Springer Handbook of Robotics

Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical sciences and engineering. The world's leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information.

The volumes are designed to be useful as readable desk reference books to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided.

Han Springer Handbook

of Robotics

Bruno Siciliano, Oussama Khatib (Eds.)

With DVD-ROM, 953 Figures, 422 in four color and 84 Tables

Editors:

Professor Bruno Siciliano PRISMA Lab Dipartimento di Informatica e Sistemistica Università degli Studi di Napoli Federico II Via Claudio 21, 80125 Napoli, Italy siciliano@unina.it

Professor Oussama Khatib Artificial Intelligence Laboratory Department of Computer Science Stanford University Stanford, CA 94305-9010, USA khatib@cs.stanford.edu

Library of Congress Control Number:

2007942155

ISBN: 978-3-540-23957-4 e-ISBN: 978-3-540-30301-5

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September, 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com

© Springer-Verlag Berlin Heidelberg 2008

The use of designations, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Production and typesetting: le-tex publishing services oHG, Leipzig Senior Manager Springer Handbook: Dr. W. Skolaut, Heidelberg Typography and layout: schreiberVIS, Seeheim Illustrations: Hippmann GbR, Schwarzenbruck Cover design: eStudio Calamar Steinen, Barcelona Cover production: WMXDesign GmbH, Heidelberg Printing and binding: Stürtz GmbH, Würzburg

Printed on acid free paper

SPIN 10918401 89/3180/YL 5 4 3 2 1 0

Foreword

My first introduction to robotics came via a phone call in 1964. The caller was Fred Terman, the author of the world-famous *Radio Engineer's Handbook*, who was at the time Provost of Stanford University. Dr. Terman informed me that a computer science professor, John McCarthy, had just been awarded a large research grant, part of which required the development of computer-controlled manipulators. Someone had suggested to Terman that it would be prudent if the mathematically oriented McCarthy had some contact with mechanical designers. Since I was the only one on the Stanford faculty whose specialty was mechanism design, Terman decided to phone me, even though we had never met and I was a young assistant professor fresh out of graduate school with only 2 years at Stanford.

Dr. Terman's phone call led me to a close association with John McCarthy and the Stanford Artificial Intelligence Laboratory (SAIL) that he founded. Robotics became one of the pillars of my entire academic career, and I have maintained my interest in teaching and researching the subject through to the present day.

The modern history of robotic manipulation dates from the late 1940s when servoed arms were developed in connection with master–slave manipulator systems used to protect technicians handling nuclear materials. Developments in this area have continued to the present day. However, in the early 1960s there was very little academic or commercial activity in robotics. The first academic activity was the thesis of H. A. Ernst, in 1961, at MIT. He used a slave arm equipped with touch sensors, and ran it under computer control. The idea in his study was to use the information from the touch sensors to guide the arm.

This was followed by the SAIL project and a similar project started by Professor Marvin Minsky at MIT, which were the only sizeable academic ventures into robotics at that time. There were a few attempts at commercial manipulators, primarily in connection with part production in the automotive industry. In the USA there were two different manipulator designs that were being experimented with in the auto industry; one came from American Machine and Foundry (AMF) and the other from Unimation, Inc.

There were also a few mechanical devices developed as hand, leg, and arm prosthetics, and, a bit later, some exoskeletal devices to enhance human performance. In those days there were no microprocessors. So, these devices were either without computer control, or tethered to a remote so-called minicomputer, or even a mainframe computer.

Initially, some in the computer science community felt that computers were powerful enough to control any mechanical device and make it perform satisfactorily. We quickly learned that this was not to be the case. We started on a twofold track. One was to develop particu-

Bernard RothProfessor of Mechanical
Engineering
Stanford University

lar devices for SAIL, so that hardware demonstrations and proof-of-concept systems were available for the fledgling robotics community to experiment with. The other track, which was more or less moonlighted from the work at SAIL, was the development of a basic mechanical science of robotics. I had a strong feeling that a meaningful science could be developed, and that it would be best to think in terms of general concepts rather than concentrate exclusively on particular devices.

Fortuitously, it turned out that the two tracks supported each other very naturally and, most importantly, the right students were interested in doing their research in this area. Hardware developments proved to be specific examples of more general concepts, and the students were able to develop both the hardware and the theory.

Originally, we purchased an arm in order to get started quickly. A group at Rancho Los Amigos Hospital, in Los Angeles, was selling a tongue-switch-controlled motor-driven exoskeleton arm to assist patients without muscular control of their arms. We purchased one of these, and connected it to a time-shared PDP-6 computer. The device was named *Butterfingers*; it was our first experimental robot. Several films demonstrating visual feedback control, block stacking tasks, and obstacle avoidance were made with *Butterfingers* as the star performer.

The first manipulator that we designed on our own was known simply as the *Hydraulic Arm*. As its name implies, it was powered by hydraulics. The idea was

to build a very fast arm. We designed special rotary actuators, and the arm worked well. It became the experimental platform for testing the first ever dynamic analysis and time-optimal control of a robotic arm. However, its use was limited since the design speeds were much faster than required due to the limitations of the computational, planning, and sensing capabilities that were common at that time.

We made an attempt to develop a truly digital arm. This led to a snake-like structure named the *Orm* (the Norwegian word for snake.) The *Orm* had several stages, each with an array of inflatable pneumatic actuators that were either fully extended or fully contracted. The basic idea was that, even though only a finite number of positions in the workspace could be reached, these would be sufficient if there were a large number of positions. A small prototype proof-of-concept *Orm* was developed. It led to the realization that this type of arm would not really serve the SAIL community.

The first truly functional arm from our group was designed by Victor Scheinman, who was a graduate student at the time. It was the very successful *Stanford Arm*, of which over ten copies were made as research tools to be used in various university, government, and industrial laboratories. The arm had six independently driven joints; all driven by computer-controlled servoed, DC electric motors. One joint was telescoping (prismatic) and the other five were rotary (revolute).

Whereas the geometry of Butterfingers required an iterative solution of the inverse kinematics, the geometric configuration of the Stanford Arm was chosen so that the inverse kinematics could be programmed in any easy-to-use time-efficient closed form. Furthermore, the mechanical design was specifically made to be compatible with the limitations inherent in timeshare computer control. Various end-effectors could be attached to act as hands. On our version, the hand was in the form of a vise-grip jaw, with two sliding fingers driven by a servoed actuator (hence, a true seventh degree of freedom). It also had a specially designed six-axis wrist force sensor. Victor Scheinman went on to develop other important robots: the first was a small humanoid arm with six revolute joints. The original design was paid for by Marvin Minsky at the MIT AI Lab. Scheinman founded Vicarm, a small company, and produced copies of this arm and the Stanford Arm for other labs. Vicarm later became the West Coast Division of Unimation, Inc., where Scheinman designed the PUMA manipulator under General Motors sponsorship through Unimation. Later, for a company called Automatix, Scheinman developed the novel Robot World multirobot system. After Scheinman left Unimation, his colleagues Brian Carlisle and Bruce Shimano reorganized Unimation's West Coast Division into Adept, Inc., which to this day is the largest US manufacturer of assembly robots.

Quickly, the modern trend of carefully detailed mechanical and electronic design, optimized software, and complete system integration became the norm; to this day, this combination represents the hallmark of most highly regarded robotic devices. This is the basic concept behind *mechatronic*, a word conied in Japan as a concatenation of the words mechanics and electronics. Mechatronics that relies on computation is the essence of the technology inherent in robotics as we know it today.

As robotics developed around the world, a large number of people started working on various aspects, and specific subspecialties developed. The first big division was between people working on manipulators and those working on vision systems. Early on, vision systems seemed to hold more promise than any other method for giving robots information about their environment.

The idea was to have a television camera capture pictures of objects in the environment, and then use algorithms that allowed the computer images of the pictures to be analyzed, so as to infer required information about location, orientation, and other properties of objects. The initial successes with image systems were in problems dealing with positioning blocks, solving object manipulation problems, and reading assembly drawings. It was felt that vision held potential for use in robotic systems in connection with factory automation and space exploration. This led to research into software that would allow vision systems to recognize machine parts (particularly partially occluded parts, as occurred in the so-called "bin-picking" problems) and ragged-shaped rocks.

After the ability to "see" and move objects became established, the next logical need had to do with planning a sequence of events to accomplish a complex task. This led to the development of planning as an important branch in robotics. Making fixed plans for a known fixed environment is relatively straightforward. However, in robotics, one of the challenges is to let the robot discover its environment, and to modify its actions when the environment changes unexpectedly due to errors or unplanned events. Some early landmark studies in this area were carried out using a vehicle named *Shakey*, which, starting in 1966, was developed by Charlie Rosen's group at the Stanford Research Institute (now called SRI). *Shakey* had a TV camera, a trian-

gulating range finder, bump sensors, and was connected to DEC PDP-10 and PDP-15 computers via radio and video links.

Shakey was the first mobile robot to reason about its actions. It used programs that gave it the ability for independent perception, world modeling, and action generation. Low-level action routines took care of simple moving, turning, and route planning. Intermediate-level actions combined the low-level ones in ways that accomplished more complex tasks. The highest level programs could make and execute plans to achieve high-level goals supplied by a user.

Vision is very useful for navigation, locating objects, and determining their relative positions and orientation. However, it is usually not sufficient for assembling parts or working with robots where there are environmental constraining forces. This led to the need to measure the forces and torques generated by the environment, on a robot, and to use these measurements to control the robot's actions. For many years, force-controlled manipulation became one of the main topics of study at SAIL, and several other labs around the world. The use of force control in industrial practice has always lagged the research developments in this area. This seems to be due to the fact that, while a high level of force control is very useful for general manipulation issues, specific problems in very restricted industrial environments can often be handled with limited, or no, force control.

In the 1970s, specialized areas of study such as walking machines, hands, automated vehicles, sensor integration, and design for hostile environments began to develop rapidly. Today there are a large number of different specialties studied under the heading of robotics. Some of these specialties are classical engineering subject areas within which results have been developed that have been particularized to the types of machines called robots. Examples here are kinematics, dynamics, controls, machine design, topology, and trajectory planning. Each of these subjects has a long history predating the study of robotics; yet each has been an area of in-depth robotics research in order to develop its special character in regard to robotic-type systems and applications. In doing this specialized development, researchers have enriched the classical subjects by increasing both their content and scope.

At the same time that the theory was being developed, there was a parallel, although somewhat separate, growth of industrial robotics. Strong commercial development occurred in Japan and Europe, and there was also continued growth in the USA. Industrial associa-

tions were formed (the Japan Robot Association was formed in March 1971, and the Robotic Industries Association (RIA) was founded in 1974 in the USA) and trade shows, together with application-oriented technical sessions, were introduced and held on a regular basis. The most important were the International Symposium on Industrial Robots, the Conference on Industrial Robot Technology (now called the International Conference on Industrial Robot Technology), and the RIA annual trade show, which is now called the International Robots and Vision Show and Conference.

The first regular series of conferences emphasizing research, rather than the industrial, aspects of robotics, was inaugurated in 1973. It was sponsored jointly by the International Center for Mechanical Sciences (CISM), based in Udine, Italy, and the International Federation for the Theory of Mechanisms and Machines (IFToMM). (Although IFToMM is still used, its meaning has been changed to the International Federation for the Promotion of Mechanism and Machine Science.) It was named the Symposium on Theory and Practice of Robots and Manipulators (RoManSy). Its trademark was an emphasis on the mechanical sciences and the active participation of researchers from Eastern and Western Europe as well as North America and Japan. It is still held biannually. On a personal note, it is at RoManSy where I first met each of the editors of this Handbook: Dr. Khatib in 1978 and Dr. Siciliano in 1984. They were both students: Bruno Siciliano had been working on his PhD for about one year, and Oussama Khatib had just completed his PhD research. In both cases, it was love at first sight!

RoManSy was quickly joined by a host of other new conferences and workshops; today there are a large number of research oriented robotics meetings that take place through the year in many countries. Currently, the largest conference is the International Conference on Robotics and Automation (ICRA), which regularly draws well over 1000 participants.

In the beginning of the 1980s, the first real text-book on robotic manipulation in the USA was written by Richard "Lou" Paul (Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control, The MIT Press, Cambridge, MA, 1981). It used the idea of taking classical subjects in mechanics and applying them to robotics. In addition there were several topics developed directly from his thesis research at SAIL. (In the book, many examples are based on Scheinman's Stanford Arm.) Paul's book was a landmark event in the USA; it created a pattern for several influential future textbooks and also encouraged the creation of

specialized robotics courses at a host of colleges and universities.

At about this same time, new journals were created to deal primarily with research papers in the areas related to robotics. The *International Journal of Robotics Research* was founded in the spring of 1982, and three years later the *IEEE Journal of Robotics and Automation* (now the *IEEE Transactions on Robotics*) was founded.

As microprocessors became ubiquitous, the question of what is or is not a robot came more into play. This issue has, in my mind, never been successfully resolved. I do not think a definition will ever be universally agreed upon. There are of course the science fiction creatures-from-outer-space varieties, and the robots of the theater, literature, and the movies. There are examples of imaginary robot-like beings that predate the industrial revolution, but how about more down-to-Earth robots? In my view the definition is essentially a moving target that changes its character with technological progress. For example, when it was first developed, a ship's gyro auto-compass was considered a robot. Today, it is not generally included when we list the robots in our world. It has been demoted and is now considered an automatic control device.

For many, the idea of a robot includes the concept of multifunctionality, meaning the device is designed and built with the ability to be easily adapted or reprogrammed to do different tasks. In theory this idea is valid, but in practice it turns out that most robotic devices are multifunctional in only a very limited arena. In industry it was quickly discovered that a specialized machine, in general, performs much better than a general purpose machine. Furthermore, when the volume of production is high enough, a specialized machine can cost less to manufacture than a generalized one. So, specialized robots were developed for painting, riveting, quasiplanar parts assembly, press loading, circuit board stuffing, etc. In some cases robots are used in such specialized ways that it becomes difficult to draw the line between a so-called robot and an adjustable piece of "fixed" automation. Much of this practical unfolding is contrary to the dream of the pioneers in robotics, who had hoped for the development of general purpose machines that would do "everything", and hence sell in great enough volume to be relatively inexpensive.

My view is that the notion of a robot has to do with which activities are, at a given time, associated with people and which are associated with machines. If a machine suddenly becomes able to do what we normally associate with people, the machine can be upgraded in classification and classified as a robot. After a while, people get used to the activity being done by machines, and the devices get downgraded from "robot" to "machine". Machines that do not have fixed bases, and those that have arm- or leg-like appendages have the advantage of being more likely called robots, but it is hard to think of a consistent set of criteria that fits all the current naming conventions.

In actuality any machines, including familiar house-hold appliances, which have microprocessors directing their actions can be considered as robots. In addition to vacuum cleaners, there are washing machines, refrigerators, and dishwashers that could be easily marketed as robotic devices. There are of course a wide range of possibilities, including those machines that have sensory environmental feedback and decision-making capabilities. In actual practice, in devices considered to be robotic, the amount of sensory and decision making capability may vary from a great deal to none.

