Stimulated Neutrino Flavor Conversions and Rabi Oscillations

Lei Ma in collaboration with Shashank Shalgar, and Huaiyu Duan

Department of Physics UNM

January 30, 2017

OUTLINE

- Background
 What are Neutrinos
 Neutrino Oscillations
 Why Do Neutrinos Oscillate
- Matter Effect
 Interactions with Matter
 MSW Effect
- Stimulated Neutrino Flavor Conversions
 Rabi Oscillations
 Single Frequency Matter Profile and Rabi Oscillations
- Single Frequency Matter Potential Decomposed Basis and Formalism Rabi Oscillations With Multiple Potentials Multiple Frequencies in Matter Potential
- Summary

OVERVIEW

Background
What are Neutrinos
Neutrino Oscillations
Why Do Neutrinos Oscillate

Matter Effect

Stimulated Neutrino Flavor Conversions

Single Frequency Matter Potential Decomposed

Summary

WHAT ARE NEUTRINOS?

Elementary particles.

Source: symmetrymagazine.org

Neutrinos are

- ► fermions,
- ▶ electrically neutral,
- ▶ three flavors,
- ► light.

Adapted from Olga Mena & Stephen Parke (2004)

WHAT ARE NEUTRINOS?

Elementary particles.
Source: symmetrymagazine.org

Neutrinos are

- ► fermions,
- ► electrically neutral,
- ► three flavors,
- ► light.

Adapted from Olga Mena & Stephen Parke (2004)

WHAT ARE NEUTRINO OSCILLATIONS?

Neutrino Oscillations || Neutrino Flavor Conversions

Neutrino Oscillations

WHAT ARE NEUTRINO OSCILLATIONS?

Probabilities of finding neutrinos to be in each flavor.

WHY DO NEUTRINOS OSCILLATE?

Flavor states are different from mass states.

$$\begin{pmatrix} \psi_{\rm e} \\ \psi_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

WHY DO NEUTRINOS OSCILLATE?

Equation of Motion

$$i\partial_x \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \mathbf{H} \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix}$$

WHY DO NEUTRINOS OSCILLATE?

Equation of Motion

$$i\partial_x egin{pmatrix} \psi_e \ \psi_\mu \end{pmatrix} = \mathbf{H} egin{pmatrix} \psi_e \ \psi_\mu \end{pmatrix}$$

$$\mathbf{H} = rac{\omega_{\mathrm{v}}}{2} \left(-\cos 2 heta_{\mathrm{v}} oldsymbol{\sigma}_{3} + \sin 2 heta_{\mathrm{v}} oldsymbol{\sigma}_{1}
ight.
ight)$$

► Oscillation frequency:

$$\omega_{ ext{v}}=rac{\delta m^2}{2E}=rac{m_2^2-m_1^2}{2E}$$

▶ Mixing angle θ_v

FLAVOR ISOSPIN

$$\mbox{Hamiltonian: } \mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$$

$$\mbox{Flavor isospin: } \vec{s} = \Psi^\dagger \frac{\vec{\sigma}}{2} \Psi$$

Flavor isospin:
$$\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$$

Electron flavor survival probability

$$P=\frac{1}{2}+s_3$$

Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

electron flavor

muon flavor

FLAVOR ISOSPIN

Hamiltonian:
$$\mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$$

Flavor isospin:
$$\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$$

Electron flavor survival probability

$$P=\frac{1}{2}+s_3$$

Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

Vacuum oscillation Hamiltonian

$$rac{\omega_{ ext{v}}}{2}\left(-\cos2 heta_{ ext{v}}oldsymbol{\sigma}_{3}+\sin2 heta_{ ext{v}}oldsymbol{\sigma}_{1}
ight.
ight)$$

$$ightarrow \cos 2 heta_{
m v} \left(egin{array}{c} 0 \ 0 \ \omega_{
m v} \end{array}
ight) - \sin 2 heta_{
m v} \left(egin{array}{c} \omega_{
m v} \ 0 \ 0 \end{array}
ight)$$

OVERVIEW

Background

Matter Effect Interactions with Matter MSW Effect

Stimulated Neutrino Flavor Conversions

Single Frequency Matter Potential Decomposed

Summary

INTERACTIONS WITH MATTER

Neutral current interaction between $\nu_{\rm e},\,\nu_{\mu},\,\nu_{\tau},\,{\rm and}\,e^-,\,{\rm quarks}$ etc.

