作业 3.3 解答

一. 证明下列不等式: (20分)

$$f'(x) = \cos x + \sec^2 x - 2$$
,
 $f''(x) = -\sin x + 2\sec^2 x \tan x = (2\sec^2 x - \cos x)\tan x$,

$$f''(x) = -\sin x + 2\sec^2 x \tan x = (2\sec^2 x - \cos x) \tan x$$

从而

$$f(x) > f(0) = 0$$
, $\mathbb{H} \sin x + \tan x > 2x$.

当 $0 < x < \frac{\pi}{2}$ 时, $\tan x > 0$, $\sec x > 1 > \cos x$,可知f''(x) > 0,所以f'(x) > f'(0) = 0,

(2) 当x > 4时, $2^x > x^2$.

证明:我们要注意的是

$$2^x > x^2 \Leftrightarrow x \ln 2 > 2 \ln x \Leftrightarrow x \ln 2 - 2 \ln x > 0$$
.

$$f'(x) = \ln 2 - \frac{2}{x} = \frac{1}{2} \ln 4 - \frac{2}{x} > \frac{1}{2} - \frac{2}{x}$$

当x > 4时,f'(x) > 0,因此f(x) > f(4) = 0,即 $x \ln 2 - 2 \ln x > 0$,亦即 $2^x > x^2$.

二. 求下列函数图形的凹凸区间和拐点: (20分)

(1)
$$y = xe^{-x}$$
;

解: $y' = e^{-x} - xe^{-x}$,

$$y'' = -e^{-x} - (e^{-x} - xe^{-x}) = (x-2)e^{-x}$$

当x<2时,y''<0,所以 $(-\infty,\ 2]$ 为凸区间;当x>2时,y''>0,所以 $[2,\ +\infty)$ 为凹区间;拐点为 $(2,\ \frac{2}{e^2})$.

(2) $y = x^4 (12 \ln x - 7)$;

解:
$$y' = 4x^3(12\ln x - 7) + x^4 \cdot \frac{12}{x} = 48x^3 \ln x - 16x^3$$
,

$$y'' = 144x^2 \ln x + 48x^3 \cdot \frac{1}{x} - 48x^2 = 144x^2 \ln x$$
,

当0 < x < 1时,y'' < 0,所以(0, 1]为凸区间;当x > 1时,y'' > 0,所以 $(1, +\infty)$ 为凹区间;拐点为(1, -7).

三. 问 a, b 为何值时, 点 (1, 3) 为曲线 $y = ax^3 + bx^2$ 的拐点? $(10 \, \text{分})$

解: $y' = 3ax^2 + 2bx$, y'' = 6ax + 2b, 由点(1, 3)为拐点, 知y(1) = 3, 且y''(1) = 0, 于是有

第1页共3页

$$\begin{cases} a+b=3\\ 6a+2b=0 \end{cases}$$

解得
$$a = -\frac{3}{2}$$
, $b = \frac{9}{2}$.

四. 证明: $x \ln x + y \ln y > (x+y) \ln \frac{x+y}{2}$ $(x>0, y>0, x \neq y)$. (10分)

证明: 考虑函数 $f(x) = x \ln x$,则 $f'(x) = \ln x + 1$, $f''(x) = \frac{1}{x} > 0$ (x > 0),所以 f(x) 在 区间 $(0, +\infty)$ 内是凹的,从而对任意 x > 0, y > 0, $x \neq y$, 成立

$$\frac{f(x)+f(y)}{2} > f(\frac{x+y}{2}), \quad \mathbb{H} x \ln x + y \ln y > (x+y) \ln \frac{x+y}{2}.$$

五. 描绘下列函数的图形: (20分)

(1)
$$y = x^3 - 3x^2$$
;

解: $y'=3x^2-6x$, y''=6x-6. 令 y'=0, 得 x=0、 x=2; 令 y''=0, 得 x=1. 曲线性态分析表:

X	$(-\infty, 0)$	0	(0, 1)	1	(1, 2)	2	$(2, +\infty)$					
y'	+	0	-	_	_	0	+					
y"	_	_	-	0	+	+	+					
y 的图 形		极大	\rightarrow	拐点	_	极小)					

峰点(0,0), 谷点(2,-4), 拐点(1,-2).

作图补充点: (-1, -4), (3, 0).

(2)
$$y = \frac{9(x+1)}{x^2}$$
.

解: $y' = 9(-\frac{1}{x^2} - \frac{2}{x^3})$, $y'' = 9(\frac{2}{x^3} + \frac{6}{x^4})$. \diamondsuit y' = 0, 得 x = -2; \diamondsuit y'' = 0, 得 x = -3.

曲线性态分析表:

H (V 12.0.7) (1) (1										
Х	$(-\infty, -3)$	-3	(-3, -2)	-2	(-2, 0)	$(0, +\infty)$				
y'	_	_	_	0	+	_				
y"	-	0	+	+	+	+				
y的图形	\rightarrow	拐点		极小)					

谷点 $(-2, -\frac{9}{4})$, 拐点(-3, -2). 水平渐近线y = 0, 铅直渐近线x = 0.

作图补充点:
$$(-6, -\frac{5}{4})$$
, $(-1, 0)$, $(2, \frac{27}{4})$, $(3, 4)$, $(6, \frac{7}{4})$.

六. 填空题: (20 分)

1.函数
$$y = x + 2\cos x$$
 在区间 $[0, \frac{\pi}{2}]$ 上的最大值为 $\sqrt{3} + \frac{\pi}{6}$

2. 函数
$$f(x) = 2\sqrt{x} - \frac{x^2}{2}$$
 在区间 [0,1] 上单调增加.

3.曲线
$$y = \frac{\ln x}{x}$$
 的凸区间是 $(0, \sqrt{e^3}]$.

七. 证明: 当
$$0 < x < \frac{\pi}{2}$$
时, $\sin x > \frac{2}{\pi}x$.

证明:如图所示,设点
$$A$$
 的坐标为 $(\frac{\pi}{2}, 1)$,则直线 OA 的方程为 $y = \frac{2}{\pi}x$.

