

**26.** 
$$x^2(ax^n-1)y_{xx}'' + x(apx^n+q)y_x' + (arx^n+s)y = 0.$$

Find the roots  $A_1$ ,  $A_2$  and  $B_1$ ,  $B_2$  of the quadratic equations

$$A^{2} - (q+1)A - s = 0$$
,  $B^{2} - (p-1)B + r = 0$ 

and define parameters c,  $\alpha$ ,  $\beta$ , and  $\gamma$  by the relations

$$c = A_1$$
,  $\alpha = (A_1 + B_1)n^{-1}$ ,  $\beta = (A_1 + B_2)n^{-1}$ ,  $\gamma = 1 + (A_1 - A_2)n^{-1}$ .

Then the solution of the original equation has the form  $y=x^cu(ax^n)$ , where u=u(z) is the general solution of the hypergeometric equation 2.22:  $z(z-1)u''_{zz}+[(\alpha+\beta+1)z-\gamma]u'_z+\alpha\beta u=0$ .

## References

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

**Polyanin, A. D. and Zaitsev, V. F.,** *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition,* Chapman & Hall/CRC, Boca Raton, 2003.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0226.pdf