SageCast

Dynamic spatiotemporal modeling of sagebrush cover under climate change to support management of sage-grouse in Wyoming, USA

Andrew T. Tredennick Thomas Prebyl Adrian Monroe

Cameron Aldridge

2021-07-12

Motivation

Goal of the core area strategy:

"...to minimize future disturbance by co-locating proposed disturbances within area already disturbed or naturally unsuitable."

State of Wyoming 2015

Motivation

Climate change might switch habitat from being "naturally" suitable to unsuitable, or vice versa.

Approach

- Fit a dynamic time series model to the Back-In-Time sagebrush data set to quantify the influence of weather/climate on sagebrush cover change.
- 2. Use the fitted model to project changes into the future, driven by global circulation model projections.

Data: BIT Time Series

Model: dynamic additive spatiotemporal model

 $y_{i,t} = \text{observed percent cover of cell } i \text{ in year } t$ $x_{i,t} = \text{log cover in year } t-1 \text{ and observed climate covariates in cell } i \text{ in year } t$ $w_i = \text{observed deviation of cell } i \text{ from the mean percent cover}$

$$y_{i,t} \sim \mathsf{Poisson}(\mathsf{exp}(\mu_{i,t}))$$
 (1)

$$\mu_{i,t} = \beta x'_{i,t} + \gamma_t + w_i \tag{2}$$

Spatial offset (w_i)

Climate covariates

- ► Average spring-through-summer* precipitation
- Average spring-through-summer temperature
- * March 1 through August 31 for each year t

Climate change projections

Sagebrush cover targets

Average cover across all active nesting and summer habitat at 100m resolution

Region	NestingTarget	SummerTarget
Central Region	13.32%	12.29%
Northeast Region	9.04%	10.36%
Southwest Region	15.43%	16.71%

Results: equilibrium cover

Results: Climate sensitivity

Results: Climate sensitivities

Average posterior effects

*Removed Seedskadee

Projections of sagebrush cover

Projections of sagebrush cover

Projections of sagebrush cover: nesting targets

Projections of sagebrush cover: summer targets

Conclusions

- Climate change is likely to benefit more than hurt sagebrush ecosystems in Wyoming
 - Positive effect of temperature and temperature increasing
 - Negative effect of precipitation, but precipitation projected to remain the same
- Few, if any, "lost causes"
- Sage-grouse core area strategy still viable under climate change