Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

"Проектування і	•	. •	. •	NID	199
I DUURGUTYAAAII	Гацапіз апглі	питмір ппа	DUUMIIIAUU		грапац ц г
IIDUUKI YDAIIIIA I	anann an t			THE CONTRACTOR	задан н.

Виконав(ла)	<u>III-15 Мочалов Дмитро Юрійович</u> (шифр, прізвище, ім'я, по батькові)
Перевірив	<i>Головченко М.Н.</i> (прізвище, ім'я, по батькові)

ЗМІСТ

	ГЕРІЇ ОЦІНЮВАННЯ	13
Вис	новок	12
3.2.2	21	
3.2.1	20	
3.2	19	
3.1.2	13	
3.1.1	11	
3.1	11	
3	11	
2	1	
1 3	3	

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою.

2 ЗАВДАННЯ

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

№	Задача і алгоритм
1	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування одноточковий по 50 генів, мутація з ймовірністю
	5% змінюємо тільки 1 випадковий ген). Розробити власний оператор
	локального покращення.
2	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
3	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30
	із них 2 розвідники).
4	Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування двоточковий порівну генів, мутація з

	ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити
	власний оператор локального покращення.
5	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).
6	Задача розфарбовування графу (250 вершин, степінь вершини не
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл 35
	із них 3 розвідники).
7	Задача про рюкзак (місткість Р=150, 100 предметів, цінність предметів
	від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування рівномірний, мутація з ймовірністю 5% два
	випадкові гени міняються місцями). Розробити власний оператор
	локального покращення.
8	Задача комівояжера (200 вершин, відстань між вершинами випадкова
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho =$
	0,3, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,
	починають маршрут в різних випадкових вершинах).
9	Задача розфарбовування графу (150 вершин, степінь вершини не
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл 25
	із них 3 розвідники).
10	Задача про рюкзак (місткість Р=150, 100 предметів, цінність предметів
	від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування рівномірний, мутація з ймовірністю 10% два
	випадкові гени міняються місцями). Розробити власний оператор
	локального покращення.

11	Задача комівояжера (250 вершин, відстань між вершинами випадкова
	від 0 (перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho =$
	0,6, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,
	починають маршрут в різних випадкових вершинах).
12	Задача розфарбовування графу (300 вершин, степінь вершини не
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл 60
	із них 5 розвідники).
13	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування одноточковий 30% і 70%, мутація з ймовірністю
	5% два випадкові гени міняються місцями). Розробити власний
	оператор локального покращення.
14	Задача комівояжера (250 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм ($\alpha = 4$, $\beta = 2$, $\rho = 0.3$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (10 з них дикі, обирають
	випадкові напрямки), починають маршрут в різних випадкових
	вершинах).
15	Задача розфарбовування графу (100 вершин, степінь вершини не
	більше 20, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 30 із них 3 розвідники).
16	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування двоточковий 30%, 40% і 30%, мутація з
	ймовірністю 10% два випадкові гени міняються місцями). Розробити
	власний оператор локального покращення.
L	

17	Задача комівояжера (200 вершин, відстань між вершинами випадкова		
	від 1 до 40), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0.7$, Lmin знайти		
	жадібним алгоритмом, кількість мурах М = 45 (15 з них дикі, обирають		
	випадкові напрямки), починають маршрут в різних випадкових		
	вершинах).		
18	Задача розфарбовування графу (300 вершин, степінь вершини не		
	більше 50, але не менше 1), класичний бджолиний алгоритм (число		
	бджіл 60 із них 5 розвідники).		
<mark>19</mark>	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів		
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний		
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,		
	оператор схрещування триточковий 25%, мутація з ймовірністю 5% два		
	випадкові гени міняються місцями). Розробити власний оператор		
	локального покращення.		
20	Задача комівояжера (200 вершин, відстань між вершинами випадкова		
	від 1 до 40), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.7$, Lmin знайти		
	жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні,		
	подвійний феромон), починають маршрут в різних випадкових		
	вершинах).		
21	Задача розфарбовування графу (200 вершин, степінь вершини не		
	більше 30, але не менше 1), класичний бджолиний алгоритм (число		
	бджіл 40 із них 2 розвідники).		
22	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів		
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний		
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,		
	оператор схрещування триточковий 25%, мутація з ймовірністю 5%		
	змінюємо тільки 1 випадковий ген). Розробити власний оператор		
	локального покращення.		
	-		

