Aristotle Loridas

Wednesday, February 23, 2022

10:32 PM

Aristotle Leritis A56886455

Don't forget time lorgin enelyses. ECE 466 Midterm 1

> Name: PID:

February 21, 2022

- · Don't forget to write your name.
- · Open textbook.
- Read carefully and write legibly. For the problems with partial credit, show your work.
- · For those of you who are remotely solving the exam:
 - You can solve your exam in a-4 sheets or on your tablet.
 - You need to send a scanned pdf or image until 11:45 AM, Tuesday 22nd, to sofuoglu@msu.edu. Otherwise, your exam will not be accepted.
 - Make sure your answers are legible from pdf or scanned image.
- 1. No partial points for the following.
 - (a) [15 Points] Check if the following systems fits the classifications on the columns.

System Equation	Linear	Time Invariant	Static	Causal	Stable
y[n] = x[-n]	1/			- 2	V.
$y[n] = 2n^2x[n] + nx[n+1]$	V		1	1	V (-
$y[n] = cos(2\pi x[n])$		(-1)	1	/	1

(b) [5 Points] The sequence
$$x[n] = \cos\left(\frac{\pi}{2}n\right)$$
 was obtained by sampling an analog signal $x(t) = \cos\left(\Omega t\right)$ at a sampling rate of $F_s = 100$ Hz. What are two possible values of Ω ?

$$\frac{CO\left(\frac{F_s}{100}\right)}{CO\left(\frac{F_s}{100}\right)} = \frac{Cos\left(\frac{F_s}{2}\right)}{100} = \frac{ConTs}{100} = \frac{2nT}{2} = \frac{nT}{2}$$

$$\frac{Cos\left(\frac{F_s}{2}\right)}{100} = \frac{3nT}{2} = \frac{3nT}{2}$$

$$\frac{Cos\left(\frac{F_s}{2}\right)}{100} = \frac{3nT}{2} = \frac{3nT}{2} = \frac{150T}{2}$$

(c) [5 Points] What is the ideal sampling frequency of x(t) = u(t)?

(d) [5 Points] The causal sequence x[n] = {3,1} is input to a system with impulse response h[n]. producing the zero-state response $y[n] = \{\underline{6}, -1, 2, 1\}$. Determine h[n].

Use convolution

- (e) The impulse response of a DT (Discrete Time)-LTI system is given by $h[n] = A(0.7)^n u[n]$. Suppose $x[n] = B\cos(0.2\pi n)u[n]$ is input to the system. Which of the following could be the output signal y[n] = h[n] * x[n]?
 - i. $K_1(0.7)^n \cos(0.2\pi n + \theta)u[n]$.
 - ii. $K_1(0.14)^n u[n] + K_1 \cos(0.14\pi n\theta) u[n]$.
 - $ightharpoonup K_1(0.7)^n u[n] + K_2 \cos(0.2\pi n + \theta) u[n].$
 - iv. $K_1(0.7)^n u[-n] + K_2 \cos(0.2\pi n + \theta) u[n]$.
- 2. [30 Points] Consider a causal LTI system described by the difference equation $y[n] = \frac{2}{15}y[n-1] +$ $\frac{1}{15}y[n-2] + x[n]$ with y[-1] = 1, y[-2] = -1.
 - (a) [6] Find the impulse response h[n].
 - (b) [4] Determine if the system is (1) FIR or IIR, and (2) stable.
 - (c) [8] Find the zero state response for x[n] = u[n]. (Decide on particular response's K first.)
 - (d) [8] Find the zero input response.

(e) [4] Find the total response for
$$x[n] = u[n]$$
. Identify the steady state and transient responses.

$$Y(z) = \frac{2}{15} z^{-1} y(z) - \frac{1}{15} z^{-2} y(z) = X(z) = 7 \frac{1}{1 \cdot \frac{z}{1} z^{-1} - \frac{1}{15} z^{-2}} = \frac{z^2}{z^2 - \frac{2}{13} z^{-1}}$$

- a) hand = 2 hand = 5 hand stable

 One of the solution of the s
- () Ha) $\frac{z}{z-1} \cdot \frac{z^2}{z^2 \frac{z}{12}z \frac{1}{12}} = \frac{\sqrt{(2)} \frac{z}{2} \frac{z}{12}z \frac{1}{12}z \frac{1}{12}z$
- A GI [1- 1/2 5-1 1/2 5-5] P = C (16) + 5 X-11 + 5 = 6 51) = C

C) y(2)[1-3, 2-1-1,2-1]2 (heck LC(DFs, homogeneous and particular solutions and 20R and 21R.

- 3. [30 points] A causal LTI system has a system function $H(z) = \frac{1+z^{-1}}{1-\frac{3}{6}z^{-1}+\frac{2}{36}z^{-2}}$.
 - (a) [5] Determine the difference equation that this system function describes
 - (b) [2] What is the gain of the system?
 - (c) [5] Plot the pole-zero map.
 - (d) [5] Determine the region of convergence (ROC).
 - (e) [5] Is the system stable? Why?
 - (f) [8] Find the input signal x[n] that will produce the output $y[n] = 2\left(\frac{2}{5}\right)^n u[n] \left(\frac{1}{5}\right)^n u[n]$.

a)
$$y(n) - \frac{3}{5}y(n-1) + \frac{2}{5}y(n-2) = x(n) + x(n-1)$$

b) 1 (-2)

C)
$$\frac{z^2+z}{z^2-\frac{2}{5}z+\frac{2}{25}} = \frac{1}{25} \frac{z(z+1)}{(5x+1)} \frac{z(0):0,-1}{p^{eles}:-\frac{1}{5},-\frac{2}{5}} - \frac{1}{14}$$

f)
$$X[n] = \frac{1}{28} \frac{n(n+1)}{(S_n + 2)}$$

$$\frac{1}{-1} \frac{1}{28} \frac{n(n+1)}{(S_n + 2)}$$

$$\frac{1}{-1} \frac{1}{28} \frac{1}{(S_n + 2)} \frac{1}{(S_n + 2)}$$