Matlab-Tutorial 1

Till Rohrmann, Johannes Reifferscheid 24. Juni 2010

1 Aufgabe 1b

2 Aufgabe 2b

3 Aufgabe 2c

Da es zu jeder Nullstelle λ eines Legendre-Polynoms auch eine Nullstelle $-\lambda$ gibt, und die Nullstellen als Eigenwerte einer Matrix berechnet werden, kann aufgrund der Symmetrie der Eigenwerte der Rayleigh-Shift nicht verwendet werden (wie in der Übung gezeigt).

4 Aufgabe 3b

5 Aufgabe 3c

Die Wurzelfunktion ist an der Stelle 0 nicht stetig differenzierbar, ist also keine analytische Funktion im Intervall [0;1], so dass sich auch bei der Gauß-Quadratur kein exponentieller Fehlerabfall bezüglich m einstellt. Im Gegensatz dazu ist die Funktion $\frac{1}{x^2+1}$ beliebig oft stetig differenzierbar und somit analytisch, so dass nach der Fehlerabschätzung $err < C(b-a)^{m+2} \|f^{(m+1)}\|_{\infty,[a,b]}$ der Fehler exponentiell mit steigendem m abfällt.