DATA SCIENCE

Agenda

Anova

- One Way
- Two Way
- Post Hoc Tests

Chi Square

- Association Tests
- Goodness-of-fit Tests

Chi Square Parametric

Tests of Variance

How do we calculate the within group variations?

Calculate the variance for each group, and then calculate an average across groups

How do we calculate the within group variations?

 Calculate the variance for each group, and then calculate an average across groups

Between group variation?

 Calculate the average of the square variations of each population mean from the mean for all the data (Grand Mean)

Within Group Variance

1. Calculate the Mean for each group

- 1. Calculate the Mean for each group
- 2. Subtract each sample mean from every score in that group

- 1. Calculate the Mean for each group
- 2. Subtract each sample mean from every score in that group
- 3. Square the difference

- 1. Calculate the Mean for each group
- 2. Subtract each sample mean from every score in that group
- 3. Square the difference
- 4. Add up all the squared Differences

Within Group Variance

- Calculate the Mean for each group
- 2. Subtract each sample mean from every score in that group
- 3. Square the difference
- 4. Add up all the squared Differences

The SSW (Sum of Squares, Within) can be written as

$$SSW = \sum_{K} \sum_{I} (Y_{ik} - \overline{Y}_{K})^{2}$$

Between Group Variance

1. Calculate a Grand Mean for all observations across all groups

- 1. Calculate a Grand Mean for all observations across all groups
- 2. Subtract each grand mean from each sample mean

- 1. Calculate a Grand Mean for all observations across all groups
- 2. Subtract each grand mean from each sample mean
- 3. Square these differences

- 1. Calculate a Grand Mean for all observations across all groups
- 2. Subtract each grand mean from each sample mean
- 3. Square these differences
- 4. Multiply each squared score by sample size

- 1. Calculate a Grand Mean for all observations across all groups
- 2. Subtract each grand mean from each sample mean
- 3. Square these differences
- 4. Multiply each squared score by sample size
- 5. Add them all up

Between Group Variance

- 1. Calculate a Grand Mean for all observations across all groups
- 2. Subtract each grand mean from each sample mean
- 3. Square these differences
- 4. Multiply each squared score by sample size
- 5. Add them all up

The SSW (Sum of Squares, Within) can be written as

$$SSB = \sum_{k=1}^{K} N_k (\overline{Y}_k - \overline{Y})^2$$

We have:

SSW (Sum of squares, within)

SSB (Sum of squares, between)

We need to divide each quantity by the appropriate degrees of freedom:

We have:

SSW (Sum of squares, within) SSB (Sum of squares, between)

We need to divide each quantity by the appropriate degrees of freedom:

MSW = SSW/DFW, where DFW = n-k

We have:

SSW (Sum of squares, within)
SSB (Sum of squares, between)

We need to divide each quantity by the appropriate degrees of freedom:

MSW = SSW/DFW, where DFW = n-k

MSB = SSB/DFB, where DFB = k-1

Retail example

Data				
Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
210.5	198.1	170.5	167.1	188.5
198.1	189	225.5	167.9	177.7
145.3	210.3	158	175.5	176.5
185.5	254.4	139.4	175	158
189.1	210.3	156.4	149.1	174.5
135.9	160.9	217.1	189.3	181.7
180	120.8	189.1	198.2	176.2
149.4	167.8	158.2	205	177.9
176.4	148.9	218.1	233.5	189.1
229	190.4	178.9	167.9	187.1
179.92	185.09	181.12	182.85	178.72
Total sum	of squared	d differenc	es: Within	34735.02

Retail example

SSW = 34735

Data				
Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
210.5	198.1	170.5	167.1	188.5
198.1	189	225.5	167.9	177.7
145.3	210.3	158	175.5	176.5
185.5	254.4	139.4	175	158
189.1	210.3	156.4	149.1	174.5
135.9	160.9	217.1	189.3	181.7
180	120.8	189.1	198.2	176.2
149.4	167.8	158.2	205	177.9
176.4	148.9	218.1	233.5	189.1
229	190.4	178.9	167.9	187.1
179.92	185.09	181.12	182.85	178.72
Total sum	of square	differenc	os: Within	34735 02

Total sum of squared differences: Within 34735.02

Retail example

SSW = 34735

DFW = (50-5) = 45

Data				
Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
210.5	198.1	170.5	167.1	188.5
198.1	189	225.5	167.9	177.7
145.3	210.3	158	175.5	176.5
185.5	254.4	139.4	175	158
189.1	210.3	156.4	149.1	174.5
135.9	160.9	217.1	189.3	181.7
180	120.8	189.1	198.2	176.2
149.4	167.8	158.2	205	177.9
176.4	148.9	218.1	233.5	189.1
229	190.4	178.9	167.9	187.1
179.92	185.09	181.12	182.85	178.72
T-4-1		1 1:00	A Pale	24725 02

Total sum of squared differences: Within 34735.02

Retail example

SSW = 34735

DFW = (50-5) = 45

MSW = 34735/45 = 771.88

Data				
Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
210.5	198.1	170.5	167.1	188.5
198.1	189	225.5	167.9	177.7
145.3	210.3	158	175.5	176.5
185.5	254.4	139.4	175	158
189.1	210.3	156.4	149.1	174.5
135.9	160.9	217.1	189.3	181.7
180	120.8	189.1	198.2	176.2
149.4	167.8	158.2	205	177.9
176.4	148.9	218.1	233.5	189.1
229	190.4	178.9	167.9	187.1
179.92	185.09	181.12	182.85	178.72
T-4-1	-£	1 1:tt	\A/!+ -!	24725 02

Total sum of squared differences: Within 34735.02

SSB = 250.71	Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
	210.5	198.1	170.5	167.1	188.5
	198.1	189	225.5	167.9	177.7
	145.3	210.3	158	175.5	176.5
	185.5	254.4	139.4	175	158
	189.1	210.3	156.4	149.1	174.5
	135.9	160.9	217.1	189.3	181.7
	180	120.8	189.1	198.2	176.2
	149.4	167.8	158.2	205	177.9
	176.4	148.9	218.1	233.5	189.1
	229	190.4	178.9	167.9	187.1
	179.92	185.09	181.12	182.85	178.72
Grand Mean	181.54				
Squared Difference	2.6244	12.6025	0.1764	1.7161	7.9524
Squared Difference * Sample Size	26.244	126.025	1.764	17.161	79.524
Sum of total squared diff * Sample Size	250.718				

SSB = 250.71	Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
DFB = (5-1) = 4	210.5	198.1	170.5	167.1	188.5
(- /	198.1	189	225.5	167.9	177.7
	145.3	210.3	158	175.5	176.5
	185.5	254.4	139.4	175	158
	189.1	210.3	156.4	149.1	174.5
	135.9	160.9	217.1	189.3	181.7
	180	120.8	189.1	198.2	176.2
	149.4	167.8	158.2	205	177.9
	176.4	148.9	218.1	233.5	189.1
	229	190.4	178.9	167.9	187.1
	179.92	185.09	181.12	182.85	178.72
Grand Mean	181.54				
Squared Difference	2.6244	12.6025	0.1764	1.7161	7.9524
Squared Difference * Sample Size	26.244	126.025	1.764	17.161	79.524
Sum of total squared diff * Sample Size	250.718				

SSB = 250.71	Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
DFB = (5-1) = 4	210.5	198.1	170.5	167.1	188.5
,	198.1	189	225.5	167.9	177.7
	145.3	210.3	158	175.5	176.5
MSB = 250.71/4 = 62.7	185.5	254.4	139.4	175	158
	189.1	210.3	156.4	149.1	174.5
	135.9	160.9	217.1	189.3	181.7
	180	120.8	189.1	198.2	176.2
	149.4	167.8	158.2	205	177.9
	176.4	148.9	218.1	233.5	189.1
	229	190.4	178.9	167.9	187.1
	179.92	185.09	181.12	182.85	178.72
Grand Mean	181.54				
Squared Difference	2.6244	12.6025	0.1764	1.7161	7.9524
Squared Difference * Sample Size	26.244	126.025	1.764	17.161	79.524
Sum of total squared diff * Sample Size	250.718				

