Problem1

First, we assume all variables X_i are independent.

Based on Naïve Bayes,

$$P(Y|X) = P(Y = y|X_1 = x_1, X_2 = x_2, X_3 = x_3 \dots X_n = x_n) = \frac{P(Y) * \prod_{i=1}^n P(X_i|Y)}{\prod_{i=1}^n P(X_i)}$$

For Naïve Bayes Classifier, the classification is Y with higher P(Y|X)

$$\arg \max P(Y = y | X) = \arg \max \frac{P(Y = y) * \prod_{i=1}^{n} P(X_i | Y = y)}{\prod_{i=1}^{n} P(X_i)}$$

$$= \arg\max \prod_{i=1}^{n} P(X_i|Y=y) * P(Y=y)$$

In this problem, the distribution of samples are:

Number of Y = yes sample 9, Number of Y = no sample 5,

$$P(Y = yes) = \frac{9}{14}$$
; $P(Y = no) = \frac{5}{14}$

Buy computer	Age=young	Income=low	Student=yes	Credit rating=fair
Yes	2	3	6	6
No	3	1	1	2

The probabilities are

	Age=young	Income=low	Student=yes	Credit rating=fair
$P(X_i Y=yes)$	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
$P(X_i Y=no)$	3 5	$\frac{1}{5}$	$\frac{1}{5}$	2 5

$$\prod_{i=1}^{n} P(X_i|Y = yes) * P(Y = yes) = \frac{2}{9} * \frac{1}{3} * \frac{2}{3} * \frac{2}{3} * \frac{9}{14} = \frac{4}{189} \approx 0.021$$

$$\prod_{i=1}^{n} P(X_i|Y=no) * P(Y=no) = \frac{3}{5} * \frac{1}{5} * \frac{1}{5} * \frac{2}{5} * \frac{5}{14} = \frac{3}{875} \approx 0.00343$$

$$\prod_{i=1}^{n} P(X_i|Y = yes) * P(Y = yes) > \prod_{i=1}^{n} P(X_i|Y = no) * P(Y = no)$$

Therefore, the classification is yes.

Problem2

(a) Give that the model, and the first day is rainy (State 1)

$$P(\{S1, S2, S3, S3, S1\}) = P(S1|S1) * P(S2|S1) * P(S3|S2) * P(S3|S3) * P(S1|S3)$$

= 0.4 * 0.3 * 0.2 * 0.8 * 0.1 = 0.00192

(b)

Define matrix A is the transition probability matrix, p_{ij} is the probability.

$$p_{ij} = P(S_j|S_i); A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix},$$

Define X_i be the observation of day i. Stay in state S_i for exactly d days means it stay in S_i for d-1 days and move for other state in the d^{th} day. The probability is.

$$P = p_{ii}^{d-1} * (1 - p_{ii})$$

Probability of the model stay in rainy (State 1)

$$P = 0.6 * (0.4)^{d-1}$$

Probability of the model stay in rainy (State 2)

$$P = 0.4 * (0.6)^{d-1}$$

Probability of the model stay in rainy (State 3)

$$P = 0.2 * (0.8)^{d-1}$$

(c)

Given the state is S_i . The next observation stays in S_i is a Binomial distribution with probability p_{ii} . Therefore, the state stays in S_i for exactly d days can be seen as a Bernoulli experiment that fails (stay in S_i state) d-1 time and success (not in S_i state) at d time. This is a geometric distribution D_{S_i} with $p=1-p_{ii}$.

$$D = p_{ii}^{d-1} * (1 - p_{ii})$$

$$E(D_{s_i}) = \sum_{d=1}^{\infty} dp (1-p)^{d-1} = 1 - p_{ii} \sum_{d=1}^{\infty} d(p_{ii})^{d-1}$$

$$=1-p_{ii}*\frac{1}{(1-p_{ii})^2}=\frac{1}{1-p_{ii}}$$

$$E(D_{S_1}) = \frac{1}{1 - 0.4} \approx 1.6667$$

$$E(D_{S_2}) = \frac{1}{1-0.6} = 2.5$$

$$E(D_{S_3}) = \frac{1}{1 - 0.8} = 5$$

Problem 3

Notation:

 $Q = \{q_0, q_1, q_2 \dots q_N\}$, A set of posibile state $Z = \{0, 1, 2, 3, \dots M\}$, A set of posibile observations $X = \{x_0, x_1, x_2 \dots x_T\}$, Markov process sequence $O = \{o_0, o_1, o_2 \dots o_T\}$, a observation sequence A: transition probability matrix B: observation probability matrix

$$Forward\ Algorithm:\ \alpha_t(i) = b_i(O_t) \sum_{j=0}^{N-1} \alpha_{t-1}(j) \\ \alpha_{ij} = P(o_0, o_1, o_2 \dots o_t, x_t = q_i | \lambda)$$

By the forward Algorithm

$\alpha_t(i)$	$P(o_0, o_1, o_2 \dots o_t, x_t = H \lambda)$	$P(o_0, o_1, o_2 \dots o_t, x_t = C \lambda)$
$O_0 = 0$	0.06	0.28
$O_1 = 2$	0.077	0.0186
$O_2 = 2$	0.03067	0.003426

$$P(O|\lambda) = \sum_{i=0}^{N-1} \alpha_{t-1}(j)$$

	$P(O \lambda)$
$O = \{O_0 = 0\}$	0.34
$O = \{O_0 = 0, O_1 = 2\}$	0.0956
$O = \{O_0 = 0, O_1 = 2, O_2 = 2\}$	0.034096

$$Backward\ Algorithm: \beta_t(i) = \sum_{i=0}^{N-1} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j) = P(o_{t+1}, o_{t+2}, o_{t+3} \dots o_{t-}, | x_t = q_i, \lambda)$$

By the backward Algorithm

$\beta_t(i)$	$P(o_{t+1}, o_{t+2}, o_{t+3} \dots o_{t-}, x_t = H, \lambda)$	$P(o_{t+1}, o_{t+2}, o_{t+3} \dots o_{t-}, x_t = C, \lambda)$
$O_0 = 0$	0.1408	0.0916
$O_1 = 2$	0.38	0.26
$O_2 = 2$	1	1

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(O|\lambda)} = P(x_t = q_i|O,\lambda)$$

The distribution of probability is:

$\gamma_t(i)$	$P(x_t = H O, \lambda)$	$P(x_t = C O, \lambda)$
t = 0	0.24777	0.75223
t = 1	0.85817	0.14183
t = 2	0.89952	0.10048

Choosing x_t with highest probability.

The Most likely sequence of X is: $\{C, H, H\}$

Note: Metrics are calculated by code. See Link below:

https://github.com/WeigengLi/6364MLHW4