Descriptive Network Analysis C

Dr Daniele Rotolo

SPRU (Science Policy Research Unit)
Business School
University of Sussex

Week 6

Learning Outcomes

Lea	arning outcome	Assessment mode			
1	Explain the concept of network and list the main network indicators	ESS			
2	Describe and apply the major techniques for the collection of network data and their statistical analysis	ESS, $GPN + GWS$			
3	Identify the main characteristics of networks by means of network measures	ESS, GPN + GWS			
4	Employ network analysis techniques to produce network data-based infographics	GPN + GWS			

Note: ESS: Essay; GPN: Group Presentation; GWS: Group Written Submission

Node-level measures

Node-level measures Overview

Centrality

- Degree
- Closeness
- Betweenness
- ► Centralisation
- ► Bonacich's centrality
- ► Weighted centrality

Brokerage

- ► Brokerage roles
- ► Effective network size/efficiency
- Constraint

Note: We will mostly focus on undirected and unweighted networks

- The concept of brokerage is related to the absence of ties between the nodes of an ego network
- The absence of a tie between an alter and a third party is called structural hole
- Structural holes create tertius gaudens conditions: the ego has control of the spread of knowledge and resources between the alter and third

- At the level of an open triad, we can distinguish different types of brokerage roles [Gould and Fernandez, 1989]
- Roles are defined on the basis of

- The ego-network of a node includes all open and closed triads that contain the ego
- For each triad we can assess the presence of structural holes
- To identify the number of triads we can count the number of possible ties, which is (N-1)(N-2)/2 in an undirected network
- Example: 6 triads and 5 structural holes

- The ego-network of a node includes all open and closed triads that contain the ego
- For each triad we can assess the presence of structural holes
- To identify the number of triads we can count the number of possible ties, which is (N-1)(N-2)/2 in an undirected network
- Example: 6 triads and 5 structural holes

Node-level measures Brokerage: Burt's measures of structural holes

Ronald Burt introduced two main measures of structural holes. These are based on a node's ego-network [Burt, 1992]

- Effective network size/efficiency
- Constraint

To define a node's effective network size and efficiency, we need to define the node's dyadic redundancy with its primary contacts:

$$dr_{ij} = \sum_{q} p_{iq} m_{jq} \qquad q \neq i, j$$

- let's define z_{ij} as the strength of the relation between node i and node j ($z_{ij} = z_{ji}$ if the network is undirected)
- p_{iq} is the proportional strength of node i's relation with q: $\frac{z_{iq}+z_{qi}}{\sum_{j}(z_{ij}+z_{ji})}$
- m_{jq} is the marginal strength of node j's relation with q: $\frac{z_{jq}+z_{qj}}{\max(z_{jk}+z_{kj})}$
- Interpretation
 - $ightharpoonup dr_{ij}$ provides indication of how many of the actors in the ego-network of node i are also tied to node j
 - lacktriangle the higher is dr_{ij} , the more redundant is the tie of node i with node j

$$p_{52} = \frac{z_{iq} + z_{qi}}{\sum_{j} (z_{ij} + z_{ji})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25$$

$$\begin{array}{l} \rho_{52} = \frac{z_{ig} + z_{gj}}{\sum_{j}(z_{ij} + z_{jj})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25 \\ \rho_{53} = \frac{z_{ig} + z_{gi}}{\sum_{j}(z_{ij} + z_{jj})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25 \\ \rho_{56} = \frac{z_{ig} + z_{gi}}{\sum_{j}(z_{ij} + z_{jj})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25 \\ \rho_{57} = \frac{z_{ig} + z_{gi}}{\sum_{j}(z_{ij} + z_{jj})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25 \end{array}$$

$$\begin{array}{l} m_{23} = \frac{z_{jq} + z_{qj}}{\max(z_{jk} + z_{kj})} = \frac{(1+1)}{\max[(1+1),(1+1),(1+1)]} = 1 \\ m_{26} = \frac{z_{jq} + z_{qj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max[(1+1),(1+1),(1+1)]} = 0 \\ m_{27} = \frac{z_{jq} + z_{qj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max[(1+1),(1+1),(1+1)]} = 0 \end{array}$$

$$\begin{array}{l} m_{32} = \frac{z_{ig} + z_{gj}}{max(z_{jk} + z_{kj})} = \frac{(1+1)}{max[(1+1),(1+1),(1+1),(1+1)]} = 1 \\ m_{36} = \frac{z_{ig} + z_{gj}}{max(z_{jk} + z_{kj})} = \frac{0}{max[(1+1),(1+1),(1+1),(1+1)]} = 0 \\ m_{37} = \frac{z_{ig} + z_{gj}}{max(z_{jk} + z_{kj})} = \frac{0}{max[(1+1),(1+1),(1+1),(1+1)]} = 0 \end{array}$$

