Nombre: Yordano Cortes Rosales.

Tema: Algebra de Bloques.

Algebra de Bloques

Un bloque representa la función de transferencia que relaciona las señales de entrada y salida. La dirección de un bloque siempre es única e indica el flujo causa efecto y también de flujo de la información.

Los bloques se pueden conectar entre si y se opera entre ellos usando las reglas algebraicas de la suma y de la multiplicación para su simplificación.

Bloque funcional: es un rectángulo que contiene la función de transferencia correspondiente a esa parte del sistema de control.

Punto de suma: es un círculo o un rectángulo que indica la operación suma o resta que se va a realizar.

Punto de bifurcación: en un punto que enlaza la trayectoria tomada inicialmente con otra trayectoria diferente a ella.

El comportamiento dinámico vendrá modelado por ecuaciones diferenciales para cada uno de los componentes. Dos posibilidades:

Un balance por componente que genere una ecuación diferencial a la que se aplica la transformada de Laplace para obtener una función de transferencia

Varios balances que generen un conjunto de ecuaciones diferenciales a las que se aplica la transformada de Laplace para obtener funciones de transferencia parciales

Permite visualizar de forma sencilla las relaciones causa-efecto

Reglas del algebra de bloques

Tipos de Algebra de Bloques

	Descripción	Diagramas de bloques	Diagramas de bloques
1		originales	equivalentes
1	CONMUTATIVA PARA LA SUMA	<u>x </u>	× × × × × × × × × × × × × × × × × × ×
2	DISTRIBUTIVA PAR LA SUMA	×	× × × z × × × × × × × × × × × × × × × ×
3	CONMUTATIVA PARA LA MULTIPLICACIÓN	X G, XG, G ₂ XG, G ₂	X G ₂ XG ₂ G ₁ XG ₁ G ₂
4	DISTRIBUTIVA PARA LA MULTIPLICACIÓN	X G, XG, G ₂ XG, G ₂	× G ₁ G ₂ ×G ₁ G ₂
5	BLOQUES EN PARALELO	X G, XG, +XG, +XG, G2 XG, +XG	× G ₁ +G ₂ ×G ₁ +×G ₂
6	MOVIMIENTO A LA IZQUIERDA DE UN PUNTO DE SUMA	×G ×G ×G-Y	X S X G X G -Y
7	MOVIMIENTO A LA DERECHA DE UN PUNTO DE SUMA	× × × × G × G - Y G	X 6 XG XG-YG

8	MOVIMIENTO A LA IZQUIERDA DE UN PUNTO DE BIFURCACIÓN	X G XG XG	X G XG G XG
9	MOVIMIENTO A LA DERECHA DE UN PUNTO DE BIFURCACIÓN	X	X G XG X
10	MOVIMIENTO A LA IZQUIERDA DE UN PUNTO DE BIFURCACIÓN SOBRE UN PUNTO DE SUMA	X	× × × × × × × × × × × × × × × × × × ×
11	COMPENSACIÓN DE FUNCIONES DE TRANSFERENCIA	$X G_1$ $XG_1 + XG_2$ G_2 XG_2	X S2 XG2 X XG XG X XG X X X X X X X X X X X
12	COMPENSACIÓN DE FUNCIONES DE TRANSFERENCIA	X	× 1 × G2 × G1 ×
13	LAZO CERRADO A LAZO ABIERTO	X	X G ₁ Y 1+G ₁ G ₂