| . 1 <sup>4</sup> |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (82                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | ; F.K       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | Tacl           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | 9           | 二《杂学》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                   | Al             | cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0.10<br>L.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |             | ~ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 7600                              |                | And the second of the Control of the second | 2 5 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 院(系)             |             | 班级                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 學學                                  |                | _ 姓名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 题号 —        | = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | ショ も           | 八总                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 得分          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Land Andrew Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 得 分              | 一、填空        | 题(每空格:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2分, 共24分                            | <b>}</b> )     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 杨俊太莹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 中的波长为 500                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. 光道            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,在介质内的<br>Δt=10 <sup>-8</sup> s. 已知 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m BC EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 过 BC 段所需                            |                | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| λ=600            | nm 的单色光边    | 通过 ABC 时,C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 、A两点间的位                             | Σ相差Φc-ΦA=      | = そんメ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10th . 3. AL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3、某个             | ·人看不清 0.2i  | m 以外的物体,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 所配眼镜应为                              | to the         | 的迎後                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 锭。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6mm. 孔至原                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 的光源:             | 垂直照射双孔      | 。若整个装置放                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (在空气中,屏幕                            | <b>手上干涉条纹的</b> | 间距为_1。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 <u>X15</u> mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |             | i contraction of the contraction | 屏幕上干涉条约                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 强增大至两倍,                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12_mmi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.8nm 的基模模<br>55.55                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 器的相干长度      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 的波腹数                                | 7/21           | 英间隔 <u>6×</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Port of the second seco |
| , PUNK/ti        | auning 1 MX |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fl o                                | Albiene        | No. of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 得分               | 一二、选择       | 题(每题3?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 分,共24分)                             |                | 2.4 2 〕[1]<br>应题号的3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 1、两束振       | 动面平行的相                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 一<br>干光,强度均为                        | $_{I}I$ ,彼此同相  | 的合并在一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 一起,照射到                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | 一<br>某一平面,  | 则该表面的强                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 展度最大值为                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [O]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A                | I           | B, $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                                   | C. 2I          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2、频率             |             | the state of the s | ×10 <sup>8</sup> m i s 的光           |                | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 为 元 的任意                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 两点之              | 间的最短距离      | 是:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Α,               | 96.6nm      | В. 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2nm                               | C、83.2nm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. 56.4nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3、借助             | 玻璃表面上海      | k以折射率n=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .38的 MgF <sub>2</sub> 透             | 明薄膜, 可以漏       | 成少折射率。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 为 n'=1.60 的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |             | [*=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 計 計                                 | <b>生本</b> 面    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

2

٢

ş

5

15/2

<u>\$</u>

representie Withere.

W



(光学) 试卷 第 2 页 共 4 页

月=月·尼=等·号=-3 何立缩从3倍的实缘。

得 分

四、(8分)已知人眼可以看清 400m 距离处坦克上的编号,若用望远镜在 距离 2km 处也能看清它,求所用望远镜的放大倍数M。

$$M = \frac{Me}{Mo} = \frac{fe}{f_o} = 5$$



得分

五、(8分)如图所示,用 KDP (磷酸二氢钾)晶体制成顶角为 $60^{6}$ 的棱镜,光轴平行于折射棱。对于波长  $\lambda=532nm$  的绿光,晶体的主折射率为  $n_0=1.520,\ n_e=1.490$ 。若以最小偏向角的方向在棱镜中折射,用焦距为

15cm 的凸透镜对棱镜射出的 e 光和 o 光进行聚焦,在焦平面上形成的 e 光与 o 光的谱

线间距是多少?

对包光和O光分别使用最小偏角公式

$$N_0 = \frac{\sin \frac{100 + 6.2}{2}}{560 \frac{9}{2}} = 1.512$$
  $N_0 = \frac{\sin \frac{100 + 60}{2}}{560 \frac{9}{2}} = 1.470 \frac{1}{5}$    
特式代方。特点的分)是才得  $0_0 = 38.2$ 。  $0_0 = 346$ 。  
 $\Delta 6 = 6_0 - 6_0 = 3.6° = 0.0628$  rad  
 $Bf' = 100$  mm, 所以  $\Delta L = f' \Delta 6 = 6.28$  mm



得分

一六、(共 8 分)如图所示, $P_1, P_2$ 为透射振动方向相互垂直的两块偏振片, K 是一块半波片,其光轴与 $P_1$ 成45°夹角,求波长为 $\lambda$ 且强度为 $I_0$ 的自然光经该系统后,出射光的强度I'。

$$I = \frac{1}{2} I \cos^2 \theta_1 \cdot \cos^2 \theta_2$$

$$= \frac{1}{80} I \cos^2 \theta_1 \cdot \cos^2 \theta_2$$



七、(共 10 分)以白光垂直照射一平面光栅时,能在 30°衍射方向上观察 到 600nm 的第二级干涉主极大,并能分辨 $\Delta \lambda = 0.05nm$  的两条光谱线,但在 30°衍射方向得不到 400nm 的主极大干涉。试求: 1) 此光栅的光栅常数 d; 2)

此光栅上狭缝的宽度 a; 3) 此光栅的总宽度 L; 4) 若以此光栅观察波长为 590nm 的钠 光谱,求: 当光线垂直入射时,屏上实际呈现的全部干涉条纹的级数。

(1) 光柳 前星 dsm0=kl dsm30=221, d=2.4 um

光栅的分钟本领 R=分 2N 1 = 2N N=60000

(2) 欧沙省箱看不到人工,说明第三级缺级 k= a+b k' k'=1,2,3 ---

$$\begin{cases} d = \frac{1}{3} = 0.8 \text{ (um)} \quad b = d - \alpha = 1.6 \text{ (um)} \\ d = \frac{1}{3} = 1.6 \text{ (um)} \quad b = d - \alpha = 0.8 \text{ (um)} \end{cases}$$

(3) L= dN = 14.4 cm

八、(共 10 分)已知冕蓝璃对波长为 398.8nm 的光的折射率 n=1.525, 色散率为 $\frac{dn}{d1} = -1.26 \times 10^{-4} nm^{-1}$ 。 1)请问属于正常色散还是反常色散? 2)

求相速度 $v_p$ 和群速度 $v_p$ 。

超速度: 
$$V = \frac{c}{h} = \frac{3 \sqrt{h^8}}{1.525} = 1.96662 \times 10^8 \text{ m/s}$$
 群建度:  $V_g = V(1+\frac{1}{h}\frac{da}{dx}) = 1.96662 \times 10^8 \times (1-\frac{0.3988}{1.52546} \times 0.126)$  = 1.9018 ×  $10^8$  m/s

$$M = \frac{\theta_e}{\theta_0}; \ \theta_e = 1' = 2.9 \times 10^{-4}; \ R = \frac{\lambda}{\Delta \lambda} = KN; \ I(z) = I_0(z)e^{Gz}; \left(n = \frac{\sin{(\alpha + \delta)}}{2}\right)$$

(光学) 试卷 第 4 页 共 4 页

| and agreed   |   | E Santa  |
|--------------|---|----------|
| 9** <u>\</u> | 2 | <b>P</b> |

|                            | !                |                                                | W:                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Australia - Aust | · Commenced Street Street Street Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|------------------|------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ţ.                         |                  | 、填空题                                           | Mary Warena Carlo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the s |
|                            | 1,               | 光学系统中物和像具                                      | 有共轭关系的原           | 原因是光路豆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 可逆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · Smij -112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | 2,               | 发生全反射的条件是                                      | 光从光密媒             | 质射向光疏媒质,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 且入射角大于临                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 界角                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <u>Lo</u> ,      | 其中, sinlo=n2/n                                 | { <sup>v</sup>    | パラクン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57(1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | 9.3.             | 光学系统的三种放力                                      | 大率是_垂轴放           | /、レノッロ .<br><u>大率 、 角放大率</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 、轴向放大率,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 当物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | 像:               | 空间的介质的折射率                                      | <br>哈定后,对于一       | 对给定的共轭面,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 可提出_一 种放                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                  | 要求。                                            |                   | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | 4.               | 理想光学系统中, 与                                     | 5像方焦点共轭1          | 的物点是轴上                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 无穷远的物点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | 115°k            | 物镜和目镜焦距分别                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V. : "                     | person.          | 亥显微镜的视放大率。                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | 等 <b>於</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , A                        | "with            | 放大率为 <u>10</u> 。                               |                   | Annual Control of the | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NE:                        | A Description of | 某物点发出的光经理                                      |                   | Comment of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 東是學家同心光東                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            |                  | 勿点所成的是实                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | 7,               | 人眼的调节包含                                        | 见度调节和_            | 瞳孔 调节。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            |                  | 复杂光学系统中设置                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5学特性的的情况 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · 改                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                  | 成像光束的位置, 使 <i>[</i>                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | .9.              | 要使公共垂面内的光                                      | 线方向改变 60 /        | 度,则双平面镜夹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 免应为 <u>30</u> 度。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nd                         | 1 10,            | 近轴条件下, 折射3                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>厚度</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| gunnamentanan              | 为[               | 706 mm. ** ** ** ** ** ** ** ** ** ** ** ** ** | <b>等</b> .        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | garage or all a barreng and in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| State and the state of the | <u>-</u> 11,     | 设计反射棱镜时, 6                                     | 亚使其展开后玻ェ          | 离板的两个表面平                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 行,目的是保                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> 持系</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            | 统的               | 9共轴性。                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- 12、有效地提高显微镜分辨率的途径是 提高数值孔径和减小波长
- 13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度。小
- 14. 用垂轴放大率判断物、像虚实关系方法: 当 ß > 0 时 物像虚实相反 ß < 0 时 物 像虚实相同。
- 15. 平面反射镜成像的垂轴放大率为 1. 物像位置关系为 镜像 转过 血角,则反射光线方向改变 2 α

二、简答题

- 1、几何光学的基本定律及其内容是什么?
- 答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射 定律。

直线传播定律:光线在均匀透明介质中按直线传播。

独立传播定律:不同光源的光在通过介质某点时互不影响。

反射定律: 反射光线位于入射面内; 反射角等于入射角;

折射定律:折射光线位于入射面內;入射角和折射角正弦之比,对两种一定的介质来说,是一个和入射角无关的常数 $n_i \sin I_i = n_i \sin I_2$ 。

2、如何区分实物空间、虚物空间以及实像空间和虚像空间? 是否可按照空间位置来划分物空间和像空间?

答:实物空间:光学系统第一个曲面前的空间。虚物空间:光学系统第一个曲面后的空间。实像空间:光学系统最后一个曲面后的空间。虚像空间:光学系统最后一个曲面前的空间。虚像空间:光学系统最后一个曲面前的空间。物空间和像空间在空间都是可以无限扩展的,不能按照空间进行划分。

3、什么是共轴光学系统、光学系统物空间、像空间?

答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。物体所在的空间称为物空间,像所在的空间称为 像空间。



、 什么叫理想光学系统?

答:在物像空间均为均匀透明介质的条件下,物像空间符合"点对应点、直线对应直线、平面对应平面"的光学系统称为理想光学系统。

5、 理想光学系统的基点和基面有哪些? 其特性如何?

答:理想光学系统的基点包括物方焦点、像方焦点;物方主点、像方主点;物方节点、像方节点。基面包括:物方焦平面、像方焦平面;物方主平面、像方主平面、像方 生平面;物方节平面、像方节平面。入射光线(或其延长线)过焦点时,其共轭光线平行与光轴;入射光线过节点时,其共轭光线与之平行;焦平面上任一点发出的同心光束的共轭光束为平行光束;物方主平面与像方主平面共轭,且垂轴放大率为 1。

6、用近轴光学公式计算的像具有什么实际意义?

答:作为衡量实际光学系统成像质量的标准;用它近似表示实际光学系统所成像的位置和大小。

7、对目视光学仪器的共同要求是什么?

答:视放大率[[应大于]。

Z.

- 8、什么是理想光学系统的分辨率?写出望远镜的分辨率表达式。
- 答:假定光学系统成像完全符合理想,没有像差时,光学系统能分辨的最小间隔。

望远镜的分辨率表达式:  $\alpha = 1.22 \lambda/D$ 。

9、什么是光学系统的孔径光阑和视场光阑?

答: 孔径光阑是限制轴上物点成像光束立体角的光阑。 视场光阑是限制物平面上或物空间中成像范围的光阑。

10、光学系统中可能有哪些光阑?

答:限制轴上物点成像光束的口径或立体角大小的孔径光阑;限制物平面上或物空间中成像的范围即限制视场大小的视场光阑;用于产生渐晕的渐晕光阑;用于限制杂散光的消杂光阑。

11、如何确定光学系统的视场光阑?

答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。

12、如何计算眼睛的视度调节范围?如何校正常见非正常眼?

答: 眼睛的视度调节范围为:  $A=R-P=\frac{1}{r}-\frac{1}{p}$ 。 常见非正常眼包括近视眼

和远视眼。近视眼是将其近点校正到明视距离,可以用负透镜进行校正;远视眼 是将其远点校正到无限远,可以用正透镜进行校正。 -

13、显微镜的分辨率跟哪些参数有关?采取什么途径可以提高显微镜的分辨率?

答:显微镜的分辨率为 $\sigma = \frac{0.61\lambda}{NA}$ 。可见其分辨率与波长和物镜数值孔径有关。碱小波长和提高数值孔径可以提高显微镜的分辨率。由 $NA = n \sin u$  可知,在物和物镜之间浸以液体可增大物方折射率 n,即可提高显微镜的分辨率。14、光学系统有哪些单色几何像差和色像差?

答: 五种单色几何像差是: 球差、彗差、像散、场曲、畸变。两种色像差是: 位置色差(或轴向色差)、放大率色差(或垂轴色差)。

3、共轴光学系统的像差和色差主要有哪些?

答:像差主要有:球差、慧差(子午慧差、弧矢慧差)、像散、场曲、畸变:色差主要有:轴向色差(位置色差)、倍率色差。

## 二、作图题

#### 1、求实物 AB 的像



# 2、求虚物 AB 的像



3、求实物 AB 的像



# 4、求虚物 AB 的像



#### 5、求棱镜反射后像的坐标系方向



# 6、画出虚线框内应放置何种棱镜



7、画出虚线框内应放置何种棱镜





# 8、求棱镜反射后像的坐标系方向



9、假设光线方向从左至右, 画出物体 AB 经光组后的像。





10、如图,已知垂直于光轴的物 AB 经过一薄透镜后成的像为 A'B', 试作图确定透镜及其物方和像方焦点



的位置,并说明该薄透镜是正还是负透镜。 由图可见,透镜像方焦距f'>0,故应为正透镜。

11、根据下列平面镜棱镜系统中的成像方向要求,画出虚线框内所需的反射棱镜类型。





此题答案不唯一。

(3分)

#### 四、计算题

1、光束投射到一水槽中,光束的一部分在顶面反射而另一部分在底面反射,如图所示。试证明两束( $P_1$ 、 $P_2$ )返回到入射介质的光线是平行的。

证明:由图可知 $r_3 = i_2 = i_2 = r_1$ 

(2分)

由折射定律可得:

 $n\sin i_1 = n'\sin r_1$ 

. .

 $n\sin i_3 = n'\sin r_3$ 

(27)

•

(2分)

所以  $i_1 = i_3$ 

又由反射定律可得:  $i_1 = i_1$ 



故  $i_3 = i_1$ 

所以 P1 平行于 P2。

2、已知一个 5 倍的伽利略望远镜, 其物镜又可作放大镜, 其视角放大率亦为 5 倍。试求物镜、目镜的焦距及望远镜筒长。

解:物镜做放大镜时

$$\beta = \frac{250}{f_{th}} = 5$$

可得:  $f'_{49} = 50mm$ 

又望远镜的放大率为: 
$$\Gamma = -\frac{f_{\eta_0}}{f_{\rm fl}} = 5$$

所以 
$$f_{\parallel}' = -10$$

望远镜筒长 
$$L=f_{\mathfrak{H}}+f_{\mathbb{H}}=50+(-10)=40mm$$

3、光源位于 f'=30mm 的透镜前 40mm 处,问屏放在何处能找到光源像?垂轴放大率等于多少?若光源及屏位置保持不变,问透镜移到什么位置时,能在屏上重新获得光源像,此时放大率等于多少?

解: 
$$\ell = -40mm$$
,  $f' = 30mm$ . 由高斯公式  $\frac{1}{\ell'} - \frac{1}{\ell} = \frac{1}{f'}$  得

 $\ell'=120mm$  即光源像在透镜后 120mm 处。

$$\mathcal{R} = \frac{\ell}{\ell} = 120/(-40) = -3$$

由题列出以下方程

$$\ell' - \ell = 120 + 40 = 160$$

$$\frac{1}{\ell} - \frac{1}{\ell} = \frac{1}{\ell} = 1/30$$
 解得

$$\ell_1 = -40mm, \ell_1 = 120mm$$

$$\ell_2 = -120mm, \ell_2 = 40mm$$

$$\beta = \frac{\ell}{\ell} = 40/(-120) = -1/3$$

4、由两个焦距相等的薄透镜组成一个光学系统,两者之间的间距也等于透镜焦距,即  $f_1=f_2=d$  。用 此系统对前方  $60\mathrm{mm}$  处的物体成像,已知垂轴放大率为-5,求薄透镜的焦距及物像平面之间的共轭距。解:物体先经过第一个透镜成像

$$\frac{1}{l_1'} - \frac{1}{-60} = \frac{1}{d}$$

解得 
$$I_1 = \frac{60d}{60-d}$$

$$\beta_1 = \frac{l_1'}{l_1} = \frac{\frac{60d}{60 - d}}{-60} = \frac{-d}{60 - d}$$

第一透镜的像再经过第二透镜成像

由过渡公式可得: 
$$l_2 = l_1' - d = \frac{60d}{60 - d} - d = \frac{d^2}{60 - d}$$

由高斯公式有: 
$$\frac{1}{l_2} - \frac{1}{\frac{d^2}{60 - d}} = \frac{1}{d}$$

解得: 
$$I_2' = \frac{d^2}{60}$$

$$\beta_2 = \frac{l_2'}{l_2} = \frac{60 - d}{60}$$

因为 
$$\beta = \beta_1 \beta_2 = \frac{-d}{60 - d} \cdot \frac{60 - d}{60} = -5$$

解得: d = 300mm

透镜焦距 
$$f_1' = f_2 = d = 300mm$$

$$I_z = \frac{d^2}{60} = \frac{300 \times 300}{60} = 1500 mm$$

则物像共轭距为:  $L = l_1 + d = l_2' = 60 + 300 + 1500 = 1860mm$ 

5、一个正透镜焦距为 100mm,一根棒长 40mm,平放在透镜的光轴上,棒中点距离透镜 200mm。求:

(1) 像的位置和长短:

(2) 棒绕中心转 $90^{0}$ 时,像的位置和大小。

解:(1)棒两端点到透镜的距离分别为

$$\ell_1 = -220mm, \ell_2 = -180mm$$

根据高斯公式 
$$\frac{1}{\ell} - \frac{1}{\ell} = \frac{1}{f}$$
 得

$$\ell_1' = 183.3mm, \ell_2' = 225mm$$

像的长短 
$$\Delta \ell = \ell_2 - \ell_1 = 41.7 mm$$

(2) 
$$\ell = -200mm$$
,  $y = 40mm$  根据高斯公式  $\frac{1}{\ell} - \frac{1}{\ell} = \frac{1}{f}$ 

$$\ell' = 200 mm$$

$$\beta = \frac{y}{y} = \frac{\ell}{\ell} = \frac{200}{-200} = -1$$

$$y' = \beta y = -40mm$$

6、一组合系统如图所示,薄正透镜的焦距为 20mm,薄负透镜的焦距为-20mm,两单透镜之间与高雄为 10mm, 当一物体位于正透镜前方 100mm 处,求组合系统的垂轴放大率和倾的位置。 解:对单正透镜来说

$$l_1 = -100mm, f_1' = 20mm$$
,因此行

$$\frac{1}{l_1'} - \frac{1}{-100} = \frac{1}{20}$$



所以
$$l_1'=25mm$$

对负透镜来说,
$$l_2=l_1^\prime-d=25-10=15mm, f_2^\prime=-20mm$$
,有

$$\frac{1}{l_1'} - \frac{1}{15} = \frac{1}{-20}$$

所以 $l_2'=60mm$ ,即最后條位置在负透鏡后 60mm 处。

\* 根据放大率  $\beta = \beta_1 \beta_2$ 

$$\beta_1 = \frac{l_1'}{l_1}, \beta_2 = \frac{l_2'}{l_2}$$

所以 
$$\beta = \frac{l_1^2 l_2^2}{l_1 l_2} = \frac{25}{-100} \times \frac{60}{15} = -1$$

7、 用一架 5×的开普勒望远镜,通过一个观察窗观察位于距离 500mm 远处的目标,影实该自由自由指出

和目镜之间有足够的调焦可能,该望远镜物镜焦距 $f^*_{\mathfrak{B}}=100mm$ ,求此时存料。管理影響數學數學學學

137

解: (1) 目镜的焦距

$$f'_{\rm H} = \frac{-f'_{\rm My}}{\Gamma} = -100/-5 = 20mm$$

由高斯公式 
$$\frac{1}{\ell'} - \frac{1}{\ell} = \frac{1}{f'}$$
 得  $\ell' = 125mm$ 

$$\beta = \frac{\ell'}{\ell} = \frac{125}{-500} = -\frac{1}{4}$$

$$tg\omega_{(x)} = \frac{y'}{f'_{B}} = \frac{-y/4}{20} = \frac{-y}{80}$$

$$\Gamma_{\text{sys}} = \frac{tg\omega_{\text{(s)}}}{tg\omega_{\text{(s)}}} = -\frac{-y/80}{y/500} = 6.25^{\times}$$

8、 已知放大镜焦距f'=25mm,通光孔径 $D_1=25$ mm,人眼瞳孔 $D_2=2$ mm,它位于放大镜后 50mm 处,物体位于放大镜前 23mm 处。试确定系统的孔径光阑和视场光鲷,并求入瞳、出瞳及入图、出窗的位置和大小。

解: 放大镜前无光学零件, 其

本身就在物空间。

瞳孔在物空间像的位置为

$$\frac{1}{l_D'} - \frac{1}{l_D} = \frac{1}{f'}$$



$$l_D^\prime=50mm, f^\prime=25mm$$
,代入可得:  $l_D=-50mm$ 

因此 
$$\beta = \frac{l_D}{l_D} = \frac{50}{-50} = -1$$

瞳孔像的孔径为 $D_2^{'}=\beta D_2=-2mm$ 。

因瞳孔关于光轴对称,所以取 $D_2^{'}=2mm$ 。

放大镜对物点的张角的正切为
$$tg\omega_1 = \frac{D_1/2}{-l} = \frac{12.5}{23} = 0.54$$

瞳孔像对物点的张角的正切为
$$tg\omega_2 = \frac{D_2'/2}{l-l_D'} = \frac{1}{-23-(-50)} = 0.04$$

因为 $tg\omega_1 \succ tg\omega_2$ ,所以瞳孔为系统的孔径光阑。入瞳在放大镜前 50mm 处,直径为 2mm,瞳孔即为出

瞳,在放大镜后 50mm 处,直径为 2mm。

因除了瞳孔外, 系统只有放大镜一个光学零件, 所以放大镜为系统的视场光阑, 入窗和出窗, 直径为 25mm。

9、试证明单折射球面的物像方焦距分别满足下列关系:

$$f = -\frac{nr}{n'-n}$$
,  $f' = \frac{n'r}{n'-n}$ , 其中,  $n$ 、 $n'$  和  $r$  分别是球面的物方、像方折射率和球面半径。

解:将  $l=-\infty$ 代入下列物像关系式得到的像距就是像方焦距,即 l'=f':

$$\frac{n'}{l'} - \frac{n}{l} = \frac{n' - n}{r}$$

$$\mathbb{P}: \frac{n!}{f!} - \frac{n}{-\infty} = \frac{n! - n}{r}$$

求得: 
$$f' = \frac{n!r}{n!-n}$$

同理,将 $I'=\omega$ 代入物像关系式得到的物距就是物方焦距,即I=f:

$$\text{Ep}: \frac{n'}{\infty} - \frac{n}{f} = \frac{n'-n}{r}$$

求得: 
$$f = -\frac{nr}{n'-n}$$

10、若人肉眼刚好能看清 200m 远处的一小物体,若要求在 1200m 远处也能看清该物体,问应使用视放大率至少为多大的望远镜?

