

CHIMIE NIVEAU MOYEN ÉPREUVE 2

Mardi 8 mai 2012 (après-midi)

1 heure 15 minutes

	 ac 5.	23310	II au	cano	iiuat	
0 0						

Code de l'examen

		2	2	1	2	_	6	1	2	3
--	--	---	---	---	---	---	---	---	---	---

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Section A: répondez à toutes les questions.
- Section B: répondez à une question.
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du *Recueil de Données de Chimie* est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est [50 points].

SECTION A

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1. Le peroxyde d'hydrogène, $H_2O_2(aq)$, libère de l'oxygène gazeux, $O_2(g)$, lorsqu'il se décompose selon l'équation ci-dessous.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

On place 50,0 cm³ d'une solution de peroxyde d'hydrogène dans un tube à ébullition, et on ajoute une goutte de détergent liquide afin de créer un couche de bulles à la surface de la solution de peroxyde d'hydrogène, à mesure que l'oxygène gazeux est libéré. Le tube est placé dans un bain d'eau à 75°C et on mesure la hauteur de la couche de bulles toutes les trente secondes. On trace un graphique de la hauteur de la couche de bulles en fonction du temps.

(a)	Expliquez pourquoi la courbe atteint un maximum.	[1]

(Suite de la question 1)

(b)	A 1' à 12	aide du graphique, calculez la vitesse de décomposition du peroxyde d'hydrogène 0 s.	[3]
(c)		spérience a été répétée en utilisant de l'oxyde de manganèse(IV) solide, $MnO_2(s)$, me catalyseur.	
	(i)	Dessinez une courbe sur le graphique de la page précédente pour montrer comment la hauteur de la couche de bulles change avec le temps quand l'oxyde de manganèse(IV) est présent.	[1]
	(ii)	Expliquez l'effet du catalyseur sur la vitesse de décomposition du peroxyde d'hydrogène.	[2]

(Suite a	le la g	uestion l	')
----------	---------	-----------	----

(d)	La décomposition du peroxyde d'hydrogène pour former de l'eau et de l'oxygène est
	une réaction redox.

(i) Déduisez les nombres d'oxydation de l'oxygène présent dans chacune des espèces ci-dessous. [2]

Espèce	Nombre d'oxydation de l'oxygène
H_2O_2	
H ₂ O	
O_2	

(ii) Exprimez deux demi-équations pour la décomposition du peroxyde d'hydrogène. [2]

Oxydation:			
Réduction:			

2.

(a)	Expi	imez l'équation de la réaction entre le magnésium et l'acide chlorhydrique.	[1]
(b)	Déte	rminez le réactif limitant.	[3]
(c)		ulez le rendement théorique de production de l'hydrogène gazeux :	<i>[1]</i>
(c)	Calc (i)	ulez le rendement théorique de production de l'hydrogène gazeux : en mol.	[1]
(c)			[1]
(c)			[2]

(Suite de la question 2)

	Suggérez deux raisons qui expliquent pourquoi le volume d'hydrogène gazeux obtenu est moindre.	[2
(a)	Exprimez l'équation de la réaction entre le sodium et l'eau.	[
(b)	Exprimez et expliquez une différence entre les réactions du sodium et du potassium avec l'eau.	[

(a)	¹³¹ I e	est un isotope radioactif de l'iode.	
	(i)	Définissez le terme <i>isotope</i> .	[1
	(ii)	Déterminez le nombre de neutrons dans un atome d'iode-131.	[1
	(iii)	Identifiez une utilisation de l'iode-131 en médecine et expliquez pourquoi il est potentiellement dangereux.	[2
(b)	Disc	eutez de l'utilisation du carbone-14 dans la datation au radiocarbone.	[3

SECTION B

Répondez à une question. Rédigez vos réponses dans les cases prévues à cet effet.

	composé organique, X , dont la masse molaire est approximativement 88 g mol ⁻¹ ient 54,5 % de carbone, 36,3 % d'oxygène et 9,2 % d'hydrogène en masse.	
(i)	Distinguez les termes formule empirique et formule moléculaire.	L
	Formule empirique :	
	Formule moléculaire :	
(ii)	Déterminez la formule empirique de X.	
(ii)	Déterminez la formule empirique de X.	
(ii)	Déterminez la formule empirique de X.	
(ii)	Déterminez la formule empirique de X.	
	Déterminez la formule empirique de X. Déterminez la formule moléculaire de X.	

(Suite de la question 5)

(iv)	X est un acide carboxylique à chaîne linéaire. Dessinez sa formule structurale.	[1]
(71)	Desciner le fermule structurale d'un isomère de V qui est un ester	Γ11
(v)	Dessinez la formule structurale d'un isomère de X qui est un ester.	[1]
(vi)	L'acide carboxylique contient deux liaisons carbone-oxygène différentes. Identifiez quelle liaison est la plus forte et laquelle est la plus longue.	[2]
	Liaison la plus forte :	
	Liaison la plus longue :	

(Suite de la question 5)

.)	
)	Le propan-1-ol, CH ₃ CH ₂ CH ₂ OH, et l'hexan-1-ol, CH ₃ (CH ₂) ₄ CH ₂ OH, sont deux alcools. Exprimez et expliquez lequel des deux composés est le plus soluble dans l'eau.
)	alcools. Exprimez et expliquez lequel des deux composés est le plus soluble
)	alcools. Exprimez et expliquez lequel des deux composés est le plus soluble
)	alcools. Exprimez et expliquez lequel des deux composés est le plus soluble
)	alcools. Exprimez et expliquez lequel des deux composés est le plus soluble

(Suite de la question 5)

(c)	Le graphite est utilisé comme lubri:	fiant et il est un cond	ducteur électrique.	Le diamant est
	dur et ne conduit pas l'électricité.	Expliquez ces propo	ositions en termes	de structures et
	de liaisons de ces allotropes du car	bone.		

[6]

Graphite	:		
Diamant	:		
		 •	

	Disti	nguez les termes base forte et base faible, et exprimez un exemple de chacun.	[
(b)		nmoniac, NH ₃ , est une base selon les théories des acides et des bases de asted-Lowry et de Lewis.	
	(i)	Exprimez l'équation de la réaction de l'ammoniac avec l'eau.	
	(ii)	Expliquez pourquoi l'ammoniac peut agir en tant que base de Brønsted–Lowry.	
	(ii)	Expliquez pourquoi l'ammoniac peut agir en tant que base de Brønsted–Lowry.	
	(iii)	Expliquez pourquoi l'ammoniac peut agir en tant que base de Brønsted–Lowry. Expliquez pourquoi l'ammoniac peut également agir en tant que base de Lewis.	

(Suite de la question 6)

(i)	Lorsqu'on ajoute du chlorure d'ammonium, NH ₄ Cl(aq), à du carbonate de sodium solide, Na ₂ CO ₃ (s), en excès, il se produit une réaction acide—base. Des bulles de gaz se forment et la masse de carbonate de sodium solide diminue. Exprimez une différence qu'on pourrait observer si l'on utilisait de l'acide nitrique, HNO ₃ (aq), au lieu de chlorure d'ammonium.	[.
(ii)	Déduisez les structures de Lewis de l'ion ammonium, $\mathrm{NH_4}^+$, et de l'ion carbonate, $\mathrm{CO_3}^{2^-}$.	[
	Ion ammonium Ion carbonate	
(iii)	Prédisez les formes de $\mathrm{NH_4}^+$ et de $\mathrm{CO_3}^{2-}$.	1
(iii)	Prédisez les formes de $\mathrm{NH_4^+}$ et de $\mathrm{CO_3^{2-}}$. $\mathrm{NH_4^+}$:	
(iii)		
(iii)		
(iii)		
(iii)	NH ₄ ⁺ :	

(Suite de la question 6)

(d)	L'équation de la réaction entre l'hydroxyde de sodium, NaOH, et l'acide nitrique, HNO ₃
	est illustrée ci-dessous.

 $NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(1)$ $\Delta H = -57.6 \text{ kJ mol}^{-1}$

(i)	Esquissez et légendez un diagramme enthalpique pour cette réaction.	[3]

(ii)	Déduisez si les réactifs ou les produits sont plus stables du point de vue énergétique,	
	en exprimant votre raisonnement.	[1]

(iii) Calculez la variation d'énergie thermique, en kJ, quand on ajoute 50,0 cm³ d'une solution d'hydroxyde de sodium 2,50 mol dm⁻³ à de l'acide nitrique en excès. [2]

(Suite de la question 6)

(e)	la température de l'eau diminue de 19,30 °C à 15,80 °C. Déterminez la variation d'enthalpie, en kJ mol ⁻¹ , accompagnant la dissolution du chlorure d'ammonium dans l'eau.	[3]
	••••••	

7.

Les	haloge	énoalcanes peuvent être classés en primaires, secondaires ou tertiaires.	
(a)	(i)	Exprimez la signification du terme isomères.	[1
	(ii)	Déduisez les formules structurales du 2-bromobutane et du 1-bromo-2-méthylpropane, et identifiez chaque molécule en tant que primaire, secondaire ou tertiaire.	[4

(Suite de la question 7)

(i)	Expliquez pourquoi les alcanes ont une réactivité faible.	1
(ii)	Résumez la signification du terme <i>rupture homolytique</i> .	
(iii)	Décrivez la signification du symbole Br•.	
(iv)	Exprimez une équation de la réaction de l'éthane avec le brome.	

(Suite de la question 7)

Dar	ns certaines conditions, le but-2-ène peut réagir avec l'eau pour former le butan-2-ol
	Identifiez un catalyseur approprié pour cette réaction.
	Identifiez un catalyseur approprié pour cette réaction.
(i)	
(i)	

(Suite de la question 7)

(ii) On peut convertir le but-2-ène en 2-bromobutane, puis en butan-2-ol, de la façon suivante :

$$\text{CH}_3\text{CH=}\text{CHCH}_3 \xrightarrow{\hspace{1.5cm}\textbf{I}\hspace{1.5cm}} \text{CH}_3\text{CH}(\text{Br})\text{CH}_2\text{CH}_3 \xrightarrow{\hspace{1.5cm}\textbf{II}\hspace{1.5cm}} \text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_3$$

Identifiez le(s) réactif(s) et les conditions nécessaires pour chacune des étapes I et II. [4]

Étape I	l:							

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

