roducción
 Objetivo
 Modelo
 Resultados
 Conclusión

 D
 OO
 OOOOO
 OOOOOOO
 OO

# Proyecto Redes Neuronales 2020-2

Clasificador de Dibujos

Monreal Gamboa Francisco Manuel Ramírez García Diana Isabel

Universidad Nacional Autónoma de México Facultad de Ciencias

12 de junio de 2020



ntroducción Objetivo Modelo Resultados Conclusión OO 0000 000000 0000000 00

# Índice

- 1 Introducción
- 2 Objetivo
- 3 Modelo
- 4 Resultados
- 5 Conclusión



### Introducción



Modelo Introducción Resultados Conclusión

### Introducción

0

#### ¿Cómo nos comunicamos?

Cuando necesitamos comunicarnos y el idioma se transforma en muros, necesitamos buscar otras opciones tal como las señas y los dibujos.





# Objetivo



## Objetivo

#### ¿Cómo lo resolvemos?

Buscamos generar una red neuronal convolusional tal que tenga la capacidad de identificar distintos objetos por medio de dibujos escenciales o en otras palabras garabatos.





 troducción
 Objetivo
 Modelo
 Resultados
 Conclusión

 □
 ○
 ●
 ●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Modelo



Modelo Resultados 00000

### Base de Datos





ntroducción Objetivo **Modelo** Resultados Conclusió DO 00 **00●00** 0000000 00

## Modelo





#### Modelo

#### Modelo

```
In [30]: import numpy as np
         import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense. Dropout. Flatten. Activation
         from tensorflow.keras.layers import Convolution2D, MaxPooling2D
         from tensorflow.keras.utils import to categorical
         import matplotlib
         %matplotlib inline
         from matplotlib import pyplot as plt
         #creamos nuestro modelo
         modelo = tf.keras.models.Sequential([
           tf.keras.layers.Convolution2D(16, (3, 3),padding='same',input shape=x tr.shape[1:], activatio
         n='relu').
           tf.keras.layers.MaxPooling2D(pool size=(2,2)),
           tf.keras.layers.Convolution2D(32, (3, 3), activation='relu'),
           tf.keras.layers.MaxPooling2D(pool size=(2.2)).
           tf.keras.layers.Convolution2D(64, (3, 3), activation='relu'),
           tf.keras.layers.MaxPooling2D(pool size=(2,2)),
           #aplanamos los datos del modelo hasta este punto
           tf.keras.lavers.Flatten().
           tf.keras.layers.Dense(128, activation='relu'),
           tf.keras.lavers.Dropout(0.2).
           tf.keras.layers.Dense(120, activation='softmax')
         modelo.summary()
```



#### Modelo

```
In [31]: #Compilamos nuestro modelo
     modelo.compile(optimizer='adam',
             loss='categorical crossentropy'.
             metrics=['top k categorical accuracy'])
     #Entrenamos el modelo
     H = modelo.fit(x = x tr, y = y tr, validation split=0.1, batch size = 256, verbose=1, epochs=7)
     Epoch 1/7
     accuracy: 0.7030 - val loss: 1.5826 - val top k categorical accuracy: 0.8484
     Epoch 2/7
     accuracy: 0.8420 - val loss: 1.3720 - val top k categorical accuracy: 0.8765
     Epoch 3/7
     accuracy: 0.8640 - val loss: 1.2899 - val top k categorical accuracy: 0.8864
     Epoch 4/7
     accuracy: 0.8751 - val loss: 1.2186 - val top k categorical accuracy: 0.8953
     Epoch 5/7
     accuracy: 0.8822 - val loss: 1.1868 - val top k categorical accuracy: 0.8976
     Epoch 6/7
     accuracy: 0.8874 - val loss: 1.1341 - val top k categorical accuracy: 0.9039
     Epoch 7/7
     accuracy: 0.8916 - val loss: 1.1155 - val top k categorical accuracy: 0.9054
```



 troducción
 Objetivo
 Modelo
 Resultados
 Conclusión

 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

# Resultados



# Desarrollo de las Capas











 Introducción
 Objetivo
 Modelo
 Resultados
 Conclusión

 ○○
 ○○
 ○○
 ○○
 ○○

## Desarrollo de las Capas







## Precisión





Introducción Objetivo Modelo **Resultados** Conclusiór

○○ ○○ ○○○○ ○○○○ ○○○●○○○ ○○

### Pérdida





Modelo Resultados 00000000

## Comparación





Figure: Imagen digital

### Interfaz Gráfica

# Clasificador de 100 imagenes

# Borrar



```
butterfly (93.16%),
grapes (2.139999999999997%),
flower (1.49%),
ceiling_fan (1.37%),
fan (0.79%),
spider (0.21%),
candle (0.169999999999998%),
lightning (0.13%),
sun (0.1%),
coffee cup (0.06%)
```



### Interfaz Gráfica

# Clasificador de 100 imagenes

# Воггаг





roducción Objetivo Modelo Resultados **Conclusión** O 00 0000 0000000 **●**O

# Conclusión



Modelo Resultados Conclusión  $\circ$ 

## Base de Datos



