

CM cl Claims:

1. A trans-3,4 isomer of a compound of the formula (I)

wherein:

R¹ is hydrogen or C₁-C₅ alkyl;

R² is hydrogen, C₁-C₅ alkyl or C₂-C₆ alkenyl;

R³ is hydrogen, C₁-C₁₀ alkyl, C₃-C₁₀ alkenyl, phenyl, cycloalkyl, C₅-C₈ cycloalkenyl, cycloalkyl-substituted C₁-C₃ alkyl, C₅-C₈ cycloalkenyl-substituted C₁-C₃ alkyl or phenyl-substituted C₁-C₃ alkyl;

A is OR⁴ or NR⁵R⁶;

wherein:

R⁴ is hydrogen, C₁-C₁₀ alkyl C₂-C₁₀ alkenyl, cycloalkyl, C₅-C₈ cycloalkenyl, cycloalkyl-substituted C₁-C₃ alkyl, C₅-C₈ cycloalkenyl-substituted C₁-C₃ alkyl or phenyl-substituted C₁-C₃ alkyl;

R⁵ is hydrogen or C₁-C₃ alkyl;

CT

148

R^6 is hydrogen, C_1-C_{10} alkyl, C_3-C_{10} alkenyl, cycloalkyl, phenyl, cycloalkyl-substituted C_1-C_3 alkyl, C_5-C_8 cycloalkenyl, C_5-C_8 cycloalkenyl-substituted C_1-C_3 alkyl, phenyl-substituted C_1-C_3 alkyl, or
 5 $(CH_2)_q-B$; or

R^5 and R^6 are each CH_2 which together with N form a 4 to 6-membered heterocyclic ring;
 wherein:

B
 10 Sub
 wherein:
 B is

R^7 is hydrogen or C_1-C_3 alkyl;

R^8 is hydrogen, C_1-C_{10} alkyl, C_3-C_{10} alkenyl, cycloalkyl-substituted C_1-C_3 alkyl, cycloalkyl, C_5-C_8 cycloalkenyl, C_5-C_8 cycloalkenyl-substituted C_1-C_3 alkyl, phenyl or phenyl-substituted C_1-C_3 alkyl; or

20 R^7 and R^8 are each CH_2 which together with N form a 4- to 6-membered heterocyclic ring;

W is OR^9 , $NR^{10}R^{11}$, or OE ;

wherein:

R^9 is hydrogen, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, cycloalkyl, C_5-C_8 cycloalkenyl, cycloalkyl-substituted

25 C_1-C_3 alkyl, C_5-C_8 cycloalkenyl-substituted C_1-C_3 alkyl or phenyl-substituted C_1-C_3 alkyl;

R^{10} is hydrogen or C_1-C_3 alkyl;

R^{11} is hydrogen, C_1-C_{10} alkyl, C_3-C_{10} alkenyl, phenyl, cycloalkyl, C_5-C_8 cycloalkenyl, cycloalkyl-substituted C_1-C_3 alkyl, phenyl-substituted C_1-C_3 alkyl,

5 or $(CH_2)_mCY$; or

R¹⁰ and R¹¹ are each CH₂ which together with N form a 4- to 6-membered heterocyclic ring;

10 E is $(\text{CH}_2)_m \text{C}(\text{O})-\text{D}$, , or $-\text{R}^{12}-\text{OCR}^{13}$

wherein:
R¹² is C₁-C₃ alkyl substituted methylene,
R¹³ is C₁-C₁₀ alkyl;
D is OR¹⁴ or NR¹⁵R¹⁶.

wherein:

20 R^{14} is hydrogen, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, cycloalkyl, C_5-C_8 cycloalkenyl, cycloalkyl-substituted C_1-C_3 alkyl, or C_5-C_8 cycloalkenyl-substituted C_1-C_3 alkyl or phenyl-substituted C_1-C_3 alkyl;

~~R¹⁵ is hydrogen, C₁-C₁₀ alkyl, C₃-C₁₀ alkenyl, phenyl, phenyl-substituted C₁-C₃ alkyl, cycloalkyl, C₅-C₈ cycloalkenyl, cycloalkyl-substituted C₁-C₃ alkyl or C₅-C₈ cycloalkenyl-substituted C₁-C₃ alkyl.~~

~~R¹⁶ is hydrogen or C₁-C₃ alkyl;~~
~~R¹⁵ and R¹⁶ are each CH₂ which together with~~
N form a 4- to 6-membered heterocyclic ring;

30 Y is OR¹⁷ or NR¹⁸R¹⁹;

wherein:

B, Sub.

5 R^{17} is hydrogen, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, cycloalkyl, C_5-C_8 cycloalkenyl, cycloalkyl-substituted C_1-C_3 alkyl, C_5-C_8 cycloalkenyl-substituted C_1-C_3 alkyl, or phenyl-substituted C_1-C_3 alkyl;

10 R^{18} is hydrogen or C_1-C_3 alkyl;

15 R^{19} is hydrogen, C_1-C_{10} alkyl, C_3-C_{10} alkenyl, phenyl, cycloalkyl, C_5-C_8 cycloalkenyl, cycloalkyl-substituted C_1-C_3 alkyl, C_5-C_8 cycloalkenyl-substituted C_1-C_3 alkyl, or phenyl-substituted C_1-C_3 alkyl; or

20 R^{18} and R^{19} are each CH_2 which together with N form a 4- to 6-membered heterocyclic ring;

25 n is 0-4;

30 q is 1-4;

35 m is 1-4;

40 or pharmaceutically acceptable salts thereof.

45 2. The compound of Claim 1 wherein R^1 is hydrogen; R^2 is C_1-C_3 alkyl; $n = 1$ or 2; and R^3 is benzyl, phenyl, cyclohexyl, or cyclohexylmethyl.

50 3. The compound of Claim 2 wherein A is OR^4 and R^4 is hydrogen or C_1-C_3 alkyl.

55 4. The compound of Claim 2 wherein A is NR^5R^6 in which R^5 is hydrogen and R^6 is $(CH_2)_q-B$ wherein q is 1 to 3 and B is $-C(O)W$.

60 5. The compound of Claim 4 wherein W is OR^9 and R^9 is hydrogen, C_1-C_5 alkyl, phenyl-substituted C_1-C_2 alkyl, C_5-C_6 cycloalkyl, or C_5-C_6 cycloalkyl substituted C_1-C_3 alkyl.

65 6. The compound of Claim 4 wherein W is $NR^{10}R^{11}$ in which R^{10} is hydrogen or C_1-C_3 alkyl, and R^{11} is hydrogen, C_1-C_3 alkyl or $(CH_2)_mC(O)Y$.

H
C₁₄

7. The compound of Claim 6 wherein m is 1 to 3 and Y is OR¹⁷ or NR¹⁸R¹⁹ wherein R¹⁷, R¹⁸ and R¹⁹ are independently hydrogen or C₁-C₃ alkyl.

H
C₁₄

5 OCH₂C(O)OD in which D is OR¹⁴ or NR¹⁵R¹⁶ wherein R¹⁴ is hydrogen or C₁-C₃ alkyl, R¹⁵ is hydrogen and R¹⁶ is methyl or benzyl.

H
C₁₄

9. The compound of Claim 4 wherein W is OR¹²O C(O)R¹³, wherein R¹² is -CH(CH₃)- or -CH(CH₂CH₃)- and R¹³ is C₁-C₃ alkyl.

10
P1 H 13

10. The compound of Claim 1 wherein the configuration at positions 3 and 4 of the piperidine ring is each R.

15
13

11. A compound of Claim 1 selected from the group consisting of

QCH₂CH[CH₂(C₆H₅)]C(O)OH, QCH₂CH₂CH(C₆H₅)C(O)NHCH₂C(O)-OCH₂CH₂, QCH₂CH₂CH(C₆H₅)C(O)NHCH₂C(O)OH, Q-CH₂CH₂CH-(C₆H₅)C(O)NHCH₂C(O)NHCH₃, Q-CH₂CH₂CH(C₆H₅)C(O)NHCH₂C(O)-NHCH₂CH₃, G-NH(CH₂)₂C(O)NH₂, G-NH(CH₂)₂C(O)NHCH₃, G-NHCH₂C(O)NH₂, G-NHCH₂C(O)NHCH₃, G-NHCH₂C(O)NHCH₂CH₃, G-NH(CH₂)₃C(O)OCH₂CH₃, G-NH(CH₂)₃C(O)NHCH₃, G-NH(CH₂)₂C(O)-OH, G-NH(CH₂)₃C(O)OH, QCH₂CH[CH₂(C₆H₁₁)]C(O)NHCH₂C(O)OH, QCH₂CH[CH₂(C₆H₁₁)]C(O)NH(CH₂)₂C(O)OH, QCH₂CH[CH₂(C₆H₁₁)]-C(O)NH(CH₂)₂C(O)NH₂, Z-NHCH₂C(O)OCH₂CH₃, Z-NHCH₂C(O)OH, Z-NHCH₂C(O)NH₂, Z-NHCH₂C(O)N(CH₃)₂, Z-NHCH₂C(O)NHCH(CH₃)₂, Z-NHCH₂C(O)OCH₂CH(CH₃)₂, Z-NH(CH₂)₂C(O)OCH₂(C₆H₅), Z-NH-(CH₂)₂C(O)OH, Z-NH(CH₂)₂C(O)NHCH₂CH₃, Z-NH(CH₂)₃C(O)NHCH₃, Z-NHCH₂C(O)NHCH₂C(O)OH, Z-NHCH₂C(O)OCH₂C(O)OCH₃, Z-NHCH₂-C(O)O(CH₂)₄CH₃, Z-NHCH₂C(O)OCH₂C(O)NHCH₃, Z-NHCH₂C(O)O-

20
13

25
13

154

(4-methoxycyclohexyl), Z-NHCH₂C(O)OCH₂C(O)NHCH₂(C₆H₅),
and Z-NHCH₂C(O)OCH(CH₃)OC(O)CH₃,

wherein:

P, 1507
5 Q represents trans-3,4-dimethyl

10

G represents Q-CH₂CH₂CH C -

15

and Z represents Q-CH₂CHC -

20

P, 1507
and pharmaceutically acceptable salts thereof.

13
25 12. A compound of Claim 11 selected from the group consisting of (3R,4R,S)-Z-NHCH₂C(O)OCH₂CH(CH₃)₂, (+)Z-NHCH₂C(O)OH, (-)Z-NHCH₂C(O)OH, (3R,4R,R)-ZNHCH₂C(O)-OCH₂CH(CH₃)₂, (3S,4S,S)-ZNHCH₂C(O)OCH₂CH(CH₃)₂, (3S,4S,R)-ZNHCH₂C(O)OCH₂CH(CH₃)₂, (3R,4R)-ZNHCH₂C(O)NHCH₂(C₆H₅) and (3R,4R)-G-NH(CH₂)₃C(O)OH, and pharmaceutically acceptable salts thereof.

155

13. A substantially pure stereoisomer of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.

14. A pharmaceutical formulation comprising a compound of Claim 1 or the salt thereof in combination with a pharmaceutically acceptable excipient.

15. A pharmaceutical formulation comprising a compound of Claim 11 or a pharmaceutically acceptable salt thereof in combination with a pharmaceutically acceptable excipient.

16. A method for treating irritable bowel syndrome in a patient said method comprising administering to said patient an effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.

15 17. A method for treating a peripheral effect of an opioid in a patient which comprises administering to said patient an effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.

20 18. The method of Claim 17 wherein said peripheral effect being treated is constipation, nausea or vomiting.

25 19. A method for blocking mu receptors in mammals comprising administering to a mammal requiring blocking of a mu receptor a receptor blocking dose of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.

30 20. A method for treating idiopathic constipation in a patient said method comprising administering to said patient an effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.

B3 add

156