Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Teoria de Conjuntos

A noção de conjunto

Introdução

Discutivelmente, a noção mais básica de matemática é a de conjunto que formaliza a observação básica que frequentemente encontramos de "coleção de objetos": um conjunto é "algo que pode ter elementos".

A noção de conjunto

Introdução

Discutivelmente, a noção mais básica de matemática é a de conjunto que formaliza a observação básica que frequentemente encontramos de "coleção de objetos": um conjunto é "algo que pode ter elementos".

ullet Expressamos a propriedade "x é um elemento de X" como

$$x \in X$$
.

Nesta situação diz-se que x pertence a X; e escreve-se $x \notin X$ quando x não pertence ao X.

A noção de conjunto

Introdução

Discutivelmente, a noção mais básica de matemática é a de conjunto que formaliza a observação básica que frequentemente encontramos de "coleção de objetos": um conjunto é "algo que pode ter elementos".

ullet Expressamos a propriedade "x é um elemento de X" como

$$x \in X$$
.

Nesta situação diz-se que x pertence a X; e escreve-se $x \notin X$ quando x não pertence ao X.

 Se X tem um número finito de elementos, podemos apresentar X enunciando simplesmente os seus elementos entre chavetas; por exemplo:

```
{azul, verde, vermelho}, \{a, b, c, d\}, \{1, 2, \dots, 1000\}.
```

 Os conjuntos X e Y são iguais quando têm exatamente os mesmos elementos

X = Y quando, para todo o $x, x \in X$ se e somente se $x \in Y$.

- Os conjuntos X e Y são iguais quando têm exatamente os mesmos elementos
 - X = Y quando, para todo o x, $x \in X$ se e somente se $x \in Y$.
- Existe um (único) conjunto que não tem elementos. Este conjunto denota-se por Ø; portanto, para todo o x, x ∉ Ø.

- Os conjuntos X e Y são iguais quando têm exatamente os mesmos elementos
 - X = Y quando, para todo o $x, x \in X$ se e somente se $x \in Y$.
- Existe um (único) conjunto que n\u00e3o tem elementos. Este conjunto denota-se por \u00a3; portanto, para todo o x, x \u22e9 \u00b1.
- Diz-se que o conjunto X está contido no conjunto Y, X ⊆ Y quando cada elemento de X também pertence a Y:

 $X \subseteq Y$ quando, para todo o x, $x \in X$ implica $x \in Y$.

Neste caso diz-se também que Y contém X ou que X é um subconjunto de Y.

- Os conjuntos X e Y são iguais quando têm exatamente os mesmos elementos
 - X = Y quando, para todo o $x, x \in X$ se e somente se $x \in Y$.
- Existe um (único) conjunto que não tem elementos. Este conjunto denota-se por Ø; portanto, para todo o x, x ∉ Ø.
- Diz-se que o conjunto X está contido no conjunto Y, X ⊆ Y quando cada elemento de X também pertence a Y:

 $X \subseteq Y$ quando, para todo o x, $x \in X$ implica $x \in Y$. Neste caso diz-se também que Y contém X ou que X é um subconjunto de Y.

• Para todo o conjunto $X: \varnothing \subseteq X$.

- Os conjuntos X e Y são iguais quando têm exatamente os mesmos elementos
 - X = Y quando, para todo o $x, x \in X$ se e somente se $x \in Y$.
- Existe um (único) conjunto que não tem elementos. Este conjunto denota-se por Ø; portanto, para todo o x, x ∉ Ø.
- Diz-se que o conjunto X está contido no conjunto Y, X ⊆ Y quando cada elemento de X também pertence a Y:

 $X\subseteq Y$ quando, para todo o x, $x\in X$ implica $x\in Y$.

Neste caso diz-se também que Y contém X ou que X é um subconjunto de Y.

- Para todo o conjunto $X: \varnothing \subseteq X$.
- Assim, X = Y se e somente se $X \subseteq Y$ e $Y \subseteq X$.

- Os conjuntos X e Y são iguais quando têm exatamente os mesmos elementos
 - X = Y quando, para todo o $x, x \in X$ se e somente se $x \in Y$.
- Existe um (único) conjunto que não tem elementos. Este conjunto denota-se por Ø; portanto, para todo o x, x ∉ Ø.
- Diz-se que o conjunto X está contido no conjunto Y, X ⊆ Y quando cada elemento de X também pertence a Y:

 $X \subseteq Y$ quando, para todo o x, $x \in X$ implica $x \in Y$.

Neste caso diz-se também que Y contém X ou que X é um subconjunto de Y.

- Para todo o conjunto $X: \varnothing \subseteq X$.
- Assim, X = Y se e somente se $X \subseteq Y$ e $Y \subseteq X$.
- Diz-se que X é um subconjunto próprio de Y quando X ⊆ Y e X ≠ Y. Notação: X ⊊ Y.

Igualdade e subconjuntos (cont.)

 Para cada conjunto X e cada propriedade (aplicável aos elementos de X) podemos formar o conjunto de todos os elementos de X que satisfazem esta propriedade. Este conjunto denota-se por

$$\{x \in X \mid \dots\}$$
 ou $\{x \in X : \dots\}$

onde em lugar de "..." escreve-se a propriedade em causa.

Igualdade e subconjuntos (cont.)

 Para cada conjunto X e cada propriedade (aplicável aos elementos de X) podemos formar o conjunto de todos os elementos de X que satisfazem esta propriedade. Este conjunto denota-se por

$$\{x \in X \mid \dots\}$$
 ou $\{x \in X : \dots\}$

onde em lugar de "..." escreve-se a propriedade em causa.

Aqui não somos muito precisos sobre a formulação desta propriedade, que depende do contexto. Esperamos que estes dois exemplos ajudem:

$$\{0, 1, 2, 3\} = \{n \in \mathbb{N} \mid n < 4\},$$

$$\{a, o, u\} = \{x \in \{a, c, m, o, p, u, z\} \mid x \text{ \'e um vogal}\}.$$

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \subseteq \{n \in \mathbb{N} \mid n \text{ \'e par}\}.$$

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \subseteq \{n \in \mathbb{N} \mid n \text{ \'e par}\}.$$

Seja $n \in \mathbb{N}$ tal que 6 divide n.

Consequentemente, n é par.

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \subseteq \{n \in \mathbb{N} \mid n \text{ \'e par}\}.$$

Seja $n \in \mathbb{N}$ tal que 6 divide n. Logo, existe $m \in \mathbb{N}$ com n = 6m. Consequentemente, n é par.

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \subseteq \{n \in \mathbb{N} \mid n \text{ \'e par}\}.$$

Seja $n \in \mathbb{N}$ tal que 6 divide n. Logo, existe $m \in \mathbb{N}$ com n = 6m.

Portanto, n = 2(3m). Consequentemente, n é par.

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \subseteq \{n \in \mathbb{N} \mid n \text{ \'e par}\}.$$

Seja $n \in \mathbb{N}$ tal que 6 divide n. Logo, existe $m \in \mathbb{N}$ com n = 6m. Portanto, n = 2(3m). Consequentemente, n é par.

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \neq \{n \in \mathbb{N} \mid n \text{ é par}\}.$$

Exemplo

Mostre que

$$\{n \in \mathbb{N} \mid 6 \text{ divide } n\} \subseteq \{n \in \mathbb{N} \mid n \text{ \'e par}\}.$$

Seja $n \in \mathbb{N}$ tal que 6 divide n. Logo, existe $m \in \mathbb{N}$ com n = 6m. Portanto, n = 2(3m). Consequentemente, n é par.

Exemplo

Mostre que

$${n \in \mathbb{N} \mid 6 \text{ divide } n} \neq {n \in \mathbb{N} \mid n \text{ é par}}.$$

De facto, $2 \in \{n \in \mathbb{N} \mid n \text{ \'e par}\}$ mas $2 \notin \{n \in \mathbb{N} \mid 6 \text{ divide } n\}$.

Nota

Tipicamente fixamos um universo $\mathcal U$ e consideramos apenas partes de $\mathcal U$.

Nota

Tipicamente fixamos um universo $\mathcal U$ e consideramos apenas partes de $\mathcal U.$

Exemplo

Consideramos $\mathcal{U} = \{3,4,5,6,7\}$. Neste caso:

Nota

Tipicamente fixamos um universo $\mathcal U$ e consideramos apenas partes de $\mathcal U.$

Exemplo

Consideramos $\mathcal{U} = \{3, 4, 5, 6, 7\}$. Neste caso:

```
• \{x \mid x \text{ \'e par}\} =
```

Nota

Tipicamente fixamos um universo $\mathcal U$ e consideramos apenas partes de $\mathcal U$.

Exemplo

Consideramos $\mathcal{U} = \{3, 4, 5, 6, 7\}$. Neste caso:

• $\{x \mid x \text{ \'e par}\} = \{4, 6\}.$

Nota

Tipicamente fixamos um universo $\mathcal U$ e consideramos apenas partes de $\mathcal U$.

Exemplo

Consideramos $\mathcal{U} = \{3, 4, 5, 6, 7\}$. Neste caso:

- $\{x \mid x \text{ \'e par}\} = \{4, 6\}.$
- $\{x \mid x \text{ \'e impar}\} = \{x \mid x \text{ \'e primo}\}\ \text{porque}$

Nota

Tipicamente fixamos um universo $\mathcal U$ e consideramos apenas partes de $\mathcal U$.

