21.06.00

日本国特許庁

JP 00/4050 PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

1.1

1999年 6月21日

REC'D 11 AUG 2000

PCT

WIPO

出 顧 番 号 Application Number:

平成11年特許願第174426号

出 願 人 Applicant (s):

科学技術振興事業団

北野 宏明

諸橋 峰雄

京田 耕司

濱橋 秀互

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 7月28日

特 許 庁 長 官 Commissioner, Patent Office

出証番号 出証特2000-3058389

特平11-1744

【書類名】

特許願

【整理番号】

KT11TK5

【あて先】

特許庁長官殿

【国際特許分類】

G06F 17/60

【発明者】

【住所又は居所】

埼玉県川越市西小仙波町2-18-3

【氏名】

北野 宏明

【発明者】

【住所又は居所】

東京都北区西ケ原1-27-3-1010

【氏名】

諸橋 峰雄

【発明者】

【住所又は居所】

神奈川県横浜市青葉区奈良町2423-208

【氏名】

京田 耕治

【発明者】

【住所又は居所】

神奈川県川崎市中原区木月1566佐藤ビル303号室

【氏名】

濱橋 秀互

【特許出願人】

【識別番号】

396020800

【氏名又は名称】

科学技術振興事業団

【特許出願人】

【識別番号】

396013721

【氏名又は名称】

北野 宏明

【特許出願人】

【住所又は居所】

東京都北区西ケ原1-27-3-1010

【氏名又は名称】

諸橋 峰雄

【特許出願人】

【住所又は居所】 神奈川県横浜市青葉区奈良町2423-208

【氏名又は名称】

京田 耕治

特平11-174426

【特許出願人】

【住所又は居所】 神奈川県川崎市中原区木月1566佐藤ビル303号室

【氏名又は名称】 濱橋 秀互

【代理人】

【識別番号】 100105371

【氏名又は名称】 加古 進

【手数料の表示】

【予納台帳番号】 045414

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】 ネットワーク推定方法および装置

【特許請求の範囲】

【請求項1】 互いに関連している要素間の関係をネットワークとして記述でき、前記要素により生成されたデータが与えられたときにおける、前記与えられたデータから、前記データを再現できる候補ネットワークを推定する方法であって、

与えられた前記データを再現する可能性のあるネットワークの構造およびそれ に対応するパラメータ・セットを作成して、複数の候補ネットワークを得るステ ップと、

前記得られたデータとは異なる、ネットワークから生成できる他のデータを用いて、前記得られたネットワークから適切な候補ネットワークを絞り込むステップと

を備えることを特徴とするネットワーク推定方法。

【請求項2】 請求項1記載のネットワーク推定方法において、前記候補ネットワークを得るステップは、前記与えられたデータを再現可能な全てのネットワーク構造を作成するステップを含むことを特徴とするネットワーク推定方法。

【請求項3】 請求項1または2記載のネットワーク推定方法において、前 記候補ネットワークを得るステップは、前記与えられたデータを再現可能なネットワーク構造を選択するステップを含むことを特徴とするネットワーク推定方法

【請求項4】 請求項3記載のネットワーク推定方法において、前記候補ネットワークを得るステップは、前記与えられたデータとの誤差が少ないデータを再現するネットワーク構造を高頻度で作成するステップを含むことを特徴とするネットワーク推定方法。

【請求項5】 請求項3又は4記載のネットワーク推定方法において、前記候補ネットワークを得るステップは、前記与えられたデータとの誤差が少ないデータを再現するネットワーク同士の一部を組み替えて、ネットワーク構造を作成するステップを含むことを特徴とするネットワーク推定方法。

【請求項6】 請求項3~5いずれか記載のネットワーク推定方法において、前記候補ネットワークを得るステップは、任意ネットワークの構造的近傍を探索して、ネットワーク構造を作成するステップを含むことを特徴とするネットワーク推定方法。

【請求項7】 請求項1~6いずれか記載のネットワーク推定方法において、前記候補ネットワークを得るステップは、同一のネットワーク構造に対して、1個のパラメータ、又は、複数であって互いに異なるパラメータのセットを推定することを特徴とするネットワーク推定方法。

【請求項8】 請求項7記載のネットワーク推定方法において、前記候補ネットワークを得るステップは、遺伝的アルゴリズム(GA)、シミュレーテッド・アニーリング(SA)、及び/又は、山登り法等の最適化手法を用いてパラメータを推定するステップを含むことを特徴とするネットワーク推定方法。

【請求項9】 請求項1~8いずれか記載のネットワーク推定方法において、前記他のデータは、ネットワークの一部が変異したネットワークが生成したデータであることを特徴とするネットワーク推定方法。

【請求項10】 互いに関連している要素間の関係をネットワークとして記述でき、前記要素により生成されたデータが与えられたときにおける、前記与えられたデータから、前記データを再現できる候補ネットワークを推定するネットワーク推定装置であって、

ネットワーク構造と、それに対応するパラメータ・セットとで構成されるネットワークを記憶する第1の記憶手段と、

最終的な候補としてのネットワーク構造と、それに対応するパラメータ・セットとを格納する第2の記憶手段と、

与えられた前記データを再現する可能性のあるネットワークの構造およびそれ に対応するパラメータ・セットを作成し、複数の候補ネットワークを得て、前記 第1の記憶手段に格納する手段と、

前記得られたデータとは異なる、ネットワークから生成できる他のデータを用いて、前記第1の記憶手段に格納されているネットワークから適切な候補ネットワークを絞り込み、前記第2の記憶手段に格納する手段と

を備えることを特徴とするネットワーク推定装置。

【請求項11】 請求項1~9いずれか記載のネットワーク推定方法をコン ピュータ・システムに実現させることができるプログラムを格納した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、互いに関連し、干渉し合う別々の要素のネットワークとしてモデル 化できるシステムを、そのネットワークの挙動や状態を表す情報から逆に推定す ることに関する。特に、生物学的現象における遺伝子の発現データ、タンパク質 の濃度データ等から、その現象を引き起こしている遺伝子の制御ネットワークや 酵素やタンパク質の反応を示す代謝ネットワークの構造等を推定することに関す

[0002]

