Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Технологии видеонаблюдения»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

«Аудит системы телевизионного наблюдения станции метрополитена «Лесная»»

Выполнили:
Бардышев Артём Антонович,
студент группы N3246
Lin
(подпись)
Суханкулиев Мухаммет,
студент группы N3246
Aberlo
(подпись)
Проверил:
Волхонский Владимир Владимирович,
профессор
(отметка о выполнении)
(подпись)

Санкт-Петербург 2024 г.

СОДЕРЖАНИЕ

Введе	ние		4
1	Анали	з и проектирование системы видеонаблюдения	5
1.1	Опі	исание станции метро «Лесная»	5
1.2	Пос	тановка задачи и описание зон наблюдения	6
1.3	Нижний вестибюль		
	1.3.1	Определение возможных угроз и требуемой плотности пикселей	7
	1.3.2	Анализ установленной системы телевизионного наблюдения	8
	1.3.3	Моделирование системы телевизионного наблюдения	9
	1.3.4	Возможное исправление	10
1.4	Зона входа/выхода с эскалатора		
	1.4.1	Определение возможных угроз и требуемой плотности пикселей	11
	1.4.2	Анализ установленной системы телевизионного наблюдения	12
	1.4.3	Моделирование системы телевизионного наблюдения	13
1.5	Воз	можные исправления	16
Заклю	чение.		17
Списс	к испо	льзованных источников	18
Рис	унок А	1 – Общий план с текущим расположением камер	19
Рис	унок А	2 – Виды с камер №4 и №12 в нижнем вестибюле	20
Рис	унок А	3 – Виды с камер №1 и №2 в нижнем вестибюле	21
Рис	унок А	4 – Виды с купольных камер в зоне входа/выхода с эскалатора	22
Рис	унок А	5 – Вид с купольной камеры на кронштейне в зоне входа/выхода с эсн	салатора
			22

ВВЕДЕНИЕ

Цель работы — анализ и проектирование системы телевизионного наблюдения станции метро «Лесная».

Для достижения поставленной цели необходимо решить следующие задачи:

- Определить возможные угрозы и необходимую плотность пикселей на метр для выполнения задач видеонаблюдения;
- Смоделировать систему телевизионного наблюдения;
- Анализ расположения и характеристик установленных камер;
- Предложить возможные улучшения системы.

1 АНАЛИЗ И ПРОЕКТИРОВАНИЕ СИСТЕМЫ ВИДЕОНАБЛЮДЕНИЯ

1.1 Описание станции метро «Лесная»

«Лесная» — станция Петербургского метрополитена входит в состав Кировско-Выборгской линии, расположена между станциями «Выборгская» и «Площадь Мужества». «Лесная» — трех сводчатая колонная станция глубокого заложения (глубина ≈ 64 м).

Общий план с текущей расстановкой камер видеонаблюдения – Рисунок А.1 – Приложение А.

1.2 Постановка задачи и описание зон наблюдения

Для анализа системы видеонаблюдения выбраны две ключевые зоны станции метро «Лесная»: нижний вестибюль и зона входа/выхода с эскалатора.

Рисунок 1 – Нижний вестибюль

Нижний вестибюль станции является одним из самых загруженных и служит основным маршрутом для пассажиров, что способствует появлению различных инцидентов. Наличие системы телевизионного наблюдения в этой зоне позволяет эффективно контролировать ситуацию и оперативно реагировать на возможные нарушения.

Рисунок 2 – Зона входа/выхода с эскалатора

Зона входа/выхода с эскалатора также является важной для наблюдения, так как именно оттуда все пассажиры попадают в нижний вестибюль. Этот проход является узким местом, где скапливается большое количество людей. Наблюдение за этой областью позволяет не только контролировать поток пассажиров, но и обеспечивать безопасность на переходах и выходах.

1.3 Нижний вестибюль

1.3.1 Определение возможных угроз и требуемой плотности пикселей

Возможные угрозы в коридоре вестибюля:

- 1. **Акты вандализма:** Увеличенная концентрация людей может привести к актам вандализма, таким как повреждение оборудования или граффити.
- 2. **Террористические угрозы:** Поскольку главный коридор является центральной частью станции, он может стать целью террористов.
- 3. **Скандалы и драки:** Скопление людей может привести к конфликтным ситуациям, включая драки или словесные ссоры.
- 4. **Потеря** людей: Наблюдение может помочь в случае, если кто-то потеряется, особенно дети или пожилые люди.

Для эффективного видеонаблюдения в вестибюле необходимо определить требуемую плотность пикселей, которая позволит достичь четкости изображения, достаточной для распознавания лиц и обнаружения правонарушений. В данной зоне, учитывая умеренную концентрацию людей и потенциальные угрозы, следует использовать камеры с минимальной плотностью пикселей не менее 125 пикселей на метр. Такая плотность пикселей является достаточной для распознавания, то есть определения с высокой степени достоверности, что наблюдаемый субъект – тот, которого видели ранее.

1.3.2 Анализ установленной системы телевизионного наблюдения

Рисунок 3 – Камеры видеонаблюдения в вестибюле

Таблица 1 – Предположительные данные камер видеонаблюдения в коридоре

	Axis M1125-E					
Модель						
Тип	Box					
Задача	Распознавание					
Размер матрицы	1/3"					
Разрешение, М	1920x1080					
Фокусное расстояние	4,2 мм					
При этом установка камер						
Высота установки	2,75 м					
Расстояние от камеры до зоны наблюдения, <i>L</i>	10 м					
Высота цели	2 м					
Занесём эти данные в калькулятор зон обзора и получим						
Ширина зоны обзора	10,5 м					
Горизонтальный угол обзора, α	70°					

$$\Pi_{\Pi} = \frac{M}{2\pi L \frac{\alpha}{360}} => M = \Pi_{\Pi} 2\pi L \frac{\alpha}{360}$$

Где Π_{Π} — плотность пикселей, M — разрешение камеры по горизонтали, L — расстояние до цели, α — угол горизонтального обзора камеры.

При подстановке значений имеем реальную плотность пикселей:

$$\Pi_\Pi = \frac{1920}{2\pi \cdot 10 \cdot \frac{70}{360}} \approx 157 \, \frac{\text{пикс}}{\text{м}} -$$
 что является достаточным.

Из того, как расположены камеры (Рисунок 3-) видно, что камеры направлены высоко (высота цели ≈ 2 метра), это значит, что слепая зона достаточно большая. В вестибюле расположено по 8 камер с каждой стороны.

1.3.3 Моделирование системы телевизионного наблюдения

Рассмотрим пару камер (№ 4, № 12), расположенных в центре коридора (для упрощения другие камеры скрыты).

Рисунок 4 – Расположение камер видеонаблюдения в нижнем вестибюле

Из рисунка видно неправильное расположение камер, из-за чего образуются слепые зоны. (Виды с этих камер — Рисунок A.2-)

1.3.4 Возможное исправление

Для контроля больших прямоугольных зон, в данном случае — нижнего вестибюля, лучше использовать односторонний обзор, без не просматриваемых зон.

Рисунок 5 — Схема установки камер для контроля больших прямоугольных зон

Примерная ширина коридора – 7 метров. Поэтому расстояние от камеры до цели установим $7\sqrt{2}\approx 10$ метров.

$$M=125\cdot 2\pi\cdot 10\cdot rac{70}{360}pprox 1527$$
 пикселей

Это значит, что будет достаточно использовать разрешение в 1.6 МП. Воспользуемся калькулятором зон обзора для определения нужных характеристик камер. Оптимальная высота установки 2.8 метров, высота цели — 1.8 метр. Фокусное расстояние 3.8 мм, горизонтальный угол 70°, разрешение 1920х1080 (2МП 16:9). При таких характеристиках разрешение цели на расстоянии 10 метров будет 135 пикселей на метр, что является достаточным.

Смоделируем расположение таких камер на нашем плане.

