

Data Science and Analytics -Competing in a Data-driven World-

Cesar Acosta Ph.D.

Department of Industrial and Systems Engineering University of Southern California

OVERVIEW

- Data-driven
- Data Science
- Data Analytics
- What is the difference?

What is Data-driven?

Being data-driven means

Making business decisions

Managing processes

based on

facts insights

derived from data

Why Data-driven?

Most companies have information systems but are not data-driven

These companies have information systems

- ERP system
- CRM module
- Accounting system

But not aware if the data is

- accurate
- up-to-date

Moreover, they may not know how to make the best use of the data

They may be

doing transactions and making decisions

- with not accurate
- with not up-to-date data

They may be

doing transactions and making decisions

- with not accurate
- with not up-to-date, or
- ignoring the data

Making decisions ignoring the data?

Making decisions ignoring the data?

Based on feelings

Based on personal experiences

A data-driven organization

puts data at the core of their business processes

using facts, insights derived from data

to drive their decision-making

A data-driven organization

moves from guessing and assumptions

to using data and analytics

to make faster and better decisions

Relevant and accurate data are

at the core

of a data-driven organization

What is Data Science?

Data Science is the field of study that combines

- computer science
- statistics
- business

to find useful information from raw data.

Why Statistics?

Statistics = data analysis

Statistics is data

collection
cleaning
organization
visualization
analysis
modeling
presentation

Statistics is data

collection
cleaning
organization
visualization
analysis
modeling
presentation

data modeling

Generalized linear models
Bayesian modeling
cluster analysis
time series modeling
principal components
partial least squares
spatial analysis

Statistical tools to understand, analyze the data

- Random variables
- density functions
- Outliers
- Covariance, correlation
- Probabilities
- Bootstrapping
- Confidence and Prediction Intervals

Why Computer Science?

Computer Science tools

to collect, process, store the data

- Data Wrangling (unstructured to structured data)
- Data Warehousing (repo of structured data)
- Cloud computing
- Big data
- Machine learning models
- Web developing (front-end)

Why Business?

Business domain knowledge to make the right questions about

- Customer needs
- Products
- Processes
- Variables
- KPIs
- Environment variables

Business domain = Industry

- Retail
- Health care
- Financial
- Manufacturing
- Government
- Services

Business domain = Science

- Biology
- Medicine
- Physics
- Materials science
- Chemistry

What is Data Analytics?

DATA ANALYTICS

Data Analytics professional is someone whose focus is on

- collecting
- summarizing
- analyzing

data

to find answers to business questions

DATA ANALYTICS

- Who is the Business Analyst?
- What are the Business questions?

DATA ANALYTICS

B.A.

Decision Maker (questions)

Data Analyst (solutions)

Business questions

- What happened?
- What will happened?

What happened? -business case-

- Which products underperformed?
- Which were more profitable?
- Did our market share change?
- What is our retention rate?
- Who are our most valuable customers?

What will happen? -business case-

- What is the expected growth?
- Who are potential customers?
- Most promising product lines?
- What will be our market share?
- What new competitors may arise?

What will happen? -new product-

- What is the probability of success?
- What is the risk of failure?
- What is the market acceptance rate?
- Will it outperform current best product?

What will happen? -investment-

- What is the expected return?
- What is the probability of a loss?
- If there is a loss, how large can it be?
- What scenarios are possible?
- Major external risk in our sector?

DATA SCIENCE

How does the Data Analyst answer these questions?

Example: If there is 95% probability of a loss,

how large can it be?

- Collect data
- Find distribution of daily losses
- Find 95% quantile of daily losses
- Find expected loss beyond that quantile (VaR)

Example: Medicine

Business Question

Predict tumor outcome (benign or malign)

based on tissue measurements

- Collect lab data about variables related to cancer tumors
- Build classification model

