

# Performance Ratios and Measures

CFRM 422/522 (009)
Introduction to Trading Systems

### Lecture Reference

- Aldridge, Ch 6: Performance (reading assignment)
- Additional reading on performance measures, index models, and CAPM: Narang, Ch 9, Research (reading assignment)
- Additional References:
  - Clenow, Ch 4, for extra coverage of performance measures (will cover the remainder of the chapter in more detail later)
  - Bodie, Kane, Marcus
    - > Ch 8, Index Models
    - Ch 9, The Capital Asset Pricing Model
  - David Luenberger, Investment Science (1E)

# A good quantitative model...

# Produces high, precise returns

- Produces positive returns
- With little variation in returns
  - ie, few negative returns
- Results in a high "Sharpe ratio:"

Sharpe Ratio = 
$$\frac{E[r] - r_f}{\sigma[r]}$$

 $r_f$  = borrowing rate used to finance trading

#### **Return distributions**



Trade, Daily or Monthly Returns

# **Basic Performance Measures**

- 1. Return
- 2. Volatility
- 3. Maximum drawdown
- 4. Win ratio
- 5. Avg gain/loss
- 6. Correlation
- 7. Alpha
- 8. Beta
- 9. Skewness
- 10. Kurtosis

| Monthly performance | ABLE Gross<br>Return | ABLE Return Net<br>of fees and<br>expenses* | S&P Return |
|---------------------|----------------------|---------------------------------------------|------------|
| Aug 23-31 2007      | 0.93%                | 0.34%                                       | 0.74%      |
| Sep 2007            | 1.31%                | 0.91%                                       | 3.61%      |
| Oct 2007            | 3.58%                | 2.73%                                       | 1.56%      |
| Nov 2007            | 4.36%                | 3.35%                                       | -4.22%     |
| Dec 2007            | 0.57%                | 0.32%                                       | -0.75%     |
| Jan 2008            | 2.05                 |                                             |            |

| Total: 12                                                 |  | Daily Metrics Relative to   | Jai 300. |
|-----------------------------------------------------------|--|-----------------------------|----------|
| *Based on 2% annual mana<br>(performance fee is calculate |  | Correlation:                | -3.18%   |
|                                                           |  | Beta:                       | -0.0087  |
|                                                           |  | Alpha (ovenes rick-adjusted |          |

|                  | ABLE   | S&P    |
|------------------|--------|--------|
| Daily Statistics | Return | Return |
| Daily Avg        | 0.09%  | -0.05% |
| Daily Stdev      | 0.35%  | 1.27%  |
|                  |        |        |
| Maximum          | 1.49%  | 2.92%  |
| 75% Quartile     | 0.20%  | 0.79%  |
| Median           | 0.00%  | 0.00%  |
| 25% Quartile     | -0.02% | -0.69% |
| Minimum          | -0.89% | -3.20% |

0.09%

# Performance Measures: Return

- Return can be expressed:
  - In dollar value
  - Most often, as a percentage
    - Allows easy cross-strategy and cross-asset comparison of performance, independent of the starting price

$$R_{t_2} = \frac{P_{t_2}}{P_{t_1}} - 1$$

• Log returns are also common

$$R_{t_2}^* = \log \frac{P_{t_2}}{P_{t_1}}$$

Illustration



# Why use log returns?

- Often want to know the cumulative return (over a period partitioned into n equal intervals, eg 1 day):
- Let  $P_i$  = security price at time i
- Let  $r_i = return\ over[i-1,\ i)$ , then  $1 + r_i = \frac{P_i}{P_{i-1}}$
- Then, the cumulative return r is implicitly defined by
- $1+r = (1+r_1)(1+r_2)...(1+r_n)$ .
- But  $r \cong log(1+r)$ , so
- $r \cong log\left\{\left(\frac{P_1}{P_0}\right)\left(\frac{P_2}{P_1}\right)...\left(\frac{P_n}{P_{n-1}}\right)\right\} = \log(P_n) \log(P_0)$
- For r > 0.20, the approximation breaks down
- If assuming lognormal returns (eg for option pricing theory), the result is taken as the continuous cumulative rate of return over [0, n); viz,  $FV = e^{rt_n}$

