- 1. Determinar cuáles de los siguientes aplicaciones son lineales.
 - i) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (x_2 3x_1, x_1 + \sqrt{2}x_3, x_1 \frac{1}{2}x_2)$,
 - ii) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (x_1 x_2, 2x_2, 1 + x_1)$,
 - iii) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (2x_1 7x_3, 0, 3x_2 + 2x_3)$,
 - iv) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$,
 - v) $f: \mathbb{C} \to \mathbb{C}, f(z) = iz$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial),
 - vi) $f: \mathbb{C} \to \mathbb{C}, f(z) = i \operatorname{Im}(z)$
 - vii) $f: \mathbb{C} \to \mathbb{C}, f(z) = \overline{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial),
 - viii) $f: \mathbb{R}^{2 \times 2} \to \mathbb{R}, f \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} a_{12}a_{21},$
 - ix) $f: \mathbb{R}^{2\times 3} \to \mathbb{R}^3$, $f\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = (3a_{13} a_{23}, a_{11} + 2a_{22} a_{23}, a_{22} a_{12})$,
 - $\mathbf{x}) \ f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 3}, \ f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} a_{11} \end{pmatrix},$
 - xi) $f: \mathbb{C}^{2\times 2} \to \mathbb{C}^{2\times 2}$, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & \overline{a_{12}} \\ \overline{a_{21}} & a_{22} \end{pmatrix}$,
- 2. Interpretar geométricamente las siguientes aplicaciones lineales $T: \mathbb{R}^2 \to \mathbb{R}^2$.
 - i) T(x,y) = (x,0),

iv) $T(x,y) = (\frac{1}{2}(x+y), \frac{1}{2}(x+y)),$

ii) T(x,y) = (0,y),

v) $T(x,y) = (x\cos t - y\sin t, x\sin t + y\cos t)$ para

iii) T(x,y) = (x, -y),

- $t \in \mathbb{R}$ fijo.
- 3. Para un \mathbf{F} -espacio vectorial V conveniente se pide:
 - i) Encontrar una función $f: V \to V$ que cumpla f(v+w) = f(v) + f(w) para cualquier par de vectores $v, w \in V$ pero que no sea una transformación lineal.
 - ii) Encontrar una función $f:V\to V$ que cumpla $f(\alpha v)=\alpha f(v)$ para cualquier escalar $\alpha\in \mathbf{F}$ y cualquier vector $v\in V$ pero que no sea una transformación lineal.
- 4. Probar la linealidad de las siguientes aplicaciones:
 - i) $\operatorname{tr}: \mathbf{F}^{n \times n} \to \mathbf{F}$ la función traza.
 - ii) $t: \mathbf{F}^{m \times n} \to \mathbf{F}^{n \times m}, t(A) = A^t,$
 - iii) $f: \mathbf{F}^{n \times m} \to \mathbf{F}^{r \times m}$, f(A) = BA, donde $B \in \mathbf{F}^{r \times n}$,
 - iv) $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \, \delta(f) = f',$
 - v) $\epsilon_{\alpha} : \mathbf{F}[x] \to \mathbf{F}, \ \epsilon_{\alpha}(f) = f(\alpha) \text{ donde } \alpha \in \mathbf{F},$
 - vi) $s: \mathbf{F}^{\mathbb{N}} \to \mathbf{F}^{\mathbb{N}}, \ s(a_1, a_2, \dots, a_n, \dots) = (0, a_1, a_2, \dots, a_n, \dots).$
 - vii) $T: \mathbf{F}^{n \times n} \to \mathbf{F}^{n \times n}$, T(A) = AB BA, donde $B \in \mathbf{F}^{n \times n}$.
- 5. i) Probar que existe una única transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,1) = (-5,3) y T(-1,1) = (5,2). Para dicha T, determinar T(5,3) y T(-1,2).
 - ii) ¿Existirá una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,1)=(2,6), T(-1,1)=(2,1) y T(2,7)=(5,3)?
 - iii) Sean $T, S : \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que

$$T(1,0,1) = (1,2,1), \quad T(2,1,0), = (2,1,0) \quad T(-1,0,0) = (1,2,1),$$

 $S(1,1,1) = (1,1,0), \quad S(3.2,1) = (0,0,1), \quad S(2,2,-1) = (3,-1,2).$

Determinar si T = S.

iv) Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga $T(1,-1,1) = (2,a,-1), T(1,-1,2) = (a^2,-1,1)$ y T(1,-1,-2) = (5,-1,-7).

