# Efficient Frequent Pattern Mining Algorithm for Many Task Environments

**Domain: Data Mining** 

Team:

Indu Sanka(21910104041)

Kiruppa Kalyanaraman(21910104055)

**Guide:** 

Dr. V Vidhya

**Professor** 

**Department of Computer Science and Engineering** 

#### **Abstract**

- Mining frequent patterns complex problem in data mining
- Research FP using parallel and distributed techniques
- Mostly focused single-task over multi-task environments
- Algorithms proposed can be used for different sized datasets
- Example: Inventory

#### Introduction

- FP Mining searching for an FP more than a specified threshold
- FP Mining has 2 kinds of approach: Apriori-like Approach and FP Growth like approach
- Disadvantages of Apriori-like approach cost of memory, scanning and scalability

## Introduction (cont..)

- FP Growth uses FP Trees in which transactions are compressed
- Advantage better scalability and lesser execution time
- Large FP tree is a combination of 1 or more cause: data characteristics, user characteristics and mining parameters
- Large FP tree needs large DB, thus increase in computation time and memory

#### **Current Scenario**

- Multiprocessor architectures
- Tree projection technique
- 3<sup>rd</sup> method was distributing the DB across processors
- All have many disadvantages
- Thus proposed new method

## Literature Survey

| PAPER                                                            | PUBLISHED BY                                                                        | APPROACH                                                                                                                                                                                                          | LIMITATIONS                                                                                     |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Frequent Pattern Mining on Message Passing Multiprocessor System | A. Javed, A. Khokhar(2004), Distributed and Parallel Database, vol. 16, pp. 321-334 | <ul> <li>Presents a scalable parallel algorithm for mining FP.</li> <li>Technique based on FP-growth algorithm.</li> <li>Frequent item list is partitioned aver processors for minimum common overhead</li> </ul> | <ul> <li>Machines were found to be expensive.</li> <li>Cannot preserve data privacy.</li> </ul> |

## Literature Survey (cont..)

| PAPER                                               | PUBLISHED BY                                                                                                     | APPROACH                                                                                                                           | LIMITATIONS                                                                |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Scalable Parallel Data Mining for Association Rules | E.H.S. Han, G. Karypis, V. Kumar(2000), IEEE Transaction on Knowledge and Data Engineering, vol. 12, pp. 352-377 | -Computing association rules based on Apriori algorithmThe algorithm partitions candidate set among processors to build hash tree. | -Approach duplicates the database to nodes. Thus, risking leakage of data. |

## Literature Survey (cont..)

| PAPER                                                                                            | PUBLISHED BY                                                                              | APPROACH                                                                                    | LIMITATIONS                                                                                     |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| A novel parallel algorithm for frequent pattern mining with privacy preserved in cloud computing | K.W. Lin, D.J. Deng(2010), International Journal of Ad Hoc and Ubiquitous Computing, vol. | -Proposed a data mining algorithm CARM to discover frequent pattern in cloudData privacy is | -Mining time for each conditional pattern base is differentThe required time cannot be known in |
| environment                                                                                      | 6,pp. 205-215                                                                             | preserved.                                                                                  | advance.                                                                                        |

## Block Diagram of Proposed System



#### Modules

- Frequent Item Set Generation
- 1. Uses support count to generate frequent item sets
- 2. Used as input for pattern mining
- 3. I/p transaction used retail
- 4. FPMining Algorithm frequent itemset generation
- 5. Constructs FP Trees





# Frequent ItemSet Generation Example

| TID | Items         |  |
|-----|---------------|--|
| 1   | E, A, D, B    |  |
| 2   | D, A, C, E, B |  |
| 3   | C, A, B. E    |  |
| 4   | B, A, D       |  |
| 5   | D             |  |
| 6   | D,B           |  |
| 7   | A,D,E         |  |
| 8   | B,C           |  |

| Table 1 | - Snapsho | t of the | Database |
|---------|-----------|----------|----------|

| Item | Frequency |   |
|------|-----------|---|
| Α    | 5         | 3 |
| В    | 6         | 1 |
| C    | 3         | 5 |
| D    | 6         | 2 |
| E    | 4         | 1 |

