

construction engineering research laboratory

9

INTERIM REPORT M-275 November 1979

CORROSION OF STEEL PILINGS IN SEAWATER: **BUZZARDS BAY-1975-1978**

by F. Kearney

79-12 27

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

LY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. RECIPIENT'S CATALOG NUMBER ERL-IR-M-275 TLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED ORROSION OF STEEL PILINGS IN SEAWATER: 8. CONTRACT OR GRANT NUMBER(*) MORES) 12) 755 Kearney REFORMING ORGANIZATION NAME AND ADDRESS S. ARMY CWIS 31204 **ONSTRUCTION ENGINEERING RESEARCH LABORATORY** .O. Box 4005, Champaign, IL 61820 INTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Nove STEUMBER OF PAGE 15. SECURITY CLASS. (of this report) ONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified 405 279 15a. DECLASSIFICATION DOWNGRADING STRIBUTION STATEMENT (of this Report) pproved for public release; distribution unlimited. STRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) IPPLEMENTARY NOTES opies are obtainable from National Technical Information Service Springfield, VA 22151 Y WORDS (Continue on reverse side if necessary and identify by block number) awater corrosion ile structures teel zzards Bay, MA pue an reverse side if necessary and identify by block number) To determine the effect of geography and temperature on corrosion of pilings that support various types of structures in coastal areas, a 5-year study is being conducted at Dam Neck, VA, LaCosta Island, FL, and Buzzards Bay, MA. This report (1) summarizes the results of annual inspections between 1975 and 1978 of the pilings at Buzzards Bay, (2) compares these results with the results of the Dam Neck and LaCosta inspections, and (3) provides electrochemical field test data that will be useful to researchers concerned with coastal structural design. The electrical measurements of corrosion at Buzzards Bay were found to differ drastically from LaCosta and Dam Neck results.

3 1473 EDITION OF ! NOV 65 IS OBSOLETE

UNCLASSIFIED 405 279
SECURITY CLASSIFICATION OF THIS PAGE (Prom Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) REMO INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER CERL-IR-M-275 TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) CORROSION OF STEEL PILINGS IN SEAWATER: AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(*) F. / Kearney PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY CWIS 31204 P.O. Box 4005, Champaign, IL 61820 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Nov NUMBER OF PAGES 152 15. SECURITY CLASS. (of thie report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified 405 279 154. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) seawater corrosion pile structures steel Buzzards Bay, MA 20. ABSTRAC Continue on reverse side if necessary and identify by block number) To determine the effect of geography and temperature on corrosion of pilings that support various types of structures in coastal areas, a 5-year study is being conducted at Dam Neck, VA, LaCosta Island, FL, and Buzzards Bay, MA. This report (1) summarizes the results of annual inspections between 1975 and 1978 of the pilings at Buzzards Bay, (2) compares these results with the results of the Dam Neck and LaCosta inspections, and (3) provides electrochemical field test data that will be useful to researchers con-

cerned with coastal structural design. The electrical measurements of corrosion at Buzzards Bay were found to differ drastically from LaCosta and Dam Neck results.

DD FORM 1473 EDITION OF 1 NOV 85 IS OBSOLETE

UNCLASSIFIED 405 279

FOREWORD

The inspection of pilings at Buzzards Bay, MA, was conducted by the Engineering and Materials Division (EM), U.S. Army Construction Engineering Laboratory (CERL) for the Directorate of Civil Works, Office of the Chief of Engineers (OCE). The work was performed under CWIS 31204, "Corrosion Mitigation in Civil Works Projects." Mr. J. Robertson, DAEN-CWE-E, is the OCE Technical Monitor.

The CERL inspection team included Mr. F. Kearney (electrical measurements and data analysis), Dr. A. Kumar (visual inspection), and Mr. F. Kisters (planning and coordination of field operations).

Appreciation is expressed to Mr. C. Hahin of CERL for his work during the initial phase of the CERL piling studies, and to Mr. E. Escalante of the National Bureau of Standards for his helpful comments.

Dr. G. R. Williamson is Chief of EM. COL L. J. Circeo is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

Acces	sion For	/
NTIS	GRA&I	V
DDC 3	TAB	
Unann	rounced	П
Justi	fication	
	ibution/	ndes
	Availand	
Dist	special	, 01
•		
S		
n		
4+	1	

CONTENTS

	DD FORM 1473	1
	FOREWORD	3
	LIST OF TABLES AND FIGURES	5
1	INTRODUCTION	7
	Background	
	Objective	
	Approach	
	Mode of Technology Transfer	
2	BUZZARDS BAY FIELD STUDY	7
	Protective Coating Systems	
	Test Site	
	Test Pilings	
	Annual Inspections	
3	ELECTROCHEMICAL CORROSION FIELD TEST DATA	8
	General	
	Sacrificial Anode Cathodic Protection Performance	
	Polarization Measurements and Tafel Extrapolations	
	Cathodic Protection Index Results	
4	DISCUSSION OF RESULTS	10
	General	
	Cathodic Protection Performance	
	Corrosion Rates From Polarization Measurements	
	Analysis of Cathodic Protection Indices	
	Interrelationship Between Coastal Structures	
	and Marine Life	
5	CONCLUSIONS AND RECOMMENDATIONS	11
	Conclusions	
	Recommendations	
	TABLES AND FIGURES	12
	REFERENCES	31
	APPENDIX A: Polarization Plots and Tafel Extrapolations	32
	APPENDIX B: Cathodic Protection Indices	131
	DISTRIBUTION	

TABLES

Nun	nber	Page
	Test Pile Preparation Details	12
	2 Scale and Description of Rust Grades	15
	3 Visual Inspection: 1978 Evaluation	15
	4 Potential Measurements: Pilings with Sacrificial Anode Cathodic Protection	16
	5 Buzzards Bay 1977 Data	16
	6 Buzzards Bay 1978 Data	17
	7 Tabulation of CPI 1975-1978	18
	8 Comparison of Schwerdtfeger's Corrosion Currents: LaCosta/Buzzards Bay	19
	FIGURES	
	1 Buzzards Bay	20
	2 Buzzards Bay Test Site Location	20
	3 Installation Plan	21
	4 H-Piling Coating Detail	22
	5 Pipe Piling Coating Detail	23
	6 Piling System at Buzzards Bay	24
	7 Anode Mounting Detail	24
	8 Electric Circuit for Polarization Measurements	25
	9 Circuit Diagram for Measurements of Cathodic Protection Index	25
1	O Characteristic Curves for Various Generic Coating Systems	26
1	1 Characteristic CPI/Time Curves for Piles at Buzzards Bay Collated With Individual Piles	27
1	The 5-Year Sequence of Fouling on Carbon Steel in Seawater	28

CORROSION OF STEEL PILINGS IN SEAWATER: BUZZARDS BAY-1975-1978

1 INTRODUCTION

Background

The Directorate of Civil Works, Office of the Chief of Engineers (OCE), has jurisdiction over many coastal area structures which are supported on pilings (e.g., harbors, bridges, and buildings). In the past, steel pipe and H-pilings have generally been used for foundations in coastal areas; however, more recently, prestressed concrete pilings have also been used. Because there is a lack of quantitative data on the rate of piling corrosion and the performance of coatings and sacrificial anodes on steel pilings under long-term field exposures, designers of such structures are faced with the problem of not knowing how quickly they corrode.

In 1965, OCE directed the Coastal Engineering Research Center (CERC) to study the corrosion of steel pilings in seawater. Concurrently, the National Bureau of Standards (NBS) was planning a seawater piling corrosion study with funds provided by the American Iron and Steel Institute. To prevent duplication of effort, NBS and CERC made the study a joint effort.

A test site near Dam Neck, VA, was selected, and 102 pilings were installed in June 1967. Annual inspections of the piles were conducted, and inspection reports were prepared by NBS and distributed to participating offices within the Corps. The 102 pilings were grouped into 31 sets (three identical pilings per set); every 5 years, one piling from each set was to be extracted and examined for corrosion damage.

To determine the effect of geography and temperature on piling corrosion, CERC selected two more sites (LaCosta Island, FL, and Buzzards Bay, MA). Piling installation at LaCosta Island was completed in January 1971, and the pilings have been inspected annually since then.

In 1973, the major Corps research for this study was transferred from CERC to the U.S. Army Construction Engineering Research Laboratory (CERL). CERL installed pilings at Buzzards Bay in October 1974.

The first set of piles will be extracted in 1979, with the study to be completed in 1989, this will complete the Buzzards Bay phase of the study.

When the Dam Neck and LaCosta Island studies are completed, the data from all three sites will be analyzed in order to draw conclusions and develop recommendations about pile coatings.

Objective

The objective of this study was to summarize the results of CERL's annual inspections of the test pilings at Buzzards Bay from 1975 through 1978, and to compare these results with the results of the Dam Neck and LaCosta inspections.

Approach

Pilings were installed at the test site; some had no protective coating or sacrificial anode, while the remainder were given various types of protection. The pilings were inspected both visually and by electrochemical measurements annually from 1975 through 1978. The data obtained from these inspections were analyzed and evaluated. Differences were noted between data obtained from the Dam Neck and LaCosta sites, so tests were run to verify the reliability of the measurement system.

Mode of Technology Transfer

The information contained in this study will be incorporated into TM 5-811-4.

2 BUZZARDS BAY FIELD STUDY

Protective Coating Systems

A variety of coatings and sacrificial cathodic protection anodes was used in the Buzzards Bay study in order to correlate protection methods with the life cycles of pilings used at Corps of Engineers installations. Table I lists the coatings and their sources. Some pilings were installed without any coating or sacrificial anodes, while others were installed with both coatings and cathodic protection. Most of the protective coating systems included in the Buzzards Bay test site are the same type as those used at the Dam Neck and LaCosta Island sites. The systems include organic coatings, metallic coatings, and zinc-rich primers with topcoats. The organic coatings include coal tar epoxies, saran, vinyl, phenolic mastic, epoxy polyamide, epoxy over inorganic ceramic, and polyester over glass flake.

Metallic coatings include flame-sprayed aluminum and zinc with and without organic topcoats. The coatings were applied after sandblasting the base metal to "near white metal" according to Steel Structures Painting Council Specification SSPC-SP-10-63T.

Test Site

Figures 1 and 2 show the location of the Buzzards Bay test site. In comparison to Dam Neck and LaCosta, this site has a lower mean temperature; in addition, its hydrology differs because it is located in a protective, cove-like area similar to an estuary. Furthermore, the test pilings at this site are subjected to rather massive ice flows which cause severe mechanical loads. These ice conditions destroyed some of the pilings in 1977.

Test Pilings

The test pilings included both H and pipe pilings made of either American Society for Testing and Materials (ASTM) A 36 or ASTM 690 (mariner) steel. The steel H piles were 8 in, × 8 in. × 40 ft (203.2 mm × 203.2 mm × 12.19 m) and weighed 36 lb/ft (54 kg/m). Eight prestressed concrete pilings were also installed on the bay side of the steel pile array. Figure 3 illustrates the installation plan.

The steel pilings formed three rows designated as A, B, and C. Row A pilings were completely coated, Row C pilings were coated except for the lower 15 ft (4.57 m), and Row B pilings were coated except for rectangular areas covered by clear acrylic plastic windows. Stainless steel rods were welded between the inside flanges of each piling to enable electrical contact for obtaining electrochemical measurements. Figures 4 and 5 show details of the H and pipe piling coating details. Figure 6 shows an elevation view of Row 1, which is typical of all piling rows.

The sacrificial anodes for the cathodically protected piles were mounted near the sand zone and consisted of either zinc or aluminum. The zinc anodes were $4 \times 4 \times 36$, in. $(101 \times 101 \times 914 \text{ mm})$ and weighed 150 lb (68.0 kg) when new; the aluminum anodes were $4 \times 4 \times 38$ in. $(101 \times 101 \times 967 \text{ mm})$ and weighed 60 lb (27.2 kg) when new. Two anodes were installed on each piling to provide cathodic protection; Figure 7 shows a detailed section of the anode mounting.

Annual Inspections

After placement, the pilings were inspected visually and by electrochemical measurements five times per year. Visual observations included a complete evaluation of coating deterioration and were conducted in accordance with ASTM standard methods for evaluating the degree of rusting of painted steel surfaces, D610-68 (Table 2).

Electrical measurements were taken for pile corrosion potential, cathodic protection index, and polarization. Electrical contact with the stainless steel rods in the piles was made by connecting vise clamps to the cable wires that were joined to instrumentation on the beach. The pile potential was measured on pilings provided with sacrificial anodes in order to indicate the degree of protection offered by the anodes.

