Organização de Computadores (Aula 4)

Memória

Hierarquia de Memória (1)

Hierarquia de Memória (2)

- A memória cache é geralmente controlada por hardware
- A memória principal (RAM) e a secundária é que o usuário tem acesso.
- O sistema operacional através de um mecanismo de Memória Virtual (Segmentação e/ou Paginação) cria a "ilusão" ao usuário que a memória total é do tamanho da memória principal + memória secundária.
- A técnica de memória virtual realiza transferência de blocos de informação entre a memória primária e secundária automaticamente sem a intervenção do usuário comum.

Prof

Registradores

- São dispositivos (elementos computacionais) capazes de receber dados, mantê-los armazenados por uma curto período de tempo e transferi-los para outro dispositivo.
 - São, portanto, elementos de armazenamento temporário.
- Os registradores fazem parte da CPU.
- São extremamente rápidos e armazenam grupos reduzidos de bits.

Memória Principal (1)

- A memória é a parte do computador em que os programas e os dados são armazenados.
- A memória principal (MP) armazena programas em execução e os dados utilizados por eles.
- Sem uma memória na qual processadores possam ler ou escrever informações, o conceito de computador digital com programa armazenado não pode ser implementado.
 - A CPU processa instruções que são obtidas na MP e os resultados são retornados à MP.

Memória Principal (2)

- A unidade básica de memória é o bit (binary digit)
 - Abstração de valores 0 ou 1
 - Fisicamente é mais fácil distinguir entre dois valores distintos do que de mais valores. Tensão, corrente, ...
- A memória é formada por um conjunto de células (ou posições), cada uma das quais podendo guardar uma informação.
 - Todas as células de uma dada memória têm o mesmo número de bits
- Os números que identificam (referenciam) a posição da célula na memória são chamados de **Endereços.**
 - A célula é a menor unidade endereçável da memória
- Endereços são indexadores pelos quais os programas podem referenciar dados na memória.

Memória Principal (3)

- A memória é formada por um conjunto de células
 - Todas as células de uma memória têm o mesmo nº de bits

Cada célula tem um endereço

Memória Principal (4)

- Se a memória tiver n células, elas terão endereços de 0 a (n-1).
- Se uma célula tiver k bits, ela poderá armazenar qualquer uma das 2k combinações possíveis para os bits.
- Se um determinado endereço tem m bits, o número máximo de células endereçáveis é de 2^m.

Memória Principal (5)

- Os computadores modernos agrupam as células (ou bytes) em Palavras (word)
 - Ex: uma palavra de 32 bits tem 4 bytes (ou 4 células)
- Nesses computadores, a Palavra é a parte mínima de dados que podem ser transferidos de/para a memória (MP)
- A informação na palavra pode ser um dado ou uma instrução

Memória Principal (4)

- "Processadores de 32 bits" têm palavras de 32 bits
 - Os registradores são de 32 bits
 - nº de bits do barramento de endereços em geral (mas não obrigatoriamente) é igual ao nº de bits dos registradores (ex: Memory Address Register - MAR)
 - As instruções são (em geral) de 32 bits
 - Cada instrução deve tratar palavras de 32 bits
 - movimentar, somar subtrair... dados armazenados em registradores de 32 bits

Memória Principal (5)

- Os bytes de uma palavra podem ser ordenados na memória da esquerda para a direita OU da direita para a esquerda
- Big Endian: Os bytes mais significativos primeiro (Mac)
- Little Endian: Os bytes menos significativos primeiro (Intel)

00000000 00000000 00000100 00000001

	Big-Endian	Little-Endian			
Address	representation	representation of			
	of 1025	1025			
00	00000000	00000001			
01	00000000	00000100			
02	00000100	00000000			
03	00000001	00000000			
	11				

Memória Principal (6)

- O endereço identifica a palavra na memória, e é usado tanto para armazenar (store) como para carregar (load).
- Em geral, registradores são usados para endereçar a memória tamanho do barramento de endereços = tamanho da palavra
- No projeto de cada computador é definida a organização da memória (tamanho do barramento de endereços, tamanho da palavra e da célula de memória, etc.)
 - Exemplos de memória:
 - 64K (2¹⁶) X 8 bits (65 536 posições de 8 bits = 64 kilobytes)
 - 4 Giga (2³²) X 8 bits (4 294 967 296 posições de 8 bits)
 - 1 Mega (2²⁰) X 16 bits (1 048 576 posições de 16 bits)
 - Qual o máximo de memória endereçável de um computador de 64bits?
 - célula = 1 byte

Memória Principal (7)

- Leitura: Quando um valor é recuperado da memória, o conteúdo da palavra não é alterado. Apenas uma cópia será enviada pela memória.
- Escrita: A gravação de um novo conteúdo em uma palavra se dá com a destruição do conteúdo anterior.

