प्रतिदीप्ति नलिका (द्यूब) में प्रारंभ में उत्पन्न विकिरण होता है --

किसी बत्ती में तेल बढ़ने/चढ़ने का कारण है - तेल का पुग्ठ-तनाव

- लम्बी दूरी के बेतार संचार के लिए अपेक्षित कौन-सी तरंगें हैं
- बोर के प्रथम सिद्धांत के अनुसार पृथक मूल्य ग्रहण करती है
- एक इलेक्ट्रॉन माइक्रोस्कोप में उच्च विघटित शक्ति प्राप्त की जाती है —इलेक्ट्रॉन पुंज के उपयोग से

जिंग प्रदर्शित करता है --डाई मैग्नेटिज्म को

- जब साबुन के बुलबुलों पर श्वेत प्रकाश अपतित होता है तब विभिन्न रंग उत्पन होता है - व्यतिकरण के कारण
 - सूर्य बेहर शक्तिशाली स्रोत है —अल्ट्रावायलेट किरणों का खुले फ्यूज का प्रतिरोध होता है —अनंत

- प्रति किलोग्राम उत्पन्न उच्मा की मात्रा कहलाती है -कैलोरी मान
- गैस को जब नियत दाब पर ठंडा किया जाता है, तो क्या होता है -आयतन और तापमान दोनों घटते हैं
- 1 किग्रा जल का तापमान 1°C बढ़ाने के लिए आवश्यक उप्मा की मात्रा कहलाती है —विशिष्ट उष्मा
 - खारा पानी, ताजा पानी एवं स्वच्छ पानी में से सबसे ज्यादा सुचालक होता है —खारा पानी

नेत्र पर फोकस संयोजित किससे किया जाता है - लॉस

- पहाड पर चढ्ने पर खून नाक से बाहर क्यों आ जाता है —िनम्न दाब के कारण
 - ज्योस्टेशनरी ऑबिंट कितनी केँचाई पर स्थित है -36,000 किमी.
- प्रकाश, रेडियो तरंग तथा X-किरणें कैसी तरंग हैं —विद्युत चुम्बकीय तरंगें एक खीचे गए रबर बैंड में कौन-सी कर्जा निहित होती है —स्थितिज
- वह उपकरण जो विद्युत कर्जा को यात्रिक कर्जा में बदलता है
- प्रतिध्वेनि किस कारण सुनी जाती है —ध्विन तरंगों के परावर्तन के
- सरल यात्रिकी लाभ वाले लीवर में होता है -- प्रयास व फुलक्रम के बीच भार जब लीफ्ट कपर की ओर जाती है, तो आदमी का भार से कम होता है
- क्यों कि उसकी चाली नीचे की ओर समरूप (एकसमान) होती है कौन-सा गुणधर्म ठोस, दव एवं गैसों के लिए भिना है -अणुओं
- लोहे में जग लगना, पानी का भाप में बदलना, दूध से दही बनना एवं कोयले का जलना में से कौन-सा परिवर्तन रासायनिक नहीं है —पानी
 - का भाप में बदलना विद्युत-चुम्बकीय तरंगों में से सर्वाधिक तरंगर्दध्यं होती है —अवरक्त
- किरणों की द्रव्यमान, समय, घनत्व तथा त्वरण में सिंदुश राशि है —त्वरण किसी कँचाई से पृथ्वी की ओर स्वतंत्रतापूर्वक गिर रही वस्तु में एक
- समान होती हैत्वरण जड्त्व नियम का पालन करता है ----यूटन की गति का प्रथम नियम

- स्वचालित वाहनों में प्रयुक्त द्रवचालित ब्रेक किस नियम का सीधा प्रयोग है —पास्कल नियम
- माध्यम के ताप में वृद्धि के साथ प्रकाश का वेग -अपरिवर्तित रहता है प्रकाश का वेग सबसे पहले किसने मापा था —रोमर ने
- यदि किसी गेंद को कर्ध्वाधर रूप से कपर फेंका जाए, तो गुरुत्वीय
- त्वरण —गेंद की गति की विपरीत दिशा में होगा द्रव्यमान, वेग, तरंगदैर्घ्य तथा कर्जा में से किसका संवहन तरंग द्वारा एक जगह से दूसरे जगह तक किया जाता है ---कर्जा

- किसी पिण्ड का येग समरूप कहा जाता है, जब येग का मान और
- जय सोडियम फ्लोरिन से अभिक्रिया करता है, तो इस तरह बना हुआ यौगिक गलित अवस्था में विद्युत का होता है —मुचालक
- आयतन, भार, द्रव्यमान तथा घनत्व में से कीन-सी मीतिक राशि है, जो मात्रा में युद्धि के याद भी अप्रभावित रहती है --आयतन
- थातु की एक वृताकार चकती के मध्य में छिद्र है। चकती को गर्म करने पर छिद्र का आकार - यदेगा
- पीछे का दुश्य देखने के लिए ऑटोमोवाइल में प्रयोग किया जाने वाला दर्पण है - उत्तल दर्पण
- किसी परिभित दूरी द्वारा पृथक्कृत दो आयेरा किसमें वृद्धि करते हैं विद्युत् क्षेत्र में
- पिण्डों को आवेशित करने के लिए जिम्मेदार कारक है —इलेक्ट्रॉनों का
- ट्रायोड का प्रयोग होता है :--एम्पलीफायर के रूप में
- रेफ्रीजरेटर में खाद्य पदार्थ ताजा रखने हेतु सुरक्षित तापमान है -0°C
- आधुनिक स्वचालित कलाई घडियों में कर्जा किससे मिलती है
- जब टीवी का स्विच ऑन किया जाता है, तो —ध्यनि तुरन्त सुनाई देती है लेकिन दुश्य बाद में दिखाई देता है
- विद्युत् धारा को मापने के लिए काम आने वाल उपकरण का नाम है - आमीटर
- माइका (अभ्रक) किस काम में लाई जाती है —विद्युत उद्योग में
- एक उपकरण जो कि दर्शक की आँखों के दृष्टि स्तर से ऊपर स्थित वस्तुओं को देखने व जिसका सीधा दृश्य बाधित होता है के काम आता है, जाना जाता है —परिदर्शी
- संवेग की वही इकाई है, जो की है -आवेग
- जब दो पिंडों को एक-दूसरे के साथ रगड़ा जाता है, तब -वं समान तथा विपरीत आवेश अर्जित करते हैं
 - सोलर कुकर, सोलर सैल, सोलर भट्ठी तथा सोलर वाटर हीटर में से कौन सूर्य के प्रकाश को सीधे विद्युत् कर्जा में परिवर्तित कर देता है —
- विद्युत् आवेश प्रवाहित हो सकता है —चालकों के माध्यम से
- उस विद्युत धारा को, जो नियत समय अंतराल के बाद अपनी दिशा बदल लेती है, कहा जाता है -प्रत्यावर्ती धारा
- बिजली घर से सप्लाई की जाने वाली वोल्टता को स्थिर करने के लिए प्रयोग में लाई जाने वाली युक्ति है -- टांसफार्मर
- सूर्य का ताप पृथ्वी तक किस प्रक्रिया द्वारा पहुँचता है —विकिरण
- सीसा संचायक बैटरी का कैथोड बना हाता है —सीसा (लेड) का तीर चलाने में प्रयोग की जाने वाली झुकी कमान में कर्जा निहित होती
- है —स्थितिज कर्जा सेल्सियस और फारेनहाइट तापमापी किस तापमान पर समान रीडिंग देती है -40°C
 - बर्फ पानी पर क्यों तैरता रहता है —बर्फ का घनत्व पानी से अपेक्षाकृत कम होता है
- प्रकाशिक तंतु का प्रयोग कहाँ किया जाता है —संचार सेवा के लिए किसी अर्धचालक को गर्म करने पर उसके प्रतिरोध पर प्रभाव पड़ता है
- —अपरिवर्तित रहता है पराश्रव्य तरंगों की आवृत्ति लगभग होती है —20,000 हर्ज़ से
- दुश्य छाप बनती है —फोटोग्राफिक कैमरा में
- फोटोप्रिन्ट जिसकी जीवन अवधि सबसे लम्बी होती है —श्वेत श्याम प्रिन्ट
- यदि आप स्थिर वायु में धूलकणों को देखने के लिए एक सूक्पदर्शी का प्रयोग करें तो ये आपको हर समय इधर-उधर चलते हुए दिखाई देंगे। इस परिघटना को क्या कहते हैं —ग्राउनी प्रमाव
- ऑप्टीकल फाइबर का आविष्कार किया था —नरिन्दर कपानी ने

 िकसी दृढ़ पिण्ड को किसी अक्ष के परित: घुमाने के लिए हम आरोपित करते हैं —वल आधूर्ण (Torque)

तारों के टिमटिमाने का कारण है—वागुमण्डलीय अपवर्तन

- द्रव्यों में चुम्बक्तव का कारण होता है —इलेक्ट्रॉनों की वर्तुल गति
- 'पिक्नोमीटर' नामक उपकरण का प्रयोग किसके मापने के लिए किया जाता है — घनत्व
- प्रकारा के परिक्षेपण का अध्ययन करने के लिए किस उपकरण का प्रयोग किया जाता है —स्पेक्टोमीटर
- निमञ्जित वस्तुओं का पता लगाने के लिए किस उपकरण का प्रयोग किया जाता है —सोनार
- विद्युत् उत्पादन के लिए प्रयुक्त नाभिकीय रिएक्टर आधारित है
 —नाभिकीय विखंडन पर
- श्वेत प्रकाश को भिन्न-भिन्न रंगों में विभक्त करने के लिए प्रयोग किया जाता है —प्रिज्म
- किस प्रकाश घटना के कारण हीरे जगमगाते हैं और आकर्षक होते हैं

 —बहुलित आंतरिक परावर्तन
- इलेक्ट्रिक हीटर की कुंडली बनाने में किस सामग्री का प्रयोग किया जाता है —नाइक्रोम का
- परमाणु बम का आविष्कार किसने किया था —ऑटो हॉन
- हाइड्रोजन का गुब्बारा ऊपर की ओर मैंडराता है —क्योंकि गुब्बारे का वजन उसके द्वारा विस्थापित वायु के वजन से कम होता है
- तिड्त चालक बनोन के लिए किस धातु का प्रयोग किया जाता है कॉपर (ताँवा)
- रीचार्जेंबल सेल में सेल के भीतर भंडारित होती है —रासायनिक कर्जा
- रेडियोऐक्टिवता मापी जाती है —गाइगर-मुल काउंटर से
- जूम लेन्स होता है —एक परिवर्ती फोकस दूरी वाला लेन्स
- आइन्स्टाईन के द्रव्यमान-कर्जा सम्बन्ध को व्यक्त किया जाता है E = mc²
- धातुओं के पृष्ठ पर एक उपयुक्त तरंगदैर्घ्य का प्रकाश पड़ने पर इलेक्ट्रॉनों के उत्क्षेपण की परिघटना को कहते हैं —प्रकाश-वैद्युत प्रभाव
- बहुत उच्च तापमान को मापने के लिए हम प्रयोग करते हैं
 ताप-वैद्युत अतापमापी
- स्टेथोस्कोप किस सिद्धान्त पर काम करता है —ध्विन का परावर्तन
- वैद्युत आवेश को भण्डारित करने के लिए प्रयुक्त उपकरण को क्या कहते हैं —संधारित्र
- पीले रंग का पूरक रंग (Complementary colour) है —नीला
- पैराशूट धीरे-धीरे नीचे आता है, जबिक उसी ऊँचाई में फॅका गया पत्थर तेजी से गिरता है, क्यों — पैराशूट के पृष्ठ का क्षेत्रफल ज्यादा है, अत: वायु का प्रतिरोध अधिक है
- मानव को विदित कर्जा का सबसे पुराना रूप है —सौर कर्जा
- जल से भरा तालाव कम गहरा दिखाई देने का कारण है —अपवर्तन
- घड़ी के स्मिंग में भंडारित कर्जा है —स्थितिज कर्जा
- तरण ताल (Swimmig pool) वास्तविक गहराई से कम गहरा दिखाई देता है, इसका कारण है अपवर्तन (Refraction)
- कारों के हेडलैंप में प्रयुक्त दर्पण होते हैं परविलयक अवतल (Parabolic concave)
- रेफ्रिजरेटर में फ्रीजर को शिखर के निकट लगाया जाता है क्योंकि इससे संवहन धाराओं को सुविधा मिलती है
- वायु में प्रचक्री क्रिकेट बॉल के दोलन की व्याख्या किस प्रमेय के आधार पर की जा सकती है — बर्नोली प्रमेय के आधार पर
- सूर्य की तेज रोशनी में चल रहा कोई व्यक्ति जब अंधेरे कमरे में प्रवेश करता है, तो कुछ क्षण तक उसे स्पष्ट दिखाई नहीं देता, क्योंकि — रेटिना कुछ समय तक उज्ज्वल छिवयों को बनाए रखता है और क्षणिक तौर पर असंबेदी (Insensitive) हो जाता है
- वर्णांधता वाले आदमी को लाल रंग दिखाई देगा —हरा

- वाहन-चालन हेतु पश्च-दृश्य दर्पण होता है —उत्तल-दर्पण
- परिदर्शी (पेरिस्कोप) काम करता है —पूर्ण आंतरिक परावर्तन के सिद्धांत पर
- विक्षेपण बल की खोज सबसे पहले की थी —कोरिओलिस ने
- जलवाण में भण्डारित कच्या है —गृप्त कच्या
- प्रकाश तरंगें अनुप्रस्थ तरंगें हैं —क्योंकि उन्हें ध्रुवित किया जा सकता है
- गैल्वेनोमीटर के द्वारा मापा जाता है —धारा
- जब लोहे में जग लगता है, तो उसके भार पर प्रमाव पड़ता है यहता है
- प्रकाश-तरंग है —एक विद्यत्-चुंबकीय तरंग
- शीतकाल में एक मोटी कमीज की अपेक्षा दो पतली कमीजें हमें अधिक गरम रख सकती हैं —दो कमीजों के बीच यायु की परत रोधी माध्यम के रूप में काम करती है
- फोटो सेल में प्रकाश कर्जा को जिस कर्जा में परिवर्तित किया जाता है
 —विद्युत कर्जा में
- अण्डा मृदु जल में इवं जाता है, किन्तु नमक के सान्द्र घोल में तैरता
 रहता है, क्यों क्योंकि नमक के घोल का घनत्व अण्डे के घनत्व में
 अधिक हो जाता है।
- न्यूक्लीय रिएक्टर में भारी जल का प्रयोग किया जाता है नियामक (Moderator) के रूप में
- जब काँच की छड़ को रेशम से रगड़ते हैं, तो —दोनों पर वरावर तथा कि विजातीय आवेश आ जाता है
- प्राथमिक सेल, जिसका दैनिक जीवन में उपयोग होता है, वह है
 —शष्क सेल
- सजातीय धुव एक-दूसरे को आकर्षित करते हैं या प्रतिकर्षित प्रतिकर्षित
- 📦 🗸 पारे का क्वथनांक है —357°C
- इलेक्ट्रॉन वोल्ट का मात्रक है—ऊर्जा
- ध्वनि-तरंग अपने साथ क्या ले जाती है —कर्जा
- पूर्ण आन्तरिक परावर्तन के लिए आपतन कोण का मान होना चाहिए
 —क्रान्तिक कोण से अधिक
- विद्युत् बल्ब के तन्तु का ताप अधिकतम तब होगा, जबिक उसका रंग है —सफेद
- निर्वात में X किरणों, प्रकाश तरंगों तथा रेडियो तरंगों में कौन सा गुण समान होगा —चाल
- 1 कूलॉम आवेश में इलेक्ट्रॉन संख्या होगी —6.25 × 10¹⁸
- भाप तथा अन्य वाष्प-चक्नों में असंघननीय को दूर करने की प्रक्रिया को कहा जाता है —संघनन प्रक्रिया
- िकसी चालक पर विद्युत् आवेश की उपस्थित ज्ञात करने के लिए प्रयोग करते हैं —स्वर्ण-पत्र विद्युतदर्शी
- घर्षण विद्युत् के आविष्कारक थे —थेल्स
- वोल्टमीटर, आमीटर, धारामापी और वोल्टीय सेल में से किसका
 प्रतिरोध सबसे अधिक होता है —वोल्टमीटर
- भारत में भार और नाप की मीट्रिक प्रणाली का प्रचलन कब प्रारंभ हुआ
 —1 अक्टूबर, 1958 से
- लोहा, गन्धक, निकिल और कोबाल्ट में से कौन अचुम्बकीय वस्तु है
 गन्धक
- चीनी मिट्टी, अधक, काँच और एल्युमिनियम में कौन सा पदार्थ चालक है —एल्युमिनियम
 - \bullet ्रजड्त्व आधूर्ण बराबर है $-\frac{2KE}{\omega^2}$
- चन्द्रमा पर वायुगंडल नहीं है, क्योंकि —यहाँ परमाणुओं का पलायन वेग उनके वर्गमाध्य मूल वेग से कम है
- हवा में मोमबत्ती का दहन कौन सा परिवर्तन है —रसायनिक
- एक हॉर्स पॉवर कितने वाट के बराबर होता है —746 वाटं

