LUDWIG-MAXIMILIANS-UNIVERSITÄT AT MÜNCHEN Department "Institut für Informatik" Lehr- und Forschungseinheit Medieninformatik Prof. Dr. Heinrich Hußmann

Masterarbeit

Understanding and Predicting Web Browsing Behavior

Changkun Ou hi@changkun.us

Bearbeitungszeitraum: 12.8.2018 bis 12.2.2019

Betreuer: Malin Eiband and Dr. Daniel Buschek

Verantw. Hochschullehrer: Prof. Dr. Heinrich Hußmann

Aufgabenstellung

Understanding and Predicting User Browsing Behavior

Problem Statement To be added

Scope of the Thesis To be added

- **Tasks** (1) Conduct a literature review to identify research questions regarding clickstream research that are of interest to researchers and practitioners
 - (2) Design a machine learning based model in clickstream modeling and creating an appropriate experiment with theoretical support to justify model performance and its interpretability
 - (3) Develop an web application as a demonstration of the model and evolving it as a generic architecture for the proposed model.

Requirements Strong skills in mathematical modeling and machine learning approaches, independent scientific work and creative problem solving, industrial experience in web development and architecting.

Keywords Clickstream, User Browsing Behavior, Machine Learning, Web

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt, alle Zitate als solche kenntlich gemacht sowie alle benutzten Quellen und Hilfsmittel angegeben habe.

München, February 4, 2019.....

Acknowledgments

I would like to appreciate Malin Eiband and Dr. Daniel Buschek for their great and constructive discussion, suggestion around thesis topic selection, model statements, thesis structuring as well as their pacient of given supervision to the thesis. The thesis would not be accomplished without them. Afterward, I am full of gratitude to Prof. Hussmann and Prof. Butz for offering me an unexpected opportunity to study aboard in Germany as well as their kindly helps regarding study and living in my academic period. Next, I wish to thank my best friend Yi, schoolfellow Yifei and Xingying, and former colleague Jin for their inspiring discussions surrounding my thesis. Finally, I will forever be beholden to my parents for their continuous supports while my postgraduate study, since they dedicated their live to my better future.

Abstract

Early clickstream research emerges since the end of last century and has proliferated in the heart of our Internet world. Trades, public opinions, and almost every traces are precisely recorded on server side web request log files. The fundamental interaction between web service client and server stands immutably, despite the fact that mobile devices have governed our daily life. In this thesis, we propose a machine learning model that characterize user browsing behavior while involving multi-tab branching and backtrack actions in a browser instead of web requests based clickstreams, and we call it the Action Path model. To justify our model, we first established a lab study and collected clickstream data of individuals, consists of chronologic URLs and corresponding stay durations of each URL, with designed nine different context given web browsing tasks for three mainstream websites based on the theory of information behavior. Each website has three types of tasks, including goal-oriented, fuzzy and exploring browsing task, and they characterize the corresponding three browsing behaviors. By analyzing the subjects trace from our lab study, we seek to archive these goals: 1) Understanding: identify if browsing behaviors are distinguishable and finding common patterns that appears in an action path. 2) Classification: to separate and report browsing behaviors on the web, that help users better understanding their status. 3) Prediction: present the future click path more than one step with given context of browsing history in a session. To archive these goals, our quantitative analysis indicates that goal-oriented, fuzzy and exploring browsing behaviors are classifiable with precision of 100.00% based on the combination of chronologic URLs and stay duration. The prediction performance of our model shows higher than 60% of accuracy for 3 to 5 steps of future clickstream prediction. Meanwhile, our qualitative analysis to the clickstream indicates 5 observed patterns, including "ring", "star", "overlap", "hesitation" and "cluster" patterns, which represents the patterns of an action path. As an illustration of application, we also developed a browser plugin that proactively serves users, as well as suggesting predictions of the possible future clicks to a user. Furthermore, a generalized design of our model and plugin communication protocol are discussed for possibility of formalizing them as standard Web APIs to help designer and developers to improve and monitor user experience of their products. To the best of our knowledge, this is the first such detailed study regarding web browsing behavior modeling based on client-side collected clickstreams.

Contents

Aı	ppendix	43					
8	Conclusions	41					
	7.1 Main Findings	39 39					
7	21504551011	39					
	6.2.2 <i>onResult</i> callback	30					
	6.2.1 The <i>BrowsingBehavior</i> Interface	3.					
	6.2 Web API Standardization and Platform-as-a-Service	3:					
U	6.1 Client-side Browser Plugin	3.					
6	Applications	33					
	5.4.2 Cross user Overlap Patterns	28					
	5.4.1 Individual Common Patterns	20					
	5.4 Action Path Visualization	26					
	5.3 Optimal Action Path Context	24					
	5.2.2 Interretation based on Action Path	24					
	5.2.1 Interpretation based on General Features	22					
	5.2 Browsing Behavior Classification	2					
_	5.1 Subjective Task Difficulty	2					
5	Evaluation						
	4.3.3 Fuzzy Task	19					
	4.3.2 Exploring Task	18					
	4.3.1 Goal-oriented Task	1′					
	4.3 Tasks Design	1′					
	4.2 Browsing Behaviors	10					
-	4.1 Environment	1:					
4	Experiment	13					
	3.4 Action Path Optimization	12					
	3.3.4 Ending Mark Interpretation	1.					
	3.3.3 Recurrent Unit						
	3.3.2 Context Decoder	10					
	3.3.1 Context Encoder	10					
	3.3 Action Path Model	9					
	3.2 <i>url2vec</i> Embedding	;					
3	Action Path Models 3.1 Completion Effeciency	,					
•		,					
	2.2 Theory of Information Behavior on the Web	2					
2	Related Works 2.1 Clickstream Behavior Modeling	•					
2	Deleted Works	,					
	1.2 This Thesis	4					
1	1.1 A Brief History of Clickstream Research						
1	Introduction	1					

A	Con	tent of o	enclosed CD		43
В	Task	s and (Questionnaire in Lab Study		45
	B.1	Phase	1: Browsing Task	 	. 45
		B.1.1	Task Group 1: Amazon.com	 	. 45
		B.1.2	Task Group 2: Medium.com	 	. 45
		B.1.3	Task Group 3: Dribbble.com		
	B.2	Phase 2	2: Questionnaire		
	B.3		ected Tasks		
		B.3.1	Goal-oriented Task	 	. 47
		B.3.2	Fuzzy Task	 	. 48
		B.3.3	Exploring Task	 	. 48
C	Raw	Data I	Illustration		49
	C .1	Subjec	ctive Difficulty Score from Lab Study	 	. 49
	C .2	Raw cl	clickstream data	 	. 49
Bi	bliog	raphy			51

1 Introduction

1.1 A Brief History of Clickstream Research

The word "clickstream" [Friedman, Wayne and Weaver, Jane, 1995] was first coined in 1995, a media comments article introduced a novel concept of tracing cyberlife of users over the nowadays "Internet". Informally, a "clickstream" contains a sequence of hyperlinks clicked by a website user over time. At the same year, the most popular server software Apache HTTP [The Apache Software Foundation, 1995] proxy on the Web was developed with a feature that records access log of entries. Afterwards, people realized the potential danger and value of tracing cyberspace, which a large discussion of clickstream influences, such as frequency based mining of clickstream [Brodwin, D., D. O'Connell, and M. Valdmanis., 1995], privacy concerns [Reidenberg, 1996], and database schema of session based time series data [Courtheoux, 2000].

Privacy discussion concludes collecting traces over net clearly offence the rights of users, the practice violates the openness and transparency of a service to a user. Serious criticism arise the tracing becomes a loss of democratic governance [Gindin, 1997].

Technologies is not guilty. After years of discussion, positive opinion proposes the rules [Reidenberg, 1996] and regulations [Skok, 1999] in cyberspace, means of protecting information privacy in cyberspace transactions [Kang, 1997], and approaches to resolve conflicting international data privacy [Reidenberg, 1999].

Meanwhile, bussiness man agilely responses to the concept and immediately initate commercial tracking of their customer to improving marketing affects [Novick, Bob, 1995], customer service and precise advertisment [Reagle and Cranor, 1999, Bucklin and Sismeiro, 2000], even measuring product success [Schonberg et al., 2000].

At the turn of this century, common reviews start accept the technology of clickstream, clickstream data has confirmed by industrial practice, which opens a new era in customer service [Walsh, John and Godfrey, Sue, 2000], most of website users start accept their click path data be aggregate analysed on the server side [Carr, 2000].

Clickstream data grows fast and becomes plentiful, researchers start convey the original concept of clickstream, tracking customer selections, into various applications, such as usability testing [Waterson et al., 2002a], understanding social network sentiment [Schneider et al., 2009], and developed visualizing technique to better interpret clickstream data [Waterson et al., 2002b].

Analysis, reports and characterizing of clickstream gains its popularity, Mobasher et al. [Mobasher et al., 2001] suggests personalize user based on association rule from their web usage data. Chatterjee et al. [Chatterjee, Patrali and Hoffman, Donna L and Novak, Thomas P, 2003] first proposed E-commerce websites should use clickstream to tracking customer navigation pattern instead of essential choice, associating and binding products for observing responses of a customer.

With the arise of characterizing and behavior understanding on clickstream data, more and more research proposes methods for the understanding of given server clickstream data. Padmanabhan et al., 2001] proposed an algorithm to address personalization from incomplete clickstream data, which implies a security problem potential information leak from clickstream data. Moreover, affected by search engine indexing, Lourenco at al. [Lourenço and Belo, 2006] recommends an approach for the detection and containment of web crawler based on server side recorded visiting log file.

After a short review of clickstream history, almost all research putforwards their methodology based on server recorded clickstream data. Note that a daily user is always allowed accesses parallel pages and windows simultaneously, even allow switching across multiple websites for a browsing purpose. An obvious missing aspect of those papers is the server recorded data tend to incomplete for characterizing a visited user, and the log data can only applied on a specific website. As an observation, our research no longer surves server side clickstream, but focus and contributes

1.2 This Thesis 1 INTRODUCTION

to a client side collected clickstream data for a real visiting session of a user in a browser.

1.2 This Thesis

The main part of the thesis is structured in different chapters, and answers the following three research question groups:

- 1. Understanding: Why collecting clickstream on client-side differs from server-side collecting? What are the most significant, identifiable user behaviors and activity patterns can be observed or algorithmically detected in the context of web browsing that indicates information needs, and in which form of quantitative data can characterize a definitive boundary to distinguish browsing behaviors of a user?
- 2. **Classification**: How accurate or how affirmative we can model or identify the proposed browsing behaviors progressively that makes an intelligent system serves proactively?
- 3. **Prediction**: How much future movements of a user can be accurately inferred from the context of web browsing, and how much context is required for the prediction?

Chapter 2 discusses the exitsting user behavior research based on clickstream data firstly. Then discussed the evolution of theory regarding information seeking behavior as our experiment foundation. In addition, we summaried the reason of recent raise of neural approach in different scientific area and the state-of-the-art approaches for generic sequence learning, whose proposed in neural network research. Chapter 3 defined the completion effeciency of a clickstream first, then we formalizes our proposed sequence to sequence encoder/decoder model for client-side clickstream as well as the training techniques for the proposed model. In subsequent chapter, Chapter 4, we present our experiment for a lab study, and construe the design reason of context given web browsing tasks for our subjects based on information behavior theory. Afterwards, in Chapter 5, based on SVM, t-SNE and our proposed model, we conducte a quantitative analysis with described data from our lab study, the evaluation shows a very promising results. Moreover, we visualize the clickstream through directed graph, by combining our training model outputs, we also performs a qualitative analysis to all clickstreams, and the analysis gives evidences that further verified the correctness of our model. In Chapter 6, as a consequence of our analysis, we developed a browser plugin for Google Chrome as a possible application to our model. The plugin can fairly predict the next possible visiting pages of a user. In addition, we generalize the design of our plugin architecture between client and server, and then discusse the possibilities of being a standard web API to web developers.

In the last two chapters, we discusse the limitations of this work, summarize the findings of our thesis, as well as the possible future improvements and directions of the thesis in the final chapter.

2 Related Works

In this chapter, we discuss the former research that releats to our work, including the existing approaches to clickstream behavior modeling, the evolution of information behavior theory regarding how it adapts to our digital world, as well as the most related recent advances regarding sequence learning.

2.1 Clickstream Behavior Modeling

Clickstream behavior research can be traced back to the year when the word "clickstream" was invented. Eearly clickstream behavior research studied the navigational behavior of user [Mandese, 1995, Brodwin, D., D. O'Connell, and M. Valdmanis., 1995] and they binary classified clickstream based on the degree of linearity.

Mobasher et al. discovered the effective and scalable techniques [Mobasher et al., 2001] for Web personalization by using association rules and built a recommondation system. Goldfrab invistigates [Goldfarb, 2002] the website choice behavior based on clickstream data and suggests that clickstream simulate company strategy changes. Afterwards, Chatterjee et al. [Chatterjee, Patrali and Hoffman, Donna L and Novak, Thomas P, 2003] first conduct the previous research regarding clickstream to an actual commercial website. They found that clickstream represents an implication that dynamic advertising based on customer clickstream history influence the future clickstream of the customer and increase the interaction with the dynamic advertisement. More techniquely, Ting et al. uses common sequences to find unexpected browsing behavior [Ting et al., 2005], and then use their findings to improve website design.

The most recent research evolved the approach of clickstream modeling, Wang et al. [Wang et al., 2016] proposed a unsupervised appraoch to model clickstream without labeling. Chi et al. proposed an analysis framework [Chi et al., 2017] for the general understanding of online information behavior in a specific page. However, their framework only fits for server side collected clickstream other than a real user clickstream. Then, Wang et al. [Wang et al., 2017] improved their unsupervised appraoch, and summarized more approaches for clickstream behavior modeling that identifies span ad abuse for a specific website. Park et al. models and detects a behavior change among student while learning based on Poisson process [Park et al., 2017] to help improve online learning experience. Amo et al. [Amo Filvá et al., 2018] further visualizes search-stream behavior based on student clickstream on a class, and Shimada et al. proves [Shimada et al., 2018] online change detection while monitoring on student behavior is possible based on a sliding window.