Charged current interaction between $\nu_{\rm e}$ and e^-

MATTER INTERACTION

Hamiltonian with matter interaction in flavor basis ($\omega_{\rm v} = \delta m^2/2E$):

$$\mathbf{H} = \frac{\omega_{\mathbf{v}}}{2} \left(-\cos 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_{3} + \sin 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_{1} \right) + \frac{\lambda(x)}{2} \boldsymbol{\sigma}_{3}$$

- ► Vacuum Hamiltonian
- ► Matter interaction
- $\lambda(x) = \sqrt{2}G_{\rm F}n_{\rm e}(x)$

MSW Effect

$$\begin{aligned} \mathbf{H} &= \frac{\omega_{\mathrm{v}}}{2} \left(-\cos 2\theta_{\mathrm{v}} \boldsymbol{\sigma}_{3} + \sin 2\theta_{\mathrm{v}} \boldsymbol{\sigma}_{1} \right) + \frac{\lambda(x)}{2} \boldsymbol{\sigma}_{3} \\ &\to \omega_{\mathrm{v}} \begin{pmatrix} -\sin 2\theta_{\mathrm{v}} \\ 0 \\ \cos 2\theta_{\mathrm{v}} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -\lambda(x) \end{pmatrix} \\ &= \vec{H}_{\mathrm{v}} + \vec{H}_{\mathrm{m}}(x) \end{aligned}$$

MSW EFFECT

Electron flavor survival probability

$$P = \frac{1}{2} + s_3$$

Oscillation frequency in vacuum:

$$\omega_{
m v} = |\vec{H}_{
m v}|$$

Oscillation frequency in matter:

$$\omega_{
m m} = |\vec{H}|$$

MSW EFFECT

Adiabatic matter density change

Low density

MSW EFFECT

- Maximum possible flavor transition probability amplitude
- ► MSW Resonance
- ► A specific matter density

$$\sqrt{2}G_{\rm F}n_{\rm e}\equiv\omega_{\rm v}\cos2\theta_{\rm v}$$

MORE COMPLICATED MATTER EFFECT

Why Do We Care

Astrophysical environments: supernovae etc

Turbulence in supernova. E. Borriello, et al (2014)

STIMULATED NEUTRINO FLAVOR CONVERSIONS

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

P. Krastev and A. Smirnov (1989); J. Kneller et al (2013); K. Patton et al (2014);

OVERVIEW

Background

Matter Effect

Stimulated Neutrino Flavor Conversions
Rabi Oscillations
Single Frequency Matter Profile and Rabi Oscillations

Single Frequency Matter Potential Decomposed

Summary

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\mathrm{m}}}{2}\sigma_{3}-\frac{\alpha}{2}\begin{pmatrix}0&e^{ikt}\\e^{-ikt}&0\end{pmatrix}$$

$$E_2 = \frac{\omega_m}{2}$$

Periodic Driving Potential

$$E_1 = -\frac{\omega_m}{2}$$

Frequency : k

Static Frame

$$\vec{H}_3 = \omega_{\rm m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}_+ = \alpha \begin{pmatrix} \cos(kt) \\ -\sin(kt) \\ 0 \end{pmatrix}$$

Static Frame

Corotating Frame

$$\vec{H}_{3} = \omega_{m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}_{+} = \alpha \begin{pmatrix} \cos(kt) \\ -\sin(kt) \\ 0 \end{pmatrix} \qquad \vec{H}_{3}' = (\omega_{m} - k) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}_{+}' = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\vec{H}_3' = (\omega_{\rm m} - k) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{H}_+' = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Corotating Frame

$$ec{H}_3' = (\omega_{
m m} - k) egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} = 0 \Rightarrow k = \omega_{
m m}$$

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\mathrm{m}}}{2}\sigma_{3}-\frac{lpha}{2}egin{pmatrix}0&e^{ikt}\end{pmatrix}$$

$$E_2 = \frac{\omega_{m}}{2}$$

Periodic Driving Potential

$$E_1 = -\frac{\omega_m}{2}$$

Frequency: k

Rabi formula

$$P_{1\rightarrow 2} = \frac{1}{1+D^2} \sin^2\left(\frac{\Omega_{\rm R}}{2}t\right).$$

Relative detuning

$$D = \left| \frac{\omega_{\rm m} - k}{\alpha} \right|.$$

Rabi frequency

$$\Omega_{\rm R} = |\alpha| \sqrt{1 + D^2}$$

$\begin{array}{ll} \text{HAMILTONIAN IN MATTER BASIS} & \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix} \end{array}$

$$\begin{pmatrix} e \\ \mu \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix}$$

Matter Potential

$$\lambda(x) = \lambda_0$$

Basis

Background matter basis:

$$\mathbf{H} = rac{1}{2} \left(-\omega_{\mathrm{m}}
ight) oldsymbol{\sigma_{3}}$$

$\begin{array}{ll} \textbf{HAMILTONIAN IN MATTER BASIS} & \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix} \end{array}$

$$\begin{pmatrix} v_e \\ \mu \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_H \end{pmatrix}$$

Matter Potential

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Basis

Background matter basis:

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\mathbf{A} \cos(\mathbf{k} \mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}$$

HAMILTONIAN IN MATTER BASIS

$$\alpha = \frac{\sin 2\theta_{\rm m}}{2} A$$

Matter potential frequency

$$k \sim \omega_{\rm m}$$

$$\begin{split} \mathbf{H} = & \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \sigma_{1} \\ \rightarrow & \omega_{\mathrm{m}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(\mathbf{k} \mathbf{x}) \\ -\sin(\mathbf{k} \mathbf{x}) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-\mathbf{k} \mathbf{x}) \\ -\sin(-\mathbf{k} \mathbf{x}) \\ 0 \end{pmatrix} \end{split}$$

RABI FORMULA WORKS

Lines: Rabi formula Dots, diamonds, triangles, and squares are **full solutions without approximations** for $k=\omega_{\rm m},\,k=(1-2\times10^{-5})\omega_{\rm m},$ and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

OVERVIEW

Background

Matter Effect

Stimulated Neutrino Flavor Conversions

Single Frequency Matter Potential Decomposed Basis and Formalism Rabi Oscillations With Multiple Potentials Multiple Frequencies in Matter Potential

Summary

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

We have been making approximations.

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \sigma_{1}$$

$$\rightarrow \omega_{\mathrm{m}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(\mathbf{k}\mathbf{x}) \\ -\sin(\mathbf{k}\mathbf{x}) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-\mathbf{k}\mathbf{x}) \\ -\sin(-\mathbf{k}\mathbf{x}) \\ 0 \end{pmatrix}$$

RABI BASIS

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\mathbf{A} \cos(\mathbf{k} \mathbf{x})}{2} \sin \theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}.$$

A Better Basis

Define Rabi basis in which the wave function is related to wave function in background matter basis through

$$\begin{pmatrix} \psi_{\rm L} \\ \psi_{\rm H} \end{pmatrix} = \begin{pmatrix} e^{-i\eta(x)} & 0 \\ 0 & e^{i\eta(x)} \end{pmatrix} \begin{pmatrix} \tilde{\psi}_{\rm L} \\ \tilde{\psi}_{\rm H} \end{pmatrix},$$

where

$$\eta(x) - \eta(0) = \frac{\cos 2\theta_{\rm m}}{2} \int_0^x A \cos(k\tau) d\tau.$$

SINGLE FREQUENCY MATTER POTENTIAL

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Hamiltonian in Rabi Basis

The Hamiltonian

$$\widetilde{\mathbf{H}} = -rac{\omega_{ ext{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} egin{pmatrix} 0 & rac{1}{2}lpha_{n}e^{i(nk)x} \ rac{1}{2}lpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

where $\alpha_n = -(-i)^n nk \tan 2\theta_m J_n(A\cos 2\theta_m/k)$.

SINGLE FREQUENCY MATTER POTENTIAL

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Hamiltonian in Rabi Basis

The Hamiltonian

$$\widetilde{\mathbf{H}} = -rac{\omega_{ ext{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} egin{pmatrix} 0 & rac{1}{2}lpha_{n}e^{i(nk)x} \ rac{1}{2}lpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

where $\alpha_n = -(-i)^n nk \tan 2\theta_m J_n(A\cos 2\theta_m/k)$.

Multiple potentials with different frequencies!

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 x) \\ -\sin(k_1 x) \\ 0 \end{pmatrix} + \frac{\alpha_2 \begin{pmatrix} \cos(k_2 x) \\ -\sin(k_2 x) \\ 0 \end{pmatrix}$$

Corotating frame of the second potential,

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 - k_2 x) \\ -\sin(k_1 - k_2 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$\begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Relative detuning

$$D' = \left| \frac{\omega_{\mathrm{m}} - k_1}{\alpha_1} + \frac{\alpha_2^2}{2\alpha_1(\omega_{\mathrm{m}} - k_2)} \right|$$

Consider $k_1 = \omega_{\rm m}$

$$D' = \left| \frac{\alpha_2^2}{2\alpha_1(\omega_{\rm m} - k_2)} \right|$$

Amplitude reduces from 1 to 1/2 if

$$D' = 1 \Rightarrow \alpha_{2,C} \equiv \sqrt{2|\alpha_1(k_2 - \omega_{\rm m})|}.$$

Two driving frequencies k_1 , and k_2 , with amplitude α_1 , and α_2 For $k_1 = \omega_m$, survival of resonance requires

$$|\alpha_2| \ll \alpha_{2,\mathrm{C}} \equiv \sqrt{2|\alpha_1(k_2 - \omega_\mathrm{m})|}$$

Grid lines: amplitude predicted using $1/(1+D^{\prime 2})$

α_2 , κ_1 values			
Dashed	dotted	dash-dotted	solid
$10^{-2}\omega_{\rm m}, 10\omega_{\rm m}$	$10^{-2}\omega_{\rm m}, 10^{-1}\omega_{\rm m}$	$5.0 \times 10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$5 \times 10^{-2} \omega_{\rm m}, 10^{-1} \omega_{\rm m}$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

Matter potential

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

Consider the resonance condition ($k = \omega_{\rm m}$)

$$\widetilde{\mathbf{H}} = -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} egin{pmatrix} 0 & rac{1}{2}lpha_{n}e^{i(nk)x} \ rac{1}{2}lpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

Matter potential

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

Consider the resonance condition ($k = \omega_{\rm m}$)

$$\widetilde{\mathbf{H}} \sim -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} + rac{1}{2}egin{pmatrix} 0 & lpha_{1}e^{ikx} \ lpha_{1}^{*}e^{-ikx} & 0 \end{pmatrix} + rac{1}{2}egin{pmatrix} 0 & lpha_{n}e^{inkx} \ lpha_{n}^{*}e^{-inkx} & 0 \end{pmatrix}$$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

Width

$$\alpha_n = -(-i)^n nk \tan 2\theta_{\rm m} J_n (A\cos 2\theta_{\rm m}/k)$$

$$|lpha_n| \propto \sqrt{rac{n}{2\pi}} \left(rac{eA\cos 2 heta_{
m m}}{2nk}
ight)^n, \quad {
m for \ large} \ n$$

Width drops fast at large n.

But the critical value for each mode becomes larger for large n's

$$\alpha_{n,C} \equiv \sqrt{2|\alpha_1(nk-\omega_{\rm m})|}$$

SINGLE FREQUENCY MATTER POTENTIAL

Width of different modes given value of matter potential frequency \boldsymbol{k}

SINGLE FREQUENCY MATTER POTENTIAL

Width of different modes given value of matter potential frequency \boldsymbol{k}

MULTIPLE FREQUENCIES IN MATTER POTENTIAL

$$\lambda(x) = \lambda_0 + \sum_{a=1}^{N} A_a \sin(k_a x)$$

Hamiltonian in Rabi Basis

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \frac{1}{2}\sum_{n_{1}=-\infty}^{\infty} \cdots \sum_{n_{N}=-\infty}^{\infty} \begin{pmatrix} 0 & B_{\{n_{a}\}}e^{i\sum_{a}n_{a}k_{a}x} \\ B_{\{n_{a}\}}^{*}e^{-i\sum_{a}n_{a}k_{a}x} & 0 \end{pmatrix}$$

where

$$B_{\{n_a\}} = -(-i)^{\sum_a n_a} \tan 2 heta_m \left(\sum_a n_a k_a\right) \left(\prod_a J_{n_a} \left(rac{A_a}{k_a}\cos 2 heta_m
ight)
ight)$$

CASTLE WALL MATTER POTENTIAL

$$\lambda(x) = \lambda_0 + \sum_{1}^{\infty} \lambda_n \cos(k_n x)$$

where

$$\lambda_0 = (\Lambda_1 + \Lambda_2)/2$$
 $\lambda_n = 2(-1)^n (\Lambda_1 - \Lambda_2)/(2n\pi - \pi)$
 $k_n = 2\pi (2n - 1)/X$

Castle wall matter profile:

$$\Lambda_2 = 0.35\omega_v\cos 2\theta_v,$$

 $\Lambda_1 = 0.15 \omega_v \cos 2\theta_v$ and period

$$X=2\pi/\omega_{\mathrm{m}}$$

CASTLE WALL MATTER POTENTIAL

Castle wall matter profile:

 $\Lambda_2 = 0.35\omega_{\rm v}\cos 2\theta_{\rm v}$

 $\Lambda_1 = 0.15 \omega_v \cos 2 heta_v$ and period

 $X=2\pi/\omega_{\rm m}$

Transition probability is a Rabi resonance with small variations due to higher orders.

