Tema 5.3. Equilibrado de árboles

Estructura de Datos y Algoritmos (EDA)

Índice

- ▶ 5.3 Equilibrado de ABB
 - Definición de Árbol Perfectamente Equilibrado
 - Definición de Árbol Equilibrado en Altura

ABB perfectamente equilibrados

- Resumen de características de ABB
 - h = altura del árbol, n = número de nodos
 - Ventaja:
 - Inserción, borrado y búsqueda ~ O(h)
 - Desventaja:
 - ▶ Se pierde eficiencia cuando $n \approx h$, y su complejidad se iguala a la de las listas

ABB perfectamente equilibrados

- ▶ Estrategia → Después de las operaciones de inserción o borrado, debemos mantener el árbol equilibrado.
 - Equilibrio perfecto o en tamaño (árboles perfectamente equilibrados)
 - Equilibrio en altura (árboles AVL, árboles ideado por los matemáticos Adelson-Velskii y Landis)

ABB perfectamente equilibrados (en tamaño)

- Factor de equilibrio de un nodo (fe) : diferencia entre el tamaño del subárbol derecho y el del izquierdo (o viceversa)
- Para TODOS los nodos, el número de nodos del subárbol izquierdo y el número de nodos del subárbol derecho difieren como máximo en 1 unidad
- Coste alto de mantener un ABB perfectamente equilibrado,
 O(n)

con equilibrio perfecto

sin equilibrio perfecto

ABB perfectamente equilibrados: Algoritmo Reequilibrado

- Idea: desplazar la mitad de los nodos que sobran de un lado al otro del ABB
- Importante: Reequilibrado se hace desde la raíz hacia abajo (es decir, de forma descendiente).
- Será necesario modificar algoritmos de inserción/borrado
 - haciendo un re-equilibrado tras insertar/borrar, o bien
 - equilibrando en algún momento

ABB perfectamente equilibrados: Algoritmo Reequilibrado

- El siguiente algoritmo para desplazar nodos, asegura el nuevo árbol mantendrá la condición de ABB. Pasos:
 - Desplazar a derechas:
 - Introducir la raíz del subárbol no equilibrado en el subárbol derecho
 - Colocar como raíz del subarbol no equilibrado el mayor del subárbol izquierdo
 - 3. Repetir I y 2 tantas veces como número de nodos a desplazar. (Es decir, repeticiones= (fe nodo a equilibrar/2)).
 - Desplazar a izquierdas: (simétrico)

fe(10)=7-1=6. Es decir, hay 6 nodos de diferencia → desplazar 6/2 veces a la derecha

- 1) Insertar la raíz (es decir, el nodo 10) al subárbol derecho.
- 2) El mayor del subárbol izquierdo será la nueva raíz (en este caso, el nodo 8).

Continuamos: Aplicar equilibrio perfecto al subárbol izquierdo

3 nodos de diferencia → desplazar 3/2 veces a la derecha

Continuamos: Aplicar equilibrio perfecto al subárbol derecho

3 nodos de diferencia → desplazar 3/2 veces a la derecha

RESULTADO final

Primero se equilibra la raíz, pasando dos veces un nodo hacia la derecha (fe=-4)

Continuamos: llamamos a equilibrar el subárbol izquierdo y luego el subárbol derecho

... equilibrio del subárbol izquierdo (fe = -2)

... equilibrio del subárbol derecho (fe = -2)

RESULTADO: árbol perfectamente equilibrado

Índice

- ▶ 4.3 Árboles Equilibrados
 - Árboles Binarios Equilibrados
 - Definición de Árbol Perfectamente Equilibrado
 - Arboles AVL: Definición de Árbol Equilibrado en Altura.
 - □ AVL: Árbol binario ideado por los matemáticos rusos Adelson-Velskii y Landis.

Factor de equilibrio en altura de un nodo (fe):
Diferencia entre la altura (longitud del camino máximo a una hoja) por el lado derecho y por el lado izquierdo (o viceversa)

▶ ABB equilibrado en altura

Para cada uno de sus nodos, las alturas de sus subárboles izquierdo y derecho difieren como máximo en 1 unidad

Esto es, el factor de equilibrio (en altura) de todos sus nodos es menor o igual que 1.

- Idea: desplazar nodos de la rama más larga a la rama más corta.
- Importante: Equilibrado se hace en orden ascendiente, es decir, siempre desde abajo, sólo en el camino desde el nodo insertado o borrado hacia la raíz.
- Nota que el árbol resultante debe seguir siendo ABB (y por tanto, tener el mismo recorrido in order).
- Rotaciones:
 - Rotación simple a la derecha
 - Rotación simple a la izquierda
 - Rotación doble (izquierda-derecha)
 - Rotación doble (derecha-izquierda)

▶ Rotación simple a la derecha:

Ejemplo rotación simple a la derecha:

Ejemplo rotación simple a la derecha:

Ejemplo rotación simple a la derecha:

http://visualgo.net/bst.html

▶ Rotación simple a la derecha:

▶ Rotación simple a la derecha:

 $InOrder: H_1AH_2BH_3CH_4 = InOrder: H_1AH_2BH_3CH_4$

Ejemplo (con subárboles) rotación simple a la derecha:

- El primer nodo desequilibrado es el 6.
- Podemos aplicar una rotación simple a la derecha: mover 4 como raíz del subárbol, y 6 como su hijo derecho.
- Nota que el nodo 4, tiene un subárbol derecho, ¿qué hacemos con el nodo 5?

