EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

6

10

11 12

13

14

15

16

17

18

20

21

AK femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~{\rm TeV}$

ALICE Collaboration*

5 Abstract

The first measurements of the scattering parameters of ΛK pairs in all three charge combinations $(\Lambda K^+, \Lambda K^-, \text{ and } \Lambda K_0^S)$ are presented. The measurements are achieved through a femtoscopic analysis of AK correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV from ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the non-femtoscopic background, which result mainly from collective effects, with unprecedented precision. Furthermore, this model together with HIJING simulations are used to account for contributions from residual correlations induced by feed-down from resonances. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK^+ interaction and attractive in the ΛK_S^- and ΛK_S^0 interactions. The results suggest an effect arising from different quark-antiquark interactions between the pairs ($s\bar{s}$ in ΛK^+ and $u\bar{u}$ in ΛK^-), or from different net strangeness for each system (S=0 for ΛK^+ , and S=-2 for ΛK^-). Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions.

© 2019 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}See Appendix D for the list of collaboration members

22 1 Introduction

Femtoscopy is an experimental method used to study the space-time characteristic of the particle emit-23 ting sources in relativistic particle collisions [1]. With this method, two (or many)-particle relative-24 momentum correlation functions are used to connect the final-state momentum distributions to the space-25 time distributions of particle emission at freeze-out. The correlation functions are sensitive to quantum 26 statistics, as well as strong and Coulomb final-state interactions (FSI). Current femtoscopic studies are 27 able to extract the size, shape, and orientation of the pair emission regions, as well as offering estimations 28 of the total time to reach kinetic decoupling and the suddenness of particle emission. Non-identical par-29 ticle analyses additionally allow for the measurement of the space-time separation of the single particle 30 source emitting regions. The momentum and species dependence of femtoscopic measurements affirm 31 the collective nature of the hot and dense matter created in heavy-ion collisions. 32

In addition to characterizing the source region, femtoscopy offers a unique environment in which to 33 measure nuclear scattering parameters, many of which are difficult, if not impossible, to measure oth-34 erwise. This aspect of femtoscopy is the focal point of the present analysis. In this analysis, Λ -K pairs 35 are studied, in which at least one particle is electrically neutral. Quantum statistics and the Coulomb 36 interaction do not contribute, offering a clear signal from the strong interaction. The femtoscopic signal 37 demonstrates that the strong interaction acts repulsively in the ΛK^+ system, and acts attractively in the 38 ΛK^- and ΛK^0_S systems. The quark content of the Λ $(\overline{\Lambda})$ is uds (\overline{uds}) , that of the K^+ (K^-) is $u\overline{s}$ (\overline{us}) , and the K^0_S is a mixture of the neutral K^0 and $\overline{K^0}$ states with quark content $\frac{1}{\sqrt{2}} \left[d\overline{s} + \overline{ds} \right]$. It is interesting to 39 40 note the presence of a $s\bar{s}$ pair in the ΛK^+ system contrasted with a $u\bar{u}$ pair in the ΛK^- system. Additionally, although the K^0_S is a type average of K^+ and K^- in some respects (e.g. electrically), it contains (anti)down quarks, whereas the K^\pm contain (anti)up quarks. 41 42 43

Calculations within Quantum Chromodynamics (QCD), the theory of the strong interaction, are notoriously difficult except in select regimes of weak coupling, where perturbative methods may be applied. 45 The ΛK analysis presented offers low energy QCD measurements, which fall into the non-perturbative 46 regime of QCD. Therefore, the AK measurements not only give insight into the strong interaction, they 47 will also help guide future QCD calculations. This study is particularly interesting, as the ΛK scattering 48 parameters are not known, and theoretical predictions are limited. The extracted scattering parameters are compared to predictions obtained in the framework of chiral perturbation theory [2, 3]; neither predict a repulsive interaction, as observed in the ΛK^+ system. Scattering parameters for similar systems 51 are also very limited; past studies of kaon-proton scattering revealed the strong force is attractive in the 52 K^-p interaction, and repulsive in that of the K^+p [4–6]. 53

This paper presents the first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK^+ , ΛK^- , and ΛK^0_S). The scattering parameters, along with pair emission source sizes, are extracted with a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV from the ALICE experiment at the LHC. These correlations result from strong final-state interactions, and are fit with a parametrization by Lednický and Lyuboshitz [7]. Extensive studies with the THERMINATOR 2 event generator are performed to account for both non-femtoscopic backgrounds, as well as contributions from residual correlations induced by feed-down from resonances.

The organization of this paper is as follows. In Sec. 2 the data selection methods are briefly discussed. In Sec. 3 the analysis techniques utilized in this study are presented. Here, the two particle correlation function is introduced, as well as the theoretical models with which the data are fit. This section also includes descriptions of the handling of residual correlations, corrections accounting for finite track momentum resolution, treatment of the non-femtoscopic background, as well as a brief description of the systematic uncertainties estimation. The final results are presented in Sec. 4, and concluding remarks are given in Sec. 5. Appendix A demonstrates an alternate approach to forming correlation functions, whose purpose here is to help eliminate the non-femtoscopic background. Appendix B discusses the

procedure needed to generate fit functions when both the strong and Coulomb interactions are present. In Appendix C, the THERMINATOR 2 event generator is used to demonstrate the effect of increasing the source offset in the "out" direction (μ_{out}) on a one-dimensional femtoscopic fit. Throughout the text, the pair name is used as shorthand for the pair-conjugate system, which are found to be consistent (e.g. ΛK_S^0 , $\Lambda K^+ \oplus \overline{\Lambda} K^-$ is simply ΛK^+).

74 2 Data Analysis

The dataset analyzed is from Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC measured by the ALICE detector [8] in 2011. Approximately 40 million combined central, semi-central, and minimum bias events were analyzed. The events were classified according to their centrality determined using the measured amplitudes in the V0 detectors [9]. In order for an event to be included in the analysis, the z-position of the reconstructed event vertex must be within 10 cm of the center of the ALICE detector, and the event must contain at least one particle of each type from the pair of interest (e.g. for ΛK_S^0 analysis, an accepted event must contain at least one Λ and at least one K_S^0).

Charged particle tracking was performed using the Time Projection Chamber (TPC) [10] and the Inner Tracking System [11]. The ITS allows for high spatial resolution in determining the primary (collision) vertex. The determination of the momenta of the tracks was performed using tracks reconstructed with the TPC only and constrained to the primary vertex. A minimum requirement of 80 reconstructed TPC clusters was imposed, the purpose of which is to ensure both the quality of the track and good p_T resolution at large momenta, as well as to remove fake tracks.

Particle identification (PID) for reconstructed tracks was carried out using both the TPC and Time-of-Flight (TOF) detector [12, 13] in the pseudorapidity range $|\eta| < 0.8$. For TPC PID, a parametrized Bethe-Bloch formula was used to calculate the specific energy loss $\langle dE/dx \rangle$ in the detector expected for a particle with a given mass and momentum. For TOF PID, the particle mass was used to calculate the expected time-of-flight as a function of track length and momentum. For each PID method, a value $\langle N_{\sigma} \rangle$ was assigned to each track denoting the number of standard deviations between the measured track information and calculated values. This procedure was repeated for four "particle species hypotheses" electron, pion, kaon, and proton—, and for each hypothesis a different N_{σ} value was obtained per detector.

97 **2.1** K^{\pm} selection

The single-particle selection criteria used to select charged kaon candidates are summarized in Table 1. K^{\pm} track detection utilized both TPC and TOF detectors, and tracks within the range $0.14 < p_T < 1.5$ GeV/c were accepted. To reduce the number of secondaries (e.g. charged particles produced in the detector material, particles from weak decays, etc.) in the sample, a maximum cut is established on the distance-of-closest-approach (DCA) of the track to the primary vertex. This restriction is realized by imposing a DCA cut in both the transverse and beam directions.

PID was performed using both the TPC and TOF detectors via the N_{σ} method. The N_{σ} cuts become tighter with increasing momentum to reduce contamination within the samples, as the K^{\pm} signals begin to overlap more significantly with those from other particles, particularly e^{\pm} and π^{\pm} . Additional methods are included to reduce the contamination in the K^{\pm} samples from the electrons and pions. The specifics for these cuts are contained in Table 1. The purity of the K^{\pm} collections, $P_{K^{\pm}}$, was estimated to be approximately 97% from a Monte-Carlo (MC) study based on HIJING [14] simulations using GEANT3 [15] to model particle transport through the ALICE detectors. For a more detailed estimate of the K^{\pm} purity from an analysis employing similar cuts, see Ref. [16].

${ m K}^{\pm}$ selection				
Transverse momentum $p_{\rm T}$			$0.14 < p_{\rm T} < 1.5 ~{\rm GeV}/c$	
$ \eta $			< 0.8	
Transverse DCA to	primary vertex		< 2.4 cm	
Longitudinal DCA	to primary vertex		< 3.0 cm	
TPC and TOF N_{σ} C	Cuts			
p < 0.4 GeV/c			$N_{\rm \sigma K,TPC} < 2$	
$0.4 \le p < 0.45$ C	GeV/c		$N_{\rm \sigma K,TPC} < 1$	
$0.45 \le p < 0.80$	GeV/c		$N_{\sigma K,TPC} < 3$	
$0.43 \le p < 0.80$	GEV/C		$N_{\sigma K, TOF} < 2$	
$0.80 \le p < 1.0 \text{ C}$	SaV/c		$N_{\rm \sigma K,TPC} < 3$	
$0.00 \le p < 1.0 $	JC V/C		$N_{\sigma K, TOF} < 1.5$	
$p \ge 1.0 \text{ GeV/}c$			$N_{\sigma K,TPC} < 3$	
$p \geq 1.0 \text{ GeV/C}$			$N_{\sigma K, TOF} < 1$	
			$N_{\sigma e^-, \text{TPC}} < 3$	
Electron Rejection:	Rejection: Reject if all satisfied		$N_{\sigma e^-, \text{TPC}} < N_{\sigma K^{\pm}, \text{TPC}}$	
			$N_{\sigma e^-, \text{TOF}} < N_{\sigma K^{\pm}, \text{TOF}}$	
Pion Rejection: Rej	ect if:			
	TOF and TPC available		$N_{\sigma\pi,\mathrm{TPC}} < 3$	
p < 0.65 GeV/c			$N_{\sigma\pi,TOF} < 3$	
p < 0.03 GeV/C Only TPC available		p < 0.5 GeV/c	$N_{\sigma\pi,\mathrm{TPC}} < 3$	
$0.5 \le p < 0.65 \text{ GeV/}c$			$N_{\sigma\pi,\mathrm{TPC}} < 2$	
$0.65 \le p < 1.5 \text{ GeV/}c$			$N_{\sigma\pi,\mathrm{TPC}} < 5$	
0.05 ≤ p < 1.5 Ge vic		$N_{\sigma\pi,TOF} < 3$		
$p \ge 1.5 \mathrm{GeV}/c$		$N_{\sigma\pi,\mathrm{TPC}} < 5$		
			$N_{\sigma\pi,TOF} < 2$	

Table 1: K[±] selection

2.2 V^0 selection

112

130

131

136

139

140

141

142

143

144

 Λ ($\overline{\Lambda}$) and K_S^0 particles are reconstructed through their weak decays: $\Lambda \to p\pi^-$ ($\overline{\Lambda} \to \pi^+\overline{p}$) and $K_S^0 \to \pi^+\pi^-$. The obtained candidates are denominated as V^0 particles. The main cuts used are shown in Tables 2 and 3.

Aside from typical kinematic and PID cuts (using TPC and TOF detectors), the daughter tracks are also exposed to a minimum cut on their impact parameter with respect to the primary vertex. The decay vertex of the V^0 is assumed to be the point of closest approach between the daughter tracks. To help ensure quality, a maximum value cut is demanded on the distance-of-closest-approach between the daughters (DCA V^0 Daughters). The positive and negative daughter tracks are combined to form the V^0 candidate, the momentum of which is simply the sum of the momenta of the daughters (calculated at the DCA).

To select primary candidates, each V^0 is exposed to a maximum cut on its impact parameter with respect to the primary vertex. Furthermore, a selection is imposed on the pointing angle, θ_{pa} , between the V^0 momentum and the vector pointing from the primary vertex to the secondary V^0 decay vertex, which is achieved by appointing a minimum value on $\cos(\theta_{pa})$ ("Cosine of pointing angle" in Tables 2 and 3).

In order to remove the contamination to the Λ ($\overline{\Lambda}$) and K_S^0 samples due to misidentification of the protons and pions for each V^0 , the mass assuming different identities $(\Lambda, \overline{\Lambda}, K_S^0)^1$ is calculated and utilized in a set of misidentification cuts. For Λ ($\overline{\Lambda}$) selection, a candidate is assumed to be misidentified and is rejected if all of the following criteria are satisfied:

1.
$$\left| m_{\text{inv, K}_S^0 \text{ hyp.}} - m_{\text{PDG, K}_S^0} \right| < 9.0 \text{ MeV/}c^2$$

2. The daughter particles pass daughter cuts intended for K_S^0 reconstruction

3.
$$\left| m_{\mathrm{inv}, \mathrm{K_S^0 \, hyp.}} - m_{\mathrm{PDG}, \mathrm{K_S^0}} \right| < \left| m_{\mathrm{inv}, \Lambda(\overline{\Lambda}) \, \mathrm{hyp.}} - m_{\mathrm{PDG}, \Lambda(\overline{\Lambda})} \right|$$

Similarly, for $K_{\underline{S}}^0$ selection, a candidate is rejected if all of the following criteria are satisfied for the Λ case, or for the $\overline{\Lambda}$ case:

135 1.
$$\left| m_{\text{inv},\Lambda(\overline{\Lambda}) \text{ hyp.}} - m_{\text{PDG},\Lambda(\overline{\Lambda})} \right| < 9.0 \text{ MeV}/c^2$$

2. The daughter particles pass daughter cuts intended for $\Lambda(\overline{\Lambda})$ reconstruction

3.
$$\left| m_{\text{inv},\Lambda(\overline{\Lambda}) \text{ hyp.}} - m_{\text{PDG},\Lambda(\overline{\Lambda})} \right| < \left| m_{\text{inv},K_S^0 \text{ hyp.}} - m_{\text{PDG},K_S^0} \right|$$

A final cut on the invariant mass $(m_{\rm inv})$ is applied to enhance the purity. These cuts are shown in Tables 2 and 3. To avoid any auto-correlation effects, all V⁰ candidates within each single-particle collection (Λ , $\overline{\Lambda}$, and K⁰_S separately) are ensured to have unique daughters. If a daughter is found to be shared between V⁰ candidates in a given collection, only that with the smallest DCA to the primary vertex is kept. This procedure ensures unique single-particle collections before particle pairs are constructed; the elimination of shared daughters between the particles within each pair is described below in Sec. 2.3. The resulting invariant mass distributions for Λ and K⁰_S collections in the 0–10% centrality bin are shown in Figure 1. For the purity estimations, the background signal is estimated by fitting the $m_{\rm inv}$ distribution outside of the mass peak and assuming the distribution to continue smoothly within the mass peak. The Λ and $\overline{\Lambda}$ purities are estimated to be $P_{\Lambda(\overline{\Lambda})} \approx 95\%$, and that of the K⁰_S is $P_{\rm K^0_S} \approx 98\%$.

¹ For the misidentification cuts, the mass assuming K_S^0 hypothesis $(m_{\text{inv, }K_S^0 \text{ hyp.}})$ is calculated assuming $\pi^+\pi^-$ daughters, the mass assuming Λ hypothesis $(m_{\text{inv, }\Lambda \text{ hyp.}})$ is calculated assuming $p\pi^-$ daughters, and the mass assuming $\overline{\Lambda}$ hypothesis $(m_{\text{inv, }\overline{\Lambda} \text{ hyp.}})$ is calculated assuming $p\pi^+$ daughters. Additionally, $m_{\text{PDG, }K_S^0}$ and $m_{\text{PDG, }\Lambda(\overline{\Lambda})}$ denote the particle masses of the K_S^0 and Λ ($\overline{\Lambda}$), respectively, as recorded by the Particle Data Group [17].

Λ selection				
Transverse momentum $p_{\rm T}$		$> 0.4 \mathrm{GeV}/c$		
$ \eta $		< 0.8		
Invariant mass		$ m_{\rm p\pi} - m_{\rm PDG} < 3.8 \ {\rm MeV}/c^2$		
DCA to primary ve	ertex	< 0.5 cm		
Cosine of pointing	angle	> 0.9993		
Decay Length		< 60 cm		
	Daughter Cuts (π a	and p)		
$\overline{ \eta }$		< 0.8		
DCA πp Daughters	S	< 0.4 cm		
	π -specific cut	s		
p_{T}		> 0.16 GeV/c		
DCA to primary vertex		> 0.3 cm		
TPC and TOF N_{σ}	Cuts			
p < 0.5 GeV/c		$N_{\sigma_{\text{TPC}}} < 3$		
	TOF & TPC available	$N_{\sigma_{\text{TPC}}} < 3$		
$p \ge 0.5 \text{ GeV/}c$		$N_{\sigma_{\text{TOF}}} < 3$		
	Only TPC available	$N_{\sigma_{\text{TPC}}} < 3$		
	p-specific cuts	S		
p_{T}		$> 0.5(p) [0.3(\overline{p})] \text{ GeV/}c$		
DCA to primary vertex		> 0.1 cm		
TPC and TOF N_{σ} Cuts				
p < 0.8 GeV/c		$N_{\sigma_{\mathrm{TPC}}} < 3$		
	TOF & TPC available	$N_{\sigma_{\mathrm{TPC}}} < 3$		
$p \ge 0.8 \text{ GeV/}c$	TOT & IT C available	$N_{\sigma_{\text{TOF}}} < 3$		
	Only TPC available	$N_{\sigma_{\text{TPC}}} < 3$		

Table 2: Λ selection

K _S ⁰ selection				
Transverse momentum $p_{\rm T}$		> 0.2 GeV/ <i>c</i>		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		< 0.8		
Invariant mass		$0.480 < m_{\pi^+\pi^-} < 0.515 \text{ GeV/}c^2$		
DCA to primary ve	ertex	< 0.3 cm		
Cosine of pointing	angle	> 0.9993		
Decay Length		< 30 cm		
	π^\pm Daughter	Cuts		
p_{T}		> 0.15 GeV/c		
$\overline{ \eta }$		< 0.8		
DCA $\pi^+\pi^-$ Daughters		< 0.3 cm		
DCA to primary vertex		> 0.3 cm		
TPC and TOF N_{σ} Cuts				
p < 0.5 GeV/c		$N_{\sigma_{\mathrm{TPC}}} < 3$		
$p \ge 0.5 \text{ GeV}/c$	TOF & TPC available	$N_{\sigma_{\mathrm{TPC}}} < 3$		
		$N_{\sigma_{ m TOF}} < 3$		
	Only TPC available	$N_{\sigma_{ m TPC}} < 3$		
0				

Table 3: K_S⁰ selection

(a) $p\pi^-$ invariant mass distribution where the Λ peak is seen. (b) $\pi^+\pi^-$ invariant mass distribution where the K_S^0 peak is seen.

