Python

N. Kaelin, S. Walker

8. April 2019

Inhaltsverzeichnis

1	Date	entypen	4
	1.1	Numerische Datentypen	4
		1.1.1 Arithmetische Operationen	5
		1	5
		•	5
			5
	1.2	••	6
	1.3	1 71	6
	1.4		7
2	Verz	zweigungen	8
			8
	۷.1		8
		0	8
3	Sch	leifen	8
	3.1	while	8
		3.1.1 continue	9
		3.1.2 break	9
		3.1.3 else-Teil	9
	3.2	for	9
4	Fun	ktionen	9
	4.1	Funktionsdefinition	9
	4.2	Aufruf	0
	4.3	Weiteres	0
		4.3.1 Standardwert für Parameter	0
		4.3.2 Mehrere Rückgabewerte	0
		4.3.3 Variable Anzahl von Argumenten	0
		4.3.4 Argumente entpacken	1
		4.3.5 Beliebige Schlüsselwort-Parameter	1
		4.3.6 Schlüsselwortparameter entpacken	1
		4.3.7 Globale Variablen	1
		4.3.8 Docstring - Funktion dokumentieren	1
		4.3.9 Call-by-object-reference	2
5	Exce	eptions 1	3
	5.1	Unspezifische Exceptions abfangen	
	5.2	Master Beispiel	

Python	(V1
I Y CITOIT	(V I

Seite 2 von 48

6	Date	Dateien 14		
	6.1	Datei d	öffnen	14
	6.2	Dateie	en lesen und schreiben	14
		6.2.1	with-Anweisung	14
		6.2.2		15
		6.2.3	os.path	15
_	CLuin			15
7				15 15
	7.1		o	15 15
		7.1.1 7.1.2	` 1 '	16
		7.1.2	**	16
		7.1.3 7.1.4	O .	16
	7.2			16
	1.2	7.2.1	0 1	16
		7.2.1	o	17
		7.2.2	O	17
		7.2.3	O Company of the comp	17
		7.2.4	O Company of the comp	17
		7.2.5	0 0	18
		7.2.7		18
		1.4.1	Strings testeri	10
8	Liste	en-Abs	traktion/List-Comprehension	19
				19
		8.1.1		19
		8.1.2		19
	8.2	Besteh		19
	8.3			20
	8.4		e	20
	8.5			20
		8.5.1	Produkte zweier Zahlen	20
9				21
				21
	9.2			22
		9.2.1	1	22
		9.2.2	send()-Methode, Generator als Coroutine	22
10	Lista	en und	Tupel im Detail	23
10			-	23
				24
	10.2			24
			0	24
				24
				24
	10.3			25
				25
				25
			1	26
11			1'	26
				26
		-		26
				27
	11.4	reduce	2	27
12	Zoic	hon-Kl	accon	28

13	Wiederholungen (Quantoren)	28
14	Übereinstimmungen14.1 match-Objekt	29 29 29
15	Modifizierungen	30
16	Gruppierung 16.1 Weitere Metazeichen	31 33 33
17	Klassen 17.1 Einfache Klasse definieren 17.2 Klasse instanzieren 17.3 Klassen- und Instanz-Variablen 17.4 Methoden 17.4.1init()-Methode 17.4.2del()-Methode 17.4.3 Methoden aufrufen 17.4.4 Statische Methoden 17.4.5 Klassen-Methoden 17.5 Datenabstraktion 17.5.1 Public 17.5.2 Protected 17.5.3 Private 17.5.4 Setter- und Getter-Methoden 17.6 Magische Methoden 17.6.1 Grundmethoden 17.6.2 Numerische Datentypen emulieren 17.7 Klassen testen 17.8 Eigenes Modul importieren 17.8.1 Aus dem gleichen Verzeichnis 17.8.2 Aus einem andere Verzeichnis	35 35 35 35 36 37 37 38 38 39 39 40 41 41 41 42 43 43 43
18	Vererbung18.1 Beispiel	44 45 45
19	Mehrfachvererbung 19.0.1 MRO	46 47

Python (V1) Seite 4 von 48

Lektion 1: Variablen und Datentypen

1 Datentypen

- Variablen bezeichnen keinen bestimmten Typ.
- Dynamische Typdeklaration
 - Automatische Zuweisung des Datentyps bei Deklaration
 - Datentyp ist während dem Programmablauf veränderbar
 - Wert- und Typänderung erlaubt!

Tabelle 1: Datentypen

Datentyp	Beschreibung	False-Wert
NoneType	Indikator für nichts, keinen Wert	None
Numerische Datentypen		
int	Ganze Zahlen	0
float	Gleitkommazahlen	0.0
bool	Boolesche Werte	False
complex	Komplexe Zahlen	0 + 0j
Sequenzielle Datentypen		
str	Zeichenketten oder Strings	,,
list	Listen (veränderlich)	[]
tuple	Tupel (unveränderlich)	0
bytes	Sequenz von Bytes (unveränderlich)	b"
bytearray	Sequenz von Bytes (veränderlich)	bytearray(b")
Assoziative Datentypen		
dict	Dictionary (Schlüssel-Wert-Paare)	{}
Mengen		
set	Menge mit einmalig vorkommenden Objekten	set()
frozenset	Wie set jedoch unveränderlich	frozenset()

- Python erkennt den Datentyp automatisch
- Python ordnet jeder Variablen den Datentyp zu
- Datentypen prüfen:

type(object)

isinstance(object, ct)

- Python achtet auf Typverletzungen
- Python kennt keine implizite Typumwandlung

1.1 Numerische Datentypen Kap. 4

- bool
- int
- float
- complex

Python (V1) Seite 5 von 48

1.1.1 Arithmetische Operationen

Tabelle 2: Arithmetische Operationen

Operator	Beschreibung
x + y	Summe von x und y
х - у	Differenz von x und y
х * у	Produkt von x und y
х / у	Quotient von x und y
x // y	Ganzzahliger Quotient 1 von $\mathbf x$ und $\mathbf y$
х % у	Rest der Division ¹ von x durch y
+x	Positives Vorzeichen
-x	Negatives Vorzeichen
abs(x)	Betrag von x
x**y	Potenzieren, x ^y

¹Nicht definiert für den Datentyp complex

Achtung: x++ und x-- gibt es nicht, aber x += 1, x -= 1, x *= 2, ...

1.1.2 Vergleichende Operatoren

Tabelle 3: Vergleichende Operatoren

Operator	Beschreibung
==	wahr, wenn x und y gleich sind
!=	wahr, wenn x und y verschieden sind
<	wahr, wenn x kleiner als y ist ²
<=	wahr, wenn x kleiner oder gleich y ist ²
>	wahr, wenn x grösser als y ist ²
>=	wahr, wenn x grösser oder gleich y ist ²

²Nicht definiert für den Datentyp complex

1.1.3 Bitweise Operatoren für den Datentypen int

Tabelle 4: Bitweise Operatoren

Operator	Beschreibung
х & у	bitweises UND von x und y
x y	bitweises ODER von x und y
х ^у	bitweises EXOR von x und y
~x	bitweises Komplement von x
x « n	Bit-Verschiebung um n Stellen nach links
x » n	Bit-Verschiebung um n Stellen nach rechts

1.1.4 Methoden nur dür den Datentyp complex

Tabelle 5: Methoden für complex

Methode	Beschreibung
x.real	Realteil von x als Gleitkommazahl
x.imag	Imaginärteil von x als Gleitkommazahl
x.conjugate()	Liefert die zu x konjugiert komplexe Zahl

Python (V1) Seite 6 von 48

1.2 Sequentielle Datentypen Kap. 5

- str
- list
- tuple
- bytes
- bytearray

Tabelle 6: Methoden für sequenzielle Datentypen

Operator	Beschreibung
x in s	Prüft, ob x in s enthalten ist.
x not in s	Prüft, ob x nicht in s enthalten ist.
s + t	Verkettung der beiden Sequenzen s und t.
s * n	Verkettung von n Kopien der Sequenz s.
s[i]	Liefert das i-te Element von s.
s[i:j]	Liefert den Ausschnitt aus s von i bis j.
s[i:j:k]	Liefert jedes k-te Element im Ausschnitt von s zwischen i und j.
len(s)	Liefert die Anzahl Elemente in der Sequenz s.
max(s)	Liefert das grösste Element in s (sofern eine Ordnung definiert ist).
min(s)	Liefert das kleinste Element in s (sofern eine Ordnung definiert ist).
s.index(x)	Liefert den Index des ersten Vorkommens von x in s.
s.count(x)	Zählt, wie oft x in s vorkommt.

1.3 Assoziative Datentypen Kap. 6

• dict

Tabelle 7: Methoden für Assoziative Datentypen

Operator	Beschreibung
len(d)	Liefert die Anzahl Schlüssel-Wert-Paare in d
d[k]	Zugriff auf den Wert mit dem Schlüssel k
k in d	Liefert True, wenn der Schlüssel k in d ist.
k not in d	Liefert True, wenn der Schlüssel k nicht in d ist.
d.clear()	Löscht alle Elemente aus dem Dictionary.
d.copy()	Erstellt eine Kopie des Dictionaries.
d.get([k,[x]])	Gibt den Wert des Schlüssels k zurück, ansonsten den Wert [x].
d.items()	Gibt eine Liste der Schlüssel-Wert-Paare als Tuple zurück.
d.keys()	Gibt eine Liste aller Schlüsselwerte zurück.
d.update(d2)	Fügt ein Dictionary d2 zu d hinzu.
d.pop(k)	Entfernt das Element mit Schlüssel k.
d.popitem()	Entfernt das zuletzt eingefügte Schlüssel-Wert-Paar.
<pre>d.setdefault(k,[x])</pre>	Setzt den Wert [x] für den Schlüssel k.

Python (V1) Seite 7 von 48

1.4 Mengen Kap. 7

- set
- frozenset

Ein set enthält eine ungeordnete Sammlung von einmaligen und unveränderlichen Elementen. In anderen Worten: Ein Element kann in einem set-Objekt nicht mehrmals vorkommen, was bei Listen und Tupel jedoch möglich ist.

