Chapter 1

The Real and Complex Number Systems

1.1 Notes

- 11/1: Spent a lot of time trying to cheer us up regarding the midterm.
 - There may be some true/false on linear algebra on the final.
 - Facts:
 - 1. $\sqrt{2}$ is irrational.
 - 2. Archimedes principle: If x > 0 and $y \in \mathbb{R}$, then there exists n such that nx > y.
 - 3. If x > y, then there exists $q \in \mathbb{Q}$ such that x > q > y.

1.2 Chapter 1: The Real and Complex Number Systems

From Rudin (1976).

11/6:

- Rudin (1976) presents several interesting proofs throughout this section that may be of interest later by means of their divergence from the ones with which I am familiar.
- Least-upper-bound property: The property pertaining to a set S that if $E \subset S$, $E \neq \emptyset$, and E is bounded above, then $\sup E \in S$.
 - For example, $\mathbb Q$ does not have the least-upper-bound property.
 - The **greatest-lower-bound property** is analogously defined.
- Theorem: Suppose S is an ordered set with the least-upper-bound property, $B \subset S$ is nonempty, and B is bounded below. Let L be the set of all lower bounds of B. Then $\alpha = \sup L$ exists in S, and $\alpha = \inf B$. In particular, $\inf B$ exists in S.
 - Essentially, this theorem states that any set that satisfies the least-upper-bound property satisfies
 the greatest lower bound property.
- Existence theorem: There exists an ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as a subfield.
 - The second statement implies that the operations of addition and multiplication on \mathbb{R} , when applied to \mathbb{Q} , coincide with the operations of addition and multiplication on \mathbb{Q} .

- Archimedean property (of \mathbb{R}): If $x \in \mathbb{R}$, $y \in \mathbb{R}$, and x > 0, then there is a positive integer n such that nx > y.
- Rudin (1976) proves several theorems about the real numbers from the least-upper-bound property as opposed to the traditional construction of the real numbers.
- \bullet Introduces the decimal system.
- Finite real number system: That which has been defined thus far.
- Extended real number system: The set $\mathbb{R} \cup \{+\infty, -\infty\}$ where $+\infty, -\infty$ obey the expected properties (supremum [resp. infimum] of every set, $x + \infty = \infty$, etc.).
- Defines the complex field axiomatically with complex numbers in the form (a,b) for $a,b \in \mathbb{R}$.
 - Notes that the real numbers form a subfield of the complex field.
 - Defines i = (0,1), proves $i^2 = -1$, proves a + bi = (a,b).
- Schwarz inequality: If a_1, \ldots, a_n and b_1, \ldots, b_n are complex numbers, then

$$\left| \sum_{j=1}^{n} a_j \bar{b}_j \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2$$

• Euclidean k-space: The vector space \mathbb{R}^k over the real field.