Fig. 1: (Color online) Invariant mass (m_{inv}) distribution of $p\pi^+$ pairs showing the Λ peak 1(a), and of $\pi^+\pi^-$ pairs showing the K_S^0 peak 1(b), for V^0 candidates. The bottom panels are zoomed to show the background with fit. The vertical dashed lines represent the m_{inv} cuts used in the analyses, the vertical dotted lines delineate the region over which the background was fit, and the dash-dotted line shows the background fit.

2.3 Pair Construction

In order to reduce the contamination to the two-particle correlations due to pairs sharing daughters and to split or merged tracks, two main pair cuts are applied: a shared daughter cut, and an average separation cut. The purpose of the shared daughter cut is to ensure the first particle in the pair is unique from the second. For pairs formed of two V^0s (i.e. ΛK^0_s), this cut is implemented by removing all pairs which share a daughter. For a pair formed of a single V^0 and a charged track (i.e. ΛK^\pm), the cut removes all pairs in which the charged track is also claimed as a daughter of the V^0 .

The purpose of the average separation cut is to remove splitting and merging effects, and it is employed in the following way. The average separation between two tracks is calculated using their spatial separation as determined at several points throughout the TPC (every 20 cm radially from 85 cm to 245 cm). For the ΛK_S^0 analysis, which involves two V^0 particles, a minimum average separation cut of 6 cm between the like-charge daughters in the pairs is imposed (for example, between the p daughter of the Λ and the π^+ daughter of the K_S^0). For the ΛK^\pm analyses, a minimum average separation cut of 8 cm is enforced between the K^\pm and the Λ daughter sharing the same charge (for example, in the ΛK^+ analysis, between the p daughter of the Λ and the K^+). The cut values used coincide with the values at which the average separation correlation functions stabilize to unity, signifying the splitting and merging effects are no longer abundant. These effects between oppositely charged tracks were found to be negligible, therefore no cuts on unlike-charge tracks are imposed.

3 Analysis Methods

3.1 Correlation Function

Two-particle correlation functions are built as the ratio of the covariant two-particle and single-particle spectra:

$$C^{ab}(\vec{p_a}, \vec{p_b}) = \frac{E_a E_b \frac{dN^{ab}}{d^3 p_a d^3 p_b}}{\left(E_a \frac{dN^a}{d^3 p_a}\right) \left(E_b \frac{dN^b}{d^3 p_b}\right)}$$
(1)

This may be expressed theoretically as in the Koonin-Pratt equation [18, 19]:

$$C(\mathbf{k}^*) = \int S_{\mathbf{P}}(\mathbf{r}^*) |\Psi_{\mathbf{k}^*}(\mathbf{r}^*)|^2 d^3 \mathbf{r}^*$$
 (2)

where \mathbf{k}^* is the relative momentum of the pair (defined as $\mathbf{k}^* = \frac{1}{2} |\mathbf{p}_1^* - \mathbf{p}_2^*|$, where \mathbf{p}_1^* and \mathbf{p}_2^* are the momenta of the two particles) in the pair rest frame (PRF), \mathbf{r}^* is the relative separation in the same frame, \mathbf{P} is the total pair momentum, $S_{\mathbf{P}}(\mathbf{r}^*)$ is the pair source distribution, and $\Psi_{\mathbf{k}^*}(\mathbf{r}^*)$ is the two-particle wave-function. Within the $|\Psi|^2$ term is contained the particle interaction information, and therefore the scattering parameters.

In practice, the correlation function is formed experimentally as:

$$C(k^*) = \mathcal{N}\frac{A(k^*)}{B(k^*)} \tag{3}$$

where $A(k^*)$ is the signal distribution, $B(k^*)$ is the reference distribution, and $\mathscr N$ is a normalization parameter. $B(k^*)$ is used to divide out the phase-space effects, leaving only the femtoscopic effects in the correlation function. The normalization parameter is chosen such that the mean value of the correlation function equals unity for $k^* \in [0.32, 0.4]$ GeV/c.

In practice, $A(k^*)$ is constructed by binning in k^* pairs from the same event. Typically, $B(k^*)$ is obtained using mixed-event pairs [20], i.e. particles from a given event are paired with those from another event. Other techniques exist; most notably, one may use same-event pairs after rotating one particle in the pair by 180° in the transverse plane (see Sec. 3.5 and App. A for more details). For this analysis, the typical mixed-event method is utilized, and each event is mixed with five others for the reference distribution construction. In order to mix only similar events, events are binned both in primary vertex location (2 cm bin width) and in centrality (5% bin width), and only events within a given bin are mixed; i.e. only events of like centrality and of like primary vertex location are mixed.

This analysis presents correlation functions for three centrality bins (0–10%, 10–30%, and 30–50%), and is pair transverse momentum ($k_T = \frac{1}{2} |\mathbf{p}_{T,1} + \mathbf{p}_{T,2}|$) integrated (i.e. not binned in k_T) due to limited statistics. The k_T -dependence of the three ΛK combinations is comparable, so an integrated analysis is acceptable. Two opposite magnetic field polarities were applied during the data acquisition, and the correlation functions from each are constructed separately. These are kept separate during the fitting process, and are combined using a weighted average when plotting, where the weight is the number of numerator pairs in the normalization range.

3.2 Modeling the correlation function

189

191

192

193

194

196

197

198

199

200

202

203

204

205

In the absence of the Coulomb interaction, the correlation function can be described analytically with a model derived by Lednický and Lyuboshitz [7]. Within the model, the (non-symmetrized) two-particle wave function is expressed as a superposition of a plane wave and diverging spherical wave, and the complex scattering amplitude, $f^S(k^*)$, is evaluated via the effective range approximation

$$f^{S}(k^{*}) = \left(\frac{1}{f_{0}^{S}} + \frac{1}{2}d_{0}^{S}k^{*2} - ik^{*}\right)^{-1}$$
(4)

where f_0^S is the complex s-wave scattering length, d_0^S is the effective range of the interaction, and S denotes the total spin of the particular pair. The sign convention is such that a positive real component of the scattering length, $\Re f_0$, represents an attractive interaction, while a negative $\Re f_0$ represents a repulsion. A spherically symmetric Gaussian distribution with radius R_{inv} is assumed for the pair emission source in the PRF. With these assumptions, utilizing the Koonin-Pratt equation (Eq. 2), the correlation function for non-identical particle pairs with at least one uncharged member is given by [7]

$$C(k^*)_{\text{Lednick}\acute{y}} = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k^*)}{R_{\text{inv}}} \right|^2 \left(1 - \frac{d_0^{S}}{2\sqrt{\pi}R_{\text{inv}}} \right) + \frac{2\Re f^{S}(k^*)}{\sqrt{\pi}R_{\text{inv}}} F_1(2k^*R_{\text{inv}}) - \frac{\Im f^{S}(k^*)}{R_{\text{inv}}} F_2(2k^*R_{\text{inv}}) \right]$$
(5)

where $\Re f^S(k^*)$ and $\Im f^S(k^*)$ denote the real and imaginary parts of the complex scattering length, respectively, and F_1 and F_2 are the analytic functions. The weight factor, ρ_S is the normalized emission probability for a state of total spin S; in the assumed case of unpolarized emission, $\rho_S = (2S+1)/[(2j_1+1)(2j_2+1)]$, where $j_{1,2}$ are the spins of the particles in the pair. The Λ hyperon is spin-1/2 and K mesons are spin-0, so the Λ K system only has one possible total spin state S, and therefore $C(k^*)$ in Eq. 5 has only a single term. In the following, the S superscript is dropped from all scattering parameters.

3.3 Residual Correlations

The purpose of this analysis is study the interaction and scale of the emitting source of the primary ΛK pairs. However, in practice some of the selected particles originate as decay products from other resonances, and some of the final pairs contain a misidentified member. In both cases, these contribute to the finally observed correlation function, and obscure its relation to the primary ΛK system. The contributions from fake pairs, which contain at least one misidentified member, are assumed to average to unity, in which case they simply attenuate the femtoscopic signal. Those pairs whose members originate as daughters from resonances carry information about the parent system. In effect, the correlation between the parents will be visible, although smeared out, in the daughters' signal. This is termed a residual correlation resulting from feed-down. As described in the following, the main sources of residual correlations in the ΛK systems result from Λ hyperons which have decayed from Σ^0 , Ξ^0 , and Ξ^- parents.

