考	试科目	1名	<u></u> 际_		计算	机与	操作	系	统		(A	(卷)	-	
考证	式方式:	<u>闭卷</u>	-	考试日	期 <u>201</u>	<u>6</u> 年 <u>6</u>	_月 <u>_24</u>	日	孝	牧师_	骆斌、	葛季栋		
系((专业)_				年	级		_			班级			
学与	<u>1</u> J				姓	名					成绩			
	题号	-	_		三	四	五	j	7	七	八	九		
	分数	t												
得分		一、:	选择	题(本題	瓦满分 50	分,每	小题 2 タ	ナ, <u>}</u>	生:	<u>答案</u> :	<u>必须填写</u>	在以下表	各 1~25)	
	1	2		3	4	5	6		,	7	8	9	10	
								-						
	11	12		13	14	15	16)	1	7	18	19	20	
	21	22		23	24	25		-	1/	7	A			
								h_		/ 				
	系统调用	月率 是	B. °	可靠性		C. 稳定	性	D). 兼	容性	。 供的接口			
	页面替换 A.FIFC	算法		有可能会	è产生 B	elady 异	常现象。							
	假设表格 并发执行	107	述的	两个进和	星(P和Q)并发执	行,其中	‡,;	a, b	, c,	d、e 是原	ī语,	_是不可能	出现
	pro	cess P(4			pro	ocess Q(
	A. a,b,c	a; b;		B. a.b	.d.e.c	C. a		e; }	I	D. a.b.	.d.c.e			
5.	X											于卫星控制	制、导弹发	ま射、
	工业控制	789												
	A.分时操													
	短作业优	先算法	,则	平均周转	专时间是		_				2和 T3,_ Γ1+2T2+7		<t3。系统< td=""><td>采用</td></t3。系统<>	采用
7.	Unix 系统 A.超级				结构实现				Ι) .空闲	月块			
8.	采用 A.分页					C.固定分	分区式存	储管		Е).分段式看	存储管理		

9.	分段存储管理的系统, 若地址用 24 位表示, 其中 8 位表示段号, 则允许每段的最大长度是
10.	在 UNIX 系统中运行以下程序,最多可再产生出个进程? main(){ fork(); /*←PC(程序计数器),进程 A fork(); fork(); }
	A. 9 B.7 C.5 D.3
11.	Linux 系统中的 slab 分配器,采用内存管理方式。 A. 固定分区 B.分页式 D.分段式
12.	某系统中有 3 个并发进程,每个进程都需要同类资源 4 个,试问该系统不会发生死锁的最少资源数是。 A. 9 B. 10 C. 11 D. 12
12	
13.	Solaris 的多线程的实现方式为。 A.纯内核级线程 B.混合式 C.纯用户级多线程 D.单线程结构进程
14.	如果 I/O 设备与存储设备进行数据交换不经过 CPU 来完成,这种数据交换方式是。 A.轮询方式 B.中断方式 C.DMA 方式 D.无条件存储方式
15.	引入多道程序设计技术的前提条件之一是系统具有。 A. 中断功能 B.多个终端 C. 多个 CPU D.分时功能
16.	通道程序是。 A.由一系列机器指令组成
17.	对一个文件的访问,常由共同限制。 A.用户访问权限和文件属性 B.用户访问权限和用户优先级 C.优先级和文件属性 D.文件属性的口令
18.	I/O 软件分层结构中,负责将把用户提交的逻辑 I/O 请求转化为物理 I/O 操作的启动和执行A. 用户空间的 I/O 软件 B.独立于设备的 I/O 软件 C. I/O 中断处理程序 D.设备驱动程序
19.	对于两个并发进程,设互斥信号量为 mutex, 若 mutex=0,则。
	A. 表示没有进程进入临界区 B. 表示有一个进程进入临界区 C. 表示有一个进程进入临界区,另一个进程等待进入 D. 表示有两个进程进入临界区
20.	在操作系统中,临界区指。 A. 一个缓冲区 B.一个数据区 C.同步机构 D.一段程序
21.	一台机器有 48 位虚地址和 32 位物理地址,若页长为 4KB,如果设计一个反置页表,则有个页表项。
	$A. 2^{16}$ B. 2^{32} C. 2^{20} D. 2^{36}
22.	Unix 文件系统中,创建文件的系统调用 create 返回值是。 A.文件描述符(字) B.文件名 C.inode 号 D.inode
23.	当计算机提供了管态(核心态)和目态(用户态)时,必须在管态(核心态)下执行。 A.输入/输出指令 B. 把运算结果送入内存的指令 C. 算术运算指令 D.从内存取数的指令

