Correction du Devoir Libre 1 du Module AP21 : "Algèbre Linéaire"

Problème 1

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 2$.

Définition 0.1 On appelle transvection de E tout automorphisme \mathcal{T} de E différent de id_E possédant les propriétés suivantes :

 P_1 : Il existe un hyperplan H de E tel que $\forall x \in H$, $\mathcal{T}(x) = x$,

 $P_2: \forall x \in E, \ \mathcal{T}(x) - x \in H.$

- 1. (a) Montrer que pour tout hyperplan H de E, il existe une forme linéaire ϕ sur E telle que $H = \text{Ker}(\phi)$.
 - (b) Que peut-on dire de deux formes linéaires définissant le même hyperplan?
 - (c) Soient H_1 et H_2 deux hyperplans de E distincts, montrer que $H_1 + H_2 = E$, puis calculer dim $(H_1 \cap H_2)$.
- 2. Soit \mathcal{T} une transvection de E,
 - (a) Montrer que l'hyperplan H associé à \mathcal{T} est unique. (Indication : raisonner par l'absurde en prenant H et H' tels que $H \neq H'$ et considérer H + H' = E). *H est appelé hyperplan de transvection de \mathcal{T} .
 - (b) Montrer que $\operatorname{Ker}(\mathcal{T} id_E) = H$, puis en déduire qu'il existe une droite \mathcal{D} telle que :

$$P_3: \forall x \in E, \quad \mathcal{T}(x) - x \in \mathcal{D}.$$

(c) Si ϕ est une forme linéaire définissant H, déterminer un vecteur u de E tel que

$$P_4: \forall x \in E, \quad \mathcal{T}(x) = x + \phi(x).u.$$

- (d) **Réciproquement**, montrer que si Φ est une forme linéaire non nulle de E et $u \in \text{Ker}(\Phi)$ $\{0_E\}$, alors $\mathcal{T}: E \to E, x \mapsto \mathcal{T}(x) = x + \Phi(x).u$ est une transvection de E. Déterminer son hyperplan et sa droite.
- (e) Soit $H = \text{Ker}(\Phi)$ un hyperplan de E. On note $\mathbb{T}(H)$ l'ensemble de toutes les transvections sur E d'hyperplan H et $G = \mathbb{T}(H) \cup \{id_E\}$.
 - i. Montrer que (G, \circ) est un groupe ou plutôt sous-groupe de $(Aut(E), \circ)$ où Aut(E) = GL(E).
 - ii. Soit $\mathcal{L}: (H, +) \to (G, \circ)$, $u \mapsto \mathcal{T}_u$ où $\mathcal{T}_u: E \to E$, $x \mapsto \mathcal{T}_u(x) = x + \Phi(x).u$. Montrer que \mathcal{L} est un isomorphisme de groupe, et que (G, \circ) est abélien.
- 3. (a) Soit \mathcal{U} une involution de E, c'est à dire $\mathcal{U} \in \mathcal{L}(E)$ et $\mathcal{U}^2 = id_E$. On pose $E_1(\mathcal{U}) = \text{Ker}(\mathcal{U} - id_E)$ et $E_{-1}(\mathcal{U}) = \text{Ker}(\mathcal{U} + id_E)$.
 - i. Montrer que $E = E_1(\mathcal{U}) \oplus E_{-1}(\mathcal{U})$