The finally measured correlation function is a combination of the genuine ΛK correlation with contributions from resonances and impurities [21]

$$C_{\text{measured}}(k_{\Lambda K}^{*}) = 1 + \lambda_{\Lambda K}'[C_{\Lambda K}(k_{\Lambda K}^{*}) - 1] + \sum_{ij} \lambda_{ij}'[C_{ij}(k_{\Lambda K}^{*}) - 1]$$

$$\lambda_{ij}' = \lambda_{\text{Fit}} \lambda_{ij}$$

$$\sum_{ij} \lambda_{ij}' = \lambda_{\text{Fit}} \sum_{ij} \lambda_{ij} = \lambda_{\text{Fit}}$$
(6)

where the ΛK term represents the genuine ΛK correlation, and the ij terms denote the contributions from residual feed-down and impurities. More specifically, $C_{ij}(k_{\Lambda K}^*)$ is the correlation function of the parent system expressed in terms of the relative momentum of the daughter ΛK pair. The λ_{ij} parameters serve as weights dictating the relative strength of each component's contribution to the observed signal, and are normalized to unity (i.e. $\sum_{ij} \lambda_{ij} = 1$, where ij includes also the primary ΛK component). The individual λ_{ij} are fixed (and whose values can be found in Table 4), but the parameter λ_{Fit} in Eq. 6 is left free.

To obtain the parent correlation function expressed in the relative momentum of the daughter pair, a transform matrix is utilized

$$C_{ij}(k_{\Lambda K}^*) \equiv \frac{\sum\limits_{k_{ij}^*} C_{ij} \left(k_{ij}^*\right) T\left(k_{ij}^*, k_{\Lambda K}^*\right)}{\sum\limits_{k_{ij}^*} T\left(k_{ij}^*, k_{\Lambda K}^*\right)}$$
(7)

where $T(k_{ij}^*, k_{\Lambda K}^*)$ is the transform matrix, which is generated with the THERMINATOR 2 [22] simulation. The transform matrix describes the decay kinematics of the parent system into the daughter, and is essentially an unnormalized probability distribution mapping the k^* of the parent pair to that of the daughter pair when one or both parents decay (see Ref. [21] for more details).

Λl	K^+	$\overline{\Lambda} \mathrm{K}^-$	-	ΛK^-	-	$\overline{\Lambda}$ I	X^+
Source	λ value	Source	λ value	Source	λ value	Source	λ value
Primary	0.527	Primary	0.526	Primary	0.526	Primary	0.527
$\Sigma^0 \mathrm{K}^+$	0.111	$\overline{\Sigma}^0 \mathrm{K}^-$	0.110	$\Sigma^0 \mathrm{K}^-$	0.110	$\overline{\Sigma}^0 \mathrm{K}^+$	0.111
$\Xi^0 \mathrm{K}^+$	0.039	$\overline{\Xi}^0\mathrm{K}^-$	0.035	$\Xi^0 \mathrm{K}^-$	0.038	$\overline{\Xi}^0\mathrm{K}^+$	0.036
Ξ^-K^+	0.050	$\overline{\Xi}^+ \mathrm{K}^-$	0.046	$\Xi^- K^-$	0.050	$\overline{\Xi}^+ K^+$	0.046
Other	0.226	Other	0.235	Other	0.228	Other	0.233
Fakes	0.048	Fakes	0.048	Fakes	0.048	Fakes	0.048

$\Lambda { m K}_{ m S}^0$		$\overline{\Lambda} { m K}_{ m S}^0$		
Pair System	λ value	Pair System	λ value	
Primary	0.543	Primary	0.544	
$\Sigma^0 \mathrm{K}^0_\mathrm{S}$	0.120	$\overline{\Sigma}^0 \mathrm{K}^0_\mathrm{S}$	0.120	
$\Xi^0\mathrm{K}^0_\mathrm{S}$	0.042	$\overline{\Xi}^0 \mathrm{K}^0_\mathrm{S}$	0.039	
$\Xi^-\mathrm{K}^0_\mathrm{S}$	0.054	$\overline{\Xi}^+ { m K}^0_{ m S}$	0.050	
Other	0.194	Other	0.199	
Fakes	0.048	Fakes	0.048	

Table 4: λ values for the individual components of the ΛK correlation functions.

In practice, the contribution of a parent system (e.g. $\Sigma^0 K^+$) to the daughter correlation function (e.g. ΛK^+) is determined by modeling the parent system's correlation function and running it through the appropriate transform matrix. Since the interactions between these particles are not known, all residual pairs are assumed to have the same source size as the daughter pair. Furthermore, Coulomb-neutral residual pairs are assumed to share the same scattering parameters as the ΛK daughter pair. When modeling $\Xi^- K^\pm$ residual correlations, the experimental $\Xi^- K^\pm$ data are used. Consistent results are found when modeling the $\Xi^- K^\pm$ system with a Coulomb-only scenario, in which the strong interaction is assumed to be negligible. This approximation is well justified as a Coulomb-only description of the system describes, reasonably well, the broad features of the $\Xi^- K^\pm$ correlation.

The λ_{ij} parameters dictate the relative strength of each contribution to the correlation function, and can be estimated using the THERMINATOR 2 and HIJING simulations. More specifically, a λ_{ij} parameter is estimated as the total number of ΛK pairs in the experimental sample originating from ij (N_{ij}) divided by the total number of ΛK pairs (N_{Total}). The number of detected ΛK pairs involves both the raw yields and the reconstruction efficiencies. The reconstruction efficiencies (RE_{ij}) are estimated with MC HIJING data, which have been run through GEANT to simulate the detector response. HIJING events are generated from a superposition of PYTHIA p-p collisions, and lack the strangeness saturation of a fully thermalized medium. As a result, HIJING is unreliable in providing the yields needed for this analysis, and, instead, the yields are estimated with the THERMINATOR 2 simulation (N_{ij}^{THERM}). The number of ΛK pairs is then estimated as the product of the yield with the reconstruction efficiency, $N_{ij} = N_{ij}^{THERM} RE_{ij}^{HJING}$.

Femtoscopic analyses are sensitive to the pair emission structure at kinetic freeze-out. Therefore, in the eyes of femtoscopy, any particle born from a resonance decay before last rescattering is seen as primary. The THERMINATOR 2 simulation shows that, aside from primaries, the Λ hyperons and K mesons decay from a large number of resonances (\sim 50 Λ parent species, and \sim 70 K parent species), and the most significant contributing pair systems are $\Sigma^0 K$, $\Xi^- K$, $\Xi^0 K$, $\Sigma^{*+} K$, $\Sigma^{*-} K$, $\Sigma^{*0} K$, ΛK^* , $\Sigma^0 K^*$, $\Xi^- K^*$, and $\Xi^0 K^*$. However, the simulation does not include a hadronic rescattering phase, and not all of the aforementioned pair systems will survive until kinetic freeze-out. The systems resulting from

electromagnetic or weak decays (Σ^0 , Ξ^- , and Ξ^0) will survive long after kinetic freeze-out, and will contribute residual signals to the ΛK correlation functions. The majority of the remaining contributors decay via the strong interaction with mean proper lifetimes less than a few fm/c, and whose daughters should always be considered primary. The mean proper lifetime of the parent is used to judge whether or not the daughter is treated as primary. A decay product is considered primary if its parent has a mean proper lifetime τ satisfying $c\tau < 10$ fm. Changing $c\tau$ only moderately affects the λ_{ij} parameters, and the effect is included in the estimation of the systematic uncertainties. In order for a pair to be considered primary, both particles in the pair must be considered primary. If either parent has $\tau > \tau_{\rm max}$, the daughter pair contributes to the "Other" category when calculating λ parameters. For this hodgepodge of pair systems, all with different two-particle interactions and single-particle source distributions, we assume the net correlation effect averages to unity.

Residual contributions from Σ^0 , Ξ^0 , Ξ^- are accounted for in the fit. The λ_{ij} values used can be found in Table 4, which also included values for "Other" and "Fakes". The "Other" category contains pairs which are not considered primary, and which do not originate from the residual contributors accounted for in the fit. The "Fakes" category represents pairs that are mistakenly identified as ΛK . To estimate the λ_{Fakes} value, the number of fake pairs is assumed to be equal to the total number of simulated pairs multiplied by $(1-PP_{\Lambda K})/PP_{\Lambda K}$, where $PP_{\Lambda K}$ is the ΛK pair purity, estimated as the product of the two single-particle purities $(PP_{\Lambda K} = P_{\Lambda}P_{K})$. More simply, this amounts to $\lambda_{Fakes} = 1.0 - PP_{\Lambda K}$. The correlations in both of these categories ("Other" and "Fakes") are assumed to average to unity, and pairs in these categories therefore only contribute by attenuating the signal.

