CLAIMS:

1. A method of inhibiting cytokine or biological activity of MIF comprising contacting MIF with a cytokine or biological activity inhibiting effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or prodrug thereof

$$R_{5}$$
 R_{6}
 R_{7}
 R_{8}
 R_{1}

wherein

10

15

5

Y is O, NR₉ or $S(O)_q$,

 $R_1 \quad \text{is selected from hydrogen,} \quad C_{1\text{-}6}\text{alkyl,} \quad -(CR_{10}R_{10^{\prime}})_n\text{halo,} \quad -(CR_{10}R_{10^{\prime}})_n\text{OR}_{11}, \\ -(CR_{10}R_{10^{\prime}})_n\text{-SR}_{11}, \quad -(CR_{10}R_{10^{\prime}})_n\text{-N}(R_{12})_2, \quad -(CR_{10}R_{10^{\prime}})_n\text{S}(\text{O})R_{11}, \quad -(CR_{10}R_{10^{\prime}})_n\text{S}(\text{O})_2R_{11}, \\ -(CR_{10}R_{10^{\prime}})_n\text{-S}(\text{O})_3R_{11}, \quad -(CR_{10}R_{10^{\prime}})_n\text{C}(\text{O})R_{13}, \quad -(CR_{10}R_{10^{\prime}})_n\text{-C}(=NR_{14})R_{15} \text{ or } -(CR_{10}R_{10^{\prime}})_nR_{16}; \\ -(CR_{10}R_{10^{\prime}})_nR_{10^{\prime}}, \quad -(CR_{10}R_{10^{\prime}}, R_{10^{\prime}})_nR_{10^{\prime}}, \quad -(CR_{10}R_{10^{\prime}}, R_{10^{\prime}})_nR_{10^{\prime}}, \quad -(CR_{10$

$$\begin{split} R_2 \ \ &\text{is selected from hydrogen,} \ \ C_{1\text{-}20}\text{alkyl}, \ \ C_{2\text{-}20}\text{alkenyl,} \ \ C_{2\text{-}20}\text{alkynyl,} \ \ \ \text{-}(CR_{10}R_{10})_mOR_{17}, \\ -&(CR_{10}R_{10})_mSR_{17}, \quad \text{-}(CR_{10}R_{10})_mNR_{18}R_{19}, \quad \text{-}(CR_{10}R_{10})_mS(O)R_{20}, \quad \text{-}(CR_{10}R_{10})_mS(O)_2R_{20}, \\ -&(CR_{10}R_{10})_mC(O)R_{20}, \ \text{-}(CR_{10}R_{10})_mC(S)R_{20}, \ \text{-}(CR_{10}R_{10})_mC(=NR_{11})R_{15} \ \text{or -}(CR_{10}R_{10})_mR_{16}; \end{split}$$

20

 R_3 , R_4 and R_5 are independently selected from hydrogen, C_{1-3} alkyl, - $(CR_{10}R_{10'})_nN(R_{14})_2$, - $(CR_{10}R_{10'})_nOR_{14}$, - $(CR_{10}R_{10'})_nSR_{14}$ or - $(CR_{10}R_{10'})_n$ halo;

R₆ is selected from hydrogen, C₁₋₆alkyl, -C(O)C₁₋₆alkyl, -C(O)N(R₉)₂-, -C(S)N(R₉)₂-, -C(

 R_7 and R_8 are independently selected from hydrogen, C_{1-3} alkyl, C_{2-3} alkynyl or $-(CR_{10}R_{10})_nR_{22}$;

5 Each R₉ is independently selected from H or C₁₋₆alkyl;

Each R_{10} and $R_{10'}$ is independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, halogen, OR_{11} , SR_{11} , C_{1-3} alkoxy, CO_2R_{14} , $N(R_{14})_2$, -CN, NO_2 , aryl or heterocyclyl;

10

R₁₁ is hydrogen or C₁₋₆alkyl;

Each R_{12} is independently selected from hydrogen, C_{1-6} alkyl, NH-C(=NR₁₄)R₁₅, C(O)R₁₄ or C(S)R₁₄;

15

 R_{13} is hydrogen, C_{1-6} alkyl, OR_{14} , SR_{14} or $N(R_{14})_2$;

Each R₁₄ is independently selected from hydrogen or C₁₋₃alkyl;

20 R_{15} is C_{1-6} alkyl, NH_2 , $NH(C_{1-3}$ alkyl) or $N(C_{1-3}$ alkyl)₂, OR_{23} or SR_{23} ;

R₁₆ is hydroxy, C₁₋₃alkoxy, SH, SC₁₋₃alkyl, halo, C(O)R₃₁, C(R₂₄)₃, CN, aryl or heterocyclyl;

