Домашняя работа к занятию 13

1.1 Решите задачу Коши
$$\begin{cases} \dot{x} = x - y + e^t \cos t, & x(0) = 0 \\ \dot{y} = x + y + e^t \sin t, & y(0) = 0 \end{cases}$$

- **1.2** Найдите общее решение уравнения $y'' 3y' + 2y = \frac{e^{2x}}{1 + e^{2x}}$. Выделите решение, ограниченное при $x \to +\infty$. Имеет ли оно предел при $x \to +\infty$?
 - 1.3 Решите задачу Коши $\begin{cases} \dot{x} = y, & x(0) = -2 \\ \dot{y} = z, & y(0) = -1 \\ \dot{z} = x + 3e^t, & z(0) = 0 \end{cases}$

2.1 Решите задачу Коши
$$\begin{cases} \dot{x}=y+z+1, & x(0)=0\\ \dot{y}=x+y+e^t, & y(0)=1\\ \dot{z}=-x+z, & z(0)=-1 \end{cases}$$

Найдите общее решение уравнения

2.2
$$x^3y''' - x^2y'' + 2xy' - 2y = x^3 + 3x$$
 2.3 $y'' + 3y' + 2y = \sin e^x$

- ${\bf 3.1}$ Докажите, что если f(x) периодическая функция, то уравнение y''-y=f(x) имеет единственное периодическое решение.
- **3.2** Все собственные числа матрицы **A** имеют отрицательную вещественную часть, $\vec{f}(t)$ периодическая вектор-функция. Докажите, что система $\dot{\vec{y}} = \mathbf{A}\vec{y} + \vec{f}(t)$ имеет периодическое решение.
- $\mathbf{3.3} \text{ Решите матричную задачу Коши} \begin{cases} \dot{\mathbf{Y}} = \mathbf{AY} + \mathbf{B} \\ \mathbf{Y}(0) = \mathbf{C} \end{cases}$ при условии, что $\det \mathbf{A} = 0$.

Ответы и указания

1.1 Указания: собственные числа однородной системы $\lambda_{1,2} = 1 \pm i,$ фундаментальная матрица $\mathbf{Y}(t) = e^t \begin{pmatrix} \cos t & \sin t \\ \sin t & -\cos t \end{pmatrix}$

Other: $x(t) = te^t \cos t$, $y(t) = te^t \sin t$.

- 1.2 $y(x) = C_1 e^x + C_2 e^{2x} + e^x \arctan e^{-x} 0, 5e^{2x} \ln(1 + e^{-2x}).$ Решение $y(x) = e^x \arctan e^{-x} - 0, 5e^{2x} \ln(1 + e^{-2x})$ ограничено при $x \to +\infty$. Его предел при $x \to +\infty$ равен 0,5.
- **1.3** Указания: матрица однородной системы имеет собственное число $\lambda_1 = 1$. Поэтому искать частное решение неоднородного уравнения методом неопределенных коэффициентов невыгодно.

Сведем систему к уравнению относительно z. Получим $\ddot{z}=z+3e^t$ и начальные данные $z(0)=0,\,\dot{z}(0)=1,\,\ddot{z}(0)=2,\,$ откуда $z_{\text{ч.н.}}=te^t.$ Далее $\dot{y}=z=te^t,\,y(0)=-1\Rightarrow y_{\text{ч.н.}}=te^t-e^t,\,$ и наконец $x=\dot{z}-3e^t=te^t-2e^t.$

Other:
$$x(t) = (t-2)e^t$$
, $y(t) = (t-1)e^t$, $z(t) = te^t$.

2.1 Указания: матрица однородной системы имеет собственные числа $\lambda_1=0$ и $\lambda_{2,3}=1$, поэтому метод неопределенных коэффициентов приводит к громоздким вычислениям.

Заметим, что сложив второе и третье уравнения, мы получим для функции u=y+z уравнение $\dot{u}=u+e^t$ и начальные условия u(0)=0. Отсюда $u(t)=te^t$.

Подставив найденное значение $y+z=te^t$ в первое уравнение системы, проинтегрируем его с учетом начальных условий: $x(t)=te^t-e^t+t+1$. После этого из второго и третьего уравнений легко найти y и z.

Other:
$$x = (t-1)e^t + t + 1$$
, $y = (\frac{t^2}{2} + 3)e^t - t - 2$, $z = (-\frac{t^2}{2} + t - 3)e^t + t + 2$.

2.2 Указания: уравнение Эйлера сведите к линейному уравнению с постоянными коэффициентами, выписав его характеристический многочлен $P(\lambda) = (\lambda - 1)^2 (\lambda - 2)$.

Полученное уравнение $\ddot{y} - 4\ddot{y} + 5\dot{y} - 2y = e^{3t} + 3e^t$ можно решать, используя принцип суперпозиции.

Other:
$$y(x) = x(C_1 + C_2 \ln |x|) + C_3 x^2 + \frac{1}{4} x^3 - \frac{3}{2} x(\ln |x|)^2$$

2.3 Указания: $y_{\text{o.o.}} = C_1 e^{-x} + C_2 e^{-2x}$. Решая методом вариации постоянных, получим условия $C_1'(x) = e^x \sin e^x$, $C_2' = -e^{2x} \sin e^x$, откуда находим $C_1(x)$ и $C_2(x)$.

Other:
$$y(x) = C_1 e^{-x} + C_2 e^{-2x} - e^{-2x} \sin e^x$$
.

3.1
$$y(x) = -\int_{0}^{+\infty} \frac{f(x-s) + f(x+s)}{2} e^{-s} ds.$$

3.2
$$\vec{y}(t) = \int_{-\infty}^{0} \exp(-\mathbf{A}s) \vec{f}(s+t) ds$$
.