【技術の背景】

最近の分子生物学の急激な進歩によって、主要な生物に関する多くの情報が蓄積されつつある。その典型例が、酵母、線虫、ショウジョウバエである。例えば、線虫 (C.elegans)では、その全細胞系譜の推定、神経系の結合の同定などがするに行われており、昨年、DNAの全塩基配列の決定が発表された。酵母、大腸、 マイコプラズマ等のモデル生物においても、DNAの全塩基配列がすでに決定されており、究極の目標であるヒトのDNAの全塩基配列も数年以内には終了すると思われる。しかしながら、配列が分かるということと、遺伝子やその機能、 さらには遺伝子間の相互作用が分かるという間には、大きなギャップがある。

[0003]

このような遺伝子の機能や遺伝子間の相互作用の決定は非常に困難な仕事である。現在、分子生物学の多くの研究は、注目する現象に関わる遺伝子およびその転写産物の特定と、それらのカスケードの決定に重点を置いている。このような遺伝子間の相互作用の理解を行う段階において、複雑な相互作用を人間の直感のみを用いて行うことは極めて難しい。これは、データが大量にあることやこれに関わる相互作用等の関係も色々と考えられるからである。我々は、この困難をコ

ンピュータという計算能力をもった道具を導入することで乗り越えようとしている。

[0004]

この考えを図式したのが図1である。これは、コンピュータを利用する部分(バーチャル)と、実際に生物学的に実験する部分(リアル)との関係を示す図である。図1において、まず、解明しようとする現象を特定すると、現在知られている生物学的知識(図1 フェーズーI A)から、モデルをコンピュータ上に実装する(図1 フェーズーI B)。また、すでに仮説が提示されている場合には、その仮説を実装する。実装されたモデルを使ってシミュレーションを行い(図1 フェーズーI C)、観測されているデータとの整合性を検証する(図1 フェーズーI D)。シミュレーションの結果と、観測データと一致しない場合は、2つの可能性が考えられる。まず、シミュレーションが正確でない場合である。これは、シミュレーションの精度をあげて、確実なものとすることで解決する。次に考えられるのは、モデルが不完全または間違っている場合である。この場合は知られている実験データに整合するモデルを構築する必要がある。

その後に、できるならば、このモデルを用いて、コンピュータ上で実験を行う
(図1 フェーズーII F)。フェーズIIの後、又はフェーズIIができないなら
、直接、仮説的に決めたモデル等が正しいか実際に生物学的な実験を開始する。
図1フェーズーIIIおよびIV)。

このようにして、「生物のリバース・エンジニアリング」を行うことができる

このようなコンピュータ上におけるシミュレーションにより、仮説的に求めた モデルの絞り込みを必要としている分野は、上述の生物の分野に限らない。

[0005]

【発明が解決しようとする課題】

本発明の目的は、コンピュータにより、仮説的に求めたモデルの絞り込みを効率良く行うことである。

例えば分子生物学においては、DNAチップやマイクロアレイ、さらには、P CRなどを利用して得られた遺伝子産物やタンパク質の量の時間的変化に関する データ、電気生理学的実験や電圧感受性色素などを用いた神経回路網の活動に関するデータ等から、その背後にある遺伝子やタンパク質、酵素の相互作用のネットワーク、および、神経細胞のネットワークで表されるモデルを、コンピュータを用いて推定することである。与えられたデータから考えられるモデルの総数は莫大な数である。従来は、これを人間の勘に頼ってあたりを付け、生物学的な実験により確かめていた。本発明は、与えられたデータから、類似したデータを生成する可能性のあるモデル(ネットワーク)を、コンピュータを用いて推定することにより、確からしいモデルの数をある程度まで絞り込もうとするものである。これは、上述の図1に示した場合では、フェーズIに関するものである。

これらの相互作用のモデルの推定(ネットワークの推定)は、疾病の原因遺伝子の特定や、投薬の効果の推定等に必要である。また、未知の遺伝子や遺伝子産物の推定にも用いることができる。

[0006]

【課題を解決するための手段】

上記目的を達成するために、本発明は、互いに関連している要素間の関係をネットワークとして記述でき、前記要素により生成された結果であるデータが与えられたときにおける、前記与えられたデータから、前記データを再現できる候補ネットワークを推定する方法であって、与えられた前記気一タを再現する可能性のあるネットワークの構造およびそれに対応するパラメータ・セットを作成し、複数の候補ネットワークを得るステップと、前記得られたデータとは異なる、ネットワークから生成できる他のデータを用いて、前記得られたネットワークから適切な候補ネットワークを絞り込むステップとを備えることを特徴とする。

これにより、互いに関連し、干渉し合う別々の要素のネットワークとしてモデル化できるシステムを、そのネットワークの挙動、状態、生成物等を表すデータから逆に推定することができる。

[0007]

前記候補ネットワークを得るステップには、前記与えられたデータを再現可能なネットワーク構造が少ないときは、その全ネットワーク構造を作成するステップを含むことができる。

前記候補ネットワークを得るステップは、前記与えられたデータを再現可能なネットワーク構造を選択するステップを含むこともできる。これは、パラメータを含めたネットワークが多数存在する場合に行われる。この選択するステップとして、例えば、ランダムにネットワーク構造を選択することにより行われる。

このような選択が行われた場合、前記与えられたデータとの誤差が少ないデータを再現するネットワーク構造を高頻度で作成するステップを含むこともできる

これにより、与えられたデータを再現する可能性の高い候補ネットワークを選 択する確率が高くなる。

また、前記与えられたデータとの誤差が少ないデータを再現するネットワーク 同士の一部を組み替えて、ネットワーク構造を作成するステップを含むことができる。これは遺伝的アルゴリズム (GA) 等を用いることにより実現することが できる。

これらのネットワーク構造は、ネットワーク構造空間を広く粗く探索して得られている。

[0008]

この広域探索を補うために、ネットワーク構造を得るための探索として、任意

さいます。ネットワークの構造的近傍を探索して、ネットワーク構造を作成するステップを

含むことができる。この局所探索には、例えば、シミュレーテッド・アニーリン

グ (SA) を用いて行うことができる。

このようにネットワーク構造を広域探索および局所探索をハイブリッドで用いることにより、効率的に最適なネットワーク構造を選択することができる。

[0009]

前記ネットワークを得るステップは、同一のネットワーク構造に対して、1個のパラメータ、若しくは、複数であって互いに異なるパラメータのセットを推定しており、これには、例えば、遺伝的アルゴリズム(GA)シミュレーテッド・アニーリング(SA)、及び/又は、山登り法等の最適化手法を用いて推定している。

これにより、与えられたデータを再現するための、ネットワーク構造に対する

最適なパラメータを早く推定することができる。

このようにして得られた候補ネットワークを絞り込むために、与えられたデータとは別のデータを用いているが、このデータとして、ネットワークの一部が変異したネットワークが生成したデータを用いて行うことができる。

