New York Air Quality

Han Wang

17/7/2017

A.Basic Plotting

1.Distribution of measurements

data("airquality")
require(ggplot2)

Loading required package: ggplot2

require(lattice)

Loading required package: lattice

par (mfrow=c(2,2))
hist (airquality\$0zone)
hist (airquality\$Solar. R)
hist (airquality\$Wind)
hist (airquality\$Temp)

Histogram of airquality\$Ozone

Histogram of airquality\$Wind

Histogram of airquality\$Solar.R

Histogram of airquality\$Temp

2.Boxplot of measurements

```
airquality <- transform(airquality, Month = factor(Month))
par(mfrow=c(2,2))
boxplot(Ozone ~ Month, airquality, xlab = "Month", ylab = "Ozone (ppb)", main="Boxplot of Ozone by Mont h")
boxplot(Solar.R ~ Month, airquality, xlab = "Month", ylab = "Solar.R", main="Boxplot of Solar.R by Mont h")
boxplot(Wind ~ Month, airquality, xlab = "Month", ylab = "Wind", main="Boxplot of Wind by Month")
boxplot(Temp ~ Month, airquality, xlab = "Month", ylab = "Temp", main="Boxplot of Temp by Month")
```

Boxplot of Ozone by Month

Ozone (dqq) and ozone (dqq) are ozone (dqq) and ozone (dqq) and ozone (dqq) are ozone (dqq) ar

Boxplot of Solar.R by Month

Boxplot of Wind by Month

Boxplot of Temp by Month

3. Correlation-ScatterPlot

```
par(mfrow=c(2,2))
with(airquality, plot(Wind, Ozone, main = "Ozone and Wind in New York City", pch = 20))
model <- lm(Ozone ~ Wind, airquality)
abline(model, lwd = 2)
with(airquality, plot(Wind, Temp, main = "Temp and Wind in New York City", pch = 20))
model <- lm(Temp ~ Wind, airquality)
abline(model, lwd = 2)
with(airquality, plot(Solar.R, Ozone, main = "Ozone and Solar.R in New York City", pch = 20))
model <- lm(Ozone ~ Solar.R, airquality)
abline(model, lwd = 2)
with(airquality, plot(Wind, Solar.R, main = "Solar.R and Wind in New York City", pch = 20))
model <- lm(Solar.R ~ Wind, airquality)
abline(model, lwd = 2)
```

Ozone and Wind in New York City

Temp and Wind in New York City

Ozone and Solar.R in New York City

Solar.R and Wind in New York City

4. Airquality by Month

```
May<-subset(airquality, airquality$Month=='5')
June<-subset(airquality, airquality$Month=='6')
July<-subset(airquality, airquality$Month=='7')
August<-subset(airquality, airquality$Month=='8')
September<-subset(airquality, airquality$Month=='9')
par(mfrow = c(2, 2))

with(May, plot(Day, Wind, main="Wind in May"), type = "1", pch = 20)+with(June, plot(Day, Wind, main="Wind in June"), type = "1", pch = 20)+with(August, plot(Day, Wind, main="Wind in August"), type = "1", pch = 20)
```


Wind in June

Wind in July

Wind in August

numeric(0)

par(mfrow = c(2, 2))

with (May, plot (Day, Temp, main="Temperature in May"), pch = 20) + with (June, plot (Day, Temp, main="Temperature in June"), pch = 20) + with (July, plot (Day, Temp, main="Temperature in July"), pch = 20) + with (August, plot (Day, Temp, main="Temperature in August"), pch = 20)

Temperature in May

Temperature in June

Temperature in July

Temperature in August

numeric(0)

B.Lattice

1. Histogram of measurements

 $\label{eq:linear_month} \mbox{histogram($\ ^{\sim}$ Wind $|$ Month, data=airquality, main="Wind by month")}$

Wind by month

histogram(~ Solar.R | Month, data=airquality, main="Solar.R by month")

Solar.R by month

histogram(~ Ozone | Month, data=airquality, main="Ozone by month")

 $\label{limits} \mbox{histogram($\ ^{\sim}$ Temp | Month, data=airquality, main="Temperature by month")}$

Temperature by month

2. Boxplots by month

bwplot(Ozone ~Month, data=airquality,main="Ozone by month",par.settings = list(box.umbrella=list(col=
c("red", "green", "blue","black","pink")), box.dot=list(col= c("red", "green",
"blue","black","pink")), box.rectangle = list(col= c("red", "green", "blue","black","pink"))))

