

Royal Institute of Technology

ML2-MORE
HMM &
EM
AIGORITHM

LAST LECTURE

- ⋆ DGM semantics
- ⋆ HMMs
 - DP briefly forward, backward etc.
 - Sampling
- Tree DGM marginalization

FORKS AND CHAINS IN AN HMM

$$Z_1 \rightarrow Z_2 \rightarrow Z_3 \rightarrow \cdots \rightarrow Z_T \rightarrow Z_{T+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x_1 \qquad x_2 \qquad x_3 \qquad \qquad x_T$$

Chain Fork v-struct

Applying sum rule

Notice, by the sum rule,

$$f_t(k) = p(x_{1:t-1}, Z_t = k) = \sum_{k' \in [K]} p(x_{1:t-1}, Z_{t-1} = k', Z_t = k)$$

Backward variable

Defined by

$$b_t(k) := p(\boldsymbol{x}_{t+1:T}|\boldsymbol{Z}_t = k)$$

"Graphical model"

THE MARGINAL

$$P(x_u = i \mid x_O) \propto P(x_u = i, x_O)$$

ALGORITHM -Marginalization tree dgm

- Given DGM with
 - G=T binary <u>rooted directed</u> tree with vertex set V
 - Bernoulli CPDs
 - Observation x_0 , where O is the leaf set
- * Compute

$$p(x_O)$$

* Subproblems, subsolutions

$$s(u, i) = P(x_{\downarrow u \cap O} | X_u = i)$$

ALGORITHM -Marginalization tree dgm

- * Visit the vertices of T from leaves to root
 - * when at leaf I

$$s(l,i) = \begin{cases} 0 & \text{if } x_l \neq i \\ 1 & \text{if } x_l \neq i \end{cases}$$

* when at vertex u with children v and w

$$s(u,i) = \left(\sum_{j \in \{0,1\}} P(X_v = j \,|\, X_u = i) s(v,j)\right) \left(\sum_{j \in \{0,1\}} P(X_w = j \,|\, X_u = i) s(w,j)\right)$$
 CPD for uv Smaller CPD for uw Smaller

THIS LECTURE

$|b_k(k)| := p(x_{k+1} \cdot x_k | \mathbb{Z}_k := k)$

- * Smoothing
- Sampling
- ★ K-means (inspiration)
- ★ GMM (towards EM)

$$p(\boldsymbol{Z}_t = k|\boldsymbol{x}_{1:t})$$

• Filtering: $p(z_t|x_{1:t})$, online

$$p(\boldsymbol{Z}_t = k | \boldsymbol{x}_{1:t}) = rac{p(\boldsymbol{x}_{1:t}, \boldsymbol{Z}_t = k)}{p(\boldsymbol{x}_{1:t})}$$

• Filtering: $p(z_t|x_{1:t})$, online

$$p(\boldsymbol{Z}_t = k | \boldsymbol{x}_{1:t}) = \frac{p(\boldsymbol{x}_{1:t}, \boldsymbol{Z}_t = k)}{p(\boldsymbol{x}_{1:t})}$$

$$= \frac{p(\boldsymbol{x}_{1:t-1}, \boldsymbol{Z}_t = k)p(\boldsymbol{x}_t | \boldsymbol{Z}_t = k)}{p(\boldsymbol{x}_{1:t})}$$

Filtering: $p(z_t|x_{1:t})$, online

$$egin{aligned} p(oldsymbol{Z}_t = k | oldsymbol{x}_{1:t}) &= rac{p(oldsymbol{x}_{1:t}, oldsymbol{Z}_t = k)}{p(oldsymbol{x}_{1:t})} \ &= rac{p(oldsymbol{x}_{1:t-1}, oldsymbol{Z}_t = k)p(oldsymbol{x}_t | oldsymbol{Z}_t = k)}{p(oldsymbol{x}_{1:t})} \ &= rac{f_t(k)p(oldsymbol{x}_t | oldsymbol{Z}_t = k)}{p(oldsymbol{x}_{1:t})} \end{aligned}$$

