H19T1A2

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x^2 + xy^2 - xy$

- a) Bestimme alle kritischen Punkte von f und untersuche, ob an diesen lokale Extrema vorliegen oder ob es sich um Sattelpunkte handelt.
- b) Bestimme die Nullstellen von f und skizzieren Sie in $Q =]-1, 2[x]-1, 2[\supseteq \mathbb{R}^2$ die Menge $\{(x,y) \in Q : f(x,y) = 0\}.$
- c) Sei $T \supseteq \mathbb{R}^2$ das abgeschlossene Dreieck im ersten Quadranten, das durch die Geraden y=0, x=0 und x+y-1=0 berandet ist. Begründe, dass die Funktion f eingeschränkt auf T ihr Maximum und ihr Minimum annimmt und bestimme alle Punkte in T, an denen dieses Maximum bzw. Minimum angenommen werden zusammen mit den zugehörigen Funktionswerten.
- d) Skizziere nur mit Hilfe der Ergebnisse aus a) bis c) qualitativ die Niveaulinien der Funktion f im Quadrat q, sodass man den Typ der kritischen Punkte klar aus der Skizze ablesen kann.

Zu a):

$$(\nabla f) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2xy + y^2 - y \\ x^2 + 2xy - x \end{pmatrix} = \begin{pmatrix} y(2x + y - 1) \\ x(x + 2y - 1) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Fall 1:
$$x = y = 0 \implies \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Fall 2:
$$y = 0$$
, $x + 2y - 1 = 0$ $\Rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Fall 3:
$$x = 0$$
, $2x + y - 1 = 0$ $\Rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Fall 4:
$$2x + y - 1 = 0$$
, $x + 2y - 1 = 0$ $\Rightarrow \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$

$$\Rightarrow$$
 kritische Punkte: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$

$$(Hess f) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y & 2x + 2y - 1 \\ 2x + 2y - 1 & 2x \end{pmatrix}$$

 $(Hess f) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ hat das charakteristische Polynom

$$\mu^2 - 1 = (\mu + 1)(\mu - 1)$$

also Eigenwerte ± 1 mit verschiedenen Vorzeichen $\Rightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Sattelpunkt.

 $(Hess\,f)\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}0&1\\1&2\end{pmatrix}$ hat das charakteristische Polynom

$$-\mu(2-\mu) - 1 = \mu^2 - 2\mu - 1$$

also Eigenwerte 1 $\pm\sqrt{2}$ mit verschiedenen Vorzeichen $\Rightarrow\begin{pmatrix}1\\0\end{pmatrix}$ Sattelpunkt.

 $(Hess\,f)\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}2&1\\1&0\end{pmatrix}$ hat das charakteristische Polynom

$$-\mu(2-\mu) - 1 = \mu^2 - 2\mu - 1$$

also Eigenwerte 1 ± $\sqrt{2}$ mit verschiedenen Vorzeichen $\Rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Sattelpunkt.

 $(Hess\,f)\begin{pmatrix}1/3\\1/3\end{pmatrix}=\begin{pmatrix}2/3&1/3\\1/3&2/3\end{pmatrix}$ hat das charakteristische Polynom

$$(\frac{2}{3}-\mu)(\frac{2}{3}-\mu)-\frac{1}{9}=(\frac{2}{3}-\mu+\frac{1}{3})(\frac{2}{3}-\mu-\frac{1}{3})=(1-\mu)(\frac{1}{3}-\mu)$$

also Eigenwerte $1, \frac{1}{3} \Rightarrow \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$ isoliertes lokales Minimum.

Alternative zu a):

Ein Punkt (x_0, y_0) ist kritischer Punkt genau dann, wenn $\operatorname{grad} f(x_0, y_0) = 0$ gilt. Es ist

$$\operatorname{grad} f(x,y) = \begin{pmatrix} 2xy + y^2 - y \\ x^2 + 2xy - x \end{pmatrix} = 0 \Leftrightarrow \begin{cases} y(y + 2x - 1) = 0 \\ x(x + 2y - 1) = 0 \end{cases}$$

1. Fall: Ist y = 0, so ist x(x - 1) = 0, also entweder x = 0 oder x = 1.

<u>2. Fall:</u> Ist $y \neq 0$, so ist y + 2x - 1 = 0, also y = 1 - 2x. Mithilfe der zweiten Gleichung erhält man x(x+2-4x-1) = 0. Der erste Faktor ist 0 für x = 0 und damit y = 1. Der zweite Faktor ist 0, falls 3x - 1 = 0 gilt, also $x = \frac{1}{3}$ und damit $y = \frac{1}{3}$.

