F-128 – Física Geral I – 2º Semestre 2012

Respostas à Lista do Capítulo 5

1)
$$F \cong 10^4 N$$

2)a)
$$2.2 \times 10^{-16}$$
 m; b) $F_y = 4.1 \times 10^{-15}$ N

3)a)
$$T_a = 60$$
 N; $T_c = 80$ N; b) $M = 8$ kg; c) $M = 2 \sim \text{kg}$;

4) Baseando-se na figura ao lado, teremos: $N_1 = \frac{mg}{\cos\theta};$ $N_2 = mg \tan\theta.$

- 5)a) P = 966.5 N; b) N = 1174 N;
- 6) A aceleração do conjunto será: $a = \frac{m_2}{m_2 + m_1} g$, e portanto só será

igual a g no limite em que $m_2 \gg m_1$.

- 7)a) Demonstração; b) $f_{\text{contato}} = m_1 / (m_1 + m_2) F$.
- 8) a) Ver figura; b) 2 m/s 2 ; c) F_1 =4N; F_2 =6N; F_3 =8N; d) $f_{2,1}$ = $f_{1,2}$ =14N; $f_{2,3}$ = $f_{3,2}$ =8N;

Figure 2: Exercício 8

9)a) 0.5m/s^2 ; b) 0.1 m/s^2 ; c) 2.5 m;

10)a)
$$a(x) = g\left(1 - \frac{2x}{l}\right)$$
; b) $v_f = \sqrt{2gx\left(1 - \frac{x}{l}\right)}$;

- 11) $v \approx 17.3 \,\mathrm{m/s}$ ou $\omega \approx 0.58 \,\mathrm{rad/s}$
- 12) Tomando a força de atrito com o monte de areia como constante: $F_{areia} = 10.1 \text{ N}.$

13)
$$\vec{a}(t) = 3\hat{i} - 4\hat{j}$$
; $\vec{v}(t) = 3t\hat{i} - 4t\hat{j}$; $\vec{r}(t) = 3t^2 / 2\hat{i} - 2t^2\hat{j}$; $y(x) = -4 / 3x$.

14)
$$T_A = \frac{m}{2} \left(\frac{3\omega^2 L}{4} + g \right)$$
; $T_B = \frac{\sqrt{3}m}{2} \left(\frac{\omega^2 L}{4} - g \right)$; $\omega = 2\sqrt{\frac{g}{L}}$;

15)Para os três casos apresentados teremos a) T = P; b) T > P; c) T < P;

16)a)
$$[F_0] = N$$
; $[k] = N/s$; b) $a(t) = \frac{F_0 - kt}{m}$;

F-128 – Física Geral I – 2º Semestre 2012

Respostas à Lista do Capítulo 5

c)
$$v(t) = v_0 + \frac{2F_0t - kt^2}{2m}$$
; $x(t) = x_0 + v_0t + \frac{3F_0t^2 - kt^3}{6m}$;

17) Ver figura ao lado, onde:

$$\tan \theta = \frac{F}{m_1 + m_2}; \tan \alpha = \frac{F}{m_1}.$$

$$19)F = 25 \text{ kN}.$$

20)a)
$$a_{min} = 5 \text{ m/s}^2$$
; b) $a = 2 \text{ m/s}^2$; c) $T = 120 \text{ N}$;

21) Pense a respeito!

Figure 3: Exercício 17

23)Pergunta 7 do livro-texto (página 116): a) 20kg; b) 18kg; c) 10kg; d) Todas têm a mesma aceleração; e) 3, 2, 1

Pergunta 10 do livro-texto (página 116): d, c, a, b

Pergunta 11 do livro-texto (página 116): a) *M*; b) *M*; c) *M*; d) *2M*; e) *3M*;

- 24) Problema 12 do livro-texto (página 118): $\theta = 56, 25^{\circ}$;
- 25) Problema 32 do livro-texto (página 119): $F = mg \tan \theta$; $N = mg / \cos \theta$.
- 26) Problema 52 do livro-texto (página 121): a) $a = 2.5 \text{ m/s}^2$; b) $F_a = 30 \text{ N}$;