- 25 R_{17} is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(CR_{26}R_{26})_sR_{27}$, $C(O)R_{25}$, CO_2R_{25} , $C(S)R_{25}$, $C(S)OR_{25}$, $S(O)_2R_{25}$, $[C(O)CH(R_{29})NH]_r-R_{23}$ or $[sugar]_r$;
- R_{18} and R_{19} are independently selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(CR_{26}R_{26})_sR_{27}$, $C(O)R_{25}$, $C(S)R_{25}$, $S(O)R_{25}$, $S(O)_2R_{25}$, $[C(O)CH(R_{29})NH]_r-R_{23}$, $[Sugar]_r$, $C(=NR_{23})NH_2$ or $NH-C(=NR_{23})NH_2$;

 R_{20} is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, OR_{28} , SR_{28} , $N(R_{28})_2$, $[NH-CHR_{29}C(O)]_r-OR_{23}$, $[sugar]_r$ or $(CR_{26}R_{26})_sR_{27}$;

5 R_{21} is OR_{28} , SR_{28} , halo or $N(R_{25})_2$;

R₂₂ is halo, CO₂H, SO₃H, NO₂, NH₂, CO₂C₁₋₃alkyl, SO₃C₁₋₃alkyl or C(R₂₄)₃;

R₂₃ is hydrogen or C₁₋₃alkyl;

10

Each R₂₄ is independently selected from hydrogen, Cl or F;

Each R_{25} is independently selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, aryl or $(CR_{26}R_{26})_sR_{27}$;

15

Each R_{26} and $R_{26'}$ is independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, halogen, hydroxy, C_{1-3} alkoxy, CO_2H , CO_2C_{1-3} alkyl, NH_2 , $NH(C_{1-3}$ alkyl), $N(C_{1-3}$ alkyl)₂, CN, NO_2 , aryl or heteroaryl;

20 R₂₇ is hydroxy, C₁₋₃alkoxy, SH, SC₁₋₃alkyl, halo, NH₂, NH(C₁₋₃alkyl), N(C₁₋₃alkyl)₂, C(O)R₃₁, aryl or heterocyclyl;

Each R_{28} is independently selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl or $(CR_{26}R_{26'})_sR_{30}$;

25

R₂₉ is the characterising group of an amino acid;

 R_{30} is halogen, hydroxy, C_{1-3} alkoxy, NH_2 , $NH(C_{1-3}$ alkyl), $N(C_{1-3}$ alkyl)₂, $C(O)R_{31}$, aryl or heterocyclyl;

30

 R_{31} is $C_{1\text{-}3}$ alkyl, OH, $C_{1\text{-}3}$ alkoxy, aryl, aryloxy, heterocyclyl or heterocyclyloxy;

- 117 -

q is 0, 1, 2 or 3; n is 0, 1, 2 or 3; m is 0 or 1 to 20; r is 1 to 5; s is 1 to 10; and t is 1 or 2;

wherein an alkyl, alkenyl, alkynyl, alkyloxy, aryl or heterocyclyl group may be optionally substituted one or more times.

- 2. A method according to claim 1 wherein Y is O, NH, NC₁₋₆alkyl, or S(O)_q wherein q is 0, 1, 2 or 3.
- 3. A method according to claim 1 wherein R₁ is hydrogen, C₁₋₆alkyl, (CH₂)_nOH, (CH₂)_nNH₂, (CH₂)_nSH, (CH₂)_nCG₂H, (CH₂)_nCO₂C₁₋₃alkyl, (CH₂)_nC(O)NH₂, (CH₂)_nC(O)NHC₁₋₃alkyl, (CH₂)_nC(O)N(C₁₋₃alkyl)₂, (CH₂)_nSO₃H or (CH₂)_nSO₃C₁₋₃alkyl, where n is 0, 1, 2 or 3.
- A method according to claim 1 wherein R₂ is selected from C₂₋₂₀alkyl, C₁₋₂₀alkenyl, 20 4. $(CR_{10}R_{10'})_mOH$, $(CR_{10}R_{10'})_mOC_{1-20}$ alkyl, $(CR_{10}R_{10'})_mOC_{2-20}$ alkenyl, $(CR_{10}R_{10'})_mOC(O)C_{1-20}$ $(CR_{10}R_{10'})_mOC(O)C_{2-20}$ alkenyl, $(CR_{10}R_{10})_mOC(O)$ aryl, 20alkyl, $(CR_{10}R_{10})_{m}NHC_{1-20}$ alkyl, $(CR_{10}R_{10})_{m}O[C(O)CH(R_{29})NH]_{r}-H,$ $(CR_{10}R_{10})_mO[sugar]_r$ $(CR_{10}R_{10})_mN(C_{1-20}alkyl)_2$, $(CR_{10}R_{10})_mNHC_{2-20}$ alkenyl, $(CR_{10}R_{10})_mN(C_{2-20}alkenyl)_2$, $(CR_{10}R_{10})_mNHC(O)C_{1-20}alkyl,$ 25 $(CR_{10}R_{10}mN(C_{1-20}alkyl)(C_{2-20}alkenyl),$ $(CR_{10}R_{10'})_mNHC(O)$ aryl, $(CR_{10}R_{10'})_mNHC(O)C_{2-20}$ alkenyl, $(CR_{10}R_{10'})_mSO_3H$, $(CR_{10}R_{10})_{m}NH[C(O)CH(R_{29})NH]_{r}-H,$ $(CR_{10}R_{10})_mNH-[sugar]_r$ $(CR_{10}R_{10'})_{m}SO_{3}C_{1-20}alkyl,$ $(CR_{10}R_{10})_{m}SO_{3}C_{2-20}$ alkenyl, $(CR_{10}R_{10})_{m}C(O)C_{1-20}alkyl,$ $(CR_{10}R_{10})_{m}CO_{2}C_{1-20}$ alkyl, $(CR_{10}R_{10})_{m}C(O)C_{2-20}$ alkenyl, $(CR_{10}R_{10})_{m}CO_{2}H$ $(CR_{10}R_{10})_{m}C(O)N(C_{1-}$ 30 $(CR_{10}R_{10'})_mCO_2C_{2-20}$ alkenyl, $(CR_{10}R_{10})_{m}C(O)NHC_{1-20}alkyl,$ $(CR_{10}R_{10})_mC(O)N(C_{2-20}alkenyl)_2$, 20alkyl)2, $(CR_{10}R_{10})_mC(O)NHC_{2-20}$ alkenyl,

