Moderation Analysis with Multicategorical Predictors

Amanda Kay Montoya UCLA Teaching Talk 2017

Setup Instructions:

- 1. Sit next to someone (anyone)
- 2. Boot up SPSS or SAS if you brought a computer
- 3. Go to github.com/akmontoya/UCLATeaching and download the files there

Overview

Advanced Regression lecture or Mediation & Moderation Course Lecture

- Motivating Example: datafile: christmas
- Coding multicategorical variables in regression
 - Indicator (dummy) coding
 - Sequential coding
 - Helmert coding
 - Debate
- Review of moderation
 - Partners activity
- Moderation with Multicategorical X
 - Defining models of interest
 - Estimation
 - Interpretation
 - Inference

Next Time: Probing moderation models with multicategorical predictors

Motivating Example

Schmitt, M. T., Davies, K., Hung, M., & Wright, S. C. (2010). Identity moderates the effects of Christmas displays on mood, self-esteem, and inclusion. *Journal of Experimental Social Psychology*, 46, 1017 – 1022.

NOT REAL DATA, and only loosely based on original study

X: Religion (Christian, Buddhist, Sikh, No Religion)

W: Hours of Christmas music heard this week (voluntary or involuntary)

Y: Feelings of Inclusion

Interested in how people of different religions might feel more or less included during the winter holiday season, given the prevalence of Christmas music played on the radio or in stores.

Participants reported their religion (Christian, Buddhist, Sikh, or No Religion), how many hours of Christmas music they had heard in the last week, and how included they felt on a scale of 0-10.

Coding Multicategorical Variables

In a regression analysis all predictors need to be **quantitative** or **dichotomous**. So how do we include a multicategorical variable in regression analysis?

If the multicategorical variable has *k* categories, it can be represented by *k*-1 dichotomous or continuous variables.

Methods for coding multicategorical variables:

- Indicator / Dummy Coding
- Sequential Coding
- Helmert Coding

Example of Multicategorical Variables in Psychology:

- Ethnicity (e.g., Caucasian, Asian, Hispanic, African, etc.)
- Religion (e.g., Christian, Buddhist, Sikh, etc.)
- Gender Identity (e.g., female, male, non-binary, genderqueer, etc.)
- Conditions in Study
- Marital Status (married, single, widowed, divorced)

Indicator Coding

Select one group to be the "reference group," this group will be compared to all other groups. This group gets a score of zero on variables in the new coded set.

Each other group will then receive a 1 for one of the recoded variables and a zero on all others.

Example: Religion (Christian = 1, Buddhist = 2, Sikh = 3, No Religion = 4)

religion	D ₁	D ₂	D ₃
1 (C)			
2 (B)			
3 (S)			
4 (N)			

$$Y_i = \frac{b_0}{b_1} + b_1 D_{1i} + b_2 D_{2i} + \frac{b_3}{b_3} D_{3i} + e_i$$

Indicator Coding: Predicted Means

$$Y_i = \frac{b_0}{b_1} + b_1 D_{1i} + b_2 D_{2i} + \frac{b_3}{b_3} D_{3i} + e_i$$

religion	D_1	D ₂	D ₃
1 (C)	1	0	0
2 (B)	0	1	0
3 (S)	0	0	1
4 (N)	0	0	0

Christian:
$$\widehat{Y}_1 = b_0 + b_1(1) + b_2(0) + b_3(0) = b_0 + b_1$$

Buddhist:
$$\widehat{Y}_2 = b_0 + b_1(0) + b_2(1) + b_3(0) = b_0 + b_2$$

Sikh:
$$\widehat{Y}_3 = b_0 + b_1(0) + b_2(0) + b_3(1) = b_0 + b_3$$

No Religion:
$$\widehat{Y}_4 = b_0 + b_1(0) + b_2(0) + b_3(0) = b_0$$

Indicator Coding

religion	D_1	D ₂	D ₃
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	0

SPSS Code:

```
compute d1 = (religion = 1).
compute d2 = (religion = 2).
compute d3 = (religion = 3).
Regression /dep = included /method = enter d1 d2 d3.
```

SAS Code:

```
data christmas; set christmas;
d1 = (religion = 1);
d2 = (religion = 2);
d3 = (religion = 2); run;
Proc reg data = christmas; model included = d1 d2 d3; run;
```

Indicator Coding: Interpreting Regression Results

$$Y_i = b_0 + b_1 D_{1i} + b_2 D_{2i} + b_3 D_{3i} + e_i$$

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		B Std. Error		Beta	t	Sig.
1	(Constant)	4.433	.329		13.486	.000
	d1	2.867	.520	.500	5.515	.000
	d2	-3.717	.615	538	-6.043	.000
	d3	-1.908	.615	276	-3.103	.004

a. Dependent Variable: Included

The average feelings of inclusion for **non-religious individuals** was 4.433.