このようにして、最終的に、効率的に比較的少数の最適化された候補ネットワークを得ることができる。

上述のネットワーク推定方法を実行する装置および、上述のネットワーク推定方法をコンピュータ・システムに実現させることができるプログラムを格納した記録媒体も本発明である。

[0010]

【発明の実施の形態】

本発明の実施形態を、図面を参照して詳細に説明する。

本発明は、例えば、特定の生物学的現象における遺伝子の発現データ、タンパク質の濃度データ等のプロファイルから、その現象を引き起こしている遺伝子の制御ネットワークや、酵素やタンパク質の反応を示す代謝ネットワークの構造と反応の強さや速度などを決定するいろいろな変数を推定する場合に適用することができる。この場合を例に以下説明する。

(遺伝子ネットワーク)

本発明の実施形態を、図2に示すような遺伝子の相互関係を示しているネットワークを例に説明する。図2(a)は、遺伝子をノードとして、その遺伝子が発現する物質等の発現に対して活性を示す関係と、抑制を示す関係を示している。それをネットワーク構造として図示したものが図2(b)である。

さて、与えられたターゲット・プロファイル(発現プロファイル)に対する遺伝子のネットワークは、構成要素(DNA, RNA, タンパク質等)間の反応関係を示すネットワーク構造(トポロジー)、ネットワーク内部での反応や状態のモデルを記述する際に必要な変数の集合であるパラメータ・セット、および、ターゲット・プロファイルとの類似度を示す適応度の3つを単位とした、「トリプレット」で表すことができる。

[0012]

まず、遺伝子のネットワーク構造の例について説明する。構成要素(ノード)間の反応規則は、簡単化すると、 $N\times N$ の結合重み行列W(パラメータ・セット)および結合行列C(ネットワーク構造)で表現される。結合重み行列Wの値Wは、例えば、+1. 0と-1. 0の間の実数をとる。Wの負の値は抑制を示し、正の値は活性を示す。結合行列Cでは、要素 c_{pq} の0と1の2値で、Jードpと Jードqの間の結合関係を示す。0はJード間に結合関係がないことを意味し、1 は結合関係があることを示す。また、NJードを有する遺伝子ネットワーク構造のある時間 tにおける発現状態は、N次元空間のベクトルx(t)で表現することができる。ベクトルxの各要素は、 x_i (t) (i=1, …, N) で表される。そして、 S_i (t) を、要素i(i=1, …, N) の発現型の濃度であり、 h_i を活性要素iの活性レベルを決定するしきい値であるとすると、各要素は、例えば、次のように定義することができる。この関数は、様々に定義することが可能である。

【数1】

$$x_i(t+1) = F\left(\sum_{j=1}^N c_{ji} w_{ji} s_i(t) - h_i\right)$$

$$F(u) = \begin{cases} 0 & (u < 0) \\ u & (0 \le u < 1) \\ 1 & (u \ge 1) \end{cases}$$

[0013]

(実施形態の処理の概略)

このような遺伝子ネットワークの場合は、複数の発現物質の濃度の時間的変化で示される発現プロファイルが与えられて、この発現プロファイルを発現する遺伝子ネットワークの候補を探し出すことが本発明の目的である。例えば、図3(a)に示すような発現プロファイルを与えて、図3(b)に示すような遺伝子ネットワークの候補を探し出すのである。なお、この図3(a)に示した発現プロファイルは、野生型の遺伝子構造に対する発現プロファイルである。最初に用いる発現プロファイルは、これに示されるような野生型であることが望ましい。

ネットワークの結合(リンク)部分の数字は、上述における結合重み行列Wの値wの絶対値を示している。なお、結合重み行列Wの値wの符号は、結合の活性か抑制かにより正負が決められる。また、遺伝子Bがない突然変異(ミュータント)のプロファイル、遺伝子Cのない突然変異(ミュータント)のプロファイルがそれぞれ図3(c)、図3(d)に示されている。このプロファイルの用いられ方については後で説明する。

[0014]

本実施形態は、図4の概略フローチャートに示すようなプロセスにより行われる。図4において、まず、対象である発現プロファイルを実現することができるネットワークの構造を想定し、そのネットワーク構造(トポロジー)を生成して、トポロジー・プール3-00を作成する(S102)。

想定されるネットワーク構造の数が少ない場合は、想定される全てのネットワーク構造を生成して、トポロジー・プール300に格納することができるが、想定されるネットワーク構造の数が多い場合は、トポロジー・プール300に格納するトポロジーに対して何らかの制限を設ける必要がある。

なお、必ずしも、トポロジー・プール300にトポロジーを生成して格納する 必要はない。想定されるネットワーク構造により構成されるトポロジー空間を定 義することができれば、この定義されたトポロジー空間から任意のトポロジーを 生成するアルゴリズムを用いることにより、トポロジー・プール300からトポ ロジーを取り出すのと同様のことができる。

[0015]

生成したトポロジーのそれぞれに、発現プロファイルからのパラメータを適応 度を利用して適合させる(S104)。パラメータは、上述の結合重み行列Wの 値としきい値である。また、適応度は、このパラメータの確からしさ(どれだけ 合致しているか)である。この適応度は、評価関数を用いて計算されるが、例え ば、この評価関数として最小自乗誤差などがある。

[0016]

ネットワーク構造(トポロジー)に対して、パラメータと適応度を組み合わせ られたものは、前述したように、トリプレット(トポロジー、パラメータ、適応 度の3点セット)という。処理結果のトリプレットをトリプレット・プール400に格納する。トポロジーを選択してパラメータを適合させ、適応度を算出するときに、GA(遺伝的アルゴリズム)やSA(シミュレーティド・アニーリング:焼きなまし法)等の手法を用いて、与えられている発現プロファイルに対して最適化する。

[0017]

ここまでは、処理対象である標本 (トリプレット) を抽出する段階である。これから、目的に適合した標本 (トリプレット) をトリプレット・プール400から絞り込む段階となる。この処理には、例えば、突然変異アナリシスを用いている (S106)。この処理により、標本 (トリプレット) が絞り込まれて、目的とする候補トリプレットの集合 (候補トリプレット・プール500) ができる。

[0018]

(ネットワーク抽出過程)

