Stochastik 1 für Studierende der Informatik Modul: MATH3-Inf

Veranstaltung: 65-832

Übungsgruppe 2 Dienstag, 14.15 - 15.00 Geom 431

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

Felix Gebauer 4gebauer@informatik.uni-hamburg.de 6671660

31. Mai 2016

Punkte für die Hausübungen:

Zettel Nr. 7 (Ausgabe: 24. Mai 2016, Abgabe: 31. Mai 2016)

Hausübung 7.1

 $\lfloor | 4 \rfloor$

(Erwartungswerte müssen nicht existieren, 4 Punkte). Die Zufallsvariable Z möge Werte in $\mathbb{Z}\setminus\{0\}$ annehmen können, dabei möge

$$\mathbb{P}(Z=k) = \mathbb{P}(Z=-k) = \frac{1}{2k(k+1)}$$

für alle $k \in \mathbb{N}$ gelten. Zeigen Sie, dass $\mathbf{E}[Z]$ nicht existiert, konkreter: Zeigen Sie, dass die Reihe zur Berechnung von $\mathbf{E}[Z]$ nicht absolut konvergiert, und auch nicht gegen $+\infty$ oder $-\infty$ konvergiert.

Hinweise:

- Es reicht aus, die Reihe zur Berechnung von $\mathbf{E}[Z]$ in zwei Summen zu zerlegen, von denen eine gegen $+\infty$ und eine gegen $-\infty$ strebt.
- Die harmonische Reihe divergiert, insbesondere gilt

$$\sum_{k=1}^{\infty} \frac{1}{k+1} = \infty$$

$$\mathbb{E}[Z] = \sum_{k \in \mathbb{Z} \setminus \{0\}} (k \cdot P(Z = k))$$

$$= \sum_{k=1}^{\infty} (-k \cdot P(Z = -k)) + \sum_{k=1}^{\infty} (k \cdot P(Z = k))$$

$$= \sum_{k=1}^{\infty} (-k \cdot \frac{1}{2k(k+1)})) + \sum_{k=1}^{\infty} (k \cdot \frac{1}{2k(k+1)})$$

$$= \sum_{k=1}^{\infty} (\frac{-k}{2k(k+1)})) + \sum_{k=1}^{\infty} (\frac{k}{2k(k+1)})$$

$$= \sum_{k=1}^{\infty} (-\frac{1}{2(k+1)})) + \sum_{k=1}^{\infty} (\frac{1}{2k(k+1)})$$

$$= \sum_{k=1}^{\infty} (-\frac{1}{2} \cdot \frac{1}{k+1})) + \sum_{k=1}^{\infty} (\frac{1}{2} \cdot \frac{1}{k+1})$$

$$= -\frac{1}{2} \cdot \sum_{k=1}^{\infty} (\frac{1}{k+1}) + \frac{1}{2} \cdot \sum_{k=1}^{\infty} (\frac{1}{k+1})$$

$$= \frac{1}{2} \cdot \left(\sum_{k=1}^{\infty} (\frac{1}{k+1}) - \frac{1}{2} \cdot \sum_{k=1}^{\infty} (\frac{1}{k+1})\right)$$

$$= \frac{1}{2} \cdot \left(\sum_{k=1}^{\infty} (\frac{1}{k+1}) - \cdot \sum_{k=1}^{\infty} (\frac{1}{k+1})\right)$$

$$= \frac{1}{2} \cdot (\infty - \infty)$$

Da man $\infty - \infty$ nicht genau bestimmen kann, hat diese Aufgabe keine Lösung. Somit konvergiert die Reihe auch nicht.

Hausübung 7.2

[| 13]

(Erwartungswert und Varianz der Gleichverteilung, 3+5+1+4 Punkte). Die Zufallsvariable X mit Werten in der Menge $\{a, a+1, \ldots, b\}$ sei gleichverteilt, d.h.

$$P(X = k))\frac{1}{b - a + 1}, \quad k = a, \dots, b.$$

- a) Zeigen Sie $\mathbf{E}[X] = \frac{a+b}{2}$.
- b) Bestimmen Sie Var[X].
- c) Wenden Sie ihre Resultate auf das Würfeln eines fairen Würfels an. Stimmen die Ergebnisse mit denen aus der Vorlesung überein?

d) Sie haben sechs Würfel, der erste ist mit den Zahlen von 1,...,6 beschiftet, der zweite mit den Zahlen von 2,...,7, usw., der sechste mit den Zahlen von 6 bis 11. Sie würfeln mit allen gleichzeitig und bezeichnen mit X_k die Augensumme, die der k-te Würfel anzeigt sowie mit Z die Augensumme aller sechs Würfel. Bestimmen Sie $\mathbf{E}[X_k]$ für $k=1,\ldots,6$ sowie $\mathbf{E}[Z]$.