Memória Principal (8)

- Diagrama esquemático da organização da memória
 - Para simplificar: 1 palavra = 1 célula

Memória Principal (9)

- Uma memória com n linhas de endereços e m linhas de dados.
- As linhas de endereços (n bits) permitem endereçar 2ⁿ diferentes células de memória.
- O tamanho do dado, contido em cada célula de memória é de m bits.
- Cada código de endereço de n bits seleciona, através do decodificador de endereços, apenas uma única célula na memória.
- O sentido do fluxo de dados dependerá do sinal de controle R/W.
 - Se R/W = 1, a operação é de READ, ou seja, leitura na memória e o dado sairá da memória
 - Se R/W = 0, a operação será de escrita (WRITE) e o dado entrará na memória.

Tipos de Memória (1)

- Memória Volátil: É aquela cuja informação original é perdida se a energia for desligada.
- Memória Não-volátil: É aquela que retém o padrão de bits original mesmo que a energia seja desligada.
- Memória Endereçada Seqüencialmente: Para se obter a informação de um endereço, é necessário percorrer os endereços anteriores.
 - Ex.: Fita Magnética
- Memória de Acesso Randômico (RAM Random Access Memory):
 - A célula pode ser acessada sem ter que percorrer os endereços anteriores.
 - O tempo de acesso é praticamente o mesmo para todas as células
 - Volátil

Tipos de Memória (2)

RAMs Estáticas (SRAM)

- Baseadas em flip-flops
- Conteúdo persiste enquanto circuito alimentado
- Mais rápidas (geralmente usadas como memória cache)

RAMs Dinâmicas (DRAM)

- Baseadas em capacitores
- Carga deve ser restaurada periodicamente, pois suas informações vão desaparecer após um certo intervalo de tempo
- Menores, consomem menos potência, mais baratas
- SDRAM (Synchronous Dynamic Random Access Memory)
 - Módulo SDR (Single Data Rate): transfere um dado por pulso de clock
 - Módulo DDR (Double Data Rate): tráfego é de dois dados por pulso de clock (transfere dados tanto na subida quanto na descida do sinal de clock)
 - **DDR-II:** melhorias no padrão

Tipos de Memória (3)

ROM (Read-Only Memory)

- Simples: decodificador, linhas de saída e portas lógicas
- Aplicações de alto volume

PROM (*Programmable* ROM)

 Conteúdo escrito com um "queimador" de PROMs. Podem ser escritas com dispositivos especiais mas não podem mais ser apagadas.

EPROM (*Erasable* PROM)

- Podem ser apagadas e reutilizadas pelo uso de radiação ultravioleta.
- Antigos chips de BIOS (Basic Input/Output System) de PC

EEPROM (*Electrically Erasable* PROM)

- Conteúdo pode ser modificado eletricamente
- Pode ser lida um número ilimitado de vezes, mas só pode ser apagada e programada um número limitado de vezes (entre 100.000 e 1 milhão).
- Pelo menos 64 vezes menores que uma EPROM
- Armazenam a BIOS em PC atuais

Tipos de Memória (4)

Memória Flash

- Como a EEPROM, mas que permite que múltiplos endereços (blocos) sejam apagados ou escritos numa só operação.
- Players MP3, celulares, câmeras digitais, ... "HD" p/ Laptops!?!

Encapsulamento de Memória Principal

SIMM – Single Inline Memory Module

- Uma linha (em apenas um lado) de conectores da unidade de memória para a placa de circuito impresso
- Adequadas p/ barramento de dados de 32 bits

DIMM – Dual Inline Memory Module

- Uma linha de conectores da unidade de memória para a placa de circuito impresso, em ambos os lados da placa (pente) de memória
- Muito usadas c/ Pentiums (64 bits no barramento de dados)

SIMM (72 pinos)

DIMM DDR 1GB 400 MHz (184-pinos)

Códigos com Correção/Detecção de Erros (1)

- Os dados armazenados na memória dos computadores podem ocasionalmente serem alterados (modificados)
 - Oscilações de tensão de alimentação, etc.
- Para a prevenção desses erros, algumas memórias armazenam informações extras, usando códigos e mecanismos que permitam a detecção e/ou correção de erros.
- Palavra de Código:

uma unidade de n bits = m bits de dados

+
r de redundância { Informação referente à detecção/ correção de erro

Códigos com Correção/Detecção de Erros (2)

EXEMPLO

- Bit de Paridade: bit configurado em 0 ou 1 para assegurar que o número total de bits 1 no campo de dados é par (ou ímpar).
 - Paridade refere-se ao número de bits '1' no número binário.
 - Ex: 1 10010010
 bit de paridade dado
 0 00011000
 bit de paridade dado

Códigos com Correção/Detecção de Erros (3)

 Distância de Hamming: número de bits que diferem em duas palavras de um código qualquer.

```
10001001
10110001 XOR
00111000
```

- Distância de Hamming do código = menor distância de Hamming entre duas palavras
- Se um código possui distância de Hamming de d, ele é capaz de
 - detectar d-1 erros
 - corrigir mod [(d-1)/2] erros

Códigos com Correção/Detecção de Erros (4)

Tabela de palavras de código válidas (bit de paridade)

Distância de Hamming do código = 2

Código capaz de detectar 1 erro Capaz de corrigir 0 erros Tabela de palavras de código válidas (código hipotético)

Distância de Hamming do código = 3

Código capaz de detectar 2 erros Capaz de corrigir 1 erro

Memória Cache (1)

- Princípio básico
 - Na execução de um programa de computador, muitas das referências são a um pequeno conjunto de posições de memória.
 - Muitos comandos presentes em loops.
 - Manipulação de matrizes
- Cache é um dispositivo interno a um sistema que serve de intermediário entre uma CPU e o dispositivo principal de armazenamento (MP).
- A idéia principal é que o acesso a MP pode ser demorado e vale a pena armazenar as informações mais procuradas em meio mais rápido.
- Memória Cache: memória pequena (capacidade de armazenamento) e rápida
 - Contém os dados e/ou instruções mais recentemente referenciados pelo processador.

Memória Cache (2)

- Quando um processador precisar de uma palavra de memória, ele primeiro busca essa palavra na *cache*.
- Somente no caso de ela não estar armazenada na *cache* é que a busca se dará na memória principal.
- Se uma parte substancial dos acessos for satisfeita pela *cache*, o **tempo médio** de acesso a uma palavra em memória será pequeno, próximo ao tempo de acesso à *cache*.
- Em alguns computadores podem existir diversos níveis de *cache*
 - Ex: nível 1 é implementado dentro do chip ; nível 2 implementado na placamãe

Memória Cache (3)

Princípio da Localidade

- Localidade *Temporal*
 - Uma posição de memória referenciada recentemente tem boas chances de ser referenciada novamente em um futuro próximo
 - Iterações e recursividade
- Localidade Espacial
 - Uma posição de memória vizinha de uma posição referenciada recentemente tem boas chances de também ser referenciada
 - Dados tendem a ser armazenados em posições contíguas
- Como explorar o princípio de localidade?
 - Localidade Temporal
 - Mantenha palavras mais recentemente acessados na cache
 - Localidade Espacial
 - A leitura na memória, geralmente, é feita com mais de uma palavra ao mesmo tempo (blocos ou linhas de cache)
 - Mova blocos de palavras contíguas para a cache

Memória Cache (4)

- Princípio da Localidade (cont.)
 - Bloco ou Linhas de Cache
 - Menor unidade de informação transferida entre os níveis da hierarquia de memória
 - Um bloco é transferido num único acesso entre a memória principal e a cache, através de um largo barramento de dados

Posicionamento lógico da memória *cache*

Exemplo

Se uma cache tiver uma linha com 64 bytes, uma referência ao endereço 260 que não está na cache (falha) vai trazer da memória principal p/ a cache a linha composta pelos bytes 256 a 319:

	метопа Рппсіраї					
	0		63			
	64		127			
Bloco -{	128	_	191			
	192		255			
	256	256 —				
		_				
		64 byte	es es			

Memória Cache (5)

- Se determinada palavra for lida ou escrita k vezes em um curto intervalo de tempo, o processador precisará
 - referenciar uma única vez a memória principal ("lenta")
 - \bullet e k-1 vezes a memória rápida.

c: tempo de acesso à cache

m: tempo de acesso à memória principal

h: **Taxa de acertos** – fração de todas as referências que puderam ser satisfeitas pela *cache*.

$$h = (k - 1)/k$$

Taxa de Falhas = $1 - h$

Tempo médio de acesso = c + (1 - h)m

Memória Cache (6)

