بسمه تعالى

هوش مصنوعی استنتاج در منطق مرتبهٔ اوّل - ۱ نیمسال اول ۱۴۰۳-۱۴۰۳

د کتر مازیار پالهنگ
آزمایشگاه هوش مصنوعی
دانشکدهٔ مهندسی برق و کامپیوتر
دانشگاه صنعتی اصفهان

استنتاج

■ فرض كنيد:

 $\forall x \ Human(x) \Rightarrow Mortal(x)$

Human(Sograt)

تبدیل به حالت گزاره ای

مازيار پالهنگ

هوش مصنوعي

2

قوانین استنتاج شامل سورها

- بدست α جمله ای که از جایگزینی θ در جمله α بدست α بدست می آید.
 - مثال:
- SUBST($\{x/Ali_y/Amin\}_Likes(x_y)$)=Likes(Ali_Amin)
 - \bullet متغیر \circ و ترم زمینهٔ \circ : برای هر جملهٔ \circ نه متغیر \circ و ترم زمینهٔ \circ :

 $\frac{\forall v \alpha}{SUBST(\{v/g\},\alpha)}$

ترم زمینه: یک ترم بدون متغیر

هوش مصنوعي مازيار يالهنگ

- بطور مثال: (x Likes(x,Apple) بطور مثال:
- Likes(Amin, Apple)
- Likes(Amir, Apple)
- • •
 - حذف وجودی: برای هر جملهٔ α ، متغیر V و نماد ثابت K که در جای دیگری از پایگاه دانش ظاهر نشده:

$$\frac{\exists v \alpha}{SUBST(\{v/K\},\alpha)}$$

هوش مصنوعی مازیار یالهنگ

- ام جدید K، (Skolem constant) اام جدید
- حذف عمومي را بارها مي توان اعمال نمود،
 - حذف وجودي فقط يك بار

کاهش به استنتاج گزاره ای

 $\forall x \ Human(x) \Rightarrow Mortal(x)$

تبدیل می شود به:

Human(Bograt)⇒Mortal(Bograt)
Human(Arashmidos)⇒Morta(Arashmidos)
Human(Sograt)⇒Mortal(Sograt)
...

Human(Sograt)

مازيار يالهنگ

هوش مصنوعي

کاهش به استنتاج گزاره ای

- مشکل: نمادهای تابعی، تعداد زیادی ترمهای زمینه و جود دارند:
 مثال: (Father(Father(Amir)
- قضیهٔ هربرند: اگریک جمله ازیک پایگاه دانش منطق مرتبه اول ایجاب شد، توسط یک زیر مجموعهٔ محدود پایگاه دانش گزاره ای شده ایجاب می شود

For n = 0 to ∞ do

create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

7 هو ش مصنوعی ماز بار یالهنگ

- مشکل: کار می کند اگر جمله ایجاب شود و گرنه در حلقه می افتد
- قضیهٔ تورینگ، چرچ: ایجاب کردن در م.م.ا. نیمه قابل تصمیم گیری است (الگوریتمهائی و جود دارد که به هر جملهٔ ایجاب شده بله بگوید، ولی الگوریتمی و جود ندارد که به هر جملهٔ ایجاب نشده نه بگوید.
 - مشكل: تعداد جملات نامربوط توليد شده مي تواند خيلي زياد باشد.
 - $\forall x \ Teacher(x)$ مثلاً اگر داشتیم:

مازيار پالهنگ

قانون انتزاع تعميم يافته

فرض کنید پایگاه دانش بصورت زیر باشد:

 $\forall x \ Hungry(x) \land Owns(x, Apple) \Rightarrow Eats(x, Apple)$ Owns(Amir, Apple) Hungry(Amir)

می خواهیم سریعاً نتیجه بگیریم:

Eats(Amir, Apple)

■ حتى اگر داشتيم (y،Apple) حتى اگر داشتيم

مازيار يالهنگ

هوش مصنوعي

9

قانون انتزاع تعميم يافته

برای جملات اتمی P_i ، P_i و P که یک جایگزینی θ وجود دارد P_i برای همهٔ i ها: بطوریکه $SUBST(\theta,P_i)=SUBST(\theta,P_i)$ برای همهٔ i

$$\frac{\overline{p_1'}, \overline{p_2'}, \cdots, \overline{p_n'}, (\overline{p_1} \wedge \overline{p_2} \wedge \cdots \wedge \overline{p_n} \Rightarrow \overline{q})}{SUBST(\theta, \overline{q})}$$

■ ارتقاء قانون انتزاع

مازيار يالهنگ

هو ش مصنو عي

موثق بودن ق.ا.ت.

با حذف عمومی می دانیم:

$$p \models p\theta$$
 $p\theta = SUBST(\theta, p)$

- پس

$$(p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models (p_1 \wedge \ldots \wedge p_n \Rightarrow q)\theta = (p_1 \theta \wedge \ldots \wedge p_n \theta \Rightarrow q\theta)$$

- $p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1'\theta \land \ldots \land p_n'\theta$
- q heta حبق ق.ا. می توان نتیجه گرفت $p_i heta=p'_i heta$ حرورتی که $p_i heta=p'_i heta$ حبور مصنوعی مازیار پالهنگ

خلاصه

- چگونگی استنتاج در منطق مرتبه اول
- تبدیل به یک پایگاه منطق گزاره ای
 - استفاده از حذف عمومي
 - استفاده از حذف وجودی
 - عدم کارآئی مناسب
 - استفاده از قانون انتزاع تعميم يافته
- بکار گیری بصورت زنجیربندی به جلو
- بکار گیری بصورت زنجیربندی به عقب

دانشگاه صنعتی اصفهان – مجموعه مفاخر اصفهان

هوش مصنوعی مازیار پالهنگ

- دقت نمائید که پاورپوینت ابزاری جهت کمک به یک ارائه شفاهی می باشد و به هیچ وجه یک جزوهٔ درسی نیست و شما را از خواندن مراجع درس بی نیاز نمی کند.
 - لذا حتماً مراجع اصلى درس را مطالعه نمائيد.
 - در تهیهٔ اسلایدها از سایت کتاب استفاده شده است.