Both active-high x and activelow y* are asserted. Which one below is true?

$$x=1, y*=0$$

B.
$$x=0, y*=1$$

C.
$$x=1, y*=1$$

D.
$$x=0, y*=0$$

Both active-high x and activelow y* are negated. Which one below is true?

A.
$$x=1, y*=0$$

$$B'$$
. $x=0$, $y*=1$

C.
$$x=1, y*=1$$

D.
$$x=0, y^*=0$$

Example 1: all signals active high

$$F = A' B (C+D)$$

F is <u>asserted</u> iff

- A is asserted / negated), and
- B is asserted negated, and
- either C or D is (asserted) negated

Example 2: all signals active low

Example 3: mixed signals

- A* is (asserted) negated , and
- B is asserted / negated), and
- either C is asserted / negated or D* is
 asserted / negated

B=0

Example 4: mixed signals

- C is asserted/negated, and C= 0

Enable input EN: active high or active low?

Enable input EN: active high or active low?

Inputs A, B, C*, D* and output F.

F is only asserted when either A or C* is asserted (but not both), <u>and</u> either B or D* is negated (but not both).

F(A,B,C*,D*)=

A.
$$\sum m(0, 2, 8, 12)$$

B.
$$\sum m(0, 5, 10, 15)$$

C.
$$\sum m(0, 6, 12, 15)$$

A asserted

or

C*
asserted
but not both

and

B negated

or

D* negated

but not both

A	В	C*	D*	F	
0	0	0	0		m0
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		m5
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		m10
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		m15

How many parallel paths and serial paths are formed by the resistors?

- A. 2 parallel, 1 serial
- B. 3 parallel, 2 serial
- C. 3 parallel, 1 serial

For a logic output to go high, current must flow from:

- A. Vcc to Gnd
- B. Vcc to output
- C. Output to Gnd
- D. Output to Vcc

Which circuit does it implement?

For Z=0
Both Q3 & Q1 must be
ON, or
Both Q5 and Q7 must be
ON
Q2,Q4,Q6,Q8 must be OFF
i.e. A=B=1, or C=D=1

For Z=1
Q2 or Q4 must be ON, and
Q6 or Q8 must be ON
Q1,Q3,Q5,Q7 must be OFF
i.e. A=0 or B=0, and
C=0 or D=0

For Z=0

Both Q3 & Q1 must be ON, or Both Q5 and Q7 must be ON

i.e. A=B=1, or C=D=1

For Z=1

Q2 or Q4 must be ON, and Q6 or Q8 must be ON

i.e. A=0 or B=0, and

C=0 or D=0

Which circuit does it implement?

(A)

(B)

(C)

(D)

When A=B=1, Q2 and Q4 OFF, Q1 and Q3 ON Z=0 Similarly when C=D=1, Q6 and Q8 OFF, Q5 and Q7 ON Z=0

$$Z = (AB + CD)$$

Which circuit does it implement?

A.
$$Z = (A+B)' (C+D)'$$

B.
$$Z = (A'+B')(C'+D')$$

$$C.Z = (AB + CD)$$

For Z=1
Both Q2 & Q4 must be ON, or
Both Q6 and Q8 must be ON
ON
Q1,Q3,Q5,Q7 must be OFF
i.e. A=B=0, or C=D=0

For Z=0 Q1 or Q3 must be ON, and Q5 or Q7 must be ON Q2,Q4,Q6,Q8 must be OFF i.e. A=1 or B=1, and C=1 or D=1

For Z=1

Both Q2 & Q4 must be ON, or Both Q6 and Q8 must be ON

i.e. A=B=0, or C=D=0

For Z=0 Q1 or Q3 must be ON, and Q5 or Q7 must be ON i.e. A=1 or B=1, and

C=1 or D=1

Which circuit does it implement?

$$(A) Z = (A+B)' (C+D)'$$

(B)
$$Z = (A'+B')(C'+D')$$

$$(C) Z = (AB + CD)$$

(D)
$$Z = [(A+B) (C+D)]$$

Fig. 3-22 Wakerly

When A=B=0, Q2 and Q4 ON, Q1 and Q3 OFF Z=1 Similarly when C=D=0, Q6 and Q8 ON, Q5 and Q7 OFF Z=1

$$Z = [(A+B) (C+D)]'$$