23	Задача комівояжера (300 вершин, відстань між вершинами випадкова	
	від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, Lmin знайти	
	жадібним алгоритмом, кількість мурах М = 45 (15 з них елітні,	
	подвійний феромон), починають маршрут в різних випадкових	
	вершинах).	
24	Задача розфарбовування графу (400 вершин, степінь вершини не	
	більше 50, але не менше 1), класичний бджолиний алгоритм (число	
	бджіл 70 із них 10 розвідники).	
25	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів	
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний	
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,	
	оператор схрещування одноточковий по 50 генів, мутація з ймовірністю	
	5% змінюємо тільки 1 випадковий ген). Розробити власний оператор	
	локального покращення.	
26	Задача комівояжера (100 вершин, відстань між вершинами випадкова	
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти	
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в	
	різних випадкових вершинах).	
27	Задача розфарбовування графу (200 вершин, степінь вершини не	
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30	
	із них 2 розвідники).	
28	Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів	
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний	
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,	
	оператор схрещування двоточковий порівну генів, мутація з	
	ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити	
	власний оператор локального покращення.	

29	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).
30	Задача розфарбовування графу (250 вершин, степінь вершини не
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл 35
	із них 3 розвідники).
31	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування одноточковий по 50 генів, мутація з ймовірністю
	5% змінюємо тільки 1 випадковий ген). Розробити власний оператор
	локального покращення.
32	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
33	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30
	із них 2 розвідники).
34	Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування двоточковий порівну генів, мутація з
	ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити
	власний оператор локального покращення.
35	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти

жадібним алгоритмом, кількість мурах M = 35, починають маршрут в різних випадкових вершинах).