$$\begin{array}{l} m_{62} = \frac{z_{jq} + z_{dj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max([1+1)]} = 0 \\ m_{63} = \frac{z_{jq} + z_{dj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max([1+1)]} = 0 \\ m_{67} = \frac{z_{jq} + z_{dj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max([1+1)]} = 0 \end{array}$$

$$\begin{array}{ll} m_{72} = \frac{z_{jq} + z_{qj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max([1+1)]} = 0 \\ m_{73} = \frac{z_{jq} + z_{qj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max([1+1)]} = 0 \\ m_{76} = \frac{z_{jq} + z_{qj}}{\max(z_{jk} + z_{kj})} = \frac{0}{\max([1+1)]} = 0 \end{array}$$

Node-level measures Effective network size/efficiency

$$dr_{52} = \sum_{q} p_{iq} m_{jq} = p_{53} m_{23} + p_{56} m_{26} + p_{57} m_{27} = 0.25 * 1 + 0.25 * 0 + 0.25 * 0 = 0.25$$

$$dr_{53} = \sum_{q} p_{iq} m_{jq} = p_{52} m_{32} + p_{56} m_{36} + p_{57} m_{37} = 0.25 * 1 + 0.25 * 0 + 0.25 * 0 = 0.25$$

$$dr_{56} = \sum_{q} p_{iq} m_{jq} = p_{52} m_{62} + p_{53} m_{63} + p_{57} m_{67} = 0.25 * 0 + 0.25 * 0 + 0.25 * 0 = 0$$

$$dr_{57} = \sum_{q} p_{iq} m_{jq} = p_{52} m_{72} + p_{53} m_{73} + p_{56} m_{76} = 0.25 * 0 + 0.25 * 0 + 0.25 * 0 = 0$$

A node's effective network size is the sum of one minus all the dyadic redundancy values of the node with the other nodes in its ego-network [Burt, 1992]

$$EN_i = \sum_j \left[1 - \sum_q p_{iq} m_{qj}\right] = \sum_j \left[1 - dr_{ij}\right] \hspace{0.5cm} q
eq i, j$$

- EN_i ranges from 0 to N-1
- EN_i/N is defined efficiency (EFF_i)

$$\textit{EN}_5 = [1 - \textit{dr}_{52}] + [1 - \textit{dr}_{53}] + [1 - \textit{dr}_{56}] + [1 - \textit{dr}_{57}] = [1 - 0.25] + [1 - 0.25] + [1 - 0] + [1 - 0] = 3.5$$

n) _i	$EN(n_i)$	EFF	(n_i)
1	L	1.00	0.	14
2	2	1.67	0.	24
3	3	3.00	0.	43
4	1	1.00	0.	14
5	5	3.50	0.	50
6	5	1.00	0.	14
7	7	1.00	0.	14

To define a node's constraint we need to define the node's dyadic constraint with its primary contacts:

$$dc_{ij} = \left(p_{ij} + \sum_{q} p_{iq} p_{jq}\right)^{2} \qquad q \neq i, j$$

- let's define z_{ij} as the strength of the relation between node i and node j
 (z_{ii} = z_{ii} if the network is undirected)
- ullet p_{iq} is the proportional strength of node i's relation with q: $\frac{z_{iq}+z_{qi}}{\sum_{j}(z_{ij}+z_{ji})}$
- p_{jq} is the proportional strength of node j's relation with q: $\frac{z_{jq}+z_{qj}}{\sum_k(z_{jk}+z_{kj})}$
- dc_{ij} provides indication on the extent to which j is more or less connected to nodes to which i is strongly connected
- Interpretation
 - lacktriangledown dc $_{ij}$ provides indication of the extent to which the tie between node i and node j "constraints" node i
 - the higher is dc_{ij} , the more constrained is node i by node j
 - $ightharpoonup dc_{ij} = 1$ when node j is the only connection of i

$$p_{5q} = \frac{z_{iq} + z_{qi}}{\sum_{j} (z_{ij} + z_{ji})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25 \qquad q = 2, 3, 6, 7$$

Node-level measures

Constraint

$$\begin{split} p_{2q} &= \frac{z_{iq} + z_{qi}}{\sum_{j} (z_{ij} + z_{ji})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.33 \qquad q = 1, 3, 5 \\ p_{3q} &= \frac{z_{iq} + z_{qi}}{\sum_{j} (z_{ij} + z_{ji})} = \frac{(1+1)}{[(1+1) + (1+1) + (1+1)]} = 0.25 \qquad q = 1, 2, 4, 5 \\ p_{6q} &= \frac{z_{iq} + z_{qi}}{\sum_{j} (z_{ij} + z_{ji})} = \frac{(1+1)}{[(1+1)]} = 1.00 \qquad q = 5 \\ p_{7q} &= \frac{z_{iq} + z_{qi}}{\sum_{j} (z_{ij} + z_{ji})} = \frac{(1+1)}{[(1+1)]} = 1.00 \qquad q = 5 \end{split}$$

