Laboratoire 3

Analyse temporelle des circuits passifs

Objectifs pédagogiques

À la fin de cette expérience, vous devriez :

- Être en mesure d'utiliser efficacement les modèles électriques des appareils de mesure du laboratoire,
- Maîtriser le comportement des circuits RC, RL et RLC dans le domaine temporel,
- Comprendre l'introduction du bruit dans un circuit due au couplage capacitif et inductif (*EXCEPTIONNELLEMENT*, cette partie ne fera pas l'objet de ce TP),
- Être en mesure d'utiliser des techniques pour minimiser les bruits introduits dans un circuit (*EXCEPTIONNELLEMENT*, cette partie ne fera pas l'objet de ce TP).

Contenu

- Expérience 3
 - Préparation avant d'arriver au laboratoire,
 - Simulation des circuits avec des appareils de mesures émulés,
- Rédaction du rapport de l'expérience 3 et barème,
- Théories préliminaires sur l'analyse des circuits électriques RC, RL et RLC dans le domaine temporel,
- Sommaire des formules importantes,
- Questions et exercices de révision

3.1 Expérience 3

3.1.1 Préparation avant d'arriver au laboratoire

L'expérience 3 consiste à analyser le comportement expérimental des circuits RC, RL et RLC dans le domaine temporel.

Note: Vous devez venir au laboratoire avec votre préparation qui est à remettre au début de la séance de laboratoire (remplir la section 3.1.1 en utilisant Word pour remplir les cases vides).

Groupe de laboratoire: 1	Équipe N : <u>9</u>
Étudiant(e) 1 : <u>Martin Careau</u>	Matricule : <u>1978446</u>
Étudiant(e) 2 : Alexandre Gauthier	Matricule : <u>2020329</u>
Signature étudiant 1 :	Signature étudiant 1 :

Note:

- 1. La préparation compte pour 4 points.
- 2. Pour tracer les formes d'onde, effectuez des simulations en utilisant le logiciel CADENCE PSD ou PSpice.

3.1.1.1 Analyse des circuits du premier ordre

a) Circuit RC excité par une source carrée (1pt)

Figure 3.1: Circuit RC excité par une onde carrée.

Le signal d'entrée $v_e(t)$ du circuit de la figure 3.1 est une onde carrée d'amplitude maximale de 2 V et de fréquence f (f=1/T, T étant la période du signal). Les paramètres du circuit sont C=0.01 μ F et R=N $k\Omega$, où N désigne le numéro de la table de l'étudiant. Donner la valeur de R.

$$R = 9 k\Omega$$

Calcul théorique de la constante de temps τ :

•

$$\tau = RC = 9 \times 10^3 \times 0.01 \times 10^{-6} = 0.09 \times 10^{-3} = 90 \mu s$$

En utilisant le logiciel de simulation, tracer l'allure des signaux $v_e(t)$, $v_R(t)$ et $v_C(t)$ lorsque $\frac{T}{2} = 5\tau$ (la réponse atteint sa valeur de régime permanent) sur au moins 2 périodes de temps:

• En utilisant le logiciel de simulation, tracer l'allure des mêmes signaux lorsque $T = \tau$ (la réponse n'a pas le temps d'atteindre sa valeur de régime permanent) :

b) Circuit RL excité par une source carrée (1pt)

Figure 3.2: Circuit RL excité par une onde carrée.

