

特点:

- ➤ 符合 TIA/EIA-485-A 标准
- ▶ 2.5V~5.5V V_{CC1}, 4.5V~5.5V V_{CC2} 电源范围, 半双工;
- ▶ 总线端口 ESD 保护能力 HBM 达到 15KV 以上;
- ▶ 1/8 单位负载,允许最多 256 个器件连接到总线;
- ▶ 驱动器短路输出保护,接收器开路失效保护;
- ▶ 低功耗关断功能;
- ▶ 在电噪声环境中的数据传输速率可达到 500Kbps 以上
- ▶ 宽温度范围: -40°C~125°C
- ▶ 具有较强的抗噪能力;
- 高 CMTI: ±100kV/μs (典型值)
- ▶ 高达 5000 V_{RMS} 隔离耐压
- ▶ 隔离栅寿命:>40 年
- ▶ 宽体 SOIC16 封装, 符合 RoHS 标准

功能示意框图:

功能示意

描述

SIT3485ISO 是一款电容隔离的半双工 RS-485 收发器,总线端口 ESD 保护能力 HBM 达到 15KV 以上,功能完全满足 TIA/EIA-485 标准要求的 RS-485 收发器。

SIT3485ISO 包括一个驱动器和一个接收器,两者均可独立使能与关闭。当两者均禁用时,驱动器与接收器均输出高阻态。SIT3485ISO 具有 1/8 负载,允许 256 个 SIT3485ISO 收发器并接在同一通信总线上。可实现 500Kbps 以上的无差错数据传输。

SIT3485ISO 具备失效安全(fail-safe)、限流保护、过压保护和过热保护等功能。

引脚分布图

图 1 SIT3485ISO 引脚分布图

极限参数

参数	符号	大小	单位
电源电压	V_{CC1} , V_{CC2}	-0.5~+6	V
控制端口电压	/RE, DE, D	-0.5~V _{CC1} +0.5	V
接收器输出电流	I_{O}	-10~+10	mA
总线侧输入电压	A, B	-15~+15	V
最大结温		150	°C
存储工作温度范围		-65~150	°C

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的, 器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

引脚定义

引脚序号	引脚名称	引脚功能
1	V_{CC1}	电源, V _{CC1}
2	GND1	电源 V _{CCI} 的接地点
3	R	接收器输出端。当/RE 为低电平时,若 A-B≥200mV, R 输出为高电平;若 A-B≤-200mV, R 输出为低电平。
4	/RE	接收器输出使能控制。当/RE 接低电平时,接收器输出使能,R 输出有效;当/RE 接高电平时,接收器输出禁能,R 为高阻态; /RE 接高电平且 DE 接低电平时,器件进入低功耗关断模式。
5	DE	驱动器输出使能控制。 DE 接高电平时驱动器输出有效,DE 为低电平时输出为高阻态; /RE 接高电平且 DE 接低电平时,器件进入低功耗关断模式。
6	D	D 驱动器输入。DE 为高电平时, D 上的低电平使驱动器同相端 A 输出为低电平,驱动器反相端 B 输出为高电平; D 上的高电平将使同相端输出为高电平,反相端输出为低。
7	GND1	电源 V _{CC1} 的接地点
8	GND1	电源 V _{CC1} 的接地点
9	GND2	电源 V _{CC2} 的接地点
10	GND2	电源 V _{CC2} 的接地点
11	NC	无内部连接
12	A	接收器同相输入和驱动器同相输出端
13	В	接收器反相输入和驱动器反相输出端
14	NC	无内部连接
15	GND2	电源 V _{CC2} 的接地点
16	V_{CC2}	电源,V _{CC2}

