Writing Assignment 3 in LATEX

Alex Holland V00

December 2, 2020

Question 1

- (a) show that q, p_1, p_2 are primes and $q|p_1p_2$, then $q = p_1$ or $q = p_2$.
- (b) Suppose q, p_1, p_2, p_3 are primes and $q|p_1p_2p_3$. Prove that $q=p_1$ or $q=p_2$ or $q=p_3$.
- We know that q, p_1, p_2 are primes and $q|p_1$ or $q|p_2$ as q, p_1, p_2 are primes. Because q and p_1 are primes then $q|p_1$ implies $q=p_1$. As well, q and p_2 are primes since $q|p_2$ implies $q=p_2$. Therefore, if q, p_1, p_2 are primes then $q|p_1p_2$ and so $q=p_1$. \square
- (b) q, p_q, p_2, p_3 are primes and $q|p_1p_2p_3$. Then $q|p_1p_2p_3$ implies $q|p_1$ or $q|p_2$ or $q|p_3$. if $q|p_1$ then $q=p_1$ since q and p_1 are primes. If $q|p_2$ the $q=p_2$ since q and p_2 are primes. If $q|p_3$ then $q=p_3$ since q and p_3 are primes. Therefore if q, p_q, p_2, p_3 are primes and $q|p_1p_2p_3$ then $q=p_1$ or $q=p_2$ or $q=p_3$. \square

Question 2

Let $a, b, c \in \mathbb{N}$ be such that c|a and c|b. Prove that c|gcd(a, b).

We know that a and b are natural numbers. Let's let d = gcd(a, b). Then there must exist integers k_1 and k_2 such that $d = ak_1 + bk_2$. Because c divides a implies (c|a) $a = ck_1$ for some $k \in \mathbb{Z}$. Also c divides b implies (c|b) $b = ck_2$ for some $k \in \mathbb{Z}$. Then

$$d = ax + by$$

$$= ck_1x + ck_2y$$

$$= c(k_1x + k_2y)$$

Because $x, y, k_1, k_2 \in \mathbb{Z}$ then we have that $k_1x + k_2y \in \mathbb{Z}$ so $c(k_1x + k_2y)$. Therefore, (c|d) which implies c|gcd(a,b). \square

Question 3

- (a) Let $c \in \mathbb{N}$ and $m \in \mathbb{N}$. The least residue of n modulo m is the the unique integer among 0, 1, ..., m-1 to which n is congruent modulo m. For $k \in \mathbb{N}$, explain why $k^2 \equiv 0 \pmod{4}$ or $k^2 \equiv 1 \pmod{4}$.
- (b) Prove that no integer which is congruent to 4 modulo 4 can be written as a sum of two squares. That is, if $n \equiv 3 \pmod{4}$, then there are no integers x and y such that $n = x^2 + y^2$.
- We are given that $n \in \mathbb{Z}$ and $m \in \mathbb{N}$ The least residue of n modulo m is the unique integer among 0, 1, ...m-1 to which n is congruent to modulo m. We can show $k^2 \equiv 0 \pmod{4}$ or $k^2 \equiv 1 \pmod{4}$ for $k \in \mathbb{N}$

$$(4k+0)^2 = 16k^2 \equiv 0 \pmod{4}$$

$$(4k+1)^2 = 16k^2 + 8k + 1 \equiv 1 \pmod{4}$$

$$(4k+2)^2 = 16k^2 + 16k + 4 \equiv 0 \pmod{4}$$

$$(4k+3)^2 = 16k^2 + 24k + 9 \equiv 1 \pmod{4}$$

$$(4k+4)^2 = 16k^2 + 32k + 16 \equiv 0 \pmod{4}$$

We can determine from relationship of each equation that 0 and 1 are the only residues of modulo 4 when we consider any integer k. Therefore for $k \in \mathbb{N}$, $k^2 \equiv 0 \pmod{4}$ or $k^2 \equiv 1 \pmod{4}$.

