13.1

Proof: Repository - hw13.1

Construct a proof for the argument: $\forall x (Fx \lor \neg Fx)$

```
\neg (Fa \lor \neg Fa)
2
        \neg Fa
                               Addition 2
3
        Fa ∨ ¬Fa
4
                               Repeat 1
      ¬(Fa ∨ ¬Fa)
5
                                Reductio Ad Absurdum 2-4
6
      Fa ∨ ¬Fa
                               Addition 5
      \neg(Fa \lor \neg Fa)
                                Repeat 1
                                Reductio Ad Absurdum 1-7
    \forall x (Fx \lor \neg Fx)
                                Universal derivation 8
ı∓ new line
                i∓ new subproof
© Congratulations! This proof is correct.
check proof
                 start over
```

13.2

Check Your Proof:

Proof: Repository - hw13.2

Construct a proof for the argument: $\forall xFx \land \forall xGx : \forall x(Fx \land Gx)$

1	$\forall x Fx \land \forall x Gx$	
2	∀ <i>xFx</i>	Simplification 1
3	∀ <i>xFx</i> ∀ <i>xGx</i>	Simplification 1
4	Fa	Universal instantiation 2
5	$\forall x F x$ $\forall x G x$ Fa Ga $Fa \wedge Ga$ $\forall x (Fx \wedge Gx)$	Universal instantiation 3
6	Fa ∧ Ga	Adjunction 4, 5
7	$\forall x (Fx \wedge Gx)$	Universal derivation 6
∓ new line		
Congratulations! This proof is correct.		

Congratulations! This proof is correct.

check proof start over

13.3

Check Your Proof:

Proof: Repository - hw13.3

Construct a proof for the argument: $Fa \lor Gb$, $Gb \rightarrow b = c$, $\neg Fa :: Gc$

```
1 Fa \lor Gb

2 Gb \rightarrow b = c

3 \neg Fa

4 Gb Modus Tollendo Ponens 1, 3

5 b = c Modus Ponens 2, 4

6 Gc Substitution of identicals 4, 5
```

∓ new line | | | | | | |

i∓ new subproof

© Congratulations! This proof is correct.

check proof

start over

13.4

Check Your Proof:

Proof: Repository - hw13.4

Construct a proof for the argument: $\forall x \forall y (Fxy \rightarrow x = y) : Fab \rightarrow Fba$

```
Universal instantiation 1
3
   Fab \rightarrow a = b
                            Universal instantiation 2
4
     Fab
5
                         Modus Ponens 3, 4
     a = b
6
     Fbb
                           Substitution of identicals 4, 5
7
                            Substitution of identicals 5, 6
     Fba
                           Conditional derivation 4-7
8 Fab → Fba
```

 $\ensuremath{\odot}$ Congratulations! This proof is correct.

check proof

start over

13.5

Proof: Repository - hw13.5

Construct a proof for the argument: $\forall x \forall y (x = y \rightarrow Rxy) :: \forall x Rxx$

1
$$\forall x \forall y (x = y \rightarrow Rxy)$$

2 $\forall y (a = y \rightarrow Ray)$ Universal instantiation 1
3 $a = a \rightarrow Raa$ Universal instantiation 2
4 $a = a$ Identity introduction
5 Raa Modus Ponens 3, 4
6 $\forall x Rxx$ Universal derivation 5

r new line rew subproof

© Congratulations! This proof is correct.

check proof start over