

Flat noise: New model image is computed as Pmodel (P)

i.l., division of model image by PB (known a-priori) will

give an image of reconstructed sky brightness destribution. Predict model visibilities V'model from I'model using [5dd]
Forward Transform (FFT) (image-domain to uv-domain). MAJOR CYCLE/ Continued - Prediction step of Computing model visibilities from Current sky model needs to re-introduce all DDEs that are being corrected for during gridding; before model can be compared w/data for X2 computation; (i.e., GCFIN used Visibilities that would be measured for current sky model I'model are computed so that model can be compared up data I'corr & new residual visibilities computed Timodel = [5dd RT F] [IPS] - 1 Pmodel

(17) Compute a new residual image I prom Tres = Transported

using [5dd]: -Tres = [FTR Sdd Wim] Tres

[Includes]

[(1) (Restore the final model image): Linal model image I model is restored by smoothing it w/restoring beaut, & adding back residuals computed via step (17) above, and then normalizing by I'm (principal solution):

Additional Notes /List of symbols

(http://www.aoc.nrao.edu/~rurvashi/DataFiles/UrvashiRV_PhdThesis.pdf)

 $[F_{mom}]$ matrix operator : Discrete Fourier Transform .

[F] represents the forward transform (image-domain to uv-domain). [F[†]] represents the reverse transform (uv-domain to image-domain). [F[†]F] = $m1_m$ where 1_m is the $m \times m$ Identity matrix. [F[†]] gives an un-normalized Fourier inverse. [F⁻¹] = $\frac{1}{m}$ [F[†]] gives a normalized Fourier inverse.

$[G_{m imes_m}]$	gridding convolution operator $[G] = [FXF^{\dagger}]$ (uv-domain convolution operator with kernel given by $[F^{\dagger}]\vec{X}$) (image-domain element-by-element multiplication with \vec{X})
$[G^{dd}]$	gridding convolution with K ^{dd}
$[G^{ph}]$	gridding convolution with K^{pb}
$[G^{ps}]$	gridding convolution with the prolate spheroidal
Idiray	dirty image
\vec{I}^{model}	model image, reconstructed estimate of I^{bky}
\vec{I}^{psf}	point spread function
\vec{I}^{ky}	sky brightness distribution
\vec{I}^{at}	weight image
$[J_{2\times 2}]$	Jones matrix
J	uv-plane aperture illumination function
$[J_{m \times m}]$	uv-plane aperture illumination function in matrix form $[J] = diag(\vec{J})$
$[K_{4\times 4}]$	outer product of two Jones matrices $([J_{2\times 2}]\otimes [J_{2\times 2}])$
$[K_{ij}(u,v)]$	$[K_{4\times4}]$ for baseline ij and 2-D spatial frequency u,v
K	$\vec{K} = \vec{J} \star \vec{J}$ is a <i>uv</i> -plane convolution kernel
$[K_{m \times m}]$	uv-plane convolution kernel $[K] = diag(\vec{k})$
\vec{k}^{tdd}	uv-domain convolution kernel for direction-dependent effects
K*mos	convolution function for mosaicing
K^{ph}	convolution of two aperture illumination functions
\vec{P}_s	prolate spheroidal function
\vec{P}_h	$\vec{P}_b = [V_p^{\dagger}][V_p] = [F^{\dagger}]\vec{K}^{pb}$ is the antenna primary beam
$[P_b]$	antenna primary beam in matrix form $[P_b] = diag(\vec{P}_b)$
$[R_{m_{\rho}\times m}]$	projection matrix, resampling operator m to m_I pixels
[S]	matrix operator: uv-coverage, sampling function, transfer function
$[S^{dd}]$	sampling function with baseline-based convolution

V ^{care} V ^{model}	corrected/calibrated visibilities model visibilities	
\vec{V}^{obs}	observed visibilities	
Pres	residual visibilities	
$\vec{V_P}$	$V_p' = [F^+]J$ is the antenna voltage pattem	
$[V_p]$	antenna coltage pattern in matrix form $[V_p] = diag(\vec{V_p})$	
[W]	diagonal matrix: measurement or visibility weights	
$[W^G]$	gridded weights $[W^G] = [S^+WS]$	
$[W^{in}]$	imaging weights	