Functional Analysis Homework 2

Deadline: September 23rd

1. Problem 1 (2 points)

Let X be a linear space and let $p: X \to [0, +\infty)$ such that:

1.
$$p(x) = 0 \iff x = 0;$$

2.
$$p(\lambda x) = |\lambda| p(x) \ \forall x \in X \text{ and } \lambda \in \mathbb{K}.$$

Show that p is a norm if and only if the set $B_X = \{x \in X : p(x) \le 1\}$ is convex.

2. Problem 2 (5 points)

Given a vector space X over \mathbb{R} , we say that two norms $\|\cdot\|$ and $\|\cdot\|'$ are equivalent if

$$\exists C > 0 \ \forall x \in X : \ C^{-1} \|x\|' \le \|x\| \le C \|x\|'.$$

a) Let X be a finite-dimensional vector space over \mathbb{R} . Show that all norms on X are equivalent;

Hints: relate your norm to the ℓ_{∞} norm.

3. Problem 3 (5 points)

Let V be a vector space over \mathbb{R} . A norm $\|\cdot\|$ is induced by a scalar product $\langle \cdot, \cdot \rangle$ (*i.e.*, there exists a scalar product $\langle \cdot, \cdot \rangle$ such that for every $x \in V$ $\|x\|^2 = \langle x, x \rangle$) if and only if the norm satisfies the parallelogram identity *i.e.*, for every $x, y \in V$

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$
.

Hint: If the norm satisfies the parallelogram identity, consider $\langle x, y \rangle = \frac{1}{4} \|x + y\|^2 - \frac{1}{4} \|x - y\|^2$. Prove that $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ first for $\lambda \in \mathbb{N}$ then in \mathbb{Q} then in \mathbb{R} .

4. Problem 4 (4 points)

Prove the following statements.

- a) Let $\|\cdot\|$ and $\|\cdot\|'$ be two norms on the vector space V. Show that the two norms are equivalent if and only if they induce the same topology;
- b) If V is a vector space on which we have two norms that generate the same topology, prove that either both of them are complete or none of them is complete;

c) Let $x, y \in \mathbb{R}$. Let $d_1(x, y) = |x - y|$ and $d_2(x, y) = |g(x) - g(y)|$ with $g(x) = \frac{x}{1 + |x|}$ for $x \in \mathbb{R}$. Prove that d_1 and d_2 are metrics on \mathbb{R} that generate the same topology but (\mathbb{R}, d_1) is complete while (\mathbb{R}, d_2) is not.

5. Problem 5 (4 points)

- a) Determine all the values $p \in [1, +\infty]$ such that the Banach space $\ell_p(\mathbb{N})$ is an Hilbert space (i.e., the norm $\|\cdot\|_{\ell_p}$ is induced by some inner product $\langle\cdot,\cdot\rangle_p$;
- b) Determine all the values $p \in [1, +\infty]$ such that the Banach space $L_p(\mathbb{R})$ is an Hilbert space $(i.e., the norm \|\cdot\|_{L_p})$ is induced by some inner product $\langle \cdot, \cdot \rangle_p$.

Notice that $p = \infty$ is included in the argument.