

Algorithmes par vagues

Master informatique UE AR (MU4IN403)

Plan

- Définition Algorithme Total
- Exemples d'algorithmes
 - > Algorithme de l'anneau
 - > Algorithme de l'arbre
 - > Algorithme de l'Echo
 - > Algorithme de la Phase

Algorithme par Vague

- Les algorithmes par vague sont utilisés pour diffuser une information sur le réseau, découvrir la topologie du réseau, rassembler des informations du réseau.
- > N nœuds
 - Un nœud ne peut communiquer qu'avec ses voisins

Tous les nœuds du réseau participent avant qu'une décision soit prise

- Un algorithme à vagues doit satisfaire les trois propriétés:
 - > terminaison : toute exécution est finie
 - > *décision* : une décision doit être prise à terme par au moins un processus.
 - > dépendance : Une décision est précédée causalement par un événement de chaque processus.

- > Types de nœuds :
 - Initiateur :
 - □ nœud qui spontanément décide de démarrer l'algorithme
 - Non-initiateur :
 - □ Ne commence à exécuter qu'après avoir reçu un message.
- > e_p = premier événement qui a lieu en p lors d'un exécution de l'algorithme :
 - Nœud initiateur : e_p est un événement interne ou l'envoi de message
 - $Nœud non-initiateur : e_p$ est l'événement réception de message.
- > Observation:
 - Pour un même algorithme, pour des exécutions différentes, le nœud initiateur peut être différent.

> Caractéristiques :

- Symétrie
 - □ Algorithme symétrique :
 - L'algorithme est le même dans tous les nœuds
 - □ Algorithme asymétrique
 - L'algorithme du nœud *initiateur* n'est pas le même que celui d'un nœud non *initiateur*.
- Initialisation du calcul
 - □ Algorithme centralisé
 - Il existe un unique processus qui est *initiateur* du calcul
 - □ Algorithme décentralisé
 - Pour tout sous-ensemble $\Pi_0 \subseteq \Pi$, \exists un calcul de l'algorithme dont Π_0 est l'ensemble des initiateurs.

Une décision est prise au plus une fois par un processus p d_p = événement correspondant à la décision prise par p

Définition (Tel): une exécution d'un algorithme est totale si au moins un processus p décide et pour tout $q \in \mathbb{N}$ et pour tout p qui prend une décision $e_q -> d_p$. Un algorithme est **total** ssi toutes ses exécutions possibles

> Dans un algorithme total sur un réseau de *N* nœuds, il y a au moins *N-1* message échangés.

sont totales

Algorithmes par Vague

Notation (Tel) :

- > Evénements:
 - \blacksquare S_p : envoie message
 - \blacksquare R_p : réception message
 - \blacksquare D_p : décision
- $\rightarrow E_p: \{condition\}$
 - L'événement E_p est exécuté si la $\{condition\}$ est vraie.

1. L'algorithme de l'anneau

- > Anneau unidirectionnel
- > Algorithme asymétrique et centralisé
 - N noeuds
 - Les communications sont fiables, pas forcement FIFO, et tout message émis est reçu dans un temps fini mais arbitraire (modèle temporel asynchrone)
 - Un nœud ne connaît que l'identifiant de son successeur.
- > Principe de l'algorithme :
 - Un seul initiateur à chaque exécution.
 - □ *Initiateur* envoie un jeton dans l'anneau.
 - Jeton doit être reçu par tous les nœuds.
 - L'*initiateur* décide lorsque le jeton lui est renvoyé.

1.L'algorithme de l'anneau

Variable:

booléen Rec_p = false; /*contrôle de la réception du message*/

p initiateur :

S_p: { Spontanément, une fois} envoie <> au successeur

R_p: { Un message <> arrive} réception de <>; Rec_p = true;

D_p: {Rec_p} Décision

p non_initiateur :

R_p: { Un message <> arrive} réception de <>; Rec_p = true;

```
S<sub>p</sub>: { Recp}
envoie <> au successeur;
Rec<sub>p</sub> = false;
```

<> : message vide.

