Hard capacitated k-facility location problem Seminarski rad u okviru kursa Matematičko programiranje i optimizacija

Matematički fakultet

Student: Miloš Manić
 1087/2014Problem br:14

Metode: Genetski algoritmi, iterativna lokalna pretraga i njihova hibridizacija

9. april 2015.

Sažetak

Sadržaj

1	Pro	blem	2
	1.1	Matematička formulacija problema	2
	1.2	Primena	2
	1.3	Postojeći načini rešavanja	3
2	Het	ıristike	3
	2.1	Genetski algoritmi	3
		2.1.1 Prilagođeni genetski algoritam za rešavanje CFLP	4
	2.2	Iterativna lokalna pretraga	4
		2.2.1 Prilagođena iterativna lokalna pretraga za rešavanje	
		CFLP	5
	2.3	Hibridizacija	5
3	Eks	perimentalni rezultati	6
	3.1	Instance	6
	3.2	Rezultati	7
	3.3	Analiza rezultata	14
4	Zak	ljučak	14
Li	tera	tura	14

Problem 1

Za Capacitated k-facility location problem(CKFL) dat je skup klijenata D i skup potencijalnih postrojenja (lokacija na kojima se može izgraditi postrojenje F[1].

- a) Svako postrojenje $i \in F$ ima kapacitet s_i
- b) Izgradnja postrojenja $i \in F$ košta f_i
- c) Svaki klijent $j \in D$ ima potražnju d_i
- d) Slanje x_{ij} jedinica robe od postrojenja i do klijenta j košta $c_{ij}x_{ij}$, gde je c_{ij} jedinicna cena proporcionalna rastojanju između i i j
- e) Na svakoj potencijalnoj lokaciji $i \in F$ može se izgraditi najviše jedno postrojenje
- f) Bez gubitka opštosti može se smatrati da su cene izgradnje f_i , kapaciteti s_i , i potražnje d_i celi brojevi

Cilj je opslužiti sve klijente koristeći najviše k postrojenja sa što manjim(minimalnim) troškovima izgradnje postrojenja i dopremanja robe.

1.1 Matematička formulacija problema

CKFL se može formulisat kao sledeći Mixed Integer Problem(MIP) gde promenljiva x_{ij} označava količinu potražnje klijenta j koja je opslužena postrojenjem i, a y_i označava da li je postrojenje i otvorenoi[1]:

$$\min \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i \tag{1}$$

$$min \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij} + \sum_{j \in F} f_i y_i$$

$$subject to: \sum_{i \in F} x_{ij} = d_j, \forall j \in D,$$

$$\sum_{j \in D} x_{ij} \leq s_i y_i, \forall i \in F,$$

$$(2)$$

$$\sum_{i \in D} x_{ij} \le s_i y_i, \forall i \in F, \tag{3}$$

$$\sum_{i \in F} y_i \le k,\tag{4}$$

$$x_{ij} \ge 0, \forall i \in F, \forall j \in D,$$
 (5)

$$y \in \{0, 1\}, \forall i \in F \tag{6}$$

1.2Primena

Kao što ime kaže ovakvi problemi se javljaju prilikom planiranja postavljanja postrojenja i prostornog planiranja.

Neke od primera primena obuhvataju[8]:

- Optimizacija rasporeda zgrada u fabričkom postrojenju
- Nalaženje rasporeda skladišta nekog prodajnog lanca
- Planiranje lokacija bitnih gradskih ustanova (bolnice, vatrogasne sta- $\mathrm{nice}\,\dots)$
- Planiranje lokacija baznih stanica za bežične mreže
- Raspored elemenata na čipu radi optimalne jačine signala prilikom VLSI dizajna

1.3 Postojeći načini rešavanja

Pored korišćenja egzaktnih metoda kao što su metode linearnog programiranja, problem je rešavan raznim heuristikama. Neke od najkorišćenijih pristupa su[7]:

- Lokalna pretraga i varijacije
- Gramzive heuristike
- Tabu pretraga
- Genetski algoritmi

2 Heuristike

U radu će se primeniti jedna P-heuristika, genetski algoritam, jedna S-heuristika, iterativna lokalna pretraga, i jednu hibridna, genetski algoritam poboljšan iterativnom lokalnom pretragom na generacijskom nivou.

2.1 Genetski algoritmi

Genetski algoritam je metaheuristika inspirisana procesom prirodne selekcije koji pripada klasi evolucionih algoritama. Bazira se na operatorima koji su inspirisani prirodom kao što su mutacija, ukrštanje i selekcija[5].

Genetski algoritam radi nad populacijom kandidata rešenja (jedinke, rešenja, fenotipi) koja imaju određene karakteristike koje se predstavljaju nekim kodiranjem (uobičajeno nizom nula i jedinica) koje se naziva genotip. [9] Prilagođenost (eng. fitness).

Opšti koraci u genetskom algoritmu su sledeći:

1. Inicijalizacija:

Generisanje početnih rešenja(jedinki) koje će se naknadno poboljšavati kroz algoritam,

2. Mutacija:

Menjanje jednog ili više nasumičnih vrednosti genotipa neke jedinke. Primeri:

- bit string mutacija: bitovi genotipa se nasumično menjaju sa određenom verovatnoćom na nasumičnim mestima
- uniformna mutacija: menja se vrednost izabrane jedinke za novu nasumično generisanu jedinku
- Swap mutacija: razmenjuju se vrednosti 2 proizvoljne lokacije
- Scramble: nekoliko spojenih pozicija se permutuje

3. Selekcija:

Odabir određenih jedinki koje će učestvovati u ukrštanju. Prilagođenost, kao i u prirodi ima veliki uticaj na selekciju. Primeri:

- Rulet selekcija: Svaka jedinka dobije verovatnoću odabira proporcionalnu njenoj prilagođenosti
- Rangovska selekcija: Svaka jedinka dobije verovatnoću odabira proporcionalnu njenom rangu prilagođenosti
- Stohastičko univerzalno sampliranje: Svaka jedinka je jednako verovatno odabrana
- Turnirska selekcija: Za svaku odabranu jedinku se održava turnir u kome pobeđuje najprilagođenija jedinka

4. Ukrštanje

Izabrane jedinke se ukrštaju tako što se kombinuju njihovi genotipi za dobijanje novih jedinki. Primeri:

- one-point ukrštanje: genomi dve jedinke se seku u jednoj tački i razmenjuju se sadržaji genome- levi deo prve jedinke sa levim druge i desni prve sa desnim druge
- n-point ukrštanje: genotipi se seku u n tačaka i odgovarajući delovi se uzimaju za rezultujuću jedinku naizmenično
- uniformno ukrštanje: za svaku poziciju u reprezentaciji se nasumično bira da li će da bude uzeta od jednog ili drugog roditelja

5. Prekid:

Proces se prekida kada je neki kriterijum prekida ispunjen. Neki od čestih kriterijuma:

- Fiksni broj generacija je dostignut,
- Vrednost prilagođenosti je dostigla plato, i naredne iteracije ne daju bolje rezultate,
- Neki drugi kriterijum je dostignut(dovoljno dobro rešenje je nađeno),
- Resursi su istrošeni(memorija, vreme izvršavanja ...),
- Ručni prekid

Obično se koristi neka kombinacija navedenih kriterijuma i drugih.

