МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Электроника и схемотехника»

Tema: «Коммуникация по интерфейсу SPI»

Студент гр. 3363	 Минко Д.А.
Студент гр. 3363	 Овсейчик Н.И.
Студент гр. 3363	 Гончаренко О.Д.
Преподаватель	Рыбин В.Г.

Санкт-Петербург

2024

Цель работы

Создать два проекта для ведущего и ведомого устройств (для удобства последующей прошивки). В каждом из них описать отдельно модуль SPI и поместить его в оболочку, которая будет передавать сигналы в модуль и выводить передаваемые данные на светодиоды.

Ход работы

- 1. В проекте для ведущей платы был написан модуль SPI, который отвечает за состояния без передачи и с передачей, а также отслеживает, были переданы пакеты. Затем он был помещен в оболочку, где описано инкрементирование и передача при помощи кнопок.
- 2. В отдельном проекте был написан SPI модуль для ведомой платы, затем помещена в оболочку, которая передает значение регистра на светодиоды.
- 3. Отдельно была сделана разводка для ведомого и ведущего устройства (рис. 1 и рис. 2). Разводка идентична за исключением того, что на ведомом устройстве учитываются кнопки: одна для увеличения двоичного значения числа, вторая для передачи. При этом на ведущем устройстве значение не обнуляется, делать это нужно вручную.

1	MISO	output	39	2	False	LVCMOS18	8	UP
2	MOSI	input	37	2	False	LVCMOS18	N/A	UP
3	SCLK	input	36	2	False	LVCMOS18	N/A	UP
4	SS	input	38	2	False	LVCMOS18	N/A	UP
5	led[0]	output	10	3	False	LVCMOS18	8	UP
6	led[1]	output	11	3	False	LVCMOS18	8	UP
7	led[2]	output	13	3	False	LVCMOS18	8	UP
8	led[3]	output	14	3	False	LVCMOS18	8	UP
9	led[4]	output	15	3	False	LVCMOS18	8	UP
10	led[5]	output	16	3	False	LVCMOS18	8	UP

Рис. 1

	Port	Direction	Diff Pair	Location	Bank	Exclusive	IO Type	Drive	Pull Mode	PCI Clamp
1	MISO	input		39	2	False	LVCMOS18	N/A	UP	ON
2	MOSI	output		37	2	False	LVCMOS18	8	UP	N/A
3	SCLK	output		36	2	False	LVCMOS18	8	UP	N/A
4	SS	output		38	2	False	LVCMOS18	8	UP	N/A
5	clk	input		52	1	False	LVCMOS18	N/A	UP	ON
6	increment	input		4	3	False	LVCMOS18	N/A	UP	ON
7	led[0]	output		10	3	False	LVCMOS18	8	UP	N/A
8	led[1]	output		11	3	False	LVCMOS18	8	UP	N/A
9	led[2]	output		13	3	False	LVCMOS18	8	UP	N/A
10	led[3]	output		14	3	False	LVCMOS18	8	UP	N/A
11	IndfA1	output		15	2	Ealea	IVCMOS19		110	NI/A

Рис. 2

4. При настройке важно выставить на обеих платах режим «Embedded Flash Mode», чтобы прошивка сохранялась. Дополнительно платы соединены между собой по gnd и пину на 5V.

Выводы

В результате выполнения лабораторной работы было написано два SPI-модуля для Master'а и для Slave. Они были помещены в оболочку, с помощью которой и осуществляется передача бинарного значения с ведущего на ведомое.

ПРИЛОЖЕНИЕ 1 – ИСХОДНЫЙ КОД ПРОГРАММЫ

1. Модуль Master_Control

```
module master control
(
     input clk,
     input increment,
     input transmit,
     output [5:0] led,
     output SCLK,
     output MOSI,
     input MISO,
     output SS
);
reg [7:0] data out;
wire [7:0] data in;
reg [19:0] start counter;
wire start;
reg [19:0] inc counter;
spi master m (clk, start, data out, data in, SCLK, MOSI, MISO,
SS);
always @(posedge clk)
begin
     if (!increment)
     begin
          if (!inc counter[19])
          begin
               inc counter = inc counter + 1;
               if (inc counter[19])
```

```
data_out = data_out + 1;
          end
     end
     else
     begin
          inc counter <= 0;</pre>
     end
end
always @(posedge clk)
begin
     if (!transmit)
     begin
          if (!start counter[19])
                start counter <= start counter + 1;</pre>
     end
     else
     begin
          start counter <= 0;</pre>
     end
end
assign led = ~data out[5:0];
assign start = start_counter[19];
endmodule
     Модуль SPI_Slave
2.
module spi master
(
     input clk,
     input start,
     input [7:0] data out,
     output reg [7:0] data in,
```

```
output reg SCLK,
     output reg MOSI,
     input MISO,
     output reg SS
);
reg [1:0] state;
reg [2:0] data counter;
initial
begin
     data_in <= 0;
     state <= 0;
     SS <= 1;
     MOSI <= 0;
     SCLK <= 0;
     data counter <= 0;</pre>
end
always @(posedge clk)
begin
     case (state)
           0:
          begin
                if (start) // If not transmitting but commanded to
start
                begin
                     state <= 1;
                     SS <= 0;
                     SCLK <= 0;
                     data counter <= 7;</pre>
                     MOSI <= data out[7];</pre>
                end
          end
```

```
begin
                if (!SCLK) // If making a posedge
               begin
                     data in[data counter] <= MISO;</pre>
                     if (!data_counter)
                          state <= 2;
                     else
                          data_counter <= data_counter - 1'b1;</pre>
                end
               else
               begin
                     MOSI <= data out[data counter];</pre>
                end
               SCLK <= ~SCLK;
          end
          2: // If packets sent
          begin
               SCLK <= 0;
               state <= 3;
               MOSI <= 0;
          end
          3: // If ending transmission
          begin
               SS <= 1;
               state <= 0;
          end
     endcase
end
endmodule
```

1: // If transmitting

3. Модуль SPI_Slave

```
module spi slave
(
     input [7:0] data out,
     output reg [7:0] data in,
     input SCLK,
     input MOSI,
     output MISO,
     input SS
);
reg state;
reg [2:0] data counter;
initial
begin
     data in <= 0;
     state <= 0;
     data counter <= 0;</pre>
end
always @(posedge SCLK)
begin
     if (!SS)
     begin
          if (!state)
          begin
               state = 1;
               data counter = 7;
          end
          data in = { data in[6:0], MOSI };
          if (data counter == 0) state = 0;
          data counter = data counter - 1;
```

```
end
end
assign MISO = state;
endmodule
module slave control
(
     output [5:0] led,
     input SCLK,
     input MOSI,
     output MISO,
     input SS
);
reg [7:0] data out;
wire [7:0] data_in;
spi_slave s (data_out, data_in, SCLK, MOSI, MISO, SS);
assign led = \simdata_in[5:0];
endmodule
```