



# Neural-ILT: Migrating ILT to Neural Networks for Mask Printability and Complexity Co-optimization

Bentian Jiang<sup>1</sup>, Lixin Liu<sup>1</sup>, Yuzhe Ma<sup>1</sup>, Hang Zhang<sup>2</sup>, Bei Yu<sup>1</sup> and Evangeline F.Y. Young<sup>1</sup>

<sup>1</sup> CSE Dept., The Chinese University of Hong Kong <sup>2</sup>ECE Dept., Cornell University

## Speaker Biography

- Bentian Jiang is currently pursuing a Ph.D. degree with the Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, under the supervision of Prof. Evangeline F.Y. Young.
- He is a recipient of several prizes in renowned EDA contests including the CAD Contests at ICCAD 2018 and ISPD 2018, 2019, 2020.
- His research interests include
  - Design for manufacturability
  - Physical design



### Outline

Introduction and Background

Neural-ILT Algorithm

Result Visualization and Discussion

### Outline

• Introduction and Background

Neural-ILT Algorithm

Result Visualization and Discussion

# Background

#### Lithography

- Use light to transfer a geometric pattern from a photomask to a light-sensitive photoresist on the wafer
- Mismatch between lithography system and device feature sizes

#### Optical proximity correction (OPC)

- OPC compensates the printing errors by modifying the mask layouts
- Compact lithography simulation model (designed to learn the printing effects) can guide the model-based OPC processes



Figure sources from F. Schellenberg†

# Inverse Lithography Technology (ILT)

- Forward lithography simulation can mimic the mask printing effects on wafer
  - Given the desired target pattern  $\mathbf{Z}_t$ , optimized mask  $\mathbf{M}$
  - Forward Lithography simulation produce the corresponding wafer image

$$\mathbf{Z} = f(\mathbf{M}; \mathbf{P}_{\text{nom}})$$

■ ILT correction tries to find the optimum mask M<sub>opt</sub>

$$\mathbf{M}_{\mathrm{opt}} = f^{-1}(\mathbf{Z}_{\mathrm{t}}; \mathbf{P}_{\mathrm{nom}})$$

- Features
  - Ill-posed: no explicit closed-form solution for  $f^{-1}(\cdot; \mathbf{P}_{nom})$
  - Numerical: gradient descent to update the on-mask pixels iteratively
  - Pros: best possible overall process window [1] [2] for 193i layers and EUV
  - Cons: drastically computational overhead, unmanageable mask writing time

#### **Motivations**

#### Tremendous demands

- Quality: best possible process window obtainable for 193i and EUV layers [1] [2]
- Manufacturability: unmanageable mask writing times of ideal ILT curvilinear shapes affect highvolume yields
- Affordability: the still increasing computational overhead

#### Goals

- A purely learning-based end-to-end ILT solution
  - The satisfactory mask printing shapes
  - Breakthrough reduction on computational overhead
  - Significant improvement on mask shape complexity
  - ...
- A learning-scheme with performance guarantee

### Outline

Introduction and Background

Neural-ILT Algorithm

Result Visualization and Discussion

## Why Neural Network – Analogy

- What kind of container is need for end-to-end ILT correction process
  - Layout image in, mask image out
  - Iterative process
  - Update an "object" (mask here) iteratively by gradient descent
- Does it sound like the **training procedure** of an auto-encoder network?
  - Encoder + decoder -> Image in, image out
  - Iteratively update neurons of each layer by gradient descent



Schema of a basic Autoencoder
By Michela Massi - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curi
d=80177333

# Starting from Scratch

- Let us start Neural-ILT with a basic image-to-image translation task
- Given the sets of
  - Input target layouts  $\mathcal{Z}_t = \{\mathbf{Z}_{t,1}, \mathbf{Z}_{t,2}, \mathbf{Z}_{t,3}, ..., \mathbf{Z}_{t,n}\}$
  - Corresponding ILT synthesized mask set  $\mathcal{M}^* = \{\mathbf{M}_1^*, \mathbf{M}_2^*, \mathbf{M}_3^*, \dots, \mathbf{M}_n^*\}$
- The training procedure (supervised) of the UNet is to minimize the objective:

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \ \lambda ||\phi(\boldsymbol{\mathcal{Z}}_t; \boldsymbol{w}) - \boldsymbol{\mathcal{M}}^*||_2^2$$



### Untrustworthy Quality of Prediction

■ Big trouble – Untrustworthy predict quality



(a) Target layouts.

Wafer images generated by:

- (b) Target layouts
- (c) UNet direct prediction
- (d) ILT synthesized masks
- Exists inevitable prediction loss which is not acceptable
- On-neural-network ILT correction is needed to ensure performance
  - Our solution: cast ILT as an unsupervised neural-network training procedure

#### Overview of Neural-ILT

- 3 sub-units:
  - A pre-trained UNet for performing layout-to-mask translation
  - An ILT correction layer for minimizing inverse lithography loss
  - A mask complexity refinement layer for removing redundant complex features
- Core engine:
  - CUDA-based lithography simulator (a partially coherent imaging model)



## Challenges on Runtime Bottleneck

Main computational overhead of ILT correction lies in mask litho-simulation

- Multiple rounds of litho-simulation (per layout, per iteration) are indispensable for guiding the ILT correction
- First critical challenge is to integrate a **fast-enough** lithography simulator into our Neural-ILT framework

#### GPU-based Litho-Simulator

- Partially coherent imaging system for lithography model  $f(\mathbf{M}; \mathbf{P}_{nom})$ 
  - Given the mask **M**, litho-sim model parameters  $\omega_k$ ,  $h_k$ , wafer image **Z** can be calculated as

$$\mathbf{I}(x,y) = \sum_{k=1}^{N^2} \omega_k |\mathbf{M}(x,y) \otimes \mathbf{h}_k(x,y)|^2 \qquad \mathbf{Z}(x,y) = \begin{cases} 1, & \text{if } \mathbf{I}(x,y) \ge I_{th} \\ 0, & \text{if } \mathbf{I}(x,y) < I_{th} \end{cases}$$

- CUDA: perfect for parallelization + demands of AI toolkits integration
  - 96% reduction in litho-simulation time
  - 97% reduction in PVB and calculation time
  - Compatible with popular toolkits: PyTorch, TensorFLow, etc...



## ILT Correction Layer

■ ILT correction is essentially minimizing the images difference by gradient descent

$$L_{\text{ilt}} = \sum_{x=1}^{N} \sum_{y=1}^{N} (\mathbf{Z}(x, y) - \mathbf{Z}_{\text{t}}(x, y))^{\gamma}$$

• Gradient of  $L_{\text{ilt}}$  with respect to mask  $\overline{\mathbf{M}}$  ( $\mathbf{M} = \text{sigmoid}(\overline{\mathbf{M}})$ ) can be derived as

$$\begin{split} \frac{\partial L_{ilt}}{\partial \bar{\mathbf{M}}} = & \gamma \times (\mathbf{Z} - \mathbf{Z}_t)^{\gamma - 1} \odot \frac{\partial \mathbf{Z}}{\partial \mathbf{M}} \odot \frac{\partial \mathbf{M}}{\partial \bar{\mathbf{M}}} \\ = & \gamma \theta_M \theta_Z \times \{\mathbf{H}^{flip} \otimes [(\mathbf{Z} - \mathbf{Z}_t)^{\gamma - 1} \odot \mathbf{Z} \odot (1 - \mathbf{Z}) \odot (\mathbf{M} \otimes \mathbf{H}^*)] \\ & + (\mathbf{H}^{flip})^* \otimes [(\mathbf{Z} - \mathbf{Z}_t)^{\gamma - 1} \odot \mathbf{Z} \odot (1 - \mathbf{Z}) \odot (\mathbf{M} \otimes \mathbf{H})] \} \\ & \odot \mathbf{M} \odot (1 - \mathbf{M}) \end{split}$$

