

Computer Vision

(Summer Semester 2020)

Lecture 5, Part 4

Cameras and Optics (Pinhole Cameras)

Cameras and Optics

- Pinhole Camera Model
- Perspective Projection
- Intrinsic and Extrinsic Camera Parameters

 Note: The core of these slides stems from the class CSCI 1430: "Introduction to Computer Vision" by James Tompkin, Fall 2017, Brown University.

What is a camera?

Camera obscura: dark room

 Known during classical period in China and Greece (e.g., Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

Camera lucida

drawingchamber.wordpress.com

Tim's Vermeer

Johannes Vermeer, The Music Lesson, 1665

Tim Jenison (Lightwave 3D, Video Toaster)

Tim's Vermeer -- Video Still

First Photograph

Oldest surviving photograph Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

Point of observation

Lake Sørvágsvatn in Faroe Islands

optical tricks/illusions via $3D \rightarrow 2D$

100 meters above sea level

Lake Sørvágsvatn in Faroe Islands

optical tricks/illusions via 3D → 2D

100 30 meters above sea level

amusingplanet.com, thanks to Aaron Gokaslan

optical tricks/illusions via $3D \rightarrow 2D$

optical tricks/illusions via $3D \rightarrow 2D$

Holbein's The Ambassadors - 1533

optical tricks/illusions via 3D → 2D

Holbein's The Ambassadors - Memento Mori

optical tricks/illusions via $3D \rightarrow 2D$

Cameras and World Geometry

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

https://www.youtube.com/wat ch?v=IgBQCoEfiMs

- Feature Matching
- 2. Registration
- Camera Calibration

Let's design a camera

Idea 1: Put a sensor in front of an object Do we get a reasonable image? → multiple features get mapped to same points on the sensor

Let's design a camera

Idea 2: Add a barrier to block most rays

- Pinhole in barrier
- Only sense light from one direction.
 - Reduces blurring.
- In most cameras, this aperture can vary in size.

Pinhole camera model

Real object

f = Focal length

C = Optical center of the camera

Projection: world coordinates → **image coordinates**

p = distance from image center

What is the effect if f and Z are equal?