# 数据生成

为什么需要使用数据生成器? 答:数据占内存,可能没有足够的内存一下子存储所有数据,生成器可以把小量数据多批次读入内存。虽然花费了时间,但是能够处理很大的数据量。

# 不使用DA

```
In [1]: from keras.preprocessing.image import ImageDataGenerator #Mkera
        s导入需要需要的包
        IMSIZE=128
        validation generator = ImageDataGenerator(rescale=1./255).flow f
        rom directory(
            '/clubear/Lecture 5.1 - Batch Normalization/data/CatDog/vali
        dation',
           target size=(IMSIZE, IMSIZE), #不管数据里的图像大小, 在input统一
        shape
           batch size=200, #每一个batch只读取200个数据
           class mode='categorical') #分类问题
        #简单的制作validation data, rescale 是因为TensorFlow需要倒入的数据值在
        0-1之间,而我们拥有的图片是0-255
        train generator = ImageDataGenerator(rescale=1./255).flow from d
        irectory(
            '/clubear/Lecture 5.1 - Batch Normalization/data/CatDog/trai
        n',
           target size=(IMSIZE, IMSIZE),
           batch size=200,
           class mode='categorical')
```

Using TensorFlow backend.

Found 10000 images belonging to 2 classes. Found 15000 images belonging to 2 classes.

# In [2]: #数据展示 from matplotlib import pyplot as plt plt.figure() fig.ax = plt.subplots(2,5) fig.set\_figheight(6) fig.set\_figwidth(15) ax=ax.flatten() X,Y=next(train\_generator) #next是一个简单的方程将训练数据添加到x, Y上 for i in range(10): ax[i].imshow(X[i,:,:,:])

### <Figure size 432x288 with 0 Axes>



# 使用DA

```
In [3]:
       train generator1 = ImageDataGenerator(
           rescale=1./255, #tensorFlow要求
           shear range=0.5, #扭曲变形
           rotation range=30, #旋转
           zoom range=0.2, #放大
           width shift range=0.2, #水平平移
           height_shift_range=0.2 , #垂直评议
           horizontal flip=True ).flow from directory(
           '/clubear/Lecture 5.1 - Batch Normalization/data/CatDog/trai
       n',
           target size=(IMSIZE, IMSIZE),
           batch size=200,
           class mode='categorical')
       #这里使用了Data Augmentation技术,即将图片变形,使得1)数据量更大; 2)在
       现实生活中的图片不可能是全部正面,通过数据增强可以
       #使我们的模型识别到更多变形的图像
       #train现在存为了train generator1
```

Found 15000 images belonging to 2 classes.

# In [4]: #数据展示 from matplotlib import pyplot as plt plt.figure() fig.ax = plt.subplots(2,5) fig.set\_figheight(6) fig.set\_figwidth(15) ax=ax.flatten() X,Y=next(train\_generator1) #X和Y现在从train\_generator1中取 for i in range(10): ax[i].imshow(X[i,:,:,:])

### <Figure size 432x288 with 0 Axes>



# 模型搭建

```
In [5]: from keras.layers import Conv2D,Dense,Flatten,Input,MaxPooling2D
,Dropout
    from keras import Model

input_layer = Input([IMSIZE,IMSIZE,3])
    x = input_layer
    for _ in range(5):
        x = Conv2D(20,[3,3], activation = 'relu')(x)
        x = MaxPooling2D(pool_size = [2,2], strides = [2,2])(x)

x = Flatten()(x)
    x = Dense(84,activation = 'relu')(x)
    x = Dense(2,activation = 'softmax')(x)
    output_layer=x
    model=Model(input_layer,output_layer)
    model.summary()
```

