Resumo de Series Temporais para P1

Daniel dos Santos

Gabriel Mizuno

Lyncoln Souza

22 de setembro de 2019

1 Introdução

Séries Temporais $Z_t = \mu(t) + \varepsilon_t$ Onde ε_t é chamado de Ruído branco $\varepsilon_t \sim RB(0, \sigma^2)$

2 Modelo Constante

$$\mu(t) = a_1 \text{ (constante)}$$

Equação do modelo: $Z_t = a_1 + \varepsilon_t$

Equação de previsão: $\hat{Z}_{t+h} = \hat{Z}_t(h) = E[Z_{t+h}|Z_t] = E[a_1 + \varepsilon_{t+h}|Z_t] = \hat{a}_1(t)$

2.1 Método NAIVE

(i) Estimação de $a_1(t)$: $\hat{a}_1(t) = Z_t$

2.2 Método Médias Móveis (MM(N))

Hiperparâmetro:

• N: Quantidade de termos para a média

Equação de atualização:

(i) Estimação de
$$a_1(t)$$
: $\hat{a}_1(t)=M(t)=\frac{Z_t+Z_{t-1}+\cdots+Z_{t-N+1}}{N}$

2.3 Método do Amortecimento Exponencial

Hiperparâmetro:

• α : Constante de amortecimento

Equação de atualização: $\hat{a}_1(t) = \alpha Z_t + (1 - \alpha)\hat{a}_1(t - 1)$

3 Modelos Lineares

$$Z_t = \mu(t) + \varepsilon_t$$

$$\mu(t) = a_1 + a_2 t$$

$$Z_t = a_1 + a_2 t + \varepsilon_t$$

Onde: a_1 é Nível e a_2 é Tendência.

3.1 Método de Holt

Hiperparâmetros

- \bullet α : Constante de amortecimento de nível e
- \bullet β : Constante de amortecimento de tendência

Equação de atualização:

- (i) Estimação de $a_1(t)$: $\hat{a}_1(t) = \alpha Z_t + (1 \alpha) [\hat{a}_1(t-1) + \hat{a}_2(t-1)]$
- (ii) Estimação de $a_2(t)$: $\hat{a}_2(t) = \beta \left[\hat{a}_1(t) \hat{a}_1(t-1)\right] + (1-\beta)\hat{a}_2(t-1)$

Inicialização dos parâmetros: $\hat{a}_1(0) = Z_1$ e $\hat{a}_2(0) = Z_2 - Z_1$ Equação de previsão:

 $\hat{Z}_{t+h} = \hat{Z}_t(h) = \hat{a}_1(t) + \hat{a}_2(t)h$

3.2 Método de Holt dumped trend

Hiperparâmetros:

- α : Constante de amortecimento de nível;
- β : Constante de amortecimento de tendência;
- ϕ : Constante de amortecimento de crescimento;

Equação de atualização:

- (i) Estimação de $a_1(t)$: $\hat{a}_1(t) = \alpha Z_t + (1 \alpha)[\hat{a}_1(t 1) + \phi \hat{a}_2(t 1)]$
- (ii) Estimação de $a_2(t)$: $\hat{a}_2(t) = \beta[\hat{a}_1(t) \hat{a}_1(t-1)] + (1-\beta)\phi\hat{a}_2(t-1)$

Inicialização dos parâmetros: $\hat{a}_1(0) = Z_1 \ e \ \hat{a}_2(0) = Z_2 - Z_1$ Equação de previsão:

$$\hat{Z}_{t+h} = \hat{Z}_t(h) = \hat{a}_1(t) + \hat{a}_2(t) \sum_{i=1}^h \phi^i$$

4 Modelos não lineares

$$Z_t = \mu(t) + \varepsilon_t$$

$$\mu(t) = a_1 + a_2 t$$

$$Z_t = a_1 a_2^t + \varepsilon_t$$

Onde: $a_1(t)$ é Nível e $a_2(t)$ é Tendência.

4.1 Método de Pegel

Hiperparâmetros

- \bullet α : Constante de amortecimento de nível
- β : Constante de amortecimento de tendência

Equação de atualização:

(i) Estimação de
$$a_1(t)$$
: $\hat{a}_1(t) = \alpha Z_t + (1 - \alpha)[\hat{a}_1(t - 1)\hat{a}_2(t - 1)]$

(ii) Estimação de
$$a_2(t)$$
: $\hat{a}_2(t) = \beta \left[\frac{\hat{a}_1(t)}{\hat{a}_1(t-1)} \right] + (1-\beta)\hat{a}_2(t-1)$

Inicialização dos parâmetros: $\hat{a}_1(0) = Z_1$ e $\hat{a}_2(0) = Z_2 - Z_1$ (Fonte: Fernanda Fernandes) Equação de previsão:

$$\hat{Z}_{t+h} = \hat{Z}_t(h) = \hat{a}_1(t)\hat{a}_2(t)^h$$

4.2 Método de Pegel com Dumped Trend

Hiperparâmetros

- α : Constante de amortecimento de nível;
- β : Constante de amortecimento de tendência;
- ϕ : Constante de amortecimento de crescimento;

