

KONKURS FIZYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP SZKOLNY

26 października 2021 r. godz.:12.00

Uczennico/Uczniu:

- 1. Arkusz składa się z 14 zadań, na których rozwiązanie masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	20	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej		

UWAGA: W zadaniach o numerach od 1 do 11, podkreśl właściwą odpowiedź A, B, C lub D.

Zadanie 1. (0 - 1 pkt)

..../1

Na pieszej wycieczce Janek podzielił trasę na trzy części. Pierwszy odcinek trasy przebył z prędkością o wartości $v_1 = 80$ m/min, drugi z $v_2 = 6$ km/h, trzeci z $v_3 = 150$ cm/s. Prędkości te spełniają nierówność:

- A. $v_1 < v_2 < v_3$,
- B. $v_1 > v_2 > v_3$,
- C. $v_2 < v_1 < v_3$,
- D. $v_2 > v_3 > v_1$.

Zadanie 2. (0 – 1 pkt)

..../1

Na dnie jeziora spoczywa nieruchomo, zanurzony całkowicie, namoknięty pień drzewa. Jego uniesienie z zajmowanego położenia wymaga przyłożenia sporej siły skierowanej do góry. Oznacza to, że:

- A. na pień nie działa żadna siła,
- B. siła wyporu działająca na pień jest równa jego ciężarowi,
- C. gęstość pnia jest większa niż gęstość wody,
- D. gęstość pnia jest mniejsza niż gęstość wody.

Zadanie 3. (0 - 1 pkt)

..../1

Drewniany klocek o masie 0,4 kg ciągnięty za pomocą siłomierza po poziomej powierzchni, porusza się ruchem jednostajnym prostoliniowym. Siła oporów ruchu wynosi wówczas 3,0 N. Jeśli przyjąć wartość przyspieszenia ziemskiego $g=10 \text{ m/s}^2$, to wskazanie siłomierza jest równe:

- A. 5,0 N,
- B. 3,0 N,
- C. 1,0 N,
- D. 7,0 N.

Zadanie 4. (0 - 1 pkt)

..../1

Dwie motorówki ścigają się płynąc z prądem rzeki, płynącej z prędkością 2 m/s względem brzegu. Prędkości motorówek względem wody wynoszą odpowiednio 3 m/s i 4 m/s, przy czym początkowo, ze względu na wcześniejszy start, prowadziła wolniejsza z nich. W pewnej chwili motorówki zrównały się i szybsza wyprzedziła wolniejszą. Czas, który upłynie od spotkania motorówek, do momentu, w którym ich odległość wyniesie 84 m, to:

- A. 12 s,
- B. 21 s,
- C. 42 s,
- D. 84 s.

Zadanie 5. (0 - 1 pkt)

..../1

Ciało, spoczywające początkowo, zaczyna poruszać się ze stałym przyspieszeniem.

 \boldsymbol{W} ciągu pierwszych trzech sekund od chwili rozpoczęcia ruchu przebyło ono drogę 9 m.

W trzeciej sekundzie od chwili rozpoczęcia ruchu, ciało to przebyło drogę:

- A. 4,5 m,
- B. 7 m,
- C. 9 m,
- D. 5 m.

Zadanie 6. (0 – 1 pkt)

..../1

Ciało porusza się w kierunku wypadkowej siły o wartości 5,0 kN. Siła ta wykonała nad tym ciałem pracę 2,5 MJ. Działała ona na ciało na drodze o długości:

- A. 2 mm,
- B. 0,5 km,
- C. 250 cm,
- D. 12,5 Gm.

Zadanie 7. (0 - 1 pkt)

..../1

Zosia, która trenuje zapasy, przywiązała do haka w ścianie linkę i ciągnęła za jej drugi koniec za pomocą przywiązanego do niego siłomierza. Linka zerwała się, gdy siłomierz wskazywał siłę o wartości 1,0 kN. Następnie, za zerwany koniec linki złapał trener Zosi. Zosia i trener zaczęli ciągnąć linkę w przeciwne strony, ale ona pozostawała w spoczynku. Zerwała się, gdy siłomierz na końcu ciągniętym przez Zosię wskazywał:

- A. 2,0 kN,
- B. 0,5 kN,
- C. 1,0 kN,
- D. siłę, której nie da się określić z braku dostatecznej liczby danych w treści zadania.

