

Lecture 12

Cyclotomic Polynomials, Primes Congruent to 1 mod n

Cyclotomic Polynomials - just as we have primitive roots mod p , we can have primitive n^{th} roots of unity in the complex numbers. Recall that there are n distinct n^{th} roots of unity - ie., solutions of $z^n = 1$, in the complex numbers. We can write them as $e^{2\pi ij/n}$ for $j = 0, 1, \dots, n-1$. They form a regular n -gon on the unit circle.

We say that z is a primitive n^{th} root of unity if $z^d \neq 1$ for any d smaller than n . If we write $z = e^{2\pi ij/n}$, this is equivalent to saying $(j, n) = 1$. So there are $\phi(n)$ primitive n^{th} roots of unity.

Eg. 4th roots of 1 are solutions of $z^4 - 1 = 0$, or $(z-1)(z+1)(z^2 + 1) = 0 \Rightarrow z = 1, -1 \pm i$

Now 1 is a primitive first root of unity, -1 is a primitive second root of unity, and $\pm i$ are primitive fourth roots of unity. Notice that $\pm i$ are roots of the polynomial $z^2 + 1$. In general, define

$$\Phi_n(x) = \prod_{\substack{(j,n)=1 \\ 1 \leq j \leq n}} (x - e^{2\pi ij/n})$$

This is the n^{th} **cyclotomic polynomial**.

We'll prove soon that $\Phi_n(x)$ is a polynomial with integer coefficients. Another fact is that it is **irreducible**, ie., cannot be factored into polynomials of smaller degree with integer coefficients (we won't prove this, however).

Anyway, here is how to compute $\Phi_n(x)$: take $x^n - 1$ and factor it. Remove all factors which divide $x^d - 1$ for some $d|n$ and less than n .

Eg. $\Phi_6(x)$. Start with $x^6 - 1 = (x^3 - 1)(x^3 + 1)$. Throw out $x^3 - 1$ since $3|6$ and $3 < 6$. $x^3 + 1 = (x+1)(x^2 - x + 1)$. Throw out $x+1$ which divides $x^2 - 1$, since $2|6$, $2 < 6$. We're left with $x^2 - x + 1$ and it must be $\Phi_6(x)$ since it has the right degree $2 = \varphi(6)$ (the n^{th} cyclotomic polynomial has degree $\varphi(n)$, by definition).

If you write down the first few cyclotomic polynomials you'll notice that the coefficient seems to be 0 or ± 1 . But in fact, $\Phi_{105}(x)$ has -2 as a coefficient, and the coefficients can be arbitrarily large if n is large enough.

These polynomials are very interesting and useful in number theory. For instance, we're going to use them to prove that given any n , there are infinitely many primes congruent to 1 mod n .

Eg. $\Phi_4(x) = x^2 + 1$ and the proof for primes $\equiv 1 \pmod{4}$ used $(2p_1 \dots p_n)^2 + 1$

Proposition 45. 1. $x^n - 1 = \prod \Phi_n(x)$

2. $\Phi_n(x)$ has integer coefficients

3. For $n \geq 2$, $\Phi_n(x)$ is reciprocal; ie., $\Phi_n(\frac{1}{x}) \cdot x^{\varphi(n)} = \Phi_n(x)$ (ie., coefficients are palindromic)

Proof. 1. is easy - we have

$$x^n - 1 = \prod_{1 \leq j \leq n} (x - e^{2\pi i j/n})$$

If $(j, n) = d$ then $e^{2\pi i j/n} = e^{2\pi i j'/n'}$ where $j' = \frac{j}{d}$, $n' = \frac{n}{d}$, and $(j', n') = 1$. $(x - e^{2\pi i j'/n'})$ is one of the factors of $\Phi_{n'}(x)$ and $n'|n$. Looking at all possible j , we recover all the factors of $\Phi_{n'}(x)$, for every n' dividing n , exactly once. So

$$x^n - 1 = \prod_{n'|n} \Phi_{n'}(x)$$

2. By induction. $\Phi_1(x) = x - 1$. Suppose true for $n < m$. Then

$$x^m - 1 = \prod_{d|m} \Phi_d(x) = \underbrace{\left(\prod_{\substack{d|m \\ d < m}} \Phi_d(x) \right)}_{\text{monic (by defn), integer coefficients (by ind. hypothesis)}} \cdot \Phi_m(x)$$

So $\Phi_m(x)$, obtained by dividing a polynomial with integer coefficients, by a monic polynomial with integer coefficients, also has integer coefficients. This completes the induction.

