SEMESTER VI EC1608 VLSI DESIGN LABORATORY

LIST OF EXPERIMENTS

Part I: Digital System Design using HDL & FPGA

- 1. Design an Adder (Min 8 Bit) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 2. Design a Multiplier (4 Bit Min) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 3. Design an ALU using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 4. Design a Universal Shift Register using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 5. Design Finite State Machine (Moore/Mealy) using HDL. Simulate it using Xilinx/ Altera Software and implement by Xilinx/Altera FPGA
- 6. Design Memories using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 7. Compare pre synthesis and post synthesis simulation for experiments 1 to 6.

Part II: Digital Circuit Design

- 1. Design and simulate a CMOS inverter using digital flow
- 2. Design and simulate a CMOS Basic Gates & Flip-Flops
- Design and simulate a 4-bit synchronous counter using a Flip-Flops Manual/ Automatic Layout Generation and Post Layout Extraction for experiments 7 to 9
- 4. Analyze the power, area and timing for experiments 7 to 9 by performing Pre Layout and Post Layout Simulations.by Xilinx/Altera FPGA
- 5. Compare pre synthesis and post synthesis simulation for experiments 1 to 6.

Part III Analog Circuit Design

- 1. Design and Simulate a CMOS Inverting Amplifier.
- 2. Design and Simulate basic Common Source, Common Gate and Common Drain Amplifiers.
- 3. Analyze the input impedance, output impedance, gain and bandwidth for experiments 10 and 11 by performing Schematic Simulations.
- 4. Design and simulate simple 5 transistor differential amplifier. Analyze Gain,
- 5. Bandwidth and CMRR by performing Schematic Simulations.

Part-IV Implementation of IOT applications using FPGA

- 1. Measurement and Analysis: Develop the acceleration and vibration measurement of an object and generate the analysis report.
- 2. Real-Time Tank Level Control: Prototype the RT tank level observation and automatic pump control using sensors and actuators.
- 3. Remote Monitoring using IoT: Monitor the ambient light intensity and transfer the data to the cloud using IOT protocol.

LIST OF EQUIPMENT

SI. No.	Description of Equipment
1.	Xilinx ISE/Altera Quartus/ equivalent EDATools
2.	Xilinx/Altera/equivalent FPGA Boards
3.	Cadence/Synopsis/ Mentor Graphics/Tanner/equivalent EDA Tools
4.	Personal Computers
5.	NI myRIO FPGA board and Lab View software tool