1.L'algorithme de l'anneau

> Supposons:

- (j+1)%N est le successeur de j
 - \Box s_i : événement envoi de message du site j
 - \Box r_i : événement réception de message du site j
 - \Box e_i : premier événement de j
- *i* initiateur
 - \Box d_i : événement décision.
- $e_i = s_i$ et $e_j = r_j$ pour tout j != i.
- $r_i -> s_i$ pour tout j != i
- $s_i r_{i+1}$ pour tout j
- $r_i \rightarrow d_i$ (seule initiateur décide)

$$e_i = s_i -> r_{i+1} = e_{i+1} -> s_{i+1} -> r_{j+2} \dots -> r_j = e_j -> s_j \dots -> r_i = d_i$$

■ Complexité en nombre de messages et temps : N

- > N nœuds
 - Un nœud ne connaît que l'identifiant de ses voisins
- > Liens bidirectionnels
- > Algorithme symétrique et (pas centralisé ni décentralisé)
- > Principe de l'algorithme
 - Un nœud qui a reçu un message de tous ses voisins sauf un envoi un message à celui-ci.
 - En ne possédant qu'un voisin, les *feuilles* de l'arbre sont des nœuds *initiateurs*
 - □ Toutes les feuilles, (possibilité de sauf une) doivent être des initiateurs.
 - Un nœud qui a reçu un message de tous ses voisins décide.

```
Variables:
set Vois_p; /* ensemble de voisins de p^*/
boo Rec_p[q] = false; \forall q \in Vois_p /*contrôle réception message*/
boo Sent_p = false; /*contrôle envoi d'un message*/
R_{\rm p}: { Un message <> arrive de q}
         réception de <>;
         Rec_{p}[q] = true;
S_p : \{ \exists q \in Vois_p : \forall r \in Vois_p, r != q : Rec_p[r] et !Sent_p \}
        envoie <> à q
        Sent_p = true;
 D_p: {\forall q \in Vois_p : Rec_p[q]}
          Décision
                                                                     <> : message vide.
```


Lemme 1: Chaque site envoie au plus un message sur chacun de ses liens.

Preuve:

Le seul moyen pour un site d'envoyer des messages est d'exécuter la règle Sp. En exécutant Sp, p met la variable Sent à vrai. LA garde de Sp ne peut plus jamais être vrai.

Lemme 2: Lorsque qu'un site décide, alors il a reçu un message de tous ses voisins.

Preuve:

> Trivial selon la règle Dp.

Théorème 1: Tant qu'un état permettant la décision n'est pas atteint, il y a toujours une émission ou une réception possible.

Preuve:

- A chaque liaison bidirectionnelle, on associe 2 bits *r* correspondant aux 2 sens d'émission, initialisés à 0. Le bit est mis à 1 quand le site à l'extrémité a reçu un message. Par le Lemme 1, lorsque qu'un bit r est à 1, il le reste pour toujours. Donc le nombre de r à 1 ne peut que croitre strictement.
- > Soit:
 - #E le nombre de sites ayant émis
 - #*M* le nombre de messages en transit
 - **Z** le nombre total de bits $r \ge 0$.

- La topologie est un arbre, il y a donc 2(N 1) liaisons (orientées).
- \rightarrow Le nombre de messages reçus est (#E #M).
- > On a done à tout instant Z = 2(N 1) (#E #M)

Remarque 1: Un site i peut émettre lorsqu'il n'a qu'un r_{ij} à 0 (cf. Règle Sp)

- > Par contradiction, on suppose qu'il existe une configuration C à partir de laquelle la décision ne sera pas atteinte et qu'il n'y a plus d'émission ni de réception possible.
- ➤ A tout instant (y compris C) on a : Z = 2(N 1) (#E #M) :
 - #M > 0: il y a une réception possible (donc nous ne sommes pas dans C)
 - $\blacksquare \quad \# \mathbf{M} = \mathbf{0}$
 - Puisque on suppose qu'on est pas dans un état où la décision n'a pas eu lieu, tous les sites ont (au moins) un bit $r \ge 0$ (Lemme 2). Donc $Z \ge N$.
 - Supposons qu'il n'y a pas d'émission possible. Puisque Z≥N, les (N-#E) sites n'ayant pas émis ont (au moins) un deuxième bit r à 0. Donc,
 Z≥N+(N-#E), soit 2N-#E. Or, #M = 0 et donc la formule générale de
 Z donne Z = 2N #E 2. On doit à la fois avoir:

$$Z = 2N - \#E - 2$$
 et $Z \ge 2N - \#E$.