In recent decades the study of robotics has expanded from a discipline centered on the study of mechatronic devices to a much broader interdisciplinary subject. An example of this is the area called human-centered robotics. Here one deals with the interactions between humans and intelligent machines. This is a growing area where the study of the interactions between robots and humans has enlisted expertise from outside the classical robotics domain. Concepts such as emotions in both robots and people are being studied, and older areas such as human physiology and biology are being incorporated into the mainstream of robotics research. These activities enrich the field of robotics, as they introduce new engineering and science dimensions into the research discourse.

Originally, the nascent robotics community was focused on getting things to work. Many early devices were remarkable in that they worked at all, and little notice was taken of their limited performance. Today, we have sophisticated, reliable devices as part of the modern array of robotic systems. This progress is the result of the work of thousands of people throughout the world. A lot of this work took place in universities, government research laboratories, and companies. It is a tribute to the worldwide engineering and scientific community that it has been able to create the vast amount of information that is contained in the 64 chapters of this Handbook. Clearly these results did not arise by any central planning or by an overall orderly scheme. So the editors of this handbook were faced with the difficult task of organizing the material into a logical and coherent whole.

The editors have accomplished this by organizing the contributions into a three-layer structure. The first layer deals with the *foundations* of the subject. This layer consists of a single part of nine chapters in which the authors lay out the root subjects: kinematics, dynamics, control, mechanisms, architecture, programming, reasoning, and sensing. These are the basic technological building blocks for robotics study and development.

The second layer has four parts. The first of these deals with *robot structures*; these are the arms, legs, hands, and other parts that most robots are made up of. At first blush, the hardware of legs, arms, and hands may look quite different from each other, yet they share a common set of attributes that allows them to all be treated with the same, or closely related, aspects of the fundamentals described in the first layer.

The second part of this layer deals with *sensing* and perception, which are basic abilities any truly autonomous robotic system must have. As was pointed out earlier, in practice, many so-called robotic devices have little of these abilities, but clearly the more advanced robots cannot exist without them, and the trend is very much toward incorporating such capabilities into robotic devices. The third part of this layer treats the subject areas associated with the technology of *manipulation and* the interfacing of devices. The fourth part of this layer is made up of eight chapters that treat mobile robots and various forms of distributed robotics.

The third layer consists of two separate parts (a total of 22 chapters) that deal with advanced applications at the forefront of today's research and development. There are two parts to this layer; one deals with *field and service robots*, and the other deals with *human-centered and lifelike robots*. To the uninitiated observer, these chapters are what advanced robotics is all about. However, it is important to realize that many of these extraordinary accomplishments would probably not exist without the previous developments introduced in the first two layers of this Handbook.

It is this intimate connection between theory and practice that has nurtured the growth of robotics and become a hallmark of modern robotics. These two complementary aspects have been a source of great personal satisfaction to those of us who have had the opportunity to both research and develop robotic devices. The contents of this Handbook admirably reflect this complementary aspect of the subject, and present a very useful bringing together of the vast accomplishments which have taken place in the last 50 years. Certainly, the contents of this Handbook will serve as a valuable tool and guide to those who will produce the even more capable and diverse next generations of robotic devices. The editors and authors have my congratulations and admiration.

Stanford, August 2007

Bernard Roth

Foreword

Georges Giralt
Emeritus Research Director
LAAS-CNRS Toulouse

To open this Handbook and unfold the richness of its 64 chapters, we here attempt a brief personal overview to sketch the evolution of robotics in its many aspects, concepts, trends, and central issues.

The modern story of Robotics began about half a century ago with developments in two different directions

First, let us acknowledge the domain of mechanical arms, ranging from teleoperated tasks on radiation-contaminated products to industrial arms, with the landmark

machine UNIMATE – standing for uni(versal)mate. The industrial development of products, mostly around the six-degree-of-freedom serial links paradigm and active research and development, associating mechanical engineering to the control specialism, was the main driving force here. Of particular note nowadays is the successfully pursued effort to design novel application-optimized structures, using powerful sophisticated mathematical tools. In a similar way, an important issue concerns the design and the actual building of arms and hands in the context of human-friendly robots for tomorrow's cognitive robot.

Second, and less well recognized, we should acknowledge the stream of work concerned with themes in artificial intelligence. A landmark project in this area was the mobile robot *Shakey* developed at Stanford International. This work, which aimed to bring together computer science, artificial intelligence, and applied mathematics to develop intelligent machines, remained a secondary area for quite some time. During the 1980s, building strength from many study cases encompassing a spectacular spectrum ranging from rovers for extreme environments (planet exploration, Antarctica, etc.), to service robots (hospitals, museum guides, etc.), a broad research domain arose in which machines could claim the status of intelligent robots.

Hence robotics researches could bring together these two different branches, with intelligent robots categorized in a solely computational way as bounded rationality machines, expanding on the 1980s thirdgeneration robot definition:

"(robot) ... operating in the three-dimensional world as a machine endowed with the capacity to interpret and to reason about a task and about its execution, by intelligently relating perception to action."

The field of autonomous robots, a widely recognized test-bed, has recently benefited from salient contributions in robot planning using the results of algorithmic geometry as well as of a stochastic framework approach applied both to environmental modeling and robot localization problems (SLAM, simultaneous localization and modeling), and further from the development of decisional procedures via Bayesian estimation and decision approaches.

For the last decade of the millennium, robotics largely dealt with the intelligent robot paradigm, blending together robots and machine-intelligence generic research within themes covering advanced sensing and perception, task reasoning and planning, operational and decisional autonomy, functional integration architectures, intelligent human–machine interfaces, safety, and dependability.

The second branch, for years referred to as non-manufacturing robotics, concerns a wide spectrum of research-driven real-world cases pertaining to field, service, assistive, and, later, personal robotics. Here, machine intelligence is, in its various themes, the central research direction, enabling the robot to act:

- as a human surrogate, in particular for intervention tasks in remote and/or hostile environments
- in close interaction with humans and operating in human environments in all applications encompassed by human-friendly robotics, also referred to as human-centered robotics
- 3. in tight synergy with the user, expanding from mechanical exoskeleton assistance, surgery, health care, and rehabilitation into human augmentation.

Consequently, at the turn of the millennium, robotics appears as a broad spectrum of research themes both supporting market products for well-engineered industrial workplaces, and a large number of domain-oriented application cases operating in hazardous and/or

harsh environments (underwater robotics, rough-terrain rovers, health/rehabilitation care robotics, etc.) where robots exhibit meaningful levels of shared autonomy.

The evolution levels for robotics stress the role of theoretical aspects, moving from application domains to the technical and scientific area. The organization of this Handbook illustrates very well these different levels. Furthermore, it rightly considers, besides a body of software systems, front-line matters on physical appearance and novel appendages, including legs, arms, and hands design in the context of human-friendly robots for tomorrow's cognitive robot.

Forefront robotics in the first decade of the current millennium is making outstanding progress, compounding the strength of two general directions:

- short/mid-term application-oriented study cases
- mid/long-term generic situated research

For completeness, we should mention the large number of peripheral, robotics-inspired subjects, quite often concerning entertainment, advertising, and sophisticated toys.

The salient field of human-friendly robotics encompasses several front-line application domains where the robots operate in a human environment and in close interaction with humans (entertainment and education, public-oriented services, assistive and personal robots, etc.), which introduces the critical issue of human-robot interaction.

Right at the core of the field, emerges the forefront topic of personal robots for which three general characteristics should be emphasized:

- 1. They may be operated by a nonprofessional user;
- 2. They may be designed to share high-level decision making with the human user;
- They may include a link to environment devices and machine appendages, remote systems, and operators; the shared decisional autonomy concept (co-autonomy) implied here unfolds into a large set of cutting-edge research issues and ethical problems.

The concept of the personal robot, expanding to robot assistant and universal companion, is a truly great challenge for robotics as a scientific and technical field, offering the mid/long-term perspective of achieving a paramount societal and economical impact. This introduces, and questions, front-line topics encompassing cognitive aspects: user-tunable human-machine intelligent interfaces, perception (scene analysis, category identification), open-ended learning (understanding the universe of action), skills acquisition, extensive robot-world data processing, decisional autonomy, and dependability (safety, reliability, communication, and operating robustness).

There is an obvious synergistic effort between the two aforementioned approaches, in spite of the necessary framework time differences. The scientific link not only brings together the problems and obtained results but also creates a synergistic exchange between the two sides and the benefits of technological progress.

Indeed, the corresponding research trends and application developments are supported by an explosive evolution of enabling technologies: computer processing power, telecommunications, networking, sensing devices, knowledge retrieval, new materials, micro- and nanotechnologies.

Today, looking to the mid- and long-term future, we are faced with very positive issues and perspectives but also having to respond to critical comments and looming dangers for machines that are in physical contact with the user and may also be capable of unwanted, unsafe behavior. Therefore, there is a clear need to include at the research level safety issues and the topic of multifaced dependability and the corresponding system constraints.

The *Handbook of Robotics* is an ambitious and timely endeavor. It summarizes a large number of problems, questions, and facets considered by 164 authors in 64 chapters. As such it not only provides an efficient display of basic topics and results obtained by researches around the world, but furthermore gives access to this variety of viewpoints and approaches to everyone. This is indeed an important tool for progress but, much more, is the central factor that will establish the two first decades of this millennium as the dawn of robotics, lifted to a scientific discipline at the core of machine intelligence.

Toulouse, December 2007

Georges Giralt

Foreword

Hirochika InoueProfessor Emeritus
The University of Tokyo

The field of robotics was born in the middle of the last century when emerging computers were altering every field of science and engineering. Having gone through fast yet steady growth via a procession of stages from infancy, childhood, and adolescence to adulthood, robotics is now mature and is expected to enhance the quality of people's lives in society in the future.

In its infancy, the core of robotics consisted of pattern recognition, automatic control, and artificial intelligence. Taking on these

new challenge, scientists and engineers in these fields gathered to investigate novel robotic sensors and actuators, planning and programming algorithms, and architectures to connect these components intelligently. In so doing, they created artifacts that could interact with humans in the real world. An integration of these early robotics studies yielded *hand–eye systems*, the test-bed of artificial intelligence research.

The playground for childhood robotics was the factory floor. Industrial robots were invented and introduced into the factory for automating spraying, spot welding, grinding, materials handling, and parts assembly. Machines with sensors and memories made the factory floor smarter, and its operations more flexible, reliable, and precise. Such robotic automation freed humans from heavy and tedious labor. The automobile, electric appliance, and semiconductor industries rapidly retooled their manufacturing lines into robot-integrated systems. In the late 1970s, the word *mechatronics*, originally coined by the Japanese, defined a new concept of machinery, one in which electronics was fused with mechanical systems, making a wide range of industrial products simpler, more functional, programmable, and intelligent. Robotics and mechatronics exerted an evolutionary impact on the design and operation of manufacturing processes as well as on manufactured products.

As robotics entered its adolescence, researchers were ambitious to explore new horizons. Kinematics, dynamics, and control system theory were refined and applied to real complex robot mechanisms. To plan and carry out real tasks, robots had to be made cognizant of their surroundings. Vision, the primary channel for external sensing, was exploited as the most general, effective, and efficient means for robots to understand their external situation. Advanced algorithms and powerful devices were developed to improve the speed and robustness of robot vision systems. Tactile and force sensing systems also needed to be developed for robots to manipulate objects. Studies on modeling, planning, knowledge, reasoning, and memorization expanded their intelligent properties. Robotics became defined as the study of intelligent connection of sensing to actuation. This definition covered all aspects of robotics: three scientific cores and one synthetic approach to integrate them. Indeed, system integration became a key aspect of robotic engineering as it allows the creation of lifelike machines. The fun of creating such robots attracted many students to the robotics field.

In advancing robotics further, scientific interest was directed at understanding humans. Comparative studies of humans and robots led to new approaches in scientific modeling of human functions. Cognitive robotics, lifelike behavior, biologically inspired robots, and a psychophysiological approach to robotic machines culminated in expanding the horizons of robotic potential. Generally speaking, an immature field is sparse in scientific understanding. Robotics in the 1980s and 1990s was in such a youthful stage, attracting a great many inquisitive researchers to this new frontier. Their continuous explorations into new realms form the rich scientific contents of this comprehensive volume.

Further challenges, along with expertise acquired on the cutting edge of robotics, opened the way to real-world applications for mature robotics. The early-stage playground gave way to a workshop for industrial robotics. Medical robotics, robot surgery, and in vivo imaging save patients from pain while providing doctors with powerful tools for conducting operations. New robots in such areas as rehabilitation, health care, and welfare are expected to improve quality of life in an aging society. It is the destiny of robots to go everywhere, in the air, under water, and into space. They are expected to work hand in hand with humans in such areas as agriculture, forestry, mining, construction, and hazardous environments and rescue operations, and to find

utility both in domestic work and in providing services in shops, stores, restaurants, and hospitals. In a myriad of ways, robotic devices are expected to support our daily lives. At this point, however, robot applications are largely limited to structured environments, where they are separated from humans for safety sake. In the next stage, their environment will be expanded to an unstructured world, one in which humans, as service takers, will always live and work beside robots. Improved sensing, more intelligence, enhanced safety, and better human understanding will be needed to prepare robots to function in such an environment. Not only technical but also social matters must be considered in finding solutions to issues impeding this progress.

Since my initial research to make a robot turn a crank, four decades have passed. I feel both lucky and happy to have witnessed the growth of robotics from its early beginnings. To give birth to robotics, fundamental technologies were imported from other disciplines. Neither textbooks nor handbooks were available. To reach the present stage, a great many scientists and engineers have challenged new frontiers; advancing robotics, they have enriched this body of knowledge from a variety of perspectives. The fruits of their endeavors are compiled in this *Handbook of Robotics*. More than 100 of

the world's leading experts have collaborated in producing this publication. Now, people who wish to commit themselves to robotics research can find a firm foundation to build upon. This Handbook is sure to be used to further advance robotics science, reinforce engineering education, and systematically compile knowledge that will innovate both society and industry.

The roles of humans and robots in an aging society pose an important issue for scientists and engineers to consider. Can robotics contribute to securing peace, prosperity, and a greater quality of life? This is still an open question. However, recent advances in personal robots, robotic home appliances, and humanoids suggest a paradigm shift from the industrial to the service sector. To realize this, robotics must be addressed from such viewpoints as the working infrastructure within society, psychophysiology, law, economy, insurance, ethics, art, design, drama, and sports science. Future robotics should be studied as a subject that envelops both humanity and technology. This Handbook offers a selected technical foundation upon which to advance such newly emerging fields of robotics. I look forward to continuing progress adding page after page of robot-based prosperity to future society.

