Électrolyseur:

Dimensionnement de l'électrolyseur PEM :

Les caractéristiques réelles des systèmes d'électrolyse sont relativement différentes, mais on peut considérer qu'un électrolyseur PEM à l'échelle système consomme entre 5 et 6,5 kWh pour produire un Nm3 d'hydrogène, et qu'un stack consomme entre 4 et 5 kWh environ pour le même volume d'hydrogène [1].

Pour dimensionner un électrolyseur, il est nécessaire de prendre en compte les points ci-dessous :

- Le débit de l'hydrogène produit par h, son unité est le normo mètre cube par heure (Nm^3h^{-1}) ;
- · Sa consommation de l'eau en litre par heure (L/hr) ;
- Sa consommation en kilowatt heure par normo mètre cube de hydrogène (kWh/Nm³);
- · Son rendement (%), qui se définit par Rel = PCI H2 produit/Pélec consommée. PCI étant le pouvoir calorifique inférieur de l'hydrogène, soit 242 kJ/mol, et Pélec consommée est la puissance électrique utilisée pour produire une mole d'H2;
- La pression de l'hydrogène a la sortie en barg, qui exprime l'écart à la pression atmosphérique normale.

Choix de l'électrolyseur :

Pour notre système on a fait le calcul ci-dessous afin de choisir notre électrolyseur :

On a un système de stockage de 4.2Kg d'hydrogène, soit un débit de $46.7292 \ Nm^3$ (1kgH2=11.126 Nm^3), dans une nuit d'hiver qui représente l'utilisation maximale d'énergie on a besoin de 1.44Kg de hydrogène (calculé avant dans la partie de dimensionnement du système de stockage H2), qui est équivalent à $16.021 \ Nm^3$, calculé à partir de l'équation suivante :1.44Kg*11.126 Nm^3 .

Afin d'avoir un électrolyseur qui peux fournir ce débit on a choisie d'utiliser l'électrolyseur PEM Elyte10 proposé par Elogen, qui a besoin d'une alimentation de puissance de 50kW, et a un taux d'hydrogène produit égale a $10 \ Nm^3/h$, et qui consomme $5.4kWh/Nm^3$ de hydrogène. Ainsi sa tension d'entrée est de 400V de type alternative.

On trouve dans le tableau ci-dessous la fiche technique de notre électrolyseur. Et on observe dans la fig.10 le schéma de principe de l'électrolyseur Elyte10 :

Specification

Hydrogen Production	
H ₂ flow rate [Nm³/h]	10
Oxygen Production	
O ₂ flow rate [Nm³/h]	5
Operating range	
Hydrogen production [%] Power input [%]	10-100 10-100
Feeding Water	
Consumption [I/Nm³ H ₂]	< 4
Installed Power	
Electrolysis [kW] Power [kVA]	50 100
Specific Energy consumption	
Stack consumption [kWh/Nm³ H ₂] System consumption [kWh/Nm³ H ₂]	4.3 5.4
Footprint	
Dimensions (containerized version)	20'