GEOESTADÍSTICA APLICADA

Estimación de la precipitación usando datos de pluviómetros y radar

Dr. Martín A. Díaz Viera

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO mdiazv@imp.mx

Contenido I

- Introducción
 - Objetivo
 - Antecedentes
 - Información disponible
 - Preprocesamiento de los datos
- Análisis Geoestadístico Univariado
 - Análisis preliminar
 - Análisis exploratorio
 - Estimación espacial usando Kriging
 - Interpretación de los resultados
- 3 Análisis Geoestadístico Conjunto
 - Análisis Bivariado
 - Modelo de corregionalización lineal

Contenido II

- Estimación espacial usando CoKriging
- Interpretación de los resultados

- 4 Conclusiones y trabajo futuro
 - Conclusiones
 - Trabajo futuro
 - Referencias

Objetivo

• Estimación mediante un enfoque geoestadístico de la distribución espacial de la precipitación en el Valle de México usando de manera conjunta datos de pluviómetros y de radar meteorológico

Antecedentes

Existen dos maneras de estimar la precipitación usando mediciones de radar:

- Usando relaciones Z-R para hacer transformaciones de reflectividad del radar (dBZ) en intensidad de lluvia (mm/h)
- Ajustando las mediciones de radar usando mediciones de pluviómetros

Antecedentes

Existen dos maneras de estimar la precipitación usando mediciones de radar:

- Krajewski, W.F., (1987), Cokriging radar-rainfall and rain gage data, J. Geophys. Res., 92, (D8), 9571-9580.
- Anhert, P., W. Krajewski y E. Johnson, (1986), Kalman filter estimation of radar-rainfall field bias, Memorias XXIII Conferencia de radar meteorológico, Amer. Meteor. Soc., pp JP 33-37.

Información disponible

Datos de radar

Las imágenes de radar que se usaron son de 8 bits de 240×240 km con resolución de 1 km en la presentación pseudo-CAPPI a 2 km de altura sobre el sitio de radar y se obtienen cada quince minutos.

Datos de pluviómetros

Son de la red de 61 pluviómetros en el área metropolitana de la ciudad de México que reportan, vía radio, cada minuto la lluvia acumulada en ese intervalo a una computadora central.

Preprocesamiento de los datos

- Se calculó la lluvia acumulada en una hora para los datos de radar y de pluviómetros.
- En el caso del radar se utilizó la relación Z-R del tipo Z=300R1.4, que se usa en los radares de Estados Unidos, para transformar la reflectividad del radar (dBZ) en intensidad de lluvia (mm/h).

Preprocesamiento de los datos

- Para cada sitio donde están ubicados los pluviómetros se encuentra la intensidad de lluvia (mm/h) en los nueve pixeles circundantes de la imagen de radar, que incluye el pixel donde esta situado el pluviómetro y los ocho pixeles a su alrededor.
- En el caso de las mediciones de los pluviómetros se consiguieron los archivos con los registros de lluvia y se calculó la lluvia acumulada horaria en cada uno de los pluviómetros.

Preprocesamiento de los datos

Figura 1: Ubicación del radar meteorológico de Cerro Catedral y la red pluviométrica.

Análisis Geoestadístico Univariado

- Análisis preliminar de los datos
- Análisis exploratorio de los datos
- Estimación del variograma
- Modelación del variograma
- Validación del modelo de variograma
- Estimación espacial usando Kriging
- Interpretación de los resultados

Análisis preliminar

- Se tomaron las mediciones de pluviómetros disponibles para la tormenta del 15 de julio de 1997 y en los puntos correspondientes a los pluviómetros se calculó el valor de lluvia usando los valores de radar según la metodología expuesta.
- Los valores de precipitación con sus coordenadas en UTM se introdujeron en una base de datos en excel, Pluv-Radar.xls, resultando un total de 50 puntos de medición.

Análisis preliminar

- Se procedió a depurar la muestra en forma tal, que los datos fueran consistentes con la información que se poseía, sin que se detectaran inconsistencias en este sentido.
- En el trabajo original publicado [Díaz-Viera et al., 2009] fue realizado con el programa GEOESTAD [Díaz-Viera and Barandela-Alonso, 1994], pero aquí se aplicaron los scripts de R del paquete RGEOESTAD [Díaz-Viera et al., 2010].

Análisis exploratorio

Estadígrafos	Radar(mm)	Pluv(mm)
Muestras	50	50
Mínimo	0.18	0.25
1° cuartil	0.88	0.31
Mediana	1.42	1.00
Media	1.83	1.47
3° cuartil	2.37	1.94
Máximo	7.79	7.75
Rango	7.61	7.50
Rango intercuartil	1.49	1.62
Varianza	2.47	2.57
Desviación estándar	1.57	1.60
Simetría	2.02	2.47
Curtosis	7.99	10.05

Tabla 1: Estadística básica.

Análisis de la distribución

Los histogramas muestran una fuerte asimetría positiva tanto en los datos de pluviómetro como de radar.

Figura 2: Histograma de Radar.

Figura 3: Histograma de Pluviómetro.

Análisis de outliers distribucionales

Se detectaron en ambas muestras dos outliers distribucionales, asociados a los valores más altos de precipitación y que coinciden en sus posiciones

Figura 4: Distribución espacial Radar.

Figura 5: Distribución espacial Pluviómetro.

Transformación logarítmica de los datos

Para resolver el problema de la asimetría de las distribuciones se propone hacer una transformación logarítmica de los datos.

Figura 6: Histograma de log(Radar).

Figura 7: Histograma de log(Pluviómetro).

Estadística básica de los datos log transformados

Estadígrafos	logRadar(mm)	logPluv(mm)
Muestras	50	50
Mínimo	-1.71	-1.39
1° cuartil	-0.13	-1.21
Mediana	0.35	0.00
Media	0.27	-0.09
3° cuartil	0.86	0.66
Máximo	2.05	2.05
Rango	3.77	3.43
Rango intercuartil	1.00	1.87
Varianza	0.80	1.00
Desviación estándar	0.89	1.00
Simetría	-0.46	0.11
Curtosis	2.87	2.01

Tabla 2: Estadística básica.

Análisis de estacionaridad

Ambos casos muestran presencia de tendencia en X.

Median Regression Analysis in X and Y directions

Media

Media

Media

Median

Figura 8: Gráficas de logRadar por X y Y.

Figura 9: Gráficas de logPluv por X y Y.

Análisis de estacionaridad

Los variogramas adireccionales no muestran presencia significativa de tendencia. Nlags = 10, DistMin = 1,525.8 m, DistMax = 45,696.16 m, lagvalue = 2,284.80 m

Figura 10: Variograma de logRadar.

Figura 11: Variograma de logPluv.

Análisis de anisotropía

Variogramas estimados en las direcciones: 0°, 45°, 90° y 135° con ventanas de 22.5°.

Figura 12: Variogramas direccionales logRadar.

Figura 13: Variogramas direccionales logPluv.

Ajuste inicial mediante mínimos cuadrados ponderados

Variable	Modelo	Nugget	Sill-Nugget	Alcance	MSE
logRadar	Gaussiano	0.38	0.64	16,156	0.02
logPluv	Gaussiano	0.28	0.83	7,955	0.09

Mejor Ajuste del Veriograma Adireccional de Plur, mm. Log

passass

Figura 14: Ajuste variograma logRadar.

Figura 15: Ajuste variograma logPluv.

Ajuste final mediante prueba y error

Variable	Modelo	Nugget	Sill-Nugget	Alcance	MSE
logRadar	Exponencial	0.17	1.08	20,000	0.05
logPluv	Esférico	0.08	1.02	15,000	0.11

Figura 16: Ajuste variograma logRadar.

Figura 17: Ajuste variograma logPluv.

Validación cruzada de logRadar

Estadígrafo	Z	Z^*	Z - <i>Z</i> *
Muestras	50	50	50
Mínimo	-1.71	-1.36	-2.85
1° cuartil	-0.13	-0.12	-0.53
Mediana	0.35	0.47	0.02
Media	0.26	0.36	-0.10
3° cuartil	0.86	0.85	0.24
Máximo	2.05	1.43	1.49
Rango	3.76	2.79	4.34
Rango intercuartil	0.99	0.97	0.77
Varianza	0.79	0.44	0.51
Desviación estándar	0.89	0.67	0.72
Simetría	-0.46	-0.65	-0.83
Curtosis	2.09	2.72	6.38

Tabla 3: Estadística básica.

Figura 18: Mapa $Z - Z^*$ de logRadar.

Validación cruzada de logPluv

Estadígrafo	Z	Z^*	Z -Z*
Muestras	50	50	50
Mínimo	-1.38629	-1.43082	-2.12230
1º cuartil	-1.21301	-0.45397	-0.51107
Mediana	0	-0.08175	0.00058
Media	-0.09031	0.00660	-0.09691
3° cuartil	0.65976	0.66783	0.33242
Máximo	2.04769	1.35820	1.63607
Rango	3.43399	2.78902	3.75837
Rango intercuartil	1.87277	1.12180	0.84350
Varianza	1.00045	0.53289	0.51560
Desviación estándar	1.00022	0.72999	0.71806
Simetría	0.11239	-0.25271	-0.30157
Curtosis	2.01197	2.07699	3.72457

Tabla 4: Estadística básica.

Figura 19: Mapa $Z - Z^*$ de logPluv.

Estimación espacial usando Kriging

Figura 20: Estimación de la precipitación con Radar usando Kriging Ordinario Puntual. Malla de $1.525.8 \times 1.525.8 \text{ m}$.