3 Виконання

3.1 Програмна реалізація алгоритму

3.1.1 Вихідний код

```
Ц
    internal static class Solver
5
            public static BackPack backPack = new BackPack();
6
7
            static Population population = new Population(backPack);
8
            static Chromosome Record;
9
10
            public static void Solve()
11
12
                population.GeneratePopulation();
13
                Record = population.GetTheWorstChromosome;
14
                int iterations = 0;
15
                while (iterations <= 1000)</pre>
16
17
                     Chromosome FirstParent = population.GetBestChromosome;
18
                     Chromosome SecondParent;
                     while (true)
19
20
                         Random random = new Random();
21
22
                         int index = random.Next(0, 100);
23
                         if (population.Chromosomes[index] != FirstParent)
24
                         {
                             SecondParent = population.Chromosomes[index];
25
26
                             break;
27
                         }
28
29
                     Chromosome Offspring = CrossOver(FirstParent, SecondParent);
30
                     Chromosome mutation = Mutation(Offspring);
31
                     Chromosome improved = LocalImprovement(mutation);
32
                     if(improved.GetValue > Record.GetValue)
                     {
33
34
                         Record= improved;
35
36
                     Chromosome worstChromo = population.GetTheWorstChromosome;
37
                     if (improved.GetWeight <= backPack.Capacity)</pre>
38
39
40
                         population.Chromosomes.Remove(worstChromo);
41
                         population.Chromosomes.Add(improved);
42
                     }
43
                     else
44
45
                         if(Offspring.GetWeight <= backPack.Capacity)</pre>
46
47
                             population.Chromosomes.Remove(worstChromo);
48
                             population.Chromosomes.Add(Offspring);
                         }
49
50
                         else
51
52
                             continue;
53
                         }
54
                     if(iterations%20==0)
55
56
                         WriteRecordToFile(iterations, Record.GetValue);
57
```

```
58
59
                     iterations++;
60
                for (int i = 0; i < population.Chromosomes.Count; i++)</pre>
61
62
                     Console.WriteLine("Chomosome: " + i + " Weight: " +
63
    population.Chromosomes[i].GetWeight + " Value: " +
    population.Chromosomes[i].GetValue);
64
            }
65
66
            private static Chromosome CrossOver(Chromosome FirstParent, Chromosome
67
    SecondParent)
68
            {
69
                List<int> mergedList = new List<int>(100);
70
                int flag = 1;
                for (int i = 0; i < 100; i++)
71
72
73
                     if (i % 25 == 0 && i!= 0) flag *= -1;
74
                     if(flag > 0)
75
                         mergedList.Add(FirstParent.Gene[i]);
76
                     }
77
78
                     else
79
                     {
                         mergedList.Add(SecondParent.Gene[i]);
80
                     }
81
82
83
84
                Chromosome Offspring = new Chromosome(mergedList);
85
                return Offspring;
86
            }
87
            private static Chromosome Mutation(Chromosome chromosome)
88
89
90
                Random random = new Random();
91
                int chance = random.Next(1, 101);
92
                if(chance <= 5)</pre>
93
                     int index_1 = random.Next(0, chromosome.Gene.Count);
94
95
                     int index_2;
                     while (true)
96
97
98
                         index_2 = random.Next(0, chromosome.Gene.Count);
99
                         if (index_2 != index_1) break;
100
                     (chromosome.Gene[index_1], chromosome.Gene[index_2]) =
101
    (chromosome.Gene[index_2], chromosome.Gene[index_1]);
102
103
                return chromosome;
104
            }
105
106
            private static Chromosome LocalImprovement(Chromosome chromosome)
107
108
                Random random = new Random();
109
                while (true)
                {
110
                     int index = random.Next(0,chromosome.Gene.Count);
111
                     if (chromosome.Gene[index] == 0)
112
113
114
                         chromosome.Gene[index] = 1;
115
                         break;
116
                     }
```

```
}
117
118
                return chromosome;
119
            private static void WriteRecordToFile(int iteration,int value)
120
121
                using(var stream = new StreamWriter("records.txt", true))
122
123
124
                    stream.WriteLine(value);
125
                }
126
            }
```

