Gender in Movie Scripts

Jasmin Dial, Emma Peterson, Joan Wang, Regina Widjaya

Agenda

- Introduction
- Project structure
- Sub-projects
 - Topic modeling
 - Power and agency
 - Text classification
 - Network analysis
 - Word embeddings
- Final score
- Exploratory analysis

Introduction

Data: Cornell Movie Dialogs Corpus

- 220,000+ conversations
- 9,000+ characters
- 600+ movies
- Metadata: genre, release year, IMDB rating and number of votes, gender

Project structure

Separation of data

Cornell Movie Dialogue Corpus

Training Movies

- All analyses going into final scoring
- Split further into training/validation for classifier

Holdout Movies

- Final scoring
- Exploratory analysis

Proportion of Lines by Gender

Proportion of female lines

Lowest proportion female lines

	movie_title	movie_year	genre	pct_female
0	invaders from mars	1953	['horror', 'sci-fi']\n	0.0
1	confidence	2003	['crime', 'thriller']\n	0.0
2	mission: impossible ii	2000	['action', 'adventure', 'thriller']\n	0.0
3	mimic	1997	['drama', 'horror', 'sci-fi']\n	0.0
4	halloween iii: season of the witch	1982	['horror', 'mystery', 'sci-fi']\n	0.0
5	star trek vi: the undiscovered country	1991	['action', 'mystery', 'sci-fi', 'thriller']\n	0.0
6	leviathan .	1989	['adventure', 'horror', 'mystery', 'sci-fi', 'thriller']\n	0.0
7	glengarry glen ross	1992	['drama']\n	0.0
8	frequency	2000	['crime', 'drama', 'sci-fi', 'thriller']\n	0.0
9	the french connection	1971	['action', 'crime', 'thriller']\n	0.0

Highest proportion female lines

	movie_title	movie_year	genre	pct_female
3	agnes of god	1985	['drama', 'mystery', 'thriller']\n	0.979695
4	the horse whisperer	1998	['drama', 'romance', 'western']\n	0.949054
5	a nightmare on elm street: the dream child	1989	['fantasy', 'horror', 'thriller']\n	0.929412
6	playback	1996	['thriller']\n	0.926027
7	white angel	1994	['drama', 'thriller']\n	0.897959
8	cruel intentions	1999	['drama', 'romance', 'thriller']\n	0.889665
9	someone to watch over me	1987	['action', 'crime', 'drama', 'romance', 'thriller']\n	0.880000

Topic Modeling

Topic Modeling

Process

- Remove infrequent words and non-meaningful POS tags
- Create bigrams and trigrams
- Separate training data into gender, genre-specific lines
- Fit topics for each subset of training data
- Choose model based on coherence score

Sample of Topics

Trained on action, female

```
[(7,
    '0.059*"mr" + 0.054*"well" + 0.043*"look" + 0.035*"sulu" + 0.031*"order" + 0.028*"thruster" + 0.028*"aft" + 0.017*"
miss_teschmacher" + 0.014*"job" + 0.012*"lieutenant"'),
    (9,
        '0.097*"think" + 0.056*"way" + 0.034*"find" + 0.033*"always" + 0.032*"mr_peel" + 0.018*"meet" + 0.018*"starfleet" +
0.017*"worry" + 0.015*"land" + 0.014*"bit"'),
    (6,
        '0.048*"something" + 0.040*"please" + 0.031*"day" + 0.030*"life" + 0.021*"first" + 0.020*"run" + 0.020*"real" + 0.0
19*"maybe" + 0.018*"year" + 0.015*"stop"'),
    (11,
        '0.040*"space" + 0.036*"honor" + 0.031*"really" + 0.030*"help" + 0.027*"jim" + 0.017*"send" + 0.017*"show" + 0.016*
"new" + 0.014*"four" + 0.014*"car"'),
    (8,
        '0.094*"sir" + 0.037*"father" + 0.037*"yes" + 0.024*"still" + 0.019*"anything" + 0.017*"power" + 0.014*"thank" + 0.014*"without" + 0.014*"break" + 0.012*"great"'),
```

