Qualité d'un schéma relationnel et formes normales (Suite)

(Dépendances Fonctionnelles / Normalisation)

(Suite)

https://www.lrde.epita.fr/~ala/bddmaster/

Normalisation 3NF (Rappel)

Format d'une relation « bien conçue » :

Déduction des DF

A partir de certaines DF, on peut déduire des nouvelles DF :

Si A
$$\rightarrow$$
 B et B \rightarrow C alors A \rightarrow C

Axiome d'amstrong (base):

- 1. Réflexivité : si $Y \subseteq X$ alors $X \rightarrow Y$
- 2. Augmentation : si X \rightarrow Y alors XZ \rightarrow YZ
- 3. Transitivité : si $X \rightarrow Y$ et $Y \rightarrow Z$ alors $X \rightarrow Z$

Propriétés supplémentaires

4. Union:

si
$$X \rightarrow Y$$
 et $X \rightarrow Z$ alors $X \rightarrow YZ$

5. Décomposition :

si
$$X \rightarrow YZ$$
 alors $X \rightarrow Y$

6. Pseudo-transitivité:

si X
$$\rightarrow$$
 Y et WY \rightarrow Z alors XW \rightarrow Z

Algorithme de décomposition en 3FN

- Entrée : R(a₁,a₂, ...,a_n) et F un ensemble minimal de DF
- 1. Regrouper les DF qui ont la même partie gauche.
- Créer un schéma de relation R_i avec les attributs de chaque groupe de DF.
- 3. Si aucune clé minimale de R n'apparaît dans un R_i existant, rajouter un schéma de relation formé par les attributs d'une clé minimale de R.
- 4. Éliminer les schémas de relation inclus dans d'autres.

La Forme Normale de Boyce-Codd

2.4. La Forme Normale de Boyce-Codd

La définition de la troisième forme normale n'exclut pas l'existence de dépendances fonctionnelles d'attributs n'appartenant pas à la clé vers une partie de la clé.

Une relation en 3FN peut donc être sujette à des problèmes en cas de mise à jour.

2.4. La Forme Normale de Boyce-Codd

La définition de la troisième forme normale n'exclut pas l'existence de dépendances fonctionnelles d'attributs n'appartenant pas à la clé vers une partie de la clé.

Une relation est dite en forme normale de Boyce-Codd:

- si elle est en troisième forme normale et
- si elle ne contient pas de dépendance fonctionnelle autre que K

 A où K est la clé et A un attribut quelconque n'appartenant pas à la clé.

Autrement dit tout attribut non clé ne doit pas déterminer une partie de la clé .

2.4. La Forme Normale de Boyce-Codd

Une relation est dite en forme normale de Boyce-Codd

- si elle est en troisième forme normale et
- si elle ne contient pas de dépendance fonctionnelle autre que K → A où K est la clé et A un attribut quelconque n'appartenant pas à la clé. Autrement dit tout attribut non clé ne doit pas déterminer une partie de la clé.

Une telle relation R peut être décomposée en $R_1(C_1, Y^*, X)$ et $R_2(Y, C_2)$

Etudions par exemple la table et les DF ci-dessous :

ADRESSES:

VILLE	RUE	CODE POSTAL
TUNIS	8, Avenue de la République	1050
MONASTIR	51, Rue des Entrepreneurs	5060
MONASTIR	8, Avenue de la République	5060
MONASTIR	23, Boulevard Farhat Hached	5000

La Liste des dépendances fonctionnelles (DF) est :

VILLE, RUE → CODEPOSTAL CODEPOSTAL → VILLE

La clé primaire est : VILLE, RUE

Le schéma de la relation est : ADRESSE (VILLE, RUE, CODEPOSTAL)

La relation ADRESSE est en 3FN et il y a néanmoins des redondances entre VILLE et CODEPOSTAL.

Etudions par exemple la table et les DF ci-dessous :

ADRESSES:

VILLE	RUE	CODE POSTAL
TUNIS	8, Avenue de la République	1050
MONASTIR	51, Rue des Entrepreneurs	5060
MONASTIR	8, Avenue de la République	5060
MONASTIR	23, Boulevard Farhat Hached	5000

La Liste des dépendances fonctionnelles (DF) est :

VILLE, RUE → CODEPOSTAL → CODEPOSTAL → VILLE

La clé primaire est : VILLE, RUE

Le schéma de la relation est : ADRESSE (VILLE, RUE, CODEPOSTAL)

La relation ADRESSE est en 3FN et il y a néanmoins des redondances entre VILLE et CODEPOSTAL.

Afin de la transformer en FNBC, il faut la scinder en deux :

CPRUE (**CODEPOSTAL, RUE**) et CPVILLE (**CODEPOSTAL**, VILLE).

ADRESSES

VILLE	RUE	CODE POSTAL
TUNIS	8, Avenue de la République	1050
MONASTIR	51, Rue des Entrepreneurs	5060
MONASTIR	8, Avenue de la République	5060
MONASTIR	23, Boulevard Farhat Hached	5000

CPRUE

CODE POSTAL	RUE
1050	8, Avenue de la République
5060	8, Avenue de la République
5060	51, Rue des Entrepreneurs
5000	23, Boulevard Farhat Hached

CPVILLE

CODE POSTAL	VILLE
5000	MONASTIR
5060	MONASTIR
1050	TUNIS

Dépendances Multi-valuées

et 4ème Forme normale

Dépendance multi-valuée (MVD)

- R (A1, A2, ..., An)
- X, Y et Z des sous-ensembles de {A1, A2, ..., An}

Soit R (X, Y, Z), on a une **dépendance multi-valuée: X →→ Y** dans R si et seulement si:

- chaque fois que (x, y, z) et (x, y', z') apparaissent dans R,
- alors (x, y', z) et (x, y, z') apparaissent dans R.