Each 40-ft (12-m) length of piling was divided into five zones: the buried zone (0 to 15 ft [0 to 4.57 m]), the sand zone (15 to 17 ft [4.57 to 5.18 m]), the immersion zone (17 to 27 ft [5.18 to 8.23 m]), the tidal zone (27 to 31 ft [8.23 to 9.45 m]), and the atmospheric zone (31 to 40 ft [9.45 to 12.15 m]). Only pilings in the tidal and atmospheric zones could be visually inspected because they were not under water. These zones were inspected and evaluated in accordance with D610-68. Table 3 gives the results of the 1978 visual inspections.

3 ELECTROCHEMICAL CORROSION FIELD TEST DATA

General

The most insidious aspect of the corrosion of submerged and buried structures is the inspector's inability to determine the level or rate of deterioration caused by the corrosion process. Coupled with this problem is the equally difficult task of monitoring the effectiveness of corrosion abatement procedures. In recent years, laboratory electrochemical corrosion-rate measurements have been adapted for in-situ field measurements, but have not been very successful.

This study incorporates three electrochemical experiments to evaluate the feasibility of such measurements as a reliable in-situ, nondestructive evaluation technique.

Sacrificial Anode Cathodic Protection Performance

Of the 24 piling systems, three (systems 2, 5, and 6)* were installed with zinc sacrificial (galvanic) anodes

^{*}Refer to Figure 3 for designation legend.

(see Figure 7), while system 3 was installed with aluminum anodes. The potentials of these protected pilings were measured with respect to a copper/copper sulfate reference electrode. Table 4 gives the results of the potential measurements for 1975 through 1978.

As the pilings were pulled at each 5-year interval, their anodes were cleaned of marine life, weighed, and their consumption rate computed; these data will be presented in the 5-year exposure reports to be published in FY 1980.

Polarization Measurements and Tafel Extrapolations

In the corrosion process, the corroding metal dissolves into the electrolyte solution, which develops a current flow within the metal called the corrosion current. In this electrochemical reaction, positive ions, such as iron, are released into the electrolyte solution, and positive ions, such as hydrogen, are produced. This process develops an exchange current at the surface of the corroding metal; this exchange current is directly related to the corrosion rate, or loss, of metal with time. Because this exchange current is molecular in nature, it cannot be measured directly; however, an indirect measuring technique is possible (see Figure 8). To measure the current indirectly, the voltage applied to the test piling is varied and the current is monitored by the amp meter while the "electrochemical" potential is measured by a reference cell. This reference cell potential is measured by a highimpedance metering circuit. Figure 9 is a schematic of the actual circuit used for these tests.

The curve of voltage vs. the log of current is called a polarization curve; Appendix A provides the polarization curves obtained in 1977 and 1978. Two polarization curves are shown for each piling. The lower curve is the cathodic protection curve obtained when the test piling is negatively charged, while the upper curve is obtained when the test piling is positively charged, or anodic. For low currents, the curve is nonlinear, but at higher currents it becomes linear on the semilogarithmic plot; this region of linearity is called the Tafel region. To determine the corrosion rate from these polarization measurements, the Tafel region is extrapolated to the corrosion potential, as shown by the downward sloping tangent lines on the polarization plots. At the corrosion potential, the rate of hydrogen evolution is equal to the rate of metal dissolution, and this point corresponds to the corrosion rate of a particular piling system being tested. Inherent in this technique is the current density factor; hence,

the area of the piling submerged enters into the corrosion rate determination. Thus, it is necessary to know the water depth variation with tide at the time of the measurement.

The cathodic corrosion current (indicated as I_q on these polarization plots) is used for most corrosion current measurements. Schwerdtfeger and McDorman¹ described a "polarization break" method which uses breaks in the anodic and cathodic polarization curves to calculate a corrosion current, I_C :

$$I_C = (I_p)(I_q)/(I_p + I_q)$$
 [Eq 1]

where: I_C = the corrosion current I_p and I_q = the tangent intersections of the linear portions of the anodic and cathodic curves, respectively.

Tables 5 and 6 provide the values extracted from the polarization curves and the Schwerdtfeger corrosion current.

Cathodic Protection Index Results

Most coatings applied to metal structures can be characterized as a film exhibiting high electrical resistance, i.e., an insulating layer. Studies have shown a correlation between coating effectiveness and the film's electrical resistance; this provides an in-situ means of measuring the performance of coatings.

In practice, the same measurement setup shown in Figures 8 and 9 is used to perform these coating effectiveness measurements. For the CERL piling corrosion studies, this is called the cathodic protection index. To perform the measurement, the potential, as measured by the half-cell, is changed from the open circuit potential to -0.850 volts vs. copper/copper sulfate, and the current required to effect this change is measured. The cathodic protection index (CPI) is then the ratio of these values:

$$CPI = \frac{V}{I}$$
 [Eq 2]

where: V =change in voltage

I = current required to shift the voltage

These values are tabulated in Table 7 for the years 1975 through 1978 and plotted in Appendix B.

¹W. J. Schwerdtfeger and O. N. McDorman, Journal of the Electrochemical Society, Vol 99 (1952), p 407.

4 DISCUSSION OF RESULTS

General

After completion of the field tests, the data obtained were analyzed and evaluated; after the third year of exposure, it became apparent that there were differences in the trend of the cathodic protection indices relative to the data obtained from the Dam Neck and LaCosta sites. To insure that these differences were not caused by instrumentation errors, several tests were run to verify the reliability and accuracy of the test measurements system. After the instrumentation reliability had been verified, other reasons for these differences were examined.

Cathodic Protection Performance

As indicated in Table 4, the pilings with sacrificial anode cathodic protection exhibited a protection potential well above the 0.850-V (reference: copper/copper sulfate) level. The only uncompleted portion of this part of the study is the determination of the consumption rate; this will be completed when the pilings are extracted in 1979.

Corrosion Rates From Polarization Measurements

Although an absolute value of corrosion current for steel in salt water cannot be defined because of modifying factors such as water velocity, etc., a range of 5 to 15 mA/sq ft (50 to 150 mA/m²) is reasonable. A good quality coating system will reduce this figure to 5 to 15 A/sq ft (50 to 150 A/m²). As mentioned previously, the coating system serves to insulate the metal from the electrolyte, thereby eliminating the current/ion flow path.

Inspection of the polarization curves in Appendix A and the tabulated break-point values given in Tables 5 and 6 reveals that the measured corrosion currents are very low. This data by itself would indicate a good coating system; however, this conclusion is not valid because low values for corrosion current are also obtained for the bare steel pilings—specifically systems 1 and 4.

To illustrate this, Table 8 compares two bare steel pile systems—one from the LaCosta study and one from the Buzzards Bay study for the years 1977 and 1978. The table also includes data for both sites from two similar coal-tar-epoxy-coated systems. The LaCosta bare steel average corrosion current density was 2.92 mA/sq ft (29.2 mA/m²), which is not an unreasonable value, while the comparable Buzzards

Bay piling was 1 mA/sq ft in 1977 and 0.73 mA/sq ft (7.3 mA/m²) in 1978. Similarly, the coal-tar-epoxy system at LaCosta had a corrosion current density of 0.93 mA/sq ft (9.3 mA/m²), while the comparable piling coating at Buzzards Bay was .49 mA/sq ft (4.9 mA/m²) in 1977 and .52 mA/sq ft (5.2 mA/m²) in 1978.

To verify the instrumentation and the various electrical connections, a test plate of new carbon steel was placed approximately 20 ft (6 m) from the auxiliary pile (row 22C), and a polarization curve was run on the new test steel plate; a graph in Appendix A (p 130) shows this polarization curve. The Tafel extrapolation gives an I_q of 300 mA; this value, divided by the area of the plate, gives a corrosion current density of 9.375 mA/sq ft (93.75 mA/m²). This test verified the validity of the test data obtained by means of this measuring system and confirmed the existence of a high-resistance coating on the pilings.

Analysis of Cathodic Protection Indices

A review of literature that discusses the use of a Cathodic Protection Index to evaluate coatings on pilings in seawater indicates that CPI versus time curves can be grouped into three characteristic shapes (see Figure 10). Group I would represent nonmetallic coatings exhibiting a progressive deterioration of the coating and resultant reduction in surface film resistance. as shown by a decreasing CPI. Group II would typify a nonmetallic coating over a metallic primer such as zinc-rich primer. This curve shows a decreasing CPI caused by deterioration of the finish coat until the film thickness is reduced to the point where the sacrificial protection of the metallic primer becomes operative. Group III would represent the family of metallic coatings, such as flame-sprayed aluminum; in this instance, the CPI would increase with the information of corrosion products on the metallic coating (which would provide additional protection), then would reach an apex before beginning a gradual decrease that would indicate the failure of the metallic coating and subsequent increased corrosion of the base steel. Escalante gives an excellent summary of specific electrochemical data, showing these characteristic curves for the test pilings at Dam Neck.2

To analyze the Buzzards Bay data, the CPI data were grouped as shown in Figure 11. Accompanying

²E. Escalante, et al., Protection of Steel Piles in a Natural Seawater Environment-Part II, NBSIR 76-1104 (National Bureau of Standards, 1976).

each characteristic curve is a list of specific pilings that exhibited this CPI variation. This grouping differs from data obtained at LaCosta and Dam Neck in two major ways: (1) only one piling system falls into the conventional deterioration pattern—10b-20a, and (2) the bare pile systems (1, 4, and 22) exhibit an increasing CPI rather than a constant level of corrosion rate. The latter variation is of greatest concern, and prompted the continuous verification of instrumentation equipment and methods.

Because the information obtained from CPI measurements is the surface coating resistance, the only conclusion that can be drawn from the curves for pilings having an increasing CPI is that some mechanism is interacting with the surface and causing a high-resistance coating to form. The distribution of the other pilings (see Figure 10) indicates that this mechanism is neither consistent nor uniform. A microcomputer program used a corrective algorithm to transform the data to a synthetic bare-piling baseline displaying trivial results; with some statistical manipulations, the same results were obtained. An evaluation of the environmental conditions at this test site was more encouraging, as explained in the following section.

Interrelationship Between Coastal Structures and Marine Life

It has frequently been observed that clusters of marine life or metal structures in seawater can provide an insulation barrier between the metal and surrounding electrolyte similar to a protective coating. The electrical resistance of marine life colonies has been illustrated by instances of cathodic protection systems which have been rendered inoperative by the formation of such clusters on the anodes. It was therefore hypothesized that the increasing CPI values noted at the Buzzards Bay sites could have been caused by marine life fouling; however, the cause of the irregular pattern remained a puzzle.

An examination of the life cycle of marine life in this geographical location enhanced the probability of this possibility. Figure 12 shows a 5-year life cycle of marine life growth, followed by a "sloughing off" of the growth and a reexposure of the metal, which exhibited a different surface condition. Figure 12 shows only a small section of the exposed steel; however, several colonies of marine life distributed over the approximately 40 sq ft (3.6 m²) of a submerged test piling would have different life cycles and densities, resulting in a complex variation of net electrical coating resistance. The growth of filamentus bryozoa, a species endemic to Buzzards Bay, is very evident in Figure 12.

5 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The electrical measurements (polarization and cathodic protection index) obtained in this series of tests at Buzzards Bay differ drastically from the LaCosta and Dam Neck test results. Since the test equipment and procedures were identical at each location, the variation must have been caused by site-specific factors. A tentative conclusion reached after this research is that growth on the test pilings of marine life endemic to the estuary conditions at Buzzards Bay is the principal cause of the anomalous data pattern.

Recommendations

Because electrical measurements are potentially powerful techniques for the nondestructive evaluation of coating performance on submerged structures, the remainder of the piling studies should be modified in order to rigorously evaluate the marine life fouling hypothesis. Specifically, all retrieved pilings should be examined immediately after extraction by a marine biologist familiar with the marine life species indigenous to Buzzards Bay. Each annual inspection should include an assessment of the growth pattern in order to establish correlation of growth with the change in electrical parameters.

Annual cathodic protection measurements and the plotting of polarization should be continued.