解:设物高为 y,因为用眼睛在 200m 处恰好能分辨箭头物体,则该物体对人眼所张视角刚好是人眼的最小分辨角 60''。

明老

$$tg60'' = \frac{y}{200}$$

直接用眼睛在 1000mm 处看箭头物体时, 视角满足:

$$tg\omega_{\text{RE}} = \frac{y}{1200}$$

要用望远镜分辨该箭头物体,必须要求望远镜将物体视角至少放大为人眼的最小分辨角。

则望远镜的视放大率至少为:

$$\Gamma = \frac{tg60''}{tg\omega_{\text{M}}} = \frac{y/200}{y/1200} = 6$$

11、置于空气中的两薄凸透镜  $L_1$  和  $L_2$  的焦距分别为  $f_1'=50mm$  ,  $f_2'=100mm$  , 两镜间隔为 d=50mm , 试确定该系统的焦点和主平面位置。

艀:

$$\Delta = d - f_1 + f_2 = d - f_1 - f_2 = 50mm - 50mm - 100mm = -100mm$$

求系统焦点位置:

$$x_{F} = F_{1}F = \frac{f_{1}f_{1}'}{\Delta} = \frac{-f_{1}'f_{1}'}{\Delta} = \frac{50mm \times 50mm}{-100mm} = 25mm$$

$$x_{F}' = F_{2}'F' = -\frac{f_{2}f_{2}'}{\Delta} = \frac{-f_{2}'f_{2}'}{\Delta} = \frac{(-100mm) \times (-100mm)}{-100mm} = -100mm$$

即系统物方焦点F在 $F_1$ 的右边 25mm 处,像方焦点F'在 $F_2'$ 的左边 100mm 处。

求系统主平而位置:

$$f = HF = \frac{f_1 f_2}{\Delta} = \frac{(-f_1')(-f_2')}{\Delta} = \frac{(-50mm) \times (-100mm)}{-100mm} = -50mm$$
$$f' = H'F' = -\frac{f_1' f_2'}{\Delta} = -\frac{50mm \times 100mm}{-100mm} = 50mm$$

即系统物方主平面在F的右边50mm 距离处,像方主平面在F'的左边50mm 距离处。

12、置于空气中的两薄凸透镜  $L_1$  和  $L_2$  的孔径均为 2cm,  $L_1$  的焦距为 3cm,  $L_2$  的焦距为 2cm,  $L_2$  在  $L_1$  之后 1.5cm, 对于平行于光轴入射的光线,求系统的孔径光阑、入射光瞳和出射光阑。

解: 先求孔径光阑:

 $L_1$ 通过其前面系统成像就是它本身,设 $L_2$ 对其前面的光学系统 $L_1$ 成像为 $L_2$ ,则由蒂透镜成像公式;

$$\frac{1}{l'} = \frac{1}{l} = \frac{1}{f_1'}$$
  
代入数据.  $\frac{1}{l'} = \frac{1}{-1.5cm} = \frac{1}{3cm}$ 

则得: l'=-3cm

 $L_2$ '位于 $L_1$ 右边 3cm 处。

由垂轴放大率公式: 
$$\beta = \frac{y'}{y} = \frac{l'}{l}$$

则 $L_2$ '的口径大小为:

$$2y' = \beta \times 2y = \frac{l'}{l} \times 2y = \frac{3cm}{1.5cm} \times 2cm = 4cm$$

即 $L_2$ '的口径大于 $L_1$ 的,由于是平行光入射,则 $L_1$ 是孔径光阑。

求入瞳:

因孔径光阑对其前面的光学系统成象为入瞳,故 L, 又为入瞳。

求出蹟:

出瞳为孔径光阑对其后面的光学系统所成之像,即求 $L_1$ 对 $L_2$ 所成之像 $L_1$ '。

再由薄透镜成像公式:

$$\frac{1}{l'} - \frac{1}{l} = \frac{1}{f_2'}$$

代入数据: 
$$\frac{1}{l'} - \frac{1}{-1.5cm} = \frac{1}{2cm}$$
 则得:  $l' = -6cm$ 

 $L_1$ '的口径大小为,

$$2y' = \beta \times 2y = \frac{l'}{l} \times 2y = \frac{6cm}{1.5cm} \times 2cm = 8cm$$

即出瞳 $L_1$ '位于 $L_2$ 左边6cm 处。口径为8cm。



例 要求分辨相距0.000375mm的二点,用波长  $\lambda = 0.00055mm$  的可见光斜照明。求: (1) 此显 微镜物镜的数值孔径NA; (2) 若要求二点放 大后的视角为2',则显微镜的视放大率等于多

(1) 
$$\sigma = \frac{0.5\lambda}{NA}$$

$$NA = \frac{0.5\lambda}{\sigma} = 0.07333mm$$

(2) 
$$\omega_{\text{(x)}} = 2^{1}, \quad \omega_{\text{(x)}} = \frac{0.000375}{250}$$

$$\Gamma = \frac{tg\,\omega_{ik}}{tg\,\omega_{ik}} = 387$$

例1 用望远镜观察时要鉴别5公里处200毫米的间距,应选用多大倍率的望远镜?

艀:

人眼直接观察, 
$$\omega = \frac{200mm}{5\times10^6 mm} \approx 4\times10^{-5} rad$$

通过望远镜观察:  $\omega' > \alpha = 0.00029 rad$ 

$$\Gamma = \frac{tg\,\omega'}{tg\,\omega} = \frac{\omega'}{\omega} = \frac{0.00029}{4 \times 10^{-5}} \approx 7.3^{\circ}$$

例2 经纬望远镜视放大率 Γ=20 ,使用夹线瞄准,何瞄准角误差等于多少?

637

仪器的像方误差角:  $\omega' = 10''$ 

求对应的物空间瞄准角误差: @

$$\frac{\omega'}{\omega} = \Gamma$$

$$\omega = \frac{\omega'}{\Gamma} = \frac{10''}{20} = 0.5''$$

例 一架显微镜,物镜焦距为4mm,中间像成在第二 焦面(像方焦面)后160mm处,如果目镜为20倍,显微 镜的总放大率为多少?总焦距为多少?。

$$x = 160mm$$

$$\beta_{th} = -\frac{x}{f_{th}} = -40$$

$$\Gamma = \beta_{th} \Gamma_{B} = -800$$

$$f' = \frac{250}{\Gamma} = -0.31 mm$$

例. 一个近视眼近视度数为500度;目视光学仪器目镜焦距为20mm,则他使用仪器时,目镜的调节量为多少?

$$SD = -5$$

$$x = -\frac{SDf_{\rm B}^{12}}{1000} = -\frac{-5 \times 20^2}{1000} = 2mm > 0$$

#### 10-8 投影系统中的光能计算。

例.有一台35mm的电影放映机,采用碳弧灯作光源,要求银幕光照度为1001x,放映机离银幕距离50m,银幕宽7m,求放映镜头焦距、相对孔径。已知碳弧灯光亮度 $L=1.5\times10^{6}cd/m^{2}$ ,放映镜头透过率 $\tau=0.5$ 。

35mm电影胶片画幅尺寸为 22×16mm²

$$\beta = \frac{7 \times 10^3}{22} = -333$$

例 用一个250W的資钨灯作为16mm电影放映机的 光源。光源的发光效率为30lm/W, 灯丝外形面积 为5×7mm², 可近似着作一个二面发光的余弦体, 灯丝成像在片窗处, 且充满片窗(7×10nm²), 灯 经后面加有球面反射镜, 使灯丝的平均亮度提高50 %。 假暮宽为4m, 放映物键的相对孔径为1/1.8, 系统透过率 r=0.6, 求概暮上光照度。

$$E_0 = \frac{1}{4} \pi L \left( \frac{D}{f} \right)^2 \frac{1}{\beta^2} \qquad \beta = \frac{4000}{10} = 400$$

$$L = \frac{\Phi}{10} \times 150\% = \frac{30 \text{lm / W * 250 W}}{10} * 1$$

$$E'_{1} = 46.5/r$$

$$\begin{array}{ccc}
 & \mathcal{U} >> f' \\
 & \mathcal{X}' \approx l' = 50 \times 10^3 \, mm
\end{array}$$

$$\begin{array}{cccc}
 & \mathcal{B} = -\frac{x'}{f'} & & & & & & & & & & \\
 & \mathcal{B} = -\frac{x'}{\beta} & & & & & & & & \\
 & \mathcal{B} = -\frac{x'}{\beta} & & & & & & & \\
 & \mathcal{B} = \frac{1}{4} \, k \pi L \left( \frac{D}{f'} \right)^2 \cdot \frac{1}{\beta^2} = 100 \, k \\
 & \mathcal{L} = 1.5 \times 10^8 \, cd \, / \, m^2, \tau = 0.5, \beta = -333$$

$$\begin{array}{cccc}
 & \frac{D}{f'} = \frac{1}{2.3}
\end{array}$$

| 18 |                                               | B |
|----|-----------------------------------------------|---|
|    | the second second second second second second | £ |

|              | 某一路径传播到 $B$ 点,路径的长度为 $I$ . $A$ 、 $B$ 两点光振动相位差记为 ,则                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              | A $I=3$ / 2, =3; B $I=3$ / (2n), =3n;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|              | C $l=3$ / $(2n)$ , =3 ; D $l=3n$ / 2, =3 $n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| ÷            | ( ) 2. 显微镜物镜采用油浸物镜的主要原因是因为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| a.           | A保护镜头; B提高放大倍数; A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|              | C 增加进入显微镜的光通量; D 增加横向放大率。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|              | ( ) 3、波长为 \ 的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|              | 应的衍射角为 θ = ± π / 6, 则缝宽的大小为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|              | Α, λ / 2; Β, λ; C, 2 λ; D, 3 λ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
|              | ( ) 4. 在玻璃(折射率 n=1.60)表面镀一层 MgF。(折射率 n=1.38) 薄膜作为增                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| -            | 透膜. 为了使波长为 500 nm $(1nm=10^9 \text{m})$ 的光从空气 $(n_i=1,00)$ 正入射时尽可能少                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|              | 反射, MgF。薄膜的最少厚度应是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|              | A. 78.1 nm; B. 90.6 nm; C. 125 nm; D. 181 nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|              | ( )5、强度为 L的自然光通过透振方向互相垂直的两块偏振片,若将第三块                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|              | 偏振片插入起偏器和检偏器之间,且他们的透振方向和竖直方向成 6 角,试问透                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|              | 射光的强度为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|              | A $(1/2) I_0 \cos \theta$ B $(1/8) I_0 \sin^2 \theta$ C $(1/4) I_0 \cos^2 \theta$ D $I_0 \cos^4 \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|              | ( )6、已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | į |
| 6-1          | 势是 以(使电子从金属逸出需作功 ell。),则此单色光的波长 1 必须满足:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| K-W3         | A. $\lambda \leq hc/(eU_0)$ ; B. $\lambda \geq hc/(eU_0)$ ; C. $\lambda \leq eU_0/(hc)$ ; D. $\lambda \geq eU_0/(hc)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|              | 二、填空(每小题 3 分, 共 18 分) OX2 OX2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | À |
|              | 1、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|              | 大,可采用的方法是: 1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 1 /1 /3      | 2) <u>A V.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| n=16-1       | √(2、显微镜放大本领的数学表达式为。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Jed - L      | 3、光在两种不同媒质的分界面处要发生和,并遵循                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , |
|              | ') $/s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ¥ |
| Northead St. | and the second s |   |

光学样题及答案

光学样题及答案 一、选择题(每小题 3 分, 共 18 分) \( \rightarrow\) \( \rightarrow\)

( ) 1 真空中波长为 $\lambda$ 的单色光,在折射率为n的均匀透明媒质中,从A点沿

5、自然光以布儒斯特角入射到介质界面上,反射光的振动面垂直于

#### 三、 简答题(每小题 5 分, 共 20 分)

- 1、什么叫光的衍射现象?什么叫菲涅耳衍射,什么叫夫琅禾费衍射?
- 2、什么叫单心光束? 理想成像的条件是什么?
- 3、什么叫有效光阑?如何确定一个光学系统的有效光阑?
- 4、1905年,爱因斯坦在对光电效应的研究中做了什么假设?

#### 四、计算题(每小题 11 分, 共 44 分)

- 1、用波长为 500 nm (1 nm= $10^{\circ}$  m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上。在观察反射光的干涉现象中,距劈形膜棱边 I=1.56 cm 的 I 处是从棱边算起的第四条暗条纹中心。
  - 1) 求此空气劈形膜的劈尖角;
- 2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹, A 处是明条纹还是暗条纹?
  - 3) 在上问的情形,从棱边到 A 处的范围内共有几条明纹?几条暗纹?
- 2、在反射光中观察某单色光所形成的牛顿环。其第 2 级亮条环与第 3 级亮条环间距为 $r_{L}$  bmm,  $\lambda$  求第 19 和 20 级亮环之间的距离。(提示:反射光中牛顿环的光程差  $\delta = \frac{1}{R} \frac{1}{2}$ 。)
- 3. 一个半径为的 R 薄壁玻璃球盛满水,若把一物体放置于离其表面 4R 处,求最后的像的位置。玻璃壁的影响可忽略不计,水的折射率 n=1.33。
- 4、在通常亮度下,人眼瞳孔直径约为 3mm,若视觉感受最灵敏的光波长为 5500Å。试问:
  - 1) 人眼最小分辨角是多大?

- 2) 在教室的黑板上, 画的等号的两横线相距 2mm, 坐在距黑板 10m 处的同学能否看清? (要有计算过程)
- 一 选择题(每小题 3 分, 共 18 分)
- 1、(C); 2、(C); 3、(C); 4、(B); 5、(B); 6、(A)
- 二 填空题(每小题 3 分, 共 18 分)
- 1、1) 使两缝间距变小; 2) 使屏与双缝之间的距离变大  $M \approx -\frac{l}{2} \cdot \frac{25cm}{r}$
- $f_1 f_2$
- 3、反射, 折射, 反射, 折射;
- 4、倒; 正
- 5、入射面
- 6、照射光的频率, 照射光的光强
- 三 简答题(每小题 5 分, 共 20 分)
- 1、答: 光的衍射现象是指光绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,叫做光的衍射。(1分) 菲涅耳衍射是指障碍物到光源和参考点的距离都是有限的,或其中之一是有限的。(2分) 夫琅和费衍射是指指障碍物到光源和参考点的距离都为无限远。(2分)
- 2、凡具有单个项点的光束都叫单心光束(2分);理想成像的条件:光束的单心性经过光学系统后没有改变或者说是在近轴光线,近轴物点等条件(3分)。
- 3、在所有各光阑中,限制入射光束最起作用的那个光阑叫有效光阑;(2分) 先求出每一个光阑或透镜边缘对指定的物点所张的角,在这些张角中找出最小的 那一个,和这个最小的张角对应的光阑就是该物点的有效光阑。(3分)
- 4、答: 爱因斯坦作了光子假设,即: 光在传播过程中具有波动的特性,而在光和物质相互作用的过程中,光能量是集中在一些叫光量子(光子)的粒子上。产生光电效应的光是光子流,单个光子的能量与频率成正比,即 E=hv 四 计算题(每小题 11 分, 共 44 分)
- $\frac{1}{1}$  1 解: 1) 棱边处是第一条暗纹中心,在膜厚度为  $e_2 = 2$   $\lambda$ 处是第二条暗纹中心, 3 ,

依此可知第四条暗纹中心处,即A处膜厚度  $e_4=2$ 

 $\theta = e_4/l = 3\lambda/(2l) = 4.8 \times 10^{-5}$  rad

2) 由上问可知 A 处膜厚为 e<sub>4</sub>=3×500/2 nm=750 nm 对于 $\lambda' = 600 \text{ nm}$  的光,连同附加光程差,在A 处两反射光的光程差为  $2e_4 + \frac{1}{2}\lambda'$  , 它与波长 $\lambda'$ 之比为  $2e_4/\lambda' + \frac{1}{2} = 3.0$  . 所以 A 处是明纹 分 3) 棱边处仍是暗纹, A 处是第三条明纹, 所以共有三条明纹, 三条暗纹 分  $\delta = \frac{r^2}{R} - \frac{\lambda}{2} \qquad r_k = \sqrt{(k + \frac{1}{2})R\lambda}$ 3分  $r_3 - r_2 = \sqrt{\frac{7}{2}R\lambda} - \sqrt{\frac{5}{2}R\lambda} = \text{Imm}$ 3分  $r_{20} - r_{19} = \sqrt{\frac{41}{2}R\lambda} - \sqrt{\frac{39}{2}R\lambda} = (\sqrt{\frac{41}{2}} - \sqrt{\frac{39}{2}})\sqrt{R\lambda}$  $r_{20} - r_{19} = \frac{\sqrt{41 - \sqrt{39}}}{\sqrt{7 - \sqrt{5}}} = 0.39 \text{mm}$ 3、解: 采用逐次成像法求解 1) 第一个表面折射 s = -4R, n' = 1.33, n=1由公式  $\frac{n}{s} \frac{n}{s} \frac{n-n}{R}$  得. s = 16.6R2) 第二个表面折射 s=18.6R, n'=1, n=1.33由公式  $\frac{n}{s}$   $\frac{n}{s}$   $\frac{n-n}{R}$  得. s=-3.87R4、解: 1) 已知 d=2mm, λ=5500Å, 人眼的最小分辨角为:

 $\theta = 1.22 \text{ Vd} = 2.24 \times 10^{-4} \text{ rad}$ 2)设人距黑板 / 米时正好看清, 等号两横线相距 △x =2mm, 则

所以距黑板 10m 处的同学看不清楚。

## 光学练习题

#### 选择题

- 1. 在空气中做双缝干涉实验,屏幕 E 上的 P 处是明条纹。若将缝 S₂盖住,并在 S₁、S₂连线 的垂直平分面上放一平面反射镜 M, 其它条件不变(如图), 则此时(B)
  - A.P 处仍为明条纹
  - B. P 处为暗条纹
  - C.P 处位于明、暗条纹之间
  - D. 屏幕 E 上无干涉条纹



- 2. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采的办法是(B
  - A. 使屏靠近双缝

- B. 使两缝的间距变小
- C. 把两个缝的宽度稍微调窄
- D. 改用波长较小的单色光源
- 3. 在杨氏双缝干涉实验中, 若用折射率为 n 薄玻璃片将上面的狭缝挡住, 则此时中央亮条 纹的位置与原来相比应
- (A) 向上移动:
- (B) 向下移动;

(C) 不动:

- (D) 根据具体情况而定。
- 4. 在照相机镜头的玻璃上均匀镀有一层折射率 n 小于玻璃的介质薄膜, 以增强某一波长2 的透射光能量,假定光线垂直入射,则介质膜的最小厚度应为
- (A)  $\lambda ln$ ;
- (B)  $\lambda/2n$ ;
- (C)  $\lambda/3n$ ;
- (D) 2/4n.
- 5. 一折射率为n,、厚度为 e 的薄膜处于折射率分别为n,和n,的介质中,现用一束波长为  $\lambda$ 的平行光垂直照射该薄膜,如图,若 $n_1 < n_2 < n_3$ ,则反射光 a、b 的光程差为 (B)
- (A),  $2n_2e + \frac{\lambda}{2}$ ; (B),  $2n_2e$ ;
- (C),  $2n_2e + \lambda$ ;
  - (D),  $n_2e$
- 6. 在单缝夫琅禾费衍射实验中,波长为礼的单色光垂直入射在宽度为3礼的单缝上,对应 于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(B)
- (A) 2个 (B) 3个
- (C) 4个

| 7. 当平行单色光垂直入射于如图所示空气劈尖,两块平面玻璃的折射率为 $n_1=1.50$ ,空气                                             |
|-----------------------------------------------------------------------------------------------|
| 的折射率为 $n_2=1$ , $C$ 点处的厚度为 e,在劈尖上下表面反射的两光线之间的光程差为(D)                                          |
| A. $2n_2e$ B. $2n_2e + \lambda/2$ C. $2n_1e$ D. $2n_1e + \lambda/2$                           |
| 8. 如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为 L, 夹在两块平面晶体的中间,形成空气劈形膜、当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离 L 变小,则在 L |
| 9. 波长 $\lambda=550\mathrm{nm}$ 的单色光垂直入射于光栅常数 $d=1.0\times10^{-4}\mathrm{cm}$ 的光栅上,可能观察到       |
| 的光谱线的最大级次为 ( D )                                                                              |
| (A) 4 (B) 3 (C) 2 (D) 1                                                                       |
| •••                                                                                           |
| 10. 三个偏振片 $P_1$ 、 $P_2$ 与 $P_3$ 维叠在一起, $P_1$ 与 $P_3$ 的偏振化方向相互垂直, $P_2$ 与 $P_1$ 的偏振            |
| 化方向间的夹角为 $45^\circ$ ,强度为 $I_0$ 的自然光入射于偏振片 $P_1$ ,并依次透过偏振片 $P_1$ 、 $P_2$ 与                     |
| P3. 则通过三个偏振片后的光强为 ( C )                                                                       |
| (A) $\frac{I_0}{16}$ (B) $\frac{3I_0}{8}$ (C) $\frac{I_0}{8}$ (D) $\frac{I_0}{4}$             |
| 二、填空题                                                                                         |
| 1. 相干光的必要条件为频率相同、 相位差恒定或相位相同                                                                  |
| 振动方向平行。                                                                                       |
|                                                                                               |
| 2. 在双缝干涉实验中, 形成第三级明纹的两束光(波长为λ)的相位差为_0或6π: 光 ~                                                 |
| 程差为31                                                                                         |
|                                                                                               |
| 3. 一束波长为 2 的单色光,从空气垂直入射到折射率为 n 的透明薄膜上,要使反射光得到                                                 |
| 加强,薄膜的最小厚度为 $\frac{\lambda}{4n}$ ,若要使反射光得到減弱,薄膜的最小厚度为 $\frac{\lambda}{2n}$ 。                  |
| 4. 一束光强为 $I_{0}$ 的自然光通过一个偏振片后,光强变为 $-rac{1}{2}I_{0}$ ,若通过两个偏                                 |

振化方向夹角为 $\pi$  /6 的偏振片后,光强变为\_\_\_\_\_\_3  $I_0$ \_\_\_\_\_\_。

- 5. 自然光从空气射到折射率为 $\sqrt{3}$ 的玻璃上,欲使反射光成为偏振光,则起偏角应为 $60^{\circ}$ \_\_\_。
- 6. 白光垂直照射到空气中一厚度为 $3.8 \times 10^{-7}$  m 的肥皂膜上,设肥皂膜的折射率为了1.33,则反射干涉加强的光的波长为 674 mm、403 nm
- 7. 如图所示,把细丝夹在两块平玻璃板之间,已知细丝到棱边距离为  $2.888\times10^{-2}$  m,入射光波长为  $5.893\times10^{-7}$  m,则得 30 条亮条纹间的间距为  $4.295\times10^{-3}$  m,则细丝的直径 d 为\_\_\_5.75× $10^{-5}$  m \_\_\_\_\_\_。
- 8. 在白光照射单缝产生的夫琅禾费衍射公式中,某一波长为  $\lambda_0$  的光波的第三级明条纹与红光(  $\lambda=6\times10^{-7}$  m ) 的第二级明条纹相重合,则  $\lambda_0=$  \_\_\_\_4 $\times10^{-7}$  m \_\_\_\_\_\_\_,
- 9. 可见光的波长范围大约从 400nm 到 760nm,将这个范围的可见光垂直入射到每厘米有 6000 条刻痕的平面光栅上,则第一级可见光谱的角宽度为\_\_\_\_\_\_。
- 10. 单缝的宽度 a=0.40mm ,以波长  $\lambda=589$ nm 的单色光垂直照射,设透镜的焦距 f=1.0m ,则中央明纹的宽度为 2.945mm 。

#### 三. 计算题

1. 在双缝干涉实验中,用一云母片遮住其中一条缝后,光屏上原来第7级明纹位置成为遮住后的中央明纹位置。入射光的波为5.5×10<sup>-7</sup> m,云母片的折射率为1.58。求云母片的厚度。

解:未放云母片:  $r_1 - r_2 = 7\lambda$ 

放了后: 
$$r_1 - (r_2 - d + nd) = 0$$

7: 
$$r_1 - r_2 = (n-1)d = 7\lambda$$
  
 $d = \frac{7\lambda}{n-1} = 6.6 \times 10^{-6} m$ 

2. 已知单缝宽度 $b=1.0\times10^{-4}m$ ,透镜焦距f=0.50m,用 $\lambda_1=400nm$ 和 $\lambda_2=760nm$ 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离。若用每厘米刻有 1000 条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远?这两条明纹之间的距离又是多少?

解: 明条纹的单缝衔射方程 $b\sin\theta=(2k+1)\frac{\lambda}{2}$ 。当k=1,对于 $\lambda_1=400nm$ 和 $\lambda_2=760nm$ ,

$$\sin \theta_1 = 6 \times 10^{-3}, \sin \theta_1 = 1.14 \times 10^{-2}$$
.  $\Re x_1 = 3mm, x_2 = 5.7mm, \Delta x = 2.7mm$ 

光 棚 方 程 
$$d\sin\theta=k\lambda$$
 , 得  $\sin\theta_1'=0.04,\sin\theta_2'=0.076$  。 得  $x_1'=2cm,x_2=3.8cm,\Delta x'=1.8cm$ 

3. 用钠光灯发出的波长为  $5.893 \times 10^{-7}$  m 的光做牛顿环实验,测得某一 k 级暗纹半径为  $4.0 \times 10^{-3}$  m ,测得 k+5 级暗纹半径为  $6.0 \times 10^{-3}$  m ,求凸透镜的曲率半径 R 和 k 的值。

解: 
$$r = \sqrt{kR\lambda}$$

得 
$$4.0 \times 10^{-3} = \sqrt{kR \times 5.893 \times 10^{-7}}$$
  $6.0 \times 10^{-3} = \sqrt{(k+5)R \times 5.893 \times 10^{-7}}$ 

解得: k=4, R=6.79 m

- 4. 用白光垂直照射到每厘米刻有5000条缝的光栅上,求:
- (1) 第二级光谱的张角(2) 能看到几级完整光谱。

解: 光栅方程 $d\sin\theta=k\lambda$ 。当 $k=2,\lambda=400nm,\lambda=760nm$ 

得  $\sin \theta = 0.4, 0.76$ 

所以第二级光谱的张角为 0.36

当 $\lambda = 760nm$ ,  $\sin \theta = 1$ 时, k取最大值 2

- 5. 波长为 400 nm 的单色光垂直入射到一透射光栅上,接收屏上 2 个相邻主极大明条纹分别 出现在  $\sin \varphi = 0.20$  和  $\sin \varphi = 0.30$  处,并且第四级缺级。试求:
  - (1) 光栅常数;
  - (2) 光栅狭缝的最小宽度:
  - (3) 按上述选定的缝宽和光栅常数,写出光屏上实际呈现的全部级数。

解: 光棚方程 $d\sin\theta = k\lambda$ 

 $d \times 0.2 = k \times 400$ 

 $d \times 0.3 = (k+1) \times 400$  解得, k = 2, d = 4000nm

 $k = \frac{d}{a}k' = 4k'$  缺级,得  $a = \frac{d}{4} = 1000$ nm

k最大值 $k = \frac{d}{\lambda} = 10$ 。故实际呈现的全部级数 0,±1,±2,±3,±5,±6,±7,±9



# 光学试题库(计算题)(答案附后)

12401 已知折射光线和反射光线成 90°角,如果空气中的入射角为 60°, 求光在该介质中的速度。

14402 在水塘下深 h 处有一捕鱼灯泡,如果水面是平静的,水的折射率为 n ,则从水面上能够看到的圆形亮斑的半径为多少?

