CS 421: Design and Analysis of Algorithms

Chapter 15: Dynamic Programming

Dr. Gaby DagherDepartment of Computer Science

Boise State University

March 8, 2022

Content of this Chapter

- ☐ Introduction to dynamic programming
- ☐ Rod cutting
- Matrix-chain multiplication
- □ Elements of dynamic programming
- □ 0-1 Knapsack Problem

Content of this Chapter

- > Introduction to dynamic programming
- ☐ Rod cutting
- Matrix-chain multiplication
- □ Elements of dynamic programming
- □ 0-1 Knapsack Problem

Dynamic Programming

- ☐ An algorithm design technique (similar to divide-and-conquer)
- ☐ Divide and conquer
 - Partition the problem into <u>independent</u> subproblems.
 - Solve the subproblems recursively.
 - Combine the solutions to solve the original problem.
- ☐ Observations about Merge Sort:
 - One decision: split the input in half
 - The same decision is repeated
 - Subproblems do not share subsubproblems.

Dynamic Programming

- □ *Dynamic programming* is applicable when subproblems are **not** independent: *Subproblems share subsubproblems*.
- ☐ Used for **optimization problems**
 - A set of choices must be made to get an optimal solution.
 - Find a solution with the optimal value (minimum or maximum).
 - There may be many solutions that lead to an optimal value.
 - Our goal: find an optimal solution.

Steps of Dynamic Programming Algorithm

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution in a *bottom-up* fashion.
- **4. Construct** an optimal solution from computed information. (not always required)

Content of this Chapter

- ☐ Introduction to dynamic programming
- > Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- □ 0-1 Knapsack Problem

The Rod Cutting Problem

Given a rod of length *n* inches and a table of prices, determine the maximum revenue obtainable by cutting up the rod and selling the pieces.

Example of a price table:

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Possible Cuts

• Possible ways to cut a rod of length n is 2^{n-1} .

For example, given a rod of length 4, there are $2^{4-1} = 8$ possible ways to cut it:

Optimal Revenue

- If an *optimal solution* cuts the rod into k pieces, for some $1 \le k \le n$,
- Then an optimal decomposition of the rod into pieces of lengths i_1, i_2, \ldots, i_k provides maximum corresponding revenue:

$$r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$$
Max Revenue
Optimal Decomposition

Example – Rod Cutting

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30
Max Revenue				Length	n (Optimal Solution	,			
$r_1 =$	1	fron	n sol	ution	1 =	1 (n	o cuts	s),	k = 1	
$r_2 =$	5	fron	n sol	ution	12 =	2 (n	o cuts	s),	k = 1	
$r_3 =$	8	fron	n sol	ution	3 =	3 (n	o cuts	s),	k = 1	
$r_4 =$	10	fron	n sol	ution	4 =	2 + 2	, k	=2		
$r_5 =$	13	fron	n sol	ution	5 =	2 + 3	, k	=2		
$r_6 =$	17	fron	n sol	ution	6 =	6 (n	o cuts	s),	k = 1	
$r_7 =$	18	fron	n sol	ution	7 =	1 + 6	or 7	=2	+2+	$3, k=2 \\ k=3$
$r_8 =$										K – 3
$r_9 =$	25	fron	n sol	ution	9 =	3 + 6	, k	=2		
$r_{10} =$	30	fron	n sol	ution	10 =	= 10	(no c	uts).	k = 1	

Optimal Revenue

- The optimal (maximum) solution must start the cutting at position i where $1 \le i \le n$.
- Since we don't know ahead of time which value of *i* optimizes revenue, we have to consider all possible values for *i* and pick the one that maximizes revenue.
- The optimal revenue r_n for a rod of length n is:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$
.

Optimal Substructure

- Optimal substructure property:
 - Optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently.
- The rod-cutting problem exhibits optimal substructure property:
 - The overall optimal solution incorporates optimal solutions to the two related subproblems, maximizing revenue from each of those two pieces.