Koraci 2-4 se ponavljaju sve dok se ne ispuni neki kriterijum prekida.

2.1.1 Prilagođeni genetski algoritam za rešavanje CFLP

2.2 Iterativna lokalna pretraga

Iterativna lokalna pretraga(eng. iterated local search) je heuristika koja generiše niz rešenja generisanih unutrašnjom heuristikom(neka varijanta lokalne pretrage), čime se dobijaju kvalitetnija rešenja od prostog ponavljanja te heuristike[4]. Proces se sastoji iz dva globalna koraka:

- 1. Perturbacija rešenja dobijenog lokalnom pretragom
- 2. Lokalna pretraga počev od modifikovanog rešenja

Ovi koraci se ponavljaju sve dok se ne dostigne neki kriterijum zaustavljanja(fiksni broj iteracija, dostignut plato minimalne vrednosti...)

Na kraju svake iteracije je izabrana jedna instanca između modifikovane i instance dobijene u prethodnoj iteraciji. Na osnovu kriterijuma prihvatanja instanci se formira putanja $(eng.\ walk)$ do izabranog najboljeg rešenja, neki od čestih izbora su:

- Better: Izabrati uvek bolje rešenje
- $\bullet\,$ Random: Izabrati uvek novo rešenje
- Restart: Generisati novo rešenje ako se rešenje nije poboljšalo u prethodnih
 niteracija
- $\bullet\,$ Nasumično izabrati jedno od ponuđenih rešenja iz prethodnih n iteracija.

Prva dva primera kriterijuma prihvatanja su određena samo trenutnim izborom i na njih ne utiču prethodne iteracije. Putanje koje se prave takvim kriterijumima se zovu Markovljeve putanje (eng. Markovian walks,

 $Markovian\ chains)$. Pošto poslednja dva primera uključuju u odluku prethodnih n iteracija, oni ne prave Markovljeve putanje.

Snaga i oblik perturbacije su takođe bitni i od njih zavisi uspešnost iterativne lokalne pretrage. Iterativna lokalna pretraga izbegava zadržavanje na istom lokalnom optimumu tako što primenjuje perturbacije. Snaga perturbacije treba biti dovoljna da ne možemo da se lokalnom pretragom vratimo na prethodno rešenje, dakle potrebno je izvršiti modifikaciju koja je većeg reda od lokalne pretrage. S druge strane, ako snaga perturbacije bude prevelika, iterativna lokalna pretraga se ponaša kao multistart pretraga (eng. Multistart local search), pa se bolja rešenja nalaze sa manjom verovatnoćom.

Neki od primera za perturbacije nad binarnom reprezentacijom rešenja:

- n-flip:Komplementiranje n nasumičnih bitova u reprezentaciji rešenja(U zavisnosti od lokalne pretrage, na primer ako je prostor lokalne pretrage n-flip, tada perturbacija mora da bude bar n+1-flip)
- n-switch: zamena vrednosti dva nasumična bita međusobno n puta
- permutacija n nasumičnih bitova
- . .

Takodje, perturbacije mogu biti adaptivne tako što se snaga perturbacije određuje na osnovu prethodnih rešenja, recimo, ako se rešenje nije poboljšalo nekoliko iteracija, povećava se snaga iteracije(recimo sa 2-flip na 3-flip).

Dakle, procedura iterativne lokalne pretrage na visokom nivou može se opisati na sledeći način:

Kriterijumi zaustavljanja mogu da budu bazirani na broju iteracija, vremenu ili nekom drugom resursu, platou minimalne vrednosti, itd.

${f 2.2.1}$ Prilagođena iterativna lokalna pretraga za rešavanje CFLP

2.3 Hibridizacija

Genetski algoritmi i iterativna lokalna pretraga se mogu kombinovati na nekoliko načina. Jedan od njih je korišćenje genetskog algoritma za dobijanje populacije rešenja pa korišćenje iterativne lokalne pretrage za poboljšavanje tih rešenja. Drugi način je u poboljšavati deo svake generacije iterativnom lokalnom pretragom i ubacivati poboljšane jedinke u generaciju, takva varijacija genetskog algoritma se zove memetski algoritam(eng. Memetic algorithm)[6]. U ovom radu su prikazani rezultati obe metode. U prvoj metodi se primenjivala iterativna lokalna pretraga na sve jedinke rezultujuće populacije genetskog algoritma. U memetskom algoritmu je zbog performansi izvršavana iterativna lokalna pretraga samo na prvih 10 jedinki, uz pamćenje vrednosti za jedinke koje se održe kroz generacije.

3 Eksperimentalni rezultati

Opisani metodi su implementirani u jeziku c# i .NET okruženju. Za rad je korišćen Visual Studio Ultimate 2013. Za dobijanje egzaktnog rešenja korišćen je IBM ILOG CPLEX Teaching Edition 12.1, čije je vreme izvršavanja po instanci ograničeno na 4 sata. Za testiranje je korišćen računar sa Intel i7 procesorom na 3.1GHz i 8GB RAM memorije. Aplikacija je izvršavana na jednom jezgru(bez paralelizacije) zato što strukture korišćene pri implementaciji nisu bile bezbedne za paralelni rad(thread-safe).

Sve metode su sa svim instancama testirane po 20 puta sa različitim random seed vrednostima. Random seed vrednosti su dobijene pomoću drugog nasumičnog niza po sledećoj proceduri:

3.1 Instance

Korišćene su već postojeće instance za CFL(capacitated facility location) problem, uz dodat parametar k. Za skup malih instanci i za skup instanci najvećih dimezija je korišćen skup instanci koji je generisan od strane J.E. Beasley-a[2], dok je za skup srednjih instanci korišćen skup generisan od strane K. Holmberg-a, M. Ronnqvist-a i D. Yuan-a [3].

Da bi se izabralo odgovarajuće k korišćen je algoritam za izdvajanje optimalnih rešenja za različite vrednosti k čiji je pseudo kod prikazan:

Dalje se na osnovu upisanih rezultata(log) bira instanca sa odgovarajućom vrednošću parametra k. Pošto ima mnogo više instanci nego što je potrebno, instance sa sličnim osobinama i rezultatima se odbacuju, a ako neka instanca ispoljava žanimljive"osobine, uzima se više puta sa odgovarajućim vrednostima parametra k.