Zaloudek gives an review on the comparasion [Zaloudek, 2018] traditional method to model clickstream data, then proposed a principle component analysis based method for a semi-supervised learning of clickstream data, however their approach does not work well on clustering task, and the best performance is obtained by traditional multilayer perceptron algorithm. Chandramohan and Ravindran then further investigate the neural approach on clicksteam mining [N and Ravindran, 2018], they verified that complexy LSTM with Attention mechanism is able to capture whether a user is intent to buy a product or not based on server side collected clickstream. Surprisingly, Gundala and Spezzano [Gundala and Spezzano, 2018] simply use a Lasso regression based on sofisticated feature engineering archived AOC score 0.769 for reader demand hyperlink prediction on Wikipedia clickstream dataset.

Kammenhuber et al. is the first study regarding client side clickstream [Kammenhuber et al., 2006]. They proposed a finite-state Markov model that models user's search behavior on a level of topic categories. Unfortunately their dataset are collected from network package traffic, and did not consider the time a user spend in each page.

Figure 2.1: Parallel browsing behavior: branching phenomenon [Huang and White, 2010]

Liu et al. [Liu et al., 2010] studied a specific user behavior on dwell time on web pages, and concluded that Weibull distribution is the most appropriate distribution to characterize this behavior. Huang et al. [Huang and White, 2010, Huang et al., 2012] further noticed the behavior of branching parallel browssing and backtracking browsing behavior on modern browsers, as shown in Figure 2.1, and presented an frequent analysis for the distribution of these two behavior individually.

Unfortunately, as we discussed above, the existed research regarding clickstream behavior modeling are either server-side modeling for an individual client or individually modelized for client-side behaviors with limited information of clickstream, which does not stands for a real user behavior. Besides, the existed approaches are based on self-constructed features, the property of Markov memoryless and etc. Though the most recent approach use neural networks, their findings only applies to specific context.

From the point of view of user behavior, they neither unambiguously justifies the foundation of their model, nor providing a significative performance of their model.

We, in this thesis, serialize the client side chronologic URL sequences with combines all these individually studied phenomena including the branching and backtracking browser feature. With this chronologic URLs, we seek to model and understand the essential user behaviors patterns while browsing on the Web.

2.2 Theory of Information Behavior on the Web

The thesis relates to information behavior theory since it supports the foundation of our user study. This subsection discusses how the theory was concluded and the principles of the theory that sustain our thesis.

Information behavior research encompasses intentional information seeking and unintentional information encounters, and the roots to information behavior theory relates to information needs and uses [Fisher and Julien, 2009] that arose in the 1960s.

However, the concept of information seeking behavior, was coined in late 1981 by Thomas Wilson [Wilson, 1981], and he tries to formalize the process or activities of a conscious effort while information needs and uses. Figure 2.2 illustrate the model of information behavior was proposed.

Figure 2.2: Wilson's information seeking behavior model [Wilson, 1981]

Wilson's model has been envolved many years since its origin, and it was revised and adapted to our digital world since the digital systems learns user preferences and changes [Giannini, 1998] the way we receiving information.

David Ellis described a detailed group of activities for information seeking behavior [Ellis, 1989], and then applied in physical and social science [Ellis et al., 1993] and industrial environment [Ellis and Haugan, 1997]. In addition, his analysis was based on grounded theory approach [Aceto et al., 1994] and semi-structured interviews.

Afterwards, Choo et al. adapts Ellis' Model and discussed [Choo et al., 1999] the information seeking behavior on the web through different activities rather than a single process, the applied activities are: starting, chaining, browsing, differentiating, monitoring, and extracting.

"Starting" on the web indicates that a user identifies websites or pages that containing the information of interests. "Chaining" indicates that a user follows on starting page to other related pages. "Browsing" then represents the activity that a user only skimming on the web and quickly viewing the top-level informations. The "differentiating" describes that a user on the web is selecting useful pages and choosing differentiated. "Monitoring" activity is used for receiving updates on the sites, or revisit the previously visited pages. Finally "extracting" is the activity that a user systematically extracts informations from a interested page or website.

By applying these activities, Choo et al concludes general user behaviors on the web are undirected viewing, conditioned viewing, informal search and formal search. Johnson further describes [Johnson, Ross, 2017] seven more detailed behaviors patterns on the web, but did not given a working study that verify or prove their formation.

Although Wilson's model and Ellis' model are revised in recent works, however these improvements are more generic and too complexy for describing user information behavior on the web. Therefore, in this thesis, we only uses the an antecessor of Wilson's framework [Wilson, 1997] and Ellis' model [Ellis and Haugan, 1997] to formalize and justify our lab study experiment later in Chapter 4, as a fundation of our work.

3 Action Path Models

In this chapter, we formalize few concepts and metrics in clickstream data, and then describe a proposed clickstream model named *Action Path model* based on recurrent nerual network that models a client side clickstream behavior. The action path is different than clickstream since a user may uses *back button* or *switch browser tabs* then jumps to visited web pages or parallel web pages, namely, a user performed a visit action. A server side clickstream does not containing such detailed level of user clickstream. The term *action path* is a generalized concept of clickstream, which replaces individual URLs to user actions (with backbutton and browser tab switch effects) in a browser. Figure 3.1 illustrates an simplified version of action path that compares vanilla clickstream.

Figure 3.1: A simple action path. A user starts from the starting page, and performed a series of page click actions, ends on a exiting page. The server side records clickstream in the following order: $/ \rightarrow /a \rightarrow /out \rightarrow /a/c \rightarrow /a/d \rightarrow /goal$. However the actual user actions are: $/ \rightarrow /a \rightarrow /out \rightarrow /a \rightarrow /a/c \rightarrow /a/d \rightarrow /a/c \rightarrow /a \rightarrow / \rightarrow /goal$. The records on server side lost interaction details between users and browsers. Node that /out is a distraction page in the graph, which may located in a different website (e.g. advertisement), and dashed arrorws are wasted user actions. The /goal page may not clear in the beginning of the clickstream, one can generate a shortcut optimization navigation to the /goal page while more clickstream context be presented, i.e. an optimized user actions is $/ \rightarrow /a \rightarrow /a/c \rightarrow /a/d \rightarrow /goal$.

For a convinience of discussion, we indiscriminate the use of term *action path* and *clickstream* in this chapter to indicate a series of user actions.

3.1 Completion Effeciency

An action path of a visiting session starts from a starting page and ends on a exiting page. Since we consider the effect of browser back button and browser tab swtich, previous page could easily be visited twice, if a user clicked the back button. Therefore, a page may directs to multiple pages. For instance, an action path could degrade to a linked list if a user click through to different pages without using back button and switching tabs; or an action path could become a 1-to-n bipartite graph if a user use back button back to previous page after clicked a page, as shown in Figure 3.2.

As a result, we define the *completion effeciency* based on shortest path from starting page to exiting page, and stay duration of the action path.

Figure 3.2: Two special case of an action path: linked list action path 3.2a, and 1-to-n bipartite graph action path 3.2b.

Let an action path is represented on directed cyclic graph, each node represents a visited page, and each edge has a weight that represents the stady duration of its tail node. Assume the total stay duration of the shortest path from starting page to existing page is d_s , and the total stay duration of the action path is D, the number of nodes in the shortest path is n_s , the total nodes in an action path is N, the *completion effeciency E* is defined as follows Equation 1:

$$E = w_1 \frac{n_s}{N} + w_2 \frac{d_s}{D}$$

$$w_1 + w_2 = 1$$
(1)

where w_1 , w_2 are hyperparameters to balancing the importance of action path and stay duration. According to the duscussion of two special case of action path, it is easy to prove the range of E is (0,1]. As a complement, we define zero completion efficiency if and only if a user cannot complete a clickstream. Therefore we have the range of E is [0,1].

Remark 1 The definition of completion effeciency uses the term of shortest path, which is the problem of finding a path between the starting page and exiting page in a action path (directed cyclic graph) such taht the sum of the stay duration of its constituennt pages in minimized. The problem can be solved by Dijkstra's shortest-path algorithm [Dijkstra, 1959].

Remark 2 An action path may increases with more nodes (pages) over time. The starting page of an action path is always the first page when browser was opened. However, one can always treat the current visited page is the exiting page due to we do not know when an user will exit browsing over time. Consequently, *E* is changing over browsing.

Remark 3 We uses completion efficiency as a feature for a classification task in Section 5.2.1.

3.2 *url2vec* Embedding

The distributed representation of word2vec models achieve better performance in natural language processing, Mikolov et al. [Mikolov et al., 2013a] introduced continuous bag-of-word (CBOW) and skip-gram model as an efficient method for learning high-quality vector representation of words, and CBOW is faster while skip-gram is slower but get better performance for infrequent words. We

convey similar idea from these models and propose our *url2vec* model for client side clickstream data.

The purpose of url2vec model is to construct URL representations to better predict the surrounding URLs in a clickstream. Briefly, given a clickstream of urls $URL_1, URL_2, ..., URL_T$, the objective of url2vec is to maximize the average log softmax probability:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le i \le c, i \ne 0} \log p(\text{URL}_{t+i}|\text{URL}_{t})$$

$$p(\text{URL}_{t+i}|\text{URL}_{t}) = \frac{\exp(v_{\text{URL}_{t+i}}^{\top} v_{\text{URL}_{t}})}{\sum_{\text{all URLs}} \exp(v_{\text{URL}_{t+i}}^{\top} v_{\text{URL}_{t}})}$$
(2)

where c is the size of embedding context, which is a function of starting page, v_{URL_t} is one-hot encoded representation of input URLs, and $v_{\text{URL}_{t+i}}$ is the vector embedding of output representations

Remark 1 This model described by Equation 2 is essentially a three layer neural network: input layer of *one-hot* encoded URLs (a group of binaries that a component of a one-hot encoded vector is a representative of a URL under a finite set of existing URLs), a hidden layer of feature representation and an output layer share weights to the learned embeddings of input URLs.

Remark 2 The probability in Equation 2 is impractical due to $\nabla \log p(\text{URL}_{t+i}|\text{URL}_t)$ is large because of expnential items, two numerical optimizations based on Hofmann Tree and Negative Sampling are proposed by Mikolv et al. [Mikolov et al., 2013b].

Remark 3 The probability can also be interpret in Bayesian perspective, which provides a intuition of this definition. $p(URL_{t+i}|URL_t)$ can be considered as a posterior probability. Since v_{URL_t} was initialized as an one-hot encoded vector input to the embedding neural network, the item can be treat as a prior and the denominator is a normalization term. Furthermore, the dot product between $v_{URL_{t+i}}^{\top}$ and v_{URL_t} is a representation of consine similarity, which represents the closest surrounding URLs in same direction of vectors.

3.3 Action Path Model

Recurrent Neural Network (RNN) was describe by Werbos [Werbos, 1990] and Rumelhart et al. [Rumelhart et al., 1988], the original RNN generalize feedforward neural network for sequence based data.

Given a sequence of input $(i_1, i_2, ..., i_T)$, the original RNN computes a sequence of outputs $(o_1, o_2, ..., o_T)$ by interating the activation function Equation 3:

$$o_t = W_{oh}\sigma(W_{hi}i_t + W_{hh}i_{t-1}), t = 1, 2, ..., T$$
 (3)

where $\sigma(x) = \frac{1}{1 + \exp\{-x\}}$, and W_{oh}, W_{hh}, W_{hi} are weight parameters between output, hidden and input layers.

The vanilla RNN transfers and maps a sequence to another sequence if and only if the inputs and the outputs are aligned with equal length. Apparently, the major constrains of the vanilla RNN is the model cannot address a problem if inputs and outputs provided in different length with complicated and non-monotonic relationships.

Stutskever et al. [Sutskever et al., 2014] present a general end-to-end approach to sequence learning model in machine translation that estimates the conditional probability of

 $p(o_1, o_2, ..., o_{T'}|i_1, i_2, ..., i_T)$ where $(i_1, i_2, ..., i_T)$ is an input sequence, $(o_1, o_2, ..., o_{T'})$ is a corresponding output sequence, and T is not required to be equal with T'. Our model convey similar idea from it.

An action path from user i in session j consist of a sequence of url2vec embedded vectors $(U_1^{ij}, U_2^{ij}, ..., U_n^{ij})$ and a sequence of time duration $(d_1^{ij}, d_2^{ij}, ..., d_n^{ij})$, since each URL has a corresponding number that represents the time duration of a user spent on a given page. Our action path model consist a context encoder and a context decoder.

3.3.1 Context Encoder

Context encoder encodes URLs one by one and produces a context tensor that encodes the historical user actions, as shown in Figure 3.3. In the encoder, we insert a starting mark "<SOA>" (*Start of Action*) as a sign of start feeding URLs, and a trigger mark "<COI>" (*Change of Intention*) as a sign to trigger decoder to decodes encoded context tensor.

Figure 3.3: Context encoder of Action Path Model. In the encoder, a starting mark "<SOA>" is used as a sign of start feeding URLs, and a trigger mark "<COI>" as a sign to trigger decoder to decodes encoded context tensor. The trigger mark is automatically inserted after the *k*-th URL in the end of encoder model over time, *k* is increasing over time. In addition, the recurrent unit is not detailly described in the figure but afterwards.

3.3.2 Context Decoder

Context decoder decodes the context tensor produced by encoder. We feed a prediction mark "<SOP>" (*Start of Prediction*) as a sign to initiate the decoding of encoded context. In the end of decoder, decoder produces an ending mark "<EOA>" (*End of Action*) that terminates the decoding process.

