Сравнительный анализ разностного и вероятностного методов исследования математической модели, построенной на дифференциальном уравнении в частных производных эллиптического типа

 $A. \ Ш. \ Kеримов^1$

kerimov.edu@yandex.ru

¹МГТУ им. Н. Э. Баумана, Москва, Россия

Аннотация

Статья посвящена численным методам приближённого решения стационарного многомерного эллиптического уравнения теплопроводности. Описаны математические соотношения конечно-разностного и вероятностного методов. Проведён анализ программных реализаций методов на быстродействие. Предложены алгоритмические улучшения вероятностного метода.

Ключевые слова

математическая физика, задача двумерной теплопроводности, численные методы, уравнение Пуассона, продольно-поперечная схема, матричная прогонка, вероятностный метод, метод Монте-Карло

Введение

Прикладные проблемы приводят к необходимости решения краевых задач для уравнений с частными производными. Разработка приближённых методов их решения базируется на построении и исследовании численных методов решения краевых задач для базовых (основных, модельных) уравнений математической физики. В качестве таковых при рассмотрении уравнений второго порядка выделяются эллиптические, параболические и гиперболические уравнения.

1 Постановка задачи

Задана математическая модель с постоянными коэффициентами $k(x,z)\equiv k$ (уравнение Пуассона):

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} + \frac{f(x,z)}{k} = 0. \tag{1}$$

На границах прямоугольной области (0 < x < a, 0 < z < b).

Краевые условия:

$$\begin{cases} x = 0, & u(0, z) = u_0, \\ x = a, & u(a, z) = u_0, \\ z = 0, & u(x, 0) = u_0, \\ z = b, & u(x, b) = u_0. \end{cases}$$
(2)

Значения коэффициентов задачи (все размерности согласованы).

Геометрические размеры a = b = 10 см.

$$u_0 = 300 \text{ K}.$$

В качестве примера функции источников можно предложить распределение вида $f(x,z)=f_0e^{\beta(x-a/2)^2(z-b/2)^2},$ параметры f_0,β варьируются исходя из условия, чтобы максимум функции не превышал 3000 К.

Для определённости, положим $f_0 = 100, \beta = -0{,}0001$ и $k = 2{,}36$.

1.1 Физическое содержание задачи

Сформулированная математическая модель описывает двумерное температурное поле u(x,z) в тонкой прямоугольной пластине с размерами $a \times b$. Температура по толщине пластины (третьей координате) принимается постоянной.

2 Конечно-разностная аппроксимация

Добавим в эллиптическое уравнение координату по времени, чтобы получилось уравнение параболического типа с двумя пространственными переменными:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} + \frac{f(x,z)}{k}.$$
 (3)

Для составления схемы, которая носит название продольно-поперченой, введём полуцелый слой $\bar{t}=t_m+\frac{\tau}{2}$. Схема имеет вид

$$\frac{\overline{y}_{ij} - y_{ij}}{0.5\tau} = A_1 \overline{y}_{ij} + A_2 y_{ij} + \frac{f_{ij}}{k},\tag{4}$$

$$\frac{\hat{y}_{ij} - \overline{y}_{ij}}{0.5\tau} = A_1 \overline{y}_{ij} + A_2 \hat{y}_{ij} + \frac{f_{ij}}{k},\tag{5}$$

причём разностные операторы A_1 , A_2 действуют каждый по своему направлению (по своей координате) и определяются выражениями

$$A_1 y_{ij} = \frac{1}{h_x^2} (y_{i-1,j} - 2y_{ij} + y_{i+1,j}), \tag{6}$$

$$A_2 y_{ij} = \frac{1}{h_z^2} (y_{i,j-1} - 2y_{ij} + y_{i,j+1}). \tag{7}$$

Здесь $1 \le i \le N_x - 1$, $1 \le j \le N_z - 1$.

Схема (4), (5) реализуется следующим образом. Вначале вычисляют решение на полуцелом слое согласно (4). В системе линейных уравнений (4) с трёхдиагональной матрицей неизвестными являются величины \overline{y}_{ij} , которые находят прогонкой по индексу i (по координате x) для каждого фиксированного значения индекса j. При найденном решении \overline{y}_{ij} система (5) также является линейной системой уравнений с трёхдиагональной матрицей, в которой неизвестными выступают \hat{y}_{ij} . Решение \hat{y}_{ij} находят прогонкой по индексу j (по координате z) для каждого индекса i [1].

Относительно аппроксимации и устойчивости продольно-поперечной схемы следует отметить, что схема (4), (5) равномерно и безусловно устойчива по начальным данным и по правой части и аппроксимирует задачу на равномерных сетках с погрешностью $O(\tau^2 + h_x^2 + h_z^2)$.

