Mini Project: Supervised Machine Learning

Model Report

CART, Random Forest, Neural Network

Table of Contents

1		Proj	ject	: Objective	4
2		Dat	abas	ase overview	4
3		Ехр	lora	atory Data Analysis and Descriptive Statistics	6
	3.	1	Key	y observations:	6
	3.	2	Miss	ssing values check:	6
	3.	3	Pro	pportion of Responders Vs Non Responders:	6
	3.	4	Sun	mmary Statistics of the dataset:	6
4		Cre	atio	on of Training and Testing Data set	8
5		Mod	lel B	Building – CART	9
	5.	1	The	e CART Model output	9
	5.	2	The	e CART Model Graphical Output:	16
	5.	3	Perf	rformance Measures on Training Data Set	16
		5.3.	.1	Model Performance Measure - Rank Ordering	16
		5.3.	.2	Model Performance Measure – KS and Area under Curve	17
		5.3.	.3	Model Performance Measure – Gini Coefficient	17
		5.3.	.4	Model Performance Measure – Confusion Matrix	17
		5.3.	.5	Model Performance Measure – Summary	18
	5.	4	Perf	rformance Measures on Validation Data Set	18
		5.4.	.1	Model Performance Measure - Rank Ordering	18
		5.4.	.2	Model Performance Measure – KS and Area under Curve	19
		5.4.	.3	Model Performance Measure – Gini Coefficient	19
		5.4.	4	Model Performance Measure – Confusion Matrix	19
		5.4.	.5	Model Performance Measure – Summary	20
	5.	5	CAF	RT - Conclusion	20
6		Mod	lel B	Building – Random Forest	21
	6.	1	The	e initial build & Optimal No of Trees	21
	6.	2	Var	riable Importance	24
	6.	3	Opt	timal mtry value	26
	6.	4	Perf	rformance Measures on Training Data Set	27
		6.4.	.1	Model Performance Measure - Rank Ordering	27
		6.4.	.2	Model Performance Measure – KS and Area under Curve	27
		6.4.	.3	Model Performance Measure – Gini Coefficient	28
		6.4.	4	Model Performance Measure - Confusion Matrix	28

	6.4	1.5	Model Performance Measure – Summary	. 29
	6.5	Per	formance Measures on Validation Data Set	.30
	6.5	5.1	Model Performance Measure - Rank Ordering	30
	6.5	5.2	Model Performance Measure – KS and Area under Curve	30
	6.5	5.3	Model Performance Measure – Gini Coefficient	31
	6.5	5.4	Model Performance Measure – Confusion Matrix	. 31
	6.5	5.5	Model Performance Measure – Summary	31
	6.6	Rar	ndom Forest – Conclusion	. 32
7	Мс	del E	Building – Artificial Neural Network	. 33
	7.1	Cre	ation of Dummy variables	. 33
	7.2	Sca	lling of the variables	. 33
	7.3	Bui	lding the Artificial Neural Network	. 35
	7.4	The	e Artificial Neural Network – Graphical Representation	.36
	7.5	Hist	togram of Probabilities in Training Dataset	. 37
	7.6	Per	formance Measures on Training Data Set	. 37
	7.6	5.1	Model Performance Measure - Rank Ordering	. 37
	7.6	5.2	Model Performance Measure – KS and Area under Curve	. 38
	7.6	5.3	Model Performance Measure – Gini Coefficient	. 38
	7.6	5.4	Model Performance Measure – Confusion Matrix	. 39
	7.6	5.5	Model Performance Measure – Summary	. 39
	7.7	Per	formance Measures on Validation Data Set	. 39
	7.7	7.1	Model Performance Measure - Rank Ordering	40
	7.7	7.2	Model Performance Measure – KS and Area under Curve	40
	7.7	7.3	Model Performance Measure – Gini Coefficient	41
	7.7	7.4	Model Performance Measure – Confusion Matrix	41
	7.7	7.5	Model Performance Measure – Summary	41
	7.8	Arti	ficial Neural Network – Conclusion	.42
8	Мс	del C	Comparison	43
9	Ар	pend	lix – Sample Source Code	. 44

1 Project Objective

The data-set provides details from MyBank about a Personal Loan Campaign that was executed by the bank. 20000 customers were targeted with an offer of personal loan on 10% interest rate, out of which 2512 customers responded positively. The data needs to be used to create classification model(s) in order to predict the response of new set of customers in the future, depending on the attributes available in the data.

Students are expected to build classification Models using following Supervised Machine Learning Techniques:

- 1. Classification and Regression Tree
- 2. Random Forest
- 3. Artificial Neural Network

Once the Classification Models are built, compare the three models with each other and provide your observations / recommendations.

2 Database overview

Details about the Personal Loan Campaign Dataset are as follows:

Sr. No.	Feature Name	Feature Type	Description
1	CUST_ID	Factor	Unique Customer ID
2	TARGET	Factor	Target Field - 1: Responder, 0: Non-Responder
3	AGE	Integer	Customer Age in years
4	GENDER	Factor	Gender: Male / Female / Other
5	BALANCE	Numeric	Monthly Average Balance
6	OCCUPATION	Factor	Occupation: Professional / Salaried / Self Employed / Self Employed Non Professional.
7	AGE_BKT	Factor	Age Bucket
8	SCR	Integer	Marketing Score
9	HOLDING_PERIOD	Integer	Duration in days to hold the money
10	ACC_TYPE	Factor	Account Type: Current Account / Saving Account
11	ACC_OP_DATE	Date	Account Open Date
12	LEN_OF_RLTN_IN_MNT H	Integer	Length of Relationship in Months
13	NO_OF_L_CR_TXNS	Integer	Number of Credit Transactions
14	NO_OF_L_DR_TXNS	Integer	Number of Debit Transactions
15	TOT_NO_OF_L_TXNS	Integer	Total Number of Transactions
16	NO_OF_BR_CSH_WDL _DR_TXNS	Integer	Branch Cash Withdrawal Debit Transactions
17	NO_OF_ATM_DR_TXNS	Integer	Number of ATM Debit Transactions

Sr. No.	Feature Name	Feature Type	Description
18	NO_OF_NET_DR_TXNS	Integer	Number of Net Banking Debit Transactions
19	NO_OF_MOB_DR_TXN S	Integer	Number of Mobile Banking Debit Transactions
20	NO_OF_CHQ_DR_TXNS	Integer	Number of Cheque Debit Transactions
21	FLG_HAS_CC	Integer	Has Credit Card - 1: Yes, 0: No
22	AMT_ATM_DR	Integer	Amount Withdrawn from ATM
23	AMT_BR_CSH_WDL_D R	Integer	Amount cash withdrawn from Branch
24	AMT_CHQ_DR	Integer	Amount debited by Cheque Transactions
25	AMT_NET_DR	Numeric	Amount debited by Net Transactions
26	AMT_MOB_DR	Integer	Amount debited by Mobile Transactions
27	AMT_L_DR	Numeric	Total Amount Debited
28	FLG_HAS_ANY_CHGS	Integer	Flag: Has any banking charges
29	AMT_OTH_BK_ATM_US G_CHGS	Integer	Charges for using Other Bank ATM
30	AMT_MIN_BAL_NMC_C HGS	Integer	Charges for not maintaining Min Balance
31	NO_OF_IW_CHQ_BNC_ TXNS	Integer	Charges for Inward Cheque Bounce
32	NO_OF_OW_CHQ_BNC _TXNS	Integer	Charges for Outward Cheque Bounce
33	AVG_AMT_PER_ATM_T XN	Numeric	Average Amount per ATM Transaction
34	AVG_AMT_PER_CSH_W DL_TXN	Numeric	Average Amount Per Cash Withdrawal
35	AVG_AMT_PER_CHQ_T XN	Numeric	Average Amount Per Cheque Transaction
36	AVG_AMT_PER_NET_T XN	Numeric	Average Amount per Net banking Transaction
37	AVG_AMT_PER_MOB_T XN	Numeric	Average Amount per Mobile Transaction
38	FLG_HAS_NOMINEE	Integer	Flag: Has Nominee - 1: Yes, 0: No
39	FLG_HAS_OLD_LOAN	Integer	Flag: Has any earlier loan - 1: Yes, 0: No
40	random	Numeric	Random Number

3 Exploratory Data Analysis and Descriptive Statistics

3.1 Key observations:

Number of Rows and Columns:

- The number of rows in the dataset is 20,000
- The number of columns (Features) in the dataset is 40

3.2 Missing values check:

No Missing values present in the dataset.

3.3 Proportion of Responders Vs Non Responders:

• Total Responder Records: 2512 (12.56%)

• Total Non-Responder Records: 17,488 (87.44%)

Inference: Non Responder class is highly dominating. We might need to Balance out the dataset to achieve better classification results.

3.4 Summary Statistics of the dataset:

BALANCE	OCCUPATION	AGE_BKT	SCR
Min. : 0.00	PROF :5417	<25 :1753	Min. :100.0000
1st Qu.: 64754.03	SAL :5855	>50 :3035	1st Qu.:227.000
Median : 231675.85	SELF-EMP:3568	26-30:3434	Median :364.00
Mean : 511362.19	SENP :5160	31-35:3404	Mean :440.150
3rd Qu.: 653876.85		36-40:2814	3rd Qu.:644.000
Max. :8360430.57		41-45:3067	Max. :999.000
		46-50:2493	

HOLDING_PERIOD	ACC_TYPE	ACC_OP_DATE	LEN_OF_RLTN_IN_MNTH
Min. : 1.00000	CA: 4241	11/16/2010: 24	Min. : 29.0000
1st Qu.: 7.00000	SA:15759	04-03-09 : 23	1st Qu.: 79.0000
Median :15.00000		7/25/2010 : 22	Median :125.0000
Mean :14.95565		05-06-13 : 21	Mean :125.2393
3rd Qu.:22.00000		02-07-07 : 20	3rd Qu.:172.0000
Max. :31.00000		8/24/2010: 20	Max. :221.0000
		(Other) :19870	

NO_OF_L_CR_TXNS	NO_OF_L_DR_TXNS	TOT_NO_OF_L_TXNS	NO_OF_BR_CSH_WDL_DR_TXNS
Min. : 0.00000	Min. : 0.0000	Min.: 0.0000	Min. : 0.000
1st Qu.: 6.00000	1st Qu.: 2.0000	1st Qu.: 9.0000	1st Qu.: 1.000
Median :10.00000	Median : 5.0000	Median : 14.0000	Median : 1.000
Mean :12.34805	Mean : 6.6337	Mean: 18.9754	Mean : 1.883
3rd Qu.:14.00000	3rd Qu.: 7.0000	3rd Qu.: 21.0000	3rd Qu.: 2.000
Max. :75.00000	Max. :74.0000	Max. :149.0000	Max. :15.000

NO_OF_ATM_DR_TXNS	NO_OF_NET_DR_TXNS	NO_OF_MOB_DR_TXNS	NO_OF_CHQ_DR_TXNS
Min. : 0.00000	Min. : 0.00000	Min. : 0.00000	Min. : 0.00000
1st Qu.: 0.00000	1st Qu.: 0.00000	1st Qu.: 0.00000	1st Qu.: 0.00000
Median : 1.00000	Median : 0.00000	Median : 0.00000	Median : 2.00000
Mean : 1.02895	Mean : 1.17245	Mean : 0.41175	Mean : 2.13755
3rd Qu.: 1.00000	3rd Qu.: 1.00000	3rd Qu.: 0.00000	3rd Qu.: 4.00000
Max. :25.00000	Max. :22.00000	Max. :25.00000	Max. :15.00000

FLG_HAS_CC	AMT_ATM_DR	AMT_BR_CSH_WDL_DR	AMT_CHQ_DR
Min. :0.0000	Min. : 0.00	Min. : 0.0	Min. : 0
1st Qu.:0.0000	1st Qu.: 0.00	1st Qu.: 2990.0	1st Qu.: 0
Median :0.0000	Median: 6900.00	Median :340150.0	Median: 23840
Mean :0.3054	Mean : 10990.01	Mean :378474.5	Mean : 124520
3rd Qu.:1.0000	3rd Qu.: 15800.00	3rd Qu.:674675.0	3rd Qu.: 72470
Max. :1.0000	Max. :199300.00	Max. :999930.0	Max. :4928640

AMT_NET_DR	AMT_MOB_DR	AMT_L_DR	FLG_HAS_ANY_CHGS
Min. : 0.0	Min. : 0.0	Min. : 0.0	Min. :0.0000
1st Qu.: 0.0	1st Qu.: 0.0	1st Qu.: 237935.5	1st Qu.:0.0000
Median: 0.0	Median: 0.0	Median : 695115.0	Median :0.0000
Mean :237307.8	Mean : 22424.7	Mean : 773717.0	Mean :0.1106
3rd Qu.:473970.5	3rd Qu.: 0.0	3rd Qu.:1078927.0	3rd Qu.:0.0000
Max. :999854.0	Max. :199667.0	Max. :6514921.0	Max. :1.0000

AMT_OTH_BK_ATM_ USG_CHGS	AMT_MIN_BAL_ NMC_CHGS	NO_OF_IW_CHQ_ BNC_TXNS	NO_OF_OW_CHQ_ BNC_TXNS
Min.: 0.0000	Min. : 0.000	Min. :0.00000	Min. :0.0000
1st Qu.: 0.0000	1st Qu.: 0.000	1st Qu.:0.00000	1st Qu.:0.0000
Median: 0.0000	Median : 0.000	Median :0.00000	Median :0.0000
Mean : 1.0995	Mean : 1.292	Mean :0.04275	Mean :0.0444
3rd Qu.: 0.0000	3rd Qu.: 0.000	3rd Qu.:0.00000	3rd Qu.:0.0000
Max. :250.0000	Max. :170.000	Max. :2.00000	Max. :2.0000

AVG_AMT_PER_ ATM_TXN	AVG_AMT_PER_CSH_ WDL_TXN	AVG_AMT_PER_ CHQ_TXN	AVG_AMT_PER_ NET_TXN
Min. : 0.00	Min. : 0.00	Min. : 0.00	Min. : 0
1st Qu.: 0.00	1st Qu.: 1265.45	1st Qu.: 0.00	1st Qu.: 0
Median : 6000.00	Median :147095.00	Median: 8645.00	Median: 0
Mean : 7408.84	Mean :242236.48	Mean : 25092.48	Mean :179059
3rd Qu.:13500.00	3rd Qu.:385000.00	3rd Qu.: 28605.00	3rd Qu.:257699
Max. :25000.00	Max. :999640.00	Max. :537842.22	Max. :999854

AVG_AMT_PER_MOB_ TXN	FLG_HAS_NOMINEE	FLG_HAS_OLD_ LOAN	random
Min. : 0.00	Min. :0.00000	Min. :0.00000	Min. :0.0000114
1st Qu.: 0.00	1st Qu.:1.00000	1st Qu.:0.00000	1st Qu.:0.2481866
Median: 0.00	Median :1.00000	Median :0.00000	Median :0.5061214
Mean : 20303.92	Mean :0.90115	Mean :0.49295	Mean :0.5019330
3rd Qu.: 0.00	3rd Qu.:1.00000	3rd Qu.:1.00000	3rd Qu.:0.7535712
Max. :199667.00	Max. :1.00000	Max. :1.00000	Max. :0.9999471

4 Creation of Training and Testing Data set

The given data set is divided into Training and Testing data set, with 70:30 proportion.

