Probabilités I

MINES ParisTech

22 septembre 2021 (#c1a798e)

Question 1 (réponse multiple)	Soit	$(\Omega, \mathcal{A}, \mathbb{P})$	un	espace	de	probabilité.
Soient $A,B\in\mathcal{A}$ tels que $A\subset B.$ On	a:					

- \square A: $\mathbb{P}(A) \leq \mathbb{P}(B)$
- \square B: $\mathbb{P}(A^c) \ge \mathbb{P}(B^c)$
- \square C: Si $\mathbb{P}(A)>0,$ alors $\mathbb{P}(B|A)=\frac{\mathbb{P}(B)}{\mathbb{P}(A)}$

Question 2 Soit $(\Omega, (A), \mathbb{P}) = (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \mathbb{P})$ où \mathbb{P} est la loi exponentielle de paramètre θ . Soit la variable aléatoire

$$X:\omega\in\Omega\mapsto\left\{\begin{array}{ll}0&\text{ si }\omega\in[0,1],\\1&\text{ si }\omega\in]1,+\infty[\end{array}\right.$$

- $\square \text{ A: } \mathbb{P}(X=0) = \frac{1}{2}$ $\square \text{ B: } \mathbb{P}(X=1) = e^{-\theta}$
- \Box C: $\mathbb{P}(X \in \{0,1\}) = 1$

Question 3 (réponse multiple) Soit X une variable aléatoire telle que $\mathbb{P}(X \in [0,1]) = 0$. Alors

- \square A: $X(\omega) = 0$ quand $\omega \in [0, 1]$
- \square B: La fonction de répartition F associée est nulle sur [0, 1]
- \square C: Si X est de densité f, alors f est nulle sur [0, 1].

Question 4 Soit X une variable aléatoire réelle suivant une loi normale de paramètres μ et σ^2 , quelle est la loi de 2X?

- \square A: $\mathcal{N}(\mu, \sigma^2)$
- $\Box \text{ B: } \mathcal{N}(2\mu, (2\sigma)^2)$ $\Box \text{ C: } \mathcal{N}(\frac{1}{2}\mu, \sigma^2)$ $\Box \text{ D: } \mathcal{N}(\mu, (2\sigma)^2)$

Question 5 Soit U une variable aléatoire réelle de loi uniforme sur [0,1]. U^2 admet-elle une densité?

 \square A: Non

□ B: Oui : $\frac{1}{2\sqrt{x}}1_{[0,1]}(x)$ □ C: Oui : $2x1_{[0,1]}(x)$