

Graph definitions and implementation

8/10 вопросов верно

Контрольный опрос успешно пройден!

Continue Course (/learn/advanced-data-structures/lecture/N5krS/introduction)

Back to Week 1 (/learn/advanced-data-structures/home/week/1)

Consider the following adjacency matrix representation of a directed graph (represented as code for nicer formatting):

1 0 0 1 0 1 0 1

0010

0 1 1 1

How many edges are in this graph?

8

Отлично!

Great! The sum of the entries in the matrix represents the number of edges in the graph.

Consider the same adjacency matrix representation of a directed graph (represented as code for nicer formatting):

1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1

How many vertices in this graph have a self-loop, i.e. an edge that starts in a vertex and ends at the same vertex it started at?

Отлично!

4

Great! The 1's on the diagonal represent edges that start in one vertex and go back to the same vertex.

If you have a graph with 5 vertices and 2 edges, how many entries are there in the matrix with an adjacency matrix representation of this graph?

25

Отлично!

Good! There are 5*5 entries, representing each possible edge in the graph. It doesn't matter how many edges there actually are.

Consider the following adjacency list representation of a directed graph:

```
0 -> {}
1 \rightarrow \{2, 3\}
2 -> {1}
3 \rightarrow \{0, 2, 3\}
4 \rightarrow \{0, 1, 3, 4\}
```

How many edges does this graph have?

10

Отлично!

Great! The numbers in the lists on the left represent the edges in the graph.

Consider the following adjacency list representation of a directed graph:

```
0 -> {}
1 \rightarrow \{2, 3\}
2 -> {1}
3 \rightarrow \{0, 2, 3\}
4 \rightarrow \{0, 1, 3, 4\}
```

Which vertex in this graph has the highest in-degree?

3

Отлично!

Great! 3 has three edges coming into it (from 4, 3, and 1).

Consider the following adjacency list representation of a directed graph (note: this graph is slightly different from the graph in the previous two questions):

```
0 -> {}

1 -> {2, 3}

2 -> {1, 3}

3 -> {0, 2, 3}

4 -> {0, 1, 3, 4}
```

What is the degree sequence for this graph? Make sure you put a single space between each number in the sequence. There should be no commas or additional spaces in the sequence.

Hint: make sure you list the degrees in the correct order.

0 2 2 3 4

Извините, но это не то, что мы ожидаем услышать.

Remember that the degree of a node includes both its indegree plus its out-degree. A self-loop will contribute 2 to the degree of the node. The degree sequence needs to be ordered from largest to smallest.

Consider the following adjacency list representation of a directed graph:

```
0 -> {}

1 -> {2, 3}

2 -> {1}

3 -> {0, 2, 3}

4 -> {0, 1, 3, 4}
```

Which of the following pairs of vertices have paths from the first vertex to the second. Select all that apply.

From 0 to 1

Отлично!

Review the lecture Core: Graph Definitions

Hint: remember that a path can have more than one hop.

From 1 to 4		
Отлично! Review the lecture Core: Graph Definitions		
Hint: remember that a path can have more than one hop.		
From 4 to 0		
Отлично! Review the lecture Core: Graph Definitions		
Hint: remember that a path can have more than one hop.		
From 1 to 0		
Извините, это неверно. Review the lecture Core: Graph Definitions		
Hint: remember that a path can have more than one hop.		
From 3 to 4		
Отлично! Review the lecture Core: Graph Definitions		
Hint: remember that a path can have more than one hop.		
✓ 8.		
How many hours did you spend on the programming assignment this week?		
O Less than 1		
O 1-2		
O 2-3		

0	4-5 More than 5	
9. How difficult did you find the programming assignment?		
0	Very easy Pretty easy	
0 0	Neither easy nor difficult Pretty difficult Very difficult	
✓ 10.How much did you enjoy the programming assignment?O I really enjoyed it!		
0 0 0	I enjoyed it. I'm neutral about my enjoyment I did not enjoy it. I really did not enjoy it!	

