

European Patent Office

Cifico ouropéen des broves

(11)

EP 0 867 486 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.09.1928 Bulletin 1953/40

(51) Int CLG: COSD 11/00

(21) Application number: 85302250.0

(22) Date of filing: 25.09.1098

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

AL LT LY MK RO SI

(30) Priority: 27.03.1537 US 827138

(71) Applicant: Leximark international, Inc. Loxington, Kontucty (0511-1676 (US)

(72) Inventors:

• McCatn, Sancta H.

Loxington, Kontucky 40515 (US)

Francy, Terenco E.
 Lexington, Kentucky 40503 (US)

Gangal, Achok V.
 Lowington, Kentucky 40503 (US)

Zimmor, Agnes K.
 Loxington, Kentucky 40514 (US)

(74) Representative: Stolloo, Mumphroy John Frant B. Dohn & Co.,
European Palant Alterneyo,
179 Queen Vieterla Street
London EC4V 4EL (GB)

(54) Int jot int containing watting agant

(57) A jet printing int composition which results in reduced drop misdirection and missing nozzles is provided. The aqueous-based int composition includes at

teast one colorant; a weiting agent; and a co-solvent comprising a substituted or unsubstituted lactern, an amide, or mixtures thereof.

Coordination

. 10

15

35

۵0

FIELD OF INVENTION

This invention relates to an aqueous into composition, and more particularly to aqueous into adepted to be applied to a substrate from nozzles, commonly known as into jet into.

BACKGROUND OF THE INVENTION

Ink jet printers offer low cost and high quality printing options for a number of end uses including providing printed output from individual or natworked computers. Typically, the printhead of an ink jet printer employs a resistor element in a chamber which is provided with a source of Equid ink from, for example, a reservoir such as an ink carnidge. Multiple resistor elements are arranged in a desired pattern on a nozzle plate to form the printhead, with each resistor element associated with a nozzle on the nozzle plate through which ink drops are expelled toward a print substrate.

In operation, a microprocessor controls signals sent to each resistor causing selected elements to be heated at appropriate times. This heating causes a bubble of ink to form in the chamber. The buildup of pressure expels the ink through the nozzle. By controlling the firing of the resistors, alphanumeric characters may be formed by the ink drops which strike the print substrate.

Ink jet inks are known to have stringent performance requirements including the need for a long shell life, the ability not to dry and clog the nozzles when in the printhead, and yet also having the capability to dry quickly once printed onto paper or other substrates. As ink jet printing has advanced to achieve higher resolutions (i.e., more ink drops per inch) and higher printing quality, the performance requirements for the jet inks have become even more critical. That is, the ink jet printer must be able to deliver a lower drop mass (i.e., smaller diameter drops) through a smaller diameter nozzle accurately and at a high frequency. Accordingly, there remains a need in the art for ink jet inks capable of providing high printing and stight resolution and speed.

SUMMARY OF THE INVENTION

The present invention meets that need by providing a jet printing ink composition which results in reduced drop miscirculin and missing nozzles. In accordance with one aspect of the invention, an ink composition is provided and includes at least one colorant, co-solvents such as, for example, a substituted or unsubstituted factam, an amide, or mixtures thereof; a penetrant, and a watting agent comprising hydrophobic and hydrophilic segments. Preferably the factam co-solvent comprises 2-pyrrolidone and the watting agent is an alkomypolyalkyleneoxyalkanol such as, for example, an alkylomyethyleneoxyathanol or a polyorganosilomane having the general formula

where each R is independently a C_{1-3} alkyl group, an anyl group, but preferably methyl, Y is A- $(OCR_2-CR_2)_m$ - $(OCR_2-CR_2)_n$ -Z, and Z is H. OH, or an alkony group such as, for example, OCH_3 , m, x, and y are each independently integers ≥ 1 , n is an integer ≥ 0 , and A is a bridging radical such as, for example, $(CR_2)_n$. The ink provides high print quality at high resolution and speed.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The liquid ink composition of the present invention provides a jet printing int which affords high quality printing even when using reduced mass droplets of ink expelled from small diameter nozzles at high frequencies. The ink composition includes, as important components, a colorant, a co-colvent, and a wetting agent. The term wetting agent as used herein means a compound having hydrophobic and hydrophilic segments, and includes surfactants, gas bubble destabilizing agents, and antifoaming agents. In a further preferred embodiment, the ink composition also includes a penetrant, and the composition is aqueous-based.