Christian individuals felt 2.867 units more included than non-religious individuals.

Buddhist individuals felt 3.717 units <u>less</u> included than non-religious individuals.

Sikh individuals felt 1.908 units less included than non-religious individuals.

Sequential Coding

Used for ordered variables, good for examining change in predicted Y with one step increase.

First group gets all zeros. Next group gets 1 on first variable and zeros on all other variables. Second group gets 1's on first 2 variable and zeros on all others...

Example: Religion (Christian = 1, Buddhist = 2, Sikh = 3, No Religion = 4)

religion	S ₁	S ₂	S ₃
1 (C)			
2 (B)			
3 (S)			
4 (N)			

Sequential Coding: Predicted Means

$$Y_i = \frac{b_0}{b_1} + b_1 D_{1i} + b_2 D_{2i} + \frac{b_3}{b_3} D_{3i} + e_i$$

religion	S ₁	S ₂	S ₃
1 (C)	0	0	0
2 (B)	1	0	0
3 (S)	1	1	0
4 (N)	1	1	1

Christian:
$$\widehat{Y}_1 = b_0 + b_1(0) + b_2(0) + b_3(0) = b_0$$

Buddhist:
$$\widehat{Y}_2 = b_0 + b_1(1) + b_2(0) + b_3(0) = b_0 + b_1$$

Sikh:
$$\widehat{Y}_3 = b_0 + b_1(1) + b_2(1) + b_3(0) = b_0 + b_1 + b_2$$

No Religion:
$$\widehat{Y}_4 = b_0 + b_1(1) + b_2(1) + b_3(1) = b_0 + b_1 + b_2 + b_3$$

Sequential Coding in SPSS or SAS

religion	S ₁	S ₂	S ₃
1 (C)	0	0	0
2 (B)	1	0	0
3 (S)	1	1	0
4 (N)	1	1	1

SPSS Code:

```
compute s1 = (religion ~= 1).
compute s2 = (religion > 2).
compute s3 = (religion = 4).
Regression /dep = included /method = enter s1 s2 s3.
```

SAS Code:

```
data christmas; set christmas;
s1 = (religion ^= 1);
s2 = (religion > 2);
s3 = (religion = 4); run;
proc reg data = christmas; model included = s1 s2 s3; run;
```

Sequential Coding: Interpreting Regression Results

$$Y_i = \frac{b_0}{b_1} + b_1 D_{1i} + b_2 D_{2i} + \frac{b_3}{b_3} D_{3i} + e_i$$

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			
Model		B Std. Error		Beta	t	Sig.	
1	(Constant)	7.300		.403		18.132	.000
	s1	-6.583		.657	-1.149	-10.013	.000
	s2	1.808		.735	.352	2.460	.019
	s3	1.908		.615	.368	3.103	.004

a. Dependent Variable: Included

The average feelings of inclusion for **Christian individuals** was 7.30.

Buddhist individuals felt 6.58 units less included than Christian individuals.

Sikh individuals felt 1.81 units <u>more</u> included than Buddhist individuals.

Non-religious individual felt 1.908 units more included than Sikh individuals.

Helmert Coding

Used for ordered variables. Regression coefficients quantify the difference between one group and the average of all subsequent groups.

How to code variables depends on the number of groups.

Example: Religion (Christian = 1, Buddhist = 2, Sikh = 3, No Religion = 4)

TABLE 10.7. Helmert Coding of g Categories, $g \ge 5$

Ordinal position (low to high)	D_1	D_2	D_3	 D_{g-1}
1 2 3	-(g-1)/g $1/g$ $1/g$	0 - (g-2)/(g-1) $1/(g-1)$	$0 \\ 0 \\ -(g-3)/(g-2)$	 0 0 0
: g-1 g	1/ <i>g</i> 1/ <i>g</i>	1/(g-1) 1/(g-1)	1/(g-2) 1/(g-2)	 -1/2 1/2

