Classical and Quantum Computation of dual basis

It is hard to imagine that by passing to a different basis, a quantum printer suddenly becomes a quantum scanner.

1. Recall that if X is a vector space of dim $X = n < \infty$ and Y is a vector space dim $Y = m < \infty$ then for a linear transformation $X \stackrel{A}{\longrightarrow} Y$, the matrix of A with respect to chosen coordinatizations is given by

$$(X, (e, \epsilon))$$
 \xrightarrow{A} $(Y, (d, \delta))$

where ϵ is the dual basis to the basis e of X, δ is the dual basis to the basis d of Y and $a_i^j = \langle \delta^j \mid Ae_i \rangle$ is the entry at the intersection of the j-th row and the i-th column of the matrix. we have, for a given $x \in X$,

$$x = \sum_{k=0}^{n-1} e_k x^k, \ x^k = \langle \epsilon^k \mid x \rangle,$$
 ...(1)

$$y = Ax = \sum_{j=0}^{m-1} d_j y^j = \sum_{j=0}^{m-1} d_j \sum_{i=0}^{m-1} \langle \delta^j \mid Ae_i \rangle \langle \epsilon^i \mid x \rangle \qquad ...(2)$$

where
$$y^j = \langle \delta^j \mid y \rangle = \sum_{i=0}^{n-1} \langle \delta^j \mid Ae_i \rangle \langle \epsilon^i \mid x \rangle$$
 ...(3)
We may use the symbol $[A]_e^d = a = [a_i^j]_{m \times n}$ for this matrix.

- **2.** Now suppose X has two coordinate systems (e, ϵ) and (e', ϵ') . Then we have $e'_i = \sum_{k=0}^{n-1} e_k b_i^k$ for uniquely given $b_i^k \in \mathbb{F}$ and also $e_i = \sum_{k=0}^{n-1} e_k' (b')_i^k$ for uniquely given $(b')_i^k \in \mathbb{F}$.
 - (i) Writing $Be_i = e'_i$ provides a linear transformation $X \stackrel{B}{\longrightarrow} X$. Since a linear transformation is determined its values on the basis vectors e_i . Then we have $e'_i = Be_i = \sum_{k=0}^{n-1} e_k \langle \epsilon^k \mid Be_i \rangle (look)$ at (1) above in paragraph 1) so that $b_i^k = \langle \epsilon^k \mid Be_i \rangle$ (because in $e_i' = \sum_{k=0}^{n-1} e_k b_i^k$, the scalars $b-i^k$ are uniquely given). Thus the matrix of

$$(X, (e, \epsilon))$$
 \xrightarrow{B} $(X, (e, \epsilon))$

is $b = [b_i^k]_{n \times n}$. At the same time, $Be_i' = B\left(\sum_{k=0}^{n-1} e_k \ b_i^k\right) = \sum_{k=0}^{n-1} (B \ e_k) \ b_i^k = \sum_{k=0}^{n-1} e_k' \langle (\epsilon')^k \ | \ Be_i' \rangle$ so that $b_i^k = \langle (\epsilon')^k \ | \ Be_i' \rangle$ also $b = [b_i^k]_{n \times n}$ is also the matrix of

$$(X, (e', \epsilon'))$$
 \xrightarrow{B} $(X, (e', \epsilon'))$

And of course, since $Be_i = e_i'$, we have $b_i^k = \langle (\epsilon)^k \mid e_i' \rangle$ which says(look at (1) above in paragraph 1) that $b = [b_i^k]_{n \times n}$ is also the matrix of

$$(X, (e', \epsilon'))$$
 \longrightarrow $(X, (e, \epsilon))$

(ii) There are thus two ways of looking at the relation $e'_i = Be_i$

Passive There are two coordinate systems (Call them two observers); the source basis $e = \{e_i\}$ is changed into the target basis $e' = \{e'_i\}$ (the observer (e', e') replaces the observer (e, e)). The old coordinate system (e') = (e'

