#### Ch4. Classification ST4240, 2015/2016 Version 0.1

#### Alexandre Thiéry

Department of Statistics and Applied Probability

#### Outline

- 1 Motivations and measure of performances
- 2 Naive (or Idiot, or Independent, or ..) Bayes Classified
- 3 Logistic regression
- 4 Softmax Regression
- 5 Linear Support Vector Machine (SVM)

#### Classification

- Some possibly unstructured data
- Extract some feature  $x \in \mathcal{X}$  from the data
- lacksquare A finite set of possible classes  $\mathcal Y$  .
- Training examples:  $\{(x_i, y_i)\}_{i=1}^N$
- Possible goals:
  - Design a function  $f: \mathcal{X} \to \mathcal{Y}$  that predicts the class of a new piece of data. (E.g. Support Vector Machine)
  - Design a function  $f: \mathcal{X} \to [0,1]^{|\mathcal{Y}|}$  that predicts the probability that a new piece of data belongs to each class. (E.g. naive Bayes classifier, Logistic regression, Random forest)

## Titanic: who survived?



| > | head(tite | anic)         |        |     |       |       |         |          |
|---|-----------|---------------|--------|-----|-------|-------|---------|----------|
|   | Survived  | <b>Pclass</b> | Sex    | Age | SibSp | Parch | Fare    | Embarked |
| 1 | 0         | 3             | male   | 22  | 1     | 0     | 7.2500  | S        |
| 2 | 1         | 1             | female | 38  | 1     | 0     | 71.2833 | C        |
| 3 | 1         | 3             | female | 26  | 0     | 0     | 7.9250  | S        |
| 4 | 1         | 1             | female | 35  | 1     | 0     | 53.1000 | S        |
| 5 | 0         | 3             | male   | 35  | 0     | 0     | 8.0500  | S        |
| 7 | 0         | 1             | male   | 54  | 0     | 0     | 51.8625 | S        |

# Credit scoring



| Variable Name                        | Description                                                                                                                                              | Туре       |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| SeriousDlqin2yrs                     | Person experienced 90 days past due delinquency or worse                                                                                                 | Y/N        |
| RevolvingUtilizationOfUnsecuredLines | Total balance on credit cards and personal lines of credit except real estate and no installment debt like car loans divided by the sum of credit limits | percentage |
| age                                  | Age of borrower in years                                                                                                                                 | integer    |
| NumberOfTime30-59DaysPastDueNotWorse | Number of times borrower has been 30-59 days past due but no worse in the last 2 years.                                                                  | integer    |
| DebtRatio                            | Monthly debt payments, alimony,living costs divided by monthly gross income                                                                              | percentage |
| MonthlyIncome                        | Monthly income                                                                                                                                           | real       |
| NumberOfOpenCreditLinesAndLoans      | Number of Open loans and Lines of credit                                                                                                                 | integer    |
| NumberOfTimes90DaysLate              | Number of times borrower has been 90 days or more past due.                                                                                              | integer    |
| NumberRealEstateLoansOrLines         | Number of mortgage and real estate loans including home equity lines of credit                                                                           | integer    |
| NumberOfTime60-89DaysPastDueNotWorse | Number of times borrower has been 60-89 days past due but no worse in the last 2 years.                                                                  | integer    |
| NumberOfDependents                   | Number of dependents in family excluding themselves (spouse, children etc.)                                                                              | integer    |

## Drug discovery



Given a new candidate molecule, is it likely to be active?

## Digit recognition



## Advantage of probabilistic output

- Making an error of one type may be much more "expensive" than another (e.g. cancer v.s. no cancer)
- Can tell if we are uncertain about our prediction: and if so, we can refuse to classify it, and pass the case on to a human expert.
- Easier to combine several probabilistic output given by several models

### Error rate and optimality

- Suppose that training examples  $\{(x_i, y_i)\}$  are samples from a distribution (X, Y) and  $Y \in \{-1, 1\}$
- Suppose that one is trying to minimise the error rate

$$(Error rate) \equiv \mathbb{P}(f(X) \neq Y)$$

■ If one is trying to minimise the error rate, it is optimal to choose

$$f(x) = \begin{cases} 1 & \text{if } & \mathbb{P}(Y = 1 \mid X = x) \ge 1/2 \\ -1 & \text{if } & \mathbb{P}(Y = -1 \mid X = x) < 1/2. \end{cases}$$
  
= Sign(\mathbb{E}[Y \cong X = x]).

