User Manual

Adi Avni, Iris Schodl, Shlomit Gila, Avishai Elmakies, Noam Ben Sason

Introduction

Our program's goal is to predict an amino acids sequence from a 3D protein structure. We build three different networks -

- "vanilla" model convolution based
- attention model attention and convolution based
- multi headed attention model multi headed attention and convolution based

How to predict a sequence from a pdb file using one of our model

Requirements

Please see the packages and versions requirements file in the git repository. Please install the requirements using pip Very important - tensorflow 2.8!

Input to the command line

python3 run.py [model type] [pdb file path] [--prinf_seq]

- Model type: N "normal" model , A attention model, AMN multi headed attention model)
- pdb file path: a PDB file path of which you want to predict the sequence of. The pdb file should be with all unknown amino acid (the model does not use them anyway)
- prinf_seq :a flag to give if you want to print the predicted sequence to the screen
- You can also write -H for help

Output

If you chose the flag of print_seq the predicted sequence will be printed to the screen. There will also be a fasta file of the predicted sequence and a PDB file of the final predicted model in a new directory called 'predicted'.

How to run our training

Requirements

Please see the packages and versions requirements file in the git repository. Very important - tensorflow 2.8!

you will also need to install and sign in to 'weights and biases' and log in from the command line before running the file.

installation command: pip install wandb

Log in command: wandb login

In the 'train_network_wandb.py' file, please change the ENTITY constant to your wandb user name to see the training result in your account.

Then, run the file 'train network wandb.py'.

Additional files and scripts

Network

encoder .py - the vanilla encoder model encoder_attn.py - the attention encoder model encoder_mhattn.py - the multi headed attention encoder model decoder - the decoder model train_network_wandb.py - the training process

For more information see project report.

RMSD calculations

Var_RMSD.py - calculates the RMSD of a given PDB file compared to the original PDB file (should also be given)

calc_RMSD.py - calculates all the RMSD scores for the three models and all the test samples. Outputs a csv containing all the RMSD scores for all the models and all the test samples.

Plot scripts

- scatter_plt_seq_loss_vs_mse_loss/create_loss_scatter_plot.py plots the
 loss of the sequence (CCE) versus the loss of the structure (MSE) in our three
 models, for all proteins in the test set.
- sequence_logo_files/logo_maker.py plots a sequence logo of predicted sequence of a given structure (PDB code 1dlf) and the original sequence. Each prediction is from a different model. The x axis represents the different positions of the sequence (from 1 to 140) and the y axis represents the counts per amino acids character. The code was used on three different models multi headed attention model, original model, attention model. For each model, we created a csv with probabilities for each position and each possible amino acids. This csv is read into the variable prob_df and then is used to create the sequence logo figure using the logomaker library.
- boxplot_rmsd.R plots 9 boxplots each representing the RMSD between original and predicted CDR region (CDR1, CDR2, CDR3) using different autoencoder architectures. It reads three different csv files, one for each different

- model multi headed attention model, original model, attention model. Each csv lists the RMSD for each CDR region.
- model_accuracy.py a script that calculates the accuracy for sequence prediction. Calcs accuracy for total sequence and also for CDR's