Model: "model\_1"

| <br>Layer (type)<br>====================================              | -      | Shape         | Param #       |
|-----------------------------------------------------------------------|--------|---------------|---------------|
| == input_1 (InputLayer)                                               |        |               | 0             |
| conv2d_1 (Conv2D)                                                     | (None, | 126, 126, 20) | 560           |
| max_pooling2d_1 (MaxPooling2                                          | (None, | 63, 63, 20)   | 0             |
| conv2d_2 (Conv2D)                                                     | (None, | 61, 61, 20)   | 3620          |
| max_pooling2d_2 (MaxPooling2                                          | (None, | 30, 30, 20)   | 0             |
| conv2d_3 (Conv2D)                                                     | (None, | 28, 28, 20)   | 3620          |
| max_pooling2d_3 (MaxPooling2                                          | (None, | 14, 14, 20)   | 0             |
| conv2d_4 (Conv2D)                                                     | (None, | 12, 12, 20)   | 3620          |
| max_pooling2d_4 (MaxPooling2                                          | (None, | 6, 6, 20)     | 0             |
| conv2d_5 (Conv2D)                                                     | (None, | 4, 4, 20)     | 3620          |
| max_pooling2d_5 (MaxPooling2                                          | (None, | 2, 2, 20)     | 0             |
| flatten_1 (Flatten)                                                   | (None, | 80)           | 0             |
| dense_1 (Dense)                                                       | (None, | 84)           | 6804          |
| dense_2 (Dense)                                                       | (None, | •             | 170<br>====== |
| Total params: 22,014 Trainable params: 22,014 Non-trainable params: 0 |        |               |               |
|                                                                       |        |               |               |

### 参数解释

第一层input layer, 无参数。

for loop中含有5个卷积层和5个池化层,除去第一个卷积层,其他卷积层参数为:

池化使用[2,2]矩形,步长行列都是2,没有学习项,无参数

for loop 的第一个卷积层参数计算如下:

(3 3 3 +1) 20 = 28 20 = 560, 其中3 3 是kernel size, 3是上一层遗留通道数, 20是卷积核个数。

### 压扁, 无参数

Dense1: (hidden) 80 84 + 84 = 6720 +84 = 6804

Dense2: 842 + 2 = 168 + 2 = 170

所以总共有22014个参数。

没有non-trainable parameters因为BN没有被用到

Out[6]: <keras.callbacks.dallbacks.History at 0x7f6caa8003d0>

# 使用BN,无DA

```
In [7]: from keras.layers import BatchNormalization
input_layer = Input([IMSIZE,IMSIZE,3])
x = input_layer
x=BatchNormalization()(x) #使用BatchNormalisation, 对input的一个batch的数据每一层进行normalisation
for _ in range(5):
    x = Conv2D(20,[3,3], activation = 'relu')(x)
    x = MaxPooling2D(pool_size = [2,2], strides = [2,2])(x)

x = Flatten()(x)
x = Dense(84,activation = 'relu')(x)
x = Dense(2,activation = 'softmax')(x)
output_layer=x
model2=Model(input_layer,output_layer)
model2.summary()
```

Model: "model 2"

| <br>Layer (type)                   | Output | Shape         | Param # |
|------------------------------------|--------|---------------|---------|
| <pre>== input_2 (InputLayer)</pre> | (None, | 128, 128, 3)  | 0       |
| batch_normalization_1 (Batch_      | (None, | 128, 128, 3)  | 12      |
| conv2d_6 (Conv2D)                  | (None, | 126, 126, 20) | 560     |
| <br>max_pooling2d_6 (MaxPooling2   | (None, | 63, 63, 20)   | 0       |
| conv2d_7 (Conv2D)                  | (None, | 61, 61, 20)   | 3620    |
| <br>max_pooling2d_7 (MaxPooling2   | (None, | 30, 30, 20)   | 0       |
| conv2d_8 (Conv2D)                  | (None, | 28, 28, 20)   | 3620    |
| <br>max_pooling2d_8 (MaxPooling2   | (None, | 14, 14, 20)   | 0       |
| conv2d_9 (Conv2D)                  | (None, | 12, 12, 20)   | 3620    |
| max_pooling2d_9 (MaxPooling2       | (None, | 6, 6, 20)     | 0       |
| conv2d_10 (Conv2D)                 | (None, | 4, 4, 20)     | 3620    |

