Final Examination (Part A) – (Duration: 40 minutes)

Directions: For every problem of this exam, detailed written works supported by correct reasons must be shown legibly to receive credits.

Notations: \mathbb{R} is the set of all real numbers.

Problems

- 1. (15 marks) Using the continuous injection theorem or otherwise, prove that if $f : \mathbb{R} \to [0, +\infty)$ is a bijection, then f is not continuous on \mathbb{R} .
- 2. (15 marks) Let $h:[0,1] \to \mathbb{R}$ be continuous. If h(0)=0 and h is differentiable on (0,1) with h'(x) decreasing on (0,1), then prove that for $0 \le a \le b \le a+b \le 1$, we have $h(a+b) \le h(a) + h(b)$.
- 3. (20 marks) Define $g:(0,4)\to\mathbb{R}$ by $g(x)=\frac{x+1}{2\sqrt{x}-x}$. Prove that $\lim_{x\to 1}g(x)=2$ by checking the ε - δ definition of limit of g(x) as x tends to 1.