Exercise 1.

- (a)(i) We prove that δ is well defined by a contrapositive proof i.e. if $\exists a \in \Sigma \ [xa] \neq [ya]$, then $[x] \neq [y]$. Suppose $[xa] \neq [ya]$ for $a \in \Sigma$, then $(xa, ya) \notin R_L$. This means that $\exists w \in \Sigma^*$ such that $xaw \in L$ but $yaw \notin L$ or vice versa. Now let z = aw, we have $xz \in L \land yz \notin L$ or vice versa. Hence, $(x, y) \notin R_L$ and $[x] \neq [y]$. We conclude by contrapositive that if [x] = [y] then [xa] = [ya] for all $a \in \Sigma$.
- (ii) We prove a more general statement i.e. $\forall x \in \Sigma^* \ \hat{\delta}([\epsilon], x) = [x]$. This implies $\hat{\delta}([\epsilon], x) \in F$ iff $x \in L$. Since if $x \in L$, then by the definition of F, $[x] = \hat{\delta}([\epsilon], x) \in F$. Conversely, if $\hat{\delta}([\epsilon], x) \in F \Leftrightarrow [x] \in F$, then by the definition of F, $x \in L$. Now we prove the lemma by an induction on |x|.
 - Basis case $x = \epsilon$. $\delta([\epsilon], \epsilon) = [\epsilon]$ by the definition of the transition function.
 - Step case Assume that $\hat{\delta}([\epsilon], x) = [x]$ for |x| < k. We prove for w = xa where $x \in \Sigma^{k-1}, a \in \Sigma$.

$$\hat{\delta}([\epsilon], xa) = \delta(\hat{\delta}([\epsilon], x), a)$$
 (definition of $\hat{\delta}$)
$$= \delta([x], a)$$
 (IH)
$$= [xa]$$
 (definition of δ)

Hence, we have proven the lemma.

(b) Denote the DFA in part (a) as $D = (Q, \Sigma, \delta, q_0, F)$. Let DFA $A = (Q_A, \Sigma, \delta_A, q_{0_A}, F_A)$ with L(A) = L and no unreachable states. Construct $f : Q_A \to Q$

$$f(\hat{\delta}_A(q_{0_A}, w)) = \hat{\delta}(q_0, w) \text{ for } \forall w \in \Sigma^*$$

f is well defined since

- for each $q \in Q_A$, there exists a $f(q) \in Q$. Let $q \in Q_A$, then $\exists w \in \Sigma^*$ such that $q = \hat{\delta}_A(q_{0_A}, w)$ since q is a reachable state by construction. By def of the constructed f, we have $f(q) = \hat{\delta}(q_0, w) = \hat{\delta}([\epsilon], w) \stackrel{part(a)(ii)}{=} [w] \in Q$
- and each $q \in Q_A$ has a unique mapping $f(q) \in Q$. Suppose $\hat{\delta}_A(q_{0_A}, x) = \hat{\delta}_A(q_{0_A}, y)$ for $x \neq y$, we show $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$. Let $w \in \Sigma^*$. $xw \in L \Leftrightarrow \hat{\delta}_A(q_{0_A}, xw) \in F_A \Leftrightarrow \hat{\delta}_A(\hat{\delta}_A(q_{0_A}, x), w) \in F_A \Leftrightarrow \hat{\delta}_A(\hat{\delta}_A(q_{0_A}, y), w) \in F_A \Leftrightarrow \hat{\delta}_A(q_{0_A}, yw) \in F_A \Leftrightarrow yw \in L$. Hence, $\forall w \in \Sigma^*, xw \in L \Leftrightarrow yw \in L$, i.e. $(x, y) \in R_L \Leftrightarrow [x] = [y] \stackrel{part(a)(ii)}{\Leftrightarrow} \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$

If A has fewer states than D, then f means there exists at least one state $[x] \in D$ such that for $\forall w \in \Sigma^*$, $f(\hat{\delta}_A(q_{0_A}, w)) \neq [x]$. However, for x, $f(\hat{\delta}_A(q_{0_A}, x)) = \hat{\delta}(q_0, x) = [x]$, a contradiction. Therefore, A must have at least as many states as D. For A with unreachable states, it must be more. Hence D is the minimal DFA for L.

