If $\pi(x)$, $x \in S$, are nonnegative numbers summing to one, and if

$$\sum_{x \in S} \pi(x) \times P(x,y) = \pi(y), \qquad y \in S,$$

then π is called a **stationary distribution**. That is, a stationary distribution is a probability vector π such that $\pi P = \pi$.

1. Consider a Markov chain on $\{0, 1, 2, 3, 4, \dots\}$

with
$$P(x,y) = \frac{1}{x+2}$$
 for $0 \le y \le x+1$
and $P(x,y) = 0$ for $y > x+1$.

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & \cdots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & \cdots \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & \cdots \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & \cdots \\ \vdots & \vdots \end{bmatrix}$$
Find a stationary distribution if it exists

Find a stationary distribution if it exists.

 $\pi(n) = \frac{1}{n!} \pi(0), \quad n \ge 0.$ Use mathematical induction to prove that Hint:

2. Consider a birth and death Markov chain on {1, 2, ..., N} having a transition function

$$P(x, x-1) = 1/x,$$
 $1 < x \le N,$
 $P(x, x+1) = 1/x,$ $1 \le x < N,$
 $P(x, x) = 1 - 2/x,$ $1 < x < N,$
 $P(N, N) = 1 - 1/N.$

Find the stationary distribution.

Birth and death Markov chains:

$$P(x,y) = \begin{cases} q_x & y = x - 1 \\ r_x & y = x \\ p_x & y = x + 1 \end{cases} \qquad q_0 = 0$$

$$0 \le x \le d$$

$$p_d = 0$$

OR

$$P(x,y) = \begin{cases} q_x & y = x - 1 \\ r_x & y = x \\ p_x & y = x + 1 \end{cases} \qquad q_0 = 0$$

$$x \ge 0$$

$$q_x + r_x + p_x = 1, x \in S.$$

$$\pi(0)r_0 + \pi(1)q_1 = \pi(0)$$

$$\pi(y-1)p_{y-1} + \pi(y)r_y + \pi(y+1)q_{y+1} = \pi(y)$$
 $y \ge 1$

$$\Rightarrow \qquad \pi(x) = \frac{p_0 \dots p_{x-1}}{q_1 \dots q_x} \pi(0), \qquad x \in S.$$

Set
$$\pi_0 = 1, \qquad \pi_x = \frac{p_0 \dots p_{x-1}}{q_1 \dots q_x}, \qquad x \ge 1.$$

$$\pi(x) = \pi_x \pi(0), \qquad x \in S.$$

Must have
$$\sum_{x \in S} \pi(x) = 1.$$

If
$$S = \{0, 1, 2, ..., d\}$$
, then $\pi(x) = \frac{\pi_x}{\frac{d}{\sum_{z=0}^{d} \pi_z}}$, $x \in S$.

Suppose $S = \{0, 1, 2, 3, \dots\}.$

$$\Rightarrow \qquad \text{If } \sum_{x=0}^{\infty} \pi_x = \infty, \qquad \text{there is no stationary distribution.}$$

Intuition:
$$\sum_{x=0}^{\infty} \pi_x = \infty \quad \Leftrightarrow \quad \text{there are a lot of "births" and not a lot of "deaths"}$$
 the Markov chain gravitates towards infinity

If
$$\sum_{x=0}^{\infty} \pi_x < \infty$$
, then $\pi(x) = \frac{\pi_x}{\sum_{z=0}^{\infty} \pi_z}$, $x \in S$.

3. Example 2 from 02/03/2022. Find the stationary distribution if it exists.

a)
$$P(0,0) = r_0 = 0.8, \qquad P(0,1) = p_0 = 0.2,$$

$$P(x,x-1) = q_x = 0.3,$$

$$P(x,x) = r_x = 0.5, \qquad x \ge 1.$$

$$P(x,x+1) = p_x = 0.2,$$

b)
$$P(0,0) = r_0 = 0.7, \qquad P(0,1) = p_0 = 0.3,$$

$$P(x,x-1) = q_x = 0.2,$$

$$P(x,x) = r_x = 0.5, \qquad x \ge 1.$$

$$P(x,x+1) = p_x = 0.3,$$

c)
$$P(0,0) = r_0 = 0.7$$
, $P(0,1) = p_0 = 0.3$,
$$P(x,x-1) = q_x = 0.2$$
,
$$P(x,x) = r_x = 0.5$$
,
$$1 \le x \le 99$$
.
$$P(x,x+1) = p_x = 0.3$$
,
$$P(100,100) = r_{100} = 0.8$$
, $P(100,99) = q_{100} = 0.2$,

d) Consider the birth and death chain on $\{0, 1, 2, ...\}$ defined by $p_x = (x+2)/(2x+2)$ and $q_x = x/(2x+2)$, $x \ge 0$ (i.e., there is a little bias to the right). Any state leads to any other state, so this chain is irreducible. (\sim Example 13, p. 33 HPS)

e) Consider the birth and death chain on $\{0, 1, 2, ...\}$ defined by $p_x = (x+1)/(2x+1)$ and $q_x = x/(2x+1)$, $x \ge 0$ (i.e., there is a little bias to the right). Any state leads to any other state, so this chain is irreducible.