Projet de mathématiques

Ce projet est à réaliser par groupe de deux. Il doit comprendre une interface web et les fonctions mathématiques doivent être implémentées en PHP.

1 Calculs matriciels

Il s'agit d'implémenter les calculs matriciels (somme, produit, transposée et trace) étudiés dans le cours pour des matrices A et B dans $\mathcal{M}_{m,n}(\mathbb{R})$ où $1 \leq m \leq 5$ et $1 \leq n \leq 5$. Vous devez demander quel type d'opération est désiré sous la forme suivante :

Somme \square Produit \square Transposée \square Trace \square

L'utilisateur doit pouvoir cocher une des quatre possibilités dans les carrées vides appropriés.

1.1 Cas de la somme

Si l'utilisateur a sélectionné « Somme », votre logiciel doit demander en entrée le nombre de lignes de A, le nombre de colonnes de A, le nombre de ligne de B et le nombre de colonnes de B. ¹

Ensuite, vous devez faire apparaître les matrices A et B (avec des cellules vides à remplir).

Par exemple si $A \in \mathcal{M}_{2,3}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$, sur l'écran doit figurer

$$A = \left(\begin{array}{|c|c|} \hline \\ \hline \\ \hline \\ \hline \\ \end{array}\right) \qquad B = \left(\begin{array}{|c|c|} \hline \\ \hline \\ \hline \\ \end{array}\right)$$

Une fois les cellules de A et B complétées, vous devez afficher le résultat de A + B.

^{1.} Si A et B ne sont pas de même type (nombre de lignes et de colonnes différents pour A et B), vous devez afficher « Somme A+B non calculable. Les matrices A et B doivent être de même taille » puis redemander le nombre de lignes et de colonnes de A et B.

1.2 Cas du produit

Si l'utilisateur a sélectionné « Produit », votre logiciel doit demander en entrée le nombre de lignes de A, le nombre de colonnes de A, le nombre de ligne de B et le nombre de colonnes de B. 2

Ensuite, vous devez faire apparaître les matrices A et B (avec des cellules vides à remplir).

Par exemple si $A \in \mathcal{M}_{2,3}(\mathbb{R})$ et $B \in \mathcal{M}_{3,4}(\mathbb{R})$, sur l'écran doit figurer

$$A = \left(\begin{array}{|c|c|} \hline \\ \hline \\ \hline \\ \hline \\ \end{array}\right) \qquad B = \left(\begin{array}{|c|c|} \hline \\ \hline \\ \hline \\ \hline \\ \end{array}\right)$$

Une fois les cellules de A et B complétées, vous devez afficher le résultat de AB.

1.3 Cas de la transposée

Si l'utilisateur a sélectionné « Transposée », votre logiciel doit demander le nombre de lignes et de colonnes de la matrice A.

Puis faire apparaître la matrice A avec les cellules à remplir puis enfin afficher le résultat de tA .

1.4 Cas de la trace

Si l'utilisateur a sélectionné « Trace », votre logiciel doit demander l'ordre de la matrice A. ³

Puis faire apparaı̂tre la matrice A avec les cellules à remplir puis enfin afficher le résultat de tr(A).

^{2.} Si le nombre de lignes de B est différent du nombre de colonnes de A, vous devez afficher « Produit AB non calculable. Le nombre de lignes de B doit être égal au nombre de colonnes de A » puis redemander le nombre de lignes et de colonnes de A et B.

^{3.} On rappelle que la trace n'est calculable que pour une matrice carrée.

2 Résolution des systèmes linéaires par l'algorithme de Gauss

Il s'agit à présent d'implémenter l'algorithme étudié dans le cours 6 pour des systèmes (S), admettant une unique solution, de n équations à n inconnues où $2 \le n \le 4$.

2.1 Entrée des données

Vous devez au départ demander le nombre n d'équations du système, modélisé par AX=Y, sous la forme

n =

Puis afficher la matrice A et la matrice colonne Y avec des cellules vides à remplir.

Par exemple, si n = 3, vous devez afficher

$$A = \left(\begin{array}{|c|c|} \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}\right) \qquad Y = \left(\begin{array}{|c|c|} \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}\right)$$

2.2 Calcul des $G^{(k)}$, $A^{(k)}$ et $Y^{(k)}$

Vous devez maintenant afficher les matrices intermédiaires $G^{(k)}$, $A^{(k)}$ et $Y^{(k)}$.

Par exemple si n = 3, il faut afficher les résultats intermédiaires $G^{(1)}$, $A^{(2)}$, $Y^{(2)}$ puis $G^{(2)}$, $A^{(3)}$ et $Y^{(3)}$.

Si n = 4, il faut afficher les résultats intermédiaires $G^{(1)}$, $A^{(2)}$, $Y^{(2)}$ puis $G^{(2)}$, $A^{(3)}$, $Y^{(3)}$ et enfin $G^{(3)}$, $A^{(4)}$, $Y^{(4)}$.

Toutes les cellules de ces différentes matrices seront arrondies au centième.

2.3 Affichage des solutions du système

Vous devez ensuite afficher l'unique solution du système.

Les résultats seront également arrondis au centième.

2.4 Systèmes tests

Vous pouvez tester votre implémentation de l'algorithme en utilisant les exemples suivants :

1.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 et $Y = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$

L'ensemble des solutions est $\{(1,3)\}$.

2.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$$
 et $Y = \begin{pmatrix} 9 \\ 3 \\ 8 \end{pmatrix}$

L'ensemble des solutions est $\{(1,3,2)\}$.

3.
$$A = \begin{pmatrix} 2 & 3 & -1 & 1 \\ 4 & 7 & 2 & 4 \\ 2 & 6 & 3 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$
 et $Y = \begin{pmatrix} -2 \\ 5 \\ 4 \\ 1 \end{pmatrix}$

L'ensemble des solutions est $\{(1, -1, 2, 1)\}.$