Tools Used in This Project

1. Programming Language

• **Python** – The primary programming language used for data analysis, preprocessing, and model development.

2. Development Environment

• Jupyter Notebook / Google Colab – For interactive coding, visualization, and experimentation.

3. Libraries and Frameworks

- Pandas For data manipulation, cleaning, and transformation.
- NumPy For numerical computations and handling arrays.
- Matplotlib For data visualization and plotting graphs.
- Seaborn For advanced and visually appealing statistical plots.
- **Scikit-learn (sklearn)** For implementing machine learning models, preprocessing, and evaluation metrics.
- Joblib / Pickle For saving and loading machine learning models or encoders.

4. Data Handling & Encoding Tools

- LabelEncoder / OneHotEncoder For encoding categorical variables.
- **train_test_split** For splitting data into training and testing sets.

5. Machine Learning Models Used

- Linear Regression / Logistic Regression For predictive modeling.
- Random Forest / XGBoost / Gradient Boosting For ensemble learning and performance optimization.

6. Evaluation Metrics

- Accuracy / RMSE / R² / Precision / Recall / F1-score For evaluating model performance.
- Silhouette Score For clustering model validation.

7. Version Control and Documentation

- Git & GitHub For version control, collaboration, and repository management.
- Markdown For documentation and explanation of project workflow.

8. Deployment (Optional)

• Streamlit / Flask - For building simple web apps (if applicable).

This setup ensures an efficient, reproducible, and scalable machine learning workflow — from data preprocessing to model evaluation and documentation.