 $\begin{aligned} dc_{52} &= (p_{52} + p_{53}p_{23} + p_{56}p_{26} + p_{57}p_{27})^2 = (0.25 + 0.25 * 0.33 + 0.25 * 0 + 0.25 * 0)^2 = 0.1111 \\ dc_{53} &= (p_{53} + p_{52}p_{32} + p_{56}p_{36} + p_{57}p_{37})^2 = (0.25 + 0.25 * 0.25 + 0.25 * 0 + 0.25 * 0)^2 = 0.0976 \\ dc_{56} &= (p_{56} + p_{52}p_{62} + p_{53}p_{63} + p_{57}p_{67})^2 = (0.25 + 0.25 * 0 + 0.25 * 0 + 0.25 * 0)^2 = 0.0625 \\ dc_{57} &= (p_{57} + p_{52}p_{72} + p_{53}p_{73} + p_{56}p_{76})^2 = (0.25 + 0.25 * 0 + 0.25 * 0 + 0.25 * 0)^2 = 0.0625 \end{aligned}$

A node's constraint is the sum of all dyadic constraint values of the node with the other nodes in the ego-network [Burt, 1992]

$$C_i = \sum_i dc_{ij}$$

- C_i depend on the size and density of the ego network (it tends to be higher in small and dense networks)
- The density of the ego-network is also used to assess a node's constrain

$$C_5 = \sum_j dc_{ij} = dc_{52} + dc_{53} + dc_{56} + dc_{57} = 0.1111 + 0.0976 + 0.0625 + 0.0625 = 0.3337$$

ni	$C(n_i)$
1	0.83
2	0.69
3	0.48
4	1.00
5	0.33
6	1.00
7	1.00

Node-level measures Constraint (example)

Country alliances

- 1816-2012 period
- 3,222 alliances
- Nodes' size proportional to nodes' constraint

state_name1	ccade2	state_name2	dysd_st_day	dysd_st_month	dysd_st_year	cyed_end_day	dyad_end_month	dysd_end_year	left_censor	right_censor	defense	neutrality	nonaggression	0100100	asymmetr
United Kingdom	235	Portugal	1	1	1806				1	1	1		1	0	0
United Kingdom	380	Sweden	1	1	1806	35	2	1911	1	0	9		0	1	0
Kanever	245	Bavaria	4	1	1838	15	3	1848	0	0	1	0	1	1	0
Fanover .	245	Beverie	29	11	1850	15	6	1066	0	0	1	0	1	1	0
Nanever	255	Germany	1	1	1638	15	3	1048	0	0	1	0	1	1	0
Nanever	255	Cermany	29	11	1850	15		1866	0	0	1		1	1	0
Hanever	267	Baden	4	1	1838	15	3	1848	0	0	1	0	1	1	0
Fanover .	267	Baden	29	11	1850	15	6	1966	0	0	1	0	1	1	0
Nanever	269	Saxony	1	1	1638	15	3	1048	0	0	1	0	1	1	0
Kenever	269	Severy	29	11	1850	15		1866	0	0	1		1	1	0
Hanever	271	Westerlang	1	1	1838	15	3	1848	0	0	1	0	1	1	0
Fanover .	271	Westernoung	29	11	1850	15	6	1966	0	0	1	0	1	1	0
Hanever	273	Hesse Electoral	1	1	1030	15	3	1045	0	0	1	0	1	1	0
Nanever	273	Hesse Electoral	29	11	1850	15		1866	0	0	1		1	1	0
Manager .	275	Hesse Grand Ducal	1	1	1838	15	3	1848	0	0	1		1	1	0
Fanover .	275	Hesse Grand Ducal	29	11	1850	15	6	1966	0	0	1	0	1	1	0
Nanover	200	Mecklenburg Schwerin	1	1	1843	15	3	1048	0	0	1	0	1	1	0
Nanever .	260	Mecklenburg Schwerin	29	11	1850	15	4	1866	0	0	1		1	1	0
Nanover .	300	Austria-Hungary	1	1	1838	15	3	1848	0	0	1		1	1	0
Kanever .	300	Austra-Hungary	29	11	1850	15	6	1866	0	0	1	0	1	1	0
Bevoria	255	Germany	1	1	1805	15	3	1048	1	0	1	0	1	1	0
Soverie	255	Germany	29	11	1650	15	6	1066	0	0	1	0	1	1	0
Severa	267	Bades	1	1	1806	15	3	1848	1	0	1		1	1	0
Bavaria	267	Baden	29	11	1850	15	6	1866	0	0	1	0	1	1	0
Bevoria	269	Saxony	1	1	1806	15	3	1048	1	0	1	0	1	1	0
Severie	269	Sexeny	29	11	1650	15	6	1066	0	0	1		1	1	0
Soverie	271	Westerburg	1	1	1806	15	3	1848	1	0	1		1	1	0
Basaria	271	Westerlang	29	11	1850	15	4	1866	0	0	1	0	1	1	0
Basaria	273	Hesse Electoral	1	1	1806	15	3	1048	1	0	1	0	1	1	0
Severia	273	Hesse Electoral	29	11	1650	15	6	1066	0	0	1		1	1	0
Soverie	275	Hesse Grand Ducal	1	1	1806	15	3	1848	1	0	1		1	1	0
Bovoria	275	Hesse Grand Ducal	29	11	1850	15		1866	0	0	1	0	1	1	0
Basaria	290	Medicenburg Sichwerin	1	1	1943	15	3	1048	0	0	1	0	1	1	0
Beneria	200	Medicenburg Schwerin	29	11	1850	15	6	1066	0	0	1	0	1	1	0
Soverie	300	Austria Hungary	1	1	1806	15	3	1848	1	0	1		1	1	0
Bosonia	300	Austria-Hungary	29	11	1850	15	6	1866	0	0	1		1	1	0
Semany	267	Bades	4	1	1856	15	3	1949	1	0	1		1	1	0
Sermany	267	Baden	29	11	1650	15	6	1066	0	0	1		1	1	0
Germany	269	Severy	1	1	1806	15	3	1048	1	0	1		1	1	0

