$11a_{96} (K11a_{96})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{60} - u^{59} + \dots + u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{60} - u^{59} + \dots + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} - 2u^{7} - 3u^{5} - 2u^{3} - u \\ u^{11} + 3u^{9} + 4u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{17} - 4u^{15} - 9u^{13} - 12u^{11} - 11u^{9} - 6u^{7} - 2u^{5} - u \\ u^{19} + 5u^{17} + 12u^{15} + 17u^{13} + 15u^{11} + 9u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{10} + 3u^{8} + 4u^{6} + 3u^{4} + u^{2} + 1 \\ -u^{10} - 2u^{8} - 3u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{31} - 8u^{29} + \dots - 4u^{3} - 2u \\ u^{31} + 7u^{29} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{52} + 13u^{50} + \dots + 3u^{2} + 1 \\ -u^{52} - 12u^{50} + \dots - 5u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{52} + 13u^{50} + \dots + 3u^{2} + 1 \\ -u^{52} - 12u^{50} + \dots - 5u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{59} + 4u^{58} + \cdots 4u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{60} - u^{59} + \dots + u^2 + 1$
c_2	$u^{60} + 29u^{59} + \dots + 2u + 1$
c_3, c_9	$u^{60} - u^{59} + \dots + u^2 + 1$
c_4, c_7	$u^{60} + 5u^{59} + \dots + 122u + 13$
<i>C</i> ₆	$u^{60} + u^{59} + \dots - 118u + 37$
c_8,c_{10}	$u^{60} + 21u^{59} + \dots + 2u + 1$
c_{11}	$u^{60} - 5u^{59} + \dots - 12u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{60} + 29y^{59} + \dots + 2y + 1$
c_2	$y^{60} + 5y^{59} + \dots + 14y + 1$
c_3,c_9	$y^{60} + 21y^{59} + \dots + 2y + 1$
c_4, c_7	$y^{60} + 41y^{59} + \dots + 4330y + 169$
<i>C</i> ₆	$y^{60} - 19y^{59} + \dots + 12050y + 1369$
c_8,c_{10}	$y^{60} + 37y^{59} + \dots + 22y + 1$
c_{11}	$y^{60} + y^{59} + \dots + 38y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.544109 + 0.871535I	0.80579 + 3.33102I	2.01338 - 1.91534I
u = -0.544109 - 0.871535I	0.80579 - 3.33102I	2.01338 + 1.91534I
u = 0.525209 + 0.910684I	1.69680 + 2.03222I	3.90722 - 3.29370I
u = 0.525209 - 0.910684I	1.69680 - 2.03222I	3.90722 + 3.29370I
u = -0.622652 + 0.677380I	1.38479 - 7.95567I	3.11940 + 8.08739I
u = -0.622652 - 0.677380I	1.38479 + 7.95567I	3.11940 - 8.08739I
u = -0.552672 + 0.728082I	-3.08637 - 2.17441I	-2.78142 + 3.98454I
u = -0.552672 - 0.728082I	-3.08637 + 2.17441I	-2.78142 - 3.98454I
u = -0.074861 + 0.899343I	0.55103 + 2.51832I	-0.80649 - 3.33072I
u = -0.074861 - 0.899343I	0.55103 - 2.51832I	-0.80649 + 3.33072I
u = 0.610444 + 0.652587I	2.44765 + 2.49685I	5.32046 - 3.18664I
u = 0.610444 - 0.652587I	2.44765 - 2.49685I	5.32046 + 3.18664I
u = -0.381105 + 1.041640I	-3.34743 - 1.08708I	-6.46120 + 0.I
u = -0.381105 - 1.041640I	-3.34743 + 1.08708I	-6.46120 + 0.I
u = 0.484539 + 1.021160I	-0.56534 + 3.02304I	0
u = 0.484539 - 1.021160I	-0.56534 - 3.02304I	0
u = -0.260652 + 1.137700I	-3.60470 + 1.42729I	0
u = -0.260652 - 1.137700I	-3.60470 - 1.42729I	0
u = -0.313837 + 1.128650I	-4.20665 - 1.05171I	0
u = -0.313837 - 1.128650I	-4.20665 + 1.05171I	0