Sample of Topics

Trained on action, male

Features for Classification

• Used score for probability of topic given a document/line

	MT1	MT2	мтз	WT1	WT2	wтз	gender_from	genre	words
216853	74.79	64.4722	59.7964	8.21818	8.02003	5.21393	m	drama	yeah i go her school grade twelve we meet she
48313	72.0453	56.9271	48.6651	18.1587	16.5826	11.2201	m	drama	yeah yeah it bother me lot cause you see twice
216258	70.8774	60.0682	45.185	13.2387	14.3399	4.51173	m	drama	right right i say none my competitor say need
64392	64.7585	30.4156	64.8856	38.0826	43.8319	44.1492	m	adventure	we reason it entire meaning purpose shangri la
204896	63.3971	60.4305	57.8683	15.2793	16.4377	12.9337	m	drama	minute minute hold mr potter you right you
278634	62.3874	50.0225	51.7113	7.35175	7.27225	10.8008	m	drama	notice israeli fundamentally secular society t
191973	61.0716	72.7084	72.3348	12.0651	16.9412	16.6674	m	drama	i ask you art you could give me skinny every a
258451	58.4348	59.8734	64.9972	12.6159	13.3453	12.7734	m	drama	anyway it hard live gay right way say it small
185450	57.7752	39.6461	66.2058	40.3121	42.1968	45.0026	f	horror	you drop me house it late my parent wait me so
273731	53.5002	45.5351	58.6286	10.587	13.0771	11.1151	m	drama	you ever smell burn flesh i smelt it four mile

Power & Agency

Power & Agency Analysis

- Verbs are rated as positive/negative agency and positive/negative power
 - o "abolishes" → + agency, + power
 - o "awaits" → agency, power

	+ agency	- agency	+ power	- power
female	0.374	0.164	0.251	0.078
male	0.380	0.154	0.272	0.067

	+ power
$f \rightarrow f$	0.239
f → m	0.253
m → f	0.258
m → m	0.280

Power & Agency Analysis

	gender_from_f	genre	power_pos_prop_f	gender_from_m	power_pos_prop_m	diff
8	f	sci-fi	0.292281	m	0.242271	-0.050010
1	f	adventure	0.248956	m	0.233058	-0.015897
2	f	biography	0.256775	m	0.254805	-0.001970
7	f	horror	0.256447	m	0.271171	0.014724
5	f	drama	0.242133	m	0.256999	0.014866
3	f	comedy	0.252291	m	0.269248	0.016958
0	f	action	0.274512	m	0.293866	0.019354
6	f	fantasy	0.246974	m	0.270436	0.023462
9	f	thriller	0.260652	m	0.314656	0.054003
4	f	crime	0.230964	m	0.289269	0.058305

Text Classification

Model specs

- Classifier: Multinomial Naive Bayes
 - \circ Alpha = 0.5
 - Bag of words
- Outcome variable: speaker gender ("gender_from")
- Other specifications we tried:
 - Separate models by genre
 - Outcome variable as speaker pair ("gender_from" & "gender_to"):
 MM, MF, FM, FF

Model specs (cont.)

- Additional non-text features
 - Probability-based score of top three topics by gender
 - Proportion of verbs that are positive/negative power and agency

	words	agency_pos_prop	power_pos_prop	agency_neg_prop	power_neg_prop	MT1	MT2	MT3	WT1	WT2	WT3
0	thanks miss	0.0	0.0	1.0	1.0	6.131145	6.841707	6.666505	4.747797	4.686748	4.755125
1	you kind i amanda	0.0	0.0	0.0	0.0	6.211220	6.929817	6.751709	4.744825	4.684112	4.752109
2	right well thanks drink stuff amanda reason me stick around part anymore	1.0	0.5	0.0	0.0	6.347796	7.081794	6.892825	7.110352	4.904115	4.974433
3	glum hawk night still young fill plenty compensatory possibility	0.0	0.0	0.0	0.0	7.570643	8.195575	6.987399	5.852607	5.792455	6.897112
4	huh	0.0	0.0	0.0	0.0	6.131144	6.841705	7.666502	4.662018	4.601227	4.668652

Performance on holdout set

Accuracy: 67%

Precision: 42%

Recall: 25%

Confusion matrix:

	Pred M	Pred F
Actual M	30,530	5,529
Actual F	11,861	4,021

... But what's the baseline?