Helmert Coding: Predicted Means

$$Y_i = b_0 + b_1 D_{1i} + b_2 D_{2i} + b_3 D_{3i} + e_i$$

religion	H ₁	H ₂	H ₃
1	-3/4	0	0
4	1/4	-2/3	0
2	1/4	1/3	-1/2
3	1/4	1/3	1/2

Christian:
$$\widehat{Y}_1 = b_0 + b_1 \left(-\frac{3}{4} \right)$$

No Religion:
$$\widehat{Y}_4 = b_0 + b_1(\frac{1}{4}) + b_2(-\frac{2}{3})$$

Buddhist:
$$\widehat{Y}_3 = b_0 + b_1(\frac{1}{4}) + b_2(\frac{1}{3}) + b_3(-\frac{1}{2})$$

Sikh:
$$\widehat{Y}_2 = b_0 + b_1(\frac{1}{4}) + b_2(\frac{1}{3}) + b_3(\frac{1}{2})$$

Homework: (1) Show the above equations are true based on the regression equation and Helmert coding pattern. (2) Using the Christmas dataset, show that the <u>predicted means</u> for each group are equal regardless of coding system used.

Helmert Coding in SPSS or SAS

religion	H ₁	H ₂	H ₃
1	-3/4	0	0
4	1/4	-2/3	0
2	1/4	1/3	-1/2
3	1/4	1/3	1/2

SPSS Code:

```
compute h1 = -3/4* (religion = 1) + 1/4* (religion > 1).

compute h2 = -2/3* (religion = 4) + 1/3* ((religion = 2) | (religion = 3)).

compute h3 = -1/2* (religion = 2) + 1/2* (religion = 3).

Regression /dep = included /method = enter h1 h2 h3.
```

SAS Code:

```
data christmas; set christmas;
h1 = -3/4*(religion = 1) + 1/4*(religion > 1);
h2 = -2/3*(religion = 4) + 1/3*((religion = 2) | (religion = 3));
h3 = -1/2*(religion = 2) + 1/2*(religion = 3); run;
proc reg data = christmas; model included = h1 h2 h3; run;
```

Helmert Coding: Interpreting Regression Results

$$Y_i = b_0 + b_1 D_{1i} + b_2 D_{2i} + b_3 D_{3i} + e_i$$

Coefficients^a

Unstandardized Coef			
Model		В	Std. Error
1	(Constant)	3.744	.225
	h1	-4.742	.484
	h2	-2.813	.493
	h3	1.808	.735

religion	H ₁	H ₂	H ₃
1 (C)	-3/4	0	0
4 (N)	1/4	-2/3	0
2 (B)	1/4	1/3	-1/2
3 (S)	1/4	1/3	1/2

a. Dependent Variable: Included

 b_0 doesn't typically map onto a nice interpretation.

Average inclusion among **Sikhs, Buddhists, and Non-religious** was 4.74 lower than **Christians**.

Average inclusion among **Sikhs and Buddhists** was 2.81 lower than **Non-religious individuals**.

Average inclusion among **Sikhs** was 1.81 higher than **Buddhists**.

A Debate on Indicator Coding

"I often say in class that "dummy codes are named after the people who use them." Dummy codes, like a ventriloquist dummy, do not speak for themselves and they are almost always more correlated with each other than other codes. We know that correlated predictors are not great in regression, so when we have the opportunity to create codes we should avoid creating correlated predictors when we don't have to."

A Debate on Indicator Coding

"I often say in class that "dummy codes are named after the people who use them." Dummy codes, like a ventriloquist dummy, do not speak for themselves and they are almost always more correlated with each other than other codes. We know that correlated predictors are not great in regression, so when we have the opportunity to create codes we should avoid creating correlated predictors when we don't have to."

Groups of 3 or 4

Pick a Question to discuss:

- 1. Can you think of instances when dummy coding would give you the <u>most relevant</u> information to your hypotheses? What about sequential coding? What about Helmert coding?
- 2. What issues do correlated predictors bring to regression analysis? Would we <u>never</u> want to include correlated predictors?
- 3. If each coding method gives the same predicted means for groups, what <u>difference</u> does it make which method we use?

Moderation Christmas Music Extroversion Political Party

Religion (Christian vs. Other)

X

Feelings of Inclusion

Moderation is the idea that the relationship between a focal predictor (X) and an outcome (Y) may depend on some other variable (W).

This can be described as a contingent relationship or an interaction.

The idea being that the magnitude or the sign (or both) of the relationship between X and Y depends on W.

A quick example: Possible moderators!

