Model Preparation Area for High Reynolds Number Propulsion Airframe Integration Testing at the National Transonic Facility

Gregory S. Jones
Jeffrey D. Flamm
Michael J. Acheson
Robert C. Hudgins

Outline

- Introduction and Problem Statements
 - Background
 - The National Transonic Facility (NTF) Operations
 - Challenges with powered semi-span testing in a transonic cryogenic environment
- Model Preparation Area (MPA) Requirements
 - Jet Exit (Nozzle Performance)
 - Semi-Span using Side Mounted Support System (SMSS)
 - Flow Thru Nacelles
 - Turbine Powered Simulator (TPS)
 - Ejectors
 - Open Rotors
- Layout of MPA-4
- Concluding Remarks

AERIAL VIEW OF NTF COMPLEX

Background - LaRC PAI facilities

- Examples of Propulsion Airframe Integration (PAI) facilities
 - LaRC 16-Foot Transonic Tunnel (Demolished)
 - LaRC Jet Exit (Demolished)
 - LaRC 14- by 22-Foot Subsonic Tunnel (14x22)
- High Reynolds number Propulsion Airframe Integration
 - NTF (Common Research Model)
 - NTF (Speed Agile AFRL/LM)
 - NTF (HWB AFRL/LM)
- High Reynolds number Active Flow Control (AFC)
 - NTF FAST-MAC

(Fundamental Aerodynamic Subsonic Transonic - Modular Active Control)

Background - Other NASA PAI facilities

- NASA ARC Propulsion Airframe Integration
 - ARC Propulsion Simulator Calibration Lab (Demolished)
 - ARC Unitary Plan Wind Tunnel 11- by 11-foot Transonic Test Section (11-Foot TWT)
 - AEDC National Full-Scale Aerodynamics Complex (NFAC) 40-by-80 Foot Test Section (40-by-80)
- NASA GRC Propulsion Airframe Integration
 - GRC 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT)
 - GRC (Propulsion System Laboratory)

National Transonic Facility – NTF

Test Section	8.2 x 8.2 x 25 Feet (2.5 x 2.5 x 7.6 meters)	
Pressure	14.7 to 133 psia; 1 to 9.0 atm.; 1.01 to 9.1 bar	
	Air Operations	N ₂ Operations
Mach No.	0.2 to 1.05	0.2 to 1.20
Reynolds No. Max	20x10 ⁶ / ft (65x10 ⁶ / m)	145x10 ⁶ / ft (475x10 ⁶ / m)
Temperature	90° to 150°F (32° to 65°C)	-50° to -250°F (-45° to -157°C)

NTF MPA 4 Requirements for Thrust Calibrations and Momentum Tares

- Dedicated facility (or location within existing facility) with necessary equipment/utilities
 - High-pressure air (1800/5000 psi and up to 30 lbm/sec delivery)
 - Temperature control (compensate for Joule Thompson effects)
 - Accurate and well-maintained mass flow measurement capability
 - Force measurements
- Ability to vary ambient pressure is desirable but may not be a firm requirement
- Staff should be available for calibrations and tares but won't be a full-time activity
 - Maintain continuity with staff assigned to this task to keep high level of expertise

Unique challenges with powered semi-span testing in a transonic cryogenic environment

- Data repeatability is dependent on NTF 117 balance and Multiple Critical Venturi (MCV)
- Large dynamic pressure may require custom fan set for TPS and Open Rotor testing
- Operations vary with tunnel temperature
 - Cooling requires less power to operate motor
 - Cooling reduces fan tip speed
- Mechanical stability of motor system
 - Lubrication is challenging
- Safety
 - Risk associated with blade failure condition

MCV Operating Envelope

COMBINATION OF 1 TO 6 VENTURIS

Nozzle Testing

Re-purpose LaRC Jet Exit test stand

Dual Flow Test Stand/S-Tubes

SMSS (2 Independent flow paths)

model SUPPORT SYSTEM (SMSS)

The current temperature limit of -50° F is based on the operational limits of the vent and isolation valves associated with the SMSS safety system

MPA 1 (Instrumentation checks)

REAR VIEW OF SMSS w/ DOOR REMOVED BOX TEMPERATURE MAINTAINED AT 100 F

Slide 10 of 19

MPA 1 (SMSS balance calibration configuration)

NORMAL FORCE LOADING - EVALUATE FOULING (w/ PRESSURE INFLUENCES) ROTATED 0° (DOWN FORCE)

MPA 4 Safety

- High Noise environment
- Blade Failure for Open Rotor and TPS testing
- High Pressure system (1800 psig)
- High Flow systems (30 lbm/sec)
- Nozzle Pressure Ratio
 - (typical: 1.0 < NPR < 6)
 - (max: 1.0 < NPR < 25)
- Temperature Control (Steam Heat)

TPS Calibration in Tunnel

- Specialty hardware
- Occupies tunnel (potentially interferes with other testing)
- Very costly even with reduced tunnel occupancy charges
- Does not check for fouling of final test configuration

Recent Semi-Span Testing

- Hybrid Wing Body with Flow Thru Nacelles
 - Improvements made to SMSS balance heating system
 - Resulted in a repeatability of 1 drag count for baseline
 - AFRL/LM Planning follow-on test
 - Evaluate Open Rotor Configuration)

Collaborative Effort NASA imagination at work

Risk Reduction Semi-Span Open Rotor Testing

- Open rotor would be mounted to SMSS
 - Modified Dual Aerodynamic Nozzle model
 - Two independently controllable high pressure air lines (1275 psig)

High: 0.1 - 20.0 lbm/secLow: 0.1 - 8.0 lbm/sec

- Equipped with calibrated Stratford nozzles
- Air system (valves) limited to -50°F ops
- SMSS incorporates 5-component balance
 - Determine the risk to SMSS balance due to open rotor catastrophic failure

MPA 4 located next to NTF Complex

NTF MPA 4 (Location is part of the NTF complex)

coaxial

Concluding Remarks

- Work with Industry, DOD, and University partners to develop a Model Preparation Area that supports high Reynolds number PAI testing
 - This supports the need to have a dedicated setup area for pretesting and calibration prior to entering the tunnel (avoiding costly calibrations in the test section)
- Develop high Reynolds number testing techniques for flow physics based research in active flow control and Propulsion Airframe Integration configurations
- Improve data accuracy and repeatability related to Propulsion Airframe Integration calibrations and momentum tares
- Evaluate different AFC techniques to improve aircraft performance with optimized Propulsion Airframe Integration

Questions?

ARC

NFAC 80-by

BACKUP

Orion Ascent Abort Test Momentum Tares

- Custom setup in Ames 9x7 to perform momentum tares
- Costly occupancy
 (even at special rate
 negotiated for tares)
 and custom hardware
 required for test
 Section
- May not have been best internal flow path to establish momentum tares

MPA 1 (SMSS balance calibration configuration)

AXIAL FORCE LOADING ROTATED 90° (THRUST)

