

SECI1013-03 (DISCRETE STRUCTURE) ASSIGNMENT 1 (CHAPTER 1 & 2)

PREPARED FOR: DR MUHAMMAD ALIIF BIN AHMAD PREPARED BY: GROUP 7

No.	Name	Matrics No.
1.	Muhammad Firdaus bin Md Lani	A24CS0132
2.	Kavivarthan A/L Mannivanan	A24CS0093
3.	Michelle Ho Chia Xin	A24CS0110
4.	Tay Xin Ying	A24CS0200

QUESTIONS 1, 2, 3

chapter |

anestion 1

Q. F = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}

b. 6 = {12, 14, 16, 18, 20, 22, 24, 26, 28} |6| = 9

Question 2

4) $|P(A)| = 2^3$

b) ANB= {s}
ANBNC= [s,n,e,t]

c) A-B = {u,b}

4) B = {sieit}, (= {nieit}

Bx(= {(sin), (sie), (sit), (ein), (eie), (eit), (tin), (tie), (tit)}

Question 3

- a. Proposition, true
- b. Proposition, true
- c. Proposition, true
- d. Proposition, false
- e. Proposition, true

Question 4

9.

P	9	-p	79	p -> 9	7p 470	(P→9) 1 (¬P ↔79)
T	1	F	F	Т	Т	Т
T	F	F	T	F	F	F
F	T	T	F	Т	F	F
F	F	T	T	T	T	Т

Ь

P	9	77	79	P↔9	17P>79	(P+>q) V (¬p→¬q)
Т	Т	F	F	Т	T	Т
T	F	F	Т	F	1	Т
F	T	7	F	F	F	F
F	F	T	T	Т	Т	Т

QUESTIONS 5, 6, 7

Rylstion 5

P	9	r	-p	79	フr	74V-7r	914	A	B
T	T	T	F	F	Ł.		T	t	T
T	T	F	F	F	T	T	F	F	Ī
T	F	T	F	T	4	T ·	F	F	T
T	F	F	F	T	T	T	F	F	T
F	T	T	T	F	F	F	T	F	II
F	T	F	T	F	T	T	F	T	F
F	F	T	T	T,	F	T	-	T	F
F	F	F	T	T	T	T	F	T	F

. A≢B.

Question 6

P	9	P V V	P19	Α	В
T	T	T	T	T	T
T	F	T	F	T	Τ
F	T	1	F	F	F
F	F	F	F	F	F

∴ A≡B.

Question 7

(9)

 $\frac{1}{2}$ $\frac{1}$

(b) $\forall \alpha$ ($Q(\alpha) \rightarrow \neg R(\alpha)$)

Question 8

For all negative integers X, X^2 is positivelet -a is a negative integer:

$$(-a)^{2} = (-a).(-a)$$

= a^{2}

The multiplication of two same signs, either positive or negative, brings positive sign as its outcome.

Therefore, X = -9.

Since $\chi < 0$ and $\chi^2 > 0$, we can conclude that $\forall (\chi) (\chi < 0 \rightarrow \chi^2 > 0)$.

Hence, proven *

9. Give a proof by contradiction to show if c and D are sets, then cn (onc') = {}

"Supposition: Suppose c & O are sets, cn (onc') = {}

Thus, cn (Dn C') is an empty set, a contradiction. Which proves that the original supposition is false.

.. Therefore if cd0 are sets, then cn(Dnc1) - {}

Contradiction: if C R D are sets, then $C N (D N C') \neq \{\}$ if $C N (D N C') \neq \{\}$, then there exists an element R such that $R \in C N (D N C')$

This implies:

- 0 xec
- 2 x € (DAC')

From Θ : π must exist and π must exist C' for Θ to be true However since $\pi \in C$, π cannot exist π in C' at the same time.

Thus $C \cap (D \cap C') = \{\}$

```
Chapter 2: (2.1 2.2) Relations and Functions (8.0), (1-,8), (8,1-)} = 2:39 617
10. Determine whether the relation R on set Z (set of integer) is reflexive, irreflexive,
    symmetric, asymmetric, antisymmetric, or transitive.
                                                         100000011-
                                                              1 0 0 0 0
                         a R b if and only if la-bl= 2
    Z = {···, -3, -2, -1, 0, 1, 2, 3, ···}
                                       Symmetric: ∀a, b ∈Z, (a, b) ∈R → (b,a) ∈R
 Reflexive: Ya E Z, (a, a) ER
                                       Check: Suppose R is symmetric, R={(-3,-1),(-1,-3),(0,2),
 check: |-1-(-1) 1 = 0
                                                                      (2,0), (2,4), (4,2)}
        10-01=0
                          1000
                                       1-3-(-1)1=2
  - R is not reflexive. I 10000
                                       1-1-(-3)1=2
                                                                1.0000000
                                       10 7 21 = 2 Habre 34
 Irreflexive: Ya & Z , (a,a) & R . Julian
                                                              0000
                                       12-01 = 2
 check: since the relation doesn't contain
                                                                 0 0 0
                                       12-41=2
        any pair of the form (a, a), thus
                                                              2
                                       14-21=2
        the relation will be irreflexive.
                                             The relation is symmetric
```

