## **Assignment 2**

## 1.1 Are either $\lceil \lg n \rceil!$ or $\lceil \lg \lg n \rceil!$ polynomially bounded?

Polynomially bounded means  $f_n = O(n^k)$  for some constant k (e.g., whether  $f_n \le c \cdot n^k$  for constants c and k as n approaches  $\infty$ ). For the first function  $\lceil \lg n \rceil!$ , without loss of generality, assume  $n = 2^a$  (where  $a \in \mathbb{N}$ ).

$$\lceil \lg n \rceil! \le c \cdot n^k$$
$$\lg(2^a)! \le c \cdot (2^a)^k$$
$$a! \le c \cdot 2^{ak}$$

The statement  $a! \le c \cdot 2^{ak}$  is a contradiction, as the factorial function a! is not exponentially bounded. Therefore,  $\lceil \lg n \rceil !$  is not polynomially bounded (via proof by contradiction). For the second function  $\lceil \lg \lg n \rceil !$ , without loss of generality, assume  $n = 2^{2^a}$  (where  $a \in \mathbb{N}$ ).

$$\begin{split} \lceil \lg \lg n \rceil! &\leq c \cdot n^k \\ \lg \lg \left( 2^{2^a} \right)! &\leq c \cdot \left( 2^{2^a} \right)^k \\ a! &\leq c \cdot 2^{k \cdot 2^a} \\ 1 \cdot 2 \cdot 3 \cdots a &\leq c \cdot \left( 2^{2k} \cdot 2^{4k} \cdot 2^{8k} \cdots 2^{2^a \cdot k} \right) \end{split}$$

The statement  $1 \cdot 2 \cdot 3 \cdots a \leq c \cdot (2^{2k} \cdot 2^{4k} \cdot 2^{8k} \cdots 2^{2^{a_k}})$  is obviously true. Therefore  $\lceil \lg \lg n \rceil!$  is polynomially bounded (via direct proof).

- 1.2 Use induction to prove  $F_i = \frac{\phi^i \hat{\phi}^i}{\sqrt{5}}$ ; where  $F_i = F_{i-2} + F_{i-1}$ , and  $\phi$  is the golden ratio  $\frac{1+\sqrt{5}}{2}$ .
- 1.3 Show that  $k \lg k = \Theta(n)$  implies  $k = \Theta\left(\frac{n}{n \ln n}\right)$ .
- 1.4 Are either  $2^{n+1}$  or  $2^{2n}$  big-O of  $2^{n}$ ?
- 1.5 For each pair of functions (A,B), indicate whether A is  $O, o, \Omega, \omega$ , or  $\Theta$  of B. Assume  $k \ge 1$ ,  $\epsilon > 0$ , c > 1 are constants.

|    | $\boldsymbol{A}$ | B            | 0   | o   | Ω   | ω   | Θ   |
|----|------------------|--------------|-----|-----|-----|-----|-----|
| a. | $\lg^k n$        | $n^\epsilon$ | yes | yes |     |     |     |
| b. | $n^k$            | $c^n$        | yes | yes |     |     |     |
| c. | $\sqrt{n}$       | $n^{\sin n}$ |     |     |     |     |     |
| d. | $2^n$            | $2^{n/2}$    |     |     | yes | yes |     |
| e. | $n^{\lg c}$      | $c^{\lg n}$  | yes |     | yes |     | yes |
| f. | $\lg(n!)$        | $\lg(n^n)$   | yes |     | yes |     | yes |

The main idea here is that (in terms of growth rate),  $f_n = \Omega(g_n)$  means  $f_n \ge c \cdot g_n$ ,  $f_n = \omega(g_n)$  means  $f_n > c \cdot g_n$ ,  $f_n = O(g_n)$  means  $f_n \le c \cdot g_n$ ,  $f_n = o(g_n)$  means  $f_n < c \cdot g_n$ , and  $f_n = \Theta(g_n)$  means  $f_n = c \cdot g_n$ .

To demonstrate whether something is big-something of something, you perform algebraic manipulations on the respective aforementioned inequalities (e.g., isolate the constant c) and observe whether the inequality holds.

Also note that big- $\Omega$  precludes little-o and big-O precludes little- $\omega$  (e.g., if  $f_n = O(g_n)$ , then  $f_n = \omega(g_n)$  is false, and vice-versa).

1.6 Order the following functions such that  $f_1 = \Omega(f_2), f_2 = \Omega(f_3), ..., f_{29} = \Omega(f_{30})$ , and partition them into equivalence classes such that each function is big- $\Theta$  of each other.

Note that, in terms of growth,  $f_1=\Omega(f_2)$  means  $f_1\leq f_2$ . Therefore, the order of functions  $f_1=\Omega(f_2), f_2=\Omega(f_3),..., f_{29}=\Omega(f_{30})$  is as follows:  $2^{2^n}=\Omega((n+1)!), (n+1)!=\Omega(n!), n!=\Omega(e^n), e^n=\Omega(n\cdot 2^n), n\cdot 2^n=\Omega(2^n), 2^n=\Omega\left(\left(\frac{3}{2}\right)^n\right), \left(\frac{3}{2}\right)^n=\Omega\left(n^{\lg\lg n}\right), n^{\lg\lg n}=\Omega\left((\lg n)^{\lg n}\right), (\lg n)^{\lg n}=\Omega\left((\lg n)!\right), (\lg n)!=\Omega\left(n^{\lg n}\right), N^3=\Omega\left(n^2\right), n^2=\Omega\left(4^{\lg n}\right), 4^{\lg n}=\Omega(\lg(n!)), \lg(n!)=\Omega(n\lg n), n\lg n=\Omega\left(2^{\lg n}\right), 2^{\lg n}=\Omega(n), n=\Omega\left(\left(\sqrt{2}\right)^{\lg n}\right), \left(\sqrt{2}\right)^{\lg n}=\Omega\left(\sqrt{n}\right), \sqrt{n}=\Omega\left(2^{\sqrt{2\lg n}}\right), 2^{\sqrt{2\lg n}}=\Omega\left(\lg^2 n\right), \lg^2 n=\Omega(\ln n), \ln n=\Omega\left(\sqrt{\lg n}\right), \sqrt{\lg n}=\Omega(\ln \ln n), \ln \ln n=\Omega\left(2^{\log^2 n}\right), 2^{\lg^2 n}=\Omega\left(\lg^2 n\right), \lg^2 n=\Omega(\ln n), \lg^2 n=\Omega(\lg *(\lg n)), \lg *(\lg n)=\Omega(\lg(\lg *n)), \lg(\lg *n)=\Omega\left(\frac{1}{\lg^n}\right), n^{\frac{1}{\lg n}}=\Omega(1).$ 

An equivalence class is a set containing elements that all adhere to some property. In this case, the elements are functions f, and the property is that each function is  $\operatorname{big-}\Theta$  of every other function in the set. The functions above can be partitioned into the following equivalence classes:  $\{n^{\lg\lg n},(\lg n)^{\lg n}\},\{n^2,4^{\lg n}\},\{\lg(n!),n\lg n\},\{2^{\lg n},n\},\{(\sqrt{2})^{\lg n},\sqrt{n}\},\{\lg^* n,\lg^* (\lg n)\},\{n^{\frac{1}{\lg n}},1\}.$