Definition and Goals
Architecture Components
Model
Training
Implementation Review

Image Segmentation 2018 with Mask R-CNN

Gesina Schwalbe

7th May 2018

Definition and Goals Architecture Components Model Training Implementation Review

- Definition and Goals
- 2 Architecture Components
- Model
- 4 Training

Section 1

Definition and Goals

- Definition and Goals
 - Problem

- bounding boxes
- classification of each box
- pixel-mask for each box

- bounding boxes
- classification of each box
- pixel-mask for each box

- bounding boxes
- classification of each box
- pixel-mask for each box

Datasets

COCO

o Imagel\let

- bounding boxes
- classification of each box
- pixel-mask for each box

- COCC
- ImageNet

- bounding boxes
- classification of each box
- pixel-mask for each box

- COCO
- ImageNet

- bounding boxes
- classification of each box
- pixel-mask for each box

- COCO
- ImageNet

Applications

• live detection of signs, obstacles in traffic (example video)

Applications

• automatic street map enhancement

Applications

• automatic evaluation of microscopy images

- Master natural images: large nets
- Learn and process fast/efficiently (currently best: 32h wt. 8GPU learning; 5fps inference)

- share many features (FPN, RPN)
- parallelize tasks/components

- Master natural images: large nets
- Learn and process fast/efficiently (currently best: 32h wt. 8GPU learning; 5fps inference):
 - special network components (CNN, ResNe(X)t, FPN)
 - share many features (FPN, RPN)
 - parallelize tasks/components

- Master natural images: large nets
- Learn and process fast/efficiently (currently best: 32h wt. 8GPU learning; 5fps inference):
 - special network components (CNN, ResNe(X)t, FPN)
 - share many features (FPN, RPN)
 - parallelize tasks/components

- Master natural images: large nets
- Learn and process fast/efficiently (currently best: 32h wt. 8GPU learning; 5fps inference):
 - special network components (CNN, ResNe(X)t, FPN)
 - share many features (FPN, RPN)
 - parallelize tasks/components

- Master natural images: large nets
- Learn and process fast/efficiently (currently best: 32h wt. 8GPU learning; 5fps inference):
 - special network components (CNN, ResNe(X)t, FPN)
 - share many features (FPN, RPN)
 - parallelize tasks/components

Convolutional Networks Deep CNNs: ResNet and ResNeXt

Section 2

Architecture Components

- 2 Architecture Components
 - Convolutional Networks
 - Deep CNNs: ResNet and ResNeXt

- Feedforward neural network with only local connections
- Massive weight sharing
- (often:) Downscaling of feature space:
 - Translation invarian
 - Multiple scale feature spaces available
 - Iviuitiple scale feature spaces available

- Feedforward neural network with only local connections
- Massive weight sharing
- (often:) Downscaling of feature space:

- Feedforward neural network with only local connections
- Massive weight sharing
- (often:) Downscaling of feature space:
 - Translation invariance
 - Multiple scale feature spaces available

- Feedforward neural network with only local connections
- Massive weight sharing
- (often:) Downscaling of feature space:
 - Translation invariance
 - Multiple scale feature spaces available

- Feedforward neural network with only local connections
- Massive weight sharing
- (often:) Downscaling of feature space:
 - Translation invariance
 - Multiple scale feature spaces available

Convolution Operation

linear map $\mathbb{R}^{n_1 \times n_2 \times \cdots n_3} o \mathbb{R}^{n_1 \times n_2 \times \cdots n_3}$ described by

- a fixed sliding window shape
- a window of that shape with a weight value at each coordinate, called the kernel.

(Animation)

Convolution Operation

linear map $\mathbb{R}^{n_1 \times n_2 \times \cdots n_3} \to \mathbb{R}^{n_1 \times n_2 \times \cdots n_3}$ described by

- a fixed sliding window shape
- a window of that shape with a weight value at each coordinate, called the kernel.

(Animation)

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

- dilation (=upsampling rate)
- activation function

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

- dilation (=upsampling rate)
- activation function

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

- dilation (=upsampling rate)
- activation function

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

Convolution Hyperparameters:

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

dilation (=upsampling rate)

Convolution Hyperparameters:

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

dilation (=upsampling rate)

Convolution Hyperparameters:

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

dilation (=upsampling rate)

- size of kernel (= weight-window)
- padding variant (= border treatment)
- number of filters (= number of parallel convolutions)
- stride (= downsampling rate)

- dilation (=upsampling rate)
- activation function

Weights: kernel values, bias

Pooling Layer

Usual pooling functions

- Average Pooling (linear)
- MaxPooling (non-linear)