• where  $\mathbf{Z}_t$  is target pattern,  $\mathbf{Z}$  is wafer image,  $\mathbf{M}$  is mask,  $\omega_k$ ,  $h_k$  are litho-sim model parameters

## ILT Correction Layer

- ILT Correction Layer Implementation
  - Forward to calculate the ilt loss with respect to network prediction and target layout
  - Backward to calculate the gradient mask to update the UNet neurons
- Extremely fast with our GPU-based lithography simulator
- Directly used as a successor layer of other neural networks (expressed in PyTorch)

```
Algorithm 2 ILT Correction Layer Forward and Backward
          Input: Masks M, \overline{M}, target layout Z_t, kernels H, H*, weights ω.
Forward
              1: function Forward(M, H, \omega)
                        I, Z \leftarrow CUDA_LITHO(M, H, \omega, 1.0, Simulation);
                     L_{\text{ilt}} \leftarrow ||\mathbf{Z} - \mathbf{Z}_{\text{t}}||_{\mathbf{v}}^{\gamma};
                                                                                       \triangleright y = 4 in forward
                        return Lithography loss L_{ilt};
               5: function Backward(M, \bar{M}, H, H^*, \omega) \triangleright \theta_M = 4, \theta_Z = 50
                        I, Z \leftarrow CUDA LITHO(M, H, \omega, 1.0, Simulation);
                        \mathbf{Z} \leftarrow \frac{1}{1 + \exp(-\theta_Z \times (\mathbf{I} - I_{th}))}, \ \mathbf{M} \leftarrow \frac{1}{1 + \exp(-\theta_M \times \mathbf{M})};
                        Define common term as T_C, gradient left term as G_L, gra-
                  dient right term as G_R;
Backward
                        T_C \leftarrow (Z - Z_t)^{\gamma - 1} \odot Z \odot (1 - Z);
                        G_L \leftarrow T_C \odot \text{CUDA\_LITHO}(M, H^*, \omega, 1.0, \text{Convolve});
                        G_R \leftarrow T_C \odot \text{CUDA\_LITHO}(M, H, \omega, 1.0, \text{Convolve});
                        \frac{\partial \tilde{L}_{\text{ilt}}}{\partial \mathbf{M}} \leftarrow \gamma \theta_M \theta_Z \times [\text{CUDA\_LITHO}(\mathbf{G}_L, \mathbf{H}^{\text{flip}}, \omega, 1.0, \text{Con-}
                  VOLVE) + CUDA_LITHO(G_R, (H^{flip})^*, \omega, 1.0, CONVOLVE)]
                  \odot M \odot (1 – M); \triangleright Compute Equation (5) using Algorithm 1
                        return Gradient \frac{\partial L_{ilt}}{\partial \bar{\mathbf{M}}};
```

## Complexity Refinement Layer

- ILT synthesized masks
  - Non-rectangular complex shapes
  - Not manufacturing-friendly
- Complex features
  - Isolated curvilinear stains
  - Edge glitches
  - Redundant contours



#### Goals

- Eliminate the redundant/complex features
- Maintain competitive mask printability

## Complexity Refinement Layer

- Complex features are distributed around/on the original patterns
- Observe that, those features
  - Help to improve printability under nominal process condition
  - Not printed under min  $(\mathbf{P}_{min})$  / nominal  $(\mathbf{P}_{nom})$  process conditions
  - But usually printed under max process condition (**P**<sub>max</sub>)
- Cause area variations between
  - $\mathbf{Z}_{in} = f(\mathbf{M}; \mathbf{P}_{min})$  and  $\mathbf{Z}_{out} = f(\mathbf{M}; \mathbf{P}_{max})$
  - Loss function:  $L_{\text{cplx}} = ||\mathbf{Z}_{\text{in}} \mathbf{Z}_{\text{out}}||_2^2$ .
- Gradient:  $\frac{\partial L_{\text{cplx}}}{\partial \overline{\mathbf{M}}} = 2 \times (\mathbf{Z}_{\text{in}} \mathbf{Z}_{\text{out}}) \odot (\mathbf{Z}_{\text{in}}' \mathbf{Z}_{\text{out}}').$



