1. Suppose $F: \{0,1\}^n \Rightarrow \{0,1\}^{2n}$ is a PRG that is also an injection. Define G to be a deterministic polynomial-time algorithm such that for any n and any input $s \in \{0,1\}^n$, the output G(s) is F(s)||s|.

Find a distinguisher such that for any negligible function negl $|Pr[D(G(s))=1]-Pr[D(r)=1]| \le negl(n)$ is false.

Let D be a distinguisher as follows:

For any input X to D, let Y be the last n digits of X and Z be the first 2n digits of X. D outputs 1 if and only if $F(Y) \oplus Z = 0^{2n}$, that is, if F(Y) = Z.

For any input string s, since F is an injective function, by definition F(s) = F(s). Since the output of

G(s) is F(s)||s, we can say F(s)||s=Z||Y and F(Y)=Z, and so D outputs 1 for all input strings s. Therefore Pr[D(G(s))=1]=1Since F is a PRG, when the input to D is a randomly and uniformly selected string r=Z||Y|,

F(Y) will be indistinguishable from a randomly selected string from $\{0,1\}^{2n}$, and so $Pr[D(r)=1]=Pr[F(Y)\oplus Z=0^{2n}]=\frac{1}{2^n}$ since for each ith of 2n digits there is a $\frac{1}{2}$ probability that the ith digit of F(Y) equals the ith digit of Y.

We can then say that $|Pr[D(G(s))=1]-Pr[D(r)=1]| \ge 1-\frac{1}{2^n}$ and so $|Pr[D(G(s))=1]-Pr[D(r)=1]| \le negl(n)$ is false. Therefore G is not a PRG.

2.

Prove that $|Pr[D^{F_k(\cdot)}(1^n)=1]-Pr[D^{f(\cdot)}(1^n)=1]| \leq negl(n)$ does not hold.

For all messages x, let $y=F_k(0\|x)$. Pick any $x_1\in\{0,1\}^{n-1}$. Obtain $y_1=F_k(0\|x_1)$. Let D be a distinguisher that takes a message Z of length 3n, and outputs 1 iff A = NOT(B) where A is the first n bits of Z and B is the next n bits of Z.

By definition, for any input x, $G_k(x)[0:n] = NOT(G_k(x)[n+1:2n])$. Therefore $Pr[D^{F_k(\cdot)}(1^n)=1]=1$ is true. On the other hand, since f is uniformly chosen from Func_n, $f(x_1)$ is a uniformly chosen random

string of length 3n. Therefore $Pr[D^{f(\cdot)}(1^n)=1]=\frac{1}{2^{3n}}$. Then $|Pr[D^{F_k(\cdot)}(1^n)=1]-Pr[D^{f(\cdot)}(1^n)=1]|=1-\frac{1}{2^{3n}}>negl(n)$ and $G_k(x)$ is not a PFF.

3.

Show that the scheme is not EAV-Secure.

iff the final bit of c is 1, that is $A(c) = c_{|c|-1}$. From the definition of Π' ,

Let $m_0 = 00$ and $m_1 = 01$. In the adversarial indistinguishability experiment, the experiment

 Enc_{k} ' $(m)=Enc_{k}(m)\|xor(m)$. Since $\oplus 00=0$ and $\oplus 01=1$, Enc_{k} ' (m_{0}) will end with 0

and $Enc_k'(m_1)$ will end with 1. Therefore when b=0 , b'=0 and when b=1 , b'=1 . The adversary is always right, so we can say that $Pr[PrivK \frac{eav}{A,\Pi}(2)=1]=1>\frac{1}{2}+negl(2)$ and so Π' is not EAV-secure. Prove $|Pr[D(G'(s))=1]-Pr[D(r)=1]| \le negl(n)$ (1) for any PPT algorithm D. Since G is a PRG with expansion factor l(n) for all $n \in \mathbb{Z}^+$, we can say that

For any PPT distinguisher D, let D' be an algorithm defined as D'(s) = D(NOT(s)) for all s

uniformly selects $b \in [0,1]$ and generates $c \leftarrow Enc_k(m_b)$. Let A be an adversary that outputs 1

where |s| > 0. That is, D' produces the output that D(s) would, if D had been run on an input of NOT(s). Since (2) holds for any distinguisher including any D', the following sequence holds: $|Pr[D'(G(s))=1]-Pr[D'(r)=1]| \leq negl(n) \Rightarrow$

 $|Pr[D(G(s))=1]-Pr[D(r)=1]| \le negl(n)$ (2) for any PPT algorithm D.

