Generated on 2014-11-13 20:36:01 by gEcon version 0.8.0 (2014-11-13) Model name: epstein_zin

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, I_t} U_t = \beta \left(\mathbb{E}_t \left[U_{t+1}^{1-\theta^{EZ}} \right] \right)^{\left(1-\theta^{EZ}\right)^{-1}} + \left(-1 + C_t^{1-\eta}\right) \left(1 - \eta\right)^{-1}$$
(1.1)

s.t.

$$C_t + I_t = \pi_t + K_{t-1}^{\mathrm{s}} r_t + L_t^{\mathrm{s}} W_t \quad \left(\lambda_t^{\mathrm{CONSUMER}^1}\right)$$
(1.2)

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad \left(\lambda_t^{CONSUMER^2}\right)$$

$$(1.3)$$

1.2 Identities

$$L_t^{\rm s} = 1 \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t^{\text{CONSUMER}^{U}} + \beta q_{t-1}^{\text{CONSUMER}^{1-1+\left(1-\theta^{\text{EZ}}\right)^{-1}}} U_t^{-\theta^{\text{EZ}}} = 0 \quad (U_t)$$

$$(1.5)$$

$$-\lambda_t^{\text{CONSUMER}^2} + \mathbf{E}_t \left[\lambda_{t+1}^{\text{CONSUMER}^U} \left(\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} + \lambda_{t+1}^{\text{CONSUMER}^2} (1 - \delta) \right) \right] = 0 \quad (K_t^{\text{s}})$$
 (1.6)

$$-\lambda_t^{\text{CONSUMER}^1} + C_t^{-\eta} = 0 \quad (C_t)$$
(1.7)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2} = 0 \quad (I_t)$$
 (1.8)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}, Y_t} \pi_t = Y_t - L_t^{\rm d} W_t - r_t K_t^{\rm d}$$
(2.1)

s.t. :

$$Y_t = Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{1-\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{\text{d}^{-1} + \alpha} L_t^{\text{d}^{1-\alpha}} = 0 \quad (K_t^{\text{d}})$$

$$(2.3)$$

$$-W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{\text{d}\alpha} L_t^{\text{d}-\alpha} = 0 \quad (L_t^{\text{d}})$$

$$(2.4)$$

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (Y_t) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad (K_t^{\mathrm{d}})$$

$$(2.6)$$

$$-W_t + Z_t (1 - \alpha) K_t^{d\alpha} L_t^{d-\alpha} = 0 \quad (L_t^d)$$

$$(2.7)$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\rm d} = K_{t-1}^{\rm s}$$
 (3.1)

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

4.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$q_t^{\text{CONSUMER}^1} - \mathcal{E}_t \left[U_{t+1}^{1-\theta^{\text{EZ}}} \right] = 0 \tag{5.1}$$

$$-r_t + \alpha Z_t 1^{1-\alpha} K_{t-1}^{s}^{-1+\alpha} = 0 (5.2)$$

$$-W_t + Z_t (1 - \alpha) 1^{-\alpha} K_{t-1}^{s}{}^{\alpha} = 0$$
 (5.3)

$$-Y_t + Z_t 1^{1-\alpha} K_{t-1}^{s}{}^{\alpha} = 0 (5.4)$$

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{5.5}$$

$$\beta q_t^{\text{CONSUMER}^{1-1+\left(1-\theta^{\text{EZ}}\right)^{-1}}} \mathcal{E}_t \left[\left(r_{t+1} C_{t+1}^{-\eta} + \left(1-\delta\right) C_{t+1}^{-\eta} \right) U_{t+1}^{-\theta^{\text{EZ}}} \right] - C_t^{-\eta} = 0$$
 (5.6)

$$-C_t - I_t + Y_t = 0 (5.7)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.8)$$

$$U_t - \beta q_t^{\text{CONSUMER}^1 (1 - \theta^{\text{EZ}})^{-1}} - (-1 + C_t^{1-\eta}) (1 - \eta)^{-1} = 0$$
 (5.9)

6 Steady state relationships (after reduction)

$$q_{\rm ss}^{\rm CONSUMER^1} - U_{\rm ss}^{1-\theta^{\rm EZ}} = 0 \tag{6.1}$$

$$-r_{ss} + \alpha Z_{ss} 1^{1-\alpha} K_{ss}^{s-1+\alpha} = 0$$
 (6.2)

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) 1^{-\alpha} K_{\rm ss}^{\rm s \alpha} = 0$$
 (6.3)

$$-Y_{\rm ss} + Z_{\rm ss} 1^{1-\alpha} K_{\rm ss}^{\rm s \alpha} = 0 \tag{6.4}$$

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{6.5}$$

$$\beta \left(r_{\rm ss} C_{\rm ss}^{-\eta} + (1 - \delta) C_{\rm ss}^{-\eta} \right) q_{\rm ss}^{\rm CONSUMER^{1-1} + \left(1 - \theta^{\rm EZ} \right)^{-1}} U_{\rm ss}^{-\theta^{\rm EZ}} - C_{\rm ss}^{-\eta} = 0$$
 (6.6)

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} = 0 ag{6.7}$$

$$I_{ss} - K_{ss}^{s} + K_{ss}^{s} (1 - \delta) = 0$$
(6.8)

$$U_{\rm ss} - \beta q_{\rm ss}^{\rm CONSUMER^1 (1-\theta^{\rm EZ})^{-1}} - (-1 + C_{\rm ss}^{1-\eta}) (1-\eta)^{-1} = 0$$
(6.9)