The most "male" lines

	movie_title	text	movie_year	male_prob	genre
0	glengarry glen ross	That's what I'm saying. The old ways. The old waysconvert the motherfuckersell himsell him make him sign the check. TheBruce, Harrietthe kitchen, blah: they got their money in government bondsI say fuck it, we're going to go the whole route. I plat it out eight units. Eighty- two grand. I tell them. "This is now. This is that thing that you've been dreaming of, you're going to find that suitcase on the train, the guy comes in the door, the bag that's full of money. This is it, Harriett"\n	1992	0.994480	[ˈdrama']\n
1	glengarry glen ross	Get the chalk. Get the chalkget the chalk! I closed 'em! I closed the cocksucker. Get the chalk and put me on the board. I'm going to Hawaii! Put me on the Cadillac board, Williamson! Pick up the fuckin' chalk. Eight units. Mountain View\n	1992	0.994430	['drama']\n
2	the majestic	Leo, I was trying to impress a skirt. You know me, I'm non- political. Republican, Democrat, Communist, there's not a dime's worth of difference between 'em anyway.\n	2001	0.994445	['drama', 'romance']\n
3	good will hunting	There goes that fuckin' Barney right now, with his fuckin' "skiin' trip." We should'a kicked that dude's ass.\n	1997	0.994079	['drama']\n
4	grand hotel	I'm Baron von Gaigern.\n	1932	0.993760	['drama', 'romance']\n

The most "female" lines

	movie_title	text	text movie_year female_pro	text movie_year female_prob	genre
0	leviathan	Your suit, Beckyl\n	1989	0.987255	['adventure', 'horror', 'mystery', 'sci-fi', 'thriller']\n
1	ghost ship	Maureen?\n	2002	0.985189	['horror', 'mystery', 'thriller']\n
2	ghost ship	Maureen.\n	2002	0.985189	['horror', 'mystery', 'thriller']\n
3	ghost ship	Maureen.\n	2002	0.985189	['horror', 'mystery', 'thriller']\n
4	ghost ship	Let's not be too hasty.\n	2002	0.975697	['horror', 'mystery', 'thriller']\n
5	frances	Claire?\n	1982	0.985081	['biography', 'drama']\n
6	a nightmare on elm street 3: dream warriors	You like gymnastics?\n	1987	0.982592	['fantasy', 'horror', 'thriller']\n
7	back to the future	It's polyester.\n	1985	0.982228	['adventure', 'family', 'sci- fi']\n
8	the time machine	She's gotten into your equations.\n	2002	0.981690	['sci-fi', 'adventure', 'action']\n

The most "male" movies

genre	movie_year	movie_title	avg_male_prob	avg_prop_female_lines	
['drama', 'crime']\n	1989	true believer	0.937486	0.034921	0
['drama', 'war']\n	1979	apocalypse now	0.936244	0.068337	1
[ˈdramaˈ]\n	1992	glengarry glen ross	0.933414	0.000000	2
[ˈdramaˈ]\n	1989	do the right thing	0.933175	0.152695	3
['drama', 'romance']\n	2001	the majestic	0.932354	0.322251	4
[ˈdramaˈ]\n	1975	one flew over the cuckoo's nest	0.931982	0.421941	5
['drama', 'romance']\n	1964	nothing but a man	0.931890	0.101617	6
['drama', 'mystery', 'thriller']\n	1997	affliction	0.931512	0.436293	7
[ˈdramaˈ]\n	1982	the verdict	0.931115	0.024691	8
['drama', 'sci-fi', 'thriller']\n	2008	the day the earth stood still	0.930441	0.346705	9

The most "female" movies

genre	movie_year	movie_title	avg_female_prob	avg_prop_female_lines	
['horror']\n	1943	i walked with a zombie	0.860538	1.000000	0
['adventure', 'drama', 'romance']\n	1988	le grand bleu	0.845237	0.183036	1
['horror']\n	1982	friday the 13th part iii	0.842549	0.333333	2
['horror', 'mystery', 'thriller']\n	1998	i still know what you did last summer	0.841393	0.800752	3
['horror', 'mystery', 'thriller']\n	2000	cherry falls	0.840736	0.569519	4
['adventure', 'family', 'fantasy', 'musical']\n	1939	the wizard of oz	0.839264	0.667470	5
['animation', 'comedy', 'fantasy', 'sci-fi', 'horror']\n	1986	ghostbusters	0.839212	0.450746	6
['adventure', 'family', 'sci-fi']\n	1985	back to the future	0.838664	0.202247	7
['adventure', 'drama', 'romance', 'thriller']\n	2000/I	the beach	0.838109	0.241379	8
['sci-fi', 'horror']\n	1987	the curse	0.837933	0.804800	9