Exemplo

Consideramos $\mathcal{U} = \{3, 4, 5, 6, 7\}$. Neste caso:

- $\{x \mid x \text{ \'e par}\} = \{4, 6\}.$
- $\{x \mid x \text{ \'e impar}\} = \{x \mid x \text{ \'e primo}\}\ \text{porque}$

$${x \mid x \text{ \'e impar}} = {3,5,7} = {x \mid x \text{ \'e primo}}.$$

Para os conjuntos A e B de \mathcal{U} :

Para os conjuntos A e B de \mathcal{U} :

• A interseção de A e B é o conjunto $A \cap B$ cujos elementos são precisamente os elementos que pertencem a A e a B:

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}.$$

Diagrama de Venn

Para os conjuntos A e B de \mathcal{U} :

• A interseção de A e B é o conjunto $A \cap B$ cujos elementos são precisamente os elementos que pertencem a A e a B:

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}.$$

 A união de A e B é o conjunto A ∪ B cujos elementos são precisamente os elementos que pertencem a A ou a B:

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}.$$

Para os conjuntos A e B de \mathcal{U} :

• A interseção de A e B é o conjunto $A \cap B$ cujos elementos são precisamente os elementos que pertencem a A e a B:

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}.$$

 A união de A e B é o conjunto A ∪ B cujos elementos são precisamente os elementos que pertencem a A ou a B:

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}.$$

• O complementar de A é o conjunto A^{\complement} cujos elementos são precisamente os elementos (do universo \mathcal{U}) que não pertencem a A:

$$A^{\complement} = \{x \mid x \notin A\}.$$

• A diferença entre A e B e é o conjunto $A \setminus B$ cujos elementos são precisamente os elementos que pertencem a A e não a B:

$$A \setminus B = \{x \mid (x \in A) \land (x \notin B)\}.$$

 A diferença entre A e B e é o conjunto A \ B cujos elementos são precisamente os elementos que pertencem a A e não a B:

$$A \setminus B = \{x \mid (x \in A) \land (x \notin B)\}.$$

 A diferença simétrica entre A e B é o conjunto A △ B cujos elementos são precisamente os elementos que pertencem a A ou a B mas não a ambos os conjuntos:

$$A \triangle B = \{x \mid (x \in A) \lor (x \in B)\}.$$

Sejam A, B, C conjuntos de um universo \mathcal{U} .

• Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.

Sejam A, B, C conjuntos de um universo \mathcal{U} .

- Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- Elemento neutro: $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.

Sejam A, B, C conjuntos de um universo \mathcal{U} .

- Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- Elemento neutro: $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.
- Elemento absorvente: $A \cap \emptyset = \emptyset$ e $A \cup \mathcal{U} = \mathcal{U}$.

Sejam A, B, C conjuntos de um universo \mathcal{U} .

- Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- Elemento neutro: $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.
- Elemento absorvente: $A \cap \emptyset = \emptyset$ e $A \cup \mathcal{U} = \mathcal{U}$.
- Associatividade:

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 e $A \cup (B \cup C) = (A \cup B) \cup C$.

Propriedades

Sejam A, B, C conjuntos de um universo \mathcal{U} .

- Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- Elemento neutro: $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.
- Elemento absorvente: $A \cap \emptyset = \emptyset$ e $A \cup \mathcal{U} = \mathcal{U}$.
- Associatividade:

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 e $A \cup (B \cup C) = (A \cup B) \cup C$.

Distributividade:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 e $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Propriedades

Sejam A, B, C conjuntos de um universo \mathcal{U} .

- Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- Elemento neutro: $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.
- Elemento absorvente: $A \cap \emptyset = \emptyset$ e $A \cup \mathcal{U} = \mathcal{U}$.
- Associatividade:

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 e $A \cup (B \cup C) = (A \cup B) \cup C$.

Distributividade:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)\quad \text{e}\quad A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$$

• Dupla complementaridade: $(A^{\complement})^{\complement} = A$.

Propriedades

Sejam A, B, C conjuntos de um universo \mathcal{U} .

- Comutatividade: $A \cap B = B \cap A$ e $A \cup B = B \cup A$.
- Elemento neutro: $A \cap \mathcal{U} = A$ e $A \cup \emptyset = A$.
- Elemento absorvente: $A \cap \emptyset = \emptyset$ e $A \cup \mathcal{U} = \mathcal{U}$.
- Associatividade:

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 e $A \cup (B \cup C) = (A \cup B) \cup C$.

Distributividade:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)\quad \text{e}\quad A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$$

- Dupla complementaridade: $(A^{\complement})^{\complement} = A$.
- Leis de De Morgan:

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$$
 e $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$.

Sejam A e B conjuntos de um universo \mathcal{U} .

• $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U}$ e $\mathcal{U}^{\complement} = \varnothing$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \varnothing$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- *A* △ *B* =

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U}$ e $\mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $\bullet \ A \triangle B = (A \setminus B) \cup (B \setminus A).$
- $\bullet \ (A \setminus B) \cap (B \setminus A) =$

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- $(A \setminus B) \cap (B \setminus A) = \varnothing$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- $(A \setminus B) \cap (B \setminus A) = \emptyset$.
- $(A \setminus A) =$

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- $(A \setminus B) \cap (B \setminus A) = \emptyset$.
- $(A \setminus A) = \emptyset$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U} \ e \ \mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- $(A \setminus B) \cap (B \setminus A) = \emptyset$.
- $(A \setminus A) = \emptyset$.
- $(A \setminus \varnothing) = A \in (\varnothing \setminus A) = \varnothing$.

- $\varnothing \subseteq A$ e $A \subseteq \mathcal{U}$.
- $\varnothing^{\complement} = \mathcal{U}$ e $\mathcal{U}^{\complement} = \varnothing$.
- $A \cup A^{\complement} = \mathcal{U}$ e $A \cap A^{\complement} = \emptyset$.
- $A \setminus B = A \cap B^{\complement}$.
- $\bullet \ A \triangle B = (A \setminus B) \cup (B \setminus A).$
- $(A \setminus B) \cap (B \setminus A) = \emptyset$.
- $(A \setminus A) = \emptyset$.
- $(A \setminus \varnothing) = A \in (\varnothing \setminus A) = \varnothing$.
- $((A \setminus B) = (B \setminus A)) \iff A = B$.

Definição

Uma família de conjuntos de um universo $\mathcal U$ consiste num conjunto I (o conjunto dos índices) e um conjunto A_i de $\mathcal U$, para cada $i \in I$.

Notação: $A = (A_i)_{i \in I}$.

Definição

Uma família de conjuntos de um universo \mathcal{U} consiste num conjunto I (o conjunto dos índices) e um conjunto A_i de \mathcal{U} , para cada $i \in I$.

Notação: $A = (A_i)_{i \in I}$.

• União:
$$\bigcup A = \bigcup_{i \in I} A_i = \{x \mid x \in A_i, \text{ para algum } i \in I\}.$$

Definição

Uma família de conjuntos de um universo $\mathcal U$ consiste num conjunto I (o conjunto dos índices) e um conjunto A_i de $\mathcal U$, para cada $i \in I$.

Notação: $A = (A_i)_{i \in I}$.

- União: $\bigcup A = \bigcup_{i \in I} A_i = \{x \mid x \in A_i, \text{ para algum } i \in I\}.$
- Interseção: $\bigcap A = \bigcap_{i \in I} A_i = \{x \mid x \in A_i, \text{ para todo o } i \in I\}.$

Definição

Uma família de conjuntos de um universo \mathcal{U} consiste num conjunto I (o conjunto dos índices) e um conjunto A_i de \mathcal{U} , para cada $i \in I$. Notação: $\mathcal{A} = (A_i)_{i \in I}$.

- União: $\bigcup A = \bigcup_{i \in I} A_i = \{x \mid x \in A_i, \text{ para algum } i \in I\}.$
- Interseção: $\bigcap \mathcal{A} = \bigcap_{i \in I} A_i = \{x \mid x \in A_i, \text{ para todo o } i \in I\}.$
- A família $A = (A_i)_{i \in I}$ diz-se disjunta quando $\bigcap A = \emptyset$.

Definição

Uma família de conjuntos de um universo \mathcal{U} consiste num conjunto I (o conjunto dos índices) e um conjunto A_i de \mathcal{U} , para cada $i \in I$. Notação: $\mathcal{A} = (A_i)_{i \in I}$.

- União: $\bigcup A = \bigcup_{i \in I} A_i = \{x \mid x \in A_i, \text{ para algum } i \in I\}.$
- Interseção: $\bigcap A = \bigcap_{i \in I} A_i = \{x \mid x \in A_i, \text{ para todo o } i \in I\}.$
- A família $A = (A_i)_{i \in I}$ diz-se disjunta quando $\bigcap A = \emptyset$.
- A família $\mathcal{A} = (A_i)_{i \in I}$ diz-se dois a dois disjunta quando $A_i \cap A_j = \emptyset$, para $i \neq j$.

Notação: $A = (A_i)_{i \in I}$.

Definição

Uma família de conjuntos de um universo $\mathcal U$ consiste num conjunto I (o conjunto dos índices) e um conjunto A_i de $\mathcal U$, para cada $i \in I$.

• União:
$$\bigcup A = \bigcup_{i \in I} A_i = \{x \mid x \in A_i, \text{ para algum } i \in I\}.$$

- Interseção: $\bigcap A = \bigcap_{i=1}^n A_i = \{x \mid x \in A_i, \text{ para todo o } i \in I\}.$
- A família $\mathcal{A} = (A_i)_{i \in I}$ diz-se disjunta quando $\bigcap \mathcal{A} = \emptyset$.
- A família $\mathcal{A} = (A_i)_{i \in I}$ diz-se dois a dois disjunta quando $A_i \cap A_j = \emptyset$, para $i \neq j$.

• Por exemplo:
$$\left(\bigcap_{i\in I}A_i\right)^{\complement}=\left(\bigcup_{i\in I}A_i^{\complement}\right)$$
 e $\left(\bigcup_{i\in I}A_i\right)^{\complement}=\left(\bigcap_{i\in I}A_i^{\complement}\right)$.

