

CostAware论文汇报

刘肇泽

控制与计算机工程学院

2023年10月16日

目录

- 1 问题背景
- ② 数学模型 任务模型 虚拟机模型 任务在虚拟机中的运行过程
- 3 Deep Q-Learning DQN结构 DQN训练方法
- 4 Baseline

- 1 问题背景
- ② 数学模型
- Oeep Q-Learning
- 4 Baseline

云服务器任务调度模型

任务调度流程:

- 1 用户提交任务
- 任务调度器根据任务属性和虚拟机状态为任务分配虚拟机

图: 云服务器任务调度模型

等此更加大学 NORTH CHINA ELECTRIC POWER UNIVERSITY

- ① 问题背景
- 2 数学模型
- Oeep Q-Learning
- 4 Baseline

学业更力大学 NORTH CHINA ELECTRIC POWER UNIVERSITY

- 1 问题背景
- ② 数学模型 任务模型 虚拟机模型 任务在虚拟机中的运行过程
- 3 Deep Q-Learning
- 4 Baseline

任务属性

对于用户提交的每个任务都具有如下属性:

- *ID*: 任务编号
- reqCom: 总计算量
- T_{submit} : 提交时刻
- QoS: 响应时间指标
- *Type*: 任务类型
 - 计算敏感型
 - I/O敏感型

假设单位时间内用户平均提交的任务数量为 λ

假设单位时间内用户平均提交的任务数量为 λ ,那么在单位时间内均匀观察 n 次

假设单位时间内用户平均提交的任务数量为 λ ,那么在单位时间内均匀观察 n 次 ,每次观察时用户提交任务的概率为 $p=\frac{\lambda}{n}$ 。

假设单位时间内用户平均提交的任务数量为 λ ,那么在单位时间内均匀观察 n 次 ,每次观察时用户提交任务的概率为 $p=\frac{\lambda}{n}$ 。

单位时间内实际提交的任务数量 X 服从二项分布 $X \sim B(n,p)$:

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}$$

当观察次数 $n \to \infty$ 时,表示在单位时间内持续观察用户提交任务的过程:

$$\begin{split} P\left\{X=k\right\} &= \lim_{n \to \infty} C_n^k \, p^k (1-p)^{n-k} \\ &= \lim_{n \to \infty} \frac{n(n-1) \dots (n-(k-1))}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \\ &= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1) \dots (n-(k-1))}{n^k} \left(1 - \frac{\lambda}{n}\right)^{-k} \underbrace{\left(1 - \frac{\lambda}{n}\right)^n}_{k} \\ &= \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{k!} \end{split}$$

当观察次数 $n \to \infty$ 时,表示在单位时间内持续观察用户提交任务的过程:

$$P\left\{X=k\right\} = \lim_{n \to \infty} C_n^k p^k (1-p)^{n-k}$$

$$= \lim_{n \to \infty} \frac{n(n-1)\dots(n-(k-1))}{k!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1)\dots(n-(k-1))}{n^k} \left(1-\frac{\lambda}{n}\right)^{-k} \frac{\left(1-\frac{\lambda}{n}\right)^n}{n^k}$$

$$= \frac{\lambda^k}{k!} e^{-\lambda}$$

此时单位时间内实际提交的任务数量 X 服从泊松分布 $X \sim P(\lambda)$ 。

记 [0,t] 时间段内用户提交的任务数量为 N(t) , (s,t] 时间段内用户提交的任务数量为 N(s,t]=N(t)-N(s) 。

初始时刻没有用户提交任务

记 [0,t] 时间段内用户提交的任务数量为 N(t) , (s,t] 时间段内用户提交的任务数量为 N(s,t]=N(t)-N(s) 。

• N(0) = 0: 初始时刻没有用户提交任务

记 [0,t] 时间段内用户提交的任务数量为 N(t) , (s,t] 时间段内用户提交的任务数量为 N(s,t]=N(t)-N(s) 。

• N(0) = 0: 初始时刻没有用户提交任务 在互不相交的时间段内,用户提交任务的数量相互独立

- N(0) = 0: 初始时刻没有用户提交任务
- 独立增量性: 在互不相交的时间段内, 用户提交任务的数量相互独立

- N(0) = 0: 初始时刻没有用户提交任务
- 独立增量性:在互不相交的时间段内,用户提交任务的数量相互独立 在长度相等的时间段 t 内,任务提交数量服从相同的概率分布 $P(\lambda t)$