Le signal $v_e(t)$ du circuit de la figure 3.2 est du type carré d'amplitude maximale de 2 V et de fréquence f. En prenant L = 150 mH et R = 20000/N (en Ω), où N est le numéro de la table de l'étudiant, donner la valeur de R.

$$R = \frac{20}{9} k\Omega$$

Calcul théorique de la constante de temps τ:

$$\tau = L/R = \frac{150 \times 10^{-3}}{\frac{20}{9} \times 10^{3}} = 54X10^{-6}s = 54\mu s$$

• En utilisant le logiciel de simulation, tracer l'allure des signaux $v_e(t)$, $v_R(t)$ et $v_I(t)$ lorsque $\frac{T}{2} = 5\tau$ (la réponse atteint sa valeur de régime permanent) sur au moins 2 périodes de temps:

• En utilisant le logiciel de simulation, tracer l'allure des mêmes signaux lorsque $T = \tau$ (la réponse n'a pas le temps d'atteindre sa valeur de régime permanent) :

3.1.1.2 Analyse des circuits du deuxième ordre (2pts)

Figure 3.3 : Montage expérimental pour le circuit RLC série

Pour le circuit RLC série de la figure 3.3, en utilisant les valeurs de L et de C données au tableau 3.1, calculer la valeur de la résistance R pour avoir deux pôles identiques ou une réponse en amortissement critique (section 3.2.2.1 pour le calcul de R) :

# de table	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
L(mH)	50	50	150	150	300	50	150	50	<mark>50</mark>	150	150	300	50	150	50	50	150	150
C (nF)	47	10	47	22	22	47	47	47	10	47	22	22	47	47	47	10	47	22

Tableau 3.1: valeurs de L et C pour la détermination de R du circuit RLC série.

• Calcul de R:

$$R = 2\sqrt{\frac{L}{C}} = 2\sqrt{\frac{50 \times 10^{-3}}{10 \times 10^{-9}}} = 4472 \ \Omega$$

• En utilisant le logiciel de simulation, tracer les courants (proportionnel à $v_R(t)$) en fonction du temps et calculer et la constante du temps τ pour les trois cas suivants :

Note: Pour les trois cas a, b et c, l'excitation est une onde carrée. La valeur crête positive de l'entrée est égale à 2 volts et la fréquence pour chaque cas est choisie de telle sorte qu'à la fin de chaque demi-période de l'onde carrée le régime permanent soit atteint (i.e : $T/2 = 5\tau$).

- a) Courant en **amortissement critique** (une résistance égale à R) :
- Calcul du τ :

$$s = -\omega_0 = -\frac{1}{\sqrt{LC}} \rightarrow \tau = \sqrt{LC} = \sqrt{50 \times 10^{-3} \times 10 \times 10^{-9}} = 2.236 \times 10^{-5} \, s$$

- Courbe du courant en amortissement critique (proportionnel à $v_R(t)$):

- b) Courant **amorti** (une résistance égale à R + R' où R' est choisie par l'étudiant) :
- Calcul du τ :

Avec
$$R + R' = 10k\Omega$$

 $LCs^2 + RCs + 1 = 0$
 $50 \times 10^{-3} \times 10 \times 10^{-9}s^2 + 10000 \times 10 \times 10^{-9}s + 1 = 0$
 $5 \times 10^{-10}s^2 + 10^{-3}s + 1 = 0$
 $s_1 = -10557$
 $s_2 = -189442$
 $\tau_1 = -\frac{1}{-10557} = 9.47 \times 10^{-5}$
 $\tau_2 = -\frac{1}{-189442} = 5.28 \times 10^{-6}$
 $\tau_{dominant} = \tau_1 = 9.47 \times 10^{-5}$

- Courbe du courant amorti (proportionnel à $v_R(t)$):

- c) Courant **oscillant amorti** (une résistance égale à R-R" où R" est choisie par l'étudiant).
- Calcul du τ :

Avec
$$R + R'' = 4k\Omega$$

 $LCs^2 + RCs + 1 = 0$
 $50 \times 10^{-3} \times 10 \times 10^{-9}s^2 + 4000 \times 10 \times 10^{-9}s + 1 = 0$
 $5 \times 10^{-10}s^2 + 4 \times 10^{-6}s + 1 = 0$
 $s_{1,2} = -40000 \pm 20000 i$
 $\tau = -\frac{1}{-40000} = 2.5 \times 10^{-5}$

- Courbe du courant en oscillant amorti (proportionnel à $v_R(t)$):

