

Microcontroller

Department of Electrical Engineering
Iran University of Science and Technology

Notes:

Reg Preload registers transferred to active registers on U event according to control bit

✓► Event

✓ Interrupt & DMA output

* All STM32 timers are based on the same scalable architecture.

All timers are based on the same scalable architecture

Multiple timers can be linked and synchronized

Each timer channel in configurable independently

Multiple interconnect with other peripherals

Number of IC

16 bit

Features

KEY FEATURES-

TIMER-OUTPUT COMPARE

Output compare timing

Output compare active

OUTPUT COMPARE

Output compare inactive

Output compare toggle

Output compare toggle

OCxRef toggles when the counter (CNT) matches the capture/compare register (CCRx).

Output compare forced active/inactive

TIMER-OUTPUT COMPARE TOGGLE

Three-phase pulse train from the Output Compare Channels of a general purpose timer

TIMER-OUTPUT COMPARE

To configure the timer in one of these modes:

- 1. Select the clock source.
- 2. Write the desired data in the ARR and CCRx registers.
- 3. Configure the output mode:
 - a) Select the output compare mode: timing / active / inactive / toggle.
 - b) In case of active, inactive and toggle modes, select the polarity by writing CCxP in CCER register.
 - c) Disable the preload feature for CCx by writing OCxPE in CCMRx register.
 - d) Enable the capture / compare output by writing CCxE in CCER register.
- 4. Enable the counter by setting the CEN bit in the TIMx_CR1 register.
- 5. Set the CCxIE / CCxDE bit if an interrupt / DMA request is to be generated.

1. Select the clock source.

RCC_APB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	DAC EN	PWR EN	BKP EN	Res.	CAN EN	Res.	USB EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART2 EN	Res.
		rw	rw	rw		rw		rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Res	erved	WWD GEN	Rese	erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw

1. Select the clock source.

TIMx_PSC

PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PSC[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

2. Write the desired data in the ARR and CCRx registers.

TIMx_ARR

ARR[15:0]: Auto-reload value

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ARR	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

2. Write the desired data in the ARR and CCRx registers.

TIMx_CCR1

CCR1[15:0]: Capture/Compare 1 value

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR1	[15:0]							
rw/ro	rw/ro	rw/ro	rw/ro	rw/ro	rw/ro	rw/ro	rw/ro								

a) Select the output compare mode: toggle.

TIMx_CCMR1

OC1M: Output compare 1 mode

011: Toggle - OC1REF toggles when

TIMx_CNT=TIMx_CCR1.

15	. 14	13	12	. 11	10	9	8	. /	6	5	4	3	2	. 1	0
OC2 CE	(OC2M[2:0]	OC2 PE	OC2 FE	CC28	S[1:0]	OC1 CE	(OC1M[2:0]	OC1 PE	OC1 FE	CC1S	S[1:0]
	IC2F	[3:0]		IC2PS	C[1:0]				IC1F	[3:0]		IC1PS	C[1:0]		
гw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

b) select the polarity by writing CCxP in CCER register.

TIMx_CCER

CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:

0: OC1 active high.

1: OC1 active low.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pos	Reserved		CC4E	Rese	nyod	CC3P	CC3E	Rese	nyod	CC2P	CC2E	Doc.	erved	CC1P	CC1E
Nes	erveu	rw	rw	IV636	rveu	rw	rw	IV636	rveu	rw	rw	IV626	er veu	rw	rw

c) Disable the preload feature

TIMx_CCMR1

OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled.

1: Preload register on TIMx_CCR1 enabled

15	. 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2 CE	E OCZM[Z:0]			OC2 PE	OC2 FE	CC28	S[1:0]	OC1 CE	(OC1M[2:0]	OC1 PE	OC1 FE	CC1S	S[1:0]
	IC2F[3:0]				C[1:0]				IC1F	[3:0]		IC1PS	C[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

d) Enable the capture / compare output

TIMx_CCER

CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:

0: Off - OC1 is not active.

1: On - OC1 signal is output on the corresponding output pin

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		CC4P	CC4E	Pos	erved	CC3P	CC3E	Pose	erved	CC2P	CC2E	Dasa	erved	CC1P	CC1E
Rese	aveu	rw	rw	IV626	erveu	rw	rw	Nese	erveu	rw	rw	. Kesi	erveu	rw	rw

4. Enable the counter

TIMx_CR1

CEN: Counter enable

0: Counter disabled

1: Counter enabled

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Doco	nuod			CKD	[1:0]	ARPE	CI	MS	DIR	OPM	URS	UDIS	CEN
		Rese	erveu			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Contact us

tarasarpoolaki@gmail.com

amin.feizi751381@gmail.com

www.linkedin.com/in/Tara-Sarpoolaki

www.linkedin.com/in/aminfeizishahri