

AD-A043 041 PURDUE UNIV LAFAYETTE IND PROJECT SQUID HEADQUARTERS F/G 20/4
TURBULENCE MEASUREMENTS OF A TWO-DIMENSIONAL HELIUM JET IN A MO--ETC(U)
JUL 77 P ANDERSON, J C LARUE, P A LIBBY N00014-75-C-1143
UNCLASSIFIED SQUID-UCSD-9-PU NL

| OF |
ADA043041

1
69

ADA043041

PROJECT SQUID

TECHNICAL REPORT UCSD-9-PU

TURBULENCE MEASUREMENTS OF A TWO-DIMENSIONAL HELIUM JET IN A MOVING AIRSTREAM

by

PAUL ANDERSON, JOHN C. LARUE, AND PAUL A. LIBBY
DEPARTMENT OF APPLIED MECHANICS AND ENGINEERING SCIENCES
UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JOLLA, CALIFORNIA 92093

PROJECT SQUID HEADQUARTERS
CHAFFEE HALL
PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907

Project SQUID is a cooperative program of basic research relating to Jet Propulsion. It is sponsored by the Office of Naval Research and is administered by Purdue University through Contract N00014-75-C-1143, NR-098-038.

This document has been approved for public release and sale;
its distribution is unlimited.

3 W.
DDC FILE COPY

PROJECT SQUID

A COOPERATIVE PROGRAM OF FUNDAMENTAL RESEARCH
AS RELATED TO JET PROPULSION
OFFICE OF NAVAL RESEARCH, DEPARTMENT OF THE NAVY

⑯ ⑮ CONTRACT NO 014-75-C-1143 NR-098-038

⑨ TURBULENCE MEASUREMENTS OF A TWO-DIMENSIONAL
HELIUM JET IN A MOVING AIRSTREAM.

by

⑩ Paul Anderson, John C. LaRue, and Paul A. Libby
Department of Applied Mechanics and Engineering Sciences
University of California, San Diego
La Jolla, California 92093

⑪ July 1977

⑫ 69p.

PROJECT SQUID HEADQUARTERS
CHAFFEE HALL
PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS
DISTRIBUTION IS UNLIMITED.

403 617

1B

TURBULENCE MEASUREMENTS OF A TWO-DIMENSIONAL
HELIUM JET IN A MOVING AIRSTREAM

by

* Paul Anderson, ** John C. LaRue, *** and Paul A. Libby ***

Department of Applied Mechanics and Engineering Sciences
University of California, San Diego
La Jolla, California 92093

ABSTRACT

Measurements of the streamwise velocity component and the concentration of helium are made in a two-dimensional helium jet discharging into a moving airstream. The transverse distribution of the unconditioned and conditioned statistics of the velocity and helium concentration at various downstream positions are presented. In addition range conditioned point statistics provide information on the structure of turbulent zones of various durations.

The gross properties of the jet agree with previous data. Entrainment is found to occur on the leeward edges of the turbulent zones; because the turbulent fluid is moving faster than the external stream these edges are on the upstream end of the zones. The interfaces as given by the velocity and concentration cannot be distinguished and are found to be relatively thicker than previously measured temperature interfaces.

* Research Assistant.
** Assistant Research Engineer and Lecturer.
*** Professor of Fluid Mechanics.

ACCESSION NO.	
4115	DATA SOURCE
500	DATA SOURCE
ORIGINATOR	
DISTRIBUTOR	
DT	
DISTRIBUTOR AVAILABILITY CODES	
01	DATA, FORM NUMBER
A	

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	i
LIST OF SYMBOLS	iii
I. INTRODUCTION	1
II. ARRANGEMENT AND TECHNIQUES OF THE EXPERIMENT	4
III. RESULTS	9
IV. CONCLUSIONS	24
REFERENCES	26
LIST OF FIGURES	28

LIST OF SYMBOLS

x	downstream coordinate
y	transverse coordinate
X	hot film voltage squared
Y	hot wire voltage squared
\bar{u}, u'	mean and fluctuating components of the streamwise velocity
\bar{c}, c'	mean and fluctuating components of the helium mass fraction
U_∞	free stream velocity
x_o	location of apparent virtual origin
θ	momentum thickness
\bar{u}_o	centerline mean velocity
\bar{c}_o	centerline mean concentration
S	skewness
K	kurtosis
γ	intermittency
f_y	crossing frequency

I. INTRODUCTION

It is widely recognized that measurements of passive scalars provide valuable information on the properties of turbulent shear flows. Accordingly, it is somewhat surprising that there appear to be no data on passive scalars in the fundamentally important flow which results from a two-dimensional jet issuing into a moving stream. In this paper we present data on the streamwise velocity and helium concentration in a two-dimensional helium jet discharging into an airstream. The measurements are sufficiently downstream from the exit plane of the jet so that only small concentrations of helium are involved and so that the helium may be treated as passive.

The velocity in two-dimensional jets in a moving stream has been widely investigated. Rodi¹ provides a valuable critical assessment of available velocity data on a variety of low-speed turbulent shear flows; with respect to the two-dimensional jet in the moving stream he cites the results of Weinstein et al.,² Bradbury and Riley,³ and Everitt⁴ but concludes that there are no measurements sufficiently far downstream so that flow similarity is achieved. Relative to a different flow, the two-dimensional jet discharging into a quiescent ambient, Kotsovinos⁵ observes recently that the discrepancy among the data for such jets can be

Rodi¹ concludes that no available data on the two-dimensional jet in a moving stream have extended far enough downstream to apply to this third region. In attempting to reduce our measurements to similarity form, we find that in several respects our data do not agree with their well known wake counterparts; we refer particularly to the gross behavior associated with the decay of the centerline velocity and with the growth of the half-velocity location. Other quantities which involve normalization with respect to centerline values, e.g., are comparable to far-wake results.

Despite the absence of strict similarity, we find it convenient for purposes of data presentation to identify an apparent virtual origin, recognizing that this is not the correct virtual origin for the third, far-field region. The momentum thickness, which is constant in wakes and jets provided the external flow has constant velocity, is used as a non-dimensionalizing length; for our case in which the initial velocity of the helium is higher than that in the moving stream, the appropriate definition of momentum thickness is $\theta = 2 \int_0^{\infty} (\bar{\rho}/\rho_{\infty}) (\bar{u}/U_{\infty}) ((\bar{u}/U_{\infty}) - 1) dy$ where the overbar denotes the usual time-averaged quantity and the notation is clear from

Figure 1.

II. ARRANGEMENT AND TECHNIQUES OF THE EXPERIMENT

In this section we describe the flow conditions and the experimental and data reduction techniques used in the present work.

Description of the flow

A symmetric, airfoil shaped tube with a chord of 5.14 cm and a maximum thickness of 2.18 cm is mounted across the working section of a low-speed wind tunnel having a 76 x 76 cm cross section. Helium is injected at the trailing edge of the tube from a line of uniform holes of diameter 1.59 mm and with a spacing of 0.254 cm between centers. The helium is supplied by a bank of high pressure bottles, heated to within 1.5°C of the airstream temperature prior to being introduced at both ends of the airfoil tube, and distributed within the airfoil by a perforated inner tube of 9.52 mm diameter. A temperature probe at one end of the airfoil provides the sensor for the control of the helium heater.

The velocity, U_{∞} , and turbulence level in the free stream are $4.6 \pm 0.06 \text{ m/s}$ and less than 0.07% respectively. The initial jet velocity U_j is about 85 m/s as estimated from the momentum thickness.

Probe and Support

Velocity and concentration measurements are made with a two-sensor probe similar to that described in Way and Libby⁶ and LaRue and Libby.⁷ Briefly, the probe consists of a hot film normal to the flow and a hot-wire in the thermal field of the film.

A standard height gauge, resting on the floor of the tunnel, is used to support the probe to an accuracy of $2.5(10)^{-2}$ mm. Vertical traverses across the jet are made at four streamwise locations corresponding to values of the x-coordinate measured from the trailing edge of the tube of $x = 43, 87, 131$, and 174 cm.

The frequency response of the probe is estimated to be at least 500 Hz on the basis of measurements on a similar probe by LaRue and Libby.⁷ The spatial resolution corresponds to a rectangle normal to the flow of 0.25×0.5 mm; the longest side of the rectangle is about 3-4 times the estimated Kolmogoroff length.

Probe Calibration

The probe is calibrated in a calibration jet installed temporarily in the wind tunnel at velocities within the expected range of velocities in the turbulent jet, namely from four to twelve m/s and at five helium-air mixtures with helium mass fractions of 0, 0.019, 0.049, 0.087, and 0.203. The calibration techniques are essentially those described in LaRue and Libby⁷ and Stanford and Libby⁸ for the

determination of u-c pairs from a digital pair of voltages from the film and wire.

Data Collection and Reduction

Both calibration and turbulent data are processed by an ADC having twelve bit resolution and recorded on digital tape at a sample rate of 2086 samples per second per channel. At each probe position 30 seconds of data are recorded; for the unconditioned and zone averages presented here only ten seconds of data are used, but range conditioned, point statistics require all thirty seconds of data in order to obtain adequate statistics even for the mean values and lowest moments. To make possible future data reduction, the signals from the sensors and their derivatives are recorded on a Honeywell 7610 FM instrumentation tape at 15 ips.