Table 1 Test Pile Preparation Details

System No.	Type of Pile*	Type Pile and Protection	No. of Coats	Total Dry Coating Thickness (mils)**	Coating Source	Remarks
1	н	Bare Carbon Steel				
2	н	Bare Carbon Steel with Zinc Anodes				2 Anodes
3	н	Bare Carbon Steel with Aluminum				2 Anodes
		Anodes				
4	н	Bare Mariner Steel				
5	H	Bare Mariner Steel with Zinc Anodes				2 Anodes
6	н	Coal Tar Epoxy, over Zinc-Rich Primer, with Zinc Anodes				2 Anodes
		- Epoxy Zinc-Rich Primer CERL Formula No. E-303	1	2.5 (0.06 mm)	Iowa Paint Mfg. Co. (Via CERL Paint Lab)	
		- Formula C-200, Coal Tar Epoxy	2	16-20	Koppers	
				(0.41-0.51 mm)		
7	н	Coal Tar Epoxy, over Zinc-Rich Primer				
		- Epoxy Zinc-Rich Primer CERL Formula No. E-303	1	2.5	Iowa Paint Mfg. Co. (Via CERL	
				(0.06 mm)	Paint Lab)	
		- Formula C-200, Coal Tar Epoxy	2	16-20	Koppers	
				(0.41-0.51 mm)		
8	ш	Coal Tar Epoxy, over Zinc-Rich Primer				
		- Porter Zinc-Lok No. 352 Primer	1	1 (0.03 mm)	Porter Paint Co.	
		- Formula C-200, Coal Tar Epoxy	2	16-20 (0.41-0.51 mm)	Koppers	
9	Н	Coal Tar Epoxy, over Zinc-Rich Primer, Aluminum Oxide Armored at Mud Line				
		- Epoxy Zinc-Rich Primer NCR Formula No. E-303	1	2.5 (0.06 mm)	Iowa Paint Mfg. Co. Via CERL Paint Lab	4th coat + grit to be applied
		- Formula C-200, Coal Tar Epoxy	2	16-20 (0.41-0.51 mm)	Koppers	17 ft and 23 ft
		 Formula C-200, Coal Tar Epoxy + Aluminum Oxide Grit (No. 30) Broadcast into Wet Final Coat 				(5.18 and 7.01 m) from bot- tom of pile
10	Н	Coal Tar Epoxy, over Epoxy Resin Primer				Į av
		- Epoxy Resin Primer	1	3 (0.08 mm)	Porter Paint Co.	
		- Formula C-200, Coal Tar Epoxy	2	16-20	Koppers	
11	Н	Coal Tar Epoxy, over Zine-Rich		(0.41-0.51 mm)	Koppens	Mariner
		Primer, on Mariner Steel				steel pile
		- Epoxy Zinc-Rich Primer NCR Formula No. E-303	1	2.5 (0.06 mm)	Iowa Paint Mfg. Co. (Via CERL	
		- Formula C-200, Coal Tar Epoxy	2	16-20	Paint Lab) Koppers	
12	Н	Epoxy over Inorganic Ceramic		(0.41-0.51 mm)		
		- Plas-Chem Zinc-ite Primer	'	3-4 (0.08-0.09 mm)	Plas Chem Corp.	
		- Plas-Chem Ceram-ite No. 101	1	5-6 (0.12-0.15 mm)	Plas Chem Corp.	
		- Plas-Chem 2140Z High Build Epoxy	1	7-8 (0.18-0.20 mm)	Plas Chem Corp.	

Table 1 (Cont.) Test Pile Preparation Details

System No.	Type of Pile*	Type Pile and Protection	No. of Coats	Total Dry Coating Thickness (mils)**	Coating Source	Remarks
	н	Epoxy over Organic Zinc Primer				
13	•	- Zincot No. 11 Primer	1	1-1.5 (0.03 mm04 mm)	Plas Chem Corp.	
		- Chem-Pon 2310X Red	1	8-9 (0.20-0.23 mm)	Plas Chem Corp.	
		- Chem-Pon 2310X Gray	1	8-9 (0.20-0.23 mm)	Plas Chem Corp.	
14	н	Polyurethane over Organic Zinc Rich				
		- Chemglaze Zinc-Rich Primer 9927	1	3 (0.08 mm)	Hughson Chem	
		- Chemglaze II	2	3-5 (0.08-0.12 mm)	Hughson Chem	
15	н	Polyurethane over Organic Zinc Rich				
		with an intermediate Elastomer Coat				
		- Chemglaze Zinc-Rich Primer 9927	1	3 (0.08 mm)	Hughson Chem	
		- M312 Elastomer	1	6-8 (0.15-0.20 mm)	Hughson Chem	M312 is High Build
		- Chemglaze II	2	3-5 (0.08-0.12 mm)	Hughson Chem	-1 coat up to 10 mils
16	н	Polyurethane over Flame Sprayed Zinc, with Intermediate Wash- coat Primer				(0.25 mm)
		- Flame Sprayed Zinc	1	3-4	Metalweld or	
		- Hame Sprayed Eme		(0.08-0.09 mm)	Metco Urecal Co.	
		- Washcoat Primer Formula 117, MIL-P-15328	1	0.5	Via Seaguard Co.	
		- Urecal 9301 Polyurethane	2	(0.12 mm) 4		
17	н	Aluminum, Flame Sprayed (Wire)	1	(0.09 mm) 6	Metalweld, Metco	Steel Wire Flash
				(0.15 mm)	or equal	Bonding Coat I mil (0.03 mm)
18	Н	Aluminum, Flame Sprayed with Wash- coat Primer and Aluminum Vinyl Scaler				Steel Wire
		- Flame Sprayed Aluminum (Wire)	1	3-4 (0.08-0.09 mm)	Metalweld, Metco or equal Via Sca-	
		- Washcoat Primer Formula 117, MIL-P-15328	1	0.5	guard Co.	
				(0.12 mm)		
		- Metcoseal AV, Aluminum Vinyl Sealer	2	(0.05 mm)	Metco	
19	н	Zinc, Flame Sprayed, with Coal Tar Emulsion over Coal Tar Solution Top coats				
		- Flame-Sprayed Zinc (Wire)	1	3-4 (0.08-0.09 mm)	Metalweld or Metco	
		- Wise Chem T-265 Coal Tar Solution	1	15 (0.38 mm)	Wise Chem Co.	
		- Wise Chem T-264 Coal Tar Emulsion	1	7-8	Wise Chem Co.	

Table 1 (Cont.)
Test Pile Preparation Details

System No.	Type of Pile*	Type Pile and Protection	No, of Coats	Coating Chickness (mils)**	Coating Source	Remarks
20	н	Vinyl Glass Flake, over Vinyl Zinc Rich		(0.18-0.20 mm)		
		- Vinyl Zinc Rich	1	2-3 (0.05-0.08 mm)	CERL Paint Lab	
		- Vinyl Glass Flake	3	6 (0.15 mm)	CERL Paint Lab	
21	н	Vinyl Mastic over Synthetic Resin Tiecoat over Washcoat Inorganic Zinc Primer				Curing solution to be re- moved by fresh water
		- Dimetcote No. 3 + D3 Curing Solution	1	(0.08 mm)	Amercoat Corp.	
		- No. 54 Tiecoat	1	(0.03 mm)	Amercoat Corp.	
		- Vinyl Mastic No. 87	1	10 (0.25 mm)	Amercoat Corp.	
22 23		Pipe Bare Carbon Steel Pipe Coal Tar Epoxy over Zinc- Rich Primer				
		- Epoxy Zinc-Rich Primer NCR Formula No. E-303	1	2.5 (0.06 mm)	Iowa Paint Mfg. Co. (Via CERL Paint La	
		- Formula C-200, Coal Tar Epoxy	2	16-20 (0.41-0.51 mm)	Koppers	
24		Pipe Coal Tar Epoxy, Armored at Mud Line, over Zinc-Rich Primer				
		- Epoxy Zinc-Rich Primer NCR Formula No. E-303	1	2.5 (0.06 mm)	Iowa Paint Mfg. Co. (Via CERL Paint Lab)	4th coat & al oxide to be applied
		- Formula C-200, Coal Tar Epoxy	2	16-20 (0.41-0.51 mm)	Koppers	between 17 & 23 ft
		- Formula C-200 + Aluminum Oxide (No. 30 Grit) Broadcast into Wet Final Coat	1	10 (0.25 mm)	Koppers	(5.18 & 7.01 mm) from bot- tom of pile

^{*}Steel H-piles are 40 ft (12.19 m) lengths of 8 in. x 8 in. x 36 lb (20.32 cm x 20.32 cm x 16.33 kg) mild carbon steel, except systems 4, 5, and 11, which are "Mariner" steel H-piles. Systems 22, 23, and 24 are pipe piles, mild carbon steel, 8 in. (20.32 cm) diameter, schedule 40, 0.322 in. (0.82 cm) wall thickness.

^{**}Film thickness tolerance per coat may be plus or minus 15 percent of given thickness per coat when no thickness range is given.

[†]An approximately equal brand name coating with application and preparation instructions can be furnished by the Government from the same or another source. CERL is symbol for the Paint Laboratory at the U.S. Army Construction Engineering Research Laboratory.

Table 2
Scale and Description of Rust Grades*

Rust Grades**	Description	SSPC-ASTM Photographic Standard
10	No rusting or less than 0.01 percent of surface rusted	unnecessary
9	Minute rusting, less than 0.03 percent of surface rusted	No. 9
8***	Few isolated rust spots, less than 0.1 percent of surface rusted	No. 8
7	Less than 0.3 percent of surface rusted	none
6†	Extensive rust spots but less than I percent of surface rusted	No. 6
5	Rusting to the extent of 3 percent of surface rusted	none
4++	Rusting to the extent of 10 percent of surface rusted	No. 4
3†††	Approximately one-sixth of the surface rusted	none
2	Approximately one-third of the surface rusted	none
1	Approximately one-half of the surface rusted	none
0+	Approximately 100 percent of the surface rusted	unnecessary

^{*}Reprinted with permission of American Society for Testing and Materials from Evaluating Degree of Rusting on Painted Steel Structures, ASTM D 610-68.

Table 3
Visual Inspection: 1978 Evaluation

	ASTM Rating	
Pile No.	D 610-68	Comments
13	9	
14	6	Peeling
15	6	Peeling
16	6	Peeling
17	4	
18	9	
19	5	
20	9	
1	Bare	Pitted
4	Bare	Pitted
7	10	Slight blistering on windows
8	10	No blistering on windows
9	10	
10	10	
11	10	
12	3	

^{**}Similar to European Scale of Degree of Rusting for Anti-Corrosive Paints (1961) (black and white).

^{***}Corresponds to SSPC Initial Surface Condition E (0 to 0.1 percent) and BISRA (British Iron and Steel Research Association) 0.1 percent.

[†]Corresponds to SSPC Initial Surface Condition F (0.1 to 1 percent) and BISRA 1.0 percent.

^{††}Corresponds to SSPC Initial Surface Condition G (1 to 10 percent).

^{†††} Rust grades below 4 are of no practical importance in grading performance of paints.

⁺Corresponds to SSPC Initial Surface Condition H (50 to 100 percent).

Table 4
Potential Measurements: Pilings
With Sacrificial Anode Cathodic Protection

	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage
Pile No.	1975	1976	1977	1978	1979	1980
2A	-1.05	-1.06	-1.08	-1.03		
В	-0.97	-1.00	-1.04	-0.97		
C	-1.05	-1.07	-1.08	-1.03		
3A	-1.04	-1.06	-1.08	-1.01		
В	-0.95	-1.00	-1.03	-0.96		
C	-1.03	-1.06	-1.08	-1.01		
SA	-1.05	-1.06	-1.07	-1.02		
В	-0.96	-1.00	-1.04	-0.96		
	-1.06	-1.06	-1.06	0.99		
6A	-1.06	-1.09	-1.09	-1.03		
В	-1.09	-1.09	-1.10	-1.03		
C	-1.07	-1.09	-1.08	-1.03		

Table 5 Buzzards Bay 1977 Data

			$l_p x l_q$				
	Anode	Cathode	lp+lq			Depth	Depti
Location	l _p	lq .	l _c	lpxlq	lp+lq	l _p	Iq.
1A	.076A	.051A	.0305	.0039	.1270		
18	.053	.053	.0265	.0028	.1060		
4.4	.060	.080	.0343	.0048	.1400		
48	.072	.079	.0377	.0057	.1510		
7A	.038	.014	.0102	.0005	.0520		
78	.039	.025	.0152	.0010	.0640		
8A	.037	.013	.0096	.0005	.0500		
8B	.044	.035	.0195	.0015	.0790		
9A	.035	.021	.0131	.0007	.0560		
9B	.038	.039	.0192	.0015	.0770		
10A	.033	.027	.0149	.0009	.0600		
10B	.041	.039	.0200	.0016	.0800		
11A	.027	.014	.0092	.0004	.0410		
11B	.039	.018	.0123	.0007	.0570		
12A	.062	.041	.0247	.0025	.1030		
128	.080	.055	.0326	.0044	.1350		
13A	.036	.022	.0137	.0008	.0580		
13B	.052	.033	.0202	.0017	.0850		
14A	.057	.037	.0224	.0021	.0940		
14B	.063	.030	.0203	.0019	.0930		
15A	.025	.014	.0090	.0004	.0190		
15B	.032	.026	.0143	.0008	.0580		
16A	.052	.019	.0141	.0010	.0710		
16B	.055	.032	.0207	.0018	.0870		
17A	.086	.052	.0324	.0045	.1380		
178	.100	.060	.0375	.0060	.1600		
18A	.058	.050	.0269	.0029	.1080		
19A	.120	.050	.0353	.0060	.1700		
198	.142	.044	.0336	.0062	1860		
20A	.032	.017	.0102	.0005	.0490		
20B	.050	.040	.0222	.0020	.0900		
21A	.064	.053	.0288	.0034	.1178		
21B	.060	.080	.0457	.0064	.1400		
22A	.084	.055	.0317	.0044	.1390		
22B	.094	.098	.0479	.0092	.1920		
23A	.025	.0185	.0106	.0005	.0435		
238	.038	.035	.0182	.0013	.0730		
24B	.038	.035	.0182	.0013	.0730		
25B	.028		.028				
Concrete							
25 A		.018	.018				
18B	.505	.028	.0179	.0014	.0780		

