Importing the packages

```
!pip install nbconvert

import kaggle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

download data set

```
!kaggle datasets download devarajv88/walmart-sales-dataset -f walmart.csv

Dataset URL: https://www.kaggle.com/datasets/devarajv88/walmart-sales-dataset
License(s): other
walmart.csv.zip: Skipping, found more recently modified local copy
(use --force to force download)
```

Extract the data

```
import zipfile
zip_ref = zipfile.ZipFile('walmart.csv.zip')
zip_ref.extractall() # extracting the data
zip_ref.close() # close the file
print("Data has been extracted successfully")
Data has been extracted successfully
```

Read the data and handle null values

```
df = pd.read csv('walmart.csv')
df.head()
  User ID Product ID Gender
                                 Occupation City Category \
                           Age
0 1000001 P00069042 F
                            0-17
                                         10
1 1000001 P00248942
                         F 0-17
                                         10
                                                       Α
  1000001 P00087842
                         F 0-17
                                         10
                                                       Α
3 1000001 P00085442
                         F 0-17
                                                       Α
                                         10
4 1000002 P00285442
                         M 55+
                                         16
 Stay In Current City Years Marital Status Product Category
Purchase
                                                         3
0
8370
```

```
1
                            2
                                             0
                                                               1
15200
2
                                                              12
1422
                                             0
                                                              12
1057
                           4+
                                                               8
7969
# null values
df.isnull().sum()
User ID
                               0
                               0
Product ID
                               0
Gender
Age
                               0
                               0
Occupation
City Category
                               0
Stay In Current City Years
                               0
Marital Status
                               0
Product Category
                               0
Purchase
dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 10 columns):
#
     Column
                                  Non-Null Count
                                                    Dtype
     -----
 0
     User ID
                                  550068 non-null
                                                    int64
     Product ID
1
                                  550068 non-null
                                                   object
 2
     Gender
                                  550068 non-null
                                                    object
 3
     Age
                                  550068 non-null
                                                   object
4
     Occupation
                                  550068 non-null
                                                    int64
5
                                  550068 non-null
     City Category
                                                    object
 6
     Stay_In_Current_City_Years
                                  550068 non-null
                                                   object
7
     Marital_Status
                                  550068 non-null
                                                   int64
8
     Product Category
                                  550068 non-null
                                                   int64
                                  550068 non-null
 9
     Purchase
                                                    int64
dtypes: int64(5), object(5)
memory usage: 42.0+ MB
```

Exploratory Data Analysis

import matplotlib.patches as mpatches

```
# Gender Distribution
plt.figure(figsize = (8,6))
ax = sns.countplot(x='Gender', data = df, palette = 'icefire')
#calculate percentage
total = len(df['Gender'])
for p in ax.patches:
    percentage = f'{100 * p.get_height()/total:.1f}%'
    x = p.get_x() + p.get_width()/2
    y = p.get height()
    ax.annotate(percentage, (x,y), ha = 'center', va = 'bottom')
# setting title and labels
ax.set title('Gender Distribution')
ax.set_xlabel('Gender')
ax.set ylabel('Count')
#creating legend
color = [p.get facecolor() for p in ax.patches]
gender groups = df['Gender'].unique()
gender groups.sort()
patches = [mpatches.Patch(color = color[i], label = age group) for i,
age group in enumerate(gender groups)]
ax.legend(handles = patches, title = 'Age Groups')
plt.tight_layout()
plt.show()
```

Gender Distribution


```
#Age Distribution
plt.figure(figsize = (10,8))
ax = sns.countplot(x = 'Age', data = df, palette = 'viridis')
#Calculate percentages
total = len(df['Age'])
for p in ax.patches:
   percentage = f'{100* p.get_height() / total:.1f}%'
    x = p.get x() + p.get width() /2
    y = p.get height()
    ax.annotate(percentage, (x,y), ha = 'center', va = 'bottom')
#Setting title and labels
ax.set title('Age Distribution')
ax.set_xlabel('Age Group')
ax.set ylabel('Count')
#Creating legend
colors = [p.get_facecolor() for p in ax.patches]
age groups = df['Age'].unique()
```

```
age groups.sort()
patches = [mpatches.Patch(color = color[i], label = age group) for i,
age group in enumerate(age groups)]
ax.legend(handles = patches, title = 'Age Groups')
plt.tight layout()
plt.show()
                                     Traceback (most recent call
IndexError
last)
Cell In[17], line 24
     22 age groups = df['Age'].unique()
     23 age groups.sort()
---> 24 patches = [mpatches.Patch(color = color[i], label = age group)
for i, age group in enumerate(age groups)]
     25 ax.legend(handles = patches, title = 'Age Groups')
     27 plt.tight layout()
Cell In[17], line 24, in stcomp>(.0)
     22 age groups = df['Age'].unique()
     23 age groups.sort()
---> 24 patches = [mpatches.Patch(color = color[i], label = age group)
for i, age group in enumerate(age groups)]
     25 ax.legend(handles = patches, title = 'Age Groups')
     27 plt.tight layout()
IndexError: list index out of range
```



