Matrix invertibility

Rank-Nullity Theorem: For any *n*-column matrix *A*,

nullity
$$A + \text{rank } A = n$$

Corollary: Let A be an $R \times C$ matrix. Then A is invertible if and only if |R| = |C| and the columns of A are linearly independent.

Proof: Let \mathbb{F} be the field. Define $f: \mathbb{F}^C \longrightarrow \mathbb{F}^R$ by $f(\mathbf{x}) = A\mathbf{x}$. Then A is an invertible matrix if and only if f is an invertible function.

The function f is invertible iff dim Ker f=0 and dim $\mathbb{F}^C=\dim \mathbb{F}^R$ iff nullity A=0 and |C|=|R|.

nullity A=0 iff dim Null A=0 iff Null $A=\{\mathbf{0}\}$ iff the only vector \mathbf{x} such that $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$ iff the columns of A are linearly independent. QED

Matrix invertibility examples

```
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} is not square so cannot be invertible.
```

```
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} is square and its columns are linearly independent so it is invertible.
```

 $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix}$ is square but columns not linearly independent so it is not invertible.

Transpose of invertible matrix is invertible

Theorem: The transpose of an invertible matrix is invertible.

$$A = \left[\begin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{array}\right] = \left[\begin{array}{c} \mathbf{a}_1 \\ \hline \vdots \\ \hline \mathbf{a}_n \end{array}\right]$$

$$A^T = \left[\begin{array}{c|c} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{array} \right]$$

QED

Proof: Suppose A is invertible. Then A is square and its columns are linearly independent. Let n be the number of columns. Then rank A = n.

Because A is square, it has n rows. By Rank Theorem, rows are linearly independent.

Columns of transpose A^T are rows of A, so columns of A^T are linearly independent.

Since A^T is square and columns are linearly independent, A^T is invertible.

More matrix invertibility

Earlier we proved: If A has an inverse A^{-1} then AA^{-1} is identity matrix

Converse: If BA is identity matrix then A and B are inverses? **Not always true.**

Theorem: Suppose A and B are square matrices such that BA is an identity matrix 1. Then A and B are inverses of each other. **Proof:** To show that A is invertible, need to show its columns are linearly independent.

Let **u** be any vector such that $A\mathbf{u} = \mathbf{0}$. Then $B(A\mathbf{u}) = B\mathbf{0} = \mathbf{0}$.

On the other hand, $(BA)\mathbf{u} = \mathbb{1}\mathbf{u} = \mathbf{u}$, so $\mathbf{u} = \mathbf{0}$.

BA = 1

 $B(AA^{-1}) = A^{-1}$

This shows A has an inverse A^{-1} . Now must show $B = A^{-1}$. We know $AA^{-1} = 1$.

$$(BA)A^{-1} = \mathbb{1}A^{-1}$$

 $(BA)A^{-1} = A^{-1}$

by multiplying on the right by A^{-1}

by associativity of matrix-matrix mult

$$B \, \mathbb{1} = A^{-1}$$

$$A^{-1}$$

$$B = A^{-1}$$

QED

Representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system
$$\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$$

Equivalently, Null
$$\begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix}$$

As Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ Equivalently, $\begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_k \end{bmatrix}$

Conversions between the two representations

Conversions for affine spaces?

- ▶ From representation as solution set of linear system to representation as affine hull
- ▶ From representation as affine hull to representation as solution set of linear system

Conversions for affine spaces?

From representation as solution set of linear system to representation as affine hull

- ightharpoonup input: linear system $A\mathbf{x} = \mathbf{b}$
- output: vectors whose affine hull is the solution set of the linear system.

- Let **u** be one solution to the linear system.
- Consider the corresponding homogeneous system $A\mathbf{x}=\mathbf{0}$.
- - Its solution set, the null space of A, is a vector space \mathcal{V} . Let $\mathbf{b}_1, \dots, \mathbf{b}_k$ be generators for \mathcal{V} . Then the solution set of the original linear system is the affine hull of $\mathbf{u}, \mathbf{b}_1 + \mathbf{u}, \mathbf{b}_2 + \mathbf{u}, \dots, \mathbf{b}_k + \mathbf{u}$.

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} -0.5, 0.75, 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{b}_1 = [2, -3, 4]$$

$$[-0.5, -.75, 0] \text{ and }$$

$$[-0.5, -.75, 0] + [2, -3, 4]$$

From representation as solution set to representation as affine hull

One solution to equation $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $\mathbf{u} = [-0.5, 0.75, 0]$

ation
$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 is $\mathbf{u} = [-0.5, 0.75, 0.75]$

Null space of $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ is Span $\{\mathbf{b}_1\}$: Solution set of equation is $\mathbf{u} + \operatorname{Span} \{\mathbf{b}_1\},\$ i.e. the affine hull of \mathbf{u} and $\mathbf{u} + \mathbf{b}_1$

Representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system $\mathbf{a_1} \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$

Equivalently, Null $\begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix}$

As Span $\{ oldsymbol{b}_1, \dots, oldsymbol{b}_k \}$

Equivalently,

Col
$$\left[egin{array}{c|c} \mathbf{b}_1 & \cdots & \mathbf{b}_k \end{array}
ight]$$

Representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$

As Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$

Equivalently,

Col $\mathbf{b}_1 | \cdots | \mathbf{b}_k |$

Problem 1 (From left to right):

Equivalently, Null

▶ input: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$.

How to transform between these two representations?

- output: basis $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set
- Problem 2 (From right to left):
 - input: independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k$. ightharpoonup output: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals

- *input:* homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$,
- output: basis $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

Let's express this in the language of matrices:

$$input: matrix A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

► input: matrix
$$A = \begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix}$$

► output: matrix $B = \begin{bmatrix} \mathbf{b_1} & \cdots & \mathbf{b_k} \end{bmatrix}$ such that Col $B = \text{Null } A$

Can require the rows of the input matrix A to be linearly independent. (Discarding a superfluous row does not change the null space of A.)

- input: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0,$
- output: basis $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

Let's express this in the language of matrices:

$$input: matrix A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

► input: matrix
$$A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

► output: matrix $B = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_k \end{bmatrix}$ with independent columns such that Col $B = \text{Null } A$

Can require the rows of the input matrix A to be linearly independent. (Discarding a superfluous row does not change the null space of A.)

- input: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0,$
- output: basis $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

Let's express this in the language of matrices:

► input: matrix
$$A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$
 with independent rows

► output: matrix $B = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_k \end{bmatrix}$ with independent columns such that Col $B = \text{Null } A$

$$lackbox{ output: matrix } B = egin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_k \end{bmatrix}$$
 with independent columns such that Col $B = \text{Null } A$

Can require the rows of the input matrix A to be linearly independent. (Discarding a superfluous row does not change the null space of A.)

- ▶ input: matrix A with independent rows
- output: matrix B with independent columns such that Col B = Null A

By Rank-Nullity Theorem, rank A + nullity A = n

Because rows of A are linearly independent, rank A = m,

so m + nullity A = n

Requiring Col B = Null A is the same as requiring

- (i) Col B is a subspace of Null A
- (ii) dim Col B = nullity A

- input: matrix A with independent rows
- \triangleright output: matrix B with independent columns such that Col B = Null A

By Rank-Nullity Theorem, rank A + nullity A = n

Because rows of A are linearly independent, rank A = m, so m + nullity A = n

Requiring Col
$$B = \text{Null } A$$
 is the same as requiring

Requiring Col
$$B = \text{Null } A$$
 is the same as requiring

(i) Col B is a subspace of Null $A \Longrightarrow \text{same}$ as requiring $AB = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$

(ii) dim Col
$$B = \text{nullity } A$$

- ▶ input: matrix A with independent rows
- output: matrix B with independent columns such that Col B = Null A

By Rank-Nullity Theorem, rank A + nullity A = n

Because rows of A are linearly independent, rank A = m, so m + nullity A = n

Requiring Col B = Null A is the same as requiring

(i) Col B is a subspace of Null
$$A \Longrightarrow$$
 same as requiring $AB = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$

(ii) dim Col $B = \text{nullity } A \Longrightarrow \text{same as requiring number of columns of } B = \text{nullity } A$ same as requiring number of columns of B = n - m

- ▶ input: matrix A with independent rows
- output: matrix B with independent columns such that Col B = Null A

By Rank-Nullity Theorem, rank A + nullity A = n

Because rows of A are linearly independent, rank A = m, so m + nullity A = n

Requiring Col B = Null A is the same as requiring

(i) Col B is a subspace of Null
$$A \Longrightarrow$$
 same as requiring $AB = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$
(ii) dim Col $B = \text{nullity } A \Longrightarrow \text{ same as requiring number of columns of } B = \text{nullity } A$

- same as requiring number of columns of B = n m
- ▶ input: $m \times n$ matrix A with independent rows
 - lacktriangle output: matrix B with n-m independent columns such that $AB=\left[egin{array}{c} oldsymbol{0} \end{array}
 ight]$

Hypothesize a procedure for reformulation of Problem 1

Problem 1:

- ightharpoonup input: $m \times n$ matrix A with independent rows
- lacktriangle output: matrix B with n-m independent columns such that $AB=\left[egin{array}{c} oldsymbol{0} \end{array}
 ight]$

Define procedure null_space_basis(M) with this spec:

- input: $r \times n$ matrix M with independent rows
- lacktriangle output: matrix C with n-r independent columns such that $MC=\left[egin{array}{c} \mathbf{0} \end{array}
 ight]$

- *input:* independent vectors $\mathbf{b}_1, \ldots, \mathbf{b}_k$,
- ▶ output: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$
- Let's express this in the language of matrices:
- input: n × k matrix B with independent columns
 output: matrix A with independent rows such that Null A = Col B

As before, Rank-Nullity Theorem implies

number of rows of A + nullity A = number of columns of A

As before, requiring Null $A = \operatorname{Col} B$ is the same as requiring (i) $AB = \begin{bmatrix} 0 \end{bmatrix}$

- (ii) number of rows of A = n k
 - ightharpoonup input: $n \times k$ matrix B with independent rows
 - lacktriangle output: matrix A with n-k independent rows such that $AB=\left[egin{array}{c} oldsymbol{0} \end{array}
 ight]$

Solving Problem 2 with the procedure for Problem 1 **Problem 1**:

- ▶ input: m × n matrix A with independent rows
 - output: matrix B with n-m independent columns such that $AB = \begin{bmatrix} 0 \end{bmatrix}$
- Define procedure null_space_basis(M)
 - ▶ input: $r \times n$ matrix M with independent rows
- ▶ *output:* matrix C with n-r independent columns such that $MC = \begin{bmatrix} \mathbf{0} \end{bmatrix}$ Problem 2:
- ▶ input: $n \times k$ matrix B with independent rows
- lacktriangle output: matrix A with n-k independent rows such that $AB=\left[egin{array}{c} oldsymbol{0} \end{array}
 ight]$

To solve Problem 2, call $null_space_basis(B^T)$.

Returns matrix A^T with independent columns such that $B^TA^T = \begin{bmatrix} \mathbf{0} \end{bmatrix}$

Since B^T is $k \times n$ matrix, A^T has n-k columns. Therefore $AB = \begin{bmatrix} 0 \end{bmatrix}$ and A has n-k independent rows. Therefore A is solution to Problem