ネットワーク構造の生成(S 1 0 2)の処理は、例えば、最大でいくつのノードを含むネットワークを想定するか定める。そのネットワークの構造を、予備知識無しから生成するか、部分的にその構造が分かっているネットワークを基に生成する。生成したネットワークをトポロジー・ブール300に格納する。この場合に用いられるネットワーグの分かっている構造には、例えば、ファンアウトの制限がある。これを説明するのが図5である。ファンアウトとは、ノードから他のノードへの働きかけ(活性、抑制)の数である。図5 (a) は、AからB~Eへ、4個のファンアウトがあることを示している。このファンアウトの数には制約があると考えられ、この制約は、図5 (b) に示す例のように、確率で示されている。図5 (b) では、ファンアウトの数の確率は、2付近で極大となり、5以上のファンアウトの数の確率は無視できる程度であることを示している。なお、この制約も様々に定義することが可能である。

また、すでに同定されている結合や未結合が分かっている場合は、その結合以外の部分に対してネットワーク構造を発生させる。ネットワーク構造を発生させるときに、ある部分の結合構造を仮定して、発生させることも可能である。このような色々な構造に対する制約的な規則を適用して、トポロジーを作成すること

もできる。

[0019]

トポロジー・プール300に格納されているネットワーク構造(トポロジー)の全てにパラメータや適応度を適合して、トリプレット・プール400に格納するか、抽出して格納するかは、生成され得るネットワークの数による。生成され得るネットワークの数が少ないとき、すなわち、ネットワークのノードの数が少ない場合は、あり得る全てのネットワークを網羅的に処理することが可能であるので、生成されたトポロジーに全てパラメータおよび適応度を適合させてトリプレット・プール400に格納する。しかし、生成されるネットワークの数が膨大で、全数を検討することができない場合は、トポロジーを選択してパラメータや適応度を割り当て、トリプレット・プール400に格納する。

[0020]

(トポロジーが多数存在する場合)

さて、トポロジーの数が膨大で、トポロジーの選択が必要な場合における処理 を、図6のフローチャートと図7および図8を用いて、もっと詳しく説明する。

図7および図6のフローチャートを参照する。まず、最初にいくつのトポロジーを選択するか定める。この場合は、N個のトポロジーをランダムに選択するとする。そして、図4のトポロジー・プール300(又は、トポロジー空間)から、ランダムに1つトポロジーを取り出す(S202)。これに対して、与えられた発現プロファイルを実現できる発現パラメータを、GA(遺伝的アルゴリズム)/SA(シミュレーティド・アニーリング)などを用いて適合させる(S204)。このとき、各発現パラメータによる発現プロファイルとの適応度の高いものから、異なるパラメータ・セットをM個とり、トリプレット・プール400に格納する。これをN個のトポロジーについて繰り返す。繰り返しにおいて、ランダムにトポロジーを選択するとき(S202)、前に選択したトポロジーとは異なる構造のものを選択する。繰り返しが終了した段階(S206でYES)では、N×Mのトリプレットがトリプレット・プール400に格納されている。

なお、上述では、ランダムにトポロジーを選択しているが、他の確率的サンプリングを用いてもよい。また、異なるパラメータ・セットをM個とるとき、パラ

メータ・セット同士の類似度を計算して、その類似度が極めて近いとき(あるしきい値より小さいとき)は、同じとして選択しないようにしてもよい。これは、同じような解の近傍を複数選択しても意味が無いことが多いので、代表値のみを 選択していることを意味している。

[0021]

次に、トリプレット・プール400に格納されているN個のトリプレットのトポロジー組みかえをしたN個のネットワーク構造(トポロジー)をGA/SA等により得る(S208)。これらのN+1~2Nの得られた各トポロジーに対して、上述と同様に、パラメータ・セットをGA/SAにより適合させ、発現プロファイルとの適応度の高いものをM個残して、トリプレット・プール400に格納する(S210)。これにより、2N×M個のトリプレットがトリプレット・プール400に格納されることになる。この2N×M個のトリプレットから、適応度が高いものから所定のしきい値以下の値を有するP個を選択してトリプレット・プール400に残す(S212)。これで、トリプレット・プール400に格納されているトリプレットはP個となった。ここまでの処理は、トリプレットに対する広域探索である。

[0022]

出。这一句话**(局所探索)**还不会当了多么,包括这个意思。

トリプレット・プール400に格納されているP個のトリプレットの近傍を、例えばSA(シミュレーテッド・アニーリング)により探索して、より適応度の高いトリプレットを探す(S214)。これを図示したのが、図8である。図8において、P個の各トリプレットにおけるトポロジー空間のSAの対象となる近傍に対して、探索を行っていることを示している。これにより、より適応度の高いトリプレットを得ることができる。より適応度が高いトリプレットが見つかった場合は、それもトリプレット・プール400に格納する(S216)。これにより、P個以上のトリプレットがトリプレット・プール400に格納されることになる。

なお、このとき、より適応度が高いトリプレットが、あるトリプレットの近傍 に発見された場合、そのトリプレットに代えて、より適応度が高いトリプレット をトリプレット・プール400に格納することもできる。この場合、 トリプレット・プール400に格納されているトリプレットの個数は、 P個のままである。

ここで、SAを用いて、近傍の探索を行ったが、他の手法、例えば山登り法(可能性のある探索点のなかで最も有望な点を選んで探索を進めていく方法)等により行うことが可能である。

[0023]

このようにして、トリプレット・プール400に格納されているトリプレットの適応度を高めているので、サンプリング段階を終了した時点で、トリプレット・プール400に格納されているトリプレット中に、目的とするトリプレットが入っていることが、高い確率であり得る。しかし、この段階のトリプレットの数は、まだ、これに対して生物学的な実験を行うのに、十分には小さくない。

[0024]

(絞り込み過程)

次に、トリプレット・プール400に格納されているトリップレットから、より少数の候補トリプレットを選別する処理の段階である。この処理を、突然変異分析を用いて行っている図9および図10を例として説明する。

図9において、トリプレット・プール400から各トリプレットに対して、ミュータント・(突然変異)・・トリプレットを作成する(S402)。この場合のミュータント・トリプレットは、ある遺伝子を除去(ノックアウト)して、その遺伝子からの結合を全て取り去ることで作成している。このとき、トリプレットにおけるその他の結合や、パラメータは変化させない。これを遺伝子(ネットワーク構造のノード)に対して行う。したがって、トリプレットのトポロジーにおけるノードのうち、×個の遺伝子のそれぞれのノードをノックアウトすると、ミュータント・トリプレットをそれぞれ格納したミュータント・プール452~456は×個できる。そして、与えられたそれぞれのターゲット・データである突然変異プロファイルとの間の適応度を各ミュータント・プールごとに評価する(S404)。そして、各ミュータント・プールごとに評価した適応度を統合して、最終的に、ある値以上の適応度を有する候補群を選出して、候補トリプレット・プール500に格納する(S406)。この場合、適応度により、得られた候補

トリプレットをソートしておいて、その適応度を参照して、高い順に生物学的な 実験を行ってもよい。

ここで用いる突然変異としては、上述のノックアウトの他に、例えば、ヘテロザイゴート (Heterozygote),過剰発現(over expression)、温度感受性突然変異 (temperature sensitive mutation)等があり、いずれも使用可能である。例えば、ヘテロザイゴートは、相同染色体の特定の遺伝子座においての一方の対立遺伝子をつぶしてしまうことにより、全体としてその遺伝子の発現量が例えば半分などに減少してしまう突然変異である。また、過剰発現は、ある遺伝子について過剰に発現してしまう突然変異である。温度感受性突然変異は、温度感受性のある物質を用いて、計測中のある時点で遺伝子の発現を止めてしまう、又は、過剰に発現させる突然変異である。

[0025]

(適応度の統合の計算例)

この適応度の統合の計算例について、図10を用いて説明する。図10では、 全ての突然変異ごと(突然変異ではない野生型も含む)の各トポロジーごとの適 応度を合計したものを、そのトポロジーの適応度として取り扱う例を示している 。この計算例では単純な合計をしているが、必要に応じて、突然変異ごとに重み 付けて加重加算等を行ってもよい。

なお、突然変異の発現プロファイルは、対象の全ての突然変異遺伝子ネットワークに対して得られているとは限らない。この場合は、得られている突然変異の発現プロファイルのみを用いて、適応度の算出および統合を行う。このようにして、最終的に、候補トリプレットを得ることができる。

[0026]

(実施例)

具体的な遺伝子のトリプレットを例に、上述の処理を詳しく説明する。ここでは、図3(a)に示したような時系列データである発現プロファイルを実現する遺伝子のネットワークを例とする。

まず、トポロジーの結合関係を示す結合行列をもとに染色体にコーディングを 行う。ここでは、図3(a)に示した発現物質が3つであるので、ノードが3つ あるネットワークのトポロジーとしては、例えば、以下のような結合行列Cで表される。これは、図3(b)に示されているものである。

【数2】

$$C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

[0027]

このトポロジーの結合は4カ所あり、各々に対する重み付けをする必要があるので、4つの遺伝子型(genotype)を持つ染色体を生成する。さらに各ノードのしきい値も最適化する必要があるので、結局、全体として4(結合数)+3(ノードのしきい値数)で7の遺伝子型を持つ染色体を生成することになる。この場合の染色体の荷重およびしきい値の取りうる範囲(実数値)は、図11(a)のようになる。このような図3(a)に示す発現プロファイルを実現可能な複数のトポロジーを発生して、トポロジー・プール300(図4)に格納する。

この発生した各トポロジーに対して、GAを用いてパラメータ(荷重およびしきい値)の最適化を行う。まず、トポロジーに対して決められた範囲のパラメータをN組ランダムに発生させ、染色体の初期集団とする。図1-1 (b) に、上述の結合行列で定められたトポロジーに対する初期集団を示す。このように、トポロジーに対して、リストの形で染色体が定まる。この初期集団に対してGAを適用することにより、最適化を行うのである。この最適化の指標として、各パラメータの適応度を用いる。

[0028]

初期集団の適応度は、染色体のパラメータをもとに、各個体で発現プロファイルを生成し、ターゲット・プロファイルとの間で、例えば最小自乗誤差TSS (Total Sum Square error)の処理を行うことにより求める。この最小自乗誤差TSSは、以下の計算を行う。

図3 (a) に示すように、ターゲット・プロファイルが濃度の時系列データとして与えられている。このため、各発現物質A, B, Cそれぞれのある時間 t に

おける濃度は L_{TA} (t), L_{TB} (t), L_{TC} (t) と表され、生成した染色体の各パラメータをもとに、上述の式(1) により計算される各発現物質の濃度は、 L_{EA} (t), L_{EB} (t), L_{EC} (t) と表すことができる。これらの間の最小自乗誤差TSSは次のようにあらわすことができる。

【数3】

$$TSS = \sum_{X}^{A,B,C} \sum_{t=0}^{T} \left(L_{TX}(t) - L_{EX}(t) \right)^{2}$$

このようにして求めた最小自乗誤差TSSを各発生したネットワーク(染色体) の適応度とする。

[0029]

さて、このように求められる適応度を利用することにより、GAを用いてトポロジー毎にパラメータ(結合荷重としきい値)の最適化を行うことができる。この処理について、図12,図13を用いて、GAのクロスオーバと突然変異を用いて最適化を行っている例で説明する。

[0030]

図12(a)で示されているように、トポロジーのパラメータは、結合荷重としきい値のリストで表されている。まず、親となる個体対の決定を、例えばトーナメント戦略を用いて行う。これは、トーナメント・サイズの数の個体(例えば2)をランダムに選択する。この選択した個体の中から一番適応度が高い個体を一方の親とする。これをもう一度行うことにより、親となる個体対が決定される。この個体対に対して、図12(b)に示すように、交叉(crossover)を行って子孫のパラメータを作成し、さらに、突然変異を適用して、生成したパラメータで適応度を計算する。このような処理を、例えば、定められた数の子孫が作成されるまで行うと、第2世代の個体集団が得られる。

[0031]

交叉および突然変異の処理を、図13を用いて具体的に説明する。図13(a)において、リストで表された親1および親2のパラメータの矢印で示された部分を入れ替えて、子1および子2が作成される。これが交叉の処理である。図1

3 (b)は、子1の丸を付けられたパラメータの1つ(結合荷重0.4)が、別の値(結合荷重0.6)に変化したことが示されている。この変化が突然変異で、例えば、固定された確率でランダムにおきるように処理される。

この交叉と突然変異の処理を、例えば、決められた世代数分繰り返すことで、 あるトポロジーに対するパラメータを最適化することができる。なお、全世代で 、エリート保存戦略を適用してもよい。エリート保存戦略は、集団中で最も適応 度の高い個体を、交叉や突然変異により変化させず、そのまま次世代に残す手法 である。

[0032]

