12/12/23 AN

Reg. No.				(2)

B.Tech. DEGREE EXAMINATION, DECEMBER 2023

Sixth Semester

18CSC304J - COMPILER DESIGN

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

TAT.	-4-	
T.	uu	÷

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii)	Part - B & Part - C should be ans	swered in ans	wer booklet.				
Time: 3	hours		Ŋ	Лах. М	[arks	s: 10	0
	PART - A (2	$20 \times 1 = 20$	Marks)	Marks	BL	co	PO
		ALL Questi					
1.			d" and "infrastructure" has	1	2	1	2
	number of states.			-			
	(A) 20	(B)	22				
	(C) 15	(D)	17				
2.	The equivalent of $R_1 = (rs + r)^3$	*r is		1	2	1	2
	$(A) r(sr+r)^+$		$r^*(sr+r)^*$				
	(C) $r(sr+r)^*$	(D)	$r^+(sr+r)^+$,		
		11		1	1	1	3
3.	The number of tokens in the fo switch (n) { case 1 : b = c + c * d; break; default: b = b; break;	llowing C c	ode segment is	·	•	•	
	} (A) 26	(B)	27				
	(C) 28	(D)					
4.	then choose the right string for (A) ae234	L1. L2 (B)	L2 is represented by $(1/2/3)^*34$ abcccde112334	l 1	2	1	2
	(C) abccce 1232	(D)	d e 224				
5.			es a top-down parser use while med to be scanned in left to righ		2	2	3
	(A) Left most derivation	(B)	Left most derivation traced out in reverse	a			
	(C) Right most derivation	(D)	Right most derivation traced ou	t			

in reverse

6.	Consider the grammar $x \rightarrow a$			1	4	2	3
	$x \rightarrow y$						
	$z \rightarrow d$						
	$z \rightarrow xyz$						
	$y \rightarrow c$						
	$y \rightarrow \in$						
	Identity the first (y)						
	(A) {\$}		{c, ε}				
	(C) $\{a, c, \epsilon\}$	(D)	{c}				
7,	Consider the grammar shown below, $S \rightarrow 1Et SS' \mid a$			1	3	2	3
	$S^{1} \to es \mid \to E \to b$						
	In the predictive parsing table, M of	this a	grammar, the entries $M[S^1, e]$ and				
	$M[S^1,\$]$ respectively are,	~ \					
-	(A) $\{S \rightarrow es, S^1 \rightarrow \epsilon\}$ and $\{S^1 \rightarrow \epsilon\}$						
	(C) $\{S \rightarrow es,\}$ and $\{\}$	(D)	${S \rightarrow \varepsilon}$ and ${S^1 \rightarrow \varepsilon}$				
8.	Consider the grammar with non-term $T = \{a, b, i, t, e\}$ with 'S' as the start so $S \rightarrow i ct SS_1 \mid a; S_1 \rightarrow es \mid \in; c \rightarrow s$	symb		1	2	2	3
	The grammar is not LL(1) because:	(D)					
		` '	It is right recursive				
	(C) It is ambiguous	(D)	It is not context free				
9.	Consider the grammar $E \rightarrow E + n \mid E$			1	2	3	3
	handles in the right sentential form of (A) $n, E + n$ and $E + n \times n$						
			$n, E + n$ and $E + E \times n$				
	(C) $n, n+n$ and $n+n\times n$	(D)	$E \times n$ and $E + n \times n$				
10.	Consider the augmented grammar giv	en		1	2	3	3
	$S^1 \to S$						
	$S \to (L) \mid id$						
	$L \to L, S \mid S$						
	How many LR(0) items can be formed (A) 7		0				
	(A) 7 (C) 6	(B) (D)					
	(C) 0	(D)	3				
11.	Which of the following grammar operator grammar (i) $A \rightarrow BC$ (ii) $A \rightarrow BPC$ (iii) $A \rightarrow \epsilon$ (iv) $A \rightarrow Bq Cr$	rules	violate the requirements of an	1	3	3	3
	(A) (i) and (iv) only	(B)	(iii) and (iv) only				
	(C) (i) and (iii) only		(ii) and (iii) only				