- v) Hallar una fórmula para todas las transformaciones lineales $T : \mathbb{R}_3[x] \to \mathbb{R}^3$ que satisfacen $T(x^3 + 2x^2 x + 4) = (6, 5, 3), T(3x^2 + 2x 5) = (0, 0, -3), T(x^3 2x^2 + 3x 2) = (0, -1, 1)$ y $T(2x^3 3x^2 + 7) = (6, 4, 7)$.
- 6. (a) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función tal que f(1,2) = 1 y f(2,4) = 3. ¿Es posible que f sea una transformación lineal? Justifique.
 - (b) Consideremos ahora una función $g: \mathbb{R}[x] \to \mathbb{R}[x]$ tal que $g(x^2) = x^3$ y $g(2x^2) = x^4$. ¿Es posible que g sea una transformación lineal? Justifique.
- 7. Sea A una matriz en $\mathbf{F}^{m \times n}$. Consideremos la transformación lineal $T: \mathbf{F}^n \to \mathbf{F}^m$ definida por T(x) = Ax. Pruebe que $T = \overline{O}$ si y sólo si A es la matriz nula.
- 8. Calcular el núcleo y la imagen de las transformaciones lineales del Ejercicio 1.
- 9. Consideremos la transformación lineal "derivada" $D: \mathbb{R}[x] \to \mathbb{R}[x]$, donde si $p(x) = a_0 + a_1x + ... + a_nx^n$, se tiene

$$D(p)(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}.$$

Calcular el núcleo y la imagen de D.

10. Sea $V = \mathbb{C}^3$ espacio vectorial sobre \mathbb{C} . Sea $T : \mathbb{C}^3 \to \mathbb{C}^3$ definida por

$$T(z_1, z_2, z_3) = (z_1 - z_2 + 2z_3, 2z_1 + z_2, -z_1 - 2z_2 + 2z_3).$$

- (a) Comprobar que T es lineal.
- (b) Si $(a,b,c) \in \mathbb{C}^3$, ¿qué condiciones tienen que verificar a,b,c para que $(a,b,c) \in \text{Im}(T)$? ¿Cuál es la dimensión de Im(T)?
- (c) ¿Qué condiciones tienen que verificar a, b, c para que $(a, b, c) \in \ker(T)$? ¿Cuál es la dimensión de $\ker(T)$?
- 11. (a) Supongamos que $T: \mathbf{F}^4 \to \mathbf{F}^2$ es una transformación lineal que verifica

$$\ker(T) = \{(x_1, x_2, x_3, x_4) : x_1 = 5x_2 \text{ y } x_3 = 7x_4\}.$$

Probar que T es un epimorfismo.

(b) Probar que no existe una transformación lineal $T: \mathbf{F}^5 \to \mathbf{F}^2$ que verifique

$$\ker(T) = \{(x_1, x_2, x_3, x_4, x_5) : x_1 = 3x_2 \ y \ x_3 = x_4 = x_5\}.$$

- 12. Sea T el único operador lineal sobre \mathbb{C}^3 , espacio vectorial sobre \mathbb{C} , para el que $T(e_1) = (1, 0, i)$, $T(e_2) = (0, 1, 1)$, $T(e_3) = (i, 1, 0)$, donde $\{e_1, e_2, e_3\}$ denota la base canónica de \mathbb{C}^3 . ¿Es T invertible?
- 13. Sea $V = \mathbb{C}_{\mathbb{R}}$ el espacio vectorial \mathbb{C} definido sobre el cuerpo de escalares \mathbb{R} . Describir explícitamente un isomorfismo de V en \mathbb{R}^2 .
- 14. Sea W el conjunto de matrices $\mathbb{C}^{2\times 2}$ hermíticas, esto es $A\in W$ si y solo si $A^t=\overline{A}$. El conjunto W es un espacio vectorial real con las operaciones usuales. Demostrar que

$$(x, y, z, t) \mapsto \begin{pmatrix} t + x & y + iz \\ y - iz & t - x \end{pmatrix}$$

es un isomorfismo de \mathbb{R}^4 en W.

