Digital Electronics 4

$$V_{DS} = V_{PD} \cdot \frac{R_{DS}}{R + R_{DS}}$$

$$V_{0s} = V_{0p} \cdot \frac{V_{0s}}{RT_{0s} + V_{0s}}$$

Assuming Vas
$$\neq 0$$

$$V_{OS} = V_{DD} - I_{DS} R$$

$$= 10V - 500 I_{DS} \Omega$$

V _{in} /V	Ios/MA	Mar Vo	
0 3 4 5	0 2 6 10 14 -	10 9 7 5 3	
For VIN > 7V, the constant part of the cherecters, no longer applies the this area.			
V _{IN} /V	IDS /MAV-1	Vos	Vour/V
7 8	9 Vos	10V - 9/2 Vos.	20/11 1.818 3/9 1.818
Vour/V		Straight 10	Ne se

$$P_{R} = \frac{V_{R}^{2}}{R} = \frac{\left(\frac{82}{9}\right)^{2}}{500}W = \frac{1631}{10125}W = 166 \text{ mW}$$

4. The would is equivalent to:

and also to

٧, . . .

 $\frac{V_{AE} + V_{EB} + V_{BC} + V_{CF} + V_{FD} + V_{DC}}{\Rightarrow I_{GB} - 2I_{FC} + 2I_{\infty} - 2I_{AB} - 4} = 0$

From 3, IE8: 2IA8 -6 From Q. IFC = IDC - 5 Sulshbuting into B. O and O, 3 I AB - 6 = - 2 I oc + 5 = I8c Ioc = 10 = 5/2 .. Ise = -5+5 = 0 . There is no current flowing through the LOR 6. \$ IA8 = IRC+6 = 2A VAB = IAB - 20 = HA 4V VAC = ARS VAB + VBC = 4V