- ii. Dans cette question, on suppose que $\dim(E_1(\mathcal{U})) = 1$.
 - A. Soit $a \in E$ tel que $E_1(\mathcal{U}) = \mathbb{R}.a$. Montrer qu'il existe $\varphi \in \mathcal{L}(E,\mathbb{R})$ une forme linéaire de E telle que $\text{Ker}(\varphi) = E_{-1}(\mathcal{U})$ et $\varphi(a) = 2$.
 - B. En déduire qu'il existe $a \in E$ et $\varphi \in \mathcal{L}(E, \mathbb{R})$ tels que $\forall x \in E, \mathcal{U}(x) = -x + \varphi(x).a$.
 - C. Soit \mathcal{V} une autre involution de E telle que $E_1(\mathcal{U}) = E_1(\mathcal{V})$. *Montrer qu'il existe $\psi \in \mathcal{L}(E, \mathbb{R})$ telle que $\forall x \in E, \mathcal{V}(x) = -x + \psi(x).a$. *En déduire que $\mathcal{U} \circ \mathcal{V}$ est une transvection.
- (b) i. Soit une transvection \mathcal{T} et $\sigma \in \operatorname{Aut}(E)$ un automorphisme de E. Montrer que $\sigma \circ \mathcal{T} \circ \sigma^{-1}$ est une transvection, puis déterminer son hyperplan H et sa droite \mathcal{D} .
 - ii. Prouver que si \mathcal{T}_1 et \mathcal{T}_2 sont deux transvections, alors il existe $\sigma \in \operatorname{Aut}(E)$ tel que $\mathcal{T}_2 = \sigma \circ \mathcal{T}_1 \circ \sigma^{-1}$

Solution : Considérons un \mathbb{R} -espace vectoriel \mathbb{E} de dimension finie $n \geq 2$.

Définition 0.2 On appelle transvection de E tout automorphisme \mathcal{T} de E différent de id_E possédant les propriétés suivantes :

 P_1 : Il existe un hyperplan H de E tel que $\forall x \in H$, $\mathcal{T}(x) = x$,

 $P_2: \forall x \in E, \ \mathcal{T}(x) - x \in H.$

1. (a) Montrons que pour tout hyperplan H de E, il existe une forme linéaire ϕ sur E telle que $H = \operatorname{Ker}(\phi)$: en effet, soit H un hyperplan de E. H est un hyperplan de E si et seulement si il existe $a \in E$ avec $a \notin H$ tel que

$$E = H \oplus \mathbb{R} a$$
.

Soit $x \in E$, alors il existe un unique $h \in H$ et un unique $\lambda \in \mathbb{R}$ tel que $x = h + \lambda a$. On définit l'application $\phi : E \to \mathbb{R}, x \mapsto \phi(x) = \lambda$.

L'application ϕ est linéaire, en effet, soient $x = h + \lambda a$ et $x' = h' + \lambda' a$ dans E, alors $x + x' = (h + h') + (\lambda + \lambda') a$, donc il vient

$$\phi(x + x') = \lambda + \lambda' = \phi(x) + \phi(x')$$

ceci d'une part et d'autre pour $\alpha \in \mathbb{R}$ on a $\alpha x = \alpha h + (\alpha \lambda) a$ où $\alpha h \in H$, alors

$$\phi(\alpha x) = \alpha \lambda = \alpha \phi(x)$$

d'où ϕ est linéaire.

Montrons que $\operatorname{Ker}(\phi) = H$: en effet, soit $x \in H$, alors x = x + 0 a, donc $\phi(x) = 0$, d'où $x \in \operatorname{Ker}(\phi)$, soit $H \subset \operatorname{Ker}(\phi)$.

Soit $x \in \text{Ker}(\phi)$, alors $x = h + \lambda a$ et $\phi(x) = 0 = \lambda$, donc $x = h \in H$, d'où $\text{Ker}(\phi) \subset H$, finalement $\text{Ker}(\phi) = H$.

(b) Soit H un hyperplan de E, alors $E = H \oplus \mathbb{R} a$ avec $a \in E$ et $a \notin H$, et soient ϕ_1 et ϕ_2 deux formes linéaires telles que $\operatorname{Ker}(\phi_1) = \operatorname{Ker}(\phi_2) = H$. Soit $x \in E$, alors $x = h + \lambda a$ où $h \in H$ et $\lambda \in \mathbb{R}$, donc

$$\phi_1(x) = \phi_1(h) + \lambda \phi_1(a) = \lambda \phi_1(a) \quad \text{car} \quad h \in H = \text{Ker}(\phi_1)$$

$$\phi_2(x) = \phi_2(h) + \lambda \phi_2(a) = \lambda \phi_2(a) \quad \text{car} \quad h \in H = \text{Ker}(\phi_2)$$

or $a \notin H$, alors $\phi_1(a) \neq 0$ et $\phi_2(a) \neq 0$ car sinon ϕ_1 et ϕ_2 seraient nulles, donc

$$\frac{\phi_1(x)}{\phi_1(a)} = \lambda = \frac{\phi_2(x)}{\phi_2(a)}$$

donc $\phi_1(x) = \frac{\phi_1(a)}{\phi_2(a)} \phi_2(x)$ pour tout $x \in E$, on pose $\kappa = \frac{\phi_1(a)}{\phi_2(a)}$, alors

$$\phi_1(x) = \kappa \, \phi_2(x), \quad \forall x \in E$$

d'où ϕ_1 et ϕ_2 sont proportionnelles.

Finalement, si deux formes linéaires ϕ_1 et ϕ_2 définissent le même hyperplan H, alors ϕ_1 et ϕ_2 sont proportionnelles.

(c) Soient H_1 et H_2 deux hyperplans de E tels que $H_1 \neq H_2$.

Montrer que $H_1 + H_2 = E$: en effet, $H_1 \neq H_2$ implique il existe $a \in H_1$ et $a \notin H_2$. Or H_2 est un hyperplan, alors $E = H_2 \oplus \mathbb{R} a$.

Soit $x \in E$, alors $x = h_2 + \lambda a$ où $h_2 \in H_2$ et $\lambda \in \mathbb{R}$;

comme $a \in H_1$ et H_1 est un sous-espace vectoriel de E, alors $\lambda a \in H_1$, donc $x \in H_2 + H_1$, d'où $E \subset H_2 + H_1$.

Comme H_1 et H_2 sont deux sous-espaces vectoriels de E, alors $H_2 + H_1$ est un sous-espace vectoriel de E, soit $H_2 + H_1 \subset E$.

D'où $E = H_2 + H_1$.

On a $\dim(E) = \dim(H_1 + H_2)$, alors $n = \dim(H_1) + \dim(H_2) - \dim(H_1 \cap H_2)$, or H_1 et H_2 sont deux hyperplans de E, alors $\dim(H_1) = \dim(H_2) = n - 1$, donc $n = n - 1 + n - 1 - \dim(H_1 \cap H_2)$,

d'où dim $(H_1 \cap H_2) = 2n - 2 - n = n - 2$.

- 2. Soit \mathcal{T} une transvection de E,
 - (a) Montrons que l'hyperplan H associé à \mathcal{T} est unique : en effet, supposons qu'il existe deux hyperplans distincts H et H' associés à la transvection \mathcal{T} de E.

Soit $x \in E$, alors $x = x_1 + x_2$ où $x_1 \in H$ et $x_2 \in H'$, donc $\mathcal{T}(x_1) = x_1$ et $\mathcal{T}(x_2) = x_2$, donc

$$\mathcal{T}(x) = \mathcal{T}(x_1) + \mathcal{T}(x_2) = x_1 + x_2 = x$$
 ceci pour tout $x \in E$

d'où $\mathcal{T} = \mathrm{id}_E$, ce qui est absurde puisque par hypothèse la transvection \mathcal{T} est différente de id_E .

Finalement, l'hyperplan H associé à \mathcal{T} est unique. H est appelé hyperplan de transvection de \mathcal{T} .

(b) Montrons que $\operatorname{Ker}(\mathcal{T} - \operatorname{id}_E) = H$: en effet, soit H l'hyperplan de E associé à la transvection \mathcal{T} , alors $E = H + \mathbb{R} a$ où $a \notin H$.

Soit $x \in E$ alors $x = h + \lambda a$ où $h \in H$ et $\lambda \in \mathbb{R}$;

comme $h \in H$ alors $\mathcal{T}(h) = h$, donc $\mathcal{T}(x) = \mathcal{T}(h) + \lambda \mathcal{T}(a) = h + \lambda \mathcal{T}(a)$.

