The Untyped Lambda Calculus

Manuel Eberl eberlm@cs.tum.edu

August 20, 2011

What is the Lambda calculus?

- developed by Alonzo Church in the 1930s
- a formal system for definition and analysis of functions
- as powerful as the Turing machine
- forms the basis of functional programming languages

Basic idea

Everything is a function and functions are defined and applied in one expression

Example

Consider these functions:

- sqr: expects a number and returns its square
- twice: expects a function f and returns $f \circ f$
- sqr 3 = 9

Basic idea

Everything is a function and functions are defined and applied in one expression

Example

Consider these functions:

- sqr: expects a number and returns its square
- *twice*: expects a function f and returns $f \circ f$
- sqr 3 = 9
- $(twice \ sqr) \ 3 = sqr \ (sqr \ 3) = 81$

Formal Definition

The Lambda Calculus has three kinds of expressions:

Definition

Lambda expressions are:

Variables e.g. a, b, c, ...

Abstractions e.g. $\lambda x \cdot T$ where x is a variable and T is a Lambda expression

Applications e.g. S T where S and T are Lambda expressions

Additionally: parentheses for grouping

Abstractions

Abstraction

 λx . T - defines a function that maps x to T. T is a Lambda expression which usually contains x (but not necessarily)

- λx . x (the identity function id)
- λx . a (a function that always returns a)

Application

S T - applies the function S to the expression T.

Definition (β Reduction)

If S is of the shape $(\lambda x. R)$ T (so-called redex for <u>red</u>ucible <u>expression</u>): Reduction by replacing all x in R by T

$$(\lambda \mathbf{x}. \mathbf{x} \mathbf{y} \mathbf{x}) \mathcal{T} \longrightarrow \mathcal{T} \mathbf{y} \mathcal{T}$$

(
$$\lambda$$
x. 42 x y x 1337) wuppdi $\downarrow \beta$ 42 wuppdi y wuppdi 1337

Examples

• id a

- id a yields a
- id id

- id a yields a
- id id yields id
- sqr 3

- id a yields a
- id id yields id
- *sqr* 3 yields 9
- twice sqr

- id a yields a
- id id yields id
- sqr 3 yields 9
- twice sqr yields a "to the 4th power" function
- twice sqr 3

Examples

- id a yields a
- id id yields id
- sqr 3 yields 9
- twice sqr yields a "to the 4th power" function
- twice sqr 3 yields 81

Caution: applications are left-associative. f f x means (f f) x, not f (f x)

Problem: only one parameter per abstraction permitted. How to define $add\ a\ b=a+b$?

Problem: only one parameter per abstraction permitted. How to define $add\ a\ b=a+b$?

Solution: nesting functions - add(a) returns a function $add_a(b)$ with constant a, which maps b to a+b. This nesting is called "Currying".

Problem: only one parameter per abstraction permitted. How to define $add\ a\ b=a+b$?

Solution: nesting functions - add(a) returns a function $add_a(b)$ with constant a, which maps b to a+b. This nesting is called "Currying".

Example 1 - Addition

Let + be a function that adds its two parameters

Problem: only one parameter per abstraction permitted. How to define $add\ a\ b=a+b$?

Solution: nesting functions - add(a) returns a function $add_a(b)$ with constant a, which maps b to a+b. This nesting is called "Currying".

Example 1 - Addition

- Let + be a function that adds its two parameters
- $+ 4 = +_4$ ist an "Increase by 4" function

Problem: only one parameter per abstraction permitted. How to define $add\ a\ b=a+b$?

Solution: nesting functions - add(a) returns a function $add_a(b)$ with constant a, which maps b to a+b. This nesting is called "Currying".

Example 1 - Addition

- Let + be a function that adds its two parameters
- $+ 4 = +_4$ ist an "Increase by 4" function
- $+ 42 = +_{4,2}$ is equivalent to 6

Example 2- reverse application function

Definition: reverse x y returns y x

 $reverse := \lambda x. \lambda y. y. x$

Example 2- reverse application function

Definition: reverse x y returns y x

 $reverse := \lambda x. \lambda y. y. x$

reverse a $b \equiv$

Example 2- reverse application function

Definition: reverse x y returns y x reverse := λx . λy . y x

reverse a $b \equiv (\lambda \mathbf{x}.\lambda y. y \mathbf{x}) \mathbf{a} b$

Example 2- reverse application function

Definition: reverse x y returns y x

 $reverse := \lambda x. \lambda y. y. x$

reverse a $b \equiv (\lambda \mathbf{x}.\lambda \mathbf{y}.\mathbf{y} \mathbf{x}) \mathbf{a} b \equiv reverse_a b \equiv (\lambda \mathbf{y}.\mathbf{y} \mathbf{a}) \mathbf{b}$

Example 2- reverse application function

Definition: reverse x y returns y x

 $reverse := \lambda x. \lambda y. y. x$

reverse a $b \equiv (\lambda \mathbf{x}.\lambda \mathbf{y}.\mathbf{y} \mathbf{x}) \mathbf{a} b \equiv reverse_a b \equiv (\lambda \mathbf{y}.\mathbf{y} a) \mathbf{b} \equiv b a$

Shorthand for nested functions: Instead of $\lambda x.\lambda y.\lambda z$ T write λxyz . T.

Example: $reverse := \lambda xy. y x$

Free variables and bound variables

A variable in an abstraction is called bound if it was defined by a lambda.

Non-bound variables are free. (cf. \exists and \forall)

- $\lambda xy.x y x$ and y are bound
- $\lambda x. x y x$ is bound, y is free
- $(\lambda x. x) x$ inner x is bound, outer x is free
- $\lambda x. \lambda x. x x$ is bound and "hides" the outer x

$\overline{\alpha}$ conversion

What is the difference between $\lambda x. x$ and $\lambda y. y$?

lpha conversion

What is the difference between $\lambda x.x$ and $\lambda y.y$? Answer: none at all! Names of bound variables are irrelevant. Renaming bound variables is called α conversion.

lpha conversion

What is the difference between $\lambda x.x$ and $\lambda y.y$? Answer: none at all! Names of bound variables are irrelevant. Renaming bound variables is called α conversion.

Definition (α conversion)

A λ abstraction λx . A is equivalent to λy . A[x:=y]

where A[x:=y] means: all occurrences of x in A are replaced with y (but: take variable hiding into account)

lpha conversion

What is the difference between $\lambda x.x$ and $\lambda y.y$? Answer: none at all! Names of bound variables are irrelevant. Renaming bound variables is called α conversion.

Definition (α conversion)

A λ abstraction λx . A is equivalent to λy . A[x:=y]

where A[x:=y] means: all occurrences of x in A are replaced with y (but: take variable hiding into account)

Expressions that can be converted to one another by α conversion are called α -equivalent.

Caution: When replacing variables or applying β reduction, variables defined on deeper levels must not be overwritten!

Example - collision after α -Konversion

 $\lambda xy.x$ must not be α converted to $\lambda y.\lambda y.y$

Caution: When replacing variables or applying β reduction, variables defined on deeper levels must not be overwritten!

Example - collision after α -Konversion

 $\lambda xy.x$ must not be α converted to $\lambda y.\lambda y.y$

Solution: replace colliding variable as well:

 $\lambda xy.x \equiv \lambda xz.x \equiv \lambda yz.y$

Caution: When replacing variables or applying β reduction, variables defined on deeper levels must not be overwritten!

Example - collision after α -Konversion

 $\lambda xy. x$ must not be α converted to $\lambda y. \lambda y. y$

Solution: replace colliding variable as well:

$$\lambda xy.x \equiv \lambda xz.x \equiv \lambda yz.y$$

Example - collision after β reduction

 $(\lambda ab. a) b$ - first b bound, second b free.

Caution: When replacing variables or applying β reduction, variables defined on deeper levels must not be overwritten!

Example - collision after α -Konversion

 $\lambda xy. x$ must not be α converted to $\lambda y. \lambda y. y$

Solution: replace colliding variable as well:

 $\lambda xy.x \equiv \lambda xz.x \equiv \lambda yz.y$

Example - collision after β reduction

 $(\lambda ab. a) b$ - first b bound, second b free.

After β reduktion:

 $\lambda b. b$ - bound b is returned - different result!

Caution: When replacing variables or applying β reduction, variables defined on deeper levels must not be overwritten!

Example - collision after α -Konversion

 $\lambda xy. x$ must not be α converted to $\lambda y. \lambda y. y$

Solution: replace colliding variable as well:

 $\lambda xy.x \equiv \lambda xz.x \equiv \lambda yz.y$

Example - collision after β reduction

 $(\lambda ab. a) b$ - first b bound, second b free.

After β reduktion:

 $\lambda b.\,b$ - bound b is returned - different result! \Rightarrow Rename bound variable: $\lambda b'.\,b$

Data types?

Problem: no data types such as numbers, booleans, lists, strings - there are only functions. But: Lambda calculus is Turing complete, so it has to be possible to e.g. do calculations with numbers. But how?

Solution: encode all data types as functions!

Definition of true and false

true and false as functions of two parameters: true a $b \equiv a$ and false a $b \equiv b$.

Definition

 $true := \lambda ab. a$ $false := \lambda ab. b$

Booleans can be used to make "branches".

"if A then B else C" where A is a beelean can be exp

"if A then B else C" where A is a boolean can be expressed as A B C.

Boolean operations

Boolean operations

• not - if a then false else true; -

Boolean operations

• not - if a then false else true; - λa. a false true

- not if a then false else true; λa . a false true
- and if a then b else false; -

- not if a then false else true; λa . a false true
- and if a then b else false; $\lambda a. \lambda b. a b$ false

- not if a then false else true; λa . a false true
- and if a then b else false; $\lambda a.\lambda b.$ a b false
- or if a then true else b; -

- not if a then false else true; λa . a false true
- and if a then b else false; $\lambda a. \lambda b. a$ b false
- or if a then true else b; λa.λb. a true b

- not if a then false else true; λa. a false true
- and if a then b else false; $\lambda a. \lambda b. a$ b false
- or if a then true else b; λa.λb. a true b
- xor if a then not b else b; -

- not if a then false else true; λa . a false true
- and if a then b else false; λa.λb. a b false
- or if a then true else b; λa.λb. a true b
- xor if a then not b else b; $\lambda a. \lambda b.$ a (not b) b

Useful for more complex calculations and data structures: encoding two values (expressions) in a pair

Useful for more complex calculations and data structures: encoding two values (expressions) in a pair

A pair (a, b) is a function that expects a function z and applies z to a and b

Useful for more complex calculations and data structures: encoding two values (expressions) in a pair

A pair (a, b) is a function that expects a function z and applies z to a and b

Definition

A pair (a, b) is encoded as: $\lambda z. z. a. b$

Useful for more complex calculations and data structures: encoding two values (expressions) in a pair

A pair (a, b) is a function that expects a function z and applies z to a and b

Definition

A pair (a, b) is encoded as: $\lambda z. z. a. b$

Accessing pair elements with first and second

Definition

```
first := \lambda p. p true
second := \lambda p. p false
(cf. Definition of true and false)
```

Examples of pairs

Beispiele

Let p be the pair (Karl, Ranseier). $\Rightarrow p := \lambda z$. z Karl Ranseier first p = p true = Karl second p = p false = Ranseier

How can we encode numbers from $\mathbb{N}_0 \hspace{0.5pt} ?$

How can we encode numbers from \mathbb{N}_0 ?

Solution: 0 is a function that applies another function 0 times, 1

applies it 1 times and so on

How can we encode numbers from \mathbb{N}_0 ?

Solution: 0 is a function that applies another function 0 times, 1 applies it 1 times and so on

Definition

The Church numeral for the number n maps f to f^n .

How can we encode numbers from \mathbb{N}_0 ?

Solution: 0 is a function that applies another function 0 times, 1 applies it 1 times and so on

Definition

The Church numeral for the number n maps f to f^n .

$$\Rightarrow n = \lambda f x. \underbrace{f(f...(f)_{n \text{ mal}} x)...}) = \lambda f x. f^{n} x$$

How can we encode numbers from \mathbb{N}_0 ?

Solution: 0 is a function that applies another function 0 times, 1 applies it 1 times and so on

Definition

The Church numeral for the number n maps f to f^n .

$$\Rightarrow n = \lambda f x. \underbrace{f(f...(f)_{n \text{ mal}} x)...}) = \lambda f x. f^{n} x$$

Examples

- $0 := \lambda fx. x$ (maps all functions to id)
- $1 := \lambda f x. f x$
- $2 := \lambda f x. f (f x) (\equiv twice)$
- . . .

Successor function: succ

Maps n to n+1, i.e. succ n applies f once more than n.

