LLMs for phages progress update 1

by Xinlu Shi

Dataset

- Dataset: sequences of phage genomes and the metadata from https://millardlab.org/phage-genome-jan2025/
- Number of sequences in the dataset: 32,043
- Sequence length of genomes in the dataset:

count	32,043
mean	60,216
std	55 , 525
min	1,761
25%	33,533
50%	44,866
75%	67 , 558
max	735,411

- * When training the foundation model ("megaDNA"), they used a filtered dataset consisting of sequences < 96k bp;
- * The max sequence length the model expects as input is 131,072 (2^17) bp.

Embeddings - dataset filtering

The objective is to assess whether embeddings align with metadata, so I filtered the dataset based on the following criteria:

- Retained only phages with complete metadata for host, genus, and family.
- Included only phages with a sequence length within the model's expected maximum length (131,072).
- After filtering, 8,069 phages remain.

	Accession	Genus	Family	Host	Genome Length (bp)
	AY319521	Felsduovirus	Peduoviridae	Salmonella	35155
	AC171169	Tequintavirus	Demerecviridae	Escherichia	104373
	AY576273	Keylargovirus	Mesyanzhinovviridae	Alphaproteobacteria	63649
	MN335248	Xylivirus	Inoviridae	Vibrio	7045
_	MG592615	Livvievirus	Autolykiviridae	Vibrio	10611
Idantifan famba		_			
Identifiers for pha	ages				

Embeddings - constructing feature vectors

• I followed the same approach as described in the paper:

"Model embeddings were extracted from three layers (dim = 196, 256, 512) and concatenated together to form a 964-dim vector for each input sequence."

https://www.nature.com/articles/s41467-024-53759-4

Comparison on clustering result and metadata

- Perform clustering based on embeddings.
- Experiment with different params for clustering: PCA dimensions, clustering methods, and the number of clusters.
- For each cluster, compute purity scores (percentages) based on the most frequent genus, family, or host within the cluster.
- Higher purity scores indicate stronger embeddings-metadata association.

Comparison on clustering result and metadata - Results

* Number of different Families/Genera/Hosts in the filtered dataset: 73/512/133

Some of the results with different clustering configurations:

Clustering Method	Hierarchical (sklearn.cluster.Agglo merativeClustering)	Hierarchical (sklearn.cluster.Agglome rativeClustering)	Hierarchical (sklearn.cluster.Agglome rativeClustering)
number of clusters	500	100	10
PCA dimensions	964 (original dim)	964(original dim)	100
Results	explained variance: 1.000 Genus Purity: 0.830 Family Purity: 0.985 Host Purity: 0.821	explained variance: 1.000 Genus Purity: 0.669 Family Purity: 0.927 Host Purity: 0.677	explained variance: 0.966 Genus Purity: 0.397 Family Purity: 0.656 Host Purity: 0.368

This can be considered high purity score given that there are 73 families in total yet the number of cluster is only 10.

Comparison on clustering result and metadata - Results

* Number of different Families/Genera/Hosts in the filtered dataset: 73/512/133

Some samples of clusters:

		archical (n_clusters=500) plained variance: 1.000)	PCA di	nensions: 964	Hierarchical (explained	variance:	1.000)	
Cluster 0 (Siz	e: 23)	Cluster 65 (Size: 69	Oluster	5 (Size: 100)	Cluster 11 (Si	ize: 111)	Cluster 16 (Si	ze: 128
Top Genera: Genus Microvirus Top Families: Family Microviridae Top Hosts: Host	23	Top Genera: Genus Epseptimavirus 54 Tequintavirus 15 Top Families: Family Demerecviridae 69	Top Fam 5 Family Autogra Top Hos Host Escheri	mavirus 100 ilies: phiviridae 10 ts: chia 96 a 2	Top Families: Family Microviridae Inoviridae Fiersviridae Demerecviridae	2 1 101 7 1	Top Genera: Genus Microvirus Tertilicivirus Vicialiavirus Top Families: Family Microviridae Inoviridae Top Hosts:	122 4 2
bajarodmic Dulem	15 8	Top Hosts: Host			Cystoviridae	1	bajarodmic Dulem	86 36
Du telli	Ü	Salmonella 60 Escherichia 9			Top Hosts: Host bajarodmic Escherichia Dulem Vibrio	101 4 3 2	Pseudomonas Vibrio	4 2

Conclusion: embeddings are informative in the context of both taxonomy and viral host, esp. in taxonomy

Comparison on Embeddings & Protein Similarity

- Embeddings-Based Distance: Trying both Euclidean distance and cosine similarity.
- **Protein-Based Distance:** Calculated as the sum of branch lengths between two nodes in the tree (tree proteomic distance).
- **Normalization:** Scaling distances to the range (0,1).

- number of common accessions between the 2 datasets: 1375
- 500 phages is sampled
- combination(500,2) =
 124,750 pairs of phages

Comparison on Embeddings & Protein Similarity

Observation:

- No obvious linear correlation
- **similar protein** (normalized distance < 0.2) → **similar embeddings** (normalized distance < 0.4)
- different embeddings (normalized distance > 0.6) → really different protein (normalized distance close to 1)
- **similar embeddings** (normalized distance < 0.2) → **protein** distance may **vary** (normalized distance between (0,1))