Eq. (3.1.4) serves as the cornerstone of the unified channel charge expression at the source for small V_{ds} . To account for the influence of V_{ds} , the V_{gsteff} function must keep track of the change in channel potential from the source to the drain. In other words, Eq. (3.1.4) will have to include a y dependence. To initiate this formulation, consider first the re-formulation of channel charge density for the case of **strong inversion**

$$Q_{chs(y)} = C_{ox}(V_{gs} - V_{th} - A_{bulk}V_{F(y)})$$
(3.1.5)

The parameter $V_F(y)$ stands for the quasi-Fermi potential at any given point y, along the channel with respect to the source. This equation can also be written as

$$Q_{chs(y)} = Q_{chs0} + \Delta Q_{chs(y)}$$
(3.1.6)

The term $\Delta Q_{chs}(y)$ is the incremental channel charge density induced by the drain voltage at point y. It can be expressed as

$$\Delta Q_{chs(y)} = -CoxA_{bulk}V_{F(y)}$$
(3.1.7)

For the **subthreshold region** ($V_{gs} << V_{th}$), the channel charge density along the channel from source to drain can be written as

$$Q_{chsubs(y)} = Q_0 \exp\left(\frac{V_{gs} - V_{th} - A_{bulk}V_{F(y)}}{nv_t}\right)$$

$$= Q_{chsubs0} \exp\left(-\frac{A_{bulk}V_{F(y)}}{nv_t}\right)$$
(3.1.8)