第3章c:向量组的线性相关性

数学系 梁卓滨

2020-2021 学年 I

 $\alpha_1 \qquad \alpha_2 \quad \cdots \quad \alpha_n$

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关性

线性相关性 1/14 ✓ ▷

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关性; 否则,称为线性无关。

1/14 ⊲ ▷

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " α_1 , α_2 , ..., α_n 线性无关",等价于:

$$"k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0\quad \Rightarrow\quad k_1=k_2=\cdots=k_n=0\,".$$

线性相关性 1/14 4 ▷

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " α_1 , α_2 , ..., α_n 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

例

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix} \ni \alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
 是线性相关:

线性相关性

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " α_1 , α_2 , ..., α_n 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

例

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

线性相关性 1/14 ✓ ▷

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

•
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha_1$$

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

例

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

•
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ni \alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 是线性无关:

线性相关性

定义 如果存在不全为零的一组数 k_1, k_2, \ldots, k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

•
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 是线性无关:

$$0 = k_1 \alpha_1 + k_2 \alpha_2 =$$

定义 如果存在不全为零的一组数 k_1 , k_2 , ..., k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

注 " $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

•
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ni \alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 是线性无关:

$$0 = k_1 \alpha_1 + k_2 \alpha_2 = k_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} =$$

定义 如果存在不全为零的一组数 k_1 , k_2 , ..., k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关性; 否则,称为线性无关。

注 " $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

•
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ni \alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 是线性无关:

$$0 = k_1 \alpha_1 + k_2 \alpha_2 = k_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} k_1 \\ 2k_1 + k_2 \end{pmatrix}$$

定义 如果存在不全为零的一组数 k_1 , k_2 , ..., k_n 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$$

则称向量组 α_1 , α_2 , ..., α_n 线性相关性;否则,称为线性无关。

 \mathbf{i} " α_1 , α_2 , . . . , α_n 线性无关",等价于:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0 \implies k_1 = k_2 = \dots = k_n = 0$$
.

•
$$\alpha_1 = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
与 $\alpha_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ 是线性相关: $2\alpha_1 + 3\alpha_2 = 0$

•
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ni \alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 是线性无关:

$$0 = k_1 \alpha_1 + k_2 \alpha_2 = k_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} k_1 \\ 2k_1 + k_2 \end{pmatrix} \implies k_1 = k_2 = 0$$

 α_1 , α_2 , . . . , α_n 线性无关

$$lpha_1, lpha_2, \ldots, lpha_n$$
 线性无关 $lpha_1$ $lpha_2$ $lpha_n$ $lpha_n$ $lpha_n$ $lpha_{n}$ $$

$$\alpha_1, \alpha_2, \dots, \alpha_n$$
 线性无关
$$k_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + k_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + k_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = 0$$

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性无关
$$\alpha_1 \qquad \alpha_2 \qquad \alpha_n$$

$$\Leftrightarrow k_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + k_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \cdots + k_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = 0 \ \text{只有解} k_1 = \cdots = k_n = 0$$

$$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$$
 线性无关
 $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ 线性无关
 $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ 线性无关
 $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ 《
 $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ 《
 $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ **
 $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ **

2/14 ⊲ ▷

$$\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}$$
 线性无关
$$\alpha_{1} \qquad \alpha_{2} \qquad \alpha_{n}$$

$$\Leftrightarrow k_{1} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + k_{2} \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + k_{n} \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = 0 \ \text{只有解} k_{1} = \dots = k_{n} = 0$$

$$\begin{pmatrix} a_{1} & \alpha_{2} & \alpha_{n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}$$
 线性无关
$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{2n}$$

$$\vdots$$

$$\alpha_{m1}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{n}$$

$$\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}$$
 线性无关
$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{2}$$

$$\alpha_{n}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{8}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{2}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{6}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{8}$$

$$\alpha_{1}$$

$$\alpha_{1}$$

$$\alpha_{2}$$

$$\alpha_{2}$$

$$\alpha_{3}$$

$$\alpha_{4}$$

$$\alpha_{5}$$

$$\alpha_{6}$$

$$\alpha_{7}$$

$$\alpha_{8}$$

$$\alpha_{8$$

⇔ 方程
$$Ax = 0$$
 只有零解

$$\Leftrightarrow$$
 方程 $Ax = 0$ 只有零解

$$\Leftrightarrow r(A) = n$$

2/14 ⊲ ▷

$$\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}$$
 线性无关
$$\alpha_{1} \qquad \alpha_{2} \qquad \alpha_{n}$$

$$\Leftrightarrow k_{1} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + k_{2} \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + k_{n} \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = 0$$
 只有解 $k_{1} = \dots = k_{n} = 0$

$$\Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 只有解 $k_{1} = \dots = k_{n} = 0$

$$⇔$$
 方程 $Ax = 0$ 只有零解

$$\Leftrightarrow r(A) = n$$

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性无关 \Leftrightarrow $r(A) = n$

2/14 ⊲ ▷

$$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$$
 线性无关
 α_{1}
 α_{2}
 α_{1}
 α_{2}
 α_{2}
 α_{n}
 α_{n}

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性相关

定理

$$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$$
 线性无关
 α_{1}
 α_{2}
 α_{1}
 α_{2}
 α_{2}
 α_{n}
 α_{n}

 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关 \iff r(A) < n

定理 设

则

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性相关 \Leftrightarrow $r(A) < n$

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性无关 \Leftrightarrow $r(A) = n$

定理 设

则

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性相关 \Leftrightarrow $r(A) < n$

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性无关 \Leftrightarrow $r(A) = n$

推论1 如果 m = n (向量维数 = 向量个数),则

定理 设

则

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性相关 $\iff r(A) < n$
 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关 $\iff r(A) = n$

推论 1 如果 m = n(向量维数 = 向量个数),则 线性相关 \Leftrightarrow |A| = 0, 线性无关 \Leftrightarrow $|A| \neq 0$

线性相关性 3/14 < ▷

定理 设

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A}$$

则

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性相关 $\Leftrightarrow r(A) < n$
 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关 $\Leftrightarrow r(A) = n$

推论 1 如果 m = n(向量维数 = 向量个数),则 线性相关 \Leftrightarrow |A| = 0, 线性无关 \Leftrightarrow $|A| \neq 0$

<mark>推论 2</mark> 如果 m < n(向量维数 < 向量个数),则一定线性相关。

定理 设

$$\underbrace{\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}}_{A}$$

则

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性相关 \iff $r(A) < n$

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$
 线性无关 \iff $r(A) = n$

推论 1 如果
$$m = n$$
 (向量维数 = 向量个数),则

线性相关
$$\Leftrightarrow$$
 $|A| = 0$, 线性无关 \Leftrightarrow $|A| \neq 0$

推论 2 如果 m < n(向量维数 < 向量个数),则一定线性相关。这是:

$$r(A) \le m < n$$
.

例 1 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

是,求出一个"线性相关性表达式"

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

是,求出一个"线性相关性表达式"

$$\alpha_1$$
 α_2
 α_3
 $\begin{pmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ -1 & 1 & -1 \\ 5 & 1 & 11 \end{pmatrix}$

线性相关性 4/14 ✓ ▷

例1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

是,求出一个"线性相关性表达式"

$$\begin{array}{cccc}
\mathbf{m} & \alpha_1 & \alpha_2 & \alpha_3 \\
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{array}$$

$$\frac{r_2 - 2r_1}{r_3 + r_1} + \frac{r_4 - 5r_1}{r_4 - 5r_1} = \frac{r_5 - 2r_1}{r_5 - r_1} + \frac{r_5 - 2r_1}{r_5 - r_1} = \frac{r_5 - 2r_1}{r_5 - r_1} + \frac{r_5 - 2r_1}{r_5 - r_1} = \frac{r_5 - 2r_1}{r_5 - r_1} + \frac{r_5 - 2r_1}{r_5 - r_1} = \frac{r_5 - 2r_1}{r_5 - r_1} + \frac{r_5 - 2r_1}{r_5 - r_1} = \frac{r_5 - 2$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

是, 求出一个"线性相关性表达式"

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
\end{cases}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3
\end{pmatrix}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[\frac{1}{3}\times r_3]{-\frac{1}{5}\times r_2}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_3+r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[\frac{1}{3}\times r_4]{-\frac{1}{5}\times r_2}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$r_3-r_2$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{array}{c|cccc}
r_3 - r_2 \\
\hline
r_4 - r_2 \\
\hline
\end{array}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[\frac{1}{3}\times r_4]{-\frac{1}{5}\times r_2}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$\frac{r_3 - r_2}{r_4 - r_2} \begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix} \xrightarrow{r_1 - 2r_2}$$

4/14 ⊲ ⊳

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[\frac{1}{3} \times r_4]{r_2-2r_2}
\xrightarrow[\frac{1}{3} \times r_4]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$\begin{array}{c|cccc}
r_3 - r_2 \\
\hline
r_4 - r_2 \\
\hline
\end{array}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1 - 2r_2}
\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[\frac{1}{3} \times r_4]{r_2-r_2}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$\frac{r_3 - r_2}{r_4 - r_2} \xrightarrow{\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}} \xrightarrow{r_1 - 2r_2} \xrightarrow{\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}$$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[\frac{1}{9}\times r_4]{\frac{1}{5}\times r_2}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$\begin{array}{c|cccc}
r_3 - r_2 \\
\hline
r_4 - r_2 \\
\hline
\end{array}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1 - 2r_2}
\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

