(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年4 月4 日 (04.04.2002)

PCT

(10) 国際公開番号 WO 02/26714 A1

(51) 国際特許分類7: C07D 221/20, 401/12, 401/06, 413/06, 417/06, 409/14, 401/14, 405/12, A61K 31/438, 31/4709, 31/55, 31/538, 31/5415, 31/444, 31/4545, 31/5377, 31/496, 31/498, 31/4725, A61P 43/00, 25/00, 25/04

(21) 国際出願番号: PCT/JP01/08281

(22) 国際出願日: 2001年9月25日(25.09.2001)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2000-293876 JP 2000年9月27日(27.09.2000)

(71) 出願人 (米国を除く全ての指定国について): 武田薬品 工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府大阪市中央区道修町 四丁目1番1号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 荒井俊光 (ARAI, Toshimitsu) [JP/JP]; 〒305-0821 茨城県つくば市春日 1丁目7番地9 武田春日ハイツ1003号 Ibaraki (JP). 錦 見裕司 (NISHIKIMI, Yuji) [JP/JP]; 〒662-0838 兵庫県 西宮市能登町12番72号 Hyogo (JP). 今村真一 (IMA-MURA, Shinichi) [JP/JP]; 〒531-0063 大阪府大阪市 北区長柄東2丁目3番29-302号 Osaka (JP). 神山圭司

(KAMIYAMA, Keiji) [JP/JP]; 〒567-0033 大阪府茨木市 松ケ本町5番41号 Osaka (JP). 小林 真 (KOBAYASHI, Makoto) [JP/JP]; 〒651-2276 兵庫県神戸市西区春日台 七丁目5番5号 Hyogo (JP).

(74) 代理人: 青山 葆, 外(AOYAMA, Tamotsu et al.); 〒 540-0001 大阪府大阪市中央区城見1丁目3番7号 IMP ビル 青山特許事務所 Osaka (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB. BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

(1)

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: SPIRO COMPOUNDS

(54) 発明の名称: スピロ化合物

WO 02/26714 AJ

(57) Abstract: Novel spiro compounds represented by the general formula (1) wherein A¹ and A² are each an optionally substituted benzene ring; E is a divalent chain hydrocarbon group which may be substituted; X is CO or the like; R1 is an optionally substituted hydrocarbon group or the like, or alternatively R1 may be bonded to a ring-constituting carbon atom of A² to form a fused ring; and symbol •••• represents a single or double bond.

(57) 要約:

式(I)で表される新規スピロ化合物を提供する。

$$\begin{array}{c|c}
 & & & \\
\hline
 & & & \\
\hline$$

[式中、A¹環およびA²環はそれぞれ置換基を有していてもよいベンゼン環を、 Eは置換基を有していてもよい2価の鎖状炭化水素基を、XはCO等を、R¹は 置換基を有していてもよい炭化水素基等を示し、またはR¹はA²環の環構成炭 素原子と結合して縮合環を形成してもよく、<u>---</u>は単結合または二重結合を示 す。]

1

明 細 書

スピロ化合物

5 技術分野

10

15

20

25

本発明は、新規スピロ化合物、その製造法およびノシセプチン受容体結合剤等に関する。

背景技術

近年の遺伝子技術の進歩により、生体内から今まで全く知られていなかった受 容体が続々と見出されるようになってきている。これら新しく見出された受容体 は、その受容体が遺伝子的に欠損したマウス、いわゆるノックアウトマウスの研 究やその内在性のペプチド性リガンドを用いた実験などにより、その受容体の生 体における機能や疾患との関わりが解明されつつある。このような受容体に結合 する非ペプチド性の結合剤は受容体の機能や疾患との関わりあいを解明するにと どまらず、この受容体に起因する疾患の予防と治療に有効な薬物になることがお おいに期待できる。ノシセプチン受容体(ORL-1、オーファニンFQ受容体 ともいう)は、GTP結合タンパク共役型受容体として単離された(FEBS Lett. 1994年341巻33頁)。さらに、内在性リガンドとしてアミノ 酸17個からなるペプチドのノシセプチンが同定された(Science 19 95年270巻792頁)。その後、ノシセプチン受容体を遺伝子的に欠損した マウスやノシセプチンを用いた研究などがなされ、ノシセプチンの生体における 機能や疾患との関わりが解明されつつある。例えば、ノシセプチンを脳内に投与 することによって痛みに対する反応性や自発運動量が変化することが報告されて いる。また、ノシセプチンは水迷路学習試験や受動的回避学習試験において学習 や記憶障害を惹起することが報告されている。ノシセプチン受容体を遺伝子的に 欠損させたマウスは、野生型マウスと比べて記憶がよいことが報告されている。 その他、脳におけるリズム調律、食欲の調節、水利尿、血管拡張作用、全身血液 降下作用に関与しているといわれている(Science 1995年270巻

PCT/JP01/08281

792頁、Eur. J. Neurosci. 1997年9巻194頁、J. Clin. Exp. Med. 1998年185巻789頁、Nature1998年394巻577頁、Life Sci. 1997年60巻PL15頁、J. Neurosci. 1999年19巻2152頁、Trends Pharmacol. Sci. 1997年18巻293頁等)。

2

WO 99/29696に、ノシセプチン受容体拮抗作用を有する下記のスピロ化合物が記載されているが、その側鎖においてアシル化またはスルホニル化されたアミンに関する記載はない。

$$A^{1}$$
 Z
 N
 R_{2}
 R_{2}

10

5

[式中、XはOまたは CH_2 ーを、Yは-C(O)ー、 $-(CH_2)_n$ ーまたは $N(CH_3)$ ーを、nは1または2を、またはXとYとが結合して-CH=CHーを、Zは-NHー、 $-CH_2$ ー、-Oーまたは=CHーを、 A^1 は式

15 を示す。]

また、WO 00/06545に、ノシセプチン受容体リガンドとして有用である下記のスピロ化合物が記載されているが、その側鎖においてアシル化またはスルホニル化されたアミンに関する記載はない。

$$R^{1} \xrightarrow{X^{1}} X^{2}$$

$$R^{2} \xrightarrow{N} R^{4}$$

$$Z^{1} \xrightarrow{Z^{2}} Z^{3}$$

[式中、X¹は

5

10

$$R^{12}$$
 Q m

 $(R^{12}$ はH等を、Qは $-CH_2$ - 等を、mは 1 または 2 を示す)等を、 R^1 、 R^2 、 R^3 および R^4 はそれぞれ R^5 、 Z^1 、 Z^2 および Z^3 はそれぞれ R^5 一(Z_1) アルキル等を、 Z^5 は Z^5 は Z^5 を、 Z^6 を、 Z^6 は Z^6 に Z^6 は Z^6 に Z^6 に

一方、WO 94/17045およびWO 98/25604に、側鎖にアシル化されたアミンを有するスピロ化合物が記載されているが、それぞれタキキニン拮抗薬およびケモカインモジュレーターに関するものであり、ノシセプチン受容体結合剤に関する記載はない。

$$R_{4}$$
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{2}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}

[式中、kは0、1または2を、1およびmはそれぞれ0, 1, 2, 3, 4また は5(但し、1+m=0, 1, 2, 3, 4または5)を、 R_1 は $-NR_6$ COR $_7$

等で置換されていてもよい C_{1-8} アルキル(R_6 および R_7 はそれぞれH、 C_{1-6} アルキル、フェニル等を示す)を、Xは炭素原子で、 R_2 、 R_3 、 R_4 および R_5 はそれぞれH等を、または R_4 と R_5 とでアリールを形成してもよい。] また、これらの公報には、kが0で、1が2で、mが1で、 R_6 がフェニルで、 R_7 が C_{1-6} アルキルで、Xが炭素原子で、 R_2 および R_3 がHで、 R_4 と R_5 とでアリールを形成している組み合わせに関する記載はない。

また、EP-A-445974に、側鎖にアシル化されたアミンを有するスピロ化合物が記載されているが、シグマ受容体リガンドに関するものであり、ノシセプチン受容体結合剤に関する記載はない。

$$R^2$$
 R^3
 R^3
 R^3
 R^3
 R^3

[式中、AおよびBはそれぞれH等を、Qは結合手等を、 R^1 は炭化水素基を、 R^2 および R^3 はそれぞれH等を示す。]

発明の概要

5

10

15

20

ノシセプチン受容体結合剤は、各種中枢神経系の疾患、痛み、リウマチ、過敏 性腸疾患、排尿障害、尿失禁、尿崩症、多尿症、低血圧、肥満等の予防と治療に 有用であることが期待できる。

本発明は、ノシセプチン受容体結合作用に基づく中枢神経系疾患等の予防・治療剤として有用な新規スピロ化合物等を提供するものである。

本発明者らは、ノシセプチン受容体結合作用を有する化合物について鋭意検討 した結果、下記式(Ia)で表される化合物またはその塩などが優れたノシセプ チン受容体結合活性などを有することを見出し、本発明を完成した。 5

10

15

すなわち、本発明は、

(1)式(I)

$$N-E-N$$
 $X-R^1$

(2) R¹が置換基を有していてもよい炭化水素基または置換基を有していてもよい芳香族複素環基である上記(1)記載の化合物、

(3) 式(I) の化合物が、式

[式中、 A^1 環および A^2 環はそれぞれ(1)ハロゲン原子、(2)(1)ハロゲン原子、

WO 02/26714

5

10

15

20

25

6

PCT/JP01/08281

(2')ニトロ基、(3')シアノ基、(4')ヒドロキシ基、(5')チオール基、(6')スルホ基、 (7')スルフィノ基、(8')ホスホノ基、(9')モノー、ジーもしくはトリーハロゲノー C,__。アルキル基、(10')オキソ基、(11')アミジノ基、(12')イミノ基、(13')炭素原 子と1個の窒素原子以外に酸素原子、硫黄原子および窒素原子から選ばれたヘテ ロ原子を $1 \sim 3$ 個含んでいてもよい $3 \sim 6$ 員の環状アミノ基、(14')C₁₋₃アルキ レンジオキシ基、(15')C₁₋₆アルコキシ基、(16')C₁₋₆アルキルチオ基、(17')カ ルボキシル基、(18') C_{1-6} アルキルーカルボニル基、(19') C_{1-6} アルキルーカル ボニルオキシ基、(20') C ₁₋₆アルコキシーカルボニル基、(21') C ₇₋₁₁アラルキル オキシーカルボニル基、(22')チオカルバモイル基、(23') C1-6アルキルスルフィ ニル基、(24') C_{1-6} アルキルスルホニル基、(25')スルファモイル基またはモノー もしくはジーC₁₋₆アルキルスルファモイル基、(26)C₆₋₁₀アリールスルファ モイル基、(27)C₆₋₁₀アリール基、(28)C₆₋₁₀アリールオキシ基、(29)C₆₋₁₀ アリールチオ基、(30') C ₆₋₁₀アリールスルフィニル基、(31') C ₆₋₁₀アリールス ルホニル基、(32')C₆₋₁₀アリールーカルボニル基、(33')C₆₋₁₀アリールーカル ボニルオキシ基、(34')ハロゲン化されていてもよいC₁₋₆アルキルーカルボニル アミノ基、(35')式-CONR³R⁴(式中、R³およびR⁴はそれぞれ(1")水素原子、 (2")(1"")ハロゲン原子、(2"")ニトロ基、(3"")シアノ基、(4"")ヒドロキシ基、(5"")チ オール基、(6"")スルホ基、(7"")スルフィノ基、(8"")ホスホノ基、(9"")ハロゲン化 されていてもよい C_{1-6} アルキル基、(10"')オキソ基、(11"')アミジノ基、(12"')イ ミノ基、(13"")式 $-NR^5R^6$ (式中、 R^5 および R^6 はそれぞれ水素原子、 C_{1-6} アルキル基、またはC₆₋₁₀アリール基を示すか、またはR⁵とR⁶は隣接する窒 素原子とともに3~8員の含窒素複素環を示す)で表される基、(14''')C₁₋₃ア ルキレンジオキシ基、(15"")ハロゲン化されていてもよいC₁₋₆アルコキシ基、 (16"") C_{1-6} アルキルチオ基、(17"")カルボキシル基、(18"") C_{1-6} アルキルーカル ボニル基、(19"')C₁₋₆アルキルーカルボニルオキシ基、(20"')C₁₋₆アルコキシ ーカルボニル基、(21") C_{7-1} ,アラルキルオキシーカルボニル基、(22")カルバ モイル基、(23"")チオカルバモイル基、(24"")モノーもしくはジーC1-6アルキル ーカルバモイル基、(25"") C_{6-10} アリールーカルバモイル基、(26"") C_{1-6} アルキ ルスルフィニル基、(27")C₁₋₆アルキルスルホニル基、(28")スルファモイル基、

5

10

15

20

25

(29")モノーもしくはジー C_{1-6} アルキルスルファモイル基、(30") C_{6-10} アリー ルスルファモイル基、(31"")C₆₋₁₀アリールオキシ基、(32"")C₆₋₁₀アリールチ オ基、(33")C₆₋₁₀アリールスルフィニル基、(34")C₆₋₁₀アリールスルホニル 基、(35")C₆₋₁₀アリールーカルボニル基、(36")C₆₋₁₀アリールーカルボニル オキシ基、(37")ハロゲン化されていてもよいC₁₋₆アルキルーカルボニルアミ ノ基、(38"')酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を少な くとも1個含む5~12員の複素環基、および(39"")ハロゲン原子、ハロゲン化 されていてもよいC₁₋₄アルキル、アミノスルホニル、C₁₋₃アルコキシまたは C_{1-3} アルキレンジオキシで $1 \sim 3$ 個置換されていてもよい C_{6-10} アリール基 から選択される置換基を1~3個有していてもよい炭素数1~16個の炭化水素 基、または(3")オキソ基、C1-6アルキル基、C3-6シクロアルキル基、C2-6ア ルキニル基、 C_{2-6} アルケニル基または C_{7-11} アラルキル基で $1\sim4$ 個置換さ れていてもよい、酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を 少なくとも1個含む5~12員の複素環基を示すか、またはR³とR⁴は隣接す る窒素原子とともに(i)ヒドロキシ基、(ii)シアノ基、(iii) C , _ 3 アシル基および (iv)式 $-W-R^7$ [式中、Wは結合手または原子数 $1\sim3$ の2価の基を示し、 R^7 はハロゲン原子、C₁₋₃アルキル、C₁₋₃アルコキシおよびメチレンジオキシか ら選択される置換基を1~2個有していてもよい5~6員環を示す]から選択さ れる置換基を有していてもよい3~8員の含窒素複素環を形成してもよい。)で 表される基、(36')式-NR3R4(式中、R3およびR4は前記と同意義を示す) で表される基、(37)式-NHCONR³R⁴ (式中、R³およびR⁴は前記と同意 義を示す)で表される基、(38')式-NR3COR4(式中、R3およびR4は前記 と同意義を示す)で表される基、(39)式-NR3SO2R4(式中、R3およびR4 は前記と同意義を示す)で表される基および(40') C_{6-10} アリール基を $1\sim3$ 個 有していてもよいC₁₋₃アルキル基で置換されていてもよい窒素原子、硫黄原子 および酸素原子から選ばれた1~2種のヘテロ原子1~4個を含有する複素環基 からなる群 [以下、置換基群Aと称する] から選択される置換基を1~3個有し ていてもよい炭素数1~16個の炭化水素基、(3)置換基群Aから選択される置 換基を有していてもよいアミノ基、(4)C1-3アシルアミノ基、(5)置換基群Aか

ら選択される置換基を $1\sim3$ 個有していてもよい C_{1-6} アルコキシ基および(6)C1-3アルキレンジオキシ基から選択される置換基を1~2個有していてもよいべ ンゼン環を示し; Eは置換基群Aから選択されるオキソ基以外の置換基を有して いてもよい2価の鎖状炭化水素基を示し;XはCOまたはSO。を示し;R¹は 5 置換基群Aから選択される置換基をそれぞれ1~3個有していてもよい炭素数1 ~16個の炭化水素基、または置換基群Aから選択される置換基を1~3個有し ていてもよい炭素数1~16個の炭化水素基および置換基群Aからなる群から選 択される置換基を有していてもよい5~12員の複素環基を示し、またはR¹は A²環の環構成炭素原子と結合して隣接するXおよびNとともに置換基を有して 10 いてもよい縮合環を形成してもよく; - - - は単結合または二重結合を示す。] で表される化合物である上記(1)記載の化合物またはその塩(但し、N-[3 - (インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル ー1ー メチルー5ーオキソーN-フェニルー3ーピロリジンカルボキサミド フマル酸 塩および1-アセチルーNー(3-クロロフェニル)-N-[3-(インデン-1 ースピロー4'ーピペリジンー1'ーイル)プロピル]ー4ーピペリジンカルボ 15 キサミドを除く)、

- (4) R¹が置換基を有していてもよい炭化水素基である上記(1)記載の化合物、
- (5) R^1 が置換基を有していてもよい C_{1-6} アルキル基である上記(1) 記載の化合物、
- (6) R^1 が置換基を有していてもよいカルバモイル基、置換基を有していてもよいアミノ基、置換基を有していてもよいカルバモイルアミノ基または置換基を有していてもよいスルホニルアミノ基で置換されていてもよい C_{1-6} アルキル基である上記(1)記載の化合物、
- 25 (7) Eが C_{2-6} アルキレン基である上記(1)記載の化合物、
 - (8) A²環と縮合する環が5ないし8員環である上記(1)記載の化合物、
 - (9)縮合環を形成するときのR¹が式

 $-Y^{1}-Z-Y^{2}-$

20

「式中、Y¹およびY²はそれぞれ結合手または置換基を有していてもよい2価

の C_{1-3} 鎖状炭化水素基を示し、Z は結合手、酸素原子、酸化されていてもよい硫黄原子または置換基を有していてもよいイミノ基を示す。ただし、Z が結合手のときは、 Y^1 および Y^2 の少なくとも一方は置換基を有していてもよいZ 価の C_{1-3} 鎖状炭化水素基を示す。] で表される基である上記(1)記載の化合物。

(10) A^1 環が無置換ベンゼン環で、 A^2 環がハロゲン原子、 C_{1-6} アルキル基、ハロゲン化されていてもよい C_{1-6} アルコキシ基およびハロゲン化されていてもよい C_{1-6} アルキル基から選ばれる1または2個の置換基で置換されていてもよいベンゼン環を、Eが C_{2-6} アルキレン基で、 R^1 が置換基を有していてもよいカルバモイル基、置換基を有していてもよいアミノ基、置換基を有していてもよいカルバモイルアミノ基もしくは置換基を有していてもよいスルホニルアミノ基で置換されていてもよい C_{1-6} アルキル基を示し、または R^1 が式

$$-Y^{1}-Z-Y^{2}-$$

5

10

15

20

(式中、 Y^1 および Y^2 はそれぞれ結合手または置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示し、Zは結合手、酸素原子、酸化されていてもよい硫黄原子または置換基を有していてもよいイミノ基を示す。ただし、Zが結合手のときは、 Y^1 および Y^2 の少なくとも一方は置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示す。)で表される基を示して A^2 環の環構成炭素原子と結合して隣接するXおよびXとともに縮合環を形成してもよい上記(1)記載の化合物、

(11) 上記(1) 記載の化合物のプロドラッグ、

[式中、A¹環は置換基を有していてもよいベンゼン環を示し、<u>- - -</u> は単結合または二重結合を示す。]で表される化合物またはその塩と式

PCT/JP01/08281

WO 02/26714

5

[式中、Lは脱離基を示し、 A^2 環は置換基を有していてもよいベンゼン環を示し、Eはオキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基を示し、XはCOまたはSO $_2$ を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい芳香族複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに縮合環を形成してもよい。]で表される化合物またはその塩とを反応させることを特徴とする式

[式中の記号は前記と同意義を示す。]で表される化合物またはその塩(但し、 N-[3-(インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-メチル-5-オキソーN-フェニル-3-ピロリジンカルボキサミドフマル酸塩および1-アセチルーN-(3-クロロフェニル)-N-[3-(インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-4-ピペリジンカルボキサミドを除く)の製造法、

15 (13)

[式中、Lは脱離基を示し、A¹環は置換基を有していてもよいベンゼン環を示

し、Eはオキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基を示し、 --は単結合または二重結合を示す。]で表される化合物またはその塩と式

5

[式中、 A^2 環は置換基を有していてもよいベンゼン環を示し、XはCOまたは SO_2 を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい芳香族複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに縮合環を形成してもよい。]で表される化合物またはその塩とを反応させることを特徴とする式

- (14)上記(1)記載の化合物またはそのプロドラッグを含有してなる医薬組成物、
- (15)上記(1)記載の化合物またはそのプロドラッグを含有してなるノシセプチン受容体結合剤、
- 20 (16)式

WO 02/26714

5

15

20

PCT/JP01/08281

[式中、 A^1 環および A^2 環はそれぞれ置換基を有していてもよいベンゼン環を示し、Eはオキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基を示し、XはCOまたはSO $_2$ を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに置換基を有していてもよい縮合環を形成してもよく、--は単結合または二重結合を示す。]で表される化合物またはその塩あるいはそのプロドラッグを含有してなるノシセプチン受容体結合剤、

- 10 (17) ノシセプチン受容体拮抗剤である上記(15) または(16) 記載のノ シセプチン受容体結合剤、
 - (18) ノシセプチン受容体に関与する疾患の予防・治療剤である上記(15) または(16) 記載のノシセプチン受容体結合剤、
 - (19) 中枢神経系疾患予防・治療剤である上記(15) または(16) 記載の ノシセプチン受容体結合剤、
 - (20) 痛みの予防・治療剤である上記(15) または(16) 記載のノシセプチン受容体結合剤、
 - (21) 哺乳動物に対して上記(15) または(16) 記載のノシセプチン受容体結合剤を有効量投与することを特徴とするノシセプチン受容体に関与する疾患の予防・治療方法、
 - (22) 哺乳動物に対して上記(15) または(16) 記載のノシセプチン受容体結合剤を有効量投与することを特徴とする中枢神経系疾患の予防・治療方法、
 - (23) 哺乳動物に対して上記(15) または(16) 記載のノシセプチン受容体結合剤を有効量投与することを特徴とする痛みの予防・治療方法、

- (24) ノシセプチン受容体に関与する疾患の予防・治療剤を製造するための上記(15) または(16) 記載のノシセプチン受容体結合剤の使用、
 - (25) 中枢神経系疾患の予防・治療剤を製造するための上記(15) または
- (16) 記載のノシセプチン受容体結合剤の使用、および
- 5 (26) 痛みの予防・治療剤を製造するための上記(15) または(16) 記載 のノシセプチン受容体結合剤の使用等に関する。