Tabelle 8: Methoden für Mengen

Operator	Beschreibung
s.add(el)	Fügt ein neues unveränderliches Element (el) ein
s.clear()	Löscht alle Elemente einer Menge.
s.copy()	Erstellt eine Kopie der Menge.
s.difference(y)	Die Menge s wird von y subtrahiert und in einer neuen Menge gespeichert.
s.difference_update(y)	Gleich wie s.difference(y) nur wird hier das Ergebnis direkt in s gespeichert.
s.discard(el)	Das Element el wird aus der Menge s entfernt.
s.remove(el)	Gleich wie s.discard(el) nur gibt es hier einen Fehler falls el nicht in s.
s.intersection(y)	Liefert die Schnittmenge s und y.
s.isdisjoint(y)	Liefert True falls Schnittmenge von s und y leer ist.
s.pop()	Liefert ein beliebiges Element welches zugleich aus der Menge entfernt wird

Python (V1) Seite 8 von 48

Lektion 2: Verzweigungen, Schleifen und Funktionen

2 Verzweigungen Kap. 9

2.1 if

listings/v2_if1.py

```
if Bedingung:
    Anweisung1 # Anweisungen 1 & 2 nur ausfuehren, wenn die Bedingung wahr ist
    Anweisung2
```

Achtung: Alle Anweisungen im gleichen Codeblock müssen gleich eingerückt sein, z.B. mit vier Leerzeichen, sonst wird ein Fehler ausgegeben.<

2.1.1 if-Anweisung mit else-Zweig

listings/v2_if2.py

```
if Bedingung:
    Anweisung1 # Anweisung 1 & 2, falls Bedingung wahr
    Anweisung2
else:
    Anweisung3 # Anweisung 3 & 4, falls Bedingung unwahr
    Anweisung4
```

Für jeden Datentyp gibt es einen Wert, der als unwahr gilt. Siehe Tabelle 1 auf der Seite 4.

2.1.2 elif-Zweige

listings/v2_if3.py

```
if Bedingung1:
    Anweisung1
elif Bedingung2:
    Anweisung2
elif Bedingung3:
    Anweisung3
else:
    Anweisung4
```

elif = else if

Achtung: Python kennt keine switch-case-Anweisung.

3 Schleifen Kap, 10

3.1 while

listings/v2_while1.py

```
while Bedingung:
Anweisung1 # Anweisung1 wird wiederholt, solange die Bedingung wahr ist
```

Achtung: Python kennt keine do-while-Schleife.

Python (V1) Seite 9 von 48

3.1.1 continue

3.1.2 break

listings/v2_while2.py

```
listings/v2_while3.py
while Bedingung:
   Anweisung1
   if Fehler:
        break # bricht die Schleife vorzeitig ab
```

```
while Bedingung:
Anweisung1
if Ausnahme:
    continue # beendet den aktuellen
    Durchlauf und springt nach oben.
Anweisung2
```

3.1.3 else-Teil

listings/v2_while4.py

```
while Bedingung:
    Anweisung1
    if Fehler:
        break
else:
    Anweisung2
```

else-Teil: wenn die Schleife nicht durch break abgebrochen wurde

3.2 for

listings/v2_for1.py

```
for Variable in Sequenz:
Anweisung1
```

- dient zur Iteration einer Sequenz
- Sequenz muss ein iterierbares Objekt sein:
 list, tuple, dict, str, bytes, bytearray, set, frozenset
- Die for-Schleife kennt auch continue und break somit gibt es auch einen else teil analog zur while-schleife.

4 Funktionen Kap. 14

Python besitzt eine grosse Standard-Bibliothek, z.B.:

listings/v2_func1.py

```
import time # time.time(), time.sleep()
import math # math.pi, math,cos(), math.log10()
import zipfile # ZIP-Dateien manipulieren
import socket # UDP-/TCP-Kommunikation
```

https://docs.python.org/3/library/

und eingebaute Datentypen:

https://docs.python.org/3/library/stdtypes.html

und eingebaute Funktionen:

https://docs.python.org/3/library/functions.html

4.1 Funktionsdefinition

einfache Funktionsdefinition:

listings/v2_func2.py

```
def Funktionsname(Parameterliste):
    Anweisungen
```

Python (V1) Seite 10 von 48

Beispiel:

listings/v2_func3.py

```
def begruessung(vorname, nachname):
    print('Hallo', vorname, nachname)
```

- Der Funktionsname kann frei gewählt werden
- Parameternamen durch Kommas trennen
- Codeblock gleichmässig einrücken
- Der Rückgabewert der Funktion ist None, falls nichts angegeben wird.
- return-Anweisung beendet den Funktionsaufruf
- es sind mehrere return-Anweisungen sind erlaubt, wie in C/C++

listings/v2_func5.py

```
def summe(a, b):
    return a + b # return beendet die Funktion mit Rueckgabewert a+b
```

4.2 Aufruf

listings/v2_func6.py

```
resultat1 = summe(2, 3)
resultat2 = summe(a=10, b=2)  # Schluesselwortparameter
resultat3 = summe(b=2, a=10)  # Reihenfolge ist egal
resultat4 = summe(20, b=4)  # zuerst die namelosen
```

4.3 Weiteres

4.3.1 Standardwert für Parameter

listings/v2_func7.py

```
def rosen(farbe='rot'):
    print('Rosen_sind_' + farbe + '.')

rosen()  # Ausgabe: 'Rosen sind rot.'
rosen('gelb')  # Ausgabe: 'Rosen sind gelb.'
```

4.3.2 Mehrere Rückgabewerte

listings/v2_func8.py

```
def summe_und_differenz(a, b):
    return (a + b, a - b)  # Tupel

summe, differenz = summe_und_differenz(5, 3)  # Tupel entpacken
```

4.3.3 Variable Anzahl von Argumenten

listings/v2_func9.py

```
def mittelwert(a, *args): # a ist zwingend
    print('a=', 1)
    print('args=', args) # die restlichen Argumente sind im Tupel args
    a += sum(args)
    return a/len(args) + 1

mittelwert(2, 3, 7)
```

Python (V1) Seite 11 von 48

4.3.4 Argumente entpacken

listings/v2_func10.py

```
def distanz(x, y, z):
    print('x=', x)
    print('y=', y)
    print('z=', z)
    return (x**2 + y**2 + z**2)**0.5

position = (2, 3, 6)
distanz(*position) # Tupel entpacken
```

4.3.5 Beliebige Schlüsselwort-Parameter

listings/v2_func11.py

```
def einfache_funktion(x, **kwargs):
    print('x_=', x)
    print('kwargs_=', kwargs) # die restlichen Argumente sind im Dictionary kwargs
einfache_funktion(x='Hallo', farbe='rot', durchmesser=10)
```

4.3.6 Schlüsselwortparameter entpacken

listings/v2_func12.py

```
punkt = {'x':1, 'y':2, 'z':2}
distanz(**punkt) # Dictionary entpacken
```

4.3.7 Globale Variablen

listings/v2_func13.py

```
modul = 'Python'
                    # globale Variable
def anmeldung():
                    # Variable existiert bereits ausserhalb der Funktion
    print(modul)
anmeldung() # Ausgabe: Python
def wechseln():
   modul = 'C++'
                  # erstellt eine neue lokale Variable
    print('lokal:', modul)
wechseln() # Ausgabe: lokal: C++
print('global:', modul) # Ausgabe: global: Python
def wirklich_wechseln():
                   #referenzieren auf die globale Variable
    global modul
   modul = 'C++'
   print('lokal:', modul)
wirklich_wechseln() # Ausgabe: lokal: C++
print('global:', modul) # Ausgabe: global: C++
```

4.3.8 Docstring - Funktion dokumentieren

PEP 257 - Docstring Conventions https://www.python.org/dev/peps/pep-0257

listings/v2_func14.py

```
def meine_funktion(a, b):
    '''Gibt die Argumente a und b in umgekehrter Reihenfolge als Tupel zurueck.'''
    return(b, a)
```

Python (V1) Seite 12 von 48

```
meine_funktion.__doc__ # Ausgabe: 'Gibt die Arguemnte ...'
help(meine_funktion)
```

4.3.9 Call-by-object-reference

mit veränderlichen Objekten:

listings/v2_func15.py

mit unveränderlichen Objekten:

listings/v2_func16.py

```
x = (1, 2, 3)
y = (7, 8, 9)

def foo(a, b):
    # a.append(4)  # Objekt veraendern ist nicht erlaubt
    b = (10, 11, 12)  #lokale Variable b referenziert neues Objekt

foo(x, y)
print('x_=', x)
print('y_=', y)
```

Python (V1) Seite 13 von 48

Lektion 3: Exceptions, Dateien und Strings

5 Exceptions Kap. 20

• Fehler (https://docs.python.org/3/tutorial/errors.html) können auftreten, z.B.:

listings/v3_exception1.py

```
int('bla') => ValueError
5/0 => ZeroDivisionError
a[1000] => IndexError
10 + 'Fr.' => TypeError
```

und führen zu einem Abbruch des Programms

Fehler können abgefangen werden:

listings/v3_exception2.py

```
try:
    x = int(input('Zahl_eingeben:_'))
except:
    print('Falsche_Eingabe!')
```

5.1 Unspezifische Exceptions abfangen

Nicht empfohlen, da auch Exceptions geschluckt werden, die weitergegeben werden sollten, z.B. KeyboardInterrupt.

listings/v3_exception3.py

```
eingabe = '10_Fr.'
try:
    x = int(eingabe)
except:
    print('0ops!_Irgendein_Fehler_ist_aufgetreten.')
```

5.2 Master Beispiel

listings/v3_exception9.py

```
eingabe = 5
try:
  if type(eingabe) is list:
      raise SyntaxError
  x = int(eingabe)
  y = 1/x
   if x > 100:
      raise ValueError('Wert_ist_zu_Gross!') #es wird ein Fehler generiert
   f = open('dat.txt')
except (ValueError, IOError) as e: # Mehrere Exception gleich behandeln
   # die Variable e enthaelt die Fehlermeldung
   print('Err:\( ' + str(e)))
except ZeroDivisionError:
   print('Eingabe_darf_nicht_0_sein!')
else: # Wird ausgefuert wenn kein Fehler auftrat
   print('Alles_Okey')
   f.close()
finally: # Wird immer ausgefuehrt auch wenn das Programm unterbrochen wird
    print('Auf_wiedersehen')
print('Prog._laeuft_noch')
```

Python (V1) Seite 14 von 48

Eingabe	File	Ausgaben
5	existiert	Alles Okey Auf wiedersehen Prog. laeuft noch
0	existiert	Eingabe darf nicht 0 sein! Auf wiedersehen Prog. laeuft noch
200	existiert	Error: Wert ist zu Gross! Auf wiedersehen Prog. laeuft noch
′10′	existiert	Err: invalid literal for int() with base 10: '10' Auf wiedersehen Prog. laeuft noch
[5, 1]	existiert	Auf wiedersehen Lange Fehlermeldung
5	exist. nicht	Err: [Errno 2] No such file or directory: 'dat.txt' Auf wiedersehen Prog. laeuft noch

^{&#}x27;Auf wiedersehen' wird immer ausgegeben, 'Prog. laeuft noch' wird dann ausgegeben wenn kein Fehler auftrat oder dieser abgefangen wurde.

6 Dateien Kap. 11

6.1 Datei öffnen

• Datei mit der open()-Funktion öffnen:

listings/v3_datei1.py

```
f = open('dokument.txt')  # lesen
f = open('dokument.txt', 'r')  # lesen
f = open('dokument.txt', 'w')  # schreiben
f = open('dokument.txt', 'a')  # anhaengen
f = open('dokument.txt', 'rb')  # binaer
f = open('dokument.txt', 'wb')  # binaer
```

• Weitere Parameter findet man in der Hilfe (https://docs.python.org/3/library/functions.html#open):

listings/v3_datei2.py

```
open(file, mode='r', buffering=, encoding=None,
    errors=None, newline=None, closefd=True,
    opener=None)
```

6.2 Dateien lesen und schreiben

listings/v3_datei0.py

```
fr = open('dokument.txt', 'r')  # Datei zum lesen oeffnen
fw = open('dokument.txt', 'w')  # Datei zum schreiben oeffnen

inhalt = fr.read()  # gesamte Datei lesen
inhalt = fr.read(n)  # n Zeichen lesen
zeilen = fr.readlines()  # Liste aller Zeilen

fw.write('hello')  # String schreiben
fw.writelines(['1', '2'])  # Liste von Strings

fr.close()  # Dateien schliessen
fw.close()
```

6.2.1 with-Anweisung

Dateien sollten besser mit einer with-Anweisung geöffnet werden, dadurch wird sie am ende des Blocks automatisch geschlossen. Beispiel:

listings/v3_datei7.py

```
with open('mailaenderli.txt') as f:
    text = f.read()
print(text)
```

Python (V1) Seite 15 von 48

6.2.2 glob

listings/v3_datei10.py

```
import glob
# Gibt eine liste mit allen Dateinamen welche mit '.py' enden
print(glob.glob('*.py'))
```

6.2.3 os.path

listings/v3_datei11.py

```
import os
full_path = os.path.abspath('mailaenderli.txt')
print(full_path) # Ausgabe: kompletter Pfad der datei

# Gibt 'true' zurueck wenn full_path eine Datei ist
os.path.isfile(full_path)

# Gibt 'true' zurueck wenn full_path eine Ordner ist
os.path.isdir(full_path)

# Groesse der Datei/Ordner
os.path.getsize(full_path)

# Teilt den Pfad in einen Tupel (Pfad, Dateiname)
os.path.split(full_path)

# Teilt den Pfad in einen Tupel (Pfad, Dateiname, Endung)
os.path.splitext(full_path)

# Macht einen gueltigen Pfad (System abhaengig)
os.path.join('ordner', 'datei.txt')
```

7 Strings

7.1 Stringformatierung Kap. 12

Stringformatierung benötigt man um Daten hübsch auszugeben oder systematisch abzuspeichern.

listings/v3_strings1.py

Menge, Name, Wert 3,R1,1500 7,R2,100 2,R3,22000 5,R4,47000

listings/v3_strings2.py

7.1.1 im C-Stil (à la printf)

listings/v3_strings3.py

```
spannung = 12.56
strom = 0.5
N = 10
print('N_=_%d,_U_=_%f,_I_=_%.3f' % (N, spannung, strom))
# Ausgabe: N = 10, U = 12.560000, I = 0.500
print('U_=_%g' % spannung) # generelles Format
# Ausgabe: U = 12.56
print('X_=_0x%04X,_Y_=_0x%04X' % (7, 15)) # hex
# Ausgabe: X = 0x0007, Y = 0x000F
```

Python (V1) Seite 16 von 48

7.1.2 mit format()

listings/v3_strings23.py

```
spannung = 12.56
strom = 0.5
'U_{-} = \{\}, L_{-} = \{\}'. format(spanning, strom)
# Ausgabe: 'U = 12.56, I = 0.5'
# Mit Index
'U_{\square}=_{\square}\{0\},_{\square}I_{\square}=_{\square}\{1\}'.format(spannung, strom)
# Ausgabe: 'U = 12.56, I = 0.5'
# Mit Index und Format:
'U_=_{0:.2f},_U_=_{0:.f}'.format(spannung)
# Ausgabe: 'U = 12.56, U = 12.560000'
# Links-/rechtsbuendig oder zentriert:
'{:>8.2f}'.format(sapnnung)
# Ausgabe: ' 12.56'
'{:<8.2f}'.format(spannung)
# Ausgabe: '12.56
'{:^8.2f}'.format(spannung)
# Ausgabe: ' 12.56
# Mit Schluesselwortparameter:
'U_{\square}=_{\square}\{u\},_{\square}I_{\square}=_{\square}\{i\}'.format(u=spannung, i=strom)
# Ausgabe: 'U = 12.56, I = 0.5'
# Mit Dictionary
messung = {'spannung': 24, 'strom': 2.5}
'U_=_{spannung},_I_=_{strom}'.format(**messung)
# Ausgabe: 'U = 24, I = 2.5'
```

7.1.3 mit Stringliterale

listings/v3_strings10.py

```
lokale_variable = 13
f'Wert_=_{lokale_variable:.3f}'
# Ausgabe: 'Wert = 13.000'
```

7.1.4 mit string-Methoden

listings/v3_strings11.py

7.2 Alles über Strings Kap. 19

listings/v3_strings24.py

```
# Unicode-Nummer => Zeichen
chr(65)
# Ausgabe: ('A')

# Zeichen => Unicode-Nummer
ord('A')
# Ausgabe: (65)

# String => bytes

bin_data = 'A'.encode(utf -8)
print(bin_data)
# Ausgabe: b'A'
bin_data.decode('utf_-8')
# Ausgabe: 'A'
```

7.2.1 Strings aufspalten

• split()

listings/v3_strings15.py

```
'Python_ist_eine____Schlange.'.split()
# Ausgabe: ['Python', 'ist', 'eine', 'Schlange.']

csv = '1;2000;30.3;44;505'
csv.split(';')
# Ausgabe: ['1', '2000', '30.3', '44', '505']

csv.split(';', maxsplit=2) # max. zwei Trennungen von links her
# Ausgabe: ['1', '2000', '30.3;44;505']

csv.rsplit(';', maxsplit=2) # max. zwei Trennungen von rechts her
# Ausgabe: ['1;2000;30.3', '44', '505']

'1;2;;;;3;4'.split(';')
# Ausgabe: ['1', '2', '', '', '', '3', '4']
```

• splitlines()

listings/v3_strings16.py

Python (V1) Seite 17 von 48

```
csv = '''Dies ist
ein mehrzeiliger
Text.'''
csv.splitlines()
# Ausgabe: ['Dies ist', 'ein mehrzeiliger', 'Text.']
```

7.2.2 Strings kombinieren

listings/v3_strings17.py

```
''.join(['a', 'b', 'c'])

# Ausgabe: 'abc'

','.join(['a', 'b', 'c'])

# Ausgabe: 'a,b,c'
```

7.2.3 Suchen von Teilstrings

listings/v3_strings18.py

```
spruch = '''Wir sollten heute das tun,
von dem wir uns morgen wuenschen
es gestern getan zu haben.'''

'morgen' in spruch
# Ausgabe: True

spruch.find('heute')
# Ausgabe: 12

spruch.count('en')
#Ausgabe: 4
```

7.2.4 Ersetzen von Teilstrings

listings/v3_strings19.py

```
spruch.replace('sollten', 'muessten')
# Ausgabe: 'Wir muessten heute das tun,\nvon dem wir uns morgen wuenschen\nes gestern getan zu haben
.'
```

7.2.5 Strings bereinigen

listings/v3_strings20.py

```
s = '____Dieser_String_sollte_saubere_Enden_haben.__\n'
print(s)
# Ausgabe: Dieser String sollte saubere Enden haben.
s.strip()
# Ausgabe: 'Dieser String sollte saubere Enden haben.'
'Ein_Satz_ohne_Satzzeichen_am_Schluss?'.rstrip('.!?')
# Ausgabe: 'Ein Satz ohne Satzzeichen am Schluss'
```

7.2.6 Klein- und Grossbuchstaben

listings/v3_strings21.py

```
'Passwort'.lower()

# Ausgabe: 'passwort'

'Passwort'.upper()

# Ausgabe: 'PASSWORT'
```

Python (V1) Seite 18 von 48

7.2.7 Strings testen

listings/v3_strings22.py

```
'255'.isdigit()
# Ausgabe: True

'hallo'.isalpha()
# Ausgabe: True

'Gleis7'.isalnum()
# Ausgabe: True

'klein'.islower()
# Ausgabe: True

'GROSS'.isupper()
# Ausgabe: True

'Haus'.istitle()
# Ausgabe: True
```

Seite 19 von 48 Python (V1)

Lektion 4: Listen-Abstraktion, Generatoren und Ähnliches

Listen-Abstraktion/List-Comprehension

- Einfache Methode, um Listen zu erzeugen
 - aus Strings, Dictionaries, Mengen, Bytes, ...
 - bestehende Listen abändern
 - bestehende Listen filtern
- Alles auf einer Zeile
 - übersichtlicher Code

quadratzahlen.append(n*n)

8.1 Neue Liste aus einer bestehenden Liste ableiten

8.1.1 Beispiel 1

konventionell:

listings/v4_list1.py

```
quadratzahlen = []
```

```
print(quadratzahlen)
```

for n in range(11):

mit Listen-Abstraktion:

```
listings/v4_list2.py
```

```
quadratzahlen = [n*n for n in range(11)]
print(quadratzahlen)
```

8.1.2 Beispiel 2

konventionell:

listings/v4_list3.py

```
kilometer = [30, 50, 60, 80, 100, 120]
meilen = []
for km in kilometer:
    meilen.append(km*0.621371)
print(meilen)
```

mit Listen-Abstraktion:

```
listings/v4_list4.py
kilometer = [30, 50, 60, 80, 100, 120]
meilen = [km*0.621371 for n in kilometer]
```

print(meilen)

8.2 Bestehende Liste filtern

Beispiel: Nur Früchte behalten, deren Name mit A, B oder C beginnen.

listings/v4_list5.py

```
fruechte = ['Apfel', 'Erdbeer', 'Clementine', 'Kokosnuss', 'Birne', 'Himbeere']
# konventionell:
fruechte_abc = []
for frucht in fruechte:
    if frucht[0] in 'ABC':
        fruechte_abc.append(frucht)
print(fruechte_abc)
# mit Listen-Abstraktion:
fruechte_abc = [frucht for frucht in fruechte if frucht[0] in 'ABC']
print(fruechte_abc)
```

Python (V1) Seite 20 von 48

8.3 Liste von Zahlen => formatierter String

konventionell:

listings/v4_list6.py

```
temp = []
for km, mi in zip(kilometer, meilen):
    temp.append('{:.0f}km={:.0f}mi'.format(km, mi))
s = ',_'.join(temp)

print(s)
# Ausgabe: 30km=19mi, 50km=31mi, 60km=37mi, 80km=50mi, 100km=62mi, 120km=75mi
```

mit Listen-Abstraktion:

listings/v4_list7.py

```
s = ', '.join(['{:.0f}km={:.0f}mi'.format(km, mi) for km, mi in zip(kilometer, meilen)])
print(s)
# Ausgabe: 30km=19mi, 50km=31mi, 60km=37mi, 80km=50mi, 100km=62mi, 120km=75mi
```

8.4 Liste der Schachbrettfelder

konventionell:

listings/v4_list8.py

```
felder = []
for b in buchstaben:
    for z in zahlen:
        felder.append(b + str(z))

print(felder)
# Ausgabe: ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7'
        ', 'b8', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7'
        ', 'd8', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7'
        ', 'f8', 'g1', 'g2', 'g3', 'g4', 'g5', 'g6', 'g7', 'g8', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7'
        ', 'h8']
```

mit Listen-Abstraktion:

listings/v4_list9.py

8.5 Mengen-Abstraktion/Set Comprehension

8.5.1 Produkte zweier Zahlen

konventionell:

listings/v4_list10.py

```
menge = set()
for x in range(6):
    for y in range(6):
        menge.add(x*y)

print(menge)
# Ausgabe: set([0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25])
```

mit Mengen-Abstraktion:

Python (V1) Seite 21 von 48

listings/v4_list11.py

```
menge = {x*y for x in range(6) for y in range(6)}
print(menge)
# Ausgabe: set([0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25])
```

9 Iteratoren und Generatoren

- Iterator
 - greift nacheinander auf die Elemente einer Menge von Objekten zu
 - fundamentaler Bestandteil von Python, z.B. in for-Schleifen
- Generator
 - ist eine besondere Art, um einen Iterator zu implementieren
 - wird mittels einer speziellen Funktion erzeugt

9.1 Iteratoren

Iteratoren werden benutzt, um über einen Container zu iterieren. Die for-SChleife erzeugt aus dem Listen-Objekt einen Iterator:

listings/v4_iter1.py

Das Container-Objekt muss die __iter__()-Funktion implementieren:

listings/v4_iter2.py

```
print('__iter__():', hasattr(liste, '__iter__'))
# Ausgabe: ('__iter__():', True)
```

Iterator aus Liste erzeugen:

listings/v4_iter3.py

```
iterator = iter(liste)
print(type(iterator))
# Ausgabe: <type 'listiterator'>
```

Ein Iterator muss auch die __next__()-Funktion implementieren:

listings/v4_iter4.py

```
print('__iter__():', hasattr(iterator, '__iter__'))
print('__next__():', hasattr(iterator, '__next__'))
# Ausgabe: ('__iter__():', True)
# ('__next__():', False)
```

Das nächste Element kann mit next() extrahiert werden:

listings/v4_iter5.py

```
next(iterator)
# Ausgabe: 1
next(iterator)
# Ausgabe: 2
next(iterator)
# Ausgabe: 3
```

... bis kein Element drin ist => StopIteration-Exception

listings/v4_iter6.py

```
next(iterator)
```

Python (V1) Seite 22 von 48

9.2 Generatoren

Ein Generator ist auch ein Iterator.

Ein Generator wird erstellt, indem man eine Funktion aufruft, die eine oder mehrere yield-Answeisungen hat:

listings/v4_iter7.py

```
def fibonacci_zahlen():
    a = 0
    b = 1
    while True:
        yield b
        a, b = b, a + b

print(type(fibonacci_zahlen))
# Ausgabe: <type 'function'>
f = fibonacci_zahlen()
print(type(f))
# Ausgabe: <type 'generator'>
```

Bei der yield-Anweisung wird die Funktion (wie mit return) verlassen, aber Python merkt sich

- den Zustand der lokalen Variable
- und wo der Generator verlassen wurde.

listings/v4_iter8.py

```
next(f)
# Ausgabe: 1
for n in range(10):
    print(next(f))
# Ausgabe:
# 1
# 2
# 3
# 5
# 8
# 13
# 21
# 34
# 55
# 89
```

9.2.1 Generator-Expression

Ein Generator kann auch mit einem Ausdruck definiert werden:

listings/v4_iter9.py

```
gen = (i*i for i in range(1, 10)) # wie List Comprehension, aber mit runden Klammern
print(type(gen))
# Ausgabe: <type 'generator'>
```

9.2.2 send()-Methode, Generator als Coroutine

Die send()-Methode verhält sich im Prinzip wie die next()-Methode, aber sendet gleichzeitig noch einen Wert an den Generator:

listings/v4_iter10.py

```
def counter():
```

Python (V1) Seite 23 von 48

```
n = 0
while True:
    wert = yield n # next() liefert None zurueck, send(x) liefert x zurueck
    if wert is not None:
        n = wert
    else:
        n += 1

c = counter()
next(c)
# Ausgabe: 0
c.send(50)
# Ausgabe: 50
next(c)
# Ausgabe: 51
```

10 Listen und Tupel im Detail

- Tupel
 - Packing
 - Unpacking
- Listen
 - Elemente hinzufügen
 - Sortieren

10.1 Tupel

Leeres Tupel:

listings/v4_tupel1.py

```
t = ()
print(type(t))
# Ausgabe: <type 'tuple'>
```

Tupel mit einem Element:

listings/v4_tupel2.py

```
t = (5,)
print(type(t))
# Ausgabe: <type 'tuple'>
```

Mehrfachzuweisung:

listings/v4_tupel3.py

```
x, y, z = 1, 2, 3
print(x)  # Ausgabe: 1
print(y)  # Ausgabe: 2
print(z)  # Ausgabe: 3
```

Packing: Unpacking:

```
listings/v4_tupel4.py

t = 'Peter', 'Mueller'

t
# Ausgabe: ('Peter', 'Mueller')

vorname, nachname = t
print(vorname) # Ausgabe: Peter
print(nachname) # Ausgabe: Mueller
```

listings/v4_tupel5.py

Packing mit Rest:

listings/v4_tupel6.py

```
vorname, nachname, *adresse = ('Peter', 'Mueller', 'Oberseestrasse_10', 8640, 'Rapperswil')
print(vorname) # Ausgabe: Peter
```

Python (V1) Seite 24 von 48

```
print(nachname) # Ausgabe: Mueller
print(adresse) # Ausgabe: Oberseestrasse 10, 8640, Rapperswil
```

10.2 Listen

10.2.1 Element hinzufügen

listings/v4_tupel7.py

```
liste = ['a', 'b', 'c']
liste.append('X')  # rechts
liste
# Ausgabe: ['a', 'b', 'c', 'X']
liste.insert(2, 'Y')  # mit Index
liste
# Ausgabe: ['a', 'b', 'Y', 'c', 'X']
```

10.2.2 Mehrere Elemente hinzufügen

listings/v4_tupel8.py

```
liste = ['a', 'b', 'c']
liste = liste + [1, 2] # zu vermeiden, sehr langsam
liste
# Ausgabe: ['a', 'b', 'c', 1, 2]
liste += [3, 4] # viel schneller
liste
# Ausgabe: ['a', 'b', 'c', 1, 2, 1, 2, 3, 4]
liste.extend([5, 6]) # noch schneller
liste
# Ausgabe: ['a', 'b', 'c', 1, 2, 1, 2, 3, 4, 3, 4, 5, 6]
```

Mehrere Elemente zwischendrin einfügen:

listings/v4_tupel9.py

```
liste[3:3] = ['#', '$']
liste
# Ausgabe: ['a', 'b', 'c', '#', '$', 1, 2, 1, 2, 3, 4, 3, 4, 5, 6]
```

10.2.3 Elemente ersetzen

listings/v4_tupel10.py

```
liste = ['a', 'b', 'c', 'd', 'e', 'f']
```

Einzelnes Element:

listings/v4_tupel11.py

```
liste[1] = 'B'
liste
# Ausgabe: ['a', 'B', 'c', '#', '$', 1, 2, 1, 2, 3, 4, 3, 4, 5, 6]
```

Einen ganzen Bereich:

listings/v4_tupel12.py

```
liste[3:] = ['D', 'E']
liste
# Ausgabe: ['a', 'B', 'c', 'D', 'E']
```

10.2.4 Element entfernen

Python (V1) Seite 25 von 48

listings/v4_tupel13.py

10.3 Sortieren

sorted() liefert eine neue sortierte Liste zurück:

listings/v4_tupel14.py

sort() modifiziert die Liste selbst (In-Place-Sortierung):

listings/v4_tupel15.py

```
liste.sort()
liste  # Ausgabe: [1, 2, 3, 4, 5]
```

10.3.1 Umgekehrte Reihenfolge

listings/v4_tupel16.py

```
liste = [2, 5, 3, 4, 1]
sortiert = sorted(liste, reverse=True)
print('Liste:', liste)  # Ausgabe: ('Liste:', [2, 5, 3, 4, 1])
print('sortiert:', sortiert)  # Ausgabe: ('sortiert:', [5, 4, 3, 2, 1])

liste.sort(reverse=True)
liste  # Ausgabe: [5, 4, 3, 2, 1]
```

10.3.2 Mit spezieller Funktion

listings/v4_tupel17.py

```
liste = ['laenger', 'lang', 'am_laengsten']
sorted(liste, key=len)
# Ausgabe: ['lang', 'laenger', 'am laengsten']

# nur [1]-tes Element (stabile Sortierung)
liste = [('a', 3), ('a', 2), ('c', 1), ('b', 1)]
from operator import itemgetter
sorted(liste, key=itemgetter(1))
# Ausgabe: [('c', 1), ('b', 1), ('a', 2), ('a', 3)]
sorted(liste, key=lambda x: x[1])
# Ausgabe: [('c', 1), ('b', 1), ('a', 2), ('a', 3)]
```