```
# Age Distribution
plt.figure(figsize=(10, 8))
ax = sns.countplot(x='Age', data=df, palette='viridis')
# Calculate percentages
total = len(df['Age'])
for p in ax.patches:
    percentage = f'{100 * p.get_height() / total:.1f}%'
    x = p.get_x() + p.get_width() / 2
    y = p.get height()
    ax.annotate(percentage, (x, y), ha='center', va='bottom')
# Setting title and labels
ax.set title('Age Distribution')
ax.set xlabel('Age Group')
ax.set ylabel('Count')
# Creating legend
colors = [p.get_facecolor() for p in ax.patches]
age_groups = df['Age'].unique()
```

```
age_groups.sort()
patches = [mpatches.Patch(color=colors[i], label=age_group) for i,
age_group in enumerate(age_groups)]
ax.legend(handles=patches, title='Age Groups')
plt.tight_layout()
plt.show()
```



```
#top 10 products

top_product_ids = df['Product_ID'].value_counts().head(10).index
df_top_products = df[df['Product_ID'].isin(top_product_ids)]

# Plotting with seaborn
plt.figure(figsize=(12, 8))
ax = sns.countplot(x='Product_ID', data=df_top_products,
palette='Spectral', order=top_product_ids)

# Calculate percentages
```

```
total = len(df_top_products)
for p in ax.patches:
    percentage = f'{100 * p.get_height() / total:.1f}%'
    x = p.get x() + p.get width() / 2
    y = p.get height()
    ax.annotate(percentage, (x, y), ha='center', va='bottom')
# Setting title and labels
ax.set_title('Top 10 Products')
ax.set xlabel('Product ID')
ax.set_ylabel('Count')
# Creating legend
colors = [p.get facecolor() for p in ax.patches]
patches = [mpatches.Patch(color=colors[i], label=product id) for i,
product id in enumerate(top product ids)]
ax.legend(handles=patches, title='Product IDs')
plt.tight layout()
plt.show()
```



```
# Using the "icefire" color palette
plt.figure(figsize=(10, 6))
sns.histplot(df['Purchase'], bins=50, kde=True, palette='icefire')
```

```
plt.title('Purchase Amount Distribution - Icefire Palette')
plt.xlabel('Purchase Amount')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()

C:\Users\PRASANNA KUMAR\AppData\Local\Temp\
ipykernel_324\1032617419.py:3: UserWarning: Ignoring `palette` because
no `hue` variable has been assigned.
    sns.histplot(df['Purchase'], bins=50, kde=True, palette='icefire')
C:\Users\PRASANNA KUMAR\anaconda3\Lib\site-packages\seaborn\
    _oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated
and will be removed in a future version. Convert inf values to NaN
before operating instead.
    with pd.option_context('mode.use_inf_as_na', True):
```



```
# Calculate average purchase amount by gender
gender_purchase_avg = df.groupby('Gender')['Purchase'].mean()
gender_purchase_avg_df = gender_purchase_avg.reset_index()
gender_purchase_avg_df.columns = ['Gender', 'Average Purchase Amount']
# Calculate percentage
total_avg_purchase = gender_purchase_avg_df['Average Purchase
Amount'].sum()
gender_purchase_avg_df['Percentage'] = gender_purchase_avg_df['Average
Purchase Amount'] / total_avg_purchase * 100
```

```
# Plotting with seaborn
plt.figure(figsize=(9, 8))
ax = sns.barplot(x='Gender', y='Average Purchase Amount',
data=gender_purchase_avg_df, palette='coolwarm')
# Annotate bars with percentage
for p in ax.patches:
    ax.annotate(f"{p.get height():.2f}\n({p.get height() /
total avg purchase * 100:.1f}%)",
                (p.get_x() + p.get_width() / 2., p.get_height()),
                ha='center', va='center', fontsize=10, color='black',
xytext=(0, 10),
                textcoords='offset points')
# Setting title and labels
ax.set title('Average Purchase Amount by Gender')
ax.set xlabel('Gender')
ax.set ylabel('Average Purchase Amount')
# Adding legend manually
colors = [p.get facecolor() for p in ax.patches]
gender groups = df['Gender'].unique()
gender_groups.sort()
patches = [mpatches.Patch(color=colors[i], label=age group) for i,
age group in enumerate(gender_groups)]
ax.legend(handles=patches)
plt.tight layout()
plt.show()
```

Average Purchase Amount by Gender