発明の実施の形態

10

15

20

25

R¹で示される「置換基を有していてもよい炭化水素基」の「炭化水素基」としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、脂環式一脂肪族炭化水素基はよび芳香族炭化水素基等が挙げられ、炭素数1ないし16個のものが好ましい。具体的には、例えばアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルをが用いられる。

「アルキル基」は、例えば低級アルキル基等が好ましく、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、1-エチルプロピルおよびヘキシル等の C_{1-6} アルキル基等が汎用される。

「アルケニル基」は、例えば低級アルケニル基等が好ましく、例えばビニル、1-プロペニル、アリル、イソプロペニル、ブテニル、イソブテニルおよび 2-ジメチルーペント-4-エニル等の C_{2-7} アルケニル基等が汎用される。

「アルキニル基」は、例えば低級アルキニル基等が好ましく、例えばエチニル、 プロパルギルおよび1-プロピニル等の C_{2-6} アルキニル基等が汎用される。

「シクロアルキル基」は、例えば低級シクロアルキル基等が好ましく、例えば シクロプロピル、シクロブチル、シクロペンチルシクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ $[2.\ 2.\ 1]$ ヘプタニルおよびアダマンチル等 の C_{3-10} シクロアルキル基等が汎用される。

「シクロアルケニル基」は、例えば低級シクロアルケニル基が好ましく、例えばビニル、1-プロペニル、アリル、イソプロペニル、ブテニルおよびイソブテ

14

ニル等のC₂₋₆アルケニル基等が汎用される。

5

10

15

20

25

「シクロアルキルアルキル基」は、例えば低級シクロアルキルアルキル基が好ましく、例えばシクロプロピルメチル、シクロプロピルエチル、シクロブチルメチル、シクロペンチルメチル、シクロペキシルメチルおよびシクロペキシルエチル等の C_{4-9} シクロアルキルアルキル基等が汎用される。

「シクロアルケニルアルキル基」は、例えば低級シクロアルケニルアルキル基が好ましく、シクロペンテニルメチル、シクロヘキセニルメチル、シクロヘキセニルプロピル、シクロヘプテニルメチル、シクロヘプテニルメチル、シクロヘプテニルエチルおよびビシクロ $[2.\ 2.\ 1]$ ヘプト-5-エン-2-イルメチル等などの C_{4-9} シクロアルケニルアルキル等が汎用される。

「アリール基」は、例えばフェニル、1-ナフチル、2-ナフチル、ビフェニリルおよび2-アンスリル等の C_{6-14} アリール基等が好ましく、例えばフェニル基等が汎用される。

また、R¹ならびに下記のR³およびR⁴で示される「置換基を有していてもよい炭化水素基」の「炭化水素基」は、上記「シクロアルキル基」または「シクロアルキルアルキル基」のシクロアルキル基がベンゼン環と縮合して形成される基(例、インダニル等の多環式炭化水素基)を包含する。

 R^1 で示される「置換基を有していてもよい炭化水素基」の「炭化水素基」が有していてもよい置換基としては、例えばハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素等)、ニトロ基、シアノ基、ヒドロキシ基、チオール基、スルホ基、スルフィノ基、ホスホノ基、モノー、ジーまたはトリーハロゲノー低級アルキル基(例えば、クロロメチル、ジクロロメチル、トリクロロメチル、フルオロメチル、ジフルオロメチル、トリフルオロメチル、2-ブロモエチル、2,2,2ートリフルオロエチル、ペンタフルオロエチル、3,3,3ートリフルオロプロピル、4,4,4ートリフルオロブチル、5,5,5ートリフルオロペンチル、6,6,6ートリフルオロヘキシル等のモノー、ジーまたはトリーハロゲノー C_{1-6} アルキル基等)、オキソ基、アミジノ基、イミノ基、アルキレンジオキシ基(例えば、メチレンジオキシ、エチレンジオキシ等の C_{1-3} アルキレンジオキシ基等)、低級ア

5

10

15

20

25

ルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブト キシ、イソブトキシ、ペンチルオキシ、ヘキシルオキシ等のC₁₋₆アルコキシ基 等)、低級アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、 イソプロピルチオ、ブチルチオ、イソブチルチオ、ペンチルチオ、ヘキシルチオ 等のC₁₋₆アルキルチオ基等)、カルボキシル基、低級アルカノイル基(例えば、 ホルミル;アセチル、プロピオニル、ブチリル、イソブチリル等のC,__。アルキ ルーカルボニル基等)、低級アルカノイルオキシ基(例えば、ホルミルオキシ; アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシ等 の C_{1-6} アルキルーカルボニルオキシ基等)、低級アルコキシカルボニル基(例 えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブト キシカルボニル等のC₁₋₆アルコキシーカルボニル基等)、アラルキルオキシカ ルボニル (例えば、ベンジルオキシカルボニル等の С7-11 アラルキルオキシー カルボニル基等)、チオカルバモイル基、低級アルキルスルフィニル基(例えば、 メチルスルフィニル、エチルスルフィニル等のC₁₋₆アルキルスルフィニル基)、 低級アルキルスルホニル基(例えば、メチルスルホニル、エチルスルホニル等の C₁₋₆アルキルスルホニル基)、スルファモイル基、モノー低級アルキルスルフ ァモイル基(例えば、メチルスルファモイル、エチルスルファモイル等のモノー C₁₋₆アルキルスルファモイル基等)、ジー低級アルキルスルファモイル基(例 えば、ジメチルスルファモイル、ジエチルスルファモイル等のジーC₁₋₆アルキ ルスルファモイル基等)、アリールスルファモイル基(例えば、フェニルスルフ ァモイル、ナフチルスルファモイル等の C_{6-10} アリールスルファモイル基等)、 アリール基(例えば、フェニル、ナフチル等のC ₆₋₁₀アリール基等)、アリー ルオキシ基(例えば、フェニルオキシ、ナフチルオキシ等のC₆₋₁₀アリールオ キシ基等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等の C_{6-1} 。アリールチオ基等)、アリールスルフィニル基(例えば、フェニルスルフィニ ル、ナフチルスルフィニル等のC₆₋₁₀アリールスルフィニル基等)、アリール スルホニル基(例えば、フェニルスルホニル、ナフチルスルホニル等のC6-10 アリールスルホニル基等)、アリールカルボニル基(例えば、ベンゾイル、ナフ トイル等のC₆₋₁₀アリールーカルボニル基等)、アリールカルボニルオキシ基

WO 02/26714

5

10

15

20

25

PCT/JP01/08281

(例えば、ベンゾイルオキシ、ナフトイルオキシ等のC₆₋₁₀アリールーカルボ ニルオキシ基等)、ハロゲン化されていてもよい低級アルキルカルボニルアミノ 基(例えば、アセチルアミノ、トリフルオロアセチルアミノ等のハロゲン化され ていてもよいC₁₋₆アルキルーカルボニルアミノ基等)、置換基を有していても よいカルバモイル基(例えば、式-CONR³R⁴(式中、R³およびR⁴はそれ ぞれ水素原子、置換基を有していてもよい炭化水素基もしくは置換基を有してい てもよい複素環基を示すか、またはR³とR⁴は隣接する窒素原子とともに環を 形成してもよい。)で表される基)、置換基を有していてもよいアミノ基(例え ば、式-NR³R⁴(式中、R³およびR⁴は前記と同意義を示す)で表される 基)、置換基を有していてもよいウレイド基(例えば、式-NHCONR3R4 (式中、R³およびR⁴は前記と同意義を示す)で表される基)、置換基を有し ていてもよいカルボキサミド基(例えば、式-NR3COR4(式中、R3および R⁴は前記と同意義を示す)で表される基)、置換基を有していてもよいスルホ ナミド基(例えば、式ーNR3SO,R4(式中、R3およびR4は前記と同意義を 示す)で表される基)、置換基を有していてもよい複素環基等が用いられる。該 「置換基を有していてもよい複素環基」の「複素環基」としては、ピリジル、ピ ロリジニル、ピペラジニル、ピペリジニル、2-オキソアゼピニル、フリル、デ カヒドロイソキノリル、キノリニル、インドリル、イソキノリル、チエニル、イ ミダゾリル、モルホリニル等の窒素原子、硫黄原子および酸素原子から選ばれた 1~2種のヘテロ原子1~4個を含有する、5~12員の、単環式または縮合複 素環基等が挙げられる。該「置換基を有していてもよい複素環基」が有していて もよい「置換基」としては、下記R¹で示される「置換基を有していてもよい複 素環基」の「置換基」と同様のものが挙げられる。ただし、該「置換基を有して いてもよい複素環基」が有する「置換基」が複素環基または複素環基を有する炭 化水素基である場合は該複素環基は無置換である。該置換基として、好ましくは C_{6-10} アリール基を $1\sim3$ 個有していてもよい炭素数 $1\sim16$ 個の炭化水素基、 特に好ましくは C_{6-10} アリール基を $1\sim3$ 個有していてもよい C_{1-3} アルキル 基(例、ベンジル、トリチル等)である。

5

10

15

20

25

17

R³およびR⁴で示される「置換基を有していてもよい炭化水素基」の「炭化 水素基」としては、例えば上記のR¹で示される「置換基を有していてもよい炭 化水素基」の「炭化水素基」と同様のもの等が用いられる。「置換基」としては、 例えばハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素等)、ニトロ基、シ アノ基、ヒドロキシ基、チオール基、スルホ基、スルフィノ基、ホスホノ基、ハ ロゲン化されていてもよい低級アルキル基(例えば、メチル、エチル、プロピル、 イソプロピル、ブチル、secーブチル、tertーブチル等のC₁₋₆アルキル 基;クロロメチル、ジクロロメチル、トリクロロメチル、フルオロメチル、ジフ ルオロメチル、トリフルオロメチル、2-ブロモエチル、2,2,2-トリフルオ ロエチル、ペンタフルオロエチル、3,3,3-トリフルオロプロピル、4,4,4 ートリフルオロブチル、5,5,5ートリフルオロペンチル、6,6,6ートリフル オロヘキシル等のモノー、ジーまたはトリーハロゲノーC,__6アルキル基等)、 オキソ基、アミジノ基、イミノ基、置換基を有していてもよいアミノ基(例えば、 式-NR⁵R⁶(式中、R⁵およびR⁶はそれぞれ水素原子、C₁₋₆アルキル基 (例、メチル、エチル、プロピル、イソプロピル、ブチル等) もしくはC₆₋₁₀ アリール基(例、フェニル等)を示すか、またはR⁵とR⁶は隣接する窒素原子 とともに環(例、アジリジン、アゼチジン、ピロリジン、ピロリン、ピロール、 イミダゾール、ピラゾリン、イミダゾリジン、ピペリジン、モルホリン、ジヒド ロピリジン、ピリジン、ピペラジン等の3~8員(好ましくは5~6員)の含窒 素複素環)を形成してもよい。)で表される基)、アルキレンジオキシ基(例え ば、メチレンジオキシ、エチレンジオキシ等のC₁₋₃アルキレンジオキシ基等)、 ハロゲン化されていてもよい低級アルコキシ基(例えば、メトキシ、エトキシ、 プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、ペンチルオキシ、ヘキ シルオキシ等の C_{1-6} アルコキシ基、トリフルオロメトキシ等のトリーハロゲノ -C₁₋₆アルコキシ基等)、低級アルキルチオ基(例えば、メチルチオ、エチル チオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、ペンチ ルチオ、ヘキシルチオ等のC1-6アルキルチオ基等)、カルボキシル基、低級ア ルカノイル基(例えば、ホルミル;アセチル、プロピオニル、ブチリル、イソブ チリル等のC₁₋₆アルキルーカルボニル基等)、低級アルカノイルオキシ基(例

5

10

15

20

25

えば、ホルミルオキシ;アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、 イソブチリルオキシ等のC₁₋₆アルキルーカルボニルオキシ基等)、低級アルコ キシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロポ キシカルボニル、ブトキシカルボニル等のC1-6アルコキシーカルボニル基等)、 アラルキルオキシカルボニル (例えば、ベンジルオキシカルボニル等のC7-11 アラルキルオキシーカルボニル基等)、カルバモイル基、チオカルバモイル基、 モノー低級アルキルカルバモイル基(例えば、メチルカルバモイル、エチルカル バモイル等のモノーC₁₋₆アルキルーカルバモイル基等)、ジー低級アルキルカ ルバモイル基(例えば、ジメチルカルバモイル、ジエチルカルバモイル等のジー C₁₋₆アルキルーカルバモイル基等)、アリールカルバモイル基(例えば、フェ ニルカルバモイル、ナフチルカルバモイル等のC₆₋₁₀アリールーカルバモイル 基等)、低級アルキルスルフィニル基(例えば、メチルスルフィニル、エチルス ルフィニル等の C_{1-6} アルキルスルフィニル基)、低級アルキルスルホニル基 (例えば、メチルスルホニル、エチルスルホニル等のC₁₋₆アルキルスルホニル 基)、スルファモイル基、モノー低級アルキルスルファモイル基(例えば、メチ ルスルファモイル、エチルスルファモイル等のモノーC₁₋₆アルキルスルファモ イル基等)、ジー低級アルキルスルファモイル基(例えば、ジメチルスルファモ イル、ジエチルスルファモイル等のジーC1-6アルキルスルファモイル基等)、 アリールスルファモイル基(例えば、フェニルスルファモイル、ナフチルスルフ ァモイル等のC₆₋₁₀アリールスルファモイル基等)、アリールオキシ基(例え ば、フェニルオキシ、ナフチルオキシ等のC₆₋₁₀アリールオキシ基等)、アリ ールチオ基(例えば、フェニルチオ、ナフチルチオ等のC₆₋₁₀アリールチオ基 等)、アリールスルフィニル基(例えば、フェニルスルフィニル、ナフチルスル フィニル等の C_{6-10} アリールスルフィニル基等)、アリールスルホニル基(例 えば、フェニルスルホニル、ナフチルスルホニル等のC₆₋₁₀アリールスルホニ ル基等)、アリールカルボニル基(例えば、ベンゾイル、ナフトイル等のC6-1 oアリールーカルボニル基等)、アリールカルボニルオキシ基(例えば、ベンゾ イルオキシ、ナフトイルオキシ等のC₆₋₁₀アリールーカルボニルオキシ基等)、 ハロゲン化されていてもよい低級アルキルカルボニルアミノ基(例えば、アセチ

5

10

15

20

25

ルアミノ、トリフルオロアセチルアミノ等のハロゲン化されていてもよいC₁₋₆ アルキルーカルボニルアミノ基等)、酸素原子、硫黄原子および窒素原子等から 選ばれるヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個 (好ましくは1ないし4個、さらに好ましくは1ないし2個) 含む5員~12員 の複素環基(例えば、ピリジル、ピロリジニル、ピペラジニル、ピペリジニル、 2-オキソアゼピニル、フリル、デカヒドロイソキノリル、キノリニル、インド リル、イソキノリル等)、置換基を有していてもよいアリール基等が用いられる。 該「置換基を有していてもよいアリール基」のアリール基としては、例えばフェ ニル、ナフチル等のC₆₋₁₀アリール基等が挙げられる。該C₆₋₁₀アリール基は、 例えばハロゲン原子(例、塩素、フッ素、臭素等)、ハロゲン化されていてもよ いC,-4アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、s e c - ブチル、tert-ブチル、トリクロロメチル、トリフルオロメチル等)、 アミノスルホニル、低級(C_{1-3})アルコキシ(例、メトキシ等)または低級 (C₁₋₃)アルキレンジオキシ(例、メチレンジオキシ等)等から選択される置 換基を置換可能な位置に1ないし5個、好ましくは1~3個有していてもよく、 置換基数が2個以上の場合は各置換基は同一または異なっていてもよい。

 R^3 および R^4 で示される「置換基を有していてもよい複素環基」の「複素環基」としては、例えば下記の R^1 で示される「置換基を有していてもよい複素環基」の「複素環基」と同様のもの等が用いられる。「置換基」としては、例えば、オキソ基、低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、ヘキシル等の C_1 ー6アルキル基等)、シクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等の C_{3-6} シクロアルキル基等)、低級アルキニル基(例えば、エチニル、1-プロピニル、プロパルギル等の C_{2-6} アルキニル基等)、低級アルケニル基(例えば、ビニル、アリル、イソプロペニル、ブテニル、イソブテニル等の C_{2-6} アルケニル基等)、アラルキル基(例えばベンジル、 α -メチルベンジル、フェネチル等の C_{7-11} アラルキル基等)が挙げられる。該置換基の数は、 $1\sim5$ 個、好ましくは $1\sim4$ 個であり、置換基数が2 個以

WO 02/26714

5

10

15

20

25

上の場合は各置換基は同一または異なっていてもよい。

上記R³とR⁴とが隣接する窒素原子とともに形成する環としては、例えば炭 素原子と1個の窒素原子以外に酸素原子、硫黄原子および窒素原子から選ばれた ヘテロ原子を1~3個含んでいてもよい3ないし8員の含窒素複素環が挙げられ る。該含窒素複素環は単環式複素環でも縮合複素環でもよい。単環式複素環とし ては、例えばアジリジン、アゼチジン、ピロリジン、ピロリン、ピロール、イミ ダゾール、ピラゾリン、イミダゾリジン、ピペリジン、モルホリン、ジヒドロピ リジン、ピリジン、ピペラジン等が挙げられる。縮合複素環としては、例えばデ カヒドロキノリン、デカヒドロイソキノリン等が挙げられる。これらの環は置換 基を有していてもよく、該置換基としては、(i)ヒドロキシ基、(ii)シアノ基、(iii) C_{1-3} アシル基(例、アセチル等)および(iv)式 $-W-R^7$ [式中、Wは結合手ま たは原子数1~3の2価の基(例、メチレン、エチレン、ビニレン、プロペニレ ン、 $-CH_0$ -NH-等)を示し、 R^7 はハロゲン原子(例、塩素、臭素等)、 C₁₋₃アルキル(例、メチル等)、C₁₋₃アルコキシ(例、メトキシ等) および メチレンジオキシから選択される置換基を1~2個有していてもよい5~6員環 を示す〕で表される基が挙げられる。置換基の数は1~3個が好ましく、置換基 数が2以上の場合、各置換基は同一または異なっていてもよい。

R¹で示される「置換基を有していてもよい複素環基」の「複素環基」としては、環系を構成する原子(環原子)として、酸素原子、硫黄原子および窒素原子等から選ばれるヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む、5~12員の、芳香族複素環基または飽和もしくは不飽和の非芳香族複素環基等が挙げられる。

該「芳香族複素環基」としては、芳香族単環式複素環基または芳香族縮合複素 環基等が挙げられる。

「芳香族単環式複素環基」としては、例えばフリル、チエニル、ピロリル、オ

21

キサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、1,2,3ーオキサジアゾリル、1,2,4ーオキサジアゾリル、1,3,4ーオキサジアゾリル、フラザニル、1,2,3ーチアジアゾリル、1,2,4ーチアジアゾリル、1,3,4ーチアジアゾリル、1,2,3ートリアゾリル、1,2,4ートリアゾリル、テトラゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル等の5ないし6員の芳香族単環式複素環基等が挙げられる。

5

10

15

20

「芳香族縮合複素環基」としては、例えばベンゾフラニル、イソベンゾフラニ ル、ベンゾチエニル、イソベンゾチエニル、インドリル、イソインドリル、1 H ーインダブリル、ベンズイミダブリル、ベンブオキサブリル、1,2ーベンブイ ソオキサブリル、ベンブチアブリル、1,2-ベンブイソチアブリル、1H-ベ ンゾトリアゾリル、キノリル、イソキノリル、シンノリニル、キナゾリニル、キ ノキサリニル、フタラジニル、ナフチリジニル、プリニル、ブテリジニル、カル バゾリル、α-カルボリニル、β-カルボリニル、γ-カルボリニル、アクリジ ニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニ ル、チアントレニル、フェナトリジニル、フェナトロリニル、インドリジニル、 ピロロ[1,2-b] ピリダジニル、ピラゾロ[1,5-a] ピリジル、イミダゾ [1,2-a] ピリジル、イミダゾ [1,5-a] ピリジル、イミダゾ [1,2-a]b] ピリダジニル、イミダゾ [1,2-a] ピリミジニル、1,2,4-トリアゾロ [4,3-a] ピリジル、1,2,4-トリアゾロ[4,3-b] ピリダジニル等の 8~12員の芳香族縮合複素環基(好ましくは、前記した5ないし6員の芳香族 単環式複素環基がベンゼン環と縮合した複素環または前記した5ないし6員の芳 香族単環式複素環基の同一または異なった複素環2個が縮合した複素環)等が挙 げられる。

25 該「飽和または不飽和の非芳香族複素環基」としては、例えばオキシラニル、 アゼチジニル、オキセタニル、チエタニル、ピロリジニル、テトラヒドロフリル、 チオラニル、ピペリジニル、テトラヒドロピラニル、チアニル、モルホリニル、 チオモルホリニル、ピペラジニル、アゼパニル、オキセパニル、チエパニル、オ キサゼパニル、チアゼパニル、アゾカニル、オキソカニル、チオカニル、オキサ WO 02/26714

ゾカニル、チアゾカニル等の3~8員(好ましくは5~6員)の飽和あるいは不飽和(好ましくは飽和)の非芳香族複素環基(脂肪族複素環基)などが挙げられる。これらは、オキソ置換されていてもよく、例えば2ーオキソアゼチジニル、2ーオキソピロリジニル、2ーオキソピペリジニル、2ーオキソアゼパニル、2ーオキソアゾカニル、2ーオキソテトラヒドロフリル、2ーオキソテトラヒドロピラニル、2ーオキソチオラニル、2ーオキソチアニル、2ーオキソチオラニル、2ーオキソチアニル、2ーオキソチエパニル、2ーオキソチアゼパニル、2ーオキソチエパニル、2ーオキソチアゼパニル、2ーオキソナナカニル、2ーオキソチアガカニル、2ーオキソチオカニル、2ーオキソオキサガカニル、2ーオキソチオカニル、2ーオキソオキサガカニル、2ーオキソチオカニル、2ーオキソナカニル等でもよい。好ましくは2ーオキソピロリジニル等の5員非芳香族複素環基である。R¹で示される「置換基を有していてもよい複素環基」の「複素環基」として

R・で示される「直換基を有していてもよい複素環基」の「複素環基」としては、酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を1~3個(好ましくは1または2個)含む5ないし7員(好ましくは5または6員、より好ましくは5員)の非芳香族複素環基が好ましい。

