

Please type a plus sign (+) inside this box →

Approved for use through 09/30/2000. OMB 0651-0032
Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No.	CISCO-1315
First Inventor or Application Identifier	Kristen Marie Robins
Title	Password Protection for High Reliability
Express Mail Label No.	EL100016895US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. * Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
2. Specification [Total Pages 39]
(preferred arrangement set forth below)
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 U.S.C. 113) [Total Sheets 9]
4. Oath or Declaration [Total Pages]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 16 completed)
 - i. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

[NOTE FOR ITEMS 1 & 15: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED ON C.F.R. § 1.27; EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON ON C.F.R. § 1.28.]

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP) of prior application No: _____

Prior application information: Examiner _____ Group / Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or Bar Code Label	<input type="checkbox"/> or <input type="checkbox"/> Correspondence address below (Insert Customer No. or Attach bar code label here)		
Name	David B. Ritchie		
	D'Alessandro & Ritchie		
Address	P. O. Box 640640		
City	San Jose	State	CA
Country	USA	Telephone	408-441-1100
Fax	408-441-8400		

Name (Print/Type)	David B. Ritchie	Registration No. (Attorney/Agent)	31,562
Signature		Date	15-061-1991

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

10/15/99
U.S. PTO
JC715

CISCO-1315 A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) Art Unit:
Robins et al.)
Serial No. [Not yet assigned]) Examiner:
Filed: October 15, 1999)
For: PASSWORD PROTECTION FOR)
HIGH RELIABILITY COMPUTER)
SYSTEMS)

CERTIFICATE OF MAILING

"Express Mail" mailing label no: EL100016895US
Date of Deposit: October 15, 1999

I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to:

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

Diane Morse
Diane Morse

TRANSMITTAL LETTER

Honorable Assistant Commissioner
for Patents
Box Patent Application
Washington, D.C. 20231

Dear Sir:

Enclosed for filing please find the patent application for an invention entitled, "PASSWORD PROTECTION FOR HIGH RELIABILITY COMPUTER SYSTEMS", filed on behalf of Cisco Technology, Inc., assignee from inventors Kristen Marie Robins and Ronnie B. Kon, including Utility Patent Application Transmittal, 27 pages of specification, 11 pages of claims, 9 sheets of drawing figures, and 1 page of Abstract.

The attorney's Docket Number is CISCO-1315.

Kindly address all communications regarding this application to:

David B. Ritchie
D'Alessandro & Ritchie
P.O. Box 640640
San Jose, CA 95164-0640
Telephone (408) 441-1100

No fee is being paid at this time.

Respectfully submitted,
D'ALESSANDRO & RITCHIE

Dated: October 15, 1999

David B. Ritchie
Reg. No. 31,562

D'Alessandro & Ritchie
P.O. Box 640640
San Jose, CA 95164-0640
(408) 441-1100

This application is submitted in the name of inventors Kristen Marie Robins and Ronnie B. Kon, both assignors to Cisco Technology, Inc., a California corporation.

5

S P E C I F I C A T I O N

TITLE OF INVENTION

PASSWORD PROTECTION FOR HIGH RELIABILITY COMPUTER SYSTEMS

10

STATEMENT OF RELATED APPLICATION

This application is related to U.S. patent application Serial No. 09/_____, entitled "METHOD AND APPARATUS FOR CONFIGURATION IN MULTI PROCESSING ENGINE COMPUTER SYSTEMS", filed on even date herewith in the names of the same inventors and commonly assigned herewith.

15

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to the field of computer systems and data communications networks. More particularly, the present invention relates to a method and apparatus for providing password protection for multiple processing engines (PEs) in a high reliability computer system such as found in a data communications network.

The Background

A computer system on a data communications network is potentially accessible by anyone on the network. Since the Internet interconnects various networks, a computer system on such a network is potentially accessible to the tens of millions of people who now access the Internet. Therefore, security is a major requirement for almost all computer systems, so as to protect such computer systems from inadvertent or intentional accesses and undesirable actions.

5 Password protection is one of the various security devices for restricting or limiting access to a computer system. Passwords may be set in accordance with the mode or nature of commands to be executed on the system; various levels of access
10 may be provided. For example, initial access to the computer system may be secured by setting passwords for individual access lines to the system through its interfaces and ports. Execution of some classes of commands may be allowed only to some privileged users, but not to all users who log in to the system. An ordinary user may execute nondestructive commands such as connecting to remote devices, changing terminal settings on a temporary basis, listing system information, etc. However,
15 potentially destructive commands such as changing configuration parameters that affect the system as a whole, shutting down an interface, rebooting the system, and the like, generally require additional protection. The former commands are referred to as “user mode” commands and are executed in an ordinary user mode, and the latter are referred to as “privileged mode” commands, executable only in one of possibly several privileged modes. Typically, a privileged user is required to enter an enable password to get into the privileged mode after he or she is granted accesses to the user mode. Passwords are typically set during the initial configuration process of the system.

20

Fig. 1 shows an example of an initialization process which begins with the startup of a computer system, for example, a packet router. In a typical startup initialization process, the system checks the hardware and performs a power-on self-test by executing commands stored in a ROM (read only memory), and then finds and
25 loads operating system (OS) software. The OS software may be loaded, for example, from a flash memory or ROM. Next, the system finds and loads configuration information from a configuration file. If the previously created and saved configuration file is found in a non-volatile random access memory (NVRAM), the configuration file is loaded into a memory (RAM) and executed on a line-by-line

basis. This execution of the configuration file defines settings and parameters of interfaces and other hardware in the system, resulting in the system becoming operational.

5 If no previously created configuration file exists, the OS, such as a Cisco IOS™ product, available from Cisco Systems, Inc. of San Jose, California, executes a predefined question-driven configuration display (setup dialog) to a user and creates a basic configuration. The newly created configuration file is stored in the NVRAM and will be loaded as a default at the next initialization process. In the case of routers,
10 for example, the configuration process includes defining router-specific attributes and protocol functions, defining addresses, operating rates and other parameters of interfaces and other hardware, and establishing passwords (including an enable password). The passwords can be changed thereafter by a user who has access to a privileged mode (a user with the enable password).

