lme4 extras

Ben Bolker

May 26, 2012

Contents

1	To do	1
2	Fit basic models	2
3	Quadratic confidence intervals on random effects parameters	2
4	Approximate confidence intervals on predictions	4
5	Poor man's MCMC	4
6	Confidence intervals on predictions etc. via parametric bootstrap 10	
	Zero-inflation via the EM algorithm This vignette is intended to document some extra tricks that can be us	
with lme4 models. Some of them are included here because they are statistically		
non-rigorous and we didn't want to build them into automatic functions that		
could be applied unthinkingly, but recipes are supplied here for use at your		
own risk and assuming that you know what you're doing		

1 To do

In principle, we should be able to get confidence intervals on parameters and confidence intervals on predictions via (1) quadratic/Wald approximation (ignoring uncertainty of θ , and possibly of u, for CIs of prediction); (2) cheesy MCMC (in this case, for LMMs, we need a way to retrieve new values of sigma and the fixed effects conditional on θ); (3) parametric bootstrap.

The basic machinery for this is (1) functions for converting among parameterizations of the random effects, i.e. from a (standard deviation, correlation) vectors to θ (concatenated Cholesky-factor vector); (2) a way to extract a deviance function from a fit (i.e. mkdevfun) and (3) a way to simulate values from a fit (i.e. simulate), along with basic components (matrix inversion, etc.).

We'll see how far I get.

2 Fit basic models

In this section we simply fit a few basic models to use as examples later on.

3 Quadratic confidence intervals on random effects parameters

Extract the deviance function and the ML (or REML) parameters:

```
fm1Fun <- update(fm1,devFunOnly=TRUE)
fm1_thpar <- getME(fm1,"theta")</pre>
```

Extract internal functions for converting (standard deviation, correlation) vectors to θ (concatenated Cholesky-factor) parameterization, and vice versa (this is temporary, until we finalize the definitions/names of these functions...)

```
Sv_to_Cv <- lme4:::Sv_to_Cv ## standard dev vector to cholesky
vector
Cv_to_Sv <- lme4:::Cv_to_Sv ## vice versa</pre>
```

Test the round-trip of these functions: does converting from standard deviation scale to Cholesky scale, and back, work?

```
fm1_spar <- Cv_to_Sv(fm1_thpar,s=sigma(fm1))
all(abs(Sv_to_Cv(fm1_spar,s=fm1_spar[4])-fm1_thpar)<1e-6)
## [1] TRUE</pre>
```

A wrapper around the deviance function that we extracted.

```
fm1FunS <- function(spar) {
   thpar <- Sv_to_Cv(c(spar,NA),s=fm1_spar[4])
   fm1Fun(thpar)
}</pre>
```

Use the numDeriv package to compute the Hessian (second derivative) matrix at the MLE:

```
library(numDeriv)
h <- hessian(fm1FunS,fm1_spar[-4])</pre>
```

Variance-covariance matrix of the random-effects (standard deviation) parameters:

```
vcov_ran <- solve(h)
```

Compare profiles to their quadratic approximations, and profile confidence intervals to these approximate (Wald) confidence intervals:

pp <- profile(fm1)</pre>

FIXME: These slopes are not quite right. Why? (Are the profiles correct?) Should we be recomputing σ for each set of θ values? Think about this sometime when I have a brain ...

Profile confidence intervals:

```
(ci_prof <- confint(pp))</pre>
##
                   2.5 % 97.5 %
## .sig01
                 14.3815
                          37.716
## .sig02
                 -0.4815
                           0.685
## .sig03
                  3.8012
                           8.753
## .sigma
                 22.8983 28.858
## (Intercept) 237.6807 265.130
## Days
                  7.3587
                          13.576
```

Wald confidence intervals:

```
c(fm1_spar,fixef(fm1))+
    1.96*outer(c(sqrt(diag(vcov_ran)),
                 sqrt(diag(as.matrix(vcov(fm1))))),
               c(-1,1)
                   [,1]
                            [,2]
##
##
                16.2243 33.257
                -0.3849
##
                         0.516
##
                 4.0969
                          7.747
##
                     NA
                             NA
## (Intercept) 238.0289 264.781
## Days
                 7.4375 13.497
```

4 Approximate confidence intervals on predictions

5 Poor man's MCMC

```
library(MCMCpack)
```

MCMCpack expects a function that gives a value proportional to the log posterior density for any specified set of parameters. We can get lme4 to give us a function for the deviance (by using devFunOnly=TRUE. If we assume all-improper priors (i.e. flat on the scale on which we have defined the parameters), then the log posterior density is -D/2:

```
fm1_metropfun <- function(x) {
    ## getME(.,"lower")?
    if (any(x<fm1@lower)) -Inf else -fm1Fun(x)/2
}</pre>
```

library(coda)

splom(fm1_mcmc_out)

Scatter Plot Matrix

xyplot(fm1_mcmc_out)

densityplot(fm1_mcmc_out,layout=c(1,3))


```
HPDinterval(fm1_mcmc_out)

## lower upper

## Subject.(Intercept) 0.5646 1.6712

## Subject.Days.(Intercept) -0.1693 0.1903

## Subject.Days 0.1416 0.3966

## attr(,"Probability")

## [1] 0.95
```

FIXME: if we want to get this on the sd/corr scale we have to figure out how to recalculate sigma for each set of θ values ... for now, just use a fixed sigma

Highest posterior density intervals:

```
HPDinterval(sdmat)

## lower upper
## 11 14.4493 42.7685

## 12 -0.5457 0.6567

## 13 4.0532 10.5283

## 25.5918 25.5918

## attr(,"Probability")
## [1] 0.95
```

Or quantile-based estimates:

```
t(apply(sdmat,2,quantile,c(0.025,0.975)))

## 2.5% 97.5%

## 11 15.4823 44.2549

## 12 -0.5194 0.6922

## 13 4.2457 10.8785

## 25.5918 25.5918
```

The latter *should* be translation-invariant, and hence (???) the same as:

(Only true for variable 1, although not terribly different: think about this (i.e. the effect of $\theta\theta^T$) some more ...)

If we have the Cholesky form

$$\left(\begin{array}{cc} c_1 & 0 \\ c_2 & c_3 \end{array}\right)$$

and take the cross-product, we get

$$\left(\begin{array}{cc}
c_1^2 & c_1c_2 \\
c_1c_2 & c_2^2 + c_3^2
\end{array}\right)$$

so it's natural that only element 1 scales as we would expect: all the other terms are not just scale translations of a single element, but combinations of multiple elements.

Should work for GLMMs as well:

```
gm1Fun <- update(gm1,devFunOnly=TRUE)
gm1_par <- c(getME(gm1,"theta"),fixef(gm1))
nt <- length(getME(gm1,"theta"))
gm1_metropfun <- function(x) {
   if (any(x[seq(nt)] < gm1@lower)) return(-Inf)
   r <- try(gm1Fun(x),silent=TRUE)
   if (inherits(r,"try-error")) return(-Inf)
   -r/2
}</pre>
```

FIXME: PIRLS failure, restore when this is fixed

```
set.seed(101)
gm1_mcmc_out <- MCMCmetrop1R(gm1_metropfun,gm1_par)</pre>
```

```
colnames(gm1_mcmc_out) <- names(gm1_par)
xyplot(gm1_mcmc_out[,1:2])</pre>
```


splom(gm1_mcmc_out)

Scatter Plot Matrix

```
HPDinterval(gm1_mcmc_out)

## lower upper
## herd.(Intercept) 0.3505 1.2576
## (Intercept) -2.0225 -0.9204
## period2 -1.6026 -0.3795
## period3 -1.7782 -0.5182
## period4 -2.5010 -0.7952
## attr(,"Probability")
## [1] 0.95
```

6 Confidence intervals on predictions etc. via parametric bootstrap

FIXME: do we want a as.data.frame.boot function to retrieve stuff from bootMer output?

7 Zero-inflation via the EM algorithm

The zipme function, adapted from code by Mihoko Minami and Cleridy Lennert, is available . . . its form is

Where:

cformula the conditional formula, i.e. the glmer formula for the GLMM part of the model

zformula the zero-inflation formula, i.e. the glm formula for the zero-inflation probability. The response variable *must* be specified as ..z

cfamily the family variable for the conditional part of the model

data a data frame

maxitr the maximum number of EM iterations

tol convergence tolerance

verbose print out information on EM iterations?

An example of EM use:

```
set.seed(101)
zprob <- 0.2
nblock <- 20
ntot <- 500
nperblock <- 25
d <-
data.frame(x=runif(ntot),f=factor(rep(1:nblock,each=nperblock)))
u <- rnorm(nblock,sd=0.75)
d$eta <- with(d,1+2*x+u[as.numeric(f)])
d$resp <- ifelse(runif(ntot) < zprob,0,rpois(ntot,exp(d$eta)))</pre>
```

```
zfit1 <- zipme(resp~x+(1|f),..z~1,data=d,verbose=FALSE)</pre>
```

FIXME: suppress non-integer #successes in a binomial glm! warnings ... preferably without suppressing other possible warnings. Will it be possible to adapt this for zero-inflated binomial GLMMs, or will the dual use of weights get in the way?