Consider the data reduction technique; let X denote the square of the voltage from the normal film and Y the square of the voltage from the wire. The mass fraction of helium is obtained from a polynomial of the form $c = \sum_{n=0}^{n=2} A_n(Y) X^n$ where the A_n coefficients are taken to be third-order polynomials in the indicated variable and are based on the calibration data. With c determined for a $X-Y$ pair of voltages, the u -velocity component is obtained from another polynomial of the form $X = \sum_{n=0}^{n=2} B_n(c) u^n$ where the B_n are second order polynomials in the indicated variable.

Measures of Accuracy

As part of the assessment of experimental errors, measurements are made to determine the sensitivity of the probe to variations in temperature. It is found that at low helium concentrations and at velocities up to about five m/s a two-degree change in temperature leads to errors of $3(10)^{-3}$ in concentration and of 20 cm/s in velocity. Accordingly, as noted earlier, the temperature of the helium is maintained within 1.5°C of the airstream temperature.

Known values of velocity and concentration for the calibration data provide a means of evaluating the error in the polynomial inversion schemes. Calibration data corresponding to $4.0 \text{ m/s} \leq u \leq 8.0 \text{ m/s}$ and $0.0 \leq c \leq 0.05$ result in maximum mean and RMS errors of $\pm 0.07 \text{ m/s}$ and $\pm 0.05 \text{ m/s}$ respectively for velocity and $\pm 6(10)^{-4}$ and $\pm 8(10)^{-4}$ respectively for concentration.

Determination of the Intermittency Function

The helium concentration is used to discriminate between turbulent and irrotational fluid. Although the wind tunnel is operated in an open fashion, a slight increase in the background helium concentration is detected by the probe during successive measurements at each downstream measuring station. Figures 2a-c show the probability density function for concentration at various downstream and transverse locations. The peak of the spike on the left of each

distribution is taken as the level of the helium in the external flow due to contamination. The thickness of the spike is associated with a variety of effects: experimental inaccuracies, spurious fluctuations in helium concentration in the external flow, and contributions from the interfaces between turbulent and irrotational fluid. Our explanation for the increase in apparent helium concentration in the external flow is consistent with the observed increase in the peak value of the pdf's at a given downstream measuring station as the probe is moved sequentially through the jet.

In Figures 3a-b we indicate the influence on the intermittency and crossing frequencies of various increments above the peak value. We note that at probe positions corresponding to values of $\gamma < 0.5$ a low threshold value increases the apparent intermittency and crossing frequency while in regions of $\gamma > 0.50$ a low threshold value increases the intermittency and decreases the crossing frequency. On the basis of these variations we have selected a threshold 0.001 greater than the peak value as indicated by the shaded symbols. Note that these values are in the range of c_T in which the intermittency and crossing frequency are relatively insensitive to c_T .

III. RESULTS

In this section we compare our results for the development of the jet with earlier experiments and then present our results in terms of unconditioned and conditioned statistics. First the location of the fluid-dynamic centerline and the location of the apparent virtual origin are discussed.

Fluid-dynamic Centerline

The y -coordinate used in our data presentation relates to the normal distance from a fluid mechanical centerline which can deviate from the geometric centerline due to slight buoyancy effects; these are expected to arise in an intermediate downstream location where the maximum velocity and maximum helium concentration are diminishing. In fact we find the corrections to be small. Nevertheless the location of the fluid mechanical centerline and the values of the maximum velocity, $u_o(x)$, and of the maximum helium concentration, $c_o(x)$, are determined at each streamwise location by fitting in a least square sense a parabola through at least five sets of data in the neighborhood of the centerline. We find offsets of the fluid mechanical centerline from 5.5 mm above to 1.8 mm below the geometric centerline.

Apparent Virtual Origin

The apparent virtual origin for the flow is calculated by assuming a similarity profile of the form $(\bar{u} - U_\infty)/(\bar{u}_o - U_\infty) = \exp(-\alpha y^2/(x - x_o))$. At each downstream location the values of $-y^2/\left(\ln(\bar{u} - U_\infty)/(\bar{u}_o - U_\infty)\right)$, where y , \bar{u} , and U_∞ are measured quantities and where \bar{u}_o is computed as part of the determination of the fluid-dynamic centerline, are averaged and plotted as a function of x . Likewise a similarity profile for \bar{c} is assumed and the procedure repeated. A least square approximation of the resulting distribution shown in Figure 4 leads to a virtual origin for velocity at $x_o = 17.8$ cm and for concentration at $x_o = 16.0$ cm. These apparent virtual origins are used in the data presentation.

Momentum Thickness

The momentum thickness, used as a non-dimensionalizing length, is determined by graphically integrating smoothed profiles of $(\rho/\rho_\infty)(\bar{u}/U_\infty)\left((\bar{u}/U_\infty) - 1\right)$ across the jet at each downstream location. All of the stations yield values of θ within 16% of an average value of 7.1 cm, which is used in the data presentation.

Downstream Development

In Figures 5a-b we compare our results on gross jet behavior with earlier measurements and with the theory of wakes

and jets based on far-field approximations. The standard presentation of gross behavior involves the variation with $(x - x_{ou})/\theta$ of the centerline velocity in the form $(U_\infty / (u_o - U_\infty))^2$ and the variation of the half-width, i.e., the value of the y-coordinate where the velocity excess is one-half its centerline value, in the form $(\delta_1/\theta)^2$. In Figure 5a - b we compare our results with those of Weinstein et al.² and of Bradbury and Riley.³ The three sets of data are in reasonable agreement within the context of the sensitivity of jet data to a variety of flow effects. We also show on these figures the theory for the far field of wakes and jets (cf., e.g., Schlichting⁹ and Libby¹⁰) based on the experimentally determined apparent origin. The considerable discrepancy is noted. Thus as indicated earlier we have another example of apparent but faulty similarity. We note that in order to bring our experimental data into accord with the far-field theory we would require an unreasonable x_{ou} , namely 53 cm. Finally, we note that in order for us to obtain farther downstream data without compromising excessively the two-dimensionality of the jet would require a reduced momentum thickness, i.e., a reduced initial velocity at the jet exit.

In Figures 6a-b we compare the gross behavior of the velocity and concentration. The mean concentration of helium on the centerline decays more rapidly and the half-width based on a

mean helium concentration equal to one half its centerline value is found to grow more rapidly than the corresponding quantities associated with the velocity. These are expected results, now understood to be associated with the relatively high level of a scalar in the turbulent fluid far from the centerline. The difference in the behavior of the two quantities, velocity and scalar concentration, is undoubtedly due to the influence of the pressure on the former and to the absence of a corresponding distributing force on the latter.

Intermittency Factor and Crossing Frequency

The distributions of the intermittency factor and of the crossing frequency are shown in Figures 7 and 8. The peak in the crossing frequency near $y/\left((x - x_0)\theta\right)^{\frac{1}{2}} = 0.32$ corresponds to the $y/\left((x - x_0)\theta\right)^{\frac{1}{2}}$ location where the intermittency factor equals 0.50, as generally expected. Note that we have non-dimensionalized the crossing frequency so as to form a Strouhal number by introducing the characteristic length and U_∞ ; the resulting correlation of the data from various streamwise stations is considered satisfactory.

Unconditioned and Zone Statistics

Unconditioned and turbulent zone mean, root mean square, skewness and kurtosis distributions for the velocity and concentration

are shown in Figures 9a-d and 10a-d, where symbols representing quantities in the turbulent zones are flagged. The corresponding data for the velocity in the non-turbulent zones are shown in Figures 11a-d. Here we adopt the notation of Kovaszany et al.,¹¹ (\sim) for a turbulent zone average, and (\sim) for a non-turbulent, i.e., irrotational, zone average.

We discuss some of the interesting results shown in this large number of figures. Consider first the distributions of mean velocity: Figure 9a indicates that the turbulent fluid moves faster than the external airstream. In fact except for one data point at $y \left((x - x_{ou}) \theta \right)^{-\frac{1}{2}} = 0.43$, which may be in slight error, the velocity within the turbulent fluid at the edge of the jet moves faster than U_∞ with an increment of about five percent of the maximum velocity difference. Close to the jet centerline the velocity in the irrotational zones is higher than U_∞ , suggesting that the turbulent fluid carries along the air between the large turbulent structures. Near the outer edges of the jet, the velocity in the irrotational fluid appears to be somewhat less than U_∞ , consistent with motion of the external flow over the turbulent structures.

The view which emerges from these velocity distributions is in accord with that given by Kovaszany et al.¹¹ for the turbulent boundary layer and by Fabris¹² for the turbulent wake of a cylinder.

In both of these previous cases the turbulent fluid moves slower than the external flow so that behavior is reversed but is qualitatively consistent with our results in which the turbulent fluid moves faster than the external stream.