14403 把一个点光源放在湖水面上 h 处, 试求直接从水面逸出的光能的百分比(忽略水和吸收和表面透镜损失)。

23401 平行平面玻璃板的折射率为 $n_0$ ,厚度为 $t_0$ 板的下方有一物点 P,P 到板的下表面的距离为 $t_0$  ,观察者透过玻璃板在 P 的正上方看到 P 的像,求像的位置。

23402 一平面平行玻璃板的折射率为 n ,厚度为 d ,点光源 Q 发出的近于正入射的的光束在上表面反射成像于 Q ,光线穿过上表面后在下表面反射,再从上表面出射的光线成像于 Q 。求 Q 和 Q 。间的距离。

23403 来自一透镜的光线正朝着 P 点会聚, 如图所示,

要在P'点成像,必须如图插入折射率 n=1.5 的玻璃片,

求玻璃片的厚度.已知 $\Delta=2mm$ .



23404 容器内有两种液体深度分别为力,和力,折射率

分别为 n, 和 n, , 液面外空气的折射率为 n , 试计算容器底到液面的像似深度。

23405 一层水(n=1.5) 浮在一层乙醇(n=1.36) 之上, 水层厚度 3cm, 乙醇厚 5cm, 从正方向看, 水槽的底好象在水面下多远?

24401 玻璃棱镜的折射率 n=1.56, 如果光线在一工作面垂直入射, 若要求棱镜的另一侧无光线折射时, 所需棱镜的最小顶角为多大?

24402 一个顶角为 30°的三棱镜, 光线垂直于顶角的一个边入射, 而从顶角的另一边出射, 其方向偏转 30°, 求其三棱镜的折射率。

24404 有一玻璃三棱镜,顶角为α,折射率为n,欲使一条光线由棱镜的一个面进入,而沿另一个界面射出,此光线的入射角最小为多少?

24405 玻璃棱镜的折射棱角 A 为  $60^{\circ}$ , 对某一波长的光的折射率为 1.5, 现将该棱镜浸入到折射率为 4/3 的水中, 试问当平行光束通过棱镜时, 其最小偏向角是多少?

32401 高为 2cm 的物体,在曲率半径为 12cm 的四球面镜左方距顶点 4cm 处。求像的位置和性质,并作光路图。

32402 一物在球面镜前 15cm 时,成实像于镜前 10cm 处。如果虚物在镜后 15cm 处,则成像在什么地方? 是凹镜还是凸镜?

32403 四面镜所成的实像是实物的 5 倍,将镜向物体移近 2cm,则像仍是实的,并是物体的 7 倍,求四面镜的焦距。

32404 一凹面镜,已知物与像相距 lm ,且物高是像高的 4 倍,物和像都是实的,求凹面镜的曲率半径。

32405 一高度为 0.05m 的物体, 位于凹面镜前 0.75m , 像高为 0.2m , 求分别成实像和虚像时的曲率半径。

32406 凹面镜的曲率半径为 80 cm,一垂直于光轴的物体置于镜前何处能成放大两倍的实像?置于何处能成放大两倍的虚像?

32407 要求一 虚物成放大 4 倍的正立实像、物像共轭为 50 mm、求球面镜的曲率半径.

32408 一个实物置在曲率半径为 R 的凹面镜前什么地方才能:(1)得到放大 3 倍的实像:(2)得到放大 3 倍的虚 傻

32409 一凸球面镜,当物在镜前某处时,像高为物高的 1/4,当物向凸面镜移动 20cm 时,像高变为物高和 1/2,试术该面镜的焦距.

32410 设凹面镜的曲率半径为 16 cm,有一 0.5 cm 高的物体置于镜前 20 cm 处,求所成像的位置,大小和像的性质。

32411 一发光点的像到凹面镜顶点的距离为 0.75m,到主光轴的距离为 0.05m,发光点的像到主光轴的距离为 0.2m。当像:(1)为实像:(2)为虚像时,求每种情况下凹面镜的曲率半径 1.

32412 设一物体位于一球面像镜前 20 cm 处, 经球面镜成一正立的为原物 1/3 大小的虚像。求(1) 像的位置:(2) 球面镜是凸球面镜还是凹面镜?

32413 一薄玻璃平板与曲率半径为60 cm 的凸球面镜相距7.5 cm,一点光源置于板前方P点(如图所示).薄玻璃平板为部分反射部分透射,厚度可以忽略,为使光源通过平板的反射像和经过平板透射再由凸面镜反射所成的像重合,问P到平板的距离应多少?



32414 两个曲率半径都为 20 cm 的凹面镜,相对放置,并使它们的焦点重合,轴上一发光点,置于两镜之间,并离其中一凹面镜顶点 5 cm. 求发光点经二凹面镜相继成像后像点的位置.

32415 曲率半径为 R 的凹面镜与一平面镜相距 2R,在两镜之间主轴上有一发光点,经两次反射后物、像点重合,计算发光点的位置.

32416 两个曲率半径都为 R 的凸面镜和凹面镜相对而立,两顶点的距离为 2R ,在两镜之间主轴上有一发光点,设光先经凸面镜反射再经凹面镜反射,物像重合,求物点的位置。

33401 半径 r=a(a>0)的单球面折射系统,物方折射率 n=1,像方折射率 n'=1.5.(1)求系统的物方焦距和像方 焦距;(2)物距 s=-4a 的物体 PQ 竖立在主光轴上,用高斯公式求像的位置和性质,并作光路图.

33402 半径为 20 cm 的球形金鱼缸中心有一小鱼。若玻璃缸壁的影响可忽略不计,问:(1)缸外观察者看到小鱼的位置在哪里,放大还是缩小?(2)如小鱼在后壁处,看到的情况又如何?并作光路图。

33403 直径为 20 cm 的玻璃球, 折射率为 1.5,球内有两个小气泡,看来其中一个恰好在球心.从最近的方位去看另一个气泡,它位于球表面和球心的中间,求两气泡的实在位置.

33404 百径为 4cm 的长玻璃棒,折射率为 1.5.其一端磨成曲率半径为 2cm 的半球形.高为 0.1cm 的物垂直

置于棒轴上离凸凹面顶点 8cm 处.求:(1)焦点的位置:(2)像的位置.

33405 直径为 4cm 的长玻璃棒, 折射率为 1.5,其一端磨成曲率半径为 2cm 的半球形,长为 0.1cm 的物垂直置于棒轴上离凸凹面顶点某处, 在棒内成实像长 0.2cm,求像到系统曲率中心的距离,并作光路图

33406 一个平凸透镜紧贴报纸,人眼通过透镜看报纸,当透镜平面在上时,报纸成的虚像在平下 1cm,当凸面在上时;报纸的虚像在凸面下 1.2 cm 处,若透镜中央厚度为 1.5 cm,试求透镜的折射率和它的凸球面的曲率 半径.

33407 一凹球折射面是水和空气的分界面,球面半径为 r,当近轴发散光束从水到空气折射,试求该系统成虚像的条件(设水的折射率为).当半径为 2cm,物点在折射面前 4cm 处时,能否成虚像,胸的位置在哪儿?

34401 半径为 R, 折射率为 1.5 的玻璃球置于空气中, 求玻璃的像方焦点的位置, 并作光路图.

34402 半径为 R, 折射率为 1.5 的玻璃球置于空气中,若物在前球面顶点 O<sub>1</sub> 左方 4R 处,求像的位置,并作光路图.

34403 一平行光束正入射到一个实心玻璃球上,试用球半径 R 和折射率 n 来确定成像位置。

34404 曲率为 R 折射率为 n 的半球透镜,平面向左,置于折射率为 n' 的介质中,求像方焦点的位置。若半球左方折射率为 $n_1$ ,右方的折率 $n_2$ ,则焦点又在哪里?

34405 一平行细光束,垂直入射在曲率半径为 100cm,折射率为 1.5 的玻璃半球透镜的平面上,试求(1) 玻璃半球在空气中的像方焦点的位置;(2)玻璃半球在水中像方焦点的位置(水的折射率为 1.33)。

34406 一平行细光束,垂直入射在曲率半径为 10cm ,折射率为 1.5 的玻璃半球透镜的平面上 ,求光束会聚点的位置,若将玻璃半球的凸面正对着入射的平行光束,其会聚点又在何处.

34407 空气中有一半径为 3 cm , 折射率为 1.5 的玻璃半球,球面向右,若在平面前 4 cm 处有一物点,求像的位置和性质,并作光路图

34408 曲率为 R、折射率为 n 的半球透镜,球面向的左,置于折射率为 n' 介质中,求像方焦点的位置 . 如 半球置于空气中,焦点又在哪里?

34409 空气中有一半径为 3 cm , 折射率为 1.5 的玻璃半球,球面向左 , 若在球面前 4 cm 处有一高为 1mm 物 , 求像的位置和性质,并作光路图.

34410 一个凹面镜焦距为一115 cm, 水平放置, 凹面朝土, 在内注满某种液体, 液体中心厚度为 5 mm, 当一个发光点放在液体上方 159 mm 处, 其像点和它重合, 试求所浸液体的折射率。

34411 光源 S 位于焦距为 25 cm 的凹面镜前 51 cm 处,在凹面镜和光源之间置一透明平板,该平板的折射率为 1.5。问平板多厚时,光源经系统所成的像才能和光源重合。

34413 直径为 100mm 的球形玻璃缸, 左侧面镀银, 缸内装满水  $(n = \frac{4}{3})$ , 一条小鱼在镀银面前 25 处, 问在缸右侧的观察者看到的鱼有几条? 像的位置和性质如何?

34414 一个玻璃球, 半径为 R 折射率为 1.5, 后半个球面上镀银, 如果平行光从透明装面入射, 问会聚点在何处?

35401 试证明空气中折射率为 1.5、曲率半径相等的双凸薄透镜的主焦点和曲率中心重合。

35402 (1) 两曲率半径均为 10cm 、折射率为 1.5 的双凸薄透镜,置于空气中,它的焦距是多少? (2) 若透镜右边充满水( $n_2=\frac{4}{3}$ ),像方焦距为多少? (3) 若透镜全部浸在水中,焦距是多少?

35403 一海透镜在空气中的焦距为 $f'_1$ ,将该透镜置于折射率为n'的介质以后,其焦距为多少?(设透镜的折射率为n)

35404 一凸透镜在空气中焦距为 40 cm ,在水中焦距为 13.68 cm ,问此透镜的折射率为多少? 设水的折射率为 1.33. 若透镜置于二硫化碳中(折射率为 1.62)焦距为多少?

35405 把一个物体放在双凹透镜的曲率中心处,透镜的两个球面曲率半径相等.试用透镜的曲率半径 r

和折射率 n 表示像的位置。

35406 一透镜放在一空筒口,口面距筒底 45 cm ,底面物点所成的像在透镜上面 36 cm 划。上端于平有探度为 40 cm 的液体时,则像距为 48 cm ,求液体的折射率。

35407 双凸薄透镜的两曲率半径均为 10 cm , 折射率为 1.5 ,计算在下列情况时薄透镜光心的位置。(1) 薄透镜左边为空气右边为水 (折射率为 1.33);(2)薄透镜全部浸在水中.

35408 一等曲率半径的双凸薄透镜,折射率为n=1.5,在空气中的焦距为 12 cm,求(I)图)口前沿率 半径;(2)放在n=1.62 的  $CS_2$  中的焦距为多少;(3)若将另一双凸薄透镜处于左边是水右边是空气的。图下。 并保持透镜与空气接触界面的曲率半径与上相同,若要保持像方焦距仍为 12 cm ,和水接触的球面的曲率半径应为多大?

35409 一薄透镜折射率为1.5,光焦度为500 屈光度,将它浸在某液体中光焦度变为 -1.00 屈光度,求此液体的折射率.

35410 折射率为 1.5 的双凸薄透镜,曲率半径分别为 30 cm 和 60 cm,如果要把大小为吊灯一半的像投射到纸屏上,那么透镜与吊灯及纸屏之间的距离必须是多少?并作光路图.

35411 一薄正透镜,在空气中的焦距为 100 mm ,其玻璃的折射率n=1.5,现浸在水中,求位于透镜前 600 mm 处的发光点的成像位置(水的折射率为 $n'=\frac{4}{3}$ ).

35412 一類平凸透镜,在空气中的焦距为 100cm,现将其平面一侧稍许浸入水中,其球面一侧仍处于空气中,如图,一平行光束从上面垂直入射透镜,试问其会聚点在平面下多远处? (水的折射率为 $n'=\frac{4}{2}$ ).



35413 会聚透镜在屏上形成清晰的比原物大二倍的实像,已知物体到透镜的距比透镜的焦距次。cm.求透镜到像屏的距离。

35414一束平行光束垂直射到一平凸透镜上,会聚子透镜后36cm处,若此透镜的凸面镀银,则平行上会聚于透镜前6cm,求透镜的折射率和凸面的曲率半径。

35415 在相距24cm的两个发光点之间,放入一个薄会聚透镜,已知一个点光源离开透镜为6 cm,空时两点光源成像在同一点,求透镜的焦距。

35416 求焦距为 f 的会聚透镜对实物成实像的最小共轭距离 L.

35417 在空气中,点光源在焦距为 20 的正透镜前 30 处,沿光轴方向以  $4^{cm}/_{s}$  向右运动,求像的运动速度.

35418 由一个焦距为 f' 的凸透镜对一个实物产生一个放大 m 倍的实像,求证物和透镜的距离  $s = \frac{m+1}{m} f'$  .

35419 一薄透镜对某一物体成  $\beta=-1$  的像于屏上,当再用另一薄透镜紧靠其上时,则光屏需向透镜方向移近 20 mm ,且  $\beta_2=\frac{3}{4}$ ,求两只透镜的焦距。

35420 会聚透镜的焦距为 20cm,用它得到放大率为 $\frac{1}{4}$ 的实像,物与像的距离是多少?如果用主焦距大小相同的发散透镜,得到放大率为 $\frac{1}{4}$ 的虚像,那么物与像的距离又是多少?

36401 空气中相距为 3 cm 的两共轴薄凸透镜  $L_1$ 和  $L_2$ , 焦距分别为 6 cm 和 3 cm,求系统的像方焦点位置,若物在  $L_1$  左方 6 cm 处,求最后像的位置。

36402 一高为 h 的发光体位于一焦距为 10cm 的会聚透镜的左侧 40cm 处,第二个焦距为 20cm 的会聚 折透镜位于第一透镜右侧 30cm 处;(1)计算最终成像的位置;(2)计算最终成像的高度与物体高度之比;(3)画出光路图。

36403 把一个物体放在一个凸透镜左方 20cm 处,此透镜的焦距为 10cm,把第二个凸透镜放在第一个右方 30cm 处, 焦距为 12.5cm,求最后像的位置。

36404 凸透镜的焦距为 10cm,凹透镜的焦距为 4cm,两透镜相距 12cm,已知高为 7cm 的物体放在凸透镜 左边 20cm 处,物先经凸透镜成像现由凹透镜成像,求像的位置和性质,并作光路图.

36405 一个焦距为 10 cm 的薄凸透镜与一个焦距为-5 cm 的薄凹透镜相距 10 cm 成共轴系统,高为 3 mm 的物体在凸透镜左方 20 cm 处,试求该物体最后成像的位置和大小,并作光路图、

36406 轉正透镜对很远处物体形成一实像如图所示,像高为 h,像距为.4l 一负透镜  $L_2$ ,焦距l,放在 $L_1$  右距离为 2l 处,另一正透镜  $L_3$ ,焦距为 2l,放在  $L_1$  右距离为 3l 处,(1)求最后成像位置离  $L_1$  的距离;(2)求像高.



36407 一平凸薄透镜, 当平面镀银, 类似一个焦距为 28 cm 的凹面镜, 当凸面镀银, 类似一个焦距为 10 cm 的凹面镜, 求透镜的折射率。

36408 一个新月薄透镜的两表面曲率半径 $r_1$ 和 $r_2$  依次为-20cm 和-15cm,薄透镜的折射率为n=1.5,今在如图所示的后表面 $r_2$ 的凸面镀银,在 $r_1$ 的那个球面左方 40 处主轴上放一个高为 1cm 的物体,试求最后像的位置。



36409 在焦距为 20cm 的凸透镜  $O_1$  前 10cm 处放一物点在主轴上,在透像后 d=-0cm 处验—2=160  $O_2$  垂直于主轴,试求最后成像的位置。

36410 三个共轴的双凸薄透镜组成复合光具组,它们的焦距都是 20cm,两相图录 葡萄店店。都是 30cm,今在第一透镜左方 60cm 处的主轴上放一高 1cm 的小物体,计算最后像的位置。译字写出来。

45401 有一焦距为 50 cm 的物镜,拟制一个 3×的望远镜,问:在开普勒廖远信人。是一门竞信度对物镜的到目镜的距离是多少?(2)在伽利略望远镜中,目镜的光焦度和物镜到目镜语是是一个一个

48401 一盏电灯悬于直径为 d 圆桌中心上方,高度为 h 试证明阿京中岛至2000 ( $1+\frac{d^2}{4h^2}$ ) $\frac{3}{2}$  .

52401 用 2, 和 2, 两种成份的复色光做杨氏双缝干涉实验,其中, 2, =500nm 以给金 + 5.5 + 2 + 4 + 5.5 + 4 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 + 5.5 +

52402 在杨氏双缝干涉实验中,已知缝中心间距为土,若光源 8 发出的光子之上, 上上, 上 分别为  $I_{10}$  和  $I_{20}$ ,求距离双缝 L 的屏上光强分布,将其表示成光屏土位置的函数。

52404 在杨氏实验中,P 为屏幕上第 5 级亮纹的所在位置,现在缝  $S_1$  后指入患片  $f_2 = \{.5\}$  。 图 P 点变为零级明纹,求玻片的厚度,已知  $\lambda = 500 nm$  。

52405 用厚度 $l = 6.64 \times 10^{-3}$  mm 的云母片复盖在杨氏双缝的一个缝上,则屏幕上中心点 6 生生 2.7 7级明纹,若波长  $\lambda = 550$  nm,问云母片的折射率多大?

52407 波长为 $\lambda=600$ nm 的光照射到间距d=0.3mm 的杨氏双缝上、求:循汉军(10.100 强行)。上上

二级与第三级两暗纹间的距离为多少?(2)距离中央亮条纹 10 mm 处的 P 点是明还是暗?

52408 单色平行光垂直入射到一缝距 d=1.127mm 的双缝上,在缝后距缝为  $D_0(D_0>>d)$  处的幕上 测得两相邻干涉明纹的问距,  $\Delta x=0.5362~mm$  ,将幕移远 50 cm 后,则幕上相邻明纹的间距增到  $\Delta x=0.8083$  ,求:(1)入射光波长;(2)原来缝与幕的距离  $D_0$  .

52409 在杨氏双缝实验中,缝距为 0.5 mm,缝屏相距为 1 m,单色光的波长为 500 nm,求(1)中央明纹与第一明纹的距离;(2)若 P点 y=0.25 mm,则两相干光在 P点的光程差和位相差为多少? (3)P点的光强与  $P_0$ 点光强之比.

52410 在杨氏双缝干涉实验中,将厚度为 d ,折射率为 n 的薄玻璃片插入缝 $S_2$ 的光路中,设 d=0 时 屏中心处的光强为  $I_0$  ,试计算: (1)  $P_0$  点的光强与厚度的函数关系。(27 d 取什么值时, $P_0$  点的光强最小?

53401 菲涅耳双面镜夹角为  $2.9^{\circ}$ ,。缝光源离双面镜的交线 10 cm ,接收屏幕与双面镜交线的距离为 210 cm ,光波波长为 600 nm 。求干涉条纹的问距。

53402 華涅耳双面鏡实验中,光屏与双面镜交线的距离 L=2.5, $\lambda_0$ =500nm,条纹间距  $\Delta l$  ==0.5mm,若线光源到两反射交线的距离为 r=1m,问两镜的夹角是多少?

53403 如图所示双面镜干涉实验,两镜面夹角 $\varphi=10^{-3}$  rad=,光源到双面镜交线的距离 r=0.5m,光的 波长为 500nm,镜面交线到幕的距离 L=1.5m,(1)求幕上条纹宽度的值;(2)问幕上最多有多少条明纹?



54401 在双棱镜实验中,光源与镜的距离  $L_1$ =60cm,镜与幕的距离  $L_2$ =120cm,镜材料的折射率 n=1.5,所用光的波长为 589nm,测得条纹宽度=1.0mm,求双棱镜的顶角 A 的大小.

54402 在双棱镜实验中的镜材料折射率为 n=1.5 ,匀的小锐角  $A=0.5^\circ$  ,光源 S 到镜距离  $L_1=100 \mathrm{mm}$  ,镜到 
幕的距离  $L_2=1\mathrm{m}$ ,测得条纹宽度  $0.8\mathrm{mm}$ ,求入射光的波长.



55401 在洛埃镜实验中狭缝光源  $S_0$ 和它的虚像  $S_1$ 在镜左边 20cm 处,镜长 30cm,在镜右侧边缘处放置一毛玻璃片,如 S 到镜面的垂直距离为 2.0mm ,所用波长为 720nm 的红光,试计算干涉条纹的间距及屏上的条纹数。

55402 在洛埃镜实验中,光源 S 在镜面以上 2mm 处,镜在光源和幕的正中间,镜长 0.4m ,幕和光源的距离 1.5m ,光的波长为 500nm .求(1)条纹宽度多大;(2)干涉条纹的范围多大;(3)条纹总数为多少?

55403 洛埃镜实验如下图所示,AB 为一长 5cmr 的平面镜 S 为一点光源, 位于 P 点上方 1mm 处距离 PA=5cm, BO=10cm,设光源发出的光波长为 500nm,(1)若观察屏在平面镜右端 B 处,O 处的明纹暗如何?为什么?(2)求出屏上相邻条纹的间隔;(3)在顺着光线直接射向观察的方向上引入一个介持薄膜(n=1.5),发现某点处有两条条纹移过,求薄膜的厚度.



55404 洛埃镜实验如图所示, $\lambda = 500nm$ ,  $\overline{O'S} = 1mm$ ,  $\overline{BO} = 190cm$ ,  $\overline{AB} = \overline{AO'} = 5cm$  (1)确定干涉区域的大小,求条纹总数;(2)在  $\overline{SO}$  光路上插入折射率为 n=1.5 的云母片,若能使最下面的条纹移到原条纹量上部,试求云母片厚度应该为多少?



55405 一船在 25m 高的桅杆上装有一天线,向位于海平面上 150m 高的悬崖顶的接收站发射波长 2~4m 无线电波,当船驶到离悬崖脚 2km,时,失支了无线电联系。向所用无线电波长、假岩海平面反射无线



55406 一微波探测器位于湖岸水面上 0.5m 高处,一射电星发射波长为 21cm 的单色微波,从地平线上缓缓升起,探测器将相继指出信号强度的极大值和极小值,问当接收到第一个极大值时,射电星位于地平线上什么角度?

56401 空气 $(n_1 = 1)$ 中的玻璃 $(n_2 = 1.5)$ 板上有一层厚度 $l = 0.2 \mu n$ 的甘油膜 $(n_1 = 1.47)$ ,词甘油膜被白光垂直照射在它的上面,则正面呈现什么颜色?背面呈现什么颜色?

56402 空气中的一厚度为 380nm 的肥皂膜 (n=1.33), 如果白光垂直照射在它的上面,则正面呈什么颜色? 背面呈什么颜色?

 $\lambda_2 = 500nm$  两波长处,反射光星相消干涉,并在该两波长之间无另外波长的相消干涉,已知油膜和玻璃的折射率分别为 $n_1 = 1.3$  和 $n_2 = 1.5$  ,求油膜厚度的值。

56404 垂直照射的白光肥皂膜(n=1.33)上反射时, $\lambda_1=600nm$  的光波为干涉极大,而  $\lambda_2=450nm$  的光波为干涉极小,其中间无另外的极小,求肥皂的最薄厚度的值?

56405 沿着与肥皂膜法线成 45° 角的方向观察反射光时,膜呈绿色。通过单色仪进一步测得其波长为500nm , 设肥皂膜的折射率为 1.33, 求(1) 肥皂膜的最薄厚度;(2) 如改为垂直观察,膜呈什么颜色?

56406 用波长 $\lambda_1=500$ nm 的光以  $60^6$ 入射角照射空气中的肥皂 ( $n_1=1.33$ ),看到膜最亮。如果改用波长为 $\lambda_2$ 的光垂直照射,并且使膜也最亮, $\lambda_2$ 应该多大?