Hinweise:

- ullet Verwenden Sie Y=X-a, um X auf eine auf $\{0,\ldots,b-a\}$ gleichverteilte Zufallsvariable Y zu transformieren. Berechnen Sie zunächst $\mathbf{E}[Y]$ und $\mathbf{Var}[Y]$ und schließen Sie dann auf $\mathbf{E}[X]$ und $\mathbf{Var}[Y]$
- Verwenden Sie die Summenformeln

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$
 und $\sum_{k=0}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$.

Teilaufgabe a)

Sei Y = X - a. Dann gilt: $\Omega'' = \{0, 1, ..., b - a\}$.

$$\mathbb{E}[Y] = \sum_{k \in \Omega''} (k \cdot P(Y = k))$$

$$= \sum_{k=0}^{b-a} (k \cdot \frac{1}{(b-a)-(a-a)+1})$$

$$= \sum_{k=0}^{b-a} (k \cdot \frac{1}{b-a-0+1})$$

$$= \sum_{k=0}^{b-a} (k \cdot \frac{1}{b-a+1})$$

$$= \sum_{k=0}^{b-a} (k) \cdot \frac{1}{b-a+1}$$

$$= \frac{1}{2} \cdot (b-a) \cdot ((b-a)+1) \cdot \frac{1}{b-a+1}$$

$$= \frac{b-a}{2} \cdot \frac{b-a+1}{b-a+1}$$

$$= \frac{b-a}{2}$$

Nun gilt nach anfänglicher Definition für $\mathbb{E}[X] = \mathbb{E}[Y] + a$.

$$\begin{array}{rcl} \mathbb{E}[X] & = & \mathbb{E}[Y] + a \\ & = & \frac{b-a}{2} + a \\ & = & \frac{b-a}{2} + \frac{2}{2} \cdot a \\ & = & \frac{b-a}{2} + \frac{2 \cdot a}{2} \\ & = & \frac{b-a}{2} + \frac{a+a}{2} \\ & = & \frac{b-a+a+a}{2} \\ & = & \frac{b+a}{2} \end{array}$$

Teilaufgabe b)

Sei Y = X - a. Dann gilt: $\Omega'' = \{0, 1, ..., b - a\}$.

$$\begin{aligned} \mathbf{Var}[Y] &= & \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 \\ &= & \sum_{k \in \Omega''} (k^2 \cdot P(Y = k^2)) - (\frac{b-a}{2})^2 \\ &= & \sum_{b \to a} (k^2 \cdot (\frac{1}{(b-a)-(a-a)+1})^2) - (\frac{b-a}{2})^2 \\ &= & \sum_{b \to a} (k^2 \cdot (\frac{1}{b-a-0+1})^2) - (\frac{b-a}{2})^2 \\ &= & \sum_{k \to 0} (k^2 \cdot (\frac{1}{b-a+1})^2) - (\frac{b-a}{2})^2 \\ &= & \sum_{k \to 0} (k^2 \cdot (\frac{1}{b-a+1})^2) - (\frac{b-a}{2})^2 \\ &= & \sum_{k \to 0} (k^2 \cdot (\frac{1}{b-a+1})^2 - (\frac{b-a}{2})^2 \\ &= & \sum_{k \to 0} (k^2 \cdot (\frac{1}{b-a+1})^2 - (\frac{b-a}{2})^2 \\ &= & \frac{1}{6} \cdot (b-a) \cdot ((b-a)+1) \cdot (2 \cdot (b-a)+1) \cdot (\frac{1}{b-a+1})^2 - (\frac{b-a}{2})^2 \\ &= & \frac{1}{6} \cdot (b-a) \cdot (b-a+1) \cdot (2 \cdot (b-a)+1) \cdot \frac{1}{b-a+1} \cdot \frac{1}{b-a+1} - (\frac{b-a}{2})^2 \\ &= & \frac{b-a}{6} \cdot \frac{b-a+1}{b-a+1} \cdot \frac{b-a+b-a+1}{b-a+1} - (\frac{b-a}{2})^2 \\ &= & \frac{b-a}{6} \cdot \frac{b-a+b-a+1}{b-a+1} - (\frac{b-a}{2})^2 \\ &= & \frac{b-a}{6} \cdot \frac{2 \cdot (b-a)+1}{b-a+1} - (\frac{b-a}{2})^2 \\ &= & \frac{b-a}{6} \cdot \frac{2 \cdot (b-a)+1}{b-a+1} - \frac{b-a}{2} \cdot \frac{b-a}{2} \\ &= & \frac{2 \cdot ((b-a)^2)+b-a}{6 \cdot (b-a+1)} - \frac{(b-a)^2}{4} \end{aligned}$$