Приведём уравнение (4) к стандартному виду для прогонки

$$\frac{2(\overline{y}_{ij} - y_{ij})}{\tau} = \frac{1}{h_x^2} (\overline{y}_{i-1,j} - 2\overline{y}_{ij} + \overline{y}_{i+1,j}) + \frac{1}{h_z^2} (y_{i,j-1} - 2y_{ij} + y_{i,j+1}) + \frac{f_{ij}}{k}, \tag{8}$$

$$\frac{1}{h_x^2}\overline{y}_{i-1,j} - 2\left(\frac{1}{h_x^2} + \frac{1}{\tau}\right)\overline{y}_{ij} + \frac{1}{h_x^2}\overline{y}_{i+1,j} = -\frac{1}{h_z^2}y_{i,j-1} + 2\left(\frac{1}{h_z^2} - \frac{1}{\tau}\right)y_{ij} - \frac{1}{h_z^2}y_{i,j+1} - \frac{f_{ij}}{k}, \quad (9)$$

$$\tau h_z^2 \overline{y}_{i-1,j} - 2h_z^2 (\tau + h_x^2) \overline{y}_{ij} + \tau h_z^2 \overline{y}_{i+1,j} = h_x^2 \left(2(\tau - h_z^2) y_{ij} - \tau \left(y_{i,j-1} + y_{i,j+1} + \frac{h_z^2 f_{ij}}{k} \right) \right)$$
(10)

Коэффициенты для метода прогонки:

$$\begin{cases}
A_{i} = \tau h_{z}^{2}, \\
B_{i} = -2h_{z}^{2}(\tau + h_{x}^{2}), \\
C_{i} = \tau h_{z}^{2}, \\
D_{i} = h_{x}^{2} \left(2(\tau - h_{z}^{2})y_{ij} - \tau \left(y_{i,j-1} + y_{i,j+1} + \frac{h_{z}^{2}f_{ij}}{k} \right) \right), \\
i = \overline{1, N_{x} - 1}.
\end{cases}$$
(11)

Краевые условия:

$$A_0 = 0, \quad B_0 = 1, \quad C_0 = 0, \quad D_0 = u_0,$$

 $A_{N_x} = 0, \quad B_{N_x} = 1, \quad C_{N_x} = 0, \quad D_{N_x} = u_0.$ (12)

Приведём уравнение (5) к стандартному виду для прогонки

$$\frac{2(\hat{y}_{ij} - \overline{y}_{ij})}{\tau} = \frac{1}{h_x^2} (\overline{y}_{i-1,j} - 2\overline{y}_{ij} + \overline{y}_{i+1,j}) + \frac{1}{h_z^2} (\hat{y}_{i,j-1} - 2\hat{y}_{ij} + \hat{y}_{i,j+1}) + \frac{f_{ij}}{k}, \tag{13}$$

$$\frac{1}{h_z^2}\hat{y}_{i,j-1} - 2\left(\frac{1}{h_z^2} + \frac{1}{\tau}\right)\hat{y}_{ij} + \frac{1}{h_z^2}\hat{y}_{i,j+1} = -\frac{1}{h_x^2}\overline{y}_{i-1,j} + 2\left(\frac{1}{h_x^2} - \frac{1}{\tau}\right)\overline{y}_{ij} - \frac{1}{h_x^2}y_{i+1,j} - \frac{f_{ij}}{k}, (14)$$

$$\tau h_x^2 \hat{y}_{i,j-1} - 2h_x^2 (\tau + h_z^2) \hat{y}_{ij} + \tau h_x^2 \hat{y}_{i,j+1} = h_z^2 \left(2(\tau - h_x^2) \overline{y}_{ij} - \tau \left(\overline{y}_{i-1,j} + \overline{y}_{i+1,j} + \frac{h_x^2 f_{ij}}{k} \right) \right)$$
(15)

Коэффициенты для метода прогонки:

$$\begin{cases}
A_{j} = \tau h_{x}^{2}, \\
B_{j} = -2h_{x}^{2}(\tau + h_{z}^{2}), \\
C_{j} = \tau h_{x}^{2}, \\
D_{j} = h_{z}^{2} \left(2(\tau - h_{x}^{2})\overline{y}_{ij} - \tau \left(\overline{y}_{i-1,j} + \overline{y}_{i+1,j} + \frac{h_{x}^{2}f_{ij}}{k} \right) \right), \\
j = \overline{1, N_{z} - 1}.
\end{cases} (16)$$

Краевые условия:

$$A_0 = 0, \quad B_0 = 1, \quad C_0 = 0, \quad D_0 = u_0,$$

 $A_{N_z} = 0, \quad B_{N_z} = 1, \quad C_{N_z} = 0, \quad D_{N_z} = u_0.$ (17)

Линейно проинтерполируем граничные значения u для начальной итерации. Тогда $y_{i,j}^0 \equiv u_0$.

