Advanced Algebra II

Assignment 3

Solution

1. Let V_1, V_2 be non-trivial subspaces of V. Prove that there exits $\alpha \in V$ such that $\alpha \notin V_1$ and $\alpha \notin V_2$.

Proof. Since V_1, V_2 are non-trivial, there exist α_1, α_2 such that $\alpha_1 \notin V_1, \alpha_2 \notin V_2$. If $\alpha_1 \notin V_2$ or $\alpha_2 \notin V_1$, then we are done. Otherwise, we have $\alpha_1 \in V_2$ and $\alpha_2 \in V_1$. In this case we claim $\alpha_1 + \alpha_2 \notin V_1$ and $\alpha_1 + \alpha_2 \notin V_2$. In fact, since $\alpha_1 \notin V_1$ and $\alpha_2 \in V_1$, we know $\alpha_1 + \alpha_2 \notin V_1$ (otherwise, $\alpha_1 = (\alpha_1 + \alpha_2) - \alpha_2 \in V_1$, which is a contradiction). Similarly, since $\alpha_2 \notin V_2$ and $\alpha_1 \in V_2$, we know $\alpha_1 + \alpha_2 \notin V_2$. This completes the proof.

2. Let V_1, V_2 be subspaces of V. Assume $V_1 \subset V_2$. Prove that dim $V_1 = \dim V_2 \Rightarrow V_1 = V_2$.

Proof. Assume $\alpha_1, \alpha_2, \cdots, \alpha_r$ is a basis of V_1 , so

$$V_1 = \operatorname{Span}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r).$$

By $V_1 \subset V_2$, we know $\alpha_1, \alpha_2, \dots, \alpha_r$ is a linearly independent list of vectors in V_2 . Since $\dim(V_2) = \dim(V_1) = r$, the list $\alpha_1, \alpha_2, \dots, \alpha_r$ is also a basis for V_2 . Hence,

$$V_2 = \operatorname{Span}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r),$$

which implies $V_1 = V_2$.

- 3. Let $A \in \mathbb{P}^{n \times n}$ be fixed. Answer the following questions:
 - (1) Write $C(A) = \{B \in \mathbb{P}^{n \times n} \mid BA = AB\}$. Prove that C(A) is a subspace of $\mathbb{P}^{n \times n}$.
 - (2) Take A = E. Show C(A).
 - (3) Take

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ & & & \cdots & \\ 0 & 0 & 0 & \cdots & n \end{bmatrix}.$$

Show the dimension and a basis of C(A).

Proof.

(1) Clearly, $E \in C(A)$, so $C(A) \neq \emptyset$. Let $B_1, B_2 \in \mathbb{P}^{n \times n}$ and $k \in \mathbb{P}$. We see $(B_1 + B_2)A = B_1A + B_2A = AB_1 + AB_2 = A(B_1 + B_2)$. In addition, $(kB_1)A = k(B_1A) = k(AB_1) = A(kB_1)$.

1

(2) Since any matrix in $\mathbb{P}^{n\times n}$ can interchange with E, we have $C(E) = \mathbb{P}^{n\times n}$.

(3) We prove that a matrix that can interchange with A iff this matrix is a diagonal matrix (Q5, Page 133 of the textbook). In fact, let $B = (b_{ij})$. Then

$$B \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ & & & \cdots \\ 0 & 0 & 0 & \cdots & n \end{bmatrix} = B \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ & & & \cdots \\ 0 & 0 & 0 & \cdots & n \end{bmatrix}$$

implies that $b_{ij}j = ib_{ij}$, $1 \le i, j \le n$. Hence, $b_{ij} = 0$ when $i \ne j$. This means B is diagonal. Trivially, any diagonal matrix can interchange with A.

Therefore, C(A) is the set of all diagonal matrices of order n. A basis is M_i , $1 \le i \le n$ where M_i is the matrix with (i, i)-entry being 1 and other entries being 0. The dimension of C(A) is n. (Can you find a basis for $\mathbb{P}^{n \times n}$?)

4. Let $\alpha, \beta, \gamma \in V$. Assume $c_1\alpha + c_2\beta + c_3\gamma = 0$, where $c_1c_3 \neq 0$. Prove $\mathrm{Span}(\alpha, \beta) = \mathrm{Span}(\beta, \gamma)$.

Proof. By $c_3 \neq 0$,

$$\gamma = -\frac{c_1}{c_3}\alpha - \frac{c_2}{c_3}\beta.$$

Then γ can be linearly represented by α and β . Similarly, by $c_1 \neq 0$,

$$\alpha = -\frac{c_2}{c_1}\beta - \frac{c_3}{c_1}\gamma.$$

Then α can be linearly represented by β and γ . The above two displayed formulas tell us that $\{\alpha, \beta\}$ and $\{\beta, \gamma\}$ can linearly represent each other. Hence,

$$\{oldsymbol{lpha},oldsymbol{eta}\}\sim\{oldsymbol{eta},oldsymbol{\gamma}\},$$

i.e., $\operatorname{Span}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \operatorname{Span}(\boldsymbol{\beta},\boldsymbol{\gamma})$ (see Theorem 3(1), Page 173 of the textbook).

5. Let

$$egin{aligned} oldsymbol{lpha}_1 &= (2,1,3,1), \ oldsymbol{lpha}_2 &= (1,2,0,1), \ oldsymbol{lpha}_3 &= (-1,1,-3,0), \ oldsymbol{lpha}_4 &= (1,1,1,1). \end{aligned}$$

Show the dimension and a basis of $\operatorname{Span}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$. Hint: You can use the following fact without computation: After a series of elementary row transformations, we can get

$$A = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 1 & 2 & 1 & 1 \\ 3 & 0 & -3 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \to \cdots \to \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & -3 & -3 & -1 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}. \tag{1}$$

You may need Corollary 3, Page 88 of the textbook.

Proof. The key point is to find a maximal linearly independent subset for $\alpha_1, \alpha_2, \alpha_3, \alpha_4$. By the formula (1) and Corollary 3, Page 88 of the textbook, the 1st, 2nd, 4th columns of A, which are $\alpha_1, \alpha_2, \alpha_4$, are a maximal linearly independent subset of $\alpha_1, \alpha_2, \alpha_3, \alpha_4$, so

$$\{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_4\} \sim \{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\}.$$

This means

$$\operatorname{Span}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_4) = \operatorname{Span}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4).$$

Also, $\alpha_1, \alpha_2, \alpha_4$ is linearly independent. Therefore, $\alpha_1, \alpha_2, \alpha_4$ is a basis of Span $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ and the dimension is 3.

6. Let W denote the solution space of Ax = 0, where A is the matrix defined in Q5. Show the dimension and a basis of W.

Solution. By the formula (1), Ax = 0 is equivalent to

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 0, \\ -3x_2 - 3x_3 - x_4 = 0, \\ \frac{1}{3}x_4 = 0. \end{cases}$$

We can see x_3 is a free variable. Taking $x_3 = 1$, then $x_4 = 0, x_2 = -1, x_1 = 1$. Hence, the fundamental set of solutions only consists of $\eta_1 = (1, -1, 1, 0)$. Note that the fundamental set of solutions is linearly independent and it spans the all solutions of the system $A\mathbf{x} = \mathbf{0}$, so the fundamental set of solutions is a basis of the solution space. Hence, η_1 is a basis and the dimension is 1.

7. Let V_1, V_2 be solutions spaces of $x_1 + x_2 + \cdots + x_n = 0$ and $x_1 = x_2 = \cdots = x_n$, respectively. Prove $\mathbb{P}^n = V_1 \oplus V_2$.

Proof. We first prove $\mathbb{P}^n = V_1 + V_2$, and then prove it is a direct sum. Let (x_1, x_2, \dots, x_n) be any vector in \mathbb{P}^n . Then we can write it as

$$(x_1, x_2, \dots, x_n) = \left(x_1 - \frac{1}{n} \sum_{i=1}^n x_i, \ x_2 - \frac{1}{n} \sum_{i=1}^n x_i, \ \dots, \ x_n - \frac{1}{n} \sum_{i=1}^n x_i\right) + \left(\frac{1}{n} \sum_{i=1}^n x_i, \ \frac{1}{n} \sum_{i=1}^n x_i, \ \dots, \ \frac{1}{n} \sum_{i=1}^n x_i\right).$$

Clearly, the first term on the right hand side of the above equality is a vector in V_1 , and the second term is a vector in V_2 . Hence, $\mathbb{P}^n = V_1 + V_2$.

Let $(x_1, x_2, \dots, x_n) \in V_1 \cap V_2$ be any vector. By $(x_1, x_2, \dots, x_n) \in V_2$, all x_i , $i = 1, 2, \dots, n$ are equal, so assume $x_i = a$, $i = 1, 2, \dots, n$. By $(x_1, x_2, \dots, x_n) \in V_1$, we know na = 0, which means a = 0. Therefore, $V_1 \cap V_2 = \{0\}$, which proves that the sum $V_1 + V_2$ is indeed a direct sum.

8. Assume $\dim(V) = n$. Prove that there exist subspaces V_1, V_2, \dots, V_n with $\dim(V_i) = 1, i = 1, 2, \dots, n$ such that

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$
.

Proof. Let $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ be a basis of V. Write

$$V_1 = \operatorname{Span}(\boldsymbol{\epsilon}_1), \quad V_2 = \operatorname{Span}(\boldsymbol{\epsilon}_2), \quad \cdots, \quad V_n = \operatorname{Span}(\boldsymbol{\epsilon}_n).$$

Clearly,

$$V = V_1 + V_2 + \dots + V_n$$

since any vector $\alpha \in V$ can be written as a form of $\alpha = k_1 \epsilon_1 + k_2 \epsilon_2 + \cdots + k_n \epsilon_n$.

It suffices to prove the above sum is a direct sum. In fact, clearly, $\dim(V) = n$. Trivially, we know $\dim(\operatorname{Span}(\boldsymbol{\epsilon}_i)) = 1$ for any $1 \leq i \leq n$. Thus,

$$\dim(V) = \dim(\operatorname{Span}(\boldsymbol{\epsilon}_1)) + \dim(\operatorname{Span}(\boldsymbol{\epsilon}_2)) + \cdots + \dim(\operatorname{Span}(\boldsymbol{\epsilon}_n)),$$

which means it is a direct sum.