

Ruang Hasil Kali Dalam

Pertemuan ke 17 – 20

Diadopsi dari sumber:

Sub-CPMK

 Mahasiswa dapat melakukan perhitungan ruang hasil kali dalam pada ruang vektor umum (C3, A3)

Materi

- 1. Ruang hasil kali dalam
- 2. Sudut dan ortogonalitas
- 3. Proses Gramm-Schmidt

1. Ruang Hasil Kali Dalam

1.1. Hasil Kali Dalam (1)

Hasil kali dalam pada ruang vektor V adalah fungsi yang memenuhi aksioma-aksioma berikut untuk semua vektor \mathbf{u} , \mathbf{v} , dan \mathbf{w} di V dan sembarang skalar k.

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

(aksioma simetris)

2.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

(aksioma penambahan)

3.
$$\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$$

(aksioma homogen)

4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ dan $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ jika dan hanya jika $\mathbf{v} = \mathbf{0}$

(aksioma kepositifan)

Ruang vektor real dengan perkalian dalan disebut ruang hasil kali dalam (RHKD) real.

1.1. Hasil Kali Dalam (2)

• Karena aksioma ruang hasil kali dalam (RHKD) didasarkan pada sifat-sifat hasil kali titik, maka hasil kali dalam dapat didefinisikan dengan menggunakan perkalian titik \mathbf{u} dan \mathbf{v} di \mathbb{R}^n , yaitu

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Jika V adalah ruang hasil kali dalam real, norm (panjang) vektor
 v ∈ V adalah

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

dan jarak antara vektor **u** dan **v** didefinisikan sebagai

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$

Vektor dengan norm 1 disebut vektor satuan.

1.1. Hasil Kali Dalam (3)

Jika \mathbf{u} dan \mathbf{v} adalah vektor dalam RHKD V, dan jika k adalah sembarang skalar, maka:

- a) $\|\mathbf{v}\| \ge 0$ bernilai sama dengan jika dan hanya jika $\mathbf{v} = \mathbf{0}$.
- b) $||k\mathbf{v}|| = |k| ||\mathbf{v}||$.
- c) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u}).$
- d) $d(\mathbf{u}, \mathbf{v}) \ge 0$ bernilai sama dengan jika dan hanya jika $\mathbf{u} = \mathbf{v}$.

1.2. Hasil Kali Dalam dengan Bobot (1)

- Meskipun hasil kali dalam Euclidean merupakan hasil kali dalam terpenting di \mathbb{R}^n , terdapat berbagai macam aplikasi yang mengharuskan setiap suku diberi **bobot** yang berbeda.
- Misalkan w₁, w₂, ..., w_n merupakan bilangan real positif yang disebut pembobot.
- Jika $\mathbf{u}=(u_1,u_2,...,u_n)$ dan $\mathbf{v}=(v_1,v_2,...,v_n)$ adalah vektorvektor dalam \mathbb{R}^n , maka

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$

merupakan definisi hasil kali dalam \mathbb{R}^n yang disebut hasil kali dalam Euclidean dengan bobot $w_1, w_2, ..., w_n$

Contoh 1.1. Diketahui $\mathbf{u}=(u_1,u_2)$ dan $\mathbf{v}=(v_1,v_2)$ adalah vektorvektor dalam \mathbb{R}^2 . Buktikan bahwa hasil kali dalam berbobot $\langle \mathbf{u},\mathbf{v}\rangle = 3u_1v_1 + 2u_2v_2$ memenuhi 4 aksioma hasil kali dalam.

Bukti.

Aksioma 1 :
$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2 = 3v_1u_1 + 2v_2u_2 = \langle \mathbf{v}, \mathbf{u} \rangle$$

Terbukti.

Aksioma 2 : Jika
$$\mathbf{w} = (w_1, w_2)$$
, maka $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$ $= 3(u_1w_1 + v_1w_1) + 2(u_2w_2 + v_2w_2)$ $= (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2)$ $= \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ Terbukti.

Contoh 1.1 (lanjutan).

$$\begin{array}{l} \underline{\mathsf{Aksioma}\, 3} : \langle k\mathbf{u}, \mathbf{v} \rangle = 3(ku_1)v_1 + 2(ku_2)v_2 \\ &= k(3u_1v_1 + 2u_2v_2) \\ &= k\langle \mathbf{u}, \mathbf{v} \rangle \end{array}$$
 Terbukti.

Aksioma 4:
$$\langle \mathbf{v}, \mathbf{v} \rangle = 3v_1v_1 + 2v_2v_2 = 3v_1^2 + 2v_2^2 \ge 0$$

$$3v_1^2 + 2v_2^2 = 0$$
 jika dan hanya jika $v_1 = v_2 = 0$ atau saat $\mathbf{v} = \mathbf{0}$. Terbukti.

1.2. Hasil Kali Dalam dengan Bobot (2)

Norm dan jarak tergantung pada hasil kali dalam yang digunakan.
 Jika hasil kali dalam berubah, maka norma dan jarak antar vektor juga berubah.

Contoh 1.2. Untuk vektor $\mathbf{u} = (1,0)$ dan $\mathbf{v} = (0,1)$ di \mathbb{R}^2 dengan hasil kali Euclidean memiliki $\|\mathbf{u}\| = \sqrt{1^2 + 0^2} = 1$ dan $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(1, -1)\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$

Namun diubah menjadi hasil kali dalam Euclidean berbobot

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$$

diperoleh
$$\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2} = [3(1)(1) + 2(0)(0)]^{1/2} = \sqrt{3}$$
 dan $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \langle (1, -1), (1, -1) \rangle^{1/2}$ $= [3(1)(1) + 2(-1)(-1)]^{1/2} = \sqrt{5}$

1.3. Lingkaran atau Bola Satuan di RHKD

• Jika V adalah RHKD, maka himpunan titik di V yang memenuhi $\|\mathbf{u}\|=1$

disebut **bola satuan** atau **lingkaran satuan** di *V*.

Contoh 1.3. Gambarkan lingkaran satuan pada sistem koordinat-xy di \mathbb{R}^2 dengan menggunakan hasil kali dalam Euclidean berbobot

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{9} u_1 v_1 + \frac{1}{4} u_2 v_2.$$

Solusi. Jika $\mathbf{u} = (x, y)$, maka $\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2} = \sqrt{\frac{1}{9}}x^2 + \frac{1}{4}y^2$,

sehingga persamaan lingkaran satuan adalah

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

1.4. Hasil Kali Dalam dengan Matriks (1)

• Andaikan vektor \mathbf{u} dan \mathbf{v} adalah vektor kolom di \mathbb{R}^n . Jika A merupakan matriks dengan ordo $n \times n$ dan memiliki invers, maka hasil kali dalam pada \mathbb{R}^n oleh matriks A didefinisikan sebagai

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$

• Jika ${\bf u}$ dan ${\bf v}$ merupakan vektor kolom, maka ${\bf u}\cdot {\bf v}$ dapat dituliskan sebagai ${\bf v}^T{\bf u}$ sehingga definisi diatas dapat diubah menjadi

$$\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u}$$

atau

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T A^T A \mathbf{u}$$

1.4. Hasil Kali Dalam dengan Matriks (2)

- Hasil kali dalam Euclidean standar pada \mathbb{R}^n adalah hasil kali dalam dengan matriks identitas $n \times n$, karena saat A = I, maka $\langle \mathbf{u}, \mathbf{v} \rangle = I\mathbf{u} \cdot I\mathbf{v} = \mathbf{u} \cdot \mathbf{v}$
- Sehingga hasil kali dalam Euclidean dengan bobot $\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$

dihasilkan oleh matriks

$$A = \begin{bmatrix} \sqrt{w_1} & 0 & \cdots & 0 \\ 0 & \sqrt{w_2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sqrt{w_n} \end{bmatrix}$$

• Dapat dilihat bahwa A^TA adalah matriks diagonal $n \times n$ dengan diagonal utama $w_1, w_2, ..., w_n$.

1.4. Hasil Kali Dalam dengan Matriks (3)

• Jika $\mathbf{u} = U$ dan $\mathbf{v} = V$ adalah vektor dalam ruang vektor M_{nn} , maka

$$\langle u, v \rangle = \operatorname{tr}(U^T V)$$

merupakan definisi hasil kali dalam pada M_{nn} yang disebut **hasil kali dalam standar** pada ruang vektor tersebut.

Contoh 1.4. Jika
$$\mathbf{u} = U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \operatorname{dan} \mathbf{v} = V = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$$
, maka $\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{tr}(U^T V) = 1(-1) + 2(0) + 3(3) + 4(2) = 16$ $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle} = \sqrt{\operatorname{tr}(U^T U)} = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}$ $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\operatorname{tr}(V^T V)} = \sqrt{(-1)^2 + 0^2 + 3^2 + 2^2} = \sqrt{14}$

1.5. Sifat-Sifat Aljabar Hasil Kali Dalam

Jika \mathbf{u} , \mathbf{v} , dan \mathbf{w} adalah vektor-vektor di RHKD real V, dan jika k adalah suatu skalar, maka:

a)
$$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$$

b)
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

c)
$$\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{w} \rangle$$

d)
$$\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle - \langle \mathbf{v}, \mathbf{w} \rangle$$

e)
$$k\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, k\mathbf{v} \rangle$$

2. Sudut dan Ortogonalitas

2.1. Pertidaksamaan Cauchy-**Schwarz**

Dari definisi perkalian titik, diketahui sudut θ antara dua vektor \mathbf{u} dan \mathbf{v} di \mathbb{R}^n adalah

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Rumus diatas benar karena memenuhi pertidaksamaan Cauchy-Schwarz yang menyatakan

$$-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

yang diperlukan agar invers kosinus terdefinisi.

Jika **u** dan **v** merupakan vektor-vektor di RHKD real V, maka $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$

2.2. Sudut Antar Vektor

Dari pertidaksamaan Cauchy-Schwarz, diperoleh

$$-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

• Terdapat sudut heta dalam radian dimana

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \quad \text{dan } 0 \le \theta \le \pi$$

 Sehingga dapat didefinisikan sudut θ dantara vektor u dan v adalah

$$\theta = \cos^{-1}\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Contoh 2.1. Misalkan M_{22} memiliki hasil kali standar. Carilah kosinus dari sudut antara kedua vektor

$$\mathbf{u} = U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{dan } \mathbf{v} = V = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$$

Solusi. Dari contoh 1.4, diperoleh

$$\langle \mathbf{u}, \mathbf{v} \rangle = 16, \quad \|\mathbf{u}\| = \sqrt{30}, \quad \|\mathbf{v}\| = \sqrt{14}$$

Sehingga diperoleh

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} = \frac{16}{\sqrt{30}\sqrt{14}} = \frac{16}{\sqrt{420}} \approx 0.78$$

2.3. Sifat-Sifat Panjang dan Jarak di RHKD

Jika \mathbf{u} , \mathbf{v} , dan \mathbf{w} adalah vektor di RHKD real V, dan jika k adalah sembarang skalar, maka:

a)
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

(pertidaksamaan segitiga

untuk vektor)

b)
$$d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$

(pertidaksamaan segitiga

untuk jarak)

2.4. Ortogonalitas

Dua vektor \mathbf{u} dan \mathbf{v} di RHKD V dikatakan ortogonal jika $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Contoh 2.2. Vektor $\mathbf{u}=(1,1)$ dan $\mathbf{v}=(1,-1)$ saling ortogonal terhadap hasil kali dalam Euclidean pada \mathbb{R}^2 karena

$$\mathbf{u} \cdot \mathbf{v} = (1)(1) + (1)(-1) = 0$$

Namun keduanya tidak ortogonal terhadap hasil kali dalam dengan bobot $\langle {\bf u}, {\bf v} \rangle = 3u_1v_1 + 2u_2v_2$ karena

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3(1)(1) + 2(1)(-1) = 1 \neq 0$$

Contoh 2.3. Vektor $U=\begin{bmatrix}1&0\\1&1\end{bmatrix}$ dan $V=\begin{bmatrix}0&2\\0&0\end{bmatrix}$ di RHKD M_{22} saling ortogonal karena

$$\langle U, V \rangle = 1(0) + 0(2) + 1(0) + 1(0) = 0$$

2.5. Pelengkap Ortogonal

- Jika W merupakan subruang dari RHKD real V, maka himpunan semua vektor di V yang ortogonal dengan semua vektor di W disebut pelengkap ortogonal dari W, disimbolkan dengan W[⊥].
- Jika W adalah subruang dari RHKD real V, maka:
 - a) W^{\perp} adalah subruang dari V.
 - b) $W \cap W^{\perp} = \{ \mathbf{0} \}.$
- Jika W adalah subruang dari RHKD real dengan dimensi hingga V, maka pelengkap ortogonal dari W^{\perp} adalah W, dituliskan $(W^{\perp})^{\perp} = W$

Contoh 2.4. Misalkan W adalah subruang dari \mathbb{R}^6 yang dengan rentang/span

$$\mathbf{w}_1 = (1, 3, -2, 0, 2, 0),$$
 $\mathbf{w}_2 = (2, 6, -5, 2, 4, -3),$ $\mathbf{w}_3 = (0, 0, 5, 10, 0, 15),$ $\mathbf{w}_4 = (2, 6, 0, 8, 4, 18)$

Tentukan basis pelengkap ortogonal dari W.