• Filtering: $p(z_t|x_{1:t})$, online

$$p(oldsymbol{Z}_t = k | oldsymbol{x}_{1:t}) = rac{p(oldsymbol{x}_{1:t}, oldsymbol{Z}_t = k)}{p(oldsymbol{x}_{1:t})}$$
 $= rac{p(oldsymbol{x}_{1:t-1}, oldsymbol{Z}_t = k)p(oldsymbol{x}_t | oldsymbol{Z}_t = k)}{p(oldsymbol{x}_{1:t})}$ emission
 $= rac{f_t(k)p(oldsymbol{x}_t | oldsymbol{Z}_t = k)}{p(oldsymbol{x}_{1:t})}$ data probability

• Filtering: $p(z_t|x_{1:t})$, online

OFF-LINE SMOOTHING

$$p(\mathbf{Z}_t = k | \mathbf{x}_{1:T}) \propto f_t(k) p(\mathbf{x}_t | \mathbf{Z}_t = k) b_t(k)$$
emission

Up to a multiplicative constant

TWO SLICED SMOOTHING MARGINALS - MARGINAL OVER PAIRS OF STATES

$$p(Z_t = k, Z_{t+1} = l|x_{1:T})$$

Can be computed from forward and backward similarly

TWO SLICED SMOOTHING MARGINALS - MARGINAL OVER PAIRS OF STATES

$$p(Z_t = k, Z_{t+1} = l | x_{1:T})$$

Can be computed from forward and backward similarly

SAMPLING FROM POSTERIOR

$$z_{1:T+1}^s \sim p(oldsymbol{Z}_{1:T+1} = k | oldsymbol{x}_{1:T})$$

$$b_t(k) = \sum_l \underbrace{p(oldsymbol{Z}_{t+1} = l | oldsymbol{Z}_t = k)}_{ ext{transition}} \underbrace{b_{t+1}(l)}_{ ext{"smaller"}} \underbrace{p(oldsymbol{x}_{t+1} | oldsymbol{Z}_{t+1} = l)}_{ ext{emission}}$$

How much did each previous state contribute to the probability mass of the present state?

BACKWARDS SAMPLING OF POSTERIOR

$$Z_1 \rightarrow Z_2 \rightarrow Z_3 \rightarrow \cdots \rightarrow Z_T \rightarrow Z_{T+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x_1 \qquad x_2 \qquad x_3 \qquad \qquad x_T$$

Sample $z_{1:T+1} \sim p(Z_{1:T+1} = k | x_{1:T})$ by

$$\text{GM} \quad \text{DAG} \quad Z_1 \to Z_2 \to \cdots \to Z_{i-1} \to Z_i \cdots \to Z_T \to Z_{T+1} \\ \text{CPDs} \quad p(Z_1|x_{1:T}) \qquad \qquad p(Z_i|Z_{i-1},x_{i:T}) \qquad p(Z_{T+1}|Z_T)$$

Expectation Maximization (EM)

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$

GAUSSIAN

TWO DIMENSIONAL NORMAL

K-MEANS

- \bigstar Data vectors D={x₁,...,x_N}
- ★ Randomly selected clusters z₁,...,z_N from C clusters
- ★ Iteratively do

$$oldsymbol{\mu}_c = rac{1}{N_c} \sum_{n:z_n=c} oldsymbol{x}_n, \qquad ext{where } N_c = |\{n:z_n=c\}|$$

$$z_n = \operatorname{argmin}_c ||\boldsymbol{x}_n - \boldsymbol{\mu}_c||_2$$

★ One step O(NKD), can be improved

ASSIGNEACH POINT TO A MEAN

ASSIGNING POINTS TO MULTIPLE MEANS (SOFT)