Tokyo, September 2007

Hirochika Inoue

Foreword

Rodney Brooks
Panasonic Professor
of Robotics
Massachusetts Institute
of Technology

Robots have fascinated people for thousands of years. Those automatons that were built before the 20th century did not connect sensing to action but rather operated through human agency or as repetitive machines. However, by the 1920s electronics had gotten to the stage that the first true robots that sensed the world and acted in it appropriately could be built. By 1950 we started to see descriptions of real robots appearing in popular magazines. By the 1960s industrial robots came onto the scene. Commercial pressures made them less and less responsive to their envi-

ronments but faster and faster in what they did in their carefully engineered world. Then in the mid 1970s in France, Japan, and the USA we started to see robots rising again in a handful of research laboratories, and now we have arrived at a world-wide frenzy in research and the beginnings of large-scale deployment of intelligent robots throughout our world. This Handbook brings together the current state of robotics research in one place. It ranges from the mechanism of robots through sensing and perceptual processing, intelligence, action, and many application areas.

I have been more than fortunate to have lived with this revolution in robotics research over the last 30 years. As a teenager in Australia I built robots inspired by the tortoises of Walter described in the Scientific American in 1949 and 1950. When I arrived in Silicon Valley in 1977, just as the revolution in the personalization of computation was really coming into being, I instead turned to the much more obscure world of robots. In 1979 I was able to assist Hans Moravec at the Stanford Artificial Intelligence Lab (SAIL) as he coaxed his robot "The Cart" to navigate 20 m in 6 hours. Just 26 years later, in 2005, at the same laboratory, SAIL, Sebastian Thrun and his team coaxed their robot to autonomously drive 200,000 m in 6 hours: four orders of magnitude improvement in a mere 26 years, which is slightly better than a doubling every 2 years. However, robots have not just improved in speed, they have also increased in number. When I arrived at SAIL in 1977 we knew of three mobile robots operating in the world. Recently a company that I founded manufactured its 3,000,000th mobile robot, and the pace is increasing. Other aspects of robots have had similarly spectacular advances, although it is harder to provide such crisp numeric characterizations. In recent years we have gone from robots being too unaware of their surroundings that it was unsafe for people to share their workspace to robots that people can work with in close contact, and from robots that were totally unaware of people to robots that pick up on natural social cues from facial expressions to prosody in people's voices. Recently robotics has crossed the divide between flesh and machines so that now we are seeing neurorobotics ranging from prosthetic robotic extensions to rehabilitative robots for the disabled. And very recently robotics has become a respected contributor to research in cognitive science and neuroscience.

The research results chronicled in this volume give the key ideas that have enabled these spectacular advances. The editors, the part editors, and all the contributors have done a stellar job in bring this knowledge together in one place. Their efforts have produced a work that will provide a basis for much further research and development. Thank you, and congratulations to all who have labored on this pivotal book.

Some of the future robotics research will be incremental in nature, taking the state of the art and improving upon it. Other parts of future research will be more revolutionary, based on ideas that are antithetical to some of the ideas and current state of the art presented in this book

As you study this volume and look for places to contribute to research through your own talents and hard work I want to alert you to capabilities or aspirations that I believe will make robots even more useful, more productive, and more accepted. I describe these capabilities in terms of the age at which a child has equivalent capabilities:

- the object-recognition capabilities of a 2-year-old child
- the language capabilities of a 4-year-old child

- the manual dexterity of a 6-year-old child
- the social understanding of an 8-year-old child

Each of these is a very difficult goal. However even small amounts of progress towards any one of these goals

will have immediate applications to robots out in the world. Good reading and best wishes as you contribute further to robotkind.

Cambridge, October 2007

Rodney Brooks

Preface

Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavor of a half a century of robotic developments that established robotics as a modern scientific discipline.

The undertaking of the *Springer Handbook of Robotics* was motivated by the rapid growth of the field. With the ever increasing amount of publications in journals, conference proceedings and monographs, it is difficult for those involved in robotics, particularly those who are just entering the field, to stay abreast of its wide range of developments. This task is made even more arduous by the very multidisciplinary nature of robotics.

The handbook follows preceding efforts in the 1980s and 1990s, which have brought valuable references to the robotics community: Robot Motion: Planning and Control (Brady, Hollerbach, Johnson, Lozano-Pérez, and Mason, MIT Press 1982), Robotics Science (Brady, MIT Press 1989), The Robotics Review 1 and 2 (Khatib, Craig, and Lozano-Pérez, MIT Press 1989 and 1992). With the greater expansion of the robotics field and its increased outreach towards other scientific disciplines, the need for a comprehensive reference source combining basic and advanced developments has naturally become yet more urgent.

The volume is the result of the effort by a number of contributors who themselves are actively involved in robotics research in countries around the world. It has been a gigantic task to insightfully provide coverage of all the areas of robotics by such a motivated and versatile group of individuals committed to this endeavour.

The project started in May 2002 during a meeting the two of us had with Springer Director Engineering Europe Dieter Merkle and STAR Senior Editor Thomas Ditzinger. A year earlier, together with Frans Groen, we had launched the Springer Tracts in Advanced Robotics (STAR) series, which was rapidly establishing itself as an important medium for the timely dissemination of robotics research.

It was in this context that we took on this challenging task and enthusiastically began the planning to develop the technical structure and build the group of contributors. To capture the multiple dimensions of the field in its well-established academic core, ongoing research developments, and emerging applications, we conceived the handbook in a three-layer structure for a total of seven parts.

The first layer and part is devoted to the robotics foundations. The consolidated methodologies and technologies are grouped in the four parts of the second layer, covering robot structures, sensing and perception, manipulation and interfaces, mobile and distributed robotics. The third layer includes the advanced applications in the two parts on field and service robotics, and human-centered and life-like robotics, respectively.

To develop each of these parts, we envisioned the establishment of an editorial team which could coordinate the authors' contributions to the various chapters. A year later our seven-member editorial team was formed: David Orin, Frank Park, Henrik Christensen, Makoto Kaneko, Raja Chatila, Alex Zelinsky and Daniela Rus. With the commitment of such a group of distinguished scholars, the handbook was granted quality, span, and balance in the scientific areas.

By early 2005, we assembled an authorship of more than one-hundred-and-fifty contributors. An internal web site was created to facilitate inter-part and chapter cross-references, and to pace the schedule for the development of the project. The contents were carefully tuned over the following year, and especially during the two full-day workshops held in the spring of 2005 and 2006, well attended by most of the authors.

Each chapter was peer reviewed by at least three independent reviewers, typically involving the part editor, and two authors of related chapters; and in some cases, included external experts in the field. Two review cycles were necessary, and even three in some cases. During the process, a few more authors were recruited whenever it was deemed necessary. Most chapters were finalized by the end of the summer of 2007, and the project was completed by the early spring of 2008 – generating, by that time, a record of over 10 000 emails in our folders. The result is an impressive collection of 64 chapters

over the 7 parts, contributed by 165 authors, with more than 1650 pages, 950 illustrations and 5500 references.

We are deeply thankful to the authors for their intellectual contributions, as well as to the reviewers and part editors for their conscientious work. We are indebted to Werner Skolaut, the Senior Manager of Springer Handbooks in Science and Engineering, who soon became a devoted member of our team with his painstaking support to technically editing the authors' typescripts and linking the editors' work with the copy editing and production of the handbook. We also wish to acknowledge the highly professional work by the Le-TeX staff, which re-typeset all the text, redrew and improved the many

illustrations, while timely interacting with the authors during the proof-reading of the material.

Six years after its conception the handbook comes to light. Beyond its tutorial value for our community, it is our hope that it will serve as a useful source to attract new researchers to robotics and inspire decades of vibrant progress in this fascinating field. The completion of every endeavor also brings new exciting challenges; at such times, our fellows are always reminded to ... keep the gradient ;-)

Napoli and Stanford April 2008 Bruno Siciliano Oussama Khatib

About the Editors

Bruno Siciliano received his Doctorate degree in Electronic Engineering from the University of Naples in 1987. He is Professor of Control and Robotics, and Director of the PRISMA Lab in the Department of Computer and Systems Engineering at University of Naples. His current research is in force control, visual servoing, dual-arm/hand manipulation, lightweight flexible arms, human-robot interaction and service robotics. Professor Siciliano has co-authored 6 books and 5 edited volumes, 65 journal papers, 165 conference papers and book chapters, and has delivered 85 invited lectures and seminars at institutions around the world. He is Co-Editor of the Springer Tracts in Advanced Robotics (STAR) series, the Springer Handbook of Robotics, and has served on the Editorial Boards of prestigious journals, as well as Chair or Co-Chair for numerous international conferences. He is a Fellow of both IEEE and ASME. Professor Siciliano is the President of the IEEE Robotics and Automation Society (RAS), after serving as Vice President for Technical Activities and Vice President for Publications, as a Distinguished Lecturer, as a member of the Administrative Committee and of several other society committees.

Oussama Khatib received his Doctorate degree in Electrical Engineering from Sup'Aero, Toulouse, France, in 1980. He is Professor of Computer Science at Stanford University. His current research, which focuses on human-centered robotics, is concerned with human motion synthesis, humanoid robotics, haptic teleoperation, medical robotics, and human-friendly robot design. His research in these areas builds on a large body of studies he pursued over the past 25 years and published in over 200 contributions. Professor Khatib has delivered over 50 keynote presentations and several hundreds of colloquia and seminars at institutions around the world. He is Co-Editor of the STAR series, the Springer Handbook of Robotics, and has served on the Advisory and Editorial Boards of prestigious institutions and journals, as well as Chair or Co-Chair for numerous international conferences. He is a Fellow of IEEE and has served RAS as a Distinguished Lecturer and as a member of the Administrative Committee. Professor Khatib is the President of the International Foundation of Robotics Research (IFRR) and a recipient of the Japan Robot Association (JARA) Award in Research and Development.

About the Part Editors

David E. Orin

The Ohio State University Department of Electrical Engineering Columbus, OH, USA orin.1@osu.edu Part A

David E. Orin received his PhD degree in Electrical Engineering from The Ohio State University in 1976. From 1976 to 1980 he taught at Case Western Reserve University. Since 1981, he has been at The Ohio State University, where he is currently a Professor of Electrical and Computer Engineering. His current work focuses on dynamic movement in biped locomotion. He has made many contributions to robot dynamics and legged locomotion, and he has over 125 publications. He has received a number of educational awards from his institution. He is an IEEE Fellow and has served on the program committee for several international conferences. He has received the Distinguished Service Award in recognition of his service for the IEEE Robotics and Automation Society, such as Vice President for Finance, Secretary, member of the Administrative Committee, and co-chair of the Fellow Evaluation Committee.

Frank C. Park

Seoul National University Mechanical and Aerospace Engineering Seoul, Korea fcp@snu.ac.kr

Part B

Frank C. Park received the PhD degree in Applied Mathematics from Harvard University in 1991. From 1991 to 1995 he was an Assistant Professor of Mechanical and Aerospace Engineering at the University of California, Irvine. Since 1995 he has been at the School of Mechanical and Aerospace Engineering at Seoul National University, where he is currently full professor. His primary research interests in robotics include robot mechanics, planning, and control, robot design and structures, and industrial robotics. His other research interests include nonlinear systems theory, differential geometry and its applications, and related areas of applied mathematics. He has served the IEEE Robotics and Automation Society as a Secretary and as a Senior Editor of the IEEE Transactions on Robotics.

Henrik I. Christensen

Georgia Institute of Technology Robotics and Intelligent Machines @ GT Atlanta, GA, USA hic@cc.gatech.edu

Part C

Henrik I. Christensen is the KUKA Chair of Robotics and Director of Robotics at Georgia Institute of Technology, Atlanta, GA. He received the MS and PhD degrees from Aalborg University in 1987 and 1990, respectively. He has held positions in Denmark, Sweden, and USA. He has published more than 250 contributions across vision, robotics, and AI. Results from his research have been commercialized through a number of major companies and 4 spin-offs. He served as the founding coordinator of the European Robotics Research Network (EURON). He has participated as a senior organizer in more than 50 different conferences and workshops. He is a Fellow of the International Foundation of Robotics Research, an Editorial Board member of the STAR series, and has served on the editorial board of several leading journals in the field. He has been a Distinguished Lecturer of the IEEE Robotics and Automation Society.

Makoto Kaneko

Osaka University
Department of Mechanical Engineering
Graduate School of Engineering
Suita, Japan
mk@mech.eng.osaka-u.ac.jp

Part D

Makoto Kaneko received the MS and PhD degrees in Mechanical Engineering from Tokyo University in 1978 and 1981, respectively. From 1981 to 1990 he was Researcher at the Mechanical Engineering Laboratory, from 1990 to 1993 an Associate Professor at Kyushu Institute of Technology, from 1993 to 2006 Professor at Hiroshima University, and in 2006 became a Professor at Osaka University. His research interests include tactile-based active sensing, grasping strategy, hyper human technology and its application to medical diagnosis, and his work has received 17 awards. He is an Editorial Board member of the STAR series and has served as chair or co-chair for several international conferences. He is an IEEE Fellow. He has served the IEEE Robotics and Automation Society as a Vice-President for Member Activities and as a Technical Editor of the IEEE Transactions on Robotics and Automation.

Raja Chatila

LAAS-CNRS Toulouse, France raja.chatila@laas.fr

Part E

Raja Chatila received his PhD degree from the University of Toulouse in 1981. He is currently Director of LAAS-CNRS (Laboratory of Systems Analysis and Architecture), Toulouse, France where he is since 1983. He was an invited professor at Tsukuba University in 1997. His research work encompasses several aspects in field, planetary, aerial and service robotics, cognitive robotics, learning, human-robot interaction, and networked robotics. He is author of over 150 international publications on these topics. He is a Fellow of the International Foundation of Robotics Research. He has served on the editorial boards of several leading publications, including the STAR series, and as chair or co-chair for several international conferences. He has served the IEEE Robotics and Automation Society as a member of the Administrative Committee, as a Distinguished Lecturer. He is a member of IEEE, ACM and AAAI, and a member of various national and international boards and evaluation committees.

Alexander Zelinsky

Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICT Centre Epping, NSW, Australia alex.zelinsky@csiro.au

Part F

Alexander Zelinsky is the Director of the Information and Communication Technologies Centre at the CSIRO. Before joining CSIRO, he was CEO and Founder of Seeing Machines Pty Limited and a Professor at the Australian National University, in the Research School of Information Sciences and Engineering. He is a well-known scientist specializing in robotics and computer vision, he is widely recognized as an innovator in human-machine interaction, and he has over 100 publications in the field. His work has received both national and international awards. He has served on the editorial boards of two leading publications, and on the program committees of several international conferences. He is an IEEE Fellow and has served the IEEE Robotics and Automation Society as a member of the Administrative Committee and as Vice-President for Industrial Activities.