Table 6 Buzzards Bay 1978 Data

Location Location				$l_p x l_q$					
Location Ip Iq Ic IpxIq Ip+Iq Ip Iq 30 ft		Anode	Cathode	lo+lo			Depth	Depth	L
1B	Location				l_pxl_q	l_p+l_q			30 ft ²
1B	1A	.051AMPS	.042AMPS	.0226	.0021	.0930			.00075
4B		.046	.043	.0225	.0020	.0890			
4B 043 046 0.0225 0.020 0.890 4C 0.048 0.45 0.237 0.022 0.930 7A 0.34 0.31 0.169 0.011 0.650 7B 0.37 0.31 0.0162 0.011 0.680 7C 0.51 0.045 0.240 0.023 0.960 8A 0.24 0.25 0.122 0.006 0.490 8C 0.35 0.35 9A 0.40 0.30 0.171 0.012 0.700 9C 0.58 0.48 0.175 0.028 1.060 10A 0.37 0.27 0.156 0.010 0.640 10C 0.57 0.044 0.248 0.025 1.010 11A 0.28 0.29 0.140 0.008 0.570 11C 0.51 0.050 0.257 0.026 1.101 12A 0.55 0.53 0.269 0.029 1.080 12C 0.56 0.045 0.248 0.025 1.010 13A 0.395 0.38 0.194 0.015 0.775 13C 0.55 0.047 0.253 0.026 1.020 14A 0.47 0.51 0.253 0.026 1.020 14A 0.47 0.051 0.253 0.026 1.020 14A 0.47 0.051 0.248 0.025 1.010 15A 0.37 0.31 0.169 0.011 0.680 12CC 0.56 0.045 0.248 0.025 1.010 15A 0.055 0.039 0.0257 0.026 0.026 15A 0.37 0.31 0.169 0.001 0.680 12CC 0.056 0.045 0.248 0.025 0.024 0.080 15A 0.37 0.31 0.169 0.011 0.680 15A 0.37 0.31 0.169 0.011 0.680 15A 0.35 0.35 0.026 0.027 0.026 0.029 0.029 10A 0.035 0.035 0.025 0.024 0.090 15A 0.035 0.035 0.027 0.026 0.029 0.000 15A 0.035 0.035 0.027 0.024 0.090 15B 0.044 0.044 0.044 0.049 0.001 0.0680 17A 0.055 0.050 0.0271 0.029 1.070 18A 0.044 0.052 0.023 0.021 0.0940 17A 0.057 0.050 0.0271 0.029 1.070 18A 0.044 0.052 0.023 0.021 0.0940 18B 0.050 0.050 0.050 19A 0.055 0.056 0.0277 0.031 0.110 19B 0.053 0.053 0.053 19C 0.064 0.064 20A 0.035 0.048 0.0205 0.017 0.0830 20B 0.052 0.052 20C 0.052 0.052 20C 0.052 0.052			.057	.0275	.0030	.1090			
7A			.046	.0225	.0020	.0890			
7B	4C	.048	.045	.0237	.0022	.0930			
7C	7A	.034	.031	.0169	.0011	.0650			
8A		.037	.031	.0162	1100.	.0680			
8C	7C	.051	.045	.0240	.0023	.0960			
9A	8A	.024	.025	.0122	.0006	.0490			
9A	8C		.035	.035					
10A		.040	.030	.0171	.0012	.0700			
10C .057 .044 .0248 .0025 .1010 11A .028 .029 .0140 .0008 .0570 11C .051 .050 .0257 .0026 .1010 12A .055 .053 .0269 .0029 .1080 12C .056 .045 .0248 .0025 .1010 13A .0395 .038 .0194 .0015 .0775 13C .055 .047 .0253 .0026 .1020 14A .047 .051 .0245 .0024 .0980 15A .037 .031 .0169 .0011 .0680 (22C) .035 .035 .035 .0024 .0980 16A .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 19A .055	9C	.058	.048	.0175	.0028	.1060			
10C .057 .044 .0248 .0025 .1010 11A .028 .029 .0140 .0008 .0570 11C .051 .050 .0257 .0026 .1010 12A .055 .053 .0269 .0029 .1080 12C .056 .045 .0248 .0025 .1010 13A .0395 .038 .0194 .0015 .0775 13C .055 .047 .0253 .0026 .1020 14A .047 .051 .0245 .0024 .0980 15A .037 .031 .0169 .0011 .0680 (22C) .03 .035 .035 .0020 .0011 .0680 (16C) .03 .035 .035 .0020 .0011 .0680 16A .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 <t< td=""><td>10A</td><td>.037</td><td>.027</td><td>.0156</td><td>.0010</td><td>.0640</td><td></td><td></td><td></td></t<>	10A	.037	.027	.0156	.0010	.0640			
11A		.057	.044	.0248	.0025	.1010			
11C .051 .050 .0257 .0026 .1010 12A .055 .053 .0269 .0029 .1080 12C .056 .045 .0248 .0025 .1010 13A .0395 .038 .0194 .0015 .0775 13C .055 .047 .0253 .0026 .1020 14A .047 .051 .0245 .0024 .0980 15A .037 .031 .0169 .0011 .0680 (22C) .035 .035 .035 (16C) .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 18B .043 .043 18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .064 .064 20A .035 .048 .0205			.029	.0140	.0008	.0570			
12C .056 .045 .0248 .0025 .1010 13A .0395 .038 .0194 .0015 .0775 13C .055 .047 .0253 .0026 .1020 14A .047 .051 .0245 .0024 .0980 15A .037 .031 .0169 .0011 .0680 (22C) 16A		.051	.050	.0257	.0026	.1010			
13A	12A	.055	.053	.0269	.0029	.1080			
13C .055 .047 .0253 .0026 .1020 14A .047 .051 .0245 .0024 .0980 15A .037 .031 .0169 .0011 .0680 (22C) 16A .035 .035 .035 .035 .035 .002 .0021 .0940 16A .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 18B .043 .043 18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 20C .052 .052 21A <td< td=""><td></td><td>.056</td><td>.045</td><td>.0248</td><td>.0025</td><td>.1010</td><td></td><td></td><td></td></td<>		.056	.045	.0248	.0025	.1010			
14A .047 .051 .0245 .0024 .0980 15A .037 .031 .0169 .0011 .0680 (22C) 16A .035 .035 (16C) 16A .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 18B .043 .043 18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .053 .053 .053 19C .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 20C .052 .052 21A .054 .056 .0275 .0030 .1100	13A	.0395	.038	.0194	.0015	.0775			
15A	13C	.055	.047	.0253	.0026	.1020			
(22C) 16A	14A	.047	.051	.0245	.0024	.0980			
16A	15A	.037	.031	.0169	.0011	.0680			
(16C) 16A .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 18B — .043 .043 18C — .050 .080 19A .055 .056 .0277 .0031 .1110 19B — .063 .053 .053 19C — .064 .064 20A .035 .048 .0205 .0017 .0830 20B — .052 .052 20C — .052 .052 (22C) — .054 .056 .0275 .0030 .1100	(22C)								
16A .055 .039 .0223 .0021 .0940 17A .057 .050 .0271 .0029 .1070 18A .044 .052 .0238 .0023 .0960 18B .043 .043 18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 (22C) .052 .052 21A .054 .056 .0275 .0030 .1100	16A		.035	.035					
17A	(16C)								
18A .044 .052 .0238 .0023 .0960 18B .043 .043 18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .053 .053 19C .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	16A	.055	.039	.0223	.0021				
18B .043 .043 18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .053 .053 19C .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	17A	.057	.050	.0271	.0029	.1070			
18C .050 .050 19A .055 .056 .0277 .0031 .1110 19B .053 .053 19C .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	18A	.044	.052	.0238	.0023	.0960			
19A .055 .056 .0277 .0031 .1110 19B .053 .053 19C .064 .064 20A .035 .048 .0205 .0017 .0830 20B .052 .052 20C .052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	18B		.043	.043					
19B053 .053 19C064 .064 20A .035 .048 .0205 .0017 .0830 20B052 .052 20C052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	18C		.050	.050					
19C064 .064 20A .035 .048 .0205 .0017 .0830 20B052 .052 20C052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	19A	.055	.056	.0277	.0031	.1110			
20A .035 .048 .0205 .0017 .0830 20B052 .052 20C052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	19B		.053	.053					
20B052 .052 20C052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	19C	May been some	.064	.064					
20C052 .052 (22C) 21A .054 .056 .0275 .0030 .1100	20A	.035	.048	.0205	.0017	.0830			
(22C) 21A .054 .056 .0275 .0030 .1100	20B		.052	.052					
21A .054 .056 .0275 .0030 .1100	20C		.052	.052					
	(22C)								
21B 055 055	21A	.054	.056	.0275	.0030	.1100			
	21B		.055	.055					
21C060 .060	21C	No. 107	.060	.060					
22A .053 .053		.053		.053					

Table 7 Tabulation of CPI 1975-1978

Pile No.	1975	1976	1977	1978	
1A	0.0487	.0333	2.78	4.6	
В	0.058	0.327	0.058	5.86	
C	Aux	Aux	0.89	Aux	
4A	0.0472	0.34	0.87	4.55	
В	0.0667	0.34	0.058	4.69	
C		0.321	Aux	6.25	
7A	7.65	14.29	11.00	10.38	
В	6.21	4.52	6.11		
C	0.19	0.449	1.47		
8A	7.19	14.29	7.50		
В	7.20	2.75	1.96	7.65	
C	0.18	0.435	1.62	4.44	
9A	6.13	14.29	7.69	6.88	
В	7.50	6.38	1.69	7.13	
C	0.18	0.459	1.75	5.0	
10A	6.0	12.09	3.85	8.92	
В	16.16	6.1	3.57	6.5	
C	0.19	0.438	1.58	4.38	
11A	5.33	12.5	7.50	10.0	
В	8.70	4.21	1.85	6.43	
C	0.16	0.44	1.57	5.0	
12A	•	2.73	1.82	5.2	
В		1.25	0.213	5.2	
C	0.16	0.409	1.48	4.8	
13A	5.68	14.29	4.14	7.37	
В	15.15	2.65	1.20	6.08	
C	0.15	0.458	1.55	4.7	
14A	7.65	20.0	2.08	5.56	
В	15.18	3.25	0.773	6.0	
C	0.17	0.455	1.52	4.79	
15A	7.22	11.04	17.86	20.0	
В	13.71	2.73	1.53	6.52	
C	0.71	0.44	1.49	4.64	
16A			2.34	•	
В			0.556	•	
C	0.16		1.18	4.5	
17A		0.669	1.65		
В	•		0.30		
C	0.15	0.397	1.47	3.04	
18A	1.61		1.92	•	
В		1.11	1.19		
C	0.16	0.484	1.47	4.35	
19A			1.79		
В			0.375	•	
C			1.43	5.88	
20A	6.36	4.64	9.33	5.2	
BC	7.39	2.91	2.0	4.17	
21A	0.23	0.542	1.6	2.89	
B	1.47 6.25	2.05	2.06	3.57	
C	0.28	2.65	0.619	3.41	
	0.20	0.545	1.52	3.16	

Table 7 (Cont'd) Tabulation of CPI 1975-1978

Pile No.	1975	1976	1977	1978
22A		0.378	1.40	3.19
В		0.375	0.076	2.95
	Rows	22-24		
C	Aux	Aux	1.49	Aux
				Connection
23A	11.03	31.11	11.50	Broken
В	4.22	8.26	3.13	
C	0.26	0.845	1.88	3.5
			Handles	Connection
24A	22.50	50.0	Broken	Broken
				Connection
В	4.29	4.77	2.50	Broken
C	0.48	1.06	1.50	2.22
25A			-	
В				

^{*}Initial Potential Reading <-0.85 V (Potential not shift 150 mV more negative).

Table 8
Comparison of Schwerdtfeger's Corrosion
Currents; LaCosta/Buzzards Bay

	Bare Steel			Coal Tar Epoxy		
Location (pile system)	LaCosta (1)	Buzzards Bay (1)		LaCosta (7)	Buzzards Bay (10)	
		1977	1978		1977	1978
Ip. mA	500	76	51	150	33	37
Iq, mA	440	51	42	150	27	27
$(l_p)(l_q)/(l_p+l_q)$	234	30	22	75	15.9	15.6
Average Corrosion	2.92	1	.73	.93	.49	.52
Current Density (I _c) in mA/sq ft						

SYMBOLS: H DENOTES HP 8" x 8" x 36LB. STEEL PILES

- O DENOTES 8" DIA. SCH. 40 STEEL PIPE PILES
- DENOTES 12" SQ. PRESTRESSED CONCRETE PILE (CONTRACTOR FURNISHED)
- CT DENOTES COAL TAR
- EPX DENOTES EPOXY

Figure 3. Installation plan. (Metric conversion factors: 1 ft = 0.3048 m; 1 in. = 2.54 cm; 1 lb = 0.4536 kg.)

