DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

ELEC 2400 ELECTRONIC CIRCUITS

Midterm Exam Solution

19:30 - 21:00 21 Mar 2019 LTJ

Name:	
Student No.:	
Department:	

Questions	Maximum Scores	Scores
1	6	
2	10	
3	13	
4	12	
5	12	
6	13	
7	10	
8	12	
9	12	
Total	100	

- 1. Answer **all** questions in the space provided.
- 2. This is a **closed book** examination. No additional sheet is allowed.
- 3. Show all your calculations clearly. No marks will be given for unjustified answers.

The HKUST Academic Honor Code

Honesty and integrity are central to the academic work of HKUST. Students of the University must observe and uphold the highest standards of academic integrity and honesty in all the work they do throughout their program of study.

As members of the University community, students have the responsibility to help maintain the academic reputation of HKUST in its academic endeavors.

Sanctions will be imposed on students, if they are found to have violated the regulations governing academic integrity and honesty.

Declaration of Academic Integrity

I confirm that I have answered the questions using only materials specifically approved for use in this examination, that all the answers are my own work, and that I have not received any assistance during the examination.

Stud	ent's	s Si	gnature:				

1. Find the equivalent resistance between the terminals x and y of the below resistor network.

Solution:

A key observation is that we can flip resistors R_2 and R_4 about the line A-A' and redraw the original circuit as follows:

The equivalent resistance is therefore

$$(2+2)\parallel 1=4\parallel 1=\tfrac{4}{5}=0.8\,\Omega$$

2. Find the voltage V_A using superposition.

Solution:

(1) V_4 due to the 8-V source alone: The reduced circuit is as shown on the right. From which, $V_A = -4$ V.

(2) V_A due to the -8-A source alone: The reduced circuit is as shown on the right. R_1 and R_2 divide the -8-A current equally. The presence of R_3 doesn't matter.

Therefore

$$V_A = -4 \text{ A} \times 4 \Omega = -16 \text{ V}$$

(3) By superposition $V_A = -4 - 16 = -20 \text{ V}$

3. Use nodal analysis to find the voltage V_x in the below circuit.

Solution:

Summing all the currents originating from node a:

$$1 + \frac{V_x - 1}{1} + \frac{V_x}{1} + \frac{V_x + 1}{1} = 0$$

Solving to yield $V_x = -\frac{1}{3} \text{ V.}$

4. Use source transformation to find the voltage V_x in the below circuit.

Solution:

Given the cross connection due to R_1 , one way is to transform both the left and right sides of the circuit to their Thevenin's equivalents. This will lead to a readily solvable circuit as shown in below:

Left side:

for which:

$$V_{oc1} = 2 \; \text{V}, \quad R_{eq1} = 4 \; \text{\parallel} \; 4 = 2 \; \Omega$$

Right side:

for which:

$$V_{oc2} = 4~\mathrm{A} \times 1~\Omega = 4~\mathrm{V}, \quad R_{eq2} = 1~\Omega$$

Now back to Fig. A,

$$I = \frac{V_{oc2} - V_{oc1}}{R_{eq1} + R_{eq2} + 1} = \frac{4 - 2}{2 + 1 + 1} = 0.5 \text{ A}$$

$$V_x = -V_{oc1} - IR_{eq1} = -2 - 0.5 \times 2 = -3 \text{ V}$$

5. The circuit below contains a current-dependent voltage source. Find the current I_x .

Solution:

The tricky part is that I_1 represents both a current and a voltage, as shown in above.

The middle branch of the circuit says $V_{ab} = I_1 V$.

For the left branch:

$$I_1 V = 2 V - I_1 A \times 1 \Omega$$

or
$$I_1 = 2 - I_1$$
 yielding $I_1 = 1$

For the right branch:

$$I_1 V = 2 V + I A \times 1 \Omega$$

or
$$I_1 = 2 + I$$
 yielding $I = I_1 - 2 = -1$ A

Finally,

$$I_x = I_1 - I = 1 - (-1) = 2 \text{ A}$$

6. (a) Find the Norton's equivalent circuit with respect to the terminals *a*, *b* for the below circuit.