Solusi. Subruang W sama dengan ruang baris matriks

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & 2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

Karena ruang baris dan ruang null dari A saling ortogonal, maka akan dicari basis ruang null dari matriks A.

Contoh 2.4 (lanjutan). Dari contoh sebelumnya (cek materi Ruang Vektor Umum, slide Ruang Null) diperoleh vektor-vektor

$$\mathbf{v}_{1} = \begin{bmatrix} -3\\1\\0\\0\\0\\0 \end{bmatrix}, \qquad \mathbf{v}_{2} = \begin{bmatrix} -4\\0\\-2\\1\\0\\0 \end{bmatrix}, \qquad \mathbf{v}_{3} = \begin{bmatrix} -2\\0\\0\\0\\1\\0 \end{bmatrix}$$

Yang membentuk basis untuk ruang null matriks A. Jadi basis pelengkap ortogonal dari W adalah

$$\mathbf{v}_1 = (-3, 1, 0, 0, 0, 0), \quad \mathbf{v}_2 = (-4, 0, -2, 1, 0, 0), \mathbf{v}_3 = (-2, 0, 0, 0, 1, 0)$$

3. Proses Gramm-Schmidt

3.1. Himpunan Ortogonal dan Ortonormal (1)

- Himpunan dua atau lebih vektor di RHKD real dikatakan ortogonal jika setiap pasangan vektor yang berbeda dalam himpunan tersebut saling ortogonal.
- Himpunan ortogonal yang setiap vektornya memiliki panjang 1 disebut ortonormal.

Contoh 3.1. Misalkan

$$\mathbf{v}_1 = (0, 1, 0), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (1, 0, -1)$$

di \mathbb{R}^3 dengan perkalian dalam Euclidean terdefinisi. Himpunan vektor $S_1 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ ortogonal karena

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_3 \rangle = \langle \mathbf{v}_2, \mathbf{v}_3 \rangle = 0$$

3.1. Himpunan Ortogonal dan Ortonormal (2)

 Suatu himpunan ortonormal dapat dibentuk dari vektor-vektor himpunan ortogonal dengan membagi setiap vektor v dengan panjang vektor tersebut.

$$u = \frac{v}{\|v\|}$$

Contoh 3.2. Panjang vektor pada contoh 3.1 dalam Euclidean adalah $\|\mathbf{v}_1\| = 1$, $\|\mathbf{v}_2\| = \sqrt{2}$, $\|\mathbf{v}_3\| = \sqrt{2}$. Sehingga

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = (0, 1, 0), \mathbf{u}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \mathbf{u}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

Himpunan $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ ortonormal karena

$$\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_3 \rangle = \langle \mathbf{u}_2, \mathbf{u}_3 \rangle = 0 \text{ dan } \|\mathbf{u}_1\| = \|\mathbf{u}_2\| = \|\mathbf{u}_3\| = 1$$

3.1. Himpunan Ortogonal dan Ortonormal (3)

- Jika $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ adalah himpunan ortogonal dari vektor tak nol dalam suatu RHKD, maka S bebas linier.
- Dalam RHKD, basis yang mengandung vektor-vektor ortogonal disebut basis ortogonal.
- Sedangkan basis yang mengandung vektor-vektor ortonormal disebut basis ortonormal.
- Contoh sederhana basis ortonormal adalah basis standar untuk \mathbb{R}^n dengan hasil kali Euclidean

$$\mathbf{e}_1 = (1,0,0,...,0), \mathbf{e}_2 = (0,1,0,...,0), ..., \mathbf{e}_n = (0,0,0,...,1)$$

3.1. Himpunan Ortogonal dan Ortonormal (4)

Pada contoh 3.2 ditunjukkan bahwa vektor

$$\mathbf{u}_1=(0,1,0), \mathbf{u}_2=\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right) \operatorname{dan} \mathbf{u}_3=\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)$$

membentuk himpunan ortonormal terhadap hasil kali Euclidean dalam \mathbb{R}^3 .

• Karena \mathbb{R}^3 merupakan ruang dimensi-3 dan ketiga vektor tersebut saling bebas linier, maka $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ merupakan basis ortonormal untuk \mathbb{R}^3 .

3.2. Koordinat Relatif terhadap Basis Ortogonal

• Jika $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ adalah basis ortogonal untuk RHKD V, dan jika \mathbf{u} adalah sembarang vektor di V, maka

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_n \rangle}{\|\mathbf{v}_n\|^2} \mathbf{v}_n$$

• Sehingga, koordinat relatif dari \mathbf{u} terhadap basis ortogonal $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ adalah

$$(\mathbf{u})_{S} = \left(\frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}}, \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}}, \dots, \frac{\langle \mathbf{u}, \mathbf{v}_{n} \rangle}{\|\mathbf{v}_{n}\|^{2}}\right)$$

3.3. Koordinat Relatif terhadap Basis Ortonormal

• Jika $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ adalah basis ortonormal untuk RHKD V, dan jika \mathbf{u} adalah sembarang vektor di V, maka

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n$$

• Sehingga, koordinat relatif dari \mathbf{u} terhadap basis ortonormal $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ adalah

$$(\mathbf{u})_{S} = (\langle \mathbf{u}, \mathbf{v}_{1} \rangle, \langle \mathbf{u}, \mathbf{v}_{2} \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_{n} \rangle)$$

Contoh 3.3. Misalkan

$$\mathbf{v}_1 = (0, 1, 0), \quad \mathbf{v}_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right), \quad \mathbf{v}_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$

Dapat dicek bahwa $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ adalah basis ortonormal untuk \mathbb{R}^3 dengan hasil kali dalam Euclidean. Tuliskan vektor $\mathbf{u} = (1, 1, 1)$ sebagai kombinasi linier dari vektor di S, dan carilah koordinat vektor $(\mathbf{u})_S$.

Solusi. Hitung hasil kali dalam vektor **u** dengan vektor-vektor basis, diperoleh

$$\langle \mathbf{u}, \mathbf{v}_1 \rangle = 1(0) + 1(1) + 1(0) = 1$$

 $\langle \mathbf{u}, \mathbf{v}_2 \rangle = 1(-\frac{4}{5}) + 1(0) + 1(\frac{3}{5}) = -\frac{4}{5} + \frac{3}{5} = -\frac{1}{5}$
 $\langle \mathbf{u}, \mathbf{v}_3 \rangle = 1(\frac{3}{5}) + 1(0) + 1(\frac{4}{5}) = \frac{3}{5} + \frac{4}{5} = \frac{7}{5}$

Contoh 3.3 (lanjutan). Maka

$$\mathbf{u} = \mathbf{v}_1 - \frac{1}{5}\mathbf{v}_2 + \frac{7}{5}\mathbf{v}_3$$

atau

$$(1,1,1) = (0,1,0) - \frac{1}{5} \left(-\frac{4}{5}, 0, \frac{3}{5} \right) + \frac{7}{5} \left(\frac{3}{5}, 0, \frac{4}{5} \right)$$

Sehingga koordinat vektor \mathbf{u} relatif terhadap S adalah

$$(\mathbf{u})_S = (\langle \mathbf{u}, \mathbf{v}_1 \rangle, \langle \mathbf{u}, \mathbf{v}_2 \rangle, \langle \mathbf{u}, \mathbf{v}_3 \rangle) = (1, -\frac{1}{5}, \frac{7}{5})$$

Contoh 3.4. Tunjukkan bahwa vektor-vektor

 $\mathbf{w}_1 = (0, 2, 0), \quad \mathbf{w}_2 = (3, 0, 3), \quad \mathbf{w}_3 = (-4, 0, 4)$ membentuk basis ortogonal untuk \mathbb{R}^3 dengan hasil kali dalam Euclidean, dan gunakan basis tersebut untuk mencari basis ortonormal dengan menormalkan setiap vektor.

Solusi. Vektor-vektor tersebut saling ortogonal karena

$$\langle \mathbf{w}_1, \mathbf{w}_2 \rangle = 0, \quad \langle \mathbf{w}_1, \mathbf{w}_3 \rangle = 0, \quad \langle \mathbf{w}_2, \mathbf{w}_3 \rangle = 0$$

Sehingga ketiga vektor tersebut saling bebas linier dan membentuk basis untuk \mathbb{R}^3 . Dengan menghitung panjang tiap vektor, diperoleh basis ortonomal

$$\mathbf{v}_1 = \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} = (0, 1, 0), \mathbf{v}_2 = \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \mathbf{v}_3 = \frac{\mathbf{w}_3}{\|\mathbf{w}_3\|} = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

Contoh 3.5. Tuliskan vektor $\mathbf{u} = (1, 2, 4)$ sebagai kombinasi linier dari basis ortonormal yang diperoleh dari contoh 3.4.

Solusi. Akan dicari kombinasi linier dimana

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \langle \mathbf{u}, \mathbf{v}_3 \rangle \mathbf{v}_3$$

Karena
$$\langle \mathbf{u}, \mathbf{v}_1 \rangle = (1, 2, 4) \cdot (0, 1, 0) = 2$$

$$\langle \mathbf{u}, \mathbf{v}_2 \rangle = (1, 2, 4) \cdot \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) = \frac{5}{\sqrt{2}}$$

$$\langle \mathbf{u}, \mathbf{v}_3 \rangle = (1, 2, 4) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) = \frac{3}{\sqrt{2}}$$

maka

$$(1,2,4) = 2(0,1,0) + \frac{5}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) + \frac{3}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)$$

3.4. Proyeksi Ortogonal

- Jika W merupakan sub-ruang dengan dimensi terhingga dari RHKD V, maka setiap vektor \mathbf{u} dalam V dapat dituliskan sebagai $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ dimana \mathbf{w}_1 di W dan \mathbf{w}_2 di W^{\perp} .
- Jika $\{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_r\}$ adalah **basis ortogonal** untuk W, dan $\mathbf u$ adalah sembarang vektor di V, maka

$$\operatorname{proj}_{W} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r}$$

• Jika $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ adalah **basis ortonormal** untuk W, dan \mathbf{u} adalah sebarang vektor di V, maka

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2} + \dots + \langle \mathbf{u}, \mathbf{v}_{r} \rangle \mathbf{v}_{r}$$

Contoh 3.6. Misalkan \mathbb{R}^3 memiliki hasil kali dalam Euclidean dan W merupakan subruang uang direntangkan oleh vektor ortonormal $\mathbf{v}_1 = (0,1,0)$ dan $\mathbf{v}_2 = \left(-\frac{4}{5},0,\frac{3}{5}\right)$. Dari definisi proyeksi ortogonal dari $\mathbf{u} = (1,1,1)$ pada W adalah

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2}$$
$$= (1)(0, 1, 0) + \left(-\frac{1}{5}\right)\left(-\frac{4}{5}, 0, \frac{3}{5}\right) = \left(\frac{4}{25}, 1, -\frac{3}{25}\right)$$

Pelengkap ortogonal dari ${\bf u}$ terhadap W adalah

$$\operatorname{proj}_{W^{\perp}}\mathbf{u} = \mathbf{u} - \operatorname{proj}_{W}\mathbf{u} = (1, 1, 1) - \left(\frac{4}{25}, 1, -\frac{3}{25}\right) = \left(\frac{21}{25}, 0, \frac{28}{25}\right)$$

Perhatikan bahwa $\operatorname{proj}_{W^{\perp}}\mathbf{u}$ ortogonal terhadap \mathbf{v}_1 dan \mathbf{v}_2 , sehingga vektor ini ortogonal terhadap semua vektor di W yang direntang oleh \mathbf{v}_1 dan \mathbf{v}_2 .

3.5. Proses Gram-Schmidt

- Setiap RHKD berdimensi tak hingga bukan nol memiliki basis ortonormal.
- Untuk mengubah basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r\}$ menjadi basis ortogonal $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$, lakukan perhitungan berikut:

Langkah 1.
$$\mathbf{v}_1 = \mathbf{u}_1$$

Langkah 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Langkah 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

:

(lanjutkan sampai langkah ke-r)

Langkah tambahan

Untuk mengubah basis ortogonal menjadi basis ortonormal $\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_r\}$, normalkan vektor basis ortogonal.

Contoh 3.7. Diketahui vektor $\mathbf{u}_1 = (1, 1, 1)$, $\mathbf{u}_2 = (0, 1, 1)$ dan $\mathbf{u}_3 = (0, 0, 1)$ merupakan basis pada ruang vektor V. Tentukan basis ortogonal dan basis ortonormalnya.