15

10

5

R¹で示される「置換基を有していてもよい複素環基」の「複素環基」が有していてもよい置換基としては、例えば、前記R¹で示される「置換基を有していてもよい炭化水素基」と同様のもの、および該「置換基を有していてもよい炭化水素基」の「置換基」と同様のもの等が用いられる。

20 R¹、R³およびR⁴で示される「置換基を有していてもよい複素環基」の「複素環基」は、それぞれ前記の置換基を、複素環基の置換可能な位置に1ないし5 個、好ましくは1~3個有していてもよく、置換基数が2個以上の場合は各置換基は同一または異なっていてもよい。

25

 R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに縮合環を形成してもよい。かかる場合の化合物(Ia)としては、例えば下式で表される。

WO 02/26714

5

10

15

20

[式中、Yは酸素原子、酸化されていてもよい硫黄原子もしくは置換基を有していてもよいイミノ基を介在していてもよく、置換基を有していてもよい2価の鎖状炭化水素基、酸素原子、酸化されていてもよい硫黄原子または置換基を有していてもよいイミノ基を、その他の記号は前記と同意義を示す。]で表される化合物またはその塩。

Yで示される「置換基を有していてもよい2価の鎖状炭化水素基」の「置換基」としては、前記 R^1 で示される「炭化水素基」が有していてもよい置換基等が挙げられ、「2価の鎖状炭化水素基」としては、前記Eで示される「オキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基」の「2価の鎖状炭化水素基」と同様のものが挙げられる。かかる「2価の鎖状炭化水素基」としては、 C_{1-3} アルキレン(メチレン、エチレン、プロピレン)、 C_{2-3} アルキニレン(エテニレン等)等の C_{1-3} 鎖状炭化水素基等が好ましい。

「置換基を有していてもよいイミノ基」の「置換基」としては、例えば、前記「置換基を有していてもよい炭化水素基」と同様の基等が挙げられる。該「置換基を有していてもよいイミノ基」の「置換基」として好ましくは、例えば置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{6-10} アリール基等である。該「 C_{1-6} アルキル基」、「 C_{6-10} アリール基」が有していてもよい置換基としては、前記 R^1 で示される「炭化水素基」が有していてもよい置換基と同様のものが用いられる。

「介在していてもよい」とは、酸素原子、酸化されていてもよい硫黄原子および置換基を有していてもよいイミノ基から選ばれる1~3個のヘテロ原子を、2 価の鎖状炭化水素基の両端または内部に有していてもよいことを意味する。

24

縮合環を形成するときの R^1 またはYとしては、式 $-Y^1-Z-Y^2-$

5

10

15

20

25

[式中、 Y^1 および Y^2 はそれぞれ結合手または置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示し、Zは結合手、酸素原子、酸化されていてもよい硫黄原子または置換基を有していてもよいイミノ基を示す。ただし、Zが結合手のときは、 Y^1 および Y^2 の少なくとも一方は置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示す。] で表される基が好ましい。

 Y^1 および Y^2 で示される「置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基」の「2価の C_{1-3} 鎖状炭化水素基」としては、 C_{1-3} アルキレン(メチレン、エチレン、プロピレン)、 C_{2-3} アルキニレン(エテニレン等)等が挙げられる。

 Y^1 および Y^2 で示される「置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基」の「置換基」としては、前記 R^1 で示される「炭化水素基」が有していてもよい置換基等が挙げられる。

A²環と縮合する環は5ないし8員環が好ましい。

該縮合環としては、例えば、オキシインドール、テトラヒドロキノリノン、テトラヒドロベンズアゼピノン、テトラヒドロベンズアゾシノン、ベンズイミダゾリノン、ジヒドロキノキサリノン、ベンズオキサジノン、ベンズチアジノン、ベンズジアゼピノン、ベンズオキサゼピノン、ベンズチアゼピノン、ベンズジアゾシノン、ベンズオキサゾシノン、ベンズチアゾシノンなどが挙げられる。

 A^1 環および A^2 環で示される「置換基を有していてもよいベンゼン環」としては、例えばハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素等)、置換基を有していてもよい炭化水素基、置換基を有していてもよいアミノ基、アミド基(例えば、ホルムアミド、アセトアミド等の C_{1-3} アシルアミノ基等)、置換基を有していてもよい低級アルコキシ基、低級アルキレンジオキシ基(例えば、メチレンジオキシ、エチレンジオキシ等の C_{1-3} アルキレンジオキシ基等)等から選ばれる 1 ないし 2 個の置換基を置換可能な位置に有していてもよいベンゼン環を示す。

該「置換基を有していてもよい炭化水素基」としては、例えば前記で詳述した ものと同様のものが用いられる。

該「置換基を有していてもよいアミノ基」は、置換基として例えば前記「置換基を有していてもよい炭化水素基」等を1または2個有していてもよいアミノ基等が挙げられる。この「アミノ基」が有していてもよい置換基の好ましいものとしては、例えば置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{6-10} アリール基等である。該「 C_{1-6} アルキル基」、「 C_{6-10} アリール基」が有していてもよい置換基としては、前記 R^1 で示される「炭化水素基」が有していてもよい置換基と同様のものが用いられる。

5

10

15

25

 A^1 環および A^2 環は、それぞれ例えばハロゲン原子(例えば、フッ素、塩素等)、 C_{1-6} アルキル基(例えば、メチル、エチル等)および C_{1-6} アルコキシ基(例えば、メトキシ、エトキシ等)から選ばれる1ないし2個の置換基で置換されていてもよいベンゼン環等が好ましい。

該「2価の鎖状炭化水素基」は前記 R^1 で示される「炭化水素基」が有していてもよい置換基を $1\sim3$ 個有していてもよい。

Eは、C2-6アルキレン基が好ましく、トリメチレンがより好ましい。

本発明の式(I)で表される化合物の塩としては酸付加塩、例えば無機酸塩 (例えば、塩酸塩、硫酸塩、臭化水素酸塩、リン酸塩など)、有機酸塩(例えば、

酢酸塩、トリフルオロ酢酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、プロピオン酸塩、クエン酸塩、酒石酸塩、乳酸塩、蓚酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩など)等のほか、塩基との塩(たとえば、カリウム塩、ナトリウム塩、リチウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩、トリメチルアミン塩、トリエチルアミン塩、tertーブチルジメチルアミン塩、ジベンジルメチルアミン塩、ベンジルジメチルアミン塩、N,Nージメチルアニリン塩、ピリジン塩、キノリン塩などの有機塩基との塩)を形成していてもよい。

5

10

15

20

25

尚、一般式(I)で表される化合物またはその塩は水和物であってもよく、以下、それぞれ塩、水和物も含め化合物(I)と称する。

化合物(I)のプロドラッグは、生体内において酵素や胃酸等による反応により化合物(I)に変換する化合物をいう。

化合物(I)のプロドラッグとしては、化合物(I)がアミノ基を有する場合、 該アミノ基がアシル化、アルキル化、りん酸化された化合物(例、化合物(Ⅰ) のアミノ基がエイコサノイル化、アラニル化、ペンチルアミノカルボニル化、 (5-メチル-2-オキソー1, 3-ジオキソレン-4-イル) メトキシカルボ ニル化、テトラヒドロフラニル化、ピロリジルメチル化、ピバロイルオキシメチ ル化、tertーブチル化された化合物など);化合物(I)が水酸基を有する 場合、該水酸基がアシル化、アルキル化、りん酸化、ほう酸化された化合物(例、 化合物(I)の水酸基がアセチル化、パルミトイル化、プロパノイル化、ピバロ イル化、サクシニル化、フマリル化、アラニル化、ジメチルアミノメチルカルボ ニル化された化合物など): 化合物(I) がカルボキシル基を有する場合該カル ボキシル基がエステル化、アミド化された化合物(例、化合物(Ⅰ)のカルボキ シル基がエチルエステル化、フェニルエステル化、カルボキシメチルエステル化、 ジメチルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキ シカルボニルオキシエチルエステル化、フタリジルエステル化、(5-メチルー 2-オキソー1,3-ジオキソレン-4-イル)メチルエステル化、シクロヘキ シルオキシカルボニルエチルエステル化、メチルアミド化された化合物など);

等が挙げられる。これらの化合物は自体公知の方法によって製造することができる。また、化合物 (I) のプロドラッグは、広川書店 1990年刊「医薬品の開発」第7巻分子設計 163 頁から 198 頁に記載されているような、生理的条件で化合物 (I) に変化するものであってもよい。

化合物(I)のプロドラッグはそれ自身であっても、薬理学的に許容される塩であってもよい。このような塩としては、化合物(I)のプロドラッグがカルボキシル基等の酸性基を有する場合、無機塩基(例、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、亜鉛、鉄、銅等の遷移金属等)や有機塩基(例、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N,N'ージベンジルエチレンジアミンなどの有機アミン類、アルギニン、リジン、オルニチンなどの塩基性アミノ酸類等)などとの塩が挙げられる。

5

10

15

化合物(I)のプロドラッグがアミノ基等の塩基性基を有する場合、無機酸や 有機酸(例、塩酸、硝酸、硫酸、燐酸、炭酸、重炭酸、ギ酸、酢酸、プロピオン 酸、トリフルオロ酢酸、フマール酸、シュウ酸、酒石酸、マレイン酸、クエン酸、 コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンス ルホン酸等)、アスパラギン酸、グルタミン酸などの酸性アミノ酸等との塩が挙 げられる。

20 また、化合物(I)のプロドラッグは水和物および非水和物のいずれであって もよい。

> 化合物(I)は分子内に1ないしそれより多い不斉炭素を有する場合があるが、 これら不斉炭素に関しR配置、S配置のいずれも本発明に包含される。

25 化合物(I)は、例えば以下に示される方法等によって製造される。なお、化合物(I')は化合物(I)に含まれる化合物である。また、反応式中の化合物は塩を形成している場合も含み、該塩としては、例えば化合物(I)の塩と同様のもの等が挙げられる。

化合物(II)、(III)、(III')、(IV)、(IV)、(V)、(V)、

(VI) および (VII) は市販されているものを容易に入手でき、また、自体公知の方法またはそれに準じた方法に従って製造することもできる。

製造法1

5

10

15

下式で示すとおり、化合物(II)と化合物(III)とを反応させることにより 化合物(I)を製造することができる。

[式中、Lは脱離基を、その他の記号は前記と同意義を示す。]

Lで示される「脱離基」としては、例えばハロゲン原子(例えば、クロロ、ブロモ、ヨードなど)、ハロゲン化されていてもよい C_{1-6} アルキルスルホニルオキシ(例えば、メタンスルホニルオキシ、エタンスルホニルオキシ、トリフルオロメタンスルホニルオキシなど)、置換基を有していてもよい C_{6-10} アリールスルホニルオキシなどが挙げられる。該「置換基を有していてもよい C_{6-10} アリールスルホニルオキシ」の置換基としては、ハロゲン原子、ハロゲン化されていてもよい C_{1-6} アルキルおよびハロゲン化されていてもよい C_{1-6} アルキルおよびハロゲン化されていてもよい C_{1-6} アルキンから選ばれる $1\sim3$ 個の置換基が挙げられる。「置換基を有していてもよい C_{6-10} アリールスルホニルオキシ」の具体例としては、ベンゼンスルホニルオキシ、pートルエンスルホニルオキシ、1ーナフタレンスルホニルオキシ、1

29

2-ナフタレンスルホニルオキシなどが挙げられる。

この反応は、通常反応に不活性な溶媒中で行われる。該溶媒としては、たとえ ばエーテル系溶媒(例、エチルエーテル、ジイソプロピルエーテル、ジメトキシ エタン、テトラヒドロフラン、ジオキサンなど)、ハロゲン系溶媒(例、ジクロ ロメタン、ジクロロエタン、クロロホルムなど)、芳香族系溶媒(例、トルエン、 クロロベンゼン、キシレンなど)、アセトニトリル、N. Nージメチルホルムア ミド(DMF)、アセトン、メチルエチルケトン、ジメチルスルホキシド(DM S〇)、水などを単独あるいはそれらを混合して用いることができる。中でもア セトニトリル、ジクロロメタン、クロロホルムなどが好ましい。この反応は通常 化合物 (II) に対し、化合物 (III) 0.2 ないし5 当量、好ましくは0.5 な いし2当量反応させることにより行われる。反応温度は-20 から150 、 好ましくは0℃ないし室温であり、反応時間は通常5分間から100時間である。 また、この反応においては塩基を共存させることにより、反応がより円滑に進 行する場合もある。該塩基としては、無機塩基、有機塩基ともに有効である。無 機塩基の例としては、アルカリ金属やアルカリ土類金属の水酸化物、水素化物、 炭酸塩、炭酸水素塩、有機酸塩などがあげられ、中でも炭酸カリウム、炭酸ナト リウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カ リウムが好ましい。有機塩基としてはトリエチルアミンなどの3級アミン類が好 ましい。

20

5

10

15

製造法2

下式で示すとおり、化合物(II)と化合物(III')とを反応させることにより 化合物(I)を製造することができる。

+ OHC-E'-N

$$A^{1}$$
 A^{1}
 A^{2}
 A^{1}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{3}

[式中、E'はEから炭素1個を減じた基を、その他の記号は前記と同意義を示す。]

化合物(II)と化合物(III)との反応における還元剤としては、例えば水素 化ホウ素ナトリウム、水素化ホウ素リチウム、シアノ水素化ホウ素ナトリウムな どが挙げられる。これらの還元剤の使用量は化合物(II)に対し通常 $0.1 \sim 1$ 0 当量、好ましくは $0.5 \sim 2$ 当量である。反応温度は $-20 \sim 50$ ℃、好まし くは 0 ℃~室温であり、反応時間は通常 5 分間から 100 時間である。

接触還元法は触媒量のラネーニッケル、酸化白金、金属パラジウム、パラジウムー炭素などの金属接触と不活性溶媒中(例えば、メタノール、エタノール、イソプロパノール、tーブタノール等のアルコール性溶媒)、室温ないし100℃、水素圧が1気圧から100気圧において、1ないし100時間反応させることにより得られる。

15 製造法3

5

10

下式で示すとおり、化合物(IV)と化合物(V)とを反応させることにより 化合物(I)を製造することができる。

31

[式中の記号は前記と同意義を示す。]

すなわち、化合物(IV)と化合物(V)とを製造法1と同様の方法で反応させることにより化合物(I)を製造することができる。

5

10

製造法4

下式で示すとおり、化合物(IV)または化合物(IV)と化合物(V)とを反応させることにより化合物(VI)を製造し、化合物(VI)と化合物(VII)とを反応させることにより化合物(I')(化合物(I)においてRが置換基を有していてもよい炭化水素基であるもの)を製造することができる。

5

10

15

[式中、Raは置換基を有していてもよい炭化水素基を、その他の記号は前記と同意義を示す。]

すなわち、製造法 1 と製造法 2 と同様の方法で化合物(VI)を製造し、化合物(VI)と化合物(VII)とを製造法 1 と同様の方法で反応させることにより化合物(I')を製造することができる。

上記各反応における生成物(I)、(I')は、常法に従って反応混合物から 単離することもでき、再結晶、蒸留、クロマトグラフィー等の分離手段により容 易に精製することができる。また、化合物(I)、(I')の各原料化合物は、 反応液のまま、あるいは粗精製物として次反応に用いることもできるが、常法に 従って反応混合物から単離することもでき、通常の分離手段(例、再結晶、蒸留、 クロマトグラフィー等)により容易に精製することもできる。

本発明の化合物(I)は、優れたノシセプチン受容体結合作用、ノシセプチン 受容体拮抗作用を有し、ノシセプチン受容体に関与する疾患、例えば、中枢神経 系の疾患(例、アルツハイマー病、痴呆、不安、ストレス、分裂病、パーキンソ

ン病、うつ病、てんかん、けいれん、精神病、舞踏病、学習障害、多動、リズム 障害等)、痛み、リウマチ、過敏性腸疾患、排尿障害、尿失禁、尿崩症、多尿症、 低血圧、肥満の予防および/または治療に対して有効であり、これらの疾患の予 防・治療剤として用いられる。

本発明の化合物(I)は、他の予防・治療剤(例、他の中枢神経系疾患の予防・治療剤)と組み合わせて用いてもよい。

5

10

15

20

25

化合物(I)は、毒性が低く、そのままあるいは自体公知の方法に従って、薬理学的に許容される担体を混合した医薬組成物、例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、散剤、顆粒剤、カプセル剤(ソフトカプセルを含む)、液剤、注射剤、点鼻剤、坐剤、徐放剤、貼布剤、チューインガム等として、経口的または非経口的(例、局所、直腸、静脈投与等)に安全に投与することができる。

化合物(I)の本発明製剤中の含有量は、製剤全体の約0.01ないし約100重量%である。該投与量は、投与対象、投与ルート、疾患等によっても異なるが、例えばアルツハイマー病治療剤として、成人(体重50kg)に対し、経口剤として投与する場合、有効成分として化合物(I)を1日当たり約5ないし約1000mg、好ましくは約10ないし600mg、さらに好ましくは約10ないし300mg、とりわけ好ましくは約15ないし150mgであり、1日当たり1回または2から3数回にわけて投与することができる。

本発明の化合物(I)を、他剤と組み合わせて用いる場合、これらの薬物は、 別々にあるいは同時に、薬理学的に許容されうる担体、賦形剤、結合剤、希釈剤 などと混合して製剤化し、予防・治療のための医薬組成物として経口的にまたは 非経口的に投与することができる。薬物を別々に製剤化する場合、別々に製剤化 したものを使用時に希釈剤などを用いて混合して投与することができるが、別々 に製剤化した個々の製剤を、同時に、あるいは時間差をおいて別々に、同一対象 に投与してもよい。別々に製剤化したものを使用時に希釈剤などを用いて混合し て投与するためのキット製品(例えば、粉末状の個々の薬物を含有するアンプル と2種以上の薬物を使用時に混合して溶解するための希釈剤などを含有する注射 5

10

20

25

用キットなど)、別々に製剤化した個々の製剤を、同時に、あるいは時間差をおいて別々に、同一対象に投与するためのキット製品(例えば、個々の薬物を含有する錠剤を同一または別々の袋に入れ、必要に応じ、薬物を投与する時間の記載欄を設けた、2種以上の錠剤を同時にあるいは時間差をおいて別々に投与するための錠剤用キットなど)なども本発明の医薬組成物含まれる。

本発明製剤の製造に用いられてもよい薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が挙げられ、例えば固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤;液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等が挙げられる。また、必要に応じて、通常の防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤等の添加物を用いることもできる。

賦形剤としては、例えば乳糖、白糖、D-マンニトール、デンプン、コーンスターチ、結晶セルロース、軽質無水ケイ酸等が挙げられる。

15 滑沢剤としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、 タルク、コロイドシリカ等が挙げられる。

結合剤としては、例えば結晶セルロース、白糖、Dーマンニトール、デキストリン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、デンプン、ショ糖、ゼラチン、メチルセルロース、カルボキシメチルセルロースナトリウム等が挙げられる。

崩壊剤としては、例えばデンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、Lーヒドロキシプロピルセルロース等が挙げられる。

溶剤としては、例えば注射用水、アルコール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。

溶解補助剤としては、例えばポリエチレングリコール、プロピレングリコール、 Dーマンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が 挙げられる。 5

懸濁化剤としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリン等の界面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース等の親水性高分子等が挙げられる。

等張化剤としては、例えばブドウ糖、D-ソルビトール、塩化ナトリウム、グリセリン、D-マンニトール等が挙げられる。

緩衝剤としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等 10 が挙げられる。

無痛化剤としては、例えばベンジルアルコール等が挙げられる。

防腐剤としては、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が挙げられる。

15 抗酸化剤としては、例えば亜硫酸塩、アスコルビン酸、αートコフェロール等 が挙げられる。

以下に参考例、合成例、実施例、実験例、製剤例を示し、本願発明をさらに詳しく説明する。これらは、単なる例であって本発明を何ら限定するものではない。 1 H-NMRスペクトルはバリアン社Gemini-200(200Mz)を用い、テトラメチルシランを内部標準として測定した。 1 H-NMRスペクトルにおいて、 s はシングレット、 d はダブレット、 t はトリプレット、 mはマルチプレット、 b s は幅広く広がったシングレットを示す。

25 参考例 1

20

ビス (2-クロロエチル) カルバミド酸 tertーブチル

二炭酸ジーtertーブチル(21.83g)の塩化メチレン(200m1)溶液にビス(2-クロロエチル)アミン塩酸塩(35.70g)とトリエチルアミン(28m1)を室温で加え、室温で24時間攪拌した。反応液に水を加え、

塩化メチレンで抽出した。抽出液を10%クエン酸水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮し、表題化合物(26.49g)を無色油状物質として得た。 1 H-NMR(CDCl₃) $\delta:1.48$ (9H, s), 3.55-3.75 (8H, m).

5 参考例 2

10

15

25

インデン(5.81g)のテトラヒドロフラン(20m1)溶液に1Nリチウムビス(トリメチルシリル)アミドのテトラヒドロフラン(100m1)溶液を0℃で加え、0℃で30分間攪拌した。反応混合物にビス(2ークロロエチル)カルバミド酸 tertーブチル(12.11g)のテトラヒドロフラン(50m1)溶液を0℃で加え、0℃で3時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を10%クエン酸水溶液と飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、ろ液に活性炭を加え、ろ過し、濃縮した。残留物をヘキサンで洗い、表題化合物(6.68g)を無色固体として得た。 1 H-NMR(CDCl $_3$) δ : 1.25-1.40 (2H, m), 1.51 (9H, s), 2.01 (2H, dt, J = 4.4, 17.6 Hz), 3.00-3.25 (2H, m), 4.10-4.30 (2H, m), 6.79 (1H, d, J = 5.4 Hz), 6.85 (1H, d, J = 5.4 Hz), 7.15-7.40 (4H, m).

20 参考例3

1 Hーインデンー1 ースピロー4'ーピペリジン トリフルオロ酢酸塩 (1 Hーインデンー1 ースピロー4'ーピペリジンー1'ーイル)カルバミド酸 tertーブチル(2.00g)にトリフルオロ酢酸(4 m 1)を室温で加え、室温で30分間攪拌した。反応液にヘキサンとエーテルを加え、析出物をろ取し、エーテルで洗い、表題化合物(1.97g)を無色固体として得た。 1 H-NMR(D_2 O) δ : 1.50-1.65 (2 H, m), 2.32 (2 H, dt, 3 H, 3 H, 4 H

参考例4

1 Hーインダンー1 ースピロー4'ーピペリジン トリフルオロ酢酸塩 1 Hーインデンー1 ースピロー4'ーピペリジン トリフルオロ酢酸塩(1 5 0 m g)のエタノール(1 0 m 1)溶液に1 0 %パラジウム炭素(1 0 0 m g)を加え、水素雰囲気下(4 気圧)、室温で3 時間攪拌した。反応混合物をろ過し、濃縮し、表題化合物(1 4 7 m g)を無色固体として得た。 1 H-NMR(CD $_3$ OD) δ : 1.70-1.85 (2H, m), 2.05 (2H, dt, J = 4.8, 12.8 Hz), 2.15 (2H, t, J = 7.4 Hz), 2.97 (2H, t, J = 7.4 Hz), 3.10-3.50 (4H, m), 7.10-7.30 (4H, m).