- N(0) = 0: 初始时刻没有用户提交任务
- 独立增量性: 在互不相交的时间段内, 用户提交任务的数量相互独立
- 平稳增量性:在长度相等的时间段 t 内,任务提交数量服从相同的概率分布 $P(\lambda t)$

记 [0,t] 时间段内用户提交的任务数量为 N(t) , (s,t] 时间段内用户提交的任务数量为 N(s,t]=N(t)-N(s) 。

泊松过程

- N(0) = 0: 初始时刻没有用户提交任务
- 独立增量性: 在互不相交的时间段内, 用户提交任务的数量相互独立
- 平稳增量性:在长度相等的时间段 t 内,任务提交数量服从相同的概率分布 $P(\lambda t)$

记 [0,t] 时间段内用户提交的任务数量为 N(t) , (s,t] 时间段内用户提交的任务数量为 N(s,t]=N(t)-N(s) 。

泊松过程

- N(0) = 0: 初始时刻没有用户提交任务
- 独立增量性: 在互不相交的时间段内, 用户提交任务的数量相互独立
- 平稳增量性:在长度相等的时间段 t 内,任务提交数量服从相同的概率分布 $P(\lambda t)$

因此 $\forall s, N(s, s+t] \sim P(\lambda t)$:

$$P\{N(s, s+t] = k\} = \frac{(\lambda t)^k}{k!}e^{-\lambda t}$$

设 W_n 为第 n 个任务提交的时刻

设 W_n 为第 n 个任务提交的时刻 , T_n 为第 n-1 个任务与第 n 个任务提交的时间间隔

设 W_n 为第 n 个任务提交的时刻, T_n 为第 n-1 个任务与第 n 个任务提交的时间间隔,则 $W_n = \sum_{i=1}^n T_i$ 。

设 W_n 为第 n 个任务提交的时刻, T_n 为第 n-1 个任务与第 n 个任务提交的时间间隔,则 $W_n = \sum_{i=1}^n T_i$ 。

为了得到用户提交任务的时刻 T_{submit} ,只需要明确 T_n 服从的分布。

T₁ 服从的分布

求 T_1 的分布函数:

$$F_{T_1}(t) = P\{T_1 \le t\} = 1 - P\{T_1 > t\} = 1 - P\{N(0, t] = 0\} = 1 - e^{-\lambda t}$$

 $f_{T_1}(t) = F'_{T_1}(t) = \lambda e^{-\lambda t}$

 T_1 服从的分布

求 T_1 的分布函数:

$$F_{T_1}(t) = P\{T_1 \le t\} = 1 - P\{T_1 > t\} = 1 - P\{N(0, t] = 0\} = 1 - e^{-\lambda t}$$

 $f_{T_1}(t) = F'_{T_1}(t) = \lambda e^{-\lambda t}$

 T_1 服从指数分布: $T_1 \sim E(\lambda)$ 。

 T_2 服从的分布

求 T_2 的分布函数(假设在任意的 s 时刻,第一个任务已经提交):

$$egin{aligned} F_{T_2}(t) &= P\left\{T_2 \leqslant t
ight\} = 1 - P\left\{N(s,s+t] = 0 \middle| N(0,s] = 1
ight\} \ &= 1 - P\left\{N(s,s+t] = 0
ight\} \quad ext{(0,s]5(s,s+t] 两时间段互不相交,相互独立} \ &= 1 - e^{-\lambda t} \end{aligned}$$

T₂ 服从的分布

求 T_2 的分布函数 (假设在任意的 s 时刻,第一个任务已经提交):

根据无记忆性, T_2, \ldots, T_n 均服从参数为 λ 的指数分布。

任务提交时间序列和总计算量

因为 $T_n \sim E(\lambda)$,所以代码中对参数为 λ 的指数分布进行采样即可得到任务提交的时间间隔。将时间间隔累加,即可得到任务提交的时间序列,对应 T_{submit} 。

```
# 生成时间间隔
intervalT = stats.expon.rvs(scale=1 / lamda, size=self.jobNum)
# 对时间间隔累加得到提交时间
self.arrival_Times = np.around(intervalT.cumsum(), decimals=3)
```