Exemplo

Exemplo

$$\bigcup_{n\in I}A_n=$$

Exemplo

$$\bigcup_{n\in I}A_n=]0,\infty[,$$

Exemplo

$$\bigcup_{n\in I}A_n=]0,\infty[,$$

$$\bigcap_{n\in I}A_n=$$

Exemplo

$$\bigcup_{n\in I}A_n=]0,\infty[,$$

$$\bigcap_{n\in I}A_n=\{1\},$$

Exemplo

$$\bigcup_{n\in I}A_n=]0,\infty[,\qquad \qquad \bigcap_{n\in I}A_n=\{1\},$$

$$\bigcup_{n\in I}B_n=$$

Exemplo

Consideramos $I = \{1, 2, 3, ...\}$, $A_n = [\frac{1}{n}, n]$ e $B_n = [n - 1, n]$:

 $\bigcap A_n=\{1\},$

$$\bigcup_{n\in I} A_n =]0, \infty[,$$

$$\bigcup_{n\in I} B_n = [0, \infty[,$$

Exemplo

$$\label{eq:local_equation} \begin{split} \bigcup_{n\in I} A_n &=]0, \infty[, & \bigcap_{n\in I} A_n &= \{1\}, \\ \bigcup_{n\in I} B_n &= [0, \infty[, & \bigcap_{n\in I} B_n &= \\ \end{split}$$

Exemplo

Consideramos $I = \{1, 2, 3, ...\}$, $A_n = [\frac{1}{n}, n]$ e $B_n = [n - 1, n]$:

$$\bigcup_{n\in I} A_n =]0, \infty[,$$

$$\bigcup_{n\in I} B_n = [0, \infty[,$$

$$\bigcap_{n\in I}B_n=\varnothing.$$

 $\bigcap A_n=\{1\},$

Exemplo

Consideramos $I = \{1, 2, 3, ...\}$, $A_n = [\frac{1}{n}, n]$ e $B_n = [n - 1, n]$:

$$\label{eq:local_equation} \begin{split} \bigcup_{n\in I} A_n &=]0, \infty[, & \bigcap_{n\in I} A_n &= \{1\}, \\ \bigcup_{n\in I} B_n &= [0, \infty[, & \bigcap_{n\in I} B_n &= \varnothing. \end{split}$$

A família $(A_n)_{n\in I}$ não é disjunta.

Exemplo

Consideramos $I = \{1, 2, 3, ...\}$, $A_n = [\frac{1}{n}, n]$ e $B_n = [n - 1, n]$:

$$\label{eq:definition} \begin{split} \bigcup_{n\in I} A_n &=]0, \infty[, & \bigcap_{n\in I} A_n &= \{1\}, \\ \bigcup_{n\in I} B_n &= [0, \infty[, & \bigcap_{n\in I} B_n &= \varnothing. \end{split}$$

A família $(A_n)_{n\in I}$ não é disjunta.

A família $(B_n)_{n\in I}$ é disjunta mas não é dois a dois disjunta.

Exemplo

Consideramos $I = \{1, 2, 3, ...\}$, $A_n = [\frac{1}{n}, n]$ e $B_n = [n - 1, n]$:

$$\label{eq:local_equation} \begin{split} \bigcup_{n\in I} A_n &=]0, \infty[, & \bigcap_{n\in I} A_n &= \{1\}, \\ \bigcup_{n\in I} B_n &= [0, \infty[, & \bigcap_{n\in I} B_n &= \varnothing. \end{split}$$

A família $(A_n)_{n\in I}$ não é disjunta.

A família $(B_n)_{n\in I}$ é disjunta mas não é dois a dois disjunta.

Exemplo

Consideramos $I = \{1, 2\}$:

$$\bigcup_{n\in I}A_n=A_1\cup A_2\qquad \text{e}\qquad \bigcap_{n\in I}A_n=A_1\cap A_2.$$

O conjunto das partes

Definição

O conjunto das partes de um conjunto X é o conjunto PX de todos os subconjuntos de X:

$$PX = \{A \mid A \subseteq X\}.$$

O conjunto das partes

Definição

O conjunto das partes de um conjunto X é o conjunto PX de todos os subconjuntos de X:

$$PX = \{A \mid A \subseteq X\}.$$

Nota

Para todo o conjunto $X: \varnothing \in PX$ e $X \in PX$.

O conjunto das partes

Definição

O conjunto das partes de um conjunto X é o conjunto PX de todos os subconjuntos de X:

$$PX = \{A \mid A \subseteq X\}.$$

Nota

Para todo o conjunto $X: \varnothing \in PX$ e $X \in PX$.

Exemplo

Para $X = \{0, 1, 2\}$,

$$PX =$$

O conjunto das partes

Definição

O conjunto das partes de um conjunto X é o conjunto PX de todos os subconjuntos de X:

$$PX = \{A \mid A \subseteq X\}.$$

Nota

Para todo o conjunto $X: \varnothing \in PX$ e $X \in PX$.

Exemplo

Para $X = \{0, 1, 2\}$,

$$PX = \{\varnothing, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}.$$

Definição

Sejam A e B conjuntos, $a \in A$ e $b \in B$. O par ordenado (a,b) é o conjunto

$$(a,b) = \{\{a,b\},\{a\}\}.$$

Definição

Sejam A e B conjuntos, $a \in A$ e $b \in B$. O par ordenado (a,b) é o conjunto

$$(a,b) = \{\{a,b\},\{a\}\}.$$

$$(a,b)=(x,y)\iff x=a\ e\ y=b.$$

Definição

Sejam A e B conjuntos, $a \in A$ e $b \in B$. O par ordenado (a,b) é o conjunto

$$(a,b) = \{\{a,b\},\{a\}\}.$$

Nota

$$(a,b)=(x,y)\iff x=a\ e\ y=b.$$

Nota

Definição

Sejam A e B conjuntos, $a \in A$ e $b \in B$. O par ordenado (a,b) é o conjunto

$$(a,b) = \{\{a,b\},\{a\}\}.$$

Nota

$$(a,b)=(x,y)\iff x=a\ e\ y=b.$$

Nota

•
$$(x_1, x_2, x_3) = (x_1, (x_2, x_3)).$$

Definição

Sejam A e B conjuntos, $a \in A$ e $b \in B$. O par ordenado (a,b) é o conjunto

$$(a,b) = \{\{a,b\},\{a\}\}.$$

Nota

$$(a,b)=(x,y)\iff x=a\ e\ y=b.$$

Nota

- $(x_1, x_2, x_3) = (x_1, (x_2, x_3)).$
- $(x_1, x_2, x_3, x_4) = (x_1, (x_2, x_3, x_4)).$

Definição

Sejam A e B conjuntos, $a \in A$ e $b \in B$. O par ordenado (a,b) é o conjunto

$$(a,b) = \{\{a,b\},\{a\}\}.$$

Nota

$$(a,b)=(x,y)\iff x=a\ e\ y=b.$$

Nota

- $(x_1, x_2, x_3) = (x_1, (x_2, x_3)).$
- $(x_1, x_2, x_3, x_4) = (x_1, (x_2, x_3, x_4)).$
- ...

Produtos Cartesianos

Definição

Sejam A e B conjuntos. O conjunto $A \times B$ de todos os pares de elementos de A e B

$$A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}.$$

diz-se produto cartesiano de A e B.

Produtos Cartesianos

Definição

Sejam A e B conjuntos. O conjunto $A \times B$ de todos os pares de elementos de A e B

$$A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}.$$

diz-se produto cartesiano de A e B.

Nota

Se A = B, escrevemos as vezes A^2 em lugar de $A \times A$.

Definição

• Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y,x) \mid (x,y) \in r\}$.

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y, x) \mid (x, y) \in r\}$.

Exemplo

Para cada conjunto A,

$$I_A = \{(x, x) \mid x \in A\}$$

é uma relação binária em A (a relação de identidade).

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y, x) \mid (x, y) \in r\}$.

Imagem

$$r(X) = \{ y \in B \mid x r y \text{ para algum } x \in X \}.$$

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y, x) \mid (x, y) \in r\}$.

Imagem

Seja r uma relação entre A e B e $X \subseteq A$:

$$r(X) = \{ y \in B \mid x r y \text{ para algum } x \in X \}.$$

• Imagem de r: img(r) = r(A).

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y, x) \mid (x, y) \in r\}$.

Imagem

$$r(X) = \{ y \in B \mid x r y \text{ para algum } x \in X \}.$$

- Imagem de r: img(r) = r(A).
- Imagem de $x \in A$ por r: $r(x) = r(\{x\})$.

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y,x) \mid (x,y) \in r\}$.

Imagem

$$r(X) = \{ y \in B \mid x r y \text{ para algum } x \in X \}.$$

- Imagem de r: img(r) = r(A).
- Imagem de $x \in A$ por r: $r(x) = r(\{x\})$.
- Domínio de r: dom $(r) = r^{-1}(B)$

Definição

- Uma relação r entre A e B é um subconjunto $r \subseteq A \times B$.
- Se A = B, diz-se que r é uma relação binária em A.
- Escrevemos x r y em lugar de $(x, y) \in r$.
- Relação inversa (entre B e A): $r^{-1} = \{(y, x) \mid (x, y) \in r\}$.

Imagem

$$r(X) = \{ y \in B \mid x r y \text{ para algum } x \in X \}.$$

- Imagem de r: img(r) = r(A).
- Imagem de $x \in A$ por r: $r(x) = r(\{x\})$.
- Domínio de r: dom $(r) = r^{-1}(B)$
- Imagem recíproca de $y \in B$ por $r = r^{-1}(y)$.

Definição

Seja r uma relação de A em B e s uma relação de B em C. A relação composta de s com r, denotado por $s \circ r$, é a relação de A em C definida por

$$s \circ r = \{(x, z) \in A \times C \mid \text{ existe um } y \in B \text{ com } (x r y) \land (y s z)\}.$$

Definição

Seja r uma relação de A em B e s uma relação de B em C. A relação composta de s com r, denotado por $s \circ r$, é a relação de A em C definida por

$$s \circ r = \{(x, z) \in A \times C \mid \text{ existe um } y \in B \text{ com } (x r y) \land (y s z)\}.$$

Nota

• Para uma relação r de A em B: $r \circ I_A = r$ e $I_B \circ r = r$.

