1. Prerequisites -

Install miniconda, qiime2=2023.7 and usearch. For details to install qiime2=2023.7, check <u>giime2 documentation</u>,

Follow this tutorial for detailed guidance - https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cpbi.100

2. Paired-end fastq files merged using usearch

Example command -

```
usearch11.0.667_i86linux32 -fastq_mergepairs
raw_seq_dir/001AU46701-16S_V1-V3_L6RGF_GATCGTCGCG-CTGGATATGT_L001_R1.fastq
-reverse
raw_seq_dir/001AU46701-16S_V1-V3_L6RGF_GATCGTCGCG-CTGGATATGT_L001_R2.fastq
-fastqout 001AU46701-16S_V1-V3_L6RGF_GATCGTCGCG-CTGGATATGT_L001_R1R2.fq
```

3. Creating metadata file from Raw Reads

```
echo -e "sample-id\tabsolute-filepath" > manifest.tsv

for f in *R1R2.fq; do
   n=$(basename "$f")
   echo -e "${n}\t$PWD/$f"

done >> manifest.tsv
```

4. Using manifest file to import raw reads into QIIME 2 artifacts

```
qiime tools import \
    --input-path manifest.tsv \
    --type 'SampleData[SequencesWithQuality]' \
     --input-format SingleEndFastqManifestPhred33V2 \
     --output-path paired_end-demux.qza
```

5. Creating a summary of the demultiplexed artifact to interactively explore the metadata (Optional Commands)

Summarizing manifest.tsv

COLUMNS: 1

<pre>qiime metadata tabulate \ m-input-file manifest.tsv \ o-visualization metadata-summary.qzv</pre>						
dime2view	File: met	adata-summary.qzv	Visualization	Details Provenance		
Download metadata TSV file						
This file won't necessarily reflect dynamic sorting or filtering options based on the interact	tive table below.				Search:	
sample-id #q2rtypes	17	absolute-filepath categorical			11	
001AU27472-16S_V1-V3-L6RGF-GCACCACCAA-TGGTACTGAT_L001_R1R2.fq	/home/salmaneurus27/001AU27472-16S_V1-V3-L6RGF-GCACCACCAA-TGGTACTGAT_L001_R1R2.fq					
001AU33237-16S_V1-V3_L6RGF_GTTCGGAGTT-CGCCTTCTGA_L001_R1R2.fq	/home/salmaneunus/27/001AU33237-16S_V1-V3_L6RGF_GTTCGGAGTT-CGCCTTCTGA_L001_R1R2.fq					
001AU46701-16S_V1-V3_L6RGF_GATCGTCGCG-CTGGATATGT_L001_R1R2.fq	/home/salmaneunus27/001AU46701-16S_V1-V3_L6RGF_GATCGTCGCG-CTGGATATGT_L001_R1R2 fq					
To get some basic info.						
qiime tools inspec t-metadata manifest.tsv						
COLUMN NAME		27@3acillai1. 3				
absolute-filepath						
TDS:	3					

Summarizing paired-end reads

6. Sequence Quality Control & Feature Table Construction

Initial filtering based on quality scores

```
qiime quality-filter q-score \
--i-demux paired_end-demux.qza \
--o-filtered-sequences pe-filtered.qza \
--o-filter-stats pe-filter-stats.qza
```

Clustering sequences into OTUs Using q2-vsearch

Reference - https://github.com/qiime2/docs/blob/master/source/tutorials/otu-clustering.rst

Using the filtered sequences from the previous step, we will dereplicate the sequences to form a FeatureTable[Frequency] artifact and a FeatureData[Sequence] artifact

qiime vsearch dereplicate-sequences \

- --i-sequences pe-filtered.qza \
- --o-dereplicated-table feature-table.qza \
- --o-dereplicated-sequences rep-seqs.qza

Closed-Reference Clustering of the OTU table

Clustering is performed at 85% identity against the Greengenes 13_8 85% OTUs reference database.

Downloading greengenes OTUs reference database

wget https://data.qiime2.org/2023.9/tutorials/otu-clustering/85_otus.qza

qiime vsearch cluster-features-closed-reference --i-table feature-table.qza

- --i-sequences rep-seqs.gza --i-reference-sequences 85 otus.gza --p-perc-identity 0.85
- --o-clustered-table table-cr-85.qza --o-clustered-sequences rep-seqs-cr-85.qza
- --o-unmatched-sequences unmatched-cr-85.qza

Visualizing the representative sequences after Closed-Reference Clustering

qiime feature-table tabulate-seqs --i-data rep-seqs-cr-85.qza --o-visualization rep-seqs-cr-85.qzv

Visualizing feature table

qiime feature-table summarize --i-table table-cr-85.qza --m-sample-metadata-file manifest.tsv --o-visualization feature-table-cr-85.qzv

7. Generating Feature table in BIOM and CSV format

qiime tools export --input-path table-cr-85.qza --output-path exported-feature-table

