Cohort State-Transition Models in R: A Tutorial - Part I Appendix

Fernando Alarid-Escudero, PhD*

Eline Krijkamp, MSc[†]

Eva A. Enns, PhD[‡]

Alan Yang, MSc§

Myriam G.M. Hunink, PhD[†]¶

Petros Pechlivanoglou, PhD

Hawre Jalal, MD, PhD**

2021-04-13

Cohort tutorial model components

Table I

This table contains an overview of the key model components used in the code for the Sick-Sicker example from the DARTH manuscript: "An Introductory Tutorial to Cohort State-Transition Models in R". The first column gives the mathematical notation for some of the model components that are used in the equations in the manuscript. The second column gives a description of the model component with the R name in the third column. The forth gives the data structure, e.g. scalar, list, vector, matrix etc, with the according dimensions of this data structure in the fifth column. The final column indicated the type of data that is stored in the data structure, e.g. numeric (5.2,6.3,7.4), category (A,B,C), integer (5,6,7), logical (TRUE, FALSE).

Element	Description	R name	Data structure	Dimensions	Data type
$n_t \ v_s \ n_s$	Time horizon Names of the health states Number of health states	n_t v_n n_states	scalar vector scalar	n_states x 1	numeric character numeric

^{*}Division of Public Administration, Center for Research and Teaching in Economics (CIDE), Aguascalientes, AGS, Mexico

[†]Department of Epidemiology and Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands

[‡]Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis, MN, USA

[§]The Hospital for Sick Children, Toronto

[¶]Center for Health Decision Sciences, Harvard T.H. Chan School of Public Health, Boston, USA

The Hospital for Sick Children, Toronto and University of Toronto, Toronto, Ontario, Canada

^{**}University of Pittsburgh, Pittsburgh, PA, USA

Element	Description	R name	Data structure	Dimensions	Data type
$\overline{v_{str}}$	Names of the strategies	v_names_str	scalar		character
n_{str}	Number of strategies	n_str	scalar		character
$\mathbf{d_c}$	Discount rate for costs	d_c	scalar		numeric
$ m d_{e}$	Discount rate for effects	d_e	scalar		numeric
	Discount weights for costs	v_dwc	vector	$(n_t x 1) + 1$	numeric
	Discount weights for effects	v_dwe	vector	$(n_t x 1) + 1$	numeric
age_0	Age at baseline	n_age_init	scalar		numeric
age	Maximum age of follow up	n_age_max	scalar		numeric
M	Cohort trace	m_M	matrix	$(\mathtt{n_t}+1) \ge \mathtt{n_s}$	numeric
m_0	Initial state vector	v_s_init	vector	$1 \times n$ _states	numeric
m_t	State vector in cycle t	v_mt	vector	$1 \times n$ _states	numeric
	Transition probabilities				
$p_{[H,S1]}$	From Healthy to Sick conditional on surviving	p_HS1	scalar		numeric
$p_{[S1,H]}$	From Sick to Healthy conditional on surviving	p_S1H	scalar		numeric
$p_{[S1,S2]}$	From Sick to Sicker conditional on surviving	p_S1S2	scalar		numeric
$r_{[H,D]}$	Constant rate of dying when Healthy (all-cause mortality rate)	r_HD	scalar		numeric
$hr_{[S1,H]}$	Hazard ratio of death in Sick vs Healthy	hr_S1	scalar		numeric
$hr_{[S2,H]}$	Hazard ratio of death in Sicker vs Healthy	hr_S2	scalar		numeric
$hr_{[S1,S2]_{trtB}}$	Hazard ratio of becoming Sicker when Sick under treatment B	hr_S1S2_trtB	scalar		numeric
P	Time-independent transition probability matrix	m_P	matrix	n_states x n_states	numeric
	Annual costs				
	Healthy individuals	c_H	scalar		numeric
	Sick individuals in Sick	c_S1	scalar		numeric
	Sick individuals in Sicker	c_S2	scalar		numeric
	Dead individuals	c_D	scalar		numeric
	Additional costs treatment A	c_trtA	scalar		numeric
	Additional costs treatment B	c_trtB	scalar		numeric
	Utility weights				
	Healthy individuals	u_H	scalar		numeric
	Sick individuals in Sick	u_S1	scalar		numeric
	Sick individuals in Sicker	u_S2	scalar		numeric
	Dead individuals	u_D	scalar		numeric

