Ćwiczenia 1

19.03.2025 r.

Rafał Leja 340879

1. Dla każdego z podanych poniżej adresów IP w notacji CIDR określ, czy jest to adres sieci, adres rozgłoszeniowy czy też adres komputera. W każdym przypadku wyznacz odpowiadający mu adres sieci, rozgłoszeniowy i jakiś adres IP innego komputera w tej samej sieci.

•	10.1.2.3/8
	\square Adres sieci: 10.0.0.0
	\square Adres rozgłoszeniowy: 10.255.255.255
	✓ Adres komputera: 10.1.2.3
•	156.17.0.0/16
	☑ Adres sieci: 156.17.0.0
	\square Adres rozgłoszeniowy: 156.17.255.255
	\square Adres komputera: 156.17.0.1
•	99.99.99/27
	□ Adres sieci: 99.99.99.96 (011 0 0000)
	☐ Adres rozgłoszeniowy: 99.99.99.127 (011 1 1111)
	★ Adres komputera: 99.99.99.99 (0110 0011)
•	156.17.64.4/30
	⊠ Adres sieci: 156.17.64.4 (0000 01 00)
	☐ Adres rozgłoszeniowy: 156.17.64.7 (0000 01 11)
	☐ Adres komputera: 156.17.64.5 (0000 01 01)
•	123.123.123.32
	□ Adres sieci: -
	☐ Adres rozgłoszeniowy: -

2. Podziel sieć 10.10.0.0/16 na 5 rozłącznych podsieci, tak aby każdy z adresów IP z sieci 10.10.0.0/16 był w jednej z tych 5 podsieci. Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów? Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób?

```
1. 10.10.0.0/18: 2<sup>14</sup> adresów IP
```

Liczba adresów IP możliwych do użycia przy adresowaniu komputerów zm-

^{2.} 10.10.64.0/18: 2^14 adresów IP

^{3.} 10.10.128.0/19: 2¹³ adresów IP

^{4.} 10.10.160.0/19: 2^13 adresów IP

^{5. 10.10.192.0/19: 2&}lt;sup>13</sup> adresów IP

niejszyła się z

$$2^{16} - 2 = 65534$$

do

$$2^{14} + 2^{14} + 2^{13} + 2^{13} + 2^{13} - 5 \cdot 2 = 57334$$

Minimalny rozmiar podsieci, który można uzyskać w ten sposób to $2^13 = 8192$ adresy IP.

3. Tablica routingu zawiera następujące wpisy (podsieć \rightarrow dokąd wysłać):

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/23 \rightarrow do routera B$
- $10.0.2.0/24 \rightarrow do routera B$
- $10.0.3.0/24 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.0.128/25 \rightarrow do routera B$
- $10.0.1.8/29 \rightarrow do routera B$
- $10.0.1.16/29 \rightarrow do routera B$
- $10.0.1.24/29 \rightarrow do routera B$

Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów.

Rozpiszmy zakresy adresów IP dla podsieci B i C:

B

 $\begin{array}{l} [10.0.0.0, 10.0.1.255] \bigcup [10.0.2.0, 10.0.2.255] \bigcup [10.0.3.0, 10.0.3.255] \bigcup [10.0.0.128, 10.0.0.255] \bigcup \\ [10.0.1.8, 10.0.1.15] \bigcup [10.0.1.16, 10.0.1.23] \bigcup [10.0.1.24, 10.0.1.31] = \\ [10.0.0.0, 10.0.3.255] \Rightarrow 10.0.0.0/22 \end{array}$

• C:

 $[10.0.1.0, 10.0.1.255] \setminus [10.0.1.8, 10.0.1.31]$

Zoptymalizowana tablica:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.3.0/22 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.1.8/29 \rightarrow do routera B$
- $10.0.1.16/28 \rightarrow do routera B$

4. Wykonaj powyższe zadanie dla tablicy:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/24 \rightarrow do routera C$
- $10.3.0.32/27 \rightarrow do routera B$
- $10.3.0.64/27 \rightarrow do routera B$

• $10.3.0.96/27 \rightarrow do routera B$

Rozpiszmy zakresy adresów IP dla podsieci C:

 $\begin{array}{l} [10.3.0.0,10.3.0.255] \setminus [10.3.0.32,10.3.0.63] \setminus [10.3.0.64,10.3.0.95] \setminus [10.3.0.96,10.3.0.127] \\ = [10.3.0.0,10.3.0.31] \bigcup [10.3.0.128,10.3.0.255] \\ \Rightarrow 10.3.0.0/27;\ 10.3.0.128/25 \end{array}$

Zoptymalizowana tablica:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/27 \rightarrow do routera C$
- $0.3.0.128/25 \rightarrow do routera C$
- 5. Jak uporządkować wpisy w tablicy routingu, żeby zasada najlepszego dopasowania odpowiadała wyborowi "pierwszy pasujący" (tj. przeglądaniu tablicy od początku do końca aż do momentu napotkania dowolnej pasującej reguły)? Odpowiedź uzasadnij formalnie.

Należy posortować wpisy w tablicy routingu w kolejności malejącej długości prefiksu.

Rozważmy adres IP oznaczony jako a. Niech x oraz y będą kolejnymi wpisami w tablicy routingu. Załóżmy że a pasuje do x na n bitach. Skoro wpisy są posortowane malejąco, to a nie pasuje do y na więcej niż n bitach. W przeciwnym przypadku y miałby dłuższy prefiks niż x.

6. W podanej niżej sieci tablice routingu budowane są za pomocą algorytmu wektora odległości. Pokaż (krok po kroku), jak będzie się to odbywać. W ilu krokach zostanie osiągnięty stan stabilny?

