

Redes de Datos-Arquitecturas de protocolos

Ph.D. Jhon Jairo Padilla Aguilar UPB Bucaramanga

Protocolo de Comunicaciones

El mensaje: Sintaxis

La forma de escribirse:

SINTAXIS

Los computadores son estrictos en la forma de escribir e interpretar los mensajes:

Es diferente "HOLA" de « "Hola"

Un computador usaría un mensaje "REQUEST" o algo similar.

El mensaje: El Significado

Todo mensaje tiene un significado:

Ejemplo:

HOLA es un saludo o un deseo de iniciar una comunicación

ADIOS es una despedida que expresa el deseo de terminar la comunicación

El mensaje: Temporización o secuencia

Si usted no recibe una confirmación de parte de su interlocutor en un tiempo prudente...se preocupa e insiste...

Los computadores actúan de manera similar...ponen un temporizador y esperan que se les confirme. Si no llega, envían nuevamente el mensaje....

Protocolos y arquitectura de protocolos

- Programas de comunicaciones complejos (monolítico vs. Por capas)
- Protocolo: Conjunto de reglas que gobiernan el intercambio de datos entre dos capas.
- Componentes de un protocolo: sintaxis, semántica, temporización.
- Arquitectura de protocolos

Protocolo de 3 capas

- Acceso a la red
- Transporte
- Aplicación

Tipos de direcciones

Encapsulamiento en PDU's

Operación de una arquitectura de protocolos

Uso de Protocolos estándares

(a) Without standards: 12 different protocols; 24 protocol implementations

(a) With standards: 1 protocol; 7 implementations

Normalizaciones

- Características de un estándar:
 - Asegura un gran mercado, reduce costos
 - Comunicación entre productos de diferentes fabricantes
 - Congelan la tecnología
 - Muchos estándares para la misma función

Organizaciones de normalización

- UIT-T (reemplazo del CCITT)
- ISO (International standards Organization)
- ANSI (American National Standards Institute)
- IEEE (Institute of Electrical and Electronic Engineers)
- IETF (Internet Engineering Task Force)
 Genera los RFCs
- IAB (Internet Architecture Board) Diseño, Ingeniería y gestión de Internet.

Modelo OSI

- OSI: Open Systems Interconnection
- Desarrollado por la ISO (International Standards Organization)
- Tiene 7 Capas:
 - Aplicación
 - Presentación
 - Sesión
 - Transporte
 - Red
 - Enlace de datos
 - Física

Capas del modelo OSI

Aplicación	Acceso al entorno OSI y proporciona servicios distribuidos
Presentación	Proporciona independencia en la representación de los datos
Sesión	Establece, gestiona y cierra las conexiones entre las aplicaciones
Transporte	Seguridad, transferencia entre los extremos, recuperación de errores y control de flujo
Red	Transmisión de los datos a través de las redes, crea, mantiene y cierra conexiones
Enlace de datos	Comunicación punto a punto entre el Host y el dispositivo de acceso a la red. Sincronización, control de errores y de flujo
Física	Transmisión sobre el medio físico. Características físicas de las señales.

Capa de Aplicación

La capa de Aplicación ofrece la interfaz a la red.

Capa de aplicación

Conexión de interfaz entre redes humanas y de datos **APLICACIONES SERVICIOS** 7 Aplicación 6 Presentación Regreso a las 5 5 Sesión 4 Transporte Nuestra compañía se fundó en 2001. 3 Red 2 Enlace de datos 1 Física

Capa de Presentación

- Representación de la información:
 - Voz o audio (wav, mp3,etc)
 - Imágenes (jpg, bmp,etc)
 - Video (avi, mpeg4, mov, etc)
 - Texto (txt, doc, etc)
 - órdenes

Capa de Sesión

Capa de transporte

Capa de Red

Capa Enlace de datos

- Actúa en la Conexión al siguiente equipo
- Conformación de tramas
- Detección y corrección de errores
- Control de acceso al medio

Capa física

Alcance de cada capa

El ambiente OSI

Encapsulamiento OSI

OSI como estructura de estandarización

Estándares específicos de las capas

Service Definition (Functional description for internal use) Addressing (Service Access Point) Layer N Protocol Specification (Precise syntax and semantics for interoperability)

Uso de un retransmisor

Arquitectura TCP/IP

- Desarrollada por DARPA (Defense Advanced Research Projects Agency) para su red de conmutación de paquetes
- Usada en Internet
- Tiene 5 capas independientes:
 - Aplicación
 - Transporte
 - Internet
 - Acceso a la red
 - Capa física

Capas de TCP/IP

- Física: Define la interfaz física entre el Host y la red (tipo de medio de tx, modulaciones, velocidades, etc)
- Acceso a la red: Intercambio de datos entre la red y el Host. Depende del tipo de red de acceso (LAN y WAN en sus diferentes tipos)
- Internet: Encaminamiento a través de las diferentes redes. Se implementa tanto en los Host como en los routers (interconecta dos redes)

Capas de TCP/IP

- Transporte: Se encarga de la entrega de los paquetes entre origen y destino y asegura su entrega confiable y en orden
- Aplicación: Se encarga de implementar las diferentes aplicaciones del usuario. Cada aplicación necesita un software diferente.

