:

Изобразим окружность Γ_1 с центром в точке M_0 радиуса R_1 , полностью содержащуюся в \mathbb{D} .

Изобразим вторую окружность Γ_2 с центром в точке M_0 радиуса R_2 , полностью охватывающую область \mathbb{D} . Строим функцию:

$$U = A_0 \frac{\ln \frac{R_{MM_0}}{R_1}}{\ln \frac{R_2}{R_1}}$$

Ранее показывалось, что $\frac{1}{4\pi R}$ — это фундаментальное решение уравнения Лапласа в пространстве, а $\frac{1}{4\pi \ln \frac{1}{R}}$ — это фундаментальное решение уравнения Лапласа на плоскости.

Функция U – гармоническая, т.е. $\Delta U = 0$.

Так как $R_{MM_0} > R_1$ и, по построению, $R_2 > 0$, то:

$$U\Big|_{\Gamma} \ge 0$$

Так как $R_{MM_0} = R_2$, то:

$$U\Big|_{\Gamma_2} = A_0$$

Итого, имеем:

$$\Delta U = 0$$

$$U\Big|_{\Gamma} \ge 0$$

$$U\Big|_{\Gamma_2} = A_0$$

Рассмотрим область $\mathbb{D}_{\Gamma \cup \Gamma_2}$, заключённую между линиями Γ и Γ_2 . Она является внешней к \mathbb{D} .

Сравним значения функций u и U в области $\mathbb{D}_{\Gamma \cup \Gamma_2}$.

Рассмотрим значения на границах Γ и Γ_2 .

 Γ : $u=0,\,U\geq 0$ — следовательно, можем утверждать, что $|u|\leq U.$

 $\Gamma_2: |u| \leq A_0, U\Big|_{\Gamma_2} = A_0$ – следовательно, можем утверждать, что $|u| \leq U$.

Таким образом, в области $\mathbb{D}_{\Gamma \cup \Gamma_2}$ мы получаем, что $|u| \leq U$ и, так как u и U – гармонические функции, то, по следствию 4.4.3 из теоремы о принципе максимума и минимума для гармонической функции, получаем, что $|u| \leq U$ для области $\overline{\mathbb{D}}_{\Gamma \cup \Gamma_2}$.

Устремляя R_2 к ∞ , из представления $U=A_0\frac{\ln\frac{R_{MM_0}}{R_1}}{\ln\frac{R_2}{R_1}}$ получим, что U устремиться к нулю.

Следовательно, получаем, что $u = u_1 - u_2 = 0$ и, соответственно, $u_1 = u_2$. Таким образом единственность доказана.

4.7 Постановка краевых задач для уравнения эллиптического типа. Задача Неймана

1. Внутренняя задача Неймана.

Рассмотрим задачу Неймана для области \mathbb{D} , ограниченной поверхностью Γ , для уравнения Пуассона и условия Неймана:

$$\Delta u = f$$

$$\frac{\partial u(P)}{\partial n_P}\Big|_{P \in \Gamma} = \varphi(P)$$
(4.7.1)

В задаче (4.7.1), n_P – это единичный вектор нормали к поверхности Γ в точке P.

Лемма 4.7.1. (необходимое условие разрешимости задачи Неймана)

Eсли u является классическим решением задачи (4.7.1), т.е. $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, тогда выполняется условие:

$$\iint_{\Gamma} \varphi(P)dS_P = \iiint_{\mathbb{D}} f(Q)dV_Q \tag{4.7.2}$$

Доказательство:

Для доказательства рассмотрим первую формулу Грина:

$$\iint_{\Gamma} v(P) \frac{\partial u(P)}{\partial n_P} dS_P = \iiint_{\mathbb{D}} \left(v(Q) \Delta u(Q) + (grad(v), grad(u)) \right) dV_Q$$

В качестве v возьмём функцию v=1. Но, тогда $v(P)=1, \, \frac{\partial u(P)}{\partial n_P}=\varphi(P), \, v(Q)=1, \, \Delta u(Q)=f(Q), \, grad(v)=0$.

В результате, получаем:

$$\iint_{\Gamma} \varphi(P)dS_P = \iiint_{\mathbb{D}} f(Q)dV_Q$$

Т.е. необходимое условие разрешимости задачи Неймана доказано.

Лемма 4.7.2. Если существует классическое решение задачи (4.7.1), то оно единственно с точностью до постоянной.

Доказательство:

Необходимо показать, что, если u – решение, то решение единственно вплоть до константы, т.е. u + const – тоже решение.

Рассмотрим третью формулу Грина:

$$\iint_{\Gamma} u \frac{\partial u(P)}{\partial n_P} dS_P = \iiint_{\mathbb{R}} \left(u(Q) \Delta u(Q) + |grad(u)|^2 \right) dV_Q \tag{4.7.3}$$

Предполагаем, что существует два решения u_1 и u_2 задачи (4.7.1). Строим разность:

$$v = u_1 - u_2$$

Тогда получаем, что:

$$\begin{cases} \Delta v = 0\\ \frac{\partial v(P)}{\partial n_P} \Big|_{P \in \Gamma} = 0 \end{cases}$$

Возьмём в формуле (4.7.3) в качестве функции u функцию v. Имеем, что $\frac{\partial v(P)}{\partial n_P}=0$.

Тогда получаем, что $\iiint\limits_{\mathbb{T}} |grad(v)|^2 dV_Q = 0.$

Откуда имеем, что $|grad(v)|^2 = 0$.

A это означает, что $\left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 = 0.$

Получаем, что все производные равны нулю:

$$\frac{\partial v}{\partial x} = 0, \quad \frac{\partial v}{\partial y} = 0, \quad \frac{\partial u}{\partial z} = 0$$

A это означает, что v = const.

A раз v = const, то получаем, что $u_1 = u_2 + const$.

Т.е. решение единственно с точностью до постоянной константы.

2. Внешняя задача Неймана.

Имеем область \mathbb{D} , ограниченную поверхностью Γ . Рассмотрим задачу Неймана для области $\mathbb{D}' = \mathbb{R}^3 \setminus \mathbb{D}$, внешнюю для области \mathbb{D} , для уравнения Пуассона и условия Неймана:

$$\Delta u = f$$

$$\frac{\partial u(P)}{\partial n_P}\Big|_{P \in \Gamma} = \varphi(P)$$

$$u(M) \Longrightarrow_{M \to \infty} 0$$
(4.7.4)

Формулу Грина, вообще говоря, мы можем применять только в том случае, если функция сходится равномерно.

Лемма 4.7.3. Если существует классическое решение задачи (4.7.4), то решение единственно.

Доказательство:

Предполагаем, что существует два решения u_1 и u_2 задачи (4.7.4).

Строим разность:

$$v = u_1 - u_2$$

Рассмотрим третью формулу Грина:

$$\iint_{\Gamma} u \frac{\partial u(P)}{\partial n_P} dS_P = \iiint_{\mathbb{D}'} \left(u(Q) \Delta u(Q) + |grad(u)|^2 \right) dV_Q$$

Тогда получаем, что:

$$\begin{cases} \Delta v = 0 \\ \frac{\partial v(P)}{\partial n_P} \Big|_{P \in \Gamma} = 0 \\ v(M) \Longrightarrow_{M \to \infty} 0 \end{cases}$$

Возьмём в третьей формуле Грина в качестве функции u функцию v. Имеем, что $\frac{\partial v(P)}{\partial n_P}=0$. Тогда получаем, что $\iiint\limits_{\mathbb{T}^{V}}|grad(v)|^2dV_Q=0$.

Откуда имеем, что $|grad(v)|^2 = 0$.

A это означает, что $\left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 = 0.$

Получаем, что все производные равны нулю:

$$\frac{\partial v}{\partial x} = 0, \quad \frac{\partial v}{\partial y} = 0, \quad \frac{\partial u}{\partial z} = 0$$

A это означает, что v = const.

Однако $v(M) \underset{M \to \infty}{\Longrightarrow} 0$, а, следовательно, const = 0.

A раз v = 0, то получаем, что $u_1 = u_2$.

Т.е. решение единственно.

Решение задачи Дирихле для круга методом разде-4.8 ления переменных

Вообще говоря, решать методом разделения переменных задач для эллиптических уравнений можно только для таких областей, как круг, цилиндр, прямоугольник.

Решение задач Штурма-Лиувилля, в общем случае, приводит к специальным функциям, таким как функции Бесселя, полиномы Лежандра.

Только в ограниченных случаях решением задачи Штурма-Лиувилля являются тригонометрические функции.

Рассмотрим задачу Дирихле для круга:

$$\begin{cases} \Delta u = 0 \\ u|_{r=R} = f(\varphi) \end{cases} , \tag{4.8.1}$$

где R – радиус круга.

Введём полярную систему координат и запишем уравнение Лапласа в полярных координатах:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \varphi^2} = 0$$

Решение будем искать в виде:

$$u(r,\varphi) = R(r)\Phi(\varphi),$$

где $R(r) \not\equiv 0$ и $\Phi(\varphi) \not\equiv 0$.

Подставляя в уравнение, получаем:

$$\frac{r\frac{\partial}{\partial r}\left(r\frac{\partial R}{\partial r}\right)}{R} = -\frac{\Phi''(\varphi)}{\Phi(\varphi)} = \lambda$$

Откуда получаем два уравнения:

$$r\frac{\partial}{\partial r}\left(r\frac{\partial R}{\partial r}\right) - \lambda R = 0 \tag{4.8.2}$$

$$\Phi''(\varphi) + \lambda \Phi(\varphi) = 0 \tag{4.8.3}$$

Сначала разрешаем уравнение (4.8.3).

Его решение имеет вид:

$$\Phi(\varphi) = A\cos\left(\sqrt{\lambda}\varphi\right) + B\sin\left(\sqrt{\lambda}\varphi\right)$$

Однако мы решаем задачу для круга, т.е. решение должно быть периодическим.

Следовательно, имеем:

$$\Phi(\varphi) = \Phi(\varphi + 2\pi)$$

Это возможно только в том случае, если:

$$\sqrt{\lambda} = n, \ n = 0, 1, 2, \dots$$

Тогда мы имеем, что:

$$\Phi(\varphi) = A_n cos(n\varphi) + B_n sin(n\varphi)$$

Теперь разрешаем уравнение (4.8.2):

$$r^2R''(r) + rR'(r) - n^2R(r) = 0$$

Таким образом, получили уравнение Эйлера и решение его ищем в виде:

$$R(r) = r^{\mu}$$

$$r^{2}\mu(\mu - 1)r^{\mu - 2} + r\mu r^{\mu - 1} - n^{2}r^{\mu} = 0$$

$$r^{\mu}(\mu^{2} - \mu + \mu - n^{2}) = 0$$

Отсюда получаем, что:

$$\mu = \pm n, \ n = 1, 2, \dots$$

Если n = 0, то решение будет иметь вид:

$$R_0(r) = C_0 \ln r + D_0$$

В общем случае же, получили:

$$R_n = C_n r^n + D_n r^{-n}, \ n = 1, 2, \dots$$

В данном параграфе рассматривается плоский случай.

Если разрешаем внутреннюю задачу, т.е. $r \leq R$, то решение должно быть ограничено в нуле.

Тогда имеем, что:

$$C_0 = 0, \ D_n = 0$$

Если разрешаем внешнюю задачу, т.е. $r \geq R$, то решение должно быть ограничено на бесконечности.