Network Analysis

Network Analysis

- **Degree centrality:** fraction of nodes to which a given node is connected
- **Betweenness centrality:** measure of how often a given node acts as a bridge along the shortest path between two other nodes

	degree	betweenness	
female	0.240	0.105	
male	0.289	0.161	

Network Analysis By genre

	genre	degree_f	degree_m	diff		genre	betweenness_f	betweenness_m	diff
8	sci-fi	0.571970	0.244444	-0.327525	8	sci-fi	0.454798	0.070343	-0.384455
6	fantasy	0.313065	0.251511	-0.061554	6	fantasy	0.199763	0.110678	-0.089085
7	horror	0.298368	0.282734	-0.015634	7	horror	0.142633	0.120228	-0.022404
1	adventure	0.281241	0.311114	0.029873	9	thriller	0.122226	0.137093	0.014866
2	biography	0.158539	0.191420	0.032881	5	drama	0.115159	0.143230	0.028071
9	thriller	0.214631	0.248342	0.033711	3	comedy	0.089080	0.152570	0.063490
5	drama	0.238794	0.284000	0.045206	1	adventure	0.085731	0.153880	0.068148
3	comedy	0.206780	0.255542	0.048762	2	biography	0.064815	0.139327	0.074512
0	action	0.247743	0.332621	0.084878	0	action	0.092217	0.200529	0.108313
4	crime	0.187315	0.304975	0.117660	4	crime	0.048507	0.205693	0.157186

Network Analysis By movie: degree centrality

	genre	degree_f	degree_m	diff	movie_title_f
182	drama	0.928571	0.112245	-0.816327	contact
135	sci-fi	1.000000	0.250000	-0.750000	arcade
98	drama	0.857143	0.309524	-0.547619	mimic

	genre	degree_f	degree_m	diff	movie_title_f
159	crime	0.138889	0.888889	0.750000	vertigo
177	drama	0.250000	0.750000	0.500000	solaris
13	crime	0.250000	0.625000	0.375000	crash

Network Analysis By movie: betweenness centrality

	genre	betweenness_f	betweenness_m	diff	movie_title_f
182	drama	0.945055	0.021193	-0.923862	contact
135	sci-fi	0.875000	0.004464	-0.870536	arcade
145	drama	0.750000	0.025000	-0.725000	white angel

	genre	betweenness_f	betweenness_m	diff	movie_title_f
159	crime	0.055556	0.972222	0.916667	vertigo
13	crime	0.000000	0.500000	0.500000	crash
36	action	0.000000	0.500000	0.500000	the rock

Network Analysis Male Unknown

Network Analysis

IMDB ratings

• Top 20 movies for women: 6.27

• Bottom 20 movies for women: 6.92

Year

Word Embeddings

Word Embeddings

TF-IDF Vectorizer

• **TF: Term Frequency**, which measures how frequently a term occurs in a document.

```
TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document).
```

• **IDF: Inverse Document Frequency**, which measures how important a term is.

```
IDF(t) = log_e(Total number of documents /
Number of documents with term t in it).
```

Cosine Similarity Score

Measuring the **degree of similarity** between two
documents, without
orders and context.

		1	1					
	count	mean	std	min	25%	50%	75%	max
genre								
action	151.0	0.568041	0.341886	0.000000	0.360406	0.715904	0.831122	1.000000
adventure	27.0	0.576467	0.290256	0.000000	0.482959	0.698670	0.778962	0.889845
animation	10.0	0.492413	0.390296	0.000000	0.046342	0.713862	0.814783	0.846943
biography	23.0	0.588373	0.350862	0.000000	0.378852	0.763138	0.877579	0.945393
comedy	118.0	0.679655	0.314736	0.000000	0.653381	0.829528	0.882248	0.956988
crime	67.0	0.605394	0.358645	0.000000	0.427927	0.783201	0.869661	0.942188
documentary	3.0	0.532347	0.461164	0.000000	0.393635	0.787270	0.798521	0.809772
drama	137.0	0.672491	0.272052	0.000000	0.580605	0.774413	0.858866	0.950163
family	1.0	0.748310	NaN	0.748310	0.748310	0.748310	0.748310	0.748310
fantasy	14.0	0.478423	0.310591	0.000000	0.296773	0.505159	0.737766	0.852766
film-noir	1.0	0.851644	NaN	0.851644	0.851644	0.851644	0.851644	0.851644
horror	38.0	0.611660	0.282075	0.000000	0.584903	0.716222	0.802254	0.889793
mystery	5.0	0.549305	0.407814	0.000000	0.225655	0.796920	0.830960	0.892990
romance	2.0	0.892056	0.007455	0.886785	0.889421	0.892056	0.894692	0.897328
sci-fi	5.0	0.292383	0.400476	0.000000	0.000000	0.000000	0.717454	0.744463
short	4.0	0.460928	0.420272	0.000000	0.164568	0.476412	0.772772	0.890888
thriller	10.0	0.758324	0.137617	0.539559	0.685775	0.777634	0.874783	0.912970

