Part of Speech Tagging & Hidden Markov Models (Part 1)

Mitch Marcus
CSE 391

NLP Task I – Determining Part of Speech Tags

 Given a text, assign each token its correct part of speech (POS) tag, given its context and a list of possible POS tags for each word type

Word	POS listing in Brown Corpus		
heat	noun	verb	
oil	noun		
in	prep	noun	adv
a	det	noun	noun-proper
large	adj	noun	adv
pot	noun		

What is POS tagging good for?

Speech synthesis:

How to pronounce "lead"?

INsult inSULT

OBject obJECT

OVERflow overFLOW

DIScount disCOUNT

CONtent content

Machine Translation

translations of nouns and verbs are different

Stemming for search

- Knowing a word is a N tells you it gets plurals
- Can search for "aardvarks" get "aardvark"

Parsing and speech recognition and etc

- Possessive pronouns (my, your, her) followed by nouns
- Personal pronouns (I, you, he) likely to be followed by verbs

Equivalent Problem in Bioinformatics

- Durbin et al. Biological Sequence Analysis,
 Cambridge University Press.
- Several applications, e.g. proteins
- From a sequence of amino acids (primary structure):
 ATCPLELLLD
- Infer secondary structure (features of the 3D structure, like helices, sheets, etc.): HHHBBBBBC...

Penn Treebank Tagset I

Tag	Description	Example
CC	coordinating conjunction	and
CD	cardinal number	1, third
DT	determiner	the
EX	existential <i>there</i>	there is
FW	foreign word	d'hoevre
IN	preposition/subordinating conjunction	in, of, like
JJ	adjective	green
JJR	adjective, comparative	greener
JJS	adjective, superlative	greenest
LS	list marker	1)
MD	modal	could, will
NN	noun, singular or mass	table
NNS	noun plural	tables (supports)
NNP	proper noun, singular	John
NNPS	proper noun, plural	Vikings

Penn Treebank Tagset II

Tag	Description	Example
PDT	predeterminer	both the boys
POS	possessive ending	friend 's
PRP	personal pronoun	I, me, him, he, it
PRP\$	possessive pronoun	my, his
RB	adverb	however, usually, here, good
RBR	adverb, comparative	better
RBS	adverb, superlative	best
RP	particle	give <i>up</i>
TO	to	to go, to him
UH	interjection	uhhuhhuhh

Penn Treebank Tagset III

Tag	Description	Example
VB	verb, base form	take (support)
VBD	verb, past tense	took
VBG	verb, gerund/present participle	taking
VBN	verb, past participle	taken
VBP	verb, sing. present, non-3d	take
VBZ	verb, 3rd person sing. present	takes (supports)
WDT	wh-determiner	which
WP	wh-pronoun	who, what
WP\$	possessive wh-pronoun	whose
WRB	wh-abverb	where, when

NLP Task I – Determining Part of Speech Tags

- The Old Solution: Depth First search.
 - If each of n word tokens has k tags on average,
 try the kⁿ combinations until one works.
- Machine Learning Solutions: Automatically learn Part of Speech (POS) assignment.
 - The best techniques achieve 97+% accuracy per word on new materials, given a POS-tagged training corpus of 10⁶ tokens and a set of ~40 POS tags

Simple Statistical Approaches: Idea 1

Simply assign each word its most likely POS.

Success rate: 91%!

Word	POS listings in Brown		
heat	noun/89	verb/5	
oil	noun/87		
in	prep/20731	noun/1	adv/462
а	det/22943	noun/50	noun-proper/30
large	adj/354	noun/2	adv/5
pot	noun/27		

Simple Statistical Approaches: Idea 2

For a string of words

$$W = w_1 w_2 w_3 \dots w_n$$

find the string of POS tags

$$T = t_1 t_2 t_3 \dots t_n$$

which maximizes P(T|W)

• i.e., the most likely POS tag t_i for each word w_i given its surrounding context

The Sparse Data Problem ...

A Simple, Impossible Approach to Compute P(T | W):

Count up instances of the string "heat oil in a large pot" in the training corpus, and pick the *most common tag assignment* to the string..

What parameters can we estimate with a million words of hand tagged training data?

 Assume a uniform distribution of 5000 words and 40 part of speech tags..