Definição

Seja r uma relação de A em B e s uma relação de B em C. A relação composta de s com r, denotado por $s \circ r$, é a relação de A em C definida por

$$s \circ r = \{(x, z) \in A \times C \mid \text{ existe um } y \in B \text{ com } (x r y) \land (y s z)\}.$$

- Para uma relação r de A em B: $r \circ I_A = r$ e $I_B \circ r = r$.
- Para as relações r de A em B, s de B em C e t de C em D:

$$(t \circ s) \circ r = t \circ (s \circ r)$$

Definição

Seja r uma relação de A em B e s uma relação de B em C. A relação composta de s com r, denotado por $s \circ r$, é a relação de A em C definida por

$$s \circ r = \{(x, z) \in A \times C \mid \text{ existe um } y \in B \text{ com } (x r y) \land (y s z)\}.$$

- Para uma relação r de A em B: $r \circ I_A = r$ e $I_B \circ r = r$.
- Para as relações r de A em B, s de B em C e t de C em D:

$$(t \circ s) \circ r = t \circ (s \circ r)$$

•
$$(s \circ r)^{-1} = r^{-1} \circ s^{-1}$$
 e $(r^{-1})^{-1} = r$

Definição

Seja r uma relação de A em B e s uma relação de B em C. A relação composta de s com r, denotado por $s \circ r$, é a relação de A em C definida por

$$s \circ r = \{(x, z) \in A \times C \mid \text{ existe um } y \in B \text{ com } (x r y) \land (y s z)\}.$$

- Para uma relação r de A em B: $r \circ I_A = r$ e $I_B \circ r = r$.
- Para as relações r de A em B, s de B em C e t de C em D:

$$(t \circ s) \circ r = t \circ (s \circ r)$$

- $(s \circ r)^{-1} = r^{-1} \circ s^{-1}$ e $(r^{-1})^{-1} = r$
- \bullet $r \subseteq s \implies r^{-1} \subseteq s^{-1}$.

Definição

Seja r uma relação de A em B e s uma relação de B em C. A relação composta de s com r, denotado por $s \circ r$, é a relação de A em C definida por

$$s \circ r = \{(x, z) \in A \times C \mid \text{ existe um } y \in B \text{ com } (x r y) \land (y s z)\}.$$

- Para uma relação r de A em B: $r \circ I_A = r$ e $I_B \circ r = r$.
- Para as relações r de A em B, s de B em C e t de C em D:

$$(t \circ s) \circ r = t \circ (s \circ r)$$

- $(s \circ r)^{-1} = r^{-1} \circ s^{-1}$ e $(r^{-1})^{-1} = r$
- $r \subseteq s \implies r^{-1} \subseteq s^{-1}$.
- $r \subseteq r'$ e $s \subseteq s' \implies s \circ r \subseteq s' \circ r'$.

Uma relação binária r em A diz-se

• reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.

Uma relação binária r em A diz-se

- reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.
- simétrica quando, para todos os $x, y \in A$,

$$xry \implies yrx.$$

Portanto, r é simétrica se e só se

Uma relação binária r em A diz-se

- reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.
- simétrica quando, para todos os $x, y \in A$,

$$xry \implies yrx.$$

Portanto, r é simétrica se e só se $r \subseteq r^{-1}$. (E então $r = r^{-1}$)

Uma relação binária r em A diz-se

- reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.
- simétrica quando, para todos os $x, y \in A$,

$$xry \implies yrx.$$

Portanto, r é simétrica se e só se $r \subseteq r^{-1}$. (E então $r = r^{-1}$)

• anti-simétrica quando, para todos os $x, y \in A$,

$$((x r y) \land (y r x)) \implies x = y.$$

Portanto, r é anti-simétrica se e só se

Uma relação binária r em A diz-se

- reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.
- simétrica quando, para todos os $x, y \in A$,

$$xry \implies yrx.$$

Portanto, r é simétrica se e só se $r \subseteq r^{-1}$. (E então $r = r^{-1}$)

• anti-simétrica quando, para todos os $x, y \in A$,

$$((x r y) \land (y r x)) \implies x = y.$$

Portanto, r é anti-simétrica se e só se $r \cap r^{-1} \subseteq I_A$.

Uma relação binária r em A diz-se

- reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.
- simétrica quando, para todos os $x, y \in A$,

$$xry \implies yrx.$$

Portanto, r é simétrica se e só se $r \subseteq r^{-1}$. (E então $r = r^{-1}$)

• anti-simétrica quando, para todos os $x, y \in A$,

$$((x r y) \land (y r x)) \implies x = y.$$

Portanto, r é anti-simétrica se e só se $r \cap r^{-1} \subseteq I_A$.

• transitiva quando, para todos os $x, y, z \in A$,

$$((x r y) \land (y r z)) \implies (x r z).$$

Portanto, r é transitiva se e só se

Uma relação binária r em A diz-se

- reflexiva quando, para todo o $x \in A$, x r x. Portanto r é reflexiva se e só se $I_A \subseteq r$.
- simétrica quando, para todos os $x, y \in A$,

$$xry \implies yrx.$$

Portanto, r é simétrica se e só se $r \subseteq r^{-1}$. (E então $r = r^{-1}$)

• anti-simétrica quando, para todos os $x, y \in A$,

$$((x r y) \land (y r x)) \implies x = y.$$

Portanto, r é anti-simétrica se e só se $r \cap r^{-1} \subseteq I_A$.

• transitiva quando, para todos os $x, y, z \in A$,

$$((x r y) \land (y r z)) \implies (x r z).$$

Portanto, r é transitiva se e só se $r \circ r \subseteq r$.

Relações de ordem parcial

Definição

Uma relação binária r em A diz-se uma relação de ordem parcial quando é reflexiva, transitiva, e anti-simétrica.

O par (A, r) onde A é um conjunto e r é uma relação de ordem parcial em A diz-se conjunto parcialmente ordenado.

Relações de ordem parcial

Definição

Uma relação binária r em A diz-se uma relação de ordem parcial quando é reflexiva, transitiva, e anti-simétrica.

O par (A, r) onde A é um conjunto e r é uma relação de ordem parcial em A diz-se conjunto parcialmente ordenado.

Definição

Uma relação de ordem parcial r em A diz-se relação de ordem total quando, para todos os $x, y \in A$,

$$(x r y) \lor (y r x).$$

O par (A, r) onde r é uma relação de ordem total em A diz-se conjunto totalmente ordenado.

Relações de equivalência

Definição

Uma relação binária R num conjunto A diz-se uma relação de equivalência quando R é reflexiva, transitiva e simétrica.

Relações de equivalência

Definição

Uma relação binária R num conjunto A diz-se uma relação de equivalência quando R é reflexiva, transitiva e simétrica.

Exemplos

ullet Para cada conjunto A, I_A é uma relação de equivalência.

Relações de equivalência

Definição

Uma relação binária R num conjunto A diz-se uma relação de equivalência quando R é reflexiva, transitiva e simétrica.

Exemplos

- Para cada conjunto A, I_A é uma relação de equivalência.
- ullet Em $A=\mathbb{Z}$, a relação R definida por

$$x R y$$
 quando $|x| = |y|$

é uma relação de equivalência.

Relações de equivalência

Definição

Uma relação binária R num conjunto A diz-se uma relação de equivalência quando R é reflexiva, transitiva e simétrica.

Exemplos

- Para cada conjunto A, I_A é uma relação de equivalência.
- ullet Em $A=\mathbb{Z}$, a relação R definida por

$$x R y$$
 quando $|x| = |y|$

é uma relação de equivalência.

Definição

Sejam R uma relação de equivalência em A e $x \in A$. A classe de equivalência de x é o conjunto

$$[x]_R = \{ y \in A \mid x R y \}.$$

Teorema

Seja R uma relação de equivalência em A.

• Para cada $x \in A$: $x \in [x]$. Em particular, $[x] \neq \emptyset$.

Teorema

Seja R uma relação de equivalência em A.

- Para cada $x \in A$: $x \in [x]$. Em particular, $[x] \neq \emptyset$.
- Logo: $A = \bigcup_{x \in A} [x]$.

Teorema

Seja R uma relação de equivalência em A.

- Para cada $x \in A$: $x \in [x]$. Em particular, $[x] \neq \emptyset$.
- Logo: $A = \bigcup_{x \in A} [x]$.
- Para todos os $x, y \in A$: $[x] = [y] \iff x R y$.

Teorema

Seja R uma relação de equivalência em A.

- Para cada $x \in A$: $x \in [x]$. Em particular, $[x] \neq \emptyset$.
- Logo: $A = \bigcup_{x \in A} [x]$.
- Para todos os $x, y \in A$: $[x] = [y] \iff x R y$.
- Para todos os $x, y \in A$: $[x] \neq [y] \implies [x] \cap [y] = \emptyset$.

Teorema

Seja R uma relação de equivalência em A.

- Para cada $x \in A$: $x \in [x]$. Em particular, $[x] \neq \emptyset$.
- Logo: $A = \bigcup_{x \in A} [x]$.
- Para todos os $x, y \in A$: $[x] = [y] \iff x R y$.
- Para todos os $x, y \in A$: $[x] \neq [y] \implies [x] \cap [y] = \emptyset$.

Definição

Seja R uma relação de equivalência em A. O conjunto quociente de R é o conjunto

$$A/R = \{ [x] \mid x \in A \}$$

das classes de equivalência.