Solusi. Cek ortogonalitas:
$$\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0+1+1=2$$
 $\langle \mathbf{u}_1, \mathbf{u}_3 \rangle = 0+0+1=1$ Tidak $\langle \mathbf{u}_2, \mathbf{u}_3 \rangle = 0+0+1=1$ ortogonal

Dibentuk vektor basis ortogonal:

Langkah 1.
$$\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$$

Langkah 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \text{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

$$= (0, 1, 1) - \frac{2}{3} (1, 1, 1) = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right)$$

Contoh 3.7 (lanjutan).

Langkah 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \operatorname{proj}_{W_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

$$= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{1}{2} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right) = \left(0, -\frac{1}{2}, \frac{1}{2} \right)$$

Maka

$$\mathbf{v}_1 = (1, -1, 1), \quad \mathbf{v}_2 = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right), \quad \mathbf{v}_3 = \left(0, -\frac{1}{2}, \frac{1}{2}\right)$$

merupakan elemen dari basis ortogonal $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ untuk $\mathbb R^3$. Norm ketiga vektor tersebut adalah

$$\|\mathbf{v}_1\| = \sqrt{3}, \qquad \|\mathbf{v}_2\| = \frac{\sqrt{6}}{3}, \qquad \|\mathbf{v}_3\| = \frac{1}{\sqrt{2}}$$

Contoh 3.7 (lanjutan). Sehingga diperoleh vektor satuan

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \qquad \mathbf{q}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right),$$

$$\mathbf{q}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

yang merupakan basis ortonormal $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ untuk \mathbb{R}^3 .

3.6. Dekomposisi-*QR*

- Algoritma numerik berdasarkan Gram-Schmidt yang dikenal sebagai dekomposisi-QR merupakan dasar ilmu matematika yang penting untuk berbagai macam algoritma numerik.
- Jika A adalah matriks $m \times n$ dengan vektor kolom bebas linier $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ maka A dapat difaktorkan menjadi

$$A = QR$$

dimana Q adalah matriks $m \times n$ dengan vektor kolom ortonormal \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 dan R adalah matriks segitiga atas $n \times n$ yang memiliki invers dengan

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \langle \mathbf{u}_3, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \langle \mathbf{u}_3, \mathbf{q}_2 \rangle \\ 0 & 0 & \langle \mathbf{u}_3, \mathbf{q}_3 \rangle \end{bmatrix}$$

Contoh 3.8. Carilah dekomposisi-
$$QR$$
 dari $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

Solusi. Vektor kolom dari A adalah

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Dengan menggunakan algoritma Gram-Schmidt dan normalisasi setiap vektor kolom, diperoleh vektor ortonormal (contoh 3.7)

$$\mathbf{q}_{1} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \qquad \mathbf{q}_{2} = \begin{bmatrix} -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \qquad \mathbf{q}_{3} = \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Contoh 3.8 (lanjutan). Sehingga diperoleh

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \langle \mathbf{u}_3, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \langle \mathbf{u}_3, \mathbf{q}_2 \rangle \\ 0 & 0 & \langle \mathbf{u}_3, \mathbf{q}_3 \rangle \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

maka dekomposisi QR dari matriks A adalah

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$A = Q \qquad R$$

SOAL 1

Carilah $\|\mathbf{u}\|$ dan $d(\mathbf{u},\mathbf{v})$ relatif terhadap hasil kali dalam Euclidean $\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 3u_2v_2 \text{ di } \mathbb{R}^2, \text{ jika}$

a.
$$\mathbf{u} = (-3, 2) \operatorname{dan} \mathbf{v} = (1, 7)$$
 b. $\mathbf{u} = (-1, 2) \operatorname{dan} \mathbf{v} = (2, 5)$

b.
$$\mathbf{u} = (-1, 2) \text{ dan } \mathbf{v} = (2, 5)$$

SOAL 2

Carilah ||U|| dan d(U,V) relatif terhadap hasil kali dalam standar pada M_{22} , jika

a.
$$U = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}, V = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$$
 b. $U = \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}, V = \begin{bmatrix} 4 & 6 \\ 0 & 8 \end{bmatrix}$

b.
$$U = \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$$
, $V = \begin{bmatrix} 4 & 6 \\ 0 & 8 \end{bmatrix}$

VERSITAS BUN

SOAL 3

Carilah $\|\mathbf{u}\|$ dan $d(\mathbf{u}, \mathbf{v})$ untuk vektor $\mathbf{u} = (-1, 2)$ dan $\mathbf{v} = (2, 5)$ relatif terhadap hasil kali dalam pada \mathbb{R}^2 oleh matriks A, jika

a.
$$A = \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

SOAL 4

Carilah kosinus dari sudut antara kedua vektor berikut terhadap perkalian dalam Euclidean.

