Gestion des données manquantes en/par ACP

François Husson

UP de mathématiques appliquées - l'institut Agro

Journées d'études en statistique - SFdS 2021

Plan

- Introduction
- 2 ACP et reconstitution de données
- 3 Algorithme d'ACP itérative
- 4 Régularisation de l'ACP itérative
- 5 Mise en œuvre pratique
- **6** Conclusion

Les données manquantes

Gertrude Mary Cox

"The best thing to do about missing values is not to have any"

Est-ce un problème en big data?

"One of the ironies of Big Data is that missing data play an ever more significant role" (R. Sameworth, 2019)

Une matrice $n \times p$, avec chaque cellule ayant une proba 0.01 d'être manquante

 $p=5\Rightarrow\approx95\%$ de lignes conservées

 $p=300 \Rightarrow \approx 5\%$ de lignes conservées

Objectifs

- Faire une ACP sur un tableau incomplet
- Utiliser l'ACP comme alternative aux méthodes d'imputation simple?
 - Modèle joint (norm) ou modèle conditionnel (mice)
 - k-plus proches voisins (class, FNN)
 - forêts aléatoires (missForest)
 - •

Exemple sur des données ozone

Code disponible: http://factominer.free.fr/missMDA/ozone.R

	О3	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	V×15	O3v
0601	82	15.6	18.5	NA	4	4	8	NA	-1.7101	-0.6946	84
0602	82	NA	NA	NA	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
:	1	:	:		- :	:	:	:	:	:	
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

De (mauvaises) solutions faciles à mettre en œuvre

- Suppression des données manquantes : rarement intéressant ... mais souvent utilisée (fonction lm de R)
- Imputation par la moyenne (option par défaut dans de nombreux logiciels)

Distorsion très importante des liaisons entre variables

Etude du dispositif de données manquantes

Hypothèse

On suppose que le mécanisme conduisant à l'apparition de données manquantes est MCAR ou MAR

Visualisation des données manquantes

- > library(VIM)
- > aggr(don,only.miss=TRUE,sortVar=TRUE)

- > matrixplot(don,sortby=2)
- > marginplot(don[,c("T9","max03")])

Plan

- 1 Introduction
- 2 ACP et reconstitution de données
- 3 Algorithme d'ACP itérative
- 4 Régularisation de l'ACP itérative
- 6 Mise en œuvre pratique
- 6 Conclusion

Ajustement du nuage en ACP

L'ACP vise à trouver le sous-espace qui fournit la meilleure représentation des données

Ajustement du nuage en ACP

L'ACP vise à trouver le sous-espace qui fournit la meilleure représentation des données

Figure 1 – Chameau ou dromadaire? source J.P. Fenelon

- ⇒ Meilleure approximation par projection
- ⇒ Meilleure représentation de la diversité, de la variabilité

Ajustement du nuage en ACP

X : données en 2 dimensions

Minimisation de la distance entre les individus et leur projection

Reconstitution en ACP

 $\hat{\mathbf{X}} = \mathbf{M} + \mathbf{UDV'}$ (produit matriciel utilisant les coordonnées des individus et les coordonnées des variables issues de l'ACP)

ACP: cas complet

- ⇒ Point de vue géométrique : minimiser l'erreur de reconstitution
- \Rightarrow Approximation de **X** par une matrice de rang S < p :

$$\|\mathbf{X}_{n \times p} - \hat{\mathbf{X}}_{n \times p}\|^2$$
 SVD: $\hat{\mathbf{X}}^{ACP} = \mathbf{M}_{n \times p} + \mathbf{U}_{n \times S} \mathbf{D}_{S \times S} \mathbf{V}_{p \times S}'$

F = UD composantes principales (scores)

V axes principaux (loadings)

⇒ Point de vue modèle à effets fixes (Caussinus, 1986)

$$\mathbf{X}_{n \times p} = \tilde{\mathbf{X}}_{n \times p} + \varepsilon_{n \times p}$$

$$x_{ij} = m_j + \sum_{s=1}^{S} d_s u_{is} v_{js} + \varepsilon_{ij} \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$

Estimateurs de maximum de vraisemblance = estimateurs des moindres carrés

Plan

- 1 Introduction
- 2 ACP et reconstitution de données
- 3 Algorithme d'ACP itérative
- 4 Régularisation de l'ACP itérative
- 5 Mise en œuvre pratique
- **6** Conclusion

Imputation par ACP

⇒ ACP : moindres carrés

$$\left\| \boldsymbol{X}_{n \times p} - \left(\boldsymbol{\mathsf{M}}_{n \times p} + \boldsymbol{\mathsf{U}}_{n \times S} \boldsymbol{\mathsf{D}}_{S \times S} \boldsymbol{\mathsf{V}}_{p \times S}' \right) \right\|^2$$

⇒ ACP avec données manquantes : moindres carrés pondérés

$$\left\|\mathbf{R}_{n\times p}*\left(\mathbf{X}_{n\times p}-\left(\mathbf{M}_{n\times p}+\mathbf{U}_{n\times S}\mathbf{D}_{S\times S}\mathbf{V}_{p\times S}'\right)\right)\right\|^{2}$$

with $r_{ij} = 0$ si x_{ij} manquant, $r_{ij} = 1$ sinon

Beaucoup d'algorithmes : moindres carrés pondérés alterné (Gabriel & Zamir, 1979) ; ACP iterative (Kiers, 1997)

Initialisation $\ell=0$: \boldsymbol{X}^0 (imputation par la moyenne)

ACP sur le jeu de données complété $o (\mathbf{U}^\ell, \mathbf{D}^\ell, \mathbf{V}^\ell)$;

Valeurs manquantes imputées par le modèle $\hat{\mathbf{X}}^\ell = \mathbf{M}^\ell + \mathbf{U}^\ell \mathbf{D}^\ell \mathbf{V}^{\ell\prime}$

Nouveau jeu de données imputé $\mathbf{X}^\ell = \mathbf{R} * \mathbf{X} + (1 - \mathbf{R}) * \hat{\mathbf{X}}^\ell$

Les étapes sont répétées jusqu'à convergence

ACP sur le jeu de données complété $\to (\mathbf{U}^\ell, \mathbf{D}^\ell, \mathbf{V}^\ell)$ Valeurs manquantes imputées par le modèle $\hat{\mathbf{X}}^\ell = \mathbf{M}^\ell + \mathbf{U}^\ell \mathbf{D}^\ell \mathbf{V}^{\ell \prime}$

- $oldsymbol{0}$ initialisation $\ell=0$: $oldsymbol{X}^0$ (imputation par la moyenne)
- ${f 2}$ step ℓ :
 - (a) ACP sur le tableau complété $\to (\mathbf{U}^{\ell}, \mathbf{D}^{\ell}, \mathbf{V}^{\ell})$;

 S dimensions conservées
 - (b) valeurs manquantes imputées par $\hat{\mathbf{X}}^\ell = \mathbf{M}^\ell + \mathbf{U}^\ell \mathbf{D}^\ell \mathbf{V}^{\ell \prime}$; nouveau tableau imputé $\mathbf{X}^\ell = \mathbf{R} * \mathbf{X} + (1 \mathbf{R}) * \hat{\mathbf{X}}^\ell$
 - (c) moyennes (et écarts-types) sont mis à jour
- 3 étapes répétées jusqu'à convergence
- ⇒ algorithme EM pour le modèle à effets fixes
- ⇒ Imputation (complétion de matrice, Netflix)
- \Rightarrow Réduction de la variabilité (imputation par M + UDV')

Choix du nombre de composantes

 \Rightarrow EM-CV (Bro et al. 2008)

$$MSEP(s) = \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} (x_{ij} - \hat{x}_{ij}^{s; -\{ij\}})^{2}$$

 \Rightarrow Très coûteux en temps de calcul

Ajouter plusieurs valeurs manquantes supplémentaires simultanément

Approximation possible par validation croisée généralisée \Longrightarrow gain en temps de calcul

Propriétés

- Résultats de l'ACP obtenus à partir des données observées uniquement : graphe des individus et graphe des variables
 - ⇒ On "saute" les données manquantes, l'ACP itérative minimise

$$\|\mathbf{R}*(\mathbf{X}-(\mathbf{M}+\mathbf{UDV}'))\|^2$$

- Imputation :
 - prend en compte les ressemblances entre individus et les liaisons entre variables
 - le tableau imputé peut être utilisé (avec précaution) pour réaliser d'autres analyses
- Problème de surajustement

Plan

- 1 Introduction
- 2 ACP et reconstitution de données
- 3 Algorithme d'ACP itérative
- 4 Régularisation de l'ACP itérative
- 5 Mise en œuvre pratique
- 6 Conclusion

Surajustement

$$\textit{X}_{50 \times 10} = \textbf{U}_{50 \times 2} \textbf{D} \textbf{V}_{10 \times 2}' + \mathcal{N}(0, 0.5)$$
 ; 50% of NA

- \Rightarrow erreur d'ajustement faible : $||\mathbf{R}*(\mathbf{X}-\hat{\mathbf{X}})||^2=0.50$
- \Rightarrow erreur de prédiction élevée : $||(1 \mathbf{R}) * (\mathbf{X} \hat{\mathbf{X}})||^2 = 16.98$

Surajustement

- \Rightarrow Bon ajustement et mauvaise prédiction
 - Trop de paramètres sont estimés par rapport au nombre de données observées : le nombre de dimension S et le nombre de données manquantes sont grands
 - Faibles liaisons entre variables
 - **1** Diminuer le nombre *S*
 - Early stopping
 - **3** Régularisation ⇒ ACP itérative régularisée

ACP itérative régularisée (Josse et al., 2009)

⇒ Initialisation - étape d'estimation - étape d'imputation

L'étape d'imputation :

$$\hat{x}_{ij}^{\mathsf{ACP}} = \sum_{s=1}^{S} d_s u_{is} v_{js}$$

est remplacée par une étape d'imputation régularisée :

$$\hat{x}_{ij}^{\mathsf{rACP}} = \sum_{s=1}^{S} \left(\frac{d_s^2 - \hat{\sigma}^2}{d_s^2} \right) d_s u_{is} v_{js} = \sum_{s=1}^{S} \left(d_s - \frac{\hat{\sigma}^2}{d_s} \right) u_{is} v_{js}$$

$$\hat{\sigma}^2 = \frac{RSS}{\text{ddl}} = \frac{n \sum_{s=S+1}^{p} d_s^2}{(n-1-S)(p-S)}$$

Compromis seuillage doux/dur (Mazumder, Hastie & Tibshirani, 2010)

$$\sigma^2$$
 petit \to ACP régularisée \approx ACP σ^2 grand \to imputation par la moyenne

Surajustement

$$X_{50 \times 10} = \mathbf{U}_{50 \times 2} \mathbf{D} \mathbf{V}_{10 \times 2}' + \mathcal{N}(0, 0.5)$$
; 50% of NA

 \Rightarrow erreur d'ajustement : $||\mathbf{R}*(\mathbf{X}-\hat{\mathbf{X}})||^2=0.56$ (EM= 0.50)

 \Rightarrow erreur de prédiction : $||(1 - \mathbf{R}) * (\mathbf{X} - \hat{\mathbf{X}})||^2 = 2.28$ (EM= 16.98)

Propriétés de l'imputation

 Bonne qualité d'imputation quand la structure dans le jeu de données est forte (imputation utilisant les ressemblances entre individus et les liaisons entre variables)

Bien meilleur que l'algorithme Nipals (encore trop utilisé)

Compétitif par rapport aux forêts aléatoires

Plan

- 1 Introduction
- 2 ACP et reconstitution de données
- 3 Algorithme d'ACP itérative
- 4 Régularisation de l'ACP itérative
- 6 Mise en œuvre pratique
- 6 Conclusion

Imputation par ACP en pratique

Tutoriel sur l'ACP avec données manquantes

```
(données ozone, lignes de code)
```

 \Rightarrow Etape 1 : Estimation du nombre de dimensions (Validation croisée, Bro, 2008 ; GCV, Josse & Husson, 2011)

```
> library(missMDA)
```

- > nb <- estim_ncpPCA(don, method.cv="Kfold")</pre>
- > nb\$ncp #2
- > plot(0:5, nb\$criterion, xlab="nb dim", ylab="MSEP")

Imputation par ACP en pratique

⇒ Etape 2 : Imputation des données manquantes

ACP sur le tableau complété

⇒ Etape 3 : ACP sur le tableau complété

- > imp <- cbind.data.frame(res.comp\$completeObs, ozone[,12])</pre>
- > res.pca <- PCA(imp, quanti.sup=1, quali.sup=12)</pre>
- > plot(res.pca, hab=12, lab="quali")
- > plot(res.pca, choix="var")

3 en 1 avec le package Factoshiny

- > library(Factoshiny)
- > Factoshiny(ozone)

Gestion des éléments supplémentaires dans l'ACP

Quid des éléments supplémentaires?

Idée : pondérer les éléments supplémentaires (variables quantitatives, individus supplémentaires)

- Mettre un poids aux éléments supplémentaires qui ne contribueront pas à la construction des dimensions
- 2 Lancer l'algorithme d'ACP itérative régularisée avec ces poids : l'imputation n'utilise pas l'information portée par les éléments supplémentaires
- 3 Lancer ensuite l'ACP sur le tableau complété en utilisant la fonction classique d'ACP avec éléments supplémentaires

Plan

- 1 Introduction
- 2 ACP et reconstitution de données
- 3 Algorithme d'ACP itérative
- 4 Régularisation de l'ACP itérative
- 5 Mise en œuvre pratique
- **6** Conclusion

Take home message

Bilan

- L'ACP itérative régularisée permet d'imputer les données manquantes d'un jeu de données incomplet
- Le tableau imputé peut être directement utilisé avec un algorithme classique d'ACP
- Les imputations n'ont pas de poids dans le critère utilisé pour construire axes et composantes d'une ACP

Limites de l'imputation

Remarque

"The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases." (Dempster & Rubin, 1983)

Quelques problèmes pratiques sur l'imputation :

- Imputation de X et X^2
- Problèmes de bornes $(>0) \Rightarrow$ tronquer?
- Comment faire avec des données de grandes dimensions?

Une page Web et des didacticiels

http://factominer.free.fr/missMDA/index_fr.html

Le package missMDA

Le package missMDA est complémentaire de FactoMineR. Il permet de gérer les données manquantes pour les méthodes d'analyses factorielles (ACP, AFC, ACM, AFDM, AFM). Il permet de faire de l'imputation simple et multiple.

L'imputation simple consiste à remplacer les valeurs manquantes par des valeurs plausibles. Cela revient à compléter le jeu de données qui peut ensuite être analysé par n'importe quelle méthode d'analyse factorielle.

missMDA impute les valeurs manquantes de sorte que les valeurs imputées n'ont aucune influence sur les résultats de l'aalyse factorielle (pas d'influence dans le sene où les valeurs imputées n'ont aucun poids, et donc les résultats de l'analyse factorielle sont obtenues uniquement avec les valeurs observées.

missMDA utilise des méthodes de réduction de données, ce qui lui permet d'imputer de façon satisfaisante de gros jeux de données contenant des variables quantitatives et/ou qualitatives. En effet, il impute par ACP (ou ACM, ou AFDM ou AFM) en prenant en compte à la fois les similantés entre individus et les liens entre variables.

Voir cette vidéo si vous voulez comprendre le principe de missMDA quelque soit les jeux de données (qunatitatifs et/ou qualitatifs).

Les imputations sont très bonnes comparées aux méthodes classiques permettant d'imputer des tableaux incomplets (forêts aléatoires par exemple).

- · missMDA gère les données manquantes dans:
 - les jeux de données avec variables quantitatives grâce à l'ACP (Voir la vidéo)
 - o les jeux de données avec variables qualitatives grâce à l'ACM
 - (Voir la vidéo)
 - les tableaux de contingence grâce à l'AFC
 les données mixtes grâce à l'AFDM
 - les jeux de données où les variables sont structurées par groupe grâce à l'AFM
- · missMDA permet de faire de l'imputation multiple:
 - o pour les variables quantitatives grâce à l'ACP: Voir la vidéo
 - o pour les variables qualitatives grâce à l'ACM

Menu sur les données manquantes

Le package missMDA ACP avec données manquantes ACM avec données manquantes Imputation multiple Peut-on croire dans les valeurs imputées? Références - Conférences

Les auteurs de missMDA

Les dateurs de missimba
François Husson
Julie Josse

Ressources

\Rightarrow Logiciels :

- Package missMDA (utilisé avec FactoMineR ou Factoshiny)
- R CRAN task View: Missing Data
- R-miss-tastic

⇒ Articles :

- Imbert, A., & Vialaneix, N. (2018). Décrire, prendre en compte, imputer et évaluer les valeurs manquantes dans les études statistiques : une revue des approches existantes.
 Journal de la SFdS, 159(2), 1-55.
- Josse J, Husson F. & Pagès J (2009) Gestion des données manquantes en Analyse en Composantes Principales. Journal de la SFdS. 150 (2), 28-51.