Optimal Revenue

• Recall: The optimal revenue r_n for a rod of length n based on the *first cut* is:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$
 (1)

• Optimal revenue based on the <u>leftmost cut</u>: Let *i* be the first cut from left (*leftmost cut*), then the above equation can be simplified as follows:

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i})$$

Price of first left piece of length i

(2)

Optimal Revenue

We can re-write the recurrences in (1) and (2) as follows:

Optimal revenue based on the <u>first cut</u>:

$$r[n] = \begin{cases} p_1 & \text{if } n=1\\ max (max (r[i] + r[n-i]), p_n) & \text{if } n>1 \end{cases}$$

Optimal revenue based on the <u>leftmost cut</u>:

$$r[n] = \begin{cases} p_1 & \text{if } n=1\\ \max_{1 \le i \le n} (p_i + r[n-i]) & \text{if } n>1 \end{cases}$$

Recursive Top-Down Rod Cutting Algorithm

```
Cut-Rod(p, n)
  if n == 0
  return 0
3 \quad q = -\infty
4 for i = 1 to n
        q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))
   return q
T(n) = \Theta(2^n)
```

Why top-down is inefficient?

The recursion tree (recursive calls) for a rod of length: n = 4

Problem: Recursive calls to solve similar sub-problems.

Dynamic-Programming Approaches

- Approach#1: Top-down with memoization
 - We write the procedure recursively in a natural manner, but modified to <u>save the result of each subproblem</u> (e.g. in an array or a table).
- Approach#2: Bottom-up
 - We sort the subproblems by size and <u>solve them in size</u> <u>order, smallest first</u>.
 - When solving a subproblem, we have already solved (and saved) all of the smaller subproblems its solution depends upon.

Dynamic-Programming Approaches

- Both approaches usually yield algorithms with the same asymptotic running time.
- The *bottom-up* approach often has much better constant factors, since it has less overhead for procedure calls.

Approach#1: Top-down with memoization

```
MEMOIZED-CUT-ROD(p, n)
  let r[0..n] be a new array
2 for i = 0 to n
3 	 r[i] = -\infty
4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
  if r[n] \geq 0
2 return r[n]
3 if n == 0
4 	 q = 0
5 else q = -\infty
      for i = 1 to n
           q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
8 r[n] = q
   return q
```

Approach#2: Bottom-up approach

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

$$T(n) = \Theta(n^2)$$

Subproblem Graphs

The subproblem graph (collapsed tree) for a rod of length: n = 4

Extended bottom-up method

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
   let r[0..n] and s[0..n] be new arrays
 2 r[0] = 0
3 for j = 1 to n
     q = -\infty
        for i = 1 to j
            if q < p[i] + r[j-i]
                q = p[i] + r[j-i]
 8
               s[j] = i
        r[j] = q
    return r and s
10
```

Extended bottom-up method

```
PRINT-CUT-ROD-SOLUTION(p, n)

1 (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

2 while n > 0

3 print s[n]

4 n = n - s[n]
```

- PRINT-CUT-ROD-SOLUTION $(p, 10) \rightarrow 10$
- PRINT-CUT-ROD-SOLUTION $(p, 7) \rightarrow 1,6$
- PRINT-CUT-ROD-SOLUTION (p, 5) \rightarrow 2,3

Content of this Chapter

- ☐ Introduction to dynamic programming
- ☐ Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- □ 0-1 Knapsack Problem

Matrix-chain Multiplication

- Suppose we have a sequence or chain A₁, A₂, ..., A_n of *n* matrices (*not necessarily square matrices*) to be multiplied.
 - That is, we want to compute the product: $\mathbf{A}_1 \times \mathbf{A}_2 \times \dots \times \mathbf{A}_n$ in the most efficient way.

Matrix-chain Multiplication

- To compute the number of scalar multiplications necessary, we must know:
 - 1. Algorithm to multiply two matrices
 - 2. Matrix dimensions

Algorithm to Multiply 2 Matrices

Input: Matrices $A_{p\times q}$ and $B_{q\times r}$ (with dimensions $p\times q$ and $q\times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY(A_{p \times q}, B_{q \times r})
```

```
1. for i \leftarrow 1 to p
```

2. **for**
$$j \leftarrow 1$$
 to r

3.
$$C[i,j] \leftarrow 0$$

4. **for**
$$k \leftarrow 1$$
 to q

5.
$$C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$$

6. return C

Scalar multiplication in line 5 dominates time to compute C_{pxr} Number of scalar multiplications = p.q.r

Matrix-chain Multiplication

- Observation: There are several possible ways (parenthesizations) to compute the product.
- Example: consider the chain A₁, A₂, A₃, A₄ of 4 matrices. Let us try to compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

Q: Does it matter?