Primer zapisa jedne instance koja je korišćena za proveru ispravnosti programa je prikazan. Instanca je ručno smišljena tako da funkcija cilja bude različita za različite vrednosti parametra k.

```
n=2 m=3
k=2
d_j
2 3
```

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	gen	eval	caching	agap[%]	į
	CPLEX	/bestsol/					-		
	GA	/GAsol/	$/\mathrm{GAttot}/$	$/\mathrm{GAt}/$	$/\mathrm{GAgen}/$	$/\mathrm{GAeval}/$	$/\mathrm{GAcache}/$	$/{ m GAaagap}/$	$/{ m GAs}$
$/\mathrm{name}/$	ILS	/ILSsol/	$/ \mathrm{ILSttot} /$	$/\mathrm{ILSt}/$	=	$/\mathrm{ILSeval}/$	m /ILScache/	$/ \mathrm{ILSaagap} /$	$/ \mathrm{ILSs}$
	GA + ILS	/GAAsol/	/GAAttot/	$/\mathrm{GAAt}/$	$/\mathrm{GAAgen}/$	$/\mathrm{GAAeval}/$	$/\mathrm{GAAcache}/$	$/\mathrm{GAAaagap}/$	$/\mathrm{GAA}$
	Mem	/MEMsol/	/MEMttot/	$/\mathrm{MEMt}/$	$/\mathrm{MEMgen}/$	$/\mathrm{MEMeval}/$	$/\mathrm{MEMcache}/$	$/\mathrm{MEMaagap}/$	/MEM

 $\begin{smallmatrix}f_-i\\1&2&3\end{smallmatrix}$

s_i 1 5 7

Rezultati 3.2

Tabela 1: Eksperimentalni rezultati.

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$] gen	eval	caching	agap[%] σ	cache
	CPLEX	3883226133.00				-				
	GA	3883226133.00	12.39	0.47	51.00	9404.33	9149.95	0.00	0.00	97.30
cap101	ILS	3904521625.52	0.26	0.21	_	5063.05	4765.14	0.01	0.00	94.12
	GA +	3883226133.00	6.93	0.26	51.00	22656.00	22331.05	0.00	0.00	98.57
	ILS									
	Mem	3883226133.00	37.61	0.40	51.00	279643.00	279318.00	0.00	0.00	99.88
	CPLEX	3883231133.00				-				
	GA	3883231133.00	12.37	0.43	51.00	9404.33	9149.95	0.00	0.00	97.30
cap102	ILS	3904527101.71	0.27	0.22	-	5063.05	4765.14	0.01	0.00	94.12
	GA +	3883231133.00	7.15	0.26	51.00	22656.00	22331.05	0.00	0.00	98.57
	ILS									
	Mem	3883231133.00	38.87	0.41	51.00	279643.00	279318.00	0.00	0.00	99.88
	CPLEX	3883236133.00				=				
	GA	3883236133.00	12.47	0.44	51.00	9404.33	9149.95	0.00	0.00	97.30
cap103	ILS	3904532577.90	0.27	0.22	-	5063.05	4765.14	0.01	0.00	94.12
	GA +	3883236133.00	7.13	0.27	51.00	22656.00	22331.05	0.00	0.00	98.57
	ILS	000000010000	00.01	0.44	* 4 00	20004000	270212.00	0.00	0.00	00.00
	Mem	3883236133.00	39.61	0.41	51.00	279643.00	279318.00	0.00	0.00	99.88
	CPLEX	3883243633.00				-				
	GA	3883243633.00	12.78	0.46	51.00	9404.33	9149.95	0.00	0.00	97.30
cap104	ILS	3904540792.19	0.27	0.22	-	5063.05	4765.14	0.01	0.00	94.12
	GA +	3883243633.00	7.25	0.27	51.00	22656.00	22331.05	0.00	0.00	98.57
	ILS	00000404000	00 51	0.40	F1 00	070640.00	070010 00	0.00	0.00	00.00
	Mem	3883243633.00	39.51	0.42	51.00	279643.00	279318.00	0.00	0.00	99.88
	CPLEX	3283821105.00				-				
	GA	4178119614.29	79.96	17.37	51.00	6786.67	5375.29	0.27	0.00	79.20
cap121	ILS	4765797950.57	0.35	0.29	-	5004.24	4048.90	0.45	0.11	80.91
	GA +	4190159537.76	40.44	31.31	51.00	24694.52	19882.48	0.28	0.00	80.51
	$_{Mem}^{ILS}$	4148374586.00	75.88	13.87	51.00	275539.33	233691.86	0.26	0.00	84.81
			. 0.00	20.01	32.00		_33002.00	J. _ U	0.00	3 2.0 2