Definição

Sejam A um conjunto e $\mathcal{A} \subseteq \mathit{PA}$. \mathcal{A} diz-se partição de A quando

Definição

Sejam A um conjunto e $\mathcal{A}\subseteq \mathit{PA}$. \mathcal{A} diz-se partição de A quando

• para todo o $S \in \mathcal{A}$: $S \neq \emptyset$;

Definição

Sejam A um conjunto e $\mathcal{A}\subseteq PA$. \mathcal{A} diz-se partição de A quando

- para todo o $S \in \mathcal{A}$: $S \neq \varnothing$;
- A= $\bigcup_{S\in\mathcal{A}} S$; e

Definição

Sejam A um conjunto e $\mathcal{A}\subseteq PA$. \mathcal{A} diz-se partição de A quando

- para todo o $S \in \mathcal{A}$: $S \neq \emptyset$;
- $A = \bigcup_{S \in \mathcal{A}} S$; e
- ullet para todos os $S_1, S_2 \in \mathcal{A}$: $S_1
 eq S_2 \implies S_1 \cap S_2 = \emptyset$.

Partições vs. Relações de equivalência

Teorema

• Seja R uma relação de equivalência em A, então

$$\{[x] \mid x \in A\}$$

é uma partição de A.

Partições vs. Relações de equivalência

Teorema

• Seja R uma relação de equivalência em A, então

$$\{[x] \mid x \in A\}$$

é uma partição de A.

• Seja $\mathcal{A}\subseteq \mathit{PA}$ uma partição em $\mathit{A}.$ Então,

$$x R y$$
 quando existe $S \in A$ com $x, y \in S$.

é uma relação de equivalência em A.

Partições vs. Relações de equivalência

Teorema

• Seja R uma relação de equivalência em A, então

$$\{[x] \mid x \in A\}$$

é uma partição de A.

• Seja $\mathcal{A}\subseteq \mathit{PA}$ uma partição em A . Então,

$$x R y$$
 quando existe $S \in A$ com $x, y \in S$.

- é uma relação de equivalência em A.
- Os dois processos são inversos entre si.

Funções

Definição

Uma relação f de A em B diz-se função quando, para todo o $x \in A$, existe um único $y \in B$ com x f y.

Escrevemos y = f(x) em lugar de x f y, e

$$f: A \longrightarrow B, x \longmapsto f(x)$$

para indicar que f é uma função de A em B. Aqui A diz-se conjunto de partida e B conjunto de chegada.

Funções

Definição

Uma relação f de A em B diz-se função quando, para todo o $x \in A$, existe um único $y \in B$ com x f y.

Escrevemos y = f(x) em lugar de x f y, e

$$f: A \longrightarrow B, x \longmapsto f(x)$$

para indicar que f é uma função de A em B. Aqui A diz-se conjunto de partida e B conjunto de chegada.

Exemplo

 A relação identidade I_A em A é uma função de A em A, denotado por

$$id_A: A \longrightarrow A, x \longmapsto x.$$

Funções

Definição

Uma relação f de A em B diz-se função quando, para todo o $x \in A$, existe um único $y \in B$ com x f y.

Escrevemos y = f(x) em lugar de x f y, e

$$f: A \longrightarrow B, x \longmapsto f(x)$$

para indicar que f é uma função de A em B. Aqui A diz-se conjunto de partida e B conjunto de chegada.

Exemplo

 A relação identidade I_A em A é uma função de A em A, denotado por

$$id_A: A \longrightarrow A, x \longmapsto x.$$

• Para cada relação de equivalência R em A, temos a função

$$p: A \longrightarrow A/R, x \longmapsto [x].$$

Definição

As funções $f,g:A\to B$ são iguais se e só se f(x)=g(x), para todo o $x\in A$.

Definição

As funções $f,g:A\to B$ são iguais se e só se f(x)=g(x), para todo o $x\in A$.

Definição

As funções $f, g: A \to B$ são iguais se e só se f(x) = g(x), para todo o $x \in A$.

Exemplos

As funções

$$cos: \mathbb{R} \longrightarrow \mathbb{R}$$
 e $cos: \mathbb{R} \longrightarrow [-1, 1]$

não são iguais porque os conjuntos de chegada são diferentes.

Definição

As funções $f, g: A \to B$ são iguais se e só se f(x) = g(x), para todo o $x \in A$.

Exemplos

As funções

$$cos: \mathbb{R} \longrightarrow \mathbb{R}$$
 e $cos: \mathbb{R} \longrightarrow [-1, 1]$

não são iguais porque os conjuntos de chegada são diferentes.

As funções

$$f: \mathbb{Q} \longrightarrow \mathbb{R}, \qquad g: \mathbb{N} \longrightarrow \mathbb{R}$$

 $x \longmapsto x \qquad x \longmapsto x$

não são iguais porque os conjuntos de partida são diferentes.

Definição

As funções $f, g: A \to B$ são iguais se e só se f(x) = g(x), para todo o $x \in A$.

Exemplos

As funções

$$f: \mathbb{R} \longrightarrow \mathbb{R},$$
 $g: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto x^3 + x^2 - x - 1$ $x \longmapsto (x^2 - 1)(x + 1)$

são iguais.

Definição

Seja $f \colon A \to B$ uma função. Então, f diz-se

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

• sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- ullet bijetiva quando f é injetiva e sobrejetiva.

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

Exemplos

ullet A função $f\colon \mathbb{N} \to \mathbb{N}, \, n \mapsto 2n$ é

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

Exemplos

• A função $f \colon \mathbb{N} \to \mathbb{N}, \ n \mapsto 2n$ é injetiva mas não é sobrejetiva.

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

- A função $f: \mathbb{N} \to \mathbb{N}, \ n \mapsto 2n$ é injetiva mas não é sobrejetiva.
- A função $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ é

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

- A função $f: \mathbb{N} \to \mathbb{N}, n \mapsto 2n$ é injetiva mas não é sobrejetiva.
- A função $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ é bijetiva.

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

- A função $f: \mathbb{N} \to \mathbb{N}, n \mapsto 2n$ é injetiva mas não é sobrejetiva.
- A função $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ é bijetiva.
- ullet A função $f\colon \mathbb{Z} o \mathbb{N}, \ z \mapsto egin{cases} 2z & ext{se } z \geq 0, \ 2z-1 & ext{se } z < 0 \end{cases}$ é

Definição

Seja $f: A \rightarrow B$ uma função. Então, f diz-se

• injetiva quando, para todos os $x, y \in A$,

$$f(x) = f(y) \implies x = y.$$

- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

- A função $f: \mathbb{N} \to \mathbb{N}, n \mapsto 2n$ é injetiva mas não é sobrejetiva.
- A função $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ é bijetiva.
- A função $f \colon \mathbb{Z} \to \mathbb{N}, \ z \mapsto \begin{cases} 2z & \text{se } z \geq 0, \\ 2z 1 & \text{se } z < 0 \end{cases}$ é bijetiva.

Mais um Exemplo

Exemplo

A função g (gosta de) descrita por

é a base de muitas telenovelas a . A função g

^aExemplo adaptado de F. William Lawvere e Stephen H. Schanuel. *Conceptual mathematics. A first introduction to categories.* 2^a ed. Cambridge University Press, 2009. xii + 390.

Mais um Exemplo

Exemplo

A função g (gosta de) descrita por

é a base de muitas telenovelas^a. A função g nem é injetiva nem sobrejetiva; se g fosse injetiva, a telenovela seria bem diferente.

^aExemplo adaptado de F. William Lawvere e Stephen H. Schanuel. *Conceptual mathematics. A first introduction to categories.* 2^a ed. Cambridge University Press, 2009. xii + 390.

Funções particulares

Sequências

Para cada número natural, consideramos $[n] = \{1, \dots, n\}$. Uma sequência (finita) de um conjunto A é uma função do tipo

$$a: [n] \longrightarrow A.$$

Escrevemos a_k em lugar de a(k) e denotamos a sequência a por (a_1, \ldots, a_n) .

Funções particulares

Sequências

Para cada número natural, consideramos $[n] = \{1, ..., n\}$. Uma sequência (finita) de um conjunto A é uma função do tipo

$$a: [n] \longrightarrow A.$$

Escrevemos a_k em lugar de a(k) e denotamos a sequência a por (a_1, \ldots, a_n) .

Sucessões

Uma sucessão de elementos de um conjunto \boldsymbol{A} é uma função do tipo

$$a\colon \mathbb{N} \longrightarrow A$$
.

Escrevemos a_k em lugar de a(k) e denotamos a sucessão a por $(a_n)_{n\in\mathbb{N}}$.

Recordamos do cálculo com relações

Sejam $f: A \to B$ uma função, $X \subseteq A$ e $Y \subseteq B$.

Recordamos do cálculo com relações

Sejam $f: A \rightarrow B$ uma função, $X \subseteq A$ e $Y \subseteq B$.

• imagem de X por f:

$$f(X) = \{ y \in B \mid \text{existe } x \in X \text{ com } f(x) = y \}$$
$$= \{ f(x) \mid x \in X \}.$$

Recordamos do cálculo com relações

Sejam $f: A \to B$ uma função, $X \subseteq A$ e $Y \subseteq B$.

• imagem de X por f:

$$f(X) = \{ y \in B \mid \text{existe } x \in X \text{ com } f(x) = y \}$$
$$= \{ f(x) \mid x \in X \}.$$

• imagem inversa (ou recíproca) de Y por f:

$$f^{-1}(Y) = \{x \in A \mid \text{existe } y \in Y \text{ com } f(x) = y\}$$
$$= \{x \in A \mid f(x) \in Y\}.$$

Recordamos do cálculo com relações

Sejam $f: A \rightarrow B$ uma função, $X \subseteq A$ e $Y \subseteq B$.

• imagem de X por f:

$$f(X) = \{ y \in B \mid \text{ existe } x \in X \text{ com } f(x) = y \}$$
$$= \{ f(x) \mid x \in X \}.$$

• imagem inversa (ou recíproca) de *Y* por *f* :

$$f^{-1}(Y) = \{x \in A \mid \text{existe } y \in Y \text{ com } f(x) = y\}$$
$$= \{x \in A \mid f(x) \in Y\}.$$

• Escrevemos $f^{-1}(y)$ em lugar de $f^{-1}(\{y\})$.

