

Bloque IV: El nivel de red

Tema 12: ICMP

Índice

- Bloque IV: El nivel de red
 - Tema 12: ICMP
 - Introducción
 - ICMP: Puerto inalcanzable
 - ICMP: Fragmentación requerida
 - Ping
 - Traceroute

Referencias

- Capítulo 4 de "Redes de Computadores: Un enfoque descendente basdado en Internet". James F. Kurose, Keith W. Ross. Addison Wesley, 2ª edición. 2003.
- Capítulos 6, 7 y 8 de "TCP/IP Illustrated, Volume 1: The Protocols", W. Richard Stevens, Addison Wesley, 1994.

Introducción

- Internet Control Message Protocol
- ICMP comunica mensajes de error y otras condiciones que requieren atención.
- Los mensajes ICMP se transmiten dentro de datagramas IP (RFC 792)
- Dos tipos de mensajes: error y consulta.
- Formato de mensaje ICMP:
 - Tipo: identifica el tipo de mensaje ICMP (hay 15 distintos)
 - Código: utilizado en algunos códigos para especificaciones más detalladas.
 - Checksum: cubre al mensaje ICMP completo (mismo algoritmo que para el checksum de IP)

Tipos de mensajes ICMP

Tipo	Código	Descripción	Consulta	Error
0	0	Respuesta de eco (ping reply)	Х	
3		Destino inalcanzable:		
	0	Red inalcanzable		X
	1	Máquina inalcanzable		X
	2	Protocolo inalcanzable		X
	3	Puerto inalcanzable		X
	4	Fragmentación requerida, pero bit DF activo		X
8	0	Petición de eco (ping request)	Х	
9	0	Aviso de router	Х	
10	0	Solicitud de router	Х	
11		Tiempo consumido (time exceeded)		
	0	TTL = 0 durante tránsito		X
	1	TTL = 0 durante reensamblado		X

Tipos de mensajes ICMP

Tipo	Código	Descripción	Consulta	Error
5		Redirección (Redirect)		
	0	Redirección para red		X
	1	Redirección para host		X
12		Problema con parámetros:		
	0	Cabecera IP errónea		X
	1	Falta opción requerida		X
13	0	Petición de tiempo	X	
14	0	Respuesta de tiempo	X	
17	0	Petición de máscara de direcciones	X	
18	0	Respuesta de máscara de direcciones	Х	

ICMP: Puerto inalcanzable

- Mensaje de error utilizado por UDP, cuando el destino no dispone de un proceso en el puerto de destino:
 - Se incluye la cabecera del mensaje que provocó el error.
 - IP de destino y origen
 - Protocolo incluido en el campo de datos
 - Y los primeros 8 bytes del datagrama IP = Cabecera UDP (incluye puerto destino y origen)

ICMP: Puerto inalcanzable

ICMP: Fragmentación requerida

- Mensaje de error utilizado por un router cuando tiene que fragmentar un datagrama IP pero tiene el flag DF activado.
 - Incluye el MTU de la red que provocó el error y la cabecera del mensaje que provocó el error.

0		8	16 31	
	Tipo (3)	Código (4)	Checksum	
Sin usar (ceros)		(ceros)	MTU de la red del siguiente salto	
Cabecera IP (con opciones) + Primeros 8 bytes del datagrama IP				

ICMP: Fragmentación requerida

- Este mensaje de error es utilizado en un mecanismo denominado Path MTU discovery que permite averiguar el MTU mínimo durante una comunicación y reducir la fragmentación IP (sólo se hace en origen).
 - Path MTU: MTU mínimo en cualquier red en el camino entre dos hosts.
- Funcionamiento del Path MTU discovery:
 - Se habilita el bit DF (Don't Fragment) en los datagramas enviados.
 - Si algún router en el camino necesita fragmentar → Generará el mensaje ICMP Fragmentación requerida
 - Si se recibe un mensaje ICMP Fragmentación requerida con el nuevo MTU:
 - Si eran datos TCP → TCP debe reducir el tamaño del segmento (en base al nuevo MTU) y retransmitir.
 - Sino (p.e. UDP) → IP fragmenta los datagrama en base al nuevo MTU.
 - Como las rutas cambian dinámicamente
 Se puede probar un MTU mayor pasado un cierto intervalo (RFC 1191 recomienda 10 minutos).

Ping

- Packet InterNet Grouper: herramienta de diagnóstico que comprueba si un nodo de la red es alcanzable.
- Cliente: Envía ICMP echo request
- Servidor: Responde con ICMP echo reply
- Formato mensajes ICMP echo request y reply:
 - Identificador: en UNIX es el identificador del proceso.
 - Número de secuencia: inicialmente 0, y se incrementa con cada echo request.
- Existen variedad de implementaciones (presentación de resultados, opciones del programa...):

indurain % ping olano

PING olano: 56 data bytes

64 bytes from olano (210.53.23.10): icmp_seq=0. time=7. ms

64 bytes from olano (210.53.23.10): icmp_seq=1. time=4. ms

--- olano PING Statistics----

3 packet transmitted, 3 packets received, 0% packet loss

round-trip (ms) min/avg/max = 4/5/7

0	8		16		
	Tipo (0 ó 8)	Código	Checksum		
	Identificador		Número de secuencia		
	Datos (tamaño variable)				

Ping: Registro de ruta

- Opción IP de registro de ruta: se van registrando en la cabecera IP los routers por los que pasa el mensaje.
 - Los routers deben implementar esta opción
 - Problema: espacio limitado en cabecera IP (40 bytes → máximo 9 direcciones IP)
 - UNIX o Linux: ping –R / Windows: ping –r

- Código: Tipo de opción IP. (RR=7)
- Longitud: Máximo 39 bytes.
- Puntero: Índice que especifica la siguiente posición libre para escribir una dirección (4 – lista vacía, 8, 12, ..., 36, 40 – lista llena)
- La dirección que guardan los routers es la de salida.

Ping: Registro de ruta

olano% ping -R indurain

PING indurain (154.63.4.1). 56 data bytes

64 bytes from 154.63.4.1: icmp_seq=0 ttl=254 time=280 ms

RR: RA (154.63.1.1)

indurain (154.63.4.1)

RA (173.197.15.10)

olano (173.197.15.4)

64 bytes from (154.63.4.1): icmp_seq=1 ttl=254 time=7. ms (same route)

64 bytes from (154.63.4.1): icmp_seq=2 ttl=254 time=7. ms (same route)

Ping: Timestamp

 Opción IP de timestamp: registra el instante de tiempo (milisegundos desde medianoche) por el que pasa en cada router.

- Código: 0x44 para timestamp
- Long: longitud total de la opción
- Ptr: puntero a la siguiente entrada disponible (5, 9, 13, ...)
- OF (Overflow): si un router no puede añadir su timestamp por falta de espacio
 → Incrementa el campo OF.
- FL (Flags): modos de operación
 - 0: registra únicamente timestamps
 - 1: registra direcciones IP y timestamps (máximo 4)
 - 3: el emisor inicializa la lista con 4 direcciones IP, y si el router es una de ellas registra su timestamp

Traceroute

- Problemas del ping con registro de ruta:
 - Falta de espacio en la cabecera IP
 - Registro de ruta: máximo 9 routers
 - Timestamp: máximo 4 routers (o 9 timestamps sin direcciones IP)
 - No todos los routers soportan la opción de registro de ruta
 - No hay control sobre los relojes de los routers
- Solución: traceroute
 - Herramienta de diagnóstico que permite ver la ruta que sigue un datagrama, además de permitir encaminamiento en origen.
- Se basa en: datagramas UDP, el campo TTL de la cabecera IP y los mensajes de error ICMP Puerto inalcanzable y Tiempo excedido
 - Sólo requiere que el protocolo UDP esté operativo en el destinatario.
 - Cuando un router al decrementar el campo TTL obtiene 0 →
 Genera un mensaje de error ICMP Tiempo excedido
 - Cuando UDP recibe un datagrama para un puerto vacío → Genera un mensaje de error ICMP Puerto inalcanzable

Traceroute

- ICMP Tiempo excedido
 - Código 0: TTL = 0 durante el tránsito
 - Código 1: tiempo máximo de reensamblado excedido
 - Se produce en la fragmentación IP al perderse uno de los fragmentos

Traceroute: Funcionamiento

RCTBloqu@2V - Tema 12

Traceroute: Funcionamiento

Traceroute: Funcionamiento

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 3

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 2

Cab. IP Cab. Datos

Puerto destino: 33348

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL =1

ICMP Puerto inalcanzable Cab. IP

IP origen: **173.197.15.4**

IP destino: 154.63.4.1

TTL = 32

18

Traceroute: encaminamiento en origen

- Opción IP que permite especificar la ruta desde el origen:
 - Encaminamiento en origen estricto: lista de routers con el camino exacto desde origen al destino. Si falta algún router → ICMP "source route failed".
 - Encaminamiento en origen vago: lista de routers por los que el paquete debe pasar, pero también puede pasar por otros routers.
 - UNIX: traceroute –G (estricto)/ -g (vago) y Windows: tracert –j (vago)

- Código: 0x83 estricto y 0x89 vago.
- Longitud y puntero: modo de operación igual a la opción de registro de ruta.

Traceroute: encaminamiento en origen

Algoritmo:

- El host coge la lista y le borra la primera entrada, desplaza el resto hacia la izquierda y el destino se coloca al final de la lista. El puntero apuntará al primer elemento.
- Cada router chequea si es el destino del datagrama. Si no lo es, y se trata de enrutamiento vago, lo encamina hacia el destino.
- Si es el destino, y el puntero no es mayor que la longitud:
 - La siguiente dirección de la lista pasa a ser el destino del datagrama.
 - La dirección IP de la interfaz de salida reemplaza a la dirección eliminada.
 - Se incrementa PTR.

