Global Climate Analysis

•••

Chris Hollman November, 2022

Overview

• Analysis of historical climate data.

• Identify trends/create forecast

• Identify contributors, develop interventions

Project Objective:

- Time Series Decomposition
 - Prophet Model
 - o LSTM Model
 - Forecast
- Regression Analysis
 - Correlations
 - Predictors
 - Action Steps

Examining Data

Time Series

- Historical monthly averages 1750-2015
- Not all data used

Regression

- Forest area
- Oil consumption
- CO2 emissions
- Population
- GDP growth

Prophet Results

- .45 MAE
- Outperformed LSTM

2014-01 2014-04 2014-07 2014-10 2015-01 2015-04 2015-07 2015-10 2016-01 Forecast Date

Prophet Model Components

- Significant upward trend beginning in 1970's
- Data significantly more accurate with time
- Uses recent trend for forecasts

Prophet Forecast

- Predicted to increase
- 1.5 degrees by 2044
- Comparable to other studies

Regression Data

- Strong Correlations:
 - Population
 - Oil Consumption
 - o Emissions
 - Forest Cover
- Weak/No Correlations
 - GDP Growth

Results

- Model Scores:
 - .43 MAE
- Strong Predictors
 - o Population(135)
 - Oil Consumption(30)
 - o Emissions(16)

Confusions

Upward Trends

- Beginning in 1970
- Accelerating
- +1.5 degrees by 2045

Correlations

- Deforestation
- Emissions
- Oil Consumption
- Temperature

Predictors

- Population
- Oil Consumption
- Emissions

Next Steps

Emissions

- Smaller areas
- Smaller intervals
- Lags
- Cumulative Effects

Population (By Country)

- Growth
- Consumption
- Emissions
- Examples

Seasonal Studies

- High/Low Extremes
- Smaller periods
- Smaller areas
- Weather Events

Thank You!

Please feel free to ask any questions.

You may also reach me via email:

Chris Hollman chollman91@gmail.com