Exercise 2.

- (a) Pick n=7. We consider $\forall w = a^j c^k a^l b^m \in L$ with $|w| \geq 7$ in two separate cases.
 - $0 \le j \le 5$, $k \ge 2$ and $l \ne m$ Divide w = xyz as $x = a^j c$, y = c, and $z = c^{k-2} a^l b^m$. $|xy| = j + 2 \le 7$ since $0 \le j \le 5$, |y| = 1 > 0, and by pumping y, we get
 - $\begin{array}{l} -xy^0z=a^jcc^{k-2}a^lb^m=a^jc^{k-1}a^lb^m\\ \text{if }k=2\text{, then }k-1=1\text{, }l\neq m\text{ still means }xy^0z\in L\\ \text{if }k>2\text{, then }k-1\geq 2\text{, }l\neq m\text{ still holds, and }xy^0z\in L \end{array}$
 - $-xy^iz = a^jcc^ic^{k-2}a^lb^m = a^jc^{i+k-1}a^lb^m$ for i > 1i+k-1 > 2 for $k \ge 2$, $l \ne m$ still holds, so $xy^iz \in L$ for i > 1

Hence, all w when $k \geq 2$ satisfies the pumping lemma.

- $0 \le j \le 5$, k < 2 and $k, l, m \in \mathbb{N}$ Note that for $w \in L$ with $|w| \ge 7$, w should have at least one of l and m not being zero since j + k < 7
 - if $l \neq 0 \Leftrightarrow l \geq 1$, then we divide w = xyz such that $x = a^j c^k$, y = a, $z = a^{l-1}b^m$. $|xy| = j + k + 1 \leq 7$, |y| = 1 > 0, and $xy^iz = a^jc^ka^ia^{l-1}b^m = a^jc^ka^{i+l-1}b^m$ and $i + l 1 \geq 0$ for $i \in \mathbb{N}$, hence $xy^iz \in L$ for $\forall i \in \mathbb{N}$
 - if l=0, then $m\neq 0 \Leftrightarrow m\geq 1$. We divide w=xyz such that $x=a^jc^ka^0$, y=b, $z=b^{m-1}$. $|xy|=j+k+1\leq 7$, |y|=1>0, and $xy^iz=a^jc^ka^0b^ib^{m-1}=a^jc^ka^0b^{i+m-1}$ and $i+m-1\geq 0$ for $i\in\mathbb{N}$, hence $xy^iz\in L$ for $\forall i\in\mathbb{N}$

Hence, we have proven L satisfies the pumping lemma.

(b) We show that R_L has an infinite number of equivalence classes.

Consider $u = a^j c^k a^l b^m$ and $v = a^j c^k a^{l'} b^{m'}$ where $0 \le j \le 5$, $k \ge 2$, l > m and l' > m', and $l - m \ne l' - m'$. Now pick $w = b^{l-m}$, $uw = a^j c^k a^l b^m b^{l-m} = a^j c^k a^l b^l \notin L$ since $k \ge 2$ but l = m; on the other hand, $vw = a^j c^k a^{l'} b^{m'} b^{l-m} = a^j c^k a^{l'} b^{m'+l-m} \in L$ since $m' + l - m \ne l'$. Hence, $(u, v) \notin R_L \Leftrightarrow [u] \ne [v]$. In other words, for any pair of $(u, v) \in \Sigma^* \times \Sigma^*$ defined as above with $0 \le j \le 5$, $k \ge 2$ and distinct positive values of l - m, we have $[u] \ne [v]$. Since there is an infinite number of distinct positive values of l - m for $l, m \in \mathbb{N}$, there is an infinite number of distinct equivalence classes in R_L . By the Myhill-Nerode Theorem, L is not regular.

Exercise 3.