Element	Description	R name	Data structure	Dimensions	Data type
	Treated with treatment A	u_trtA	scalar		numeric
	Outcome structures				
A	Transition dynamics array	a_A	array	$n_states x n_states x $ $(n_t + 1)$	numeric
	Expected QALYs per cycle under a strategy	v_qaly	vector	$1 \times (n_t + 1)$	numeric
	Expected costs per cycle under a strategy	v_cost	vector	$1 \times (n_t + 1)$	numeric
	Total expected discounted QALYs for a strategy	n_tot_qaly	scalar		numeric
	Total expected discounted costs for a strategy	n_tot_cost	scalar		numeric
	Summary of the model outcomes	df_cea	data frame		
	Summary of the model outcomes	table_cea	table		

Table II: Input parameters for probabilistic analysis

			Parameter mean	Parameter standard error
Parameter	Distribution	Distribution values		
Number of simulation	n_sim	1000		
Annual transition probabilities				
- Disease onset (H to S1)	Beta	$\alpha = 30, \beta = 170$	0.15	0.025
- Recovery (S1 to H)	Beta	$\alpha = 60, \beta = 60$	0.5	0.045
- Disease progression (S1 to S2)	Beta	$\alpha = 84, \beta = 716$	0.105	0.01
in the age-dependent model				
- Weibull scale parameter (S1 to	Lognormal	$log(\mu) = log(0.08) , log(\sigma) = 0.02$	0.08	0.002
S2) in the model with tunnel				
states				
- Weibull shape parameter (S1	Lognormal	$log(\mu) = log(1.1) , log(\sigma) = 0.02$	1.1	0.02
to S2) in the model with tunnel				
states Annual mortality				
- Hazard ratio of death in S1 vs	Lognormal	$log(\mu) = log(3) , log(\sigma) = 0.01$	3	0.03
H				
- Hazard ratio of death in S2 vs	Lognormal	$log(\mu) = log(10) , log(\sigma) = 0.2$	10	1
H				
- Log odds ratio of S1 to S2	Normal	$\mu = log(0.6)$, $\sigma = 0.1$	-0.51	0.1
Annual costs				

Parameter	Distribution	Distribution values	Parameter mean	Parameter standard error
- Healthy individuals	Gamma	$\mathbf{shape} = 100$, $\mathbf{Scale} = 20$	2000	200
- Sick individuals in S1	Gamma	shape = 177.8, Scale = 22.5	4000	300
- Sick individuals in S2	Gamma	$\mathbf{shape} = 225$, $\mathbf{Scale} = 66.7$	15000	1000
- Cost of treatment A for	Gamma	$\mathbf{shape} = 576 \text{ , } \mathbf{Scale} = 20.8$	12000	500
- Cost of treatment B for individuals in S1 or S2	Gamma	$\mathbf{shape} = 676 \;, \mathbf{Scale} = 19.2$	13000	500
Utility weights - Healthy individuals	Beta	$\alpha = 200, \beta = 3$	0.985	0.008
- Sick individuals in S1	Beta	$\alpha = 250, \beta = 3$ $\alpha = 130, \beta = 45$	0.74	0.033
- Sick individuals in S2 Intervention effect	Beta	$\alpha = 230, \beta = 230$	0.5	0.023
- Utility for treated individuals in S1 Transition rewards	Beta	$\alpha = 300, \beta = 15$	0.95	0.012
- Disutility (H to S1)	Beta	$\alpha = 11, \beta = 1088$	0.01	0.003
- Increase in cost (H to S1)	Gamma	$\alpha = 25, \beta = 40$	1000	200
- Increase in cost (D)	Gamma	$\alpha = 100, \beta = 20$	2000	200