Consider next the distributions of the mean helium concentration as shown in Figure 10a. Of particular interest is the relatively high value for the average within the turbulent fluid near the edges of the jet. In fact the concentration within the turbulent fluid appears to approach a constant value of about 40% of the centerline mean at the outer edge; this is in agreement with the results of Fabris¹² and of LaRue and Libby¹⁴ for the temperature in the wake of a heated cylinder and is in contrast with the behavior of the zone averaged mean velocity.

Figure 9b and 11b indicate the data on the intensity of the velocity fluctuations. On the centerline of the jet we find $(\overline{(u')^2})^{1/2} / (\bar{u}_o - \bar{u}_\infty) = 0.27$. There is considerable variation among the published values for this relative intensity on the centerline of wakes and jets. Bradbury and Riley³ indicate that this value increases as the far-field is approached and becomes in reasonable agreement with the corresponding value given by Townsend for the wake of a cylinder, namely 0.25. However, Fabris¹² gives 0.20 for this same quantity in the wake of a cylinder. Thus, while our value is somewhat high, it is not inconsistent with previous measurements.

The distributions of relative intensity of the velocity fluctuations across the jet have the expected behavior; the peak intensity occurs off-axis but in the region of the jet with almost fully turbulent flow. The intensity within the turbulent fluid at the outer edge of the jet as a percent of centerline value is high, roughly 65%. Also the intensity of the velocity fluctuations within the irrotational zones in the middle of the jet is also high but decays to low levels near the outer edge.

These results, which are in accord with those of Kovaszany et al.¹¹ and Fabris¹² for the boundary layer and cylinder wake respectively, indicate that the observed, well-known decay of unconditioned intensities as the outer edge of a shear layer is approached is due largely to the decrease in the percentage of time the flow is turbulent and that the irrotational fluid is far from quiescent.

The corresponding results for the intensity of the fluctuations of helium concentration are shown in Figure 10b. On the centerline we find a relative intensity of 0.23; there are several sets of data for the relative intensity of temperature fluctuations on the centerline of the wake of a cylinder; again there is a range of experimental values. LaRue and Libby¹⁴ give 0.28, Freymuth and Uberoi¹⁵ 0.20, and from Fabris¹² we deduce 0.25. Thus our value is well within the range of previous results.

The zone averaged intensity of the concentration fluctuations actually increases across the jet and appears to approach a value

30% higher than at the centerline. This is in agreement with the results for temperature fluctuations as given by LaRue and Libby¹⁴ but is less than the increase indicated by Fabris¹² whose results in this regard may suffer from insufficient samples for statistical reliability.

These results on the intensity of the fluctuations of the helium concentration indicate that the decay of the unconditioned intensity as the outer edge of the jet is approached is due solely to the decreased percent of time the flow is turbulent and that the fluctuations within the turbulent fluid remains high throughout the jet.

The data on the skewness and kurtosis complete the picture of the statistical behavior of the velocity and concentration but are of less interest. Comparison of the distributions of the two quantities suggests that they are dominated by the variation of the intensities. Also the distributions of skewness and kurtosis indicate that nowhere in the jet is a Gaussian distribution a reasonable approximation.

In concluding this discussion of the unconditioned and zone statistics we remark that some of the results are comparable to those in the far-field of the wake of a cylinder and thus correspond to apparent similarity, despite the earlier indication in terms of gross jet behavior that our measurements do not correspond to the far-field.

Range conditioned point statistics

A picture of the structure of the turbulent zones of various durations can be established by employing a conditioning technique which we term range conditioned point statistics.¹⁴ This technique was developed independently by Antonia.¹⁶ To understand the technique consider a point within the jet where the flow is intermittent to a significant extent, e.g., where $\gamma = 0.5$. The time intervals for turbulent fluid to pass the point in question have a complete distribution from short times corresponding either to small turbulent structures or to grazes off the centerplane of larger structures and to long times corresponding to passages through the center of large structures. We can select a subset of these passages that are within a small, specified tolerance of a nominal duration, can divide the passage time into equal time intervals from the upstream and downstream crossings, and can carry out statistical analysis of the velocity and helium concentration at these times. The result is termed range conditioned point statistics and provides a statistical picture of turbulent structures of a given size provided the time durations are converted to spatial dimensions by application of Taylor's hypothesis. The zone averages discussed earlier correspond to averaging over all points within a turbulent structure of a given size and again over all sizes. It can be appreciated that because of the heavy

conditioning involved in this technique extended time records are required to achieve statistical reliability. For the present results there are at least 50 samples used for each data point.

We present data corresponding to two points within the jet at a streamwise station corresponding to $((x - x_{ou})/\theta) = 16.1$; Figures 12 and 13 present the results for the velocity and helium concentration at a lateral position corresponding to $(y((x - x_{ou})\theta)^{-\frac{1}{2}}) = 0.41$ where $\gamma = 0.86$, i.e., where the flow is turbulent most of the time. Figures 14 and 15 do likewise for a lateral position corresponding to $(y((x - x_{ou})\theta)^{-\frac{1}{2}}) = 0.57$ where $\gamma = 0.34$. Several nominal durations at each station with a tolerance of 10% are considered. The durations are presented in terms of multiples of digital time steps; the equal time intervals are measured relative to either the upstream or downstream crossing so that the tolerance accepted for the nominal duration is accommodated in the central region where the various statistical quantities are found to change gradually. The data points located relative to the upstream edge are open symbols, those from the downstream edge are half-shaded.

It should be recalled in the present context that discrimination between turbulent and irrotational fluid is based on a level of helium as discussed earlier and that this discrimination is applied to the velocity as well. Thus we implicitly assume a single interface for momentum and concentration, an assumption which will be seen later

to be consistent with the experimental results. Finally, we note that in order to facilitate interpretation of the results the distributions of various statistical quantities have been presented with the upstream edges aligned.

In Figures 12a and 14a we see the distributions of velocity through turbulent zones of four durations; the dashed lines on these figures is the velocity in the external stream. From these data several observations may be made; the velocity at the two interfaces is continuous and increases smoothly across the interface with a steeper gradient at the downstream edges. In the central portion of the zones, i.e., remote from the interfaces, the velocity increases from the upstream to the downstream edges, implying that the stretching of the zones in the streamwise direction is associated with the movement of the downstream edges away from the upstream edges. This also suggests, as we shall confirm later in connection with the results relative to the concentration, that entrainment of the slower moving air occurs primarily on the upstream edges of the zones. Finally, comparison of the distributions at the two lateral positions indicates that the shorter turbulent zones further from the jet centerline have velocities close to U_∞ so that the positive increment of the turbulent zone averages over U_∞ is due to the large turbulent structures.

The distributions of root-mean-square velocity intensities shown in Figures 12b and 14b indicate smooth gradients at the two

interfaces and relatively flat regions in the central portions of the zones. The gradients of intensity are greater at the downstream edges, again consistent with greater entrainment of low velocity air at the upstream edges with consequent higher intensities there.

We now turn to the distributions of helium concentration; Figures 13a and 15a display the distributions of mean helium concentration through turbulent zones of various durations. Three reasonably distinct regions in each zone can be identified; there are two interfacial regions involving relatively steep gradients of concentration. The structure of the upstream interfaces are essentially the same independent of duration but those associated with the longer zones involve greater increases in concentration before fairing into the third, central region. The extent of this third region depends on the duration of the zone, but independent of duration, displays a gradual increase in helium concentration from the upstream to the downstream interfacial regions.

For zones of longest duration it appears that the mean concentration approaches a constant. We shall see subsequently that the skewness of the concentration fluctuations for these zones of long duration suggests a well-stirred mixture without the obvious presence of newly entrained air. Finally, comparison of these two figures indicates little difference in the distributions of mean concentration with the two values of γ considered.

We conclude from these data that entrainment of air from the external flow occurs to a greater extent on the upstream edges of the turbulent zones. This supports the observations made earlier on the basis of the range conditioned point statistics of the velocity. Of special interest is to compare these results with the temperature measurements of LaRue and Libby¹⁴ which imply preferential entrainment on the downstream edges of the turbulent zones. The difference is attributable to the difference in the velocity of the turbulent zones relative to the external flow; in the case of the wake the turbulent fluid moves slower than the external stream and entrainment on the leeward, i.e., downstream, surfaces of the turbulent zones dominates. In the two-dimensional jet considered here the turbulent fluid moves faster than the external stream and again entrainment on the leeward edges dominates. We note that there is no theoretical explanation for these results which would appear to be of fundamental interest.

We note that these observations concerning greater entrainment at the upstream interfacial regions do not establish whether the entrainment mechanism is associated with engulfment or molecular processes. We would deduce on the basis of measurements of the statistical geometry of the interface in the turbulent heated wake by Paizis and Schwartz¹⁷ and LaRue and Libby¹⁸ that in our jet flow the number of overhangs suggestive of engulfment is greater on the leeward,

i.e., upstream, edges of the turbulent zones, but whether this coincidence accounts for the observed preferential entrainment is uncertain.

The distributions of the intensities of the concentration fluctuations are shown in Figures 13b and 15b. They support our earlier conclusions concerning entrainment and show smooth increases in intensities in the two interfacial regions and gradual increases from the upstream to the downstream edges.

