Wprowadzenie do soczewkowania grawitacyjnego Modelowanie mikrosoczewkowania Rezultaty References

Być albo nie być czarną dziurą

Franciszek Hansdorfer Jacek Winiarczyk Łukasz Parda Tomasz Gruss Opiekun projektu: dr hab. Radosław Poleski

14 czerwca 2024

References

- Ogólna teoria względności
- Masa zakrzywia czasoprzestrzeń ⇒
- Światło idące w pobliżu masy jest odchylane
- Obserwator widzi obiekty za zakrzywiającą masą w inny sposób ⇒
- Soczewkowanie grawitacyjne

ESA/Hubble, NASA

References

Principles of Gravitational Lensing, Arthur B. Congdon, Charles R. Keeton [1]

Równanie soczewki:

$$\beta = \theta - \alpha(\theta)$$

Dla punktowej masy mamy [4]:

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_s - D_l}{D_s D_l}}$$

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_F}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

References

Paralaksa

Dla $t_{\rm E} > 30$ d ruchu Ziemi wokół Słońca przestaje być pomijalny. Wtedy wzór na u(t) jest bardziej skomplikowany.

PAR-20, $u_0 < 0$

Paralaksa

F. Hansdorfer, J. Winiarczyk, Ł. Parda, T. Gruss

Być albo nie być czarną dziurą

References

Xallarap

Jeżeli źródło jest częścią układu podwójnego, to jego ruch orbitalny może mieć znaczący wpływ na parametr u(t). To zjawisko nosi nazwę xallarap (parallax od tyłu) [6].

PAR-06.10

Mulens Model [3], to paczka służąca do modelowania zjawisk mikrosoczewkowania. Do dopasowania krzywej, używany jest algorytm MCMC (Próbkowanie Monte Carlo łańcuchami Markowa).

Opis projektu

59 zjawisk wykazujących dominujący wpływ paralaksy(?), z przeglądu OGLE-III (Wyrzykowski et al. 2016 [5]).

A co jeśli źródło jest w układzie podwójnym?

Porównanie modeli

Nazwa	$\Delta\chi^2$	$\chi^2_{Paraxall}$
PAR-05	52.8	2360.0
PAR-06	304.5	4567.6
PAR-14	37.3	7164.4
PAR-39	129.9	13677.8
PAR-57	59681.0	4335.8
PAR-58	34.8	1087.9
PAR-59	124.1	2175.5

Wyniki

PA	R-	06

Parametr	wartość
$t_0[d]$	$2454179.345_{-5.95}^{+7.17}$
u_0	$-0.722_{-0.05}^{+0.05}$
$t_E[d]$	$203.621^{+8.04}_{-7.99}$
π_{EN}	$-0.014_{-0.02}^{+0.02}$
π_{EE}	$-0.035^{+0.01}_{-0.01}$
$\xi_{\sf period}[d]$	$392.271^{+3.46}_{-3.58}$
$\dot{\xi}$ semimajor axis	$0.154^{+0.01}_{-0.02}$

Kontynuacje badań

	(Wyrzykowski et at. 2016 [5])	Му
Nazwa	$M[M_{\odot}]$	$M_{lens}[M_{\odot}]$
PAR-05	$3.3^{+2.7}_{-1.5}$?
PAR-06	$1.0_{-0.5}^{+1.3}$?
PAR-14	$0.2^{+0.3}_{-0.1}$?
PAR-39	$2.2_{-1.1}^{+1.5}$?
PAR-57	7 -	?
PAR-58	-	?
PAR-59	-	?

Kontynuacje badań

- Wyznaczenie masy soczewek, dla których nasz model jest lepszy od modelu z paralaksą.
- Ponowne wymodelowanie zjawisk, w celu zmniejszenia niepewności.
- Zbadanie wpływu innych efektów na model (np. soczewka potrójna).

Bibliografia

- Arthur B. Congdon and Charles R. Keeton. Principles of Gravitational Lensing: Light Deflection as a Probe of Astrophysics and Cosmology. Springer International Publishing, 2018. ISBN: 9783030021221. DOI: 10.1007/978-3-030-02122-1.
- [2] P. Mróz and Ł. Wyrzykowski. "Measuring the Mass Function of Isolated Stellar Remnants with Gravitational Microlensing I. Revisiting the OGLE-III Dark Lens Candidates". In: Acta Astron. 71 (June 2021), pp. 89–102. DOI: 10.32023/0001-5237/71.2.1.
- [3] R. Poleski and J. C. Yee. "Modeling microlensing events with MulensModel". In: Astronomy and Computing 26 (Jan. 2019), p. 35. DOI: 10.1016/j.ascom.2018.11.001.
- [4] Peter Schneider, Jürgen Ehlers, and Emilio E. Falco. Gravitational Lenses. Springer Berlin Heidelberg, 1992. ISBN: 9783662037584. DOI: 10.1007/978-3-662-03758-4.
- [5] Ł. Wyrzykowski et al. "Black hole, neutron star and white dwarf candidates from microlensing with OGLE-III". In: MNRAS 458 (May 2016), pp. 3012–3026. DOI: 10.1093/mnras/stw426.
- [6] Ruocheng Zhai et al. "OGLE-2017-BLG-0448Lb: A Low Mass-Ratio Wide-orbit Microlensing Planet?" In: AJ 167 (Apr. 2024), p. 162. DOI: 10.3847/1538-3881/ad284f.