Given a vector $x' = \sum_{i=0}^{n-1} e'_i(x')^i$ in terms of the target basis e', the application of b rewrites x' in terms of the source basis e

$$x = \sum_{i=0}^{n-1} e'_i(x')^i$$

$$= \sum_{i=0}^{n-1} |e'_i\rangle \langle (\epsilon')^i | x'\rangle$$

$$= \sum_{i=0}^{n-1} \sum_{k=0}^{n-1} |e_k\rangle \langle \epsilon^k | Ide'_i\rangle \langle (\epsilon')^i | x'\rangle$$

$$= \sum_{k=0}^{n-1} |e_k\rangle \left[\sum_{i=0}^{n-1} b_i^k(x')^i\right]$$

Let us note carefully that the arrow in $(X, (e', \epsilon')) \stackrel{Id}{\longrightarrow} (X, (e, \epsilon))$ points from the 'target basis' e' to the 'source basis' e'. The 'source-target' vocabulary is with reference to the linear

transformation B (e_i gets transformed to $e'_i = Be_i$). Thus we have $B^e_e = B^{e'}_{e'} = P^e_{e'} = [Id]^e_{e'}$ in the notation of paragraph 1 page 1. The other interpretation is

Active There is only one coordinate system (= observer), say (e, ϵ) , for X. The $x = \sum_{i=0}^{n-1} e_i x^i$ moves to a different vector $u = Bx = \sum_{i=0}^{n-1} (Be_i)x^i = \sum_{i=0}^{n-1} e'_i x^i$ and the new vector u has components, with respect to (e, ϵ) ,

$$u^k = \langle \epsilon^k \mid u \rangle = \sum_{i=0}^{n-1} \langle \epsilon^k \mid Be_i \rangle x^i$$

So that
$$u = \sum_{k=0}^{n-1} \sum_{i=0}^{n-1} e_k b_i^k x^i$$
.

(while of course, the k-th component of x is $\langle \epsilon^k \mid x \rangle = x^k$)

- 3. Taking the passive interpretation, let us write the change of basis matrix b from $\{e_i\}$ to $\{e'_i = Be_i\}$ as $P^e_{e'}$ so that $P^e_{e'}(e'_i) = \sum_{i=0}^{n-1} e_k \ b^k_i$ (that is, e'_i has been written in terms of the $\{e_k\}$; see the summary at the end of page 2 above) where $b^k_i = \langle \epsilon^k \mid e_i \rangle$.
 - **Example 4.1** Consider $\mathbb{R}^3 = X$ the three-dimensional vector space over \mathbb{R} . Take $x = \begin{bmatrix} a \\ b \end{bmatrix}$ in X

then if
$$e = \left\{ e_0 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, e_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \right\}$$
 we have

$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = e_0 (7a - 3b + c) + e_1 (-6a + 3b - c) + e_2 (4a - 2b + c)$$

saying that each x is expressible uniquely as $\sum_{i=0}^{2}e_i'(x')^i$ as well and e' is also a basis. Then because $e'_0=2e_0-e_1+e-2$, $e'_1=-e_0+e_1+0e_2$, $e'_2=e_0+0e_1+2e_2$ the change of basis matrix which changes e into e' is $P_{e'}^e=b=\begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ (Obtained by writing components of e'_o , e'_1 , e'_2 with respect to e as columns)

Now
$$P_{e'}^{e}(\sum_{i=0}^{2} e'_{i}(x')^{i}) = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} -2a+2b-c \\ -8a+5b-2c \\ 3a-2b+c \end{bmatrix} = \begin{bmatrix} 7a+3b+c \\ -6a+3b-c \\ 4a-2b+c \end{bmatrix} = \sum_{i=0}^{2} e_{i}x^{i}$$

which confirms

$$(X, (e', \epsilon')) \qquad \xrightarrow{Id} \qquad (X, (e, \epsilon))$$

in this case.

4. Consider now the matrix which changes e' into e, this will be the matrix b' given by

$$(X, (e, \epsilon)) \qquad \overbrace{P_e^{e'} = b' = [(b')_i^j]_{n \times n}^{(X, (e', \epsilon'))}}$$

where $(b')_i^j = \langle (\epsilon')^j \mid e_i \rangle$ where $e_i = \sum_{k=0}^{n-1} e'_k(b')_i^k$ and we may write $B'e'_i = e_i$ which provides a linear transformation $X \xrightarrow{B'} X$ (: $e' = \{e'_i\}$ is a basis and a linear transformation is determined by its values on the elements of a basis). Then $BB'e'_i = Be_i = e'_i$ and $B'Be_i = Id = B'B$. We of course write B^{-1} for B'.

