

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 2-T

1. Componentes do Nível RT: Temporização e Análise de Timing. Atraso de componentes, diagramas de tempos, período mínimo do relógio, atraso crítico, tempo de estabilização dos sinais, caminho crítico.

Profs. José Luís Güntzel e Cristina Meinhardt

{j.guntzel, cristina.meinhardt}@ufsc.br

Atraso (de propagação) de uma porta lógica

É o tempo que transcorre entre uma transição de entrada e a consequente transição na saída da porta.

Exemplo 1: sinais com formas de onda "minimamente realistas"

$$tp_{HL} = td_{HL} = atraso de descida$$

 $tp_{LH} = td_{LH} = atraso de subida$

A menos que se diga o contrário assumiremos que $tp_{HL} = tp_{LH}$ (= tp ou td)

Atraso (de propagação) de uma porta lógica

É o tempo que transcorre entre uma transição de entrada e a consequente transição na saída da porta.

Exemplo 1: sinais com formas de onda "digitalizadas" (abstração da realidade)

$$tp_{HL} = td_{HL} = atraso de descida$$

 $tp_{LH} = td_{LH} = atraso de subida$

A menos que se diga o contrário assumiremos que $tp_{HL} = tp_{LH}$ (= tp ou td)

Atraso (de propagação) de uma porta lógica

É o tempo que transcorre entre uma transição de entrada e a consequente transição na saída da porta.

Exemplo 2

A menos que se diga o contrário, assumiremos que $tp_{HL}(A) = tp_{LH}(A) = tp_{HL}(B) = tp_{LH}(B)$

Cadenciamento de Sistemas Digitais

- A maior parte dos sistemas digitais são sincronizados por um sinal monótono denominado relógio (ou *clock*, em inglês).
- Sistemas digitais cadenciados por sinal de relógio são denominados síncronos.
- No projeto de sistemas digitais síncronos, registradores são utilizados.

Estimativa do Período do Relógio

Uma execução por ciclo de relógio...

Para que C1 tenha tempo suficiente para realizar sua operação, é necessário que:

$$T >= D$$

Onde D = atraso crítico entre R1 e R2, calculado por :

$$D = tco_{R1} + td_{C1} + tsu_{R2}$$

Sinal de Relógio (ou *Clock*)

Nomenclatura

borda ascendente = borda de subida = borda positiva = flanco de subida etc

borda descendente = borda de descida = borda negativa = flanco de descida etc

Características:

- Período (T): tempo entre duas bordas consecutivas de mesmo tipo.
 Medido em submúltiplos do segundo (ms, μs, ns)
- Frequência: f = 1/T, medida em múltiplos do hertz (kHz, MHz, GHz)
- *Duty cycle*: T1/T x 100 %, onde T1 é o tempo entre uma borda ascendente e a borda descendente que a segue.

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2

Slide 2T.12

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2

Slide 2T.15

Diagramas de TempoSupondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2

Slide 2T.16

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2 Slide 2T.17

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2 Slide 2T.18

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2

Slide 2T.19

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	dores R1, R2, R3 tempo de carga tco		1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2 Slide 2T.20

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	dores R1, R2, R3 tempo de carga tco		1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	dores R1, R2, R3 tempo de carga tco		1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2 Slide 2T.22

Diagramas de Tempo

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	dores R1, R2, R3 tempo de carga tco		1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

No diagrama abaixo, considerar que cada divisão vale 1,0 ns

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2

Slide 2T.23

Tempo de Estabilização (TE) de um Sinal

(Também conhecido como Arrival Time)

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

Exemplo 1:

Suponha que TE(A) = 10 ps, TE(B) = 12 ps, td(g) = 2 ps.

Calcular TE(S).

$$TE(S) = max \{10 ps, 12 ps\} + 2 ps = 14 ps$$

Obs: ao longo desta disciplina, consideraremos que os fios tem atraso desprezível, o que não corresponde à realidade, mas serve como abordagem inicial.