Insgesamt erhält man also die kritischen Punkte $p_1=(0,0),\ p_2=(1,0),\ p_3=(0,1),\ p_4=\left(\frac{1}{3},\frac{1}{3}\right).$

Die Hessematrix ist gegeben durch $H_f(x,y) = \begin{pmatrix} 2y & 2x + 2y - 1 \\ 2x + 2y - 1 & 2x \end{pmatrix}$.

 $\underline{p_1 = (0,0)}$: Es ist $H_f(0,0) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ mit char. Polynom $\det(\lambda E_2 - H_f(0,0)) = \frac{1}{2}$

 $\begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 - 1$, also mit den Eigenwerten ± 1 . Damit ist $H_f(0,0)$ indefinit und p_1 ein Sattelpunkt.

 $\underline{p_2 = (1,0)}$: Es ist $H_f(1,0) = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ mit char. Polynom $\lambda^2 - 2\lambda - 1$. Die Nullstellen sind $\lambda_{1/2} = 1 \pm \sqrt{2}$. Wegen $1 < \sqrt{2}$, ist die Hessematrix wieder indefinit

und p_2 ebenfalls ein Sattelpunkt.

 $\underline{p_3 = (0,1)}$: Es ist $H_f(0,1) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ mit char. Polynom $\lambda^2 - 2\lambda - 1$ (vgl. p_2). Wie zuvor ist also auch p_3 ein Sattelpunkt.

 $\underline{p_4 = \left(\frac{1}{3}, \frac{1}{3}\right)}$: Es ist $H_f\left(\frac{1}{3}, \frac{1}{3}\right) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ mit char. Polynom $\lambda^2 - \frac{4}{3}\lambda + \frac{1}{3}$. Für dessen Nullstellen gilt $\lambda_1 = 1$ und $\lambda_2 = \frac{1}{3}$. Damit ist $H_f\left(\frac{1}{3}, \frac{1}{3}\right)$ positiv definit und p_4 lokales Minimum.

Zu b):

Setzt man $0 = x^2y + xy^2 - xy = xy(x+y-1)$, so folgt x = 0 oder y = 0 oder y = -x+1. Die gesuchte Nullstellenmenge \mathcal{N} ergibt sich also aus der Vereinigung der gegebenen Geradengleichungen (gerade die das Dreieck T aus c) berandenden Geraden, grün in Skizze):

$$\mathcal{N} = \{(0, y) | y \in \mathbb{R}\} \cup \{(x, 0) | x \in \mathbb{R}\} \cup \{(x, -x + 1) | x \in \mathbb{R}\}.$$

Zu c):

Da T abgeschlossen und offensichtlich beschränkt ist, nimmt die stetige Funktion f(x,y) ihr Maximum und Minimum auf T an. Im Inneren liegt von den in a) untersuchten Punkten nur $p_4 = \left(\frac{1}{3}, \frac{1}{3}\right)$ mit $f\left(\frac{1}{3}, \frac{1}{3}\right) = -\frac{1}{27}$. Weitere Extrempunkte müssen also auf dem Rand von T liegen. Hier gilt aber nach Aufgabenteil b) $f(\partial T) = 0$. Somit wird das Minimum $-\frac{1}{27}$ in p_4 angenommen und das Maximum von f auf T beseitzt den Wert 0 und wird in jedem Randpunkt angenommen.

Zu d):

Die grünen Niveaulinien sind die Nulstellen von f. Die blauen Niveaulinien gehören zu positiven Werten, die roten zu negativen Werten von f. Somit ist deutlich, dass die Punkte p_1 , p_2 und p_3 Sattelpunkte darstellen und p_4 ein lokales Minimum ist.