$ \begin{array}{c} CPLEX & 3283841105.00 \\ Cap 122 & ILS & 4765817236.29 & 79.26 & 17.21 & 51.00 & 6786.67 & 5375.29 & 0.27 & 0.00 & 79.20 \\ CA & 4178139614.29 & 79.26 & 17.21 & 51.00 & 24564.52 & 19882.48 & 0.28 & 0.00 & 80.51 \\ ILS & 4765817236.29 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CA & 4178159614.29 & 81.75 & 18.86 & 51.00 & 6786.67 & 5375.29 & 0.27 & 0.00 & 79.20 \\ CAP 123 & ILS & 4765836522.00 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 124 & ILS & 4765836522.00 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 125 & ILS & 4765836522.00 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 126 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 127 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 128 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 128 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 128 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 128 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 128 & ILS & 476586345.07 & 0.35 & 0.29 & - & 5004.24 & 4048.90 & 0.45 & 0.11 & 80.91 \\ CAP 128 & ILS & 3883226133.00 & 7.83 & 13.57 & 51.00 & 275593.33 & 233691.86 & 0.26 & 0.00 & 84.81 \\ CAP 138 & ILS & 3883226133.00 & 7.83 & 13.57 & 51.00 & 275593.33 & 233691.86 & 0.26 & 0.00 & 80.51 \\ CAP 138 & ILS & 3883226133.00 & 7.60 & 0.96 & 51.00 & 22295.29 & 21095.71 & 0.00 & 0.00 & 95.26 \\ CAP 138 & ILS & 3883226133.00 & 7.60 & 0.96 & 51.00 & 22295.29 & 21095.71 & 0.00 & 0.00 & 95.26 \\ CAP 148 & S883231133.00 & 7.62 & 0.96 & 51.00 & 22295.29 & 21095.71 & 0.00 & 0.00 & 95.26 \\ CAP 148 & S883231133.00 & 7.62 & 0.96 & 51.00 & 22295.29 & 21095.71 & 0.00 & 0.00 & 95.26 \\ CAP 148 & S883231133.00 & 7.62 & 0.96 & 51.00 & 22295.29 & 21095.71 & 0.00 & 0.00 & 95.26 \\ CAP 148 & S883231133.00 & 7.59 & 0.97 & 51.00 & 278702.00 & 277427.62 &$	Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	l aen	eval	caching	agap[%]	σ	cache
$ \begin{array}{c} GA \\ cap 12 \\ LLS \\ A \\ $				***************************************	-0631[-	<i>J</i> • · · ·	_		J F [/ C	1 -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				79.26	17 91	51.00	6786 67	5375 20	0.27	0.00	70.20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	can122					-					
ILS	capizz			l		51.00					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4190179001.07	33.03	30.30	01.00	24034.02	13002.40	0.20	0.00	00.01
$ \begin{array}{c} CPLEX\\ GA\\ CA\\ CA\\ CA\\ CA\\ CA\\ CA\\ CA\\ CA\\ CA\\ C$		Mem	4148394586.00	74.97	13.62	51.00	275539.33	233691.86	0.26	0.00	84.81
$ \begin{array}{c} GA \\ cap 123 \\ ILS \\ GA \\ A + 4190198585.38 \\ A + 41901987871.10 \\ A + 4190198781.10 \\ A + 41901987811.10 \\ A + 4190198781.10 \\ A + $			3283861105.00				_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				81.75	18.86	51.00	6786.67	5375.29	0.27	0.00	79.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	can123			l		-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00P120			1		51 00					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1100100000.00	10.0.	01.0 2	01.00	_ 100 1.02	10002,10	0.20	0.00	00.01
$ \begin{array}{c} cap124 \\ cap124 \\ LLS \\ Af65865450.57 \\ CAS \\ At \\ Af65865450.57 \\ At \\ Af65865450.57$		\widetilde{Mem}	4148414586.00	76.06	13.71	51.00	275539.33	233691.86	0.26	0.00	84.81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CPLEX	3283891105.00				=				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		GA	4178189614.29	78.94	17.26	51.00	6784.10	5370.90	0.27	0.00	79.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cap124	ILS	4765865450.57	0.35	0.29	_	5004.24	4048.90	0.45	0.11	80.91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1		51.00	24694.52				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c} GA \\ cap131 \\ ILS \\ GA \\ A \\ B8321332.62 \\ A \\ B83226133.00 \\ A \\ B83221133.00 \\ A \\ B83231133.00 \\ $		Mem		73.83	13.57	51.00	275539.33	233691.86	0.26	0.00	84.81
$ \begin{array}{c} cap131 & ILS \\ GA \\ ILS \\ AB \\ A$		CPLEX	3883226133.00				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		GA	3891758483.33	12.74	0.98	51.00	9401.95	8956.67	0.00	0.00	95.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cap131	ILS	3983814322.62	0.33	0.28	-	5112.24	4415.90	0.03	0.00	86.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		GA +	3883226133.00	7.60	0.96	51.00	22295.29	21095.71	0.00	0.00	94.62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ILS									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				41.27	0.95	51.00	278702.00	277427.62	0.00	0.00	99.54
$ \begin{array}{c} cap132 \\ cap132 \\ cap132 \\ cap \\ c$			3883231133.00				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		GA	3891763959.52	12.86	1.00	51.00	9401.95	8956.67	0.00	0.00	95.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cap132		3983820751.19	0.33	0.27	-	5112.24	4415.90	0.03	0.00	86.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3883231133.00	7.62	0.96	51.00	22295.29	21095.71	0.00	0.00	94.62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ILS	000000110000	44.20	0.00	F 1 00	200000	200 420 42	0.00	0.00	00 54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				41.29	0.96	51.00	278702.00	277427.62	0.00	0.00	99.54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100			1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cap133										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3883236133.00	7.58	0.96	51.00	22295.29	21095.71	0.00	0.00	94.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ILS	2002226122 00	40.97	0.02	51.00	278702.00	277427 62	0.00	0.00	00.54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				40.67	0.93	31.00	210102.00	211421.02	0.00	0.00	99.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				10.70	1.00	F1 00	0.401.05	2056 67	0.00	0.00	05.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	194			I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ cap_{134} $			l			=				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3883243633.00	7.59	0.97	51.00	22295.29	21095.71	0.00	0.00	94.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mem	3883243633 00	41 30	0.95	51 00	278702 00	277427 62	0.00	0.00	99 54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				11.00	0.00	31.00		211121102	0.00	0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				75.46	6.84	51.00	6867 14	6397 62	0.10	0.00	93 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	can61			l							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	capor										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1000022204.00	90.41	4.41	01.00	21000.00	4011J.U1	0.10	0.00	34.31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mem	4688622204.00	68.64	1.52	51.00	275794.24	273974.24	0.10	0.00	99.34
				-	-		_				
				75.78	6.81	51.00	6867.14	6397.62	0.10	0.00	93.16
$ \begin{vmatrix} cap62 & ILS & 4854577690.43 & 0.24 & 0.21 & -5002.19 & 4270.29 & 0.14 & 0.00 & 85.37 \end{vmatrix} $	cap62	ILS		I	0.21						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				l							
						5 = . 0 0		.5 == 5.5 .		5.00	J1
$ \begin{vmatrix} ILS \\ Mem \end{vmatrix} $		\widetilde{Mem}	4688642204.00	68.35	1.53	51.00	275794.24	273974.24	0.10	0.00	99.34

