CHAPTER 4: Evaluating interface Designs

Designing the User Interface: Strategies for Effective Human-Computer Interaction

Fifth Edition

Ben Shneiderman & Catherine Plaisant

in collaboration with

Maxine S. Cohen and Steven M. Jacobs

Addison Wesley is an imprint of

Introduction

- Designers can become so entranced with their creations that they
 may fail to evaluate them adequately.
 - Experienced designers have attained the wisdom and humility to know that extensive testing is a necessity.
- The determinants of the evaluation plan include:
 - stage of design (early, middle, late)
 - novelty of project (well defined vs. exploratory)
 - number of expected users
 - criticality of the interface (life-critical medical system vs. museum exhibit support)
 - costs of product and finances allocated for testing
 - time available
 - experience of the design and evaluation team

Introduction (cont.)

- Usability evaluators must broaden their methods.
- The design team needs to be involved with research on the current system design drawbacks
- Tools and techniques are evolving.
- The range of evaluation plans might vary.
- The range of costs might vary.
- Usability testing has become an established and accepted part of the design process

Expert review

Expert Reviews

- Colleagues / customers / expert reviews?
- Expert reviews entail one-half day to one week effort, although a lengthy training period may sometimes be required to explain the task domain or operational procedures
- There are a variety of expert review methods to chose from:
 - Heuristic evaluation
 - Guidelines review
 - Consistency inspection
 - Cognitive walkthrough
 - Metaphors of human thinking
 - Formal usability inspection

Expert Reviews (cont.)

- Expert reviews can be scheduled at several points in the development process when experts are available and when the design team is ready for feedback.
- Different experts tend to find different problems in an interface, so 3-5 expert reviewers can be highly productive, as can complementary usability testing.
- The dangers with expert reviews are that the experts may not have an adequate understanding of the task domain or user communities.
- Even experienced expert reviewers have great difficulty knowing how typical users, especially first-time users will really behave.

Usability testing and labs

Step-by-Step Usability Guide from http://usability.gov/

Usability Testing and Laboratories

- The emergence of usability testing and laboratories since the early 1980s
- Usability testing not only sped up many projects but that it produced dramatic cost savings.
- The movement towards usability testing stimulated the construction of usability laboratories.
- A typical modest usability lab would have two 10 by 10 foot areas, one for the participants to do their work and another, separated by a half-silvered mirror, for the testers and observers
- Participants should be chosen to represent the intended user communities, with attention to
 - background in computing, experience with the task, motivation, education, and ability with the natural language used in the interface.

- Participation should always be voluntary, and informed consent should be obtained.
- Professional practice is to ask all subjects to read and sign a statement like this one:
 - I have freely volunteered to participate in this experiment.
 - I have been informed in advance what my task(s) will be and what procedures will be followed.
 - I have been given the opportunity to ask questions, and have had my questions answered to my satisfaction.
 - I am aware that I have the right to withdraw consent and to discontinue participation at any time, without prejudice to my future treatment.
 - My signature below may be taken as affirmation of all the above statements; it was given prior to my participation in this study.
- Institutional Review Boards (IRB) often governs human subject test process

- Videotaping participants performing tasks is often valuable for later review and for showing designers or managers the problems that users encounter.
 - Use caution in order to not interfere with participants
 - Invite users to think aloud (sometimes referred to as concurrent think aloud) about what they are doing as they are performing the task.

In this eye-tracking setup, the participant wears a helmet that monitors and records where on the screen the participant is looking

More portable eye-tracking devices

- Many variant forms of usability testing have been tried:
 - Paper mockups
 - Discount usability testing
 - Competitive usability testing
 - Universal usability testing
 - Field test and portable labs
 - Remote usability testing
 - Can-you-break-this tests

Survey Instruments

- Written user surveys are a familiar, inexpensive and generally acceptable companion for usability tests and expert reviews.
- Keys to successful surveys
 - Clear goals in advance
 - Development of focused items that help attain the goals.
- Survey goals can be tied to the components of the Objects and Action Interface model of interface design.
- Pre-survey: Users could be asked for their subjective impressions about specific aspects of the interface such as the representation of:
 - task domain objects and actions
 - syntax of inputs and design of displays.

Survey Instruments (cont.)

