1 ota	1 NO.	oi Qu	estions: 5]	200	SEAT No.:	
P-3340					[Total	No. of Pages : 5
			[0	6027]-12		
			M.C.A.	(Managemer	nt)	
	\mathbf{I}	Г-12	: DATA STRUC	2		THMS
			(2020 Patte	ern) (Semeste	er - I)	
Tim	e : 2½	2 Hou	rs1		ſΜ	lax. Marks : 50
			the candidates :		[272	1,201105 1 0 0
	1)	All e	questions are compulso	ry.		
	<i>2</i>)	From	m $Q.2$ to $Q.5$ having int	ernal choices.	3	
Q 1)	Mul	ltiple	Choice Questions:			$[20 \times \frac{1}{2} = 10]$
	a)	_ \ >	balance binary tree th	ne height of two s	subtree of ever	rynode can not
		diff	er by more than		٠٠´	
	\	1)	2	11)	,	
		iii)	3	100 4		
	b)		header in linked list			
		i)	First record of actua			
		ii)	Last record of actual	9		
		iii)	Pointer to the last re	cord of the actual	l data	
		iv)	None of these			
	c)	Wha	at do you call the sele			ethod?
		i)	Outer Key	•	ner Key	,
		iii)	Pivot Key	iv) Pa	rtition Key	0.
	d)		ich method of travers	al does not use s	stack to hold	nodes that are
			ting to be processed?	::\ D (Str. III	
		i)	D-search		eadth First	
	,	iii)	Dept First		ick tracking	
	e)		knapsack problem w	nere the objective	e function is to	o minimize the
		i)	Greedy	ii) D	ynamic 0/1	
		iii)	Back tracking	ix	one of these	

f)	Wh	at is the type of the algorithm us	sedin	solving the 8 Queens Problem?				
	i)	Back tracking	n)	Dynamic				
	iii)	Branch & Bound	iv)	None of these				
g)	Pop	ping is an act of						
	i)	Adding values						
	ii)	Taking off values from stack	.					
	iii)	Transferring values from stace	ck					
	iv)	None						
h)	The	optimal data structure used to	solv	e Tower of Hanoi is				
	i)	Tree	ii)	Heap				
	iii)	Priority Queue	iv)	Stack				
i)	For a given array, there can be multiple ways to reach the end of the							
	arra	Vusing minimum number of						
. (1)	True	ii)	False				
1)	Dep tree:		to w	hich of the traversal in Binary				
	i)	Pre order	in	Post order				
	iii)	Level order	(V)	In order				
k)	ŕ	raph in which all vertices have	\)					
K)	i)	Complete graph	ii)	Regular graph				
	iii)	Multi graph	iv)	Simple graph				
1)		time complexity of quick sor						
,	i)	O (n)	ii)					
	iii)	$O(n^2)$	iv)	O (n log n)				
m)	То	represent hierarchical betwee		ments which data structure is				
		able?						
	i)	Dequeue	ii)	Priority Queue				
	iii)	Tree	iv)	Graph				
n)	An algorithm in which we divide the problem into sub problem and							
	then we combine the sub solutions to form solution to the origina problem is known as							
	i)	Brute force	ii)	Divide and conquer				
	iii)	Greedy algorithm	iv	None of these				
	111)	crocaj argorianii	0.	Tione of mode				
27]-12	,	2	*					

	o)	The complexity of linear search algorithm is							
		i) $O(n)$ $O(\log n)$							
		iii) $O(n^2)$ iv) $O(n \log n)$							
	p)	In a Max-heap, element with greatest key is always in the which node?							
		i) leaf node							
		ii) first node of left subtree							
		iii) root node							
		iv) first node of right subtree							
	q)	In general Backtracking can be used to solve?							
		i) Numerical problem ii) Graph coloring problems							
		iii) Exhaustive search iv) Combinational problem							
	r)	In how many directions do Queens attack each other?							
		i) 4 ii) 3							
		iii) 2 iv) 1							
	s)	If a problem can be broken into sub problems which are reused several							
	0	times, the problem possessesproperty							
		i) Overlapping subproblem ii) Optimal substructure							
		iii) Memorization iv) Greedy							
	t) Which of the following problems is NOT solved using Dy								
		Programming?							
		i) 0/1 knapsack problem							
		ii) Matrix chain multiplication problem							
		iii) Edit distance problem							
		iv) Fractional knapsack problem							
00)	,								
Q2)	a)	Draw the AVL tree for the following [4]							
	4, 18, 12, 2, 3, 7, 5.								
	b)	Apply the DFS Algorithm to traverse the following graph [4]							
		(V ₃)							
		(Vy) (V5)							
	c)	Explain linear probing. [2]							
	,	,9°							
[602	7]-12	3							

Draw Binary Search Tree for following data. **[4]** a) 35, 89, 43, 76, 29, 55, 87, 65 Apply the BFS algorithm to traverse the following graph. **[4]** b) Explain Hash Table. [2] c) Apply Recursive Staircase algorithm to following problem Input : n = 5. *Q3*) a) Draw the figure and find solution. [4] Write an algorithm to implement circular queue using linked list. [4] Explain Hamiltonian Cycle. c) [2] Apply Rain Terrace algorithm to following problem Input: [2, 3, 0, 4, 1, 5] a) Draw the figure and fine solution. **[4]** Write an algorithm to insert element in stack using linked list. b) Discuss combination sum c) Sort the following data using Mergesort [22, 57, 31, 05, 9 **Q4**) a) 24]. [4] Apply Prim's Algorithm to obtain minimum cost spanning tree for the b) following graph [4]

c) Explain uses of queue.

[2]

a)	Write an	algorithm	to	find	GCD	of	44	and	17	using	Euclidean
	algorithm.										[4]

Write Dijkstra Algorithm. b)

[4]

Discuss Double linked list. c)

[2]

Find the largest common subsequence for the following string using **Q5**) a) Dynamic Programming. [7]

$$X = [a, b, a, a, b, a]$$

[b, a, b, b, a, b]

b) Explain fast powering. [3]

OR

Consider the given instance of 0/1 knapsack problem. a)

$$N = 5$$
, $M = 11$, $P = (1, 6, 18, 22, 28)$, $W = (1, 2, 5, 6, 7)$

Using dynamic programming determine the optimal profit and the solution vector. [7]

Explain unique path with suitable example. b)