Support Vector Machines

Machine Learning Course - CS-433 Oct 24, 2023 Nicolas Flammarion

EPFL

Vapnik's invention

Binary classification

We observe some data $S = \{x_n, y_n\}_{n=1}^N \in \mathcal{X} \times \{-1, 1\}$ Goal: given a new observation x, we want to predict its label yHow:

Training Data Algorithm Prediction
$$S = \{x_n, y_n\}_{n=1}^{N} \qquad \qquad \mathscr{A} \qquad \qquad f_S = \mathscr{A}(S)$$

Linear Classifier

Define a hyperplane as $\{x: w^{\top}x = 0\}$ where ||w|| = 1Prediction:

$$f(x) = \operatorname{sign}\left(x^{\top}w\right)$$

Claim: The distance between a point x_0 and the hyperplane defined by w is $|w^{\top}x_0|$

Linear Classifier

Proof: The distance between x_0 and the hyperplane is given by $\min_{u:w^\top u=0} \|x_0 - u\|$ Let $v = x_0 - w^\top x_0 w$ then by the Pythagorean theorem for any u s.t. $w^\top u = 0$ $\|x_0 - u\|^2 = \left(w^\top x_0\right)^2 + \|v - u\|^2 \ge \left(w^\top x_0\right)^2$ Claim: The distance between a point x_0 and the hyperplane defined by w is

 $|w^{\top}x_0|$

Hard-SVM rule: max-margin separating hyperplane

First assume the dataset $(x_n, y_n)_{n=1}^N$ is linearly separable Margin of a hyperplane: $\min_{n \le N} |w^\top x_n|$

$$n \le N \quad x^{\top} w = 0$$

Max-margin separating hyperplane:

$$\max_{w, \|w\| = 1} \min_{n \le N} \left| w^\top x_n \right| \text{ such that } \forall n, y_n x_n^\top w \ge 0$$

Equivalent to $\max_{M \in \mathbb{R}, w, ||w|| = 1} M$ such that $\forall n, y_n x_n^\top w \ge M$ also equivalent to:

 $\min_{w} \frac{1}{2} ||w||^2 \text{ such that } \forall n, y_n x_n^\top w \ge 1$

Proof of the equivalent formulations

Claim: The following optimization problems are equivalent max min $|w^\top x_n|$ w, ||w|| = 1 $n \le N$ s.t. $\forall n, y_n x_n^\top w \ge 0$ $\max_{M \in \mathbb{R}, w, ||w|| = 1} M$ s.t. $\forall n, y_n x_n^\top w \ge M$

Proof: Let w_1 be a solution of (I) and $M_1 = \min_{n \leq N} |w_1^\top x_n|$ and let w_2 and M_2 be solutions of (II)

- (w_1, M_1) is admissible for (II) so $M_1 \leq M_2$
- w_2 is admissible for (I) so $\min_{n \leq N} \left| w_2^\top x_n \right| \leq \min_{n \leq N} \left| w_1^\top x_n \right|$
- $\forall n, y_n x_n^\top w_2 \ge M_2$ implies that $\forall n, \left| x_n^\top w_2 \right| \ge M_2$ and $\min_{n \le N} \left| x_n^\top w_2 \right| \ge M_2$

Therefore $M_1 = \min_{n \leq N} \left| w_1^\top x_n \right| \geq \min_{n \leq N} \left| w_2^\top x_n \right| \geq M_2 \geq M_1$ And the two problems are equivalent

Proof of the equivalent formulations

Claim: The following optimization problems are equivalent

$$\begin{aligned} & \max_{M \in \mathbb{R}, w, ||w|| = 1} M \\ & \text{s.t. } \forall n, y_n x_n^\top w \geq M \\ & \min_w \frac{1}{2} ||w||^2 \\ & \text{s.t. } \forall n, y_n x_n^\top w \geq 1 \end{aligned}$$

Proof:

$$\max_{M \in \mathbb{R}, w, ||w|| = 1} M \text{ such that } \forall n, y_n x_n^\top w \ge M$$

$$\iff \max_{M \in \mathbb{R}, w} M \text{ such that } \forall n, y_n x_n^\top \frac{w}{||w||} \ge M$$

The constraints are independent of the scale of w. Set $\|w\| = 1/M$: $\iff \max 1/\|w\|$ such that $\forall n, y_n x_n^\top w \geq 1$ $\iff \min_w^{w} \frac{1}{2} \|w\|^2$ such that $\forall n, y_n x_n^\top w \geq 1$

Soft SVM: a relaxation of the Hard-SVM rule that can be applied even if the training set is not linearly separable

Idea: Maximize the margin while allowing some constraints to be violated How: Introduce positive slack variables ξ_1, \dots, ξ_N and replace the constraints with $y_n x_n^\top w \ge 1 - \xi_n$ Soft SVM:

$$\min_{w,\xi} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \xi_n$$

s.t. $\forall n, y_n x_n^\top w \ge 1 - \xi_n \text{ and } \xi_n \ge 0$

which is equivalent to

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \left[1 - y_n x_n^{\top} w \right]_{+}$$

Soft SVM: a relaxation of the Hard-SVM rule that can be

andied even if the trainina set is not linearly separable Proof: Fix w and consider the minimization over ξ :

• If
$$y_n x_n^\top w \ge 1$$
, then $\xi_n = 0$

• If
$$y_n x_n^{\top} w < 1, \xi_n = 1 - y_n x_n^{\top} w$$

Therefore $\xi_n = \left[1 - y_n x_n^\top w\right]_+$

$$\min_{w,\xi} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \xi_n$$

s.t.
$$\forall n, y_n x_n^\top w \ge 1 - \xi_n \text{ and } \xi_n \ge 0$$

which is equivalent to

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \left[1 - y_n x_n^{\top} w \right]_{+}$$

raints to

$$\xi_i^* = \frac{\xi_i}{\|w\|}$$

Classification by risk minimization

Setting: $(X,Y) \sim \mathcal{D}$ with ranges \mathscr{X} and $\mathscr{Y} = \{-1,1\}$ Goal: Find a classifier $f: \mathscr{X} \to \mathcal{Y}$ that minimizes the true risk

$$L(f) = \mathbb{E}_{\mathscr{D}} \left(1_{Y \neq f(X)} \right)$$

How: Through Empirical Risk Minimization (ERM):

$$\min_{w} L_{\text{train}} (w) = \frac{1}{N} \sum_{n=1}^{N} \phi \left(y_n w^{\top} x_n \right)$$

 ϕ represents the loss function of the functional margin $y_n x_n^\top w$ ϕ also serves as a convex surrogate for the 0-1 loss

Losses for Classification

Examples of margin-based losses $(\eta = yx^{\top}w)$:

• Quadratic loss: $MSE(\eta) = (1 - \eta)^2$

- Logistic loss: Logistic
($\eta) = \frac{\log(1 + \exp(-\eta))}{\log(2)}$

• Hinge loss: $Hinge(\eta) = [1 - \eta]_+$

Common features: these losses are convex and provide an upper bound for the zero-one loss $\,$

Behavioral differences:

• MSE: Penalizes any deviation from 1

• Logistic Loss: Asymmetric cost - a penalty is always incurred.

• Hinge Loss: A penalty is applied if the prediction is incorrect or lacks confidence

Summary

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \left[1 - y_n x_n^{\top} w \right]_{+}$$

ERM for the hinge loss with ridge regularization

Interpretation for separable data with small λ :

- 1. Choose the direction of w such that w^{\perp} acts as a separating hyperplane
- 2. Adjust the scale of w to ensure that no point lies with the margin
- 3. Select the hyperplane with the largest margin

Optimization: How to get w ?

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} \left[1 - y_n x_n^{\top} w \right]_{+} + \frac{\lambda}{2} ||w||^2$$

Convex (but non-smooth) objective which can be minimized with:

- Subgradient method
- ullet Stochastic Subgradient method

Convex duality

Assume you can define an auxiliary function $G(w, \alpha)$ such that

$$\min_w L(w) = \min_w \max_\alpha G(w,\alpha)$$

Primal problem: $\min \max G(w, \alpha)$

 $\mathbf{w} \quad \alpha$

Dual problem: $\max \min G(w, \alpha)$

- α u
- \Rightarrow Sometimes, the dual problem is easier to solve than the primal problem. Questions:
- 1. How do we identify a suitable $G(w, \alpha)$?
- 2. Under what conditions can the min and max be interchanged?
- 3. When is the dual problem more tractable than the primal problem?

Q1: How do we find a suitable $G(w, \alpha)$?

$$[z]_{+} = \max(0, z) = \max_{\alpha \in [0, 1]} \alpha z$$

Therefore $\left[1 - y_n x_n^\top w\right]_+ = \max_{\alpha_n \in [0,1]} \alpha_n \left(1 - y_n x_n^\top w\right)$ The SVM problem is equivalent to:

$$\min_{w} L(w) = \min_{w} \max_{\alpha \in [0,1]^n} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \alpha_n \left(1 - y_n x_n^{\top} w \right) + \frac{\lambda}{2} \|w\|_2^2}_{G(w,\alpha)}$$

The function G is convex in w and concave in α

Q2: Can the min and max be interchanged?

Always true:

$$\max_{\alpha} \min_{w} G(w, \alpha) \leq \min_{w} \max_{\alpha} G(w, \alpha)$$

Equality if G is convex in w, concave in α and the domains of w and α are convex and compact:

 $\max \min G(w, \alpha) = \min \max G(w, \alpha)$

Q2: Can the min and max be interchanged?

```
Always true: \max \min G(w,\alpha) \leq \min \max G(w,\alpha) \alpha \quad w w \quad \alpha Proof: \min G(\alpha,w) \leq G\left(\alpha,w'\right) \text{ for any } w' w \max \min G(\alpha,w) \leq \max G\left(\alpha,w'\right) \text{ for any } w' \alpha w \max \min G(\alpha,w) \leq \min \max G\left(\alpha,w'\right) \alpha \quad w w' \quad \alpha
```

Application to SVM

For SVM, the condition is met, allowing us to interchange min and max:

$$\min_{w} L(w) = \max_{\alpha \in [0,1]^n} \min_{w} \frac{1}{N} \sum_{n=1}^{N} \alpha_n \left(1 - y_n x_n^{\top} w \right) + \frac{\lambda}{2} \|w\|_2^2$$

Minimizer computation:

$$\mathbf{Y} = \operatorname{diag}(\mathbf{v})$$

$$\nabla_w G(w, \alpha) = -\frac{1}{N} \sum_{n=1}^N \alpha_n y_n x_n + \lambda w = 0 \Longrightarrow w(\alpha) = \frac{1}{\lambda N} \sum_{n=1}^N \alpha_n y_n x_n = \frac{1}{\lambda N} \mathbf{X}^{\top} \mathbf{Y} \alpha$$

Dual optimization problem:

$$\min_{w} L(w) = \max_{\alpha \in [0,1]^{n}} \frac{1}{N} \sum_{n=1}^{N} \alpha_{n} \left(1 - \frac{1}{\lambda N} y_{n} x_{n}^{\top} \mathbf{X}^{\top} \mathbf{Y} \alpha \right) + \frac{1}{2\lambda N^{2}} \left\| \mathbf{X}^{\top} \mathbf{Y} \alpha \right\|_{2}^{2}$$

$$= \max_{\alpha \in [0,1]^{n}} \frac{1^{\top} \alpha}{N} - \frac{1}{\lambda N^{2}} \alpha^{\top} \mathbf{Y} \mathbf{X} \mathbf{X}^{\top} \mathbf{Y} \alpha + \frac{1}{2\lambda N^{2}} \left\| \mathbf{X}^{\top} \mathbf{Y} \alpha \right\|_{2}^{2}$$

$$= \max_{\alpha \in [0,1]^{n}} \frac{1^{\top} \alpha}{N} - \frac{1}{2\lambda N^{2}} \alpha^{\top} \underbrace{\mathbf{Y} \mathbf{X} \mathbf{X}^{\top} \mathbf{Y}}_{\text{PSD matrix}} \alpha$$

Q3: Why?

$$\max_{\alpha \in [0,1]^n} \alpha^\top 1 - \frac{1}{2\lambda N} \alpha^\top \underbrace{\mathbf{Y} \mathbf{X} \mathbf{X}^\top \mathbf{Y}}_{\text{PSD matrix}} \alpha$$

- 1. Differentiable Concave Problem: Efficient solutions can be achieved using
- Quadratic programming solvers
- Coordinate ascent
- 2. Kernel Matrix Dependency: The cost function only depends on the data via the kernel matrix $K = \mathbf{X}\mathbf{X}^{\top} \in \mathbb{R}^{N \times N}$ no dependency on d
- 3. Dual Formulation Insight: α is typically sparse and non-zero exclusively for the training examples that are crucial in determining the decision boundary

Interpretation of the dual formulation

For any (x_n, y_n) , there is a corresponding α_n given by

$$\max_{\alpha_n \in [0,1]} \alpha_n \left(1 - y_n x_n^\top w \right)$$

- If x_n is on the correct side and outside the margin, $1 y_n x_n^\top w < 0$, then $\alpha_n = 0$
- If x_n is on the correct side and on the margin, $1 y_n x_n^\top w = 0$, then $\alpha_n \in [0,1]$
- If x_n is strictly inside the margin or or the incorrect side, $1 y_n x_n^\top w > 0$, then $\alpha_n = 1$
- \rightarrow The points for which $\alpha_n > 0$ are referred to as support vectors

$$(\alpha_n = 0 \text{ and } y_n = -1) \text{ or } (\alpha_n = 1 \text{ and } y_n = 1) \quad {}_{w^\top x = -1} w^\top x = 0$$

The SVM hyperplane is supported by

the support vectors

$$(\alpha_n = 0 \text{ and } y_n = 1) \text{ or } (\alpha_n = 1 \text{ and } y_n = -1)$$

$$w = \frac{1}{\lambda N} \sum_{n=1}^{N} \alpha_n y_n x_n$$

 $\Rightarrow w$ does not depend on the observation (x_n, y_n) if $\alpha_n = 0$

$$(\alpha_n = 0 \text{ and } y_n = -1) \text{ or } (\alpha_n = 1 \text{ and } y_n = 1)$$

$$w^{\top}x = -1$$
 $w^{\top}x = 0$

Recap

- Hard SVM finds max-margin separating hyperplane $\min_w \frac{1}{2}\|w\|^2$ such that $\forall n,y_nx_n^\top w \geq 1$
- Soft SVM relax the constraint for non-separable data

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \left[1 - y_n x_n^{\top} w \right]_{+}$$

- Hinge loss can be optimized with (stochastic) sub-gradient method
- Duality: min max problem is equivalent to max min (convex-concave objective)
- Efficient solutions with quadratic programming and coordinate ascent
- \bullet The cost depends on the data via the kernel matrix (no dependency on d)