

Exercises on Estimation of reliability parameters from experimental data

Dario Valcamonico

α Percentile values of the $\chi^2(f)$ distribution

10	0.005	0.025	0.050	0.900	0.950	0.975	0.990	0.995	9999
1	0.0439	0.03982	0.02393	2.71	3.84	5.02	6.63	7.85	10.8
2	0.0100	0.0506	0.103	4.61	5.99	7.38	9.21	10.6	13.5
3 4	0.0717		0.352	6.25	7.81	0.35	313	125	163
4	0.207	0.484	0.711	7.78	9.49	111	13 3	14.9	18.5
5	0.412	0.831	1.15	9.24	111	128	151	16.7	20.5
5	0.676	1.24	1.64	10.6	126	14.4	168	18.5	22.5
7	0.989	1.69	2.17	12.0	14.1	16.0	18 5	20.3	24.3
8	1.34	2.18	2.73	13.4	15.5	17.5	20.1	22.0	26.1
9	1.73	2.70	3.33	14.7	169	190	21 7	23.6	27.9
10	2.16	3.25	3.94	160	183	20.5	23.2	25.2	29.6
11	2.60	3.82	4.57	173	197	219	247	26.3:	31.3
12	3.0?	4.40 .	5.23	13.5	21.0	23 3	26 2	28.3	32.9
13		5.01	5.89	198	22.4	24.7	27.7	29.8	34.5
14	4.07	5.63	6.57	21-1	23.7	261	29 1	31.3	36.1
15	4.60	6.26	7.25	223	25 0	27 5	30 6	32.8	37.7
16	5.14	6.91	7.95	23.5	263	28 8	320	34.3	39.3
17	5.70	7.56	8.67	24.8	27.5	30.2	334	35.7	40.8
18	6.26	8.23	9.59	260	289	31 5	348	37.2	42.3
19	6.84	8.91	10.1	27.2	30 1	329	36 2	38.6	43.8
20	7.43	9.59	10.3	28.4	314	34.2	37.6	40.0	45.3
21	8.93	10.3	11.5	29.6	32.7	35.5	389	41.4	46.8
22	2.64	11.0	123	30 ₺	339	368	46 3	42.8	48.3
23	9.26	11.7	13.1	32.0	35.2	38.1	41.6	44.2	19.7
24	9.89	12.4	13.3	33.2	36.4	39.4	43.0	45.6	51.2
25	10.5	13.1	14.5	34.4	37.7	40.6	44.3	46.9	52.6
26	11.2	13.8	15.4	35.6	38.9	41.9	45.6	48.3	54.1
27	11.8	14.6	16.2	36.7	40.1	43.2	47.0		55.5
28	12.5	15.3	16.9	37.9	413	44.5	48.3	51-0	56.9
29	13.1	16.0	17.7	39.1	42.6	45.7	49.6	52.3	58.3
30	13.8	16.2	18.5	40.3	43.8	47.0	50.9	53.7	59.7
35	17.2	20.6	22.5	46.1	49.8	53.2	57.3	60.3	66.6
40	20.7	24.4	26.5	51 8	55.8	59.3	63.7	66.8	73.4
45	24.3	28.4	30.6	57.5	61.7	65.4	70.0	73.2	20.1
50	28.0	32.4	34.3	63.2	67.5	71.4	76.3	39.5	86.7

POLITECNICO DI MILANO

Exercise 1

A feedwater pump of an energy production plant is characterized by a constant failure rate. In order to assess the performance of the pump, a right censored test of the first type is carried out on 10 identical pumps. The duration of the test is $t_0 = 500$ hours for each pump. Table 1 reports the observed failure times.

Table 1.	Results o	f the relia	bility test	son the l	0 pumps.
		-			

Pump 1	Pump 2	Pump 3	Pump 4	Pump 5	Pump 6	Pump 7	Pump 8	Pump 9	Pump 10
205	99	No failure during the test time		458	during the test	failure during the test	during		35

You are required to:

- I out are required.

 1) estimate the pump failure rate using the method of maximum likelihood;

 2) what is the 95% two-sided confidence interval of the pump mean time to failure.

Exercise 3 X

The number of defective rivets, D, on an airplane wing can be assumed to have a Poisson distribution with parameter λ , i.e.,

$$P(D=d) = \frac{\lambda^d e^{-t}}{d!}, d = 0.1, 2, ...$$

A random sample of n wings is observed and $(d_1, d_2, ..., d_n)$ defective rivets are found.

- 1. What is $\hat{\lambda}_{ME}$, the maximum likelihood estimator of λ ?
- 2. Is this estimator unbiased?
- 3. Find the method-of-moments estimator of λ .

T=TTT (Total Time on Test) r=number of failures II, fixed r (lower) $P(MTTF > 9_i) = \alpha$ $(\theta_1, \theta_2) =$ $(\theta_1, \theta_2) =$ two-sided $\frac{2T}{Z_{\underline{1},\underline{\alpha}}^{1}(2r+2)} \cdot \frac{2T}{Z_{\underline{1},\underline{\alpha}}^{1}2r}$ flower and upper) $P(\theta_1 \times MTTF \times \theta_2) = \alpha$

Bacie sandour variable	Person	Price and posterior discribusions of parameter	Mean and Variance of Parameter	Preturice Statistic
(Normals)		Bets	N(W) 9	* - * + *
$a_{\mathcal{C}}(x) = \binom{n}{p} p^{n+1} - p)^{n-n}$	*	fe (F) = T(e + s) arts - arts	Yarra) - (8 + 1216 + 1 + 1)	** ** * * * * * *
(Corposessors fact		theoms	#(x) = #	**** × × × × × × × × × × × × × × × × ×
(x (o) to but to	k	54(A) = 4(4)A-14-4	Variat = k	k" - W + R
Nacusal	-	Nomes	$R(\mu) = \mu_{\mu}$	ma" - policelyms 4 south
Parish horses at	*	$f_{\mathcal{B}}(x) = \frac{1}{\sqrt{2\pi} \sigma_{\mathcal{B}}} \exp \left[-\frac{1}{2} \left(\frac{x-x}{\sigma_{\mathcal{B}}} \right)^2 \right]$	Variot - not	** = \(\sum_{\text{is,}}\)*(**/n) (\sum_{\text{is,}}\)*(**/n)
Normal Control	••••	Geome-Normal		
(a in) = 1/2 = emp = 1/2 (" - N)']	14 6	5(p. +)	N(n) - *	sc sc. + se
		$-\left(\frac{1}{\sqrt{2k_{\pi}}/n}\exp\left[-\frac{1}{2}\left(\frac{n}{2}\sqrt{2}\right)^{2}\right]\right]$		m*x* - m'x* i- mx (m* - 1) w** i- m*x**
		-{(100 - 1000)	* (*) - \(\sigma = 1 \text{ (10 - 10/2)}	- [(n' - 1) n' + n'm')
		····(Value = or (= = 1) - 8164	+ [(n ~ t)n + mm]
Polyson		Osmma	#(x) * *	x* m x* + 3
pales a letter	×	facial = risple to ==	Vertal - A	k" E' + +
Forgenessed (what we gridled to	, A	Name: (*** -) - (***)	#(2) ~ p	
· ····· [- '('***,-*)']	-	VX 1 1 1 1	Ver(t) = +*	(2100)

Exercise 2

The failure time of a new type of industrial filter is an exponential random variable having an unknown value λ. A group of twenty filters are being monitored and, at present, their failure times are (in

where an * next to the data means that the filter is still working, whereas an unstarred data point means that the filter failed at that

- 1. What is the maximum likelihood estimate λ_{ME} of λ .
- 2. What is the 90% two-sided confidence interval of λ .

