Def: A reproculation of a group G is a rector space V + an action of G on V by linear operators: ie. $G \times V \longrightarrow V$ st. $\forall g \in G$, $g : V \longrightarrow V$ linear map.

Equivalently: a homomorphism $\rho : G \longrightarrow GL(V)$ the group of invehible linear operators $V \longrightarrow V$.

Def. A subrepred-tation is a subspace $W \subset V$ which is invariant under G, i.e. $gW = W \quad \forall g \in G$.

· A reproculation is irreducible if it has no nontinial subrepresentations.

Ex: G finite abelian group \Rightarrow every finite dim rep of G our C is a direct sum of 1-dimensional sub-reps. Isom, classes of 1-dim representations: $\hat{G} = \text{Hom}(G, C^{\kappa})$.

Def: Given two representations V, W of G, a homomorphism of representations $\varphi: V \to W$ is a linear map $\varphi: V \to W$ that is equivariant, i.e. compatible with the group actions: $\varphi(gv) = g\varphi(v) \ \forall v \in V \ \forall g \in G$.

Theorem. Let V be any rep. of a finite group G (over I, or k of char.0), and suppose WCV is an invariant subspace (ie., subrepresentation).

Then there exists another invariant subspace UCV st. V= UDW.

(as a direct sum of rep. 5)

Conlary: any finite dim reprosedation of a finite of decomposes into direct sum of irreducibles.

Two profs of Km. The fist one uses:

Lemma: If V is a C-representation of a finite group G, then there exists a positive definite Hernitian inner product on V which is presented by G: H(gv, gw) = H(v, w) + fg, v, w, i.e. all the linear operators $g: V \rightarrow V$ are unitary.

 $\frac{Pf. lemma}{H(v, w)} = \frac{1}{|G|} \sum_{g \in G} H_0(gv, gw)$. Then H is still Herritian and definite positive (hence an inner product), and H(gv, gw) = H(v, w).

 $\frac{\gamma_{f} \cdot \eta_{hm}}{g(w)} = W$, g unitary => $g(w^{\perp}) = w^{\perp}$. So $U = w^{\perp}$ is a complementary invariant subspace.

Altenative pf; choose any complemelay subspace Uo CV st. V= UD W.

Let To: V - W projection anto W with Kernel Uo (TOIU = 0, TOIW = id).

Define $\pi(v) = \frac{1}{|G|} \sum_{g \in G} g \pi_0(g^{-1}v) \in W$. Then $\pi_i V - W$ is a homomorphism of π_p^{-s}

(10. G. equivariant; $g\pi g' = \pi \forall g$), so $U = \ker \pi$ is an invariant subspace.

Since $\pi_{|W} = id$, π is sujective and $V = U \oplus W (din/rank firmula and <math>U \cap W = \{0\}$). \square

Rook: he proof fails if char(k) \$0 (non spectically char(k)=p||G|). His is one of the reasons that modular reprosertations (= over fields of char>0) are more conflicted.

· it also fails if G is infinite (and door't carry a finite invariant measure) as we count use averaging hick. (Averaging works for conjust lie grows such as S1, 80(n),...)

 $\underline{E_K}$: $G = \mathbb{Z}$ or \mathbb{R} acting on \mathbb{C}^2 by $t \mapsto \begin{pmatrix} 1 & t \\ 0 & l \end{pmatrix}$

then the first factor C x 0 is invariant under G, but \$ complementary int subspace.

Goal: gran 6, find its irreducible reproserations, describe how others decompox into irreducibles. Schur's Lemma: | of V, W are irreducible rep²⁵ of G, and $\psi: V \to W$ any honom.

of representations, then either $\psi=0$, or ψ is an isomorphism.

over k=C: if V is irreducible and $\varphi:V\to V$ is a homom of representations then φ is a multiple of identity.

 $\frac{\text{Proof}}{\text{of}}$: • given $\varphi: V \rightarrow W$, $\ker(\varphi)$ is an invariant subspace of V, i.e. a subspresentation. Since V is irreducible, either $\ker(\varphi) = 0$ (φ injective) or $\ker(\varphi) = V$ ($\varphi = 0$). Similarly, In(q) < W is invaval hence ether zero (q=0) or W (q sujective). Hence, ether $\varphi=0$ or φ is an isomorphism.

• over $k=\mathbb{C}$, any $\varphi\colon V\to V$ has an eigenvalue λ . Then $\varphi-\lambda I:V\to V$ is also equivariat, has nonzero kernel, here $\varphi-\lambda I=0$ by the above. Thus $\varphi=\lambda I$.

Ex: Let V irred-rep of G, and $h \in Z(G)$ center of G (h commutes with $\forall g \in G$). Then the action of $h: V \rightarrow V$ satisfies: $\forall g \in G$, h(gv) = gh(v): is h is equivariant, ie. $h \in Hom_G(V, V) = \mathbb{C}.id$ by Schwis lemma \Rightarrow h and s by a multiple of id. In particular, if G is abelian and V is irreducible then every element of G acts by a multiple of id; this gives another proof that irrelines of finite abelian graps are 1-dimensional.

Next we look at the simplest nonabellar group, S3 (= \$\overline{G}_3\$ in Fulkon-Hamis). We know the trivial representation $U \simeq \mathbb{C}$ (every $\sigma \in S_3$ acts by id) There's another 1-d. rep. U' ~ C with the other clered of Hom (S3, C"): he alterating rep. (also called sign rep.) where & ESz ack by (-1).

We also have the permutation reprosetation $= \mathbb{C}^3$ with basis e_1, e_2, e_3 , on which s_3 3 and by permutation matrices: σ maps $e_i \mapsto e_{\sigma(i)}$.

This has an invariant subspace, namely span $(e_1+e_2+e_3)$, and he easily find a complementary subscript, namely $V = \{(z_1,z_2,z_3) \in \mathbb{C}^3 \mid z_1+z_2+z_3=0\}$. This is called the standard reproduction of S_3 , din V=2, and it is irreducible.

Rnb: similarly for S_n : the two 1-dim. representations are the trivial rep. $U=\mathbb{C}$ and the alternating rep. $U'=\mathbb{C}$ with σ acting by $(-1)^{\sigma}$, and the permutation rep. \mathbb{C}^n with σ acting by e_i to $e_{\sigma(i)}$ has an instruction span(e_i +...+ e_n) $\simeq U$, with conference subseque $V=\{(z_1...z_n)\in\mathbb{C}^n\mid \Sigma z_i=0\}$; it turns out V is irreducible - the standard rep. of S_n , with $\dim V=n-1$.

What is specific to Sz is that this is the whole story (over t). (Sn has more ined-ry"s, in fact #irred reps of Sn = p(n) number of partitions of n...).

Prop: U, U' and V are the only irrelatible representations of S_3 (over C). Hence, any rep of S_3 is isomorphic to a direct sum $U^{\oplus a} \oplus U'^{\oplus b} \oplus V^{\oplus c}$ for some (unique) $a,b,c \in \mathbb{N}$.

Proof: Let W be any (Finite dim. /C) representation of S_3 . Restrict first to the abelian subgroup $A_3 \cong \frac{1}{2} \le S_3$: let $T \in S_3$ be any $3 \cdot y_1 \le 1$, and $6 \in S_3$ any transposition. Then $t^2 = 6^2 = id$, and $6^2 t 6 = t^2$. Restricting the reproduction to the subgroup generated by $T (\cong \frac{7}{3})$, W has a basis of eigenvectors (V_j) , when $T(V_j) = \lambda_j V_j$ where $\lambda_j = \frac{2\pi i k_j}{3}$ and of unity. Now let's see how G acts.

If $V \in W$ is an eigenvector for T, $T(V) = \lambda V$, then $T(GV) = G(T^2V) = \lambda^2 G(V)$.

So: G maps the λ -eigenpace of T to its λ^2 -eigenpace.

($\frac{Rmt}{2}$: VV eigenvector of T, span V, GV) is an invariant subspace, since both gunchors G and T preserve it. So now we know irred reprehere d in ≤ 2)

Let's now specialty to the case W invaluable, and choose $V \in W$ an eigenvector of T.

Case $\lambda = 1$: T(V) = V, and by the above, T(G(V)) = G(V). If G(V) is likely integer of V, then $V = V + G(V) \neq 0$ satisfies $G(V) = G(V) + G^2(V) = V$, and F(W) = W, so we get an invariant subspace (trivial subseq.) Span(W) $\cong V$. Contradicts irreducibily.

So o(v) is a scalar multiple of v; since $o^2 = id$, $o(v) = \pm v$.

In both cases, span(v) is invariant, and $\simeq U$ if $\sigma(v) = v - \tau(v) = v$.

If W irreducible this is all of W. $\frac{1}{2\pi i/3} = \frac{1}{4} \frac{1$

Case $\lambda = e^{\pm 2\pi i/3}$: then $\pm (v) = \lambda v$ and $\pm (\sigma(v)) = \lambda^2 \sigma(v)$ by the above. Since $\lambda \neq \lambda^2$, these two eigenvectors of \pm are linearly independent; $\operatorname{span}(v, \sigma(v))$ is an invariant subseque, hence by irreducibility, equals W. We check that $W \simeq V$ standard rep² by mapping v to the λ -eigenvector of \pm in the standard rep² (i.e. $\{v, \sigma(v)\}$ map to $\{(1, \lambda^2, \lambda), (1, \lambda, \lambda^2)\} \subset V \subset \mathbb{C}^3$) \square

* Given a reproduction of S_3 , $W = U^{\oplus a} \oplus U'^{\oplus b} \oplus V^{\oplus c}$, how do we find a,b,c? A: Look at eigenvalues of T: the 1-eigenspace of T is $U^{\otimes a} \oplus U'^{\oplus b}$, so a+b=d in ker (T-1).; whereas the $e^{\pm 2\pi i/3}$ -eigenspaces each have d in = c. So: multiplicities of eigenvalues of T give a+b and c.

likewise, ε acts by +1 on U, -1 on U', and $\binom{0}{10} \sim \binom{10}{0-1}$ on V, so the eigenpaces of ε have dim. a+c for 1, b+c for -1. From this we get a, b, and c.

Example: consider V the standard rep. of S3, and $V^{\otimes 2} = V \otimes V$ also a rep.? (recall: $g(v \otimes u) = gv \otimes gu$). How here $V^{\otimes 2}$ decompose into irreducibles? Start with a basis e_1, e_2 of V with $\tau e_1 = \lambda e_1$, $\tau e_2 = \lambda^2 e_2$ where $\lambda = e^{2\pi i/3}$ or $e_1 = e_2$, $\sigma e_2 = e_1$.

Then V@V has a basis $e_1 \otimes e_1$, $e_1 \otimes e_2$, $e_2 \otimes e_1$, $e_2 \otimes e_2$. There are eigenvectors of t, with eigenvectors λ^2 , λ , λ , λ . Morrore, a the 1. eigenspace span($e_1 \otimes e_2$, $e_2 \otimes e_1$), or swaps there has, so $e_1 \otimes e_2 \pm e_2 \otimes e_1$ is an eigenvector of $e_1 \otimes e_2 + e_3 \otimes e_1$ is an eigenvector of $e_1 \otimes e_2 + e_3 \otimes e_1$.

Hance VeV ~ U⊕ U'⊕V.

Similarly Syn^2V : Lasis e_1^2 , e_1e_2 , e_2^2 ~ $Syn^2(V) \simeq U \odot V$. τ at h by λ^2 , 1, λ

(whereas 12 V ~ U', perhaps unsurprisingly considering det- vs sign).

Next time well discus symmetric polynomials, then inhoduce characters as a tool to study representations.