Daniela Rus

Massachusetts Institute of Technology CSAIL Center for Robotics Cambridge, MA, USA rus@csail.mit.edu

Part G

Daniela Rus received her PhD degree in Computer Science from Cornell University in 1992. From 1994 to 2003 she taught at Dartmouth, Hanover. Since 2004 she has been at MIT, where she is currently a Professor of Electrical Engineering and Computer Science. She co-directs the CSAIL Center for robotics and is an Associate Director of CSAIL. Her research interests center on distributed robotics and mobile computing, and she has published extensively in the field. Her work in robotics aims to develop self-organizing systems and spans the spectrum from novel mechanical design and experimental platforms to developing and analyzing algorithms for locomotion, manipulation, and group control. She has received a number of awards, including the MacArthur Fellow. She has been on the program committees of several international conferences, and has served the IEEE Robotics and Automation Society as Education Co-Chair.

List of Contributors

Jorge Angeles

McGill University
Department of Mechanical Engineering
and Centre for Intelligent Machines
817 Sherbrooke St. W.
Montreal, Quebec H3A 2K6, Canada
e-mail: angeles@cim.mcgill.ca

Gianluca Antonelli

Università degli Studi di Cassino Dipartimento di Automazione, Ingegneria dell'Informazione e Matematica Industriale Via G. Di Biasio 43 03043 Cassino, Italy e-mail: antonelli@unicas.it

Fumihito Arai

Tohoku University
Department of Bioengineering and Robotics
6-6-01 Aoba-yama
980-8579 Sendai, Japan
e-mail: arai@imech.mech.tohoku.ac.jp

Michael A. Arbib

University of Southern California Computer, Neuroscience and USC Brain Project Los Angeles, CA 90089–2520, USA e-mail: arbib@usc.edu

Antonio Bicchi

Università degli Studi di Pisa Centro Interdipartimentale di Ricerca "Enrico Piaggio" e Dipartimento di Sistemi Elettrici e Automazione Via Diotisalvi 2 56125 Pisa, Italy e-mail: bicchi@ing.unipi.it

Aude Billard

Ecole Polytechnique Federale de Lausanne (EPFL) Learning Algorithms and Systems Laboratory (LASA) STI-12S-LASA

1015 Lausanne, Switzerland e-mail: aude.billard@epfl.ch

John Billingsley

University of Southern Queensland Faculty of Engineering and Surveying Toowoomba QLD 4350, Australia e-mail: billings@usq.edu.au

Wayne Book

Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering 771 Ferst Drive Atlanta, GA 30332-0405, USA e-mail: wayne.book@me.gatech.edu

Cynthia Breazeal

Massachusetts Institute of Technology The Media Lab 20 Ames St. Cambridge, MA 02139, USA e-mail: cynthiab@media.mit.edu

Oliver Brock

University of Massachusetts Robotics and Biology Laboratory 140 Governors Drive Amherst, MA 01003, USA e-mail: oli@cs.umass.edu

Alberto Broggi

Università degli Studi di Parma Dipartimento di Ingegneria dell'Informazione Viale delle Scienze 181A 43100 Parma, Italy e-mail: broggi@ce.unipr.it

Heinrich H. Bülthoff

Max-Planck-Institut für biologische Kybernetik Kognitive Humanpsychophysik Spemannstr. 38 72076 Tübingen, Germany e-mail: heinrich.buelthoff@tuebingen.mpg.de

Joel W. Burdick

California Institute of Technology Mechanical Engineering Department 1200 E. California Blvd. Pasadena, CA 91125, USA e-mail: jwb@robotics.caltech.edu

Wolfram Burgard

Albert-Ludwigs-Universität Freiburg Institut für Informatik Georges-Koehler-Allee 079 79110 Freiburg, Germany e-mail: burgard@informatik.uni-freiburg.de

Zack Butler

Rochester Institute of Technology Department of Computer Science 102 Lomb Memorial Dr. Rochester, NY 14623, USA e-mail: zjb@cs.rit.edu

Fabrizio Caccavale

Università degli Studi della Basilicata Dipartimento di Ingegneria e Fisica dell'Ambiente Via dell'Ateneo Lucano 10 85100 Potenza, Italy e-mail: fabrizio.caccavale@unibas.it

Sylvain Calinon

Ecole Polytechnique Federale de Lausanne (EPFL) Learning Algorithms and Systems Laboratory (LASA) STI-I2S-LASA 1015 Lausanne, Switzerland

e-mail: sylvain.calinon@epfl.ch

Guy Campion

Université Catholique de Louvain Centre d'Ingénierie des Systèmes d'Automatique et de Mécanique Appliquée 4 Avenue G. Lemaître 1348 Louvain-la-Neuve, Belgium e-mail: guy.campion@uclouvain.be

Raja Chatila

LAAS-CNRS 7 Avenue du Colonel Roche 31077 Toulouse, France e-mail: raja.chatila@laas.fr

François Chaumette

INRIA/IRISA Campus de Beaulieu 35042 Rennes, France e-mail: francois.chaumette@irisa.fr

Stefano Chiaverini

Università degli Studi di Cassino Dipartimento di Automazione, Ingegneria dell'Informazione e Matematica Industriale Via G. Di Biasio 43 03043 Cassino, Italy e-mail: chiaverini@unicas.it

Nak Young Chong

Japan Advanced Institute of Science and Technology (JAIST) School of Infomation Science 1-1 Asahidai, Nomi 923-1292 Ishikawa, Japan e-mail: nakyoung@jaist.ac.jp

Howie Choset

Carnegie Mellon University The Robotics Institute 5000 Forbes Ave. Pittsburgh, PA 15213, USA e-mail: choset@cs.cmu.edu

Henrik I. Christensen

Georgia Institute of Technology Robotics and Intelligent Machines @ GT Atlanta, GA 30332-0760, USA e-mail: hic@cc.gatech.edu

Wankyun Chung

Department of Mechanical Engineering San 31 Hyojading Pohang 790-784, Korea e-mail: wkchung@postech.ac.kr

Woojin Chung

Korea University Department of Mechanical Engineering Anam-dong, Sungbuk-ku Seoul 136-701, Korea e-mail: smartrobot@korea.ac.kr

J. Edward Colgate

Northwestern University Department of Mechanical Engineering Segal Design Institute 2145 Sheridan Rd. Evanston, IL 60208, USA

e-mail: colgate@northwestern.edu

Peter Corke

Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICT Centre P0 Box 883 Kenmore QLD 4069, Australia e-mail: peter.corke@csiro.au

Jock Cunningham

Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Exploration and Mining PO Box 883 Kenmore QLD 4069, Australia e-mail: jock.cunningham@csiro.au

Mark R. Cutkosky

Stanford University Mechanical Engineering Building 560, 424 Panama Mall Stanford, CA 94305-2232, USA e-mail: cutkosky@stanford.edu

Kostas Daniilidis

University of Pennsylvania Department of Computer and Information Science **GRASP Laboratory** 3330 Walnut Street Philadelphia, PA 19104, USA e-mail: kostas@cis.upenn.edu

Paolo Dario

Scuola Superiore Sant'Anna ARTS Lab e CRIM Lab Piazza Martiri della Libertà 33 56127 Pisa, Italy e-mail: paolo.dario@sssup.it

Alessandro De Luca

Università degli Studi di Roma "La Sapienza" Dipartimento di Informatica e Sistemistica "A. Ruberti" Via Ariosto 25 00185 Roma, Italy e-mail: deluca@dis.uniroma1.it

Joris De Schutter

Katholieke Universiteit Leuven Department of Mechanical Engineering Celestijnenlaan 300, Box 02420 3001 Leuven-Heverlee, Belgium e-mail: joris.deschutter@mech.kuleuven.be

Rüdiger Dillmann

Universität Karlsruhe Institut für Technische Informatik Haid-und-Neu-Str. 7 76131 Karlsruhe, Germany e-mail: dillmann@ira.uka.de

Lixin Dong

ETH Zentrum Institute of Robotics and Intelligent Systems Tannenstr. 3 8092 Zürich, Switzerland e-mail: Idong@ethz.ch

Gregory Dudek

McGill University Department of Computer Science 3480 University Street Montreal, QC H3Y 3H4, Canada e-mail: dudek@cim.mcgill.ca

Mark Dunn

University of Southern Queensland National Centre for Engineering in Agriculture Toowoomba QLD 4350, Australia e-mail: mark.dunn@usq.edu.au

Hugh Durrant-Whyte

University of Sydney ARC Centre of Excellence for Autonomous Systems Australian Centre for Field Robotics (ACFR) Sydney NSW 2006, Australia e-mail: hugh@acfr.usyd.edu.au

Jan-Olof Eklundh

KTH Royal Institute of Technology Teknikringen 14 10044 Stockholm, Sweden e-mail: joe@nada.kth.se

Aydan M. Erkmen

Middle East Technical University Department of Electrical Engineering Ankara, 06531, Turkey e-mail: aydan@metu.edu.tr

Bernard Espiau

INRIA Rhône-Alpes 38334 Saint-Ismier, France e-mail: bernard.espiau@inria.fr

Rov Featherstone

The Australian National University Department of Information Engineering **RSISE Building 115** Canberra ACT 0200, Australia e-mail: roy.featherstone@anu.edu.au

Eric Feron

Georgia Institute of Technology School of Aerospace Engineering 270 Ferst Drive Atlanta, GA 30332-0150, USA e-mail: feron@gatech.edu

Gabor Fichtinger

Queen's University School of Computing #725 Goodwin Hall, 25 Union St. Kingston, ON K7L 3N6, Canada e-mail: gabor@cs.queensu.ca

Paolo Fiorini

Università degli Studi di Verona Dipartimento di Informatica Strada le Grazie 15 37134 Verona, Italy e-mail: paolo.fiorini@univr.it

Robert B. Fisher

University of Edinburgh School of Informatics James Clerk Maxwell Building, Mayfield Road Edinburgh, EH9 3JZ, UK e-mail: rbr@inf.ed.ac.uk

Paul Fitzpatrick

Italian Institute of Technology Robotics, Brain, and Cognitive Sciences Department Via Morego 30 16163 Genova, Italy e-mail: paul.fitzpatrick@iit.it

Dario Floreano

Ecole Polytechnique Federale de Lausanne (EPFL) Laboratory of Intelligent Systems EPFL-STI-12S-LIS 1015 Lausanne, Switzerland e-mail: dario.floreano@epfl.ch

Thor I. Fossen

Norwegian University of Science and Technology (NTNU) **Department of Engineering Cybernetics** Trondheim, 7491, Norway e-mail: fossen@ieee.org

Li-Chen Fu

National Taiwan University Department of Electrical Engineering Taipei, 106, Taiwan, R.O.C. e-mail: lichen@ntu.edu.tw

Maxime Gautier

Université de Nantes IRCCyN, ECN 1 Rue de la Noë 44321 Nantes, France e-mail: maxime.gautier@irccyn.ec-nantes.fr

Martin A. Giese

University of Wales Department of Psychology Penrallt Rd. Bangor, LL 57 2AS, UK

e-mail: martin.giese@uni-tuebingen.de

Ken Goldberg

University of California at Berkeley Department of Industrial Engineering and Operations Research 4141 Etcheverry Hall Berkeley, CA 94720-1777, USA e-mail: goldberg@ieor.berkeley.edu

Clément Gosselin

Université Laval Departement de Genie Mecanique Quebec, QC G1K 7P4, Canada e-mail: gosselin@gmc.ulaval.ca

Agnès Guillot

Université Pierre et Marie Curie - CNRS Institut des Systèmes Intelligents et de Robotique 4 Place Jussieu 75252 Paris, France e-mail: agnes.guillot@lip6.fr

Martin Hägele

Fraunhofer IPA **Robot Systems** Nobelstr. 12 70569 Stuttgart, Germany e-mail: mmh@ipa.fhg.de

Gregory D. Hager

Johns Hopkins University Department of Computer Science 3400 N. Charles St. Baltimore, MD 21218, USA e-mail: hager@cs.jhu.edu

David Hainsworth

Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Exploration and Mining P0 Box 883 Kenmore QLD 4069, Australia e-mail: david.hainsworth@csiro.au

William R. Hamel

University of Tennessee Mechanical, Aerospace, and Biomedical Engineering 414 Dougherty Engineering Building Knoxville, TN 37996-2210, USA e-mail: whamel@utk.edu

Blake Hannaford

University of Washington Department of Electrical Engineering Box 352500 Seattle, WA 98195-2500, USA e-mail: blake@ee.washington.edu

Kensuke Harada

National Institute of Advanced Industrial Science and Technology (AIST) Intelligent Systems Research Institute 1-1-1 Umezono 305-8568 Tsukuba, Japan e-mail: kensuke.harada@aist.go.jp

Martial Hebert

Carnegie Mellon University The Robotics Institute 5000 Forbes Ave. Pittsburgh, PA 15213, USA e-mail: hebert@ri.cmu.edu

Thomas C. Henderson

University of Utah School of Computing 50 S. Central Campus Dr. 3190 MEB Salt Lake City, UT 84112, USA e-mail: tch@cs.utah.edu

Joachim Hertzberg

Universität Osnabrück Institut für Informatik Albrechtstr. 28 54076 Osnabrück, Germany

e-mail: hertzberg@informatik.uni-osnabrueck.de

Hirohisa Hirukawa

National Institute of Advanced Industrial Science and Technology (AIST) Intelligent Systems Research Institute 1-1-1 Umezono 305-8568 Tsukuba, Japan e-mail: hiro.hirukawa@aist.go.jp

Gerd Hirzinger

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen Institut für Robotik und Mechatronik Münchner Str. 20 82230 Wessling, Germany e-mail: gerd.hirzinger@dlr.de

John Hollerbach

University of Utah School of Computing 50 S. Central Campus Dr. Salt Lake City, UT 84112, USA e-mail: jmh@cs.utah.ledu

Robert D. Howe

Harvard University Division of Engineering and Applied Sciences Pierce Hall, 29 Oxford St. Cambridge, MA 02138, USA e-mail: howe@seas.harvard.edu

Su-Hau Hsu[†]

National Taiwan University Taipei, Taiwan

Phil Husbands

University of Sussex Department of Informatics Falmer, Brighton BN1 9QH, UK e-mail: philh@sussex.ac.uk

Seth Hutchinson

University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801, USA e-mail: seth@uiuc.edu

Adam Jacoff

National Institute of Standards and Technology Intelligent Systems Division 100 Bureau Drive Gaithersburg, MD 20899, USA e-mail: adam.jacoff@nist.gov

Michael Jenkin

York University Computer Science and Engineering 4700 Keel St. Toronto, Ontario M3J 1P3, Canada e-mail: jenkin@cse.yorku.ca

Eric N. Johnson

Georgia Institute of Technology Daniel Guggenheim School of Aerospace Engineering 270 Ferst Drive Atlanta, GA 30332-0150, USA e-mail: eric.johnson@ae.gatech.edu

Shuuji Kajita

National Institute of Advanced Industrial Science and Technology (AIST) Intelligent Systems Research Institute 1-1-1 Umezono 305-8568 Tsukuba, Japan e-mail: s.kajita@aist.go.jp

Makoto Kaneko

Osaka University Department of Mechanical Engineering **Graduate School of Engineering** 2-1 Yamadaoka 565-0871 Suita, Osaka, Japan e-mail: mk@mech.eng.osaka-u.ac.jp

Sung-Chul Kang

Korea Institute of Science and Technology Cognitive Robotics Research Center Hawolgok-dong 39-1, Sungbuk-ku Seoul 136-791, Korea e-mail: kasch@kist.re.kr

Imin Kao

State University of New York at Stony Brook Department of Mechanical Engineering Stony Brook, NY 11794-2300, USA e-mail: imin.kao@stonybrook.edu

Lydia E. Kavraki

Rice University Department of Computer Science, MS 132 6100 Main Street Houston, TX 77005, USA e-mail: kavraki@rice.edu

Homayoon Kazerooni

University of California at Berkeley Berkeley Robotics and Human Engineering Laboratory 5124 Etcheverry Hall Berkeley, CA 94720-1740, USA e-mail: kazerooni@berkeley.edu

Charles C. Kemp

Georgia Institute of Technology and Emory University The Wallace H. Coulter Department of Biomedical Engineering 313 Ferst Drive Atlanta, GA 30332-0535, USA e-mail: charlie.kemp@bme.gatech.edu

Wisama Khalil

Université de Nantes

IRCCyN, ECN 1 Rue de la Noë 44321 Nantes, France e-mail: wisama.khalil@irccyn.ec-nantes.fr

Oussama Khatib

Stanford University Department of Computer Science **Artificial Intelligence Laboratory** Stanford, CA 94305-9010, USA e-mail: khatib@cs.stanford.edu

Lindsay Kleeman

Monash University Department of Electrical and Computer Systems Engineering Department of ECSEng Monash VIC 3800, Australia e-mail: kleeman@eng.monash.edu.au

Tetsunori Kobayashi

Waseda University Department of Computer Science 3-4-1 Okubo, Shinjuku-ku 169-8555 Tokyo, Japan e-mail: koba@waseda.jp

Kurt Konolige

SRI International **Artificial Intelligence Center** 333 Ravenswood Ave. Menlo Park, CA 94025, USA e-mail: konolige@ai.sri.com

David Kortenkamp

TRACLabs Inc. 1012 Hercules Drive Houston, TX 77058, USA e-mail: korten@traclabs.com

Kazuhiro Kosuge

Tohoku University Department of Bioengineering and Robotics **Graduate School of Engineering** 6-6-01 Aoba-yama 980-8579 Sendai, Japan e-mail: kosuge@irs.mech.tohoku.ac.jp

Roman Kuc

Yale University **Department of Electrical Engineering** 10 Hillhouse Ave New Haven, CT 06520-8267, USA e-mail: kuc@yale.edu

James Kuffner

Carnegie Mellon University The Robotics Institute 5000 Forbes Ave. Pittsburgh, PA 15213, USA e-mail: kuffner@cs.cmu.edu

Vijay Kumar

University of Pennsylvania Department of Mechanical Engineering and Applied Mechanics 220 S. 33rd Street Philadelphia, PA 19104-6315, USA e-mail: kumar@grasp.upenn.edu

Florent Lamiraux

LAAS-CNRS 7 Avenue du Colonel Roche 31077 Toulouse, France e-mail: florent@laas.fr

Jean-Paul Laumond

LAAS-CNRS 7 Avenue du Colonel Roche 31077 Toulouse, France e-mail: jpl@laas.fr

Steven M. LaValle

University of Illinois Department of Computer Science 201 N. Goodwin Ave, 3318 Siebel Center Urbana, IL 61801, USA e-mail: lavalle@cs.uiuc.edu

John J. Leonard

Massachusetts Institute of Technology Department of Mechanical Engineering 5-214 77 Massachusetts Ave Cambridge, MA 02139, USA e-mail: jleonard@mit.edu

Kevin Lynch

Northwestern University Mechanical Engineering Department 2145 Sheridan Road Evanston, IL 60208, USA e-mail: kmlynch@northwestern.edu

Alan M. Lytle

National Institute of Standards and Technology **Construction Metrology and Automation Group** 100 Bureau Drive Gaithersburg, MD 20899, USA e-mail: alan.lytle@nist.gov

Maja J. Matarić

University of Southern California **Computer Science Department** 3650 McClintock Avenue Los Angeles, CA 90089, USA e-mail: mataric@usc.edu

Yoshio Matsumoto

Osaka University Department of Adaptive Machine Systems **Graduate School of Engineering** 565-0871 Suita, Osaka, Japan e-mail: matsumoto@ams.eng.osaka-u.ac.jp

J. Michael McCarthy

University of California at Irvine Department of Mechanical and Aerospace Engineering Irvine, CA 92697, USA e-mail: jmmccart@uci.edu

Claudio Melchiorri

Università degli Studi di Bologna Dipartimento di Elettronica Informatica e Sistemistica Via Risorgimento 2 40136 Bologna, Italy e-mail: claudio.melchiorri@unibo.it

Arianna Menciassi

Scuola Superiore Sant'Anna CRIM Lab Piazza Martiri della Libertà 33 56127 Pisa, Italy e-mail: arianna@sssup.it

Jean-Pierre Merlet

INRIA Sophia-Antipolis 2004 Route des Lucioles 06902 Sophia-Antipolis, France e-mail: jean-pierre.merlet@sophia.inria.fr

Giorgio Metta

Italian Institute of Technology Department of Robotics, Brain and Cognitive Sciences Via Morego 30 16163 Genova, Italy e-mail: pasa@liralab.it

Jean-Arcady Meyer

Université Pierre et Marie Curie - CNRS Institut des Systèmes Intelligents et de Robotique 4 Place Jussieu 75252 Paris, France e-mail: jean-arcady.meyer@lip6.fr

François Michaud

Université de Sherbrooke Department of Electrical Engineering and Computer Engineering 2500 Boulevard Université Sherbrooke, Québec J1K 2R1, Canada e-mail: francois.michaud@usherbrooke.ca

David P. Miller

University of Oklahoma School of Aerospace and Mechanical Engineering 865 Asp Ave.

Norman, OK 73019, USA e-mail: dpmiller@ou.edu

Javier Minguez

Universidad de Zaragoza Departamento de Informática e Ingeniería de Sistemas Centro Politécnico Superior Edificio Ada Byron, Maria de Luna 1 Zaragoza 50018, Spain e-mail: jminguez@unizar.es

Pascal Morin

INRIA Sophia-Antipolis 2004 Route des Lucioles 06902 Sophia-Antipolis, France e-mail: pascal.morin@inria.fr

Robin R. Murphy

University of South Florida Computer Science and Engineering 4202 E. Fowler Ave ENB342 Tampa, FL 33620-5399, USA e-mail: murphy@cse.usf.edu

Daniele Nardi

Università degli Studi di Roma "La Sapienza" Dipartimento di Informatica e Sistemistica "A. Ruberti" Via Ariosto 25 00185 Roma, Italy e-mail: nardi@dis.uniroma1.it

Bradley J. Nelson

ETH Zentrum Institute of Robotics and Intelligent Systems Tannenstr. 3 8092 Zürich, Switzerland e-mail: bnelson@ethz.ch

Günter Niemeyer

Stanford University Department of Mechanical Engineering Design Group, Terman Engineering Center Stanford, CA 94305-4021, USA e-mail: qunter.niemeyer@stanford.edu

Klas Nilsson

Lund University Department of Computer Science Ole Römers väg 3 22100 Lund, Sweden e-mail: klas@cs.lu.se

Stefano Nolfi

Consiglio Nazionale delle Ricerche (CNR) Instituto di Scienze e Tecnologie della Cognizione Via S. Martino della Battaglia 44 00185 Roma, Italy e-mail: stefano.nolfi@istc.cnr.it

Illah R. Nourbakhsh

Carnegie Mellon University The Robotics Institute 5000 Forbes Ave. Pittsburgh, PA 15213, USA e-mail: illah@cs.cmu.edu

Jonathan B. O'Brien

University of New South Wales School of Civil and Environmental Engineering Sydney 2052, Australia e-mail: j.obrien@unsw.edu.au

Allison M. Okamura

The Johns Hopkins University Department of Mechanical Engineering 3400 N. Charles Street Baltimore, MD 21218, USA e-mail: aokamura@jhu.edu

Fiorella Operto

Scuola di Robotica Piazza Monastero 4 16149 Sampierdarena, Genova, Italy e-mail: operto@scuoladirobotica.it

David E. Orin

The Ohio State University Department of Electrical Engineering 2015 Neil Avenue Columbus, OH 43210, USA e-mail: orin.1@osu.edu

Giuseppe Oriolo

Università degli Studi di Roma "La Sapienza" Dipartimento di Informatica e Sistemistica "A.Ruberti" Via Ariosto 25 00185 Roma, Italy e-mail: oriolo@dis.uniroma1.it

Michel Parent

INRIA Rocquencourt 78153 Le Chesnay, France e-mail: michel.parent@inria.fr

Frank C. Park

Seoul National University Mechanical and Aerospace Engineering Seoul 51-742, Korea e-mail: fcp@snu.ac.kr

Lynne E. Parker

University of Tennessee Department of Electrical Engineering and Computer Science 1122 Volunteer Blvd. Knoxville, TN 37996-3450, USA e-mail: parker@eecs.utk.edu

Michael A. Peshkin

Northwestern University Department of Mechanical Engineering 2145 Sheridan Road Evanston, IL 60208, USA e-mail: peshkin@northwestern.edu

J. Norberto Pires

Universidade de Coimbra Departamento de Engenharia Mecânica Polo II Coimbra 3030, Portugal e-mail: norberto@robotics.dem.uc.pt

Erwin Prassler

Fachhochschule Bonn-Rhein-Sieg Fachbereich Informatik Grantham-Allee 20 53757 Sankt Augustin, Germany e-mail: erwin.prassler@fh-brs.de

Domenico Prattichizzo

Università degli Studi di Siena Dipartimento di Ingegneria dell'Informazione Via Roma 56 53100 Siena, Italy e-mail: prattichizzo@ing.unisi.it

Carsten Preusche

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen Institut für Robotik und Mechatronik Münchner Str. 20 82234 Wessling, Germany e-mail: carsten.preusche@dlr.de

William R. Provancher

University of Utah Department of Mechanical Engineering 50 S. Central Campus, 2120 MEB Salt Lake City, UT 84112-9208, USA e-mail: wil@mech.utah.edu

David J. Reinkensmeyer

University of California at Irvine Mechanical and Aerospace Engineering 4200 Engineering Gateway Irvine, CA 92617-3975, USA e-mail: dreinken@uci.edu

Alfred Rizzi

Boston Dynamics 78 Fourth Ave Waltham, MA 02451, USA

e-mail: arizzi@bostondynamics.com

Jonathan Roberts

Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICT Centre, Autonomous Systems Laboratory P.O. Box 883 Kenmore QLD 4069, Australia e-mail: jonathan.roberts@csiro.au

Daniela Rus

Massachusetts Institute of Technology **CSAIL Center for Robotics** 32 Vassar Street Cambridge, MA 01239, USA e-mail: rus@csail.mit.edu

Kamel S. Saidi

National Institute of Standards and Technology **Building and Fire Research Laboratory** 100 Bureau Drive Gaitherbsurg, MD 20899, USA e-mail: kamel.saidi@nist.gov

Claude Samson

INRIA Sophia-Antipolis 2004 Route des Lucioles 06902 Sophia-Antipolis, France e-mail: claude.samson@inria.fr

Stefan Schaal

University of Southern California Computer Science and Neuroscience 3710 S. McClintock Ave. Los Angeles, CA 90089-2905, USA e-mail: sschaal@usc.edu

Victor Scheinman

Stanford University Department of Mechanical Engineering Stanford, CA 94305, USA e-mail: vds@stanford.edu

James Schmiedeler

The Ohio State University Department of Mechanical Engineering E307 Scott Laboratory, 201 West 19th Ave Columbus, OH 43210, USA e-mail: schmiedeler.2@osu.edu

Bruno Siciliano

Università degli Studi di Napoli Federico II Dipartimento di Informatica e Sistemistica, PRISMA Lab Via Claudio 21 80125 Napoli, Italy e-mail: siciliano@unina.it

Roland Siegwart

ETH Zentrum Department of Mechanical and Process Engineering Tannenstr. 3, CLA E32 8092 Zürich, Switzerland e-mail: rsiegwart@ethz.ch

Reid Simmons

Carnegie Mellon University The Robotics Institute School of Computer Science 5000 Forbes Ave. Pittsburgh, PA 15241, USA e-mail: reids@cs.cmu.edu

Dezhen Song

Texas A&M University Department of Computer Science H.R. Bright Building College Station, TX 77843, USA e-mail: dzsong@cs.tamu.edu

Gauray S. Sukhatme

University of Southern California Department of Computer Science 3710 South McClintock Ave Los Angeles, CA 90089-2905, USA e-mail: qaurav@usc.edu

Satoshi Tadokoro

Tohoku University **Graduate School of Information Sciences** 6-6-01 Aoba-yama 980-8579 Sendai, Japan e-mail: tadokoro@rm.is.tohoku.ac.jp

Atsuo Takanishi

Waseda University Department of Modern Mechanical Engineering 3-4-1 Ookubo, Shinjuku-ku 169-8555 Tokyo, Japan e-mail: takanisi@waseda.jp

Russell H. Taylor

The Johns Hopkins University Department of Computer Science Computational Science and Engineering Building 1-127, 3400 North Charles Street Baltimore, MD 21218, USA e-mail: rht@jhu.edu

Charles E. Thorpe

Carnegie Mellon University in Qatar Oatar Office SMC 1070 5032 Forbes Ave. Pittsburgh, PA 15289, USA e-mail: thorpe@gatar.cmu.edu

Sebastian Thrun

Stanford University Department of Computer Science Artificial Intelligence Laboratory Stanford, CA 94305-9010, USA e-mail: thrun@stanford.edu

James P. Trevelyan

The University of Western Australia School of Mechanical Engineering 35 Stirling Highway, Crawley Perth Western Australia 6009, Australia e-mail: james.trevelyan@uwa.edu.au

Jeffrey C. Trinkle

Rensselaer Polytechnic Institute Department of Computer Science Troy, NY 12180-3590, USA e-mail: trink@cs.rpi.edu

Masaru Uchiyama

Tohoku University Department of Aerospace Engineering 6-6-01 Aoba-yama 980-8579 Sendai, Japan e-mail: uchiyama@space.mech.tohoku.ac.jp

H.F. Machiel Van der Loos

University of British Columbia Department of Mechanical Engineering 6250 Applied Science Lane Vancouver, BC V6T 1Z4, Canada e-mail: vdl@mech.ubc.ca

Patrick van der Smagt

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen Institut für Robotik und Mechatronik Münchner Str. 20 82230 Wessling, Germany e-mail: smagt@dlr.de

Gianmarco Veruggio

Consiglio Nazionale delle Ricerche Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Via De Marini 6 16149 Genova, Italy e-mail: gianmarco@veruggio.it

Luigi Villani

Università degli Studi di Napoli Federico II Dipartimento di Informatica e Sistemistica, PRISMA Lab Via Claudio 21 80125 Napoli, Italy e-mail: luigi.villani@unina.it

Arto Visala

Helsinki University of Technology (TKK) Department of Automation and Systems Technology Helsinki 02015, Finland e-mail: arto.visala@tkk.fi

Kenneth Waldron

Stanford University Department of Mechanical Engineering **Terman Engineering Center 521** Stanford, CA 94305-4021, USA e-mail: kwaldron@stanford.edu

lan D. Walker

Clemson University Department of Electrical and Computer Engineering Clemson, SC 29634, USA e-mail: ianw@ces.clemson.edu

Christian Wallraven

Max-Planck-Institut für biologische Kybernetic Kognitive Humanpsychophysik Spemannstr. 38 72076 Tübingen, Germany e-mail: christian.wallraven@tuebingen.mpg.de

Brian Wilcox

California Institute of Technology Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109, USA e-mail: brian.h.wilcox@jpl.nasa.gov

Jing Xiao

University of North Carolina Department of Computer Science Charlotte, NC 28223, USA e-mail: xiao@uncc.edu

Dana R. Yoerger

Woods Hole Oceanographic Institution Department of Applied Ocean Physics and Engineering MS7 Blake Bldg. Woods Hole, MA 02543, USA e-mail: dyoerger@whoi.edu

Kazuhito Yokoi

National Institute of Advanced Industrial Science and Technology (AIST) Intelligent Systems Research Institute 1-1-1 Umezono 305-8568 Tsukuba, Japan e-mail: kazuhito.yokoi@aist.go.jp

Kazuya Yoshida

Tohoku University Department of Aerospace Engineering 6-6-01 Aoba-yama 980-8579 Sendai, Japan e-mail: yoshida@astro.mech.tohoku.ac.jp

Alexander Zelinsky

Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICT Centre Epping, Sydney NSW 1710, Australia

e-mail: alex.zelinsky@csiro.au

Contents

List of Abbreviations LII					
	trodu				
Br	uno Si	ciliano, Oussama Khatib	1		
Pā	rt A	Robotics Foundations			
1	Kinematics				
	Kenn	eth Waldron, James Schmiedeler	9		
	1.1	Overview	9		
	1.2	Position and Orientation Representation	10		
	1.3	Joint Kinematics	18		
	1.4	Geometric Representation	23		
	1.5	Workspace	25		
	1.6	Forward Kinematics	26		
	1.7	Inverse Kinematics	27		
	1.8	Forward Instantaneous Kinematics	29		
	1.9	Inverse Instantaneous Kinematics	30		
	1.10	Static Wrench Transmission	30		
	1.11	Conclusions and Further Reading	31		
	Refer	ences	31		
2	Dynamics				
	Roy F	eatherstone, David E. Orin	35		
	2.1	Overview	36		
	2.2	Spatial Vector Notation	37		
	2.3	Canonical Equations	43		
	2.4	Dynamic Models of Rigid-Body Systems	45		
	2.5	Kinematic Trees	50		
	2.6	Kinematic Loops	57		
	2.7	Conclusions and Further Reading	60		
	Refer	ences	62		
3	Mechanisms and Actuation				
	Victor Scheinman, J. Michael McCarthy				
	3.1	Overview	67		
	3.2	System Features	68		
	3.3	Kinematics and Kinetics	69		
	3.4	Serial Robots	72		
	3.5	Parallel Robots	73		
	3.6	Mechanical Structure	75		

	3.7	Joint Mechanisms	76		
	3.8	Robot Performance	82		
	3.9	Conclusions and Further Reading	84		
	Refer	ences	84		
4	Sensi	ng and Estimation			
•					
	4.1	The Perception Process	87 88		
	4.2	Sensors	90		
	4.3	Estimation Processes	93		
	4.4	Representations	104		
	4.5	Conclusions and Further Readings	104		
	Keier	ences	106		
5	Motic	on Dianning			
כ	Motion Planning Lydia E. Kavraki, Steven M. LaValle				
	5.1		109 110		
	5.2	Motion Planning Concepts			
		Sampling-Based Planning	111		
	5.3	Alternative Approaches	115		
	5.4	Differential Constraints	118		
	5.5	Extensions and Variations	121		
	5.6	Advanced Issues	124		
	5.7	Conclusions and Further Reading	127		
	Refer	ences	128		
6	Moti	on Control			
O		yun Chung, Li–Chen Fu, Su–Hau Hsu [†]	133		
	6.1	Introduction to Motion Control	134		
	6.2				
		Joint Space Versus Operational Space Control	135		
	6.3	Independent-Joint Control	137		
	6.4	PID Control	139		
	6.5	Tracking Control	141		
	6.6	Computed-Torque Control	143		
	6.7	Adaptive Control	147		
	6.8	Optimal and Robust Control	150		
	6.9	Digital Implementation	153		
	6.10	Learning Control	155		
	Refer	ences	157		
_	_				
7	Force Control				
	_	Villani, Joris De Schutter	161		
	7.1	Background	161		
	7.2	Indirect Force Control	164		
	7.3	Interaction Tasks	171		
	7 μ	Hybrid Force/Motion Control	177		

	7.5	Conclusions and Further Reading	181
	Refer	ences	183
8	Robo	tic Systems Architectures and Programming	
Ü		Kortenkamp, Reid Simmons	187
	8.1	Overview	187
	8.2	History	189
	8.3	Architectural Components	193
	8.4	Case Study – GRACE	200
	8.5	The Art of Robot Architectures	202
	8.6	Conclusions and Further Reading	203
	Refer	ences	204
9		asoning Methods for Robotics	207
		im Hertzberg, Raja Chatila	207
	9.1	Knowledge Representation and Inference	208
	9.2	KR Issues for Robots	212
	9.3	Action Planning	214
	9.4	Robot Learning	219
	9.5	Conclusions and Further Reading	221
	Keier	ences	222
Pā	rt B	Robot Structures	
10	Perfo	rmance Evaluation and Design Criteria	
10		Angeles, Frank C. Park	229
	10.1		229
	10.2	Workspace Criteria	231
	10.3	Dexterity Indices	235
	10.4	Other Performance Indices	238
		ences	242
11		natically Redundant Manipulators	
	Stefar	no Chiaverini, Giuseppe Oriolo, Ian D. Walker	245
	11.1		245
	11.2		
		Task-Oriented Kinematics	247
	11.3	Task-Oriented Kinematics	250
	11.4	Task-Oriented Kinematics	250 255
	11.4 11.5	Task-Oriented Kinematics	250 255 256
	11.4 11.5 11.6	Task-Oriented Kinematics Inverse Differential Kinematics Redundancy Resolution via Optimization Redundancy Resolution via Task Augmentation Second-Order Redundancy Resolution	250 255 256 259
	11.4 11.5 11.6 11.7	Task-Oriented Kinematics Inverse Differential Kinematics Redundancy Resolution via Optimization Redundancy Resolution via Task Augmentation Second-Order Redundancy Resolution Cyclicity	250 255 256 259 260
	11.4 11.5 11.6 11.7 11.8	Task-Oriented Kinematics Inverse Differential Kinematics Redundancy Resolution via Optimization Redundancy Resolution via Task Augmentation Second-Order Redundancy Resolution Cyclicity Hyperredundant Manipulators	250 255 256 259 260 261
	11.4 11.5 11.6 11.7 11.8 11.9	Task-Oriented Kinematics Inverse Differential Kinematics Redundancy Resolution via Optimization Redundancy Resolution via Task Augmentation Second-Order Redundancy Resolution Cyclicity	250 255 256 259 260

12	Parall	lel Mechanisms and Robots	
	Jean-	Pierre Merlet, Clément Gosselin	269
	12.1	Definitions	269
	12.2	Type Synthesis of Parallel Mechanisms	271
	12.3	Kinematics	271
	12.4	Velocity and Accuracy Analysis	273
	12.5	Singularity Analysis	274
	12.6	Workspace Analysis	276
	12.7	Static Analysis and Static Balancing	277
	12.8	Dynamic Analysis	279
	12.9	Design	279
	12.10	Application Examples	280
	12.11	Conclusion and Further Reading	281
	Refere	ences	281
13		ts with Flexible Elements	
		ndro De Luca, Wayne Book	287
	13.1	Robots with Flexible Joints	288
	13.2	Robots with Flexible Links	306
	Ketere	ences	317
14	Mode	I Identification	
		Hollerbach, Wisama Khalil, Maxime Gautier	321
	14.1	Overview	321
	14.2	Kinematic Calibration	323
	14.3	Inertial Parameter Estimation	330
	14.4	Identifiability and Numerical Conditioning	334
	14.5	Conclusions and Further Reading	341
	Refere	ences	342
15		t Hands	
		io Melchiorri, Makoto Kaneko	345
	15.1	Basic Concepts	346
	15.2	Design of Robot Hands	347
	15.3	Technologies for Actuation and Sensing	351
	15.4	Modeling and Control of a Robot Hand	355
	15.5	Applications and Trends	359
		Conclusions and Further Reading	359
	Refere	ences	359
16	Legge	ed Robots	
-0		i Kajita, Bernard Espiau	361
	16.1	A Brief History	362
	16.2	Analysis of Cyclic Walking	363
	16.3	Control of Biped Robots Using Forward Dynamics	366
	16.4	Biped Robots in the ZMP Scheme	371
		Multilegged Robots	378

	20.7	Further Reading	489
	20.8	Currently Available Hardware	489
	Refere	nces	490
21	Sonar	Sensing	
	Lindsa	ıy Kleeman, Roman Kuc	491
	21.1	Sonar Principles	492
	21.2	Sonar Beam Pattern	494
	21.3	Speed of Sound	496
	21.4	Waveforms	496
	21.5	Transducer Technologies	497
	21.6	Reflecting Object Models	499
	21.7	Artifacts	500
	21.8	TOF Ranging	501
	21.9	Echo Waveform Coding	503
	21.10	Echo Waveform Processing	506
	21.11	CTFM Sonar	508
	21.12	Multipulse Sonar	511
	21.13	Sonar Rings	512
	21.14	Motion Effects	513
		Biomimetic Sonars	515
	21.16	Conclusions	516
	Refere	nces	517
22	Robert 22.1 22.2 22.3	Navigation and Terrain Classification	521 521 530 537
	22.4	Conclusions and Further Reading	540
	Refere	nces	540
23	3-D V	ision and Recognition	
		Daniilidis, Jan-Olof Eklundh	543
		3-D Vision and Visual SLAM	544
		Recognition	551
		Conclusion and Further Reading	558
		nces	559
24		Servoing and Visual Tracking	
		ois Chaumette, Seth Hutchinson	563
	24.1	The Basic Components of Visual Servoing	564
	24.2	Image-Based Visual Servo	565
	24.3	Position-Based Visual Servo	572
	24.4	Advanced Approaches	574
	24.5	Performance Optimization and Planning	577
	24.6	Estimation of 3-D Parameters	578

		Conclusion and Further Reading	697 698		
	Kelele	inces	030		
29	Cooperative Manipulators				
		io Caccavale, Masaru Uchiyama	701		
	29.1	A Historical Overview	701		
	29.2	Kinematics and Statics	703		
	29.3	Cooperative Task Space	707		
	29.4	Dynamics and Load Distribution	708		
	29.5	Task-Space Analysis	710		
	29.6	Control	711		
	29.7	Conclusions and Further Reading	715		
		_	716		
	Kelele	nces	110		
30	Hapti	rs			
50	-	Hannaford, Allison M. Okamura	719		
	30.1	Overview	719		
	30.2	Haptic Device Design	724		
	30.3	Haptic Rendering	727		
	30.4	Control and Stability of Haptic Interfaces	730		
	30.4	Tactile Display	731		
	30.5		735		
		Conclusions and Further Reading			
	Keiere	nces	735		
31	Telero	botics			
J <u>.</u>		r Niemeyer, Carsten Preusche, Gerd Hirzinger	741		
	31.1		741		
	31.2	Telerobotic Systems and Applications	743		
	31.3	Control Architectures	746		
	31.4	Bilateral Control and Force Feedback	751		
	31.5		754		
		· · · · · · · · · · · · · · · · · · ·			
	кетеге	nces	755		
32	Netwo	orked Telerobots			
_		n Song, Ken Goldberg, Nak Young Chong	759		
		Overview and Background	759		
		A Brief History	760		
		Communications and Networking	761		
	32.3	Conclusion and Future Directions	769		
		ences	769		
	Kerere	inces	103		
33	Exosk	eletons for Human Performance Augmentation			
		yoon Kazerooni	773		
	33.1	Survey of Exoskeleton Systems	773		
	33.2	Upper-Extremity Exoskeleton	775		
	33.3	Intelligent Assist Device	776		
		Control Architecture for Upper-Extremity Exoskeleton Augmentation	778		

	33.5	Applications of Intelligent Assist Device	780
	33.6	Lower-Extremity Exoskeleton	780
	33.7	The Control Scheme of an Exoskeleton	782
	33.8	Highlights of the Lower-Extremity Design	786
	33.9	Field-Ready Exoskeleton Systems	790
	33.10	Conclusion and Further Reading	792
		nces	792
D-	ret E I	Mobile and Distributed Robotics	
34		n Control of Wheeled Mobile Robots	700
		Morin, Claude Samson	799
	34.1	Background	800
	34.2	Control Models	801
	34.3	Adaptation of Control Methods for Holonomic Systems	804
	34.4	Methods Specific to Nonholonomic Systems	806
	34.5	Complementary Issues and Bibliographical Guide	823
	Refere	nces	825
35	Motio	n Planning and Obstacle Avoidance	
	Javier	Minguez, Florent Lamiraux, Jean-Paul Laumond	827
	35.1	Nonholonomic Mobile Robots:	
		Where Motion Planning Meets Control Theory	828
	35.2	Kinematic Constraints and Controllability	829
	35.3	Motion Planning and Small-Time Controllability	830
	35.4	Local Steering Methods and Small-Time Controllability	832
	35.5	Robots and Trailers	835
	35.6	Approximate Methods	837
	35.7	From Motion Planning to Obstacle Avoidance	837
	35.8	Definition of Obstacle Avoidance	838
	35.9	Obstacle Avoidance Techniques	839
		Robot Shape, Kinematics, and Dynamics in Obstacle Avoidance	845
		Integration Planning – Reaction	847
		Conclusions, Future Directions, and Further Reading	849
		nces	850
26	Morld	Modeling	
30			0.50
		m Burgard, Martial Hebert	853
	36.1	Historical Overview	854
	36.2	World Models for Indoors and Structured Environments	855
	36.3	World and Terrain Models for Natural Environments	859
	36.4	Dynamic Environments	866
	Ketere	nces	867
37	Simul	taneous Localization and Mapping	
	Sebast	ian Thrun, John J. Leonard	871
	37.1	Overview	871

