between	arduent	工

			•
Pic	396	S	7

U. umpos of vocas

undirectocal

(= number of induscrical lutes inneglect Graph G

Proof:

a ラララララフラフラ

a) The rubes of rocks with odd degree is ever

we mas.

Z degrees (n) = 2 l

split his into roces with ever degree and add digree

S a(u) I S a(u) = 3m uen Grey

Emal even

-> Qeen

=> even = 2 d(n) = 2m (even)

the reeds to be ever or well!

	Networks assignment I
	Adoben 2 G agracency matrix of accelled and unucularly newel. Provide wherprobablic of G most 6 and 616.
	hel's first consider GOGT
	G has entires (Sin gin) where $\frac{2}{3}gij = doub (sin of row eutro) = doub (sin of row eutro)$
	is, gis = din som af enhies per column represent
ù.	cein af the rospertie calemn.
	Dow.
	G (((((((((((((((((((
	GG = 311 311 311 311 311
	Bur Bur (Bu)
	=> courger => 3", + dis 18" , ding = 8" , 815 + " + 8"
	=> as we have here an unweighted graph, give £0,13.
=	chaq (a, and,, chow)
	> So the 6 6 matrix has original entires that composed
	> So the 6 6 materix to ouriganal entris that composed to the espectie and acques af rance i
	O

Section 2 Bepolde removed duch A bypalle methods is a newal that connects two dry and sots U and U, such that soul but connects a U-norte and a V-norte. -> 1 can ware biologico of a war a Problem 3 dipulse nelsole Course Notbecard warms # It is Bal augasal maters as it is the adeposition materix cell a bepaule graph . In clast, to corrections with pals of il. Here it is block chappeal, becase notes 1 .- 6 are not Connected, one noted 7 to 11.

Mit CamScanner gescannt

	Q(1) = 1 Q(2) = 1 Q(3) = 3 Q(4) = 2 Q(5) = 2	degree 5 average 10:2 average 5 average 5
	Q(1) = 1 Q(2) = 1 Q(3) = 3 Q(4) = 2 Q(5) = 2	average 10 = 5
	Q(1) = 1 Q(2) = 1 Q(3) = 3 Q(4) = 2 Q(5) = 2	doores 2
	Q(2) = 1 Q(3) = 3 Q(4) = 2 Q(5) = 2	
	d(4) = 2 d(s) = 2	
	d(e) - 1.	The state of the s
વખ્યુ લ.=	10 = 5/3/	chao!
_	Dow:	in fail of the politicis
<u>P</u>	uple or green	- but duevi as bublic
	a(1) = 1	0((1)=2
	Q(2) = 3	a(8) = 2
	0(3) - 4	$\alpha(9) = 8 9$
	cr(4) - 3	
	g(s) = 3	, Q(11) - 1
	c1 (6) = 1	10
	15/6/	- 10 - 2/ 5

	•
Problem 3 cal'a	<u> </u>
200 a 11 0 10 bad	52
=> Second bupper of the poop	•
	•
Bipalite remodes general consolurations	2
Esparlile returale as, rocks We nocies	
	9
· (max is fally connected	
Q,	•
W, a luís tops!	
D ₂	
	-
=> In general D,. Dz luks!!	
- the same title count were composed to me hard	
· How may lules comes occur compored to non-sipal	
nechoir 0 s	
von bipalile graph: for N=1,112	
Maximum Kills N(H-1)	
2	
The afference (N,112) (W,+12-1) - U, W2 ?	
0. 2.	
cannot occur due to the carbaid	
Comment of the contract	
·	

C/ G/

the pay Demon account I

Problem 3 call'of

if N, cc D2, what can you say about network density? => Oposly = * luls

Crock = D,W2

=> Clensly. * lule if Dicc D2 Ven chendly cp. 1

10, N2 ve con see Val from

Cl = Cinha Soid M

where or pi cs i . -> close 10 200

· time a expression connectif D, De act average active for the two sets in the apolite retwood ckit and ckz => ??

In general we have: ... FBD

ckr = 1, Zui BI

1 Cal.

1

Network assignment I Problem 4 D) who close the adjacenth worth To: le exempler nemour C) Compute few powers Q₅ = (00...0)

	Delinal	assatusay
dolem 4		

Pro

$$\begin{pmatrix} \hat{c_1} \\ \vdots \\ \hat{c_n} \end{pmatrix} = \alpha \vec{\lambda} + \beta 6 \begin{pmatrix} \hat{c_1} \\ \vdots \\ \hat{c_n} \end{pmatrix}$$

ラファラファラファラファ

believels accorned I

Problem	6	Dameter

Diameter= the large stortest path in a graph, or the distance between the two fulled noods

- maximum Okcience believe two modes in a network

- The greatest sloves path = alklonce

> canaded graph!

not complete -> too nociec one not adjacent!

-> greates) [=> length of the states) pull!

Broblem 6

a) Circle network

nocle I is connected to nocle n once 2.

nocle 2 to 1 and 3

What is the deaneles of this?

lic? 101=3(11/2)

Dere chamelo is 2

	Problem 6 Network assignment I
	a) - Incl a network ital has a deemeter u times.
	lagge then average andrace
	Consider le Collong remail milh n + 3 compa nous
•	comprehe greeph!
	Daneler 184.
•	As n > 00, the le average audonce double exp to 1,
	as the complete grouph bas a distance at I (considery
	only its nodes within). The propalie of
	+ do dicionce i doct diane as v-s as
	so eventually de chare avoige distence
1	
	= 1 dansto (where diameter is 4)
	= 1 dianetes (where dianetes is 4)
•	= 1 dansto (where diameter is 4).
•	= 1 danster (where diameter is 4).
	= 1 dansto (where diameter is 4).
	= 1 dianeter (where dianeter is 4).
	= 1 diameter (where diameter is 4).
	= 1 diameter (where diameter is 4)
	= 1 diameter (where diameter is 4).
	= 1 diameter (where diameter is 4).
	= 1 dianeto (where dianvete is 4).
	= 1 diameter (where diameter is 4)
	= 1 dianeto (where dianete is 4)