F - Stat = MSB/MSW

= 62.7/771.8 = 0.08

F - Stat = MSB/MSW= 62.7/771.8 = 0.08

				Degr	ees of Fr	eedom fo	or Nume	rator				
	1	2	3	4	5	6	7	8	9	10	11	12
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2,30	2.25	2.20	2.16	2.13
	7.68	5.49	4.60	4.11	3.79	3.56	3.39	3.26	3.14	3.06	2.98	2.93
28	4.20	3.34	2.95	2.71	2.56	2.44	2.36	2.29	2.24	2.19	2.15	2.12
	7.64	5.45	4.57	4.07	3.76	3.53	3.36	3.23	3.11	3.03	2.95	2.90
29	4.18	3.33	2.93	2.70	2.54	2.43	2.35	2.28	2.22	2.18	2.14	2.10
	7.60	5.52	4.54	4.04	3.73	3.50	3.32	3.20	3.08	3.00	2.92	2.87
30	4.17	3.32	2.92	2.69	2.53	2.42	2.34	2.27	2.21	2.16	2.12	2.09
	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.06	2.98	2.90	2.84
3.2	4.15	3.30	2.90	2.67	2.51	2.40	2.32	2.25	2.19	2.14	2.10	2.07
	7.50	5.34	4.46	3.97	3.66	3.42	3.25	3.12	3.01	2.94	2.86	2.80
34	4.13	3.28	2.88	2.65	2.49	2.38	2.30	2.23	2.17	2.12	2.08	2.05
	7.44	5.29	4.42	3.93	3.61	3.38	3.21	3.08	2.97	2.89	2.82	2.76
36	4.11	3.26	2.86	2.63	2.48	2.36	2.28	2.21	2.15	2.10	2.06	2.03
	7.39	5.25	4.38	3.89	3.58	3.35	3.18	3.04	2.94	2.86	2.78	2.72
38	4.10	3.25	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02
	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.91	2.82	2.75	2.69
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.07	2.04	2.00
	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.88	2.80	2.73	2.66
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.02	1.90
	7.27	5.15	4.29	3.80	3.49	3.26	3.10	2.96	2.86	2.77	2.70	2.64
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98
	7.24	5.12	4.26	3.78	3.46	3.24	3.07	2.94	2.84	2.75	2.68	2.62
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.14	2.09	2.04	2.00	1.97
	7.21	5.10	4.24	3.76	3.44	3.22	3.05	2.92	2.82	2.73	2.66	2.60
48	4.04	3.19	2.80	2.56	2.41	2.30	2.21	2.14	2.08	2.03	1.99	1.96
	7.19	5.08	4.22	3.74	3.42	3.20	3.04	2.90	2.80	2.71	2.64	2.58
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.02	1.98	1.95
65	7.17	5.06	4.20	3.72	3.41	3.18	3.02	2.88	2.78	2.70	2.62	2.56
55	4.02	3.17	2.78	2.54	2.38	2.27	2.18	2.11	2.05	2.00	1.97	1.93
75.	7.12	5.01	4.16	3.68	3.37	3.15	2.98	2.85	2.75	2.66	2.59	2.53
60	4.00	3.15	2.76	2.52	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
65	3.99	+ 3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.02	1.98	1.94	1.90

F - Stat = MSB/MSW= 62.7/771.8 = 0.08

F-Critical: 2.57

				Degr	ees of Fr	eedom fo	or Nume	rator				
	1	2	3	4	5	6	7	8	9	10	11	12
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2,30	2.25	2.20	2.16	2.1
	7.68	5.49	4.60	4.11	3.79	3.56	3.39	3.26	3.14	3.06	2.98	2.9
28	4.20	3.34	2.95	2.71	2.56	2.44	2.36	2.29	2.24	2.19	2.15	2.1
	7.64	5.45	4.57	4.07	3.76	3.53	3.36	3.23	3.11	3.03	2.95	2.9
29	4.18	3.33	2.93	2.70	2.54	2.43	2.35	2.28	2.22	2.18	2.14	2.1
	7.60	5.52	4.54	4.04	3.73	3.50	3.32	3.20	3.08	3.00	2.92	2.8
30	4.17	3.32	2.92	2.69	2.53	2.42	2.34	2.27	2.21	2.16	2.12	2.0
	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.06	2.98	2.90	2.8
32	4.15	3.30	2.90	2.67	2.51	2.40	2.32	2.25	2.19	2.14	2.10	2.0
	7.50	5.34	4.46	3.97	3.66	3.42	3.25	3.12	3.01	2.94	2.86	2.8
34	4.13	3.28	2.88	2.65	2.49	2.38	2.30	2.23	2.17	2.12	2.08	2.0
	7.44	5.29	4.42	3.93	3.61	3.38	3.21	3.08	2.97	2.89	2.82	2.7
36	4.11	3.26	2.86	2.63	2.48	2.36	2.28	2.21	2.15	2.10	2.06	2.0
	7.39	5.25	4.38	3.89	3.58	3.35	3.18	3.04	2.94	2.86	2.78	2.7
38	4.10	3.25	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.0
	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.91	2.82	2.75	2.6
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.07	2.04	2.0
	7.31	5.18	4.31	3,83	3.51	3.29	3.12	2.99	2.88	2.80	2.73	2.6
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.02	1.9
	7.27	5.15	4.29	3.80	3.49	3.26	3.10	2.96	2.86	2.77	2.70	2.6
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.9
	7.24	5.12	4.26	3.70	3.46	3.24	3.07	2.94	2.84	2.75	2.68	2.6
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.14	2.09	2.04	2.00	1.9
	7.21	5.10	4.24	3.76	3.44	3.22	3.05	2.92	2.82	2.73	2.66	2.6
48	4.04	3.19	2.80	2.56	2.41	2.30	2.21	2.14	2.08	2.03	1.99	1.9
	7.19	5.08	4.22	3.74	3.42	3.20	3.04	2.90	2.80	2.71	2.64	2.5
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.02	1.98	1.9
	7.17	5.06	4.20	3.72	3.41	3.18	3.02	2.88	2.78	2.70	2.62	2.5
55	4.02	3.17	2.78	2.54	2.38	2.27	2.18	2.11	2.05	2.00	1.97	1.9
	7.12	5.01	4.16	3.68	3.37	3.15	2.98	2.85	2.75	2.66	2.59	2.5
60	4.00	3.15	2.76	2.52	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.5
	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.5
65	3.99	1 3.14	2.75	2,51	2.36	2.24	2.15	2.08	2.02	1.98	1.94	1.5

F - Stat = MSB/MSW= 62.7/771.8 = 0.08

F-Critical: 2.57

We fail to reject the null hypothesis -

				Degr	ees of Fr	eedom fo	or Nume	rator				
	1	2	3	4	5	6	7	8	9	10	11	12
27	4:21	3.35	2.96	2.73	2.57	2.46	2.37	2.30	2.25	2.20	2.16	2.13
	7.68	5.49	4.60	4.11	3.79	3.56	3.39	3.26	3.14	3.06	2.98	2.93
28	4.20	3.34	2.95	2.71	2.56	2.44	2.36	2.29	2.24	2.19	2.15	2.12
	7.64	5.45	4.57	4.07	3.76	3.53	3.36	3.23	3.11	3.03	2.95	2.90
29	4.18	3.33	2.93	2.70	2.54	2.43	2.35	2.28	2.22	2.18	2.14	2.10
	7.60	5.52	4.54	4.04	3.73	3.50	3.32	3.20	3.08	3.00	2.92	2.87
30	4,17	3.32	2.92	2.69	2.53	2.42	2.34	2.27	2.21	2.16	2.12	2:09
	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.06	2.98	2.90	2.84
32	4.15	3.30	2.90	2.67	2.51	2.40	2.32	2.25	2.19	2.14	2.10	2.07
	7.50	5.34	4.46	3.97	3.66	3.42	3.25	3.12	3.01	2.94	2.86	2.80
34	4.13	3.28	2.88	2.65	2.49	2.38	2.30	2.23	2.17	2.12	2.08	2.05
	7.44	5.29	4.42	3.93	3.61	3.38	3.21	3.08	2.97	2.89	2.82	2.76
36	4.11	3.26	2.86	2.63	2.48	2.36	2.28	2.21	2.15	2.10	2.06	2.03
	7.39	5.25	4.38	3.89	3.58	3.35	3.18	3.04	2.94	2.86	2.78	2.72
38	4.10	3.25	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02
	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.91	2.82	2.75	2.69
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.07	2.04	2.00
	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.88	2.80	2.73	2.66
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.02	1.90
	7.27	5.15	4.29	3.80	3.49	3.26	3.10	2.96	2.86	2.77	2.70	2.64
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98
	7.24	5.12	4.26	2.70	3.46	3.24	3.07	2.94	2.84	2.75	2.68	2.62
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.14	2.09	2.04	2.00	1.97
	7.21	5.10	4.24	3.76	3.44	3.22	3.05	2.92	2.82	2.73	2.66	2.60
48	4.04	3.19	2.80	2.56	2.41	2.30	2.21	2.14	2.08	2.03	1.99	1.96
	7.19	5.08	4.22	3.74	3.42	3.20	3.04	2.90	2.80	2.71	2.64	2.58
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.02	1.98	1.95
	7.17	5.06	4.20	3.72	3.41	3.18	3.02	2.88	2.78	2.70	2.62	2.56
55	4.02	3.17	2.78	2.54	2.38	2.27	2.18	2.11	2.05	2.00	1.97	1.93
	7.12	5.01	4.16	3.68	3.37	3.15	2.98	2.85	2.75	2.66	2.59	2.53
60	4.00	3.15	2.76	2.52	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
65	3.99	1 3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.02	1.98	1.94	1.90

F - Stat = MSB/MSW= 62.7/771.8 = 0.08

F-Critical: 2.57

We fail to reject the null hypothesis -

the variation we see is simply due to random chance, and therefore we cannot conclude that shelf height has any impact on sales

				Degr	ees of Fr	eedom fo	r Nume	rator				
	1	2	3	4	5	6	7	8	9	10	11	12
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.30	2.25	2.20	2.16	2.13
	7.68	5.49	4.60	4.11	3.79	3.56	3.39	3.26	3.14	3.06	2.98	2.93
28	4.20	3.34	2.95	2.71	2.56	2.44	2.36	2.29	2.24	2.19	2.15	2.12
	7.64	5.45	4.57	4.07	3.76	3.53	3.36	3.23	3.11	3.03	2.95	2.90
29	4.18	3.33	2.93	2.70	2.54	2.43	2.35	2.28	2.22	2.18	2.14	2.10
	7.60	5.52	4.54	4.04	3.73	3.50	3.32	3.20	3.08	3.00	2.92	2.87
30	4.17	3.32	2.92	2.69	2.53	2.42	2.34	2.27	2:21	2.16	2.12	2.09
	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.06	2.98	2.90	2.84
3.2	4.15	3.30	2.90	2.67	2.51	2.40	2.32	2.25	2.19	2.14	2.10	2.07
	7.50	5.34	4.46	3.97	3.66	3.42	3.25	3.12	3.01	2.94	2.86	2.80
34	4.13	3.28	2.88	2.65	2.49	2.38	2.30	2.23	2.17	2.12	2.08	2.05
	7.44	5.29	4.42	3.93	3.61	3.38	3.21	3.08	2.97	2.89	2.82	2.76
36	4.11	3.26	2.86	2.63	2.48	2.36	2.28	2.21	2.15	2.10	2.06	2.03
	7.39	5.25	4.38	3.89	3.58	3.35	3.18	3.04	2.94	2.86	2.78	2.72
38	4.10	3.25	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02
	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.91	2.82	2.75	2.69
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.07	2.04	2.00
	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.88	2.80	2.73	2.66
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.02	1.90
	7.27	5.15	4.29	3.80	3.49	3.26	3.10	2.96	2.86	2.77	2.70	2.64
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98
	7.24	5.12	4.26	2.70	3.46	3.24	3.07	2.94	2.84	2.75	2.68	2.62
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.14	2.09	2.04	2.00	1.97
	7.21	5.10	4.24	3.76	3.44	3.22	3.05	2.92	2.82	2.73	2.66	2.60
48	4.04	3.19	2.80	2.56	2.41	2.30	2.21	2.14	2:08	2.03	1.99	1.96
	7.19	5.08	4.22	3.74	3.42	3.20	3.04	2.90	2.80	2.71	2.64	2.58
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.02	1.98	1.95
	7.17	5.06	4.20	3.72	3.41	3.18	3.02	2.88	2.78	2.70	2.62	2.56
55	4.02	3.17	2.78	2.54	2.38	2.27	2.18	2.11	2.05	2.00	1.97	1.93
75.0	7.12	5.01	4.16	3.68	3.37	3.15	2.98	2.85	2.75	2.66	2.59	2.53
60	4.00	3.15	2.76	2.52	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
65	3.99	+ 3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.02	1.98	1.94	1.90

Anova in Excel

Of course, we can also use tools for ANOVA.

In Excel: Data\Data Analysis\ANOVA Single Factor

Anova in Excel

A B C D E F G H I J K L M

Shelf 1	Shelf 2	Shelf 3	Shelf 4	Shelf 5
210.5	198.1	170.5	167.1	188.5
198.1	189	225.5	167.9	177.7
145.3	210.3	158	175.5	176.5
185.5	254.4	139.4	175	158
189.1	210.3	156.4	149.1	174.5
135.9	160.9	217.1	189.3	181.7
180	120.8	189.1	198.2	176.2
149.4	167.8	158.2	205	177.9
176.4	148.9	218.1	233.5	189.1
229	190.4	178.9	167.9	187.1

Anova in Excel

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Shelf 1	10	1799.2	179.92	874.4529		
Shelf 2	10	1850.9	185.09	1401.637		
Shelf 3	10	1811.2	181.12	913.8396		
Shelf 4	10	1828.5	182.85	587.005		
Shelf 5	10	1787.2	178.72	82.51289		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	250.718	4	62.6795	0.081203	0.987743	2.578739
Within Groups	34735.02	45	771.8894			
Total	34985.74	49				

Anova

Conclusion:

- > Fail to reject the Null Hypothesis
 - Shelf height has no impact on sales

Coming Up

Anova:

Two Way Tests
Post Hoc Tests

THANK YOU

END OF VIDEO: 10 MINS