IE3094 MDP DYNAMIC AIRLINE PRICING

By Ibrahim El Shar and Boyuan Lai

April 22, 2019

OUTLINE

- Introduction
- Model
- Numerical Examples
- Conclusion

INTRODUCTION

- A standard definition of dynamic pricing in airline markets typically focuses on how fares evolve over the booking period that precedes a flight take-off.
- In this study, we optimize over both:
 - Ticket price
 - 2. Returned tickets price

Related Literature

- Broadly speaking the literature on airline pricing can be divided into two categories:
 - Models that assume customers are willing to pay a certain price and then the firm decision is to either accept their request or not. (Van Slyke & Young 2000, Sawaki 2003)
 - A more realistic model considers customers willingness to purchase tickets at a given price is unknown. (Gallego & Van Ryzin 1994, Feng & Xiao 2000)

Demand Model

Demand in each period depends on :

1. Ticket price

$$p_t \in [\underline{p}_t, \overline{p}_t]$$

 $[p_{rt} \in [ar{p}_{rt}, \overline{p}_{rt}]$

2. Returned ticket price

$$D_t(p_t,\epsilon_t) = \kappa_t(p_t,p_{rt}) + \epsilon_t$$

Demand Model

Demand in each period depends on:

$$p_t \in [\underline{p}_t, \overline{p}_t]$$

Ticket price

$$p_{rt} \in [\underline{p}_{rt}, \overline{p}_{rt}]$$

2. Returned ticket price

$$D_t(p_t,\epsilon_t) = \kappa_t(p_t,p_{rt}) + \epsilon_t$$

Deterministic function of the price & returned price

Demand Model

Demand in each period depends on:

$$p_t \in [\underline{p}_t, \overline{p}_t]$$

Ticket price

$$p_{rt} \in [\underline{p}_{rt}, \overline{p}_{rt}]$$

2. Returned ticket price

$$D_t(p_t,\epsilon_t) = \kappa_t(p_t,p_{rt}) + \boxed{\epsilon_t}$$

Noise perturbations that are independent over time & have zero mean.

Model

- Decision epochs: $T=\{1,\ldots,N\}$
- States: $s_t \in \{0,\ldots,C\}$

where S_t is the number of remaining seats in period t and C is the maximum number of seats.

Rewards: $r_t(s_t,(p_t,p_{rt}))$ $= p_t E[\min(s_t,\kappa_t(p_t,p_{rt})+\epsilon_t)]$ Revenue from tickets sold $-p_{rt}E[R_t(s_t,p_{rt})]$ Cost of returned tickets

Model

- Decision epochs: $T=\{1,\ldots,N\}$
- States: $s_t \in \{0,\dots,C\}$

where S_t is the number of remaining seats in period t and C is the maximum number of seats.

Rewards:
$$r_t(s_t,(p_t,p_{rt}))$$
 $= p_t E[\min(s_t,\kappa_t(p_t,p_{rt})+\epsilon_t)]$ Revenue from tickets sold $-p_{rt} E[R_t(s_t,p_{rt})]$ Cost of returned tickets

Random variable representing the number of returned tickets during period t. It depends on the number of remaining seats and return price.

Model

Transition probabilities:

$$P_t(s_{t+1}|s_t, p_t, p_{rt}) = P(R_t(s_t, p_{rt}) - \min\{s_t, \kappa_t(p_t, p_{rt}) + \epsilon_t\} = s_{t+1} - s_t)$$

• For $t = 1, 2, \dots, T$ we have the Bellman recursion

$$egin{aligned} v_t^*(s_t) &= \max_{p_t, p_{rt}} \left\{ p_t E[\min\{s_t, \kappa_t(p_t, p_{rt}) + \epsilon_t\}] - p_{rt} E[R_t(s_t, p_{rt})] + \gamma E[v_{t+1}(s_{t+1})]
ight\} \ &v_N(s) = 0 \ \ orall s \in \mathcal{S} \end{aligned}$$

where γ is a discount factor.

Linear deterministic demand function:

$$\kappa_t(p_t,p_{rt}) = a - bp_t + cp_{rt}$$

Parameters	а	b	С
Case 1	60.2	10	0
Case 2	60.2	10	1

$$p_t \in \{1, 1.1, 1.2, \ldots, 5.1\} \ p_{rt} \in \{0.8, 1.1, 1.2, \ldots, 5.1\}$$

- Max number of seats C=150
- Finite horizon *N*=*12*
- Discount factor $\gamma = 0.9$
- Noise $\epsilon_t \in \{-10, \dots, 10\} \ \& \ E[\epsilon_t] = 0$
- The number of returned tickets $R_t(s_t, p_{rt}) \in \{0, \dots, C-s_t\}$ follows a binomial distribution with parameter p, where

$$p=rac{p_{rt}-0.9p_{_{rt}}}{\overline{p}_{rt}-0.8p_{_{rt}}} imes 0.9$$

CONCLUSION

- In the case where demand is affected by the flexible returned tickets price even by a very small amount:
 - The added value of having dynamic returned ticket price is significant
 - The optimal policy is no longer monotone decreasing.
- Otherwise, it always optimal to set the sale price higher than the return price.

References

Youyi Feng and Baichun Xiao. Optimal policies of yield management with multiple predetermined prices. Operations Research, 48(2):332–343, 2000.

Guillermo Gallego and Garrett Van Ryzin. Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science, 40(8):999–1020, 1994.

K Sawaki. Optimal policies in continuous time inventory control models with limited supply. Computers & Mathematics with Applications, 46(7):1139–1145, 2003.

Richard Van Slyke and Yi Young. Finite horizon stochastic knapsacks with applications to yield management. Operations Research, 48(1):155–172, 2000.

Questions?