3 Вероятностный метод

Теперь применим статистический метод [2] решения уравнения Пуассона (1).

Покроем область $0 \leqslant x \leqslant a, 0 \leqslant z \leqslant b$ квадратной сеткой с шагом h.

Из каждого узла сетки будем моделировать случайное блуждание частиц. Находясь во внутреннем узле y_{ij} , частица M может с равной вероятностью уйти либо влево, либо вправо, либо вверх, либо вниз. Блуждание частицы M заканчивается, как только она выходит на границу области.

Решение уравнения (1) в результате моделирования стохастического блуждания частиц имеет вид:

$$y(x,z) = \frac{1}{N_p} \sum_{j=1}^{N_p} y_b(j) + \left(\frac{h^2}{4k}\right) \frac{1}{N_p} \sum_{j=1}^{N_p} \overline{f}_j M_j,$$
 (18)

где

- $-N_{p}$ количество разыгрываемых частиц из узла;
- $-y_b(j)$ граничное значение функции y для j-й частицы;
- \overline{f}_j среднее значение функции f по всем узлам траектории j-й частицы;
- $-M_{j}$ количество узлов в траектории j-й частицы.

4 Сравнительный анализ методов решения

Моделирование производилось на компьютере со следующими характеристиками:

— OC: Ubuntu 21.10 64-bit,

— процессор: 1,4 ГГц AMD Ryzen 7 5700U,

— память: 5,7 ГБ LPDDR4.

Сравним результаты моделирования на сетке с шагом $h_x=h_z=h=1$ см, $\tau=1$ с, $\varepsilon=0{,}0001,\ N_p=5000.$ В таблицах 1—2 представлены температурные поля, полученные продольно-поперечным и вероятностным методами соответственно. В таблице 3 представлена разница значений из таблиц 1 и 2.

Таблица 1 — Температурное поле, полученное продольно-поперечным методом

300	300	300	300	300	300	300	300	300	300	300
300	349.322	382.246	403.667	415.839	419.795	415.839	403.667	382.246	349.322	300
300	382.246	439.312	476.848	498.206	505.144	498.206	476.848	439.312	382.246	300
300	403.667	476.848	525.356	553.028	562.022	553.028	525.356	476.848	403.667	300
300	415.839	498.206	553.028	584.362	594.552	584.362	553.028	498.206	415.839	300
300	419.795	505.144	562.022	594.552	605.133	594.552	562.022	505.144	419.795	300
300	415.839	498.206	553.028	584.362	594.552	584.362	553.028	498.206	415.839	300
300	403.667	476.848	525.356	553.028	562.022	553.028	525.356	476.848	403.667	300
300	382.246	439.312	476.848	498.206	505.144	498.206	476.848	439.312	382.246	300
300	349.322	382.246	403.667	415.839	419.795	415.839	403.667	382.246	349.322	300
300	300	300	300	300	300	300	300	300	300	300

Таблица 2 — Температурное поле, полученное вероятностным методом

300	300	300	300	300	300	300	300	300	300	300
300	347.997	382.004	404.381	416.424	418.476	414.192	402.982	381.346	349.058	300
300	380.461	438.8	476.483	498.021	504.324	497.636	475.434	438.4	381.316	300
300	403.046	476.336	524.314	552.303	560.19	551.834	524.416	476.116	404.203	300
300	416.413	496.967	551.949	583.623	593.486	583.306	551.52	496.718	414.992	300
300	419.923	505.379	561.016	594.109	604.455	594.093	561.223	503.058	417.508	300
300	415.592	497.442	552.094	583.408	593.941	583.008	552.044	497.394	415.749	300
300	404.608	476.058	524.999	551.775	561.399	552.58	524.523	476.29	403.891	300
300	380.683	437.926	475.802	497.039	503.002	497.552	477.432	438.181	381.123	300
300	349.045	381.228	403.179	414.452	418.306	415.365	404.663	380.41	348.885	300
300	300	300	300	300	300	300	300	300	300	300

