

Bruce M. Boghosian

Properties of estimators

Unbiasedness Example 1

Unbiasednes Example 2

Unbiasednes Example 3

Summary

### Properties of Estimators

Unbiasedness

Bruce M. Boghosian



Department of Mathematics
Tufts University

©2022, all rights reserved



- 1 Properties of estimators
- Unbiasedness Example 1
- 3 Unbiasedness Example 2
- Unbiasedness Example 3
- Summary

# Ambiguity associated with estimators

Bruce M. Boghosian

Properties of estimators

Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summary

For the example of the uniform distribution,

$$f_X(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{array} \right\}$$

- the MLE estimator was  $\hat{a}(\vec{X}) = \min_j X_j$
- the MM estimator was  $\hat{a}(\vec{X}) = M_1 \sqrt{3}\sqrt{M_2 M_1^2}$ , for sample moments

$$M_1 = \frac{1}{n} \sum_{i}^{n} X_i$$
 and  $M_2 = \frac{1}{n} \sum_{i}^{n} X_i^2$ 

- Which one is "right"?
- There is no single answer to that question. We must instead identify desirable properties of estimators, and see which estimators have which of those properties.



#### Estimators are themselves random variables!

Bruce M. Boghosiar

Properties o estimators

Example 1

Unbiasednes Example 2

Unbiasednes Example 3 ■ Estimators such as  $\hat{a}(\vec{X})$ , are functions of r.v.s.

■ Hence estimators are themselves random variables.

They presumably have probability density functions, though it is not always easy to figure out what they are.

For estimating the sample mean  $\hat{\mu}(\vec{X})$ , we were able to use the CLT to study its distribution

■ For other estimators, that approach may not be possible

Because they have density functions, however, we know certain things about them:

■ They have means. We may speak of  $E(\hat{a}(\vec{X}))$  &  $E(\hat{\mu}(\vec{X}))$ .

■ They have variances. We may speak of  $\sigma_{\hat{a}}^2$  &  $\sigma_{\hat{\mu}}^2$ 

# Desirable properties of estimators

Bruce M. Boghosian

Properties o estimators

Unbiasednes Example 1

Unbiasedness Example 2 Unbiasedness Example 3

- **Unbiasedness:** Suppose that  $\vec{Y} = \{Y_1, Y_2, \dots, Y_n\}$  is a random sample from the continuous PDF  $f_Y(y; \theta)$ , where  $\theta$  is an unknown parameter. An estimator  $\hat{\theta}(\vec{Y})$  is said to be *unbiased* for  $\theta$  if  $E(\hat{\theta}) = \theta$  for all  $\theta$ . A similar definition holds for discrete random variables.
- **Efficiency:** Let  $\hat{\theta}_1$  and  $\hat{\theta}_2$  be two unbiased estimators for parameter  $\theta$ . If  $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$ , we say that  $\hat{\theta}_1$  is *more efficient* than  $\hat{\theta}_2$ .
- **Relative efficiency:** The *relative efficiency* of  $\hat{\theta}_1$  with respect to  $\hat{\theta}_2$  is  $\frac{\text{Var}(\hat{\theta}_2)}{\text{Var}(\hat{\theta}_1)}$ .

# Unbiasedness Example 1

Bruce M. Boghosian

Properties of estimators

Unbiasedness Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summary

Consider the one-parameter probability density function

$$f_Y(y; \theta) = \left\{ egin{array}{ll} rac{2y}{ heta^2} & ext{if } 0 \leq y \leq \theta \\ 0 & ext{otherwise} \end{array} 
ight.$$



- Normalization:  $\int_0^\theta dy \ \frac{2y}{\theta^2} = 1$
- Mean:  $\mu = \int_0^\theta dy \; \frac{2y}{\theta^2} y = \frac{2}{3}\theta$
- Mean square:  $E(Y^2) = \int_0^\theta dy \, \frac{2y}{\theta^2} y^2 = \frac{1}{2} \theta^2$
- Variance: Var $(Y) = \int_0^\theta dy \, \frac{2y}{\theta^2} (y \mu)^2 = \frac{1}{18} \theta^2$
- Standard deviation:  $\sigma_Y = \sqrt{\text{Var}(Y)} = \frac{1}{3\sqrt{2}}\theta$

#### Method of moments

Bruce M. Boghosian

Properties of estimators

Unbiasedness Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summa

- Let  $M_1 = \frac{1}{n} \sum_{i=1}^{n} Y_i$  be the average.
- lacksquare Set the theoretical mean equal to the average:  $rac{2}{3} heta_e=M_1$
- Hence  $\theta_e = \frac{3}{2}M_1$
- MM estimator is then

$$\hat{\theta}_{mm}(\vec{Y}) = \frac{3}{2n} \sum_{i=1}^{n} Y_i$$

MM estimator is unbiased

$$E(\hat{\theta}_{mm}(\vec{Y})) = \frac{3}{2n} \sum_{i=1}^{n} E(Y_j) = \frac{3}{2n} \sum_{i=1}^{n} \frac{2}{3} \theta = \frac{3}{2n} n \left(\frac{2}{3}\theta\right) = \theta.$$

#### Maximum likelihood estimation

Bruce M. Boghosian

Properties of estimators

#### Unbiasedness Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summa

- If  $\max_i y_i > \theta$ , the likelihood will be zero
- So suppose that  $\theta > \max_j y_j$
- Likelihood is  $L(\vec{y}; \theta) = \prod_{j=1}^{n} \left(\frac{2y_j}{\theta^2}\right)$
- lacktriangle This clearly increases as heta decreases, so the MLE estimator is

$$\hat{\theta}_{\mathsf{mle}}(\vec{y}) = \max_{j} y_{j}$$

■ To calculate  $E(\hat{\theta}_{\text{mle}})$ , we need  $f_{Y_{\text{max}}}(y)$ , but we can calculate this using what we know about order statistics.

### Calculation of CDF

Bruce M. Boghosian

Properties of estimators

Unbiasedness Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summar

Note 
$$F_Y(y) = 0$$
 for  $y \le 0$ , and  $F_Y(y) = 1$  for  $y \ge \theta$ 

- For  $0 < y < \theta$ :  $F_Y(y) = \int_0^y dz \ f_Y(z) = \int_0^y dz \ \frac{2z}{\theta^2} = \frac{y^2}{\theta^2}$
- Hence the CDF is

$$F_Y(y) = \begin{cases} 0 & \text{if } y \le 0\\ \frac{y^2}{\theta^2} & \text{if } 0 \le y \le \theta\\ 0 & \text{if } y \ge \theta \end{cases}$$

■ From our theorem on order statistics

$$f_{\mathsf{Y}_{\mathsf{max}}}(y) = \left\{ \begin{array}{ll} n \left(\frac{y^2}{\theta^2}\right)^{n-1} \frac{2y}{\theta^2} & \text{if } 0 \leq y \leq \theta \\ 0 & \text{otherwise} \end{array} \right. = \left\{ \begin{array}{ll} 2n \frac{y^{2n-1}}{\theta^{2n}} & \text{if } 0 \leq y \leq \theta \\ 0 & \text{otherwise} \end{array} \right.$$

Note that this is normalized

$$\int_0^\theta dy \ f_{Y_{\text{max}}}(y) = \frac{2n}{\theta^{2n}} \frac{\theta^{2n}}{2n} = 1.$$

#### Bias of maximum likelihood estimation

Bruce M. Boghosian

Properties of estimators

Unbiasedness Example 1

Unbiasednes Example 2

Unbiasednes Example 3

Summ

Expectation value of the MLE estimator is then

$$E(\hat{\theta}_{\text{mle}}) = \int_0^\theta dy \ f_{Y_{\text{max}}}(y)y = \int_0^\theta dy \ 2n \frac{y^{2n-1}}{\theta^{2n}}y = \frac{2n}{\theta^{2n}} \frac{\theta^{2n+1}}{2n+1} = \frac{2n}{2n+1}\theta.$$

The MLE estimator is biased since

$$E(\hat{\theta}_{\mathsf{mle}}(\vec{y})) = \frac{2n}{2n+1}\theta \neq \theta$$

■ It is asymptotically unbiased, since  $\lim_{n\to\infty} E(\hat{\theta}_{mle}(\vec{y})) = \theta$ .

# Construction of unbiased version of MLE estimator

Bruce M. Boghosiar

Properties of estimators

Unbiasedness Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summar

■ We can construct an unbiased version of the MLE estimator by defining

$$\hat{\theta}_3(\vec{y}) := \frac{2n+1}{2n} \hat{\theta}_{\mathsf{mle}} := \frac{2n+1}{2n} \max_j y_j.$$

■ We can see that  $\hat{\theta}_3$  is unbiased since

$$E(\hat{\theta}_3) = \frac{2n+1}{2n} \frac{2n}{2n+1} \theta = \theta,$$

- There is no problem with creating unbiased estimators in this way.
- Note that  $\hat{\theta}_3$  is not the MLE estimator, but it is arguably preferable to it.

# Example 2: Unbiasedness requirement for a linear estimator

Bruce M. Boghosian

Properties of estimators

Unbiasednes Example 1

Unbiasednes Example 2

Unbiasednes Example 3 Summary ■ Suppose  $X_1, X_2, ..., X_n$  have PDF  $f_X(x, \theta)$ , with theoretical mean  $E(X) = \theta$ .

- Hence  $E(X_j) = \theta$  for  $j = 1, 2, \dots, n$
- Suppose we construct the estimator  $\hat{\theta}(\vec{X}) = \sum_{j=1}^{n} a_j X_j$ .

$$\blacksquare : E\left(\hat{\theta}(\vec{X})\right) = \sum_{j=1}^{n} a_j E(X_j) = \sum_{j=1}^{n} a_j \mu = \left(\sum_{j=1}^{n} a_j\right) \mu$$

■ So  $\hat{\theta}$  is unbiased iff  $\sum_{j=1}^{n} a_j = 1$ 

# Example 3: The variance of the normal distribution

Bruce M. Boghosian

Properties o estimators

Unbiasednes Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summar

Recall the normal distribution with theoretical mean  $\mu$  and variance  $v=\sigma^2$ 

$$f_X(x) = \frac{1}{\sqrt{2\pi \nu}} \exp\left[-\frac{(x-\mu)^2}{2\nu}\right]$$

Recall that the MLE and MM estimators were

$$\hat{\mu}(\vec{X}) = \overline{X} := \frac{1}{n} \sum_{j=1}^{n} X_{j}$$

$$\hat{v}(\vec{X}) = \frac{1}{n} \sum_{j=1}^{n} (X_{j} - \overline{X})^{2}$$

- Clearly, the estimator  $\hat{\mu}$  is unbiased from the previous example  $\sum_{i=1}^{n} \frac{1}{n} = 1$
- What about the estimator  $\hat{v}$ ?

#### Two useful lemmas

Bruce M. Boghosian

Properties o

Unbiasednes Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summai

Lemma 1

$$E(X_j \overline{X}) = E\left(X_j \frac{1}{n} \sum_{k=1}^n X_k\right) = \frac{1}{n} \sum_{k=1}^n E\left(X_j X_k\right)$$
$$= \frac{1}{n} \sum_{k \neq j}^n E\left(X_j\right) E\left(X_k\right) + \frac{1}{n} E\left(X_j^2\right)$$
$$= \frac{n-1}{n} \mu^2 + \frac{1}{n} (\mu^2 + \nu) = \mu^2 + \frac{1}{n} \nu$$

Lemma 2

$$E(\overline{X}^2) = E\left(\frac{1}{n}\sum_{j=1}^n X_j \,\overline{X}\right) = \frac{1}{n}\sum_{j=1}^n E\left(X_j \,\overline{X}\right)$$
$$= \frac{1}{n}\sum_{j=1}^n \left(\mu^2 + \frac{1}{n}\nu\right) = \mu^2 + \frac{1}{n}\nu$$

# Expectation of the variance estimator

Bruce M. Boghosian

Properties o estimators

Unbiasednes Example 1

Unbiasedness Example 2

Unbiasedness Example 3

Summary

Using our lemmas, we have

$$E(\hat{v}) = E\left(\frac{1}{n}\sum_{j=1}^{n} \left(X_{j} - \overline{X}\right)^{2}\right) = E\left(\frac{1}{n}\sum_{j=1}^{n} \left(X_{j}^{2} - 2X_{j}\overline{X} + \overline{X}^{2}\right)\right)$$

$$= \frac{1}{n}\sum_{j=1}^{n} \left[E\left(X_{j}^{2}\right) - 2E\left(X_{j}\overline{X}\right) + E\left(\overline{X}^{2}\right)\right]$$

$$= \frac{1}{n}\sum_{j=1}^{n} \left[\left(\mu^{2} + v\right) - 2\left(\mu^{2} + \frac{1}{n}v\right) + \left(\mu^{2} + \frac{1}{n}v\right)\right]$$

$$= \frac{n-1}{n}v$$

■ Since  $E(\hat{v}) \neq v$ , the variance estimator is biased, but asymptotically unbiased.

# Constructing an unbiased variance estimator

Bruce M. Boghosian

Properties of estimators

Unbiasednes Example 1

Unbiasednes Example 2

Unbiasedness Example 3

Summary

■ We have found 
$$E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2$$

■ We construct the *sample variance* estimator,

$$\hat{S}^{2}(\vec{X}) := \frac{n}{n-1}\hat{\sigma}^{2}(\vec{X}) = \frac{1}{n-1}\sum_{j=1}^{n}(X_{j} - \overline{X})^{2}$$

■ There is an associated sample standard deviation estimator

$$\hat{S}(\vec{X}) := \sqrt{\frac{n}{n-1}} \, \hat{\sigma}(\vec{X}) = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} \left( X_j - \overline{X} \right)^2}$$

This is used in interval estimation, instead of the estimated standard deviation.



# Summary

Bruce M. Boghosian

Properties of estimators

Unbiasednes Example 1

Unbiasednes Example 2

Unbiasednes Example 3

Summar

- We have identified some desirable properties of estimators.
- We defined and described the property of *unbiasedness*.
- We presented three examples illustrating this property.