#### Is the problem solved?

- If one is trying to minimise the error rate, it thus suffices to estimate the conditional probability  $\mathbb{P}(Y \mid X)$  from the training examples  $\{x_i, y_i\}_{i=1}^N$ . Is the problem solved, then?
- Curse of dimensionality: typically,  $x \in \mathcal{X}$  is high dimensional (e.g. many features). For simplicity, let us suppose that

$$x_i = (x_{i,1}, \dots, x_{i,d}) \in \{a, b\}^d$$

and that there is only two classes. To learn  $\mathbb{P}(Y \mid X)$ , one needs to learn roughly  $2^d$  parameters!! Hopeless for d reasonably high.

## High-Dimensional spaces are weird...



## Measuring performances: error rate

■ Error rate: note that this is not always a sensible thing to do, especially when the classes are highly unbalanced

(Error rate) 
$$\equiv \mathbb{P}(f(X) \neq Y) \approx \frac{1}{N} \sum_{i=1}^{N} \text{Loss}(f(x_i), y_i)$$

with Loss 
$$(f(x), y) = \mathbb{I}(f(x) \neq y)$$
.

Directly aiming at minimising the error rate leads most of the time to a non-convex optimisation problem.

# Measuring performances: confusion matrix



# Measuring performances: ROC curve



Receiver Operating Characteristic (ROC) of a probabilistic output.

## Measuring performances: AUC



- Area Under the Curve
- AUC=1 for a perfect classifier
- AUC=0.5 for a random/useless classifier
- Also equals the probability that a random true positive has a score higher that a random true negative.
- [Exercise] : would you be happy if you managed to design a classifier with an AUC extremely close to zero?

#### Outline

- 1 Motivations and measure of performances
- 2 Naive (or Idiot, or Independent, or ..) Bayes Classifier
- 3 Logistic regression
- 4 Softmax Regression
- 5 Linear Support Vector Machine (SVM)

### Bayesian Classification

■ Given a new instance  $x \in \mathcal{X}$  and a probabilistic model, the posterior probability that this new piece of data belongs to a class  $y \in \mathcal{Y}$  is

$$\mathbb{P}(y|x) = \frac{\mathbb{P}(x|y) \mathbb{P}(y)}{\mathbb{P}(x)} \propto \mathbb{P}(x|y) \mathbb{P}(y)$$

■ for a *d*-dimensional feature  $x = (x^{(1)}, \dots, x^{(d)})$ , it is typically **very difficult to reliably evaluate**  $\mathbb{P}(x|y)$  from a set of training examples that is not huge: **curse of dimensionality**.

## Posterior independence assumption

■ In full generality, we have

$$\mathbb{P}(x \mid y) = \mathbb{P}(x^{(1)} \mid y) \times \mathbb{P}(x^{(2)} \mid y, x^{(1)}) \times \ldots \times \mathbb{P}(x^{(d)} \mid y, x^{(1:[d-1])})$$

■ Naives Bayes classifier assumes posterior independence,

$$\mathbb{P}(x \mid y) = \mathbb{P}(x^{(1)} \mid y) \times \mathbb{P}(x^{(2)} \mid y) \times \ldots \times \mathbb{P}(x^{(d)} \mid y)$$

## Posterior independence assumption: examples

- Three dimensional features: (Height, Weight, Number of shoes).
- Two possible classes:  $\mathcal{Y} = (\text{Female}, \text{Male})$
- In full generality,

$$\begin{split} \mathbb{P}(\text{weight=70kg, height=1.7m, shoes=few} \mid \text{male}) = \\ \mathbb{P}(\text{weight=70kg} \mid \text{male}) \times \\ \mathbb{P}(\text{height=1.7} \mid \text{male,weight=70kg}) \times \\ \mathbb{P}(\text{shoes=few,} \mid \text{male,weight=70kg, height=1.7}). \end{split}$$

■ Posterior independence assumption,

```
\begin{split} \mathbb{P}(\text{weight=70kg, height=1.7m, shoes=few} \mid \text{male}) = \\ \mathbb{P}(\text{weight=70kg} \mid \text{male}) \times \\ \mathbb{P}(\text{height=1.7} \mid \text{male}) \times \\ \mathbb{P}(\text{shoes=few,} \mid \text{male}). \end{split}
```

## Naive Bayes Classifier

■ Training set  $(x_i, y_i)$  with d-dimensional features,

$$x_i = (x_i^{(1)}, \dots, x_i^{(d)}),$$

where  $x_i^{(j)} \in \mathcal{X}_j$  and  $\mathcal{Y} \equiv \{1, 2, \dots, R\}$ .