12.	. Consider the augmented grammar given $S^1 \to S$ $S \to (L) \mid id$ $L \to L, S \mid S$		1	4	3	3
	Let I_o = closure $\{S1 \rightarrow \cdot S\}$. The number of items in the (A) 5 (B) 4 (C) 3 (D) 1	set Goto (I ₀ , c) is:				
13.	. When code is generated for "a < b" and "c > d", the l patching are,	ocations left for back	1	2	4	3
		f a < b and false list				
	(C) False list of a < b false list of (D) True list of c > d truelist of c > d a > b, true of c > d	f $a > b$, false list of list of $c > d$, false list				
14. ≝	Consider the translation scheme shown below $S \to TR$ $R \to T$ {Print ('+');} $R \in T \to \text{num} \{ \text{Print (num.val)}; \}$		1	2	4	3
	Here num is a token that represents an integer and corresponding integer value. For an I/P string '9+ scheme will print.	d num.val represents 5+2' this transaction				
	(A) 9+5+2 (C) 952++ (B) 95+2+ (D) ++952					
15.	 On translating the expression given below into quadhow many operations are required? (i*j)+(e+f)*(A) (A) (B) (C) (D) (D) 	druple representation, $(l*m*n)$	1	2	4	3
16.		rates object code for e its running on	1	1	4	3
	(C) Which is written in the same (D) That runs	on one machine but bject code for another				
17.	Which of the following optimization is not car representation of a basic block? (A) Elimination of common sub (B) Dead code	ned out with DAO	1	1	5	3
	expressions (C) Elimination of redundant loads (D) Constant for and stores	2				
18.	A. The statement followed by a conditional jump is a (A) Leader (B) Entry (C) Exit (D) Next use in	formation	1	2	5	3
		10				

```
5
                                                                                        1
                                                                                              2
19. The following code is an example of
          void add ten (int x)
           return x = 10;
           printf ("value of x is %d", x);
    (A) Redundant instruction
                                            (B) Unreachable code
          elimination
    (C) Flow of control optimization
                                            (D) Reachable code
                                                                                              1
                                                                                                 5
                                                                                                      3
20. The sequence of procedure calls of a program corresponds to which
     traversal of the activation tree.
    (A) In-order traversal
                                            (B) Pre-order traversal
    (C) Post-order traversal
                                            (D) Level-order traversal
                            PART - B (5 \times 4 = 20 Marks)
                                                                                       Marks
                                                                                            BL CO PO
                            Answer ANY FIVE Ouestions
21. Construct DFA for the language over alphabet a, b, where string will not
    have 'aba' as substring.
                                                                                                  2
                                                                                              2
22. Show that the following grammar is ambiguous:
          S \rightarrow iCts \mid iCtSeS \mid a
          L \rightarrow b
                                                                                              3
                                                                                                  2
23. Compute FIRST for the following grammar
          S \rightarrow ABCD
          A \rightarrow a \in
          B \to CD \mid b
          C \rightarrow C \models
          D \rightarrow Aa \mid d \mid \in
                                                                                              2
                                                                                                 3
24. Parse the input string "ibtibtaea" using shift reduce parsing for the following
     grammar.
          S \rightarrow iEts \mid iEtSeS \mid a
          E \rightarrow b
25. List the properties of LR parser, mention the types of LR parser.
                                                                                              2
                                                                                                  3
                                                                                                      3
26. Translate the given expression into triples and indirect triples.
                                                                                              2
                                                                                                      2
          (a+b)*(c+d)+(a*b/c)*b+60
27. List the possible transformations that are available in the below code.
          for (i = 0; i < n; i++)
           for (j = 0; j < n; j++)
                if (i%2)
                 x + = (4 * j + 5 * i);
                 y + = (7 + 4 * i);
```

}

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions				CO	PC
28. a.	Consider the following fragment of C code: float i, j; i = i * 70 + j + 2	12	2	1	1
	write the output of the compiler for the above 'C' code and elaborate about the analysis and synthesis phase of compiler.				
	(OR)				
b.	Construct optimized DFA for the regular expression $(a^*/b^*)^*abb(a/b)^*$.	12	3	1	1
29. a.i.	Compute FIRST and Follow for the following grammar $S \rightarrow ABCD$	8	4	2	1
	$A \rightarrow a \mid \in$				
	$B \to CD \mid b$				
	$C \to C \in$				
	$D \rightarrow Aa \mid d \mid \in$				
ii.	Consider the following grammar $S \to (L) \mid a$	4	3	2	1
	$L \to L, S \mid S$				
	Construct left most derivation and parse tree for $(a,(a,a))$.				
	(OR)				
b.	Show the following grammar is LL(1) and parse the input string "baba". $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$	12	3	2	1
30. a.	With your own example, show that the grammar is LR(1) but not LALR.	12	4	3	3
	(OR)				
b.	Compute the operator precedence matrix, precedence relation and precedence function for the following grammar and generate the stack implementation for the expression water + water * water. Where GIRAFFE, ELEPHANT, TIGER, FOX are non-terminals and	12	4	3	3
	food, water are terminals.				
	GIRAFFE → ELEPHANT ELEPHANT → ELEPHANT + TIGER ELEPHANT – TIGER TIGER TIGER → TIGER * FOX TIGER / FOX FOX				
	$FOX \rightarrow food \mid water \mid (ELEPHANT)$				
31. a.i.	Express the sematic rule for productions of Boolean expression write three address code for $\inf_{x=0}^{i} (x < 100 \mid\mid x > 200 \& \&x! = y)$	9	4	4	3
	x=0;				

(OR)

ii. State the different ways of representing intermediate languages.

Marks BL CO PO

- b.i. Explain the translation scheme to produce three address code for assignment statements.
- 8 1 4 3

ii. Write three address code for the following expression -(w*x)+(y+z)-(w+x+y+z)

4 2 4 3

32. a. Consider the following classification metrics:

12 3 5 3

$$x_1 = x_2 = 2;$$

 $y_1 = y_2 = 3;$
 $x_3 = 4$
 $y_3 = 3$
 $m_{12} = (y_2 - y_1) / (x_2 - x_1);$

 $m_{23} = (y_3 - y_2)/(x_3 - x_2);$ Interpret the instruction and generate three address code and DAG for the above expressions.

(OR)

- b.i. Consider the following code, find out the minimum number of registers 10 4 5 required to compile the given code
 - (i) With optimization and
 - (ii) Without optimization

$$c = a + b;$$

 $d = c + a;$
 $e = c + a;$
 $x = c * c;$
 $if(x < a)$
 $y = a + a;$
 $else \ d = d + d;$
 $e = e + e;$

ii. Represent the following in flow graph

```
i = 1; sum = 0;

while (k = 20)

\{

sum + = i;

i + +;
```

* * * * *

2 5 3