Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading and Analysing the Data

```
In [2]:
         data=pd.read_csv("11-4-Dataset-Predicting Placement in Campus Recruitment.csv")
In [3]:
         data.head()
Out[3]:
           sl_no gender
                         ssc_p
                                ssc_b hsc_p
                                              hsc b
                                                         hsc_s degree_p
                                                                            degree_t workex
                                                                                             etest
                                       91.00
                                             Others Commerce
                                                                                                55.
               1
                         67.00 Others
                                                                  58.00
                                                                            Sci&Tech
                                                                                         Nο
         1
               2
                         79.33 Central
                                       78.33
                                             Others
                                                       Science
                                                                  77.48
                                                                            Sci&Tech
                                                                                                86.
         2
               3
                      M 65.00 Central
                                       68.00
                                                                                                75.
                                             Central
                                                                  64.00 Comm&Mgmt
                                                          Arts
                                                                                         No
         3
                      M 56.00 Central
                                       52.00
                                             Central
                                                       Science
                                                                  52.00
                                                                            Sci&Tech
                                                                                                66.
                                                                                         No
                      M 85.80 Central 73.60 Central Commerce
                                                                  73.30 Comm&Mgmt
                                                                                         No
                                                                                                96.
In [4]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 215 entries, 0 to 214
        Data columns (total 15 columns):
              Column
                              Non-Null Count Dtype
         #
              ____
                              -----
                                               ----
         0
              sl no
                              215 non-null
                                                int64
          1
              gender
                              215 non-null
                                               object
          2
                              215 non-null
                                               float64
              ssc_p
          3
              ssc_b
                              215 non-null
                                               object
          4
                              215 non-null
                                               float64
              hsc_p
          5
              hsc_b
                              215 non-null
                                               object
          6
                                               object
              hsc s
                              215 non-null
          7
                                               float64
              degree p
                              215 non-null
                              215 non-null
          8
              degree_t
                                               object
          9
                              215 non-null
              workex
                                               object
              etest_p
          10
                              215 non-null
                                               float64
          11
              specialisation 215 non-null
                                               object
          12
              mba_p
                              215 non-null
                                               float64
          13
              status
                              215 non-null
                                               object
                              148 non-null
                                               float64
          14 salary
         dtypes: float64(6), int64(1), object(8)
         memory usage: 25.3+ KB
```

In [5]: data.isnull().sum()

```
0
Out[5]: sl_no
                             0
        gender
                             0
        ssc_p
         ssc_b
                             0
                             0
        hsc p
                             0
        hsc_b
                             0
        hsc_s
         degree_p
        degree_t
                             0
        workex
                             0
        etest_p
                             0
         specialisation
                             0
        mba_p
         status
         salary
                            67
        dtype: int64
```

Data Visualization

```
In [6]:
         print("General Specifications about Data using Count Plot")
         plt.figure(figsize = (15,7))
         plt.subplot(231)
         ax = sns.countplot(x = 'gender', data = data)
         plt.figure(figsize = (15,7))
         plt.subplot(232)
         ax = sns.countplot(x = 'hsc_s', data = data)
         plt.figure(figsize = (15,7))
         plt.subplot(233)
         ax = sns.countplot(x = 'degree_t', data = data)
         plt.figure(figsize = (15,7))
         plt.subplot(234)
         ax = sns.countplot(x = 'specialisation', data = data)
         plt.figure(figsize = (15,7))
         plt.subplot(235)
         ax = sns.countplot(x = 'workex', data = data)
         plt.figure(figsize = (15,7))
         plt.subplot(236)
         ax = sns.countplot(x = 'status', data = data)
```

General Specifications about Data using Count Plot


```
placed = data[data.salary != 0]
print("Graph to show Salary Distribution: ")
sns.displot(placed['salary'])
```

Graph to show Salary Distribution:
<seaborn.axisgrid.FacetGrid at 0x2819ae34550>


```
In [ ]:

import plotly_express as px
print("Distribution of Male and Female across different Specialisations and Salary")
px.violin(placed, y = 'salary', x = 'specialisation', color = 'gender', box = True,
```

Distribution of Male and Female across different Specialisations and Salary

```
1M
0.9M
0.8M
```

```
0.7M

2.0.6M
```

Dropping unnecessary Columns

```
In [9]:
           data.drop(['salary','ssc_b','hsc_b','sl_no'],inplace=True, axis=1)
In [10]:
           data.head()
Out[10]:
             gender ssc_p hsc_p
                                      hsc_s degree_p
                                                           degree_t workex etest_p specialisation
                                                                                                  mba_|
          0
                 M 67.00 91.00 Commerce
                                                58.00
                                                           Sci&Tech
                                                                        No
                                                                               55.0
                                                                                         Mkt&HR
                                                                                                   58.8
          1
                 M 79.33 78.33
                                                77.48
                                                           Sci&Tech
                                                                               86.5
                                                                                         Mkt&Fin
                                     Science
                                                                        Yes
                                                                                                   66.2
                 M 65.00
          2
                           68.00
                                       Arts
                                                64.00 Comm&Mgmt
                                                                        No
                                                                               75.0
                                                                                         Mkt&Fin
                                                                                                   57.8
          3
                 M 56.00 52.00
                                     Science
                                                52.00
                                                           Sci&Tech
                                                                        No
                                                                               66.0
                                                                                         Mkt&HR
                                                                                                   59.4
                                                                               96.8
                  M 85.80 73.60 Commerce
                                                73.30 Comm&Mgmt
                                                                        No
                                                                                         Mkt&Fin
                                                                                                   55.5
```

Labeling the Data

```
from sklearn.preprocessing import LabelEncoder
le_gender = LabelEncoder()
le_hscs = LabelEncoder()
le_degreet = LabelEncoder()
le_workex = LabelEncoder()
le_specialisation = LabelEncoder()
le_status = LabelEncoder()

data['gender'] = le_gender.fit_transform(data['gender'])
data['degree_t'] = le_degreet.fit_transform(data['degree_t'])
data['workex'] = le_workex.fit_transform(data['workex'])
data['specialisation'] = le_specialisation.fit_transform(data['specialisation'])
```

```
data['status'] = le_status.fit_transform(data['status'])
data['hsc_s'] = le_hscs.fit_transform(data['hsc_s'])
```

Splitting the Data into 2 sets for predictions

i.e. one df for input and other as predictions

```
In [12]:
         X=data.drop('status',axis=1)
          y=data['status']
          print(X)
          print(y)
              gender ssc_p hsc_s degree_p degree_t workex
                                                                     etest_p
         0
                  1 67.00 91.00
                                           58.00
                                       1
                                                           2
                                                                  0
                                                                         55.0
                  1 79.33 78.33
                                             77.48
                                       2
                                                           2
                                                                        86.5
         1
                                                                  1
                                          64.00
         2
                  1 65.00 68.00
                                       0
                                                           0
                                                                  0
                                                                        75.0
                                     2 52.00
1 73.30
                                                         2
                  1 56.00 52.00
                                                                  0
         3
                                                                        66.0
                  1 85.80 73.60
                                                           0
                                                                  0
                                                                        96.8
                       . . .
                             . . .
                                             . . .
                                                                         . . .
                                     1 77.60
2 72.00
                  1 80.60 82.00
                                                                  0
         210
                                                           0
                                                                        91.0
                                      2
         211
                  1 58.00 60.00
                                             72.00
                                                           2
                                                                  0
                                                                        74.0
                  1 67.00 67.00
                                       1
                                             73.00
                                                          0
                                                                  1
                                                                         59.0
         212
                                                         0
         213
                  0 74.00 66.00
                                       1
                                             58.00
                                                                  0
                                                                        70.0
         214
                  1 62.00 58.00
                                             53.00
                                                                        89.0
              specialisation mba_p
         0
                          1 58.80
         1
                          0 66.28
         2
                          0 57.80
         3
                          1 59.43
                          0 55.50
                             74.49
         210
                          0
                             53.62
         211
                          0
         212
                          0 69.72
         213
                          1 60.23
         214
                          1 60.22
         [215 rows x 10 columns]
         0
               1
         1
                1
         2
                1
         3
                0
         4
                1
               . .
         210
               1
         211
               1
         212
               1
         213
                1
         214
         Name: status, Length: 215, dtype: int32
In [13]:
          X.head()
Out[13]:
           gender ssc_p hsc_p hsc_s degree_p degree_t workex etest_p specialisation
                                                                                mba_p
         0
                   67.00
                        91.00
                                       58.00
                                                               55.0
                                                                                 58.80
```

1

1 79.33 78.33

2

77.48

2

1

86.5

66.28

	gender	ssc_p	hsc_p	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p
2	1	65.00	68.00	0	64.00	0	0	75.0	0	57.80
3	1	56.00	52.00	2	52.00	2	0	66.0	1	59.43
4	1	85.80	73.60	1	73.30	0	0	96.8	0	55.50

```
In [14]: y.head()
```

Out[14]: 0 1 1 1 2 1 3 0

Out[16]:

Name: status, dtype: int32

Train-Test-Split

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.2,random_state=1)
```

In [16]: data.describe()

	gender	ssc_p	hsc_p	hsc_s	degree_p	degree_t	workex	etest
count	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000	215.0000
mean	0.646512	67.303395	66.333163	1.372093	66.370186	0.600000	0.344186	72.1005
std	0.479168	10.827205	10.897509	0.580978	7.358743	0.890238	0.476211	13.2759
min	0.000000	40.890000	37.000000	0.000000	50.000000	0.000000	0.000000	50.0000
25%	0.000000	60.600000	60.900000	1.000000	61.000000	0.000000	0.000000	60.0000
50%	1.000000	67.000000	65.000000	1.000000	66.000000	0.000000	0.000000	71.0000
75%	1.000000	75.700000	73.000000	2.000000	72.000000	2.000000	1.000000	83.5000
max	1.000000	89.400000	97.700000	2.000000	91.000000	2.000000	1.000000	98.0000
4								•

Model Seletion and Training

Predictions

In [18]:

```
predictions
         Out[18]:
               1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1])
        Evalution of the Model
In [19]:
         from sklearn.metrics import accuracy score, confusion matrix, ConfusionMatrixDisplay
In [20]:
         print('Accuracy score:', accuracy_score(y_test,predictions))
         Accuracy score: 0.8837209302325582
In [21]:
         print('confusion_matrix:\n' )
         cm = confusion_matrix(y_test,predictions)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=model.classes_)
         disp.plot()
         confusion_matrix:
         <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x2819d596700>
Out[21]:
                                              25
           0
                                              20
                                             - 15
                                              - 10
                                 27
           1 -
                   0
                      Predicted label
In [22]:
         print('classification report:\n', classification_report(y_test,predictions))
         classification report:
                       precision
                                   recall f1-score
                                                     support
                   0
                          0.92
                                    0.73
                                             0.81
                                                         15
                   1
                          0.87
                                    0.96
                                             0.92
                                                         28
                                             0.88
                                                         43
            accuracy
                          0.89
            macro avg
                                    0.85
                                             0.87
                                                         43
        weighted avg
                          0.89
                                    0.88
                                             0.88
                                                         43
In [23]:
         print('mean absolute error:\n', mean_absolute_error(y_test,predictions))
         mean absolute error:
         0.11627906976744186
```

predictions=model.predict(X_test)

In [24]: #random forest=0.88
 #svm=0.86
 #logistic regression = 0.86
 #decision tree=0.76
 # k neighbors=0.81