Or $\mathcal{T} \neq \mathrm{id}_E$, alors $\mathcal{T}(a) \neq a$ car sinon on aurait $\mathcal{T}(x) = h + \lambda a = x$ pour tout $x \in E$, soit $\mathcal{T} = \mathrm{id}_E$ ce qui ne peut pas avoir lieu.

Si $x \in \text{Ker}(\mathcal{T} - \text{id}_E)$, alors $\mathcal{T}(x) = x$, donc il vient

$$h + \lambda \mathcal{T}(a) = h + \lambda a$$
 c'est à dire $\lambda (\mathcal{T}(a) - a) = 0_E$,

comme $\mathcal{T}(a) \neq a$ alors $\lambda = 0$, donc x = h + 0 $a = h \in H$, d'où $\operatorname{Ker}(\mathcal{T} - \operatorname{id}_E) \subset H$. Maintenant, soit $x \in H$, alors $\mathcal{T}(x) = x$, donc $\mathcal{T}(x) - x = (\mathcal{T} - \operatorname{id}_E)(x) = 0_E$, soit $x \in \operatorname{Ker}(\mathcal{T} - \operatorname{id}_E)$, d'où $H \subset \operatorname{Ker}(\mathcal{T} - \operatorname{id}_E)$.

Finalement, on obtient $H = \text{Ker}(\mathcal{T} - \text{id}_E)$.

On a $E = H + \mathbb{R} a$ alors $E = \text{Ker}(\mathcal{T} - \text{id}_E) + \mathbb{R} a$ avec $a \notin \text{Ker}(\mathcal{T} - \text{id}_E)$, or $a \notin \text{Ker}(\mathcal{T} - \text{id}_E)$ alors $\mathcal{T}(a) - a \neq 0_E$.

Soit $x \in E$, alors $x = h + \lambda a$ où $h \in \text{Ker}(\mathcal{T} - \text{id}_E)$ et $\lambda \in \mathbb{R}$, donc $\mathcal{T}(h) = h$, donc $\mathcal{T}(x) = h + \lambda \mathcal{T}(a)$, cela entraine que

$$\mathcal{T}(x) - x = h + \lambda \mathcal{T}(a) - h - \lambda a = \lambda (\mathcal{T}(a) - a)$$

on pose $b = \mathcal{T}(a) - a$, alors $b \neq 0_E$, donc les vecteurs $y = \mathcal{T}(x) - x$ et b sont colinéaires. Soit \mathcal{D} la droite engendré par le vecteur directeur $b = \mathcal{T}(a) - a$, d'où

$$P_3: \forall x \in E, \quad \mathcal{T}(x) - x = \lambda \left(\mathcal{T}(a) - a \right) \in \mathcal{D}.$$

(c) Soit ϕ est une forme linéaire définissant H, cherchons un vecteur u de E tel que

$$P_4: \forall x \in E, \quad \mathcal{T}(x) = x + \phi(x).u.$$

En effet, on a $E = H + \mathbb{R} a$ où $a \notin H$ et soit $\mathcal{D} = \langle a \rangle$ la droite engendrée par le vecteur a. D'après ce qui précède on a $H = \text{Ker}(\mathcal{T} - \text{id}_E)$ et $H = \text{Ker}(\phi)$. Soit $x \in E$, alors $x = h + \lambda a$ où $h \in H$ et $\lambda \in \mathbb{R}$, donc

$$\mathcal{T}(x) = \mathcal{T}(h) + \lambda \, \mathcal{T}(a) = h + \lambda \, \mathcal{T}(a)$$
 car $\mathcal{T}(h) = h$

ceci d'une part et d'autre part on a

$$\phi(x) = \phi(h) + \lambda \phi(a) = \lambda \phi(a)$$
 car $\phi(h) = 0$

on a $\phi(a) \neq 0$ car sinon $\phi(a) = 0$ implique $a \in \text{Ker}(\phi) = H$ ce qui est contradictoire aux hypothèses.