On arrive donc à une *contradiction*.

- En prenant la contraposée du *Théorème 1*: s'il n'y a ni émission ni réception possible, alors on est dans un état permettant la décision.
 - > Conséquence : comme le nombre d'émissions (donc de réceptions) est borné par le nombre de sites N (chaque processus n'envoie au plus qu'un message), on parvient toujours à une décision dans un temps fini.

- Montrer que dans un état terminal (plus d'émission, de réception ou de décision possible), tous les sites ont émis une seule fois.
 - > Preuve par contradiction
 - Supposons que dans un état terminal, il existe un site p_0 n'a pas encore émis.
 - Supposons que p_0 a reçu un message de tous ses voisins ($\forall r \in Vois_{p0}$, $Rec_{p0}[r]$ est vrai). Dans ce cas, la garde de Dp est vraie en p0, ce qui contredit le fait qu'on soit dans un état terminal.
 - Supposons que p_0 a reçu un message de tous ses voisins sauf 1, p_1 . Dans ce cas, la garde de Sp est vraie en p0, ce qui contredit le fait qu'on soit dans un état terminal.
 - Supposons qu'il existe plusieurs voisins de p_{θ} depuis lesquels p_{θ} n'a pas reçu de message. Considérons l'un d'entre eux, p_1 . Si p_1 n'a pas envoyé de message à p_{θ} , c'est comme comme pour p_{θ} , qu'il existe plusieurs de p_1 qui ne lui ont pas envoyé de message. Soit p_2 , l'un de ces voisins, différent de p_{θ} . En itérant le raisonnement et le graphe étant acyclique, on construit une chaîne de processus p_{θ} , p_1 , p_2 ,..., p_x tel que p_x est une feuille. Dans ce cas, la garde de Sp est vraie sur p_x , ce qui contredit le fait qu'il s'agisse d'un état terminal.

Montrer qu'il y a exactement deux décideurs.

- Lorsque tous les sites ont émis, et que leurs messages sont arrivés, on a (#E = N, #M = 0) : Z = N 2.
- Soit Z_i le nombre de bits à 0 pour le site i. Comme i a émis, $Z_i \le 1$. Z est la somme des Z_i . On a donc (N-2) sites tels que $Z_i = 1$. Donc il n'y a que 2 sites tels que $Z_i = 0$. Ces deux sites sont les décideurs.

Conclusions:

- > Il y a exactement *deux décideurs*
 - Les deux décideurs sont voisins
 - Le dernier nœud dont un décideur a reçu un message est aussi un décideur.
- > Dans un état terminal, tous les nœuds ont émis une fois
 - ☐ Il n'y a qu'un message qui circule dans un lien sauf celui entre les 2 décideurs où circule deux messages
 - Complexité en terme de messages :
 - \square Nb_{lien} d'un arbre = N-1 => Nb message = (N -1)+1 = N
 - Complexité en temps :
 - \Box O(D) où D= diamètre de l'arbre.
- Algorithme *n'est pas décentralisé* parce que si Π_0 contient d'autres nœuds que les feuilles alors Π_0 n'est pas un ensemble d'initiateurs.

- Proposé par Chang [1982]
- > Topologie arbitraire
 - Graphe connexe bidirectionnel
- > Algorithme centralisé un seul initiateur
- Principe de l'algorithme
 - initiateur:
 - □ envoie un message à tous ses voisins
 - □ lorsqu'il a reçu un message de tous ses voisins, il décide
 - Un nœuds *non-initiateur* :
 - □ sauvegarde le lien par où le premier message a été reçu ("père")
 - □ émet à tous les voisins sauf le père
 - □ lorsqu'il a reçu un message de tous ses voisins, il envoie un message à son "père"

<> : message vide.