u = 0.769876 + 0.302697I	-0.43983 - 9.87486I	1.61763 + 6.92341I
u = 0.769876 - 0.302697I	-0.43983 + 9.87486I	1.61763 - 6.92341I
u = 0.257348 + 1.151700I	-4.93303 - 6.89109I	0
u = 0.257348 - 1.151700I	-4.93303 + 6.89109I	0
u = 0.666201 + 0.472083I	5.00152 + 1.75323I	7.65668 - 2.62236I
u = 0.666201 - 0.472083I	5.00152 - 1.75323I	7.65668 + 2.62236I
u = -0.755668 + 0.307937I	0.80884 + 4.33115I	3.69848 - 2.33072I
u = -0.755668 - 0.307937I	0.80884 - 4.33115I	3.69848 + 2.33072I
u = 0.560154 + 1.046520I	3.31782 + 3.01457I	0
u = 0.560154 - 1.046520I	3.31782 - 3.01457I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.679575 + 0.445417I	4.87624 + 3.78274I	7.16156 - 3.71379I
u = -0.679575 - 0.445417I	4.87624 - 3.78274I	7.16156 + 3.71379I
u = 0.288034 + 1.152760I	-9.39383 - 0.41865I	0
u = 0.288034 - 1.152760I	-9.39383 + 0.41865I	0
u = -0.487828 + 1.088330I	-2.57613 - 5.90818I	0
u = -0.487828 - 1.088330I	-2.57613 + 5.90818I	0
u = 0.321894 + 1.149490I	-5.68245 + 6.13484I	0
u = 0.321894 - 1.149490I	-5.68245 - 6.13484I	0
u = -0.562904 + 1.061080I	3.07462 - 8.59241I	0
u = -0.562904 - 1.061080I	3.07462 + 8.59241I	0
u = 0.751525 + 0.268257I	-5.11292 - 3.55390I	-3.52030 + 2.87156I
u = 0.751525 - 0.268257I	-5.11292 + 3.55390I	-3.52030 - 2.87156I
u = -0.533131 + 1.124390I	-2.71521 - 6.69056I	0
u = -0.533131 - 1.124390I	-2.71521 + 6.69056I	0
u = 0.719744 + 0.218682I	-1.68268 + 2.83631I	-0.28832 - 2.76871I
u = 0.719744 - 0.218682I	-1.68268 - 2.83631I	-0.28832 + 2.76871I
u = 0.523358 + 1.138230I	-4.31649 + 1.84933I	0
u = 0.523358 - 1.138230I	-4.31649 - 1.84933I	0
u = 0.493299 + 0.552242I	0.862519 + 1.026220I	5.84285 - 4.48468I
u = 0.493299 - 0.552242I	0.862519 - 1.026220I	5.84285 + 4.48468I
u = -0.689013 + 0.265335I	-0.26353 + 1.99974I	2.67797 - 3.08609I
u = -0.689013 - 0.265335I	-0.26353 - 1.99974I	2.67797 + 3.08609I
u = -0.558377 + 1.131910I	-1.60310 - 9.28831I	0
u = -0.558377 - 1.131910I	-1.60310 + 9.28831I	0
u = 0.545235 + 1.140190I	-7.65214 + 8.43403I	0
u = 0.545235 - 1.140190I	-7.65214 - 8.43403I	0
u = 0.560770 + 1.137600I	-2.8910 + 14.8744I	0
u = 0.560770 - 1.137600I	-2.8910 - 14.8744I	0
u = -0.561245 + 0.222030I	-0.23326 + 1.74631I	0.21628 - 4.30130I
u = -0.561245 - 0.222030I	-0.23326 - 1.74631I	0.21628 + 4.30130I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{60} - u^{59} + \dots + u^2 + 1$
c_2	$u^{60} + 29u^{59} + \dots + 2u + 1$
c_3,c_9	$u^{60} - u^{59} + \dots + u^2 + 1$
c_4, c_7	$u^{60} + 5u^{59} + \dots + 122u + 13$
<i>c</i> ₆	$u^{60} + u^{59} + \dots - 118u + 37$
c_8, c_{10}	$u^{60} + 21u^{59} + \dots + 2u + 1$
c_{11}	$u^{60} - 5u^{59} + \dots - 12u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{60} + 29y^{59} + \dots + 2y + 1$
c_2	$y^{60} + 5y^{59} + \dots + 14y + 1$
c_3, c_9	$y^{60} + 21y^{59} + \dots + 2y + 1$
c_4, c_7	$y^{60} + 41y^{59} + \dots + 4330y + 169$
c_6	$y^{60} - 19y^{59} + \dots + 12050y + 1369$
c_8, c_{10}	$y^{60} + 37y^{59} + \dots + 22y + 1$
c_{11}	$y^{60} + y^{59} + \dots + 38y + 1$