- (a) We prove a lemma i.e. $f(\hat{\delta}(q, w)) = \hat{\delta}'(f(q), w)$ for $\forall w \in \Sigma^*, \forall q \in Q$. Let $q \in Q$, by an induction on |w|,
 - Base case $w = \epsilon$ $f(\hat{\delta}(q, \epsilon)) = f(q)$ by the def of $\hat{\delta}$ and $\hat{\delta}'(f(q), \epsilon) = f(q)$ by def of $\hat{\delta}'$, hence $f(\hat{\delta}(q, \epsilon)) = \hat{\delta}'(f(q), \epsilon)$

• Step case Assume the claim for $\forall w$ with |w| < n. Now we prove for w = xa where $x \in \Sigma^{n-1}$, $a \in \Sigma$

$$f(\hat{\delta}(q, xa)) = f(\delta(\hat{\delta}(q, x), a)) \qquad (\text{def of } \hat{\delta})$$

$$= \delta'(f(\hat{\delta}(q, x)), a) \qquad (\text{def (3) of } f)$$

$$= \delta'(\hat{\delta}'(f(q), x), a) \qquad (\text{IH since } |x| < n)$$

$$= \hat{\delta}'(f(q), xa) \qquad (\text{def of } \hat{\delta}')$$

Hence, we have proven the lemma.

Now we prove $\mathcal{L}(P,q) = \mathcal{L}(P',f(q))$ for $\forall q \in Q$. Let $q \in Q, w \in \Sigma^*$

$$w \in \mathcal{L}(P,q) \Leftrightarrow \hat{\delta}(q,w) \in F$$

$$\Leftrightarrow f(\hat{\delta}(q,w)) \in F'$$

$$\Leftrightarrow \hat{\delta}'(f(q),w) \in F'$$

$$\Leftrightarrow w \in \mathcal{L}(P',f(q))$$
(def (2) of f)
(lemma)

Hence the claim.

(b)

$$L(P) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

$$= \mathcal{L}(P, q_0) \qquad (\text{def of } \mathcal{L})$$

$$= \mathcal{L}(P', f(q_0) \qquad (\text{part (a)})$$

$$= \mathcal{L}(P', q'_0) \qquad (\text{def (1) of } f)$$

$$= \{ w \in \Sigma^* \mid \hat{\delta}'(q'_0, w) \in F' \}$$

$$= L(P')$$

Exercise 4.

- 1. We show validity of $(r^*)^* = r^*$ by proving $L((r^*)^*) = L(r^*)$. $L((r^*)^*) = L(r^*)^* = L(r)^* = L(r)^* = L(r)^*$ where the third equaltiy uses the algebraic law of Kleene-*. Now we prove for $\forall L \subseteq \Sigma^*, (L^*)^* = L^*$. Let $L \subseteq \Sigma^*$,
 - $L^* \subseteq (L^*)^*$ since $L^* = (L^*)^1 \subseteq (L^*)^*$
 - $(L^*)^* \subseteq L^*$ Let $w \in (L^*)^*$, we can write $w = w_1 w_2 ... w_n$ for $n \ge 0$ where each $w_i \in L^*$. We can also write each $w_i = w_{i1} w_{i2} ... w_{il_i}$ for $l_i \ge 0$ where each $w_{il_i} \in L$. Then $w = w_{11} w_{12} ... w_{1l_1} ... w_{n1} w_{n2} ... w_{nl_n} \in L^{\sum_{i=1}^{n} l_i} \subseteq L^*$. Hence, $(L^*)^* \subseteq L^*$.
- **2.** We prove $L((r+s)^*) = L((r^*s)^*r^*)$. Denote R = L(r) and S = L(s) for clarity.
 - $L((r+s)^*) = L(r+s)^* = (L(r) \cup L(s))^* = (R \cup S)^*$
 - $\bullet \ \ L((r^*s)^*r^*) = L((r^*s)^*)L(r^*) = L(r^*s)^*L(r)^* = (L(r^*)L(s))^*R^* = (L(r)^*S)^*R^* = (R^*S)^*R^*$

