Script 14

Integrals and Derivatives

14.1 Journal

5/4: **Theorem 14.1.** Suppose that f is integrable on [a,b]. Define $F:[a,b] \to \mathbb{R}$ by

$$F(x) = \int_{a}^{x} f$$

If f is continuous at $p \in (a,b)$, then F is differentiable at p and

$$F'(p) = f(p)$$

If f is continuous at a, then $F'_{+}(a)$ exists and equals f(a). Similarly, if f is continuous at b, $F'_{-}(b)$ exists and equals f(b).

Proof. To prove that F is differentiable at p and F'(p) = f(p), Definition 12.1 tells us that it will suffice to show that $\lim_{h\to 0^+} \frac{F(p+h)-F(p)}{h} = \lim_{h\to 0^-} \frac{F(p+h)-F(p)}{h} = f(p)$. We will tackle the right-handed limit first. To do so, Definition 11.1 tells us that it will suffice to verify that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $(p+h) \in [a,b]$ and $0 < h < \delta$, then $|\frac{F(p+h)-F(p)}{h} - f(p)| < \epsilon$. Let $\epsilon > 0$ be arbitrary. Since f is continuous at p, Theorem 11.5 asserts that there exists a $\delta > 0$ such that if $x \in [a,b]$ and $|x-p| < \delta$, then $|f(x)-f(p)| < \frac{\epsilon}{2}$. Choose this δ to be our δ . Let h be an arbitrary number satisfying $(p+h) \in [a,b]$ and $0 < h < \delta$. Therefore,

$$\left| \frac{F(p+h) - F(p)}{h} - f(p) \right| = \left| \frac{\int_a^{p+h} f - \int_a^p f}{h} - f(p) \right|$$

$$= \left| \frac{\int_p^{p+h} f}{h} - f(p) \right|$$

$$= \left| \frac{\int_p^{p+h} f - hf(p)}{h} \right|$$

$$= \left| \frac{\int_p^{p+h} f - f(p)((p+h) - p)}{h} \right|$$

$$= \left| \frac{\int_p^{p+h} f - \int_p^{p+h} f(p) dx}{h} \right|$$
Exercise 13.17
$$= \left| \frac{1}{h} \int_p^{p+h} (f(x) - f(p)) dx \right|$$
Theorem 13.24

Script 14 MATH 16210

$$\leq \left| \frac{1}{h} \right| \int_{p}^{p+h} |f(x) - f(p)| \, \mathrm{d}x \qquad \text{Theorem } 13.26$$

$$\leq \left| \frac{1}{h} \right| \frac{\epsilon}{2} ((p+h) - p) \qquad \text{Theorem } 13.27$$

$$= \frac{\epsilon}{2}$$

$$\leq \epsilon$$

The proof is symmetric for the left-handed limit. These proofs can also be applied to the endpoints. \Box

Remark 14.2. Thus, we have that if f is continuous on [a,b], F is differentiable on [a,b] and F'(p) = f(p) for all $p \in [a,b]$ (where at the endpoints, we understand that the derivative should be interpreted as the one-sided derivative).

Lemma 14.3. Suppose that $f:[a,b] \to \mathbb{R}$ is integrable and that Ω is a number satisfying $L(f,P) \le \Omega \le U(f,P)$ for all partitions P of [a,b]. Then

$$\int_{a}^{b} f = \Omega$$

Proof. Suppose for the sake of contradiction that $\int_a^b f \neq \Omega$. We divide into two cases $(\int_a^b f < \Omega)$ and $\int_a^b f > \Omega$. If $\int_a^b f < \Omega$, then by Definition 13.16, $U(f) = \int_a^b f < \Omega$. It follows by Definition 13.14 and 5.11 that there exists an object $U(f,P) \in \{U(f,P) \mid P \text{ is a partition of } [a,b] \}$ such that $U(f) \leq U(f,P) < \Omega$. But this contradicts the hypothesis that $U(f,P) \geq \Omega$ for all partitions P of [a,b]. The argument is symmetric in the other case.