Note that the decoder model in training phase and prediction phase is different. In the training phase, teacher forcing strategy [Williams and Zipser, 1989] is used, the strategy supplys observed user actions as inputs. In the testing phase, decoder uses the output from recurrent unit as input, shown through dashed lines in Figure 3.4.

Figure 3.4: Context decoder of Action Path Model. In the decoder, a prediction mark "<SOP>" is used to initiate decoding process, and an ending mark "<EOA>" as a sign to terminate decode process. The output of decoder uses a softmax intermediate operation to magnify and normalize the probability of predicted URL embedding. In addition, the recurrent unit is not detailly described in the figure but afterwards.

3.3.3 Recurrent Unit

The recurrent unit in the Action Path model is not as standard as original Long Short-term Memory unit (LSTM) [Hochreiter and Schmidhuber, 1997] or Gated Recurrent unit (GRU) [Cho et al., 2014].

The original LSTM recurrent unit has a context cell and three regulators: Input gate, output gate and forget gate. The context cell keeps dependencies between inputs of the unit as long term memory. Input gate take historical hidden state and current input and controls the input value to the recurrent unit, output gate responsible for the control of output activations, and forget gate resets and decides retaining values of the recurrent unit as a short term memory. Similarly in GRU, it simplyfies the structure of LSTM into a update gate and a reset gate.

In our recurrent unit, when using LSTM as recurrent unit base, we also feed time duration $(d_1^{ij}, d_2^{ij}, ..., d_n^{ij})$ into input gate I_t , and others (forget gate F_t , output gate O_t , memory cell C_t and hidden state h_t) remains the same:

$$I_{t} = \sigma(P^{(I)}U_{t}^{ij} + Q^{(I)}h_{t-1} + \frac{d_{t}^{ij}}{d_{t}^{ij} + 1}))$$

$$F_{t} = \sigma(P^{(F)}U_{t}^{ij} + Q^{(F)}h_{t-1} + b^{(F)})$$

$$O_{t} = \sigma(P^{(O)}U_{t}^{ij} + Q^{(O)}h_{t-1})$$

$$C_{t} = F^{(t)} \circ C_{t-1} + I_{t} \circ \tanh(P^{(C)}U_{t}^{ij} + Q^{(C)}h_{t-1})$$

$$h_{t} = O_{t} \circ \tanh(C_{t})$$

$$(4)$$

where $t = 1, 2, ..., n; P^{(I)}, Q^{(I)}, P^{(F)}, Q^{(F)}, P^{(O)}, Q^{(O)}$ are shared weight parameters, $b^{(F)}$ is a bias in forget gate F_t , \circ represents element-wise product of two matrices.

When using GRU as recurrent unit base, we feed time duration $(d_1^{ij}, d_2^{ij}, ..., d_n^{ij})$ in to update gate Z_t , and others (reset gate R_t , hidden state h_t) stay the same:

$$Z_{t} = \sigma(P^{(Z)}U_{t}^{ij} + Q^{(Z)}h_{t-1} + \frac{d_{t}^{ij}}{d_{t}^{ij} + 1})$$

$$R_{t} = \sigma(P^{(R)}U_{t}^{ij} + Q^{(R)}h_{t-1})$$

$$h_{t} = (1 - Z_{t}) \circ \tanh(P^{(H)}U_{t}^{ij} + Q^{(H)}h_{t-1}) + Z_{t} \circ h_{t-1}$$

$$(5)$$

where $t = 1, 2, ..., n; P^{(Z)}, Q^{(Z)}, P^{(R)}, Q^{(R)}, P^{(H)}, Q^{(H)}$ are shared weight parameters, \circ represents element-wise product of two matrices.

Remark 1 The units we described in this section is neither LSTM nor GRU since the input gate I_t or update gate Z_t introduces time duration d_t^{ij} as input, which is different than a simple constant bias in the original learnable bias in these gates. It is worth mentioning that adding bias to the gates are helpful to improve learning performance in LSTM [Jozefowicz et al., 2015], we also use the trick in our model as shown in F_t of Equation 7.

Remark 2 The term $\frac{d_t^{ij}}{d_t^{ij}+1}$ is a squashing mechanism, it normalizes d_t^{ij} from $(0,\infty)$ to (0,1).

3.3.4 Ending Mark Interpretation

In context decoder, we mentioned an ending mark "<EOA>" that indicates the termination decoding process. However, the ending mark is different than other marks, since in practice, "<EOA>" is represented in different symbols of behavior-based categorical clickstream, which as a label to involve classification of user actions.

Assume action paths are labeled by one-hot encoded ending marks $EOA_1, EOA_2, ..., EOA_m$ and the last output of decoder hidden state is h_n , we have:

$$\hat{y} = \operatorname{argmax}(\operatorname{softmax}(W^{(M)}h_n))$$

$$\hat{y} \in \{\operatorname{EOA}_1, \operatorname{EOA}_2, \dots, \operatorname{EOA}_m\}$$
(6)

where $W^{(M)}$ is a weight parameter, and m is the number of ending mark categories.

3.4 Action Path Optimization

In traditional classification models, the arguments of the maxima (argmax) is used to select labels with highest probability, scilicet, argmax selects predicted URLs with highest probability of user action from decoder outputs. However, this method is under the condition of all outputs are independent in probability, which is not suitable to our senario.

In previous sections, our model feeds an input clickstream $(U_1^{ij}, U_2^{ij}, ..., U_t^{ij})$, and produce an output $(o_1, o_2, ..., o_m)$ that expect close to actual clickstream $(U_{t+1}^{ij}, U_{t+2}^{ij}, ..., U_n^{ij})$. Then the probability of expected clickstream is a conditional probability under the input clickstream, i.e. we need to solve an optimization problem

$$\underset{o}{\operatorname{argmax}} p(o_{1}, o_{2}, ..., o_{m} | U_{1}^{ij}, U_{2}^{ij}, ..., U_{t}^{ij})
= \underset{o}{\operatorname{argmax}} \prod_{k=1}^{m} p(o_{k} | U_{1}^{ij}, ..., U_{t}^{ij}, o_{1}, ..., o_{k-1})
= \underset{o}{\operatorname{argmax}} \sum_{k=1}^{m} \log p(o_{k} | U_{1}^{ij}, ..., U_{t}^{ij}, o_{1}, ..., o_{k-1})$$
(7)

A heuristic approach can solve the optimization problem efficiently, namely beam search [Graves, 2012]. In each step of decoder output, we reserve the top-k best combinations of URLs and eliminate the rest of URLs from evaluation, and finally selects k best clickstreams. The pseudocode is given that adapts vanilla beam search to URL prediction search in Algorithm 1.

```
Algorithm 1: Output Clickstream Search
 input: Decoder outputs (o_1, o_2, ..., o_m),
          Number of candidates k
 output: k clickstream candidates with highest probability
 begin
     Initialize empty clickstreams list
     for o \in (o_1, o_2, ..., o_m) do
         Initialize empty candidates list
         for clickstream \in clickstreams do
             for page \in o) do
                 candidates.append([clickstream.append(page),
                  log(p(clickstream)) + log(p(page))])
             end
         end
         ordered = descending order sort candidates by score
         clickstreams = ordered[:k]
     end
 end
```

Remark The algorithm produces an heuristic output with given clickstream context. Combining with *url2vec* model, the prediction can heuristically optimize the click path of a specific user since the embeddings are trained over all possible action path. For instance, a distraction advertisement page will not appear after optimization because the embedding of advertisement page is far from a desired page if embeddings are learned correctly.

4 Experiment

In this chapter, we rationalize the process of our lab study based on the theory of human information behavior, then construe the purpose of context given web browsing tasks to our subjects.

The lab study took place during the last two weeks of November, from 14/11/2018 to 29/11/2018 in Frauenlobstrasse 7a, a faculty building of Ludwig-Maximillians-Universitaet Muenchen. Client-side user clickstream data was collected by a embedded collector plugin installed in the mainstream browser, i.e. Google Chrome, on a self provided desktop computer and a laptop.

In lab study, we select three mainstream websites, Amazon/Medium/Dribbble, that covers categories for shopping, media consuming and design brainstorming with design reasons (discuss later in Section 4.3). Then we manually designed 35 reasonable tasks and finally selected 9 context-given browsing tasks (three for each website, discuss in Section 4.3) to simulate three different proposed browsing behavior, namely goal-oriented/fuzzy/exploring behaviors. Each task requires participant start from a starting page of a given website, and all tasks do not restrict participants use the given website, but also allow they access websites outside the landing page to help they complete the task (explicitly informed to participants before participation). Participants start browsing after they completely understand the requirements of each task, and no interruption or question answering during the task except exceeding time limit of a task, however subjects can either acquire more time to accomplish the task or give up directly.

The study is designed as a within-subject study, thus every participant performs all tasks. To eliminate the learning effect due to the long time of using same websites, we use Latin square [Cochran and Cox, 1950] for the device (Desktop/Laptop) and tasks participation order to our participants.

Our lab study obtained 21 participants with a mean age of 23.04 (standard deviation of 3.216, min=18 and max=19) took part in the study, 10 male and 11 female, whom are recruit anonymously and randomly via a mailing list.

4.1 Environment

The lab study uses two self provided devices: a desktop computer and a mobile laptop. The reason of choose two morphology of computing device is our study requires recording a complete clickstream of during the study.

A major issue of mobile devices is the operating system installed in mobile phone does not authorize the permission of allowance to collect data precisely over pages or user actions. Though Android device can overpass system permission to privilge, the user behavior between iOS and Android device has different personalities [Sandoiu, Ana, 2018], and subjects shows [Reinfelder et al., 2014] abnormal awareness behavior regarding security and privacy issues when they handling a newly provided Android device when switch from iOS device. Therefore, to eliminate this awareness, we stick our study environment to desktop devices, which empower us easily collects the clickstream data from browsers with plugin supports.

Although all modern browsers support plugin development, considering the usage share of all browsers on the market, Google Chrome [StatCounter, 2018] obtains 61.7% market shares of desktop browsers, and Apple Safari only shares 15.0% of the market. Clearly, Google Chrome dominant market of the desktop web browser.

Hence, we decide to use Chrome to establish our plugin of data collection. The quesionaire after our lab study indicates the browsers usage share of all subjects, as shown in Table 4.1, which further supports our decision of browser selection.

 Number
 11
 5
 3
 2

 Percentage
 52.38%
 23.81%
 14.29%
 9.52%

Table 4.1: Browser Usage Shares of Lab Study Subjects

4.2 Browsing Behaviors

Before we explain the design reason of our context-given browsing task, we first present and discusses three common types of user browsing process as behavior: **goal-oriented**, **exploring** and **fuzzy**.

These three terminologies are aggregated and incorporated from behaviors that concluded in former qualitative research for web browsing behavior research, all these terminologies are based on a fundmental theory of interdisciplinary perspective information seeking behavior [Wilson, 1997], which was discussed in Section 2.2. Table 4.2 compares the terminology differences between former research and our thesis.

Table 4.2: Terminologies comparison of information behavior on the web

Author	Terminologies	Terminologies	Terminologies	Main Factors
[Choo et al., 1999]	Formal search	Conditioned viewing; Informal search	Undirected viewing	Psychological; demographic; role-related environmental; source characteristics
[Johnson, Ross, 2017]	Directed browsing; Known-item search	Semi-directed browsing; Explorative seeking; "You do not know what you need"; Re-finding	Undirected Browsing	Behavior
This thesis	Goal-oriented	Fuzzy	Exploring	Purpose

To justify our terminology, we combines the six qualitative activities from Ellis' Model [Ellis, 1989] and "information use" from Wilson's framework [Wilson, 1997] in information behavior theory to represent our summarized browsing behaviors:

Goal-oriented behavior occurs when a user initiate visiting session on the web caused by a determined objective in a specific context, such as bussiness work, social communication, university study, literature research and etc.

Goal-oriented behavior indicates an actively information seeking behavior. Instead of *formal search*, that only covers the phase of "monitoring" and "extracting" (or *directed browsing* and *known-item search* that covers "browsing" and "differentiating" or "monitoring" and "extracting" respectively), goal-oriented browsing behavior contains the entire life cycle of human information behavior starts from "starting". Under browsing behavior, a determined "information use" can be observed or concluded.

For instance, a college student intentionally need a latest lecture slide (*information use* observed), the student then opens web browser, access college website (*starting*) and navigates to the lecture homepage (*chaining*, *browsing*, and *differentiating*). Finally, the student exit browsing after download the slides (*monitoring* and *extracting*).

Exploring behavior occurs when a user initiates browsing session aimlessly with no clear observed extracting or information use during the session, the person greedily or breadth-first consumes and the content on the Web without any information extracting and information use, such as media consuming, learning before using and etc.

Exploring browsing behavior indicates a complete opposite behavior comparing to goaloriented borwsing behavior. More formally describing exploring behavior using Ellis' model, the 4 EXPERIMENT 4.3 Tasks Design

behavior represents "chaining" and "browsing" without "differentiating" and "extracting" from "starting" while information seeking.

For instance, a person who accesses an unknown utility web application (*starting*), he/she explores what functions are provided one by one and what he/she can do while using the application (*chaining* and *browsing*).

Fuzzy behavior occurs when a user initiate visiting session for information use with non-systematic, incomplete prior knowledge that may browsing ongoing for updating the framework of knowledge until final acquisition or abandon.

Fuzzy behavior in a browsing behavior in between of goal-oriented and exploring behaviors. Instead of only "chaining" and "browsing" from "starting", fuzzy behavior also do "differentiating" or "monitoring" while information seeking.

For instance, a researcher heared a new technique proposed in another scientific field that may influence he/she's research, then the person opens a search engine (*starting* and *chaining*) to seek (*browsing*) existing (*differentiating*) follow up researches (*monitoring*). The browsing may ends without information use because of the technique is irrelevant to he/she's research.