A: Yes.

Matrix-chain Multiplication

Why Parenthesizations Matter?

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize:

```
- ((AB)C) = D_{10\times5} \cdot C_{5\times50}
```

- AB ⇒ 10·100·5 = 5,000 scalar multiplications ↑ Total:
- ► DC \Rightarrow 10·5·50 = 2,500 scalar multiplications \int 7,500

-
$$(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$$

- BC \Rightarrow 100·5·50=25,000 scalar multiplications
- AE \Rightarrow 10·100·50 =50,000 scalar multiplications

Total: 75,000

Matrix-chain Multiplication Problem

- Given a chain A₁, A₂, ..., A_n of n matrices, where for i = 1, 2, ..., n, matrix A_i has dimension p_{i-1}×p_i:
 - Parenthesize the product A₁A₂...A_n such that the total number of scalar multiplications is minimized.

Matrix-chain Multiplication

- Observation#1: Any parenthesization splits the chain of matrices into two sub-chains, each of which can be parenthesized separately.
- <u>Example</u>: All possible parenthesizations for A₁A₂A₃A₄ are:

1.
$$(A_1(A_2(A_3A_4)))$$
 $(A_1)((A_2)(A_3A_4))$

2.
$$(A_1((A_2A_3)A_4))$$
 $(A_1)((A_2A_3)(A_4))$

3.
$$((A_1A_2)(A_3A_4))$$
 \Rightarrow $(A_1A_2)(A_3A_4)$

4.
$$((A_1(A_2A_3))A_4)$$
 $((A_1)(A_2A_3))(A_4)$

5.
$$(((A_1A_2)A_3)A_4)$$
 $((A_1A_2)(A_3))(A_4)$

Matrix-chain Multiplication

- Observation#2: Unlike the rod-cutting problem, the cost of subproblems with the same size differs from one subproblem to another.
- Example: Consider $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
 - (AB) and (BC) are two subproblems of size 2.
 - AB \Rightarrow 10·100·5 = 5,000 scalar multiplications
 - BC \Rightarrow 100·5·50=25,000 scalar multiplications

First Attempt: Brute-force Approach

• Let P(n) be the *number of alternative* parenthesizations of a sequence of n matrices.

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k) \cdot P(n-k) & \text{if } n \ge 2. \end{cases}$$

• Brute force method of exhaustive search takes time exponential in n: $\Omega(2^n)$

Second Attempt: Dynamic Programming

Recall Dynamic Programming Approach:

Step1: Characterize the structure of an optimal solution.

Step2: Recursively define the value of an optimal solution.

Step3: Compute the value of an optimal solution.

Step4: Construct an optimal solution from computed information.

Step1: The structure of an optimal solution

- Notation: Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
- An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$
- First compute matrices $A_{1..k}$ and $A_{k+1..n}$; then multiply them to get the final matrix $A_{1..n}$

Step1: The structure of an optimal solution

- **Key observation**: parenthesizations of the subchains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal.
- That is, the optimal solution to the problem contains within it the optimal solution to subproblems.
- Why? Use a "cut-and-paste" argument

Optimal Substructure Property

- Let S be a parenthesization of the product $A_1A_2...A_n$ that splits the product between A_k and A_{k+1} for some integer k where 1 ≤ k < n: $A_{1...k}$. $A_{k+1...n}$
- If S is an optimal parenthesization (total number of scalar multiplications is minimized) of the product $A_1A_2...A_n$, then the parenthesizations S_1 and S_2 of $A_{1...k}$ and $A_{k+1...n}$, respectively, must also be optimal.
- Why? "Cut-and-Paste" Argument:
 - If we could find a parenthesization S'₁ of A_{1...k} that requires less scalar multiplications than S₁, then we could construct a solution S' consisting of S'₁ and S₂ that would require less scalar multiplications than S → contradicting the optimality of S.
 - The same *cut-and-paste* argument applies to $A_{k+1..n}$ where we reach a contradiction if there exists S'_2 of $A_{k+1..n}$ that requires less scalar multiplications than S_2 .

