Problema 3:

a)

Algorithm 1 Determinarea unui subgraf p-minimal-cromatic din G

- 1: $p_min_crom \leftarrow G$
- 2: while $\chi(G) == p \operatorname{do}$
- 3: $p_min_crom \leftarrow G$
- 4: $G \leftarrow G \setminus v, v \in V(G)$
- 5: end while
- 6: **return** *p_min_crom*

Algoritmul returnează subgraful p-minimal-cromatic generat din G.

Dacă G nu este minimal cromatic, atunci $\exists v$ a.i. $\chi(G-v)=p$. Algoritmul va elimina nodurile v și muchiile lor $e \in E(G)$, eventual reducându-se la un subgraf.

Algoritmul are finalitate și va merge până la subgraful cu n = p noduri (imposibil de a colora p noduri cu mai puțin de p culori).

b)

G p-minimal-cromatic

P.P. R.A.
$$\delta(G)$$

Fie nodul v un nod cu gradul cel mai mic și o p-colorare în care nodul v are culoarea c. Vecinii lui v sunt colorați în maxim p-2 culori, deci v și $N_G(v)$ în maxim p-1 culori diferite. Deoarece G este p-minimal-cromatic, el este colorat în p culori.

- $\implies \exists$ cel puțin $u \in V$ a.i. $(u,v) \notin E$, pentru care $col(u) \neq col(v)$ și $col(u) \neq col(N_G(v))$.
- \implies Am putea reduce numărul de colorări la p-1 colorând pe v în col(u)
- $\implies \chi(G) = p 1.$
- \Longrightarrow (Absurd) G nu este p-minimal-cromatic \longrightarrow contradicție: P.p. inițială este falsă $\Longrightarrow \delta(G) \ge p-1$.

c)

 ${\cal G}$ 3-minimal-cromatic

1.

$$\delta(G) \ge 2$$
, $\max(d_G(v)) < 3$.

$$\implies d_G(v) = 2, \ \forall v \in V \implies G \text{ circuit indus.}$$

Dacă G este circuit par indus, atunci $\chi(G)=2$, deoarece se poate colora astfel:

 $\operatorname{col}(N_G(v)) = \operatorname{col}(v) * (-1), \quad \operatorname{col}(v) = 1, \ \forall v \in V \implies G \text{ nu este 3-min-crom (absurd)}.$ $\Longrightarrow G \text{ circuit impar indus (*1)}.$

$" \Leftarrow (*2)$

G circuit impar indus.

1. G 2-min-crom?

$$\operatorname{col}(v_i) = \operatorname{col}(N_G(v_{i+1})) \implies \operatorname{col}(v_1) = \operatorname{col}(v_{k+1}),$$

iar cum G este circuit impar indus de forma $(v_1, v_2, \dots, v_{k+1}, v_1) \implies (v_{k+1}, v_1) \in E \implies \text{Fals. Nu se poate colora aṣa.}$

2. G 3-min-crom? Adevărat (din ipoteza " \Leftarrow ").

3. G 4-min-crom?

$$\delta(G) \ge 4 - 1$$
 (de la b)) $\implies \delta(G) \ge 3$.

Cum G este circuit impar indus $\implies \delta(G) = 2 \implies$ Fals.

 $\implies G$ 3-min-crom (*2).

Din (*1) și (*2) \implies G 3-min-crom \iff G circuit impar indus.