Unconstrained I/O Logic

by Xavier Parent

October 30, 2013

Introduction

What is input/output logic?

- ▶ A general framework for reasoning about norms
- Needn't assume norms bear a truth-value
- On top of a base logic
- Comes in two levels
 - Unconstrained: obligation, permission, constitutive norm
 - ► Constrained: CTDs, priorities, permission as exception
- ▶ Both a semantics and a proof theory

Logic in the I/O business

I/O logic: a "way of using logic"

Role of logic

- ▶ Any base logic may be used as a secretarial assistant
- ▶ In the literature: classical logic

Language

- ightharpoonup A conditional obligation is just a pair (a, x), called a generator
- ► a and x are propositional formulae
- \blacktriangleright (a,x) is a rule; a is called the body and x is called the head
- ▶ A normative system *N* is a set of such pairs

Exercise

▶ Give the normative system consisting of two norms stating that the community has to give a house with low rent (house) to low income agents (poor) and to provide free health insurance (healthins) to elderly agents (old).

Exercise

- ▶ Give the normative system consisting of two norms stating that the community has to give a house with low rent (house) to low income agents (poor) and to provide free health insurance (healthins) to elderly agents (old).
- ► N = {(poor, house), (old, healthins)}

6

Semantics based on detachment

The semantics is 'operational'

$$x \in out(N, A)$$

- ► Calculates whether according to normative system N and in context A, a formula x is obligatory
- ► A is the input (a set of wffs); x (a wff) is the output
- Detachment as a core mechanism

Modus-ponens

- If a, then x
- (iii) So. x

Boghossian:

this is constitutive of the notion of conditional

Detachment.

- the only assumption made in IOL
- can hardly be challenged

DSDL

- extra assumptionspotentially prone to criticisms
 - - maximizing
 - trichotomy of value relations

Detachment

- (1) Factual detachment
 - (i) If a is the case, then x is obligatory
 - (ii) a is the case
 - (iii) So, x is obligatory

In the I/O notation:

If
$$(a, x) \in N$$
 then $x \in out(N, a)$

N: a set of pairs of propositional wffs (conditional norms) out(N, a): output of a under N.

Factual detachment

Iteration of successive detachments

- (2) Deontic detachment
 - (i) If a is obligatory, then x is obligatory
 - (ii) a is obligatory(iii) So, x is obligatory

In the I/O notation:

If
$$a \in out(N, \top)$$
 and $(a, x) \in N$ then $x \in out(N, \top)$

Iteration of successive detachments

Exercise

- $ightharpoonup N = \{(poor, house), (old, healthins)\}$
- ► Represent that the community has to provide a house to someone with no income if no-income implies poor

Exercise

- $ightharpoonup N = \{(poor, house), (old, healthins)\}$
- ► Represent that the community has to provide a house to someone with no income if no-income implies poor
- ▶ house $\in out(N, \neg income \land (\neg income \rightarrow poor))$

Consequence operation

Cn(A): set of logical consequences of A in classical logic.

 $Cn(A) = \{x : A \vdash x\}$ (for \vdash , read 'proves').

Notation: Curly brackets {} omitted when convenient.

 $Cn(\emptyset)$: set of all tautologies.

Tarskian properties

Inclusion: $A \subseteq Cn(A)$

Monotony: $A \subseteq B$ implies $Cn(A) \subseteq Cn(B)$

Idempotence: Cn(A) = CnCn(A)

Compactness

If $x \in Cn(A)$, then there is a finite $A' \subseteq A$ such that $x \in Cn(A')$.

Detachment

Image

In mathematics, an image is the subset of a function's codomain which is the output of the function on a subset of its domain.

