NeuroML2023

Lecture 0. Course intro

Al in medical images. Al in neurology.

CBINSIGHTS. The AI Deals Tracker. https://www.cbinsights.com/research/artificial-intelligence-deals-tracker-heatmap/

Al in medical images. Al in neuro.

Datasets used (please get a personal account and complete data use agreement):

- Human Connectome Project
 https://db.humanconnectome.org/data/projects/HCP_1200
- UCLA Consortium for Neuropsychiatric Phenomics LA5c Study https://openneuro.org/datasets/ds000030/versions/1.0.0
- Autism Brain Imaging Data Exchange http://fcon_1000.projects.nitrc.org/indi/abide/
- EEG Motor Movement/Imagery Dataset
 https://www.physionet.org/content/eegmmidb/1.0.0/
- ADNI Alzheimer Disease Neuoroimaging Initiative https://ida.loni.usc.edu/services/NewUser.jsp

Software used (please get a personal account and complete usage agreement):

- FreeSurfer https://surfer.nmr.mgh.harvard.edu/
- FmriPrep https://fmriprep.org/en/stable/
- Docker https://www.docker.com/
- MNE python library https://mne.tools/stable/index.html

MRI Deep Learning Tools

https://github.com/kondratevakate/mri-deep-learning-tools

- nibabel
- Nipy
- Machine Learning:
 - Nilearn
- Deep Learning:
 - Monai
 - o TorchIO
 - PyTorch Lightning
 - Weights&Bias

Top Docker command

```
docker run hello-world #test
docker pull miykael/nipype tutorial:latest # pulling images
docker images # to check available images on your system
docker run -it --rm -v /path/to/nipype tutorial/:/home/neuro/nipype_tutorial -v /path/to/data/:/data -v /path/to/output/:/output -p
8888:8888 miykael/nipype tutorial jupyter notebook
docker run --rm kaczmarj/neurodocker:v0.4.0 generate [docker|singularity] \
       --base neurodebian:stretch --pkg-manager apt \
       --install afni ants git vim
docker rmi -f IMAGE ID # To delete a specific docker image
docker exec -it IMAGE ID /bin/bash # runs a new command in a running container.
docker save -o nipype tutorial.tar miykael/nipype tutorial # Export docker image miykael/nipype tutorial
docker load --input nipype tutorial.tar # Import docker image on another PC
```

Link with docker tutorials

https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html

https://miykael.github.io/nipype_tutorial/notebooks/introduction_docker.html

https://docs.docker.com/engine/install/ - installation

if you haven't worked with python before and don't understand what's going on

https://miykael.github.io/nipype_tutorial/notebooks/introduction_python.html