Pooling Layer

Usual pooling functions

- Average Pooling (linear)
- MaxPooling (non-linear)

Pooling Layer

Usual pooling functions

- Average Pooling (linear)
- MaxPooling (non-linear)

(Deep) CNN

Residual CNNs: ResNet

Residual CNNs: ResNet

More Feature sharing: FPNs

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Section 3

Model

- Model
 - Overview
 - Convolutional Backbone
 - Region Proposal Network
 - Rol-Pooling
 - Frontend

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

Predecessor Problems

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

Predecessor Problems

- (intelligently) choose windows of the image
- classify each window
- maybe enhance the window selection

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

Predecessor Problems

- (intelligently) choose windows of the image
- classify each window
- maybe enhance the window selection

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

Predecessor Problems

- (intelligently) choose windows of the image
- classify each window
- maybe enhance the window selection

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

Predecessor Problems

- (intelligently) choose windows of the image
- classify each window
- maybe enhance the window selection

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

- Onvolutional backbone: extract important features
- @ Region proposal; in parallel:

- Classification
- Masking
- Bounding Box Optimization

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

- Onvolutional backbone: extract important features
- Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- Frontend; in parallel:
 - Class
 - Maskin
 - iviasking
 - Bounding Box Optimization

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

- Onvolutional backbone: extract important features
- Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- 3 Frontend; in parallel:
 - Cl.
 - Masking
 - IVIGSIKIII,
 - Bounding Box Optimization

Overview
Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

- Onvolutional backbone: extract important features
- Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- 3 Frontend; in parallel:

 - Masking
 - П
 - Dounding box Optimization

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

- Onvolutional backbone: extract important features
- 2 Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- Frontend; in parallel:
 - Classification
 - Masking
 - Bounding Box Optimization

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

- Onvolutional backbone: extract important features
- 2 Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- Frontend; in parallel:
 - Classification
 - Masking
 - Bounding Box Optimization

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

- Onvolutional backbone: extract important features
- 2 Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- Frontend; in parallel:
 - Classification
 - Masking
 - Bounding Box Optimization

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

- Onvolutional backbone: extract important features
- 2 Region proposal; in parallel:
 - Window objectness scoring
 - Window correction
- Frontend; in parallel:
 - Classification
 - Masking
 - Bounding Box Optimization

Overview

Convolutional Backbone
Region Proposal Network
Rol-Pooling
Frontend

Convolutional Backbone

Goal extract features

Architecture same as for Object Detection

Predecessors/Alternatives

Pixel Merging (e.g. SelectiveSearch)

Window scoring (e.g. Objectness)
Separate NN (e.g. Multibox)

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Predecessors/Alternatives

Pixel Merging (e.g. SelectiveSearch) Window scoring (e.g. Objectness)

Separate NN (e.g. Multibox)

Predecessors/Alternatives

Pixel Merging (e.g. SelectiveSearch) Window scoring (e.g. Objectness) Separate NN (e.g. Multibox)

Main Ideas of the Mask-RCNN Approach

Window scoring with enhancements:

Decoupling of classification and window proposals

All Scales at once using different candidate window shapes

Bounding box correction in parallel to scoring

Excessive weight sharing amongst same shapes

Rol-Pooling = Feature sharing is

backbone and pool each proposal window to fixed size

Main Ideas of the Mask-RCNN Approach

Window scoring with enhancements:

Decoupling of classification and window proposals

All Scales at once using different candidate window shapes

Bounding box correction in parallel to scoring

Excessive weight sharing amongst same shapes

i.e. use convolutional features from backbone and pool each proposal window to fixed size

Main Ideas of the Mask-RCNN Approach

Window scoring with enhancements:

Decoupling of classification and window proposals

All Scales at once using different candidate window shapes

Bounding box correction in parallel to scoring

Excessive weight sharing amongst same shapes

Rol-Pooling = Feature sharing i.e. use convolutional features from backbone and pool each proposal window to fixed size

Main Ideas of the Mask-RCNN Approach

Window scoring with enhancements:

Decoupling of classification and window proposals

All Scales at once using different candidate window shapes

Bounding box correction in parallel to scoring

Excessive weight sharing amongst same shapes

Rol-Pooling = Feature sharing i.e. use convolutional features from backbone and pool each proposal window to fixed size

Main Ideas of the Mask-RCNN Approach

Window scoring with enhancements:

Decoupling of classification and window proposals

All Scales at once using different candidate window shapes

Bounding box correction in parallel to scoring

Excessive weight sharing amongst same shapes

Rol-Pooling = Feature sharing i.e. use convolutional features from backbone and pool each proposal window to fixed size

Architecture Overview

Shared Conv Layer Sliding window on feature space with fixed set of anchor shapes per window

