INF511: Modern Regression I

Lecture Materials - Probability & Probability Distributions

Understanding probability provides us with a foundation to derive model parameter estimates and quantify uncertainties in our parameter estimates. Probability is therefore essential for null hypothesis testing, which seeks to understand whether we can be confident, within reasonable probability, that our data support or refute our hypotheses.

Probability	basics
-------------	--------

Joints, Marginals, and Conditionals

A quick example
What are the marginal probabilities of: $P(Tired)$, $P(Sitting)$, $P(Standing)$?
What are the conditional probabilities of: $P(Tired Sitting)$, $P(Tired Standing)$?
Law of Total Probability

A preview of Bayesian inference

Probability Distributions

Probability distributions define data likelihoods, they are used to construct confidence intervals for parameter estimates, and they are used to generate p-values used in null hypothesis testing.

First, let's define some critical terms

PMF's and PDF's
CMF's and CDF's
Continuous probability distributions
Uniform distribution, bounded

Discrete probability distribut	ions		
Bernoulli distribution, binary			

5

Normal (i.e., Gaussian) distribution, unbounded

Poisson distribution, bounded positive