Machine Learning para Inteligencia Artificial

Universidad ORT Uruguay

26 de Marzo, 2025

Francis Galton

[...] It is easy to see that co-relation must be the consequence of the variations of the two organs being partly due to common causes. If they were wholly due to common causes, the co-relation would be perfect, as is approximately the case with the symmetrically disposed parts of the body. If they were in no respect due to common causes, the co-relation would be nil [...]

Scatterplot

- Par de variables continuas z = (x, y)
- Los valores de x son $\{x_1, \ldots, x_N\}$
- Los valores de y son $\{y_1, \ldots, y_N\}$
- \blacksquare Un punto por cada par $z_i = (x_i, y_i)$

Un grueso bosquejo

- \blacksquare Si hay asociación fuerte entre x e y, saber una ayuda a predecir la otra.
- Si hay asociación débil, información sobre una no ayuda a predecir la otra.

Covarianza

$$\operatorname{\mathsf{cov}}\left[x,y
ight] = \operatorname{\mathsf{Promedio}}_{(i,j)}\left\{(x_i - x_j)(y_i - y_j)\right\}$$

Ejemplo

- Ana y Beto deben tomar dos omnibus para volver del trabajo a sus casas.
- El 1ero es común.
- Luego cada uno toma un omnibus diferente
- Llamemos t_A y t_B el tiempo que demoran en llegar a sus respectivas casas.
- Pregunta: ¿Son t_A y t_B independientes?

Calculemos la covarianza entre t_A y t_B :

Tenemos $t_A = t_C + z_A$ y $t_B = t_C + t_B$ con t_C , z_A , y z_B independientes.

 \blacksquare Se puede ver que cov $[t_A,t_B]=$ var $[t_C]=\sigma^2>0$

La covarianza capta la variabilidad comnún entre t_A y t_B .

Correlación

- La correlación $r \in [-1, 1]$ es la covarianza de las variables estandarizadas
- Estandarizar:

$$x_i \leftarrow \frac{x_i - \bar{x}}{\sigma_x}$$

■ En el ejemplo anterior, si var $[z_A] = var[z_B] = 1$:

$$r = \frac{\sigma^2}{1 + \sigma^2}$$

■ ¿Interpretación? ¿Cuándo $r \approx 1$? ¿y cuándo $r \approx 0$?