if both (P) and (D) are feasible, $u \in U$ is an optimal solution of (P), $\lambda \in \mathbb{R}^m_+$ is an optimal solution of (D), and $J(u) = G(\lambda)$, then

$$\sum_{i=1}^{m} \lambda_i \varphi_i(u) = 0.$$

In other words, if the constraint φ_i is inactive at u, then $\lambda_i = 0$.

Proof. Since $J(u) = G(\lambda)$ we have

$$J(u) = G(\lambda)$$

$$= \inf_{v \in \Omega} \left(J(v) + \sum_{i=1}^{m} \lambda_i \varphi_i(v) \right) \quad \text{by definition of } G$$

$$\leq J(u) + \sum_{i=1}^{m} \lambda_i \varphi_i(u) \quad \text{the greatest lower bound is a lower bound}$$

$$\leq J(u) \quad \text{since } \lambda_i \geq 0, \varphi_i(u) \leq 0.$$

which implies that $\sum_{i=1}^{m} \lambda_i \varphi_i(u) = 0$.

Going back to Example 50.5, we see that weak duality says that for any feasible solution u of the Primal Problem (P), that is, some $u \in \mathbb{R}^n$ such that

and for any feasible solution $\mu \in \mathbb{R}^m$ of the Dual Problem (D_1) , that is,

$$A^{\top}\mu \ge -c, \ \mu \ge 0,$$

we have

$$-b^{\top}\mu \leq c^{\top}u.$$

Actually, if u and λ are optimal, then we know from Theorem 47.7 that strong duality holds, namely $-b^{\top}\mu = c^{\top}u$, but the proof of this fact is nontrivial.

The following theorem establishes a link between the solutions of the Primal Problem (P) and those of the Dual Problem (D). It also gives sufficient conditions for the duality gap to be zero.

Theorem 50.17. Consider the Minimization Problem (P):

minimize
$$J(v)$$

subject to $\varphi_i(v) < 0$, $i = 1, ..., m$,

where the functions J and φ_i are defined on some open subset Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V).