

Artificial Gravity for Protection of Human Health during Long-Duration Spaceflight

20th IAA Humans in Space Symposium Prague – June 30th, 2015

Gilles Clement, Tacey Baker, & Charlene Gilbert

Wyle Science, Technology & Engineering Group and NASA Johnson Space Center, Houston TX

Why Use Artificial Gravity?

- NASA's vision for space exploration include scenarios that would send humans beyond LEO for long duration periods.
- Artificial gravity (AG), by reproducing the normal 1G environment, has the unique feature of protecting all physiological systems in all individuals against the effects of weightlessness.
- The selection of the final health protecting countermeasure suites should include consideration for AG, not just traditional methods.
- AG is feasible from an engineering aspect, but more research is required to define the fundamental operating parameters for an AG countermeasure.

Historical Concepts

Tsiolkovsky (1903)

Von Braun (1952)

Noordung (1928)

NASA LaRC (1962)

Human Risks of Spaceflight

Grouped by Hazards – 30 Risks & 2 Concerns

Altered Gravity Level

- Vision alterations
- Renal stone formation
- Sensorimotor alterations
- Bone fracture
- Impaired performance
- Reduced aerobic capacity
- Adverse health effects
- Urinary retention
- Orthostatic intolerance
- Back pain
- Cardiac rhythm problems
- Effects of medication
- Intervertebral disk damage

Radiation

Exposure to space radiation

Distance from Earth

- Limited in-flight medical capabilities
- Toxic medications

Isolation

- Adverse cognitive or behavioral conditions
- Performance & behavioral health decrements

Hostile/Closed Environment— Spacecraft Design

- CO2 exposure
- Inadequate food/nutrition
- Inadequate human-system interaction design
- Injury from dynamic loads
- Injury during EVA
- Celestial dust exposure
- Altered immune response
- Hypobaric hypoxia
- Sleep loss & work overload
- Decompression sickness
- Toxic exposure
- Hearing loss
- Sunlight exposure

Human Risks of Spaceflight

Grouped by Hazards – 30 Risks & 2 Concerns

Altered Gravity Level

- Vision alterations
- Renal stone formation
- Sensorimotor alterations
- Bone fracture
- Impaired performance
- Reduced aerobic capacity
- Adverse health effects
- Urinary retention
- Orthostatic intolerance
- Back pain
- Cardiac rhythm problems
- Effects of medication
- Intervertebral disk damage

Radiation

Exposure to space radiation

Distance from Earth

- Limited in-flight medical capabilities
- Toxic medications

Isolation

- Adverse cognitive or behavioral conditions
- Performance & behavioral health decrements

Hostile/Closed Environment— Spacecraft Design

- CO2 exposure
- Inadequate food/nutrition
- Inadequate human-system interaction design
- Injury from dynamic loads
- Injury during EVA
- Celestial dust exposure
- Altered immune response
- Hypobaric hypoxia
- Sleep loss & work overload
- Decompression sickness
- Toxic exposure
- Hearing loss
- · Sunlight exposure

Risks potentially minimized by artificial gravity

Artificial Gravity (AG) Potential Benefits

- Current countermeasures address the debilitating effects of microgravity in a piece-meal fashion. Artificial gravity produces multi-system effects.
- Better to <u>prevent</u> issues rather than to apply countermeasures after the fact.
- AG reduces countermeasure requirements during transit and on planetary surface.
- Affects timing of crew transfer to surface habitat, lander sizing.
- Rehabilitation starts 6 months earlier than a non-AG mission, and is complete when crew returns to Earth.
- Lower development costs for items used only at 1G.

Sullivan T (2014)

Vehicle Designers Concerns & Perception

- Lack of definitive design requirements, especially acceptable artificial gravity levels and rotation rates.
- Perception of high vehicle mass and performance penalties.
- Incompatibility of resulting vehicle configurations with space propulsion options.
- Perception of complications associated with de-spun components such as antennae and photovoltaic arrays.
- Expectation of effective crew microgravity countermeasures.

Products Necessary to Resolve Open Questions

- The evidence base necessary to advise engineering designers on optimal radii, rotation rates, angular accelerations, centrifugal force, etc. to be used in designing rotating vehicles.
- The evidence base necessary to devise optimal prescriptions for application of short-radius, intermittent AG, with and without augmentation by exercise or other countermeasures.
- The biomedical database necessary to fully characterize the multisystem physiological consequences of long-term exposure to hypogravity environments expected during exploration class missions (0.16G, 0.38G, and possibly other G-levels).
- The biomedical database necessary to fully characterize short and long-term, multisystem responses to transitions between gravity levels.

NASA AG Project

Goal

 Determine the design trade space associated with AG for Mars missions vehicles and habitats.

Objectives

- Implement an evidence-based, peer-reviewed, coordinated R&D project to investigate AG.
- Determine the optimal design characteristics for a AG countermeasure.

Milestone

 Decision criteria whether AG can protect crew health and performance during human deep space missions expected NET 2022.

Rotation of the whole vehicle

e.g. Mars NTR r = 56 m ω = 4 rpm

Rotation of part of the vehicle

e.g. Nautilus-X r = 6 m ω = 12 rpm

On-board centrifuge e.g. AGREE r = 1.6 m ω = 24 rpm

AG Research Plan

1. AG Level

- G dose-physiological response relationship
- Humans, rats, cells
- Ground-based studies:
 - Bioreactor
 - Random Positioning Machine
 - Body Unloading
 - Centrifugation
 - Parabolic flight
 - Computational Models

AG Research Plan (cont'd)

2. AG Duration

- Continuous rotation
 - Large-radius centrifuge / habitat
- Intermittent rotation
 - Short-radius centrifugation during bed rest / dry immersion

NASA ARC Rotating Habitat

Wyle IMAG shortradius centrifuge

AG Research Plan (cont'd)

3. Health Consequences of AG

- Cross-coupled & Coriolis accelerations
 - Rotating chair
 - Slow Rotation Room
- Gravity gradient
 - Large-radius centrifuge
- Intracranial pressure
 - Large-radius centrifuge

Brandeis University slow rotating room

NASA ARC centrifuge

AG Research Plan (cont'd)

4. Validation of AG Prescription

- Comparison between animal centrifugation on the ground and in space
- Space operations of a human short-radius centrifuge
- Human centrifuge in space

Cosmos-936 rat centrifuge

AGREE ISS human centrifuge

JAXA ISS mice centrifuge

AG Project Status

- March 2014 HRP approval to initiate the Artificial Gravity project to develop evidence-based recommendations for or against the use of AG in deep space transit vehicles by 2022.
- **September 2014** Creation of Intern'l AG Working Group as a sub-group of the International Countermeasure Group.
- December 2014 External AG Advisory Panel.
- March 2015 Evidence Report on Artificial Gravity.
 Available at: http://www.xxx.xxx
- May 2015 Research Plan, in progress.
- June 2015 Project Management Plan, in review.
- **July 2015** Research solicitation.

Research Solicitation

Website: NSPIRES?

Deadline: ?

Programmatic considerations

 The PIs of the selected proposals will join a NASA-led translation and integrative research coordination team for optimizing outcomes of research and data sharing.

Multinational research participation

 ISS international partners are strongly encouraged to participate as co-investigators.