ПРАКТИЧЕСКОЕ ЗАДАНИЕ. Решение систем линейных уравнений, работа с матрицами

<u>Цель работы:</u> Изучение возможностей пакета Ms Excel при решении задач линейной алгебры. Приобретение навыков решения систем линейных алгебраических уравнений и выполнение действий над матрицами средствами пакета.

Предварительно вспомним некоторые сведения из курса высшей математики, необходимые для выполнения данной лабораторной работы.

Решение систем линейных алгебраических уравнений (СЛАУ)

Пусть задана СЛАУ следующего вида:

$$\begin{aligned} & a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ & a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ & \dots \\ & a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{aligned}$$

Эту систему можно представить в матричном виде: AX = b, где

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 - матрица коэффициентов системы уравнений;

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
 - вектор неизвестных, $b = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$ - вектор правых частей.

При выполнении лабораторной работы систему линейных алгебраических уравнений необходимо будет решать методом обратной матрицы и методом Крамера. Вспомним основные формулы, используемые в этих методах.

Метод обратной матрицы

Систему линейных алгебраических уравнений АХ = b умножим слева на матрицу, обратную к А. Система уравнений примет вид:

$$A^{-1}AX=A^{-1}b$$
, $EX=A^{-1}b$, (Е - единичная матрица)

Таким образом, вектор неизвестных вычисляется по формуле **X=A⁻¹b**.

Метод Крамера

В этом случае неизвестные $x_1, x_2, ..., x_n$ вычисляются по формуле:

$$x_i = \frac{\Delta_i}{\Delta}, i = 1,...,n$$

где 🛕 - определитель матрицы 🗛 🛕 - определитель матрицы, получаемой из матрицы 🗛 путем замены і-го столбца вектором b.

Обратите внимание на особенность работы с матричными формулами: необходимо предварительно выделять область, в которой будет храниться результат, а после получения результата преобразовывать его к матричному виду, нажав клавиши F2 и Ctrl+Shift+Enter.

Теперь рассмотрим решение системы линейных уравнений методом обратной матрицы и методом Крамера на следующих примерах.

ПРИМЕР 3.1. Решить систему методом обратной матрицы:

$$\begin{cases} x_2 - 13x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 21x_2 - 5x_4 = 2 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$$

В этом случае матрица коэффициентов ${\bf A}$ и вектор свободных коэффициентов ${\bf b}$ имеют вид:

$$A = \begin{pmatrix} 0 & 1 & -13 & 4 \\ 1 & 0 & -2 & 3 \\ 3 & 21 & 0 & -5 \\ 4 & 3 & -5 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} -5 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

Введём матрицу **A** и вектор **b** в рабочий лист MS Excel (рис. 3.1).

	Α	В	С	D	Е	F	G	Н
1		0	1	-13	4		-5	
2	Α_	1	0	-2	3	h_	-4	
3	A=	3	21	0	-5	b=	2	
4		4	3	-5	0		3	
5								

Рис. 3.1

В нашем случае матрица **A** находится в ячейках **B1:E4**, а вектор **b** в диапазоне **G1:G4**. Для решения системы методом обратной матрицы необходимо вычислить матрицу, обратную к **A**. Для этого выделим ячейки для хранения обратной матрицы (это нужно сделать обязательно!!!); пусть в нашем случае это будут ячейки **B6:E9**. Теперь обратимся к мастеру функций, и в категории Математические выберем функцию **МОБР**, предназначенную для вычисления обратной матрицы (рис. 3.2), щелкнув по кнопке **OK**, перейдём ко второму шагу мастера функций. В диалоговом окне, появляющемся на втором шаге мастера функций, необходимо заполнить поле ввода Массив (рис. 3.3). Это поле должно содержать диапазон ячеек, в котором хранится исходная матрица - в нашем случае **B1:E4**. Данные в поле ввода Массив можно ввести, используя клавиатуру или выделив их на рабочем листе, удерживая левую кнопку мыши.

Рис. 3.2

Если поле Массив заполнено, можно нажать кнопку **ОК**. В первой ячейке, выделенного под обратную матрицу диапазона, появится некое число. Для того чтобы получить всю обратную матрицу, необходимо нажать клавишу **F2** для перехода в режим редактирования, а затем одновременно клавиши **Ctrl+Shift+Enter**. В нашем случае рабочая книга MS Excel примет вид изображенный на рис. 3.4.

Рис. 3.4

Теперь необходимо умножить полученную обратную матрицу на вектор **b**. Выделим ячейки для хранения результирующего вектора, например **H6:H9**. Обратимся к мастеру функций, и в категории **Математические** выберем функцию **МУМНОЖ**, которая предназначена для умножения матриц. Напомним, что умножение матриц происходит по правилу строка на столбец и матрицу **A** можно умножить на матрицу **B** только в том случае, если количество столбцов матрицы **A** равно количеству строк матрицы **B**. Кроме того, при умножении матриц важен порядок сомножителей, т.е. **A**В≠ВА

Перейдём ко второму шагу мастера функций. Появившееся диалоговое окно (рис. 3.5) содержит два поля ввода **Массив1** и **Массив2**. В поле **Массив1** необходимо ввести диапазон ячеек, в котором содержится первая из перемножаемых матриц, в нашем случае **B6:E9** (обратная матрица), а в поле **Массив2** ячейки, содержащие вторую матрицу, в нашем случае **G1:G4** (вектор **b**).

Рис. 3.5

Если поля ввода заполнены, можно нажать кнопку **ОК**. В первой ячейке выделенного диапазона появится соответствующее число результирующего вектора. Для того чтобы получить весь вектор, необходимо нажать клавишу **F2**, а затем одновременно клавиши **Ctrl+Shift+Enter**. В нашем случае результаты вычислений (вектор **x**), находится в ячейках **H6:H9**.

Для того чтобы проверить, правильно ли решена система уравнений, необходимо умножить матрицу **A** на вектор **x** и получить в результате вектор **b**. Умножение матрицы **A** на вектор **x** осуществляется при помощи функции **МУМНОЖ(В1:E4;H6:H9)**, так как было описанной выше.

В результате проведенных вычислений рабочий лист примет вид изображенный на рис. 3.6.

	Α	В	С	D	Е	F	G	Н	1	J
1		0	1	-13	4		-5			-5
2	Λ_	1	0	-2	3	b=	-4		Пиопопио	-4
3	Α=	3	21	0	-5	D-	2		Проверка	2
4		4	3	-5	0		3			3
5										
6		-0,11047	0,096899	-0,03023	0,24845			0,849612		
7		0,011628	0,077519	0,055814	-0,06124		u_	-0,44031		
8		-0,0814	0,124031	0,009302	-0,03798		X=	-0,1845		
9		-0,01744	0,383721	0,016279	-0,10814			-1,73953		

Рис. 3.6

ПРИМЕР 3.2. Решить систему из ПРИМЕРА 3.1 методом Крамера.

Введём матрицы **A** и вектор **b** на рабочий лист. Кроме того, сформируем четыре вспомогательные матрицы, заменяя последовательно столбцы матрицы **A** на столбец вектора **b** (рис. 3.7).

Для дальнейшего решения необходимо вычислить определитель матрицы **A**. Установим курсор в ячейку **I10** и обратимся к мастеру функций. В категории **Математические** выберем функцию **МОПРЕД**, предназначенную для вычисления определителя матрицы, и перейдём ко второму шагу

мастера функций. Диалоговое окно, появляющееся на втором шаге содержит поле ввода **Массив**. В этом поле указывают диапазон матрицы, определитель которой вычисляют. В нашем случае это ячейки **B1:E4**.

Для вычисления вспомогательных определителей введем формулы:

I11=МОПРЕД(B6:E9), I12=МОПРЕД(B11:E14), I13=МОПРЕД(B16:E19), I14=МОПРЕД(B21:E24).

В результате в ячейке І10 хранится главный определитель, а в ячейках І11:І14 - вспомогательные.

Воспользуемся формулами Крамера и разделим последовательно вспомогательные определители на главный. В ячейку **К11** введём формулу **=I11/\$I\$10**. Затем скопируем её содержимое в ячейки **К12, К13** и **К14**. Система решена.

	Α	В	C	D	E	F	G	Н		J	K
1		0	1	-13	4	b=	-5				
2	A=	1	0	-2	3		-4				
2	A-	3	21	0	-5 0		2				
4		4	3	-5	0		3				
5											
6		-5	1	-13	4						
7		-4	0	-2	3						
8	A1=	2	21	-2 0	3 -5						
9		3	21 3	-5	0						
10								d=	2580		
11		0	-5	-13	4			d1=	2192		0,849612
12	A2=	1	-4	-2	-5 0		d2= -113	-1136	X=	-0,44031	
13	AZ=	3	2	0	-5			d3=	476	χ=	-0,1845
14		3	2	-5	0			d4=	-4488		-1,73953
15											
16		0	1	-5	4						
17	A3=	1	0	-4	3						
18	A3=	3	21	2	3 -5						
19		4	3	2	0						
20											
21		0	1	-13	-5						
22	0.4-	1	0	-2	-4						
23	A4=	3	21	0	2						
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		4	3	-5	3						
_						Dua 2.7					

Рис. 3.7

ПРИМЕР 3.3. Вычислить матрицу С по формуле: C=A²+2AB, где

$$A = \begin{pmatrix} 3 & 9 & -2 \\ 2 & -13 & 3 \\ 11 & 2 & 4 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 4 & 11 \\ 4 & 5 & 5 \\ 11 & 3 & 7 \end{pmatrix}$$

Введем исходные данные на рабочий лист (рис. 3.8).

Для умножения матрицы A на матрицу B, выделим диапазон B5:D7 и воспользуемся функцией МУМНОЖ(B1:D3;G1:I3).

Результат вычисления A^2 = A^*A поместим в ячейки **G5:I7**, воспользовавшись формулой **МУМНОЖ(B1:D3;B1:D3)**.

Умножение (деление) матрицы на число можно выполнить при помощи элементарных операций. В нашем случае необходимо умножить матрицу из диапазона **B5:D7** на число 2. Выделим ячейки **B9:D11** и введем формулу =2*B5:D7.

Сложение (вычитание) матриц выполняется аналогично. Например, выделим диапазон G9:I11 и введем формул =B9:D11+ G5:I7.

Для получения результата в обоих случаях необходимо нажать комбинацию клавиш Ctrl+Shift+Enter.

Кроме того, в строке формул рабочего листа, изображенного на рис. 3.8, показано как можно вычислить матрицу С одним выражением.

⊠ Microsoft Excel - Книга1												
	Файл ∏р	авка <u>В</u> ид	Вст <u>а</u> вка	Формат Се	рвис Дан	ные <u>О</u> кно <u>С</u> п	равка	Вв	едите вопр	ос		
	₽ □ 0	 □ 3	₽ ₽ →	Σ	- 41 1	? Arial (Cyr	→ 10 →	ж	H		
	E14 ▼											
	Α	В	С	D	Е	F	G	Н	1			
1		3	9	-2			1	4	11			
2	A =	2	-13	3		B=	4	5	5 7			
3		11	2	4			11	3	7			
4												
5		17	51	64		\mathbf{A}^2	5	-94	13			
6	AB=	-17	-48	-22			13	193	-31			
7		63	66	159			81	81	0			
8												
9		34	102	128		C=A ² +2AB=	39	8	141			
10	2AB=	-34	-96	-44			-21	97	-75			
11	ZAD=	126	132	318			207	213	318			
12												
13												
14					39	8	141					
15				C=	-21	97	-75					
16					207	213	318					
17												

Рис. 3.8

ВАРИАНТЫ ЗАДАНИЙ

- Решить систему уравнений методом Крамера.
- Решить систему уравнений с помощью обратной матрицы.
- Выполнить действия над матрицами.

При решении систем обязательно выполнить проверку.

Bapuaht No1 1)
$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 3x_1 - x_2 - x_3 - 2x_4 = -4 \\ 2x_1 + 3x_2 - x_3 - x_4 = -6 \\ x_1 + 2x_2 + 3x_3 - x_4 = -4 \end{cases}$$
 2)
$$\begin{cases} 5x + 8y - z = -7 \\ x + 2y + 3z = 1 \\ 2x - 3y + 2z = 9 \end{cases}$$

$$\begin{cases} 5x + 8y - z = -7 \\ x + 2y + 3z = 1 \\ 2x - 3y + 2z = 9 \end{cases}$$

3) 2 (A+B) (2B-A), rge A =
$$\begin{pmatrix} 2 & 3 & -1 \\ 4 & 5 & 2 \\ -1 & 0 & 7 \end{pmatrix}$$
, B = $\begin{pmatrix} -1 & 0 & 5 \\ 0 & 1 & 3 \\ 2 & -2 & 4 \end{pmatrix}$

Bapuaht Nº2 1)
$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ x_1 - x_2 - 2x_3 - 3x_4 = 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$$
 2)
$$\begin{cases} x + 2y + z = 4 \\ 3x - 5y + 3z = 1 \\ 2x + 7y - z = 8 \end{cases}$$

$$\begin{cases} x + 2y + z = 4 \\ 3x - 5y + 3z = 1 \\ 2x + 7y - z = 8 \end{cases}$$