K-MEANS AS GMM

- \star Fixed variance, a Gaussian and mean per cluster, i.e., $\, \theta_c = (\mu_c, \sigma^2) \,$
- ★ Idea: each point can belong to several means (clusters), generate with categorical
- ★ Use responsibilities to find means

$$r_{nc} = p(z_n = c | \boldsymbol{x}_n, \theta) = \frac{p(z_n = c | \theta)p(\boldsymbol{x}_n | z_n = c, \theta)}{\sum_{c=1}^{C} p(z_n = c | \theta)p(\boldsymbol{x}_n | z_n = c, \theta)}$$
$$\boldsymbol{\mu}_c = \frac{1}{N_c} \sum_{n} r_{nc} \boldsymbol{x}_n, \quad \text{where } N_c = \sum_{n} r_{nc}$$

IMAGE SEGMENTATION WITH K-MEANS

GAUSSIAN MIXTURE MODEL

$$\mathcal{D} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N)$$
 Each a vector

$$p(Z=c)=\pi_c$$

$$p(X|Z=c) = \mathcal{N}(X|\mu_c, \sigma_c)$$

$$\boldsymbol{\theta}_c = (\boldsymbol{\mu}_c, \sigma_c)$$

1-DIM GAUSSIAN MIXTURE MODEL

$$\mathcal{D} = (oldsymbol{x}_1, \dots, oldsymbol{x}_N)$$

$$p(Z=c)=\pi_c$$

$$p(X|Z=c) = \mathcal{N}(X|\mu_c, \sigma_c)$$

$$oldsymbol{ heta}_c = (oldsymbol{\mu}_c, \sigma_c)$$

z_n is red with probability 1/2, green with probability 3/10, blue with probability 1/5

The three gaussian distributions in our mixture

z_n is generated as above

x_n is generated from the Gaussian indicated by z_n

We get x_1, \dots, x_N

EM & EXPECTED LOG LIKELIHOOD (Q-TERM)

- Iteratively maximizing the expected log likelihood (expected sufficient statistics).
- Iteratively maximizing the expected log likelihood in practice always leads to a local maxima
- The expectation is over latent variables given data and current parameters
- We maximize the expression by choosing new parameters.

RELATIONS BETWEEN LOG-LIKELIHOODS AND Q-TERMS

Q-term or expected complete log-likelihood (ECLL)

$$Q(\theta, \theta^{i}) = \sum_{n} E_{p(Z_{n}|x_{n}, \theta^{i})} \left[l(\theta; Z_{n}, x_{n}) \right]$$

log-likelihood

Theorem: by increasing the ECLL (Q-term), we increase the likelihood.

The ECLL may not increase in every step!

EM-ALGORITHM IN GENERAL

- E-step: compute $E_{p(Z_n|x_n,\theta^i)}\left[l(\theta;Z_n,x_n)\right]$
- M-Step:

$$\theta^{i} = \operatorname{argmax}_{\theta} \sum_{n} E_{p(Z_{n}|x_{n},\theta^{i})} \left[l(\theta; Z_{n}, x_{n}) \right]$$

Stop when solution or likelihood hardly change otherwise repeat

EANDMSTEPS

- E-step: compute $r_{nc} = p(Z_n = c | x_n, \theta^i)$
- M-Step: maximize (1) mixture coefficients and (2) each

$$\sum_{n} r_{nc} \log \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left(-\frac{1}{2\sigma_c^2} (x_n - \mu_c)^2\right)$$
 setting

by setting

$$\mu_c = \frac{\sum_n r_{nc} x_n}{r_c} \qquad \text{and} \qquad \sigma_c^2 = \frac{1}{\alpha_c^2} = \sum_n r_{nc} (x_n - \mu_c)^2 / r_c$$

- set $\theta^{i+1} = \theta$
- Stop when solution or likelihood hardly change otherwise repeat

- ★ Starting points
- ★ Number of starting points
- ★ Sieving starting points
- ★ The competition
 - The first iterations of EM show huge improvement in the likelihood. These are then
 followed by many iterations that slowly increase the likelihood. Gradient methods shows
 the opposite behaviour.

PRACTICAL ISSUES