CONTEXT FREE GRAMMAR

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Understand the need of formal languages, and grammars (K3)
 - To Understand context free grammars

INTRODUCTION

- Context-free grammar is a 4-tuple G = (N, T, P, S) where
 - T is a finite set of terminal symbols
 - N is a finite set of nonterminals
 - P is a finite set of productions of the form $\alpha \to \beta$ where $\alpha \in \mathbb{N}$ and $\beta \in (\mathbb{N} \cup \mathbb{T})^*$
 - $-S \in N$ is a designated start symbol

• G = ({E}, {+, -, *, /, (,), id}, P, E),

where P consists of

$$E \rightarrow E + E$$

$$E \rightarrow E - E$$

$$E \rightarrow E * E$$

$$E \rightarrow E / E$$

$$E \rightarrow -E$$

$$E \rightarrow (E)$$

$$E \rightarrow id$$

NOTATIONAL CONVENTIONS USED

• Terminals

$$a,b,c,... \in T$$
 specific terminals: **0**, **1**, **id**, +

Nonterminals

- Grammar symbols $X,Y,Z \in (N \cup T)$
- Strings of terminals $u, v, w, x, y, z \in T^*$
- Strings of grammar symbols $\alpha, \beta, \gamma \in (N \cup T)^*$

CONTEXT FREE LANGUAGE

- The language generated by CFG G is defined as:
 - $-L(G) = \{w \mid w \text{ is in } T^* \text{ and } S \stackrel{\Leftrightarrow}{\Rightarrow} w\}.$
 - —That is a string is in L(G) if
 - The string consists of terminals only
 - The string has to be derived from S only

• L is a Context Free Language (CFL), if it is L(G) for some CFG G.

APPLICATIONS OF CFG

- To design a Parser, a CFG is needed.
- The DTD (Document type Definitions) is a CFG whose language is a class of related documents.

• Construct a grammar for $L=\{0^n1^{2n}/n\geq 1\}$

L=?
$$L=\{011,0001111,000111111---3\}$$
 $S\rightarrow 0511/011$

• Construct a grammar for L={w/ |w| is odd} over {0,1}

 Construct a grammar to generate the set of all strings over Σ ={a,b} ending in a

 Construct a grammar for L={w/ |w| is odd and its middle symbol is 0} over {0,1}

ToC. A.Beulah

What is the language generated by

 Construct a grammar for L={w/ w starts and ends with same symbol} over {0,1}

L=?
$$L=\{0,1,00,11,010,101,1001,-...\}$$

$$S\to 0A0/1A1 / 0/1$$

$$S\to 0/1/050/151/151/151/151/151/151/151/150$$

$$S\to 0A0/1A1 / 0/1$$

$$A\to 1A/0A/2$$

• L= $\{(ab)^n / n \ge 1\} \cup \{(ba)^n / n \ge 1\}$

G=?
$$S \rightarrow A/B$$

$$A \rightarrow \cdots \qquad B \rightarrow \cdots$$

$$(!) \qquad (2)$$

• Construct grammar for set of all palindromes over $\Sigma = \{0,1\}$

• G = ({E}, {+, -, *, /, (,), id}, P, E),

where P consists of

$$E \rightarrow E + E$$

$$E \rightarrow E - E$$

$$E \rightarrow E * E$$

$$E \rightarrow E / E$$

$$E \rightarrow - E$$

$$E \rightarrow (E)$$

 $E \rightarrow id$

- $E \Rightarrow E + E$
- E+E derives from E
 - we can replace E by E+E
 - to able to do this, we have to have a production rule E→E+E in our grammar.

$$\begin{array}{c}
E \Rightarrow E+E \\
\Rightarrow id+E \\
\Rightarrow id+id
\end{array}$$

 A sequence of replacements of non-terminal symbols is called a derivation of id+id from E.

• $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$ (α_n derives from α_1 or α_1 derives α_n)

 \Rightarrow : derives in one step

⇒ : derives in zero or more steps

⇒ : derives in one or more steps

- A **left-most derivation** of a sentential form is one in which rules transforming the left-most non-terminal are always applied.
- $\stackrel{\text{lm}}{\Rightarrow}$: leftmost derivation

- A right-most derivation of a sentential form is one in which rules transforming the right-most non-terminal are always applied
- $\stackrel{\text{rm}}{\Rightarrow}$: rightmost derivation

LM AND RM DERIVATIONS

- Leftmost Derivation
- id+id*id

- Rightmost Derivation
- id+id*id

LM AND RM DERIVATIONS

- Leftmost Derivation
- id+id*id

- Rightmost Derivation
- id+id*id

PARSE TREE

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

To understand parse tree and ambiguous grammar (K3)

PARSE TREE

- Let G=(N, T, P, S) be a CFG.
- A tree is a derivation (or) parse tree for G if :
 - Every node has a label which is a non-terminal (or) terminal (or) ε, (i.e.) N U T U $\{\epsilon\}$.
 - The label of the root is S (Start symbol)
 - The internal nodes must be in N (non terminal) labeled as A.
 - If A is a label for a node and nodes n_1 , n_2 ,......... n_k are the sons of node n, in order from the left, then A→ n_1n_2 ... n_k must be a production in P.
 - If a node has label ε , then the vertex is a leaf and is the only son of its father.