可见 $r(\alpha_1\alpha_2\alpha_3) = 2 < 3$,线性相关性;

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[-\frac{1}{9}\times r_4]{\frac{1}{3}\times r_3}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$\frac{r_3 - r_2}{r_4 - r_2} \begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

可见
$$r(\alpha_1\alpha_2\alpha_3) = 2 < 3$$
,线性相关性;且 $\alpha_3 = 2\alpha_1 + \alpha_2$

例 1
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \\ 11 \end{pmatrix}$ 是否线性相关性?如果

$$\begin{pmatrix}
1 & 2 & 4 \\
2 & -1 & 3 \\
-1 & 1 & -1 \\
5 & 1 & 11
\end{pmatrix}
\xrightarrow[r_4-5r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 4 \\
0 & -5 & -5 \\
0 & 3 & 3 \\
0 & -9 & -9
\end{pmatrix}
\xrightarrow[-\frac{1}{9}\times r_4]{\frac{1}{3}\times r_3}
\begin{pmatrix}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

$$\frac{r_3 - r_2}{r_4 - r_2} \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

可见
$$r(\alpha_1\alpha_2\alpha_3) = 2 < 3$$
,线性相关性;且
$$\alpha_3 = 2\alpha_1 + \alpha_2 \quad \Rightarrow \quad 2\alpha_1 + \alpha_2 - \alpha_3 = 0$$

例 2 $\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 5 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

求出一个"线性相关性表达式"

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 \\
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 \\
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}
\begin{pmatrix}
2 & 1 & 0 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}$$

5/14 ⊲ ⊳

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\mathbf{H}$$
 α_1 α_2 α_3

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{array}{ccc}
\mathbf{R} & \alpha_1 & \alpha_2 & \alpha_3 \\
0 & 6 & 3 \\
4 & 0 & -1
\end{array}$$

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix}$$

$$\frac{r_3 + 2r_2}{r_4 + 3r_2}$$

线性相关性 5/14 ⊲ ⊳

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\mathbf{H}$$
 α_1 α_2 α_3

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix}$$

$$\begin{array}{c|cccc}
r_{3}+2r_{2} \\
\hline
r_{4}+3r_{2}
\end{array}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\mathbf{m}$$
 α_1 α_2 α_3

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix}$$

$$\xrightarrow[r_4+3r_2]{r_3+2r_2} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2} \times r_1} \xrightarrow{-\frac{1}{2} \times r_2}$$

线性相关性 5/14 ⊲ ⊳

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\mathbf{H}$$
 α_1 α_2 α_3

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix}$$

$$\xrightarrow[r_4+3r_2]{r_3+2r_2}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow[-\frac{1}{2}\times r_2]{\frac{\frac{1}{2}\times r_1}{-\frac{1}{2}\times r_2}}
\begin{pmatrix}
1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

线性相关性 5/14 ⊲ ⊳

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}
\begin{pmatrix}
2 & 1 & 0 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}+3r_{2}}\begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}\times r_{1}} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_{1}-\frac{1}{2}r_{2}}$$

5/14 ⊲ ⊳

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}
\begin{pmatrix}
2 & 1 & 0 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}+3r_{2}} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2} \times r_{1}} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_{1}-\frac{1}{2}r_{2}} \begin{pmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}
\begin{pmatrix}
2 & 1 & 0 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}$$

$$\xrightarrow[r_4+3r_2]{r_4+3r_2}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow[-\frac{1}{2}\times r_2]{\frac{\frac{1}{2}\times r_1}{-\frac{1}{2}\times r_2}}
\begin{pmatrix}
1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow[r_1-\frac{1}{2}r_2]{r_1-\frac{1}{2}r_2}
\begin{pmatrix}
1 & 0 & -\frac{1}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

可见 $r(\alpha_1 \alpha_2 \alpha_3) = 2 < 3$,线性相关性;

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}
\begin{pmatrix}
2 & 1 & 0 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}$$

$$\xrightarrow{r_3 + 2r_2}
\xrightarrow{r_4 + 3r_2}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_1}
\xrightarrow{-\frac{1}{2} \times r_2}
\begin{pmatrix}
1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1 - \frac{1}{2}r_2}
\begin{pmatrix}
1 & 0 & -\frac{1}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

