

Basic Statistics in R

Created by Michelle Evans

Presented by Santino Andry & Angelo Andrianiaina

Basic Statistics Topics

- 1. Importing Data *(Importation des données)*
- 2. Data Visualization and Exploration *(Exploration et visualisation des données)*
- 3. Verifying Model Assumptions (Vérification des hypothèses de modèles)
- 4. Conducting Correlations (Analyse de correlations)
- 5. Comparing Data Between Groups *(Comparaison de données entre groupes)*
 - a. Parametric (Paramétrique)
 - b. Non-Parametric (Non-Paramétrique)

Importing Data - Creating an environment for your project

- 1. Using an R Project (Utilisation des Rproject)
- 2. Folder structure *(Structure des dossiers)*
- 3. Using reproducible research documents *(Utilisation des documents reproducible)* (Rmd, quarto)

Create a folder structure

- 1. Scripts: all your .R files go here Tous les fichiers .R sont ici
- 1. Data: All of your data goes here. It is best to make two subdirectories: 'raw' and 'clean'

 Les données sont ici. Le meilleur practique est de créer deux sous-dossiers: 'brut `et `nettoyé`
- Results: Results of your analysis will go here. This includes tables of summary statistics, figures, and results of statistical tests

Les résultats des analyses sont ici. Cela inclut les tableaux des statistiques sommaires, les figures, et les résultats des analyses

Name	∨ Size	Modifi
📵 data	0 items	17:
🔃 results	0 items	17:
scripts	0 items	17:
🕞 .Rproj.user	2 items	17:0
🗟 E2M2.Rproj	205 bytes	17:0

Open a quarto document *(ouvrir un document quarto)*

Basic Statistics Topics

- 1. Importing Data *(Importation des données)*
- 2. Data Visualization and Exploration *(Exploration et visualisation des données)*
- 3. Verifying Model Assumptions (Vérification des hypothèses de modèles)
- 4. Conducting Correlations (Analyse de correlations)
- 5. Comparing Data Between Groups *(Comparaison de données entre groupes)*
 - a. Parametric (Paramétrique)
 - b. Non-Parametric (Non-Paramétrique)

Which dataset has:

- The highest mean?
- The largest standard deviation?
- The strongest correlation?

Quelle base de données a:

- Les moyennes la plus haut?
- Les étart-types le plus large?
- Les coefficients de corrélations le plus fort?

They are all the same! *Ils sont plus les mêmes!*

Summary statistics do not tell us the whole story

Les statistiques sommaires ne dites pas l'histoire complet

Why do we visualize data first?

- Check for missing data and outliers

 Vérifier qu'il n'y a pas des données manquants ou aberrants
- Better understand the distribution of our data *Mieux comprendre la distribution de nos données*
- Explore associations and covariance between variables in the dataset Explorer les liens et covariances entre variables dans la base de données
- Ensure our dataset meets the assumptions of the statistical test we want to perform (e.g. normality)
 - Confirmer que notre base de données correspond aux hypothèse de l'analyse statistique que nous voulons faire

Some methods for data exploration and visualization

- 'Head' and 'summary'
- The skimr package
- Descriptive statistics (mean, mode, frequency)
- Scatter plots and boxplots between two variables
- Histograms and density plots of variable distributions
- Heatplots and scatterplots to investigate covariance between multiple pairs of variables at once

Using the skimr package: skim(data)

Easy way to get a first look at missing data and distributions

Using boxplots to explore differences between groups

```
ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +
   geom_boxplot()
```


Histograms allow us to explore the distributions of variables

```
ggplot(penguins, aes(x= body_mass_g, fill = species, group = species)) +
  geom_histogram() +
  facet_wrap(~species, nrow = 3)
```


Scatterplots are used to explore the relationship between two continuous variables

```
ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g, color = species)) +
  geom_point()
```


Basic Statistics Topics

- 1. Importing Data *(Importation des données)*
- 2. Data Visualization and Exploration *(Exploration et visualisation des données)*
- 3. Verifying Model Assumptions *(Vérification des hypothèses de modèles)*
- 4. Conducting Correlations (Analyse de correlations)
- 5. Comparing Data Between Groups *(Comparaison de données entre groupes)*
 - a. Parametric (Paramétrique)
 - b. Non-Parametric (Non-Paramétrique)

Linearity: The association between two variables is linear *Linéarité: L'association entre deux variables est linéaire*

Linearity: The relation between two variables is linear

Independence : Each observation is independent of all other observations Chaque observation est indépendante des autres

Linearity: The relation between two variables is linear

Independence: Each observation is independent of all other observations

Normality: The distribution of the data must be normal

La distribution des données doit être normal

Linearity: The relation between two variables is linear

Independence: Each observation is independent of all other observations

Normality: The distribution of the data must be normal

Homogeneity of variance: The variance of subsets

or groups of data should be equal

Les variations des groupes de données doivent être égal

How to test each assumption

Assumption	Visualization	Statistical Test
Linearity	Scatterplot	
Independent	None, this assumption depends on how the data was collected	
Normality	Histogram or density plot	Shapiro-Wilk shapiro.test(variable)
Variance Equality	Boxplot by group	Levene's Test car::leveneTest(variable ~ group, data = data)

Basic Statistics Topics

- 1. Importing Data *(Importation des données)*
- 2. Data Visualization and Exploration *(Exploration et visualisation des données)*
- 3. Verifying Model Assumptions *(Vérification des hypothèses de modèles)*
- 4. Conducting Correlations (Analyse de correlations)
- 5. Comparing Data Between Groups *(Comparaison de données entre groupes)*
 - a. Parametric (Paramétrique)
 - b. Non-Parametric (Non-Paramétrique)

What are correlations?

Correlations describe the relationship between two

variables

Les corrélations décrivent les relations entre deux variables

The variables must be continuous (or at least numeric)

Les variables doivent étre continuous (numerique)

Range between -1 (perfectly negatively correlated) and +1

(perfectly positively correlated)

Les valeurs sont entre -1 (correlation negatif parfait) et

+1 (correlation positif parfait)

Can be visualized via scatterplots

Peuvent être visualisé avec des scatterplots

Two most common types of correlations

Pearson's Correlation

Normally-distributed data

Distribution normal

Linear relationship

Association linèare

Both variables numeric

Les deux variables doivent être numériques

"Mean" - based

Basé sur la moyenne

Spearman's Correlation

Does not require normally distributed data

N'exige pas les données avec une distribution normal

Correlation is based on rank, not linear

relationship

La corrélation est basé sur leur ordre, pas une association

linéaire

Both variables numeric

Les deux variables doivent être numériques

"Median"-based

Basé sur la médiane

Correlations are not causal, they only show associations between variables and may be spurious Les corrélations ne sont pas causales, elles montrent seulement des associations entre les variables et peuvent être fallacieuses

Correlations may differ depending on what subset of the data they are done on, known as Simpson's Paradox

Les corrélations peuvent différer en fonction du sous-ensemble de données sur lequel elles sont effectuées, ce qui est connu sous le nom de paradoxe de Simpson

Basic Statistics Topics

- 1. Importing Data *(Importation des données)*
- 2. Data Visualization and Exploration *(Exploration et visualisation des données)*
- 3. Verifying Model Assumptions *(Vérification des hypothèses de modèles)*
- 4. Conducting Correlations (Analyse de correlations)
- 5. Comparing Data Between Groups *(Comparaison de données entre groupes)*
 - a. Parametric (Paramétrique)
 - b. Non-Parametric (Non-Paramétrique)

What are some examples of comparisons between groups?

Demographic groups

Control vs. treatment

Landcover types

How to visualize comparisons between groups?

Look at packages 'ggdist' and 'ggbeeswarm' for more ways to plot distributions!

Choosing a test

Are the groups big enough to be compared, i.e. are they comparable?

Est-ce que mes groups sont assez large pour être comparé?

Is my data parametric or non-parametric?

Mes donnés ont-elles paramétrique ou non-paramétriques?

How many groups do I wish to compare?

Combien de groupes veux-je comparer?

Parametric Data: Use of T-tests

One sample t-Test

Is there a **difference** between a **group** and the **population**

One-sided t-test (very rare in practice)

Two-sided t-test Unpaired t-test

Is there a **difference** in a **group** between **two points in time**

Create a new R Project

File > New Project...

Create a new R Project

Working directory = RProject directory

Create a folder structure

Create three folders

- 1. scripts
- 2. data
- 3. results

Create a folder structure

- 1. Scripts: all your .R files go here Tous les fichiers .R sont ici
- 1. Data: All of your data goes here. It is best to make two subdirectories: 'raw' and 'clean'

 Les données sont ici. Le meilleur practique est de créer deux sous-dossiers: 'brut `et `nettoyé`
- Results: Results of your analysis will go here. This includes tables of summary statistics, figures, and results of statistical tests

Les résultats des analyses sont ici. Cela inclut les tableaux des statistiques sommaires, les figures, et les résultats des analyses

Sort your files into the proper folders

Use the File Manager on your computer to move the files for this lesson into the proper folders:

Utiliser le File Manager sur ton Desktop pour placer les fichiers pour cette leçon dans les dossiers correctes

- All .csv files go into data (tous les fichiers .csv sont les données)
- All .R, .qmd, or .Rmd files go into scripts *(tous les fichiers .R, .qmd, or .Rmd sont des scripts)*

Do you see those files via the file explorer on RStudio? *Voyez-vous ces fichiers dans le file explorer de RStudio?*

Open a quarto document *(ouvrir un document quarto)*

basic-statistics-tutorial.qmd

Source

Common statistical tests are linear models

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
(x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	٠ - ا
: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ -y ₁ differences (Same, but it predicts the <i>signed rank</i> of y ₂ -y ₁ .)	*
regression	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with <i>ranked</i> x and y)	نبعلليسم
Simple r	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	Im(y ~ 1 + G_2) ^A gls(y ~ 1 + G_2), weights= ^B) ^A Im(signed_rank(y) ~ 1 + G_2) ^A	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	j j

All the tests we did today can also be thought of as linear regression models, which we will learn about throughout the week.

Tous les analyses que nous avons fait aujourd'hui sont aussi les modèles linéaires, sur lesquels nous allons apprendre pendant cette semaine

Extra Resources

R for non-programmers: https://bookdown.org/daniel_dauber_io/r4np_book/

Basic Statistics as Linear Models: https://lindeloev.github.io/tests-as-linear/

Collection of easystats packages: https://easystats.github.io/easystats/

Common statistical tests are linear models

Last updated: 02 April, 2019

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
Im(y ~ 1 + x)	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	
	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$\begin{aligned} & Im(y_2 - y_1 \sim 1) \\ & Im(signed_rank(y_2 - y_1) \sim 1) \end{aligned}$	√ f <u>or N >14</u>	One intercept predicts the pairwise $y_z \cdot y_1$ differences. - (Same, but it predicts the <i>signed rank</i> of $y_z \cdot y_1$.)	Z +-
regression:	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y (Same, but with <i>ranked</i> x and y)	نبىللىن
Simple re	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y\sim 1+G_2)^A$ $gls(y\sim 1+G_2, weights=^B)^A$ $Im(signed_rank(y)\sim 1+G_2)^A$	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	+
x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{split} & Im(y\sim 1+G_2+G_3++G_N)^A \\ & Im(rank(y)\sim 1+G_2+G_3++G_N)^A \end{split}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i , t i
1 + x1 +	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	~	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
Multiple regression: lm(y ∼	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{split} & Im(y \sim 1 + G_2 + G_3 + \ldots + G_N + \\ & S_2 + S_3 + \ldots + S_K + \\ & G_2^* S_2 + G_3^* S_3 + \ldots + G_N^* S_K) \end{split}$	*	Interaction term: changing \mathbf{sex} changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Note: G_{2mN} is an $\underline{indicator}(0 \text{ or } 1)$ for each non-intercept levels of the \underline{group} variable. Similarly for S_{2mN} for sex. The first line (with G_0) is main effect of \underline{group} , the second (with S_0) for sex and the third is the $\underline{group} \sim \underline{sex}$ interaction. For two levels (e.g. male/female), line 2 would just be " S_2 " and line 3 would be S_2 multiplied with each G_n .	[Coming]
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model glm(y ~ 1 + G_2 + G_3 + + G_N + G_2 + G_3 + + G_N + G_2 + G_3 +	*	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $g1m(mode1, family=poisson())$ As linear-model, the Chi-square test is $log(y) = log(N) + log(a) + log(\beta) + log(a\beta)$ where a_i and β_i are proportions. See more into in the accompanying notebook.	Same as Two-way ANOVA
Ā	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	✓	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation $y \sim 1 + x$ is R shorthand for $y = 1 \cdot b + a \cdot x$ which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_rank = function(x) sign(x) * rank(abs(x))$. The variables G_i and G_i are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G_2 or y_1) indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloey.github.jo/tests-as-linear.

A See the note to the two-way ANOVA for explanation of the notation.

B Same model, but with one variance per group: gls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML").

Parametric Data: Use of ANOVAs

One-factor ANOVA t-test without repeated measures for independent samples Group 1 Group 2 Group 1 Group 2 Group 3

Difference between right-skewed and left-skewed distributions