Ink jet printers which are designed to deliver high resolution printing include printheads having nozzle plates with nozzles having diameters of less than about 40 µm, preferably less than about 35 µm, and most preferably less than about 30 µm. Such small diameter nozzles deliver ink droplets of reduced mass, in the range of from about 15 to about 25 nanograms par droplet.

EP 0 837 483 A2

With the use of such small diameter nozzles and reduced mass into droplets, the performance requirements for the inks which are used are very stringent. Problems such as misdirection and missing nozzles can occur, partly due to the lower kinetic energy of the smaller into droplets. By "misdirection", it is meant that the into droplets do not travel in their designed perpendicular trajectory from the nozzles. By "missing nozzles", it is meant that a nozzle does not "fire" expelling an into droplet when it is supposed to do so or is blocked so that no into droplet can be expelled.

While not wishing to be bound by any particular theory, misdirection and missing nozzles may be caused, at least in part, by differences in the surface energy of a nozzle plate. Uneven wetting of the nozzle plate by the ink may cause puddling of the link around the edges of one or more nozzles. The puddled ink interferes with the trajectory of the ink droplets beings expelled from the nozzles and causes such droplets to be misdirected off of their designed perpendicular path. Misdirection also becomes a greater problem with lower momentum ink drops (i.e., ink drops having either or both reduced mass or reduced velocity). Further, if puddling of the ink becomes heavy during high coverage printing periods, such ink puddles may cause missing nozzles by preventing the subsequent ink drops from being ejected from the printhood.

Misdirection and missing nozzles may also be caused, at least in part, due to gas bubbles in the individual firing chambers of the printhead. Dissolved gases in the ink are evolved when the temperature of the ink is heated during continuous firing. As gases are lass soluble in the link at such higher temperatures, the resultant gas bubbles may interfere with or even completely block subsequent firings.

The present invention employs an alkyloxypolyalkyleneoxyalkanol and/or a polyorganosiloxane waiting agent in the ink composition which functions both to impart a high weltability to the ink as well as to destabilize undesired ink bubble formation in the firing chambers in the printhead. That is, the wetting agent acts to reduce the surface tension of the ink so that a more uniform surface energy on the surface of the nozzle plate is achieved. This action has been observed to minimize puddling of the ink on the surface of the nozzle plate. Additionally, the wetting agent acts both to reduce bubble formation from the evolution of dissolved gases in the ink at the high temperatures encountered by the ink in the tiring chambers as well as to destabilize those bubbles which do form.

Moreover, it has been further unexpectedly found that the use of the wetting agent in the ink composition of the present invention permits the amount of penetrant used in the composition to be reduced, if in fact a penetrant is desired. Thus, less penetrant may be used and yet still achieve desirable prevention of intercolor bleed on the printed substrate while providing for repid ink drying.

In a preferred embodiment of the invention the liquid ink formulation includes the following components:

INGREDIENT	FUNCTION	₩EIGHT%
Dye/Pigment EDTA 2-pyrrolidene tetraelhylene glycol 1,2 haxanediol polyorganosiloxane 1,2-benz-isothiazolin-3-ons sodium borste	Colorant Cholating agont Humectant/co-solvent Humectant/co-solvent Penetrant Watting agent Biocide Buffer	1 - 4 % 0 - 0.1 % 4 - 11 % 8 - 17 % 3 - 6 % 0.1 - 10 % 0 - 0.3 % 0 - 0.75%

The ink preferebly has a static surface tension of < about 45 dynes/cm².

COLORANT

15

25

30

35

55

Colorante useful in the present invention include both pigment dispersions or dyes. As is known in the art, a pigment dispersion is a mixture of a pigment and a dispersing agent, typically a polyment dispersant compound. Pigments which may be utilized in the practice of the present invention include essentially any of the classes of pigments transfer used in this art including aze pigments, polycyclic pigments, basic and acid dye lakes, and organic and inorganic pigments.

Dyes which are commonly used in ink jet inks such as, for example, Acid, Direct, Food, and Reactive dyes are all suitable for use as colorants in the present invention. In a preferred embodiment of the invention which utilizes a cyan/magenta/yellow color combination for a multicolor ink jet system, the colorants comprise Direct Blue 199 as the Cyan component, Leximark 93A (trademark) as the Magenta component (described in Beach et al, U.S. Patent No. 5,254,160), and Acid Yellow 23 as the Yellow component. However, essentially any other dyes which permit the formation of colored visible images on a recording madium may be used, including anthraquinones, mono- and di-azo dyes, phthatocyanines, and formazan copper complexes. Specific dyes include Food Black No. 2, Direct Black 169,

Acid Blue 9, Acid Red 249, Reactive Black 31, Direct Black 154, Reactive Red 180, Direct Blue 86, and Direct Yellow 132.

