Oggi...

- Vedremo i tipi principali di "carrier", strati fisici che trasportano i segnali
- Indicativamente, parleremo di bandwidth: la "capacità" del canale
- Poi affronteremo la cosa anche dal punto di vista più preciso e teorico dello scambio di informazione

Tipo di Trasmissione

- Wired
- Wireless

Trasmissione dati guidata: cavi

- Coppia annodata (Twisted Pair)
- Cavo Coassiale
- Fibre Ottiche

UTP: Unshielded Twisted Pair

- Coppia di fili annodati ("twisted") fra loro.
- Il "twist" serve a limitare l'interferenza reciproca (crosstalk)

UTP3 e UTP5

(a)

Bandwidth UTP3: circa 250MHz

(b)

Bandwidth UTP5: circa 600MHz

Il Cavo Coassiale

- Ha una schermatura molto migliore dei cavi UTP
- Molto usato per la tv via cavo e le MAN
- Bandwidth: circa 1GHz

Fibre ottiche

la fibra è composta da vetro

- (a) Un raggio di luce dentro a una fibra con angoli differenti.
- (b) Luce intrappolata dalla riflessione totale interna.

Cavi per fibre

- (a) A fibra singola
- (b) A tre fibre

Connessioni tra fibre

- Connettori (come coi cavi in rame): si perde però un 10%-20% di luce
- Allineatori meccanici: si perde un 10% di luce
- Fusione: si perde molto poco (1%)

Le fibre trasportano luce...

- Quale luce...?????
- Vari tipi di luce, ad esempio "normale" (lampadine a incandescenza), laser, led
- Ogni luce ha proprietà diverse (pensate ai settaggi della vostra macchina fotografica/fotocamera del cellulare...)

LED...

Cavi per Fibre: confronto tra fonti di luce (LED e S. Laser)

ltem	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multimode	Multimode or single mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

Fibra ottica vs cavo in rame?

- Svantaggi: costa di più, si piega meno facilmente, è più laboriosa da unire ad altra fibra
- Però: la fibra ha molta più bandwidth, e tiene meglio il segnale (vedremo poi perché)
- E' più piccola e pesa meno

Fibra ottica o rame?

La fibra è dielettrica e ha pochissime interferenze elettriche...

Fibra o rame?

E' molto più difficile da intercettare ("tap")

Svantaggi Fibra Ottica: derivazioni e ripetitori attivi

Vantaggi Fibra Ottica: componenti passive

Each outgoing fiber sees light from all the incoming fibers

Wireless

- Passimo ora al wireless
- Come visto nel caso della luce (che è "wireless"...), non tutte le trasmissioni wireless sono uguali
- ◆Quiz: *HRO

Trasmissione Wireless

- Lo Spettro Elettromagnetico
- La Trasmissione Radio
- La Trasmissione a Micro-onde

Lo Spettro Elettromagnetico

Politiche dello Spettro Elettromagnetico

- Come si assegnano le frequenze?
- "Beauty contest": frequenze a chi fa più del bene
- Lotteria/asta: chi fa l'offerta migliore
- ◆ → Banda ISM (Industrial, Scientific, Medical): libera

La banda ISM

- Bluetooth, alcune reti 802.11
- Telefoni senza filo, forni a microonde, mouse e tastiere senza fili, tutti i telecomandi etc etc

La Trasmissione Radio

◆Caratteristiche: omnidirezionale → vantaggio: non servono particolari allineamenti tra trasmettitore e

ricevente

Ma... vedi caso Cadillac e polizia dell'Ohio!

La Trasmissione Radio (cont.)

- Onde radio a bassa frequenza (es., AM che usa la banda MF): passano gli ostacoli, ma si disperdono facilmente
- Onde radio ad alta frequenza (es. FM): non passano bene gli ostacoli, assorbite dalla pioggia