57401 如右图所示,两平面玻璃在一边相接,在与此边距离 20cm 处夹一直径为 0.05mm 的细丝,以构成空气劈尖,若用波长为 589nm 的钠黄光垂直照射,相邻暗条纹的间隔为多少?在玻璃面板上共有几条

明纹?这一实验有何意义?

57402 为了则量细金属丝直径,可把它放在两平晶的一端形成空气劈尖,用  $\lambda = 589.3 nm$  单色光垂直照射,测得干涉条纹间距离为 $4.295 \times 10^{-3} mm$ ,金属丝到劈尖顶点距离为 $2.888 \times 10^{-2} m$ ,求细丝直径。



57403 折射率分别为 1.45 和 1.60 的两玻璃板, 使其沿一边相接触, 形成一个顶角为为 0.1° 的尖劈, 使波长为 500nm 的光垂直入射于劈, 并在上方观察尖劈的干涉条纹, 试求: (1) 条纹间距; (2) 若将整个尖劈浸在折射率为 1.5 的油中, 则条纹问距又为多少? (3) 定性说明浸入油中后, 干涉条纹将怎样变化?

57404 在半导体生产中,为了测定硅片上的二氧化硅薄膜的厚度,将薄膜一端做成劈尖状,如图所示,用波长  $\lambda=546.1nm$  的绿光从空气中垂直照射硅片,在垂直方向观测到二氧化硅劈尖上出现八条暗纹,第 八条是劈尖与平行平面膜的交线 M,若取二氧化硅的折射率 $n_2=1.5$ ,硅的折射率 $n_3=3.4$ ,(1)二氧化硅薄膜的厚度是多少?(2)劈尖的核边 N 是明纹还是暗纹?为什么?



58401 用波长为  $\lambda = 589.3 nm$  的钠光垂直照射在牛顿圈上,得到第十个明环的直径为 5 mm ,求该平凸透镜的曲率半径。

58402 牛顿是冕牌玻璃做的平凸透镜 $(n_1=1.5)$ 和火石玻璃做的平面玻璃 $(n_2=1.75)$ 构成,中间充以二硫化碳(n=1.62),在波长为2的单色光垂直入射时计算反射光 K 级明环半径 $r_k$ ,环心是明的还是暗的?

58403 在牛顿环实验中,如果只把空气隙改换成折射率为  $n(1 < n < n_{\rm tg})$ 的另外介质,发现第 10 级明环的直径由原来的 1.4cm 变为 1.27cm ,求 n 是多大?

58404 在牛顿环实验中,已知凸透镜的曲率半径 R=10m ,测得第 K 级暗环半径为  $r_{K}=4mm$ ,第 K+5 级暗环为  $r_{K-5}=4mm$  , 求级数 K 和垂直照射的单色光的波长  $\lambda$  各为多少?

58405 牛顿环装置中的平凸透镜的曲率半径 R=3.4m ,测得某明环半径 $r_K=1\times 10^{-3}m$ ,而其外第四个明环的半径 $r_{K+4}=3\times 10^{-3}m$ ,求所用的垂直入射光的波长  $\lambda$  是多大?

58406 在牛顿环实验中,测得由钠黄光( $\lambda_0 = 589.3 nm$ )产生的第 5 和第 15 个明环的直径分别为 2.303mm 和 4.134mm,计算透镜凸面的曲率半径。

58407 (1) 用  $\lambda_1 = 600nm$  和  $\lambda_2 = 450nm$  的两种波长的光观察牛顿环,用  $\lambda_1$  时的第 k 级暗环与  $\lambda_2$  时的第 k+1 级暗环重合,求  $\lambda_1$  用时第 k 级暗环的直径。设平凸透镜的曲率半径 R=90cm ,(2)在观察牛顿环中,用  $\lambda_1 = 500nm$  的第 6 个明环与用  $\lambda_2$  时的第 7 个明环重合,求被长  $\lambda_2$  的数值为多少。

58408 用牛顿环实验欲测某单色光的波长 λ , 首先只测得其第一级与第四级暗环距离 3.85mm , 如果改用波长 589.3nm 的单色再作实验,则测得同样第一级与第四级的暗环距离变为 4mm ,求原来光的波长 λ 的值。

58409 在利用牛顿环测未知单色光波长的实验中, 当用已知波长为 589.3nm 的钠黄光垂直照射时, 测得第一和第四明环的距离为 0.4cm , 当用未知的单色光垂直照射时, 测得第一和第四明环的距离为 0.385cm , 求: (1) 平凸透镜凸面的曲率半径为多少? (2) 未知单色光波长为多少?



58410 一折射率为 1.5 的平板玻璃上有一油滴现时形成平凸形油膜,油膜的折射率为 1.6 ,波长为 500nm 的平行单色光垂直入射时,可在反射光中观察到看到牛顿环。(1) 油膜边缘呈明纹还是暗纹? (2) 当油膜中心最大厚度  $h_m=650mm$  时,能看到几条明纹? (3) 当油膜向外扩展时,条纹的间距增大还是减小?

58411 如图所示也是一种牛顿环装置,波长 500nm  $_{*}$ (1) 当空气隙的最大厚度 $_{\max}=2500nm$  时,求暗环的最高级次及其位置,(2) 用手按 A 镜的上表面时,环纹将有何变化?



58412 如图中,平凸透镜的曲率半径为 R, , 待剩平四透镜的曲率半径为 R, , 两曲面之间为空气隙,

当用波长为的光垂直照射时,(1)试证明牛顿环的暗环半径为 $r_k=rac{k\lambda R_1R_2}{R_2-R_1}$ ;(2)若 $\lambda=589.3nm$ ,

 $R_1 = 102.3cm$  ,并且测得第四级暗环半径 $r_2 = 0.5cm$  , 求  $R_3$  多大?



58413 两平凸透镜,凸面相对,波长为 $\lambda$ 的平行单色光垂直入射时,在反射方向看到牛顿环。(1) 试计算第k级明环的半径。(2) 若 $R_1=R_1=1$ m ,相邻明纹的半径为1.2mm 和1.07mm ,求入射光波长。



59401 迈克耳逊干涉仪可以用来精确测量单色光的波长,调整仪器,使得观察到单色光照射下产生的 等倾圆条纹,如果把反射镜平移 0.03164mm , 观察到圆条纹向中心收缩并消失了 100 个, 试计算单色光的波长。

59402 一个 600nm 的标准波长与一个稍小于 600nm 的未知波长的光,在迈克耳逊干涉仪上进行比较时,当动镜每移到 1.5mm,两波长的干涉条纹就重合一次。求未知波长。

59403 用 589.3nm 的钠光观察迈克耳逊干涉仪的干涉条纹,先看到干涉场中有 12 个明环,且中心是明的,移动平面镜后,看到中心吞进了 10 环,而此时干涉场中还剩 5 个明环。求:(1)移动的距离;(2)空气膜的厚度增大还是减小?(3)开始时中心明整的干涉级;(4) M,移动后,从中心向外数第 5 个明环的干涉级。

62401 波长 563.3nm 的单色平行光从远处光源发出,通过一个直径为 d=2.6mm 的小孔,在距小孔  $r_0=1$ m 处的轴线上 P 点观察,问(1)P 点是明还是暗的?要便 P 点变成与(1)相反的情况,观察点至少要向左或向右移动多少距离?

62402 波长 600nm 的单色平行光垂直入射到带有圆孔的不透明遮光板上,圆孔直径 d=1.2mm, 在板后圆孔轴线上距离为  $b_{1=30\text{cm}}$  处观察到暗点,为使在衍射图像的中心又观察到暗点,问:从此点沿孔轴所应移开的最小距离  $\Delta b$  是多少?

62403 波长 450nm 的平面单色光垂直入射于半径为 1.34mm 的圆孔,已知在圆孔轴线上,距圆孔 80cm 处为一明点,求轴上与此亮点相邻的两亮点之间的距离。

62404 (1) 已知波带片到光源的距离为 R, 到观察点的距离为 r。, 入射光波长为 λ, 求第 k 个菲涅

耳半波带的半径。(2) 若  $R=r_0=10m$  ,  $\lambda=450nm$  求第一半波带的半径。

62405 在菲涅耳圆孔衍射中,半径为 2mm ,光源距圆孔 R=22m ,波长  $\lambda=500nm$  , 当接收屏从很远的地方向圆孔靠近时,求:(1)第一次出现亮点的位置,(2)第一次出现暗点的位置。

62406 若某一波带片对其轴上的  $P_0$ 点只露出前 5 个奇数半带片,在  $P_0$ 点光强为自由传播时该点光强的多少倍?

62407 处长是 589nm 的单色光源照明一距离很远的直径为 D=2.6mm 的小孔,另一屏距孔 1.5m ,问: (1) 轴线与屏的交点是亮点还是暗点? (2) 当孔的直径改变为多大时,该点的光强度会发生变化?

62408 波长为 450nm 的单色平行光垂直射到不透明的屏 A 上,屏上有半径为 0.6mm 的小孔及与小孔 同心的环形缝,其内外半径各为  $0.6\sqrt{2}$  mm 和  $0.6\sqrt{3}$  mm,计算在距屏 A 为 80cm 的屏 B 上出现的衍射花样中央亮点的强度。设入射光强为 I。

63401 若有一波长为 600nm 的平行光,垂直入射于缝宽为 0.6mm 的单缝上,缝后有焦距为 40cm 的透镜,求:(1) 屏上中央亮纹的宽度。(2) 若在距屏中心 O 为 1.4mm 处观察到一亮纹,问此亮纹为第几级。

63402 一单色平行光垂直照射单缝,产生夫琅和费衍射,若其第三级明纹位置恰好与 600nm 的第二级明纹位置重合,求前一种单色光波长。

63403 西单光同时垂直照射单缝,产生夫琅和费衍射,波长为人的第一极小与波长为人,的第二极小

相重合。试问:(1) 礼与礼,之间有何关系?(2) 还有哪些极小会重合?

63404 波长为 632.8nm 的平行单色光,垂直照射到宽度为 0.2mm 狭缝上,会聚透镜的焦距为 60cm ,分别计算当缝的两边缘到光屏上 P 点的位相差为  $\frac{\pi}{2}$  和  $\frac{\pi}{4}$  时,P 点离透镜焦点的距离。

63405 单色光垂直入射到宽为 0.25mm 的单缝上, 透镜焦距为 25cm , 若测得屏中央零级明级明纹两侧第三暗纹之间的距离为 3mm , 求入射光的波长。

63406 來自远方光源的波长为 589nm 的光,入射于宽 1.0mm 的缝上,在 2.0m 远的屏上,观察到所产生的夫琅和费衍射图样,(1)相邻两暗纹之间的距离是多少?(2)将整个装置浸入水中,此时两条暗纹的间距又是多少?

63407 有一单缝,缝宽 a=0.10mm,在缝后放一焦距为 50cm ,折射率 n=1.54 的会聚透镜,若用波长 546nm 的单色光垂直照射单缝,试求:(1)位于透镜焦平面处中央明纹的宽度。(2)如果把此装置浸入水(n'=1.33)中,焦面上中央明纹的宽度如何变化?

63408 在天琅和费单缝衍射中,波长为 $\lambda$ ,当狭缝边缘到光屏上P点的光程差为 $\frac{\lambda}{2}$ 时,求P点的光强。

64401 波长为 650nm 的单色平行光垂直照射双缝,缝后透镜的焦距为 80cm ,测得两条纹的间距为 1.04mm ,而且第五级极大值缺级,求缝宽 a 和缝间不透明部分 b 。

64402 在夫琅和贵双缝衍射中,单色光的波长为 480nm ,缝宽 a=0.02mm,缝间不透明部分 b=0.08mm,在距离双缝 L=50cm 的光屏上的干涉条纹间距有多大?从双缝衍射图样包迹的中央极大到第一极小的问距有多大?零级条纹内有多少干涉条纹?

64403 证明: 在夫琅和费双缝衍射实验中, 若缝间距 d 与缝宽 a 相等, 则双缝衍射光强将化成单缝衍射光强的形式。

64404 在 未取和费双缝衍射实验中, 缝宽均为 a、两缝中心相距 d=4a , 若每一单缝衍射零级最大光强 为 l。, 则双缝衍射时第一级明纹的光强为多大?

64405 在夫琅和费双缝衍射实验中, 缝宽均为 a, 两缝中心相距 d=4a, 若每一单缝衍射零级最大光强为 L。, 则双缝衍射时第二级明纹的光强为多大?

65401 波长为 500nm 和 520nm 两种单色光,同时入射在光栅常数 d=0.002cm 的衍射光栅上。紧靠光栅

后面,用焦距 f'=200cm 的凸透镜把光线会聚在光屏上。求这两种单色光的第一切谐似之间和第三级语线间的距离。

65402 用每毫米的 500 条缝的衍射光栅观察钠光( $\lambda = 589nm$ ) 谱线。(1) 平行光理宣歷海可是金龍灣察到几级谱线? (2) 以入射角 30<sup>6</sup> (4) 科时最多能观察到几条?

65403 波长为 589nm 和 589.6nm 的钠光投射到光栅常为 0.002cm 的衍射光标上,至少于期間三一焦距 为 2m 的凸透镜,把光会聚在屏上,试求钠双线的一级光谱线间的线距离和第三级光量内部引起症。

65404 波长为 600nm 的单色平行光垂直照射到光栅,第二、三级条纹分别由黑在 $\sin\theta_2=0.20$  和  $\sin\theta_3=0.30$  处,第四级缺级。求(1)光栅常数(a+b);(2)最小缝缝宽 a;(3)可能迅速的金飞数。

65405 用液长为 624nm 的单色平行光垂直照射到光栅,已知该光栅的程度 a=1 下海 max 下至 目前分 b=0.029mm , 缝数为 10<sup>3</sup> 条。求(1)单缝衍射的中央角宽度;(2);(2)单缝衍射压中浊角 宽直内 长能看到多少条光谱线?(3)谱线的半角宽度为多少。

65406 用可见光(760nm 至 400nm)照射光栅时,一级光谱和二级光谱是否重选的 二位称三位原释?若重选其重选范围是多少?

65407 宽度为 6.35cm 的光栅,每厘米有 6300 条缝,若入射光波长为 550ma 。(1) 运输三常量线的分辨本领;(3) 计算第二级谱线最小可分辨的波长差。

65408 为了测定一个光栅常数,用波长为 632.8nm 的红光垂直照射光栅。已知第二。积阳自定率 35% 的方向上。求光栅常数。(2) 这个光栅一厘米内有多少条缝?(3) 第二级谱线总与导点显微点之(sin38°=0.62)

65409 平行光垂直照射一透射光栅,可以在衍射角为 30°的方向观察到 600mm 16 電影音音音 。 明月有 不到该该谱线的第三级。求: (1) 光栅常数; (2) 狭缝的最小宽度; (3) 欲使运光烟蓝岩岩 温力量 。 中号

辨  $\Delta \lambda = 0.1$  A ,中心波长为 600nm 的两条谱线,则光栅的总刻数 N 不得小事の小学 一

65410 用白光垂直照射在一光栅上,能在  $30^{\circ}$  衍射方向观察到 600nm 的第二级 24 能表  $10^{\circ}$  所以  $10^{\circ}$  的两条光谱线。可是在  $30^{\circ}$  衍射方向却难观测到 400nm 的主极大。  $10^{\circ}$  不可以  $10^{\circ}$  可以  $10^{\circ}$  不可以  $10^{\circ}$  的,  $10^{\circ}$  不可以  $10^{\circ}$  的,  $10^{\circ}$  不可以  $10^{\circ}$  不

65411 一光栅每厘米有 6000 条刻线,而宽为 6.0cm 。问(1)在第三级中  $\lambda = 500 cm$  注: 可见合。等于的最小波长差为多大?(2)还可以看到几级更高的级次?设垂直入射的光照满整个光程。

65412 有一光栅,用它的第一级谱线来分辨钠的两条。D 线,它们的波长分别为 5 25 m , 可以 1)光栅至少有多少刻痕? (2)若此光栅总宽度是 2cm ,聚焦透镜的强度力 25 cm , 证求总马会 D 黄线在聚焦平面上的间距是多大?

65413 一平面透射光栅,不透明部分宽度是透光部分宽度的两倍,每是蒸内了 250 金融。 点意 上海 40mm ,正入射到光栅上的两个准单色平行光的波长为之,= 560nm 和之。 = 565nm,周围是为主席商总镜将衍射光聚集到焦面上,求: (1) 各波长的中央衍射极大区域内有多少个干涉主极大学 22 年一是於 谱中两谱线线的间距。(3) 第二级光谱能否将它们分辨开?

66401 在一个夫琅和费圆孔衍射装置中,圆孔半径为 0.5mm, 凸透镜焦距为 20cm, 放长为 354cm, 试计算第一和第二个暗环的半径。

66402 丰田汽车的两盏前灯相距 1.31m , 试问必须站在多远能分辨是两需年灯。过打汽汽车运长去 550nm , 夜间人眼的瞳孔直径为 4mm 。

66403 一東直径为 2mm 的氦氖激光( $\lambda = 632.8nm$ ),自地球表面发向月球,已知月球跟地面的距离为  $3.76 \times 10^5 \, km$ 。问在月球上得到的光斑有多大?设大气的影响可不计。如果把这样的激光束经过扩束成直径为 2m 的光束,再向月球发射,光斑有多大?

66404 两束频率相等,强度相等的非相干光源,通过两个缝宽相等的侠缝产生夫琅和费衍射图样。二 者满足瑞利判据,试求合成光强分布中央凹陷处光强是其两侧最大光强的百分之几?

67401  $N_aCl$  晶体的晶格常数为 0.2819nm ,用 X 射线照射晶面时,第二级光谱线的掠射角为  $1^0$ ,试计算 X 线的波长。

67402 以波长为 0.11nm 的 X 射线照射岩盐晶面,实验测得在 X 射线与晶面的夹角为 11°30′时,获得第一级极大的反射光。问(1) 岩盐晶体原子平面之间的距离为多大?(2) 若以另一束待测的 X 射照射岩盐晶面,测得 X 射线与晶面夹角为 17°30′时获得第一级极大的反射光,则待测 X 射线的波长是多大?

71401 通过尼科耳核镜观察部分偏振光, 当此棱镜由对应极大强度的位置转过 60° 角时, 光强减为一半, 则此部分偏振光的偏振度有多大?

72401 如图所示,自然光入射到水面上,入射角为i时,使反射光成为线偏振光,今有一玻璃浸入水中,若礬光线由玻璃面反射也成为线偏振光,求水面和玻璃面之间的夹角。 $(n_1=1.0,n_2=1.33,n_3=1.50)$ 



73401 将三个偏振片放在一起,第二与第三个的偏振化方向分别与第一个的偏振化方向成 45°和 90°角。(1)强度为 1。的自然光垂直入射到这一组偏振片上,试求经每一偏振片后的光强和偏振状态:(2)如果将第二个偏振片抽走,情况又如何?

73402 一束自然光连续通过两偏振片,如果最后的透射光强为第一次透射光强的二分之一,则两偏振片偏振化方向间的夹角为多少?如果最后的透射光强为入射光强的八分之一,则其夹角又是多少?

73403 怎样利用两个偏振片使一个线偏振光的振动面转过 90°,转过后的线偏振光的最大强度为原来的多少?

73404 强度为 I。的单色自然光垂直通过正交的偏振片  $P_1$ 和  $P_3$ ,若中间插入另一偏振片  $P_2$ ,与的透振方向夹角为 $\theta$ ,求通过三个偏振片后的光强、 $\theta$  为何值时,出射光强最大?最大光强等于多少?

75401 两尼科耳主截面的夹角由 30° 变为 45°, 透射光的强度如何变化? (以自然光入射)

75402 使自然光通过主截面相交成  $60^{\circ}$ 的两个尼科耳棱镜  $N_1$  和  $N_2$ .。如果每个尼科耳棱镜吸收了 10% 可通过的光,求通过第二个尼科耳棱镜后的光强和原光强之比。

76401 平面偏振光垂直入射到一光轴平行于表面的方解石晶片上,光的振动面和晶体的主截面  $30^{\circ}$  角。(1)何寻常光和非常光透射光出晶体的相对强度为多少?(2)用钠光时要产生  $90^{\circ}$  的位相差,晶片的厚度至少应为多少?(钠光波长 $\lambda=589.3nm,n_0=1.66,n_e=1.48$ ))

76402 (1) 平面偏振光入射到一个表面和光轴平行的晶片上,透射后,原来在晶片中的寻常光和非常光产生了 $\pi$ 的位相差。问晶片的厚度为多少( $\lambda=589.3nm,n_s=1.5533,n_o=1.5442$ )?(2)问这晶

片应该放置;才能使透射出来的光仍是平面偏振光,而它的振动面和入射光的振动面成 90° 每。

77401 设一方解石晶片沿平行于光轴切出,其厚度为 0.0514mm ,放在两个正交尼科耳棱镜之间,  $\lambda = 589$ nm 的平行自然光束经过第一个尼科耳棱镜后,垂直地射到晶片( $n_e = 1.486$ , $n_0 = 1.658$  )上。 试求通过第二个尼科耳棱镜后透射光的强度。如果两个尼科耳棱镜的主截面是平行的,结果又是如何?

77402 把一个棱角  $\alpha=0.33^\circ$ 、其光轴平行于棱的石英劈,放在两个正交的尼科耳棱镜之间。当  $\lambda=656.3$ nm 的红光通过尼科耳和尖劈产生干涉时,试计算相邻两条纹间的间隔。对应该波长光的石英的 主折射率为  $n_0=1.54190, n_e=1.55093$ 。

77403 强度为 I。的单色自然光垂直入射到两个主截面平行的尼科耳棱镜上,若中间插进一四分之一波片,其光轴与的主截面夹角。试问:(1)通过的光强;(2)通过四分之一波片后两偏振光的光强;(3)通过的光强。

77404 强度为 I。的单色自然光垂直入射到两个主截面正交的尼科耳棱镜上,若中间插进一四分之一波片,其光轴与  $N_1$  的主截面夹角  $\theta=30^0$ 。试问:(1)通过  $N_1$  的光强;(2)通过四分之一波片后两偏振光的光强;(3)通过  $N_2$  的光强。

77405 强度为 I。的单色自然,先经第一尼科耳棱镜后,"再垂直射到一石英四分之一波片上,光的振动面和波片光轴成 30°角,然后再以第二尼科耳棱镜,第二尼科耳棱镜与第一尼科耳棱镜主截面夹角为 60°,与波片光轴 也成 30°,试求通过第二个尼科耳棱镜后的光强度。

82401 波长为 400nm 的紫光照射到逸出功为 1.94ev 的铯表面,求从表面逸出的光电子的最大初动能和速度 $(m_e=9.1\times 10^{-31}\,k_{\rm K})$ 。

82402 波长为 200mm 的光照射铝表面,铝的逸出功为 4.2ev 。求:(1) 光电子的最大初动能为多少电子伏特?(2) 遏止电压为多少伏特?(3) 铝的"红限"为多少埃?

82403 已知铯产生光电效应的"红限"为 660nm 。 试求波长为 400nm 的光所产生的光电子的速度。  $(h_c=1.24\times 10^4 eV\stackrel{0}{A}~,~m_e=9.1\times 10^{-11} kg~)$ 

82404 波长为 400nm 的单色光照射到金属铯的表面,欲使光电流完全停止,至少加多大的遏止电压?已知铯的脱出功为 1.94ev 。

83401 波长为  $0.3\,A$ 的 X 射线产生康普顿散射,求散射角 $\theta=60^\circ$ 处散射光的波长及反冲电子获得的能量。

83402 波长为  $1^{\circ}$  的伦琴射线射到石蜡上时发生康普顿效应, 在与入射方向成 90° 角的方向观察到散射线的波长是  $1.0243^{\circ}$  ,求散射角为  $60^{\circ}$  方向上观察到的散射光波长是多大?

