

Figure 5.5 (a) Exact posteriors $p(\theta_i|\mathcal{D}_i)$. (b) Monte Carlo approximation to $p(\delta|\mathcal{D})$. We use kernel density estimation to get a smooth plot. The vertical lines enclose the 95% central interval. Figure generated by amazonSellerDemo,

On the face of it, you should pick seller 2, but we cannot be very confident that seller 2 is better since it has had so few reviews. In this section, we sketch a Bayesian analysis of this problem. Similar methodology can be used to compare rates or proportions across groups for a variety of other settings.

Let θ_1 and θ_2 be the unknown reliabilities of the two sellers. Since we don't know much about them, we'll endow them both with uniform priors, $\theta_i \sim \text{Beta}(1,1)$. The posteriors are $p(\theta_1|\mathcal{D}_1) = \text{Beta}(91,11)$ and $p(\theta_2|\mathcal{D}_2) = \text{Beta}(3,1)$.

We want to compute $p(\theta_1 > \theta_2 | \mathcal{D})$. For convenience, let us define $\delta = \theta_1 - \theta_2$ as the difference in the rates. (Alternatively we might want to work in terms of the log-odds ratio.) We can compute the desired quantity using numerical integration:

$$p(\delta > 0|\mathcal{D}) = \int_{0}^{1} \int_{0}^{1} \mathbb{I}(\theta_{1} > \theta_{2}) \operatorname{Beta}(\theta_{1}|y_{1} + 1, N_{1} - y_{1} + 1)$$

$$\operatorname{Beta}(\theta_{2}|y_{2} + 1, N_{2} - y_{2} + 1) d\theta_{1} d\theta_{2}$$
(5.11)

We find $p(\delta > 0|\mathcal{D}) = 0.710$, which means you are better off buying from seller !! See amazonSellerDemo for the code. (It is also possible to solve the integral analytically (Cook 2005).)

A simpler way to solve the problem is to approximate the posterior $p(\delta|\mathcal{D})$ by Monte Carlo sampling. This is easy, since θ_1 and θ_2 are independent in the posterior, and both have beta distributions, which can be sampled from using standard methods. The distributions $p(\theta_i|\mathcal{D}_i)$ are shown in Figure 5.5(a), and a MC approximation to $p(\delta|\mathcal{D})$, together with a 95% HPD, is shown Figure 5.5(b). An MC approximation to $p(\delta > 0|\mathcal{D})$ is obtained by counting the fraction of samples where $\theta_1 > \theta_2$; this turns out to be 0.718, which is very close to the exact value. (See amazonSellerDemo for the code.)

5.3 Bayesian model selection

In Figure 1.18, we saw that using too high a degree polynomial results in overfitting, and using too low a degree results in underfitting. Similarly, in Figure 7.8(a), we saw that using too small

Figure 5.6 A schematic illustration of the Bayesian Occam's razor. The broad (green) curve corresponds to a complex model, the narrow (blue) curve to a simple model, and the middle (red) curve is just right. Based on Figure 3.13 of (Bishop 2006a). See also (Murray and Ghahramani 2005, Figure 2) for a similar plot produced on real data.

called the **conservation of probability mass** principle, and is illustrated in Figure 5.6. On the horizontal axis we plot all possible data sets in order of increasing complexity (measured in some abstract sense). On the vertical axis we plot the predictions of 3 possible models: a simple one, M_1 ; a medium one, M_2 ; and a complex one, M_3 . We also indicate the actually observed data \mathcal{D}_0 by a vertical line. Model 1 is too simple and assigns low probability to \mathcal{D}_0 . Model 3 also assigns \mathcal{D}_0 relatively low probability, because it can predict many data sets, and hence it spreads its probability quite widely and thinly. Model 2 is "just right": it predicts the observed data with a reasonable degree of confidence, but does not predict too many other things. Hence model 2 is the most probable model.

As a concrete example of the Bayesian Occam's razor, consider the data in Figure 5.7. We plot polynomials of degrees 1, 2 and 3 fit to N=5 data points. It also shows the posterior over models, where we use a Gaussian prior (see Section 7.6 for details). There is not enough data to justify a complex model, so the MAP model is d=1. Figure 5.8 shows what happens when N=30. Now it is clear that d=2 is the right model (the data was in fact generated from a quadratic).

As another example, Figure 7.8(c) plots $\log p(\mathcal{D}|\lambda)$ vs $\log(\lambda)$, for the polynomial ridge regression model, where λ ranges over the same set of values used in the CV experiment. We see that the maximum evidence occurs at roughly the same point as the minimum of the test MSE, which also corresponds to the point chosen by CV.

When using the Bayesian approach, we are not restricted to evaluating the evidence at a finite grid of values. Instead, we can use numerical optimization to find $\lambda^* = \operatorname{argmax}_{\lambda} p(\mathcal{D}|\lambda)$. This technique is called **empirical Bayes** or **type II maximum likelihood** (see Section 5.6 for details). An example is shown in Figure 7.8(b): we see that the curve has a similar shape to the CV estimate, but it can be computed more efficiently.