









## INTITUTO TECNOLOGICO DE TLAXIACO

**CARRERA: INGENIERIA EN SISTEMAS** 

**COMPUTACIONALES** 

**DOCENTE: ROMAN CRUZ JOSE ALFREDO** 

**ASIGNATURA: MATEMATICAS DISCRETAS** 

TEMA: "GRAFICACION DE CONJUNTOS EN EL PLANO

CARTESIANO"

**ALUMNA:** 

MORALES PACHECO JANELY ARLETH

IRIS MAYRA SANTIAGO FERIA

ARTURO BETSABE CRUZ CRUZ

**GRUPO:1AS** 

#### INDICE

# Contenido

| LISTA DE FIGURAS                            | 3  |
|---------------------------------------------|----|
| INTRODUCCION                                |    |
| OBJETIVO                                    |    |
| MATERIALES:                                 | 5  |
| FUNCIONES EN UN PLANO CARTESIANO CON SPHERO | 6  |
| EJERCICIO 1:                                | 6  |
| EJERCICIO 2:                                | 7  |
| EJERCICIO 3:                                | 8  |
| LISTA DE RESULTADOS                         | 10 |
| CONCLUSION                                  | 11 |

### LISTA DE FIGURAS

| Ilustración 1 grafica 1                   | 6 |
|-------------------------------------------|---|
| Ilustración 2 programación de Sphero      |   |
| Ilustración 3 primer punto                |   |
| Ilustración 4 segundo punto               | 7 |
| Ilustración 5 grafica 2                   |   |
| Ilustración 6 programación Sphero         | 8 |
| Ilustración 7 primer punto en la gráfica  |   |
| Ilustración 8 segundo punto en la grafica | 8 |
| Ilustración 9 grafica 3                   | 9 |
| Ilustración 10 grafica esférica 1         |   |
| Ilustración 11 grafica esférica 2         |   |
| Illustración 12 programación de la Sphero |   |

#### **INTRODUCCION**

El producto cartesiano de un conjunto A y de un conjunto B es el conjunto constituido por la totalidad de los pares ordenados que tienen un primer componente en A y un segundo componente en B. El plano cartesiano permite representar visualmente conjuntos de datos numéricos, lo que facilita la identificación de patrones, tendencias y relaciones entre variables. Esta representación visual es crucial en la interpretación de información y la toma de decisiones informadas en campos como la estadística, la economía y la ingeniería.

#### **OBJETIVO**

El objetivo de esta practica es que nosotros comprendamos más fácilmente con ayuda de las esferas a realizar diferentes ejercicios como por ejemplo el ángulo de una coordenada, sacar la pendiente y el ángulo, por lo que se analizo y se creo soluciones para los problemas, además de que también buscamos información para usar el Sphero porque no sabíamos usarla y esta practica fue de gran ayudar para saber apoyarnos entre nosotros y buscar nuevas rutas de acceso para lograr el resultado deseado.

#### MATERIALES:

- ✓ Sphero
- ✓ Marcadores
- ✓ Celular
- ✓ Libreta
- ✓ Lápiz y borrador
- ✓ Regla

#### FUNCIONES EN UN PLANO CARTESIANO CON SPHERO

#### **EJERCICIO 1:**

PASO 1: Graficar la función:

$$f(x) = 2x + 1$$



Ilustración 1 grafica 1

**PASO 2:** ubicar los puntos donde x sea igual a: 0 y

(0,1), (2,5)

**PASO 3:** calcular la distancia y el ángulo entre los dos puntos.

$$Distancia^{\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}} \\ D^{\sqrt{(2-0)^2+(5-1)^2}} \\ D^{\sqrt{20}}$$

Angulo =  $tan^{-1}$  (m)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{5 - 1}{2 - 0}$$
$$m = \frac{4}{2}$$
$$m = 2$$

$$\emptyset = tan^{-1}(2) = 63.43$$

PASO 4: evidencia en fotos de la grafica con la esfera robótica:



Ilustración 3 primer punto



Ilustración 4 segundo punto



Ilustración 2 programación de Sphero

#### **EJERCICIO 2:**

PASO 1: Graficar la función

$$f(x) = 6x + 2$$



Ilustración 5 grafica 2

**PASO 2:** ubicar los puntos donde x sea igual a: 0 y 1

(0,2), (1,8)

**PASO 3:** calcular la distancia y el ángulo entre los dos puntos.

Distancia
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

$$D^{\sqrt{(1-0)^2+(8-2)^2}}$$

$$D^{\sqrt{37}}$$

Angulo = 
$$tan^{-1}$$
 (m)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{8 - 2}{1 - 0}$$
$$m = \frac{6}{1}$$

m = 6

$$\emptyset = tan^{-1}(6) = 80.53$$

PASO 4: evidencia en fotos de la gráfica con la esfera robótica:





Ilustración 6 programación Sphero

Ilustración 7 primer punto en la gráfica



Ilustración 8 segundo punto en la grafica

#### **EJERCICIO 3:**

PASO 1: Graficar la función

$$f(x) = 3x + 1$$



**PASO 2:** ubicar los puntos donde x sea igual a: 1 y 2

(1,4), (2,7)

**PASO 3:** calcular la distancia y el ángulo entre los dos puntos.

$$Distancia^{\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}$$
 
$$D^{\sqrt{(2-1)^2+(7-4)^2}}$$
 
$$D^{\sqrt{10}}$$

Angulo =  $tan^{-1}$  (m)

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{7 - 4}{2 - 1}$$
$$m = \frac{3}{1}$$
$$m = 3$$

$$\emptyset = tan^{-1}(3) = 71.56$$

PASO 4: evidencia en fotos de la gráfica con la esfera robótica:



Ilustración 10 grafica esférica 1



Ilustración 11 grafica esférica 2



Ilustración 12 programación de la Sphero

### LISTA DE RESULTADOS

FUNCION: 
$$f(x)=2x+1$$

Distancia= 
$$D^{\sqrt{20}}$$

Ángulo=
$$\emptyset = tan^{-1}(2) = 63.43$$

Pendiente =
$$m = 2$$

FUNCION: 
$$f(x) = 6x+2$$

Distancia=
$$D^{\sqrt{37}}$$

Ángulo=
$$\emptyset = tan^{-1}(6) = 80.53$$

Pendiente=
$$m = 6$$

FUNCION: 
$$(x)=3x+1$$

Distancia=
$$D^{\sqrt{10}}$$

Ángulo=
$$\emptyset = tan^{-1}(3) = 71.56$$

Pendiente=
$$m = 3$$

#### **CONCLUSION**

El plano cartesiano es una herramienta geométrica y matemática fundamental creada por René Descartes para ubicar puntos y figuras mediante pares ordenados de coordenadas (X, Y) en dos ejes perpendiculares. Se compone de un eje horizontal (eje X o abscisas) y un eje vertical (eje Y u ordenadas). Esto fue un gran aprendizaje para todos los miembros del equipo ya que a pesar de que fue algo desconocido al principio logramos que el trabajo se llevara a cabo de forma en que comprendiéramos lo que estábamos haciendo y entendimos que es algo esencial en una carrera este tipo de temas.