# Performance Measures: Volatility

- Measures how much the return moves up and down
- Is often taken to proxy risk
- Intuitively:
  - Low volatility



High volatility



- At least a dozen measures of volatility exist, each measured per standardized period (round-trip trade, day, month)
- Standard deviation
  - Simple (most popular)
  - Weighted (later observations count more than earlier observations)

### <u>Drawdown</u>

- Drawdown is a measure of historical and potential loss
- Maximum loss relative to the highest previous value or "watermark"
- Managers typically receive performance fees only after exceeding the highest watermark
- Maximum drawdown helps explain potential downside
- Key measure of portfolio or trading strategy performance
- Example 1



#### Example 2



# Drawdown

- Example using data from the XLU (utilities ETF)
- Using the quantstrat R package



# Per-Trade Statistics (not in Alrdridge)

 Maximum adverse excursion (MAE) is the largest loss that a trade suffers while it is open

 Maximum favorable excursion (MFE) is the peak profit that a trade achieves while it is open

• These, and more, will be covered in Tomasini & Jaekle

# Performance Measures: Win Ratio

 What portion of the trades/days/months ended profitably?

$$WinRatio = \frac{\#Periods|_{Gain>0}}{Total \#Periods}$$

- Win ratio helps
  - compare "signals" of strategies
  - monitor run-time performance (is runtime win ratio consistent with prior performance?)

#### Example:

Monthly day-by-day win ratio of a strategy



A decline in the win ratio may indicate that the strategy is reaching capacity

# Performance Measures: Average Gain/Loss

- Measures related to drawdown:
  - When the strategy gains, what is the average gain?
  - When the strategy loses, what is the average loss?
- Best used together with win ratio:
  - High win ratio may tolerate lower avg gain
  - Lower win ratio requires higher avg gain

Basic check of reported statistics:

$$E[R] \ge (WinRatio) * E[Gain] + (1 - WinRatio) * E[Loss]$$

|      |                             | High<br><i>WinRatio</i> | Low<br><i>WinRatio</i> |
|------|-----------------------------|-------------------------|------------------------|
| High | $\frac{E[Gain]}{E[ Loss ]}$ | <b>√</b>                | High<br>drawdowns      |
| Low  | $\frac{E[Gain]}{E[ Loss ]}$ | High<br>volatility      | ×                      |

# Performance Measures: Correlation

- Measures co-movement of strategy returns with those of another strategy or security
- Low correlation => high diversification
- Simple correlation:

$$\rho_{1,2} = \sum_{t} (R_{1,t} - E[R_1])(R_{2,t} - E[R_2])$$

Asymmetric correlation can be more informative

$$\rho_{1,2} \mid_{R_1>0} = \sum_{t} (R_{1,t} - E[R_1])(R_{2,t} - E[R_2]) \mid_{R_1>0}$$

$$\rho_{1,2} \mid_{R_1<0} = \sum_{t} (R_{1,t} - E[R_1])(R_{2,t} - E[R_2]) \mid_{R_1<0}$$

- Example:
  - Two ETFs: SPY (SPDR S&P 500) and GLD
  - Simple correlation (2010-2011 daily return data):
    - > 5.6%
  - Asymmetric correlation:
    - On days when SPY > 0: Corr[SPY, GLD] = 4.3%
    - ➤ On days when SPY < 0: Corr[SPY, GLD] = -6.6%

GLD has been a good diversifier of SPY: when SPY < 0, GLD can be > 0

# Performance Measures: Skewness and Kurtosis

- Skewness describes tendency to skew to positive or negative side
  - Zero-skewness:



Positive skewness:



• Negative skewness:



 Kurtosis measures the likelihood of extreme occurrences

"Normal" kurtosis



High kurtosis



Low kurtosis



### <u>Drawdown</u>

- Drawdown is a measure of historical and potential loss
- Maximum loss relative to the highest previous value or "watermark"
- Managers typically receive performance fees only after exceeding the highest watermark
- Maximum drawdown helps explain potential downside
- Key measure of portfolio or trading strategy performance
- Example 1



#### Example 2



# Drawdown

- Example using data from the XLU (utilities ETF)
- Using the quantstrat R package



### Ratios

- CAPM-based Ratios
  - Sharpe Ratio
  - Treynor Ratio
  - Jensen's Alpha
- VaR Ratios

## Capital Asset Pricing Model (CAPM)

- The basic assumptions of the capital asset pricing model are as follows:
  - Market prices are in equilibrium
  - Everyone has the same forecasts of expected return and risks (everyone has access to the same information)
  - All investors choose an efficient portfolio according to their risk
  - Preferences so all portfolios are a combination of the *tangency portfolio* (to be discussed) and the risk-free asset
  - The risk premium for a single security is only a function of its contribution to the risk of the tangency portfolio

Guy Yollin (2016), Ruppert & Matteson

## Capital Asset Pricing Model (CAPM)

- Markowitz => Everyone will optimally hold a weighted combination of a tangency portfolio and the risk-free asset
- CAPM assumptions => everyone has the same information
- Conclusions:
  - The one fund the tangency portfolio will be the same
  - This one fund must be the market portfolio
- The efficient frontier and its interior contain all possible portfolios in the entire market
- The market portfolio contains shares of every stock in the market in proportion to that stock's representation ie capitalization in the market
  - S&P 500
  - Wilshire 5000 ("Total Market Index")





Luenberger (1E), p 174

Figure from Bodie/Kane/Marcus (10E)

# Capital Asset Pricing Model (CAPM)

- Let p represent a portfolio comprised of securities in the overall market
  - Could contain multiple equities
  - Or, a single stock
- Its return is  $r_p$ , with weighted mean return  $\mu_p$  and variance  $\sigma_p^2$
- Let  $r_M$ ,  $\mu_M$  and  $\sigma_M^2$  represent the same for the market tangency portfolio
- These are all scalar values
- The *central result* of the CAPM is that in equilibrium the riskiness of a portfolio in the market can be measured by a linear relationship between the expected return of the portfolio and the expected return of the market:

$$\mathbb{E}(r_p) = r_f + \beta(\mathbb{E}(r_M) - r_f)$$

where

$$\beta = \frac{Cov(r_p, r_M)}{\sigma_M^2}$$

## Alpha

"Empirical" CAPM =>

$$r_i = r_f + \beta_i (r_M - r_f) + \varepsilon_i$$

where  $\varepsilon_i$  is an error term with  $\mathbb{E}(\varepsilon_i)=0$  and variance  $\sigma_i^2$  for security i in the market (M)

• Let  $R_i$  and  $R_M$  represent the excess returns above the risk-free rate; then,

$$R_i = \beta_i R_M + \varepsilon_i$$

• Empirical research has tested whether the CAPM is valid by testing regressions of the form

$$R_i = \alpha_i + \beta_i R_M + \varepsilon_i$$

- If the CAPM holds, then we can reject the hypothesis that  $\alpha_i \neq 0$
- On the flip side, in the CAPM world, if  $\alpha_i \neq 0$ , then there is an arbitrage opportunity

# Alpha

$$R_i = \alpha_i + \beta_i R_M + \varepsilon_i$$

- In the CAPM world, if  $\alpha_i \neq 0$ , then there is an arbitrage opportunity
  - (Temporary) opportunity to make a profit risk-free
  - If  $\alpha_i > 0$ , buy the security; price will increase until  $R_i$  reverts lower, and  $\alpha_i$  decreases back to 0
  - If  $\alpha_i < 0$ , sell the security; price will decrease until  $R_i$  reverts higher, and  $\alpha_i$  increases back to 0
- Alpha is a performance metric in trading strategies
- Can apply outside of CAPM assumptions
- High and statistically significant Alpha is desirable

