

CS120: Computer Networks

Lecture 22. Data Presentation

Zhice Yang

- Presentation Formatting
- Data Compression
 - Lossless Compression
 - Multimedia Compression

Presentation Formatting

- Challenges
 - Different Host Architecture: 16bit, 32bit, 64bit
 - eg. long
 - Different Compilers
 - Different layout/padding of structures
 - eg. struct BitField { unsigned char : 2; unsigned int : 2; }
 - Different base type representation
 - eg. X-endian for 34,677,374

Presentation Formatting

- Solution
 - Marshalling (encoding) application data into messages
 - Unmarshalling (decoding) messages into application data

Presentation Formatting

- Solution
 - Conversion Strategy
 - Canonical intermediate form
 - Receiver-makes-right
 - Base types (e.g., ints, floats) => Convert
 - Flat types (e.g., structures, arrays) => Pack to base types
 - Complex types (e.g., pointers) => Serialization

- eXternal Data Representation (XDR)
 - Used in SunRPC
 - Canonical intermediate form
 - Defined in RFC1014
 - C-type
 - big-endian
 - Step in 4-bytes
 - etc.

- eXternal Data Representation (XDR) Steps:
 - Define bytes to be serialized in struct
 - Compile in client and server
 - Stub helps to encode and decode

```
#define MAXNAME 256;
#define MAXLIST 100;
struct item {
  int count;
  char name[MAXNAME];
  int list[MAXLIST];
};
```


RPC Mechanism

- Abstract Syntax Notation One (ASN.1)
 - ISO Standard, used in SNMP
 - Canonical intermediate form
 - Based on tag: <tag, length, value>
 - Format can be interpreted, but of low efficiency
 - Overhead: marshaling processing, byte boundary, additional space for length, etc.

- Network Data Representation (NDR)
 - Used in DCE
 - Receiver-makes-right
 - Architecture tag at the front of each message

IEEE 754

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Markup Languages

- Examples: XML and HTML
- Approach
 - Data is represented as text
 - Readable for human
 - Can reuse XML parsers
 - Text tags (markup) are used to express information about the data.

Extensible Markup Language (XML)

- XML Schema
 - Define XML

```
<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
   <element name="employee">
       <complexType>
           <sequence>
              <element name="name" type="string"/>
              <element name="title" type="string"/>
              <element name="id" type="string"/>
                 <element name="hiredate">
                    <complexType>
                         <sequence>
                            <element name="day" type="integer"/>
                            <element name="month" type="string"/>
                            <element name="year" type="integer"/>
                         </sequence>
```

•••

Extensible Markup Language (XML)

- XML Namespace
 - Use Uniform Resource Identifier (URL) to identify a unique namespace
 - Define an XML namespace
 - xmlns:emp="http://www.example.com/employee">
 - Identifier with namespace
 - <emp:title>Head Bottle Washer</emp:title>

Traffic of a Full Size Video Stream

- Resolution: 1920*1080
- Framerate: 30fps
- Color per pixel: 3
- Color depth: 8 bits
- Required Throughput: 1920*1080*3*8*30 bps = 1.5Gbps

Reference

• Textbook 7.1 7.2