(CR₁₀R₁₀)mC(O)N(C₁₋₂₀alkyl)(C₂₋₂₀alkenyl), (CR₁₀R₁₀)mC(O)[NHCH(R₂₉)C(O)]_r-OH, (CR₁₀R₁₀)mC(O)[sugar]_r, (CR₁₀R₁₀)mhalo, (CR₁₀R₁₀)mCN, (CR₁₀R₁₀)mheterocyclyl, (CR₁₀R₁₀)maryl, (CR₁₀R₁₀)mNHC(=NH)NH₂, (CR₁₀R₁₀)mSO₂NHC₁₋₂₀alkyl, (CR₁₀R₁₀)mC(O)O(CH₂)₁₋₁₀CO₂H or (CR₁₀R₁₀)mC(O)O(CH₂)₁₋₁₀CO₂C₁₋₃alkyl; wherein each R₁₀ and R₁₀ is independently selected from hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, halogen, OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₃alkyl, NH₂, NHC₁₋₃alkyl, -N(C₁₋₃alkyl)₂, CN, NO₂, aryl or heterocyclyl; R₂₉ is the characterising group of an amino acid, m is 0 or an integer from 1 to 20 and r is an integer from 1 to 5;

- 5. A method according to claim 1 wherein R₃ is selected from hydrogen, halo, NH₂, OH, OC₁₋₃alkyl, SH or SC₁₋₃alkyl.
- 6. A method according to claim 1 wherein R₄ is selected from hydrogen, halogen, C₁.

 3alkyl, (CH₂)_nNH₂, (CH₂)_nNHC₁₋₃alkyl, (CH₂)_nNH(C₁₋₃alkyl)₂, (CH₂)_nOH or (CH₂)_nOC₁.

 3alkyl and n is 0, 1, 2 or 3.
 - 7. A method according to claim 1 wherein R₅ is selected from hydrogen, halogen, (CH₂)_nNH₂, (CH₂)_nOH, (CH₂)_nOC₁₋₃alkyl, (CH₂)_nSH or (CH₂)_nSC₁₋₃alkyl and n is 0, 1, 2 or 3.

20

- 8. A method according to claim 1 wherein R₆ is selected from hydrogen, C₁₋₃alkyl, C(O)C₁₋₃alkyl, C(O)NH(C₁₋₃alkyl), C(O)N(C₁₋₃alkyl)₂, C(S)NH(C₁₋₃alkyl) or C(S)N(C₁₋₃alkyl)₂.
- A method according to claim 1 wherein R₅ and R₆Y taken together form -X-(CH₂)_t Wherein X and Z are independently selected from O and S and t is 1 or 2.
 - 10. A method according to claim 1 wherein R₇ is selected from hydrogen, C₁₋₃alkyl, (CH₂)_nSO₃H, (CH₂)_nNO₂, (CH₂)_nOH, (CH₂)_nCO₂H, (CH₂)_nNH₂, (CH₂)_nhalo, (CH₂)_nCH₂halo, (CH₂)_nC(halo)₂ or (CH₂)_nC(halo)₃ and n is 0, 1, 2 or 3.

- 119 -

- 11. A method according to claim 1 wherein R_8 is selected from hydrogen, $C_{1.3}$ alkyl, or $(CH_2)_nR_{22}$, wherein R_{22} is halo, CH_2 halo, $CH(halo)_2$ or $C(halo)_3$ and n is 0, 1, 2 or 3.
- 12. A method according to claim 1 wherein at least one of R_{10} and R_{10} in each 5 ($CR_{10}R_{10}$) is hydrogen.
 - 13. A method according to claim 1 wherein at least one of R_{26} and R_{26} in each $(CR_{26}R_{26})$ is hydrogen.
- 10 14. A method according to claim 1 wherein

Y is O, NR_9 or $S(O)_q$;

20

 R_1 is hydrogen, C_{1-6} alkyl, $-(CH_2)_nC(O)R_{13}$, $-(CH_2)_nS(O)_3R_{11}$, $-(CH_2)_nNH_2$, $-(CH_2)_nOH$, $-(CH_2)_nSH$ or $-(CH_2)_nCF_3$, where R_{11} and R_{13} are defined in claim 1;

 R_2 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, - $(CR_{10}R_{10'})_mOR_{17}$, - $(CR_{10}R_{10'})_mSR_{17}$, - $(CR_{10}R_{10'})_mNR_{18}R_{19}$, - $(CR_{10}R_{10'})_mS(O)R_{20}$, - $(CR_{10}R_{10'})_mS(O)_2R_{20}$, - $(CR_{10}R_{10'})_mC(O)R_{20}$, - $(CR_{10}R_{10'})_mC(S)R_{20}$, - $(CR_{10}R_{10'})_mC(=NR_{11})R_{15}$ or - $(CR_{10}R_{10'})_mR_{16}$, where m, R_{10} , $R_{10'}$, R_{11} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} are as defined in claim 1;

R₃ is selected from hydrogen, halo, amino, OH, OC₁₋₃alkyl or SH;

 R_4 is selected from hydrogen, halogen, C_{1-3} alkyl, $(CH_2)_nNH_2$, $(CH_2)_nNHC_{1-3}$ alkyl, $(CH_2)_nNH(C_{1-3}$ alkyl)₂, $(CH_2)_nOH$ or $(CH_2)_nOC_{1-3}$ alkyl;

 R_5 is selected from hydrogen, halogen, $(CH_2)_nNH_2$, $(CH_2)_nOH$, $(CH_2)_nOC_{1-3}$ alkyl, $(CH_2)_nSH$ or $(CH_2)_nSC_{1-3}$ alkyl;

R₆ is hydrogen, C₁₋₃alkyl, CH₂halo, C(O)NH(C₁₋₃alkyl), C(O)N(C₁₋₃alkyl)₂, C(S)NH(C₁₋₃alkyl) or C(S)N(C₁₋₃alkyl)₂, CH₂OH or CH₂SH;

or R₅ and YR₆ together form X-(CH₂)_t-Z wherein X and Z are independently selected from O and S;

- 5 R₇ is selected from hydrogen, C₁₋₃alkyl, or (CH₂)_nSO₃H, (CH₂)_nNO₂, (CH₂)_nOH, (CH₂)_nCO₂H, (CH₂)_nNH₂, (CH₂)_nhalo, (CH₂)_nCH₂halo, (CH₂)_nCH(halo)₂ or (CH₂)_nC(halo)₃,
 - R₈ is hydrogen, C₁₋₃alkyl or (CH₂)_nhalo, and

q and n are 0, 1, 2 or 3.

10

30

- 15. A method according to claim 1 wherein
- 15 Y is O, NR₉ or S(O)_q;

 R_1 is hydrogen, $(CH_2)_nCO_2H$, $(CH_2)_nCO_2C_{1-3}$ alkyl, $(CH_2)_nSO_3H$, $(CH_2)_nNH_2$, C_{1-3} alkyl, $(CH_2)_nOH$ or $(CH_2)_nCF_3$;

- 20 R_2 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $-(CR_{10}R_{10'})_mOR_{17}$, $-(CR_{10}R_{10'})_mSR_{17}$, $-(CR_{10}R_{10'})_mNR_{18}R_{19}$, $-(CR_{10}R_{10'})_mS(O)R_{20}$, $-(CR_{10}R_{10'})_mS(O)_2R_{20}$, $-(CR_{10}R_{10'})_mC(O)R_{20}$, $-(CR_{10}R_{10'})_mC(S)R_{20}$, $-(CR_{10}R_{10'})_mC(S)R_{20}$, $-(CR_{10}R_{10'})_mC(S)R_{20}$, $-(CR_{10}R_{10'})_mC(S)R_{20}$, $-(CR_{10}R_{10'})_mC(S)R_{20}$, are as defined in claim 1;
- 25 R₃ is selected from hydrogen, OH or OC₁₋₃alkyl,

 R_4 is selected from hydrogen, C_{1-3} alkyl, $(CH_2)_nNH_2$, $(CH_2)_nOH$ or $(CH_2)_nOC_{1-3}$ alkyl;

 R_5 is hydrogen, $(CH_2)_nOH$ or $(CH_2)_nOC_{1-3}$ alkyl;

R₆ is hydrogen, C₁₋₃alkyl, CH₂halo, C(O)NH(C₁₋₃alkyl), C(O)N(C₁₋₃alkyl)₂, C(S)NH(C₁-

- 121 -

3alkyl) or C(S)N(C₁₋₃alkyl)₂, CH₂OH or CH₂SH;

or R₅ and R₆ are taken together to form -O-(CH₂)_t-O where t is 1 or 2;

5 R₇ is selected from hydrogen, (CH₂)_nSO₃H, (CH₂)_nNO₂, (CH₂)_nNH₂, or (CH₂)_nhalo

R₈ is hydrogen, CH₃, CF₃ or CCl₃;

and q and n are 0, 1, 2 or 3.

10

16. A method according to claim 1 wherein

Y is O, NR_9 or $S(O)_q$;

15 R₁ is hydrogen, $(CH_2)_nCO_2H$, $(CH_2)_nCO_2C_{1-3}$ alkyl, $(CH_2)_nSO_3H$, $(CH_2)_nNH_2$, C_{1-3} alkyl, $(CH_2)_nOH$ or $(CH_2)_nCF_3$;

 $R_2 \text{ is selected from hydrogen, } C_{1\text{-}20} \text{alkyl, } C_{2\text{-}20} \text{alkenyl, } -(CR_{10}R_{10'})_m \text{OH, } -(CR_{10}R_{10'})_m \text{NHC}_{1\text{-}20} \text{alkyl, } -(CR_{10}R_{10'})_m \text{NH}[C(O)CH(R_{29})\text{NH}] - H, -(CR_{10}R_{10'})_m \text{SO}_3 \text{H, } -(CR_{10}R_{10'})_m \text{SO}_3 \text{C}_{1\text{-}20} \text{alkyl, } -(CR_{10}R_{10'})_m \text{CO}_2 \text{H, } -(CR_{10}R_{10'})_m \text{CO}_2 \text{C}_{1\text{-}20} \text{alkyl, } -(CR_{10}R_{10'})_m \text{CO}_2 \text{H, } -(CR_{10}R_{10'})_m \text{CO}_2 \text{C}_{1\text{-}20} \text{alkyl, } -(CR_{10}R_{10'})_m \text{CO}_2 \text{C}_{1\text{-}20} \text{alkyl, } -(CR_{10}R_{10'})_m \text{Andle, } -(CR_{10}R_{10'})_m \text{aryl, } -(CR_{10}R_{10'})_m \text{heterocyclyl, } -(CR_{10}R_{10'})_m \text{NHC}(=\text{NH}) \text{NH}_2, -(CR_{10}R_{10'})_m \text{SO}_2 \text{NHC}_{1\text{-}20} \text{alkyl, } \text{CO}_2 \text{CH}_2)_{1\text{-}10} \text{CO}_2 \text{H } \text{ or } \text{CO}_2 \text{CH}_2)_{1\text{-}10} \text{CO}_2 \text{C}_{1\text{-}3} \text{alkyl, where m, } R_{10} \text{ and } R_{10'} \text{ are as defined in claim 1;}$

25 R₃ is selected from hydrogen, OH or OC₁₋₃alkyl,

R₄ is selected from hydrogen, C₁₋₃alkyl, (CH₂)_nNH₂, (CH₂)_nOH or (CH₂)_nOC₁₋₃alkyl;

 R_5 is hydrogen, $(CH_2)_nOH$ or $(CH_2)_nOC_{1-3}$ alkyl;

30

20

R₆ is hydrogen, C₁₋₃alkyl, CH₂halo, C(O)NH(C₁₋₃alkyl), C(O)N(C₁₋₃alkyl)₂, C(S)NH(C₁-

3alkyl) or C(S)N(C₁₋₃alkyl)₂, CH₂OH or CH₂SH;

or R₅ and R₆ are taken together to form -O-(CH₂)_t-O where t is 1 or 2;

5 R₇ is selected from hydrogen, (CH₂)_nSO₃H, (CH₂)_nNO₂, (CH₂)_nNH₂, or (CH₂)_nhalo;

R₈ is hydrogen, CH₃, CF₃ or CCl₃;

and q and n are 0, 1, 2 or 3.

10

17. A method according to claim 1 wherein the compound of formula (I) is a compound of formula (II):

15

wherein Y is selected from -O-, -NH-, -NC₁₋₃alkyl- or -S(O)_q-; $R_{101} \text{ is selected hydrogen, } C_{1\text{-6}alkyl}, CO_2H \text{ or } CO_2C_{1\text{-6}alkyl};$

R₁₀₂ is selected from C₁₋₂₀alkyl, C₂₋₂₀alkenyl, CO₂H, CO₂C₁₋₂₀alkyl, CO₂C₂₋₂₀alkenyl, CO₂(CH₂)_mR₁₀₉, SO₃H, SO₃C₁₋₂₀alkyl, SO₃C₂₋₂₀alkenyl, SO₃(CH₂)_mR₁₀₉, C(O)C₁₋₂₀alkyl or (CH₂)_mR₁₁₀;

R₁₀₃ is selected from hydrogen, hydroxy, methoxy or C₁₋₃alkyl;

R₁₀₄ is selected from hydrogen, C₁₋₃alkyl, NH₂, NH(C₁₋₃alkyl), N(C₁₋₃alkyl)₂ or (CH₂)_nOH;