3.4 Momentum Resolution Corrections

Finite track momentum resolution causes the reconstructed momentum of a particle to smear around the true value. This, of course, also holds true for V^0 particles. The effect is propagated up to the pairs of interest, which causes the reconstructed relative momentum (k_{Rec}^*) to differ from the true momentum (k_{True}^*). The effects of finite momentum resolution are accounted for through the use of a response matrix generated with MC HIJING data. With this approach, the resolution correction is applied on-the-fly during the fitting process by propagating the theoretical (fit) correlation function through the response matrix, according to

$$C_{\text{fit}}(k_{\text{Rec}}^*) = \frac{\sum_{k_{\text{True}}^*} M_{k_{\text{Rec}}^*, k_{\text{True}}^*} C_{\text{fit}}(k_{\text{True}}^*)}{\sum_{k_{\text{True}}^*} M_{k_{\text{Rec}}^*, k_{\text{True}}^*}}$$
(8)

where $M_{k_{\text{Rec}}^*,k_{\text{True}}^*}$ is the response matrix, $C_{\text{fit}}(k_{\text{True}}^*)$ is the fit binned in k_{True}^* , and the denominator normalizes the result. Equation 8 describes that, for a given k_{Rec}^* bin, the observed value of $C(k_{\text{Rec}}^*)$ is a weighted average of all $C(k_{\text{True}}^*)$ values, where the weights are the normalized number of counts in the $[k_{\text{Rec}}^*,k_{\text{True}}^*]$ bin.

3.5 Non-Femtoscopic Background

A significant non-femtoscopic background is observed in all of the studied ΛK correlations which increases with decreasing centrality, is the same amongst all ΛK^{\pm} pairs, and is more pronounced in the ΛK^0_S system (the difference in ΛK^{\pm} and ΛK^0_S backgrounds is due mainly to a difference in kinematic cuts). The background is due primarily to particle collimation associated with elliptic flow, and results from mixing events with unlike event-plane angles [23]. The effect produces the observed suppression at intermediate- k^* , and should also lead to an enhancement at low- k^* . The behavior of the non-femtoscopic background is needed in the low- k^* signal region, but a clean view of it is only possible outside of such a region.

¹ An attempt was made to decrease the background by binning events in Ψ_{EP} , but only a small reduction in the signal was achieved due to the limited event-plane resolution.

The THERMINATOR 2 simulation has been shown to reproduce the background features in a πK analysis [23]. The simulation does not include any final-state effects, but they can be introduced by weighting the numerator pairs with the modulus squared of the appropriate two-particle wave-function when building the signal distributions. For the present purpose, only the behavior of the non-femtoscopic background is desired, and unit weights are used. Figure 2 shows the THERMINATOR 2 simulation (open triangles) together with experimental data (closed circles). The figure also shows a 6th-order polynomial fit to the simulation (dashed curves), as well as the fit polynomial scaled to match the data (solid curves).

The description by THERMINATOR 2 of the non-femtoscopic backgrounds in the ΛK^{\pm} systems is remarkable, and can be used in a quantitative fashion to help fit the data. More specifically, the non-femtoscopic backgrounds were modeled by (6th-order) polynomial fits to THERMINATOR 2 simulation for the ΛK^{\pm} analyses; one polynomial for each centrality class. The form of each polynomial is set before use with the experimental data, by fitting to the THERMINATOR 2 simulation, shown in Fig. 2. The extracted polynomial is adjusted to best describe the data by introducing a scale factor and a vertical shift, both of which are determined by fitting to data in the region $0.32 < k^* < 0.80 \text{ GeV}/c$; during the fit of the low- k^* signal region, the background is fixed. In all cases, the non-femtoscopic background correction was applied as a scale factor.

Fig. 2: (Color online) THERMINATOR 2 simulation (open triangles) together with experimental data (closed circles). Results are shown for ΛK^+ (left), ΛK^- (middle), and ΛK^0_S (right). A 6th-order polynomial fit to the simulation is shown as a dashed curve. This polynomial is scaled to match the experimental data. The polynomial fit with scale factor applied is drawn as a solid curve.

An alternative approach to treating the non-femtoscopic background is to instead attempt to eliminate it. The background may be effectively reduced by forming the reference distribution $(B(k^*))$ with the "Stavinskiy method". With the Stavinskiy method, mixed-event pairs are not used for the reference distribution; instead, same-event pseudo-pairs, formed by rotating one particle in a real pair by 180°

in the transverse plane, are used. This rotation rids the pairs of any femtoscopic correlation, while maintaining correlations due to elliptic flow (and other suitably symmetric contributors). The effect on the ΛK^+ correlation functions can be seen in the appendix, in Fig. A.1.

3.6 Summarized correlation function construction

The parameters included in the generation of a correlation function are: λ_{Fit} , R, f_0 ($\Re f_0$ and $\Im f_0$ separately), d_0 , and normalization \mathscr{N} . For the fit, a given pair and its conjugate (e.g. ΛK^+ and $\overline{\Lambda} K^-$) share scattering parameters ($\Re f_0$, $\Im f_0$, d_0), and the three distinct analyses (ΛK^+ , ΛK^- , and ΛK_S^0) are assumed to have scattering parameters unique from each other. The pair emission source for a given centrality class is assumed similar between all analyses; therefore, for each centrality, all ΛK analyses share a common radius parameter. For each centrality class, a single λ_{Fit} parameter (see Eq. 6) is shared amongst all. Finally, each correlation function has a unique normalization parameter.

All correlation functions are normalized in the range $0.32 < k^* < 0.40 \text{ GeV/}c$, and fit in the range $0.0 < k^* < 0.30 \text{ GeV/}c$. For the ΛK^- analysis, the region $0.19 < k^* < 0.23 \text{ GeV/}c$ was excluded from the fit to exclude the bump caused by the Ω^- resonance. For each pair system, contributions from three residual contributors are accounted for, as discussed in Sec. 3.3, and whose individual λ values are listed in Table 4. Effects of finite track momentum resolution are also accounted for, as outlined in Sec. 3.4. The non-femtoscopic backgrounds are modeled using the THERMINATOR 2 simulation, as described in Sec. 3.5. A log-likelihood fit function is used as the statistic quantifying the quality of the fit [1].

To summarize, the complete fit function is constructed as follows. The uncorrected, primary, correlation function, $C_{AK}(k_{AK,True}^*)$, is constructed using Eq. 5. The correlation functions describing the parent systems which contribute residually, $C_{ij}(k_{ij,True}^*)$, are obtained using Eq. 5 for Coulomb-neutral pairs or experimental data for Ξ^-K^\pm contributions. The residual contributions are then found by running each parent correlation function through the appropriate transform matrix, via Eq. 7. The primary and residual correlations are combined, via Eq. 6 with Tab. 4, to form $C'_{Fit}(k_{True}^*)$. Corrections are applied to account for momentum resolution effects using Eq. 8, to obtain $C'_{Fit}(k_{Rec}^*)$. Finally, the non-femtoscopic background correction, $F_{Bgd}(k_{Rec}^*)$ is applied and the final fit function is obtained

$$C_{\text{Fit}}(k_{\text{Rec}}^*) = \mathcal{N} \cdot F_{\text{Bgd}}(k_{\text{Rec}}^*) \cdot C_{\text{Fit}}'(k_{\text{Rec}}^*)$$
(9)

where \mathcal{N} is a normalization parameter. $C'_{\mathrm{Fit}}(k_{\mathrm{Rec}}^*)$ includes all components of the correlation function weighted by the appropriate λ_{ij} (see Sec. 3.3) parameters and has been corrected for momentum resolution effects (see Sec. 3.4).

3.7 Systematic uncertainties

To quantify the systematic errors on the data, all correlation functions built using all varied cut values were bin-by-bin averaged, and the resulting variance of each bin was taken as the systematic error. The cuts included in the systematic study, as well as the values used in the variations, are shown in Tab. 5. Note, the central value corresponds to that used in the analysis. Similarly, the fit parameters extracted from all of these correlation functions were averaged, and the resulting variances were taken as the systematic errors for the fit parameters. Additionally, for the extracted fit parameters, a systematic analysis was done on the fit method through varying the k^* fit range, varying the modeling of the non-femtoscopic background, as well as varying τ_{max} defining the primary category in the treatment of residual correlations. The choice of k^* fit range was varied by \pm 25%. As previously stated, the non-femtoscopic backgrounds are modeled with a polynomial fit to the THERMINATOR 2 simulation, scaled to match the data. To study the contribution of this choice to the systematic errors, the backgrounds of all of the systems were modeled by fitting to the data with a linear, quadratic, and Gaussian form. Finally, τ_{max} was varied from the default value of $\tau_{\text{max}} = 10 \text{ fm/}c$ down to $\tau_{\text{max}} = 6 \text{ fm/}c$ and up to $\tau_{\text{max}} = 15 \text{ fm/}c$. The resulting uncertainties in the extracted parameter sets were combined with the uncertainties arising from the particle and pair cuts.