# 1966









## Sharpe Ratio (1966)

 The Sharpe Ratio of a security i measures its excess return, adjusted for its risk:

$$\frac{\mathbb{E}(r_i) - r_f}{\sigma_i}$$

where  $\mathbb{E}(r_M)$  and  $\sigma_i$  are substituted by their statistical estimators

- Compare, with  $r_f = 1\%$ 
  - Security 1 has an annual mean return of 46% (great!), but volatility 50%
  - Security 2 has an annual mean return of 11% (snore...), but volatility 5%
  - SR(1) = 0.9
  - SR(2) = 2.0
  - Risk-adjusted return of Security 2 is over twice that of Security 1
- Note that if  $r_i=r_M$ , the slope of the CML is the same as the Sharpe Ratio for the tangency portfolio in CAPM

# **Treynor Ratio**

$$\frac{\mathbb{E}(r_i) - r_f}{\beta_i}$$

- Like the Sharpe Ratio, this gives excess return per unit of risk
- But it uses systematic risk instead of total risk
- Sometimes preferred to the Sharpe Ratio

### Jensen's Alpha

$$\mathbb{E}(r_i) - r_f - \beta_i \big( r_M - r_f \big)$$

 The average return on the portfolio over and above that predicted by the CAPM, given the portfolio's beta and the average market return

Rearrange the regression model from before

$$r_i - r_f = \beta_i (r_M - r_f) + \varepsilon_i$$

And take expectations

#### **VaR Ratios**

- VaR Ratios
  - Excess return on value-at-risk
  - Modified Sharpe ratio

- Value at-Risk (VaR) describes the possible loss of an investment, which is not exceeded with a given probability of  $1-\alpha$  in a certain period.
- For normally-distributed returns,

$$VaR_i = -(E[r_i] + z_\alpha \sigma_i)$$

where  $z_{\alpha}$  is the  $\alpha$ -quantile of the standard normal distribution.

## Excess Return on VaR

• Dowd (2000)

$$\frac{\mathbb{E}(r_i) - r_f}{VaR_i}$$

- $VaR_i$  = Value-at-Risk for a single security (or portfolio)
- Not suitable for parametric VaR when returns are not assumed to fit a normal distribution

## Modified Sharpe ratio

Gregoriou and Gueyie (2003)

$$Modified Sharpe = \frac{E[r] - r_f}{MVaR_i}$$

Cornish-Fisher expansion is calculated as follows:

$$MVaR_{i} = -(E[r_{i}] + \sigma_{i}(z_{\alpha} + (z_{\alpha}^{2} - 1)S_{i}/6 + (z_{\alpha}^{3} - 3z_{\alpha})EK_{i}/24 - (2z_{\alpha}^{3} - 5z_{\alpha})S_{i}^{2}/36))$$

- where  $S_i$  denotes skewness and  $EK_i$  the excess kurtosis for security i (Favre and Galeano, 2002).
- Suitable for non-normal returns.

# Performance Attribution

 Consider Capital Asset Pricing Model (CAPM) again.

$$R_{i,t} = \alpha_i + \beta_i R_{M,t} + \varepsilon_{i,t}$$

- If Beta is high and Alpha is low, it may be cheaper and more effective to invest into RM instead of Ri
  - Lower transaction costs
  - Often lower drawdown risk
  - Lower liquidation risk

- Example:
  - A trading strategy trades at least once a week
  - Relative to the SPDR S&P 500 ETF (SPY), the strategy has
    - ➤ Alpha of -0.01 (-1%)
    - > Beta of 0.99 (99%)
  - It is cheaper and more effective to buy and hold SPDR S&P 500 ETF

[End]