DERIVATION TREE/ PARSE TREE

$$E \rightarrow E + E$$
 $E \rightarrow E * E$
 $E \rightarrow -E$
 $E \rightarrow (E)$
 $E \rightarrow id$

$$E \xrightarrow{\underline{lm}} -E$$

$$\xrightarrow{\underline{lm}} -(E)$$

$$\xrightarrow{\underline{lm}} -(E+E)$$

$$\xrightarrow{\underline{lm}} -(id+E)$$

$$\xrightarrow{\underline{lm}} -(id+id)$$

 $\mathsf{E} \Rightarrow \mathsf{-E}$

- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.
- A parse tree can be seen as a graphical representation of a derivation.

AMBIGUOUS GRAMMAR

- A grammar G is ambiguous if there is a word $w \in L(G)$ having at least two different parse trees
- CFG is ambiguous

 any of following equivalent statements:
 - \exists string w with more than one derivation trees.
 - – ∃ string w with more than one leftmost derivations.
 - — ∃ string w with more than one rightmost derivations.

AMBIGUOUS GRAMMAR

$$E \stackrel{lm}{\Longrightarrow} E + E$$

$$\stackrel{lm}{\Longrightarrow} id + E$$

$$\stackrel{lm}{\Longrightarrow} id + E * E$$

$$\stackrel{lm}{\Longrightarrow} id + id * E$$

$$\stackrel{lm}{\Longrightarrow} id + id * id$$

$$E \stackrel{lm}{\Longrightarrow} E^*E$$

$$\stackrel{lm}{\Longrightarrow} E + E^*E$$

$$\stackrel{lm}{\Longrightarrow} id + E^*E$$

$$\stackrel{lm}{\Longrightarrow} id + id^*E$$

$$\stackrel{lm}{\Longrightarrow} id + id^*id$$

$$S \rightarrow OB | IA$$

$$A \rightarrow O | OS | IAA$$

$$B \rightarrow I | IS | DBB$$

$$AG \quad DDI | OIOI$$

AMBIGUOUS GRAMMAR

```
stmt → if expr then stmt |
    if expr then stmt else stmt | otherstmts
```

if E_1 then if E_2 then S_1 else S_2

27

RELATIONSHIP BETWEEN DERIVATION AND DERIVATION TREES

- Let G = (N, Σ , P, S) be a context free grammar (CFG). Then S \Rightarrow * α if and only if there is a derivation tree for G which yield α .
- We'll prove for any A in N, A $\Rightarrow^* \alpha$ if and only if there is a A- tree which yields α :
 - Part 1
 - If there is a parse tree with root labeled A and yield α , then A $\Rightarrow^* \alpha$.
 - Part 2
 - If A \Rightarrow * α , then there is a parse tree with root A and yield α .

PROOF – PART 1

- Induction on the *height* (length of the longest path from the root) of the tree.
- Basis: height 1. Tree looks like

- A $\rightarrow \alpha_1 ... \alpha_n$ must be α production.
- Thus, $A \Rightarrow \alpha_1 ... \alpha_n$.

- Induction
- Assume (1) for trees of height >1
- By IH, $X_i \Rightarrow * \alpha_i$.
 - Note: if X_i is a terminal, then $X_i = \alpha_i$.
- Thus, $A \Rightarrow X_1...X_n$ $\Rightarrow * \alpha_1 X_2...X_n$ $\Rightarrow * \alpha_1 \alpha_2 X_3...X_n$ $\Rightarrow * ...$ $\Rightarrow * \alpha_1...\alpha_n$

- Given a derivation of a terminal string α , we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.

- Basis
- If A $\Rightarrow * \alpha_1 ... \alpha_n$ by a one-step derivation, then there must be a parse tree (A $\Rightarrow \alpha_1 ... \alpha_n$)

- Induction
- Assume (2) for derivations of fewer than k > 1 steps, and let $A \Rightarrow * \alpha$ be a k-step derivation.
- First step is $A \Rightarrow X_1...X_n$.
- Key point: w can be divided so the first portion is derived from X₁, the next is derived from X₂, and so on.
 - If X_i is a terminal, then $\alpha_i = X_i$.

- That is, $X_i \Rightarrow * \alpha_i$ for all i such that X_i is a variable.
 - And the derivation takes fewer than k steps.
- By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield α_i .
- Thus, there is a parse tree

SUMMARY

- Discussion about context free grammar
- Language of CFG
- Derivations from a grammar for a string/word
- Parse tree for a string/word
- Ambiguous grammar

TEST YOUR KNOWLEDGE

- What the does the given CFG defines?
 - S→aSbS|bSaS|e and w denotes terminal
 - a) wwr
 - b) wSw
 - c) Equal number of a's and b's
 - d) None of the mentioned
- A grammar G=(V, T, P, S) is _____ if every production taken one of the two forms:
 - $B \rightarrow aC$
 - $B \rightarrow a$
 - a) Ambiguous
 - b) Regular
 - c) Non Regular
 - d) None of the mentioned

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

- Understand the need of formal languages, and grammars (K3)
 - Understand context free grammars

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