```
# Calculate the frequency of product purchases across different age
groups
age_product_freq = df.groupby(['Age',
'Product_Category']).size().unstack().fillna(0)

print("Frequency of Product Purchases by Age Group:")
print(age_product_freq)

# Plot heatmap of product purchases by age group
fig, ax = plt.subplots(figsize=(12, 8))
cax = ax.matshow(age_product_freq, cmap='viridis')
fig.colorbar(cax)
ax.set_xticks(range(len(age_product_freq.columns, rotation=90))
ax.set_xticklabels(age_product_freq.index)))
ax.set_yticklabels(age_product_freq.index))
ax.set_yticklabels(age_product_freq.index)
```

<pre>ax.set_title('Pro plt.tight_layout(plt.show()</pre>		urchase	es by <i>i</i>	Age Gr	oup',	pad=2	0)		
Frequency of Prod Product_Category 9 \ Age	uct Pu 1	rchase: 2	s by A	ge Gro		5	6	7	8
0-17	3585	805	1200	758	43	30 3	99	53	2258
16 18-25	26962	4428	4710	2463	285	22 37	49 4	181	17911
63 26-35	58249	8928	7662	4192	614	73 84	85 16	551	44256
154 36-45	27648	4912	3854	2354	293	77 38	99 8	309	23296
107 46-50 33	10474	2105	1376	990	119	71 16	22 3	327	10656
51-55 29	9049	1781	924	678	98	93 14	50 2	266	9340
55+ 8	4411	905	487	318	53	67 8	62 1	.34	6208
Product_Category 19 20 Age	10	11	12	13	14	15	16	17	18
0-17 59 90	111	740	125	112	39	160	229	6	27
18-25 275 469	603	4597	439	756	230	1024	1598	41	339
26-35 563 898	1787	9874	1096	2096	564	2372	4118	127	1042
36-45 320 506	1235	4953	994	1250	312	1395	1955	135	702
46-50 149 227	520	2104	520	551	149	602	879	95	351
51-55 134 200	519	1458	433	483	154	508	672	107	423
55+ 103 160	350	561	340	301	75	229	377	67	241


```
# Calculate average purchase amount by occupation
occupation_purchase_avg = df.groupby('Occupation')['Purchase'].mean()
occupation_purchase_avg_df = occupation_purchase_avg.reset_index()
occupation_purchase_avg_df.columns = ['Occupation', 'Average Purchase
Amount']

# Plotting with seaborn
plt.figure(figsize=(12, 8))
ax = sns.barplot(x='Occupation', y='Average Purchase Amount',
data=occupation_purchase_avg_df, palette='Paired')

# Setting title and labels
ax.set_title('Average Purchase Amount by Occupation')
ax.set_xlabel('Occupation')
ax.set_ylabel('Average Purchase Amount')
plt.tight_layout()
plt.show()
```


Understanding the Relationship of the Columns

```
df.boxplot("Purchase", by = "Occupation")
df.boxplot("Purchase", by = "Marital_Status")
df.boxplot("Purchase", by = "Product_Category")
df.boxplot("Purchase", by = "Stay_In_Current_City_Years")
df.boxplot("Purchase", by = "Gender")

<Axes: title={'center': 'Purchase'}, xlabel='Gender'>
```

Boxplot grouped by Occupation Purchase

Boxplot grouped by Marital_Status Purchase

Boxplot grouped by Stay_In_Current_City_Years Purchase

Creating Pipeline and Encoding

```
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make pipeline, Pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.model selection import train test split
from sklearn.preprocessing import RobustScaler, OneHotEncoder
from sklearn.linear model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn import set config
from copy import deepcopy
num features = ['Purchase']
cat features = ['Gender',
                'Age',
                'Occupation',
                'City_Category',
                'Stay_In_Current_City_Years',
                'Marital Status',
                'Product Category']
num features = pd.DataFrame(df['Purchase'])
num features
```