Then $(b')_i^j = \langle (\epsilon')^j \mid e_i \rangle = \langle (\epsilon')^j \mid B'e_i' \rangle$ presents b' as the matrix for B' as

$$(X, (e', \epsilon')) \qquad \xrightarrow{B'} \qquad (X, (e', \epsilon'))$$

while
$$B'e_i = B'\left(\sum_{k=0}^{n-1} e_k'(b')_i^k\right) = \sum_{k=0}^{n-1} (B'e_k')(b')_i^k = \sum_{k=0}^{n-1} e_k(b')_i^k = \sum_{k=0}^{n-1} e_k\langle \epsilon^k \mid B'e_i \rangle$$

(:. $\sum_{k=0}^{n-1} e_k \langle \epsilon^k \mid B'e_i \rangle$ being the unique representation in terms of the basis e for $B'e_i$ like any

$$vector \ x = \sum_{k=0}^{n-1} e_k \langle \epsilon^k \mid x \rangle)$$

we get $(b')_i^k = \langle \epsilon^k \mid B'e_i \rangle$ which means b' is a matrix of

$$(X,\ (e,\epsilon)) \qquad \xrightarrow{B'} \qquad (X,\ (e,\epsilon))$$

Example (continued) With the illustration above in 3, we have

$$P_e^{e'} = (P_{e'}^e)^{-1} = b^{-1} = b' = [(b^{-1})_i^j] = \begin{bmatrix} 2 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

which can be verified directly as above and we get

$$\begin{bmatrix} 2 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 7a+3b+c \\ -6a+3b-c \\ 4a-2b+c \end{bmatrix} = \begin{bmatrix} -2a+2b-c \\ -8a+5b-2c \\ 3a-2b+c \end{bmatrix}$$
 which confirms
$$(X, (e', \epsilon')) \qquad \boxed{Id \\ P_e^{e'} = b^{-1} = b' = [(b')_i^j]} \qquad (X, (e, \epsilon))$$

in this case.

5. The preceding discussion shows that a change of basis matrix is invertible. Now take an invertible matrix $a = [a_i^j]$, then $e_i = a^{-1}ae_i$ shows that each

$$x = \sum_{k=0}^{n-1} e_i x^i$$

$$= \sum_{k=0}^{n-1} a^{-1} (ae_i) x^i$$

$$= \sum_{i=0}^{n-1} \left(\sum_{k=0}^{n-1} (ae_k) (a^{-1})_i^k \right) x^i$$

$$= \sum_{i=0}^{n-1} (ae_k) \left(\sum_{k=0}^{n-1} (a^{-1})_i^k x^i \right)$$

$$= \sum_{i=0}^{n-1} (ae_k) \lambda^k \quad (say)$$

showing that each x is expressible as uniquely as a linear combination of the vectors $\{ae_k\}$ constitute a basis and a is the change of basis matrix from the source basis $\{e_i\}$ to the target basis $\{e_i' = ae_i\}$. (To understand why we wrote $a^{-1}(ae_i)$ as $\sum_{i=0}^{n-1} (ae_k)(a^{-1})_i^k$, note that when B' is a linear transformation, the formula is $B'(e_i') = e_i = \sum_{i=0}^{n-1} (e_k')(b')_i^k$, here the application of a^{-1} produces a linear transformation B' and we have $ae_i = e_i'$ so that the matrix of B' here is $b' = a^{-1}$ itself and we have $e_i = a^{-1}(ae_i) = \sum_{i=0}^{n-1} (e_k')(b')_i^k = \sum_{i=0}^{n-1} (ae_k)(a^{-1})_i^k$.

Thus a change of basis matrix is the same as an invertible matrix.

