Задача о погоне

Ким Реачна НПИбд-02-20¹ 16 февраля, 2023, Москва, Россия

¹Российский Университет Дружбы Народов

Цели и задачи работы

Цель лабораторной работы

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

Задание к лабораторной работе

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n раз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- Определить по графику точку пересечения катера и лодки.

Процесс выполнения лабораторной работы

Принимаем за $t_0 = 0, X_0 = 0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0 = k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки. Введем полярные координаты. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x - k (или x + k). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{y}$ или $\frac{x+k}{n}$ (для второго случая $\frac{x-k}{n}$). Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{x} = \frac{x+k}{x}$ - в первом случае, $\frac{x}{v} = \frac{x-k}{v}$ во втором случае.

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев.

$$x_1=rac{k}{n+1}$$
 ,при $heta=0$ $x_2=rac{k}{n-1}$,при $heta=-\pi$

Найдем тангенциальную скорость для нашей задачи $\upsilon_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $\upsilon_t=\sqrt{n^2\upsilon_r^2-\upsilon^2}$. Поскольку, радиальная скорость равна υ , то тангенциальную скорость находим из уравнения $\upsilon_t=\sqrt{n^2\upsilon^2-\upsilon^2}$. Следовательно, $\upsilon_\tau=\upsilon\sqrt{n^2-1}$.

Тогда получаем $r rac{d heta}{d t} = \upsilon \sqrt{n^2 - 1}$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = \upsilon \\ r\frac{d\theta}{dt} = \upsilon\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$
$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta} = \frac{r}{\sqrt{n^2-1}}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

Условие задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 16.4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4.2 раза больше скорости браконьерской лодки

Результаты

Рис. 1: траектории для случая 1

точка пересечения катера и лодки

$$\begin{cases} \theta = 315 \\ r = 12 \end{cases}$$

Результаты

Рис. 2: траектории для случая 2

точка пересечения катера и лодки

$$\begin{cases} \theta = 315 \\ r = 20 \end{cases}$$

Выводы по проделанной работе

Вывод

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.

Наблюдаем, что при погоне «по часовой стрелке» для достижения цели потребуется пройти меньшее расстояние.