以上の処理をすべてのトポロジーに対して終了したときに、その中で、所定の 適応度 T^+ (この例の場合、最小自乗誤差)以下の適応度を持つトポロジーのサ ブグループ D^+ を決定する。このサブグループ D^+ は、次の式により定義される。 【数 4 】

 $D^+ = \left\{ D^+ \in D \mid TSS(D^+) \le T^+ \right\}$

抽出されたトポロジー・サブグループのトリプレット(トポロジー、パラメータ、適応度)を、トリプレット・プール400へ格納する。なお、この実施例ではトポロジー・プール300に格納されているすべてのトポロジーに対してGAにより最適なパラネータを作成しているが、トポロジー・プール300に格納されたトポロジーが莫大な数である場合には、定められた数のトポロジーをランダムに選択して、これに対して最適なパラメータをGAにより生成してもよい。ここまでが、トリプレットの広域探索である。

[0033]

このトリプレット・プールに格納されているトリプレットに対して、さらに別のGA手法を適用して最適化したものを追加する。ここで適応するGAは2次元GAである。この2次元GAについて図14を用いて説明する。図14(a)は、結合行列で表した例で、それを図式化したものを図14(b)に示す。図14(a)に示すように、親1および親2の結合行列の十字形で示される部分(即ちBを中心とする結合関係:図14(b)参照)を交叉させて、子1および子2を生成する。このように、図13(a)で説明したリスト(パラメータ)上の交叉

とは異なり、ネットワークの物理的な構造自体に着目して交叉を行っている。このような処理は、2次元構造の最適化に有用である。2次元GAを適用して得られたトポロジーに対してパラメータを、GAを前述と同様に用いることで最適化を行って求める。これを例えば、決められた世代数実行する。そして、上述と同じように、適応度T⁺以下であるトリプレットのみを、さらにトリプレット・プール400に格納する。この追加して行うGAでもエリート保存戦略を適用することができる。

[0034]

トリプレット・プール400に格納されているトリプレットを対象としてSA(シミュレーティド・アニーリング)を実行して、各トポロジーの近傍トポロジー空間を探索し、得られたトポロジーに対して、前と同様にGAにより最適化されたパラメータを求める。この近傍の探索を行うのは、GAが局所的な探索能力に劣っているためである。

ここで用いているSAの基本アルゴリズムは、疑似コードを用いると、以下のようになる。これは、各トポロジーに対して適用される部分である。

main() { initialize()

}

while(停止条件不適合)

```
while(平衡条件未到達) {
    次の状態生成()
    if (ACCEPT(E, E', T))
    更新()
}
T= REDUCE(T)
}
```

上述のACCEPT(E, E', T)中のEは、SAではエネルギーと呼ばれる状態を規定する変数で、この場合は、A名ットワークの適応度を使用している。E'は、「

次の状態生成()」処理で生成されたトリプレットの適応度である。また、Tは、SAのアルゴリズムでは温度パラメータで、この場合は、この処理のみで用いられる状態を規定する変数である。変数Tは、処理が始まるときに、初期値T_{in}tに設定される。また、停止条件や平衡条件は、例えば、処理回数を用いることができる。

「ACCEPT(E, E', T)」, 「REDUCE(T)」は、次のように定義される。

【数5】

$$ACCEPT(E, E', T) = \begin{cases} 1 & E' \leq E \\ e^{-(E-E')/T} & その他 \end{cases}$$
 REDUCE(T) = γ T $(0 < \gamma \leq 1)$

上述の疑似コードで表される処理を説明する。処理対象のトポロジーが選択されると、変数TとEとが初期化される。そして、回数で規定されるループの内側の繰り返し処理で、まず、「次の状態発生()」という処理を行う。この「次の状態発生()」は、以下のような処理を行う。

処理対象のトポロジーを基に、結合関係を変化させたトポロジーを発生させる。この変化は、図15(a)に示した遷移図に基づき、処理対象のトポロジーを ・確率Pにより変化させる。この遷移確率は、上述の変数工を用いて、次のよう に定義される。

【数 6】

$$P = \begin{cases} T/T_{init} & T/T_{init} \leq$$
しきい値 しきい値 その他

ここで、Tは上述の変数、しきい値Thresholdは、ここでは例えば、0.5に設定されている。しきい値を導入した理由は、遷移確率をあまり高くすると、対象としたトポロジーに対して多数の変化したトポロジーを探索することになり、近傍探索とはならないからである。Tは、外側のループの「REDUCE(T)」で変化するので、内側のループ内では遷移確率は変化しない。外側のループのステップにより、遷移確率がどのように変化するのかを示したのが、図15(b)である

。この場合、γは例えば、0.8である。トポロジーの変化を図15(c)に示したトポロジーを例に説明する。これは、図3(b)のトポロジーと同じものである。なお、遷移確率を0.5とした場合で説明する。

[0035]

図15 (c) において、AからAの結合は、活性化で結合しているので、図15 (a) の状態遷移図では、活性606の状態にある。この状態からは、未結合604への状態遷移のみが可能である。この状態遷移が起こる確率は0.5である。次に、AからBへの結合を見るとこれも活性として結合しているので、同様に、0.5の確率で、未結合の状態に変化する。BからBへの結合は、未結合なので、抑制と活性とに0.25づつ(合計で0.5)の確率で遷移する。以下同様に、すべての結合関係について、図15 (a) に示した状態遷移図と、図15

(b) の確率に基づいて、変化させる。

このようにして、対象のトポロジーを構成する各結合関係を上述で説明した確率で、各遷移図に従って変化させた結果得られたトポロジーに対して、次に、前述のGAを用いて、最適なパラメータを決定し、そのパラメータに対する適応度を計算する。これで新しいトリプレットが作成される。これで「次の状態発生()」は完了し、次の処理である「ACCEPT(E, E', T)」を実行する。

[0 0 3 6]

この「ACCEPT(E, E', T)」では、処理対象であるトポロジーを有するトリプレットの適応度(E)と、発生したトポロジーの適応度(E')を比較し、発生させたトポロジーの適応度が低い(より適合している)と、1(真)を返す。また、発生した適応度が高くても(適合していなくても)、ある確率で1(真)を返している。この場合、Tが高い場合(あまり処理回数が多くないとき)に1(真)を返す確率を多くしている。「ACCEPT(E, E', T)」は1(真)を返すと、「更新()」処理が行われて、「次の状態発生()」で発生したトリプレットに更新する。

