МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ

по лабораторной работе №1.14 «Изучение колебаний струны»

> Выполнил: Хороших Дмитрий - Р3217 Преподаватель: Хуснутдинова Наира Рустемовна

Содержание

1	Введение	3
2	Результаты измерений и их обработка	4
3	Вывод	8
4	Приложение	8

1. Введение

1. Цель работы:

Пронаблюдать поперечные стоячие волны на тонкой натянутой струне и экспериментально определить зависимость собственных частот поперечных колебаний от номера гармоники и силы натяжения струны.

2. Задачи:

- 1. Измерить значения резонансных частот колебаний струны в режиме формирования стоячих волн. Рассчитать значения скорости волны и погонной плотности струны при известной силе её натяжения.
- 2. Провести прямое измерение массы и длины струны, непосредственно определить её погонную плотность.
- 3. Сравнить полученные значения погонных плотностей ρ_l .

3. Объект исследования:

Колебаемая вибратором струна в установке.

4. Схема установки:

Рис. 1.1: Элементы лабораторной установки

- 1. Механический вибратор 2. Генератор гармонических сигналов 3. Эластичная (белая) и неэластичная (зелёная) струны. 4. Рулетка 5. Набор грузов и держателей для них 6. Струбцины для крепления вибратора и опорного блока 7. Опорный блок 8. Стержень для крепления вибратора
- 5. Метод экспериментального исследования:

Однократный прямой замер резонансных частот.

6. Рабочие формулы:

Связь резонансной частоты с фазовой скоростью:

$$f_n = \frac{un}{2l} \tag{1}$$

Связь фазовой скорости, силы натяжения и погонной плотности:

$$u = \sqrt{\frac{T}{\rho_l}} \tag{2}$$

Определение погонной плотности:

$$\rho_l = \frac{m}{l} \tag{3}$$

7. Измерительные приборы:

$N_{\overline{0}}$ Π/Π	Наименование	Тип	Используемый диапазон	Погрешность приб.
1	Ген. гармонич. колебаний	Электронный	0 - 200 Гц	0.05 Гц
2	Рулетка	Ручной	0 - 500 см	0.1 см
3	Весы лабораторные	Ручной	0 - 311 г.	0.01 г.

2. Результаты измерений и их обработка

Измерим длину и массу обеих струн и найдём действительную погонную плотность ρ_l с учётом погрешности:

Струна	l, см	m, г	$ ho_l,~\Gamma/{ m cm}$	$\Delta ho_l,~\Gamma/{ m cm}$
Эластичная	198.20	8.47	0.0427	0.0001
Неэластичная	143.40	2.44	0.0170	0.0001

Таблица 1: Результаты прямых измерений параметров струн и вычисления их погонной плотности.

Измерим величину резонансных частот для n=4 гармоники у обеих струн при различных значениях сил натяжения:

Эластичная струна				Неэластичная струна			
m, г	f, Гц	f^2 , Γ ц 2	T, H	т, г	f , Γ ц	f^2 , Γ ц 2	T, H
55.00	22.90	524.41	0.54	55.00	37.60	1413.76	0.54
105.00	30.80	948.64	1.03	105.00	51.60	2662.56	1.03
155.00	38.30	1466.89	1.52	155.00	62.40	3893.76	1.52
205.00	44.40	1971.36	2.01	205.00	72.00	5184.00	2.01
255.00	51.30	2631.69	2.50	255.00	80.10	6416.01	2.50
$\rho_l \pm \Delta \rho_l = 0.0398 \pm 0.0001, \text{г/cm}$				$ρ_l \pm Δρ_l = 0.0156 \pm 0.0001$, г/см			

Таблица 2: Результаты измерений резонансных частот 4-й гармоники струн при различных силах натяжения.

По измеренным значения построим график зависимости квадрата резонансной частоты f^2 от силы натяжения T:

Рис. 2.1: Графики зависимости квадрата резонансной частоты f^2 от силы натяжения для 2-х струн.

Воспользовавшись методом наименьших квадратов найдём угловые коэффициенты $\alpha = \frac{4}{l^2 \rho_l}$:

$$lpha_{ ext{эласт}} pprox 1004 \pm 43$$
 $lpha_{ ext{неэласт}} pprox 2568 \pm 10$

А также соответствующие погонные плотности:

$$ho_{l \; ext{эласт}} = 0.0398 \pm 0.002 \; ext{г/см}$$
 $ho_{l \; ext{неэласт}} = 0.0156 \pm 0.00007 \; ext{г/см}$

Далее, для каждого значения силы натяжения T построим зависимость резонансной частоты f_n от номера гармоники n.

