TD Chapitre 1: EDO - EDL:

EDO à variables séparables :

Résoudre sur un intervalle I dans \mathbb{R} à définir :

1)
$$y'y = 1$$

2)
$$y' = y^2$$

3)
$$y'y^2 = x$$

1)
$$y'y = 1$$
 2) $y' = y^2$ 3) $y'y^2 = x$ 4) $x^2y' = e^{-y}$

EDL 1:

Résoudre sur un intervalle I dans \mathbb{R} à définir :

1)
$$v' + 2v = 0$$

2)
$$v' + v = x$$

3)
$$y' + y = x.e^{x}$$

1)
$$y' + 2y = 0$$
 2) $y' + y = x$ 3) $y' + y = x \cdot e^x$ 4) $y' + y = 2x \cdot ch(x)$

5)
$$y' + x \cdot y = 0$$

5)
$$y' + x \cdot y = 0$$
 6) $(1 - x^2)y' - xy = 1$, $I =]-1$, 1[

EDL 2:

Résoudre sur un intervalle I dans $\mathbb R$ à définir :

1)
$$y'' + y = 0$$

2)
$$y'' - y' = 0$$

1)
$$y'' + y = 0$$
 2) $y'' - y' = 0$ 3) $y'' + y' + y = x^2 + 1$

4)
$$y'' - 2y' + y = xe^{-x}$$

5)
$$y'' + y = x \cdot \cos(2x)$$

4)
$$y'' - 2y' + y = xe^{-x}$$
 5) $y'' + y = x \cdot \cos(2x)$ 6) $y'' + (1+2i)y' + (i-1)y = 0$

7)
$$y'' + y = \frac{1}{\cos(x)}$$
, $I =] -\frac{\pi}{2}$, $\frac{\pi}{2}$ [

8)
$$x^2y'' - 2xy' + 2y = \ln(x)$$

8) $x^2y'' - 2xy' + 2y = \ln(x)$ via le changement de variable $t = \ln(x)$. $I = \mathbb{R}^+_*$.

9)
$$(1+x^2)y'' + 4xy' + (1-x^2)y = 0$$
 via le changement de fonction inconnue $z(x) = (1+x^2).y(x)$.

EXERCICES SUPPLEMENTAIRES:

1)
$$y' + x \cdot y = e^{-x^2/2}$$

2)
$$y'(x^2 + 1) - y + 1 = 0$$

1)
$$y' + x$$
, $y = e^{-x^2/2}$ 2) $y'(x^2 + 1) - y + 1 = 0$ 3) x , $y' = y + x^3 + 3x^2 - 2x$

4)
$$y' - y. tan(x) = e^x$$

5)
$$y'' - \omega^2 y = 0, \omega \in \mathbb{R}_*^+$$

6)
$$y'' + \omega^2 y = 0, \omega \in \mathbb{R}^+_*$$

7)
$$y'' - 4y' + 4y = 4x^2 - 4x + 2 + e^{2x}$$
 8) $y'' - y' = \sin^2(x)$

8)
$$v'' - v' = \sin^2(x)$$

9)
$$y'' + 3y' = x + 4$$

9)
$$y'' + 3y' = x + 4$$
 10) $y'' + 3y' = (-12x + 1) e^{-3x}$ 11) $y'' + y = tan(x)$

11)
$$y'' + y = tan(x)$$

12)
$$(1 + x^2)^2 \cdot y'' + 2x(1 + x^2)y' + y = 0$$
 via le changement de variable $t = \arctan(x)$.

13)
$$(1 + e^x)y'' + (2e^x + 1)y' + e^xy = 0$$
 via le changement de fonction inconnue $z = y' + y$.