Fractions, Decimals, and Percentages

1. Fraction =
$$\frac{Part}{whole}$$

- 2. Percent = $\frac{part}{100}$
- 3. Percent Increase or Decrease = $\frac{Increase}{old} \times 100\%$
- 4. Simple Interest: A = P(1 + rt)
- 5. Interest Compound Annually : $A = P(1 + r)^t$
- 6. Interest Compounded n times per year: A = $P(1 + \frac{r}{n})^{nt}$

Geometry

- 1. Area of a Circle = πr^2
- 2. Circumference of a Circle = $2\pi r$
- 3. Volume of a Sphere = $\frac{4}{3}\pi r^3$
- 4. Area of a Square = s^2
- 5. Perimeter of a square = 4s
- 6. Area of a rectangle = I x w
- 7. Perimeter of a rectangle = 2l + 2w
- 8. Area of a Triangle = $\frac{1}{-b}$ h
- 9. Perimeter of a triangle = Sum of all sides
- 10. Pythagorean Theorem = $a^2 + b^2 = c^2$
- 11. Volume of a Cylinder = $\pi r^2 h$
- 12. Volume of a Cone = $V = \frac{1}{3} \pi r^2 h$
- 13. Volume of a Rectangular Prism (Box) = V = IWH

Special Right Triangle

Exponents & Roots

- 1. Multiplication Rule for Exponents : a^b . $a^c = a^{b+c}$
- 2. Division Rule for Exponents : $\frac{a^b}{a^c} = a^{b-c}$
- 3. Power Rule for Exponents : $(a^b)^c = a^{bc}$
- 4. Negative Exponents : $a^{-b} = \frac{1}{a^b}$

Square Roots

To Square a number = 6^2 = 36

Square root = $\sqrt{36}$ = 6

Memorize : $\sqrt{2}$ = 1.4

 $\sqrt{3} = 1.7$

Cube Roots

To Cube a number = $2^3 = 8$

Cube root = $\sqrt[3]{8}$ =2

Data Analysis & Statics

Counting principle	If there are m ways to complete the first and n ways to complete the second, then there are m*n ways to complete the two of them
Probability	number of favourable outcomes number of possible outcomes
Average	Average = $\frac{sum}{n}$

Trigonometry

1. Sin =
$$\frac{opp}{hyp}$$

1.
$$\sin = \frac{opp}{hyp}$$

2. $\cos = \frac{adj}{hyp}$
3. $\tan = \frac{adj}{adj}$

3.
$$tan = \frac{adi}{adi}$$

4.
$$360^{0} = 2\pi \text{ radians}$$

Sin(x)=cos(90-x) The sine of an \angle is equal to the cosine of its complement

Parabolas

1. Standard Form : $f(x) = ax^2 + bx + c$

$$Vertex = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

$$Y - intercept = C$$

$$X - intercept = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum of solutions =
$$\frac{-b}{a}$$

Discriminant = 2 b ac -4; Pos=2 real roots Zero= 1 real root; Neg=2 imaginary roots

2. Factored Form : f(x) = a(x-m)(x-n)

X – intercepts are m and n

$$X$$
 – coordinate of vertex = $\frac{m+n}{2}$

3. Vertex Form : $f(x) = a(x-h)^2 + k$ Vertex = (h,k)

- 4. Difference of squares: $a^2 b^2 = (a+b)(a-b)$
- 5. Perfect Square Trinomial : $a^2 + 2ab + b^2 = (a+b)^2 & a^2 2ab + b^2 = (a-b)^2$ 6. Completing the square : $x^2 + bx + {b \choose 2}^2 = (x+b)^2$

Polygons

- 1. Area of a trapezoid: $\frac{1}{2}(b_1+b_2)h$
- 2. One interior angle of a regular polygon : $\frac{180 (n-2)}{}$
- 3. Sum of the interior angles: 18-(n-2)
- 4. Sum of exterior angles: 360°

Properties of Parallelogram

- 1. Opp sides are \parallel and \cong
- Opp ∠'s are ≅
- 3. Consec ∠'s are supplementary
- 4. Each diagonal forms a pair of $\cong \Delta$'s
- 5. Diagonals bisect each other
 - If they are \cong it is a rectangle
 - If they are ⊥ it is a rhombu
- 6. Area = base * height

Graphing Lines

- 1. Slope Formula : m = $\frac{y_{2-y_1}}{x_{2-x_1}}$
- 2. Slope of horizontal line = 0
- 3. Slope of vertical line = undefined

- 4. Standard Form : Ax + By = C
- 5. Slope Intercept Form : y = mx + b
- 6. Point-Slope Form : $y y_1 = m(x-x_1)$
- 7. Distance Formula : $d = \sqrt{(x_2 x_1)^2 + (y_1 y_1)^2}$
- 8. Midpoint Formula : M = $(\frac{x_1 + x_2}{2}, \frac{y_{1+y_2}}{2})$
- 9. Parallel lines: equal slopes
- 10. ⊥ Lines slopes are opposite reciprocals

Angles

- 1. Vertical \angle 's are \cong
- 2. ∠'s that form a linear pair are supplementary (add up to 180°)
- 3. ∠'s that form a circle add up to 360°
- 4. When \parallel lines are cut by a transversal, all acute \angle' s are \cong and all obtuse \angle' s are \cong

Triangles

The three \angle 's of a Δ add up to 180° An exterior \angle is equal to the sum of the two remote interior \angle 's

Pythagorean Triples: 3-4-5 and 5-12-13

Circles

A radius and tangent make a right ∠

$$\frac{x}{360} = \frac{arc}{circumference}$$
 and $\frac{x}{360} = \frac{sector}{area_of_circle}$ where x = central angle

Formula for a Circle $(x-h)^2 + (y-k)^2 = r^2$, where (h,k) is the center and r is the radius

Parent Graphs & Transformations

$$Y = |x|$$

 $Y = x^2$

$$Y = a^x$$

$Y = \sqrt{x}$

Transformations

Visual effect

f(x)+k	Shift up by k units
f(x)-k	Shift down by k units
f(x+h)	Shift left by h units
f(x-h)	Shift right by h units
-f(x)	Reflect over the x axis (flip upside down)
cf(x)	Stretch vertically by a factor of c (becomes skinnier)
$\frac{1}{2}f(x)$	Shrink vertically by a factor of c (becomes fatter)

Rates, Ratio & Proportions

General form of a conversion factor: ($\frac{ending_units}{starting_units}$)

Concentration A x Volume of A + Concentration B x Volume of B

= Final Concentration (Vol. of A + Vol. of B)

Distance = Rate * Time