Source: http://www.correlatesofwar.org/

Country alliances

- 1816-2012 period
- 3,222 alliances
- Nodes' size proportional to nodes' constraint

Country alliances

- 1816-2012 period
- 3,222 alliances
- Nodes' size proportional to nodes' constraint

Constraint (example)

```
1 #1.Loading data -----
2 df <- read_csv("alliance_v4.1_by_dyad.csv") %>%
         filter(nonaggression == 1)
4
5 #2. Network Before WWI -----
   g <- df %>%
         filter(dyad_st_year > 1884 & dyad_st_year < 1914) %>%
         distinct(state_name1, state_name2) %>%
9
         graph_from_data_frame(., directed = F)
10
11 V(g) $size <- constraint(g) * 10
12 V(g) $label.cex <- 0.6
13 V(g) $color <- 1: vcount(g)
14 palette(gray.colors(vcount(g)))
15
16 pdf('alliances_before_wwi.pdf', width = 6, height = 4)
   plot(g, layout = layout_nicely(g), vertex.label.dist = 1, vertex.label.degree = 30)
18 title(main = "Non-aggression alliances before WWI (1885-1913)", cex.main = 0.7)
19 dev. off()
20
   #3.Network After WWI (but before WWII) ------
   g <- df %>%
         filter(dvad st vear > 1918 & dvad st vear < 1938) %>%
24
         distinct(state name1, state name2) %>%
         graph from data frame(.. directed = F)
27 V(g) $size <- constraint(g) * 10
28 V(g)$label.cex <- 0.5
29 V(g)$color <- 1:vcount(g)
30 palette(grav.colors(vcount(g)))
31
   pdf('alliances after wwi.pdf', width = 6, height = 6)
33 plot(g, layout = layout_nicely(g), vertex.label.dist = 1, vertex.label.degree = 30)
   title(main = "Non-aggression alliances after WWI (1919-1937)", cex.main = 0.7)
35 dev. off()
```

Node-level measures Network density

Figure 2.3 Comparisons across network size and density. (Each point on the horizontal axis refers to a different network. Solid lines describe maximum density networks. Dashed lines describe minimum density networks.)

Node-level measures Summary

Measure	Interpretation				
Brokerage roles	Coordinator, gatekeeper, itinerant broker, liaison				
Effective network size	To what extent a node share ties with other nodes?				
Constraint	To what extent a node's action is constrained by other nodes in the ego-network?				

Questions

Next time ...

Next time ...

- Seminar: Descriptive network analysis C
 - ► Assessment of node-level measures (brokerage measures)
- Lecture: Principles of infographics
 - ▶ Principles and good practices to generate infographics
 - ► Network layout algorithms

References I

Burt, R. (1992).

Structural holes: The social structure of competition. Harvard Business Press, London.

Gould, R. V. and Fernandez, R. M. (1989).

Structures of Mediation: A Formal Approach to Brokerage in Transaction Networks. Sociological Methodology, 19(1989):89–126.