# Z-turn Board 产品用户手册

版本 V1.1 2014年12月16日

#### 版本记录

| 版本号  | 说明       | 时间         |
|------|----------|------------|
| V1.0 | 初始版本     | 2014/12/4  |
| V1.1 | 更新图片 4-1 | 2014/12/16 |



# 目 录

| Ħ   | 录                | .1  |
|-----|------------------|-----|
| 第 ] | l 章 产品概述         | .1  |
| 1   | .1 产品简介          | . 1 |
| 1   | .2 产品预览          | . 1 |
| 第2  | 2 章 SoC 介绍       | .2  |
| 2   | .1 SoC 特性        | . 2 |
| 2   | .1 SoC BANK      | . 3 |
| 第:  | 3 章 硬件资源介绍       | .5  |
| 3   | .1 开发板硬件资源       | . 5 |
| 第4  | <b>4</b> 章 接口说明  | .7  |
| 4   | .1 板上接口说明        | . 7 |
|     | 3.1.1 用户接口       | . 7 |
| 4   | .2 扩展接口定义        | . 8 |
| 第:  | 5 章 硬件说明         | 11  |
| 5   | .1 电源            | 11  |
| 5   | .2 引导模式          | 11  |
| 5   | .3 DDR           | 11  |
| 5   | .4 存储            | 12  |
|     | 5.4.1 NAND Flash | 12  |
|     | 5.4.2 SPI Flash  | 12  |
|     | 5.4.3 Micro SD 卡 | 13  |
| 5   | .5 USB           | 13  |
|     | 5.5.1 USB OTG    | 13  |
|     | 5.5.2 USB 调试串口   | 14  |
| 5   | .6 以太网           | 14  |
| 5   | .7 自定义逻辑外设       | 15  |
|     | 5.7.1 GPIO       | 15  |
|     | 5.7.2 I2C        | 16  |



| 5.7.3 HDMI     | 16 |
|----------------|----|
| 第 6 章 软件资源介绍   | 17 |
| 6.1 Linux 软件资源 | 17 |
| 6.2 编程逻辑资源     | 18 |
| 第7章 快速使用指南     | 19 |
| 7.1 烧写固件到开发板   | 19 |
| 7.2 启动开发板      | 19 |
| 第 6 章 机械参数     | 21 |
| 附录一 售后服务与技术支持  | 22 |

# 第1章 产品概述

## **1.1** 产品简介

Z-turn Board 是深圳市米尔科技有限公司推出的一款以 Xilinx Zynq-7010(兼容 7020)作为主处理器的嵌入式开发板。Z-turn Board 采用 Xilinx 最新的基于 28nm 工艺流程的 Zynq-7000 All Programmable SoC 平台,将 ARM 处理器和 FPGA 架构紧密集成。该产品拥有双核 ARM Cortex-A9 MPCore 的高性能,低功耗特性,在设计中能更好的满足各种工业需要。

同时深圳市米尔科技有限公司提供各种成熟的硬件解决方案,而且提供丰富的嵌入式操作系统及软件资源,通过配套的设计工具,帮助嵌入式软件人员充分发挥软硬件协同优势,实现超越传统架构的创新设计。

## 1.2 产品预览



图 1-1

# 第2章 SoC介绍

## 2.1 SoC 特性

开发板采用 Xilinx Zynq-7000 All Programmable SoC XC7Z010。Zynq-7000 系列 SoC 将 ARM 处理器和 FPGA 架构紧密集成,拥有由两颗 ARM® Cortex™- A9 核组成的处理核心部分(PS),以及一颗 Xilinx 7 系列 FPGA 核心 Artix®-7 所构成的可编程逻辑部分(PL)。该系列芯片中,ARM 拥有相对于市面上其他处理器更强大的计算速度,FPGA 拥有完全可编程能力。FPGA 的可编程能力,配合开发板上引出的 I/O 口,能够适合多种应用场景。

**注意:** 开发板 SoC 型号为 XC7Z010, 封装 CLG400(17 x 17 mm), 可与 XC7Z020 脚对脚兼容, XC7Z010 与 XC7Z020 仅 PL 部分不同, XC7Z020 逻辑单元多于 XC7Z010, 适合更复杂应用。本产品的软件和手册都基于 XC7Z010 进行开发和测试。



图 2-1 ZYNQ-7000 系列 SoC 架构

#### ▶ 处理器系统单元 (PS)

- 处理核心: Dual ARM® Cortex™-A9 MPCore™ with CoreSight™
- 最高主频: 866 MHz
- L1 Cache: 32 KB 指令 Cache, 32 KB 数据 Cache 每核
- **L2 Cache:** 512 KB
- 片内内存: 256 KB
- 片外接口: DDR3, DDR3L, DDR2, LPDDR2
- 存储接口: 2x Quad-SPI, NAND, NOR
- **DMA 通道:** 8 (其中 4 个 PL 专用)
- 外设: 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO

#### ▶ 可编程逻辑单元(PL)

- Logic 核心: Xilinx 7 Series Artix®-7 FPGA
- 可编程逻辑单元: 2.8 万逻辑单元(约 43 万 ASIC 逻辑门)
- **LUTs:** 17,600
- 触发器: 35,200
- RAM: 240 KB
- DSP slice: 80

#### 2.1 SoC BANK



图 2-1 XC7Z010 CLG400 BANKS

- **BANK 0:** JTAG, 复位,模拟信号
- BANK 13: 仅 XC7Z020 有
- **BANK 34:** PL 部分,50pin(24 对差分)
- **BANK 35**: PL 部分,50pin(24 对差分)
- **BANK 500:** PS 部分,MIO[0:15],16pin,RGMII, USB,SDIO,UART
- **BANK 501:** PS 部分,MIO[16:53] 38pin,QSPI,NAND Flash
- **BANK 502:** PS 部分, DDR 管脚

# 第3章 硬件资源介绍

## 3.1 开发板硬件资源



图 3-1

#### 硬件资源

- 512MB NandFlash (默认不贴)
- 16MB SPI Flash
- 1GB DDR3 SDRAM (2 x 512MB), 32bit 数据总线
- 10/100/1000Mb/s 以太网
- 三轴加速度传感器
- 温度感应器

#### ▶ 外设接口及资源

- 视频接口: 1080P 高清 HDMI 视频输出
- 存储卡接口:

- 1路 TF 卡接口
- USB接口:
  - 1 路 MINI USB接口 (OTG)
  - 1 路 转 USB 调试串口
- 数据传输接口:
  - 1 路 CAN 接口
  - 1路 10/100/1000Mb/s 以太网接口
- 输入:
  - 4路拨动开关,2个按键(1个复位,1个用户)
- LED 指示灯:
  - 2个用户灯
  - 1个 FPGA 配置完成指示灯
  - 1个电源指示灯
  - 1个三色指示灯(红绿蓝)
- 声音输出:
  - 一个蜂鸣器
- 调试接口:
  - 1 个 14PIN 双排调试接口,间距 2.54mm
- 扩展接口:
  - 2个80PIN (共160PIN) 双排接口,间距1.27mm

# 第4章 接口说明

## 4.1 板上接口说明



图 4-1

## 3.1.1 用户接口

| 编号   | 说明                        | 备注          |
|------|---------------------------|-------------|
| J1   | JTAG                      | 14-Pin      |
| J2   | USB Mini                  | USB OTG     |
| J3   | 10/100/1000 Ethernet      | RJ45        |
| J4   | HDMI                      | Type A male |
| J5   | Micro SD Card slot        |             |
| J6   | Debug UART to USB         | UART to USB |
| JP1  | Boot mode select Jumper   | 请参考 表 5-1   |
| JP2  | Boot mode select Jumper   | 请参考 表 5-1   |
| CON1 | CAN bus                   |             |
| M1   | Buzzer                    |             |
| U20  | Switch x 4 <sup>[1]</sup> |             |
| P1   | 5V DC Power jack          |             |
| D7   | FPGA DONE LED             |             |
| D13  | USB VBUS LED              |             |

| 编号  | 说明         | 备注   |
|-----|------------|------|
| D25 | Power LED  | Blue |
| D29 | User LED 1 | Red  |
| D30 | User LED 2 | Red  |
| D34 | RGB LED    |      |
| CN1 | 拓展接口 1     |      |
| CN2 | 拓展接口 2     |      |

表 4-1

注: [1] 三色 LED 灯将直接由 PL 逻辑控制,若 SW4 拨为"H"位置此时,SW1、SW2、SW3 将直接对应控制三色 LED 灯的 RGB 分量的亮灭。若 SW4 为"L",则三色 LED 由 PS 控制。

## 4.2 扩展接口定义

开发板上有两个扩展接口 CN1 和 CN2,下表中,形如 IO\_L11P\_T1\_13 的为 PL 管脚, 形如 PS\_MIO9\_500 的是 PS 管脚,最后一个数字表示所在的 BANK。



图 4-2

#### 表 CN1

| 表 CN1  Default Function | BGA | Pin Name         | CI | N1 | Pin Name      | BGA | Default Function |
|-------------------------|-----|------------------|----|----|---------------|-----|------------------|
|                         |     | VDD_5V           | 1  | 2  | GND           |     |                  |
|                         |     | VDD_3.3V         | 3  | 4  | GND           |     |                  |
|                         |     | VDD18_KEY_BACKUP | 5  | 6  | JTAG_TCK      | F9  |                  |
|                         | U7  | IO_L11P_T1_13    | 7  | 8  | JTAG_TMS      | J6  |                  |
|                         | V7  | IO_L11N_T1_13    | 9  | 10 | JTAG_TDI      | G6  |                  |
|                         | Т9  | IO_L12P_T1_13    | 11 | 12 | JTAG_TDO      | F6  |                  |
|                         | U10 | IO_L12N_T1_13    | 13 | 14 | JTAG_NTRST    |     |                  |
|                         |     | VDDIO_13_PL      | 15 | 16 | IO_L14P_T2_13 | Y9  |                  |
|                         | Y7  | IO_L13P_T2_13    | 17 | 18 | IO_L14N_T2_13 | Y8  |                  |
|                         | Y6  | IO_L13N_T2_13    | 19 | 20 | IO_L21P_T3_13 | V11 |                  |
|                         | V8  | IO_L15P_T2_13    | 21 | 22 | IO_L21N_T3_13 | V10 |                  |
|                         | W8  | IO_L15N_T2_13    | 23 | 24 | GND           |     |                  |
|                         |     | GND              | 25 | 26 | IO_L1P_T0_34  | T11 |                  |
|                         | T12 | IO_L2P_T0_34     | 27 | 28 | IO_L1N_T0_34  | T10 |                  |
|                         | U12 | IO_L2N_T0_34     | 29 | 30 | IO_L3P_T0_34  | U13 |                  |
|                         | V12 | IO_L4P_T0_34     | 31 | 32 | IO_L3N_T0_34  | V13 |                  |
|                         | W13 | IO_L4N_T0_34     | 33 | 34 | GND           |     |                  |
|                         |     | GND              | 35 | 36 | IO_L5P_T0_34  | T14 |                  |
|                         | P14 | IO_L6P_T0_34     | 37 | 38 | IO_L5N_T0_34  | T15 |                  |
| RGB LED                 | R14 | IO_L6N_T0_34     | 39 | 40 | IO_L7P_T1_34  | Y16 | RGB LED          |
|                         | W14 | IO_L8P_T1_34     | 41 | 42 | IO_L7N_T1_34  | Y17 | RGB LED          |
|                         | Y14 | IO_L8N_T1_34     | 43 | 44 | GND           |     |                  |
| 12M                     | U14 | IO_L11P_T1_34    | 45 | 46 | IO_L10P_T1_34 | V15 | LCD_DATA2        |
|                         | U15 | IO_L11N_T1_34    | 47 | 48 | IO_L10N_T1_34 | W15 | LCD_DATA3        |
|                         |     | VDDIO_34_PL      | 49 | 50 | IO_L13P_T2_34 | N18 | LCD_DATA6        |
| LCD_DATA0               | T16 | IO_L9P_T1_34     | 51 | 52 | IO_L13N_T2_34 | P19 | LCD_DATA7        |
| LCD_DATA1               | T20 | IO_L15P_T2_34    | 53 | 54 | GND           |     |                  |
| LCD_DATA4               | U18 | IO_L12P_T1_34    | 55 | 56 | IO_L15P_T2_34 | T20 | LCD_DATA10       |
| LCD_DATA5               | U19 | IO_L12N_T1_34    | 57 | 58 | IO_L15N_T2_34 | U20 | LCD_DATA11       |
| LCD_DATA8               | N20 | IO_L14P_T2_34    | 59 | 60 | IO_L17P_T2_34 | Y18 | LCD_DATA14       |
| LCD_DATA9               | P20 | IO_L14N_T2_34    | 61 | 62 | IO_L17N_T2_34 | Y19 | LCD_DATA15       |
| LCD_DATA12              | V20 | IO_L16P_T2_34    | 63 | 64 | IO_L19P_T3_34 | R16 | LCD_DE           |
| LCD_DATA13              | W20 | IO_L16N_T2_34    | 65 | 66 | IO_L19N_T3_34 | R17 | LCD_PCLK         |
|                         |     | GND              | 67 | 68 | GND           |     |                  |
| LCD_HSYNC               | W16 | IO_L18N_T2_34    | 69 | 70 | IO_L18P_T2_34 | V16 | LCD_VSYNC        |
| I2S_SCLK                | T17 | IO_L20P_T3_34    | 71 | 72 | IO_L20N_T3_34 | R18 | I2S_FSYNC_OUT    |
| I2S_FSYNC_IN            | V18 | IO_L21N_T3_34    | 73 | 74 | IO_L21P_T3_34 | V17 | I2S_Dout         |
| I2S_Din                 | W18 | IO_L22P_T3_34    | 75 | 76 | IO_L24P_T3_34 | P15 | I2C0_SDA         |
| HDMI_INT                | W19 | IO_L22N_T3_34    | 77 | 78 | IO_L24N_T3_34 | P16 | I2C0_SCL         |
| MEMS_INTn               | N17 | IO_L23P_T3_34    | 79 | 80 | IO_L23N_T3_34 | P18 | ВР               |

#### 表 CN2

| 表 CN2  Default Function | BGA  | Pin Name      | CI | N2 | Pin Name      | BGA  | Default Function  |
|-------------------------|------|---------------|----|----|---------------|------|-------------------|
| 2 ordan r drionon       | 20/1 | VDD_5V        | 1  | 2  | GND           | 20/1 | Doradii Fariolion |
|                         |      | VDD_3.3V      | 3  | 4  | GND           |      |                   |
|                         | K9   | XADC_INP0     | 5  | 6  | DXP_0         | M9   |                   |
|                         | L10  | XADC_INN0     | 7  | 8  | DXN_0         | M10  |                   |
|                         |      | XADC_VCC      | 9  | 10 | GND           |      |                   |
| PS_USER_LED1            | E6   | PS_MIO0_500   | 11 | 12 | PS_MIO10_500  | E9   | UART0_RX          |
| NAND_REn                | D5   | PS MIO8 500   | 13 | 14 | PS_MIO11_500  | C6   | UART0_TX          |
| PS_USER_LED2            | B5   | PS MIO9 500   | 15 | 16 | PS_MIO14_500  | C5   | CAN0_RX           |
| I2C1_CLK                | D9   | PS_MIO12_500  | 17 | 18 | PS_MIO15_500  | C8   | CAN0_TX           |
| I2C1_SDA                | E8   | PS_MIO13_500  | 19 | 20 | GND           |      | _                 |
|                         |      | GND           | 21 | 22 | IO_L2P_T0_35  | B19  |                   |
|                         | C20  | IO_L1P_T0_35  | 23 | 24 | IO_L2N_T0_35  | A20  |                   |
|                         | G20  | IO_L18N_T2_35 | 25 | 26 | IO_L4P_T0_35  | D19  |                   |
|                         | E17  | IO_L3P_T0_35  | 27 | 28 | IO_L4N_T0_35  | D20  |                   |
|                         | D18  | IO_L3N_T0_35  | 29 | 30 | GND           |      |                   |
|                         |      | GND           | 31 | 32 | IO_L6P_T0_35  | F16  |                   |
|                         | E18  | IO_L5P_T0_35  | 33 | 34 | IO_L6N_T0_35  | F17  |                   |
|                         | E19  | IO_L5N_T0_35  | 35 | 36 | IO_L8P_T1_35  | M17  |                   |
|                         | M19  | IO_L7P_T1_35  | 37 | 38 | IO_L8N_T1_35  | M18  |                   |
|                         | M20  | IO_L7N_T1_35  | 39 | 40 | GND           |      |                   |
|                         |      | GND           | 41 | 42 | IO_L10P_T1_35 | K19  |                   |
|                         | L19  | IO_L9P_T1_35  | 43 | 44 | IO_L10N_T1_35 | J19  |                   |
|                         | L20  | IO_L9N_T1_35  | 45 | 46 | IO_L12P_T1_35 | K17  |                   |
|                         | L16  | IO_L11P_T1_35 | 47 | 48 | IO_L12N_T1_35 | K18  |                   |
|                         | L17  | IO_L11N_T1_35 | 49 | 50 | GND           |      |                   |
|                         |      | VDDIO_35_PL   | 51 | 52 | IO_L14P_T2_35 | J18  |                   |
|                         | H16  | IO_L13P_35    | 53 | 54 | IO_L14N_T2_35 | H18  |                   |
|                         | H17  | IO_L13N_35    | 55 | 56 | IO_L16P_T2_35 | G17  |                   |
|                         | F19  | IO_L15P_T2_35 | 57 | 58 | IO_L16N_T2_35 | G18  |                   |
|                         | F20  | IO_L15N_T2_35 | 59 | 60 | GND           |      |                   |
|                         |      | GND           | 61 | 62 | IO_L18P_T2_35 | G19  |                   |
|                         | J20  | IO_L17P_T2_35 | 63 | 64 | IO_L18N_T2_35 | G20  |                   |
|                         | H20  | IO_L17N_T2_35 | 65 | 66 | IO_L20P_T3_35 | K14  |                   |
|                         | H15  | IO_L19P_T3_35 | 67 | 68 | IO_L20N_T3_35 | J14  |                   |
|                         | G15  | IO_L19N_T3_35 | 69 | 70 | GND           |      |                   |
|                         |      | GND           | 71 | 72 | IO_L22P_T3_35 | L14  |                   |
|                         | N15  | IO_L21P_T3_35 | 73 | 74 | IO_L22N_T3_35 | L15  |                   |
|                         | N16  | IO_L21N_T3_35 | 75 | 76 | IO_L24P_T3_35 | K16  |                   |
|                         | M14  | IO_L23P_T3_35 | 77 | 78 | IO_L24N_T3_35 | J16  |                   |
|                         | M15  | IO_L23N_T3_35 | 79 | 80 | GND           |      |                   |

# 第5章 硬件说明

#### 5.1 电源



图 5-1

上图为开发板电源框图,通过 Power good 信号,按顺序级联,以1.0V->1.8V->1.5V->3.3V 的顺序完成上电过程,3.3V 最后升起,同时提供复位信号对系统进行复位动作,PL、PS 各管脚的 IO 电平由处理器提供。

