

Chloe Kaubisch Tyrone Hou Justin Chen Nov. 28, 2017

Brief Recap

- Supervised Learning
- Reinforcement Learning
- Discriminative models
- Generative models

Motivation: Abundance of Unlabeled Data

Taxonomy of Unsupervised Learning

Generative Models

- Models that learn to represent an approximation of a given distribution, given a training set of samples from that distribution
- Examples:
 - Autoencoders
 - Generative Adversarial Networks

Why use generative models?

- Applications in reinforcement learning and semi-supervised learning
- Enable machine learning to adapt to multi-modal outputs
- For tasks that require the generation of good samples

Non-probabilistic Models: Autoencoders

Autoencoders

 An autoencoder is a feedforward neural network that outputs a reconstruction of its input

Autoencoders

- Undercomplete: dimensions of h(x) are smaller than dimensions of x
- Overcomplete: dimensions of h(x) are larger than dimensions of x
- Recirculation: alternate method of training autoencoders by comparing activations on original input to activations on reconstructed input

Autoencoders

Denoising Autoencoder

 Given a corrupted dataset, attempts to recover the original data

Denoising Autoencoder

Denoising Autoencoder

Variance Within Datasets

Variance from Transformation

Variance Between Different Features

Contracting Feature Space

Contractive Autoencoder

Useful Encoder Representation should:

- Have features invariant to small changes around training examples
- 2. Still be able to reconstruct different training examples

Variation not resulting from training examples will be **contracted** in the feature space

Different training images

Loss Function

Regularization Hyperparameter

$$\mathcal{J}_{\mathrm{CAE}}(\theta) = \sum_{x \in D_n} \left(L(x, g(f(x))) + \lambda \|J_f(x)\|_F^2 \right)$$

Reconstruction Error Penalizes sensitivity of encoding to input

Loss Function

$$\mathcal{J}_{\mathrm{CAE}}(\theta) = \sum_{x \in D_n} \left(L(x, g(f(x))) + \lambda \|J_f(x)\|_F^2 \right)$$
 Keep useful Throw away all information

Sparsity and Contraction

Deep Autoencoders

Probabilistic Models: Generative Adversarial Networks

Generative Adversarial Networks (GAN) Framework

GAN Framework

GAN Framework

GAN Value Function

Probability that x comes from the data-generating distribution $\min_{G} \max_{D} V(D,G) = \mathbf{E}_{x \sim p_{data}(x)}[logD(x)] + \mathbf{E}_{z \sim p_{z}(z)}[log(1-D(G(z)))]$

Minimize generator Maximize discriminator x distributed according to the data-generating distribution

z distributed according to the noise distribution

Measuring function monotonic function that assigns importance to different samples

Conceptual Spaces

Discriminator Loss

Binary Cross Entropy (BCE) Loss

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} [log \ D(x^{(i)}) + log(1 - D(G(z^{(i)})))]$$

Loss term for how well D does at determining the positive class

Loss term for how well D does at determining the positive class

Discriminator Training

Generator Loss

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} log(1 - D(G(z^{(i)})))$$

Generator Training

Local Differentiable Nash Equilibria (LDNE)

Mode Collapse (the Helvetica scenario)

iGAN

Progressive Growing of GANs for Improved Quality, Stability, and Variation

GAN Zoo

3D-GAN 3D-IWGAN 3D-RecGAN ABC-GAN AC-GAN acGAN AdaGAN AE-GAN **AEGAN AffGAN** AL-CGAN ALI AlignGAN AM-GAN AnoGAN ARAE ARDA **ARIGAN** ArtGAN b-GAN Bayesian GAN Bayesian GAN **BCGAN BEGAN BGAN BiGAN** BS-GAN C-RNN-GAN CaloGAN CAN CatGAN CausalGAN CC-GAN

CGAN Chekhov GAN CM-GAN CoGAN Conditional cycleGAN constrast-GAN Context-RNN-GAN Coulomb GAN Cramèr GAN crVAE-GAN CS-GAN CVAE-GAN CycleGAN D2GAN DAN **DCGAN** DeliGAN DiscoGAN DistanceGAN DM-GAN DR-GAN DRAGAN DSP-GAN DTN DualGAN **Dualing GAN EBGAN** ED//GAN **EGAN** ExprGAN f-GAN

FF-GAN

Fila-GAN

Fisher GAN

Flow-GAN

GAMN

MAGAN GAN **GAN-CLS** MalGAN GAN-sep MaliGAN **GAN-VFS** MARTA-GAN **GANCS** McGAN GAP MD-GAN GAWWN **MDGAN** GeneGAN MedGAN MGAN Geometric MGGAN GAN MIX+GAN GMAN MMD-GAN GMM-GAN GoGAN MMGAN GP-GAN MoCoGAN GP-GAN MPM-GAN MuseGAN GRAN MV-BiGAN IAN **IcGAN** OptionGAN ID-CGAN ORGAN iGAN PAN Improved **PassGAN** GAN Perceptual GAN InfoGAN **PGAN IRGAN** pix2pix **PixelGAN IWGAN** I-GAN Pose-GAN LAGAN **PPGN** LAPGAN **PrGAN PSGAN** LD-GAN RankGAN LDAN LeakGAN **RCGAN** RefineGAN LeGAN LR-GAN RenderGAN

ResGAN

RPGAN

RTT-GAN

RNN-WGAN

LS-GAN

LSGAN

MAD-GAN

MAD-GAN

RWGAN SAD-GAN SalGAN SBADA-GAN SD-GAN **SEGAN** SeGAN SegAN SegGAN SGAN SGAN **SGAN** SimGAN SketchGAN SL-GAN SN-GAN Softmax-GAN Splitting GAN SRGAN SS-GAN ss-InfoGAN SSGAN SSL-GAN ST-GAN StackGAN SteinGAN S²GAN TAC-GAN TAN TextureGAN **TGAN** TP-GAN Triple-GAN

Unrolled GAN

VAE-GAN

VAW-GAN

VariGAN

VEEGAN VGAN VGAN VIGAN VIGAN VIRAL WaterGAN WGAN-GP WS-GAN α-GAN Δ-GAN

CDcGAN

CGAN

References & Further Reading

- 1. Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
- 2. Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
- 3. Shrivastava, Ashish, et al. "Learning from simulated and unsupervised images through adversarial training." arXiv preprint arXiv:1612.07828 (2016).
- 4. Arjovsky, Martin, Soumith Chintala, and Léon Bottou. **"Wasserstein generative adversarial networks."** International Conference on Machine Learning. 2017.
- 5. Yunus Saatchi, Andrew Gordon Wilson. **"Bayesian GAN**." Advances in neural information processing systems. 2017.
- 6. http://www.cs.cmu.edu/~rsalakhu/talk unsup.pdf
- 7. Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, Yoshua Bengio. "Contractive Auto-Encoders: Explicit Invariance During Feature Extraction." ICML 2011.
- 8. Larochelle, Hugo. "Neural networks [6.7]: Autoencoder contractive autoencoder." https://www.youtube.com/watch?v=79sYIJ8Cvlc.

Shoutout to our Sponsors

Boston University Computer Science

Boston University SPARK!

Boston University Software
Application and Innovation Lab

Upcoming Events

MIC Paper signup: https://goo.gl/iAm6TL
BUMIC Projects signup: https://goo.gl/GmP9oK

BUMIC paper discussion:

Paper: CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and

Accuracy

Location: Fishbowl Conference Room

Date: 12.4.17 Time: 7 PM

Next workshop:

Topic: Neural Style Transfer

Location: BU Hariri Seminar Room

Date: 12.12.17 Time: 7 PM

Learning to Learn by Discoursing Discourse

Location: Pavement Coffee on Commonwealth Ave

Time: 10 AM

A chill session where we read short and light papers together and trade thought processes for reading papers, develop intuition, and discourse research ideas. A meta exercise in learning to learn by discoursing discourse!

MACHINE INTELLIGENCE COMMUNITY

BU SED 2 Silber Way, Boston, MA, Room 130

Dec. 1st, 2017 7 - 9 PM

https://goo.gl/yNKMhH

ALPHAGO