83403 在康普顿散射中,入射的 X 射线的波长为 1/4 ,经某個体散射后,求散射角为  $90^{\circ}$ 方向的散射 光波长的增量  $\Delta\lambda$  及相应频率的改变量  $\Delta\nu$  。

83404 波长为 0.02nm 的 X 射线经晶体散射后,在沿与入射方向成  $90^{0}$  方向观察。求:(1)散射 X 射线的波长:(2)反冲电子的动能为多少电子伏特:(3)反冲电子的动量。

83405 在康普顿散射中, 若使电子的最大反冲动能为 45000ev , 试求入射光子的波长。

84401 岩盐晶体的晶格常数  $d=2.8\,\mathring{A}\,$  ,试问中子速率多大才能在与晶面法线成  $20^{\circ}$  角的方向上得到征

75zes





















## 计算题解答

12401 解:由題意知该介质折射率为:
$$n' = \frac{\sin i}{\sin i'} = \frac{\sin 60^{\circ}}{\sin 30^{\circ}} = 1.73$$
  
介质中的速度 $V = \frac{c}{n'} = 1.73 \times 10^{8}$  m/s

14402 解: 由下图知:  $R = tgi_c \cdot h = \frac{h}{\sqrt{n^2 - 1}}$ 





14403 解: 由上右图知: 水的临界角 $i_c = \arcsin\frac{1}{n} = 48.5^\circ$  球的表面 $i_c = \arcsin\frac{1}{n} = 48.5^\circ$  球的表面 $i_c = 2\pi R^2(1-\cos i_c)$ 

从水表面的光能比的百分比等于面积比 $\frac{I_2}{I_1} = \frac{S_2}{S_1} = \frac{2\pi R^2(1-\cos i_c)}{4\pi R^2} = 16.7\%$ 

$$n_1' = n_0 ... n_1 = 1.0 ... s_1 = -l$$
  
解: 下表面折射:  $s_1' = \frac{n_1'}{n_1} s_1 = -n_0 l$ (虚像)

上表面折射:  $n'_2 = 1.0 ... n_2 = n_0 ... s_2 = -(n_0 l + t)$ 

$$s_2' = \frac{n_2'}{n_2} s_2 = -\frac{1}{n_0} (n_0 l + t) = -(l + \frac{t}{n_0})$$

物点 p 降再上表面下方 $(l+\frac{t}{n})$ 处成一虚像

23402 解: 上表面反射成像 
$$OQ'_1 = OQ$$
 上表面折射成像  $OQ_3 = nOQ$ 

下表面反射成像 
$$O'Q'_4 = OQ_3 + d$$

上表面折射成像:

$$OQ_2' = \frac{1}{n}OQ_4' = \frac{1}{n}(O'Q_3 + d) = \frac{1}{n}(OQ_3 + 2d) = OQ_1' + \frac{2d}{n}$$

$$Q_1'Q_2' = OQ_2' - OQ_1' = \frac{2d}{n}$$



第二次折射成像
$$s'' = \frac{ns-l}{n} = s - \frac{l}{n} = s + \Delta - l$$

由方程解得 
$$l = \frac{\Delta}{1 - \frac{1}{n}} = \frac{n \cdot \Delta}{n - 1} = 6mm$$

23404 解:如图,第一次折射成像
$$h_1' = \frac{n_2}{n_1} h_1$$

$$H = h_2 + h_1'$$

第二次折射成像: 
$$H' = \frac{n}{n_2}H = \frac{n}{n_2}(\frac{n_2}{n_1}h_1 + h_2) = \frac{n}{n_1}h_1 + \frac{n}{n_2}h_2$$



$$n_1' = 1.33...n_1 = 1.36...s_1 = -5cm$$

$${}^{(1)}s_1' = \frac{n_1's_1}{n_1} = -4.89cm$$

$$(2)...n'_2 = 1.0...n_2 = 1.33...s_2 = -7.89cm$$

$$...s'_2 = \frac{n'_2 s_2}{n_2} = -5.93cm$$

24401 解:由下左图可得  $a = i_c = \arcsin \frac{1}{1.56} = 39.87^\circ$ 





24402 解: 由上右图可得: 
$$n = \frac{\sin 60^{\circ}}{\sin 30^{\circ}} = \sqrt{3}$$

24403 解: 
$$n = \frac{\sin\frac{1}{2}(a+\delta_{\min})}{\sin\frac{1}{2}}$$
 在第一折射面上,根据最小偏向角条件得 $n = \frac{\sin 45^{\circ}}{\sin\frac{a}{2}}$ 

比较上两式解得:  $a = 60^{\circ}$  代入以上任一式得:  $n = \sqrt{2}$ 

24404 解: 光线在第二界面的临界角为:  $i_c = \arcsin \frac{1}{n}$ 

在第一介面由折射定律 $\sin i = n \sin i'$  由图中几何关系知 :  $i' + i_0 = a$ 

 $\sin i = n \left( \sin a \cos i_c - \cos a \sin i_c \right)$ 

由 $i_c$ 代入并整理得:  $i_{\min} = \sin^{-1}(\sqrt{n^2 - 1}\sin a - \cos a)$ 



24405 解: 最小偏向角  $\delta_{\min} = 2i_1 - A$  产生最小偏向角的条件为:  $i_1 = i_1'$ ,  $i_2' = i_2 = \frac{A}{2}$ 

在第一界面应用折射定律....
$$\frac{n_2}{n_1} = \frac{\sin \frac{A + \delta_{\min}}{2}}{\sin \frac{A}{2}}$$

由 
$$n_1 = \frac{4}{3}$$
 ...  $n_2 = 1.5$  ...  $A = 60^\circ$  ... 代入得.  $\delta_{min} = 8^\circ 27'$ 

实物成正立放大的虚像

32402 解: 已知
$$s_1 = -15cm$$
... $s_1' = -10cm$  由高斯公式 $\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$ 得:  $r = -12cm$ 

32403 解:由牛顿共识的放大率形式得:
$$-\frac{f}{\chi_1} = -5$$
,... $-\frac{f}{\chi_1 + 2} = -7$ 解得: $f = -35cm$ 

32404 解:由放大率公式知: 
$$\beta = -\frac{s'}{s} = -\frac{1}{4}$$
得:  $s = 4s'$  而  $s = s' = -100$ , 得:  $s' = -33.3cm;...s = -133.3cm.......代入成像公式得:  $r = -53.3cm$$ 

$$32406$$
 解:联立成像公式和横向放大率公式得:  $s = \frac{r(\beta-1)}{2\beta}$  要成放大两倍的实像时,

32407 解:依题意是凸面镜成像因...
$$\beta = -\frac{s'}{s} = 4.....s' = -4s....而 $s - s' = 50mm$$$

32408 解: (1)已知
$$r = -R....\beta = -3....$$
即... $s' = -3s...$ 由 $\frac{1}{s} + \frac{1}{s} = \frac{2}{r}$  得  $s = -\frac{2R}{3}$ 

(2) 己知
$$\mathbf{r} = -R.....\beta = 3...$$
即 $\mathbf{s}' = -3\mathbf{s}.....$ 由 $\frac{1}{\mathbf{s}} + \frac{1}{\mathbf{s}} = \frac{2}{\mathbf{r}}....$ 得 $\mathbf{s} = -\frac{R}{3}$ 

32409 解: 由牛顿公式的放大率形式得

32410 解: 已知
$$s = -20$$
cm, ...... $r = -16$ cm.......由 $\frac{1}{s} + \frac{1}{s} = \frac{2}{r}$ ......得 $s = -13.3$ cm

32411 解: 已知s = -0.75cm

(1) 成实象时 
$$\beta = -\frac{s'}{s} = -4......$$
得 $s' = -3m.......$ 由 $\frac{1}{s'} + \frac{1}{s} = \frac{2}{r}...$ 得 $r = -1.2m$ 

(2) 成處象时 
$$\beta = -\frac{s}{s} = 4...$$
...得 $s' = -3m......$ 由 $\frac{1}{s'} + \frac{1}{s} = \frac{2}{r}...$ 得 $r = -2m$ 

32412 解: 己知  $s = -20 \text{ cm}, \dots, \beta = \frac{1}{2}$ 

(1) 由
$$\beta = -\frac{s'}{s}$$
........得 $s' = 6.7$ cm

(2) 
$$\pm \frac{1}{s} + \frac{1}{s} = \frac{2}{r}$$
.... $\# r = 20.2cm$ 

由 r>0,球面镜是凸镜

32413 解:设 P 点到平板的距离为 a, 由题意知

$$\frac{1}{s} + \frac{4}{-(a+7.5)} = \frac{1}{30}$$

$$s' = a - 7.5$$

联立两方程解之得 a = 22.5cm

解: 设P点先经 I 镜成像P' 则... $s_1 = -5cm$ ... $s_1 = -20cm$  由  $\frac{1}{c'} + \frac{1}{c} = \frac{2}{c}$ 

得: s' = 10cm....在 I 镜左侧...P'......再经 II镜成像, $s_2 = -30cm$ ... $r_2 = -20cm$ 



由
$$\frac{1}{s'} + \frac{1}{s} = \frac{2}{r}$$
得:  $s' = -15cm$  与发光点重合

32415 解:设发光点距球面项点为
$$s$$
,由 $\frac{1}{s'} + \frac{1}{s} = \frac{2}{r}$ 得: $s' = \frac{Rs}{2s - R}$  由图知:
$$2R - s = \frac{Rs}{2s - R} - 2R....即 $s^2 - 4Rs + 2R^2 = 0......s = (2 \pm \sqrt{2}) R = 0.59R$$$



32416 解:设发光点距 $O_1$ 点为s.....由 $\frac{1}{s'} + \frac{1}{s} = \frac{2}{-R}$ 得:  $s' = -\frac{Rs}{2s+R}$  对凹镜成像

$$\frac{1}{-(2R-s')} + \frac{1}{-(2R-s)} = -\frac{2}{R}...$$
化简并解之得:  $s = \frac{(1\pm\sqrt{3})}{2} = 1.37R....$ (舍去 - 0.37R)



33401 解: 已知 $x = a_n n = 1$ , n' = 1.5, s = -4a

$$(1) \begin{cases} f = -\frac{nr}{n' - n} \\ f' = \frac{n'r}{n' - n} \end{cases} f = -2a; \ f' = 3a$$

(2)由. 
$$\frac{f'}{s'} + \frac{f}{s} = 1$$
. 得:  $s' = 6a$ ... $\beta = \frac{ns'}{n's} = -1$  成倒立等大实像



33402 解: (1)已知. $r = s_1 = -20cm$ ; n = 1.33, n' = 1.00.....由 $\frac{n'}{s'} - \frac{n}{s'} = \frac{n'-n}{r}$ ..得

$$s_1' = -20cm;...\beta_1 = \frac{ns_1'}{n's_1} = 1.33$$
 金鱼在原处成正立放大的虚像

(2)由
$$s_2 = -40cm$$
代入高斯公式得:  $s_2' = -60cm$ :... $\beta_2 = \frac{ns_2'}{n's_2} = 2$ 

金鱼在缸外 20cm 处成正立放大的虚像



33403 解: 由
$$\frac{n'}{s_1'} - \frac{n}{s_1} = \frac{n'-n}{r}$$
得 $s_1 = -100mm$ ......物位于球心

(2)已知s' = -50mm代入高斯公式并解之得s = -60mm,物离球面顶点60mm

33404 解: 已知
$$n=1.0$$
;.. $n'=1.5$ ;.. $r=2cm$ ;... $s=-8cm$ 

(1)由 
$$\begin{cases} f = -\frac{nr}{n' - n} \\ f' = \frac{n'r}{n' - n} \end{cases}$$
 得  $f = -4cm; ... f' = 6cm$ 

(2)由
$$\frac{f'}{s'} + \frac{f}{s} = 1$$
...得.. $s' = 12cm$ ;  $\beta = \frac{ns'}{n's} = -1$ ;  $h' = \beta h = -0.1cm$  实物成倒立等大的实像



33405 解: 由题意知: 
$$s < 0$$
... $\beta = \frac{y'}{y} = -2$ ;... $y' < 0$ .....由 $\beta = \frac{ns'}{n's}$ ...得:  $s = -\frac{s'}{3}$ 

而 
$$n=1: n'=1.5...$$
代入 $\frac{n'}{s'}-\frac{n}{s}=\frac{n'-n}{r}$ 得 $s'=18cm: ...d=s'-r=16cm$ 



33406 解:设透镜折射率为n,凸面半径为R 。当乎面朝上时,只有平面折射,且有

$$n_1 = n_1, n_1' = 1.0; s_1 = -1.5cm; s_1' = -1cm, \pm s_1' = \frac{n_1's_1}{n_1} = 1.5$$

当凸面朝上时, 只有凸面折射,

$$s_2' = -1.2cm...n_2 = 1.5i..n_2' = 1.0i..s_2 = -1.5cm...r_2 = -R$$
 (†  $\lambda$ 

$$\frac{n_2'}{s_2'} - \frac{n_2}{s_2} = \frac{n_2' - n_2}{r_2}$$
  $= 3cm$ 

33407 解: 由
$$n = \frac{4}{3}$$
;.. $n' = 1$ ...代入 $\frac{n'}{s'} - \frac{n}{s} = \frac{n'-n}{r}$ ..得:  $\frac{1}{s'} = \frac{4}{3s} - \frac{1}{3r}$ ; 对于近轴发散光 $s < 0$ ,要成虚像,即 $s' < 0$ ,则
$$\frac{4}{3s} < \frac{1}{3r}$$
即 $s > 4r$ ,物在区间  $(4r,0)$  时成虚像

当r = -2cm; s = -4cm时, 得s' = -6cm < 0, 成虚像

34401 解: 己知
$$n_1 = 1.0$$
;  $n_1' = 1.5$ ;  $n_2 = 1.5$ ;  $n_2' = 1.0$ ;  $r_1 = R$ ;  $r_2 = -R$ 

险球第一折射面的象方焦点
$$F_1'$$
的位置 $f_1' = \frac{n'r_1}{n_1' - n_1} = 3R$ 

$$F_1'$$
 是第二折射面的虚物  $s_2 = s_2' - 2R = R$ , 由成像公式代入  $\frac{n_2'}{s_2'} - \frac{n_2}{s_2} = \frac{n_2' - n_2}{r_2}$ 

得: 
$$s_2' = 0.5R$$



代入
$$\frac{n_1'}{s_1'} - \frac{n_1}{s_1} = \frac{n_1' - n_1}{r_1}$$
 得  $s_1' = 6R$  第二次成像  $s_2 = s_1' - 2R = 4R$ 

第二次成像 
$$s_2 = s_1' - 2R = 4R$$

代入 
$$\frac{n_2'}{s_2'} - \frac{n_2}{s_2} = \frac{n_2' - n_2}{r_2}$$
...得:  $s_2' = 1.14R$ 



34403 解: 已知
$$n_1' = n_2 = n$$
,  $n_1 = n_2' = 1.0$ ,  $s_1 = -\infty$ ,  $r_1 = R$ ...由 $\frac{n_1'}{s_1'} - \frac{n_1}{s_2} = \frac{n_1' - n_1}{r_1}$ 

得: 
$$s_1' = \frac{nR}{n-1}$$
 ....... 对第二折射面 $r_2 = -R$ ,  $s_2 = s_1' - 2R = \frac{(2-n) R}{n-1}$ 

代入高斯公式得: 
$$s_2' = \frac{R(2-n)}{2(n-1)}$$

34404 解:仅需考虑球面折射 
$$s=-\infty$$
,  $r=-R$ ,  $n=n$ 。  $n'=n'$ ...由 $\frac{n'}{s'}-\frac{n}{s}=\frac{n'-n}{r}$  得:  $f'=s'=\frac{n'R}{n-n'}$ ...若 $n>n'$ ,焦点在球面右方 $\frac{n'R}{n-n'}$ 处

若
$$n' = n_2$$
则 $f' = s' = \frac{n_2 R}{n - n_2}$ 



$$34405$$
 解: (1)已知 $s = -\infty$ ,  $r = -100cm$ ,  $n = 1.5$ ,  $n' = 1.0$ ...由 $\frac{n'}{s'} - \frac{n}{s} = \frac{n'R}{r}$  得 $s' = 200cm$  (2)以 $n' = 1.33$ 代入高斯公式得:  $s' = 800cm$ 

34406 解: ①已知
$$s = -\infty$$
, $n = 1.5$ , $n' = 1.0$ , $r = -10cm$ .由 $\frac{n'}{s'} - \frac{n}{s} = \frac{n'R}{r}$ 得 $s' = 20cm$  ②有两次折射成像

球面折射
$$s_1 = -\infty$$
,  $r = 10cm$ ,  $n' = 1.5$ ,  $n = 1.0$ ...代入高斯公式得 $s_1' = 30cm$  平面折射 $r = \infty$ ,  $r = 10cm$ ,  $n = 1.5$ ,  $n' = 1.0$ ... $s_2 = 20cm$ .代入成像公式得 ........ $s_1' = \frac{40}{3} = 13.33cm$ 

34407 解: 物点先经平面成像
$$n_1 = 1.0$$
,  $n_1' = 1.5$ ,  $s_1 = -4cm$ .代入 $s_1' = \frac{n_1' s_1}{n_1} = -6cm$ 

再经球面成像 
$$n_2 = 1.5$$
,  $n_2' = 1.0$ ,  $r_2 = -3cm$ ,  $s_2 = -9cm$ 代入



34408 解: 平行光入射在球面上有两次折射:

先经球面折射 $n_1' = n$ ,  $n_1 = n'$ ,  $r_1 = R$ ,  $s_1 = -\infty$ 代入 $\frac{n_1'}{s_1'} - \frac{n_1}{s_1} = \frac{n_1' - n_1}{r_1}$ 得 $s_1' = \frac{nR}{n - n'}$ 

再有平面折射  $n_2 = n$ ,  $n'_2 = n'$ ,  $s_2 = s'_1 - R = \frac{n'R}{n-n'}$ 

代入
$$s_2' = \frac{n_2' s_2}{n_2}$$
..得 $s_2' = \frac{n'^2}{n (n-n')} R$ ....

若半球置于空气中n'=1.0,  $s_2'=\frac{R}{n(n-1)}$ 

34409 解: 第一次成像, $n_1 = 1.0$ , $n_1' = 1.5$ , $r_1 = 3cm$ , $s_1 = -4cm$ 

代入
$$\frac{n_1'}{s_1'} - \frac{n_1}{s_1} = \frac{n_1' - n_1}{r_1}$$
.. 行.. $s_1' = -18cm$ 

第二次成像, $n_2=1.5$ , $n_2'=1.0$ , $s_2=-21em$ ..代入 $s_2'=\frac{n_2's_2}{u_2}$ ..得:

$$s_2' = -14cm$$
... $\beta = \beta_1\beta_2 = 3$  实物成正立放大的虚像



34410 解:依题意,物点经平面折射后成像在凹面镜的球心处就能满足要求;

$$s = -159mm$$
,  $r = -230mm$ ,  $s' = r + 5 = -225mm$   
代入 $\frac{n'}{s'} - \frac{n}{s} = 0.....$ 得:  $n' = 1.415$ 

34411 解:依题意,光源经平板成像应产生 1cm 的轴向位移

由
$$n=0.5$$
轴向位移公式代入 $d(1-\frac{1}{n})=1$ 得  $d=3cm$ 

34412 解: (1) 第一次成像 $n_1 = 1.0$ , n' = 1.5,  $r_1 = 10cm$ ,  $s_1 = -10cm$ 

代入
$$\frac{n_1'}{s_1'} - \frac{n_1}{s_1} = \frac{n_1' - n_1}{r_1}$$
得 $s_1' = -30cm$ ,  $\beta_1 = \frac{n_1 s_1'}{n_1' s_1} = 2$ 

第二次成像  $s_2=-40cm$ ,  $r_2=\infty$ ,  $s_2'=-s_2=40cm$ ,  $\boldsymbol{\beta}_2=1$  实物成正立等大虚像

第三次成像
$$n_3 = 1.5$$
,  $n_3' = 1.0$ ,  $s_3 = 50cm$ ,  $r_3 = 10cm$ 

代入高斯公式得:  $s_3' = -50cm$ ,  $\beta_3 = -1.5$  实物成倒立放大的实像



34413 解: (1) 鱼经右侧成像 s = -75mm,  $n_1 = \frac{4}{3}$ ,  $n_1' = 1.0$ ,  $r_1 = -50mm$ 

代入
$$\frac{n_1'}{s_1'} - \frac{n_1}{s_1} = \frac{n_1' - n_1}{r_1}$$
..得.. $s_1' = -90mm$  为一虚像

(2) 鱼恰好在球镜焦点上,它发出的光线经反射后成平行光,相当于无穷远物经球面折射成

$$g_2 = -\infty, \quad n_2 = \frac{4}{3}, \quad n_2' = 1.0, \quad r_2 = -50mm$$

代入高斯公式得 $s_2' = 150mm$ , 为实象

34414 解: 有三次成像:

(1) 左球面折射
$$n_1 = 1.0$$
,  $n_1' = 1.5$ ,  $r_1 = R$ ,  $s_1 = \infty$ 代入 $\frac{n_1'}{s_1'} - \frac{n_1}{s_1} = \frac{n_1' - n_1}{s_1}$ 得  $s_1' = 3R$ 

(2) 佑球面反射
$$s_2 = s_1' - 2R = R$$
,  $r_2 = -R$ 代入 $\frac{1}{s_2'} + \frac{1}{s_2} = \frac{2}{r_2}$ 得:  $s_2' = -\frac{R}{3}$ 

(3) 左球面折射
$$n_3 = 1.5$$
,  $n_3' = 1.0$ ,  $r_3 = -R$ ,  $s_3 = -(s_2' + 2R) = -\frac{5R}{3}$ 

代入高斯公式得:  $s_3' = -2.5R$ ...最后得到虚会点于镜后0.5R处.

35401 证: 已知 $n_1 = n_2 = 1.0$ , n = 1.5,  $r_2 = -r$ , 由透镜焦距公式知:

$$f' = \frac{1}{(n-1)} \frac{1}{(r_1 - \frac{1}{r_2})} = r_1 \dots f = \frac{1}{(n-1)} \frac{1}{(r_1 - \frac{1}{r_2})} = -r_1 = r_2$$
Prince

35402 解: (1)已知 $n_1 = n_2 = 1.0$ , n = 1.5,  $r_1 = 10cm$ ,  $r_2 = -10cm$ , 透镜的焦距为:

$$f' = \frac{1}{(n-1) \quad (\frac{1}{r_1} - \frac{1}{r_2})} = 10cm$$

(2) 日知
$$n_1 = 1.0$$
,  $n = 1.5$ ,  $n_2 = 1.33....$  $f_2' = \frac{n_2}{n - n_1 + n_2 - n} = 20cm$ 

(3) 日知知 
$$n_1 = n_2 = 1.33$$
,  $n = 1.5.....f_3' = -f_3 = \frac{n_2}{(n - n_1) - (\frac{1}{r_1} - \frac{1}{r_2})} = 40cm$ 

35403 解: 透镜在空气中 
$$f'_1 = \frac{1}{(n-1)} \cdot (\frac{1}{r_1} - \frac{1}{r_2})$$

在折射率为
$$n'$$
介质中 $f' = \frac{n'}{(n-n')} \cdot (\frac{1}{r_1} - \frac{1}{r_2})$  (2)

由 (1) 式知: 
$$\frac{1}{r_1} - \frac{1}{r_2} = \frac{1}{(n-1)f_1'}$$
代入 (2) 式得... $f' = \frac{n'(n-1)}{n-n'}f_1'$ 

$$\ddot{\nabla} f_1' = 40cm, \ f_2' = 136.8cm, \ n_1 = 1.0, \ n_2 = 1.33$$

35404 ØF: 
$$f_1' = \frac{n_1}{(n-n_1)} \cdot (\frac{1}{r_1} - \frac{1}{r_2}) \dots (1) \dots f_2' = \frac{n_2}{(n-n_2)} \cdot (\frac{1}{r_1} - \frac{1}{r_2}) \dots (2)$$

两式相除,并由已知条件代入得n=1.54,对 $CS_2$ , $n_3=1.62$ 

焦距为 
$$f_3' = f_1' \frac{n_3(n-n_1)}{n_1(n-n_3)} = -437.4cm$$

35405 解:从物体发出的光线通过第一球面方向不变,仅有第二球面折射

$$n_2 = n$$
,  $n_2' = 1.0$ ,  $r_2 = r$ ,  $s_2 = -r + \frac{n_2'}{s_2'} - \frac{n_2}{s_2} = \frac{n_2' - n_2}{r_2}$ 

$$s_2' = -\frac{r}{2n-1}$$

35406 解: 未装液体时, s = -45cm, s' = 36cm代入  $\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$  得f' = 20cm

装液体时,设其折射率为
$$n$$
,而 $s_1 = -40cm$ 代入 $s_1' = \frac{n'}{n}s_1' = -\frac{40}{n}cm$ 

再对透镜成像,
$$s_2 = s_1' - d = -\frac{40}{n} - 5$$
, $s_2' = 48cm$ , $f_2' = 20cm$ 

代 
$$\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$$
...得... $n = 1.366$ 

35407..解: (1)已知 $r_1 = 10cm$ ,  $r_2 = -10cm$ ,  $n_1 = 1.0$ ,  $n_2 = 1.33$ , n = 1.5

35408.解: (1)已知
$$n=1.5$$
,  $f_1'=12cm$ 代入  $\frac{1}{f_1'}=(n-1)$  ( $\frac{1}{r_1}-\frac{1}{r_2}$ ) 得. $r_1=-r_2=12cm$  .....(2)由 $n'=1.62$ 代入  $\frac{n'}{f_2'}=(n-n')$  ( $\frac{1}{r_1}-\frac{1}{r_2}$ ) 得 $f_2'=-81cm$  35409 解: (3)已知 $n_1=\frac{4}{3}$ ,  $n_2=1.0$ ,  $f'=12cm$ ,  $r_2=-12cm$ 代入 $f'=\frac{n_2}{r_1}+\frac{n_2-n}{r_2}$  得 $r_1=4cm$ 

在空气中
$$\Phi_{\Xi} = (n-1) \quad (\frac{1}{r_1} - \frac{1}{r_2})$$
.....(1)

再液体中
$$\Phi_{液} = (n - n_{\imath k}) \quad (\frac{1}{r_1} - \frac{1}{r_2})$$
.....(2)

代入已知条件并将(1)除以(2)得 
$$\frac{n-1}{n-n_{\text{st}}} = -500$$

由
$$n=1.5$$
代入得 $.n_{\pi}=1.501$ 

35410 解:由
$$n=1.5$$
,  $r_1=30cm$ ,  $r_2=-60cm代入  $\frac{1}{f'}=(n-1)$  ( $\frac{1}{r_1}-\frac{1}{r_2}$ )$ 

得
$$f' = 40cm$$
......由题意。 $\beta = \frac{s'}{s} = -\frac{1}{2}$ 得... $s = -2s'$   
代入  $\frac{1}{s'} = \frac{1}{s'}$ 得 $s' = 60cm$ ,  $s = -120cm$ 



35411 解: 已知 
$$f_1' = 100mm$$
,  $n = 1.5$ ,  $n' = \frac{4}{3}$ ,  $s_2 = -600mm$ 

在水中……
$$\frac{n}{f_2'} = (n-n') \quad (\frac{1}{r_1} - \frac{1}{r_2})$$
……(2)

由 (1) 、 (2) 两式得
$$f_2' = \frac{n'(n-1)}{n-n'} f_1' = 400mm$$

代入
$$\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$$
得 $s_2' = 1200mm$ 

35412. 
$$m: f' = \frac{n_2}{\frac{n-n_1}{r_1} + \frac{n_2-n}{r_2}} = \frac{n_2}{n-n_1} r_1, \quad (r_2 = \infty)$$

............浸前:  $n_1 = n_2 = 1$ ,  $f_1' = 10cm$ ,  $r_1 = (n-1)$   $f_1' = 10(n-1)$  cm

35413 解:由题意  $\beta = -2$ ,  $s_1 = -(f_1' + 6)$ 

$$\begin{cases} \frac{s'}{-(f'+6)} = -2\\ \frac{1}{s'} - \frac{1}{-(f'+6)} = \frac{1}{f'} \end{cases}$$
 解得.  $f' = 12cm, \ s' = 36cm$ 

35414

解

设。

诱

镜

凝

紂

玆

35414...解:设透镜透射率为n,凸面曲率半径为R。 $r_1=\infty$ , $r_2=-R$ , $f_1'=36cm$ ,

镀银后,平行光反射后会聚于球面镜的焦点 $-\frac{R}{2}$ 处,再经平面折射成像会聚点

$$f_2' = \frac{1}{n}(-\frac{R}{2}) = -\frac{R}{2n}$$
.......联立两方程得 $n = 1.5$ , $R = 18cm$ 

35415 解: 由题意,一个成实像,另一个成虚像

$$\begin{cases} \frac{1}{s_1'} & \frac{1}{-6} = \frac{1}{f'} \\ \frac{1}{s_2'} & \frac{1}{-18} = \frac{1}{f'} \dots$$
联立以上方程得.... $f' = 9cm$  
$$-s_1' = s_2' \end{cases}$$

35416 解: 如图所示, 共轭距 L = -x - f + f' + x'...由牛顿公式 $x' = \frac{ff'}{x}$ 

得: 
$$L = -x - f + f' + \frac{ff'}{x}$$
.....由.  $\frac{dL}{dx} = -1 - \frac{ff'}{x^2} = 0$ . 得 $x = f$ ,  $x' = f'$ ...则 $L = 4f'$ 



35417...解: 已知
$$f' = 20cm$$
,  $s = -30cm$ 代入 $\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$ 得 $s' = 60cm$ 

...........纵向放大率为
$$a = \frac{n}{n'} (\frac{s'}{s})^2 = 4$$
,.... $v' = av = 16 \frac{m}{s}$ .......方向向右

35419 解:在第二次成像时
$$s_2 = s_1'$$
,  $s_2' = s_1' - 20$ .  $\frac{s_2'}{s_2} = \frac{s_1' - 20}{s_1'} = \frac{3}{4}$  得  $s_2 = s_1' = 80mm$ 

由題意,在第一次成像时
$$\beta = -1$$
,则 $f_1' = \frac{s_1'}{2} = 40mm$ 

35420 解: (1) 对会聚透镜 
$$\beta = \frac{s_1'}{s_1} = -\frac{1}{4}$$
..得.. $s_1 = -4s_1'$ ..而 $f_1' = 20cm$ 

代入
$$\frac{1}{s_1'} = \frac{1}{s_1} = \frac{1}{f_1'}$$
得 $s_1' = 25cm$ 物像距 $l = -s_1 + s_1' = 100 + 25 = 125cm$ 

(2) 对发散透镜 
$$\beta = \frac{s_2'}{s_2} = \frac{1}{4}$$
,  $s_2 = 4s_2'$ .  $f_2' = -20cm$ 

代入 
$$\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$$
 得  $s_2' = -15cm$ ,物像距  $l' = -s_2 + s_2' = 60 - 15 = 45cm$ 

36401 解: (1) 已知: 
$$f_1' = 6cm$$
,  $f_2' = 3cm$ ,  $d = 3cm$ .... $F_1'$ 是 $L_2$ 的物,  $s_2 = f_1' - d = 3cm$ 

代入
$$\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$$
得 $s_2' = 1.5cm$ ...象方焦点在 $L_2$ 右方1.5cm处

36402 解: (1) 第一透镜成像 
$$s_1 = -40cm$$
,  $f_1' = 10cm$ 由  $\frac{1}{s_1'} - \frac{1}{s_1} = \frac{1}{f_1'}$  得  $s_1' = \frac{40}{3}cm$ 

第二透镜成像 
$$s_2 = -30 + \frac{40}{3} = -\frac{50}{3}$$
cm, $f_2' = 20$ cm由 $\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$ 得

$$(2).h'' = \beta h = \beta_1 \beta_2 h = -2h$$



36403 解: 第一次成像  $s_1 = -20cm$ ,  $f_1' = 10cm$ 代入  $\frac{1}{s_1'} - \frac{1}{s_1} = \frac{1}{f_1'}$  得  $s_1' = 20cm$ 

第二次成像 
$$s_2 = -10cm$$
,  $f_2' = 12.5cm$ 代入  $\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$  得  $s_2' = -50cm$ 

最后象点与物点重合

36404 解:第一次成像  $s_1 = -20cm$ , $f_1' = 10cm$ , $h_1 = 1cm$ 代入  $\frac{1}{s_1'} - \frac{1}{s_1} = \frac{1}{f_1'}$ 

得 $s_1' = 20cm$ ,  $\beta_1 = -1$ 

实物成倒立等大的实像

第二次成像  $s_2=8cm$ ,  $f_2'=-4cm$ ......由高斯公式得:  $s_2'=-8cm$ ,  $\beta_2=-1$  虚物成倒立等大的虚像

 $\beta = \beta_1 \cdot \beta_2 = 1$ . 实物成正立等大虚像于凹透镜左侧8cm处



36405 解:第一次成像 $s_1 = -20cm$ , $f_1' = 10cm$ 代入 $\frac{1}{s_1'} - \frac{1}{s_1} = \frac{1}{f_1'}$ 得 $s_1' = 20cm$ 

第二次成像 
$$s_2 = s_1' - d = 10cm$$
,  $f_2' = -5cm$ 代入  $\frac{1}{s_2'} - \frac{1}{s_2} = \frac{1}{f_2'}$  得  $s_2' = -10cm$ 

$$\beta = \beta_1 \cdot \beta_2 = 1 \dots h' = \beta h = 3cm$$



36406 解: 第一次成像  $s_1 = 4l - 2l = 2l$ ,  $f_1' = -l$ 代入  $\frac{1}{s_1'} - \frac{1}{s_1} = \frac{1}{f_1'}$ 得  $s_1' = -2l$ 

第二次成像  $s_2 = s_1' - d_2 = -3l$ ,  $f_2' = 2l$ 由高斯公式得 $s_2' = 6l$ 

最后成像距 $L_i$ 的距离为 $3l+6l=9l.....\beta=\beta_1\cdot\beta_{-2}.....h'=2h$ 

36407 解: 当平面镀银时,平行光入射经r=R的。球面折射成像

$$s_1' = \frac{nR}{n-1}$$
 再经平面反射 $s_2' = -s_2 = -s_1'$ 

最后再经球面成像得焦点 $s_3'$ ,因 $s_3 = s_2' = -\frac{nR}{n-1}$ 

代入
$$\frac{1}{s_3'} - \frac{n}{s_2'} = \frac{1-n}{r}$$
得 $s_3' = \frac{R}{2(1-n)} = -28....(1)$ 

当凸面镀银时,同理可得 $s_2' = -\frac{R}{2n} = -10....(2)$ 

(1) 、 (2) 两式联立得n=1.56

36408 解: 凹球面折射成像 $s_1 = -40cm$ , n' = 1.5, n = 1.0,  $r_i = -20cm$ 

代入高斯公式得 $s_1' = -30cm$ , $\beta_1 = \frac{1}{2}$ .....正立缩小虚像

再经球面折射成像  $s_2 = -30cm$ ,  $r_2 = -15cm$  得  $s_2' = -10cm$ ,  $\beta_2 = -\frac{1}{3}$  倒立缩小员

最后经凸球面折射成像  $s_3 = -10cm$ ,  $r_1 = -20cm$ ,  $n_1 = 1.5$ ,  $n_1' = 1.0$ 

得 $s_3' = -8cm$ , $\beta_2 = 1.2......$ 放大正立实象

最终成倒立缩小实像

36409 解: 第一次经透镜成像  $s_1 = -10cm$ ,  $f_1' = 20cm$ 有高斯公式得  $s_1' = -20cm$ 

对平面镜成像 $s'_2 = s'_1 - d = -30cm$ ,  $s'_2 = -s_2 = 30cm$ 

第二次透镜成像 $s_3 = s_2' + d = 40cm$ ,  $f_3' == -20cm$ 

得s'<sub>3</sub> = -40cm最后成像在凸镜左方40cm处

36410 解: 经
$$L_1$$
成像 $s_1 = -60cm$ ,  $f' = 20cm$ 由 $\frac{1}{s_1'} - \frac{1}{s_1} = \frac{1}{f_1'}$ 得 $s_1' = 30cm$ ,  $\beta_1 = -\frac{1}{2}$ 

经
$$L_2$$
成像 $s_2=0$ ,  $s_2'=0$ ,  $\beta_2=1$  经 $L_3$ 成像 $s_3=-30$ cm得 $s_3'=60$ cm,  $\beta_3=-2$ ,  $\beta=\beta_1\beta_2\beta_3=1$ 

45401...解: (1) 开普勒型
$$M = -3 = -\frac{f_1'}{f_2'}$$
,  $f_2' = 0.167m$ ,  $\Phi = \frac{1}{f_2'} = 6(D)$ 

.....(2) 伽利略型
$$f_2' = -0.167m$$
,  $\Phi = \frac{1}{f_2'} = -6(D)$  ,

45402 **M**: (1) 
$$M = -\frac{f_1'}{f_2'} = -\frac{100}{20} = -5$$

(2) 已知
$$s_1 = -200m$$
,  $f'_1 = 100cm = 1m$ 

......由高斯公式得
$$s_1' = 100.5cm$$
,  $d = f_1' + f_2' = 120cm$ 

.....
$$s_2 = -(d - s_1') = -19.5cm, f_2' = 20cm$$

......
$$\beta s_2' = -780cm$$
,  $\beta = \beta_1 \cdot \beta_2$ ,  $h' = \beta y = -10.05m$ 

$$A_0 = \frac{1}{h^2}, \dots A_{\rho} = \frac{1}{r^2} \cos \theta = \frac{lh}{r^2 \left[h^2 + (\frac{d}{2})^2\right]^{\frac{3}{2}}}$$

$$\frac{A_0}{A_p} = \frac{\left[h^2 + \left(\frac{d^2}{2}\right)\right]^{\frac{3}{2}}}{h^3} = \left(1 + \frac{d^2}{4h^2}\right)^{\frac{3}{2}}$$
if \(\frac{12}{2}\)



48402 解:圆桌边缘的照度为 
$$A_p = \frac{1}{r^2} \cos \theta = \frac{Ih}{(h^2 + R^2)^{\frac{1}{2}}}$$

照度最大的条件为 
$$\frac{dA}{dh} = 0$$
 即: 
$$\frac{(h^2 + R^2)^{\frac{3}{2}} - h\sqrt{h^2 + R^2 \cdot 2h \cdot \frac{3}{2}}}{(h^2 + R^2)^3} = 0$$

解得

$$h = \sqrt{2} R/_2$$



52401....解: (1) 
$$y_3 = \frac{k\lambda D}{d} = 3.6mm$$

$$(2) \Delta y = \frac{D\lambda}{d} = 1.2mm$$

52402 解:设考察点的位置位 X,如图所示,波长为 2、2,的 光在 P 点非相干迭加

$$\Delta = \frac{X}{L}t, \dots, \delta_1 = \frac{2\pi}{\lambda_1}\Delta = \frac{2\pi t}{\lambda_1 L}X, \dots, \delta_2 = \frac{2\pi t}{\lambda_2 L}X$$

$$I = I_1(X) + I_2(X) = 4 \left[I_{10}\cos^2\left(\frac{\pi t}{\lambda_1 L}X\right) + I_{20}\cos^2\left(\frac{\pi t}{\lambda_2 L}X\right)\right]$$



52403 **M**: (1) 
$$x = \frac{20D\lambda}{d} = 0.11m$$

(2) 覆盖云母片后,零级明纹处应满足(n-1)  $l=r_2-r_1$ 

设不覆盖云母片时,此点为第k级明纹,则 $r_2-r_1=k\lambda$ 

$$(n-1) / - k2$$

k=7............零级明纹移到第7级明纹处

52404 解:玻片插入前的光程差 $\Delta = r_2 - r_1 = 5\lambda$ 

玻片插入后的光程差 $\Delta' = (r_2 - r_1) - (n-1) d = \Delta - (n-1) d = 0$ 

 $\mathbb{H} \colon \Delta = (n-1) \ d$ 

玻片的厚度为 $d = \frac{\Delta}{n-1} = 5 \times 10^{-4} cm$ 



52405 解: 放云母片前,两缝至 $P_0$ 点的几何光程差 $\Delta = r_2 - r_1 = 0$ 

放云母片后....
$$\Delta' = r_2 + (n-1) l - r_1 = k\lambda$$
解得 $n = \frac{k\lambda + l}{l} = 1.58$ 干涉条纹向加云母片那个缝的一侧移动

52406 解: 由题意知 
$$\Delta = l (n_2 - n_1) = 5\lambda .... l = \frac{5\lambda}{n_2 - n_1} = 0.008 mm$$

52407 解: (1) 
$$\Delta y = \frac{Dy}{d} = 2mm$$

(2) 当
$$y=10mm$$
时,相干光在 $P$ 点的程差 $\Delta=\frac{dy}{D}=30000$   $A$  由明纹条件 $\Delta=k\lambda$ 得 $k=\frac{\Delta}{\lambda}=5$ , $P$ 点为第五级明纹

52408 解: 设幕移动δ=500mm

条纹间距
$$\Delta x = \frac{\lambda D_0}{d}$$
 ..... $\Delta x' = \frac{\lambda D}{d} = \frac{\lambda \cdot (D_0 + d)}{d}$  两式相除 $\frac{\Delta x}{\Delta x'} = \frac{D_0}{d_0 + \delta}$  ... $D_0 = \frac{\Delta x \delta}{\Delta x' - \Delta x}$  ..... $\lambda = \frac{d}{D_0} \Delta x$  代入数字得 $D_0 = 1m$ ,  $\lambda = 6057 \frac{o}{A}$ 

52409 解: 已知d = 0.5mm = 0.05cm, D = 1m = 100cm,  $\lambda = 5 \times 10^{-5}cm$ 

(1) 
$$y_1 = \frac{D\lambda}{d} = 1mm$$

(2) 若
$$y = 0.25mm$$
则 $\Delta = \frac{dy}{D} = 1.25 \times 10^{-5} cm$ ,  $\delta = \frac{2\pi\Delta}{\lambda} = \frac{\pi}{2}$ 

$$(3)\frac{I_P}{I_{P_0}} = \frac{4I_0\cos^2\frac{\pi}{4}}{4I_0\cos^20} = \frac{1}{2}$$

52410 解: (1) 缝
$$s_1$$
和缝 $s_2$ 到 $P_0$ 点的位相差为 $\delta = \frac{2\pi (n-1)}{\lambda} \frac{d}{\lambda}$ 

$$P_0$$
点的光强...... $I = I_0 \cos^2 \frac{\pi (n-1) d}{\lambda}$ 

53401 解: 已知
$$r = 10cm$$
,  $L = 210cm$ ,  $\lambda = 6 \times 10^{-5}cm$ ,  $a = 20' = 5.8 \times 10^{-3}rad$ 

$$\Delta x = \frac{(r\cos a + L) \lambda}{2r\sin a} = \frac{(r + L) \lambda}{2ra} \dots \Delta x = 1.134mm$$

53402....解: 
$$\Delta l = \frac{\lambda_0 L}{d} = \frac{\lambda_0 L}{2r \sin \varphi}$$
 因  $\varphi$ 很小  $\sin \varphi \approx \varphi$  所以

.....
$$\varphi = \frac{\lambda_0 L}{2r\Delta l} = 1.25 \times 10^{-3} rad = 4'18''$$

解: (1) 已知 $\lambda = 5 \times 10^{-4} mm$ , r = 0.50m, L = 1.50m,  $\varphi = 10^{-3} rad$ 53403

.....
$$\Delta y = \frac{Dy}{d} = \frac{(r+L)}{2r\varphi} = 0.001m = 1mm$$

(2) 干涉条纹区域
$$\overline{AB} = 2\overline{AO} = 2L\varphi = 3mm$$
,  $N = \overline{\frac{AB}{\Delta y}} = 3$ 

54401...
$$M$$
:  $L_1 = 60cm$ ,  $L_2 = 120cm$ ,  $n = 1.5$ ,  $\Delta y = 1.0mm$ ,  $\lambda = 5.89 \times 10^{-4} mm$ 
...... $\Delta y = \frac{(L_1 + L_2) \lambda}{2L_1 A (n-1)}$   $\Delta A = 1.8 \times 10^{-3} rad = 0.10^{\circ}$ 

54402...解: 
$$L_1 = 0.1m$$
,  $L_2 = 1m$ ,  $n = 1.5$ ,  $\Delta y = 0.8mm$ ,  $A = 0.5^o = 0.0087 rad$ 
.........由  $\Delta y = \frac{(L_1 + L_2) \lambda}{2L_1 A (n-1)}$  得  $\lambda = 6.3 \times 10^{-7} m = 6300 A$ 

55401 解:已知
$$L = 50cm$$
, $\lambda = 7.2 \times 10^{-4} mm$ , $d = 4mm$ 田 $\Delta y = \frac{L\lambda}{d}$ 得 $\Delta y = 0.09mm$ 

因O处为一暗纹, 故共有34条暗纹,33条亮约



55402 解: 已知L=1.5m,  $\hat{\lambda}=5\times10^{-4}mm$ , d=4mm

(1) 
$$\Delta y = \frac{Ly}{d} = 0.19mm$$

(2) 由题图几何关系得
$$tg\theta_1 = \frac{\overline{SO'}}{\overline{OA'}} = \frac{y_M}{\overline{OA}}....tg\theta_2 = \frac{y_N}{\overline{OB}} = \frac{\overline{SO'}}{\overline{OB'}}$$

55403 解:(1)如题图,观察屏在平面镜右端 B处为暗条纹,因为B处的反射光有"半波损失"

(2) 已知
$$L = 20cm$$
,  $\lambda = 5 \times 10^{-5} cm$ ,  $d = 2mm$ 

(3) 由 
$$(n-1)$$
  $l = 2\lambda 得 l = \frac{2\lambda}{n-1} = 2 \times 10^4 \text{ A}$ 

解: (1) 由题图知  $\angle SAO' = \angle MAO$ ,  $\angle SBO' = \angle NBO$ 由 几何关系 55404

$$\frac{\overline{SO'}}{\overline{O'A}} = \frac{\overline{OM}}{\overline{AO}} \qquad \frac{\overline{SO'}}{\overline{O'B}} = \frac{\overline{ON}}{\overline{BO}}$$

$$\frac{\overline{SO'}}{\overline{O'B'}} = \frac{\overline{ON}}{\overline{BO}}$$

$$\overline{OM} = 3.9 cm, \overline{ON} = 1.9 cm$$

$$y_M - y_N = 2cm$$

因 
$$\Delta y = \frac{D\lambda}{d} = 0.5mm$$
 条纹总数  $N = \frac{y_M - y_N}{\Delta y} = 40(条)$ 

$$N = \frac{y_M - y_N}{\Lambda y} = 40(\%)$$

(2) 在SO光路中加入云母片后。条纹移动 2cm 或 40 个条纹

既 $\Delta = 40\lambda$  所以由 $(n-1)l = 40\lambda$ , 得 l = 0.04mm

55405 解:接收布道无线电波的原因是直射波和海平面反射波在悬崖顶产生相消干洗。

$$\Delta = \sqrt{(h+d)^2 + l^2} - \sqrt{(h-d)^2 + l^2} + \frac{\lambda}{2}$$

$$\Delta = \frac{(2k+1)\lambda}{2} \qquad (k=1,2,3\cdots)$$

th 
$$L=1$$

由 
$$k=1$$
 得  $\lambda_r = 3.75m$ 

由 
$$k=2$$
 得  $\lambda_2=1.88m$ 

$$\lambda_2 = 1.88m$$

所用无线电波的波长为 3.75m



55406 解:由于射电星刚从地平线上升起,反射波相对于入射波有一半波损失,直射波和湖面反射波 在 A 处相遇的位相差为

 $\xi=2k\pi$  (k=1, 2, 3) 4, 探测器指示极大值

第一次出现极大值时 k=1 则  $h \sin \theta = \frac{\lambda}{a}$ ,  $\theta = 6^{\circ}$ 

56401 解:如图,反射光1、2相对于入射光都有半波损失,所以

$$\Delta = 2n_2l$$

干涉相长时  $\Delta = kl$ , k = 1,2,3······

当
$$k = 1$$
时  $\lambda_1 = \frac{2n_2l}{k} = 5880 \stackrel{\circ}{A}$ 

当
$$k = 2$$
时...... $\lambda_2 = \frac{2n_2l}{k} = 2940 \stackrel{\circ}{A}$ 

油膜呈现黄色



56402 解:正面反射,光程差满足相长干涉的条件。

$$2nd + \frac{\lambda}{2} = k\lambda \qquad \lambda = \frac{4nd}{2k-1}$$

当
$$k = 2$$
时

$$\lambda_2 = 6739 \stackrel{o}{A}$$

$$\stackrel{..}{\underline{}}_{k} = 315$$
..... $\lambda_{2} = 4043 \stackrel{0}{A}$ 

当
$$k = 2$$
时  $\lambda = 5054 \stackrel{0}{A}$ 

背面呈兰绿色

56403 解:相消干涉的条件为 $2n_1 l = \frac{(2k+1) \lambda}{2}$ 

由题意知: 
$$2n_1l = \frac{(2k+1)\lambda}{2} = \frac{[2(k+1)+1]\lambda_2}{2}$$
......代入 $\lambda_1$ 、 $\lambda_2$ 得:  $k=2$ 

则 
$$2n_1 l = (2k+1)\frac{\lambda_1}{2}$$
,  $l = \frac{(2k+1)\lambda_1}{4n_1} = 6731 \stackrel{0}{A}$ 

56404 解:由 
$$\lambda_1$$
 出现极大得  $2nl + \frac{\lambda_1}{2} = k\lambda_1$  由  $\lambda_2$  出现极小得  $2nl + \frac{\lambda_2}{2} = \frac{(2k'+1) \lambda_2}{2}$  因其间无其它波长的干涉极小,应有  $k = k'$  联立以上两式得  $(k - \frac{1}{2}) \lambda_1 = k\lambda_2$  ……代入  $\lambda_1$  、  $\lambda_2$  的值,得

$$k=2$$
,  $l=\frac{k\lambda_2}{2n}=3383 \stackrel{0}{A}=0.338 \mu m$ 

56405 解: (1) 溥膜上下表面反射光的光程差
$$\Delta = 2h_{\min} \sqrt{n_1^2 - n_0^2 \sin^2 i_1} + \frac{\lambda}{2}$$
 由題意,膜呈绿色时,对应 $2h_{\min} \sqrt{n_1^2 - n_0^2 \sin^2 i_1} + \frac{\lambda}{2} = \lambda$ 

$$h_{\min} = \frac{\lambda}{4\sqrt{n_1^2 - n_0^2 \sin^2 i_1}} = 1110 \, \text{A}$$

56406 解: 由光程差公式及干涉相长条件得:  $\Delta = 2l\sqrt{{n_2}^2 - {n_1}^2 \sin^2 i} + \frac{\lambda_i}{2} = k\lambda_i$ 

$$l = \frac{k\lambda_1 - \frac{\lambda_1}{2}}{2\sqrt{n_2^2 - n_1^2 \sin^2 i}}$$
 当 $k = 1$ 时,得 $l = 1240$  $A$ 

该用波长 $\lambda_2$ 的光垂直照射并产生相长干涉时 $2n_2l=k\lambda_2-\frac{\lambda_2}{2}$ 

当
$$k=1$$
时, $\lambda_1=6597A$ ,红光

57401 解:暗纹满足 
$$2nh+\frac{\lambda}{2}=\frac{(2k+1)}{2}$$
,相邻条纹薄膜的厚度差为  $\Delta h=\frac{\lambda}{2n}$  板面上相邻暗纹的间隔为  $\Delta l=\frac{\lambda}{2n\sin\theta}=1.18mm$  A 端  $\Delta=\frac{\lambda}{2}$  为暗纹  $B$  端  $k=\frac{2nh}{\lambda}=170$  即  $B$  端亦为暗纹,共有 170 条明纹,171 条暗纹 利用这一实验可以测量希思治警,薄片的厚度等

57402 解:在垂直入射的条件下,相邻条纹空气膜的厚度差为
$$\Delta h = \frac{\lambda}{2}$$

而相邻条纹的间隔 
$$\Delta l = \frac{\Delta h}{a}$$
 由于  $a = \frac{d}{l}$ ,所以  $\Delta l = \frac{\lambda l}{2d}$ ,  $d = \frac{\lambda l}{2\Delta l} = 1.98 mm$ 