## 5.2 引导模式

开发板默认有两种启动方式可供选怎,分别是 SD 卡启动和 Quad-SPI 启动,通过跳线 JP1、JP2 进行选择。

| JP1 | JP2 | 启动模式      | 备注   |
|-----|-----|-----------|------|
| ON  | ON  | QSPI      |      |
| ON  | OFF | JTAG      |      |
| OFF | ON  | SD card   |      |
| OFF | OFF | NandFlash | 暂不支持 |

表 5-1

## 5.3 DDR6666



图 5-2

开发板包括两片 Micron 公司的 MT41K256M16HA-125DDR3 内存颗粒,组成 256M×32 位接口,共计 1 GB 随机存取内存。 DDR3 存储器连接到 SoC 的 PS DDR 控制器的物理端口上,支持的最高速度达 1066MT/s。

## 5.4 存储

#### 5.4.1 NAND Flash

开发板预留有 NAND Flash 位置,目前暂不支持。

#### 5.4.2 SPI Flash



图 5-3

开发板带有一片 Quad-SPI Flash W25Q128BVFIG,可以用于引导 SoC,初始化 PS 并配置 PL 部分。

#### 5.4.3 Micro SD 卡



图 5-4

Micro SD 作为存储单元承担系统的数据存储以及引导功能,XC7Z010 使用 SD/SDIO 控制器与 Micro SD 卡连接,连接到 SoC 的 Bank 1/501 MIO[40-46],MIO[46]和 MIO[50] 分别用作 SD 卡检测与 SD 卡写保护设置。Micro SD 需要 3.3V 电平,但 SoC 一端电平为 1.8V,所以需要进行电平转换,TXS02612 为 6 通道 SPDT 的电平转换芯片,两侧设置不同的电压,实现 1.8V 到 3.3V 转换。

#### 5.5 **USB**

开发板上有两个 Mini USB 的接口, J2 和 J6。J2 作为 USB OTG, J6 为调试串口通过 开发板 UART 转 USB 得到的 USB 接口。

#### **5.5.1 USB OTG**



开发板 USB OTG 口 J2,既可以作为 USB Host 又可以作为 USB device,作为 USB Host 时可以连接 U 盘、鼠标等 USB 设备,作为 USB device 时,可以连接其他主机,这时开发 板充当 USB 网卡或者 U 盘的角色。SoC 通过 PS 部分的 MIO 与一片 SMSC 公司的 USB 物理层芯片 USB3320C 连接来构成一个 USB 2.0 端口。

#### 5.5.2 USB 调试串口



图 5-6

开发板上的调试串口为 TTL 电平,通过 USB-UART 桥芯片 CP2103 转成 USB 接口,方便连接电脑使用。Zynq-7000 SoC PS 部分的 UART 接口是 MIO[48:49]。

## 5.6 以太网

Zynq-7000 SoC 的 PS 部分包含了两个千兆以太网 MAC 层硬件控制器,外部还需要一个以太网物理层传输芯片,开发板采用高通的 AR8035 作为 PHY,使用 RGMII 接口接出一

路千兆以太网口。



图 5-7

## 5.7 自定义逻辑外设

通过可编程逻辑部分实现的外设,用于连接 HDMI,传感器等设备。

#### 5.7.1 **GPIO**

使用 PL 部分的 EMIO,分别对应的 GPIO 索引号,Linux 驱动直接使用。

(1) 四个拨动开关

**SW1:** GPIO\_110

SW 2: GPIO\_111

**SW 3:** GPIO\_112

**SW 4:** GPIO\_113

(2) 一个三色 **LED** 

LED\_RED: GPIO\_114

**LED\_GREEN:** GPIO\_115

LED\_BLUE: GPIO\_116

(3) 一个蜂鸣器

Beep: GPIO\_117

#### 5.7.2 I2C

HDMI 控制器 Sil902x: @0x3b

温度传感器 LM75: @0x49

加速度传感器 ADXI345: @0x53

#### 5.7.3 HDMI

开发板上有一个 HDMI A 型数字视频接口,采用 Silicon Image™公司的 HDMI 芯片 Sil9022A,提供高清数字视频/音频(此版本驱动暂不支持音频输出)。SoC 的 PS 单元控制 HDMI,需要通过 PL 实现一个 HDMI 控制器,实现对 Sil9022A 的驱动。PL 单元需要添加 IP 来构建 HDMI 控制器,该部分 IP 核心暂不提供源码。

