

CS6660: MATHEMATICAL FOUNDATIONS OF DATA SCIENCE (PROBABILITY)

QUIZ 2

DATE: 14 SEPTEMBER 2024

Question	1	2(a)	2(b)	Total
Marks Scored				

Instructions:

- · Fill in your name and roll number on each of the pages.
- · You may use any result covered in class directly without proving it.
- · Unless explicitly stated in the question, DO NOT use any result from the homework without proof.

1. (1 Mark)

Suppose that two batteries are chosen simultaneously and uniformly at random from the following group of 12 batteries : 3 new, 4 used (yet working), 5 defective. You may assume that all batteries within a particular group are identical. Let X be the number of **new** batteries chosen, and let Y be the number of **defective** batteries chosen. If the value of $\mathbb{P}(\{X \geq Y\})$ is expressed as $\frac{\alpha}{\beta}$, determine the value of $\frac{\alpha+\beta}{\beta-\alpha}$. Give your answer up to 1 decimal place only.

Solution

Observe that $X \in \{0, 1, 2\}$, $Y \in \{0, 1, 2\}$, and $X + Y \le 2$. The joint PMF of X and Y may be expressed as follows:

$$\begin{cases} \frac{\binom{4}{2}}{\binom{12}{2}}, & x = 0, y = 0, \\ \frac{\binom{4}{1} \cdot \binom{5}{1}}{\binom{12}{2}}, & x = 0, y = 1, \\ \frac{\binom{5}{2}}{\binom{12}{2}}, & x = 0, y = 2, \\ \frac{\binom{3}{1} \cdot \binom{4}{1}}{\binom{12}{2}}, & x = 1, y = 0, \\ \frac{\binom{3}{1} \cdot \binom{5}{1}}{\binom{12}{2}}, & x = 1, y = 1, \\ \frac{\binom{3}{2}}{\binom{12}{2}}, & x = 2, y = 0, \\ 0, & \text{otherwise.} \end{cases}$$

We then note that

$$\mathbb{P}(\{X \ge Y\}) = p_{X,Y}(0,0) + p_{X,Y}(1,0) + p_{X,Y}(2,0) + p_{X,Y}(1,1) = \frac{36}{66} = \frac{6}{11}.$$

We thus have $\alpha=6$, $\beta=11$, and therefore $\frac{\alpha+\beta}{\beta-\alpha}=\frac{17}{5}=3.4$.

2. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Assume that all random variables appearing below are defined with respect to \mathscr{F} .

Numbers from [0,1] are picked uniformly, independently, and sequentially over time.

Let X_n denote the number picked at time n, where $n \in \{0, 1, 2, \ldots\}$. Let N be the random variable defined as

$$N = \min\{n \ge 1 : X_n > X_0\}.$$

That is, N denotes the first time index n at which the value of X_n exceeds the value of X_0 .

(a) (3 Marks)

For any fixed $n \in \mathbb{N}$, determine $\mathbb{P}(\{N = n\})$.

Hint: The event that N=n is identical to the event that $X_1 \leq X_0, \ldots, X_{n-1} \leq X_0, X_n > X_0$.

Solution: For any fixed $n \in \mathbb{N}$, we have

$$\begin{split} \mathbb{P}(\{N=n\}) &= \mathbb{P}(\{X_1 \leq X_0\} \cap \dots \cap \{X_{n-1} \leq X_0\} \cap \{X_n > X_0\}) \\ &= \int_0^1 \underbrace{\int_0^{x_0} \dots \int_0^{x_0} \int_{x_0}^1 f_{X_0,\dots,X_n}(x_0,\dots,x_n) \, dx_n dx_{n-1} \dots dx_0}_{n-1 \text{ times}} \\ &\overset{(a)}{=} \int_0^1 \underbrace{\int_0^{x_0} \dots \int_0^{x_0} \int_{x_0}^1 dx_n dx_{n-1} \dots dx_0}_{n-1 \text{ times}} \\ &= \int_0^1 x_0^{n-1} (1-x_0) \, dx_0 \\ &= \frac{1}{n} - \frac{1}{n+1}, \end{split}$$

where (a) above follows from the fact that $X_0,\dots,X_n \overset{\text{i.i.d.}}{\sim} \text{Unif}([0,1]).$

(b) (1 Mark)

Compute $\mathbb{P}(\{N>2\})$.

Solution: We have

$$\mathbb{P}(\{N>2\}) = \sum_{n=3}^{\infty} \mathbb{P}(\{N=n\}) = \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots = \frac{1}{3}.$$