CASTLE WALL MATTER POTENTIAL

Relative detuning of each frequency.

$\{n_1,n_2\}$	$D'_{\{n_1,n_2\}}$
(
$\{1, 0\}$	0
$\{1,0\}$ & $\{-1,0\}$	1.0×10^{-2}
$\{1,0\}$ & $\{0,1\}$	$1.1 imes 10^{-3}$
$\{1,0\}$ & $\{2,0\}$	2.0×10^{-4}

Transition probability is a Rabi resonance with small variations due to higher orders.

OVERVIEW

Background

Matter Effect

Stimulated Neutrino Flavor Conversions

Single Frequency Matter Potential Decomposed

Summary

- Vacuum oscillations: flavor sates are not mass states.
- MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances
- Oscillations with two driving fields of different frequencies: large potential to destroy the resonance.

- 1. Vacuum oscillations: flavor sates are not mass states.
- 2. MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- Oscillations with two driving fields of different frequencies: large potential to destroy the resonance.

- Vacuum oscillations: flavor sates are not mass states.
- 2. MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- Oscillations with two driving fields of different frequencies: large potential to destroy the resonance.

For matter potential

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

Resonance condition

$$nk = \omega_{\rm m}$$

- 1. Vacuum oscillations: flavor sates are not mass states.
- MSW resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- Oscillations with two driving fields of different frequencies: large potential to destroy the resonance.

$$|\alpha_2| \gg \alpha_{2,C} \equiv \sqrt{2|\alpha_1(k_2 - \omega_{\rm m})|}$$

BACKUP SLIDES

BACKUP SLIDES

WHY DO NEUTRINOS OSCILLATE?

Equation of Motion

$$i\partial_x |\Psi\rangle = \hat{\mathbf{H}} |\Psi\rangle$$

► Basis: Hamiltonian diagonalized basis/mass basis/propagation basis, {|\(\nu_1\), |\(\nu_2\)\}.

١

$$\mathrm{H}=-rac{\omega_{\mathrm{v}}}{2}\sigma_{3}, \qquad ext{where} \ \omega_{\mathrm{v}}=rac{\delta m^{2}}{2E}=rac{m_{2}^{2}-m_{1}^{2}}{2E}.$$

▶ The system can be solved given initial condition of the amplitudes of the two eigenstates $(\langle \nu_1 | \Psi(0) \rangle, \langle \nu_2 | \Psi(0) \rangle)^T$,

$$\begin{pmatrix} \langle \nu_1 | \Psi(x) \rangle \\ \langle \nu_2 | \Psi(x) \rangle \end{pmatrix} = \begin{pmatrix} \langle \nu_1 | \Psi(0) \rangle \exp(i\omega_v x/2) \\ \langle \nu_2 | \Psi(0) \rangle \exp(-i\omega_v x/2) \end{pmatrix}$$

WHY DO NEUTRINOS OSCILLATE?

Flavor basis

Neutrino wave function in flavor basis $\{|\nu_{\rm e}\rangle\,, |\nu_{\mu}\rangle\}$ is related to state in energy basis $\{|\nu_{\rm 1}\rangle\,, |\nu_{\rm 2}\rangle\}$ through

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

 $\theta_v\text{:}$ vacuum mixing angle

WHY DO NEUTRINOS OSCILLATE?

Flavor basis

Neutrino wave function in flavor basis $\{\ket{\nu_{\rm e}},\ket{\nu_{\rm \mu}}\}$ is related to state in energy basis $\{\ket{\nu_1},\ket{\nu_2}\}$ through

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

 $\theta_{\rm v}$: vacuum mixing angle

Hamiltonian H

Mass basis

$$\begin{aligned} &\frac{\omega_{v}}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} & \frac{\omega_{v}}{2} \begin{pmatrix} -\cos 2\theta_{v} & \sin 2\theta_{v} \\ \sin 2\theta_{v} & \cos 2\theta_{v} \end{pmatrix} \\ &= -\frac{\omega_{v}}{2} \boldsymbol{\sigma}_{3} & = \frac{\omega_{v}}{2} \left(-\cos 2\theta_{v} \boldsymbol{\sigma}_{3} + \sin 2\theta_{v} \boldsymbol{\sigma}_{1} \right) \end{aligned}$$

NATURE OF NEUTRINO OSCILLATION

Transition Probability

$$P(|\nu_{\rm e}\rangle \rightarrow |\nu_{\mu}\rangle) = \sin^2(2\theta_{\rm v})\sin^2(\omega_{\rm v}x/2)$$

- $\omega_{\rm v} = (m_2^2 m_1^2)/2E$ determines oscillation wavelength.
- ▶ Mixing angle θ_v determines flavor oscillation amplitude.

