RMPC

Robust and Predictive Control for a Quarter Car System

Agenda

- 1. Creating the Robust Control for a Quarter Car Model
 - 1. Quarter Car Model
 - 2. The Controller
 - 3. The Uncertainties
 - 4. Model Responses with Uncertainties
- 2. Adding the MPC
 - 1. Controller Creation
 - 2. Robust Control and MPC Comparison
- 3. Conclusion

Parameters

- Chassis mass (mb): 300 [Kg]
- Wheel mass (mw): 60 [Kg]
- Suspension damping (bs): 1000 [N/(m*s)]
- Suspension stiffness (ks): 16000 [N/m]
- Tire stiffness (kt): 190000 [N/m]

State-Space Model

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{-k_s}{m_b} & \frac{-b_s}{m_b} & \frac{k_s}{m_b} & \frac{b_s}{m_b} \\ 0 & 0 & 0 & 1 \\ \frac{k_s}{m_w} & \frac{b_s}{m_w} & \frac{-k_s - k_t}{m_w} & \frac{-b_s}{m_w} \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1e3}{m_b} \\ 0 & 0 \\ \frac{k_t}{m_w} & \frac{-1e3}{m_w} \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ \frac{-k_s}{m_b} & \frac{-b_s}{m_b} & \frac{k_s}{m_b} & \frac{b_s}{m_b} \end{bmatrix} \qquad D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Control Loop

Control Loop

Actuator Transfer Function

$$H_{act} = \frac{1}{0.01667s + 1}$$

Disturbance

Model Response Without Controller

Operational Modes

Comfort Standard Sport

Model Response Using H_∞ Controller (Comfort)

Model Response Using H_∞ Controller (Standard)

Model Response Using H_∞ Controller (Sport)

Full Car Model

Full Car Model

Material Fatigue

Full Car Model

Material Fatigue

Sensors Noise or Delay

Full Car Model

Material Fatigue

Sensors Noise or Delay

Temperature Variations

Full Car Model Wind Forces

Material Fatigue

Vibrations

Tire Stiffness

Road Disturbance

Sensors Noise or Delay

Tire Pressure

Body Mass

Temperature Variations

Actuators Fatigue

Model Responses using H∞ Controller (Standard)

Model Responses using H_∞ Controller (Comfort)

Model Responses using H_∞ Controller (Sport)

μ-Synthesis and H_∞ Controllers Comparison (Standard)

μ-Synthesis and H_∞ Controllers Comparison (Comfort)

μ-Synthesis and H_∞ Controllers Comparison (Sport)

Model Predictive Control for Standard Mode

1. Model Discretisation

$$T_{s} = 0.01$$

2. Defining the horizons

$$N_p = 20$$

$$N_c = 10$$

3. Create the MPC Object

$$mpc(sysd, T_s, N_p, N_c)$$

4. Simulation

$$[y, t, u] = sim(args)$$

Chassis Movement

Chassis Acceleration

Suspension Movement

Conclusion

Thank you!

Questions?