126.1.1 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

Рисунок 3.1 –

```
Weight: 245
                          Value: 602
Chomosome: 0
             Weight: 248
Chomosome: 1
                          Value: 603
Chomosome: 2 Weight: 246
                          Value: 603
Chomosome: 3 Weight: 246
                          Value: 604
Chomosome: 4 Weight: 246
                          Value: 601
Chomosome: 5
             Weight: 246
                          Value: 620
Chomosome: 6 Weight: 244
                          Value: 605
Chomosome: 7 Weight: 246
                          Value: 620
Chomosome: 8
             Weight: 247
                          Value: 605
Chomosome: 9
             Weight: 246
                          Value: 601
Chomosome: 10
              Weight: 248 Value: 601
Chomosome: 11
              Weight: 250 Value: 604
Chomosome: 12
              Weight: 250 Value: 606
Chomosome: 13
              Weight: 250 Value: 603
Chomosome: 14
              Weight: 250 Value: 604
              Weight: 246 Value: 601
Chomosome: 15
              Weight: 248 Value: 623
Chomosome: 16
Chomosome: 17
              Weight: 247 Value: 608
Chomosome: 18
              Weight: 249 Value: 602
Chomosome: 19
              Weight: 250 Value: 604
Chomosome: 20
              Weight: 250 Value: 614
Chomosome: 21
              Weight: 249
                           Value: 623
Chomosome: 22
              Weight: 249 Value: 604
Chomosome: 23
              Weight: 250
                          Value: 610
Chomosome: 24
              Weight: 250 Value: 610
Chomosome: 25
              Weight: 249
                           Value: 604
Chomosome: 26
              Weight: 249 Value: 605
Chomosome: 27
              Weight: 246 Value: 613
Chomosome: 28
              Weight: 246 Value: 613
Chomosome: 29
              Weight: 249
                           Value: 623
Chomosome: 30
              Weight: 246
                          Value: 613
              Weight: 250
Chomosome: 31
                          Value: 611
Chomosome: 32
              Weight: 247 Value: 608
Chomosome: 33
              Weight: 250
                           Value: 611
Chomosome: 34
              Weight: 249 Value: 623
              Weight: 249
Chomosome: 35
                          Value: 605
Chomosome: 36
              Weight: 249 Value: 623
Chomosome: 37
              Weight: 250
                           Value: 611
Chomosome: 38
              Weight: 250
                          Value: 608
Chomosome: 39
              Weight: 250
                           Value: 611
Chomosome: 40
              Weight: 250
                          Value: 611
Chomosome: 41
              Weight: 249
                           Value: 605
Chomosome: 42
              Weight: 247
                           Value: 608
              Weight: 250
                           Value: 608
Chomosome: 43
Chomosome: 44
              Weight: 250
                          Value: 611
              Weight: 249
                           Value: 604
Chomosome: 45
              Weight: 250
                          Value: 611
Chomosome: 46
              Weight: 250
Chomosome: 47
                           Value: 615
              Weight: 250 Value: 611
Chomosome: 48
              Weight: 249
                           Value: 604
Chomosome: 49
              Weight: 249
Chomosome: 50
                           Value: 607
```

```
Weight: 250 Value: 608
Chomosome: 51
Chomosome: 52
              Weight: 249 Value: 605
Chomosome: 53
              Weight: 249 Value: 607
Chomosome: 54
              Weight: 250 Value: 608
              Weight: 246 Value: 613
Chomosome: 55
              Weight: 249 Value: 604
Chomosome: 56
Chomosome: 57
              Weight: 246 Value: 613
Chomosome: 58
              Weight: 250 Value: 611
              Weight: 247 Value: 624
Chomosome: 59
              Weight: 242 Value: 622
Chomosome: 60
Chomosome: 61
              Weight: 245 Value: 604
Chomosome: 62
              Weight: 249 Value: 623
              Weight: 239 Value: 612
Chomosome: 63
              Weight: 244 Value: 602
Chomosome: 64
              Weight: 250 Value: 606
Chomosome: 65
Chomosome: 66
              Weight: 250 Value: 606
Chomosome: 67
              Weight: 248 Value: 634
              Weight: 244 Value: 625
Chomosome: 68
              Weight: 247 Value: 627
Chomosome: 69
Chomosome: 70 Weight: 243 Value: 607
Chomosome: 71
              Weight: 250 Value: 609
Chomosome: 72
              Weight: 246 Value: 616
Chomosome: 73 Weight: 245 Value: 620
Chomosome: 74 Weight: 247 Value: 624
Chomosome: 75 Weight: 250 Value: 637
Chomosome: 76
              Weight: 242 Value: 622
Chomosome: 77
              Weight: 244 Value: 602
              Weight: 243 Value: 614
Chomosome: 78
Chomosome: 79
              Weight: 243 Value: 610
Chomosome: 80
              Weight: 244 Value: 602
              Weight: 250 Value: 611
Chomosome: 81
Chomosome: 82
              Weight: 248 Value: 612
Chomosome: 83
              Weight: 249 Value: 631
Chomosome: 84
              Weight: 246 Value: 602
              Weight: 249 Value: 610
Chomosome: 85
Chomosome: 86
              Weight: 247 Value: 611
Chomosome: 87
              Weight: 246 Value: 627
Chomosome: 88
              Weight: 239 Value: 612
Chomosome: 89
              Weight: 247 Value: 608
              Weight: 247 Value: 612
Chomosome: 90
Chomosome: 91
              Weight: 247
                          Value: 620
Chomosome: 92
              Weight: 246 Value: 602
Chomosome: 93
              Weight: 247
                         Value: 611
              Weight: 247 Value: 606
Chomosome: 94
Chomosome: 95
              Weight: 243 Value: 610
              Weight: 243 Value: 607
