Università di Catania Corso di Laurea in Fisica Compito scritto di Fisica Generale I M.G. Grimaldi – A. Insolia

Catania, 31 Marzo 2021

Tempo: 2 ore

Problema n.1

Una molla ideale di lunghezza a riposo l_0 =10 cm appoggia su un piano con il suo asse orientato verticalmente. Inizialmente sulla estremità libera viene poggiato un oggetto avente massa m_A =2 kg: si osserva che la lunghezza della molla si riduce a l_A =8 cm. Successivamente viene rimosso l'oggetto dall'estremo libero della molla e viene sostituito con un altro, avente massa m_B =1 kg: conseguentemente la lunghezza della molla diventa l_B . A questo punto la molla viene compressa di una ulteriore quantità Δl =3 cm rispetto a l_B e viene quindi rilasciata. Determinare, trascurando l'effetto della resistenza dell'aria:

- a) la forza esercitata dalla molla sull'oggetto di massa m_B nell'istante in cui questa viene rilasciata;
- b) la velocità della massa m_B quando la molla ritorna ad avere la sua lunghezza l₀;
- c) la massima altezza z_{max} che raggiunge il corpo di massa m_B dopo essersi staccato dalla molla.

Problema n.2

Un'asta cilindrica sottile di lunghezza l=1 m, raggio trascurabile e massa m_A =100 g è poggiata su un piano orizzontale liscio, con uno dei suoi estremi vincolato, mentre l'altro è libero di muoversi. Essa può ruotare intorno all'estremo vincolato O, senza attrito nel punto di vincolo né con il piano di appoggio. L'asta è inizialmente ferma, quando un proiettile di massa m=1 g viene sparato con velocità di modulo v_p =100 m/s e direzione parallela al piano di appoggio e ortogonale all'asse dell'asta. Il proiettile colpisce l'asta, nella quale si incastra, in un punto a distanza d=70 cm dall'estremo vincolato. In seguito all'urto, l'asta si mette in rotazione: determinare la velocità angolare di tale rotazione.

Problema n.3

Una mole di gas ideale monoatomico, inizialmente alla pressione $p_A=1$ atm e temperatura $T_A=500$ K, subisce le seguenti trasformazioni:

- 1) isoterma reversibile dallo stato iniziale A allo stato B caratterizzato da V_B=2V_A;
- 2) adiabatica irreversibile dallo stato B allo stato C tale che $V_C=3V_B$ e $T_C=T_A/2$;
- 3) isoterma reversibile fino a un certo stato D;
- 4) isobara reversibile dallo stato D allo stato iniziale A.
- Si calcolino:
- a) pressione, volume e temperature del gas negli stati A, B, C, D;
- b) i lavori eseguiti dal gas nelle quattro trasformazioni e le corrispondenti quantità di calore scambiate dal gas;
- c) Il rendimento del ciclo;
- d) la variazione di entropia del gas nell'adiabatica irreversibile.