Event	Count	Estimate Quality?
tags	40	Excellent 🛑
tag bigrams	1600	Excellent (
tag trigrams	64,000	OK
tag 4-grams	2.5M	Poor
words	5000	Very Good
word bigrams	25M	Poor
word x tag pairs	200,000	OK 🛑

We can get reasonable estimates of

- Tag bigrams
- Word x tag pairs

Bayes Rule plus Markov Assumptions yields a practical POS tagger!

By Bayes Rule

$$P(T \mid W) = \frac{P(W \mid T) * P(T)}{P(W)}$$

II. So we want to find

$$\arg \max_{T} P(T \mid W) = \arg \max_{T} P(W \mid T) * P(T)$$

III. To compute P(W/T):

- use the chain rule + a Markov assumption
- Estimation requires word x tag and tag counts

IV. To compute P(T):

- use the chain rule + a slightly different Markov assumption
- Estimation requires tag unigram and bigram counts

IV. To compute P(T):

By the chain rule,

$$P(T) = P(t_1) * P(t_2 | t_1) * P(t_3 | t_1t_2) * ... * P(t_n | t_1...t_{n-1})$$

II. Applying the 1st order Markov Assumption

$$P(T) = P(t_1) * P(t_2 | t_1) * P(t_3 | t_2) * ... * P(t_n | t_{n-1})$$

Estimated using tag bigrams/tag unigrams!

III. To compute P(W/T):

- I. Assume that the words w_i are conditionally independent given the tag sequence $T=t_1t_2...t_n$: $P(W\mid T)=\prod_{i=1}^n P(w_i\mid T)$
- II. Applying a zeroth-order Markov Assumption:

$$P(w_i \mid T) = P(w_i \mid t_i)$$
 by which
$$P(W \mid T) = \prod_{i=1}^n P(w_i \mid t_i)$$

So, for a given string $W = w_1 w_2 w_3 ... w_{n_i}$, the tagger needs to find the string of tags T which maximizes

$$P(T) * P(W|T) = P(t_1) * P(t_2|t_1) * P(t_3|t_2) * \dots * P(t_n|t_{n-1}) * P(w_1|t_1) * P(w_2|t_2) * \dots * P(w_n|t_n)$$
CIS 391 - Intro to AI

Hidden Markov Models

This model is an instance of a Hidden Markov Model. Viewed graphically:

Viewed as a generator, an HMM:

- ullet Starts in some initial state t_1 with probability $\pi(t_1)$,
- ullet On each move goes from state t_i to state t_j according to transition probability $a(t_i,t_j)$.
- ullet At each state t_i , it emits a symbol w_k according to the emit probabilities $b(t_i, w_k)$.

Recognition using an HMM

By Bayes Rule

$$P(T \mid W) = \frac{P(T) * P(W \mid T)}{P(W)}$$

II. We select the Tag sequence T that maximizes P(T/W):

$$\arg \max_{T} P(T | W)
= \arg \max_{T = t_{1}t_{2}...t_{n}} P(T) * P(W | T)
= \arg \max_{T = t_{1}t_{2}...t_{n}} \pi(t_{1}) * \prod_{i=1}^{n-1} a(t_{i}, t_{i+1}) * \prod_{i=1}^{n} b(t_{i}, w_{i})$$

Training and Performance

 To estimate the parameters of this model, given an annotated training corpus use the MLE:

To estimate $P(t_i|t_{i-1})$:

$$\frac{Count(t_{i-1}t_i)}{Count(t_{i-1})}$$

To estimate $P(w_i|t_i)$:

$$\frac{Count(w_i \text{ tagged } t_i)}{Count(\text{ all words tagged } t_i)}$$

- Because many of these counts are small, smoothing is necessary for best results...
- Such taggers typically achieve about 95-96% correct tagging, for the standard 40-tag POS set.

POS from bigram and word-tag pairs??

A Practical compromise

- Rich Models often require vast amounts of data
- Well estimated bad models often outperform badly estimated better models

THE STREETLIGHT EFFECT

BY PEDRO ALBERTO ARROYO

WWW.BITSTRIPS.COM

Practical Tagging using HMMs

- Finding this maximum can be done using an exponential search through all strings for T.
- However, there is a linear time solution using dynamic programming called Viterbi decoding.