- 15. Sea $T \in L(V, W)$ con V, W espacios vectoriales de dinensión finita. Probar que:
 - (a) Si T es un monomorfismo, entonces manda conjuntos linealmente de V en conjuntos linealmente independientes de W.
 - (b) Si T es un epimorfismo, entonces manda conjuntos generadores de V en conjuntos generadores de W.
 - (c) Si T es un isomorfismo, entonces manda base en base.
- 16. Sea $T \in L(V)$ con V espacio vectorial de dimensión finita. Probar que las siguientes proposiciones son equivalentes:
 - T es un monomorfismo,
 - \bullet T es un epimorfismo,
 - \bullet T es un isomorfismo.
- 17. Probar que $W = \{T \in L(\mathbb{R}^5, \mathbb{R}^4) : \dim \ker(T) > 2\}$ no es un subespacio de $L(\mathbb{R}^5, \mathbb{R}^4)$.

- 18. Sean V y W dos espacios vectoriales sobre el mismo cuerpo \mathbf{F} y sea $U:V\to W$ un isomorfismo de V en W. Probar que la aplicación $T\mapsto UTU^{-1}$ es un isomorfismo de L(V,V) en L(W,W).
- 19. En cada uno de los siguientes casos encontrar una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique lo pedido:
 - (a) $(1,0,0) \in \ker(T)$ y dim $\operatorname{Im}(T) = 1$,
 - (b) $\ker(T) \cap \operatorname{Im}(T) = \langle \{(1,1,2)\} \rangle$,
 - (c) $T \neq 0$ y $\ker(T) \subseteq \operatorname{Im}(T)$,
 - (d) $T \neq \overline{O}$ y $T \circ T = \overline{O}$,
 - (e) $T \neq \operatorname{Id} y T \circ T = \operatorname{Id}$,
 - (f) $\ker(T) \neq \{0\}$, $\operatorname{Im}(f) \neq \{0\}$ y $\ker(T) \cap \operatorname{Im}(T) = \{0\}$.
- 20. Demostrar que los vectores

$$u_1 = (1, 1, 0, 0), \quad u_2 = (0, 0, 1, 1), \quad u_3 = (1, 0, 0, 4), \quad u_4 = (0, 0, 0, 2)$$

forman una base de \mathbb{R}^4 . Hallar las coordenadas de cada uno de los vectores de la base canónica respecto de la base ordenada $\{u_1, u_2, u_3, u_4\}$.

- 21. Hallar las coordenadas del vector (1,0,1) en la base de \mathbb{C}^3 formada por los vectores (2i,1,0), (2,-1,1), (0,1+i,1-i), en ese orden.
- 22. Sea $\mathfrak{B} = \{u_1, u_2, u_3\}$ la base ordenada de \mathbb{R}^3 formada por

$$u_1 = (1, 0, -1), \quad u_2 = (1, 1, 1), \quad u_3 = (1, 0, 0).$$

¿Cuáles son las coordenadas del vector (a, b, c) en la base ordenada \mathfrak{B} ?

- 23. Sea W el subespacio de \mathbb{C}^3 generado por $u_1 = (1,0,i)$ y $u_2 = (1+i,1,-1)$.
 - (a) Demostrar que u_1 y u_2 forman una base de W.
 - (b) Demostrar que los vectores $v_1 = (1, 1, 0)$ y $v_2 = (1, i, 1 + i)$ pertenecen a W y forman otra base de W.
 - (c) ¿Cuáles son las coordenadas de u_1 y u_2 en la base ordenada $\{v_1, v_2\}$?
- 24. Sea t un número real fijo. Definimos

$$p_1(x) = 1$$
, $p_2(x) = x + t$, $p_3(x) = (x + t)^2$.

Demostrar que $\mathfrak{B} = \{p_1, p_2, p_3\}$ es una base de $\mathbb{R}_2[x]$. Si $q(x) = c_0 + c_1 x + c_2 x^2$ ¿Cuáles son las coordenadas de q en esta base ordenada \mathfrak{B} ?

25. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- (a) Si \mathfrak{B}_1 es la base canónica de \mathbb{R}^3 y \mathfrak{B}_2 es la base canónica de \mathbb{R}^2 , ¿cuál es la matriz de T respecto al par \mathfrak{B}_1 , \mathfrak{B}_2 ?
- (b) Si $\mathfrak{B}_1 = \{u, v, w\}$ y $\mathfrak{B}_2 = \{x, y\}$, donde

$$u = (1, 0, -10), v = (1, 1, 1), w = (1, 0, 0), x = (0, 1), y = (1, 0).$$

¿Cuál es la matriz de T en la bases \mathfrak{B}_1 , \mathfrak{B}_2 ?

26. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

- (a) ¿Cuál es la matriz de T en la base ordenada canónica de \mathbb{R}^3 ?
- (b) ¿Cuál es la matriz de T en la base ordenada $\mathfrak{B} = \{u, v, w\}$ de \mathbb{R}^3 , donde u = (1, 0, 1), v = (-1, 2, 1), w = (2, 1, 1)?
- (c) Demostrar que T es invertible y dar una expresión de T^{-1} tal como dimos para T.
- 27. Sea $T: \mathbb{C}^2 \to \mathbb{C}$ la aplicación definida por $T(z_1, z_2) = z_1 + 2z_2$.
 - (a) Considerando que \mathbb{C} y \mathbb{C}^2 son \mathbb{C} -espacios vectoriales, probar que T es una transformación lineal. Dar la matriz de T en las bases canónicas de \mathbb{C}^2 y \mathbb{C} .
 - (b) Repetir el ítem anterior considerando ahora que \mathbb{C}^2 y \mathbb{C} son \mathbb{R} -espacios vectoriales.

28. Sea $T: \mathbb{R}^{2\times 2} \to \mathbb{R}_2[x]$ la transformación lineal definida por

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix}(x) = ax^2 + (2b - c)x + (d - a).$$

(a) Dar la matriz de T en las bases

$$\mathfrak{B}_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, \quad \mathfrak{B}_2 = \{1, x, x^2\}$$

de $\mathbb{R}^{2\times 2}$ y $\mathbb{R}_2[x]$, respectivamente.

(b) Repetir el ítem anterior con la bases

$$\mathfrak{B}_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, \quad \mathfrak{B}_2 = \{1, x - 1, x^2\}.$$

- 29. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbf{F} y sean $T, S \in L(V, V)$. Demostrar que existen dos bases ordenadas \mathfrak{B}_1 y \mathfrak{B}_2 de V tales que $[S]_{\mathfrak{B}_1} = [T]_{\mathfrak{B}_2}$ si y sólo si existe $U \in L(V, V)$ invertible tal que $T = USU^{-1}$.
- 30. Calcular la matriz cambio de base $C_{\mathfrak{B}_1\mathfrak{B}_2}$ en los siguientes casos:
 - (a) $V = \mathbb{R}^2$, $\mathfrak{B}_1 = \{(1,1), (1,2)\}$, $\mathfrak{B}_2 = \{(-1,3), (2,5)\}$,
 - (b) $V = \mathbb{R}^3$, $\mathfrak{B}_1 = \{(1,1,0), (0,1,1), (1,0,1)\}, \mathfrak{B}_2 = \{(-1,1,1), (2,0,1), (1,-1,3)\},$
 - (c) $V = \mathbb{R}^3$, $\mathfrak{B}_1 = \{(1,1,0), (0,1,1), (1,0,1)\}, \mathfrak{B}_2 = \{(0,1,1), (1,0,1), (1,1,0)\},\$
 - (d) $V = \mathbb{R}_2[x], \mathfrak{B}_1 = \{3, 1+x, x^2\}, \mathfrak{B}_2 = \{1, x+3, x^2+x\},$
 - (e) $V = \mathbb{R}^4$, $\mathfrak{B}_1 = \{v_1, v_2, v_3, v_4\}$, $\mathfrak{B}_2 = \{v_3, v_1, v_4, v_2\}$,

(f)
$$V = \mathbb{R}^{2 \times 2}$$
, $\mathfrak{B}_1 = \{E_{11}, E_{12}, E_{21}, E_{22}\}$, $\mathfrak{B}_2 = \left\{ \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}$,