驱动器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分输出 (无负载)	V_{OD1}		2.7	5	5.5	V
驱动差分输出	V_{OD2}	图 2, $RL = 54 \Omega$	1.5	2.3		V
输出电压幅值的变化 (NOTE1)	ΔV_{OD}	图 2, RL=54Ω	-0.2		0.2	V
输出共模电压	V_{OC}	图 2, $RL = 54 \Omega$	1		3	V
共模输出电压幅值 的变化(NOTE1)	ΔV_{OC}	图 2, RL=54Ω			0.2	V
高电平输入	V_{IH}	DE, D, /RE	2.0			V
低电平输入	V_{IL}	DE, D, /RE			0.8	V
逻辑输入电流	$I_{\rm IN1}$	DE, D, /RE	-4		4	μΑ
输出短路电流 (VO=HIGH)	I_{OSDH}	DE=/RE=D=1 VA=-7V,VB=12V	-250		250	mA
输出短路电流 (VO=LOW)	I_{OSDL}	DE=/RE=1,D=0 VA=-7V,VB=12V	-250		250	mA

(如无另外说明,Temp=T_{MIN}~T_{MAX}, Temp=25℃)

NOTE1: ΔV_{OD} 和 ΔV_{OC} 分别是输入信号 D 状态变化时引起的 V_{OD} 与 V_{OC} 幅值的变化。

接收器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
输入电流(A,B)	ī	$DE = 0 V$, $VCC=0 $ 或 $5V$ $V_{IN} = 12 V$			125	μΑ
和人电机(A,b)	$ m I_{IN2}$	$DE = 0 V$, $VCC=0 $ 或 $5V$ $V_{IN} = -7 V$	-100			A
正向输入阈值电压	$V_{\rm IT+}$	$-7V \le V_{CM} \le 12V$			-20	mV
反向输入阈值电压	V_{IT}	$-7V \le V_{\rm CM} \le 12V$	-200			mV
输入迟滞电压	V_{hys}	$-7V \le V_{\rm CM} \le 12V$		30		mV

高电平输出电压	V_{OH}	$I_{OUT} = -4mA,$ $V_{ID} = +200 \text{ mV}$	V _{CC1} -0.4		V
低电平输出电压	V_{OL}	$I_{OUT} = +4mA$, $V_{ID} = -200 \text{ mV}$		0.4	V
接收端输入电阻	R _{IN}	$-7V \le V_{CM} \le 12V$	96		kΩ
接收器短路电流	I_{OSR}	0 V≤V ₀ ≤VCC	±8	±90	mA

(如无另外说明, Temp=T_{MIN}~T_{MAX}, Temp=25℃)

供电电流

参数	符号	测试条件	最小	典型	最大	单位
	${ m I}_{ m CC1}$	/RE= 0 or 1, DE = 0 or 1, V_{CCI} =3.3V			4.2	mA
供电电流	1CC1	/RE=0 or 1, DE = 0 or 1, $V_{CCI}=5V$			4.2	mA
	I_{CC2}	/RE= 0 or 1, DE=0, no load			5.8	mA

驱动器开关特性

参数	符号	测试条件	最小	典型	最大	单位
输出上升时间	$t_{\rm r}$	$R_{DIFF} = 60 \Omega$		12	28	ns
输出下降时间	t_{f}	C _{L1} =C _{L2} =100pF (见图 3 与图 4)		12	28	ns
驱动器传播延迟 从低到高	$t_{\rm PLH}$			16	48	ns
驱动器传播延迟 从高到低	$t_{ m PHL}$	R _{DIFF} = 27 Ω, (见图 3 与图 4)		16	48	ns
t _{PLH} -t _{PHL}	t_{PDS}			3	13	ns
使能到输出高	t _{PZH}	$R_L = 110\Omega$,			90	ns
使能到输出低	t_{PZL}	(见图 5、6)			90	ns
输入低到禁能	$t_{\rm PLZ}$	$R_{L}=110\Omega$,			85	ns

输入高到禁能 t _{PHZ}	(见图 5、6)		85	ns
-------------------------	----------	--	----	----

