Du 09 au 12 octobre

I | Cours et exercices

Électrocinétique ch. 1 – Circuits électriques dans l'ARQS

- I Courant électrique et intensité : charge électrique, courant électrique, sens conventionnel.
- II **Tension et potentiel** : définition, additivité, masse, analogie électro-hydraulique.
- III **Vocabulaire des circuits électriques** : circuit, schéma, dipôle, nœud, branche, maille ; conventions générateur et récepteur, dipôles en série ou dérivation, mesures de tensions et d'intensités.
- IV Lois fondamentales des circuits électriques dans l'ARQS : approximation, application, loi des branches et nœuds, loi des mailles, puissance électrocinétique, fonctionnement générateur et récepteur, et conservation de l'énergie.

Électrocinétique chapitre 2 – Résistances et sources

- I **Généralité sur les dipôles** : caractéristique courant-tension, vocabulaire associé.
- II **Résistance** : définition et schéma, association en série **et démonstration**, association en parallèle **et démonstration**, pont diviseur de tension **et démonstration**, pont diviseur de courant **et démonstration**.
- III Sources : sources idéale et réelle de tension, sources idéale et réelle de courant, résistances de sortie.

II | Cours uniquement

Électrocinétique ch. 3 – Capacités et inductances : circuits du 1^{er} ordre

- I **Condensateur**: présentation, relation fondamentale, relation courant-tension, continuité et régime permanent, associations série et parallèle, condensateur réel, énergie stockée.
- II **Bobine** : présentation, relation courant-tension, continuité et régime permanent, associations série et parallèle, bobine réelle, énergie stockée.
- III **Circuits RC** série : échelon montant : définition, présentation RC série en charge, équation différentielle, unité de RC, résolution avec méthode, représentation graphique, détermination constante de temps et temps de réponse régime permanent.

III Questions de cours possibles

Chapitre 1

1) Énoncer et expliquer les conditions de l'ARQS, donner des exemples d'application et non-application;

Chapitre 2

- 2) Démontrer puis utiliser la loi des mailles pour trouver l'intensité dans un circuit simple (deux mailles possible);
- 3) Démontrer les relations des associations séries et parallèles des résistances **et** déterminer la résistance équivalente d'une portion de circuit donné par l'examinataire;
- 4) Démontrer les relations des ponts diviseurs de tension et de courant et en utiliser sur un schéma donné par l'examinataire;
- 5) Présenter les sources réelles de tension et de courant. Comment s'appellent ces modèles? À l'aide de relations de ponts diviseurs, démontrer dans quelles conditions on peut les considérer comme idéales.

Chapitre 3

- 6) Présenter et démontrer les caractéristiques d'un condensateur et d'une bobine : relation couranttension (sans démonstration pour la bobine), continuité, régime permanent, énergie stockée.
- 7) Démontrer les relations des associations séries et parallèles d'un condensateur et d'une bobine.
- 8) Présenter le circuit RC en charge sous un échelon de tension E (schéma et condition initiale), donner et démontrer l'équation différentielle sur u_C , donner la solution et la tracer. Démontrer comment trouver graphiquement la constante de temps et le temps de réponse à 99%.