- (g) $V = \mathbb{C}^2_{\mathbb{R}}$ (como \mathbb{R} -espacio vectorial), $\mathfrak{B}_1 = \{(1,0),(0,1),(i,0),(0,i)\}, \, \mathfrak{B}_2 = \{(1,0),(i,1),(1,1),(1,i)\}, \, \mathfrak{B}_3 = \{(1,0),(i,1),(1,1),(1,1),(1,1),(1,1)\}, \, \mathfrak{B}_4 = \{(1,0),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_5 = \{(1,0),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_6 = \{(1,0),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_7 = \{(1,0),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 = \{(1,0),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1),(0,1)\}, \, \mathfrak{B}_8 =$
- (h) $V = \mathbb{C}^2_{\mathbb{C}}$ (como \mathbb{C} -espacio vectorial), $\mathfrak{B}_1 = \{(1,0),(0,i)\}, \, \mathfrak{B}_2 = \{(1,1),(1,-i)\},$
- 31. Dado $v \in V$ y las bases \mathfrak{B}_1 y \mathfrak{B}_2 de V, hallar las coordenadas de v respecto de \mathfrak{B}_1 y utilizando la matriz cambio de base, las coordenadas de v (p(x) o A según el caso) respecto de \mathfrak{B}_2 .
 - (a) v = (2,3) y $\mathfrak{B}_1, \mathfrak{B}_2$ como en el Ejercicio 30a,
 - (b) v = (-1, 5, 6) y $\mathfrak{B}_1, \mathfrak{B}_2$ como en el Ejercicio 30b,
 - (c) v = (-1, 5, 6) y $\mathfrak{B}_1, \mathfrak{B}_2$ como en el Ejercicio 30c,
 - (d) $p(x) = 1 + x + x^2$, y $\mathfrak{B}_1, \mathfrak{B}_2$ como en el Ejercicio 30d,
 - (e) $v=2v_1+3v_2-5v_3+7v_4,$ y $\mathfrak{B}_1,\mathfrak{B}_2$ como en el Ejercicio 30e,
 - (f) $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ y $\mathfrak{B}_1, \mathfrak{B}_2$ como en el Ejercicio 30f.
- 32. Se pide
 - (a) Calcular los vectores coordenados $[v]_{\mathfrak{B}}$ y $[v]_{\mathcal{C}}$ de v con respecto a las bases \mathfrak{B} y \mathcal{C} , respectivamente;
 - (b) Calcular la matriz cambio de base de \mathfrak{B} a \mathcal{C} ;
 - (c) Usar el ítem anterior para calcular $[v]_{\mathcal{C}}$, y compare con la respuesta obtenida en el ítem (a);
 - (d) Calcular la matriz cambio de base de \mathcal{C} a \mathfrak{B} ;
 - (e) Usar los ítems (c) y (d) para calcular $[v]_{\mathcal{B}}$ y compare su respuesta con la que obtuvo en el ítem (a).

con los siguientes ítems

- i) $V = \mathbb{R}^2$, v = (2,3), $\mathfrak{B} = \{(1,0), (0,1)\}$, $\mathcal{C} = \{(1,1), (1,-1)\}$,
- ii) $V = \mathbb{R}^2$, v = (2,3), $\mathfrak{B} = \{(0,1), (1,0)\}$, $\mathcal{C} = \{(1,0), (1,1)\}$,
- iii) $V = \mathbb{R}^3$, v = (1, 0, -1), $\mathfrak{B} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$, $\mathcal{C} = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$,
- iv) $V = \mathbb{R}^3$, v = (3, 1, 6), $\mathfrak{B} = \{(0, 1, 0), (0, 0, 1), (1, 0, 0)\}$, $\mathcal{C} = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$.
- 33. Repetir las instrucciones del Ejercicio 32 para los siguientes ítems y use p(x) en lugar de v.
 - v) $V = \mathbb{R}_1[x], \ p(x) = 2 x, \ \mathfrak{B} = \{1, x\}, \ \mathcal{C} = \{x, 1 + x\},\$

vi)
$$V = \mathbb{R}_1[x], p(x) = 1 + 3x, \mathfrak{B} = \{1 + x, 1 - x\}, \mathcal{C} = \{2x, 4\},$$

vii)
$$V = \mathbb{R}_2[x], p(x) = 1 + x^2, \mathfrak{B} = \{1 + x + x^2, x + x^2, x^2\}, \mathcal{C} = \{1, x, x^2\},$$

viii)
$$V = \mathbb{R}_2[x], p(x) = 4 - 2x - x^2, \mathfrak{B} = \{x, 1 + x^2, x + x^2\}, \mathcal{C} = \{1, 1 + x, x^2\}.$$

