Модификации метода стохастического градиентного спуска для задач машинного обучения с большими объемами данных

Владислав Чабаненко

Научный руководитель: к.ф-м.н., доцент Ветров Дмитрий Петрович

2016

Обучение нейронных сетей

Проблема:

 Медленная сходимость из-за изменения распределений на слоях в процессе обучения

Решение — батч-нормализация (БН) 1 :

- Подсчет необходимых статистик в слое по батчам (эмпирические средние и дисперсии)
- Нормализация распределения на каждом слое нейронной сети с помощью подсчитанных статистик

¹http://arxiv.org/abs/1502.03167

Актуальность батч-нормализации

- Батч-нормализация сейчас очень популярна, так как многие state-of-the-art архитектуры сетей без нее совсем плохо обучаются
- Работает при больших объемах данных, что в сейчас очень актуально

Применение батч-нормализации

- Авторы идеи применили БН для метода стохастического градиентного спуска (SGD)
- Мы исследовали применение БН к различным популярным модификациям SGD, используемых при обучении нейронных сетей

Модификации SGD

В работе рассматривались следующие модификации SGD:

- SGD с инерцией (SGDm)
- Adagrad
- RMSprop
- Adadelta
- Adam

Интуиция методов

Датасеты

В рамках работы мы проводили экспериментальные исследования на следующих датасетах:

- MNIST (70 тыс. рукописных цифр 10 классов)
- CIFAR-10 (60 тыс. изображений 10 классов)

Архитектуры

Использовались следующие архитектуры:

- Полносвязная сеть с 3 скрытыми слоями по 100 нейронов (MLP)
- Сеть с двумя сверточными слоями (32 фильтра $5 \times 5 +$ макс-пулинг с окном 2×2) и один полносвзяный слой с 256 нейронами (CNN)

Для обеих архитектур использовалась функция активации ReLU.

Результаты

Для каждого метода в комбинации с различными архитектурами, датасетами и батч-нормализацией мы подобрали лучший шаг обучения

- Вычислили повышение качества методов на валидационной выборке при добавлении батч-нормализации
- Абсолютное улучшение не показательно, поэтому использовали относительное:

$$rel = \frac{y - x}{100 - x}$$

Качество на MNIST + MLP, топ-3 наименьшего улучшения

Номер эпохи	1	3	15	35	50
SGD	89.15	92.84	96.81	97.58	97.73
BN SGD	96.42	97.38	98.14	98.18	98.23
Улучшение	0.67	0.63	0.42	0.25	0.22
SGDm	93.39	96.4	97.83	98.03	98.03
BN SGDm	96.49	97.62	98.11	97.87	98.12
Улучшение	0.47	0.34	0.13	-0.08	0.05
Adam	93.47	96.03	97.62	98.04	98.02
BN Adam	94.85	96.81	97.51	97.75	98.16
Улучшение	0.21	0.2	-0.05	-0.15	0.07
Adagrad	93.92	96.1	97.37	97.55	97.64
BN Adagrad	96.01	97.16	97.81	97.84	97.97
Улучшение	0.34	0.27	0.17	0.12	0.14
Adadelta	94.28	96.7	97.51	98.04	98.2
BN Adadelta	95.98	96.97	97.72	98.04	98.26
Улучшение	0.3	0.08	0.08	-0.0	0.03
RMSprop	94.58	96.14	96.75	97.34	97.27
BN RMSprop	96.12	97.18	97.88	97.91	97.95
Улучшение	0.28	0.27	0.35	0.21	[□] 0.25 ⁼

Kачество на MNIST + MLP, топ-3 лучшего качества

Номер эпохи	1	3	15	35	50
SGD	89.15	92.84	96.81	97.58	97.73
BN SGD	96.42	97.38	98.14	98.18	98.23
Улучшение	0.67	0.63	0.42	0.25	0.22
SGDm	93.39	96.4	97.83	98.03	98.03
BN SGDm	96.49	97.62	98.11	97.87	98.12
Улучшение	0.47	0.34	0.13	-0.08	0.05
Adam	93.47	96.03	97.62	98.04	98.02
BN Adam	94.85	96.81	97.51	97.75	98.16
Улучшение	0.21	0.2	-0.05	-0.15	0.07
Adagrad	93.92	96.1	97.37	97.55	97.64
BN Adagrad	96.01	97.16	97.81	97.84	97.97
Улучшение	0.34	0.27	0.17	0.12	0.14
Adadelta	94.28	96.7	97.51	98.04	98.2
BN Adadelta	95.98	96.97	97.72	98.04	98.26
Улучшение	0.3	0.08	0.08	-0.0	0.03
RMSprop	94.58	96.14	96.75	97.34	97.27
BN RMSprop	96.12	97.18	97.88	97.91	97.95
Улучшение	0.28	0.27	0.35	0.21	0.25