- Let m[i, j] be the minimum number of scalar multiplications necessary to compute A_{i..j}
- Minimum cost to compute A_{1..n} is m[1, n]
- Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$, then:

- $A_{i..j} = (A_i A_{i+1}...A_k) \cdot (A_{k+1} A_{k+2}...A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing $A_{i..j}$ = cost of computing $A_{i..k}$ + cost of computing $A_{k+1..j}$ + cost of multiplying $A_{i..k}$ and $A_{k+1..j}$
- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$
- $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_k p_j$ where: $i \le k < j$.
- -m[i, i] = 0 for i=1,2,...,n

- But... optimal parenthesization occurs at one value of k among all possible i ≤ k < j
- Check all these and select the best one

```
m[i, j] = \begin{cases} 0 & \text{if } i=j \\ \min\{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j & \end{cases}
```

- To keep track of how to construct an optimal solution, we use a table s
- s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization

Step3: Computing the optimal costs

Algorithm:

- First computes costs for chains of length *l*=1
- Then for chains of length *l*=2,3, ... and so on
- Computes the optimal cost bottom-up

Algorithm to Compute Optimal Cost

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table m and split table s

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
                                                         Takes O(n^3) time
                                                        Requires O(n^2) space
   m[i, i] \leftarrow 0
for l \leftarrow 2 to n
    for i \leftarrow 1 to n-l+1
                j \leftarrow i+l-1
                m[i,j] \leftarrow \infty
                for k \leftarrow i to j-1
                             q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                             if q < m[i, j]
                                         m[i, j] \leftarrow q
                                         s[i, j] \leftarrow k
```

return *m* and *s*

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15 × 5	5×10	10×20	20×25

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13,000 \text{ , } \\ m[2,3] + m[4,5] + p_1 p_3 p_5 &= 2625 + 1000 + 35 \cdot 5 \cdot 20 &= 7125 \text{ , } \\ m[2,4] + m[5,5] + p_1 p_4 p_5 &= 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11,375 \text{ , } \\ &= 7125 \text{ .} \end{cases}$$

Step4: Constructing an optimal solution

- Our algorithm computes the minimumcost table m and the split table s
- The optimal solution can be constructed from the split table s
 - Each entry s[i, j] = k shows where to split the product $A_i A_{i+1} \dots A_j$ for the minimum cost

Step4: Constructing an optimal solution

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Continue with example

 Show how to multiply this matrix chain optimally.

- Optimal parenthesization ((A₁(A₂A₃))((A₄ A₅)A₆))
- Minimum cost 15,125

Matrix	Dimension		
A ₁	30×35		
A_2	35×15		
A_3	15×5		
A_4	5×10		
A_5	10×20		
A ₆	20×25		

Content of this Chapter

- ☐ Introduction to dynamic programming
- Rod cutting
- Matrix-chain multiplication
- □ Elements of dynamic programming
- □ 0-1 Knapsack Problem

Elements of dynamic programming

There are *two properties* an optimization problem must have in order for dynamic programming to apply:

- Optimal Substructure
- Overlapping Subproblems

Optimal Substructure

- A problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems.
- In dynamic programming, we build an optimal solution to the problem from optimal solutions to subproblems.

Optimal Substructure

- Optimal substructure varies across problem domains in two ways:
 - 1. How many subproblems an optimal solution to the original problem uses, and
 - 2. How many choices we have in determining which subproblem(s) to use in an optimal solution.

Optimal substructure

- In the rod-cutting problem $\Theta(n^2)$:
 - \blacksquare $\Theta(n)$ subproblems overall, and
 - At most n choices to examine for each
- In the matrix-chain multiplication problem $\Theta(n^3)$:
 - \blacksquare $\Theta(n^2)$ subproblems overall, and
 - At most n-1 choices to examine for each

DP: Bottom-up approach

- Dynamic programming often uses optimal substructure in a bottom-up fashion:
 - First, find optimal solutions to subproblems.
 - Second, find an optimal solution to the problem.
 - Make a choice among subproblems as to which we will use in solving the problem.
- The cost of the problem solution is usually the subproblem costs *plus a cost that is directly attributable to the choice*.

DP: Bottom-up approach (continue)

For example, in the matrix-chain multiplication problem, to determine the *cost that is directly attributable to the choice*:

- First, we determined an optimal parenthesis of subchain of $A_i A_{i+1} \dots A_j$.
- Second, we chose the matrix A_k at which to split the product.
- Then the cost attributable to the choice itself is:

$$p[i-1] p[k] p[j]$$

Optimal Substructure

• Question: Do all problems exhibit optimal substructure property?

Answer: No!

Unweighted shortest simple path

- **Problem:** Find a simple path from *u* to *v* consisting of the *least* possible edges.
- Does the unweighted shortest-path problem exhibit optimal substructure?
- Yes! Use a "cut-and-paste" argument.

Unweighted longest simple path

- **Problem:** Find a simple path from *u* to *v* consisting of the most possible edges.
- Does the unweighted longest-path problem exhibit optimal substructure?

Counter Example:

The longest path from s to r is $s \rightarrow q \rightarrow r$ (or $s \rightarrow t \rightarrow r$), which is of length 2.

However, the longest path from s to q is of

Overlapping Subproblems

- When a recursive algorithm revisits the *same problem* repeatedly, we say that the optimization problem has *overlapping subproblems*.
- A problem for which a divide-and-conquer approach is suitable usually generates brand-new problems at each step of the recursion.
- In contrast, DP algorithms take advantage of overlapping subproblems by solving each subproblem once and then storing the solution in a table where it can be looked up when needed, using constant time per lookup.

Recursive Approach (inefficient)

