Artificial Intelligence

Assignment 2

Claudia Schon

schon@uni-koblenz.de

Institute of Web Science and Technologies
Department of Computer Science
University of Kaplenz-Landau

Submission until: 18.05.2022, 6.00 p.m.

Tutorial on: 19.05.2022 8:00 a.m. and 20.05.2022 10:00 a.m.

GROUP HOLLERITH - SOLUTION

Group Members:

- 1. Saborni Shernaj Binte Elahi (220202426) (saborni@uni-koblenz.de)
- M Rashedul Hasnat (220202415) (<u>rhasnat@uni-koblenz.de</u>)
- 3. Kamrun Nahar (220202410) (nahar@uni-koblenz.de)
- 4. Basitur Rahman Chowdhury (218100976) (bchowdhury@uni-koblenz.de)

1 Propositional Logic (60 Points)

The semantics of propositional logic was defined in the lecture for propositional formulae. This definition can be extended to sets of formulae. A interpretation I satisfies a set of propositional formulae Δ , written $I \models \Delta$ iff $\forall \psi \in \Delta : I \models \psi$. $\mathsf{Mod}(\Delta)$ and $\Delta \vdash \phi$ can be defined analogous.

Explain why the following statements are correct—if possible. Otherwise, argue why they are incorrect (Δ and Γ represent sets of propositional formulae).

- a) $\{p \Rightarrow r, q \Rightarrow r, p \lor q, \neg r\}$ is satisfiable.
- b) $\{p \Rightarrow (q \lor r)\} \vdash (p \Rightarrow r)$.
- c) $\{a \lor b, p, q, \neg p\} \vdash a$.
- d) If $\Gamma \vdash \phi$ and $\Delta \nvdash \phi$ then $\Gamma \cup \Delta \vdash \phi$.
- e) If $\Gamma \vdash \phi$ and $\Delta \vdash \phi$ then $\Gamma \cap \Delta \vdash \phi$.
- f) If $\Gamma \not\vdash \phi$ then $\Gamma \vdash \neg \phi$.

SOLUTION:

Truth table:

р	q	r	p⇒r	q⇒r	p∨q	qvr	¬r	p⇒(q∨r)
Т	Т	Т	Т	Т	Т	Т	F	Т
Т	F	Т	Т	Т	Т	Т	F	Т
F	Т	Т	Т	Т	Т	Т	F	Т
F	F	Т	Т	Т	F	Т	F	Т
Т	Т	F	F	F	Т	Т	T	Т
Т	F	F	F	T	Т	F	Т	F
F	Т	F	Т	F	Т	Т	Т	Т
F	F	F	Т	Т	F	F	Т	Т

- a) As per definition, a formula is satisfiable if ther invariant i
- **b)** As per definition, a formula is satisfiable if there is any interpretation that satisfies it. With the truth table, there are more than one possible assignment to be it satisfiable.

Here, $\{p \Rightarrow (q \lor r)\}$ satisfies $(p \Rightarrow r)$. According to the truth table, both sides of this statement are satisfiable. Therefore, the statement is correct.

- c) $\{a \lor b, p, q, \neg p\} \vdash a$. This statement is correct.
- **d)** As an interpretation I satisfies a set of propositional formulae Δ , written $I = \Delta$ iff $\forall \psi \in \Delta : I = \psi$. Mod(Δ) and $\Delta \vdash \varphi$ can be defined analogous. So, the statement is correct.

 $\Gamma \cup \Delta \vdash \varphi$ is correct as Γ satisfies φ but Δ doesn't satisfy φ . But either of these satisfies φ . So, the statement is true.

e) As an interpretation I satisfies a set of propositional formulae Δ , written $I \models \Delta$ iff $\forall \psi \in \Delta : I \models \psi$. Mod(Δ) and $\Delta \vdash \varphi$ can be defined analogous. So, the statement is correct.

 $\Gamma \cap \Delta \vdash \varphi$ is correct as Γ satisfies φ and Δ satisfies φ . Both of these satisfies φ . Thus, the statement is true.

f) As an interpretation I satisfies a set of propositional formulae Δ , written $I = \Delta$ iff $\forall \psi \in \Delta : I = \psi$. Mod(Δ) and $\Delta \vdash \varphi$ can be defined analogous. So, the statement is not correct.

If $\Gamma \vdash \varphi$ then $\Gamma \vdash \neg \varphi$ where Γ doesn't satisfies φ , thus, Γ doesn't guarantee to satisfy negation of φ .

2 Penguins and Polar Bears (40 Points)

Formalize the statements below in first-order logic. Use only the following predicates and equality for this:

- polarBear(X): X is a polar bear
- penguin(X): X is a penguin
- human(X): X is a human
- mammal(X): X is a mammal
- fish(X): X is a fish
- raisedByHand(X): X was raised by hand
- likes(X, Y): X likes Y
- eats(X, Y): X eats Y
- feeds(X, Y): X feeds Y

and the constants tom and knut.

With equality (inequality), you can state that terms are equal (not equal). With that, you could state for example that each student has a unique enrollment number

 $\forall X((student(X) \land enrollmentNr(X, N_1) \land enrollmentNr(X, N_2)) \Rightarrow N_1 = N_2)).$

Formalize:

- (a) Tom is a human.
- (b) Knut likes Tom.
- (c) Knut is a polar bear and was raised by hand.
- (d) All polar bears are mammals.
- (e) Penguins only eat fish.
- (f) Polar bears that have been hand-raised like at least one human.
- (g) Polar bears that have been hand-raised do not like other polar bears.
- (h) If two polar bears like each other, neither of them was hand-raised.
- (i) Penguins raised by hand like all humans.
- Penguins like any person who feeds them.

SOLUTION:

- a) human (Tom)
- b) likes (Knut, Tom)
- c) polarBear(Knut) ∧ raisedByHand(Knut)
- d) \forall_x (polarbear(x) \Rightarrow mammal(x))
- e) \exists_x (fish(x) \Rightarrow eat(penguin,x))

- f) raisedByHand(polarbears) \Rightarrow likes(polarbears, \exists_y (human(y)))
- g) $\forall_x(\text{polarbear}(x) \land \text{raisedByHand}(x)) \Rightarrow \neg \text{like}((\text{polarbear}(x) \land \text{raisedByHand}(x)), (\forall_y (\text{pb}(y) \land \neg (\text{raisedByHand}(y))))$
- h) (polarbear(x) \land polarbear (y) \land like(x,y)) $\Rightarrow \neg$ (raisedByHand(x) \land raisedByHand(y))
- i) $\forall_y(\text{polarbear}(x) \land \text{raisedByHand}(x)) \Rightarrow \text{like}((\text{polarbear}(x) \land \text{raisedByHand}(x)), \text{human}(y))$
- j) $\forall_x ((person(x) \land feed(x, penguin)) \Rightarrow (like(penguin,x)))$