- एकोस्टिक्स किससे संबंधित विज्ञान है —ध्विन से
- सरल आवर्त गति में स्थित रहता है —आवर्तकाल
- ध्वनि का वेग निर्भर करता है —तरंगदैर्ध्य पर
- पराश्रव्य ध्विन सुनी जा सकती है —चमगादड़ एवं युत्तों द्वारा
- दर्पण के पीछे की सतह को किसी परत द्वारा कलई की जाती है सिल्बर नाइट्रेट
- केल्विर स्केल पर मानव शरीर का सामान्य तापमान कितना होता है 310
- ध्विन तरंग अपने मार्ग में रूकावट आने पर क्या करती है मुद्
 जाती है
- प्रतिध्विन सुनाई देती है जब परावर्तक पृष्ठ का —क्षेत्रफल अधिक हो
- यदि एक सरल लोलक की लंबाई दोगुनी कर दी जाए, तो उसका आवर्त काल बढ़ेगा या घटेगा — यदेगा
- िकरणों के लम्बवत् रखे प्रति इकाई क्षेत्रफल प्रति सेकण्ड पर आपतित प्रकाश की मात्रा कही जाती है —दौप्ति तीव्रता
- एक अवतल दर्पण की नाभिक दूरी निर्भर करती है —दर्पण की वक्रता-त्रिज्या पर
- इन्द्रधनुष का बनने के कारण है पानी की बूँदों से सूर्य प्रकाश का विक्षेपण (dispersion)
- ताँबे की किसी डिस्क (Disc) के मध्य में एक वृत्ताकार छिद्र है डिस्क को गर्म करने पर छिद्र का व्यास —बढ़ेगा
- धरातल पर ऊर्जा का ऑतम स्रोत है —सौर ऊर्जा
- एक समतल दर्पण की वक्रता त्रिज्या है -अनन्त
- एक व्यक्ति समीप की वस्तु को ठीक-ठीक नहीं देख पाता है, वह पीडित है —हाइपरमेट्रोपिया से
- कोई ठोस पिंड किसी द्रव में पूर्णत: दूबा हुआ है और उस पर एक उत्सेप बल लगता है, किस कारक पर उत्सेप बल का मान निर्मर करेगा —द्रव का घनत्व
- िकसी ठोस पिंड का भार W है, उस स्थिति में इस पिंड का आभासी
 भार क्या होगा जब यह किसी द्रव में तैर रहा है शून्य
- क्या कारण है कि लोहे की कील पारे में तैरती है, लेकिन पानी में डूब जाता है —पारे का घनत्व, जल के घनत्व से अधिक है अत:, पारे के कारण उत्पन्न उत्क्षेप-बल, जल के कारण उत्पन्न उत्क्षेप बल से अधिक है
- U-235 के एक न्यूक्लियस के विखण्डन से 3.2×10^{-11} जूल कर्जा विमुक्त होती है। 10 मेगावाट प्रति घंटा की दर से कर्जा उत्पन्न करने के लिए 10 घंटे में कितने विखण्डनों की आवश्यकता होगी -125×10^{22}
- अतिसूक्ष्म मापन के लिए कौन-सा उपकरण प्रयुक्त होता है —वर्नियर कैलिपर
- स्नेल का नियम किससे से संबंधित है प्रकाश के अपवर्तन से
- िकसी धारामापी (Galvanometer) को आमीटर में कैसे परिवर्तित किया जा सकता है —धारामापी के साथ समान्तर क्रम में एक छोटा-सा प्रतिरोध जोड़कर
- वह सिद्धान्त, जो कि एक पिण्ड द्वारा उत्प्लावक बल अनुभव करने की व्याख्या करता है, जबकि वह दव में अवमञ्जित कर दिया जाता है, किसके द्वारा प्रतिपादित किया गया था —आर्किमिडीज
- घनत्व की सही इकाई है —ग्राम/सेमी³
- लैक्टोमीटर एक प्रकार का है —हाइड्रोमीटर
- कष्मामिति का सिद्धान्त किस सिद्धान्त पर आधारित है —कर्जा के संरक्षण का सिद्धांत
- श्वेत प्रकाश को उसके अवयवी रंगों में विभाजित करने वाली प्रक्रिया क्या कहलाती है —वर्ण-विक्षेपण
- दो बिन्दुओं के बीच विभवान्तर V है। Q आवेश को प्रथम बिन्दु से दूसरे बिन्दु तक ले जाने में किए गए कार्य W का मानर होगा —W
 Q.V
- प्रतिरोधक बनाने के लिए सामान्यत: किस पदार्थ का उपयोग होता है

 —नाइक्रोम

- पुन: आवेशित होने वाली (Rechargeable) बैटरी में रासायनिक कर्जा को कौन-सी कर्जा में परिवर्तित किया जाता है —िवद्यत् कर्जा
- 1 फर्मी में कितना मीटर होता है —10-15 मीटर
- S.I. पद्धति का प्रचलन कब से है —1967 ई. से
- फ्यूज का उत्तम तार किस धातु का बना होता है —ताँवा, टिन व सीसा
- रेडियोलॉजिस्ट ऑतों का सीधा एक्स-किरण फोटोग्राफ सामान्यत: क्यों नहीं लेते —एक्स किरणें बिना अच्छा प्रतिबिम्ब बनाए औतों से पार निकल जाती है
- वबला हुआ एक अण्डा कर्जा की कितनी कैलोरी प्रदान करता है —
 77 कैलोरी
- बहता हुआ बर्फखण्ड (Iceberg) कपर से न पिघल कर नीचे के तल पर क्यों पिघलता है — नीचे के तल पर अधिक दाव होने के कारण बर्फ का गलनांक कम होता है
- क्या होता है जब एक प्रकार की किरण एक काँच की सिल्ली (Slab)
 में हवा से प्रवेश करती है उसका तरंगदैर्ध्य घट जाता है
- कृत्रिम उपग्रह में संचार के किन तरंगों का प्रयोग किया जाता है सूक्ष्म तरंगें
- फोटो स्टेट मशीन कैसे कार्य करती है —इलेक्ट्रोस्टेटिक इमंज-मेकिंग (स्थिर-वैद्युत् प्रतिबिम्य निर्धारण) द्वारा
- पानी की सतह पर हल्के से रखी गई एक लोहे की सुई उस पर क्यों तैरती रहती है — पृष्ठीय-तनाव के कारण
- यदि एक कोशिका के व्यास को दोगुना कर दिया जाए, तो उसके भीतर के पानी का उठाव होगा —आधा
- जब एक कार की गित दोगुनी कर दी जाती है, तब उसकी उतनी हो दूरी में रोकने के लिए ब्रेक बल (Braking force) कितना होगा — चौगुना
- •ाक्त आवृत्ति मॉडुलेशन में होता है —नियत आयाम
- एनीमोमीटर यंत्र से क्या मापा जाता है —हवा की दिशा और वेग
- पृथ्वी के चारों ओर उपग्रह को कक्ष में रखने के लिए क्या आवश्यक है —ऐच्छिक अभिकेन्द्री बल और पृथ्वी का गुरुत्वाकर्षण बराबर होना चाहिए
- बर्फ पानी पर तैरती है क्योंकि बर्फ का घनत्व पानी के घनत्व से कम होता है, विशाल प्लावी बर्फ का कितना भाग पानी के अंदर रहता है —1/10 भाग
- प्रकाश संश्लेषण की दर किस रंग के प्रकाश में सबसे अधिक होती है

 —लाल प्रकाश
- क्या कारण है कि आकाश में तारे टिमटिमाते दिखते हैं —वायुमंडल की विभिन्न परतों द्वारा अपवर्तन के कारण
- 'एकॉस्टिक्स' में किसका अध्ययन किया जाता है —ध्वनि का
- िकसी वस्तु को पृथ्वी से चन्द्रमा पर ले जाने पर क्या परिवर्तन होगा
 —उसका भार कम हो जायेगा
- बस में द्राइवर के पास लगा दर्पण होता है —उत्तल दर्पण
- कोई भी नाव नहीं दूबेगी, जब तक वह पानी हटाती है, अपने —भार के बराबर
- सिनेमा किस सिद्धांत पर निर्मित होता है —दृष्टि के पश्चदीप्त सिद्धांत के आधार पर
- तरल पदार्थ का घनत्व गरम करने पर —घट जाता है
- यदि नोड तथा संलग्न एन्टीनोड के मध्य दूरी 30 सेमी. है, तो तरंग की लंबाई होगी —120 सेमी.
- वाहनों के टायर अच्छी प्रकार से फुलाए जाते हैं —फिसलने से बचने तथा न्यूनतम घर्षण हेतु
- ध्विन कर्जा को वैद्युत कर्जा में परिवर्तित करने वाला यंत्र है माइक्रोफोन
- जब गरम पानी को अपेक्षतया अधिक तप्त गिलास के ऊपर छिड़का जाता है, तो वह टूट जाता है, क्योंकि —गर्म पानी से गिलास संकुचित हो जाता है

- ट्रांसफार्मर का कार्य है —ए. सी. चोल्टता को घटाना और बढ़ाना
- किसी द्रव के पृष्ठ-तनाव (Surface tension) का कारण है अणुओं के मध्य संसंजक बल
- एक गोलाकार, एक घन और एक गोला सभी एक ही पदार्थ के बने हुए हैं और इनका द्रव्यमान भी एकसमान हैं, उन्हें 300°C तक गर्म करके एक कमरे में छोड़ दिया गया, इसमें से सबसे भीमी गति किसका होगा —गोला
- परमाणु-पाइल का प्रयोग होता है —नाभिकीय विखण्डन के प्रचालन में
- पर्वतों पर आच्छादित हिम, सूर्य की गर्मी द्वारा एक साथ न पिघलने का कारण है —इसमें संगलन की गुप्त कथ्मा उच्च होती है
- दो तरंगें, जिनमें से प्रत्येंक का आयाम 1.5 मिमी. है और बारम्बारता
 10 Hz है, विपरीत दिशाओं में चल रही हैं और उनकी गति 20 मिमी.
 /से. है। संलग्न आसींधर्यों (नोड) के बीच मिमी. में दूरी होगी —1.0
- करोसीन लैम्प में चिमनी के नीचे छिद्र होते हैं, इसका कारण है ऑक्सीजन का सप्लाई बना रहना
- एक रबड़ की गेंद को 2 मीटर की ऊँचाई से गिराया जाता है। यदि
 प्रतिक्षिप्त होने के बाद कोई भी ऊर्जा और बेग का नुकसान नहीं है, तब
 वह कितना ऊपर उठेगी —2 मीटर
- एक समतल दर्पण से परावर्तन के बाद शब्द ЗЭМВОГУИСЕ = SONAJUBMA
- यदि बर्फ के टुकड़े को, एक गिलास शुद्ध जल और एक गिलास शुद्ध अल्कोहॉल में डाला जाए तो यह —अल्कोहल में तैरती रहेगी और जल में डूब जाएगी
- लम्बी अवधि के उपयोग के बाद, बल्ब के अन्दर की ओर एक धुंधला धब्बा बन जाता है, इसका कारण है —टंगस्टन तन्तु की वाष्प बनकर वहाँ एकत्रित हो जाती है
- ईंट के बने भवनों की तुलना में कच्ची मिट्टी के मकान ग्रीष्म में ठण्डे और शीतकाल में अधिक गरम होने के कारण है —जल-वाप्पन से गर्मियों में ठण्डक और छिद्रों में आने वाली धूप के कारण सिद्यों में गरमाई रहती है
- भिन्न कोणों वाले परन्तु समान कैंचाई वाले दो आनत समतलों पर एक गोले के लुढ़कने में समय और गतिज कर्जा लगेगी —वही समय और बही गतिज कर्जा
- 'मायोपिया' का दूसरा नाम है —समीप दृष्टि:
- यदि ताँचे के तार को दोगुना चढ़ा दिया जाए तो उसक प्रतिरोध बढ़ेगा
 —चार गुना
- 'द्रवचालित ब्रेक' काम करते हैं पॉस्कल नियम के सिद्धांत पर
- सौर बैटरियों (सेलों) में प्रयक्त पदार्थ होता है —सीजियम
- लाल रंग को आपात या खतरा सिग्नल के रूप में प्रयोग किया जाता है
 —क्योंकि इसका तरंगदैर्ध्य सबसे लम्बा होता है
- शेविंग दर्पण में प्रयोग किया जाता है परवलियक दर्पण
- मानव शरीर में सबसे अधिक मात्रों में कौन-सा तत्व पाया जाता है
 —ऑक्सीजन
- ठोस अवस्था में विद्युत् धारा प्रवाहित करने वाला अधातु है —ग्रेफाइट
- किसके द्वारा जीवाणुओं तथा विषाणुओं (वाइरस) की संरचना देखी जा सकती है —इलेक्ट्रॉन सूक्ष्मदर्शी से
- कौन-सा रंग का सम्मिश्रण दिन और रात के समय सर्वाधिक सुविधाजनक होता है —लाल और हरा
- ट्रांसफॉर्मर, डायनेमो था इंडक्शनल क्वायल कार्य करता है —िवधुत् चुम्बकीय प्रेरण सिद्धांत पर
- सूर्य के प्रकाश का भाग जो सौर कुकर को गर्म करता है —अवरक्त
- सापेक्षवाद का सिद्धान्त किसके द्वारा बनाया गया था —अलबर्ट आइन्स्टाइन
- यदि किसी साधारण लोलक की लम्बाई आधी कर जाती है, तो उसके दोलन काल पर क्या प्रभाव पड़ता है —घट जाता है
- कनी कपड़े शरीर को गर्म रखते हैं —कन ठष्मा का क्चालक होता है

- िकसी टॉवर के शीर्य से समस्तरीय रूप से प्रक्षेपित किया गया कण जमीन पर उतनी दूरी पर गिरता है, जो टावर के पाद से कचाई के बराबर होती है, तो कण द्वारा तय किया गया पथ कैसा होगा — परवत्त्रय
- बॉल को लपकते समय, एक क्रिकेट खिलाड़ी अपना हाथ नीचे कर लेता है — आयेग को कम करने के लिए
- रेफ़िजरेटर में शीतन होता है —याणशील इय के वाष्पण द्वारा
- माध्यम के तापमान में युद्धि के साथ प्रकारा की गति —यद्ती है
- शीतकाल में कपड़े हमें गरम रखते हैं, क्योंकि वे —शरीर की कप्मा को बाहर जाने में रोकते हैं
- इलेक्ट्रॉन स्क्ष्मदर्शी का आविष्कार किया था —नोल और रूस्का
- धूप के चरमे के लिए किस काँच का प्रयोग किया जाता है —िफ्लंट
- द्रव तापमापी की अपेक्षा गैस तापमापी अधिक संवेदी होता है, क्योंिक गैस —द्रव की अपक्षा अधिक प्रसार करती है
- ग्रेफाइट बिजली का है सुचालक
- दाब बढ़ाने से बर्फ के गलनांक पर क्या प्रभाव पड़ता है घटता है
- जब बस सहसा मुड़ती है तब बस में खड़ा यात्री बाहर की ओर गिरता है, इसका करण है — उस पर बाहर की ओर घर्षण
- यदि किसी कण का वेग-समय ग्राफ y = mt + c द्वारा निरूपित हो, तो कण चल रहा है — एकसमान येग के साथ
- सूर्य के प्रकाश का कौन-सा भाग सौर कूकर को गर्म करता है —
- जब आँख में धूल जाती है तो किस कारण अंग सूज जाता है और गुलाबी हो जाता है —नेत्रश्लेष्मला (कंजेक्टाइवा) के कारण
- साधारण मरकत (पना) का रंग होता है —गहरा हरा
- घड़ी में क्वार्ट्ज क्रिस्टल का काम आधारित है —दाब (पाइजो) विद्युत्
 प्रभाव पर
- किन तरंगों का प्रयोग रात्रि-दृष्टि उपकरण में किया जाता है अवरक्त तरंगों का
- दृश्य स्पेक्ट्रम का तरंगदैध्यं है —3900 Å-7600Å
- प्लूटोनियम है —रेडियोऐक्टिव तत्त्व
- बिजली की इस्त्री में लगाए गए तापन एलिमेन्टों के निर्माण के लिए किस धातु का प्रयोग किया जाता है —नाइक्रोम
- प्रकाशीय सूक्ष्मदर्शी की अपेक्षा इलेक्ट्रॉन सूक्ष्मदर्शी अधिक आवर्धन देता
 है, क्योंकि दृश्य प्रकाश के तरंगदैष्य की तुलना में इलेक्ट्रॉनों का
 तरंगदैर्घ्य कम होता है
- किस अंग में वर्णक-विशेष के आधार पर किसी व्यक्ति की आँखें भूरो, नीली या काली होती है —परितारिका (आइरिस)
- तापमान घटने के साथ-साथ किसी धातु के प्रतिरोध पर प्रभाव पड़ता है —घटता जाता है
- चुम्बकीय क्षेत्र की तीव्रता होती है —ऐम्पियर/मीटर
- निकट दृष्टि-दोष या मायोपिया को ठीक करने के लिए प्रयोग किया जाना चाहिए —अवतल लेन्स
- बस के ऊपरी डेक पर यात्रियों को खड़ा नहीं होने दिया जाता है —
 क्योंकि यात्री गति के जड़त्व में होते हैं
- नीले काँच की प्लेट धूप में नीली दिखाई देती है —क्योंकि यह नीला रंग संक्रमित करती है
- चलती गाड़ी से एक पत्थर गिराया जाता है, जमीन पर खड़े एक प्रेक्षक के लिए जमीन पर पहुँचता हुआ पत्थर पथ लेता हुआ दिखाई देगा — परवलियक (पेराबोलिक)
- ... आवर्धक लेन्स होता है -अल्प फोकस दूरी वाला उत्तल लेंस
- सूक्ष्मदर्शी (Microscope) का आविष्कार किया था —जैड जॉन्सन ने
- एक त्रिविमीय छवि के पुनरुत्पादन के लिए फोटोग्राफिक रिकार्ड को कहते हैं — हॉलोग्राम
- वह प्रकाशीय उपकरण जिसकी सहायता से दोनों आँखों से एक साथ दूरवर्ती वस्तुओं का आवर्धित रूप दिखाई देता है —िद्विनेत्री (बाइनोक्यूलर)

- वाहनों में स्नेहक तेल का प्रयोग क्यों किया जाता है पर्पण कम करने के लिए
- असमान वेग और एकसमान त्वरण के साथ चल रहे पिण्ड के लिए —थेग-समय गाफ रिक्षिक होता है
- 'द्रव्यमान-कर्जा सम्बन्ध' निष्कर्ष है —सापेक्षता के सामान्य नियम का
- क्या कारण है कि तेल की बूँद पानी पर फैल जाती है —नयोकि तेल का पृष्ठ-तनाव पानी से बहुत कम होता है
- एक साधारण सुक्ष्मदर्शी होता है —कम फोकस दूरी वाला उत्तल लेन्स
- क्या कारण है कि उच्च पर्वतीय प्रदेशों में नाक से रक्तस्राव होने लगता है —कोशिकाओं में रक्त का दबाव बाहरी दबाव से अधिक हो जाता है
- नॉट (Knot) माप है —गोल वस्तुओं की वक्रता का
- अधिक द्रव्यमान वाली एक क्रिकेट बॉल और एक टेनिस बॉल को समान वेग से फॉका जाता है, यदि उन्हें रोका जाए तो बॉल जिसके लिए अधिक बल की आवश्यकता होगी —क्रिकेट बॉल
- संवातक कमरे की छत के निकट लगाए जाते हैं, क्योंकि —गर्म हवा ऊपर उठकर बाहर जा सके
- भीषण सर्दी में उण्डे देशों में पानी की पाइपें फट जाती हैं, क्योंकि जमने पर पानी फैलता है
- पानी से निकलने पर शेविंग बुश के बाल आपस में चिपक जाते हैं, इसका कारण है —पृष्ठ तनाव
- परमाणु रियेक्टर में प्रयुक्त ईंधन है —यूरेनियम
- अपमार्जिक (डिटर्जेंट) पृष्ठ को साफ करते हैं —पृष्ठ तनाव के सिद्धांत के अनुसार
- स्थिर गति से जा रही खुली कार में बैठा एक बालक गेंद को हवा में सीधा कपर फॅकता है, गेंद गिरेगी —बालक के हाथ में
- जब किसी वस्तु को पृथ्वी से चाँद पर ले जाया जाए, तो —भार बदल जाता है, परंतु द्रव्यमान उतना ही रहता है
- प्रकाश का तरगदैर्घ्य प्रकाश-संश्लेषण के लिए सबसे अधिक प्रमावी है —नीला
- हमारे घरेलू वैद्युत परिपथ में पयूज पिघल जाता है, जब भारी वृद्धि होती है —धारा में
- पत्थर को ठोकर मारने से व्यक्ति को चोट का कारण है क्रिया के विरीत प्रतिक्रिया
- पृथ्वी पर दूरस्य वस्तुओं को देखने के लिए प्रयुक्त उपकरण है पार्थिव दूरदर्शक
- साबुन के बुलबुले पर श्वेत प्रकाश डालने से रंग दिखाई देते हैं, इसका कारण है —व्यतिकरण
- उपग्रह से किसी अंतरिक्ष यात्री द्वारा गिराया गया चम्मच उपग्रह की गति का अनुसरण करता रहेगा
- आपेक्षिकता सिद्धांत के अनुसार सदा एकसमान रहता है —प्रकाश का वेग
- 'बोलोमीटर' का प्रयोग क्या मापने के लिए किया जाता है —तापमान
- दूध को मधने पर क्रीम किस बल के कारण उससे अलग हो जाता है

 —अपकेन्द्रीय बल (Centripetal) बल के कारण
- प्रकाश विद्युत् (Photo-electric) सेल बदलता है —प्रकाश कर्जा को वैद्युत् कर्जा में
- वाष्प का द्रव में जमना कहलाता है द्रवण
- अंशत: पानी में हूबी हुई छड़ी टूटी हुई प्रतीत होती है —अपवर्तन के कारण
- आह्वान घंटी (कॉलिंग बेल) में प्रयोग किया जाता है —विद्युत चुंबक का
- दूरस्थ स्थानों पर विद्युत्-चुम्बकीय तरंगें भेजने वाला पहला वैज्ञानिक है

 —हाइनरिच हर्द्ज
- जब कोई जहाज नदी से समुद्र में प्रवेश करता है, तो वह —थोड़ा-सा ऊपर उठ जाता है
- ठीक शून्य डिग्री सेल्सियस पर कटोरे में रखी बर्फ और पानी में परिवर्तन आएँगे — सारा पानी बर्फ बन जाएगा

- 'शोर' को मापा जाता है —-डेमीवल से
- बाइसिकिल के पहिए में प्रयुक्त आरें (स्योक्स) बढाती हैं —उसका बहुल आपूर्ण
- दीड़ के दीरान भायक का गुरुत्य केन्द्र होता है -उसके पैरों के आपे
- असमान द्रव्यमान याले दो पत्थर समान येग से कर्ष्याधर कपर फेंके गए हैं। कौन-सा पत्थर अधिक केंगाई तक आएगा —कम द्रव्यमान याला
- एक आदमी 10 मीटर से दूर साफ नहीं देख पाता, इसका अर्थ वह प्रसित है —िकट दृष्टि-दोष (Myopia) में
- सबसे अधिक अपवर्तनांक वाला आँख का अंग है —लेन्स
- कप्पा को वैद्युत कर्जा में परिवर्तन करने के लिए प्रयोग किया जाता है
 —थर्मोकपल का
- परावर्तित प्रकाश में कर्जा —आपतन कोण पर निर्भर नहीं करती
- गतिशील वैद्युत आवेश पैदा करता है गुम्बकीय क्षेत्र
- विद्युत्-आवेश का S.I. मात्रक है —कुर्लीम
- बॉल पेन काम करता है —केशिकत्व के मिद्धांत पर
- ट्रॉन्सफार्मर के क्रोड के लिए सर्वोत्तम द्रव्य है —नर्म लोग
- जब किसी दर्पण से कोई प्रकाश तरंग परावर्तित होती है, तब परिवर्तन होता है — उसके आयाम में
- ए. सी. परिपथों में ए. सी. मीटर मापते हैं ms मान
- फ्रिंग्म से गुजारने पर प्रकाश का कौन-सा रंग सबसे अधिक विचलन दर्शाता है — वैंगनी
- रॉकेट काम करता है —रैखिक संवंग संरक्षण का मिद्धान
- ्र तुल्यकाली उपग्रह के परिक्रमण की अवधि होती है —24 पण्टे
- घरेलू विद्युत् उपकरणों में प्रयुक्त सुरक्षा फ्यूज तार उस धातु से बनी होती है, जिसका —गलनांक कम हो
- कोई पिण्ड ऊष्मा का सबसे अधिक अवशोषण करता है, जब वह हो
 —काला और खुरदरा
 - लैम्बर्ट नियम संबंधित है —प्रदीप्त से
- ध्विन की न्यूनतम तीव्रता जो एक सामान्य मानव कान पहचान सकता है, व्यक्त की जाती है —10 dB के रूप में
- तुल्यकाली उपग्रह पृथ्वी के गिर्द घुमता है —पश्चिम से पूर्व को आंर
- बल की परिभाषा न्यूटन के किस नियम से प्राप्त की जा सकती है पहले गति नियम से
- किसी विजली की इस्तरी को गर्म करने के लिए धातु का प्रयोग किया
 जाता है जस्ता का
- वाहनों के अग्र दीपों (हेड लाइटों) में दर्पण का इस्तेमाल होता है अवतल दर्पण
- एक तालाव के किनारे एक मछुआरा मछली को भाले से मारने की कोशिश कर रहा है। तद्नुसार उसे निशाना लगाना चाहिए —पानी की कपरी सतह पर
- ध्विन तरंग का सबसे अधिकतम वेग होता है —ठोस में
- पारदर्शी जल के भीतर पड़ी हुई किसी मछली को दूर से शूट करना कठिन है, इसका कारण है —अपवर्तन
- कोई व्यक्ति सूक्ष्मदर्शी और दूरदर्शी यंत्रों में अंतर क्या देखकर जान सकता है — लंस का आकार

भौतिकी : महत्वपूर्ण परिभाषाएं

- विद्युत सेल (Electric Cell) विद्युत सेल एक ऐसी युक्ति है, जो किसी परिपथ में आवेश के प्रवाह को निरंतर बनाये रखती है।
- इलेक्ट्रॉन (Electron) इलेक्ट्रॉन एक ऋणावेशित मूल कण है, जो परमाणु में नाभिक के चारों ओर चक्कर लगाता है।
- दिष्ट धारा (Direct Current) —िदिष्ट धारा वह धारा है, जो सदैव एक ही दिशा में बहती है तथा जिसका परिमाण नियत रहता है।
- डायोड (Diode) डायोड एक ऐसी इलेक्ट्रॉनिक युक्ति है, जिसमें केवल दो इलेक्ट्रोड, कैथोड व प्लेट होते हैं, इसके द्वारा इलेक्ट्रॉनों का उत्सर्जन करके धारा प्रवाहित की जाती हैं।

चालक (Conductor) —चालक में पदार्थ हैं, जिनमें होकर विद्वत धारा सरलता से प्रवाहित होती है।

अपकेन्द्रिय बल (Centrifugal Force) — गृताकार मार्ग में मूमती हुई वस्तु पर केन्द्र के बाहर की ओर लगने वाले बल को अपकेन्द्रिय बल कहते हैं। यह एक छदम् चल (Pseudo Force) है।

कोन्डिला (Candela) —कोन्डिला ज्योति-तीवता (Luminous in-

tensity) का मात्रक है।

कैलोरोमीटर (Calorimeter) —इसके द्वारा तापकीय ऊच्या की गणना

बार (Bar) —बार, दाब मापने की इकाई है। 1 बार 10⁵ पास्कल के

बराबर होता है।

अवोगाद्रो परिकल्पना (Avogadro's Hypothesis) —इसे परिकल्पना के अनुसार समान ताप पर गैसों के समान आयतन में अणुओं की संख्या समान होती है।

परमाणु संख्या (Atomic Number) —परमाणु संख्या किसी परमाणु के नाभिक में उपस्थित प्रोटॉनों की संख्या को व्यक्त करती है। इसे प्राय: 'Z' से प्रदर्शित किया जाता है।

ध्वनिको (Acoustics) —ध्वनिको, भौतिको की वह शाखा है, जिसके अंतर्गत ध्वनि तरंगों के प्रयोग व उनके गुणों का अध्ययन किया

त्वरण (Acceleration) —िकसी वस्तु के वेग परिवर्तन को त्यरण कहते हैं। इसका मात्रक मीटर प्रति वर्ग सेकण्ड होता है तथा यह एक सदिश राशि है।

द्रव्यमान संख्या (Mass Number) —नाभिक में प्रोटॉनों व न्यूट्रॉनों

की संख्या को द्रव्यमान संख्या कहते हैं।

चुम्बक (Magnet) —चुम्बक वह पदार्थ है, जिसमें आकर्षण का गुण पाया जाता है तथा जो स्वतंत्रतापूर्वक सदैव उत्तर-दक्षिण दिशा में ठहरता है।

लेसर (LASER) — 'Light Amplification by Stimulated Emission of Radiation' लेसर का पूरा रूप है। लेसर किरणों में दिशात्मकता, सम्बद्धता तथा उच्च तीव्रता के गुण होते हैं।

लैटिस (Lattice) —पदार्थ में अणुओं के नियमित रूप में व्यवस्थित

रहने वाले निकाय को लैटिस (जलाक) कहते हैं।

गुप्त कष्पा (Latent Heat) —अवस्था परिवर्तन के समय पदार्थ द्वारा ली गयी या दी गयी कष्मा को गुप्त कष्मा कहते हैं। यह कष्मा पदार्थ के माप को नहीं बढ़ाती है। गतिज कर्जा (Kinetic Energy) —िकसी बस्तु में उसकी गति के

कारण जो ऊर्जा उत्पन होती है, उसे गतिज ऊर्जा कहा जाता है।

केल्विन (Kelvin) __ कप्पागितको में ताप को केल्विन में मापते हैं।

शन्य डिग्री केल्विन प्रकृति में पाया जाने वाला न्यूनतम ताप है। जंडत्व (Inertia) —यदि कोई वस्तु स्थिर है या एक सरल रेखा में समान वंग से गतिमान है, तो यह अपनी उसी अवस्था में बनी रहती है जब तक कि उस पर कोई बाह्य बल न लगाया जाये। इसी को जडत्व 4/200 m THE कहते हैं।

प्रेरण (Induction) — जब कोई चालक किसी चुम्बकीय क्षेत्र में क्षेत्र की फ्लक्स रेखाओं को काटते हुए गृति करता है, तो चालक के सिरों के बीच एक वैद्यत विभवान्तर प्रेरित हो जाता है। इस घटना को प्रेरण

कहते हैं।

इम्पोर्डन्स (Impedence) —एक प्रत्यावर्ती धारा के परिपथ में

उपस्थित कुल प्रतिरोध इम्पीडेन्स कहलाता है।

कष्मा (Heat) __कष्मा एक प्रकार की कर्जा है, जो दो वस्तुओं के बीच उनके तापान्तर के कारण प्रवाहित होती है।

गुरुत्व (Gravity) —गुरुत्व वह आकर्षण यल है, जिससे पृथ्वी किसी

वस्त को अपने केन्द्र की ओर खींचती है।

आवृत्ति (Frequency) —कोई दोलन करती हुई वस्तु एक सेकण्ड में जितने दोलन पूरे करती है, उसे उस वस्तु की आवृत्ति कहते हैं।

बल (Force) __ बल वह क्रिया है, जो किसी वस्तु को स्थिर अथवा एकसमान गति की स्थिति में परिवर्तन करने की प्रवृति रखती है।

