Frederick Robinson Spring 2013

- 1 Let $Mat_{m\times n}(\mathbb{R})$ be the space of $m\times n$ matrices with real valued entries.
- 1.1 Show that the subset $S \subset \operatorname{Mat}_{m \times n}(\mathbb{R})$ of rank 1 matrices form a submanifold of dimension m+n-1.
- 1.2 Show that the subset $T \subset \operatorname{Mat}_{m \times n}(\mathbb{R})$ of rank k matrices form a submanifold of dimension k(m+n-k).
- **2** Let M be a smooth manifold and $\omega \in \Omega^1(M)$ a smooth 1-form.
- 2.1 Define the line integral

$$\int_{\mathcal{C}} \omega$$

along the piecewise smooth curve $c:[0,1]\to M$.

- 2.2 Show that $\omega = df$ for a smooth function $f: M \to \mathbb{R}$ if and only if $\int_c \omega = 0$ for all closed curves $c: [0,1] \to M$, i.e., c(0) = c(1).
- 3 Let $S_1, S_2 \subset M$ be smooth embedded submanifolds.
- 3.1 Define what it means for S_1, S_2 to be transversal.
- 3.2 Show that if $S_1, S_2 \subset M$ are transversal then $S_1 \cap S_2 \subset M$ is a smooth embedded submanifold of dimension $\dim S_1 + \dim S_2 \dim M$.
- 4 Let $S \subset M$ be given as $F^{-1}(c)$ where $F = (F^1, \ldots, F^k) : M \to \mathbb{R}^k$ is smooth and $c \in \mathbb{R}^k$ is a regular value for F. If $f : M \to \mathbb{R}$ is smooth, show that its restriction $f|_C$ to a submanifold $C \subset M$ has a critical point at $p \in C$ if and only if there exist constants $\lambda_1, \ldots, \lambda_k$ such that

$$df_p = \sum \lambda_i dF_p^i$$

where $dg_p:T_pM\to\mathbb{R}$ denotes the differential at p of a smooth function g.

- 5 Let M be a smooth, orientable, compact manifold with boundary ∂M . Show that there is no (smooth) retract $r: M \to \partial M$.
- 6 Let $A \in Gl_{n+1}(\mathbb{C})$.
- **6.1** Show that A defines a smooth map $A: \mathbb{C}P^n \to \mathbb{C}P^n$.
- 6.2 Show that the fixed points of $A: \mathbb{C}P^n \to \mathbb{C}P^n$ correspond to eigenvectors for the original matrix.
- 6.3 Show that $A: \mathbb{C}P^n \to \mathbb{C}P^n$ is a Lefschetz map if the eigenvalues of A all have multiplicity 1.
- 6.4 Show that the Lefschetz number of $A: \mathbb{C}P^n \to \mathbb{C}P^n$ is n+1. (Hint: You are allowed to use that $Gl_{n+1}(\mathbb{C})$ is connected.)
- 7 Let $F: S^n \to S^n$ be a continuous map.
- 7.1 Define the degree $\deg F$ of F and show that when F is smooth

$$\deg F \int_{S^n} \omega = \int_{S^n} F^* \omega$$

Frederick Robinson Spring 2013

- for all $\omega \in \Omega^n(S^n)$.
- 7.2 Show that if F has no fixed points then $\deg F = (-1)^{n+1}$.
- 8 Let $f: S^{n-1} \to S^{n-1}$ be a continuous map and D^n the disk with $\partial D^n = S^{n-1}$.
- 8.1 Define the adjunction space $D^n \cup_f D^n$.
- **8.2** Let $\deg f = k$ and compute the homology groups $H_p(D^n \cup_f D^n, \mathbb{Z})$ for $p = 0, 1, \ldots$
- 8.3 Assume that f is a homeomorphism, show that $D^n \cup_f D^n$ is homeomorphic to S^n .
- 9 Let $F:M\to N$ be a finite covering map between closed manifolds. Either prove or find counter examples to the following questions.
- 9.1 Do M and N have the same fundamental groups?
- 9.2 Do M and N have the same de Rham cohomology groups?
- 9.3 When M is simply connected, do M and N have the same singular homology groups?
- 10 Let $A \subset X$ be a subspace of a topological space. Define the relative singular homology groups $H_p(X, A)$ and show that there is a long exact sequence

$$\cdots \to H_p(A) \to H_p(X) \to H_p(X,A) \to H_{p-1}(A) \to \cdots$$