Python (V1) Seite 26 von 48

```
sorted(liste) # zuerst nach dem ersten Unterelement sortieren, dann nach dem zweiten, ...
# Ausgabe: [('a', 2), ('a', 3), ('b', 1), ('c', 1)]
```

10.3.3 collections.deque

Falls ein Stack oder FIFO-Buffer mit folgenden Eigenschaften benötigt wird:

- Thread-sicher
- Speicher-optimiert
- schnell

https://docs.python.org/3/library/collections.html#collections.deque

listings/v4_tupel18.py

```
from collections import deque
liste = deque([1, 2, 3])
print(liste)
                             # Ausgabe: deque([1, 2, 3])
liste.rotate(1)
print(liste)
                             # Ausgabe: deque([3, 1, 2])
endlich_lang = deque(maxlen=5)
for n in range(10):
    endlich_lang.append(n)
    print(list(endlich_lang))
# Ausgabe:
# [0]
# [0, 1]
# [0, 1, 2]
# [0, 1, 2, 3]
# [0, 1, 2, 3, 4]
# [1, 2, 3, 4, 5]
# [2, 3, 4, 5, 6]
# [3, 4, 5, 6, 7]
# [4, 5, 6, 7, 8]
  [5, 6, 7, 8, 9]
```

11 lambda, map, filter und reduce

- lambda
 - anonyme Funktionen bauen
- map, filter und reduce
 - Hilfsmittel für die funktionale Programmierung
 - auch mit List Comprehension möglich

11.1 lambda

Mit lambda können anonyme Funktionen definiert werden.

listings/v4_tupel19.py

```
summe = lambda x,y: x + y
print(type(summe))  # Ausgabe: <type 'function'>
summe(2, 3)  # Ausgabe: 5
```

11.2 map

sequenz = map(funktion, sequenz)

Wendet die Funktion auf alle Elemente der Sequenz an und gibt die Resultate als Sequenz zurück.

listings/v4_tupel20.py

```
list(map(lambda x: x*x, [1, 2, 3]))
# Ausgabe: [1, 4, 9]
```

Funktion mit zwei Parametern benötigt zwei Listen:

listings/v4_tupel21.py

Python (V1) Seite 27 von 48

```
list(map(lambda x,y: x + y, [1, 2, 3], [10, 20, 30]))
# Ausgabe: [11, 22, 33]
```

11.3 filter

sequenz = filter(funktion, sequenz)

Wendet die Funktion auf alle Elemente der Sequenz an und gibt nur diejenige Elemente zurück, für die die Funktion True liefert.

```
listings/v4_tupel22.py
```

```
list(filter(lambda x: True if x >= 0 else False, [5, -8, 3, -1]))
# Ausgabe: [5, 3]
```

11.4 reduce

resultat = reduce(funktion, sequenz)

Wendet die Funktion (mit zwei Parametern) fortlaufen auf die Sequenz an und liefert einen einzelnen Wert zurück.

listings/v4_tupel23.py

```
from functools import reduce

# (((10 + 20)/2 + 30)/2 + 40)/2
reduce(lambda x, y: (x + y)/2, [10, 20, 30, 40]) # Ausgabe: 31
```

Python (V1) Seite 28 von 48

Lektion 5: Reguläre Ausdrücke

- Regular Expressions (RE, regex, regex pattern)
- Bilden eine kleine Programmiersprache innerhalb von Python
- Sind verfügbar im re-Modul (https://docs.python.org/3/library/re.html) import re
- Definieren Muster, auf die nur gewisse Strings passen, z.B.:
 - Entspricht die angegebene E-Mail-Adresse dem Muster?
 - Welche Wörter im Text beginnen mit "ver-" und enden mit "-en"?
- Die meisten Buchstaben und Zeichen passen auf sich selbst:
 - test passt genau auf sich selbst
- Folgende Metazeichen haben eine spezielle Bedeutung:
 - .^\$*+?{}[]\|()
 - . passt auf alle Zeichen, ausser Newline-Zeichen

12 Zeichen-Klassen

• Die Metazeichen [und] definieren eine Zeichen-Klasse

abc passt auf alle Zeichen a, b oder c

a-z passt auf einen Kleinbuchstaben

a-zA-Z passt auf einen Klein- oder Grossbuchstaben

• Andere Metazeichen sind in Zeichen-Klasse nicht aktiv:

akm\$ passt auf die Zeichen a, k, m oder \$, wobei \$ sonst ein Metazeichen ist.

• Das ^-Zeichen definiert die komplementäre Menge:

abc passt auf alle Zeichen, ausser a, b und c

• Vordefinierte Zeichen-Klassen:

∖d	Dezimalziffer	[0-9]
\D	keine Dezimalziffer	[^0-9]
\slash s	Leer- oder Steuerzeichen	$[\t n\r f\v]$
\S	kein Leer- oder Steuerzeichen	$[^{t}n^{r}v]$
$\backslash w$	Unicode-Wortzeichen (auch Umlaute)	[a-zA-Z0-9_]
$\backslash W$	kein Wortzeichen	[^a-zA-Z0-9_]

• Verwendung in Zeichen-Klassen:

[A-Fa-f\d] passt auf eine Hexadezimalziffer

[\s,.] passt auf ein Leerzeichen, Komma oder Punkt

13 Wiederholungen (Quantoren)

- 0 oder mehrmals
 - * ca*t passt auf ct, cat, caat, ...

a[0-9]*b passt auf ab, a538b, a0b, ...

- 1 oder mehrmals
 - + ca+t passt nicht auf ct, aber cat, caat, ...
- 0 oder 1-mal
 - ? 10k?m passt auf 10m oder 10km
- m bis n-mal
 - {m,n} ab2,3c passt auf abbc oder abbbc
 - $\{3\} \rightarrow \text{genau } 3\text{-mal}$
 - $\{3,\} \rightarrow \text{mindestens 3-mal}$

Python (V1) Seite 29 von 48

- Gierigkeit deaktivieren
 - ? macht die obigen Wiederholungen nicht-gierig, z.B. <.+?>

14 Übereinstimmungen

• Funktionen, die Übereinstimmungen liefern:

re.match() Prüft, ob die RA am Stringanfang passt.

Gibt entweder None oder eine match-Objekt zurück.

re.search() Sucht erstes Auftreten vom RA im String.

Gibt entweder None oder ein match-Objekt zurück.

re.findall() Findet alle Teilstrings, die mit dem RA passen.

Gibt eine Liste mit allen Teilstrings zurück.

re.finditer() Findet alle Teilstrings, die mit dem RA passen.

Gibt einen Iterator zurück, der match-Objekte liefert.

14.1 match-Objekt

• Memberfunktionen eines match-Objekts:

```
group() Gibt den Teilstring zurück, der mit dem RA passt.
```

start() Gibt die Startposition des Teilstrings zurück.

end() Gibt die Endpostion des Teilstrings zurück.

span() Gibt ein Tupel mit (start, end) zurück

14.2 Übereinstimmungen finden

re-Modul importieren:

listings/v5_ra1.py

```
import re
```

re.match(pattern, string, flags=0)

listings/v5_ra2.py

```
m = re.match(r'[a-z]+', 'hallo_welt!')
print(m)
# Ausgabe: <re.Match object; span=(0, 5), match='hallo'>

if m is not None:
    print('group:', m.group())
    print('start:', m.start())
    print('end:', m.end())
    print('span:', m.span())
else:
    print('keine_Uebereinstimmung')
# Ausgabe:
# group: hallo
# start: 0
# end: 5
# span: (0, 5)
```

re.search(pattern, string, flags=0)

listings/v5_ra3.py

```
m = re.search(r'[a-z]+', '123_hallo_welt!')
print(m)
```

Python (V1) Seite 30 von 48

```
# Ausgabe: <re.Match object; span=(4, 9), match='hallo'>
if m is not None:
    print('group:', m.group())
    print('start:', m.start())
    print('end:', m.end())
    print('span:', m.span())
else:
    print('keine_Uebereinstimmung')
# Ausgabe:
# group: hallo
# start: 4
# end: 9
# span: (4, 9)
```

re.findall(pattern, string, flags=0)

listings/v5_ra4.py

```
liste = re.findall(r'[a-z]+', 'hallo_welt!')
print(liste)
# Ausgabe: ['hallo', 'welt']
```

re.finditer(pattern, string, flags=0)

listings/v5_ra5.py

```
for m in re.finditer(r'[a-z]+', 'hallo_welt!'):
    print('---')
    print('group:', m.group())
    print('start:', m.start())
    print('end:', m.end())
    print('span:', m.span())

# Ausgabe:
# ---
# group: hallo
# start: 0
# end: 5
# span: (0, 5)
# ---
# group: welt
# start: 6
# end: 10
# span: (6, 10)
```

15 Modifizierungen

• Funktionen, die Modifizierungen durchführen:

re.split() Trennt den String dort, wo der RA passt.

Gibt eine Liste mit den Teilstrings zurück.

re.sub() Ersetzt jeden Teilstring, der mit dem RA passt.

Gibt den neuen String zurück.

re.subn() Gleich wie bei re.sub(),

gibt aber einen Tupel (Neuer String, Anzahl) zurück.

re-Modul importieren:

listings/v5_ra1.py

```
import re
```

re.split(pattern, string, maxsplit=0, flags=0)

Der String wird überall dort getrennt, wo ein Teilstring auf den RA passt, z.B.: zwischen den Wörtern.