$\Lambda { m K}^0_{ m S}$ systematics					
DCA to PV Λ $(\overline{\Lambda})$	< [0.4, 0.5, 0.6] cm				
DCA to PV K _S ⁰	< [0.2, 0.3, 0.4] cm				
$\overline{\mathrm{DCA}\Lambda(\overline{\Lambda})}$ Daughters	< [0.3, 0.4, 0.5] cm				
DCA K _S ⁰ Daughters	< [0.2, 0.3, 0.4] cm				
$\cos(\theta_{PA}) \Lambda(\overline{\Lambda})$ to PV	> [0.9992, 0.9993, 0.9994]				
$\cos(\theta_{P\!A})~{ m K}^0_{ m S}$ to PV	> [0.9992, 0.9993, 0.9994]				
DCA to PV of $p(\overline{p})$ Daughter of $\Lambda(\overline{\Lambda})$	> [0.05, 0.1, 0.2] cm				
DCA to PV of $\pi^-(\pi^+)$ Daughter of Λ ($\overline{\Lambda}$)	> [0.2, 0.3, 0.4] cm				
DCA to PV of π^+ Daughter of K_S^0	> [0.2, 0.3, 0.4] cm				
DCA to PV of π^- Daughter of K_S^0	> [0.2, 0.3, 0.4] cm				
$\overline{\Delta \mathbf{r}}$ of Like-Charge Daughters	> [5, 6, 7] cm				
ΛK^{\pm} systematics	$\Lambda { m K}^{\pm}$ systematics				
DCA Λ ($\overline{\Lambda}$) to PV	< [0.4, 0.5, 0.6] cm				
DCA $\Lambda(\overline{\Lambda})$ Daughters	< [0.3, 0.4, 0.5] cm				
$\cos(\theta_{PA}) \Lambda(\overline{\Lambda})$ to PV	> [0.9992, 0.9993, 0.9994]				
DCA to PV of $p(\overline{p})$ Daughter of $\Lambda(\overline{\Lambda})$	> [0.05, 0.1, 0.2] cm				
DCA to PV of $\pi^-(\pi^+)$ Daughter of Λ $(\overline{\Lambda})$	> [0.2, 0.3, 0.4] cm				
$\overline{\Delta r}$ of Λ ($\overline{\Lambda}$) Daughter with Same Charge as K^{\pm}	> [7, 8, 9] cm				
DCA to PV in Transverse Plane of K [±]	< [1.92, 2.4, 2.88] cm				
DCA to PV in Longitudinal Direction of K [±]	< [2.4, 3.0, 3.6] cm				

Table 5: ΛK systematics. In the table, the shorthand used is as follows: PA = pointing angle; PV = primary vertex; DCA = distance of closest approach; $\overline{\Delta r}$ = average separation

4 Results

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

394

395

396

Figure 3 shows the ΛK data with fits for all studied centrality bins (0–10%, 10–30%, and 30–50%). All six ΛK systems (ΛK^+ , $\overline{\Lambda} K^-$, ΛK^- , $\overline{\Lambda} K^+$, ΛK_S^0 , $\overline{\Lambda} K_S^0$) are fit simultaneously across all centralities, with a single radius and normalization λ_{Fit} parameter for each centrality bin. Scattering parameters ($\Re f_0$, $\Im f_0$, d_0) are shared between pair-conjugate systems, but assumed unique between the different ΛK charge combinations (i.e. a parameter set describing the ΛK^+ & $\overline{\Lambda} K^-$ system, a second set describing the ΛK^- & $\overline{\Lambda} K^+$ system, and a third for the ΛK_S^0 & $\overline{\Lambda} K_S^0$ system). Each correlation function receives a unique normalization parameter. The fits are corrected for finite momentum resolution effects, non-femtoscopic backgrounds, and residual correlations resulting from the feed-down from resonances. In Fig. 3, lines represent statistical errors, while boxes represent systematic errors. The dotted curve shows the primary (ΛK) contribution to the fit (i.e. $1 + \lambda'_{\Lambda K} C_{\Lambda K} (k^*_{\Lambda K})$ in Eq. 6), the dashed curve shows the fit to the non-femtoscopic background, and the solid curve shows the final fit after all corrections have been applied.

Fig. 3: (Color online) Fit results for the ΛK data, with pair and conjugate combined. The $\Lambda K^+ \oplus \overline{\Lambda} K^-$ data are shown in the left column, the $\Lambda K^- \oplus \overline{\Lambda} K^+$ in the middle, and the $\Lambda K^0_S \oplus \overline{\Lambda} K^0_S$ in the right. Rows differentiate the different centrality bins (0–10% in the top, 10–30% in the middle, and 30–50% in the bottom). See text for further details.

Figure 4 (left) summarizes the extracted ΛK scattering parameters, and includes theoretical predictions made using chiral perturbation theory [2, 3]. The predictions of Ref. [2] do not distinguish the KA and KA interactions and results are shown for two different parameter sets, whereas Ref. [3] offers unique $K\Lambda$ and $\overline{K}\Lambda$ scattering parameters for a single parameter set. In all cases, the predicted scattering parameters have both positive real and imaginary components, which is clearly inconsistent with the ΛK^+ system. For all ΛK systems, positive imaginary parts of the scattering lengths, $\Im(f_0)$, are extracted from the experimental data. This is expected, as $\Im(f_0)$ describes the inelastic scattering channels. More interestingly, the results show that the ΛK^+ and ΛK^- systems differ in the sign of the real part, $\Re(f_0)$, of their scattering lengths, with a negative value for ΛK^+ and positive value for ΛK^- . The $\Re f_0$ extracted for the ΛK_S^0 system is positive, and within errors of that of the ΛK^- . The real part of the scattering length describes the effect of the strong interaction, making the difference in these systems quite intriguing. As is the usual convention in femtoscopy, a positive $\Re(f_0)$ (ΛK^- , ΛK_s^0) signifies that the effect of the interaction is attractive, while a negative $\Re(f_0)$ (ΛK^+) signifies a repulsive interaction. Past studies of kaon-proton scattering found the K^- -p interaction to be attractive, and that of the K^+ -p to be repulsive [4–6]. With respect to the kaons, this is similar to the current finding of an attractive Λ -K⁻ interaction and a repulsive Λ -K⁺ interaction. This difference could be due to an effect arising from different quark-

403

Fig. 4: (Color online) Extracted fit parameters for all of the ΛK systems. [Left]: $\Im f_0$ vs. $\Re f_0$, together with d_0 to the right for the ΛK^+ (circles), ΛK^- (squares) and ΛK^0_S (triangles) systems. [Right]: λ vs. Radius for the 0–10% (circles), 10–30% (squares), and 30–50% (triangles) centrality bins. In the fit, all ΛK systems share common radii. The cross ([A] = Ref. [2]) and X symbols ([B] = Ref. [3]) points show theoretical predictions made using chiral perturbation theory.

antiquark interactions between the pairs ($s\bar{s}$ in ΛK^+ , $u\bar{u}$ in ΛK^-). A related explanation could be that the effect is due to the different net strangeness for each system.

Fig. 5: (Color online) Extracted fit R_{inv} parameters as a function of pair transverse mass (m_{T}) for several centralities. Results from the ΛK analysis are presented together with ALICE published data [24] for various other pair systems.

Figure 4 (right) presents the λ vs. radius parameters for all three studied centrality bins. Furthermore, a comparison of the extracted radii from this study to those of other systems measured by ALICE [24] is shown in Figure 5. The figure shows extracted R_{inv} vs. m_{T} for several centralities and for several different pair systems. The m_{T} value used for the present ΔK results was taken as the average of the three systems¹.

$$m_{\mathrm{T,pair}}^2 = \left(\frac{m_{\mathrm{inv}}}{2}\right)^2 + \left(\frac{1}{2}|\pmb{p}_{\mathrm{T,1}} + \pmb{p}_{\mathrm{T,2}}|\right)^2 = (K^0)^2 - (K^3)^2 \quad \text{where } K^{\mu} \equiv \frac{1}{2}\left(p_1^{\mu} + p_2^{\mu}\right)$$

¹ For non-identical particle pairs, to be more directly analogous to the single particle $m_{\rm T}$, the definition of the pair transverse mass used in this study is

413

414

415

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

446

447

448

The radii are observed to increase for more central events, as expected from a simple geometric picture of 404 the collisions. They also demonstrate a decreasing size with increasing m_T in identical particle studies, as 405 expected in the presence of collective radial flow [25]. It was found that [26], even in the presence of good 406 global $m_{\rm T}$ -scaling for the three-dimensional radii in the Longitudinally Co-Moving System (LCMS), a 407 particle species dependence will exist for the R_{inv} measured in the PRF, due to trivial kinematic reasons. 408 These kinematic effects, resulting from the transformation from LCMS to PRF, causes smaller masses to 409 exhibit larger R_{inv} [24] (explaining, for instance, how the pion radii are systematically higher than kaon 410 radii at the same approximate $m_{\rm T}$). 411

It is clear from the results in Fig. 5 that the Λ K systems do not conform to the approximate m_T -scaling of the identical particle pair source sizes. When dealing with non-identical particles, the pair emission source is a superposition of two unique single-particle sources. The hydrodynamic nature of the medium produces the approximate m_T -scaling with respect to these single-particle sources, not the pair sources. For identical particle studies, in which the pair source is comprised of two identical single particle sources, the femtoscopic radii naturally follow the m_T -scaling trend. The hydrodynamic response of the system not only confines higher- m_T particles to smaller homogeneity regions, but also pushes their average emission points further in the "out" direction [27]. Therefore, the Λ and K sources differ both in size and space-time location, with the Λ source both smaller in size and further out in the fireball than that of the kaons. These effects can inflate the radii extracted using the one-dimensional Lednický model, which assumes a spherically symmetric source with no offsets (i.e. $R_{\text{out}} = R_{\text{side}} = R_{\text{long}}$ and $\mu_{\text{out}} = \mu_{\text{side}} = \mu_{\text{long}} = 0$). This effect is demonstrated in Appendix C using the THERMINATOR 2 simulation. The largest violation of the m_T -scaling is observed for the 0–10% centrality bin, in which one expects the largest emission asymmetry. In summary, the large extracted Λ K radii support the hydrodynamic nature of the system dictating the femtoscopic substructure.