- फाइनर ऑप्टिकल (Fiber Optics) —इस प्रक्रिया के अंतर्गत प्रकाश के कांग की अत्यंत यागिक व लगीली छड़ों द्वारा संघरण किया जाता है।
- याध्यन (Evaporation) मापान्य ताप पर किसी द्रव के वाष्य में बदलने की किया को वायन कहते हैं।
- विभवान्तर (Potential Difference) —िकसी चानक के सिर्ग के यीच विभवातार उनके योच एकांक आवेश के गति करने में किये गये कार्य के यसवर होता है।
- शक्ति (Power) —कार्य करने की दर को शक्ति कहते हैं। इसका मात्रक घॉट है।
- दाब (Pressure) —एकांक क्षेत्रफल पा लगने वाले वल को दाव कहने हैं।
- प्रतिरोध (Resistance) किसी चालक का प्रतिरोध उसके मिर्ग के यीच के विभवानार व उसमें बहुने वाली धारा के अनुपात को बराबर होता है।
- अनुनाद (Resonance) जय किसी यस्तु पर लगावं गवं वाह्य बल की आवृत्ति, यस्तु की अपनी स्वामाविक आवृति के चगवर हो जाते है, तो इस दशा में यस्तु के कम्पनों का आयाम यहत अधिक हो जाता है। इस घटना को अनुनाद कहा जाता है।

प्रकीर्णन (Scattering) —जव, प्रकाश, धूल तथा अन्य पदार्थी के अत्यंत सूक्ष्म कर्णों से होकर गुजरता है, तो यह सभी दिशाओं में प्रसारित हो जाता है। इस घटना को प्रकीर्णन कहा जाता है।

अर्द्धचालक (Semi-conductor) —ये पदार्थ जिनको चालकता, चालक व अचालक पदाधाँ के बीच होती है। अर्द्धवालक कहलाते हैं।

सरल आवर्त गति (Simple Harmonic Motion) —सरल आवर्त गति एक ऋजु रेखीय गति है, जो एक निश्चित बिन्दु के इधर-उधर होती है।

अणु (Molecule) —िकसी तत्व अथवा यौगिक का वह मूक्स्तक कण, जिसमें उसके सभी गुण विद्यमान रहते हैं तथा जो स्वतंत्र अवस्था

में रह सकता है, अणु कहलाता है।

संवेग (Momentum) —िकसी वस्तु के द्रव्यमान व वेग के गुणनफल को संवेग कहते हैं।

न्यूटन (Newton) —न्यूटन चल की इकाई है। प्रकाशिकी (Optics) —प्रकाशिकी, भौतिक विज्ञान को वह साख्य है, जिसके अंतर्गत प्रकाश के गुणों व उसके संचरण का अध्ययन किया

ध्वनि (Sound) —ध्वनि यांत्रिकी तरंगों के रूप में संचरित होती है। इन तरंगों के संचरण के लिए किसी न किसी माध्यम का होना

आवश्यक है।

चाल (Speed) —िकसी वस्तु द्वारा एकांक समय में चली गयी दूरी को चाल कहते हैं।

विकृति (Strain) —वाह्य बल लगाने पर वस्तु की आकृति अथवा

आकार में हुए परिवर्तन को विकृति कहते हैं।

पृष्ठ-तनाव (Surface tension) — द्रव का मुक्त पृष्ठ एक तनी हुई झिल्ली की भारत व्यवहार करता है, जिससे उसके पृष्ठ में एक तनाव रहता है। इस दशा में पृष्ठ सिकुड़ कर अपना पृष्ठीय क्षेत्रफल न्यूनतम करने की प्रवृत्ति रखता है।

यदि वस्तु का द्रव्यमान बढ़ा दिया जाये, तो उसका पलायन वेग पर __

कोई प्रभाव नहीं पड़ेगा

यदि पृथ्वी पर वायुमंडल का अभाव हो जाये, तो दिन की लम्बाई __ बढ़ जाएगी

महत्वपूर्ण तथ्य

- सर्वाधिक प्रत्यास्थता पायी जाती है —इस्पात में
- सर्वाधिक आघातवर्त्य धातु है —सोना सर्वाधिक तन्यता पायी जाती है —प्लैटिनम
- गूंचा हुआ आटा उदाहरण है --- भंगुरता प्रतिबल, विकृति का होता है —समानुपाती
- प्रतिबल का मात्रक होता है ----यूटन/वर्ग मीटर

Join online test series: www.platformonlinetest.com

- प्रयास की दिशा तथा मान बदलने हेतु जिस यंत्र का प्रयोग किया जाता
- है, उसे कहते हैं —िघरनी (Pulley) उत्तोलक, जिनमें आलम्ब, रोध तथा प्रयास के बीच में होता है —प्रथम
- कोई व्यक्ति अपने हाथ में किसी बॉक्स को उठाए हुए है, तो उसके द्वारा किया गया कार्य होगा --शून्य
- किसी दोलक की गतिज कर्जा शून्य हो जाती है --विस्थापन के उच्चतम बिन्दु पर

बहुगुणित इकाइयां (Multiples of Units)

इकाई (Name)	संकेत (Symbol)	समानता (Equivalence)
टेस (Terra)	T	10 ¹²
गीगा (Giga)	G	10 ⁹
मेगा (Mega)	M	10 ⁶
किलो (Kilo)	K	10 ³
हेक्य (Hecta)	H ·	10^{2}
डेका (Deca)	D	10 ¹
डेसी (Deci)	d	10 ⁻¹
सेंटी (Centi)	С	10-2
मिली (Milli)	m	10 ⁻³
माइक्रो (Micro)	μ	10 ⁻⁶
नैनो (Nano)	n .	10-9
पीको (Pico)	р	10-12
फेम्ये (Femto)	Í	10-15
एये (Atto)	å	10-18

खोज (Discovery)	खोजकर्ता	वर्ष ँ
	(Discoverer)	(Year)
सौर मंडल के केन्द्र में सूर्य	कोपरनिकस	1543
गिरती हुई वस्तुओं से संबंधित नियम	गैलीलियो	1590
उपग्रहीय गति के नियम	जोहानस केपलर 🎺	1609
प्रकाश की गति का मापन	रोमर 🎉	1675
प्रकाश का तरंग सिद्धांत	क्रिश्चियन हाइजेन 🔭 🥞	1678
गुरुत्वाकर्षण एवं गति के नियम	आइजक न्यूटन	1687
विद्युत चुम्बकत्व	हॅस क्रिश्चियन आस्टेंड	1820
विद्युत चुम्बकत्व के नियम	आन्द्रे एम्पीयर 🧳 🚲	1826
विद्युत प्रेरण के नियम	जॉर्ज औम	1827
विद्युत चुम्बकीय के प्रेरण	माइकल फैराडे	1831
प्रकाश का विद्युत चुम्बकीय सिद्धांत	जेम्स क्लार्क मैक्सवेल	1864
एक्स किरणें	विलहन रॉन्जेन	1895
रेडियो-सक्रियता	एन्टोइन बैकरेल	1896
इलेक्ट्रॉन 🥼	जोसेफ थॉमसन	1897
क्वांटम सिद्धांत	्रमैक्स प्लांक	1900
सापेक्षता का सिद्धांत	अस्बर्ट आइंस्टीन	1905
प्रोटॉन	अर्नेस्ट रदरफोर्ड	1919
इलेक्ट्रॉन का तरंग सिद्धांत	लुइस डी ब्रॉगली	1924
तरंग गतिकी (वेब मैकेनिक्स)	एर्विन श्रॉडिंजर	1926
अनिश्चितता का सिद्धांत	वेर्नर हाइजेनबर्ग	1927
न्यूट्रॉन	जेम्स चैडविक	1932
पॉजिट्रॉन	कार्ल एंडरसन	1932
मे सॉन	हिडेकी युकावा	1935

- उपकरण जो विद्युत कर्जा को प्रकाश कर्जा में बदलता है ---बल्ब
- सिद्धांत जिसके आधार पर आइंस्टीन ने कहा कर्जा का न तो निर्माण हो सकता है और न ही विनाश --- कर्जा संरक्षण

- कोई वस्तु अपने से कम घनत्व वाले द्रव में ह्व जाएंगे
- पानी में हुये यस्तु का यजन कम जान पड़ता है उत्प्लावकता यल के
- किसी बिंदु पर द्रव का दबाय द्रव के घनत्व के —समानुपाती होता है
- वायुमंडलीय दाब को परिमापित किया -- टॉरसेली ने
- पानी में तैरते वर्फ के आयतन का हिस्सा जो पानी के ऊपर रहता है __ 1/10

प्रमुख उपकरण (Important Apparatus)

प्रमुख व्यव			ator (Important Apparatus)		
उपकरण का नाम			उर्गय		
	फोटोमीटर	:	सूर्य से पृथ्वी तक की दूरी मापना		
	, धियोडोलाइट	:	किनारी एवं कोणों को (सर्वेक्षण कार्यों में		
		A	्रमापना 🔀		
		414	्रह्मा में उपस्थित नमी को मापना		
•	दूरबीन 🦸	tes •	े दूर स्थित वस्तुओं को देखना		
	(Telescope)				
•	एनीमोमीटर 🖟		हवा की गति मापना		
•		1	वायुमंडलीय दाय का मापना		
•	क्रोमोमीटर	1	प्राथमिक रंगों की तीव्रता मापना		
•	क्रायोमीटर	Jir.	अत्यधिक निम्न तापक्रम को मापना		
•	पायरोमीटर	:	अत्यधिक उच्च तापक्रम को मापना		
, i	गैल्वेनोमीटर	:	कम विद्युत धारा को मापना		
	अमीटर ।	:	सामान्य विद्युत धारा को मापना		
ŅΨ.	हाइड्रोमीटर	:	द्रव का आपेक्षिक घनत्व ज्ञात करना		
•	सेक्सटैंट	:	दो वस्तुओं के बीच की कोणीय दूरी ज्ञात करना		
1110	हायनामो	:	यात्रिक कर्जा का विद्युत कर्जा में परिवर्तन		
	📝 टेकोमीटर	:	प्रति मिनट पूर्णन (rpm) का मापना		
	राडार	:	वायवीय वस्तुओं की दूरी एवं दिशा का ज्ञान		
	ब्यूफोर्ट स्केल	٠:	तूफान की गति को मापना		
•	ग्रैवीमीटर	:	वस्तु तथा ग्रहों के बीच आकर्षण बल में आयी		
	-3353-3		कमी को मापना		
•	पोटेंसिओमीटर	:	विद्युत प्रभावित बल को मापना		
•	हाइड्रोस्कोप अल्टीमीटर	:	जल के अंदर स्थित वस्तुओं को देखने हेतु		
•	मैनोमीटर मैनोमीटर	:	कंचाई मापने हेतु (विशेषकर हवाईजहाजों में)		
0	ननामाटर इलेक्ट्रोस्कोप	:	वाष्प दाव को मापना		
•	इलक्ट्रास्काप लैक्टोमीटर	•	वस्तु विशेष पर आवेश का पता लगाना		
•	लक्टामाटर सेक्सटेंट	:	दूध की शुद्धता का पता लगाना		
•	44466	:	सूर्य एवं अन्य आकाशीय पिंडों की ऊंचाई		
	ऑडियोमीटर		ज्ञात करना		
•	सोनोमीटर	:	ध्यनि को तीव्रता मापना		
•	फेदोमीटर	÷	कॉपित वस्तुओं के व्यवहार का पता लगाना महासागरों की गहराई का पता लगाना		
•	ऑडियोफोन	:			
•	बै रोग्राफ	;	बहरों द्वारा सुनने हेतु प्रयुक्त वायुमंडलीय दाब का सतत पैमाने पर मापना		
•	कैलिपर्स	:	वस्तु विशेष के आंतरिक एवं बाह्य व्यासों को		
•		•	मापना		
	कैलोरोमीटर	:	कष्मा के परिमाण का मापन		
	क्रोनोमीटर	:	जहाजों में सही समय का पता लगाना		
	कम्पास	:	स्थान विशेष पर उत्तर-दक्षिण दिशा का ज्ञान		
	माइक्रोफोन	:	ध्वनि तरंगों को विद्युत तरंगों में बदलना		
•	माइक्रोटोम	:	वस्तु विशेष को छोटे-छोटे भागों में बांटना		
	ओडोमीटर	:	मोटरवाहनों द्वारा तय की गयी दूरी को मापना		
•	स्पीडोमीटर	:	वाहनों की गति को मापना		
•	पेरिस्कोप	:	पनहुब्बियों में प्रयुक्त इस उपकरण द्वारा जहाजों की गतिविधियों का अध्ययन किया जाता है।		
			2010 00 00 00 00 00 00 00 00 00 00 00 00		

फोनोग्राफ पूर्ण ध्वनि का श्रवण फोटोमीटर दो प्रकाश सोतों की दीपाता ज्ञात करना रेडियोमीटर विकिरण ऊर्जा के उत्सर्जन का पता लगाना

रिफ्रेक्टोमीटर अपवर्तनांक को पापना स्फेरोमीटर सतह की नकता को गापना स्टॉपवाच समय के छोटे अंतराल को मापना

स्ट्रोबोस्कोप समान गति से किसी निश्चित बिंदु से गुजरने

वाली वस्तु का अध्ययन विस्कोमीटर द्रवों की श्यानता को ज्ञात करना अल्कोहल निम्न तापक्रम को मापने हेतु प्रयुक्त थर्मोमीटर

परमाणु घडी अत्यंत निम्न समयांतराल को मापना

सोनार ड्बी हुई वस्तु की दूरी एवं स्थिति का पता

(SONAR)

डेसिमीटर गैसीय घनत्व को मापना सोनोमीटर कंपायमान वस्तुओं का अध्ययन

सोडार निम्न वायुमंडल की तापीय एवं गति दशाओं का

(SODAR) पता लगाना

साइक्लोट्रॉन आवेशित कणों की गति को बढ़ाने हेतु

बाइनोक्यूलर दूर स्थित वस्तुओं को दोनों आंखों से स्पष्ट

कलरोमीटर

विभिन्न रंगों की तीव्रता की तुलना करना माइक्रोमीटर छोटी दुरियों अथवा कोणों को मापना

मैग्नेटोमीटर चुंबकीय क्षेत्रों अथवा चुंबकीय घूर्णन की तुलना

बोलोमीटर सूर्यं का तापमान मापना मीटर ब्रिज प्रतिरोध को ज्ञात करना पोटोमीटर वाष्पोत्सर्जन को मापना

हाइग्रोस्कोप वायुमंडलीय आईता में आये परिवर्तन को ज्ञात

करना

रेन गेज वर्षा की मात्रा का मापना

सिस्मोग्राफ भूकंप की तीव्रता एवं उद्भव बिंदु ज्ञात करना स्फाइग्मोमैनोमीटर:

रक्त के दबाव को मापना

स्टेथोस्कोप हृदय एवं फेफड़े की धड़कनों को विश्लेषित

टेलीप्रिंटर संदेशों को दूर भेजना अथवा प्राप्त करना धर्मोस्टैट

एकसमान तापक्रम चनाये रखना वोल्टमीटर विभवांतर को मापना

इलेक्ट्रोस्कोप विद्युत आवेश की उपस्थिति का पता लगाना

हाइड्रोफोन जल के अंदर ध्यनि को रिकॉर्ड करना

भारत में अंतरिक्ष प्रौद्योगिकी विकास (Development of space technology in India)

अन्तरिक्ष अनुसन्धान तथा उपग्रह प्रौद्योगिकी के क्षेत्र में भारत ने वर्ष 1975 में आर्यभट्ट नामक उपग्रह के सफल प्रक्षेपण से प्रवेश किया।

यद्यपित इस दिशा में प्रथम कदम 1962 में ही तब उठाया गया था, जब भारत सरकार ने परमाणु कर्जा विभाग के तहत भारतीय राष्ट्रीय अन्तरिक्ष अनुसन्धान समिति (INSRC) बनायी।

1963 में त्रिवेंद्रम (केरल) के निकट धुम्बा नामक स्थान पर रॉकेट प्रेषक सुविधा केन्द्र (Sounding Rocekt Launching Facility) की स्थापना की गयी।

पुन: 1969 में बंगलौर में भारतीय अन्तरिक्ष अनुसन्धान संगठान (ISRO) के गठन के परचात् इस दिशा में एक क्रांति-सी आ गयी।

भारतीय अन्तरिक्ष कार्यक्रम का मूल उद्देश्य संचार, मौसम तथा संसाधनों के सर्वेक्षण तथा प्रबंधन के क्षेत्र में अंतरिक्ष कार्यक्रमों पर आधारित सेवाएँ उपलब्ध कराना, अन्तरिक्ष विज्ञान एवं प्रौद्योगिकी को भू-उपग्रहों के माध्यम से जनसंचार एवं शिक्षा के क्षेत्रों में प्रयुक्त करना तथा अन्तरिक्ष प्रौद्योगिकी में आत्मनिर्भरता प्राप्त करना जरूरी होता है।

भारतीय अंतरिक्ष अनुसंधान संगठन (ISRO)

भारत में अन्तरिक्ष कार्यक्रम का मूत्रपात 1962 में भारतीय अन्तरिक्ष अनुसन्धान समिति के गठन तथा 1963 ई॰ में केरल में तिरुवनन्तपूरम के निकट धुम्बा में रॉकेट प्रक्षेपण केन्द्र से अमेरिका से प्राप्त दो चरण वाले रॉकेट के अनारिक्ष में प्रक्षेपण के साथ हुआ।

आगे चलकर 1969 ई॰ में परमाणु कर्जा विमाग के अधीन भारतीय अन्तरिक्ष अनुसन्धान संगठन (इसरो) की स्थापना हुई।

राष्ट्र के अन्तरिक्ष नीति निर्धारित करने एवं उन्हें क्रियान्वित करने हेत् 1972 में अन्तरिक्ष विभाग एवं अन्तरिक्ष आयोग का गठन कर अन्तरिक्ष कार्यक्रम को औपचारिक रूप प्रदान किया गया।

अन्तरिक्ष विभाग के अन्तर्गत कार्यरत विभिन्न अन्तरिक्ष केन्द्र निम्नवत

श्रीहरिकोटा : सतीश धवन स्पेस सेन्टर (SHAR)। ľ.

