Homework 9 for Math 2371

Zhen Yao

Problem 1. Let S_n be the linear space consisting of $n \times n$ real symmetric matrices. For any $A \in M_n$, denoted by r(A) the spectral radius of A. Is r a norm for S_n ?

Proof. r is a norm for S_n . Suppose $A \in S_n$, then we have $A^T = A$. Also, we already knew that $||A||_2 = \sqrt{r(A^T A)}$. Symmetric matrix has real eigenvalues, then $r(A^T A) = r(A^2) = r(A)^2$, since

$$A^2v = A(Av) = A(\lambda v) = \lambda^2 v$$

for some eigenvalue λ of A and its corresponding eigenvector v. Thus, we have $||A||_2 = r(A)$.

Problem 2. Let $X = \mathbb{R}^n$ be the normed linear space with l^p norm for some $1 \leq p \leq n$. Let $T \in X'$ be such that

$$Tx = \sum_{k=1}^{n} kx_k.$$

Find the operator norm ||T||.

Proof.

(1) First, if $||x||_p = 1$, with Hölder's inequality, we have

$$|Tx| \le \sum_{k=1}^{n} |kx_k|$$

$$\le \left(\sum_{k=1}^{n} k^q\right)^{\frac{1}{q}} \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}},$$

where $\frac{1}{q} + \frac{1}{p} = 1$. Then we have

$$||T||_{op} = \sup_{||x||_p = 1} |Tx| \le \left(\sum_{k=1}^n k^q\right)^{\frac{1}{q}}.$$

(2) Also, we can choose x such that $||x||_p = 1$, then we have

$$||T||_{op} \ge |Tx| = \left(\sum_{k=1}^{n} k^q\right)^{\frac{1}{q}}.$$

Thus, we have

$$||T||_{op} = \left(\sum_{k=1}^{n} k^q\right)^{\frac{1}{q}}.$$

where
$$\frac{1}{a} + \frac{1}{n} = 1$$
.

Problem 3. Let $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$ be normed linear spaces with l^{∞} norm. Let $T \in \mathcal{L}(X,Y)$ represented by the $m \times n$ matrix $(t_{ij})_{m \times n}$, i.e.,

$$y_i = \sum_{j=1}^n t_{ij} x_j.$$

Find the operator norm ||T||.

Proof.

(1) First, we have

$$|y_i| \le \sum_{j=1}^n |t_{ij}| |tx_j|$$

$$\le \left(\sum_{j=1}^n |t_{ij}|\right) ||x||_{\infty}.$$

Then we have

$$||T||_{op} \le \sup_{\|x\|_{\infty}=1} ||Tx||_{\infty} \le \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} |t_{ij}| \right\}.$$

(2) Second, suppose the maximum of the right hand side of the above equation is attained at $i = i_0$. Let x be the vector such that $x_j = \operatorname{sgn} t_{i_0 j}$, where

$$\operatorname{sgn} x = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

then we have $||x||_{\infty} = 1$ and

$$||Tx||_{\infty} = \sum_{i=1}^{n} |t_{i_0 j}|.$$

Since $||T||_{op} \ge ||Tx||_{\infty}$, we have

$$||T||_{op} \ge \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} |t_{ij}| \right\}.$$

Thus, we have

$$||T||_{op} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} |t_{ij}| \right\}.$$