Тогда имеем, что:

$$C_0 = 0, C_n = 0$$

Итак, в случае внутренней задачи Дирихле, имеем частное решение:

$$u_n = r^n \left(A_n cos(n\varphi) + B_n sin(n\varphi) \right)$$

В случае внешней задачи Дирихле, имеем частное решение:

$$u_n = r^{-n} \left(A_n cos(n\varphi) + B_n sin(n\varphi) \right)$$

Тогда, в случае внутренней задачи Дирихле, имеем:

$$u = \sum_{n=0}^{\infty} r^n \left(A_n cos(n\varphi) + B_n sin(n\varphi) \right)$$

В случае внешней задачи Дирихле, имеем:

$$u = \sum_{n=0}^{\infty} r^{-n} \left(A_n cos(n\varphi) + B_n sin(n\varphi) \right)$$

Эти функции будут представлять решение задачи (4.8.1) в случае, если ряды сходятся, возможно почленное дифференцирование и функции непрерывны на границах. Теперь необходимо найти неизвестные коэффициенты A_n и B_n из краевых условий задачи (4.8.1).

Предполагаем, что краевые условия разлагаются в ряды Фурье и имеют вид:

$$f(\varphi) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos(n\varphi) + \beta_n \sin(n\varphi)$$

Где имеем, что:

$$\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\psi) d\psi$$

$$\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\psi) \cos(n\psi) d\psi$$

$$\beta_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\psi) \sin(n\psi) d\psi$$

Если мы подставим наше решение в краевые условия, то получим для внутренней задачи:

$$A_0 = \frac{\alpha_0}{2}$$

$$A_n = \frac{\alpha_n}{R^n}$$

$$B_n = \frac{\beta_n}{R^n}$$

Если мы подставим наше решение в краевые условия, то получим для внешней задачи:

$$A_0 = \frac{\alpha_0}{2}$$
$$A_n = \alpha_n R^n$$
$$B_n = \beta_n R^n$$

Решение построено, коэффициенты найдены. Следовательно, решение найдено. Однако, ещё раз, это возможно только в том случае, если ряды сходятся, возможно почленное дифференцирование и функции непрерывны на границах.

4.9 Решение задачи о распространении тепла в однородном шаре

1. Физическая постановка задачи о распространении тепла в однородном шаре

Рассматриваем распространение тепла в однородном шаре, полагая, что температура в каждой точке шара зависит только от её расстояния от центра. На поверхности шара поддерживается нулевая температура и в нулевой момент времени задана температура $u_0(r)$.

2. Математическая постановка задачи о распространении тепла в однородном шаре

Распространение температуры в однородном шаре описывается уравнением:

$$\frac{\partial u}{\partial t} = a^2 \Delta u,$$

где u — это температура.

На поверхности шара поддерживается нулевая температура:

$$u|_{r=R}=0$$

В начальный момент времени имеем:

$$u|_{t=0} = u_0(r)$$

Итого получаем следующую задачу:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \Delta u \\ u|_{r=R} = 0 \\ u|_{t=0} = u_0(r) \end{cases}$$

$$(4.9.1)$$

Естественно требовать ограничения в нуле, так как рассматриваемая область – это шар. Поэтому учитываем это условие, не включая его в задачу.

Так как рассматриваемая область – это шар, то нам необходим оператор Лапласа в сферических координатах:

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 sin(\theta)} \frac{\partial}{\partial \theta} \left(sin(\theta) \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 sin^2(\theta)} \frac{\partial^2 u}{\partial \varphi^2}$$

Из физической постановки имеем, что температура зависит только от расстояния до центра.

Тогда уравнение задачи (4.9.1) примет вид:

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) \right)$$

Откуда получаем:

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} \right)$$

Воспользуемся подходом, который использовали для решения задачи Коши для волнового уравнения, т.е. введём функцию:

$$v = ru$$
 $u = \frac{v}{r}$

Тогда получаем:

$$\frac{\partial u}{\partial r} = -\frac{v}{r^2} + \frac{1}{r} \frac{\partial v}{\partial r}$$
$$\frac{\partial^2 u}{\partial r^2} = \frac{2v}{r^3} - \frac{1}{r^2} \frac{\partial v}{\partial r} - \frac{1}{r^2} \frac{\partial v}{\partial r} + \frac{1}{r} \frac{\partial^2 v}{\partial r^2}$$

Подставляем и получаем:

$$\frac{1}{r}\frac{\partial v}{\partial t} = a^2 \left(\frac{2v}{r^3} - \frac{2}{r^2}\frac{\partial v}{\partial r} + \frac{1}{r}\frac{\partial^2 v}{\partial r^2} - \frac{2v}{r^3} + \frac{2}{r^2}\frac{\partial v}{\partial r} \right)$$

Итак мы имеем однородное уравнение теплопроводности:

$$\frac{\partial v}{\partial t} = a^2 \frac{\partial^2 v}{\partial r^2}$$

Также имеем:

$$v|_{r=R} = 0$$

Так как v=ru, то, если u – ограничено по условию ограниченности в нуле, а r=0, имеем:

$$v|_{r=0} = 0$$

Также имеем:

$$v|_{t=0} = ru_0(r)$$

Таким образом, получаем первую смешанную задачу для однородного уравнения теплопроводности:

$$\begin{cases}
\frac{\partial v}{\partial t} = a^2 \frac{\partial^2 v}{\partial r^2} \\
v|_{r=R} = 0 \\
v|_{r=0} = 0 \\
v|_{t=0} = ru_0(r)
\end{cases}$$
(4.9.2)

Решение задачи (4.9.2) уже было получено ранее и её решение имеет вид:

$$v(r,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{\pi n a}{R}\right)^2 t} sin\left(\frac{\pi n}{R}r\right)$$

$$A_n = \frac{2}{R} \int_{0}^{R} r u_0(r) \sin\left(\frac{\pi n}{R}r\right) dr$$

Тогда решение исходной задачи будет иметь вид:

$$u = \frac{v}{r},$$

где функция v определена выше.

4.10 Решение задач Дирихле и Неймана с помощью функций Грина

Рассматриваем область \mathbb{D} , ограниченную поверхностью Γ :

Мы рассматриваем либо уравнение Лапласа, $\Delta u = 0$, либо уравнение Пуассона, $\Delta u = f$. Рассматриваем либо задачу Дирихле, $u\Big|_{\Gamma} = \varphi$, либо задачу Неймана, $\frac{\partial u}{\partial n}\Big|_{\Gamma} = \varphi$.

Также рассматриваем решение $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$.

Для функции u справедливо интегральное представление:

$$u(M_0) = \iint_{\Gamma} \left(\frac{1}{4\pi R_{PM_0}} \frac{\partial u(P)}{\partial n_P} - \frac{\partial}{\partial n_P} \left(\frac{1}{4\pi R_{PM_0}} \right) u(P) \right) dS_P - \iiint_{\mathbb{D}} \frac{\Delta u}{4\pi R_{MM_0}} dV_M, \quad (4.10.1)$$

где $P \in \Gamma$ и $M \in \mathbb{D}$.

Если мы решаем задачу для уравнения Лапласа, то последний интеграл равен нулю. Если имеем функцию $v \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$, то справедлива вторая формула Грина:

$$\iint\limits_{\Gamma} \left(u(P) \frac{\partial v(P)}{\partial n_P} - \frac{\partial u(P)}{\partial n_P} v(P) \right) dS_P = \iiint\limits_{\mathbb{D}} \left(u(Q) \Delta v(Q) - v(Q) \Delta u(Q) \right) dV_Q$$

Полагаем, что v – это гармоническая функция, т.е. $\Delta v = 0$.

Тогда последнюю формулу можно переписать в виде:

$$0 = \iint_{\Gamma} \left(v(P) \frac{\partial u(P)}{\partial n_P} - \frac{\partial v(P)}{\partial n_P} u(P) \right) dS_P - \iiint_{\mathbb{D}} v(Q) \Delta u(Q) dV_Q$$
 (4.10.2)

Сложим формулы (4.10.1) и (4.10.2):

$$u(M_0) = \iint\limits_{\Gamma} \left(G(M_0, P) \frac{\partial u(P)}{\partial n_P} - \frac{\partial G(M_0, P)}{\partial n_P} u(P) \right) dS_P - \iiint\limits_{\mathbb{D}} G(M_0, M) \Delta u(M) dV_M,$$

где функция $G(M,M_0)=\frac{1}{4\pi R_{MM_0}}+v$ – это функция Грина или функция источника. Необходимо построить решение задачи Дирихле или Неймана для уравнения Лапласа или Пуассона.

Для задачи Дирихле полагаем, что:

$$G\Big|_{\Gamma} = 0$$

Тогда решение для уравнения Пуассона примет вид:

$$u(M_0) = -\iint_{\Gamma} \frac{\partial G}{\partial n} \varphi dS - \iiint_{\mathbb{D}} Gf dV$$

Так как $\frac{1}{4\pi R_{MM_0}}$ – это фундаментальное решение уравнения Лапласа, а v – гармоническая функция, то получаем, что G – это также гармоническая функция.

Пусть точка $M_0(x,y,z)$ – некоторая фиксированная точка, а точка $M(\xi,\eta,\gamma)$, некоторая рассматриваемая нами точка.

T.e., если $\Delta G = 0$, то имеем:

$$G_{\xi\xi} + G_{\eta\eta} + G_{\gamma\gamma} = 0$$

Очевидно, что это выполняется во всех точках, за исключением точки $M=M_0$. Мы полагаем, что в точке $M=M_0$, функция Грина обладает особенностью. При этом имеем, что:

$$G(M, M_0) = \frac{1}{4\pi R_{MM_0}} + v$$
$$G\Big|_{\Gamma} = 0$$

Тогда для функции Грина имеем, что функция v – гармоническая, и, относительно функции v, получаем следующую задачу Дирихле для уравнения Лапласса:

$$\begin{cases} \Delta v = 0 \\ v|_{\Gamma} = -\frac{1}{4\pi R_{MM_0}} \end{cases},$$

где последнее условие получено из рассуждения выше.

Для решения задачи Дирихле с помощью функции Грина, получаем задачу Дирихле для функции v. Однако задача Дирихле для функции v имеет специфические краевые условия и функцию v можно построить, исходя из физических соображений.

Функция Грина называется функцией-источником, причём первое слагаемое $\left(\frac{1}{4\pi R_{MM_0}}\right)$ означает потенциал поля точечного заряда в свободном пространстве, а второе слагаемое (v) – потенциал поля, индуцированного к заряду на поверхности Γ .

Если функция Грина построена, то решение задачи Дирихле для уравнения Лапласа представимо в виде:

$$u(M) = -\iint_{\Gamma} f \frac{\partial G}{\partial n} ds,$$

при условии, что $u\Big|_{\Gamma} = f$.

Запишем функцию Грина в случае двух пространственных переменных:

$$G(M, M_0) = \frac{1}{2\pi} \ln \frac{1}{R_{MM_0}} + v$$

Она удовлетворяет тем же свойствам:

- 1. $\Delta G = 0$ для $\forall M \neq M_0$.
- 2. В точке $M=M_0$ функция Грина обладает особенностью.
- 3. $G\Big|_{C} = 0$, где C контур.

$$u(M) = -\int_{C} f \frac{\partial G}{\partial n} ds$$

4.11 Построение функции Грина для полупространства

Рассмотрим трёхмерную область и построим функцию Грина в полупространстве z>0:

Ограничим поверхность $\Gamma = \{z = 0\}.$

Поместим в точку M_0 единичный заряд.

Тогда потенциал точки M этого заряда будет равен $\frac{1}{4\pi R_{MM_0}}$.

Чтобы получить потенциал в поле индуцированного заряда, отразим точку M_0 относительно плоскости z=0 и поместим в неё отрицательный заряд $M_1(x,y,-z)$. Тогда функция Грина примет вид:

$$G(M, M_0) = \frac{1}{4\pi R_{MM_0}} - \frac{1}{4\pi R_{MM_1}}$$

Проверяем условия:

- 1. $\Delta G = \Delta_M \left(\frac{1}{4\pi R_{MM_0}}\right) \Delta_M \left(\frac{1}{4\pi R_{MM_1}}\right) = 0$ (фундаментальное решение уравнения Лапласа).
- 2. $G(M, M_0) = \frac{1}{4\pi R_{MM_0}} + v$.
- 3. Если точка $M \in \Gamma$ ($\Gamma = \{z = 0\}$), то $R_{MM_0} = R_{MM_1} \Longrightarrow G\Big|_{\Gamma} = 0$.

Пусть есть задача Дирихле для полупространства:

$$\begin{cases} \Delta u = 0 \\ u|_{\Gamma} = f \end{cases}$$

Построим функцию Грина для полупространства и находим решение: $u(M)=-\int_{\Gamma}f\frac{\partial G}{\partial n}ds$ Тогда для $\Gamma=z=0$, рассмотрим область z>0:

$$\frac{\partial G}{\partial n} = -\frac{\partial G}{\partial z}$$

Откуда получаем, что:

$$G(M, M_0) = \frac{1}{4\pi\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} - \frac{1}{4\pi\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z+z_0)^2}}$$

Тогда получаем:

$$\frac{\partial G}{\partial n} = -\frac{\partial G}{\partial z} = \frac{z - z_0}{4\pi R_{MM_0}^3} - \frac{z + z_0}{4\pi R_{MM_1}^3} = [z = 0] = \left[\frac{\partial G}{\partial n} \Big|_{z=0} = \frac{-z_0}{2\pi \left(\sqrt{(x - x_0)^2 + (y - y_0)^2 + z_0^2} \right)^3} \right]$$

Таким образом имеем:

$$u(M) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{f(x,y)z_0 dx dy}{2\pi \left(\sqrt{(x-x_0)^2 + (y-y_0)^2 + z_0^2}\right)^3}$$

Таким образом, построили решение для задачи Дирихле для полупространства.

4.12 Построение функции Грина для шаровой области

Возьмём произвольную точку M_0 в шаровой области и возьмём точку M на сфере. Проведём из точки O через точку M_0 радиус-вектор и построим точку M_1 с помощью преобразования обратных радиусов (зеркального отображения относительно сферы):

Преобразование обратных радиусов заключается в том, что:

$$\rho_0 \rho_1 = R^2$$

Тогда имеем, что:

$$\Delta OMM_0 \sim \Delta OMM_1$$

Т.е. получаем, что треугольники OMM_0 и OMM_1 – подобны, так как имеют общий угол α и из преобразования обратных радиусов $\frac{R}{\rho_0} = \frac{\rho_1}{R}$. Таким образом, получаем:

$$|OM| = R$$
, $|OM_0| = \rho_0$, $|OM_1| = \rho_1$
 $|MM_0| = r_0$, $|MM_1| = r_1$

Из подобия следует, что:

$$\frac{R}{\rho_0} = \frac{\rho_1}{R} = \frac{r_1}{r_0} \Longrightarrow \frac{1}{r_0} = \frac{R}{\rho_0 r_1}$$
 (4.12.1)

Равенство выше было получено в случае, если точка M расположена на сфере. Однако нам необходимо рассмотреть произвольную точку, т.е. если точка M лежит внутри:

Тогда строим функцию Грина в следующем виде:

$$G(M, M_0) = \frac{1}{4\pi R_{MM_0}} - \frac{R}{4\pi R_{0M_0} R_{MM_1}}$$

Проверяем условия:

1.
$$\Delta_M G(M, M_0) = \frac{1}{4\pi} \Delta_M \frac{1}{R_{MM_0}} - \frac{R}{4\pi R_{0M_0}} \Delta_M \left(\frac{1}{R_{MM_1}}\right) = 0.$$

2. Очевидно, что она представима в виде:

$$G(M, M_0) = \frac{1}{4\pi R_{MM_0}} + v$$

3. Если точка M принадлежит сфере, то, исполняется условие (4.12.1), имеем:

$$\frac{1}{r_0} = \frac{R}{\rho_0 r_1}$$

Получаем, что в этом случае: $G(M, M_0)\Big|_{\Gamma} = 0$ Все выше было проделано именно для этого условия.

Таким образом, построили решение для уравнения Лапласа и Пуассона.

4.13 Теория потенциалов

Рассмотрим функцию $\frac{1}{R} = \frac{1}{\sqrt{(x-\xi)^2+(y-\eta)^2+(z-\gamma)^2}}$, которая представляет потенциал заряда единичной массы, (ξ,η,γ) – играют роль параметров.

Интегралы от этой функции по параметрам – это потенциалы.

Данная функция используется для решения краевых задач, сводя их к интегральным уравнениям.

1. Объёмный потенциал.

Пусть имеется область \mathbb{D} , ограниченная поверхностью Γ , и функция ρ – финитная, с носителем в области \mathbb{D} (финитная – с компактным носителем).

Тогда объёмный (Ньютоновский) потенциал имеет вид:

$$V(M) = \iiint_{\mathbb{D}} \frac{\rho(P)}{R_{MP}} dV_P$$

Функция ρ имеет физический смысл:

$$\rho = \frac{\rho_{\text{3ap.}}}{4\pi\varepsilon},$$

где $\rho_{\text{зар.}}$ – это объёмная плотность зарядов, а ε – диэлектрическая проницаемость среды. Вокруг области $\mathbb D$ возникает электрическое поле E(x,y,z) и потенциал этого поля будет иметь вид:

$$grad(V(M)) = -\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right) = E(x, y, z)$$

Если $\rho(x,y,z)$ – непрерывно дифференцируемая функция, тогда:

$$\frac{\partial V}{\partial x} = -\iiint_{\mathbb{R}} \rho(P) \frac{x - \xi}{R_{MP}^3} dV_P = Ex$$

Аналогично получаем:

$$\frac{\partial V}{\partial y} = -\iiint_{\mathbb{D}} \rho(P) \frac{y - \eta}{R_{MP}^3} dV_P = Ey$$
$$\frac{\partial V}{\partial z} = -\iiint_{\mathbb{D}} \rho(P) \frac{z - \gamma}{R_{MP}^3} dV_P = Ez$$

Теорема 4.13.1. Если $\rho(P)$ – непрерывно дифференцируемая финитная функция, то

$$\begin{split} \frac{\partial^2 V}{\partial x^2} &= \iiint\limits_{\mathbb{D}} \rho(P) \frac{\partial^2}{\partial x^2} \left(\frac{1}{R_{MP}}\right) dV_P - \frac{4\pi \rho(M)}{3} \\ \frac{\partial^2 V}{\partial y^2} &= \iiint\limits_{\mathbb{D}} \rho(P) \frac{\partial^2}{\partial y^2} \left(\frac{1}{R_{MP}}\right) dV_P - \frac{4\pi \rho(M)}{3} \\ \frac{\partial^2 V}{\partial z^2} &= \iiint\limits_{\mathbb{D}} \rho(P) \frac{\partial^2}{\partial z^2} \left(\frac{1}{R_{MP}}\right) dV_P - \frac{4\pi \rho(M)}{3} \end{split}$$

Сложим все предложенные равенства в теореме (4.13.1):

$$\Delta V = -4\pi\rho(M) \tag{4.13.1}$$

Таким образом, сложили и получили оператор Лапласа от $\frac{1}{R_{MP}}$, а это фундаментальное решение уравнения Лапласа.

Т.е. V удовлетворяет уравнению Пуассона вида (4.13.1).

Если возьмём любое уравнение Пуассона ($\Delta u = f$), то в качестве частного решения можем взять:

$$u_{\mathbf{q}}(M) = -\iiint_{\mathbf{m}} \frac{f}{4\pi R_{MP}} dV - p$$

Данное частное решение представляет из себя объёмный потенциал с функцией f.

Однако это частное решение.

Общее решение задачи имеет вид:

$$u = u_{\text{\tiny H.}} + u_{\text{\tiny OJH.}},$$

а $u_{\text{одн.}}$ – гармоническая функция, так как $\Delta u = 0$.

4.14 Потенциалы простого и двойного слоя

1. Потенциал простого слоя.

Пусть есть область \mathbb{D} , ограниченная поверхностью Γ . И пусть μ — финитная функция

с носителем в области \mathbb{D} .

Тогда потенциал простого слоя имеет вид:

$$V(M) = \iint_{\Gamma} \frac{\mu(P)}{R_{MP}} ds_P,$$

где μ – это плотность рассматриваемого потенциала.

При этом $\mu = \frac{\mu_{\text{зар.}}}{4\pi\varepsilon}$, где $\mu_{\text{зар.}}$ – поверхностная плотность зарядов, ε – диэлектрическая проницаемость среды.

Если $M \neq P$, то интеграл является собственным интегралом и допустимо дифференцирование под знаком интеграла.

Тогда, получаем:

$$\Delta V(M) = \iint_{\Gamma} \mu(P) \Delta_M \frac{1}{R_{MP}} ds_P = 0,$$

так как $\frac{1}{R_{MP}}$.

Следовательно, потенциал простого слоя является гармонической функцией.

Для решения задач Дирихле и Неймана необходима теорема о скачке потенциала простого слоя.

Теорема 4.14.1. (о скачке потенциала простого слоя)

Если μ является непрерывной функцией и точка $P_0 \in \Gamma$, то нормальная производная от потенциала простого слоя терпит разрыв 1-го рода при переходе через точку P_0 . Т.е. имеем:

$$\left(\frac{\partial V(P_0)}{\partial n_{P_0}}\right)_{\text{внутреннеe}} = \frac{\partial V(P_0)}{\partial n_{P_0}} - 2\pi\mu(P_0)$$

$$\left(\frac{\partial V(P_0)}{\partial n_{P_0}}\right)_{\text{snewnee}} = \frac{\partial V(P_0)}{\partial n_{P_0}} + 2\pi\mu(P_0)$$

 $\Gamma \partial e \frac{\partial V(P_0)}{\partial n_{P_0}}$ – это значение в точке P_0 , $2\pi\mu(P_0)$ – скачок, $a\left(\frac{\partial V(P_0)}{\partial n_{P_0}}\right)_{\text{внутреннее}} u\left(\frac{\partial V(P_0)}{\partial n_{P_0}}\right)_{\text{внешнее}}$ – это внутреннее u внешнее стремление κ точке P_0 соответственно.

При этом получаем:

$$\frac{\partial V(P_0)}{\partial n_{P_0}} = \iint_{\Gamma} \mu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}}\right) ds_P$$

2. Потенциал двойного слоя.

Пусть есть область \mathbb{D} , ограниченная поверхностью Γ . И пусть ν — финитная функция с носителем в области \mathbb{D} .

Тогда потенциал двойного слоя имеет вид:

$$W(M) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{MP}}\right) ds_P,$$

где n_P – это единичная нормаль к поверхности Γ в точке P.

Если $M \neq P$, то интеграл является собственным интегралом и допустимо дифференцирование под знаком интеграла.

Тогда, получаем:

$$\Delta W(M) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \Delta_M \left(\frac{1}{R_{MP}} \right) ds_P = 0,$$

так как $\frac{1}{R_{MP}}$.

Следовательно, потенциал двойного слоя также является гармонической функцией. Для решения задач Дирихле и Неймана необходима теорема о скачке потенциала двойного слоя.

Теорема 4.14.2. (о скачке потенциала двойного слоя)

Если ν является непрерывной функцией и точка $P_0 \in \Gamma$, то потенциал двойного слоя терпит разрыв 1-го рода при переходе через точку P_0 .