इनसेट मास्टर कन्ट्रेल फैसिलिटी (MCF)। 2.4 हासन

तिरुवनन्तपुरम् (धुम्बा) विक्रम साराभाई स्पेस सेन्टर (VSSC)। 3. लिक्विड प्रोपल्शन टेस्ट फैसिलिटी महेंद्रगिरि 4.

(LPSC)1 5. बंगलीर अन्तरिक्ष आयोग, अन्तरिक्ष विभाग, इसरो मुख्याय, इनसेट प्रोग्राम्स ऑफिस,

एनएनआरएमएस, सचिवालय, सिविल इंजीनियरिंग डिवीजन, सदन आरआर -एसएससी (रीजनल रिमोट सेंसिंगग सर्विस सेन्टर्स), इसरो सैटेलाइट सेन्टर (ISAC), इसरो टेलीमेटरी ट्रेकिंग एण्ड कमाण्ड नेटवर्क (ISTRAC)।

6. हैदराबाद नेशनल रिमोट सेंसिंग एजेन्सी

(NRSA)

7. तिरुपति नेशनल मेसोफीअर स्ट्रैटोफीअर-द्रोपोस्फीअर राडार फैसिलिटी

(NMRF):

8. देहरादन इण्डियन इंस्टीट्यूट ऑफ रिमोट सेंसिंग, नॉर्दर्न आरआरएसएससी।

नई दिल्ली डिपार्टमेंट ऑफ स्पेस ब्राँच सेक्रेटियट (DOS), इसरो ब्राँच ऑफिस।

10. जोधपुर वेस्टर्न रीजनल रिमोट सेंसिंग सर्विस केन्द्र।

11. লম্ভনক टेलीमेटरी ट्रैकिंग एण्ड कमाण्ड नेटवर्क। 12. हैदराबाद नेशनल रिमोट सेंसिंग सर्विस केन्द्र।

13. नागपुर सेन्ट्रल रीजनल रिमोट सेंसिंग सर्विस

मेटेरियोलॉजिकल रॉकेट स्टेशन। 14. बालासोर

15. खडगपुर ईस्टर्न रीजनल रिमोट सेंसिंग सर्विस केंद्र।

16. मुम्बई इसरो लायजन ऑफिस।

नार्थ ईस्टर्न स्पेस एप्लीकेशन सेन्टर। 17. शिलॉंग

18. पोर्ट ब्लेयर डाऊन रेन्ज स्टेशन।

एमोनियम परक्लोरेट एक्सपेरीमेन्ट प्लान्ट। 19. अलुवा

सोलर ऑब्जर्वेटरी। 20. उदयपुर

प्रणोदक

- रॉकेटों में ईंधन के तौर पर प्रयुक्त होने वाले पदार्थ (Propellant) कहलाते हैं।
- प्रणोदक की शक्ति उसके 'विशिष्ट संघात' (Specific Velocity) से मापा जाता है।
- एक सेकण्ड में एक पाउण्ड (453 ग्राम) प्रणोदक जितना प्रणोद (Impulse) कर सकता है, उसे ही उस प्रणोदक का 'विशिष्ट संघात' कहते हैं।
- ठोस प्रणोदक के मुकाबले द्रव प्रणोदक अधिक शक्तिशाली होता है।
 इसी कारण द्रव प्रणोदक वाले रॉकेटों का नियन्त्रण सरल है।
- द्रव प्रणोदक वाले रॉकेट का उपयोग आई.सी.बी.एम. (I.C.B.M.) तथा आई.आई.बी.एम. (I.I.B.M.) के प्रक्षेपण में होता है।

प्रक्षेपणयान प्रौद्योगिकी

- अन्तिरक्ष प्रक्षेपणयान प्रौद्योगिकी को उपयोग में लाने के भारतीय -अन्तिरक्ष कार्यक्रम के उद्देश्य की पूर्ति हेतु स्वदेशी प्रमोचक रॉकेटों, उपग्रहों और सम्बद्ध प्रौद्योगिकियों का विकास अनिवार्य है।
- यही कारण था कि भारतीय अन्तरिक्ष कार्यक्रम में प्रारंभ से ही प्रमोचक यानों (Launching Vehicles) के विकास की दिशा में प्रथम प्रयास निम्न भू-कक्षा में उपग्रहों को स्थापित करने के लिए एस. एल. बी.-3 तथा ए. एस. एल. वी. जैसे यानों का निर्माण करना था।
- विक्रम सारामाई अन्तरिक्ष केन्द्र (VSSC) का मुख्य उद्देश्य प्रक्षेपण यानों के अनुसन्धान तथा विकास से ही सम्बन्धित है।
- प्रक्षेपण यान प्रौद्योगिकी के क्षेत्र में ए. एल. वी.-3 की साधारण क्षमता से प्रारंभ कर आई. आर. एस. एवं इनसैट श्रेणी के उपग्रहों की जरूरतों के मुताबिक बड़े तथा कम लागत के प्रक्षेपण यान तैयार करने का कार्य पूरा किया जा चुका है।

संवद्धिंत उपग्रह प्रमोचक रॉकेट (ए.एस.एल.वी)—

- 20 मई, 1992 को ए. एस. एल. वी. (ए. एस. एल. वी.-डी3) की तृतीय विकासात्मक उड़ान का सफलतापूर्व आयोजन प्रमोचक रॉकेट प्रौद्योगिकी के विकास में एक महत्त्वपूर्ण उपलब्धि है।
- ए.एस.एल.वी.-डी₃ द्वारा 106 किया. भारत के सौस-सो (SROSS-C) उपग्रह को 267 किमी. की उप-भू और 433 किमी. की अपम्-कक्षा में स्थापित किया गया।
- इसमें राष्ट्रीय भौतिकी प्रयोगशाला द्वारा निर्मित एक मन्द्रक सम्भाव्य विश्लेषित्र तथा इसरो द्वारा निर्मित एक गामा किरण प्रस्कोट नीतभार सम्मिलित था।
- चतुर्थ चरण की प्रचक्रण दर (निर्धारित 140 आर. पी. एम. की तुलना में 80 आर. पी. एम.) के कम होने के साथ-साथ ग्रीस-सी के गुरुत्व केन्द्र में अल्प कमी के कारण इसकी कक्षा कुछ कम रही।
- इस उड़ान में भारत में पी. एस. एल. वी. और जी. एस. एल. वी. के लिए आपेक्षित अनेक नयी प्रौद्योगिकीयों, जैसे-संवृत निर्देशन, वास्तविक समय निर्धारण प्रणाली, स्ट्रैप ऑन जेटीशनिंग और केंद्रीय ताप-कवच को अर्हक बनाया गया।
- ए.एस.एल.वी.-डी₃ उड़ान पर विस्तृत यंत्रीकरण द्वारा दाब, विकृति, कथ्मा अभिवाह, कंपन, त्वरण और प्रधात स्तरों पर बहुमूल्य आँकड़े प्रदान किये गये हैं।

अंतर्राष्ट्रीय खगोल वर्ष-वर्ष' 2009

- गैलीलियों की खोजों ने ब्रह्माण्ड के बारे में व्यक्तियों के नजरिए को बदल दिया था।
- गैलीलियों की खोजों के चार सौ वर्ष पूर्ण होने के अवसर पर वर्ष 2009 को इन्टरनेशनल एस्ट्रॉनॉमिकल यूनियन (आईएयू) ने अन्तर्राष्ट्री खगोल वर्ष के रूप में मनाया।

ध्रवीय उपग्रह प्रमोचक रॉकेट (PSLV)-

- चार चरणों वाला पीएसएलवी 14,000 किय्रो. तक के उपग्रहों को 800 किमी. ऊँची ध्रुवीय कक्षा में छोड़ सकता है।
- यह 100 किया. के माइक्रो-उपग्रहों या लघु उपग्रहों को विभिन्न गठजोड़ों के रूप में छोड़ने की क्षमता रखता है।
- यह एक टन के नीतभार को भू-तुल्यकालिक स्थानांतरण कक्षा में भी प्रक्षेपित कर सकता है।

भू-तूल्यकालिक उपग्रह प्रमोचक रॉकेट (GSLV)-

- जी.एस.एल.वी. का डिजाइन पी. एस. एल. वी. के लिए विकसित
 मॉह्यूलों का अधिकतम उपयोग करके किया गया है।
- इसके संरूपण में पी. एस. ए. वी. के ऊपरी दो चरणों के स्थान पर एक एकल क्रायोजेनिक चरण तथा पी. एस. एल. वी. के द्वितीय चरण से लिये गये चार द्रव प्रणोदक स्ट्रैप-ऑन के स्थान पर छह बंस प्रणोदक स्ट्रैप-ऑन मोटर को शामिल किया गया है।
- जी.एस.एल.वी., 2500 किया. भार की श्रेणी के उपग्रहों को भू-तुल्यकालिक अन्तरण कक्षा में स्थापित करने में सक्षम होगा।
- जीएसएलवी अपनी पहली परीक्षण में ही सफल रहा।
- 8 मई, 2003 को इसकी सफल उड़ान के बाद इसने काम करना शुरू कर दिया है।

गाममेर_

- गाँवों के प्रति समर्पित उपग्रहों की परिकल्पना ग्रामसैट कहलाती है।
- उपग्रह की सहायता से ग्रामीण प्रौदों को विकासात्मक एवं सतत् शिक्षा
 उपलब्ध कराकर काफी हद तक निरक्षरता उन्मूल का लक्ष्य प्राप्त किया
 जा सकता है।
- ग्रामसैट की सहायता से भारत के उस सपने को साकार किया जा सकता है, जिसके तहत किसी भी भाषा में कार्यक्रमों को सम्पूर्ण देश के लोगों के लिए सुलभ बनाया जा सके।

भारत का अंतरिक्ष कार्यक्रम (Space Programme of India)

- भारत में अंतरिक्ष विभाग की स्थापना जून 1972 में की गई थी।
- अब तक इस विभाग द्वारा अंतिरक्ष विज्ञान, अंतिरक्ष प्रौद्योगिकी और अंतिरक्ष उपयोग के क्षेत्र में सभी पहलुओं पर उल्लेखनीय प्रगति अर्जित की गई है।

भारतीय दूरसंवेदी उपग्रह रिसोसं सैट-1

- 17 अक्टूबर, 2003 को देश के धुवीय अंतिरक्ष प्रक्षेपण यान PSLVC-5 ने अपनी सफल उड़ान के लगभग 17 मिनट बाद आधुनिकतम दूर-संवेदी उपग्रह रिसोर्स सैट-1 को सूर्यकालिक कक्षा में सफलतापूर्वक स्थापित कर दिया।
- यह उपग्रह कृषि, आपदा-प्रबंधन और सम्बद्ध क्षेत्रों में देश की उपग्रहीय सेवा-क्षमता में वृद्धि करेगा।
- इसे श्रीहरिकोटा में सतीश धवन अंतरिक्ष केन्द्र से छोड़ा गया था।
 रिसोर्स सैट-1 का भार 1360 किया है।
- इस विभाग द्वारा स्थापित अंतरिक्ष प्रणालियाँ राष्ट्रीय अवसंरचना, विशेष रूप से संचार-प्रसारण, मौसम-विज्ञान, आपदा-चेतावनी तथा संसाधनों के मॉनीटरिंग और प्रबंधन के क्षेत्र में महत्त्वपूर्ण घटक बन गई हैं।
- भारत् की अंतरिक्ष क्षमता को सम्पूर्ण् विश्व में मान्यता प्राप्त हुई है।
- इसके वाणिज्यिक लाभ भी प्राप्त होने शरू हो गए हैं।
- आई. आर. एस. और इन्सैट शृंखला में अधिक उन्नत उपग्रहों के विमोचन तथा पी. एस. एल. वी. (जो पहले ही सेवा में आ चुका है) तथा जी. एस. ए. वी. (जिसका विकास किया जा रहा है) जैसे स्वदेशी डिजाइन और निर्मित प्रमोचक रॉकेट का उपयोग करते हुए कक्षा में इनकी स्थापना की योजनाओं ने आत्मनिर्मरता के रूप में देश के विकास के लिए अंतरिक्ष प्रौद्योगिकी के विकास और उपयोग की वृद्धि का मार्ग प्रशस्त किया है।

सामान्य विज्ञान : भौतिक विज्ञान

देश	उपग्रह	प्रश्लेषण तिथि	
सोवियत संघ	स्पुतनिक-1	4 अक्टूबर, 1957	
सं. रा. अमेरिका	एक्सप्लोरर-1	31 जनवरी, 1958	
फ्रांस	आस्तेनिक ए-1	26 नवम्बर, 1965	
जापान	ओसुनी	11 फरवरी, 1970	
चीन	चीन-1	24 अप्रैल, 1970	
रूस	रोहिणी/आर. एस1	18 जुलाई, 1980	

भारत में अंतरिक्ष कार्यक्रम

भारत म अतारक्ष कायक्रम						
उपग्रह	प्रक्षेपण तिथि	कार्य	प्रक्षेपक	परिणाम		
आर्यभट्ट	19.03.75	वैज्ञानिक	इन्टरकॉस्मास	सफल		
भास्कर ा	07.06.79	पृथ्वी सर्वेक्षण	(सोवियत संघ) इन्टरकॉस्मास (सोवियत संघ)	सफल		
रोहिणी	10.08.79	पृथ्वी सर्वेक्षण	एस. एल. बी-3 (भारत)	असफल		
रोहिणी	4.37	1,5	(-114.17)			
आर एस1	18.07.80	पृथ्वी सर्वेक्षण	एस. एल. बी3 (भारत)	सफल		
रोहिणी आर. एस1	31.05.81	वैज्ञानिक	एस. एल. बी3 (भारत)	असफल		
एप्पल	19.06.81	संचार	एरियन (यूरोपीय अन्तरिक्ष एजेन्सी)	सफल		
भास्कर II	20.11.81	पृथ्वी सर्वेक्षण	इन्टरकॉस्मास (सोवियत संघ)	सफल े		
इन्सैट 1ए	10.04.82	बहुउद्देशीय	डेल्टा (सं.रा.अ.)	सफल		
रोहिणी आर. एसी.डी. II	17.04.83	वैज्ञानिक	एस. एल.बी. 3 (भारत)	सफल		
इन्सैट 1बी	30.08.83	बहुउद्देशीय	चैलेन्जर शटल (सं.रा.अ.)	संफल		
स्रोत-1	24.03.87	तकनीकी	ए,एस.एल.बी3	असफल		
आईआरएस1	19.03.88	दूरसंवेदी 🦂	वोस्तोक (सोवियत रूस)	सफल		
स्रोत-2	13.07.88	तकनीकी	ए.एस.एल.बी. (भारत)	असफल		
इन्सैट-2 सी	12.06.90	बहुउद्देशीय	एरियन	असफल		
इन्सैट-2 डी आई.आर	29.06.90	बहुउदेशीय	डेल्य	सफल		
एस1 बी	29.06.91	दूरसंवेदी 🖟	सोवियत रॉकेट	सफल		
स्रोत-3	19.05.92	तकनीकी	ए.एस.एल.बी	सफल		
इन्सैट-2ए	10.07.92	बहुउद्देशीय	डेल्टा	सफल		
, 110 24	20.07.52		(सं. रा. अ.)	- 0		
इन्सैट-2बी	23.07.93	बहुउद्देशीय	एरियन (यूरोपीय अन्तरिक्ष एजेन्सी)	असफल		
आई.आर.		.,				
एस1ई	20.08.93	दूर संवेदी	पी.एस.एल.वी. (भारत)	सफल		
स्रोत-2	4.05.94	तकनीकी	ए,एस.एल.बी-4 (भारत)	सफल		