Equação de atualização:

(i) Estimação de $a_1(t)$: $\hat{a}_1(t) = \alpha Z_t + (1 - \alpha)[\hat{a}_1(t-1)\hat{a}_2(t-1)^{\phi}]$

(ii) Estimação de
$$a_2(t)$$
: $\hat{a}_2(t) = \beta \left[\frac{\hat{a}_1(t)}{\hat{a}_1(t-1)} \right] + (1-\beta)\hat{a}_2(t-1)^{\phi}$

Inicialização dos parâmetros: $\hat{a}_1(0) = Z_1$ e $\hat{a}_2(0) = Z_2 - Z_1$ (Fonte: Fernanda Fernandes) Equação de previsão:

$$\hat{Z}_{t+h} = \hat{Z}_t(h) = \hat{a}_1(t)\hat{a}_2(t)^{\sum_{i=1}^h \phi^i}$$

5 Modelos com sazonalidade

5.1 Modelo constante

Modelo Aditivo

$$Z_t = \mu(t) + \rho(t) + \varepsilon_t$$
$$\mu(t) = a_1$$
$$Z_t = a_1 + \rho(t) + \varepsilon_t$$

Onde: $a_1(t)$ é Nível e ρ Fator Sazonal Modelo Multiplicativo

$$Z_t = \mu(t)\rho(t) + \varepsilon_t$$
$$\mu(t) = a_1$$
$$Z_t = a_1\rho(t) + \varepsilon_t$$

3

Onde: a_1 é Nível e ρ Fator Sazonal

5.1.1 Método de Amortecimento Exponencial

Equação de atualização para modelo aditivo:

(i) Estimação de $a_1(t)$: $a_1(t) = \alpha(Z_t - \hat{\rho}_{m(t)}(t-1)) + (1-\alpha)\hat{a}_1(t-1)$

(ii) Estimação de $a_2(t)$: $a_2(t) = \gamma(Z_t - \hat{a}_1(t)) + (1 - \gamma)\hat{\rho}_{m(t)}(t - 1)$

Equação de atualização para modelo multiplicativo:

(i) Estimação de
$$a_1(t)$$
: $a_1(t) = \alpha \left(\frac{Z_t}{\hat{\rho}_{m(t)}(t-1)} \right) + (1-\alpha)\hat{a}_1(t-1)$

(ii) Estimação de
$$a_2(t)$$
: $a_2(t)=\gamma\left(rac{Z_t}{\hat{a}_1(t)}
ight)+(1-\gamma)\hat{
ho}_{m(t)}(t-1)$

5.2 Modelo de Tendência Linear

Hiperparâmetros

- α : Constante de amortecimento de Nível;
- β : Constante de amortecimento de Tendência;
- ρ : Constante de amortecimento dos Fatores Sazonais;

Modelo Aditivo

$$Z_t = \mu(t) + \rho(t) + \varepsilon_t$$

$$\mu(t) = a_1 + a_2$$

$$Z_t = a_1 + a_2 t + \rho(t) + \varepsilon_t$$

Onde: a_1 é Nível e ρ Fator Sazonal Modelo Multiplicativo

$$Z_t = \mu(t) + \rho(t) + \varepsilon_t$$
$$\mu(t) = a_1 + a_2 t$$
$$Z_t = (a_1 + a_2 t) \rho(t) + \varepsilon_t$$

Onde: a_1 é Nível e ρ Fator Sazonal

5.2.1 Método Amortecimento Exponencial de Holt-Winters

Equação de atualização para Modelo Aditivo:

- (i) Estimação de $a_1(t)$: $\hat{a}_1(t) = \alpha \left[Z_t \hat{\rho}_{m(t)}(t-1) \right] + (1-\alpha) \left[\hat{a}_1(t-1) + \hat{a}_2(t-1) \right]$
- (ii) Estimação de $a_2(t)$: $\hat{a}_2(t) = \beta \left[\hat{a}_1(t) \hat{a}_1(t-1) \right] + (1-\beta)\hat{a}_2(t-1)$
- (iii) Estimação de $\rho_{m(t)}(t)$: $\hat{\rho}_{m(t)}(t) = \gamma [Z_t \hat{a}_1(t)] + (1 \gamma)\hat{\rho}_{m(t)}(t 1)$

Equação de atualização para Modelo Multiplicativo:

(i) Estimação de $a_1(t)$: $\hat{a}_1(t) = \alpha \left[\frac{Z_t}{\hat{\rho}_{m(t)}(t-1)} \right] + (1-\alpha) \left[\hat{a}_1(t-1) + \hat{a}_2(t-1) \right]$

4

- (ii) Estimação de $a_2(t)$: $\hat{a}_2(t) = \beta \left[\hat{a}_1(t) \hat{a}_1(t-1) \right] + (1-\beta)\hat{a}_2(t-1)$
- (iii) Estimação de $ho_{m(t)}(t)$: $\hat{
 ho}_{m(t)}(t) = \gamma \left[\frac{Z_t}{\hat{a}_1(t)} \right] + (1 \gamma) \hat{
 ho}_{m(t)}(t 1)$