TTIC 31230 Fundamentals of Deep Learning

Langevin Dynamics Problems.

Problem 1. This problem is on batch size scaling of Langevin dynamics. We consider batched SGD as defined by

$$\Phi = n\hat{a}^{E}$$

where \hat{g}^B is the average of B sampled gradients. Let g be the average gradient g=E $\hat{g}.$

The covariance matrix at batch size B is

$$\Sigma^{B}[i,j] = E (\hat{g}^{B}[i] - g[i])(\hat{g}^{B}[j] - g[j]).$$

Langevin dynamics is

$$\Phi(t + \Delta t) = \Phi(t) - g\Delta t + \epsilon \sqrt{\Delta t} \quad \epsilon \sim \mathcal{N}(0, \eta \Sigma^B)$$

Show that for $\eta = B\eta'$ the Langevin dynamics is determined by η' independent of B.

Solution:

$$\begin{split} \Sigma^{B}[i,j] &= E \left(\hat{g}^{B}[i] - g[i] \right) (\hat{g}^{B}[j] - g[j]) \\ &= \frac{1}{B^{2}} E \left(\sum_{b} \hat{g}_{b}[i] - g[i] \right) \left(\sum_{b} \hat{g}_{b}[j] - g[j] \right) \\ &= \frac{1}{B^{2}} E \sum_{b,b'} (\hat{g}_{b}[i] - g[i]) \left(\hat{g}_{b'}[j] - g[j] \right) \\ &= \frac{1}{B^{2}} \sum_{b,b'} E \left(\hat{g}_{b}[i] - g[i] \right) \left(\hat{g}_{b'}[j] - g[j] \right) \\ &= \frac{1}{B^{2}} \sum_{b} E \left(\hat{g}_{b}[i] - g[i] \right) \left(\hat{g}_{b}[j] - g[j] \right) \\ &= \frac{1}{B} \Sigma^{1}[i,j] \end{split}$$

So for $\eta = B\eta'$ we have $\eta \Sigma^B = \eta' \Sigma^1$ which yields the equivalence.