Modeling Contingent Relationships

Predict that the relationship between religion and feelings of inclusion depends on hours of Christmas music. Thus the relationship between religion and inclusion is a *function* of gender

$$Y_i = b_0 + f(W_i)X_i + b_2W_i$$

One popular model for $f(W_i)$ is a linear model:

$$f(M_i) = b_1 + b_3 W_i = \theta_{X \to Y|W}$$

This way we can rewrite the model:

$$Y_{i} = b_{0} + \theta_{X \to Y|W} X_{i} + b_{2} W_{i}$$

$$Y_{i} = b_{0} + (b_{1} + b_{3} W_{i}) X_{i} + b_{2} W_{i}$$

$$Y_{i} = b_{0} + b_{1} X_{i} + b_{2} W_{i} + b_{3} W_{i} X_{i}$$

This is a regression model which can be estimated, where the significance of b_3 reflects whether the relationship between X and Y is linearly dependent on W.

Test of Coefficient vs. Model Comparison

$$Y_i = b_0 + b_1 X_i + b_2 W_i + b_3 W_i X_i$$

Typically when we think about inference for an interaction we think about a test on b_3 . But we can also think about comparing two models:

Non-Contingent Model

Model 1:
$$Y_i = b_0^* + b_1^* X_i + b_2^* W_i + \epsilon_i^*$$
 where $\epsilon_i^* \sim N(0, \sigma^{*2})$

Contingent Model

Model 2:
$$Y_i = b_0 + b_1 X_i + b_2 W_i + b_3 W_i X_i + \epsilon_i$$
 where $\epsilon_i \sim N(0, \sigma^2)$

Test for change in R^2 from Model 1 to Model 2 is <u>equivalent</u> to test on b_3 from Model 2.

If $b_3 = 0$ in Model 2, then Model 2 = Model 1.

Test of Coefficient vs. Model Comparison

```
compute d1xhours = d1*hours.
regression /statistics = default change/dep = included
   /method = enter d1 hours /method = enter d1xhours.
```

```
data christmas; set christmas;
d1xhours = d1*hours; run;
proc reg data = christmas; model included = d1 hours; model
included = d1 hours d1xhours; test d1xhours = 0; run;
```

Test of Coefficient vs. Model Comparison

Model Summary

					Change Statistics				
	_		Adjusted R	Std. Error of	R Square	F 61	.164	100	Sig. F
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change
1	.779ª	.606	.583	1.66645	.606	26.158	2	34	.000
2	.790 ^b	.624	.590	1.65212	.018	1.592	1	33	.216

a. Predictors: (Constant), Hours, d1

b. Predictors: (Constant), Hours, d1, d1xhours

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.910	.558		3.423	.002
	d1	3.837	.625	.670	6.140	.000
	Hours	.222	.080	.304	2.790	.009
2	(Constant)	2.175	.592		3.676	.001
	d1	2.074	1.529	.362	1.356	.184
	Hours	.176	.087	.241	2.020	.052
	d1xhours	.260	.206	.351	1.262	.216

$$t^2 = F$$
$$1.262^2 = 1.592$$

a. Dependent Variable: Included

Practice Interpreting Coefficients

What if instead we felt that the relationship between religion and inclusion depends on Christmas Music?

What if *X* is Multicategorical?

If X is a multicategorical variable (e.g. race, experimental condition (when there are more than two), the process is similar.

Setting up the Model

Begin by coding X into k-1 new variables. I'll use dummy coded variables for now.

Non-Contingent Model

$$Y_i = b_0^* + b_1^* D_{1i} + b_2^* D_{2i} + b_3^* D_{3i} + b_4^* W_i + \epsilon_i^*$$
where $\epsilon_i^* \sim N(0, \sigma^{*2})$

This model fixes the slopes of the 4 lines to be equal!

Setting up the Model: Varying Slopes

Allow the relationships between each dummy code to depend on W.

$$\begin{split} Y_i &= b_0 + \theta_{D_1 \to Y|W} D_{1i} + \theta_{D_2 \to Y|W} D_{2i} + \theta_{D_3 \to Y|W} D_{3i} + b_4 W_i + \epsilon_i \text{where } \epsilon_i \sim N(0, \sigma^2) \\ \theta_{D_1 \to Y|W} &= b_1 + b_5 W_i \qquad \theta_{D_2 \to Y|W} = b_2 + b_6 W_i \qquad \theta_{D_3 \to Y|W} = b_3 + b_7 W_i \end{split}$$