Figure 4. H-piling coating detail. (Metric conversion factors: 1 ft = 0.3048 m; 1 in. = 2.54 cm.)

Figure 5. Pipe piling coating detail. (Metric conversion factors: 1 ft = 0.3048 m; 1 in. = 2.54 cm.)

Figure 6. Piling system at Buzzards Bay. (Metric conversion factors: 1 ft = 0.3048 m; 1 in. = 2.54 cm.)

Figure 7. Anode mounting detail. (Metric conversion factors: 1 ft = 0.3048 m; 1 in. = 2.54 cm.)

Figure 8. Electric circuit for polarization measurements.

PI = MILLER M-3 PM/VM OR HIGH RESISTANCE VM; USED FOR MONITORING POTENTIAL / VOLTAGE OF TEST PILES.

P2 - MILLER M-3; FOR AUXILIARY PILE VOLTAGE

Figure 9. Circuit diagram for measurements of cathodic protection index.

- I. NONMETALLIC
- I. NONMETALLIC OVER METALLIC
- II. METALLIC

Figure 10. Characteristic curves for various generic coating systems.

Figure 11. Characteristic CPI/time curves for piles at Buzzards Bay collated with individual piles.

a. 3 months

b. 9 months

Figure 12. The 5-year sequence of fouling on carbon steel in seawater.

c. 18 months

d. 36 months

Figure 12 (Cont'd)

e. 48 months

f. 60 months

Figure 12 (Cont'd)

REFERENCES

- Coast and Geodetic Survey, Pub 31-1, 4th Ed. (U.S. Department of Commerce, 1972).
- Escalante, E., et al., Protection of Steel Piles in a Natural Seawater Environment—Part II, NBSIR 76-1104 (National Bureau of Standards, 1976).
- Evaluating Degree of Rusting on Painted Steel Structures, ASTM D 610-68 (American Society for Testing and Materials, 1968).
- Holler, H. D., Journal of the Electrochemical Society, Vol 97 (1950), p 277.
- Hunter, A. D. and C. H. Horton, *Underwater Engineering* (November 15, 1960).
- Kumar, A. and C. Hahin, First Annual Inspection of Buzzards Bay Pilings, Technical Report M-172/ ADA024381 (U.S. Army Construction Engineering Research Laboratory [CERL], 1976).

- Lesnick, J. R., Condition of Test Piles After 5 Years of Exposure at Dam Neck, VA, Interim Report (Coastal Engineering Research Center, 1976).
- Pearson, J. M., Transactions of the Electrochemical Society, Vol 81 (1942), p 485.
- Romanoff, M., et al., "Protection of Steel Piles in a Natural Seawater Environment," *Proceedings,* Third International Congress on Marine Corrosion and Fouling (1973).
- Saroyan, J. R., E. Lindner, C. Dooley and H. R. Bleile, Industrial Engineering Chemical, Proceeding of the Research Division, 9-2 (1970), pp 122-133.
- Schrieber, C. F., F. N. Longo and G. J. Duiman, Proceedings of the Offshore Technological Conference, Report No. 1959 (1974).
- Schwerdtfeger, W. J. and O. N. McDorman, *Journal* of the Electrochemical Society, Vol 99 (1952), p 407.

APPENDIX A: POLARIZATION PLOTS AND TAFEL EXTRAPOLATIONS

POLARIZATION DATA SEPTEMBER 1978

	1A		1B		1C	
I amps	Poter CATH	ntial volts ANODIC	Poten CATH	tial volts ANODIC	Poten CATH	tial volts ANODIC
0	.64	.69	.635	.685	.615	.675
.0085					_	.635
.0088				.65		
.009	.68		.675		.655	
.0092	-	.655				
.01	_	.65		.645	.66	.63
.015	.705	.63	0.7	.625	.68	.61
.02	.725	.61	.725	.605	.7	.59
.03	.77	.565	.775	.56	.74	.545
.04	.82	.525	.815	.515	.79	.505
.05	.865	.48	.865	.475	.83	.46
.06	.905	.44	.905	.43	.87	.415
.07	.95	.395	.945	.39	.915	.375
.08	1.05	.36	.99	.35	.955	.335
.09	1.10	.32	1.04	.31	1.0	.29
.10	1.14	.265	1.11	.265	1.06	.25
.11	1.14	.225	1.13	.225	1.1	.2
.12	1.18	.172	1.18	1.75	1.15	.16
.13	1.23	.129		.13	1.19	.115
.14	1.27	.082	_	.085	1.23	.075
.15	-	.044		.06	1.28	_
.158	-	_		_		0
.160		.002	_	-		_
.162		-			-	-

4B				4C		
I Pote		tial volts	1	Potential volts		
amps	CATH	ANODIC	amps	CATH	ANODIC	
0	0.61	.68	0	.61	.67	
.0087		.645	.0087	.65	.63	
.009	.65		.009			
.01	.655	.635	.01	.655	.625	
.02	.7	.6	.015	.675	585	
.03	.74	.545	.02	.70	.54	
.04	.78	.5	.03	.74	.5	
.05	.825	.46	.04	.785	.455	
.06	.87	.415	.05	.83	.415	
.07	.91	.375	.06	.87	.37	
.08	.95	.33	.07	.91	.33	
.09	.99	.28	.08	.955	.29	
.1	1.05	.25	.09	.99	.245	
.11	1.1	.2	.1	1.06	.2	
.12	1.14	.16	.11	1.1	.16	
.13	1.18	.12	.12	1.15	.11	
.14	1.23		.13	1.19	.07	
.15	1.26	.075	.14	1.22	.035	
.159		0	.15	1.28		
.6	1.32	_	.158	-	0	

7A			7B		
1	Potential volts		1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.62	.695	0	.61	.71
.0088	.675	_	.0088	.665	-
.009	-	.64	.009	_	.65
.01		.625	.01	.67	.64
.015	.72	.6	.015	.700	.61
.02	.75	.565	.02	.725	.575
.03	.81	.5	.03	.775	.51
.04	.89	.435	.04	.84	.45
.05	.96	.375	.05	.9	.38
.06	1.08	.315	.06	.95	.33
.07	1.18	.255	.07	1.04	.27
.08	1.25	.19	.08	1.10	.21
.09	1.32	.13	.09	1.17	.15
.1	1.4	.06	.1	1.23	.09
.11		.0015	.11	1.3	.025
.111		0	.113		0
			.12	1.38	

			8A		
1	Poten	tial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.695	.74	0	.635	0.66
.0087	.735		.0085		.62
.009	_	.7	.009	.68	
.01	.74	.7	.010	.72	.6
.015	.76	.675	.015	.75	.56
.02	.785	.655	.02	.82	.51
.03	.83	.61	.03	.87	.45
.04	.875	.565	.04	.95	.4
.05	.92	.52	.05	1.0	.34
.06	.96	.48	.06	1.06	.28
.07	1.03	.43	.07	1.1	.24
.08	1.08	.39	.08	1.18	.19
.09	1.13	.35	.09	1.22	.14
.1	1.17	.3	.10	1.28	.09
.11	1.21	.255	.116		0
.12	1.25	.215	.15	1.52	_
.13	1.3	.17	.20	1.76	
.14	1.35	.125			
.15	1.39				
17		0			

8C		9A			
1	Poten	tial volts	l amps	Potential volts	
amps	CATH	ANODIC		CATH	ANODIC
0	.785		0	.67	.66
.0088	.771		.0085	.72	-
.01	.778		.009		.62
.015	.8		.010	.74	.61
.02	.82		.015	.75	.58
.03	.865		.02	.78	.55
.04	.91		.03	.84	.5
.05	.95		.04	.88	.44
.06	.99		.05	.96	.38
.07	1.04		.06	1.02	.35
.08	1.08		.07	1.08	.3
.09	1.13		.08	1.12	.25
.1	1.17		.09	1.18	.2
.11	1.22		.10	1.22	.15
			.134	-	0
			.15	1.44	_
			.20	1.68	-

9C			10A		
1		tial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.735	.73	0	.650	.65
.0089	.775	_	.0085	.7	.6
.009	-	.69	.009		.6
.01	.78	.685	.010	.72	.6
.015	.8	.665	.015	.74	.57
.02	.825	.645	.020	.77	.54
.03	.865	.6	.030	.845	.48
.04	.91	.555	.04	.9	.43
.05	.95	.51	.05	.97	.375
.06	.99	.47	.06	1.04	.31
.07	1.05	.415	.07	1.1	.25
.08	1.09	.38	.08	1.16	.2
.09	1.13	.34	.09	1.24	.14
.1	1.18	.29	.10	1.3	.09
.11	1.22	.25	.116		0
.12	1.26	.205	.15	1.56	
.13	1.3	.156	.20	1.78	
.14	1.35	.107			
.15		.068			
.16		.025			
.167	-	0			

10C				11A	
l amps	Poten CATH	tial volts ANODIC	I amps	Potential volts CATH ANODIC	
0	.74	.75	0	0.6	.58
.0088	.78		.009	.65	.54
.009		.71	.01	.68	.53
.01	.795	.705	.015	.72	.5
.015	.82	.68	.02	.75	.46
.02	.84	.66	.03	.82	.41
.03	.88	.615	.04	.89	.35
.04	.92	.575	.05	.95	.26
.05	.965	.53	.06	1.02	.2
.06	1.01	.485	.07	1.1	.15
.07	1.06	.445	.08	1.16	.08
.08	1.1	.4	.09	1.22	.02
.09	1.15	.36	.95		0
.1	1.2	.31	.10	1.28	
.11	1.23	.27	.15	1.56	-
.12	1.28	.225	.20	1.8	
.13	1.32	.18			
.14	1.36	.13			
.15	1.405	.087			
.16	-	.045			
.171	-	0			

	110			1		
1	Potential volts		ı	Potential volts		
amps	CATH	ANODIC	amps	CATH	ANODIC	
0	.715	.71	0	0.64	.64	
.008	.755	.67	.009	.67	.61	
.01	.76	.665	.010	.675	.61	
.015	.78	.645	.015	.7	.6	
.02	.8	.625	.020	.72	.58	
.03	.845	.58	.030	.75	.55	
.04	.89	.535	.040	.78	.51	
.05	.93	.495	.050	.82	.48	
.06	.97	.45	.060	.85	.45	
.07	1.02	.405	.07	.89	.41	
.08	1.07	.36	.08	.92	.38	
.09	1.105	.32	.09	.95	.35	
.10	1.15	.28	.10	.985	.31	
.11	1.2	.23	.15	1.145	.14	
.12	1.24	.177	.196		0	
.13	1.28	.14	.12	_		
.14	1.33	.09				
.15	1.36	.055				
.16	_	.01				
.183	-	.00				

12C				13A	
I amps		ial volts ANODIC	l amps	Potential volts CATH ANODIC	
0	.73	.73	0	0.63	
.008	.77		.009	.68	
.009		.69	.010	.68	
.010	.78	.685	.015	.72	
.015	.8	.665	.02	.74	
.02	.82	.645	.03	.78	
.03	.86	.6	.04	.84	
.04	.9	.56	.05	.88	
.05	.945	.575	.06	.95	
.06	.985	.47	.07	1.0	
.07	1.04	.43	.08	1.04	
.08	1.08	.39	.09	1.1	
.09	1.12	.35	.10	1.14	
.10	1.17	.3	.142		
.11	1.22	.26	.15	1.36	
.12	1.25	.215	.20	1.56	
.13	1.3	.175			
.14	1.34	.13			
.15	1.38	.079			
.16		.07			
.17		.0			

13C				14A	
1	Poten	tial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.73	.73	0	0.63	0.62
.008	.77	-	.009	.66	.58
.0091	-	.69	.010	.665	.58
.01	.775	.685	.015	.68	.57
.015	.795	.67	.02	.7	.55
.02	.815	.645	.03	.73	.51
.03	.86	.6	.04	.76	.47
.04	.9	.56	.05	.8	.44
.05	.945	.515	.06	.84	.40
.06	.985	.47	.07	.88	.365
.07	1.04	.43	.08	.92	.33
.08	1.09	.385	.09	.95	.28
.09	1.13	.345	.10	1.0	.26
.10	1.17	.3	.15	1.18	.08
.11	1.22	.255	.176		0
.12	1.25	.21	.20	1.36	
.13	1.3	.165			
.14	1.34	.14			
.15	1.38	.075			
.168	-	0			

15A				16A	
1	Poten	tial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.65	0.62	0	0.89	.88
.008	-	.55	.0085	.93	.84
.0085	.79		.010	.93	.83
.010	.795	.55	.015	.95	.81
.015	.83	.52	.02	.97	.78
.02	.86	.48	.03	1.0	.74
.03	.92	.44	.04	1.06	.7
.04	.99	.38	.05	1.1	.66
.05	1.06	.32	.06	1.14	.62
.06	1.1	.27	.07	1.18	.57
.07	1.18	.22	.08	1.22	.52
.08	1.24	.15	.09	1.265	.48
.09	1.3	.10	.10	1.3	.45
.10	1.34	.05	.15	1.5	.24
.11		0	.20	1.7	.04
.15	1.6	-			
.20	1.82	-			

17A				18A	
1		tial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	0.77	0.795	0	.8	0.79
.0085	.795	.765	.008		.76
.010	.8	.76	.009	.83	
.015	.82	.74	.010	.84	.75
.02	.83	.73	.015	.85	.74
.03	.85	.68	.02	.87	.72
.04	.9	.66	.03	.9	.68
.05	.925	.625	.04	.94	.65
.06	.96	.58	.05	.97	.61
.07	.985	.56	.06	1.0	.57
.08	1.02	.53	.07	1.03	.54
.09	1.06	.49	.08	1.08	.51
.10	1.1	.46	.08	1.12	.46
.15	1.24	.28	.10	1.16	.42
.20	1.4	.12	.15	1.34	.25
			.20	1.52	.06

	18B	18C			
l amps	Potential volts CATH	I amps	Potential volts CATH		
0	.79	0	.73		
.008	.76	.009	.76		
.01	.75	.010	.76		
.015	.74	.015	.775		
.02	.72	.02	.78		
.03	.68	.03	.82		
.04	.65	.04	.85		
.05	.61	.05	.88		
.06	.57	.06	.91		
.07	.54	.07	.94		
.08	.51	.08	.97		
.09	.46	.09	1.0		
.10	.42	.1	1.04		
.15	.25	.15	1.18		
.2	.06	.2	1.34		

19A				19B		
1		tial volts	1	Potential volts		
amps	CATH	ANODIC	amps	CATH		
0	.72	.85	0	.87		
.009	.8	.82	.009	.895		
.010	.81	.815	.010	.9		
.015	.82	.79	.015	.92		
.02	.84	.77	.02	.93		
.03	.87	.74	.03	.96		
.04	.9	.7	.04	1.0		
.05	.93	.66	.05	1.02		
.06	.96	.63	.06	1.06		
.07	.985	.59	.07	1.1		
.08	1.03	.55	.08	1.12		
.09	1.065	.50	.09	1.16		
.10	1.1	.46	.10	1.18		
.15	1.26	.29	.15	1.34		
.20	1.42	.10	.20	1.5		

	19C		20A	
1	Potential volts	1		tial volts
amps	CATH	amps	CATH	ANODIC
0	.68	0	.62	.645
.009	.72	.008	-	.6
.010	.72	.009	.66	
.015	.735	.010	.665	.58
.02	.75	.015	.72	.565
.03	.78	.02	.75	.54
.04	.81	.03	.8	.49
.05	.84	.04	.85	.44
.06	.87	.05	.88	.4
.07	.9	.06	.92	.35
.08	.93	.07	.97	.3
.09	.96	.08	1.045	.26
.10	.98	.09	1.1	.22
.15	1.14	.10	1.16	.17
.20	1.3	.142	-	0
		.150	1.38	
		.20	1.58	_

20B		20C		
I amps	Potential volts CATH	I amps	Potential volts CATH	
0	.61	0	.65	
.009	.65	.009	.68	
.010	.655	.010	.685	
.015	.67	.015	.7	
.02	.69	.02	.715	
.03	.73	.03	.75	
.04	.77	.04	.78	
.05	.82	.05	.81	
.06	.85	.06	.84	
.07	.88	.07	.87	
.08	.92	.08	.9	
.09	.97	.09	.93	
.10	1.02	.10	.96	
.15	1.22	.15	1.12	
.20	1.4	.20	1.28	

21A					
1	Poten	tial volts	21B		
amps	CATH	ANODIC	t amps	Potential volts CATH	
0	.63	.64	0	.67	
.0085	.665		.0085	.695	
.009		.6	.010	.7	
.010	.665	.6	.015	.71	
.015	.67	.58	.02	.72	
.020	.7	.56	.03	.77	
.03	.73	.53	.04	.8	
.04	.77	.48	.05	.835	
.05	.8	.45	.06	.87	
.06	.83	.42	.07	.9	
.07	.865	.38	.08	.92	
.08	.9	.35	.09	.97	
.09	.94	.31	.10	1.0	
.10	.97	.27	.15	1.16	
.15	1.128	.1	.20	1.34	
.178		0			
.20	1.32				

21C		22A		
1 amps	Potential volts CATH	l amps	Potential volts ANODIC	
0	.675	0	.64	
.0085	.7	.009	.62	
.010	.71	.010	.62	
.015	.72	.015	.6	
.02	.74	.02	.58	
.03	.77	.03	.55	
.04	.8	.04	.52	
.05	.83	.05	.48	
.06	.865	.06	.45	
.07	.89	.07	.43	
.08	.92	.08	.39	
.09	.95	.09	.365	
.10	.98	.10	.335	
.15	1.14	.15	.18	
.20	1.3	.20	.02	
.25			.02	

POLARIZATION DATA SEPTEMBER 1977

1A					1B
I Poter		ntial volts		Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.70	.69	0	.69	.68
.007	.705	.68	.007	.70	.67
010.	.710	.675	.010	.70	.67
.015	.72	.67	.015	.71	.66
.02	.76	.66	.020	.715	.655
.03	.77	.65	.03	.73	.64
.04	.79	.635	.04	.74	.63
.05	.80	.62	.05	.75	.615
.06	.81	.61	.06	.765	.605
.07	.79	.60	.07	.78	.59
.08	.80	.58	.08	.79	.575
.09	.81	.57	.09	.81	.56
.10	.83	.56	.10	.82	.55
.15	.89	.49	.15	.88	.485
.20	.95	.425	.2	.94	.42
.30	1.09	.295	.3	1.08	.29

		4A			4B
1	Poter	ntial volts	1	Poter	itial volts
amps	CATH	ANODIC	amps	CATH	ANODIC
.0	.675	.67	.0	.68	.67
.007	.685	.66	.007	.69	.66
.010	.69	.655	.110	.69	.66
.015	.695	.65	.015	.70	.65
.02	.70	.64	.02	.705	.645
.03	.715	.63	.03	.72	.63
.04	.73	.62	.04	.73	.62
.05	.74	.605	.05	.74	.605
.06	.75	.59	.06	.755	.59
.07	.765	.58	.07	.77	.58
.08	.78	.565	.08	.78	.57
.09	.79	.55	.09	.795	.555
.10	.81	.54	.10	.81	.54
.12		.51	.12	.83	.51
.15	.87	.47	.15	.87	.47
.2	.93	.41	.20	.93	.41
.3	1.06	.28	.30	1.06	.28
.4	1.18	.15	.40	1.19	.15

7A				7B	
Poter	ntial volts	ı	Potential volts		
CATH	ANODIC	amps	CATH	ANODIC	
.75	.66	0	.74	.695	
.78	.64	.007	.765	.67	
.83	.625	.010	.78	.66	
.85		.011	.79		
.875	.62	.012	.80	.655	
.885		.013	.805		
.89		.014	.81		
.90	.61	.015		.64	
.925		.02	.84	.63	
		.03	.875	.60	
1.00	.53	.04	.91	.575	
1.06		.05		.555	
1.10		.06	.97	.52	
1.14		.07		.49	
		.08	1.06	.47	
		.09	1.10	.445	
		.10	1.14	.42	
			1.18	.375	
1.44		.15	1.26	.30	
	.75 .78 .83 .85 .875 .885 .89 .90 .925 .96 1.00 1.14 1.18 1.23 1.28 1.34	Potential volts CATH ANODIC .75	Potential volts I CATH ANODIC amps .75 .66 0 .78 .64 .007 .83 .625 .010 .85 - .011 .875 .62 .012 .885 - .013 .89 - .014 .90 .61 .015 .925 .595 .02 .96 .57 .03 1.00 .53 .04 1.06 .505 .05 1.10 .48 .06 1.14 .45 .07 1.18 .43 .08 1.23 .40 .09 1.28 .38 .10 1.34 .335 .12	Potential volts I Potential volts CATH ANODIC amps CATH .75 .66 0 .74 .78 .64 .007 .765 .83 .625 .010 .78 .85 - .011 .79 .875 .62 .012 .80 .885 - .013 .805 .89 - .014 .81 .90 .61 .015 .82 .925 .595 .02 .84 .96 .57 .03 .875 1.00 .53 .04 .91 1.06 .505 .05 .94 1.10 .48 .06 .97 1.14 .45 .07 1.02 1.18 .43 .08 1.06 1.23 .40 .09 1.10 1.28 .38 .10 1.14 1.34 .335 .12	

8A					8B
1	I Potential volts		1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.74	.76	0	.74	.665
.007	.76	.73	.007	.77	.63
.010	.77	.72	.010	.805	.62
.012	.78		.012	.83	
.015	.79	.705	.015	.865	.605
.017	.80		.017	.89	
.02	.815	.685	.02	.905	.59
.03	.86	.665	.03	.945	.56
.04	.88	.62	.04	.98	.53
.05	.91	.595	.05	1.03	.50
.06	.94	.565	.06	1.07	.475
.07	.97	.54	.07	1.12	.45
.08	1.02	.515	.08	1.16	.42
.09	1.06	.49	.09	1.20	.39
.10	1.08	.465	.10	1.24	.37
.12	1.13	.425	.12	1.32	.32
.15	1.2	.36	.15	1.40	.25
.20		.26	.20	-	.14

9A				9B	
1		ntial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.75	.74	0	.71	.71
.007	.77	.715	.007	.73	.69
.010	.79	.68	.010	.74	.68
.012	.805	_	.012	.75	-
.015	.825	.66	.015	.76	.665
.017	.84		.017	.77	
.02	.865	.64	.02	.78	.65
.03	.905	.61	.03	.81	.62
.04	.94	.58	.04	.84	.59
.05	.98	.545	.05	.87	.56
.06	1.03	.51	.06	.90	.535
.07	1.08	.48	.07	.93	.51
.08	1.12	.45	.08	.965	.485
.09	1.16	.42	.09	.995	.46
.10	1.20	.39	.10	1.04	.43
.12	1.26	.335	.12	1.09	.385
.15	1.35	.250	.15	1.16	.315
.20	1.52	.12	.20	1.28	.20
.25	1.64		.25	1.39	

	10A		10A			10B Potential volts	
1	Poter	ntial volts	1				
amps		ANODIC	amps	CATH	ANODIC		
0	.72	.67	0	.75	.655		
.007	.74	.655	.007	.775	.63		
.01	.745	.65	.010	.79	.62		
.12	.755		.012	.80			
.015	.76	.635	.015	.82	.60		
.02	.775	.62	.02	.845	.59		
.03	.80	.60	.03	.88	.565		
.04	.83	.58	.04	.92	.53		
.05	.86	.555	.05	.96	.495		
.06	.885	.53	.06	1.00	.455		
.07	.93	.51	.07	1.05	.435		
.08	.96	.485	.08	1.09	.405		
.09	1.00	.46	.09	1.14	.38		
.10	1.04	.43	.10	1.18	.355		
.12		.39	.12		.30		
.15	1.15	.335	.15	1.34	.22		
.20	1.28	.24	.20	1.49	.12		
.25	1.39	.14	.25	1.61	0.00		

HA			HA		
1	Potential volts			11B Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.655	.60	0	.68	.66
.007	.695	.57	.007	.70	.64
.010	.75	.56	.008	.705	.04
.012		.55	.009	.71	
.015	.80	.54	.010	.715	.625
.02	.845	.52	.012		.62
.03	.91	.48	.015	.73	.61
.04	.97	.445	.020	.75	.59
.05	1.05	.405	.025	.775	.37
.06	1.12	.365	.03	.80	.565
.07		.325	.04	.835	.54
.08		.29	.05	.875	.51
.09		.26	.06	.91	.48
.10		.225	.07	-	.45
.11		.185	.08		.425
.12		.15	.09		.40
			.10		.37
			.11		.34
			.12		.315
			.15		
			.17		.25
			.20	_	.195 .12

		12A			12B
		ntial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.725	.71	0	.715	.70
.007	.74	.695	.007	.73	.69
.010	.745	.69	.01	.73	.68
.020	.765	.675	.02	.745	.67
.025	.775		.025	.75	.07
.03	.79	.66	.03	.76	.66
.04	.81	.64	.04	.775	.64
.05	.835	.62	.05	.79	.63
.06	.86	.605	.06	.805	.615
.07	.88	.59	.07	.82	
.08	.905	.57	.08	.835	.60
.09	.93	.555	.09	.85	.585
.10	.95	.53	.10	.87	.57
.12		.50	.12	.07	.56
.15	1.06	.46	.15	.94	.53
.20	1.14	.38	.20		.49
.25		.31	.25	1.02	.43
.3	4	.24	.30	1.16	.35
.4		.008	.40	1.16	.285

