Econometria Financeira

Volatilidade: Modelos da família ARCH

Profa Dra Andreza Palma

UFSCar - Campus Sorocaba

Modelos da família ARCH

Plano de vôo

- Volatilidade
- Construção de um modelo de volatilidade
- Testes de heterocedasticidade condicional
- Modelo ARCH
- Modelo GARCH
- Modelo EGARCH
- Modelo GJR
- Exemplo

Volatilidade

- Nosso objetivo nesse tópico é modelar a volatilidade.
- Volatilidade: variância condicional
- Medida de risco
- Usada no cálculo de VaR (value-at-risk), precificação de opções (Black-Scholes), alocação de ativos (Markowitz mean-variance), etc.
- Problema: variável não observável

Volatilidade

- O que nós observamos são os preços dos ativos.
- Nossa abordagem aqui será estimar a volatilidade a partir de modelos.
- Área de pesquisa importante
- Ampla literatura com muitos diferentes tipos de modelos de volatilidade.
- Modelos univariados (da classe ARCH e volatilidade estocástica) além de multivariados.

Construção de um modelo de volatilidade

- Especificar uma equação para a média depois de testar para dependência serial nos dados. Pode ser um modelo econométrico do tipo ARMA. O objetivo é remover da série de retornos qualquer dependência linear.
- Usar os resíduos da equação da média para verificar a existência de heterocedasticidade condicional (correlação dos quadrados).
- Se houver heterocedasticidade condicional, especificar uma equação para a volatilidade e proceder à estimação conjunta das equações da média e da variância condicional.
- Fazer o diagnóstico do modelo cuidadosamente e ajustá-lo se necessário.

Como testar heterocedasticidade condicional

- FAC e FACP aplicadas nos resíduos ao quadrado da equação da média ou na série de retornos ao quadrado.
- Seja $a_t = y_t \mu_t$ os resíduos da equação da média.
- Os resíduos ao quadrado a²_t são então usados para checar heterocedasticidade condicional.
- McLeod & Li (1983) aplicam a usual estatística de Ljung-Box statistics Q(m) a a_t^2
- A hipótese nula é que os primeiros m lags da FAC de a_t^2 são iguais a zero (ou seja, não há heterocedasticidade condicional).
- Engle (1982) usa o teste LM (multiplicador de Lagrange) que é equivalente a um teste F para $\alpha_i=0, (i=1,\ldots,m)$ na regressão linear

$$a_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \ldots + \alpha_m a_{t-m}^2 + v_t, \quad t = m+1, \ldots, T$$

Modelo ARCH (Autoregressive Conditional Heteroscedastic Model)

• Modelo proposto por Engle (1982) inicialmente para a inflação

Um modelo ARCH(m) pode ser descrito como:

$$a_t = \sigma_t \varepsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \ldots + \alpha_m a_{t-m}^2$$

- onde ε_t é uma sequência de variáveis aleatórias i.i.d com com momentos [0, 1].
- A distribuição pode ser Normal, t de Student, distribuição de erro generalizada (GED), distribuição assimétrica, entre outras.
- $\alpha_0 > 0$ e $\alpha_i \ge 0$ para i > 0.
- Portanto, grandes choques tendem a ser seguidos por outros grandes choques.
- Captura clusters de volatilidade.

Modelo GARCH (Generalized ARCH)

- Foi proposto por Bollerslev (1986)
- Vantagem: modelo mais parcimonioso, pois incorpora termos AR e MA.

O modelo GARCH(m,s) pode ser descrito como:

$$a_t = \sigma_t \varepsilon_t$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

Modelo GARCH na média (GARCH-in-mean

- Permite que a média dependa da volatilidade, ou seja, o retorno de um ativo será explicada pela sua própria volatilidade.
- Moderna teoria das finanças sugere que haja um prêmio de risco ou seja, quanto maior a volatilidade, maior o retorno esperado.

O modelo GARCH-M(1,1) pode ser descrito como:

$$y_t = \mu + c\sigma_t^2 + a_t$$

$$a_t = \sigma_t \varepsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

- c é o parâmetro do prêmio de risco.
- Valores positivos indicam que quanto maior o risco, maior o retorno.