	134265	1065387	551008	587572	215040	552456	185940	4308184	183870	53032
001AU27472-16S_V1-V3- L6RGF-GCACCACCAA- TGGTACTGAT_L001_R1R2.fq	35662.0	1400.0	4804.0	1.0	611.0	0.0	480.0	3.0	327.0	0.0
001AU33237-16S_V1- V3_L6RGF_GTTCGGAGTT- CGCCTTCTGA_L001_R1R2.fq	15282.0	2273.0	2396.0	2.0	75.0	0.0	1181.0	2.0	17.0	6.0
001AU46701-16S_V1- V3_L6RGF_GATCGTCGCG- CTGGATATGT_L001_R1R2.fq	9094.0	1532.0	3943.0	440.0	804.0	346.0	2390.0	13.0	453.0	718.0

See details here to read .biom file and convert from .biom to .csv - https://colab.research.google.com/drive/1LcprGCrPnvrzujMZH37NToIMIUAvToWx?usp=sharing

All OTU_ids matched with previous otu_taxonomy table - https://colab.research.google.com/drive/1ivNYwkXi9f4EqGbRMzc-6w2U1frx59 k?usp=sharing

8. Taxonomic Classification

Downloading 3 required files from the inventory

waet

https://github.com/BenKaehler/readytowear/raw/master/data/gg_13_8/515f-806r/human-stool.qza

wget

https://github.com/BenKaehler/readytowear/raw/master/data/gg_13_8/515f-806r/ref-seqs.qza

wget https://github.com/BenKaehler/readytowear/raw/master/data/gg_13_8/515f-806r/ref-tax.qza

Training classifiers using these files

qiime feature-classifier fit-classifier-naive-bayes --i-reference-reads ref-seqs.qza --i-reference-taxonomy ref-tax.qza --i-class-weight human-stool.qza --o-classifier human gut classifier.gza

Assign taxonomy to our representative sequences using our newly trained classifier:

qiime feature-classifier classify-sklearn \
--i-reads rep-seqs-cr-85.qza \
--i-classifier human_gut_classifier.qza \
--o-classification agrf-taxonomy.qza

Now, we will visualizing the taxonomy:

qiime metadata tabulate \
--m-input-file agrf-taxonomy.qza \
--m-input-file rep-seqs-cr-85.qza \
--o-visualization agrf-taxonomy.qzv

	id	Taxon	Confidence	Sequer
0			antagarinal	·
U	#q2:types	categorical	categorical	categori
1	1065387	k_Bacteria; p_Firmicutes; c_Clostridia; o	0.7176739941419537	AGAGTTTGATCATGGCTCAGGATGAACGCTAGCTACAGGCTTAAC,
2	110660	kBacteria	0.998410293516579	AGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAAC
3	111066	k_Bacteria; p_Firmicutes; c_Clostridia; o	0.7497422366344827	AGAGTTTGATCATGGCTCAGGACGAACGCTGGCGGCGTGCTTAAC
4	112239	kBacteria	0.9980215995275771	AGAGTTTGATCATGGCTCAGGACGAACGCTGGCGGCGTGCCTAATA
5	1141209	kBacteria; pFirmicutes	0.712636651358992	AGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCATGCTTTAC
6	131533	k_Bacteria; p_Firmicutes;	0.8163357852277051	AGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCATGGATTAGG

Taxonomy Based Filtering of Data

Excluding sequences that are unexpected such as those from chloroplasts or mitochondria

qiime taxa filter-table --i-table table-cr-85.qza --i-taxonomy agrf-taxonomy.qza --p-mode contains --p-include p__ --p-exclude 'p__;,Chloroplast,Mitochondria' --o-filtered-table filtered-table-3.qza

In this step we are removing those features to save computational time

qiime feature-table filter-seqs --i-data rep-seqs-cr-85.qza --i-table filtered-table-3.qza --o-filtered-data filtered-sequences-2.qza

Visualizing the filtered taxonomy

qiime taxa barplot --i-table filtered-table-3.qza --i-taxonomy agrf-taxonomy.qza --m-metadata-file manifest.tsv --o-visualization taxa-bar-plots-1.qzv

9. Generating a phylogenetic tree to understand evolutionary relationship between DNA and sequences

Creating an insertion tree

qiime phylogeny align-to-tree-mafft-fasttree --i-sequences filtered-sequences-2.qza --output-dir phylogeny-align-to-tree-mafft-fasttree

10. Diversity Plots

qiime diversity alpha-rarefaction --i-table filtered-table-3.qza --i-phylogeny phylogeny-align-to-tree-mafft-fasttree/rooted_tree.qza --p-max-depth 10000 --m-metadata-file manifest.tsv --o-visualization child-alpha-rarefaction.qzv

More csv output files can be found here - drive link

Alpha & Beta diversity

qiime diversity core-metrics-phylogenetic --i-table filtered-table-3.qza --i-phylogeny phylogeny-align-to-tree-mafft-fasttree/rooted_tree.qza --p-sampling-depth 3400 --m-metadata-file manifest.tsv --p-n-jobs-or-threads 1 --output-dir child-norep-co re-metrics-results

Weighted Unifrac distance

Statistical tests on diversity