Ozone by month

bwplot(Wind ~Month, data=airquality,main="Wind by month",par.settings = list(box.umbrella=list(col=
c("red", "green", "blue","black","pink")), box.dot=list(col= c("red", "green",
"blue","black","pink")), box.rectangle = list(col= c("red", "green", "blue","black","pink"))))

Wind by month

bwplot(Temp ~Month, data=airquality,main="Temperature by month",par.settings =
list(box.umbrella=list(col= c("red", "green", "blue","black","pink")), box.dot=list(col= c("red", "green", "blue","black","pink")))
en", "blue", "black", "pink")))

Temperature by month

bwplot(Solar.R ~Month, data=airquality, main="Solar.R by month", par.settings =
list(box.umbrella=list(col= c("red", "green", "blue", "black", "pink")), box.dot=list(col= c("red", "green", "blue", "black", "pink")))
en", "blue", "black", "pink")), box.rectangle = list(col= c("red", "green", "blue", "black", "pink"))))

Solar.R by month

3. Correlation-Scatter plots

```
xyplot(Wind ~ Temp, airquality,
    grid = TRUE,
    type = c("p", "r"), col.line = "darkorange", lwd = 3)
```



```
xyplot(Solar.R ~ Temp, airquality,
    grid = TRUE,
    type = c("p", "r"), col.line = "darkorange", lwd = 3)
```



```
xyplot(Wind ~ Ozone, airquality,
    grid = TRUE,
    type = c("p", "r"), col.line = "darkorange", lwd = 3)
```


C.ggplot2

1.Temperature from May to September

```
g<-ggplot(airquality, aes(x = Day, y = Temp))
g+ geom_line() +facet_grid(. ~ Month)+ggtitle("Temperature from May to September")</pre>
```

Temperature from May to September

2.Distribution of measurement by month

 $qplot(Wind, data = airquality, facets = Month ^ ., binwidth = 1, main="Wind by month")$

 $qplot(Temp, data = airquality, facets = Month^{\sim}., binwidth = 1, main="Temperature by month")$

3. Boxplot of measurements

qplot(Month, Solar.R, data = airquality, binwidth = 2, geom="boxplot", main="Boxplot of Solar.R by Month")

Warning: Ignoring unknown parameters: binwidth

Warning: Removed 7 rows containing non-finite values (stat_boxplot).

Boxplot of Solar.R by Month

qplot(Month, Wind, data = airquality, binwidth = 2, geom="boxplot", main="Boxplot of Wind by Month")

Warning: Ignoring unknown parameters: binwidth

Boxplot of Wind by Month

qplot(Month, Temp, data = airquality, binwidth = 2, geom="boxplot", main="Boxplot of Temperature by Month")

Warning: Ignoring unknown parameters: binwidth

Boxplot of Temperature by Month

qplot(Month, Ozone, data = airquality, binwidth = 2, geom="boxplot", main="Boxplot of Ozone by Month")

Warning: Ignoring unknown parameters: binwidth

Warning: Removed 37 rows containing non-finite values (stat_boxplot).

Boxplot of Ozone by Month

4. ScatterPlot

ggplot(airquality, aes(Temp, Ozone)) + geom_point() + geom_smooth(method = "loess", se = FALSE)

Warning: Removed 37 rows containing non-finite values (stat_smooth).

Warning: Removed 37 rows containing missing values (geom_point).

qplot(Temp, Wind, data = airquality, geom = c("point", "smooth"))

`geom_smooth()` using method = 'loess'

Summary:

Basic plotting

Advantages: The base plotting system is often the most convenient plotting system to use because it mirrors how we sometimes think of building plots and analyzing data. It gives you the flexibility to specify these kinds of details to painstaking accuracy Downsides: You would have to set details (e.g margins) by yourself. Another downside of the base plotting system is that it's difficult to describe or translate a plot to others because there's no clear graphical language or grammar that can be used to communicate what you've done

Lattice system:

Advantages:Lattice plots tend to be most useful for conditioning types of plots, i.e. looking at how y changes with x across levels of z. These types of plots are useful for looking at multidimensional data and often allow you to squeeze a lot of information into a single window or page.Another aspect of lattice that makes it different from base plotting is that things like margins and spacing are set automatically. Downsides:One downside with the lattice system is that it can sometimes be very awkward to specify an entire plot in a single function call.Also, annotation in panels in plots is not especially intuitive and can be difficult to explain. Finally, once a plot is created, you cannot "add" to the plot,

The ggplot2 system:

Advantages: The ggplot2 system automatically deals with spacings, text, titles but also allows you to annotate by "adding" to a plot. In a sense, the ggplot2 system takes many of the cues from the base plotting system and formalizes them a bit. Superficially, the ggplot2 functions are similar to lattice, but the system is generally easier and more intuitive to use.