接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
输出上升时间	$t_{\rm r}$	$R_{DIFF} = 60 \Omega$,			4	ns
输出下降时间	t_{f}	C _{L1} =C _{L2} =100pF (见图 3 与图 4)			4	ns
接收器 输入到输出传播 延迟从低到高	t _{RPLH}			80	160	ns
接收器 输入到输出传播 延迟从高到低	t _{RPHL}	C _L =15pF 见图 7 与图 8		80	160	ns
$ t_{RPLH} - t_{RPHL} $	$t_{ m RPDS}$				30	ns
使能到输出低时间	t _{RPZL}	C _L =15pF 见图 7 与图 8		15	40	ns
使能到输出高时间	t_{RPZH}	C _L =15pF 见图 7 与图 8		15	40	ns
从输出低到 禁能时间	$t_{ m PRLZ}$	C _L =15pF 见图 7 与图 8		25	55	ns
从输出高到 禁能时间	$t_{ m PRHZ}$	C _L =15pF 见图 7 与图 8		25	55	ns

功能表

发送器功能真值表

Second Services and Services an						
V _{CC1}	V_{CC2}	INPUT	ENABLE INPUT	OUT	PUTS	
		(DI)	(DE)	A	В	
PU	PU	Н	Н	Н	L	
PU	PU	L	Н	L	Н	
PU	PU	X	L	Z	Z	
PU	PU	X	OPEN	Z	Z	
PU	PU	OPEN	Н	L	Н	
PD	PU	X	X	Z	Z	
PU	PD	X	X	Z	Z	

⁽¹⁾ PU =上电; PD =断电; H =高电平; L=低电平; X =任意电平;Z =高阻

接收器功能真值表

17	17	差分输入	使能	输出
V_{CC1}	V_{CC2}	$V_{ID}=(V_A-V_B)$	(/RE)	(R)
PU	PU	-0.02V≤V _{ID}	L	Н
PU	PU	$-0.2V < V_{ID} < -0.02V$	L	?
PU	PU	$V_{ID} \leq -0.2V$	L	L
PU	PU	X	Н	Z
PU	PU	X	OPEN	Z
PU	PU	Open circuit	L	Н
PU	PU	Short circuit	L	Н
PU	PU	X	L	Н
PD	PU	X	X	Z
PU	PD	X	L	Н

(1) PU = 上电; PD = 断电; H = 高电平; L=低电平; X = 任意电平; Z = 高阻;? = 不定态

测试电路

图 2 驱动器直流测试负载

图 3 驱动器差分延迟与渡越时间

图 4 驱动器传播延迟

图 5 驱动器使能与禁能时间

图 6 驱动器使能与禁能时间

图 7 接收器传播延时测试电路

图 8 接收器使能与禁能时间

说明

1 简述

SIT3485ISO 是一款电容隔离的半双工 RS-485 收发器,总线端口 ESD 保护能力 HBM 达到 15KV 以上,包含一个驱动器和接收器。具有失效安全,过压保护、过流保护功能。SIT3485ISO 可实现 500Kbps 以上的无差错数据传输。

2 总线上挂接 256 个收发器

标准 RS485 接收器的输入阻抗为 12kΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。 SIT3485ISO 收发器的接收器具有 1/8 单位负载输入阻抗(96kΩ),允许最多 256 个收发器并行挂接在 同一通信总线上。这些器件可任意组合,或者与其它 RS485 收发器进行组合,只要总负载不超过 32 个单位负载,都可以挂接在同一总线上。

3 驱动器输出保护

通过过流、过压保护、过热保护机制避免故障或总线冲突引起输出电流过大和功耗过高,在整个共模电压范围(参考典型工作特性)内提供快速短路保护。

SOIC16-WB 宽体外形

定购信息

定购代码	温度	封装
SIT3485ISO	-40°C~125°C	SOPW16,宽体 SOP16

编带式包装为 1000 颗/盘