5 Tuning the Emulator

5.1 Summary

Smooth emulator finds a sample set of Taylor expansion coefficients that reproduce a set of observables at a set of training points. The process of finding those coefficients is referred to as "tuning". For a given observable, a particular sample set of coefficients gives the following emulated function:

$$E(\vec{\theta}) = \sum_{\vec{n}, s.t. \sum_{i} n_{i} \leq \text{MaxRank}} d(\vec{n}) A_{\vec{n}} \left(\frac{\theta_{1}}{\Lambda}\right)^{n_{1}} \left(\frac{\theta_{2}}{\Lambda}\right)^{n_{2}} \cdots .$$
 (5.1)

Here, $\theta_1\theta_2\cdots$ represent the original model parameters, \vec{X} , but are scaled. If their initial prior is uniform, they are scaled so that their priors range from -1 to +1, and if they have Gaussian priors, they are scaled so that their variance is one third. The degeneracy factor, $d(\vec{n})$ is the number of different ways to sum the powers n_i to a given rank,

$$d(\vec{n}) = \sqrt{\frac{(n_1 + n_2 + \cdots)!}{n_1! n_2! \cdots}}.$$
 (5.2)

As described in Sec. ??, the coefficients are chosen weighted by the distribution,

$$P(\vec{A}) = \prod_{n} \frac{1}{\sqrt{2\pi\sigma_A^2}} e^{-A_n^2/2\sigma_A^2},$$
 (5.3)

where σ_{A} is varied to maximize the overall probability given the constraint of reproducing the training points. More discussion is provided in Sec. ??. Whereas Smooth Emulator does a nice job of finding an optimum value for σ_{A} , the smoothness parameter Λ is unfortunately difficult to optimize. For the moment, this is treated purely as prior knowledge, or expectation. If the User expects the full model to be very smooth, i.e. the quadratic contributions to be much smaller than the linear contributions and so on, a larger value (e.g. 3.0), might be chosen. If the full-model output might be almost wavy, then a smaller value (e.g. 1.5) might be chosen. The emulator uncertainties will be smaller for larger Λ .

By setting parameters, as described below, Smooth Emulator can tuned one of three different ways

- a) Find the optimum set of coefficients. If evaluated a the training points, the emulator will exactly produce the full model. when it predicts the observable at a new $\vec{\theta}$ it provides an uncertainty.
- b) If a Monte Carlo tuning method is chosen, the emulator finds a predetermined number of sets of coefficients, where each set of coefficients provides a function that exactly reproduces the real model at the training points. The User sets the number of sets of coefficients, typically of order $N_{\text{sample}} \approx 10$, in the parameter file. Away from the training points, the uncertainty of the emulator is represented by the spread of the values amongst the N_{sample} predictions.
- c) The third mode also provides N_{sample} predictions, but rather than exactly reproducing the training values the emulator merely comes close to the training points with a distribution $\sim e^{-\Delta y^2/2\sigma_y^2}$, where σ_y represents the random error of the full model. This mode should be chosen if the full model has significant random error, and especially if the training points are close to one another.

Method (a) is by far the quickest, and will probably be used the most often.

If methods (b) or (c) are chosen $Smooth\ Emulator$ solves for the N_{sample} sets of coefficients from the training data, then stores N_{sample} sets of coefficients, along with the averaged coefficients in files for later use. If (a) is chosen, $Smooth\ Emulator$ stores the set of "best" coefficients along with some other arrays used for rapid calculation of the uncertainty. $Smooth\ Emulator$ can emulate either the full-model observables directly, or their principal components. Training the emulator follows the same steps for either approach.

The executables based on *Smooth Emulator* are located in the User's \${MY_LOCAL}/bin directory. Examples of such executables are smoothy_tune or smoothy_calcobs. These functions must be executed from within the User's project directory.

In the following subsections, we first review the format for each of the required input files, then describe how to run *Smooth Emulator*, how its output is stored, and how to switch PCA observables for real observables.

5.2 Preparing Files for Smooth Emulator

Before training the emulator, one must first run the full model at a given set of training points. In addition to a parameter file (described in the next sub-section), which sets numerous options, the User must provide the following:

1. A file listing the names of observables and an estimate of the variance of each observable throughout the model-parameter space, σ_A . This file is named Info/observable_info.txt, where the path is relative to the project directory. The file might look like

```
obsname1 12.3
obsname2 23.4
obsname3 34.5
obsname4 45.6
```

The initial σ_A is only relevant if one is using one of the Monte Carlo tuning methods, (b) or (c) above, as it provides an initial guess for the parameter σ_A above.

2. A file listing the names of the model parameters that also describes their priors. This file is Info/modelpar_info.txt. The file might have the following form:

```
parname1 uniform 0 1.0E-3 parname2 uniform -50.0 100.0 parname3 gaussian 0 24.6 parname4 uniform 30.0 50.0
```

If the prior is uniform the two following numbers provide the minimum and maximum of the interval. If the prior is gaussian the two subsequent values represent the center and r.m.s. width of the Gaussian. This same file was required for running *Simplex Sampler*.

3. A list of the model-parameter values, $\vec{\theta}_{train}$, at each training point. These points can be generated by $Simplex\ Sampler$, as described in Sec. ??, or they can be generated by hand. If the number of full-model runs performed is N_{train} , Smooth emulator requires files for each run. Each file is named $M_{train} = I_{train} =$

```
parname1 8.34E-4
parname2 -30.5375
parname3 36.238
parname4 39.34
:
```

4. At each training point, the User must provide the full model's value for each observable. In the same directory where the model-parameter values are stored, *Smooth Emulator* requires the observables calculated at the training points mentioned above. This information is provided in \${MODEL_RUN_DIRNAME}/runI/obs.txt. An example of such a file is:

```
obsname1 -51.4645 2.5
obsname2 166.837 0.9
obsname3 -47.9877 0.0
obsname4 -2.34526 0.03
```

The first number is the calculated value of the observable, and the second is the random error. This is only the random error, i.e. that which represents that if the model were rerun at the same training point, the value might be different. This should only be non-zero if the full-model has some Monte Carlo feature. For example, the full model might involve simulating a small number of events. Other types of uncertainty are accounted for by including them into the experimental uncertainty.

Once the emulator is tuned and before it is applied to a Markov Chain investigation of the likelihood, the software needs know the experimental measurement and uncertainty. That information must be entered in the Info/experimental_info.txt file. The file should have the format:

```
-12.93
obsname1
                     0.95
                             0.5
obsname2
          159.3
                     3.0
                             2.4
obsname3
          -61.2.
                     1.52
                             0.9
                     0.075
obsname4
          -1.875
                             0.03
```

The first number is the measured value and the second is the experimentally reported uncertainty. The third number is the uncertainty inherent to the theory, due to missing physics. For example, even if a model has all the parameters set to the exact value, e.g. some parameter of the standard value, the full-model can't be expected to exactly reproduce a correct

measurement given that some physics is likely missing from the full model. For the MCMC software, the relevant uncertainty incorporates both, and only the combination of both, added in quadrature, affects the outcome. We emphasize that this last file is not needed to train and tune the emulator. It is needed once one performs the MCMC search of parameter space.

5.3 Smooth Emulator Parameters (not model parameters!)

Smooth Emulator requires a parameter file. This can be located anywhere, as it will be specified on the command line when running Smooth Emulator, but is typically parameters/emulator_parameters.txt. The parameter file is simply a list, of parameter names followed by values.

```
#SmoothEmulator_LogFileName smoothlog.txt # comment out for interactive running
SmoothEmulator_LAMBDA 2.0 # Smoothness parameter
SmoothEmulator_MAXRANK 5
SmoothEmulator_ConstrainAO true
SmoothEmulator_ModelRunDirName modelruns
SmoothEmulator_TrainingPts 0-27
SmoothEmulator_UsePCA
SmoothEmulator_TuneExact true
# These are only used if you are using MCMC tuning rather than Exact method
SmoothEmulator_TuneChooseMCMC false # set false if NPars<5</pre>
SmoothEmulator_MCMC_NASample 8 # No. of coefficient samples
SmoothEmulator_MCMC_StepSize 0.01
SmoothEmulator_TuneChooseMCMCPerfect false #
SmoothEmulator_MCMC_UseSigmaY false # Emulator only fits training data to within model ra
SmoothEmulator_MCMC_CutoffA false # Used only if SigmaA constrained by SigmaA0
SmoothEmulator_MCSigmaAStepSize 1.0
SmoothEmulator_MCMC_NMC 20000 # Steps between samples
# This is for the MCMC search of parameter space (not for the emulator tuning)
MCMC_METROPOLIS_STEPSIZE 0.01
RANDY_SEED.
           1234
```

If any of these parameters are missing from the parameters file, *Smooth Emulator* will assign a default value.

1. SmoothEmulator_LogFileName

If this is commented out, as it is in the example above, *Smooth Emulator*'s main output will be directed to the screen and the program will run interactively. Otherwise, the output will be recorded in the specified file. Most often, one will wish the program to run interactively.

2. SmoothEmulator_LAMBDA

This is the smoothness parameter Λ . It sets the relative importance of terms of various rank. If Λ is unity or less, it suggests that the Taylor expansion converges slowly. The default is 3.

3. SmoothEmulator_MAXRANK

As Smooth Emulator assumes a Taylor expansion, this the maximum power of θ^n that is considered. Higher values require more coefficients, which in turn, slows down the tuning process. The default is 4.

4. SmoothEmulator_ConstrainA0

The coefficients in the Taylor expansion are assumed to have some weight,

$$W(A_i) = rac{1}{\sqrt{2\pi\sigma_A^2}}e^{-A_i^2/2\sigma_A^2}.$$

The term σ_A is allowed to vary during the tuning to maximize the likelihood of the expansion. If the User wishes to exempt the lowest term, i.e. the constant term in the Taylor expansion from the weight, the User may set SmoothEmulator_ConstrainAO to false. The default is false.

5. SmoothEmulator_ModelRunDirName

This gives the directory in which the training data from the full model runs is stored. The default is modelruns, which is the same default Simplex Sampler uses for writing the coordinates of the training points.

6. SmoothEmulator_TrainingPts

This lists which full-model training runs SmoothEmulator will use to train the emulator. This provides the User with the flexibility to use some subset for training, as may be the case when testing the accuracy. The default is "1". An example the User might enter could be SmoothEmulator_TrainingPts 0-4,13,15

This would choose the training information from the directories run0,run1,run2,run3,run4,run13 and run15, which would be found in the directory denoted by the SmoothEmulator_ModelRunDirName parameter.

7. SmoothEmulator_UsePCA

By default, this is set to false. If one wishes to emulate the PCA observables, i.e. those that are linear combinations of the real observables, this should be set to true. One must then be sure to have run the pca decomposition programs first. For more, see Sec. ??.

8. SmoothEmulator_TuneExact

This is set to **true** by default. In this case *Smooth Emulator* finds the optimum set of coefficients and also records some other arrays necessary for calculating the emulator uncertainty. This is tuning type (a) above.

9. RANDY_SEED

This sets the seed for the random number generator. If the line is commented out, it will be set to std::time(NULL).

None of these are relevant if SmoothEmulator_TuneExact is true.

10. SmoothEmulator_TuneChooseMCMC

This is tuning type (b) above. Rather than finding the optimum set of coefficients, Smooth Emulator finds N_{sample} sets of coefficients consistent with the probability. All the sets exactly reproduce training observables. As this runs as a Markov chain, the independence of the sample may require a large number of steps between samplings. The default is false.

11. SmoothEmulator_MCMC_NASample

Smooth Emulator finds N_{sample} sets of coefficients. Each set reproduces the training points, but differs away from the training points. Setting $N_{\text{sample}} \sim 10$ should reasonably represent the uncertainty of the emulator. The default is set at 8.

12. SmoothEmulator_MCMC_NMC

This is the number of Markov Chain steps between samples. A larger number is required if the samplings are to be independent. The default is 20,000.

13. SmoothEmulator_MCMC_StepSize

This is the size of the MCMC stepsize in θ space. MCMC approaches are most efficient if the success probability is near 0.5. If the probability is much higher, then the step size should be increased, and if it is much lower, the step size should be decreased. This affects only the efficiency, not the accuracy. The default of 0.01.

$14. \ {\bf SmoothEmulator_TuneChooseMCMCPerfect}$

If there are a small number of model parameters, perhaps less than a half dozen, then rather than performing a Markov Chain one can choose the coefficients by a keep-or-reject method. The advantage of this approach is that N_{sample} coefficients are perfectly independent. The disadvantage is that the percentage of "keeps" falls rapidly with an increasing number of parameters. For larger numbers of parameters it is usually more efficient to set this to its default, false.

15. SmoothEmulator_MCMC_UseSigmaY

If the real model has significant random noise, the emulator should not be constrained to exactly reproduce the observables at the training points. This is tuning type (c) above.

16. SmoothEmulator_MCMC_CutoffA

This applies an additional multiplicative weight to the weight for A above:

$$W(A_i)_{
m additional} = rac{1}{1 + rac{1}{4}rac{A_i^2}{\sigma_A^2}}.$$

Here σ_{A0} is the initial guess for the spread. This can safeguard against the width σ_A drifting off to arbitrarily large values. Unless necessary, it is recommended to leave this at the default, false.

5.4 Running the Smooth Emulator Program

The source code for the Smooth Emulator main program can be found in the \${MY_LOCAL}/main_programs/ directory. This directory contains source code for several main programs. They are separated from the bulk of the software, which is in the GITHOME_BAND/SmoothEmulator/software/ directory. The main programs are designed so that the User can easily copy and edit them to create versions that might be more appropriate to the User's specific needs. When compiled, from the \${MY_LOCAL}/build/ directory, the executables appear in the \${MY_LOCAL}/bin/ directory. Two of the source codes that come with the distributions are \${MY_LOCAL} and \${MY_LOCAL}/main_programs/smoothed Conce compiled the corresponding executables are \${MY_LOCAL}/bin/smoothy_tune and \${MY_LOCAL}/bin/smoothed Concerns are \$

```
using namespace std;
int main(int argc,char *argv[]){
    if(argc!=2){
        printf("Usage smoothy emulator parameter filename");
        exit(1);
    }
    CparameterMap *parmap=new CparameterMap();
    parmap->ReadParsFromFile(string(argv[1]));
    CSmoothMaster master(parmap);
    master.ReadTrainingInfo();
    master.GenerateCoefficientSamples();
    master.WriteCoefficientsAllY();
    return 0;
}
```

Similarly, there is a code \${MY_LOCAL}/main_programs/smoothy_calcobs_main.cc, which provides an example of how one might read the coefficients and generate predictions for the emulator at specified points in parameter space.

From within the \$\{MY_LOCAL\}/build/\ directory, one can compile the two programs with the commands:

```
MY_LOCAL/build % cmake .
MY_LOCAL/build % make smoothy_tune
MY_LOCAL/build % make smoothy_calcobs
```

The executables smoothy_tune and smoothy_calcobs should now appear in the \${MY_LOCAL}/bin/directory. Assuming the bin/directory has been added to the User's path, the User may switch to the User's project directory, and enter the command

```
~/MY_PROJECT % smoothy_tune PARAMETERS/MY_PARAMETERS.TXT
```

Here PARAMETERS/MY_PARAMETERS.TXT can be replaced by the User, but is typically parameters/emulator_par

The program will write the Taylor coefficients for the N_{sample} samples to files in the coefficients directory. The coefficients for each observable are given in separate subdirectories, named by the observables, i.e. coefficients/OBS_NAME/sampleI.txt. Here, , where OBS_NAME is the name for each observable, and if there are N_{sample} sets of coefficients, $0 \le I < N_{\text{sample}}$. Along with the coefficients, in the same directory $Smooth\ Emulator$ writes a file for each observable. These files are named coefficients/OBS_NAME/meta.txt. This file provides information, such as the maximum rank and net number of model parameters, to make it possible to read the coefficients later on.

Smooth Emulator will output lines describing its progress, either to the screen or to a file, as specified by the SmoothEmulator_LogFile parameter described above. This output includes a report on the percentage of steps in the MCMC program that were successful. The line BestLogP/Ndof describes the weight used to evaluate the likelihood of a coefficients sample. This value should roughly plateau once the Metropolis procedure has settled on the most likely region.

For later us, e.g. when performing the MCMC to sampler the posterior, the User would need to generate predictions for specified values of the parameters. The executable \${MY_LOCAL}/bin/smoothy_calcobs, is such an example. It is compiled from the main program, \${MY_LOCAL}/main_programs/smoothy_calcobs.cc

```
int main(int argc,char *argv[]){
    if(argc!=2){
        CLog::Info("Usage smoothy_calcobs emulator parameter filename");
        exit(1);
    }
    CparameterMap *parmap=new CparameterMap();
    parmap->ReadParsFromFile(string(argv[1]));
    CSmoothMaster master(parmap);
    // Reads Emulator Coefficients for all observables
    master.ReadCoefficientsAllY();
    master.priorinfo->PrintInfo();
    //modpars carries info about single point
    CModelParameters *modpars=new CModelParameters(master.priorinfo);
    // Prompt user for model parameter values
    vector<double> X(modpars->NModelPars);
    for(int ipar=0;ipar<modpars->NModelPars;ipar++){
        cout << "Enter value for " << master.priorinfo->GetName(ipar) << ":\n";</pre>
        cin >> X[ipar];
   modpars->SetX(X);
    // Calc Observables Y[iy] for X
    CObservableInfo *obsinfo=new CObservableInfo("Info/Observable_Info.txt");
    vector<double> Y(obsinfo->NObservables);
    vector<double> SigmaY(obsinfo->NObservables);
    master.CalcAllY(modpars,Y,SigmaY);
    for(int iY=0;iY<obsinfo->NObservables;iY++){
        cout << obsinfo->GetName(iY) << " = " << Y[iY] << " +/- " << SigmaY[iY] << endl;</pre>
    }
    return 0;
```

The User can hopefully use this template programs as a base for calling *Smooth Emulator* to calculate the emulator values for a specified point in space. Note that SigmaY is the emulator uncertainty, not that from experiment or from the theoretical model.