The experimental data support the difference in mean emission space-time coordinates of the Λ and K sources, called an "emission asymmetry". In addition to the second moments of the pair distribution functions, non-identical particle studies are sensitive to the relative emission shifts, i.e. the first moments of the emission function [28]. A separation of the single-particle sources in the out direction is expected for AK pairs at mid-rapidity in Pb-Pb collisions. The spherical harmonic decomposition of the correlation function offers an elegant method for extracting information about the emission asymmetries. With this method, one can draw a wealth of information from just a few components of the decomposition. Particularly, the C_{00} component is similar to the 1D correlation functions typically studied, and probes the overall size of the source. Of interest here, the $\Re C_{11}$ component probes the asymmetry of the system in the out direction; a non-zero value reveals the asymmetry. Figure 6 shows the C_{00} and $\Re C_{11}$ components from the spherical decomposition of the ΛK^+ data in the 0–10% centrality bin. The $\Re C_{11}$ component shows a clear deviation from zero, and the negative value signifies that the Λ particles are, on average, emitted further out and/or earlier than the K mesons. This conclusion is supported by the results obtained from the THERMINATOR 2 model, shown in Fig. C.1. Furthermore, as previously stated, a non-zero shift in the source will induce larger extracted radii within the Lednický model, as demonstrated with the THERMINATOR 2 simulatin in App. C.

443 5 Summary

Results from a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV with ALICE at the LHC have been presented, and are summarized in Table 6. The femtoscopic radii, λ parameters, and scattering parameters were extracted from one-dimensional correlation functions in terms of the invariant momentum difference. The scattering parameters of ΛK pairs in all three charge combinations (ΛK^+ , ΛK^- , and ΛK^0_S) have been measured for the first time. Striking differences are observed in the ΛK^+ , ΛK^- , and ΛK^0_S correlation functions, which are reflected in the unique set of scattering

Fig. 6: (Color online) C_{00} (left) and $\Re C_{11}$ (right) components of a spherical harmonic decomposition of the ΛK^+ correlation function for the 0–10% centrality bin. The C_{00} component is similar to the 1D correlation functions typically studied, and probes the overall size of the source. The $\Re C_{11}$ component probes the asymmetry in the system; a non-zero value reveals the asymmetry

Centrality	λ	R
0–10%	$1.14 \pm 0.29 \text{ (stat.)} \pm 0.18 \text{ (sys.)}$	$6.02 \pm 0.82 \text{ (stat.)} \pm 0.65 \text{ (sys.)}$
10–30%	$0.82 \pm 0.18 \text{ (stat.)} \pm 0.16 \text{ (sys.)}$	$4.50 \pm 0.51 \text{ (stat.)} \pm 0.45 \text{ (sys.)}$
30–50%	$0.90 \pm 0.22 \text{ (stat.)} \pm 0.19 \text{ (sys.)}$	$3.61 \pm 0.44 \text{ (stat.)} \pm 0.30 \text{ (sys.)}$

System	$\Re f_0$	$\Im f_0$	d_0
$\Lambda K^+ \& \overline{\Lambda} K^-$	$-0.60 \pm 0.12 \text{ (stat.)} \pm 0.11 \text{ (sys.)}$	$0.51 \pm 0.15 \text{ (stat.)} \pm 0.12 \text{ (sys.)}$	$0.83 \pm 0.47 \text{ (stat.)} \pm 1.23 \text{ (sys.)}$
$\Lambda K^- \& \overline{\Lambda} K^+$	$0.27 \pm 0.12 \text{ (stat.)} \pm 0.07 \text{ (sys.)}$	$0.40 \pm 0.11 \text{ (stat.)} \pm 0.07 \text{ (sys.)}$	$-5.23 \pm 2.13 \text{ (stat.)} \pm 4.80 \text{ (sys.)}$
$\Lambda K_S^0 \& \overline{\Lambda} K_S^0$	$0.10 \pm 0.13 \text{ (stat.)} \pm 0.07 \text{ (sys.)}$	$0.58 \pm 0.15 \text{ (stat.)} \pm 0.13 \text{ (sys.)}$	$-1.85 \pm 1.71 \text{ (stat.)} \pm 2.77 \text{ (sys.)}$

Table 6: Extracted fit parameters. The errors marked as "stat." are those returned by MINUIT, and those marked as "sys." result from the systematic analysis.

parameters extracted for each. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK^+ interaction and attractive in the ΛK^- and ΛK_S^0 interactions. This effect could be due to different quark-antiquark interactions between the pairs, or from different net strangeness for each system. The non-femtoscopic background is found to result almost entirely from collective effects, and is described quantitatively with unprecedented precision with the THERMINATOR 2 event generator. Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions.

458 Acknowledgements

459 References

465

- [1] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, "Femtoscopy in relativistic heavy ion collisions," *Ann. Rev. Nucl. Part. Sci.* **55** (2005) 357–402, arXiv:nucl-ex/0505014 [nucl-ex].
- [2] Y.-R. Liu and S.-L. Zhu, "Meson-baryon scattering lengths in HBχPT," *Phys. Rev.* **D75** (2007)
 034003, arXiv:hep-ph/0607100 [hep-ph].
 - [3] M. Mai, P. C. Bruns, B. Kubis, and U.-G. Meissner, "Aspects of meson-baryon scattering in three

- and two-flavor chiral perturbation theory," *Phys. Rev.* **D80** (2009) 094006, arXiv:0905.2810 [hep-ph].
- [4] W. E. Humphrey and R. R. Ross, "Low-Energy Interactions of K- Mesons in Hydrogen," *Phys. Rev.* 127 (1962) 1305–1323.
- [5] D. Hadjimichef, J. Haidenbauer, and G. Krein, "Short range repulsion and isospin dependence in the KN system," *Phys. Rev.* **C66** (2002) 055214, arXiv:nucl-th/0209026 [nucl-th].
- [6] Y. Ikeda, T. Hyodo, and W. Weise, "Chiral SU(3) theory of antikaon-nucleon interactions with improved threshold constraints," *Nucl. Phys.* **A881** (2012) 98–114, arXiv:1201.6549 [nucl-th].
- [7] R. Lednický and V. L. Lyuboshitz, "Final State Interaction Effect on Pairing Correlations Between
 Particles with Small Relative Momenta," Sov. J. Nucl. Phys. 35 (1982) 770. [Yad.
 Fiz.35,1316(1981)].
- [8] **ALICE** Collaboration, K. Aamodt *et al.*, "The alice experiment at the cern lhc," *JINST* **3** (2008) S08002. http://stacks.iop.org/1748-0221/3/i=08/a=S08002.
- ⁴⁸⁰ [9] **ALICE** Collaboration, B. Abelev *et al.*, "Centrality determination of Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with ALICE," *Phys. Rev.* **C88** no. 4, (2013) 044909, arXiv:1301.4361 [nucl-ex].
- [10] J. Alme *et al.*, "The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events," *Nucl. Instrum. Meth. A* **622** (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
- Has [11] B. A. et al and T. A. Collaboration, "Technical Design Report for the Upgrade of the ALICE Inner Tracking System," *Journal of Physics G: Nuclear and Particle Physics* **41** no. 8, (2014) 087002. http://stacks.iop.org/0954-3899/41/i=8/a=087002.
- ⁴⁸⁸ [12] **ALICE** Collaboration, B. B. Abelev *et al.*, "Performance of the ALICE Experiment at the CERN LHC," *Int. J. Mod. Phys.* **A29** (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- [13] A. Akindinov *et al.*, "Performance of the ALICE Time-Of-Flight detector at the LHC," *Eur. Phys. J. Plus* **128** (2013) 44.
- [14] X.-N. Wang and M. Gyulassy, "HIJING: A Monte Carlo model for multiple jet production in pp,
 pA, and AA collisions," *Phys. Rev. D* 44 (Dec, 1991) 3501–3516.
 https://link.aps.org/doi/10.1103/PhysRevD.44.3501.
- [15] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, "GEANT Detector Description and Simulation Tool,".
- [16] **ALICE** Collaboration, S. Acharya *et al.*, "Kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV," *Phys. Rev.* **C96** no. 6, (2017) 064613, arXiv:1709.01731 [nucl-ex].
- Phys. **C40** no. 10, (2016) 100001.
- [18] S. E. Koonin, "Proton Pictures of High-Energy Nuclear Collisions," *Phys. Lett.* **B70** (1977) 43–47.
- 502 [19] S. Pratt, T. Csorgo, and J. Zimanyi, "Detailed predictions for two pion correlations in ultrarelativistic heavy ion collisions," *Phys. Rev.* **C42** (1990) 2646–2652.
- ⁵⁰⁴ [20] G. I. Kopylov, "Like particle correlations as a tool to study the multiple production mechanism," *Phys. Lett.* **B50** (1974) 472–474. [,39(1974)].