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Architecture Overview

Shared Conv Layer Sliding window on feature space with fixed set of anchor shapes per window

cls, reg Per window and anchor shape do in parallel

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Architecture Overview

Shared Conv Layer Sliding window on feature space with fixed set of anchor shapes per window

cls, reg Per window and anchor shape do in parallel objectness score (cls)

Architecture Overview

Shared Conv Layer Sliding window on feature space with fixed set of anchor shapes per window

cls, reg Per window and anchor shape do in parallel objectness score (cls) coordinate correction (reg)

Architecture Overview

Shared Conv Layer Sliding window on feature space with fixed set of anchor shapes per window

cls, reg Per window and anchor shape do in parallel objectness score (cls) coordinate correction (reg)

Proposal Layer Select best proposals

Coordinate and RPN reg output encoding

```
Box coordinate encoding (all normalized): (x_1, y_1 \# \text{upper left corner} x_2, y_2) \# \text{lower right corner}
```

Coordinate and RPN reg output encoding

Coordinate correction (=reg output) encoding:

Metrics

Metric for matching:

$$\mathbf{IoU}(A,B) := \frac{\mathsf{Intersection Area}}{\mathsf{Union Area}}$$

Labels

object=1 with ground-truth box b if

- best **IoU** for b, else if
- **IoU** with b > 0.3

no object=-1 if not pos. and $loU \le 0.3$

Labels

object=1 with ground-truth box b if

- best **IoU** for b, else if
- **loU** with b > 0.3

no object=-1 if not pos. and $IoU \le 0.3$

neutral=0 else (excluded from training)

Labels

object=1 with ground-truth box b if

- best **IoU** for b, else if
- **IoU** with $b \ge 0.3$

no object=-1 if not pos. and **IoU** ≤ 0.3 neutral=0 else (excluded from training

Labels

```
object=1 with ground-truth box b if
```

- best **IoU** for b, else if
- **IoU** with $b \ge 0.3$

no object=-1 if not pos. and $loU \le 0.3$

neutral=0 else (excluded from training)

Labels

```
object=1 with ground-truth box b if
```

- best **IoU** for b, else if
- **IoU** with $b \ge 0.3$

no object=-1 if not pos. and $\mathbf{IoU} \leq 0.3$

neutral=0 else (excluded from training)

Definition and Goals
Architecture Components
Model
Training
Implementation Review

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Architecture Details

Sliding window Shared Conv layer with "valid"-padding

Architecture Details

Objectness classification Conv layer with

- 1×1 -sized kernel
- 2-class softmax activation: (non-object score, object score)

Loss: crossentropy for non-neutral anchors

Architecture Details

Coordinate correction Conv layer with

- \bullet 1 imes 1-sized kernel
- 4 × (number of anchors) filters: (dx, dy, dw, dh) coordinate correction for each anchor

Loss: smooth L_1 -loss

for positive anchors that do not cross image bounds

Architecture Details

- Trim to N best-object-scored anchors.
- Apply coordinate correction.
- Clip boxes
- Non-maximum suppression:
 - Reject boxes which have high IoU with better
 - Trim to best num proposals

Architecture Details

- **1** Trim to *N* best-object-scored anchors.
- 2 Apply coordinate correction.
- Clip boxes
- Non-maximum suppression:

Architecture Details

- **1** Trim to *N* best-object-scored anchors.
- 2 Apply coordinate correction.
- Clip boxes.
- Non-maximum suppression:

Architecture Details

- **1** Trim to *N* best-object-scored anchors.
- 2 Apply coordinate correction.
- Olip boxes.
- Non-maximum suppression:

Architecture Details

- Trim to N best-object-scored anchors.
- 2 Apply coordinate correction.
- Olip boxes.
- Non-maximum suppression:
 - Sort by score
 - Reject boxes which have high IoU with better scored ones
 - 3 Trim to best num proposals

Architecture Details

- **1** Trim to *N* best-object-scored anchors.
- 2 Apply coordinate correction.
- Olip boxes.
- Non-maximum suppression:
 - Sort by score
 - Reject boxes which have high IoU with better scored ones
 - 3 Trim to best num_proposals

Architecture Details

- **1** Trim to *N* best-object-scored anchors.
- 2 Apply coordinate correction.
- Olip boxes.
- Non-maximum suppression:
 - Sort by score
 - Reject boxes which have high IoU with better scored ones
 - 3 Trim to best num_proposals

Architecture Details

- Trim to N best-object-scored anchors.
- 2 Apply coordinate correction.
- Olip boxes.
- Non-maximum suppression:
 - Sort by score
 - Reject boxes which have high IoU with better scored ones
 - Trim to best num_proposals