R₁₀₅ is selected from hydrogen, (CH₂)_nOH or (CH₂)_nOC₁₋₃alkyl;

. 5

 R_{106} is selected from hydrogen, C_{1-3} alkyl, $C(O)NH_2$, $C(O)NH(C_{1-3}$ alkyl), $C(O)N(C_{1-3}$ alkyl), $C(S)NH_2$, $C(S)NH(C_{1-3}$ alkyl) or $C(S)N(C_{1-3}$ alkyl);

R₁₀₇ is selected from hydrogen, hydroxy, halo, amino, nitro, cyano, SO₃H or CO₂H;

10

R₁₀₈ is selected from hydrogen or methyl;

 R_{109} is selected from halogen, hydroxy, C_{1-3} alkoxy, NH_2 , $NH(C_{1-3}$ alkyl), $N(C_{1-3}$ alkyl)₂, CO_2H or CO_2C_{1-3} alkyl;

15

R₁₁₀ is selected from hydroxy, C₁₋₃alkyl, halo, CO₂H, CO₂C₁₋₃alkyl, CN, NH₂, NH(C₁₋₃alkyl) or N(C₁₋₃alkyl)₂;

n is 0 or an integer from 1 to 3;

20

m is 0 or an integer from 1 to 20; and

wherein an alkyl, alkenyl or alkyloxy, group may be optionally substituted one or more times.

- 18. A method according to claim 1 wherein the compound of formula (I) is selected from the group consisting of:
 - 6,7-dihydroxy-2-naphthalene
 - 6,7-dimethoxy-2-naphthalene
- 30 6,7-dimethoxy-2-acetonoaphthone
 - 6,7-Dimethoxy-2-naphthoic acid

WO 03/104178

- 124 -

2-carboxy-6-hydroxynaphthalene-5-sulfonic acid 6,7-dihydroxy-2-naphthalenesulfonic acid Pentyl 6,7-dihydroxy-2-naphthalenesulfonate 6-hydroxy-2-naphthalenesulfonic acid 6-methylamino-2-naphthalenesulfonic acid 5 2,3-dihydronaphtho[2,3-b][1,4]dioxine-7-carboxylic acid Methyl 6-hydroxy-2-naphthoate dodecanyl-6-hydroxy-2-naphthoate [(6-hydroxy-2-naphthyl)carbonyl]oxyhexanoic acid (6-methoxy-6-oxohexyl)-6-hydroxy-2-naphthoate 10 6-hydroxy-5-nitro-2-naphthoic acid Ethyl 1,6-dihydroxy-2-naphthoate Ethyl 6-[(dimethylamino)carbonyl]sulfanyl-1-methoxy-2-naphthoate Ethyl 6-hydroxy-1-methoxy-2-naphthoate Ethyl 6-[(dimethylamino)thiocarbonyl]oxy-1-methoxy-2-naphthoate 15 7-methoxy-3-hydroxy-2-naphthoic acid Methyl 7-methoxy-3-hydroxy-2-naphthoate Methyl 7-methoxy-3-methyl-2-naphthoate 7-methoxy-3-methyl-2-naphthoic acid 5-bromo-6-methoxy-2-methyl-3-naphthoic acid 20 6-hydroxy-[2-(1-pentylamino)methyl]-3-naphthoic acid Methyl 3-bromomethyl-7-hydroxy-2-naphthoate Methyl 7-methoxy-2-naphthoate Methyl 7-hydroxy-2-naphthoate Methyl 7-hydroxy-8-nitro-2-naphthoate 25 Methyl 6-hydroxy-5-nitro-2naphthoate Methyl 6-methoxy-5-nitro-2-naphthoate Methyl 5-amino-6-methoxy-2-naphthoate Methyl 6-methoxy-2-naphthoate 2-hydroxymethyl-6-methoxynaphthalene 30 2-bromomethyl-6-methoxy-naphthalene

- 125 -

2-cyanomethyl-6-methoxynaphthalene
2-(1-cyano-1-hex-5-enyl)-6-methoxynaphthalene
2-(6-methoxy-2-naphthyl)hept-6-enoic acid
Methyl 2-(6-methoxy-2-naphthyl)hept-6-enoate
7-hydroxy-2-(6-methoxy-2-naphthyl)heptanoic acid
Methyl 6-methoxy-8-methyl-2-naphthoate ester
6-hydroxy-2-naphthanoic acid
6-methoxy-α-methyl-2-naphthalene acetic acid
2,6-naphthalene disulfonic acid.

10

5

19. A method of treating, preventing or diagnosing a disease or condition wherein MIF cytokine or biological activity is implicated comprising the administration of a treatment, prevention or diagnostic effective amount of a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof to a subject in need thereof.