	<				average	values				>	<				worst	values			
out	radius t	exture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry	fractal_di	radius	texture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry
M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	25.38	17.33	184.6	2019	0.1622	0.6656	0.7119	0.2654	0.4601
M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	24.99	23.41	158.8	1956	0.1238	0.1866	0.2416	0.186	0.275
M	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	23.57	25.53	152.5	1709	0.1444	0.4245	0.4504	0.243	0.3613
M	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	14.91	26.5	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638
M	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	22.54	16.67	152.2	1575	0.1374	0.205	0.4	0.1625	0.2364
M	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	15.47	23.75	103.4	741.6	0.1791	0.5249	0.5355	0.1741	0.3985
M	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	22.88	27.66	153.2	1606	0.1442	0.2576	0.3784	0.1932	0.3063
M	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	17.06	28.14	110.6	897	0.1654	0.3682	0.2678	0.1556	0.3196
M	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	15.49	30.73	106.2	739.3	0.1703	0.5401	0.539	0.206	0.4378
M	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	15.09	40.68	97.65	711.4	0.1853	1.058	1.105	0.221	0.4366
M	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	19.19	33.88	123.8	1150	0.1181	0.1551	0.1459	0.09975	0.2948
M	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	20.42	27.28	136.5	1299	0.1396	0.5609	0.3965	0.181	0.3792
M	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	20.96	29.94	151.7	1332	0.1037	0.3903	0.3639	0.1767	0.3176
M	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	16.84	27.66	112	876.5	0.1131	0.1924	0.2322	0.1119	0.2809
M	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	15.03	32.01	108.8	697.7	0.1651	0.7725	0.6943	0.2208	0.3596
M	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	17.46	37.13	124.1	943.2	0.1678	0.6577	0.7026	0.1712	0.4218
M	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	19.07	30.88	123.4	1138	0.1464	0.1871	0.2914	0.1609	0.3029
M	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	20.96	31.48	136.8	1315	0.1789	0.4233	0.4784	0.2073	0.3706
M	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	27.32	30.88	186.8	2398	0.1512	0.315	0.5372	0.2388	0.2768
В	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	15.11	19.26	99.7	711.2	0.144	0.1773	0.239	0.1288	0.2977
В	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	14.5	20.49	96.09	630.5	0.1312	0.2776	0.189	0.07283	0.3184
В	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	10.23	15.66	65.13	314.9	0.1324	0.1148	0.08867	0.06227	0.245
M	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	18.07	19.08	125.1	980.9	0.139	0.5954	0.6305	0.2393	0.4667
M	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	29.17	35.59	188	2615	0.1401	0.26	0.3155	0.2009	0.2822

Data Analyst

- Searches subsets of variables to identify malign cancer
- Use PCA plot to verify if the variables are able to identifying cancer
- Develop a decision boundary

Data Analytics focus is on answering business questions

- What happened?
- What will happen?

What happened?

- Descriptive Stats
- Summary Tables (crosstabs, pivot tables)
- Data visualization
- Dashboards

What happened?

Descriptive Analytics

- Descriptive Stats
- Summary Tables (crosstabs, pivot tables)
- Data visualization
- Dashboards

What happened?

Descriptive Analytics

- Descriptive Stats
- Summary Tables (crosstabs, pivot tables)
- Data visualization
- Dashboards

What may happen?

- Prediction Models
- Classification Models
- Clustering methods

What happened?

Descriptive Analytics

- Descriptive Stats
- Summary Tables (crosstabs, pivot tables)
- Data visualization
- Dashboards

What may happen?

- Prediction Models
- Classification Models
- Clustering methods

What happened?

Descriptive Analytics

- Descriptive Stats
- Summary Tables (crosstabs, pivot tables)
- Data visualization
- Dashboards

Why did it happen?

What may happen?

- Prediction Models
- Classification Models
- Clustering methods

What happened?

Descriptive Analytics

- Descriptive Stats
- Summary Tables (crosstabs, pivot tables)
- Data visualization
- Dashboards

Why did it happen? What may happen?

- Prediction Models
- Classification Models
- Clustering methods

Diagnostic Analytics Predictive Analytics

- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics

- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics

Past performance
Historical data

Today observe & predict

Future performance results

Past performance
Historical data

Today observe & predict

Future performance results

What happened?

What may happen?

Past performance
Historical data

Today observe & predict

Future performance results

What happened?

Describe/summarize data

What may happen? scenarios

Past performance
Historical data

Today observe & predict

Future performance results

What happened?

Describe/summarize data

Descriptive Stats

Barplots, scatterplots, boxplots

Line charts, Histograms

Averages, std. deviations

correlations

Descriptive Analytics

What may happen? scenarios

Prediction Models
prediction models
classification models
clustering methods

Past performance
Historical data

Today
Decisions & predictions

Future performance results

What happened?

Describe/summarize data

What we want to happen?

What may happen? scenarios

Descriptive Stats

Barplots, scatterplots, boxplots

Line charts, Histograms

Averages, std. deviations

correlations

Descriptive Analytics

Prediction Models

prediction models

classification models

clustering methods

Past performance
Historical data

What happened?

Describe/summarize data

Descriptive Stats

Barplots, scatterplots, boxplots

Line charts, Histograms

Averages, std. deviations

correlations

Descriptive Analytics

Today

Decisions & predictions

What we want to happen?

What decisions are needed

to make things happen?

Future performance results

What may happen?

scenarios

Prediction Models

prediction models

classification models

clustering methods

Past performance
Historical data

What happened?

Describe/summarize data

Descriptive Stats

Barplots, scatterplots, boxplots

Line charts, Histograms

Averages, std. deviations

correlations

Descriptive Analytics

Today

Decisions & predictions

What we want to happen?

What decisions are needed

to make things happen?

Simulation models

Optimization models

Future performance results

What may happen?

scenarios

Prediction Models

prediction models

classification models

clustering methods

INTRODUCTION

Past performance
Historical data

What happened?

Describe/summarize data

Descriptive Stats

Barplots, scatterplots, boxplots

Line charts, Histograms

Averages, std. deviations

correlations

Descriptive Analytics

Today

Decisions & predictions

What we want to happen?

What decisions are needed

to make things happen?

Simulation models

Optimization models

Prescriptive Analytics

Future performance results

What may happen?

scenarios

Prediction Models

prediction models

classification models

clustering methods

Predictive Analytics

DATA ANALYTICS

DATA ANALYTICS

Data Scientist vs Data Analyst

DATA ANALYTICS

Collect data

- Data wrangling (organizing, sorting, merging data sets)
- Cleaning
- Converting data formats
- Querying databases

Both

Summarize data

- Tables (crosstabs, pivot tables)
- Data visualisation
- Dashboards

Build prediction/classification models

Data Scientist

Data Analyst

Data Analyst

- Data query
- Data wrangling
- Data Discovery

(pivot tables,

Regression models,

Classification models)

Data Scientist

- Web-data app
- Cloud-data app
- Big data tools
- ML (Adv. Regression models,

Adv. Classification models

Deep learning)

Data Scientists have an increasing need of becoming proficient in Web Applications and Al

- Big data Analytics
- Web data visualization
- Online dash boarding
- Text analytics
- Image data analytics
- IoT

SOFTWARE

Data Analytics+

- Tableau, Power BI
- Python, R
- SQL, NoSQL
- HTML, CSS

Data Science

- Linux
- AWS, GCP, Azure
- Java Script
- Hadoop, Spark, Scala

Data Science and Data Analytics -Job Market-

DATA ANALYSTS & DATA SCIENCE - JOBS MARKET

	DSA Framework Category	Functional Role	Sample Occupations
	Data Scientists & Advanced Analytics	Create sophisticated analytical models used to build new datasets and derive new insights from data	Data Scientist
N. SOI	Data Analysts	Leverage data analysis and modeling techniques to solve problems and glean insight across functional domains	Data Analysts Business Intelligence Analyst
Allalytical Ki	Data Systems Developers	Design, build and maintain and organization's data and analytical infrastructure	Systems Analyst Database Administrator
Alla	Analytics Managers	Oversee analytical operations and communicate insights to executives	Chief Analytics Officer Marketing Analystics Manager
	Functional Analysts	Utilize data and analytical models to inform specific functions and business decisions	Business Analyst Financial Analyst
	Data-Driven Decision Makers	Leverage data to inform strategic and operational decisions	IT Project Manager Marketing Manager

DATA ANALYSTS & DATA SCIENCE - JOBS MARKET

DSA Framework Category	Functional Role	Sample Occupations
Data Scientists & Advanced Analytics	Create sophisticated analytical models used to build new datasets and derive new insights from data	Data Scientist
Data Analysts	Leverage data analysis and modeling techniques to solve problems and glean insight across functional domains	Data Analysts Business Intelligence Analyst
Data Systems Developers	Design, build and maintain and organization's data and analytical infrastructure	Systems Analyst Database Administrator
Analytics Managers	Oversee analytical operations and communicate insights to executives	Chief Analytics Officer Marketing Analystics Manager
Functional Analysts	Utilize data and analytical models to inform specific functions and business decisions	Business Analyst Financial Analyst
Data-Driven Decision Makers	Leverage data to inform strategic and operational decisions	IT Project Manager Marketing Manager

DATA ANALYSTS & DATA SCIENCE – JOBS CLASSIFICATION

DATA ANALYSTS & DATA SCIENCE - CURRENT JOB MARKET

DATA ANALYSTS & DATA SCIENCE - SKILLS NEEDED - JOB MARKET

DATA ANALYSTS DATA SCIENCE – Highest Paying Analytical Skills (7000+ postings)

Skill Name	Average Salary
MapReduce	\$115,907
PIG	\$114,474
Machine Learning	\$112,732
Apache Hive	\$112,242
Apache Hadoop	\$110,562
Big Data	\$109,895
Data Science	\$107,287
NoSQL	\$105,053
Predictive Analytics	\$103,235
MongoDB	\$101,323

Cesar Acosta

acostame@usc.edu
MS Analytics - Director
University of Southern California
Department of Industrial and Systems Engineering

https://github.com/cesar-acosta

Data Science and Analytics

Thank you!

Data Science and Analytics

Questions?