Теорема 1. (Принцип полноты Вейрштрасса): Если $A \neq \emptyset$ и ограниченно сверху, то $\exists \sup A$. Если $A \neq \emptyset$ и ограниченно снизу, то $\exists \inf A$.

Доказательство смотри в прошлой лекции.

Аксиома Архимеда

Для нас аксиома Архимеда - это теорема, так как она следует из аксиомы полноты. Будем доказывать её как теорему.

Аксиомы полноты. Если $A \subset \mathbb{R}, A \neq \emptyset, B \subset \mathbb{R}, B \neq \emptyset$ и " $A \leq B$ " (то есть $a \leq b, \forall a \in A, b \in B$), то $\exists c \in \mathbb{R}$, которое разделяет A и B, то есть $a \leq c \leq b, \forall a \in A, b \in B$.

Аксиома Архимеда. Множество натуральных чисел \mathbb{N} - не ограниченно сверху в \mathbb{R} .

□ Предположим противное, что \mathbb{N} - ограниченно сверху, тогда по принципу полноты Вейрштрасса $\exists \, a = \sup \mathbb{N}$. Посмотрим на $a-1 \Rightarrow (a-1) < \sup \mathbb{N} \Rightarrow (a-1)$ - не является верхней гранью \Rightarrow $\exists \, n \in \mathbb{N} \colon (a-1) < n$. Добавляем 1 справа и слева, получаем a < n+1 - противоречит тому, что $a = \sup \mathbb{N}$.

Следствие 1. Если $0 < a < b \Rightarrow \exists n \in \mathbb{N} \colon an = b$

 \square Поделим на $a\Rightarrow n>rac{b}{a}\Rightarrow$ по аксиоме Архимеда такое n найдется всегда, так как множество не ограниченно.

Применение Аксиомы Архимеда

Когда говорим про вещественные числа - используем геометрическую модель. Будем изображать вещественные числа в виде прямой.

Опр: 1. Прямая - геометрическое место точек, равноудаленное от двух данных.

Как построить соответствие между вещественными числами и точкой на прямой? Надо выбрать начало координат, единичный отрезок. Возьмем вещественное число a. В a сколько-то раз умещается едениц. То есть по аксиоме Архимеда $\exists \, n \colon n \le a < n+1$.

Рис. 1: Соответствие между прямой и точками

Далее берем отрезок от 0 до 1 и делим на 10, опять $\exists m \colon \frac{m}{10} \le a < \frac{m+1}{10}, \ldots$

Таким образом можно отождествить то что делается на прямой с десятичными дробями: $a_0, a_1 a_2 \dots$ и так выписать для каждой точки десятичную дробь и наоборот. То есть аксиома Архимеда позволяет измерять отрезки и указывает процедуру сопоставления точек прямой и вещественных чисел.

Опр: 2. Отрезок $[a, b] = \{ x \in \mathbb{R} : a \le x \le b \}$

Опр: 3. Интервал $(a, b) = \{ x \in \mathbb{R} : a < x < b \}$

Опр: 4. Полуинтервал $(a, b] = \{ x \in \mathbb{R} : a < x \le b \}$

Опр: 5. Полуинтервал $[a, b) = \{ \in \mathbb{R} : a \le x < b \}$

Опр: 6. Модуль $|x| = \max\{x, -x\}$

Можно проверить, что $|x-y| = \begin{cases} x-y, & x \ge y \\ y-x, & x < y \end{cases}$

Опр: 7. Величина |x-y| называется расстоянием от x до y. А для отрезков, интервалов, полуинтервалов с концами $\{a,b\}$ число b-a называется длиной интервала.

Утв. 1. Неравенство треугольника: $||x| - |y|| \le |x \pm y| \le |x| + |y|$

 \square Поскольку $|x| = \max\{x, -x\}$, то $\pm x \le |x| \Rightarrow$

$$x + y \le |x| + y \le |x| + |y|$$

$$-x - y \le |x| - y \le |x| + |y|$$

Таким образом получим: $|x + y| \le |x| + |y|$, аналогично

$$x - y \le |x| - y \le |x| + |y|$$

$$-x+y \leq |x|+y \leq |x|+|y|$$

Таким образом получим: $|x - y| \le |x| + |y| \Rightarrow |x \pm y| \le |x| + |y|$.

$$|x + y - x| = |y| \le |x| + |y - x| \Rightarrow |y| - |x| \le |y - x|$$
$$|y + x - y| = |x| \le |y| + |x - y| \Rightarrow |x| - |y| \le |x - y| = |y - x|$$

Таким образом получим: $||x| - |y|| \le |x - y|$, аналогично

$$|x - (y + x)| = |-y| = |y| \le |x| + |y + x| \Rightarrow |y| - |x| \le |y + x|$$

$$|y - (x + y)| = |-x| = |x| \le |y| + |x + y| \Rightarrow |x| - |y| \le |x + y|$$

Таким образом получим: $||x| - |y|| \le |x \pm y|$.

Опр: 8. <u>Последовательность</u> элементов множества A - это функция $f \colon \mathbb{N} \to A$. Только вместо записи f(n) пишем a_n .

Теорема 2. Принцип полноты Кантора (теорема о вложенных отрезках): Пусть $[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset [a_{n+1},b_{n+1}]\supset\ldots$ - последовательность (не строго) вложенных отрезков. Тогда:

- 1. $\bigcap_{n} [a_n, b_n] \neq \emptyset;$
- 2. Если $\forall \varepsilon > 0, \; \exists \, n \colon b_n a_n < \varepsilon \Rightarrow \bigcap_n [a_n, b_n]$ состоит ровно из одной точки;

 \square Выводим из принципа полноты Вейрштрасса: $A = \{a_n\}$ - множество левых концов, любой правый конец b_n - является верхней гранью A. Предположим противное: $\exists b_m \colon b_m < a_n$

Рис. 2: Непересекающиеся отрезки

Тогда мы получим непересекающиеся отрезки $[a_m,b_m]$ и $[a_n,b_n]$, а это противоречит вложенности. Следовательно, все a_n могут быть только меньше или равны b_m . Так как A - не пусто, ограниченно сверху \Rightarrow по принципу полноты Вейрштрасса $\exists \, c = \sup A$. По определению точной верхней грани: $\forall m,c \leq b_m$. По определению верхней грани $\forall n,a_n \leq c \Rightarrow \forall n,m,a_n \leq c \leq b_m$. В частности для случая, когда $m=n \Rightarrow \forall n,c \in [a_n,b_n] \Rightarrow 1$ - доказано.

Пусть $\exists c_1, c_2$ удовлетворяющие условиям выше, но тогда обе эти точки лежат в каждом отрезке $[a_n, b_n]$.

Это означает, что $b_n-a_n\geq c_2-c_1$, но согласно второму пункту для $\varepsilon=\frac{c_2-c_1}{2}$ нет такого отрезка $[a_n,b_n]\Rightarrow$ противоречие $\Rightarrow 2$ - доказано.

Следствие 2. $a < b \Rightarrow [a, b]$ - не является счетным множеством.

 \square (От противного): пусть [a,b] - счетно и $x_1,x_2,\ldots,x_n,\ldots$ - все его элементы. Делим отрезок на три части и берем тот, где нет x_1 . Затем этот отрезок делим на три части и берем тот, где нет x_2 . Затем этот отрезок делим на три части и берем тот, где нет x_3,\ldots и так далее \Rightarrow получили систему вложенных отрезков.

Рис. 4: Система вложенных отрезков

По теореме Кантора внутри $\exists c$, какой номер у этой точки? Может ли $c=x_n$ - нет, так как на шаге n взяли отрезок в котором нет $x_n \Rightarrow$ такая точка не была пересчитана \Rightarrow противоречие.

Упр. 1. a < b, доказать, что $[a,b] \sim [a,b) \sim (a,b) \sim \mathbb{R}$ (множества равномощны).

Опр: 9. Множества равномощные отрезку [a,b] с a < b или \mathbb{R} называются континуальными.

Rm: 1. Из принципа <u>полноты Кантора</u> и <u>аксиомы Архимеда</u> следует <u>аксиома полноты</u>. (Доказать как упражнение).

Предел последовательности

Пусть $\{a_n\}$ - последовательность вещественных чисел.

Опр: 10. Число a называется пределом последовательности $\{a_n\}$ при $n \to \infty$, если

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \colon \forall n > N, |a_n - a| < \varepsilon$$

Обозначение: $\lim_{n\to\infty} a_n = a$, или $a_n \xrightarrow[n\to\infty]{} a$, или просто $a_n \to a$.

Примеры

$$1. \lim_{n \to \infty} \frac{1}{n} = 0$$

Рис. 5: Предел последовательности $\frac{1}{n}$

Формально, нужно проверить, что $\forall \varepsilon > 0, \ \exists \ N \in \mathbb{N} \colon \forall n > N, \ |\frac{1}{n} - 0| < \varepsilon,$ какое N взять? $\frac{1}{n} < \varepsilon \Rightarrow n > \frac{1}{\varepsilon}$. Подойдет $N > \frac{1}{\varepsilon}$ - такое N найдется по аксиоме Архимеда.

$$2. \lim_{n \to \infty} \frac{1}{2^n} = 0$$

Формально, нужно проверить, что $\forall \varepsilon > 0, \ \exists \ N \in \mathbb{N} \colon \forall n > N, \ \left| \frac{1}{2^n} - 0 \right| < \varepsilon, \$ значит $2^n > \frac{1}{\varepsilon}$.

По неравенству Бернулли $2^n=(1+1)^n\geq 1+n$. Подойдет $N>\frac{1}{\varepsilon}$ и для $n>N\Rightarrow 2^n\geq n+1>N>\frac{1}{\varepsilon}$ - такое N найдется по аксиоме Архимеда.

Отрицание предела последовательности

Число a не является пределом последовательности $\{a_n\}$? Построим отрицание определения:

Опр: 10. $\forall \varepsilon > 0, \exists N \in \mathbb{N} \colon \forall n > N, |a_n - a| < \varepsilon$

Тогда отрицание:

$$\exists \varepsilon > 0, \forall N \in \mathbb{N} \colon \exists n > N \colon |a_n - a| \ge \varepsilon$$

Утв. 2. Следующие утверждения эквивалентны:

$$1) \lim_{n \to \infty} a_n = a;$$

- 2) Для всякого интервала, содержащего a, в нем лежат все члены последовательности, начиная с некоторого номера $N \Leftrightarrow \forall (\alpha, \beta) \ni a, \exists N \colon \forall n > N, a_n \in (\alpha, \beta);$
- 3) Во всяком интервале, содержащим a, лежат все члены последовательности, кроме конечного числа $\Leftrightarrow \forall (\alpha, \beta) \ni a, \exists n_1, \dots, n_N \colon a_n \in (\alpha, \beta), \forall n \notin \{n_1, \dots, n_N\};$
- □ Докажем утверждения циклично:
- $1) \Rightarrow 2)$

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}: \forall n > N, |a_n - a| < \varepsilon \Leftrightarrow a_n \in (a - \varepsilon, a + \varepsilon)$ начиная с некоторого номера n. Пусть $a \in (\alpha, \beta) \Rightarrow \varepsilon = \min\{a - \alpha, \beta - a\} \Rightarrow$ возьмем наименьший симметричный интервал внутри (α, β) . По пункту 1) следует $\exists N : \forall n > N, a_n \in (a - \varepsilon, a + \varepsilon) \subset (\alpha, \beta)$.

$$2) \Rightarrow 3)$$

 $\forall (\alpha, \beta) \ni a, \exists N \colon \forall n > N, a_n \in (\alpha, \beta) \Rightarrow a_n \notin (\alpha, \beta)$ возможно только для $n \in \{1, \dots, N\}$.

$$3) \Rightarrow 1)$$

 $\forall \varepsilon > 0$ рассмотрим интервал $(a - \varepsilon, a + \varepsilon)$. По пункту 3) $\exists n_1, \dots, n_N \colon \forall n \notin \{n_1, \dots, n_N\}, \ a_n \in (a - \varepsilon, a + \varepsilon)$. Возьмем $\tilde{N} = \max\{n_1, \dots, n_N\}, \ \text{тогда} \ \forall n > \tilde{N}, \ n \notin \{n_1, \dots, n_N\} \Rightarrow a_n \in (a - \varepsilon, a + \varepsilon) \Leftrightarrow |a_n - a| < \varepsilon$.

Следствие 3. Отбрасывание или добавление конечного числа элементов - не влияет на сходимость и значения предела последовательности (по 3-му свойству).

Теорема 3. У последовательности число пределов ≤ 1 .

 \square Предположим, что $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} a_n = b$ такие, что $a\neq b$. Для определенности пусть a< b. Тогда рисуем прямую и берем два непересекающихся интервала:

Рис. 6: Разные пределы последовательностей

Берем $0 < \varepsilon < \frac{b-a}{2}$ - чтобы точно не пересекались. Тогда $\exists N_1 \colon \forall n > N_1, \, a_n \in I_a, \, \exists N_2 \colon \forall n > N_2, \, a_n \in I_b$. Пусть $n > \max\{N_1, N_2\} \Rightarrow a_n \in I_a \cap I_b = \emptyset \Rightarrow$ противоречие. Значит предел определен единственным образом.