3) 3 A - (A + 2B) B, где
$$A = \begin{pmatrix} 4 & 5 & -2 \\ 3 & -1 & 0 \\ 4 & 2 & 7 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ 5 & 7 & 3 \end{pmatrix}$

Bapuaht No3 1)
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \\ 2x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + 2x_4 = 1 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 5\\ 2x_1 + x_2 + 2x_3 + 3x_4 = 1\\ 3x_1 + 2x_2 + x_3 + 2x_4 = 1\\ 4x_1 + 3x_2 + 2x_3 + x_4 = -5 \end{cases}$$

$$2)\begin{cases} 3x + 2y + z = 5\\ 2x + 3y + z = 1\\ 2x + y + 3z = 11 \end{cases}$$

3) 2(A-B)(A² + B), где
$$A = \begin{pmatrix} 5 & 1 & 7 \\ -10 & -2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 0 \\ 7 & 2 & 1 \end{pmatrix}$

1)
$$\begin{cases} x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 - 5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 5x_1 + x_2 + 2x_3 = 29 \\ 3x_1 - x_2 + x_3 = 10 \end{cases}$$

3)
$$(A^2 - B^2)(A + B)$$
, rate $A = \begin{pmatrix} 7 & 2 & 0 \\ -7 & -2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & -2 \\ 3 & 1 & 1 \end{pmatrix}$

$$B = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & -2 \\ 3 & 1 & 1 \end{pmatrix}$$

Bapuaht Nº5¹)
$$\begin{cases} x_1 + 3x_2 + 5x_3 + 7x_4 = 12 \\ 3x_1 + 5x_2 + 7x_3 + x_4 = 0 \\ 5x_1 + 7x_2 + x_3 + 3x_4 = 4 \\ 7x_1 + x_2 + 3x_3 + 5x_4 = 16 \end{cases}$$

$$2) \begin{cases}
4x - 3y + 2z &= 9 \\
2x + 5y - 3z &= 4 \\
5x + 6y - 2z &= 18
\end{cases}$$

3) (A-B²)(2A+B), где
$$A = \begin{pmatrix} 5 & 2 & 0 \\ 10 & 4 & 1 \\ 7 & 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 6 & -1 \\ -1 & -2 & 0 \\ 2 & 1 & 3 \end{pmatrix}$

Baρυaht Nº6 1)
$$\begin{cases} x_1 + 5x_2 + 3x_3 - 4x_4 = 20 \\ 3x_1 + x_2 - 2x_3 = 9 \\ 5x_1 - 7x_2 + 10x_4 = -9 \\ 3x_2 - 5x_3 = 1 \end{cases}$$

$$2)\begin{cases} 2x_1 - x_2 - x_3 = 4 \\ 3x_1 + 4x_2 - 2x_3 = 11 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases}$$

3) (A - B) A + 2B, где
$$A = \begin{pmatrix} 5 & -1 & 3 \\ 0 & 2 & -1 \\ -2 & -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 7 & -2 \\ 1 & 1 & -2 \\ 0 & 1 & 3 \end{pmatrix}$

$$B = \begin{pmatrix} 3 & 7 & -2 \\ 1 & 1 & -2 \\ 0 & 1 & 3 \end{pmatrix}$$

Вариант №7 1)
$$\begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 8 \\ x_1 - 3x_2 - 6x_4 = 9 \\ 2x_2 - x_3 + 2x_4 = -5 \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 0 \end{cases}$$

$$2) \begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -4 \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases}$$

3)
$$2(A-0,5B)+AB$$
, где $A = \begin{pmatrix} 5 & 3 & -1 \\ 2 & 0 & 4 \\ 3 & 5 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 4 & 16 \\ -3 & -2 & 0 \\ 5 & 7 & 2 \end{pmatrix}$

$$B = \begin{pmatrix} 1 & 4 & 16 \\ -3 & -2 & 0 \\ 5 & 7 & 2 \end{pmatrix}$$

Bapuaht Nº8 1)
$$\begin{cases} 2x_1 - x_2 + 3x_3 + 2x_4 = 4 \\ 3x_1 + 3x_2 + 3x_3 + 2x_4 = 6 \\ 3x_1 - x_2 - x_3 + 2x_4 = 6 \\ 3x_1 - x_2 + 3x_3 - x_4 = 6 \end{cases}$$

$$2) \begin{cases} 3x_1 - x_2 = 5 \\ -2x_1 + x_2 + x_3 = 0 \\ 2x_1 - x_2 + 4x_3 = 15 \end{cases}$$

3)
$$(A-B)A+3B$$
, rge $A = \begin{pmatrix} 3 & 2 & -5 \\ 4 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 2 & 4 \\ 0 & 3 & 2 \\ -1 & -3 & 4 \end{pmatrix}$

Вариант Nº91)
$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 8 \\ 2x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 - x_2 + 2x_3 + x_4 = -1 \\ x_1 + x_2 - x_3 + 3x_4 = 10 \end{cases}$$

$$2) \begin{cases} 3x_1 - x_2 + x_3 = 4 \\ 2x_1 - 5x_2 - 3x_3 = -17 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$

3) 2A - (A² + B) B, где
$$A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 1 & -2 \\ 0 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 6 & -2 \\ 4 & 10 & 1 \\ 2 & 4 & -5 \end{pmatrix}$

Вариант №101)
$$\begin{cases} 4x_1 + x_2 \\ x_1 - 3x_2 + 3x_2 \\ 3x_2 - 2x_3 \end{cases}$$

Bapuaht No10:
$$\begin{cases} 4x_1 + x_2 - x_4 = -9 \\ x_1 - 3x_2 + 4x_3 = -7 \\ 3x_2 - 2x_3 + 4x_4 = 12 \\ x_1 + 2x_2 - x_3 - 3x_4 = 0 \end{cases}$$
 2)
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 - x_2 - 6x_3 = -1 \\ 3x_1 - 2x_2 = 8 \end{cases}$$

3) 3 (
$$A^2 - B^2$$
) -2AB, где $A = \begin{pmatrix} 4 & 2 & 1 \\ 3 & -2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 & 2 \\ 5 & -7 & -2 \\ 1 & 0 & -1 \end{pmatrix}$

Bapuaht No11:
$$\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 1 \\ 2x_1 - x_2 - 3x_4 = 2 \\ 3x_1 - x_3 + x_4 = -3 \\ 2x_1 + 2x_2 - 2x_3 + 5x_4 = -6 \end{cases}$$

$$2x_1 + x_2 - x_3 = 1
x_1 + x_2 + x_3 = 6
3x_1 - x_2 + x_3 = 4$$

где
$$A = \begin{pmatrix} 1 & 0 & 3 \\ -2 & 0 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & 5 & 2 \\ 0 & 1 & 2 \\ -3 & -1 & -1 \end{pmatrix}$

$$B = \begin{pmatrix} 7 & 5 & 2 \\ 0 & 1 & 2 \\ -3 & -1 & -1 \end{pmatrix}$$

Bapuaht Nº12 1)
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 0 \\ x_2 + 2x_3 - x_4 = 2 \\ x_1 - x_2 - x_4 = -1 \\ -x_1 + 3x_2 - 2x_3 = 0 \end{cases}$$
 2)
$$\begin{cases} 2x_1 - x_2 - 3x_3 = 3 \\ 3x_1 + 4x_2 - 5x_3 = 8 \\ 2x_2 + 7x_3 = 17 \end{cases}$$

$$2) \begin{cases} 2x_1 - x_2 - 3x_3 = 3 \\ 3x_1 + 4x_2 - 5x_3 = 8 \\ 2x_2 + 7x_3 = 17 \end{cases}$$

3) A (A²-B) - 2 (B+A) B, где
$$A = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 2 & 4 \\ 5 & 3 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 7 & 13 \\ -1 & 0 & 5 \\ 5 & 13 & 21 \end{pmatrix}$

$$\textbf{Bapuaht Ne13} = \begin{cases} 5x_1 + x_2 - x_4 = -9 \\ 3x_1 - 3x_2 + x_3 + 4x_4 = -7 \\ 3x_1 - 2x_3 + x_4 = -16 \\ x_1 - 4x_2 + x_4 = 0 \end{cases} \\ 2) \begin{cases} x_1 + 5x_2 + x_3 = -7 \\ 2x_1 - x_2 - x_3 = 0 \\ x_1 - 2x_2 - x_3 = 2 \end{cases}$$

$$2) \begin{cases} x_1 + 5x_2 + x_3 = -7 \\ 2x_1 - x_2 - x_3 = 0 \\ x_1 - 2x_2 - x_3 = 2 \end{cases}$$

где
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 3 & 5 \\ 1 & 4 & -1 \end{pmatrix}, B = \begin{pmatrix} 4 & 11 & 3 \\ 1 & 6 & 1 \\ 2 & 2 & 16 \end{pmatrix}$$

$$\textbf{Bapuaht N} \textbf{14} 1) \begin{cases} 2x_1 + x_3 + 4x_4 = 9 \\ x_1 + 2x_2 - x_3 + x_4 = 8 \\ 2x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 - x_2 + 2x_3 + x_4 = -1 \end{cases}$$

$$2) \begin{cases}
x - 2y + 3z = 6 \\
2x + 3y - 4z = 16 \\
3x - 2y - 5z = 12
\end{cases}$$

где
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 4 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 9 & 8 & 7 \\ 2 & 7 & 3 \\ 4 & 3 & 5 \end{pmatrix}$$

$$\begin{cases} 2x_1 - 6x_2 + 2x_3 + 2x_4 &= 12 \\ x_1 + 3x_2 + 5x_3 + 7x_4 &= 12 \\ 3x_1 + 5x_2 + 7x_3 + x_4 &= 0 \\ 5x_1 + 7x_2 + x_3 + 3x_4 &= 4 \end{cases} \begin{cases} 3x + 4y + 2z &= 2x - y - 3z &= x + 5y + z &= 0 \end{cases}$$

где
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -2 & 0 \\ 4 & -3 & 0 \end{pmatrix}, B = \begin{pmatrix} 22 & -14 & 3 \\ 6 & -7 & 0 \\ 11 & 3 & 15 \end{pmatrix}$$

$$\textbf{Bapuaht N216} 1) \begin{cases} x_1 + 5x_2 = 2 \\ 2x_1 - x_2 + 3x_2 + 2x_4 = 4 \\ 3x_1 - x_2 - x_3 + 2x_4 = 6 \\ 3x_1 - x_2 + 3x_3 - x_4 = 6 \end{cases} \\ 2) \begin{cases} 2x_1 - x_2 + 3x_3 = 7 \\ x_1 + 3x_2 - 2x_3 = 0 \\ 2x_2 - x_3 = 2 \end{cases}$$

3)
$$2A^2$$
-(A+B)(A-B), rge $A = \begin{pmatrix} 4 & -2 & 0 \\ 1 & 1 & 2 \\ 3 & -2 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & -2 & 6 \\ 2 & 4 & 3 \\ 0 & -3 & 4 \end{pmatrix}$

Bapuaht Nº171)
$$\begin{cases} x_1 - 4x_2 - x_4 = 2 \\ x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 2x_1 + 3x_2 - x_3 - x_4 = -6 \\ x_1 + 2x_2 + 3x_3 - x_4 = -4 \end{cases}$$

$$2)\begin{cases} 2x_1 + x_2 + 4x_3 = 20\\ 2x_1 - x_2 - 3x_3 = 3\\ 3x_1 + 4x_2 - 5x_3 = -8 \end{cases}$$

где
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 5 & 3 & 1 \\ -1 & 2 & 0 \\ -3 & 0 & 0 \end{pmatrix}$$

Вариант №18

$$\begin{cases} 5x_1 - x_2 + x_3 + 3x_4 = -4 \\ x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 - x_2 - 2x_3 - 3x_4 = 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \end{cases} \qquad 2) \begin{cases} x_1 - x_2 = 4 \\ 2x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 11 \end{cases}$$

$$(A-B)(A+B)-2AB, \ \text{где}\ A = \begin{pmatrix} 3 & 4 & 5 \\ -1 & 0 & 2 \\ -2 & -1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 1 & 2 \\ 3 & -1 & 0 \end{pmatrix}$$

Bapuaht No191)
$$\begin{cases} 4x_1 - 2x_2 + x_3 - 4x_4 = 3 \\ 2x_1 - x_2 + x_3 - x_4 = 1 \\ 3x_1 - x_3 + x_4 = -3 \\ 2x_1 + 2x_2 - 2x_3 + 5x_4 = -6 \end{cases}$$

$$2) \begin{cases} x_1 + 5x_2 - x_3 = 7 \\ 2x_1 - x_2 - x_3 = 4 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases}$$

где
$$A = \begin{pmatrix} 3 & 2 & -1 \\ 0 & -1 & 2 \\ 5 & 7 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & -1 \\ 2 & -1 & 2 \\ -3 & 1 & 4 \end{pmatrix}$$

Вариант №20

1)
$$\begin{cases} 2x_1 - x_3 - 2x_4 = -1 \\ x_2 + 2x_3 - x_4 = 2 \\ x_1 - x_2 - x_4 = -1 \\ -x_1 + 3x_2 - 2x_3 = 0 \end{cases}$$

$$2)\begin{cases} 11x + 3y - 3z = 2\\ 2x + 5y - 5z = 0\\ x + y + z = 2 \end{cases}$$

$$3) A^2 - (A + B)-(A - 3B),$$
где $A = \begin{pmatrix} 4 & 5 & 6 \\ -1 & 0 & 3 \\ -1 & 2 & -1 \end{pmatrix},$ $B = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ 3 & 1 & 2 \end{pmatrix}$

$$\textbf{Bapuaht Ne21} \ 1) \begin{cases} -x_1 + x_2 + & x_3 + x_4 = & 4 \\ 2x_1 + & x_2 + 2x_3 + 3x_4 = & 1 \\ 3x_1 + 2x_2 + & x_3 + 2x_4 = & 1 \\ 4x_1 + 3x_2 + 2x_3 + & x_4 = -5 \end{cases} \ 2) \begin{cases} 7x + 5y + 2z = 18 \\ x - y - z = 3 \\ x + y + 2z = -2 \end{cases}$$

3) B(A+2B)-3AB, rge A=
$$\begin{pmatrix} 7 & -3 & 0 \\ 1 & -1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
, B= $\begin{pmatrix} -4 & 2 & 1 \\ 1 & 0 & 1 \\ 3 & 2 & 1 \end{pmatrix}$

Bapuaht Nº22 1)
$$\begin{cases} 5x_1 + 3x_2 - 7x_3 + 3x_4 = 1 \\ x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 - 3x_4 = -4 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$$
 2)
$$\begin{cases} 2x + 3y + z = 1 \\ x + z = 0 \\ x - y - z = 2 \end{cases}$$

3)
$$3(A+B)$$
-(A-B)A, где $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 2 & 1 \\ -1 & 2 & 0 \\ 2 & 3 & -1 \end{pmatrix}$

Baρυaht №23¹⁾
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 0 \\ x_1 + 2x_3 - 2x_4 = 1 \\ x_1 - x_2 - x_4 = -1 \\ -x_1 + 3x_2 - 2x_3 = 0 \end{cases}$$
 2)
$$\begin{cases} x - 2y - 2z = 3 \\ x + y - 2z = 0 \\ x - y - z = 1 \end{cases}$$

3)
$$A(A-B)+2B(A+B)$$
, где $A=\begin{pmatrix}1&-2&-2\\1&1&-2\\1&-1&-1\end{pmatrix}$, $B=\begin{pmatrix}0&3&5\\4&1&0\\1&1&2\end{pmatrix}$

Bapuaht
No24

1)
$$\begin{cases} 2x_1 + & x_2 - x_3 + 3x_4 = -6 \\ 3x_1 - & x_2 + x_3 + 5x_4 = 3 \\ & x_1 + 2x_2 - x_3 + 2x_4 = 28 \\ 2x_1 + 3x_2 + x_3 - & x_4 = 0 \end{cases}$$
2)
$$\begin{cases} 3x_1 + & x_2 - 5x_3 = -7 \\ 2x_1 - 3x_2 + 4x_3 = -1 \\ 5x_1 - & x_2 + 3x_3 = 0 \end{cases}$$

3)
$$(2A + B) B - 0.5A$$
, rate $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 2 & -1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & -2 \\ 2 & 1 & 1 \\ -2 & 0 & 1 \end{pmatrix}$

$$\textbf{Bapuaht N} \textbf{P25} \qquad 1) \begin{array}{l} \begin{cases} 2 x_1 - \ x_2 + \ 2 x_3 + 2 x_4 = \ -3 \\ 3 x_1 + 2 x_2 + \ x_3 - \ x_4 = \ 3 \\ x_1 - 3 x_2 - \ x_3 - 3 x_4 = \ 0 \\ 4 x_1 + 2 x_2 + 2 x_3 + 5 x_4 = -15 \end{cases} \qquad 2) \begin{array}{l} \begin{cases} x_1 - 2 x_2 + \ x_3 = \ 15 \\ 2 x_1 + \ x_2 + \ 3 x_3 = \ 9 \\ 2 x_1 + \ 3 x_2 + 2 x_3 = -2 \end{cases} \end{cases}$$

3) AB-2(A+B)A, rge A=
$$\begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$
, B= $\begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 1 \\ 1 & 3 & -1 \end{pmatrix}$

Bapuaht Nº26 1)
$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = -2 \\ 2x_1 + 3x_2 + 4x_3 - 5x_4 = 8 \\ 3x_1 - x_2 - x_3 + 7x_4 = -2 \\ 2x_1 - x_2 + 6x_3 - 3x_4 = 7 \end{cases}$$
 2)
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 1 \\ 3x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 3x_2 + 3x_3 = 0 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 - 2x_3 = 1 \\ 3x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 3x_2 + 3x_3 = 0 \end{cases}$$

3)
$$(A + 2B)(3A-B)$$
, rge $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 & -1 \\ -2 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}$

Bapuaht Nº27 1)
$$\begin{cases} 3x_1 + 2x_2 + 5x_3 - x_4 = 3 \\ 2x_1 - 3x_2 - 3x_3 + 4x_4 = 1 \\ 4x_1 + x_2 + 3x_3 + 2x_4 = 3 \\ 5x_1 - 2x_2 + x_3 + 3x_4 = 5 \end{cases}$$
 2)
$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = 5 \\ 3x_1 + 4x_2 - x_3 = 3 \\ 4x_1 + 5x_2 - 2x_3 = 3 \end{cases}$$

2)
$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = 5 \\ 3x_1 + 4x_2 - x_3 = 3 \\ 4x_1 + 5x_2 - 2x_3 = 3 \end{cases}$$

3)
$$2AB+A(B-A)$$
, rate $A=\begin{pmatrix}1&2&-1\\2&3&0\\0&2&-1\end{pmatrix}$, $B=\begin{pmatrix}1&2&-1\\2&-1&0\\1&2&1\end{pmatrix}$

Bapuaht Nº28 1)
$$\begin{cases} 2x_1 + x_2 + 5x_3 - x_4 = 1 \\ 3x_1 + 3x_2 - 2x_3 - 5x_4 = 2 \\ x_1 - x_2 + 2x_3 + 3x_4 = 10 \\ 3x_1 + 2x_2 + 7x_3 - 2x_4 = 1 \end{cases}$$
 2)
$$\begin{cases} 2x_1 - x_2 - 3x_3 = -9 \\ x_1 + 2x_2 + x_3 = 3 \\ 3x_1 + x_2 - x_3 = -1 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 - 3x_3 = -9 \\ x_1 + 2x_2 + x_3 = 3 \\ 3x_1 + x_2 - x_3 = -1 \end{cases}$$

3)
$$(3A + 0.5)(2B - A)$$
, где $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 3 & 1 \\ 3 & 1 & 0 \end{pmatrix}$

Bapuaht Nº29 1)
$$\begin{cases} 3x_1 + x_2 + 2x_3 - x_4 = 8 \\ 2x_1 - 3x_2 - 3x_3 + x_4 = -3 \\ 4x_1 + 2x_2 + 5x_3 + 3x_4 = 6 \\ x_1 + 2x_2 - 4x_3 - 3x_4 = -3 \end{cases}$$
 2)
$$\begin{cases} 3x_1 + x_2 - 2x_3 = 4 \\ 2x_1 - 3x_2 + x_3 = 9 \\ 5x_1 + x_2 + 3x_3 = -4 \end{cases}$$

$$\begin{cases} 3x_1 + x_2 - 2x_3 = 4 \\ 2x_1 - 3x_2 + x_3 = 5 \\ 5x_1 + x_2 + 3x_3 = -4 \end{cases}$$

3)
$$2A(A+B)$$
-3 AB , где $A=\begin{pmatrix}2&3&4\\1&-2&0\\0&1&2\end{pmatrix}$, $B=\begin{pmatrix}2&0&-2\\1&1&0\\1&-1&1\end{pmatrix}$

Bapuaht No30 1)
$$\begin{cases} 2x_1 + 3x_2 + 5x_3 + x_4 = 6 \\ 3x_1 + x_2 - x_3 + 5x_4 = 0 \\ 2x_1 - x_2 + 3x_4 = -5 \\ 2x_1 + 2x_2 - x_3 + 7x_4 = -3 \end{cases}$$
 2)
$$\begin{cases} 2x_1 - x_2 + 3x_3 = -4 \\ x_1 + 3x_2 - x_3 = 2 \\ 5x_1 + 2x_2 + x_3 = 5 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 = -4 \\ x_1 + 3x_2 - x_3 = 2 \\ 5x_1 + 2x_2 + x_3 = 5 \end{cases}$$

3)
$$3AB + (A - B)(A + 2B)$$
, rge $A = \begin{pmatrix} 2 & 5 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{pmatrix}$