Donc $\lambda = \frac{\phi(x)}{\phi(a)}$, en remplaçant λ par son expression il vient

$$\mathcal{T}(x) = h + \lambda \, \mathcal{T}(a) = x - \lambda \, a + \lambda \, \mathcal{T}(a)$$
$$= x + \lambda \, (\mathcal{T}(a) - a)$$
$$= x + \phi(x) \, \frac{1}{\phi(a)} \, (\mathcal{T}(a) - a)$$

on pose $u = \frac{1}{\phi(a)} (\mathcal{T}(a) - a)$, d'où $\mathcal{T}(x) = x + \phi(x) u$ qui est le résultat demandé.

- (d) **Réciproquement**, montrons que si Φ est une forme linéaire non nulle de E et $u \in \text{Ker}(\Phi) \setminus \{0_E\}$, alors $\mathcal{T} : E \to E$, $x \mapsto \mathcal{T}(x) = x + \Phi(x).u$ est une transvection de E:
 - en effet, soit Φ est une forme linéaire non nulle de E et soit $u \in \text{Ker}(\Phi) \setminus \{0_E\}$ tel que $\mathcal{T}(x) = x + \Phi(x).u$.
 - L'application \mathcal{T} est bien définie car $\mathcal{T}(x) = x + \Phi(x).u \in E$ pour tout $x \in E$ et $u \in \text{Ker}(\Phi) \setminus \{0_E\}.$

- L'application \mathcal{T} est linéaire : en effet, soient x et y dans E et $\alpha \in \mathbb{R}$, alors

$$\mathcal{T}(x + \alpha y) = x + \alpha y + \Phi(x + \alpha y) . u$$

= $x + \alpha y + \Phi(x) . u + \alpha \Phi(y) . u$
= $(x + \Phi(x) . u) + \alpha (y + \Phi(y) . u)$

donc $\mathcal{T}(x + \alpha y) = \mathcal{T}(x) + \alpha \mathcal{T}(y)$, d'où \mathcal{T} est linéaire.

- L'application \mathcal{T} est un automorphisme de E: en effet, soit x dans E tel que $\mathcal{T}(x) = x + \Phi(x).u = 0_E$, alors $x = 0_E$:

si $x \in H = \text{Ker}(\Phi)$, alors $\Phi(x) = 0$ et donc $x + \Phi(x) \cdot u = 0_E$ entraine $x + 0 \cdot u = 0_E$ soit $x = 0_E$,

si $x \notin H = \text{Ker}(\Phi)$, alors $\Phi(x + \Phi(x).u) = \Phi(0_E) = 0$,

donc $\Phi(x) + \Phi(x).\Phi(u) = \Phi(x) (1 + \Phi(u)) = 0$,

d'où $\Phi(x) = 0$, c'est à dire $x = 0_E$. Finalement \mathcal{T} est injective.

Comme E est dimension finie, alors \mathcal{T} est surjective, d'où \mathcal{T} est bijective

L'application \mathcal{T} est linéaire et bijective de E dans lui-même, d'où \mathcal{T} est un auto-morphisme de E.

Déterminons l'hyperplan et la droite de \mathcal{T} : en effet, pour $x \in H = \text{Ker}(\Phi)$, alors $\mathcal{T}(x) = x + 0$ u = x.

Soit $x \in E$, alors $\mathcal{T}(x) = x + \Phi(x).u$, donc $\mathcal{T}(x) - x = \Phi(x).u$,

on a $\Phi(\Phi(x).u) = \Phi(x).\Phi(u) = \Phi(x).0 = 0$, alors $\Phi(\mathcal{T}(x) - x) = 0$,

donc $\mathcal{T}(x) - x \in H = \text{Ker}(\Phi)$, d'où \mathcal{T} est une transvection de $H = \text{Ker}(\Phi)$ et sa droite est $\mathcal{D} = \langle a \rangle$ où $a \notin H$.

- (e) Soit $H = \text{Ker}(\Phi)$ un hyperplan de E. On note $\mathbb{T}(H)$ l'ensemble de toutes les transvections sur E d'hyperplan H et $G = \mathbb{T}(H) \cup \{\text{id}_E\}$.
 - i. Montrons que (G, \circ) est un groupe ou plutôt sous-groupe de $(Aut(E), \circ)$: en effet, soient \mathcal{T}_1 et \mathcal{T}_2 deux transvections de E, d'abord la composée $\mathcal{T}_1 \circ \mathcal{T}_2$ est un automorphisme car \mathcal{T}_1 et \mathcal{T}_2 sont tous deux automorphismes de E.

Montrons que $\mathcal{T}_1 \circ \mathcal{T}_2$ est une transvection sur E:

- Soit $x \in H$, alors $\mathcal{T}_1(x) = x$ et $\mathcal{T}_2(x) = x$, donc

$$\mathcal{T}_1 \circ \mathcal{T}_2(x) = \mathcal{T}_1(\mathcal{T}_2(x)) = \mathcal{T}_1(x) = x.$$

- Soit $x \in E$ où $\mathcal{T}_1(x) - x \in H$ et $\mathcal{T}_2(x) - x \in H$, alors

$$\mathcal{T}_1 \circ \mathcal{T}_2(x) - x = \mathcal{T}_1(\mathcal{T}_2(x)) - x$$
$$= \mathcal{T}_1(\mathcal{T}_2(x)) - \mathcal{T}_1(x) + \mathcal{T}_1(x) - x$$
$$= \mathcal{T}_1(\mathcal{T}_2(x) - x) + \mathcal{T}_1(x) - x$$

comme $\mathcal{T}_2(x) - x \in H$, alors $\mathcal{T}_1(\mathcal{T}_2(x) - x) = \mathcal{T}_2(x) - x$, donc

$$\mathcal{T}_1 \circ \mathcal{T}_2(x) - x = \underbrace{(\mathcal{T}_2(x) - x)}_{\in H} + \underbrace{(\mathcal{T}_1(x) - x)}_{\in H} \in H$$

car la somme de deux éléments de H est un élément de H.

d'où $\mathcal{T}_1 \circ \mathcal{T}_2$ est une transvection sur E, c'est à dire \circ laisse stable $\mathbb{T}(H)$.

Soit $\mathcal{T} \in \mathbb{T}(H)$, on a \mathcal{T} est un automorphisme alors \mathcal{T}^{-1} est un automorphisme

de E. A-t-on $\mathcal{T}^{-1} \in \mathbb{T}(H)$?

Pour $x \in H$ alors on a $\mathcal{T}(x) = x$, donc $\mathcal{T}^{-1} \circ \mathcal{T}(x) = \mathcal{T}^{-1}(x)$, d'où $x = \mathcal{T}^{-1}(x)$. Pour $x \in E$, on a $\mathcal{T}(x) - x \in H$, alors on applique \mathcal{T}^{-1} il vient

$$\mathcal{T}^{-1}(\mathcal{T}(x) - x) = \mathcal{T}(x) - x$$

donc $\mathcal{T}^{-1} \circ \mathcal{T}(x) - \mathcal{T}^{-1}(x) = \mathcal{T}(x) - x$, donc $x - \mathcal{T}^{-1}(x) = \mathcal{T}(x) - x$, d'où $\mathcal{T}^{-1}(x) - x = -(\mathcal{T}(x) - x) \in H$, ce qui prouve que $\mathcal{T}^{-1} \in \mathbb{T}(H)$ est une transvection.

ii. Soit $\mathcal{L}: (H, +) \to (G, \circ)$, $u \mapsto \mathcal{T}_u$ où $\mathcal{T}_u: E \to E$, $x \mapsto \mathcal{T}_u(x) = x + \Phi(x).u$. Montrons que \mathcal{L} est un isomorphisme de groupe : en effet, soient u et v dans H, on a $\mathcal{L}(u+v) = \mathcal{T}_{u+v}$. On a aussi

$$\mathcal{T}_{u} \circ \mathcal{T}_{v}(x) = \mathcal{T}_{u}(\mathcal{T}_{v}(x)) = \mathcal{T}_{u}(x + \Phi(x).v)$$

$$= x + \Phi(x).v + \Phi(x + \Phi(x).v).u$$

$$= x + \Phi(x).v + (\Phi(x) + \Phi(x).\Phi(v)).u$$

$$= x + \Phi(x).v + \Phi(x).u$$

car $\Phi(v) = 0$, alors $\mathcal{T}_u \circ \mathcal{T}_v(x) = x + \Phi(x).(v+u)$, donc

$$\mathcal{L}(u) \circ \mathcal{L}(v) = \mathcal{T}_{u+v} = \mathcal{L}(u+v)$$

ce qui prouve que \mathscr{L} est un homomorphisme de groupes.