24.	操作系统中的 SPOOLi	ng 技术,实质是将	转化为共享	设备的技术。
	A.虚拟设备	B.脱机设备	C.独占设备	D.块设备
25.	一个进程被唤醒意味着 A. 该进程重新占有了		它的优先权变为最	大
	C. 其 PCB 移至等待队	.列队首 D.	进程变为就绪状态	
得分	二、简答题	(本题满分10分)		
1. 答:	试写出进程映像包括明	『些组成部分(不必详述	这每个组成部分的 具	体内容)。(2分)
2.				刚结束了 125 道的存取, 正在处理
	143 	攻系统当前 I/O 请求№	人列叫 卜: 86,147,	91, 177, 94, 150, 102, 175, 130

试问:如果采用<u>电梯调度算法</u>完成上述请求,其存取臂移动的总量是多少?并写出磁头臂移动的序

3. 请画出经典的<u>三状态进程模型及其状态转换图</u>,并<u>简述状态之间各转换关系的含义</u>。(3分)

答:

答:

列。(2分)

4. 在 UNIX 系统中,每个 i 节点中分别含有 12 个直接地址的索引和一、二、三级间接索引。假设每个盘块有 1024Byte,若每个盘块放 256 个盘块地址,20MB 的文件分别占用多少直接、一、二、三级间接盘块? (3分)

得分

三、(本题满分8分)考虑下面的进程集合:

*/	->14	
进程	到达时间	处理时间
A	0	3
В	2	6
С	4	4
D	6	5
Е	8	2

如果使用先来先服务 FCFS 调度算法,得到的每个单位时间内的进程执行序列表示为

算法																		Altr.	467		
FCFS	A	A	A	В	В	В	В	В	В	С	С	С	С	D	D	D	D	D	E	Е	

参照该 FCFS 调度算法给出的执行序列的写法,写出如果采用时间片轮转 RR(时间片单位 q=1, q=4)、多级反馈队列 Feedback (反馈 Fback, q=1; Fback, q=2ⁱ)等 4 个调度算法,得到进程执行序列,**即在如下表格中填入每个单位时间内执行的进程代号**。注:在时间片轮转或者多级反馈队列调度时,如果就绪队列都为空,正在运行的进程不被抢占,继续适用下一段时间片。答:

算法	0	1	2	3	4	5	6	7	8	9	10	11	12 13	14 15	16	17	18	19	20
RR,q=1																			
RR,q=4												A _P	/						
Fback,q=1										K			pr.						
Fback,q=2	i								A	Z /	T								

得分

四、(本题满分6分)

- 一个进程在磁盘上包含 8 个虚拟页(0 号~7 号),在主存中固定分配给 3 个帧(frame),假设这些帧最初是空的,发生如下顺序的页访问: 0,1,7,0,1,2,0,1,2,3,2,7,1,0,3
- (a) 如果使用 LRU 策略,给出相继驻留在这 3 个帧上的页。计算主存的缺页次数。
- (b) 如果使用 Clock 策略, 重复问题(a)。