Chomosome: 96
Chomosome: 97
              Weight: 239 Value: 612
              Weight: 247
Chomosome: 98
                          Value: 609
              Weight: 246 Value: 627
Chomosome: 99
```

```
Chomosome: 0
             Weight: 249
                          Value: 559
Chomosome: 1
             Weight: 250
                          Value: 561
             Weight: 249
                          Value: 559
Chomosome: 2
Chomosome: 3 Weight: 250
                          Value: 561
             Weight: 249
Chomosome: 4
                          Value: 559
Chomosome: 5 Weight: 250
                          Value: 561
             Weight: 249
                          Value: 590
Chomosome: 6
Chomosome: 7 Weight: 245
                          Value: 561
Chomosome: 8
             Weight: 241
                          Value: 566
             Weight: 245
                          Value: 587
Chomosome: 9
Chomosome: 10 Weight: 247
                          Value: 569
Chomosome: 11 Weight: 247 Value: 586
Chomosome: 12 Weight: 250 Value: 568
Chomosome: 13
              Weight: 242 Value: 568
Chomosome: 14
              Weight: 246 Value: 560
Chomosome: 15 Weight: 246 Value: 579
Chomosome: 16
              Weight: 247 Value: 566
              Weight: 250 Value: 578
Chomosome: 17
Chomosome: 18
              Weight: 245 Value: 572
              Weight: 247 Value: 582
Chomosome: 19
Chomosome: 20
              Weight: 243 Value: 576
              Weight: 248 Value: 573
Chomosome: 21
              Weight: 250 Value: 582
Chomosome: 22
              Weight: 241 Value: 566
Chomosome: 23
Chomosome: 24
              Weight: 244 Value: 573
              Weight: 246 Value: 574
Chomosome: 25
Chomosome: 26
              Weight: 250 Value: 590
              Weight: 247 Value: 577
Chomosome: 27
Chomosome: 28
              Weight: 247 Value: 571
Chomosome: 29
              Weight: 246 Value: 574
Chomosome: 30
              Weight: 250 Value: 560
              Weight: 244 Value: 564
Chomosome: 31
Chomosome: 32
              Weight: 249 Value: 582
Chomosome: 33
              Weight: 249 Value: 572
              Weight: 250 Value: 585
Chomosome: 34
Chomosome: 35
              Weight: 250 Value: 569
Chomosome: 36
              Weight: 248 Value: 569
Chomosome: 37
              Weight: 248 Value: 584
              Weight: 247 Value: 576
Chomosome: 38
Chomosome: 39
              Weight: 244
                          Value: 563
              Weight: 250 Value: 566
Chomosome: 40
Chomosome: 41
              Weight: 247
                          Value: 565
              Weight: 248 Value: 569
Chomosome: 42
              Weight: 248
Chomosome: 43
                          Value: 563
Chomosome: 44
              Weight: 249
                          Value: 582
Chomosome: 45
              Weight: 246
                          Value: 564
              Weight: 247 Value: 571
Chomosome: 46
              Weight: 246
                          Value: 563
Chomosome: 47
              Weight: 248 Value: 570
Chomosome: 48
              Weight: 249
                           Value: 569
Chomosome: 49
              Weight: 247
                           Value: 577
Chomosome: 50
```

```
Chomosome: 51
              Weight: 245 Value: 571
Chomosome: 52
              Weight: 250 Value: 571
Chomosome: 53
              Weight: 246 Value: 575
Chomosome: 54
              Weight: 245 Value: 571
              Weight: 249 Value: 576
Chomosome: 55
Chomosome: 56
              Weight: 248 Value: 573
Chomosome: 57
              Weight: 249 Value: 569
Chomosome: 58
              Weight: 250 Value: 581
Chomosome: 59
              Weight: 249 Value: 576
Chomosome: 60
              Weight: 250 Value: 579
              Weight: 247 Value: 565
Chomosome: 61
Chomosome: 62
              Weight: 250 Value: 569
Chomosome: 63
              Weight: 248 Value: 569
              Weight: 245 Value: 572
Chomosome: 64
              Weight: 248 Value: 569
Chomosome: 65
Chomosome: 66
              Weight: 250 Value: 571
Chomosome: 67
              Weight: 250 Value: 560
Chomosome: 68
              Weight: 248 Value: 584
Chomosome: 69
              Weight: 250 Value: 571
              Weight: 250 Value: 580
Chomosome: 70
              Weight: 247 Value: 565
Chomosome: 71
Chomosome: 72
              Weight: 250 Value: 577
Chomosome: 73
              Weight: 247 Value: 571
Chomosome: 74
              Weight: 249 Value: 576
Chomosome: 75
              Weight: 248 Value: 585
Chomosome: 76
              Weight: 250 Value: 571
              Weight: 249 Value: 571
Chomosome: 77
Chomosome: 78
              Weight: 250 Value: 577
Chomosome: 79
              Weight: 250 Value: 579
Chomosome: 80
              Weight: 247 Value: 583
              Weight: 250 Value: 577
Chomosome: 81
Chomosome: 82
              Weight: 245 Value: 571
Chomosome: 83
              Weight: 250 Value: 573
              Weight: 247 Value: 577
Chomosome: 84
              Weight: 250 Value: 580
Chomosome: 85
              Weight: 250 Value: 586
Chomosome: 86
Chomosome: 87
              Weight: 248 Value: 585
Chomosome: 88
              Weight: 250 Value: 573
Chomosome: 89
              Weight: 248 Value: 575
              Weight: 250 Value: 596
Chomosome: 90
Chomosome: 91
              Weight: 247 Value: 577
Chomosome: 92
              Weight: 246 Value: 575
Chomosome: 93
              Weight: 245 Value: 601
Chomosome: 94
              Weight: 237 Value: 575
Chomosome: 95
              Weight: 243 Value: 564
              Weight: 238 Value: 569
Chomosome: 96
Chomosome: 97
              Weight: 228 Value: 590
Chomosome: 98
              Weight: 235
                          Value: 593
              Weight: 229 Value: 571
Chomosome: 99
```