Kачество на CIFAR-10 + CNN, топ-3 наименьшего улучшения

Номер эпохи	1	2	25	35	50
SGD	24.26	22.14	58.95	63.23	65.45
BN SGD	48.47	52.95	71.31	75.89	76.58
Улучшение	0.32	0.4	0.3	0.34	0.32
SGDm	30.03	37.98	64.37	68.3	71.54
BN SGDm	53.72	58.76	76.85	76.89	78.39
Улучшение	0.34	0.34	0.35	0.27	0.24
Adam	43.28	47.3	68.02	70.79	72.54
BN Adam	53.94	59.13	75.4	76.63	76.66
Улучшение	0.19	0.22	0.23	0.2	0.15
Adagrad	29.82	37.25	60.86	62.35	64.63
BN Adagrad	48.24	53.83	74.66	76.11	76.96
Улучшение	0.26	0.26	0.35	0.37	0.35
Adadelta	31.31	32.96	67.12	70.56	70.81
BN Adadelta	49.62	55.96	72.75	76.99	77.2
Улучшение	0.27	0.34	0.17	0.22	0.22
RMSprop	25.6	39.89	64.24	68.96	70.31
BN RMSprop	42.61	52.98	73.7	75.47	75.81
Улучшение	0.23	0.22	0.26	0.21	₽0.19 ₹

$\mathsf{K}\mathsf{a}\mathsf{ч}\mathsf{e}\mathsf{c}\mathsf{r}\mathsf{b}\mathsf{o}$ на $\mathsf{CIFAR}\mathtt{-}10 + \mathsf{CNN}\mathtt{,}$ топ-3 лучшего качества

Номер эпохи	1	2	25	35	50
SGD	24.26	22.14	58.95	63.23	65.45
BN SGD	48.47	52.95	71.31	75.89	76.58
Улучшение	0.32	0.4	0.3	0.34	0.32
SG Dm	30.03	37.98	64.37	68.3	71.54
BN SGDm	53.72	58.76	76.85	76.89	78.39
Улучшение	0.34	0.34	0.35	0.27	0.24
Adam	43.28	47.3	68.02	70.79	72.54
BN Adam	53.94	59.13	75.4	76.63	76.66
Улучшение	0.19	0.22	0.23	0.2	0.15
Adagrad	29.82	37.25	60.86	62.35	64.63
BN Adagrad	48.24	53.83	74.66	76.11	76.96
Улучшение	0.26	0.26	0.35	0.37	0.35
Adadelta	31.31	32.96	67.12	70.56	70.81
BN Adadelta	49.62	55.96	72.75	76.99	77.2
Улучшение	0.27	0.34	0.17	0.22	0.22
RMSprop	25.6	39.89	64.24	68.96	70.31
BN RMSprop	42.61	52.98	73.7	75.47	75.81
Улучшение	0.23	0.22	0.26	0.21	0.19

Выводы

- Батч-нормализация тем слабее улучшает метод, чем он сам по себе качественнее работает
- Возможно, батч-нормализация плохо совместима с инерцией для полносвязных сетей
- Возможно, батч-нормализация плохо совместима с методами, наследуемыми от RMSprop, для сверточных сетей

На защиту выносится:

- Реализация двух архитектур нейронной сети с батч нормализацией и пяти модификаций стохастического градиентного спуска
- Экспериментальные исследования модификаций стохастического градиентного спуска для обучения нейронных сетей с и без батч-нормализации
- ?Рекомендации по использованию батч-нормализации и модификаций стохастического градиентного спуска при обучении нейронных сетей

Конец

Конец!

SGD

$$\theta_{t+1} = \theta_t - \eta \nabla F(\theta)$$

SGD momentum

$$v_{t+1} = \mu v_t - \eta \nabla F(\theta)$$
$$\theta_{t+1} = \theta_t + v_{t+1}$$

∟Выводы

Adagrad

$$g_{t+1} = g_t + \nabla F(\theta)^2$$
 $\theta_{t+1} = \theta_t - \frac{\eta \nabla F(\theta)}{\sqrt{g_{t+1}} + \epsilon}$

RMSprop

$$g_{t+1} = \gamma g_t + (1 - \gamma) \nabla F(\theta)^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta \nabla F(\theta)}{\sqrt{g_{t+1} + \epsilon}}$$

Adadelta

$$g_{t+1} = \gamma g_t + (1 - \gamma) \nabla F(\theta)^2$$

$$v_{t+1} = -\frac{\sqrt{x_t + \epsilon} \nabla F(\theta)}{\sqrt{g_{t+1} + \epsilon}}$$

$$x_{t+1} = \gamma x_t + (1 - \gamma) v_{t+1}^2$$

$$\theta_{t+1} = \theta_t + v_{t+1}$$

Adam

$$\begin{split} m_{t+1} &= \gamma_1 m_t + (1 - \gamma_1) \nabla F(\theta) \\ g_{t+1} &= \gamma_2 g_t + (1 - \gamma_2) \nabla F(\theta)^2 \\ \hat{m}_{t+1} &= \frac{m_{t+1}}{1 - \gamma_1^{t+1}} \\ \hat{g}_{t+1} &= \frac{m_{t+1}}{1 - \gamma_2^{t+1}} \\ \theta_{t+1} &= \theta_t - \frac{\eta \hat{m}_{t+1}}{\sqrt{\hat{g}_{t+1}} + \epsilon} \end{split}$$