Successor function: succ

Maps n to n+1, i.e. $succ\ n$ applies f once more than n. $succ\ := \lambda n f x \cdot f\ (n\ f\ x)$

Successor function: succ

Maps n to n+1, i.e. succ n applies f once more than n. succ $:= \lambda n f x \cdot f \ (n \ f \ x)$

Addition: +

In order to add m and n: put n f as parameter into m f:

Successor function: succ

Maps n to n+1, i.e. $succ\ n$ applies f once more than n. $succ\ := \lambda n f x \cdot f\ (n\ f\ x)$

Addition: +

In order to add m and n: put n f as parameter into m f: $(m+n) = \lambda fx \cdot f^m (f^n x)$

Successor function: succ

Maps n to n+1, i.e. $succ\ n$ applies f once more than n. $succ\ := \lambda n f x \cdot f\ (n\ f\ x)$

Addition: +

In order to add m and n: put n f as parameter into m f: $(m+n) = \lambda f x . f^m (f^n x)$

 $\Rightarrow + := \lambda m n f x . m f (n f x)$

$$\mathit{succ}\ 1 \equiv \mathit{succ}\ (\lambda \mathit{fx}.\,\mathit{f}\ \mathit{x}) \equiv$$

$$\mathit{succ}\ 1 \equiv \mathit{succ}\ (\lambda \mathit{fx}.\,\mathit{f}\ \mathit{x}) \equiv \underline{\big(\lambda \mathit{nfx}.\,\mathit{f}\ (\mathit{n}\ \mathit{f}\ \mathit{x})\big)}\ \underline{\big(\lambda \mathit{fx}.\,\mathit{f}\ \mathit{x}\big)} \equiv$$

$$succ \ 1 \equiv succ \ (\lambda fx. f \ x) \equiv \underline{(\lambda n fx. f \ (n \ f \ x))} \ \underline{(\lambda fx. f \ x)} \equiv \lambda fx. f \ \underline{((\lambda f'x'. f' \ x')} \ \underline{f} \ \underline{x}) \equiv$$

$$succ \ 1 \equiv succ \ (\lambda fx. f \ x) \equiv \underline{(\lambda n fx. f \ (n \ f \ x))} \ \underline{(\lambda fx. f \ x)} \equiv \underline{\lambda fx. f \ (f \ x)} = \underline{2}$$

Example: succ

$$succ \ 1 \equiv succ \ (\lambda fx.f \ x) \equiv \underline{(\lambda nfx.f \ (n \ f \ x))} \ \underline{(\lambda fx.f \ x)} \equiv \lambda fx.f \ \underline{((\lambda f'x'.f' \ x')} \ \underline{f} \ \underline{x}) \equiv \lambda fx.f \ (f \ x) = 2$$

$$+23 \equiv (\lambda mnfx. m f(n f x)) \geq 3 \equiv$$

Example: succ

$$succ \ 1 \equiv succ \ (\lambda fx. f \ x) \equiv \underline{(\lambda n fx. f \ (n \ f \ x))} \ \underline{(\lambda fx. f \ x)} \equiv \underline{\lambda fx. f \ (f \ x)} = \underline{2}$$

$$+ 2 3 \equiv \frac{(\lambda mnfx. m f(n f x))}{f(3 f x)} \stackrel{?}{=} 3 \equiv$$

 $\equiv \lambda fx. 2 \stackrel{?}{f} (3 f x) \equiv$

Example: succ

$$succ \ 1 \equiv succ \ (\lambda fx.f \ x) \equiv \underline{(\lambda n fx.f \ (n \ f \ x))} \ \underline{(\lambda fx.f \ x)} \equiv \lambda fx.f \ \underline{((\lambda f'x'.f' \ x') \ \underline{f} \ \underline{x})} \equiv \underline{\lambda fx.f \ (f \ x)} = 2$$

$$+ 2 3 \equiv \underbrace{(\lambda mnfx. m f(n f x))}_{\equiv \lambda fx. 2} 2 3 \equiv$$

$$\equiv \lambda fx. 2 f (3 f x) \equiv$$

$$\equiv \lambda fx. (\lambda f'x'. f' (f' x')) f ((\lambda f'x'. f' (f' (f' x'))) f x) \equiv$$

Example: succ

$$succ \ 1 \equiv succ \ (\lambda fx. f \ x) \equiv \underline{(\lambda n fx. f \ (n \ f \ x))} \ \underline{(\lambda fx. f \ x)} \equiv \lambda fx. f \ \underline{((\lambda f'x'. f' \ x')} \ \underline{f} \ \underline{x}) \equiv \lambda fx. f \ (f \ x) = 2$$

$$+ 2 3 \equiv \underbrace{(\lambda mnfx. m f(n f x))}_{\equiv \lambda fx. 2} 2 3 \equiv$$

$$\equiv \lambda fx. 2 f (3 f x) \equiv$$

$$\equiv \lambda fx. \underbrace{(\lambda f'x'. f' (f' x'))}_{\equiv \lambda fx. (\lambda x'. f (f x'))(f (f (f x)))} \equiv$$