	37.2	SLAM: Problem Definition	872
	37.3	The Three Main SLAM Paradigms	875
	37.4	Conclusion and Future Challenges	885
	37.5	Suggestions for Further Reading	886
	Refere	ences	886
3 0	Roha	vior-Based Systems	
50		J. Matarić, François Michaud	891
	38.1	Robot Control Approaches	891
	38.2	Basic Principles of Behavior–Based Systems	894
	38.3	Basis Behaviors	897
	38.4	Representation in Behavior-Based Systems	897
	38.5	Learning in Behavior-Based Systems	898
	38.6	Continuing Work	902
	38.7	Conclusions and Further Reading	902
		ences	905
	Kelele	:iices	900
39		buted and Cellular Robots	
	Zack E	Butler, Alfred Rizzi	911
	39.1	Modularity for Locomotion	911
	39.2	Modularity for Manipulation	914
	39.3	Modularity for Geometric Reconfiguration of Robot Systems	915
	39.4	Modularity for Robustness	918
	39.5	Conclusions and Further Reading	918
	Refere	ences	919
40	Multi	ple Mobile Robot Systems	
		E. Parker	921
	40.1	History	922
	40.2	Architectures for Multirobot Systems	922
	40.3	Communication	925
	40.4	Swarm Robots	926
	40.5	Heterogeneity	928
	40.6	Task Allocation	930
	40.7	Learning	932
	40.8	Applications	933
	40.9	Conclusions and Further Reading	935
	Refere	ences	936
<i>I</i> . 1	Nota	orked Robots	
41			943
	<i>vijay i</i> 41.1	Kumar, Daniela Rus, Gaurav S. Sukhatme	943
	41.1	OverviewState of the Art and Potential	943
	41.3	Research Challenges	947
	41.4	Control	949
	41.5	Communication for Control	950
	41.6	Communication for Perception	951

	41.7 41.8 41.9 Refere	Control for Perception	952 953 955 955
Pa	rt F	Field and Service Robotics	
42	Indus	strial Robotics	
	Martii	n Hägele, Klas Nilsson, J. Norberto Pires	963
	42.1	A Short History of Industrial Robots	964
	42.2	Typical Applications and Robot Configurations	969
	42.3	Kinematics and Mechanisms	975
	42.4	Task Descriptions – Teaching and Programming	976
	42.5	End-Effectors and System Integration	980
	42.6	Conclusions and Long-Term Challenges	983
	кетеге	ences	985
4 3	llnde	rwater Robotics	
73		uca Antonelli, Thor I. Fossen, Dana R. Yoerger	987
	43.1	The Expanding Role of Marine Robotics in Oceanic Engineering	987
	43.2	Underwater Robotics	989
	43.3	Applications	1003
	43.4	Conclusions and Further Reading	1005
	Refere	ences	1005
44		I Robotics	
	Eric Fe	eron, Eric N. Johnson	1009
	44.1	Background	
	44.2	History of Aerial Robotics	
	44.3	Applications of Aerial Robotics	
	44.4	Current Challenges	
	44.5	Basic Aerial Robot Flight Concepts	
	44.6	The Entry Level for Aerial Robotics: Inner-Loop Control	
	44.7	Active Research Areas	
	44.8	Conclusions and Further Reading	
	кетеге	ences	1027
45	Space	Robots and Systems	
		a Yoshida, Brian Wilcox	1031
	45.1	Historical Developments and Advances of Orbital Robotic Systems	
	45.2	Historical Developments and Advances of Surface Robotic Systems	
	45.3	Mathematical Modeling	
	45.4	Future Directions of Orbital and Surface Robotic Systems	
	45.5	Conclusions and Further Reading	
		ences	

55	Robot	s for Education	
	David	P. Miller, Illah R. Nourbakhsh, Roland Siegwart	1283
	55.1	The Role of Robots in Education	
	55.2	Educational Robot Tournaments	1285
	55.3	Education Robot Platforms	
	55.4	Education Robot Controllers and Programming Environments	
	55.5	Robots and Informal Learning Venues (Museums)	1292
	55.6	Educational Evaluation of Robot Programs	
	55.7	Conclusions and Further Reading	
		nces	
Pa	rt G	Human-Centered and Life-Like Robotics	
56	Huma	noids	
	Charle	s C. Kemp, Paul Fitzpatrick, Hirohisa Hirukawa, Kazuhito Yokoi,	
	Kensul	ke Harada, Yoshio Matsumoto	1307
	56.1	Why Humanoids?	1307
	56.2	History and Overview	1310
	56.3	Locomotion	1312
	56.4	Manipulation	1315
	56.5	Whole-Body Activities	
	56.6	Communication	1325
	56.7	Conclusions and Further Reading	
	Refere	nces	
57	Safety	for Physical Human–Robot Interaction	
٠,		o Bicchi, Michael A. Peshkin, J. Edward Colgate	1335
	57.1	Motivations for Safe pHRI	
	57.2	Safety for Hands-Off pHRI	
	57.3	Design of Intrinsically Safe Robots	
	57.4	Safety for Hands-On pHRI	
	57.5	Safety Standards for pHRI	
	57.6	Conclusions	
		nces	
	Kerere	nices	1340
58	Social	Robots that Interact with People	
	Cynthi	a Breazeal, Atsuo Takanishi, Tetsunori Kobayashi	1349
	58.1	Social Robot Embodiment	1350
	58.2	Multimodal Communication	1352
	58.3	Expressive Emotion-Based Interaction	1356
	58.4	Socio-cognitive Skills	1360
	58.5	Conclusion and Further Reading	1365
	Refere	nces	1366
59	Rohot	Programming by Demonstration	
,,		Billard, Sylvain Calinon, Rüdiger Dillmann, Stefan Schaal	1371
		History	1372

Overview1481Example-Based Object Representations1483

	63.3	Example-Based Movement Representations	1490
	63.4	Example-Based Synthesis Models: From Faces to Movements	1492
	63.5	Conclusions and Further Reading	1494
	Refere	nces	1495
64	Roboe	ethics: Social and Ethical Implications of Robotics	
	Gianm	arco Veruggio, Fiorella Operto	1499
	64.1	A Methodological Note	1501
	64.2	Specificity of Robotics	1502
	64.3	What Is a Robot?	1502
	64.4	Cultural Differences in Robot's Acceptance	1503
	64.5	From Literature to Today's Debate	1503
	64.6	Roboethics	1504
	64.7	Ethics and Morality	1505
	64.8	Moral Theories	1505
	64.9	Ethics in Science and Technology	1506
	64.10	Conditions for Implementation	1507
	64.11	Operativeness of the Principles	1507
	64.12	Ethical Issues in an ICT Society	1507
	64.13	Harmonization of Principles	1509
	64.14	Ethics and Professional Responsibility	1510
	64.15	Roboethics Taxonomy	1511
	64.16	Conclusions and Further Reading	1519
	Refere	nces	1522
Ac	knowle	edgements	1525
		e Authors	1527
De	tailed	Contents	1555
Su	bject I	ndex	1591

List of Abbreviations

A		В	
AAAI	American Association for Artificial	BIOROB	biomimetic robotics
	Intelligence	BLDC	brushless direct current
ABA	articulated-body algorithm	BLE	broadcast of local eligibility
ABRT	automated bus rapid transit	BLEEX	Berkeley lower-extremity exoskeleton
ACAS	airborne collision avoidance	BLUE	best linear unbiased estimator
	systems	BN	Bayes network
ACC	adaptive cruise control	BRT	bus rapid transit
ACM	active cord mechanism		
ACM	Association of Computing Machinery	<u> </u>	
ADAS	advanced driver assistance systems	C/A	coarse-acquisition
ADL	activities of daily living	CAM	computer-aided manufacturing
ADSL	asymmetric digital subscriber line	CAD	computer-aided design
AGV	automated guided vehicles	CAE	computer-aided engineering
AHS AI	advanced highway systems artificial intelligence	CALM	continuous air interface long and medium range
AIP	anterior interparietal area	CAN	controller area network
AIS	artificial intelligence (AI) system	CARD	computer-aided remote driving
AISB	artificial intelligence and simulation o	CASPER	continuous activity scheduling, planning,
11102	behavior	0.101 2.1	execution and replanning
AIT	anterior inferotemporal cortex	CAT	computer-aided tomography
AM	actuators for manipulation	CB	cluster bombs
AMA	artificial moral agents	CCD	charge-coupled devices
AMD	autonomous mental development	CCI	control command interpreter
ANSI	American National Standards Institute	CCP	coverage configuration protocol
AP	antipersonnel	CCT	conservative congruence transformation
APG	adjustable pattern generator	CCW	counterclockwise
AR	augmented reality	CE	computer ethics
ARAMIS	Space Application of Automation,	CEA	Commission de Energie Atomique
	Robotics and Machine Intelligence	CEBOT	cellular robot
ASCL	adaptive seek control logic	CF	climbing fibers
ASD	autism spectrum disorder	CF	contact formation
ASIC	application-specific integrated circuit	CG	center of gravity
ASKA	receptionist robot	CGA	clinical gait analysis
ASM	advanced servomanipulator	CGI	common gateway interface
ASN	active sensor network	CIE	International Commission on Illumination
ASTRO	autonomous space transport robotic operations	CIRCA	cooperative intelligent real-time control architecture
ASV	adaptive suspension vehicle	CIS	computer-integrated surgery
AT	antitank	CLARAty	coupled layered architecture for robot
ATLSS	advanced technology for large structural	CLEaR	autonomy
ATR	systems Advanced Telecommunications Research	CLEAR	closed loop inverse kinematics
AIK	Institute International	CMAC	closed-loop inverse kinematics
AuRA	autonomous robot architecture	CMAC CML	cerebellar model articulation controller
AUV	autonomous underwater vehicles	CML	concurrent mapping and localization computer numerical control
AU V AV	antivehicle	CNP	contract net protocol
AV	anuvenicie	CINE	contract het protocor

CNT	carbon nanotubes	DVL	Donnlar valogity log
COG	center of gravity	DWA	Doppler velocity log dynamic window approach
CONE	Collaborative Observatory for Nature	DWA	dynamic window approach
CONE	Environments	E	
CONRO	configurable robot		
COR	center of rotation	EBA	arrive students hadry mout area
CORBA	common object request broker		extrastriate body part area
COKDA	architecture	EBID	electron-beam-induced deposition
COV		ECU	electronics controller unit
COV CP	characteristic output vector	EDM	electrical discharge machining
	closest point complementarity problem	EDM	electronic distance measuring
CP CP		EEG	electroencephalogram
CP CPC	cerebral palsy	EGNOS	Euro Geostationary Navigation Overlay
CPG	central pattern generators	EVE	Service
CPSR	computer professional for social	EKF	extended Kalman filter
CDDA	responsibility	EM	expectation maximization
CRBA	composite-rigid-body algorithm	EMG	electromyography
CRLB	Cramer–Rao lower bound	EMS	electrical master–slave manipulators
CSIRO	Commonwealth Scientific and Industrial	ENSICA	Ecole Nationale Superieure des
GG3.4.4	Research Organization		Constructions Aeronautiques
CSMA	carrier sense multiple access	EO	elementary operators
CT	computed tomography	EOD	explosive ordnance disposal
CTFM	continuous-transmission	EP	exploratory procedures
	frequency-modulated	EPFL	Ecole Polytechnique Fédérale de
CTL	cut-to-length		Lausanne
CU	control unit	EPP	extended physiological proprioception
CVIS	cooperative vehicle infrastructure systems	ERA	European robotic arm
CW	clockwise	ES	electrical stimulation
		ESA	European Space Agency
D		ESL	execution support language
ע			execution support language
<u> </u>		ETS	engineering test satellite
DARPA	Defense Advanced Research Projects		
	Defense Advanced Research Projects Agency	ETS EVA	engineering test satellite
	_	ETS	engineering test satellite
DARPA	Agency	ETS EVA	engineering test satellite
DARPA DARS	Agency distributed autonomous robotics systems	ETS EVA	engineering test satellite
DARPA DARS DBNs	Agency distributed autonomous robotics systems dynamic Bayesian networks	ETS EVA F	engineering test satellite extravehicular activity
DARPA DARS DBNs DD	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion	ETS EVA F FARS	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata
DARPA DARS DBNs DD DDF	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven	ETS EVA F FARS FE	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element
DARPA DARS DBNs DD DDF DeVAR	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot	ETS EVA FARS FE FESEM	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM
DARPA DARS DBNs DD DDF DeVAR DFRA	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform	ETS EVA FARS FE FESEM FIFO	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out
DARPA DARS DBNs DD DDF DeVAR DFRA DFT	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement	ETS EVA FARS FE FESEM FIFO fMRI	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg	FARS FE FESEM FIFO fMRI FMS	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit—Hartenberg digital input-output	FARS FE FESEM FIFO fMRI FMS FNS	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture	FARS FE FESEM FIFO fMRI FMS FNS FOPL	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit—Hartenberg digital input-output distributed robot architecture description logics	FARS FE FESEM FIFO fMRI FMS FNS FOPL FPGAS FRI	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture	FARS FE FESEM FIFO fMRI FMS FNS FOPL FPGAS	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DoD	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit—Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DoD DOF	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DoD DOF DOF DOG	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom difference of Gaussian	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST FSW	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer feasible solution of wrench
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DoD DOF DOF DOG DOP	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom difference of Gaussian dilution of precision	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST FSW FTTH	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer feasible solution of wrench
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DoD DOF DOF DOG DOP DPN	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit–Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom difference of Gaussian dilution of precision dip-pen nanolithography	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST FSW	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer feasible solution of wrench
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DOF	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit—Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom difference of Gaussian dilution of precision dip-pen nanolithography deep reactive ion etching	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST FSW FTTH	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer feasible solution of wrench fiber to the home
DARPA DARS DBNs DD DDF DeVAR DFRA DFT DGA DH DIO DIRA DL DLR DM2 DOF	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit—Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom difference of Gaussian dilution of precision dip-pen nanolithography deep reactive ion etching dynamic state machine	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST FSW FTTH	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer feasible solution of wrench fiber to the home
DARPA DARS DBNs DD DDF DeVAR DFT DGA DH DIO DIRA DL DLR DM2 DoD DOF DOG DOP DPN DRIE	Agency distributed autonomous robotics systems dynamic Bayesian networks differentially driven decentralized data fusion desktop vocational assistant robot distributed field robot architecture discrete Fourier transform Delegation Generale pour L'Armement Denavit—Hartenberg digital input-output distributed robot architecture description logics Deutsches Zentrum für Luft- und Raumfahrt distributed macro-mini actuation Department of Defense degree of freedom difference of Gaussian dilution of precision dip-pen nanolithography deep reactive ion etching	FARS FE FESEM FIFO fMRI FMS FOPL FPGAS FRI FSA FSM FSR FST FSW FTTH	engineering test satellite extravehicular activity Fagg-Arbib-Rizzolatti-Sakata finite element field-emission SEM first-in first-out functional magnetic resonance imaging flexible manufacturing systems functional neural stimulation first-order predicate logic field programmable gate array foot rotating indicator finite-state acceptors finite-state machine force sensing resistor finite-state transducer feasible solution of wrench fiber to the home