15 Reliability is another important requirement for computer systems, especially for computer systems maintaining important information or for those systems the failure of which would significantly affect other systems. Routers are an example of such computer systems requiring high reliability. Routers usually transfer packets of
20 data from one network to another. The failure of a router may affect all networks and hosts that send or receive packets handled by that router. One technique used to realize high reliability in a computer system is to make the system redundant, providing the system with a primary processing engine and a secondary (back-up) processing engine. In such a redundant processing engine system, when the primary
25 processing engine fails, the secondary processing engine can immediately take over the duties of the primary processing engine so as to continue running the system.

A processing engine (PE) usually includes one or more CPUs or microprocessors, supporting circuitry, a variety of memories such as DRAM, ROM,

static RAM, etc., and a bus. In a symmetric multiprocessing (SMP) system, for example, a PE is a collection of unit processors. A PE may also be implemented as a microcode engine.

5 Fig. 2 shows operations in a prior art redundant PE system. In such a redundant PE system, when the system is started, the primary PE performs the initialization process for the system. The primary PE configures the system by loading and executing the configuration file thereof, during which an enable password for the primary PE (along with other passwords for the system) is set so as to protect
10 the system. The secondary PE waits for the primary PE to fail, and then takes over the system after the failure of the primary PE is detected. Such a failover may take place when a failure of the hardware or a severe problem in the software occurs. For example, when a bus error or a segmentation violation occurs, it may be better to switch to a back up PE via a seamless take-over from the original PE rather than to
15 attempt to resolve the problem on the original PE.

20 The failure may be detected by the lack of or issuance of a specific indication signal from the primary PE. Once the secondary PE takes over the system, it reboots the failed PE and performs reinitialization. At this point the secondary PE loads and executes its own configuration file (the configuration may or may not be the same as that of the primary PE). An enable password and other passwords are set for the secondary PE in this configuration process, and the system is password-protected as well.

25 In many computer systems, such as network routers, the operating system uses a command line interface (CLI). In a CLI-based system, commands are executed regardless of whether the commands are entered by a user, for example, from a console, or read from an executable file such as a configuration file. Thus, in a CLI-based system, loading a configuration file into a memory causes all configuration

commands in the file to be executed. Therefore, if the secondary PE in a redundant PE system reads its configuration file, it could potentially redefine or alter all of the settings and parameters of the interfaces and other hardware of the system, which are still under the control of the primary PE. For this reason, in a conventional redundant PE system using a CLI, the secondary PE is not allowed to load the configuration file into its memory until the primary PE fails.

There are some situations where it is desirable for a redundant PE system to make certain commands available to the secondary PE before the primary PE fails.

10 For example, suppose that in a router the primary PE is handling all routing functions, and the secondary PE is monitoring the primary PE waiting for it to fail. The primary PE could be signaling on a communications link, such as a backplane line, once per second as a result of a high-priority interrupt to let the secondary PE know that all is fine, but actually it is in an endless loop in a slightly lower priority interrupt. In this situation the primary PE has failed, but it is indicating to the secondary PE that it has not failed, preventing the secondary PE from taking over. In such a case, a system administrator may want to reboot the primary PE to fix the situation, forcing the primary PE to fail and allowing the secondary PE to take over. Such a forced failover may be caused by having the system administrator issue a command (presumably a privileged mode command) through a console port for the secondary PE.

However, because the secondary PE is prohibited from loading its configuration file until the first PE fails, it has no password protection until that time comes. If the system allows a user to obtain access to such privileged mode (without an enable password) through the second console, anyone with access to the second console can issue any destructive or privileged commands, for example, changing the configuration and then causing a forced failover at will. Such unrestricted issuance of commands without password protection poses a risk to the computer system. For

example, some loss of information is almost inevitable if a failover occurs. Repeated forced failovers may lead to serious consequences. In addition, the performance of the secondary PE may be lower than that of the primary PE, so that a forced failover could cause lower performance in the system than desired. Thus, the prior art
5 redundant PE system can improve its reliability only at the cost of its security.

SUMMARY OF THE INVENTION

5 A high reliability computer system includes a first processing engine (PE), a first memory and a third memory both accessible by the first PE, a second PE, and a second memory and a fourth memory both accessible by the second PE. The first memory contains initialization information for the first PE. The third memory has a location for storing an enable password or a surrogate therefor for the first PE. The
10 second memory contains initialization information for the second PE. The computer system also includes circuitry for switching control of the system from the first PE to the second PE upon detection of a failure of the first PE, and a password passer writing the enable password or a surrogate therefor of the first PE to the fourth memory. Alternatively, a network system includes an authentication, authorization
15 and accounting (AAA) or any other password server having a database for maintaining an enable password for a high reliability computer system. The high reliability computer system includes an interface capable of communicating with the password server over an information bus. The interface obtains the enable password from the password server in response to a request from either one of the first and
20 second PEs.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a process flow diagram illustrating an example of initialization
5 process which begins with the startup of a computer system.

Fig. 2 is a process flow diagram illustrating operations in a prior art redundant
PE system.

10 Fig. 3 is a system block diagram schematically illustrating a high reliability
computer system according to a presently preferred embodiment of the present
invention.

15 Fig. 4 is a process flow diagram illustrating an example of operation of a high
reliability computer system according to one presently preferred embodiment of the
present invention.

20 Fig. 5 a system block diagram schematically illustrating a high reliability
computer system according to another presently preferred embodiment of the present
invention.

Fig. 6 is a process flow diagram illustrating an example of operation of a high
reliability computer system according to one presently preferred embodiment of the
present invention.

25 Fig. 7 is a system block diagram schematically illustrating a network system
providing password protection for a high reliability computer system according to a
presently preferred embodiment of the present invention.

Fig. 8 is a process flow diagram illustrating an example of operation of the network system according to one presently preferred embodiment of the present invention.

5 Fig. 9 is a system block diagram schematically illustrating a network system providing password protection for a high reliability computer system according to another presently preferred embodiment of the present invention.

10 Fig. 10 is a process flow diagram illustrating an example of operation of the network system according to one presently preferred embodiment of the present invention.

CISCO-1315

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

5 Those of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.

10 Fig. 3 schematically shows a high reliability computer system **100** according to an embodiment of the present invention. The computer system **100** includes a first PE **10** (operating as the primary PE), a first memory **12** accessible by the first PE **10**, a second PE **14** (operating as a secondary PE), a second memory **16** accessible by the second PE **14**, a third memory **20** accessible by the first PE **12**, and a fourth memory **18** accessible by the second PE **14**. The first memory **12** contains initialization information for the first PE **10** and the second memory **16** contains initialization information for the second PE **14**. The initialization information typically includes a configuration file to configure the system software and hardware such as terminal server and/or interfaces **30**. The first and second memories **12** and **16** are typically non-volatile memories, such as NVRAM, PCMCIA flash memory cards, hard disks, and the like. The third memory **20** has a predetermined location for storing an enable password (**P/W**) for the first PE **10**. The third memory **20** may be a RAM of the first PE **10**. The fourth memory **18** has a predetermined location for storing an enable password (**P/W**) for the second PE **14**. The fourth memory **18** may be a RAM of the second PE **14**. The first PE **10** and the first memory **12** may be provided on one CPU card (first CPU card), and the second PE **14** and the second memory **16** may be provided on another CPU card (second CPU card). The third and fourth memories **20** and **18** may also be included in the first and second CPU cards, respectively.

The first PE **10** is the primary PE controlling the system **100**. When a failure of the first PE **10** is detected, however, switching circuitry (not shown) switches control of the system **100** to the second PE **14**. The second PE **14** has been waiting for the first PE **10** to fail, and when the first PE **10** fails, the control of the system **100** 5 is switched to the second PE **14**. Such a failover may take place when a failure of the hardware or a severe problem in the software occurs. For example, when a bus error or a segmentation violation occurs, it may be better to switch to the second PE **14** from the first PE **10** rather than to attempt to resolve the problem on the first PE **10**. This seamless switching allows the computer system **100** to continue running, 10 realizing high reliability of the system.

The failure of the first PE **10** may be detected, for example, by the lack of a predetermined signal, or the issuance of a predefined signal, from the first PE **10**. The switching circuitry may be implemented in a controller or a chipset in any convenient 15 location in the system **100**, as is well understood by those of ordinary skill in the art.

At the startup of the computer system **100**, the first PE **10** performs the initialization process by reading the initialization information from the configuration file stored in the first memory **12**, during which an enable password (**P/W**) is set for the first PE **10** and written to the third memory **20**. A password passer (as indicated 20 by **22** in Fig. 3) writes the enable password of the first PE **10** to the fourth memory **18**, so that the enable password is available to the second PE **14**. The password passer may be implemented in the first PE **10**, the second PE **14**, or any convenient location in the system **100**.

25

The password passer controls transmission of the enable password data to the fourth memory **18**. The password passer may “push” the enable password of the first PE **10** into the fourth memory **18**. That is, the password passer passes the enable password to the fourth memory **18** without a request from the second PE **14**, for

example, whenever the enable password is changed. In this case, the password passer may be implemented in the first PE **10**. It should be noted that the fourth memory **18** is dedicated to the second PE **14**, as well as the third memory **20** is dedicated to the first PE **10**. Thus, typically, the first PE **10** does not have direct access to the fourth memory **18** and it needs cooperation (or response) of the second PE **14** to write the enable password to the fourth memory **18**. For example, the password passer (the first PE **10**) may issue a write-password command to the second PE **14**.

As described above, the password passer may write the enable password of the first PE **10** to the fourth memory **18** at the initialization of the system **100**. For example, the password passer may write the enable password to the fourth memory **18** at the same time when the enable password is set for the first PE **10**. The initialization information for the first PE **10** may include such instructions to cause the password passer to write the enable password to the fourth memory **18**. In addition, the password passer may write the enable password to the fourth memory **18** whenever the running configuration of the first PE **10** is saved on the first memory **12**. A running configuration (or active configuration) is a configuration file resides in main memory and contains the configuration commands that are currently active on the system. Changes to the running configuration, including those of passwords, are saved on a non-volatile memory (i.e., the first memory **12**) when an explicit instruction is given. Preferably, the password passer writes the enable password of the first PE **10** to the fourth memory **18** every time the enable password of the first PE **10** is changed, so that the current and updated enable password is always available to the second PE **14**.

Alternatively, the password passer may “pull” the enable password of the first PE **10**; the password passer passes the enable password to the fourth memory **18** only when the second PE **14** requests to do so. That is, the password passer may write the

enable password of the first PE **10** to the fourth memory **18** in response to a command from the second PE **14**. For example, the second PE **14** may periodically issue a command to the password passer to retrieve the enable password from the third memory **20** and write it to the fourth memory **18**. An attempt by a user such as a
5 system administrator to issue a privileged command through the second PE **14** may invoke the operation of the password passer to write the enable password to the fourth memory **18**. Then the second PE **14** performs a password-check on the enable password entered by the user comparing with the stored enable password.

10 Next, the operation of the high reliable computer system **100** is described using an example of a network router. In a network router, the first PE **10** (PE1) and the first memory **12** (NVRAM1) may be provided on one CPU card (first CPU card), and the second PE **14** (PE2) and the second memory **16** (NVRAM2) may be provided on another CPU card (second CPU card). The fourth memory **18** (RAM2) may also be included in the second CPU card. Each CPU card usually includes a ROM containing bootstrap software. The ROM may also contain operating system (OS) software. For example, the OS software for a router maybe a Cisco IOSTM product, available from Cisco Systems, Inc. of San Jose, California. The interfaces **30** may include one or more of fixed interfaces, modular interfaces (changeable only when the system is turned off), interface processor cards (changeable while the system is running), and the like. The router also includes a main memory (RAM), a flash memory containing the OS software, and console ports for communicating with the CPU cards (these components are not shown in Fig. 3). The main memory may be provided on each CPU card, or may be commonly used by the two CPU cards. A router may also
15 include additional flash memory and auxiliary ports. Note that those of ordinary skill in the art will recognize that this one CPU per PE card architecture is used herein only as an example and is not a requirement. Therefore, this example is only illustrative and not for the purpose of limiting the present invention.
20
25

Fig. 4 schematically shows an example of the operations of the high reliability computer system **100** according to one embodiment of the present invention.

When the system **100** is started, the first PE **10** (PE1) performs an initialization 5 of the system (block **400**). During the initialization, the first PE **10** loads OS software and loads and executes the configuration file. Typically, the configuration file is read from the first memory **12** (NVRAM1) containing the initialization information (block **402**). During this configuration process, the first PE **10** sets parameters for the interfaces and other hardware of the system (block **404**), and sets 10 the enable password along with other passwords according to the configuration information. If the first PE **10** does not find an already-saved configuration file in the first memory **12**, it creates a new configuration and establishes an enable password and other passwords (by communicating with a system administrator). The new configuration and the enable (and other) password are saved on the first memory **12**. 15 At this point, the enable password is stored in a predefined location on the first memory **12** (block **406**). The enable password may be encrypted (either before or after it is passed) so as to help prevent accidental exposure in the configuration file when displayed on a screen. At the same time, the password passer writes the enable password of the first PE **10** to the fourth memory **18** (RAM2) of the second PE **14** 20 (PE2) (step **408**).

The enable password may be changed after the initial setting thereof (block **412**). This may be done by a user having the access to a privileged command (step **410**). When the enable password is changed, the new enable password is copied to 25 the first memory **12** (block **414**) when an explicit instruction is given. The password passer writes the new enable password to the fourth memory **18** of the second PE **14** (step **416**). Typically, when any changes are made to the running configuration, the new configuration is copied to the first memory **12** upon an explicit instruction.

Suppose that in some situations a user such as a system administrator needs to access the computer system **100** to issue a command using the second PE **14** (block **418**). The user makes an attempted access to the system **100** through a console port for the second PE **14** (step **420**). The user is required to enter the enable password in
5 order to obtain access to the privileged command (step **422**). The second PE **14** may prompt the user to enter an enable password. The second PE **14** checks the entered enable password using the enable password stored in the fourth memory **18** (block **424**). If the user is authorized, the user will be allowed access to issue the privileged command, for example, changing the configuration or forcing a failover of the first
10 PE **10** (step **426**).

The above example illustrates the case where the password passer “pushes” the enable password to the fourth memory **18** of the second PE **14**. However, those of ordinary skill in the art will understand other cases where the password passer “pulls”
15 the enable password as well without more detailed explanation.

Fig. 5 schematically shows a high reliability computer system **120** according to another embodiment of the present invention. For convenience, the like components bear like numeral references as in the previous embodiment. The computer system
20 **120** includes a first PE **10** (operating as the primary PE), a first memory **12**, a second PE **14** (operating as the secondary PE), a second memory **16**, and a password memory **24**. The first memory **12** is accessible by the first PE **10** and contains initialization information for the first PE **10**. The second memory **16** is accessible by the second PE **14** and contains initialization information for the second PE **14**. The initialization
25 information typically includes a configuration file to configure the system software and hardware **30**. The first and second memories **12** and **16** are typically non-volatile memories, such as NVRAM. The password memory **24** is coupled to the first PE **10** and the second PE **14** though a bus **28** and accessible by the first PE **10** and the second PE **14**. That is, the password memory **24** is a shared memory for the first and

second PEs **10** and **14**. As in the computer system **100**, the first PE **10** is a primary PE controlling the system **120**. Upon the detection of a failure of the first PE **10**, control of the system **120** is switched to the second PE **14** by switching circuitry (not shown).

5

As in the computer system **100**, at the startup of the computer system **120**, the first PE **10** performs the initialization process by reading the initialization information (configuration file) from the first memory **12**. At this point, the enable password is set for the first PE **10**. A password keeper (as indicated by **26** in Fig. 5) writes the 10 enable password of the first PE **10** to the password memory **24**. Once the enable password has been written in the password memory **24**, the enable password is available to the second PE **14** as well as to the first PE **10**. Alternatively and preferably, the enable password may be permanently stored in the password memory **24**. In this case, the enable password is a shared password maintained in a shared 15 memory (i.e., the password memory **24**) and not available on the memory dedicated to each PE. Each PE can obtain the enable password from the password memory **24** whenever it needs the enable password.

The password keeper may be implemented in a controller or chipset (not 20 shown) on any convenient location in the system **120**, as is well understood by those of ordinary skill in the art. The password keeper maintains the enable password of the first PE **10** in the password memory **24**, and controls transmission of the enable password data to and from the password memory **24**.

25 The password keeper may write the enable password of the first PE **10** to the password memory **24** at the initialization of the system **120**, for example, at the same time when the enable password is set for the first PE **10**. The initialization information for the first PE **10** may include such instructions to cause the password keeper to write the enable password to the password memory **24**. Also, the password

keeper may write the enable password to the password memory **24** when the running configuration file for the first PE **10** is saved on the first memory **12**. Typically, the running configuration file is saved in a non-volatile memory (i.e., the first memory **12**) when changes are made to the running configuration and an explicit instruction is
5 given. Preferably, the password keeper writes the enable password of the first PE **10** to the password memory **24** every time the enable password of the first PE **10** is changed, so that the current and updated enable password is always available to the second PE **14**.

10 In the case where the first PE **10** fails and the second PE **14** takes over the first PE **10**, the second PE **14** reboots the first PE **10** and initializes the system **120** by reading the initialization information (the configuration file) from the second memory **16**. Thus, the second PE **14** becomes a primary PE controlling the system **120**, and the first PE **10** a backup or secondary PE. During the initialization process by the second PE **14**, the password keeper may write the enable password of the second PE **14** to the password memory **24**. The initialization information for the second PE **14** may include instructions for the password keeper to write the enable password to the password memory **24**.
15

20 Since the password memory **24** is also accessible by the first PE **10**, the first PE **10** is also protected by the enable password of the second PE **14** when the second PE **14** controls the system **120**. That is, when a user attempts to access the system **120** and issue a command using the first PE **10** (through a console port for the first PE **10**), the commands issued by the first PE **10** are protected by the enable password of the second PE **14** as well. Preferably, the password keeper writes the enable password of the second PE **14** to the password memory **24** every time the enable password of the second PE **14** is changed, so that the current and updated enable password is always available to the first PE **10**.
25

According to the embodiment described above, the password keeper “pushes” the enable password to the password memory **24**. However, the password keeper may “pull” the enable password according to an alternate embodiment of the present invention. That is, the password keeper may pass the enable password of the first PE **10** maintained in the password memory **24** to the second PE **14** in response to a request from the second PE **14**, and vice versa.

Fig. 6 schematically shows an example of the operation of a high reliability computer system **120** according to one embodiment of the present invention.

When the system **120** is started, the first PE **10** (PE1) performs an initialization of the system (block **500**). The initialization process (blocks **500, 502, 504 and 506**) by the first PE **10** is the same as the initialization process in blocks **400 to 406** of Fig. 4 as described above. When the enable password is set for the first PE **10** or stored in the first memory **12** (NVRAM1), the password keeper writes the enable password of the first PE **10** to the password memory **24** (block **508**). An authorized (and privileged) user may access the system (step **510**) and change the enable password after the initial setting thereof (block **512**). When the enable password is changed, the new enable password is copied to the first memory **12** (block **514**) if an explicit instruction is given. At the same time, the password keeper writes the new enable password to the password memory **24** (block **516**).

Suppose that in some situations (**518**) a user such as a system administrator wants to access the system **120** through the second PE **14** (PE2) (**520**). When the user makes an attempt to issue a privileged command, the second PE **14** requires the user to enter the enable password (block **522**). The second PE **14** accesses the password memory **24** and checks the entered password referring to the enable password stored in the password memory **24** (block **524**). If the password check is successful, the user

will be allowed to issue the privileged command, for example, changing the configuration or forcing a failover of the first PE **10** (step **526**).

The above example illustrates the case where the password keeper “pushes”
5 the enable password to the password memory **24**. However, those of ordinary skill in
the art will understand other case where the password passer “pulls” the enable
password as well without more detailed explanation.

Fig. 7 shows a network system **200** for providing password protection for a
10 high reliability computer system, according to one embodiment of the present
invention. The network system **200** includes a high reliability computer system **140**
and an authentication, authorization and accounting (AAA) or other password server
15 **150** coupled via an information bus **160** to the high reliability computer system **140**.
The information bus **160** may be a data communications network. The server **150**
includes a database for maintaining the enable password **P/W** for the high reliability
computer system **140**.

The computer system **140** includes a first PE **40**, a first memory **42**, a second
PE **44**, and a second memory **46**. The first memory **42** is accessible by the first PE **40**
20 and contains initialization information for the first PE **40**. The second memory **46** is
accessible by the second PE **44** and contains initialization information for the second
PE **44**. The computer system **140** also includes a first console port **52** and a second
console port **54**. The first and second console ports **52** and **54** are typically dedicated
to the first and second PEs **40** and **44**, respectively. The first PE **40**, the first memory
25 **42**, and the first console port **52** may be included in one CPU card (first CPU card).
Similarly, the second PE **44**, the second memory **46**, and the second console port **54**
may be included in another CPU card (second CPU card). The first PE **40** is a
primary PE controlling the computer system **140**. Upon the detection of a failure of
the first PE **40**, control of the computer system **140** is switched to the second PE **44** by

switching circuitry (not shown), as discussed in the previous embodiments described above.

The high reliability computer system **140** also includes an interface **50** capable of communicating with the server **150** over the information bus **160**. The interface **50** may be, for example, an Ethernet card. The interface **50** obtains the enable password from the server **150** in response to a request from either one of the first and second PEs **40** and **44**, as described below.

The server **150** may perform user authentication, user authorization and user accounting functions. It may implements a Cisco ACS™ product for its AAA services, such as Cisco Secure™, available from Cisco Systems, Inc. of San Jose, California, or an equivalent product providing at least the password authentication and authorization function. In accordance with one embodiment of the present invention, the Remote Authentication Dial-In User Service (RADIUS) protocol is used as the communication protocol between the interface **50** and the server **150**. RADIUS is an Internet protocol for carrying authentication, authorization, accounting and configuration information between devices that desire to authenticate their links and a shared AAA service. Those of ordinary skill in the art will realize that other Internet protocols such as TACACS+ can be used as acceptable authentication communications links between various devices and servers. The server **150** may be any server providing user authentication and authorization capable of maintaining and providing an enable password for a computer system.

Fig. 8 shows an example of operation of network system **200**. When the computer system **140** is started, the first PE **40** (PE1) initiates the computer system **140** accordingly (block **600**). In this embodiment, however, the enable password of the first PE **40** is maintained by the AAA or other password server **150**. Therefore, the first PE **40** does not have to set or store the enable password during the

configuration process in block 600. Other passwords such as access line passwords may be set during the configuration and stored in the first memory 42, or may be maintained by the server 150.

5 When the first PE 40 is controlling the computer system 140, access for issuing privileged commands is password-protected as follows. Suppose that a user such as a system administrator attempts to log in the computer system 140 through a user interface (not shown) or a console port 52 for the first PE 40. When the user first logs into the computer system 140, he/she is typically in a user mode and required to enter
10 an enable password in order to get into the privileged mode. When the user makes an attempt to issue a privileged command (step 602), the first PE 40 controls the interface 50 (I/F) to make a request to the server 150 (step 604). Note that the request
may be made for all log-ins (i.e., privileged and non-privileged).

15 Upon the request from the interface 50, the server 150 returns the enable password maintained in its database (step 605). The enable password P/W may be encrypted during the transmission over the information bus 160. The interface 50 receives and passes the enable password to the first PE 40 (step 606). Then the first PE 40 checks the entered enable password by comparing it with the received enable
20 password (block 607). If the password checking is successful, the user will be allowed access to the privileged mode (block 608).

25 Alternatively, a request from interface 50 (in step 604) may include the entered enable password. In this case, the server 150 performs the user authentication and authorization using the entered enable password and the enable password maintained in its database. The server 150 then simply returns an access-accept packet or an access-reject packet to the interface 50. The first PE 40 accepts or rejects the user based on the packet returned from the server 150.

In addition, if the server **150** does not respond within a predetermined interval, the computer system **140** may use one or more locally-stored passwords, if the system is so configured. That is, the computer system **140** may also implement the password verification scheme of the computer system **100** or **120** as described above.

5

According to an alternate embodiment of the present invention, the first PE **40** may obtain the enable password from the server **150** at the initialization of the computer system **140**. That is, the first PE **40** makes a request through the interface **50** during the initialization process at block **600**. The server **150** returns the enable password in response to the request from the interface **50**. The first PE **40** may store the received enable password in its memory during its control over the computer system **140**. The initialization information of the first PE **40** may include such instructions for the interface **50** to access and obtain the enable password from the server **150**.

15

When a user makes an attempted access to the computer system **140** that is under the control of the first PE **40** and tries to issue a command using the second PE **44** (step **610**), the second PE **44** (PE2) makes a request through the interface **50** to the server **150** (steps **612 & 614**). When the interface **50** is dedicated to the first PE **40** and the first PE **40** is controlling the computer system **140** (before the failure of the first PE **40**), the second PE **44** uses the interface **50** through the first PE **40** as indicated by **47** in Fig. 7. When the interface **50** is dedicated to the second PE **44** or after the failure of the first PE **40**, the second PE **44** can directly use the interface **50** as indicated by **49** in Fig. 7.

20

25

Upon the request from the interface **50**, the server **150** returns the enable password to the interface **50** (step **616**). The second CPU **44** obtains the enable password from the interface **50** and performs the password checking (block **618**).

If the password checking is successful, the user will be allowed to issue privileged commands (block 620) and can issue a command such as to change the configuration or force the first PE 40 to fail (step 622). Therefore, any commands issued through the second PE 44 are protected by the enable password as well as those 5 issued though the first PE 40.

Fig. 9 shows a network system 210 for providing password protection for a high reliability computer system, according to another embodiment of the present invention. The network system 210 includes a high reliability computer system 170 and an AAA or other password server 150 coupled via an information bus 160 to the high reliability computer system 170. The information bus 160 may be a data communications network. The server 150 includes a database for maintaining an enable password for the high reliability computer system 170. The function of the server 150 and the employed protocols are preferably the same as those in the network 10 system 200 explained above. 15

The computer system 170 includes a first PE 60, a first memory 62, a second PE 64, a second memory 66, a first interface 70 for the first PE 60, a second interface 72 for the second PE 64, a first console port 52, and a second console port 54. The first memory 62 is accessible by the first PE 60 and contains initialization information 20 for the first PE 60. The second memory 66 is accessible by the second PE 64 and contains initialization information for the second PE 64. The first and second console ports 52 and 54 are dedicated to the first and second PEs 60 and 64, respectively. The first and second interfaces 70 and 72 are dedicated to the first and second PEs 60 and 25 64, respectively, and capable of communicating with the AAA server 150 over the information bus 160. Each of the first and second interfaces 70 and 72 may be an Ethernet card. The interfaces 70 and 72 obtain the enable password from the server 150 in response to a request from the first and second PEs 60 and 64, respectively.

The first PE **60** is a primary PE controlling the computer system **170**. Upon the detection of a failure of the first PE **60**, control of the computer system **170** is switched to the second PE **64** by switching circuitry (not shown), as in the previous embodiments.

5

The first PE **60**, the first memory **62**, the first console port **52**, and the first interface **70** may be included in one CPU card (first CPU card). The second PE **64**, the second memory **66**, the second console port **54**, and the second interface **72** may be included in another CPU card (second CPU card). In such a case, the switching circuitry may switch the control of the computer system **170** from the first PE card to the second PE card upon a failure of any function of the first CPU card.

10
15
20

Fig. 10 shows an example of operations of the network system **210** according to one embodiment of the present invention. When the computer system **170** is started, the first PE **60** (PE1) performs the initialization of the computer system **170** accordingly (700). Since the enable password of the first PE **60** is maintained by the AAA or other password server **150** (AAA), the first PE **60** does not have to set or store the enable password during the configuration process (block 700). Other passwords such as access line passwords may be set during the configuration process and stored in the first memory **62**, or may be maintained by the server **150**.

25

When the first PE **60** is controlling the computer system **170**, access to a privileged mode is password-protected as follows. Suppose that a user such as a system administrator attempts to log in the computer system **170** through a user interface (not shown) or a console port **52** for the first PE **60**. When the user first logs in the system, he/she is typically in a user mode and required to enter an enable password in order to be able to issue a privileged command. When the user makes an attempt to issue privileged command (step 702), the first PE **60** makes a request through the first interface **70** to the server **150** (step 704).

Upon the request from the first interface **70**, the server **150** returns the enable password maintained in its database (step **706**). The enable password may be encrypted during the transmission over the information bus **160**. The first interface **70** (I/F1) receives and passes the enable password to the first PE **60** (step **708**). Then the first PE **60** checks the entered password by comparing it with the received enable password (block **710**). If the password checking is successful, the user will be allowed to issue privileged commands (block **712**).

When a user makes an attempt to issue a privileged command using the second PE **64** (PE2) while the computer system **210** is under the control of the first PE **60** (**714**), the second PE **64** makes a request through the second interface **72** to the server **150** (steps **716 & 718**). Such an access may use a console port **54** for the second PE **64**. Upon the request from the second interface **72** (I/F2), the server **150** returns the enable password (**720**). The second interface **72** passes the received enable password to the second PE **64**. The second PE **64** checks the entered password by comparing it with the received enable password (**722**). If the password checking is successful, the user will be allowed to issue a command (block **724**) such as changing the configuration or forcing the first PE **60** to fail (step **726**). Therefore, any commands issued through the second PE **64** are protected by the enable password as well as issued through the first PE **60**.

Alternatively, a request from the first interface **70** or the second interface **72** (in steps **704** or **716**) may include the entered enable password. In this case, the server **150** performs the user authentication and authorization using the entered enable password and the maintained enable password. In this case, the server **150** simply returns an access-accept packet or an access-reject packet to, for example, the first interface **70** where the request came from. The first PE **60** accepts or rejects the user's attempt to issue a privileged command based on the packet returned from the

server **150**. This is the same in the case of the second interface **72** and the second PE **64**.

Alternatively, according to one embodiment of the present invention, the first
5 PE **60** may obtain the enable password from the server **150** at the initialization of the computer system **170**. That is, the first PE **60** makes a request through the first interface **70** during the initialization process (block **700**). The server **150** returns the enable password upon the request from the first interface **70**. The first PE **60** may store the received enable in its memory during its control over the computer system
10 **210**. The initialization information of the first PE **60** may include such instructions for the first interface **70** to access and obtain the enable password from the server **150**.

In the case where the second PE **64** fails over to the first PE **60**, the first PE **60** obtains the enable password at that time. Therefore, if the first PE **60** already had the enable password at the time of the initialization, it does not have to obtain it from server **150** unless the enable password of the first PE **60** is different from that of the second PE **64**. This is the same for the second PE **64** when it takes over the first PE **60** and then performs the initialization process.

According to the present invention as described above, the enable password is made available to the second PE without causing the second PE to read the initialization information from the configuration file for the second PE. That is, when the computer system is under the control of the first PE, access to the computer system through the second PE (console port of the second PE) is protected by the enable password of the first PE. Thus, an enhanced reliability, such as maintaining the high performance of the system, is realized without creating a security lapse in the system.
20
25

It should also be noted that the term "password" as used herein is intended to be broad enough to encompass surrogates for conventional passwords. These include "shared secret" mechanisms, encrypted passwords, mechanisms employing a secure password server. Password files relating users to their respective password and privilege may also be employed. Thus, as used herein, the term "password" is a mechanism of any character employed to distinguish whether a particular identified user is authorized to use a particular command or set of commands.

While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art having the benefit of the disclosure many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.

CLAIMS

What is claimed is:

1. A high reliability computer system, said system comprising:

- 5 a first processing engine (PE);
 a first memory accessible by said first PE, containing initialization information
for said first PE;
 a second PE;
 a second memory accessible by said second PE, containing initialization
10 information for said second PE;
 a third memory accessible by said first PE, said third memory having a location
for storing an enable password for said first PE;
 a fourth memory accessible by said second PE;
 circuitry for switching control of said system from said first PE to said second
15 PE upon detection of a failure of said first PE; and
 a password passer writing said enable password of said first PE to the fourth
memory accessible by said second PE.

2. A high reliability computer system according to claim 1, wherein said password

- 20 passer writes said enable password of said first PE to said fourth memory at the
initialization of the system.

3. A high reliability computer system according to claim 1, wherein said password

- 25 passer writes said enable password of said first PE to said fourth memory every time
said enable password of said first PE is changed.

4. A high reliability computer system according to claim 1, wherein said password

- passer writes said enable password of said first PE to said fourth memory in response
to a command from said second PE.

5. A high reliability computer system according to claim 1, wherein password passer reads said enable password of said first PE from said first memory and writes said enable password to said fourth memory.

5

6. A high reliability computer system, said system comprising:

a first PE;

a first memory accessible by said first PE, containing initialization information for said first PE;

10 a second PE;
a second memory accessible by said second PE, containing initialization information for said second PE;

circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE;

15 a password memory accessible by said first and second PEs, having a location for storing an enable password for the system; and

a password keeper for maintaining said enable password in said password memory for said first and second PEs.

20 7. A high reliability computer system according to claim 6, wherein said password keeper reads said enable password from said first memory and writes said enable password to said password memory at the initialization of the system.

25 8. A high reliability computer system according to claim 6, wherein said initialization information for said first PE includes instructions for said password keeper to write said enable password to said password memory.

9. A high reliability computer system according to claim 6, wherein said initialization information for said second PE includes instructions for said password keeper to write said enable password to said password memory.
- 5 10. A high reliability computer system according to claim 6, wherein said password keeper writes said enable password to said password memory every time said enable password is changed.
- 10 11. A high reliability computer system according to claim 6, wherein said password keeper passes said enable password maintained in said password memory to either one of said first and second PEs in response to a request therefrom.
- 15 12. A system for providing password protection for a high reliability computer system, on a data communications network including a password server having a database for maintaining an enable password for said high reliability computer system, said password server being coupled via an information bus to said high reliability computer system, said system comprising:
- 20 a first PE;
- a first memory accessible by said first PE, containing initialization information for said first PE;
- a second PE;
- a second memory accessible by said second PE, containing initialization information for said second PE;
- 25 circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE; and
- an interface capable of communicating with the password server over the information bus, said interface obtaining an enable password from the password server in response to a request from either one of said first and second PEs.

13. A network system according to claim 12, wherein said second PE authenticates incoming users by requesting authentication from said password server.
- 5 14. A network system according to claim 12, wherein said first PE obtains said enable password from said password server via said interface at the initialization of the system.
- 10 15. A network system according to claim 12, wherein said initialization information for said first PE includes instructions to access and obtain said enable password from said password server.
- 15 16. A system for providing password protection for a high reliability computer system on a data communications network including a password server having a database for maintaining an enable password for said high reliability computer system, said password server being coupled via an information bus to said high reliability computer system, said system comprising:
- 20 a first PE;
- a first memory accessible by said first PE, containing initialization information for said first PE;
- a first interface for said first PE, said first interface capable of communicating user authentication requests and responses with the password server over the information bus;
- 25 a second PE;
- a second memory accessible by said second PE, containing initialization information for said second PE;
- a second interface for said second PE, said second interface capable of communicating user authentication requests and responses with the password server over the information bus; and

circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE.

17. A method for operating a high reliability computer system, said system including
5 a first PE, a first memory accessible by said first PE, said first memory containing initialization information for said first PE and having a location for storing an enable password for said first PE, a second PE, and a second memory accessible by said second PE, said second memory containing initialization information for said second PE, said method comprising:

10 writing said enable password of said first PE to a third memory accessible by said second PE; and

switching control of said system from said first PE to said second PE upon detection of a failure of said first PE.

15 18. A method according to claim 17, wherein said writing of said enable password of said first PE to said third memory is performed at the initialization of the system.

19. A method according to claim 17, wherein said writing of said enable password of said first PE to said third memory is performed every time said enable password of said first PE is changed.
20

20. A method according to claim 17, wherein said writing of said enable password of said first PE to said third memory is performed in response to a command from said second PE.

25 21. A method for operating a high reliability computer system, said system including a first PE, a first memory accessible by said first PE, said first memory containing initialization information for said first PE, a second PE, and a second memory

accessible by said second PE, said second memory containing initialization information for said second PE, said method comprising:

providing a password memory accessible by said first and second PEs, having a location for storing an enable password;

5 maintaining said enable password for said first and second PEs in said password memory; and

switching control of said system from said first PE to said second PE upon detection of a failure of said first PE.