参考例5

5

15

20

25

10 N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル] アニリン

1 Hーインデンー1ースピロー4'ーピペリジン トリフルオロ酢酸塩(748 mg)に1 N水酸化ナトリウム水溶液(5 m1)を加え、酢酸エチルで抽出した。抽出液を無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物のテトラヒドロフラン(5 m1)溶液に1,8ージアザビシクロ [5.4.0]ー7ーウンデセン(0.004 m1)とアクロレイン(0.186 m1)を一15℃で加え、一15℃で1時間攪拌した。反応混合物にアニリン(0.228 m1)と水素化トリアセトキシホウ素ナトリウム(1060 mg)を一15℃で加え、一15℃で30分間、室温で24時間攪拌した。反応液に飽和炭酸水素ナトリウム水水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、表題化合物(455 mg)を無色油状物質として得た。「H-NMR(CDCl3) δ :1.30-1.50 (2H, m), 1.80-2.00 (2H, m), 2.10-2.25 (4H, m), 2.62 (2H, t, J=7.0 Hz), 3.00-3.15 (2H, m), 3.24 (2H, t, J=6.6 Hz), 6.60-6.70 (3H, m), 6.75 (1H, d, J=5.8 Hz), 6.85 (1H, d, J=5.8 Hz), 7.15-7.45 (6H, m).

参考例6

1-メチル-5-オキソーN-フェニル-3-ピロリジンカルボキサミド

5

10

15

20

25

アニリン(4.66g)と1ーメチルー2ーピロリドンー4ーカルボン酸(7.15g)のジメチルホルムアミド(50m1)溶液に1ーヒドロキシベンズトリアゾール(7.43g)と1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩(14.38g)を室温で加え、室温で40分間攪拌した。反応液を濃縮し、残留物に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(メタノール:酢酸エチル=1:9で溶出)で精製し、エーテルで洗い、表題化合物(9.47g)を無色固体として得た。 1 H-NMR(CDCl $_8$) $\delta:2.50-3.95$ (2H, m), 2.88 (3H, s), 3.15-3.35 (1H, m), 3.58 (1H, dd, J=9.6, 9.6 Hz), 3.77 (1H, dd, J=7.0, 9.6 Hz), 7.05-7.60 (5H, m).

参考例7

N-(3-クロロプロピル)-1-メチル-5-オキソーN-フェニル-3-ピロリジンカルボキサミド

1 ーメチルー5 ーオキソーNーフェニルー3 ーピロリジンカルボキサミド(2.18g)のジメチルホルムアミド(20m1)溶液に水素化ナトリウム(60%鉱油懸濁液800mg)を0℃で加え、0℃で30分間攪拌した。反応混合物に1ーブロモー3ークロロプロパン(1.978m1)を0℃で加え、0℃で30分間、室温で30分間攪拌した。反応液を水に加え、酢酸エチルで抽出した。抽出液を無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:9で溶出)で精製し、表題化合物(2.69g)を無色油状物質として得た。 1 H-NMR(CDCl₃) δ : 1.95-2.15 (2H, m), 2.15-2.35 (1H, m), 2.60-2.80 (1H, m), 2.77 (3H, s), 2.95-3.30 (2H, m), 3.56 (1H, t, J = 6.6 Hz), 3.50-3.70 (1H,m), 3.85 (1H, t, J = 6.2 Hz), 7.10-7.25 (2H, m), 7.30-7.55 (3H, m).

参考例8

N-(4-クロロフェニル)-1-メチル-5-オキソー3-ピロリジンカルボ

キサミド

5

10

15

20

25

 $4-\rho$ ロロアニリン(1.78g)と1-メチルー2-ピロリドンー4-カルボン酸(2.00g)のジメチルホルムアミド(20m1)溶液に1-ヒドロキシベンズトリアゾール(2.08g)と1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(4.02g)を室温で加え、室温で1時間攪拌した。反応液を濃縮し、残留物に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をエーテルとアセトンで洗って表題化合物(2.64g)を無色固体として得た。 1 H-NMR(DMSO- 1 G) $\delta: 2.72$ (1 3H, 1 8), 1 9, $^$

参考例9

N-(4-クロロフェニル)-N-(3-クロロプロピル)-1-メチル-5-オキソ-3-ピロリジンカルボキサミド

参考例10

N-(4-フルオロフェニル)-1-メチル-5-オキソ-3-ピロリジンカル ボキサミド 4-フルオロアニリン(1.324m1)と<math>1-メチル-2-ピロリドン-4ーカルボン酸(2.00g)のジメチルホルムアミド(20m1)溶液に1-ヒドロキシベンズトリアゾール(2.08g)と1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(<math>4.02g)を室温で加え、室温で1時間攪拌した。反応液を濃縮し、残留物に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をエーテルとアセトンで洗って表題化合物(2.26g)を無色固体として得た。 1 H-NMR(DMSO- 1 G) $\delta: 2.72$ (3H, s), 3.20-3.70 (5H, m), 7.05-7.25 (2H, m), 7.50-7.65 (2H, m).

10

15

20

5

参考例11

N- (4-7)ルオロクロロフェニル) -1 - メチルー 5 - オキソー 3 - ピロリジンカルボキサミド(945 m g)のジメチルホルムアミド(8 m 1)溶液に水素化ナトリウム(60%鉱油懸濁液 320 m g)を0%で加え、0%で 30分間 攪拌した。反応混合物に<math>1 - ブロモー3 - クロロプロパン(0.791 m 1)を0%で加え、0%で 30分間、室温で <math>30分間攪拌した。反応液を水に加え、酢酸エチルで抽出した。抽出液を無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=<math>1:9で溶出)で精製し、表題化合物(1130 m g)を無色油状物質として得た。 1 H-NMR(CDCl $_3$) $\delta:1.95-2.15$ (2H, m), 2.24 (1H, dd, 1H, dd, 1H, 1

25

参考例12

室温で加え、室温で20分間攪拌した。反応混合物に1-プロモ-3-クロロプロパン(0.989m1)を室温で加え、室温で1.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1で溶出)で精製し、表題化合物(1.73g)を無色油状物質として得た。 1 H-NMR(CDCl $_3$) $\delta:2.05-2.25$ (2H, m), 2.60-2.70 (2H, m), 2.80-3.00 (2H, m), 3.63 (2H, t, 3 = 3 6.2 Hz), 3 4.11 (2H, t, 3 = 3 6.8 Hz), 3 6.95-7.40 (4H, m).

10 参考例13

5

15

20

1, 3, 4, 5ーテトラヒドロー2H—1—ベンズアゼピンー2ーオン(1. 61g)のジメチルホルムアミド(10ml)溶液に水素化ナトリウム(60% 鉱油懸濁液400mg)を室温で加え、室温で30分間攪拌した。反応混合物に 1ーブロモー3ークロロプロパン(0. 989ml)を室温で加え、室温で1時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1で溶出)で精製し、表題化合物(2.05g)を無色油状物質として得た。 1 H-NMR(CDCl $_3$) δ :1.95-2.35 (6H, m), 2.70 (2H, t, J = 6.6 Hz), 3.52 (2H, t, J = 6.6 Hz), 3.70-4.20 (2H, m), 7.10-7.40 (4H, m).

参考例14

WO 02/26714

42

PCT/JP01/08281

ークロロプロパン(0.989ml)を室温で加え、室温で16時間攪拌した。 反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1で溶出)で精製し、表題化合物(1.96g)を無色油状物質として得た。 1 H-NMR(CDCl $_3$) δ : 2.05-2.35 (2H, m), 3.64 (2H, t, J = 6.2 Hz), 4.11 (2H, t, J = 6.6 Hz), 4.61 (2H, s), 6.95-7.10 (4H, m).

参考例15

5

15

20

25

2H-1, 4-ベンゾチアジン-3 (4H) -オン (1.65g) のジメチルホルムアミド (10m1) 溶液に水素化ナトリウム (60%鉱油懸濁液 400mg) を室温で加え、室温で1.5時間攪拌した。反応混合物に1-ブロモー3-クロロプロパン (0.989m1) を室温で加え、室温で16時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1で溶出)で精製し、表題化合物 (2.26g) を無色油状物質として得た。 1 H-NMR(CDCl $_3$) $\delta:2.00-2.40$ (2H,m), 3.39 (2H,s), 3.59 (2H,t,J=6.6Hz), 4.17 (2H,t,J=7.4Hz), 6.95-7.45 (4H,m).

参考例16

 $1-(3-\rho \mu \mu \nu)-3$, $4-\tilde{\nu}$ ヒドロキノキサリン-2(1 H)-オン参考例 1 2 と同様の方法で、3, $4-\tilde{\nu}$ ヒドロキノキサリン-2(1 H)-オンを用いて、表題化合物を無色液体として得た。 1 H-NMR(CDCl $_3$) δ : 2.05-2.35 (2H, m), 3.63 (2H, t, J = 6.6 Hz), 3.94 (2H, s), 4.11 (2H, t, J = 7.4 Hz), 6.65-7.20 (4H, m).

43

[2-[[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]アミノ]フェニル]酢酸 tertーブチル

参考例5と同様の方法でアニリンの代わりに(2-アミノフェニル)酢酸 tert-ブチルを用いて、表題化合物を無色液体として得た。¹H-

NMR(CDCl₃) δ: 1.35-1.45 (2H, m), 1.43 (9H, s), 1.86-2.03 (2H, m), 2.10-2.45 (4H, m), 2.63 (2H, t, J = 7.3 Hz), 3.00-3.15 (2H, m), 3.16-3.32 (2H, m), 3.49(2H, s), 4.75-4.84 (1H, br), 6.64-6.78 (3H, m), 6.86 (1H, d, J = 5.4 Hz), 7.05-7.43 (6H, m).

10 参考例18

5

20

25

30

参考例 1 2 と同様の方法で、3, 4, 5, 6 ーテトラヒドロー 1 ーベンズアゾシンー 2 (1 H) ーオンを用いて、表題化合物を無色液体として得た。 1 H-

NMR(CDCl₃) δ: 1.20-2.45 (9H, m), 2.70-2.90 (1H, m), 3.45-3.65 (3H, m), 4.20-4.40 (1H, m), 7.15-7.45 (4H, m).

参考例19

参考例 1 2 と同様の方法で、1 , 3 ージヒドロー 2 Hーベンズイミダゾールー 2 ーオンを用いて、表題化合物を無色液体として得た。 1 H-NMR(CDCl $_{8}$) δ : 2.00- 2.35 (2H, m), 3.62 (2H, t, J = 6.2 Hz), 4.08 (2H, t, J = 6.6 Hz), 7.00-7.25 (4H, m).

参考例20

5-オキソー1-[2-(ピリジン-2-イル)エチル]ピロリジン-3-カルボン酸

イタコン酸(3.90g)と2-(2-アミノエチル)ピリジン(3.67g)と水(3m1)の混合物を150で2時間加熱した。残留物をイソプロパ

44

ノールで洗い、表題化合物(4.09g)を無色固体として得た。 1 H-NMR(CDCl $_3$) δ : 2.63 (1H, dd, J = 17.2, 10.0 Hz), 2.83 (1H, dd, J = 17.2, 8.2 Hz), 2.93-3.41 (3H, m), 3.63 (2H, t, J = 7.9 Hz), 3.68-3.87 (2H, m), 7.79 (1H, dt, J = 2.0, 7.7 Hz), 8.59-8.65 (1H, m).

5 参考例21

10

15

20

25

5-オキソー1- [2-(ピペリジン-1-イル) エチル] ピロリジン-3-カ ルボン酸

イタコン酸 (3.90g) と $1-(2-T \le J$ エチル) ピペリジン (3.85g) と水 (5 m 1) の混合物を140 $\mathbb C$ で 2 時間加熱した。残留物をイソプロパノールと酢酸エチルで洗い、表題化合物 (5.24g) を無色固体として得た。 1 H-NMR(CDCl₃) δ : 1.50-2.10 (6H, m), 2.50-3.80 (12H, m), 4.15-4.35 (1H, m).

合成例1

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-メチル-5-オキソ-N-フェニル-3-ピロリジンカルボキサミドフマル酸塩

スピロ [1 Hーインデンー1, 4'ーピペリジン] トリフルオロ酢酸塩(405 mg)とNー(3ークロロプロピル)ー1ーメチルー5ーオキソーNーフェニルー3ーピロリジンカルボキサミド(465 mg)のアセトニトリル(20 m1)溶液によう化カリウム(226 mg)と炭酸カリウム(282 mg)を室温で加え、24時間加熱還流した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:4で溶出)で精製し、エタノールに溶解し、フマル酸(108 mg)を加え、濃縮した。残留物をエーテルで洗い、表題化合物(463 mg)を無色固体として得た。 1 H-NMR(DMSO- 1 d₆) 3 : 1.10-1.30 (2H, m), 1.60-1.80 (2H, m), 2.00-3.80 (15H, m), 2.63 (3H, s), 6.59 (2H, s), 6.80 (1H, d, J = 5.4 Hz), 7.10-7.60 (9H, m).

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-N-フェニルアセタミド フマル酸塩

N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]アニリン(80mg)とピリジン(0.040m1)の塩化メチレン(1m1)溶液に塩化アセチル(0.021m1)を室温で加え、室温で1時間攪拌した。反応液に水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、エーテルに溶解し、フマル酸(29mg)を加え、析出物をエーテルで洗い、表題化合物(60mg)を無色固体として得た。 1 H-NMR(DMSO- 1 d) δ : 1.10-1.30 (2H, m), 1.60-1.80 (5H, m), 2.05-2.30 (2H, m), 2.30-2.75 (4H, m), 3.00-3.15 (2H, m), 3.65-3.80 (2H, m), 6.60 (2H, s), 6.81 (1H, d, J=5.8 Hz), 6.98 (1H, d, J=5.8 Hz), 7.10-7.55 (9H, m).

15 実施例 2

5

10

20

25

Nー [3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-5-オキソー1, Nージフェニルー3-ピロリジンカルボキサミド塩酸塩

 $5-オキソー1-フェニルー3-ピロリジンカルボン酸(108mg)の塩化メチレン(1.06ml)溶液に塩化オキザリル(0.051ml)とジメチルホルムアミド(0.004ml)を室温で加え、室温で30分間攪拌した。この反応液をNー[3-(1H-インデンー1-スピロー4'ーピペリジンー1'ーイル)プロピル]アニリン(145mg)とピリジン(0.072ml)の塩化メチレン(2ml)溶液に室温で加え、室温で20分間攪拌した。反応液に水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、酢酸エチルに溶解し、1N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(62mg)を無色固体として得た。<math>^1$ H-NMR(DMSO- 1 G) δ :

46

1.25-1.45 (2H, m), 1.80-4.05 (17H, m), 6.90 (1H, d, J = 5.4 Hz), 7.05-7.70 (15H, m).

実施例3

5 1ーアセチルーNー[3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]ーNーフェニルー4ーピペリジンカルボキサミドフマル酸塩

N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]アニリン(142mg)とピリジン(0.072m1)の塩化メチレン(2m1)溶液に1-アセチルピペリジン-4-カルボン酸塩化物(101mg)を室温で加え、室温で30分間攪拌した。反応液に水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:1で溶出で溶出)で精製し、メタノールに溶解し、フマル酸(29mg)を加え、濃縮した。残留物をエーテルとヘキサンの混合溶液で洗い、表題化合物(116mg)を無色固体として得た。 1 H-NMR(DMSO- 1 dg) δ : 1.10-2.80 (17H, m), 1.94 (3H, m), 2.95-3.15 (2H,m), 3.50-3.80 (3H, m), 4.20-4.35 (1H, m), 6.59 (2H, s), 6.81 (1H, d, J = 5.4 Hz), 6.99 (1H, d, J = 5.4 Hz), 7.10-7.60 (9H, m).

実施例 4

10

15

20

25

30

N-[3-(1H-インダン-1-スピロ-4'-ピペリジン-1'-イル)プロピル] -1-メチル-5-オキソ-N-フェニル-3-ピロリジンカルボキサミド塩酸塩

1H- (1) + (1)

水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:1で溶出)で精製し、酢酸エチルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(1 1 5 mg)を無色固体として得た。 ¹H-

NMR(DMSO- d_6) δ : 1.55-3.80 (19H, m), 2.06 (2H, t, J = 6.5 Hz), 2.70 (3H, s), 2.89 (2H, t, J = 6.5 Hz), 7.05-7.60 (9H, m).

実施例5

5

10

15

20

25

N-(4-クロロフェニル)-N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-メチル-5-オキソ-3-ピロリジンカルボキサミド 塩酸塩

1 Hーインデンー1ースピロー4'ーピペリジン トリフルオロ酢酸塩(300mg)とNー(4ークロロフェニル)-Nー(3ークロロプロピル)-1ーメチルー5ーオキソー3ーピロリジンカルボキサミド(395mg)のジメチルホルムアミド(5m1)溶液によう化カリウム(166mg)と炭酸カリウム(553mg)と臭化テトラーnーブチルアンモニウム(3mg)を室温で加え、80℃で24時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:4で溶出)で精製し、酢酸エチルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(420mg)を無色固体として得た。「H-NMR(DMSO-d₆) δ :1.25-1.40(2H, m), 1.80-2.05(2H, m), 2.05-2.25(1H, m), 2.40-4.30(14H, s), 2.65(3H, s), 6.90(1H, d, J = 5.8 Hz), 7.16(1H, d, J = 5.8 Hz), 7.20-7.45 (4H, m), 7.45-7.65 (4H, m).

実施例6

1H-インデン-1-スピロ-4'-ピペリジン トリフルオロ酢酸塩(29)

9 m g)とN-(3-クロロプロピル)-N-(4-フルオロフェニル)-1ーメチル-5ーオキソー3ーピロリジンカルボキサミド(375 m g)のジメチルホルムアミド(5 m 1)溶液によう化カリウム(166 m g)と炭酸カリウム(553 m g)と臭化テトラーnーブチルアンモニウム(3 m g)を室温で加え、80℃で16時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:4で溶出)で精製し、酢酸エチルとエーテルの混合溶液に溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(335 m g)を無色固体として得た。 1 H-NMR(DMSO- 1 d₆) δ :1.20-1.40(2H, m), 1.80-3.80(17H, m), 2.65(3H, s), 6.90(1H, d, 1 J=5.6 Hz), 7.16 (1H, d, 1 J=5.6 Hz), 7.10-7.60 (8H, m).

実施例7

5

10

20

25

15 N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-(メチルスルホニル)-N-フェニル-4-ピペリジンカルボキサミドフマル酸塩

 $1 \, \mathrm{H}$ ーインデンー1ースピロー4'ーピペリジン トリフルオロ酢酸塩(300mg)とNー(3ークロロプロピル)ー1ー(メチルスルホニル)ーNーフェニルー4ーピペリジンカルボキサミド(358mg)のジメチルホルムアミド(5m1)溶液によう化カリウム(166mg)と炭酸セシウム(1.30g)と臭化テトラーnーブチルアンモニウム(3mg)を室温で加え、80%で89時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:1で溶出)で精製し、酢酸エチルに溶解し、フマル酸(102mg)を加え、析出物をエーテルで洗い、表題化合物(176mg)を無色固体として得た。 1 H- 1 NMR(1 DMSO- 1 d 2 g) 2 b 2 1.20- 1 1.40 (1 2H, 1 g) 2 1.58

49

Hz), 7.05 (1H, d, J = 5.8 Hz), 7.10-7.60 (6H, m).

実施例8

5

10

15

25

30

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-3, 4-ジヒドロ-2(1H)-キノリノン 塩酸塩

1 Hーインデンー1ースピロー4'ーピペリジン トリフルオロ酢酸塩(300mg)と1ー(3ークロロプロピル)-3、4ージヒドロー2(1 H)ーキノリノン(224mg)のジメチルホルムアミド(5 m 1)溶液によう化カリウム(166mg)と臭化テトラーnーブチルアンモニウム(3 m g)と炭酸セシウム(1.30g)を室温で加え、80℃で15時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、エーテルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(247mg)を無色固体として得た。 1 H-NMR(DMSO- 1 G) 3 : 1.25-1.40 (2H, m), 1.95-2.20 (2H, m), 2.45-2.65 (4H, m), 2.80-3.00 (2H, m), 3.15-3.70 (6H, m), 4.01 (2H, t, J=7.0 Hz), 6.89 (1H, d, J=5.8 Hz), 6.95-7.45 (8H, m), 7.16 (1H, d, J=5.8 Hz).

実施例9

20 N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-1,3,4,5-テトラヒドロ-2H-1-ベンズアゼピン-2-オン塩酸塩

1 Hーインデンー1ースピロー4'ーピペリジン トリフルオロ酢酸塩(3 0 0 mg)と1ー(3ークロロプロピル)ー1, 3, 4, 5ーテトラヒドロー2 H ー1ーベンズアゼピンー2ーオン(2 3 8 mg)のジメチルホルムアミド(5 m 1)溶液によう化カリウム(1 6 6 mg)と臭化テトラーnーブチルアンモニウム(3 mg)と炭酸カリウム(5 5 3 mg)を室温で加え、80℃で18時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1:10

で溶出)で精製し、エーテルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(2 5 8 m g)を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.70-4.00 (18H, m), 6.88 (1H, d, J = 5.8 Hz), 7.16 (1H, d, J = 5.8 Hz), 7.10-7.50 (8H, m).