このようにして、内側のループを平衡状態が得られるまで(この場合はある回数の処理が行われるまで)続ける。所定回数の処理が行われると、外側の処理(「REDUCE(T)」)が行われて、新しい丁が定められ、また、この丁を用いて、内

側の処理が行われる。外側の処理も、この場合、例えばある所定回数行われる。 そして、最終的にたどり着いたトリプレットの適応度が T + であると、トリプレット・プールに入れる。

[0037]

上述のようにこの段階終了時では、トリプレット・プール400には、各トポロジーの近傍を探索して、より良い適応度のトリプレットと置き換えられたものが格納されている。このトリプレットから、最終的な候補トリプレットを選択する処理を以下で説明する。これは、種々の突然変異の発現プロファイルを用いて、これに対する適応度を計算することにより行う。この処理を、図16のフローチャートを用いて説明する

これには、まず、図3(c)、図3(d)に示されているような、突然変異によるプロファイルを用意する。図3(c)、図3(d)は、遺伝子Bがない突然変異(ミュータント)のプロファイル、遺伝子Cがない突然変異(ミュータント)のプロファイルである。そして、それぞれに対応したミュータント・プールを用意し、上述のトリプレット・プール内の全トリプレットを各ミュータント・プールに格納する(S802)。

各ミュータント・プールに格納されたトリプレットに対して、トリプレットの トポロジーをその突然変異のトポロジーとし、パラメータはその表ま用いて、対 応する突然変異のプロファイルに対する適応度を計算する(S804)。

各ミュータント・プールにおけるトリプレットのうち、計算した適応度が各突然変異ごとの定めた所定のしきい値以下であるトリプレットを選択する(S 8 0 6)。選択した各ミュータント・プール内のトリプレットで、全部のミュータント・プールに共通するトリプレットであり、かつ、所定のしきい値以下の適応度を有するものに対応するトリプレットを、候補トリプレット・プールへ格納する(S 8 0 8)。

これで、適切な候補トリプレットを確定することができる。

[0038]

(他の適用)

上述の説明では、遺伝子ネットワークの例で説明したが、例えば遺伝子・代謝

回路ネットワークにも適用することが可能である。図17は、遺伝子・代謝回路のネットワークについて示している。図17(a)に示すように、遺伝子と、代謝における酵素、タンパク質をノードとして、活性、抑制、媒介等の関係をリンクで表す。そして、これを用いたネットワーク例を図17(b)に示す。この図17(b)に示したようなネットワーク構造に対して、上述で説明した処理を適用する。

上述においては、対象ネットワークとして、遺伝子ネットワーク、代謝回路ネットワークを示したが、そのほかにも神経回路ネットワーク等に対しても適用することができる。この場合のデータ(ターゲット・プロファイル)としては、ニューロン活動電位等を用いる必要がある。

このように、本発明の手法は色々なものに対して用いることができる。適用できるターゲット・プロファイルの色々な例を図18に示す。図18(a)は、ターゲット・プロファイルが0次元空間データである場合を示している。このデータの例としては、時間や周波数に対して変化するようなデータである。例えば、濃度、活性度、電位等がある。図18(b)は、1次元空間データを示している。データは、空間として×に、および、時間又は空間に依存する量である。この量としては、濃度、活性度、電位等がある。図18(c)および(d)として示したターゲット・プロファイルは、2次元空間データおよび3次元空間データである。これは、2次元(x, y)および3次元(x, y, z)の空間、および、時間又は周波数に依存する量のデータである。この量としては、濃度、活性度、電位等がある。図12に示すように、色々なデータ形式で、ターゲット・プロファイルを与えることができる。

[0 0 3 9]

このように、ターゲット・プロファイルが存在し、そのターゲット・プロファ イルを生じるネットワーク構成を推定するような場合に、本発明は有効である。

本発明は、スタンド・アローンのコンピュータ・システムばかりではなく、複数のコンピュータから構成される例えばクライアント・サーバ・システム等に適用してもよい。

本発明に関するプログラムを格納した記憶媒体から、プログラムをシステムで

読み出して実行することにより、本発明の構成を実現することができる。この記録媒体には、DVD、MD、MO、フロッピー・ディスク、CD-ROM、磁気テープ、ROMカセット等がある。

【発明の効果】

上記の説明のように、本発明は、データとしてターゲット・プロファイルが存在し、そのターゲット・プロファイルを生じるネットワーク構成を推定するような場合に、極めて有効である。

特に、遺伝子ネットワークや代謝ネットワークのように、分子生物学における モデルの推定に対して有効に適用することができる。

【図面の簡単な説明】

【図1】

分子生物学におけるコンピュータ利用を説明する図である。

【図2】

遺伝子ネットワークの例を示す図である。

【図3】

発現プロファイルおよびそれに対応するネットワークを示す図である。

【図4】

実施形態における処理例の概略フローチャートである。

【図5】

ネットワークのファンアウト制限を説明する図である。

【図6】

選択処理のフローチャートである。

【図7】

選択処理の手法を説明するための図である。

【図8】

SAによる再探索を説明する図である。

【図9】

候補の選別処理を説明する図である。

【図10】

適応度の総合処理の例を説明する図である。

【図11】....

SAを行う場合の表記例および初期集団を示す図である。

【図12】

GAの適用例を示す図である。

【図13】

具体的にGA処理(交叉と突然変異)を行っている例を示す図である。

【図14】

2次元GAを適用した例を示す図である。

【図15】

SAによる近傍探索を説明するための例である。

突然変異による候補トリプレット選択の処理を示すフローチャートである。

【図17】

遺伝子・代謝ネットワークの例を示す図である。

【図18】

ターゲット・プロファイルのデータ例を示す図である。

【書類名】

図面

【図1】

【図2】

(a) 遺伝子ネットワークの表示

遺伝子 ()

(b) ネットワーク例

A, B, C, D: 遺伝子による発現型

【図3】

【図4】

【図5】

〈ノード間の結合〉

(a)

【図6】

【図7】

【図8】

【図9】

【図10】

例)全ての適応度の和を各トポロジーの適応度とする

トポロジー1	トポロジー2	• • • •	トポロジーx
野生 12	15		32
突然変異18	6	• • •	23
突然変異 2 16	10		12
突然変異× 13	5	• • • •	22
382	293		512

and the state of t

【図11】

染色体

	結合荷重				各ノードのしきい値			
(a)	A→A	А→В	в→с	C→A	Α	В	С	
	[0~1]	[0~1]	[0~1]	[-1~0]	[0~1]	[0~1]	[0~1]	

(b)

