Rapport Projet 3A Analyse de trace de sang

Cléa Han, Yanis Labeyrie et Adrien Zabban Mars 2024

1 Introduction

Notre projet 3A s'intéresse à l'analyse de traces de sang dans le cadre du travail de l'expert criminalistique Philippe Esperança. En effet, l'objectif est de réaliser une intelligence artificielle pour assister et faciliter le travail d'analyse de scènes de crimes présentant du sang.

Les travaux de Philippe Esperança sur l'analyse des traces de sangs, a abouti à la classification de ces traces en 19 classes distinctes qui sont listées dans la Table 1. Notre but est alors de faire un modèle de machine learning capable de prédire la classe pour une image de trace de sang.

Classe des types de trace de sang	
1- Modèles Traces passives	2- Modèles Goutte à Goutte
3- Modèle Transfert par contact	4- Modèle Transfert glissé
5- Modèle Altération par contact	6- Modèle Altération glissée
7- Modèle d'Accumulation	8- Modèle Coulée
9- Modèle Chute de volume	10- Modèle sang Propulsé
11- Modèle d'éjection	12- Modèle Volume Impacté
13- Modèle Imprégnation	14- Modèle Zone d'interruption
15- Modèle d'impact	16- Modèle Foyer de modèle d'impact
17- Modèle Trace gravitationnelle	18- Modèle Sang expiré
19- Modèle Trace d'insecte	

Table 1 – Liste des 19 modèles de trace de sang

2 Données

Philippe Esperança nous a fourni deux bases de données. La première contient des images de trace de sang reproduite en laboratoire. La deuxième correspond à des images issues de scène de crime. Cependant, il y avait la présence d'une classe trop minoritaire parmi ces 19 classes, qui est la classe de trace d'insectes possédant uniquement quatre images. Cette classe a donc été retirée afin de garder une certaine distribution relativement équilibrée. Nous avons donc travaillé avec 18 classes.

2.1 Données de laboratoire

Dans un premier temps, nous avons pu manipuler des données de laboratoire, c'est-à-dire des images de traces de sang reproduites en laboratoire sur des fonds réguliers, hors des scènes de crimes. Ces fonds sont de quatre types différents: bois, linoleum (lino), carrelage et papier. Ces données sont composées de 10978 images. La Figure 1 présentes des images de tache de sang reproduite en laboratoire. La Table 4 en annexe montre un exemple de trace de sang pour chacune des 18 classes.

(a) Modèle Transfert glissé sur un (b) Modèle de Coulée sur fond de fond de papier lino

Figure 1 – Deux images de laboratoire

Nous avons réparti ces données de laboratoire en 80% dans nos données d'entraı̂nement, 10% dans nos données de validation et 10% dans nos données de test. La Figure 2 nous montre la distribution des données de laboratoire sur chacune des classes et chacun des datasets.

FIGURE 2 – Distribution des données de laboratoire sur les 18 classes selon le dataset d'entraînement, de validation et de teste.

2.2 Données réelles issues de scène de crime

Après l'élaboration de nos éventuels modèles pour la problématique traitée, nous avons pu manipuler des données dites réelles. Ce sont des données prises directement sur les scènes de crimes, qui sont composées de 245 images. Les images sont alors relativement moins consistantes et plus hétérogènes que les données de laboratoire. En effet, ces images sont donc issues de prises réalisées le plus souvent par la police scientifique, qui ne prend pas en compte les conditions consistantes de prise de photo respectées dans les données de laboratoire concoctée par Philippe Esperança. La Figure 3 montre des exemples d'image réelles. On peut dès maintenant s'apercevoir que ces données vont être beaucoup plus compliquées à analyser pour nos modèles de deep learning au vu des nombreux objets présent sur les photos.

Figure 3 – Deux images de scène de crime

Nous avons réparti ces données réelles à 60% dans nos données d'entraînement, à 10% dans nos données de validation et à 30% dans nos données de test. En effet, une plus grande proportion d'images a été attribuée au test des données réelles afin d'avoir un test relativement plus représentatif. Cet ensemble de données de test est composé de 73 images. La Figure 4 nous montre la distribution des données réelles sur chacune des classes et chacun des datasets.

2.3 Data Processing

Les images que l'on a reçues sont en couleurs et ont une taille variable allant de 2000×2000 à 10000×10000 pixels. Nous avons donc passé toutes nos images en 256×256 . Pour l'entraînement de nos modèles deep learning, nous avons fait des symétries horizontales et vertical. Nous n'avons pas fait de rotation sur les images, car Philippe Esperança nous avait dit qu'il prenait que des photos face aux taches de sang (donc sans rotation). Donc il n'est pas nécessaire d'apprendre les rotations des images. Nous avons aussi joué sur le contraste et la luminescence des images. Pour la validation, le teste et l'inférence, nous n'avons pas mis de data augmentation.