- Estimate  $\mathbb{P}(y = r)$  and  $\mathbb{P}(x \mid y = r)$  from training examples
- Given a new piece of data with feature  $x = (x^{(1)}, ..., x^{(d)})$ , the naive Bayes classifier estimate that the probability that it belongs to class r is

$$\frac{\mathbb{P}(x \mid y = r) \, \mathbb{P}(y = r)}{\sum_{k=1}^{R} \mathbb{P}(x \mid y = k) \, \mathbb{P}(y = k)}$$

where  $\mathbb{P}(x \mid y = r) = \mathbb{P}(x^{(1)} \mid y = r) \times ... \times \mathbb{P}(x^{(d)} \mid y = r)$ 

## Naive Bayes Classifier: categorical class probabilities

■ To estimate the class probabilities  $\mathbb{P}(y=r)$  for  $r=1,\ldots,R$ , a pragmatic solution is to use

$$\mathbb{P}(y=r) = \frac{\text{(Number of training examples where } y=r\text{)}}{\text{(Total number of training examples)}}$$

## Naive Bayes Classifier: covariates probabilities

■ Categorical features:  $x^{(j)} \in \mathcal{X}_j \equiv \{1, 2, \dots, R_j\}$ . The MLE estimate of  $\mathbb{P}(x^{(j)} = s \mid y = r)$  from a multinomial distribution is

(Number of training examples where 
$$x^{(j)} = s$$
 and  $y = r$ )
(Total number of training examples with  $y = r$ )

- Continuous features:  $x^{(j)} \in \mathcal{X}_j \equiv \mathbb{R}$ . To estimate  $\mathbb{P}(x^{(j)} = s \mid y = r)$  one can fit a Gaussian distribution to the training example where y = r.
- Indeed, many other choices of family of distributions.
- We will see that sometimes the MLE is not adapted.

## Male v.s. Female: (height, weight, shoes)

```
Sex
                         1.62 1.54 1.82
                   1.60
                                              1.75
                                                     1.7 1.69
                                                                             1.70
                                              68
                                                     62
Weight
        70
                                                                             70
                                              Few
Shoe
                           Lot
                                  Ave
                                        Ave
                                                     Lot
                                                          Lot
                                                                 Ave
                                                                       Ave
                                                                             Lot
```

- Class Probabilities:  $\mathbb{P}(Male) = 1/2 = \mathbb{P}(Female)$
- Height:
  - (height) | (Male)  $\sim N (1.72, 0.05^2)$
  - (height) | (Female)  $\sim$  **N** (1.63, 0.06<sup>2</sup>)
- Weight:
  - (weight) | (Male)  $\sim$  **N** (70, 5.8<sup>2</sup>)
  - (weight) | (Female)  $\sim$  **N** (60, 7.5<sup>2</sup>)
- Number of Shoes (Few, Avg, Lot)
  - (shoes) | (Male)  $\sim$  Multinomial(0.33, 0.33, 0.33)
  - (shoes) | (Female)  $\sim$  Multinomial(0, 0.5, 0.5)

### Gaussian fit



# Male v.s. Female: (height, weight, shoes)

■ An individual is 1.7m tall, weights 65Kg and has an average number of shoes. What is the probability that this individual is a male?

### Regularisation

- In the above model, any individual with a **few** number of shoes will automatically be classified as a **Male**. This is clearly not satisfying.
- For a regularisation parameter c > 0, one can estimate  $\mathbb{P}(x^{(j)} = s \mid y = r)$  by

(Number of training examples where 
$$x^{(j)} = s$$
 and  $y = r) + c$   
(Total number of training examples with  $y = r$ ) +  $R_j \times c$ 

where  $R_j$  is the number of possible values for  $x^{(j)}$ .

