

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA

ESCUELA SUPERIOR DE CÓMPUTO

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA

PROGRAMA ACADÉMICO: Licenciatura en Ciencias de Datos

UNIDAD DE APRENDIZAJE: Procesos estocásticos SEMESTRE: V

PROPÓSITO DE LA U		_					
Construye modelos este			natas alea procesos		, cadenas de Markov y pr ásticos	rocesos de Poisson	-
CONTENIDOS:	II. Camin III. Proces IV. Caden	atas alea sos de Po as de Ma	atorias y r oisson	novimi	ento browniano		
	Método	s de ens	señanza		Estrategias o	de aprendizaje	
,	a) Inductivo			X	a) Estudio de casos		
ORIENTACIÓN DIDÁCTICA:	b) Deductivo			Х	b) Aprendizaje basado	en problemas	Х
	c) Analógico				c) Aprendizaje orientad	do proyectos	
	d) Analítico			X			
	Diagnóstica			X	Saberes Previamente	Adquiridos	Х
	Solución de casos			Х	Organizadores gráficos		Х
,	Problemas res	sueltos		Х	Problemarios		
EVALUACIÓN Y ACREDITACIÓN:	Reporte de pr	oyectos			Exposición		Х
	Reportes de i	eportes de indagación			Otras evidencias a eva Discusión dirigida	luar:	
	Reportes de p	rácticas	1	Х	Discusion amgrad		
	Evaluación es	crita		Х			
	Autor(es)	Año		Títul	del documento	Editorial / IS	
	Barbosa, R. & Ilinas, H.	2018	2018 Proceso		cásticos y aplicaciones	Universidad del / B07DC55FRG	Norte
BIBLIOGRAFÍA BÁSICA:	Dobrow, R.	2016	Introduc with R	Introduction to Stochastic Processes with R		Wiley / 9781118740651	
	*Feldman, M. & Valdez C.	2010	Process	Applied Probability and Stochastic Springer / Processes 97836420515		Springer / 9783642051555	555
	*Ross, M.	1993	Optimiza	Applied Probability Models with Dover / Optimization Applications 97804866731		9780486673141	
	*Ross, M	2019	Introduc	tion to	Probability Models	Academic Press 9780128143469	

^{*}Bibliografía clásica

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE: Procesos estocásticos HOJA 2 DE 8

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA

ESCUELA SUPERIOR DE CÓMPUTO

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA

PROGRAMA ACADÉMICO: Licenciatura en Ciencia de Datos

SEMESTRE: ÁREA DE FORMACIÓN: MODALIDAD:

V Científica Básica Escolarizada

TIPO DE UNIDAD DE APRENDIZAJE:

Teórica-Práctica/Obligatoria

VIGENTE A PARTIR DE: CRÉDITOS:

Enero, 2022 **Tepic:** 10.5 **SATCA:** 8.4

INTENCIÓN EDUCATIVA

La presente unidad contribuye al perfil de egreso del Licenciado en Ciencia de Datos con las habilidades de análisis y aplicación de métodos matemáticos para comportamientos probables en la toma de decisiones de alta dirección fundada en los datos. Asimismo, fomenta las dinámicas de trabajo colaborativo con sentido ético y de responsabilidad.

Esta unidad se relaciona de manera antecedente con Probabilidad, Programación para ciencia de datos y Métodos numéricos, lateral con Matemáticas avanzadas para ciencia de datos, y de manera consecuente con Análisis de series de tiempo.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Construye modelos estocásticos a partir de caminatas aleatorias, cadenas de Markov y procesos de Poisson.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 4.5

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 81.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE AUTÓNOMO: 32.0

HORAS TOTALES/SEMESTRE:

108.0

UNIDAD DE APRENDIZAJE DISEÑADA POR:

Comisión de Diseño del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General Consultivo del IPN.

22/10/2020

AUTORIZADO Y VALIDADO POR:

Ing. Juan Manuel Velázquez Peto Director de Educación Superior

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Procesos estocásticos HOJA 3 DE 8

UNIDAD TEMÁTICA I Descripción de procesos	CONTENIDO		HORAS CON DOCENTE		
estocásticos		T	Р	AA	
Describe procesos estocásticos a partir de la	 1.1. Procesos deterministas y procesos estocásticos 1.1.1. Clasificación por espacios de valores 1.1.2. Procesos en tiempo discreto y en tiempo continuo 1.1.3. Trayectorias de un proceso estocástico 1.2. Algunos tipos de procesos estocásticos 1.2.1. Distribuciones de probabilidad conjuntas 1.2.2. Proceso con incrementos independientes 1.2.3. Proceso con incrementos estacionarios 1.2.4. Proceso estacionario en sentido amplio y débil 1.2.5. Proceso gaussiano 	4.5	3.0	3.0	
	<u> </u>	7.5	4.5	4.5	