- Other goals would be to ascertain
 - users background (age, gender, origins, education, income)
 - experience with computers (specific applications or software packages, length of time, depth of knowledge)
 - job responsibilities (decision-making influence, managerial roles, motivation)
 - personality style (introvert vs. extrovert, risk taking vs. risk aversive, early vs. late adopter, systematic vs. opportunistic)
 - reasons for not using an interface (inadequate services, too complex, too slow)
 - familiarity with features (printing, macros, shortcuts, tutorials)
 - their feeling state after using an interface (confused vs. clear, frustrated vs. in-control, bored vs. excited).

Surveys (cont.)

- Online surveys avoid the cost of printing and the extra effort needed for distribution and collection of paper forms.
- Many people prefer to answer a brief survey displayed on a screen, instead of filling in and returning a printed form,
 - although there is a potential bias in the sample.
- A survey example is the Questionnaire for User Interaction Satisfaction (QUIS).
 - http://lap.umd.edu/quis/

Acceptance Test

- For large implementation projects, the customer or manager usually sets objective and measurable goals for hardware and software performance.
- If the completed product fails to meet these acceptance criteria, the system must be reworked until success is demonstrated.
- Rather than the vague and misleading criterion of "user friendly," measurable criteria for the user interface can be established for the following:
 - Time to learn specific functions
 - Speed of task performance
 - Rate of errors by users
 - Human retention of commands over time
 - Subjective user satisfaction

Acceptance Test (cont.)

- In a large system, there may be eight or 10 such tests to carry out on different components of the interface and with different user communities.
- Once acceptance testing has been successful, there may be a period of field testing before national or international distribution..

Evaluation During Active Use

- Successful active use requires constant attention from dedicated managers, user-services personnel, and maintenance staff.
- Perfection is not attainable, but percentage improvements are possible.
- Interviews and focus group discussions
 - Interviews with individual users can be productive because the interviewer can pursue specific issues of concern.
 - Group discussions are valuable to ascertain the universality of comments.

Evaluation During Active Use (cont.)

- Continuous user-performance data logging
 - The software architecture should make it easy for system managers to collect data about
 - The patterns of system usage
 - Speed of user performance
 - Rate of errors
 - Frequency of request for online assistance
 - A major benefit is guidance to system maintainers in optimizing performance and reducing costs for all participants.
- Online or telephone consultants, e-mail, and online suggestion boxes
 - Many users feel reassured if they know there is a human assistance available
 - On some network systems, the consultants can monitor the user's computer and see the same displays that the user sees

Evaluation During Active Use (cont.)

- Online suggestion box or e-mail trouble reporting (cont.)
 - Electronic mail to the maintainers or designers.
 - For some users, writing a letter may be seen as requiring too much effort.

Bug report using Google's Chrome browser (http://www.google.com/chrome/)

Evaluation During Active Use (cont.)

- Discussion groups, wiki's and newsgroups
 - Permit postings of open messages and questions
 - Some are independent, e.g. America Online and Yahoo!
 - Topic list
 - Sometimes moderators
 - Social systems
 - Comments and suggestions should be encouraged.
- Automated evaluation tools

Controlled Psychologicallyoriented Experiments

- Scientific and engineering progress is often stimulated by improved techniques for precise measurement.
- Rapid progress in the designs of interfaces will be stimulated as researchers and practitioners evolve suitable human-performance measures and techniques.

Controlled Psychologicallyoriented Experiments (cont.)

- The outline of the scientific method as applied to human-computer interaction might comprise these tasks:
 - Deal with a practical problem and consider the theoretical framework
 - State a lucid and testable hypothesis
 - Identify a small number of independent variables that are to be manipulated
 - Carefully choose the dependent variables that will be measured
 - Judiciously select subjects and carefully or randomly assign subjects to groups
 - Control for biasing factors (non-representative sample of subjects or selection of tasks, inconsistent testing procedures)
 - Apply statistical methods to data analysis
 - Resolve the practical problem, refine the theory, and give advice to future researchers

Controlled Psychologicallyoriented Experiments (cont.)

- Controlled experiments can help fine tuning the human-computer interface of actively used systems.
- Performance could be compared with the control group.
- Dependent measures could include performance times, usersubjective satisfaction, error rates, and user retention over time.

end