Flight Data: Predicting Speed From Altitude

Justin Short • 02.17.2025

Overview

Dataset https://www.kaggle.com/datasets/bri anwarner/aircraft-data-from-nov-202 2-through-dec-31-2022

Key Points

- Data Processing
- Model Performance
- Final Decisions

Data Before Cleaning

Issues:

- Outliers
 - Linear Regression is sensitive to outliers
- Odd line of data points near 460 miles per hour
 - Likely a missing value replacement (close to mean)
 - Omitting these values significantly improved model performance

Processed Data

Observations:

- A clear trend in the data
- A curve can be fitted to this
 - Polynomial of degree 2 or 3 should be able to produce a decent best fit line

Linear Regression (Degree 1 Polynomial)

Metrics:

- RMSE: 40.8
- R2: 0.575

Linear Regression (Degree 2 Polynomial)

Metrics:

- RMSE: 37.84
- R2: 0.635

Linear Regression (Degree 3 Polynomial)

Metrics:

- RMSE: 37.68
- R2: 0.638

Failed Improvement Techniques

Scaling/Normalization:

- Since there was only a single input feature, scaling

Regularization:

- Neither L1 (Ridge) or L2 (Lasso) regularization improved the performance

Ensemble Models:

- Gradient Boost and Random Forest models were tested,
- But improvements were minimal
 - And were more likely to be overfitted to the dataset

Results

Data Cleaning

- Removed outer 2% of data points
 - Both for mph and altitude
- Removed all data points where mph = 460
 - While some of these would have been real data points
 - Many of them were likely replacing missing values

Model

Polynomial of degree 3

Github

- https://github.com/jnshort/FlightDataML