ARQUITETURA DE UM PLC

ELLIAN CARLOS OLIVEIRA COSTA – 11846324

GUILHERME CREMASCO GULMINI – 11816077

JONATTAN WILLIAN DA SILVA – 11821278

LORENZO PACIELLO – 10734182

O QUE É UM PLC

• Um PLC (Programmable Logic Controller, ou CLP, Controlador Lógico Programável) é um dispositivo programável que controla os processos de fabricação para linhas de produção automatizadas e equipamentos integrados.

TIPOS DE PLC

 Compacto: todos os componentes de hardware do PLC estão unidos em uma única unidade.

Omron CP1E

TIPOS DE PLC

 Modular: cada componente de hardware se encontra em um módulo separado e se interconectam dentro do PLC. Permite maior customização.

COMPONENTES DE UM PLC

- Um PLC possui quatro componentes principais:
 - CPU
 - Fonte de alimentação
 - Módulos de E/S
 - Interface de comunicação

- Realiza todas as operações lógicas da automação, além de outras funções como comunicação, diagnósticos e execução do Real Time Operating System (sistema operacional) do PLC.
- Operações são executadas pelo processador com base em dados e sinais recebidos do módulo de input. O resultado dessas operações vai para o módulo de output.

- Principais linguagens de programação de PLCs:
 - Ladder Logic.
 - Texto Estruturado.
 - Function Block Diagram.
 - Sequential Flow Chart.

- A grande maioria possui uma memória para dados e programas.
 - Arquitetura de Von Neumann*.
- Principais processadores usados em PLCs:
 - Microcontroladores PIC e ARM Cortex M3 ou M4.
 - FPGAs.
 - ARM Cortex A8, A9 ou A15, PowerPC ou Intel 8086 (PLCs mais potentes).

^{*}Arquitetura dependente do microchip controlador

PIC ARM Cortex M3

PowerPC

CASO DE ESTUDO PIC16F87X

- PIC Peripheral Interface Controller
- Baseado RISC
- 4 Clocks por instrução
- Arquitetura de Harvard

ARQUITETURA DO PIC16F87X

INSTRUCTION SET PIC16F87X

- 14-bit word, dividido entre OPCODE e um ou mais operandos.
- Todas as instruções são executadas em um ciclo de instrução. Exceto
- 1 µs (max 2µs) de tempo de execução de instrução (4MHz).

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description Register file address (0x00 to 0x7F)						
f							
W	Working register (accumulator)						
b	Bit address within an 8-bit file register						
k	Literal field, constant data or label						
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools						
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.						
PC	Program Counter						
то	Time-out bit						
PD	Power-down bit						

FORMATO DAS INSTRUÇÕES PIC16F87X

TABELA DE INSTRUÇÕES DO PIC16F87X

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notes		
				MSb			LSb	Affected	Notes		
BYTE-ORIENTED FILE REGISTER OPERATIONS											
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2		
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2		
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2		
CLRW		Clear W	1	00	0001	0xxx	XXXX	Z	7,002		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2		
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2		
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3		
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2		
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3		
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2		
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2		
MOVWF	f	Move W to f	1	00	0000	lfff	ffff				
NOP	_	No Operation	1	00	0000	0xx0	0000				
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2		
RRF	f. d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1.2		
SUBWF	f. d	Subtract W from f	1	00	0010		ffff	C.DC.Z	1,2		
SWAPF	f. d	Swap nibbles in f	1	00	1110	dfff	ffff	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	1,2		
XORWF	f. d	Exclusive OR W with f	1	00	0110		ffff	Z	1.2		
BIT-ORIENTED FILE REGISTER OPERATIONS											
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2		
BSF	f. b	Bit Set f	1	01	01bb	bfff	ffff		1,2		
BTFSC	f. b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3		
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff		3		
		LITERAL AND CONTROL	OPERATI	ONS					-		
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C.DC.Z			
ANDLW	k	AND literal with W	1	11		kkkk		Z			
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk	10000			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110		TO.PD			
GOTO	k	Go to address	2	10		kkkk					
IORLW	k	Inclusive OR literal with W	1	11				Z			
MOVLW	k	Move literal to W	1	11		kkkk		-			
RETFIE	-	Return from interrupt	2	00	0000		1001	1			
RETLW	k	Return with literal in W	2	11		kkkk					
RETURN	-	Return from Subroutine	2	00	0000	0000	1000				
SLEEP	0	Go into standby mode	1	00	0000		0011	TO.PD			
SUBLW	k	Subtract W from literal	1	11		kkkk		C.DC.Z			
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z			
AUKLW		Excusive OK literal with W	1	11	TOTO	AAAK	AAAK.				

EXEMPLO INSTRUÇÕES DO PIC16F87X

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0				
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) - 1 → (destination); skip if result = 0	Operation:	(f) + 1 → (destination), skip if result = 0				
Status Affected:	None	Status Affected:	None				
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2Tcy instruction.				

DIFERENÇAS DA PIPELINE DO PIC16F87X

- As maiores diferenças na pipeline de execução do PIC16F87X são devido a inclusão da memória EEPROM e da possibilidade de reescrever a memória flash durante execução do próprio programa.
- EEPROM é feita para leitura e escrita muito rápidas, porém operações na EEPROM não interferem na execução do programa, assíncrono.
- A memória flash é a memória de execução do programa, mas em necessidade pode ser escrita e acessada com dados (não recomendado).

FONTE DE ALIMENTAÇÃO

- Geralmente são alimentadas com tensão alternada entre 90V e 250V.
- \bullet Fornece energia para a CPU e os módulos I/O.
- Protege o PLC contra curtos-circuitos e sobrecargas.

MÓDULOS DE E/S

- Parte responsável por receber dados de sensores (entrada) e controlar atuadores (saída).
- Os dados da E/S podem ser analógicos ou digitais.

MÓDULOS DE E/S

- Principais dispositivos de entrada:
 - Pressostatos.
 - Termostatos.
 - Chaves de nível.
 - Botoeiras.
 - Sensores.
 - Botões e interruptores.
 - Dentre outros...

MÓDULOS DE E/S

- Principais tipos de saída:
 - Relé.
 - Transistor.
 - Tiristor.

INTERFACE DE COMUNICAÇÃO

- Interface que permite que o PLC se conecte com um computador, outros PLCs ou até com um inversor de frequência.
 - É por essa interface que o PLC recebe os programas feitos no computador.
- Normalmente está conectada com a CPU.

Fonte: https://www.researchgate.net/figure/PLC-architecture-2 fig1 340558962

E É ISTO! OBRIGADO PELA ATENÇÃO! =)

- Fontes:
 - https://www.embarcados.com.br/serie/clp/
 - https://www.youtube.com/watch?v=gLaPV6BOHJc&ab channel=GVensino
 - https://processsolutions.com/basic-architecture-of-programmable-logic-controller/
 - https://instrumentationforum.com/t/architecture-of-plc/7059
 - https://ladderlogicworld.com/plc-architecture/