Nun gilt nach anfänglicher Definition für Var[X] = Var[Y], da das a wegfällt.

$$\begin{array}{lcl} \mathbf{Var}[X] & = & \mathbf{Var}[Y] \\ & = & \frac{2 \cdot ((b-a)^2) + b - a}{6 \cdot (b-a+1)} - \frac{(b-a)^2}{4} \end{array}$$

Teilaufgabe c)

$$\mathbb{E}[W\ddot{u}rfel] = \frac{b+a}{2} / b = 6; \ a = 1$$

$$= \frac{6+1}{2}$$

$$= \frac{7}{2}$$

$$= 3.5$$

Dieses Ergebnis stimmt mit dem aus der Vorlesung überein.

$$\begin{aligned} \mathbf{Var}[W\ddot{u}rfel] &= \frac{2\cdot((b-a)^2)+b-a}{6\cdot(b-a+1)} - \frac{(b-a)^2}{4} \quad /b = 6; \ a = 1 \\ &= \frac{2\cdot((6-1)^2)+6-1}{6\cdot(6-1+1)} - \frac{(6-1)^2}{4} \\ &= -\frac{85}{18} \\ &= -4,7\overline{2} \end{aligned}$$

Dieses Ergebnis stimmt mit dem aus der Vorlesung nicht überein.

Teilaufgabe d)

$$\begin{array}{rcl} \mathbb{E}[X_k] & = & \sum_{k \in \Omega'} (k \cdot P(X_k = k)) \\ & = & \sum_{k=1}^{6} (\sum_{i=k}^{k+6} (i) \cdot \frac{1}{6}) \end{array}$$

In der Formel wurde k durch $\sum_{i=k}^{k+6} (i)$ ersetzt, da es nicht um die Nummer des Würfels, sondern um die Zahl, die er zeigt, geht.

Die Ergebnisse sind: $\mathbb{E}[X_1] = 3.5$, $\mathbb{E}[X_2] = 4.5$, $\mathbb{E}[X_3] = 5.5$, $\mathbb{E}[X_4] = 6.5$, $\mathbb{E}[X_5] = 7.5$ und $\mathbb{E}[X_6] = 8.5$.

$$\mathbb{E}[Z] = \sum_{k=1}^{6} (\mathbb{E}[X_k])$$

Das Ergebnis lautet: $\mathbb{E}[Z] = 36$.

Hausübung 7.3

| 8 |

(Noch einmal der Zonk, 4+4 Punkte). In einer Gameshow wählt ein Kandidat zwischen den drei Toren 1, 2 und 3 aus, hinter zweien davon ist der Zonk (Trostpreis), hinter einem der Hauptgewinn. Das zugehörige Tor wird zu Beginn zufällig gleichverteilt ausgewählt. Der Kandidat wählt ein Tor, anschließend öffnet der Showmaster ein Tor folgenden Regeln:

- Das geöffnete Tor ist nicht das vom Kandidaten gewählte Tor.
- Hinter dem geöffneten Tor ist ein Zonk.
- Hat der Showmaster die Wahl zwischen mehreren Toren, so wählt er das Tor mit der größeren Nummer.

Anschließend erhält der Kandidat immer die Möglichkeit, das Tor zu wechseln.

- a) Ein Kandidat wählt zu Beginn Tor 1, der Showmaster öffnet Tor 3. Sollte der Kandidat nun zu Tor 2 wechseln?
- b) Ein anderer Kandidat wählt zu Beginn ebenfalls Tor 1, der Showmaster öffnet Tor 2. Sollte dieser Kandidat nun zu Tor 3 wechseln?

Geben Sie für beide Kandidaten an, wie hoch die Gewinnwahrscheinlichkeit nach einer Umentscheidung in Folge des geöffneten Tors ist.

Teilaufgabe a)

Nach Hinweis 3 ist die Chance des Kandidaten auf einen Gewinn vor dem Wechseln 50%. Nach dem Wechseln ändert sich diese Chance nicht.

$$P(A_1|A_3^c) = \frac{P(A_1)}{P(A_1 \cup A_2)}$$

= $\frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}$

Die Gewinnwahrscheinlichkeit für die Tore 1 und 2 ist gleich, nämlich 50%. Somit ist es egal, ob er wechselt.

Teilaufgabe b)

Nach Hinweis 3 ist dies genau das, was er tun sollte. Denn demnach müsste der Hauptgewinn hinter Tor 3 liegen. Nach den Hinweisen 2 und 3 würde der Moderator Tor 3 öffnen, sofern dahinter ein Zonk läge. Da er das nicht tut, liegt folglich kein Zonk dahinter. Somit ist die Gewinnwahrscheinlichkeit bei einem Wechsel bei 100%.