5

10

15

20

25

30

実施例10

Nー[3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]ー2Hー1,4ーベンゾオキサジンー3(4H)ーオン塩酸塩1Hーインデンー1ースピロー4'ーピペリジントリフルオロ酢酸塩(299mg)と4ー(3ークロロプロピル)ー2Hー1,4ーベンゾオキサジンー3(4H)ーオン(226mg)のジメチルホルムアミド(5m1)溶液によう化カリウム(166mg)と臭化テトラーnーブチルアンモニウム(3mg)と炭酸カリウム(553mg)を室温で加え、80℃で20時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、エーテルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(316mg)を無色固体として得た。 1 H-NMR(DMSO- 1 d) 1 d)

実施例11

N-[3-(1H-インデン-1-スピロ-4', ーピペリジン-1', ーイル)プロピル]ー2H-1, 4ーベンゾチアジン-3 (4H)ーオン 塩酸塩1Hーインデン-1ースピロー4', ーピペリジン トリフルオロ酢酸塩(300mg)と4-(3-クロロプロピル)ー2H-1, 4ーベンゾチアジン-3 (4H)ーオン(241mg)のジメチルホルムアミド(5m1)溶液によう化カリウム(167mg)と臭化テトラーnーブチルアンモニウム(3mg)と炭酸カリウム(550mg)を室温で加え、80℃で20時間攪拌した。放冷後、反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫

51

酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、エーテルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(3 1 0 m g)を無色固体として得た。 1 H-NMR(DMSO- 1 de) δ : 1.20-1.40 (2H, m), 2.00-2.20 (2H, m), 2.30-2.70 (2H, m), 3.10-3.70 (6H, m), 3.55 (2H, s), 4.08 (2H, t, 3Hz), 4.08 (3Hz), 4.08 (3Hz),

実施例で得られた化合物の構造式を以下に示す。

5

実施例1の化合物

実施例2の化合物

実施例3の化合物

実施例4の化合物

実施例5の化合物

実施例6の化合物

実施例12

 $1-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-3,4-ジヒドロキノキサリン-2(1H)-オン塩酸塩実施例8と同様の方法で表題化合物を無色固体として得た。<math>^1$ H-NMR(DMSO-d₆) δ : 1.20-1.40(2H, m), 2.00-4.45(16H, m), 3.81(2H, s), 3.99(2H, t, J=7.2 Hz), 6.60-8.00(10H, m).

10 実施例13

5

1-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル] -1, 3-ジヒドロ-2H-インドール-2-オン 塩酸塩 <math display="block">[2-[[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)] が酸 tert-ブチル (606mg) のエル) プロピル] アミノ] フェニル] 酢酸 tert-ブチル (606mg) のエ

54

タノール(2 m 1)溶液に4 N 塩酸の酢酸エチル(8 m 1)溶液を室温で加え、室温で2時間攪拌し、濃縮した。残留物にエタノール(1 0 m 1)を加え、7 0 $^{\circ}$ で4時間攪拌し、濃縮した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1と酢酸エチルと酢酸エチル:メタノール=4:1で溶出)と塩基性シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1とヘキサン:酢酸エチル=2:1で溶出)で精製し、エタノールに溶解し、1 N塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表題化合物(288 mg)を無色固体として得た。 $^{\circ}$ H-NMR(DMSO- $^{\circ}$ d) δ : 1.20-1.38 (2H, m), 2.00-2.24 (2H, m), 2.50-2.78 (2H, m), 3.10-3.70 (8H, m), 3.81 (2H, t, J = 6.5Hz), 6.87 (1H, d, J = 5.4 Hz), 6.98-7.42 (9H, m).

実施例14

5

10

20

15 1-[3-(1H-インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル]-3,4,5,6-テトラヒドロー1ーベンズアゾシン-2(1H)ーオン塩酸塩

実施例 8 と同様の方法で表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d₆) δ : 1.10-1.40 (2H, m), 1.45-4.20 (20H, m), 6.89 (1H, d, J = 5.4 Hz), 7.16 (1H, d, J = 5.4 Hz), 7.20-7.45 (8H, m).

実施例15

1-[2-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) エチル] -3, 4-ジヒドロ-2(1H)-キノリノン 塩酸塩

1 Hーインデンー1ースピロー4'ーピペリジントリフルオロ酢酸塩(159mg)と3ー(2ーオキソー3,4ージヒドロキノリンー1(2H)ーイル)アセトアルデヒド(98mg)と酢酸ナトリウム(43mg)とナトリウム水素化トリアセトキシホウ素(168mg)とテトラヒドロフラン(5ml)の混合物を1.5時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過

55

し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチルで溶出)で精製し、エーテルに溶解し、1 N塩酸エーテル溶液を加え、析出物をエーテルで洗い、表題化合物(1 1 1 m g)を無色固体として得た。 1 H-NMR(DMSO- 1 G) δ : 1.25-1.45 (2H, m), 2.30-2.70 (4H, m), 2.85-3.00 (2H, m), 3.25-3.55 (4H, m), 3.65-3.85 (2H, m), 4.40 (2H, 4Hz), 4Hz), 4Hz, 4

実施例16

 $1-[4-(1\,\mathrm{H}-4)\,\mathrm{J}]$ ング カンディン $1-2\,\mathrm{J}$ カンディン $1-2\,\mathrm{J}$ カンディン $1-2\,\mathrm{J}$ カン $1-2\,\mathrm{J}$ を は 大ル $1-2\,\mathrm{J}$ を は な は 大ル $1-2\,\mathrm{J}$ を は な な ま を は な と 同様の方法で表題化合物を無色固体として得た。 $1-2\,\mathrm{H}$ ト $1-2\,\mathrm{H}$ ト $1-2\,\mathrm{J}$ を $1-2\,\mathrm{J}$

15

20

5

実施例17

1-[5-(1 H- インデン-1- スピロ-4'- ピペリジン-1'- イル)ペンチル]-3, 4-ジヒドロ-2(1 H)-キノリノン 塩酸塩 実施例 8 と同様の方法で表題化合物を無色固体として得た。 1 H-NMR(DMSO- $_6$) $\delta: 1.25-1.95$ (8H, m), 2.30-2.70 (4H, m), 2.86 (2H, t, J=8.2 Hz), 3.05-3.70 (6H, m), 3.92 (2H, t, J=7.4 Hz), 6.90 (1H, d, J=5.6 Hz), 6.95-7.45 (9H, m).

実施例18

1-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1,3-ジヒドロ-2H-ベンズイミダゾール-2-オン塩酸塩実施例8と同様の方法で表題化合物を無色固体として得た。¹H-NMR(DMSO-d₆)δ:1.25-1.40(2H, m),2.00-4.05(12H, m),6.87(1H, d, J = 5.8 Hz),6.95-7.40(9H, m).

30 実施例19

56

1-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1,3-ジヒドロ-3-メチル-2H-ベンズイミダゾール-2-オンフマル酸塩

1-[3-(1H-1)] ースピロー4'ーピペリジンー1'ーイル)プロピル]ー1,3ージヒドロー2Hーベンズイミダゾールー2ーオン(359mg)のN,Nージメチルホルムアミド(4m1)溶液に60%水素化ナトリウム(48mg)を室温で加え、室温で1時間攪拌し、さらに、ヨウ化メチル(0.075m1)を室温で加え、室温で2.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(メタノール:酢酸エチル=1:9で溶出)で精製し、エーテル(10m1)に溶解し、フマル酸(61mg)を加え、析出物をエーテルで洗い、表題化合物(184mg)を無色固体として得た。 1 H-NMR(DMSO- 1 d) δ : 1.10-1.30 (2H, m), 1.85-2.20 (4H, m), 2.35-2.70 (4H, m), 2.95-3.15 (2H, m), 3.35 (3H, s), 3.94 (2H, t, J=6.6 Hz), 6.61 (2H, s), 6.79 (1H, d, J=5.6 Hz), 6.96 (1H, d, J=5.6 Hz), 7.00-7.45 (8H, m).

実施例20

5

10

15

20

25

30

1-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-3-エチルー1,3-ジヒドロ-2H-ベンズイミダゾールー2-オン

実施例 1 9 と同様の方法で表題化合物を無色液体として得た。 1 H-NMR(CDCl₃) δ : 1.20-1.45 (2H, m), 1.35 (3H, t, J = 7.4 Hz), 1.90-2.45 (6H, m), 2.54 (2H, t, J = 6.6 Hz), 2.90-3.10 (2H, m), 3.90-4.20 (2H, m), 3.97 (2H, q, J = 7.4 Hz), 6.73 (1H, d, J = 5.4 Hz), 6.82 (1H, d, J = 5.4 Hz), 6.95-7.45 (8H, m).

実施例21

1-[3-(1H-インデン-1-スピュー4'-ピペリジン-1'-イル)プロピル]-1,3-ジヒドュー3-プロピル-2H-ベンズイミダゾールー2ーオン

実施例 1 9 と同様の方法で表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d₆) δ : 0.88 (3H, t, J = 7.8 Hz), 1.20-1.40 (2H, m), 1.55-1.80 (2H, m), 2.10-3.70 (10H, m), 3.82 (2H, t, J = 7.2 Hz), 4.00 (2H, t, J = 7.0 Hz), 6.88 (1H, d, J = 5.4 Hz), 7.15 (1H, d, J = 5.4 Hz), 7.05-7.50 (8H, m).

5

実施例22

WO 02/26714

N-(3-クロロフェニル) -N-[3-(1H-インデン-1-スピロ-4' -ピペリジン-1'-イル) プロピル] -1-メチル-5-オキソピロリジン-3-カルボキサミド 塩酸塩

10 1-メチル-5-オキソピロリジン-3-カルボン酸(172mg)と塩化オキ ザリル(0.113m1)とN, Nージメチルホルムアミド(0.007m1)と塩化メチレン(2m1)の混合物を室温で30分間攪拌し、N-(3ークロロ フェニル)-N-「3-(1H-インデン-1-スピロ-4'-ピペリジン-1' - 4ル) プロピル] アミン $(353 \, \text{mg})$ とピリジン $(0.162 \, \text{ml})$ の 塩化メチレン(4m1)溶液を室温で加え、室温で18時間間攪拌した。反応液 15 に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和 食塩水で洗い、無水硫酸ナトリウムで乾燥し、ろ過し、濃縮した。残留物をシリ カゲルカラムクロマトグラフィー(酢酸エチルとメタノール:酢酸エチル=1: 9で溶出)で精製し、エーテルに溶解し、1N塩酸エーテル溶液を加え、析出物 20 をエーテルで洗い、表題化合物(226mg)を無色固体として得た。¹H-NMR(DMSO-d_c) δ : 1.25-1.40 (2H, m), 1.80-3.80 (17H, m), 2.65 (3H, s), 6.87 (1H, d, J = 5.8 Hz), 7.15 (1H, d, J = 5.8 Hz), 7.10-7.70 (8H, m).

実施例 2 3

N-(2-クロロフェニル)-N-[3-(1H-インデン-1-スピロー4'-ピペリジンー1'-イル)プロピル]-1-メチルー5ーオキソピロリジンー3ーカルボキサミド 塩酸塩
 実施例22と同様の方法で、1-メチルー5ーオキソピロリジンー3ーカルボン酸とN-(2-クロロフェニル)-N-[3-(1H-インデン-1-スピロー

4'ーピペリジンー1'ーイル)プロピル] アミンを用いて、表題化合物を無色 固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.25-1.40 (2H, m), 1.80-4.20 (17H, m), 2.64 (3H, s), 6.89 (1H, d, J = 6.0 Hz), 7.15-7.80 (9H, m).

5 実施例24

N-(3, 4-ジクロロフェニル) -N-[3-(1H-インデン-1-スピロー4'ーピペリジン-1'ーイル) プロピル] -1-メチル-5-オキソピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で、1-メチルー 5-オキソピロリジンー 3-カルボン 酸とNー(3, 4-ジクロロフェニル)-Nー [3-(1 Hーインデンー 1-スピロー 4 ' -ピペリジンー 1 ' -イル)プロピル] アミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d) δ : 1.25-1.40 (2H, m), 1.80-3.80 (17H, m), 2.65 (3H, s), 6.90 (1H, d, J=5.6 Hz), 7.15 (1H, d, J=5.6 Hz), 7.10-7.95 (7H, m).

実施例 2 5

15

25

N-(3-クロロフェニル)-N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソー1-(2-フェニルエチル)ピロリジン-3-カルボキサミド塩酸塩

実施例 2 2 と同様の方法で、5-オキソ-1-(2-フェニルエチル) ピロリジン $-3-カルボン酸とN-(3-クロロフェニル)-N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]アミンを用いて、表題化合物を無色固体として得た。<math>^1$ H-NMR(DMSO- 1 d, 2 d) $\delta:1.20-1.40$ (2H, m), 1.80-3.80 (21H, m), 6.90 (1H, d, J=5.4 Hz), 7.10-7.70 (14H, m).

実施例26

N-(3, 4-ジクロロフェニル) -N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル] -5-オキソー1-(2-フェニルエチル) ピロリジン-3-カルボキサミド 塩酸塩

30 実施例22と同様の方法で、5-オキソ-1-(2-フェニルエチル)ピロリジ

ンー 3 ーカルボン酸とNー(3, 4 ージクロロフェニル)-Nー [3 ー (1 Hーインデンー1 ースピロー4 'ーピペリジンー1 'ーイル)プロピル] アミンを用いて、表題化合物を無色固体として得た。 ¹H-NMR(DMSO- d_6) δ : 1.25-1.40 (2H, m), 1.80-3.80 (21H, m), 6.90 (1H, d, J = 5.8 Hz), 7.10-7.40 (10H, m), 7.49 (1H, dd, J = 2.2, 8.4 Hz), 7.79 (1H, d, J = 8.4 Hz), 7.86 (1H, d, J = 2.2 Hz).

実施例27

5

10

15

25

N-(2-フルオロフェニル) -N-[3-(1H-インデン-1-スピロー 4 '-ピペリジン-1' -イル) プロピル] -1-メチル-5-オキソピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で、1-メチルー5-オキソピロリジンー3-カルボン酸とN-(2-フルオロフェニル)-N-[3-(1H-インデンー1-スピロー4'-ピペリジンー1'-イル)プロピル] アミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.45 (2H, m), 1.80-4.00 (17H, m), 2.65 (3H, s), 6.90 (1H, d, J=5.4 Hz), 7.16 (1H, d, J=5.4 Hz), 7.10-7.70 (8H, m).

実施例28

N-[3-(1H-インデン-1-スピロ-4', -ピペリジン-1', -イル)プ 20 ロピル] -N-(2-メトキシフェニル) -1-メチル-5-オキソピロリジン -3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で、 $1-メチル-5-オキソピロリジン-3-カルボン酸とN-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-N-(2-メトキシフェニル)アミンを用いて、表題化合物を無色固体として得た。 <math>^1$ H-NMR(DMSO- 1 G) $\delta: 1.25-1.40$ (2H, m), 1.80-4.30 (17H, m), 2.76 (3H, s), 3.87 (3H, s), 6.90 (1H, d, J=5.8 Hz), 7.00-7.55 (9H, m).

実施例29

60

ピロリジンー3ーカルボキサミド

実施例 2 2 と同様の方法で 1-メチルー 5-オキソピロリジンー 3-カルボン酸とNー [3-(1H-インデンー 1-スピロー 4 ' -ピペリジンー 1 ' -イル)プロピル] -Nー (2-トリフルオロメチルフェニル) アミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(CDCl $_{3}$) δ : 1.25-4.50 (19H, m), 2.76 (3/2H, s), 2.78 (3/2H, s), 6.74 (1H, d, J=5.8 Hz), 6.83 (1H, d, J=5.8 Hz), 7.10-7.90 (8H, m).

実施例30

5

15

10 N-[3-(1H-インデン-1-スピロ-4, -ピペリジン-1, -イル) プロピル]-1-メチル-N-(2-メチルフェニル)-5-オキソピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で、 $1-メチル-5-オキソピロリジン-3-カルボン酸とN-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-N-(2-メチルフェニル)アミンを用いて、表題化合物を無色固体として得た。 <math>^1$ H-NMR(DMSO- 1 d₆) δ : 1.25-1.40 (2H, m), 1.80-4.25 (17H, m), 2.21 (3H, s), 2.64 (3H, s), 6.90 (1H, d, 1 J=5.4 Hz), 7.10-7.50 (8H, m).

20 実施例31

N-(2-xチルフェニル) -N-[3-(1H-1) -1-x -1

実施例 2 2 と同様の方法で、1-メチルー 5-オキソピロリジンー3-カルボン酸とN-(2-エチルフェニル)-N-[3-(1 H-インデンー1-スピロー 4'-ピペリジンー1'-イル)プロピル]アミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d $_{6}$) δ : 1.21 (3H, J= 7.4 Hz), 1.20-1.45 (2H, 1.80-1.40 (19H, 1.80-1.40 (19H, 1.80-

25

61

実施例32

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソ-1-(2-フェニルエチル)-N-(2-プロピルフェニル) ピロリジン-3-カルボキサミド 塩酸塩

実施例22と同様の方法で、1ーメチルー5ーオキソピロリジンー3ーカルボン酸とNー[3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]ーNー(2ープロピルフェニル)アミンを用いて、表題化合物を無色固体として得た。 ¹H-NMR(DMSO-d₆)δ:0.95(3H, J=8.0 Hz), 1.20-1.40(2H, m), 1.50-1.75(2H, m), 1.80-4.40(19H, m), 2.64(3H, s), 6.89(1H, d, J=5.6 Hz), 7.16(1H, d, J=5.6 Hz), 7.10-7.55(8H, m).

実施例33

15

20

30

Nー [3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-メチル-N-(4-メチルフェニル)-5-オキソピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で、 $1-メチル-5-オキソピロリジン-3-カルボン酸とN-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-N-(4-メチルフェニル)アミンを用いて、表題化合物を無色固体として得た。 <math>^1$ H-NMR(DMSO- 1 d) $\delta:1.20-1.40$ (2H, m), 1.80-2.70 (6H, m), 2.37 (3H, s), 2.64 (3H, s), 2.90-3.80 (11H, m), 6.89 (1H, d, J=5.4 Hz), 7.17 (1H, d, J=5.4 Hz), 7.20-7.45 (8H, m).

実施例34

N-(2,6-ジメチルフェニル)-N-[3-(1H-インデン-1-スピロ 25 -4'-ピペリジン-1'-イル)プロピル]-1-メチル-5-オキソピロリ ジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で、1-メチルー5-オキソピロリジンー3-カルボン酸とN-(2, 6-ジメチルフェニル)-N-[3-(1H-インデンー1-スピロー4'-ピペリジンー1'-イル)プロピル]アミンを用いて、表題化合物を無色固体として得た。 $^1H-NMR(DMSO-d_a)$ $\delta:1.25-1.40$ (2H, m), 1.80-3.70

62

(17H, m), 2.22 (6H, s), 2.64 (3H, s), 6.89 (1H, d, J = 5.4 Hz), 7.16 (1H, d, J = 5.4 Hz), 7.10-7.45 (7H, m).

実施例35

10

15

N-[3-(1H-インダン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-メチル-N-(2-メチルフェニル)-5-オキソピロリジン-3-カルボキサミド 塩酸塩

Nー $\begin{bmatrix} 3-(1H-1) - 2V-1 - 2V-1 - 4 \\ -V-1 \end{bmatrix}$ $\begin{bmatrix} 3-(1H-1) - 2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 - 2V-1 \\ -1 - 2V-1 \end{bmatrix}$ $\begin{bmatrix} -1-2V-1 \\ -1 - 2V$

得た。 ¹H-NMR(DMSO-d_c) δ: 1.55-1.75 (2H, m), 1.80-3.60 (19H, m), 2.20 (3H,

. .

s), 2.63 (3H, s), 3.95-4.25 (2H, m), 7.05-7.50 (8H, m).

実施例で得られた化合物の構造式を以下に示す。

64

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-N-(2-メチルフェニル)-5-オキソ-1-(2-フェニルエチル)ピロリジン-3-カルボキサミド塩酸塩

実施例 2 2 と同様の方法で、5 ーオキソー 1 ー(2 ーフェニルエチル)ピロリジンー 3 ーカルボン酸と N ー [3 ー(1 Hーインデンー 1 ースピロー 4 ['] ーピペリジンー 1 ['] ーイル)プロピル] ーN ー(2 ーメチルフェニル)アミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.80-4.20 (21H, m), 2.17 (3/2H, s), 2.20 (3/2H, s), 6.89 (1H, d, J = 5.8 Hz), 7.10-7.50 (14H, m)

10

20

25

30

5

実施例37

1-エチル-N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

実施例22と同様の方法で1-エチルー5-オキソピロリジンー3-カルボン酸とN-[3-(1H-インデンー1-スピロー4'ーピペリジンー1'ーイル)プロピル]-N-フェニルアミンを用いて、表題化合物を無色固体として得た。

¹H-NMR(DMSO-d₆) δ : 0.96 (3H, t, J = 7.3 Hz), 1.20-1.40 (2H, m), 1.86-2.22 (3H, m), 2.38-2.70 (3H, m), 2.90-3.85 (13H, m), 6.89 (1H, d, J = 5.8 Hz), 7.17 (1H, d, J = 5.8 Hz), 7.20-7.60 (9H, m).

実施例38

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソーN-フェニル-1-プロピルピロリジン-3-カルボキサミド 塩酸塩

2.25 (3H, m), 2.38-2.70 (3H, m), 2.90-3.85 (13H, m), 6.89 (1H, d, J = 5.6 Hz), 7.17 (1H, d, J = 5.6 Hz), 7.20-7.60 (9H, m).

実施例39

1ーブチルーNー[3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]ー5ーオキソーNーフェニルピロリジンー3ーカルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 1 ーブチルー 5 ーオキソピロリジンー 3 ーカルボン酸と Nー [3-(1H-インデン-1-スピロー4'-ピペリジンー1'-イル)プロピル<math>]-N ーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d $_{6}$) δ : 0.84 (3H, t, J=7.1 Hz), 1.05-1.50 (6H, m), 1.85-2.23 (3H, m), 2.38-2.70 (3H, m), 2.90-3.85 (13H, m), 6.89 (1H, d, J=5.4 Hz), 7.17 (1H, d, J=5.4 Hz), 7.20-7.60 (9H, m).

15 実施例40

20

25

N-[3-(1H-インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル]ー1-(2-メトキシエチル)ー5ーオキソーNーフェニルピロリジンー3ーカルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 1-(2-メトキシエチル)-5-オキソピロリジン-3-カルボン酸とN-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-N-フェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d $_{6}$) δ : 1.20-1.40 (2H, m), 1.85-2.22 (3H, m), 2.40-2.70 (3H, m), 2.90-3.85 (15H, m), 3.19 (3H, s), 6.89 (1H, d, J=5.6 Hz), 7.17 (1H, d, J=5.6 Hz), 7.22-7.60 (9H, m).