Although the statistical reliability may be marginal, we show in Figure 13c the distributions of the skewness of the concentration fluctuations for the position closest to the jet centerline. Of interest is the large skewness in the two interfacial regions and the small skewness in the central portions of each turbulent zone. The implications from these data are that the central regions involve nearly symmetrically distributed values of the concentration whereas the freshly entrained fluid involves highly skewed distributions. These results are in agreement with those for temperature given by LaRue and Libby.¹⁴

An examination of the interface regions given by these data exposes several points of interest. Consider the downstream interfaces as given, e.g., by the intensity of the velocity fluctuations in Figure 12b and by the mean helium concentration in Figure 13a. We find that the thickness of the two interface regions is essentially the same

despite the low value for the Schmidt number for dilute helium in helium-air mixtures, namely 0.24. It might be expected that this low value would lead to a significantly thicker interface for helium than for velocity. We thus appear to have evidence in support of the commonly employed assumption, frequently implicit, that the velocity and scalar interface between the turbulent and irrotational fluid are coincident.*

We can use the range conditioned point statistics of the mean concentration to estimate the thicknesses of the interfacial regions. We select the downstream edges for examination since they are somewhat cleaner. We estimate from application of Taylor's hypothesis that the downstream interface is typically 9 mm thick. This can be compared with the Kolmogoroff and Batchelor lengths as follows: From the spectrum of the velocity in the fully turbulent region of the jet we estimate the Kolmogoroff length ℓ_k to be 0.14 mm. The Batchelor length is $\ell_k (\text{Sc})^{-\frac{1}{2}}$ or 0.29 mm. Thus a typical interface is found to be 55 times the Batchelor length. This is considerably thicker than the estimate of $8\ell_k^{14}$ obtained by LaRue and Libby¹⁴ for the thickness of the temperature interface in the heated wake.

* We intend to repeat the present experiment with the helium heated; in this case it will be of interest to compare the concentration and temperature interfaces and to establish whether the differences in Schmidt and Prandtl numbers will result in distinguishable interface thicknesses.

The reason for this increase in relative thickness is unknown; it may be due to the reduction in the Schmidt number relative to the Prandtl number but it might be expected that this should be accounted for by the comparison of the interface thickness with the Batchelor scale rather than the Kolmogoroff scale.

IV. CONCLUSIONS

We find the downstream development of the turbulent helium jet to be in reasonable agreement with earlier experiments of plane jets in moving streams. Although strict similarity does not apply in this region of jet flow, turbulent zone statistics of concentration for the mean and relative intensity distributions resemble turbulent zone statistics of temperature in the wake of a heated cylinder.

The conditioned velocity statistics show that the non-turbulent fluid well within the jet is moving faster than the free stream velocity.

Distributions through turbulent zones of various durations obtained by ranged conditioned point statistics show that entrainment at the upstream interfacial regions is dominant, that the concentration and momentum interfaces cannot be distinguished, and finally that the concentration interface is considerably thicker than that inferred

from measurements of temperature in the wake of a heated cylinder.

The findings relative to entrainment are consistent with previous results in that entrainment at the leeward interface of the turbulent zone dominates.

REFERENCES

1. Rodi, W., A Review of Experimental Data of Uniform Density Free Turbulent Boundary Layers, in Studies in Convection Vol. 1, edited by Brian Launder (Academic Press, London, 1975).
2. Weinstein, A. S., Osterle, J. F. and Forstall, W., Momentum Diffusion from a Slot Jet into a Moving Secondary, *J. Appl. Mech.*, 23, 437-443 (1956).
3. Bradbury, L. J. S. and Riley, J., The Spread of a Turbulent Plane Jet Issuing into a Parallel Moving Airstream, *J. Fluid Mech.*, 27, 381-394 (1967).
4. Everitt, K., Ph.D. thesis, University of London (1971).
5. Kotsovinos, Nikolas E., A Note on the Spreading Rate and Virtual Origin of a Plane Turbulent Jet, *J. Fluid Mech.*, 77, 303-311 (1977).
6. Way, J. and Libby, P. A., Application of Hot-wire Anemometry and Digital Techniques to Measurements in a Turbulent Helium Jet, *AIAA J.*, 9, 1567-1573 (1971).
7. LaRue, J. C. and Libby, P. A., Measurements in the Turbulent Boundary Layer with Slot Injection of Helium, *Phys. of Fluids*, 20, 192-202 (1977).
8. Stanford, R. A. and Libby, P. A., Further Applications of Hot-wire Anemometry to Turbulence Measurements in Helium-Air Mixtures, *Phys. of Fluids*, 17, 1353-1361 (1974).
9. Schlichting, H., Boundary Layer Theory (McGraw Hill, New York, 1955), pp. 492-494.
10. Libby, P. A., Prediction of the Intermittent Turbulent Wake of a Heated Cylinder, *Phys. of Fluids*, 19, 494-501 (1976).
11. Kovasznay, L. S. G., Kibens, V. and Blackwelder, R. F., Large-scale Motion in the Intermittent Region of a Turbulent Boundary Layer, *J. Fluid Mech.*, 41, 283-325 (1970).

12. Fabris, G., Ph.D. thesis, Illinois Institute of Technology, 1974. See also: Turbulent Temperature and Thermal Flux Characteristics in the Wake of a Cylinder. Symposium on Turbulent Shear Flows, April 18-20, 1977, University Park, Pennsylvania, pp. 1511-20.
13. Townsend, A. A., The Structure of Turbulent Shear Flows (Cambridge University Press, 1956), pp. 131-168.
14. LaRue, J. C. and Libby, P. A., Temperature Fluctuations in the Plane Turbulent Wake, Phys. of Fluids, 17, 1956-1967 (1974).
15. Freymuth, P. and Uberoi, M. S., Structure of Temperature Fluctuations in the Turbulent Wake of a Heated Cylinder, Phys. of Fluids, 14, 2574-2580 (1971).
16. Antonia, R. A., Conditionally Sampled Measurements near the Outer Edge of a Turbulent Boundary Layer, J. of Fluid Mech., 56, 1-18 (1972).
17. Paizis, S. T. and Schwarz, W. H., An Investigation of the Topography and Motion of the Turbulent Interface, J. Fluid Mech., 63, 315-343 (1974).
18. LaRue, J. C. and Libby, P. A., Statistical Properties of the Interface in the Turbulent Wake of a Heated Cylinder, Phys. of Fluids, 19, 1864-1875 (1976).

LIST OF FIGURES

1. Schematic representation of the flow
2. Probability density functions of concentration
 - a. = 0.14
 - b. = 0.84
 - c. = 0.97
3. Dependence on the threshold value of concentration x , cm:
 \circ : 43; Δ : 131; \circlearrowright : 174. Half-shaded symbol indicates threshold values selected.
 - a. Intermittency
 - b. Crossing frequency
4. Determination of the apparent virtual origins
5. Comparison of gross jet behavior
 - a. Decay of centerline velocity excess
 - b. Growth of half-width of the jet
6. Comparison of the gross behavior of velocity and concentration
 - a. Decay of centerline velocity and concentration
 - b. Growth of half-widths for velocity and concentration
7. Distribution of intermittency (Half-darkened symbols are from lower half of the jet)

8. Distribution of crossing frequency (See Figure 7 for symbol identification)
9. Unconditioned and turbulent zone statistics for the velocity
(See Figure 7 for symbol identification. Flagged symbols indicate turbulent zone values and refer to scale on right.)
 - a. Mean values
 - b. Root-mean-square intensity
 - c. Skewness φ
 - d. Kurtosis
10. Unconditioned and turbulent zone statistics for the concentration of helium (See Figures 7 and 9 for symbol identification)
 - a. Mean values
 - b. Root-mean-square intensity
 - c. Skewness
 - d. Kurtosis
11. Irrotational zone statistics of the velocity (See Figures 7 and 9 for symbol identification)
 - a. Mean values
 - b. Root-mean-square intensity
 - c. Skewness
 - d. Kurtosis

12. Range conditioned point statistics for the velocity:

$$\gamma = 0.846$$

- a. Mean values
- b. Root-mean-square intensity

13. Range conditioned point statistics for the concentration of helium: $\gamma = 0.84$

- a. Mean values
- b. Root-mean-square intensity
- c. Skewness

14. Range conditioned point statistics for the velocity: $\gamma = 0.34$

- a. Mean values
- b. Root-mean-square intensities

15. Range conditioned point statistics for the concentration of helium: $\gamma = 0.34$

- a. Mean values
- b. Root-mean-square intensities

Figure 1. Schematic representation of the flow

Figure 2. Probability density functions of concentration

a. = 0.14

Figure 2b. $\gamma = 0.84$

Figure 2c. $\gamma = 0.97$

Figure 3. Dependence on the threshold value of concentration x , cm:

\bullet : 43; Δ : 131; \circ : 174. Half-shaded symbol

indicates threshold values selected.

