CLAIMS

What is claimed is:

1	1.	A device for reducing the growth of a bone, the device comprising:
2	a pow	er source for generating a current, wherein the current is effective to reduce
3	the growth of	a bone; and
4	at leas	et one electrode in electrical communication with the power source, wherein
5	said electrode	is adapted to apply the current to a predetermined location of the bone.
1	2.	The device of claim 1 further comprising more than one electrode in
2	electrical com	nmunication with the power source.
1	3.	The device of claim 1 wherein the at least one electrode comprises a
1		•
2	threaded port	ion.
1	4.	The device of claim 1 further comprising a controller in electrical
2	communication	on with the power source and the at least one electrode, wherein the
3	controller dis	tributes a predetermined current to the at least one electrode.
1	5.	The device of claim 4 wherein the controller regulates the frequency and
2	duration the c	urrent is distributed to the at least one electrode.
1	6.	The device of claim 4 wherein the controller regulates the amount of the
2	current applie	ed to each of the at least one electrode.

- The device of claim 4 wherein the controller programmably regulates the
- 2 amount of the current applied to each of the at least one electrode, and the frequency and
- duration the current is applied to each of the at least one electrodes.
- 1 8. The device of claim 1 wherein the power source and the at least one
- 2 electrode delivers a current of at least 50 μA.
- 1 9. The device of claim 1 comprising at least two electrode and wherein the
- 2 current delivered to at least two electrodes is different.
- 1 10. A method for reducing the growth of a bone, comprising applying bone
- 2 growth reducing electrical current to at least a portion of the growth plate of a bone,
- 3 wherein the current is effective to reduce the growth of the bone in the applied region.
- 1 11. The method of claim 10 wherein the bone growth reducing electrical
- 2 current is effective to arrest the growth of the bone in the applied region.
- 1 12. The method of claim 10 wherein the bone growth reducing electrical
- 2 current is effective to arrest the growth of the entire bone.
- 1 13. The method of claim 10 further comprising positioning at least one
- 2 electrode near the growth plate of the bone, wherein the bone growth reducing electrical
- 3 current is applied to the growth plate through the at least one electrode.

1	14. The method of claim 10 further comprising:		
2	positioning at least one electrodes near the growth plate of the bone, wherein the		
3	bone growth reducing electrical current is applied to the growth plate through the at least		
4	one electrode;		
5	providing a power source and controller in electrical communication with the at		
6	least one electrode, wherein the power source generates the bone growth reducing current		
7	and the controller regulates the amount of the current applied to each of the at least one		
8	electrode; and		
9	monitoring the change in growth of the bone.		
1	15. The method of claim 14 further comprising:		
2	determining an amount of correction for the bone; and		
.3	removing the power source when the amount of correction has been achieved.		
1	16. The method of claim 10 wherein the bone growth reducing electrical		
2	current is at least 50 μA.		
1	17. The method of claim 13 wherein the at least one electrode is positioned in		
2	the growth plate.		

l	18. A method for correcting the curvature of the spine, comprising the steps		
2	of:		
3	positioning at least one electrode at a portion of a vertebrae near the outside curve		
4	of the spine; and		
5	applying a bone growth reducing current to the portion of the vertebrae, wherein		
6	the current is effective to reduce the growth of the vertebrae at the outside of the curve		
7	without reducing growth of the vertebrae near the inside of the curve.		
1	19. The method of claim 18, further comprising the steps of:		
2	determining the amount of correction for the curvature of the spine;		
3	monitoring the change in curvature of the spine; and		
4	removing the at least one electrodes from the vertebrae when the amount of		
5	correction for the curvature of the spine has been achieved.		
1	20. The method of claim 18, further comprising the steps of:		
2	positioning at least two electrodes on the portion of vertebrae along the outside		
3	curve of the spine; and		
4	providing a power source and controller in electrical communication with the at		
5	least two electrodes, wherein the power source generates the bone growth reducing		
6	current and the controller regulates the amount of the current applied to each of the at		
7	least one electrode.		
1	21. The method of claim 20 wherein the controller regulates the frequency and		
2	duration of the current applied to each of the at least two electrodes.		

1 22. The method of claim 20 wherein the amount of current applied to two or 2 more electrodes is different. 1 23. The method of claim 20 further comprising the step of: 2 programming the controller to apply the amount, frequency, and duration of the 3 current to each of the at least two electrodes. 1 24. The method of claim 18 further comprising the steps of: 2 providing at least one second electrode on a portion of the vertebrae along the 3 inside of the curve of the spine; and 4 applying a bone growth stimulating current to the at least one electrode. 25. 1 The method of claim 18 wherein the at least one electrode is positioned in 2 a growth plate. 1 26. The method of claim 18 wherein the at least one electrode is positioned 2 near a growth plate.