電子システム工学基礎実験 報告書

		グノ	レー	プ:			A								
実験題目							電流。	ヒ磁場							
報告者	第1	班_		学生	番号	2	112100	1	氏	名 _		浅	井 雅史	1	
	メールフ	アドレ	ス				b1	112100	01@€	du.k	it.ac.j	р			
	共同]実験	者	学生	番号	21	121002		氏名		沙	長岡 馬			
				学生	番号	21	121007		氏名		伊	╊藤 フ	大智		
				学生	番号	21	121008		氏名			上 美	羽陽		
				学生	番号 -				氏名						
実験実施日	2022	年	11	月	24	日	天候	曇り	温	.度	17	$^{\circ}\! \mathbb{C}$	湿度	51	%
報告書提出	(第1回	回目)	2	022	年	11	月	30	_ 日	\Rightarrow	受理	! /	要再	提出	_
	(第2回	回目)			年		_ 月		_ 日	\Rightarrow	受理	! /	要再	提出	
報告書受理日	(最終)				年		_ 月 _		_ _ _						
報告書提出者	≸の自己チュ	⊏ック欄	(でき	ていオ	ゖば□に	チェック	クせよ)								
☑実験結果は示されているか? ☑考察は十分になされているか? ☑レポートとしての体裁は適切か?							☑図表の書き方・まとめ方は適切か? ☑演習問題はできているか?								

[注意]

・自己チェック欄が未記入のレポートは内容を見ずに返却する・自己チェック欄と内容に相違があるものは、その程度に応じて減点する

[報告書に対する教員の所見]	[所見に対する報告者の回答]
□図表の体裁に不備がある	
(
□実験結果のまとめ方が適切でない	
(
口結果に対する考察が不足している	
(
□演習問題が解答されていない	
(
ロレポートとしての体裁が整っていない	
(
裏面に続く	裏面に続く

1 目的

ソレノイドを用いて電流と磁場 \vec{H} の関係を理解すると共に、それらの測定原理およびその方法を習得する.

2 原理

2.1 ソレノイドによる磁場

図 1 のような半径 a,長さ b の円筒ソレノイドによって中心軸上 (r=0) の P 点に作られる B_z は,単位長さあたりの巻数を n,ソレノイドに流れる電流を I とすると,

$$B_z = \frac{\mu_0 nI}{2} (\cos \theta_2 - \cos \theta_1)$$

であるから、ソレノイドのそう巻き数を N(=nb)、左側から P 点までの距離を z とすると、

$$\cos \theta_1 = \frac{z - b}{\sqrt{a^2 + (z - b)^2}}$$
, $\cos \theta_2 = \frac{z}{\sqrt{a^2 + z^2}}$

であるから,

$$B_z = \frac{\mu_0 NI}{2} \left\{ \frac{z}{\sqrt{a^2 + z^2}} + \frac{b - z}{\sqrt{a^2 + (z - b)^2}} \right\}$$

となる.

図1 有限長ソレノイド

2.2 磁気プローブ

巻数 N が 1 巻のコイルに鎖交する全磁束 Φ が時間変化すると、コイルの両端に、

$$V_{c0} = -\frac{d\phi}{dt}$$

の誘導電圧が現れる.このコイルの大きさが \vec{B} の空間変動に比べて十分小さければ,コイルの断面積 S 上で $|\vec{B}|$ が一定とみなすことができる.多くの場合,N の値は (≥ 2) であり,この時の全鎖交磁束は,

$$\phi \simeq NBS$$

であるから,

$$V_{c0} = -\frac{d(NBS)}{dt} = -NS\frac{dB}{dt}$$

と書ける.この式の右辺は B の時間微分の形になっているので,B を求めるためには両辺を時間積分すれば良い.つまりコイル電圧 $V_{c0}(t)$ を時間積分することにより,

$$B = -\frac{1}{NS} \int_0^t V_{c0}(t)dt$$

として B の値を得ることができる. この方法を磁気プローブによる磁束密度測定法という.

2.3 ロゴスキーコイルを用いた大電流測定

アンペールの周回積分の法則より、任意の閉ループに沿った B の線積分はそのループと鎖交する電流 i の値を与え、ループの形状によらない。このことから、断面積 S、全巻き数 N、長さが l のロゴスキーコイルが i を取り囲む形で置かれていると、

$$\mu_0 i = \oint \vec{B} \cdot \vec{dl}$$

という式が成り立つ. よって i(t) の作る磁束の時間変化によりロゴスキーコイルの両端に現れる誘導電圧 $V_e(t)$ の関係は,

$$i = -\frac{l}{\mu_0 NS} \int_0^t V_e(t) dt$$

となる. また、電流路とロゴスキーコイルの相互インダクタンス M が既知の場合、 V_e は、

$$V_e = M \frac{dl}{dt}$$

なので,

$$i = \int_0^t \frac{1}{M} V_e(t) dt \simeq \frac{RC}{M} V_c$$

としても求めることができる.

3 実験

3.1 実験器具

TEKTRONIX TBS1022 オシロスコープ,ソレノイドコイル,磁気プローブ,ロゴスキーコイル,高電圧パルス大電流発生電源,抵抗 (220 k Ω),可変抵抗 (< 20 Ω)

3.2 セットアップ

1. 図 2 のように実験配置を組み立てる.ただし,外部抵抗 R(可変抵抗) は臨界制動波形となる抵抗値になるように調整し,接続する.

図2 実験装置

3.3 -磁気プローブによる磁場測定

- 1. 磁気プローブのターン数 N と断面積 S を実測により求め、記録する.
- 2. 図 3 のように実験器具を配置し、磁気プローブをソレノイド中心軸上の適当な位置に保持し、放電する. この際、充電電圧は $50\,\mathrm{V}$ 程度とし、その値を記録する.
- 3. 抵抗 R の両端は臨界制動波形 V_R が現れ、磁気プローブからは出力波形 V_{c0} が得られることを確認する.
- 4. 磁気プローブをソレノイド中心軸上に沿って動かしながら,ソレノイド中心軸上の z 座標と,その点で得られた臨界制動波形 V_R および出力波形 V_{c0} を記録する.ただし,磁束密度分布 $B_z(z)$ が滑らかに算出できるように細かく測定を行う.

図3 実験課題1における実験配置

3.4 ロゴスキーによる電流測定

- 1. ロゴスキーコイルのターン数 N, 断面積 S, 円周長さ l の値を実測より求め、記録する.
- 2. 図4のように実験器具を配置し、実験を行う. この際、充電電圧値を記録する.
- 3. 抵抗 R の両端は臨界制動波形 V_R が現れ,ロゴスキーコイルからは出力波形 V_e が得られることを確認する.
- 4. ロゴスキーコイルを貫く導線の数 (鎖交電流) を徐々に変化させて、鎖交数と得られた出力波形を記録する.

図4 実験課題2における実験配置

4 結果

4.1 実験課題1

ソレノイド底面を z=0 [cm] とし,各 z 座標における測定結果を以下の図 5~図 23 に示す.また,z 座標と磁気プローブの出力 V_{c0} の積分である $\int_0^t V_{c0}(t)dt$ との測定結果を表 1 に示す.ただし,磁気プローブの出力 V_{c0} の積分はオシロスコープから得られるデジタルデータ (テキストデータ) を使用して算出する方法を用いる.

図 5 z=-10 [cm] における測定結果

図 6 z=-8 [cm] における測定結果

図 7 z=-6 [cm] における測定結果

図 8 z=-4 [cm] における測定結果

図 9 z=-2 [cm] における測定結果

図 10 z=0 [cm] における測定結果

図 11 z=2 [cm] における測定結果

図 12 z=4 [cm] における測定結果

図 13 z=6 [cm] における測定結果

図 14 z=8 [cm] における測定結果

- 図 15 $z=10\,[cm]$ における測定結果
- 図 16 z=12 [cm] における測定結果
- 図 17 z=14 [cm] における測定結果
- 図 18 $z=16\,[cm]$ における測定結果
- 図 19 z=18 [cm] における測定結果
- 図 20 z=20 [cm] における測定結果
- 図 21 z=22 [cm] における測定結果
- 図 22 $z=24\,[cm]$ における測定結果
- 図 23 z=26 [cm] における測定結果
- 図 24 $z=28\,[cm]$ における測定結果
- 図 25 z=30 [cm] における測定結果
- 図 26 $z=32\,[cm]$ における測定結果
- 図 27 $z=34\,[cm]$ における測定結果

参考文献

[1]