आई.आर. एस.पी2 15.10.94 दूर संवेदी पी.एस.एल.बी.डी-2 सफल (भारत) इन्सैट-2 सी 07.12.95 बहुउद्देशीय परियन (यूरोपीय सफल अन्तरिक्ष एजेन्सी) आर.आर. एस1 सी 28.12.95 सुदूर संवेदी पी.एस.एल. सफल बी.सी3 इन्सैट-2डी 04.06.97 बहुउद्देशीय परियन सफल औ.सी3 इन्सैट-2डी 04.06.97 बहुउद्देशीय परियन सफल औ.डी-1 डी ची.डी-1 सफल औ.डी-1 सफल औ.डी-1 सफल औ.टी-2 ई 03.04.99 व्यावसायिक परियन सफल औ.डी-1 सफल औ.टी-3 बी.डी-1 सफल औ.टी-3 बी.डी-1 सफल बी.सी-1 परियन सफल औ.एस.एल. बी.डी-1 सफल औ.सी-3 (भारत) इन्सैट-3 बी 22.03.00 बहुउद्देशीय परियन सफल बी.सी-1 परियन सफल औ.सी-1 परियन सफल की.पी.एस.एल. सफल बी.सी-1 परियन सफल की.पी.एस.एल. सफल बी.सी-3 (भारत) इन्सैट-3 बी 24.01.02 दूरसंचार परियन-4 सफल पी.एस.एल. बी.सी-1 परियन सफल की.सी-3 (भारत) इन्सैट-3 ए 10.04.03 बहुउद्देशीय परियन सफल फाटोसेट-1 05.05.05 भीपंग पी.एस.एल.बी-4 सफल पड़िन्ट 2004 ई शीधक GSLV सफल काटोसेट-1 05.05.05 भीपंग पी.एस.एल.सी-6 सफल (इन्सैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इन्सैट-4 (C) 2006 ई संचार PSLV-C6 सफल (इन्सैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इन्सैट-2 (A) 2008 ई विभन्न उद्देश्य PSLV-C2 सफल पा.चेट-2 (A) 2008 ई विभन्न उद्देश्य PSLV-C2 सफल पा.चेट-2 2009 ई एडार इमेजिंग PSLV-C12 सफल पा.चेट-2 2009 ई एडार इमेजिंग PSLV-C12 सफल पा.चेट-2 2009 ई एडार इमेजिंग PSLV-C15 सफल पा.चेट-2 2010 ई एडार इमेजिंग PSLV-C15 सफल						
एस.पी2 15.10.94 दूर संवेदी पी.एस.एल.बी.डी-2 सफल (मारत) इन्सैट-2 सी 07.12.95 बहुउद्देशीय एरियन (यूरोपीय सफल अन्तरिक्ष एजेन्सी) आर.आर. एस1 सी 28.12.95 सुदूर संवेदी पी.एस.एल. सफल बी.सी3 बहुउद्देशीय एरियन सफल बी.सी3 बहुउद्देशीय एरियन सफल बी.सी3 बहुउद्देशीय एरियन सफल बी.डी-1 सफल बी.डी-1 सफल बी.डी-1 सफल बी.डी-1 सफल बी.डी-1 सफल बी.सी-1 री.इस.एल. बी.डी-1 सफल बी.सी-1 री.इस.एल. बी.सी-1 री.इस.एल. बी.सी-1 री.इस.एल. बी.सी-1 री.इस.एल. बी.सी-1 री.इस.एल. बी.सी-3 (मारत) बहुउद्देशीय एरियन सफल बी.सी-3 (मारत) पी.एस.एल. सफल बी.सी-3 (मारत) इन्सैट-3 सी 24.01.02 दूरसंचार परियन सफल बी.सी-3 (मारत) इन्सैट-3 रूस. 28.09.03 संचार परियन सफल परियन सफल की.सी-3 (मारत) इन्सैट-3 रूस. 20.04 ई. सीडिक GSLV सफल काटोसेट-1 05.05.05 मीएंग पी.एस.एल.सी-6 सफल इन्सैट-4 (A) 2005 ई. संचार परियन सफल परियन सफल परियन सफल परियन सफल परियेट 2004 ई. सीडिक GSLV सफल परियेट सफल परियेट संचार परियन सफल परियेट सफल परियेट संचार परियेट सफल परियेट सफल परियेट संचार परियेट सफल परियेट 2006 ई. परियेट सफल परियेट सफल परियेट 2009 ई. परियेट सफल परियेट सफल परियेट 2009 ई. परियेट सफल परियेट 2010 ई. बीफन उद्देश्य PSLV-C1 सफल परियेट 2010 ई. बीफन उद्देश्य PSLV-C1 सफल परियेट 2011 ई. संचार GSLV-C18 सफल परियेट 2011 ई. संचार परियेट 5 सफल परियेट 2013 ई. परियेट 5 सफल परियेट 2013 ई. परियेट 5 सफल परियेट 2014 ई. संचार परियेट 2014 ई. संचार परियेट 2014 ई. संचा		उपग्रह	प्रक्षेपण तिथि	कार्य	प्रक्षेपक	परिणाम
इन्सैट-2 सी 07.12.95 यहुबद्देशीय प्रियन (यूगेपीय सफल अन्तरिक्ष एकेन्सी) आार.आर. एस.—1 सी 28.12.95 सुदूर संवेदी प्रियन सफल आई.आर. 21.03.96 सुदूर संवेदी प्रियन सफल श्री.सी.—3 इन्सैट-2डी 04.06.97 यहुबद्देशीय प्रियन सफल औ.सी.—3 इन्सैट-2 ई 03.04.99 व्यावसायिक प्रियन सफल औ.डी.—1 इन्सैट-2 ई 03.04.99 व्यावसायिक प्रियन सफल औ.डी.—1 यूजिएसएस. वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएसएस यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएस यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएसएस वी.डी.—1 यूजिएस यू		आई.आर.				
जार.आर. एस.—1 सी 28.12.95 सुदूर संवेदी परियन (यूगेपीय सफल आन्तरिक्ष एजेन्सी) आई.आर. 21.03.96 सुदूर संवेदी परियन सफल यी.पी.—3 व्यवसायिक परियन सफल यी.पी.—3 व्यवसायिक यी.पी.—4 या.पी.—4		एस.पी2	15.10.94	दूर संवेदी	पी.एस.एल.बी.डी-	2 सफल
आत.आर. एस1 सी 28.12.95 सुदूर संबेदी परियन सफल आई.आर. 21.03.96 सुदूर संबेदी पी.पस.एल. सफल यी.पी3 इसीट-2डी 04.06.97 सुदूर संबेदी पी.पस.एल. सफल यी.सी3 परियन सफल जी.डी-1डी इसीट-2 ई 03.04.99 व्यावसायिक परियन सफल जी.डी-1 सफल अई.आर. 26.05.99 व्यावसायिक परियन सफल जी.पी4 इसीट-3 ची 22.03.00 बहुउदेशीय परियन सफल जी.पी.पस.एल. बी.डी-1 सफल जी.पी4 इसीट-3 ची 22.03.00 बहुउदेशीय परियन सफल जी.पी1 री.ई.एस. 22.10.01 प्रीघोगिकी पी.एस.एल. सफल जी.पी1 री.पी1 री.पी.पस.एल. सफल जी.पी1 री.पी.पस.एल. सफल जी.पी1 री.पी1 री.पी.पस.एल. सफल जी.पी1 री.पी1 री.पी.पस.एल. ची.सी-3 (भारत) परियन सफल पी.एस.एल. ची.सी-1 री.पी.पस.एल. ची.सी-1 री.पी.पस.एल. ची.पी1 री.पी1 री.पी.पस.एल. ची.पी1 री.पी1 री1 री.पी1					*	
आह.आर. एस1 सी अई.आर. 21.03.96 सुदूर संवेदी गी.एस.एल. सफल गी.एस.एल.वी-4 सफल गी.एस.एल.वी-4 सफल गी.एस.एल.वी-4 सफल गी.एस.एल.वी-6 सफल गी.एस.एल.वी-7 सफल गी.एस.एल.वी-7 सफल गी.एस.एल.वी-8 शी.वी-1 सफल गी.एस.एल.वी-8 पियन - सफल गी.एस.एल.वी-8 सफल गी.पा.वेवा सफल गी.एस.एल.व		इन्सैट-2 सी	07.12.95	यहुउद्देशीय		सफल
एस.—1 सी 28.12.95 सुद्दा संवेदी परियन सफल आई.आर. 21.03.96 सुद्दा संवेदी परियन सफल पी.एस.एल. सफल आई.आर.एस. 29.09.97 सुद्दा संवेदी परियन सफल औ.सी.—3 इन्सैट-2 ई 03.04.99 आई.आर.एस. 26.05.99 सुद्दा संवेदी पी.एस.एल. सफल बी.डी-1 सफल सु.स.प.—4 इन्सैट-3 ची 22.03.00 बहुउदेशीय परियन सफल बी.डी-1 सफल बी.सी.—1 री.ई.एस. 22.10.01 प्रीघोगिकी परियन सफल बी.सी.—1 री.ई.एस. 22.10.01 प्रीघोगिकी परियन सफल बी.सी.—1 परियन सफल बी.सी.—3 (भारत) इन्सैट-3 ए 10.04.03 बहुउदेशीय परियन सफल परियन सफल काटेसैट-3 ई 28.09.03 संचार परियन सफल काटेसैट-4 (A) 2005 ई सोचार परियन सफल काटेसैट-4 (A) परित का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C6 सफल परियन सफल काटेसैट-2 (A) 2008 ई विभिन्न उद्देश्य PSLV-C2 सफल परियन करने का इतिहास रचा गया 2008 ई विभिन्न उद्देश्य PSLV-C2 सफल जाटेसैट-2 2010 ई एसोचल परियन इंसैल्य परियन करने का इतिहास रचा गया 2008 ई विभिन्न उद्देश्य PSLV-C1 सफल जाटेसैट-2 2010 ई संचार GSLV-C06 असफल जी-सैट-8 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफल परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल परियन 5 सफ					अन्तरिक्ष एजेन्सी)	
आई.आर. 21.03.96 सुद् संवेदी पी.एस.एल. सफल वी.सी3 इन्सैट-2डी 04.06.97 बहुउदेशीय परियन सफल जी.डी1 वि1 डी इन्सैट-2 ई 03.04.99 सपुर संवेदी पी.एस.एल. सफल बी.डी1 परियन सफल जी.डी1 व्यावसायिक परियन सफल जी.डी1 सफल जी.सी3 वि2 ई 03.04.99 सपुर परंवेक्षण पी.एस.एल. जी.डी1 सफल जी.सी3 वि2 वि1 वि1 वि2 वि1 वि1 वि1 वि1 वि2 वि.				h		
प्स.पी-3 इसैट-2डी 04.06.97 आई.आर.एस. 29.09.97 सुरूर संवेदी पी.एस.एल. सफल डी-1डी इस्तैट-2 ई 03.04.99 आई.आर. 26.05.99 सपुर पर्ववेक्षण पी.एस.एल. सफल आई.आर. 26.05.99 सपुर पर्ववेक्षण पी.एस.एल. सफल जी.सी-3 डसैट-3 बी 22.03.00 बहुउद्देशीय एरियन सफल जी.एस.एल. सफल जी.सी-1 टी.ई.एस. 22.10.01 प्रीद्योगिकी पी.एस.एल. सफल मेटसेट 12.09.02 पी.सम संबंधण पी.एस.एल. सफल पुर्वेट 2004 ई रीक्षिक GSLV सफल कार्टोसेट-1 05.05.05 पीपंग पी.एस.एल.सफल इसैट-3 ई 28.09.03 संचार एरियन सफल एइसैट 2004 ई रीक्षिक GSLV सफल हर्सेट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इसैट-4 (C) 2006 ई संचार PSLV-C6 सफल पुर्वेट 2008 ई तिमेट सेंसिंग PSLV-C2 सफल गे.सेंट-2 (A) 2008 ई विभिन्न उद्देश्य PSLV-C12 सफल जार्टोसेट-2 (A) 2008 ई विभिन्न उद्देश्य PSLV-C12 सफल जार्टोसेट-2 (2009 ई यहार इमेडिंग PSLV-C12 सफल जार्टोसेट-2 (2010 ई यहार इमेडिंग PSLV-C15 सफल जार्टोसेट-8 2011 ई संचार PSLV-C-17 सफल जार्टोसेट-8 2011 ई संचार PSLV-C-18 सफल जार्टेस-8 2011 ई संचार PSLV-C-18 सफल जार्टेस-7 2013 ई प्रतिरक्षा एरियन 5 सफल जार्टेस-7 2013 ई प्रतिरक्षा एरियन-5 सफल					•	सफल
इसैट-2डी 04.06.97 बहुउद्देशीय एरियन सफल आई.आर.एस. 29.09.97 सुदूर संवेदी पी.एस.एल. सफल डी-1डी वी.डी-1 परियन सफल आई.आर. 26.05.99 स्मुदूर पर्यवेक्षण पी.एस.एल. बी.डी-1 सफल जी.सी-3 बी.डी-1 सफल जी.सी-1 रि.इं.एस. 22.03.00 बहुउद्देशीय एरियन सफल जी.एस.एल. की.सी-1 री.इं.एस. 22.10.01 प्रौद्योगिको पी.एस.एल. सफल जी.एस.एल. सफल नें.सी-1 री.इं.एस. 22.10.01 प्रौद्योगिको पी.एस.एल. सफल नें.सी-3 (भारत) इसीट-3 ए 10.04.03 बहुउद्देशीय एरियन-4 सफल एरियन-4 सफल एर्डसैट 2004 ई. रीहिक GSLV सफल काटोंसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल इसीट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इसीट-4 (C) 2006 ई. संचार PSLV-C6 सफल एर्डसेट 2009 ई. संचार PSLV-C असफल परियेट-2(A) 2008 ई. विभिन्न उद्देश्य PSLV-C2 सफल गटोंसेट-2 2009 ई. पाडार इमीजंग PSLV-C1 सफल पी-सैट-2 2009 ई. पाडार इमीजंग PSLV-C1 सफल पी-सैट-2 2009 ई. पाडार इमीजंग PSLV-C1 सफल पी-सैट-2 2010 ई. पाडार इमीजंग PSLV-C1 सफल पी-सैट-8 2011 ई. संचार PSLV-C17 सफल जी-सैट-8 2011 ई. संचार PSLV-C17 सफल जी-सैट-12 2011 ई. संचार PSLV-C18 सफल जी-सैट-14 2011 ई. पीयार पीरयन-5 सफल जी-सैट-14 2014 ई. पीयार पीरयन-5 सफल जी-सैट-15 सफल जी-सैट-14 2014 ई. पीयार पीरयन-5 सफल जी-सैट-14 2014 ई. पीयार पीयार पीरयन-5 सफल जी-सैट-14 2014 ई. पीयार पीरयन-5 सफल जी-सैट-14 20			21.03.96	सुदूर संवेदी		सफल
डाई.आए.एस. 29.09.97 सुदूर संवेदी पी.एस.एल. सफल वी.डी-1 हिन्सेट-2 ई 03.04.99 व्यावसायिक एरियन सफल वी.डी-1 री-एस.एल. सफल वी.डी-1 सफल वी.डी-2 हमीट-3 ई 28.09.03 संचार एरियन सफल एड्डी-2 2004 ई रीडिक GSLV सफल काटोंसेट-1 05.05.05 मैपिंग पी.एस.एल.डी-6 सफल इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C6 सफल वि.डी-2 2009 ई एडिक एडिप-ट सफल पी.चेट-2 2009 ई एडिक एडिप-ट सफल पी.चेट-2 2009 ई एडिक एडिप-ट सफल पी.चेट-2 2009 ई एडिक उन्नत दूर संवेदी उपग्रह जी-सैट-2 2010 ई पड़ार इमेजिंग PSLV-C12 सफल पी.चेट-8 2011 ई संचार GSLV-F(06) असफल जी-सैट-8 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-14 2014 ई संचार परियन 5 सफल जी-सैट-15 सफल जी-			04.00.00	Garago.		
डी-18ी इसीट-2 ई 03.04.99 व्यावसायिक एरियन सफल आई.आर 26.05.99 समुद्र पर्यवेक्षण पी.एस.एल. बी.डी-1 सफल वी.सी-3 वी.22.03.00 बहुउद्देशीय एरियन सफल वी.सी-1 री.ई.एस. 22.10.01 प्रौद्योगिको पी.एस.एल. सफल वी.सी-1 री.ई.एस. 22.10.01 प्रौद्योगिको पी.एस.एल. सफल वी.सी-3 (भारत) इसीट-3सी 24.01.02 दूरसंचार एरियन-4 सफल मेटसेट 12.09.02 मीसम संबंधो पी.एस.एल.वी-4 सफल इसीट-3 इ 28.09.03 संचार एरियन सफल एड्सीट 2004 ई शीक्षक GSLV सफल (इसीट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इसीट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इसीट-4 (C) 2006 ई संचार PSLV-C6 सफल एडसीट-2(A) 2008 ई रिमोट सोंसेंग PSLV-C2 सफल पी.चसेट-2 2009 ई राजार इमीजंग एडपिय सफल जों-सैट-2 2009 ई राजार इमीजंग एडपिय सफल जों-सैट-2 2009 ई राजार इमीजंग एडपिय सफल जों-सैट-2 2010 ई एडपिय सफल उत्तरेश्य पी.चसेट-2 सफल जों-सैट-2 2010 ई राजार इमीजंग एडपिय सफल जों-सैट-2 2010 ई राजार इमीजंग पी.चसेट-2 2010 ई राजार इमीजंग एसप्टा सफल जों-सैट-8 2011 ई संचार पी.यन 5 सफल जों-सैट-12 2011 ई संचार PSLV-C18 सफल जों-सैट-14 2014 ई संचार PSLV-C18 सफल जों-सेट-14 2014 ई संचार पी.यन-5 सफल जों-सेट-15 सफल जों			and the second	F1.15	-	
इन्सेट-2 ई 03.04.99 व्यावसायिक एरियन सफल आई.आर 26.05.99 समुद्र पर्यवेक्षण पी.एस.एल. पर.पी4 वी.डी-1 सफल वी.डी-1 सफल जी सैट 18.04.01 पृथ्वी सर्वेक्षण जी.एस.एल. सफल जी.सी-1 टी.ई.एस. 22.10.01 प्रौद्योगिकी पी.एस.एल. सफल सर्वेक्षण बी.सी-3 (भारत) इन्सेट-3 सो 24.01.02 दूरसंचार एरियन-4 सफल पीटसेट 12.09.02 पीसम संबंधी पी.एस.एल.वी-4 सफल इन्सेट-3 इं 28.09.03 संचार एरियन सफल हुन्सेट-3 इं 28.09.03 संचार एरियन सफल हुन्सेट-1 05.05.05 प्रौर्पण पी.एस.एल.सी-6 सफल (इन्सेट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इन्सेट-4 (C) 2006 ई संचार PSLV-C6 सफल पिटायेट-2 (A) 2008 ई सिपाट सोसिण 2007 ई प्रक्षेपण यान कार्टासेट-2 (A) 2008 ई विभान उद्देश्य PSLV-C2 सफल पीसैट-2 2009 ई एडार इमेजिंग PSLV-C2 सफल पीसैट-2 2010 ई संचार GSLV-F(06) असफल जीसैट-5 (P) 2010 ई संचार पिरयन सफल पीसैट-8 2011 ई संचार PSLV-C16 सफल जीसैट-8 2011 ई संचार PSLV-C16 सफल जीसैट-12 2011 ई संचार PSLV-C18 सफल जीसैट-12 2011 ई संचार पिरयन 5 सफल जीसैट-12 2011 ई संचार PSLV-C18 सफल जीसैट-12 2011 ई संचार पिरयन-5 सफल जीसैट-12 2013 ई प्रतिरक्षा एरियन-5 सफल जीसैट-5 (P) 31.5 ई प्रतिरक्षा एरियन-5 सफल जीसैट-12 2013 ई प्रतिरक्षा एरियन-5 सफल जीसेट-12 2013 ई प्रतिरक्षा एरियन-5 सफल जीसेट-12 2014 ई संचार परियन-5 सफल जीसेट-12 2014 ई संचार परियन			29.09.97	सुदूर सवदा		संकल
आई.आर. 26.05.99 समुद्र पर्यवेक्षण पी.एस.एल. एस.पी4 इन्सैट-3 बी 22.03.00 बहुउदेशीय एरियन सफल जी सैट 18.04.01 पृथ्वी सर्वेक्षण जी.एस.एल. सफल जी सैट 22.10.01 प्रीघोगिकी पी.एस.एल. सफल बी.सी-1 टी.ई.एस. 22.10.02 दूरसंचार एरियन-4 सफल मेटसेट 12.09.02 मौसम संबंधो पी.एस.एल.बी-4 सफल इन्सैट-3 ए 10.04.03 बहुउदेशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल रहेसेट 2004 ई शीधक GSLV सफल कारोंसेट-1 05.05.05 मौपंग पी.एस.एल.सी-6 सफल दूरेसेट 4(A) भारत का अब तक का सबसे भारी उपग्रह है} इसैट-4 (C) 2006 ई संचार PSLV-C6 सफल परिक्षण 2007 ई संचार PSLV-C असफल कारोंसेट-2(A) 2008 ई विभिन्न उदेश्य PSLV-C2 सफल री-सैट-2(A) 2008 ई विभिन्न उदेश्य PSLV-C10 सफल री-सैट-2 2009 ई राहार इमेजिंग PSLV-C12 सफल री-सैट-2 2010 ई (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-8 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2013 ई प्रतिरक्षा एरियन-5 सफल जिन्नेट-14 2014 ई संचार परियन-5 सफल			400 A 304			700-0
प्स.पी4 इन्सैट-3 बी 22.03.00 बहुउद्देशीय एरियन सफल जी सैट 18.04.01 पृथ्वी सर्वेष्ठण जी.एस.एल. सफल बी.सी-1 टी.इं.एस. 22.10.01 प्रौद्योगिकी पी.एस.एल. सफल सर्वेक्षण बी.सी-3 (भारत) इन्सैट-3सी 24.01.02 दूरसंचार एरियन-4 सफल मैटसेट 12.09.02 पौसम संबंधो पी.एस.एल.ची-4 सफल इन्सैट-3 ए 10.04.03 बहुउद्देशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल काटॉसेट-1 05.05.05 पौधिक GSLV सफल काटॉसेट-1 05.05.05 पौधिक GSLV सफल हंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है} इसैट-4 (C) 2006 ई संचार PSLV-C6 सफल प्रदेशेट-4 (C) 2006 ई संचार PSLV-C असफल परिथण 2007 ई प्रधेपण यान सफल काटॉसेट-2(A) 2008 ई विभिन्न उद्देश्य PSLV-C2 सफल रो -सैट-2 2009 ई राहार इमेजिंग PSLV-C1 सफल रो -सैट-2 2009 ई राहार इमेजिंग PSLV-C1 सफल रो -सैट-2 2010 ई PSLV-C15 सफल जी-सैट-5(P) 2010 ई संचार GSLV-F(06) असफल जी-सैट-8 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 11 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार परियन-5 सफल जी-सैट-7 2013 ई प्रतिरक्षा परियन-5 सफल		•	Early Total Street			446