UNIDAD TEMÁTICA II Caminatas aleatorias y	CONTENIDO		HORAS CON DOCENTE		
movimiento browniano		T	Р	AA	
UNIDAD DE COMPETENCIA	2.1. Caminata aleatoria	6.0		1.5	
Simula el movimiento	2.1.1. El proceso de Bernoulli				
browniano a partir de	2.1.2. Caminata aleatoria con el proceso de Bernoulli				
caminatas aleatorias.	2.1.3. Caminatas aleatorias en el plano y el espacio				
	2.2.La ruina del jugador 2.2.1. La probabilidad de ruina 2.2.2. Duración promedio del juego	4.5	3.0	3.0	
	2.3. Movimiento browniano	6.0	1.5	3.0	
	2.3.1. Simulación del movimiento browniano en tiempo discreto y continuo por caminatas aleatorias2.3.2. Movimiento browniano y la ruina del jugador			0.0	
	Subtotal	16.5	4.5	7.5	

UNIDAD TEMÁTICA III Procesos de Poisson	CONTENIDO				CONTENIDO HORAS CON DOCENTE		HRS AA
		T	Р	AA			
Analiza procesos de Poisson a partir de las distribuciones del	 3.1. Derivación del proceso de Poisson 3.1.1. Ley de eventos raros y aproximación a la distribución binomial 3.1.2. Axiomatización del proceso de Poisson 3.2. Proceso de Poisson homogéneo 3.2.1. Distribución del tiempo de primer evento 3.2.2. Distribución del tiempo inter eventos 3.2.3. Distribución uniforme y el proceso de Poisson 3.2.4. Métodos para simular procesos de Poisson 3.2.5. Proceso de Poisson espacial 	9.0	3.0	3.0			
	3.3. Proceso de Poisson no-homogéneo	4.5	1.5	1.5			
	_	18.0	4.5	6.0			

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Procesos estocásticos HOJA 4 DE 8

UNIDAD TEMÁTICA IV Cadenas de Markov	CONTENIDO		S CON ENTE	HRS AA
Cadenas de Markov		Т	Р	
UNIDAD DE COMPETENCIA	4.1. Estructura probabilística de una cadena Markov en	4.5	1.5	1.5
Emplea cadenas de Markov	tiempo discreto			
	4.1.1. Probabilidad de transición y distribución conjunta			
las características de sus	4.1.2. Ecuación de Chapman-Kolmogorov			
estados y su evolución en	4.1.3. Ejemplos de cadena de Markov			
tiempo largo.				
. 0	4.2. Estados de una cadena de Markov	7.5	3.0	1.5
	4.2.1. Estados alcanzables y comunicables			
	4.2.2. Cadenas de Markov irreducibles			
	4.2.3. Periodicidad de una cadena de Markov			
	4.2.4. Tiempos de transición			
	4.2.5. Estados recurrentes, transitorios y absorbentes			
	4.3. Evolución en tiempo largo	7.5	3.0	1.5
	4.3.1. Probabilidades límite			
	4.3.2. Distribuciones estacionarias			
	4.3.3. Algoritmo Monte Carlo vía Cadena de Markov			
	(MCMC)			
	4.4. Cadenas de Markov ocultas	4.5	3.0	3.0
	Subtotal	24.0	10.5	7.5

UNIDAD TEMÁTICA V Modelos de decisión	CONTENIDO		S CON ENTE	HRS AA
estocásticos		Т	Р	
UNIDAD DE COMPETENCIA Determina decisiones a partir de herramientas de procesos de decisión markovianos.	·	7.5		3.0
	5.2 Espacio de estados finito5.2.1 Enfoque computacional5.2.2 Enfoque de programación lineal5.3. Aplicaciones	4.5 3.0	3.0	3.0
	Subtotal	15.0	3.0	6.0

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Procesos estocásticos

HOJA 5 **DE** 8

ESTRATEGIAS DE APRENDIZAJE	EVALUACIÓN DE LOS APRENDIZAJES
Aprendizaje Basado en Problemas El estudiante desarrollará las siguientes actividades:	Evaluación diagnóstica. Portafolio de evidencias:
 Realización de organizadores gráficos Discusión grupal dirigida de preguntas estratégicas. Solución de problemas teóricos y prácticos con uso de software Exposición Análisis de casos Realización de prácticas 	 Mapas mentales, mapas cognitivos y/o cuadros sinópticos Conclusión de discusión Problemas resueltos con el uso de software Exposición Solución de casos Reporte de prácticas Evaluación escrita

RELACIÓN DE PRÁCTICAS PRÁCTICA UNIDADES LUGAR DE NOMBRE DE LA PRÁCTICA No. **TEMÁTICAS** REALIZACIÓN 1 Distribución normal multivariada: Propiedades analíticas 2 Simulación de procesos gaussianos Simulación de la ruina del jugador 3 Ш 4 Persistencia de la mala suerte y ley de arco seno Ш 5 Movimiento browniano vía simulación de caminatas aleatorias Ш 6 Simulación de trayectorias de procesos de Poisson homogéneo y Ш 7 no homogéneo Ш Aula de clase Aplicación de proceso de Poisson en ciencia de datos IV 8 Salón de cómputo 9 Cadena de nacimiento y muerte en tiempo discreto IV 10 Cálculo de distribuciones estacionarias IV 11 Algoritmo Metropolis vía MCMC IV Aplicación de cadena de Markov oculta en ciencia de datos 12 ٧ 13 Ejemplo de decisiones markovianos en ciencia de datos **TOTAL DE HORAS:** 27.0

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Procesos estocásticos HOJA 6 DE

	Bibliografía								
					Documento				
Tipo	Autor(es)	Año	Título del documento	Editorial	Lib ro	A n t o I o g í a	O t r o s		
В	Barbosa, R. & Ilinas, H.	2018	Procesos estocásticos y aplicaciones	Universidad del Norte / B07DC55FRG	Х				
В	Dobrow, R.	2016	Introduction to Stochastic Processes with R	Wiley / 9781118740651	Х				
В	*Feldman, M. & Valdez C.	2010	Applied Probability and Stochastic Processes	Springer / 9783642051555	Χ				
С	*Kulkarni, V.G.	2012	Introduction to Modeling and Analysis of Stochastic Systems	Springer / 9781461427353	Х				
С	Matloff, N.	2019	Probability and Statistics for Data Science	Chapman and Hall / 9781138393295	Х				
С	*Oliver, I.	2014	Fundamentals of Applied Probability and Random Processes	Academic Press / 9780128008522	Х				
С	Romero, P.J.	2019	Introducción a los Procesos Estocásticos con R: Teoría y Práctica	Editorial Académica Española / 9786139004539	Х				
В	*Ross, M.	1993	Applied Probability Models with Optimization Applications	Dover / 9780486673141	Х				
В	*Ross, M	2019	Introduction to Probability Models	Academic Press / 9780128143469	Х				

^{*}Bibliografía clásica

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Procesos estocásticos HOJA 7 DE 8

Recursos digitales						
Autor, año, título y Dirección Electrónica	T e x t o	Simulador	I m a g e n	P r e s e n t a c i ó n	D c c i o n a r i o	t
Brownian Motion and Random Walks, Recuperado el 31 de julio de 2020, de: http://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html						Х
Building Brownian Motion from a Random Walk, Recuperado el 31 de julio de 2020 de:https://www.youtube.com/watch?v=6VqBCt5PiPY						Х
El proceso de Poisson no homogéneo, Recuperado el 31 de julio de 2020, de: https://www.youtube.com/watch?v=fMVed8WC468						Х
Example illustrating the Metropolis algorithm, Recuperado el 31 de julio de 2020, de: https://youtu.be/Dzx5xNT79Tl						Х
Markov Chain Monte Carlo and Metropolis Algorithm, Recuperado el 31 de julio de 2020, de: https://youtu.be/h1NOS_wxgGg						Х
Proceso de Decisión Markoviano: Ejemplo en Computación, Recuperado el 31 de julio de 2020 de: https://youtu.be/0gRAMPN1vew						Х
Procesos de Decisión de Markov, Recuperado el 31 de julio de 2020, de: https://es.coursera.org/lecture/razonamiento-artificial/procesos-de-decision-de-markov-Vqv8						Х
Stochastic Processes, MITOPENCOURSEWARE, Recuperado el 31 de julio de 2020, de: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-iii/						Х
Towards Data Science, Stochastic Processes Analysis An introduction to Stochastic processes and how they are applied every day in Data Science and Machine Learning, Recuperado el 31 de julio de 2020, de: https://towardsdatascience.com/stochastic-processes-analysis-f0a116999e4						Х

SECRETARÍA ACADÉMICA **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

UNIDAD DE APRENDIZAJE:

Procesos estocásticos

HOJA

DE

8

PERFIL DOCENTE: Licenciatura o Ingeniería en Matemáticas, Computación o áreas afines, preferentemente con posgrado.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS		ACTITUDES
Preferentemente 2 años en	En procesos estocásticos a	Discursivas	Responsabilidad
el área de probabilidad y	nivel superior y uso de	Cognoscitivas	Tolerancia
estadística relacionadas con	software para simular	Metodológicas	Honestidad
matemáticas o ingeniería.	procesos estocásticos.	De conducción del grupo	Respeto
Mínima de 2 años de	Del Modelo Educativo	Para evaluar	Paciencia
docencia a Nivel Superior.	Institucional (MEI).		Disciplina
·	,		Constancia

			Constantia
ELABORÓ	RE	VISÓ	AUTORIZÓ
Dr. Víctor Manuel Pérez Abreu Profesor Coordinador		M. en	C. Andrés Ortigoza Campos Director ESCOM
Dr. Alín Andrei Carstean Profesor Colaborador	Ga	Giovanny Mosso Ing. Ca arcía on Académica	arlos Alberto Paredes Treviño Director UPIIC
M. en C. Andrea Alejandra R Peña Profesora Colaborador			

Profesora Colaboradora