6. If $P_{e'}^e = b = [b_i^j]$ is the change of basis matrix changing e to e' the formula $e'_i = \sum_{j=0}^{n-1} (e_j)b_i^j$ says that we expand the vector e'_i , that is, the i-th vector of the target basis e', in terms of the source basis $e = \{e_j\}$; the components in this expansion (namely, the scalars b_i^j) then supply the i-th column of the matrix $P_{e'}^e = b$ which is $b_i = \begin{bmatrix} b_i^0 \\ \vdots \\ b_i^{n-1} \end{bmatrix}$

Example 0.1. Consider
$$\mathbb{K} = \mathbb{R}$$
, $\mathbb{X} = \mathbb{R}^2$; then $e = \left\{ e_0 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, e_1 = \begin{bmatrix} 3 \\ -4 \end{bmatrix} \right\}$ is a

basis
$$\left(\begin{array}{c} \vdots \\ b \end{array} \right] = e_0(-2a - \frac{3}{2}b) + e_1(a + \frac{1}{2}b) \ uniquely \ expressed \right)$$

and
$$e' = \left\{ e_0 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, e_1 = \begin{bmatrix} 3 \\ 8 \end{bmatrix} \right\}$$
 is also a basis
$$\left(\because \begin{bmatrix} a \\ b \end{bmatrix} \right] = e'_0(-8a + 3b) + e'_1(3a - b) \text{ uniquely expressed} .$$

Then since $e_0' = -\frac{13}{2}e_0 + \frac{5}{2}e_1$ and $e_1' = -18e_0 + 7e_1$, we obtain the first column of $P_{e'}^e$ as $\begin{bmatrix} -13/2 \\ 5/2 \end{bmatrix}$ and the second column of $P_{e'}^e$ as $\begin{bmatrix} -18 \\ 7 \end{bmatrix}$ so that we have

$$P_{e'}^e = \begin{bmatrix} -13/2 & -18 \\ 5/2 & 7 \end{bmatrix}$$

Also, $P_e^{e'}$ (the matrix which changes the basis e' to e, e' being the source basis and e being the target basis so that $P_e^{e'}$ is the matrix of $(X, (e, \epsilon)) \xrightarrow{Id} (X, (e', \epsilon'))$ and the linear transformation is $(X, (e', \epsilon')) \xrightarrow{B} (X, (e, \epsilon))$ is given by

$$P_e^{e'} = \begin{bmatrix} -14 & -36 \\ 5 & 13 \end{bmatrix}.$$

(One can get it using the relationship $P_e^{e'} = (P_{e'}^e)^{-1}$ since $\begin{bmatrix} -13/2 & -18 \\ 5/2 & 7 \end{bmatrix}^{-1} = \begin{bmatrix} -14 & -36 \\ 5 & 13 \end{bmatrix}.$ But it is instructive to proceed ab initio and calculate $e_1 = -14e'_1 + 5e'_2$, $e_2 = -36e'_1 + 13e'_2$ directly).

7. Now suppose (e^n, ϵ^n) is a third coordinatization of X and $P_{e'}^e = b$, $P_{e''}^e = c$ so that $b = [b_i^j]_{n \times n}$,

$$c = [c_j^k]_{n \times n} \text{ are supplied by } e_i' = \sum_{j=0}^{n-1} (e_j) b_i^j, \ e_j" = \sum_{k=0}^{n-1} (e_k') c_k^j. \text{ We find}$$

$$e" = \sum_{k=0}^{n-1} \left(\sum_{l=0}^{n-1} e_l b_k^l \right) c_j^k$$

$$= \sum_{l=0}^{n-1} e_l \left(\sum_{k=0}^{n-1} b_k^l c_j^k \right)$$

 $= \sum_{l=1}^{n-1} e_l(bc)_j^l$

(recall that to get the entry
$$(bc)_j^l$$
 of the product matrix bc , you have to multiply the l -th row $\begin{bmatrix} c^0 \\ \vdots \\ c_j^{n-1} \end{bmatrix}$ of b to the j -th column $\begin{bmatrix} c^0 \\ \vdots \\ c_j^{n-1} \end{bmatrix}$ term by term and add up: that is, the formula

for bc is given by $(bc)_j^l = \sum_{i=1}^{n-1} b_k^l c_j^k$

Thus we find that $P_{e''}^e = bc$ which should be seen in the context of the composition

$$(X, (e, \epsilon)) \xrightarrow{Id} (X, (e'', \epsilon'')) \xrightarrow{Id} (X, (e, \epsilon)) = (X, (e'', \epsilon'')) \xrightarrow{P_{e''}^e = b} (X, (e, \epsilon))$$

Notice that in the result $P_{e''}^e = P_{e'}^e = P_{e''}^{e'}$, e' gets erased when it occurs both as a subscript and a superscript.

