KUBIG 딥러닝 분반 (6주차)

## Recurrent Neural Networks

딥러닝 분방장: 김태영, 오화진

O 1 sequencial data

04

language model

2 statistical tool

05

**RNN** 

text data
preprocess
-ing

06

week 6 과제

## sequencialdata

#### 01. sequencial data

## 순차 데이터 Sequential Data



순서가 의미가 있으며, 순서가 달라질 경우 의미가 손상되는 데이터를 순차 데이터라고 한다. 시간적 의미가 있는 경우 Temporal Sequence라고 하며, 일정한 시간차라면 Time Series라고 한다.

#### 01. sequencial data

## Resampling



Temporal Sequence를 Time Series로 변환하기 위해서는 Resample을 수행한다. 취득된 데이터(Temporal Sequence)를 이용해 신호를 보간(Interpolation)하고, 이를 균일 시간 간격으로 샘플링한다.

#### 01. sequencial data



$$P(x_t \mid x_{t-1}, \dots, x_1)$$

## 2 statistical tool

#### 02. statistical tool

### Autoregressive model

- 특정 시점의 값을 예측하는 것  $P(x_t \mid x_{t-1}, \dots, x_1)$
- 효과적인 예측을 위해 timespan of length를 지정 (γ)
- Summary of past observation: hidden state

## Latent autoregressive model



### Markov models

$$O = (o_1, o_2, \cdots, o_{t-1}, o_t, o_{t+1}, \cdots, o_T)^T = o_1 o_2 \cdots o_{t-1} o_t o_{t+1} \cdots o_T$$

$$r = 0$$
:  $P(o_t|o_{t-1}o_{t-2}\cdots o_1) = P(o_t)$ 

$$r = 1$$
:  $P(o_t|o_{t-1}o_{t-2}\cdots o_1) = P(o_t|o_{t-1})$ 

$$r = 2$$
:  $P(o_t|o_{t-1}o_{t-2}\cdots o_1) = P(o_t|o_{t-1}o_{t-2})$ 

#### 02. statistical tool

### Markov models

| 내일<br>오늘 | ы   | 구동  | 해   |
|----------|-----|-----|-----|
| нI       | 0.4 | 0.3 | 0.3 |
| 구름       | 0.2 | 0.6 | 0.2 |
| 해        | 0.1 | 0.1 | 0.8 |

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{vmatrix}$$

(a) 상태 전이 확률 행렬



(b) 상태 전이도

#### 02. statistical tool

#### Markov models

| 내일<br>오늘 | ы   | 구름  | 해   |
|----------|-----|-----|-----|
| 비        | 0.4 | 0.3 | 0.3 |
| 구름       | 0.2 | 0.6 | 0.2 |
| 해        | 0.1 | 0.1 | 0.8 |

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{vmatrix}$$

(a) 상태 전이 확률 행렬

$$a_{11} = 0.4$$

$$v_1(11)$$

P(해해해비비해구름해) = P(해)P(해|해)P(해|해)P(비|해)P(비|비)P(해|비)P(구름|해)P(해|구름)

$$= 1 * a_{33} * a_{33} * a_{31} * a_{11} * a_{13} * a_{32} * a_{23}$$

$$= 1 * 0.8 * 0.8 * 0.1 * 0.4 * 0.3 * 0.1 * 0.2$$

$$= 1.536 * 10^{-4}$$

## 클렌징 (cleansing)



## 정규화 normalization

표현 방법이 다른 단어들을 통합시켜서 같은 단어로 만들어준다.

## 토큰화



## 토큰화



### 한국어 토큰화

사과의 놀라운 효능이라는 글을 봤어. 그래서 오늘 사과를 먹으려고 했는데 사과가 썩어서 슈퍼에 가서 사과랑 오렌지 사왔어

띄어쓰기를 기준으로 단어 토큰화

[사과의] '놀라운', '효능이라는', '글을', '봤어.', '그래서', '오늘', '사과를' '먹으려고', '했는데'('자과가), '썩어서', '슈퍼에', '가서', '사과랑') '오렌지', '사왔어']

실제로 모두 같은 '사과'를 의미하는 토큰 이지만 컴퓨터는 다른 단어로 인식

## 한국어 토큰화

사과의 놀라운 효능이라는 글을 봤어. 그래서 오늘 사과를 먹으려고 했는데 사과가 썩어서 슈퍼에 가서 사과랑 오렌지 사왔어



['사과', '의', '놀라운', '효능', '이', '라는', '글', '을', '봤', '어', '.', '그래서', '오늘', '사과', '를', ' 먹', '으려고', '했', '는데', '사과', '가', '썩', '어서', '슈퍼', '에', '가', '서', '사과', '랑', '오렌지', '사', '왔', '어']

형태소를 기준으로 문법적 도구와 의미를 가지는 부분을 나누어 서 토큰화하기

## n-gram 토큰화



$$\begin{split} &P(x_1,x_2,x_3,x_4) = P(x_1)P(x_2)P(x_3)P(x_4), \\ &P(x_1,x_2,x_3,x_4) = P(x_1)P(x_2\mid x_1)P(x_3\mid x_2)P(x_4\mid x_3), \\ &P(x_1,x_2,x_3,x_4) = P(x_1)P(x_2\mid x_1)P(x_3\mid x_1,x_2)P(x_4\mid x_2,x_3). \end{split}$$

## 어간 추출과 표제어 추출

#### Stemming

문법 요소에 따라 변환된 단어의 원형(어근)을 추출하기 위해 어간 을 추출하는 방법.

일정한 규칙을 갖고 단어의 어미를 자르기 때문에 간단하나 섬세하지 않아서 정확성이 떨어짐.

#### Lemmatization

특정한 규칙을 따르는 것이 아니라 문법 요소와 의미 요소를 감안해서 어근을 추출하는 방법.

Stemming에 비해 높은 정확성을 보이는 대신 시간이 오래 걸림.

ex. 'am', 'are', 'is'를 'be'로 추출

## 패딩 padding



길이가 다른 문장을 모두 동일한 길이로 바꾸는 작업. 길이가 모두 같으면 컴퓨터가 텍스트를 처리하는 작업을 병렬적으로 연산할 수 있으므로 더 효율적이다.

## <u>embedding</u>

### one-hot encoding



## one-hot encoding의 문제점



- 단어가 다양해질수록 벡터의 차원이 너무 커진다.
- 벡터에 0으로 채워진 빈 공간이 너무 많은 sparse 벡터를 만들기 때문에 공간 낭비가 심하다.
- 단어 간 유사도를 표현하지 못한다.

텍스트를 dense 벡터로 표현할 수 있는 방법 필요! -> 워드 임베딩

## 예측 기반 임베딩



#### 04. embedding

### word2vec



| 중심 단어                 | 주변 단어                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------|
| [1, 0, 0, 0, 0, 0, 0] | [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]                                                  |
| [0, 1, 0, 0, 0, 0, 0] | [1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0],<br>[0, 0, 0, 1, 0, 0, 0]                        |
| [0, 0, 1, 0, 0, 0, 0] | [1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0]       |
| [0, 0, 0, 1, 0, 0, 0] | [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0],<br>[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0] |
| [0, 0, 0, 0, 1, 0, 0] | [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],<br>[0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1] |
| [0, 0, 0, 0, 0, 1, 0] | [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0],<br>[0, 0, 0, 0, 0, 0, 1]                        |
| [0, 0, 0, 0, 0, 0, 1] | [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]                                                  |

## S RNN





## RNN (순환 신경망)

학습이 한 방향으로 진행되지 않는다. Input->output 방향 이외에 다음 time step의 hidden layer 방향으로도 학습이 진행된다.







#### RNN은 입력층과 출력층 길이를 다르게 설정하여 다양한 구조를 만들 수 있다.

#### one to many



한 개의 input이 여러 개의 output(sequence)을 출력 하는 구조.

image captioning 등에 사용할 수 있다.

#### many to one



여러 개의 input(sequence) 이 한 개의 output을 출력 하는 구조.

감성 분석 등에 사용할 수 있다.

#### RNN은 입력층과 출력층 길이를 다르게 설정하여 다양한 구조를 만들 수 있다.

#### many to many



여러 개의 input(sequence)이 여 러 개의 output(sequence)을 출력하는 구조. 기계 번역 등에 사용할 수 있다.

#### many to many



many-to-many 모델 중에서도 각 input마 다 output이 생성되 는 모델. 출력이 지연되지 않기 때문에 실시간 처리가

필요한 작업에 사용할

수 있다.

## 6 Week2 가제

##