Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

MemoryAgentBench: 专门测试Agent的memory能力

Yuanzhe Hu^{1*}, Yu Wang^{1*}, Julian McAuley¹

¹UC San Diego

¹{yuh127,yuw164,jmcauley}@ucsd.edu

Datasets Source Code

本文提出MemoryAgentBench专门用于评测Memory Agent在记忆方面的能力,MemoryAgentBench 从四个维度进行评测:准确检索(AR)、测试时学习(TTL)、长程理解(LRU)和冲突解决(CR)。实验中评测了Long-Context Agent、RAG Agent和Agentic Memory Agent这三大类不同的记忆机制表现,具体来说通过"连续注入chunks + prompt指导保存记忆 + 多问题查询"的实验方法统一评测几类Memory Agent。

背景

Memory是Agent的重要能力,目前对于 Agent的能力评测主要聚焦推理、规划和工具 调用等方面,忽略了Memory评测,因此,本 文设计了专门评测Agent Memory能力的基 准。本文中将具有Memory能力的Agent称为 Memory Agent。

Memory Agent类型

- Long-Context Agents: 用最近的chunk填满context sequence,简单直接
- Simple RAG Agents: 保存所有chunk文本,使用时用BM25检索
- Embedding-based RAG Agents: 每个chunk向量化后保存,使用时query先向量化再检索
- Structure-Augmented RAG Agents: 对所有chunk 结构化处理再保存,比如典型的GraphRAG
- Agentic Memory Agents: Self-RAG和MemGPT

Memory Agent的记忆能力评测

评测Memory Agent的四个记忆能力维度:

- Accurate Retrieval (AR): Memory Agent能够从多轮增量积累的对话记录中,准确找到回答当前问题所需要的信息
- Test-Time Learning (TTL) Memory Agent是否能在不tuning的情况下, 通过与用户的对话交互动态学习新知识
- Long-Range Understanding (LRU): Memory Agent能够在多轮历史交互中,不仅仅回忆单点信息,而是形成对整体内容、主题和脉络的完整理解,以便回答需要综合整体上下文的高阶问题
- Conflict Resolution (CR): 更新记忆

京區

	AR					TTL		LRU	CR	
Agent Type	RULER-QA	NIAH-MQ	∞Bench-QA	LME(S*)	EventQA	MCC	Recom	∞Bench-Sum	FactCon-SH	FactCon-MH
Long-Context Agents										
GPT-4o	61.5	25.0	55.4	32.0	77.2	87.6	12.3	32.2	60.0	5.0
GPT-4o-mini	53.5	22.8	44.9	30.7	59.0	82.4	15.1	28.9	45.0	5.0
GPT-4.1-mini	74.5	94.8	45.8	55.7	82.6	75.6	16.7	41.9	36.0	5.0
Gemini-2.0-Flash	73.0	83.8	53.2	47.0	67.2	84.0	8.7	23.9	30.0	3.0
Claude-3.7-Sonnet	65.0	38.0	50.6	34.0	74.6	89.4	18.3	52.5	43.0	2.0
GPT-4o-mini	53.5	22.8	44.9	30.7	59.0	82.0	15.1	28.9	45.0	5.0
Simple RAG Agents										
BM25	61.0	100.0	45.6	45.3	74.6	75.4	13.6	20.9	56.0	3.0
Embedding RAG Agents										
Contriever	26.5	2.5	38.1	15.7	66.8	70.6	15.2	21.2	18.0	7.0
Text-Embed-3-Small	52.0	7.2	44.4	48.3	63.0	70.0	15.3	25.7	28.0	3.0
Text-Embed-3-Large	49.0	19.5	50.1	52.3	70.0	72.4	16.2	21.6	28.0	4.0
NV-Embed-v2	83.0	73.5	51.4	55.0	72.8	69.4	13.5	20.7	55.0	6.0
Structure-Augmented RAG Agents										
RAPTOR	33.5	15.8	31.3	34.3	45.8	59.4	12.3	13.4	14.0	1.0
GraphRAG	47.0	38.3	35.8	35.0	34.4	39.8	9.8	0.4	14.0	2.0
HippoRAG-v2	71.0	67.5	45.7	50.7	67.6	61.4	10.2	14.6	54.0	5.0
Mem0	28.0	4.8	22.4	36.0	37.5	3.4	10.0	0.8	18.0	2.0
Cognee	33.5	4.0	19.7	29.3	26.8	35.4	10.1	2.3	28.0	3.0
Agentic Memory Agents										
Self-RAG	38.5	8.0	28.5	25.7	31.8	11.6	12.8	0.9	19.0	3.0
MemGPT	39.5	8.8	20.8	32.0	26.2	67.6	14.0	2.5	28.0	3.0

思老

实验结果说实话看点很多啊,首先所有的agent都用GPT-4o-mini,可以看到,BM25简直乱杀啊?
long-context的方式也好的离谱?
GraphRAG比BM25差那么多?向量RAG也一般,mem0和memgpt无语等

我在想,先对数据集切分chunk,然后通过prompt template让agent强行记忆,再出问题考试的评测方式,是否偏向检索模型呢?

の机器爱学