The distribution of Responder and Non Responder Class is verified in both the data sets, and ensured it's close to equal.

Following Table summarises the total number of records as well as percentage distribution of Responder Vs Non Responder Records.

Parameter	Training Data	Testing Data
No of Records	14000	6000
No of Features	40	40
% of Responder	87.65%	87%
% of Non Resp.	12.34%	13%

5 Model Building - CART

Decision Trees are commonly used in data mining with the objective of creating a model that predicts the value of a target (or dependent variable) based on the values of several input (or independent variables).

As an Umbrella term, the Classification and Regression Tree refers to the following decision trees:

- Classification Trees: where the target variable is categorical and the tree is used to identify the "class" within which a target variable would likely fall into.
- **Regression Trees:** where the target variable is continuous and tree is used to predict its value.

The CART algorithm is structured as a sequence of questions, the answers to which determine what the next question, if any should be. The result of these questions is a tree like structure where the ends are terminal nodes at which point there are no more questions.

5.1 The CART Model output

The initial CART Model is built by setting up Control Parameters as follows:

The Model outcome is as follows:

```
> m1
n= 24544

node), split, n, loss, yval, (yprob)
    * denotes terminal node

1) root 24544 12272 0 (0.50000000 0.50000000)
    2) NO_OF_L_DR_TXNS< 5.5 13088 5433 0 (0.58488692 0.41511308)
    4) FLG_HAS_CC< 0.5 8342 2899 0 (0.65248142 0.34751858)
    8) NO_OF_L_CR_TXNS< 16.5 6904 2112 0 (0.69409038 0.30590962)
    16) HOLDING_PERIOD>=12.5 4158 841 0 (0.79773930 0.20226070)
    32) SCR< 995.5 4124 809 0 (0.80383123 0.19616877)
    64) OCCUPATION=PROF,SAL,SENP 3253 520 0 (0.84014756 0.15985244)
    128) AMT_MOB_DR< 73570 2982 406 0 (0.86384977 0.13615023)
    256) NO_OF_L_CR_TXNS< 5.5 1083 73 0 (0.93259464 0.06740536)
    512) AMT_BR_CSH_WDL_DR< 885060 1007 51 0 (0.94935452 0.05064548)</pre>
```

```
1024) AGE_BKT=<25,>50,26-30,31-35,36-40,41-45 868 20 0 (0.97695853 0.02304147) *
         1025) AGE_BKT=46-50 139 31 0 (0.77697842 0.22302158)
           257) NO_OF__CR_TXNS>=5.5 1899 333 0 (0.82464455 0.17535545)
514) AMT__DR>=8250 1819 292 0 (0.83947224 0.16052776)
1028) SCR< 194.5 299 0 0 (1.00000000 0.00000000) *
         1028) SCR< 194.5 299 0 0 (1.00000000 0.00000000) 1029) SCR>=194.5 1520 292 0 (0.80789474 0.19210526)
           16464) NO_OF_L_CR_TXNS< 10.5 698 32 0 (0.95415473 0.04584527) 16465) NO_OF_L_CR_TXNS>=10.5 404 87 0 (0.78465347 0.21534653)
                  131726) AGE_BKT=>50,26-30,36-40,46-50 32
                                                                 0 0 (1.00000000 0.00000000)
                     131727) AGE_BKT=<25,31-35,41-45 76
                                                         13 1 (0.17105263 0.82894737) *
               8233) AVG_AMT_PER_CHQ_TXN>=91355 43
                                                     19 1 (0.44186047 0.55813953)
             4117) AVG_AMT_PER_CSH_WDL_TXN>=688815 228 82 0 (0.64035088 0.35964912)
               8234) AMT_BR_CSH_WDL_DR>=698060 186
                                                     40 0 (0.78494624 0.21505376)
                16468) NO_OF_ATM_DR_TXNS< 2.5 160
                                                    17 0 (0.89375000 0.10625000)
                  32936) HOLDING_PERIOD>=14.5 139
                                                     0 0 (1.00000000 0.00000000)
                  32937) HOLDING_PERIOD< 14.5 21
                                                     4 1 (0.19047619 0.80952381) *
                                                     3 1 (0.11538462 0.88461538) *
                16469) NO_OF_ATM_DR_TXNS>=2.5 26
               8235) AMT_BR_CSH_WDL_DR< 698060 42
                                                     0 1 (0.00000000 1.00000000) *
           2059) ACC_TYPE=CA 147 67 0 (0.54421769 0.45578231)
             4118) AGE< 37.5 46
                                    0 0 (1.00000000 0.00000000) *
    4118) AGE< 37.5 46 0 0 (1.00000000 0.00000000, 4119) AGE>=37.5 101 34 1 (0.33663366 0.66336634) * 515) AMT_L_DR< 8250 80 39 1 (0.48750000 0.51250000) * 129) AMT_MOB_DR>=73570 271 114 0 (0.57933579 0.42066421) 258) NO OF ATM DR TXNS< 1.5 197 46 0 (0.76649746 0.233502
       258) NO_OF_ATM_DR_TXNS< 1.5 197
                                        46 0 (0.76649746 0.23350254)
        516) AMT_CHQ_DR< 53600 175 26 0 (0.85142857 0.14857143)
        517) AMT_CHQ_DR>=53600 22
                                     2 1 (0.09090909 0.90909091) *
      259) NO_OF_ATM_DR_TXNS>=1.5 74
                                        6 1 (0.08108108 0.91891892) *
   65) OCCUPATION=SELF-EMP 871 289 0 (0.66819747 0.33180253)
130) LEN_OF_RLTN_IN_MNTH>=40.5 747 187 0 (0.74966533 0.25033467)
      260) SCR< 787 613 102 0 (0.83360522 0.16639478)
        520) AMT_BR_CSH_WDL_DR< 882390 537 61 0 (0.88640596 0.11359404)
         4 0 (0.98882682 0.01117318) *
        4162) SCR< 422.5 69 0 0 (1.00000000 0.00000000) * 4163) SCR>=422.5 53 23 1 (0.43396226 0.56603774) * 1041) AMT_CHQ_DR>=79420 57 27 0 (0.52631579 0.47368421) * 521) AMT_BR_CSH_WDL_DR>=882390 76 35 1 (0.46052632 0.53947368) *
      261) SCR>=787 134 49 1 (0.36567164 0.63432836)
        522) BALANCE>=177903.3 34 3 0 (0.91176471 0.08823529) *
523) BALANCE< 177903.3 100 18 1 (0.18000000 0.820000000) *
 17) HOLDING_PERIOD< 12.5 2746 1271 0 (0.53714494 0.46285506) 34) AMT_ATM_DR< 13350 2089 816 0 (0.60938248 0.39061752)
   68) SCR< 210.5 348 60 0 (0.82758621 0.17241379)
    69) SCR>=210.5 1741 756 0 (0.56576680 0.43423320)
138) AGE_BKT=>50,26-30,36-40,46-50 879 296 0 (0.66325370 0.33674630)
      77) AMT_ATM_DR< 400 642 276 0 (0.37003540 0.32330347)
554) NO_OF_L_CR_TXNS< 8 575 209 0 (0.63652174 0.36347826)
1108) OCCUPATION=PROF, SAL 235 34 0 (0.85531915 0.14468085) *
1109) OCCUPATION=SELF-EMP, SENP 340 165 1 (0.48529412 0.51470588)
           4438) BALANCE>=290982.1 85 24 0 (0.71764706 0.28235294) * 4439) BALANCE< 290982.1 183 39 1 (0.21311475 0.78688525)
               8878) AVG_AMT_PER_CHQ_TXN< 32277.5 114 36 1 (0.31578947 0.68421053)
                278) AVG_AMT_PER_CSH_WDL_TXN>=628750 68 7 0 (0.89705882 0.10294118) *
      279) AVG_AMT_PER_CSH_WDL_TXN< 628750 794 341 1 (0.42947103 0.57052897)
```

```
558) LEN_OF_RLTN_IN_MNTH>=176.5 115 32 0 (0.72173913 0.27826087)
            0 0 (1.00000000 0.000000000) *
88 1 (0.37768240 0.62231760)
                4476) GENDER=F 46
                4477) GENDER=M 233
                  2239) SCR< 447.5 304 61 1 (0.20065789 0.79934211)
4478) BALANCE< 460279.6 80 37 0 (0.53750000 0.46250000) *
4479) BALANCE>=460279.6 224 18 1 (0.08035714 0.91964286) *
    71) AGE_BKT=<25,>50,31-35,36-40,41-45,46-50 614 159 1 (0.25895765 0.74104235) 142) AGE>=47.5 74 26 0 (0.64864865 0.35135135) * 143) AGE>=47.5 540 111 1 (0.20555556 0.79444444)
         9) NO_OF_L_CR_TXNS>=16.5 1438 651 1 (0.45271210 0.54728790)
  18) OCCUPATION=SAL 321 89 0 (0.72274143 0.27725857)

36) AGE_BKT=<25,>50,26-30,31-35,36-40,41-45 226 22 0 (0.90265487 0.09734513) *
    37) AGE_BKT=46-50 95 28 1 (0.29473684 0.70526316) *
  154) AGE_BKT=31-35,36-40 125
         4) AGE_BKT=31-35,36-40 125 36 0 (0.71200000 0.28800000) 308) AMT_NET_DR< 469244 74 0 0 (1.00000000 0.00000000) * 309) AMT_NET_DR>=469244 51 15 1 (0.29411765 0.70588235) *
       155) AGE_BKT=<25,>50,26-30,41-45,46-50 383 126 1 (0.32898172 0.67101828)
         622) LEN_OF_RLTN_IN_MNTH< 158 150 67 1 (0.44666667 0.55333333)
            159) AMT_BR_CSH_WDL_DR< 767370 475
                                           77 1 (0.16210526 0.83789474)
         318) AGE>=46.5 38 13 0 (0.65789474 0.34210526) *
319) AGE< 46.5 437 52 1 (0.11899314 0.88100686) 638) BALANCE< 13188.08 22 8 0 (0.63636364 0.3
                                     8 0 (0.63636364 0.36363636) *
10) NO_OF_L_DR_TXNS< 1.5 820 288 0 (0.64878049 0.35121951)
20) OCCUPATION=PROF,SAL,SENP 630 155 0 (0.75396825 0.24603175)
40) HOLDING_PERIOD>=15.5 377 34 0 (0.90981432 0.09018568)
80) OCCUPATION=PROF,SENP 268 5 0 (0.98134328 0.01865672) *
      81) OCCUPATION=SAL 109 29 0 (0.73394495 0.26605505)
       163) AGE_BKT=36-40 27 8 1 (0.29629630 0.70370370) * 41) HOLDING_PERIOD< 15.5 253 121 0 (0.52173913 0.47826087)
      82) SCR< 582 127 34 0 (0.73228346 0.26771654)
                       4 0 (0.95604396 0.04395604) *
6 1 (0.16666667 0.833333333) *
       164) AGE>=28 91
       165) AGE< 28 36
                       39 1 (0.30952381 0.69047619)
      83) SCR>=582 126
   42) AGE_BKT=>50,26-30,31-35,36-40,46-50 74
                                              23 0 (0.68918919 0.31081081) *
 10 NO_OF_L_DR_TXNS>=1.5 3926 1680 1 (0.42791645 0.57208355)

22) AGE< 26.5 273 86 0 (0.68498168 0.31501832)

44) HOLDING_PERIOD>=6.5 181 24 0 (0.86740331 0.13259669)

88) NO_OF_IW_CHQ_BNC_TXNS< 0.5 147 0 0 (1.00000000 0.00000000) *

89) NO_OF_IW_CHQ_BNC_TXNS>=0.5 34 10 1 (0.29411765 0.70588235) *

45) HOLDING_PERIOD< 6.5 92 30 1 (0.32608696 0.67391304) *

23) AGE>=26.5 3653 1493 1 (0.40870517 0.59129483)
    46) AMT_L_DR< 435905 1281 634 0 (0.50507416 0.49492584)
```

```
92) AVG_AMT_PER_CHQ_TXN< 19730.88 865 353 0 (0.59190751 0.40809249)
       370) SCR>=780.5 95
                           9 0 (0.90526316 0.09473684)
         371) SCR< 780.5 691 344 0 (0.50217077 0.49782923) 742) SCR< 367 268 73 0 (0.72761194 0.27238806)
           743) SCR>=367 423 152 1 (0.35933806 0.64066194)
            2974) AGE>=51.5 36
                                9 0 (0.75000000 0.25000000) *
             2975) AGE< 51.5 353
                                91 1 (0.25779037 0.74220963) *
       372) HOLDING_PERIOD>=3.5 136 47 0 (0.65441176 0.34558824)
                                13 0 (0.85393258 0.14606742) *
13 1 (0.27659574 0.72340426) *
           744) BALANCE>=42436.2 89
           745) BALANCE< 42436.2 47
       47) AMT_L_DR>=435905 2372 846 1 (0.35666105 0.64333895)
       94) AMT_L_DR>=971710 685 333 1 (0.48613139 0.51386861) 188) AGE BKT=31-35 78 0 0 (1.00000000 0.00000000) *
       188) AGE_BKT=31-35 78
                             0 0 (1.00000000 0.00000000) *
        189) AGE_BKT=>50,26-30,36-40,41-45,46-50 607 255 1 (0.42009885 0.57990115)
         378) BALANCE>=279978.4 180 57 0 (0.68333333 0.31666667)
           756) NO_OF_L_CR_TXNS< 10.5 115
                                      18 0 (0.84347826 0.15652174)
            1512) AMT_ATM_DR< 17350 90
                                     0 0 (1.00000000 0.00000000)
            1513) AMT_ATM_DR>=17350 25
                                     7 1 (0.28000000 0.72000000)
           757) NO_OF_L_CR_TXNS>=10.5 65 26 1 (0.40000000 0.600000000) *
         379) BALANCE< 279978.4 427 132 1 (0.30913349 0.69086651) 758) AMT_NET_DR< 32073 26 0 0 (1.00000000 0.00000000
           1518) NO_OF_L_CR_TXNS< 8.5 177 71 1 (0.40112994 0.59887006)
                                      32 0 (0.67676768 0.323232323) *
             3036) AMT_NET_DR< 950856.5 99
             3037) AMT_NET_DR>=950856.5 78
                                        4 1 (0.05128205 0.94871795) *
            1519) NO_OF_L_CR_TXNS>=8.5 224 35 1 (0.15625000 0.84375000)
       0 0 (1.00000000 0.000000000) *
         382) NO_OF_OW_CHQ_BNC_TXNS>=0.5 20
         766) BALANCE>=100250.1 972 329 1 (0.33847737 0.66152263) 1532) BALANCE< 182252.4 93 15 0 (0.83870968 0.16129032
            1532) BALANCE< 182252.4 93 15 0 (0.83870968 0.16129032) 1533) BALANCE>=182252.4 879 251 1 (0.28555176 0.71444824)
             6134) AGE< 38.5 314 121 1 (0.38535032 0.61464968)
                0 0 (1.00000000 0.00000000)
36 1 (0.16589862 0.83410138)
                  24538) AGE>=32.5 24
                  24539) AGE< 32.5 217
               6135) AGE>=38.5 537 102 1 (0.18994413 0.81005587)
           3070) NO_OF_BR_CSH_WDL_DR_TXNS>=1.5 189 60 1 (0.31746032 0.68253968)
             6140) BALANCE< 67708.63 75 21 0 (0.72000000 0.28000000) * 6141) BALANCE>=67708.63 114 6 1 (0.05263158 0.94736842) * 3071) NO_OF_BR_CSH_WDL_DR_TXNS< 1.5 432 43 1 (0.09953704 0.9
                                                43 1 (0.09953704 0.90046296) *
3) NO_OF_L_DR_TXNS>=5.5 11456 4617 1 (0.40302025 0.59697975)
 6) SCR< 552.5 6853 3176 1 (0.46344667 0.53655333)
  12) NO_OF_L_CR_TXNS< 17.5 4494 2130 0 (0.52603471 0.47396529)
    24) OCCUPATION=PROF, SAL, SENP 3527 1521 0 (0.56875532 0.43124468)
     386) AMT_MOB_DR< 127453.5 150
                                   41 0 (0.72666667 0.27333333)
                                    0 0 (1.00000000 0.00000000) * 31 1 (0.43055556 0.56944444) *
           387) AMT_MOB_DR>=127453.5 45
       97) NO_OF_L_CR_TXNS< 6.5 178 77 1 (0.43258427 0.56741573)
                                0 0 (1.00000000 0.000000000) *
       194) AMT_ATM_DR>=11850 45
                                32 1 (0.24060150 0.75939850)
       195) AMT_ATM_DR< 11850 133
```

```
391) LEN_OF_RLTN_IN_MNTH>=158 96
                                             9 1 (0.09375000 0.90625000) *
 49) HOLDING_PERIOD< 15.5 2790 1327 0 (0.52437276 0.47562724)
98) AMT_BR_CSH_WDL_DR>=952465 66 0 0 (1.00000000 0.00000000) *
99) AMT_BR_CSH_WDL_DR< 952465 2724 1327 0 (0.51284875 0.48715125)
    198) AGE_BKT=<25,>50,31-35,36-40 1411 587 0 (0.58398299 0.41601701)
396) SCR< 198.5 283 52 0 (0.81625442 0.18374558)
         792) HOLDING_PERIOD>=1.5 246 31 0 (0.87398374 0.12601626) *
         793) HOLDING_PERIOD< 1.5 37
                                        16 1 (0.43243243 0.56756757) *
       397) SCR>=198.5 1128 535 0 (0.52570922 0.47429078)
794) SCR>=206.5 1013 440 0 (0.56564659 0.43435341)
          1588) AVG_AMT_PER_NET_TXN< 64397.25 287 72 0 (0.74912892 0.25087108)
          3176) AMT_MOB_DR< 130096.5 215 22 0 (0.89767442 0.10232558) *
3177) AMT_MOB_DR>=130096.5 72 22 1 (0.30555556 0.69444444) *
1589) AVG_AMT_PER_NET_TXN>=64397.25 726 358 1 (0.49311295 0.50688705)
            3178) NO_OF_L_CR_TXNS>=10.5 405 151 0 (0.62716049 0.37283951)
6356) NO_OF_L_CR_TXNS< 12.5 118 6 0 (0.94915254 0.05084746)
6357) NO_OF_L_CR_TXNS>=12.5 287 142 1 (0.49477352 0.50522648)
               12714) AVG_AMT_PER_CHQ_TXN>=55890 52
12715) AVG_AMT_PER_CHQ_TXN< 55890 235
                                                         0 0 (1.00000000 0.000000000) *
                                                         90 1 (0.38297872 0.61702128)
                 795) SCR< 206.5 115 20 1 (0.17391304 0.82608696) *
    199) AGE_BKT=26-30,41-45,46-50 1313 573 1 (0.43640518 0.56359482)
       398) FLG_HAS_ANY_CHGS< 0.5 1080 532 1 (0.49259259 0.50740741) 796) HOLDING_PERIOD>=12.5 146 30 0 (0.79452055 0.20547945)
                                          7 0 (0.94166667 0.05833333) *
          1592) AMT_ATM_DR>=1700 120
          1593) AMT_ATM_DR< 1700 26
                                         3 1 (0.11538462 0.88461538) *
         797) HOLDING_PERIOD< 12.5 934
                                         416 1 (0.44539615 0.55460385)
          1594) AMT_L_DR>=714539 464 199 0 (0.57112069 0.42887931)
                                        63 0 (0.75196850 0.24803150)
            3188) FLG_HAS_CC< 0.5 254
              6376) SCR< 372.5 152
                                       9 0 (0.94078947 0.05921053)
                                       48 1 (0.47058824 0.52941176)
              6377) SCR>=372.5 102
                                               0 0 (1.00000000 0.00000000) *
18 1 (0.25000000 0.75000000) *
               12754) AMT_L_DR< 1059334 30
               12755) AMT_L_DR>=1059334 72
          3189) FLG_HAS_CC>=0.5 210 74 1 (0.35238095 0.64761905)
6378) AGE<29.5 97 41 0 (0.57731959 0.42268041) *
6379) AGE<29.5 113 18 1 (0.15929204 0.84070796) *
1595) AMT_L_DR< 714539 470 151 1 (0.32127660 0.67872340)
3190) AMT_L_DR< 570388 227 113 0 (0.50220264 0.4977936)
              6380) AMT_L_DR>=244320 140
                                            42 0 (0.70000000 0.30000000) *
              6381) AMT_L_DR< 244320 87
                                           16 1 (0.18390805 0.81609195)
                                          37 1 (0.15226337 0.84773663)
            3191) AMT_L_DR>=570388 243
              6382) SCR< 317 102 28 1 (0.27450980 0.72549020)
               12765) BALANCE< 68073.69 61
       25) OCCUPATION=SELF-EMP 967 358 1 (0.37021717 0.62978283)
  50) NO_OF_IW_CHQ_BNC_TXNS< 0.5 796 336 1 (0.42211055 0.57788945)
  100) HOLDING_PERIOD>=3.5 550 271 0 (0.50727273 0.49272727) 200) AMT_L_DR< 759040 136 36 0 (0.73529412 0.26470588)
    402) AMT_ATM_DR>=14800 107 31 0 (0.71028037 0.28971963)
         403) AMT_ATM_DR< 14800 307 103 1 (0.33550489 0.66449511)
         806) AGE_BKT=<25,>50 25
                                     0 0 (1.00000000 0.000000000) *
         807) AGE_BKT=26-30,31-35,36-40,41-45,46-50 282 78 1 (0.27659574 0.72340426)
          1614) AMT_ATM_DR< 11050 157 65 1 (0.41401274 0.58598726)
            6458) AMT_L_DR>=1099355 32
                                            12 0 (0.62500000 0.37500000) *
                                           10 1 (0.12658228 0.87341772) *
              6459) AMT_L_DR< 1099355 79
                                         13 1 (0.10400000 0.89600000)
          1615) AMT_ATM_DR>=11050 125
   101) HOLDING_PERIOD< 3.5 246 57 1 (0.23170732 0.76829268)
     202) LEN_OF_RLTN_IN_MNTH< 72.5 21
                                            3 0 (0.85714286 0.14285714) *
     203) LEN_OF_RLTN_IN_MNTH>=72.5 225
                                            39 1 (0.17333333 0.82666667) *
  51) NO_OF_IW_CHQ_BNC_TXNS>=0.5 171 22 102) NO_OF_BR_CSH_WDL_DR_TXNS>=1.5 29
                                        22 1 (0.12865497 0.87134503)
                                            12 0 (0.58620690 0.41379310) *
   103) NO_OF_BR_CSH_WDL_DR_TXNS< 1.5 142 5 1 (0.03521127 0.96478873) *
```

```
13) NO_OF_L_CR_TXNS>=17.5 2359 812 1 (0.34421365 0.65578635) 26) BALANCE>=10171.98 1968 772 1 (0.39227642 0.60772358)
     52) FLG_HAS_NOMINEE< 0.5 121 30 0 (0.75206612 0.24793388)
      104) HOLDING_PERIOD>=6.5 64
                                      0 0 (1.00000000 0.00000000)
                                     27 1 (0.47368421 0.52631579) *
      105) HOLDING_PERIOD< 6.5 57
     53) FLG_HAS_NOMINEE>=0.5 1847 681 1 (0.36870601 0.63129399)
      106) AVG_MT_PER_CHQ_TXN>=23126.25 1140 496 1 (0.43508772 0.56491228) 212) TOT_NO_OF_L_TXNS< 56.5 642 279 0 (0.56542056 0.43457944)
          424) AVG_AMT_PER_CSH_WDL_TXN< 105977.5 270 56 0 (0.79259259 0.20740741)
            848) HOLDING_PERIOD>=2.5 212 24 0 (0.88679245 0.11320755) *
            849) HOLDING_PERIOD< 2.5 58
                                            26 1 (0.44827586 0.55172414) *
          425) AVG_AMT_PER_CSH_WDL_TXN>=105977.5 372 149 1 (0.40053763 0.59946237)
            850) SCR< 195 48 5 0 (0.89583333 0.10416667) *
851) SCR>=195 324 106 1 (0.32716049 0.67283951)
1702) OCCUPATION=PROF 75 27 0 (0.64000000 0.36000000) *
             1703) OCCUPATION=SAL, SELF-EMP, SENP 249 58 1 (0.23293173 0.76706827)
                                                  6 0 (0.77777778 0.22222222) *
               3406) HOLDING_PERIOD>=14.5 27
                                                  37 1 (0.16666667 0.833333333)
               3407) HOLDING_PERIOD< 14.5 222
                 6814) AMT_MOB_DR>=154223 21
                                                  7 0 (0.66666667 0.33333333) *
                 6815) AMT MOB DR< 154223 201
                                                  23 1 (0.11442786 0.88557214) *
        426) LEN_OF_RLTN_IN_MNTH>=194.5 55
                                                 20 0 (0.63636364 0.36363636) *
          427) LEN_OF_RLTN_IN_MNTH< 194.5 443
                                                 98 1 (0.22121896 0.77878104)
            854) AVG_AMT_PER_CHQ_TXN< 65377.5 75
                                                     33 0 (0.56000000 0.44000000) *
            855) AVG_AMT_PER_CHQ_TXN>=65377.5 368
                                                     56 1 (0.15217391 0.84782609)
             1710) LEN_OF_RLTN_IN_MNTH< 106.5 101
                                                      32 1 (0.31683168 0.68316832)
               3420) SCR< 291 24 6 0 (0.75000000 0.25000000) 3421) SCR>=291 77 14 1 (0.18181818 0.81818182) **
             107) AVG_AMT_PER_CHQ_TXN< 23126.25 707 185 1 (0.26166902 0.73833098) 214) AMT_CHQ_DR< 11245 81 24 0 (0.70370370 0.29629630) * 215) AMT_CHQ_DR>=11245 626 128 1 (0.20447284 0.79552716)
          862) AGE< 27.5 29 7 0 (0.75862069 0.24137931) 3
863) AGE>=27.5 574 87 1 (0.15156794 0.84843206)
             1726) AGE_BKT=>50,31-35,41-45 205 56 1 (0.27317073 0.72682927)
               3453) NO_OF_BR_CSH_WDL_DR_TXNS>=8.5 130
                                                           19 1 (0.14615385 0.85384615)
                 6906) BALANCE>=614419.1 20 9 0 (0.55000000 0.45000000) 3
                                                 8 1 (0.07272727 0.92727273) *
                 6907) BALANCE< 614419.1 110
             1727) AGE_BKT=26-30,36-40,46-50 369 31 1 (0.08401084 0.91598916) *
   27) BALANCE< 10171.98 391 40 1 (0.10230179 0.89769821) *
7) SCR>=552.5 4603 1441 1 (0.31305670 0.68694330)
 14) BALANCE>=538766 855 391 1 (0.45730994 0.54269006)
   0 0 (1.00000000 0.000000000) *
     58) LEN_OF_RLTN_IN_MNTH< 58.5 47
                                          5 0 (0.89361702 0.10638298) *
     59) LEN_OF_RLTN_IN_MNTH>=58.5 704
                                          245 1 (0.34801136 0.65198864)
      118) LEN_OF_RLTN_IN_MNTH>=185 105
                                          31 0 (0.70476190 0.29523810)
        119) LEN_OF_RLTN_IN_MNTH< 185 599 171 1 (0.28547579 0.71452421)

238) AVG_AMT_PER_ATM_TXN< 2695 20 0 0 (1.00000000 0.00000000) *

239) AVG_AMT_PER_ATM_TXN>=2695 579 151 1 (0.26079447 0.73920553)
          478) AMT_ATM_DR>=17950 130 62 1 (0.47692308 0.52307692)
            479) AMT_ATM_DR< 17950 449 89 1 (0.19821826 0.80178174) 958) AMT_NET_DR>=734444 21 5 0 (0.76190476 0.2380952
                                        5 0 (0.76190476 0.23809524) * 73 1 (0.17056075 0.82943925)
            959) AMT_NET_DR< 734444 428
             1918) TOT_NO_OF_L_TXNS< 20.5 181 55 1 (0.30386740 0.69613260)
                                             0 0 (1.00000000 0.00000000)
34 1 (0.21250000 0.78750000)
               3836) AMT_ATM_DR>=14450 21
               3837) AMT_ATM_DR< 14450 160
                 7674) AVG_AMT_PER_CHQ_TXN>=18610 25
                                                          5 0 (0.80000000 0.20000000) *
                 7675) AVG_AMT_PER_CHQ_TXN< 18610 135
                                                          14 1 (0.10370370 0.89629630) *
30) TOT_NO_OF_L_TXNS< 53.5 3122 974 1 (0.31197950 0.68802050) 60) FLG_HAS_CC< 0.5 1843 687 1 (0.37276180 0.62723820)
      120) OCCUPATION=SAL 343
                               122 0 (0.64431487 0.35568513)
        240) AVG_AMT_PER_ATM_TXN< 13300 169 27 0 (0.84023669 0.15976331) * 241) AVG_AMT_PER_ATM_TXN>=13300 174 79 1 (0.45402299 0.54597701)
                                      15 0 (0.77272727 0.22727273) ;
28 1 (0.25925926 0.74074074)
          482) BALANCE< 106410.3 66
          483) BALANCE>=106410.3 108
     484) HOLDING_PERIOD>=8.5 348 147 0 (0.57758621 0.42241379)
```

```
968) AMT_BR_CSH_WDL_DR< 810905 245 69 0 (0.71836735 0.28163265)
                                      6 0 (0.95041322 0.04958678)
          1936) BALANCE>=69414.92 121
                                       61 1 (0.49193548 0.50806452)
         1937) BALANCE< 69414.92 124
            3875) AVG_AMT_PER_CSH_WDL_TXN< 74447.17 79
         14 0 (0.60000000 0.40000000)
4 1 (0.05882353 0.94117647)
          1938) AMT_ATM_DR>=12300 35
          1939) AMT_ATM_DR< 12300 68
       485) HOLDING_PERIOD< 8.5 428 116 1 (0.27102804 0.72897196)
         970) LEN_OF_RLTN_IN_MNTH>=49 332 113 1 (0.34036145 0.65963855)
          1940) LEN_OF_RLTN_IN_MNTH< 70.5 27
                                                5 0 (0.81481481 0.18518519) *
          1941) LEN_OF_RLTN_IN_MNTH>=70.5 305
                                                91 1 (0.29836066 0.70163934)
            3882) TOT_NO_OF_L_TXNS>=17.5 173
                                               68 1 (0.39306358 0.60693642)
             7764) NO_OF_NET_DR_TXNS< 3.5 74
                                               26 0 (0.64864865 0.35135135)
                                                20 1 (0.20202020 0.79797980) *
              7765) NO_OF_NET_DR_TXNS>=3.5 99
            3883) TOT_NO_OF_L_TXNS< 17.5 132
                                               23 1 (0.17424242 0.82575758) *
                                           3 1 (0.03125000 0.96875000) *
         971) LEN_OF_RLTN_IN_MNTH< 49 96
    243) AGE>=41.5 724 149 1 (0.20580110 0.79419890)
      974) GENDER=F 69 33 1 (0.47826087 0.52173913) * 975) GENDER=M,0 625 92 1 (0.14720000 0.85280000)
          77 1 (0.12833333 0.87166667)
3902) OCCUPATION=PROF 170 39 1 (0.22941176 0.77058824)
          1951) AMT_ATM_DR>=2250 600
            7804) HOLDING_PERIOD>=8.5 35 13 0 (0.62857143 0.37142857) *
7805) HOLDING_PERIOD< 8.5 135 17 1 (0.12592593 0.87407407) *
3903) OCCUPATION=SELF-EMP,SENP 430 38 1 (0.08837209 0.91162791)
              7806) AVG_AMT_PER_NET_TXN>=196358.8 110 23 1 (0.20909091 0.79090909)
              15612) HOLDING PERIOD>=11.5 29 14 0 (0.51724138 0.48275862) *
                                                8 1 (0.09876543 0.90123457) *
              15613) HOLDING_PERIOD< 11.5 81
  7807) AVG_AMT_PER_NET_TXN< 196358.8 320 1 161) FLG_HAS_CC>=0.5 1279 287 1 (0.22439406 0.77560594)
                                                       15 1 (0.04687500 0.95312500) *
   122) AGE>=44.5 276 111 1 (0.40217391 0.59782609)
    244) HOLDING_PERIOD>=16.5 21
                                    0 0 (1.00000000 0.00000000) *
     245) HOLDING_PERIOD< 16.5 255
                                     90 1 (0.35294118 0.64705882)
                                  13 0 (0.71739130 0.28260870)
       490) AMT_ATM_DR>=18500 46
                                    57 1 (0.27272727 0.72727273)
       491) AMT_ATM_DR< 18500 209
                                    15 0 (0.66666667 0.333333333)
         982) BALANCE>=146586.3 45
         983) BALANCE< 146586.3 164
                                      27 1 (0.16463415 0.83536585) *
   123) AGE< 44.5 1003 176 1 (0.17547358 0.82452642)
     246) NO_OF_L_CR_TXNS>=5.5 805 170 1 (0.21118012 0.78881988)
       492) NO_OF_L_CR_TXNS< 7.5 42
                                      15 0 (0.64285714 0.35714286) *
       493) NO_OF_L_CR_TXNS>=7.5 763
                                      143 1 (0.18741809 0.81258191)
         986) OCCUPATION=PROF, SENP 298
                                         86 1 (0.28859060 0.71140940)
         1972) NO_OF_L_CR_TXNS< 10.5 33
                                            6 0 (0.81818182 0.18181818) *
          1973) NO_OF_L_CR_TXNS>=10.5 265 59 1 (0.22264151 0.77735849)
            3946) BALANCE>=72956.27 113
                                         47 1 (0.41592920 0.58407080)
             7892) TOT_NO_OF_L_TXNS>=22.5 25
                                                0 0 (1.00000000 0.000000000) *
                                                22 1 (0.25000000 0.75000000) *
              7893) TOT_NO_OF_L_TXNS< 22.5 88
         3947) BALANCE< 72956.27 152 12 1 (0.07894737 0.92105263)
987) OCCUPATION=SAL,SELF-EMP 465 57 1 (0.12258065 0.87741935
                                           57 1 (0.12258065 0.87741935)
         247) NO_OF_L_CR_TXNS< 5.5 198 6 1 (0.03030303 0.96969697) *
31) TOT_NO_OF_L_TXNS>=53.5 626 76 1 (0.12140575 0.87859425)
62) BALANCE>=359018.6 20 7 0 (0.65000000 0.35000000) *
63) BALANCE< 359018.6 606 63 1 (0.10396040 0.89603960) *
  63) BALANCE< 359018.6 606
                              63 1 (0.10396040 0.89603960) *
```

5.2 The CART Model Graphical Output:

Rattle 2017-Dec-26 23:31:47 Vilas

5.3 Performance Measures on Training Data Set

The following model performance measures will be calculated on the training set to gauge the goodness of the model:

- Rank Ordering
- KS
- Area Under Curve (AUC)
- Gini Coefficient
- Classification Error

5.3.1 Model Performance Measure - Rank Ordering

The rank order table is provided below:

deciles	cnt	cnt_resp	cnt_ non_resp	rrate	cum_resp	cum_ non_resp	cum_ rel_resp	cum_rel_ non_resp	ks
10	2604	2394	210	92%	2394	210	20%	2%	17.8
9	2448	2123	325	87%	4517	535	37%	4%	32.45
8	2578	2154	424	84%	6671	959	54%	8%	46.55
7	2371	1951	420	82%	8622	1379	70%	11%	59.02
6	2294	1777	517	78%	10399	1896	85%	15%	69.29
5	2435	1004	1431	41%	11403	3327	93%	27%	65.81
4	2561	463	2098	18%	11866	5425	97%	44%	52.48
3	2365	255	2110	11%	12121	7535	99%	61%	37.37
2	2462	141	2321	6%	12262	9856	100%	80%	19.61
1	2426	10	2416	0%	12272	12272	100%	100%	0

Interpretation:

- The baseline Response Rate is 12.34%, whereas the response rate in top deciles is above 78%.
- The KS is above 69%, indicating it to be a good model.

5.3.2 Model Performance Measure - KS and Area under Curve

The KS & AUC values are provided below:

Measure	Value
KS	70.80%
Area Under Curve	90%

The AUC value around 90% indicates the good performance of the model.

Graphical representation of the Area Under Curve is as follows:

5.3.3 Model Performance Measure – Gini Coefficient

For our given dataset and the model we built, the Gini Coefficient is 40%, indicating a good model, with scope for improvement.

5.3.4 Model Performance Measure – Confusion Matrix

Confusion Matrix for our given Model is as follows:

```
## predict.class
## TARGET 0 1
## 0 10257 2015
## 1 1568 10704
```

Accuracy = (10257+10704)/(10257+10704+2015+1568) = 85.40%

Classification Error Rate = 1- Accuracy = 14.59%.

The lower the classification error rate, higher the model accuracy, resulting in a better model. The classification error rate can be reduced if there were more independent variables were present for modeling.

5.3.5 Model Performance Measure – Summary

The summary of the various model performance measures on the training set are as follows:

Measure	Result
KS	70.80%
Area Under Curve	90%
Gini Coefficient	40%
Accuracy	85.40%
Classification Error Rate	14.59%

The model observed to perform as per expectations on majority of the model performance measures, indicating it to be a good model.

5.4 Performance Measures on Validation Data Set

The following model performance measures will be calculated on the validation data set to gauge the goodness of the model:

- Rank Ordering
- KS
- Area Under Curve (AUC)
- Gini Coefficient
- Classification Error

5.4.1 Model Performance Measure - Rank Ordering

deciles	cnt	cnt_resp	cnt_ non_resp	rrate	cum_resp	cum_ non_resp	cum_ rel_resp	cum_rel_ non_resp	ks
10	612	230	382	38%	230	382	29%	7%	22.02
9	592	217	375	37%	447	757	57%	15%	42.51
8	596	121	475	20%	568	1232	72%	24%	48.83
7	618	55	563	9%	623	1795	80%	34%	45.05
6	590	34	556	6%	657	2351	84%	45%	38.73
5	636	35	601	6%	692	2952	88%	57%	31.67
4	1193	36	1157	3%	728	4109	93%	79%	14.08
2	643	39	604	6%	767	4713	98%	90%	7.47
1	520	17	503	3%	784	5216	100%	100%	0

Interpretation:

- The baseline Response Rate is 12.34%, whereas the response rate in top three deciles is 38%, 37%, 20% respectively.
- With top 3 deciles, the KS is 48%, indicating it to be a good model.

5.4.2 Model Performance Measure - KS and Area under Curve

The KS & AUC values are provided below:

Measure	Value
KS	48.85%
Area Under Curve	77.77%

The AUC value around 77% indicates the good performance of the model.

Graphical representation of the Area Under Curve is as follows:

5.4.3 Model Performance Measure - Gini Coefficient

For our given dataset and the model we built, the Gini Coefficient on testing data set is 54.18%, indicating a good model.

5.4.4 Model Performance Measure – Confusion Matrix

Confusion Matrix for our given Model on testing dataset is as follows:

```
## predict.class
## TARGET 0 1
## 0 4174 1042
## 1 258 526
```

Accuracy = (4174+526)/(4174+526+1042+258) = 78.33%

Classification Error Rate = 1- Accuracy = 21.67%.

5.4.5 Model Performance Measure – Summary

The summary of the various model performance measures on the training set are as follows:

Measure	Result
KS	48.85%
Area Under Curve	77.77%
Gini Coefficient	54.18%
Accuracy	78.33%
Classification Error Rate	21.67%

The model observed to perform above expectations on majority of the model performance measures, indicating it to be a good model.

5.5 CART - Conclusion

Comparative Summary of the Random Forest Model on Training and Testing Dataset is as follows:

Measure	Result on Training DS	Result on Testing DS	% Deviation
KS	70.80%	48.85%	31%
Area Under Curve	90%	77.77%	13.58%
Gini Coefficient	40%	54.18%	-35.45%
Accuracy	85.40%	78.33%	8%
Classification Error Rate	14.59%	21.67%	50%

It can be observed that most of the Model Performance values for Training & Testing sets are above the maximum tolerance deviation of +/- 10%. Hence, the model is over-fitting.

The good performance on the model performance measures indicates good prediction making capabilities of the developed Random Forest model.

6 Model Building - Random Forest

A Supervised Classification Algorithm, as the name suggests, this algorithm creates the forest with a number of trees in random order.

In general, the more trees in the forest the more robust the forest looks like. In the same way in the random forest classifier, the higher the number of trees in the forest gives the high accuracy results.

Some advantages of using Random Forest are as follows:

- The same random forest algorithm or the random forest classifier can use for both classification and the regression task.
- Random forest classifier will handle the missing values.
- When we have more trees in the forest, random forest classifier won't over fit the model.
- Can model the random forest classifier for categorical values also.

6.1 The initial build & Optimal No of Trees

The model is built with dependant variable as TARGET, and considering all independent variables except Customer ID and Account Opening Date.

```
# Random Forest
RF = randomForest( as.factor(TARGET) ~ .,
                   data = rf.train[, -c(1, 11)],
                   ntree = 501, mtry = 3, nodesize = 10,
                   importance = TRUE )
print(RF)
##
## Call:
## randomForest(formula = as.factor(TARGET) ~ ., data = rf.train[,
-c(1, 11)], ntree = 501, mtry = 3, nodesize = 10, importance = TRUE)
##
                  Type of random forest: classification
##
                        Number of trees: 501
## No. of variables tried at each split: 3
##
##
           OOB estimate of error rate: 7.48%
## Confusion matrix:
        0 1 class.error
## 0 12269 3 0.0002444589
## 1 1044 684 0.6041666667
```

Out of Bag Error Rate:

Random Forests algorithm is a classifier based on primarily two methods - bagging and random subspace method.

Suppose we decide to have S number of trees in our forest then we first create S datasets of "same size as original" created from random resampling

of data with-replacement. Each of these datasets is called a bootstrap dataset.

Due to "with-replacement" option, every dataset can have duplicate data records and at the same time, can be missing several data records from original datasets. This is called Bagging.

The algorithm uses m (=sqrt(M) random sub features out of M possible features to create any tree. This is called random subspace method.

After creating the classifiers (S trees), there is a subset of records which does not include any of the records part of the classifier tree. This subset, is a set of boostrap datasets which does not contain a particular record from the original dataset. This set is called out-of-bag examples. There are n such subsets (one for each data record in original dataset T). OOB classifier is the aggregation of all such records.

Out-of-bag estimate for the generalization error is the error rate of the out-of-bag classifier on the training set (compare it with known yi's).

Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring the prediction error of random forests, boosted decision trees, and other machine learning models utilizing **bootstrap aggregating** to subsample data samples used for training.

Out-of-bag estimates help in avoiding the need for an independent validation dataset.

The Out-of-Bag Estimate of Error Rate for our given Random Forest in our case is 7.48%

The graphical output for the OOB estimate of error rate is provided below:

The output in tabular form for the OOB estimate of error rate is provided below:

```
RF$err.rate
##
                 OOB
     [1,] 0.13971014 8.109890e-02 0.5664000
##
##
     [2,] 0.14284002 8.402787e-02 0.5623782
     [3,] 0.13861004 7.997794e-02 0.5490347
     [4,] 0.13105510 7.010350e-02 0.5577580
##
     [5,] 0.12556805 6.484176e-02 0.5572075
##
     [6,] 0.11994485 5.752251e-02 0.5615337
     [7,] 0.11741464 5.334808e-02 0.5707405
##
##
     [8,] 0.11059671 4.577849e-02 0.5704938
##
     [9,] 0.10496072 3.898474e-02 0.5750591
    [10,] 0.09914011 3.189385e-02 0.5777126
## [150,] 0.07500000 4.074316e-04 0.6047454
## [151,] 0.07500000 4.074316e-04 0.6047454
## [152,] 0.07507143 4.074316e-04 0.6053241
## [153,] 0.07478571 3.259452e-04 0.6035880
## [154,] 0.07457143 3.259452e-04 0.6018519
## [155,] 0.07471429 3.259452e-04 0.6030093
## [156,] 0.07457143 3.259452e-04 0.6018519
## [157,] 0.07485714 3.259452e-04 0.6041667
```

```
## [158,] 0.07428571 3.259452e-04 0.5995370
## [159,] 0.07492857 3.259452e-04 0.6047454
## [160,] 0.07500000 3.259452e-04 0.6053241
.
.
.
## [490,] 0.07378571 1.629726e-04 0.5966435
## [491,] 0.07371429 8.148631e-05 0.5966435
## [492,] 0.07385714 8.148631e-05 0.5978009
## [493,] 0.07392857 1.629726e-04 0.5978009
## [494,] 0.07407143 1.629726e-04 0.5989583
## [495,] 0.07428571 1.629726e-04 0.6006944
## [496,] 0.07435714 1.629726e-04 0.6012731
## [497,] 0.07435714 1.629726e-04 0.6012731
## [498,] 0.0741286 1.629726e-04 0.5995370
## [499,] 0.07428571 1.629726e-04 0.6006944
## [500,] 0.07428571 1.629726e-04 0.6006944
## [500,] 0.07428571 1.629726e-04 0.6006944
## [501,] 0.07478571 2.444589e-04 0.6006944
```

It is observed that as the number of tress increases, the OOB error rate starts decreasing till it reaches around 150^{th} tree with OOB = 0.074 (the minimum value). After this, the OOB doesn't decrease further and remains largely steady. **Hence, the optimal number of trees would be 155.**

6.2 Variable Importance

To understand the important variables in Random Forest, the following measures are generally used:

- Mean Decrease in Accuracy is based on permutation
 - Randomly permute values of a variable for which importance is to be computed in the OOB sample
 - Compute the Error Rate with permuted values
 - Compute decrease in OOB Error rate (Permuted Not permuted)
 - Average the decrease over all the trees
- Mean Decrease in Gini is computed as "total decrease in node impurities from splitting on the variable, averaged over all trees"

The variables importance is computed as follows:

```
# List the importance of the variables.
impVar <- round(randomForest::importance(RF), 2)</pre>
impVar[order(impVar[,3], decreasing=TRUE),]
##
                                   1 MeanDecreaseAccuracy MeanDecreaseGini
                             0
## OCCUPATION
                         36.56 41.67
                                                    42.80
                                                                     65.24
## AGE BKT
                                                    47.73
                         36.41 49.59
                                                                     88.57
## BALANCE
                         35.16 43.35
                                                    43.08
                                                                    121.90
## AMT_L_DR
                         34.80 29.52
                                                    40.10
                                                                    102.69
## SCR
                         33.89 42.89
                                                    41.49
                                                                    117.55
## AGE
                         32.62 39.85
                                                    42.05
                                                                     75.89
## LEN OF RLTN IN MNTH
                         31.94 44.77
                                                    43.96
                                                                     99.28
## NO OF L CR TXNS
                         31.50 29.55
                                                    36.66
                                                                     96.31
## HOLDING_PERIOD
                         30.52 37.74
                                                    37.31
                                                                     97.33
```

##	FLG_HAS_CC 3	0.27 34	.71	34.74	30.04
##	TOT_NO_OF_L_TXNS 2	9.70 24	.42	34.84	94.60
##	AMT_CHQ_DR 2	8.12 25	.77	31.54	75.57
##	AVG_AMT_PER_CHQ_TXN 2	7.90 22	.98	31.85	75.09
##	AVG_AMT_PER_CSH_WDL_TXN	26.68	38.33	33.33	85.45
##	AMT_BR_CSH_WDL_DR 2	6.66 33	.93	33.12	86.13
##	AVG_AMT_PER_ATM_TXN 2	1.40 22	.50	26.27	82.69
##	AMT_ATM_DR 2	1.37 21	.45	26.17	84.56
##	NO_OF_L_DR_TXNS 2	0.64 22	.74	22.81	58.80
##	NO_OF_BR_CSH_WDL_DR_TXN	S 20.13	27.91	25.25	43.80
##	NO_OF_CHQ_DR_TXNS	19.63	21.94	22.17	36.75
##	GENDER	17.80	20.62	20.45	20.53
##	FLG_HAS_OLD_LOAN	17.65	25.31	24.81	14.80
##	AMT_NET_DR	17.46	19.72	20.92	61.53
##	NO_OF_ATM_DR_TXNS	16.90	6.78	17.50	26.22
##	AVG_AMT_PER_NET_TXN	16.40	18.94	20.21	62.40
##	FLG_HAS_ANY_CHGS	15.53	21.60	20.47	13.27
##	NO_OF_NET_DR_TXNS	13.95	17.61	16.37	21.00
##	ACC_TYPE	13.67	12.47	16.04	12.84
##	FLG_HAS_NOMINEE	13.12	18.45	18.46	9.91
##	AMT_MOB_DR	13.00	15.82	16.38	39.44
##	AVG_AMT_PER_MOB_TXN	11.85	16.55	15.11	39.16
##	NO_OF_OW_CHQ_BNC_TXNS	9.37	19.07	17.18	8.43
##	NO_OF_IW_CHQ_BNC_TXNS	8.95	17.50	17.68	8.00
##	NO_OF_MOB_DR_TXNS	7.64	8.10	8.78	9.76
##	AMT_MIN_BAL_NMC_CHGS	5.60	10.04	9.89	2.90
##	AMT_OTH_BK_ATM_USG_CHGS	1.34	4.32	3.20	1.37
##	random	-1.49	-0.61	-1.60	57.38

The variable importance order (Top 10) on the basis of **Mean Decrease Accuracy** would be as follows:

##	0 1	MeanDecreaseAccuracy	MeanDecreaseGini
## AGE_BKT	36.41 49.59	47.73	88.57
## LEN_OF_RLTN_IN_MNTH	31.94 44.77	43.96	99.28
## BALANCE	35.16 43.35	43.08	121.90
## OCCUPATION	36.56 41.67	42.80	65.24
## AGE	32.62 39.85	42.05	75.89
## SCR	33.89 42.89	41.49	117.55
## AMT_L_DR	34.80 29.52	40.10	102.69
## HOLDING_PERIOD	30.52 37.74	37.31	97.33
## NO_OF_L_CR_TXNS	31.50 29.55	36.66	96.31
## TOT_NO_OF_L_TXNS	29.70 24.42	34.84	94.60

Also, the variable importance order (Top 10) on the basis of **Mean Decrease Gini** would be as follows:

##	0 1	MeanDecreaseAccuracy	MeanDecreaseGini
## BALANCE	35.16 43.35	43.08	121.90
## SCR	33.89 42.89	41.49	117.55
## AMT_L_DR	34.80 29.52	40.10	102.69
## LEN_OF_RLTN_IN_MNTH	31.94 44.77	43.96	99.28
## HOLDING_PERIOD	30.52 37.74	37.31	97.33

## NO_OF_L_CR_TXNS	31.50 29.55	36.66	96.31
## TOT_NO_OF_L_TXNS	29.70 24.42	34.84	94.60
## AGE_BKT	36.41 49.59	47.73	88.57
## AMT_BR_CSH_WDL_DR	26.66 33.93	33.12	86.13
## AVG_AMT_PER_CSH_WDL	_TXN 26.68 38.33	33.33	85.45

6.3 Optimal mtry value

In the random forests literature, the number of variables available for splitting at each tree node is referred to as the **mtry parameter.**

The optimum number of variables is obtained using tuneRF function as follows:

Output: OOB Error Vs Mtry:

As can be seen, the optimum number of Variables is 28.

6.4 Performance Measures on Training Data Set

The following model performance measures will be calculated on the training set to gauge the goodness of the model:

- Rank Ordering
- KS
- Area Under Curve (AUC)
- Gini Coefficient
- Classification Error

6.4.1 Model Performance Measure - Rank Ordering

Rank Ordering as model performance measures helps:

- Assess the ability of the model to relatively rank the customers
- How well the model separates the Responder Class from the Non-Responder
- Track the utility of the model on an ongoing basis

The rank order table is provided below:

Sr. No.	deciles	cnt	cnt_resp	cnt_ non_resp	rrate	cum_ resp	cum_ non_resp	cum_ rel_resp	cum_rel_ non_resp	ks
1	10	1410	1022	388	72%	1022	388	59%	3%	0.56
2	9	1415	464	951	33%	1486	1339	86%	11%	0.75
3	8	1492	168	1324	11%	1654	2663	96%	22%	0.74
4	7	1436	46	1390	3%	1700	4053	98%	33%	0.65
5	6	1300	13	1287	1%	1713	5340	99%	44%	0.55
6	5	1446	12	1434	1%	1725	6774	100%	55%	0.45
7	4	1454	2	1452	0%	1727	8226	100%	67%	0.33
8	3	1358	1	1357	0%	1728	9583	100%	78%	0.22
9	2	2689	0	2689	0%	1728	12272	100%	100%	0

Interpretation:

- The baseline Response Rate is 12.34%, whereas the response rate in top two deciles is 72% and 33% respectively.
- With top 2 deciles, the KS is 72%, indicating it to be a good model.

6.4.2 Model Performance Measure - KS and Area under Curve

The KS & AUC values are provided below:

Measure	Value
KS	76.79%
Area Under Curve	94.97%

The AUC value above 90% indicates the good performance of the model.

Graphical representation of the Area Under Curve is as follows:

6.4.3 Model Performance Measure - Gini Coefficient

The Gini Coefficient is the ratio of the area between the line of perfect equality and the observed Lorenz curve to the area between the line of perfect equality and the line of perfect inequality. The higher the coefficient, the more unequal the distribution is.

Gini coefficient can be straight away derived from the AUC ROC number.

Gini above 60% is a good model.

For our given dataset and the model we built, the Gini Coefficient is 72.29%, indicating a robust model.

6.4.4 Model Performance Measure – Confusion Matrix

A confusion matrix is an N X N matrix, where N is the number of classes being predicted. For the problem in hand, we have N=2, and hence we get a 2 X 2 matrix.

Few performance parameters we can obtain with the help of confusion matrix are as follows:

 Accuracy: the proportion of the total number of predictions that were correct.

- **Positive Predictive Value or Precision:** the proportion of positive cases that were correctly identified.
- **Negative Predictive Value:** the proportion of negative cases that were correctly identified.
- **Sensitivity or Recall:** the proportion of actual positive cases which are correctly identified.
- **Specificity:** the proportion of actual negative cases which are correctly identified.

Confusion Matrix		Tar	get		
		Positive	Negative		
Model	Positive	а	b	Positive Predictive Value a/(a	
iviodei	Negative	С	d	Negative Predictive Value	d/(c+d)
·		Sensitivity	Specificity	A (d) ((b d)	
		a/(a+c)	d/(b+d)	Accuracy = (a+d)/(a+b+c+d	

Confusion Matrix for our given Model is as follows:

```
## predict.class
## TARGET 0 1
## 0 12262 10
## 1 1533 195
```

```
Accuracy = (12262+195)/(12262+10+1533+195) = 88.97\%
Classification Error Rate = 1- Accuracy = 11%.
```

The lower the classification error rate, higher the model accuracy, resulting in a better model. The classification error rate can be reduced if there were more independent variables were present for modeling.

6.4.5 Model Performance Measure – Summary

The summary of the various model performance measures on the training set are as follows:

Measure	Result
KS	76.79%
Area Under Curve	94.97%
Gini Coefficient	72.29%
Accuracy	88.97%
Classification Error Rate	11.00%

The model observed to perform above expectations on majority of the model performance measures, indicating it to be a good model.

6.5 Performance Measures on Validation Data Set

The following model performance measures will be calculated on the validation data set to gauge the goodness of the model:

- Rank Ordering
- KS
- Area Under Curve (AUC)
- Gini Coefficient
- Classification Error

6.5.1 Model Performance Measure - Rank Ordering

Deciles	cnt	cnt_resp	cnt_ non_resp	rrate	cum_resp	cum_ non_resp	cum_ rel_resp	cum_rel_ non_resp	ks
10	604	332	272	55%	332	272	42%	5%	0.37
9	593	193	400	33%	525	672	67%	13%	0.54
8	612	115	497	19%	640	1169	82%	22%	0.6
7	612	56	556	9%	696	1725	89%	33%	0.56
6	706	49	657	7%	745	2382	95%	46%	0.49
5	669	24	645	4%	769	3027	98%	58%	0.4
4	438	9	429	2%	778	3456	99%	66%	0.33
3	797	4	793	1%	782	4249	100%	81%	0.19
2	969	2	967	0%	784	5216	100%	100%	0

Interpretation:

- The baseline Response Rate is 12.34%, whereas the response rate in top three deciles is 55%, 33%, 19% respectively.
- With top 3 deciles, the KS is 60%, indicating it to be a good model.

6.5.2 Model Performance Measure - KS and Area under Curve

The KS & AUC values are provided below:

Measure	Value
KS	59.35%
Area Under Curve	87.50%

The AUC value around 90% indicates the good performance of the model.

Graphical representation of the Area Under Curve is as follows:

6.5.3 Model Performance Measure - Gini Coefficient

For our given dataset and the model we built, the Gini Coefficient on testing data set is 71.18%, indicating a robust model.

6.5.4 Model Performance Measure - Confusion Matrix

Confusion Matrix for our given Model on testing dataset is as follows:

```
## predict.class
## TARGET 0 1
## 0 5208 8
## 1 730 54
```

```
Accuracy = (5208+54)/(5208+8+730+54) = 87.58\%
Classification Error Rate = 1- Accuracy = 12.41%.
```

6.5.5 Model Performance Measure – Summary

The summary of the various model performance measures on the training set are as follows:

	_
Measure	Result
KS	59.35%
Area Under Curve	87.50
Gini Coefficient	71.18

Accuracy	87.58%
Classification Error Rate	12.41%

The model observed to perform above expectations on majority of the model performance measures, indicating it to be a good model.

6.6 Random Forest - Conclusion

Comparative Summary of the Random Forest Model on Training and Testing Dataset is as follows:

Measure	Result on Training DS	Result on Testing DS	% Deviation
KS	76.79%	59.35%	22.71%
Area Under Curve	94.97%	87.50%	7.87%
Gini Coefficient	72.29%	71.18%	1.54%
Accuracy	88.97%	87.58%	1.56%
Classification Error Rate	11.00%	12.41%	-12.82%

It can be observed that most of the Model Performance values for Training & Testing sets are within the maximum tolerance deviation of +/- 10%. Hence, the model is not over-fitting.

At an overall level, the model observed to perform above expectations on the various model performance measures such as KS value > 40, Gini coefficient value > 50 etc.

The good performance on the model performance measures indicates good prediction making capabilities of the developed Random Forest model.

7 Model Building – Artificial Neural Network

Artificial neural networks (ANNs) are statistical models directly inspired by, and partially modeled on biological neural networks. They are capable of modeling and processing nonlinear relationships between inputs and outputs in parallel.

Artificial neural networks are characterized by containing adaptive weights along paths between neurons that can be tuned by a learning algorithm that learns from observed data in order to improve the model. In addition to the learning algorithm itself, one must choose an appropriate cost function.

The cost function is what's used to learn the optimal solution to the problem being solved. This involves determining the best values for all of the tuneable model parameters, with neuron path adaptive weights being the primary target, along with algorithm tuning parameters such as the learning rate. It's usually done through optimization techniques such as gradient descent or stochastic gradient descent.

These optimization techniques basically try to make the ANN solution be as close as possible to the optimal solution, which when successful means that the ANN is able to solve the intended problem with high performance.

7.1 Creation of Dummy variables

Create Dummy Variables for Categorical Variables.

```
# Create Dummy Variables for Categorical Variables
#
# Gender
GEN.matrix <- model.matrix(~ GENDER - 1, data = NNInput)
NNInput <- data.frame(NNInput, GEN.matrix)
#
# Occupation
occ.matrix <- model.matrix(~ OCCUPATION - 1, data = NNInput)
NNInput <- data.frame(NNInput, occ.matrix)
#
# AGE_BKT
AGEBKT.matrix <- model.matrix(~ AGE_BKT - 1, data = NNInput)
NNInput <- data.frame(NNInput, AGEBKT.matrix)
#
# ACC_TYPE
ACCTYP.matrix <- model.matrix(~ ACC_TYPE - 1, data = NNInput)
NNInput <- data.frame(NNInput, ACCTYP.matrix)
#
dim(NNInput)
## [1] 20000 56</pre>
```

7.2 Scaling of the variables

```
# Scaling the Dataset and Variables
#names(NN.train.data)
x <- subset(NN.train.data,</pre>
            select = c("AGE",
               "BALANCE",
               "SCR",
               "HOLDING PERIOD",
               "LEN OF RLTN IN MNTH",
               "NO_OF_L_CR_TXNS",
               "NO_OF_L_DR_TXNS",
               "TOT_NO_OF_L_TXNS",
               "NO_OF_BR_CSH_WDL_DR_TXNS",
               "NO_OF_ATM_DR_TXNS",
               "NO OF NET DR TXNS"
               "NO OF MOB DR TXNS"
               "NO_OF_CHQ_DR_TXNS",
               "FLG_HAS_CC",
               "AMT_ATM_DR",
               "AMT_BR_CSH_WDL_DR",
               "AMT CHQ_DR",
               "AMT_NET_DR",
               "AMT_MOB_DR",
               "AMT_L_DR",
               "FLG HAS ANY CHGS",
               "AMT_OTH_BK_ATM_USG_CHGS",
               "AMT_MIN_BAL_NMC_CHGS",
               "NO_OF_IW_CHQ_BNC_TXNS",
               "NO_OF_OW_CHQ_BNC_TXNS",
               "AVG_AMT_PER_ATM_TXN",
               "AVG_AMT_PER_CSH_WDL_TXN",
               "AVG_AMT_PER_CHQ_TXN",
               "AVG_AMT_PER_NET_TXN",
               "AVG_AMT_PER_MOB_TXN",
               "FLG_HAS_NOMINEE",
               "FLG HAS OLD LOAN",
               "random",
               "GENDERF",
               "GENDERM",
               "GENDERO",
               "OCCUPATIONPROF",
               "OCCUPATIONSAL",
               "OCCUPATIONSELF.EMP",
               "OCCUPATIONSENP",
               "AGE_BKT.25",
               "AGE_BKT.50"
               "AGE_BKT26.30",
               "AGE_BKT31.35",
               "AGE_BKT36.40"
               "AGE BKT41.45",
               "AGE_BKT46.50",
               "ACC_TYPECA",
```

```
"ACC_TYPESA"
)

#

nn.devscaled <- scale(x)
nn.devscaled <- cbind(NN.train.data[2], nn.devscaled)
# names(nn.devscaled)
```

7.3 Building the Artificial Neural Network

```
nn2 <- neuralnet(formula = TARGET ~</pre>
                    AGE +
                    BALANCE +
                    SCR +
                    HOLDING_PERIOD +
                    LEN_OF_RLTN_IN_MNTH +
                    NO_OF_L_CR_TXNS +
                    NO_OF_L_DR_TXNS +
                    TOT_NO_OF_L_TXNS +
                    NO_OF_BR_CSH_WDL_DR_TXNS +
                    NO OF ATM DR TXNS +
                    NO_OF_NET_DR_TXNS +
                    NO_OF_MOB_DR_TXNS +
                    NO OF CHQ DR TXNS +
                    FLG HAS CC +
                    AMT_ATM_DR +
                    AMT_BR_CSH_WDL_DR +
                    AMT_CHQ_DR +
                    AMT_NET_DR +
                    AMT_MOB_DR +
                    AMT L DR +
                    FLG_HAS_ANY_CHGS +
                    AMT_OTH_BK_ATM_USG_CHGS +
                    AMT_MIN_BAL_NMC_CHGS +
                    NO_OF_IW_CHQ_BNC_TXNS +
                    NO_OF_OW_CHQ_BNC_TXNS +
                    AVG AMT PER ATM TXN +
                    AVG AMT PER CSH WDL TXN +
                    AVG_AMT_PER_CHQ_TXN +
                    AVG_AMT_PER_NET_TXN +
                    AVG AMT PER MOB TXN +
                    FLG HAS NOMINEE +
                    FLG_HAS_OLD_LOAN +
                    random +
                    GENDERF +
                    GENDERM +
                    GENDERO +
                    OCCUPATIONPROF +
                    OCCUPATIONSAL +
                    OCCUPATIONSELF.EMP +
                    OCCUPATIONSENP +
                    AGE_BKT.25 +
```

```
AGE BKT.50 +
  AGE_BKT26.30 +
  AGE_BKT31.35 +
  AGE_BKT36.40 +
  AGE_BKT41.45 +
  AGE BKT46.50 +
  ACC_TYPECA +
  ACC_TYPESA ,
data = nn.devscaled,
hidden = 3,
err.fct = "sse",
linear.output = FALSE,
lifesign = "full",
lifesign.step = 10,
threshold = 0.1,
stepmax = 2000
```

7.4 The Artificial Neural Network - Graphical Representation

7.5 Histogram of Probabilities in Training Dataset

7.6 Performance Measures on Training Data Set

The following model performance measures will be calculated on the training set to gauge the goodness of the model:

- Rank Ordering
- KS
- Area Under Curve (AUC)
- Gini Coefficient
- Classification Error

7.6.1 Model Performance Measure - Rank Ordering

The rank order table is provided below:

Sr. No.	deciles	cnt	cnt_ resp	cnt_ non_resp	rrate	cum_ resp	cum_ non_resp	cum_ rel_resp	cum_rel_ non_resp	ks
1	10	1400	549	851	0.39	549	851	0.32	0.07	0.25
2	9	1400	251	1149	0.18	800	2000	0.46	0.16	0.3
3	8	1400	251	1149	0.18	1051	3149	0.61	0.26	0.35
4	7	1400	228	1172	0.16	1279	4321	0.74	0.35	0.39
5	6	1400	62	1338	0.04	1341	5659	0.78	0.46	0.32
6	5	1400	74	1326	0.05	1415	6985	0.82	0.57	0.25
7	4	1400	72	1328	0.05	1487	8313	0.86	0.68	0.18
8	3	1400	96	1304	0.07	1583	9617	0.92	0.78	0.14

9	2	1400	85	1315	0.06	1668	10932	0.97	0.89	0.08
10	1	1400	60	1340	0.04	1728	12272	1	1	0

Interpretation:

- The baseline Response Rate is 12.34%, whereas the response rate in top three deciles is 39%, 18% and 18% respectively.
- With top 4 deciles, the KS is 39%, which is close to a good fitness model indicator..

7.6.2 Model Performance Measure - KS and Area under Curve

The KS & AUC values are provided below:

Measure	Value
KS	39%
Area Under Curve	73%

The AUC value of 73% indicates the good performance of the model.

Graphical representation of the Area Under Curve is as follows:

7.6.3 Model Performance Measure - Gini Coefficient

The Gini Coefficient is the ratio of the area between the line of perfect equality and the observed Lorenz curve to the area between the line of

perfect equality and the line of perfect inequality. The higher the coefficient, the more unequal the distribution is.

Gini coefficient can be straight away derived from the AUC ROC number.

Gini above 60% is a good model.

For our given dataset and the model we built, the Gini Coefficient is 54.70%.

7.6.4 Model Performance Measure - Confusion Matrix

Confusion Matrix for our given Model is as follows:

```
## predict.class
## TARGET 0 1
## 0 11981 291
## 1 1296 432
```

```
Accuracy = (11981+432)/(11981+291+1296+432) = 88.66\%
Classification Error Rate = 1- Accuracy = 11%.
```

The lower the classification error rate, higher the model accuracy, resulting in a better model. The classification error rate can be reduced if there were more independent variables were present for modeling.

7.6.5 Model Performance Measure - Summary

The summary of the various model performance measures on the training set are as follows:

Measure	Result
KS	39%
Area Under Curve	73%
Gini Coefficient	54.70%
Accuracy	88.66%
Classification Error Rate	11.00%

The model observed to perform at par expectations on majority of the model performance measures, indicating it to be a good model, with scope for improvement.

7.7 Performance Measures on Validation Data Set

The following model performance measures will be calculated on the validation data set to gauge the goodness of the model:

- Rank Ordering
- KS
- Area Under Curve (AUC)
- Gini Coefficient

Classification Error

7.7.1 Model Performance Measure - Rank Ordering

deciles	cnt	cnt_ resp	cnt_ non_resp	rrate	cum_ resp	cum_ non_resp	cum_ rel_resp	cum_rel_ non_resp	ks
10	600	226	374	38%	226	374	29%	7%	0.22
9	600	118	482	20%	344	856	44%	16%	0.28
8	600	103	497	17%	447	1353	57%	26%	0.31
7	600	103	497	17%	550	1850	70%	35%	0.35
6	600	53	547	9%	603	2397	77%	46%	0.31
5	600	48	552	8%	651	2949	83%	57%	0.26
4	600	42	558	7%	693	3507	88%	67%	0.21
3	600	33	567	6%	726	4074	93%	78%	0.15
2	600	35	565	6%	761	4639	97%	89%	0.08
1	600	23	577	4%	784	5216	100%	100%	0

Interpretation:

- The baseline Response Rate is 12.34%, whereas the response rate in top three deciles is 38%, 20%, 17% respectively.
- With top 4 deciles, the KS is 35%, indicating scope for improvement.

7.7.2 Model Performance Measure - KS and Area under Curve

The KS & AUC values are provided below:

Measure	Value
KS	35.45%
Area Under Curve	72.13%

The AUC value around 72% indicates the good performance of the model, with further scope for improvement.

Graphical representation of the Area Under Curve is as follows:

7.7.3 Model Performance Measure - Gini Coefficient

For our given dataset and the model we built, the Gini Coefficient on testing data set is 54.62%.

7.7.4 Model Performance Measure - Confusion Matrix

Confusion Matrix for our given Model on testing dataset is as follows:

```
## predict.class
## TARGET 0 1
## 0 5065 151
## 1 639 145
```

```
Accuracy = (5065+145)/(5065+145+151+639) = 86.83\%
Classification Error Rate = 1- Accuracy = 13.16%.
```

7.7.5 Model Performance Measure - Summary

The summary of the various model performance measures on the training set are as follows:

Measure	Result
KS	35.45%

Area Under Curve	72.13%
Gini Coefficient	54.62%
Accuracy	86.83%
Classification Error Rate	13.16%

The model observed to perform "normal" on majority of the model performance measures, indicating it to be a good model, with scope for improvement.

7.8 Artificial Neural Network - Conclusion

Comparative Summary of the Neural Network Model on Training and Testing Dataset is as follows:

Measure	Result on Training DS	Result on Testing DS	% Deviation	
KS	39%	35.45%	9.10%	
Area Under Curve	73%	72.13%	1.19%	
Gini Coefficient	54.70%	54.62%	0.14%	
Accuracy	88.66%	86.83%	2.06%	
Classification Error Rate	11.00%	13.16%	-19.63%	

It can be observed that most of the Model Performance values for Training & Testing sets are within the maximum tolerance deviation of +/- 10%. Hence, the model is not over-fitting.

At an overall level, the model observed to perform "normal" on the various model performance measures such as KS value close to 40, Gini coefficient value > 50 etc.

The good performance on the model performance measures indicates good prediction making capabilities of the developed Neural Network model.

8 Model Comparison

The main objective of the project was to develop a predictive model to predict if MyBank customers will respond positively to a promotion or an offer using tools of Machine Learning. In this context, the key parameter for model evaluation was 'Accuracy', i.e., the proportion of the total number of predictions that were correct (i.e. % of the customers that were correctly predicted).

The predictive models was be developed using the following Machine Learning techniques:

- Classification Tree CART
- Random Forest
- Neural Network

The snap shot of the performance of all the models on accuracy, over-fitting and other model performance measures is provided below:

_	CART			Random Forest			Artificial Neural Network		
Measure	Training DS	Testing DS	% Dev.	Training DS	Testing DS	% Dev.	Training DS	Testing DS	% Dev
KS	71%	49%	31%	77%	59%	23%	39%	35%	9%
Area Under Curve	90%	78%	14%	95%	88%	8%	73%	72%	1%
Gini Coefficient	40%	54%	-35%	72%	71%	2%	55%	55%	0%
Accuracy	85%	78%	8%	89%	88%	2%	89%	87%	2%
Classification Error Rate	15%	22%	50%	11%	12%	-13%	11%	13%	-20%

Interpretation:

- The CART method has given poor performance compared to Random Forest and ANN. Looking at the percentage deviation between Training and Testing Dataset, it looks like the Model is over fit.
- The Random Forest method has the best performance among all the three models. The percentage deviation between Training and Testing Dataset also is reasonably under control, suggesting a robust model.
- Neural Network has given relatively secondary performance compared to Random Forest, however, better than CART. However, the percentage deviation between Training and Testing Data set is minimal among three models.
- Random Forest seems to be the overall winner.

9 Appendix – Sample Source Code

```
#
  Mini Project 4: Supervised Machine Learning
#
  1. Pre-Processing for Model Building
#
  2. Model Building: CART
#
  3. Model Building: Random Forest
  4. Model Building: Neural Network
  5. Model Comparison: CART VS RF VS NN
# 1. Environment Set up and Data Import
# Install Libraries and Packages
library(caret)
library(rpart)
#install.packages("rpart.plot")
library(rpart.plot)
library(randomForest)
#
# Setup Working Directory
setwd("D:\\04 Module 4 Machine Learning\\04 Week 4")
# Read Input File
PL X SELL=read.csv("PL XSELL.csv")
attach(PL X SELL)
# detach(PL X SELL)
# 2. Exploratory Data Analysis
# Find out Total Number of Rows and Columns
dim(PL X SELL)
# Find out Names of the Columns (Features)
names(PL_X_SELL)
# Find out Class of each Feature, along with internal structure
str(PL X SELL)
# Check top 6 and bottom 6 Rows of the Dataset
#head(PL X SELL)
#tail(PL_X_SELL)
# head(PL X SELL,10) # To obtain desired number of rows, here 10.
#Check for Missing Values
colSums(is.na(PL_X_SELL))
table(TARGET)
prop.table(table(TARGET))
library(plotrix)
```

```
pie3D(prop.table((table(PL X SELL$TARGET))),
     main='Resp Vs Non Resp in Input Data set',
     #explode=0.1,
     labels=c("Non Resp", "Resp"),
     col = c("Turquoise", "Medium Sea Green")
)
#prop.table(table(GENDER))
#prop.table(table(GENDER, TARGET), margin = 1)
# Provide Summary statistics of a Dataset.
summary(PL X SELL)
#Creating Training and Testing Datasets
set.seed(111)
trainIndex <- createDataPartition(TARGET,</pre>
                                 p = .7
                                 list = FALSE,
                                 times = 1)
train.data <- PL X SELL[trainIndex,]</pre>
test.data <- PL_X_SELL[-trainIndex,]</pre>
dim(train.data)
dim(test.data)
#Check if distribution of partition data is correct
prop.table((table(train.data$TARGET)))
#0.8749286 0.1250714
prop.table((table(test.data$TARGET)))
#0.8731667 0.1268333
# So the data is well distributed in the training and validation sets
# if not change the seed used above
library(plotrix)
par(mfrow=c(1,2))
pie3D(prop.table((table(train.data$TARGET))),
     main='Resp Vs Non Resp in Training Data set',
     #explode=0.1,
     labels=c("Non Resp", "Resp"),
     col = c("Turquoise", "Medium Sea Green")
pie3D(prop.table((table(test.data$TARGET))),
     main='Resp Vs Non Resp in Testing Data set',
     #explode=0.1,
     labels=c("Non Resp", "Resp"),
     col = c("Aquamarine", "Dark Sea Green")
# MODEL BUILDING - CART.
```

```
# Setting the control paramter inputs for rpart.
r.ctrl = rpart.control(minsplit=100,
                       minbucket = 10,
                       cp = 0, xval = 10)
# Build the Model on Training Dataset.
# Exclude Columns Customer ID and Acct Opening Date.
names(cart.train)
m1 <- rpart(formula = TARGET ~ .,</pre>
            data = cart.train[,-c(1,11)], method = "class",
             data = cart.train[,-c(1)], method = "class",
#
            control = r.ctrl)
m1
## install.packages("rattle")
## install.packages("RColorBrewer")
library(rattle)
library(RColorBrewer)
# fancyRpartPlot(m1)
printcp(m1)
plotcp(m1)
# Pruning the Tree
## Pruning Code
ptree<- prune(m1, cp= 0.0017 ,"CP")</pre>
printcp(ptree)
fancyRpartPlot(ptree, uniform=TRUE, main="Pruned Classification Tree")
fancyRpartPlot(ptree,
               uniform = TRUE.
               main = "Final Tree",
               palettes = c("Blues", "Oranges"))
# Measure Model Performance
cart.train$predict.class <- predict(ptree, cart.train, type="class")</pre>
cart.train$predict.score <- predict(ptree, cart.train, type="prob")</pre>
# head(cart.train)
## deciling code
decile <- function(x){</pre>
  deciles <- vector(length=10)</pre>
  for (i in seq(0.1,1,.1)){
    deciles[i*10] <- quantile(x, i, na.rm=T)</pre>
  }
  return (
    ifelse(x<deciles[1], 1,</pre>
           ifelse(x<deciles[2], 2,
                  ifelse(x<deciles[3], 3,
                         ifelse(x<deciles[4], 4,
                                ifelse(x<deciles[5], 5,
```

```
ifelse(x<deciles[6], 6,
                                                  ifelse(x<deciles[7], 7,
                                                          ifelse(x<deciles[8],</pre>
8,
ifelse(x<deciles[9], 9, 10
                                                                 ))))))))))
}
class(cart.train$predict.score)
## deciling
cart.train$deciles <- decile(cart.train$predict.score[,2])</pre>
# View(cart.train)
## Ranking code
##install.packages("data.table")
##install.packages("scales")
library(data.table)
library(scales)
tmp_DT = data.table(cart.train)
rank <- tmp_DT[, list(</pre>
  cnt = length(TARGET),
  cnt resp = sum(TARGET),
  cnt_non_resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
rank$rrate <- round(rank$cnt resp / rank$cnt,4);</pre>
rank$cum resp <- cumsum(rank$cnt resp)</pre>
rank$cum non resp <- cumsum(rank$cnt non resp)</pre>
rank$cum_rel_resp <- round(rank$cum_resp / sum(rank$cnt_resp),4);</pre>
rank$cum rel non resp <- round(rank$cum non resp /</pre>
sum(rank$cnt_non_resp),4);
rank$ks <- abs(rank$cum_rel_resp - rank$cum_rel_non_resp) * 100;</pre>
rank$rrate <- percent(rank$rrate)</pre>
rank$cum rel resp <- percent(rank$cum rel resp)</pre>
rank$cum_rel_non_resp <- percent(rank$cum_rel_non_resp)</pre>
View(rank)
#install.packages("ROCR")
#install.packages("ineq")
library(ROCR)
library(ineq)
pred <- prediction(cart.train$predict.score[,2], cart.train$TARGET)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
plot(perf)
KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])</pre>
auc <- performance(pred, "auc");</pre>
auc <- as.numeric(auc@y.values)</pre>
gini = ineq(cart.train$predict.score[,2], type="Gini")
with(cart.train, table(TARGET, predict.class))
auc
KS
```

```
gini
View(rank)
## Syntax to get the node path
tree.path <- path.rpart(ptree, node = c(2, 12))</pre>
nrow(cart.test)
## Scoring Holdout sample
cart.test$predict.class <- predict(ptree, cart.test, type="class")</pre>
cart.test$predict.score <- predict(ptree, cart.test, type="prob")</pre>
cart.test$deciles <- decile(cart.test$predict.score[,2])</pre>
# View(cart.test)
# Ranking code
tmp DT = data.table(cart.test)
h_rank <- tmp_DT[, list(</pre>
  cnt = length(TARGET),
  cnt resp = sum(TARGET),
  cnt_non_resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
h_rank$rrate <- round(h_rank$cnt_resp / h_rank$cnt,4);</pre>
h_rank$cum_resp <- cumsum(h_rank$cnt_resp)</pre>
h_rank$cum_non_resp <- cumsum(h_rank$cnt_non resp)</pre>
h_rank$cum_rel_resp <- round(h_rank$cum_resp / sum(h_rank$cnt_resp),4);</pre>
h rank$cum rel non resp <- round(h rank$cum non resp /
sum(h_rank$cnt_non_resp),4);
h_rank$ks <- abs(h_rank$cum_rel_resp - h_rank$cum_rel_non_resp)*100;</pre>
h_rank$rrate <- percent(h_rank$rrate)</pre>
h_rank$cum_rel_resp <- percent(h_rank$cum_rel_resp)</pre>
h rank$cum rel non resp <- percent(h rank$cum rel non resp)</pre>
View(h rank)
pred <- prediction(cart.test$predict.score[,2], cart.test$TARGET)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])</pre>
auc <- performance(pred, "auc");</pre>
auc <- as.numeric(auc@y.values)</pre>
gini = ineq(cart.test$predict.score[,2], type="Gini")
with(cart.test, table(TARGET, predict.class))
auc
KS
gini
# Oversampling the data (using ROSE Algorithm)
library(ROSE)
table(cart.train$TARGET)
```

```
N=12272*2
cart.train.over <- ovun.sample(TARGET~.,data=cart.train,</pre>
                             method="over", N=24544)$data
table(cart.train.over$TARGET)
# MODEL BUILDING - CART - With Oversampling
# Setting the control paramter inputs for rpart.
r.ctrl = rpart.control(minsplit=100,
                     minbucket = 20,
                     cp = 0, xval = 10)
# Build the Model on Training Dataset.
# Exclude Columns Customer ID and Acct Opening Date.
names(cart.train.over)
m1 <- rpart(formula = TARGET ~ .,</pre>
           data = cart.train.over[,-c(1,11,41,42,43)], method = "class",
                       data = cart.train.over[,-c(1)], method = "class",
           control = r.ctrl)
m1
## install.packages("rattle")
## install.packages("RColorBrewer")
library(rattle)
##install.packages
library(RColorBrewer)
# fancyRpartPlot(m1)
printcp(m1)
plotcp(m1)
# Pruning the Tree
## Pruning Code
ptree<- prune(m1, cp= 0.00051 ,"CP")</pre>
printcp(ptree)
fancyRpartPlot(ptree, uniform=TRUE, main="Pruned Classification Tree")
fancyRpartPlot(ptree,
              uniform = TRUE,
              main = "Final Tree",
              palettes = c("Blues", "Oranges"))
# Measure Model Performance
cart.train.over$predict.class <- predict(ptree, cart.train.over,</pre>
type="class")
cart.train.over$predict.score <- predict(ptree, cart.train.over,</pre>
type="prob")
# head(cart.train.over)
```

```
## deciling code
decile <- function(x){</pre>
  deciles <- vector(length=10)</pre>
  for (i in seq(0.1,1,.1)){
    deciles[i*10] <- quantile(x, i, na.rm=T)</pre>
  return (
    ifelse(x<deciles[1], 1,</pre>
            ifelse(x<deciles[2], 2,
                   ifelse(x<deciles[3], 3,
                           ifelse(x<deciles[4], 4,
                                   ifelse(x<deciles[5], 5,</pre>
                                           ifelse(x<deciles[6], 6,
                                                  ifelse(x<deciles[7], 7,</pre>
                                                          ifelse(x<deciles[8],
8,
ifelse(x<deciles[9], 9, 10
                                                                  ))))))))))
}
class(cart.train.over$predict.score)
## deciling
cart.train.over$deciles <- decile(cart.train.over$predict.score[,2])</pre>
View(cart.train.over)
## Ranking code
##install.packages("data.table")
##install.packages("scales")
library(data.table)
library(scales)
tmp_DT = data.table(cart.train.over)
rank <- tmp DT[, list(</pre>
  cnt = length(TARGET),
  cnt_resp = sum(TARGET),
  cnt_non_resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
rank$rrate <- round(rank$cnt resp / rank$cnt,4);</pre>
rank$cum_resp <- cumsum(rank$cnt_resp)</pre>
rank$cum non resp <- cumsum(rank$cnt non resp)</pre>
rank$cum_rel_resp <- round(rank$cum_resp / sum(rank$cnt_resp),4);</pre>
rank$cum_rel_non_resp <- round(rank$cum_non_resp /</pre>
sum(rank$cnt_non_resp),4);
rank$ks <- abs(rank$cum rel resp - rank$cum rel non resp) * 100;</pre>
rank$rrate <- percent(rank$rrate)</pre>
rank$cum_rel_resp <- percent(rank$cum_rel_resp)</pre>
rank$cum_rel_non_resp <- percent(rank$cum_rel_non_resp)</pre>
View(rank)
#install.packages("ROCR")
#install.packages("ineq")
library(ROCR)
library(ineq)
```

```
pred <- prediction(cart.train.over$predict.score[,2],</pre>
cart.train.over$TARGET)
perf <- performance(pred, "tpr", "fpr")</pre>
plot(perf)
KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])</pre>
auc <- performance(pred, "auc");</pre>
auc <- as.numeric(auc@y.values)</pre>
gini = ineq(cart.train.over$predict.score[,2], type="Gini")
with(cart.train.over, table(TARGET, predict.class))
auc
KS
gini
View(rank)
## Syntax to get the node path
tree.path <- path.rpart(ptree, node = c(2, 12))</pre>
nrow(cart.test)
## Scoring Holdout sample
cart.test$predict.class <- predict(ptree, cart.test, type="class")</pre>
cart.test$predict.score <- predict(ptree, cart.test, type="prob")</pre>
cart.test$deciles <- decile(cart.test$predict.score[,2])</pre>
# View(cart.test)
# Ranking code
tmp_DT = data.table(cart.test)
h_rank <- tmp_DT[, list(</pre>
  cnt = length(TARGET),
  cnt resp = sum(TARGET),
  cnt non resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
h rank$rrate <- round(h rank$cnt resp / h rank$cnt,4);</pre>
h rank$cum resp <- cumsum(h rank$cnt resp)</pre>
h_rank$cum_non_resp <- cumsum(h_rank$cnt_non_resp)</pre>
h rank$cum rel resp <- round(h rank$cum resp / sum(h rank$cnt resp),4);
h_rank$cum_rel_non_resp <- round(h_rank$cum_non_resp /</pre>
sum(h_rank$cnt_non_resp),4);
h_rank$ks <- abs(h_rank$cum_rel_resp - h_rank$cum_rel_non_resp)*100;</pre>
h rank$rrate <- percent(h rank$rrate)</pre>
h_rank$cum_rel_resp <- percent(h_rank$cum_rel_resp)</pre>
h_rank$cum_rel_non_resp <- percent(h_rank$cum_rel_non_resp)</pre>
View(h_rank)
pred <- prediction(cart.test$predict.score[,2], cart.test$TARGET)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])
auc <- performance(pred, "auc");</pre>
auc <- as.numeric(auc@y.values)</pre>
```

```
gini = ineq(cart.test$predict.score[,2], type="Gini")
with(cart.test, table(TARGET, predict.class))
auc
KS
gini
# MODEL BUILDING - RANDOM FOREST
#install.packages("randomForest")
library(randomForest)
# Copy datasets for RF
rf.train <- train.data
rf.test <- test.data
dim(rf.train)
dim(rf.test)
names(rf.train)
str(rf.train)
# Random Forest
RF = randomForest( as.factor(TARGET) ~ .,
                 data = rf.train[, -c(1, 11)],
                 ntree = 500, mtry = 7, nodesize = 100,
                 importance = TRUE )
print(RF)
dev.off()
plot(RF, main="")
legend("topright", c("00B", "0", "1"), text.col=1:6, lty=1:3, col=1:3)
title(main="Error Rates Random Forest PL_X_SELL Training data")
RF$err.rate
# List the importance of the variables.
impVar <- round(randomForest::importance(RF), 2)</pre>
# impVar[order(impVar[,3], decreasing=TRUE),]
# impVar[order(impVar[,4], decreasing=TRUE),]
impVar[order(impVar[,1], decreasing=TRUE),]
# Tuning Random Forest
tRF \leftarrow tuneRF(x = rf.train[, -c(1,2,11)],
            y=as.factor(rf.train$TARGET),
            mtryStart = 6, # Approx. Sqrt of Tot. No of Variables
            ntreeTry=51,
            stepFactor = 1.5,
            improve = 0.0001,
            trace=TRUE,
```

```
plot = TRUE,
               doBest = TRUE,
               nodesize = 100,
               importance=TRUE
)
# Scoring syntax
rf.train$predict.class <- predict(tRF, rf.train, type="class")</pre>
rf.train$predict.score <- predict(tRF, rf.train, type="prob")</pre>
# head(rf.train)
# class(rf.train$predict.score)
# deciling code
decile <- function(x){</pre>
  deciles <- vector(length=10)</pre>
  for (i in seq(0.1,1,.1)){
    deciles[i*10] <- quantile(x, i, na.rm=T)</pre>
  return (
    ifelse(x<deciles[1], 1,</pre>
            ifelse(x<deciles[2], 2,</pre>
                    ifelse(x<deciles[3], 3,
                           ifelse(x<deciles[4], 4,
                                   ifelse(x<deciles[5], 5,
                                           ifelse(x<deciles[6], 6,
                                                  ifelse(x<deciles[7], 7,</pre>