可见
$$r(\alpha_1 \alpha_2 \alpha_3) = 2 < 3$$
,线性相关性;

线性相关性 5/14 ⊲ ⊳

例 2
$$\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 6 \\ 0 \\ 4 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 是否线性相关性?如果是,

$$\begin{pmatrix}
0 & 6 & 3 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
2 & 1 & 0
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_4}
\begin{pmatrix}
2 & 1 & 0 \\
4 & 0 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 4 & 2 \\
0 & 6 & 3
\end{pmatrix}$$

$$\xrightarrow{r_3 + 2r_2}
\xrightarrow{r_4 + 3r_2}
\begin{pmatrix}
2 & 1 & 0 \\
0 & -2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_1}
\xrightarrow{-\frac{1}{2} \times r_2}
\begin{pmatrix}
1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1 - \frac{1}{2}r_2}
\begin{pmatrix}
1 & 0 & -\frac{1}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

可见 $r(\alpha_1\alpha_2\alpha_3) = 2 < 3$,线性相关性;且

可见
$$r(\alpha_1\alpha_2\alpha_3) = 2 < 3$$
,线性相关性;

 $\alpha_3 = -\frac{1}{4}\alpha_1 + \frac{1}{2}\alpha_2$

$$\begin{pmatrix} 0 & 6 & 3 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{pmatrix}$$

$$\xrightarrow{r_3 + 2r_2} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - \frac{1}{2}r_2} \begin{pmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\alpha_3 = -\frac{1}{4}\alpha_1 + \frac{1}{2}\alpha_2 \implies -\frac{1}{4}\alpha_1 + \frac{1}{2}\alpha_2 - \alpha_3 = 0$

5/14 ⊲ ⊳

例 2 $\alpha_1 = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ 是否线性相关性? 如果是,

求出一个"线性相关性表达式"

可见 $r(\alpha_1\alpha_2\alpha_3) = 2 < 3$,线性相关性;且

线性相关性

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= ()\alpha + ()\beta + ()\gamma

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (\beta + \gamma) + (k_3(\gamma + \alpha))$

线性相关性 6/14 4 ▷

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + ($)

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases}$$

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

所以

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases} \qquad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

线性相关性 6/14 ⊲ ▷

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

所以

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

线性相关性 6/14 4 ▷

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

所以

$$\begin{cases} k_1 & + k_3 = 0 \\ k_1 + k_2 & = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow Ax = 0$$

线性相关性 6/14 4 ▷

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

$$\begin{cases} k_1 & + k_3 = 0 \\ k_1 + k_2 & = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow Ax = 0$$

$$\overline{m} |A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

$$\begin{cases} k_1 & + k_3 = 0 \\ k_1 + k_2 & = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow Ax = 0$$

$$m|A| =$$

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} r_2 - r_1 \\ 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}$$

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

$$\begin{cases} k_1 & + k_3 = 0 \\ k_1 + k_2 & = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow Ax = 0$$

$$\overline{m}|A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - r_1} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

所以

$$\begin{cases} k_1 & + k_3 = 0 \\ k_1 + k_2 & = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow Ax = 0$$

$$\overline{m} |A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - r_1} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$

所以只有零解: $k_1 = k_2 = k_3 = 0$,

证明设

$$0 = k_1(\alpha + \beta) + k_2(\beta + \gamma) + k_3(\gamma + \alpha)$$

= $(k_1 + k_3)\alpha + (k_1 + k_2)\beta + (k_2 + k_3)\gamma$

所以

$$\begin{cases} k_1 & + k_3 = 0 \\ k_1 + k_2 & = 0 \\ k_2 + k_3 = 0 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow Ax = 0$$

$$\overline{m} |A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - r_1} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$

所以只有零解: $k_1 = k_2 = k_3 = 0$,所以线性无关

另证 注意到

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha) = (\alpha \quad \beta \quad \gamma) \left(\qquad \qquad \right)$$

另证 注意到

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha) = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

另证 注意到

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha) = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

线性相关性 7/14 ✓ ▷

另证 注意到

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha) = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

线性相关性 7/14 4 ▷

另证 注意到

$$\underbrace{\left(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha\right)}_{Q} = \underbrace{\left(\alpha \quad \beta \quad \gamma\right)}_{P} \underbrace{\left(\begin{matrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{matrix}\right)}_{\Delta}$$

线性相关性 7/14 ⊲ ▷

另证 注意到

$$\underbrace{\left(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha\right)}_{Q} = \underbrace{\left(\alpha \quad \beta \quad \gamma\right)}_{P} \underbrace{\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)}_{Q} \quad \Rightarrow \quad Q = PA$$