Ejemplo (con subárboles) rotación simple a la derecha:

- El nodo 6 se rota como hijo derecho de 4, y éste pasa a ser la nueva raíz del subárbol.
- El antiguo subárbol derecho de 4, es decir el 5, tiene que pasar ahora a ser subárbol izquierdo de 6.

Ejemplo (con subárboles) rotación simple a la derecha:

▶ Rotación simple a la izquierda:

Ejemplo Rotación simple a la izquierda:

Ejemplo rotación simple a la izquierda:

Ejemplo rotación simple a la izquierda:

http://visualgo.net/bst.html

Ejemplo rotación simple a la izquierda:

▶ Rotación simple a la izquierda:

▶ Rotación simple a la izquierda:

InOrder: H₁AH₂BH₃CH₄

=

InOrder: H₁AH₂BH₃CH₄

▶ Rotación Doble (left-right) :

InOrder: ABC = InOrder: ABC

Ejemplo Rotación Doble (left-right):

Ejemplo Rotación doble (left-right):

- El nodo desequilibrado es el 6. Para equilibrar zig-zag izquierdo-derecho, tenemos que hacer dos rotaciones:
- Primera rotación a la izquierda: subimos el nodo 5 como hijo izquierdo de 6, y 4 pasa a ser hijo izquierdo de 5.
- Segunda rotación a la derecha: giramos el nodo 6 a la derecha y el nodo 5 pasa a ser la nueva raíz del subárbol.

Ejemplo Rotación doble (left-right):

- El nodo desequilibrado es el 6. Para equilibrar zig-zag izquierdo-derecho, tenemos que hacer dos rotaciones:
- Primera rotación a la izquierda: subimos el nodo 5 como hijo izquierdo de 6, y 4 pasa a ser hijo izquierdo de 5.
- Segunda rotación a la derecha: giramos el nodo 6 a la derecha y el nodo 5
 pasa a ser la nueva raíz del subárbol.

Ejemplo Rotación doble (left-right):

- El nodo desequilibrado es el 6. Para equilibrar zig-zag izquierdo-derecho, tenemos que hacer dos rotaciones:
- Primera rotación a la izquierda: subimos el nodo 5 como hijo izquierdo de 6,
 y 4 pasa a ser hijo izquierdo de 5.
- Segunda rotación a la derecha: giramos el nodo 6 a la derecha y el nodo 5 pasa a ser la nueva raíz del subárbol.

▶ Rotación Doble (left-right) :

Primer paso: rotamos a la izquierda el nodo B (como hijo izquierdo de C)

Rotación doble (left-right):

Segunda rotación: movemos el nodo C como hijo derecho de B

Rotación doble (left-rithg):

InOrder: H₁AH₂BH₃CH₄

=

InOrder: H₁AH₂BH₃CH₄

Ejemplo (con subárboles) Rotación doble (left-right):

- El nodo 15 está desequilibrado (fe=2). Podemos aplicar una rotación left-right.
- La primera rotación es mover el 6 como hijo izquierdo de 15.
- La segunda rotación será rotar el 15 como hijo derecho de 6 (y que éste sea la nueva raíz)

Ejemplo (con subárboles), Rotación doble (left-right):

- El nodo 15 está desequilibrado (fe=2). Podemos aplicar una rotación left-right.
- La primera rotación es mover el 6 como hijo izquierdo de 15
- La segunda rotación será rotar el 15 como hijo derecho de 6 (y que éste sea la nueva raíz)

Ejemplo (con subárboles) Rotación doble (left-right):

- El nodo 15 está desequilibrado (fe=2). Podemos aplicar una rotación left-right.
- La primera rotación es mover el 6 como hijo izquierdo de 15
- La segunda rotación será rotar el 15 como hijo derecho de 6 (y que éste sea la nueva raíz)

Ejemplo (con subárboles) Rotación doble (left-right):

- El nodo 15 está desequilibrado (fe=2). Podemos aplicar una rotación left-right.
- La primera rotación es mover el 6 como hijo izquierdo de 15
- La segunda rotación será rotar el 15 como hijo derecho de 6 (y que éste sea la nueva raíz)

Rotación Doble (right-left):

InOrder: ABC = InOrder: ABC

Ejemplo Rotación Doble (right-left):

Ejemplo Rotación doble (right-left):

Ejemplo Rotación doble (right-left):

Ejemplo Rotación doble (right-left):

▶ Rotaciones Dobles (ejemplo right-left):

Rotación Doble (right-left):

Primera rotación: rotamos el nodo B como hijo derecho de A

Rotación Doble (right-left):

Segunda rotación: rotamos el nodo A como hijo izquierdo de B

▶ Rotación doble (right-left):

InOrder: H₁AH₂BH₃CH₄

=

InOrder: H₁AH₂BH₃CH₄

- Ventaja: El equilibrado se hace desde abajo, sólo en el camino desde el nodo insertado o borrado hacia la raíz
 - Por tanto, el equilibrado es O(log n)
- Desventaja: El árbol no queda tan compactado como en ABB perfectamente equilibrado. Aun así, las búsquedas también son O(log n)