Newton's Law

"And shake toward you the trunk of the palm three, it will drop upon you ripe, fresh date."

(Q.S. Maryam : 25)

What are Newton's Laws of Motion?

01

Newton's First Law

An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on by an unbalanced force.

02

Newton's Second Law

The acceleration of an object depends on the mass of the object and the amount of force applied.

03

Newton's Third Law

Whenever one object exerts a force on another object, the second object exerts an equal and opposite on the first.

Newton's Law Equations And Conditions

01

Newton' First Law

$$\sum \mathbf{F} = \mathbf{0}$$

Condition:

At rest or constant velocity

02

Newton' Second Law

$$\sum \mathbf{F} = \mathbf{ma}$$

Condition:

Move or constant acceleration

03

Newton' Third Law

$$\mathbf{F}_{aksi} = -\mathbf{F}_{reaksi}$$

Condition:

Force in dynamics of motion

01

02

Weight (W)

Force from gravity acting on an object with mass.

Normal Force (N)

Force between two objects when they touch.

03

04

05

Tension (T)

Force of something pulling on an object.

Friction (f)

Force resisting sliding between surfaces.

Centripetal Force (F_c)

Force on an object directed to the center of a circular path that keeps the object on the path.

Weight (W)

Force from gravity acting on an object with mass. Sometimes called force of gravity. Pulls towards the Earth (down) always.

W = m.g

W = weight (N) m = mass (kg) g = gravitational acceleration (m/s²)

Normal Force (N)

Force between two objects when they touch. Pushes perpendicularly to the object's surface.

N = Normal Force (Newton)

Tension (T)

Force of something pulling on an object. Can be caused by a string, rope, chain, cord, cable, or wire. Pulls along the direction of the rope on the object.

$f = \mu N$

f = friction (N) μ = coefficient of friction N = normal force (N)

Friction (f)

Force resisting sliding between surfaces. Pushes parallel to the contact surface and in the opposite direction of sliding.

$$f = f_{kinetic} = \mu_k N$$
 (move) $f_{static} = \mu_s N$ (at rest)

Friction (f)

Force resisting sliding between surfaces. Pushes parallel to the contact surface and in the opposite direction of sliding.

check whether it moves or not?

$$f_{S} > F$$
 (at rest)

$$f_S = F$$
 (precise will move)

$$f_{S} < F$$
 (move)

$$F_c = m\frac{v^2}{R} = m\omega^2 R$$

$$v = \omega R$$

Centripetal Force (F_c)

Force on an object directed to the center of a circular path that keeps the object on the path.

Application of Newton's Law

Known:

m1 = 2 kgm2 = 3 kg $g = 10 \text{ m/s}^2$ F = 100 N

- a. Acceleration?
- b. Tension?

Review object 1

$$\sum F_{x} = ma$$

$$T = m_1 a \dots (i)$$

$$\sum F_{\chi} = ma$$

$$T = m_1 a \dots (i)$$
 $F - T = m_2 a \dots (ii)$

$$T = m_1 a \dots (i)$$

$$F - T = m_2 a \dots (ii)$$

$$F = (m_1 + m_2)a$$

$$a = \frac{\Gamma}{(m_1 + m_2)}$$

Application of Newton's Law

Known:

Q:

$$m1 = 4 \text{ kg}$$

 $m2 = 6 \text{ kg}$
 $g = 10 \text{ m/s}^2$

a. Acceleration?

b. Tension?

Review object 1

$$\sum F = ma$$

$$T - W_1 = m_1 a \dots (i)$$

$$\sum F = ma$$

$$W_2 - T = m_2 a \dots (ii)$$

$$T - W_1 = m_1 a \dots (i)$$

$$W_2 - T = m_2 a \dots (ii)$$

$$W_2 - W_1 = (m_1 + m_2)a$$

$$a = \frac{W_2 - W_1}{(m_1 + m_2)}$$

Application of Newton's Law

Known:

m2 = 3 kg b. Tension? $g = 10 \text{ m/s}^2$

m1 = 2 kg a. Acceleration?

Review object 1

$$\sum F = ma$$

$$T = m_1 a \dots (i)$$

$$\sum F = ma$$

$$W_2 - T = m_2 a \dots (ii)$$

$$T = m_1 a \dots (i)$$

$$W_2 - T = m_2 a \dots (ii)$$

$$W_2 = (m_1 + m_2)a$$

$$a = \frac{W_2}{(m_1 + m_2)}$$

Application of Newton's Law (Inclined Plane)

Application of Newton's Law (Inclined Plane)

Balanced (y axis)

$$N = W cos\theta$$

2nd Newton's Law (x axis)

$$\sum F = ma$$

$$Wsin\theta = ma$$

$$mg.sin\theta = ma$$

$$g sin\theta = a$$

Application of Newton's Law (Inclined Plane)

2nd Newton's Law (x axis)

$$Wsin\theta = ma$$

$$mg.sin\theta = ma$$

$$g sin\theta = a$$

$$10.sin30^{\circ} = a$$

$$a = 10.\frac{1}{2} = 5 \text{ m/s}^{2}$$

Known: m = 20 kg

Acceleration ?

Application of Newton's Law (Inclined Plane) if there is

Known:

$$m = 20 \text{ kg}$$

 $\mu = 0.2$

Q:

Acceleration?

if there is friction $\mu=0.2$ 2nd Newton's Law (x axis)

$$\sum F = ma$$

$$Wsin\theta - f = ma$$

$$mg.sin\theta - \mu N = ma$$

$$mg.sin\theta - \mu mgcos\theta = ma$$

$$gsin\theta - \mu gcos\theta = a$$

$$10.sin30^{\circ} - (0.2)(10)cos30^{\circ} = a$$

$$a = 10.\frac{1}{2} - 2.\frac{1}{2}\sqrt{3} = 5 - \sqrt{3}$$
$$= 5 - 1.7 \approx 3.3 \text{ m/s}^2$$

Elevator

the elevator doesn't move

$$\sum F = 0$$

$$N - W = 0$$

$$N = W$$

$$N = mg$$

the elevator is moving up

$$\sum F = ma$$

$$N - W = ma$$

$$N = ma + mg$$

$$N = m(a + g)$$

the elevator is moving down

$$\sum F = ma$$

$$W - N = ma$$

$$N = mg - ma$$

$$N = m(g - a)$$

Contact Force

Review object 1

$$\sum F = ma$$

$$F - F_{21} = m_1 a \dots (i)$$

$$\sum F = ma$$

$$F_{12} = m_2 a \dots (ii)$$

$$F - F_{21} = m_1 a \dots (i)$$

$$F = (m_1 + m_1)a$$

$$a = \frac{F}{(m_1 + m_2)}$$