总计算量 regCom 通过正态分布采样。

```
self.jobsMI = np.random.normal(self.jobMI, self.jobMI_std, self.jobNum)
self.jobsMI = self.jobsMI.astype(int)
```

学出史力大学 NORTH CHINA ELECTRIC POWER UNIVERSITY

- 1 问题背景
- ② 数学模型 任务模型 虚拟机模型 任务在虚拟机中的运行过程
- 3 Deep Q-Learning
- 4 Baseline

虚拟机属性

每个虚拟机具有如下属性:

vID: 虚拟机编号

• vCom: 单核计算速度

vAcc: 多核加速系数

• T_{idle} : 虚拟机处理完最后一个任务的时刻

vType: 虚拟机类型

• 高性能计算

• 高性能I/O

• vSC: 虚拟机启动开销

• vEC: 虚拟机运行开销

学出电力大学 NORTH CHINA ELECTRIC POWER UNIVERSITY

- 1 问题背景
- ② 数学模型 任务模型 虚拟机模型 任务在虚拟机中的运行过程
- 3 Deep Q-Learning
- 4 Baseline

任务在虚拟机中的运行过程

当一个任务在 T_{submit} 时刻提交给一个虚拟机时,可以得到该任务的等待时间:

$$T_{wait} = \max\{T_{idle} - T_{submit}, 0\}$$

任务在虚拟机中的运行过程

当一个任务在 T_{submit} 时刻提交给一个虚拟机时,可以得到该任务的等待时间:

$$T_{wait} = \max\{T_{idle} - T_{submit}, 0\}$$

当虚拟机开始执行任务时,任务的执行时间:

$$T_{exe} = \frac{Type \oplus vType + 1}{2} \cdot \frac{reqCom}{vCom \cdot vAcc}$$

运行结果指标

- 任务响应时间: $T_{rep} = T_{wait} + T_{exe}$
- 是否满足 QoS 要求: $success = \begin{cases} 1, & T_{rep} \leqslant QoS \\ 0, & \text{otherwise} \end{cases}$
- 虚拟机费用: $cost = vSC + vEC \cdot T_{exe}$

华北电力大学

- 1 问题背景
- 2 数学模型
- 3 Deep Q-Learning
- 4 Baseline

等此更力大学 NORTH CHINA ELECTRIC POWER UNIVERSITY

- 1 问题背景
- ② 数学模型
- 3 Deep Q-Learning DQN结构 DQN训练方法
- 4 Baseline

Deep Q-Network 结构

代码默认存在 10 台虚拟机,输入状态 s_t 为当前提交任务的类型和 10 台虚拟机的 T_{idle} :

$$s_t = \left[Type, T_{idle}^{(1)}, T_{idle}^{(2)}, \dots, T_{idle}^{(10)} \right]^T$$

DQN输出在当前状态 s_t 下,对分配到每台虚拟机的总共 10 个动作的评分。

其中两层全连接层的参数: $W_1 \in \mathbb{R}^{11 \times 20}, b_1 \in \mathbb{R}^{20}, W_2 \in \mathbb{R}^{20 \times 10}, b_2 \in \mathbb{R}^{10}$ 。

华北电力大学

- 1 问题背景
- 2 数学模型
- 3 Deep Q-Learning DQN训练方法

奖励计算函数:
$$reward = (1 + e^{\xi - cost}) \cdot \frac{T_{exe}}{T_{ren}}$$
, 其中 ξ 为超参数。

奖励计算函数:
$$reward = (1 + e^{\xi - cost}) \cdot \frac{T_{exe}}{T_{rep}}$$
, 其中 ξ 为超参数。

• ϵ -greedy: 以 ϵ 的概率随机决策,以 $1-\epsilon$ 的概率使用DQN决策。随机决策可以探索DQN没有学到的状态,每次学习后减小 ϵ 。

奖励计算函数: $reward = (1 + e^{\xi - cost}) \cdot \frac{T_{exe}}{T_{rep}}$, 其中 ξ 为超参数。

- ϵ -greedy: 以 ϵ 的概率随机决策,以 $1-\epsilon$ 的概率使用DQN决策。随机决策可以探索DQN没有学到的状态,每次学习后减小 ϵ 。
- experience replay: 将过去的决策轨迹 (s_t, a_t, r_t, s_{t+1}) 存入replay memory中。DQN每次学习时从replay memory中随机选取一组样本用来更新参数,以消除学习连续样本所带来的相关性。

奖励计算函数: $reward = (1 + e^{\xi - cost}) \cdot \frac{T_{exe}}{T_{rep}}$, 其中 ξ 为超参数。

- ϵ -greedy: 以 ϵ 的概率随机决策,以 $1-\epsilon$ 的概率使用DQN决策。随机决策可以探索DQN没有学到的状态,每次学习后减小 ϵ 。
- experience replay: 将过去的决策轨迹 (s_t,a_t,r_t,s_{t+1}) 存入replay memory中。DQN每次学习时从replay memory中随机选取一组样本用来更新参数,以消除学习连续样本所带来的相关性。
- fixed Q-target: DQN训练时需要将 s_t 和 s_{t+1} 都输入网络中。如果仅使用一个网络,更新网络参数的操作会使 s_t 和 s_{t+1} 的输出向相同的方向移动。通过引入参数相对固定的 target 网络用来接收 s_{t+1} 的输入后,固定了参数更新的目标,加快了收敛速度。

Deep Q-Network 学习流程

确定环境参数和DRL的超参数(代码默认值):

- 任务:
 - 任务提交速度 $\lambda = 20$
 - 任务类型比例 CPU: I/O = 9:1
 - 任务平均总计算量 $\mu = 200$
 - 任务总计算量的标准差 $\sigma=20$
 - 任务提交总数 8000
 - 响应时间指标 QoS = 0.25
- 虚拟机:
 - 虚拟机类型(5台计算型,5台I/O型)[0,0,0,0,0,1,1,1,1,1]
 - 虚拟机费用 cost = [1, 1, 2, 2, 4, 1, 1, 2, 2, 4]
 - 单核计算速度 vCom = 1000
 - 多核加速系数 vAcc = [1, 1, 1.1, 1.1, 1.2, 1, 1, 1.1, 1.1, 1.2]

Deep Q-Network 学习流程

确定环境参数和DRL的超参数(代码默认值):

- DRL超参数:
 - ϵ -greedy $\epsilon = 0.9$,每次学习后减小 0.006
 - ullet replay memory size N=800
 - minibatch size S=30
 - Q-target 网络参数更新间隔 50 步
 - 奖励函数超参数 $\xi = 1.5$
 - 学习率 $\gamma = 0.01$

end

Deep Q-Network 学习流程

设定环境参数、DRL超参数,随机初始化DQN参数,赋予target网络相同的参数;

```
foreach Episode do
    重置环境:
    foreach Step do
        对于状态 s_t 根据 \epsilon-greedy 策略得到动作 a_t;
        执行动作 a_t 后环境变为 s_{t+1} 并得到奖励 r_t;
        将轨迹 (s_t, a_t, r_t, s_{t+1}) 存入replay memory:
        if Step > 开始学习步数 then
            从replay memory中随机抽取 30 个样本作为minibatch;
            foreach sample in minibatch do
                将 s_t 传入Q-network得到 a_t 对应的 Q_{value};
                将 s_{t+1} 传入target-network得到输出的最大值 Q_{target}:
                根据损失函数 Loss = (Q_{value} - (r_t + \gamma \cdot Q_{target}))^2 使用梯度下降法更新Q-network;
            end
            if Step \% 50 = 0 then
                使用Q-network的参数更新target-network:
            end
            减小 \epsilon:
        end
    end
```

学出电力大学 NORTH CHINA ELECTRIC POWER UNIVERSITY

- 1 问题背景
- ② 数学模型
- Beep Q-Learning
- 4 Baseline

作为Baseline的3种算法

- Random: 将任务随机分配给任意一台虚拟机
- Round-Robin: 将任务轮流分配给每台虚拟机
- Earliest: 将任务分配给最先完成任务(即 T_{idle} 最小)的虚拟机

 $\mathcal{F}in.$