3. By induction. True for $n = 2$, since $\Phi_2(x) = x + 1$.

$$\Phi_2\left(\frac{1}{x}\right) x^{\varphi(2)} = \left(\frac{1}{x} + 1\right) x = x + 1 = \Phi_2(x)$$

Suppose true for $n < m$. If we plug in $\frac{1}{x}$ into

$$\begin{aligned} x^m - 1 &= \prod_{d|m} \Phi_d(x) \\ \left(\frac{1}{x}\right)^m - 1 &= \prod_{d|m} \Phi_d\left(\frac{1}{x}\right) \\ &= \left(\prod_{\substack{1 < d < m \\ d|m}} \Phi_d\left(\frac{1}{x}\right) \right) \cdot \Phi_m\left(\frac{1}{x}\right) \cdot \left(\frac{1}{x} - 1\right) \end{aligned}$$

Multiply by $x^m = \sum_{d|m} \varphi(d) = \prod_{d|m} x^{\varphi(d)}$ - proved before - to get

$$\begin{aligned} 1 - x^m &= \left(\prod_{\substack{1 < d < m \\ d|m}} \Phi_d \left(\frac{1}{x} \right) x^{\varphi(d)} \right) \cdot \Phi_m \left(\frac{1}{x} \right) x^{\varphi(m)} \cdot \left(\frac{1}{x} - 1 \right) x \\ -(x^m - 1) &= \left(\prod_{\substack{1 < d < m \\ d|m}} \underbrace{\Phi_d(x)}_{\text{by ind hyp}} \right) \cdot \Phi_m \left(\frac{1}{x} \right) x^{\varphi(m)} \cdot (1 - x) \\ -\prod_{d|m} \Phi_d(x) &= \left(\prod_{\substack{1 < d < m \\ d|m}} \Phi_d(x) \right) \cdot \Phi_m \left(\frac{1}{x} \right) x^{\varphi(m)} \cdot (-\Phi_1(x)) \end{aligned}$$

Cancelling almost all the factors we get

$$\Phi_m(x) = \Phi_m \left(\frac{1}{x} \right) x^{\varphi(m)}$$

completing the induction. ■

Lemma 46. Let $p \nmid n$ and $m|n$ be a proper divisor of n (ie., $m \neq n$). Then $\Phi_n(x)$ and $x^m - 1$ cannot have a common root mod p .

Proof. By contradiction. Suppose a is a common root mod p . Then $a^m \equiv 1 \pmod{p}$ forces $(a, p) = 1$. Next,

$$x^n - 1 = \prod_{d|n} \Phi_d(x) = \Phi_n(x) \prod_{\substack{d|n \\ d < n}} \Phi_d(x)$$

Notice that $x^m - 1 = \prod_{d|m} \Phi_d(x)$ has all its factors in the last product. So this shows $x^n - 1$ has a double root at a , ie., $(x^n - 1) \equiv (x - a)^2 f(x) \pmod{p}$ for some $f(x)$. Then the derivative must also vanish at $a \pmod{p}$, so $na^{n-1} \equiv 0 \pmod{p}$.

But $p \nmid n$ and $p \nmid a$, a contradiction. (\sharp) ■

Now, we're ready to prove the main theorem.

Theorem 47. Let n be a positive integer. There are infinitely many primes congruent to $1 \pmod{n}$.

Proof. Suppose not, and let p_1, p_2, \dots, p_N be all the primes congruent to 1 mod n . Choose some large number l and let $M = \Phi_n(lnp_1 \dots p_N)$. Since $\Phi_n(x)$ is monic, if l is large enough, M will be > 1 and so divisible by some prime p .

First, note that p cannot equal p_i for any i , since $\Phi_n(x)$ has constant term 1, and so p_i divides every term except the last of $\Phi_n(lnp_1 \dots p_N) \Rightarrow$ it doesn't divide M . For the same reason we have $p \nmid n$. In fact, $(p, a) = 1$ where $a = lnp_1 \dots p_N$.

Now $\Phi_n(a) \equiv 0 \pmod{p}$ by definition, which means $a^n \equiv 1 \pmod{p}$. By the lemma, we cannot have $a^m \equiv 1 \pmod{p}$ for any $m|n, m < n$. So the order of a mod p is exactly n , which means that $n|p - 1$ since $a^{p-1} \equiv 1 \pmod{p} \Rightarrow p \equiv 1 \pmod{n}$, exhibiting another prime which is $\equiv 1 \pmod{n}$. Contradiction. (§) ■

Note - we did not even need to assume that there's a single prime $\equiv 1 \pmod{n}$; if $N = q$ take the empty product, ie., 1, and we end up looking at $\Phi_n(ln)$ for large l .

MIT OpenCourseWare
<http://ocw.mit.edu>

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.