15

30

- 20. A method according to claim 19 wherein the disease or condition is selected from autoimmune diseases, solid or haemopoeitic tumours, or chronic or acute inflammatory diseases.
- 21. A method according to claim 19 wherein the disease or condition selected from the group comprising rheumatic diseases, spondyloarthropathies, crystal arthropathies, Lyme disease, connective tissue diseases, vasculitides, glomerulonephritis, interstitial nephritis, inflammatory bowel disease, peptic ulceration, gastritis, oesophagitis, liver disease, autoimmune diseases, pulmonary diseases, cancers whether primary or metastatic, atherosclerosis, disorders of the hypothalamic-pituitary-adrenal axis, brain disorders, corneal disease, iritis, iridocyclitis, cataracts, uveitis, sarcoidosis, diseases characterised by modified angiogenesis, endometrial function, psoriasis, endotoxic (septic) shock, exotoxic (septic) shock, infective (true septic) shock, other complications of infection, pelvic

inflammatory disease, transplant rejection, allergies, allergic rhinitis, bone diseases, atopic dermatitis, UV(B)-induced dermal cell activation, malarial complications, diabetes

mellitus, pain, inflammatory consequences of trauma or ischaemia, testicular dysfunctions

and wound healing.

5

10

15

- 22. A method according to claim 21 wherein the disease or condition is selected from the group consisting of rheumatoid arthritis, osteoarthritis, psoriatic arthritis, ankylosing spondylitis, reactive arthritis, Reiter's syndrome, gout, pseudogout, calcium pyrophosphate deposition disease, systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, Sjögren's syndrome, polyarteritis nodosa, Wegener's granulomatosis, Churg-Strauss syndrome, ulcerative colitis, Crohn's disease, cirrhosis, hepatitis, diabetes mellitus, thyroiditis, myasthenia gravis, sclerosing cholangitis, primary biliary cirrhosis, diffuse interstitial lung diseases, pneumoconioses, fibrosing alveolitis, asthma, bronchitis, bronchiectasis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, colon cancer, lymphoma, lung cancer, melanoma, prostate cancer, breast cancer, stomach cancer, leukemia, cervical cancer and metastatic cancer, ischaemic heart disease, myocardial infarction, stroke, peripheral vascular disease, Alzheimer's disease, multiple sclerosis, diabetic retinopathy, parturition, endometriosis, osteoporosis, Paget's disease, sunburn and skin cancer.
- 23. A method according to claim 19 wherein the subject is a human subject.
- 20 24. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier, diluent or excipient.
- 25. A pharmaceutical composition according to claim 24 further comprising a glucocorticoid.
 - 26. A method of treating or preventing a disease or condition wherein MIF cytokine or biological activity is implicated comprising administering to a mammal a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof and a second therapeutic agent.

- 27. A method according to claim 26 wherein the second therapeutic agent is a glucocorticoid.
- 28. A method of prophylaxis or treatment of a disease or condition for which treatment with a glucocorticoid is indicated, said method comprising administering to a mammal a glucocorticoid and a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof.
- 29. A method of treating steroid-resistant diseases comprising administering to a mammal a glucocorticoid and a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof.
 - 30. A method of enhancing the effect of a glucocorticoid in mammals comprising administering a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof, simultaneously, separately or sequentially with said glucocorticoid.
 - 31. A compound of formula (II) or a pharmaceutically acceptable salt or prodrug thereof:

20

15

(II)

wherein Y is selected from -O-, -NH-, -NC₁₋₃alkyl- or -S(O)_q-;

R₁₀₁ is selected hydrogen, C₁₋₆alkyl, CO₂H or CO₂C₁₋₆alkyl;

R₁₀₂ is selected from C₁₋₂₀alkyl, C₂₋₂₀alkenyl, CO₂H, CO₂C₁₋₂₀alkyl, CO₂C₂₋₂₀alkenyl, CO₂(CH₂)_mR₁₀₉, SO₃H, SO₃C₁₋₂₀alkyl, SO₃C₂₋₂₀alkenyl, SO₃(CH₂)_mR₁₀₉, C(O)C₁₋₂₀alkyl or (CH₂)_mR₁₁₀;

R₁₀₃ is selected from hydrogen, hydroxy, methoxy or C₁₋₃alkyl;

10 R₁₀₄ is selected from hydrogen, C₁₋₃alkyl, NH₂, NH(C₁₋₃alkyl), N(C₁₋₃alkyl)₂ or (CH₂)_nOH;

R₁₀₅ is selected from hydrogen, (CH₂)_nOH or (CH₂)_nOC₁₋₃alkyl;

R₁₀₆ is selected from hydrogen, C₁₋₃alkyl, C(O)NH₂, C(O)NH(C₁₋₃alkyl), C(O)N(C₁₋₃alkyl)₂, C(S)NH₂, C(S)NH(C₁₋₃alkyl) or C(S)N(C₁₋₃alkyl)₂;

R₁₀₇ is selected from hydrogen, hydroxy, halo, amino, nitro, cyano, SO₃H or CO₂H;

R₁₀₈ is selected from hydrogen or methyl;

20

30

 R_{109} is selected from halogen, hydroxy, C_{1-3} alkoxy, NH_2 , $NH(C_{1-3}$ alkyl), $N(C_{1-3}$ alkyl)₂, CO_2H or CO_2C_{1-3} alkyl;

R₁₁₀ is selected from hydroxy, C₁₋₃alkyl, halo, CO₂H, CO₂C₁₋₃alkyl, CN, NH₂, NH(C₁₋₃alkyl) or N(C₁₋₃alkyl)₂;

n is 0 or an integer from 1 to 3;

m is 0 or an integer from 1 to 20; and

wherein an alkyl, alkenyl or alkyloxy, group may be optionally substituted one or more

times.