Recordamos do cálculo com relações

Sejam $f: A \rightarrow B$ uma função, $X \subseteq A$ e $Y \subseteq B$.

• imagem de X por f:

$$f(X) = \{ y \in B \mid \text{existe } x \in X \text{ com } f(x) = y \}$$
$$= \{ f(x) \mid x \in X \}.$$

• imagem inversa (ou recíproca) de Y por f:

$$f^{-1}(Y) = \{x \in A \mid \text{existe } y \in Y \text{ com } f(x) = y\}$$
$$= \{x \in A \mid f(x) \in Y\}.$$

• Escrevemos $f^{-1}(y)$ em lugar de $f^{-1}(\{y\})$.

Nota

 $f: A \rightarrow B$ é sobrejetiva se e somente se f(A) = B.

A composição de funções

Teorema

Sejam $f:A\to B$ e $g:B\to C$ funções. A relação $g\circ f$ de A em C é uma função $g\circ f:A\to C$ dada por

$$g \circ f(x) = g(f(x)),$$

para todo o $x \in X$.

A composição de funções

Teorema

Sejam $f:A\to B$ e $g:B\to C$ funções. A relação $g\circ f$ de A em C é uma função $g\circ f:A\to C$ dada por

$$g \circ f(x) = g(f(x)),$$

para todo o $x \in X$.

Recordamos

• A composição de funções (e relações) é associativa.

A composição de funções

Teorema

Sejam $f:A\to B$ e $g:B\to C$ funções. A relação $g\circ f$ de A em C é uma função $g\circ f:A\to C$ dada por

$$g \circ f(x) = g(f(x)),$$

para todo o $x \in X$.

Recordamos

- A composição de funções (e relações) é associativa.
- As "funções identidades são identidades":

$$id_B \circ f = f = f \circ id_A$$
.

Exemplo

Por exemplo, na época de exames vamos (possivelmente) definir a função

Sala:
$$\mathbb{N} \longrightarrow \{23.1.5, 23.1.6, 23.1.7\}$$

$$n \longmapsto \begin{cases} 23.1.5 & \text{para } n \leq 79500, \\ 23.1.6 & \text{para } 79500 < n \leq 80000, \\ 23.1.7 & \text{para } n > 80000; \end{cases}$$

e a distribuição de alunos por sala é dada pela função composta da função Sala com a função

 N^{o} Mec: {alunos} $\longrightarrow \mathbb{N}$.

Mais um exemplo

Exemplo

A função

$$h: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \cos(2x^2 - 3)$$

é a função composta $h=g\circ f$ das funções $g=\cos$ e

$$f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto 2x^2 - 3.$$

Mais um exemplo

Exemplo

A função

$$h: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \cos(2x^2 - 3)$$

é a função composta $h=g\circ f$ das funções $g=\cos$ e

$$f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto 2x^2 - 3.$$

Restrições de funções

Para uma função $f:A \rightarrow B$ e $X \subseteq A$, a função

$$f|_X \colon X \to B, x \mapsto f(x)$$

diz-se restrição de f a X (e f extensão de $f|_X$).

Mais um exemplo

Exemplo

A função

$$h: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \cos(2x^2 - 3)$$

é a função composta $h=g\circ f$ das funções $g=\cos$ e

$$f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto 2x^2 - 3.$$

Restrições de funções

Para uma função $f:A\to B$ e $X\subseteq A$, a função

$$f|_X \colon X \to B, x \mapsto f(x)$$

diz-se restrição de f a X (e f extensão de $f|_X$).

Com $i: X \to A, x \mapsto x$ a função de inclusão, $f|_X = f \circ i$.

Nota

Dada funções $f_1: A_1 \to A_2$, $f_2: A_2 \to A_3$, ..., $f_p: A_p \to A_{p+1}$ ($p \in \mathbb{N}$), considera-se a função composta

$$f_p \circ \cdots \circ f_1 \colon A_1 \longrightarrow A_{p+1}$$

 $x \longmapsto f_p (\dots f_1(x)).$

Nota

Dada funções $f_1: A_1 \to A_2$, $f_2: A_2 \to A_3$, ..., $f_p: A_p \to A_{p+1}$ $(p \in \mathbb{N})$, considera-se a função composta

$$f_p \circ \cdots \circ f_1 \colon A_1 \longrightarrow A_{p+1}$$

 $x \longmapsto f_p(\ldots f_1(x)).$

Exemplo

Consideramos a função

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

Nota

Dada funções $f_1: A_1 \to A_2$, $f_2: A_2 \to A_3$, ..., $f_p: A_p \to A_{p+1}$ $(p \in \mathbb{N})$, considera-se a função composta

$$f_p \circ \cdots \circ f_1 \colon A_1 \longrightarrow A_{p+1}$$

 $x \longmapsto f_p (\dots f_1(x)).$

Exemplo

Consideramos a função

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto \begin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ \frac{n}{2} & \text{caso contrário.} \end{cases}$$

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \dots, n_{k+1} = f(n_k) = f^k(n_1).$$

Exemplo

$$f \colon \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \ldots, n_{k+1} = f(n_k) = f^k(n_1).$$

Exemplo

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \ldots, n_{k+1} = f(n_k) = f^k(n_1).$$

•
$$n_1 = 1$$
, $n_2 = f(1) = 4$, $n_3 = f(4) = 2$, $n_4 = f(2) = 1$.

Exemplo

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \ldots, n_{k+1} = f(n_k) = f^k(n_1).$$

- $n_1 = 1$, $n_2 = f(1) = 4$, $n_3 = f(4) = 2$, $n_4 = f(2) = 1$.
- $n_1 = 2$, $n_2 = f(2) = 1$.

Exemplo

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \ldots, n_{k+1} = f(n_k) = f^k(n_1).$$

- $n_1 = 1$, $n_2 = f(1) = 4$, $n_3 = f(4) = 2$, $n_4 = f(2) = 1$.
- $n_1 = 2$, $n_2 = f(2) = 1$.
- $n_1 = 3$, $n_2 = f(3) = 5$, $n_3 = f(5) = 16$, $n_4 = f(16) = 8$, $n_5 = f(8) = 4$, $n_6 = f(4) = 2$, $n_7 = f(2) = 1$.

Exemplo

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \dots, n_{k+1} = f(n_k) = f^k(n_1).$$

- $n_1 = 1$, $n_2 = f(1) = 4$, $n_3 = f(4) = 2$, $n_4 = f(2) = 1$.
- $n_1 = 2$, $n_2 = f(2) = 1$.
- $n_1 = 3$, $n_2 = f(3) = 5$, $n_3 = f(5) = 16$, $n_4 = f(16) = 8$, $n_5 = f(8) = 4$, $n_6 = f(4) = 2$, $n_7 = f(2) = 1$.
- $n_1 = 4, \ldots$

Exemplo

$$f: \mathbb{N} \longrightarrow \mathbb{N}, \ n \longmapsto egin{cases} 3n+1 & \text{se } n \text{ e impar,} \\ rac{n}{2} & \text{caso contrário.} \end{cases}$$

Para cada $n_1 \in \mathbb{N}$, considera-se a sucessão definida por

$$n_2 = f(n_1), \quad n_3 = f(n_2) = f \circ f(n_1), \dots, n_{k+1} = f(n_k) = f^k(n_1).$$

- $n_1 = 1$, $n_2 = f(1) = 4$, $n_3 = f(4) = 2$, $n_4 = f(2) = 1$.
- $n_1 = 2$, $n_2 = f(2) = 1$.
- $n_1 = 3$, $n_2 = f(3) = 5$, $n_3 = f(5) = 16$, $n_4 = f(16) = 8$, $n_5 = f(8) = 4$, $n_6 = f(4) = 2$, $n_7 = f(2) = 1$.
- $n_1 = 4, \ldots$

Conjetura de Collatz: Para cada $n \ge 1$, existe um $k \ge 1$ tal que $f^k(n) = 1$.

Definição

Uma função $f: A \to B$ diz-se invertível quando existe uma função $g: B \to A$ com $g \circ f = \mathrm{id}_A$ e $f \circ g = \mathrm{id}_B$.

Definição

Uma função $f \colon A \to B$ diz-se invertível quando existe uma função $g \colon B \to A$ com $g \circ f = \mathrm{id}_A$ e $f \circ g = \mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função $f^{-1} \colon B \to A$ diz-se função inversa de f.

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função f^{-1} : $B \to A$ diz-se função inversa de f.

Exemplo

A função "traduzir de português para o alemão"

$$\{\text{zero, um, dois, }\dots\} \xrightarrow{t_{p \to a}} \{\text{null, eins, zwei, }\dots\};$$

tem a função inversa

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função f^{-1} : $B \to A$ diz-se função inversa de f.

Exemplo

A função "traduzir de português para o alemão"

$$\{\text{zero, um, dois, }\dots\} \xrightarrow{t_{p \to a}} \{\text{null, eins, zwei, }\dots\};$$

tem a função inversa "traduzir de alemão para o português"

$$\{\text{null, eins, zwei, }\ldots\} \xrightarrow{t_{a \to p}} \{\text{zero, um, dois, }\ldots\}.$$

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função $f^{-1} \colon B \to A$ diz-se função inversa de f.

Teorema

 $f:A \rightarrow B$ é invertível se e somente se f é injetiva e sobrejetiva.

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função f^{-1} : $B \to A$ diz-se função inversa de f.

Teorema

 $f:A \to B$ é invertível se e somente se f é injetiva e sobrejetiva.

Nota

Se f é bijetiva:

$$f^{-1} \colon B \longrightarrow A, y \longmapsto \text{aquele unico } x \in A \text{ com } f(x) = y.$$

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função f^{-1} : $B \to A$ diz-se função inversa de f.

Teorema

 $f:A \to B$ é invertível se e somente se f é injetiva e sobrejetiva.

Nota

• A função identidade é invertível e $id_A^{-1} = id_A$.

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função f^{-1} : $B \to A$ diz-se função inversa de f.

