6. Um número inteiro n é chamado de *bilegal* se n é maior do que 1 e n^2 é igual à soma de n inteiros positivos consecutivos. Por exemplo, 3 é bilegal, pois $3^2 = 9 = \underbrace{2+3+4}$.

3 inteiros consecutivos

a) Verifique que 5 é bilegal.

O Formula do lembrete

b) Verifique que 4 não é bilegal.

Us and a idea de
$$(A)$$
, $4^2 > 16 = (x+1) + \cdots + (x+4) = 4x + 4 \cdot 5 = 4x+10$

$$\Rightarrow 4x = 6 \Rightarrow 2x = 3$$
, absurdo pais x deve ser inteiro. Logo $= 2^2 + 1$ mas e' bileyd.

c) Explique por que nenhum número par é bilegal e todo número ímpar maior do que 1 é bilegal.

For $\frac{[Pox]}{E}$ da forma $(2n)^2 = 4n^2 = (x+1) + \dots + (x+2n) = 2nx + (2n) + (2n+1) = 2nx + 2n^2 + n$ => $2n^2 = 2nx + n \Rightarrow 2n = 2x + 1$, impossivel. $\frac{x}{C}$ $C_3 \div n \neq 0$, for $n \neq 1$ felo emanciado

$$\frac{1}{6} \frac{1}{6} \frac{1}$$