FIGURE 4 – Distribution des données de scène de crimes selon le dataset d'entraı̂nement, de validation et de teste.

3 Modèles

Pour aborder l'analyse de trace de sang, nous avons décidé d'utiliser le modèle Resnet [1] pré-entraîné sur ImageNet selon certains poids indiqués dans la bibliographie [2], selon diverses approches. Nous avons utilisé la crossentropy pour notre fonction de coût, et Adam [3] pour l'optimizer avec un learning rate de 0.001, trouvé avec un grid search (voir section).

3.1 ResNet linear probe

Nous avons dans un premier temps retirer la dernière couche dense du modèle, qui était destiné à classifier sur 1000 catégories, puis effectuer du linear probing. Les modèles utilisant le linear probing seront désignés par LP Resnet dans la suite. Nous avons donc remplacé la dernière couche dense par 2 couches denses pour avoir une dernière couche dense à 18 neurones correspondant aux 18 classes identifiées à classifier.

FIGURE 5 – Schéma du modèle Resnet

3.2 Réentraînement de tout le ResNet

Puis, nous avons également abordé le modèle en le réentraînant sur nos données de laboratoire, c'est-à-dire effectuer du fine-tuning sur nos données. Les modèles concernés par cette méthode seront désignés par "AWL ResNet" pour All weight learnable.

3.3 Modèle Adversarial

Une des choses importante pour la classification d'image est de pouvoir détecter la tache de sang et de la détacher du fond (background). Nous avons alors implémenté un entraînement adversarial. En plus du modèle ResNet, nous avons rajouté un modèle de MLP (Multilayer Perceptron) composé de deux couches fully connected layer qui prend en entrée la sortie de l'avant-dernière couche dense de notre Linear Probe ResNet, et prédit le background. Le but est d'alors de faire en sorte que le modèle ResNet ne possède pas d'information sur le background de l'image dans son espace latent. La Figure 6 montre ces deux modèles.

FIGURE 6 – Schéma du modèle Resnet adversarial

Nous avons fait un entraînement adversarial pour entraîner les deux modèles simultanément. Nous avons utilisé la fonction de coût définie dans la Formule 1, où CE_{tache} est la crossentropy entre la prédiction du modèle ResNet et la classe de la tache de sang, et $CE_{background}$ est la crossentropy de la prédiction du modèle adversarial et le background de l'image. Le paramètre α est un hyperparamètre que l'on va optimizer dans la section.

$$L_{adv} = \frac{CE_{tache}}{\alpha CE_{background}} \tag{1}$$

La loss CE_{tache} est rétro-propagé dans le modèle ResNet et la loss L_{adv} est alors propagé dans les deux modèles.

3.4 FineTune ResNet sur les données réelles

Ensuite, nous avons aussi essayé d'effectuer du linear probing puis un finetuning de manière successive sur le modèle Resnet. Ce modèle sera désigné par le nom FT LP ResNet.

En effet, nous avons testé plusieurs approches vis-à-vis du modèle Resnet pré-entraîné sur Imagenet afin de maximiser nos possibles performances.

Après avoir obtenu ces différents modèles, nous les avons également fine-tuné sur l'ensemble des données réelles à notre disposition. Lorsque du fine-tuning est effectué, cela sera indiqué avec l'abréviation FT.

Afin de maximiser nos potentielles performances, nous avons effectué un Grid-Search afin de chercher les meilleurs hyper-paramètres possibles.

4 Interprétabilité

Afin de répondre à l'aspect "boîte noire" du modèle utilisé, nous avons implémenté de l'interprétabilité dans notre modèle à l'aide de Grad-CAM [4].

Cette méthode permet de fournir une explication visuelle vis-à-vis des décisions de classification issue de notre modèle, permettant ainsi de rajouter une certaine légitimité relative face à nos analyses de traces de sang faisant partie d'un processus judiciaire.

5 Pistes infructueuses

Au cours de ce projet nous avons exploré plusieurs pistes qui se sont avérées infructueuses. Nous les présentons ici pour que le lecteur puisse comprendre les raisons pour lesquelles nous avons choisi de ne pas les poursuivre.

