### CartPole RL Enhancement

A Deep Reinforcement Learning Approach with Curriculum Learning and Energy Consumption Optimization

Louis Gauthier

January 13, 2025

## Table of Contents

**Project Overview** 

**Environment Description** 

Steps Towards the Solution

Possible Extensions

Possible Shortcomings

Results and Analysis

Conclusion

# **Project Overview**

▶ **Objective:** Enhance the classic CartPole environment by introducing a third action ("Do Nothing") and develop a deep RL solution to manage the modified environment.

### Key Features:

- Addition of a neutral action to the action space.
- Implementation of curriculum learning to adjust reward weights dynamically.
- Incorporation of temperature-scaled softmax for exploration-exploitation balance.
- Logging and monitoring using TensorBoard.
- Energy consumption as a reward component.
- ▶ Outcome: Achieved a high success rate with efficient energy usage after 100k training steps.

# **Environment Description**

- Classic CartPole:
  - Two actions: Apply a force to the cart to push it left or right.
  - Observation Space: Cart position, cart velocity, pole angle, pole angular velocity.
  - ▶ Objective: Balance the pole by moving the cart. Episode ends if pole angle exceeds a threshold or cart moves out of bounds.



# **Environment Description**

- Modified CartPole:
  - ▶ Third Action: Do Nothing No force applied to the cart.
  - ► **Reward Structure:** Split into four equal components: Alive, Distance to Center, Pole Angle, and Energy Usage.
  - Curriculum Learning: Adjusts reward weights based on training phases.



# Steps Towards the Solution

#### 1. Environment Modification:

- Added a third "Do Nothing" action to the action space.
- Adjusted the reward function to incorporate energy consumption.

### 2. Algorithm Development:

- Implemented a combination of Double DQN and Dueling DQN for stable learning.
- Used a target network to improve training stability.
- Utilized Prioritized Experience Replay to sample important transitions.
- Applied Gradient Clipping to prevent exploding gradients.

#### 3. Enhancements:

- Introduced Curriculum Learning to adjust reward weights dynamically.
- Integrated Temperature-Scaled Softmax for exploration-exploitation balance.
- Tested Normalization for observations and rewards.



# Steps Towards the Solution



Figure: Catastrophic Forgetting occuring in the training process

# Steps Towards the Solution

#### 4. Problems encountered:

- Catastrophic forgetting: The agent forgets previously learned behaviors.
  - Solution: Use non-deterministic actions and temperature scheduling.
- Reward function is not a good metric of performance during training.
  - Solution: Run evaluations every 2k steps to track performance.

### 5. Logging and Monitoring:

- Set up TensorBoard for real-time monitoring of training metrics.
- Logged individual sub-rewards and penalties for detailed analysis.
- Evaluation every 2k steps to track performance.

### 6. Checkpointing:

- Enabled resuming training from saved checkpoints.
- Handling crashes or interruptions during training.



## TensorBoard Metrics



Figure: TensorBoard Dashboard showing training metrics

# Algorithm Enhancements

- ▶ Double DQN: Mitigates overestimation bias by decoupling action selection and evaluation.
- Prioritized Experience Replay: Samples important transitions more frequently to accelerate learning.
- ► Normalization:
  - Observation Normalization: Stabilizes training by normalizing input features.
  - Reward Normalization: Ensures consistent reward scaling.
- Curriculum Learning:
  - Phases:
    - 1. **0-20k steps:** 50% Alive Reward, 50% Pole Angle Reward.
    - 20k-50k steps: 33% Alive, 33% Pole Angle, 33% Distance to Center.
    - Above 50k steps: 25% each for Alive, Pole Angle, Distance to Center, and Energy Usage.

# Algorithm Enhancements

### ► Temperature-Scaled Softmax:

▶ Initial Temperature: 1.0

Final Temperature: 0.1

 Linearly decreases over training to reduce exploration over time.



Figure: Loss Stabilization: Prioritized (blue) vs. Uniform Replay (red)

### Possible Extensions

#### Stratification:

Implement stratified sampling to ensure diverse experiences in replay buffer.

#### Distribution-Aware Buffer:

Explore Cosine Similarity or Variational Autoencoders (VAEs) to model state distributions and enhance replay buffer sampling.

#### Parallel Environments:

► Increase to 16 parallel environments for faster experience collection and improved training efficiency.

#### Reward Function Refinement:

 Schedule Pole Angle and Distance to Center rewards to decrease over time, focusing more on energy optimization.

## Model Checkpointing:

Maintain multiple checkpoints to preserve best-performing models across different training phases.

## Advanced Exploration Strategies:

 Incorporate other exploration methods like entropy regularization or intrinsic motivation (e.g., curiosity).

# Possible Shortcomings

## Algorithm Tuning:

Deep RL algorithms require extensive hyperparameter tuning for optimal performance.

## Overfitting:

The model may overfit to the specific environment configuration, limiting generalizability.

## Fixed Length Episodes:

Fixed-length episodes combined with energy consumption reward may lead to suboptimal behavior where the agent overfits to short-term gains.

## ► Training For Too Long Might Decrease Performance:

The agent might overfit to near-perfect behavior and forget more complex situations.

## Learning Stability:

Other on-policy algorithm like PPO might be more stable and efficient.

# Results and Analysis

- ► Training Outcome after 100k Steps:
  - ► Average Reward: 975/1000
  - ► **Energy Consumption:** Under 0.4 per step (Full Power = 10 per step)
  - ► Success Rate: 100% during evaluation (No failures)
- Evaluation Strategy:
  - Conducted evaluations every 2k steps.
  - Essential for monitoring performance due to off-policy learning, non-deterministic actions, and exploration.
- Prioritization Analysis:
  - Prioritized Experience Replay helped stabilize loss.
  - Did not significantly enhance overall performance compared to uniform sampling.



## Conclusion

- Successfully enhanced the CartPole environment with a third "Do Nothing" action and optimized reward structure for energy consumption.
- Developed a robust deep RL solution incorporating curriculum learning and temperature-scaled softmax for effective exploration-exploitation balance.
- Achieved high performance with minimal energy usage and a perfect success rate in evaluations.
- Identified areas for improvement, including further algorithm tuning and exploring advanced buffer management techniques.