Cosine Similarity Score

Highest Scores

Lowest Scores

	movie_id	genre	year	gender_cosim	movie_title
410	m469	comedy	1986	0.956988	peggy sue got married
542	m588	drama	1973	0.950163	u-turn
154	m238	drama	1950	0.948640	all about eve
312	m380	comedy	1986	0.946351	hannah and her sisters
206	m285	comedy	1987	0.946135	broadcast news
166	m249	comedy	1997	0.945672	as good as it gets
210	m289	biography	1995	0.945393	casino
161	m244	drama	2001	0.944203	the anniversary party
460	m513	drama	1975	0.943513	shampoo
8	m105	crime	1997	0.942188	jackie brown

	movie_id	genre	year	gender_cosim	movie_title
7	m104	biography	1991	0.001068	jfk
523	m570	action	1999	0.001263	three kings
389	m45	crime	2003	0.001552	confidence
21	m118	fantasy	1985	0.002015	legend
75	m167	crime	1954	0.002308	rear window
448	m502	action	1998	0.002344	saving private ryan
558	m601	drama	2000	0.002365	what lies beneath
467	m52	comedy	1933	0.002829	duck soup
241	m316	comedy	1993	0.002965	dave
485	m536	comedy	1964	0.003140	dr. strangelove or: how i learned to stop worr

Final Scoring

Final Scoring Method

- Final score = an approximate measure of degree of "genderedness" is a given movie
- High → more gender disparity,
 low → less gender disparity
- Relative ranking is more meaningful than raw score
- Each component is normalized by training mean and sd for scale similarity

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83
********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
**********************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
***********************************
Final score: -0.34
```

1. Abs diff in proportion of lines that are M vs F

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83
********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
**********************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
***********************************
Final score: -0.34
```

- 1. Abs diff in proportion of lines that are M vs F
- 2. Reversed cosine similarity between M & F word embeddings

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83
********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
********************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
***********************************
Final score: -0.34
```

- 1. Abs diff in proportion of lines that are M vs F
- 2. Reversed cosine similarity between M & F word embeddings
- 3. Avg M class probability among M lines

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83 ◀
********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
********************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
***********************************
Final score: -0.34
```

- 1. Abs diff in proportion of lines that are M vs F
- 2. Reversed cosine similarity between M & F word embeddings
- 3. Avg M class probability among M lines
- 4. Avg F class probability among F lines

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
*********************************
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83
********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
********************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
***********************************
Final score: -0.34
```

- 1. Abs diff in proportion of lines that are M vs F
- 2. Reversed cosine similarity between M & F word embeddings
- 3. Avg M class probability among M lines
- 4. Avg F class probability among F lines
- 5. Abs diff in avg network degree centrality of M & F characters

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
*********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
*********************************
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83
*********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
*******************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
***********************************
Final score: -0.34
```

- 1. Abs diff in proportion of lines that are M vs F
- 2. Reversed cosine similarity between M & F word embeddings
- 3. Avg M class probability among M lines
- 4. Avg F class probability among F lines
- 5. Abs diff in avg network degree centrality of M & F characters
- 6. Abs diff in avg network betweenness centrality of M & F characters

```
In [55]: run scoring.py
***********************************
Calculating line proportions...
Female proportion: 0.71
Male proportion: 0.29
Diff in proportions (normed): -0.17
********************************
Calculating cosine similarity...
Cosine similarity (normed): -0.74
*********************************
Calculating classification probabilities...
Male prob of male lines (normed): -0.77
Female prob of female lines (normed): -0.83
*********************************
Calculating network degree...
Female degree: 0.27
Male degree: 0.32
Network degree diff (normed): 0.29
********************************
Calculating network betweenness...
Female betweenness: 0.12
Male betweenness: 0.1
Network betweenness diff (normed): 0.17
******************************
Final score: -0.34
```

- 1. Abs diff in proportion of lines that are M vs F
- 2. Reversed cosine similarity between M & F word embeddings
- 3. Avg M class probability among M lines
- 4. Avg F class probability among F lines
- 5. Abs diff in avg network degree centrality of M & F characters
- 6. Abs diff in avg network betweenness centrality of M & F characters

Final score: equality-weighted average of the six components

Exploratory Insights

Distribution of final scores

Final score over time

Final score by genre

Thanks!