# Lawrence Du

#### Machine Learning • Biotechnology • Cloud

□ larrydu88@gmail.com | □ 626-808-7096 | □ github.com/LarsDu | □ linkedin.com/in/LarsDu

2911 McKinley Dr. Santa Clara, CA 95051

## Skills

#### **Techniques**

Neural networks (CNNs, GraphNN, Transformers), Louvain/Leiden, k-fold cross-validation, SVMs, PCA, decision trees

#### Tools

Tensorflow, Pytorch, Jax, Numpy, Numba, Pandas, Sklearn, Conda, Flask, AWS, Google Cloud, Jenkins, Terraform, Docker, Metaflow, Kubernetes

#### Languages

Python, Rust, SQL, C#, Java, Dart, Bash, C/C++, Matlab, HTML/CSS, Some Mandarin and Spanish

## **Experience**

#### Senior Machine Learning Platform Engineer • Freenome

Aug 2022 - Present (South San Francisco, CA)

- Built end-to-end scalable distributed machine learning pipelines using PyTorch, Ray, and Kubernetes for cancer detection from multi-omics data (deep sequencing cell-free methylated DNA, protein, and more).
- Built out a greenfield research engineering platform/library to support both distributed data parallel (DDP) and model parallel training strategies for large-scale cancer detection models.
- · Developed and refined methylated cell-free DNA based models for Colorectal Cancer (CRC) detection.
- Deployed and managed an organization-wide MLFlow based model tracking system for reproducibility, monitoring, and automated model performance reporting using Terraform, Pulumi, and Google Cloud.

#### Software Engineer - Machine Learning Engineering • 23andMe

Apr 2020 - Aug 2022 (Sunnyvale, CA)

- Built a large-scale feature engineering ETL pipeline for imputed SNPs (~10 million samples x ~1 million SNPs) using AWS Batch, Metaflow, AWS Glue, and AWS Athena used to feed downstream GWAS and Polygenic Risk Score (PRS) ML models.
- Improved PRS model AUCs and auPRCs through model stacking approaches.

#### Data Scientist - Ancestry Product • 23andMe

Nov 2018 - Apr 2020 (Sunnyvale, CA)

- Developed and deployed (using MLFlow + AWS Fargate) Recent Ancestor Locations (RAL) a high precision, high recall country matching algorithm which serves >13 million customers worldwide
- Improved graph-based techniques for unsupervised identification of populations by genetically based identity-by-descent (IBD) family relationships.

## **Bioinformatician IV • Scripps Research**

May 2018 - Oct 2018 (San Diego, CA)

- Developed a classifier for organ transplant rejection using RNA data.
- Wrote pipelines for Nanopore long-read sequencers using Common Workflow Language.

#### Independent Consultant • Juno Diagnostics

Sept 2017 - Feb 2018 (San Diego, CA)

 Developed patent - US20210020314A1 - Deep learning-based methods, devices, and systems for prenatal testing along with a Tensorflow based classifier for detecting prenatal genetic abnormalities from high throughput sequencing data.

#### Data Science Fellow • Insight

Jan 2017 - Apr 2017 (Remote Session - San Diego, CA)

Built and deployed (as a Flask app on AWS EC2) DeepPixelMonster - a Tensorflow based GAN for creating pixel art, back when GANs
were still relatively state-of-the art.

### PhD Student Biology • UC San Diego • Scott A. Rifkin Lab

Aug 2010 - May 2017 (La Jolla, CA)

- Wrote DeepNuc a CNN model for classifying over 500,000 transcriptional start site (TSS) flanking sequences from humans, mice, fruit flies, and nematodes as well as for over 60,000 microRNA target sequences.
- Researched the role of RNA expression noise during animal development by imaging single molecule RNA expression data in >5,000 embryos and analyzing data using self-written MATLAB tools for image segmentation, fluorescence quantification, and image deconvolution.

#### Education

Ph.D Biology UC San Diego, 2010 - 2017

**B.A. Biological Sciences** Genetics and Development, Magna Cum Laude Cornell University, 2006 - 2010

## Activities and interests

- Developing the VR game Rogue Stargun (https://roguestargun.com)
- 3D modeling with Blender3D
- Painting

| DuBlog (https://dublog.net) - Self deployed using Google ( | Cloud, Hugo, and Github Actions |  |
|------------------------------------------------------------|---------------------------------|--|
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |
|                                                            |                                 |  |