Modelo de la arquitectura de protocolos TCP/IP

Arquitectura de protocolos TCP/IP

	7 6 6 6 6 6 6		
Capa	a Nombre	Problema solucionado	
1	Física	Modulación, Transmisión por el medio, Corrección de errores en bits	
2. Capa de		Control de errores en los paquetes. Secuencia de paquetes. Primer Enlace entre dos equipos.	
Acce a la red	Acceso al medio (Medium Access Control-MAC)	Compartición del medio de transmisión (Ethernet, WLAN, celulares)	
3	Red (Internet)	Interconexión entre redes de acceso de diferentes tecnologías (WLAN, GPRS, Ethernet, Wimax)	
4	Transporte	Control de la secuencia de mensajes, Control de errores en la Internet, control de congestión (Protocolos TCP, UDP, RTCP), Gestión de la sesión.	
5	Aplicación Redes de Datos Jhon Jairo Pad	Aplicaciones de usuario (correo electrónico, transferencia de archivos, web, voz/IP, etc)	

Comparación OSI y TCP/IP

Conceptos de direccionamiento

Ubicación de la interfaz por sockets

Socket usado como interfaz con capas inferiores

Uso de sockets para comunicarse con otro Host

Identificador del socket

Dirección IP y Dirección MAC

ARP proxy permite que el router responda por el host remoto

Dirección IP y Dirección MAC

```
C:\WINDOWS\system32\cmd.exe
                                                                                 Configuración IP de Windows
  Nombre de host. . . . . . . : Solvetic-PC
 Sufijo DNS principal . . . . :
  Tipo de nodo. . . . . . . . : híbrido
  Enrutamiento IP habilitado. . . : no
  Proxy WINS habilitado . . . . : no
Adaptador de Ethernet Ethernet:
 Sufijo DNS específico para la conexión. . :
  Descripción . . . . . . . . . . . . . . . Realtek PCIe GbE Family Controller
  Dirección física.......: F4-4D-30-4D-3C-47
  DHCP habilitado . . . . . . . . . . . . . . . sí
  Configuración automática habilitada . . . : sí
  Vinculo: dirección IPv6 local. . . : fe80::9ca3:e22c:405e:9ae6%12(Preferido)
  Concesión obtenida. . . . . . . . . . : lunes, 17 de junio de 2019 8:40:03
 La concesión expira . . . . . . . . : lunes, 17 de junio de 2019 20:40:02
  Puerta de enlace predeterminada . . . . : 192.168.1.1
  Servidor DHCP . . . . . . . . . . . . . : 192.168.1.1
  NetBIOS sobre TCP/IP. . . . . . . . : habilitado
C:\Users\Solvetic>
```


Significado de la dirección IP y la dirección MAC

Modos de Direccionamiento

Table 2.1 Addressing Modes

Destination	Network Address	System Address	Port/SAP Address
Unicast	Individual	Individual	Individual
	Individual	Individual	Group
Multicast	Individual	All	Group
	All	All	Group
	Individual	Individual	All
Broadcast	Individual	All	All
	All	All	All

Uso de PDUs en TCP/IP

Algunos protocolos en la arquitectura TCP/IP

BGP = Border Gateway Protocol OSPF = Open Shortest Path First FTP = File Transfer Protocol RSVP = Resource ReSerVation Protocol

HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

IGMP = Internet Group Management Protocol

IP = Internet Protocol

TCP = Transmission Control Protocol

UDP = User Datagram Protocol

MIME = Multi-Purpose Internet Mail Extension

Ubicación protocolos en el modelo OSI

OSI Model	Protocols
Application Layer	DNS, DHCP, FTP, HTTPS, IMAP, LDAP, NTP, POP3, RTP, RTSP, SSH, SIP, SMTP, SNMP, Telnet, TFTP
Presentation Layer	JPEG, MIDI, MPEG, PICT, TIFF
Session Layer	NetBIOS, NFS, PAP, SCP, SQL, ZIP
Transport Layer	TCP, UDP
Network Layer	ICMP, IGMP, IPsec, IPv4, IPv6, IPX, RIP
Data Link Layer	ARP, ATM, CDP, FDDI, Frame Relay, HDLC, MPLS, PPP, STP, Token Ring
Physical Layer	Bluetooth, Ethernet, DSL, ISDN, 802,11 Wi-Fi