Роль выпуклых функций в задачах оптимизации

Выпуклые функции и глобальные минимумы

Выпуклые множества

Определение 5 Множество D называется выпуклым, если для всех $s,v\in D$ и любого $\alpha\in[0,1]$ выполнено $\alpha s+(1-\alpha)v\in D$.

Геометрически выпуклость множества означает, что отрезок, соединяющий любые две точки из множества D, целиком лежит в множестве D.

Отрезок, соединяющий точки s и v, это множество точек вида

$$\{y \in \mathbf{R}^n : y = \alpha s + (1 - \alpha)v, 0 \le \alpha \le 1\}$$

Пустое и одноточечное множества считаются выпуклыми по определению.

Пример 7 Множество точек вида

$$\Gamma = \{ x \in \mathbf{R}^n | (c, x) = \gamma \}, \quad c \in \mathbf{R}^n, \quad c \neq 0, \quad \gamma \in \mathbf{R},$$

называемое гиперплоскостью в \mathbf{R}^n , является выпуклым.

Пример 8 Замкнутые полупространства, порожденные гиперплоскостью Γ ,

$$\Gamma^{+} = \{ x \in \mathbf{R}^{n} | (c, x) \ge \gamma \}, \quad \Gamma^{-} = \{ x \in \mathbf{R}^{n} | (c, x) \le \gamma \},$$

являются выпуклыми множествами в \mathbf{R}^n .

Определение 6 Множества вида

$$X = \left\{ x \in \mathbf{R}^n | \left(c^i, x \right) \le \gamma_i, \quad i = 1, \dots, m \right\},\,$$

 $cde\ c^i=(c^i_1,\ldots,c^i_n),\ \gamma_i\in\mathbf{R}\ (i=1,\ldots,m)$ называются полиэдральными или полиэдрами.

То есть полиэдр — это пересечение конечного числа полупространств. Из следующей теоремы будет следовать, что полиэдр — выпуклое множество.

Теорема 9

Пересечение (конечное или бесконечное) выпуклых множеств — выпуклое множество.

Доказательство. Пусть множества W_a выпуклы в \mathbf{R}^n для всех $a \in A$. Обозначим

$$W = \bigcap_{a \in A} W_a.$$

Пусть $w_1, w_2 \in W$, тогда $w_1, w_2 \in W_a$ для всех $a \in A$. В силу выпуклости каждого W_a имеем

$$\alpha w_1 + (1 - \alpha) w_2 \in W_a$$
, $\forall a \in A$, $\forall \alpha \in [0, 1]$.

Отсюда следует, что $\alpha w_1 + (1-\alpha) w_2 \in W$, то есть множество W выпукло.

Объединение выпуклых множеств не обязательно выпукло.

Выпуклые функции

Пусть $f:D\to \mathbf{R}$, где D – выпуклое множество.

Определение 7 Функция f(x) называется **выпуклой** на множестве D, если $\forall s, v \in D$ и $\forall \alpha \in [0,1]$ выполнено **неравенство Йенсена**:

$$f(\alpha s + (1 - \alpha)v) \le \alpha f(s) + (1 - \alpha)f(v). \tag{12}$$

Если (12) выполнено строго для всех $s,v\in D,\ s\neq v,$ и для всех $0<\alpha<1,$ то функция f называется строго выпуклой на множестве D.

Если неравенство (12) выполнено в противоположную сторону, т.е. \geq , то функция f(x) называется вогнутой.

Если f(x) — вогнутая функция, то -f(x) — выпуклая функция.

Пример 9 Функция $f: \mathbf{R}^n \to \mathbf{R}$, определенная формулой $f(x) = (c, x), c \in \mathbf{R}^n$, является выпуклой.

Дадим эквивалентное определение выпуклой функции через ее надграфик.

Определение 8 Рассмотрим функцию $f: D \to \mathbf{R}$, где $D \subset \mathbf{R}^n$. Надграфиком функции f назовем множество

$$epi f = \{(x, c) \in \mathbf{R}^{n+1} : x \in D, c \in \mathbf{R}, c \ge f(x)\}.$$

Теорема 10 Пусть D- выпуклое множество, $f:D\to {\bf R}.$ Функция f выпукла тогда и только тогда, когда ері f- выпуклое множество в ${\bf R}^{n+1}.$

Рис. 1: слева надграфик выпуклой функции, справа надграфик функции, которая не является выпуклой

Критерий выпуклости дифференцируемой функции

Теорема 11

Пусть $f: D \to \mathbf{R} - \partial u \phi \phi$ еренцируемая функция, $D \subset \mathbf{R}^n -$ выпуклое множество. Функция f(x) является выпуклой тогда и только тогда, когда

$$f(x) - f(y) \ge (f'(y), x - y) \ \forall x, y \in D.$$

Критерий выпуклости

дважды дифференцируемой функции

Теорема 12

 $\Pi ycmb\ D \subset \mathbf{R}^n$ — выпуклое множество,

 $f:D \to \mathbf{R}$ дважеды дифференцируемая функция.

Функция f выпукла $\iff f''(x)$ неотрицательно определена $\forall x \in D$.

Доказательство.

 \Rightarrow Пусть f — выпуклая функция.

 $y, x \in D$, обозначим h = x - y, тогда

$$y + \alpha h = y + \alpha (x - y) = \alpha x + (1 - \alpha) y \in D \quad (0 \le \alpha \le 1)$$

В силу критерия выпуклости для дифференцируемой функции (Т. 11)

$$\forall y, x \in D \quad f(y + \alpha h) - f(y) - (f'(y), \alpha h) \ge 0.$$

С другой стороны, применяя формулу Тейлора, имеем при $\alpha \to +0$:

$$f(y + \alpha h) - f(y) - (f'(y), \alpha h) = \frac{1}{2} (f''(y) \alpha h, \alpha h) + o(\alpha^{2}).$$

Отсюда

$$\frac{1}{2}\left(f''\left(y\right)\alpha h,\alpha h\right)+o\left(\alpha^{2}\right)\geq0.$$

Разделим обе части неравенства на α^2 и рассмотрим предел при $\alpha \to +0$, получим $(f''(y)h,h) \ge 0$.

 \Leftarrow Пусть f''(s) — неотрицательно определенная матрица $\forall s \in D$.

 $y, x \in D, h = x - y$. Запишем для функции f формулу Тейлора с остаточным членом в форме Лагранжа

$$f(x) - f(y) = (f'(y), h) + \frac{1}{2} (f''(y + \alpha h) h, h),$$

где α – некоторое число, $0 < \alpha < 1$.

Точка $y + \alpha h \in D$ в силу выпуклости множества D.

Так как $f''(y+\alpha h)$ неотрицательно определенная матрица, то

$$f(x) - f(y) - (f'(y), x - y) \ge 0,$$

Применяем критерий выпуклости дифференцируемой функции $\Rightarrow f(x)$ — выпуклая функция.

Пример 10 Исследовать на выпуклость функцию

$$f(x, y, z) = x^2 + xy + y^2 + 2z.$$

Решение.

$$f''(x,y,z) = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Критерий Сильвестра ⇒ угловые миноры:

$$\triangle_1 = 2 > 0$$
, $\triangle_{12} = 2 \cdot 2 - 1 \cdot 1 = 3 > 0$, $\triangle_{123} = 0$.

Матрица f''(x,y,z) может быть неотрицательно определенной, поэтому вычислим главные миноры:

$$\delta_1 = 0$$
, $\delta_2 = 0$, $\delta_3 = 3$, $\delta_{12} = 0$, $\delta_{13} = 2$, $\delta_{23} = 2$, $\delta_0 = 0$.

Так как все главные миноры неотрицательны, то f''(x,y,z) неотрицательно определена \Rightarrow функция f(x,y,z) выпуклая.

Выпуклая задача оптимизации

$$f_0(x) \to \min, \quad x \in D \subset \mathbf{R}^n \quad (\mathbf{z_c})$$

Задача (z_c) называется выпуклой задачей, если D – выпуклое множество, f_0 – выпуклая на D функция.

Теорема 13 Пусть x^* — локальный минимум в выпуклой задаче (z_c) . Тогда x^* — абсолютный минимум в (z_c) .

Доказательство.

 $x^* \in locmin \Rightarrow$ найдется $U_{\varepsilon}(x^*)$: $f_0(x) \geq f_0(x^*)$ для всех $x \in D \cap U_{\varepsilon}(x^*)$. Возьмем любую точку $\tilde{x} \in D$. Соединим точки x^* и \tilde{x} отрезком:

$$\alpha \tilde{x} + (1 - \alpha) x^* \in D$$
 для всех $0 < \alpha < 1$. Пусть $\alpha > 0$ и $\alpha \to 0$.

Тогда точки $x_{\alpha} = \alpha \tilde{x} + (1 - \alpha) x^*$ попадут в $U_{\varepsilon}(x^*)$.

Для этих точек $f_0\left(x^*\right) \leq f_0\left(x_\alpha\right)$. Используем выпуклость $f_0 \implies$

$$f_{0}(x^{*}) \leq f_{0}(\alpha \tilde{x} + (1 - \alpha) x^{*}) \leq \alpha f_{0}(\tilde{x}) + (1 - \alpha) f_{0}(x^{*})$$

$$\Rightarrow \alpha f_{0}(x^{*}) \leq \alpha f_{0}(\tilde{x}) \Rightarrow f_{0}(x^{*}) \leq f_{0}(\tilde{x})$$

$$\Rightarrow x^{*} \in \text{absmin}$$

Задача1. Пусть $f_0(x)$ — выпуклая на \mathbf{R}^n функция, дифференцируемая в точке x^* . Доказать, что если $f_0'(x^*) = 0$, то x^* является точкой глобального минимума $f_0(x)$ на \mathbf{R}^n , а следовательно, и на любом множестве $D \subset \mathbf{R}^n$, содержащем точку x^* .