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	l aen	eval	caching	agap[%	σ	cache
	CPLEX	4245300995.00	***************************************	-0631[-	<i>J</i> • · · ·	-] ~	
	GA	4688662204.00	74.93	6.74	51.00	6867.14	6397.62	0.10	0.00	93.16
cap63	ILS	4854595547.57	0.24	0.14	-	5002.19	4270.29	$0.10 \\ 0.14$	0.00	85.37
capos	GA +	4688662204.00	38.27	2.27	51.00	21656.05	20119.57	0.14	0.00	92.91
	ILS	4000002204.00	30.21	2.21	31.00	21000.00	20119.07	0.10	0.00	32.31
	Mem	4688662204.00	68.87	1.54	51.00	275794.24	273974.24	0.10	0.00	99.34
	CPLEX	4245330995.00				_				
	GA	4688692204.00	76.09	6.82	51.00	6867.14	6397.62	0.10	0.00	93.16
cap64	ILS	4854622333.29	0.24	0.21	_	5002.19	4270.29	0.14	0.00	85.37
oup or	GA +	4688692204.00	38.55	2.29	51.00	21656.05	20119.57	0.10	0.00	92.91
	ILS	1000002201.00	00.00		01.00	21000.00	20110.01	0.10	0.00	02.01
	\widetilde{Mem}	4688692204.00	68.72	1.56	51.00	275794.24	273974.24	0.10	0.00	99.34
	CPLEX	4879355523.00				-				
	GA	4879355523.00	12.45	0.27	51.00	9366.52	9235.00	0.00	0.00	98.60
cap71	ILS	4879704188.14	0.25	0.20	-	5044.19	4916.86	0.00	0.00	97.48
-	GA +	4879355523.00	6.61	0.02	51.00	18682.48	18546.48	0.00	0.00	99.27
	ILS									
	Mem	4879355523.00	37.46	0.02	51.00	280240.90	280104.90	0.00	0.00	99.95
	CPLEX	4879360523.00				-				
	GA	4879360523.00	12.39	0.27	51.00	9366.52	9235.00	0.00	0.00	98.60
cap72	ILS	4879709664.33	0.25	0.20	-	5044.19	4916.86	0.00	0.00	97.48
	GA +	4879360523.00	6.60	0.02	51.00	18682.48	18546.48	0.00	0.00	99.27
	ILS									
	Mem	4879360523.00	37.31	0.02	51.00	280240.90	280104.90	0.00	0.00	99.95
	CPLEX	4879365523.00				-				
	GA	4879365523.00	12.42	0.27	51.00	9366.52	9235.00	0.00	0.00	98.60
cap73	ILS	4879715140.52	0.25	0.20	=	5044.19	4916.86	0.00	0.00	97.48
	GA +	4879365523.00	6.57	0.02	51.00	18682.48	18546.48	0.00	0.00	99.27
	$_{Mem}^{ILS}$	4879365523.00	37.34	0.02	51.00	280240.90	280104.90	0.00	0.00	99.95
	CPLEX	4879373023.00	37.34	0.02	31.00	200240.90	200104.90	0.00	0.00	99.90
	GA	4879373023.00	12.38	0.27	51.00	9366.52	9235.00	0.00	0.00	98.60
aam74	ILS	4879723354.81	0.25	0.27	31.00	5044.19	4916.86	0.00	0.00	97.48
cap74					- F1.00					
	GA + ILS	4879373023.00	6.56	0.02	51.00	18682.48	18546.48	0.00	0.00	99.27
	$\stackrel{ILS}{Mem}$	4879373023.00	37.23	0.02	51.00	280240.90	280104.90	0.00	0.00	99.95
	CPLEX	3283822555.00	0,	0.02	0=:00			0.00	0.00	
	GA	4150265271.33	76.91	12.28	51.00	6823.52	5933.57	0.26	0.00	86.96
cap91	ILS	4402295331.62	0.26	0.23	-	5004.29	4093.81	0.34	0.00	81.81
Capor	GA +	4149585026.43	37.93	10.32	51.00	21743.48	18391.81	0.26	0.00	84.59
	ILS	1110000020.10	01.00	10.02	01.00	21, 10, 10	10001.01	0.20	0.00	0 1.00
	\widetilde{Mem}	4148374586.00	69.64	4.16	51.00	275610.48	263494.33	0.26	0.00	95.60
	CPLEX	3283842555.00				-				
	GA	4150285271.33	77.27	12.49	51.00	6823.52	5933.57	0.26	0.00	86.96
cap92	ILS	4402313664.95	0.26	0.23	-	5004.29	4093.81	0.34	0.00	81.81
	GA +	4149605026.43	37.83	10.37	51.00	21743.48	18391.81	0.26	0.00	84.59
	ILS									
	Mem	4148394586.00	1784.72	4.19	51.00	275610.48	263494.33	0.26	0.00	95.60
	CPLEX	3283862555.00				-				
	GA	4150305271.33	76.93	12.43	51.00	6823.52	5933.57	0.26	0.00	86.96
cap93	ILS	4402331998.29	0.26	0.23	-	5004.29	4093.81	0.34	0.00	81.81
	GA +	4149625026.43	37.94	10.32	51.00	21743.48	18391.81	0.26	0.00	84.59
	$_{Mem}^{ILS}$	41 40 41 450 6 00	60.66	4.10	E1 00	975610 49	069404 99	0.96	0.00	05.60
	Mem	4148414586.00	69.66	4.16	51.00	275610.48	263494.33	0.26	0.00	95.60

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	l aen	eval	caching	agap[%	σ	cache
	CPLEX	3283892555.00	***************************************	-0631[-] 3	_		gF[, 0] ~	
	GA	4150335271.33	77.07	19.54	51.00	6823.52	5933.57	0.26	0.00	86.96
cap94	ILS	4402359498.29	0.26	0.23	-	5004.29	4093.81	0.20 0.34	0.00	81.81
	GA +	4149655026.43	2148.74		2951.00	21743.48	18391.81	0.34 0.26	0.00	84.59
	ILS	4149000020.40	2140.74	2120.0	,201.00	21749.40	10091.01	0.20	0.00	04.00
	Mem	4148444586.00	68.78	4.17	51.00	275610.48	263494.33	0.26	0.00	95.60
	CPLEX	594677483.00				_				
	GA	616369039.90	87.61	69.15	51.00	6488.10	2027.62	0.04	0.00	31.25
capa1	ILS	702525534.90	1.09	0.92	_	5004.90	4046.90	0.18	0.01	80.86
	GA +	616188764.67	48.34	35.23	51.00	30580.19	23278.90	0.04	0.00	76.12
	ILS	010100101101	10.01	00.20	31,00	00000110	20210.00	0.01	0.00	10112
1	\widetilde{Mem}	591324553.00	114.60	86.67	51.00	275382.43	223235.90	0.01	0.00	81.06
	CPLEX	563820503.00				=				
	GA	566495461.90	39.15	30.85	51.00	8521.38	3168.81	0.01	0.00	37.19
$capa1_1$	ILS	633275467.71	1.24	1.05	_	5355.29	4182.33	0.12	0.01	78.10
	GA +	565900691.00	29.95	23.55	51.00	44713.71	32608.62	0.01	0.00	72.93
	ILS									
	Mem	549621303.95	93.72	78.17	51.00	281667.81	227524.29	0.03	0.00	80.78
	CPLEX	521553548.00				-				
	GA	531570878.86	14.72	12.10	51.00	9517.52	3761.00	0.02	0.00	39.52
$capa1_2$	ILS	565441416.76	1.35	1.13	_	5656.57	4341.81	0.08	0.00	76.76
	GA +	532169050.52	21.02	15.26	51.00	50586.57	36279.52	0.02	0.00	71.72
	ILS									
	Mem	518350102.71	84.49	71.56	51.00	283245.00	228061.10	0.01	0.00	80.52
	CPLEX	496579947.00				-				
	GA	506104329.86	7.52	6.23	51.00	9812.29	3825.24	0.02	0.00	38.98
$capa1_3$	ILS	537370924.24	1.43	1.24	-	5895.81	4462.48	0.08	0.00	75.69
	GA +	507266089.14	18.08	11.27	51.00	52023.38	37065.24	0.02	0.00	71.25
	ILS	10 5 10 15 20 10	0.1.40	00.01	* 1 00	20.4520.00	222224 #2	0.00	0.00	00.40
	Mem	495464523.19	81.40	69.81	51.00	284529.38	228806.52	0.00	0.00	80.42
	CPLEX	469927010.00		- 0-	* 1 00	-	0.40=.00	0.00	0.00	0.4.40
_	GA	483949529.48	6.01	5.07	51.00	9879.19	3407.00	0.03	0.00	34.49
$capa1_4$	ILS	519298279.05	1.50	1.17	-	6007.62	4526.43	0.11	0.00	75.34
	GA +	487386654.76	17.72	11.55	51.00	54265.00	38655.19	0.04	0.00	71.23
	$_{Mem}^{ILS}$	473581945.00	82.08	71.12	51.00	285606.57	229094.81	0.01	0.00	80.21
	CPLEX	314581276.00	02.00	11.12	31.00	20000.07	229094.01	0.01	0.00	00.21
	GA	317338972.33	E OE	5.45	£1.00	9911.05	5063.29	0.01	0.00	51.09
		338665967.76	5.95		51.00	9911.05		0.01	0.00	
$capa1_5$	ILS		3.83	3.57	- 51.00		6131.76	0.08	0.00	67.76
	GA +	318639803.90	14.29	8.23	51.00	30097.43	19921.48	0.01	0.00	66.19
	$_{Mem}^{ILS}$	314750523.86	128.53	68.14	51.00	400674.52	328073.90	0.00	0.00	81.88
	CPLEX	558508425.00	123,33	55,111	02100				0.00	
	GA	561361679.29	12.82	10.23	51.00	9581.29	4393.67	0.01	0.00	45.86
capa2	ILS	594619740.57	1.36	10.23 1.10	-	5572.19	4393.07	0.01	0.00	77.25
cupuz	GA +	560281456.90	21.15	13.67	51.00	53681.43	39019.00	0.00	0.00	72.69
	ILS	500201 1 00.30	21.10	10.01	01.00	00001,40	99019.00	0.01	0.00	12.03
	Mem	548265149.76	84.96	69.38	51.00	282434.48	227731.62	0.02	0.00	80.63
	CPLEX	314581276.00		<u> </u>	<u> </u>	-				
	GA	317338972.33	6.05	5.54	51.00	9911.05	5063.29	0.01	0.00	51.09
$capa2_1$	ILS	338665967.76	3.89	3.63	_	9049.81	6131.76	0.08	0.00	67.76
* * -	GA +	318639803.90	14.59	8.42	51.00	30097.43	19921.48	0.01	0.00	66.19
	$ILS \\ Mem$									
	Mem	314750523.86	127.46	68.12	51.00	400674.52	328073.90	0.00	0.00	81.88