MSW EFFECT

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

Constant matter profile λ_0 as an example,

Significance of $\theta_{\rm m}$

Define matter basis (eigenenergy basis) $\{\left|\nu_{\rm L}\right\rangle,\left|\nu_{\rm H}\right\rangle\}$

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} |\nu_{\rm L}\rangle \\ |\nu_{\rm H}\rangle \end{pmatrix}$$

In matter basis

$$\mathbf{H}_{\mathsf{matter ext{-}basis}} = -rac{\omega_{\mathsf{m}}}{2}oldsymbol{\sigma_3}$$

MSW EFFECT

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{\rm 1}\rangle \\ |\nu_{\rm 2}\rangle \end{pmatrix}$$

Constant matter profile λ_0 as an examp \mathbb{I} ,

Significance of $\theta_{\rm m}$

Define matter basis (eigenenergy basis) $\{\ket{\nu_{\rm L}},\ket{\nu_{\rm H}}\}$

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} |\nu_{\rm L}\rangle \\ |\nu_{\rm H}\rangle \end{pmatrix}$$

In matter basis

$$\mathbf{H}_{\mathsf{matter ext{-}basis}} = -rac{\omega_{\mathrm{m}}}{2}oldsymbol{\sigma}_{\mathbf{3}}$$

Transition Probability

$$P(|\nu_{\rm e}\rangle \to |\nu_{\mu}\rangle) = \sin^2(2\theta_{\rm m})\sin^2(\omega_{\rm m}x)$$

SOLAR NEUTRINO PROBLEM

Chlorine detector (Homestake experiment) results and theory predictions. SNU: 1 event for 10^{36} target atoms per second. Kenneth R. Lang (2010)

MSW EFFECT AND SOLAR NEUTRINOS

$$\begin{split} \mathbf{H} &= \frac{\lambda(\mathbf{x}) - \omega_{\mathrm{v}} \cos 2\theta_{\mathrm{v}}}{2} \boldsymbol{\sigma}_{3} + \frac{\omega_{\mathrm{v}} \sin 2\theta_{\mathrm{v}}}{2} \boldsymbol{\sigma}_{1} \\ \begin{pmatrix} |\nu_{\mathrm{L}}\rangle \\ |\nu_{\mathrm{H}}\rangle \end{pmatrix} &= \begin{pmatrix} \cos \theta_{\mathrm{m}} & -\sin \theta_{\mathrm{m}} \\ \sin \theta_{\mathrm{m}} & \cos \theta_{\mathrm{m}} \end{pmatrix} \begin{pmatrix} |\nu_{\mathrm{e}}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} \\ \mathbf{H}_{\mathrm{matter-basis}} &= -\frac{\omega_{\mathrm{m}}}{2} \boldsymbol{\sigma}_{3} \end{split}$$

Yellow bar is the resonance point. Red: $|\nu_e\rangle$. Green: $|\nu_{\mu}\rangle$. Adapted from Smirnov, 2003.

MSW Effect Inverted Hierarchy

Suppose
$$\omega_{\mathrm{v}} = (m_2^2 - m_1^2)/2E < 0,$$

$$\mathbf{H} = \begin{bmatrix} -\frac{\omega_{\mathrm{v}}}{2} \begin{pmatrix} -\cos 2\theta_{\mathrm{v}} & \sin 2\theta_{\mathrm{v}} \\ \sin 2\theta_{\mathrm{v}} & \cos 2\theta_{\mathrm{v}} \end{pmatrix} & +\sqrt{2}G_{\mathrm{F}}n_{\mathrm{e}}(x) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$\downarrow$$

$$\mathbf{H} = \begin{pmatrix} -\frac{\omega_{\mathrm{v}}}{2} \cos 2\theta_{\mathrm{v}} + \frac{\lambda(x)}{2} \end{pmatrix} \sigma_3 - \frac{\omega_{\mathrm{v}}}{2} \sin 2\theta_{\mathrm{v}} \sigma_1$$

HAMILTONIAN

Matter Profile

$$\lambda(x) = \lambda_0 + \delta \lambda(x)$$

Basis

Background matter basis (eigen energy basis): Hamiltonian is diagonalized with only background matter profile λ_0 ,

$$H_{background} = -\frac{\omega_m}{2} \sigma_3.$$

Hamiltonian

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\frac{\delta \lambda(\mathbf{x})}{2}}{2} \sin \theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}.$$

HAMILTONIAN

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \sigma_{3} - \frac{\delta \lambda(\mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \sigma_{1}.$$

HAMILTONIAN

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \sigma_{3} - \frac{\delta \lambda(\mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$\mathbf{H} = rac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2 heta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k}\mathbf{x})
ight) \sigma_{3} - rac{\sin 2 heta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \sigma_{1}.$$

RABI OSCILLATIONS

The coupling strength is calculated as

$$\alpha = \langle 1|\mathbf{d} \cdot \mathbf{E}|2\rangle$$

where the electric field is

$$\mathbf{E} = \mathbf{E}_0 \sin(kt).$$

and **d** is the dipole moment.

RABI FORMULA WORKS

Lines: Rabi formula Dots, diamonds, triangles, and squares are for $k=\omega_{\rm m}$, $k=(1-2\times 10^{-5})\omega_{\rm m}$, and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

PARAMETERS USED FOR VACUUM OSCILLATIONS

$$\begin{array}{l} \theta_{12}=33.36/180\pi;\,\theta_{13}=8.66/180\pi;\,\theta_{23}=40/180*\pi;\,\delta_{cp}=0;\\ m_1^2=0.01;\,m_2^2=m_1^2+0.000079;\,E=1\text{MeV} \end{array}$$

SINGLE FREQUENCY MATTER POTENTIAL

Matter potential

$$\lambda(x) = \lambda_0 + A\sin(kx),$$

Hamiltonian in new basis

$$\widetilde{\mathbf{H}} = -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} - rac{\delta\lambda(\mathbf{x})}{2}\sin 2 heta_{\mathrm{m}} egin{pmatrix} 0 & e^{2i\eta(\mathbf{x})} \ e^{-2i\eta(\mathbf{x})} & 0 \end{pmatrix} = -rac{\omega_{\mathrm{m}}}{2}\sigma_{3} + egin{pmatrix} 0 & h \ h^{*} & 0 \end{pmatrix}$$

Hamiltonian in New Basis
$$h \equiv -\frac{\delta \lambda(x)}{2} e^{2i\eta(x)}$$

$$= \frac{i}{4} \left[\exp\left(ikx + \frac{i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)}{-i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)}\right) \right]$$

$$-\exp\left(-ikx + \frac{i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)}{-i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)}\right) \right]$$

SINGLE FREQUENCY MATTER POTENTIAL

Off-diagonal Term in Our System
$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \begin{pmatrix} 0 & h \\ h^{*} & 0 \end{pmatrix}$$

$$h \propto \left[\exp \left(ikx + \frac{i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)}{-i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)} \right) \right]$$

$$-\exp \left(-ikx + \frac{i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)}{-i\cos2\theta_{\mathrm{m}}\frac{A}{k}\cos(kx)} \right) \right]$$

Jacobi-Anger expansion (Kneller et al, 2013)

$$e^{i\beta\cos(kx)} = \sum_{n=-\infty}^{\infty} i^n J_n(\beta) e^{inkx},$$

where $J_n(\beta)$ are Bessel's functions of the first kind.

SINGLE FREQUENCY MATTER PROFILE

Transition Probability

$$P_{ ext{L}
ightarrow ext{H}}^{(n)} = rac{\left|\hat{B}_{n}
ight|^{2}}{\left|\hat{B}_{n}
ight|^{2} + (n\hat{k}-1)^{2}} \sin^{2}\left(rac{q^{(n)}}{2}x
ight),$$

where

$$q^{(n)}=\sqrt{\left|\Gamma^{(n)}\right|^2+(n\hat{k}-1)^2},\quad ext{frequency of oscillations} \ \Gamma^{(n)}=\left|\hat{B}_n\right|,\quad ext{width of resonance }(n\hat{k} ext{ as parameter})$$

Resonance conditions

$$\hat{k} \sim \frac{1}{n}$$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

Width

$$\alpha_n = -(-i)^n nk \tan 2\theta_m J_n(A\cos 2\theta_m/k)$$

$$J_n(n \operatorname{sech} eta) \sim rac{e^{-n(eta - anh eta)}}{\sqrt{2\pi n anh eta}}, \quad ext{for large } n$$

 \Rightarrow

$$|lpha_n| \propto rac{e^{-n(eta- anheta)}}{\sqrt{2\pi n anheta}}, \quad ext{for large } n$$

where sech $\beta = A \cos 2\theta_{\rm m}/\omega_{\rm m}$.

 $\beta - \tanh \beta > 0 \Rightarrow$ **Width** drops fast at large *n*.

Matter Profile

$$\lambda(x) = \lambda_0 + \delta\lambda(x), \quad \delta\lambda(x) = A_1 \sin(k_1 x) + A_2 \sin(k_2 x).$$

TWO-FREQUENCY MATTER P

$$\hat{h} = \sum_{n=-\infty}^{\infty} \frac{1}{2} \hat{B}_n e^{i(n\hat{k}-1)\hat{x}},$$

Hamiltonian Off-diagonal Element

Apply Jacobi-Anger expansion,

$$\hat{h} = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} \frac{1}{2} \hat{B}_{n_1, n_2}(\hat{k}_1, \hat{k}_2) e^{i(n_1 \hat{k}_1 + n_2 \hat{k}_2 - 1)\hat{x}},$$

where

$$\begin{aligned} \hat{B}_{n_1,n_2}(\hat{k}_1,\hat{k}_2) \\ &= -(-i)^{n_1+n_2}(n_1\hat{k}_1 + n_2\hat{k}_2)J_{n_1}\left(\frac{\hat{A}_1\cos 2\theta_{\rm m}}{\hat{k}_1}\right)J_{n_2}\left(\frac{\hat{A}_2\cos 2\theta_{\rm m}}{\hat{k}_2}\right) \end{aligned}$$

Which terms are important?

SINGLE FREQUENCY MATTER PROFILE REVISITED

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

		$k_1=\omega_{ m m}$	
\overline{n}	D	D_1'	$2\pi\omega_{ m m}/\Omega_n$
1	0	-	3.2×10^{5}
-1	10^{5}	4.8×10^{-6}	3.1
2	1.1×10^{9}	2.1×10^{-14}	6.3
-2	3.4×10^{9}	6.9×10^{-15}	2.1

SINGLE FREQUENCY MATTER PROFILE REVISITED

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

	$k_1 = (1 - 1)^n$	$2 \times 10^{-}$	$(\omega_{ m m})$
\overline{n}	D	D_1'	$2\pi\omega_{ m m}/\Omega_n$
1	1	-	2.2×10^{5}
-1	10^{5}	1	3.1
2	1.1×10^{9}	1	6.3
-2	3.4×10^{9}	1	2.1

SINGLE FREQUENCY MATTER PROFILE REVISITED

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$k_1 = (1 - 10^{-4})\omega_{\mathrm{m}}$					
n	D	D_1'	$2\pi\omega_{ m m}/\Omega_n$		
1	5.2	-	6.2×10^4		
-1	10^{5}	5.2	3.1		
2	1.1×10^{9}	5.2	6.3		
-2	3.4×10^9	5.2	2.1		

CASTLE WALL MATTER PROFILE

CASTLE WALL MATTER PROFILE

Table: Relative detuning of each frequency.

$\{n_1,n_2\}$	D	$D_{\{1,0\}}'$
{1,0}	0	-
$\{-1,0\}$	48	1.0×10^{-2}
$\{0, 1\}$	$1.5 imes 10^2$	1.1×10^{-3}
$\{2,0\}$	2.4×10^2	2.0×10^{-4}

Resonance Lines

There are still resonances, i.e., (almost) zero phases, on lines

$$n_{1,0}\hat{k}_1 + n_{2,0}\hat{k}_2 - 1 = 0$$

in $\{\hat{k}_1, \hat{k}_2\}$ plane. \Rightarrow Resonance width for each point on resonance lines.

Density plot of transition amplitudes calculated using only one term out of the whole summation in Hamiltonian. $n_1, n_2 \in [-2, 2]$

Resonance line, distance to resonance, and width

Width

$$\Gamma_2 = rac{\hat{B}_{n_1,n_2}(\hat{k}_{1,\mathrm{intercept}},\hat{k}_{2,\mathrm{intercept}})}{\sqrt{n_1^2 + n_2^2}}.$$

Distance to Resonance Line

$$d = \frac{|n_1\hat{k}_{10} + n_2\hat{k}_{20} - 1|}{\sqrt{n_1^2 + n_2^2}}.$$

Distance to Resonance Width Ratio

$$Q_2 = \frac{d}{\Gamma_2}.$$

BESSEL'S FUNCTION

$$J_n(eta) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+n+1)} \left(\frac{eta}{2}\right)^{2m+n}$$

REFERENCES I