Machine Learning Backpropagation 1

Mostafa S. Ibrahim *Teaching, Training and Coaching for more than a decade!*

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Recall a Trivial NN network

- ∂E/∂w1 = ∂E/∂out2 * ∂out2/∂net2 * ∂net2/∂out1 * ∂out1/∂net1 * ∂net1/∂w1
- If we **cached** the results of $\partial E/\partial net1$ then $\partial E/\partial w1 = \partial E/\partial net1 * \partial net1/\partial w1$

Compute ∂E/∂w1

- Assume we have 5-layers neural network
- It ends with 2 output nodes where the total error is computed using MSE
- We would like to compute ∂E/∂w1
- To do this, we consider all paths from w1 to an output nodes
 - o Empty nodes in layers 1 and 2 don't matter
- w1 is linked to node d
- Node d is linked to nodes: a, b, c
- a, b, c are linked to more nodes that we should consider!

Compute ∂E/∂w1 using the Chain Rule

- $\partial E/\partial w1 = \partial E/\partial d_net * \partial d_net/\partial w1$
- ∂E/∂d_net = ∂E/∂d_out * ∂d_out/∂d_net
 ?

Compute ∂E/∂w1 using the Chain Rule

- $\partial E/\partial w1 = \partial E/\partial d_net * \partial d_net/\partial w1$
- $\partial E/\partial d_net = \partial E/\partial d_out * \partial d_out/\partial d_net$
 - ∂d_out/∂d_net is just the direct derivative of the activation function
 - o If $f(net) = out = net^2$, then $\partial d_out/\partial d_net = 2net$
 - o If f(net) = out = sigmoid(net), then ∂d_out/∂d_net = out * (1-out)
 - Tip: Once we compute this value, we should cache it

Compute ∂E/∂w1: Multivariate Chain Rule

- What about ∂E/∂d_out?
- Node d_out is connected to a_net, b_net and c_net
- We need to process all derivative paths from d_out to them
- ∂E/∂d_out =
 ∂E/∂a_net * ∂a_net/∂d_out +
 ∂E/∂b_net * ∂b_net/∂d_out +
 ∂E/∂c_net * ∂c_net/∂d_out
 ∂a_net/∂d_out = w2
 - \circ $\partial b_net/\partial d_out = w3$
 - o ∂c_net/∂d_out = w4

Compute ∂E/∂w1: Multivariate Chain Rule

- $\partial E/\partial d$ _out = $\partial E/\partial a$ _net * w2 + $\partial E/\partial a$ _net * w3 + $\partial E/\partial a$ _net * w4
 - Let's generalize: ∑ ∂E/∂ LayerNode_net * connection_weight
- Now we just moved from one layer to the next layer
- We can recursively keep doing that to enumerate all paths
- But what if we already cached these 3 values?
- Then we just use them!
- This is backpropagation!

Backpropagation derivative 3 formulas

- Assume we have interest in node d and outgoing edges of it are (weight = w[i] and connection = n[i])
- $\partial E/\partial d$ _out = $\sum w[i] \times \partial E/\partial n[i]$ _net ($\partial n[i]$ _net cached)
- $\partial E/\partial d$ net = $\partial E/\partial d$ out * ∂d out/ ∂d net
 - ∂d_out/∂d_net is just the direct derivative of the activation function
 - out * (1-out) for sigmoid
 - 1 out² for tanh
 - 2net for quadratic polynomial
 - Cache ∂E/∂d_net
- $\partial E/\partial w = \partial E/\partial d_net * \partial d_net/\partial w$
 - ∂d_net/∂w is the input value to this node
 - Either input xi or node_out

Ε

Base Case

- We determined the general (recursive) formulas
- We need to compute the base case, which is the output layer
- Typically the activation function for regression in the output layer is identity
 - \circ identity(x) = x
 - If you are regressing specific range, e.g. 0-1, you can use sigmoid
- Luckily, this is easy with regression
- Assume the error is MSE: E = ½ (output target)²
 - This is vector notation. It is also the same for each output node O
- Then for some final $\partial E/\partial o_{out} = \frac{1}{2} * 2 * (out target) * 1$

Relevant Materials

- Backpropagation: <u>StatQuest</u>, 3Blue1Brown (<u>v1</u>, <u>v2</u>)
- A step-by-step Backpropagation Example: <u>Article</u>
- The Backpropagation <u>Algorithm</u>
- Yes you should <u>understand backprop</u>

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."