Bérenger Ossété Gombé

Introduction

Solution na

Solution optimisées

Comparaison de la solution

_ . . .

Résolvez des problèmes en utilisant des algorithmes en python

Openclassrooms - Parcours Python - Projet n°7

Bérenger Ossété Gombé

10 août 2022

Introduction

Solution naïv

Solution optimisées

Comparaison

Conclusi

Sommaire

- 1 Introduction
- 2 Solution naïve
- 3 Solution optimisées
- 4 Comparaison de la solution
- **5** Conclusion

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

Présentation

Bérenger Ossété Gombé, 27 ans

- Baccalauréat Scientifique (2013)
- Maîtrise en informatique (2017)
- Spécialisation web chez Openclassrooms (janvier 2022)

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

c . .

AlgoInvest & Trade

Une société financière spécialisée dans l'investissement

 Objectif → optimiser ses investissements à l'aide d'algorithmes

Contraintes

- Une action ne peut être achetée plusieurs fois.
- Chaque opération d'achat est atomique.
- La société ne peut dépenser plus de 500€ par client.

Solution naïv

Solution optimisées

Comparaison de la solution

Conclusio

Actions

Caractéristiques d'une action

Une action a est caractérisée par :

- Son nom N(a) (exemple : Action-1)
- Son coût *C*(*a*) (exemple : 20€)
- Son taux après deux ans T(a) (exemple : 5%)

Bénéfices d'une action

Après deux ans, le bénéfice d'une action a est :

$$P(a) = C(a) \times T(a) \tag{1}$$

Introduction

Solution halv

Solution optimisées

Comparaison de la solution

Conclusion

Investissements et bénéfice

Investissement

Un investissement est une liste d'actions à acheter à un client.

Bénéfice total

Soit un investissement de taille I tel que |I| = N avec $N \ge 0$ Le bénéfice pour AlgoInvest & Trade est donc :

$$P(I) = \begin{cases} 0, & N \le 0\\ \sum_{k=0}^{N-1} cost_k \times rate_k, & \text{sinon} \end{cases}$$
 (2)

et le coût est :

$$C(I) = \begin{cases} 0, & N \le 0\\ \sum_{k=0}^{N-1} cost_k, & sinon \end{cases}$$
 (3)

Introduction

Solution halv

Solution optimisées

Comparaison de la solution

Conclusion

Définition du problème

Trouver le meilleur investissement possible étant donné une liste d'actions.

Entrée

A une liste d'actions.

Sortie

Les actions $a_k \in I$ tel que $\sum_k P(a_k)$ soit maximale et $\sum_k C(a_k) \leq 500$.

Introduction

Solution naïve

Solution optimisées

Comparaison de la solution

c . .

Une première solution

Une solution Bruteforce

La solution la plus simple est d'énumérer toutes les possibilités puis de choisir la meilleure.

Principe

Générer **tout les investissements possibles** puis les trier et enfin choisir le meilleur.

Attention

Il faut générer les combinaisons et non pas les permutations. Par exemple, ${}^5C_3 = 10$ et ${}^5P_3 = 60$.

Introduction

Solution naïve

Solution optimisées

Comparaison de la solution

Conclusion

Algorithme de la solution naïve

Pseudo-Code

```
BRUTEFORCE(actions, current, cost, profit, solutions, index)
           si cost <= 500
             solutions = solutions \cup \{(current, cost, profit)\}
           fin si
           pour i de index a | actions |
             bruteforce (actions \ actions[i],
               current ∪ {action},
               cost + C(action).
10
11
                profit + P(action),
12
               solutions.
13
               i )
14
           fin pour
15
           retourner solutions
16
17
         FIN
```

Pour trouver le meilleur investissement :

```
1 MEILLEUR—CHOIX(actions)
2 solutions = BRUTEFORCE(actions, 0, 0, 0, 0)
3 TRI(solutions)
4 retourner DERNIER—ELEMENT(solutions)
5 FIN
```

Introduction

Solution naïve

Solution optimisées

Comparaison de la solution

Conclusion

Complexité asymptotique en temps de la solution naïve

Forme générale

L'algorithme bruteforce (BF) est récursif :

$$BF(n) = |actions| \times BF(n-1) + \mathcal{O}(n)$$
 (4)

Soit *TOTAL* le nombre d'appels récursifs de *bruteforce TOTAL* =

$$|actions| \times (|actions| - 1) \times (|actions| - 2) \times \cdots \times 1 = |actions|!$$

Par conséquent, nous avons :

$$BRUTEFORCE = \mathcal{O}(n!) \tag{5}$$

Introduction

Solution naïve

optimisées

Comparaison de la solution

Conclusion

Complexité asymptotique : une seconde approche

Nous énumerons toutes les combinaisons d'actions possibles. Pour une entrée de n=20 actions, nous avons $\binom{n}{k}$ solutions avec k la taille de la sortie.

$$\binom{n}{k} = \frac{n!}{(n-k)! \times k!} \tag{6}$$

Introduction

Solution naïve

Solution optimisées

Comparaison de la solution

_ . . .

Complexité asymptotique en mémoire de la solution naïve

Dans le pire cas :

On ajoute au tableau de solutions une action à chaque itérations.

```
si cost <= 500
solutions = solutions \cup \{\cdots\}
fin si
```

Taille finale du tableau

$$|actions| \times (|actions| - k) \times \cdots \times 1 = |actions|!$$

Conclusion:

$$BRUTEFORCE = \mathcal{O}(n!) \tag{7}$$

Introduction

Solution naïve

Solution optimisées

Comparaison de la solution

Conclusion

Conclusion de la solution naïve

Problèmes

- $\mathcal{O}(n!)$ grandit bien trop vite.
- On génère tout les cas, ce qui est efficace mais inefficient.

Conclusion

ightarrow L'algorithme BRUTEFORCE n'est pas utilisable dans le monde réel.

Bérenger Ossété Gombé

Introduction

Solution naïv

Solution optimisées

Comparaison

Conclusion

Bérenger Ossété Gombé

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

Conclusion

Bérenger Ossété Gombé

Introduction

Solution naïv

Solution optimisées

Comparaison

Conclusion