Derivation of formula for transparency converter

https://github.com/sotanmochi/TransparencyConverter

Soichiro Sugimoto

Latest update: 2022/04/27

Create: 2022/04/24

Foreground (Transparent)
+

Background (Opaque)

$$(R_F, G_F, B_F, \alpha)$$

+ $(R_B, G_B, B_B, 1)$

$$C_{output} = C_F \alpha + C_B (1 - \alpha)$$

where $0 \le c_F \le 1$, $0 \le c_B \le 1$ and $0 \le \alpha \le 1$.

$$C_{linear} = C_F \alpha_{linear} + C_B (1 - \alpha_{linear})$$

$$C_{SRGB} = C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB})$$

$$C_{linear} = g(C_{sRGB})$$

where g(x) is conversion function from sRGB color space to linear color space.

$$C_F \alpha_{linear} + C_B (1 - \alpha_{linear}) = g(C_{SRGB})$$

$$\alpha_{linear} = f(C_F, C_B, \alpha_{sRGB}) = \frac{-C_B + g(C_{sRGB})}{C_F - C_B}$$

where $C_F \neq C_B$ and $C_{SRGB} = C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB})$.

$$\alpha_{linear} = f(C_F, C_B, \alpha_{sRGB}) = \frac{-C_B + g(C_{sRGB})}{C_F - C_B}$$

where $C_F \neq C_B$ and $C_{SRGB} = C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB})$.

Considering the following constraints.

$$0 \le \alpha_{linear} \le 1$$

$$\alpha_{linear} = \frac{f(C_F, C_B, \alpha_{SRGB}) - f_{MIN}}{f_{MAX} - f_{MIN}}$$

$$f(C_F, C_B, \alpha_{sRGB}) = \frac{-C_B + g(C_{sRGB})}{C_F - C_B}$$

$$f(C_F, C_B, \alpha_{SRGB}) = f_{MAX} \rightarrow \alpha_{linear} = 1$$

 $f(C_F, C_B, \alpha_{SRGB}) = f_{MIN} \rightarrow \alpha_{linear} = 0$
 $f(C_F, C_B, \alpha_{SRGB}) = (f_{MAX} + f_{MIN})/2 \rightarrow \alpha_{linear} = 0.5$

The conversion function g(x) is monotonically increasing function.

When $C_F > C_B$, the function $g(C_{SRGB}) = g(C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB}))$ is monotonically increasing for α_{SRGB} .

When $C_F < C_B$, the function $g(C_{SRGB}) = g(C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB}))$ is monotonically decreasing for α_{SRGB} .

The function $f(C_F, C_B, \alpha_{SRGB})$ is monotonically increasing for all α_{SRGB} .

$$f_{MAX} = f(C_F, C_B, 1) = \frac{-C_B + g(C_F)}{C_F - C_B}$$

$$f_{MIN} = f(C_F, C_B, 0) = \frac{-C_B + g(C_B)}{C_F - C_B}$$

$$\alpha_{linear} = \frac{f(C_F, C_B, \alpha_{SRGB}) - f_{MIN}}{f_{MAX} - f_{MIN}}$$

$$\alpha_{linear} = \frac{\frac{-C_B + g(C_F \alpha_{sRGB} + C_B(1 - \alpha_{sRGB}))}{C_F - C_B} - \frac{-C_B + g(C_B)}{C_F - C_B}}{\frac{-C_B + g(C_F)}{C_F - C_B}} - \frac{-C_B + g(C_B)}{C_F - C_B}}$$

$$= \frac{\frac{g(C_F \alpha_{sRGB} + C_B(1 - \alpha_{sRGB})) - g(C_B)}{C_F - C_B}}{\frac{g(C_F) - g(C_B)}{C_F - C_B}}$$

$$= \frac{\frac{g(C_F \alpha_{sRGB} + C_B(1 - \alpha_{sRGB})) - g(C_B)}{G(C_F) - g(C_B)}}{\frac{g(C_F) - g(C_B)}{G(C_F)}}$$

Therefore,

$$\alpha_{linear} = \frac{g(C_F \alpha_{sRGB} + C_B (1 - \alpha_{sRGB})) - g(C_B)}{g(C_F) - g(C_B)}$$

where $0 \le c_F \le 1$, $0 \le c_B \le 1$, $0 \le \alpha_{SRGB} \le 1$ and g(x) is conversion function from sRGB color space to linear color space.

$$\alpha_{linear} = \frac{g(C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB})) - g(C_B)}{g(C_F) - g(C_B)}$$

where $0 \le c_F \le 1$, $0 \le c_B \le 1$, $0 \le \alpha_{SRGB} \le 1$ and g(x) is conversion function from sRGB color space to linear color space.