```
RECURSIVE-MATRIX-CHAIN(p, i, j)
  if i == j
       return 0
3 \quad m[i,j] = \infty
4 for k = i to j - 1
       q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k)
            + RECURSIVE-MATRIX-CHAIN(p, k + 1, j)
            + p_{i-1}p_kp_j
    if q < m[i, j]
           m[i,j] = q
   return m[i, j]
```

Recursion Tree for RECURSIVE-MATRIX-CHAINU

Content of this Chapter

- ☐ Introduction to dynamic programming
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- > 0-1 Knapsack Problem

- We have a knapsack that has a maximum capacity (weight) W.
- We have several items $I_1, ..., I_n$.
- Each item I_j has a value v_j and weight w_j .
- We want to place certain items in the knapsack such that:
 - 1. The knapsack weight capacity is not exceeded, and
 - 2. The total value of items in the knapsack is maximal.

0-1 because we cannot take a fractional amount of an item or take an item more than once.

Example

Item	Weight	Value		
I_{I}	10 lb	\$60		
I_2	20 lb	\$100		
I_3	30 lb	\$120		

Knapsack Capacity = 50 lb

Observation:

Let S_i be the optimal subset of elements from $\{I_1, I_2, ..., I_i\}$. The optimal subset from the elements $\{I_1, I_2, ..., I_{i+1}\}$ may not correspond to the optimal subset of elements from $\{I_1, I_2, ..., I_i\}$ in any regular pattern.

Item	Weight	Value	
I_1	3	10	
${f I_2}$	8	4	
I_3	9	9	
${f I_4}$	8	11	

• The maximum weight the knapsack can hold is W = 20.

- The best set of items from $\{I_1, I_2, I_3\}$ is $\{I_1, I_2, I_3\}$.
- BUT the best set of items from $\{I_1, I_2, I_3, I_4\}$ is $\{I_1, I_3, I_4\}$.

Optimal Substructure:

If we remove item j from the optimal load (most valuable load that weighs at most W pounds), then the remaining load must be the most valuable load weighing at most $W-w_j$ that we can take from the n-1 original items excluding item j.

Item	Weight	Value	
I_1	3	10	
${f I_2}$	8	4	
I_3	9	9	
${f I_4}$	8	11	

- The maximum weight the knapsack can hold is W = 20.
- For W=20: the best set of items from $\{I_1, I_2, I_3, I_4\}$ is $\{I_1, I_3, I_4\}$.
- However, if I_4 is removed, then the best set of items from $\{I_1, I_2, I_3\}$ for W'=20-8=12 and is $\{I_1, I_3, I_4\} \setminus \{I_4\} = \{I_1, I_3\}$.

Dynamic 0-1 Knapsack

- Let c[i, w] denote the maximum value (size of an optimal solution) for the item set $S_i = \{I_I, I_2, ..., I_i\}$, and weight w.
- Then:

$$c[i,w] = \begin{cases} 0 & \text{if } i = 0 \text{ or } w = 0, \\ c[i-1,w] & \text{if } w_i > w, \\ \max(v_i + c[i-1,w-w_i], c[i-1,w]) & \text{if } i > 0 \text{ and } w \geq w_i. \end{cases}$$

$$\text{including } I_i \quad \text{without } I_i$$

Dynamic 0-1 Knapsack Algorithm