Python (V1) Seite 31 von 48

listings/v5_ra6.py

```
liste = re.split(r'\W+', 'Nun, dies ist ein (einfaches) Beispiel.')
print(liste)
# Ausgabe: ['Nun', 'dies', 'ist', 'ein', 'einfaches', 'Beispiel', '']
```

re.sub(pattern, repl, string, count=0, flags=0)

Jeder Teilstring, der auf den RA passt, wird mit dem repl-String ersetzt:

listings/v5_ra7.py

```
s = re.sub(r'\d+', '<Zahl>', '3_Stuecke_kosten_250_Franken.')
print(s)
# Ausgabe: <Zahl> Stuecke kosten <Zahl> Franken.
```

Mit count kann die Anzahl Ersetzungen limitiert werden:

listings/v5_ra8.py

```
s = re.sub(r'\d+', '<Zahl>', '3_Stuecke_kosten_250_Franken.', count=1)
print(s)
# Ausgabe: <Zahl> Stuecke kosten 250 Franken.
```

Eine Funktion bei repl angeben. Das Argument ist ein match-Objekt, der Rückgabewert muss ein String sein.

listings/v5_ra9.py

```
def func(m):
    return '(' + m.group() + ')'

s = re.sub(r'\d+', func, '3_Stuecke_kosten_250_Franken.')
print(s)
# Ausgabe: (3) Stuecke kosten (250) Franken.
```

re.subn(pattern, repl, string, count=0, flags=0)

Gleich wie bei re.sub(), aber es wird ein Tupel mit dem neuen String und die Anzahl der Ersetzungen zurückgegeben:

listings/v5_ra10.py

```
resultat = re.subn(r'\d+', '<Zahl>', '3_Stuecke_kosten_250_Franken.')
print(resultat)
# Ausgabe: ('<Zahl> Stuecke kosten <Zahl> Franken.', 2)
```

16 Gruppierung

- Teile eines Ausdrucks können gruppiert werden
- Normale Gruppierung mit ()
 - (ab)+c passt auf abc, ababc, ...
 - (ab)\1 mit Rückwärtsreferenz, passt auf abab
- Benannte Gruppierung mi (?P<...>)

```
(?P < zahl > \d +) passt auf 13
```

(P<zahl>d+)-(P=zahl) mit Referenz, passt auf 13-13

- Passive Gruppierung (non-capturing group) mit (?:...)
- (?:ab) passt auf ab, Gruppe wird nicht hinterlegt

re-Modul importieren

listings/v5_ra1.py

```
{\tt import\ re}
```

match-Objekt

Mittels der groups ()-Memberfunktion eines match-Objektes erhält man ein Tupel mit den Ubereinstimmungen der einzelnen Gruppen.

Folgende Funktionen liefern ein match-Objekt: re.match(), re.search(), und re.finditer().

Python (V1) Seite 32 von 48

listings/v5_ra11.py

```
m = re.search(r'(\d+)_\([a-z]+)', '123\(\dagger hallo\)\(\dagger hall
```

Mit benannten Gruppen:

listings/v5_ra12.py

```
m = re.search(r'(?P<zahl>\d+)_(?P<wort>\w+)', '123_hallo_welt!')
print(m.group('zahl')) # Ausgabe: 123
print(m.group('wort')) # Ausgabe: hallo
m.groupdict() # als Dictionary
# Ausgabe: {'zahl': '123', 'wort': 'hallo'}
```

re.findall()

Falls Gruppen im RA angegeben werden, dann werden nur die Übereinstimmungen der Gruppen als Liste von Tupeln zurückgegeben.

listings/v5_ra13.py

```
liste = re.findall(r'(\w+)=(\w+)', 'Jahrgang=1930, \_Name=Hans_und_Ort=Rappi')
print(liste) # Ausgabe: [('Jahrgang', '1930'), ('Name', 'Hans'), ('Ort', 'Rappi')]
liste = re.findall(r'Ort=(\w+)', 'Jahrgang=1930, \_Name=Hans_und_Ort=Rappi')
print(liste) # Ausgabe: ['Rappi']
liste = re.findall(r'(dum)\l', 'dumdum') # mit Rueckwaertsreferenz der Gruppe
print(liste) # Ausgabe: ['dum']
```

verschachtelte Gruppen, öffnende Klammern definieren die Reihenfolge

listings/v5_ra14.py

```
liste = re.findall(r'((dum)\2)', 'dumdum') # (dum) ist jetzt die zweite Gruppe
print(liste) # Ausgabe: [('dumdum', 'dum')]
```

re.split()

Falls Gruppen im RA angegeben werden, dann werden auch die Übereinstimmungen der Gruppen in der Liste zurückgegeben.

listings/v5_ra15.py

re.sub()

listings/v5_ra16.py

Python (V1) Seite 33 von 48

16.1 Weitere Metazeichen

- Spezielle Prüfzeichen (belegen keinen Platz):
 - x|y passt entweder auf x oder y
 - steht für den Anfang des Strings
 oder für den Anfang jeder Zeile (bei flag=re.MULTILINE)
 - \$ steht f\u00fcr das Ende des Strings oder f\u00fcr das Ende jeder Zeile (bei flag=re.MULTILINE)
 - \A steht für den Anfang des Strings
 - \Z steht für das Ende des Strings
 - \b steht für eine Wortgrenze
 - \B steht für das Gegenteil von \b

re-Modul importieren

listings/v5_ra1.py

```
import re
```

Entweder...oder...

```
listings/v5_ra17.py
```

```
for m in re.finditer(r'\d+(V|A)', '230V_und_10A_bei_230hm'):
    print(m.group())
# Ausgabe:
# 230V
# 10A
```

Anfang des Strings

listings/v5_ra18.py

```
re.findall(r'^\w+', 'Hallo_Welt') # Ausgabe: ['Hallo']
re.findall(r'^\w+', 'Erste_Zeile\nZweite_Zeile', flags=re.MULTILINE) # Ausgabe: ['Erste', 'Zweite']
re.findall(r'\A\d', '123456') # Ausgabe: ['1']
```

Ende des Strings

listings/v5_ra19.py

```
re.findall(r'\w+$', 'Hallo_Welt') # Ausgabe: ['Welt']
re.findall(r'\w+$', 'Punkt_A\nPunkt_B', flags=re.MULTILINE) # Ausgabe: ['A', 'B']
re.findall(r'\d\Z', '123456') # Ausgabe: ['6']
```

Wortgrenze

listings/v5_ra20.py

```
re.sub(r'\bschoen\b', 'herrlich', 'Das_Wetter_ist_schoen_oder_unschoen.')
# Ausgabe: 'Das Wetter ist herrlich oder unschoen.'
```

16.2 Look-around Assertions

- positive, vorausschauende Annahme
 - (?=Ausdruck) Ausdruck muss hier folgen
- negative, vorausschauende Annahme
 - (?!Ausdruck) Ausdruck darf hier nicht folgen
- positive, nach hinten schauende Annahme
 - (?<=Ausdruck) Ausdruck muss hier vorangehen

Python (V1) Seite 34 von 48

• negative, nach hinten schauende Annahme

(?<=!Ausdruck) Ausdruck darf hier nicht vorausgehen

Positive, vorausschauende Annahme

Nach dem Wort muss ".doc"folgen:

listings/v5_ra21.py

```
re.findall(r'\w+(?=.doc)', 'bericht.doc_dokument.doc')
# Ausgabe: ['bericht', 'dokument']
```

Negative, vorausschauende Annahme

Nach den Buchstaben dürfen nicht Ziffern folgen:

listings/v5_ra22.py

```
re.findall(r'[A-Za-z]+(?!\d+)\b', 'abc123ucde')
# Ausgabe: ['cde']
```

Positive, nach hinten schauende Annahme

Vor den Ziffern muss ein #-Zeichen vorausgehen:

listings/v5_ra23.py

```
re.findall(r'(?<=#)\d+', '#10, \degree #25, \degree 66')
# Ausgabe: ['10', '25']
```

Negative, nach hinten schauende Annahme

Vor den Ziffern darf kein #-Zeichen vorausgehen:

listings/v5_ra24.py

```
re.findall(r'\b(?<!#)\d+', '#10, _#25, _66')
# Ausgabe: ['66']
```

Python (V1) Seite 35 von 48

Lektion 6: Klassen

17 Klassen

• Die Klassendefinition beginnt mit dem Schlüsselwort class

listings/v6_klassen1.py

```
class MeineKlasse:
pass
```

• Eine Klasse mit Variablen und Methoden:

listings/v6_klassen2.py

```
class MeineKlasse:
    i = 0

    def __init__(self, name):
        self.name = name

def gruss(self):
    print('Hallo', self.name)
```

17.1 Einfache Klasse definieren

listings/v6_klassen3.py

```
class MeineKlasse:
    '''Diese Klasse hat nicht viel drin.'''
    pass
MeineKlasse.__doc__
# Ausgabe: 'Diese Klasse hat nicht viel drin.'
help(MeineKlasse)
# Ausgabe:
# Help on class MeineKlasse in module __main__:
 class MeineKlasse(builtins.object)
     Diese Klasse hat nicht viel drin.
#
#
#
      Data descriptors defined here:
      __dict__
          dictionary for instance variables (if defined)
          list of weak references to the object (if defined)
```

17.2 Klasse instanzieren

listings/v6_klassen4.py

```
objekt = MeineKlasse()
```

17.3 Klassen- und Instanz-Variablen

listings/v6_klassen5.py

```
class MeineKlasse:
    speed_of_light = 299792458  # Klassen-Variable

def __init__(self):
    self.name = 'unbekannt'  # Instanz-Variable
```

Die Daten einer Klassen-Variable sind für alle Klassen-Objekte gleich.

Python (V1) Seite 36 von 48

listings/v6_klassen6.py

```
x = MeineKlasse()
y = MeineKlasse()
print('x:', x.speed_of_light) # Ausgabe: x: 299792458
print('y:', y.speed_of_light) # Ausgabe: y: 299792458
```

Die Daten einer Instanz-Variable sind für jedes Klassen-Objekt individuell.

listings/v6_klassen7.py

```
x.name = 'Hans'
y.name = 'Peter'
print(x.name) # Ausgabe: Hans
print(y.name) #Ausgabe: Peter
```

Achtung: bei gleichem Name haben die Instanz-Variablen Vorrang.

listings/v6_klassen8.py

```
x.speed_of_light = 10  # hier wird eine neue Instanz-Variable erzeugt
print('x:', x.speed_of_light) # Ausgabe: x: 10
print('y:', y.speed_of_light) # Ausgabe: y: 299792458
print('MeineKlasse:', MeineKlasse.speed_of_light) # Ausgabe: MeineKlasse: 299792458
```

17.4 Methoden

listings/v6_klassen9.py

```
class MeineKlasse:
    '''Beschreibung der Klasse.'''
    speed_of_light = 299792458
    def __init__(self, name):
         '''Diese Methode initialisiert die Variablen.'''
        self.name = name
        print(self.name, 'wurde_erstellt.')
    def __del__(self):
    '''Diese Methode raeumt alles auf bevor es zerstoert wird.'''
        print(self.name, 'wurde_zerstoert.')
    def hallo(self):
        '''Sagt Hallo.'''
        print('Hallo', self.name)
help(MeineKlasse)
# Ausgabe:
# Help on class MeineKlasse in module __main__:
# class MeineKlasse(builtins.object)
#
      MeineKlasse(name)
#
      Beschreibung der Klasse.
      Methods defined here:
      __del__(self)
          Diese Methode raeumt alles auf bevor es zerstoert wird.
      __init__(self, name)
          Diese Methode initialisiert die Variablen.
#
      hallo(self)
          Sagt Hallo.
#
#
      Data descriptors defined here:
```

Python (V1) Seite 37 von 48

Unterschiede zwischen Methoden und einer gewöhnlichen Funktion:

- eine Methode wird innerhalb eines **class**-Blocks definiert.
- der erste Parameter (**self**) einer Methode ist immer eine Referenz auf die Instanz, von der sie aufgerufen wird.