	13A Potential volts		1	13B Potential volts	
1					
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.72	.70	0	.725	7.05
.007	.755	.68	.007	.74	.69
.008		.67	.008	.75	-
.009		.665	.009	.755	
.010	.78	.66	.010	.76	.68
.012	-	.65	.015	.77	
.015	-	.64	.020	.79	.65
.017		.63	.025	.81	
.020	.84	.62	.03	.83	.63
.025	.875	.600	.04	.86	.61
.03	.91	.585	.05	.89	.59
.04	.955	.555	.06	.92	.565
.05	1.00	.52	.07	.95	.545
.06	1.06	.49	.08	.98	.52
.07	-	.46	.09	1.02	.50
.08	_	.430	.10	1.06	.475
.09	-	.405	.12		.435
.10	-	.37	.15	1.16	.375
.15	-	.25	.20		.28
.20	_	.135	.25	_	.19
			.30	-	.10

	14A			14B	
1	Poter	ntial volts	1	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.72	.68	0	.71	.72
.005	_	.675	.005	.72	.70
.007	.74	.67	.007	_	.68
.010	No.	.67	.010	.74	.68
.015	.75	.66	.015	.75	.665
.02	.76	.645	.02	.76	.65
.03		.62	.03	.78	.625
.04	-	.60	.04		.60
.05	.81	.58	.05	.83	.57
.06	_	.55	.06		.55
.07	.87	.53	.07	.87	.52
.08	NA.	.51	.08		.50
.09	-	.49	.09		.48
.10	.93	.465	.10	.94	.455
.13	144	.42	.15		.35
.15	-	.37	.20	1.13	.25
.20	1.06	.26	.25	-	.16
			.30		.065

	Potential volts		1	128		
1				Potential volts		
amps	CATH	ANODIC	amps	CATH	ANODIC	
0	.73	.65	0	.72	.73	
.005	.73	.64	.005	.74	.705	
.010	.82	.61	.010	.75	.68	
.015	.86	.60	.015	.77	.66	
.02	.89	.575	.02	.78	.65	
.025		.555	.03	.81	.62	
.03	.95	.55	.04		.58	
.04	1.03	.51	.05	.87	.55	
.05	1.08	.47	.06		.53	
.06	1.12	.445	.07	.92	.50	
.07	1.26	.41	.08	-	.47	
.08		.38	.09		.45	
.09		.355	.10	.98	.42	
.10		.33	.12		.37	
.15		.22	.15		.30	
.17		.17	.17		.25	
.20		.10	.20	1.22	.18	
.25		.01	.25		.08	

	16A Potential volts		1	16B		
1				Potential volts		
amps	CATH	ANODIC	amps	CATH	ANODIC	
0	.97	.90	0	.98	.975	
.005	.98	.90	.005	.99	.965	
.010	.99	.89	.010	1.0	.95	
.015	1.0	.88	.015	1.02	.94	
.02	1.02	.87	.02	1.03	.93	
.03	1.05	.85	.03	1.04	.905	
.04	1.07	.83	.04	1.07	.88	
.05	1.09	.80	.05	1.08	.855	
.06	1.12	.78	.06	1.10	.83	
.07		.755	.07	-	.80	
.08		.73	.08	1.14	.78	
.09		.70	.09	-	.75	
.10	_	.675	.10	1.18	.72	
.13		.60	.12	-	.67	
.15		.56	.15	_	.61	
.18		.50	.20	-	.5	
.20		.45	.25		.41	
.25		.36	.30	-	.3	
.30		.26	.40	-	.11	
.35		.17				
.40		.09				

17A			17B			
1	I Potential volts		1	Potential volts		
amps	CATH	ANODIC	amps	CATH	ANODIC	
umps			0	.86	.85	
0	.86	.85	.005	.865	.845	
.005	.865	.84	.010	.87	_	
.010	.87	-	.015	.875	_	
.015	.875	-	.02	.88	.82	
.02	.88	.81	.03	.89	_	
.03	.89	-	.035	_	.80	
.04	.90	.78	.04	.90		
.05	.915	.75	.05	.915	.77	
.06	.93	_	.06	.93	_	
.07	.94	.72	.07	.94	.75	
.08	.95	-	.08	.95	.72	
.09	.97	_	.09	.97	.70	
.10	.98	.68	.10	.98	.685	
.12	1.02	.625	.12	1.02	.65	
.15	1.06	.565	.15	1.06	.60	
.17	_	.53	.17	_	.57	
.20	1.12	.45	.20	1.12	.52	
.25	_	.37	.25	-	.45	
.30	1.24	.28	.30	1.24	.36	
.35		.20	.35	-	.27	
.40	_	.11	.46		.19	
.45	_	.04	.45		.11	
			.50		.03	
		•••	.50			
18A		I		18B		
				Dotor	stial valte	
I		ntial volts			ntial volts	
I amps	Pote:		amps	CATH	ANODIC	
amps	CATH	ANODIC	amps 0	CATH .89	ANODIC .88	
amps 0	CATH .88	ANODIC .875	amps 0 .005	.89 .90	.88 .87	
amps 0 .005	.88 .885	.875 .865	amps 0 .005 .010	.89 .90 .905	.88 .87	
amps 0 .005 .010	.88 .885 .89	ANODIC .875	amps 0 .005 .010 .015	.89 .90 .905 .915	.88 .87 - .85	
amps 0 .005 .010 .015	.88 .885 .89	.875 .865	amps 0 .005 .010 .015	.89 .90 .905 .915 .925	.88 .87 .85 .83	
amps 0 .005 .010 .015	.88 .885 .89 .90	.875 .865	amps 0 .005 .010 .015 .02	.89 .90 .905 .915 .925	.88 .87 .85 .83 .80	
amps 0 .005 .010 .015 .02 .03	.88 .885 .89 .90 .91	.875 .865 .83	amps 0 .005 .010 .015 .02 .03 .04	.89 .90 .905 .915 .925 .95	.88 .87 - .85 .83 .80	
amps 0 .005 .010 .015 .02 .03 .04	.88 .885 .89 .90 .91 .92	.875 .865 .83 .80	amps 0 .005 .010 .015 .02 .03 .04 .05	.89 .90 .905 .915 .925 .95 .975	.88 .87 85 .83 .80 75	
amps 0 .005 .010 .015 .02 .03 .04 .05	.88 .885 .89 .90 .91 .92 .95	.875 .865 .83	amps 0 .005 .010 .015 .02 .03 .04 .05 .06	.89 .90 .905 .915 .925 .95 .975 1.00	.88 .87 85 .83 .80 75	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06	.88 .885 .89 .90 .91 .92 .95 .95	.875 .865 .83 .80 .77	amps 0 .005 .010 .015 .02 .03 .04 .05 .06	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06	.88 .87 .85 .83 .80 .75 .72	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06	.88 .885 .89 .90 .91 .92 .95 .95	.875 .865 .83 .80 .77	amps 0 .005 .010 .015 .02 .03 .04 .05 .06	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08	.88 .87 .85 .83 .80 .75 .72	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04	.875 .865 .83 .80 .77 .725	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06	.875 .865 .83 .80 .77 .725 .70	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08	.88 .87 .85 .83 .80 .75 .72 .70 .65	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04	.875 .865 .83 .80 .77 .725 .70 .67	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10	.875 .865 	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62 .57	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10	.875 .865 	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10	.875 .865 	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62 .57 .54	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10	.875 .865 	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .8785 .83 .8075 .72 .7065 .62 .57 .54 .5046	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10 — 1.16 —	.875 .865 .865 .83 .80 .77 .725 .70 .67 .65 .59 .56 .51	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62 .57 .54 .50 .60 .46	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17 .20 .25	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10	.875 .865 	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62 .57 .54 .50 .46 .43 .38	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17 .20 .25 .30	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10 — 1.16 —	.875 .865 .83 .80 .77 .725 .70 .67 .65 .59 .56 .51 .47 .41	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18 .20 .25	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .8785 .83 .8075 .72 .7065 .62 .57 .54 .5046 .43 .38 .32	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17 .20 .25 .30 .35	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10 — 1.16 —	.875 .865 .83 .80 .77 .725 .70 .67 .65 .59 .56 .51 .47 .41 .33 .25	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18 .20 .25 .30	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .8785 .83 .8075 .72 .7065 .62 .57 .54 .5046 .43 .38 .32 .23	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17 .20 .25 .30	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10 — 1.16 —	.875 .865 .83 .80 .77 .725 .70 .67 .65 .59 .56 .51 .47 .41	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18 .20 .25 .30 .35	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .8785 .83 .8075 .72 .7065 .62 .57 .54 .5046 .43 .38 .32 .23 .14	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17 .20 .25 .30 .35	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10 — 1.16 —	.875 .865 .83 .80 .77 .725 .70 .67 .65 .59 .56 .51 .47 .41 .33 .25	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18 .20 .25 .30 .35	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .87 .85 .83 .80 .75 .72 .70 .65 .62 .57 .54 .50 .60 .46 .43 .38 .32 .23 .14 .115	
amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .15 .17 .20 .25 .30 .35	.88 .885 .89 .90 .91 .92 .95 .95 .97 .985 1.04 1.06 1.10 — 1.16 —	.875 .865 .83 .80 .77 .725 .70 .67 .65 .59 .56 .51 .47 .41 .33 .25	amps 0 .005 .010 .015 .02 .03 .04 .05 .06 .07 .08 .09 .10 .12 .13 .14 .15 .16 .18 .20 .25 .30 .35	.89 .90 .905 .915 .925 .95 .975 1.00 1.04 1.06 1.08 1.1	.88 .8785 .83 .8075 .72 .7065 .62 .57 .54 .5046 .43 .38 .32 .23 .14	

		19A			19B
	Datas		1	Poter	ntial volts
1		ntial volts	amps	CATH	ANODIC
amps	CATH	ANODIC	0	.99	.995
0	.905	.905	.005	.99	.99
.005	.91	.905	.010	1.01	-
.010	.92		.015	1.02	.97
.015	.92		.02	1.02	
.02	.93	.89	.03	1.03	
.03	.94		.04	1.04	.95
.04	.95	.86	.05	1.06	
.05	.96		.06	1.07	
.06	.97		.07	1.08	
.07	.99	.83	.08	1.1	.90
.08	1.0		.09	1.11	
.09	1.03		.10	1.13	.87
.10	1.04	.79	.12		.85
.13		.76	.15	1.18	
.14		.73	.16		.80
.15	1.1		.19		.765
.20		.65	.20		.75
.25		.57	.25		.70
.30		.50	.30		.62
.35		.43	.35		.55
.40		.37	.40		.50
.45		.31	.45		.435
.50		.24	.50		.365
.55		.185	.55		.31
.60	_	.12	.60		.25
.65		.07	.65		.20
			.70		.15
		20A			20B
	D-4-		1	Potential volts	
1		ntial volts	amps	CATH	ANODIC
amps	CATH	ANODIC	0	.71	.69
0	.72	.66	.005	.72	.68
.005	.75%	.65	.010	.735	.00
.010	.81	.63	.015	.75	.65
.015	.85		.02	.76	.65
.02	.88	.59	.03	.785	03
.03	.93		.03	.81	.6
.04	.98	.53	.05	.83	.57
.05	1.06	.50	.06	.86	.37
.06	1.11		.07	.885	
.07	1.18	.45	.08	.91	.51
.08	1.22	.41	.09	.93	
.09	1.26			.955	.45
.10	1.3	.365	.10 .13	.933	.39
.12	_	.315	.13		.37
.14	_	.27	.14	1.08	
.15	1.43	.24	.16	1.08	.32
.17	_	.20	.18		
.18		.17	.20		.28
.20	_	.13	.25		.24
.25	_	.03	.30		.15 .04
			.50		.04

	rote	iitiai voits	amps	CAIH	ANODIC	
amps	CATH	ANODIC	0	.72	.72	
0	.71	.695	.005	.73	.72	
.005	.715	.685	.010	.73	_	
.010	.713		.015	.74	-	
		-	.02	.75	.685	
.015	.73	-	.03	.76	_	
.02	.74	.65	.04	.77	.65	
.03	.75		.05	.785	_	
.04	.77	_	.06	.80		
.05	.78	.6	.07	.81	.60	
.06	.80	.57	.08	.825	_	
.07	.82	.55	.09	.84		
.08	.835		.10	.85	.55	
.09	.85	_	.13	-	.49	
.10	.87	.50	.15	.91	.45	
.11	-	.47	.18	_	.40	
.13	-	.435	.20	.98	.37	
.15	.95	.395	.25	1.06	.30	
.17	-	.35	.27	_	.25	
.19	-	.32	.30	_	.205	
.20	1.04	.29	.33		.15	
.25	-	.21	.35		.12	
.30	-	.11	.40		.04	
.35	-	.03	.40		.04	
		22A			22B	
1	Poter	ntial volts	I			
amps		ANODIC	amps		ANODIC	
0	.73	.72	0	.735	.73	
.005	.73	.71	.005	.74	.72	
.010	.74	-	.010	.745	-	
.015	.74	- · · ·	.015	.75	-	
.02	.75	.68	.02	.755	.70	
.03	.755	-	.03	.76	_	
.04	.76	-	.04	.77	.675	
.05	.77	.65	.05	.78	-	
.06	.78	-	.66	.79	.65	
.07	.79	-	.07	.795	-	
.08	.80	.61	.08	.805	.62	
.09	.81	-	.09	.815		
.10	.82	.58	.10	.825	.59	
.14	-	.52	.13	_	-	
.15	.86	_	.15	.875		
.16	-	.5	.16	_	.50	
.18	-	.47	.18	_	.45	
.20	.90	.44	.20	.91	_	
.25	.935	.375	.25	.94	.38	
.30	-	.30	.30	_	.315	
.35	_	.23	.35	1.04	.245	
.40	_	.165	.40	-	.18	1
.45	_	.10	.45	1.13	.11	
.50	_	.03	.50	-	.04	
			.50		.04	