10 22. A method according to claim 21, wherein said maintaining includes:

reading said enable password from said first memory and writing said enable password to said password memory at the initialization of the system.

15 23. A method according to claim 21, wherein said maintaining includes:

writing said enable password to said password memory every time said enable password is changed.

20 24. A method according to claim 21, wherein said maintaining includes:

writing said enable password to said password memory in response to a command from said first PE.

25 25. A method according to claim 21, wherein said maintaining includes:

passing said enable password maintained in said password memory to either one of said first and second PEs in response to a request therefrom.

26. A method for providing password protection for a high reliability computer system, said system including a first PE, a first memory accessible by said first PE, said first memory containing initialization information for said first PE, a second PE, a second memory accessible by said second PE, said second memory containing

initialization information for said second PE, and circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE, said method comprising:

 sending an enable password for the high reliability computer system for

5 storage in a database of a server coupled to the high reliability computer system via an information bus;

 providing an interface capable of communicating with the password server over the information bus; and

 obtaining the enable password from the password server through the interface

10 in response to a request from either one of the first and second PEs.

27. A method according to claim 26, further comprising authenticating incoming users by requesting authentication from the password server.

15 28. A method for providing password protection for a high reliability computer system, said system including a first PE, a first memory accessible by said first PE, said first memory containing initialization information for said first PE, a second PE, a second memory accessible by said second PE, said second memory containing initialization information for said second PE, and circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE, said method comprising:

 sending an enable password for the high reliability computer system for storage in a database of a password server coupled to the high reliability computer system via an information bus;

25 communicating user authentication requests and responses with the password server over the information bus via a first interface for the first PE; and

 communicating user authentication requests and responses with the password server over the information bus via a second interface for the second PE.

29. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for operating a high reliability computer system, said system including a first PE, a first memory accessible by said first PE, said first memory containing initialization information for
5 said first PE and having a location for storing an enable password for said first PE, a second PE, and a second memory accessible by said second PE, said second memory containing initialization information for said second PE, said method steps comprising:

writing said enable password of said first PE to a third memory accessible by
10 said second PE; and

switching control of said system from said first PE to said second PE upon detection of a failure of said first PE.

15 30. A program storage device according to claim 29, wherein said method step of writing said enable password of said first PE to said third memory is performed at the initialization of the system.

20 31. A program storage device according to claim 29, wherein said method step of writing said enable password of said first PE to said third memory is performed every time said enable password of said first PE is changed.

32. A program storage device according to claim 29, wherein said method step of writing said enable password of said first PE to said third memory is performed in response to a command from said second PE.

25 33. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for operating a high reliability computer system, said system including a first PE, a first memory accessible by said first PE, said first memory containing initialization information for

said first PE, a second PE, and a second memory accessible by said second PE, said second memory containing initialization information for said second PE, said method steps comprising:

- providing a password memory accessible by said first and second PEs, having a location for storing an enable password;
- 5 maintaining said enable password for said first and second PEs in said password memory; and
- switching control of said system from said first PE to said second PE upon detection of a failure of said first PE.

10
34. A program storage device according to claim 33, wherein said method step of maintaining includes:

reading said enable password from said first memory and writing said enable password to said password memory at the initialization of the system.

15
35. A program storage device according to claim 33, wherein said method step of maintaining includes:

writing said enable password to said password memory every time said enable password is changed.

20
36. A program storage device according to claim 33, wherein said method step of maintaining includes:

writing said enable password to said password memory in response to a command from said first PE.

25
37. A program storage device according to claim 33, wherein said method step of maintaining includes:

passing said enable password maintained in said password memory to either one of said first and second PEs in response to a request therefrom.

38. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for providing password protection for a high reliability computer system, said system including a
5 first PE, a first memory accessible by said first PE, said first memory containing initialization information for said first PE, a second PE, a second memory accessible by said second PE, said second memory containing initialization information for said second PE, and circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE, said method steps comprising:

10 sending an enable password for the high reliability computer system for storage in a database of a password server coupled to the high reliability computer system via an information bus;

providing an interface capable of communicating with the password server over the information bus; and

15 obtaining the enable password from the password server through the interface in response to a request from either one of the first and second PEs.

20 39. A program storage device according to claim 38, wherein said method steps further comprises authenticating incoming users by requesting authentication from the password server.

40. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for providing password protection for a high reliability computer system, said system including a
25 first PE, a first memory accessible by said first PE, said first memory containing initialization information for said first PE, a second PE, a second memory accessible by said second PE, said second memory containing initialization information for said second PE, and circuitry for switching control of said system from said first PE to said second PE upon detection of a failure of said first PE, said method steps comprising:

- sending an enable password for the high reliability computer system for storage in a database of an authentication, authorization and accounting (AAA) server coupled to the high reliability computer system via an information bus;
- communicating user authentication requests and responses with the password server over the information bus via a first interface for the first PE; and
- communicating user authentication requests and responses with the password server over the information bus via a second interface for the second PE.

10

© 2002-2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

ABSTRACT OF THE DISCLOSURE

A high reliability computer system includes a first processing engine (PE), a first memory and a third memory both accessible by the first PE, a second PE, and a 5 second memory and a fourth memory both accessible by the second PE. The first memory contains initialization information for the first PE. The third memory has a location for storing an enable password or a surrogate therefor for the first PE. The second memory contains initialization information for the second PE. The computer system also includes circuitry for switching control of the system from the first PE to 10 the second PE upon detection of a failure of the first PE, and a password passer writing the enable password or a surrogate therefor of the first PE to the fourth memory. Alternatively, a network system includes an authentication, authorization and accounting (AAA) or any other password server having a database for maintaining an enable password for a high reliability computer system. The high 15 reliability computer system includes an interface capable of communicating with the password server over an information bus. The interface obtains the enable password from the password server in response to a request from either one of the first and second PEs.

Fig 1.

Fig. 2

EL100016895US

Fig. 3Fig. 5

EL100016895US

Fig. 4

Fig. 6

Fig. 7

Fig. 8

EL100016895US

Fig. 9

Fig. 10