Rol-Pooling

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Rol-Pooling

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Rol-Pooling

Rol-Align

Bilinear interpolation instead of cropping:

Main Ideas

Decouple

- classification, bounding box optimization, and masks;
- mask predictions for the different classes

Main Ideas

Decouple

- classification, bounding box optimization, and masks;
- mask predictions for the different classes

Architecture

Definition and Goals Architecture Components **Model** Training Implementation Review Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Architecture

Classification fully connected layers ending in softmax (include class "No object")

Loss: multinomial crossentropy

Architecture

Mask generation

- Few (1–3) Conv Layers, maybe with upscaling parts
- Conv Layer with
 - a filter for each class
 - sigmoid activation

Loss: binary cross-entropy

Definition and Goals
Architecture Components
Model
Training
Implementation Review

Overview Convolutional Backbone Region Proposal Network Rol-Pooling Frontend

Architecture

Bounding box regression Linear regression

Section 4

Training

- 4 Training
 - Overview
 - Backbone Pretraining
 - Alternating Training

Steps

- Backbone
- 2 RPN
- Alternating training of RPN and Frontend

Steps

- Backbone
- 2 RPN
- 4 Alternating training of RPN and Frontend

Steps

- Backbone
- 2 RPN
- Alternating training of RPN and Frontend

Backbone Pretraining

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- ② Dense Layers
- Classification Softmax-Layer

Training Input

Backbone Pretraining

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- 2 Dense Layers
- Classification Softmax-Layer

Training Input

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- 2 Dense Layers
- Classification Softmax-Layer

Training Input

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- Oense Layers
- Olassification Softmax-Layer

Training Input

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- Oense Layers
- Olassification Softmax-Layer

Training Input

inputs one-object images (ca. size of later bounding boxes) labels the single objects' labels

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- Oense Layers
- Olassification Softmax-Layer

Training Input

inputs one-object images (ca. size of later bounding boxes)

labels the single objects' labels

Separate ConvNet Training Model

- Backbone (Conv & Pooling)
- Oense Layers
- Olassification Softmax-Layer

Training Input

inputs one-object images (ca. size of later bounding boxes) labels the single objects' labels

- 1 Frontend: RPN fixed, backbone not shared
- 2 RPN: frontend fixed, shared backbone fixed
- 3 Frontend: RPN fixed, shared backbone fixed
- (4

- 1 Frontend: RPN fixed, backbone not shared
- 2 RPN: frontend fixed, shared backbone fixed
- Frontend: RPN fixed, shared backbone fixed
- 4 ...

- 1 Frontend: RPN fixed, backbone not shared
- 2 RPN: frontend fixed, shared backbone fixed
- 3 Frontend: RPN fixed, shared backbone fixed

- 1 Frontend: RPN fixed, backbone not shared
- 2 RPN: frontend fixed, shared backbone fixed
- 3 Frontend: RPN fixed, shared backbone fixed
- **4**

Section 5

Implementation Review

- Source Code
- Lessions learned

Example Sources

- Keras implementation by matterport: [1]
- Easy example for handwritten number detection using autogenerated data based on MNIST: github

Keras Implementation Specialties

- Use the functional API!
- Custom layers:
 - Loss Layers custom losses

Separate models for training and inference

Keras Implementation Specialties

- Use the functional API!
- Custom layers:

```
Loss Layers custom losses
Proposal Layer select RPN proposals
Rol-Pooling Layer reshape proposals and mask labels (can use
tf.crop_and_resize())
```

Separate models for training and inference

Keras Implementation Specialties

- Use the functional API!
- Custom layers:

```
Loss Layers custom losses
Proposal Layer select RPN proposals
Rol-Pooling Layer reshape proposals and mask labels (can use
tf.crop_and_resize())
```

Separate models for training and inference

Lessions Learned I

- Always double-check and note down tensor/array dimensions; mind the padding for convolutions.
- Always double-check and test your algorithms.
- Always have a look at all input and output data:
 - Do they roughly make sense, e.g. do positive classes have different probability output than negative ones?)
 - Are there error patterns?

Visualization is your friend. But it will contain bugs, too.

 Directly document and update all input and output formats of functions. Resp. in general: Keep your code VERY clean and understandable.

Lessions Learned II

- Convolution is very geometric: Depict your sliding windows and downscaling factor(s) to check whether they make sense with your data/object sizes.
- Mind your RAM when optimizing data generation/tagging
- Check your loss and validation values; Does the model actually get better?
- The deeper, the much more time;
- Make data as easy (small) as possible; if you can still classify, the network can do, too (e.g. grayscale instead of several color channels).