Estimación espacial usando Kriging

Figura 21: Estimación de la precipitación con Pluviómetros usando Kriging Ordinario Puntual. Malla de $1.525.8 \times 1.525.8$ m.

Interpretación de los resultados

• El mapa obtenido usando Kriging con los datos de los Pluviómetros recoge la variabilidad espacial en general de la precipitación pero suavizada.

Análisis Geoestadístico Conjunto

- Análisis Geoestadístico Univariado
- Análisis Bivariado de los Datos de Pluviómetros y de Radar
- Stimación del variograma cruzado
- Modelación del variograma cruzado
- Modelo de corregionalización lineal
- Validación del modelo
- Estimación espacial usando CoKriging
- Interpretación de los resultados

Análisis Bivariado

Estimados de precipitación usando Kriging Ordinario Puntual

Figura 22: Diagrama de dispersión Pluy-Radar.

Figura 23: Diagrama de dispersión logPluv-logRadar.

Estimación del Variograma Cruzado

Figura 24: Variogramas adireccionales estimados logRadar, logPluv y logRadar-logPluv.

Modelo de corregionalización lineal

Variable	Modelo	Nugget	Sill-Nugget	Alcance	MSE
logPluv.	Esférico	0.08	1.02	15,000	
logRadar	Esférico	0.17	0.63	15,000	
logPluvlogRadar	Esférico	0.001	0.80	15,000	

Tabla 5: Variogramas adireccionales ajustados logRadar, logPluv y logRadar-logPluv.

Figura 25: Variogramas adireccionales ajustados logRadar, logPluv y logRadar-logPluv.

Modelo de corregionalización lineal

• El modelo de corregionalización lineal resultante de logPluv. y logRadar es:

$$\begin{pmatrix} \gamma_{PP}(\underline{h}) & \gamma_{PR}(\underline{h}) \\ \gamma_{RP}(\underline{h}) & \gamma_{RR}(\underline{h}) \end{pmatrix} = \begin{pmatrix} 0.08 & 0.001 \\ 0.001 & 0.17 \end{pmatrix} \gamma_0(\underline{h}) + \begin{pmatrix} 1.02 & 0.8 \\ 0.8 & 0.63 \end{pmatrix} \gamma_1(\underline{h}) \tag{1}$$

donde $\gamma_0(\underline{h})$ es el efecto nugget, y $\gamma_1(\underline{h})$ es el modelo esférico con alcance 15 Km.

• Se puede observar que el modelo es válido, ya que los determinantes son positivos:

$$det\begin{pmatrix} 0.08 & 0.001 \\ 0.001 & 0.17 \end{pmatrix} = 0.013 > 0, det\begin{pmatrix} 1.02 & 0.8 \\ 0.8 & 0.63 \end{pmatrix} = 0.003 > 0$$
 (2)

Estimación espacial usando CoKriging

Figura 26: Estimación espacial usando CoKriging Ordinario Puntual. Malla de 1,525.8×1,525.8 m.

Estimación espacial: Kriging vs. CoKriging

Comparación de la distribución espacial estimada.

Figura 27: Kriging de Pluviómetros

Figura 28: CoKriging de Pluviómetros y Radar.

Estimación espacial: Kriging vs. CoKriging

Comparación de la desviación estándar del error de la estimación.

Figura 29: Kriging de Pluviómetros

Figura 30: CoKriging de Pluviómetros y Radar.

Interpretación de los resultados

• El CoKriging con los datos de Radar refleja la variabilidad espacial con menor error.

Conclusiones

- Los enfoques geoestadísticos permiten obtener estimaciones óptimas cuando se realizan apegadas a las metodologías.
- El uso del Kriging debe estar asociado a un análisis geoestadístico.
- En su defecto se recomienda usar estimadores del tipo de distancias inversas.

Trabajo futuro

- Tomar en cuenta como otras variables como la orografía.
- Estimaciones Espacio-Temporales de la distribución de las precipitaciones con un enfoque geoestadístico.

Referencias I

[Díaz-Viera et al., 2009] Díaz-Viera, M., Herrera, G. S., and Valdés, A. (2009).
A Linear Coregionalization Model For Spatial Rainfall Estimation In The Mexico City Valley Combining Rain Gages Data And Meteorological Radar Images.
Revista Ingeniería Hidráulica en México, XXIV(3):63–90.

[Díaz-Viera and Barandela-Alonso, 1994] Díaz-Viera, M. A. and Barandela-Alonso, R. (1994).

GEOESTAD: Un sistema de computación para el desarrollo de aplicaciones geoestadísticas.

In II Taller Internacional Informática y Geociencias, GEOINFO-94.

Referencias II

[Díaz-Viera et al., 2010] Díaz-Viera, M. A., Méndez-Venegas, J., and Hernández-Maldonado, V. (2010).

RGEOESTAD: Un programa de código abierto para aplicaciones geoestadísticas basado en R-Project.

Technical report, http://mmc2.geofisica.unam.mx/gmee/paquetes.html.