Sungwon Cho CS520 : Homework 2 Due 2015-10-14

Problem 1. Use structure induction for each case.

- * Proof for $\bigstar = \odot$.
- (1) (Base) e = 0: Obviously satisfy since $n = 0, 0 \rightsquigarrow \odot$ and $\llbracket \odot \rrbracket = \{0\}$.
- (2) e = -e':
 - (2.1) Let $e \Rightarrow n$ and $e \leadsto \odot$. Then, $e' \Rightarrow -n$ and $e' \leadsto \odot$.
 - (2.2) By induction hypothesis, $-n \in \{0\}$ so n = 0.
- (3) $e = \operatorname{succ} e'$, $e = \operatorname{pred} e'$: Obviously satisfy since $e \leadsto \odot$ is always false.
- * Prove for $\bigstar = \oplus$.
- (1) (Base) e = 0: Obviously satisfy since $0 \leadsto \oplus$ is false.
- (2) $e = \operatorname{succ} e'$:
 - (2.1) Let $e \Rightarrow n$ and $e \rightsquigarrow \oplus$. Then, $e' \Rightarrow n-1$ and $e' \rightsquigarrow \odot$ or $e' \rightsquigarrow \oplus$
 - (2.2) Case $e' \leadsto \odot$: by $\bigstar = \odot$ proof, n-1=0 so $n=1 \in \mathbb{N}$.
 - (2.3) Case $e' \leadsto \oplus$: by induction hypothesis, $n-1 \in \mathbb{N}$ so $n \in \mathbb{N}$.
- (3) e = -e', e = pred e': Obviously satisfy since $e \leadsto \oplus$ is always false.
- * Prove for $\bigstar = \top$.
- (1) (Base) e = 0: Obviously satisfy since $0 \leadsto \top$ is false.
- (2) e = -e':
 - (2.1) Let $e \Rightarrow n$ and $e \rightsquigarrow \top$. Then, $e' \Rightarrow -n$ and $e' \rightsquigarrow \oplus$ or $e' \rightsquigarrow \top$.
 - (2.2) Case $e' \leadsto \oplus$: by $\bigstar = \oplus$ proof, $-n \in \mathbb{N}$ so $n \in \mathbb{Z}$.
 - (2.3) Case $e' \leadsto T$: by induction hypothesis, $-n \in \mathbb{Z}$ so $n \in \mathbb{Z}$.
- (3) $e = \operatorname{succ} e'$:
 - (2.1) Let $e \Rightarrow n$ and $e \rightsquigarrow \top$. Then, $e' \Rightarrow n-1$ and $e' \rightsquigarrow \top$.
 - (2.2) By induction hypothesis, $n-1 \in \mathbb{Z}$ so $n \in \mathbb{Z}$.
- (4) e = pred e':
 - (2.1) Let $e \Rightarrow n$ and $e \rightsquigarrow \oplus$. Then, $e' \Rightarrow n+1$ and $e' \rightsquigarrow \odot$ or $e' \rightsquigarrow \oplus$ or $e' \rightsquigarrow \top$
 - (2.2) Case $e' \leadsto \odot$: by $\bigstar = \odot$ proof, n+1=0 so $n=-1 \in \mathbb{Z}$.
 - (2.3) Case $e' \leadsto \oplus$: by $\bigstar = \oplus$ proof, $n+1 \in \mathbb{N}$ so $n \in \mathbb{Z}$.
 - (2.4) Case $e' \leadsto \top$: by induction hypothesis, $n+1 \in \mathbb{Z}$ so $n \in \mathbb{Z}$.

Sungwon Cho CS520 : Homework 2 Due 2015-10-14

Problem 2. Introduce some claims first, and then prove the claims.

- (0) Note that this problem is WRONG. Assume that $n \geq 0$.
- (1) Let $A = \{X = m \land Y = n \land Z = 1\}, B = \{Z = m^n\}, b = \neg (Y = 0), I = (Z \times X^Y = m^n).$
- (2) Also, let $c = \text{while } \neg (Y = 0) \text{ do } c' \text{ where } c' = (Z := Z \times X; Y := Y 1).$
- (3) $\frac{\models (A \Rightarrow I) \{I\} \ c \ \{I \land \neg b\} \ \models ((I \land \neg b) \Rightarrow B)}{\{A\} \ c \ \{B\}}$
 - (α) Claim $\models (A \Rightarrow I)$.
 - (β) Claim $\models ((I \land \neg b) \Rightarrow B).$
- (4) $\frac{\{I \land b\} \ c' \ \{I\}}{\{I\} \text{ while } b \text{ do } c' \ \{I \land \neg b\}}$ $(\gamma) \text{ Claim } \{I \land b\} \ c' \ \{I\}.$
- (δ) Claim the while statement terminates.
- (5) \therefore For $m \in \mathbb{Z}$ and $n \ge 0$, $\{A\}$ c $\{B\}$.
- * Proof for the claim α

$$(1) A = \{X = m \land Y = n \land Z = 1\} \Rightarrow (Z \times X^Y = 1 \times m^n = m^n) = I.$$

* Proof for the claim β

$$(1) (I \wedge \neg b) = ((Z \times X^Y = m^n) \wedge (Y = 0)) \Rightarrow (Z \times X^0 = m^n) \Rightarrow (Z = m^n) = B.$$

- * Proof for the claim γ
- (1) $\{I \land \neg b\}\ Z := Z \times X;\ Y := Y 1\ \{I\}.$
- (2) $\{I[(Y-1)/Y]\}\ Y := Y-1\ \{I\}.$ (by assignment)
- (3) $\{I[(Y-1)/Y][(Z\times X)/Z]\}\ Z:=Z\times X\ \{I\}$. (by sequencing and assignment)
- $(4) I[(Y-1)/Y][(Z \times X)/Z] \wedge (\neg Y = 0)$ $\Rightarrow I[(Y-1)/Y][(Z \times X)/Z] \wedge (Y > 0)$ $\Rightarrow (Z \times X^{(Y-1)} = m^n)[(Z \times X)/Z] \wedge (Y \ge 0)$ $\Rightarrow (Z \times X \times X^{(Y-1)} = m^n)$ $\Rightarrow (Z \times X^Y = m^n) = I$
- (5) : $\{I \land Y > 0\}\ c'\ \{I\}.$
- * Proof for the claim δ
- (1) Y will decrease exactly 1 after each c' is executed.
- (2) Since $n \geq 0$, Y goes to 0 and then terminate.

Problem 3.a. Define each semantics of E and C.

* For the language E,

$$\frac{1}{\langle n,\sigma\rangle \to n}, \frac{\langle e_1,\sigma\rangle \to v_1 \langle e_2,\sigma\rangle \to v_2}{\langle x,\sigma\rangle \to \sigma(x)}, \frac{\langle e_1,\sigma\rangle \to v_1 \langle e_2,\sigma\rangle \to v_2}{\langle e_1+e_2,\sigma\rangle \to v_1+v_2},$$

$$\frac{\langle e_1, \sigma \rangle \to v_1 \ \langle e_2, \sigma \rangle \to v_2}{\langle e_1 - e_2, \sigma \rangle \to v_1 - v_2}, \frac{\langle e_1, \sigma \rangle \to v' \ \langle e_2, \sigma[v'/x] \rangle \to v}{\langle \text{let } x = e_1 \text{ in } e_2, \sigma \rangle \to v}$$

* For the command C,

$$\langle n_1.n_2.S, E, \text{add}.C \rangle \rightarrow \langle n_1 + n_2.S, E, C \rangle, \langle n_1.n_2.S, E, \text{sub}.C \rangle \rightarrow \langle n_1 - n_2.S, E, C \rangle$$

 $\langle n.S, E, \text{bind}(\mathbf{x}).C \rangle \rightarrow \langle S, E[[n/x]], C \rangle, \langle S, E, \text{unbind}(\mathbf{x}).C \rangle \rightarrow \langle S, E /\!\!/ [[x]], C \rangle$
 $\langle S, E, \text{push}(x).C \rangle \rightarrow \langle E[[x]].S, E, C \rangle, \langle S, E, \text{push}(n).C \rangle \rightarrow \langle n.S, E, C \rangle$

- * E is an environment that stores ordered list of mapping from a variable to a value, where
- (1) $E[n/x] = \text{store a mapping } (x \to n) \text{ at the beginning}$
- (2) E(x) = v, where first mapping from x to some value v
- (3) $E /\!\!/ x = \text{remove first mapping from } x \text{ to some value}$

Problem 3.b. Compilation rules from E to C.

 $n \rhd \operatorname{push}(n), x \rhd \operatorname{push}(x)$

$$\frac{e_1 \rhd C_1 \ e_2 \rhd C_2}{e_1 + e_2 \rhd C_1.C_2.\mathrm{add}}, \ \frac{e_1 \rhd C_1 \ e_2 \rhd C_2}{e_1 - e_2 \rhd C_2.C_1.\mathrm{sub}}, \ \frac{e_1 \rhd C_1 \ e_2 \rhd C_2}{\mathrm{let} \ x = e_1 \ \mathrm{in} \ e_2 \rhd C_1.\mathrm{bind}(x).C_2.\mathrm{unbind}(x)}$$

Problem 3.c. $\forall e \in E, \langle e, \sigma \rangle \to v \Leftrightarrow \langle \epsilon, \sigma, C \rangle \xrightarrow{*} \langle v, \sigma, \epsilon \rangle$ where $e \rhd C$

Problem 3.d. Prove for each direction.

- * Proof of (\Rightarrow)
- (1) Use structure induction and proof for $e := (\text{let } x = e_1 \text{ in } e_2)$ only.
- (2) Let $e_1 > C_1$, $e_2 > C_2$, $\langle e_1, \sigma \rangle \to v'$ and $\langle e_2, \sigma[v'/x] \rangle \to v$
- (3) $\langle \epsilon, \sigma, C \rangle = \langle \epsilon, \sigma, C_1. \operatorname{bind}(x). C_2. \operatorname{unbind}(x) \rangle$ (by compile rule)
 - $\stackrel{*}{\to} \langle v', \sigma, \text{bind}(x). C_2. \text{unbind}(x) \rangle$ (by induction hypothesis of C_1)
 - $\rightarrow \langle \epsilon, \sigma \llbracket v'/x \rrbracket, C_2.$ unbind $(x) \rangle$ (by semantic of bind)
 - $\stackrel{*}{\to} \langle v, \sigma \llbracket v'/x \rrbracket$, unbind $\langle x \rangle$ (by induction hypothesis of C_2)
 - $\rightarrow \langle v, \sigma, \epsilon \rangle$ (by semantics of unbind)
- * Proof of (\Leftarrow)
- (1) Use induction on k where $\langle \epsilon, \sigma, C \rangle \xrightarrow{k} \langle v, \sigma, \epsilon \rangle$ and proof for $e := (\text{let } x = e_1 \text{ in } e_2)$ only.
- (2) Let $e_1 \triangleright C_1$, $e_2 \triangleright C_2$
- (3) Let $\langle \epsilon, \sigma, C \rangle = \langle \epsilon, \sigma, C_1. \operatorname{bind}(x). C_2. \operatorname{unbind}(x) \rangle \xrightarrow{k'} \langle v', \sigma, \operatorname{bind}(x). C_2. \operatorname{unbind}(x) \rangle$ (3.1) Then, $\langle e_1, \sigma \rangle \to v'$ by applying induction hypothesis. $(\because k' < k)$
- (4) Also, let $\langle \epsilon, \sigma \llbracket v'/x \rrbracket, C_2.$ unbind $(x) \rangle \xrightarrow{k''} \langle v, \sigma \llbracket v'/x \rrbracket, \text{unbind}(x) \rangle \rightarrow \langle v, \sigma, \epsilon \rangle$ (4.1) Then, $\langle e_2, \sigma [v'/x] \rangle \rightarrow v$ by applying induction hypothesis. $(\because k'' < k)$
- (5) By (3.1), (4.1) and semantic of let, $\langle e, \sigma \rangle \to v$.