- A. Kisiel, H. Zbroszczyk, and M. Szymaski, "Extracting baryon-antibaryon strong interaction potentials from p\(\bar{\Lambda}\) femtoscopic correlation functions," *Phys. Rev.* C89 no. 5, (2014) 054916, arXiv:1403.0433 [nucl-th].
- [22] M. Chojnacki, A. Kisiel, W. Florkowski, and W. Broniowski, "THERMINATOR 2: THERMal
 heavy IoN generATOR 2," Comput. Phys. Commun. 183 (2012) 746–773, arXiv:1102.0273
 [nucl-th].
- 512 [23] A. Kisiel, "Non-identical particle correlation analysis in the presence of non-femtoscopic correlations," *Acta Physica Polonica B* **48** (04, 2017) 717.
- 514 [24] **ALICE** Collaboration, J. Adam *et al.*, "One-dimensional pion, kaon, and proton femtoscopy in 515 Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ =2.76 TeV," *Phys. Rev.* **C92** no. 5, (2015) 054908, arXiv:1506.07884 516 [nucl-ex].
- 517 [25] S. V. Akkelin and Yu. M. Sinyukov, "The HBT interferometry of expanding sources," *Phys. Lett.* **B356** (1995) 525–530.
- [26] A. Kisiel, M. Gaayn, and P. Boek, "Pion, kaon, and proton femtoscopy in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ =2.76 TeV modeled in (3+1)D hydrodynamics," *Phys. Rev.* **C90** no. 6, (2014) 064914, arXiv:1409.4571 [nucl-th].
- F. Retiere and M. A. Lisa, "Observable implications of geometrical and dynamical aspects of freeze out in heavy ion collisions," *Phys. Rev.* **C70** (2004) 044907, arXiv:nucl-th/0312024 [nucl-th].
- 525 [28] A. Kisiel, "Non-identical particle femtoscopy at $\sqrt{s_{\rm NN}}$ = 200 GeV in hydrodynamics with statistical hadronization," *Phys. Rev.* **C81** (2010) 064906, arXiv:0909.5349 [nucl-th].
- [29] A. Stavinskiy *et al.*, "Some new aspects of femtoscopy at high energy," *Nukleonika* **49** (Supplement 2) (2004) S23.

A Stavinskiy Reference Method

Another option for obtaining the reference distribution, $B(k^*)$, is to use, what will be referred to as, the "Stavinskiy method" [29]. The method was first proposed to handle the case of one event femtoscopy, and has been suggested for use in eliminating momentum conservation effects in the reference distribution [1]. The method is appropriate for collisions between symmetric projectiles, at sufficiently large energy, with a detector which is symmetrical with respect to the transition $\mathbf{r} \to -\mathbf{r}$. The purpose of using the Stavinskiy method in this ΛK analysis is to rid the correlation functions of the non-femtoscopic background. More specifically, the intent is to handle background contributions from elliptic flow, and other sources having reflection symmetry in the transverse plane. With the Stavinskiy method, mixed-event pairs are not used for the reference distribution; instead, same-event pseudo-pairs, formed by rotating one particle in a real pair by 180° in the transverse plane, are used. This rotation rids the pairs of any femtoscopic correlation, while maintaining correlations due to elliptic flow (and other suitably symmetric contributors). Care needs to be taken in treating the pseudo-pairs exactly like the real pairs; e.g. the pseudo-pairs should be exposed to the same pair cuts used in the analysis on the real pairs. The results of correctly implementing such a procedure are shown in Figure A.1. The figure shows the Stavinskiy method does a very good job of ridding the ΛK^+ correlations of their non-femtoscopic backgrounds.

545 B Strong and Coulomb Fitter

When modeling systems which include both strong and Coulomb effects, Eq. 5 is no longer valid, and, in fact, there is no analytical form with which to fit. To solve such a problem, and to fit such a system, one must develop a more fundamental model, beginning with Eq. 2 and using the two-particle wave-function including both strong and Coulomb interactions [?]:

$$\Psi_{\mathbf{k}^*}(\mathbf{r}^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{i\mathbf{k}^* \cdot \mathbf{r}^*} F(-i\eta, 1, i\xi) + f_c(k^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right]$$
(B.1)

where $\rho = k^* r^*$, $\eta = (k^* a_c)^{-1}$, $\xi = \mathbf{k}^* \cdot \mathbf{r}^* + k^* r^* \equiv \rho (1 + \cos \theta^*)$, and $a_c = (\mu z_1 z_2 e^2)^{-1}$ is the two-particle Bohr radius (including the sign of the interaction). δ_c is the Coulomb s-wave phase shift, $A_c(\eta)$ is the Coulomb penetration factor, $\tilde{G} = \sqrt{A_c}(G_0 + iF_0)$ is a combination of the regular (F_0) and singular (G_0) s-wave Coulomb functions. $f_c(k^*)$ is the s-wave scattering amplitude

$$f_c(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - \frac{2}{a_c}h(\eta) - ik^*A_c(\eta)\right]^{-1}$$
(B.2)

where, the "h-function", $h(\eta)$, is expressed through the digamma function, $\psi(z) = \Gamma'(z)/\Gamma(z)$ as

$$h(\eta) = 0.5[\psi(i\eta) + \psi(-i\eta) - \ln(\eta^2)]$$
 (B.3)

In this case, the λ parameter may be included as:

$$C(\mathbf{k}^*) = (1 - \lambda) + \lambda \int S(\mathbf{r}^*) |\Psi_{\mathbf{k}^*}^S(\mathbf{r}^*)|^2 d^3 \mathbf{r}^*$$
(B.4)

To build a fit function for a system including both strong and Coulomb interactions two related options were considered. The first option was to numerically integrate Eq. 2. The second option was to simulate a large sample of particle pairs, calculate the wave function describing the interaction, and average to obtain the integral in Eq. 2.

Fig. A.1: (Color online) ΛK^+ ($\overline{\Lambda} K^-$) correlation functions built using the Stavinskiy method for 0–10%, 10–30%, and 30–50% centralities. Closed symbols represent correlations built using the normal mixed-event reference distribution, while open symbols represent correlations formed using the Stavinskiy same-event pseudo-pairs as a reference.

C Relative Emission Shifts with THERMINATOR 2

Fig. C.1 shows results from the THERMINATOR 2 event generator for an impact parameter of b=2 fm. As THERMINATOR 2 does not include any final state effects, the femtoscopic correlation was introduced by assuming a set of scattering parameters $(\Re f_0, \Im f_0, d_0) = (-1.16, 0.51, 1.08)$ and weighting the signal distribution (numerator pairs) with the modulus squared of the two-particle wave function, $|\Psi|^2$.

The top left of Fig. ?? shows a fit to the one-dimensional correlation function from THERMINATOR 2. The scattering parameters are known precisely here, as they served as the weights used in the simulation, and are kept constant in the fit. Only the extracted one-dimensional source size is of interest here, so the λ parameter is also fixed at unity. The other three plots in Fig. ?? show the source distribution in the out (top right), side (bottom left), and long (bottom right) directions (all in the PRF). The source distributions have all been fitted with a Gaussian form, the result of which is printed within the respective plot. One

immediately sees a significant shift in the out direction, $\mu_{out} \approx 4$ fm, and negligible shift in the other two directions, $\mu_{side} \approx \mu_{long} \approx 0$ fm. The figure demonstrates that, within the THERMINATOR 2 model, the Λ is, on average, emitted further out that its K partner. Finally, Fig. ?? shows the distribution of the relative time of emittance, again in the PRF. The figure shows that the Λ is, on average, emitted earlier than its K partner.

This section concludes with a brief look at how a spatial separation of the single particle sources affects the radii extracted from a femtoscopic analysis. To achieve this, THERMINATOR 2 is used in a similar fashion as described above, but with one important difference. Instead of taking the source information from THERMINATOR 2, the source is drawn from a pre-determined Gaussian distribution. In all cases, $R_{\text{out}} = R_{\text{side}} = R_{\text{long}} = 5$ fm, and $\mu_{\text{side}} = \mu_{\text{long}} = 0$ fm. In Figure C.3, results are shown for the case of $\mu_{\text{out}} = 1$ fm, $\mu_{\text{out}} = 3$ fm, and $\mu_{\text{out}} = 6$ fm. In this figure, the side and long distributions are not shown, as they are simple Gaussians of width 5 fm centered about the origin. The figure demonstrates that as the separation μ_{out} increases, so do the extracted femtoscopic radii.

Fig. C.1: Long caption

Fig. C.2: Probing the effect of varying the source shift in the outward direction, μ_{out} , within the THERMINATOR 2 framework. To achieve this, particle pairs are formed from the simulation, but with altered spatial characteristics achieved by drawing the out, side, and long components from predetermined Gaussian distributions. The sources in all three directions are Gaussians of width 5 fm. The distributions used for the side and long direction are centered at the origin, while the shift in the outward direction, μ_{out} , is varied. The plots show fits resulting from sources with μ_{out} increasing from 0 to 6 fm. The effect of increasing μ_{out} clearly increases the effective radius extracted in the fit.

Fig. C.3: Long caption

D The ALICE Collaboration