### 参数解释

第一层input layer, 无参数。

第二层BatchNormalisation中,因为每一层/通道都有4个参数,3 4 = 12; 但是miu 和 sigma不需要训练(因为这两个参数可以从数据总直接计算,和模型学习没有关系),所以 non-trainable params 有 3 2 = 6个。 for loop中含有5个卷积层和5个池化层,除去第一个卷积层,其他卷积层参数为:

池化使用[2,2]矩形,步长行列都是2,没有学习项,无参数

for loop 的第一个卷积层参数计算如下:

(3 3 3 +1) 20 = 28 20 = 560, 其中3 3 是kernel size, 3是上一层遗留通道数, 20是卷积核个数。

### 压扁、无参数

Dense1: (hidden) 80 84 + 84 = 6720 +84 = 6804

Dense2: 842 + 2 = 168 + 2 = 170

所以总共有22026个参数,比没有BN的模型多了12个参数,其中包含6个non-trainable参数。

没有non-trainable parameters因为BN没有被用到

```
In [8]: model2.compile(loss='categorical crossentropy',optimizer=Adam(lr
       =0.01), metrics=['accuracy'])
       model2.fit generator(train generator,epochs=4,validation data=va
       lidation generator)
       Epoch 1/4
       75/75 [============= ] - 170s 2s/step - loss: 0
       .6906 - accuracy: 0.5278 - val loss: 0.6840 - val accuracy: 0.5
       551
       Epoch 2/4
       75/75 [============= ] - 154s 2s/step - loss: 0
       .6717 - accuracy: 0.5803 - val loss: 0.6709 - val accuracy: 0.5
       965
       Epoch 3/4
       75/75 [============= ] - 149s 2s/step - loss: 0
       .6330 - accuracy: 0.6447 - val loss: 0.6960 - val accuracy: 0.6
       154
       Epoch 4/4
       .6015 - accuracy: 0.6752 - val loss: 0.5995 - val accuracy: 0.6
       713
Out[8]: <keras.callbacks.dallbacks.History at 0x7f6c28101c10>
```

# 使用DA和BN ¶

```
In [9]: model2.compile(loss='categorical_crossentropy',optimizer=Adam(lr=0.01),metrics=['accuracy'])
model2.fit_generator(train_generator1,epochs=4,validation_data=validation_generator)
#模型用的是加上了BN的LeNet,训练数据用的是Data Augmentation 以后的train_generator1
```

```
Epoch 1/4
75/75 [============= ] - 224s 3s/step - loss: 0
.6362 - accuracy: 0.6325 - val loss: 0.6261 - val accuracy: 0.6
455
Epoch 2/4
75/75 [=========== ] - 196s 3s/step - loss: 0
.6074 - accuracy: 0.6682 - val loss: 0.5617 - val accuracy: 0.7
128
Epoch 3/4
75/75 [============= ] - 185s 2s/step - loss: 0
.5991 - accuracy: 0.6787 - val loss: 0.5329 - val accuracy: 0.7
185
Epoch 4/4
75/75 [============= ] - 187s 2s/step - loss: 0
.5815 - accuracy: 0.6949 - val loss: 0.4817 - val accuracy: 0.7
279
```

Out[9]: <keras.callbacks.dallbacks.History at 0x7f6c08713190>

# 总结

普通仿LeNet: accuracy 为 0.50 左右, 和一个random guess差不多。

模型with BN: 最后一个epoch的accuracy 为 0.67, 呈增加趋势, 如果epoch再高也许还有更高的精

度。

模型with DA & BN: 平均accruacy (在4个epoch里) 达到约0.67, 比只有BN的时候要更精确。