Ch. 2 Morthematical Models of	f System
-Sor control design, we need a	a 'good' math madel of the plant
'good' := simple but acou	irate
2.1 General Comments on M	odalling
- a model is a set of equi	nations that represent a system.
- models allow us to simulate, effective & safe way.	test, and refine designs in a cost
Apply known "laws" (Newton, KVL, E.M., queuing etc.)	"aperating point"
ound/or System Identification (experiments, data fitting etc.)	System of differential equations
	System of linear differently system of equations
Isolate relationship between ?	equations Take LTs w/ Zeno initial conditions
Transfer y Finction	
Expainantally determine parameter values in TF	
Ex. 2.1.1. (marg-spring-dan	mpor) 9 E/R, pos of mag ME/R, mass in kg
Spring	UE/R, applied some
Jamper VV	\Rightarrow \mathcal{N} $q = \frac{dq}{dt}$, valuely $\hat{q} = \frac{dq}{dt^2}$, acceleration
,	V *

Take of, to be the position, where oping is not compressed (stretched). Newton's 2nd Law: Moj = I forces acting on M Force due to spring (onesumed linear, Hooke's Law) Fig = Kg (motion)

in damper (possibly non-linear, models Solution) clip) C://R=JR (opposes notion) |Mg= U-kg-c(g) | 2nd order, Non-linear, ODE If the damper were linear, i.e., C(qi) = bq, b constant than the overall system is linear.

Vr(t) = h(i(t)), h: R→ R ult) - applied voltage Ylt) = voltage across capacitor

Apply KVL: -u(t) + Ve(t) + y(t) = 0 $Ve(t) = h(i(t)), i(t) = \left(\frac{dy(t)}{dt}\right) \text{ (capositor device eqn)}$ $= \sum -u(t) + h(cy) + y(t) = 0 \text{ ODE}$

If the register were linear, i.e. h(i) = Ri, R constant then the circuit is linear (see Ex. 2.3.4)

2,4 State-Space Models

- state-space models are a way of expressing math models in a standard form.

EX, 2,4.1

 $M_{\hat{\gamma}} = u - D(\hat{\gamma})$

We put this model into a standard form by defining two so-called "state variables"