Package 'elmNNRcpp'

October 13, 2022

Type Package

Title The Extreme Learning Machine Algorithm

Version 1.0.4 **Date** 2022-01-27

BugReports https://github.com/mlampros/elmNNRcpp/issues

URL https://github.com/mlampros/elmNNRcpp

Description

Training and predict functions for Single Hidden-layer Feedforward Neural Networks (SLFN) using the Extreme Learning Machine (ELM) algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times (it doesn't need any iterative tuning, this makes learning time very fast) and there is no need to set any other parameters like learning rate, momentum, epochs, etc. This is a reimplementation of the 'elmNN' package using 'RcppArmadillo' after the 'elmNN' package was archived. For more information, see ``Extreme learning machine: Theory and applications" by Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (2006), Elsevier B.V., <doi:10.1016/j.neucom.2005.12.126>.

License GPL (>= 2)

Encoding UTF-8

Depends R(>= 3.0.2), KernelKnn

Imports Rcpp (>= 0.12.17)

LinkingTo Rcpp, RcppArmadillo (>= 0.8)

Suggests testthat, covr, knitr, rmarkdown

VignetteBuilder knitr **RoxygenNote** 7.1.2

NeedsCompilation yes

Author Lampros Mouselimis [aut, cre] (https://orcid.org/0000-0002-8024-1546), Alberto Gosso [aut],

Edwin de Jonge [ctb] (https://orcid.org/0000-0002-6580-4718, Github Contributor)

Maintainer Lampros Mouselimis <mouselimislampros@gmail.com>

Repository CRAN

Date/Publication 2022-01-28 03:20:07 UTC

2 elm

R topics documented:

elm		it an extreme learning model
Index		9
	elm_predict elm_train onehot_encode	

Description

Formula interface for elm_train, transforms a data frame and formula into the necessary input for elm_train, automatically calls onehot_encode for classification.

Usage

```
elm(
  formula,
  data,
  nhid,
  actfun,
  init_weights = "normal_gaussian",
  bias = FALSE,
  moorep_pseudoinv_tol = 0.01,
  leaky_relu_alpha = 0,
  seed = 1,
  verbose = FALSE
)
```

Arguments

formula data	formula used to specify the regression or classification. data.frame with the data
nhid	a numeric value specifying the hidden neurons. Must be >= 1
actfun	a character string specifying the type of activation function. It should be one of the following: 'sig' (sigmoid), 'sin' (sine), 'radbas' (radial basis), 'hardlim' (hard-limit), 'hardlims' (symmetric hard-limit), 'satlins' (satlins), 'tansig' (tan-sigmoid), 'tribas' (triangular basis), 'relu' (rectifier linear unit) or 'purelin' (linear)
init_weights	a character string speecifying the distribution from which the <i>input-weights</i> and the <i>bias</i> should be initialized. It should be one of the following: 'normal_gaussian' (normal / Gaussian distribution with zero mean and unit variance), 'uniform_positive' (in the range $[0,1]$) or 'uniform_negative' (in the range $[-1,1]$)

3 elm_predict

either TRUE or FALSE. If TRUE then bias weights will be added to the hidden bias layer moorep_pseudoinv_tol a numeric value. See the references web-link for more details on Moore-Penrose pseudo-inverse and specifically on the pseudo inverse tolerance value leaky_relu_alpha a numeric value between 0.0 and 1.0. If 0.0 then a simple relu (f(x) = 0.0 for x < 0, f(x) = x for x >= 0) activation function will be used, otherwise a *leaky-relu* (f(x) = alpha * x for x < 0, f(x) = x for x >= 0). It is applicable only if actfun equals to 'relu' seed a numeric value specifying the random seed. Defaults to 1

verbose

a boolean. If TRUE then information will be printed in the console

Value

elm object which can be used with predict, residuals and fitted.

Examples

```
elm(Species ~ ., data = iris, nhid = 20, actfun="sig")
mod_elm <- elm(Species ~ ., data = iris, nhid = 20, actfun="sig")</pre>
# predict classes
predict(mod_elm, newdata = iris[1:3,-5])
# predict probabilities
predict(mod_elm, newdata = iris[1:3,-5], type="prob")
# predict elm output
predict(mod_elm, newdata = iris[1:3,-5], type="raw")
data("Boston")
elm(medv ~ ., data = Boston, nhid = 40, actfun="relu")
data("ionosphere")
elm(class ~ ., data = ionosphere, nhid=20, actfun="relu")
```

elm_predict

Extreme Learning Machine predict function

Description

Extreme Learning Machine predict function

Usage

```
elm_predict(elm_train_object, newdata, normalize = FALSE)
```

elm_predict

Arguments

elm_train_object

it should be the output of the *elm_train* function

newdata an input matrix with number of columns equal to the x parameter of the elm_train

function

normalize a boolean specifying if the output predictions in case of classification should

be normalized. If TRUE then the values of each row of the output-probability-matrix that are less than 0 and greater than 1 will be pushed to the [0,1] range

Examples

```
library(elmNNRcpp)
#-----
# Regression
data(Boston, package = 'KernelKnn')
Boston = as.matrix(Boston)
dimnames(Boston) = NULL
x = Boston[, -ncol(Boston)]
y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1)
out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative')
pr_regr = elm_predict(out_regr, x)
#-----
# Classification
#-----
data(ionosphere, package = 'KernelKnn')
x_class = ionosphere[, -c(2, ncol(ionosphere))]
x_class = as.matrix(x_class)
dimnames(x_class) = NULL
y_class = as.numeric(ionosphere[, ncol(ionosphere)])
y_class_onehot = onehot_encode(y_class - 1)
                                           # class labels should begin from 0
out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu')
pr_class = elm_predict(out_class, x_class, normalize = TRUE)
```

elm_train 5

elm_train

Extreme Learning Machine training function

Description

Extreme Learning Machine training function

Usage

```
elm_train(
    x,
    y,
    nhid,
    actfun,
    init_weights = "normal_gaussian",
    bias = FALSE,
    moorep_pseudoinv_tol = 0.01,
    leaky_relu_alpha = 0,
    seed = 1,
    verbose = FALSE
)
```

Arguments

x a matrix. The columns of the input matrix should be of type numeric

y a matrix. In case of regression the matrix should have n rows and 1 column. In case of classification it should consist of n rows and n columns, where n > 1 and

equals to the number of the unique labels.

nhid a numeric value specifying the hidden neurons. Must be >= 1

actfun a character string specifying the type of activation function. It should be one of

the following: 'sig' (sigmoid), 'sin' (sine), 'radbas' (radial basis), 'hardlim' (hard-limit), 'hardlims' (symmetric hard-limit), 'satlins' (satlins), 'tansig' (tan-sigmoid), 'tribas' (triangular basis), 'relu' (rectifier linear unit) or

'purelin' (linear)

init_weights a character string speecifying the distribution from which the input-weights

and the bias should be initialized. It should be one of the following: 'normal_gaussian' (normal / Gaussian distribution with zero mean and unit variance), 'uniform_positive' (in the range [0,1]) or 'uniform_negative' (in the

range [-1,1])

bias either TRUE or FALSE. If TRUE then bias weights will be added to the hidden

layer

moorep_pseudoinv_tol

a numeric value. See the references web-link for more details on *Moore-Penrose* pseudo-inverse and specifically on the pseudo inverse tolerance value

6 elm_train

```
leaky_relu_alpha
```

a numeric value between 0.0 and 1.0. If 0.0 then a simple relu (f(x) = 0.0 for x < 0, f(x) = x for x >= 0) activation function will be used, otherwise a leaky-relu (f(x) = alpha * x for x < 0, f(x) = x for x >= 0). It is applicable only if actfun equals to 'relu'

seed a numeric value specifying the random seed. Defaults to 1

verbose a boolean. If TRUE then information will be printed in the console

Details

The input matrix should be of type numeric. This means the user should convert any *character*, *factor* or *boolean* columns to numeric values before using the *elm_train* function

References

http://arma.sourceforge.net/docs.html

https://en.wikipedia.org/wiki/Moore

https://www.kaggle.com/robertbm/extreme-learning-machine-example

http://rt.dgyblog.com/ml/ml-elm.html

Examples

```
library(elmNNRcpp)
#-----
# Regression
data(Boston, package = 'KernelKnn')
Boston = as.matrix(Boston)
dimnames(Boston) = NULL
x = Boston[, -ncol(Boston)]
y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1)
out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative')
#-----
# Classification
#-----
data(ionosphere, package = 'KernelKnn')
x_class = ionosphere[, -c(2, ncol(ionosphere))]
x_class = as.matrix(x_class)
dimnames(x_class) = NULL
```

onehot_encode 7

```
y_class = as.numeric(ionosphere[, ncol(ionosphere)])
y_class_onehot = onehot_encode(y_class - 1)  # class labels should begin from 0
out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu')
```

onehot_encode

One-hot-encoding of the labels in case of classification

Description

One-hot-encoding of the labels in case of classification

Usage

```
onehot_encode(y)
```

Arguments

У

a numeric vector consisting of the response variable labels. The minimum value of the unique labels should begin from 0

Examples

```
library(elmNNRcpp)
y = sample(0:3, 100, replace = TRUE)
y_expand = onehot_encode(y)
```

predict.elm

Predict with elm

Description

Wrapper for elm_predict.

Usage

```
## S3 method for class 'elm'
predict(object, newdata, type = c("class", "prob", "raw"), ...)
```

8 predict.elm

Arguments

object elm model fitted with elm.
newdata data.frame with the new data

type only used with classification, can be either "class", "prob", "raw", which are

class (vector), probability (matrix) or the output of the elm function (matrix).

... not used

Value

predicted values

Index

```
elm, 2, 8
elm_predict, 3, 7
elm_train, 2, 5
onehot_encode, 2, 7
predict.elm, 7
```