実施例41

N- [3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-(3-メトキシプロピル)-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

30 実施例22と同様の方法で、1-(3-メトキシプロピル)-5-オキソピロ

リジン-3-カルボン酸とN-「3-(1H-インデン-1-スピロ-4'-ピ ペリジンー1'ーイル)プロピル]-N-フェニルアミンを用いて、表題化合物 を無色固体として得た。 1 H-NMR(DMSO-d_e) δ : 1.20-1.40 (2H, m), 1.56-1.70 (2H. m), 1.80-2.23 (3H, m), 2.40-2.65 (3H, m), 2.90-3.85 (15H, m), 3.18 (3H, s), 6.90 (1H, d, J = 5.8 Hz), 7.16 (1H, d, J = 5.8 Hz), 7.20-7.60 (9H, m).実施例42

66

1 - [2 - (アセチルアミノ) エチル] - N - [3 - (1 H - インデン - 1 - ス)]ピロー4'ーピペリジンー1'ーイル)プロピル]ー5ーオキソーNーフェニル ピロリジンー3ーカルボキサミド 塩酸塩

実施例22と同様の方法で1-「2-(アセチルアミノ)エチル]-5-オキ ソピロリジン-3-カルボン酸とN-「3-(1H-インデン-1-スピロー 4'ーピペリジン-1'ーイル)プロピル]ーN-フェニルアミンを用いて、表 題化合物を無色固体として得た。 ${}^{1}H-NMR(DMSO-d_{a})$ $\delta: 1.20-1.40$ (2H, m). 1.74 (3H, s), 1.90-2.21 (3H, m), 2.40-2.70 (3H, m), 2.80-3.90 (15H, m), 6.89 (1H, d, J = 5.7 Hz, 7.17 (1H, d, J = 5.7 Hz), 7.20-7.60 (9H, m), 7.80-7.95 (1H, m).

実施例43

5

10

15

20

25

1 ーシクロヘキシルーNー「3ー(1 Hーインデンー1ースピロー4'ーピペリ ジン-1'ーイル)プロピル]-5-オキソ-N-フェニルピロリジン-3-カ ルボキサミド 塩酸塩

実施例22と同様の方法で1ーシクロヘキシルー5ーオキソピロリジンー3ー カルボン酸とN-「3-(1H-インデン-1-スピロー4'ーピペリジンー 1'ーイル)プロピル]ーNーフェニルアミンを用いて、表題化合物を無色周体 として得た。 1 H-NMR(DMSO-d_e) $\delta: {}^{1}$ H-NMR(DMSO-d_e) $\delta: 0.90-2.20$ (15H, m), 2.38-2.75 (3H, m), 2.85-3.85 (12H, m), 6.89 (1H, d, J = 6.0 Hz), 7.17 (1H, d, J = 6.0 Hz) 6.0 Hz), 7.20-7.60 (9H, m).

実施例44

30 1 - (シクロヘキシルメチル) - N - [3 - (1H - インデン - 1 - スピロー 4'ーピペリジン-1'ーイル)プロピル]ー5ーオキソーNーフェニルピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 1-(シクロへキシルメチル) $-5-オキソピロリジン-3-カルボン酸とN-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-N-フェニルアミンを用いて、表題化合物を無色固体として得た。 <math>^1$ H-NMR(DMSO- 1 G) $\delta:0.70-0.95$ (2H, m), 1.00-1.70 (11H, m), 1.85-2.23 (3H, m), 2.40-2.70 (3H, m), 2.80-3.85 (13H, m), 6.89 (1H, d, 1 J= 5.6 Hz), 7.17 (1H, d, 1 J= 5.6 Hz), 7.17 (1H, d, 1 J= 5.6 Hz), 7.20-7.60 (9H, m).

10 実施例45

5

15

20

25

1-(2-シクロへキシルエチル)-N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソーN-フェニルピロリジン-3-カルボキサミド 塩酸塩

実施例46

30 $1 - [2 - (\sqrt{2} - \sqrt{2} + \sqrt{2} - 1 - 1 - 1 - 1 - 1)] - N - [3 - (1 + 1)]$

ーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]ー5ーオ キソーNーフェニルピロリジンー3ーカルボキサミド 塩酸塩

実施例 45 と同様の方法で 1-[2-(シクロへキサー1-エンー1-イル) エチル] -5 ーオキソピロリジン-3 ーカルボン酸と N-[3-(1H-インデンー1-スピロー4'-ピペリジン<math>-1'ーイル)プロピル] ー N ーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 G) $\delta:1.20-1.60$ (6H, m), 1.75-2.20 (9H, m), 2.40-2.70 (3H, m), 2.85-3.85 (13H, m), 5.29 (1H, s), 6.90 (1H, d, J=5.6 Hz), 7.17 (1H, d, J=5.6 Hz), 7.20-7.60 (9H, m).

10 実施例47

5

15

20

25

30

1-[1, 1'-ビフェニルー4ーイルメチル]-N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-5-オキソーN-フェニルピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 1-[1, 1'-ビフェニルー4-イルメチル] ー $5-オキソピロリジンー3-カルボン酸とN-[3-(1H-インデンー1-スピロー4'-ピペリジンー1'-イル) プロピル] -N-フェニルアミンを用いて、表題化合物を無色固体として得た。 <math>^1$ H-NMR(DMSO- d_6) δ : 1.18-1.38 (2H, m), 1.82-2.70 (6H, m), 2.90-3.90 (11H, m), 4.29 (1H, d, J=15.1 Hz), 4.45 (1H, d, J=15.1 Hz), 6.88 (1H, d, J=5.9 Hz), 7.14 (1H, d, J=5.9 Hz), 7.20-7.70 (18H, m).

実施例48

1-ベンズヒドリル-N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 1 ーベンズヒドリルー 5 ーオキソピロリジンー 3 ーカルボン酸とNー $\begin{bmatrix} 3 - (1 H - インデン - 1 - スピロ - 4' - ピペリジン - 1' - イル)プロピル <math>\end{bmatrix}$ ーNーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d, δ : 1.20-1.40 (2H, m), 1.80-2.10 (2H, m), 2.20-2.70 (4H, m), 2.90-3.80 (11H, m), 6.32 (1H, s), 6.90 (1H, d, J = 5.4 Hz), 7.00-

7.60 (20H, m).

実施例49

5

10

20

25

30

1-ベンジル-N-[3-(1H-インデン-1-スピロ-4',-ピペリジン-1',-イル)プロピル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

実施例22と同様の方法で1ーベンジルー5ーオキソピロリジンー3ーカルボン酸とN-[3-(1H-インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル]ーN-フェニルアミンを用いて、表題化合物を無色固体として得た。

¹H-NMR(DMSO-d₆) δ : 1.20-1.40 (2H, m), 1.84-2.70 (6H, m), 2.90-4.00 (11H, m), 4.26 (1H, d, J = 15.2 Hz), 4.39 (1H, d, J = 15.2 Hz), 6.89 (1H, d, J = 5.6 Hz), 7.12-7.58 (15H, m).

15 実施例50

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソー<math>N-フェニル-1-(2-フェニルエチル)ピロリジン-3-カルボキサミド 塩酸塩

5ーオキソー1ー(2ーフェニルエチル)ピロリジンー3ーカルボン酸(373mg)をテトラヒドロフラン(5m1)と塩化オキサリル(0.140m1)と10%N,Nージメチルホルムアミドのテトラヒドロフラン溶液(0.124m1)の混合物を室温で1時間攪拌し、NーフェニルーNー[3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]アミン(255mg)とピリジン(0.324m1)と4ー(ジメチルアミノ)ピリジン(49mg)を室温で加え、室温で3時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。残留物を塩基性シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3と酢酸エチル:ヘキサン=3:1で溶出)で精製し、エタノールに溶解し、1N塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表類化合物(241mg)を無色固体として得

た。 ¹H-NMR(DMSO-d₆) δ : 1.20-1.40 (2H, m), 1.80-2.20 (3H, m), 2.35-3.90 (18H, m), 6.89 (1H, d, J = 6.0 Hz), 7.10-7.65 (14H, m).

実施例51

5 N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソー<math>N-フェニル-1-(3-フェニルプロピル)ピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 5- オキソー 1- (3- フェニルプロピル)ピロリジンー 3- カルボン酸と N- [3- (1 Hーインデンー 1- スピロー 4 ' ーピペリジンー 1 ' ーイル)プロピル] ーN- フェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR($DMSO-d_{e}$) δ : 1.20-1.40 (2H, m), 1.60-1.80 (2H, m), 1.86-2.23 (3H, m), 2.38-2.70 (5H, m), 2.90-3.85 (13H, m), 6.89 (1H, d, d = 6.0 Hz), 7.05-7.60 (15H, m).

15 実施例52

10

20

25

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソー<math>N-フェニル-1-(4-フェニルブチル)ピロリジン-3-カルボキサミド 塩酸塩

実施例 2 2 と同様の方法で 5- オキソー 1- (4- フェニルブチル)ピロリジンー 3- カルボン酸と N- [3- (1 Hーインデンー 1- スピロー 4 ' ーピペリジンー 1 ' ーイル)プロピル] - N- フェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.60 (6 H, m), 1.85-2.23 (3 H, m), 2.35-2.70 (5 H, m), 2.90-3.85 (13 H, m), 6.89 (1 H, d, 3 = 5.6 Hz), 7.10-7.60 (15 H, m).

実施例 5 3

1-(2, 4-ジメトキシベンジル)-N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

30 実施例22と同様の方法で1-(2,4-ジメトキシベンジル)-5-オキソ

71

ピロリジンー 3-カルボン酸とN- [3- (1 H-インデンー1-スピロー4' -ピペリジンー1' -イル)プロピル] -N-フェニルアミンを用いて、表題化合物を淡黄色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.80-2.65 (6H, m), 2.90-3.90 (11H, m), 3.73 (3H, s), 3.76 (3H, s), 4.14 (1H, d, J=14.9 Hz), 4.24 (1H, d, J=14.9 Hz), 6.46 (1H, dd, J=8.4, 2.3 Hz), 6.54 (1H, d, J=14.9 Hz), 14.9 Hz), 1

実施例54

5

15

10 N-[3-(1H-インデン-1-スピロ-4, -ピペリジン-1, -イル) プロピル]-1-[2-(2-メトキシフェニル) エチル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

実施例 4 5 と同様の方法で 1-[2-(2-)+キシフェニル) エチル]-5 ーオキソピロリジンー 3- カルボン酸とN-[3-(1H-)+1+2+1] ースピロー 4 ーピペリジンー 1 ーイル) プロピル]-N-フェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 G) $\delta:1.20-1.40$ (2H, m), 1.80-2.18 (3H, m), 2.38-2.72 (5H, m), 2.90-3.90 (13H, m), 3.73 (3H, s), 6.75-6.95 (2H, m), 7.00-7.60 (13H, m).

20 実施例 5 5

N- [3-(1H-インデン-1-スピロ-4, -ピペリジン-1, -イル) プロピル]-1-[2-(3-メトキシフェニル) エチル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 塩酸塩

25

実施例56

5

10

15

20

25

30

N-[3-(1H-インデン-1-スピロ-4, -ピペリジン-1, -イル) プロピル] -1-[2-(4-メトキシフェニル) エチル] -5-オキソー<math>N-フェニルピロリジン-3-カルボキサミド 塩酸塩

PCT/JP01/08281

実施例 45 と同様の方法で 1-[2-(4-メトキシフェニル) エチル] -5 ーオキソピロリジンー 3 ーカルボン酸と N-[3-(1H-インデン-1-スピロー4'-ピペリジンー1'-イル) プロピル] ーNーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 d $_{6}$) δ : 1.20-1.40 (2H, m), 1.80-2.20 (3H, m), 2.38-2.70 (5H, m), 2.80-3.85 (13H, m), 3.71 (3H, s), 6.81 (2H, d, J = 8.6 Hz), 6.89 (1H, d, J = 5.7 Hz), 7.07 (2H, d, J = 8.6 Hz), 7.17 (1H, d, J = 5.7 Hz), 7.20-7.60 (9H, m).

実施例57

N-[3-(1H-インデン-1-スピロ-4', -ピペリジン-1', -イル)プロピル] -5-オキソ-N-フェニル-1-[2-(2-チェニル) エチル]ピロリジン-3-カルボキサミド 塩酸塩

実施例 45 と同様の方法で 1-[2-(2-5+x)] エチル] -5-xキソピロリジン-3-カルボン酸とN-[3-(1H-1)] ーパーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 G) $\delta:1.25-1.40$ (2H, m), 1.80-2.20 (4H, m), 1.80-1.25 1.80-1.25 1.80-1.25 1.80-1.25 1.80-1.25 1.80-1.25 1.80 1.80-1.25 1.80 1.80

実施例58

N-[3-(1H-インデン-1-スピロ-4, -ピペリジン-1, -イル) プロピル] -5-オキソ-N-フェニル-1-[2-(ピリジン-2-イル) エチル] ピロリジン-3-カルボキサミド 二塩酸塩

5-オキソー1- [2-(ピリジンー2-イル) エチル] ピロリジンー3-カルボン酸(351mg)とジクロロメタン(3m1)と2M塩化オキザリルのジクロロメタン溶液(0.90m1)と10%N,N-ジメチルホルムアミドのテトラヒドロフラン溶液(0.1m1)を0%で加え、0%で10分間攪拌した。

10

20

この混合物を、NーフェニルーNー [3-(1H-1)] (1 5 9 m g) とピリジン (0.4 0 4 m 1) のジクロロメタン (3 m 1) 溶液に 0 で加え、室温で 1 時間攪拌し、濃縮した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。残留物を塩基性シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 1:1 と酢酸エチルとメタノール:酢酸エチル=1:3 0 で溶出)で精製し、エタノールに溶解し、1 N 塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表題化合物(2 0 4 m g)を無色固体として得た。 1 H-NMR(DMSO- 1 d_e) $\delta:1.20-1.40$ (2 H, m), 1.86-2.75 (6 H, m), 2.85-4.00 (1 H, m), 6.89 (1 H, 1 H, 1

実施例59

7.3 Hz), 8.76 (1H, d, J = 5.4 Hz).

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソー<math>N-フェニル-1-[2-(3-ピリジル)エチル]ピロリジン-3-カルボキサミド 二塩酸塩

実施例 45 と同様の方法で 1-[2-(3-ピリジル) エチル] -5-オキソ ピロリジン-3-カルボン酸とN-[3-(1H-4)) ープンテント 1-スピロ-4 ーピペリジン-1 ーイル)プロピル] ーNーフェニルアミンを用いて、表題化 合物を無色固体として得た。 1 H-NMR(DMSO- 1 G) $\delta:1.20-1.40$ (2H, m), 1.85-3.80 (21H, m), 1.85-3.80 (2H, m), 1.85-3.80 (2H,

25 実施例で得られた化合物の構造式を以下に示す。

実施例60

N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プ

75

ロピル] -5-オキソーN-フェニル-1-[2-(4-ピリジル) エチル]ピロリジン-3-カルボキサミド 二塩酸塩

実施例 45 と同様の方法で 1-[2-(4-ピリジル) エチル] -5-オキソ ピロリジン -3- カルボン酸と N-[3-(1H- インデン -1- スピロ -4' - ピペリジン -1' - イル) プロピル] -N- フェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.80-4.40 (21H, m), 1.80-4.40 (21

10 実施例61

5

15

20

25

30

実施例 4 5 と同様の方法で 5 ーオキソー 1 ー [2 ー (1 ートリチルー 1 Hーイミダゾールー 5 ーイル) エチル] ピロリジンー 3 ーカルボン酸と Nー [3 ー (1 Hーインデンー 1 ースピロー 4 'ーピペリジンー 1 'ーイル) プロピル] ー Nーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(CDCl₃) δ : 1.25-1.40 (2H, m), 1.70-1.90 (2H, m), 2.00-3.90 (19H, m), 6.56-6.59 (1H, m), 6.73 (1H, d, J = 5.5 Hz), 6.83 (1H, d, J = 5.5 Hz), 7.05-7.50 (25H, m).

実施例62

1-[2-(1H-イミダゾール-5-イル) エチル]-N-[3-(1H-インデン-1-スピロ-4) - ピペリジン-1 - イル) プロピル<math>]-5-オキソーN-フェニルピロリジン-3-カルボキサミド 二塩酸塩

N-[3-(1H-インデン-1-スピロー4'ーピペリジンー1'ーイル) プロピル] -5ーオキソーN-フェニルー1-[2-(1-トリチルー1H-イミダゾール-5-イル)エチル] ピロリジン-3-カルボキサミド(38mg) のメタノール(1.5ml)溶液にピリジン塩酸塩(58mg)を室温で加え、60℃で6時間撹拌した。反応液に水を加え、酢酸エチルで洗った。水層に10%炭酸ナトリウム水溶液を加え塩基性とし、酢酸エチルで抽出した。抽出液を

10

15

20

25

無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。N-[3-(1H-1)] エースピロー4'ーピペリジンー1'ーイル)プロピル]-5-オキソーNーフェニルー1ー[2-(1-)] チルー1 Hーイミダゾールー5ーイル)エチル] ピロリジンー3ーカルボキサミド(76mg)を用いて同様の操作を行った。得られた残留物を混合し、塩基性アルミナカラムクロマトグラフィー(酢酸エチル:メタノール=20:1と酢酸エチル:メタノール=4:1で溶出)で精製し、エタノールに溶解し、1 N塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表題化合物(58mg)を無色固体として得た。 1 H-NMR(DMSO- 1 d₆) δ : 1.20-1.40 (2H, m), 1.85-2.21 (3H, m), 2.35-3.85 (18H, m), 6.89 (1H, d, J=5.8 Hz), 7.15-7.60 (11H, m) 9.01 (1H, d, J=1.0 Hz).

実施例63

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-5-オキソ-<math>N-フェニル-1-[2-(ピペリジン-1-イル)エチル]ピロリジン-3-カルボキサミド 二塩酸塩

実施例64

 $1 - [2 - (1 - \checkmark)) + (1 +)$

77

ーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]ー5ーオ キソーNーフェニルピロリジンー3ーカルボキサミド 二塩酸塩

実施例 45 と同様の方法で 1-[2-(1-ベンジルピペリジン-4-イル) エチルー5 ーオキソピロリジンー3 ーカルボン酸と N-[3-(1H-インデン-1-スピロ-4'-ピペリジンー1'-イル)プロピル] ー <math>N ーフェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) $\delta:1.20-3.85$ (32H, m), 4.22 (2H, d, J=4.6 Hz), 6.89 (1H, d, J=5.6 Hz), 7.17-7.70 (15H, m).

10 実施例65

5

N- [3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-[2-(モルホリン-4-イル)エチル]-5-オキソ-N-フェニルピロリジン-3-カルボキサミド 二塩酸塩

実施例 45 と同様の方法で 1-[2-(モルホリン-4-7ル) エチル] -5 ーオキソピロリジン-3 ーカルボン酸と N-[3-(1H-7)] ースピロー 4 ・ 1 ーピペリジン 1 ・ 1 ーイル)プロピル 1 ー 1

20

25

30

15

実施例66

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-N-フェニルプロパンアミド 塩酸塩

N-[3-(1H-インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル]ーN-フェニルアミン(318mg)のテトラヒドロフラン(3m1)とN,N-ジメチルホルムアミド(3m1)の混合溶液にトリエチルアミン(0.209m1)と塩化プロピオニル(0.130m1)を室温で加え、室温で15時間攪拌した。反応液を濃縮し、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。残留物を塩基性シリカゲルカラムクロマトグラフィー(酢酸エチルと酢酸

エチル: メタノール=1:1で溶出)で精製し、エタノールに溶解し、1 N塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表題化合物(308 mg)を無色固体として得た。 1 H-NMR(DMSO-d_e) δ : 0.93 (3H, t, J = 7.4 Hz), 1.24-1.38 (2H, m), 1.80-2.10 (4H, m), 2.42-2.68 (2H, m), 3.10-3.40 (4H, m), 3.50-3.66 (2H, m), 3.73 (2H, t, J = 6.5 Hz), 6.89 (1H, d, J = 5.8 Hz), 7.17 (1H, d, J = 5.8 Hz), 7.20-7.58 (9H, m).

実施例67

5

10

15

20

30

N-[3-(1H-インデン-1-スピロ-4', -ピペリジン-1', -イル)プロピル]-N-フェニルメタンスルホンアミド 塩酸塩

N-[3-(1H-インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル]ーNーフェニルアミン(318mg)のテトラヒドロフラン(3m1)とN, Nージメチルホルムアミド(3m1)の混合溶液にトリエチルアミン(0.209m1)と塩化メタンスルホニル(0.116m1)を室温で加え、70℃で15時間攪拌した。反応液を減圧濃縮した。反応液を濃縮し、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。残留物を塩基性シリカゲルカラムクロマトグラフィー(酢酸エチルと酢酸エチル:メタノール=2:1で溶出)で精製し、エタノールに溶解し、1N塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表題化合物(70mg)を無色固体として得た。 1 H-NMR(DMSO- 1 d₀) δ : 1.20-1.38 (2H, m), 1.70-2.00 (2H, m), 2.36-2.64 (2H, m), 3.03 (3H, s), 3.10-3.40 (4H, m), 3.44-3.62 (2H, m), 3.77 (2H, t, J = 6.2 Hz), 6.89 (1H, d, J = 5.4 Hz), 7.17 (1H, d, J = 5.4 Hz), 7.20-7.56 (9H, m).

25 実施例68

 $1-(\text{tert}-\vec{\textit{j}}\ \text{N}+\hat{\textit{v}}\ \text{D}) - N-[3-(1H-\textit{d})\vec{\textit{j}}\ \text{N}-1-\text{D})$ $-N-(1H-\textit{d})\vec{\textit{j}}\ \text{N}-1-\text{D}$ $-N-(1H-\textit{d})\ \text{N}-1-\text{D}$ $-N-(1H-\textit{d})\ \text{N}-1-\text{D}$ $-N-(1H-\textit{d})\ \text{N$

 $1-(\text{tert}-\bar{\textit{j}})$ トキシカルボニル) $-N-(3-\rho \text{pp})$ $-N-(3-\rho$

ピペリジントリフルオロ酢酸塩(5.99g)と炭酸カリウム(8.29g)とよう化カリウム(3.32g)とジメチルホルムアミド(100m1)の混合物を60℃で15時間攪拌した。反応液を濃縮し、水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。残留物を塩基性シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1と酢酸エチルと酢酸エチル:メタノール=2:1で溶出)で精製し、表題化合物(5.76g)を無色固体として得た。 1 H-NMR(CDCl₃) δ :1.25-1.40(2H, m), 1.45(9/2H, s), 1.51(9/2H, s), 1.60-2.60(12H, m), 2.88-3.06(2H, m), 3.20-4.30(5H, m), 6.73(1H, d, J=5.9 Hz), 6.80-6.87(1H, m), 7.10-7.55(9H, m).