The amount of colorent in the ink composition may be varied depending on a number of factore, but the colorent is commonly present in an amount of from between about 1 to about 10% by weight, and more preferably from about 1 to about 4% by weight (based on total weight of the ink), including all ranges subsumed therein.

CO-SOLVENT

The balance of the ink composition of this invention is not limited. Thus, the ink may be aqueous or non-equeous. To aid in maintaining the colorant in solution and enhance ink performance, however, a co-colvent is present in the ink composition. Generally, water soluble organic agents such as polyhydric alcohols are suitable and include athylene glycol, propylene glycol, butylene glycol, diethylene glycol, triathylene glycol, heavylene glycol, 1.2.6-hexanetriol, and thiodiglycol. Other suitable co-solvents for the composition include diols, glycolesters, glycerol, polyalkyl glycols such as polyethylene glycol, and lower alkyl ethers of polyhydric alcohols. Yet other suitable co-solvents include alcohols, kelones such as acelone, ethers such as tetrahydrofuran and dioxane, esters such as ethyl acetate, sulfclanes, Nemethyl pyrrolidone, lactones such as y-butyrolactone, and the above-mentioned substituted or unsubstituted lactams having the general formula:

where, R is H, C₁₋₆ alkyl, aryl, or halogen and t is an integer from 1 to 9. Examples of suitable substituted or unsubstituted lectems include 2-pyrrolidone, 1-methyl 2-pyrrolidone, and N- (2-hydroxyethyl) -2-pyrrolidone. Of course, compatible blands and mixtures of any of the above compounds may also be utilized. Co-solvents also perform the function of humectants in the composition to prevent the ink from drying out in the printhead.

Co-solvents may also include 1°, 2°, and 3° amides either alone or in a mixture with any of the above-mentioned co-solvents. Suitable amide co-solvents include those having the general formula

where H is as previously defined and q is an integer between 0 and 6.

Co-solvents are typically present in an amount of from between about 50% by weight, and more preferably from about 12 to about 25% by weight, including all ranges subsumed therein. As will be appreciated, the amounts of co-solvent will be dependent in part on the other components of the int. Preferred co-solvents for use in the present invention include a compatible mixture of a lactam such as 2-pyrrolidone (2 to 50%, and preferably 4-15% by weight) and tetraethylane glycol (8-17% by weight).

It has been unexpectedly found that the co-solvents and the wetting agents described above in combination act to provide an ink which has fewer misdirected jets and missing nozzles.

PENETRANT

55

When penetrants (which include surfactants) are preferred for use in the invention, they are added to the ink compositions to improve penetration by the ink drops into the surface of the printed substrate and to reduce or eliminate intercolor bleeding (i.e., lateral bleeding of color). Preferred penetrants for use in the present invention include 1,2 alkyl

diols containing from 4 to 10 carbon atoms in the allxyl group such as those taught in commonly-assigned Beach et al, U.S. Petent No. 5,364,461. Most preferred are 1,2-haxanediol and 1,2-pentanediol. In a preferred embodiment, the penetrant is present in the ink composition in an amount of from between about 3 to about 6% by weight.

Surprisingly, it has been found that a lower concentration of penetrant may be used in the ink composition of the present invention and still attain reduced intercolor black. While not wishing to be bound by any particular theory, it is believed that the wetting agents described above, in synergistic combination with the penetrant, provide reduced color black at lower penetrant concentrations in the ink than would otherwise be necessary.

WETTING AGENT

10

15

20

25

35

45

To reduce ink drop misdirection and missing nozzles, the ink of the present invention also includes a watting agent comprising an alkyloxypolyalkylencoxyalkanol and/or a polyorganosiloxane. Specifically, a preferred class of polyorganosiloxane agents are those polyalkylene oxide-modified polyorganosiloxane copolymers having the general formula:

where R is mathyl, Y is -(CH₂)₃-(OCH₂-CH₂)₃-(OCH₂-CH₂-CH₂)₆-Z, and Z is H or OCH₃, m, x, and y are integers ≥ 1, and n is an integer ≥ 0. This class of polyallylene oxide-modified polyorganosiloxane copolyment is commercially available and a most preferred composition has the termula:

where m is an integer ≥ 1. The wetting agent is present in the ink composition in an amount of from about 0.1 to about 10.0% by weight of the ink composition, and preferably from about 0.1 to about 1.0% by weight, including all ranges subsumed therein.