Exercise 4

POLITECNICO DI MILANO

Let p be the probability of failure on demand of a new type of relief valve used in energy production plants. Considering past experience on similar relief valves, an expert suggests that p can three only $p_1 = 5 \cdot 10^{-4}$, $p_2 = 1 \cdot 10^{-3}$, $p_3 = 5 \cdot 10^{-3}$. Furthermore, the expert has observed the operation of similar valves in energy production plants for a long period of time and he proposes to use the following prior distribution for p:

$$P(p = p_1) = 0.2$$

 $P(p = p_2) = 0.6$

$$P(p=p_3)=0.2$$

The new type of relief valve is then used for 1 year and 2 failures to start over 500 demands are observed. You are required to:

- a) update the probability distribution of p;
- b) Compute the probability that the new type of valve will have 0 failures out of 3 demands

Exercise 5

The time to failure T (years) of a certain item is an exponential random variable with probability density function:

$$p(t) = \lambda e^{-\lambda t}, t > 0$$

From prior experience we are led to believe that λ is a value of an exponential random variable A with probability density function:

$$\pi'(\lambda) = 2e^{-2\lambda}, \lambda > 0$$

- 1. Estimate the item reliability at a time t=1 year.
- 2. if we have a sample of 3 item failure times: $(t_1, t_2, t_3) = (1; 2.8; 2.2)$, find the posterior distribution of Λ , the new estimation of the item reliability at time t=1 year and the 95% upper confidence limit of λ (numerical solution of the integral is not required).
- 3. What is the maximum likelihood estimation of λ and its 95% upper confidence limit using Frequentist statistics?

EXPONENTIAL f(.), E[.], Var(.)

Exercise 6

Two independent and identical cables feed an important node in a power distribution network. Assume that the failure time of each cable is an exponential random variable with the (same) failure rate λ . Assuming that he following failure times have been data collected during a right censored test of the first type performed on ten cables with test duration equal to 15-years.

9.1 7.7 5.5 11.7 10.6 7.4 9.1 10.7 8.9 12.5 [in years]

You are required to: estimate the parameter λ using the method of maximum likelihood; estimate the parameter λ using the method of maximum likelihood; estimate the 95% two-sided confidence interval of the cable failure rate; repeat Q1a) following a Bayesian approach. Assume that according to an expert, the prior distribution of λ is:

$$P'(\lambda) = 0.1e^{-0.1\lambda}$$

Old Consider the following maintenance strategy: each time a cable fails, a maintenance intervention (repair) is immediately performed. During maintenance, the power distribution is interrupted. The cost of the repair is 10000 €, whereas the cost of the power distribution interruption is 30000 €. You are required to estimate the average overall cost of the cables maintenance strategy in one year for the grid owner.

POLITECNICO DI MILANO

1.
$$L(\lambda) = \pi_{i=1}^{6} f(t_{i}) \pi_{j=1}^{4} R(t_{j}) = (\lambda^{6} e^{-(\sum_{i=1}^{6} t_{i})\lambda})(e^{-\sum_{j=1}^{4} t_{j}}) = \lambda^{6} e^{-\lambda}(\sum_{i=1}^{6} t_{i} + 4t_{0})$$

1. $L(\lambda) = \log(L(\lambda)) = 6\log(\lambda) - \lambda\pi\tau$

1. $L(\lambda) = \log(L(\lambda)) = 6\log(\lambda) - \lambda\pi\tau$

1. $L(\lambda) = \log(L(\lambda)) = \lambda^{6} = 0$

1. $L(\lambda) = \log(L(\lambda)) = 0$

1.

2.
$$(\lambda_{21}^{-1}, \lambda_{2}^{-1}) = \left(\frac{2T}{\chi_{244}^{2}(2r+2)}, \frac{2T}{\chi_{244}^{2}(2r)}\right)$$

$$T = TTT = 2931$$

$$\alpha = 0.95$$

$$Y = 4r \text{ failed} = 6$$

$$\chi_{20.025}(12) = 4.40$$

$$\Rightarrow \left[224.598; 1332.273\right]$$

$$\leq MTTF <$$

#2

$$n = 20$$
, $r = n - 8 = 12$
 $\lambda = \frac{r}{TTT} = \frac{42}{702.8} = 0.01707$

$$\frac{d = 0.90}{\chi^{2}_{0.95}(76) = 38.9} \qquad \left[\frac{13.8}{2 \cdot 702.8}, \frac{38.9}{2 \cdot 702.8} \right] = \left[0.00981787, 0.027675 \right]$$

$$\chi^{2}_{0.05}(24) = 13.8$$

#3

$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^{d_i} e^{-\lambda}}{d_{i!}} \right) = \frac{\lambda^{Zd_i} e^{-n\lambda}}{\prod_{i=1}^{n} (d_{i!})}$$

1.
$$\log L(\lambda) \propto (Edi) \log(\lambda) - n\lambda$$
 $\Rightarrow \frac{2}{2\lambda}$: $\frac{Edi}{\lambda} - n = 0 \Rightarrow \lambda \text{ MIE} = \frac{Edi}{n}$

#4

$$P(p_i|data) = \frac{P(data|p_i) P(p_i)}{P(data)} \qquad P(X \sim Bin(n=500, p=p_i) = Z)$$

b) iP(0 failures out of 3 demands) =
$$= 0.0471 \ \frac{P(X \sim Bi(3, p_1) = 0) + 0.4468 - P(X \sim Bi(3, p_2) = 0) + 0.5060 \ P(X \sim Bi(3, p_3) = 0)}{(1 - p_1)^3}$$

$$= 0.0471 \ \frac{P(X \sim Bi(3, p_1) = 0) + 0.4468 - P(X \sim Bi(3, p_2) = 0)}{(1 - p_2)^3}$$

1.
$$R(1) = P(\tau > 1) = \int_0^\infty P(\tau > 1 | \lambda) \pi(\lambda) d\lambda = \int_0^\infty e^{-\lambda} Ze^{-2\lambda} d\lambda = \frac{2}{3}$$

posterior & When wood. prior
$$\alpha(\lambda^3 e^{-\lambda \Sigma} ti)(2e^{-2\lambda}) = \lambda^3 e^{-8\lambda}$$

posterior = ejamue $(\lambda=8, \alpha=4)$: $\pi(\lambda|data) = \frac{8^4 \lambda^{4-1} e^{-8\lambda}}{\Gamma(4)} = \frac{8(8\lambda)^3 e^{-8\lambda}}{\Gamma(4)}$

$$R(4) = IP(T71) = \int_{0}^{00} IP(T711\lambda^{5}) \, TT(\lambda^{1}) \, d\lambda^{1} = \int_{0}^{\infty} (e^{-\lambda}) \left(\frac{8^{4}}{6} \lambda^{3} e^{-8\lambda} \right) d\lambda = 0.6243$$

Bayesian statistic upper bound:

$$\int_{0}^{\lambda_{0.95}} \pi(\lambda') d\lambda' = 0.95 \implies \lambda_{0.95} = 0.9676$$

3.
$$\lambda_{MUE} = \frac{n}{TTT} = \frac{3}{6} = \frac{1}{2}$$

95% for MTTF:
$$\frac{2T}{\chi_{0.85}^2(6)} = \frac{12}{12.6} \Rightarrow \lambda_{0.85} = \frac{12.6}{12} = 1.05$$

#6 (TDE)

a) exponential
$$\rightarrow \lambda_{\text{ME}} = \frac{r}{177} = \frac{10}{93.2} = 0.107296137$$

b)
$$\alpha = 0.95$$

$$\lambda \in \left[\frac{\chi^2_{1-\alpha}(2r)}{2 \cdot \pi}, \frac{\chi^2_{1+\alpha}(2r+z)}{2 \cdot \pi} \right] = \left[0.059012876, 0.183476385 \right]$$
c) $\pi(\lambda) = 0.1 e^{-0.1\lambda}$

c) T(x) = 0.1 e-0.1x

posterior
$$\propto$$
 likelihood. prior $\propto (\lambda^{10}e^{-\lambda t}) 0.1 e^{-0.1\lambda}$
 $\propto 0.1 \lambda^{10}e^{-\lambda 93.3} \rightarrow Gamma(\lambda = 93.3, \lambda = 11)$
 $\pi(\lambda) data = (93.3)^{11} \lambda^{10}e^{-93.3\lambda}$

For a cable lime = 0.107296137 (~ P(X))

bince the system has two cables:

If we have k failures the cost will be: k (10'000 + 30'000), Since k obeys a Poisson the expectation is h= hsystem

so the overall cost in one year is:

$$\lambda$$
 system (10000 + 30'000) · 1 = 8583.690987