#### Neural-ILT

- 3 sub-units:
  - A pre-trained UNet for performing layout-to-mask translation
  - An ILT correction layer for minimizing lithography loss
  - A mask complexity refinement layer for removing redundant complex features
- The on-neural-network ILT correction is essentially an unsupervised training procedure of Neural-ILT with following objective

$$\begin{split} \hat{\mathbf{w}} &= \underset{\mathbf{w}}{\operatorname{argmin}} \ \alpha \overbrace{||f(\phi(\mathcal{Z}_t; \mathbf{w}); \mathbf{P}_{nom}) - \mathcal{Z}_t||_{\gamma}^{\gamma}}^{L_{\mathrm{ilt}}} + \\ \beta \underbrace{||f(\phi(\mathcal{Z}_t; \mathbf{w}); \mathbf{P}_{min}) - f(\phi(\mathcal{Z}_t; \mathbf{w}); \mathbf{P}_{max})||_2^2}_{L_{\mathrm{cplx}}} \end{split}$$



#### All in One Network

- End-to-end ILT correction with purely learning-based techniques
- Directly generate the masks after ILT without any additional rigorous refinement on the network output



## Retrain Backbone with Domain Knowledge

- Original ILT synthesized training dataset usually consist of numerous complex features
  - We use a Neural-ILT to purify the original training instances
- Use the refined dataset to re-train the UNet with the cycle loss  $L_{cycle}$

$$L_{\text{cycle}} = ||\phi(\mathcal{Z}_{\mathsf{t}}; \mathbf{w}) - \mathcal{M}^*||_2^2 + \eta ||f(\phi(\mathcal{Z}_{\mathsf{t}}; \mathbf{w}); \mathbf{P}_{\text{nom}}) - \mathcal{Z}_{\mathsf{t}}||_2^2$$

- Domain knowledge of the *partially coherent imaging model* is introduced into the network training
- ILT is ill-posed, term with domain knowledge serves as a **regularization** term
- Guide the re-trained network  $\phi(\cdot; w)$  gradually converged along a domain-specified direction
- Obtain better initial solution and hence achieve faster convergence

### Outline

Introduction and Background

Neural-ILT Algorithm

Result Visualization and Discussion

#### Results

| Benchmarks |            | ILT     |              |              |         | PGAN-OPC |              |                        |         | Neural-ILT |              |              |         |
|------------|------------|---------|--------------|--------------|---------|----------|--------------|------------------------|---------|------------|--------------|--------------|---------|
| ID         | Area (nm²) | TAT (s) | $L_2 (nm^2)$ | PVB $(nm^2)$ | # shots | TAT (s)  | $L_2 (nm^2)$ | PVB (nm <sup>2</sup> ) | # shots | TAT (s)    | $L_2 (nm^2)$ | PVB $(nm^2)$ | # shots |
| case1      | 215344     | 1280    | 49893        | 65534        | 2478    | 358      | 52570        | 56267                  | 931     | 13.57      | 50795        | 63695        | 743     |
| case2      | 169280     | 381     | 50369        | 48230        | 704     | 368      | 42253        | 50822                  | 692     | 14.37      | 36969        | 60232        | 571     |
| case3      | 213504     | 1123    | 81007        | 108608       | 2319    | 368      | 83663        | 94498                  | 1048    | 9.72       | 94447        | 85358        | 791     |
| case4      | 82560      | 1271    | 20044        | 28285        | 1165    | 377      | 19965        | 28957                  | 386     | 10.40      | 17420        | 32287        | 209     |
| case5      | 281958     | 1120    | 44656        | 58835        | 1836    | 369      | 44733        | 59328                  | 950     | 10.04      | 42337        | 65536        | 631     |
| case6      | 286234     | 391     | 57375        | 48739        | 993     | 364      | 46062        | 52845                  | 836     | 11.11      | 39601        | 59247        | 745     |
| case7      | 229149     | 406     | 37221        | 43490        | 577     | 377      | 26438        | 47981                  | 515     | 9.67       | 25424        | 50109        | 354     |
| case8      | 128544     | 388     | 19782        | 22846        | 504     | 383      | 17690        | 23564                  | 286     | 11.81      | 15588        | 25826        | 467     |
| case9      | 317581     | 1138    | 55399        | 66331        | 2045    | 383      | 56125        | 65417                  | 1087    | 9.68       | 52304        | 68650        | 653     |
| case10     | 102400     | 387     | 24381        | 18097        | 380     | 366      | 9990         | 19893                  | 338     | 11.46      | 10153        | 22443        | 423     |
| Average    | -          | 788.5   | 44012.7      | 50899.5      | 1300.10 | 371.3    | 39948.9      | 49957.2                | 706.90  | 11.18      | 38504        | 53338        | 558.7   |
| Ratio      | -          | 1.000   | 1.000        | 1.000        | 1.000   | 0.471    | 0.911        | 0.993                  | 0.544   | 0.014      | 0.875        | 1.048        | 0.430   |

