

PARALLEL SCALING PERFORMANCE ON TACC

Alexy Skoutnev

Senior at The University of Texas at Austin Double Major in Mathematics and Mechanical Engineering

Advisor: Dr. Kevin Clarno

Graduate Mentor: Benjamin Pachev

Introduction

- Evaluate the scale performance of a simple MPI program to benchmark the performance of MPI on Frontera
- Numerically approximate the heat conduction problem using finite element principles.
- Model the weak and strong scalability of MOOSE using MPI on Frontera
- Perform scalability on linear and non-linear heat conduction via weak and strong scaling

What is Performance Testing?

Strong Scaling

- The number of processors are increased
- The workload per processors are decreased
- Overall problem size is constant

Strong Scaling Efficiency

$$E_{S} = \frac{t(1)}{t(N) * N}$$

- Common statistic used for strong scaling that ranges from 0 to 1
- t(1) execution time for one processor
- t(N) execution time for N processors
- N represents the number of processors

Weak Scaling

- The number of processors are increased
- The workload per processors is constant
- Overall problem size is increased

Weak Scaling Efficiency

$$E_{S} = \frac{t(1)}{t(N)}$$

- Common statistic used for weak scaling that ranges from 0 to 1
- t(1) execution time for one processor
- t(N) execution time for N processors
- N represents the number of processors

MPI Performance Test

- MPI (Message Passing Interface) is a standard parallel programming library.
- MPI structure is the foundation for parallelism for many code libraries such as PETSc, MPICH, Open MPI, etc.
- MPICH was used as the base comparison for scaling performance between MOOSE.
- The MPI execution times were relatively fast compared to MOOSE execution times.

MPI Strong Scaling Performance Test

MPI Weak Scaling Performance Test

MOOSE Scaling Performance

- Developed a linear and non-linear heat conduction model using MOOSE (finiteelement, multiphysics framework)
- Performed strong and weak scaling on linear and non-linear simulation models
- Computed strong and weak scaling efficiency on an intranode and internode study
- Evaluated potential performance flaws in scaling and compared results with MPI performance tests.

Heat Conduction Equation

$$\nabla \cdot k(T) \nabla T = 0$$

MOOSE Weak Scaling Performance Test Intranode

MOOSE Weak Scaling Performance Test Internode

MOOSE Strong Scaling Performance Test Intranode

MOOSE Strong Scaling Performance Test Internode

Special Thanks to Dr. Kevin Clarno, Benjamin Pachev