Krok 0:

sieci \ routery	A	В	С	D	Е
SU	1	1			
SW	_	1		1	
SX	_	1	1	_	_
SY	_		_	1	1

sieci \ routery	A	В	С	D	Е
SZ	_	_	1	1	

Krok 1:

sieci \ routery	A	В	С	D	E
SU	1	1	2(B)	2(B)	
SW	2(B)	1	2(B)	1	2(D)
SX	2(B)	1	1	2(C)	_
SY	_	2(D)	2(D)	1	1
SZ	_	2(C)	1	1	2(D)

Krok 2: -> stan stabilny

sieci \ routery	A	В	С	D	Е
SU	1	1	2(B)	2(B)	3(D)
SW	2(B)	1	2(B)	1	2(D)
SX	2(B)	1	1	2(C)	3(D)
SY	3(B)	2(D)	2(D)	1	1
SZ	3(B)	2(C)	1	1	2(D)

7. Załóżmy, że w powyższej sieci tablice routingu zostały już zbudowane. Co będzie się działo (krok po kroku), jeśli zostanie dodana sieć SQ łącząca routery A i E?

Krok 0:

sieci \ routery	A	В	С	D	Е
SU	1	1	2(B)	2(B)	3(D)
SW	2(B)	1	2(B)	1	2(D)
SX	2(B)	1	1	2(C)	3(D)
SY	3(B)	2(D)	2(D)	1	1
SZ	3(B)	2(C)	1	1	2(D)
SQ	1	_	_	_	1

Krok 1:

sieci \ routery	A	В	С	D	Е
SU	1	1	2(B)	2(B)	3(D)
SW	2(B)	1	2(B)	1	2(D)

sieci \ routery	A	В	С	D	E
SX	2(B)	1	1	2(C)	3(D)
SY	3(B)	2(D)	2(D)	1	1
SZ	3(B)	2(C)	1	1	2(D)
SQ	1	2(A)	_	2(D)	1

Krok 2: -> stan stabilny

sieci \ routery	A	В	С	D	Е
SU	1	1	2(B)	2(B)	3(D)
SW	2(B)	1	2(B)	1	2(D)
SX	2(B)	1	1	2(C)	3(D)
SY	3(B)	2(D)	2(D)	1	1
SZ	3(B)	2(C)	1	1	2(D)
SQ	1	2(A)	3(B)	2(D)	1

8. W przedstawionej poniżej sieci uszkodzeniu ulega połączenie między routerami D i E. Załóżmy, że w sieci działa algorytm wektora odległości wykorzystujący technikę zatruwania ścieżki zwrotnej (poison reverse). Pokaż — opisując krok po kroku jakie komunikaty są przesyłane między routerami — że może powstać cykl w routingu.

Zakładam że połączenie między D i Sx jest uszkodzone.

• Poison reverse - Jeśli router X jest wpisany jako następny router na ścieżce do S, to wysyłamy do X informację "mam do S ścieżkę nieskończoną".

Komunikaty:

- 1. D -> B: "mam do SX ścieżkę nieskończoną"
- 2. B -> A: "mam do SX ścieżkę nieskończoną"
- 3. C -> A: "mam do SX 2 kroki, przez D"
- 4. A -> B: "mam do SX 3 kroki, przez C"
- 5. B -> D: "mam do SX 4 kroki, przez A"
- 6. D -> C: "mam do SX 5 kroków, przez B"
- 7. C -> A: "mam do SX 6 kroków, przez D"
- 8. ...

Krok	_	A	В	С	D	Е
0	SX	3(B)	2(D)	2(D)	∞	∞
1	SX	3(B)	∞	2(D)	∞	∞
2	SX	∞	∞	2(D)	∞	∞
3	SX	3(C)	∞	2(D)	∞	∞
4	SX	3(C)	4(A)	2(D)	∞	∞
5	SX	3(C)	4(A)	2(D)	5(B)	∞
6	SX	3(C)	4(A)	6(D)	5(B)	∞
7	SX	7(C)	4(A)	6(D)	5(B)	∞
N	SX	N(C)	N-3(A)	N-1(D)	N-2(B)	∞

9. Pokaż, że przy wykorzystaniu algorytmu stanu łączy też może powstać cykl w routingu. W tym celu skonstruuj sieć z dwoma wyróżnionymi, sąsiadującymi ze sobą routerami A i B. Załóż, że wszystkie routery znają graf całej sieci. W pewnym momencie łącze między A i B ulega awarii, o czym A i B od razu się dowiadują. Zalewają one sieć odpowiednią aktualizacją. Pokaż, że w okresie propagowania tej aktualizacji (kiedy dotarła ona już do części routerów a do części nie) może powstać cykl w routingu.

Krok 0:

_	A	В	С	D
A	0	1	2(B)	2 (B)
В	1	0	1	1
\mathbf{C}	2(B) 2(B)	1	0	1
D	2(B)	1	1	0

Krok 1: uszkodzenie

	A	В	С	D
A	0	∞	2(B)	2 (B)

	A	В	C	D
В	∞	0	1	1
\mathbf{C}	2(B)	1	0	1
D	2(B) 2(B)	1	1	0

Krok 2:

- A: "nie mam połączenia z B, aktualizuje swoją tablicę" > D "mam do A 2 kroki, przez B"
- B -> C "mam do A ścieżkę nieskończoną"

	A	В	С	D
A	0	∞	∞	2 (B)
В	∞	0	1	1
\mathbf{C}	∞	1	0	1
D	∞	1	1	0