(b)

We need to prove that no integer which is congruent to 3 modulo 4 can be written as a sum of two squares that is if n = 3 (3 mod 4). Then there must be no integers x and y such that $n = x^2 + y^2$. We can show the least residues of square modulo 3 by the set of equations

$$(3k)^{2} = 9k^{2}$$

$$\equiv 0 \pmod{3}$$

$$(3k+1)^{2} = 9k^{2} + 6k + 1$$

$$\equiv 1 \pmod{3}$$

$$(3k-1)^{2} = 9k^{2} - 6k + 1$$

$$\equiv 0 \pmod{3}$$

Hence, 0 and 1 are the only least residues of $modulo\ 3$. So x^2+y^2 can take only the values 0, 1, and 2. Therefore, for any $n \in \mathbb{Z}$, $n \equiv 3 \pmod 4$ such that $n = x^2 + y^2$, thus there are no integers x and y which are congruent to 3 $modulo\ 4$ that can be written as a sum of two squares. \square

Question 4

Let b > 1 be an integer, and $n = (d_k d_{k-1} ... d_1 d_0)_b$. Show that $(b-1)|n \Leftrightarrow d_0 + d_1 + d_2 + ... + d_k$.

Because $n = (d_k d_{k-1}...d_1 d_0)_b$ then n is equivalent to $n = d_k \times b^k + d_{k-1} \times b^{k-1} + ... + d_1 \times b^1 + d_0 \times b^0$. From this, we can see that

$$b \equiv 1 \pmod{b-1}$$

$$b^{k} \equiv 1 \pmod{b-1}$$

$$d_{k}b^{k} \equiv d_{k} \pmod{b-1}$$

$$d_{k-1}b^{k-1} \equiv d_{k-1} \pmod{b-1}$$

$$d_{1}b^{1} \equiv d_{1} \pmod{b-1}$$

$$d_{0}b^{0} \equiv d_{0} \pmod{b-1}$$

From this we can write n as $n = d_k \times b^k + d_{k-1} \times b^{k-1} + ... + d_1 \times b^1 + d_0 \times b^0 \equiv (d_k + d_{k-1} + d_1 + d_0) \pmod{b-1}$. Therefore (b-1)|n is equivalent to $d_0 + d_1 + d_2 + ... + d_k$. \square

Question 5

In this question we will give a proof that there are infinitely many primes that's similar to Euclid's proof. We'll do it in several steps. For a positive integer n, recall that n factorial is the integer n(n-1)(n-2)...1.

(a) Suppose $k \in \mathbb{N}$ is such that $2 \le k \le n$. Explain why the remainder when N = n! + 1 is divided by k equals 1

- (b) Explain why part (a) implies that N has a prime divisor greater that n.
- (c) Explain why part (b) implies that there is no largest prime number.
- (d) Explain why part (c) implies that there are infinitely many primes.

(a)
We can represent $N = n! + 1$ as $n! = n(n-1)(n-2)1$. Then $n!$ can be represented in terms of $n!$
$N-n(n-1)(n-2)1+1$. So, for every $k \in \mathbb{N}$, then $k n!$. Therefore $N \equiv 1 \pmod k$ for $1 \le k \le n$. \square
(b)

- Part (a) implies that, for every $k \in \mathbb{N}$, such that $1 \leq k \leq n$. No k can divide N. From this, no prime numbers from 1 to n can divide N, so either N has a prime divisor greater than n, or N is prime number, which then can not be divisible by any k, such that $1 \leq k \leq n$. \square
- (c) Suppose that n is the largest prime number. By part (b), implies that N=n!+1 has a prime divisor that is greater than n So, we get prime greater than n, for any $k \in \mathbb{Z}$ such that $1 \le k \le n$, which is a contradiction. There is no largest prime number because we always get a prime number that is greater than n. \square
- (d) It is determined by part (c) that there is no largest prime number, since for each prime number there exists a prime number that is larger. Therefore, this relation implies that there are infinitely many primes. \Box