```
DYNAMIC-0-1-KNAPSACK(v, w, n, W)
let c[0...n, 0...W] be a new two-dimensional array (table)
for w = 0 to W
    c[0, w] = 0
for i = 1 to n
    c[i, 0] = 0
    for w = 1 to W
        if w_i \leq w
            if v_i + c[i-1, w-w_i] > c[i-1, w]
                 c[i, w] = v_i + c[i - 1, w - w_i]
             else c[i, w] = c[i - 1, w]
        else c[i, w] = c[i - 1, w]
```

```
Complexity: \Theta(n.W) = \Theta(n.W) + \Theta(n)
fill table c trace solution
```

Dynamic 0-1 Knapsack Algorithm

• Example:

- n = 4 (# of elements)
- -W = 5 (max weight)
- Elements (weight, value):

Knapsack 0-1 Example

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	Ø	0	0	0	0
1	0	Ö				
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 1$
 $w-w_i = -1$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0_	0	0	0	0	0
1	0	0	3			
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 2$
 $\mathbf{w} - \mathbf{w}_i = 0$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0 –	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 3$
 $\mathbf{w} - \mathbf{w}_i = 1$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0_	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 2$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0_	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 5$
 $w-w_i = 3$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	10	3	3	3	3
2	0	0				
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 1$$

$$w-w_i = -2$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	1 3	3	3	3
2	0	0	3			
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 2$$

$$w-w_i = -1$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 3$$

$$w-w_i = 0$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0_	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 4$$

$$w-w_i = 1$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 5$
 $w-w_i = 2$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	, 0	3	, 4	4	7
3	0	↓ 0	▼ 3	† 4		
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $w = 1..3$
 $w-w_i = -3..-1$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 _	0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

$$i = 3$$

$$v_i = 5$$

$$w_i = 4$$

$$\mathbf{w} = 4$$

$$w-w_i = 0$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	▼ 7
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 5$
 $w-w_i = 1$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	13	4	5	7
4	0	• 0	* 3	* 4	* 5	

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = 1..4$
 $w-w_i = -4..-1$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	* 7

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = \mathbf{5}$
 $\mathbf{w} - \mathbf{w}_i = 0$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	1 7
4	0	0	3	4	5	7

<u>Items:</u>

Knapsack:

$$i = 4$$
 $k = 5$
 $v_i = 6$
 $w_i = 5$
 $c[i,k] = 7$
 $c[i-1,k] = 7$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	1 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u>

Knapsack:

$$i = 3$$

 $k = 5$
 $v_i = 5$
 $w_i = 4$
 $c[i,k] = 7$
 $c[i-1,k] = 7$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

Knapsack:

$$i = 2$$
 $k = 5$
 $v_i = 4$
 $w_i = 3$
 $c[i,k] = 7$
 $c[i-1,k] = 3$
 $k - w_i = 2$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

Knapsack:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Item 2 Item 1

$$i = 1$$

 $k = 2$
 $v_i = 3$
 $w_i = 2$
 $c[i,k] = 3$
 $c[i-1,k] = 0$
 $k - w_i = 0$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u>

Knapsack:

Item 2

Item 1

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

 $k - w_i = 0$

i = 1 k = 2 $v_i = 3$ $w_i = 2$ c[i,k] = 3 c[i-1,k] = 0