- Can be justifiable by introducing a Dirichlet prior.
- The amount of regularisation can be tuned by cross-validation

# So, who is going to survive then?



Random guess!

# So, who is going to survive then?



Naive Bayes Classifier!

## Transformation?



## Should we drop some data?



Only three covariates kept: Age, Sex, Pclass

#### Outline

- 1 Motivations and measure of performances
- 2 Naive (or Idiot, or Independent, or ..) Bayes Classified
- 3 Logistic regression
- 4 Softmax Regression
- **5** Linear Support Vector Machine (SVM)

#### A linear model

- Feature  $x \in \mathbb{R}^p$
- Class  $y \in \mathcal{Y} = \{-1, +1\}$
- Goals:
  - Generative model that describes the probabilities

$$\mathbb{P}(y = +1 | x)$$
 and  $\mathbb{P}(y = -1 | x)$ 

- The model should be linear
- The following cannot work:

$$\mathbb{P}(y=+1\,|\,x)=\langle\beta,x\rangle$$

#### A linear model for the log-odds

- Since  $\mathbb{P}(y=+1|x)=\langle \beta,x\rangle$  does not work, one first needs to transform  $\mathbb{P}(y=+1|x)$  into something that can take value in  $(-\infty,+\infty)$ .
- The odds can take any positive value

$$(\text{odds}) \equiv \frac{\mathbb{P}(y = +1 \mid x)}{\mathbb{P}(y = -1 \mid x)} = \frac{\mathbb{P}(y = +1 \mid x)}{1 - \mathbb{P}(y = +1 \mid x)}$$

lacksquare the log-odds can take any value in  $(-\infty, +\infty)$ ,

$$\log (\text{odds}) \equiv \log \left\{ \frac{\mathbb{P}(y = +1 \mid x)}{1 - \mathbb{P}(y = +1 \mid x)} \right\}$$

■ This can also be written as

$$\log (\text{odds}) \equiv \text{Logit} (\mathbb{P}(y = +1 \mid x))$$

with Logit 
$$(x) = \log\left(\frac{x}{1-x}\right)$$

#### A linear model for the log-odds

■ In summary, logistic regression assumes that

$$\log \left( \text{odds} \right) = \log \left\{ \frac{\mathbb{P} \left( y = +1 \, | \, x \right)}{1 - \mathbb{P} \left( y = +1 \, | \, x \right)} \right\} = \left\langle \beta, x \right\rangle$$

for some vector of parameter  $\beta \in \mathbb{R}^p$  and feature  $x \in \mathbb{R}^p$ .

■ [Exercise] this can equivalently be expressed as

$$\mathbb{P}(y = +1 \mid x) = \frac{e^{\langle \beta, x \rangle}}{1 + e^{\langle \beta, x \rangle}} \quad \text{and} \quad \mathbb{P}(y = -1 \mid x) = \frac{1}{1 + e^{\langle \beta, x \rangle}}$$

## Fitting: maximum likelihood

- Training examples  $\{(x_i, y_i)\}_{i=1}^N$
- Goal: find the maximum likelihood estimate  $\beta_{\star}$
- The log-likelihood reads [Exercise]

$$-\sum_{i=1}^{N}\log\left\{1+e^{-y_{i}\left\langle \beta,x_{i}\right\rangle }\right\}$$

■ The MLE  $\beta_{\star}$  is solution of the optimization problem

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \sum_{i=1}^{N} \operatorname{Loss}(\beta, x_i, y_i) \right\}$$

with loss function  $\mathbf{Loss}(\beta, x_i, y_i) = \log \{1 + e^{-y_i \langle \beta, x_i \rangle} \}.$ 

#### The loss function

$$Loss(\beta, x_i, y_i) = \log \left\{ 1 + e^{-y_i \langle \beta, x_i \rangle} \right\} = F(y_i \langle \beta, x_i \rangle)$$

- Logistic loss:  $F(x) = \log \{1 + e^{-x}\}$
- Find  $\beta$  that makes  $\langle \beta, x_i \rangle$  as positive as possible for  $y_i = +1$  and  $\langle \beta, x_i \rangle$  as negative as possible for  $y_i = -1$ . In other words, make  $y_i \langle \beta, x_i \rangle$  as large as possible.