Example: succ

$$succ \ 1 \equiv succ \ (\lambda fx. f \ x) \equiv \underline{(\lambda n fx. f \ (n \ f \ x))} \ \underline{(\lambda fx. f \ x)} \equiv \lambda fx. f \ \underline{((\lambda f'x'. f' \ x')} \ \underline{f} \ \underline{x}) \equiv \lambda fx. f \ (f \ x) = 2$$

$$+23 \equiv \frac{(\lambda mnfx. m f(n f x))}{f(3 f x)} \geq 3 \equiv$$

$$\equiv \lambda fx. 2 f(3 f x) \equiv$$

$$\equiv \lambda fx. \underbrace{(\lambda f'x'. f'(f'x'))}_{f(f(x'))} f(\underbrace{(\lambda f'x'. f'(f'(f'x')))}_{f(f(f(x)))} \equiv$$

$$\equiv \lambda fx. \underbrace{(\lambda x'. f(f(x'))(f(f(x))))}_{f(f(f(x)))} \equiv$$

$$\equiv \lambda fx. f(f(f(f(f(x)))) = 5$$

Arithmetic operations - Multiplication

Multiplication: *

For numbers m and n: what happens when n is applied to f and m is applied to the result?

Arithmetic operations - Multiplication

Multiplication: *

For numbers m and n: what happens when n is applied to f and m is applied to the result?

 \Rightarrow *n f* is *f* chained *n* times. Therefore, *m* (*n f*) is *f* chained $m \cdot n$ times.

Arithmetic operations - Multiplication

Multiplication: *

For numbers m and n: what happens when n is applied to f and m is applied to the result?

 \Rightarrow *n f* is *f* chained *n* times. Therefore, *m* (*n f*) is *f* chained $m \cdot n$ times.

 $\Rightarrow * := \lambda mnf. m (n f)$

Arithmetic operations - Subtraction

We need the opposite of *succ*: a predecessor function. 0 has no predecessor, therefore saturated subtraction: $pred(n) := n \div 1$, i.e. predecessor of 0 defined as 0.

Arithmetic operations - Subtraction

We need the opposite of *succ*: a predecessor function. 0 has no predecessor, therefore saturated subtraction: $pred(n) := n \div 1$, i.e. predecessor of 0 defined as 0.

Predecessor function: pred

Helper function Φ , that maps p := (a, b) to (a + 1, a):

We need the opposite of *succ*: a predecessor function. 0 has no predecessor, therefore saturated subtraction: $pred(n) := n \div 1$, i.e. predecessor of 0 defined as 0.

Predecessor function: pred

Helper function Φ , that maps p := (a, b) to (a + 1, a):

$$\Phi := \lambda pz. z (succ (first p)) (first p)$$

We need the opposite of *succ*: a predecessor function. 0 has no predecessor, therefore saturated subtraction: $pred(n) := n \div 1$, i.e. predecessor of 0 defined as 0.

Predecessor function: pred

Helper function Φ , that maps p := (a, b) to (a + 1, a):

$$\Phi := \lambda \textit{pz.} \textit{z} \; (\textit{succ} \; (\textit{first} \; \textit{p})) \; (\textit{first} \; \textit{p})$$

 Φ n applied to (0,0) n times yields: $(n, n \div 1)$

$$\Rightarrow$$
 pred := λ n. second(n Φ (λ z. z 0 0))

Predecessor of 0 is 0.

 \Rightarrow Only saturated subtraction possible: $m \div n = max(m-n,0)$

Predecessor of 0 is 0.

 \Rightarrow Only saturated subtraction possible: $m \div n = max(m-n,0)$

Saturated subtraction: -

For $m ilde{-} n$: predecessor function *pred* is applied *n* times to *m*.

 $\Rightarrow \div := \lambda mn. n pred m$

Negative numbers can be expressed in Lambda calculus. (e.g. pair of Church numeral and sign boolean)

Most important comparison: test if number is $\mathbf{0}$

Most important comparison: test if number is 0

iszero

Helper function h, that always returns false: $h := \lambda x$. false

Most important comparison: test if number is 0

iszero

Helper function h, that always returns false: $h := \lambda x$. false

 $h^n = id$ if n = 0; if $n \neq 0$, h^n returns false

Most important comparison: test if number is 0

iszero

Helper function h, that always returns false: $h := \lambda x$. false

 $h^n=id$ if n=0; if $n\neq 0$, h^n returns false

 \Rightarrow *n h true* is *true* iff *n* = 0, *false* otherwise.