a.
$$\mathbf{u} = (1, -3), \ \mathbf{v} = (2, 4)$$

a.
$$\mathbf{u} = (1, -3), \ \mathbf{v} = (2, 4)$$
 c. $\mathbf{u} = (4, 1, 8), \ \mathbf{v} = (1, 0, -3)$

b.
$$\mathbf{u} = (2, 1, 7, -1), \mathbf{v} = (4, 0, 0, 0)$$

VERSITAS BUNDA

SOAL 5

Carilah kosinus dari sudut antara A dan B terhadap perkalian dalam pada M_{22} .

a.
$$A = \begin{bmatrix} 2 & 6 \\ 1 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$ b. $A = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 1 \\ 4 & 2 \end{bmatrix}$

SOAL 6

Tentukan apakah vektor-vektor berikut ortogonal terhadap perkalian dalam Euclidean.

a.
$$\mathbf{u} = (-1, 3, 2), \mathbf{v} = (4, 2, -1)$$

b.
$$\mathbf{u} = (-4, 6, -10, 1), \mathbf{v} = (2, 1, -2, 9)$$

SOAL 7

Carilah basis pelengkap ortogonal dari subruang dari \mathbb{R}^2 yang direntangkan oleh vektor-vektor $\mathbf{v}_1 = (1, 4, 5, 2), \ \mathbf{v}_2 = (2, 1, 3, 0), \ \mathbf{v}_3 = (-1, 3, 2, 2).$

SOAL 8

Tunjukkan bahwa vektor $\mathbf{v}_1 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right)$, $\mathbf{v}_2 = \left(\frac{4}{5}, \frac{3}{5}, 0\right)$, dan $\mathbf{v}_3 = (0, 0, 1)$ membentuk basis ortonormal untuk \mathbb{R}^3 terhadap hasil kali dalam Euclidean. Kemudian tuliskan koordinat vektor $\mathbf{u} = (1, -2, 2)$ relatif terhadap basis ortonormal $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

SOAL 9

Vektor kolom dari matriks Q berikut diperoleh dari menerapkan algoritma Gram-Schmidt terhadap vektor kolom dari matriks A. Carilah dekomposisi QR dari matriks A.

a.
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
, $Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$

b.
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$
, $Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \end{bmatrix}$

SOAL 10

Carilah dekomposisi-QR dari matriks

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

RINGKASAN

- Hasil kali dalam pada suatu ruang vektor memenuhi aksioma simetris, penambahan, homogen dan kepositifan.
- Hasil kali dalam dapat didefinisikan dengan menggunakan perkalian titik dua vektor dalam ruang Euclidean.
- Hasil kali dalam yang menggunakan bobot disebut hasil kali dalam Euclidean dengan bobot.
- Himpunan semua titik pada suatu ruang hasil kali dalam V yang memiliki panjang 1 disebut bola atau lingkaran satuan di V.
- Hasil kali dalam pada ruang Euclidean dapat dihasilkan oleh suatu matriks berordo n × n dan memiliki invers.

RINGKASAN

- Sudut antara dua vektor dapat dicari dengan menggunakan definisi hasil kali dalam dan pertidaksamaan Cauchy-Schwarz.
- Dua vektor dikatakan ortogonal jika hasil kali dalam kedua vektor sama dengan nol.
- Jika W merupakan subruang dari RHKD real V, maka himpunan semua vektor di V yang ortogonal dengan semua vektor di W disebut pelengkap ortogonal dari W, disimbolkan dengan W[⊥].
- Himpunan dua atau lebih vektor di RHKD real dikatakan ortogonal jika setiap pasangan vektor yang berbeda dalam himpunan tersebut saling ortogonal. Himpunan ortogonal yang setian vektornya memiliki naniang 1 disebut ortonormal

RINGKASAN

- Dalam RHKD, basis yang mengandung vektor-vektor ortogonal disebut basis ortogonal.
- Sedangkan basis yang mengandung vektor-vektor ortonormal disebut basis ortonormal.
- Jika u adalah sembarang vektor di RHKD V, maka dapat dicari koordinat relatif u terhadap basis ortogonal atau basis ortonormal RHKD V.
- Proses Gramm-Schmidt digunakan untuk mengubah basis RHKD menjadi basis ortogonal.
- Salah satu penerapan proses Gramm-Schmidt adalah dalam

 dalam asisi OR

Terima Kasih