```
Purchase
0
            8370
1
           15200
2
            1422
3
            1057
4
            7969
             . . .
550063
             368
550064
             371
550065
             137
             365
550066
             490
550067
[550068 rows x 1 columns]
cat_features = pd.DataFrame(df[['Gender',
                 'Age',
                 'Occupation',
                 'City_Category',
                 'Stay_In_Current_City_Years',
                 'Marital_Status',
                 'Product_Category']])
cat_features
       Gender Age Occupation City Category
Stay_In_Current_City_Years \
            F
                0-17
                               10
                                               Α
2
1
                0-17
                               10
                                               Α
2
            F 0-17
                               10
                                               Α
2
            F 0-17
                               10
                                               Α
2
4
                                               C
            М
                 55+
                               16
4+
. . .
550063
            М
              51-55
                               13
                                               В
1
                                               C
550064
            F 26-35
                                1
550065
               26-35
                               15
                                               В
4+
                                               C
550066
                 55+
                                1
            F 46-50
550067
                                0
                                               В
4+
        Marital_Status Product_Category
```

0 1 2	0 0 0	3 1 12
3	0	12
4	0	8
550063	1	20
550064 550065	0 1	20 20
550066	Ö	20
550067	1	20
[550068	rows v 7 columns1	

[550068 rows x 7 columns]

X = cat_features
y = num_features

X.dtypes

Gender	object
Age	object
Occupation	int64
City_Category	object
Stay_In_Current_City_Years	object
Marital_Status	int64
Product_Category	int64
all the control of the first of	

dtype: object

y.dtypes

Purchase int64 dtype: object

Χ

	Gender	Age	Occupation	City Category
Stay_I	n_Current			
0	F	0-17	10	Α
2				
1	F	0-17	10	Α
2				
2	F	0-17	10	Α
2				
3	F	0-17	10	А
2				
4	М	55+	16	С
4+				
550063	М	51-55	13	В
1				

```
550064
            F 26-35
                                 1
                                               C
3
550065
               26-35
                                15
                                               В
4+
550066
                  55+
                                 1
                                               \mathbf{C}
                                 0
                                               В
550067
              46-50
4+
        Marital_Status
                         Product_Category
0
                                         1
1
                      0
2
                      0
                                        12
3
                      0
                                        12
4
                      0
                                         8
. . .
                                        . . .
550063
                      1
                                        20
550064
                      0
                                        20
550065
                      1
                                        20
                      0
                                        20
550066
550067
                                        20
[550068 rows x 7 columns]
class FeatureEncoder(BaseEstimator, TransformerMixin):
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        #Age Numeric
        age_dct = {"0-17": 0, "18-25": 1, "26-35": 2, "36-45": 3, "46-
50": 4, "51-55": 5, "55+": 6}
        X = X.copy() # Avoid SettingWithCopyWarning
        X["Age"] = X["Age"].map(age dct)
        #City Category One Hot Encoding
        ohe = OneHotEncoder()
        matrix = ohe.fit_transform(X[["City_Category"]]).toarray()
        column_names = ["City_Cat_A", "City_Cat_B", "City_Cat_C"]
        for i in range(len(matrix.T)):
            X[column_names[i]] = matrix.T[i]
        X = X.drop(columns = ["City Category"], axis=1)
        #Occupation One Hot Encoding
        ohe = OneHotEncoder()
        matrix = ohe.fit transform(X[["Occupation"]]).toarray()
```

```
column_names = ["Occupation_" + str(i) for i in range(21)]
       for i in range(len(matrix.T)):
           X[column names[i]] = matrix.T[i]
       X = X.drop(columns = ["Occupation"], axis=1)
       #Product Category One Hot Encoding
       ohe = OneHotEncoder()
       matrix = ohe.fit transform(X[["Product Category"]]).toarray()
       column names = ["Product Category " + str(i) for i in
range(20)]
       for i in range(len(matrix.T)):
           X[column names[i]] = matrix.T[i]
       X = X.drop(columns = ["Product Category"], axis=1)
       return X
# Define the pipeline
prepipe = Pipeline([
   ('preprocessor', FeatureEncoder()),
   ('encoder', OneHotEncoder())
])
# Fit the pipeline
X= prepipe.fit transform(X)
X = pd.DataFrame(X.toarray())
X.head()
  0 1
           2
                     4 5 6 7 8 9 ...
                                                     94
                                                          95
                                                               96
97 \
                                            0.0 ...
0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
                                       0.0
                                                     1.0
                                                          0.0
1.0 0.0
1 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
                                            0.0 ...
                                       0.0
                                                     1.0
                                                          0.0
1.0 0.0
                                                     1.0 0.0
2 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
                                       0.0
                                            0.0 ...
1.0 0.0
3 1.0 0.0
           1.0 0.0 0.0 0.0 0.0 0.0
                                       0.0
                                            0.0 ...
                                                     1.0 0.0
1.0 0.0
4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
                                            0.0 ...
                                                     1.0 0.0
1.0 0.0
  98
       99
           100
                101
                     102 103
0 1.0 0.0
           1.0
                0.0 1.0
                         0.0
1 1.0 0.0
           1.0 0.0 1.0 0.0
```

```
4 1.0 0.0 1.0 0.0 1.0 0.0
[5 rows x 104 columns]
scaler = RobustScaler().fit(y)
y = scaler.transform(y)
y = pd.DataFrame(y)
У
     0.051838
0
1
      1.147970
2
      -1.063232
3
      -1.121810
4
      -0.012518
550063 -1.232386
550064 -1.231905
550065 -1.269459
550066 -1.232868
550067 -1.212807
[550068 rows x 1 columns]
```