A számítástudomány alapjai 2022. I. félév

12. gyakorlat. Összeállította: Fleiner Tamás (fleiner@cs.bme.hu)

Tudnivalók

Def: Az A^B mátrix az $A \in \mathbb{R}^{n \times n}$ mátrix balinverze, ha $A^B A = I_n$, az A^J mátrix pedig az A jobbinverze, ha $AA^J = I_n$. **Állítás:** Ha A^B és A^J az A bal- ill. jobbinverze, akkor $A^B = A^J$.

Állítás: Ha A-nak van balinverze, akkor (1) A^B előáll A-ból ESÁ-okkal ill. (2) az $(A|I_n)$ mátrixból ESÁ-okkal kapott RLA mátrix $(I_n|A^B)$.

Ha A-nak nincs balinverze, akkor az RLA mátrixban van v1 az n-dik oszloptól jobbra.

Állítás: Tfh A négyzetes mátrix. Ekkor (A-nak van balinverze) \iff (A sorai lin.ftn-ek) \iff $(|A| \neq 0) \iff (|A^{\top}| \neq 0) \iff (A$ oszlopai lin.ftn-ek) \iff (A-nak van jobbinverze)

Def: Tetsz. A négyzetes mátrix esetén akkor $A^{-1} = A^B = A^J$ jelöli A inverzét (ha van).

Ha A-nak van inverze, akkor A reguláris (invertálható), ha A-nak nincs inverze, akkor A szinguláris. Állítás: Tfh $A \in \mathbb{R}^{n \times n}$ és a B mátrix i-dik sorának j-dik eleme az $A_{j,i}$ előjeles aldetermináns $\forall 1 \leq i \leq n, \ \forall 1 \leq j \leq n$. Ekkor $AB = |A|I_n$.

Köv.: Ha A reguláris, akkor $A^{-1} = \frac{1}{|A|}B$, ahol B az előző állításban definiált mátrix.

Def: Az A mátrix s(A) sorrangja (o(A) oszloprangja) az A lin.ftn sorainak (oszlopainak) max. száma, d(A) determinánsrangja a legnagyobb reguláris négyzetes részmátrixa sorainak száma.

Megfigyelés: (1) $o(A) = s(A^{\top}) \ \forall A$, (2) s(A) ill. o(A) az A sorai ill. oszlopai által generált altér dimenziója $\forall A$. (3) Ha A RLA, akkor s(A) = o(A) = v1-ek száma. (4) ESÁ során nem változtat sem a sor-, sem az oszloprangon. (5) $s(A) = o(A) \ \forall A$.

Állítás: $(s(A) \ge k) \iff (d(A) \ge k)$

Köv.: $s(A) = o(A) = d(A) \ \forall A$.

Def: Az A mátrix rangja r(A) = s(A).

Rang meghatározása: Az A-ból ESÁ-okkal képzett (R)LA mátrix v1-ei száma.

Lemma: (1) Ha $A, B \in \mathbb{R}^{n \times k}$, akkor $r(A+B) \leq r(A) + r(B)$.

(2) Ha $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times \ell}$, akkor $r(AB) \leq \min(r(A), r(B))$.

Gyakorlatok

- 1. Határozzuk meg a $\begin{pmatrix} 4 & 5 & 1 \ 3 & 4 & 0 \ -2 & 1 & 6 \end{pmatrix}$ ill. $\begin{pmatrix} 7 & 2 & -3 \ 4 & 1 & -7 \ 6 & 2 & 7 \end{pmatrix}$ mátrixok inverzét mindkét tanult módszerrel. Hogyan lehet gyorsan eldönteni egy $A \in \mathbb{Z}^{n \times n}$ mátrixról, hogy van-e inverze, és ha van, akkor azt, hogy igaz-e, hogy az inverz minden eleme egész szám?
- 2. Határozzuk meg a $\begin{pmatrix} 4 & 5 & 2 & 1 & 4 \\ 3 & 4 & 1 & 0 & 1 \\ -2 & 1 & -8 & 6 & 4 \\ 1 & 0 & 3 & 0 & 3 \end{pmatrix}$ ill. $\begin{pmatrix} 5 & 15 & -30 & 20 \\ 1 & 0 & -21 & 10 \\ -2 & -8 & p & 2p 8 \\ 2 & 9 & 3 & p \end{pmatrix}$ mátrixok rangját a tanult módszerrel. Hogyan találjuk meg ezeknek a mátrixoknak egy lehető legnagyobb méretű reguláris részmátrixát?
- 3. Tfh az AA^{\top} és az $A^{\top}A$ mátrixok mindegyike reguláris. Bizonyítsuk be, hogy A is reguláris.
- 4. Tfh $A, B \in \mathbb{R}^{n \times n}$ és $|A| \neq 0$. Bizonyítsuk be, hogy vannak olyan C és D mátrixok, amikre CA = B = AD teljesül. Igazoljuk azt is, hogy a fenti C és D mátrixok egyértelműek.
- 5. Tegyük fel, hogy a 10×9 méretű A mátrix első 7 oszlopa is és az első 6 sora is lin.ftn rendszert alkot. Bizonyítsuk be, hogy kiválasztható A-nak egy sora és 7 oszlopa úgy, hogy az első 6 sor, a kiválasztott sor, valamint a 7 kiválasztott oszlop által meghatározott részmátrix determinánsa 0-tól különböző legyen.
- 6. Legyen $A \in \mathbb{R}^{33 \times 44}$ mátrix, amire $|AA^{\top}| = 42$. Határozzuk meg az $|A^{\top}A|$ determináns értékét!
- 7. Bizonyítsuk be, hogy ha egy mátrix egy elemét megváltoztatjuk, akkor a mátrix rangja legfeljebb 1-gyel változik.
- 8. Tfh $A \in \mathbb{R}^{100 \times 100}$ és r(A) = 24. Bizonyítsuk be, hogy megváltoztatható A-nak 18 eleme úgy, hogy a kapott mátrix rangja 42 legyen.
- 9. Igaz-e, hogy minden pozitív rangú mátrixnak van olyan eleme, ami megváltoztatható úgy, hogy csökkenjen a rang? Igaz-e, hogy minden olyan mátrixnak, aminek a rangja kisebb a sorai és az oszlopai számánál is, van olyan eleme, amit ha megváltoztatunk, akkor növekszik a rang?