Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 4

To be completed by October 16

The solution of each problem should be no longer than one page!

Problem 1. Let K and L be sets of non-zero integers of sizes r and s, respectively, and suppose that k > s - r for every $k \in K$. Suppose that \mathcal{A} is a family of subsets of [n] such that $|\mathcal{A}| \in K$ for every $A \in \mathcal{A}$, and $|A \cap B| \in L$ for every distinct $A, B \in \mathcal{A}$. Show that $|\mathcal{A}| \leq \sum_{i=s-r+1}^{s} {n \choose i}$.

Problem 2. Let p be a prime and let L be a subset of $\{0, \ldots, p-1\}$ of size s. Suppose that A_1, \ldots, A_m and B_1, \ldots, B_m are subsets of [n] such that

- 1. $|A_i \cap B_i| \notin L \pmod{p}$ for every $1 \le i \le m$.
- 2. $|A_i \cap B_j| \in L \pmod{p}$ for every $1 \le i < j \le m$.

Show that $m \leq \sum_{i=0}^{s} {n \choose i}$.

Problem 3. Let p be prime, $k \geq 2$, and let L be a subset of $\{0, \ldots, p-1\}$ of size s. Suppose that \mathcal{A} is a family of subsets of [n] such that $|A| \notin L \pmod{p}$ for every $A \in \mathcal{A}$, and $|A_1 \cap \ldots \cap A_k| \in L \pmod{p}$ for every distinct $A_1, \ldots, A_k \in \mathcal{A}$.

- (a) Show that $|\mathcal{A}| \leq (k-1) \sum_{i=0}^{s} {n \choose i}$.
- (b) Show that this bound is asymptotically tight for fixed p and k.