In other words, we prove $(R \cup S)^* = (R^*S)^*R^*$. Laws that are needed:

L1. $\forall L \subseteq \Sigma^*, L^*L \subseteq L^*$

Proof. Suppose $L \subseteq \Sigma^*$. Let $w \in L^*L$. Then we can write w = xa where $x \in L^*$, $a \in L$. x can be further written as $x_1x_2...x_n$ for $n \ge 0$ where each $x_i \in L$. Then $w = x_1x_2...x_na \in L^{n+1} \subseteq L^*$. Hence, $L^*L \subseteq L^*$.

L2. $\forall L, M, N \subseteq \Sigma^*, M \subseteq N \Rightarrow LM \subseteq LN$

Proof. Suppose $M, N \subseteq \Sigma^*$ with $M \subseteq N$. Let $w \in LM$. We can write w = xa, where $x \in L, a \in M$. Since $M \subseteq N$, then $a \in N$, and $w = xa \in LN$. Hence, $LM \subseteq LN$.

L3. $\forall M, N \subseteq \Sigma^*, M \subseteq N \Rightarrow M^* \subseteq N^*$

Proof. Suppose $M, N \subseteq \Sigma^*$ with $M \subseteq N$. Let $w \in M^*$, then we can write $w = w_1 w_2 ... w_n$ where each $w_i \in M$. Since $M \subseteq N$, hence each $w_i \in N$. Then $w = w_1 w_2 ... w_n \in N^*$. Hence, $M^* \subseteq N^*$.

L4. $\forall M, N, X, Y \subseteq \Sigma^*, M \subseteq N \land X \subseteq Y \Rightarrow MX \subseteq NY$

Proof. Suppose $M, N, X, Y \subseteq \Sigma^*$ with $M \subseteq N$ and $X \subseteq Y$. Let $w \in MX$, then w = ax where $a \in M$, $x \in X$. Since $M \subseteq N$ and $X \subseteq Y$, then $a \in N$ and $x \in Y$. Then $w = ax \in NY$. Hence, $MX \subseteq NY$.

- $(R \cup S)^* \subseteq (R^*S)^*R^*$ We prove a lemma that $\forall n \geq 0, (R \cup S)^n \subseteq (R^*S)^*R^*$. By an induction on n,
 - Base case n = 0. $(R \cup S)^0 = \{\epsilon\} = \{\epsilon\} \{\epsilon\} = (R^*S)^0 R^0$. Since $(R^*S)^0 \subseteq (R^*S)^*$ and $R^0 \subseteq R^*$, by L4 $(R^*S)^0 R^0 \subseteq (R^*S)^* R^*$. Hence $(R \cup S)^0 \subseteq (R^*S)^* R^*$.
 - Step case Assume $(R \cup S)^n \subseteq (R^*S)^*R^*$ and prove $(R \cup S)^{n+1} \subseteq (R^*S)^*R^*$ Let $w \in (R \cup S)^{n+1} = (R \cup S)^n(R \cup S)$. Then we can write w = xa where $x \in (R \cup S)^n$, $a \in (R \cup S)$. By IH, $x \in (R^*S)^*R^*$. a could be either in R or in S.
 - * $a \in R$. Then $w = xa \in ((R^*S)^*R^*)R \stackrel{assoc}{=} (R^*S)^*(R^*R)$. Prove $(R^*S)^*(R^*R) \subseteq (R^*S)^*R^*$ Proof. By L1, we have $R^*R \subseteq R^*$. Since $(R^*S)^*$ is a regular language in Σ^* as reg langs are closed under concatenation and Kleene-*, then by L2 we have $(R^*S)^*(R^*R) \subseteq (R^*S)^*R^*$.
 - * $a \in S$. Then $w = xa \in ((R^*S)^*R^*)S \stackrel{assoc}{=} (R^*S)^*(R^*S) \stackrel{L1}{=} (R^*S)^* = (R^*S)^*\{\epsilon\} = (R^*S)^*R^0$. Since $R^0 \subseteq R^*$, and $(R^*S)^*$ is a reg lang, we have by L2 $(R^*S)^*R^0 \subseteq (R^*S)^*R^*$.