21A

Potential volts

21B

Potential volts

CATH ANODIC

1

amps

1	Potential volts		1	Potential volts	
amps	CATH		amps	CATH	
0	.665	.645	0	.68	.67
.005	.68	.62	.005	.695	.655
.010	.72		.010.	.71	
.013	.77	.57	.015	.725	.62
.014	.77		.020	.74	
.015	.785		.025		.59
.02	.82	.55	.03	.775	1000
.03	.88	.51	.040	.81	.55
.04	.93	.46	.05	.845	10/0/
.05	.98		.06	.875	.49
.06	1.05	.40	.07	.91	.49
.07	1.10	.36	.08	.95	.43
.08	1.15		.09	.97	.43
.09	1.19	.31	.10	1.02	.38
.10	1.22	.28	.12		
.12		.23	.14		.32
.13		.20	.15	1.16	.27
.15	1.34	.15		1.16	-
.17		.11	.16		.22
.18		.08	.18	1.10	.17
.20		.03	.20	1.30	.12
		.0.5	.25		.02
		24B		25A	
1	Poten	tial volts	l	Potential volts	
amps	CATH	ANODIC	amps	CATH	ANODIC
0	.705	.68	0	.58	.57
.005	.715	.675	.005	.59	.82
.010	.725		.006	.593	.82
.015	.735	.65	.007	.599	.83
.02	.745		.0075	.606	.00
.03	.77	.61	.008	.609	.84
.035	.785		.009	.612	.855
.04	.8	.58	.010	.615	.87
.05	.83		.011	.010	.88
.06	.855	.52	.012	.620	.89
.07	.885		.013	.0.20	.90
.08	.91	.45	.014	.622	.91
.09	.935		.015	.0.22	
.10	.965	.41	.016	.628	.92
.12	.505	.365	.017	.028	.93
.14		.32	.018	631	.945
.15	1.12	.32	.019	.631	.955
.17	1.12	.25		630	.97
.18			.020	.639	.99
.18	1.33	.22	.030	.658	
.25	1.22	.17	.040	.670	
		.12	.050	.689	
.30		.05	.060	.708	
			.080	.763	

23B

23A

TAFEL EXTRAPOLATIONS

APPENDIX B: CATHODIC PROTECTION INDICES

Pile No.	1975	1976	1977	1978
1A	0.0487	0.333	2.78	4.6
В	0.058	0.327	0.058	5.86
С	Aux	Aux	0.89	Aux
4A	0.0472	0.34	0.87	2.52
В	0.0667	0.34	0.058	4.69
C		0.321	Aux	6.25
7A	7.65	14.29	11.00	10.38
В	6.21	4.52	6.11	
C	0.19	0.449	1.47	
8A	7.19	14.29	7.50	
В	7.20	2.75	1.96	7.65
C	0.18	0.435	1.62	4.44
9A	6.13	14.29	7.69	6.88
В	7.50	6.38	1.69	7.13
C	0.18	0.459	1.75	5.0
10A	6.0	12.09	3.85	8.92
В	16.16	6.1	3.57	6.5
C	0.19	0.438	1.58	4.38
11A	5.33	12.5	7.50	10.0
В	8.70	4.21	1.85	6.43
C	0.16	0.44	1.57	5.0
12A		2.73	1.82	5.2
В	•	1.25	0.213	5.2
C	0.16	0.409	1.48	4.8
13A	5.68	14.29	4.14	7.37
В	15.15	2.65	1.20	6.08
C	0.15	0.458	1.55	4.7
14A	7.65	20.0	2.08	5.56
В	15.18	3.25	0.773	6.0
C	0.17	0.455	1.52	4.79
15A	7.22	11.04	17.86	20.0
В	13.71	2.73	1.53	6.52
C	0.71	0.44	1.49	4.64
16A			2.34	
В			0.556	
C	0.16		1.18	4.5
17A		0.669	1.65	
В	0.16	0.107	0.30	
C	0.15	0.397	1.47	3.04
18A B	1.61	, , ,	1.92	
C	0.16	1.11	1.19	135
19A	0.16	0.484	1.47	4.35
B			1.79	
C			0.375	
			1.43	5.88

^{*}Initial Potential Reading \leq -0.85V (Potential not shifted 150mV more negative)

Pile No.	1975	1976	1977	1978
20A	6.36	4.64	9.33	5.2
В	7.39	2.91	2.0	4.17
C	0.23	0.542	1.6	2.89
21A	1.47	2.05	2.06	3.57
В	6.25	2.65	0.619	3.41
C	0.28	0.545	1.52	3.16
22A	_	0.378	1.40	3.19
В		0.375	0.076	2.95
C	Rows 22-	24		
	Aux	Aux	1.49	Aux
23A	11.03	31.11	11.50	Connection
				Broken
В	4.22	8.26	3.13	
C	0.26	0.845	1.88	3.5
24A	22.50	50.0	Handles	Connection
			Broken	Broken
В	4.29	4.77	2.50	Connection
				Broken
C	0.48	1.06	1.50	2.22
25A	_	-	_	
В	-		-	

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

TIME OF EXPOSURE, MONTHS

CERL DISTRIBUTION

```
Director of Facilities Engineering
APO NY 09827
                                                                                                                                                      US Army Engineer District
                                                                                                                                                                ATTN: Library
                                                                                                                                                          Albuquerque
ATTN: Library
San Francisco
 DARCOM STIT-EUR
 APO New York 09710
 West Point, NY 10996
ATTN: Dept of Mechanics
ATTN: Library
                                                                                                                                                               ATTN: Chief, Engr Div
                                                                                                                                                           Sacramento
ATIN: Chief, SPKED-D
                                                                                                                                                          Japan
ATTN: Library
ATIN: DAEN-ASI-L (2)
ATIN: DAEN-CCP/D. Hollis
ATIN: DAEN-CWE-E/J. Robertson
ATIN: DAEN-MPO-U
ATIN: DAEN-MPZ-A
ATIN: DAEN-MPR
                                                                                                                                                          Portland
ATTN: Chief, DB-6
                                                                                                                                                          ATTN: Chief, NPSCO
Walla Walla
ATTN: Library
ATTN: Chief, Engr Div
ATTN: DAEN-MPR
ATTN: DAEN-RDL
                                                                                                                                                           Alaska
National Defense Headquarters
Director General of Construction
Ottawa, Ontario K1AOKZ
                                                                                                                                                               ATTN: Library
ATTN: NPASA-R
                                                                                                                                                      US Army Engineer Division
                                                                                                                                                          Europe
ATTN: Technical Library
Airports and Const. Services Dir.
Technical Information Reference Centre
KAOL, Transport Canada Building
Place de Ville, Ottawa, Ontario
Canada, KIAON8
                                                                                                                                                          Alin: Technical Libra
New England
Affn: Library
Affn: Chief, NEDED-T
North Atlantic
                                                                                                                                                         North Atlantic
ATTN: Chief, NADEN-T
South Atlantic
ATTN: Chief, SADEN-TS
ATTN: Library
Huntsville
ATTN: Library (2)
ATTN: Chief, HNDED-CS
ATTN: Chief, HNDED-SR
Lower Mississippi Valley
ATTN: Library
Ohio River
                                                                                                            SICHIFICANI MUBER
Ft Belvoir, VA 22060
ATTN: Kingman Bldg., Library
ATTN: FESA
ATTN: MAJ Shurb
                                                                                                                        COPY
Ft Monroe, VA 23651
ATTN: ATEN-AD (2)
Ft McPherson, GA 30330
ATTN: AFEN-FED
                                                                                                                                                         ATTN: Library
Ohio River
ATTN: Library
ATTN: Chief, Engr Div
North Central
ATTN: Library
Missouri River
ATTN: Library (2)
Southwestern
 USA-WES
                                                                                                                      0
ATTN: Concrete Laboratory
ATTN: Library
                                                                                                             2
                                                                                                                      TO
6th USA
ATTN: AFKC-EN
                                                                                                                 DDC CONTAINED A
                                                                                                         PAGES WHICH DO NOT
                                                                                                                                                          Southwestern
ATTN: Library
ATTN: Chief, SWDED-TM
US Army Science & Technology Center
Far East Office
                                                                                                                                                          Pacific Ocean
ATTN: Chief, Engr Div
Each District and Division
ATTN: Electrical/Mechanical Br (2)
                                                                                                                                                          North Pacific
ATTN: Chief, Engr Div
US Army Engineer District
Buffalo
ATTN: Library
                                                                                                                                                    Facilities Engineers
FORSCOM
                                                                                                                                                        Ft Campbell, KY 42223
Ft Riley, KS 66442
Ft Polk, LA 71459
Ft Ord, CA 93941
TRADOC
    ATTN: Library
Pittsburgh
ATTN: Library
Philadelphia
ATTN: Library
ATTN: Library
ATTN: Chief, NAPEN-D
                                                                                                                                                            Ft Knox, KY 40121
Ft Sill, OK 73503
Ft Bliss, TX 79916
    ATTN: Chief, Engr Div
Norfolk
ATTN: Chief, NAOEN-D
                                                                                                                                                       USAECOM
Ft Monmouth, NJ 07703
DFAE, USAIC
Ft Benning, GA 39105
    Wilmington
ATTN: Chief, SAWEN-D
   ATTN: Chief, SAMEN-D
Charleston
ATTN: Chief, Engr Div
Savannah
ATTN: Library
ATTN: Chief, SASAS-L
Jacksonville
ATTN: Library
ATTN: Const. Div
Mobile
                                                                                                                                                     AFESC/PRT
Tyndall AFB, FL 32403
                                                                                                                                                     Naval Air Systems Command
                                                                                                                                                     ATTN: Library
WASH DC 20360
    Mobile
ATTN: Chief, SAMEN-C
ATTN: Chief, SAMEN-D
                                                                                                                                                     Naval Facilities Engr Command
                                                                                                                                                     ATTN: Code 04
Alexandria, VA 22332
   ATTN: Library
Memphis
ATTN: Chief, LMMED-DM
                                                                                                                                                     Port Hueneme, CA 93043
ATTN: Library (Code LOSA)
   ATTN: Chief, LMMED-DM
Vicksburg
ATTN: Chief, Engr Div
Louisville
ATTN: Chief, Engr Div
St Paul
ATTN: Chief, ED-D
St Louis
ATTN: Library
Kansas City
ATTN: Library (2)
Omaha
                                                                                                                                                   Washington, DC
ATTN: Transportation Research Board
ATTN: Library of Congress (2)
ATTN: Dept of Transportation Library
ATTN: Government Printing Office (2)
ATTN: National Bureau of Standards
Edward Escalante
                                                                                                                                                     Defense Technical Information Center (12)
   Omaha
                                                                                                                                                    Engineering Societies Library
New York, NY 10017
   Omana
ATTN: Chief, Engr Div
New Orleans
ATTN: Library
ATTN: Chief, LMNED-DG
Little Rock
ATTN: Chief, Engr Div
                                                                                                                                                     Coastal Engineering Research Center
```

Kearney, Frank W
Corrosion of steel pilings in seawater , Buzzards Bay , 1975 - 1978. -Champaign, IL: Construction Engineering Research Laboratory; Springfield ,
VA: available from NTIS , 1979.
152 p.; 27 cm. (Interim report; M-275)

Seawater corrosion. 2. Buzzards Bay, MA. 3. Steel piling -- corrosion.
 Title. II. Series: U.S. Army Construction Engineering Research Laboratory.
 Interim report; M-275.