実施例69

5

10

15

20

30

N-[3-(1H-インデン-1-スピロ-4', ーピペリジン-1', ーイル)プロピル]-N-フェニルプロリンアミド 二塩酸塩

1-(tert- T)トキシカルボニル)-N-[3-(1H- H- H-

NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.50-2.15 (6H, m), 2.50-2.75 (2H, m), 3.00-3.75 (9H, m), 3.86-4.10 (2H, m), 6.89 (1H, d, J = 5.4 Hz), 7.15-7.67 (10H, m), 8.50-8.72 (1H, br), 9.80-10.05 (1H, br).

実施例70

> 実施例45と同様の方法で1-[2-(1-ベンジルピペリジン-4-イル) エチル-5-オキソピロリジン-3-カルボン酸とN-[3-(1H-インデン -1-スピロ-4', -ピペリジン-1', -イル)プロピル]-N-フェニルアミ

ンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO-d₆) δ : 1.20-3.85 (32H, m), 4.22 (2H, d, J = 4.6 Hz), 6.89 (1H, d, J = 5.6 Hz), 7.17-7.70 (15H, m).

5 実施例 7 1

10

15

20

25

30

 N^{1} - [3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル $]-N^{1}$ -フェニルグリシンアミド 二塩酸塩

実施例 69 と同様の方法で N^2 – (tert ープトキシカルボニル) $-N^1$ – $[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル] <math>-N^1$ – フェニルグリシンアミドを用いて、表題化合物を無色固体として得た。

 1 H-NMR(DMSO-d₆) δ : 1.20-1.40 (2H, m), 1.88-2.10 (2H, m), 2.52-2.76 (2H, m), 3.20-3.80 (10H, m), 6.89 (1H, d, J = 5.7 Hz), 7.15-7.65 (10H, m), 8.15-8.35 (3H, br).

実施例72

3-[[[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]フェニルアミノ]カルボニル]-1-アゼチジンカルボン酸 tert-ブチル

実施例 4 5 と同様の方法で 1-(tert-ブトキシカルボニル)-3-アゼ チジンカルボン酸と $N-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル) プロピル]-N-フェニルアミンを用いて、表題化合物を無色 固体として得た。<math>^1$ H-NMR(CDCl₃) $\delta:1.26-1.42$ (2H, m), 1.40 (9H, s). 1.70-1.90 (2H, m), 2.04-2.54 (6H, m), 2.88-3.02 (2H, m), 3.10-3.28 (1H, m), 3.54-3.70 (2H, m), 3.74-3.86 (2H, m), 4.00-4.20 (2H, m), 6.73 (1H, d, J=5.6 Hz), 6.83 (1H, d, J=5.6 Hz), 7.05-7.50 (9H, m).

実施例73

N-[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-N-フェニル-3-アゼチジンカルボキサミド 二塩酸塩

実施例 6 9 と同様の方法で3 ー [[[3-(1H-4))] カルボニル [3-(1H-4)] かた。 [3-(1H-4)] は [3-(1H-4

実施例74

5

10

15

30

3-[[[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]フェニルアミノ]カルボニル]-1-ピロリジンカルボン酸 tert-ブチル

実施例 4 5 と同様の方法で 1-(tert-ブトキシカルボニル) ピロリジン -3-カルボン酸と $N-[3-(1\,\text{H}-\text{インデン}-1-\text{スピロ}-4'-\text{ピペリジ})$ ン-1'-イル) プロピル]-N-フェニルアミンを用いて、表題化合物を無色 固体として得た。 1 H-NMR(CDCl $_3$) $\delta:1.25-1.40$ (2H, m), 1.42 (9H, s). 1.70-1.90 (3H, m), 2.00-2.55 (7H, m), 2.70-3.85 (9H, m), 6.73 (1H, d, J=6.0 Hz), 7.15-7.55 (9H, m).

実施例75

N-[3-(1H-インデン-1-スピロ-4', ーピペリジン-1', ーイル)プロピル]ーNーフェニルピロリジン-3ーカルボキサミド 二塩酸塩 実施例69と同様の方法で3-[[[3-(1H-インデン-1-スピロー4', ーピペリジン-1', ーイル)プロピル]フェニルアミノ]カルボニル]ー1ーピロリジンカルボン酸 tertーブチルを用いて、表題化合物を無色固体として得た。

¹H-NMR(DMSO-d₆) δ : 1.20-1.40 (2H, m), 1.70-2.15 (4H, m), 2.50-3.90 (15H, m), 6.89 (1H, d, J = 5.7 Hz), 7.18-7.65 (10H, m), 9.20-9.55 (2H, br).

実施例76

5ーオキソー5ー[フェニル [3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]アミノ]ペンタン酸エチル

82

実施例 6 6 と同様の方法で、塩化グルタリルエチルとN-[3-(1 H-インデンー1-スピロー4'ーピペリジンー1'ーイル)プロピル]-N-フェニルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(CDCl₃) δ : 1.19 (3H, t, J = 7.2 Hz), 1.25-1.40 (2H, m), 1.70-2.55 (14H, m), 2.90-3.10 (2H, m), 3.77 (2H, t, J = 7.6 Hz), 4.06 (2H, q, J = 7.0 Hz), 6.74 (1H, d, J = 5.8 Hz), 6.83 (1H, d, J = 5.8 Hz), 7.10-7.50 (9H, m).

実施例77

5

10

15

25

30

5ーオキソー5ー[フェニル [3ー(1 Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル] アミノ]ペンタン酸
5ーオキソー5ー[フェニル [3ー(1 Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル] アミノ]ペンタン酸エチル(2.75g)のメタノール(30m1)溶液に1 N水酸化ナトリウム(12m1)水溶液を室温で加え、50℃で3時間攪拌した。放冷後、反応液に1 N塩酸(16.7m1)を加え、p Hを4.49にし、ジクロロメタンで抽出した。抽出液を無水硫酸ナトリウムで乾燥し、ろ過し、濃縮し、表題化合物(2.29g)を無色固体として得た。¹H-NMR(CDCl₂) δ:1.40-1.65 (2H, m), 1.65-4.20 (18H, m), 6.77 (1H, d, J=5.8 Hz), 6.83 (1H, d, J=5.8 Hz), 7.15-7.55 (9H, m).

20 実施例78

 N^{1} - (シクロヘキシルメチル) $-N^{5}$ - $[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル] <math>-N^{5}$ -フェニルペンタンジアミド 塩酸塩

5ーオキソー5ー [[3ー(1Hーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル]フェニルアミノ]ペンタン酸(649mg)のアセトニトリル(20m1)懸濁液にシクロヘキサンメチルアミン(204mg)と1ー[3ー(ジメチルアミノ)プロピル]ー3ーエチルカルボジイミド塩酸塩(345mg)と1ーヒドロキシベンゾトリアゾールー水和物(276mg)を室温で加え、室温で3時間攪拌した。さらに、ジメチルホルムアミド(10m1)を室温で加え、室温で15時間攪拌した。反応液を濃縮し、飽和炭酸水素ナトリウ

ム水溶液を加え、酢酸エチルで抽出した。抽出液を無水硫酸マグネシウムで乾燥し、ろ過し、濃縮した。残留物を塩基性シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1と酢酸エチルで溶出)とシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1と酢酸エチル)で精製し、表題化合物のフリー体(716mg)を油状物として得た。そのフリー体の一部(340mg)をエタノールに溶解し、1 N塩酸エーテル溶液を加え、濃縮した。析出物をエーテルで洗い、表題化合物(339mg)を無色固体として得た。 1 H-NMR(DMSO-d₆) δ : 0.65-0.95 (2H, m), 0.95-1.40 (6H, m), 1.45-2.10 (13H, m), 2.40-2.65 (2H, m), 2.80 (2H, t, J=6.2 Hz), 3.10-3.80 (8H, m), 6.89 (1H, d, J=5.5 Hz), 7.17 (1H, d, J=5.5 Hz), 7.20-7.60 (9H, m), 7.60-7.75 (1H, m).

実施例79

5

10

15

20

25

30

 N^{1} ー [3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル) プロピル $]-N^{1}$ ーフェニルー N^{5} ー [4-(トリフルオロメチル) ベンジル]ペンタンジアミド 塩酸塩

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりに 4- (トリフルオロメチル) ベンジルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.60-2.20 (8H, m), 2.40-2.65 (2H, m), 3.10-3.80 (8H, m), 4.28 (2H, d, J = 5.8 Hz), 6.89 (1H, d, J = 5.5 Hz), 7.17 (1H, d, J = 5.5 Hz), 7.20-7.55 (11H, m), 7.66 (2H, d, J = 8.4 Hz), 8.43 (1H, t, J = 5.8 Hz).

実施例80

 N^{1} - [3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル $]-N^{5}$ -メチルー N^{5} - (1-メチルピペリジン-4-イル $)-N^{1}$ - フェニルペンタンジアミド 二塩酸塩

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりに 1-メチルー4 - (メチルアミノ) ピペリジンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_{6}) δ : 1.20-1.40 (2H, m), 1.40-4.60 (33H, m), 6.89 (1H, d, J = 5.4 Hz), 7.15-7.60 (10H, m).

実施例81

 N^{1} ー[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル $]-N^{1}$ ーフェニルー N^{5} ーピリジンー3ーイルペンタンジアミド 二塩酸塩

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりに 3-アミノピリジンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.70-3.85 (18H, m), 6.89 (1H, d, J=5.4 Hz), 7.20 (1H, d, J=5.4 Hz), 7.10-9.20 (13H, m).

10

5

実施例82

 $N^5-(1-アダマンチル)-N^1-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル]-N^1-フェニルペンタンジアミド 塩酸塩$

15

25

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりに 1-アダマンタナミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- 1 H-NMR(

20 実施例83

 N^{5} - (1-シクロオクチル) $-N^{1}$ - $[3-(1H-インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル] <math>-N^{1}$ -フェニルペンタンジアミド 塩酸塩

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりにシクロオクチルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-3.80 (35H, m), 6.90 (1H, d, J = 6.0 Hz), 7.16 (1H, d, J = 6.0 Hz), 7.10-7.70 (9H, m).

実施例で得られた化合物の構造式を以下に示す。

ンタンジアミド 塩酸塩

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりに 4-アミノスルホニルベンジルアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_e) δ : 1.25-1.40 (2H, m), 1.60-4.40 (20H, m), 6.89 (1H, d, J=5.6Hz), 7.16 (1H, d, J=5.6Hz), 7.10-7.80 (13H, m).

86

実施例85

 $N^5-(2-アダマンチル)-N^1-[3-(1H-インデン-1-スピロー4'-ピペリジン-1'-イル)プロピル<math>]-N^1-フェニルペンタンジアミド$

10 塩酸塩

5

15

30

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりに 2-アダマンタナミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_6) δ : 1.20-1.50 (4H, m), 1.60-3.80 (31H, m), 6.90 (1H, d, J=5.6 Hz), 7.16 (1H, d, J=5.6 Hz), 7.10-7.65 (9H, m).

実施例86

 N^1 ーベンジルー N^1 ー [(2 ージメチルアミノ)エチル] ー N^5 ー [3 ー (1 H ーインデンー1ースピロー4'ーピペリジンー1'ーイル)プロピル] ー N^5 ー フェニルペンタンジアミド 二塩酸塩

実施例 7 8 と同様の方法でシクロヘキサンメチルアミンの代わりにNーベンジルーN', N'ージメチルエチレンジアミンを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_s) δ : 1.20-4.65 (26H, m), 2.74 (3H, s), 2.77 (3H, s), 6.90 (1H, d, J = 5.8 Hz), 7.10-7.55 (15H, m).

25 実施例87

 N^1 - (1-ベンジルピロリジン-3-イル)- N^1 -メチル- N^5 - [3- (1H-インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]- N^5 -フェニルペンタンジアミド 二塩酸塩

実施例78と同様の方法でシクロヘキサンメチルアミンの代わりに3-アミノ -1-ベンジルピロリジンを用いて、表題化合物を無色固体として得た。¹H-

PCT/JP01/08281

NMR(DMSO- d_6) δ : 1.20-1.40 (2H, m), 1.50-4.45 (27H, m), 2.89 (3H, s), 6.89 (1H, d, J = 5.6 Hz), 7.10-7.70 (15H, m).

実施例88

10

15

20

25

WO 02/26714

 N^{1} - (シクロヘキシルメチル) - N^{5} - [3 - (インダン-1 - スピロ-4)] - ピペリジン- 1, - イル)プロピル] - N^{5} - フェニルペンタンジアミド 塩酸塩

 N^{1} - (シクロヘキシルメチル) $-N^{5}$ - [3-(1H-4)) -1-スピロー4' -ピペリジンー1' -4ル)プロピル] $-N^{5}$ -フェニルーペンタンジアミド $(310 \,\mathrm{mg})$ をエタノール $(10 \,\mathrm{ml})$ に溶解し、 $10 \,\mathrm{mg}$ のパラジウム炭素 $(50 \,\mathrm{mg})$ を加え、水素雰囲気下 5 時間激しく攪拌した。触媒を除去した後、溶媒を減圧留去して得られた残留物を塩酸処理して塩酸塩にして、表題化合物($296 \,\mathrm{mg}$)を無色固体として得た。 1 H-NMR(DMSO- 1 d₆) δ : 0.65-0.95 (2 H, 2 m), 0.95-1.42 (4 H, 2 m), 1.42-2.35 (1 9H, 2 m), 2 7- 2 3.80 (1 2H, 2 m), 2 7.60 (2 9H, 2 m), 2 7.60- 2 7.75 (2 1H, 2 m).

実施例89

 N^3 - (3, 4-ジクロロフェニル)アミノカルボニル $-N^1$ - [3-(1H-インデン-1-スピロ-4, -ピペリジン-1, -イル)プロピル $]-N^1$ -フェニル $-\beta$ -アラニン 塩酸塩

5-オキソー5-[フェニル [3-(1H-インデンー1-スピロー4'ーピペリジンー1'ーイル)プロピル] アミノ]ペンタン酸と3, 4-ジクロロフェニルイソシアナートを用いて、表題化合物を無色固体として得た。 1 H-NMR(DMSO- d_{e}) δ : 1.50-3.80 (18H, m), 2.06 (2H, t, J = 7.6 Hz), 2.89 (2H, t, J = 7.6 Hz), 7.05-7.60 (11H, m), 7.79 (1H, d, J = 2.6 Hz).

実施例で得られた化合物の構造式を以下に示す。

以下の実施例90から実施例230の化合物についても同様に合成し、質量分析により構造を確認した。

実施例番	号 構造式	質量分析	r(m/z) MH ⁺	実施例番	号 構造式	質量分析	fr(m/z)MH ⁺
90	Jan 9		667	106	Shang.		583
91	0\n_n	Aη~h. ∞	517	107			593
92	Otn n		605	108	Olimpia.		669
93	Str. No		591	109	On. n	In-h	581
94	Sh. N		607	110	On n	A _M	514
95	SON_N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	529	111	Ohn	J _H O	500
96	O CALLY	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	681	112	Stn_ny	P _H	534
97	Ohn N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	614	113	SCH-Ng	J. T. C.	528
98	Str. N		635	114	O'N, N	~H	522
99	Shark		617	115	GALLY.	AN CO	566
100	50n_n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	593	116	00m/n	~K~~	536
101	O'Chang	~_QnCur	543	117	Str. N	~H~~	550
102	ON_N		569		Ohn In		598
103	On N		619	119	JAN N	√0 ^H , √s.	520
104	O'Chang		695	120	Shang.	~~~	514
105	Olin ng		607	121	Ohn N	THE STATE OF THE S	590

実施例	番号 構造式	質量分析	(m/z)MH ⁺	実施例番号	構造式	質量分析(n/z)MH ⁺
122	Oh N	o H	626	138	0000 Ng		586
123	Chang	~***	548	139		AN CO	536
124	Shannan	~"H\~o\	532	140	Structure of the state of the s	July C	586
125	. Ohne	ö '	543	141	O Chung	\sim $^{\mu}$ \circ	528
123	0	н	7.10	142	Ohn N	Jh O	536
126	^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	542	143	Str. N	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	622
127	Ö		580	144	GAN N		528
128	U	~9 _H ~©	550	145		°	554
129	O'Chang		564			~g.~~	
130	Olin_N	н	534	146	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	~g _n S ^{úH}	619
131	Str. ng	~~PH~	516	147		CI	626
132	Struck	~P _N O	528	14,		%	020
133	Oh.		640	148	· ·	~_h~O	550
134			562	149	Oth-No	N OH	640
135	Ohn h	~~ ⁹ H~\$	526	150	On n	Н	557
136	O'CN_N;	п	514	151		- ~	579
137	O'Ch_ng	, H	516	152	on of	~ NH	571
				153	On n		591

実施例	番号 構造式	質量分析(m/z)MH ⁺	-	実施例番	号	構造式	質量分	乔(m/z <u>)M</u> H ⁺
154	Ohn h	559 S59		170	O'CAL		CFF	562
155		579		171	Oh.		O F	578
156	Other Name	554		172	o Can		T)	533
157	O Chungo	670 N		173	O'CN.		NH	533
158	Olin-Ny	601		174	50r	~N~~H		576
159	Structure of the state of the s	618		175	50	~n~~h	F.	542
160	Ohnny	OH) Br		176	Oh	~N~H	H	547
161	Olu-N	H 508		177	O'CN.			547
162	O'CN-Ny-y	H 0 568		178	Oh		ÇF €	512
163		, Ó H		179	O'CN.		\mathbb{Q}_{F}	526
164		509		180	Oan		₩,	561
		ш		181	O'Cn.	~N~N		520
165	9 9	M		182	O'CN.		° ()	524
166		CI 564		183	OG.	_	LNH	547
167	O'N NO PH			184	Sa	N N N		531
168	OCN DHO	570		185	O'CAL			545
169	OLN-NOTE	519					<u> </u>	

実施例	番号	構造式	質量分	析(m/z <u>)</u> MH ⁺	実施例	番号	構造式	質量分析 (m/z)MH ⁺
186	Of			529	202	Oth		508
187	A		H	521	203	Oa		570
188	A		H NOO	545	204	Oh		486
189	A		, H	475	205	Ola	~N~~N~	510
190	A		H	509	206	Oh		522
191	A		N N	559	207	Oh		520
192	A			559	208	O Con	NY NY	584
193	A			545	209	Oli		527 F
194	O		I NH	505	210	Sh		
195	OR		t F	548			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CI
196	Of		H CI	548	211	OCN	~ N N N N	567
197	A			536	212	Sh		515
198	A	$N \sim N_{\odot}$	H Cci	562	213	O'CN	~ NY CHINE	
199	A	y~y~		533	214	do	N N N N S	604
200	A			544	215			•
201	A		H Q	522	216		~ N N N	
					217	Oh		522

実施例番号	構造式	質量分析(m/z)MH
218	O'Chang H	528
219	Olympy H	536
220		542
221		524
222		525
223	CAN NAME OF THE OF	541
224		529 F
225		CI 579 CI
226	ON NH H	569
227		517
228	CANANA NA NA	535
229	ON PHI	<u>522</u>
230		547

製剤例1

1. カプセル剤

5 (1)合成例1で得られた化合物 40mg
 (2)ラクトース 70mg
 (3)微結晶セルロース 9mg
 (4)ステアリン酸マグネシウム 1mg

94

1カプセル 120mg

(1)、(2) と(3) および(4)の1/2を混和した後、顆粒化する。これに残りの(4) を加えて全体をゼラチンカプセルに封入する。

2. 錠剤

5

10

15

20

25

(1) 合成例1で得られた化合物 40mg

(2) ラクトース 58mg

(3) コーンスターチ 18mg

(4) 微結晶セルロース3.5 mg

(5) ステアリン酸マグネシウム 0.5 mg

1錠 120mg

(1)、(2)、(3)、(4)の2/3および(5)の1/2を混和後、顆粒化する。これに残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型する。

実験例1 ノシセプチン受容体結合作用の測定

(1) 細胞培養および膜画分調製

ヒトノシセプチン受容体遺伝子(hORL1)発現細胞の樹立は以下の方法で行った。hORL1を発現ベクターpcDNA3.1(-) (Invitorgen)に組み込み、SuperFect Transfection Reagent (キアゲン)を用いてCHO-K1細胞に導入した。遺伝子導入された細胞は300 μ g/mlのジェネティシン(ライフテックオリエンタル)の存在下で選択し、更に受容体遺伝子の発現の確認およびノシセプチン(ペプチド研究所)による細胞内サイクリックアデノシン3',5'-一リン酸(cAMP)濃度変化の確認により選択を行い、安定発現細胞(CHO/hORL1)を得た。CHO/ORL1細胞は300 μ g/ml ジェネティシン、10% (v/v)熱非動化済牛胎児血清(FBS)、100 U/ml ペニシリン、100 μ g/ml ストレプトマイシン含有Ham F12(日研生物医学研究所)培地中、5%CO。存在下、37℃で培養した。

膜画分調製は以下の手順で行った。CHO/hORL1細胞をリン酸緩衝化食塩水 (PBS(-))で洗浄後、セルスクレイパーおよび遠心分離($250 \times g$ 、 $4 \mathbb{C}$ 、5 分間)を用いて回収した。次に、回収された細胞を50 mMトリス-塩酸緩衝液(pH 7.4、

10

15

20

25

1mM フェニルメチルスルホニルフルオリド(和光純薬))に懸濁し、組織ホモジェナイザーにて粉砕後、低速遠心分離(1000 \times g、4 $^{\circ}$ C、10 分間)による上清画分を回収し、更に超遠心分離(100,000 \times g、4 $^{\circ}$ C、1時間)を行い、膜画分を得た。得られた膜画分は10 mM HEPES緩衝液(pH 7.4)に懸濁後、-80 $^{\circ}$ Cにて保存した。含有蛋白量は、牛血清アルブミンを標準物質として、BCA Protein Assay Reagent (Pierce)を用いて定量した。