                                                          ifelse(x<deciles[8],
8,
ifelse(x<deciles[9], 9, 10
                                                                  ))))))))))
}
rf.train$deciles <- decile(rf.train$predict.score[,2])
library(data.table)
tmp_DT = data.table(rf.train)
rank <- tmp_DT[, list(</pre>
  cnt = length(TARGET),
  cnt_resp = sum(TARGET),
  cnt_non_resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
rank$rrate <- round (rank$cnt resp / rank$cnt,2);</pre>
rank$cum resp <- cumsum(rank$cnt resp)</pre>
rank$cum_non_resp <- cumsum(rank$cnt_non_resp)</pre>
rank$cum_rel_resp <- round(rank$cum_resp / sum(rank$cnt_resp),2);</pre>
rank$cum_rel_non_resp <- round(rank$cum_non_resp /</pre>
sum(rank$cnt non resp),2);
rank$ks <- abs(rank$cum rel resp - rank$cum rel non resp);</pre>
library(scales)
rank$rrate <- percent(rank$rrate)</pre>
rank$cum rel resp <- percent(rank$cum rel resp)</pre>
```

```
rank$cum_rel_non_resp <- percent(rank$cum_rel_non_resp)</pre>
View(rank)
# rank
# Baseline Response Rate
sum(rf.train$TARGET) / nrow(rf.train)
library(ROCR)
pred <- prediction(rf.train$predict.score[,2], rf.train$TARGET)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
plot(perf)
KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])</pre>
KS
## Area Under Curve
auc <- performance(pred, "auc");</pre>
auc <- as.numeric(auc@y.values)</pre>
auc
## Gini Coefficient
library(ineq)
gini = ineq(rf.train$predict.score[,2], type="Gini")
gini
## Classification Error
with(rf.train, table(TARGET, predict.class))
# Model Performance on Testing Data Set
# Rank Order
## Scoring syntax
rf.test$predict.class <- predict(tRF, rf.test, type="class")</pre>
rf.test$predict.score <- predict(tRF, rf.test, type="prob")</pre>
rf.test$deciles <- decile(rf.test$predict.score[,2])</pre>
tmp_DT = data.table(rf.test)
h_rank <- tmp_DT[, list(</pre>
 cnt = length(TARGET),
 cnt resp = sum(TARGET),
 cnt non resp = sum(TARGET == 0)) ,
 by=deciles][order(-deciles)]
h rank$rrate <- round (h_rank$cnt_resp / h_rank$cnt,2);</pre>
h_rank$cum_resp <- cumsum(h_rank$cnt_resp)</pre>
h_rank$cum_non_resp <- cumsum(h_rank$cnt_non_resp)</pre>
h rank$cum rel resp <- round(h rank$cum resp / sum(h rank$cnt resp),2);
h rank$cum rel non resp <- round(h rank$cum non resp /
sum(h rank$cnt non resp),2);
h_rank$ks <- abs(h_rank$cum_rel_resp - h_rank$cum_rel_non_resp);</pre>
```

```
library(scales)
h_rank$rrate <- percent(h_rank$rrate)</pre>
h_rank$cum_rel_resp <- percent(h_rank$cum_rel_resp)</pre>
h_rank$cum_rel_non_resp <- percent(h_rank$cum_rel_non_resp)</pre>
View(h rank)
h_rank
pred1 <- prediction(rf.test$predict.score[,2], rf.test$TARGET)</pre>
perf1 <- performance(pred1, "tpr", "fpr")</pre>
plot(perf1)
KS1 <- max(attr(perf1, 'y.values')[[1]]-attr(perf1, 'x.values')[[1]])</pre>
## Area Under Curve
auc1 <- performance(pred1, "auc");</pre>
auc1 <- as.numeric(auc1@y.values)</pre>
auc1
## Gini Coefficient
library(ineq)
gini1 = ineq(rf.test$predict.score[,2], type="Gini")
gini1
## Classification Error
with(rf.test, table(TARGET, predict.class))
# MODEL BUILDING - NEURAL NETWORK
library(neuralnet)
# Read Input File
# detach(PL X SELL)
NNInput=read.csv("PL XSELL.csv")
attach(NNInput)
dim(NNInput)
str(NNInput)
# Create Dummy Variables for Categorical Variables
# Gender
GEN.matrix <- model.matrix(~ GENDER - 1, data = NNInput)</pre>
NNInput <- data.frame(NNInput, GEN.matrix)</pre>
# Occupation
occ.matrix <- model.matrix(~ OCCUPATION - 1, data = NNInput)
NNInput <- data.frame(NNInput, occ.matrix)</pre>
# AGE_BKT
AGEBKT.matrix <- model.matrix(~ AGE_BKT - 1, data = NNInput)
```

```
NNInput <- data.frame(NNInput, AGEBKT.matrix)</pre>
# ACC TYPE
ACCTYP.matrix <- model.matrix(~ ACC_TYPE - 1, data = NNInput)
NNInput <- data.frame(NNInput, ACCTYP.matrix)</pre>
names(NNInput)
dim(NNInput)
#Creating Training and Testing Datasets
set.seed(111)
trainIndex <- createDataPartition(TARGET,</pre>
                                    p = .7,
                                    list = FALSE,
                                    times = 1)
NN.train.data <- NNInput[trainIndex,]</pre>
NN.test.data <- NNInput[-trainIndex,]</pre>
dim(NN.train.data)
dim(NN.test.data)
# Scaling the Dataset and Variables
#names(NN.train.data)
x <- subset(NN.train.data,</pre>
             select = c("AGE",
               "BALANCE",
               "SCR",
               "HOLDING PERIOD",
               "LEN OF RLTN IN MNTH",
               "NO_OF_L_CR_TXNS",
               "NO OF_L_DR_TXNS"
               "TOT_NO_OF_L_TXNS",
               "NO OF BR CSH WDL DR TXNS",
               "NO OF ATM DR TXNS",
               "NO_OF_NET_DR_TXNS",
               "NO OF MOB DR TXNS",
               "NO_OF_CHQ_DR_TXNS",
               "FLG_HAS_CC",
               "AMT_ATM_DR",
               "AMT BR CSH WDL DR",
               "AMT_CHQ_DR",
               "AMT_NET_DR",
               "AMT_MOB_DR",
               "AMT_L_DR",
               "FLG_HAS_ANY_CHGS",
               "AMT_OTH_BK_ATM_USG_CHGS",
               "AMT_MIN_BAL_NMC_CHGS"
               "NO_OF_IW_CHQ_BNC_TXNS"
               "NO_OF_OW_CHQ_BNC_TXNS",
               "AVG AMT PER ATM TXN",
```

```
"AVG_AMT_PER_CSH_WDL_TXN",
               "AVG_AMT_PER_CHQ_TXN",
               "AVG AMT_PER_NET_TXN",
               "AVG_AMT_PER_MOB_TXN",
               "FLG_HAS_NOMINEE"
               "FLG HAS OLD LOAN",
               "random",
               "GENDERF",
               "GENDERM",
               "GENDERO",
               "OCCUPATIONPROF",
               "OCCUPATIONSAL",
               "OCCUPATIONSELF.EMP",
               "OCCUPATIONSENP",
               "AGE_BKT.25",
               "AGE_BKT.50",
               "AGE_BKT26.30",
               "AGE BKT31.35"
               "AGE_BKT36.40",
               "AGE_BKT41.45",
               "AGE_BKT46.50",
               "ACC_TYPECA",
               "ACC_TYPESA"
)
#
nn.devscaled <- scale(x)</pre>
nn.devscaled <- cbind(NN.train.data[2], nn.devscaled)</pre>
# names(nn.devscaled)
nn2 <- neuralnet(formula = TARGET ~</pre>
                    AGE +
                    BALANCE +
                    SCR +
                    HOLDING_PERIOD +
                    LEN_OF_RLTN_IN_MNTH +
                    NO OF L CR TXNS +
                    NO_OF_L_DR_TXNS +
                    TOT NO OF L TXNS +
                    NO_OF_BR_CSH_WDL_DR_TXNS +
                    NO_OF_ATM_DR_TXNS +
                    NO_OF_NET_DR_TXNS +
                    NO OF MOB DR TXNS +
                    NO OF CHQ DR TXNS +
                    FLG_HAS_CC +
                    AMT ATM DR +
                    AMT_BR_CSH_WDL_DR +
                    AMT_CHQ_DR +
                    AMT NET DR +
                    AMT_MOB_DR +
                    AMT L DR +
                    FLG_HAS_ANY_CHGS +
                    AMT_OTH_BK_ATM_USG_CHGS +
```

```
AMT MIN BAL NMC CHGS +
                   NO_OF_IW_CHQ_BNC_TXNS +
                   NO_OF_OW_CHQ_BNC_TXNS +
                   AVG_AMT_PER_ATM_TXN +
                   AVG_AMT_PER_CSH_WDL_TXN +
                   AVG AMT PER CHQ TXN +
                   AVG_AMT_PER_NET_TXN +
                   AVG_AMT_PER_MOB_TXN +
                   FLG HAS NOMINEE +
                   FLG_HAS_OLD_LOAN +
                   random +
                   GENDERF +
                   GENDERM +
                   GENDERO +
                   OCCUPATIONPROF +
                   OCCUPATIONSAL +
                   OCCUPATIONSELF.EMP +
                   OCCUPATIONSENP +
                   AGE_BKT.25 +
                   AGE_BKT.50 +
                   AGE_BKT26.30 +
                   AGE BKT31.35 +
                   AGE BKT36.40 +
                   AGE_BKT41.45 +
                   AGE_BKT46.50 +
                   ACC_TYPECA +
                   ACC_TYPESA ,
                 data = nn.devscaled,
                 hidden = 3,
                 err.fct = "sse",
                 linear.output = FALSE,
                 lifesign = "full",
                 lifesign.step = 10,
                 threshold = 0.1,
                 stepmax = 2000
plot (nn2)
# Assigning the Probabilities to Dev Sample
NN.train.data$Prob = nn2$net.result[[1]]
# The distribution of the estimated probabilities
quantile(NN.train.data$Prob, c(0,1,5,10,25,50,75,90,95,98,99,100)/100)
hist(NN.train.data$Prob)
## deciling
NN.train.data$deciles <- decile(NN.train.data$Prob)</pre>
# Ranking code
##install.packages("data.table")
library(data.table)
library(scales)
tmp_DT = data.table(NN.train.data)
```

```
rank <- tmp DT[, list(</pre>
  cnt = length(TARGET),
  cnt_resp = sum(TARGET),
  cnt_non_resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
rank$rrate <- round (rank$cnt resp / rank$cnt,2);</pre>
rank$cum_resp <- cumsum(rank$cnt_resp)</pre>
rank$cum_non_resp <- cumsum(rank$cnt_non_resp)</pre>
rank$cum rel resp <- round(rank$cum resp / sum(rank$cnt resp),2);</pre>
rank$cum_rel_non_resp <- round(rank$cum_non_resp /</pre>
sum(rank$cnt non resp),2);
rank$ks <- abs(rank$cum_rel_resp - rank$cum_rel_non_resp)</pre>
library(scales)
rank$rrate <- percent(rank$rrate)</pre>
rank$cum_rel_resp <- percent(rank$cum_rel_resp)</pre>
rank$cum rel non resp <- percent(rank$cum rel non resp)</pre>
View(rank)
# Assgining 0 / 1 class based on certain threshold
NN.train.data$Class = ifelse(NN.train.data$Prob>0.5,1,0)
with( NN.train.data, table(TARGET, as.factor(Class) ))
# We can use the confusionMatrix function of the caret package
#install.packages("caret")
library(caret)
confusionMatrix(NN.train.data$TARGET, NN.train.data$Class)
## Error Computation
sum((NN.train.data$TARGET - NN.train.data$Prob)^2)/2
## Other Model Performance Measures
library(ROCR)
# str(NN.train.data)
pred3 <- prediction(NN.train.data$Prob, NN.train.data$TARGET)</pre>
perf3 <- performance(pred3, "tpr", "fpr")</pre>
plot(perf3)
KS3 <- max(attr(perf3, 'y.values')[[1]]-attr(perf3, 'x.values')[[1]])</pre>
KS3
auc3 <- performance(pred3, "auc");</pre>
auc3 <- as.numeric(auc3@y.values)</pre>
auc3
library(ineq)
gini3 = ineq(NN.train.data$Prob, type="Gini")
auc3
KS3
gini3
```

```
# Scoring another dataset using the Neural Net Model Object
# To score we will use the compute function
x <- subset(NN.test.data,</pre>
            select = c("AGE",
                        "BALANCE",
                        "SCR",
                        "HOLDING_PERIOD",
                        "LEN_OF_RLTN_IN_MNTH",
                        "NO_OF_L_CR_TXNS",
                        "NO_OF_L_DR_TXNS"
                        "TOT_NO_OF_L_TXNS",
                        "NO_OF_BR_CSH_WDL_DR_TXNS",
                        "NO_OF_ATM_DR_TXNS",
                        "NO_OF_NET_DR_TXNS",
                        "NO_OF_MOB_DR_TXNS",
                        "NO_OF_CHQ_DR_TXNS",
                        "FLG_HAS_CC",
                        "AMT_ATM_DR",
                        "AMT_BR_CSH_WDL_DR",
                        "AMT_CHQ_DR",
                        "AMT_NET_DR",
                        "AMT_MOB_DR",
                        "AMT_L_DR",
                        "FLG_HAS_ANY_CHGS",
                        "AMT_OTH_BK_ATM_USG_CHGS",
                        "AMT_MIN_BAL_NMC_CHGS"
                        "NO_OF_IW_CHQ_BNC_TXNS",
                        "NO OF_OW_CHQ_BNC_TXNS",
                        "AVG_AMT_PER_ATM_TXN",
                        "AVG_AMT_PER_CSH_WDL_TXN",
                        "AVG AMT PER CHQ TXN",
                        "AVG_AMT_PER_NET_TXN"
                        "AVG_AMT_PER_MOB_TXN",
                        "FLG_HAS_NOMINEE"
                        "FLG HAS OLD LOAN",
                         "random"
                        "GENDERF",
                        "GENDERM",
                        "GENDERO",
                        "OCCUPATIONPROF",
                        "OCCUPATIONSAL",
                        "OCCUPATIONSELF.EMP",
                        "OCCUPATIONSENP",
                        "AGE_BKT.25",
                        "AGE_BKT.50",
                        "AGE_BKT26.30",
                        "AGE_BKT31.35",
                        "AGE_BKT36.40",
                         "AGE_BKT41.45"
                         "AGE_BKT46.50",
                        "ACC_TYPECA",
                        "ACC_TYPESA"
```

```
x.scaled <- scale(x)</pre>
compute.output = compute(nn2, x.scaled)
# compute.output
NN.test.data$Predict.score = compute.output$net.result
# View(NN.test.data)
names(NN.train.data)
quantile(NN.test.data$Predict.score,
c(0,1,5,10,25,50,75,90,95,99,100)/100)
NN.test.data$deciles <- decile(NN.test.data$Predict.score)</pre>
library(data.table)
tmp DT = data.table(NN.test.data)
h_rank <- tmp_DT[, list(</pre>
  cnt = length(TARGET),
  cnt resp = sum(TARGET),
  cnt_non_resp = sum(TARGET == 0)) ,
  by=deciles][order(-deciles)]
h_rank$rrate <- round (h_rank$cnt_resp / h_rank$cnt,2);</pre>
h_rank$cum_resp <- cumsum(h_rank$cnt_resp)</pre>
h_rank$cum_non_resp <- cumsum(h_rank$cnt_non resp)</pre>
h_rank$cum_rel_resp <- round(h_rank$cum_resp / sum(h_rank$cnt_resp),2);</pre>
h rank$cum rel non resp <- round(h rank$cum non resp /
sum(h_rank$cnt_non_resp),2);
h_rank$ks <- abs(h_rank$cum_rel_resp - h_rank$cum_rel_non_resp);</pre>
#
library(scales)
h rank$rrate <- percent(h rank$rrate)</pre>
h rank$cum rel resp <- percent(h rank$cum rel resp)</pre>
h_rank$cum_rel_non_resp <- percent(h_rank$cum_rel_non_resp)</pre>
View(h rank)
# Working on Holdout Sample
# Assigning the Probabilities to Holdout Sample
NN.test.data$Prob = compute.output$net.result
# Assgining 0 / 1 class based on certain threshold
NN.test.data$Class = ifelse(NN.test.data$Prob>0.5,1,0)
with( NN.test.data, table(TARGET, as.factor(Class) ))
# We can use the confusionMatrix function of the caret package
#install.packages("caret")
library(caret)
confusionMatrix(NN.test.data$TARGET, NN.test.data$Class)
```

```
## Error Computation
sum((NN.test.data$TARGET - NN.test.data$Prob)^2)/2
## Other Model Performance Measures
library(ROCR)
# str(NN.test.data)
pred4 <- prediction(NN.test.data$Prob, NN.test.data$TARGET)</pre>
perf4 <- performance(pred4, "tpr", "fpr")</pre>
plot(perf4)
KS4 <- max(attr(perf4, 'y.values')[[1]]-attr(perf4, 'x.values')[[1]])</pre>
auc4 <- performance(pred4, "auc");</pre>
auc4 <- as.numeric(auc4@y.values)</pre>
auc4
library(ineq)
gini4 = ineq(NN.test.data$Prob, type="Gini")
auc4
KS4
gini4
```