Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Cong	Next Item	
~	1/1 points	
1. What is propag	s the "cache" used for in our implementation of forward propagation agation?	and backward
0	We use it to pass variables computed during forward propagation to corresponding backward propagation step. It contains useful values propagation to compute derivatives.	
the l	ect ect, the "cache" records values from the forward propagation units an packward propagation units because it is needed to compute the chair vatives.	
	We use it to pass variables computed during backward propagation to corresponding forward propagation step. It contains useful values for propagation to compute activations.	
	It is used to cache the intermediate values of the cost function during	g training.
	It is used to keep track of the hyperparameters that we are searching up computation.	g over, to speed
~	1/1 points	
2. Among	the following, which ones are "hyperparameters"? (Check all that app	ly.)
	learning rate $lpha$	
Corr	ect	
	activation values $a^{[l]}$	
Un-s	elected is correct	

-					
	nun	าber	of	iteratio	n

Key concepts on Deep Neural Networks

10/10 points (100%)

Ouiz	z. 10	aue	esti	ons

ons	ecti Deep Neurai Networks	10/10 բ
	size of the hidden layers $n^{[l]}$	
Corr	ect	
	weight matrices $W^{[l]}$	
Un-s	elected is correct	
	bias vectors $b^{[l]}$	
Un-s	elected is correct	
	number of layers \boldsymbol{L} in the neural network	
Corr	ect	
~	1/1 points	
3. Which	of the following statements is true?	
0	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	
Corre	ect	
	The earlier layers of a neural network are typically computing more complex fed of the input than the deeper layers.	atures
~	1 / 1 points	
	ization allows you to compute forward propagation in an L -layer neural network licit for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/F	
	True	
0	False	

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},...)$ in a Key concepted network we have a layer than the layer than the layer than a layer than

```
/
```

1/1 points

5

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

/

1/1 points

6.

Correct

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

V

1/1 points

8.

There are certain functions with the following properties:

Key concepts on the pulled tall Networks work circuit, you will need a large network of 100%

(where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

Correct
False

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $oxed{ W^{[1]}}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[1]}$ will have shape (4, 1)

Correc

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[1]}$ will have shape (3, 4)

Un-selected is correct

Key concepts on Deep Nousal) Networks

10/10 points (100%)

Quiz, 10 questions

Un-se		:_		
UII-Se	lecteu	13	COL	reci

$W^{[2]}$ will have shape (3, 4)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[2]}$ will have shape (1, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 1)
Un-selected is correct
$b^{[2]}$ will have shape (3, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1)
Un-selected is correct
$b^{[3]}$ will have shape (1, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[3]}$ will have shape (3, 1)
Un-selected is correct

1/1 points