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

Exemplo 2: Analisaremos um somador paralelo de 4 bits construído utilizando-se n somadores completos (*full adders*)

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Tempo de Estabilização (TE) de um Sinal

<u>Definição</u>: TE de um sinal é o máximo tempo que o sinal demora para estabilizar

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Caminho Crítico

É o caminho (i.e., a sucessão de componentes) atravessado pela sequência de transições mais lentas. td

No exemplo, há **dois** caminhos críticos com atraso 19 ps:

$$A_0 \rightarrow x1 \rightarrow n2 \rightarrow n3 \rightarrow n5 \rightarrow n6 \rightarrow n8 \rightarrow n9 \rightarrow n11 \rightarrow n12 \rightarrow C_{out}$$

 $B_0 \rightarrow x1 \rightarrow n2 \rightarrow n3 \rightarrow n5 \rightarrow n6 \rightarrow n8 \rightarrow n9 \rightarrow n11 \rightarrow n12 \rightarrow C_{out}$

porta

inv

xor

nand2

1 ps

2ps

3ps

Atraso Crítico

É o atraso do caminho crítico.

No exemplo, atraso do caminho caminho crítico = 19 ps

No pior caso, este é o tempo que este circuito precisa para completar uma adição entre dois números de 4 bits.

porta	td
inv	1 ps
nand2	2ps
xor	3ps

Atraso Crítico para um Somador de n Bits

Por uma questão de simplificação do cálculo, iremos aproximar o atraso de um somador de *n* bits por *n* x atraso entre *carry in* e *carry out* de um meio somador (neste caso, seria 4 ps)

Atraso Crítico no Nível Lógico -> Atraso de Componente do Nível RT

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2 Por uma questão de simplificação, no nível RT considera-se que qualquer saída do componente (combinacional) possui atraso = td, no caso deste exemplo:

 $td(somador 4bits) = 4 \times 4ns = 16 ps$

Slide 2T 40 Profs. Güntzel & Meinhardt

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes)

 $TE(S) = max \{TE(A), TE(B)\} + td(somador)$ $TE(C_{out}) = max \{TE(A), TE(B)\} + td(somador)$

 $TE(res) = max\{TE(A), T(B), T(controle)\} + td(ULA)$ $TE(zero) = max\{TE(A), T(B), T(controle)\} + td(ULA)$

Tempo de Estabilização (TE) no Nível RT

Para muxes

Tempo de Estabilização (TE) no Nível RT

Para Registradores

^{*} Toma-se a borda de relógio t0 como referência de tempo; logo, TE = tco após t0.

Tempos de Estabilização

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

A análise inicia assumindo-se uma primeira borda de relógio (t0) aplicada a R1 e R2

Tempos de Estabilização Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

Tempos de Estabilização Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

Tempos de Estabilização

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

Caminhos Críticos e Atraso Crítico

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

Estimativa do Período (Mínimo) e da Frequência Máxima do Relógio

Período mínimo do relógio = D = 4ns

Frequência máxima = 1 / período mínimo = 1 / 4 ns = 1 / 4 x 10⁻⁹ s = 0,25 x 10⁺⁹ Hz = 250 x 10⁺⁶ Hz = 250 MHz

Estimativa do Período (Mínimo) do Relógio (2)

Pode-se pular a etapa de determinação dos TEs, calculando o atraso crítico diretamente a partir do(s) caminho(s) crítico(s). Exemplo:

D =
$$tco_{R1}$$
 + 8.tds + tsu_{R3} =
= tco_{R2} + 8.tds + tsu_{R3} =
= 1 ns + 8 . 0,25 ns + 1 ns = **4 ns**

sendo T >= D

Suponha que necessita-se de um hardware dedicado para realizar o seguinte cálculo:

$$S \leftarrow A + B + C + D$$

Assumir que as variáveis A, B, C e D sejam números inteiros sem sinal, representados em binário com 8 bits, **estando disponíveis ao mesmo tempo.**

- Como as variáveis de entrada estão disponíveis ao mesmo tempo, pode ser vantajoso executar este cálculo em um ciclo de relógio.
- Para reduzir o período do relógio, é importante explorar o paralelismo que o cálculo pode proporcionar.

Solução 1:

ULA dedicada que realiza o cálculo de maneira paralela

Neste esquemático:

•O comprimento (i.e., o nº de bits) do registrador "S" restringe o uso desta ULA para operações nas quais o resultado não ultrapasse 255. Portanto, pode ocorrer *overflow*!

