Serial No.: 09/812,945 Filed: March 27, 2001

Page : 2 of 14

CLAIM AMENDMENTS

1. (Currently amended) A method of inhibiting histone deacetylation activity in cells comprising contacting the cells with an effective amount of a compound of formula (I), thereby treating one or more disorders mediated by histone deacetylase; said compound having the following formula:

$$A - Y^1 - L - Y^2 - C - X^2$$
 (I)

wherein

each of Y^1 and Y^2 , independently, is $-CH_2$, -O, -S, $N(R^e)$, $N(R^e)$, -O(O), -O(O),

L is a straight C_{2-12} hydrocarbon chain containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 3 of 14

optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, hydroxyl, halo, amino, nitro, cyano, C_{3-5} cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C_{1-4} alkylcarbonyloxy, C_{1-4} alkyloxycarbonyl,

 C_{1-4} alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R e)-, -N(R e)--C(O)-O-, -O-C(O)-N(R e)-, -N(R e)-C(O)-N(R f)-, or -O-C(O)-O-; each of R e and R f , independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

X¹ is O or S; and

 X^2 is $-OR^1$, $-SR^1$, $-NR^3$ - OR^1 , $-NR^3$ - SR^1 , -C(O)- OR^1 , $-CHR^4$ - OR^1 , -N=N-C(O)- $N(R^3)_2$, or -O- CHR^4 -O-C(O)- R^5 , where each of R^1 and R^2 , independently, is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R^3 is hydrogen, alkyl, alkenyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R^4 is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; and R^5 is alkyl, hydroxylalkyl, or haloalkyl; and provided that when L is a C_{2-3} -hydrocarbon containing no double bonds and X^2 -is $-OR^4$, Y^4 -is not a bond and Y^2 -is not a bond;

or a salt thereof; and

determining whether the level of acetylated histones in the treated cells is higher than in untreated cells under the same conditions.

- 2. (Original) The method of claim 1, wherein X^1 is O.
- 3. (Withdrawn) The method of claim 1, wherein X^1 is S.
- 4. (Original) The method of claim 1, wherein X² is -OR¹, -NR³-OR¹, -C(O)-OR¹, -CHR⁴-OR¹, or -O-CHR⁴-O-C(O)-R⁵.
- 5. (Original) The method of claim 1, wherein X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or $-O-CHR^4-O-C(O)-R^5$.
- 6. (Original) The method of claim 1, wherein each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 4 of 14

7. (Original) The method of claim 1, wherein each of Y^1 and Y^2 , independently, is -CH₂- or a bond.

- 8. (Canceled)
- 9. (Canceled)
- 10. (Original) The method of claim 1, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and no triple bond.
- 11. **(Withdrawn)** The method of claim 10, wherein L is an unsaturated C_{4-8} hydrocarbon chain substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 12. (Original) The method of claim 10, wherein the double bond is in trans configuration.
- 13. (Withdrawn) The method of claim 1, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and one triple bond.
- 14. **(Withdrawn)** The method of claim 13, wherein L is an unsaturated C_{4-8} hydrocarbon chain substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 15. (Withdrawn) The method of claim 13, wherein the double bond is in trans configuration.
- 16. (Canceled)
- 17. (Currently Amended) The method of claim 1, wherein A is phenyl, naphthyl, indanyl, or tetrahydronaphthyl.
- 18. (Currently Amended) The method of claim 1, wherein A is phenyl optionally substituted with alkyl alkenyl, alkynyl, or alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino.
- 19. (Canceled)

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 5 of 14

20. (Canceled)

- 21. **(Withdrawn)** The method of claim 18, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond and no triple bond, said unsaturated hydrocarbon chain optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 22. **(Withdrawn)** The method of claim 21, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
- 23. (Withdrawn) The method of claim 18, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and one triple bond, optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 24. (Withdrawn) The method of claim 23, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or $-O-CHR^4-O-C(O)-R^5$; and each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.

Claims 25-32 (Canceled)

- 33. (Withdrawn) The method of claim 32, wherein A contains only double bonds.
- 34. **(Withdrawn)** The method of claim 33, wherein L is a saturated C_{3-8} hydrocarbon chain optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 35. **(Withdrawn)** The method of claim 34, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3$ - OR^1 , $-C(O)OR^1$, or -O- CHR^4 -O-C(O)- R^5 ; and each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 6 of 14

36. **(Withdrawn)** The method of claim 33, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing only double bonds, said unsaturated hydrocarbon chain optionally being substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.

- 37. **(Withdrawn)** The method of claim 36, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3$ - OR^1 , $-C(O)OR^1$, or -O- CHR^4 -O-C(O)- R^5 ; and each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 38. **(Withdrawn)** The method of claim 33, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain optionally being substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 39. **(Withdrawn)** The method of claim 38, wherein X^1 is O; X^2 is $-OR^1$, $-NR^3-OR^1$, $-C(O)OR^1$, or $-O-CHR^4-O-C(O)-R^5$; and each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 40. **(Currently Amended)**The method of claim 1, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 3-methyl-5-phenyl-2,4-pentadienoic acid, 4-methyl-5-phenyl-2,4-pentadienoic acid, 4-chloro-5-phenyl-2,4-pentadienoic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoic acid, 5-(2-furyl)-2,4-pentadienoic acid, 5-phenyl-2-en-4-yn-pentanoic acid, 6-phenyl-3,5-hexadienoic acid, 7-phenyl-2,4,6-heptatrienoic acid, 8-phenyl-3,5,7-octatrienoic acid, cinnamoylhydroxamic acid, methyl-cinnamoylhydroxamic acid,

 4-cyclohexanebutyroylhydroxamic acid, benzylthioglycoloylhydroxamic acid, 5-phenylpentanoylhydroxamic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid, 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid, 5-(2-furyl)-2,4-pentadienoylhydroxamic acid, 6-phenyl-3,5-hexadienoylhydroxamic acid, or N-methyl-6-phenylhexanoylhydroxamic acid, 6-phenyl-3,5-hexadienoylhydroxamic acid, or N-methyl-6-

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 7 of 14

phenyl-3,5-hexadienoylhydroxamic acid, 7-phenylheptanoylhydroxamic acid, 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid or 8-phenyloctanoylhydroxamic acid.

- 41. **(Currently Amended)** The method of claim 1, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 8-phenyl-3,5,7-octatrienoic acid, benzylthioglycoloylhydroxamic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, 6-phenylhexanoylhydroxamic acid, or 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid, or 8-phenyloctanoylhydroxamic acid.
- 42. (Original) The method of claim 1, wherein the cells are treated with a compound of formula (I) in vivo.
- 43. (Withdrawn) The method of claim 1, wherein the cells are treated with a compound of formula (I) in vitro.
- 44. (Original) The method of claim 1, wherein the cells being treated are cancerous.
- 45. (Canceled)
- 46. (Currently Amended) The method of claim 1, wherein the disorder is cancer, eystic fibrosis, or adrenoleukodystrophy.
- 47. (Withdrawn) A method of inhibiting histone deacetylase in cells comprising contacting the cells with an effective amount of a compound of formula (I):

wherein

A is phenyl optionally substituted with alkyl alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino;

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 8 of 14

each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -S-, -N(R^c)-, or a bond; where R^c is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

L is a straight C_{2-12} hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, hydroxyl, halo, amino, nitro, cyano, C_{3-5} cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C_{1-4} alkylcarbonyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R^e)-, -N(R^e)-, -N(R^e)-C(O)-O-, -O-C(O)-N(R^e)-, -N(R^e)-C(O)-N(R^f)-, or -O-C(O)-O-; each of R^e and R^f , independently, being hydrogen, alkyl, alkenyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl:

X1 is O or S; and

X² is -OR¹, -SR¹, -NR³-OR¹, -NR³-SR¹, -C(O)-OR¹, -CHR⁴-OR¹, -N=N-C(O)-N(R³)₂, or -O-CHR⁴-O-C(O)-R⁵; where each of R¹ and R², independently, is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R³ is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R⁴ is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; and provided that when L is a C₂₋₃ hydrocarbon containing no double bonds and X² is -OR¹, Y¹ is not a bond and Y² is not a bond;

or a salt thereof; and

determining whether the level of acetylated histones in the treated cells is higher than in untreated cells under the same conditions.

- 48. **(Withdrawn)** The method of claim 47, wherein L is a saturated C_{3-8} hydrocarbon chain substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 49. **(Withdrawn)** The method of claim 48, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, or a bond.

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 9 of 14

50. (Withdrawn) The method of claim 47, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing only double bonds, said unsaturated hydrocarbon chain optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.

- 51. (Withdrawn) The method of claim 50, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
- 52. **(Withdrawn)** The method of claim 47, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and one triple bond, optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 53. (Withdrawn) The method of claim 53, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

Claims 54-66 (Canceled)

- 67. (New) The method of claim 40, wherein said compound is 5-phenyl-2,4-pentadienoic acid.
- 68. (New) The method of claim 40, wherein said compound is 3-methyl-5-phenyl-2,4-pentadienoic acid.
- 69. (New) The method of claim 40, wherein said compound is 4-methyl-5-phenyl-2,4-pentadienoic acid.
- 70. (New) The method of claim 40, wherein said compound is 4-chloro-5-phenyl-2,4-pentadienoic acid.

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 10 of 14

71. (New) The method of claim 40, wherein said compound is 5-(4-dimethylaminophenyl)-2,4-pentadienoic acid.

- 72. (New) The method of claim 40, wherein said compound is 5-phenyl-2-en-4-yn-pentanoic acid.
- 73. (New) The method of claim 40, wherein said compound is 6-phenyl-3,5-hexadienoic acid.
- 74. (New) The method of claim 40, wherein said compound is 7-phenyl-2,4,6-heptatrienoic acid.
- 75. (New) The method of claim 40, wherein said compound is 8-phenyl-3,5,7-octatrienoic acid.
- 76. (New) The method of claim 40, wherein said compound is cinnamoylhydroxamic acid.
- 77. (New) The method of claim 40, wherein said compound is methyl-cinnamoylhydroxamic acid.
- 78. **(New)** The method of claim 40, wherein said compound is 5-phenyl-2,4-pentadienoylhydroxamic acid.
- 79. **(New)** The method of claim 40, wherein said compound is N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid.
- 80. (New) The method of claim 40, wherein said compound is 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid.
- 81. (New) The method of claim 40, wherein said compound is 4-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid.

Serial No.: 09/812,945 Filed: March 27, 2001

Page : 11 of 14

82. **(New)** The method of claim 40, wherein said compound is 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid.

- 83. **(New)** The method of claim 40, wherein said compound is 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid.
- 84. **(New)** The method of claim 40, wherein said compound is 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid.
- 85. **(New)** The method of claim 40, wherein said compound is N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid.