GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA	
	Óptica

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	40601	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno los conocimientos elementales de la óptica para resolver problemas en diferentes aplicaciones de la electrónica.

TEMAS Y SUBTEMAS

- 1. Fotones y Átomos.
- 1.1. Modelos atómicos
- 1.2. El átomo de Bohr
- 1.3. Niveles de energía y espectros
- 1.4. Definición y características del fotón
- 1.5. Proceso de emisión de fotones
- 2. Óptica geométrica.
- 2.1. Dualidad onda partícula
- 2.2. Espectro electromagnético
- 2.3. Ley de Snell (reflexión y refracción)
- 2.4. Principio de Huygens
- 2.5. Principio de Fermat
- 2.6. Funcionamiento básico del microscopio, cámara fotográfica, telescopio y refractómetro
- 3. Difracción e Interferencia.
- 3.1. Difracción de Fraunhofer
- 3.2. Difracción de Fresnel
- 3.3. Difracción de rayos X
- 3.4. Coherencia espacial y temporal
- 3.5. Experimento de Young
- 3.6. Interferómetros
- 4. Polarización.
- 4.1. Estados de polarización
- 4.2. Métodos de producción de luz polarizada
- 4.3. Propiedades ópticas y eléctricas de películas dieléctricas
- 5. Dispositivos Opto-electrónicos.
- 5.1. Detectores
- 5.2. Emisores
- 5.3. Dispositivos semiconductores opto-electrónicos
- 5.4. Amplificadores Ópticos
- 5.5. Cables ópticos
- 5.6. Otros (conectores, acopladores, moduladores, multiplexores, etc).
- 6. Relatividad.
- 6.1. Teoría especial de la relatividad
- 6.2. Marcos de referencia inerciales y no inerciales
- 6.3. Dilatación del tiempo y contracción de la longitud
- 6.4. Transformaciones de Lorentz

- 6.5. Suma de velocidades
- 6.6. Masa y energía

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como la computadora y los proyectores.

Revisión bibliográfica del tema en libros y artículos científicos por los alumnos.

Discusión de los diferentes temas en seminarios.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia.

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

BIBLIOGRAFÍA

Libros básicos:

- Óptica, Hetch Eugene, Zajac Alfred. Ed. Eddison Wesley. 1986.
- Conceptos de física moderna, Beiser Arthur. Ed. McGraw Hill. 1988.
- Óptica básica, Malacara Daniel, Ed. SEP-FCE, MEXICO, 1989
- Devices for Optoelectronics (Optical Science and Engineering), Wallace B. Leigh, Ed. CRC; USA 1996

Libros de consulta:

- Lasers, Coherent, E. E. Ed. Limusa, México, 1985.
- Fundamentos de Física Moderna, Eisberg R. M. Ed. Limusa. México, 1978.
- Modern Physycs for enginners, Singh, Jasprit; Ed. John Wiley & Sons, USA, 1999
- Classical Optics & Its Applications, Masud Mansuripur, Cambridge University Press; USA, 2001)

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría o Doctorado.