a. Intermittency

Figure 3b. Crossing frequency

Figure 4. Determination of the apparent virtual origins

Figure 5. Comparison of gross jet behavior

a. Decay of centerline velocity excess

Figure 5b. Growth of half-width of the jet

Figure 6. Comparison of the gross behavior of velocity and concentration

a. Decay of centerline velocity and concentration

Figure 6b. Growth of half-widths for velocity and concentration

Figure 7. Distribution of intermittency (Half-darkened symbols are from lower half of the jet)

Figure 8. Distribution of crossing frequency (See Figure 7 for symbol identification)

Figure 9. Unconditioned and turbulent zone statistics for the velocity (See Figure 7 for symbol identification. Flagged symbols indicate turbulent zone values and refer to scale on right.)
 a. Mean values

Figure 9b. Root-mean-square intensity

Figure 9c. Skewness φ

Figure 9d. Kurtosis

Figure 10. Unconditioned and turbulent zone statistics for the concentration of helium
 (See Figures 7 and 9 for symbol identification)
 a. Mean values

Figure 10b. Root-mean-square intensity

Figure 10c. Skewness

Figure 10d. Kurtosis

Figure 11. Irrotational zone statistics of the velocity (See Figures 7 and 9 for symbol identification)
a. Mean values

Figure 11b. Root-mean-square intensity,

Figure 11d. Kurtosis

Figure 12. Range conditioned point statistics for the velocity: $\gamma = 0.846$

a. Mean values

Figure 12b. Root-mean-square intensity

Figure 13. Range conditioned point statistics for the concentration of helium: $\gamma = 0.84$

a. Mean values

Figure 13b. Root-mean-square intensity

Figure 13c. Skewness

Figure 14. Range conditioned point statistics for the velocity: $\gamma = 0.34$

a. Mean values

Figure 14b. Root-mean-square intensities

Figure 15, Range conditioned point statistics for the concentration of helium: $\gamma = 0.34$

a. Mean values

Figure 15b. Root-mean-square intensities

DISTRIBUTION LIST

GOVERNMENT AGENCIES

1. British Embassy
3100 Massachusetts Avenue, N.W.
Washington, D.C. 20008
ATTN: Mr. J. Barry Jamieson
Propulsion Officer
2. Central Intelligence Agency
Washington, D.C. 20505
ATTN: CRS/ADD/Publications
3. Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22202
ATTN: Dr. Hans G. Wolfhard,
Sen. Staff
4. Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314
5. EPA Technical Center
Research Triangle Park
North Carolina 27711
ATTN: Dr. W. Herget, P-222
6. Esso Research and Engineering Company
Government Research Laboratory
P.O. Box 8
Linden, New Jersey 07036
ATTN: Dr. William F. Taylor
7. Arnold Air Force Station
Tennessee 36389
ATTN: AEDC (DYF)
8. Arnold Air Force Station
Tennessee 37389
ATTN: R.E. Smith, Jr., Chief
T-Cells Division
Engine Test Facility
9. Air Force Aero Propulsion Laboratory
Wright-Patterson Air Force Base
Ohio 45433
ATTN: STINFO Office
10. Air Force Eastern Test Range
MU-135
Patrick Air Force Base
Florida 32925
ATTN: AFETR Technical Library
11. Air Force Office of Scientific Research
Bolling Air Force Base, Building 410
Washington, D.C. 20332
ATTN: Dr. Joseph F. Masi
12. Air Force Aero Propulsion Laboratory
Wright-Patterson AFB, Ohio 45433
ATTN: AFAPL/TBC
Dr. Kervyn Mach
13. Air Force Aero Propulsion Laboratory
Wright-Patterson AFB, Ohio 45433
ATTN: AFAPL/TBC
Francis R. Ostdiek
14. Air Force Rocket Propulsion Laboratory
Department of Defense
Edwards AFB, California 93523
ATTN: LKCG (Mr. Selph)
15. U.S. Army Air Mobility Research and
Development Laboratory
Eustis Directorate
Fort Eustis, Virginia 23604
ATTN: Propulsion Division
(SAVOL-EU-PP)
16. U.S. Army Artillery Combat
Developments Agency
Fort Sill, Oklahoma 73503
ATTN: Commanding Officer
17. U.S. Army Missile Command
Redstone Arsenal, Alabama 35809
ATTN: AMSMI-RR
18. U.S. Army Missile Command
Redstone Scientific Information Center
Redstone Arsenal, Alabama 35809
ATTN: Chief, Document Section
19. Indiana State Library
140 North Senate Avenue
Indianapolis, Indiana 46204
ATTN: Patricia Matkovic
Reference Librarian
Indiana Division
20. NASA Headquarters
600 Independence
Washington, D.C. 20546
ATTN: Dr. Gordon Banerian
21. NASA Headquarters
Aeronautical Propulsion Division
Code RL, Deputy Director
Office of Advanced Research & Technology
Washington, D.C. 20546
ATTN: Mr. Nelson F. Rekos
22. NASA Ames Research Center
Deputy Chief Aeronautics Division
Mail Stop 27-4
Moffett Field, California 94035
ATTN: Mr. Edward W. Perkins
23. NASA Ames Research Center
Aerodynamics Branch 227-8
Moffett Field, California 94305
ATTN: Mr. Ira R. Schwartz
24. NASA Lewis Research Center
Hypersonic Propulsion Section
Mail Stop 6-1
21000 Brookpark Road
Cleveland, Ohio 44135
ATTN: D. Morris, Mail Stop 60-3
25. NASA Lewis Research Center
SSE ASTN-P
Huntsville, Alabama 35812
ATTN: Mr. Keith Chandler
Dr. Louis A. Povineilli
26. NASA Marshall Space Flight Center
Engineering Energetics
Mail Stop 6-1
21000 Brookpark Road
Cleveland, Ohio 44135
ATTN: Dr. Royal Rostenbach
27. National Science Foundation
Engineering Energetics
Engineering Division
Washington, D.C. 20550
ATTN: Dr. George Lee
28. National Science Foundation
Engineering Energetics
Engineering Division
Washington, D.C. 20550
ATTN: Dr. M. Ojaivo
29. National Science Foundation
Engineering Energetics
Engineering Division
Washington, D.C. 20550
ATTN: Dr. Royal Rostenbach
Dr. M. Ojaivo
30. Naval Air Development Center
Commanding Officer (AD-5)
Warminster, Pennsylvania 18974
ATTN: NADC Library
31. Naval Air Propulsion Test Center (R&T)
Trenton, New Jersey 08628
ATTN: Mr. Al Martino

32. Naval Air Systems Command
Department of the Navy
Washington, D.C. 20360
ATTN: Research Administrator
AIR 310
33. Naval Air Systems Command
Department of the Navy
Washington, D.C. 20360
ATTN: Propulsion Technology Admin.
AIR 330
34. Naval Air Systems Command
Department of the Navy
Washington, D.C. 20360
ATTN: Technical Library Division
AIR 604
35. Naval Ammunition Depot
Research and Development Department
Building 190
Crane, Indiana 47522
ATTN: Mr. B.E. Douda
36. Naval Ordnance Laboratory Commander
White Oak
Silver Springs, Maryland 20910
ATTN: Library
37. Naval Ordnance Systems Command
Department of the Navy
Washington, D.C. 20360
ATTN: ORD 0331
38. Naval Postgraduate School
Department of Aeronautics, Code 57
Monterey, California 93940
ATTN: Dr. Allen E. Fuhs
39. Naval Postgraduate School
Library (Code 2124)
Monterey, California 93940
ATTN: Superintendent
40. Naval Postgraduate School
Monterey, California 93940
ATTN: Library (Code 0212)
41. Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91106
ATTN: Dr. Rudolph J. Marcus
42. Office of Naval Research Branch Office
536 South Clark Street
Chicago, Illinois 60605
ATTN: Commander
43. Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02210
ATTN: Commander
44. Office of Naval Research
Power Branch, Code 473
Department of the Navy
Arlington, Virginia 22217
45. Office of Naval Research
Fluid Dynamics Branch, Code 438
Department of the Navy
Washington, D.C. 22217
ATTN: Mr. Morton Cooper
46. Naval Research Lab
Code 7710
Washington, D.C. 20390
ATTN: W.W. Ballwanz
47. Naval Research Laboratory Director
Washington, D.C. 20390
ATTN: Technical Information Division
48. Naval Research Laboratory Director
Washington, D.C. 20390
ATTN: Library Code 2629 (ONRL)
49. Naval Ship Research and Development Center
Annapolis Division
Annapolis, Maryland 21402
ATTN: Library, Code A214
50. Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360
ATTN: Technical Library
51. Naval Weapons Center Commander
China Lake, California 93555
ATTN: Airbreathing Propulsion Branch
Code 4583
52. Naval Weapons Center
Chemistry Division
China Lake, California 93555
ATTN: Dr. William S. McEwan
Code 605
53. Naval Weapons Center
Commander
China Lake, California 93555
ATTN: Technical Library
54. Naval Weapons Center
Code 608, Thermochemistry Group
China Lake, California 93555
ATTN: Mr. Edward W. Price, Head
55. Naval Weapons Laboratory
Dahlgren, Virginia 22448
ATTN: Technical Library
56. Naval Undersea Research and
Development Center
San Diego, California 92132
ATTN: Technical Library
Code 1311D
57. Naval Underwater Systems Center
Fort Trumbull
New London, Connecticut 06320
ATTN: Technical Library
58. Naval Underwater Systems Center
Code 5B-331
Newport, Rhode Island 02840
ATTN: Dr. Robert Lazar
59. Picatinny Arsenal
Commanding Officer
Dover, New Jersey 07801
ATTN: Technical Information Library
60. State Documents Section
Exchange and Gift Division
Washington, D.C. 20540
ATTN: Library of Congress
- U.S. INDUSTRIES AND LABORATORIES
61. AeroChem Research Laboratories, Inc.
P.O. Box 12
Princeton, New Jersey 08540
ATTN: Dr. Arthur Fontijn
62. AeroChem Research Laboratories, Inc.
P.O. Box 12
Princeton, New Jersey 08540
ATTN: Library
63. Aerojet Liquid Rocket Company
P.O. Box 13222
Sacramento, California 95813
ATTN: Technical Information Center
64. Aeronautical Research Association
of Princeton
50 Washington Road
Princeton, New Jersey 08540
ATTN: Dr. C. Donaldson
65. Aeroprojects, Inc.
West Chester
Pennsylvania 19380

