,	/ 0	$t_{A,Cr}e^{i(k_1-k_2)}$	$t_{ACr}e^{ik_1}$	0	0	0	0	0	0	0	0	0	0	0	0
	$t_{A,Cr}e^{i(-k_1+k_2)}$	0	$t_{A,Cr}e^{ik_2}$	0	0	0	0	0	0	0	0	0	0	0	0
	$t_{A,Cr}e^{-ik_1}$	$t_{A,Cr}e^{-ik_2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	$t_{in,Cr}e^{-ik_2}$	$t_{in,Cr}e^{-ik_2}$	$t_{z,Cr}e^{-ik_3}$	$t_{out,Cr}e^{-i(k_2+k_3)}$	$t_{out,Cr}e^{-i(k_2+k_3)}$	0	0	0	0	0	0
	0	0	0	$t_{in,Cr}e^{ik_2}$	0	t. a	$t_{out} c_r e^{i(\kappa_2 - \kappa_3)}$	$t_{rCr}e^{-i\kappa_3}$	$t_{out} c_r e^{-i\kappa_3}$	0	0	0	0	0	0
	0	0	0	$t_{i} = c_{i} e^{ik_2}$	$t_{in,Cr}$	0	$t_{out,Cr}e^{i(\kappa_2-\kappa_3)}$	$t_{out.Cr}e^{-i\kappa_3}$	$t_{z,Cr}e^{-i\kappa_3}$	0	0	0	0	0	0
	0	0	0	$t \sim c e^{ik_3}$	$t_{max} c_m e^{i(-k_2+k_3)}$	$t_{out,Cr}e^{i(-\kappa_2+\kappa_3)}$	0	$t_{in,Cr}e^{-ik_2}$	$t_{in,Cr}e^{-ik_2}$	0	0	0	0	0	0
$\mathcal{H}_{Cr-Cr} =$	0	0	0	$t = e^{i(\kappa_2 + \kappa_3)}$	$t = c e^{i\kappa_3}$	$t_{out,Cr}e^{i\kappa_3}$	$t_{in,Cr}e^{ik_2}$	0	$t_{in,Cr}$	0	0	0	0	0	0
	0	0	0	$t_{out,Cr}e^{i(k_2+k_3)}$	$t_{out,Cr}e^{ik_3}$	$t_{z,Cr}e^{ik_3}$	$t_{in,Cr}e^{ik_2}$	$t_{in,Cr}$	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	$t_{in,Cr}e^{ik_1}$	$t_{in,Cr}$	$t_{z,Cr}e^{-ik_3}$	$t_{out,Cr}e^{i(k_1-k_3)}$	$t_{out,Cr}e^{-ik_3}$
	0	0	0	0	0	0	0	0	0	$t_{in,Cr}e^{-ik_1}$	0	$t_{in,Cr}e^{-ik_1}$	$t = e^{-i(\kappa_1 + \kappa_3)}$	$t \sim e^{-i\kappa_3}$	$t \sim e^{-i(\kappa_1 + \kappa_3)}$
	0	0	0	0	0	0	0	0	0	$t_{in,Cr}$	$t_{in.Cr}e^{i\kappa_1}$	0	$t_{out,Cr}e^{-i\kappa_3}$	$t_{out,Cr}e^{i(\kappa_1-\kappa_3)}$	$t_{z,Cr}e^{-ik_3}$
	0	0	0	0	0	0	0	0	0	$t_{-C-}e^{ik_3}$	$t_{out,Cr}e^{i(k_1+k_3)}$	$t_{out,Cr}e^{ik_3}$	0	$t_{in,Cr}e^{i\kappa_1}$	$t_{in,Cr}$
	0	0	0	0	0	0	0	0	0	$t_{out,Cr}e^{i(-k_1+k_3)}$	$t_{z,Cr}e^{ik_3}$	$t_{out,Cr}e^{i(-k_1+k_3)}$	$t_{in,Cr}e^{-ik_1}$	0	$t_{in,Cr}e^{-ik_1}$
'	0	0	0	0	0	0	0	0	0	$t_{out,Cr}e^{ik_3}$	$t_{out,Cr}e^{i(k_1+k_3)}$	$t_{z,Cr}e^{ik_3}$	$t_{in,Cr}$	$t_{in,Cr}e^{ik_1}$	0
								(an)							
								$\left(egin{array}{c} c_{R_{+,1}} \\ c_{R_{+,2}} \end{array} ight)$							

$$\psi_{Cr} = \begin{pmatrix} c_{R_{+,1}} \\ c_{R_{+,2}} \\ c_{R_{+,3}} \\ c_{R_{-,1}} \\ c_{R_{-,2}} \\ c_{R_{-,3}} \\ c_{L_{+,1}} \\ c_{L_{+,2}} \\ c_{L_{+,3}} \\ c_{L_{-,1}} \\ c_{L_{-,2}} \\ c_{L_{-,3}} \\ c_{z,1} \\ c_{z,2} \\ c_{z,3} \end{pmatrix}$$

$$\psi_{Fe} = \begin{pmatrix} c_{z_{+,1}} \\ c_{z_{+,2}} \\ c_{z_{+,3}} \\ c_{z_{-,1}} \\ c_{z_{-,2}} \\ c_{z_{-,3}} \\ c_{R_1} \\ c_{R_2} \\ c_{R_3} \\ c_{L_1} \\ c_{L_2} \\ c_{L_3} \\ c_{\pi,1} \\ c_{\pi,2} \\ c_{\pi,3} \end{pmatrix}$$

$$\mathcal{H}_{NM} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \bigotimes \mathcal{H}_{Cr-Cr} + \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \bigotimes \mathcal{H}_{Cr-Fe} + \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \bigotimes \mathcal{H}_{Cr-Fe}^{\dagger} + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \bigotimes \mathcal{H}_{Fe-Fe}^{\dagger}$$