线性相关性 7/14 4 ▷

另证 注意到

$$\underbrace{\left(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha\right)}_{Q} = \underbrace{\left(\alpha \quad \beta \quad \gamma\right)}_{P} \underbrace{\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)}_{Q} \quad \Rightarrow \quad Q = PA$$

$$r(Q) = r(PA)$$

线性相关性 7/14 ⊲ ▷

另证 注意到

$$\underbrace{(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha)}_{Q} = \underbrace{(\alpha \quad \beta \quad \gamma)}_{P} \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}}_{A} \quad \Rightarrow \quad Q = PA$$

而
$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$
,所以 A 可逆,
$$r(O) = r(PA)$$

$$r(Q) = r(PA)$$

7/14 ⊲ ⊳

另证 注意到

$$\underbrace{(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha)}_{Q} = \underbrace{(\alpha \quad \beta \quad \gamma)}_{P} \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}}_{A} \quad \Rightarrow \quad Q = PA$$

而
$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \frac{r_2 - r_1}{0} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$
,所以 A 可逆,从而

$$r(Q) = r(PA) = r(P)$$

7/14 ⊲ ⊳

另证 注意到

$$\underbrace{(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha)}_{Q} = \underbrace{(\alpha \quad \beta \quad \gamma)}_{P} \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}}_{A} \quad \Rightarrow \quad Q = PA$$

而
$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$$
,所以 A 可逆,从而

$$r(Q) = r(PA) = r(P) = 3$$

7/14 ⊲ ⊳

另证 注意到

$$\underbrace{\left(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha\right)}_{Q} = \underbrace{\left(\alpha \quad \beta \quad \gamma\right)}_{P} \underbrace{\left(\begin{matrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{matrix}\right)}_{A} \quad \Rightarrow \quad Q = PA$$

$$r(O) = r(PA) = r(P) = 3$$

所以 $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$ 线性无关。

线性相关性 7/14 ✓ ▷

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α, β 线性相关:

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α , β 线性相关:存在不全为零的 k_1 , k_2 使 $k_1\alpha + k_2\beta = 0$ 。

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α , β 线性相关:存在不全为零的 k_1 , k_2 使 $k_1\alpha + k_2\beta = 0$ 。不 妨设 $k_1 \neq 0$,则

$$\alpha = -\frac{k_2}{k_1}\beta$$

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α , β 线性相关:存在不全为零的 k_1 , k_2 使 $k_1\alpha + k_2\beta = 0$ 。不妨设 $k_1 \neq 0$,则

$$\alpha = -\frac{k_2}{k_1}\beta$$

所以 α , β 成比例

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α , β 线性相关:存在不全为零的 k_1 , k_2 使 $k_1\alpha + k_2\beta = 0$ 。不 妨设 $k_1 \neq 0$,则

$$\alpha = -\frac{k_2}{k_1}\beta$$

所以 α , β 成比例

2. 设 α , β 成比例: 不妨设 $\alpha = k\beta$

线性相关 \Leftrightarrow $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α , β 线性相关:存在不全为零的 k_1 , k_2 使 $k_1\alpha + k_2\beta = 0$ 。不妨设 $k_1 \neq 0$,则

$$\alpha = -\frac{k_2}{k_1}\beta$$

所以 α , β 成比例

2. 设 α , β 成比例: 不妨设 $\alpha = k\beta$, 则

$$1 \cdot \alpha - k\beta = 0$$

线性相关
$$\Leftrightarrow$$
 $\exists k \neq 0$ 使得 $k\alpha = 0$ \Leftrightarrow $\alpha = 0$

例 2 两个向量 α , β 线性相关当且仅当它们成比例。

证明

1. 设 α , β 线性相关:存在不全为零的 k_1 , k_2 使 $k_1\alpha + k_2\beta = 0$ 。不 妨设 $k_1 \neq 0$,则

$$\alpha = -\frac{k_2}{k_1}\beta$$

所以 α , β 成比例

2. 设 α , β 成比例:不妨设 $\alpha = k\beta$,则

$$1 \cdot \alpha - k\beta = 0$$

所以 α , β 线性相关

证明 不妨设

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \gamma = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

证明 不妨设

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \gamma = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

则

$$\alpha, \beta, \gamma$$
线性相关 \iff $\begin{pmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{pmatrix}$ 秩小于3

证明 不妨设

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \gamma = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