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	qen	eval	caching	agap[%]	σ	cache
	CPLEX	560795680.00	500[]	0000[]		_	3	J I [··	J	
	GA	561213640.43	6.16	5.11	51.00	9847.71	4131.43	0.01	0.00	41.95
capa3	ILS	603883158.29	1.39	1.17	-	5768.05	4405.81	0.01	0.01	76.38
capas		560516601.76	16.83	9.02	51.00	52593.57	37994.10	0.03	0.01	72.24
	GA + ILS	300310001.70	10.65	9.02	31.00	02090.01	31994.10	0.01	0.00	12.24
	Mem	548122581.00	79.68	67.56	51.00	282669.71	227784.76	0.02	0.00	80.58
	CPLEX	314581276.00				-				
	GA	317338972.33	5.94	5.45	51.00	9911.05	5063.29	0.01	0.00	51.09
$capa3_1$	ILS	338665967.76	3.84	3.57	_	9049.81	6131.76	0.08	0.00	67.76
capasi	GA +	318639803.90	14.51	8.40	51.00	30097.43	19921.48	0.01	0.00	66.19
	ILS	0100000000000	11.01	0.10	01.00	30001113	10021.10	0.01	0.00	00110
	\widetilde{Mem}	314750523.86	2153.62	2094.5	651.00	400674.52	328073.90	0.00	0.00	81.88
	CPLEX	560311003.00				-				
	GA	561800985.71	4.67	3.70	51.00	9911.38	4033.81	0.01	0.00	40.70
capa4	ILS	612912376.48	1.39	1.12	-	5861.48	4459.24	0.09	0.01	76.08
	GA +	558656212.10	15.53	9.72	51.00	51465.33	37171.14	0.01	0.00	72.23
	ILS									
	Mem	548462866.43	78.11	68.05	51.00	282779.14	227967.62	0.02	0.00	80.62
	CPLEX	314581276.00				-				
	GA	317338972.33	6.18	5.67	51.00	9911.05	5063.29	0.01	0.00	51.09
$capa4_1$	ILS	338665967.76	3.83	3.57	-	9049.81	6131.76	0.08	0.00	67.76
	GA +	318639803.90	14.15	8.15	51.00	30097.43	19921.48	0.01	0.00	66.19
	ILS	21 4750502 00	105 56	66.02	F1 00	400674 50	222072 00	0.00	0.00	01 00
	Mem	314750523.86	125.56	66.93	51.00	400674.52	328073.90	0.00	0.00	81.88
	CPLEX	457944484.00	05.55	7 0.00	F1 00	-	000.05	0.11	0.00	1 4 9 6
	GA	507479803.81	95.55	79.63	51.00	6312.86	900.05	0.11	0.02	14.26
capb1	ILS	577406500.29	3.42	3.17	-	5007.19	4055.33	0.26	0.00	80.99
	GA +	503960186.90	53.19	42.50	51.00	33202.52	24969.62	0.10	0.00	75.20
	$_{Mem}^{ILS}$	478925174.29	122.34	105.77	51.00	275337.76	222649.38	0.05	0.00	80.86
	CPLEX	252484290.00				-				
	GA	254105609.86	6.71	6.20	51.00	9911.81	5160.05	0.01	0.00	52.06
$capb1_1$	ILS	302944428.14	4.20	4.09	_	9462.95	6352.76	0.20	0.01	67.13
	GA +	254683463.38	15.27	10.15	51.00	27202.95	17690.95	0.01	0.00	65.03
	ILS									
	Mem	252586862.00	138.43	84.29	51.00	403280.95	332670.05	0.00	0.00	82.49
	CPLEX	503585967.00				-				
	GA	552072029.81	94.23	74.23	51.00	6383.90	1348.81	0.10	0.02	21.13
capb2	ILS	643794838.95	1.38	1.22	-	5005.76	4049.62	0.28	0.01	80.90
	GA +	557042494.67	51.69	34.86	51.00	32792.48	24888.38	0.11	0.00	75.90
	ILS	F194F01F0 40	110 70	101.45	F1 00	07500000	22221462	0.00	0.00	00.00
	Mem	512478179.48	119.78	101.47	51.00	275360.86	222814.62	0.02	0.00	80.92
	CPLEX	252484290.00			.	-		0.04		
	GA	254066439.38	6.73	6.23	51.00	9911.90	5144.10	0.01	0.00	51.90
$capb2_1$	ILS	302679781.90	4.16	4.03	-	9482.19	6361.43	0.20	0.01	67.09
	GA +	254683463.38	1877.97	10.05	51.00	27202.95	17690.95	0.01	0.00	65.03
	$_{Mem}^{ILS}$	252586862.00	138.45	84.51	51.00	403280.95	332670.05	0.00	0.00	82.49
	CPLEX	554485028.00				=				
	GA	578737279.10	91.00	67.08	51.00	6452.71	1739.62	0.04	0.00	26.96
capb3	ILS	670231951.81	1.23	1.06	_	5004.19	4048.67	0.21	0.01	80.91
	GA +	577341004.43	49.93	38.90	51.00	31204.90	23706.95	0.04	0.00	75.97
	$_{Mem}^{ILS}$									
	Mem	552832223.14	118.63	98.95	51.00	275374.81	223048.05	0.00	0.00	81.00