Desvantagens dos modelos ARCH e GARCH

- O principal problema com os modelos apresentados anteriormente é o fato de assumir o mesmo efeito para choques positivos e negativos.
- Como vimos nos fatos estilizados, o mercado fica mais nervoso com más notícias do que com boas notícias.
- Dessa forma, choques negativos deveriam impactar mais a volatilidade que choques positivos.
- Vários modelos da família ARCH foram propostos para capturar esse efeito. Nós veremos dois: EGARCH e GJR.

Modelo EGARCH - Exponential GARCH

- Modelo proposto por Nelson (1991)
- Permite que choques negativos e positivos tenham efeito diferente sobre a volatilidade.

O modelo EGARCH pode ser descrito como:

$$\log (\sigma_t^2) = \alpha_0 + \sum_{i=1}^{m} \alpha_i \frac{|a_{t-i}| + \gamma_i a_{t-i}}{\sigma_{t-i}} + \sum_{j=1}^{s} \beta_j \log (\sigma_{t-j}^2)$$

- Choque negativo(a_{t-i}) contribui com a volatilidade por $\alpha_i (1 \gamma_i) | \varepsilon_{t-i} |$.
- Choque positivo (a_{t-i}) contribui com a volatilidade por $\alpha_i (1 + \gamma_i) |\varepsilon_{t-i}|$.
- ullet Portanto, o parâmetro γ_i mede o efeito alavancagem ou *leverage* e espera-se que ele seja negativo.

Modelo GJR

Foi proposto por Glosten, Jagannathan, and Runkle (1993).

Pode ser descrito como:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m (\alpha_i + \gamma_i N_{t-i}) a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

onde N_{t-i} é uma função indicadora para a_{t-i} negativo:

$$N_{t-i} = \begin{cases} 1 & \text{se } a_{t-i} < 0 \\ 0 & \text{se } a_{t-i} \ge 0 \end{cases}$$

- ullet Um choque positivo a_{t-i} contribui $lpha_i a_{t-i}^2$ para σ_t^2
- Um choque negativo a_{t-i} tem um impacto maior $(\alpha_i + \gamma_i) a_{t-i}^2$ com $\gamma_i > 0$

Figure: Série de cotação diária do fechamento do IBOVESPA: dados do Yahoo Finance

Figure: Log-retornos diários do IBOVESPA

Figure: QQ-plot e histograma da série de cotação diária do IBOVESPA.

Figure: Função de autocorrelação parcial dos retornos ao quadrado

Exemplo: configuração do modelo

- Para a estimação, foram considerados dois subgrupos: período pré-pandemia (17/09/2018 - 17/03/2020) e período durante pandemia (após 17/03/2020).
- GARCH(1,1) e EGARCH(1,1), GJR(1,1).
- Foram empregadas as especificações de ordem [1,1], que são as mais comuns na literatura e parecem as mais adequadas na prática (HANSEN; LUNDE, 2005; BOLLERSLEV et al, 1992).
- Foram utilizadas as seguintes distribuições para cada um dos modelos: normal ("norm"), normal assimétrica ("snorm"), t de Student ("std), t de Student assimétrica ("sstd"), erro generalizada ("ged"), erro generalizada assimétrica ("sged"), generalizada hiperbólica ("ghyp"), Jhonson SU ("jsu").
- Os modelos serão escolhidos de acordo com o critério de informação de Schwarz. A melhor especificação assim escolhida será a representativa para cada período.