Remark Table 4.3 illustrates the exist activities of our three browsing behavior. Note that "information needs" is not suggested in Wilson's theory [Wilson, 1981] since "information needs" can not be clearly observed before information seeking but sometimes observed after information use. Therefore we do not take information need into the consideration of our terminologies.

Table 4.3: Existence of activities from Ellis' Model and information use in goal-oriented, exploring and fuzzy browsing behavior

Behaviors	Information Need			Infor	mation Seeking			Information Use
Deliaviors	illorillation Need	Starting	Chaining	Browsing	Differentiating	Monitoring	Extracting	imormation Use
Goal-oriented	N/A	Exist	Exist	Exist	Exist	Exist	Exist	Exist
Fuzzy	N/A	Exist	Exist	Exist	Exist	Exist		
Exploring	N/A	Exist	Exist	Exist				

4.3 Tasks Design

We designed 35 browsing tasks, after conduct a pilot study, 9 tasks are selected for three websites: Amazon.com, Medium.com and Dribbble.com because of the following reasons:

- 1. These three websites all have coresponding tasks to the three type of browsing behavior;
- 2. Each of the task can be finished around 5 to 10 minutes;
- 3. All these websites are mainstream websites, they do not require massive professional domain knowledge for using.

In addition, the unselected tasks are listed in Appendix B.3.

4.3.1 Goal-oriented Task

We designed and selected an appropriate goal-oriented task for selected websites respectively, and each task is designed with three specifically designed information need as the cause of information use.

4.3 Tasks Design 4 EXPERIMENT

Amazon.com Assume your smartphone was broken and you have 1200 euros as your budget. You want to buy an iPhone, a protection case, and a wireless charging dock. Look for these items and add them to your cart.

This task initiate from the homepage of Amazon (*starting* and *chaining*), and it contains three determined objective since a subject is required to add three specific items to the cart (*information use*). There are few hidden consideration behind the task (*browsing* and *differentiating*), which makes the task more realistic (*monitoring* and *extracting*): a) There is a budget of this task, which requires subjects must consider the price of items instead of simply add the first recommended item to cart; b) the starting page is amazon.com instead of amazon.de. This decision requires subjects must also consider the currency rate between US dollars and Euros for budget. c) There are some items cannot be shipped to Germany (the study took place in Germany). As a result, subjects cannot add these items to cart and they should find other alternatives.

Medium.com Assume you were making plans for your summer vacation. You want to visit Tokyo, Kyoto, and Osaka. You want to find out what kind of experience other people made when traveling to these three places in Japan. Your task is to find three posts for traveling tips regarding these cities. Elevate a post if it is one of your choices.

This task contains three determined purpose since there are three fixed traveling destination (extracting and information use). The task also implies few considerations that increase the required interaction of the task to subjects: a) The website only offers English version, some Japanese character may appear in an article, thus, a translation util may be used while the study (starting and chaining); b) An article may apears numerous noun, such as toponym. Search engine may used while the study (browsing); c) the articles, those require a membership to unlock reading, cannot be elevated (differentiating).

Dribbble.com You are hired to a Cloud Computing startup company. You get an assignment to designing the logo of the company. Search for existing logos for inspiration and download three candidate logos you like the most.

The task also has three determined prupose since subjects are quired to download three candicate trademarks (*extracting* and *information use*). While the participation, subjects still need take few implicit facts in to account: a) Subjects who unfamiliar with the term "Cloud Computing" need visit other explainations to figure out the vision and mission of this type of company (*starting*), and subjects whom already familiar with the term still need to compares the designed made by other competitors (*chaining*, *browsing* and *differentiating*). b) Subjects should aware some of the designs shared on the website are not suitable for trademark or icon design (*monitoring*).

4.3.2 Exploring Task

Exploring tasks simply do not provides any deterministic objective, and all websites has a designed exploring task for subjects.

Amazon.com Look for a product category that you are interested in and start browsing. Add three items to your cart that you would like to buy.

Although the task do not require any specific items to the subjects, the task remains three different purpose because participants need add three items to the cart. This designed task is aimlessly because: all tasks is not specifically informed to participants, they either do not have needs of buying items or formerly exist needs of buying a specific category but do not have a product candicate yet. Besides, the description of the task ask participants start from a product category (*starting* and *chaining*), which avoids goal-oriented buying a specific product.

4 EXPERIMENT 4.3 Tasks Design

Medium.com Visit a category you are interested in and elevate three post you like.

Similar reason as discussed in Amazon.com's exploring task (*starting* and *chaining*). It is well to be remined that Medium is a media website, visiting a specific article formerly read before participation is relatively difficult since all contents showed to users are daily updated. Thus the task can be directly consider as an exploring task.

Dribbble.com Explore dribbble and download three images you like the most while you browse. Dribbble illustrates designs by using image gallery (starting and chaining). The major difference between Dribbble and Google Image Search is dribbble is a user-centered content aggregation website, however Google Image Search is a simple content aggregation engine. As a result, there will be two different interaction in Dribbble: exploring designs based on keywords and categories, or exploring designs based on users. The latter can helps its user finding similar designing style. The task is aimlessly since the task simply describes nothing and completely let participants explore their preferences.

4.3.3 Fuzzy Task

Each of our selected websites also has an fuzzy task respectively, and there are three major goals per task.

Amazon.com You want to buy a gift for your best friend as a birthday present. Add three items to your cart as candidate.

The clearness of the task is stronger than exploring task but weaker than goal-oriented task, because The task restricts participants adding items for a specific purpose (birthday present) but not points any specific product (no *extracting*).

Medium.com Assume you got an occasion to visit China for business. You are free to travel to China for a week. You want to make a travel plan for touring China within a week. Your task is to find out what kind of experience other how people made when going to secondary cities or towns in China, then decide on three cities you want to visit (excluding Beijing, Shanghai, Guangzhou, and Shenzhen). Elevate if a post helped you make a decision.

The clearness of the task is stronger than exploring task, because it asks a participant to exploring a non-deterministic direction of looking for secondary cities (no *extracting*). But the clearness of the task is weaker than goal-oriented task due to secondary cities described in Medium's user posts is unclear, participants suppose to make decision themselves. Furthermore, this ask is asking regarding traveling China around a week. Cities cannot be randomly selected because to make traveling plan requires consider geographic location of the city.

Dribbble.com You are preparing a presentation and need one picture for each of these animals: cat, dog, and ant. Download the three pictures you like the most.

The task has three purpose of downloading images of animals, which restrict participant to a specific direction, thus, the clearness of the task is stronger than exploring task. However, the task describes a scenario of using these images in a presentation, and hence participants must consider continuity of design style, which makes the clearness of the task is weaker than goal-oriented task (no *extracting*).

4.3 Tasks Design 4 EXPERIMENT

5 Evaluation

In this chapter, we conduct evaluations to our collected data. The data is collected from 21 subjects, and 189 clickstream data are collected in total. Each clickstream contains action-level data with a stay duration of a specific page, for instance, we still collect an URL as a step of clickstream if a participant uses back button rollback to a previous visited page without requesting server. A clickstream also has a subjective difficulty score from questionaire (shown in Appendix B) after the completion of each task.

5.1 Subjective Task Difficulty

This section discusses the subjective task difficulty qualitatively and quantitatively. Figure 5.1 illustrates a normalized (raw scores are listed in Appendix C Table C.1) subjective difficulty score with respect to all tasks.

Figure 5.1: Subjective difficulty score: each column indicates an individual subject and each row indicates a browsing task. Tasks from 0 to 8 represent Amazon Goal Oriented Task, Amazon Fuzzy Task, Amazon Exploring Task; Medium Goal Oriented Task, Medium Fuzzy Task, Medium Exploring Task, Dribbble Goal Oriented Task, Dribbble Fuzzy Task and Dribbble Exploring Task respectively. From this heat map, we clearly observes Medium Fuzzy Task is the most difficulty task according to the subjects voted subjective difficulty, a Mann-Whitney U significant test justifies this observation.

To generalize the task difficulty, the null hypothesis (H_0) : the difficulty of fuzzy task is not greater than exploring task and alternative hypothesis (H_1) : the difficulty of fuzzy task is greater than exploring task. We conduct non-parametric one-tailed Mann-Whitney U test [Mann and Whitney, 1947], under null hypothesis, $p = 2.54 \times 10^{-5} < 0.05$, reject H_0 . Similarly, we compare difficulty score on goal oriented task and exploring task (with corresponding hypothesis, p = 0.00534 < 0.05), difficulty score on fuzzy task and goal oriented task (with corresponding hypothesis, p = 0.0145 < 0.05), all rejects H_0 . Therefore we concludes the task difficulty is ordered as follows: difficulty of fuzzy task > difficulty of goal oriented task > difficulty of exploring task, which means exploring tasks have lower effort in clickstream, and effort of doing fuzzy task gains highest effort.

5.2 Browsing Behavior Classification

As discussed in Section 4.3, we described three type of browsing behavior. In this section, we provides two type of evaluations to interpret the browsing behavior classification.

First, we evaluate the indication of general features browsing behavior, features including difficulty of task, number of actions in a clickstream as well as the total stay duration in a clickstream. Then we implements our action path model by using the action-level clickstream data and stay duration of each page, which was described in Section 3.3.3 and 3.3.4.

5.2.1 Interpretation based on General Features

As a baseline of our classification performance, we use the **completion efficiency**, **total time duration of a task** as well as **total number of actions of a task** as the three features for browsing behavior classification.

Note that the completion efficiency is defined by the shortest path of entire clickstream, and the completion efficiency cannot can only be determined if and only if the clickstream is given, in a sense, it carries a latent information of browsing behavior.

We applied gird-search on support vector machine (SVM) with polynomial kernel, the best classification precision is 0.53 ($C = 4.5, \gamma = 1.5$), and the micro average F1 score is also 0.53, which is better than random (0.33).

Figure 5.2: In these figures, 5.2a shows the t-SNE projection of completion efficiency, total time duration and number of actions for three different behavior; 5.2b is a 2D comparasion of using completion efficiency and total time duration; 5.2c provides a 2D comparasion of using completion efficiency and number of actions; 5.2d shows a 2D comparasion of using number of actions and total time duration. From t-SNE visualization, we observed that exploring tasks tend to centralized on the right and goal-oriented tasks and fuzzy tasks tend to centralized on the left, which indicates that exploring behaviors tend to classifiable comparing to other two behaviors. According the rest of feature comparasion visualizations, the completion effeciency and total time duration contributes more on interpret exploring behavior, and the number of actions tent to contributes more on interpret goal-oriented task.

To understand the meaning of classification, we also applies a randomized decision tree that gives the importance of the used features: *total time duration and number of actions of a task is more important than our self defined completion efficiency.*

More specifically, we applies one-tailed Mann-Whitney U test for each of the features, for instance the null hypothesis (H_0): the completion efficiency of goal-oriented task is not greater than exploring task, we have p = 0.0019 < 0.05 reject H_0 , which means the completion efficiency of goal-oriented task is significant efficient than than exploring task.

Similarly, we conduct the significant test with similar hypothesis to all comparable combinations as showed in Table 5.1, 5.2, and 5.3.

Table 5.1: One-tailed significant test for completion efficiency in different browsing behaviors. The null hypothesis in this table, for instance, completion efficiency of fuzzy task is *not* significant efficient than goal-oriented task, the result p = 0.45 > 0.05 which means accept H0. Similar to others.

v.s.	efficiency goal	efficiency fuzzy	efficiency explore
efficiency goal	N/A	reject	reject
efficiency fuzzy	accept	N/A	reject
efficiency explore	accept	accept	N/A

Table 5.2: One-tailed significant test for total stay duration of a task in different browsing behaviors. The null hypothesis in this table, for instance, total stay duration of fuzzy task is *not* significant stay longer than goal-oriented task, the result p = 0.41 > 0.05 which means accept H0. Similar to others.

v.s.	duration goal	duration fuzzy	duration explore
duration goal	N/A	reject	reject
duration fuzzy	accept	N/A	reject
duration explore	accept	accept	N/A

Table 5.3: One-tailed significant test for total number of actions of a task in different browsing behaviors. The null hypothesis in this table, for instance, total number of actions of fuzzy task is *not* significant performs more actions than goal-oriented task, the result p = 0.019 < 0.05 which means reject H0. Similar to others.

v.s.	actions goal	actions fuzzy	actions explore
actions goal	N/A	accept	reject
actions fuzzy	reject	N/A	accept
actions explore	accept	reject	N/A

As conclusions, we summarized that:

- **Completion efficiency**: the completion efficiency of goal-oriented and fuzzy behavior is significant efficient than exploring behavior;
- **Number of actions**: the number of actions of goal-oriented behavior is significant lower than fuzzy and exploring behaviors.
- **Total stay duration**: the total stay duration of explroing behavior is significant higher than goal-oriented and fuzzy behaviors.

Furthermore, the completion efficiency and total stay duration are the more important than others for indication of exploring behavior, and number of actions are more important than others for indication of goal-oriented behavior.

5.2.2 Interretation based on Action Path

To use full capacity of our data, this section uses the entire clickstream and its corresponding page-level stay duration as input, three ending mark (<EOA_GOAL>, <EOA_FUZZY>, and <EOA_EXPLORE>) as classification outputs, and then implements a single GRU layer action path model to classify the three type of browsing behaviors.

Our training parameters are: The GRU latent dimension is 10, training process feeds 132 clickstreams as training data, 38 clickstreams as validation, then propagates 500 epochs with batch size of 32. In the training process, we use Adam optimizer, categorical corss-entropy loss as well as L1 and L2 regularizer with early stopping, the total number of trainable parameters is 90323.

In the end of training, we evaluates 19 clickstreams as testing dataset and archieved **100.00% accuracy** of browsing behaviors classification.

Figure 5.3: Categorical Cross-Entropy Validation loss curve while 500 epoches. The curves indicates the training process is not an overfitting since the loss is not increasing.

One can observed that the training process is not an overfit, and the validation loss is still not increase after 500 epoches, thus, single GRU layer action path model remains a large expressive generalization performance (100% accuate for three browsing behavior classification), therefore we expect to collect more data to verify whether the model applicable to a large dataset.

In addition, the action path model feeds the entire clickstream and time duration as inputs, therfore the entire clickstream contains informations regarding the number of actions as well as completion effeciency and more latent informations. Consequently, we conclude that the model works *perfectly on the classification of three different browsing behavior*. Since our experiment is only designed for three type of behavior, and the learning curve shows the model still has capacity and generalization ability to classify more precise categories of browsing behavior, a future investigation on more categories may be worthwhile.

5.3 Optimal Action Path Context

This section we evaluates our model with limited action path context, where the feeding action path are limited based on a split ratio. For instance, if a split ratio is 0.8 then we feed 80% of an action path into the model, then predict the rest of 20% actions. Figure 5.4 illustrates the best accuracy we archieved from a single layer action path model when use with different split ratio.

Figure 5.4: Prediction accuracy with limited context of input. This figure illustrates, wih more context of clickstream known to the action path model, more information to the model, and therefore much higher accuracy we can archieve. The accuracy we evaluated here is a greedy search accuracy, and thus higher than 25% of prediction accurate is acceptable, i.e. a quater of future movements are predicted correctly. On the right side of the figure, we archieved >60% accuracy of 3 to 5 future steps prediction. Classification is a special case in this figure where split ratio is equal to 0.99.

This figure illustrates, wih more context of clickstream feeds into the action path model, the model receive more informations of the clickstream, and therefore much higher accuracy we can archieve for prediction. The accuracy we evaluated here is a greedy search accuracy, which performs element-wise comparasion between predicted clickstream and ground trueth clickstream, and the accuracy is the number of corrected predictions divided by total number of prediction steps.

An accuracy that higher than 25% is acceptable in our prediction task, since it indicates a quater of future movements are predicted correctly. On the right side of the figure, we archieved >60% accuracy of 3 to 5 future steps prediction.

Figure 5.5: Validation loss curve when split ratio is 0.97. The loss indicates the model may be reparameterized while training and archieve better performance for predictions.

Note that the prediction is still not an overfitting to the dataset. Figure 5.5 illustrates the loss curve while training over 1500 epochs with 3 steps of prediction (split ratio 0.97). The loss starts increase after almost 200 epochs, which may be represent to overfitting, nevertheless, one can observe that the loss decreases down to similar level of early training and archieved a better performance (almost 60.0% of precision) than previous, which indicates the training process may reparameterize the action path model while training and archieve better performance for predictions.

5.4 Action Path Visualization

This section visualizes the actual action path of users and discusses the behavior qualitatively. In total, we collected 189 clickstream, which is not possible to illustrate all of them in the thesis, we selects the typical clickstreams to discuss and provids a visualization tool (see Appendix A) to help readers to explore all action paths.

5.4.1 Individual Common Patterns

Pattern of "cluster" The first pattern one can observe from the goal-oriented task clickstream is called "cluster". In Figure 5.6 and 5.7, the visualization shows different clustered intents in Amazon's goal-oriented task. Formally, a pattern is called "cluster" if and noly if it is a partition of an action path that is connected with rest of the action path through a single node.

We can easily discriminate the user browsing for different intent in different cluster, and then finally went to the cart without backtracking.

Figure 5.6: Patterns of cluster and hesitation of an action path. This figure visualizes an action path in goal-oriented Amazon's task. The visualized graph can be partitioned into four subgraphs and three of them are cluster pattern that is a representing of different shopping intent, which is exactly as same as the task design. Further, each cluster contains a hesitation pattern as labeled in the figure, for instance, node labeled with 4, 8, 14 are hesitation. Besides, the number of a node is a representative of chronological serial number of user actions.

Pattern of "hesitation" Beyound the cluster pattern, we also observes "hesitation" pattern in goal-oriented tasks where a short child path branch from its parent node in each intent cluster, e.g. node 4, 8, 14 in Figure 5.6 and node 5, 16 in Figure 5.7, which suggests "hesitation" is a pattern that more often appears in goal-oriented task within a "cluster". Formally, a pattern is called "hesitation" if and only if it is a acyclic list and not in a star that joint with a cluster or a ring and the number of its nodes is less than any of existed cluster.

Figure 5.7: Patterns of cluster and hesitation of an action path. This figure visualizes an action path in goal-oriented Amazon's task. The visualized graph can be partitioned into four subgraphs and three of them are cluster pattern that is a representing of different shopping intent, which is exactly as same as the task design. Further, two of the clusters contain a hesitation pattern as labeled in the figure, for instance, node labeled with 5, 16 are hesitation. Besides, the number of a node is a representative of chronological serial number of user actions.

Pattern of "ring" and "star" Similarly, in fuzzy and exploring task, we observed two common pattern "ring" and "star" pattern is more often to appear in fuzzy and exploring tasks. Formally, a pattern is called "ring" if and only if it is a list without connect to a cluster and starting node is not joint with ending node; a pattern is called "star" if and only if it is a spanning tree of an action path that a non-leaf node contains more than one child.

Figure 5.8 illustrates an action path of Amazon's fuzzy task (purple nodes) and an action path of Dribbble's exploring task (orange nodes), both from same participants. One can observe "ring" and "star" patterns in the figure as highlighted through gray area surrounded by dashed line.

Figure 5.8: Patterns of ring and star of an action path. The figure visualizes an action path in Amazon's fuzzy browsing task (purple nodes) and Dribbble's exploring tasks (orange nodes). The visualized action path of exploring task is an linked list with few hesitations (node 3 and 10). The action path of fuzzy task contains two star patterns (roots are 4 and 7). As same as other visualizations, the number of a node is a representative of chronological serial number of user actions.

Similarly, as one more illustration, Figure 5.9 gives action paths in same tasks but from another participant that the purple nodes represents actions in Amazon's fuzzy task action path and orange nodes represents actions in Dribbble's exploring task action path.

In addition, even though we observed that the number of star pattern is more often to appear in fuzzy tasks and ring pattern is more often to appear in exploring tasks. We argue that this is because in fuzzy tasks, participants are able to identify the information uses, therefore the star pattern is more often to appear since it produces many backtracking behavior and causes the "differentiating" activity. However, in the exploring task, there is no explicit information uses described the exploring task, therefore participants keep exploring deeper and deeper from the starting page without backtracking, the star pattern appears when participant has multiple interests on different pages that referred from the same page.

Figure 5.9: Patterns of ring and star of an action path. The figure visualizes an action path of a different participant in Amazon's fuzzy browsing task (purple nodes) and Dribbble's exploring tasks (orange nodes). The visualized action path of exploring task contains a star pattern where root is 9. The action path of fuzzy task contains a cyclic ring pattern that with a single hesitation in node 22. As same as other visualizations, the number of a node is a representative of chronological serial number of user actions.

In summary, we conclude that:

- 1. Goal-oriented browsing behavior contains common patterns of "cluster", and each cluster tend to indicate a specific intent;
- 2. Fuzzy and exploring behavior two common pattern of "ring" and "star", however, ring pattern is more often to appear in exploring behavior and star pattern is more often to appear in fuzzy behavior;
- 3. Pattern of "hesitation" usually attached to a cluster or a ring but not appear in a star.

5.4.2 Cross user Overlap Patterns

In the previous discussion we discovered the common patterns that appears in individuals. Nevertheless, it is still interesting to explore how action paths are manifest to multiple participants. Fortunately, we observed there are intersections among multiple subjects.

Pattern of "overlap" occurs when we observing action paths on multiple participants. Figure 5.10 and 5.11 are the the action paths visualized for same four participants in Medium's goal-oriented task and Dribbble's exploring task respectively. One can define a n-overlap ratio is the number of blacken nodes devided by total number of nodes in the action paths of n participants. Obviously, the maximum number of 4-overlap ratio is 100.0%, and the minimum 4-overlap ratio is 0.00%.

Figure 5.10: Example of "overlap" pattern in Medium's goal-oriented task: this figure visualize the clickstream intersection of four participants at Medium's goal-oriented task. Each color represents an individual clickstream except black nodes, which represents the overlapping of different clickstreams. The overlap ratio of this graph is 9.43%.

However, the highest 4—overlap ratio and the lowest 4—overlap ratio we observed from our dataset is 11.84% in goal-oriented task and 0.00% when compare two different tasks, therefore we argue that, the browsing behavior tend to be *user-specific* even users has same goal in a task, however they still share similar overlaps which suggests a *common interests*.

Figure 5.11: Example of "overlap" pattern in Dribbble's exploring task: this fugure visualize the clickstream intersection of four participants at Dribbble's exploring task. Each color represents an individual clickstream except blacken nodes, which represents the overlapping of different clickstreams. The overlap ratio of this graph is 1.15%.

In exploring task, the 4—highest overlap ratio is 1.15%, which is showed in Figure 5.11. The only common blacken node is the starting page. This observation suggests us that explroing browsing behavior is highly user-specific. Therefore, in conclusion, the overlap pattern of action path among multiple users suggests:

- Browsing behavior tend to be user specific, however we cannot confirm whether it is user-specifc because we have an issue with lack of data.
- Specifically, in goal-oriented browsing behavior, one can observe common interests between multiple subjects, whereas the exploring tasks has no intersection between subjects.

Remark Table 5.4 shows an analysis of all observed patterns based on Ellis' model, which explains why these patterns exists and how they contributes to our action path model.

• For cluster pattern, as we discussed before, information need can be observed from action path behavior, and the differentiating and monitoring contributes to the partitioning characer of the pattern and extracting and information then contributes to the short ring and single hesitations because the information are specified clearly.

Table 5.4: Existence of activities from Ellis' Model and information use in the observed patterns

Behaviors	Information Need	Information Seeking						Information Use
Denaviors		Starting	Chaining	Browsing	Differentiating	Monitoring	Extracting	· Illioi mation Osc
cluster	observed				Exist	Exist	Exist	Exist
star			Exist	Exist	Exist			
ring		Exist	Exist					
hesitation	observed		Exist		Exist	Exist		
overlap	observed						Exist	Exist

- For star pattern, we can neither observe information need from action path nor did the participant uses information that find in star pattern. In Ellis' model, chaining, browsing and differentiating contributes to this pattern since the deptch from root to leaf node are small.
- For ring pattern, we also can neither observe information need or information use, the user explores deeper and deeper along the ring until the user exit the browsing session.
- For hesitation, it connects to ring and cluster pattern, therefore they have common activities of chaining, differentiating and monitoring. However, information from hesitations are not used but one can easily observe the hesitation.
- For overlap, we can observe common interests, which indicates inforantion needs and use, the extracting and information use contributes more to represent this behavior.

Combining with Table 4.3, cluster pattern and overlap pattern essentially contributes to goaloriented browsing behavior since they share common activities in this behavior, star and ring patterns contributes more on fuzzy and exploring tasks since their activities are more close to these browsing behaviors, besides, as we discussed before, these patterns can not observe a clear information use. In addition, the hesitation pattern appears in star, ring and cluster pattern becuase of they have common activities, such as chaining and differentiating.

6 Applications

This chapter we first introduce a possible application of our proposed model including the implemented feature, how it could benefit a user, as well as the architecture and dataflow within the application. Then in the second part of this chapter, we formalize and discusse the possibility and benefits as a standard Web API to web developers and website designer.

6.1 Client-side Browser Plugin

We developed a client-side browser plugin is an illustration of our model applications. The plugin is an intelligent system that proactively serves its user, and it provides proactive notification based on the historical actions in a session when browsing behavior is detected as goal-oriented or fuzzy behavior, as illustrated in Figure 6.1.

Figure 6.1: Proactive notification: The plugin injects monitor script when the page is loaded, and then serve user giving notification when detecting fuzzy browsing behavior.

The user can either select "Yes" and navigates to the most likely page that he/she will visit in the future, or select "No" to ignore the notification. The plugin serves user only if the browsing behavior is detected as fuzzy behavior because of the forbear of notification. We argue that the plugin is only a supplementary of improving browsing experience but not always necessary, for instance in exploring behavior, information need of a user may not be clearly observed and the recommendations are not usefulness. One of the benefits of the plugin is to proactively help the user become efficient and reach the destination as fast as possible in goal-oriented browsing.

Figure 6.2: The plugin provided popup page: users can always open the page to understand the current status of browsing and predicted needs based on historical actions in a browsing session. In this case, the detected browsing behavior is under goal-oriented browsing, and predicted actions are accessing the page of public repositories and accessing a specific repository.

In Figure 6.2, except proactive notification, users can always open a popup page provided by the plugin. The popup page provides another interaction that gives the predicted needs based on historical user actions. A user can always interact with the plugin and retrieve the possible needs and browsing status in the current session. These information are helpful to the plugin user because the user can understand what is the current status of web browsing, which implicitly aware the person better focus if the person detected as exploring browsing behavior.

Figure 6.3: The implemented architecture of our plugin

The implementation and architecture is not simple despite it provides a small feature that exhibit context and future inforantion to the user. Figure 6.3 illustrates the implemented architecture of the plugin.

First of all, the plugin daemon process will inject monitoring script (*step2*) to the newly opened page (*step1*). When user start browsing and interacting (*step3*), the injected script will report the referring of previous visited URL, current URL and stay duration to the daemon process of the plugin (*step4*).

Afterwards, the daemon process will report the referring information to the plguin server web-hook (*step5*), and then the webhook will immediatelly request the intra prediction microservice (*step6*) and resulting a prediction (*step7*) then response a prediction result to the daemon process by using a pre-trained model (*step8*). Therefore the daemon process can decide if a proactive notification should be presented to the user or simply update its popup page just for illustration (*step9*).