 $|Pr[D'(NOTG'(s))=1]-Pr[D'(r)=1]| \leq negl(n) \Rightarrow$ Since G(s) = NOT(G(s)) $|Pr[D(G'(s))=1]-Pr[D'(r)=1]| \le negl(n)$ (3) Since D'(s) = D(NOT(s))

randomly selected from $\{0,1\}^{l(n)}$, Pr[D(NOT(r))=1]=Pr[D(r)=1]

Plugging these in to equation (3), we arrive at the original formula, which was assumed to be true at the start. I.E. $|Pr[D(G(s))=1]-Pr[D(r)=1]| \le negl(n)$ is equivalent to $|Pr[D(G'(s))=1]-Pr[D(r)=1]| \le negl(n)$ and therefore G'(s) is a PRG for all s where |s| > 0.

Pr[D'(r)=1]=Pr[D(NOT(r))=1] By the definition of D'. Since r is uniformly and

5a. Show that for each $n \ge 6$, $Dec_k(Enc_k(m)) = m$ for each $m \in \{0,1\}^n$. By definition $(c,l) = Enc_k(m) = (m \oplus k \oplus l, l)$ and $Dec_k(c,l) = c \oplus k \oplus l$ So $Dec_k(Enc_k(m)) = Dec_k(m \oplus k \oplus l, l) = (m \oplus k \oplus l) \oplus k \oplus l$

Note that the XOR operation is commutative, associative, is an identity element, and is a selfinverse.

Therefore 1.

2.

5.

3. $m \oplus k \oplus l \oplus k \oplus l \Rightarrow m \oplus (k \oplus k) \oplus (l \oplus l)$ By associativity 4. $m \oplus (k \oplus k) \oplus (l \oplus l) \Rightarrow m \oplus 0 \oplus 0$ By self-inverse

 $(m \oplus k \oplus l) \oplus k \oplus l \Rightarrow m \oplus k \oplus l \oplus k \oplus l$ By associativity $m \oplus k \oplus l \oplus k \oplus l \Rightarrow m \oplus k \oplus k \oplus l \oplus l$ By commutativity

Therefore $Dec_k(Enc_k(m)) = m$ for each $m \in \{0,1\}^n$.

Prove that the following equation does not hold: $Pr[Priv_k \frac{mult}{A, \Pi}(n) = 1] \le \frac{1}{2} + negl(n)$

Let A be an adversary that chooses $M_0 = (0^n, 0^n)$ and $M_1 = (0^n, 1^n)$. A's strategy for guessing b is: A outputs b'=0 iff $c_0 \oplus c_1$ contains exactly two 1 bits and otherwise outputs b'=1.

Note that $Pr[b=0] = Pr[b=1] = \frac{1}{2}$

 $m \oplus 0 \oplus 0 \Rightarrow m$ By identity

The probability that this experiment outputs 1 is equal to the probability that b=0 and $c_0 \oplus c_1$ contains exactly two 1 bits plus the probability that b=1 and $c_0 \oplus c_1$ does not contains exactly two

1 bits.

5b.