OTHER OPTIONAL COMPONENTS

The ink composition of the present invention may also include other desirable components which have hereforce been included in jet printing ink compositions including cheleting agents, biocides, viscosity modifiers, and buffers. Cheleting agents such as ethylene diamine tetrascetate (EDTA) may be added to prevent any deleterious effects from metal or altali metal ion contaminants or impurities. Typically, a chelating agent may be added to the composition in an amount of from about 0.1 to about 1.0% by weight.

Biccides, such as for example, 1,2-benz-isothiazolin-3-one, may be added to the ink to prevent or inhibit growth of microorganisms in the ink. Generally, the addition of from about 0.1 to about 0.3% by weight of a biccide will be efficacious.

Buriering agents such as sodium borate may also be added to adjust or maintain a destred pH for the ink. As will be appreciated, the amount of buffer will depend on the other components in the ink. However, it has been found that the addition of small amounts of buffer to the ink, such as from about 0.25 to about 0.75% by weight, are useful.

INK PREPARATION

The inks of the present invention may be prepared by essentially any process for preparing aqueous-based inks. A preferred procedure for preparing an illustrative ink is as follows: The dye, chelating agent (EDTA), and deionized water are mixed together with attning for approximately 20 minutes. Then the following components are added in sequence, with approximately 15-20 minutes of stirring following the addition of each component -- factam co-solvent; tetraethylene glycol co-solvent; 1,2-hexanediol penstrant; blocide; socilum borate buffer, and polyakylane oxide-modified polyorganosiloxane. All of the mixing steps may be carried out at ambient temperature.

Once all of the components have been added and thoroughly mixed, the pH of the init is measured and adjusted

to a pH of 7.2. The ink composition is then filtered to remove any solid or particulate matter.

In order that the invention may be more readily understood, reference is made to the following examples, which are intended to be illustrative of the invention, but are not intended to be limiting in scope.

5 Comparative Examples 1, 2, and 3

Three ink formulations were prepared and contained the components as listed below. None of the Comparative Example inks contained 2-pyrrolidone or a polyoxyalkylene-modified polyoxyanosiloxane.

Example 1

15

35

55

Component	₩I. %
Direct Blue 199	2.25
EDTA	.01
tetrzethylene głycoł .	20.0
1,2-hexamediol	6.0
1,2-benz-isothlazolln-3-one	0.2
sodium borate	0.5
Di water	balance

Example 2

Component	Wt. %
Мадета 93А	2.25
EDTA	.01
tetraethylene glycol	20.0
1,2-hexanediol	6.5
1,2-benz-isothiazolin-3-one	0.2
sodium borate	0.5
Diwater ⋅	balance

Example 3

Component	₩I. %
Direct Yellow 132	2.00
EDTA	.01
tetraethylene glycol	20.0
1,2-hexamediol	7.0
1,2-benz-isothtazolin-3-one	0.2
codium borate	0.5
DI water	balanco

Examples 4, 5, and 6

Three ink formulations in accordance with the present invention were prepared and contained the components fisted below.

Example 4

Component	Wt. I
Direct Blue 199	3.00 .01
2-pyrrolidone	7.5
tetraethylene glycol 1,2-hexamediol	12.5 4.0
1,2-beng-isothiazolin-3-one	0.2
polyorgazosilomaze	0.2 0.5
DI water	balance

(Ck),51-0- (81-0),-91Ck, (Ck),-51-0- (81-0),-91Ck,

Example 5

15

25

35

40

55

Component	W. &
Magenta 93A ³	3.00
EDTA	.01
2-pyrrolidone	7.5
tetraethylene glycol	12.5
1,2-hexamediol	4.0
1,2-benz-isothiazolin-3-one	0.2
acdium borate	0.2
polyorganosilomane	0.5
DI tater	balance
Tr 9 Par En. 5.250.160	

(CH₃),81-0-(8½-0)₃-81CH₃ (CH₃)₃-(CCH₂CH₃)₋-CCH₃

Example 6

10

15

20

30

35

۵0

45

*5*5

Component.	liteSt
Acid Yellow 23	3.25.
edta ·	.01
2-pyrrolidone	7.5
tetraethylene glycol	12.5
1,2-hexamediol	4.0
1,2-beng-isothiazolin-3-one	0.2
sodium borate	0.2
polyorganosiloxane ⁴	0.5
DI water	balance
CM,	
(Ch);si-0-(si-0);-sich	
(CH) 1- (CCH,CH) - CCH	

Example 7

Component .	₩ı. %
Acid Yellow 23	3.25
EDTA	.01
2-pyrrolidone	7.5
tetraethylene glycol	12.5
1,2-hexanedid	4.0
1,2-banz-iscribiazolin-3-ona	0.2
scollum borate	0.2
alkyloxypolyethyleneoxyethanol	0.5
DI water	balance

Example 8

The Comparative Example inke and the inke of the present invention were run through a high resolution tricolor ink jet printer having a printhead containing multiple nozzles. Three tests were run using the inks of Comparative Exs. 1, 2, and 3, and the results of the tests averaged. Two tests were run using the inks of the present invention (namely, Exs. 4, 5, and 6), and the results were again averaged. The ink drops which were expelled from the printhead nozzles were observed for misdirection and missing (i.o., blocked or no drop expelled) nozzles with the following results:

Ink	# Missing Nozzles	# Misdirected
Comparative Test 1	6	7
Comparative Test 2	3	2
Comparative Test 3	5	5
Average	4.7	4.7
Test 1	o	0
Test 2	0	0
Average	0	0

As can be seen, the ink of the present invention produced no misdirected or missing nozzles in either test, while the comparative ink compositions had a significant number of misdirected and missing nozzles in each test. Also, the observed amount of flooding of the nozzle plate surface was less with the ink of the present invention, permitting this

inh to operate at a higher frequency (i.e., fire in more rapid succession) than with previous inks.

While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the mathods and apparatus disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Claimo

10

25

35

40

55

- An ink composition comprising: at least one colorant; a welking agent; and a co-solvent comprising a substituted or unsubstituted lactam, an amide, or mixtures thereof.
- 2. An ink composition as claimed in claim 1 including a second co-solvent for said cotorant.
- 3. An ink composition as claimed in claim 1 further including a penetrant.
- An introomposition as claimed in claim 3 in which said panetrant comprises a 1.2-alkyl diol of from 4 to 10 carbons atoms forming said alkyl group.
- 5. An ink composition as claimed in claim 1 including a humectant.
- a. An ink composition as claimed in claim 1 in which said colorard comprises a water soluble dye and said ink composition further comprises water.
- 7. An ink composition comprising at least one colorant comprising from about 1 to about 10% by weight of a water soluble dye; a co-solvent comprising from about 4 to about 15% by weight of a substituted or unsubstituted lactam; a penetrant comprising from about 3 to about 6% by weight of a 1,2-alkyl diol of from 4 to 10 carbons atoms forming said alkyl, and from about 0.1 to about 10% by weight of a polyorganosiloxans wetting agent having the structure

where each R is independently a C_{1-3} atkyl group, or an anyl group, Y is A- $(OCR_2-CR_2)_m$ - $(OCR_2-CR_2-CR_2)_n$ -Z, and Z is H, CH, or an altoxy group such, m, x. and y are each independently integers \geq 1, n is an integer \geq 0, and A is a bridging radical.

- An ink composition as claimed in claim 7 including a second co-solvent comprising from about 8 to about 17% by weight tetraethylene glycol.
- 9. An ink composition as claimed in claim 7 in which said lactam is 2-pyrrolidone.
- 10. An ink composition as claimed in claim 7 in which said 1,2-altyl diol is 1,2-hexane diol.
 - 11. An ink composition as claimed in claim 7 in which said polyorganosilorane wetting agent has the formula

where m is an integer ≥ 1.

12. A process for printing a liquid ink from a series of nozzles onto a substrate comprising the steps of providing an ink composition comprising at least one colorant, a wetting agent, and a co-colvent comprising a substituted or

EP 0 867 486 A2

unsubstituted lactam, an amide, or mixtures thereof; forming individual ink drops by heating said ink to form ink bubbles; and expelling said ink drops from said nozzles, whereby misdirection and missing nozzles are reduced.

- 18. A process as claimed in claim 12 in which said nozzles have a diameter of less than about 40 µm.
- 14. A process as claimed in claim 12 in which said nozzles have a diameter of less than about 30 µm.

5

10

15

20

25

55

15. A process as claimed in claim 12 in which said individual ink drops have a mass of from between about 15 to about 25 nanograms.