GDP	gross domestic product	IA	instantaneous allocation
GenoM	generator of modules	IAD	intelligent assist device
GEO	geostationary Earth orbit	ICA	independent component analysis
GI	gastrointestinal	ICBL	International Campaign to Ban
GICHD	Geneva International Center for		Landmines
	Humanitarian Demining	ICE	internet communications engine
GJM	generalized Jacobian matrix	ICP	iterative closest-point algorithm
GLS	Global Navigation Satellite System	ICR	instantaneous center of rotation
	Landing System	ICRA	International Conference on Robotics
GMM	Gaussian mixture model	10101	and Automation
GMR	Gaussian mixture regression	ICT	information and communication
GNS	global navigation systems	101	technology
GNSS	global navigation satellite system	IDL	interface definition language
GP	Gaussian processes	IE IE	information ethics
GPR	ground-penetrating radar	IED	improvised explosive device
GPRS	general packet radio service	IEEE	Institute of Electrical and Electronics
GPS	global positioning system	ILLL	Engineers
GRACE	graduate robot attending conference	IETF	Internet engineering task force
GSD		IFRR	International Foundation of Robotics
GSD GSI	geon structural description	IFKK	Research
	Gadd's severity index	:CDC	
GUI	graphical user interface	iGPS	indoor GPS
GZMP	generalized ZMP	IHIP	intermediate haptic interaction
		117	points
Н		IK	inverse kinematics
		ILP	inductive logic programming
HAL	hybrid assisted limb	ILS	instrument landing system
HAMMER	hierarchical attentive multiple models for	IMTS	intelligent multimode transit
	execution and recognition		system
HCI	human computer interaction	IMU	inertial measurement units
HD	haptic device	IOSS	input-output-to-state stability
HDSL	high data rate digital subscriber line	IP	internet protocol
HEPA	semi-high efficiency-particulate	IPC	interprocess communication
	airfilter	ISO	International Organization for
HF	hard-finger		Standardization
HIC	head injury criterion	ISP	internet service provider
HIP	haptic interaction point	ISS	input-to-state stability
HJB	Hamilton-Jacobi-Bellman	IST	Information Society Technologies
НЈІ	Hamilton-Jacobi-Isaac	IST	Instituto Superior Técnico
HMD	head-mounted display	IT	intrinsic tactile
HMM	hidden Markov model	IT	inferotemporal
HMX	high melting point explosives	ITD	interaural time difference
НО	human operator	IxTeT	indexed time table
HRI	human-robot interaction		
HRTEM	high-resolution transmission electron	J	
	microscopes		
HST	Hubble space telescope	JAUS	joint architecture for unmanned
HSTAMIDS	handheld standoff mine detection		systems
	system	JAXA	Japan space exploration agency
HTML	hypertext markup language	JDL	joint directors of the laboratories
HTN	hierarchical task network	JEMRMS	Japanese experiment module remote
	· · · ·		manipulator system
1		JHU	Johns Hopkins University
		JND	just noticeable difference
I/O	input/output	JPL	Jet Propulsion Laboratory
I3CON	industrialized, integrated, intelligent,	JSIM	joint-space inertia matrix
150011	construction	JSP	Java Server Pages
		7.01	va.a server rages

KR knowledge representation L L LAAS Laboratoire d'Analyse et d'Architecture des Systèmes LADAR LAN LOCAL-area network LARC Lie algebra rank condition LCSP LIONG-baseline system LCSP	manipulator positioning mechanism multirobot tasks multiple reflection magnetorheological model reference adaptive control magnetic resonance imaging manipulator retention latch Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System maximally stable extremal regions
LAAS Laboratoire d'Analyse et d'Architecture des Systèmes MRL LADAR laser radar or laser detection and ranging MRSR LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	multiple reflection magnetorheological model reference adaptive control magnetic resonance imaging manipulator retention latch Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System
LAAS Laboratoire d'Analyse et d'Architecture des Systèmes MRL LADAR laser radar or laser detection and ranging MRSR LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	magnetorheological model reference adaptive control magnetic resonance imaging manipulator retention latch Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System
LAAS Laboratoire d'Analyse et d'Architecture des Systèmes MRL LADAR laser radar or laser detection and ranging MRSR LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	model reference adaptive control magnetic resonance imaging manipulator retention latch Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System
LAAS Laboratoire d'Analyse et d'Architecture des Systèmes MRL LADAR laser radar or laser detection and ranging MRSR LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	magnetic resonance imaging manipulator retention latch Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System
des Systèmes MRL LADAR laser radar or laser detection and ranging MRSR LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	manipulator retention latch Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System
LADAR laser radar or laser detection and ranging MRSR LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	Mars rover sample return multirobot task allocation Multifunctional Satellite Augmentation System
LAN local-area network MRTA LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	multirobot task allocation Multifunctional Satellite Augmentation System
LARC Lie algebra rank condition MSAS LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	Multifunctional Satellite Augmentation System
LBL long-baseline system LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	System
LCSP linear constraint satisfaction program MSER LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	
LGN lateral geniculate nucleus MSM LIDAR light detection and ranging	
LIDAR light detection and ranging	master-slave manipulator
	r
LP linear program	
LQG linear quadratic Gaussian MT	multitask
LSS logical sensor system MT	medial temporal
LVDT linear variable differential transformer MTBF	mean time between failure
LWR locally weighted regression MTRAN	modular transformer
NAP	nonaccidental properties
MNASA	National Aeronautics and Space Agency
NASDA	National Space Development Agency of
MACA Afghanistan Mine Action Center	Japan
MANET mobile ad hoc network NASREM	NASA/NBS standard reference model
MAP maximum a posteriori probability NBS	National Bureau of Standards
MBARI Monterey Bay Aquarium Research NCEA	National Center for Engineering in
Institute	Agriculture
MBE molecular-beam epitaxy NCER	National Conference on Educational
MBS mobile base system	Robotics
MC Monte Carlo ND	nearness diagram navigation
MCS mission control system NDDS	network data distribution service
MDP Markovian decision process NEMO	network mobility
MST microsystem technology NEMS	nanoelectromechanical systems
MEMS microelectromechanical systems NICT	National Institute of Information and
MER Mars exploration rovers	Communications Technology
MESUR Mars environmental survey NIDRR	National Institute on Disability and
MF Mossy fibers	Rehabilitation Research
MIA mechanical impedance adjuster NIMS	networked infomechanical systems
MIG metal inert gas NIOSH	National Institute for Occupational
MIMO multi-input multi-output	Health and Safety
MIR mode identification and recovery NMEA	National Marine Electronics
MIS minimally invasive surgery	Association
MITI Ministry of International Trade and NN	neural networks
Industry NPS	Naval Postgraduate School
ML maximum likelihood NRM	nanorobotic manipulators
ML machine learning NURBS	non-uniform rational B-spline
MLE maximum-likelihood estimation	
MLS multilevel surface map 0	
MNS mirror neuron system	
MOCVD metallo-organic chemical vapor OASIS	onboard autonomous science
deposition	investigation system
MOMR multiple operator multiple robot OBSS	orbiter boom sensor system
MOSR multiple operator single robot OCU	operator control units
MPC model predictive control ODE	ordinary differential equation

OH&S	occupation health and safety	PTU	pan–tilt unit
OLP	offline programming	PVDF	polyvinyledene fluoride
OM	optical microscope	PwoF	point-contact-without-friction
ORB	object request brokers	PZT	lead zirconate titanate
ORCCAD	open robot controller computer aided		
	design	Q	
ORM	obstacle restriction method		
ORU	orbital replacement unit	QD	quantum dot
OSIM	operational-space inertia matrix	QRIO	quest for curiosity
	1	QT	quasistatic telerobotics
P		V -	quasistano tereropolites
	_	R	
P&O	prosthetics and orthotics	<u></u>	
PAPA	privacy, accuracy, intellectual property,	R.U.R.	Rossum's Universal Robots
171171	and access	RAIM	receiver autonomous integrity
PAS	pseudo-amplitude scan	KAIWI	monitoring
PB	parametric bias	RALPH	rapidly adapting lane position
PbD		KALIII	handler
	programming by demonstration	DAM	
PC PC	principal contact	RAM	random-access (volatile) memory
PC	Purkinje cells	RANSAC	random sample consensus
PCA	principle components analysis	RAP	reactive action packages
PD	proportional-derivative	RAS	Robotics and Automation Society
PDDL	planning domain description	RBC	recognition-by-components
	language	RBF	radial basis function
PDGF	power data grapple fixtures	RC	radio-controlled
PEAS	probing environment and adaptive	RCC	remote center of compliance
	sleeping protocol	RCM	remote center of motion
PET	positron emission tomography	RCR	responsible conduct of research
PF	parallel fibers	RCS	real-time control system
PFC	prefrontal cortex	RERC	Rehabilitation Engineering Research
PFM	potential field method		Center on Rehabilitation Robotics
pHRI	physical human-robot interaction	RF	radiofrequency
PI	policy iteration	RFID	radiofrequency identification
PIC	programmable interrupt controller	RFWR	receptive field weighted regression
PIC	programmable intelligent computer	RG	rate gyros
PID	proportional-integral-derivative	RGB	red, green, blue
PIT	posterior inferotemporal cortex	RIG	rate-integrating gyros
PKM	parallel kinematic machine	RL	reinforcement learning
PLC	programmable logic controller	RLG	random loop generator
PLD	programmable logic device	RMMS	reconfigurable modular manipulator
PLEXIL	plan execution interchange		system
1 22:112	language	RNEA	recursive Newton–Euler algorithm
PMD	photonic mixer device	RNNPB	recurrent neural network with parametric
PMMA	polymethyl methacrylate	Id (I II D	bias
PNT	Petri net transducers	RNS	reaction null space
POMDP	partially observable MDP	ROC	receiver operating curve
PPRK	palm pilot robot kit	ROKVISS	robotic components verification on the
PPS	precise positioning system	KOKVISS	ISS
PR		DOM	
	photoresist	ROM	read-only memory
PRISMA	Projects of Robotics for Industry and	ROTEX	robot technology experiment
DD14	Services, Mechatronics and Automation	ROV	remotely operated vehicle
PRM	probabilistic roadmap method	RPC	remote procedure call
PRN	pseudorandom noise	RPI	Rensselaer Polytechnic Institute
PRS	procedural reasoning system	RPV	remotely piloted vehicle
PS	power source	RRT	rapid random tree
PTP	point-to-point	RSS	realistic robot simulation

RT	reaction time	SPDM	special-purpose dexterous manipulator
RT	room-temperature	SPS	standard position system
RTCA	Radio Technical Commission for	SR	single-robot
DTD	Aeronautics	SRMS	shuttle remote manipulator system
RTD	resistance temperature device real-time innovations	SSRMS	Space shuttle remote manipulator
RTI RTK	real-time innovations	ST	system
			single-task
RTS RWI	real-time system real-world interface	STM STS	scanning tunneling microscopes
RWS	robotic work station	SVD	superior temporal sulcus singular value decomposition
KWS	TODOLIC WOLK Station	SWNT	single-walled carbon nanotubes
c		SWNI	single-wanted carbon hanotubes
<u>S</u>		T	
SA	selective availability		
SAIC	Science Applications International, Inc.	TA	time-extended assignment
SAIL	Stanford Artificial Intelligence	TAP	test action pairs
	Laboratory	TC	technical committee
SAN	semiautonomous navigation	TCP	transmission control protocol
SBAS	satellite-based augmentation systems	TDL	task description language
SBL	short-baseline system	TDT	tension differential type
SCARA	selective compliance assembly robot arm	TEM	transmission electron microscopes
SCI	spinal cord injury	tEODor	telerob explosive ordnance disposal and
SDK	standard development kit	TE IDE	observation robot
SDR	software for distributed robotics	TF-IDF	term-frequency inverse document
SDV	spatial dynamic voting	FD 40	frequency
SEA	series elastic actuator	TMS	transcranial magnetic stimulation
SEE	standard end-effector	TOF	time of flight
SELF	sensorized environment for life	TPBVP	two-point boundary value problem
SEM	scanning electron microscopes	TSEE	teleoperated small emplacement
SET	single-electron transistors		excavator
SF	soft-finger	TSP	telesensor programming
SfM	structure from motion	TTI	thoracic trauma index
SFX	sensor fusion effects	TTS	text-to-speech
SGAS	semiglobal asymptotic stability		
SGUUB	semiglobal uniform ultimate boundedness	U	
SHOP	simple hierarchical ordered planner		
SIFT	scale-invariant feature transformation	UAS	unmanned aerial systems
SIGMOD	Special Interest Group on Management of	UAV	unmanned aerial vehicles
	Data	UDP	user data protocol
SIPE	system for interactive planning and	UGV	unmanned ground vehicle
	execution monitoring	UML	unified modeling language
SIR	sampling importance resampling	URL	uniform resource locator
SISO	single-input single-output	US	ultrasound
SKM	serial kinematic machines	USBL	ultrashort-baseline system
SLAM	simultaneous localization and mapping	USV	unmanned surface vehicle
SLAMP	sheep loading animal manipulation	UUB	uniform ultimate boundedness
	platform	UUV	unmanned underwater vehicles
SLICE	specification language for ICE	UVMS	underwater vehicle manipulator system
SLRV	surveyor lunar rover vehicle	UWB	ultra-wideband
SMA	shape-memory alloy	UXO	unexploded ordnance
SMC	sequential Monte Carlo		
SNOM	scanning near-field OM	V	
SOI	silicon-on-insulator		
SOMR	single operator multiple robot	VANET	vehicular ad-hoc network
SOSR	single operator single robot	VC	viscous injury response
SPA	sense-plan-act	VCR	videocassette recorder

vdW VFH	van der Waals vector field histogram	WAN WG	wide-area network world graph
VI	value iteration	WMR	wheeled mobile robot
VIA	variable-impedance actuation	WMSD	work-related musculoskeletal
VLSI	very-large-scale integrated		disorders
VM	virtual manipulator	WTA	winner-take-all
VO	velocity obstacles	WWW	world wide web
VOR	vestibular-ocular reflex		
VOR	VHF omnidirectional range	X	
VR	virtual reality		
VRML	virtual reality modeling language	XHTML	extensible hyper text markup
VVV	versatile volumetric vision		language
		XML	extensible markup language
W		_ Z	
WABIAN	Waseda bipedal humanoid	ZMP	zero-moment point
WAM	whole-arm manipulator	ZP	zona pellucida