Variables:

set $Vois_p$; /* ensemble de voisins de p^* /
boo $Rec_p[q]$ = false; $\forall q \in Vois_p$ /*contrôle réception message*/
int $p\`{e}re_p$ = nil;

p initiateur :

 S_p : { spontanément une fois} $\forall q \in Vois_p$, envoie <> à q

 R_p : { Un message <> arrive de q } réception de <>; $Rec_p[q]$ = true;

 D_p : { $\forall q \in Vois_p : Rec_p[q]$ } Décision

p non_initiateur :

```
\begin{split} R_p : & \{ \text{ Un message <> arrive de } q \} \\ & \text{réception de <>}; \\ & \text{Rec}_p[q] = \text{true}; \\ & \text{if (père}_p = \text{nil}) \\ & \text{père}_p = \text{q}; \\ & \forall r \in \text{Vois}_p - \text{\{q\}, envoie <> à r} \\ S_p : & \{ \forall \text{q} \in \text{Vois}_p, : \text{Rec}_p[\text{q}] \} \\ & \text{envoie <> à père}_p \end{split}
```


Conclusions:

- > L'initiateur est le décideur
- > Complexité en terme de messages
 - $2* Nb_{lien}$ $(N_{blien} = nombre de liens)$
- Complexité en terme de temps (en moyenne)
 - \Box O(D) où D=diamètre du réseau en moyenne
 - \Box O(N) dans le pire des cas
- Possibilité de construire un arbre de recouvrement (voir TD)

- > Topologie arbitraire
 - Graphe orienté fortement connexe
- > Algorithme décentralisé et symétrique
- > Diamètre D du réseau est connu de tous les sites
- > Principe de l'algorithme :
 - Chaque processus envoie D fois un message à tous ses voisins sortants.
 - Un processus n'a le droit d'émettre un message à tous ses voisins sortants pour la (i+1)ème fois qu'après avoir reçu le ième message de tous ses voisins entrants.
 - Un processus décide lorsqu'il a reçu D messages de tous ses voisins entrants.

Variables: set In_p ; /* ensemble de voisins de p entrant */ set Out_p; /* ensemble de voisins de p sortant */ int $RCount_p[q] = 0$; $\forall q \in In_p$ /*contrôle réception message*/ int SCount_p=0 /*contrôle envoi message*/ $R_{\rm p}$: { Un message <> arrive de q } réception de <>; RCount_p[q]++; $S_p : \{ \forall q \in In_p : RCont_p[q] \ge SCount_p \text{ et } SCount_p < D \}$ forall r ε Out_p envoi <> à r; SCount_p++;

 $D_p : \{ \forall q \in In_p : RCount_p[q] \ge D \}$ Décision **Observation**: La primitive S_p doit être exécutée initialement par (au moins) un processus, l'initiateur.

Diamètre =2

- Plusieurs messages peuvent être envoyés sur un lien
- Tous les processus peuvent décider
 - > Plus d'émission ni de réception possible
- **Complexité:**
 - > Messages = M*D $M = nombre de lien (O(N^2))$
 - \rightarrow Temps= O(D) D= diamètre

Résumé Algorithmes par Vague

Algori- thme	Topo- logie	Centr./ Décen.	Déci- deur	Symé -trie	Nb. Mess.	Temps
Anneau	Anneau unidirec.	Centralisé	1 initiateur	Non	N	N
Arbre	Arbre bidirect.	Pas centr. Pas décen.	2	Oui	N	O(D)
Echo	arbitraire bidirect.	centralisé	1 initiateur	Non	2*M	O(D)
Phase	arbitraire	décentralisé	Tous	Oui	M*D	O(D)

Bibliography

- Gerard Tel, *Introduction to Distributed Algorithms*,
 Cambridge University Press, 1994, 2000 (2ème edition).
- Gerard Tel, Total Algorithms, ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Research Actions Program Project no. 3075
- Ernest J.H. Chang, Echo Algorithms: Depth Parallel Operations on General Graphs, IEEE Transactions on Software Engineering, Vol. 8, No. 4, July 1982
- Adrian Segall. **Distributed network protocols**, IEEE Transactions on Information Theory, Vol. IT-29, 1983.