【注】答题要求,在页号的<u>右上角标记*表示引用标识位</u>为 1,使用→表示指针当前所指向的页框中的页号,在缺页标记一行使用 F 标记缺页情况,并在 填写**缺页次数**。

答: LRU 算法: 缺页次数为 次。

	0	1	7	2	1	3	0	1	2	2	1	3	1	0	3
页框 0		M													
页框 1		, All													
页框 2															
缺页标记															

Clock 算法:缺页次数为 次。

	0	1	7	2	1	3	0	1	2	2	1	3	1	0	3
页框 0															
页框 1															
页框 2															
缺页标记															

得分 五、(本题满分6分)

设系统中有 4 种类型的资源(A、B、C、D)和 5 个进程(P0、P1、P2、P3、P4),A 资源的总量为 3,B 资源的总量为 12,C 资源的总量为 14,D 资源的总量为 14。在 T0 时刻系统中个资源使用情况的状态如下表所示,系统采用银行家算法实施死锁避免策略。

				, _ , , ,							
进程	已经分	分配资源	(Alloc	ation)	最大需求矩阵 (Claim)						
	A	В	С	D	A	В	С	D			
P0	0	0	3	2	0	0	4	4			
P1	1	0	0	0	2	7	5	0			
P2	1	3	5	4	3	6	10	10			
Р3	0	3	3	2	0	9	8	4			
P4	0	0	1	4	0	6	6	10			

试问: (1) T0 时刻的各资源剩余数量为多少? T0 时刻的是否为安全状态? 若是,请给出其中可能的一种安全序列,并依照该序列,写出各资源的回收步骤。

(2) 如果进程 P2 提出安全请求 Request2 (1, 2, 2, 2) 后,系统能否将资源分配给它? 给出理由。答:

得分

六、(本题满分6分)

有一多道程序设计系统: (1) 进程调度采用<u>时间片调度算法</u>,不考虑进程的输入输出和操作系统的调度 开销(将时间片轮转调度理解为多个进程平分 CPU 时间); (2) 存储管理采用可变分区方式,用户空间 为 100K,采用**最先适应算法**分配<u>主存且不允许移动</u>; (3) 系统配有 4 台磁带机,对磁带机采用<u>静态分配</u> 策略。今有如下作业序列:

作业名	进输入井时间	需执行时间	主存量要求	申请磁带机数
J_1	10:00	25 分钟	15K	2
J_2	10:20	30 分钟	60K	1
J_3	10:30	10 分钟	50K	3
J_4	10:40	15 分钟	30K	2

如果作业调度采用"响应比最高优先算法",假定操作系统从11:00 开始作业调度,问:

J_1 装入主存时间:		结束时间:	
01 4X/ VII. 11 P1 1P1.	,	~H /N H J 1 PJ +	,

- J₂装入主存时间:_____,结束时间:_____;
- J₃装入主存时间:______, 结束时间:______;
- J4装入主存时间:______, 结束时间:______;

注:需要**写出关键演算步骤**,即每个时间点装入哪些作业,各作业(进程)资源占用情况,用了多久 CPU, 又继续后续装入和调度。

得分 七、(本题满分7分)

吸烟者问题(Patil, 1971),三个吸烟者在一个房间内,还有一个香烟供应者。为了制造并抽掉香烟,每个吸烟者需要三样东西:烟草(编号为0)、纸(编号为1)和火柴(编号为2),供应者有丰富货物提供。三位吸烟者中,第一位(编号为1)有自己的烟草,第二位(编号为2)有自己的纸和第三位(编号为3)有自己的火柴。供应者随机地将两样东西放在桌子上,允许一个吸烟者进行对健康不利的吸烟。当吸烟者完成吸烟后唤醒供应者,供应者再把两样东西放在桌子上,唤醒另一个吸烟者。请信号量和P、V操作写出该问题的程序描述。

得分

八、管程(本题满分7分)

用 Hoare 管程方法写出五个哲学就餐问题的程序描述。

