INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES

ESCUELA: SUPERIOR DE FISICA Y MATEMATICAS CARRERA: LIC. EN FISICA Y MATEMATICAS

ESPECIALIDAD: MATEMATICAS

COORDINACION: ACADEMIA DE MATEMÁTICAS APLICADAS

DEPARTAMENTO: MATEMATICAS

ASIGNATURA: ECUACIONES DIFERENCIALES

PARCIALES

TIPO DE ASIGNATURA: OPTATIVA

FUNDAMENTACION DE LA ASIGNATURA

Por medio de ecuaciones diferenciales parciales (EDPs) es posible modelar un sin número de problemas de diferentes áreas de la ciencia y la ingeniería. Un tipo importante de ecuaciones son las que provienen de problemas clásicos de la física. Entre las más importantes están la ecuación del calor, la ecuación de onda y la ecuación de Laplace. Para este tipo de ecuaciones lineales existen métodos analíticos para resolverlas o bien aproximar su solución. El conocimiento de los métodos analíticos para obtener o aproximar la solución de EDPs es fundamental en la formación de un estudiante de la licenciatura.

OBJETIVO DE LA ASIGNATURA

- a) Obtener la derivación de los principales modelos la física basados en EDPs.
- b) Comprender los principales métodos analíticos para resolver o aproximar la solución de EDPs de tipo parabólico, elíptico e hiperbólico en una y varias dimensiones.
- c) Analizar algunos problemas de la física, la biología y la ingeniería basados en EDPs.

TIEMPOS TOTALES ASIGNADOS:
HRS./SEMESTRE 85.5 HRS/SEMANA 4.5
HRS./TEORIA/SEMESTRE 85.5
HS./PRACTICA/SEMESTRE 0.0

PROGRAMA ELABORADO O ACTUALIZADO
POR: ACADEMIA DE MAT. APLICADAS
REVISADO POR: DEPTO. DE MATEMATICAS

APROBADO POR: C.T.C.E.

AUTORIZADO POR:

M. en C. OLGA LETICIA HDEZ. CHAVEZ

DIRECTORA DE LA E.S.F.M.

No.UNIDAD NOMBRE

Ι

ECUACIONES DIFERENCIALES PARCIALES IMPORTANTES EN LA FISICA

OBJETIVOS PARTICULARES DE LA UNIDAD

- a) Derivar las EDPs del calor, vibraciones en cuerdas y la de Laplace.
- b) Establecer las diferentes condiciones de frontera para los diferentes tipos de EDPs.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
1.1	Derivación de la ecuación del calor en una dimensión.	Exposición del profesor	1.5			1,8,10
1.2	Condiciones de frontera para la ecuación del calor. Distribución de equilibrio. La ecuación de Laplace.	Tareas semanales Clase de problemas (el estudiante debe resolver los problemas con ayuda del profesor)				
1.3	Derivación de la ecuación que gobierna el comportamiento de ondas en cadenas		1.5			
1.4	Condiciones de frontera para la ecuación de onda.		1.5			

No.UNIDAD NOMBRE

SEPARACIÓN DE VARIABLES ΙI

OBJETIVOS PARTICULARES DE LA UNIDAD

a) Aplicar el método de separación de variables en la solución de la ecuación del calor y de ondas en cuerdas para diferentes tipo de condiciones de frontera homogéneas y no homogéneas.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
2.1	Introducción al método de separación de variables.	Exposición del profesor	1.5			1,2,4,10
2.2	Solución de la ecuación del calor con condiciones de frontera homogéneas.	Tareas semanales Clase de problemas (el estudiante debe resolver	1.5			
2.3	Transformación de condiciones de frontera no homogeneas a condiciones de frontera homogeneas.		1.5			
2.4	Empleo del método de separación de variables para resolver problemas complicados de difusión del calor.		1.5			
2.5	Aplicar el método de separación de variables para estudiar la ecuación de convección-difusión, la ecuación de difusión con perdida lateral de calor.		1.5			
2.6	Empleo del método de separación de variables para resolver la ecuación de onda.		1.5			

ASIGNATU	RA
----------	----

ECUACIONES DIFERENCIALES PARCIALES

CLAVE	HOJA	4	DE	11

No.UNIDAD NOMBRE

III SERIES DE FOURIER

OBJETIVOS PARTICULARES DE LA UNIDAD

a) Presentar los principales resultados de series de Fourier relacionados con la solución de ecuaciones diferenciales parciales.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
3.1	Series seno y coseno de Fourier. Forma compleja de la serie de Fourier.		1.5			1,2,10
3.2	El teorema de Fourier y su demostración.	Clase de problemas (el estudiante debe resolver los problemas con ayuda del	3.0			
3.3	Propiedades de la serie de Fourier (difrenciación, integración, etc.).		1.5			
3.4	El fenómeno de Gibbs y el teorema de Parserval.		1.5			

No.UNIDAD NOMBRE

IV

TRANSFORMADAS INTEGRALES

OBJETIVOS PARTICULARES DE LA UNIDAD

- a) Estudiar la transformada de Fourier (seno y coseno) y de Laplace y sus propiedades.
- b) Emplear las transformadas para obtener la solución de ecuaciones diferenciales ordinarias y parciales

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
4.1	La transformada de Fourier y algunas de sus propiedades.	Exposición del profesor	1.5			1,3,4,7,
4.2	Solución de la ecuación del calor en un intervalo infinito.	Tareas semanales Clase de problemas	1.5			
4.3	Transformada seno y coseno de Fourier y algunas de sus propiedades.		1.5			
4.4	La ecuación del calor en un intervalo semi infinito.		1.5			
4.5	La fórmula de D'Alembert.		1.5			
4.6	La transformada de Laplace y algunas propiedades.		1.5			
4.7	Solución de la ecuación del calor y onda en un espacio semiinfinito.		1.5			
4.8	El principio de Duhamel.		1.5			

NOMBRE

V

No.UNIDAD

DESCOMPOSICION EN FUNCIONES PROPIAS

OBJETIVOS PARTICULARES DE LA UNIDAD

a) Resolver ecuaciones diferenciales parciales usando el método de descomposición en funciones propias.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
5.1	El método de expansión de funciones con condiciones de frontera no homogeneas.	Exposición del profesor Tareas semanales	1.5			1,10
5.2	Flujo de calor con fuentes y condiciones de frontera no homogeneas.	Clase de problemas (el estudiante debe resolver los problemas con ayuda del profesor)	1.5			
5.3	Vibraciones forzadas y resonanacia. Solución a la ecuación de Poisson.	processory	1.5			

CLAVE HOJA 7 DE 11

No.UNIDAD	NOMBRE

VI

EL METODO DE LAS FUNCIONES DE GREEN (PARTE I)

OBJETIVOS PARTICULARES DE LA UNIDAD

a. Estudiar el método de las funciones de Green para obtener la solución de ecuaciones defirenciales ordinarias y parciales que no dependen del tiempo.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
6.1	El método de variación de parámetros para la solución de ecuaciones diferenciales ordinarias	Exposición del profesor Tareas semanales	3.0			1,6,7,10
6.2	La fórmula de Green.	Clase de problemas	1.5			
6.3	La delta de Dirac y su relación con las funciones de Green.	_	1.5			
6.4	Funciones de Green para ecuaciones diferenciales ordinarias (estado estacionario de la ecuación del calor)		1.5			
6.5	 a) El método de expansión de funciones para funciones de Green. b) La alternativa de Fredholm y funciones de Green modificadas. c) Función de Green para la ecuación de Poisson. d) Principio de reciprocidad. 		3.0			

ASIGNA'	TURA
---------	------

ECUACIONES DIFERENCIALES PARCIALES

LAVE	HOJA	8	DE	1

No.UNIDAD NOMBRE

VII

METODO DE LAS FUNCIONES DE GREEN (PARTE II)

OBJETIVOS PARTICULARES DE LA UNIDAD

a) Estudiar el método de las funciones de Green para ESPs que dependen del tiempo.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
7.1	La función de Green para la ecuación del calor en una dimensión	Exposición del profesor	3.0			1,6,10
7.2	El principio de reciprocidad y causalidad de la función de Green de la ecuación del calor	Tareas semanales Clase de problemas (el estudiante debe resolver	1.5			
7.3	La función de Green para la ecuación de onda.	los problemas con ayuda del profesor)	1.5			
7.4	El principio de reciprocidad y causalidad de la funciones de Green de la ecuación de onda.		1.5			

CLAVE

HOJA 9 DE 11

NOMBRE

VIII

ECUACIONES DIFERENCIALES PARCIALES EN 2 Y 3 DIMENSIONES

OBJETIVOS PARTICULARES DE LA UNIDAD

a) Aplicar los métodos estudiados en las unidades para resolver EDPs en dos y tres dimensiones.

# DE TEMA	TEMAS	INSTRUMENTACION DIDACTICA	H/T	H/P	E C.	CLAVE B.
8.1	Membrana vibrante rectangular	Exposición del profesor	3.0			1,4,10
8.2	Teoremas relacionados con el problema de valores y vectores propios en varias dimensiones $\nabla^2 u + \lambda u = 0 .$	3.0				
8.3	Membranas vibrante circular y funciones de Bessel.	los problemas con ayuda del profesor)	3.0			
8.4	Ecuación de Laplace en un cilindro circular.		3.0			
8.5	Ecuación del calor en varias dimensiones.		3.0			

No.UNIDAD	NOMBRE
110 1 011122122	1(0112112

IX EL METODO DE CARACTERISTICAS PARA ECUACIONES DE ONDA LINEALES Y CASI LINEALES

OBJETIVOS PARTICULARES DE LA UNIDAD

- a) Aplicar el método de caracterísitcas para resolver ecuaciones hiperbólicas de primer orden.
- b) Proporcionar algunas aplicaciones donde esten presentes este tipo de ecuaciones.

# DE TEMA	TEMAS	H/T	H/P	E C.	CLAVE B.	
9.1	Las características para la ecuación de onda de primer orden.	3.0			1,3,4,9,	
9.2	El método de características para la ecuación de onda de primer orden.	1.5				
9.3	Cadenas semiinfinitas y reflexiones.	3.0				
9.4	El método de caracterísitcas para una cuerda vibrante de longitud fija.		3.0			
9.5	El método de caracterísitcas para ecuaciones casi lineales.		3.0			
	a) Ondas de choque					
	b) Tráfico vehicular					

PERIODO			ADES PROCEDIMIENTOS DE EVALUACION		
1		1,2,	y 3 Examen escrito y 3 tareas (una por semana)		
2		4,5	y 6 Examen escrito y 5 tareas (una por semana)		
3		7,8,	y 9 Examen escrito y 5 tareas (una por semana)		
CLAVE	В	С	BIBLIOGRAFIA		
1	х		R. Habermann., Elementary Applied Differential Equations with Fourier Series and Boundary Value Problems, Prentice Hall, 1998		
2		х	I. N. Sneddom., Fourier Series, Dover Publications Inc. 1969.		
3		х	R. Knobel., An Introducition to the Matematical Theory of Waves, American Mathematical Society, 1991.		
4		x	C.A. Coulson., Waves: A Mathematical Account of the Common Types of Wave Motion, Oliver and Boyd, 1961.		
5		х	D. G. Duffy., Green's functions with applications, Chapman & Hall, 1998		
6		х	W. E. Boyce and R. C. DiPrima., Ecuaciones Difereciales y Problemas con Valores en la Frontera. Limusa Wiley, 1998.		
7		x	M. R. Spiegel., Transformada de Laplace. Serie de Compendios Schaum, 1970.		
8		x	R. Resnik, D. Halliday and K. S. Krane., Física. CECSA, México, 1998.		
9		х	R. Habermann., Mathematical Models: Mechanical Vibrations, Pupulation Dynamics, and Traffic Flow. Classics in Applied Mathematics, SIAM 1987.		
10		х	S. J. Farlow., Partial Differential Equations for Scientists and Engineers, Dover Publications Inc., 1982.		