57403 解: (1) 
$$\Delta = 2nh + \frac{\lambda}{2}$$
 由明纹条件  $2nh + \frac{\lambda}{2} = k\lambda$ , 得相邻明条纹薄膜的厚度差为

$$\Delta h = \frac{\lambda}{2} \qquad \Delta l = \frac{\Delta h}{a} = 0.14 mm$$

(2) 
$$\Delta l' = \frac{\lambda}{2na} = 0.09mm$$

(3) 浸入油中后,两块玻璃接触处,有暗纹变成明纹,条纹间距变小,观察者看到条纹向棱 便靠拢

57404 解: (1) 
$$\Delta = 2n_2h$$
. 当  $\Delta = \frac{(2k-1)\lambda}{2}...(k=1,2,3.....)$  出现暗纹,

第八条暗纹对应
$$k=8$$
 所以  $2n_2h = \frac{(2\times 8-1)\lambda}{2}....h = 1.37\times 10^{-3}mm$ 

(2) 因为 $n_1 < n_2 < n_3$ , 二氧化硅薄膜的上下两表面均存在"半波损失",所以N处为亮纹

58401。解: 
$$r_{10} = 2.5mm = 0.25cm$$
.因为 $r_{10} = \sqrt{\frac{(2 \times 10 - 1) R\lambda}{2}}...r_{10}^2 = \frac{19R\lambda}{2}$ 

R = 112cm = 1.12m

58402 解: 反射光程中没有附加的程差, 其亮环条件为  $\Delta=2nd=k\lambda$ 

由图中几何关系得 
$$R^2 = (R-d)^2 + r_k^2 = R^2 - 2Rd + r_k^2$$

$$2d = \frac{{r_k}^2}{R}$$
 代入上式得 ${r_k}^2 = \sqrt{\frac{RK\lambda}{n}}$ .....( $k = 0.1.2.3....$ )

圆环中心 
$$r=0$$
,  $k=0$ ,  $\Delta=0$  为零级亮点



58403 解: 无介质时 
$$r_{10} = \sqrt{(10-\frac{1}{2}) R \lambda}$$
 有介质时  $r'_{10} = \sqrt{(10-\frac{1}{2}) R \lambda'}$ 

二是相比得 
$$\frac{r_{10}}{r_{10}} = \sqrt{\frac{\lambda}{\lambda'}}$$
 而  $\lambda' = \frac{\lambda}{n}$  所以  $n = (\frac{r_{10}}{r'_{10}})^2 = 1.22$ 

58404 #: 
$$r_K = \sqrt{KR\lambda}$$
,  $r_{K+5} = \sqrt{(K+5) R\lambda}$ 

两式平房再相減得
$$r^2_{K+5}-r^2_K=5R\lambda$$
 得 $\lambda=4000$   $A$  代入 $r_K$  表达式得  $k=4$ 

58405 解: 
$$r_K = \sqrt{(K - \frac{1}{2}) R \lambda ... r_{K+4}} = \sqrt{(R + 4 - \frac{1}{2}) R \lambda}$$

两式平房再相减得 $r^2_{K+4} - r^2_K = 4R\lambda$  解之得  $\lambda = 5882 A$ 

58406 解:设凸球面的曲率半径为R,第k个亮环的半径为r.

$$y = (k - \frac{1}{2}) R\lambda$$
 k=1, 2, 3.....

$$r^{2}_{k+m}-r^{2}_{k}=mR\lambda \qquad R=\frac{r^{2}_{k+m}-r^{2}k}{m\lambda}$$

代入已知条件得 R = 500mm = 50cm

58407 解: (1) 暗环的半径 
$$r_k = \sqrt{k\lambda_1 R},.....(k = 1,2,3.....)....r_{k+1} = \sqrt{(k+1) \lambda_2 R}$$

由题意得 
$$k = \frac{\lambda_2}{\lambda_1 - \lambda_2} = 3.....x_3 = \sqrt{3 \times 6 \times 10^{-5} \times 90} = 0.127cm$$

(2) 亮环的半径 
$$r_k = \sqrt{(k-\frac{1}{2}) R \lambda_* ....(k=1,2,3,...)}$$

由題意的 
$$\sqrt{(6-\frac{1}{2}) R \lambda_1} = \sqrt{(7-\frac{1}{2}) R \lambda_2} \dots \lambda_2 = 4231 A$$

58408 解:对波长为 $\lambda$ 的光 $\Delta r = r_4 - r_1 = \sqrt{4R\lambda} - \sqrt{R\lambda}$ 

. 对波长为 2'的

$$\Delta r' = r_4' - r_1' = \sqrt{4R\lambda'} - \sqrt{R\lambda'}$$

$$\Delta r^2 = R\lambda, \dots, \Delta r'^2 = R\lambda'$$

两式相比得 
$$\frac{\Delta r^2}{\Delta r'^2} = \frac{\lambda}{\lambda'}$$
  $\lambda = \frac{\lambda' \Delta r^2}{\Delta r'^2} = 5495 \stackrel{\circ}{A}$ 

58409 解:明纹半径 
$$r_k = \sqrt{(k-\frac{1}{2}) R \lambda_1 \dots r_{k+m}^2 - r_k^2} = mR \lambda$$

$$(r_{k+m} - r_{\bar{k}})$$
  $(r_{k+m} + r_k) = mR\lambda_1$ 

由題意

$$\Delta r_1(r_{k+m} + r_k) = mR\lambda_1....(1)$$

$$\Delta r_2(r'_{k+m} + r'_k) = mR\lambda_2...(2)$$

将 
$$r_{k+m} = r_4 = \sqrt{\frac{7R\lambda_1}{2}}, ... r_1 = \sqrt{\frac{R\lambda_1}{2}}, ... r_4' = \sqrt{\frac{7R\lambda_2}{2}}, ... r_1' = \sqrt{\frac{R\lambda_2}{2}}$$

$$\Delta r_1 = 4mm_1 ... \Delta r_2 = 3.85mm$$
 代入上式 $\Delta r_1 \frac{\sqrt{7} + 1}{\sqrt{2}} = \sqrt{R\lambda_1} ... R = 20M$ 

$$\lambda_2 = \frac{(\sqrt{7} + 1)^2}{18} \times \frac{(\Delta r_2)^2}{R} = 5459 \frac{0}{A}$$

58410 解: (1) 暗纹条件为 
$$2nh + \frac{\lambda}{2} = \frac{(2k+1)\lambda}{2}$$
 即  $2nh = k\lambda$ ......( $k = 1, 2, ....$ ) 当 $h = 0$  时, $k = 0$  油膜边缘为暗纹

- (2) 相邻暗纹的油膜厚度差  $\Delta h = \frac{\lambda}{2n}, \frac{h_m}{\Delta h} = 4.16$  可看到 4 条明纹
- (3) 当油膜扩展时,条纹向中心移动,条纹数减少,间距增大。

58411 解: (1) 空气隙上下界面反射光的程度差 
$$\Delta = 2I + \frac{\lambda}{2}$$

而 
$$\lambda = 5000 \stackrel{\circ}{A}$$
,  $I_{\text{max}} = 25000 \stackrel{\circ}{A}$ 则 $k_{\text{mex}} = \frac{2l_{\text{mex}}}{\lambda} = 10$ 

空气隙的中心除厚度最大,级次最高;是第10级暗纹

(2) 用手按压 A 镜时,空气隙厚度变小,环纹向内收缩,点纹: 称苏、

58412 解: (1) 暗环条件 
$$2l + \frac{\lambda}{2} = \frac{(2k+1) \lambda}{2}$$
...即 $2l = k\lambda$ 

式中
$$I = I_1 - I_2 = (R_1 - \sqrt{R_1^2 - r_k^2}) - (R_2 - \sqrt{R_2^2 - r_k^2}) = \frac{r_k^2}{2} (\frac{1}{R_1} - \frac{1}{k_2})$$

代入上式得 
$$r_k^2 = \frac{k\lambda R_1 R_2}{R_2 - R_1}$$

则 
$$R_2 = \frac{R_1 r_k^2}{r_k^2 - k \lambda R_1} = 102.8cm$$

58413 解: (1) 第 k 级亮环的条件  $2l + \frac{\lambda}{2} = k\lambda$  其中  $l = l_1 + l_2 = \frac{r_k^2}{2} (\frac{1}{R_1} + \frac{1}{R_2})$ 

(2) 
$$\stackrel{\text{def}}{=} R_1 = R_2 = R = 1m$$
  $\text{He}$ ,  $r_{k+1}^2 - r_k^2 = \frac{R\lambda}{2} .... \lambda = 5.9 \times 10^{-4} \, mm = 5900 \, \text{A}$ 

59401 解:在中心每变化一个条纹,动镜移动的距离满足 
$$\Delta d' = \frac{\lambda}{2}$$
 由题意  $\Delta d = \frac{N \cdot \lambda}{2} \dots \lambda = \frac{2\Delta d}{N} = 632.8 mm = 6328 \frac{\alpha}{N}$ 

59402 解:设 $M_1$ 与 $M_2$ 之间的距离为h时, $\lambda_1=6000$  A的  $K_1$  级明纹与  $\lambda_2$ 的 $K_2$  级明纹重合。已知  $M_2'$ 移动 $\Delta h=1.5mm$ ,两波长的干涉条纹又重合,由于  $\lambda_1>\lambda_2$  , $\lambda_1$  的干涉条纹增加  $\Delta K_1$  级,  $\lambda_2$  的干涉条纹增加  $(\Delta K_1+1)$  级

$$2\Delta h = \Delta k_1 \lambda_1 = (\Delta k_1 + 1) \quad \lambda_2 \dots \Delta K_1 = \frac{\lambda_2}{\lambda_1 - \lambda_2}$$

$$\Delta \lambda = \frac{\lambda_2}{\Delta K_1} = \frac{\lambda_1 \lambda_2}{2\Delta h} = \frac{\lambda^2}{2\Delta h} = 1.2 \stackrel{\circ}{A} .... \lambda_2 = \lambda_1 - \Delta \lambda = 5998.8 \stackrel{\circ}{A}$$

59403 解: (1)  $M_1$ 移动的距离  $\Delta h = \frac{N \cdot \lambda}{2} = 29470 \frac{0}{A}$ 

- (2) 条纹数减少,条纹变稀,空气膜厚度减小。
- (3) 设开始中心亮斑级次为 K,薄膜厚度为 h,视场角为 $\theta$ ,  $M_1$ 移动前对中心亮斑有关系  $2h=K\lambda$

对边缘条纹 
$$2h\cos\theta = (K-12)\lambda$$

合并以上两式得 
$$K\lambda\cos\theta = (K-12)\lambda$$
 (1)

$$M_1$$
移动后有关系  $2(h-\Delta h)=(K-10)\lambda$ 

$$2(h-\Delta h)\cos\theta = (k-15)\lambda$$

合并以上两式得 
$$(K-10)\lambda\cos\theta = (K-15)\lambda$$
 (2)

(1)、(2) 相除得 
$$\frac{K-10}{K} = \frac{K-15}{K-12}$$
 解得  $K = 17$ 

(4)  $M_1$ 移动后中心亮斑的级次为 7,向外数第五个亮环的干涉为 2。

62401 解: (1) P 点的明暗决定半波带数 
$$k = \frac{\rho^2}{\gamma_0 \lambda} = 3$$

奇数半波带,P点为亮点。

(2) 要使 P 点变为暗点,必须使观察屏左、右移动,分别使 k=4 或 k=2

当 k=4 时, 
$$\gamma_0 = \frac{\rho^2}{k2} = 75cm$$

$$\gamma_0 = \frac{\rho^2}{k\lambda} = 150cm$$

P 点必须左移 25cm 或右移 50cm

解: 己知  $d = 1.34mm, b_1 = 30cm, \lambda = 6 \times 10^{-4} mm$ 

由 
$$k = \frac{\left(\frac{d}{2}\right)^2}{\lambda b_1}$$
 得 k=2。

$$b_2 = \frac{\left(\frac{d}{2}\right)^2}{4\lambda} = 15cm, \Delta b = b_1 - b_2 = 15cm$$

62403 解:已知  $\rho = 1.34mm$ ,  $\gamma_0 = 800mm$ ,  $\lambda = 4.5 \times 10^{-4} mm$ 

亮点的波带数

$$k = \frac{\rho^2}{\lambda \gamma_0} = 5$$

$$k = 3.7$$

$$\gamma_3 = \frac{\rho^2}{3\lambda} = 1330mm$$
  
上相邻亮点对应于 
$$\gamma_7 = \frac{\rho^2}{7\lambda} = 570mm$$

$$\gamma_{7} = \frac{\rho^{2}}{72} = 570 mm$$

$$\Delta \gamma = \gamma_3 - \gamma_7 = 760 mm$$

解: (1) 由图中几何关系知

$$\rho_k^2 = R^2 - (R - h)^2$$

$$=\gamma_k^2-(\gamma_0+h)^2$$

$$h = \frac{\gamma_k^2 - \gamma_0^2}{2(R + \gamma_0)}$$
 而

$$\gamma_k = \gamma_0 + \frac{k\lambda}{2}, \gamma_k^2 - \gamma_0^2 = k\gamma_0\lambda$$

$$\rho_k^2 = \frac{k\gamma_0 R\lambda}{R + \gamma_0}, \rho_k = \sqrt{\frac{k\gamma_0 R\lambda}{R + \gamma_0}}$$

(2) 
$$\rho_1 = \sqrt{\frac{\gamma_0 R \lambda}{R + \gamma_0}} = 0.15 cm$$



62405 解: 已知  $\rho = 0.2cm, R = 200cm, \lambda = 5 \times 10^{-5} cm$ 

当
$$\gamma_0 \to \infty$$
 时的半波带数  $k = \frac{\rho^2}{\lambda} \left( \frac{1}{R} + \frac{1}{\gamma_0} \right) = 4$ 

(1) 当 k=5 时,第一次出现亮点
$$\gamma_0 = \frac{1}{\frac{k\lambda}{\rho^2} - \frac{1}{R}}$$
=800cm

(2) 当 k=6 时,第一次出现亮点
$$\gamma_0 = \frac{1}{k\lambda} = 400$$
cm

62406 解: 光自由传播时, 在 $P_0$ 点的振幅  $A_0 = \frac{a}{2}$ , 若有波带片时, P 点光振动振幅 A=5a, 光强之比

$$\frac{A^2}{A_0^2} = 100$$

62407 **F** (1) Exp = 1.3×10<sup>-3</sup> m,  $\gamma_0 = 1.5 m$ ,  $\lambda = 5.89 \times 10^{-7} m$ 

波带数为
$$k = \frac{\rho^2}{\lambda y_0} = 2$$
, 轴线与屏交点是暗点

(2) 欲使该点光强由暗转亮,k 取 1 或 3 代入  $\rho_k = \sqrt{k\gamma_0\lambda}$  得

$$\rho_1 = 0.94mm$$
 (圆孔直径  $D_1 = 2\rho = 1.88mm$ )

62408 解:当 $\rho = 0.6mm$ , $0.6\sqrt{2}mm$ , $0.6\sqrt{3}mm$ 时,对应的半波带数分别为 $k = \frac{\rho^2}{\gamma_0 \lambda}$ 1, $k_2 = 2, k_3 = 3$ 

衍射屏是 1,3 带为开带的波带片,屏 B 上宿射花样中心亮点的振幅为  $2a_1$ ,光强为

$$I = (2a_1)^2 = 4 \times 4I_0 = 16I_0$$

63401 解:已知
$$a = 0.6mm.\lambda = 6 \times 10^{-4} mm, f' = 400mm$$

中央亮纹宽度为 
$$\Delta y = \frac{2\lambda f'}{a}$$
 0.8 mm

(2) 设在 y=1.4mm, 处,出现第 K 级亮纹 
$$\frac{ay}{f'} = \frac{(2k+1)\lambda}{2}$$

得 
$$k = \left(\frac{2ay}{\lambda f'} - 1\right) \cdot \frac{1}{2} = 3$$

63402 
$$\mathbf{M}: \pm a \sin \theta = \frac{(2k+1)\lambda}{2}$$

得 
$$\frac{(2\times 2+1)\lambda_0}{2} = \frac{(2\times 3+1)\lambda}{2}$$

$$\lambda = \frac{5\lambda_0}{7} = 4286 \stackrel{\circ}{A}$$

63403 解: (1) 由衍射极小条件:  $a\sin\theta_1 = \lambda_1, a\sin\theta_2 = 2\lambda_2$ 

当
$$\lambda_1$$
与 $\lambda_2$ 的极小重合时, $\theta_1 = \theta_2$ ,即 $\lambda_1 = 2\lambda_2$ 

由重合时 $\theta_1 = \theta_2$ 和 $\lambda_1 = 2\lambda_2$ ,得重合条件为 $k_2 = 2k_1$ 

$$\mathbb{N}[k_1 = 1, 2, 3, \dots, k_n = 2, 4, 6, 8, \dots]$$

63404 解: 已知  $\lambda = 6.328 \times 10^{-5}$  cm,  $\alpha = 0.02$  cm, f' = 60 cm

若
$$\delta_1 = \frac{2\pi\sin\theta_1}{\lambda} = \frac{\pi}{2}$$
则 $\sin\theta_1 = \frac{\lambda}{4\sigma}$ ,... $\delta_2 = \frac{\pi}{4}$ ... $\sin\theta_2 = \frac{\lambda}{8\sigma}$ 

P点距透镜焦点 $P_0$ 的距离为  $l_1 = f' \sin \theta_1 = 0.047cm$ 

$$l_2 = f' \sin \theta_2 = 0.024 cm$$

63405 解: 已知  $a = 0.025cm, f' = 25cm, l_3 = 0.15cm$ 

由暗纹条件 
$$a\sin\theta = \frac{al_3}{f'} = 3\lambda$$
得 $\lambda = \frac{al_3}{3f'} = 5 \times 10^{-5}$ cm = 5000  $\frac{a}{A}$ 

63406 解: 已知a = 1.0mm,  $L = 2 \times 10^3 mm$ ,  $\lambda = 5.89 \times 10^{-4} mm$ 

(1) 相邻暗纹得问距长 
$$\Delta l = \frac{2\lambda L}{a} = 2.36mm$$

(2) 水中光波长 
$$\lambda' = \frac{\lambda}{n}$$
 暗纹间距变为  $\Delta l' = \frac{2\lambda'L}{a} = 1.77mm$ 

63407 解: 已知 a = 0.10mm, f' = 500mm,  $\lambda = 5.46 \times 10^{-4} mm$ , n = 1.54,

$$n' = 1.33$$

(1) 中央明纹宽度 
$$\Delta l = \frac{2\lambda f'}{a} = 5.46mm$$

(2) 透镜浸入水中的焦距为 
$$f_{\pm} = \frac{n' (n-1)}{n-n'} f' = 1710mm$$
 水中中央明纹的宽度为  $\Delta l' = 2 \frac{\lambda}{n'a} f'_{\pm} = 14.0mm$ 

63408 解:由单缝衔射光强公式 
$$I = I_0 \left(\frac{\sin u}{u}\right)^2 = I_0 \left[\frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}}\right]^2 = 0.4I_0$$

64401 解:已知  $\lambda = 6.5 \times 10^{-5} cm$ , $\Delta l = 0.104 cm$ ,f' = 80 cm 第 K 级亮纹的条件

$$f'(a+b)\sin\theta = k\lambda$$
或  $\frac{(a+b)}{f'} = k\lambda$  条纹间距  $\Delta l = \frac{f'\lambda}{a+b}$  所以  $a+b = \frac{f'\lambda}{\Delta l} = 5 \times 10^{-2} cm$  根据缺级关系,当 $k'=1$ , $k=5$  代入 $k = \frac{(a+b)}{a}$  得 $a+b=5a$   $a = \frac{a+b}{5} = 0.01cm = 0.1mm$ ,.... $b = 4a = 0.4mm$ 

64402 解: 邑知 
$$a+b=0.01cm$$
,  $\lambda=4.8\times10^{-5}cm$ ,  $L=50cm$ 

干涉条纹的间隔 
$$\Delta I = \frac{L\lambda}{a+b} = 0.24cm$$

中央到单缝第一极小的距离为 
$$l = \frac{L\lambda}{a} = 1.2cm$$

从中央到单缝第一极小可能的干涉条纹数为 
$$n=\frac{l}{\Delta l}=5$$

由缺级 
$$k = \frac{a+b}{a}k' = 5k'...$$
 知

第五条干涉条纹正好缺级,但风零级条纹内共有9条亮纹

64403 解:证明:双缝符射光强公式为 
$$I=4I_0(\frac{\sin u}{u})^2\cos^2\frac{\delta}{2}$$

式中 
$$u = \frac{\pi a \sin \theta}{\lambda}$$
 ,  $\delta = \frac{2\pi d \sin \theta}{\lambda}$  . 当  $d = a$ 时,  $\delta = 2u$ ,

代入上式 
$$I = 4I_0 \frac{\sin^2 u}{u^2} \cos^2 u = 4I_0 (\frac{\sin 2u^2}{2u})^2 = 4I_0 (\frac{\sin m}{m})^2$$

式中 
$$m = \frac{2\pi a \sin \theta}{\lambda}$$
 上式即为缝宽为  $2a$  的单缝衍射光强公式

64404 解: 第一级干涉明纹的相应位相差 
$$\delta = \frac{2\pi \sin \theta}{\lambda} = 2\pi$$
, 得  $\sin \theta = \frac{\lambda}{d}$ 

$$\overline{m} \quad u = \frac{\pi a \sin \theta}{\lambda} = \frac{2\pi a}{d} = \frac{\pi}{2}$$

$$I = 4I_0(\frac{\sin u}{u})^2 \cos^2 \frac{\delta}{2} = 4I_0 \left[\frac{1}{\frac{\pi}{2}}\right]^2 = 1.6I_0$$

65401 解:由光栅方程  $d\sin\theta = k\lambda$ ,即 $\sin\theta = \frac{k\lambda}{d}$ 

设第k 级谱线与中央谱线之间的距离为x..... $x = f t g \theta = f' \sin \theta$ 

一线谱线间的距离

$$k = 1$$

$$\Delta x_1 = x_1 - x_1' = f' \left( \sin \theta_1 - \sin \theta_1' \right) = f' \left( \frac{\lambda}{d} - \frac{\lambda'}{d} \right) = 0.2cm$$
  
三级谱线间的距离  $k = 3....\Delta x_3 = \frac{3f' \left( \lambda - \lambda' \right)}{d} = 0.6cm$ 

65402 解: 已知  $d = \frac{1}{5000} = 2 \times 10^{-4} cm$ ,  $\lambda = 5.89 \times 10^{-5} cm$ 

- (1) 由光棚方程  $d\sin\theta = k\lambda$ , 令 $\theta = \frac{\pi}{2}$  得 $k = \frac{d\sin\theta}{\lambda} = 3.4$  最多能观察到第三级谱线

65403 解:已知 
$$d = 0.002cm$$
,  $f' = 200cm$ ,  $\lambda' = 5.896 \times 10^{-5} cm$ ,  $\lambda = 5.89 \times 10^{-5} cm$ 

设x为谐线到中央明纹的距离  $x = f \lg \theta = f' \sin \theta$ 

所以对第一谱线 
$$\Delta x = f'(\frac{\lambda}{d} - \frac{\lambda'}{d}) = 6.0 \times 10^{-3} cm$$
  
对三级谱线  $\Delta x' = \frac{3f'(\lambda' - \lambda)}{d} = 1.8 \times 10^{-2} cm$ 

65404 解:已知 $\lambda = 6 \times 10^{-5}$  cm

(1) 由光栅方程得  $(a+b)\sin\theta_2 = 2\lambda.....(a+b)\sin\theta_3 = 3\lambda$ 

得光栅常数 
$$(a+b)=10\lambda=6\times10^{-4}$$
 cm

(2) 对应于第一次缺级 
$$k'=1$$
,  $k=4$ ...由 $k=\frac{(a+b)\ k'}{a}$  得  $a+b=4a$ ...... $a=\frac{a+b}{4}=1.5\times 10^{-4}cm$ 

(3) 
$$\stackrel{\text{dis}}{=} \theta = \frac{\pi}{2}$$
,  $\sin \theta = 1$ ,  $\sin (a+b)\sin \theta = k\lambda$ 

得 
$$k = \frac{a+b}{\lambda} = \frac{10\lambda}{\lambda} = 10$$

可能出现的级次为1, 2, 3, 4, 5, 6, 7, 8, 9

65405 解: (1) 设单缝衍射的中央半角宽度为 $\theta$ ,

$$a\sin\theta_1 = \lambda \cdot \sin\theta_1 = \frac{\lambda}{a} = 0.052$$
,  $\theta_1 = 0.052$ rad,  $\Delta\theta = 2\theta_1 = 0.104$ rad

(2) 由光棚方程  $(a+b)\sin\theta = k\lambda$ 

单缝衍射中央亮纹内的干涉级次  $k = \frac{(a+b)\sin\theta_1}{\lambda} = 3.4$  能看到 7 条光谱线

(3) 谱线的半角宽度为 
$$\Delta\theta = \frac{\lambda}{N(a+b)\cos\theta} = \frac{\lambda}{N(a+b)} = 1.52 \times 10^{-5} rad$$

65406 解: 由 
$$\theta = \frac{k\lambda}{d}$$

一级末端 
$$\theta_{k=1} = \frac{\lambda_R}{d} = \frac{7.6 \times 10^{-4}}{d}$$

二级始端 
$$\theta_{k=2} = 2\frac{\lambda_v}{d} = \frac{8 \times 10^{-4}}{d} \dots \theta_{k=1} < \theta_{k=2}$$
不重迭

