assignment_2

joshna katta

2022-10-19

```
library(lpSolve)
Problem <- matrix(c(22,14,30,600,100,
                16,20,24,625,120,
                 80,60,70,"-","-"),ncol = 5,byrow = TRUE)
colnames(Problem) <- c("Warehouse1", "Warehouse2", "Warehouse3", "Production Cost", "Production Capacity")
rownames(Problem)<-c("Plant A","Plant B","Monthly Demand")</pre>
Problem <-as.table(Problem)</pre>
Problem
##
                   Warehouse1 Warehouse2 Warehouse3 Production Cost
## Plant A
                             14
                                          30
## Plant B
                  16
                              20
                                          24
                                                     625
                              60
                                          70
## Monthly Demand 80
##
                  Production Capacity
## Plant A
                   100
## Plant B
                   120
## Monthly Demand -
# Since production and demand is unbalanced, Dummy column is created
# Name of the column and rows:
costs \leftarrow matrix(c(622,614,630,0,
                   641,645,649,0),ncol = 4,byrow = TRUE)
colnames(costs)<- c("Warehouse1","Warehouse2","Warehouse3","Dummy")</pre>
rownames(costs)<-c("Plant A","Plant B")</pre>
costs <-as.table(costs)</pre>
costs
##
           Warehouse1 Warehouse2 Warehouse3 Dummy
## Plant A
                   622
                             614
                                          630
                                                  0
## Plant B
                   641
                              645
                                          649
                                                  0
# Setting up the row signs and production capacity values
row.signs <- rep("<=",2)
row.rhs<- c(100,120)
# Setting up the column sign and demand values
col.signs <- rep(">=",4)
col.rhs \leftarrow c(80,60,70,10)
```

```
# Running lptrans to find minimum cost
lptrans <- lp.transport(costs, "min", row.signs, row.rhs, col.signs, col.rhs)
# Values of all variables
lptrans$solution</pre>
```

Objective function

lptrans\$objval

[1] 132790

Therefore

$$x12 = 60$$

$$x13 = 40$$

$$x21 = 80$$

$$x23 = 30$$

Objective function is 132790.

2. formulate the transportation problem.

Since the primal was to be minimized so that the transportation cost the dual of it would be to maximize the value added(VA).

Maximize VA =
$$80W_1 + 60W_2 + 70W_3 - 100P_A - 120P_B$$

Subject to the following constraints

 $Total\ Profit\ Constraints$

$$MR_1 - MC_1 \ge 622$$

 $MR_2 - MC_1 \ge 614$
 $MR_3 - MC_1 \ge 630$
 $MR_1 - MC_2 \ge 641$
 $MR_2 - MC_2 \ge 645$
 $MR_3 - MC_2 \ge 649$

Where $MR_1 = Marginal$ Revenue from Warehouse1 $MR_2 = Marginal$ Revenue from Warehouse2 $MR_3 = Marginal$ Revenue from Warehouse3 $MC_1 = Marginal$ Cost from Plant1 $MC_2 = Marginal$ Cost from Plant2

3. Economic Interpretation of the dual

#Reduced production and shipping costs are the aim of AED's business. #In order to accomplish this, the company will need to employ a logistics firm to handle the transportation, which will involve buying the AEDs and shipping them to multiple warehouses in an effort to cut the cost of production and shipping overall.

$$MR_1 \le MC_1 + 622$$

 $MR_2 \le MC_1 + 614$
 $MR_3 \le MC_1 + 630$
 $MR_1 \le MC_2 + 641$
 $MR_2 \le MC_2 + 645$
 $MR_3 \le MC_2 + 649$

$$MR_1 <= MC_1 + 621$$
 i.e. $MR_1 >= MC_1$

#"Based on above interpretation, we can conclude that, profit maximization takes place if MC is equal to MR."