In [130]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```

In [580]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\madrid_2014.csv")
a
```

Out[580]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2014- 06-01 01:00:00	NaN	0.2	NaN	NaN	3.0	10.0	NaN	NaN	NaN	3.0	NaN	NaN
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	1.3
2	2014- 06-01 01:00:00	0.3	NaN	0.1	NaN	2.0	6.0	NaN	NaN	NaN	NaN	NaN	1.1
3	2014- 06-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	79.0	NaN	NaN	NaN	NaN	NaN
4	2014- 06-01 01:00:00	NaN	NaN	NaN	NaN	1.0	6.0	75.0	NaN	NaN	4.0	NaN	NaN
210019	2014- 09-01 00:00:00	NaN	0.5	NaN	NaN	20.0	84.0	29.0	NaN	NaN	NaN	NaN	NaN
210020	2014- 09-01 00:00:00	NaN	0.3	NaN	NaN	1.0	22.0	NaN	15.0	NaN	6.0	NaN	NaN
210021	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	13.0	70.0	NaN	NaN	NaN	NaN	NaN
210022	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	38.0	42.0	NaN	NaN	NaN	NaN	NaN
210023	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	26.0	65.0	11.0	NaN	NaN	NaN	NaN

210024 rows × 14 columns

◀

In [581]:

a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210024 entries, 0 to 210023
Data columns (total 14 columns):
    Column
             Non-Null Count
                             Dtype
    -----
---
             -----
                             ----
0
             210024 non-null object
    date
    BEN
1
             46703 non-null
                            float64
2
    CO
             87023 non-null
                           float64
3
    EBE
             46722 non-null float64
4
    NMHC
             25021 non-null float64
5
             209154 non-null float64
    NO
    NO_2
             209154 non-null float64
6
    0_3
             121681 non-null float64
7
8
    PM10
             104311 non-null float64
9
    PM25
             51954 non-null float64
             87141 non-null float64
10 SO_2
11
   TCH
             25021 non-null float64
             46570 non-null float64
12
    TOL
    station 210024 non-null int64
13
dtypes: float64(12), int64(1), object(1)
```

memory usage: 22.4+ MB

In [582]:

```
b=a.fillna(value=104)
b
```

Out[582]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн
0	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	3.0	10.0	104.0	104.0	104.0	3.0	104.00
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36
2	2014- 06-01 01:00:00	0.3	104.0	0.1	104.00	2.0	6.0	104.0	104.0	104.0	104.0	104.00
3	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	1.0	6.0	79.0	104.0	104.0	104.0	104.00
4	2014- 06-01 01:00:00	104.0	104.0	104.0	104.00	1.0	6.0	75.0	104.0	104.0	4.0	104.00
210019	2014- 09-01 00:00:00	104.0	0.5	104.0	104.00	20.0	84.0	29.0	104.0	104.0	104.0	104.00
210020	2014- 09-01 00:00:00	104.0	0.3	104.0	104.00	1.0	22.0	104.0	15.0	104.0	6.0	104.00
210021	2014- 09-01 00:00:00	104.0	104.0	104.0	104.00	1.0	13.0	70.0	104.0	104.0	104.0	104.00
210022	2014- 09-01 00:00:00	104.0	104.0	104.0	104.00	3.0	38.0	42.0	104.0	104.0	104.0	104.00
210023	2014- 09-01 00:00:00	104.0	104.0	104.0	104.00	1.0	26.0	65.0	11.0	104.0	104.0	104.00

210024 rows × 14 columns

In [583]:

```
b.columns
```

Out[583]:

In [584]:

c=b.head(10)
c

Out[584]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	3.0	10.0	104.0	104.0	104.0	3.0	104.00	104.0
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	1.3
2	2014- 06-01 01:00:00	0.3	104.0	0.1	104.00	2.0	6.0	104.0	104.0	104.0	104.0	104.00	1.1
3	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	1.0	6.0	79.0	104.0	104.0	104.0	104.00	104.0
4	2014- 06-01 01:00:00	104.0	104.0	104.0	104.00	1.0	6.0	75.0	104.0	104.0	4.0	104.00	104.0
5	2014- 06-01 01:00:00	0.1	0.4	0.1	104.00	1.0	10.0	83.0	7.0	104.0	2.0	104.00	0.2
6	2014- 06-01 01:00:00	0.1	0.2	0.1	0.23	1.0	5.0	80.0	4.0	3.0	2.0	1.21	0.1
7	2014- 06-01 01:00:00	104.0	104.0	104.0	104.00	1.0	1.0	86.0	104.0	104.0	104.0	104.00	104.0
8	2014- 06-01 01:00:00	104.0	0.3	104.0	104.00	5.0	22.0	68.0	104.0	104.0	4.0	104.00	104.0
9	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	1.0	4.0	104.0	14.0	104.0	1.0	104.00	104.0
4.4			_										

In [585]:

```
d=c[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
    'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
d
```

Out[585]:

	BEN	СО	EBE	NMHC	NO_2	O_3	PM10	SO_2	тсн	TOL	station
0	104.0	0.2	104.0	104.00	10.0	104.0	104.0	3.0	104.00	104.0	28079004
1	0.2	0.2	0.1	0.11	17.0	68.0	10.0	5.0	1.36	1.3	28079008
2	0.3	104.0	0.1	104.00	6.0	104.0	104.0	104.0	104.00	1.1	28079011
3	104.0	0.2	104.0	104.00	6.0	79.0	104.0	104.0	104.00	104.0	28079016
4	104.0	104.0	104.0	104.00	6.0	75.0	104.0	4.0	104.00	104.0	28079017
5	0.1	0.4	0.1	104.00	10.0	83.0	7.0	2.0	104.00	0.2	28079018
6	0.1	0.2	0.1	0.23	5.0	80.0	4.0	2.0	1.21	0.1	28079024
7	104.0	104.0	104.0	104.00	1.0	86.0	104.0	104.0	104.00	104.0	28079027
8	104.0	0.3	104.0	104.00	22.0	68.0	104.0	4.0	104.00	104.0	28079035
9	104.0	0.2	104.0	104.00	4.0	104.0	14.0	1.0	104.00	104.0	28079036

In [586]:

```
d.plot.line()
```

Out[586]:

<AxesSubplot:>

In [587]:

sns.pairplot(d)

Out[587]:

<seaborn.axisgrid.PairGrid at 0x11877417580>

In [588]:

```
x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

In [589]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [590]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[590]:

LinearRegression()

In [591]:

```
print(lr.intercept_)
```

1.2513711292464365

In [592]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[592]:

Co-efficient

BEN -4.754873e-04

CO 1.093141e-16

EBE 4.754873e-04

NMHC 9.879676e-01

NO_2 -1.890190e-17

In [593]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[593]:

<matplotlib.collections.PathCollection at 0x118834f6340>


```
In [594]:
print(lr.score(x_test,y_test))
0.9999897573255686
In [595]:
from sklearn.linear_model import Ridge,Lasso
In [596]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[596]:
Ridge(alpha=10)
In [597]:
rr.score(x_test,y_test)
Out[597]:
0.9999757641054597
In [598]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[598]:
Lasso(alpha=10)
In [599]:
la.score(x_test,y_test)
Out[599]:
```

0.9998705926381068

In [600]:

```
a1=b.head(7000)
a1
```

Out[600]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	7
0	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	3.0	10.0	104.0	104.0	104.0	3.0	104.00	10
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	
2	2014- 06-01 01:00:00	0.3	104.0	0.1	104.00	2.0	6.0	104.0	104.0	104.0	104.0	104.00	
3	2014- 06-01 01:00:00	104.0	0.2	104.0	104.00	1.0	6.0	79.0	104.0	104.0	104.0	104.00	10
4	2014- 06-01 01:00:00	104.0	104.0	104.0	104.00	1.0	6.0	75.0	104.0	104.0	4.0	104.00	10
6995	2014- 06-13 04:00:00	104.0	0.2	104.0	104.00	1.0	16.0	63.0	104.0	104.0	104.0	104.00	10
6996	2014- 06-13 04:00:00	104.0	104.0	104.0	104.00	3.0	18.0	104.0	22.0	104.0	4.0	104.00	10
6997	2014- 06-13 04:00:00	104.0	104.0	104.0	104.00	2.0	17.0	104.0	22.0	15.0	104.0	104.00	10
6998	2014- 06-13 04:00:00	104.0	104.0	104.0	104.00	1.0	14.0	104.0	29.0	14.0	104.0	104.00	10
6999	2014- 06-13 04:00:00	104.0	104.0	104.0	104.00	3.0	14.0	59.0	104.0	104.0	104.0	104.00	10

7000 rows × 14 columns

In [601]:

```
e=a1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3', 'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [602]:

```
f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [603]:
h=StandardScaler().fit_transform(f)
In [604]:
logr=LogisticRegression(max_iter=10000)
logr.fit(h,g)
Out[604]:
LogisticRegression(max_iter=10000)
In [605]:
from sklearn.model_selection import train_test_split
h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [606]:
i=[[10,20,30,40,50,60,11,22,33,44,55]]
In [607]:
prediction=logr.predict(i)
print(prediction)
[28079060]
In [608]:
logr.classes_
Out[608]:
array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
       28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
       28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
       28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
      dtype=int64)
In [609]:
logr.predict_proba(i)[0][0]
Out[609]:
0.0
In [610]:
logr.predict_proba(i)[0][1]
Out[610]:
0.0
```

```
In [611]:
logr.score(h_test,g_test)
Out[611]:
0.9476190476190476
In [612]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[612]:
ElasticNet()
In [613]:
print(en.coef_)
[ 0.0000000e+00
                  0.00000000e+00 2.84958761e-04 9.86978827e-01
 -0.00000000e+00]
In [614]:
print(en.intercept_)
1.318344130042405
In [615]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.9999838439802928
In [616]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(h_train,g_train)
Out[616]:
RandomForestClassifier()
In [617]:
parameters={'max_depth':[1,2,3,4,5],
 'min_samples_leaf':[5,10,15,20,25],
 'n_estimators':[10,20,30,40,50]
 }
```

```
In [618]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(h_train,g_train)
```

Out[618]:

In [619]:

```
grid_search.best_score_
```

Out[619]:

0.9938775510204082

In [620]:

```
rfc_best=grid_search.best_estimator_
```

In [621]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,50))
plot_tree(rfc_best.estimators_[2],filled=True)
```

```
alue = [204, 201, 230, 170, 206, 172, 164, 205, 213, 201\n211, 211, 217,
218, 199, 197, 243, 206, 209, 203\n190, 204, 218, 208]'),
Text(1116.0, 2038.5, 'X[6] <= 0.927\ngini = 0.797\nsamples = 628\nvalue
0, 0, 0, 0]'),
Text(697.5, 1585.5, 'X[3] <= -1.141\ngini = 0.747\nsamples = 480\nvalue
0, 0, 0]'),
Text(279.0, 1132.5, 'X[9] <= -2.0  ngini = 0.493 \nsamples = 230 \nvalue =
0]'),
Text(139.5, 679.5, 'gini = 0.0\nsamples = 107\nvalue = [0, 0, 0, 0, 0,
0, 151, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(418.5, 679.5, 'X[3] \leftarrow -2.661  | 0.039 | nsamples = 123 | nvalue =
0]'),
Text(279.0, 226.5, 'gini = 0.0\nsamples = 117\nvalue = [0, 193, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(558.0, 226.5, 'gini = 0.5\nsamples = 6\nvalue = [0, 4, 0, 0, 0, 0, 0, 0]
4. 0. 0. 0. 0. 0. 0. 0\n0. 0. 0. 0. 0. 0. 0. 0. 0. 01').
```

In []: