Fourier Transforms – The *Discrete* Fourier Transform CS370 Lecture 18 – February 13, 2017

Assignment Reminder

A2 due Thursday at 4pm.

Same submission rules apply:

- Written/analytical work and output figures etc. to the physical box.
- One zip file of all code to LEARN DropBox.

Be careful: 50% penalty for 1-day late submissions! (Zero after that.)

Fourier Series reminder

We saw that the Fourier series expansion of any function f(t),

$$f(t) = \sum_{k = -\infty}^{\infty} c_k e^{ikt}$$

expresses it as a sum of scaled sinusoids of increasing k and frequency.

The necessary coefficients c_k are given by solving integrals:

$$c_k = \frac{1}{2\pi} \int_0^\infty e^{-ikt} f(t) dt$$

Fourier Series – Truncating...

An approximation of a function could be achieved by **truncating** the series to a **finite** number of sinusoids:

$$f(t) \approx \sum_{k=-M}^{+M} c_k e^{ikt}$$

Today, we'll extend these ideas to discrete data, rather than functions.

Two FT Demo Applications – by David.Li

Fourier Image Editing: http://david.li/filtering/

FFT-Based Wave Simulation: http://david.li/waves/

Discrete Input Data

Consider a vector of *discrete data*.

e.g., $f_0, f_1, f_2, f_3, ..., f_{N-1}$ for N uniformly spaced data points (N assumed even).

Assume data are from an *unknown* function f(t), evaluated at each

$$t_n = n\Delta t = \frac{nT}{N}$$
 for $n = 0, 1, ..., N - 1$.
i.e., $f_n = f(t_n)$.

N=128 discrete data samples over a domain [0,32].

Discrete Fourier Transform as interpolation

We have N = 128 points, and period T = 32.

For N points, we will use N degrees of freedom (i.e., N coefficients) to exactly **interpolate** the data.

Assuming N is even, we can approximate with a truncated Fourier series as:

$$f(t) \approx \sum_{-\frac{N}{2}+1}^{N/2} c_k e^{\frac{(2\pi i)kt}{T}}$$

N=128 discrete data samples over a domain [0,32].

Piecewise linear plot.

Discrete Fourier Transform

Plugging in each of our N data points (t_n, f_n) into the expression

$$f(t) \approx \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} c_k e^{\frac{(2\pi i)kt}{T}}$$

will give us N equations, involving unknowns coefficients, c_k .

This will lead to our Discrete Fourier Transform, which we'll start deriving.

Derivation time! Wahoo!

W is an **Nth Root of Unity** since it satisfies $W^N = e^{2\pi i} = 1$.

Discrete Fourier Transform

For notational convenience we have defined $W = e^{\left(\frac{2\pi i}{N}\right)}$.

$$f_n = \sum_{k=0}^{N-1} F_k e^{i\left(\frac{2\pi nk}{N}\right)} = \sum_{k=0}^{N-1} F_k W^{nk}.$$

Our discrete data f_n is now a sum of coefficients F_k , multiplied by corresponding complex exponentials W^{nk} .

Roots of Unity

With
$$W = e^{\frac{2\pi i}{N}}$$
, then

$$W^k = e^{\frac{2\pi ik}{N}}$$

is an Nth root of unity, for all integers k.

E.g, for N=3, the roots of unity have the form $W^k=e^{k\left(\frac{2\pi i}{3}\right)}$.

for N=8, the roots of unity have the form $W^k=e^{\frac{2\pi ik}{8}}=e^{k\left(\frac{i\pi}{4}\right)}$.

Recall that complex numbers can be plotted on the complex plane, we can visualize these roots in 2D.

Complex Plane

Each Nth root corresponds to a point on the unit circle in the complex plane.

Why unit (radius 1) circle?

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Modulus is always 1, since: $\sqrt{\cos^2(\theta) + \sin^2(\theta)} = 1$ from trigonometry.

Roots of Unity Example (N=3rd roots of unity)

By Euler formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$, evaluating $e^{\frac{2\pi ik}{3}}$ for k = 0 to 3 gives:

$$k = 0 \text{ or } 3$$
: $e^{0} = e^{i2\pi} = 1 + i0$
 $k = 1$: $e^{\frac{2i\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$
 $k = 2$: $e^{\frac{4i\pi}{3}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

 $e^{0} = e^{i2\pi} = 1$ $e^{\frac{i4\pi}{3}}$

(Cubing gives a multiple of $2\pi i$, giving 1.)

Roots of Unity Example (N=8th roots of unity)

By Euler formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$, evaluating $e^{\frac{\pi i k}{4}}$ for k = 0 to 8 gives:

$$e^{0} = e^{2i\pi} = 1 \qquad e^{i\pi} = -1$$

$$e^{\frac{i\pi}{4}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \qquad e^{\frac{5i\pi}{4}} = \frac{-1}{\sqrt{2}} + \frac{-1}{\sqrt{2}}i$$

$$e^{\frac{i\pi}{2}} = i \qquad e^{\frac{3i\pi}{2}} = -i$$

$$e^{\frac{3i\pi}{4}} = \frac{-1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \qquad e^{\frac{7i\pi}{4}} = \frac{1}{\sqrt{2}} + \frac{-1}{\sqrt{2}}i$$

Discrete Fourier Transform

To be useful, operations we need are:

- 1. Convert input time-domain data f_n to frequency-domain F_k .
- 2. Convert frequency-domain data F_k back to time-domain f_n .

We derived #2; given Fourier coefficients F_k , we have:

$$f_n = \sum_{k=0}^{N-1} F_k W^{nk} .$$

What about #1? How can we solve for the $F_k = ???$

Use orthogonality ideas, as in the continuous case for a_k , b_k or c_k ...

Another orthogonality identity

The roots of unity have the useful property: N=1

$$\sum_{j=0}^{N-1} W^{jk} W^{-jl} = \sum_{j=0}^{N-1} W^{j(k-l)} = N \delta_{k,l}$$

assuming (for now) that $k, l \in [0, N-1]$.

The symbol $\delta_{k,l}$ indicates the Kronecker delta with:

$$\delta_{k,l} = \begin{cases} 0; & k \neq l \\ 1; & k = l \end{cases}$$

Derivation of this identity? Stay tuned.

Discrete Fourier Transform

This identity will allow us to work out the reverse direction (f_n to F_k).

Will be similar to how we found the *continuous* Fourier series coeffs, by relying on orthogonality identities.

Next time!