

Supervised Convolutional GSN for Protein Secondary Structure Prediction

Jian Zhou Olga Troyanskaya

Princeton University

What's In this talk...

- Problem: Predict protein secondary structure
- Iterative prediction with multi-layer hierarchical representation
 - Supervised GSN
 - Convolutional architecture for GSN
 - A trick for improving convergence and performance
- Performance evaluations

Protein secondary structure prediction

Protein sequence 20 types of amino acids

MDLSALRVEEVQNVINAMQKILECP ICLELIKEPVSTKCDHIFCKFCMLKL LNQKKGPSQCPLCKNDITKRSLQE STRFSQLVEELLKIICAFQLDTGLEY ANSYNFAKKGK

Predict

Secondary structure 8 classes

CCGGGSSHHHHHHHHHHHHHHHS CSSSCCCSSCCBCTTSCCCCSH HHHHHHHSSSSSCCCTTTSCCCC TTTCBCCCSSSHHHHHHHHHHHHH HHHHTCCCCCC

Previous Approaches: neural network from 1988 (Qian & Sejnowski); bidirectioal recurrent neural network (Baldi et al., 1999); conditional neural fields (Peng et al., 2009); many more...

Protein Sequence -> Secondary Structure

Protein sequence 20 types of amino acids

Secondary structure 8 classes label sequence

Motivation

Challenge: Prediction with both local and long-range dependencies

- Plan:
 - Multi-layer hierarchical representation
 - Both 'upward' and 'downward' connections
 - Supervised GSN formulation

Generative Stochastic Network

Bengio, Y., Thibodeau-Laufer, É., Alain, G., and Yosinski, J. Deep Generative Stochastic Networks Trainable by Backprop

Learning the transition operators of a Markov chain whose stationary distribution estimates the data distribution P(X).

$$H_{t+1} \sim P_{\theta_1}(H \mid H_t, X_t)$$

$$X_{t+1} \sim P_{\theta_2}(X \mid H_{t+1})$$

$$H_0 \longrightarrow H_1 \longrightarrow H_2 \longrightarrow H_2$$

$$X_1 \longrightarrow X_2$$

Learning $P(X \mid H)$ can be much easier than P(X) by design. Trainable using back-propagation

Learning $P(Y \mid H)$ can be much easier than $P(Y \mid X)$, utilizing previous state of the chain

Supervised GSN P(Y|X)

$$H_{t+1} \sim P_{\theta_1} (H \mid H_t, Y_t, X_0)$$

 $Y_{t+1} \sim P_{\theta_2} (Y \mid H_{t+1})$

Architecture for protein secondary structure prediction

Multi-scale representation – multi-layer convolutional architecture Local information sensitive – output unit at bottom layer

Training

Experiments on initialization of chain during training

Initialize at a specified test initialization value for a subset of training batches:

- Optimal performance at 50% test initialization

Performance

Cull PDB dataset (6133 proteins with <30% identity between any protein pairs); available at www.princeton.edu/~jzthree/datasets

single protein prediction example

Performance through averaging iterative predictions:

CullPDB-30 test set	Overall Accuracy (8-class)
1 layer	0.714 ± 0.006
2 layers	0.720 ± 0.006
3 layers	0.721 ± 0.006

CB513 dataset	Overall Accuracy (8-class)
RaptorSS8/CNF	0.649 ± 0.003
Our method	0.664 ± 0.005

Summary

 We developed supervised convolutional GSN model for protein secondary structure prediction.

- Supervised GSN
 - Stochastic iterative prediction through Markov chain
 - Initialization trick improve both performance and convergence rate empirically
- Convolutional architecture for Supervised GSN
 - Combine high level representation and local prediction
 - Improved over previous best performance

• Filters: Layer1, $X, Y \leftrightarrow H^0$

