Ejercicio 6

Ejercicio 6

Ejercicio 7 Ejercicio 14 Sean A y B matrices semejantes. Probar que A y B tienen el mismo polinomio característico.

Sea S tal que $A = S^{-1}BS$.

Desarrollando el polinomio característico de A:

$$\det(A - \lambda I) = \det(S^{-1}BS - \lambda I)$$

$$= \det(S^{-1}BS - S^{-1}\lambda IS)$$

$$= \det(S^{-1}(B - \lambda I)S)$$

$$= \det(S^{-1})\det(B - \lambda I)\det(S)$$

$$= \det(S^{-1})\det(S)\det(B - \lambda I)$$

$$= \det(B - \lambda I)$$

Ejercicio 7

Ejercicio 6

Ejercicio 7

Ejercicio 14

Probar que:

- a) Si A es semejante a B entonces A^2 es semejante a B^2 .
- b) Puede ocurrir que A^2 y B^2 sean semejantes aún cuando A y B no lo sean.
- a) Si S es tal que $A = S^{-1}BS$, entonces

$$A^2 = AA = (S^{-1}BS)(S^{-1}BS) = S^{-1}BBS = S^{-1}B^2S.$$

b) Ir a lo sencillo y pensar un ejemplo donde $A=0, B\neq 0$ y $A^2=B^2=0$ (la única dificultad es encontrar B no nula tal que $B^2=0$).

Ejercicio 6

Ejercicio 7

Ejercicio 14

Ejercicio 14

Sea T una matriz triangular. Entonces T es normal si y solo si T es diagonal.

- \Rightarrow) Supongamos que T es triangular inferior (caso contrario considerar T^H).
 - Por el ejercicio 4)b) resulta que

$$||T_1||^2 = ||T^1||^2,$$

es decir,

$$|T_{11}|^2 = |T_{11}|^2 + |T_{21}|^2 + \dots + |T_{n1}|^2$$

 $0 = |T_{21}|^2 + \dots + |T_{n1}|^2$

Luego, $T_{i1} = 0$ para $i \neq 1$.

Con un razonamiento inductivo se puede probar que $T_{ij} = 0$ para $i \neq j$, resultando que T es diagonal.

 \Leftarrow) D^H es diagonal y las diagonales commutan entre si.