Faculty of Engineering & Materials Science

EDPT 602 – "Engineering Design II"

Prof. Dr. Hesham A. HegaziProfessor of Mechanical Design and CAD

Hesham A. Hegazi

Hesham Hegazi

Hesham Hegazi

SPUR Gears (Fundamental Relations)

m = d / N

$$V = \omega_1 r_1 = \omega_2 r_2$$
$$d_1 = mN_1$$

$$\frac{\mathbf{d}_1}{\mathbf{d}_2} = \frac{\mathbf{n}_2}{\mathbf{n}_1} \qquad , \qquad \frac{\mathbf{d}_1}{\mathbf{d}_2} = \frac{\mathbf{N}_1}{\mathbf{N}_2}$$

SPUR Gears (Fundamental Relations)

Speed ratio:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

SPUR Gears (Terminology)

SPUR Gears (Multi-Step Drive)

$$i_1 = i_{I-II} = n_I / n_{II} = N_2 / N_1 = d_2 / d_1$$

 $i_2 = i_{II-III} = n_{II} / n_{III} = N_4 / N_3 = d_4 / d_3$
 $i_3 = i_{III-IV} = n_{III} / n_{IV} = N_6 / N_5 = d_6 / d_5$

$$i_1 i_2 i_3 = n_I / n_{IV} = N_2 N_4 N_6 / N_1 N_3 N_5$$

SPUR Gears

Compound Gear Trains

SPUR Gears (Failure)

1- Tooth Breakage.

2- Tooth Wear.

3- Pitting.

Thank You