 \Rightarrow iszero := λ n. n (λ x. false) true

Less or equal: \leq

$$m \le n \Leftrightarrow m-n \le 0 \Leftrightarrow m - n = 0.$$

$$\Rightarrow \leq := \lambda m n$$
. iszero $(\dot{-} m n)$

Less or equal: \leq

$$m \le n \Leftrightarrow m - n \le 0 \Leftrightarrow m - n = 0.$$

$$\Rightarrow \leq := \lambda m n$$
. iszero $(\dot{-} m n)$

Greater or equal: \geq

$$m \ge n \Leftrightarrow n - m \le 0 \Leftrightarrow n - m = 0.$$

$$\Rightarrow \geq := \lambda mn. iszero (- n m)$$

Less or equal: \leq

$$m \le n \Leftrightarrow m - n \le 0 \Leftrightarrow m - n = 0.$$

$\Rightarrow \leq := \lambda m n$. iszero $(\dot{-} m n)$

Greater or equal: \geq

$$m > n \Leftrightarrow n - m < 0 \Leftrightarrow n - m = 0$$
.

$$\Rightarrow \geq := \lambda mn. iszero (- n m)$$

Equal: =

$$\Rightarrow$$
 = := λ mn. and (\leq m n) (\geq m n)

Less/greater: < und >

$$m < n \Leftrightarrow \neg (m \ge n)$$

$$\Rightarrow\,<\,:=\lambda\,\mathit{mn}.\,\mathit{not}\,\left(\geq\,\,\mathit{m}\,\,\mathit{n}\right)$$

$$m > n \Leftrightarrow \neg (m \le n)$$

$$\Rightarrow$$
 > := λ mn. not (\leq m n)

"Real" recursions with terminatio conditions are somewhat complicated in Lambda calculus

"Real" recursions with terminatio conditions are somewhat complicated in Lambda calculus

Example - the factorial fac

$$fac(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot fac(n-1) & \text{otherwise} \end{cases}$$

"Real" recursions with terminatio conditions are somewhat complicated in Lambda calculus

Example - the factorial fac

$$fac(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot fac(n-1) & \text{otherwise} \end{cases}$$

Intuitive solution: $fac := \lambda n. (iszero n) 1 (* n (fac (pred n)))$

"Real" recursions with terminatio conditions are somewhat complicated in Lambda calculus

Example - the factorial fac

$$fac(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot fac(n-1) & \text{otherwise} \end{cases}$$

Intuitive solution: $fac := \lambda n. (iszero \ n) \ 1 \ (* \ n \ (fac \ (pred \ n)))$ But: fac has to be plugged into fac again, expression grows infinitely

Example - the factorial fac

One possible solution:

Helper function fac_rec receives parameter n and itself as f, then calls f.

Example - the factorial fac

One possible solution:

Helper function fac_rec receives parameter n and itself as f, then calls $f.fac_rec := \lambda fn.(iszero\ n)\ 1\ (*n(ff(pred\ n)))$

Example - the factorial fac

One possible solution:

Helper function fac_rec receives parameter n and itself as f, then calls $f.fac_rec := \lambda fn. (iszero n) \ 1 \ (*n (f f (pred n)))$ $fac := \lambda n. fac$ rec fac rec n

Alternatively: recursion with fixed point operator

Advantages and disadvantages

Advantages

- very simple definition
- is both a "programming language" and a mathematical construct about which mathematical statements can be made
- no side effects

Advantages and disadvantages

Advantages

- very simple definition
- is both a "programming language" and a mathematical construct about which mathematical statements can be made
- no side effects

Disadvantages

- no "type safety" functions for booleans can be applied to numbers, pairs, . . . ⇒ mistakes can produce results that are difficult to comprehend
- even "simple" operations (subtraction, equality) need many rewriting operations

Conclusion

- Very useful for mathematical/theoretical purposes (verification, computability and so on)
- Unsuitable as an actual programming language
 But: usable with typing and syntactic sugar (cf. LISP, Haskell,
 ML) and elements of Lambda calculus have found their way
 into imperative/object oriented languages (Python, C#,...)