1. Некоторые полезные определения и формулы

Углом между приведёнными к общему началу векторами ${\bf a}$ и ${\bf b}$ называется наименьший угол, на который необходимо повернуть вектор ${\bf a}$, чтобы его направление совпало с направлением вектора ${\bf b}$.

Три вектора называются упорядоченной тройкой векторов, если указано, какой из векторов является первым, какой – вторым, какой – третьим.

Упорядоченная тройка некомпланарных векторов \mathbf{a} , \mathbf{b} и \mathbf{c} называется *правой* (*левой*), если после приведения к общему началу вектор \mathbf{c} располагается по ту сторону плоскости, определяемой векторами \mathbf{a} и \mathbf{b} , откуда кратчайший поворот от вектора \mathbf{a} к вектору \mathbf{b} осуществляется против часовой стрелки.

Заметим, что если тройка векторов **abc** является правой, то правыми также являются тройки **bca** и **cab**, а тройки **bac**, **acb** и **cba** – являются левыми.

Площади треугольника и параллелограмма и объём параллелепипеда могут быть вычислены по следующим формулам:

15.09.2014 14:04:11 стр. 1 из 3

2. Скалярное произведение

Скалярным произведением векторов **a** u **b** называется число $(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \cos(\varphi)$, где φ – угол между векторами \mathbf{a} и \mathbf{b} .

Так как $Pr_b(\mathbf{a}) = |\mathbf{a}| \cdot \cos(\varphi)$ и $Pr_a(\mathbf{b}) = |\mathbf{b}| \cdot \cos(\varphi)$, то имеем $(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| \cdot Pr_a(\mathbf{b}) = |\mathbf{b}| \cdot Pr_b(\mathbf{a})$.

2.1. Геометрические свойства скалярного произведения

- 1. $(\mathbf{a}, \mathbf{b}) = 0$ тогда и только тогда, когда векторы \mathbf{a} и \mathbf{b} ортогональны.
- 2. $(\mathbf{a}, \mathbf{b}) > 0$ тогда и только тогда, когда угол φ между векторами \mathbf{a} и \mathbf{b} острый; $({\bf a},{\bf b})$ < 0 тогда и только тогда, когда угол φ между векторами ${\bf a}$ и ${\bf b}$ тупой.

2.2. Алгебраические свойства скалярного произведения

- 1. $(\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{a})$.
- 2. $(\lambda \mathbf{a}, \mathbf{b}) = \lambda (\mathbf{a}, \mathbf{b})$ и $(\mathbf{a}, \lambda \mathbf{b}) = \lambda (\mathbf{a}, \mathbf{b})$.
- 3. (a+b,c) = (a,c)+(b,c) u(a,b+c) = (a,b)+(a,c).
- 4. Для $\forall a \neq 0$ (a,a) > 0 и (a,a) = 0 тогда и только тогда, когда a = 0.

2.3. Скалярное произведение векторов в декартовой прямоугольной системе координат

Пусть в декартовой прямоугольной системе координат $\mathbf{a} = \{x_a, y_a, z_a\}$ и $\mathbf{b} = \{x_b, y_b, z_b\}$, тогда $(\mathbf{a}, \mathbf{b}) = x_a x_b + y_a y_b + z_a z_b$.

3. Векторное произведение

Векторным произведением векторов a и b называется вектор c = [a, b], такой что:

- 1. $|\mathbf{c}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin(\varphi)$.
- 2. Вектор \mathbf{c} ортогонален плоскости, определяемой векторами \mathbf{a} и \mathbf{b} ($\mathbf{c} \perp \mathbf{a}$, $\mathbf{c} \perp \mathbf{b}$).
- 3. Тройка векторов авс является правой.

3.1. Геометрические свойства векторного произведения

- 1. [a,b] = 0 тогда и только тогда, когда векторы a и b коллинеарны.
- 2. Длина вектора [a, b] равна площади параллелограмма, построенного на приведённых к общему началу векторах а и b.

3.2. Алгебраические свойства векторного произведения

- 1. [a,b] = -[b,a].
- 2. $[\lambda \mathbf{a}, \mathbf{b}] = \lambda [\mathbf{a}, \mathbf{b}]$ и $[\mathbf{a}, \lambda \mathbf{b}] = \lambda [\mathbf{a}, \mathbf{b}]$.
- 3. [a+b,c]=[a,c]+[b,c] $\mathcal{U}[a,b+c]=[a,c]+[b,c]$.
- 4. Для $\forall a [a,a] = 0$.

3.3. Векторное произведение векторов в декартовой прямоугольной системе координат

Пусть в декартовой прямоугольной системе координат $\mathbf{a} = \{x_a, y_a, z_a\}$ и $\mathbf{b} = \{x_b, y_b, z_b\}$, тогда

$$[\mathbf{a}, \mathbf{b}] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix} = (y_a z_b - y_b z_a) \mathbf{i} + (x_b z_a - x_a z_b) \mathbf{j} + (x_a y_b - x_b y_a) \mathbf{k} .$$

Определитель в этой формуле является символической формой записи.

15.09.2014 14:04:11 стр. 2 из 3

4. Смешанное произведение

Смешанным произведением векторов a, b и c называется число ([a,b],c).

4.1. Геометрические свойства смешанного произведения

- 1. ([\mathbf{a} , \mathbf{b}], \mathbf{c}) = V, где V объём параллелепипеда, построенного на приведённых к общему началу векторах \mathbf{a} , \mathbf{b} и \mathbf{c} , взятый со знаком "+", если тройка векторов \mathbf{abc} является правой, и со знаком "—" в противном случае.
- 2. ([a,b],c) = 0 тогда и только тогда, когда векторы a, b и c компланарны.

4.2. Алгебраические свойства смешанного произведения

1. ([a,b],c) = (a,[b,c]).

4.3. Смешанное произведение векторов в декартовой прямоугольной системе координат

Пусть в декартовой прямоугольной системе координат $\mathbf{a} = \{x_a, y_a, z_a\}$, $\mathbf{b} = \{x_b, y_b, z_b\}$ и $\mathbf{c} = \{x_c, y_c, z_c\}$ тогда

$$([\mathbf{a}, \mathbf{b}], \mathbf{c}) = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}.$$

15.09.2014 14:04:11 стр. 3 из 3