Zadanie 8. (0 - 1 pkt)

Jednostka ciśnienia w układzie SI wyraża się przez **podstawowe** jednostki tego układu następująco:

..../1

- A. $\frac{kg}{s^2}$,
- B. $\frac{kg}{s m^2}$,
- C. $kg m s^2$,
- D. $\frac{kg}{m s^2}$.

Zadanie 9. (0 - 1 pkt)

..../1

Rozważamy następujące substancje: styropian (x), miedź (y), bardzo rozrzedzony gaz (w), cegła (z). Według przewodnictwa cieplnego (od największego do najmniejszego) substancje te można uszeregować następująco:

- A. xywz,
- B. zwyx,
- C. yzxw,
- D. yzwx.

Zadanie 10. (0 - 1 pkt)

..../1

Dwa samochody o jednakowych masach *m* poruszają się w tę samą stronę, z prędkościami o różnych wartościach. Wartość prędkości wolniejszego z nich względem ziemi wynosi *v*. Energia kinetyczna szybszego samochodu, w układzie odniesienia związanym z wolniejszym, jest równa 8*mv*². Prędkość szybszego samochodu względem ziemi wynosi:

- A. 2v,
- B. 3*v*,
- C. 4v,
- D. 5v.

Zadanie 11. (0 – 1 pkt)

..../1

Ładunek o masie 5000 kg, został podniesiony przez dźwig, w ciągu 25 s.

Moc użyteczna dźwigu wynosi 20 kW. Przyjmijmy, że przyspieszenie ziemskie wynosi 10 m/s². Dźwig podniósł ten ładunek na wysokość:

- A. 10,0 m,
- B. 5,0 m,
- C. 1,0 m,
- D. 12,5m.

Zadanie 12. (0 – 3 pkt.)	/3
Dwie grupy turystów wyruszyły na tę samą trasę. Pierwsza grupa przebyła pierwszą	
połowę drogi z prędkością o wartości v_I , a drugą – z prędkością o wartości v_2 . Druga g pierwszą połowę czasu swojego ruchu wędrowała z prędkością o wartości v_I , a drugą	
czasu swojego ruchu z prędkością o wartości v2. Która grupa przeszła całą trasę szybc	iej
(w krótszym czasie)? Odpowiedź uzasadnij.	

7 denie 12 (0 2 plst)	
Zadanie 13. (0 – 3 pkt.)	/3
	/ 3

V izolowanym cieplnie, szczelnym naczyniu (energia cieplna nie dopływa z zewnątrz do jego
vnętrza ani z niego nie wypływa) zawierającym bardzo rozrzedzony gaz rozlano wodę
temperaturze $t_0 = 0$ °C. Po upływie pewnego czasu Δt część wody wyparowała, a reszta
amieniła się w lód, przy czym temperatura pary i lodu wynosiła nadal t_0 . Ile sekund trwał
zas Δt , jeśli w czasie t_I = 1s średnio wyparowywała n = 0,01 część początkowej masy wody?
rzyjmij wartość ciepła parowania wody $L=2,40~\mathrm{MJ/kg}$, a ciepła krzepnięcia wody
równego ciepłu topnienia lodu) $\lambda = 330 \text{kJ/kg}$.

Zadanie 14. (0 – 3 pkt.)	/3
Do górnej, poziomej ścianki wnętrza stalowego sejfu przywarł magnes o masie $m = 20$	g.
Magnes naciska na powierzchnię tej ścianki siłą o wartości $F = 2,0$ N. Znajdź wartość s	iły F_m ,
związanej z magnetycznym oddziaływaniem magnesu i ścianki, jaką magnes przyciąga	
ściankę. Przyjmij wartość przyspieszenia ziemskiego $g = 10 \text{ m/s}^2$.	

Brudnopis