8. Consider now a linear transformation $X \xrightarrow{T} X$ we recall that

$$X \xrightarrow{Id} X = X \xrightarrow{k=0} |e_k\rangle\langle\epsilon^k|$$
 $X \xrightarrow{Id} X = X \xrightarrow{k=0} X \text{ (the 'decomposition of identity')}$

Then we have $X \xrightarrow{T} X = X \xrightarrow{k=0} |e_k\rangle\langle\epsilon^k|$ $X \xrightarrow{T} X \xrightarrow{l=0} |e_l\rangle\langle\epsilon^l|$ $X = X \xrightarrow{k=0} X$ and hence

$$\langle (\epsilon')^{j} \mid Te'_{i} \rangle = \left\langle (\epsilon')^{j} \mid \left[\sum_{l=0}^{n-1} |e_{l}\rangle \langle \epsilon^{l} | T\left(\sum_{k=0}^{n-1} |e_{k}\rangle \langle \epsilon^{k} | \right) (e'_{i}) \right] \right\rangle$$

$$= \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} \langle (\epsilon')^{j} \mid e_{l}\rangle \langle \epsilon^{l} \mid Te_{k}\rangle \langle \epsilon^{k} \mid e'_{i}\rangle$$

$$= \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} (b^{-1})^{j}_{l} \langle \epsilon^{l} \mid Te_{k}\rangle b^{k}_{i}\rangle \qquad \dots (5)$$

 $(\textit{we used } (b')_l^j = (b^{-1})_l^j = \langle (\epsilon')^j \mid e_l \rangle \textit{ and } \langle \epsilon^k \mid e'_i \rangle = b_i^k \textit{ where } b = P_{e'}^e, \textit{ b}^{-1} = P_e^{e'}, \textit{ b being the } b = P_{e'}^e, \textit{ b}^{-1} = P_e^{e'}, \textit{ b being the } b = P_{e'}^e, \textit{ b}^{-1} = P_e^{e'}, \textit{ b being the } b = P_{e'}^e, \textit{ b}^{-1} = P_e^{e'}, \textit{ b being the } b = P_{e'}^e, \textit{ b being$ matrix of $(X, (e'', \epsilon''))$ \xrightarrow{Id} $(X, (e, \epsilon))$ which changes the source basis e' to the target basis e; these have been calculated earlier.)

What does this equation (5)say? It refers to two coordinatizations, (e, ϵ) and (e', ϵ') of X and two matrices representing the linear transformation T:

$$\begin{split} t_k^l &:= \langle \epsilon^l \mid Te_k \rangle \text{ for } [T]_e^e, \\ s_i^j &:= \langle (\epsilon')^j \mid Te_i' \rangle \text{ for } [T]_{e'}^{e'}. \\ &(Compare \ with \ A_e^d = a = [a_i^j]; \ a_i^j = \langle \delta^j \mid Ae_i \rangle \ in \ (X, \ (e, \epsilon)) \ \longrightarrow^{A}(Y, \ (d, \delta))) \end{split}$$

There are two interpretations of (5)

(i) <u>Passive</u> There is one operator $X \xrightarrow{T} X$ and two coordinate systems (= observers), (e, ϵ) and (e', ϵ') , for X. Given $x \in X$,

$$x = \sum_{i=0}^{n-1} |e'_{i}\rangle(x')^{i},$$
we have $Tx = \sum_{i=0}^{n-1} |Te'_{i}\rangle(x')^{i}$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} |e'_{j}\rangle s_{i}^{j}(x')^{i}$$

$$\left(\because Te'_{i} = \sum_{j=0}^{n-1} e'_{j}\langle \epsilon'^{j} \mid Te'_{i}\rangle = \sum_{j=0}^{n-1} e'_{j}s_{i}^{j}\right)$$

$$= \sum_{i=0}^{n-1} |e'_{j}\rangle \left(\sum_{i=0}^{n-1} s_{i}^{j}(x')^{i}\right),$$

so the components of Tx with reference to the coordinate system (e', ϵ') are $\sum_{i=0}^{n-1} s_i^j(x')^i$, $0 \le j \le n-1$;

$$Tx = \sum_{j=0}^{n-1} |e'_j\rangle (Tx)^j$$

$$= \sum_{j=0}^{n-1} |e'_j\rangle \langle \epsilon'^j | Tx\rangle$$

$$= \sum_{j=0}^{n-1} |e'_j\rangle \left(\sum_{i=0}^{n-1} s_i^j (x')^i\right) \text{ where } s_i^j = \langle \epsilon'^j | Te'_i\rangle.$$

For the same vector $x = \sum_{i=0}^{n-1} |e_i\rangle x^i = \sum_{i=0}^{n-1} |e_i\rangle \langle \epsilon^i | x\rangle$, we have

$$Tx = \sum_{i=0}^{n-1} |Te_i\rangle x^i$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} |e_j\rangle t_i^j x^i$$

$$\left(\because Te_i = \sum_{j=0}^{n-1} e_j\langle \epsilon^j \mid Te_i\rangle = \sum_{j=0}^{n-1} |e_j\rangle t_i^j\right)$$

$$= \sum_{j=0}^{n-1} |e_j\rangle \left(\sum_{i=0}^{n-1} t_i^j x^i\right)$$

so the components of the same vector Tx with reference to (e, ϵ) are $\sum_{i=0}^{n-1} t_i^j x^i$, $0 \le j \le n-1$;

$$Tx = \sum_{j=0}^{n-1} |e_j\rangle (Tx)^j$$

$$= \sum_{j=0}^{n-1} |e_j\rangle \langle \epsilon^j | Tx\rangle$$

$$= \sum_{j=0}^{n-1} |e_j\rangle \left(\sum_{i=0}^{n-1} t_i^j x^i\right) \text{ where } t_i^j = \langle \epsilon^j | Te_i\rangle.$$

Thus no two vectors moves; the two coordinate systems (= observers) measure their coordinates.

(ii) <u>Active</u> There is only one coordinate system but there are two operators $X \xrightarrow{T, S} X$, $S := B^{-1}TB$, where B is an invertible operator on X which of course changes e_i to $Be_i = e'_i$ say. The matrix $[S]_e^e$ has entries

$$S_i^j = \langle \epsilon^j \mid Se_i \rangle = \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} (b^{-1})_l^j t_k^l b_i^k$$

Each vector $x = \sum_{i=0}^{n-1} |e_i\rangle x^i$ moves under the action of S to

$$Sx = \sum_{i=0}^{n-1} |Se_{i}\rangle x^{i}$$

$$= \sum_{j=0}^{n-1} |e_{j}\rangle (Sx)^{j} \text{ where } (Sx)^{j} = \sum_{i=0}^{n-1} s_{i}^{j} x^{i}$$

$$(s_{i}^{j} = \langle \epsilon^{j} | Se_{i}\rangle = \langle (\epsilon')^{j} | Te'_{i}\rangle = \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} (b^{-1})_{l}^{j} t_{k}^{l} b_{i}^{k}).$$

that is, $S = B^{-1}TB$, and the $(j \times i)$ -entry of the matrix of S is $s_i^j = \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} (b^{-1})_l^j t_k^l b_i^k$, all matrices being calculated with respect to the same coordinate-system (e, ϵ) .

(iii) The 'Active interpretation' prompts a definition:

Two $n \times n$ matrices S and T are called similar iff there exists an invertible $n \times n$ matrix B such that $S = B^{-1}TB$.

This is clearly an equivalence relation on $Mat_n(\mathbb{F})$

Reflexivity: $T = (Id_n)^{-1}T(Id_n)$

Symmetry: $S = B^{-1}TB$ iff $T = (B^{-1})^{-1}SB^{-1}$

Transitivity: $S = B^{-1}TB$, $R = A^{-1}SA$ ensure $R = (BA)^{-1}T(BA)$. Now taking T to be Id and noting $Id = \sum_{i=0}^{n-1} |e_i\rangle\langle|$, we find that the j-th component of a vector $x \in X$ with respect to $e' = (e', \epsilon)$ to be