Proteínas: aspectos gerais

- As proteínas são os compostos orgânicos mais abundantes dos organismos vivos (40-50% do seu peso seco)
- As proteínas são omnipresentes na célula, estando ligadas a todos os aspectos da estrutura e função
- A maior parte da informação genética descreve sequências de proteína
- A estrutura tridimensional das proteínas é largamente determinada pela sua sequência de aminoácidos.
- · As proteínas são polímeros lineares de resíduos de L-a-aminoácidos

Fracção do peso seco em components da bacteria Escherichia Coli

TABLE 3-3

Macromolecular Composition of Organisms
Expressed as Percent Dry Weight

	Component				Total of	
Organism	Protein	Lipid	Carbohydrate	Nucleic acid	measured components	Ref.
Chlorella (unfavor-						
able environment)	13.1	63.4	23.5		100.0	(10)
Eel (silver)	33.6	63.8	_		97.4	(12)
Sacchromyces						, ,
cerevisiae	40	2	37	12	91.0	(11)
Herring	45.7	49.5	_		95.2	(12)
Chlorella (favorable						,
environment)	46.4	20.2	33.4		100.0	(10)
Oyster	51.2	11.1	28.2		89.5	(9)
Torulopsis utilis	54.4	3	30	4.6	92	(11)
Silkworm (larva)	55.5	13.3	1.8		70.6	(9)
Eel (yellow)	58.0	39.4	_		97.4	(12)
Sea urchin (40 hours						,
larva)	60.6	17.4	3.4		81.4	(9)
Silkworm (imago)	63.4	24.3	6.5		94.2	(9)
Sea urchin (unfer-						(-)
tilized egg)	66.9	31.2	5.4		103.5	(9)
Mussel	73.7	11.9	-		85.6	(12)
Plaice	79.5	9.4	-		88.9	(12)
Mycoplasma galli-						(/
septicum	80	11		12	103	(13)

THE HUMAN BODY

ELEMENTAL COMPOSITION

Diversidade funcional das proteínas

Classe funcional	Exemplo
Enzimas	Lisozima, catalase, tripsina
Proteínas estruturais	Colagénio, queratina
Proteínas de transporte	Hemoglobina, lipoproteínas
Proteínas de reserva	Albumina, caseína
Proteínas de protecção	Anticorpos, complemento
Proteínas de motilidade	Actina, miosina, dineína
Hormonas	Insulina, hormona do crescimento
Proteínas redox	Citocromos, ferredoxina
Toxinas	Toxina da difteria, venenos de cobra

Proteínas: composição

- Elementos constitutivos:
 C(50%), O(23%), N(16%), H(7%), S(0-3%) (cadeias polipeptídicas)
- As cadeias poplipeptídicas das proteínas são polímeros lineares de resíduos de L- α -aminoácidos ligados entre si por ligações peptídicas
- · Os 20 α -aminoácidos podem sofrer modificações após a síntese ribossomal das proteínas
- · À cadeia polipeptídica podem encontrar-se ligados, covalentemente ou não, um ou mais grupos prostéticos de composição não-polipeptídica
- A proteína funcional pode ser constituída por uma associação de várias cadeias polipeptídicas (estrutura quaternária)

Classes estruturais de proteínas

Globulares (ex. mioglobina)

Fibrosas (ex. queratina)

Proteínas

Membranares (ex. aquaporina)

Intrinsicamente desordenadas (ex. TSP90)

Grupos prostéticos

Para além da cadeia(s) de resíduos de aminoácido, muitas proteínas contêm ou mais grupos de natureza química distinta, chamados **grupos prostéticos**, que po-dem estar ou não ligados covalentemente à cadeia polipeptídica

Classe	Componente prostético
Nucleoproteínas	Ácidos nucleícos
Lipoproteínas	Fosfolípidos, colesterol,
Glicoproteínas	Galactose, manose, ácido siálico
Fosfoproteínas	Resíduos esterificados com fosfato
Hemoproteínas	Grupo hémico com ferro
Flavoproteínas	Flavina adenina dinucleótido
Metaloproteínas	Fe, Cu, Zn, Mo,

Proteínas: dimensões e organização

Desde poucas dezenas de resíduos de aminoácidos até vários milhares, as proteínas apresentam dimensões muito variadas

Proteína	Mass molecular	Cadeias
Insulina	5700	2
Lisozima	13900	1
Hemoglobina	102000	4
Centro fotossintético	115000	4
Glutamina sintetase	592000	12
Vírus do m.tabaco	4000000	2130

Massa molecular média por aminoácido: ~110

Dimensões relativas de algumas proteínas

Proteínas: níveis de organização

A complexidade da estrutura das proteínas pode ser descrita por diferentes níveis de organização, desde a sequência de aminoácidos (*estrutura primária*) até ao modo de ligação não-covalente das várias cadeias polipeptídicas presentes (*estrutura quaternária*)

L-α-aminoácidos, blocos constituintes das proteínas

A ligação peptídica

A polimerização dos aminoácidos dá-se através da formação de **ligações peptídicas**, por eliminação de uma molécula de água entre os terminais **amino** e **carboxilo** de cada par de aminoácidos.

Formação de um dipéptido

Ligação peptídica

Estrutura de uma cadeia polipeptídica

A ligação peptídica

Nomenclatura de aminoácidos e péptidos

Alaniltirosilaspartilglicina

Nomenclatura dos carbonos

Proteínas vs. péptidos

Os polímeros lineares de resíduos de aminoácido podem classificar-se grosseiramente de acordo com o seu tamanho e características:

- •**Péptido:** Uma cadeia curta de aminoácidos com uma sequência definida. Não existe número máximo de resíduos, mas o termo usa-se quando as propriedades físico-químicas da cadeia são as esperadas devido ao efeito combinado dos aminoácidos constituintes e quando não existe uma estrutura tridimensional bem definida.
- Polipéptido: Uma cadeia mais longa de resíduos de aminoácido, geralmente com um tamanho e sequência bem definidos.
- Poli-aminoácidos: Sequências aleatórias de comprimentos variados resultantes da polimerização não-específica de um número pequeno de tipos de aminoácido.
- •Proteína: Termo geralmente reservado para designar uma associação de uma ou mais cadeias polipeptídicas de origem biológica e possuindo uma estrutura tridimensional bem definida em condições fisiológicas. Possuem várias propriedades físico-químicas que não resultam da simples soma dos resíduos de aminoácido constituintes.

Os 20 aminoácidos - I

Os 20 aminoácidos - II

Os 20 aminoácidos podem dividir-se em categorias de acordo com as suas características químicas, embora alguns apresentem carácter misto (por exemplo: a tirosina tem simultaneamente carácter polar e apolar).

Cadeias laterais dos 20 aminácidos

Classificação dos aminoácidos

A forma mais habitual de classificação dos 20 aminoácidos baseia-se na *polaridade* das suas cadeias laterais:

Apolares (Leu, Ile, Val, Phe, Met, Cys, Trp,Tyr)

Ocorrem sobretudo no interior das proteínas devido à sua *hidrofobicidade*. Têm quase todos cadeias volumosas que rigidificam a estrutura

•Híbridos (Ala, Gly, Pro)

Embora apolares, seguem um padrão diferente dos outros resíduos devido ao seu tamanho (Ala, Gly) ou às restrições da sua geometria (Pro)

Polares (Thr, Ser, Asn, Gln, His, Tyr)

São formadores de pontes de hidrogénio, e interagem facilmente com a água circundante

Carregados (Asp, Glu, Lys, Arg, His)

Apresentam carga unitária positiva ou negativa a pH fisiológico. Encontram-se geralmente na superfície das proteínas onde podem interagir com a água ou com outras cargas.

(a tirosina e a histidina aparecem em mais de uma categoria)

Algumas propriedades dos 20 aminoácidos

	Código de 3 letras	Código de 1 letra	Massa (Dalton)	Volume (A)	Frequencia (%)	рКа
Alanina	Ala	A lanine	71.09	67	8.3	
Arginina	Arg	a R ginine	156.19	148	5.7	12
Asparagina	Asn	asparagi N e	114.11	96	4.4	
Aspartato	Asp	aspar D ic	115.09	91	5.3	3.9
Cisteína	Cys	C ysteine	103.15	86	1.7	9
Glutamina	Gln	Q tamine	128.14	114	4	
Glutamato	Glu	glu E tamic	129.12	109	6.2	4.3
Glicina	Gli	Glicine	57.05	48	7.2	
Histidina	His	H istidine	137.14	118	2.2	6
Isoleucina	Ile	Isoleucine	113.16	124	5.2	
Leucina	Leu	Leucine	113.16	124	9	
Lisina	Lys	K, L(ysine)	128.17	135	5.7	10.5
Metionina	Met	M ethionine	131.19	124	2.4	
Fenilalanina	Phe	F enilalanine	147.18	135	3.9	
Prolina	Pro	P roline	97.12	90	5.1	
Serina	Ser	Serine	87.08	73	6.9	
Treonina	Thr	Threonine	101.11	93	5.8	
Triptofano	Trp	t W o rings	186.21	163	1.3	
Tirosina	Tyr	t Y rosine	163.18	141	3.2	10.3
Valina	Val	V aline	99.14	105	6.6	
Média pesad	la		199.4	161		

Notas:

- •As frequências de ocorrência foram calculadas usando um conjunto de sequências de proteínas não aparentadas.
- •O peso e o volume molecular médios são calculados usando as frequências como pesos no cálculo da média.
- •Os símbolos Asx (B) e Glx (Z) usam-se quando não se consegue distinguir entre os membros dos pares glutâmico/glutamina e aspártico/asparagina.

Assimetria óptica dos α -aminoácidos

Os α -aminoácidos são, com exceção da glicina, moléculas quirais, pois possuem um carbono α assimétrico ou quiral:

No sistema de nomenclatura de *Fischer*, os isómeros *d*- e *l*- referem-se à configuração do *d*- e *l*-gliceraldeído.

Mnemónica para fixar a ordem correta dos grupos substituintes nos l-aminoácidos. Com o H voltado para o observador, os outros três grupos formam a palavra "CORN" no sentido dos ponteiros do relógio.

Propriedades ácido-base dos aminoácidos

Nas condições fisiológicas de pH os grupos amino e carboxilo dos α -aminoácidos encontram-se ionizados, dando origem a um zwitterião

Os resíduos ionizáveis conferem um comportamento ácido-base complexo às cadeias polipeptídicas.

Titulação da glicina

Titulação de uma proteína

Aminoácidos não-standard

Alguns dos aminoácidos "nãostandard" encontrados em proteínas. Todos eles resultam da modificação pós-translacional de α -aminoácidos standard, com dois exceções conhecidas: a selenocisteína e a pirrolisina, codificadas pelo codão UAG em algumas bactérias.

Pirrolisina

Modificações pós-translaccionais

Human Presequence Protease (PDB 4L3T)

Aminoácidos não proteícos

A maioria das moléculas acima representados são derivadas dos 20 aminoácidos *standard*, mas nenhuma é encontrada em proteínas. Estes aminoácidos desempenham papeis especializados, atuando como sinais químicos. Ex: dopamina (neurotransmissor), histamina (mediador de reações alérgicas), dopamina (neurotransmissor), tiroxina (hormona da tiroide), citrulina e ornitina (intermediários no metabolismo dos aminoácidos).