Probability Distributions for Discrete Random Variables

Ben Goodrich January 31, 2019

Obligatory Disclosure

- Ben is an employee of Columbia University, which has received several research grants to develop Stan
- Ben is also a manager of GG Statistics LLC, which uses Stan for business purposes
- · According to Columbia University policy, any such employee who has any equity stake in, a title (such as officer or director) with, or is expected to earn at least \$5,000.00 per year from a private company is required to disclose these facts in presentations

Bernoulli Distribution

- Tuesday we talked about the Bernoulli distribution over $\Omega=\{0,1\}$, whose Probability Mass Function (PMF) is $\Pr{(x|\pi)}=\pi^x(1-\pi)^{1-x}$, which depends on a possibly unknown probability parameter $\pi\in[0,1]$
- $\mathbb{E}X = 0 \times (1-\pi) + 1 \times \pi = \pi$
- $^{ullet} \ \mathbb{E}(X-\pi)^2 = \mathbb{E}\left[X^2
 ight] (\mathbb{E}X)^2 = \mathbb{E}X \pi^2 = \pi \pi^2 = \pi\left(1-\pi
 ight)$
- You could write a model where π is a function of predictors for each observation, as in $\pi(z)=\frac{1}{1+e^{-\alpha-\beta z}}$ for a logit model

Binomial Distribution

- A Binomial random variable can be defined as the sum of n INDEPENDENT Bernoulli random variables with the same π . What is Ω in this case?
- · What is an expression for the expectation of a Binomial random variable?
- · What is an expression for the variance of a Binomial random variable?
- · What is an expression for the PMF, $\Pr\left(x|\pi,n=3\right)$? Hint: 8 cases to consider
- All succeed, π^3 or all fail, $(1-\pi)^3$
- 1 succeeds and 2 fail $\pi^1(1-\pi)^{3-1}$ but there are 3 ways that could happen
- 2 succeed and 1 fails $\pi^2(1-\pi)^{3-2}$ but there are 3 ways that could happen
- · In general, $\Pr\left(x|\,n,\pi\right)=\binom{n}{x}\pi^x(1-\pi)^{n-x}$, where $\binom{n}{x}=\frac{n!}{x!(n-x)!}$ is the number of ways x can occur in n tries (if order is unimportant) where ! indicates the factorial function

Back to Bowling

- Why is the binomial distribution with n=10 inappropriate for the first roll of a frame of bowling?
- Could the Bernoulli distribution be used for success in getting a strike?
- Could the Bernoulli distribution be used for the probability of knocking over the frontmost pin?
- · If $X_i = \mathbb{I}\{\text{pin i is knocked down}\}$ and π_i is the probability in the i-th Bernoulli distribution, what conceptually is

$$\Pr\left(x_1ert \pi_1
ight)\prod_{i=2}^{10}\Pr\left(x_iert \pi_i, X_1=x_1, X_2=x_2, \ldots, X_{i-1}=x_{i-1}
ight)?$$

Poisson Distribution for Counts

Let $n\uparrow\infty$ and let $\pi\downarrow 0$ such that $\mu=n\pi$ remains fixed and finite. What happens to the binomial PMF, $\Pr\left(x|n,\pi\right)=\binom{n}{x}\pi^x(1-\pi)^{n-x}$?

$$-(1-\pi)^{n-x} = (1-\frac{\mu}{n})^{n-x} = (1-\frac{\mu}{n})^n \times (1-\frac{\mu}{n})^{-x} \to e^{-\mu} \times 1$$

$$-\binom{n}{x}\pi^x = rac{n!}{x!(n-x)!}rac{\mu^x}{n^x} = rac{n imes (n-1) imes (n-2) imes \dots imes (n-x+1)}{n^x}rac{\mu^x}{x!} o 1 imes rac{\mu^x}{x!}$$

- Thus, $\Pr\left(x|\mu\right) = \frac{\mu^x e^{-\mu}}{x!}$ is the PMF of the Poisson distribution over $\Omega = \{0, \mathbb{Z}_+\}$, which is a common distribution for count variables
- What is the variance of a Poisson random variable?

Parameterized Bowling

- · Bell numbers are defined as $\mathcal{B}_0=1$, $\mathcal{B}_1=1$, and else $\mathcal{B}_{n+1}=\sum_{k=0}^n \binom{n}{k}\mathcal{B}_k$
- Let $\Pr\left(x|\,n,\Upsilon
 ight)=rac{\binom{n+\Upsilon}{x+\Upsilon}\mathcal{B}_{x+\Upsilon}}{\mathcal{B}_{n+1+\Upsilon}-\sum_{k=0}^{\Upsilon-1}\binom{n+\Upsilon}{k}\mathcal{B}_{k}}$ where $\Upsilon\in\{0,\mathbb{N}_{+}\}=\Theta$ is an unknown
- · Use a Poisson distribution with expectation μ to represent beliefs about Υ
- · Can update those beliefs with data on pins knocked down in bowling

```
B <- Vectorize(memoise::memoise(numbers::bell)) # makes it go faster
Pr <- function(x, n = 10, Upsilon = 0) { # probability of knocking down x out of n pins
    stopifnot(length(n) == 1, is.numeric(x), all(x == as.integer(x)))
    numer <- B(x + Upsilon) * choose(n + Upsilon, x + Upsilon)
    denom <- B(n + 1 + Upsilon) # ^^^ choose(n, k) is n! / (k! * (n - k)!)
    if(Upsilon > 0) denom <- denom -
        sum(choose(n + Upsilon, 0:(Upsilon - 1)) * B(0:(Upsilon - 1)))
    return(ifelse(x > n, 0, numer / denom))
}
```

How to Select μ in the Poisson Prior?

Using Bayes Rule with Bowling Data

frames <- cbind(x_1 = c(9, 8, 10, 8, 7, 10, 9, 6, 9),

$$x_2 = c(1, 1, 0, 2, 2, 0, 0, 3, 0)$$
)

• Suppose that you observe the first J=9 frames of bowling on the same person. Your posterior beliefs about Υ are given by

$$\Pr \left({\Upsilon | \, {x_{1,1},x_{1,2}, \ldots ,x_{J,1},x_{J,2},\mu } } \right) = rac{{\Pr \left({\Upsilon | \, \mu }
ight)\Pr \left({x_{1,1},x_{1,2}, \ldots ,x_{J,1},x_{J,2}}
ight)\Upsilon }}}{{\Pr \left({x_{1,1},x_{1,2}, \ldots ,x_{J,1},x_{J,2}}
ight)}}$$

- $\Pr\left(\Upsilon|\mu
 ight) = rac{\mu^{\Upsilon}e^{-\mu}}{\Upsilon!}$ is the PMF for a Poisson distribution
- What is $\Pr(x_{1,1}, x_{1,2}, \dots, x_{J,1}, x_{J,2} | \Upsilon)$?
- · Due to the independence of frames, $\Pr\left(x_{1,1}, x_{1,2}, \ldots, x_{J,1}, x_{J,2} \middle| \Upsilon\right) = \prod_{j=1}^{J} \Pr\left(x_{j,1} \middle| n = 10, \Upsilon\right) \Pr\left(x_{j,2} \middle| n = 10 x_{j,1}, \Upsilon\right)$
- What is $Pr(x_{1,1}, x_{1,2}, \dots, x_{J,1}, x_{J,2})$?

Denominator of Bayes Rule

- $\Pr\left(x_{1,1},x_{1,2},\ldots,x_{J,1},x_{J,2}\right)=\mathbb{E}g\left(\Upsilon\right)$ w.r.t. the prior PMF $\Pr\left(\Upsilon|\mu\right)$, where $g\left(\Upsilon\right)=\Pr\left(x_{1,1},x_{1,2},\ldots,x_{9,1},x_{9,2}|\Upsilon\right)$. $g\left(\Upsilon\right)$ called the LIKELIHOOD function of Υ (evaluated at the observed data)
- · The expected likelihood can be computed in this case as

$$\mathbb{E}g\left(\Upsilon
ight) = \sum_{i=0}^{\infty} \Pr\left(i|\mu
ight) \Pr\left(x_{1,1}, x_{1,2}, \ldots, x_{J,1}, x_{J,2}|\Upsilon=i
ight) = \ \sum_{i=0}^{\infty} rac{\mu^i e^{-\mu}}{i!} \prod_{j=1}^{J} \Pr\left(x_{j,1}|n=10, \Upsilon=i
ight) \Pr\left(x_{j,2}|n=10-x_{j,1}, \Upsilon=i
ight)$$

• In practice, when evaluating an infinite sum we just stop once the terms get close enough to zero

Calculating Posterior Probabilities in R

Comparison of Prior and Posterior Probabilities

Hypergeometric Distribution

- The binomial distribution corresponds to sampling WITH replacement
- · The hypergeometric distribution corresponds to sampling WITHOUT replacement and has PMF $\Pr\left(x|N,K,n\right) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$ where
 - N is the (finite) size of the set being drawn from
 - *K* is the number of successes in that finite set
 - n is the number of times you draw without replacement
- What is the probability of drawing two cards from a deck with the same value?
- · Intuitively, the probability of any pair should be $\frac{4}{52} \times \frac{3}{51} = \frac{1}{221}$ and there are 13 ways to do that so 13 * dhyper(x = 2, 4, 52 4, 2)