Hinweise:

- Eine Variable, die mit "self." innerhalb einer Methode erstellt wird, ist automatisch eine Instanz-Variable.
- Eine Variable, z.B. speed_of_light, die ausserhalb einer Methode erstellt wird, ist automatisch eine Klassen-Variable.

17.4.1 __init__()-Methode

Sie dient zur Initialisierung der Instanz. Sie wird unmittelbar nach dem Konstruktor aufgerufen.

listings/v6_klassen10.py

```
s = MeineKlasse('Wall-E') # name='Wall-E'
# Ausgabe: Wall-E wurde erstellt.
```

Dringend empfohlen: alle Instanz-Variablen in der __init__()-Methode initialisieren.

17.4.2 __del__()-Methode

Sie wird aufgerufen, bevor die Instanz zerstört wird.

listings/v6_klassen11.py

```
del s # loescht nur die Referenz s auf das Objekt.
# Ausgabe: Wall-E wurde zerstoert.
```

Hinweis: Das Objekt selber wird vom Garbage Collector entfernt, sobald keine Referenzen mehr darauf zeigen.

17.4.3 Methoden aufrufen

Der **self**-Parameter wird beim Aufruf nicht angegeben.

listings/v6_klassen12.py

```
s = MeineKlasse('Wall-E') # name='Wall-E'
s.hallo()
# Ausgabe:
# Wall-E wurde erstellt.
# Hallo Wall-E
```

Python bindet alle Methoden automatisch an die Instanz.

listings/v6_klassen13.py

```
print(s.hallo) # Ausgabe: <bound method MeineKlasse.hallo of <__main__.MeineKlasse object at 0
x0000010B581D24A8>>
```

Grundsätzlich entspricht dies dem folgenden Aufruf:

listings/v6_klassen14.py

```
MeineKlasse.hallo(self=s) # Ausgabe: Hallo Wall-E
```

Python (V1) Seite 38 von 48

17.4.4 Statische Methoden

Sie sind nicht an eine Instanz gebunden, d.h. sie benötigen keinen self-Parameter.

Variante 1:

listings/v6_klassen15.py

```
def quadrieren(x):
    return x*x

class MeineKlasse:
    quadrieren = staticmethod(quadrieren)
```

Variante 2 mit Dekorateur:

listings/v6_klassen16.py

```
class MeineKlasse:
    @staticmethod
    def quadrieren(x):
        return x*x

MeineKlasse.quadrieren(3) # Ausgabe: 9
```

17.4.5 Klassen-Methoden

Sie sind an eine Klasse gebunden. Variante 1:

listings/v6_klassen17.py

```
class MeineKlasse:
    speed_of_light = 299792458

    @classmethod
    def c0(cls):
        print('Speed_of_light_=', cls.speed_of_light)

MeineKlasse.c0() # Ausgabe: Speed of light = 299792458
```

17.5 Datenabstraktion

- Datenabstraktion = Datenkapselung + Geheimnisprinzip
- Datenkapselung (Zugriff kontrollieren)
 - Setter- und Getter-Methoden
 set_variable(value), get_variable()
- Geheimnisprinzip (interne Information verstecken)
 - public
 - protected
 - private

Der Zugang zu den Instanz-Attributen (Variablen und Methoden) sind in drei Stufen definiert: **public**, **protected** und **private**.

Hinweis: Das ist alles nur eine Konvention. In Python gibt es keinen Datenschutz.

listings/v6_klassen18.py

```
class MeineKlasse:

    def __init__(self):
        self.pub = 'Ich_bin_oeffentlich.'
        self._prot = 'Ich_bin_protected.'
        self.__priv = 'Ich_bin_privat.'

    def pub_funktion(self):
        print(self.pub)

    def __prot_funktion(self):
        print(self._prot)
```

Python (V1) Seite 39 von 48

```
def __priv_funktion(self):
    print(self.__priv)

objekt = MeineKlasse()
```

17.5.1 Public

Attribute ohne führende Unterstriche im Namen sind als **public** zu betrachten. Man kann und darf auch von ausserhalb der Klasse darauf zugreifen.

listings/v6_klassen19.py

```
objekt.pub = 'Hier_macht_jeder_was_er_will.'
objekt.pub_funktion() # Ausgabe: Hier macht jeder was er will.
```

17.5.2 Protected

Attribute mit einem führenden Unterstrich im Namen sind als **protected** zu betrachten, d.h. man könnte theoretisch von aussen darauf zugreifen, man sollte aber nicht, es ist unerwünscht. Sie werden v.a. bei Vererbungen wichtig.

listings/v6_klassen20.py

```
print(objekt._prot) # Ausgabe: Ich bin protected.
objekt._prot_funktion() # Ausgabe: Ich bin protected.
```

17.5.3 **Private**

Attribute mit zwei führenden Unterstrichen im Namen sind **private**. Sie sind von aussen nicht sichtbar.

listings/v6_klassen21.py

Im Prinzip gibt es einen Umweg um dies zu umgehen. Achtung: höchst illegal!

listings/v6_klassen22.py

```
objekt.__dict__ # Ausgabe:
# {'pub': 'Hier macht jeder was er will.',
# '_prot': 'Ich bin protected.',
# '_MeineKlasse__priv': 'Ich bin privat.'}

dir(objekt) # Ausgabe:
# ['_MeineKlasse__priv', '_MeineKlasse__priv_funktion', '__class__',
# '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
# '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
# '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__',
# '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
# '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_prot',
# 'prot_funktion', 'pub', 'pub_funktion']

objekt._MeineKlasse__priv # Ausgabe: 'Ich bin privat.'
objekt._MeineKlasse__priv_funktion() # Ausgabe: Ich bin privat.
```

Python (V1) Seite 40 von 48

17.5.4 Setter- und Getter-Methoden

Setter- und Getter-Methoden für private Instanz-Variablen auf phytonsche Art und Weise implementieren. **Konventionell:** Set- und Get-Methoden explizit benutzen.

listings/v6_klassen23.py

```
class Bank:
    def __init__(self):
        self.__guthaben = 0

    def get_guthaben(self):
        print('Das_Guthaben_wurde_abgefragt.')
        return self.__guthaben

    def set_guthaben(self, n):
        self.__guthaben = n
        print('Das_Guthaben_wurde_auf_{}{}_geaendert.'.format(self.__guthaben))

k = Bank()
k.set_guthaben(1000000) # Ausgabe: Das Guthaben wurde auf 1000000 geaendert.
print(k.get_guthaben()) # Ausgabe: Das Guthaben wurde abgefragt.
# Ausgabe: 1000000
```

Property: Von aussen wie auf eine öffentliche Variable zugreifen, Set- und Get-Methoden werden implizit aufgerufen.

https://docs.python.org/3/library/functions.html#property

listings/v6_klassen24.py

```
class Bank:
    def __init__(self):
        self.__guthaben = 0

    def __get_guthaben(self):
        print('Das_Guthaben_wurde_abgefragt.')
        return self.__guthaben

    def __set_guthaben(self, n):
        self.__guthaben = n
        print('Das_Guthaben_wurde_auf_{}_{\_geaendert.'}.format(self.__guthaben))

    guthaben = property(__get_guthaben, __set_guthaben)

k = Bank()
k.guthaben = 1000000 # Ausgabe: Das Guthaben wurde auf 1000000 geaendert.
print(k.guthaben) # Ausgabe: Das Guthaben wurde abgefragt.
# Ausgabe: 1000000
```

Property mit Dekorateuren: Auf pythonische Art und Weise.

https://docs.python.org/3/glossary.html#term-decorator

listings/v6_klassen25.py

```
class Bank:
    def __init__(self):
        self.__guthaben = 0

    @property
    def guthaben(self):
        print('Das_Guthaben_wurde_abgefragt.')
        return self.__guthaben

    @guthaben.setter
    def guthaben(self, n):
        self.__guthaben = n
        print('Das_Guthaben_wurde_auf_{}{}_{geaendert.'}.format(self.__guthaben))

k = Bank()
k.guthaben = 1000000 # Ausgabe: Das Guthaben wurde auf 1000000 geaendert.
```

Python (V1) Seite 41 von 48

```
print(k.guthaben) # Ausgabe: Das Guthaben wurde abgefragt.
# Ausgabe: 1000000
```

17.6 Magische Methoden

• Besondere Fähigkeiten für Klassen (https://docs.python.org/3/reference/datamodel.html#special-method-names)

Grundfunktionen

```
- __init__(), __del__(), __str__(), ...
```

• Operatoren überladen

- binäre Operatoren: + / * % ...
- numerische Operatoren: __int__(), __float__(), __abs__(), ...

- ...

- Containertypen emulieren
 - __len__(), __iter__(), __contains__(), ...

• ..

Sie sind spezielle Methoden, um Klassen besondere Fähigkeiten zu geben. Es werden hier nur einige Beispiele gezeigt.