(2) ノシセプチンー受容体結合阻害実験

本発明化合物のノシセプチン受容体親和性は、以下に示すノシセプチン一受容体結合阻害実験により評価した。 15μ gの蛋白を含むCHO/hORL1細胞の膜画分、 $62.5\,\mathrm{pM}\,[^{1\,2\,5}\,\mathrm{I}][\mathrm{Tyr}^{1\,4}]$ Nociceptin (アマシャムファルマシアバイオテック)、1 mg Wheatgerm agglutinin SPA (Scintillation Proximity Assay) beads (アマシャムファルマシアバイオテック)、および 1μ Mの非標識本発明化合物(合成例 1 の化合物)を $0.2\,\mathrm{ml}$ の結合阻害実験用緩衝液($50\,\mathrm{mM}\,\mathrm{HEPES}\,\mathrm{(pH7.4)}$ 、 $10\,\mathrm{mM}\,\mathrm{塩化ナトリウム}$ 、 $1\,\mathrm{mM}\,\mathrm{塩化マグネシウム}$ 、 $2.5\,\mathrm{mM}\,\mathrm{塩化カルシウム}$ 、 $0.1\,\mathrm{\%}(\mathrm{w/v})$ 牛血清アルブミン、 $0.025\,\mathrm{\%}(\mathrm{w/v})$ バシトラシン(カルビオケム-ノバビオケムジャパン))中で、混合する。この混合液を室温にて $1\,\mathrm{th}$ 間振とうし、放射活性をトップカウントマイクロプレートシンチレーションカウンター(パッカードジャパン)にて測定した。試験には $96\,\mathrm{穴プレート}\,\mathrm{(オプティプレート}\,\mathrm{、}\,\mathrm{パッカードジャパン}\,\mathrm{)}$ を用い、非特異結合は $100\,\mathrm{nM}\,\mathrm{J}\,\mathrm{シセプチンを添加して定量した。$

阻害活性の結果を表1に示す。

「表1]

 化合物
 阻害率

 合成例 1
 9 5 %

上記の結果より、本発明化合物は優れたノシセプチン受容体結合作用を有する ことがわかる。

産業上の利用の可能性

96

本発明の化合物(I)は優れたノシセプチン受容体結合作用、ノシセプチン受容体拮抗作用を有し、ノシセプチン受容体に関与する疾患、例えば、中枢神経系の疾患(例、アルツハイマー病、痴呆、不安、ストレス、分裂病、パーキンソン病、うつ病、てんかん、けいれん、精神病、舞踏病、学習障害、多動、リズム障害等)、痛み、リウマチ、過敏性腸疾患、排尿障害、尿失禁、尿崩症、多尿症、低血圧、肥満の予防・治療剤として有用である。

5

請求の範囲

1. 式(I)

5

10

15

[式中、 A^1 環および A^2 環はそれぞれ置換基を有していてもよいベンゼン環を示し、Eはオキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基を示し、XはCOまたはSO $_2$ を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに置換基を有していてもよい縮合環を形成してもよく、--- は単結合または二重結合を示す。]で表される化合物またはその塩(但し、N- [3- (4ンデン-1- 2ピロ-4 ' -ピペリジン-1 ' -4ル) プロピル] -1- -4 * -4 * -4 * -6 * -9 * -9 * -9 * -9 * -1 * -1 * -1 * -2 * -1 * -2 * -2 * -3 - -4 * -4 * -5 * -3 * -4 * -6 * -6 * -7 * -8 * -9 * -1 * -1 * -1 * -1 * -1 * -1 * -1 * -1 * -1 * -2 * -1 * -2 * -2 * -3 * -4 * -1 * -2 * -3 * -4 * -5 * -5 * -5 * -5 * -5 * -5 * -5 * -7 * -

2. R¹が置換基を有していてもよい炭化水素基または置換基を有していてもよい芳香族複素環基である請求項1記載の化合物。

3. 式(I)の化合物が、式

10

15

20

25

「式中、 A^1 環および A^2 環はそれぞれ(1)ハロゲン原子、(2)(1)ハロゲン原子、 (2')ニトロ基、(3')シアノ基、(4')ヒドロキシ基、(5')チオール基、(6')スルホ基、 (7)スルフィノ基、(8)ホスホノ基、(9)モノー、ジーもしくはトリーハロゲノー C₁₋₆アルキル基、(10')オキソ基、(11')アミジノ基、(12')イミノ基、(13')炭素原 子と1個の窒素原子以外に酸素原子、硫黄原子および窒素原子から選ばれたヘテ ロ原子を $1 \sim 3$ 個含んでいてもよい $3 \sim 6$ 員の環状アミノ基、(14) C_{1-3} アルキ レンジオキシ基、(15')C₁₋₆アルコキシ基、(16')C₁₋₆アルキルチオ基、(17')カ ルボキシル基、(18)C₁₋₆アルキルーカルボニル基、(19)C₁₋₆アルキルーカル ボニルオキシ基、(20')C₁₋₆アルコキシーカルボニル基、(21')C₇₋₁₁アラルキル オキシーカルボニル基、(22)チオカルバモイル基、(23) C1-6アルキルスルフィ ニル基、(24) C_{1-6} アルキルスルホニル基、(25)スルファモイル基またはモノー もしくはジーC₁₋₆アルキルスルファモイル基、(26)C₆₋₁₀アリールスルファ モイル基、(27) C_{6-10} アリール基、(28) C_{6-10} アリールオキシ基、(29) C_{6-10} アリールチオ基、(30) C_{6-10} アリールスルフィニル基、(31) C_{6-10} アリールス ルホニル基、(32)C₆₋₁₀アリールーカルボニル基、(33)C₆₋₁₀アリールーカル ボニルオキシ基、(34)ハロゲン化されていてもよいC₁₋₆アルキルーカルボニル アミノ基、(35')式-CONR ³R ⁴ (式中、R ³およびR ⁴はそれぞれ(1")水素原子、 (2")(1"")ハロゲン原子、(2"")ニトロ基、(3"")シアノ基、(4"")ヒドロキシ基、(5"")チ オール基、(6"")スルホ基、(7"")スルフィノ基、(8"")ホスホノ基、(9"")ハロゲン化 されていてもよい C_{1-6} アルキル基、(10")オキソ基、(11")アミジノ基、(12")イ ミノ基、**(13"')**式-NR⁵R⁶(式中、R⁵およびR⁶はそれぞれ水素原子、C₁₋₆ アルキル基、またはC₆₋₁₀アリール基を示すか、またはR⁵とR⁶は隣接する窒 素原子とともに3~8員の含窒素複素環を示す)で表される基、(14"")C₁₋₃ア ルキレンジオキシ基、(15")ハロゲン化されていてもよいC₁₋₆アルコキシ基、 (16"")C₁₋₆アルキルチオ基、(17"")カルボキシル基、(18"")C₁₋₆アルキルーカル ボニル基、(19")C₁₋₆アルキルーカルボニルオキシ基、(20")C₁₋₆アルコキシ ーカルボニル基、(21")C $_{7-11}$ アラルキルオキシーカルボニル基、(22")カルバ モイル基、(23")チオカルバモイル基、(24")モノーもしくはジーC1-6アルキル ーカルバモイル基、(25") C_{6-10} アリールーカルバモイル基、(26") C_{1-6} アルキ

10

15

20

25

ルスルフィニル基、(27")C₁₋₆アルキルスルホニル基、(28")スルファモイル基、 (29"")モノーもしくはジー C_{1-6} アルキルスルファモイル基、(30"") C_{6-10} アリー ルスルファモイル基、(31")C₆₋₁₀アリールオキシ基、(32")C₆₋₁₀アリールチ オ基、(33")C₆₋₁₀アリールスルフィニル基、(34")C₆₋₁₀アリールスルホニル 基、(35")C₆₋₁₀アリールーカルボニル基、(36")C₆₋₁₀アリールーカルボニル オキシ基、(37")ハロゲン化されていてもよいC₁₋₆アルキルーカルボニルアミ ノ基、(38")酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を少な くとも1個含む5~12員の複素環基、および(39"")ハロゲン原子、ハロゲン化 されていてもよい C_{1-4} アルキル、アミノスルホニル、 C_{1-3} アルコキシまたは C_{1-3} アルキレンジオキシで1~3個置換されていてもよい C_{6-10} アリール基 から選択される置換基を1~3個有していてもよい炭素数1~16個の炭化水素 基、または(3")オキソ基、 C_{1-6} アルキル基、 C_{3-6} シクロアルキル基、 C_{2-6} ア ルキニル基、 C_{2-6} アルケニル基または C_{7-11} アラルキル基で $1\sim4$ 個置換さ れていてもよい、酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を 少なくとも1個含む5~12員の複素環基を示すか、またはR³とR⁴は隣接す る窒素原子とともに(i)ヒドロキシ基、(ii)シアノ基、(iii) C_{1-3} アシル基および (iv)式 $-W-R^7$ [式中、Wは結合手または原子数 $1\sim3$ の2価の基を示し、 R^7 はハロゲン原子、C₁₋₃アルキル、C₁₋₃アルコキシおよびメチレンジオキシか ら選択される置換基を1~2個有していてもよい5~6員環を示す〕から選択さ れる置換基を有していてもよい3~8員の含窒素複素環を形成してもよい。)で 表される基、(36')式-NR3R4(式中、R3およびR4は前記と同意義を示す) で表される基、(37)式-NHCONR³R⁴(式中、R³およびR⁴は前記と同意 義を示す) で表される基、(38')式-NR3COR4 (式中、R3およびR4は前記 と同意義を示す)で表される基、(39)式-NR3SO。R4(式中、R3およびR4 は前記と同意義を示す)で表される基および(40') C_{6-10} アリール基を $1\sim3$ 個 有していてもよいC₁₋₃アルキル基で置換されていてもよい窒素原子、硫黄原子 および酸素原子から選ばれた1~2種のヘテロ原子1~4個を含有する複素環基 からなる群 [以下、置換基群Aと称する] から選択される置換基を1~3個有し ていてもよい炭素数1~16個の炭化水素基、(3)置換基群Aから選択される置

10

15

20

換基を有していてもよいアミノ基、(4)C₁₋₃アシルアミノ基、(5)置換基群Aか ら選択される置換基を $1 \sim 3$ 個有していてもよい C_{1-6} アルコキシ基および(6)C1-3アルキレンジオキシ基から選択される置換基を1~2個有していてもよいべ ンゼン環を示し;Eは置換基群Aから選択されるオキソ基以外の置換基を有して いてもよい2価の鎖状炭化水素基を示し;XはCOまたはSO。を示し;R1は 置換基群Aから選択される置換基をそれぞれ1~3個有していてもよい炭素数1 ~16個の炭化水素基、または置換基群Aから選択される置換基を1~3個有し ていてもよい炭素数1~16個の炭化水素基および置換基群Aからなる群から選 択される置換基を有していてもよい5~12員の複素環基を示し、またはR1は A²環の環構成炭素原子と結合して隣接するXおよびNとともに置換基を有して いてもよい縮合環を形成してもよく; - - - は単結合または二重結合を示す。] で表される化合物である請求項1記載の化合物またはその塩(但し、N-[3-(インデン-1-スピロー4'ーピペリジン-1'ーイル)プロピル ー1ーメ チルー5-オキソーN-フェニルー3-ピロリジンカルボキサミド フマル酸塩 および1-アセチル-N-(3-クロロフェニル)-N-「3-(インデン-1-スピロー4'ーピペリジンー1'ーイル)プロピル]ー4ーピペリジンカルボキ サミドを除く)。

- 4. R¹が置換基を有していてもよい炭化水素基である請求項1記載の化合物。
- 5. R^1 が置換基を有していてもよい C_{1-6} アルキル基である請求項1記載の化合物。
 - 6. R^1 が置換基を有していてもよいカルバモイル基、置換基を有していてもよいアミノ基、置換基を有していてもよいカルバモイルアミノ基または置換基を有していてもよいスルホニルアミノ基で置換されていてもよい C_{1-6} アルキル基である請求項1記載の化合物。
- 25 7. Eが C_{2-6} アルキレン基である請求項1記載の化合物。
 - 8. A²環と縮合する環が5ないし8員環である請求項1記載の化合物。
 - 縮合環を形成するときのR¹が式 -Y¹-Z-Y²-

「式中、Y¹およびY²はそれぞれ結合手または置換基を有していてもよい2価

の C_{1-3} 鎖状炭化水素基を示し、Zは結合手、酸素原子、酸化されていてもよい硫黄原子または置換基を有していてもよいイミノ基を示す。ただし、Zが結合手のときは、 Y^1 および Y^2 の少なくとも一方は置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示す。〕で表される基である請求項1記載の化合物。1 0. A^1 環が無置換ベンゼン環で、 A^2 環がハロゲン原子、 C_{1-6} アルキル基、ハロゲン化されていてもよい C_{1-6} アルコキシ基およびハロゲン化されていてもよい X^1 0、 Y^2 0、 Y^2 0 と Y^3 0 と Y^3 0 に Y^3 0

$$-Y^{1}-Z-Y^{2}-$$

(式中、 Y^1 および Y^2 はそれぞれ結合手または置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示し、Zは結合手、酸素原子、酸化されていてもよい硫黄原子または置換基を有していてもよいイミノ基を示す。ただし、Zが結合手のときは、 Y^1 および Y^2 の少なくとも一方は置換基を有していてもよい2価の C_{1-3} 鎖状炭化水素基を示す。)で表される基を示して A^2 環の環構成炭素原子と結合して隣接するXおよびXとともに縮合環を形成してもよい請求項1記載の化合物。

11.請求項1記載の化合物のプロドラッグ。

12. 式

5

10

15

20

[式中、A¹環は置換基を有していてもよいベンゼン環を示し、<u>---</u>は単結合または二重結合を示す。]で表される化合物またはその塩と式

[式中、Lは脱離基を示し、 A^2 環は置換基を有していてもよいベンゼン環を示し、Eはオキソ基以外の置換基を有していてもよい 2 価の鎖状炭化水素基を示し、XはCOまたはSO $_2$ を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい芳香族複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに縮合環を形成してもよい。]で表される化合物またはその塩とを反応させることを特徴とする式

[式中の記号は前記と同意義を示す。]で表される化合物またはその塩(但し、N-[3-(インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-1-メチル-5-オキソーN-フェニル-3-ピロリジンカルボキサミドフマル酸塩および1-アセチル-N-(3-クロロフェニル)-N-[3-(インデン-1-スピロ-4'-ピペリジン-1'-イル)プロピル]-4-ピペリジンカルボキサミドを除く)の製造法。

15 13.

5

[式中、Lは脱離基を示し、A¹環は置換基を有していてもよいベンゼン環を示

し、Eはオキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基を示し、 - - - は単結合または二重結合を示す。] で表される化合物またはその塩と式

5

10

15

[式中、 A^2 環は置換基を有していてもよいベンゼン環を示し、XはCOまたは SO_2 を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい芳香族複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに縮合環を形成してもよい。]で表される化合物またはその塩とを反応させることを特徴とする式

[式中の記号は前記と同意義を示す。] で表される化合物またはその塩(但し、N-[3-(インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル]-1-メチル-5-オキソーN-フェニル-3-ピロリジンカルボキサミドフマル酸塩および1-アセチルーN-(3-クロロフェニル)-N-[3-(インデン-1-スピロ-4'-ピペリジン-1'-イル) プロピル]-4-ピペリジンカルボキサミドを除く)の製造法。

14. 請求項1記載の化合物またはそのプロドラッグを含有してなる医薬組成物。 15. 請求項1記載の化合物またはそのプロドラッグを含有してなるノシセプチン受容体結合剤。

16. 式

15

20

[式中、 A^1 環および A^2 環はそれぞれ置換基を有していてもよいベンゼン環を示し、Eはオキソ基以外の置換基を有していてもよい2価の鎖状炭化水素基を示し、XはCOまたはSO $_2$ を示し、 R^1 は置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示し、または R^1 は A^2 環の環構成炭素原子と結合して隣接するXおよびNとともに置換基を有していてもよい縮合環を形成してもよく、---は単結合または二重結合を示す。]で表される化合物またはその塩あるいはそのプロドラッグを含有してなるノシセプチン受容体結合剤。

- 10 17. ノシセプチン受容体拮抗剤である請求項15または16記載のノシセプチン受容体結合剤。
 - 18. ノシセプチン受容体に関与する疾患の予防・治療剤である請求項15または16記載のノシセプチン受容体結合剤。
 - 19. 中枢神経系疾患予防・治療剤である請求項15または16記載のノシセプチン受容体結合剤。
 - 20. 痛みの予防・治療剤である請求項15または16記載のノシセプチン受容体結合剤。
 - 21. 哺乳動物に対して請求項15または16記載のノシセプチン受容体結合剤 を有効量投与することを特徴とするノシセプチン受容体に関与する疾患の予防・ 治療方法。
 - 22. 哺乳動物に対して請求項15または16記載のノシセプチン受容体結合剤を有効量投与することを特徴とする中枢神経系疾患の予防・治療方法。
 - 23. 哺乳動物に対して請求項15または16記載のノシセプチン受容体結合剤を有効量投与することを特徴とする痛みの予防・治療方法。

105

- 24. ノシセプチン受容体に関与する疾患の予防・治療剤を製造するための請求 項15または16記載のノシセプチン受容体結合剤の使用。
- 25. 中枢神経系疾患の予防・治療剤を製造するための請求項15または16記載のノシセプチン受容体結合剤の使用。
- 5 26. 痛みの予防・治療剤を製造するための請求項15または16記載のノシセ プチン受容体結合剤の使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08281

Int. A61K 31/4	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D221/20, 401/12, 401/06, 413/06, 417/06, 409/14, 401/14, 405/12, A61K31/438, 31/4709, 31/55, 31/538, 31/5415, 31/444, 31/4545, 31/5377, 31/496, 31/498, 31/4725, A61P43/00, 25/00, 25/04 According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	SEARCHED						
Minimum do Int. A61K 31/4	3. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D221/20, 401/12, 401/06, 413/06, 417/06, 409/14, 401/14, 405/12, A61K31/438, 31/4709, 31/55, 31/538, 31/5415, 31/444, 31/4545, 31/5377, 31/496, 31/498, 31/4725, A61P43/00, 25/00, 25/04						
Jits Koka	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1992 Toroku Jitsuyo Shinan Koho 1994-1996 Kokai Jitsuyo Shinan Koho 1971-1992 Jitsuyo Shinan Toroku Koho 1996-2001						
	ata base consulted during the international search (nam TN), REGISTRY (STN)	e of data base and, where practicable, sea	ren terms used)				
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
PA	WO 2001/25200 A1 (Takeda Chemic 12 April, 2001 (12.04.2001), Example 285 & JP 2001-302633 A		1-20,24-26				
PA	PA WO 2000/66551 A1 (Takeda Chemical Industries, Ltd.), 1-20,24-26 09 November, 2000 (09.11.2000), Example 8 & JP 2001-11073 A						
A	WO 99/48492 A1 (JAPAN TOBACCO I 30 September, 1999 (30.09.1999) Full text & JP 11-335355 A & EP 107226	,	1-20,24-26				
Further	documents are listed in the continuation of Box C.	See patent family annex.					
"A" docume consider date "L" docume cited to special docume means "P" docume than the	document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search To document defining the general state of the art which is not considered to be of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report						
11 D	11 December, 2001 (11.12.01) 25 December, 2001 (25.12.01)						
	ailing address of the ISA/ nese Patent Office	Authorized officer					
Facsimile No	o.	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08281

Во	Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
Th	is inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
		·					
1.	\boxtimes	Claims Nos.: 21-23					
	S	because they relate to subject matter not required to be searched by this Authority, namely:					
	or Sea 17	claims 21-23 include methods for treatment of the human body by surgery therapy, and thus relate to a subject matter which this International arching Authority is not required, under the provisions of Article (2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, search.					
2.		Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
2	<u> </u>	Chima Naga					
3.		Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Во	x II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
Th	is Inte	rnational Searching Authority found multiple inventions in this international application, as follows:					
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2.	П	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment					
		of any additional fee.					
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:					
4.		No required additional search fees were timely paid by the applicant. Consequently, this international					
		search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
		· · · · · · · · · · · · · · · · · · ·					
Re	mark	on Protest The additional search fees were accompanied by the applicant's protest.					
		No protest accompanied the payment of additional search fees.					

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ C07D221/20, 401/12, 401/06, 413/06, 417/06, 409/14, 401/14, 405/12, A61K31/438, 31/4709, 31/55, 31/538, 31/5415, 31/444, 31/4545, 31/5377, 31/496, 31/498, 31/4725, A61P43/00, 25/00, 25/04

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ C07D221/20, 401/12, 401/06, 413/06, 417/06, 409/14, 401/14, 405/12, A61K31/438, 31/4709, 31/55, 31/538, 31/5415, 31/444, 31/4545, 31/5377, 31/496, 31/498, 31/4725, A61P43/00, 25/00, 25/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926 - 1992

日本国公開実用新案公報

1971-1992

日本国登録実用新案公報

1994-1996

日本国実用新案登録公報

1996-2001

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN)

	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PA	WO 01/25200 A1 (Takeda Chemical Industries, Ltd.) 12. 4月. 2001 (12. 04. 01) Example 285 & JP 2001-302633 A	1-20, 24-26
-		

|x| C欄の続きにも文献が列挙されている。

│ │ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

電話番号 03-3581-1101 内線 6247

「&」同一パテントファミリー文献

25,12.01 国際調査を完了した日 国際調査報告の発送日 12. 12. 01 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 C 9841 日本国特許庁(ISA/JP) 田村 聖子 印) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	等3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	った。
$1. \mathbf{x}$	請求の範囲21-23は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、
	請求の範囲21-23は手術または治療による人体の処置方法を包含するものであるの
	で、PCT第17条(2)(a)(i)及びPCT規則39.1(iv)の規定により、この国際調査機関が調査
	することを要しない対象に係るものである。
ėП	
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
	ない国際出願の部分に係るものである。つまり、
•	
	1
з. П	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
э. Ц	従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に过	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
,	
	•
1.	山原しなど面が食物調本工物収えた。で、期間内に体化したので、この同胞調本担化は、よっての調本可能を含む
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
	の単位性につい、CTFDX した。
2. 🗍	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
۷. ا	短期では一般性を安かするよくもなく、すべくの調査可能な調水の範囲についく調査することができたので、近 加調査手数料の納付を求めなかった。
	が開発して教育が、それはないないからに。
3. 🗍	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
٥. ا	付のあった次の請求の範囲のみについて作成した。
	110000 つんじんの時代のの世界によった。
$4. \square$	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
	*
	•
追加調查	至手数料の異議の申立てに関する注意
	追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調査手数料の納付と共に出願人から異議申立てがなかった。

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*		関連する 請求の範囲の番号
PΑ	WO 00/66551 A1 (Takeda Chemical Industries, Ltd.) 9. 11月. 2000 (09. 11. 00) Example 8 & JP 2001-11073 A	1-20, 24-26
A	WO 99/48492 A1 (日本たばこ産業株式会社) 30.9月.1999 (30.09.99) 全文 & JP 11-335355 A & EP 1072263 A1	1-20, 24-26
,		
,		
	*	