66. The Aerospace Corporation
P.O. Box 92957
Los Angeles, California 90009
ATTN: Mr. Alexander Muraszew
67. Atlantic Research Corporation
5390 Cherokee Avenue
Alexandria, Virginia 22314
ATTN: Dr. Andrej Macek
68. Atlantic Research Corporation
5390 Cherokee Avenue
Alexandria, Virginia 22314
ATTN: Librarian
69. Atlantic Research Corporation
5390 Cherokee Avenue
Alexandria, Virginia 22314
ATTN: Dr. Kermit E. Woodcock
Manager, Propulsion
70. Avco Everett Research Laboratory
Everett, Massachusetts 02149
ATTN: Librarian
71. Avco Lycoming Corporation
550 South Main Street
Stratford, Connecticut 06497
ATTN: Mr. John W. Schrader
72. Ballistics Research Laboratory
Commanding Officer
Aberdeen Proving Ground, Maryland 21005
ATTN: Library
73. Battelle
Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
ATTN: Mr. Abbott A. Putnam
Atmospheric Chemistry &
Combustion Systems Division
74. Beech Aircraft Corporation
9709 East Central
Wichita, Kansas 67201
ATTN: William M. Byrne, Jr.
75. Bell Aerospace Company
P.O. Box 1
Buffalo, New York 14240
ATTN: Technical Library
76. Bureau of Mines
Bartlesville Energy Research Center
Box 1396
Bartlesville, Oklahoma 74003
77. Calspan Corporation
4455 Genesee Street
Buffalo, New York 14221
ATTN: Head Librarian
78. Computer Genetics Corporation
Wakefield, Massachusetts 01880
ATTN: Mr. Donald Leonard
Technical Director
79. Convair Aerospace Division
Manager of Propulsion
P.O. Box 748
Fort Worth, Texas 76101
ATTN: L. H. Schreiber
80. Detroit Diesel Allison Division
P.O. Box 894
Indianapolis, Indiana 46206
ATTN: Dr. Sanford Fleeter
81. Dynalysis of Princeton
20 Nassau Street
Princeton, New Jersey 08540
ATTN: Dr. H.J. Herring
82. Fairchild Industries
Fairchild Republic Division
Farmington, New York 11735
ATTN: Engineering Library
83. Flame Research, Inc.
P.O. Box 10502
Pittsburgh, Pennsylvania 15235
ATTN: Dr. John Manton
84. Forest Fire and Engineering Research
Pacific Southwest Forest & Range
Experiment Station
P.O. Box 245
Berkeley, California 94701
ATTN: Assistant Director
85. Garrett Corporation
AirResearch Manufacturing Company
Sky Harbor Airport
402 South 36th Street
Phoenix, Arizona 85034
ATTN: Mr. Aldo L. Romainin, Mgr.
Aircraft Propulsion Engine
Product Line
86. General Dynamics
Electro Dynamic Division
P.O. Box 2507
Pomona, California 91766
ATTN: Library MZ 620
87. General Dynamics
P.O. Box 748
Fort Worth, Texas 76101
ATTN: Technical Library MZ 2246
88. General Electric Company
AEG Technical Information Center
Mail Drop N-32, Building 700
Cincinnati, Ohio 45215
ATTN: J.J. Brady
89. General Electric Company
SPO-Bldg, 174AC
1000 Western Avenue
West Lynn, Massachusetts 01910
ATTN: Mr. W. Bruce Gist
90. General Electric Space Sciences Lab
Valley Forge Space Technology Center
Room M-9144
Philadelphia, Pennsylvania 19101
ATTN: Dr. Theodore Bauer
91. General Motors Corporation
Detroit Diesel Allison Division
P.O. Box 894
Indianapolis, Indiana 46206
ATTN: Mr. P.C. Tram
92. General Motors Technical Center
Passenger Car Turbine Development
General Motors Engineering Staff
Warren, Michigan 48090
ATTN: T.F. Magey, Director
93. Grumman Aerospace Corporation
Manager Space Vehicle Development
Bethpage, New York 11714
ATTN: Mr. O.S. Williams
94. Mr. Daniel L. Harshman
11131 Embassy Drive
Cincinnati, Ohio 45241
95. Hercules Incorporated
Allegany Ballistics Laboratory
P.O. Box 210
Cumberland, Maryland 21502
ATTN: Mrs. Louise S. Derrick
Librarian
96. Hercules Incorporated
P.O. Box 98
Magna, Utah 84044
ATTN: Library 100-H

97. LTV Vought Aeronautics Company
Flight Technology, Project Engineer
P.O. Box 5907
Dallas, Texas 75222
ATTN: Mr. James C. Utterback
98. Lockheed Aircraft Corporation
Lockheed Missiles and Space Company
Huntsville, Alabama 35804
ATTN: John M. Banfield
Supervisor Propulsion
99. Lockheed-Georgia Company
Dept. 72-47, Zone 259
Marietta, Georgia 30060
ATTN: William A. French
100. Lockheed Missiles and Space Company
251 Hanover Street
Palo Alto, California 94304
ATTN: Palo Alto Library 52-52
101. Lockheed Propulsion Company
Scientific and Technical Library
P.O. Box 111
Redlands, California 92373
ATTN: Head Librarian
102. Los Alamos Scientific Laboratory
P.O. Box 1663
Los Alamos, New Mexico 87544
ATTN: J. Arthur Freed
103. The Marquardt Company
CCI Aerospace Corporation
16555 Saticoy Street
Van Nuys, California 91409
ATTN: Library
104. Martin-Marietta Corporation
P.O. Box 179
Denver, Colorado 80201
ATTN: Research Library 6617
105. Martin-Marietta Corporation
Orlando Division
P.O. Box 5837
Orlando, Florida 32805
ATTN: Engineering Library, mp-30
106. McDonnell Aircraft Company
P.O. Box 516
St. Louis, Missouri 63166
ATTN: Research & Engineering Library
Dept. 218 - Bldg. 101
107. McDonnell Douglas Corporation
Project Propulsion Engineer
Dept. 243, Bldg. 66, Level 25
P.O. Box 516
St. Louis, Missouri 63166
ATTN: Mr. William C. Patterson
108. McDonnell Douglas Astronautics Company
5301 Bolsa Avenue
Huntington Beach, California 92647
ATTN: A3-328 Technical Library
109. Nielsen Engineering and Research, Inc.
510 Clyde Avenue
Mountain View, California 94040
ATTN: Dr. Jack N. Nielsen
110. Northrop Corporation
Ventura Division
1515 Rancho Conejo Boulevard
Newbury Park, California 91230
ATTN: Technical Information Center
111. Mr. J. Richard Perrin
16261 Darcia Avenue
Encino, California 91316
112. Philco-Ford Corporation
Aeronutronic Division
Ford Road
Newport Beach, California 92663
ATTN: Technical Information Center
113. Pratt and Whitney Aircraft
Project Engineer, Advanced
Military System
Engineering Department - 2B
East Hartford, Connecticut 06108
ATTN: Mr. Donald S. Rudolph
114. Pratt and Whitney Aircraft Division
United Aircraft Company
400 South Main Street
East Hartford, Connecticut 06108
ATTN: Mr. Dana B. Waring
Manager-Product Technology
115. Pratt and Whitney Aircraft
Program Manager, Advanced
Military Engineer
Engineering Department - 2B
East Hartford, Connecticut 06108
ATTN: Dr. Robert I. Strong
116. Pratt and Whitney Aircraft
Florida Research and Development Company
P.O. Box 2691
West Palm Beach, Florida 33402
ATTN: Mr. William R. Alley
Chief of Applied Research
117. Rocketdyne Division
North American Rockwell
6633 Canoga Avenue
Canoga Park, California 91304
ATTN: Technical Information Center
D 596-108
118. Rocketdyne Division
North American Rockwell
6633 Canoga Avenue
Canoga Park, California 91304
ATTN: Thomas A. Groudie
119. Sandia Laboratories
P.O. Box 969
Livermore, California 94550
ATTN: Dr. Dan Hartley, Div. 8115
120. Sandia Laboratories
Livermore, California 94550
ATTN: Robert Gallagher
121. Sandia Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87115
ATTN: Technical Library, 3141
122. Solar
2200 Pacific Highway
San Diego, California 92112
ATTN: Librarian
123. Standard Oil Company (Indiana)
P.O. Box 400
Naperville, Illinois 60540
ATTN: R. E. Pritz
124. Stauffer Chemical Company
Richmond, California 94802
ATTN: Dr. J. H. Morgenthaler
125. Teledyne CAE
1330 Laskey Road
Toledo, Ohio 43601
ATTN: Technical Library
126. TRW Systems Group
One Space Park
Redondo Beach, California 90278
ATTN: Mr. F.E. Fendell (R1/1004)
127. TRW Systems Group
One Space Park
Bldg. 0-J Room 2080
Redondo Beach, California 90278
ATTN: Mr. Donald H. Lee Manager
128. United Technologies Research Center
East Hartford, Connecticut 06108
ATTN: Librarian
129. Valley Forge Space Technology Center
P.O. Box 8555
Philadelphia, Pennsylvania 19101
ATTN: Dr. Bert Zauderer
130. Vought Missiles and Space Company
P.O. Box 6267
Dallas, Texas 75222
ATTN: Library - 3-41000

