QuantX : IBM Lab-2 Etats de Bell, Téléportation

JM. Torres IBM Quantum France

13 mars 2021

Premier état de Bell

Premier état de Bell

$$|\Psi_1
angle = H\otimes I|00
angle = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -1 \end{pmatrix} imes egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix} = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 1 \ 0 \end{pmatrix} = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 1 \ 0 \end{pmatrix}$$
 $|\Psi_1
angle = rac{1}{\sqrt{2}}(|00
angle + |10
angle)$

Premier état de Bell

$$|\Psi_2
angle = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix} imes egin{pmatrix} 1 \ 0 \ 1 \ 0 \end{pmatrix} = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 0 \ 1 \end{pmatrix} = rac{1}{\sqrt{2}} (|00
angle + |11
angle)$$

En utilisant directement le produit des matrices ($H \otimes I$ et CNOT) :

$$|\Psi_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Ils forment une base orthonormée :

$$\left|\Psi^{00}\right\rangle := \frac{1}{\sqrt{2}}(\left|00\right\rangle + \left|11\right\rangle) ~~ \left|\Psi^{01}\right\rangle := \frac{1}{\sqrt{2}}(\left|01\right\rangle + \left|10\right\rangle)$$

$$\left|\Psi^{10}\right\rangle := \frac{1}{\sqrt{2}}(\left|00\right\rangle - \left|11\right\rangle) ~~ \left|\Psi^{11}\right\rangle := \frac{1}{\sqrt{2}}(\left|01\right\rangle - \left|10\right\rangle)$$

on peut les écrire sous la forme :

$$\left|\Psi^{ij}\right\rangle := \left(I \otimes \sigma_{x}{}^{j}\sigma_{z}{}^{i}\right)\left|\Psi^{00}\right\rangle$$

et ils correspondent à :

en effet

initial state	$(\mathit{H}_{A}\otimes \mathit{I})\ket{\mathit{ij}}_{AB}$ (Hadamard sur A)	$\left \Psi^{ij}\right\rangle_{AB}$ (CNOT(A,B))
00⟩	$rac{1}{\sqrt{2}}(\ket{00}+\ket{10})$	$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})=\ket{\Psi^{00}}$
01⟩	$rac{1}{\sqrt{2}}(\ket{01}+\ket{11})$	$\left egin{array}{c} rac{1}{\sqrt{2}}(\ket{01}+\ket{10}) = \left \Psi^{01} ight angle ight.$
10⟩	$\frac{1}{\sqrt{2}}(00\rangle- 10\rangle)$	$\frac{1}{\sqrt{2}}(\ket{00}-\ket{11})=\ket{\Psi^{10}}$
11⟩	$rac{1}{\sqrt{2}}(\ket{01}-\ket{11})$	$rac{1}{\sqrt{2}}(\ket{01}-\ket{10})=\ket{\Psi^{11}}$

Circuit inverse

Maintenant : on peut faire le circuit "inverse" : on part de l'état de Bell, on applique la CNOT, puis Hadamard, et mesure :

Téleportation!

On a ce qu'il faut pour la Téléportation!

Le but : Alice veut envoyer l'état (inconnu) de son qubit $|\Phi\rangle_{Alice}=\alpha\,|0\rangle+\beta\,|1\rangle$ à Bob , mais elle ne peut envoyer que deux bits classiques, ce n'est pas suffisant pour envoyer α et β .

Auparavant Alice et Bob ont partagé (un qubit chacun) deux qubits intriqués dans l'état $\ket{\Psi^{00}}_{AB}$

L'état initial (pour le système à 3 qubits), est le suivant :

$$|\Phi
angle_{Alice} \,\otimes \left|\Psi^{00}
ight
angle_{AB}$$

En développant :

$$\ket{\Phi}_{Alice} \otimes \ket{\Psi^{00}}_{AB} = (\alpha \ket{0} + \beta \ket{1}) \otimes (\frac{1}{\sqrt{2}} (\ket{00} + \ket{11}))$$

$$|\Phi\rangle_{Alice} \otimes |\Psi^{00}\rangle_{AB} = \frac{1}{\sqrt{2}} (\alpha |000\rangle_{AliceAB} + \alpha |011\rangle_{AliceAB}) + \beta |100\rangle_{AliceAB} + \beta |111\rangle_{AliceAB})$$

Ce qui vaut opportunément (verifier en développant) :

$$\big(|00\rangle+|11\rangle\big)\otimes\big(\alpha\,|0\rangle+\beta\,|1\rangle\big)+\big(|01\rangle+|10\rangle\big)\otimes\big(\alpha\,|1\rangle+\beta\,|0\rangle\big)$$

$$+(\ket{00}-\ket{11})\otimes(\alpha\ket{0}-\beta\ket{1})+(\ket{01}-\ket{10})\otimes(\alpha\ket{1}-\beta\ket{0})$$

On identifie alors avec les formes $\left|\Psi^{ij}\right>$ (sur AliceA à présent)

$$\begin{split} & \left| \Psi^{00} \right\rangle \otimes \left(\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle \right) + \left| \Psi^{01} \right\rangle \otimes \left(\alpha \left| 1 \right\rangle + \beta \left| 0 \right\rangle \right) \\ & + \left| \Psi^{10} \right\rangle \otimes \left(\alpha \left| 0 \right\rangle - \beta \left| 1 \right\rangle \right) + \left| \Psi^{11} \right\rangle \otimes \left(\alpha \left| 1 \right\rangle - \beta \left| 0 \right\rangle \right) \end{split}$$

On peut aussi identifier :

$$\alpha |0\rangle + \beta |1\rangle = |\Phi\rangle$$

$$\alpha \left| 1 \right\rangle + \beta \left| 0 \right\rangle = \sigma_{x} \left| \Phi \right\rangle$$

$$\alpha \left| \mathbf{0} \right\rangle - \beta \left| \mathbf{1} \right\rangle = \sigma_{z} \left| \mathbf{\Phi} \right\rangle$$

$$\alpha \left| 1 \right\rangle - \beta \left| 0 \right\rangle = \sigma_{x} \sigma_{z} \left| \Phi \right\rangle$$

Et donc:

$$\begin{split} \left|\Phi\right\rangle_{Alice} \; \otimes \left|\Psi^{00}\right\rangle_{AB} &= \frac{1}{2} (\left|\Psi^{00}\right\rangle_{AliceA} \otimes \left|\Phi\right\rangle_{B} + \left|\Psi^{01}\right\rangle_{AliceA} \otimes \sigma_{x} \left|\Phi\right\rangle_{B} \\ &+ \left|\Psi^{10}\right\rangle \otimes \sigma_{z} \left|\Phi\right\rangle_{B} + \left|\Psi^{11}\right\rangle \otimes \sigma_{x} \sigma_{z} \left|\Phi\right\rangle_{B}) \end{split}$$

Le protocole de téléportation

on voit que Bob a le qubit d'Alice (Alice ne l'a plus). Et donc :

- 1- Alice mesure AliceA dans la base de Bell 00.. 11
- 2- Alice envoie les 2 bits à Bob
- 3- Bob Applique $\sigma_z^i \sigma_x^J$

D/ L	E		B ! A !!	E
Résultat mesure Alice	Etat de Bob	Alice envoie i,j	Bob Applique	Etat final de Bob
$\left \Psi^{00}\right\rangle_{AliceA}$	$ \Phi\rangle_B$	0,0	I	$ \Phi\rangle_B$
$ \Psi^{01}\rangle_{AliceA}$	$\sigma_{x} \Phi\rangle_{B}$	0,1	$\sigma_{\scriptscriptstyle X}$	$ \Phi\rangle_B$
$\left \Psi^{10}\right\rangle_{AliceA}$	$\sigma_z \Phi\rangle_B$	1,0	σ_z	$ \Phi\rangle_B$
$ \Psi^{11}\rangle_{AliceA}$	$\sigma_{x}\sigma_{z}\ket{\Phi}_{B}$	1, 1	$\sigma_z \sigma_x$	$ \Phi\rangle_B$