Summary: Dependable Systems

Inhaltsverzeichnis

Basics 1 Allgemeine Begriffe und Definitionen
Mathematical Models 3
(Arbitrary) Block Diagram
Maintainability
Markov Models
Generalized Stochastic Petri Nets (GSPN)
Reliability Growth Models 4
An dieser Zusammenfassung und der zugehörigen Formelsammlung kann gerne auf Github mitgewirkt werden!

Basics

Allgemeine Begriffe und Definitionen

- Definition von Dependability¹:
 - original: Dependability ist die Fähigkeit, Dienste anzubieten, auf die gerechtfertigterweise vertraut werden kann.
 - alternativ: Dependability eines Systems beschreibt die Fähigkeit, Ausfälle zu verhindern, die frequenter auftreten oder gravierendere Folgen haben, als zulässig.
- System: Eine Einheit, die mit anderen Einheiten (i.e. Systemen) interagiert.
- Umgebung/Umfeld: Alle Systeme, mit denen ein bestimmtes System interagiert.
- Systemgrenze: Die Schnittstelle zwischen einem System und dessen Umgebung.
- Funktion eines Systems: gibt an, was ein System tun soll, d.h. seine Intention

¹IEEE: "Basic concepts and taxonomy of dependable and secure computing", (Link)

- Verhalten eines Systems: gibt an, was ein System unternimmt, um seine Funktion zu erfüllen. Wird als Folge von Zuständen angegeben.
- Struktur eines Systems: gibt an, was einem System sein Verhalten ermöglicht -> Komponenten.
- Service Interface: der Teil der Systemgrenze zu einem von möglicherweise mehreren Benutzern.
- externe Zustände: die Teilmenge an Zuständen eines Systems, die über das Service Interface wahrnehmbar sind.
- interne Zustände: alle Zustände eines Systems, die nicht extern sind.

Attribute von Dependability:

- Zuverlässigkeit (reliability): die Wahrscheinlichkeit, dass ein System über eine gewisse Periode hinweg seine Funktion erfüllt
- Verfügbarkeit (availability): prozentueller Anteil der Zeit, in der das System seine Funktion erfüllt
- Wartbarkeit (maintainability)
- Sicherheit (safety): Wahrscheinlichkeit, dass ein System während einer gewissen Zeitperiode kein spezifiziertes, unerwünschtes Verhalten zeigt.
 - oft wird Security zu Safety dazu gezählt. Wichtigste Schutzziele: CIA-Triade
- Integrität

Lebensphasen eines Systems:

- Entwicklungsphase
 - Konzeption
 - Design, Entwicklung, Validation, Verifikation
- Benutzungsphase
 - service delivery
 - service outage
 - service shutdown
 - maintainance

Klassifikation von Faults durch:

- Phase of creation or occurrence (development vs. use phase)
- System boundaries (internal vs. external)
- Phenomenological cause (natural vs. human-made)
- Dimension (hardware vs. software)
- Objective (malicious vs. non-malicious)
- Intent (deliberate vs. non-deliberate)
- Capability (accident vs. incompetence)
- Persistence (permanent vs. transient)

Means to attain dependability (and security)

Fault Prevention: takes place in both hardware and software Fault Tolerance: error detection, damage confinement, recovery, fault treatment Fault Removal: verification, diagnosis, correction Fault Forecasting

Mathematical Models

Reliability and Failure Probability: Q(t) ... Failure probability: the probability that a system will *not* conform to its specification throughout [0,t] R(t) ... Reliability: the probability that a system will conform to its specification throughout [0,t]

$$R(0) = 1, R(\infty) = 0, R(t) = 1 - Q(t)$$

Failure Probability Density Function:
$$f(t) = \frac{dQ(t)}{dt} = -\frac{dR(t)}{dt}$$

Failure Rate:
$$\lambda(t) = \frac{f(t)}{R(t)} = -\frac{dR(t)}{dt} \cdot \frac{1}{R(t)}$$
 Unit: FIT (failures in time) := 1 failure in 10^9 hours

Constant Failure Rate:
$$\lambda(t) = \lambda$$
 (const.) $\Rightarrow f(t) = \lambda e^{-\lambda \cdot t} \Rightarrow R(t) = e^{-\lambda \cdot t}$

Weibull distributet failure rate:
$$\lambda(t) = \alpha \lambda(\lambda t)^{\alpha-1} \Rightarrow f(t) = \alpha \lambda(\lambda t)^{\alpha-1} \cdot e^{-(\lambda t)^{\alpha}}$$

 $\Rightarrow R(t) = e^{-(\lambda t)^{\alpha}}$

(Arbitrary) Block Diagram

Serienschaltung:
$$R_{ser.}(t) = \prod_{i=0}^{n-1} R_i(t) = 1 - \prod_{i=0}^{n-1} (1 - Q_i(t))$$

Parallelschaltung:
$$Q_{par.}(t) = \prod_{i=0}^{n-1} Q_i(t) = 1 - \prod_{i=0}^{n-1} (1 - R_i(t))$$

For constant Failure Rate: $\lambda_{ser.} = \sum_{i=0}^{n-1} \lambda_i$ For serial blocks, failure rate remains constant. For parallel blocks, however, failure rate is generally not constant and formula is not as neat.

Extension to arbitrary block diagrams: * arbitrary connections between blocks * switches for passive stand-by redundancy * voters

still not taken into account: maintainability

Maintainability

Mean Time To Failure (MTTF):
$$MTTF = \int\limits_0^\infty t \cdot f(t) dt$$

Applied to constant failure rate:
$$MTTF = \int_{0}^{\infty} t \cdot \lambda e^{-\lambda t} dt = \lambda^{-1} MTTF_{ser.} = \frac{1}{\lambda_1 + \lambda_2 + \dots + \lambda_n}$$

Meant Time To Repair (MTTR):
$$MTTR = \int\limits_0^\infty t \cdot f_r(t) dt$$
 Repair Rate (analogous to failure rate): μ For consant repair rate: $MTTR = \mu^{-1}$

Steady State Availability (A):
$$A = \frac{MTTF}{MTTF + MTTR}$$

Mission time t_m : during mission, no repair is possible Mission Reliability: $R(t_m)$

Markov Models

General properties: * Suitable for modeling of: * arbitrary structures(active, passive and voting redundancy) * systems with complex dependencies(assumption of independent failures is no longer necessary) * coverage effects * Markov property: The system behavior at any time instant tis independent of history (except for the last state) * Restriction to constant failure rates

Generalized Stochastic Petri Nets (GSPN)

more complex mechanisms \Rightarrow less complicated models

Reliability Growth Models

System is treated as blackbox \Rightarrow no need to identify separat components