U.S. COLLEGES AND UNIVERSITIES

131. Boston College
Department of Chemistry
Chestnut Hill, Massachusetts 02167
ATTN: Rev. Donald MacLean, S.J.
Associate Professor
132. Brown University
Division of Engineering
Box D
Providence, Rhode Island 02912
ATTN: Dr. R. A. Dobbins
133. California Institute of Technology
Department of Chemical Engineering
Pasadena, California 91109
ATTN: Professor W. H. Corcoran
134. California Institute of Technology
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103
ATTN: Library
135. University of California, San Diego
Dept. of Engineering Physics
P.O. Box 109
La Jolla, California 92037
ATTN: Professor S.S. Penner
136. University of California
School of Engineering and
Applied Science
7513 Boelter Hall
Los Angeles, California 90024
ATTN: Engineering Reports Group
137. University of California
Lawrence Radiation Laboratory
P.O. Box 808
Livermore, California 94550
ATTN: Technical Information Dept. L-3
138. University of California
General Library
Berkeley, California 94720
ATTN: Documents Department
139. Case Western Reserve University
10900 Euclid Avenue
Cleveland, Ohio 44106
ATTN: Sears Library - Reports
Department
140. Case Western Reserve University
Division of Fluid Thermal and
Aerospace Sciences
Cleveland, Ohio 44106
ATTN: Professor Eli Reshotko
141. Colorado State University
Engineering Research Center
Fort Collins, Colorado 80521
ATTN: Mr. V. A. Sandborn
142. The University of Connecticut
Department of Mechanical Engineering
U-139
Storrs, Connecticut 06268
ATTN: Professor E. K. Dabora
143. Cooper Union
School of Engineering and Science
Cooper Square
New York, New York 10003
ATTN: Dr. Wallace Chintz
Associate Professor of ME
144. Cornell University
Department of Chemistry
Ithaca, New York 14850
ATTN: Professor Simon H. Bauer
145. Franklin Institute Research Laboratories
Philadelphia, Pennsylvania 19103
ATTN: Dr. G.P. Wachtell
146. George Washington University
Washington, D.C. 20052
ATTN: Dr. Robert Gouillard
Dept. of Civil, Mechanical and
Environmental Engineering
147. George Washington University Library
Washington, D.C. 20006
ATTN: Reports Section
148. Georgia Institute of Technology
Atlanta, Georgia 30332
ATTN: Price Gilbert Memorial Library
149. Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, Georgia 30332
ATTN: Dr. Ben T. Zinn
150. University of Illinois
Department of Energy Engineering
Box 4348
Chicago, Illinois 60680
ATTN: Professor Paul H. Chung
151. University of Illinois
College of Engineering
Department of Energy Engineering
Chicago, Illinois 60680
ATTN: Dr. D. S. Hacker
152. The Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20810
ATTN: Chemical Propulsion
Information Agency
153. The Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20810
ATTN: Document Librarian
154. The Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20810
ATTN: Dr. A. A. Westenberg
155. University of Kentucky
Department of Mechanical Engineering
Lexington, Kentucky 40506
ATTN: Dr. Robert E. Peck
156. Massachusetts Institute of Technology
Department of Chemical Engineering
Cambridge, Massachusetts 02139
ATTN: Dr. Jack B. Howard
157. Massachusetts Institute of Technology
Libraries, Room 14 E-210
Cambridge, Massachusetts 02139
ATTN: Technical Reports
158. Massachusetts Institute of Technology
Room 10-408
Cambridge, Massachusetts 02139
ATTN: Engineering Technical Reports

- FOREIGN INSTITUTIONS
159. Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Room 3-350
Cambridge, Massachusetts 02139
ATTN: Dr. M. Cardillo
160. Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Room 3-246
Cambridge, Massachusetts 02139
ATTN: Professor James Fay
161. Midwest Research Institute
425 Volker Boulevard
Kansas City, Missouri 64100
ATTN: Dr. T. A. Milne
162. New Mexico State University
Dept. of Mechanical Engineering
Box 3450
Las Cruces, New Mexico 88003
ATTN: Dr. Dennis M. Zallen
163. New York Institute of Technology
Wheatley Road
Old Westbury, New York 11568
ATTN: Dr. Fox
164. University of North Carolina
Periodicals and Serials Division
Drawer 870 Library
Chapel Hill, North Carolina 27514
ATTN: Mr. Stephen Berk
165. University of Notre Dame
Serials Record
Memorial Library
Notre Dame, Indiana 46556
ATTN: Dr. Stuart T. McComas
Assistant Dean for Research
and Special Projects
166. University of Notre Dame
College of Engineering
Notre Dame, Indiana 46556
ATTN: Dr. Robert S. Brodkey
167. Ohio State University
Dept. of Chemical Engineering
140 West 19th Avenue
Columbus, Ohio 43210
ATTN: Dr. Richard H. Austin
168. The Pennsylvania State University
Room 207, Old Main Building
University Park, Pennsylvania 16802
ATTN: Office of Vice President
for Research
169. Princeton University
Dept. of Aerospace and Mechanical
Sciences
James Forrestal Campus
Princeton, New Jersey 08540
ATTN: Dr. Martin Summerfield
170. Princeton University
James Forrestal Campus Library
P.O. Box 7100
Princeton, New Jersey 08540
ATTN: V. N. Simosko, Librarian
171. Rice University
Welch Professor of Chemistry
Houston, Texas 77001
ATTN: Dr. Joseph L. Franklin
172. University of Rochester
Dept. of Chemical Engineering
Rochester, New York 14627
ATTN: Dr. John R. Ferron
173. Stanford University
Dept. of Aeronautics and Astronautics
Stanford, California 94305
ATTN: Dr. Walter G. Vincenti
174. State University of New York - Buffalo
Dept. of Mechanical Engineering
228 Parker Engineering Building
Buffalo, New York 14214
ATTN: Dr. George Rudinger
175. Stevens Institute of Technology
Castile Point Station
Hoboken, New Jersey 07030
ATTN: Professor Fred Sisto
176. University of Virginia
Department of Aerospace Engineering
School of Engineering and Applied Science
Charlottesville, Virginia 22901
ATTN: Dr. John E. Scott
177. University of Virginia
Science/Techology Information Center
Charlottesville, Virginia 22901
ATTN: Dr. Richard H. Austin
178. Yale University
Mason Laboratory
9 Hillhouse Avenue
New Haven, Connecticut 06520
ATTN: Professor Peter P. Wegener
179. A/S Kongsberg Vaapenfabrikk
Gas Turbine Division
3601 Kongsberg, NORWAY
ATTN: R.E. Stanley
Senior Aerodynamicist
180. Conservatoire National des Arts
et Metiers
292, Rue Saint Martin
75141 Paris Cedex 03, FRANCE
ATTN: Professor J. Gossee
Chaire de Thermique
181. DFVLR-Forschungszentrum Gottingen
Institut Fur Stromungsmechanik
Abteilung Theoretische Gasodynamik
D-3400 Gottingen
Bunsenstrabe 10, GERMANY
ATTN: Professor Klaus Oswatitsch
182. Ecole Royale Militaire
30 Avenue de la Renaissance
Bruxelles B-1040, BELGIUM
ATTN: Professor Emile Tits
183. Fysisch Laboratorium
Rijksuniversiteit Utrecht
Sorbonnelaan, Utrecht,
THE NETHERLANDS
ATTN: Dr. F. Van der Valk
184. Imperial College
Department of Chemical Engineering
Exhibition Road
London SW7, ENGLAND
ATTN: Professor F. J. Weinberg
185. Imperial College of Science
and Technology
Department of Mechanical Engineering
Exhibition Road
London SW7, ENGLAND
ATTN: Professor Gaydon
186. Imperial College of Science
and Technology
Department of Mechanical Engineering
Exhibition Road
London SW7, ENGLAND
ATTN: D. E. Spalding
- 187/1 Laboratoire de Mecanique des Fluides
36, Route de Dardilly, 36
B.P. No. 17
69130 Ecully, FRANCE
ATTN: G. Assassa

- 187/2 Laboratoire de Mecanique des Fluides
Ecole Centrale Lyonnaise
36, Route de Dardilly
69130 Ecully, FRANCE
ATTN: Dr. K. Papiliou
188. Ministry of Defense
Main Building, Room 2165
Whitehall Gardens
London SW1, ENGLAND
ATTN: Mr. L.D. Nicholson ED, idc
Vice Controller of Aircraft
Procurement Executive
189. Mitglied des Vorstands der Fried
Krump GmbH
43 Essen, Altendorferstrasse 103
GERMANY
ATTN: Professor Dr.-Ing.
Wilhelm Dettmering
190. National Aerospace (NLR)
Voorsterweg 31
Noord-Oost-Polder-Erasmus
THE NETHERLANDS
ATTN: Mr. F. Jaarsma
191. National Research Council
Montreal Road, Ottawa
Ontario, CANADA K1A 0R6
ATTN: Dr. R.B. Whyte
192. Nissan Motor Co., LTD.
3-5-1, Monoi, Suginami-Ku
Tokyo, JAPAN 167
ATTN: Dr. Y. Toda
193. Norwegian Defense Research Establishment
Superintendent NDRE
P.O. Box 25
2007 Kjeller, NORWAY
ATTN: Mr. T. Krog
194. ONERA
Energie and Propulsion
29 Avenue de la Division Leclure
92 Chatillon sous Bagnex, FRANCE
ATTN: Mr. M. Barrere
195. ONERA
Energie and Propulsion
29 Avenue de la Division Leclure
92 Chatillon sous Bagnex, FRANCE
ATTN: Mr. J. Fabri
196. ONERA
Energie and Propulsion
29 Avenue de la Division Leclure
92 Chatillon sous Bagnex, FRANCE
ATTN: Mr. Viaud
197. ONERA-DED
External Relations and Documentation
Department
29, Avenue de la Division Leclure
92320 Chatillon, sous Bagnex, FRANCE
ATTN: Mr. M. Salmon
198. Orta Dogu Teknik Universities
Mechanical Engineering Department
Ankara, TURKEY
ATTN: Professor H. Sezgen
199. Queen Mary College
Department of Mechanical Engineering
Thiele Eld Rood
London E1, ENGLAND
ATTN: Professor M. W. Thring
200. Rolls-Royce (1971) Limited
Derby Engine Division
P.O. Box 31
Derby DE2 8BJ
London, ENGLAND
ATTN: C. Freeman, Installation
Research Department
201. Rome University
Via Bradano 28
00199 Rome, ITALY
ATTN: Professor Gaetano Salvatore
202. Sener
Departamento de Investigation
Km. 22.500 de la antigua carretera
Madrid - Barcelona, SPAIN
ATTN: Mr. J. T. Diez Roche
203. Service Technique Aeronautique Moteurs
4 Avenue de la Parte d'Issy
75753 Paris Cedex 15, FRANCE
ATTN: Mr. M. Pianko, Ing. en chef
204. The University of Sheffield
Dept. of Chemical Engineering
and Fuel Technology
Mappin Street, Sheffield S1 3JD
ENGLAND
ATTN: Dr. Norman Chiger
205. Sophia University
Science and Engineering Faculty
Kioi 7 Tokyo-chiyoda JAPAN 102
ATTN: Professor M. Susuki
206. The University of Sydney
Dept. of Mechanical Engineering
N.S.W. 2006
Sydney, AUSTRALIA
ATTN: Professor R. W. Bilger
207. Technical University of Denmark
Fluid Mechanics Department
Building 404 2800 Lyngby
DK-DENMARK
ATTN: Professor K. Refslund
208. University of Leeds
Leeds, ENGLAND
ATTN: Professor Dixon-Lewis
209. Universite de Poitiers Laboratoire
D'energetique et de Detonique
(L.A. au C.N.R.S. No. 193)
ENSMA - 86034 Poitiers, FRANCE
ATTN: Professor N. Manson
210. University of Tokyo
Department of Reaction Chemistry
Faculty of Engineering
Bunkyo-ku
Tokyo, JAPAN 113
ATTN: Professor T. Hikita
211. Vrije Universiteit Brussel
Fac. Toeg. Wetensch.,
A. Buyllaan 105
1050 Brussels, BELGIUM
ATTN: Ch. Hirsch
212. AeroChem Research Laboratory, Inc.
Reaction Kinetics Group
P.O. Box 12
Princeton, New Jersey 08540
ATTN: Dr. Arthur Fontijn
213. Aeronautical Research Associates of
Princeton, Inc.
P.O. Box 2229
50 Washington Road
Princeton, New Jersey 08540
ATTN: Dr. Ashok K. Varma
214. California Institute of Technology
Div. of Engineering and
Applied Science
Mail Stop 205-50
Pasadena, California 91109
ATTN: Dr. Anatol Roshko
215. Case Western Reserve University
Div. of Fluid, Thermal and Aerospace
Sciences
Cleveland, Ohio 44106
ATTN: Dr. J.S. Tien

216. Colorado State University
Engineering Research Center
Foothills Campus
Fort Collins, Colorado 80521
ATTN: Dr. Willy Z. Sadeh
217. General Electric Company
Corporate Research and Development
P.O. Box 8
Schenectady, New York 12301
ATTN: Dr. Marshall Lapp
218. Massachusetts Institute of Technology
Chemistry Department, Room 6-123
77 Massachusetts Avenue
Cambridge, Massachusetts 02139
ATTN: Dr. John Ross
219. Michigan State University
Department of Mechanical Engineering
East Lansing, Michigan 48824
ATTN: Dr. John Foss
220. Pennsylvania State University
Applied Research Laboratory
University Park, Pennsylvania 16802
ATTN: Dr. Edgar P. Bruce
221. Polytechnic Institute of New York
Department of Aerospace Engineering
and Applied Mechanics
Farmingdale, New York 11735
ATTN: Dr. Samuel Lederman
222. Southern Methodist University
Thermal and Fluid Sciences Center
Institute of Technology
Dallas, Texas 75225
ATTN: Dr. Roger L. Simpson
223. Stanford University
Mechanical Engineering Department
Stanford, California 94305
ATTN: Dr. James P. Johnston
224. Stanford University
Mechanical Engineering Department
Stanford, California 94305
ATTN: Dr. S. J. Kline
225. Stanford University
Mechanical Engineering Department
Stanford, California 94305
ATTN: Dr. Sidney Self
226. TRW Systems
Engineering Sciences Laboratory
One Space Park
Redondo Beach, California 90278
ATTN: Dr. J. E. Broadwell
227. United Technologies Research Center
400 Main Street
East Hartford, Connecticut 06108
ATTN: Mr. Franklin O. Carta
228. United Technologies Research Center
400 Main Street
East Hartford, Connecticut 06108
ATTN: Dr. Alan C. Eckbreth
229. University of California - San Diego
Department of Aerospace and
Mechanical Engineering
La Jolla, California 92037
ATTN: Dr. Paul Libby
230. University of Colorado
Department of Aerospace
Engineering Sciences
Boulder, Colorado 80304
ATTN: Dr. Mahinder S. Uberoi
231. University of Michigan
Department of Aerospace Engineering
Ann Arbor, Michigan 48105
ATTN: Dr. T. C. Adamson, Jr.
232. University of Michigan
Department of Aerospace Engineering
Ann Arbor, Michigan 48105
ATTN: Dr. Martin Sichel
233. University of Missouri - Columbia
Department of Chemistry
Columbia, Missouri 65201
ATTN: Dr. Anthony Dean
234. University of Southern California
Department of Aerospace Engineering
University Park
Los Angeles, California 90007
ATTN: Dr. F. K. Browand
235. University of Washington
Department of Mechanical Engineering
Seattle, Washington 98195
ATTN: Dr. F.B. Gessner
236. Virginia Polytechnic Institute and
State University
Mechanical Engineering Department
Blacksburg, Virginia 24601
ATTN: Dr. Walter F. O'Brien, Jr.
237. Virginia Polytechnic Institute and
State University
Mechanical Engineering Department
Blacksburg, Virginia 24061
ATTN: Dr. Hal L. Moses
238. Yale University
Engineering and Applied Science
Mason Laboratory
New Haven, Connecticut 06520
ATTN: Dr. John B. Fenn
239. School of Aeronautics and Astronautics
Grissom Hall
West Lafayette, Indiana 47907
ATTN: Library
240. School of Mechanical Engineering
Mechanical Engineering Building
West Lafayette, Indiana 47907
ATTN: Library
- 241-250. Purdue University Advisors

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

→ turbulent fluid is moving faster than the external stream these edges are on the upstream end of the zones. The interfaces as given by the velocity and concentration cannot be distinguished and are found to be relatively thicker than previously measured temperature interfaces.