17.6.1 Grundmethoden

https://docs.python.org/3/reference/datamodel.html#basic-customization Zwei davon haben wir schon kennengelernt:

- __init__()
- __del__()

Der Rückgabewert von __str__() gibt an, was str(obj) zurückgeben soll, z.B.:

listings/v6_klassen26.py

```
class Konto:
    def __init__(self, guthaben, iban):
        self.guthaben = guthaben
        self.iban = iban

    def __str__(self):
        return 'IBAN:_{{}}\nGuthaben:_{{}}'.format(self.iban, self.guthaben)

k = Konto(50, 'CH42_4738_2934_9267_0878_5')
print(k) # Ausgabe:
# IBAN: CH42 4738 2934 9267 0878 5
# Guthaben: 50
```

17.6.2 Numerische Datentypen emulieren

```
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types Der Rückgabewert von __float__() gibt an, was float(obj) zurückgeben soll. Mit der __add__()-Methode wird der + Operator überladen. Mit der __sub__()-Methode wird der - Operator überladen.
```

listings/v6_klassen27.py

```
class Konto:
    def __init__(self, guthaben, iban):
        self.guthaben = guthaben
        self.iban = iban

def __float__(self):
        return float(self.guthaben)

def __add__(self, other):
        return self.guthaben + other.guthaben

def __sub__(self, other):
        return self.guthaben - other.guthaben
```

Python (V1) Seite 42 von 48

```
k1 = Konto(50, 'CH42_4738_2934_9267_0878_5')

k2 = Konto(23, 'CH27_1036_5802_2994_9234_3')

print('float(k1)_=', float(k1)) # Ausgabe: float(k1) = 50.0

print('float(k2)_=', float(k2)) # Ausgabe: float(k2) = 23.0

print('k1_+_k2_=', k1 + k2) # Ausgabe: k1 + k2 = 73

print('k1_-_k2_=', k1 - k2) # Ausgabe: k1 - k2 = 27
```

17.7 Klassen testen

- Klassen werden in separate Pythondateien gespeichert
- Testcode in die gleiche Datei integrieren
- Testcode in eine if-Anweisung platzieren:

listings/v6_klassen28.py

```
if __name__ == '__main__':
    Testcode
```

listings/v6_my_module.py

listings/scripts/my_other_module.py

```
# -*- coding: utf-8 -*-
print('Dies_ist_{}:\n__name___=_{}'.format(__file__, __name__))
class Bank:
    def __init__(self):
        self.__guthaben = 0
    @property
    def guthaben(self):
        print('Das_Guthaben_wurde_abgefragt.')
        return self.__guthaben
    @guthaben.setter
    def guthaben(self, n):
        self.\__guthaben = n
        print('Das_Guthaben_wurde_auf_{}_geaendert.'.format(self.__guthaben))
# --- Klasse testen ----
if __name__ == '__main__':
    b = Bank()
    b.guthaben = 1000
    print(b.guthaben)
# Konsolen-Ausgabe:
```

Python (V1) Seite 43 von 48

```
# Dies ist C:/Users/Noah/Documents/GitHub/Python_Zusammenfassung/listings/scripts/my_other_module.py
    :
# __name__ = __main__
# Das Guthaben wurde auf 1000 geaendert.
# Das Guthaben wurde abgefragt.
# 1000
```

17.8 Eigenes Modul importieren

- Klasse aus einer separaten Pythondatei importieren
 - aus dem gleichen Verzeichnis
 - aus einem anderen Verzeichnis

https://docs.python.org/3/tutorial/modules.html

17.8.1 Aus dem gleichen Verzeichnis

listings/v6_klassen29.py

```
from my_module import MeineKlasse
# Ausgabe: Dies ist C:\Users\Noah\switchdrive\Python\vorlesung\w06\code\my_module.py:
# __name__ = my_module
m = MeineKlasse('Python_User')
m.gruss() # Ausgabe: Hallo Python User
```

17.8.2 Aus einem andere Verzeichnis

listings/v6_klassen30.py

```
import sys
sys.path.append('scripts')
print('\n'.join(sys.path))  # Liste der Suchorte
# Ausgabe: *alle in Frage kommenden Verzeichnisse*

from my_other_module import Bank # Ausgabe:
# Dies ist scripts\my_other_module.py:
# __name__ = my_other_module
b = Bank()
b.guthaben = 500.0 # Ausgabe: Das Guthaben wurde auf 500.0 geaendert.
```

Python (V1) Seite 44 von 48

Lektion 7: Vererbungen und Mehrfachvererbungen

18 Vererbung

- eine neue Klasse aus einer bestehenden Klasse ableiten:
- Person ist eine:
 Oberklasse, Basisklasse, Elternklasse oder Super-klasse
- Angestellter und Bürger sind eine: Unterklasse, abgeleitete Klasse, Kindklasse oder Subklasse

• Superklasse/Basisklasse:

```
listings/v7_vererbung1.py
```

```
class Person:
pass
```

- Für die Vererbung: Superklasse in runden Klammern angeben
- Subklasse/abgeleitete Klasse:

listings/v7_vererbung2.py

```
class Angestellter(Person):
    pass
```

• Variablen und Methoden (public und pretected) werden direkt übernommen:

listings/v7_vererbung3.py

```
class Person:
    var = 123

    def func(self):
        print('Person')

class Angestellter(Person):
    pass

a = Angestellter()
print(a.var) # Ausgabe: 123
a.func() # Ausgabe: Person
```

• Methoden werden überschrieben, falls sie gleich heissen:

listings/v7_vererbung4.py

```
class Person:
    def func(self):
        print('Person')

class Angestellter(Person):
    def func(self):
        print('Angestellter')

a = Angestellter()
a.func() # Ausgabe: Angestellter
```

• Zugriff auf die Superklasse mit super()

listings/v7_vererbung5.py

```
class Person:
```

Python (V1) Seite 45 von 48

```
def func(self):
    print('Person')

class Angestellter(Person):
    def func(self):
        super().func()
        print('Angestellter')

a = Angestellter()
a.func() # Ausgabe:
# Person
# Angestellter
```

18.1 Beispiel

listings/v7_vererbung6.py

```
class Person:
    def __init__(self, name):
        self.name = name
        print('__init__()_von_Person')
```

Die Person-Klasse instanzieren:

listings/v7_vererbung7.py

```
p = Person('Laura') # Ausgabe: __init__() von Person
print(p.name) # Ausgabe: Laura
```

Angestellte-Klasse erbt von der Person-Klasse:

listings/v7_vererbung8.py

```
class Angestellter(Person):
    def __init__(self, name, personalnummer):
        # Initialisierungsmethode der Superklasse aufrufen
        super().__init__(name)
        # oder Person.__init__(self, name)
        self.personalnummer = personalnummer
        print('__init__()_von_Angestellter')
```

Die Angestellter-Klasse instanzieren:

listings/v7_vererbung9.py

```
a = Angestellter('Max', 123456) # Ausgabe:
# __init__() von Person
# __init__() von Angestellter

print(a.name) # Ausgabe: Max
print(a.personalnummer) # Ausgabe: 123456
```

18.2 public, protected und private

Die Konvention ist wie folgt:

public: für für öffentliche Variablen und Methoden

protected: (1 führender Unterstrich) für nicht-öffentliche Variablen und Methoden

private: (2 führende Unterstriche) für nicht-öffentliche Variablen und Methoden, um Namenskonflikte in Subklassen zu vermeiden

https://www.python.org/dev/peps/pep-0008/#method-names-and-instance-variables

Python (V1) Seite 46 von 48

listings/v7_vererbung10.py

```
class SuperKlasse:
   def __init__(self):
        self.pub = 'public_Variable'
        self._prot = 'protected_Variable'
        self.__priv = 'private_Variable'
    def pub_func(self):
       print('public_Methode')
    def _prot_func(self):
        print('protected_Methode')
    def __priv_func(self):
        print('private_Methode')
class SubKlasse(SuperKlasse):
   def __init__(self):
        self.pub_func()
        self._prot_func()
        self.__priv_func() # nicht erreichbar, kann in der Subklasse wiederbenutzt werden
sub = SubKlasse() # Ausgabe:
# public Methode
# protected Methode
# AttributeError
                                           Traceback (most recent call last)
# <ipython-input-12-479270c9858a> in <module>
# ----> 1 sub = SubKlasse()
 <ipython-input-11-1794f0b16121> in __init__(self)
       3
                 self.pub_func()
        4
                 self._prot_func()
                 self.__priv_func() # nicht erreichbar, kann in der Subklasse wiederbenutzt werden
# AttributeError: 'SubKlasse' object has no attribute '_SubKlasse__priv_func'
```

19 Mehrfachvererbung

• Eine Subklasse kann von mehreren Superklassen erben:

```
listings/v7_vererbung11.py

class A:
    pass

class B:
    pass

class C(A, B):
    pass

C
```

Am besten die _init_-Methode der Klassen kooperativ machen, d.h.

- immer super() benutzen
- Schlüsselwort-Argumente benutzen
- unbenutzte Schlüsselwort-Argumente weitergeben (**kwargs)

listings/v7_vererbung12.py

```
class Fahrzeug:
    def __init__(self, antrieb, **kwargs):
        print('Fahrzeug.__init__(),', 'kwargs_=', kwargs)
```

Python (V1) Seite 47 von 48

```
super().__init__(**kwargs)
        self.antrieb = antrieb
class Computer:
    def __init__(self, display, **kwargs):
        print('Computer.__init__(),', 'kwargs_=', kwargs)
        super().__init__(**kwargs)
        self.display = display
class Tesla(Fahrzeug, Computer):
    def __init__(self, display, dual_motor, **kwargs):
        print('Tesla.__init__()')
        super().__init__(
            antrieb='elektrisch',
            display=display,
            **kwarqs
        self.dual_motor = dual_motor
t = Tesla(display='17_Zoll', dual_motor=True) # Ausgabe:
# Tesla.__init__()
# Fahrzeug.__init__(), kwargs = {'display': '17 Zoll'}
# Computer.__init__(), kwargs = {}
t.__dict__ # Ausgabe: {'display': '17 Zoll', 'antrieb': 'elektrisch', 'dual_motor': True}
```

- super() ruft automatisch die Methode der nächsten Klasse auf
- Method Resolution Order (MRO) → C4 Superclass Linearization (https://en.wikipedia.org/wiki/C3_linearizatio)
- Diamond-Problem ist kein Problem mit super()

19.0.1 MRO

Mehrfachvererbung in Diamant-Anordung:

listings/v7_vererbung13.py

```
class A:
    def __init__(self):
        print("A.__init__")
        super().__init__()
class B(A):
    def __init__(self):
        print("B.__init__")
        super().__init__()
class C(A):
    def __init__(self):
        print("C.__init__")
        super().__init__()
class D(B, C):
    def __init__(self):
        print("D.__init__")
        super().__init__()
```

super() ruft die Methoden der Reihe nach auf:

listings/v7_vererbung14.py

```
d = D() # Ausgabe:
# D.__init__
# B.__init__
```

Python (V1) Seite 48 von 48

```
# C.__init__
# A.__init__
```

Die Reihenfolge wird vom MRO-Algorithmus festgelegt:

listings/v7_vererbung15.py

```
D.mro() # Ausgabe: [__main__.D, __main__.B, __main__.C, __main__.A, object]
```