Table2 -Frequency of Occurrence

| TID | Items         | Ordered Items |
|-----|---------------|---------------|
| 1   | E, A, D, B    | B,D,A,E       |
| 2   | D, A, C, E, B | B,D,A,E,C     |
| 3   | C, A, B. E    | B,A,E,C       |
| 4   | B, A, D       | B,D,A         |
| 5   | D             | D             |
| 6   | D,B           | B,D           |
| 7   | A,D,E         | D,A,E         |
| 8   | B,C           | B,C           |

Table 3 - New version of the Table 1

## Frequent ItemSet Generation



## Frequent ItemSet Generation



Figure 4- Connect D to null node



Figure 5 - Final FP tree

#### Modules cont...

- **EWS** (Equal Working Set)
- Partitions items in the HT
- 2. Sends items to the node
- 3. Generates Frequent Patterns from items
- 4. Frequent Patterns collected from individual node
- 5. Combined to form final Frequent Pattern

#### Modules cont...

#### EWS Algorithm:

```
Input: Transaction database DB, min. Supp threshold $, computing nodes C

Output: Complete set of frequent patterns FP

HT=getHeaderTable(DB,$)

FPT=constructFPtree(DB,$)

L1=EqualPartitionHT(HT,|C|)

FOREACH L1; in L1

n=getAvailableNode(C)

FP=FPUFPM(L1;,FPT,n)

ENDFOR

RETURN FP
```

### Screenshots

```
The Edit Format View Help

5142
41352
3125
214
4
42
23
```

Sample retail shop transactions

## Screenshots (cont..)



Frequent Patterns generated using EWS algorithm

## Screenshots (cont..)

```
outputő - Notepad
File Edit Format View Help
B #SUP: 3
3 4 #SUP: 1
234#SUP: 1
3.5 #SUP: 2
3 4 5 #SUP: 1
2345#SUP:1
235#SUP:2
135#SUP: 2
1235#SUP:2
12345#SUP:1
1345#SUP:1
13 #SUP: 2
123 #SUP: 2
1234#SUP:1
134#SUP: 1
23 #SUP: 3
5 #SUP: 4
4.5 #SUP: 3
2.4.5 #SUP: 2
2.5 #SUP: 3
1.5 #SUP: 4
145#SUP:3
1245#SUP:2
125#SUP:3
1 #SUP: 5
14#SUP: 4
124#SUP:3
12#SUP: 4
4 #SUP: 6
24#SUP: 4
2 #SUP: 6
```

Frequent patterns generated

# Analysis

| Algorithm | Data set size | Execution time (in millisec) |
|-----------|---------------|------------------------------|
| Apriori   | 8             | 95                           |
| FP-growth | 8             | 78                           |
| EWS       | 8             | 16                           |
| Apriori   | 88162         | 1050                         |
| FP-growth | 88162         | 920                          |
| EWS       | 88162         | 795                          |

#### Conclusion

- Mining FP important part of Data Mining
- Research still going on for optimization
- To balance workload our proposed system
- Open website to upload datasets, find frequent patterns - future extension

#### References

- Kawuu W. Lin, Yu-Chin Lo(2013),"Efficient algorithms for frequent pattern mining in many-task computing environments", Elsevier Knowledge-Based Systems, vol. 49,pp. 10-21.
- E.H.S. Han, G. Karypis, V. Kumar(2000),"Scalable parallel data mining for association rules", IEEE Transaction on Knowledge and Data Engineering, vol. 12, pp. 352-377.
- A. Javed, A. Khokhar(2004),"Frequent pattern mining on message passing multiprocessor systems", Distributed and Parallel Database, vol. 16,pp. 321-334.
- K.W. Lin, D.J. Deng(2010), "A novel parallel algorithm for frequent pattern mining with privacy preserved in cloud computing environments", International Journal of Ad Hoc and Ubiquitous Computing, vol. 6,pp. 205-215.
- R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499.