E-R Model

E-R Model

- Entities & Attributes
- Types of attributes
- Entity type, Entity sets
- Relationship, Relationship types
- Constraints

E-R Model

- Entity-Relationship (ER) model is a popular high-level conceptual data model and is used for conceptual design of database applications
- This approach enables the database designers to concentrate on specifying the properties of the data without being concerned with storage details
- ER model describes data as entities, relationships, and attributes

Entities & Attributes

- Entities are specific objects or things in the mini-world that are represented in the database.
 - For example the EMPLOYEE John Smith, the Research DEPARTMENT, the ProductX PROJECT
- Attributes are properties used to describe an entity.
 - For example an EMPLOYEE entity may have a Name, SSN, Address, Sex, BirthDate

Entities & Attributes

- Entities and Attributes
 - A specific entity will have a value for each of its attributes.
 - For example a specific employee entity may have Name='John Smith', SSN='123456789', Address ='731, Fondren, Houston, TX', Sex='M', BirthDate='09-JAN-55'
 - Each attribute has a value set (or data type) associated with it – e.g. integer, string, subrange, enumerated type, ...

Entities & Attributes

Two entities employee e, company c and their attributes

- Simple Vs Composite
- Simple: Each entity has a single atomic value for the attribute.
 - For example, SSN or Sex.
- Composite: The attribute may be composed of several components.
 - For example, Address (Apt#, House#, Street, City, State, ZipCode, Country) or Name (FirstName, MiddleName, LastName).

- Single-valued Vs Multi-valued
- Most attributes have a single value for a particular entity.
 - For example: Age is a single-valued attribute of person
- Multi-valued: An entity may have multiple(set of) values for that attribute.
 - For example, Color of a CAR or PreviousDegrees of a STUDENT. Denoted as {Color} or {PreviousDegrees}.

- Stored Vs Derived
- Age can be determined from the current date and the value of person's BirthDate
 - Hence the age attribute is derived attribute and BirthDate is called stored attribute
 - number_of_employees can be derived by counting the number of employees related to that department

Entity Types, Entity Sets

- Entities with the same attributes are grouped or typed into an entity type.
 - Example: EMPLOYEE or PROJECT entity type.
- Each entity type is described by its name and attributes
- An entity type is represented as a rectangula box enclosing the entity type name
- Entity Set: The collection of all entities of a particular entity
 type in the DB at any point in time
- Entity set uses the same name as the entity type

Entity Types, Entity Sets

ENTITY TYPE NAME:

EMPLOYEE

Name, Age, Salary

 e_1

(John Smith, 55, 80k)

COMPANY

Name, Headquarters, President

c₁

(Sunco Oil, Houston, John Smith)

 c_2

(Fast Computer, Dallas, Bob King)

ENTITY SET:

(EXTENSION)

(Fred Brown, 40, 30K)

 e_2

 e_3

(Judy Clark, 25, 20K)

Keys

- An attribute whose values are distinct for each individual entity in the collection is called a key attribute
- In ER diagram each key attribute has its name underlined inside the oval
- Value sets of Attributes: Each Attribute is associated with a set of values. Value sets are not displayed in ER diagrams.
- Example: Range of values allowed for employees between 16 and 70.

Keys

CAR Registration(RegistrationNumber, State), VehicleID, Make, Model, Year, {Color}

car₁ •

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1998, {red, black})

car₂ •

((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 1999, {blue})

car₃ •

((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 1995, {white, blue})

•

•

Relationship

- A relationship relates two or more distinct entities with a specific meaning.
- Example: EMPLOYEE John Smith works on the ProductX
 PROJECT
- Relationships of the same type are grouped or typed into a relationship type.
- Relationship type set of associations among entities
- Example: The WORKS_ON relationship type in which EMPLOYEEs and PROJECTs participate

Company ER

Degree of Relationship type

- The degree of a relationship type is the number of participating entity types.
- A relationship type of degree two is called binary, and three is called ternary

Relationship – ternary

Role Names

- Role names signifies the role that a participating entity from the entity type plays in each relationship instance.
- Example: The works_for relationship type, Employee plays the role of employee or worker.

Recursive Relationships

- Same entity type participates more than once in a relationship type in different roles
- Example : employee entity type participates twice in supervision: once in role of supervisor and once in the role of supervisee

Recursive Relationships

igure 3.11

Constraints on Relationship Types

- Relationship types usually have certain constraints that limit the possible combinations of entities.
- Two main types of relationship constraints
 - Cardinality Ratio for Binary
 - Participation Constraints
- Cardinality Ratio & Participation --> Structural Constraints
- Cardinality Ratio of binary relationship specifies the number of relationship instances that an entity can participate in.
- The Cardinality Ratio for binary relationship types are 1:1,1:N,N:1 AND M:N

Cardinality Ratio

A 1:1 relationship : MANAGES

EMPLOYEE

Cardinality Ratio

The 1:N relationship : WORKS_FOR

Cardinality Ratio

The M:N relationship : WORKS_ON

Participation Constraints

- Determines whether all or only some entity occurrences participate in a relationship
- Specifies whether the <u>existence of an entity depends on its</u>
 <u>being related to another entity</u> via relationship type
- Two types of participation constraints
 - Total participation
 - » total = every entity needs to be 'related'
 - » e.g. EMPLOYEE works_for DEPARTMENT
 - Partial participation
 - » partial = some entities are involved
 - » e.g. EMPLOYEE manages DEPARTMENT

Participation Constraints

Note: double lines represent total participation

Participation Constraints

- Alternative ER notation for structural constraints
- Pair of integer numbers (min, max) with each participation of an entity type E in a relationship type R
 - Where 0 <= min <= max and max >= 1
- For each entity e in E, e must participate in atleast min and at most max relationship instances in R at any point of time
- If min = 0 implies partial participation min > 0 implies total
 participation

Weak Entity Types

- Entity types that do not have key attributes of their own are called weak entity types
- Entity types having key attribute --> strong entity types
- Weak entity types are identified by being related to specific entities from another entity type called identifying or owner entity type
- The relationship type that relates a weak entity type to its owner is called *identifying relationship* of weak entity type
- A weak entity type always has a total participation constraint

ER Notations

Thank You