LECTURE 19 Limit theorems – I

- Readings: Sections 5.1-5.3; start Section 5.4
- X_1, \ldots, X_n i.i.d.

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

What happens as $n \to \infty$?

- Why bother?
- A tool: Chebyshev's inequality
- Convergence "in probability"
- $\bullet \quad \hbox{Convergence of } M_n \\ \hbox{(weak law of large numbers)}$

Chebyshev's inequality

• Random variable X (with finite mean μ and variance σ^2)

$$\sigma^2 = \int (x - \mu)^2 f_X(x) dx$$

$$\geq \int_{-\infty}^{-c} (x - \mu)^2 f_X(x) dx + \int_c^{\infty} (x - \mu)^2 f_X(x) dx$$

$$\geq c^2 \cdot \mathbf{P}(|X - \mu| \geq c)$$

$$\mathbf{P}(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$

$$\mathbf{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Deterministic limits

- Sequence a_n Number a
- a_n converges to a

$$\lim_{n\to\infty} a_n = a$$

" a_n eventually gets and stays (arbitrarily) close to a"

• For every $\epsilon>0$, there exists n_0 , such that for every $n\geq n_0$, we have $|a_n-a|\leq \epsilon$.

Convergence "in probability"

- ullet Sequence of random variables Y_n
- converges in probability to a number a: "(almost all) of the PMF/PDF of Y_n , eventually gets concentrated (arbitrarily) close to a"
- For every $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}(|Y_n - a| \ge \epsilon) = 0$$

Does Y_n converge?

Convergence of the sample mean

(Weak law of large numbers)

• X_1, X_2, \ldots i.i.d. finite mean μ and variance σ^2

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

- $\mathbf{E}[M_n] =$
- $Var(M_n) =$

$$\mathbf{P}(|M_n - \mu| \ge \epsilon) \le \frac{\mathsf{Var}(M_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

 $\bullet \ \ M_n$ converges in probability to μ

The pollster's problem

- f: fraction of population that "..."
- ith (randomly selected) person polled:

$$X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases}$$

- $M_n = (X_1 + \cdots + X_n)/n$ fraction of "yes" in our sample
- Goal: 95% confidence of ≤1% error

$$P(|M_n - f| \ge .01) \le .05$$

• Use Chebyshev's inequality:

$$P(|M_n - f| \ge .01) \le \frac{\sigma_{M_n}^2}{(0.01)^2}$$
$$= \frac{\sigma_x^2}{n(0.01)^2} \le \frac{1}{4n(0.01)^2}$$

• If n = 50,000, then $P(|M_n - f| \ge .01) \le .05$ (conservative)

Different scalings of M_n

- X_1, \dots, X_n i.i.d. finite variance σ^2
- Look at three variants of their sum:
- $S_n = X_1 + \dots + X_n$ variance $n\sigma^2$
- $M_n = \frac{S_n}{n}$ variance σ^2/n converges "in probability" to $\mathbf{E}[X]$ (WLLN)
- $\frac{S_n}{\sqrt{n}}$ constant variance σ^2
- Asymptotic shape?

The central limit theorem

• "Standardized" $S_n = X_1 + \cdots + X_n$:

$$Z_n = \frac{S_n - \mathbf{E}[S_n]}{\sigma_{S_n}} = \frac{S_n - n\mathbf{E}[X]}{\sqrt{n}\,\sigma}$$

- zero mean
- unit variance
- Let Z be a standard normal r.v. (zero mean, unit variance)
- **Theorem:** For every c:

$$P(Z_n \le c) \to P(Z \le c)$$

• $P(Z \le c)$ is the standard normal CDF, $\Phi(c)$, available from the normal tables