Solution:

(1) *R_{eq}*:

With all the independent sources zeroed out, the remaining circuit looks like this:

From which,

$$R_{eq} = 2 + (2 \parallel 2) = 3 \,\Omega$$

(2) I_{sc} :

The circuit for I_{sc} calculation looks like this:

Here we label a few currents, resistors, and additional nodes as shown on the right.

A key observation is that $I_1 = I_2$ because $R_1 = R_2$ and their voltage drops are also the same. (In fact, the two resistors are connected in parallel).

Now

$$I_3 = I_1 + I_2 = 2I_1$$

From $V_{bd} = V_{ad} = 6 \text{ V}$, we get

$$V_{bd} = 6 V = I_1 \times 2 \Omega + I_3 \times 2 \Omega = 3I_1 \times 2 \Omega$$

This yields $I_1 = 1$ A.

Hence

$$I_{sc} = I_1 + 2 A = 3 A$$

(continue)

(b) Draw the Norton's equivalent circuit found in part (a).

7. Assuming the op amp in the below circuit is ideal, find the output voltage V_o .

Solution:

Assuming that the op amp is not saturated, $V_{-} = V_{+} = 0 \text{ V}$.

Then
$$I_1 = \frac{3V}{1\Omega} = 3 \text{ A}$$
, $I_2 = \frac{2V}{2\Omega} = 1 \text{ A}$.

Since
$$I_3 = I_1 + I_2 = 4 \text{ A}$$
,

$$V_o = -I_3 \times 4 \Omega = -16 \text{ V}$$

However, this will be below the -15-V supply. So V_o will saturate just above -15 V.

8. Assume the op amp is ideal. Find the output voltage V_o of the amplifier structure in terms of the input voltage V_i shown below.

Solution:

There is no input current entering V_+ . Assuming that the op amp is not saturated, $V_+ = V_- = 3 \text{ V}$.

Applying KCL at node V_{-} :

$$\frac{V_i - 3}{200} = \frac{3 - V_x}{200}$$

giving

$$V_x = 6 - V_i \tag{1}$$

Applying KCL at node V_x :

$$\frac{V_x - 3}{200} + \frac{V_x}{300} + \frac{V_x - V_o}{400} = 0$$

 $6V_x - 18 + 4V_x + 3V_x - 3V_0 = 0$

giving

$$V_o = \frac{13}{3}V_x - 6 \tag{2}$$

Combining (1) and (2)

$$V_0 = \frac{13}{3}(6 - V_i) - 6 = -\frac{13}{3}V_i + 20 \text{ V}$$
 (3)

(a) When $V_o = 15 \text{ V}$, $V_i = \frac{15}{13} \text{ V}$. When $V_o = -15 \text{ V}$, $V_i = \frac{105}{13} \text{ V}$.

So as long as

$$\frac{15}{13} \text{ V} \le V_i \le \frac{105}{13} \text{ V}$$

the op amp is not saturated and V_o will be given by (3).

However,

- (b) For $V_i < \frac{15}{13}$ V, V_o will saturate at just below 15 V.
- (c) For $V_i > \frac{105}{13}$ V, V_o will saturate at just above -15 V.

- 9. Assuming the op amp in the below circuit is ideal,
 - (a) find the output voltage $v_o(t)$ in terms of the input voltage $v_i(t)$.
 - (b) Plot $v_o(t)$ when $v_i(t) = t$, for $0 \le t \le 4$.

Solution:

Assuming that the op amp is not saturated, let $v_+ = v_- = v_x$.

Notice that R_1 and R_2 form a voltage divider, resulting in $v_x = \frac{v_o}{2}$.

Applying KCL at V_:

$$\frac{v_i - v_x}{2k} = \frac{v_x - v_o}{1k}$$

$$v_i = 3v_x - 2v_o = 3\left(\frac{v_o}{2}\right) - 2v_o = -\frac{v_o}{2}$$

(a) Therefore

$$v_o(t) = -2v_i(t)$$

(b) Below is a plot of $v_o(t)$ vs. $v_i(t)$. Notice the saturation of $v_o(t)$ due to the lower supply voltage at -5 V.

(continue)

< Rough work paper >

< Rough work paper >