### The geometry of the prediction

■ Consider the plane

$$\mathcal{H} = \{ x \in \mathbb{R}^p : \langle \beta, x \rangle = 0 \}$$

- Linear separation: on one side of the plane,  $\mathbb{P}(y = +1 \mid x) > 1/2$  and on the other side  $\mathbb{P}(y = +1 \mid x) < 1/2$ . [Exercise]
- Overfitting: if the training dataset are linearly separable, there is no solution.





#### Regularized logistic regression

- For better prediction performances and avoid pathologies of the MLE estimate, one can consider regularized version of the logistic regression procedure
- **Ridge logistic regression:** an  $L^2$  penalization term is added

$$eta_{\star} = \operatorname{argmin} \left\{ eta \mapsto \sum_{i=1}^{N} \operatorname{Loss}(eta, x_i, y_i) + \lambda \|eta\|_2^2 
ight\}$$

Contrarily to ridge regression, there is no closed form solution!

■ Lasso logistic regression: an L¹ penalization term is added

$$eta_{\star} = \operatorname{argmin} \left\{ eta \mapsto \sum_{i=1}^{N} \operatorname{Loss}(eta, x_i, y_i) + \lambda \|eta\|_1 \right\}$$

■ [Exercise] prove that the above two optimization problems are convex. For ridge logistic regression, it suffices to follow the gradient!

### Regularized logistic regression: gradient descent

■ Ridge logistic regression:

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \sum_{i=1}^{N} \operatorname{Loss}(\beta, x_{i}, y_{i}) \; + \; \lambda \, \|\beta\|_{2}^{2} \right\}$$

Contrarily to ridge regression, there is no closed form solution!

■ [Exercise] write the gradient descent update for finding  $\beta_{\star}$ .

#### Outline

- 1 Motivations and measure of performances
- 2 Naive (or Idiot, or Independent, or ..) Bayes Classified
- 3 Logistic regression
- 4 Softmax Regression
- 5 Linear Support Vector Machine (SVM)

# Digit recognition



# Softmax regression: the model

- *N* training examples  $\{x_i, y_i\}_{i=1}^N$
- lacksquare p-dimensional covariate  $x_i = \left(x_i^{(1)}, \dots, x_i^{(p)}
  ight) \in \mathbb{R}^p$
- $C \ge 2$  possible classes:  $y_i \in \{r_1, r_2, \dots, r_C\}$
- Parameters:  $\beta_1, \beta_2, \dots, \beta_C \in \mathbb{R}^p$
- Probabilistic model

$$\mathbb{P}(y = r_k \mid x) = \frac{e^{\langle \beta_k, x \rangle}}{\sum_{j=1}^{C} e^{\langle \beta_j, x \rangle}}$$

■ [Exercise]: For any vector  $\nu \in \mathbb{R}^p$ , prove that replacing  $(\beta_1, \ldots, \beta_C)$  by  $(\beta_1 - \nu, \ldots, \beta_C - \nu)$  leads to the same likelihood function. One can thus assume that  $\beta_1 = (0, 0, \ldots, 0)$ .

# Softmax regression: fitting

■ Probabilistic model

$$\mathbb{P}(y = r_k \mid x) = \frac{e^{\langle \beta_k, x \rangle}}{\sum_{j=1}^{C} e^{\langle \beta_j, x \rangle}}$$

■ [Exercise]: Prove that finding the MLE estimate  $(\beta_2, ..., \beta_C)$  is equivalent to maximizing the function

$$\ell(\beta_2, \dots, \beta_C) \equiv \sum_{i=1}^{N} \sum_{k=1}^{C} \mathbf{1}(y_i = r_k) \log \left\{ \frac{e^{\beta_k, x_i}}{\sum_{j=1}^{C} e^{\langle \beta_j, x_i \rangle}} \right\}$$

with the convention  $\beta_1 = (0, 0, \dots, 0)$ .

■ [Exercise]: compute the gradient of  $\ell(\cdot)$  with respect to  $\beta_k$ .

