

Discount Factor

Într-un proces decizional
Markov, un factor de
discount γ mai mare
(apropiat de 1) implică o
importanță mai mare a
recompenselor obținute pe
termen scurt, în comparație
cu cele obținute pe termen
lung?

Variante posibile

- Adevărat
- Fals

Întrebare rapidă

Discount Factor

Într-un proces decizional
Markov, un factor de
discount y mai mare
(apropiat de 1) implică o
importanță mai mare a
recompenselor obținute pe
termen scurt, în comparație
cu cele obținute pe termen
lung?

Răspuns

FALS! Doar valoarea 0 implică valorificarea exclusivă a recompensei imediate.

$$V^{\pi}(s_t = s)$$

$$= E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots | s_t = s]$$

Ne aducem aminte

MODELUL

• Un procedeu matematic pentru exprimarea dinamicii mediului și a recompenselor.

• POLITICA (POLICY)

• Funcție utilizată de agent pentru a realiza asocieri între stări și acțiuni.

VALUE FUNCTION

• Funcție ce oferă drept răspuns suma recompensele viitoare, folosind drept parametri starea sau/și acțiunea (curente), aplicată sub o anumită politică.

O proprietate de bază

- Starea = informație statistică a istoriei interacțiunilor cu mediul.
- Condiția unei stări s_{t+1} pentru a fi considerată de tip Markov:

$$p(s_{t+1}|s_t, a_t) = p(s_{t+1}|h_t, a_t)$$

Lanțuri Markov

- Proces aleatoriu de tip memoryless (secvență de stări cu
 - proprietatea Markov îndeplinită) Setul stărilor (S) este finit.
- P este modelul dinamic, ce explică tranzițiile

explică tranzițiile
$$p(s_{t+1} = s' | s_t = s)$$

Atenție! Nu avem recompense sau acțiuni.

$$P = \begin{bmatrix} P(s_1|s_1) & \cdots & P(s_n|s_1) \\ \vdots & \ddots & \vdots \\ P(s_1|s_n) & \cdots & P(s_n|s_n) \end{bmatrix}$$

Mars Rover – matrice tranzitii S_1 S_2 S_3 S_4 S_5 S_6 S_7 0.2 0.4 0 0 0 0.2 0.4 0 0 0 0.2 0.4 0.2 0.4 0.4 0.4

Mars Rover – episoade

S₄, S₄, S₄, S₄, S₄,...
S₄, S₅, S₆, S₅, S₄, S₃, S₂, S₁, S₂, ...

- $S_4, S_5, S_6, S_5, S_4, S_3, S_2, S_1, S_2, .$
- S₄, S₅, S₆, S₇, S₇, S₇,...

Exemple episoade (stare inițială s_{λ}):

Să adăugăm recompense: MRP

Recompense

R reprezintă funcția de acordare a recompenselor:

$$R(s_t = s) = E[r_t | s_t = s]$$

• Atenție! Nu avem acțiuni.

$$P = \begin{bmatrix} P(s_1|s_1) & \cdots & P(s_n|s_1) \\ \vdots & \ddots & \vdots \\ P(s_1|s_n) & \cdots & P(s_n|s_n) \end{bmatrix}$$

$$R = (r_1, r_2, \dots, r_n)$$

Return & State Value Function

- ORIZONT (HORIZON)
- Reprezintă numărul de momente de timp dintr-un episod.
- 2. Poate fi *infinit* sau *finit* (*finite MRP*)
- RETURN (G_t) Suma de recomponse (cu discount), de la momentul t către orizont.
- STATE VALUE FUNCTION (V(s)) –
 Return-ul asteptat pornind din starea s.

 $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$

$$V(s) = E[G_t | s_t = s]$$

$$E[G_t | s_t = s] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s]$$

Observații

- Tot ce am discutat generează un procedeu matematic convenabil, în condițiile în care evităm cazurile infinite.
- În mod natural, oamenii acționează sub un factor mereu mai mic decât 1.

Mars Rover – Exemplu

Alocare recompense:

- +1 în starea s₁
- +10 în starea s₇
- 0 în orice altă stare

•
$$s_4, s_5, s_6, s_7 \Rightarrow 0 + \frac{1}{2} * 0 + \frac{1}{4} * 0 + \frac{1}{8} * 10 = 1.25$$

Exemplu (start s_4 , $\gamma = \frac{1}{2}$, 4 paşi):

•
$$s_4, s_4, s_5, s_4 \Rightarrow 0 + \frac{1}{2} * 0 + \frac{1}{4} * 0 + \frac{1}{8} * 0 = 0$$

are
$$s_4, s_3, s_2, s_1 \Rightarrow 0 + \frac{1}{2} * 0 + \frac{1}{4} * 0 + \frac{1}{8} * 1 = 0.125$$

Putem evalua algoritmii de tip MRP prin generarea unui set suficient de mare de episoade, astfel încât să satisfacem următoarea ecuație:

$$V(s) = \underbrace{R(s)}_{\text{Immediate reward}} + \underbrace{\gamma \sum_{s' \in S} P(s'|s) V(s')}_{\text{Discounted sum of future rewards}}$$

Formă matriceală – calculul V

$$\begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \vdots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix}$$

$$V = R + \gamma PV$$

$$V - \gamma PV = R$$

$$(I - \gamma P)V = R$$

Complexitate
$$O(N^3)$$
 —

datorată calcului inversei

 $V = (I - \gamma P)^{-1}R$

Un calcul mai rapid

- PROGRAMARE DINAMICĂ!!!
- 1. Inițializăm $V_0(s) = 0, \forall s$
- 2. Pentru k = 1, până la convergență:
 - a. Pentru fiecare s din S:
 - $V_k(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s) V_{k-1}(s')$

Complexitate: $O(|S|^2)$, pentru fiecare iterație (|S| = N).

Să adăugăm acțiuni: MDP

Matricea P devine tri

- dimensională: **S X S X A**

- MDP (Markov Decision
 Process) = MRP + Actiuni
- A este un set finit de acțiuni.
- Discount factor $\gamma \in [0, 1]$.
- $R(s_t = s, a_t = a) = E[r_t | s_t = s, a_t = a]$
- $MDP = (S, A, P, R, \gamma)$

Mars Rover – Exemplu

MDP cu 2 acțiuni.

s_1	s_2	s_3	S_4	<i>S</i> ₅	s ₆	S ₇

$$P(s'|s,a_1) = egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ \end{pmatrix} P(s'|s,a_2) = egin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ \end{pmatrix}$$