Detachment

$$N = \{(a, x), (b, y)...\}$$
: a set of pairs $X = \{a, b, ...\}$: a set of formulae (input set)

Image of X under N

The image of X under N is the output of N on X:

$$G(X) =_{df} \{x : (a, x) \in N \text{ for some } a \in X\}$$

For G(X), read 'the G of X'

Detachment

 $N = \{(a, x), (b, y)...\}$: a set of pairs $X = \{a, b, ...\}$: a set of formulae (input set)

Image of X under N

The image of X under N is the output of N on X:

$$G(X) =_{df} \{x : (a, x) \in N \text{ for some } a \in X\}$$

For G(X), read 'the G of X'

Ν	X	G(X)
$\{(a_1, x_1), (a_2, x_2)\}\$ $\{(a_1, x_1), (a_2, x_2)\}\$ $\{(a_1, x_1), (a_2, x_2)\}\$ $\{(a_1, x_1), (a_2, x_2)\}\$	$\{a_1\}$ $\{a_1, x_2\}$ $\{a_1, a_2\}$ \emptyset	? ? ? ?

Detachment

$$N = \{(a, x), (b, y)...\}$$
: a set of pairs $X = \{a, b, ...\}$: a set of formulae (input set)

Image of X under N

The image of X under N is the output of N on X:

$$G(X) =_{df} \{x : (a, x) \in N \text{ for some } a \in X\}$$

For G(X), read 'the G of X'

Useful property

If
$$X \subseteq Y$$
, then $G(X) \subseteq G(Y)$

Detachment

$$N = \{(a, x), (b, y)...\}$$
: a set of pairs $X = \{a, b, ...\}$: a set of formulae (input set)

Image of X under N

The image of X under N is the output of N on X:

$$G(X) =_{df} \{x : (a, x) \in N \text{ for some } a \in X\}$$

For G(X), read 'the G of X'

Useful property

If
$$X \subseteq Y$$
, then $G(X) \subseteq G(Y)$

This is called monotony w.r.t input.

The bigger the input, the more can be detached.

Simple-minded output operation out_1

Simple-minded output, out1

$$out_1(N, A) =_{df} Cn(G(Cn(A))$$

Simple-minded output operation out₁

Simple-minded output, *out*₁

$$out_1(N,A) =_{df} Cn(G(Cn(A))$$

- $?-out_1(N, A)$
 - ► ?-Cn(A)
 - ightharpoonup?-G(Cn(A))
 - ightharpoonup?-Cn(G(Cn(A)))

Simple-minded output operation out₁

Simple-minded output, out₁

$$out_1(N, A) =_{df} Cn(G(Cn(A))$$

- $?-out_1(N,A)$
 - ► ?-Cn(A)
 - ightharpoonup ?-G(Cn(A))
 - ightharpoonup?-Cn(G(Cn(A)))

Examples

$$N = \{(a, x)\}. \ out_1(N, a) = ?$$

$$N = \{(a \lor b, x)\}. out_1(N, a) = ?$$

$$N = \{(a, x), (a, y)\}. out_1(N, a) = ?$$

Simple-minded output operation out₁

Simple-minded output, out₁

$$out_1(N,A) =_{df} Cn(G(Cn(A))$$

$$A_{j}$$
 $C_{n}(A)$

Examples

$$N = \{(a, x)\}. \ out_1(N, a) = ?$$

$$N = \{(a, x)\}. \ out_1(N, a) = .$$

 $N = \{(a \lor b, x)\}. \ out_1(N, a) = .$
 $N = \{(a, x), (a, y)\}. \ out_1(N, a) = .$

$$\frac{Cn(A) \quad G(Cn(A)) \quad Cn(G(Cn(A))}{a \quad x \quad Cn(x)}$$

Remarks

▶ 1-argument notation:

$$out_1(N) = \{(a,x) \mid x \in out_1(N,a)\}$$

▶ Unpacking out_1 : $x \in Cn(G(Cn(A)))$ means

$$A \vdash a_1 \land ... \land a_n$$
 $(a_1, x_1), ..., (a_n, x_n) \text{ in } N$
and $x_1 \land ... \land x_n \vdash x$

Exercise

- \triangleright $N = \{(poor, house), (old, healthins)\}$
- ▶ What are the obligations of the community for low income ederly agents?

Exercise

- \triangleright $N = \{(poor, house), (old, healthins)\}$
- ▶ What are the obligations of the community for low income ederly agents?
- ► All logical consequences of giving a house with low rent and providing a free health insurance
- $ightharpoonup out_1(N, poor \wedge old) = Cn(house, healthins)$

Exercise (2)

Question

What are:

- ▶ $out_1(\{(a,x),(b,y)\},\top)$,
- $out_1(\{(a,x),(b,y)\}, a \vee b),$
- $out_1(\{(a,x),(b,y)\},a \wedge b),$
- ▶ $out_1(\{(a,x),(b,y)\}, a \land b \land c),$
- $out_1(\{(a,x),(x,y)\},a)$, and
- $out_1(\{(a,x),(a \land b, \neg x)\}, a \land b)$?

Exercise (2)

Question

What are:

- ▶ $out_1(\{(a,x),(b,y)\},\top)$,
- $out_1(\{(a,x),(b,y)\}, a \vee b),$
- $out_1(\{(a,x),(b,y)\},a \wedge b),$
- $out_1(\{(a,x),(b,y)\}, a \land b \land c),$
- $out_1(\{(a,x),(x,y)\},a)$, and
- $out_1(\{(a,x),(a \land b, \neg x)\}, a \land b)$?

They are respectively:

- **►** *Cn*(∅),
- **►** *Cn*(∅),
- ightharpoonup Cn(x,y),
- ightharpoonup Cn(x,y),
- ightharpoonup Cn(x),
- $\qquad \qquad \mathsf{Cn}(x,\neg x).$

26

Proof-theory

Trick: $(a, x) \in out(N)$ in place of $x \in out(N, a)$.

Derivation

A derivation of (a, x) from N using rule set R is a tree

- \triangleright nodes are pairs of the form (b, y)
 - root node labelled with (a, x) (conclusion, at the bottom)
 - ▶ leaf nodes labelled with elements in N (assumptions, at the top)
- ▶ a fork shows an application of a rule from R

For ease of exposition

- do not draw the bullet points and the edges
 draw a horizontal line labelled with the name of the rule
- allow for e.g. $a \vdash b$ to appear as nodes.

Rules for out₁

(SI)
$$\frac{(a,x) \quad b \vdash a}{(b,x)} \qquad \text{(WO)} \quad \frac{(a,x) \quad x \vdash y}{(a,y)}$$
(AND)
$$\frac{(a,x) \quad (a,y)}{(a,x \land y)}$$

Simplest IOL system

Output operation	Rules
Simple-minded (out_1)	{SI, WO, AND}

Completeness theorem

(a,x) derivable from N using $\{SI, WO, AND\} \Leftrightarrow (a,x) \in out_1(N)$

(equivalently, $x \in out_1(N, a)$)

Soundness theorem

(a,x) derivable from N using $\{\mathsf{SI},\ \mathsf{WO},\ \mathsf{AND}\} \Rightarrow x \in \mathit{out}_1(N,a)$

Proof

A spin-off of: out_1 validates the rules (SI), (WO) and (AND)

Soundness theorem

(a,x) derivable from N using $\{\mathsf{SI},\ \mathsf{WO},\ \mathsf{AND}\} \Rightarrow x \in \mathit{out}_1(N,a)$

Proof

A spin-off of: out_1 validates the rules (SI), (WO) and (AND)

Soundness theorem

(a,x) derivable from N using $\{SI, WO, AND\} \Rightarrow x \in out_1(N,a)$

Proof

A spin-off of: out_1 validates the rules (SI), (WO) and (AND)

WARNING

To show that an I/O operation, here out_1 , validates a given rule, it is a mistake to start by assuming that a pair appearing as a premisse is in N.

For (SI), the correct hypothesis is:
$$x \in out_1(N, a)$$
. (SI) $\frac{(a, x) \quad b \vdash a}{(b, x)}$ (SI)

To show: $x \in out_1(N, b)$.

Soundness theorem

(a,x) derivable from N using $\{SI, WO, AND\} \Rightarrow x \in out_1(N,a)$

Proof

A spin-off of: out_1 validates the rules (SI), (WO) and (AND)

For (SI). Assume $x \in out_1(N, a)$ and $b \vdash a$.

From $b \vdash a$, we get

 $a \in Cn(b)$

$$\{a\} \subseteq Cn(b)$$

 $Cn(a) \subseteq CnCn(b)$

 $out_1(N,a)$

$$Cn(a) \subseteq CnCn(b)$$

$$Cn(a) \subseteq Cn(b)$$

$$G(Cn(a)) \subseteq G(Cn(b))$$

 $Cn(G(Cn(a))) \subseteq Cn(G(Cn(b)))$

$$\underbrace{Cn(G(Cn(b)))}_{out_1(N,b)}$$

So, $x \in out_1(N, b)$

```
Soundness theorem
```

(a, x) derivable from N using $\{SI, WO, AND\} \Rightarrow x \in out_1(N, a)$

Proof

A spin-off of: out_1 validates the rules (SI), (WO) and (AND)

Alternative argument for SI:

$$x \in out_1(N, a)$$
 means

$$a \vdash a_1 \wedge ... \wedge a_n$$
,

$$(a_1,x_1),...,(a_n,x_n)$$
 in N and $x_1 \wedge ... \wedge x_n \vdash x$

$$(a_1, x_1)$$
....

If $b \vdash a$ then

$$b \vdash a_1 \wedge ... \wedge a_n$$
,

$$(a_1,x_1),...,(a_n,x_n)$$
 in N and $x_1\wedge...\wedge x_n\vdash x$

So
$$x \in out_1(N, b)$$

Completeness

Completeness theorem

$$x \in out_1(N, a) \Rightarrow (a, x)$$
 derivable from N using {SI, WO, AND}

Proof

Assume
$$x \in out_1(N, a)$$
. So

$$a \vdash a_1 \wedge ... \wedge a_n$$
,

$$(a_1, x_1), ..., (a_n, x_n)$$
 in N and $x_1 \wedge ... \wedge x_n \vdash x$

Below: a derivation of (a, x) from N.

$$\frac{(a_1, x_1)}{(a, x_1)} SI \qquad \dots \qquad \frac{(a_n, x_n)}{(a, x_n)} SI$$

$$WO \xrightarrow{(a, x_1 \land \dots \land x_n)} (a, x)} AND$$

Other I/O operations

- out₂: basic output
- ▶ out₃: reusable simple-minded
- ▶ out₄: reusable basic

(SI)
$$\frac{(a,x) \quad b \vdash a}{(b,x)}$$
 (WO) $\frac{(a,x) \quad x \vdash y}{(a,y)}$ (AND) $\frac{(a,x) \quad (a,y)}{(a,x \land y)}$ (OR) $\frac{(a,x) \quad (b,x)}{(a \lor b,x)}$ (CT) $\frac{(a,x) \quad (a \land x,y)}{(a,y)}$ IOL systems

Output operation	Rules
Simple-minded (out_1)	{SI, WO, AND}
Basic (out ₂)	$\{SI, WO, AND\} + \{OR\}$
Reusable simple-minded (out_3)	$\{SI, WO, AND\} + \{CT\}$
Reusable basic (out ₄)	$\{SI, WO, AND\} + \{OR, CT\}$

Basic output, outo

Building block Nr 3

Call a set V of wffs complete iff: V = L (the set of all wffs) or V is maximal consistent.

Maximal consistency

MCS: short for "maximal consistent set" (of wffs).

V is a MCS if

- ▶ V is consistent, $V \not\vdash \bot$,and
- ▶ none of its proper extension is consistent: $\forall V' \supset V, V' \vdash \bot$

Properties

Given a MCS V.

- ▶ for all b, either $b \in B$ or $\neg b \in V$ (\neg -completeness) ▶ $a \land b \in V$ iff $a, b \in V$ (conj. property) ▶ $a \lor b \in V$ iff $a \in V$ or $b \in V$ (disj. property) ▶ $a \to b \in V$ iff $b \in V$ whenever $a \in V$

Apply, mutatis mutandis, to complete sets.

Basic output, *out*₂

Basic output $out_2(N, A) = \bigcap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}$

Basic output, *out*₂

Basic output $out_2(N, A) = \bigcap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}\$

 \cap (meet) = \forall (for all)

 $x \in out_2(N, A)$, iff for all complete $V \supseteq A$, $x \in Cn(G(V))$

Basic output, out₂

Basic output

$$out_2(N, A) = \bigcap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}\$$

$$egin{array}{ccccc} V & G(V) & Cn(G(V) \ \hline V_1 & G(V_1) & Cn(G(V_1) \ V_2 & G(V_2) & Cn(G(V_2) \ \hline \vdots & \vdots & \vdots \ V_i & G(V_i) & Cn(G(V_i) \ \hline \end{array}$$

One of these V_i is L.

The others are maximal consistent extension (MCE) of A

Example

$$out_2(N, A) = \bigcap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}\$$

Reasoning by cases.

Question

What are:

- $out_1(\{(a,x),(b,x)\}, a \vee b)$, and
- $out_2(\{(a,x),(b,x)\},a \wedge b)$?

Answer $out_1(N, a \vee b) = Cn(\emptyset).$

But out₂($N, a \lor b$) = Cn(x).

$$\begin{array}{ccc} V & G(V) & Cn(G(V)) \\ \hline L & \{x\} & Cn(x) \\ MCE \text{ of } \{a \lor b\} & \{x\} & Cn(x) \end{array}$$

Disi. property: $a \lor b$ in a MCS iff one of the disjuncts is in it.

Example

$$out_2(N, A) = \cap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}\$$

Question

What is out₂($\{(a \land b, x), (a \land \neg b, x)\}, a\}$?

Example

$$out_2(N, A) = \cap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}\$$

Question

What is out₂($\{(a \land b, x), (a \land \neg b, x)\}, a\}$?

Answer

 $\mathit{out}_2(\{(a \land b, x), (a \land \neg b, x)\}, a\} = \mathit{Cn}(x)$

V	G(V)	Cn(G(V))
L	{x}	Cn(x)
MCE of $\{a, b\}$	{x}	Cn(x)
MCE of $\{a, \neg b\}$	{x}	Cn(x)

 \neg -completeness: for all b, either b or $\neg b$ is in a MCS

 $out_2(N, A) = \bigcap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}$

Completeness theorem

(a, x) derivable from N using $\{SI, WO, AND, OR\} \Leftrightarrow (a, x) \in out_2(N)$

(equivalently, $x \in out_2(N, a)$)

 $out_2(N,A) = \cap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}$

Soundness

out₂ validates {SI, WO, AND, OR}

 $\operatorname{\mathsf{out}}_2(\mathsf{N},\mathsf{A}) = \cap \{\operatorname{\mathsf{Cn}}(\mathsf{G}(\mathsf{V})) : \mathsf{A} \subseteq \mathsf{V},\mathsf{V} \ \operatorname{\mathsf{complete}}\}$

Soundness

out₂ validates {SI, WO, AND, OR}

OR example:

Assume

To show:

(1) $x \in out_2(N, a)$

 $(3) x \in out_2(N, a \vee b)$

(2) $x \in out_2(N, b)$

 $\mathsf{out}_2(\mathsf{N},\mathsf{A}) = \cap \{ \mathsf{Cn}(\mathsf{G}(\mathsf{V})) : \mathsf{A} \subseteq \mathsf{V}, \mathsf{V} \; \mathsf{complete} \}$

Soundness

out₂ validates {SI, WO, AND, OR}

OR example:

Assume

(1) $x \in out_2(N, a)$

(3) $x \in out_2(N, a \vee b)$

 $(2) x \in out_2(N, b)$

Let V be a complete set such that $a \vee b \in V$. To show: $x \in Cn(G(V))$.

To show:

 $\mathsf{out}_2(\mathsf{N},\mathsf{A}) = \cap \{ \mathsf{Cn}(\mathsf{G}(\mathsf{V})) : \mathsf{A} \subseteq \mathsf{V}, \mathsf{V} \; \mathsf{complete} \}$

Soundness

out₂ validates {SI, WO, AND, OR}

OR example:

Assume To show:

 $(1) x \in out_2(N, a)$ $(3) x \in out_2(N, a \vee b)$

 $(2) x \in out_2(N, b)$

Let V be a complete set such that $a \lor b \in V$. To show: $x \in Cn(G(V))$.

Either $a \in V$ or $b \in V$ (disj. property)

 $out_2(N,A) = \cap \{Cn(G(V)) : A \subseteq V, V \text{ complete}\}$

Soundness

out₂ validates {SI, WO, AND, OR}

OR example:

Assume To show:

 $(1) x \in out_2(N, a)$ $(3) x \in out_2(N, a \vee b)$

 $(2) x \in out_2(N, b)$

Let V be a complete set such that $a \lor b \in V$. To show: $x \in Cn(G(V))$.

Either $a \in V$ or $b \in V$ (disj. property)

Case 1: $a \in V$ Case 2: $b \in V$

 $\mathsf{out}_2(\mathsf{N},\mathsf{A}) = \cap \{ \mathsf{Cn}(\mathsf{G}(\mathsf{V})) : \mathsf{A} \subseteq \mathsf{V}, \mathsf{V} \; \mathsf{complete} \}$

Soundness

out₂ validates {SI, WO, AND, OR}

OR example:

Assume To show:

 $(1) x \in out_2(N, a)$ $(3) x \in out_2(N, a \vee b)$

(2) $x \in out_2(N, b)$

Let V be a complete set such that $a \lor b \in V$. To show: $x \in Cn(G(V))$.

Either $a \in V$ or $b \in V$ (disj. property)

Case 1: $a \in V$ Case 2: $b \in V$

By (1), $x \in Cn(G(V))$ By (2), $x \in Cn(G(V))$

Either way, $x \in Cn(G(V))$ as required.

Reusable simple-minded output $out_3(N, A) = \bigcap \{Cn(G(B)) : A \subseteq B = Cn(B) \supseteq G(B)\}$

Reusable simple-minded output

$$out_3(N, A) = \cap \{Cn(G(B)) : A \subseteq B = Cn(B) \supseteq G(B)\}$$

- ▶ $B \subseteq Cn(B)$ is just inclusion (slide 12)
- ▶ $B \supseteq Cn(B)$ glossed as "B is closed under Cn"
 - ▶ If $x \in Cn(B)$, then $x \in B$
- ▶ $B \supseteq G(B)$ glossed as "B is closed under G"

5

Reusable simple-minded output, out3

Reusable simple-minded output

$$out_3(N,A) = \cap \{Cn(G(B)) : A \subseteq B = Cn(B) \supseteq G(B)\}$$

Alternative definition:

$$out_3(N,A) = Cn(G(B^*))$$

where B^* is the smallest superset of A that is closed under Cn and G.

for input
$$t$$
, $\frac{\mathsf{N} \text{ is } (t,s) (t \wedge s,u) (t,s) (t \wedge s,u)}{B^* \text{ is } Cn(t,s) Cn(t) Cn(t,s,u)}$ out \mathbf{n} is \mathbf{n} is \mathbf{n} is \mathbf{n}

Reusable simple-minded output

$$out_3(N,A) = \cap \{Cn(G(B)) : A \subseteq B = Cn(B) \supseteq G(B)\}$$

Question

What are:

- $out_3(\{(a,x),(b,y)\}, a \vee b),$
- $out_3(\{(a,x),(b,y)\},a \wedge b),$
- $out_3(\{(a,x),(x,y)\},a)$, and
- $out_3(\{(a,x),(x,y),(y,z)\},a)$?

Reusable simple-minded output, out3

Reusable simple-minded output

$$\textit{out}_3(\textit{N},\textit{A}) = \cap \{\textit{Cn}(\textit{G}(\textit{B})) : \textit{A} \subseteq \textit{B} = \textit{Cn}(\textit{B}) \supseteq \textit{G}(\textit{B})\}$$

Question

What are:

- $out_3(\{(a,x),(b,y)\}, a \vee b),$
- $out_3(\{(a,x),(b,y)\},a \wedge b),$
- $out_3(\{(a,x),(x,y)\},a)$, and
- $out_3(\{(a,x),(x,y),(y,z)\},a)$?

 $Cn(\emptyset)$, Cn(x, y), Cn(x, y), Cn(x, y, z).

Reusable simple-minded output

$$\textit{out}_3(\textit{N},\textit{A}) = \cap \{\textit{Cn}(\textit{G}(\textit{B})) : \textit{A} \subseteq \textit{B} = \textit{Cn}(\textit{B}) \supseteq \textit{G}(\textit{B})\}$$

Reusable means: output may be recycled as input Distinctive rule of out_3 :

(CT)
$$\frac{(a,x) \quad (a \land x,y)}{(a,y)} \qquad \frac{x \in out_3(N,a) \quad y \in out_3(N,a \land x)}{y \in out_3(N,a)}$$

Reusable simple-minded output

$$\textit{out}_3(\textit{N},\textit{A}) = \cap \{\textit{Cn}(\textit{G}(\textit{B})) : \textit{A} \subseteq \textit{B} = \textit{Cn}(\textit{B}) \supseteq \textit{G}(\textit{B})\}$$

Assume

To show:

(1) $x \in out_3(N, a)$

 $(3) y \in out_3(N, a)$

 $(2) \ y \in out_3(N,a \wedge x)$

Reusable simple-minded output

$$\textit{out}_3(\textit{N},\textit{A}) = \cap \{\textit{Cn}(\textit{G}(\textit{B})) : \textit{A} \subseteq \textit{B} = \textit{Cn}(\textit{B}) \supseteq \textit{G}(\textit{B})\}$$

Assume To show:

$$(1) x \in out_3(N, a) \qquad (3) y \in out_3(N, a)$$

 $(2) y \in out_3(N, a \wedge x)$

Let B be that $a \in B = Cn(B) \supseteq G(B)$. To show: $y \in Cn(G(B))$.

By (1), $x \in Cn(G(B))$.

So $x \in Cn(B)$ (cos $B \supseteq G(B)$, and Cn is monotonic, slide 12)

So $a \land x \in B \ (\cos B = Cn(B))$

By (2), $y \in Cn(G(B))$. CQFD.

Reusable simple-minded output

$$out_3(N,A) = \cap \{Cn(G(B)) : A \subseteq B = Cn(B) \supseteq G(B)\}$$

Bulk increment

$$out_3^b(N,A) = \cup_{i=0}^{\omega} A_i$$
 where

$$ightharpoonup A_0 = out_1(N, A)$$

$$A_{n+1} = Cn(A_n \cup out_1(N, A_n \cup A))$$

Result

 $out_3^b(N,A) = out_3(N,A)$

out₁ made iterative

Reusable basic output, out4

Reusable basic

 $\mathit{out}_4(N,A) = \cap \{\mathit{Cn}(G(V)) : A \subseteq V \supseteq G(V), V \text{ complete } \}$

Rules added to out_1 : OR and CT.

59