Тестування алгоритму

126.1.2 Значення цільової функції зі збільшенням кількості ітерацій

У таблиці 3.1 наведено значення цільової функції зі збільшенням кількості ітерацій.

Iterations	Record
0	37
20	121
40	121
60	168
80	168
100	168
120	183
140	205
160	205
180	205
200	205
220	222
240	337
260	391
280	391
300	392
320	415
340	415
360	415
380	415
400	504
420	510
440	510
460	510
480	525
500	525
520	528
540	528
560	528
580	528
600	544
620	544
640	544
660	544
680	546
700	553
720	561
740	561
760	568
780	568
800	575

820	575
840	577
860	577
880	578
900	581
920	581
940	595
960	598
980	598
1000	608

Таблиця 3.1

126.1.3 Графіки залежності розв'язку від числа ітерацій

На рисунку 3.3 наведений графік, який показує якість отриманого розв'язку.

Record відносно Iteration

Рисунок 3.3 – Графік залежності розв'язку від числа ітерацій

Висновок

В рамках даної лабораторної роботи був використаний генетичний алгоритм, бля вирішення NP-складної задачі про рюкзак. В якості локального покращення, я змінював в новоотриманій хромосомі рандомний нульовий ген на 1, що збільшувало його значення та вагу. За допомогою такого покращення можемо швидше знайти рішення, оскільки при звичайному схрещуванні і мутації може бути таке, що найгірший ген просто не буде рости в значенні цільової функції. З проведеного дослідження отримали, що чим більше ітерації відбулось, тим повільніше зростає значення цільової функції, а наприкінці майже не змінюється.

Критерії оцінювання

При здачі лабораторної роботи до 27.11.2021 включно максимальний бал дорівню $\epsilon-5$. Після 27.11.2021 максимальний бал дорівню $\epsilon-1$.

Критерії оцінювання у відсотках від максимального балу:

- програмна реалізація алгоритму 75%;
- тестування алгоритму— 20%;
- висновок 5%.