	Эластичная струна								
n	f_1 , Γ ц	f_2 , Γ ц	f_3 , Гц	f_4 , Гц	f_5 , Γ ц	f_6 , Гц			
1	9.00	9.40	10.50	11.30	12.30	12.90			
2	17.20	19.60	21.20	22.90	24.70	25.70			
3	25.40	28.80	31.50	34.40	37.30	40.50			
4	34.20	38.70	42.50	47.10	49.80	53.60			
5	43.20	48.20	52.90	58.50	62.60	66.70			
Γ.	$m_1 = 125.00$	$m_2 = 155.00$	$m_3 = 185.00$	$m_4 = 215.00$	$m_5 = 245.00$	$m_6 = 275.00$			
Н	$T_1 = 1.23$	$T_2 = 1.52$	$T_3 = 1.82$	$T_4 = 2.11$	$T_5 = 2.41$	$T_6 = 2.70$			
м/с	$u_1 = 17.18$	$u_2 = 19.30$	$u_3 = 21.16$	$u_4 = 23.32$	$u_5 = 24.94$	$u_6 = 26.68$			

Таблица 3: Результаты измерений резонансных частот при различных номерах гармоник для эластичной струны.

	Неэластичная струна								
n	f_1 , Гц	f_2 , Γ ц	f_3 , Гц	f_4 , Гц	f_5 , Γ ц	f_6 , Гц			
1	13.80	15.50	17.00	18.30	19.60	20.90			
2	28.80	31.60	33.80	36.80	39.00	44.10			
3	41.80	49.20	51.00	54.90	58.80	62.20			
4	55.80	62.50	68.30	73.40	78.40	85.10			
5	70.40	78.50	85.40	92.00	98.20	104.00			
Γ.	$m_1 = 125.00$	$m_2 = 155.00$	$m_3 = 185.00$	$m_4 = 215.00$	$m_5 = 245.00$	$m_6 = 275.00$			
Н	$T_1 = 1.23$	$T_2 = 1.52$	$T_3 = 1.82$	$T_4 = 2.11$	$T_5 = 2.41$	$T_6 = 2.70$			
м/с	$u_1 = 28.07$	$u_2 = 31.59$	$u_3 = 34.10$	$u_4 = 36.73$	$u_5 = 39.22$	$u_6 = 42.04$			

Таблица 4: Результаты измерений резонансных частот при различных номерах гармоник для **неэластичной струны**.

Рис. 2.2: Графики зависимости резонансной частоты f от гармоники при различных силах натяжения для обеих струн.

Аппроксимируем изображённые зависимости методом наименьших квадратов и получим угловые коэффициенты $\alpha=\frac{u*n}{2*l}$. С помощью этих коэффициентов построим зависимость квадрата фазовой скорости u^2 от силы натяжения струны T:

Рис. 2.3: Графики зависимости квадрата фазовой скорости u^2 от силы натяжения для обеих струн.

При помощи метода наименьших квадратов найдём угловые коэффициенты $\frac{1}{\rho_l}$ графиков, а вместе с ними и погонные плотности:

$$ho_{l \; ext{власт}} = 0.0391 \pm 0.001 \; \Gamma/\text{cm}$$
 $ho_{l \; ext{неэласт}} = 0.0155 \pm 0.00001 \; \Gamma/\text{cm}$

3. Вывод

Таким образом, в ходе выполнения лабораторной работы удалось, измерив резонансные частоты для эластичной и неэластичной струны при различных силах натяжения:

1. Вычислить экспериментальные значения погонной плотности струн и сравнить их с действительными:

Для эластичной струны:

$$ho_{l\ {
m действительная}} = 0.0427 \pm 0.001\ {
m \Gamma/cM}$$
 $ho_{l\ {
m экспер.}\ 1\text{-метод}} = 0.0398 \pm 0.0001\ {
m \Gamma/cM}$
 $ho_{l\ {
m экспер.}\ 2\text{-метод}} = 0.0391 \pm 0.001\ {
m \Gamma/cM}$

Заметим, что плотности полученные экспериментальным путём довольно близки и слегка ниже полученной прямым замером (экспериментальные результаты отличаются от измеренных менее чем на 7%).

Для неэластичной струны:

$$ho_{l}$$
 действительная $= 0.0170 \pm 0.0001 \; \Gamma/\mathrm{cM}$
 ho_{l} экспер. 1-метод $= 0.0156 \pm 0.0001 \; \Gamma/\mathrm{cM}$
 ho_{l} экспер. 2-метод $= 0.0155 \pm 0.001 \; \Gamma/\mathrm{cM}$

Для неэластичной струны результат аналогичен - экспериментальные результаты сходны, чуть меньше действительных (отличие менее 9%).

2. Проверить, что неэластичные струны имеют более высокие показатели резонансных частот и фазовых скоростей при одинаковых силах натяжения в сравнении с эластичными струнами.

4. Приложение

Проект этой лабораторной работы, содержащий файлы с Python-кодом, использованным для вычислений и исходные TeX-файлы доступен по - ссылке.