

Evaluation of approaches for multiple imputation of three-level data

Rushani Wijesuriya

Dr. Margarita Moreno-Betancur, Prof. John Carlin, Dr. Anurika De Silva and Prof. Katherine Lee,

The Clinical Epidemiology and Biostatistics Unit(CEBU) University of Melbourne

Australian and New Zealand Statistical Conference 2021

Overview

- The motivating case study
- Multiple imputation
- Research aim
- Simulation study
- Conclusions

The motivating case study: Childhood to Adolescence Transition Study (CATS)

Three levels of hierarchy

 Repeated measures within an individual and also clustering by school

The motivating case study: Target analysis and missing data

Substantive research question :

The effect of early depressive symptoms on the academic performance of the students

$$\begin{array}{l} \textit{NAPLAN}_{ijk} = \beta_0 + \beta_1 \times \frac{\textit{depression}_{ij(k-1)}}{+\beta_2 \times \textit{wave}} \\ + \beta_3 \times \boxed{\textit{NAPLAN}_{ij1}} + \beta_4 \times \textit{sex}_{ij} + \beta_5 \times \textit{SES}_{ij1} + \beta_6 \times \textit{age}_{ij1} \\ + b_{0i} + b_{0ij} + \varepsilon_{ijk} \end{array}$$
 Where i denotes the i^{th} school, j denotes the

 j^{th} individual and k denotes the k^{th} wave i = 1, ..., 44

$$8 \le j \le 66$$

$$k = 3,5,7$$

Multiple Imputation

Common implementation frameworks:

- Joint modelling (JM)
- Fully conditional specification (FCS)

Multiple Imputation

Imputation model specification in MI:
 Congeniality between the imputation and analysis model

Need to incorporate important features of the analysis (such as clustered structures, interactions, non-linearities etc) in the imputation model

Multiple imputation of two-level data

Adaptations of standard (single-level) MI approaches

- For cluster groups (such as schools)-Dummy Indicator (DI) approach
- For repeated measures (at fixed intervals)-Impute in wide format

Wide for	<u>mat</u>
one row	per
individu	al

	ID	Age	Sex	Dep_1	Dep_2	Dep_3
at	1	8	Male	0.4	1.9	0.2
er	2	7	Female	1.9	-	2.9
	3	9	Male	1.0	3.1	-
	4	8	Male	-	2.6	-
	5	10	Female	1.5	0.5	1.5

MI approaches based on (two-level) mixed effects models(1)

- Both JM and FCS implementations are available
- More recent than single-level implementations

ID	Age	Sex	Wave	Dep
1	8	Male	1	0.4
1	8	Male	2	1.9
1	8	Male	3	0.2
2	7	Female	1	1.9
2	7	Female	2	-
2	7	Female	3	2.9

Long format
One row per
wave
per
individual

Multiple Imputation of three-level data

 Adaptations of the singlelevel MI methods

 MI approaches based on three-level (RE) models

- For cluster groups :
 Dummy indicator (DI)
 approach
- For repeated measures (at fixed intervals): Impute in wide format
- For cluster groups: DI approach
- For repeated measures:
 Two-level MI approach
 (RE)

- For cluster groups: Two-level MI approach (RE)
- For repeated measures: Impute in wide format

- For cluster groups: RE
- For repeated measures: RE
 - FCS-3L

- JM-1L-DI-wide
- FCS-1L-DI-wide

- JM-2L-DI
- FCS-2L-DI

- JM-2L-wide
- FCS-2L-wide

Aim

 Evaluate MI approaches for handling incomplete three-level data using a simulation study with the aim of providing guidance on the use of these approaches

Simulation of Complete Data

- Mimicking the real CATS data
- 40 school clusters (i = 1, ..., 40) were generated
- Each school cluster was populated
- Four different strengths of level-2 and level-3 intra-cluster correlations:

	ICC		
	level 3 (within school)	level 2 (within individual)	
High-high	0.15	0.5	
High-low	0.15	0.2	
Low-high	0.05	0.5	
Low-low	0.05	0.2	

Simulation of complete data

Generation of missing data

Simulation Study-Results

$$\beta_1 = (-0.025)$$

Results shown only for MAR-CATS scenario as the comparative performance of approaches was similar under MAR-inflated scenario

Conclusions

- All approaches can be used to handle incomplete three-level data in the context of a random intercept substantive analysis model
- Approaches which use the DI extension should be used with caution
- In the presence of longitudinal data measured at irregular time intervals, three-level imputation approaches will be required

Thank you

Find me at:

https://www.rwijesuriya.com/

@rush_099

<u>@rushwije</u>

Scan to access published article of this work