Таблица 3 — Поэлементная разница таблиц 1 и 2

0	0	0	0	0	0	0	0	0	0	0
0	1.3251	0.2412	-0.7148	-0.5854	1.3184	1.6466	0.6846	0.9001	0.2646	0
0	1.7847	0.5121	0.3652	0.1857	0.8197	0.5709	1.4147	0.9124	0.9296	0
0	0.6211	0.5126	1.0419	0.7250	1.8322	1.1945	0.9396	0.7325	-0.5368	0
0	-0.5746	1.2392	1.0793	0.7389	1.0660	1.0558	1.5089	1.4886	0.8467	0
0	-0.1284	-0.2355	1.0058	0.4429	0.6780	0.4594	0.7987	2.0860	2.2866	0
0	0.2469	0.7649	0.9349	0.9543	0.6106	1.3542	0.9847	0.8122	0.0897	0
0	-0.9411	0.7900	0.3566	1.2536	0.6229	0.4485	0.8331	0.5580	-0.2247	0
0	1.5626	1.3856	1.0466	1.1677	2.1420	0.6543	-0.5841	1.1308	1.1225	0
0	0.2772	1.0171	0.4881	1.3865	1.4886	0.4736	-0.9966	1.8360	0.4370	0
0	0	0	0	0	0	0	0	0	0	0

Наибольшая разница в таблице 3 по модулю не превосходит 2.2866. Таким образом, можно заключить, что программная реализация методов даёт приблизительно одинаковый результат.

Для h=1 см конечно-разностный алгоритм отработал за 0.17 мс, а вероятностный — за 220.45 мс. Такое время вероятностного метода сложно назвать приемлемым для столь большого шага. Можно предложить ряд усовершенствований стохастического алгоритма.

- а) Введём следующее понятие: под i-м слоем прямоугольной сетки будем понимать все узлы сетки, у которых минимальное расстояние до границы равно i. Таким образом, нулевой слой это и есть граница, первый слой граница сетки, если из неё исключить нулевой слой, и т. д. Тогда исходный алгоритм можно улучшить, если начинать розыгрыш частиц с первого слоя, затем со второго и так до последнего, при этом, как только все узлы из i-го слоя будут посчитаны, для i+1 слоя примем i как границу. Таким образом, область будет сужаться, время моделирования уменьшаться.
- б) Для внутренних слоёв можно уменьшить количество разыгрываемых частиц, т. к. граничными для них являются предыдущие слои, на которых значение y(x,z) уже было посчитано. Для i-го слоя будем разыгрывать N_p/i частиц.
- в) Распараллелим вычисления. Траектории пучка частиц, выпущенных из текущего узла, друг от друга не зависят.

В таблице 4 представлено время работы методов в зависимости от некоторых значений шага сетки h. Столбец 1 в таблице обозначает исходный стохастический алгоритм, столбцы 2-4 соответствуют вышеназванные улучшения.

Таблица 4 — Время работы методов

	Время, мс									
h, см	Продольно-поперечный	Вероятностный								
	продольно-поперечный	1	2	3	4					
1	0.17	220.45	101.15	71.56	45.59					
1/2	0.52	2'990	769	379	201					
1/3	1.08	14'615	2'515	987	466					
1/4	1.80	45'529	5'793	1'937	837					
1/5	2.74	110'545	11'111	3'257	1'321					
1/10	9.88	-	85'994	15'781	5'755					
1/20	45.22	-	-	-	21'950					
1/50	4'605	-	-	-	-					

На рисунке 1 представлена визуализация данных из таблицы 4.

Рисунок 1 — Зависимость времени работы методов от N

Таким образом, по результатам моделирования видно, что алгоритм, основанный на конечно-разностной аппроксимации дифференциального уравнения (1), является более быстрым по времени по сравнению с вероятностным методом. Предложенные улучшения стохастического метода уменьшили время моделирования более, чем в 4N раз.

Заключение

В ходе численного решения стационарного многомерного эллиптического уравнения теплопроводности выведены математические соотношения конечно-разностной аппроксимации (коэффициенты для метода матричной прогонки решения продольно-поперечной схемы) и вероятностного метода. Проведён анализ программных реализаций методов на быстродействие. Выяснено, что наибольший интерес в плане производительности представляет конечно-разностная аппроксимация. Был предложен ряд улучшений вероятностного метода, уменьшивший время моделирования более, чем в 4N раз, т. е. асимптотическая сложность алгоритма понижена на порядок.

Список литературы

- [1] Градов В. М. Курс лекций по моделированию. МГТУ им. Н. Э. Баумана. 2020
- [2] Кузнецов В. Ф. Решение задач теплопроводности методом Монте-Карло. 1973

Керимов Ахмед Шахович — студент, МГТУ им. Н. Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии».