Expt 10 Design of FIR Filter

Design FIR low pass filter whose desired frequency response is $H(e^{j\omega}) = 1$; $-2\pi/5 \le \omega \le 2\pi/5$ and 0 otherwise using Rectangular and Hanning window techniques.

- (i) Determine the impulse response $\{h[n]\}$ for N = 9 and plot the same
- (ii) Determine the frequency response $\{H(e^{j\omega})\}\$ and plot the same.

Solution

Desired filter coefficient $\{h_d[n]\}$ is obtained by taking Inverse Discrete Time Fourier Transform (IDTFT) on $H(e^{j\omega})$ and yields $h_d[n] = \sin((2\pi n/5) / \pi n)$

Expected filter coefficients $\{h]n]$ on multiplying with rectangular window function $\{w[n]\}$ yields the following.

$$h[0] = 2/5 = 0.4$$
, $h[1] = 0.3027$, $h[2] = 0.0935$, $h[3] = -0.06236$, $h[4] = xx$, $h[5] = -0.06236$, $h[6] = 0.0935$, $h[7] = 0.3027$, $h[8] = 0.4$

Determine the frequency response $H(e^{j\omega})$ by direct substitution of the expression {even symmetry and length is odd integer}

In python

Note:

from scipy.integrate import quad from scipy import signal

library that support integration function
library that supports frequency response function
i.e signal.freqz

Sample outputs

