Programming Languages and Computation

Week 8: Reasoning with Derivations

1 Semantic Equivalence

- ** 1. Suppose that $S_1, S_2, S_3 \in S$ are statements. Prove that the statement $\{S_1; S_2\}$; S_3 is semantically equivalent to the statement S_1 ; $\{S_2; S_3\}$. That is, prove that for, any two states $\sigma, \sigma' \in S$ tate, $\{S_1; S_2\}$; $S_3, \sigma \Downarrow \sigma'$ if, and only if, S_1 ; $\{S_2; S_3\}$, $\sigma \Downarrow \sigma'$.
- ** 2. Suppose that e is an arithmetic expression that is semantically equivalent to x. Prove that the statement $x \leftarrow e$ is semantically equivalent to the statement skip.
- ** 3. Suppose that e_1 and e_2 are arithmetic expressions such that $x \notin FV(e_2)$ and $y \notin FV(e_1)$. Prove that the statement $x \leftarrow e_1$; $y \leftarrow e_2$ is semantically equivalent to the statement $y \leftarrow e_2$; $x \leftarrow e_1$. You may use the following result about the denotation of arithmetic expressions:

if
$$\forall x \in FV(e)$$
. $\sigma(x) = \sigma'(x)$ then $[e]_A(\sigma) = [e]_A(\sigma')$

** 4. Prove that the statements if e then S_1 ; S_2 else S_1 ; S_3 and the statement S_1 ; {if e then S_2 else S_3 } are semantically equivalent for any Boolean expression $e \in \mathcal{B}$ and statements $S_1, S_2, S_3 \in \mathcal{S}$.

2 Proving Termination

** 5. Consider the following While program *P*:

$$x \leftarrow y$$
;
while $y + 1 \le x * x do$
 $x \leftarrow x - 1$;

- (a) Calculate the final state when executed in the initial states $[y \mapsto 4]$ and $[y \mapsto 5]$.
- (b) What function does this program compute?
- (c) Prove by induction on $\sigma(x)$ that this program terminates in any state $\sigma \in \mathsf{State}$ where $\sigma(y) \geq 0$. That is, prove that, for any state $\sigma \in \mathsf{State}$ such that $\sigma(y) \geq 0$, there exists a state $\sigma' \in \mathsf{State}$ such that $P, \sigma \downarrow \sigma'$ where P is the above program.

*** 6. Recall the strong induction principle from the previous sheet:

In order to prove $\forall n \in \mathbb{N}$. P(n), prove:

- 1. P(0);
- 2. And, P(n+1) under the assumption that P(m) holds for all $m \le n$.

Using the strong induction principle prove the following program terminates:

while
$$1 \le x$$
 do $x \leftarrow x - 2$

*** 7. The induction principle needn't be restricted to induction over a particular variable but can generalised to induction over an arbitrary function $f: \mathsf{State} \to \mathbb{N}$ of the state. In such a proof, the base case consider any state where $f(\sigma) = 0$ and the inductive case consider any state where $f(\sigma) = n + 1$ under the assumption that the property holds of $f(\sigma) = n$.

Using this principle, prove that the following While program terminates from any state $\sigma \in \mathsf{State}$ where $\sigma(x)$, $\sigma(y) \ge 0$ by induction over $\sigma(x) + \sigma(y)$.

while
$$1 \le x + y$$
 do
if $x \le y$
then $y \leftarrow y - 1$
else $x \leftarrow x - 1$

3 Induction over Derivation

** 8. Recall the program *P* from Question 5:

$$x \leftarrow y;$$

while $y + 1 \le x * x do$
 $x \leftarrow x - 1;$

Prove that, if $P, \sigma \downarrow \sigma'$ for any states $\sigma, \sigma' \in \mathsf{State}$, then $\sigma'(x)^2 \leq \sigma(y)$. You will need to use structural induction over the derivation to handle the loop.

- ** 9. Prove that the program "while true do skip" does *not* terminate by structural induction for any given state $\sigma \in \text{State}$. That is, show that for all $\sigma \in \text{State}$, there does not exist any $\sigma' \in \text{State}$ such that while true do skip, $\sigma \downarrow \sigma'$.
- *** 10. Let us extend the definition of free variables to apply to statements $FV : S \to \mathcal{P}(Var)$ as follows:

$$\begin{array}{rcl} \mathsf{FV}(\mathsf{skip}) &= \emptyset \\ \mathsf{FV}(x \leftarrow e) &= \mathsf{FV}(e) \\ \mathsf{FV}(S_1; \, S_2) &= \mathsf{FV}(S_1) \cup \mathsf{FV}(S_2) \\ \mathsf{FV}(\mathsf{if} \, e \, \mathsf{then} \, S_1 \, \mathsf{else} \, S_2) &= \mathsf{FV}(e_1) \cup \mathsf{FV}(S_1) \cup \mathsf{FV}(S_2) \\ \mathsf{FV}(\mathsf{while} \, e \, \mathsf{do} \, S) &= \mathsf{FV}(e) \cup \mathsf{FV}(S) \end{array}$$

Prove the following statement by structural induction over derivations:

if
$$S$$
, $\sigma \Downarrow \sigma'$ and $x \notin \mathsf{FV}(S)$ then S , $\sigma[x \mapsto n] \Downarrow \sigma'[x \mapsto n]$

You may use the following result about the denotation of arithmetic expressions:

if
$$\forall x \in \mathsf{FV}(e)$$
. $\sigma(x) = \sigma'(x) \Rightarrow \llbracket e \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e \rrbracket_{\mathcal{A}}(\sigma')$

and the equivalent statement about Boolean expressions.