则

$$\alpha$$
, β , γ 线性相关 \Leftrightarrow $\begin{pmatrix} \alpha_1 & b_1 & c_1 \\ \alpha_2 & b_2 & c_2 \\ \alpha_3 & b_3 & c_3 \end{pmatrix}$ 秩小于3 \Leftrightarrow $\begin{vmatrix} \alpha_1 & b_1 & c_1 \\ \alpha_2 & b_2 & c_2 \\ \alpha_3 & b_3 & c_3 \end{vmatrix} = 0$

9/14 ⊲ ▷

例 3 \mathbb{R}^3 中三个向量 α , β , γ 线性相关当且仅当它们共面。

证明 不妨设

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \gamma = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

则

$$\alpha$$
, β , γ 线性相关 \Leftrightarrow $\begin{pmatrix} \alpha_1 & b_1 & c_1 \\ \alpha_2 & b_2 & c_2 \\ \alpha_3 & b_3 & c_3 \end{pmatrix}$ 秩小于3 \Leftrightarrow $\begin{vmatrix} \alpha_1 & b_1 & c_1 \\ \alpha_2 & b_2 & c_2 \\ \alpha_3 & b_3 & c_3 \end{vmatrix} = 0 \Leftrightarrow \alpha$, β , γ 共面

线性相关性 9/14 ⊲ ⊳

证明 设

$$\underline{\alpha_1, \alpha_2, \ldots, \alpha_r}, \alpha_{r+1}, \ldots \alpha_s$$

线性相关

证明 设

$$\underline{\alpha_1, \alpha_2, \ldots, \alpha_r}, \alpha_{r+1}, \ldots \alpha_s$$

线性相关

则存在不全为零的数 k_1, k_2, \ldots, k_r 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$$

证明 设

$$\underline{\alpha_1, \alpha_2, \ldots, \alpha_r}, \alpha_{r+1}, \ldots \alpha_s$$

线性相关

则存在不全为零的数 k_1, k_2, \ldots, k_r 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$$

所以

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r + 0\alpha_{r+1} + \dots + 0\alpha_s = 0$$

证明设

$$\underline{\alpha_1, \alpha_2, \ldots, \alpha_r}, \alpha_{r+1}, \ldots \alpha_s$$

线性相关

则存在不全为零的数 k_1, k_2, \ldots, k_r 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$$

所以

$$k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r+0\alpha_{r+1}+\cdots+0\alpha_s=0$$

其中系数不全为零,

证明设

$$\underline{\alpha_1, \alpha_2, \ldots, \alpha_r}, \alpha_{r+1}, \ldots \alpha_s$$

线性相关

则存在不全为零的数 k_1, k_2, \ldots, k_r 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$$

所以

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r + 0\alpha_{r+1} + \dots + 0\alpha_s = 0$$

其中系数不全为零,所以 α_1 , α_2 , ..., α_s 线性相关。

证明

1. "⇒"

رے" ر

证明

1. "⇒"设 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关,

"ے"

证明

1. " \Rightarrow "设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

证明

1. " \Rightarrow "设 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关,存在不全为零 k_1, k_2, \ldots, k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

不妨设 $k_1 \neq 0$,

证明

1. "⇒"设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

不妨设
$$k_1 \neq 0$$
,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \cdots - \frac{k_s}{k_1}\alpha_s$

证明

1. "⇒"设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

不妨设
$$k_1 \neq 0$$
,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \dots - \frac{k_s}{k_1}\alpha_s$

所以 α_1 为 α_2 , ..., α_s 的线性组合

证明

1. "⇒"设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

不妨设
$$k_1 \neq 0$$
,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \dots - \frac{k_s}{k_1}\alpha_s$

所以 α_1 为 $\alpha_2, \ldots, \alpha_s$ 的线性组合

2. "←"假设 α_1 为 α_2 ,..., α_s 的线性组合,

线性相关性 11/14 ✓ ▷

证明

1. "⇒"设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

不妨设
$$k_1 \neq 0$$
,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \cdots - \frac{k_s}{k_1}\alpha_s$

所以 α_1 为 α_2 , ..., α_s 的线性组合

2. "←"假设 α_1 为 α_2 ,..., α_s 的线性组合,

$$\alpha_1 = k_2 \alpha_2 + \dots + k_s \alpha_s$$

线性相关性 11/14 ✓ ▷

证明

1. "⇒"设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

不妨设
$$k_1 \neq 0$$
,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \dots - \frac{k_s}{k_1}\alpha_s$

所以 α_1 为 α_2 , ..., α_s 的线性组合

2. "←"假设 α_1 为 α_2 ,..., α_s 的线性组合,

$$\alpha_1 = k_2 \alpha_2 + \dots + k_s \alpha_s$$

$$-\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

线性相关性 11/14 ✓ ▷

证明

1. "⇒"设 α_1 , α_2 , ..., α_s 线性相关,存在不全为零 k_1 , k_2 , ..., k_s 使

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

不妨设
$$k_1 \neq 0$$
,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \dots - \frac{k_s}{k_1}\alpha_s$

所以 α_1 为 $\alpha_2, \ldots, \alpha_s$ 的线性组合

2. "←"假设 α_1 为 α_2 ,..., α_s 的线性组合,

$$\alpha_1 = k_2 \alpha_2 + \dots + k_s \alpha_s$$

$$-\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

且系数不全为零,所以 α_1 , α_2 , ..., α_s 线性相关。

线性相关性 12/14 ◁ ▷

证明

1. 存在不全为零的 k_1 , k_2 , ..., k_s , k 使

$$k_1\alpha_1+\cdots+k_s\alpha_s+k\beta=0$$

证明

1. 存在不全为零的 $k_1, k_2, ..., k_s, k$ 使

$$k_1\alpha_1 + \cdots + k_s\alpha_s + k\beta = 0 \xrightarrow{\overline{\eta} \exists k \neq 0}$$

线性相关性 12/14 ✓ ▷

证明

1. 存在不全为零的 $k_1, k_2, ..., k_s, k$ 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0 \xrightarrow{\text{FIJE}k \neq 0} \beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$$

线性相关性 12/14 ✓ ▷

证明

1. 存在不全为零的 $k_1, k_2, ..., k_s, k$ 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0 \xrightarrow{\overline{\text{qiik}} \neq 0} \beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$$

(证明 $k \neq 0$:

线性相关性 12/14 < ▷

证明

1. 存在不全为零的 k_1 , k_2 , ..., k_s , k 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0 \xrightarrow{\overline{\text{pi}}\overline{k}\neq 0} \beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$$

(证明 $k \neq 0$: 否则 $(k = 0)$
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

线性相关性 12/14 < ▷

证明

1. 存在不全为零的 k_1 , k_2 , ..., k_s , k 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0$$
 $\xrightarrow{\overline{\text{piik}} \neq 0} \beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$
(证明 $k \neq 0$: 否则($k = 0$), k_1, k_2, \dots, k_s 不全为零,且
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

线性相关性 12/14 < ▷

证明

1. 存在不全为零的 k_1 , k_2 , ..., k_s , k 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0$$
 $\xrightarrow{\exists \exists k \neq 0}$ $\beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$
(证明 $k \neq 0$: 否则($k = 0$), k_1, k_2, \dots, k_s 不全为零,且
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

推出 α_1 , α_2 , ..., α_s 线性相关,矛盾。)

线性相关性 12/14 ✓ ▷

证明

1. 存在不全为零的 k_1 , k_2 , ..., k_s , k 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0$$
 $\xrightarrow{\overline{\text{piwk}} \neq 0} \beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$
(证明 $k \neq 0$: 否则($k = 0$), k_1, k_2, \dots, k_s 不全为零,且
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

推出 α_1 , α_2 , . . . , α_s 线性相关,矛盾。)

2. 设

$$\beta = h_1 \alpha_1 + \dots + h_s \alpha_s$$

$$\beta = l_1 \alpha_1 + \dots + l_s \alpha_s$$

证明

1. 存在不全为零的 $k_1, k_2, ..., k_s, k$ 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0$$
 $\xrightarrow{\overline{\text{qi}}k\neq 0}$ $\beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$
(证明 $k \neq 0$: 否则($k = 0$), k_1, k_2, \dots, k_s 不全为零,且
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

推出 α_1 , α_2 , ..., α_s 线性相关,矛盾。)

2. 设

$$\beta = h_1 \alpha_1 + \dots + h_s \alpha_s$$

$$\beta = l_1 \alpha_1 + \dots + l_s \alpha_s$$

$$\beta = l_1 \alpha_1 + \dots + l_s \alpha_s$$

$$(h_1 - l_1) \alpha_1 + \dots + (h_s - l_s) \alpha_s = 0$$

证明

1. 存在不全为零的 $k_1, k_2, ..., k_s, k$ 使

$$k_1\alpha_1 + \dots + k_s\alpha_s + k\beta = 0$$
 $\xrightarrow{\text{可证}k\neq 0}$ $\beta = -\frac{k_1}{k}\alpha_1 - \dots - \frac{k_s}{k}\alpha_s$
(证明 $k \neq 0$: 否则($k = 0$), k_1, k_2, \dots, k_s 不全为零,且

 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$

推出
$$\alpha_1$$
, α_2 , ..., α_s 线性相关,矛盾。)

2. 设

由线性无关性, $h_1 = l_1, \ldots, h_s = l_s$ 。

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,

定理 4 两个向量组 (A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的 k_1, \dots, k_t 使下式为零:

$$k_1\beta_1 + k_2\beta_2 + \cdots + k_t\beta_t$$

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

线性相关性 13/14 ⊲ ⊳

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \, \alpha_2 \, \cdots \, \alpha_s) \left(\begin{array}{c} k_1 \\ k_2 \\ \vdots \\ k_t \end{array} \right)$$

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \, \alpha_2 \, \cdots \, \alpha_s) \begin{pmatrix} \alpha_{11} \\ \alpha_{21} \\ \vdots \\ \alpha_{s1} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

13/14 < ▶

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \alpha_2 \cdots \alpha_s) \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \vdots & \vdots \\ \alpha_{s1} & \alpha_{s2} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

13/14 < ▶

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \alpha_2 \cdots \alpha_s) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1t} \\ a_{21} & a_{22} & \cdots & a_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{st} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

13/14 ⊲ ⊳

 $(A): \alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \alpha_2 \cdots \alpha_s) \underbrace{\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1t} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{s1} & \alpha_{s2} & \cdots & \alpha_{st} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}}_{k}$$

13/14 < ▶

 $(A): \alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \, \alpha_2 \, \cdots \, \alpha_s) \underbrace{\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1t} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{s1} & \alpha_{s2} & \cdots & \alpha_{st} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}}_{k} \qquad \therefore r(A) \leq s < t$$

13/14 ⊲ ⊳

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

$$= (\alpha_1 \alpha_2 \cdots \alpha_s) \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1t} \\ a_{21} & a_{22} & \cdots & a_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{st} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}}_{k} \quad \begin{array}{c} \vdots \\ \vdots \\ k_t \end{array}$$

$$\vdots \quad \vdots \quad \vdots \\ \vdots \\ k_t \qquad \qquad \\ \text{ $eta} \quad Ak = 0$$

线性相关性 13/14 ⊲ ⊳

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

若 (B) 可由 (A) 线性表示,且 t > s,则向量组 (B) 线性相关。

证明 要找不全为零的
$$k_1, \dots, k_t$$
 使下式为零:
$$k_1\beta_1 + k_2\beta_2 + \dots + k_t\beta_t = (\beta_1\beta_2 \dots \beta_t) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$

= 0

所以向量组(B)线性相关。

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

1. 若 t > s,则向量组 (B) 线性相关。

定理 4" 两个向量组
$$(A)$$
: $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B):
$$\beta_1, \beta_2, \ldots, \beta_t$$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \le s$ 。

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$

 $\beta_1, \beta_2, \ldots, \beta_t$

定理 4"两个向量组

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \le s$ 。

推论 两个向量组

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

定理 4" 两个向量组 ([/]

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \le s$ 。

推论 两个向量组

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,

定理 4"两个向量组

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \le s$ 。

推论 两个向量组

(A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,则 s = t。

线性相关性 14/14 ⊲ ▷

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \le s$ 。

推论 两个向量组 (A): $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,则 s=t。

证明

● (B) 由 (A) 线性表示,且 (B) 线性无关

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \le s$ 。

推论 两个向量组 $(A): \alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,则 s=t。

证明

• (B) 由 (A) 线性表示,且(B) 线性无关 ⇒ t ≤ s

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \leq s$ 。

推论 两个向量组 $(A): \alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,则 s = t。

证明

- (B) 由 (A) 线性表示,且 (B) 线性无关 ⇒ t ≤ s
- (A) 由 (B) 线性表示,且(A) 线性无关

(B): $\beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (B) 可由 (A) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \leq s$ 。

推论 两个向量组 $(A): \alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,则 s=t。

证明

- (B) 由 (A) 线性表示,且 (B) 线性无关 ⇒ t ≤ s
- (A)由(B)线性表示,且(A)线性无关⇒s≤t

定理 4"两个向量组 (A):
$$\alpha_1, \alpha_2, \ldots, \alpha_s$$

 $(B): \beta_1, \beta_2, \ldots, \beta_t$

假设向量组 (*B*) 可由 (*A*) 线性表示,结论:

- 1. 若 t > s,则向量组 (B) 线性相关。
- 2. 若向量组 (B) 线性无关,则 $t \leq s$ 。

推论 两个向量组
$$(A)$$
: $\alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

如果向量组 (A) 与 (B) 等价,且均线性无关,则 s=t。

证明

- (B) 由 (A) 线性表示,且 (B) 线性无关 ⇒ t ≤ s
- (A)由(B)线性表示,且(A)线性无关⇒s≤t

所以s=t