REAL-TIME CONTROL OF STORMWATER NETWORKS

A PREPRINT

Abhiram Mullapudi

Department of Civil and Environmental Engineering abhiramm@umich.edu

April 16, 2019

- Introduction
- 1.1 Previous Work

2 Model

Symbol	Description
\mathbb{T}	Planning Horizon
V_i^t	Volume in i^{th} node at time t
δ_{ji}	Travel time from node j to i
c_i	Maximum capacity in node i
x_{ij}^t	Flow in arc ij at time t
$\begin{bmatrix} x_{ij}^t \\ u_{ij} \\ q_i^t \end{bmatrix}$	Maximum capacity in arc ij
q_i^t	Inflow to i^{th} node at time t

Table 1: Summary of notation used in the paper.

2.1 Centralized Control

$$\underset{x_{ij}}{\text{minimize}} \quad \sum_{t}^{\mathbb{T}} \sum_{i}^{N} w_{i} V_{i}^{t} \tag{1a}$$

subject to
$$0 \le V_i^t \le c_i \quad (i \in N, t \in \mathbb{T}),$$
 (1b)

$$0 \le x_{ij}^t \le u_{ij} \quad (ij \in A, t \in \mathbb{T}), \tag{1c}$$

$$x_{ij}^{t} \le f(V_i^{t-1}) \quad (i \in A, ij \in A, t \in \mathbb{T}), \tag{1d}$$

$$x_{ij} \le f(V_i) \quad (i \in A, ij \in A, t \in \mathbb{I}),$$

$$V_i^t = V_i^{t-1} + q_i^t + \sum_{j \in N} x_{ji}^{t-\delta_{ji}} - \sum_{j \in N} x_{ij}^t \quad (i \in N, t \in \mathbb{T})$$
(1e)

2.2 Distributed Control

3 Results

Figure 1: Network of 5 nodes being used to evaluate the performance of both problem formulations.

4 Appendix

References