Thus, $w = xa \in (R^*S)^*R^*$ and we have proven the step case.

Hence the lemma. Then the set union $\bigcup_{n>0} (R \cup S)^n = (R \cup S)^* \subseteq (R^*S)^*R^*$.

• $(R^*S)^*R^* \subseteq (R \cup S)^*$ Since $R \subseteq (R \cup S)$, by L3 we have $R^* \subseteq (R \cup S)^*$. Also, $S \subseteq (R \cup S)$, by L4 $R^*S \subseteq (R \cup S)^*(R \cup S) \subseteq (R \cup S)^*$. By L3 again, $(R^*S)^* \subseteq ((R \cup S)^*)^* \stackrel{part1}{=} (R \cup S)^*$. By L4, $(R^*S)^*R^* \subseteq (R \cup S)^*(R \cup S)^* = ((R \cup S)^*)^2 \subseteq ((R \cup S)^*)^* \stackrel{part1}{=} (R \cup S)^*$.

Hence, we have formally proven $L((r+s)^*) = L((r^*s)^*r^*)$, thus the validity of $(r+s)^* = (r^*s)^*r^*$.

- 3. Let R = L(r), S = L(s).
 - $L((rs)^*) = L(rs)^* = (L(r)L(s))^* = (RS)^*$
 - $L(\epsilon + r(sr)^*s) = L(\epsilon) \cup L(r(sr)^*s) = \{\epsilon\} \cup L(r(sr)^*)L(s) = \{\epsilon\} \cup L(r)L((sr)^*)S = \{\epsilon\} \cup R(L(s)L(r))^*S = \{\epsilon\} \cup R(SR)^*S$

We prove $(RS)^* = \{\epsilon\} \cup R(SR)^*S$ by equaltiy of the subsets, i.e, $(RS)^0 = \{\epsilon\}$ and $(RS)^n = R(SR)^{n-1}S$ for $\forall n \geq 1$.

- $(RS)^0 = {\epsilon}$ by definition
- we prove by an induction on n that $(RS)^n = R(SR)^{n-1}S$ for $\forall n \geq 1$.
 - Base case n = 1. $(RS)^1 = RS = (R\{\epsilon\})S = (R(SR)^0)S = R(SR)^0S$
 - Step case Assume the claim $(RS)^n = R(SR)^{n-1}S$, prove for the case of n+1. $(RS)^{n+1} = (RS)^n(RS) \stackrel{IH}{=} (R(SR)^{n-1}S)(RS) \stackrel{assoc}{=} ((R(SR)^{n-1}S)R)S \stackrel{assoc}{=} (R(SR)^{n-1}(SR))S$ = $(R(SR)^n)S = R(SR)^nS$

Hence $\bigcup_{n\geq 1} (RS)^n = \bigcup_{n\geq 1} R(SR)^{n-1}S = \bigcup_{n\geq 0} R(SR)^nS$

From above, $(RS)^* = \bigcup_{n \geq 0} (RS)^n = (RS)^0 \cup (\bigcup_{n \geq 1} (RS)^n) = \{\epsilon\} \cup (\bigcup_{n \geq 0} R(SR)^n S) = \{\epsilon\} \cup R(SR)^* S$. Hence, $(rs)^* = \epsilon + r(sr)^* s$ is valid.

Exercise 5.

(a) As below

(b) G is ambiguous because there exists $w \in L(G)$ that has two parse trees. Consider $w = abbbbb \in L(G)$. The following two parse trees generate the same string abbbbb.

(c) $G' = (\{S, A, V, N\}, \{a, b\}, S, P)$ where P is defined by the following productions:

$$S \rightarrow AVN$$

$$A \rightarrow ANV \mid ab \mid a$$

$$N \rightarrow NNV \mid ab \mid b$$

$$V \rightarrow b$$