

Image Processing - I

SAUMYA JETLEY [March 2022]

☐ Image Composition — Black and White Images

Images as juxtapositions of alternating black-n-white stripes of different frequencies.

Visualise as:
White = see through
Black = Opaque

☐ Image Composition – Gray Scale

Vertical & Horizontal bands with their analog equivalent [Sine and Cosine Waves]

☐ Image Composition — RGB images

☐ Fourier Transform

- Fourier series: Defines a periodic function, over a cycle's interval, as a weighted combination of harmonic sinusoids.
- **Fourier transform**: Generalises this analysis over 'unbounded' intervals; yields the weights of the harmonics.

Courtesy of Lucas V. Barbosa via wikipedia

■ Fourier Transform

Excavating the image to find these wave patterns!

In 2D:

$$F(k,l) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i,j) \ e^{-\iota 2\pi (\frac{ki}{N} + \frac{lj}{N})} \qquad \text{Euler's formula here}$$

- Can be seen as an integral transform, where a function is mapped from original function space to a new function space using integration operation
- What else is an integral transform? Convolution!

- 1. The dirac delta (impulse) function,
- Non-physical, singularity function

$$-\delta(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ \text{undefined} & \text{at } x = 0 \end{cases}$$

- Such that :
$$\int_{-\infty}^{\infty} \delta(x) dx = 1,$$

2. Approximated using Unit Pulses,

$$\delta_T(t) = \begin{cases} 0 & \text{for } t \le 0\\ 1/T & 0 < t \le T\\ 0 & \text{for } t > 0. \end{cases}$$

where:
$$\delta(t) = \lim_{T \to 0} \delta_T(t)$$
.

- The impulse function is also approximated by the limiting forms of various other functions such as:
 - o Triangular
 - o Gaussian
 - o Sinc $(\sin(x)/x)$

Unit pulses of different durations; the magnitude adjusts to the duration to maintain unit area under the curve

3. Property of **sifting**,

- The value of the integrand at the point of occurence

$$-\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$$

4. Convolution,

A linear time invariant system, input and response

An arbitrary continuous input, and its staircase approximation

4. Convolution,

An arbitrary continuous input, and its staircase approximation

The staircase approximation may be viewed as a sum of overlapping unit-pulses of different magnitudes:

$$ilde{u}_T(t) = \sum_{n=-\infty}^{\infty} p_n(t)$$
 where, $p_n(t) = \begin{cases} u(nT) & nT \leq t < (n+1)T \\ 0 & \text{otherwise} \end{cases}$ $ilde{u}_T(t) = \sum_{n=-\infty}^{\infty} u(nT)\delta_T(t-nT)T.$

4. Convolution,

assume that the system response to $\delta_T(t)$ is a known function and is designated $h_T(t)$

$$ilde{u}_T(t) = \sum_{n=-\infty}^{\infty} u(nT)\delta_T(t-nT)T.$$

$$\int [\text{system}]$$
 $ilde{y}_T(t) = \sum_{n=-\infty}^{\infty} u(nT)h_T(t-nT)T$

4. Convolution,

$$\tilde{y}_T(t) = \sum_{n = -\infty}^{\infty} u(nT)h_T(t - nT)T$$

Impulse response is 0 for t<0, so future components of the input do not contribute to the sum

$$\tilde{y}_T(t) = \sum_{n=-\infty}^{N} u(nT)h_T(t-nT)T$$

In the limit of $T \rightarrow 0$

$$y(t) = \lim_{T \to 0} \sum_{n = -\infty}^{N} u(nT)h_{T}(t - nT)T$$
$$= \int_{-\infty}^{t} u(\tau)h(t - \tau)d\tau$$

$$y(t) = u(t) \otimes h(t) = \int_{-\infty}^{t} u(\tau)h(t-\tau)d\tau.$$

4. **Convolution** - Example visualisation

4. **Convolution** - Example visualisation

☐ Fourier Transform and Convolution: Making connections!

■ Now we can MANIPULATE the frequency information !!

■ Now we can MANIPULATE the frequency information !!

☐ High and low pass filtering

- Content review
 - 1. Space-frequency duality
 - 2. Fourier Transform
 - 3. LTI and 'convolution'
 - 4. Extracting and manipulating frequency information