When
$$g(x) = x^{2.2}$$
,

When
$$g(x) = x^{2.2}$$
,
$$\alpha_{linear} = \frac{\left(C_F \alpha_{sRGB} + C_B (1 - \alpha_{sRGB})\right)^{2.2} - C_B^{2.2}}{C_F^{2.2} - C_B^{2.2}}$$

Special cases

$$\alpha_{linear} = 1 - (1 - \alpha_{SRGB})^{2.2}$$
 for $C_F = 0$ (black), $C_B = 1$ (white)

$$\alpha_{linear} = \alpha_{sRGB}^{2.2}$$
 for $C_F = 1$ (white), $C_B = 0$ (black)

$$\alpha_{linear} = \frac{g(C_F \alpha_{SRGB} + C_B (1 - \alpha_{SRGB})) - g(C_B)}{g(C_F) - g(C_B)}$$

where $0 \le c_F \le 1$, $0 \le c_B \le 1$, $0 \le \alpha_{SRGB} \le 1$ and g(x) is conversion function from sRGB color space to linear color space.

For the following g(x) (Refer to https://en.wikipedia.org/wiki/SRGB#Transformation)

$$g(x) = \begin{cases} \frac{x}{12.92}, & x \le 0.04050\\ \left(\frac{x + 0.055}{1.055}\right)^{2.4}, & x > 0.04050 \end{cases}$$

$$\alpha_{linear} = \begin{cases} \alpha_{sRGB}, & C_{sRGB} \leq 0.04050 \\ \frac{\left(\frac{C_F \alpha_{sRGB} + C_B (1 - \alpha_{sRGB}) + 0.055}{1.055}\right)^{2.4} - \left(\frac{C_B + 0.055}{1.055}\right)^{2.4}}{\left(\frac{C_F + 0.055}{1.055}\right)^{2.4} - \left(\frac{C_B + 0.055}{1.055}\right)^{2.4}}, & C_{sRGB} > 0.04050 \end{cases}$$

$$\alpha_{linear} = \begin{cases} \alpha_{sRGB}, & C_{sRGB} \leq 0.04050 \\ \frac{\left(\frac{C_F \alpha_{sRGB} + C_B (1 - \alpha_{sRGB}) + 0.055}{1.055}\right)^{2.4} - \left(\frac{C_B + 0.055}{1.055}\right)^{2.4}}{\left(\frac{C_F + 0.055}{1.055}\right)^{2.4} - \left(\frac{C_B + 0.055}{1.055}\right)^{2.4}}, & C_{sRGB} > 0.04050 \end{cases}$$
 where $C_{sRGB} = C_F \alpha_{sRGB} + C_B (1 - \alpha_{sRGB})$.

Special cases

For $C_F = 0$ (black) and $C_B = 1$ (white),

$$\alpha_{linear} = \begin{cases} \alpha_{sRGB}, & 1 - \alpha_{sRGB} \le 0.04050 \\ \frac{1}{0.9991662} \left[1 - \left(\frac{1 - \alpha_{sRGB} + 0.055}{1.055} \right)^{2.4} \right], & 1 - \alpha_{sRGB} > 0.04050 \end{cases}$$

For $C_F = 1$ (white) and $C_B = 0$ (black),

$$\alpha_{sRGB} \leq 0.04050$$

$$\alpha_{sRGB} \leq 0.04050$$

$$\alpha_{sRGB} \leq 0.04050$$

$$\frac{1}{0.9991662} \left[\left(\frac{\alpha_{sRGB} + 0.055}{1.055} \right)^{2.4} - 0.0008338 \right], \quad \alpha_{sRGB} > 0.04050$$