Contingent Model

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i + \epsilon_i$$

Setting up the Model: Varying Slopes

Contingent Model

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i + \epsilon_i$$

Estimating Contingent Model

```
compute d2xhours = d2*hours.
compute d3xhours = d3*hours.
regression /dep = included /method = enter d1 d2 d3 hours
d1xhours d2xhours d3xhours.
```

```
data christmas; set christmas;
d2xhours = d2*hours; d3xhours = d3*hours; run;
Proc reg data = christmas; model included = d1 d2 d3 hours
d1xhours d2xhours d3xhours; run;
```

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.725	.533		5.110	.000
ı	d1	1.524	.941	.266	1.619	.116
ı	d2	780	.847	113	921	.365
ı	d3	222	.754	032	295	.770
L	Hours	.251	.070	.344	3.566	.001
	d1xhours	.185	.125	.249	1.481	.149
ı	d2xhours	497	.129	449	-3.839	.001
	d3xhours	245	.122	198	-2.009	.054

a. Dependent Variable: Included

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_0 : Predicted Y when D_1 , D_2 , D_3 , and W are all zero

$$E(Y|D_1 = D_2 = D_3 = W = 0)$$

= $b_0 + (b_1 + b_5 0)0 + (b_2 + b_6 0)0 + (b_3 + b_7 0)0 + b_4 0 = b_0$

Contingent Model

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i + \epsilon_i$$

- —D1 = 0, D2 = 0, D3 = 0 (Non-religious)
- —D1 = 1 , D2 = 0, D3 = 0 (Christian)
- —D1 = 0 , D2 = 1, D3 = 0 (Buddhist)
- —D1 = 0, D2 = 0, D3 = 1 (Sikh)

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_0 : Predicted Y when D_1 , D_2 , D_3 , and W are all zero

 b_1 : Increase in Y with a one unit increase in D_1 when D_2 , D_3 , and W are all zero

$$E(Y|D_2 = D_3 = W_i = 0)$$

$$= b_0 + (b_1 + b_5 0)D_1 + (b_2 + b_6 0)0 + (b_3 + b_7 0)0 + b_4 0 = b_0 + b_1 D_1$$

Difference between $D_1 = 0$ and $D_1 = 1$ (non-religious and Christian) when W = 0

$$E(Y|D_2 = D_3 = W_i = 0)$$

= $b_0 + (b_1 + b_5 0)D_1 + (b_2 + b_6 0)0 + (b_3 + b_7 0)0 + b_4 0 = b_0 + b_1 D_1$

Difference between $D_1 = 0$ and $D_1 = 1$ (non-religious and Christian) when W = 0

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_0 : Predicted Y when D_1 , D_2 , D_3 , and W are all zero

 b_1 : Increase in Y with a one unit increase in D_1 when D_2 , D_3 , and W are all zero

 b_2 : Increase in Y with a one unit increase in D_2 when D_1 , D_3 , and W are all zero

$$E(Y|D_1 = D_3 = W_i = 0) = b_0 + b_2 D_2$$

Difference between $D_2 = 0$ and $D_2 = 1$ (non-religious and Buddhist) when W = 0

$$E(Y|D_1 = D_3 = W_i = 0) = b_0 + b_2D_2$$

Difference between $D_2 = 0$ and $D_2 = 1$ (non-religious and Buddhist) when W = 0

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_0 : Predicted Y when D_1 , D_2 , D_3 , and W are all zero

 b_1 : Increase in Y with a one unit increase in D_1 when D_2 , D_3 , and W are all zero

 b_2 : Increase in Y with a one unit increase in D_2 when D_1 , D_3 , and W are all zero

 b_3 : Increase in Y with a one unit increase in D_3 when D_1 , D_2 , and W are all zero

$$E(Y|D_1 = D_2 = W_i = 0) = b_0 + b_3 D_2$$

Difference between $D_3 = 0$ and $D_3 = 1$ (non-religious and Sikh) when W = 0

$$E(Y|D_1 = D_2 = W_i = 0) = b_0 + b_3D_2$$

Difference between $D_3 = 0$ and $D_3 = 1$ (non-religious and Sikh) when W = 0

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_4 : Increase in Y with one unit increase in W when D_1 , D_2 , D_3 are all zero

$$E(Y|D_1 = D_2 = D_3 = 0)$$

= $b_0 + (b_1 + b_5 W)0 + (b_2 + b_6 W)0 + (b_3 + b_7 W)0 + b_4 W = b_0 + b_4 W$

Slope of WY line for non-religious individuals

$$E(Y|D_1 = D_2 = D_3 = 0)$$

$$= b_0 + (b_1 + b_5 W)0 + (b_2 + b_6 W)0 + (b_3 + b_7 W)0 + b_4 W = b_0 + b_4 W$$

