Overview of Projects and Rakuten Case Study

Shreya Sharma

About Me

From India, working in Japan since Oct 2016

Education

- B. Tech. in Electrical Engineering, GBPUAT Pantnagar, India
- M. Tech. in Geoinformatics Engineering, IIT Bombay, India

Professional Experience

- Data Science Researcher at NEC (3 years)
- Image Processing Lab Teaching Assistant at IIT Bombay (1 year)

Research Achievements

- 3 Patents
- 5 Publications in top-level remote sensing conferences- IGARSS, SPIE
- Foreign collaborations

Hobbies

- Blogging
- Social Activities
 - Volunteer at Hands-on-Tokyo NGO
 - Speaker at Machine Learning Tokyo

Career Interests

Research Interests

Computer Vision

Image Processing

Deep Learning Statistical Analysis

Domains

Geospatial

Healthcare

E-commerce

Agriculture

Security

Overview of My Projects

Research Projects at NEC

- Ship Classification for Maritime Surveillance
- Change Detection in Time-series of Satellite Images
- Land-use Land-cover Segmentation in Large-size Satellite Images

Master's Thesis

Hyperspectral Image Super-resolution

Academic Projects

- Dimensionality Reduction of Hyperspectral Images
- Shape Detection using Hit and Miss Transform
- Optimal Bike Path Development and Route Prediction
- Feature extraction using Active Contour Models

More Information at: https://shreya1sharma.github.io/ShreyaSharma/projects/

Contents

- 1. Ship Classification for Maritime Surveillance
- 2. Change Detection in Time-series of Satellite Images
- 3. Current Work and Challenges
- 4. Collaboration Activities

5. Case Study: Brain Tumor Segmentation with MRI

Contents

- 1. Ship Classification for Maritime Surveillance
- 2. Change Detection in Time-series of Satellite Images
- 3. Current Work and Challenges
- 4. Collaboration Activities

5. Case Study: Brain Tumor Segmentation with MRI

Motivation

Ship Classification is a key application in maritime surveillance

Helps in quick identification of ships involved in illegal activities

Ship Classification from Space

3 major sources of information: AIS, Visible and Microwaves

Microwaves can see ships undetected/spoofed by AIS and Visible

Microwave images are highly reliable for ship classification

Conventional Methods

1. Hand-crafted feature (HCF)-based

2. Convolutional Neural Network (CNN)-based

These methods classify a ship based on its appearance in image

Problem

Appearance of a ship varies with satellite viewing angle

Labelled microwave images are very few to learn all possible variations

Only image information is insufficient for robust classification

Proposed Method

Use viewing angle as an additional information in a NN

Helps the CNN to follow the appearance changes by learning a relationship

Sharma et al., CNN-based ship classification method incorporating SAR geometry information, SPIE RS 2018.

Experiments

Dataset: OpenSARShip*

Container

*Huang, L et al., "OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation," IEEE Journal of Sel. Top. in App. Earth Obs. and Rem. Sen. 11(1), 195-208 (2018).

Specifications

Satellite Sentinel-1

Resolution 20m

Image size 128 x 128

No. images 200 per class

Ground truth AIS + Marine Traffic

Conventional Methods

HCF 10 Features + SVM

CNN w/o incident angle

Metrics

f-measure Higher is better

#training data needed Lower is better

Results

4.2% improvement in f-measure

25% reduction in training data requirement

Proposed method outperforms the conventional methods

Demo Example

Presented at International Geosciences and Remote Sensing Symposium '19

Ship Detection Result

Today I will present

- 1. Ship Classification for Maritime Surveillance
- 2. Change Detection in Time-series of Satellite Images
- 3. Current Work and Challenges
- 4. Collaboration Activities

5. Case Study: Brain Tumor Segmentation with MRI

Motivation

Change detection enables us to understand dynamics of Earth

Dubai Coastal Expansion

Saudi Arabia Irrigation

Conventional Method

Based on pixel-to-pixel difference followed by classification

Problem

Pixel-to-pixel difference-based method cause many false alarms

- Camera Jitter
 - causes co-registration error
- Speckle
 - characteristic property in SAR
 - causes noisy background
- Camouflage
 - non-defined shape and boundary
 - difficulty to detect small and moving objects

Low change detection accuracy

Solution

Feature-to-Feature difference method is robust to the conditions

Siamese network has been widely used for feature comparison

Proposed Method

Transform the images into features and compute difference between features

Sharma et al., Very high resolution SAR change detection with Siamese Networks, The 66th Academic Conference of the Remote Sensing Society of Japan, 2019.