Solução 1.1:

ULA dedicada que realiza o cálculo de maneira paralela que evita ocorrência de *overflow*

Solução 1.2 (seguindo as convenções do nível RT): ULA dedicada que realiza o cálculo de maneira paralela e evita ocorrência de *overflow*

Pontos Positivos:

- •Jamais ocorre overflow.
- •Este esquemático deixa claro como é gerado o bit mais significativo da saída dos somadores.

Ponto Negativo:

•2 somadores p/ números com 9 bits e 1 somador para números de 10 bits. Logo, o custo não é mínimo (porque usa mais recursos do que o necessário). Além disso, o atraso crítico tampouco é mínimo.

Profs. Güntzel & Meinhardt

Solução 1.3 (seguindo as convenções do nível RT):

ULA dedicada que realiza o cálculo de maneira paralela, evita ocorrência de *overflow* e tem custo mínimo

Pontos Positivos:

- •Jamais ocorre overflow.
- •Este esquemático deixa claro como é gerado o bit mais significativo da saída dos somadores.
- •Somadores dimensionados de modo a economizar recursos (2 somadores p/ números com 8 bits e 1 somador para números de 9 bits) e minimizar o atraso crítico!

Profs. Güntzel & Meinhardt

Análise de *Timing**

Assumindo que os componentes da ULA dedicada vista no slide anterior tenham as características temporais mostradas na tabela abaixo, realize a análise de *timing**

Componente	Característica	Símbolo	Valor
Registradores R1, R2, R3	tempo de setup	tsu	1 ns
Registradores R1, R2, R3	tempo de hold	th	0,5 ns
Registradores R1, R2, R3	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns

^{*} Análise de timing significa determinar o(s) caminho(s) crítico(s) e o atraso crítico.

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

A análise inicia assumindose uma primeira borda de relógio (t0) aplicada a A, B, C e D

INE/CTC/UFSC Sistemas Digitais - semestre 2019/2 Slide 2T.57

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

Análise de Timing

INE/CTC/UFSC

Exemplo: $S \leftarrow A + B + C + D$

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

Quantos Caminhos Críticos há?

INE/CTC/UFSC

Slide 2T.62

Profs. Güntzel & Meinhardt

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

Todos os 16 caminhos são críticos (com mesmo atraso)

```
A \rightarrow soma1 \rightarrow soma3 \rightarrow S
```

$$A \rightarrow cout1 \rightarrow soma3 \rightarrow S$$

$$A \rightarrow soma1 \rightarrow cout3 \rightarrow S$$

$$A \rightarrow cout1 \rightarrow cout3 \rightarrow S$$

$$B \rightarrow soma1 \rightarrow soma3 \rightarrow S$$

$$B \rightarrow cout1 \rightarrow soma3 \rightarrow S$$

$$B \rightarrow soma1 \rightarrow cout3 \rightarrow S$$

$$B \rightarrow cout1 \rightarrow cout3 \rightarrow S$$

$$C \rightarrow soma2 \rightarrow soma3 \rightarrow S$$

$$C \rightarrow cout2 \rightarrow soma3 \rightarrow S$$

$$C \rightarrow soma2 \rightarrow cout3 \rightarrow S$$

$$C \rightarrow cout2 \rightarrow cout3 \rightarrow S$$

$$D \rightarrow soma2 \rightarrow soma3 \rightarrow S$$

$$D \rightarrow cout2 \rightarrow soma3 \rightarrow S$$

$$D \rightarrow soma2 \rightarrow cout3 \rightarrow S$$

$$D \rightarrow cout2 \rightarrow cout3 \rightarrow S$$

INE/CTC/UFSC

Sistemas Digitais - semestre 2019/2

Slide 2T.64

Análise de Timing

Exemplo:

$$S \leftarrow A + B + C + D$$

Calculando o atraso crítico diretamente a partir do(s) caminho(s) crítico(s):

D = T =
$$tco + td_C + tsu(S) =$$

= 1 + 8 x 0,25 + 9 x 0,25 + 1 =
= 6,25 ns

onde tco = tco(A) = tco(B) = tco(C) = tco(D)

Leituras da Semana

VAHID, Frank. Digital Design with RTL Design, VHDL and Verilog. 2nd Edition. Wiley, 2010.

ou

VAHID, Frank. Sistemas Digitais: projeto, otimização e HDLs. Porto Alegre: Bookman, 2008. (ISBN 978-85-7780-190-9)

Banco de Registradores: Seção 4.10

Memórias: Seção 5.6