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	l aen	eval	caching	agap[%	σ	cache
	CPLEX	252484290.00	***************************************	-0631[-] 3 *	-] ~	
	GA	254066439.38	6.79	6.29	51.00	9911.90	5144.10	0.01	0.00	51.90
$capb3_1$	ILS	302679781.90	4.22	4.09	01.00	9482.19	6361.43	0.20	0.00	67.09
$capos_1$		254683463.38	15.31	10.16	51.00	27202.19	17690.95	0.20 0.01	0.01	65.03
	GA + ILS	204000400.00	10.51	10.10	31.00	21202.90	17090.93	0.01	0.00	00.00
	Mem	252586862.00	139.03	83.84	51.00	403280.95	332670.05	0.00	0.00	82.49
	CPLEX	552392632.00								
	GA	560300594.95	39.05	29.35	51.00	8551.76	3170.05	0.02	0.00	37.07
capb4	ILS	611376446.14	1.25	1.04	-	5361.38	4184.24	0.11	0.01	78.04
сароч	GA +	555200494.10	30.87	26.25	51.00	45275.24	32892.05	$0.11 \\ 0.01$	0.01	72.65
	ILS	000200434.10	30.01	20.20	01.00	102 0.21	32032.00	0.01	0.00	12.00
	\widetilde{Mem}	540367922.24	95.51	80.17	51.00	281564.86	227608.38	0.02	0.00	80.84
	CPLEX	420850.00				-				
	GA	543115.47	84.50	40.75	51.00	6518.47	3016.88	0.29	0.00	46.28
pn56	ILS	556310.94	15.42	0.81	_	5004.41	4067.88	0.32	0.00	81.29
1	GA +	542657.71	51.24	35.56	51.00	30562.88	24104.00	0.29	0.00	78.87
	ILS	3 - 2 - 3 - 1 - 1 - 1	9 = 1 = =	00.00	0 = .00	0000=:00		0.20	0.00	
	\widetilde{Mem}	539603.41	85.01	31.04	51.00	275402.41	231353.76	0.28	0.00	84.01
	CPLEX	469776.00				-				
	GA	473762.96	3.64	3.26	51.00	9806.84	4666.20	0.01	0.00	47.58
$pn56_1$	ILS	479528.36	15.22	1.23	_	5323.68	4190.36	0.02	0.00	78.71
1	GA +	474047.64	7.20	2.77	51.00	48813.60	36967.88	0.01	0.00	75.73
	ILS									
	Mem	473513.00	39.20	6.32	51.00	291786.52	249737.68	0.01	0.00	85.59
	CPLEX	516804.00				-				
	GA	420850.00	3.14	2.93	51.00	9808.24	8080.48	0.19	0.00	82.38
$pn56_2$	ILS	461554.57	0.43	0.36	_	5718.48	4535.90	0.11	0.00	79.32
	GA +	420850.00	2.79	0.48	51.00	26257.62	23796.86	0.19	0.00	90.63
	ILS									
	Mem	420850.00	34.71	2.06	51.00	312974.71	308895.76	0.19	0.00	98.70
	CPLEX	521604.00				-				
	GA	547915.47	84.14	41.00	51.00	6518.47	3016.88	0.05	0.00	46.28
pn57	ILS	561110.94	15.54	0.79	-	5004.41	4067.88	0.08	0.00	81.29
	GA +	547457.71	51.20	35.50	51.00	30562.88	24104.00	0.05	0.00	78.87
	ILS	E 4 4 4 0 9 4 1	09 54	91 11	E1.00	975 409 41	021252 76	0.04	0.00	04.01
	Mem	544403.41	83.54	31.11	51.00	275402.41	231353.76	0.04	0.00	84.01
	CPLEX	532804.00	00.00	00.00	* 1 00	-	00.40.40	0.05	0.00	40.05
	GA	559337.63	82.28	36.93	51.00	6521.50	3042.19	0.05	0.00	46.65
pn58	ILS	571311.13	14.97	0.81	-	5004.56	4068.50	0.07	0.00	81.30
	GA +	558505.19	50.61	35.70	51.00	30546.44	24084.25	0.05	0.00	78.84
	$_{Mem}^{ILS}$	555606.06	83.93	31.14	51.00	275402.81	231361.19	0.04	0.00	84.01
	CPLEX	525536.00	00.30	01.14	01.00	410404.01	791901.1A	0.04	0.00	04.01
	GA	551335.81	09 45	19 90	51.00	6400.25	2072 00	0.05	0.00	44.20
mm 50			83.45	43.38	51.00	6499.25	2872.88	0.05	0.00	
pn59	ILS	567118.88	18.26	1.78	- E1.00	5004.38	4061.13	0.08	0.00	81.15
	GA + ILS	551094.00	50.81	33.67	51.00	30098.88	23782.00	0.05	0.00	79.01
	Mem	548481.13	85.36	36.87	51.00	275383.81	230982.69	0.04	0.00	83.88
	CPLEX	604184.00	23.30		0 = 10 0		33332.00		0.00	
	GA	622606.84	82.10	28 14	51.00	6627.66	3527.34	0.03	0.01	53.22
pn60	ILS	651456.19	13.58	5.12	-	5004.56	4056.72	0.08	0.01	81.06
proo	GA +	623703.22	1			29714.56	23492.06	0.03	0.00	79.06
		020100.22	2700.02	2701.2	001.00	20117.00	20 102.00	0.00	0.00	13.00
	$_{Mem}^{ILS}$	619478.22	77.05	30.46	51.00	275435.03	228597.06	0.03	0.00	82.99

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$	gen	eval	caching	agap[%]	σ	cache
	CPLEX	607484.00			, 0	-		0 1 (
	GA	625837.75	80.98	28.81	51.00	6625.65	3477.30	0.03	0.01	52.48
pn61	ILS	654124.80	11.89	5.04	_	5005.50	4058.35	0.08	0.00	81.08
1	GA +	627461.60	40.80	22.87	51.00	29682.20	23427.15	0.03	0.00	78.93
	ILS	0-1-0-00								
	\overline{Mem}	623240.35	75.85	27.47	51.00	275443.30	228656.80	0.03	0.00	83.01
	CPLEX	615184.00				=				
	GA	633537.75	80.25	28.40	51.00	6625.65	3477.30	0.03	0.01	52.48
pn62	ILS	661824.80	11.64	5.08	-	5005.50	4058.35	0.08	0.00	81.08
	GA +	635161.60	40.82	22.82	51.00	29682.20	23427.15	0.03	0.00	78.93
	ILS	690040.95		06.70	F1.00	075 449 90	000050 00	0.00	0.00	09.01
	Mem	630940.35	75.66	26.78	51.00	275443.30	228656.80	0.03	0.00	83.01
	CPLEX	610622.00	00.40	20.0=	* 4 00	-	0.5.0	0.00	0.00	* 0.00
	GA	626498.05	80.48	26.67	51.00	6626.45	3571.70	0.03	0.00	53.90
pn63	ILS	657965.15	12.19	4.19	-	5005.60	4058.00	0.08	0.00	81.07
	GA +	630339.80	41.28	20.28	51.00	29728.00	23513.10	0.03	0.00	79.09
	$_{Mem}^{ILS}$	624338.00	76.62	23.91	51.00	275426.30	228446.30	0.02	0.00	82.94
	CPLEX	704423.00	10.02	20.01	01.00	210420.00	220440.00	0.02	0.00	
	GA	724108.25	79.47	27.83	51.00	6690.10	4162.50	0.03	0.00	62.22
pn64	ILS	765742.25	0.45	0.40	-	5005.45	4061.55	0.09	0.00	81.14
pno4	GA +	725206.10	40.40	20.06	51.00	27520.70	21742.40	0.03	0.00	79.00
	ILS	720200.10	40.40	20.00	31.00	21020.10	21142.40	0.00	0.00	19.00
	Mem	720930.00	74.23	14.96	51.00	275479.55	229162.80	0.02	0.00	83.19
	CPLEX	706823.00				-				
	GA	726508.25	80.21	27.80	51.00	6690.10	4162.50	0.03	0.00	62.22
pn65	ILS	768142.25	0.44	0.40	_	5005.45	4061.55	0.09	0.00	81.14
	GA +	727606.10	40.87	20.48	51.00	27520.70	21742.40	0.03	0.00	79.00
	$_{Mem}^{ILS}$	723330.00	75.78	15.25	51.00	275479.55	229162.80	0.02	0.00	83.19
	CPLEX	712423.00	10.10	10.20	01100		220102.00	0.02	0.00	00110
	GA	732108.25	80.00	27.81	51.00	6690.10	4162.50	0.03	0.00	62.22
pn66	ILS	773742.25	0.45	0.41	-	5005.45	4061.55	0.09	0.00	81.14
Pitoo	GA +	733206.10	40.77	20.65	51.00	27520.70	21742.40	0.03	0.00	79.00
	ILS	100200110	10111	20.00	31.00	21020110	21112110	0.00	0.00	10.00
	\widetilde{Mem}	728930.00	74.49	14.93	51.00	275479.55	229162.80	0.02	0.00	83.19
	CPLEX	592118.00				=				
	GA	611657.45	79.57	28.31	51.00	6663.90	3813.25	0.03	0.00	57.22
pn67	ILS	648708.75	10.72	4.76	-	5005.60	4062.70	0.10	0.00	81.16
	GA +	611505.45	40.32	18.28	51.00	28000.10	22057.10	0.03	0.00	78.78
	$_{Mem}^{ILS}$	607508.00	73.44	12.81	51.00	275503.15	229300.15	0.03	0.00	83.23
	CPLEX	683299.00	10.44	12.01	01.00	270003.10	223300.10	0.00	0.00	00.40
	GA	705866.45	81.51	27.95	51.00	6535.40	4771.00	0.03	0.00	73.00
pn68	ILS	719435.35	6.79	1.77	-	5003.25	4341.85	0.05	0.00	86.78
Proce	GA +	703984.95	43.25	19.49	51.00	27866.45	23576.85	0.03	0.00	84.61
	ILS	10000 1100	15.25	10.10	31.00	21000.10	200,0.00	0.00	0.00	01.01
	\widetilde{Mem}	702643.00	75.26	8.75	51.00	275510.25	254360.10	0.03	0.00	92.32
	CPLEX	685999.00				-				
	GA	708566.45	82.75	28.41	51.00	6535.40	4771.00	0.03	0.00	73.00
pn69	ILS	722135.35	6.79	1.78	-	5003.25	4341.85	0.05	0.00	86.78
	GA +	706684.95	42.80	19.04	51.00	27866.45	23576.85	0.03	0.00	84.61
	$_{Mem}^{ILS}$	705242.00	76.01	0.01	E1 00	975510 95	95 4960 10	0.02	0.00	00.20
	mem	705343.00	76.01	9.01	51.00	275510.25	254360.10	0.03	0.00	92.32

Instanca	metoda	sol	$t_{tot}[s]$	$t_{best}[s]$] gen	eval	caching	agap[%	σ	cache
	CPLEX	643407.00				-				
	GA	659962.65	37.78	15.27	51.00	8429.80	5319.30	0.03	0.00	63.10
$pn69_1$	ILS	685654.95	4.11	2.81	-	5084.75	4080.25	0.07	0.00	80.24
	GA +	659738.40	22.63	12.15	51.00	39475.60	31063.60	0.03	0.00	78.69
	ILS									
	Mem	659572.00	55.93	9.17	51.00	280715.45	234338.10	0.03	0.00	83.48
	CPLEX	692299.00				-				
	GA	715005.44	82.87	28.22	51.00	6533.44	4777.31	0.03	0.00	73.12
pn70	ILS	729246.50	6.70	1.99	_	5003.28	4334.42	0.05	0.00	86.63
	GA +	713134.06	43.09	19.58	51.00	27802.75	23513.44	0.03	0.00	84.57
	$_{Mem}^{ILS}$	711643.00	75.89	9.12	51.00	275508.94	254301.81	0.03	0.00	92.30

3.3 Analiza rezultata

4 Zaključak

Literatura

- Karen Aardal, Pieter L van den Berg, Dion Gijswijt, and Shanfei Li. Approximation algorithms for hard capacitated k-facility location problems. European Journal of Operational Research, 242(2):358-368, 2015.
- [2] John E Beasley. Lagrangean heuristics for location problems. European Journal of Operational Research, 65(3):383-399, 1993.
- [3] Kaj Holmberg, Mikael Rönnqvist, and Di Yuan. An exact algorithm for the capacitated facility location problems with single sourcing. *European Journal of Operational Research*, 113(3):544–559, 1999.
- [4] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search: Framework and applications. In *Handbook of Metaheuristics*, pages 363–397. Springer, 2010.
- [5] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.
- [6] Nicholas J Radcliffe and Patrick D Surry. Formal memetic algorithms. In AISB Workshop on Evolutionary Computing, pages 1–16. Springer, 1994
- [7] Francisco José Ferreira Silva and DS De la Figuera. A capacitated facility location problem with constrained backlogging probabilities. *International journal of production research*, 45(21):5117-5134, 2007.
- [8] Jens Vygen. Approximation algorithms facility location problems. Forschungsinstitut für Diskrete Mathematik, Rheinische Friedrich-Wilhelms-Universität, 2005.
- [9] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65-85, 1994.