Experiments: Parking Lot Monitoring

Result [1/2]: f-measure

Proposed method improves f-measure by 15% over baselines

Result [2/2]: Change Maps

Proposed method produces visually better change maps

Ground Truth Proposed SAE-K PCA-K

Pair 1

Pair 2

Result [2/2]: Change Maps

Proposed method produces visually better change maps

Pair 1

Proposed

Contents

- 1. Ship Classification for Maritime Surveillance
- 2. Change Detection in Time-series of Satellite Images
- 3. Current Work and Challenges
- 4. Collaboration Activities

5. Case Study: Brain Tumor Segmentation with MRI

Current Work: Improving Proposed Network

False Negatives show that many foreground areas are undetected

Colorized Change Map

Legend: TP, TN, FP, FN

Research Question: Can we improve the detection of foreground? >Use additional information about foreground and background

Multitask Siamese Network

Add foreground classification task as a support to change detection task

Contents

- 1. Ship Classification for Maritime Surveillance
- 2. Change Detection in Time-series of Images
- 3. Current Work and Challenges
- 4. Collaboration Activities

5. Case Study: Brain Tumor Segmentation with MRI

Collaboration Activities

Actively initiated several foreign and domestic collaborations

Institute	Outcome
European Remote Sensing Firm	Exhaustive feedback from an expert and knowledge of remote sensing business model
INRIA France	Built strong connection with foreign academia on ship classification project
University of Trento Italy	Built strong connection with foreign academia on change detection project
NEC Labs Europe	Initiated cross-lab collaboration opportunity
AIST Japan	Special lecture series by renowned professor and created business opportunity
Kyushu University	Feedback on the current change detection project and obtained useful references

Contents

- 1. Ship Classification for Maritime Surveillance
- 2. Change Detection in Time-series of Images
- 3. Current Work and Challenges
- 4. Collaboration Activities

5. Case Study: Brain Tumor Segmentation with MRI

Motivation

50,000+ new brain tumor cases are reported in India each year

20% are children, tumor kills more children than any other disease

90% cases could been cured if detected early and correctly

Brain tumor and its types

Brain tumor is a lump created by abnormal growth of cells in brain

Accurate glioma segmentation is needed to detect brain cancer

Role of MRI images

Provides unique information about different glioma segments

MRI has high-resolution imaging quality and many modalities

MRI images are highly suitable for glioma segmentation

3 categories of challenges

1. MRI Artifacts	2. Glioma Features	3. Dataset
 Noise Intensity inhomogeneity Non-standardized scale 	 Shape, size and location unpredictable Tumor cells affect nearby healthy cells 	Huge image sizeImbalanced datasetVariation in expert labelling

3 categories of challenges

1. MRI Artifacts	2. Glioma Features	3. Dataset
 Noise Intensity inhomogeneity Non-standardized scale 	 Shape, size and location unpredictable Tumor cells affect nearby healthy cells 	Huge image sizeImbalanced datasetVariation in expert labelling

Please Note: In this case study, I focus on presenting a feasible solution, and not on finding a research gap.

3 categories of challenges

1. MRI Artifacts	2. Glioma Features	3. Dataset
 Noise Intensity inhomogeneity Non-standardized scale 	 Shape, size and location unpredictable Tumor cells affect nearby healthy cells 	Huge image sizeImbalanced datasetVariation in expert labelling

MRI Pre-processing

MRI Pre-processing

Noise Removal

Intensity Homogeneity

Intensity Standardization

To improve contrast between brain tissues

To remove intensity variations caused by difference in magnetic field

To standardize intensity scales varied due to different acquisition times

Original Image

Original Image

Inhomogeneity field

Corrected Image

3 categories of challenges

1. MRI Artifacts	2. Glioma Features	3. Dataset
 Noise Intensity inhomogeneity Non-standardized scale 	 Shape, size and location unpredictable Tumor cells affect nearby healthy cells 	Huge image sizeImbalanced datasetVariation in expert labelling

MRI Pre-processing

Convolutional Neural Network

3 categories of challenges

Proposed Solution

Experimental Set-up for Evaluation

Dataset- BraTS 2013-2018

- Benchmark dataset
- A challenge in MICCAI conference
- For each brain there exists 4 modalities
 - T1, T2, T1-enhanced, FLAIR
- Ground truth for 5 segmentation labels
 - namely non-tumor
 - necrosis
 - edema
 - non-enhancing tumor
 - enhancing tumor

Evaluation Metric

• Dice Coefficient =
$$\frac{2(P_1 \cap T_1)}{P_1 + T_1}$$

• Sensitivity =
$$\frac{P_1 \cap T_1}{T_1}$$

• Specificity =
$$\frac{P_0 \cap T_0}{T_0}$$

Future Directions

- Incorporating blood reports and prescription data
- Glioma grading grade 1,2,3,4
- 3D CNN's for handling voxels

References

Course on fundamentals of medical image analysis

• CAP5516- Medical Image Computing, Prof. Ulas Bagci, UCF

Survey research papers

- Litjens, Geert, et al. "A survey on deep learning in medical image analysis." *Medical image analysis* 42 (2017): 60-88.
- Lundervold et al., "An overview of deep learning in medical imaging focusing on MRI" (2019), https://arxiv.org/abs/1811.10052

Brain tumor segmentation papers

- Akkus, Zeynettin, et al. "Deep learning for brain MRI segmentation: state of the art and future directions." *Journal of digital imaging* 30.4 (2017): 449-459.
- Havaei, Mohammad, et al. "Brain tumor segmentation with deep neural networks." Medical image analysis 35 (2017): 18-31.
- Pereira, Sérgio, et al. "Brain tumor segmentation using convolutional neural networks in MRI images." *IEEE transactions on medical imaging* 35.5 (2016): 1240-1251.
- Menze, Bjoern H., et al. "The multimodal brain tumor image segmentation benchmark (BRATS)." *IEEE transactions on medical imaging* 34.10 (2014): 1993-2024.

Cancer statistics

- Global Cancer Observatory https://gco.iarc.fr/today/home
- http://cancerindia.org.in/globocan-2018-india-factsheet/

Thank You!