Since the prediction service received a new user action, it stores the action into database subsequently for model update (*step10*). Because of the cost of train a new model, the prediction service can decide to trigger training service to retrain the model if already received enough new data (*step11*). Further, the training service uses the pre-trained model as a base model to initiate the training by request newly created data from databse (*step12* and *step13*), similar to the idea of transfer learning. After the training achieved a compatible performance comparing to the pre-trained model, the training service will update the newly trained model to the prediction service (*step14*), which serves future prediction requests.

As we can observe from the architecture, the infrastructure is not as simple as the plugin feature intent to provide, therefore we argue that it is a feature that only browser manufactures can provide. In the following section, we formalize and discuss the possibilities of the plugin feature as a Web API.

6.2 Web API Standardization and Platform-as-a-Service

Web APIs is a generic term used in various fields of development. Web APIs in a context of web browsers mainly indicates the APIs provided by browser manufactures to developers that helps web application can even close to manipulate hardwares, for instance, WebAssembly [W3C, 2018].

Nowadays, there are experimental standard Web APIs integrates complex features to web developers, e.g. Web Speech APIs [Shires, Glen and Jaegenstedt, Philip, 2018], and only Google Chrome (after version 24) support. The specification proposal was initiated by Google, according to the source code of Chromium Kernel, the APIs are implemented based on the speech recognition service provided by Google Cloud Platform ¹, which provides us a signal that browser APIs does not only giving interfaces to the hardware, but also access cloud platform services, i.e. Platform-as-a-Service integrated APIs.

The plugin we illustrated in Section 6.1 can also be integrated as a PaaS API that embedded into web browsers, which simplifies the infrastructure of the plugin. As a developer, one can simply call the standardized API to report current user actions then get a response of current behavior status and the prediction of future movement or actions, as the diagram shown in Figure 6.4.

Figure 6.4: Usage overview of standadized BrowsingBehavior API

Defining the specification of the Paas API aims enable web developers to monitoring, in a web browser, the future actions of their user. Developers can use the predicted actions to dynamically change the UI elements then improve the user experience of their product. To keep the API to a minimum, we breifly discuss the non-normative web API design of the browsing behavior predictor.

6.2.1 The Browsing Behavior Interface

The browsing behavior interface is the scripted web API for resulting a monitored browsing session, which is presented in Code 1.

```
[Exposed=Window, Constructor]
  interface BrowsingBehavior : EventTarget {
2
3
       // methods to drive browsing behavior response
       void start();
5
       void stop();
6
       void pause();
       void resume();
8
       // event methods
10
       attribute EventHandler onBrowsingStart;
11
```

https://github.com/chromium/chromium/blob/83928864c18362a4b0f84bad9bee4104f4655430/ content/browser/speech/speech_recognition_engine.cc#L35, last accessed on January 03, 2019

```
attribute EventHandler onBrowsingEnd;
attribute EventHandler onBrowsingPause;
attribute EventHandler onBrowsingResume;
attribute EventHandler onResult;
}
```

Code 1: BrowsingBehavior Interface

start() method When start method is called, it represents the moment in time the web application wishes to begin monitoring user's actions. Then every step when user making actions, the EventHandler onResult will produce a standard prediction and classification of user browsing behavior. Further, the EventHandler onBrowsingStart will be called immediately after calling this method and before resulting a prediction result, which gives a barrier in between of calling start and callback onResult.

stop() method When stop method is called, it represents the instruction to browsing behavior service to stop monitoring user actions, and resulting a final prediction in the *EventHandler on-BrowsingEnd*.

pause() method This method is used to ignoring the upcoming user actions to pauses the monitoring of user actions, and resulting a prediction in the *EventHandler onBrowsingPause*.

resume() method This method resumes the paused *BrowsingBehavior* object and recover the monitoring of user actions. Before monitoring is fully recovered, the *EventHandler onBrowsingResume* will be called.

The major consideration of designing these four methods is to restrict an abuse of the APIs. Similar to cookie, speech recognition APIs, a website should acquire an authorization from their user, otherwise the API cannot monitor any user actions on the web, which partially solves the issue of privacy and security. We will discuss more concerns of the feature in Chapter 7.

6.2.2 onResult callback

onResult callback passes the prediction after the browser user performed an action. The prediction result consist two parts: behavior and future movements.

The *behavior* attribute of the result object is a JSON object that contains confidence level, i.e. classification probability, and a enumerate *category* attribute that indicate the a finite set of user browsing behaviors, i.e. goal-oriented, fuzzy or exploring.

```
"behavior": {
2
            "confidence": float64,
3
            "category": string,
4
       "futures": [
6
            {
7
                "confidence": float64,
                "actions": array[string],
            },
10
11
                "confidence": float64,
12
                "actions": array[string],
13
            },
14
15
```

```
16 ]
17 }
```

Code 2: Result object of onResult callback

The *futures* attribute of the result object is an ordered JSON object that from the highest *confidence* to lowerest confidence and the *confidence* is a floating number from minimum 0 to maximum 1 value. Meanwhile, the *actions* attribute in a JSON object of an item of *futures* array is an array of possible actions of URLs that ordered in chronologic order, the first element represents the next immediate action, and the last element represents the final action in the session, as shown in Code 2.

```
1 {
2     "device_id": string,
3     "previous_url": string,
4     "current_url": string,
5     "stay_seconds": float64,
6     "time": string
7 }
```

Code 3: Formation of browser collections

From the perspective of implementation, browser manufactures collect data after developer calls *start()*. In Code 3, each time when user performs an action, including open a new page, switch to another tab or backtrack to former page, will result an JSON object that contains *device_id* a unique identifier that represents the device, *previous_url* the previous URL of the action, *current_url* the current URL of the action, *stay_seconds* the stay duration of *previous_url* and *time* string of the time of data creation.

7 Discussion

We proposed an action path model that models a sequence of user actions and their decision time of each action simultaneously. Then we designed and conducted a user study that collects action paths from participants with different browsing behavior. We discuss our main findings and the limitations of this work in this chapter.

7.1 Main Findings

Clickstream Modeling The action path model combines an entire action level clickstream, and the stay duration of each action into action path encoder. Our quantitative results indicate that a simply model can easily classify existing three type of browsing behaviors with 100% of accuracy, i.e. goal-oriented, fuzzy and exploring. Even further, the model is able to universally (corss-user) predict 3 to 5 future visit page with given 95 percent of browsing context.

Browsing Behaviors and Patterns We concluded three browsing behaviors based on information behavior theory that describes three process of web browsing. Our qualitative analysis first interpret the total number of actions are more important to contributes the indication of goal-oriented behavior, and the toal stay duration and completion efficiency are more important to indicate exploring behavior.

Afterwards, we also observed five patterns from client-side clickstream, the ring and star patterns appears in fuzzy and exploring tasks, ring pattern is more often in exploring task, and the star pattern is more often in fuzzy task because of differentiating of information use. A cluster pattern is an indiccation of an individual intent while browsing, and it may connects few hesitation pattern. The overlap pattern discovered in the collected action path gains a low overlap ratio, which suggests action path tend to be a user-specific behavior but reserve a small region as common interest in goal-oriented browsing behavior. Next, an analysis based on Ellis' model and Wilson's theory explose the relationship of these patterns to the proposed browsing behaviors, and these patterns partially represents a browsing behavior. Finally, since the model encodes the entire client-side clickstream and stay duration, the analysis also explains the reason why our model archieves such a good performance.

Why the task difficulty is not measured through NASA-TLX?

Why leave-one-out cross validation is not applied in classification task?

7.2 Limitations and Future Works

Lack of data This thesis has a limitation of the lack of data. Though we collected 189 click-streams from 21 subjects, however, comparing to the baseline action path model with 90323 parameters in Chapter 5, the dataset is still an tiny dataset for the training and learning task. Moreover, the validation loss (in Figure 5.3) suggests our model remains large capacity to learn more categories of browsing behavior, and prediction performance may be improved via reparematrization (in Figure 5.5), it is still very interesting to see the performance of our model on a large dataset, and how the this model can adapts to more informations on the web, such as the topic of a page, and interpret more detail with attention mechanism.

Data collection Our work simulates three proposed browsing behavior through carefully designed browsing tasks. This method only limit to a small group of users, which is not an appropariate apparoch for a large dataset collection. We planed to conducting a field study that

install a clickstream collector while a week, however there are only two subjects after our lab study are willing to participate to the field study.

Reinforcement learning appraoch As described in Chapter 3, the dataset that applies to our action path model is an action-level dataset, which means the sequence of URLs are essentially an series of user actions. This could inspire us to use reinforcement learning appraoch to train an agent that could explore and learn the environment of the web. Eventually, the agent will be able to learn and optimize the experience of browsing on the web, which implicitly solves the problem of data collection and the lack of supervised data.

Privacy This work monitors an action level of clickstream, which stores all browsing history of an individual person on a thirdparty databases, and hence brings a trust and privacy issue of the application. We positively argue that this is an trust issue between users and service providers. As we discussed in Chapter 6, browser providers collect the data anonymously, and users use the browser because of trusts, then world wide web consortium formalizes a standardized web API to developers for using this information, and as a browser user can either authorize developers to use this API or give an explicit rejection.

Proactive serving We are in the era that intellegent system surrounding us. The way we interact with intellegent system is not as nature as we interact with other people. Communications or interactions between humans in a context does not require any trigger word, and a person can brush out a needs or reacts to another immediately. The action path prediction gives an working example that shows proactive serving is possible if we monitors the environment of web browsing. Therefore, it is interesting to study how this feature could be used by a user and how users reacts to the elimination of interaction trigger of an intellegent system.

8 Conclusions

This thesis proposed an action path model that describes client-side user clickstream, as known as action path. To justify our model, we designed nine browsing tasks for three qualitatively discussed browsing behavior based on the theory of information behavior, then held a user study for these tasks that simulates the behaviors. Afterwards, we applied the collected data from user study to our action path model and analysed the model performance to these data with comparison to traditional machine learning approach. Subsequently, we also visualized these data and closely discovered the common, individual and intersection patterns among client-side clickstream. As an application show case, we illustrated a browser plugin that monitors client-side user clickstream to predict future movements of web browsing and discussed the benifits of this plugin. Futhermore, we presented a generic architecture communication flow and architecture of the plugin, as well as the possibilities of standardize the plugin feature as browser Web APIs to other developers.

Our finding answers the research questions that motivates this thesis:

• Understanding:

- client-side clickstream is different than server side clickstream because of the existence
 of parallel visiting and multiple website visiting, three suggested browsing behaviros
 are: goal-oriented, fuzzy and exploring behaviors;
- 2. number of actions, total stay duration and completion efficiency cannot provide an accurate classifier for these three behaviors, and the number of actions are more important than others for indication of goal-oriented browsing behavior but other two features are more important for indication of exploring behavior;
- 3. the observed patterns in action path including cluster, hesitation, ring, star and overlap contributes to different browsing behaviors;
- 4. Action path tend to be user-specific but still contains a small group of common interests in goal-oriented behaviors;
- Classification: the proposed action path model 100.0% accurately classified three browsing behavior;
- Prediction: three to five future steps prediction can be accuratelly (>60%) predicted.

Our findings are generic and subservience. The model is an action level model that models sequence of user actions and time of decision makings (stay duration), which means it can be use on desktop and also can be implemented in context of a mobile devices, or even a outside the context of web browsing. Similar to other user behavior data, client-side user clickstream or user actions directly indicates movements of a user and how they making decisions. Understanding, interpreting and predicting these data not only improves the user experience when doing web browsing, but also useful to help users reducing useless browsing, better controls and manages their time. Moreover, by standardize the data processing process can formalize the feature to developers, and then help them using the behavior predictions to improve user experience of their products.

Traditional server collected clickstream data has been proved its high value in many fields. With our work we exposit the value one-step forward, and contributes to models and approaches that hope to bring ponderable research to the community and industry.

Appendix

All resources relates to the thesis are open source, they can be found publicly in ²:

- Thesis homepage: https://changkun.us/thesis/;
- GitHub repostory: https://github.com/changkun/MasterThesisHCI/.

All related text, picture and video content are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License³. The other parts of the thesis (such as program source code) are licensed under a MIT Public License⁴.

A Content of enclosed CD

- 1. /docs/ Documents regarding scheduling and discussion during the thesis
- /experiments/ Raw user study designs, raw datasets collected from field study, pilot study
 and lab study in the thesis. Besides, analysis code to the collected dataset are located in this
 folder.
- 3. /keynotes/ The raw keynote files of thesis commencement and defence presentation slides.
- 4. /src/ Developed applications. This folder contains four applications that produced in the thesis: crawler is a web spider that collects then entire link relationships in medien.ifi.lmu.de; gink is a website that reponsible for crowdsourcing labeling tasks in the wild; mortal is the developed web plugin that mentioned in the chapter of application, it has a microservice server and three browser plugin derivatives including lab study collector, field study collector and browsing predictor;
- 5. /thesis/ The LATEX source code of the thesis, as well as a compiled PDF version.
- 6. /LICENSE An MIT License to all enclosed source code in the CD
- 7. /README.md A brief description of the content enclosed in the CD

²The contents found from these links may be revised that differ from contents from enclosed CD.

³http://creativecommons.org/licenses/by-nc-sa/4.0/

 $^{^4}$ https://github.com/changkun/MasterThesisHCI/blob/master/LICENSE

B Tasks and Questionnaire in Lab Study

B.1 Phase 1: Browsing Task

This section approximately takes 80 minutes.

In this study, you are asked to accomplish a series of tasks provided in the table below. Please read the following tips carefully before you do the task ⁵.

- 1. **Please start from the given starting page.** You can then visit any other page. For instance, if you find a task too difficult, you can visit any other websites that help you accomplish the task (e.g. Google as a search engine), but you should only use the browser.
- 2. The tasks are designed to take **5 10 minutes**. Do not feel stressed if you spend more time because you have 80 minutes in total to **do the 9 tasks**. You will be notified if you spend more than 10 minutes on a task. You can decide to go to the next task or spend some to accomplish the unfinished task.
- 3. Close the browser before you start working on the next task.
- 4. Unfortunately, questions cannot be answered while doing the tasks. Please ask them before starting a task if something is not clear.

B.1.1 Task Group 1: Amazon.com

Task Category: Shopping

1. Assume your smartphone was broken and you have 1200 euros as your budget. You want to buy an iPhone, a protection case, and a wireless charging dock. Look for these items and add them to your cart.

Requirement to Finish: Click "Proceed to checkout" when you finished, exit the browser when you see the "sign in" page.

2. You want to buy a gift for your best friend as a birthday present. Add three items to your cart as candidate.

Requirement to Finish: Click "Proceed to checkout" when you finished, exit the browser when you see the "sign in" page.

3. Look for a product category that you are interested in and start browsing. Add three items to your cart that you would like to buy.

Requirement to Finish: Clicked "Proceed to checkout" when time is up, exit the browser when you see the "sign in" page.

How difficult was the task? (15, 1 means very easy, 5 means very difficult)

B.1.2 Task Group 2: Medium.com

Task Category: Media

⁵The order of the tasks are rearranged through Latin square, this section only illustrate one possible order of tasks

1. Assume you were making plans for your summer vacation. You want to visit Tokyo, Kyoto, and Osaka. You want to find out what kind of experience other people made when traveling to these three places in Japan. Your task is to find three posts for traveling tips regarding these cities. Elevate a post if it is one of your choices.

Requirement to Finish: Write down three tips. Close the browser when you are finished.

2. Assume you got an occasion to visit China for business. You are free to travel to China for a week. You want to make a travel plan for touring China within a week. Your task is to find out what kind of experience other how people made when going to secondary cities or towns in China, then decide on three cities you want to visit (excluding Beijing, Shanghai, Guangzhou, and Shenzhen). Elevate if a post helped you make a decision.

Requirement to Finish: Write down the names of the cities you decided. Close the browser when you are finished.

3. Visit a category you are interested in and elevate the post you like.

Requirement to Finish: Close the browser when time is up.

How difficult was the task? (1 5, 1 means very easy, 5 means very difficult)

B.1.3 Task Group 3: Dribbble.com

Task Category: Design

1. You are hired to a Cloud Computing startup company. You get an assignment to designing the logo of the company. Search for existing logos for inspiration and download three candidate logos you like the most.

Requirement to Finish: Close the browser when you finished the download.

2. You are preparing a presentation and need one picture for each of these animals: cat, dog, and ant. Download the three pictures you like the most.

Requirement to Finish: Close the browser when you finished the download.

3. Explore dribbble and download images you like the most while you browse.

Requirement to Finish: Close the browser when you finished the download.

How difficult was the task? (1 5, 1 means very easy, 5 means very difficult)

B.2 Phase 2: Questionnaire

This section approximately takes 10 minutes.

- 1. Age: ____
- 2. Gender: Female / Male
- 3. What is your study program or occupation?
- 4. What are the websites that you access mostly? List your top-5 (max 10, including private use).

- 5. What do you usually do when you access these websites? Shortly answer your case for all the websites you listed in above and name two common reasons, ordered by frequency. (For example, for YouTube, the most common reason could be "Just for fun", the second most common reason "Looking for tutorial". Then write as "Mostly for fun, sometimes for learning" below.)
- 6. Do you use bookmarks to save webpages that you have found through a search engine? If so, why?
- 7. Which browser do you use mainly on your PC or Mac? Chrome / Safari / IE / Microsoft Edge / Firefox / Others, the name is: _____
- 8. Would you like to participate in a follow-up study? The study will ask you to install a browser plugin for a week which anonymously records your browsing history. Yes / No
- 9. Do you have any feedback on this questionnaire?

B.3 Unselected Tasks

This section lists all designed tasks but unselected to lab study.

B.3.1 Goal-oriented Task

- www.github.com: You are comparing three most popular frontend desktop frameworks: Electron / NW.js / ReactNative Desktop. Your goal is to find out the latest release download link.
- 2. **www.medien.ifi.lmu.de**: You are a fresh medieninformatik student major in HCI program. You wants to find out recommended first semester study plan provided by the program, then select "Human-Computer Interaction II" opened in WS18/19 and check previous "Human-Computer Interaction I" opened in SS18 and SS17.
- 3. **www.en.uni-muenchen.de**: You are a international student who want to apply economics program for your master study at LMU. Find the page for application requirement.
- 4. **www.ielts.org**: You live in Munich, you want to participate to IELTS test next year on Feburary. Looking for the entrace to register the examination. You must keep seeking and stop when you selected the first track of Feburary test.
- 5. **www.bloomberg.com**: You somehow heared about Bloomberg reported a news about China use tiny chips infiltrate U.S companies. You wants to find the article.
- 6. **www.reddit.com**: You are a fan of Marvel comics, you want to view some spoilers regarding a comming moive "The Avengers 4". Find latest three post that spoilers The Avengers 4.
- 7. **www.facebook.com**: You are a facebook user, and you have a wide social. However you don't wants to see parenting information in your timeline, you wish to turn them off for a year from your timeline; then recently you start interested in ping pong, you want to join a related local group.
- 8. **www.twitter.com**: You lost your phone and phone number, and you bought a new one. However the old phone number was registered in your twitter account, you want to change it for your account safety. Please find the entrace to change your phone number and password. Then you becomes curious on twitter's settings. You want to know how twitter use your data and prevent twitter collect your data.

- 9. **www.youtube.com**: You want to be a Youtuber. You wants to know how to earn money from making videos, and what should you concern when you publishing a video.
- 10. **www.google.com**: You can't access your gmail. You want to findout whether gmail are current malfuntioning or not. Contact instance messaging support.

B.3.2 Fuzzy Task

- 1. **www.github.com**: You were a senior developer. Your boss wants you write a report regarding the tends of current development techniques. You want to find the most three popular (top-3 stars) web backend Go frameworks and access their repository, write their name down on a paper when you decided.
- 2. **www.medien.ifi.lmu.de**: You are a fresh medieninformatik student. You wants to select three lectures, one seminar and one practicum for your study in WS18/19.
- www.arxiv.org: Find the most recent published a overview paper for these three topics respectively: affective computing, convolutional neural networks, distributed consistency algorithm.
- 4. **www.google.com**: You want to know how google profiling you based on your history. Find your personality profile that created by Google.
- 5. **www.bloomberg.com**: You want to find the relevant news regarding the progress of China use tiny chips infiltrate U.S companies.

B.3.3 Exploring Task

- 1. **www.github.com**: Browsing github and select three github repository your most interested in.
- 2. www.medien.ifi.lmu.de: Browsing the website until time is up.
- 3. www.en.uni-muenchen.de: Browsing the website until time is up.
- 4. www.ielts.org: Browsing the website to see what you can do except register to examination.
- 5. **www.bloomberg.com**: Browsing the website until time is up.
- 6. www.reddit.com: Browsing the website until time is up.
- 7. **www.facebook.com**: Browsing the website until time is up.
- 8. **www.twitter.com**: Browsing the website until time is up.
- 9. www.youtube.com: Browsing the website until time is up.
- 10. www.arxiv.org: Browsing the website for categories you interested in until time is up.
- 11. www.google.com: Browsing google until time is up.

C Raw Data Illustration

C.1 Subjective Difficulty Score from Lab Study

Table C.1 illustrates the raw subjective difficulty score from all of our participants.

Table C.1: Subjective	task difficulty	from lab study
-----------------------	-----------------	----------------

Subject ID	Amazon.com	Medium.com	Dribbble.com
0	2, 1, 2	2, 4, 1	2, 3, 2
1	2, 2, 1	2, 3, 1	1, 5, 1
2	3, 2, 2	2, 5, 3	3, 1, 3
3	3, 4, 2	2, 5, 2	3, 3, 2
4	2, 1, 3	3, 5, 3	2, 1, 3
5	2, 2, 1	3, 4, 1	1, 3, 2
6	3, 4, 2	3, 5, 3	4, 3, 2
7	1, 1, 1	3, 5, 2	2, 1, 1
8	2, 3, 2	2, 5, 2	3, 1, 1
9	1, 3, 2	2, 3, 2	2, 3, 3
10	2, 2, 3	1, 4, 5	1, 2, 3
11	3, 2, 1	3, 4, 1	3, 2, 2
12	4, 1, 3	5, 4, 2	2, 2, 1
13	2, 2, 2	2, 3, 1	2, 2, 1
14	5, 1, 3	2, 4, 1	4, 2, 3
15	1, 2, 1	1, 3, 1	1, 1, 1
16	3, 1, 1	3, 4, 3	2, 2, 3
17	2, 2, 1	2, 3, 1	3, 2, 2
18	3, 2, 2	2, 2, 1	1, 1, 2
19	1, 3, 2	3, 5, 1	2, 3, 2
20	3, 3, 2	3, 5, 4	2, 3, 5

C.2 Raw clickstream data

Code 4 is an illustration of the collected clickstream data.

```
2
           "task_id": 1,
           "clickstream":
               {"user_id":1, "previous_url": "", "current_url": "https://
      www.amazon.com/","stay_seconds":26.214,"time":"2018-12-03T19
      :44:19Z"},
               {"user_id":1, "previous_url": "https://www.amazon.com/","
      current_url":"https://www.amazon.com/s/ref=nb_sb_noss_2?url=
      search-alias%3Daps\u0026field-keywords=iphone","stay_seconds"
      :10.712, "time": "2018-12-03T19:54:19Z"},
               {"user_id":1,"previous_url":"https://www.amazon.com/s/
      ref=nb_sb_noss_2?url=search-alias%3Daps\u0026field-keywords=
      iphone", "current_url": "https://www.amazon.com/s/ref=nb_sb_noss?
     url=node%3D7072561011\u0026field-keywords=iphone+xs\u0026rh=n%3
      A7072561011%2Ck%3Aiphone+xs","stay_seconds":6.099,"time":"
      2018-12-03T19:54:25Z"},
               {"user_id":1, "previous_url": "https://www.amazon.com/gp/
10
      product/handle-buy-box/ref=dp_start-bbf_1_glance","current_url":
```

```
"https://www.amazon.com/gp/huc/view.html?ie=UTF8\
     u0026newItems = C788d76cc - 7a30 - 44cc - 8041 - 85993f4d6716%2C1","
     stay_seconds":10.282,"time":"2018-12-03T19:57:40Z"},
              {"user_id":1,"previous_url":"https://www.amazon.com/gp/
11
     huc/view.html?ie=UTF8\u0026increasedItems=C788d76cc-7a30-44cc
     -8041 - 85993f4d6716 \setminus u0026newItems = C788d76cc - 7a30 - 44cc - 8041 - 85993
     f4d6716%2C1","current_url":"https://www.amazon.com/gp/cart/view.
     html/ref=lh_cart_vc_btn", "stay_seconds":1.886, "time": "2018-12-03
     T19:57:41Z"},
              {"user_id":1, "previous_url": "https://www.amazon.com/gp/
12
     cart/view.html/ref=lh_cart_vc_btn","current_url": https://www.
     amazon.com/ap/signin","stay_seconds":71.552,"time":"2018-12-03
     T19:58:53Z"},
          ]
13
      },
14
      {
15
16
17
18
  ]
```

Code 4: Formation of browser collections

Bibliography

References

- [Aceto et al., 1994] Aceto, S., Delrio, C., Dondi, C., Fischer, T., Kastis, N., Klein, R., Strauss, A., and Corbin, J. (1994). Grounded theory methodology: An overview. *Handbook of qualitative research. Thousand Oaks: Sage Publications*.
- [Amo Filvá et al., 2018] Amo Filvá, D., Alier Forment, M., García Peñalvo, F. J., Fonseca Escudero, D., and Casany Guerrero, M. J. (2018). Learning analytics to assess students behavior with scratch through clickstream. In *Proceedings of the Learning Analytics Summer Institute Spain 2018: León, Spain, June 18-19, 2018*, pages 74–82. CEUR-WS. org.
- [Baumann et al., 2018] Baumann, A., Haupt, J., Gebert, F., and Lessmann, S. (2018). The price of privacy: An evaluation of the economic value of collecting clickstream data. *Business and Information Systems Engineering*.
- [Benevenuto et al., 2009] Benevenuto, F., Rodrigues, T., Cha, M., and Almeida, V. (2009). Characterizing user behavior in online social networks. In *Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement*, IMC '09, pages 49–62, New York, NY, USA. ACM.
- [Brodwin, D., D. O'Connell, and M. Valdmanis., 1995] Brodwin, D., D. O'Connell, and M. Valdmanis. (1995). Mining the Clickstream, pages 101–106.
- [Bucklin and Sismeiro, 2000] Bucklin, R. E. and Sismeiro, C. (2000). How sticky is your web site? modeling site navigation choices using clickstream data. Technical report, Working paper, Anderson School UCLA.
- [Carr, 2000] Carr, N. G. (2000). Hypermediation: commerce as clickstream. *Harvard Business Review*, 78(1):46–47.
- [Cavoukian, 2000] Cavoukian, A. (2000). Should the oecd guidelines apply to personal data online. In A report to the 22nd international conference of data protection commissioners.
- [Chatterjee, Patrali and Hoffman, Donna L and Novak, Thomas P, 2003] Chatterjee, Patrali and Hoffman, Donna L and Novak, Thomas P (2003). Modeling the clickstream: Implications for web-based advertising efforts. *Marketing Science*, 22(4):520–541.
- [Chi et al., 2017] Chi, Y., Jiang, T., He, D., and Meng, R. (2017). Towards an integrated click-stream data analysis framework for understanding web users' information behavior. *iConference 2017 Proceedings*.
- [Cho et al., 2014] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. *CoRR*, abs/1406.1078.
- [Choo et al., 1999] Choo, C. W., Detlor, B., and Turnbull, D. (1999). Information seeking on the web: An integrated model of browsing and searching.
- [Cochran and Cox, 1950] Cochran, W. G. and Cox, G. M. (1950). Experimental designs.
- [Courtheoux, 2000] Courtheoux, R. J. (2000). Database marketing connects to the internet. *Interactive Marketing*, 2(2):129–137.
- [Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. *Numerische mathematik*, 1(1):269–271.

- [Ellis, 1989] Ellis, D. (1989). A behavioural model for information retrieval system design. *Journal of information science*, 15(4-5):237–247.
- [Ellis et al., 1993] Ellis, D., Cox, D., and Hall, K. (1993). A comparison of the information seeking patterns of researchers in the physical and social sciences. *Journal of documentation*, 49(4):356–369.
- [Ellis and Haugan, 1997] Ellis, D. and Haugan, M. (1997). Modelling the information seeking patterns of engineers and research scientists in an industrial environment. *Journal of documentation*, 53(4):384–403.
- [Fisher and Julien, 2009] Fisher, K. E. and Julien, H. (2009). Information behavior. *Annual Review of Information Science and Technology*, 43(1):1–73.
- [Friedman, Wayne and Weaver, Jane, 1995] Friedman, Wayne and Weaver, Jane (1995). Calculating cyberspace: tracking "clickstreams.".
- [Giannini, 1998] Giannini, T. (1998). Information receiving: A primary mode of the information process. *Proceedings of the ASIS Annual Meeting*, 35.
- [Gindin, 1997] Gindin, S. E. (1997). Lost and found in cyberspace: Informational privacy in the age of the internet. *San Diego L. Rev.*, 34:1153.
- [Goldfarb, 2002] Goldfarb, A. (2002). Analyzing website choice using clickstream data. In *The Economics of the Internet and E-commerce*, pages 209–230. Emerald Group Publishing Limited.
- [Graves, 2012] Graves, A. (2012). Sequence transduction with recurrent neural networks. *CoRR*, abs/1211.3711.
- [Gundala and Spezzano, 2018] Gundala, L. A. and Spezzano, F. (2018). Readers' demanded hyperlink prediction in wikipedia. In *Companion Proceedings of the The Web Conference 2018*, WWW '18, pages 1805–1807, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.
- [Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural computation*, 9:1735–80.
- [Huang et al., 2012] Huang, J., Lin, T., and White, R. W. (2012). No search result left behind: branching behavior with browser tabs. In *Proceedings of the fifth ACM international conference on Web search and data mining*, pages 203–212. ACM.
- [Huang and White, 2010] Huang, J. and White, R. W. (2010). Parallel browsing behavior on the web. In *Proceedings of the 21st ACM conference on Hypertext and hypermedia*, pages 13–18. ACM.
- [Johnson, Ross, 2017] Johnson, Ross (2017). Website Browsing Behavior Patterns. https://3.7designs.co/blog/2017/10/website-browsing-behavior-patterns. Accessed: 2018-12-29.
- [Jozefowicz et al., 2015] Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In *Proceedings of the 32Nd International Conference on International Conference on Machine Learning Volume 37*, ICML'15, pages 2342–2350. JMLR.org.

- [Kammenhuber et al., 2006] Kammenhuber, N., Luxenburger, J., Feldmann, A., and Weikum, G. (2006). Web search clickstreams. In *Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement*, IMC '06, pages 245–250, New York, NY, USA. ACM.
- [Kang, 1997] Kang, J. (1997). Information privacy in cyberspace transactions. *Stan. L. Rev.*, 50:1193.
- [Lin et al., 2012] Lin, M., Lin, M., and Kauffman, R. J. (2012). From clickstreams to search-streams: Search network graph evidence from a b2b e-market. In *Proceedings of the 14th Annual International Conference on Electronic Commerce*, ICEC '12, pages 274–275, New York, NY, USA. ACM.
- [Liu et al., 2010] Liu, C., White, R. W., and Dumais, S. (2010). Understanding web browsing behaviors through weibull analysis of dwell time. In *Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval*, pages 379–386. ACM.
- [Lori Lewis, 2017] Lori Lewis (2017). What Your Audience Is Doing When They're Not Listening To You. https://www.allaccess.com/merge/archive/26034/what-your-audience-is-doing-when-they-re-not. Accessed: 2018-12-28.
- [Lori Lewis, 2018] Lori Lewis (2018). What Happens In An Internet Minute: 2018 Update. https://www.allaccess.com/merge/archive/28030/2018-update-what-happens-in-an-internet-minute. Accessed: 2018-12-28.
- [Lourenço and Belo, 2006] Lourenço, A. G. and Belo, O. O. (2006). Catching web crawlers in the act. In *Proceedings of the 6th International Conference on Web Engineering*, ICWE '06, pages 265–272, New York, NY, USA. ACM.
- [Lyons and Henderson, 2005] Lyons, B. and Henderson, K. (2005). Opinion leadership in a computer-mediated environment. *Journal of Consumer Behaviour: An International Research Review*, 4(5):319–329.
- [Mandese, 1995] Mandese, J. (1995). Clickstreams' in cyberspace. Advertising Age, 66(12):18–18
- [Mann and Whitney, 1947] Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. *The annals of mathematical statistics*, pages 50–60.
- [Meier and Elsweiler, 2016] Meier, F. and Elsweiler, D. (2016). Going back in time: An investigation of social media re-finding. In *Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '16, pages 355–364, New York, NY, USA. ACM.
- [Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word representations in vector space. *CoRR*, abs/1301.3781.
- [Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, *Advances in Neural Information Processing Systems* 26, pages 3111–3119. Curran Associates, Inc.
- [Mobasher et al., 2001] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. (2001). Effective personalization based on association rule discovery from web usage data. In *Proceedings of the 3rd International Workshop on Web Information and Data Management*, WIDM '01, pages 9–15, New York, NY, USA. ACM.

- [N and Ravindran, 2018] N, C. T. and Ravindran, B. (2018). A neural attention based approach for clickstream mining. In *Proceedings of the ACM India Joint International Conference on Data Science and Management of Data*, CoDS-COMAD '18, pages 118–127, New York, NY, USA. ACM.
- [Novick, Bob, 1995] Novick, Bob (1995). Internet Marketing: The Clickstream. http://www.im.com/archives/9503/0375.htmlhttp://www.im.com/archives/9503/0375.html. Accessed: 2018-12-10.
- [Padmanabhan et al., 2001] Padmanabhan, B., Zheng, Z., and Kimbrough, S. O. (2001). Personalization from incomplete data: What you don't know can hurt. In *Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '01, pages 154–163, New York, NY, USA. ACM.
- [Park et al., 2017] Park, J., Denaro, K., Rodriguez, F., Smyth, P., and Warschauer, M. (2017). Detecting changes in student behavior from clickstream data. In *Proceedings of the Seventh International Learning Analytics & Knowledge Conference*, LAK '17, pages 21–30, New York, NY, USA. ACM.
- [Reagle and Cranor, 1999] Reagle, J. and Cranor, L. F. (1999). The platform for privacy preferences. *Communications of the ACM*, 42(2):48–55.
- [Reidenberg, 1996] Reidenberg, J. R. (1996). Governing networks and rule-making in cyberspace. *Emory LJ*, 45:911.
- [Reidenberg, 1999] Reidenberg, J. R. (1999). Resolving conflicting international data privacy rules in cyberspace. *Stan. L. Rev.*, 52:1315.
- [Reinfelder et al., 2014] Reinfelder, L., Benenson, Z., and Gassmann, F. (2014). *Differences between Android and iPhone Users in Their Security and Privacy Awareness*, pages 156–167.
- [Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neuro-computing: Foundations of research. chapter Learning Representations by Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA.
- [Sadagopan and Li, 2008] Sadagopan, N. and Li, J. (2008). Characterizing typical and atypical user sessions in clickstreams. In *Proceedings of the 17th International Conference on World Wide Web*, WWW '08, pages 885–894, New York, NY, USA. ACM.
- [Sandoiu, Ana, 2018] Sandoiu, Ana (2018). Do Android and iPhone users have different personalities? https://www.medicalnewstoday.com/articles/314376.php. Accessed: 2019-01-04.
- [Schneider et al., 2009] Schneider, F., Feldmann, A., Krishnamurthy, B., and Willinger, W. (2009). Understanding online social network usage from a network perspective. In *Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement*, IMC '09, pages 35–48, New York, NY, USA. ACM.
- [Schonberg et al., 2000] Schonberg, E., Cofino, T., Hoch, R., Podlaseck, M., and Spraragen, S. L. (2000). Measuring success. *Communications of the ACM*, 43(8):53–57.
- [Shimada et al., 2018] Shimada, A., Taniguchi, Y., Okubo, F., Konomi, S., and Ogata, H. (2018). Online change detection for monitoring individual student behavior via clickstream data on ebook system. In *Proceedings of the 8th International Conference on Learning Analytics and Knowledge*, LAK '18, pages 446–450, New York, NY, USA. ACM.

- [Shires, Glen and Jaegenstedt, Philip, 2018] Shires, Glen and Jaegenstedt, Philip (2018). Web Speech API. https://w3c.github.io/speech-api/. Accessed: 2019-01-03.
- [Skok, 1999] Skok, G. (1999). Establishing a legitimate expectation of privacy in clickstream data. *Mich. Telecomm. & Tech. L. Rev.*, 6:61.
- [StatCounter, 2018] StatCounter (2018). Usage share of web browsers. http://gs.statcounter.com/browser-market-share#monthly-201811-201811-bar. Accessed: 2018-12-29.
- [Sun and Xin, 2017] Sun, Y. and Xin, C. (2017). Using coursera clickstream data to improve online education for software engineering. In *Proceedings of the ACM Turing 50th Celebration Conference China*, ACM TUR-C '17, pages 16:1–16:6, New York, NY, USA. ACM.
- [Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. *CoRR*, abs/1409.3215.
- [The Apache Software Foundation, 1995] The Apache Software Foundation (1995). About Apache: How Apache Came to Be. http://httpd.apache.org/ABOUT_APACHE.html. Accessed: 2018-12-10.
- [Ting et al., 2005] Ting, I.-H., Kimble, C., and Kudenko, D. (2005). Ubb mining: Finding unexpected browsing behaviour in clickstream data to improve a web site's design. In *Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence*, WI '05, pages 179–185, Washington, DC, USA. IEEE Computer Society.
- [Vassio et al., 2018] Vassio, L., Drago, I., Mellia, M., Houidi, Z. B., and Lamali, M. L. (2018). You, the web, and your device: Longitudinal characterization of browsing habits. *ACM Trans. Web*, 12(4):24:1–24:30.
- [W3C, 2018] W3C (2018). WebAssembly Core Specification. https://webassembly.github.io/spec/core/bikeshed/index.html. Accessed: 2019-01-03.
- [Walsh, John and Godfrey, Sue, 2000] Walsh, John and Godfrey, Sue (2000). The Internet: a new era in customer service. *European Management Journal*, 18(1):85–92.
- [Wang et al., 2017] Wang, G., Zhang, X., Tang, S., Wilson, C., Zheng, H., and Zhao, B. Y. (2017). Clickstream User Behavior Models. *ACM Trans. Web*, 11(4):21:1–21:37.
- [Wang et al., 2016] Wang, G., Zhang, X., Tang, S., Zheng, H., and Zhao, B. Y. (2016). Unsupervised clickstream clustering for user behavior analysis. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*, CHI '16, pages 225–236, New York, NY, USA. ACM.
- [Waterson et al., 2002a] Waterson, S., Landay, J. A., and Matthews, T. (2002a). In the lab and out in the wild: Remote web usability testing for mobile devices. In *CHI '02 Extended Abstracts on Human Factors in Computing Systems*, CHI EA '02, pages 796–797, New York, NY, USA. ACM.
- [Waterson et al., 2002b] Waterson, S. J., Hong, J. I., Sohn, T., Landay, J. A., Heer, J., and Matthews, T. (2002b). What did they do? understanding clickstreams with the webquilt visualization system. In *Proceedings of the Working Conference on Advanced Visual Interfaces*, AVI '02, pages 94–102, New York, NY, USA. ACM.

- [Weller, 2018] Weller, T. (2018). Compromised account detection based on clickstream data. In *Companion Proceedings of the The Web Conference 2018*, WWW '18, pages 819–823, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.
- [Werbos, 1990] Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. *Proceedings of the IEEE*, 78(10):1550–1560.
- [Williams and Zipser, 1989] Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. *Neural computation*, 1(2):270–280.
- [Wilson, 1981] Wilson, T. D. (1981). On user studies and information needs. *Journal of docu*mentation, 37(1):3–15.
- [Wilson, 1997] Wilson, T. D. (1997). Information behaviour: an interdisciplinary perspective. *Information processing & management*, 33(4):551–572.
- [Yamakami, 2009] Yamakami, T. (2009). Inter-service revisit analysis of three user groups using intra-day behavior in the mobile clickstream. In *Proceedings of the 2009 International Conference on Hybrid Information Technology*, ICHIT '09, pages 340–344, New York, NY, USA. ACM.
- [Yang et al., 2014] Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao, B. Y., and Dai, Y. (2014). Uncovering social network sybils in the wild. *ACM Trans. Knowl. Discov. Data*, 8(1):2:1–2:29.
- [Zaloudek, 2018] Zaloudek, J. (2018). User Behavior Clustering and Behavior Modeling Based on Clickstream Data. Master's thesis, Czech Technical University in Prague, Faculty of Electrical Engineering Department of Computer Science.
- [Zhang et al., 2016] Zhang, X., Brown, H.-F., and Shankar, A. (2016). Data-driven personas: Constructing archetypal users with clickstreams and user telemetry. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*, CHI '16, pages 5350–5359, New York, NY, USA. ACM.