32. A compound according to claim 31 wherein Y is selected from -O-, -S-, -NH- or SO₃.

5

- 33. A compound according to claim 31 wherein R_{101} is selected from hydrogen, CO_2H or CO_2C_{1-3} alkyl.
- 34. A compound according to claim 31 wherein R₁₀₂ is selected from from C₁₋₂₀alkyl, C₂₋₂₀alkenyl, CO₂H, CO₂C₁₋₂₀alkyl, CO₂C₂₋₂₀alkenyl, CO₂(CH₂)_mCO₂H, SO₃H, SO₃C₁₋₂₀alkyl, SO₃C₂₋₃₀alkenyl, SO₃(CH₂)_mCO₂H, (CH₂)_mhydroxy, (CH₂)_mNH₂, (CH₂)_mCN or (CH₂)_mhalo.
- 35. A compound according to claim 31 wherein R_{103} is selected from hydrogen, hydroxy or methoxy.
 - 36. A compound according to claim 31 wherein R_{104} is selected from hydrogen, hydroxy, methyl, NH₂ or CH₂OH.
- 20 37. A compound according to claim 31 wherein R₁₀₅ is selected from hydrogen, hydroxy or methoxy.
 - 38. A compound according to claim 31 wherein R₁₀₆ is selected from hydrogen, C₁₋₃alkyl, C(O)NH₂, C(O)NH(C₁₋₃alkyl), C(O)N(C₁₋₃alkyl)₂, C(S)NH₂, C(S)NH(C₁₋₃alkyl) or C(S)N(C₁₋₃alkyl)₂.
 - 39. A compound according to claim 31 wherein R₁₀₇ is selected from hydrogen, hydroxy, halo, cyano, NH₂, nitro or SO₃H.
- 30 40. A compound according to claim 31 wherein R_{108} is hydrogen.

	41.	A compound of formula (I) selected from the group consisting of
		6,7-dimethoxy-2-acetonoaphthone
		2-carboxy-6-hydroxynaphthalene-5-sulfonic acid
		Pentyl 6,7-dihydroxy-2-naphthalenesulfonate
5		2,3-dihydronaphtho[2,3-b][1,4]dioxine-7-carboxylic acid
		Methyl 6-hydroxy-2-naphthoate
		dodecanyl-6-hydroxy-2-naphthoate
		[(6-hydroxy-2-naphthyl)carbonyl]oxyhexanoic acid
		(6-methoxy-6-oxohexyl)-6-hydroxy-2-naphthoate
10		6-hydroxy-5-nitro-2-naphthoic acid
		Ethyl 1,6-dihydroxy-2-naphthoate
		Ethyl 6-[(dimethylamino)carbonyl]sulfanyl-1-methoxy-2-naphthoate
		Ethyl 6-hydroxy-1-methoxy-2-naphthoate
		Ethyl 6-[(dimethylamino)thiocarbonyl]oxy-1-methoxy-2-naphthoate
15		7-methoxy-3-hydroxy-2-naphthoic acid
		Methyl 7-methoxy-3-hydroxy-2-naphthoate
		Methyl 7-methoxy-3-methyl-2-naphthoate
		7-methoxy-3-methyl-2-naphthoic acid
		5-bromo-6-methoxy-2-methyl-3-naphthoic acid
20		6-hydroxy-[2-(1-pentylamino)methyl]-3-naphthoic acid
		Methyl 3-bromomethyl-7-hydroxy-2-naphthoate
		Methyl 7-methoxy-2-naphthoate
		Methyl 7-hydroxy-2-naphthoate
		Methyl 7-hydroxy-8-nitro-2-naphthoate
25		Methyl 6-hydroxy-5-nitro-2naphthoate
		Methyl 6-methoxy-5-nitro-2-naphthoate
		Methyl 5-amino-6-methoxy-2-naphthoate
		Methyl 6-methoxy-2-naphthoate
		2-hydroxymethyl-6-methoxynaphthalene
30		2-bromomethyl-6-methoxy-naphthalene
		2-cvanomethyl-6-methoxynaphthalene

- 131 -

2-(1-cyano-1-hex-5-enyl)-6-methoxynaphthalene
2-(6-methoxy-2-naphthyl)hept-6-enoic acid
Methyl 2-(6-methoxy-2-naphthyl)hept-6-enoate
7-hydroxy-2-(6-methoxy-2-naphthyl)heptanoic acid
Methyl 6-methoxy-8-methyl-2-naphthoate ester.