Warm Up: Unit 1 Kinematics

Prof. Jordan C. Hanson

September 8, 2022

1 Memory Bank

The following formulas apply to systems experience constant acceleration, a. That is, a = 0, or a = constant, but it does not depend on time.

- 1. If a = 0, then $v = \frac{x_f x_i}{t_f t_i}$, and v is constant.
- 2. If $a \neq 0$, then $v(t) = at + v_i$... This is the velocity of a system at a time t, with acceleration (a) times time, plus initial velocity v_i .
- 3. If $a \neq 0$, $x(t) = \frac{1}{2}at^2 + v_it + x_i$... This is the position of a system at time t, equal to one-half the acceleration (a) times time (t) squared, plus initial velocity (v_i) times time, plus initial position (x_i) .

2 Chapters 2.3 - 2.5

1. Graphically, the velocity is the slope of position versus time. In Fig. 1, a system moves initially in the positive x-direction, but is experiencing constant negative acceleration. Eventually, it is moving in the negative x-direction. (a) What is the velocity (the slope) at t₀? (b) Is the average velocity between t₁ and t₆ greater than, less than, or equal to the instantaneous velocity at t₀? (c) Suppose t₁ and t₆ are equal to 0.5 and 3.5 seconds, respectively. If x₁ and x₆ are the corresponding positions, equal to 1 and 5 meters, respectively, what is the average velocity, v between t₁ and t₆?

Figure 1: A system moves initially in the positive x-direction, experiencing negative acceleration.

2. From the memory bank, we see that the formula that accurately descibes the position of accelerating systems versus time is a quadratic formula. Using what you know about t_1 , t_6 , x_1 , and x_6 , determine the quadratic equations that correctly describes Fig. 1. (Assume x(0) = 0 and that a is negative).