Т.е. имеем:

$$(W(P_0))_{sympennee} = W(P_0) + 2\pi\nu(P_0)$$
$$(W(P_0))_{summee} = W(P_0) - 2\pi\nu(P_0)$$

 $\Gamma \partial e\ W(P_0)$ – это значение в точке P_0 , $2\pi\nu(P_0)$ – скачок, $a\ (W(P_0))_{\rm внутреннее}\ u\ (W(P_0))_{\rm внешнее}$ – это внутреннее и внешнее стремление к точке P_0 соответственно. При этом получаем:

$$W(P_0) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}}\right) ds_P$$

4.15 Сведение задачи Дирихле для уравнения Лапласа к интегральному уравнению с помощью поверхностных потенциалов

Рассмотрим область \mathbb{D} , ограниченную поверхностью Γ . Рассмотрим в этой области внутреннюю задачу Дирихле для уравнения Лапласа, и, внешнюю задачу Дирихле для уравнения Лапласа в области \mathbb{D}' , которая является внешней к области \mathbb{D} .

1. Внутренняя задача Дирихле.

Рассмотрим внутреннюю задачу Дирихле для уравнения Лапласа в области D:

$$\Delta u = 0 \tag{4.15.1}$$

$$u|_{P\in\Gamma} = f(P) \tag{4.15.2}$$

Предполагается, что функция f является непрерывной на поверхности Γ .

Ищем классическое решение, т.е. $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$.

Решение будем искать в виде потенциала двойного слоя:

$$u(M) = W(M) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{MP}}\right) ds_P$$
 (4.15.3)

Мы показывали, что потенциал двойного слоя (4.15.3) является гармонической функцией, т.е. удовлетворяет уравнению Лапласа и, автоматически, условию (4.15.1). Условие (4.15.2) означает, что:

$$\lim_{M \to P_0} u(M) = (u(P_0))_{\text{внутреннеe}} = f(P_0)$$

Из условия (4.15.3), получаем:

$$(u(P_0))_{\text{внутреннее}} = (W(P_0))_{\text{внутреннеe}} = f(P_0)$$

Используя теорему 4.14.2 о скачке потенциала двойного слоя, получаем:

$$(W(P_0))_{\text{внутреннее}} = W(P_0) + 2\pi\nu(P_0)$$

Откуда, соответственно, получаем:

$$f(P_0) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}} \right) ds_P + 2\pi \nu(P_0)$$

А это и есть интегральное уравнение Фредгольма.

2. Внешняя задача Дирихле.

Рассмотрим внешнюю задачу Дирихле для уравнения Лапласа в области \mathbb{D}' , внешней к области \mathbb{D} :

$$\Delta u = 0 \tag{4.15.4}$$

$$u|_{P\in\Gamma} = f(P) \tag{4.15.5}$$

$$u(M) \underset{M \to \infty}{\Longrightarrow} 0 \tag{4.15.6}$$

Предполагается, что функция f является непрерывной на поверхности Γ .

Ищем классическое решение, т.е. $u \in C^2(\mathbb{D}') \cap C(\overline{\mathbb{D}'})$.

Решение будем искать в виде потенциала двойного слоя (Т.е. для решения задачи Дирихле используется потенциал двойного слоя, а, для решения задачи Неймана, потенциал простого слоя):

$$u(M) = W(M) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{MP}}\right) ds_P$$
 (4.15.7)

Мы показывали, что потенциал двойного слоя (4.15.7) является гармонической функцией, т.е. удовлетворяет уравнению Лапласа и, автоматически, условию (4.15.4).

Потенциал двойного слоя также удовлетворяет условию (4.15.6), так как $\frac{1}{R_{MP}} \xrightarrow[M \to 0]{} 0$. Условие (4.15.2) означает, что:

$$\lim_{M \to P_0} u(M) = (u(P_0))_{\text{внешнее}} = f(P_0)$$

Из условия (4.15.3), получаем:

$$(u(P_0))_{\text{BHeIIIHee}} = (W(P_0))_{\text{BHEIIIHee}} = f(P_0)$$

Используя теорему 4.14.2 о скачке потенциала двойного слоя, получаем:

$$(W(P_0))_{\text{BHeUIHee}} = W(P_0) - 2\pi\nu(P_0)$$

Откуда, соответственно, получаем:

$$f(P_0) = \iint_{\Gamma} \nu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}} \right) ds_P - 2\pi\nu(P_0)$$

А это и есть интегральное уравнение Фредгольма, где ядром является $\frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}} \right)$. Т.е. для построения решения, необходимо найти только функцию ν .

4.16 Сведение задачи Неймана для уравнения Лапласа к интегральному уравнению с помощью теории потенциалов

Рассмотрим область \mathbb{D} , ограниченную поверхностью Γ , где Γ – это поверхность Ляпунова. Рассмотрим в этой области внутреннюю задачу Неймана для уравнения Лапласа, и, внешнюю задачу Неймана для уравнения Лапласа в области \mathbb{D}' , которая является внешней к области \mathbb{D} .

1. Внутренняя задача Неймана.

Рассмотрим внутреннюю задачу Неймана для уравнения Лапласа в области D:

$$\Delta u = 0 \tag{4.16.1}$$

$$\left. \frac{\partial u}{\partial n_P} \right|_{P \in \Gamma} = f(P)$$
 (4.16.2)

Здесь n_P – это единичная внутренняя нормаль к поверхности Γ в точке P.

Предполагается, что функция f является непрерывной на поверхности Γ .

Ищем классическое решение, т.е. $u \in C^2(\mathbb{D}) \cap C(\overline{\mathbb{D}})$.

Решение будем искать в виде потенциала простого слоя:

$$u(M) = V(M) = \iint_{\Gamma} \mu(P) \frac{1}{R_{MP}} ds_P$$
 (4.16.3)

Мы показывали, что потенциал простого слоя (4.16.3) является гармонической функцией, т.е. удовлетворяет уравнению Лапласа и, автоматически, условию (4.16.1).

Используя теорему 4.14.1 о скачке потенциала простого слоя, получаем:

$$\left(\frac{\partial V(P_0)}{\partial n_P}\right)_{\text{внутреннее}} = \frac{\partial V(P_0)}{\partial n_P} - 2\pi\mu(P_0)$$

Проведём нормальную прямую N через точки P и P_0 :

Откуда имеем:

$$\lim_{M \to P_0} \left(\frac{\partial u(M)}{\partial n_P} \right) = \left(\frac{\partial u(P_0)}{\partial n_P} \right)_{\text{внутреннее}} = \left(\frac{\partial V(P_0)}{\partial n_P} \right)_{\text{внутреннеe}}$$

Откуда, соответственно, получаем интегральную формулу следующего вида:

$$f(P_0) = \iint_{\Gamma} \mu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}} \right) ds_P - 2\pi \mu(P_0)$$

А это и есть интегральное уравнение Фредгольма.

2. Внешняя задача Неймана.

Рассмотрим внешнюю задачу Неймана для уравнения Лапласа в области \mathbb{D}' , внешней к области \mathbb{D} :

$$\Delta u = 0 \tag{4.16.4}$$

$$\left. \frac{\partial u}{\partial n_P} \right|_{P \in \Gamma} = f(P) \tag{4.16.5}$$

$$u(M) \underset{M \to \infty}{\Longrightarrow} 0 \tag{4.16.6}$$

Предполагается, что функция f является непрерывной на поверхности Γ .

Ищем классическое решение, т.е. $u \in C^2(\mathbb{D}') \cap C(\overline{\mathbb{D}'})$.

Решение будем искать в виде потенциала простого слоя:

$$u(M) = V(M) = \iint_{\Gamma} \mu(P) \frac{1}{R_{MP}} ds_P$$
 (4.16.7)

Мы показывали, что потенциал простого слоя (4.16.7) является гармонической функцией, т.е. удовлетворяет уравнению Лапласа и, автоматически, условию (4.16.4). Потенциал простого слоя также удовлетворяет условию (4.16.6), так как $\frac{1}{R_{MP}} \underset{M \to 0}{\to} 0$. Используя теорему 4.14.1 о скачке потенциала простого слоя, получаем:

$$f(P_0) = \iint_{\Gamma} \mu(P) \frac{\partial}{\partial n_P} \left(\frac{1}{R_{PP_0}} \right) ds_P + 2\pi \mu(P_0)$$

Таким образом, получили интегральное уравнение Фредгольма 2-го рода относительно функции μ .

Глава 5

Моделирование физических процессов

5.1 Вывод уравнения колебания струны

Рассмотрим поперечные колебания струны.

Под струной будем понимать тонкую упругую нить, не сопротивляющуюся изгибу.

Т.е. сила натяжения, возникающая в струне, направлена по касательной к её профилю.

Функция u(x,t) означает смещение точки x в момент времени t.

Т.е. колебания будем рассматривать в плоскости Oxu:

В начальный момент времени считаем, что струна расположена вдоль оси x, а вектор смещения перпендикулярен оси x.

Будем рассматривать малое смещение струны, т.е. величинами u^2 и u_x^2 будем пренебрегать.

Сила натяжения, возникающая в струне, согласно закону Гука, пропорциональна относительному удлинению.

Найдём относительное удлинение:

$$S' = \int_{x_1}^{x_2} \sqrt{1 + u_x^2} dx$$

Но, т.к. мы утверждаем, что пренебрегаем u и u_x , то:

$$S' \approx x_2 - x_1$$

Т.е. при нашем предположении малых колебаний, удлинения нет.

Тогда $T_1(x,t)$ и $T_2(x,t)$ не будут зависеть от координаты x, а только от t.

Воспользуемся принципом Д'аламбера, заключающегося в том, что сумма проекций всех сил, действующих на тело, включая внешние силы и силы инерции на оси x и u равны нулю.

Так как мы рассматриваем поперечные колебания, то проекции внешних сил и инерции на ось x равна нулю.

Следовательно, на ось x имеем:

$$-T_1 cos(\alpha_1) + T_2 cos(\alpha_2) = 0$$

$$T_2 \frac{1}{\sqrt{1 + tg^2(\alpha_2)}} - T_1 \frac{1}{\sqrt{1 + tg^2(\alpha_1)}} = 0$$

$$T_2 \frac{1}{\sqrt{1 + u_x^2}} - T_1 \frac{1}{\sqrt{1 + u_x^2}} = 0$$

Мы предполагаем, что колебания малые, т.е. не учитываем u_x^2 . Тогда:

$$T_2 = T_1 = T_0 = const$$

Теперь рассмотрим проекцию всех сил на ось u.

Сначала рассмотрим проекцию сил натяжения:

$$T_0 sin(\alpha_2) - T_0 sin(\alpha_1) = T_0 \frac{tg(\alpha_2)}{\sqrt{1 + tg^2(\alpha_2)}} - T_0 \frac{tg(\alpha_1)}{\sqrt{1 + tg^2(\alpha_1)}} =$$

$$= T_0 \frac{u_x}{\sqrt{1 + u_x^2}} \Big|_{x = x_2} - T_0 \frac{u_x}{\sqrt{1 + u_x^2}} \Big|_{x = x_1} = \int_{x_1}^{x_2} T_0 \frac{\partial^2 u}{\partial x^2} dx$$

Таким образом, получили проекцию сил натяжения на ось u.

Предполагаем, что на струну действуют равномерно распределённые внешние силы с плотностью распределения p(x,t).

Тогда проекция внешних сил на ось u будет равна:

$$\int_{x_1}^{x_2} p(x,t)dx$$

Рассмотрим силы инерции по Ньютону, которые равны -ma.