"A chaque valeur de X:

- il y a un ensemble de valeurs de Y associées,
- et cet ensemble est indépendant des autres attributs (Z)."

Dépendance multi-valuée (DMV)

- R (A1, A2, ..., An)
- X, Y et Z des sous-ensembles de {A1, A2, ..., An}

Soit R (X, Y, Z), on a une **dépendance multi-valuée: X →→ Y** dans R si et seulement si:

- chaque fois que (x, y, z) et (x, y', z') apparaissent dans R,
- alors (x, y', z) et (x, y, z') apparaissent dans R.

Dépendance multi-valuée (DMV)

Propriétés :

soit $X \rightarrow Y$, s'il existe deux tuples T_1 et T_2 dans R avec $T_1.X = T_2.X$ alors il existe deux autres tuples T_3 et T_4 dans R avec :

- $T_3.X = T_1.X$, $T_3.Y = T_2.Y$ et $T_3.Z = T_1.Z$
- $T_4.X = T_2.X$, $T_4.Y = T_1.Y$ et $T_4.Z = T_2.Z$

Exemple: TYPE_VOITURE →→ COULEUR

TYPE_VOITURE	COULEUR	Modèle
R25	ROUGE	Break
R25	VERT	Normal
R25	ROUGE	Normal
R25	VERT	Break
MEGANE	VERT	Normal
MEGANE	BLEU	Break
MEGANE	VERT	Break
MEGANE	BLEU	Normal

TYPE_VOITURE →→ COULEUR

Décomposition d'une DMV

- La partie de gauche d'une DMV ne peut pas être décomposée (idem pour les DFs).
- Attention : La partie de droite d'une DMV peut-il être décomposée ?

```
Exemple:
```

```
type_voiture → → couleur, type_peinture:
```

- 1. type_voiture $\rightarrow \rightarrow$ couleur ?
- 2. type_voiture → → type_peinture?

Exemple

TYPE_VOITURE	COULEUR	Type_peinture	Modèle
R25	ROUGE	Métallisée	Break
R25	VERT	Normale	Normal
R25	ROUGE	Métallisée	Normal
R25	VERT	Normale	Break
MEGANE	VERT	Métallisée	Normal
MEGANE	BLEU	Normale	Break
MEGANE	VERT	Métallisée	Break
MEGANE	BLEU	Normale	Normal

type_voiture → → couleur, type_peinture:

- 1. type_voiture $\rightarrow \rightarrow$ couleur ???
- 2. type_voiture → → type_peinture ???

Exemple

TYPE_VOITURE	COULEUR	Type_peinture	Modèle
R25	ROUGE	Métallisée	Break
R25	VERT	Normale	Normal
R25	ROUGE	Métallisée	Normal
R25	VERT	Normale	Break
MEGANE	VERT	Métallisée	Normal
MEGANE	BLEU	Normale	Break
MEGANE	VERT	Métallisée	Break
MEGANE	BLEU	Normale	Normal

type_voiture → → couleur, type_peinture:

- 1. type_voiture $\rightarrow \rightarrow$ couleur ? faux
- 2. type_voiture → → type_peinture ? faux

Décomposition d'une DMV

- La partie de gauche d'une DMV ne peut pas être décomposée (idem pour les DFs).
- Attention : La partie de droite ne peut pas aussi être décomposée (contraire par rapport aux DFs).

Exemple:

```
type_voiture → → couleur, type_peinture: vrai
```

- 1. type_voiture $\rightarrow \rightarrow$ couleur : faux
- 2. type_voiture $\rightarrow \rightarrow$ type_peinture : faux

4ème Forme Normale

 4ème Forme Normale: une relation est en 4FN si les seules DMV sont celles dans lesquelles une clé multi-détermine un attribut.

Remarques:

- une dépendance fonctionnelle est un cas particulier de dépendance multi-valuée
- $-4FN \Rightarrow 3FN \text{ et BCNF}$
- en fait, on ne considère que les DMV élémentaires (parties gauche et droite minimale).

Algorithme de décomposition

Utiliser le même algo que BCNF

- Si R n'est pas en 4e FN, alors il existe X→→A
 tel que X n'est pas une clé de R
- 2. Remplacer R par R1(X,A) et R2= R\{A} et recommencer.

4e FN et DMV

Exemple: type_voiture >> couleur, type_peinture

TYPE_VOITURE	COULEUR	Type_peinture	Modèle
R25	ROUGE	Métallisée	Break
R25	VERT	Normale	Normal
R25	ROUGE	Métallisée	Normal
R25	VERT	Normale	Break
MEGANE	VERT	Métallisée	Normal
MEGANE	BLEU	Normale	Break
MEGANE	VERT	Métallisée	Break
MEGANE	BLEU	Normale	Normal

$X \rightarrow A$: type_voiture $\rightarrow \rightarrow$ couleur, type_peinture **Décomposition**: Remplacer R par R1(X,A) et R2= R\{A}

TYPE_VOITURE	COULEUR	Type_peinture
R25	ROUGE	Métallisée
R25	VERT	Normale
MEGANE	VERT	Métallisée
MEGANE	BLEU	Normale

TYPE_VOITURE	Modèle
R25	Break
R25	Normal
MEGANE	Normal
MEGANE	Break