MI-SPOL-9

Princip genetických algoritmů, význam selekčního tlaku pro jejich funkci.

Principy:

- více stavů najendou ⇒ menší šance uváznutí v lokálním minimu, konstantní počet stavů po celý výpočet
- operátory:

$$S
ightarrow S$$
 (unární) $S imes S
ightarrow S, S imes S
ightarrow S imes S$ (binární)

• definice operátorů: nad reprezentacemi X problémově nezávislé

Analogie

- konfigurace = jedinec
- kódování konfigurace = genetická reprezentace jedince
- proměnná kódování = gen
- hodnota proměnné = alela
- aktuální množina konfigurací = generace, populace
- unární operátor = mutace
- binární operátor = křízení
- optimalizační kritérium = zdatnost (fitness)
- rozšíření konfigurace uvázlé v lokálním minimu = degenerace
- rozšíření kvalitní konfigurace = konvergence
- biodiverzita = diverzita populace

Kostra simulované evoluce

počáteční populace

zvýšení podílu

Evoluční algoritmy

Společné rysy:

- více individuí
- diverzifikace: mutace atd.
- intenzifikace: selekce pro rekombinaci nebo další generaci

Charakteristické rysy jednotlivých algoritmů:

- reprezentace
- unární, binární operátory
- způsob selekce pro rekombinaci a konstrukci následující generace

Klasická podoba genetických algoritmů

Kódování	Operátory	Řízení populace
Binární	Binární: křízení (1-bodové, 2-bodové, uniformní),	nová generace nahradí
řetěz	Unární: mutace, inverze	původní

Evoluční strategie

Kódování	Operátory	Řízení populace	
----------	-----------	-----------------	--

Kódování	Operátory	Řízení populace
Vektor (reálných) čísel. Strategické parametry: σ mutace, interakce mezi složkami	mutace (dominuje): přičtení Gaussova rozložení, Křízení: diskriminující, průměrující	Z μ rodičů a λ potomků se vybere μ členů nové generace, nebo náhrada vcelku

Genetické programování

Kódování	Operátory	Řízení populace
Rozkladový strom výrazu	Křízení, mutace, definice stavebního bloku, editace	Nová populace nahradí starou

Evoluční programování

Kódování	Operátory	Řízení populace
Automat	Změna výstupního symbolu, změna přechodu, přidání/vypuštění stavu, změna počátečního stavu	Z μ rodičů a λ potomků se vybere μ členů nové generace

Genetické algoritmy

Kódování:

- klasická formulace: binární řetěz
- vektor proměnných obecně různých domén
- permutace řetězce z dané abecedy

Operátory:

- Křížení (rekombinace):
 - o Jednobodové:

3 z 7

- Inverze: Každý bit náhodně buď invertovat, nebo ne
- Mutace: Z celé populace náhodně vybrat bod (bit v řetězci), který se invertuje

Selekce:

- Účel: způsobit, aby početní zastoupení jedince v populaci odpovídalo jeho zdatnosti
- = převod informace obsažené ve zdatnosti na informaci početnosti
- Selekční tlak: pravděpodobnost výběru nejlepšího jedince
 - ∘ Velký ⇒ nebezpečí **degenerace** populace
 - \circ Malý \Rightarrow pomalá konvergence
 - Šum vnesený mutací může převážit nad pomalou konvergencí ⇒ divergence

Způsob selekce

- Ruletový výběr:
 - Pro každého jedince políčko v ruletě
 - o Rozevření políčka odpovídá žádané pravděpodobnosti výběru
 - $\circ \ m$ náhodných voleb, m prvků, jeden může být vybrán vícekrát
- Univerzální stochastické vzorkování:
 - Ruleta stejná jako výše
 - Odměří se náhodný úhel a vybere se prvek
 - \circ Dále se od tohoto bodu odměří (m-1)-krát úhel $rac{2\pi}{m}$ a vždy se vybere prvek

U rulety často hrozí **degenerace** -- potřeba nadržovat slabším:

Přepočítání zdatnosti lineární funkce (scaling)

Použití pořadí ve zdatnosti místo zdatnosti (ranking)

• Turnajový výběr:

- \circ Náhodně vybrat r jedinců (turnaj) a z něj nejlepšího
- Opakovat až do naplnění populace
- Selekční tlak řízen velikostí turnaje:
 - jeden jedinec: žádný tlak
 - celá populace: jistota výběru nejlepšího

Zkrácený výběr:

- \circ Dán práh 0
- \circ Z populace M jedinců vybráno pM nejzdatnějších
- \circ Každý vstupuje do rekombinace 1/p-krát
- o Informace obsažená ve zdatnosti redukována na jediný bit

Řízení populace

- Náhrada en bloc: nová generace vzniklá křížením nahradí starou
- ullet Částečná náhrada: z μ rodičů a λ potomků se vybere μ členů nové populace
- Ustálená populace: po křížení potomek (potomci) nahradí nejslabší(ho) jedince
- Přechodové formy: mezi en bloc a ustálenou populací

Elitismus: několik málo nejlepších jedinců automaticky přejde do další generace

Nutná velikost populace roste exponenciálně s velikostí problému

Malá populace (10 jedinců) -- ztráta diverzity

Obtížné problémy: 100 jedinců

Podmínky ukončení

- Prvný počet generací
- Příznaky konvergence -- změna průměrné zdatnosti mezi generacemi, rozložení zdatnosti v generaci

Omezující podmínky

Co když výsledek genetického algoritmu není řešením?

- Relaxace: omezující podmínky převedeny na penalizaci
 - Velikost penalizace: každé řešení lepší než ne-řešení VS minimální penalizace zabraňující akceptaci ne-řešení
 - o Způsob: vzdálenost od řešení, odhad ceny opravy, počet porušených podmínek
- Trest smrti: zahození výsledku
 - Sníží dostupnost stavového prostoru
- Dekodéry: volba reprezentace tak, aby každý genotyp byl řešením

Reprezentace stavebních bloků

Schéma: To, co mají chromozómy společné (výběr bitů z řetězce)

n genů $\Rightarrow 2^n$ schémat

Jiný pohled: populace jako množina schémat

Fast Messy GA: Jedinec (schéma) kódován jako pozice:hodnota | pozice:hodnota |

Zbytek nespecifikovaných informací doplněn z referenčního jedince

7 z 7