Teorema

 $f: A \rightarrow B$ é invertível se e somente se f é injetiva e sobrejetiva.

Nota

- A função identidade é invertível e $id_A^{-1} = id_A$.
- Se $f: A \to B$ e $g: B \to C$ são invertíveis, então $g \circ f$ é invertível e $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Definição

Uma função $f:A\to B$ diz-se invertível quando existe uma função $g:B\to A$ com $g\circ f=\mathrm{id}_A$ e $f\circ g=\mathrm{id}_B$.

Notação: Se existe, uma tal função g é única e escrevemos f^{-1} em lugar de g. A função f^{-1} : $B \to A$ diz-se função inversa de f.

Teorema

 $f:A \to B$ é invertível se e somente se f é injetiva e sobrejetiva.

Nota

- A função identidade é invertível e $id_A^{-1} = id_A$.
- Se $f: A \to B$ e $g: B \to C$ são invertíveis, então $g \circ f$ é invertível e $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- Se $f: A \to B$ é invertível, então $f^{-1}: B \to A$ é invertível e $(f^{-1})^{-1} = f$.

Exemplos

• A inversa da função

$$f: [0,1] \longrightarrow [0,2], x \longmapsto 2x$$

Exemplos

• A inversa da função

$$f: [0,1] \longrightarrow [0,2], x \longmapsto 2x$$

$$g: [0,2] \longrightarrow [0,1], x \longmapsto \frac{x}{2}.$$

Exemplos

• A inversa da função

$$f: [0,1] \longrightarrow [0,2], x \longmapsto 2x$$

é a função

$$g: [0,2] \longrightarrow [0,1], x \longmapsto \frac{x}{2}.$$

A inversa da função

$$\exp\colon \mathbb{R} \longrightarrow \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$$

Exemplos

A inversa da função

$$f: [0,1] \longrightarrow [0,2], x \longmapsto 2x$$

é a função

$$g: [0,2] \longrightarrow [0,1], x \longmapsto \frac{x}{2}.$$

• A inversa da função

$$\exp\colon \mathbb{R} \longrightarrow \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$$

$$\ln \colon \mathbb{R}^+ \longrightarrow \mathbb{R}.$$

A relação de equipotência

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

Nota

• A "relação de equipotência" é reflexiva, simétrica e transitiva.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes. Aqui |A| denota a cardinalidade^a (= "número de elementos") de A.

^aEmbora não explicamos o significado de "cardinalidade" em geral.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes. Aqui |A| denota a cardinalidade (= "número de elementos") de A.
- Um conjunto A diz-se finito quando $|A|=|\{1,\ldots,n\}|$, para algum $n\in\mathbb{N}$.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes. Aqui |A| denota a cardinalidade (= "número de elementos") de A.
- Um conjunto A diz-se finito quando $|A| = |\{1, ..., n\}|$, para algum $n \in \mathbb{N}$. Neste caso escrevemos |A| = n.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes. Aqui |A| denota a cardinalidade (= "número de elementos") de A.
- Um conjunto A diz-se finito quando $|A| = |\{1, ..., n\}|$, para algum $n \in \mathbb{N}$. Neste caso escrevemos |A| = n.
- Um conjunto diz-se infinito quando não é finito.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes. Aqui |A| denota a cardinalidade (= "número de elementos") de A.
- Um conjunto A diz-se finito quando $|A| = |\{1, ..., n\}|$, para algum $n \in \mathbb{N}$. Neste caso escrevemos |A| = n.
- Um conjunto diz-se infinito quando não é finito.
- Um conjunto diz-se numerável quando é finito ou equipotente ao conjunto IN.

Definição

Os conjuntos A e B dizem-se equipotentes quando existe uma função bijetiva $A \rightarrow B$.

Nota

- A "relação de equipotência" é reflexiva, simétrica e transitiva.
- Escrevemos também |A| = |B| para indicar que A e B são equipotentes. Aqui |A| denota a cardinalidade (= "número de elementos") de A.
- Um conjunto A diz-se finito quando $|A| = |\{1, ..., n\}|$, para algum $n \in \mathbb{N}$. Neste caso escrevemos |A| = n.
- Um conjunto diz-se infinito quando não é finito.
- Um conjunto diz-se numerável quando é finito ou equipotente ao conjunto IN.

Notação: $|\mathbb{N}| = \aleph_0$ " \aleph – Aleph" (alfabeto hebraico)

Exemplos

 $\bullet \ |\{1,2,3\}| \neq |\{1,2,3,4\}|.$

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $\bullet \ |\mathbb{N}| = |\{1,2,3,\dots\}| = |\{2,3,4,\dots\}|.$

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $\bullet \ |\mathbb{N}| = |\{1,2,3,\dots\}| = |\{2,3,4,\dots\}|.$
- $\bullet \ |\mathbb{N}| = |\{0,2,4,6,\dots\}| = |\{1,3,5,7,\dots\}|.$

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $\bullet \ |\mathbb{N}| = |\{1,2,3,\dots\}| = |\{2,3,4,\dots\}|.$
- $\bullet \ |\mathbb{N}| = |\{0,2,4,6,\dots\}| = |\{1,3,5,7,\dots\}|.$
- $|\mathbb{Z}| = |\mathbb{N}|$.

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $\bullet \ |\mathbb{N}| = |\{1,2,3,\dots\}| = |\{2,3,4,\dots\}|.$
- $\bullet \ |{\rm I\!N}| = |\{0,2,4,6,\dots\}| = |\{1,3,5,7,\dots\}|.$
- $|\mathbb{Z}| = |\mathbb{N}|$.
- |[0,1]| = |[a,b]|, para a < b.

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $\bullet \ |\mathbb{N}| = |\{1,2,3,\dots\}| = |\{2,3,4,\dots\}|.$
- $\bullet \ |\mathbb{N}| = |\{0,2,4,6,\dots\}| = |\{1,3,5,7,\dots\}|.$
- \bullet $|\mathbb{Z}| = |\mathbb{N}|$.
- |[0,1]| = |[a,b]|, para a < b.
- $|\mathbb{R}| = |] \frac{\pi}{2}, \frac{\pi}{2}[|$ e $|\mathbb{R}| = |\{x \in \mathbb{R} \mid x > 0\}|.$

Exemplos

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $|\mathbb{N}| = |\{1, 2, 3, \dots\}| = |\{2, 3, 4, \dots\}|.$
- $|\mathbb{N}| = |\{0, 2, 4, 6, \dots\}| = |\{1, 3, 5, 7, \dots\}|.$
- $|\mathbb{Z}| = |\mathbb{N}|$.
- |[0,1]| = |[a,b]|, para a < b.
- $|\mathbb{R}| = |] \frac{\pi}{2}, \frac{\pi}{2}[|$ e $|\mathbb{R}| = |\{x \in \mathbb{R} \mid x > 0\}|.$

Teorema

Para cada conjunto infinito X existe uma função injectiva $\mathbb{N} \xrightarrow{f} X$.

Exemplos

- $|\{1,2,3\}| \neq |\{1,2,3,4\}|$.
- $|\mathbb{N}| = |\{1, 2, 3, \dots\}| = |\{2, 3, 4, \dots\}|.$
- $|\mathbb{N}| = |\{0, 2, 4, 6, \dots\}| = |\{1, 3, 5, 7, \dots\}|.$
- $|\mathbb{Z}| = |\mathbb{N}|$.
- |[0,1]| = |[a,b]|, para a < b.
- $|\mathbb{R}| = |] \frac{\pi}{2}, \frac{\pi}{2}[|$ e $|\mathbb{R}| = |\{x \in \mathbb{R} \mid x > 0\}|.$

Teorema

Para cada conjunto infinito X existe uma função injectiva $\mathbb{N} \xrightarrow{f} X$.

Teorema (Cantor - Dedekind)

Um conjunto é infinito se e só se é equipotente a um subconjunto próprio.

Exemplo

Exemplo

Exemplo

```
Soma 0 (0,0) (0,1) (0,2) ... (1,0) (1,1) (1,2) ... (2,0) (2,1) (2,2) ...
```

Exemplo

Soma
$$(0,0)$$
 $(0,1)$ $(0,2)$... $(1,0)$ $(1,1)$ $(1,2)$... $(2,0)$ $(2,1)$ $(2,2)$...

Exemplo

Exemplo

Temos $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Definimos

$$f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

onde (com p = n + m)

$$f(n, m) = (número de pares com soma < p) + n$$

Exemplo

Temos $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Definimos

$$f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

onde (com p = n + m)

$$f(n, m) = (\text{número de pares com soma} < p) + n$$

= $(1 + 2 + \dots + p) + n$

Exemplo

Temos $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Definimos

$$f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

onde (com p = n + m)

$$f(n,m) = (n \text{ úmero de pares com soma} < p) + n$$

= $(1 + 2 + \dots + p) + n$
= $\frac{(n+m)(n+m+1)}{2} + n$.

Definição

Sejam A e B conjuntos. Diz-se que a cardinalidade de A não é superior à cardinalidade de B quando existe uma função injetiva $f: A \rightarrow B$.

Notação: $|A| \leq |B|$.

Definição

Sejam A e B conjuntos. Diz-se que a cardinalidade de A não é superior à cardinalidade de B quando existe uma função injetiva $f:A\to B$.

Notação: $|A| \leq |B|$.

Diz-se que a cardinalidade de A é menor que a cardinalidade de B quando $|A| \leq |B|$ mas A e B não são equipotentes.

Notação: |A| < |B|.

Definição

Sejam A e B conjuntos. Diz-se que a cardinalidade de A não é superior à cardinalidade de B quando existe uma função injetiva $f: A \rightarrow B$.

Notação: $|A| \leq |B|$.

Diz-se que a cardinalidade de A é menor que a cardinalidade de B quando $|A| \leq |B|$ mas A e B não são equipotentes.

Notação: |A| < |B|.

Nota

• $|A| \le |A|$.

Definição

Sejam A e B conjuntos. Diz-se que a cardinalidade de A não é superior à cardinalidade de B quando existe uma função injetiva $f: A \rightarrow B$.

Notação: $|A| \leq |B|$.

Diz-se que a cardinalidade de A é menor que a cardinalidade de B quando $|A| \leq |B|$ mas A e B não são equipotentes.

Notação: |A| < |B|.

- $|A| \leq |A|$.
- Se $|A| \leq |B|$ e $|B| \leq |C|$, então $|A| \leq |C|$.

Definição

Sejam A e B conjuntos. Diz-se que a cardinalidade de A não é superior à cardinalidade de B quando existe uma função injetiva $f:A\to B$.

Notação: $|A| \leq |B|$.

Diz-se que a cardinalidade de A é menor que a cardinalidade de B quando $|A| \leq |B|$ mas A e B não são equipotentes.

Notação: |A| < |B|.

- $|A| \leq |A|$.
- Se $|A| \leq |B|$ e $|B| \leq |C|$, então $|A| \leq |C|$.
- $|A| \le |B|$ se e só se $A = \emptyset$ ou existe uma função sobrejetiva $g: B \to A$.

Teorema (Schröder – Bernstein)

Sejam A e B conjuntos. Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

^aFeliz Bernstein (1878 – 1956), Ernst Schröder (1841 – 1902)

Teorema (Schröder – Bernstein)

Sejam A e B conjuntos. Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Isto é: se existe uma função injetiva $f:A\to B$ e uma função injetiva $g:B\to A$, então existe uma função bijetiva $h:A\to B$.

^aFeliz Bernstein (1878 – 1956), Ernst Schröder (1841 – 1902)

Teorema (Schröder – Bernstein)

Sejam A e B conjuntos. Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Isto é: se existe uma função injetiva $f:A\to B$ e uma função injetiva $g:B\to A$, então existe uma função bijetiva $h:A\to B$.

^aFeliz Bernstein (1878 – 1956), Ernst Schröder (1841 – 1902)

Exemplos

 $\bullet |\mathbb{N}| = |\mathbb{Q}|.$

Teorema (Schröder – Bernstein)

Sejam A e B conjuntos. Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Isto é: se existe uma função injetiva $f:A\to B$ e uma função injetiva $g:B\to A$, então existe uma função bijetiva $h:A\to B$.

^aFeliz Bernstein (1878 – 1956), Ernst Schröder (1841 – 1902)

Exemplos

 $\bullet \ |\mathbb{N}| = |\mathbb{Q}|. \quad \text{ De facto, } |\mathbb{N}| \leq |\mathbb{Q}| \quad \text{ e } \quad |\mathbb{Q}| \leq |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$

Teorema (Schröder – Bernstein)

Sejam A e B conjuntos. Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Isto é: se existe uma função injetiva f : $A \to B$ e uma função injetiva g : $B \to A$, então existe uma função bijetiva h : $A \to B$.

^aFeliz Bernstein (1878 – 1956), Ernst Schröder (1841 – 1902)

- $\bullet \ |\mathbb{N}| = |\mathbb{Q}|. \quad \text{ De facto, } |\mathbb{N}| \leq |\mathbb{Q}| \quad \text{ e } \quad |\mathbb{Q}| \leq |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$
- $|\mathbb{R}| = |P\mathbb{N}|$.

Um teorema importante

Teorema (Schröder – Bernstein)

Sejam A e B conjuntos. Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Isto é: se existe uma função injetiva $f:A\to B$ e uma função injetiva $g:B\to A$, então existe uma função bijetiva $h:A\to B$.

^aFeliz Bernstein (1878 – 1956), Ernst Schröder (1841 – 1902)

Exemplos

- $\bullet \ |\mathbb{N}| = |\mathbb{Q}|. \quad \text{ De facto, } |\mathbb{N}| \leq |\mathbb{Q}| \quad \text{ e } \quad |\mathbb{Q}| \leq |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$
- ullet $|\mathbb{R}|=|P\mathbb{N}|.$ De facto, as funções

$$f: \mathbb{R} \longrightarrow P\mathbb{Q}, x \longmapsto \{z \in \mathbb{Q} \mid z < x\}$$

e

$$g: 2^{\mathbb{N}} \longrightarrow \mathbb{R}, \ (a_n)_{n \in \mathbb{N}} \longmapsto 0.a_0a_1a_2...$$

são injetivas.

Nota (Recordamos)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} .

Nota (Recordamos)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} .

Nota

Para cada $A\subseteq \mathbb{N}$, A é finito ou $|A|=|\mathbb{N}|$. Portanto, um conjunto X é numerável se e só se $|X|\leq |\mathbb{N}|$.

Nota (Recordamos)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} .

Nota

Para cada $A\subseteq \mathbb{N}$, A é finito ou $|A|=|\mathbb{N}|$. Portanto, um conjunto X é numerável se e só se $|X|\leq |\mathbb{N}|$.

Teorema

Para cada conjunto X, ASASE:

Nota (Recordamos)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} .

Nota

Para cada $A\subseteq \mathbb{N}$, A é finito ou $|A|=|\mathbb{N}|$. Portanto, um conjunto X é numerável se e só se $|X|\leq |\mathbb{N}|$.

Teorema

Para cada conjunto X, ASASE:

(i) X é numerável.

Nota (Recordamos)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} .

Nota

Para cada $A\subseteq \mathbb{N}$, A é finito ou $|A|=|\mathbb{N}|$. Portanto, um conjunto X é numerável se e só se $|X|\leq |\mathbb{N}|$.

Teorema

Para cada conjunto X, ASASE:

- (i) X é numerável.
- (ii) existe uma função injetiva $X \to \mathbb{N}$.

Nota (Recordamos)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} .

Nota

Para cada $A\subseteq \mathbb{N}$, A é finito ou $|A|=|\mathbb{N}|$. Portanto, um conjunto X é numerável se e só se $|X|\leq |\mathbb{N}|$.

Teorema

Para cada conjunto X, ASASE:

- (i) X é numerável.
- (ii) existe uma função injetiva $X \to \mathbb{N}$.
- (iii) existe uma função sobrejetiva $\mathbb{N} \to X$ ou $X = \emptyset$.

Teorema (Cantor)

Para todo o conjunto A, |A| < |PA|.

Georg Cantor (1845 - 1918)

Teorema (Cantor)

Para todo o conjunto A, |A| < |PA|.

Mais concretamente, nenhuma função f : A o PA é sobrejetiva.

Georg Cantor (1845 - 1918)

Teorema (Cantor)

Para todo o conjunto A, |A| < |PA|.

Mais concretamente, nenhuma função f:A o PA é sobrejetiva.

Georg Cantor (1845 - 1918)

Portanto:

$$0<1<2<\dots<|\mathbb{N}|=\aleph_0<|\mathit{P}\mathbb{N}|=|\mathbb{R}|<|\mathit{P}\mathbb{R}|=|\mathit{PP}\mathbb{N}|<\dots$$

Teorema (Cantor)

Para todo o conjunto A, |A| < |PA|.

Mais concretamente, nenhuma função $f:A \to PA$ é sobrejetiva.

Georg Cantor (1845 - 1918)

Portanto:

$$0<1<2<\dots<|\mathbb{N}|=\aleph_0<|\mathit{P}\mathbb{N}|=|\mathbb{R}|<|\mathit{P}\mathbb{R}|=|\mathit{PP}\mathbb{N}|<\dots$$

Também se verifica, para todos os conjuntos A e B:

$$|A| = |B|$$
 ou $|A| < |B|$ ou $|B| < |A|$.

Questão

Existe um conjunto X com $|\mathbb{N}| < |X| < |\mathbb{R}|$?

Questão

Existe um conjunto X com $|\mathbb{N}| < |X| < |\mathbb{R}|$?

A origem da "teoria de conjuntos transfinitos"

Georg Cantor. «Beiträge zur Begründung der transfiniten Mengenlehre». Em: *Mathematische Annalen* **46**.(4) (1895), pp. 481–512.

Georg Cantor. «Beiträge zur Begründung der transfiniten Mengenlehre (zweiter Teil)». Em: *Mathematische Annalen* **49**.(2) (1897), pp. 207–246.

Questão

Existe um conjunto X com $|\mathbb{N}| < |X| < |\mathbb{R}|$?

A formulação da questão

Q questão acima é o problema 1 em:

David Hilbert. «Mathematische Probleme». Em: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1900 (1900), pp. 253–297. Vortrag, gehalten auf dem internationalen

Mathematiker-Kongreß zu Paris 1900.

Questão

Existe um conjunto X com $|\mathbb{N}| < |X| < |\mathbb{R}|$?

O túmulo de Hilbert

"Temos de saber, vamos saber."

Questão

Existe um conjunto X com $|\mathbb{N}| < |X| < |\mathbb{R}|$?

A resposta (parte I):

Kurt Gödel, em 1940:

"Não podemos provar que existe."

Kurt Gödel. The Consistency of the Continuum Hypothesis. Princeton University Press, 1940.

Questão

Existe um conjunto X com $|\mathbb{N}| < |X| < |\mathbb{R}|$?

A resposta (parte II):

Paul Cohen, em 1963:

"Não podemos provar que não existe"

Paul J. Cohen. «The Independence of the Continuum Hypothesis». Em: *Proceedings of the National Academy of Sciences of the United States of America* **50**.(6) (1963), pp. 1143–1148.

Bibliografia complementar

- PAUL R. HALMOS. *Naive set theory*. The University Series in Undergraduate Mathematics. Princeton, N. J.-Toronto-New York-London: van Nostrand Reinhold Company, 1960. vii + 104.
- F. WILLIAM LAWVERE e ROBERT ROSEBRUGH. Sets for Mathematics. Cambridge University Press, 2003. xi + 261.
- TOM LEINSTER. «Rethinking set theory». Em: *The American Mathematical Monthly* **121**.(5) (2014), pp. 403–415.