ASSIGNMENT # 2

QUESTION #1

Write a program that uses for statements to print the following patterns separately, one below the other. Use for loops to generate the patterns. All asterisks (*) should be printed by a single statement of the form cout << '*'; (this causes the asterisks to print side by side).

[Hint: The last two patterns require that each line begin with an appropriate number of blanks. Extra credit: Combine your code from the four separate problems into a single program that prints all four patterns side by side by making clever use of nested for loops.

(a)	(b)	(c)	(d)
*	*****	******	*
**	*****	******	**
* * *	*****	*****	***
***	*****	*****	***
****	****	*****	****
****	****	****	*****
*****	* * * *	***	*****
*****	* * *	* * *	******
*****	**	* *	******
*****	*	*	******

(e)

ASSIGNMENT # 2

QUESTION # 2

Write if statements to do the following:

- If character variable taxCode is 'T', increase price by adding the taxRate percentage of price to it.
- If integer variable opCode has the value 1, read in double values for X and Y and calculate and print their sum.
- If integer variable currentNumber is odd, change its value so that it is now 3 times currentNumber plus 1, otherwise change its value so that it is now half of currentNumber (rounded down when currentNumber is odd).
- Assign true to the boolean variable leapYear if the integer variable year is a leap year. (A leap year is a multiple of 4, and if it is a multiple of 100, it must also be a multiple of 400.)
- Assign a value to double variable cost depending on the value of integer variable distance as follows:

Distance	Cost	
0.11 1.400		_
0 through 100	5.00	
More than 100 but not more than 500	8.00	
More than 500 but less than 1,000	10.00	
1,000 or more	12.00	

QUESTION #3

Write a program to print out all Armstrong numbers between 1 and 500. If sum of cubes of each digit of the number is equal to the number itself, then the number is called an Armstrong number.

For example,
$$153 = (1 * 1 * 1) + (5 * 5 * 5) + (3 * 3 * 3)$$

QUESTION #4

Raising a number to a power p is the same as multiplying n by itself p times. Write a function called power that takes two arguments, a double value for n and an int value for p and return the result as double value. Use default argument of 2 for p, so that if this argument is omitted the number will be squared. Write the main function that gets value from the user to test power function.