Data Preparation

Modify Assignment

Allen Rahrooh

23 March 2020

Table of Contents

Part I Transforming the Predictors:	3
Scale and Center Transformation	4
Square Transformation	4
Square Root Transformation	5
Log Transformation	5
No Transformation	5
Part II Principal Component Analysis:	6
Statistics:	6
Visualizations	7
Part III Regression Models:	8
Untransformed model RMSE: 9.479	8
Transformed model RMSE: 10.23	9
Principal component model RMSE: 10.66	9
Table of Figures	
Figure 1 Summary of Transformations Applied	3
Figure 2 First 6 Rows of Transformation 1	4
Figure 3 First 6 Rows of Transformation 2	4
Figure 4 First 6 Rows of Transformation 3	5
Figure 5 First 6 Rows of Transformation 4	5
Figure 6 First 6 Rows of Transformation 5	ô
Figure 7 PCA Statistics	5
Figure 8 Variance Histogram of Principal Components	7
Figure 9 Histogram of Top 7 Principal Components	3
Figure 10 Root Mean Squared Prediction Plot for Principal Component Regression)

Part I Transforming the Predictors:

Create a table listing the predictor 1-90, and the transform you selected. Create a summary table showing how many times each transform was used.

Predictors	Transformations	Times Applied
1	scale and center, square, exponential, log, no	1
2	scale and center, square, exponential, log, no	1
3	scale and center, square, exponential, log, no	1
5	scale and center, square, exponential, log, no	1
6	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
7	scale and center, square, exponential, log, no	1
- 8	scale and center, square, exponential, log, no	1
9	scale and center, square, exponential, log, no	1
10	scale and center, square, exponential, log, no	1
11	scale and center, square, exponential, log, no	1
12	scale and center, square, exponential, log, no	1
13	scale and center, square, exponential, log, no	1
14	scale and center, square, exponential, log, no	1
15	scale and center, square, exponential, log, no	1
16 17	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
18	scale and center, square, exponential, log, no	1
19	scale and center, square, exponential, log, no	1
20	scale and center, square, exponential, log, no	1
21	scale and center, square, exponential, log, no	1
22	scale and center, square, exponential, log, no	1
23	scale and center, square, exponential, log, no	1
24	scale and center, square, exponential, log, no	1
25	scale and center, square, exponential, log, no	1
26	scale and center, square, exponential, log, no	1
27	scale and center, square, exponential, log, no	1
28 29	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
30	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
31	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
32	scale and center, square, exponential, log, no	1
33	scale and center, square, exponential, log, no	1
34	scale and center, square, exponential, log, no	1
35	scale and center, square, exponential, log, no	1
36	scale and center, square, exponential, log, no	1
37	scale and center, square, exponential, log, no	1
38	scale and center, square, exponential, log, no	1
39 40	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
41	scale and center, square, exponential, log, no	1
42	scale and center, square, exponential, log, no	1
43	scale and center, square, exponential, log, no	1
44	scale and center, square, exponential, log, no	1
45	scale and center, square, exponential, log, no	1
46	scale and center, square, exponential, log, no	1
47	scale and center, square, exponential, log, no	1
48	scale and center, square, exponential, log, no	1
49	scale and center, square, exponential, log, no	1
50 51	scale and center, square, exponential, log, no	1
52	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
53	scale and center, square, exponential, log, no	1
54	scale and center, square, exponential, log, no	1
55	scale and center, square, exponential, log, no	1
56	scale and center, square, exponential, log, no	1
57	scale and center, square, exponential, log, no	1
58	scale and center, square, exponential, log, no	1
59	scale and center, square, exponential, log, no	1
60	scale and center, square, exponential, log, no	1
61	scale and center, square, exponential, log, no	1
62 63	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
64	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
65	scale and center, square, exponential, log, no	1
66	scale and center, square, exponential, log, no	1
67	scale and center, square, exponential, log, no	1
68	scale and center, square, exponential, log, no	1
69	scale and center, square, exponential, log, no	1
70	scale and center, square, exponential, log, no	1
71	scale and center, square, exponential, log, no	1
72	scale and center, square, exponential, log, no	1
73	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
74 75	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
76	scale and center, square, exponential, log, no	1
77	scale and center, square, exponential, log, no	1
78	scale and center, square, exponential, log, no	1
79	scale and center, square, exponential, log, no	1
80	scale and center, square, exponential, log, no	1
81	scale and center, square, exponential, log, no	1
82	scale and center, square, exponential, log, no	1
83	scale and center, square, exponential, log, no	1
84	scale and center, square, exponential, log, no	1
85 86	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
87	scale and center, square, exponential, log, no scale and center, square, exponential, log, no	1
88	scale and center, square, exponential, log, no	1
89	scale and center, square, exponential, log, no	1
90	scale and center, square, exponential, log, no	1
		ns Appli

Figure 1 Summary of Transformations Applied

library(readr)

music <- read.table("YearPredictionMSD.txt", sep=",")</pre>

#data is read in

#now we apply a transformation for all the predictors

#v1 is the target variable

predictors <- music[,2:91]

target <- music[,1]

target <- as.data.frame(target)

Scale and Center Transformation

scaling <- scale(predictors, center = TRUE, scale = TRUE)

scaling <- as.data.frame(scaling)</pre>

head(scaling)

```
      V2
      V3
      V4
      V5
      V6
      V7

      1 1.0805738
      0.39126500
      1.8265307
      0.46465620
      -0.474729066
      -0.2782038

      2 0.8809185
      0.33229215
      1.7485375
      0.72182731
      -0.164944871
      -1.1911721

      3 1.2476212
      0.59259903
      1.3371720
      0.75065633
      -0.001110167
      -0.7020998

      4 0.8010429
      -0.06180501
      0.7836825
      0.08721766
      0.329179447
      -1.2984272

      5 1.2497736
      0.79333361
      1.6570354
      0.44745939
      -0.406774707
      -0.5671376

      6 1.1801361
      -0.01888072
      2.3729989
      1.30019658
      -0.829590889
      -0.7409775
```

Figure 2 First 6 Rows of Scale and Center Transformation

Square Transformation

square <- predictors^2

head(square)

```
V2 V3 V4 V5 V6 V7
1 2494.360 4.610099e+02 5340.321 76.538177 302.9785834 171.5851
2 2374.822 3.396391e+02 4945.857 167.608237 106.5926159 616.9148
3 2596.630 1.014806e+03 3115.706 180.014011 43.2829778 344.0802
4 2327.821 3.603809e+00 1317.524 6.696502 0.9442009 687.3222
5 2597.961 1.781682e+03 4502.362 71.705500 251.3109508 282.7136
6 2555.067 9.965386e-02 8528.644 501.175978 651.2040497 362.8751
```

Figure 3 First 6 Rows of Square Transformation

Square Root Transformation

Does not work since we have negative values

square_root <- sqrt(predictors)</pre>

head(square_root)

```
V2 V3 V4 V5 V6 V7
1 7.067076 4.6336961 8.548538 2.957805 NaN NaN
2 6.980842 4.2929361 8.386107 3.598105 NaN NaN
3 7.138427 5.6441137 7.471179 3.662913 NaN NaN
4 6.946042 NaN 6.024759 1.608652 0.9857484 NaN
5 7.139342 6.4969208 8.191437 2.909967 NaN NaN
6 7.109688 0.5618541 9.609925 4.731486 NaN NaN
```

Figure 4 First 6 Rows of Square Root Transformation

Log Transformation

#does not work since we have values outside the log domain

logging <- log(predictors)

head(logging)

V2	V3	V4	V5	V6	٧7
1 3.910894	3.066710	4.291521	2.1688948	NaN	NaN
2 3.886339	2.913942	4.253153	2.5608147	NaN	NaN
3 3.930985	3.461226	4.022106	2.5965173	NaN	NaN
4 3.876344	NaN	3.591755	0.9507926	-0.02870816	NaN
5 3.931241	3.742657	4.206179	2.1362837	NaN	NaN
6 3.922917	-1.153026	4.525593	3.1084786	NaN	NaN

Figure 5 First 6 Rows of Log Transformation

No Transformation

#I will just take the raw data and apply a regression model in part 3 head(predictors)

	V2	V3	V4	V5	V6	V7
1 49.94	1357	21.47114	73.07750	8.74861	-17.40628	-13.09905
2 48.73	3215	18.42930	70.32679	12.94636	-10.32437	-24.83777
3 50.95	714	31.85602	55.81851	13.41693	-6.57898	-18.54940
4 48.24	1750	-1.89837	36.29772	2.58776	0.97170	-26.21683
5 50.97	7020	42.20998	67.09964	8.46791	-15.85279	-16.81409
6 50.54	1767	0.31568	92.35066	22.38696	-25.51870	-19.04928

Figure 6 First 6 Rows of No Transformation

I decided to use the square transformation for my regression model because all the values would be positive and no negative values to lower the regression performance metrics.

Part II Principal Component Analysis:

Statistics:

Importance of component		DCO	DCO	DC4	DCE	Dec	DCZ	DCO	DCO	DC10
	PC1	PC2	PC3	PC4			PC7	PC8	PC9	PC10
Standard deviation							412.47135			
Proportion of Variance	0.4691	0.1444	0.09161	0.04942		0.0227	0.01785	0.0163	0.0155	0.01266
Cumulative Proportion	0.4691	0.6136	0.70519	0.75461			0.82612	0.8424	0.8579	0.87057
Chandrad days at the an	PC11 331.59208	PC12	PC13	PC14	PC15	PC16	PC17	PC18	PC19	PC20
Standard deviation							233.78581 2			
Proportion of Variance	0.01154 0.88211	0.00978 0.89189	0.0085 0.9004	0.0072 0.9076	0.00708 0.91467	0.00658 0.92125	0.00573 0.92699	0.0055 0.9325	0.00518 0.93767	0.00402 0.94168
Cumulative Proportion	PC21	PC22	PC23	0.9076 PC24	9.91467 PC25	9.92125 PC26	0.92699 PC27	0.9325 PC28		
Standard deviation	193.13842		186.18852					152.83201		
	0.00391	0.0038	0.00364	0.00342	0.00325	0.00305	0.00264	0.00245		
Proportion of Variance Cumulative Proportion	0.94560	0.9494	0.95303	0.95645	0.95970	0.96275	0.96538	0.96783		
cumutative Proportion	PC31	PC32	PC33	PC34	PC35	PC36	PC37	PC38		
Standard deviation					113.03762			106.20492		
Proportion of Variance	0.0019	0.00163	0.00158	0.00138	0.00134	0.00127	0.00124	0.00118		
Cumulative Proportion	0.9740	0.97562	0.97720	0.97858	0.97992	0.98118	0.98242	0.98361	0.9847	
cullatactive Proporcion	PC41	PC42	PC43	PC44				48 PC		
Standard deviation		97.6983 9			97714 86.1				44 75.244	
Proportion of Variance	0.00106					0078 0.00				
Cumulative Proportion	0.98690					9124 0.99				
	PC52	PC53	PC54			C57 PC				PC62
Standard deviation		63.82520 6			7257 57.35		9 51.85366			
Proportion of Variance	0.00048	0.00043	0.00042 0	.0004 0.0	0038 0.00	035 0.000	0.00028	0.00027	0.00024	0.00023
Cumulative Proportion	0.99491	0.99534	0.99576 0	.9962 0.9	9655 0.99	689 0.997	72 0.99748	0.99775	0.99799	0.99822
	PC63	PC64	PC65	PC66	PC67	PC68	PC69 PC	70 PC	71 PC	72 PC73
Standard deviation	44.22680	39.96713 3	9.43612 38	.48435 37.	65337 36.5	5665 34.17	7082 29.898	35 29.549	70 28.463	62 26.13230
Proportion of Variance	0.00021	0.00017	0.00016 0	.00016 0.	00015 0.0	0014 0.00	0.000	0.000	09 0.000	0.00007
Cumulative Proportion	0.99843	0.99860	0.99876 0	.99891 0.	99906 0.9	9920 0.99	9933 0.999	42 0.999	51 0.999	60 0.99967
	PC74	PC75	PC76	PC77	PC78	PC79 PC	C80 PC8	1 PC82	PC83	PC84
Standard deviation	24.85618	22.43649 20	0.27783 19	.78895 18.	54897 14.3	5933 1.4e-	+01 10.9128	8 9.75821	8.96535	7.77204
Proportion of Variance	0.00006	0.00005	0.00004 0	.00004 0.	00004 0.0	0002 2.0e	-05 0.0000	0.00001	0.00001	0.00001
Cumulative Proportion	0.99973	0.99979	0.99983 0	.99987 0.	99991 0.9	9993 1.0e-	+00 0.9999	6 0.99997	0.99998	0.99999
	PC85	PC86 PC87	PC88 PC	89 PC90						
Standard deviation		.297 4.946		42 1.898						
Proportion of Variance										
Cumulative Proportion	0.99999 1	.000 1.000	1.000 1.0	00 1.000						

Figure 7 PCA Statistics

Principal Components (1-90)

Figure 8 Variance Histogram of Principal Components

Looking at Figure 8 it looks like either 4 or 5 components is the optimal amount.

I now will cut the histogram to show the top 7 components.

barplot(100*p.variance, las = 3, ylim = c(0,60),

ylab = '% Variance Explained', main = "Histogram of Principal Components",

col = rainbow(20), xlab = 'Principal Components (1-6)', xlim = c(0,6))

Histogram of Top 7 Principal Components

Figure 9 Histogram of Top 7 Principal Components

I decided to use four Principal Components since at the fifth component the variance starts to level out as shown in Figure 9.

Part III Regression Models:

```
# Function that returns Root Mean Squared Error
rmse <- function(error)
{
    sqrt(mean(error^2))
}</pre>
```

Untransformed model RMSE: 9.479

```
#running regression for untransformed predictors
untransformed_test <- music[463716:515345,]
model1 <- Im(V1 ~., data = untransformed_test)
summary(model1)
rmse_model1 <- rmse(model1$residuals)</pre>
```

```
rmse_model1
```

```
[1] 9.47909
```

```
#running regression for transformed predictors using square transformations transformed_test <- cbind(target, square) transformed_test <- transformed_test[463716:515345,] model2 <- lm(target ~., data = transformed_test) summary(model2) rmse_model2 <- rmse(model2$residuals) rmse_model2 (1] 10.23846 Principal component model RMSE: 10.66 library(pls) train_music <- music[1:463715,] y_test <- music[463716:515345,1] test_music <- music[463716:515345, 2:91] pcr_model <- pcr(V1 ~., data = train_music, scale = TRUE, validation = "CV")
```

validationplot(pcr_model, main = "Root Mean Squared Error Prediction Plot")

Root Mean Squared Error Prediction Plot

Figure 10 Root Mean Squared Prediction Plot for Principal Component Regression

pcr_pred <- predict(pcr_model, test_music, ncomp = 4)
sqrt(mean((pcr_pred - y_test)^2))
[1] 10.66351</pre>