

Modélisation ----

Créer un outil de calcul simplifié qui peut s'apparenter à la réalité et permet de faire des calculs pour vérifier/valider les performances d'un mécanisme

Mécanisme

Association de pièces reliées entre elles par des liaisons et en relation avec l'environnement extérieur. Il remplit une fonction fixée par le cahier des charges

Hypothèses

Les solides du mécanisme sont considérés indéformables

La géométrie est considérée comme étant parfaite

La liaison est considérée sans jeu

Les contacts aux liaisons sont considérés sans frottement

Dans un repère spatial, il existe 6 mouvements décomposés en deux sous-catégories

	TRANSLATION	ROTATION
\overrightarrow{X}	Tx	Rx
\overrightarrow{y}	Ту	Ry
$\vec{\mathbf{Z}}$	Tz	Rz

Les liaisons sont formées à partir de trois formes de base

LIAISON À O DEGRÉS DE LIBERTÉ

Encastrement

	TRANSLATION	ROTATION
\vec{X}		_
\vec{y}		
$\vec{\mathbf{Z}}$		

Symboles

Modélisation des Mécanismes

LIAISON À 1 DEGRÉS DE LIBERTÉ

Liaison pivot

	TRANSLATION	ROTATION
\vec{X}		
\vec{y}		
$\vec{\mathbf{Z}}$		

LIAISON À 1 DEGRÉS DE LIBERTÉ

Liaison glissière

	TRANSLATION	ROTATION
\overrightarrow{X}		
\vec{y}		
$\vec{\mathbf{Z}}$		

LIAISON À 1 DEGRÉS DE LIBERTÉ

Liaison hélicoïdale

	TRANSLATION	ROTATION
\overrightarrow{X}		
\vec{y}		
$ec{\mathbf{Z}}$		

LIAISON À 2 DEGRÉS DE LIBERTÉ

Liaison pivot glissant

Symboles

LIAISON À 2 DEGRÉS DE LIBERTÉ

Liaison sphérique à doigt

	TRANSLATION	ROTATION
\overrightarrow{X}		
\vec{y}		
$ec{ ilde{Z}}$		

LIAISON À 3 DEGRÉS DE LIBERTÉ

Liaison appui plan

	TRANSLATION	ROTATION
\overrightarrow{X}		
\vec{y}		
$\vec{\mathbf{Z}}$		

LIAISON À 3 DEGRÉS DE LIBERTÉ

Liaison rotule sphérique

	TRANSLATION	ROTATION
\overrightarrow{X}		
\overrightarrow{y}		
$ec{\mathbf{Z}}$		

LIAISON À 4 DEGRÉS DE LIBERTÉ

Liaison linéaire annulaire

	TRANSLATION	ROTATION
\overrightarrow{X}		
\vec{y}		
\vec{z}		

Symboles

LIAISON À 4 DEGRÉS DE LIBERTÉ

Liaison linéaire rectiligne

LIAISON À 5 DEGRÉS DE LIBERTÉ

Liaison ponctuelle

	TRANSLATION	ROTATION
\overrightarrow{X}		
\vec{y}		
$\vec{\mathbf{Z}}$		

SYNTHÈSE LIAISONS

Liaisons Simples

Surfaces en Contact	Sphère	Cylindre	Plan
Sphère	Rotule	Linéaire Annulaire	Ponctuelle
Cylindre	Linéaire Annulaire	Pivot Glissant	Linéaire Rectiligne
Plan	Ponctuelle	Linéaire Rectiligne	Appui Plan

Liaisons Composées

- Liaison pivot → Pivot glissant avec arrêt en translation
- Liaison glissière → Pivot glissant avec arrêt en rotation
- Liaison hélicoïdale → Pivot glissant avec les deux mouvements liés
- Liaison sphérique à doigt → Rotule avec une rotation bloquée

CLASSE EQUIVALENCE

Définition

L'ensemble des solides d'un mécanisme sans mouvement relatif possible constitue une classe d'équivalence cinématique

Les solides reliés par des liaisons **encastrement** font donc partie de la même classe d'équivalence

Remarque:

- Les pièces qui se déforment ne sont pas prises en compte (ressorts, amortisseurs, joints...)
- Les éléments roulants des roulements ne sont pas pris en compte

MODÉLISATION DES MÉCANISMES

CLASSE EQUIVALENCE

15	2	Embout
14	1	Socle
13	1	Manivelle
12	2	Vis CHC M4
11	1	Plaquette arrêtoir
10	1	Vis de manœuvre
9	1	Écrou de manœuvre
8	1	Semelle
7	1	Plaquette
6	1	Mors Mobile
5	4	Vis CHC M6
4	1	Plaquette à rainures
3	1	Mors fixe
2	8	Vis CHC M8
1	2	Glissière
Rep	Nb	Désignation

Modélisation des Mécanismes

CLASSE EQUIVALENCE

15	2	Embout
14	1	Socle
13	1	Manivelle
12	2	Vis CHC M4
11	1	Plaquette arrêtoir
10	1	Vis de manœuvre
9	1	Écrou de manœuvre
8	1	Semelle
7	1	Plaquette
6	1	Mors Mobile
5	4	Vis CHC M6
4	1	Plaquette à rainures
3	1	Mors fixe
2	8	Vis CHC M8
1	2	Glissière
Rep	Nb	Désignation

A : _____

B:

C:_____

D:

GRAPHE DES LIAISONS

Définition

Représentation qui décrit les liaisons entre les pièces / classes d'équivalence d'un mécanisme

Il se compose:

- De cercles symbolisant les classes d'équivalence
- De traits qui joignent certains cercles les un aux autres symbolisant les liaisons

SCHÉMA CINÉMATIQUE

Définition

Représentation géométrique plane ou spatiale du graphe des liaisons

On dessine les symboles normalisés des différentes liaisons en respectant les caractéristiques géométriques relatives (parallélisme, perpendicularité, coaxialité, orthogonalité ...)

Il n'est pas nécessaire d'avoir un positionnement dimensionnel très précis

SCHÉMA CINÉMATIQUE