- Acerto (hit)
 - Posição acessada está na cache
- Erro (miss)
 - Posição acessada ausente da cache
 - Buscada da memória principal
- Cache Unificada (instruções e dados juntos) x Cache Dividida (uma cache para cada)
- Questões a discutir:
 - Qual o melhor tamanho da cache?
 - Qual o tamanho da linha da cache?
 - Em geral, uma linha maior aproveita melhor a localidade espacial
 - MAS linha maior significa maior tempo para preencher a linha

Hierarquia de Memória

Memória Secundária (1)

- Memórias que não podem ser endereçadas diretamente, isto é, a informação precisa ser carregada em memória primária antes de poder ser tratada pelo processador.
- Necessário pois o conteúdo da MP é apagado quando o computador é desligado. Desta forma, tem-se um meio de executar novamente programas e carregar arquivos contendo os dados da próxima vez em que o computador for ligado.
- São geralmente não-voláteis, permitindo guardar os dados permanentemente.
 - Discos Rígidos (HDs)
 - CDs
 - DVDs
 - Disquetes, etc.

Memória Secundária (2)

- Disco Rígido (HD Hard Disk)
 - É a parte do computador onde são armazenada informações que "não se apagam" (Aquivos)
 - Caracterizado como memória física, não-volátil.
 - O disco rígido é um sistema lacrado contendo discos de metal recobertos por material magnético onde os dados são gravados através de cabeças, e revestido externamente por uma proteção metálica que é presa ao gabinete do computador por parafusos.
 - Também é chamado Winchester. (Rifles Winchester 30-30)
 - Nos Sistemas Operacionais mais recentes, o disco rígido é também utilizado para expandir a memória principal, através de mecanismos de <u>Memória Virtual</u>.

Memória Secundária (6)

Setor de Boot – Disco Rígido

- Nele é registrado qual sistema operacional está instalado no computador, com qual sistema de arquivos o disco foi formatado e quais arquivos devem ser lidos para inicializar o computador.
- Também é conhecido como Trilha MBR ou Trilha 0.
- MBR (Master Boot Record) Registro de Inicialização Mestre
 - Contém a tabela de partição do disco que dará boot.
 - O MBR é lido pela BIOS (Basic Input Output System), que interpreta a tabela de partição e em seguida carrega um programa chamado bootstrap, que é o responsável pelo carregamento do Sistema Operacional.

Memória Secundária (7)

Controlador de Disco

- Controlador(a) é um dispositivo de hardware que realiza a interface entre o exterior de um dispositivo e o seu funcionamento interno.
- Processador envia o endereço físico de dados para um HD e o controlador traduz esse endereço e aciona os dispositivos mecânicos específicos do disco para que os dados possam ser lidos e enviados.

Padrões

- **IDE** *Integrated Drive Electronics*
- **(E)IDE** *(Extended) Integrated Drive Electronics*
- ATAPI Advanced Technology Attachment Packet Interface
- **SCSI** (*Small Computer System Interface*).
 - Permite aconexão de uma larga gama de periféricos (HDs, CD-ROMs, impressoras, scanners, etc.)

Referências

- Andrew S. Tanenbaum, Organização Estruturada de Computadores, 5^a edição, Prentice-Hall do Brasil, 2007. Capítulo 2
- Lúcia Helena M. Pacheco, Visão Geral de Organização Estruturada de Computadores e Linguagem de Montagem. Universidade Federal de Santa Catarina. Centro Tecnológico, Departamento de Informática e de Estatística.
- Artigo sobre correção e detecção de erros
 - http://www.dcc.ufla.br/infocomp/artigos/v1.1/cce.pdf
- http://www.wikipedia.org

http://wv ANEXO 1

mes/sp1.htm

Tabela ASCII

Caracteres normais

Binário	Decimal	Hex	Gráfico	Binário	Decimal	Hex	Gráfico	Binário	Decimal	Hex	Gráfico
0010 0000	32	20	(vazio) (ロ)	0100 0000	64	40	@	0110 0000	96	60	
0010 0001	33	21	ļ.	0100 0001	65	41	Α	0110 0001	97	61	а
0010 0010	34	22	ıı .	0100 0010	66	42	В	0110 0010	98	62	ь
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	\$	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	E	0110 0101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f
0010 0111	39	27	1	0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	I	0110 1001	105	69	i
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	2B	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0010 1100	44	2C		0100 1100	76	4C	L	0110 1100	108	6C	I
0010 1101	45	2D	-	0100 1101	77	4D	М	0110 1101	109	6D	m
0010 1110	46	2E		0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r