Exemplo: Seleção da configuração dos modelos

Especificação	Amostra			
Especificação	Completa	Pré	Durante	
sGARCH-norm	-5,56098	-5,55595	-5,46981	
sGARCH-snorm	-5,59238	-5,58828	-5,45651	
s GARCH-std	-5,63083	-5,67095	-5,50579	
sGARCH-sstd	-5,6332	-5,66383	-5,49576	
s GARCH-ged	-5,60224	-5,63611	-5,48037	
sGARCH-sged	-5,61599	-5,64302	-5,46939	
s GARCH-js u	-5,63405	-5,66335	-5,4921	
sGARCH-ghyp	-5,62969	-5,65249	-5,47734	
eGARCH-norm	-5,59346	-5,61488	-5,43851	
e GARCH-snorm	-5,61682	-5,63056	-5,42513	
e GARCH-std	-5,63652	-5,67853	-5,48113	
eGARCH-sstd	-5,64175	-5,67715	-5,47067	
eGARCH-ged	-5,6156	-5,6547	-5,45391	
eGARCH-sged	-5,63036	-5,66561	-5,44297	
e GARCH-jsu	-5,64301	-5,67731	-5,4667	
eGARCH-ghyp	-5,63673	-5,66295	-5,45229	
gjrGARCH-norm	-5,57385	-5,58544	-5,45373	
gjrGARCH-snorm	-5,5997	-5,60568	-5,44042	
gjrGARCH-std	-5,63207	-5,67749	-5,48975	
gjrGA RCH-sstd	-5,6355	-5,67293	-5,47984	
gjrGARCH-ged	-5,60668	-5,6456	-5,4643	
gjrGARCH-sged	-5,62068	-5,65493	-5,45337	
gjrGARCH-jsu	-5,63621	-5,67209	-5,47613	
gjrGARCH-ghyp	-5,63088	-5,6593	-5,46135	

	Coeficiente	Desvio-Padrão	Valor t	$\Pr(> t)$
omega	-0.27	0.02	-10.88	0.00
alpha1	-0.11	0.02	-5.18	0.00
beta1	0.97	0.00	327.01	0.00
gamma1	0.15	0.04	4.12	0.00
skew	-0.89	0.28	-3.21	0.00
shape	2.31	0.33	7.04	0.00

Figure: Modelo para a amostra toda EGARCH(1,1)

	Coeficiente	Desvio-Padrão	Valor t	$\Pr(> t)$
omega	-0.60	0.24	-2.50	0.01
alpha1	-0.22	0.04	-5.34	0.00
beta1	0.93	0.03	33.23	0.00
gamma1	0.20	0.01	24.58	0.00
shape	5.88	1.63	3.60	0.00

Figure: Modelo Pré-Pandemia EGARCH (1,1))

	Coeficiente	Desvio-Padrão	Valor t	$\Pr(> t)$
omega	0.00	0.00	1.69	0.09
alpha1	0.08	0.00	20.69	0.00
beta1	0.89	0.03	34.78	0.00
shape	8.92	2.61	3.41	0.00

Figure: Modelo Durante a Pandemia GARCH(1,1)

	Coeficiente	Desvio-Padrão	Valor t	$\Pr(> t)$
omega	-0.27	0.07	-3.67	0.00
alpha1	-0.04	0.04	-1.14	0.25
beta1	0.97	0.01	110.58	0.00
gamma1	0.21	0.06	3.30	0.00
shape	8.33	2.67	3.12	0.00

Figure: Modelo Durante a pandemia EGARCH(1,1)

Mod elo	Persistência	Half-life
Amostra toda EGARCH(1,1)	0.86	4.60
Pré-Pandemia EGARCH (1,1)	0.71	2.02
Durante a Pandemia GARCH(1,1)	0.97	22.76
Durante a pandemia EGARCH(1,1)	0.93	9.55

Figure: Persistência a partir dos modelos estimados

half-life:

$$h2I = \frac{-\log_e 2}{\log_e \hat{P}}$$

Persistência:

$$\hat{P} = \sum_{j=1}^{q} \alpha_j + \sum_{j=1}^{p} \beta_j$$

- "ômega" é o intercepto do modelo de variância condicional.
- "alpha1" é o coeficiente do termo ARCH.
- "beta1" o coeficiente do termo GARCH.
- "gamma1" é o coeficiente de assimetria para os modelos GARCH e GJR.
- Para o modelo EGARCH, "alpha1" é o parâmetro de alavancagem.