知能システム数理セミナー

第3回 壮大な冒険の世界へ 知能情報研究室 橘完太

ヒトの知能の壮大な物語

状態認識と行動決定

状態 x_t 観測 z_t 行動 u_t

- ・我々の知能は、
 - 状態の認識 $p(x_t | z_{1:t}, u_{1:t}) = Bel(x_t)$ と
 - -行動の決定 $Bel(x_t) \mapsto u_{t+1}$

のためにある

- ・我々には、真の状態は分からないので
- ・ 状態を、確率分布 $Bel(x_t)$ で持つ(信じる)
- そして、確率アルゴリズムに従って、 行動 u_{t+1} を決定する。

状態認識

- ・ センサ値=状態(の一部)の観測<u>+観測誤差</u>
- 観測モデル(センサモデル):この状態 x_t なら (条件)、この範囲のセンサ値が出る確率はこれくらい $p(z_t \mid x_t)$
- ・状態=前の時刻の状態+制御 +制御誤差+推定誤差
- ・ 状態遷移モデル(システムモデル):この状態 x_{t-1} からこの行動 u_t をしたら、この範囲の 状態になる確率はこれくらい $p(x_t \mid u_t, x_{t-1})$

グラフィカルモデル

- 独立な関係なら結ばない
 - 弟にじゃんけんで勝つ日は降水確率が高い(?)
 - Y: 雨が降る、X: 弟にじゃんけんで勝つ
 - $-P(Y \mid X) = P(Y)$
- 依存関係は結ぶ
 - 舵を切ったら x_t に移動する $p(x_t | u_t, x_{t-1}) \neq p(x_t)$
 - $-x_t$ にいたらセンサ値は z_t が出る $p(z_t | x_t) \neq p(z_t)$

実用例 ロボよット

実用例 ロボよット

GPSモジュールで得られるセンサ値 時刻/緯度/経度/スピード/ 方位角(※スピードが遅い時、怪しい)

観測からの状態推定

- 本来は、ベイズフィルタを使って、方位角など 状態変数を推定すべき。
- H29卒論では、単純な手法でお茶を濁した。
- スピードが速い時 $(s_t > 0.3)$ 、 方位角のセンサ値を信用する。
- スピードが遅い時 (s_t ≤ 0.3)、
 少し前の緯度経度→最新の緯度経度の方向を方位角とする。

行動選択のための状態空間の定義

- 観測(緯度、経度、スピード、方位角)
- ・ 状態(緯度、経度、スピード、方位角)
- としてもよいが、
- 池Aで得た状態空間と行動選択の知識 $Bel(x_t) \mapsto u_{t+1}$ を、緯度・経度が異なる湖Bで使えない。(池Aでも他の水域には使えない)
- 例えば、
 状態(目的地への相対速度)
 とすれば、他の水域でも知識を利用できる。

行動選択のための状態変数

- ・ 状態変数2つ x_t : (g_t, ℓ_t)
 - -速度の目的方向成分 g_t
 - -速度の目的地と直交成分 ℓ_t
- H29では、If-then rule方式で、行動 u_{t+1} を決定
- ・ 行動は舵と帆の操作の組み合わせ

制御ルール If-then rule

If Then

- 1. 方向はともかく、まず進む。
- 2. (目的から遠ざかる時)舵をいっぱいに切る。
- 3. 帆と舵をちょっとづつ調整する。(次頁)

制御ルール If-then rule

・帆と舵をちょっとづつ調整する。

(
$$s_t = \sqrt{g_t^2 + \ell_t^2} > 0.3 & g_t > 0$$
 のとき)

- デッドゾーン(後述)の 対策
- 詳細は、SailH30.py

面舵0.5秒

上記(お茶を濁した)コーディングの結果

・ 次回5月8日のセミナーをお楽しみに!

・しかし、このコーディングの最大の欠点は、...

制御ルールが

- 現時点のIf-thenルールは、卒論生A君の脳で 考えたまま。学習で変わるわけではない。
- たとえ100年間、データを与え続けても、少しも賢くならない。

聡明なアイデア

- 強化学習: reinforcement learning
- 進化学習: neuro-evolution https://youtu.be/Aut32pR5PQA

強化学習

行動

- u_E:東扉から入る

- *u_W*: 西扉から入る

- u_K: 壁ドン→唸り声を聴く

状態

- x_E:トラが東扉の近くにいる

- xw:トラが西扉の近くにいる

• 観測

- Z_E: 唸り声が東扉の方から聞こえる

- Zw: 唸り声が西扉の方から聞こえる

状態•行動•報酬

強化学習

学習前の行動選択

 u_E

0.3

0.3

0.3

 u_K

 $0.\dot{3}$

0.3

 $0.\dot{3}$

 u_W

0.3

0.3

0.3

 u_E

0.9

0.0

0.0

 u_K

0.0

0.9

0.0

 u_W

0.0

0.0

0.9

自動運転の複雑さ

低

高

動力を制御できる

動力の風を制御できない

Wind direction and Sailboat speed

Targeting North mark,

Wind is expected to shift from North to NNE.

Where should you start?

Uncontrollable state variables x_k^-

複素ニューラルネットワークによる 風の予測

- ・ 予測結果は、
- ・ 次々回5月15日のセミナーをお楽しみに!

さらに大きな面白い問題!

- 実機データはなかなか取得できない
 - ハードウェア準備
 - ソフトウェア準備
 - 湖までのアクセス(大雪で渋滞、公園封鎖)
 - 気象(良い風が吹くか)
- 実機データと見分けがつかない疑似データを 生成!(Generative Adversarial Network)

GANによるデータ拡張

さらにさらに面白いのは

- 固定の障害物回避
- 動く障害物(人やロボが操縦する船舶)回避 →「心の理論」、ゲーム理論、不完全情報 ゲーム

・次回、次々回のセミナーをお楽しみに!

壮大な冒険の続きをつくるのは…

最終発表会課題

- 5月22日(当日の指摘を受けて6月5日)
- 内容:
- ベイズフィルタ(カルマンフィルタ、パーティクルフィルタ)や機械学習…について調べ、 面白い応用先について実装してくる。
- 検索ワード: "scikit-learn",
 "UCI Machine Learning Repository"
- ・ 実装の目的(どこが面白いか)、概要、結果
- &将来の展望:実装の技術を発展させて 東京オリパラ2020でどんな貢献ができるか