#### Comparing to SOTA (academia) ILT [4] / PGAN-OPC [5]

- On ICCAD 2013 benchmarks
- **70x**, **30x** TAT speedup
- **12.3%**, **3.4%** squared L2 error reduction
- 67%, 21% mask fracturing shot count reduction

#### Results



(a) ILT, (b) PGAN-OPC, (c) Neural-ILT



(1) ILT output mask, use 2045 shots to accurately replicate the mask



(2) Neural-ILT output mask, use 653 shots to accurately replicate the mask

#### Animation: Neural-ILT vs. Conventional ILT

#### Learning rate (stepsize)

- Neural-ILT is decreasing from 1e-3
- Convectional ILT is decreasing from 1.0



Target pattern

Neural-ILT correction process

Runtime = 13.57 secs



Mask

Iteration = 01

ILT correction process
Runtime = 1280 secs



Target pattern

Iteration = 01

# Better Initial Solution and Convergence



- The initial solution of Neural-ILT has much better printability (smaller image errors)
- May lead to faster and better convergence

## Why Neural Network – Empirical Observation

- GPU-ILT v.s. Neural-ILT, Neural-ILT enjoys
  - Higher searching efficiency: less ILT iterations (i.e., 100 vs. 40)
  - Smooth and fine-grained search: much smaller learning rate (i.e., 1.0 vs. 0.001)
  - Larger searching space: better overall quality (i.e, 9% better printability, 51% less shots counts)
- Reserved inverse lithography function
  - Original ILT loses every internal steps except the final M<sub>opt</sub>

■ Converged Neural-ILT is indeed an (approximated) inverse lithography function  $f^{-1}(\cdot;\cdot)$  for the given target layout



(a) Direct mask fracturing [20] results of GPU-ILT synthesized masks on benchmarks A-E.





# End

#### Reference

- [1] R. Pearman, J. Ungar, N. Shirali, A. Shendre, M. Niewczas, L. Pang, and A. Fujimura, "How curvilinear mask patterning will enhance the EUV process window: a study using rigorous wafer+ mask dual simulation," in *Proc. SPIE*, vol. 11178, 2019
- [2] K. Hooker, B. Kuechler, A. Kazarian, G. Xiao, and K. Lucas, "ILT optimization of EUV masks for sub-7nm lithography," in *Proc. SPIE*, vol. 10446, 2017
- [3] B. Jiang, X. Zhang, R. Chen, G. Chen, P. Tu, W. Li, E. F. Young, and B. Yu, "Fit: Fill insertion considering timing," in *Proc. DAC*, 2019, p.221
- [4] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, "MOSAIC: Mask optimizing solution with process window aware inverse correction," in Proc. DAC, 2014, pp. 52:1–52:6
- [5] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, "GAN-OPC: Mask optimization with lithography-guided generative adversarial nets," in Proc. DAC, 2018, pp. 131:1–131:6