1 bits as $\Sigma s = 2$. And so, $Pr[Priv_{_{k}} \\ \\ \frac{mult}{A \, . \, \Pi}(n) = 1] = Pr[b = 0] \cdot Pr[\Sigma(c_{_{0}} \oplus c_{_{1}}) = 2] + Pr[b = 1] \cdot Pr[\Sigma(c_{_{0}} \oplus c_{_{1}}) \neq 2]$

Where $l_0 = l_1$, $c_0 \oplus c_1 = (m_0 \oplus k \oplus l_0) \oplus (m_1 \oplus k \oplus l_1) = m_0 \oplus m_1$ and where $l_0 \neq l_1$,

From the scheme definition, $c_0 \oplus c_1 = (m_0 \oplus k \oplus l_0) \oplus (m_1 \oplus k \oplus l_1)$.Note that l is chosen uniformly and randomly at encryption time, so l₀ does not necessarily equal l₁. As a result of the method by which l is picked, there is a $\frac{1}{n}$ chance that $l_0 = l_1$ and a $\frac{n-1}{n}$ chance that $l_0 \neq l_1$.

This probably isn't typical mathematical notation, but I will denote a string s containing exactly two

exactly one 1 bit, $l_0 \oplus l_1$ must be a string that contains exactly two 1 bits, I.E. $\Sigma(l_0 \oplus l_1) = 2$ Determine the probabilities that the experiment outputs 1 in each case: b=0 and b=1 Case b=0:

Find the probability that $c_0 \oplus c_1$ contains exactly two 1 bits, $Pr[\Sigma(c_0 \oplus c_1) = 2]$. As previously

 $c_0 \oplus c_1 = 0^n \oplus l_0 \oplus l_1$ must also be a string with exactly two 1 bits when $n \ge 2$. So the probability

proven, when $l_0 = l_1$, $c_0 \oplus c_1 = m_0 \oplus m_1 = 0^n$ which has no 1 bits. However, when $l_0 \neq l_1$,

 $c_0 \oplus c_1 = 0^n \oplus l_0 \oplus l_1$. Since $l_0 \oplus l_1$ contains exactly two 1 bits when $l_0 \neq l_1$,

that A guessed correctly when b=0 and $n \ge 2$ is $Pr[l_0 \ne l_1] = \frac{n-1}{n}$.

multiple encryptions in the presence of an eavesdropper.

And I didn't even need to use the hint.

 $c_0 \oplus c_1 = (m_0 \oplus k \oplus l_0) \oplus (m_1 \oplus k \oplus l_1) = m_0 \oplus m_1 \oplus l_0 \oplus l_1$. In the latter case, because each l contains

Find the probability that $c_0 \oplus c_1$ does not contains exactly two 1 bits, $Pr[\Sigma(c_0 \oplus c_1) \neq 2]$. Once again, when $l_0 = l_1$, $c_0 \oplus c_1 = m_0 \oplus m_1$, however here $m_0 \oplus m_1 = 0^n \oplus 1^n = 1^n$, so $c_0 \oplus c_1 = 1^n$, which does not contain exactly two 1 bits when $n \neq 2$. However, when $l_0 \neq l_1$,

 $c_0\oplus c_1=m_0\oplus m_1\oplus l_0\oplus l_1=1^n\oplus l_0\oplus l_1\quad \text{. Since}\quad l_0\oplus l_1\quad \text{contains exactly two 1 bits when}\quad l_0\neq l_1\quad \text{,}$ $c_0 \oplus c_1 = 1^n \oplus l_0 \oplus l_1$ will not have exactly two 1 bits when $n \neq 4$. Therefore when $n \geq 5$, the probability that A guessed correctly when b=1 is $Pr[l_0 \neq l_1] + Pr[l_0 = l_1] = \frac{n-1}{n} + \frac{1}{n} = 1$ Therefore $Pr[Priv_k \frac{mult}{A, \Pi}(n) = 1] = \frac{1}{2} Pr[l_0 \neq l_1] + \frac{1}{2} 1 = \frac{1}{2} \frac{n-1}{n} + \frac{1}{2} = \frac{1}{2} (\frac{2n-1}{n}) = \frac{2n-1}{2n} \ge \frac{9}{10} > \frac{1}{2} + negl(n) \text{ for } n = \frac{1}{2} Pr[l_0 \neq l_1] + \frac{1}{2} Pr[l_0 \neq$

This is trivially also true for $n \ge 6$. Therefore the scheme does not have indistinguishable

Case b=1: