STAT 672: Homework 3

Tom Wallace

March 21, 2018

SVD and Ridge Regression

Estimated coefficients in ridge regression are given by:

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

We take the singular value decomposition of the feature matrix:

$$= ((\mathbf{U}\mathbf{D}\mathbf{V}^T)^T(\mathbf{U}\mathbf{D}\mathbf{V}^T) + \lambda \mathbf{I})^{-1}(\mathbf{U}\mathbf{D}\mathbf{V}^T)^T\mathbf{y}$$
$$= (\mathbf{V}\mathbf{D}^T\mathbf{U}^T\mathbf{U}\mathbf{D}\mathbf{V}^T + \lambda \mathbf{I})^{-1}\mathbf{V}\mathbf{D}^T\mathbf{U}^T\mathbf{y}$$

We know that $\mathbf{U}^T\mathbf{U} = \mathbf{I}$ and $\mathbf{D}^T\mathbf{D} = \mathbf{D}^2$ and so can simplify this to:

$$= (\mathbf{V}\mathbf{D}^2\mathbf{V}^T + \lambda \mathbf{I})^{-1}\mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

We substitute in $\mathbf{V}\mathbf{V}^T$ for \mathbf{I} :

$$= (\mathbf{V}\mathbf{D}^2\mathbf{V}^T + \lambda\mathbf{V}\mathbf{V}^T)^{-1}\mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

And factor out $\mathbf{V}\mathbf{V}^T$:

$$= \mathbf{V}(\mathbf{D}^2 + \lambda)^{-1} \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T \mathbf{y}$$

And make use of the fact that V is orthonormal:

$$= \mathbf{V}(\mathbf{D}^2 + \lambda)^{-1} \mathbf{D} \mathbf{U}^T \mathbf{y}$$

Since **D** is diagonal, we can rewrite the expression involving it and λ :

$$\mathbf{D}_{\lambda} := (\mathbf{D}^2 + \lambda)^{-1} \mathbf{D}$$

$$= \operatorname{diag}\left(\frac{d_1}{d_1^2 + \lambda} \dots \frac{d_D}{d_D^2 + \lambda}\right)$$

Thus, computation of estimated coefficients in ridge regression via SVD is given by:

$$\hat{oldsymbol{eta}}_{ ext{ridge}} = \mathbf{V} \mathbf{D}_{\lambda} \mathbf{U}^T \mathbf{y}$$

1

Efficiency of Computation

There are an inefficient method and an efficient method of re-calculating ridge regression coefficients for a new regularization parameter λ .

In the inefficient method, we redo the entire singular value decomposition every time we update λ . SVD has a computational complexity on the order of $O(nd^2)$ (with n corresponding to the number of rows of the feature matrix and d corresponding to the number of columns, i.e. the dimensionality of the data). We then multiply $\mathbf{VD}_{\lambda}\mathbf{U}^T\mathbf{y}$. A matrix-matrix product C = AB, where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, costs O(2mnp) flops. In our case, $\mathbf{U}^T \in \mathbb{R}^{d \times n}$ and $\mathbf{Y} \in \mathbb{R}^{n \times 1}$, and so multiplying the two costs $O(2 \times n \times d \times 1) = O(2nd)$ flops and results in a $d \times 1$ matrix. Multiplying $\mathbf{D}_{\lambda} \in \mathbb{R}^{d \times d}$ and this $d \times 1$ matrix costs $O(2d^2)$ flops (assuming we do not take advantage of the diagonal structure of \mathbf{D}_{λ}) and results in a $d \times 1$ matrix. Multiplying $\mathbf{V} \in \mathbb{R}^{d \times d}$ by this $d \times 1$ matrix costs $O(2d^2)$ flops. Adding together all these steps, we have $O(nd^2 + 2nd + 2d^2 + 2d^2)$. Dropping all constant coefficients and only considering the highest-order polynomial, we conclude that the inefficient method costs $O(nd^2)$ flops.

A more efficient method notes that \mathbf{D}_{λ} is the only part of $\mathbf{V}\mathbf{D}_{\lambda}\mathbf{U}^{T}\mathbf{y}$ that depends on λ (\mathbf{U} and \mathbf{V} depends solely on the feature matrix \mathbf{X} , and \mathbf{y} depends only on itself) and so we do not not need to recompute the SVD for every new value of λ . Assume that we have pre-calculated and cached $\mathbf{U}^{T}\mathbf{y}$ and \mathbf{V} . Modifying the d non-zero values of \mathbf{D}_{λ} to reflect our new value of λ costs O(d) flops. Computing new regression coefficients requires multiplying the new \mathbf{D}_{λ} and $\mathbf{U}^{T}\mathbf{y}$, which costs $O(2d^{2})$ flops, and then multiplying that result by \mathbf{V} , which also costs $O(2d^{2})$ flops. Adding together these two steps, we have $O(d+2d^{2}+2d^{2})$. Dropping all constant coefficients and only considering the highest-order polynomial, we conclude that the efficient method costs $O(d^{2})$ flops.

	Complexity
Inefficient method	$O(nd^2)$
Efficient method	$O(d^2)$

Results

Below, I compare the performance of ridge and lasso regression on the homework dataset for different values of λ . For ridge regression, a regularization parameter value of 0.00390625 achieves the lowest test error (2.81855); for lasso regression, a regularization parameter of $4.46e^{-0.6}$ (i.e. the tested value closest to 0) achieves the lowest test error (2.85948). The ridge method achieves the better minimum test error.