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} = 0 (7.1)$$

8 Parameter settings

$$\beta = 0.99 \tag{8.1}$$

$$\delta = 0.025 \tag{8.2}$$

$$\eta = 2 \tag{8.3}$$

$$\phi = 0.95 \tag{8.4}$$

$$\theta^{\text{EZ}} = 0.05 \tag{8.5}$$

9 Steady-state values

	Steady-state values
q^{CONSUMER^1}	58.4346
r	0.0351
C	3.6213
I	1.4427
K^{s}	57.7077
U	72.3856
W	3.0384
Y	5.064
Z	1

10 The solution of the perturbation

10.1 P

$$\begin{array}{ccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K^{\mathrm{s}} & \left(\begin{array}{ccc} 0.9792 & 0.0632 \\ 0 & 0.95 \end{array} \right) \end{array}$$

10.2 Q

$$\begin{array}{c}
\epsilon^{Z} \\
K^{s} \\
Z
\end{array}
\left(\begin{array}{c}
0.0665 \\
1
\end{array}\right)$$

10.3 R

10.4 S

11 Statistics of the model

11.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
q^{CONSUMER^1}	58.4346	0.1108	0.0123	Y
r	0.0351	1.3291	1.7664	Y
C	3.6213	0.4567	0.2085	Y
I	1.4427	3.4658	12.0115	Y
K^{s}	57.7077	0.3108	0.0966	Y
U	72.3856	0.1171	0.0137	Y
W	3.0384	1.301	1.6926	Y
Y	5.064	1.301	1.6926	Y
Z	1	1.3034	1.699	Y

11.2 Correlation matrix

	q^{CONSUMER^1}	r	C	I	K^{s}	U	W	Y	Z
q^{CONSUMER^1}	1	0.955	0.9839	0.9894	0.3667	1	0.9979	0.9979	0.9871
r	0.955	1	0.8866	0.9879	0.0743	0.9542	0.9723	0.9723	0.9902
C	0.9839	0.8866	1	0.9476	0.5272	0.9843	0.9701	0.9701	0.9426
I	0.9894	0.9879	0.9476	1	0.2279	0.9891	0.9968	0.9968	0.9999
K^{s}	0.3667	0.0743	0.5272	0.2279	1	0.3691	0.3053	0.3053	0.2131
U	1	0.9542	0.9843	0.9891	0.3691	1	0.9977	0.9977	0.9867
W	0.9979	0.9723	0.9701	0.9968	0.3053	0.9977	1	1	0.9954
Y	0.9979	0.9723	0.9701	0.9968	0.3053	0.9977	1	1	0.9954
Z	0.9871	0.9902	0.9426	0.9999	0.2131	0.9867	0.9954	0.9954	1

11.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
q^{CONSUMER^1}	0.7256	0.4907	0.294	0.1331	0.0051
r	0.713	0.4707	0.2706	0.1094	-0.0168
C	0.753	0.5343	0.3451	0.1849	0.0529
I	0.7139	0.4721	0.2722	0.111	-0.0152
K^{s}	0.9605	0.8646	0.7317	0.5776	0.415
U	0.7259	0.4912	0.2946	0.1337	0.0057
W	0.7191	0.4804	0.2819	0.1208	-0.0062
Y	0.7191	0.4804	0.2819	0.1208	-0.0062
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

12 Statistics of the model

12.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
q^{CONSUMER^1}	11.5392	0.0851	0.0072	Y
r	0.0069	1.0216	1.0436	Y
C	0.7151	0.351	0.1232	Y
I	0.2849	2.6639	7.0965	Y
K^{s}	11.3957	0.2389	0.0571	Y
U	14.2942	0.09	0.0081	Y
W	0.6	1	1	Y
Y	1	1	1	Y
Z	0.1975	1.0019	1.0038	Y

12.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
q^{CONSUMER^1}	-0.0392	0.0887	0.2529	0.457	0.7045	0.9979	0.7361	0.5105	0.32	0.1628	0.0365
r	0.1127	0.2318	0.3763	0.5475	0.7461	0.9723	0.6325	0.3554	0.1353	-0.0341	-0.1591
C	-0.1292	-0.0014	0.1675	0.3827	0.6489	0.9701	0.7668	0.5819	0.4176	0.2745	0.1528
I	0.0346	0.1597	0.3161	0.5064	0.7329	0.9968	0.6939	0.4405	0.2334	0.0684	-0.0587
K^{s}	-0.4856	-0.429	-0.3301	-0.1807	0.0281	0.3053	0.4911	0.6017	0.6517	0.6545	0.6217
U	-0.0406	0.0874	0.2517	0.456	0.7038	0.9977	0.7368	0.5117	0.3215	0.1645	0.0382
W	-0.0062	0.1208	0.2819	0.4804	0.7191	1	0.7191	0.4804	0.2819	0.1208	-0.0062
Y	-0.0062	0.1208	0.2819	0.4804	0.7191	1	0.7191	0.4804	0.2819	0.1208	-0.0062
Z	0.0423	0.1669	0.3223	0.511	0.735	0.9954	0.6886	0.4327	0.224	0.0585	-0.0686

13 Impulse response functions

13.1 Shock ϵ^{Z}

Figure 1: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock