第2节同角三角函数基本关系(★★)

内容提要

- 1. 同角三角函数基本关系主要用于 $\sin\alpha$ 、 $\cos\alpha$ 、 $\tan\alpha$ 三者的知一求二,特别注意由 $\sin^2\alpha = 1 \cos^2\alpha$ 或 $\cos^2\alpha = 1 \sin^2\alpha$ 求 $\sin\alpha$ 、 $\cos\alpha$,开平方时需根据角 α 所在的象限决定取正还是取负.
- 2. $\sin \alpha$ 、 $\cos \alpha$ 的和、差、积的转化:
- $(1)(\sin\alpha + \cos\alpha)^2 = \sin^2\alpha + \cos^2\alpha + 2\sin\alpha\cos\alpha = 1 + \sin 2\alpha;$
- $(\sin \alpha \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha 2\sin \alpha \cos \alpha = 1 \sin 2\alpha ;$
- $(\sin \alpha + \cos \alpha)^2 + (\sin \alpha \cos \alpha)^2 = 2.$
- 3. $\sin \alpha$ 、 $\cos \alpha$ 的齐次分式化正切:
- ①计算 $\frac{A\sin\alpha+B\cos\alpha}{C\sin\alpha+D\cos\alpha}$,可上下同除以 $\cos\alpha$, 化为 $\frac{A\tan\alpha+B}{C\tan\alpha+D}$;
- ②计算 $A\sin^2\alpha + B\sin\alpha\cos\alpha + C\cos^2\alpha$,可先凑分母,化为 $\frac{A\sin^2\alpha + B\sin\alpha\cos\alpha + C\cos^2\alpha}{\sin^2\alpha + \cos^2\alpha}$,再上下同除以

$$\cos^2 \alpha$$
, 化为 $\frac{A \tan^2 \alpha + B \tan \alpha + C}{\tan^2 \alpha + 1}$.

典型例题

【例 1】已知 α 是第二象限的角, $\sin \alpha = \frac{\sqrt{5}}{5}$,则 $\tan \alpha = .$

【变式 1】设 $\cos \alpha = k(k \in \mathbf{R})$, $\alpha \in (\frac{\pi}{2}, \pi)$, 则 $\sin \alpha = ($)

(A)
$$-\sqrt{1-k^2}$$
 (B) $\sqrt{1-k^2}$ (C) $\pm \sqrt{1-k^2}$ (D) $\sqrt{1+k^2}$

【变式 2】设 α 为第二象限的角,且 $\tan(\alpha + \frac{\pi}{4}) = \frac{1}{2}$,则 $\sin \alpha + \cos \alpha = .$

【变式 3】若 $\tan \alpha = \cos \alpha$,则 $\frac{1}{\sin \alpha} + \cos^4 \alpha = .$

【例 2】已知 $\sin \alpha - \cos \alpha = \frac{4}{3}$,则 $\sin 2\alpha = ()$

(A) $-\frac{7}{9}$ (B) $-\frac{2}{9}$ (C) $\frac{2}{9}$ (D) $\frac{7}{9}$

【变式 1】已知 $\alpha \in (0,\pi)$, $\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{3}$,则 $\cos 2\alpha = ()$

(A) $-\frac{\sqrt{5}}{3}$ (B) $-\frac{\sqrt{5}}{9}$ (C) $\frac{\sqrt{5}}{9}$ (D) $\frac{\sqrt{5}}{3}$

【变式 2】若 $x \in [0, \frac{\pi}{3}]$,则函数 $y = \sin x + \cos x - 2\sin x \cos x$ 的最大值为 ()

(A) 1 (B) $\sqrt{2}$ (C) 2 (D) $\sqrt{2}+1$

【例 3】已知 $\tan \alpha = 2$,则 $\frac{\sin \alpha - 4\cos \alpha}{5\sin \alpha + 2\cos \alpha} = .$

【变式 1】已知 $\tan \theta = \frac{1}{2}$,则 $\frac{\sin^3 \theta + \sin \theta}{\cos^3 \theta + \sin \theta \cos^2 \theta} = ()$

(A) 6 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2

【变式 2】已知 $\sin \alpha + 2\cos \alpha = 0$,则 $2\sin \alpha \cos \alpha - \cos^2 \alpha$ 的值是.

【变式 3】若 $\alpha \in (\frac{\pi}{2},\pi)$, $2\sin \alpha + \cos \alpha = \frac{3\sqrt{5}}{5}$, 则 $\tan \alpha = ()$

(A) -2 (B) 2 (C) $\frac{2}{11}$ (D) $-\frac{2}{11}$

【变式 4】(2019•江苏)已知 $\frac{\tan \alpha}{\tan(\alpha + \frac{\pi}{4})} = -\frac{2}{3}$,则 $\sin(2\alpha + \frac{\pi}{4})$ 的值是.

强化训练

- 1. (2022・成都模拟・★★) 若 $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $\sin \alpha = -\frac{\sqrt{5}}{5}$, 则 $\cos \alpha = ...$
- 2. (2021・辽宁模拟・ $\star\star$) 已知 $\tan\alpha=k$, α 为钝角,则 $\sin\alpha=$. (用 k 表示)
- 3. $(2022 \cdot 南昌三模 \cdot \star \star \star)$ 若角 α 的终边不在坐标轴上,且 $\sin \alpha + 2\cos \alpha = 2$,则 $\tan \alpha = ()$

- (A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$
- 4. $(2022 \cdot 湖北模拟 \cdot \star \star)$ 已知 $2\sin\alpha\tan\alpha=3$,则 $\cos\alpha=$.
- 5. $(2022 \cdot$ 泸县模拟 $\cdot \star \star \star \star$)已知 $\sin x + \cos y = \frac{1}{4}$,则 $\sin x \sin^2 y$ 的最大值为.
- 6. (2022・江苏模拟・★★★)(多选)已知 $\sin \alpha + \cos \alpha = \frac{1}{5}$,以下选项正确的是()

- (A) $\sin 2\alpha = \pm \frac{24}{25}$ (B) $\sin \alpha \cos \alpha = \pm \frac{7}{5}$ (C) $\cos 2\alpha = \pm \frac{7}{25}$ (D) $\sin^4 \alpha \cos^4 \alpha = \pm \frac{7}{25}$
- 7. $(2022 \cdot 湖北四校联考 \cdot \star \star \star)$ 若 $a(\sin x + \cos x) \le 2 + \sin x \cos x$ 对任意的 $x \in (0, \frac{\pi}{2})$ 恒成立,则实数 a 的 最大值为.
- 8. $(2022 \cdot 上海模拟 \cdot \star \star)$ 若 $\sin \theta = k \cos \theta$,则 $\sin \theta \cos \theta = .$ (用 k 表示)
- 9. $(2022 \cdot 湖南模拟 \cdot \star \star)$ 已知 $\sin \alpha + 2\cos \alpha = 0$,则 $\frac{\cos 2\alpha}{1-\sin 2\alpha} = .$

10. $(2022 \cdot 四川模拟 \cdot \star\star)$ 已知 $\sin\theta = 2\cos\theta$,则 $\frac{\sin\theta + \cos\theta}{\sin\theta} + \sin^2\theta = ($)

(A) $\frac{19}{5}$ (B) $\frac{16}{5}$ (C) $\frac{23}{10}$ (D) $\frac{17}{10}$