FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Apunts de Fonaments de les Matemàtiques (Primer curs del Grau de Matemàtiques)

Àlex Batlle Casellas

$\mathbf{\acute{I}ndex}$

1		2
2	Conjunts i aplicacions.	2
3	Relacions, operacions i estructures. 3.1 Relacions d'equivalència	2

1

2 Conjunts i aplicacions.

3 Relacions, operacions i estructures.

Definició:

R és una relació binària en un conjunt A si $R\subseteq A\times A.$ PROPIETATS:

• Reflexiva: $\forall x \in A(xRx)$.

• Simètrica: $\forall x, y \in A(xRy \rightarrow yRx)$.

• Antisimètrica: $\forall x, y \in A(xRy \land yRx \rightarrow x = y)$.

• Transitiva: $\forall x, y, z \in A(xRy \land yRz \rightarrow xRz)$.

• Connexa: $\forall x, y \in A(xRy \vee yRx)$.

3.1 Relacions d'equivalència.

Definició:

Una relació R en un conjunt $A \neq \emptyset$ s'anomena d'equivalència si compleix les propietats reflexiva, simètrica i transitiva.

Definició:

Definim la classe d'equivalència d'un element $x \in A$ com:

$$[x]_R = \{ y \in A | yRx \}.$$

També escrivim [x] o \bar{x} quan no hi ha risc de confusió.

PROPIETATS:

1. $\forall x \in A(x \in [x])$.

 $2. \ \forall x,y \in A(xRy \iff [x] = [y]).$

3. $A = \bigcup_{x \in A} [x]$.

Definició:

Anomenem una partició d'un conjunt a una família Π de subconjunts d'A i diferents del buit, disjunts dos a dos, tals que la seva unió és tot A. És a dir, $\Pi \subseteq \mathcal{P}(A)$:

2

1. $X \neq \emptyset \forall X \in \Pi$.

2. $X \cap Y = \emptyset$ si $X, Y \in \Pi, X \neq Y$.

3. $A = \bigcup_{X \in \Pi} X$.