	0.2	0.4	0.2	-0.1	0.6	0.2	0.3	個体1
	0.3	0.7	0.2	-0.3	0.6	0.2	0.4	個体2
±π.	0	0.2	0.5	-0.6	0.3	0.3	0.3	個体3
初期集団				is The second		manar S.	•	
	0.3	0.2	0.6	-0.5	0.2	0.4	0.6	個体N

【図12】

【図13】

	この部分をいれかえる				
(a)クロスオーバ			-		
親1	0.2 0.4	0.3 -0.2 0.3	0.2 0.5		
親2	0.1 0.2	0.2 -0.6 0.3	0.5 0.5		
•	• ,	$\hat{\mathbf{\Omega}}$			
子1	0.2 0.4	0.2 - 0.6 0.6	0.2 0.5		
子2	0.1 0.2	0.3 -0.2 0.3	0.5 0.5		
	1		1		

(b) 突然変異

子1 0.2 0.4 0.2 -0.6 0.6 0.2 0.5

【図14】

2次元GAの交叉の例

【図15】

【図16】

【図17】

(a) 遺伝子代謝ネットワークの表示 酵素,タンパク質

【図18】

(a) O次元空間データ

×:時間もしくは周波数

: 濃度、活性度、電位etc

(b) 1 次元空間デ-

:時間もしくは周波数。

:濃度、活性度、電位etc

(c) 2次元空間データ

x、y:空間

t:時間もしくは周波数

c: 濃度、活性度、電位etc

(d) 3次元空間データ

x、y、z:空間

t:時間もしくは周波数

c:濃度、活性度、 電位etc.

特平11-1744

【書類名】 要約書【要約】【課題】ターゲット・プロファイルのデータから、それを再現する可能性があるネットワークで表されるモデルを推定する。【解決手段】ターゲット・プロファイルを再現する可能性のあるネットワーク構造(トポロジー)を生成して、トポロジー・プール300を作成する(S102)。生成したネットワーク構造のそれぞれに、ターゲット・プロファイルを最もよく再現することができるパラメータを決定する。また、その誤差も計算する。(S104)。トポロジーに対して、パラメータと誤差を組み合わせたトリプレットをトリプレット・プール400に格納する。ここまでは、サンプリング段階である。これから、目的に適合したトリプレットをトリプレット・プール400からスクリーニングする段階であり、このスクリーニングには、例えば、突然変異アナリシスを用いている(S106)。スクリーニング段階が終了すると、候補トリプレット・プール500ができる。【選択図】図4

認定・付加情報

特許出願の番号

平成11年 特許願 第174426号

受付番号

59900591338

書類名

特許願

担当官

第七担当上席 0096

作成日

平成11年 6月28日

<認定情報・付加情報>

【提出日】

平成11年 6月21日

特平11-1744

【書類名】

手続補正書

【あて先】

特許庁長官殿

【事件の表示】

【出願番号】

平成11年特許願第174426号

【補正をする者】

【住所又は居所】

神奈川県横浜市青葉区奈良町2423-208

【氏名又は名称】

京田 耕司

【代理人】

【識別番号】 100105371

【弁理士】

【氏名又は名称】

加古 進

【手続補正 1】

【補正対象書類名】

特許願

【補正対象項目名】 発明者

【補正方法】

変更

【補正の内容】

【発明者】

【住所又は居所】 埼玉県川越市西小仙波町2-18-3

【氏名】

北野 宏明

【発明者】

【住所又は居所】

東京都北区西ケ原1-27-3-1010

【氏名】

諸橋 峰雄

【発明者】

【住所又は居所】 神奈川県横浜市青葉区奈良町2423-208

【氏名】

京田 耕司

【発明者】

【住所又は居所】 神奈川県川崎市中原区木月1566佐藤ビル303号室

【氏名】

濱橋 秀互

【手続補正 2】

【補正対象書類名】 特許願

【補正対象項目名】 特許出願人

【補正方法】

変更

【補正の内容】

【特許出願人】

【識別番号】

396020800

【氏名又は名称】

科学技術振興事業団

【特許出願人】

【識別番号】

396013721

【氏名又は名称】

北野 宏明

【特許出願人】

【住所又は居所】

東京都北区西ケ原1-27-3-1010

【氏名又は名称】

諸橋 峰雄

【特許出願人】

【住所又は居所】

神奈川県横浜市青葉区奈良町2423-208

【氏名又は名称】

京田 耕司

【特許出願人】

【住所又は居所】

神奈川県川崎市中原区木月1566佐藤ビル303号室

【氏名又は名称】

濱橋 秀互

【その他】

発明者および出願人の氏名を変換ミスした。

誤:京田 耕治

正:京田 耕司

認定・付加情報

特許出願の番号

平成11年 特許願 第174426号

受付番号

59900597704

書類名

手続補正書

担当官

濱谷 よし子 1614

作成日

平成11年 7月23日

<認定情報・付加情報>

【提出日】

平成11年 6月23日

【代理人】

申請人

【識別番号】

100105371

【住所又は居所】

東京都豊島区東池袋1丁目20番2号 池袋ホワ

イトハウスビル 加古特許事務所

【氏名又は名称】

加古 進

出願人履歷情報

識別番号

[396020800]

1. 変更年月日 1998年 2月24日

[変更理由] 名称変更

住 所 埼玉県川口市本町4丁目1番8号

氏 名 科学技術振興事業団

出願人履歴情報

識別番号

[396013721]

1. 変更年月日 1996年 6月17日 [変更理由] 新規登録

住 所

埼玉県川越市西小仙波町2-18-3

氏 名

北野 宏明

願人履歴情

識別番号

(599086191)

1. 変更年月日

1999年 6月21日

[変更理由]

新規登録

住 所

東京都北区西ケ原1-27-3-1010

氏 名 諸橋 峰雄

出願人履歴情報

識別番号

[599086205]

1. 変更年月日 1999年 6月21日

[変更理由] 新規登録

住 所 神奈川県横浜市青葉区奈良町2423-208

氏 名 京田 耕治

2. 変更年月日 1999年 6月23日

[変更理由] 名称変更

住 所 神奈川県横浜市青葉区奈良町2423-208

氏 名 京田 耕司

出願人履歴

識別番号

[599079344]

1. 変更年月日

1999年 6月 8日

[変更理由]

新規登録

住 所

神奈川県川崎市中原区木月1566 佐藤ビル303号室

氏 名 濱橋 秀互

THIS PAGE BLANK (USPTO)