H22-7

(1) $x_3 = x_4 - x_5$ ($x_4, x_5 \ge 0$) とする。と同時に x_5, y 変数と見なし、等式系にする。 Maximize $Cx_1 + 4x_2 - 6x_4 + 6x_5$ (標準系) st. $-4x_1 + 2x_2 - 2x_4 + 2x_5 = 4$ $-x_1 + x_2 - 2x_4 + 2x_5 = 3$ $x_1, x_2, x_4, x_5 \ge 0$

(2) 初期辞書

$$Z = 10 + (6+c)x_1$$

 $x_2 = 1 - +3 x_1$
 $x_5 = 1 - x_1 + x_4$

(1)で散量で整数系数となるように、基底変数を選んだめ、 6+c < O より、即に最直結書 従って、最直值 10 , 最直解(x*,x*,x*)=(0,1,-1)

(3) (2) 2" 6+C>Oと仮定して話書を興行すると、!

$$Z = 16 + C + (6 + C)x_4 - (6 + C)x_5$$

$$x_{3} = 4$$
 $+3x_{4}$ $-3x_{5}$

$$x_1 = 1$$
 $+x_4$ $-x_5$

となり非有界。

ー方,(2)は6+C≤のならは、最適のまである。

従って、 C≤-6