Problem 4: Prove Lemma 4.1. from the notes:

Solution (by Ferran Espuña): Let us recall the statement of the lemma: Let $\mathbb{G}_{n,p(n)}$ be the random graph where $p(n) = \frac{c}{n}$ and c > 1 is a constant. Let us fix a vertex v and start a BFS from v, exploring the graph in the order $x_1 = v$, $x_2 \in \mathcal{N}(v), \cdots$. Let A_k be the set of vertices in the BFS queue after k steps (that is, those that have appeared as neighbors of some vertex x_t for $t \leq k$ but are not themselves of the form x_t for some $t \leq k$). For example, $A_0 = \{v = x_1\}, A_1 = \mathcal{N}(x_1) \setminus \{x_1\} = \mathcal{N}(x_1), A_2 = (\mathcal{N}(x_1) \cup \mathcal{N}(x_2)) \setminus \{x_1, x_2\}, \cdots$

Lemma. With this notation, a.a.s., either:

- (1) the process stops before k^- steps, or
- (2) $|A_k| \ge \frac{c-1}{2}k$ for all $k \in [k^-, k^+]$ and thus the process survives until k^+ .

Where $k^{-} = M(c) \log(n)$ and $k^{+} = n^{\frac{2}{3}}$.

Proof. We will assume condition (1) does not hold, and we will bound the probability of condition (2) failing for the first time at some $k \in [k^-, k^+]$. For this, note that condition (2) holding for all previous steps implies that the process has not stopped before k.

Let Z_k be the set of vertices seen up to step k. That is, $Z_k = A_k \cup \{x_1, \dots, x_k\}$ so that $|Z_k| = |A_k| + k$. We will shift our focus to Z_k and bound the probability of $|Z_k| < \frac{ck}{2} < \frac{c-1}{2}k + k$. Because we have only conditioned on the total number of seen vertices being high, the number of vertices in Z_k distributed at least as a binomial where each vertex has k independent chances of being seen (once at each step k' up to k). That is,

(1)
$$|Z_k| \ge \overline{Z_k} \sim \text{Binom}\left(n, 1 - (1-p)^k\right)$$

with expectation

(2)
$$\mathbb{E}\left(\overline{Z_k}\right) = n\left(1 - (1-p)^k\right)$$

To apply Chernoff's bound, we need to bound above

(3)
$$1 - \delta = f(k) := \frac{ck/2}{n(1 - (1 - p)^k)} = \frac{ck}{2n(1 - (1 - c/n)^k)} \le \frac{ck}{2n(1 - e^{-ck/n})}$$

Claim. This bound is increasing in k

Proof. Differentiating the right-hand side of (3) with respect to k using the quotient rule, we get the numerator

(4)
$$\frac{p}{2} \left(\left(1 - e^{-pk} \right) - k \left(pke^{-pk} \right) \right) = \frac{p}{2} \left(1 - e^{-pk} \left(1 + pk \right) \right)$$

Which equals 0 when k=0 and itself is increasing in k:

(5)
$$\frac{d}{dk}e^{-pk}(1+pk) = -pe^{-pk}(1+pk) + pe^{-pk} = -pke^{-pk} < 0$$

Plugging in $k = k^+$, we get, as $n \to \infty$,

(6)
$$f(k) \le \frac{cn^{2/3}}{2n\left(1 - e^{-cn^{-1/3}}\right)} \le \frac{cn^{-1/3}}{(2 - \epsilon)\left(cn^{-1/3}\right)} = \frac{1}{2 - \epsilon} < 1$$

For some small $\epsilon > 0$.

Remark. This bound also works for any $k^+ = o(n)$, not just $n^{\frac{2}{3}}$.

Anyway, the δ in Chernoff's bound is bounded below by a positive constant, and we can apply:

(7)
$$\mathbb{P}\left(\overline{Z_k} < \frac{ck}{2}\right) = \mathbb{P}\left(\overline{Z_k} < (1 - \delta)\mathbb{E}(\overline{Z_k})\right) \le e^{-\frac{\delta^2}{2}\mathbb{E}(\overline{Z_k})}$$

Finally, we will union bound over all $k \in [k^-, k^+]$. Because $k \ge k^-$, each term is at most

(8)
$$e^{-\frac{\delta^2}{2}\mathbb{E}(\overline{Z_{k^-}})} \le e^{-\frac{\delta^2 c k^-}{4}} \le e^{-\frac{c\delta^2 M(c) \log(n)}{4}} = n^{-\frac{cM(c)\delta^2}{4}}$$

The probability of the condition failing at any point in $[k^-,\,k^+]$ is at most

(9)
$$n^{\frac{2}{3}}n^{-\frac{cM(c)\delta^2}{4}} = n^{\frac{2}{3}-\frac{cM(c)\delta^2}{4}} = n^{\frac{8-3cM(c)\delta^2}{12}}$$

For this to be o(1), we need $8-3cM(c)\delta^2$ to be negative. To give a sufficient condition, take $\epsilon=\frac{1}{2}$ Then $\delta=1-\frac{2}{3}=\frac{1}{3}$. We need $8-\frac{cM(c)}{3}<0$, which is equivalent to $M(c)>\frac{24}{c}$.