Assignment 9

Computer Systems Lab

Assignment Date: November 19, 2020 **Date of Submission**: November 22, 2020

Given a context-free grammar (CFG) $G=(V,\Sigma,P,S)$ in **Chomsky Normal Form (CNF)**, and a string $w\in\Sigma^+$, write a C/C++ program that decides whether G generates w or not. You are supposed to implement **Cocke-Younger-Kasami (CKY)** algorithm. The input is as follows.

- 1. A positive integer m that denotes the number of variables or non-terminals. It also indicates that the names of the variables are $A_0, A_1, \ldots, A_{m-1}$, where A_0 is the start variable.
- 2. A positive integer l that denotes the number of terminals. It also indicates that the names of the terminals are $a_0, a_1, \ldots, a_{l-1}$.
- 3. A positive integer p that denotes the number of production rules. Each production rule is of the following form:

$$A_i\to A_j\ A_k$$
 , where $0\le i,j,k\le m-1$, or
$$A_i\to a_j\ , \text{where}\ a_j\ne \epsilon, 0\le i\le m-1, 0\le j\le l-1$$

 $\frac{\{A_2\}}{\{A_1, A_3\}}$

 $\{A_0, A_1, A_3\}$

 $\{A_0, A_1, A_3\}$

 $\{A_2\}$

 $\frac{\{A_0, A_1\}}{\{A_1, A_3\}}$

 $\overline{\{A_2\}}$

 $\{A_0, A_3\}$

 $\{A_2\}$

.

4. A string $w \in \Sigma^+$ in the form $a_i \ a_j \ a_k \ \dots$, where $0 \le i, j, k \le l-1$

 $\{A_0, A_1\}$

 $\{A_1, A_3\}$

Input:

Output:

 $\{A_2\}$

428

\rightarrow	A_1A_2
\rightarrow	A_2A_3
\rightarrow	A_2A_1
	\rightarrow

 $A_1 \rightarrow a_0$

 $A_2 \to A_3 A_3$ $A_2 \to a_1$

 $A_3 \rightarrow A_1 A_2$

 $A_3 \rightarrow a_0$

 $a_1a_0a_0a_1a_0$

 a_0 Yes

Submission Instruction:

File Name: A9_RollNo.c/cpp

Email to: *joy@iitbbs.ac.in* with **subject line**: A9_RollNo