Рисунок 6 – Правильное расположение камер в нижнем вестибюле

При таком расположении каждая камера напротив компенсирует слепую зону другой. Будет достаточным расположить эти камеры каждые 10 метров. Длинна вестибюля ≈ 55 метров – то есть 6 камер с каждой стороны. (Виды с этих камер – Рисунок А.3 –)

1.4 Зона входа/выхода с эскалатора

1.4.1 Определение возможных угроз и требуемой плотности пикселей

Возможные угрозы в зоне входа/выхода с эскалатора:

- 1. **Столкновения и падения:** Зона входа/выхода с эскалатора узкое место, где большое количество людей может споткнуться или столкнуться друг с другом, особенно если пассажиры спешат.
- 2. **Кражи и воровство:** В этой зоне также могут происходить кражи, особенно в часы пик, когда внимание пассажиров рассеяно.
- 3. **Паника и давка:** В случае экстренной ситуации (например, пожар, угроза) высокая плотность людей может привести к панике и давке, что увеличивает риск травм.

- 4. **Террористические угрозы:** Зона выхода с эскалатора может быть целью для террористов, поскольку это одно из основных мест, через которые проходят пассажиры.
- 5. **Угроза безопасности:** Присутствие подозрительных лиц или групп может представлять потенциальную угрозу для безопасности пассажиров.

Учитывая высокую концентрацию людей и потенциальные угрозы, следует использовать камеры с минимальной плотностью пикселей не менее 125 пикселей на метр, как уже было упомянуто выше, это обеспечит достаточную чёткость для распознавания происшествий.

При этом в узком проходе эскалатора требуется использовать дополнительные камеры для идентификации подозрительных лиц, для этого используется плотность не менее 250 пикселей на метр.

1.4.2 Анализ установленной системы телевизионного наблюдения

Рисунок 7 – Камеры видеонаблюдения у выхода с эскалатора

Здесь 3 вида камер – прямоугольная, купольная и купольная на кронштейне (только с одной стороны).

Таблица 2 — Предположительные данные камер видеонаблюдения в зоне входа/выхода с эскалатора

	A : M1104 F	Axis P3235-	Axis M3024-					
	Axis M1124-E	LV	LVE					
Модель	(№17-18)	C C C C C C C C C C C C C C C C C C C						
		(№19-22)	(№23)					
Тип	Box	Dome	Dome					
Задача	Идентификация	Распознавание	Распознавание					
Размер матрицы	1/2,8"	1/3"	1/4"					
Разрешение, М	1020x596	1280x720	1280x800					
Фокусное расстояние	10,5 мм	3,1 мм	2,8 мм					
При этом установка камер								
Высота установки	2,5 м	2,75 м	2,75 м					
Расстояние от камеры до зоны наблюдения, L	3,5 м	4 м	7 м					
Высота цели	2 м, 2,25 м	1 м	1,8 м					
Занесём эти данные в калькулятор зон обзора и получим								
Ширина зоны обзора	2 м	8,8 м	11,5 м					
Горизонтальный угол обзора, α	50°	90°	77°					

При таких характеристиках имеем реальную плотность пикселей:

$$\Pi_{\Pi_{17-18}} = \frac{1020}{2\pi \cdot 3.5 \cdot \frac{50}{360}} \approx 334 \frac{\text{пикс}}{\text{м}}$$

$$\Pi_{\Pi_{19-22}} = \frac{1280}{2\pi \cdot 4 \cdot \frac{90}{360}} \approx 203 \frac{\text{пикс}}{\text{м}}$$

$$\Pi_{\Pi_{23}} = \frac{1280}{2\pi \cdot 7 \cdot \frac{77}{360}} \approx 136 \frac{\text{пикс}}{\text{м}}$$

Такая плотность пикселей является достаточной для каждой задачи.

1.4.3 Моделирование системы телевизионного наблюдения

Рассмотрим прямоугольные и купольные камеры отдельно.

Рисунок 8 — Прямоугольные камеры в зоне входа/выхода с эскалатора

Такое расположение обосновывается тем, что существуют ограничения в виде препятствия и того, что нельзя установить камеру напротив центрального эскалатора. Поэтому высота цели для камеры №17 2,25 метра, а для №18 – 2 метра. Таким образом камера №17 идентифицирует людей чуть выше, даже тех, кто едет с центрального эскалатора. А камера №18 идентифицирует цели уже у выхода с эскалатора (включая центральный эскалатор).

Рисунок 9 — Виды с камер №17 и №18 в зоне входа/выхода с эскалатора

Рисунок 10 — Купольные камеры в зоне входа/выхода с эскалатора

Такое расположение четырёх купольных камер обеспечивает гарантированное наблюдение в зоне входа/выхода с эскалатора, даже учитывая препятствие, в виде будки дежурного. (Виды с этих камер – Рисунок A.4-)

Рисунок 11 – Купольная камера на кронштейне в зоне входа/выхода с эскалатора

Эта камера используется для распознавания человека (ранее идентифицированного с 17-й или 18-й камеры), который потенциально может войти в служебное помещение. (Вид с этой камеры – Рисунок A.5-)

1.5 Возможные исправления

Как выяснилось в ходе лабораторной работы, в нижнем вестибюле станции метро «Лесная» камеры видеонаблюдения установлены неправильно и существуют слепые зоны. Для решения этой проблемы можно заменить установленные камеры Axis M1124-E на камеры с более высоким разрешением и углом обзора Axis P1375-E, что также позволит сократить количество камер за счет более широкого захвата пространства каждой камеры. Либо же пересмотреть расстановку камер и использовать односторонний обзор, без не просматриваемых зон (Рисунок 6 –).

В зоне входа/выхода с эскалатора замечаний не обнаружено и можно оставить так, как есть.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы был проведён анализ системы видеонаблюдения станции метро «Лесная».

1. Описание и задачи:

- о Определены ключевые зоны наблюдения: нижний вестибюль и зона входа/выхода с эскалатора.
- о Постановлены задачи предотвращения угроз и обеспечения безопасности.

2. Анализ угроз:

- В нижнем вестибюле выявлены риски вандализма, конфликтов, потерь людей и террористических угроз.
- о Для зоны эскалатора определены риски падений, краж, давки и безопасности.

3. Оценка системы:

- о Проведён расчёт плотности пикселей, подтверждена достаточность разрешения камер для задач наблюдения.
- о В нижнем вестибюле выявлены слепые зоны, в зоне эскалатора существенных недостатков не обнаружено.

4. Улучшения:

о Для нижнего вестибюля предложена новая схема расстановки камер и замена устройств на модели с более широким углом обзора.

Работа позволила выявить недостатки текущей системы и предложить их устранение, а также закрепить навыки анализа угроз, проектирования и моделирования систем видеонаблюдения для обеспечения безопасности в общественных местах.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Теория и задание Волхонский В. В. Презентация 2024 URL: <u>ТВН-1 + задание</u> <u>171024.pdf / Облако Mail</u>
- 2. Калькулятор зон обзора Іріса Сайт 2024 URL: <u>Калькулятор зон обзора</u>
- 3. Некоторые фотографии расположенных камер видеонаблюдения Caйт URL: Яндекс Карты — транспорт, навигация, поиск мест (yandex.ru)
- 4. Схематический план нижнего вестибюля станции метро «Лесная» Сайт URL: Станция Лесная, Петербургский метрополитен | Метро 2-х столиц (metro2.org)

ПРИЛОЖЕНИЕ А

Рисунок А.1 – Общий план с текущим расположением камер

Рисунок А.2 – Виды с камер №4 и №12 в нижнем вестибюле

Рисунок А.3 – Виды с камер №1 и №2 в нижнем вестибюле (Исправленное расположение)

Рисунок А.4 – Виды с купольных камер в зоне входа/выхода с эскалатора

Рисунок А.5 – Вид с купольной камеры на кронштейне в зоне входа/выхода с эскалатора