# 第6章 软件资源介绍

## **6.1 Linux** 软件资源

| 类别              | 名称                         | 备注                                                        | 源码  |
|-----------------|----------------------------|-----------------------------------------------------------|-----|
| Tool chains     | gcc 4.6.1                  | gcc version 4.6.1<br>(Sourcery CodeBench Lite 2011.09-50) |     |
| Boot<br>loader  | boot.bin                   | 一级引导程序<br>包括 FSBL、bitstream 和 u-boot                      | Yes |
| Linux<br>Kernel | Linux 3.15.0               | 专为 Z-turn Board 的硬件制定的 Linux 内核                           | Yes |
|                 | USB OTG                    | USB OTG 驱动                                                | Yes |
|                 | Ethernet                   | 千兆以太网驱动                                                   | Yes |
|                 | MMC/SD/TF                  | MMC/SD/TF 卡驱动                                             | Yes |
|                 | CAN                        | CAN 驱动                                                    | Yes |
|                 | LCD Controller             | XYLON LCD 屏驱动                                             | Yes |
|                 | HDMI                       | HDMI 驱动                                                   | Yes |
| Driver          | Button                     | Button 驱动                                                 | Yes |
| Bille           | UART                       | 串口驱动                                                      | Yes |
|                 | LED                        | LED 驱动                                                    | Yes |
|                 | GPIO                       | GPIO 驱动                                                   | Yes |
|                 | Buzzer                     | 蜂鸣器驱动                                                     | Yes |
|                 | G-Sensor                   | 三轴传感器驱动                                                   | Yes |
|                 | Tempreture<br>Sensor       | 温度传感器驱动                                                   | Yes |
|                 | Ramdisk                    | Ramdisk 系统镜像                                              |     |
| File<br>system  | Ubuntu<br>Desktop<br>12.04 | 归档文件和 SD 卡镜像文件                                            |     |

表 6-1

## 6.2 编程逻辑资源

| 类别          | 名称       | 备注                                | 源码  |
|-------------|----------|-----------------------------------|-----|
|             | EMIO     | 用于驱动拨码开关,三色 LED,蜂鸣器               | Yes |
| Short fried | I2C 控制器  | 用于驱动温度传感器、加速度传感器、HDMI 控制等         | Yes |
| 逻辑<br>外设    | LogiCVC  | 由 xylon 公司开发的图像显示控制器(评估版 License) |     |
| 7100        | LogiCLK  | 由 xylon 公司开发的时钟发生器(评估版 License)   |     |
|             | Xillybus | 在 PS 中通过 AXI 与 PL 的 FIFO 连接       |     |

表 6-2

# 第7章 快速使用指南

## 7.1 烧写固件到开发板

开发板出厂前已经烧录有程序到 QSPI (Ramdisk 文件系统),若需要运行 Ubuntu 桌面系统需要另外制作一张 TF 卡,可参考《Z-turn Board Linux 开发手册》教程 4.2 小节的内容进行制作和烧写。

## 7.2 启动开发板

#### (1) 配置启动模式:

断开 JP1 跳线,连接 JP2 跳线,即 Micro SD 启动模式。

#### (2) 连接显示设备:

通过 HDMI 线将开发板 J4 与显示器 HDMI 相连。

#### (3) 安装调试串口:

安装 USB 转串口驱动程序,驱动程序可在随机光盘找到或者从 Silab 网站上下载,网站地址: <a href="http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx">http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx</a>。

