Reinforcement Learning for Building Control: Direct Actuator or PI-Mediated Control?

A Systematic Comparison Using BOPTEST Framework

Aniket Dixit, Faizan Ahmed, James Brusey
Coventry University, UK

E-ENERGY '25

June 17–20, 2025, Rotterdam, Netherlands

Why This Matters

- 40% of global energy consumption comes from buildings
- Traditional PI controllers lack predictive
 capabilities for optimal energy-comfort trade-offs
- Reinforcement Learning shows promise but lacks systematic evaluation

Current Research Gap

- Most studies focus on single control paradigm
- Limited empirical comparisons between approaches
- Lack of standardized evaluation across building types

Fundamental Question: Should RL agents control setpoints or directly command actuators?

Two Control Paradigms

Control Strategies for Building Automation

Setpoint Regulation (SR)

- Stable, proven architecture
- Leverages existing building automation
- Preserves low-level control expertise
- Built-in safety mechanisms
- Easier integration

Direct Actuator Control (DAC)

- Larger solution space
- No cascading errors
- Full control authority
- Potentially optimal strategies
- Direct optimization

Research Challenge: Which approach offers better training efficiency, control stability, and energy performance in realistic building scenarios?

Research Questions

- Energy Efficiency: How do trade-offs differ between approaches across building types?
- **Thermal Comfort**: What are the comfort achievement and violation patterns?
- Training Efficiency: Which approach converges faster and requires fewer samples?
- Control Stability: How does operational robustness compare between paradigms?

Goal: Provide quantitative evidence to guide practical RL deployment in real-world building control systems

Methodology

Experimental Framework

BESTEST Hydronic Heat Pump

- Single-zone residential building
- Heat pump + radiant floor heating
- Complex thermal dynamics

BESTEST Air System

- Variable air volume HVAC
- Heating and cooling coils
- Fast-response system

BOPTEST Experimental Framework

Reinforcement Learning Formulation

State Space: Zone temperature, weather conditions, time features, electricity pricing

Action Space: 30-bin discretization for fair comparison

Reward Function:

$$R_t = -(O_t - O_{t-1})$$

where
$$O_t = \text{cost_tot} + \text{tdis_tot}$$

Control Paradigm Implementation

Both paradigms use identical:

- State spaces: Zone temperature, weather, time features
- Training protocols: 10M steps, 1-hour control periods
- Evaluation metrics: Energy cost, thermal comfort, training efficiency

Key Differences

- SR: Temperature setpoints (5-35°C)
- DAC: Direct actuator commands (0-1 range)

Control Paradigm Comparison

Results

Energy vs. Comfort Trade-offs

ENVIRONMENT	METHOD	ENERGY COST	THERMAL DISCOMFORT	IMPROVEMENT
Hydronic Heat Pump	SR	0.924 (+4.8%)	0.00 (-100%)	Perfect comfort
	DAC	0.898 (+1.8%)	1.63 (-80.6%)	Balanced
	Baseline	0.882	8.38 Kh	Poor comfort
BESTEST Air	SR	0.210 (+5.0%)	(0.04) -99.3%	Near-perfect
	DAC	0.206 (+3.2%)	1.09 (-80.8%)	Efficient
	Baseline	0.200	5.69 Kh	Poor comfort

Key Finding: Consistent pattern across building types - SR prioritizes comfort, DAC balances energy-comfort trade-offs

Training Efficiency Comparison

METHOD	SR STEPS	DAC STEPS	IMPROVEMENT
PPO (Hydronic)	8,200	15,800	48% faster
PPO (Air)	6,800	25,200	73% faster
DQN (Hydronic)	7,500	18,700	60% faster
DQN (Air)	7,200	24,500	66% faster
A2C (Hydronic)	6,900	16,200	61% faster
A2C (Air)	5,900	28,100	79% faster

Control Paradigm Implementation

Control Stability Analysis

METRIC	SR	DAC	BASELINE
Control Variance	-38%	+34%	0%
Cycles/Day	3.9	6.3	4.7
Stability	Best	worst	Frequent

Key Findings

- Superior stability: 38% lower control variance
- Reduced cycling: Extends equipment life
- Perfect comfort: Maintains temperature band
- Operational efficiency: More stable behavior

Why Setpoint Regulation Excels

1. Incorporates System Knowledge

Pre-existing PI controllers encode thermal response characteristics through tuned parameters (Kp, Ki), providing useful inductive biases for learning

2. Structured Optimization Problem

Clearer action-response relationships with constrained, reasonable setpoint ranges create smoother reward landscapes

Result: 48-79% reduction in training steps across algorithms and environments, with 38% lower control signal variance

Discussion & Impact

Technical Innovations

- First systematic comparison of SR vs DAC in building control
- Standardized evaluation using BOPTEST framework across building types
- Quantitative training efficiency analysis with consistent methodology

Practical Insights

When to Choose SR

- Comfort-critical applications
- Limited training data/time
- Existing building automation
- Risk-averse deployments

When to Consider DAC

- Energy-focused objectives
- New system installations
- Research/experimental settings
- Specialized control requirements

Limitations & Future Work

Current Study Limitations

- Simulation-based evaluation may not capture all real-world complexities
- Constant electricity pricing dynamic pricing effects unexplored
- Fixed comfort-energy weighting in reward function
- Single-zone buildings multi-zone coordination unexplored

Future Research Directions

- Hybrid approaches: Dynamic switching between SR and DAC based on conditions
- Multi-zone systems: Coordination challenges in larger buildings
- Real-world validation: Pilot deployments in actual buildings
- Transfer learning: Cross-building knowledge transfer

Conclusion

Training Efficiency Champion: Setpoint Regulation

48-79% fewer training steps across all algorithms and environments, with superior control stability (38% lower variance)

Control Stability and Performance Pattern

SR: Superior stability with 38% lower control variance and 3.9 cycles/day vs 6.3 for DAC

DAC: Higher control variance but direct optimization capability with 1.8-3.2% energy increases

Algorithm Winner: A2C

Consistently fastest convergence and best performance across both control paradigms

Thank You

Questions & Discussion

Contact Information:

dixita4@uni.coventry.ac.uk

m Coventry University, UK

DOI: 10.1145/3679240.3734670