

Role of prolines in PIP2 aquaporin gating mechanism

Canessa Fortuna, A^{1,2}, Zerbetto De Palma. G^{1,2,3}, Vitali, V^{1,2}, Zeida, A⁴, Alleva, K^{1,2}

¹Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Fisicomatemática, Cá Biológicas "Prof. Alejandro C. Paladini", Buenos Aires, Argentina. ³Universidad Nacional de Hurlingham, Instituto de Biotecnología, Villa Tesei, Argentina. ⁴Departamento de Bioquímica, Facultad de Medicina y Centro de Investigaciones Biomédicas (Ceinbio), Universidad de la República, Montevideo, Uruguay

- BvPIP2;2AAA, BvPIP2;2P194A water activity dose not differ from BvPIP2;2 (WT)
- In oocytes experiments BvPIP2;2P204A do not render increased P_f in comparison with non injected oocytes. This could be because is in plasma membrane but closed or because is retain in endoplasmic reticule.
- BvPIP2;2P194AP204A is a functional protein that renders decreased P_f in oocytes experiments compared with WT.
- All mutants interact with BvPIP1;1.
- Oocytes co-injected with BvPIP2;2AAA and BvPIP1;1 show less P_f than oocytes co-injected with BvPIP2;2 and BvPIP1;1
- The curve of activity vs pH for BvPIP2;2AAA is shifted to more alkaline values (pH_{0.5} = 6.43 ± 0.01 n=3 for WT, 6.725 ± 0.005 n=2 for the mutant channel)
- BvPIP2;2P194A present a pH_{0.5} more alkaline than

WT (6.43±0.01 n=3 for WT, 6.56±0.01 n=2 for P194A)

BvPIP2;2P194AP204A seems to not be able to open or close under pH modification

contributions:

- regulating pH sensing
- facilitating the conformational changes of the loop responsible for blocking the pore.

Acknowledgement

PICT-2017 0244, PICT-2019 00387, UBA2018 20020170100178BA