## **Department of Electronics & Communication Engineering**

(Faculty of Technology, Dharmsinh Desai University, Nadiad)

**Academic Year: 2022 - 2023** 

## **TUTORIAL - 11**

Subject : PHYSICS (Module- 6)
Class : B. Tech. Sem.II (EC/IT)

| Q.1 | Select the most appropriate option.                                                                                                     |                        |                   |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|--|
| (1) | An ordinary resistor is an example of                                                                                                   |                        |                   |  |
| ` / | (I) a three-terminal device                                                                                                             |                        |                   |  |
|     | (III) a passive load                                                                                                                    | (IV) a swi             | tching device     |  |
| (2) | An E-MOSFET that operates at cutoff or in the ohmic region is an example of                                                             |                        |                   |  |
|     | (I) a three-terminal device                                                                                                             | (II) an acti           | ve load           |  |
|     | (III) a passive load                                                                                                                    | (IV) a swi             | tching device     |  |
| (3) | CMOS stands for                                                                                                                         |                        |                   |  |
| ` / | (I) Common MOS                                                                                                                          | (II) Active            | -load switching   |  |
|     | (III) Complementary MOS                                                                                                                 | (IV) none              | of the above      |  |
| (4) | The main advantage of CMOS is its                                                                                                       |                        |                   |  |
| ` / | (I) switching capability                                                                                                                | (II) low-po            | wer consumption   |  |
|     | (III) high-power rating                                                                                                                 | (IV) small             | -signal operation |  |
| (5) | When the gate-to-source voltage (V <sub>GS</sub> ) of a E-MOSFET with threshold voltage of 400                                          |                        |                   |  |
|     | mV, working in saturation is 900 mV, the drain current is observed to be 1 mA.                                                          |                        |                   |  |
|     | Assuming that the MOSFET is operating at saturation, the drain current for an applied                                                   |                        |                   |  |
|     | $V_{GS}$ of 1400 mV is                                                                                                                  |                        |                   |  |
|     | (I) $0.5 \text{ mA}$ (II) $2 \overline{\text{mA}}$ (III) $3.5 \text{ mA}$ (IV) $4 \text{ mA}$                                           |                        |                   |  |
| (6) | Two n-channel E-MOSFETs, T1 and T2, are identical in all respects except that the                                                       |                        |                   |  |
|     | width of T2 is double that of T1. Both the transistors are biased in the saturation region                                              |                        |                   |  |
|     | of operation, but the voltage (V <sub>GS</sub> -V <sub>TH</sub> ) of T2 is double that of T1, where V <sub>GS</sub> and V <sub>TH</sub> |                        |                   |  |
|     | are the gate – to – source voltage and threshold voltage of the transistors, respectively.                                              |                        |                   |  |
|     | If the drain current of T1 is I <sub>D1</sub> , the corresponding value of this parameter for T2 is                                     |                        |                   |  |
|     |                                                                                                                                         |                        |                   |  |
|     | (I) $2I_{D1}$ (II) $4I_{D1}$                                                                                                            | (III) 8I <sub>D1</sub> | $(IV) 32I_{D1}$   |  |

## Q.2 Do as Directed (Descriptive Answers, Examples etc)

- (1) An E-MOSFET has these values:  $I_{D(active)} = 1$  mA and  $V_{DS(active)} = 10$  V. What does its drain resistance equal in the active region?
- (2) What is the output voltage for the circuit shown in figure below, when the input is (a) low (b) high? A square wave drives the gate of circuit shown in figure below. If the square wave has a peak-to-peak value large enough to drive the lower MOSFET into the ohmic region, what is the output waveform?



(3) The MOSFETs of figure below have  $R_{DS(on)} = 250 \Omega$  and  $R_{DS(off)} = 5 M\Omega$ . What is the output waveform?



- (4) An nFET with W =  $10\mu$ m and L =  $0.35\mu$ m is built in a process where  $k_n$ ' =  $110\mu$ A/V<sup>2</sup> and  $V_{Tn} = 0.7$  V.
  - (a) Find the drain current if the voltages are set to  $V_{GSn} = 2 \text{ V}$ ,  $V_{DSn} = 1 \text{ V}$ . 2.5m
  - (b) Find the drain current if the voltages are set to  $V_{GSn} = 2 \text{ V}$ ,  $V_{DSn} = 2 \text{ V}$ . 2.65m
- (5) A CMOS inverter is built in a process where  $k_n$ ' = 100  $\mu$ A/V²,  $k_p$ ' = 42  $\mu$ A/V²,  $V_{Tn}$  = +0.70V and  $V_{Tp}$  = -0.80V and a power supply of 3.3 V is used . Find the midpoint voltage  $V_M$  if  $(W/L)_n$  = 10 and  $(W/L)_p$  = 14.
- (6) A DRAM cell has a storage capacitance of  $C_S = 45$  fF. It is used in a system where  $V_{DD} = 3.3$  V and  $V_{Tn} = 0.55$  V. The bit line capacitance is  $C_{bit} = 250$  fF.
  - (a) Find the maximum amount of charge that can be stored on C<sub>S</sub>. 123.7f
  - (b) Suppose that the voltage on the capacitor is charged to a level of  $V_{max}$ . The word line controlling the access FET is dropped to a value WL=0 at time t=0. The leakage current is estimated to be 50 nA. To detect a logic 1 state, the voltage on the bit line must be at least 1.5 V. Find the hold time. 0.8u
- (7) Consider a DRAM cell that has a storage capacitance of  $C_S = 55$  fF. The power supply is  $V_{DD} = 3$  V and the access FET has a threshold voltage of  $V_{Tn} = 0.65$ V. The leakage current from the storage capacitor is estimated to be 250 pA and the bit capacitance is  $C_{bit} = 420$  fF. The capacitor has voltage  $V_{max}$  across it when the word line is brought low at time t = 0. A read operation is initiated at time t = 10 ms by elevating the word line up to a value of WL = 1. Find the voltage on a bit line.