# Review of Basic Statistical Concepts M.Sc. Politics and Policy Analysis

Francesco Mattioli

francesco.mattioli@unibocconi.it

#### Outline

- Probability distributions
- 2 Characterizing distributions
- 3 Concepts involving two random variables
- **4** Estimation
- **5** Statistical Inference
- **6** Hypothesis Testing
- Confidence Intervals

# Why do we need to talk about probability?

- Most aspects of the world around us have an element of randomness
- Probability theory: Quantifying Randomness
- Some Definitions:
  - Outcome (y): (mutually exclusive) result of a Random Process
  - Probability (p): proportion of times that a certain outcome is observed if you repeat a random process many times
  - Random Variable (Y): variable (discrete or continuous) that can take on a set of different values, each with an associated probability

## Probability Distributions – Discrete Random Variables

**Probability Distribution** or **Probability Mass Function**: list of all possible values  $y_i$ , with i = 1, ..., N, of the random variable Y and the probability that each value occurs (frequency):  $f(Y) = Pr(Y = y_i)$ 

**Example**. European Social Survey, Wave 10 (free to download upon registration)

| . tabulate trstprt                                     |                                                |                                                |                                                     |  |  |
|--------------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--|--|
| Y Trust in political parties                           | Freq.                                          | Percent                                        | Cum.                                                |  |  |
| No trust at all 1 2 3 4                                | 5,671<br>2,817<br>4,299<br>4,784<br>4,445      | 15.33<br>7.62<br>11.62<br>12.93<br>12.02       | 15.33<br>22.95<br>34.57<br>47.50<br>59.52           |  |  |
| y <sub>i</sub> 5<br>6<br>7<br>8<br>9<br>Complete trust | 6,127<br>3,845<br>2,974<br>1,403<br>387<br>236 | 16.56<br>10.40<br>8.04<br>3.79<br>1.05<br>0.64 | 76.09<br>86.48<br>94.52<br>98.32<br>99.36<br>100.00 |  |  |
| Total                                                  | 36,988                                         | 100.00                                         |                                                     |  |  |

# Probability Distributions - Graphical Representation



Trust in Political Parties, 22 European countries, 2020

## Probability Distributions - Discrete Random Variables

**Cumulative Distribution Function (cdf)**: probability that the random variable is less than or equal to a given value:

$$F(Y) = Pr(Y \le y_k) = \sum_{i=1}^k f(y_i)$$

| . tabulate trstpi            | rt .   |            |            |
|------------------------------|--------|------------|------------|
| Y Trust in political parties | Freq.  | Percent    | Cum.       |
| No trust at all              | 5,671  | 15.33      | 15.33      |
| 1                            | 2,817  | 7.62       | 22.95      |
| 2                            | 4,299  | 11.62      | 34.57      |
| 3                            | 4,784  | 12.93      | 47.50      |
| 4                            | 4,445  | 12.02      | 59.52      |
| $y_i$ 5                      | 6,127  | f(Y) 16.56 | F(Y) 76.09 |
| 6                            | 3,845  | 10.40      | 86.48      |
| 7                            | 2,974  | 8.04       | 94.52      |
| 8                            | 1,403  | 3.79       | 98.32      |
| 9                            | 387    | 1.05       | 99.36      |
| Complete trust               | 236    | 0.64       | 100.00     |
| Total                        | 36,988 | 100.00     |            |

## Histograms – Continuous Random Variables

**Probability Density Function (pdf)**: area under pdf between two values is the probability that the random variable falls between those two values: f(Y)



#### Moments of a distribution

#### Measures of Central Tendency

- Expected Value, E(Y), or Mean,  $\mu_Y$  (population mean) or  $\overline{Y}$  (sample mean) First moment
- **Median**: the value  $y_m$  that splits the distribution in two equal parts (50% of the distribution on its left, 50% on its right)
- Mode: the value with the highest frequency

## Example: Mean computation

$$\overline{Y} = p_1 y_1 + p_2 y_2 + ... + p_N y_N = \sum_{i=1}^{N} p_i y_i$$

| $\mathcal{Y}_i$ | $p_{i}$ | $p_i y_i$                             |
|-----------------|---------|---------------------------------------|
| 0               | 0.1533  | 0                                     |
| 1               | 0.0762  | 0.0762                                |
| 2               | 0.1162  | 0.2325                                |
| 3               | 0.1293  | 0.3880                                |
| 4               | 0.1202  | 0.4807                                |
| 5               | 0.1656  | 0.8282                                |
| 6               | 0.1040  | 0.6237                                |
| 7               | 0.0804  | 0.5628                                |
| 8               | 0.0379  | 0.3034                                |
| 9               | 0.0105  | 0.0942                                |
| 10              | 0.0064  | 0.0638                                |
| _               | _       | $\overline{\overline{\gamma}}$ 3.6535 |

# Comparing distributions with different means



#### Moments of a distribution

#### Measures of Dispersion (second moment)

• (Population) Variance

$$Var(Y) = \sigma_Y^2 = \sum_{i=1}^{N} p_i (y_i - \overline{Y})^2$$
  
=  $p_1 (y_1 - \overline{Y})^2 + p_2 (y_2 - \overline{Y})^2 + \dots + p_N (y_N - \overline{Y})^2$ 

Standard Deviation

$$\sigma_{\rm Y} = \sqrt{{\it Var}({\rm Y})}$$



# Example: Variance computation

| $y_i$ | $\overline{Y}$ | $(y_i - \overline{Y})^2$ | $p_{_i}$ | $p_i(y_i - \overline{Y})^2$ |
|-------|----------------|--------------------------|----------|-----------------------------|
| 0     | 3.6535         | 13.3483                  | 0.1533   | 2.0466                      |
| 1     | 3.6535         | 7.0413                   | 0.0762   | 0.5363                      |
| 2     | 3.6535         | 2.7342                   | 0.1162   | 0.3178                      |
| 3     | 3.6535         | 0.4271                   | 0.1293   | 0.0552                      |
| 4     | 3.6535         | 0.1200                   | 0.1202   | 0.0144                      |
| 5     | 3.6535         | 1.8130                   | 0.1656   | 0.3003                      |
| 6     | 3.6535         | 5.5059                   | 0.1040   | 0.5724                      |
| 7     | 3.6535         | 11.1988                  | 0.0804   | 0.9004                      |
| 8     | 3.6535         | 18.8917                  | 0.0379   | 0.7166                      |
| 9     | 3.6535         | 28.5847                  | 0.0105   | 0.2991                      |
| 10    | 3.6535         | 40.2776                  | 0.0064   | 0.2570                      |

 $\sigma_Y^2$  6.0160  $\sigma_Y$  2.4528

# Comparing distributions with different variance



## Quantiles

$$q_{\phi} = min\{y : F(y) \ge \phi\}$$

Very important quantiles:

• Median: *q*<sub>0.5</sub>

• Tertiles: *q*<sub>0.33</sub>, *q*<sub>0.66</sub>

• Quartiles:  $q_{0.25}$ ,  $q_{0.5}$ ,  $q_{0.75}$ 

• Quintiles:  $q_{0.2}$ ,  $q_{0.4}$ ,  $q_{0.6}$ ,  $q_{0.8}$ 

• Deciles:  $q_{0.1}, q_{0.2}, ..., q_{0.9}$ 

• Percentiles:  $q_{0.01}, q_{0.02}, ..., q_{0.99}$ 



## Example: Quantiles in the income distribution

EU Survey on Income and Living Conditions (EU-SILC)



## Example: Quantiles in the income distribution

#### EU Survey on Income and Living Conditions (EU-SILC)

. summarize hy020\_pc, detail

| hy020_ | рс |
|--------|----|
|--------|----|

|     | Percentiles | Smallest |             |          |
|-----|-------------|----------|-------------|----------|
| 1%  | 829.7266    | 0        |             |          |
| 5%  | 1999.6      | 0        |             |          |
| 10% | 2949.156    | 0        | 0bs         | 150,173  |
| 25% | 5471.836    | 0        | Sum of wgt. | 150,173  |
| 50% | 11885       |          | Mean        | 15515.85 |
|     |             | Largest  | Std. dev.   | 13116.37 |
| 75% | 21810       | 79829    |             |          |
| 90% | 33109.45    | 79883.87 | Variance    | 1.72e+08 |
| 95% | 41715       | 79924.28 | Skewness    | 1.497488 |
| 99% | 61120       | 79996.52 | Kurtosis    | 5.622403 |
|     |             |          |             |          |

**Joint Probability Distribution**: the joint probability distribution of two random variables X and Y is the probability that the Y and X simultaneously take on certain values  $y_i$  and  $x_j$ :

$$f(y_i, x_j) = Pr(Y = y_i, X = x_j)$$

**Example**: joint distribution of Y (Trust in political parties – recoded) and X (Voted in last election)

. tabulate trstprt\_3 vote, cell

| trstprt_3 | Voted last<br>Yes | national e<br>No N | election<br>Not eligi | Total            |
|-----------|-------------------|--------------------|-----------------------|------------------|
| Low       | 11,886<br>32.50   | 4,631<br>12.66     | 805<br>2.20           | 17,322<br>47.36  |
| Medium    | 10,836<br>29.63   | 2,342<br>6.40      | 1,099                 | 14,277<br>39.04  |
| High      | 3,839<br>10.50    | 630                | 504<br>1.38           | 4,973<br>13.60   |
| Total     | 26,561<br>72.63   | 7,603<br>20.79     | 2,408<br>6.58         | 36,572<br>100.00 |



**Conditional Distribution**: the conditional distribution of one variable Y given another variable X is the distribution of Y conditional on X taking on a specific value  $x_k$ :  $f(Y|X) = Pr(Y = y_i|X = x_k)$ 

**Example**: conditional distribution of Y (Trust in political parties – recoded) given certain values of X (Voted in last election)

. tabulate trstprt\_3 if vote==1

| trstprt_3     | Freq.            | Percent | Cum.           |
|---------------|------------------|---------|----------------|
| Low<br>Medium | 11,886<br>10,836 | 44.75   | 44.75<br>85.55 |
| High          | 3,839            | 14.45   | 100.00         |
| Total         | 26,561           | 100.00  |                |

**Conditional Distribution**: the conditional distribution of one variable Y given another variable X is the distribution of Y conditional on X taking on a specific value  $x_k$ :  $f(Y|X) = Pr(Y = y_i|X = x_k)$ 

**Example**: conditional distribution of Y (Trust in political parties – recoded) given certain values of X (Voted in last election)

. tabulate trstprt\_3 if vote==2

| trstprt_3             | Freq.                 | Percent                | Cum.                     |
|-----------------------|-----------------------|------------------------|--------------------------|
| Low<br>Medium<br>High | 4,631<br>2,342<br>630 | 60.91<br>30.80<br>8.29 | 60.91<br>91.71<br>100.00 |
| Total                 | 7,603                 | 100.00                 |                          |

**Conditional Mean**: the mean of Y conditional on X taking on a specific value  $x_k$ :

$$\dot{Y} = f(y_1|X = x_k) \cdot y_1 + \dots + f(y_N|X = x_k) \cdot y_N = \sum_{i=1}^N f(y_i|X = x_k) \cdot y_i$$

**Example**: conditional mean of Y (Trust in political parties – recoded) given certain values of X (Voted in last election)

| . bysort vote: | summarize tr | stprt_3  |           |     |     |
|----------------|--------------|----------|-----------|-----|-----|
| -> vote = Yes  |              |          |           |     |     |
| Variable       | 0bs          | Mean     | Std. dev. | Min | Max |
| trstprt_3      | 26,561       | 1.697037 | .7072946  | 1   | 3   |
| -> vote = No   |              |          |           |     |     |
| Variable       | 0bs          | Mean     | Std. dev. | Min | Max |
| trstprt_3      | 7,603        | 1.47376  | . 6442749 | 1   | 3   |
| -> vote = Not  |              |          |           |     |     |
| Variable       | 0bs          | Mean     | Std. dev. | Min | Max |
| trstprt 3      | 2,408        | 1.875    | .726773   | 1   | 3   |

**Independence**: two random variables X and Y are independently distributed if knowing the value of X provides no information about Y:  $f(Y|X) = Pr(Y = y_i|X = x_k) = Pr(Y = y_i)$ 

**Example**: consider again Y and X; are they independent? **No**. (i) joint prob.  $\neq$  product of marginal prob. (ii) conditional prob.  $\neq$  marginal prob.

. tabulate trstprt\_3 vote, cell column

|           | Voted last | national |           | i      |
|-----------|------------|----------|-----------|--------|
| trstprt_3 | Yes        | No       | Not eligi | Total  |
| Low       | 11,886     | 4,631    | 805       | 17,322 |
|           | 44.75      | 60.91    | 33.43     | 47.36  |
|           | 32.50      | 12.66    | 2.20      | 47.36  |
| Medium    | 10,836     | 2,342    | 1,099     | 14,277 |
|           | 40.80      | 30.80    | 45.64     | 39.04  |
|           | 29.63      | 6.40     | 3.01      | 39.04  |
| High      | 3,839      | 630      | 504       | 4,973  |
| -         | 14.45      | 8.29     | 20.93     | 13.60  |
|           | 10.50      | 1.72     | 1.38      | 13.60  |
| Total     | 26,561     | 7,603    | 2,408     | 36,572 |
|           | 100.00     | 100.00   | 100.00    | 100.00 |
|           | 72.63      | 20.79    | 6.58      | 100.00 |



**Covariance**: measure of the extent to which two random variables move together:

$$Cov(Y,X) = \sigma_{YX} = \sum_{i=1}^{N} \sum_{j=1}^{K} (y_i - \overline{Y}) \cdot (x_j - \overline{X}) \cdot f(Y = y_i, X = x_j)$$

**Example**: covariance between Y and X

| Variable  | 0bs    | Mean     | Std. dev. | Min | Max |
|-----------|--------|----------|-----------|-----|-----|
| trstprt_3 | 36,572 | 1.662337 | .7040006  | 1   | 3   |
| vote      | 36,572 | 1.339577 | .5966235  | 1   |     |

. tabulate trstprt 3 vote, cell

| trstprt_3 | Voted last<br>Yes | national<br>No | election<br>Not eligi | Total  |
|-----------|-------------------|----------------|-----------------------|--------|
| Low       | 11,886            | 4,631          | 805                   | 17,322 |
|           | 32.50             | 12.66          | 2.20                  | 47.36  |
| Medium    | 10,836            | 2,342          | 1,099                 | 14,277 |
|           | 29.63             | 6.40           | 3.01                  | 39.04  |
| High      | 3,839             | 630            | 504                   | 4,973  |
|           | 10.50             | 1.72           | 1.38                  | 13.60  |
| Total     | 26,561            | 7,603          | 2,408                 | 36,572 |

**Example**: covariance between Y and X

$$Cov(Y, X) = \sigma_{YX} = \sum_{i=1}^{N} \sum_{j=1}^{K} (y_i - \overline{Y}) \cdot (x_i - \overline{X}) \cdot f(Y = y_i, X = x_i)$$

$$Cov(Y, Y) = \sigma_Y^2 = \sum_{i=1}^{N} (y_i - \overline{Y}) \cdot f(Y = y_i)$$

$$Cov(X, X) = \sigma_X^2 = \sum_{j=1}^{K} (x_j - \overline{X}) \cdot f(X = x_j)$$

. correlate trstprt\_3 vote, covariance
(obs=36,572)

|                   | trstpr~3          | vote    |
|-------------------|-------------------|---------|
| trstprt_3<br>vote | .495617<br>011199 | . 35596 |

**Correlation**: (standardized) measure of the extent to which two random variables move together:

$$Corr(Y, X) = \frac{\sigma_{YX}}{\sigma_{Y} \cdot \sigma_{X}} = \frac{Cov(Y, X)}{\sqrt{Var(Y) \cdot Var(X)}}$$

- $-1 \leq Corr(Y, X) \leq 1$
- $Corr(Y, X) = 0 \rightarrow X$  and Y are uncorrelated

**Example**: correlation between Y and X

. correlate trstprt\_3 vote
(obs=36,572)

|           | trstpr~3 | vote   |
|-----------|----------|--------|
| trstprt_3 | 1.0000   |        |
| vote      | -0.0267  | 1.0000 |

# Why do we need *Statistics*?

We cannot run a survey of a full population whenever we want to answer questions about unknown characteristics of its distribution.

**Statistical Inference**: we can learn about a characteristics of a population by selecting a random sample of that population

Econometrics uses three main statistical methods:

- **Estimation**: computing a *Best Guess* numerical value for an unknown characteristic (*parameter*) of a population distribution, from a sample of data
- **Hypothesis testing**: formulating a hypothesis about the population and use sample evidence to decide if it is true
- **Confidence Intervals**: use the sample data to calculate a range of statistically plausible values around the best guess for the unknown population characteristic

## Estimators and their Properties

- We want to know the mean value of y in a population ( $\mu_y$  is the parameter to be estimated)
- Draw a random sample of n independently and identically distributed (iid) observations  $y_1, y_2, ..., y_n$
- Compute the sample average  $\overline{y} = \frac{y_1 + ... + y_n}{n}$
- $\overline{y}$  is an **estimator** of  $\mu_y$  (a function of the sample)
- $\overline{y}$  is a random variable, because it is influenced by the random draw of the sample (the individual you draw as first or  $i^{th}$  observation  $y_i$  is random!)
- The **estimate** (the actual value that  $\overline{y}$  takes) is not random variable, but a scalar (a number)
- If you repeat the random draw from the same population a second time, the same **estimator** (random variable)  $\overline{y}$  will produce a different **estimate** (scalar)
- As all random variables  $\overline{y}$  has a probability distribution called **sampling distribution**

# **Example**. Sampling distribution of $\overline{y}$



$$E(\overline{y}) = 1.5 \cdot 1/3 + 2.2 \cdot 1/3 + 1.8 \cdot 1/3 = 1.833$$



# **Example**. Sampling distribution of $\overline{y}$

**Estimator** (random variable)  $\overline{y}$  has its sampling distribution



#### Estimators and their Properties

What makes an estimator 'good'? A good estimator gets as close as possible to the unknown true value of the population parameter. Desirable properties of a good estimator:

• **Unbiasedness**: an estimator is **biased** if it's different, on average, from the true value of the parameter that is being estimated; draws from the same population should be random to satisfy the property

**Example.** the average of the sampling distribution of  $\overline{y}$ ,  $E(\overline{y})$ , should be equal to the true value of the population mean,  $\mu_y$ ; if not, bias  $= E(\overline{y}) - \mu_y \neq 0$ 

• Consistency: an estimator is consistent if it gets closer, as the sample size grows, to the true value of the parameter that is being estimated; uncertainty about  $\mu_{y}$  decreases as n increases

#### Statistical inference

**Problem**: we have only one sample! We have to *infer* as much information as possible from the one sample we have

**Solution**: we use the variation in the one sample available to approximate the sampling distribution of our estimator  $\overline{y}$ 

**Intuition**: the larger the sample we draw, the better we can approximate mean and variance of the sampling distribution

We have two tools:

- Law of Large Numbers: when sample size  $n \to \infty$  then  $\overline{y} \to \mu_y$  and  $s_y^2 \to \sigma_y^2$  ( $\overline{y}$ : sample mean;  $s_y^2$ : sample variance)
- Central Limit Theorem (CLT) + Law of Large Numbers: when sample size  $n \to \infty$ , then the sampling distribution of  $\overline{y}$  can be approximated by a normal:  $\overline{y} \sim N\left(\mu_y, \frac{\sigma_y^2}{n}\right)$

# Hypothesis Testing

Statistics let us test hypotheses about the world around us formulated as yes/no questions.

**Example.** Is the mean level of trust in political parties,  $\mu_y$ , in European countries equal to 2 (on a 0 - 10 scale)?

Questions like this create two mutually exclusive statements, only one of which can be true:

- **Null hypothesis**: baseline statement we believe to be true  $H_0: \mu_{\scriptscriptstyle V} = 2$
- Alternative hypothesis: statement that holds true if the null is not  $H_1: \mu_{\scriptscriptstyle V} \neq 2$

Problem for policy analysts: decide whether to accept  $H_0$  or to reject  $H_0$  (in favor of  $H_1$ ) using our one (random) sample and computing  $\overline{y}$ 

The t-statistic is a *standardized* form of the sample average

**Example.** Is the mean level of trust in political parties,  $\mu_y$ , in European countries equal to 2?

$$t = \frac{\overline{y} - 2}{SE(\overline{y})}$$

 $SE(\overline{y})$  is the standard error of  $\overline{y}$ , computed as:

$$SE(\overline{y}) = \frac{s_y}{\sqrt{n}}$$



How to interpret the t-statistic? Intuitively, the smaller (larger) |t|, the closer (farther) we are to (from) the value of  $H_0$ 

But, how large should be t to reject  $H_0$ ? We don't want to make errors when taking this decision

By CLT, when 
$$n \to \infty$$
,  $t = \frac{\bar{y}-2}{SE(\bar{y})} \sim N(0,1)$ 



Decision rule to reject  $H_0$ : allow for a probability  $\alpha = 5\%$ , at most, to (incorrectly) reject  $H_0$  when  $H_0$  is true ( $\alpha$ : significance level of a test)



5% corresponds to the area outside [-1.96,+1.96] in a distribution N(0,1) (1.96 being a  $\it critical\ value)$ 

So, we reject  $H_0$  if |t|>1.96 with a (1-lpha)%=95% confidence level

**Example.** Is the mean level of trust in political parties,  $\mu_y$ , in European countries equal to **2**?



$$|t| = 129.65 > 1.96 \Rightarrow$$
 Reject  $H_0$ 

Conclusion: political trust in European countries is different from 2 with a 95% level of confidence



**Example.** Is the mean level of trust in political parties,  $\mu_y$ , in European countries equal to **3.65**?

| . ttest trstprt = 3.65 |                         |                  |           |           |            |           |
|------------------------|-------------------------|------------------|-----------|-----------|------------|-----------|
| One-sample             | e t test                |                  |           |           |            |           |
| Variable               | 0bs                     | Mean             | Std. err. | Std. dev. | [95% conf. | interval] |
| trstprt                | 36,988                  | 3.653536         | .0127535  | 2.452794  | 3.628539   | 3.678534  |
| mean =                 | = mean(trst<br>= 3.65   | prt)             |           | Degrees   | of freedom |           |
|                        | an < 3.65<br>) = 0.6092 | Ha: mean != 3.65 |           |           |            |           |

$$|t| = 0.28 < 1.96 \Rightarrow$$
 Not reject  $H_0$ 

Conclusion: political trust in European countries is equal to 3.65 with a 95% level of confidence



#### Confidence intervals

Because we have a random sample, it is impossible to know the true population mean,  $\mu_y$ , which is estimated by the sample mean,  $\overline{y}$ . But how accurate is our estimate?

**Confidence Interval**: range of values that contains the true population mean with a certain level of confidence (e.g. 95%)

$$CI_{0.95} = \overline{y} \pm 1.96 \cdot SE(\overline{y}) = [3.628; 3.678]$$



#### Confidence intervals

What if we require a more demanding test for the same hypotheses?

- probability of making a wrong decision, as well as significance level of the test, decreases (e.g.  $\alpha=1\%$ )
- larger critical value in N(0,1) (e.g. 2.58 for  $\alpha=1\%$ )
- more difficult to reject (same)  $H_0$
- confidence level of the decision increases (e.g.  $(1 \alpha) = 99\%$ )
- wider confidence interval containing the true mean (e.g.  $CI_{0.99} = \overline{y} \pm 2.58 \cdot SE(\overline{y})$ )

The opposite is true if we require a less demanding test (e.g.  $\alpha=10\%$ )



## Test for equality of means in two samples

**Example.** Is the mean level of trust in political parties in Italy,  $\mu_{IT}$ , equal to that in the Netherlands,  $\mu_{NL}$ ?

Hypotheses:  $H_0: \mu_{IT} = \mu_{NL}$  and  $H_0: \mu_{IT} \neq \mu_{NL}$ 

Test statistic: 
$$t = \frac{\overline{y}_{IT} - \overline{y}_{NL}}{SE(\overline{y}_{IT} - \overline{y}_{NL})} = \frac{3.122 - 5.348}{0.069} = -32.136$$

. ttest trstprt if cntry=="IT"|cntry=="NL", by(cntry)

Two-sample t test with equal variances

| interval]            | [95% conf.           | Std. dev.           | Std. err.            | Mean                 | 0bs            | Group    |
|----------------------|----------------------|---------------------|----------------------|----------------------|----------------|----------|
| 3.209188<br>5.441096 | 3.034865<br>5.254915 | 2.269145<br>1.80957 | .0444503<br>.0474562 | 3.122026<br>5.348006 | 2,606<br>1,454 | IT<br>NL |
| 3.992129             | 3.846295             | 2.369818            | .0371922             | 3.919212             | 4,060          | Combined |
| -2.090177            | -2.361781            |                     | .0692673             | -2.225979            |                | diff     |
|                      |                      |                     |                      |                      |                |          |

$$\label{eq:diff} \begin{array}{ll} \text{diff} = \text{mean}(\mathbf{IT}) - \text{mean}(\mathbf{NL}) & \text{t} = \boxed{-32.136}. \\ \text{H0: diff} = \emptyset & \text{Degrees of freedom} = \boxed{405} \\ \end{array}$$

$$|t|=32.13>1.96\Rightarrow$$
 Reject  $H_0$ 