इन्सेट-3 बी. 22.03.00 बहुउदेशीय एरियन सफल जी.सेट 18.04.01 पृथ्वी सर्वेक्षण जी.एस.एल. सफल बी.सी-1 टी.ई.एस. 22.10.01 प्रौद्योगिकी पी.एस.एल. सफल बी.सी-3 (भारत) इन्सेट-3सी 24.01.02 दूरसंचार एरियन-4 सफल पेटसेट 12.09.02 प्रौसम संबंधी पी.एस.एल.वी-4 सफल इन्सेट-3 ए 10.04.03 बहुउदेशीय एरियन सफल एड्सेट 28.09.03 संचार एरियन सफल गट्रसेट 2004 ई शिक्षक GSLV सफल काट्रसेट-1 05.05.05 प्रैपिंग पी.एस.एल.सी-6 सफल (इसेट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इसेट-4 (C) 2006 ई संचार PSLV-C6 सफल परीक्षण 2007 ई प्रक्षेपण यान सफल परीक्षण 2007 ई प्रक्षेपण यान सफल काट्रसेट-2(A) 2008 ई रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई विभन्न उदेश्य PSLVC10 सफल परी-सेट-2 2010 ई (अब तक का सबांधिक उन्नत दूर संवेदी उपग्रह) जी-सेट-5(P) 2010 ई संचार GSLV-F(06) असफल जी-सेट-8 2011 ई संचार PSLV-C18 सफल जी-सेट-12 2011 ई संचार PSLV-C18 सफल जी-सेट-14 2014 ई संचार परियन-5 सफल जी-सेट-14 2014 ई संचार परियन-5 सफल जी-सेट-5(P) 2014 ई संचार परियन-5 सफल जी-सेट-14 2014 ई संचार परियन-5 सफल जी-सेट-15 2014 ई संचार परियन-5 सफल जी-सेट-14 2014 ई संचार परियन-14 2014 ई संचा		W. 12-1	20,05.99	समुद्र पथवक्षण		HER
जी सेट 18.04.01 पृथ्वी सर्वेक्षण जी.एस.एल. सफल वी.सी-1 टी.ई.एस. 22.10.01 प्रौद्योगिकी पी.एस.एल. सफल सर्वेक्षण वी.सी-3 (भारत) इन्सैट-3सी 24.01.02 दूरसंचार एरियन-4 सफल मैटसेट 12.09.02 मौसम संबंधी पी.एस.एल.वी-4 सफल इन्सैट-3 ए 10.04.03 बहुउईशीय एरियन सफल एड्सैट 28.09.03 संचार एरियन सफल काटोंसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल ईसैट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई. संचार PSLV-C असफल PSLV-C, एवं एका इतिहास एवं एके इतिहास एका उद्देश्य PSLV-C, सफल जो-सैट-2 2010 ई. पिनट उद्देश्य PSLV-C, सफल जो-सैट-2 2010 ई. पिनट उद्देश्य PSLV-C, सफल जो-सैट-5(P) 2010 ई. संचार प्रियन 5 सफल जो-सैट-12 2011 ई. संचार PSLV-C, सफल जो-सैट-12 2011 ई. संचार PSLV-C, सफल जो-सैट-12 2011 ई. संचार PSLV-C, सफल जो-सैट-12 2011 ई. पीनर संचार PSLV-C, सफल जी-सैट-12 2011 ई. पीनर संचार प्रियन-5 सफल जी-सैट-14 2014 ई. पीनर प्रियन-5 सफल जुटाप-14 2014 ई. पीनर प्रियन-5 सफल जुटाप-14 2014 ई. पीनर प्रियन-5 सफल जुटाप-14 2014 ई. पीनर प्रियन-5 सफल जुटाप-15 सफल जुटाप-15 सफल		1,000,000,000	22 02 00	जरूननेपरिय		
वी.सी-1 टी.ई.एस. 22.10.01 प्रौद्योगिकी पो.एस.एल. सफल सर्वेक्षण बी.सी-3 (भारत) इन्सैट-3सी 24.01.02 दूरसंचार एरियन-4 सफल गेटसेट 12.09.02 प्रौसम संबंधी पी.एस.एल.वी-4 सफल इन्सैट-3 ए 10.04.03 बहुउदेशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल लाटोंसेट-1 05.05.05 प्रैपिंग पी.एस.एल.सी-6 सफल हॉसेट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई. संचार PSLV-C असफल PSLV-C, एवं PSLV-C, का परीक्षण 2007 ई. प्रक्षेपण यान काटोंसेट-2(A) 2008 ई. रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल रानेस्ट-2 2009 ई. पाडार इभेजिंग PSLV-C12 सफल जी-सेट-2 2010 ई. संचार GSLV-F(06) असफल जी-सेट-5(P) 2010 ई. संचार परियन 5 सफल जी-सेट-12 2011 ई. संचार एरियन 5 सफल जी-सेट-12 2011 ई. संचार PSLV-C18 सफल जी-सेट-12 2011 ई. संचार परियन 5 सफल जी-सेट-12 2011 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D, सफल		And had been been been been been been been bee	CETAL ACTIVIDATE IN			
टी.ई.एस. 22.10.01 प्रौघोगिकी पी.एस.एल. सफल सर्वेक्षण बी.सी-3 (भारत) इन्सैट-3सी 24.01.02 दूरसंचार एरियन-4 सफल ग्रेटसेट 12.09.02 प्रौसम संबंधी पी.एस.एल.वी-4 सफल इन्सैट-3 ए 10.04.03 बहुउदेशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल एड्सैट 2004 ई शैक्षिक GSLV सफल काटोंसेट-1 05.05.05 प्रैपिंग पी.एस.एल.सी-6 सफल (इंसैट-4 (A) 2005 ई संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई प्रक्षेपण यान सफल काटोंसैट-2(A) 2008 ई रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई विभिन्न उदेश्य PSLVC10 सफल (रक्षा उदेश्य) काटोंसैट-2 2010 ई एक्षा उदेश्य) काटोंसैट-2 2010 ई संचार GSLV-F(06) असफल जी-सैट-8 2011 ई संचार PSLV-C17 सफल जी-सैट-8 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल जी-सैट-12 2011 ई मोसम संबंधो PSLV-C18 सफल जी-सैट-12 2011 ई मोसम संबंधो PSLV-C18 सफल जी-सैट-14 2014 ई प्रतिरक्षा एरियन-5 सफल जिन्ना राज्य राज		जा संदर्भ	10.04.01	र्युच्या संवद्यन		0.40
सर्वेक्षण बी.सी-3 (भारत) इन्सैट-3सी 24.01.02 दूरसंचार एरियन-4 सफल मैटसेट 12.09.02 मौसम संबंधी पी.एस.एल.ची-4 सफल इन्सैट-3 ए 10.04.03 बहुउदेशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल एड्सैट 2004 ई. शैक्षिक GSLV सफल काटोंसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल (इंसैट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई. संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई. प्रक्षेपण यान सफल काटोंसैट-2(A) 2008 ई. रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उदेश्य PSLVC10 सफल रो-सैट-2 2009 ई. राहार इमेजिंग PSLVC12 सफल रक्षा उदेश्य) काटोंसैट-2 2010 ई. PSLV C15 सफल जी-सैट-8 2011 ई. संचार GSLV-F(06) असफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल जी-सैट-12 2011 ई. संचार PSLV-C18 सफल जी-सैट-14 2014 ई. संचार परियन-5 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल		A STATE OF	22 10 01	ਪੀਗੇਸ਼ਿਕੀ		सफल
इन्सैट-3सी 24.01.02 दूरसंचार एरियन-4 सफल मैटसेट 12.09.02 मौसम संबंधी पी.एस.एल.ची-4 सफल इन्सैट-3 ए 10.04.03 बहुउदेशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल एड्सैट 2004 ई शैक्षिक GSLV सफल काटोंसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल (इंसैट-4 (A) 2005 ई संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई प्रक्षेपण यान सफल काटोंसैट-2(A) 2008 ई रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई विभिन्न उदेश्य PSLV-C10 सफल रो-सैट-2 2009 ई राहार इमेजिंग PSLV-C12 सफल जी-सैट-2 2010 ई संचार GSLV-F(06) असफल जी-सैट-8 2011 ई संचार GSLV-F(06) असफल जी-सैट-12 2011 ई संचार PSLV-C17 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल G-SAT-7 2013 ई प्रतिरक्षा एरियन-5 सफल G-SAT-7 2013 ई प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई संचार GSLV-D5 सफल	g	cra.der	22.10.01			
मैटसेट 12.09.02 मौसम संबंधी पी.एस.एल.बी-4 सफल इन्सैट-3 ए 10.04.03 बहुउद्देशीय एरियन सफल एड्सैट 28.09.03 संचार एरियन सफल एड्सैट 2004 ई शैक्षिक GSLV सफल काटोंसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल (इंसैट-4 (A) 2005 ई संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई प्रक्षेपण यान सफल काटोंसेट-2(A) 2008 ई रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई विभिन्न उद्देश्य PSLVC10 सफल रानेसेट-2 2009 ई राहार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) काटोंसेट-2 2010 ई PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सेट-8 2011 ई संचार परियन 5 सफल जी-सेट-12 2011 ई संचार परियन 5 सफल जी-सेट-12 2011 ई संचार PSLV-C18 सफल G-SAT-7 2013 ई प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई संचार GSLV-D5 सफल		- Az 2m	24 01 02			
इन्सैट-3 ए 10.04.03 बहुउदेशीय एरियन सफल इन्सैट-3 ई 28.09.03 संचार एरियन सफल एड्सैट 2004 ई शैक्षिक GSLV सफल कार्टोसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल (इंसैट-4 (A) 2005 ई संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई प्रक्षेपण यान सफल कार्टोसेट-2(A) 2008 ई रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई विभिन्न उद्देश्य PSLVC10 सफल (रक्षा उद्देश्य) कार्टोसेट-2 2010 ई एडार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) कार्टोसेट-2 2010 ई संचार GSLV-F(06) असफल जी-सैट-8 2011 ई संचार परियन 5 सफल जी-सैट-12 2011 ई संचार एरियन 5 सफल जी-सैट-12 2011 ई संचार PSLV-C18 सफल G-SAT-7 2013 ई प्रतिरक्षा एरियन-5 सफल G-SAT-7 2013 ई प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई संचार GSLV-D5 सफल				•	*	
इन्सेट-3 ई 28.09.03 संचार एरियन सफल एड्सैट 2004 ई शैक्षिक GSLV सफल कार्टोसेट-1 05.05.05 मैपिंग पो.एस.एल.सी-6 सफल हंसैट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई प्रक्षेपण यान सफल कार्टोसैट-2(A) 2008 ई. रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश PSLVC10 सफल (रक्षा उद्देश) कार्टोसैट-2 2010 ई. एडार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) कार्टोसैट-2 2010 ई. पंचार परिवर उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5 सफल						
एड्सैट 2004 ई. शैक्षिक GSLV सफल कार्टोसेट-1 05.05.05 मैपिंग पो.एस.एल.सी-6 सफल इंसैट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई. संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई. प्रक्षेपण यान सफल कार्टोसेट-2(A) 2008 ई. रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल री-सैट-2 2009 ई. राहार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) कार्टोसेट-2 2010 ई. पहार इमेजिंग PSLVC12 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार परियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधो PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5 सफल		Extension to		-		
कारोंसेट-1 05.05.05 मैपिंग पी.एस.एल.सी-6 सफल इंसैट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई. संचार PSLV-C असफर PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई. प्रक्षेपण यान सफल कारोंसैट-2(A) 2008 ई. रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल री-सैट-2 2009 ई. राडार इमेजिंग PSLVC12 सफल (शब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफर जी-सैट-8 2011 ई. संचार परियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेपा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5 सफल	5					
इसैट-4 (A) 2005 ई. संचार PSLV-C6 सफल (इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इसैट-4 (C) 2006 ई. संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई. प्रक्षेपण यान	5					
(इंसैट-4 (A) भारत का अब तक का सबसे भारी उपग्रह है) इंसैट-4 (C) 2006 ई. संचार PSLV-C असफर PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई. प्रक्षेपण यान सफल काटोंसैट-2(A) 2008 ई. रिमोट सोंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल रो-सैट-2 2009 ई. राडार इमेजिंग PSLVC12 सफल रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC15 सफल रचा गया 2010 ई. हिमोजिंग PSLVC15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-12 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेपा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5						सफल
इंसैट-4 (C) 2006 ई. संचार PSLV-C असफल PSLV-C7 एवं PSLV-C8 का परीक्षण 2007 ई. प्रक्षेपण यान		{ इंसैट- 4			बसे भारी उपग्रह है	}}
PSLV-C ₇ एवं PSLV-C ₈ का परीक्षण 2007 ई. प्रक्षेपण यान						असफल
PSLV-C ₈ का परीक्षण 2007 ई. प्रक्षेपण यान						
परीक्षण 2007 ई. प्रक्षेपण यान						
कारोंसैट-2(A) 2008 ई. रिमोट सेंसिंग PSLV-C2 सफल 10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल री-सैट-2 2009 ई. राहार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) कारोंसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेया ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5		परीक्षण	2007 ≰.	प्रक्षेपण यान		सफल
10 उपग्रहों को एक साथ प्रक्षेपित करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल री-सैट-2 2009 ई. राडार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) काटोंसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेपा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5				रिमोट सेंसिंग	PSLV-C2	सफल
करने का इतिहास रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल री-सैट-2 2009 ई. राडार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) कार्टोसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपप्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5						
रचा गया 2008 ई. विभिन्न उद्देश्य PSLVC10 सफल री-सैट-2 2009 ई. राहार इमेजिंग PSLVC12 सफल (रक्षा उद्देश्य) कार्टोसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C17 सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C18 सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D5		एक साथ प्रक्षेपि	त			**
री-सैट-2 2009 ई. राडार इमेजिंग PSLVC12 सफल (रक्षा उद्देश) कार्टोसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपप्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेपा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅		7.7		Py		
(रक्षा उद्देश्य) कार्टोसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपप्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅		रचा गया	2008 \$	विभिन्न उद्देश्य	PSLVC10	सफल
(रक्षा उद्देश्य) कार्टोसैट-2 2010 ई. PSLV C15 सफल (अब तक का सर्वाधिक उन्नत दूर संवेदी उपप्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफल जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅		री-सैट-2	2009 \$	राडार इमेजिंग	PSLVC12	सफल
(अब तक का सर्वाधिक उन्नत दूर संवेदी उपग्रह) जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफर जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅		10.0	11 12 11	(रक्षा उद्देश्य)		
जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफर जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅		कार्टोसैट-2				सफल
जी-सैट-5(P) 2010 ई. संचार GSLV-F(06) असफर जी-सैट-8 2011 ई. संचार एरियन 5 सफल जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅		e odvitel vi	(अब तक का	सर्वाधिक उन्नत	दूर संवेदी उपग्रह)	
जी-सैट-12 2011 ई. संचार PSLV-C ₁₇ सफल मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅ सफल		जी∹सैट-5(P)				असफल
मेघा ट्रॉपिक्स 2011 ई. मौसम संबंधी PSLV-C ₁₈ सफल G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅ सफल		जी-सैट-8	2011 \$	संचार		सफल
G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅ सफल		जी-सैट-12	2011 \$.			सफल
G-SAT-7 2013 ई. प्रतिरक्षा एरियन-5 सफल G-SAT-14 2014 ई. संचार GSLV-D ₅ सफल		मेघा ट्रॉपिक्स	2011 \$			सफल
		G-SAT-7				सफल
5-ब्रिटिश उपग्रह 2015 ई. निगरानी PSLV-C ₂₈ सफल		G-SAT-14				
CE-20 2016ई क्रायोजेनिक इंजन सफल		CE-20	2016 \$	क्रायोजेनिक	इंजन	सफल