二级末端 
$$\theta_{k=2} = 2\frac{\lambda_R}{d} = \frac{1.52 \times 10^{-4}}{d}$$

三级始端 
$$\theta_{k=3} = 3\frac{\lambda_v}{d} = \frac{1.2 \times 10^{-4}}{d} \dots \theta_{k=2} > \theta_{k=3}$$

光谱重迭范围 
$$\frac{3\lambda_x}{d} = \frac{2\lambda_R}{d}$$
,  $\lambda_x = 5067 \stackrel{\circ}{A}$ ,  $\frac{2\lambda_x}{d} = \frac{3\lambda_o}{d}$ ,  $\lambda_x = 6000 \stackrel{\circ}{A}$ 

65407 解: 已知  $N = 6300 \times 6.35 = 40005$ ,  $\lambda = 5.5 \times 10^{-5}$  cm

(1)第三级谱线的分辨本领为 
$$R_3 = KN = 3 \times 40005 = 1.2 \times 10^5$$

(2) 第二级谱线的分辨本领为 
$$R_2 = 2 \times 40005 = 8 \times 10^4$$

由
$$R = \frac{\lambda}{\Delta \lambda}$$
得 $\Delta \lambda = \frac{\lambda}{R} = \frac{5.5 \times 10^{-5}}{8 \times 10^4} = 6.88 \times 10^{-10} cm$ 

65408 解: (1) 由 
$$d\sin\theta = k\lambda$$
得:  $d = \frac{k\lambda}{\sin\theta} = \frac{1 \times 6.328 \times 10^{-5}}{\sin 38^{\circ}} = 1.03 \times 10^{-4} cm$ 

(2) 
$$n = \frac{1}{d} = 9730.....1/cm$$

(3) 
$$\sin \theta = \frac{k\lambda}{d} = 1.23$$
, 第二级谱线不能出现

65409 解: (1) 由光栅方程知 
$$d \sin 30^\circ = 2 \times 6000$$
,  $d = 24000 \stackrel{\circ}{A}$ 

(2) 
$$\lambda = 6000 \stackrel{\circ}{A}$$
 的第三极缺级 则  $\frac{kd}{a} = 3$  令  $k = 1$ 时, $a_{min} = \frac{d}{3} = 8000 \stackrel{\circ}{A}$ 

(3) 由光栅分辨本领 
$$R = \frac{\lambda}{\Delta \lambda} = KN$$
,  $N = \frac{\lambda}{\Delta \lambda K}$ ....所以... $N = 30000$ 

65410 
$$\Re$$
: (1)  $(a+b)\sin\theta = k\lambda$ ,  $a+b = \frac{k\lambda}{\sin\theta} = 0.0024mm$ 

(2) 
$$R = \frac{\lambda}{\Lambda \lambda} = KN$$
,  $N = \frac{\lambda}{\Lambda \lambda K} = 6 \times 10^4$  总宽度=  $N(a+b) = 14.4cm$ 

考虑到缺级,应有 0, ±1, ±2, ±4 共 7 条干涉条纹呈现于屏上。

65411 解: (1) 由光栅分辨本领公式 
$$R = \frac{\lambda}{\Delta \lambda} = kN$$
, 得 $\Delta \lambda = \frac{\lambda}{kN}$ 

而
$$\lambda = 5 \times 10^3$$
,  $k = 3$ ,  $N = 6 \times 6000$ 所以 $\Delta \lambda = 0.046$  Å

(2) 由 
$$d\sin\theta = k\lambda$$
, 当  $\theta = \frac{\pi}{2}$  时  $\sin\theta = 1$ ,  $d = \frac{1}{6000}$   $cm$ ,  $k = \frac{d}{\lambda} = 3$  最多只能看到第三级谱线。

65412 解: (1) 已知 
$$\lambda_1 = 5890$$
  $\stackrel{0}{A}$ ,  $\lambda_2 = 5896$   $\stackrel{0}{A}$ ,  $\lambda = 5893$   $\stackrel{0}{A}$ ,  $\Delta \lambda = 6$   $\stackrel{0}{A}$ ,  $k = 1$ 

由光栅的分辨本领知
$$N = \frac{\lambda}{\Delta \lambda} = \frac{5893}{6} = 982(条)$$

(2)光棚宽度
$$N_d = 2cm$$
,  $d = \frac{2}{N} = \frac{2}{982}cm$ 

由光栅方程 
$$d\sin\theta = k\lambda$$
,取 $k = 1$ 得  $\theta_1 = \frac{\lambda_1}{d}$ ,  $\theta_2 = \frac{\lambda_2}{d}$ 

两谱线间距 
$$\Delta x = (\theta_2 - \theta_1)f' = \frac{(\lambda_2 - \lambda_1)f'}{d} 5.9 \times 10^{-4} mm$$

65413 解: (1) 
$$\frac{d}{a} = 3$$
, 中央衍射极大保络内包含  $0, \pm 1, \pm 2$  共五个干涉主极大

(2) 已知
$$d = \frac{1}{250}mm = 4\mu m$$
,  $\lambda = 0.56\mu m$ ,  $\theta = \sin^{-1}\frac{\lambda}{d} = 8.05^{\circ}$ 

角色散 
$$D = \frac{k}{d\cos\theta} = 2.52 \times 10^{-5} \, rad \Big/_{0}$$

。 5600 A 与5650 A 的两谱线分开的弧度值为

$$\Delta\theta = 50 \times 2.52 \times 10^{-5} = 1.26 \times 10^{-3} \, rad$$
 间距  $f \Delta\theta = 1.26 mm$ 

(3) 第二级光谱的分辨本领  $KN = 2 \times 10^4$ 

。。。。 而要分辨 5600 A 与5650 A 的两谱线,只需分辨本领为:  $\frac{5630}{50} = 112$  , 所以是可分辨的.

66401 解: 第一暗环角半径 
$$\theta_1 = \sin \theta_1 = \frac{0.61\lambda}{R}$$

第一暗环半径 
$$r_1 = f'\theta_1 = \frac{0.61\lambda f'}{R} = 0.134mm$$

第二暗环角半径 
$$\theta_2 = \sin \theta_2 = \frac{1.116 \lambda}{R}$$
 第二暗环半径  $r_2 = f'\theta_2 = 0.246 mm$ 

66402 解: 最小分辨角  $\theta_1 = \frac{0.61\lambda}{2}$ , 人在距车灯为 L 处正好能分辨的视角为  $\frac{l}{l}$ 

要求 
$$\theta_1 = \frac{0.61\lambda}{a} = \frac{l}{L}...L = \frac{la}{0.61\lambda} = \frac{1.31 \times 2 \times 10^{-3}}{0.61 \times 5.5 \times 10^{-7}} = 7800mm = 7.8km$$

66403 解: 月球上圆孔衍射的爱里斑百径为。

$$D = L (2\theta) = \frac{L \times 1.22 \lambda}{a} = \frac{3.67 \times 10^3 \times 1.22 \times 6.328 \times 10^{-7}}{10^{-3}} = 290 km$$

若激光扩束后a=1m则可算出D=290m 光斑反面变小了。

66404 解: 设单缝管射中央极大处的光强为了。, 二者进行非相干达加, 根据瑞利判据,

首先应求出单缝夫琅和费循射光强分布式中U=0.5m时的光强

$$I_{0.5\pi} = I_0(\frac{\sin 0.5\pi}{0.5\pi}) = 0.405I_0$$

中央凹陷处光强 $I = 2I_{0.5\pi} = 0.81I_0$ ..... $\frac{I}{I_0} = 81\%$ 

67401 解:已知d=0.2819nm, $\theta=1^{\circ}$ .由布拉格公式 $2d\sin\theta=k\lambda$ 

$$\lambda = \frac{2d\sin\theta}{k} = \frac{2 \times 0.2819 \times \sin 1^{\circ}}{2} = 0.0049nm$$

67402 解: (1) 由  $2d \sin \theta = k\lambda$  得:  $d = \frac{k\lambda}{2\sin \theta} = \frac{1.1}{2\sin 11.5} = 2.76 A$ 

(2) 
$$\lambda = \frac{2d\sin\theta}{k} 1.66 \stackrel{\text{o}}{A}$$

71401 解: 部分偏振光可看成由自然光和线偏振光的组合  $I_{\text{max}} = I_{\text{set}} + I_{\text{G}}$ (1)

$$I_{\min} = I_{\hat{\theta}}$$
 (2)  $\dot{t}$  接題意  $I_{\hat{\theta}} + I_{\hat{\theta}} \cos^2 60^{\circ} = \frac{1}{2} I_{\max}$  (3)

(1)-2×(3) 得: 
$$I_{\mathfrak{U}} = 2I_{\mathfrak{g}}$$
 由(1)得

$$I_{\text{max}} = 3I_{\text{fb}}$$

偏振度 
$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{2}{4} = 0.50$$

72401 解:按题意i 为布儒斯特角,所以  $i+i_1=90^\circ$  由题可知  $i_2=i_1+a$ 

所以 
$$a = i_2 - (90^\circ - i) = tg^{-1} \frac{1.5}{1.33} + tg^{-1} 1.33 - 90^\circ = 11^\circ 34^\circ$$

73401 解: (1) 自然光通过第一偏振片后其强度  $I_1 = \frac{I_0}{2}$ ,

通过第二偏振片后  $I_2 = I_1 \cos^2 45^\circ = \frac{I_0}{4}$ 

通过第三偏振片后  $I_3 = I_2 \cos^2 45^\circ = \frac{I_0}{8}$ 

动方向与刚通过的偏振片的透光方向平行

**通过每一偏**张片后的广均为4级聚光。美国

(2) 若抽取第二片 *I*<sub>3</sub>=0

73402 解: 设入射自然光光强为 $I_{\mathbf{0}}$ ,则第一次的投射光强为 $\frac{I_{\mathbf{0}}}{2}$ ,设两片镇偏偏景化方

·向何的夹角分别为 $\theta_1$ 和 $\theta_2$  则 $\frac{1}{2}I_0\cos^2\theta_1 = \frac{I_0}{4}...\theta_1 = 45$ °或135°

$$\frac{1}{2}I_0\cos^2\theta_2 = \frac{I_0}{8}....\theta_2 = 60^{\circ}$$
 \text{200}

73403 解:如图, A为原线偏振光的振幅,先用一偏振片尺对它检偏,旋转偏振片尺至。 连领美国。

将另一偏振片 $P_2$ 插入其中, $P_2$ 的透光方向与A的夹角为 $\theta$ 。则然是 $P_2$ 维生生。维力

$$I_1 = A^2 \cos^2 \theta \sin^2 \theta = \frac{1}{4} I_0 \sin^2 2\theta$$

由光强最大的条件  $\frac{dI_1}{d\theta} = 0$ 得  $\theta = 45^\circ$ ,  $I_{\text{mex}} = \frac{I_0}{4}$ 



73404 解: 通过 $P_1$ 点的光强为 $I_1 = \frac{1}{2}I_0$  通过 $P_2$ 的光强  $I_2 = I_1\cos^2\theta = \frac{1}{2}I_0\cos^2\theta$ 

通过
$$P_3$$
点的光强 $I_3 = I_2 \cos^2(90^\circ - \theta) = \frac{1}{2}I_0 \cos^2\theta \sin^2\theta = \frac{1}{8}I_0 \sin^2 2\theta$ 

由光强最大的条件  $\frac{dI_1}{d\theta} = 0$ 得 $\theta = \frac{\pi}{4}$ ,.... $I_{\text{max}} = \frac{I_0}{8}$ 



75401 解:设入射自然光强度为 $I_{0}$ ,通过第一个尼科尔 $I_{1}=\frac{I_{0}}{2}$ 

通过主截面夹角为30°的第二个尼科尔  $I_2 = I_1 \cos^2 30^\circ = \frac{3I_0}{8}$ 

通过主截面夹角为45°的第二个尼科尔  $I_2' = I_1 \cos^2 45^\circ = \frac{I_0}{4}$ 

75402 解:设自然光的强度为 $I_{\rm g}$ 。通过第一个尼科尔后的光强为 $I_{\rm l}$  =  $(1-10\%) imes rac{I_{
m o}}{2}$ 

通过第二个尼科尔后的光强为 $I_2 = (1-10\%) I_1 \cos^2 60^\circ = 0.9^2 \times \frac{1}{2} \times \frac{I_0}{4}$ 

$$\frac{I_2}{I_0} = 10.13\%$$

76401 解:(1)设平面编振光的振幅为 A, 寻常光与非常光透射出晶体的振幅分别为

$$A_0 = A \sin 30^\circ$$
, $A_e = A \cos 30^\circ$ ,强度之比为 $\frac{I_0}{I_e} = (\frac{A \sin 30^\circ}{A \cos 30^\circ})^2 = \frac{1}{3}$ 

(2) 由 
$$\Delta \varphi = \frac{2\pi (n_o - n_e) l}{\lambda}$$
 得  $l = \frac{\lambda \Delta \varphi}{2\pi (n_o - n_e)} = 8.2 \times 10^{-5} cm$ 

76402 解:已知 $n_o = 1.5442$ , $n_e = 1.5533$ , $\lambda = 5.893 \times 10^{-5}$  cm

$$\Delta \varphi = (2k+1) \ \pi$$
.....( $k = 1,2,3,.....$ )

(1) 
$$\pm \Delta \varphi = \frac{2\pi (n_e - n_o) l}{\lambda}$$

$$l = (2k+1)\frac{\pi\lambda}{2\pi (n_e - n_o)} = (2k+1) \times 3.238 \times 10^{-3} cm$$

(2) 该晶片是二分之一的波片,应使平面偏振光的振动面与晶体主截面成 $\frac{\pi}{4}$ 角

77401 解:从晶片透射出来的光是椭圆偏振光,可以把它看成是位相差为Δφ的两束互相垂直的平面偏振

光的合成 
$$\Delta \varphi = \frac{2\pi (n_o - n_e) l}{\lambda} = 30\pi$$

当尼科尔正交时,透射光强  $I_1 = A_{\rm l}^2 \sin^2 2\theta \sin^2 \frac{\Delta \varphi}{2} = 0$  (相消)

当两兒科尔平行时 ,透射光强  $I_{\parallel}=A_{\parallel}^2(1-\sin^22\theta\sin^2\frac{\Delta\varphi}{2})=A_{\parallel}^2$  (相长)

77402 解: 由于 
$$N_1$$
、  $N_2$  正交,透射  $o$ 、  $e$  两光的位相差为  $\Delta \varphi = \frac{2\pi \left(n_o - n_e\right) l}{\lambda} + \pi$ 

设: 距尖劈核 y 处的厚度为l,则 l=ya

相应厚度处两光产生的位相差 
$$\varphi = \frac{2\pi a (n_e - n_o)}{\lambda} + \pi$$

当 $\Delta \varphi = (2k+1)$   $\pi$  时,为干涉相消,当 $\Delta \varphi = 2k\pi$  时,为干涉相长

相邻条纹的问距 
$$\Delta y = \frac{\lambda}{a (n_e - n_o)} = 1.2619cm$$

77403 解: (1) 通过  $N_1$  的光强为  $I_1 = \frac{I_0}{2}$ 

(2) 通过
$$\frac{\lambda}{4}$$
的光强为  $I_{1e} = I_1 \cos^2 \theta = \frac{3I_0}{8} \dots I_{1e} = I_1 \sin^2 \theta = \frac{I_0}{8}$ 

(3) 通过 $N_2$ 的光强

$$I_2 = A_{2e}^2 + A_{2o}^2 + 2A_{2e}^2 A_{2o}^2 \cos \delta = I_1 (1 - \sin^2 2\theta \sin^2 \frac{\delta}{2}) = \frac{1}{2} I_0 (1 - \sin^2 60^\circ \sin^2 45^\circ)$$
.... =  $\frac{5I_0}{16}$ 



77404 解: (1) 通过 $N_1$ 的光强  $I_1 = \frac{I_0}{2}$ 

(2) 通过 
$$\frac{\lambda}{4}$$
 片的光强为  $I_{1e} = I_1 \cos^2 \theta = \frac{3I_0}{8} \dots I_{1o} = I_1 \sin^2 \theta = \frac{I_0}{8}$ 

(3) 通过 N<sub>2</sub> 的光强

$$I_2 = A_{2e}^2 + A_{2o}^2 + 2A_{2e}^2 A_{2o}^2 \cos(\delta + \pi) = A_1^2 \sin^2 2\theta \sin^2 \frac{\delta}{2} = \frac{3I_0}{16}$$



77405 解:如图,设经过第一个尼科尔的平面偏振光的振幅为 $A_1$ ,进入镜片后分成o、e 光

.....
$$A_o = A_1 \sin 30^\circ$$
,... $A_e = A_1 \cos 30^\circ$ ,  $A_{2o} = A_0 \sin 30^\circ = \frac{A_1}{4}$   
..... $A_{2e} = A_e \cos 30^\circ = \frac{3A_1}{4}$ ,  $\Delta \varphi = -\frac{1}{2}\pi + \pi$ ,.. $A^2 = A_{2e}^2 + A_{2o}^2 + 2A_{3e}A_{2o}\cos \Delta \varphi = \frac{5I_0}{16}$ 



82401 解:波长为4000
$$^{\circ}A$$
的光电子的能量为  $\varepsilon = hv = \frac{hc}{\lambda} = 3.10eV$  电子的最大初动能为  $\frac{1}{2}mv_m^2 = hv - A = 3.10 - 1.94 = 1.16eV$ 

电子的最大速度 
$$V_m = \sqrt{\frac{2(hv - A)}{m}} = 6.39 \times 10^5 \frac{m}{s}$$

82402 解: (1) 光电子的最大初动能为 
$$\frac{1}{2}mv_m^2 = \frac{hc}{\lambda} - A = 6.2 - 4.2 = 2.0eV$$

(2) 遏制电压决定于最大初动能 
$$eV_0 = \frac{1}{2}mv_m^2...V_0 = \frac{mv_m^2}{2e} = 2.0V$$

(3) 铝的"红限"决定于溢出功 
$$\lambda_0 = \frac{c}{v_0} = \frac{hc}{A} = 2960 \frac{0}{A}$$

82403 解:根据"红限"计算溢出功 
$$A = hv_0 = \frac{hc}{\lambda} = 1.88eV$$

$$E_k = \frac{1}{2}mv^2 = hv - A = \frac{hc}{\lambda} - A = 1.23eV = 1.96 \times 10^{-10}J$$

光电子的速度为 
$$V = \sqrt{\frac{2E_k}{m}} = \sqrt{\frac{2 \times 1.96 \times 10^{-19}}{9.1 \times 10^{-31}}} = 6.56 \times 10^5 \, \text{m/s}$$

82404 解: 由爱因斯坦方程 
$$\frac{1}{2}mv_{\text{max}}^2 = hv - A$$

而遏制电压 $V_g$  与光电子最大动能的关系为  $eV_g = \frac{1}{2}mv_{\text{max}}^2$ 

所以 
$$eV_g = hv - A$$

$$V_g = \frac{1}{e} \times (6.626 \times \frac{3 \times 10^8 \times 10^{-34}}{4 \times 10^{-7}} - 1.94 \times 1.6 \times 10^{-19}) = 1.16V$$

83401 解: 当 $\theta = 60^{\circ}$  时波长的改变量

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = 0.024 (1 - \cos 60^\circ) = 0.012 \stackrel{\circ}{A}$$

散射光的波长 
$$\lambda' = \lambda + \Delta \lambda = 0.3 + 0.012 = 0.312 A$$

反冲电子获得的能量为

$$\varepsilon = hv - hv' = hc \frac{\Delta \lambda}{\lambda \lambda'} = \frac{1.24 \times 10^4 \times 0.012}{0.3 \times 0.312} = 1.59 \times 10^3 \, eV$$

83402 解: 
$$\lambda_0 = 1 \stackrel{\circ}{A} \stackrel{\circ}{=} \theta_1 = 90$$
°时, $\lambda_1 = 1.0243 \stackrel{\circ}{A}, \dots \lambda_1 - \lambda_0 = 2k \sin^2 \frac{\theta_1}{2} \dots$  (1)

$$\stackrel{\text{def}}{=} \theta_2 = 60^{\circ} \text{ ff} \qquad \lambda_2 - \lambda_0 = 2k \sin^2 \frac{\theta_2}{2} \tag{2}$$

(1) (2) 两式相除 
$$\frac{\lambda_2 - \lambda_0}{\lambda_1 - \lambda_0} = \frac{\sin^2 30^\circ}{\sin^2 45^\circ} = \frac{1}{2}$$

解之得 
$$\lambda_2 = \lambda_0 + \frac{\lambda_1 - \lambda_0}{2} = 1.0122 \stackrel{0}{A}$$

83403 解:由康氏散射公式 
$$\Delta \lambda = 2 \times 0.024 \sin^2 \frac{\theta}{2} = 2 \times 0.024 \times \sin^2 \frac{90^\circ}{2} = 0.024 \stackrel{\circ}{A}$$
  
由  $\lambda v = c$ ,  $\Delta v = \frac{c\Delta \lambda}{2^2} = 7.2 \times 10^{16} \, Hz$ 

83404 解: (1) 根据康普顿公式,令
$$\theta = 90^{\circ}$$
,得  $\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = 0.00243 mm$ 

散射 x 射线波长为  $\lambda' = \lambda + \Delta \lambda = 0.02 + 0.00243 = 0.02243nm$ 

(2) 根据能量守恒电子获得的动能为
$$E = hv - hv' = \frac{hc (\lambda' - \lambda)}{\lambda \lambda'} = 6.74 \times 10^3 eV$$

(3) 电子的动量 
$$mv = \sqrt{(\frac{h}{\lambda})^2 + (\frac{h}{\lambda'})} = h\sqrt{\frac{\lambda'^2 + \lambda^2}{\lambda^2 \lambda'^2}} = 4.44 \times 10^{-23} m^{\frac{kg}{s}}$$
  
电子反冲方向如图  $\cos \varphi = \frac{h}{mv\lambda} = 0.75, \ \varphi = 41^{\circ}12'$ 

83405 解:要使电子获得最大反冲动能,光子必定反向衍射, $\theta=180^\circ$ ,波长改变量为

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = 0.0024 (1 - \cos 180^\circ) = 0.048 \stackrel{0}{A}$$

反冲电子获得的能量等于光子减少的 
$$E = hv - hu' = \frac{hc\Delta\lambda}{\lambda\lambda'} = \frac{hc\Delta\lambda}{\lambda(\lambda + \Delta\lambda)}$$

整理得 
$$\lambda^2 + \Delta \lambda \lambda - \frac{hc\Delta \lambda}{E} = 0$$
 即:  $\lambda^2 + 0.048\lambda - \frac{1.24 \times 10^4 \times 0.048}{4.5 \times 10^4} = 0$ 

$$\lambda = \frac{-0.048 + \sqrt{0.048^2 + 4 \times 0.013}}{2} = 0.0925 \, \text{A}$$

84401 解: 由布拉格方程 
$$2d \sin \theta = k\lambda \partial \partial \lambda = 2 \times 2.8 \times \sin(90^{\circ} - 20^{\circ}) = 5.26 A$$

Jackelox-

undergraduate.

由 
$$\lambda = \frac{h}{m_n v}$$
 得  $v = \frac{h}{m_n \lambda} = \frac{6.26 \times 10^{-34}}{1.67 \times 10^{-27} \times 5.26 \times 10^{-10}} = 754 \frac{m}{s}$ 

84402 解: 中子动能 
$$E_k = 20 keV = 2 \times 10^4 eV = 3.2 \times 10^{-15} J = \frac{1}{2} m_\mu V^2$$

所以 
$$V = \sqrt{\frac{2E_k}{m_n}} = \sqrt{\frac{2 \times 3.2 \times 10^{-15}}{1.67 \times 10^{-27}}} = 2 \times 10^6 \, \text{m/s}$$

中子动量 
$$P = m_n V = 1.67 \times 10^{-27} \times 2 \times 10^6 = 3.3 \times 10^{-21} \frac{kgm}{s}$$

相应的德布罗意波长 
$$\lambda = \frac{h}{m.v} = \frac{6.626 \times 10^{-34}}{1.67 \times 10^{-27} \times 2 \times 10^6} = 2 \times 10^{-13} m$$

$$\overline{m} \quad \theta = \frac{0.61\lambda}{a}, \dots a = 0.61 \frac{\lambda}{\theta} = 0.61 \times \frac{\lambda}{\pi \times \frac{2^{\circ}}{180^{\circ}}} = 0.035 \frac{\delta}{A}$$

84403 #: 
$$E_K = \frac{1}{2} m_e V^2 = 1.6 \times 10^{-19} \times 2.0 \times 10^4 = 3.2 \times 10^{-15} J$$

电子速度 
$$V = \sqrt{\frac{2E_k}{m}} = \sqrt{\frac{2 \times 3.2 \times 10^{-15}}{9.11 \times 10^{-31}}} = 8.38 \times 10^7 \, \text{m/s}$$

相应的德布罗意波长为

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{9.11 \times 10^{-31} \times 8.38 \times 10^7} = 0.0868 \text{ A}$$

$$\theta = \frac{0.61\lambda}{a}$$

$$2a = 1.22 \frac{\lambda}{\theta} = 1.22 \times \frac{0.0868}{\pi \times \frac{1.5^{\circ}}{180^{\circ}}} = 4.045 \frac{0}{A}$$

## 填空题答案

$$22204 - \frac{360^{\circ}}{\theta}$$
 12202  $-\frac{3}{2}$ 

$$12204 \frac{HV}{2}$$

23203 
$$\frac{h_1}{n_2} + \frac{h_2}{n_3}$$

12205 
$$2\theta$$

23205 If: 
$$\left(1-\frac{1}{n}\right)d$$