#### Outline

- 1 Motivations and measure of performances
- 2 Naive (or Idiot, or Independent, or ..) Bayes Classified
- 3 Logistic regression
- 4 Softmax Regression
- 5 Linear Support Vector Machine (SVM)

### Linear model for prediction

- Feature  $x \in \mathbb{R}^p$
- lacksquare Class  $y \in \mathcal{Y} = \{-1, +1\}$
- Goals:
  - Function  $F: \mathbb{R}^p \to \{-1, +1\}$  that predict the class of a new piece of data
  - The model should be linear i.e. only depends on the scalar product  $\langle \beta, x \rangle$  between a parameter  $\beta \in \mathbb{R}^p$  and the vector of features  $x \in \mathbb{R}^p$

$$F(x) = \operatorname{sign}(\langle \beta, x \rangle) = \begin{cases} +1 & \text{if } \langle \beta, x \rangle \ge 0 \\ -1 & \text{if } \langle \beta, x \rangle < 0. \end{cases}$$

Note that we implicitly assumed that the vector of feature  $x \in \mathbb{R}^p$  contains one intercept i.e.  $x = (1, \cdot, \dots, \cdot) \in \mathbb{R}^p$ .

#### SVM Loss Function

■ Recall Ridge logistic regression:

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \sum_{i=1}^{N} \operatorname{Loss}_{\operatorname{logistic}}(\beta, x_i, y_i) + \lambda \|\beta\|_2^2 \right\}$$
 with  $\operatorname{Loss}_{\operatorname{logistic}}(\beta, x_i, y_i) = F_{\operatorname{logistic}}(y_i \langle \beta, x_i \rangle)$  and 
$$F(x) = \log (1 + e^{-x})$$

■ Support Vector Machine:

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \sum_{i=1}^{N} \operatorname{Loss}_{\mathrm{SVM}}(\beta, x_i, y_i) \ + \ \lambda \, \|\beta\|_2 \right\}$$
 with  $\operatorname{Loss}_{\mathrm{SVM}}(\beta, x_i, y_i) = F_{\mathrm{SVM}}(y_i \, \langle \beta, x_i \rangle)$  and 
$$F_{\mathrm{SVM}}(x) = (1-x)^+$$

### SVM v.s. Logistic Loss Functions



#### SVM Loss Function

■ Support Vector Machine:

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \sum_{i=1}^{N} \operatorname{Loss}_{\mathrm{SVM}} (\beta, \mathsf{x}_i, \mathsf{y}_i) \; + \; \frac{\boldsymbol{\lambda}}{\boldsymbol{\lambda}} \| \boldsymbol{\beta} \|_2 \right\}$$

■ Equivalently, and more commonly in practice, the SVM optimization problem is formulated as follows

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \frac{\mathsf{C}}{\sum_{i=1}^{\mathsf{N}} \mathsf{Loss}_{\mathrm{SVM}}(\beta, \mathsf{x}_i, \mathsf{y}_i) \; + \; \|\beta\|_2 \right\}$$

for a parameter  $C = 1/\lambda$ . A high value of C correspond to small amount of regularization.

### Linearly separable case: large margin interpretation

**■ Support Vector Machine:** 

$$\beta_{\star} = \operatorname{argmin} \left\{ \beta \mapsto \sum_{i=1}^{N} \operatorname{Loss}_{\mathrm{SVM}} (\beta, \mathsf{x}_i, \mathsf{y}_i) \; + \; \frac{\boldsymbol{\lambda}}{\boldsymbol{\lambda}} \| \boldsymbol{\beta} \|_2 \right\}$$

■ Equivalently, and more commonly in practice, the SVM optimization problem is formulated as follows

$$eta_\star = \operatorname{argmin} \left\{ eta \mapsto rac{C}{\sum_{i=1}^N \operatorname{Loss}_{\mathrm{SVM}}(eta, x_i, y_i)} \ + \ \|eta\|_2 
ight\}$$

for a parameter  $C = 1/\lambda$ . A high value of C correspond to small amount of regularization.









- SVM: trade-off between large margin and small error.
- The parameter *C* represents in some ways the cost of making mistakes. A high value of *C* indicates that it is very expensive to make mistakes i.e. one wants to avoid mistakes as much as possible.
- Avoiding as much as possible mistakes may lead to poor generalization performances.
- The parameter *C* is usually found by cross-validation!

# Nonlinear Classification

