CLAIMS

1. Catalytic system comprising

(a) a trifluoromethanesulfonate of general formula (1)

5 in which

10

15

20

25

 R^1 represents a hydrogen or deuterium atom, or a group of formula $-E_{14}(R_{14})(R'_{14})(R''_{14});$

E₁₄ is an element of group 14;

R₁₄, R'₁₄ and R"₁₄ represent, independently, the hydrogen, deuterium atom or one of the following substituted or non-substituted radicals: alkyl, cycloalkyl or aryl, and in which said substituent or substituents are chosen from: halo, alkyl, cycloalkyl and aryl,

as catalyst, and

(b) a (co)polymerization additive of general formula (2)

in which

E represents an element of group 16;

R² represents a hydrogen or deuterium atom;

 R^3 represents a hydrogen or deuterium atom, or a group of formula $-E'_{14}(T_{14})(T'_{14})(T''_{14});$

(2)

E'₁₄ is an element of group 14;

T₁₄, T'₁₄ and T"₁₄ represent, independently, the hydrogen atom; the deuterium atom; one of the following substituted or non-substituted radicals: alkyl, cycloalkyl or aryl, and in which said substituent or substituents are chosen from: halo, hydroxy, alkyl, alkoxy, cycloalkyl, cycloalkoxy, aryl, aryloxy, carboxy, alkoxycarbonyl, cycloalkoxycarbonyl and aryloxycarbonyl,

for lactide and glycolide (co)polymerization.

- 2. Catalytic system according to claim 1, characterized in that the quantity of (co)polymerization additive with respect to the catalyst is comprised between 0.05 and 5 molar equivalents and preferably between 0.5 and 2 molar equivalents.
- 3. Catalytic system according to one of the preceding claims, characterized in that the compound of formula (1) is such that R^1 represents either a hydrogen atom or a group of formula $-E_{14}(R_{14})(R'_{14})(R''_{14})$.
 - 4. Catalytic system according to claim 3, characterized in that R¹ represents the hydrogen atom.
- 5. Catalytic system according to claim 3, characterized in that the compound of formula (1) is such that R^1 represents a group of formula $-E_{14}(R_{14})(R'_{14})(R''_{14})$ and E_{14} a carbon or silicon atom.
 - 6. Catalytic system according to claim 5, characterized in that E_{14} is a carbon atom and R_{14} , R'_{14} and R''_{14} represent, independently, a hydrogen atom or an alkyl radical.
- 7. Catalytic system according to one of the preceding claims, characterized in that the compound of general formula (2) is such that

E represents an oxygen or sulphur atom;

R² represents a hydrogen atom;

 R^3 represents a hydrogen atom or a group of formula -E'₁₄(T₁₄)(T'₁₄);

E'₁₄ is a carbon or silicon atom;

T₁₄, T'₁₄ and T"₁₄ represent, independently, the hydrogen atom, or one of the following substituted or non-substituted radicals: alkyl, cycloalkyl or aryl, in which said substituent or substituents are chosen from: halo, alkyl, cycloalkyl, phenyl, naphthyl, carboxy and alkoxycarbonyl.

8. Catalytic system according to claim 7, characterized in that

E represents an oxygen atom:

R² a hydrogen atom;

20

30

 R^3 a hydrogen atom or a group of formula $-E'_{14}(T_{14})(T'_{14})(T'_{14})$ in which E'_{14} represents a carbon atom and T_{14} , T'_{14} and T''_{14} represent, independently, the hydrogen atom or an alkyl radical.

- 9. Catalytic system according to one of the preceding claims, characterized in that the compound of general formula (2) is either water or an aliphatic alcohol.
- 10. Catalytic system according to one of the preceding claims, characterized in that the compound of general formula (2) is an aliphatic alcohol chosen from isopropanol and pentan-1-ol.
- 11. Lactide and glycolide (co)polymerization process which consists of bringing together the monomer or monomers considered, a catalytic system as defined in one of claims 1 to 10, and optionally a polymerization solvent.
- 12. Process according to claim 11, characterized in that the temperature is comprised between -20° C and approximately 150° C.
 - 13. Process according to claim 12, characterized in that the process is carried out in solution at a temperature comprised between 0° C and 30° C.
 - 14. Process according to one of claims 11 to 13, characterized in that the reaction time is comprised between a few minutes and 48 hours, and preferably between 30 minutes and 20 hours.

15

15. Lactide and glycolide polymers or copolymers which can be obtained by implementing a process according to one of claims 11 to 14.