

FACULTY OF ECONOMICS AND MANAGEMENT

Master Thesis Seminar

Presentation
Prediction of Soccer Penalty Kicks using a Discrete Choice Model

Fritz Golz

Introduction

^{*}Dalton, Guillon & Naroo (2015, p.815-827)

Problem Description

- want to predict the shot direction
 - Estimate a Discrete Choice Model

Discrete Choice - six possible alternatives:

③	TL	TC	TR
	DL	DC	DR

self-collected database

Learning Goals

Research Questions:

- ▶ Which variables are useful to predict the shot direction?
- ▶ Where does the penalty-taker most likely shoots the ball?
- ▶ How can we use our estimated probabilities to derive a suited prediction method?

Mathematical Model

- based on Koppelman & Bhat (2006, p.14-60)
- Choice: $C = \{i | U_{it} = \max(U_{it})\}$
- ightharpoonup Utility: $|U_{it} = V_{it} + \varepsilon_{it}|$
- **Probability:**

$$Pr(i) = \frac{\exp(V_i)}{\sum_{j=i}^{J} \exp(V_j)}$$

 ε_{it} = error term (unobservable)

 V_{it} = observable utility

character-based

alternative-based

Choice Method 2: $C_2 = \{i | Pr_i - \overline{Pr_i} = \max(Pr_i - Pr_i)\}$

$$C_2 = \{i | Pr_i - \overline{Pr_i} = \max(Pr_i - \overline{Pr_i})\}$$

Model Estimation Process

- package apollo of software R
- three main steps:
 - 1. Pre-estimation analysis
 - 2. Create order of variables
 - 3. Test all variables individually
- output: utility functions
 - useful variables

Results – Important Variables

- **▶** Which variables are useful to predict the shot direction?
- ▶ Where does the penalty-taker most likely shoots the ball?
- ► How can we use our estimated probabilities to derive a suited prediction method?

Results – Important Variables

▶ 15 different variables in model

Results - Probabilities

- ▶ Which variables are useful to predict the shot direction?
- **▶** Where does the penalty-taker most likely shoots the ball?
- ► How can we use our estimated probabilities to derive a suited prediction method?

Results - Probabilities I

average estimated probabilities

9,84 %	5,6 %	8,99 %	24,43 %
37,23 %	6,83 %	31,51 %	75,57 %
47,07 %	12,43 %	40,5 %	•

▶ identical to distribution in database

Results - Probabilities II

probabilities for single penalty-taker different

Results - Prediction

- ▶ Which variables are useful to predict the shot direction?
- ▶ Where does the penalty-taker most likely shoots the ball?
- ▶ How can we use our estimated probabilities to derive a suited prediction method?

Example

▶ Method 1: Maximum utility

▶ Method 2: Maximum probability increase

	TL	TC	TR	DL	DC	DR
Pr(i)	0.128	0,043	0,203	0,24	0,074	0,3116
$\overline{\Pr(i)}$	0,098	0,056	0,09	0,372	0,068	0,3151
Δ	0.03	-0,013	0,113	-0,132	0,006	- 0,0035

Results - Prediction

▶ Maximum utility method with higher accuracy

	Method 1	Method 2
Prediction Rate	42,24 %	33,59%
TL	12	377
DL	1606	805
TC	1	177
DC	0	62
TR	20	274
DR	719	663

Conclusion

- a lot of different factors influencing the penalty-taker
- penalty kicks most likely flat to the corners
- difficult to predict shot direction