Mobilità dei portatori di carica nelle Perovskiti ad Alogenuri Metallici

Panoramica generale e calcolo con simulazioni GW

Perovskiti

Classe di materiali

Semiconduttori

Struttura (AB)⁺ⁿ(X₃)⁻ⁿ

proprietà

- Ferroelettricità
- Superconduttività
- Fotovoltaico

Perovskiti ad alogenuri metallici

Classe di materiali

Struttura ABX₃ con

A = catione organico

B = metallo

X = alogeno

Esempio più famoso

Applicazioni fotovoltaiche Pro

Alta efficienza, simile alle celle al silicio (20-23%)

Materiali facilmente reperibili

Semplici ed economiche da produrre

Applicazioni fotovoltaiche Contro

Sostenibilità ecologica da approfondire Bassa stabilità nel tempo (~1000 ore / ~41 gg)

Necessari studi congiunti teorici e sperimentali per comprendere i processi di degrado nel materiale

Mobilità di carica nei semiconduttori

Cenni teorici

La mobilità collega la quantità di corrente che scorre nel materiale al campo elettrico applicato

$$J = ne\mu_n E + J = \sigma E \rightarrow \sigma = ne\mu_n$$

Per il modello utilizzato

$$\mu_{v/c,\alpha\alpha} = \frac{-e}{\tilde{N}_{v/c}(T)} \sum_{v/c=1,N_{v/c}} \int d\mathbf{k} \, v_{v/c,\alpha}^2(\mathbf{k}) \, \tau_{v/c}(\mathbf{k}) \frac{\partial f_{v/c,k}}{\partial E_{v/c,k}}$$

$$\mu_{v/c} = \frac{1}{3} \sum_{\alpha=1}^{3} \mu_{v/c,\alpha\alpha}$$

Due bande energetiche in approssimazione parabolica

Mobilità nelle MHP

Scattering fononico

La mobilità è limitata da scattering con impurità e vibrazioni nel reticolo.

Nel caso delle perovskiti il maggior contributo deriva da scattering con fononi attivi nelle regioni dell'infrarosso

Sviluppo di un nuovo metodo che considera solo tale processo per calcolare la mobilità dei portatori, con enorme vantaggio in tempo e spesa di computazione

$$\epsilon(\omega) = 1 + \frac{F_{el}^2}{\omega_{gap}^2 - (\omega + i\eta_{el})^2} + \sum_{n=1,N_{ph}} \frac{F_n^2}{\omega_n^2 - (\omega + i\eta_{ph})^2}$$

Schermatura elettronica

Contributo fononico

Mobilità nelle MHP

Altri fattori

Oltre alla funzione dielettrica gli altri parametri rilevanti nel calcolo della mobilità sono

- Masse efficaci per buche ed elettroni
- Energy gap
- Costante dielettrica ad alta frequenza
- Temperatura

Ottenibili tramite simulazioni a principi primi ma non argomento di tesi

Simulazioni MAPbl3

Serie di simulazioni condotte per MAPbl₃ utilizzando in input i file prodotti dal software QUANTUM ESPRESSO e parametri derivanti da precedenti pubblicazioni

$$m_h[a.u.] = 0.25$$

$$m_e[a.u.] = 0.19$$

$$E_g[eV] = 1.67$$

$$\varepsilon_{\infty} = 7.08$$

$$T[K] = 300$$

$$\mu_h[cm^2V^{-1}s^{-1}] = 54.81$$

$$\mu_e[cm^2V^{-1}s^{-1}] = 82.74$$

Simulazioni

Masse efficaci

La massa efficace per elettrone o buca ha effetto solo sulla rispettiva mobilità

In entrambi i casi si ha

$$\mu_{e/h} = Bm_{e/h}^A$$

con

$$A = -1.50 \pm 0.03$$

$$B = 6.9 \pm 0.3$$

Comportamento simmetrico

Simulazioni

Energy Gap

Per valori tipici di E_g si nota una dipendenza molto debole, questo perché

$$\omega_{gap} >> \omega_f$$

motivo per cui anche imprecise simulazioni DFT portano a risultati soddisfacenti per le mobilità

NOTA: per $E_g = 1.6 \text{ eV}$ $\omega_{gap} \sim 2.4 \cdot 10^{15} \text{ Hz}$ mentre $10^{11} \text{ Hz} \le \omega_f \le 10^{14} \text{ Hz}$

Simulazioni

Costante dielettrica

La costante dielettrica modifica in modo lineare le mobilità

$$\mu_{e/h} = A_{e/h} \epsilon_{\infty} + B_{e/h}$$

con

$$A_h = 11.37 \pm 0.05$$

$$B_h = -25.5 \pm 0.4$$

$$A_h = 11.37 \pm 0.05$$
 $A_e = 17.16 \pm 0.09$

$$B_h = -25.5 \pm 0.4$$
 $B_e = -38.4 \pm 0.6$

la mobilità elettronica è maggiormente affetta

Metodo

Tornando alla funzione dielettrica macroscopica

$$\epsilon(\omega) = 1 + \frac{F_{el}^2}{\omega_{gap}^2 - (\omega + i\eta_{el})^2} + \sum_{n=1,N_{ph}} \frac{F_n^2}{\omega_n^2 - (\omega + i\eta_{ph})^2}$$

si analizza ora

$$F_n^2 = \sum_{i=1}^3 \left(\sum_{I=1}^{N_{at}} \sum_{j=1}^3 \frac{4\pi}{3V} \frac{Z_{iIj} u_{Ij}^n}{\sqrt{M_I}} \right)^2$$
i direzione di polarizzazione j direzione cartesiana l'indice atomico n indice di modo

Agendo sui vettori u_{ij}^n è possibile escludere specie atomiche dai moti vibrazionali \rightarrow Software dedicato

Risultati

	MA	%	
	Hole	Electron	
Original	49.45	74.80	+0.00%
No Organic	50.82	76.71	+2.66%
No Metal	51.64	77.96	+4.32%
No Halide	59.10	89.20	+19.38%
No H + M	92.18	150.88	+94.05%

L'esclusione di atomi porta sempre a una maggiore mobilità per ridotto scattering

Componente organica (H,C,N) e metallo hanno impatto trascurabile

Componente inorganica (Pb,I) ha un contributo molto maggiore alla somma delle parti (Pb + I)

Risultati

	MAPbl ₃			
	Hole	Electron		
Original	49.45	74.80		
No Organic	50.82	76.71		
No Metal	51.64	77.96		
No Halide	59.10	89.20		
No H + M	92.18	150.88		

Risultati

Atomo	Massa [a.u.]		
Н	1.008		
С	12.011		
N	14.007		
I	126.9		
Pb	207.2		

Possibile correlazione tra massa atomica e contributo nelle frequenze di oscillazione

Conclusioni

e spunti per studi futuri

Modi a bassa frequenza maggiormente responsabili per scattering

Ipotesi

Legame Pb-I?

Massa Pb-I?

Altro?

Necessari studi più approfonditi

Risultati

I risultati sono consistenti anche per gli altri composti analizzati

	MAPbl ₃		FAPbl ₃		FAMAPbl ₃	
	Hole	Electron	Hole	Electron	Hole	Electron
Original	49.45	74.80	63.67	91.98	57.17	84.50
No Organic	50.82	76.71	66.89	96.62	60.80	89.95
No Metal	51.64	77.96	70.07	101.23	62.66	92.60
No Halide	59.10	89.20	78.35	113.18	71.11	105.08
No H + M	92.18	150.88	111.95	161.97	98.13	145.00

Risultati

Grazie per l'attenzione

Backup slides

Mobilità dei portatori

Per il calcolo della mobilità viene utilizzata l'equazione di Boltzmann nell'approssimazione del tempo di rilassamento

$$\frac{\partial f}{\partial \vec{r}} \overrightarrow{v} + \frac{\partial f}{\partial \vec{k}} \frac{\overrightarrow{F}}{\hbar} + \frac{\partial f}{\partial t} = -\frac{f - f_0}{\tau}$$

Vengono considerate solamente la banda di valenza più energetica e quella di conduzione meno energetica in approssimazione parabolica $\mathbf{A}_{n(E)}$

$$E_{G}$$

$$E_{V} \qquad \mu(T=0) \qquad E_{C}$$

$$E_{C}$$

Mobilità dei portatori

La mobilità si ottiene mediando gli elementi diagonali di

$$\mu_{v/c,\alpha\alpha} = \frac{-e}{\tilde{N}_{v/c}(T)} \sum_{v/c=1,N_{v/c}} \int d\mathbf{k} \frac{v_{v/c,\alpha}^2(\mathbf{k})}{v_{v/c,\alpha}^2(\mathbf{k})} \frac{\partial f_{v/c,k}}{\partial E_{v/c,k}}$$

con

$$v_{v/c,k} = \frac{\hbar k}{m_{h/e}}$$

$$f_{v,k} = \frac{1}{e^{(\mu(T) - E_{vk}/k_BT)} + 1}$$

$$f_{c,k} = \frac{1}{e^{(e_c(k) - \mu(T))} + 1}$$

Il tempo di rilassamento viene estratto da considerazioni quantistiche non oggetto di tesi

Mobilità dei portatori

$$\mu_{v/c,\alpha\alpha} = \frac{-e}{\tilde{N}_{v/c}(T)} \sum_{v/c=1,N_{v/c}} \int d\mathbf{k} \, v_{v/c,\alpha}^2(\mathbf{k}) \, \tau_{v/c}(\mathbf{k}) \frac{\partial f_{v/c,k}}{\partial E_{v/c,k}}$$

$$\tilde{N}_{v/c}(T) = N_{v/c}(T)e^{\pm (E_{v/c} - \mu(T))/k_B T}$$

$$N_{v/c} = \sum_{v/c=1, n_{v/c}} \frac{\sqrt{\pi}}{8\pi^2} (2m_{h/e}k_B T)^{3/2}$$

$$\mu(T) = \frac{1}{2}((E_c + E_v) + k_B T ln \frac{N_v(T)}{N_c(T)})$$

Vibrazioni fononiche

$$F_n^2 = \sum_{i=1}^3 \left(\sum_{I=1}^{N_{at}} \sum_{j=1}^3 \frac{4\pi}{3V} \frac{Z_{iIj} u_{Ij}^n}{\sqrt{M_I}} \right)^2$$

$$Z_{Iij} \propto \frac{\partial P_j}{\partial x_{iI}} \bigg|_{\epsilon=0}$$
Born effective charge