通过 USB 线连接 J6 与电脑主机的 USB 口,在主机上打开串口终端软件,波特率为 115200,数据位为 8,停止位为 1,无奇偶校验。

#### (4) 制作 Ubuntu 系统启动 TF 卡 (配套的 TF 卡出厂已烧写 Ubuntu 系统)

准备一张大于 2GB 的 TF 卡,参考《Z-turn Board Linux 开发手册》教程 4.2 小节的内容制作 Ubuntu 系统启动卡,然后插入开发板的 TF 卡接口。

#### (5) 开发板上电:

接通 USB 调试串口时,已经通过 USB 为开发板供电,另外还可以使用 5V 直流电源接入开发板 P1 给开发板供电。上电后开发板将运行 Linux Ubuntu 12.04 桌面系统,如图 5-1 所示界面:



图 7-1

# 第6章 机械参数



UNIT: MM

图 6-1

- ▶ 工作温度:
  - -40~+85℃, 工业级(电气指标:符合CE,FCC,CCC规范要求)
  - -0~+ 70°C, 商业级(电气指标:符合 CE, FCC, CCC 规范要求)
- ▶ 环境温度: -50~100 ℃
- ▶ 环境湿度: 20%~90%, 非冷凝
- ▶ 机械尺寸: 63.0 mm x 102.0 mm, 厚 1.6 mm
- ▶ PCB 规格: 8 层板设计, 沉金工艺, 独立的接地信号层, 无铅;
- ▶ 电气指标: DC 5V/2A
- ▶ 系统功耗:约8W
- ▶ 接口类型:双排插针接口

# 附录一 售后服务与技术支持

凡是通过米尔科技直接购买或经米尔科技授权的正规代理商处购买的米尔科技全系列 产品,均可享受以下权益:

- 1、6个月免费保修服务周期
- 2、终身免费技术支持服务
- 3、终身维修服务
- 4、免费享有所购买产品配套的软件升级服务
- 5、免费享有所购买产品配套的软件源代码,以及米尔科技开发的部分软件源代码
- 6、可直接从米尔科技购买主要芯片样品,简单、方便、快速;免去从代理商处购买时,漫 长的等待周期
- **7**、自购买之日起,即成为米尔科技永久客户,享有再次购买米尔科技任何一款软硬件产品的优惠政策
- 8、OEM/ODM 服务

#### 如有以下情况之一,则不享有免费保修服务:

- 1、超过免费保修服务周期
- 2、无产品序列号或无产品有效购买单据
- 3、进液、受潮、发霉或腐蚀
- 4、受撞击、挤压、摔落、刮伤等非产品本身质量问题引起的故障和损坏
- 5、擅自改造硬件、错误上电、错误操作造成的故障和损坏
- 6、由不可抗拒自然因素引起的故障和损坏

产品返修: 用户在使用过程中由于产品故障、损坏或其他异常现象,在寄回维修之前,请先致电米尔科技客服部,与工程师进行沟通以确认问题,避免故障判断错误造成不必要的运费损失及周期的耽误。

**维修周期**:收到返修产品后,我们将即日安排工程师进行检测,我们将在最短的时间内 维修或更换并寄回。一般的故障维修周期为3个工作日(自我司收到物品之日起,不计运 输过程时间),由于特殊故障导致无法短期内维修的产品,我们会与用户另行沟通并确认维修周期。

**维修费用:**在免费保修期内的产品,由于产品质量问题引起的故障,不收任何维修费用; 不属于免费保修范围内的故障或损坏,在检测确认问题后,我们将与客户沟通并确认维修费用,我们仅收取元器件材料费,不收取维修服务费;超过保修期限的产品,根据实际损坏的程度来确定收取的元器件材料费和维修服务费。

**运输费用:**产品正常保修时,用户寄回的运费由用户承担,维修后寄回给用户的费用由 我司承担。非正常保修产品来回运费均由用户承担。

#### 购买请联系:

电话: 0755-25622735

传真: 0755-25532724

邮箱: sales@myirtech.com

网站: <u>www.myir-tech.com</u>

#### 技术支持请联系:

电话: 0755-25622735

传真: 0755-25532724

邮箱: support@myirtech.com

网站: <u>www.myir-tech.com</u>