Slope of WY line for non-religious individuals

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_4 : Increase in Y with one unit increase in W when D_1 , D_2 , D_3 are all zero

 b_5 : Increase in MY relationship with 1 unit increase in D_1 when D_2 and D_3 are zero

$$E(Y|D_2 = D_3 = 0)$$

$$= b_0 + (b_1 + b_5 W)D_1 + (b_2 + b_6 W)0 + (b_3 + b_7 W)0 + b_4 W$$

$$= b_0 + b_1 D_1 + b_4 W + b_5 W D_1 = b_0 + b_1 D_1 + (b_4 + b_5 D_1)W$$

Difference in slope of WY line for Christian vs. non-religious individuals

$$E(Y|D_2 = D_3 = 0)$$

= $b_0 + b_1D_1 + b_4W + b_5WD_1 = b_0 + b_1D_1 + (b_4 + b_5D_1)W$

Difference in slope of WY line for Christian vs. non-religious individuals

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i$$

 b_4 : Increase in Y with one unit increase in W when D_1 , D_2 , D_3 are all zero

 b_5 : Increase in MY relationship with 1 unit increase in D_1 when D_2 and D_3 are zero

 b_6 : Increase in MY relationship with 1 unit increase in D_2 when D_1 and D_3 are zero Difference in slope of WY line for Buddhist vs. non-religious individuals

 b_7 : Increase in MY relationship with 1 unit increase in D_2 when D_1 and D_3 are zero

Difference in slope of WY line for Sikh vs. non-religious individuals

 b_6 : Increase in MY relationship with 1 unit increase in D_2 when D_1 and D_3 are zero Difference in slope of WY line for Buddhist vs. non-religious individuals

 b_7 : Increase in MY relationship with 1 unit increase in D_2 when D_1 and D_3 are zero

Difference in slope of WY line for Sikh vs. non-religious individuals

Inference on Interaction

How can we tell if there is an interaction? No single coefficient tells us if the slopes are equal.

Non-Contingent Model

$$Y_i = b_0^* + b_1^* D_{1i} + b_2^* D_{2i} + b_3^* D_{3i} + b_4^* W_i + \epsilon_i^*$$

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i}$$

Contingent Model

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i + \epsilon_i$$

Inference on Interaction

How can we tell if there is an interaction? No single coefficient tells us if the slopes are equal.

Non-Contingent Model

Contingent Model

$$Y_i = b_0^* + b_1^* D_{1i} + b_2^* D_{2i} + b_3^* D_{3i} + b_4^* W_i + \epsilon_i^*$$

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i}$$

$$Y_i = b_0 + (b_1 + b_5 W_i) D_{1i} + (b_2 + b_6 W_i) D_{2i} + (b_3 + b_7 W_i) D_{3i} + b_4 W_i + \epsilon_i$$

If
$$b_5 = b_6 = b_7 = 0$$
 then models are equivalent

Use model comparison to select contingent or non contingent model.

Use increase in R² to compare models.

Inference on Interaction

```
regression /statistics = default change /dep = included /method = enter d1 d2 d3 hours /method = enter d1xhours d2xhours d3xhours.
```

```
Proc reg data = christmas; model included = d1 d2 d3 hours d1xhours d2xhours d3xhours; test d1xhours = 0, d2xhours = 0, d3xhours = 0; run;
```

Model Summary

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.902ª	.813	.790	1.18196	.813	34.895	4	32	.000
2	.949 ^b	.900	.876	.90859	.087	8.384	3	29	.000

- a. Predictors: (Constant), Hours, d2, d1, d3
- b. Predictors: (Constant), Hours, d2, d1, d3, d3xhours, d2xhours, d1xhours

Test is on 3 degrees of freedom because there are 3 new parameters.

Homework: (3) Show that test statistics F-change, df1, df2, and Sig. F Change do not depend on what type of coding scheme you use (i.e. replicate with sequential and Helmert coding)

Next Time

- Review testing an interaction with a multicategorical variable using a new dataset, and different coding scheme
- Probing moderation models with multicategorical predictors
 - Pairwise differences between groups
 - Pick-a-point technique
 - Johnson-Neyman technique
 - Omnibus tests of group differences
 - Pick-a-point technique
 - Johnson-Neyman technique
- Conducting these analyses using PROCESS