Пусть плотность струны равна $\rho(x,t)$.

Тогда масса, если поперечное сечение единично, равна:

$$m = \rho(x_2 - x_1)$$

При этом:

$$a = \frac{\partial^2 u}{\partial t^2}$$

Тогда проекция сил инерции на ось u, будет равна:

$$-\int_{x_1}^{x_2} \rho(x,t) \frac{\partial^2 u}{\partial t^2} dx$$

По принципу Д'Аламбера, проекция всех сил равна нулю.

Тогда, при проецировании всех сил на ось u, имеем:

$$\int_{x_1}^{x_2} T_0 \frac{\partial^2 u}{\partial x^2} dx + \int_{x_1}^{x_2} p(x, t) dx - \int_{x_1}^{x_2} \rho(x, t) \frac{\partial^2 u}{\partial t^2} dx = 0$$

Всё это можно записать в один интеграл, а, в силу произвольности промежутка $[x_1, x_2]$, можно применить теорему о среднем и получим уравнение:

$$T_0 \frac{\partial^2 u}{\partial x^2} + p(x,t) - \rho \frac{\partial^2 u}{\partial t^2} = 0$$

Получили уравнение для неоднородной струны.

Если положить, что $\rho = \rho_0$, то получим:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t), \tag{5.1.1}$$

где $a^2=\frac{T_0}{\rho_0},\,f(x,t)=\frac{p(x,t)}{\rho_0}.$ Таким образом, получили уравнение поперечных колебаний тонкой струны.

Это уравнение гиперболического типа, которое мы рассматривали ранее.

Если $f(x,t) \neq 0$, то это уравнение вынужденных колебаний.

Если f(x,t) = 0, то это уравнение свободных колебаний струны.

Если рассматривать мембрану (тонкую плёнку натянутую на контур), то получаем уравнение колебания мембраны:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + f(x, y, t)$$
 (5.1.2)

5.2Вывод уравнения теплопроводности

Рассмотрим область \mathbb{D} , ограниченную поверхностью S:

Введём величины:

- 1. u(x,y,z,t) температура в точке x,y,z в момент времени t.
- 2. c(x, y, z, t) удельная теплоёмкость, т.е количество тепла, необходимое на нагревание 1 единицы массы на 1 °C.
- 3. $\rho(x,y,z,t)$ удельная плотность, т.е. единица массы на единицу объёма в окрестности точки (x, y, z).

4. F(x, y, z, t) – удельная плотность источника тепла, т.е. количество тепла, выделяемое источником на единицу объёма в единицу времени.

Если разные участки тела имеют разную температуру, то происходит перетекание тепла от более нагретых участков к менее нагретым.

Закон 1. (Фурье)

Если через площадь ΔS за время Δt протекает тепло, то его количество можно найти по формуле $q=-k\frac{\partial u}{\partial n}\Delta S\Delta t.$

Вывод уравнения основывается на законе Баланса.

Закон 2.

Изменение количества тепла в теле Q_3 равно количеству тепла, поступившего с внешней поверхности Q_1 плюс количество тепла, выделяемое источником Q_2 . Т.е. $Q_3 = Q_1 + Q_2$.

Рассмотрим сначала Q_3 .

Для этого наше тело разобьём на элементарные объёмы ΔV_i .

Тогда количество тепла Q_i в этом объёме есть:

$$Q_i = c_i m_i u_i = c_i \rho_i \Delta V_i u_i$$

Просуммируем по всем объёмам и получим:

$$\sum_{i} Q_{i} = \sum_{i} c_{i} \rho_{i} \Delta V_{i} u_{i} \xrightarrow{\Delta V_{i} \to 0} \iiint_{\mathbb{D}} c \rho u dV$$

Однако это уравнение в фиксированный момент времени.

Рассматривая в произвольный момент времени Δt , получим:

$$Q_3 = \iiint_{\mathbb{D}} c\rho u \Big|_{t=t_2} dV - \iiint_{\mathbb{D}} c\rho u \Big|_{t=t_1} dV = \iiint_{\mathbb{D}} c\rho \int_{t_1}^{t_2} \frac{\partial u}{\partial t} dt dV$$

Рассмотрим Q_1 .

Для этого поверхность разбиваем на элементарные промежутки ΔS_i и получаем, что количество тепла равно:

$$Q_i = -k_i \frac{\partial u}{\partial n} \Delta S_i$$

Просуммируем по всем промежуткам и получим:

$$\sum_{i} Q_{i} = -\sum_{i} k_{i} \frac{\partial u}{\partial n} \Delta S_{i} \xrightarrow{\Delta S_{i} \to 0} \iint_{S} k \frac{\partial u}{\partial n} dS$$

Знак — опустили, так как в законе 1, рассматривается направление распространения тепла, а в интеграле рассматривается внешняя нормаль. Поэтому знак противоположен. Учитывая произвольность времени, получим:

$$\iint\limits_{S} (A, n) \, dS = \iiint\limits_{\mathbb{T}} div(A) dV$$

$$\frac{\partial u}{\partial n} = \frac{\partial u}{\partial x} cos(\alpha) + \frac{\partial u}{\partial y} cos(\beta) + \frac{\partial u}{\partial z} cos(\gamma),$$

где $cos(\alpha)$, $cos(\beta)$, $cos(\gamma)$ – это направляющие косинусы. Тогда имеем, что:

$$k\frac{\partial u}{\partial n} = (k \cdot grad(u), n)$$

Таким образом, мы имеем, что:

$$\iint\limits_{S} k \frac{\partial u}{\partial n} dS = \iint\limits_{S} (k \cdot grad(u), n) dS = [\mathbf{B} \text{ силу } \Phi \text{ормулы } \mathrm{Остроградского}] = \iiint\limits_{\mathbb{D}} div(k \cdot grad(u)) dV$$

Тогда Q_1 за промежуток времени Δt равно:

$$Q_1 = \int_{t_1}^{t_2} \iiint_{\mathbb{D}} div(k \cdot grad(u)) dV dt$$

Рассмотрим Q_2 , учитывая понятие удельной плотности источника тепла, которое было введено в начале параграфа:

$$Q_2 = \int_{t_1}^{t_2} \iiint_{\mathbb{R}} F(x, y, z, t) dV dt$$

Подставляя в уравнение теплового баланса из закона 2 все полученные уравнения для Q_1 , Q_2 и Q_3 , получим:

$$\int_{t_1}^{t_2} \iiint_{\mathbb{D}} c\rho \frac{\partial u}{\partial t} dV dt = \int_{t_1}^{t_2} \iiint_{\mathbb{D}} div(k \cdot grad(u)) dV dt + \int_{t_1}^{t_2} \iiint_{\mathbb{D}} F(x, y, z, t) dV dt$$

Применяя теорему о среднем, получаем, что:

$$c\rho \frac{\partial u}{\partial t} = div(k \cdot grad(u)) + F$$
 (5.2.1)

Таким образом, получили уравнение теплопроводности.

Если c, ρ, k – константы, то получаем уравнение теплопроводности, которое мы рассматривали ранее:

$$\frac{\partial u}{\partial t} = a^2 \Delta u + f,\tag{5.2.2}$$

где $a^2 = \frac{k}{c\rho}, f = \frac{F}{c\rho}$. Т.е. получили уравнение параболического типа.

Если рассматриваем тонкий стержень, то уравнение имеет вид:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \tag{5.2.3}$$

Уравнения гидродинамики. Уравнение движения жид-5.3 кости.

Пусть имеется трёхмерное пространство, заполненное жидкостью. Введём вектор, характеризующий скорость течения жидкости v(x, y, z), а точнее векторное поле, так как вектор v представляет из себя вектор $v(v_1(x,y,z),v_2(x,y,z),v_3(x,y,z))$.

Введём величину $\rho(x,y,z,t)$ – объёмную плотность, характеризующую единицу массы в

единице объёма в окрестности точки (x, y, z) в момент времени t.

В жидкости действуют силы давления P(x, y, z, t). Это значит, что если взять участок ΔS , то на него действует сила давления $F = P\Delta S$, т.е. P – это давление на единицу площади в момент времени t в окрестности точки (x, y, z).

Кроме того в жидкости действуют ещё внешние силы или, иначе, массовые силы F(x, y, z, t) – силы действующие на единицу массы.

Существует три основных уравнения, характеризующих движение жидкости:

- 1. Уравнение движения жидкости.
- 2. Уравнение неразрывности жидкости.
- 3. Уравнение сохранения жидкости.

1. Уравнение движения жидкости.

Для вывода используем закон Ньютона.

Сила инерции, действующая на жидкость, равна сумме всех сил, действующих на жидкость:

$$I = f_1 + f_2,$$

где I — сила инерции, f_1 — сила давления, f_2 — массовая сила.

Рассмотрим область \mathbb{D} , в которой находится жидкость, ограниченная поверхностью Γ :

Сначала найдём силы f_1 , где f_1 – это суммарные силы давления.

Суммарные силы давления внутри области взаимно компенсируются, т.е. их сумма равна нулю.

Рассмотрим силы действующие на поверхность Г.

Для этого разобьём на элементарные площадки ΔS_i .

Тогда на такую площадку действует сила $f_i = p_i \Delta S_i$.

Силы давления действуют в направлении n – внутренней нормали к поверхности Γ .

Тогда вектор силы будет равен:

$$f_i = p_i \Delta S_i n_i$$

Просуммируем по всем площадкам ΔS_i :

$$f_1 = \sum_i f_i = \sum_i p_i \Delta S_i n_i \xrightarrow{\Delta S_i \to 0} \iint_{\Gamma} P(M_0) n_{M_0} dS_{M_0},$$

где M_0 — точка интегрирования. Перейдём от поверхностного интеграла к объёмному с помощью формулы Остроградского-Гаусса:

$$\iint_{\Gamma} (A, n) dS = \iiint_{\mathbb{D}} div(A) dV$$

При этом:

$$n = \cos(\alpha)i + \cos(\beta)j + \cos(\gamma)k = n_x i + n_y j + n_z k$$

Тогда:

$$f_1 = \iint_{\Gamma} Pn_x dS \cdot i + \iint_{\Gamma} Pn_y dS \cdot j + \iint_{\Gamma} Pn_z dS \cdot k$$

Рассмотрим один интеграл, где n_x – это внутренняя нормаль:

$$\iint\limits_{\Gamma} P n_x dS = [$$
Введём вектор $P_1(P,0,0)] = \iint\limits_{\Gamma} (P_1,n) dS =$

= [Формула Остроградского-Гаусса (она применяется для внешней нормали, а у нас внутренняя нормаль, поэтому поменяем её направление).] =

$$=-\iiint_{\mathbb{D}}div(P_1)dV=$$

= [div -это производная, а у вектора P_1 только первая координата, отличная от нуля.] =

$$= - \iiint_{\mathbb{D}} \frac{\partial P}{\partial x} dV$$

Аналогично можно получить, что:

$$\iint_{\Gamma} P n_y dS = - \iiint_{\mathbb{D}} \frac{\partial P}{\partial y} dV$$

$$\iint_{\Gamma} P n_z dS = - \iiint_{\mathbb{D}} \frac{\partial P}{\partial z} dV$$

Соберём все интегралы:

$$f_1 = -\iiint_{\mathbb{D}} \frac{\partial P}{\partial x} dV \cdot i - \iiint_{\mathbb{D}} \frac{\partial P}{\partial y} dV \cdot j - \iiint_{\mathbb{D}} \frac{\partial P}{\partial z} dV \cdot k = -\iiint_{\mathbb{D}} grad(P) dV$$

Таким образом, имеем:

$$f_1 = -\iiint_{\mathbb{D}} grad(P)dV$$

Теперь найдём силы f_2 , где f_2 – массовые силы.

Массовые силы действуют на единицу массы.

Разобьём область на элементарные объёмы ΔV_i .

Массы в этом объёме имеют вид $\Delta m_i = \rho_i \Delta V_i$, где ρ_i – это объёмная плотность.

Тогда на этот объём действует массовая сила:

$$f_i = F_i \Delta m_i = F_i \rho_i \Delta V_i$$

Просуммируем по всем элементарным объёмам и получим:

$$f_2 = \sum_i f_i = \sum_i F_i \rho_i \Delta V_i \xrightarrow{\Delta V_i \to 0} \iiint_{\mathbb{R}} \rho F dV$$

Таким образом, имеем:

$$f_2 = \iiint_{\mathbb{D}} \rho F dV$$

Теперь рассмотрим силы инерции I.

По закону Ньютона имеем:

$$I = ma$$

Разобьём область на элементарные объёмы:

$$\Delta m_i = \rho_i \Delta V_i$$

Так как мы вводили векторное поле скоростей $v(v_1, v_2, v_3)$, то $a = \frac{dv}{dt}$.

При этом $v_1 = v_1(x, y, z, t), v_2 = v_2(x, y, z, t)$ и $v_3 = v_3(x, y, z, t)$.

Тогда получим, что:

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial v}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial v}{\partial z}\frac{\partial z}{\partial t}$$

При этом x,y,z — это координаты точки. Тогда $\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t}$ — это v_1, v_2 и v_3 соответственно.

Тогда получаем, что:

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}v_1 + \frac{\partial v}{\partial y}v_2 + \frac{\partial v}{\partial z}v_3 = \frac{\partial v}{\partial t} + (v, \nabla)v,$$

где $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}).$

Тогда:

$$(\nabla, v) = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y} + v_3 \frac{\partial}{\partial z}$$

Если умножить представление выше на v, то мы получим то, что было изначально.

Тогда на ΔV_i действует сила инерции, равная:

$$I_i = \rho_i \Delta v_i \left(\frac{\partial v}{\partial t} + (v, \nabla) v \right)$$

Просуммируем по всем объёмам и получим:

$$I = \sum_{i} I_{i} = \sum_{i} \rho_{i} \left(\frac{\partial v}{\partial t} + (v, \nabla)v \right) \Delta V_{i} \xrightarrow{\Delta V_{i} \to 0} \iiint_{\mathbb{D}} \rho \left(\frac{\partial v}{\partial t} + (v, \nabla)v \right) dV$$

Таким образом получили силу инерции.

Теперь, учитывая представление силы инерции в виде суммы силы давления и массовой силы, получим:

$$\iiint\limits_{\mathbf{T}}\rho\left(\frac{\partial v}{\partial t}+(v,\nabla)v\right)dV=\iiint\limits_{\mathbf{T}}\rho FdV-\iiint\limits_{\mathbf{T}}\operatorname{grad}(P)dV$$

Применяя теорему о среднем,получаем уравнение движения жидкости:

$$\frac{\partial v}{\partial t} + (v, \nabla)v = F - \frac{1}{\rho}grad(P) \tag{5.3.1}$$

Уравнения гидродинамики. Уравнения неразрывно-5.4сти и сохранения жидкости.

Рассмотрим область \mathbb{D} , в которой находится жидкость, ограниченная поверхностью Γ :

1. Уравнение неразрывности жидкости.

Для вывода уравнения неразрывности жидкости используем закон Баланса.

Т.е. изменение количества жидкости за время равно количеству жидкости, поступившему через поверхность Γ :

$$\Delta Q = W$$

Определим изменение количества жидкости:

$$Q_i = \rho_i \Delta V_i$$

Тогда, если просуммировать по всем элементарным объёмам, получим массу жидкости в фиксированный момент времени:

$$Q = \iiint_{\mathbb{D}} \rho dV$$

Однако, нам важно изменение массы во времени.

Тогда получим:

$$\Delta Q = \iiint_{\mathbb{D}} \rho(x, y, z, t_2) dV - \iiint_{\mathbb{D}} \rho(x, y, z, t_1) dV = \int_{t_1}^{t_2} \iiint_{\mathbb{D}} \frac{\partial \rho}{\partial t} dV dt$$

Теперь определим количество жидкости, поступившей через поверхность Γ за время Δt . Разбиваем поверхность на элементарные площадки ΔS_i .

Тогда объём жидкости, протекающей через элементарные площадки ΔS_i , равен:

$$(v,n)\Delta S_i$$

где n – это внутренняя нормаль.

При этом масса равна:

$$m_i = \rho_i(v, n) \Delta S_i$$

Просуммируем массу по всем элементарным площадкам:

$$\sum_{i} m_{i} = \sum_{i} \rho_{i}(v, n) \Delta S_{i} \xrightarrow{\Delta S_{i} \to 0} \iint_{\Gamma} (\rho v, n) dS =$$

= [Формула Остроградского-Гаусса.

Меняем направления нормали, так как у нас внутренняя, а нужна внешняя.] =

$$= - \iiint_{\mathbb{D}} div(\rho v) dV$$

Находя изменение массы за промежуток времени, получим:

$$W = -\int_{t_1}^{t_2} \iiint_{\mathbb{D}} div(\rho v) dV dt$$

Подставляем полученные массы в уравнение Баланса и имеем:

$$\int_{t_1}^{t_2} \iiint \int_{\mathbb{D}} \frac{\partial \rho}{\partial t} dV dt = -\int_{t_1}^{t_2} \iiint \int_{\mathbb{D}} div(\rho v) dV dt$$

Применяя теорему о среднем, получаем уравнение неразрывности жидкости:

$$\frac{\partial \rho}{\partial t} + div(\rho v) = 0$$

2. Уравнение сохранения жидкости.

Уравнение сохранение жидкости имеет вид:

$$p = g(\rho),$$

где g – это заданная функция. Она выводится из молекулярных взаимодействий.

Мы рассматривали невязкие жидкости, т.е. жидкости, трение между частицами которых, отсутствует.

Таким образом в этом и прошлом параграфах мы получили основные три уравнения гидродинамики:

$$\begin{cases} \frac{\partial v}{\partial t} + (v, \nabla)v = -\frac{1}{\rho}grad(P) + F \\ \frac{\partial \rho}{\partial t} + div(\rho v) = 0 \\ p = g(\rho) \end{cases}$$

Таким образом, эти три уравнения гидродинамики являются уравнениями относительно пяти неизвестных скалярных величин v_1, v_2, v_3, P, ρ .

5.5 Уравнения электродинамики

В электродинамике основные уравнения – это уравнения Максвелла.

Они не являются дифференциальными уравнениями в частных производных, однако мы сведём их к таковым.

Рассмотрим трёхмерную область.

Введём необходимые величины:

- 1. E(x, y, z, t) вектор электрической напряжённости.
- 2. H(x, y, z, t) вектор магнитной напряжённости.
- 3. B(x, y, z, t) вектор магнитной индукции.
- 4. D(x, y, z, t) вектор электрической индукции.

- 5. I(x, y, z, t) плотность тока электрических зарядов.
- 6. |I| количество электрических зарядов в единичных площадках.
- 7. $I^{\text{ст}}$ плотность тока сторонних зарядов, т.е. не электрических зарядов.
- 8. $\rho(x,y,z,t)$ объёмная плотность.

Запишем уравнения Максвелла для некоторой трёхмерной среды (rot – это ротор):

$$\begin{cases} rot(E) = -\frac{\partial B}{\partial t} \\ rot(H) = \frac{\partial D}{\partial t} + I + I^{\text{cr}} \\ div(B) = 0 \\ div(D) = \rho \end{cases}$$

Кроме того, существуют, так называемые, материальные уравнения, связывающие электромагнитное поле со средой:

$$B = \mu H,$$

$$D = \varepsilon E,$$

$$I = \gamma E,$$

где μ – это магнитная проницаемость среды, ε – это диэлектрическая проницаемость среды, γ – удельная проводимость среды.

Если среда ничем не заполнена, то имеем вакуум, и, тогда, получаем:

$$\varepsilon = \varepsilon_0$$
$$\mu = \mu_0$$
$$\gamma = 0$$

Для среды, и, даже, для неоднородной среды, мы будем иметь уравнения:

$$\begin{cases} rot(E) = -\mu \frac{\partial H}{\partial t} \\ rot(H) = \varepsilon \frac{\partial E}{\partial t} + \gamma E + I^{\text{ct}} \\ div(\mu H) = 0 \\ div(\varepsilon E) = \rho \end{cases}$$

Поле обычно распространяется с определённой частотой.

Возьмём временную зависимость e^{-iwt} , где $w=2\pi f$, а f – это круговая частота распределения поля.

Т.е. имеем:

$$\begin{split} E(x,y,z,t) &= E(x,y,z)e^{-iwt}\\ H(x,y,z,t) &= H(x,y,z)e^{-iwt}\\ I^{\text{\tiny CT}}(x,y,z,t) &= I^{\text{\tiny CT}}(x,y,z)e^{-iwt}\\ \rho(x,y,z,t) &= \rho(x,y,z)e^{-iwt} \end{split}$$

Вектора $E(x,y,z),\ H(x,y,z),\ I^{\rm ct}(x,y,z)$ и $\rho(x,y,z)$ называются комплексными амплиту-дами нашего поля.

Запишем уравнения Максвелла для комплексных амплитуд:

$$\begin{cases} rot(E) = iw\mu H \\ rot(H) = -iw\varepsilon E + \gamma E + I^{\text{ct}} \\ div(\mu H) = 0 \\ div(\varepsilon E) = \rho \end{cases}$$

Примем:

$$-iw\varepsilon + \gamma = -iw\left(\varepsilon + i\frac{\gamma}{w}\right) = -iw\varepsilon',$$

где ε' – это комплексная диэлектрическая проницаемость.

Тогда уравнения Максвелла перепишутся в виде:

$$rot(E) = iw\mu H \tag{5.5.1}$$

$$rot(H) = -iw\varepsilon' E + I^{\text{ct}} \tag{5.5.2}$$

$$div(\mu H) = 0 \tag{5.5.3}$$

$$div(\varepsilon E) = \rho \tag{5.5.4}$$

Но, прежде чем мы будем приводить данные уравнения к уравнениям в частных производных, выпишем уравнения из векторного анализа, которые понадобятся нам для такого преобразования:

$$div(rot(A)) = 0 (5.5.5)$$

$$rot(uA) = urot(A) + [grad(u) \times A]$$
(5.5.6)

$$rot(rot(A)) = grad(div(A)) - \Delta A \tag{5.5.7}$$

$$div(uA) = udiv(A) + (qrad(u), A)$$
(5.5.8)

В формулах из векторного анализа, приведённых выше, стоит понимать, что uA и (grad(u), A) – это скалярные произведения, а $[grad(u) \times A]$ –это векторное произведение.

Заметим, что уравнения (5.5.1) и (5.5.2) являются основными.

Уравнение (5.5.3) можно получить из уравнения (5.5.1).

Применим дивергенцию к уравнению (5.5.1) и получим:

$$div(rot(A)) = iwdiv(\mu H)$$

Однако, по формуле (5.5.5) имеем:

$$div(rot(A)) \equiv 0$$

Таким образом, получаем:

$$iwdiv(\mu H) = 0$$

Откуда непосредственно следует формула (5.5.3):

$$div(\mu H) = 0$$

Уравнение (5.5.4) может быть получено из уравнения (5.5.2) и использовано для нахождения ρ .

Применим дивергенцию к уравнению (5.5.4) и получим:

$$div(rot(H)) = -iwdiv(\varepsilon'E) + div(I^{\text{ct}})$$

По формуле (5.5.5), имеем:

$$div(rot(H)) \equiv 0$$

Тогда получаем:

$$-iwdiv(\varepsilon'E) + div(I^{\text{ct}}) = 0$$

Перепишем $-iwdiv(\varepsilon'E)$ в другом виде, подставив представление ε' :

$$-iwdiv(\varepsilon'E) = div((-iw\varepsilon + \gamma)E) = -iwdiv(\varepsilon E) + div(\gamma E)$$

Откуда, по формуле (5.5.8), имеем:

$$\rho = div(\varepsilon E) = \frac{1}{iw} div(\gamma E) + \frac{1}{iw} div(I^{\text{cr}})$$

В уравнениях, вообще говоря, две неизвестных, E и H. Но, т.к. это вектора, то их можно представить в виде:

$$E = E_x \cdot i + E_y \cdot j + E_z \cdot k$$

$$H = H_x \cdot i + H_y \cdot j + H_z \cdot k$$

Т.е., вообще говоря, имеем шесть неизвестных.

Сведём все к E.

Из уравнения (5.5.1) выразим H:

$$H = \frac{1}{iw\mu} rot(E)$$

Подставим полученное представление в уравнение (5.5.2):

$$\frac{1}{iw}rot\left(\frac{1}{\mu}rot(E)\right) = -iw\varepsilon'E + I^{\text{ct}}$$

Домножим на iw и получим:

$$rot\left(\frac{1}{\mu}rot(E)\right) = w^2\varepsilon'E + iwI^{\text{ct}}$$

Используем формулу (5.5.6), где $u = \frac{1}{\mu}$, а A = rot(E), и получим:

$$\frac{1}{\mu}rot(rot(E)) + \left[grad\left(\frac{1}{\mu}\right) \times rot(E)\right] = w^2 \varepsilon' E + iwI^{\text{ct}}$$

Домножим на μ и учтём, что $grad\left(\frac{1}{\mu}\right)=-\frac{1}{\mu^2}grad(\mu).$ Тогда, получим:

$$rot(rot(E)) = -\frac{1}{\mu}[grad(\mu) \times rot(E)] = \mu w^2 \varepsilon' E + iw\mu I^{\text{ct}}$$

Применим к полученному представлению формулу (5.5.7) и получим:

$$grad(div(E)) - \Delta E - \frac{1}{\mu}[grad(\mu) \times rot(E)] = \mu w^2 \varepsilon' E + iw\mu I^{\text{ct}}$$

Перепишем это уравнение в виде:

$$\Delta E + k^2 E + \frac{1}{\mu} [grad(\mu) \times rot(E)] - grad(div(E)) = -iw\mu I^{\text{ct}}, \qquad (5.5.9)$$

где $k^2 = \mu w^2 \varepsilon'$. Найдём div(E).

Применим дивергенцию к уравнению (5.5.2):

$$div(rot(H)) = -iwdiv(\varepsilon'E) + div(I^{\text{ct}})$$

Однако, по формуле (5.5.5), имеем:

$$div(rot(H)) \equiv 0$$

Тогда, имеем:

$$-iwdiv(\varepsilon'E) + div(I^{\text{ct}}) = 0$$

По формуле (5.5.8) имеем, что $-iwdiv(\varepsilon'E)$ представима в виде:

$$-iwdiv(\varepsilon'E) = -iw\varepsilon'div(E) - iw(grad(\varepsilon'), E)$$

Тогда дивергенция, применённая к уравнению (5.5.2), будет иметь вид:

$$-iwdiv(\varepsilon'E) + div(I^{\text{ct}}) = -iw\varepsilon'div(E) - iw(grad(\varepsilon'), E) + div(I^{\text{ct}}) = 0$$

Таким образом, получаем, что:

$$div(E) = -\frac{1}{\varepsilon'}(grad(\varepsilon'), E) + \frac{1}{iw\varepsilon'}div(I^{\text{ct}})$$
(5.5.10)

Подставляя представление (5.5.10) в уравнение (5.5.9), получим:

$$\Delta E + k^2 E + \frac{1}{\mu} [grad(\mu) \times rot(E)] + grad\left(\frac{1}{\varepsilon'} (grad(\varepsilon'), E)\right) = \frac{1}{iw} grad\left(\frac{1}{\varepsilon'} div(I^{\text{ct}})\right) - iw\mu I^{\text{ct}}$$

$$(5.5.11)$$

Уравнения (5.5.10) и (5.5.11) являются уравнениями в частных производных, описывающими электромагнитное поле.

Они могут быть использованы для нахождения вектора E.

Если вектор E найден, то мы можем найти вектор H следующим образом:

$$H = \frac{1}{iw\mu} rot(E)$$

Ранее мы всё рассматривали для неоднородной среды.

Если рассмотреть однородную среду, то ε , μ , γ – это константы.

Тогда уравнения примут вид:

$$\begin{cases} \Delta E + k^2 E = \frac{1}{iw\varepsilon'} grad(div(I^{\text{ct}})) - iw\mu I^{\text{ct}} \\ div(E) = \frac{1}{iw\varepsilon} div(I^{\text{ct}}) \end{cases}$$

Однако, эти уравнения мы получили в предположении, что существуют сторонние токи. Если их нет, то мы имеем:

$$\begin{cases} \Delta E + k^2 E = 0\\ div(E) = 0 \end{cases}$$

Уравнение $\Delta E + k^2 E = f$ носит название уравнения Гельмгольца.

Оно описывает установившийся волновой процесс, и поэтому называется волновым уравнением. Например акустические, волновые и другие.

Однако, то волновое уравнение, которое рассматривалось ранее — это уравнение гиперболического типа, а в данном случае имеем уравнение эллиптического типа. Поэтому данное уравнение лучше называть уравнением Гельмгольца.

Глава 6

Специальные функции математической физики

6.1 Цилиндрические функции Бесселя

Специальной функцией будем называть функцию, которая имеет своё название и довольно часто встречается в уравнениях математической физики.

Рассмотрим обыкновенное дифференциальное уравнение:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{n^2}{x^2}\right)y = 0$$

$$y = y(x) \qquad n = 0, \pm 1, \pm 2, \dots$$
(6.1.1)

Уравнение (6.1.1) носит название уравнения Бесселя.

Решением этого уравнения является функция Бесселя первого рода:

$$y(x) = J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+n)!} \left(\frac{x}{2}\right)^{2m+n}$$
(6.1.2)

Уравнение (6.1.1) является уравнением второго порядка. Следовательно, существует второе линейно независимое решение. В качестве такого решения рассматривается функция Неймана $N_n(x)$, $N_n(0) = \infty$.

Тогда общее решение уравнения (6.1.1) является комбинацией функций Бесселя и Неймана:

$$y(x) = AJ_n(x) + BN_n(x)$$

Уравнение (6.1.1) может быть рассмотрено в более общем виде:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{\nu^2}{x^2}\right)y = 0 \tag{6.1.3}$$

Общее решение уравнения (6.1.3) при $\nu \neq n$ имеет вид:

$$y(x) = AJ_{\nu}(x) + BJ_{-\nu}(x)$$

Если $\nu \neq n$, то J_{ν} и $J_{-\nu}$ линейно независимы для любого ν и имеем:

$$J_{\nu}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(\nu + m + n)!} \left(\frac{x}{2}\right)^{2m+n}$$

Также вводятся специальные функции:

$$H_n^{(1)}(x) = J_n(x) + iN_n(x)$$
 — функция Ханкеля первого рода

$$H_n^{(2)}(x) = J_n(x) - iN_n(x)$$
 – функция Ханкеля второго рода

Функции $H_n^{(1)}$ и $H_n^{(2)}$ независимы, и общее решение уравнения (6.1.3) можно записать в виде их линейной комбинации:

$$y(x) = AH_n^{(1)}(x) + BH_n^{(2)}(x)$$

Рассмотрим ещё одно уравнение:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(k^2 - \frac{n^2}{x^2}\right)y = 0 {(6.1.4)}$$

Его общее решение имеет вид:

$$y(x) = AJ_n(Kx) + BN_n(KX)$$

Функции Ханкеля, Бесселя, Неймана называют цилиндрическими функциями.

Свойства функций Бесселя.

- 1. $J_n(-x) = (-1)^n J_n(x)$
- 2. $J_{-n}(x) = (-1)^n J_n(x)$
- 3. Рассмотрим последовательность функций $f_n(x), n=0,\pm 1,\pm 2,\dots$ Функция G(x,t) называется производящей функцией последовательности $f_n(x)$, если $G(x,t)=\sum_{n=-\infty}^{\infty}f_n(x)t^n.$

Рассмотрим в качестве $f_n(x)$ функции Бесселя.

Следовательно, производящей функцией для функций Бесселя будет функция:

$$G(x,t) = e^{\frac{x}{2}(t-t^{-1})} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$$
(6.1.5)

Продифференцируем функцию (6.1.5) по x и получим:

$$\frac{1}{2}(t-t^{-1})e^{\frac{x}{2}(t-t^{-1})} = \sum_{n=-\infty}^{\infty} \frac{dJ_n(x)}{dx}t^n = \frac{1}{2}(t-t^{-1})\sum_{n=-\infty}^{\infty} J_n(x)t^n =$$

$$= \frac{1}{2}\sum_{m=-\infty}^{\infty} J_n(x)t^{n+1} - \frac{1}{2}\sum_{n=-\infty}^{\infty} J_n(x)t^{n-1} = \frac{1}{2}\sum_{n=-\infty}^{\infty} J_{n-1}(x)t^n - \frac{1}{2}\sum_{n=-\infty}^{\infty} J_{n+1}(x)t^n$$

Приравниваем коэффициенты при одинаковых степенях и получаем:

$$\frac{dJ_n(x)}{dx} = \frac{1}{2} \left(J_{n-1}(x) - J_{n+1}(x) \right)$$

Дифференцируя по t, аналогично получим следующее свойство:

$$\frac{n}{x}J_n(x) = \frac{1}{2}\left(J_{n-1}(x) - J_{n+1}(x)\right)$$

4. Рассмотрим уравнение (6.1.4) на отрезке [0, 1]:

$$\begin{cases} \frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(k^2 - \frac{n^2}{x^2}\right)y = 0\\ y(0) = 0\\ y(1) = 0\\ n > 0 \end{cases}$$

Умножим уравнение на х и запишем задачу в другом виде:

$$\begin{cases} \frac{d}{dx} \left(x \frac{dy}{dx} \right) + k^2 x y - \frac{n^2}{x} y = 0 \\ y(0) = 0 \\ y(1) = 0 \\ n > 0 \end{cases}$$
 (6.1.6)

Введём обозначения:

$$K(x) = x;$$
 $q(x) = \frac{n^2}{x};$ $k^2 = \lambda;$ $\rho(x) = x$

Задача (6.1.6) – это задача Штурма-Лиувилля, где λ – собственные значения. Разрешим задачу Штурма-Лиувилля:

$$y(x) = AJ_n(kx) + BN_n(kx)$$

Удовлетворим полученное общее решение граничным условиям:

$$y(0)=Ay_n(0)+BN_n(0)=0\Rightarrow B=0, \text{ так как }N_n(0)=\infty$$

$$y(x)=AJ_n(x)$$

$$y(1)=AJ_n(k)=0\Rightarrow J_n(k)=0$$

Задача Штурма-Лиувилля имеет бесконечную последовательность собственных значения $\{\lambda_s\}$:

$$k = \sqrt{\lambda} = \sqrt{\lambda_s}$$

Следовательно, нами доказано, что уравнение $J_n(k) = 0$ имеет бесконечную последовательность собственных значений $J_n(k) = 0$, $k = k_s$ – корни уравнения, которые вычислены.

Собственные функции задачи Штурма-Лиувилля (6.1.6) имеют вид:

$$J_s(x) = J_n(k_s x)$$

Из задачи Штурма-Лиувилля также следует то, что собственные функции ортогональны:

$$\int_{0}^{1} J_n(k_s x) J_n(k_m x) x dx = \alpha_s \delta_{sm},$$

где k_s , k_m – это различные корни уравнения $J_n(x) = 0$.

6.2 Сферические функции. Функции Лежандра. Присоединённые функции Лежандра

Рассмотрим обыкновенное дифференциальное уравнение:

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0, \quad n = 0, 1, 2, \dots$$
(6.2.1)

Уравнение (6.2.1) носит название уравнения Лежандра.

Общее решение этого уравнение имеет вид:

$$y(x) = AP_n(x) + BQ_n(x),$$

где $P_n(x)$ – это полином Лежандра, а $Q_n(x)$ – это функция Лежандра второго рода. Полином Лежандра представим в следующем виде:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right]$$
$$P_0(x) = 1$$
$$P_1(x) = x$$

Функция Лежандра второго рода представима в виде:

$$Q_n(x) = \frac{1}{2}P_n(x)\ln\frac{1+x}{1-x} - \sum_{m=1}^n \frac{1}{m}P_{m-1}(x)P_{n-m}(x)$$

Покажем ортогональность полиномов Лежандра.

Рассмотрим два уравнения:

$$\begin{cases} (1-x^2)\frac{d^2P_n}{dx^2} - 2x\frac{dP_n}{dx} + n(n+1)P_n = 0\\ (1-x^2)\frac{d^2P_m}{dx^2} - 2x\frac{dP_m}{dx} + m(m+1)P_m = 0 \end{cases}$$

Умножим первое из этих уравнений на P_m , а второе на P_n , после чего рассмотрим их разность:

$$\frac{d}{dx} \left[(1 - x^2) \frac{dP_n}{dx} \right] P_m - \frac{d}{dx} \left[(1 - x^2) \frac{dP_m}{dx} \right] P_n + n(n+1) P_n P_m - m(m+1) P_m P_n = 0$$

$$\frac{d}{dx} \left\{ (1 - x^2) \frac{dP_n}{dx} P_m - (1 - x^2) \frac{dP_m}{dx} P_n \right\} = [m(m+1) - n(n+1)] P_n P_m$$

Данное тождество проинтегрируем в пределах от -1 до 1:

$$\frac{d}{dx}\left\{(1-x^2)\frac{dP_n}{dx}P_m - (1-x^2)\frac{dP_m}{dx}P_n\right\}\Big|_{-1}^1 = \left[m(m+1) - n(n+1)\right]\int_{-1}^1 P_n P_m dx$$

Следовательно, имеем:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0, \quad n \neq m$$

$$\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n+1}$$

Запишем условие ортогональности для полиномов Лежандра:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{nm}$$

Рассмотрим уравнение:

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \left(n(n+1) - \frac{m^2}{1-x^2}\right)y = 0, \quad n = 0, 1, 2, \dots, \ m = 0, \pm 1, \pm 2, \dots \ (6.2.2)$$

Существуют два линейно независимые решения уравнения (6.2.2):

 $y_1(x) = P_n^m(x)$ – присоединённая функция Лежандра первого рода.

 $y_2(x) = Q_n^m(x)$ – присоединённая функция Лежандра второго рода.

Общее решение уравнения (6.2.2) имеет вид:

$$y(x) = AP_n^m(x) + BQ_n^m(x),$$

где

$$P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{d^m P_n}{dx^m}$$
$$Q_n^m = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{d^m Q_n}{dx^m}$$

6.3 Краевые задачи для уравнения Бесселя

Колебания упругой мембраны с закреплёнными краями вдоль кривой C, лежащей в плоскости t=0 и ограничивающей область $\mathbb D$ этой плоскости, описывается решением волнового уравнения с двумя пространственными переменными:

$$u_{tt} = u_{xx} + u_{yy}$$

Данное волновое уравнение удовлетворяет начальным условиям:

$$u|_{t=0} = \varphi(x, y), \quad u_t|_{t=0} = \psi(x, y), \quad (x, y) \in \mathbb{D}$$

и краевым условиям:

$$u(x, y, t)|_{(x,y)\in C} = 0, \quad t \ge 0$$

В случае круговой мембраны оператор Лапласа записывается в полярных координатах:

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}$$

Если рассматривать симметричный случай для уравнения колебаний круговой мембраны, тогда u не зависит от φ и краевая задача имеет вид:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \\ |u(0,t)| < \infty \\ u(R,t) = 0 \\ u|_{t=0} = \varphi(r) \\ \frac{\partial u}{\partial t}|_{t=0} = \psi(r) \end{cases}$$

Решение ищем в виде:

$$u(r,t) = R(r)T(t)$$

Подставляя это представление в уравнение задачи, получим:

$$T''R = R''T + \frac{1}{r}R'T$$

Разделяя переменные, имеем:

$$\frac{R'' + \frac{1}{r}R'}{R} = \frac{T''}{T} = -\lambda^2$$

Учитывая граничные условия, получаем задачу Штурма-Лиувилля относительно R(r):

$$\begin{cases} R'' + \frac{1}{r}R' + \lambda^2 R = 0\\ |R(0)| < \infty\\ R(R) = 0 \end{cases}$$

В уравнении сделаем замену $x = \lambda r$:

$$R'_r = R'_x \lambda, \quad R''_{rr} = R''_{xx} \lambda^2$$

В результате, получим:

$$R'' + \frac{1}{x}R' + \left(1 - \frac{0^2}{x^2}\right) = 0$$

А это есть уравнение Бесселя при n = 0.

Его общее решение имеет вид:

$$R(x)=C_1J_0(x)+C_2N_0(x)$$
 или $R(r)=C_1J_0(\lambda r)+C_2N_0(\lambda r)$

По условию $|R(0)| < \infty$, однако $N_n(0) = \infty$. Следовательно, $C_2 = 0$. Тогда, имеем:

$$R(r) = C_1 J_0(\lambda r)$$

$$R(R) = C_1 J_0(\lambda R) = 0$$

Так как функции Бесселя $J_0(\mu)$ имеет счётное число нулей в точках $\mu_n = \lambda_n R$, то $\lambda_n = \frac{\mu_n}{R}$ – это собственные значения, а $R_n(r) = J_0\left(\frac{\mu_n}{R}r\right)$ – это собственные функции. Решим уравнение для T:

$$T_n(t) = A_n cos(\lambda_n t) + B_n sin(\lambda_n t)$$

Построим решение исходной задачи:

$$u(r,t) = \sum_{n=1}^{\infty} J_0(\lambda_n r) \left(A_n \cos(\lambda_n t) + B_n \sin(\lambda_n t) \right)$$

Удовлетворим начальным условиям:

$$u(r,0) = \sum_{n=1}^{\infty} A_n J_0(\lambda_n r) = \varphi(r)$$

$$u_t(r,0) = \sum_{n=1}^{\infty} \lambda_n B_n J_0(\lambda_n r) = \psi(r)$$

Функции $J_0(\lambda_k r)$ и $J_0(\lambda_s r)$ ортогональны на отрезке [0,R] с весом r. Тогда, имеем:

$$A_n = \frac{\int\limits_0^R \varphi(r) J_0(\lambda_n r) r dr}{\|J_0(\lambda_n r)\|^2}$$
$$B_n = \frac{\int\limits_0^R \psi(r) J_0(\lambda_n r) r dr}{\|J_0(\lambda_n r)\|^2}$$
$$\|J_0(\lambda_n r)\|^2 = \frac{R^2}{2} J_1(\lambda_n r)$$

6.4 Решение краевой задачи для уравнения Лапласа в шаре

Краевые задачи для уравнения Лапласа в шаре приводят к необходимости использования полиномов Лежандра.

Оператор Лапласа в сферических координатах имеет вид:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right) + \frac{1}{r^2sin(\theta)}\frac{\partial}{\partial \theta}\left(sin(\theta)\frac{\partial u}{\partial \theta}\right) + \frac{1}{r^2sin^2(\theta)}\frac{\partial^2 u}{\partial \varphi^2} = 0$$

Рассмотрим случай, когда решение не зависит от φ .

Тогда уравнение примет вид:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right) + \frac{1}{r^2sin(\theta)}\frac{\partial}{\partial \theta}\left(sin(\theta)\frac{\partial u}{\partial \theta}\right) = 0$$

Решение будем искать в виде:

$$u = R(r)T(\theta)$$

Тогда, имеем:

$$\frac{\frac{d}{dr}\left(r^2\frac{dR}{dr}\right)}{R} = \lambda \qquad \frac{\frac{1}{\sin(\theta)}\frac{d}{d\theta}\left(\sin(\theta)\frac{dT}{d\theta}\right)}{T} = -\lambda$$

Откуда получаем уравнение Эйлера:

$$r^2R'' + 2rR' - \lambda R = 0$$

Сделаем замену $x = cos(\theta)$.

Тогда, имеем:

$$\sin(\theta) = \sqrt{1 - x^2}$$

$$\frac{d}{d\theta} = \frac{d}{dx} \left(-\sqrt{1 - x^2} \right)$$

$$\frac{1}{\sqrt{1 - x^2}} \frac{d}{dx} \left(\sqrt{1 - x^2} \frac{dT}{dx} \left(-\sqrt{1 - x^2} \right) \right) - \sqrt{1 - x^2} + \lambda T = 0$$

Это уравнение имеет ограниченные решения на отрезке [-1,1] лишь при $\lambda = n(n+1)$ и этими решениями являются полиномы Лежандра.

Таким образом, имеем:

$$\lambda_n = n(n+1)$$

$$T_n(x) = P_n(x)$$

Полиномы Лежандра образуют полную ортогональную систему в $L_2(-1,1)$ и любая функция из этого пространства разлагается в ряд Фурье по полиномам Лежандра:

$$f(x) = \sum_{n=0}^{\infty} \frac{2n+1}{2} f_n(x) P_n(x), \quad f_n(x) = \int_{-1}^{1} f(x) P_n(x) dx$$

Таким образом, имеем:

$$T_n(\theta) = P_n(cos(\theta))$$

Рассмотрим уравнение:

$$r^2R'' + 2rR' - n(n+1)R = 0$$

Его решение имеет вид:

$$R(r) = r^{\alpha}$$

$$\alpha(\alpha - 1)r^{\alpha} - 2\alpha r^{\alpha} - n(n+1)r^{\alpha} = 0$$

$$\alpha(\alpha + 1) - n(n+1) = 0$$

$$\alpha = n$$

$$\alpha(\alpha - 1) = -(n+1)$$

$$R_n(r) = A_n r^n + B_n r^{-(n+1)}$$

Таким образом, решение исходного уравнения Лапласа представляется в виде ряда:

$$u(r,\theta) = \sum_{n=0}^{\infty} \left(A_n r^n + B_n r^{-(n+1)} \right) P_n(\cos(\theta))$$

Решение внутренней задачи ищется в виде:

$$u(r,\theta) = \sum_{n=0}^{\infty} A_n r^n P_n(\cos(\theta))$$

Решение внешней задачи ищется в виде:

$$u(r,\theta) = \sum_{n=0}^{\infty} B_n r^{-(n+1)} P_n(\cos(\theta))$$

Коэффициенты A_n и B_n определяются из граничных условий.