THE PLATFORM

Join online test series: www.platformonlinetest.com

GENERAL SCIENCE # 101

नैनो-प्रौद्योगिकी

विज्ञान और प्रौद्योगिकी में दिन-प्रतिदिन की दिशाएँ जुड़ रही हैं, नैनो-टेक्नोलॉजी इसी क्रम में एक नाम है।

नैनो (Nano) एक ग्रीक भाषा का शब्द है, जिसका अर्थ होता है बौना (Dwarf)

नैनो टेक्नोलॉजी का नामकरण 'नैनो' नामक मापन की इकाई से हुआ

इस तकनीक के प्रयोग द्वारा विभिन्न तत्त्वों की बांड-संरचना में परिवर्तन करने पर या उनका आपस में संयोग करने पर एकदम नए तत्त्व का निर्माण भी किया जा सकता है।

कहने का अर्थ यह है कि यह तकनीक हवा, धूल और पानी के अणुओं के पुन: समायोजन से गुलाब या जामून बना सकने की सम्भावना को सच कर सकती है।

साथ ही कोयले को प्रयोगशाला में हीरे में परिवर्तित कर सकने की क्षमता भी इस विषय द्वारा उत्पन्न की जा सकती है।

यह अभी तक की सबसे बड़ी और सबसे शक्तिशाली क्रांति होगी।

इस नैनो क्राँति के द्वारा विश्व के प्रत्येक व्यक्ति को धन, स्वास्थ्य और शिक्षा तथा एक प्रदूषण रहित वातावरण प्राप्त हो सकता है।

इतना ही नहीं, इसके द्वारा कई असाध्य रोगों और यहाँ तक कि मृत्य पर भी विजय प्राप्त को जा सकती है।

इस शताब्दी में अणु और परमाणु के स्तर पर कई तरह के अनुसन्धान हुए, जिसमें वैज्ञानिक सूक्ष्म से सूक्ष्मतम स्तर तक अनुसन्धान करते चला गया, जिसे नैनो टेक्नोलॉजी का क्षेत्र कहा जाने लगा।

'नैनों टेक्नोलॉजी' की उत्पत्ति रसायन और तकनीकी विज्ञान के

संकरण से हुई है।

विश्व की सबसे प्रसिद्ध विज्ञान पत्रिका 'साइंस' ने वर्ष 2001 की सबसे बड़ी वैज्ञानिक उपलब्धि नैनो टेक्नोलॉजी को माना है।

विज्ञान को इस शाखा का नाम लम्बाई मापने की एक अत्यन्त छोटी

इकाई नैनोमीटर के नाम पर पड़ा है।

नैनोमीटर, मीटर के एक अरबवें हिस्से को कहा जाता है, जो लगभग हाइड्रोजन के एक परमाणु के आकार का लगभग 10 गुणा तथा एक अणु के आकार के बराबर होता है।

नैनो साइंस का व्यावहारिक उपयोग अत्यन्त सूक्ष्म उपकरणों एवं यन्त्रों के निर्माण के अलावा औषधि, बायोटेक्नॉलाजी, पदार्थ विज्ञान, कम्प्यूटर,

सूचना टेक्नोलॉजी इत्यादि में किया जाता है।

- किसी एक इकाई जैसे 1 मीटर या 1 सेकेण्ड या 1 ग्राम का 1 अरबवाँ हिस्सा एक नैनो मीटर कहलाता है। अतः नैनो टेक्नोलॉजी एवं साइंस के अन्तर्गत आण्विक स्तर या नैनो पैमाने पर कार्य किया जाता है।
- वैज्ञानिकों के अनुसार नैनोमीटर न्यूनतम इकाई नहीं है। इससे भी छोटी और भी इकाइयाँ है।
- नैनो टेक्नोलॉजी के क्षेत्र में एक और सफलता सिरामिक पदार्थों के निर्माण में मिली है। नैनो कणों में पराबैंगनी तथ्बा अवरक्त विकिरणों को अवरुद्ध करने का विशिष्ट गुण होता है।

इनकी मदद से कारों के पारदर्शी शीशे आदि बनाये जा सकते हैं, जो

इन विकिरणों के दुष्प्रभाव को बचा सकते हैं।

नैनो कणों से कुछ विशेष किस्म के उत्प्रेरक बनाये जा सकते हैं, जो पर्यावरण सम्बन्धी अनुप्रयोगों में बहुत उपयोग होते हैं।

नेनो मापन (Nano Measurement)

नैनो मीटर = 1×10^{-9} मीटर

0.1 नैनोमीटर = हाइड्रोजन के परमाणु का व्यास

2.5 नैनोमीटर = DNA अणु की चौड़ाई

800 नैनोमीटर = मनुष्य की लाल रुधिका कणिकाओं का व्यास

भारत में नैनो का विकास

नेनो द्युय फिल्टर—बनारस हिन्दू विश्वविद्यालय के वैज्ञानिकों ने एक ऐसे उपकरण का निर्माण किया है जो कार्यन नैनो दयब फिल्टर की तरह काम करता है। यह उपकरण पेट्रोलियम में उपस्थित भारी हाइड्रोकार्यन एवं जल में उपस्थित सूक्ष्म से नैनो मापक तक के कीटाणुओं को अलग कर सकता है।

टाईफाइड डिटेक्शन किट-बंगलोर के वैज्ञानिक प्रोफेसर ए.के. सुद द्वारा विकसित नैनों सेंसर का उपयोग कर डीआरडीई ग्वालियर के वैज्ञानिक में टाईफाइड डिटेक्शन किट का निर्माण किया है। इसके द्वारा टाईफाइड के उपस्थिति की जाँच आसानी से की जा सकती है।

नैनो बल्य—नैनो टेक्नोलॉजी के बदीलत जल्द ही ऐसे वल्य सामने आने वाले हैं, जो 15 गुना अधिक रोशनी दे सकेंगे। ये विजली का खर्चा तो बचायेंगे ही बल्कि प्रदूषण से भी निजात दिलायेंगे।

जैव प्रौद्योगिकी के क्षेत्र में नैना तकनीक—नैना टेक्नोलॉजी का प्रयोग बोजों, कीटनाशकों, बायोडिग्रेडेबल रसायनों, उर्वरकों तथा अन्य कृषि सम्बन्धी सामग्रियों को आवश्यकतानुसार रूप देने में किया जा सका है।

पर्यावरण एवं कर्जा के क्षेत्र में प्रौद्योगिकी-नाभिकीय कर्जा संयंत्रों में नैनो फिल्टर की सहायता से प्रयुक्त होने वाले ईंधन का संसाधन, शुद्धिकरण एवं अपशिष्ट प्रबन्धन अपेक्षाकृत अधिक सुरक्षा एवं उत्कृष्टता के साथ किया जा सकता है। नैनो विज्ञान की सहायता से तेल से बहुत ही सूक्ष्म कणों को भी अलग किया जा सकता है।

माइक्रो इलेक्ट्रॉनिक्स के क्षेत्र में नैनो प्रौद्योगिकी—माइक्रोइलेक्ट्रॉनिक्स सिकटों के डिजाइन, सुक्ष्मीकरण एवं उत्पादन विधि में अभूतपूर्वक प्रगति हुई है। इसका मुख्य श्रेय सॉलिड स्टेट ट्रॉजिस्टर की खोज को जाता है। माइक्रो इलेक्ट्रॉनिक्स ने सूक्ष्मीकरण की इस प्रक्रिया को न केवल आगे बढ़ाया, बल्कि दूरसंचार, कम्प्यूटर एवं इंटरनेट में क्रांति

पैदा कर दी।

नैनो द्यूब—नैनो द्यूब कार्बन अणुओं से बनी लम्बी खोखली नलिकाएँ होती हैं, जिनका व्यास लगभग 1 नैनोमीटर होता है। इनमें तनन सामर्थ्य एवं प्रत्यास्थता बहुत होती है इसलिए इनको मोड़कर पुन: आसानी से सीधा भी किया जा सकता है। कार्बन नैनो ट्यूबों के इन यात्रिक गुणों का प्रयोग सूक्ष्म रोबोटों पर भूकंपरोधी भवनों आदि के निर्माण में किया जा सकता है।

लेजर

केन्द्रीय सरकार के संस्थान के रूप में स्थापित मध्य प्रदेश के इन्दौर शहर में CAT (Centre for Advanced Technology) संस्थान में लेसर किरणों के उत्पादन एवं इनके विभिन्न उपयोगों पर सतत् अनुसन्धान कार्य चल रहे हैं।

बार्क ने 500 केईवी का डीसी एक्सलेरेटर सफलतापूर्वक विकसित किया है जो वाशी, नवी मुम्बई के ब्रिट (बीआरआईटी) कॉम्पलेक्स में

यह एक्सेलेरेटर सतह सुधार अध्ययनों तथा प्रयोगों में इस्तेमाल होता रहा है।

लेसर के तीन मुख्य भाग होते हैं ---

(i) कर्जा स्रोत—जो बिजली, साधारण प्रकाश या लेजर किरण में कोई एक हो सकता है।

(ii) सिक्रय माध्यम—यह वह माध्यम है जिससे लेसर की उत्पत्ति होती है। यह ठोस हो सकता है, जैसे-रूबी क्रिस्टल, द्रव हो सकता है। जैसे-कुछ डाई, गैस हो सकती है, जैसे-कार्बनडाई ऑक्साइड।

(iii) रिजोनेटर (Resonator)—यह दो आशिक रूप से परावर्तक दर्पणों से बना होता है जो इस नली के दोनों किनारों पर स्थित होते हैं, जिसमें सिक्रिय माध्यम स्थित होता है। ये परावर्तक दर्पण सिक्रिय माध्यम में उत्पन्न लेजर बीम की तीव्रता को बढ़ाने का कार्य करते हैं।