34. Repetir las instrucciones del Ejercicio 32 para los siguientes ítems y use A en lugar de v.

ix)
$$V = \mathbb{R}^{2 \times 2}$$
, $A = \begin{pmatrix} 4 & 2 \\ 0 & -1 \end{pmatrix}$, $\mathfrak{B} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$, $C = \{\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\}$,

x)
$$V = \mathbb{R}^{2 \times 2}$$
, $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\mathfrak{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$, $\mathcal{C} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$.

35. Sea
$$W$$
 el subespacio de $\mathbb{R}^{\mathbb{R}}$ generado por el conjunto $\{\text{sen}(x), \cos(x)\}$, y sean \mathfrak{B}_1 y \mathfrak{B}_2 dos bases de W . En los siguientes ítems se pide hallar la matriz cambio de base $C_{\mathfrak{B}_1\mathfrak{B}_2}$ y las coordenadas $[f(x)]_{\mathfrak{B}_1}$ y $[f(x)]_{\mathfrak{B}_2}$ de $f(x)$ en las bases \mathfrak{B}_1 y \mathfrak{B}_2 , respectivamente.

(a)
$$f(x) = 2\operatorname{sen}(x) - 3\cos(x)$$
, $\mathfrak{B}_1 = \{\operatorname{sen}(x) + \cos(x), \cos(x)\}$, $\mathfrak{B}_2 = \{\operatorname{sen}(x) + \cos(x), \sin(x) - \cos(x)\}$,

(b)
$$f(x) = \text{sen}(x)$$
, $\mathfrak{B}_1 = \{\text{sen}(x) + \cos(x), \cos(x)\}$, $\mathfrak{B}_2 = \{\cos(x) - \sin(x), \sin(x) + \cos(x)\}$.

36. (a) Sean \mathfrak{B} y \mathcal{C} dos bases de \mathbb{R}^2 . Si $\mathcal{C} = \{(1,2),(2,3)\}$ y la matriz de cambio de base de \mathfrak{B} a \mathcal{C} es

$$C_{\mathfrak{BC}} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix},$$

hallar 3.

(b) Sean \mathfrak{B} y \mathcal{C} dos bases de $\mathbb{R}_2[x]$. Si $\mathfrak{B} = \{x, 1+x, 1-x+x^2\}$ y la matriz de cambio de base de \mathfrak{B} a \mathcal{C} es

$$C_{\mathfrak{BC}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix},$$

hallar \mathcal{C} .

37. (a) Dadas la matriz
$$M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 y una base $\mathfrak{B} = \{v_1, v_2, v_3\}$ de \mathbf{F}^3 , hallar una base \mathfrak{B}' tal que $M = C_{\mathfrak{BB}'}$.

(b) Dadas la matriz
$$M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 y una base $\mathfrak{B}' = \{v_1, v_2, v_3\}$ de \mathbf{F}^3 , hallar una base \mathfrak{B} tal que $M = C_{\mathfrak{BB}'}$.

38. Sea \mathfrak{B} una base de un espacio vectorial V. Supongamos que $u_1,...,u_k\in V$ y $c_1,...,c_k\in \mathbf{F}$. Demostrar que

$$[c_1u_1 + c_2u_2 + \dots + c_ku_k]_{\mathfrak{B}} = c_1[u_1]_{\mathfrak{B}} + c_2[u_2]_{\mathfrak{B}} + \dots + c_k[u_k]_{\mathfrak{B}}.$$

- 39. Sea $S \subset (\mathbb{R}^3)^*$ el subespacio $S = \{ \varphi \in (\mathbb{R}^3)^* : \varphi(1, -1, 2) = 0 \}$. Encontrar una base de S.
- 40. Dada la base \mathfrak{B} del F-espacio vectorial V, hallar su base dual en cada uno de los siguientes casos:

(a)
$$V = \mathbb{R}^2$$
, $\mathfrak{B} = \{(1, -1), (2, 0)\},\$

(b)
$$V = \mathbb{R}^3$$
, $\mathfrak{B} = \{(1, -1, 0), (0, 1, 0), (0, 0, 1)\},\$

(c)
$$V = \mathbb{R}_3[x], \mathfrak{B} = \{-x+2, x-1, x^2-3x+2, x^3-3x^2+2x\}.$$

41. Sea \mathfrak{B}' la base de $(\mathbb{R}^3)^*$ definida por

$$\varphi_1(x_1, x_2, x_3) = x_1 + x_2, \quad \varphi_2(x_1, x_2, x_3) = x_1 + x_3, \quad \varphi_3(x_1, x_2, x_3) = x_2 + x_3.$$

Hallar la base \mathfrak{B} de \mathbb{R}^3 tal que $\mathfrak{B}' = \mathfrak{B}^*$.

42. Hallar una base de $S^0 \subset V^*$ en los siguientes casos:

(a)
$$V = \mathbb{R}^3$$
 y $S = \text{span}\{(1, -1, 2), (2, 1, 3), (1, 5, 0)\}.$

(b)
$$V = \mathbb{R}^3$$
 y $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_3 = 0 \land 2x_1 - x_2 + x_3 = 0\}.$

43. Sean $v_1 = (1, 0, -1, 2)$ y $v_2 = (2, 3, 1, 1,)$ y sea $W = \text{span}\{v_1, v_2\}$. ¿Qué funcionales lineales de la forma $f(x_1, x_2, x_3, x_4) = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ están en W^0 ?.

- 44. Sea $B=\begin{pmatrix}2&-2\\-1&1\end{pmatrix}\in\mathbb{R}^{2\times2}$ y $W=\{A\in\mathbb{R}^{2\times2}:AB=0\}$. Sea $f\in W^0$ tal que $f(I_2)=0$ y $f\left(\begin{pmatrix}0&0\\0&1\end{pmatrix}\right)=3$. Calcular f(B).
- 45. Sea V un espacio vectorial y sea $v \in V$. Entonces v induce una aplicación $L_v : V^* \to \mathbf{F}$ definida por

$$L_v(f) = f(v)$$
, para $f \in V^*$.

- (a) Mostrar que L_v es lineal.
- (b) Probar que si V es de dimensión finita y $v \neq \overline{0}$, entonces existe $f \in V^*$ tal que $f(v) \neq 0$.
- (c) Probar que si V es de dimensión finita, la aplicación $\Omega: V \to (V^*)^*$ definida por $\Omega(v) = L_v$ es un isomorfismo de V en $(V^*)^*$. El espacio $V^{**} = (V^*)^*$ se conoce como el **doble dual** de V.
- (d) Probar que si V es dimensión finita y $L \in V^{**}$, entonces existe un único vector $v \in V$ tal que L(f) = f(v) para todo $f \in V^*$.
- 46. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por T(x,y,z) = (4x + 5y + 6z, 7x + 8y + 9z). Supongamos que φ_1, φ_2 denota la base dual de la base canónica de \mathbb{R}^2 , y ψ_1, ψ_2, ψ_3 denota la base dual de la base canónica de \mathbb{R}^3 .
 - (a) Describir $T^*(\varphi_1)$ y $T^*(\varphi_2)$.
 - (b) Escribir a $T^*(\varphi_1)$ y $T^*(\varphi_2)$ como combinación lineal de ψ_1, ψ_2, ψ_3 .
- 47. Sea $T: \mathbb{R}[x] \to \mathbb{R}[x]$ la transformación lineal definida por $(T(p))(x) = x^2 p(x) + p''(x)$.
 - (a) Sea $\varphi \in (\mathbb{R}[x])^*$ definido por $\varphi(p) = p'(4)$. Describir $T^*(\varphi)$ en $\mathbb{R}[x]$.
 - (b) Sea $\varphi \in (\mathbb{R}[x])^*$ definido por $\varphi(p) = \int_0^1 p(x) dx$. Evaluar $(T^*(\varphi))(x^3)$.