Asymmetric: Va, b ∈Z, (4, b) ∈R → (b, a) €R Check: Since the relation is symmetric, thus the relation cannot be asymmetric because Va. b ∈ Z , (a, b) ∈ R → (b, a) € R does not hold true. 3 3109908 : not shared and Antisymmetric: Va, b & Z, (a, b) & R A (b, a) & R -> a = b Check: Suppose relation R = { (-3,-1), (-1,-3) } 1-3-(-1) 1 = 2 1-1-(-3)1=2 This holds true that (a,b) GR A (b,a) ER, however a + b because it will yield o which will imply that 1a-b1 \$ 2. Thus, the relation cannot be antisymmetric. Transitive: Ya,b,c & Zo, (a,b) & R A (b,c) & R -> (a,c) & R ('000) Check: Suppose a=1, b=3, c=5 . worker i 'tar piges en si ('s a a) n s sunt However, 11-51 \$ 2 silved in nothicogque 11-31=2 and 13-51=2 Method #1 Thus, (1,5) & R and the relation is not transitive Method Suppose: R = { (-1,3), (3,-1), (0,2), (2,0) } box 200HD139 (2.6 1.6) = 2 stynd 2 (septim to 191) I to no 9 notices of rathering of integral 3 metr , or or or or promitive. -1 [0 0 0 0 1] 000010 Ma = 1 0 0 0 0 0 0 MR & MR = 0 0 0 0 0 0 0 0 [[1 0 0 0 0] ... [0 1 201000 3 1 0 0 0 0 (Symmetric: Ya, b) & Z , (a, b) & R . (b, a) & Rik Reflexive: Ya & Z , (a, a) & R 0 0 0 0 1 sheek: Suppose R = (Cymmetric R = ((+3, -1), (+1, -3), (0, 3),

the relation is symmetric

(1,0),(4.4),(0,1)

00000 100) 8.

0010000011

12-41-2

C=11-51

0

11. Given a relation, R on A = {a,b,c,d} on as follows:

Show that the matrix of relation, M_R and determine whether the relation, R is an equivalence relation.

Symmetric: if $M_R = M_B^T$

MR = c d 0 0 1 1 0 d 1 0 0 0 1 1

* Relation is reflexive

ne # Me * Relation is not symmetric

Transitive: MR & MR = MR

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} + \underbrace{\begin{pmatrix} y_{L} + y_{L} = y_{L} = y_{L} \\ y_{L} + y_{L} + y_{L$$

MR & MR # MR * Relation is not transitive

.. Relation, R is reflexive, but not symmetric nor transitive. Thus relation R is not an equivalent relation.

12. Let
$$f(x,y) = (2x-y, x-2y)$$
; $(x,y) \in R \times R$, (R) if the set of real numbers)

a) Show that f is one-to-one,

If f is one-to-one, $f(x_1,y_1) \circ f(x_1,y_2)$ then $x_1 = x_2$ and $y_1 = y_2$.

$$f(x_1,y_1) = f(x_2,y_2)$$

$$f(x_1) = f(x_2)$$

$$f(x_2) = f(x_2)$$

$$f(x_2) = f(x_2)$$

$$f(x_1) = f(x_2)$$

$$f(x_2) = f(x_2)$$

b) Find
$$f^{-1}$$
 $f(x,y) = (2x-y, x-2y)$
 $(x,y) = f^{-1}(2x-y, x-2y) \rightarrow (x,y) = f^{-1}(a,b)$

let $a = 2x-y$, $b = x-2y$
 $a = 2x-y$...

 a

QUESTIONS 13, 14, 15

Question 13

Question 14

$$g \cdot f = g[f(x)]$$
$$= x^3 - 1$$

$$= (x-1)^{2}(x-1)$$

$$=(x^2-2x+1)(x-1)$$

$$= x^3 - 3x^2 + 3x - 1$$

Question 15

only "000..." "111..." "...1100...." allowed

$$n =$$
 = 0 , 1

$$n=1=0$$
, 1
 $n=2=00$, 11, 10

$$n=3=000$$
, 111 , 100 , 110

:
$$a_n = a_{n-2} + 2$$
, $n \ge 2$, $a_n = 2$, $a_2 = 3$

a. = 2 a2 = 3

az = 4

Q4 = 5

as = 6

Thus, $g[f(x)] \neq f[g(x)]$

```
Question 16
Input = n
Output = Cn
Cn E
if (n=1)
   return O
else if (n=2 or n=3)
  return 1
else
 return Cn-2 + Cn-3
```