5.1 Interprétabilité des modèles par feature ingenering

Un des objectifs de ce projet était de parvenir à interpréter les choix des modèles de machine learning que nous avons entrainé. Pour cela, nous avons tenté de nous inspirer du travail réalisé précedement par l'équipe d'experts criminalistiques. En effet, leur approche s'inspire de la classification des espèces animales et végétales par les biologistes. Ils ont cherché à identifier des caractéristiques déterminantes pour chaques traces de sang et ainsi à classifier les traces de sang grâce à un arbre de décision portant sur ces caractéristiques (par exemple: la forme, la taille, présence de tâches milimétriques près des tâches centimétriques, etc..). Nous avons donc tenté de reproduire cette approche en utilisant des techniques de feature ingenering pour extraire des caractéristiques fondamentales des traces de sang souis formes de critères mathématico-géométriques. Pour cela nous avons d'abord tenté de réaliser un algorithme de segmentation non-supervisé par détection de contours pour extraire les formes des tâches de sang, avec des résultats peu concluants. Nous avons ensuite tenté de réaliser un algorithme melant des techniques de traitement d'images (seuils, ect..), d'apprentissage auto-supervisé (Unet) et de géométrie pour extraire des caractéristiques géométriques telle la taille des tâche satellitaires par rapport à la tâche centrale, la forme des tâches (critère d'ovoidité, de circularité, etc..). Ces tentatives ont néanmoins été infructueuses, car les masques de segmentation était trop imprécis du fait de la grande variabilité des images de tâches de sang. Nous avons également tenté des méthodes de segmentation adversariale en tirant partie du fait que nous connaissions pour toute les images la nature du support (bois, lino, carrelage, etc..) pour tenter de segmenter les tâches de sang par une approche faiblement supervisée. Ces tentatives ont également été infructueuses, car nous avions peu de donnée d'entrainement ce qui rendait tout apprentissage trop instable de manière faiblement supervisée.

Nous avons également tenté d'extraire ces caractéristiques (masques de segmentation, critères géométriques) à l'aide de modèle de deep learning utilisant des techniques dites de "zero-shot classification" (modèles de type CLIP-ViT, etc..) ou zero-shot segmentation (SegmentAnything). Ces tentatives ont également été infructueuses, car le manque de contraste sur certaines images de tâches de sang ou leur trop grand éclatement rendait les masques de segmentation trop imprécis.

6 Résultats

Les résultats de test sur les données de laboratoire 2 indiquent de meilleures performances pour le modèle Resnet qui a été réentraîné sur tous ses poids, selon l'accuracy et le F1-score.

Table 2 – Résultats de test sur les données de laboratoire

Logs	Acc Micro	Acc Macro	F1-score	Top 3
Adversarial	93.4%	91.8%	91.8%	99.8%
AWL ResNet	97.3%	97.1%	96.2%	99.8%
LP ResNet	95.2%	94.3%	94.7%	99.8%

Les résultats de test sur les données de laboratoire 3 indiquent de meilleures performances pour le modèle Resnet qui était entraîné entièrement sur les données de laboratoire, puis fine-tuné sur les données réelles, selon l'accuracy et le F1-score.

Table 3 – Résultats de test sur les données réelles

Logs	Acc Micro	Acc Macro	F1-score	Top 3
Adversarial	11.8%	5.7%	3.7%	16.7%
FT AWL Resnet	17.2%	13.8%	8.1%	28.7%
LP ResNet	12.9%	6.0%	4.0%	19.0%
FT ResNet	41.9%	33.4%	26.9%	51.7%
FT LP ResNet	11.8%	6.1%	6.4%	26.0%

7 Conclusion

Notre projet s'inscrit dans une volonté d'optimiser le travail d'analyse de traces de sang en criminologie, notamment pour notre expert international Philippe Esperança.

En effet, notre encadrant a pu recevoir notre projet sous la forme d'une interface qui fonctionne localement sur son appareil de travail. En effet, ce modèle d'analyse de trace de sang ne doit pas avoir accès à internet afin d'éviter tout risque d'attaque ou de fuite de données, le faire tourner en local permet de susciter la confiance de notre expert criminalistique. Il a pu apprécier et être satisfait de notre rendu.

Notre projet fait également l'objet d'une documentation afin qu'il puisse être repris aisément à l'avenir.

Références

[1] K. HE, X. ZHANG, S. REN et J. SUN, « Deep Residual Learning for Image Recognition, » CoRR, t. abs/1512.03385, 2015. arXiv: 1512.03385. adresse: http://arxiv.org/abs/1512.03385.

- [2] T. MAINTAINERS et CONTRIBUTORS, TorchVision: PyTorch's Computer Vision library, https://github.com/pytorch/vision, 2016.
- [3] D. P. KINGMA et J. BA, « Adam : A method for stochastic optimization, » arXiv preprint arXiv :1412.6980, 2014. adresse : https://arxiv.org/abs/1412.6980.
- [4] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh et D. Batra, « Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization, » CoRR, t. abs/1610.02391, 2016. arXiv: 1610.02391. adresse: http://arxiv.org/abs/1610.02391.

8 Annexe

Table 4 – Classe des données de laboratoire et leur exemple en image