TD6 M1S2 Probabilité, Martingale et chaîne de Markov

6.1 Convergence dans L^1

Soit $(\xi_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires i.i.d. telles que pour tout $n\in\mathbb{N}$,

$$\mathbb{P}(\xi_n = 1) = \mathbb{P}(\xi_n = -1) = 1/2.$$

Définissons

$$X_0 = 0 \text{ et } X_n := \sum_{k=1}^n \frac{\xi_k}{k}.$$

Prouver que le processus $(X_n)_{n\in\mathbb{N}}$ converge p.s. et dans L^1 , lorsque $n\to\infty$.

6.2 Inégalité maximale de Doob et UI

Soit ξ_1, ξ_2, \dots i.i.d. v.a. positives telles que $\mathbb{E}(\xi_1) = 1$ et $\mathbb{P}(\xi_1 = 1) < 1$, soit $M_n = \prod_{k=1}^n \xi_k$ pour tout $n \ge 1$.

- 1. Montrer que $(M_n)_{n\in\mathbb{N}^*}$ est une martingale.
- 2. Montrer que $\mathbb{E}[(\log \xi_1)^+] < \infty$. En utilisant l'inégalité de Jensen, montrer que $\mathbb{E}[\max(\log \xi_1, -m)] \leq \log(1 + e^{-m})$ pour $m \geq 0$.
- 3. Rappelons la **loi forte des grandes nombres** : considérons une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes qui suivent la même loi de probabilité, intégrables, i.e. $\mathbb{E}[|X_1|] < +\infty$. Alors,

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[X_1] ?$$

Démontrer que la loi forte des grandes nombres est valide lorsque

- $\mathbb{E}[X_1] = +\infty$ (c'est-à-dire $\mathbb{E}[(X_1)^+] = +\infty$ et $\mathbb{E}[(X_1)^-] < +\infty$), ou
- $\mathbb{E}[X_1] = -\infty$ (c'est-à-dire $\mathbb{E}[(X_1)^+] < +\infty$ et $\mathbb{E}[(X_1)^-] = +\infty$).

Astuce : Lorsque $\mathbb{E}[X_1] = +\infty$, vous pouvez considérer les variables aléatoires $Y_k = \min\{X_k, x\}$, avec x > 0.

4. Peut-on appliquer la loi forte des grandes nombres à la suite $(\log \xi_i)_{i\geq 1}$ pour la convergence p.s.

$$\frac{1}{n}\log M_n \to \mu ?$$

- 5. Montrer que $\mu < 0$.
- 6. En déduire que $M_n \to 0$ p.s. et que $(M_n)_{n \in \mathbb{N}^*}$ n'est pas UI.

7. On se rappelle l'inégalité maximale de Doob du cours : pour une martingale $(M_n)_{n\in\mathbb{N}^*}$, pour tout p>1, et tout n,

$$\mathbb{E}\left(\sup_{1\leq k\leq n}|M_k|^p\right)\leq \left(\frac{p}{p-1}\right)^p\mathbb{E}(|M_n|^p)$$

Supposons que l'inégalité est vraie pour p=1 avec certain q à la place de $\frac{p}{p-1}$, i.e.

$$\mathbb{E}\left(\sup_{1\leq k\leq n}|M_k|\right)\leq q\mathbb{E}(|M_n|).$$

Montrer que toute martingale positive est UI, est-ce possible?

6.3 Singe

Soit $\omega = \omega_1 \cdots \omega_m$ un mot de $m \geq 1$ lettres sur l'alphabet latin de 26 lettres (e.g. ABRACADABRA). Let but de cet exercice est de calculer l'espérance du premier temps d'apparition de ω dans une suite de lettres écrites au hasard, $(x_n)_{n\geq 1}$, les x_n étant donc indépendantes et uniformes sur $\{a, \ldots, z\}$. Ce temps T est donc défini par

$$T = \inf\{n \ge m, \ x_{n-m+1} \cdots x_n = \omega\}.$$

On note $P(\omega)$ l'ensemble des entiers $k \in \{1, \ldots, m\}$ tels que $\omega_1 \cdots \omega_k = \omega_{m-k+1} \cdots \omega_m$, et on remarque que $P(\omega)$ contient toujours m. Enfin, on note $R(\omega) = \sum_{k \in P(\omega)} 26^k$.

1. Pour notre mot proposé, que vaut $R(\omega)$?

On considère une banque qui propose à tout joueur le désirant le jeu équitable consistant à parier le montant de son choix sur l'issue de la prochaine lettre sortie, et à gagner 26 fois sa mise s'il avait vu juste. On suppose qu'à chaque instant $k \geq 1$, un nouveau joueur arrive et commence à tenter sa chance. Il mise un euro sur l'issue $x_k = \omega_1$, puis, s'il gagne, il mise tout son gain (26 euros) sur l'issue $x_{k+1} = \omega_2$, et ainsi de suite, en s'arrêtant seulement une fois qu'il aura perdu (donc perdu sa mise initiale d'un euro) ou bien gagné 26^m euros (moins sa mise initiale) si l'ensemble du mot ω est sorti comme il l'avait parié. On note S_n le profit de la banque à l'instant n, de sorte que l'on a $S_0 = 0$, $S_1 = 1$ si $x_1 \neq \omega_1$, et $S_1 = -25$ si $x_1 = \omega_1$.

- 2. Repérez vous la martingale? Quelle est sa valeur à l'instant T?
- 3. Montrer, en utilisant les théorèmes des martingales, que $\mathbb{E}(T) = R(\omega)$.
- 4. Soit T_2 le deuxième instant où le mot ω apparaît dans la suite $(x_n)_{n\geq 1}$, montrer que $\mathbb{E}(T_2-T)=26^m$.