Montrons que \mathscr{L} est injectif : soeint u et v dans H tel que $\mathscr{L}(u) = \mathscr{L}(v)$, alors pour tout $x \in E$ on a $\mathcal{T}_u(x) = \mathcal{T}_v(x)$,

donc $x + \Phi(x).u = x + \Phi(x).v$, soit $\Phi(x)(u - v) = 0_E$,

or $\Phi(x) \neq 0$, alors $u - v = 0_E$, donc u = v, d'où \mathscr{L} est injectif. L'application \mathscr{L} est évidement surjective, d'où \mathscr{L} est un isomorphisme de groupes.

Comme (H, +) est un groupe abélien et que (H, +) et (G, \circ) sont isomorphes, alors (G, \circ) est un groupe abélien.

- 3. (a) Soit \mathcal{U} une involution de E, c'est à dire $\mathcal{U} \in \mathcal{L}(E)$ et $\mathcal{U}^2 = \mathrm{id}_E$. On pose $E_1(\mathcal{U}) = \mathrm{Ker}(\mathcal{U} - \mathrm{id}_E)$ et $E_{-1}(\mathcal{U}) = \mathrm{Ker}(\mathcal{U} + \mathrm{id}_E)$.
 - i. Montrons que $E = E_1(\mathcal{U}) \oplus E_{-1}(\mathcal{U})$: en effet, soit $x \in E$, alors d'une part on a

$$x = \frac{1}{2}(\mathcal{U}(x) + x) + \frac{1}{2}(x - \mathcal{U}(x)) = x_1 + x_2$$

où $x_1 = \frac{1}{2}(\mathcal{U}(x) + x)$ et $x_2 = \frac{1}{2}(x - \mathcal{U}(x))$, et d'autre part

$$\mathcal{U}(\mathcal{U}(x) + x) = \mathcal{U}^{2}(x) + \mathcal{U}(x) = x + \mathcal{U}(x),$$

donc $\mathcal{U}(x+\mathcal{U}(x)) - (x+\mathcal{U}(x)) = 0_E$, donc $x+\mathcal{U}(x) \in \text{Ker}(\mathcal{U}-\text{id}_E) = E_1(\mathcal{U})$, d'où $x_1 = \frac{1}{2}(\mathcal{U}(x) + x) \in E_1(\mathcal{U})$,

on a aussi $\mathcal{U}(x-\mathcal{U}(x)) = \mathcal{U}(x) - \mathcal{U}^2(x) = \mathcal{U}(x) - x$,

alors $\mathcal{U}(x-\mathcal{U}(x))+(x-\mathcal{U}(x))=0_E$, donc $x-\mathcal{U}(x)\in \mathrm{Ker}(\mathcal{U}+\mathrm{id}_E)=E_{-1}(\mathcal{U})$, d'où $x_2=\frac{1}{2}(x-\mathcal{U}(x))\in E_{-1}(\mathcal{U})$,

d'où $x = x_1 + x_2$ où $x_1 \in E_1(\mathcal{U})$ et $x_2 \in E_{-1}(\mathcal{U})$, d'où $E = E_1(\mathcal{U}) + E_{-1}(\mathcal{U})$.

Soit $x \in E_1(\mathcal{U}) \cap E_{-1}(\mathcal{U})$, alors $x \in E_{-1}(\mathcal{U})$ et $x \in E_1(\mathcal{U})$, donc il vient

$$x - \mathcal{U}(x) = 0_E$$
 et $x + \mathcal{U}(x) = 0_E$

en faisant la somme des deux équations, il vient $x - \mathcal{U}(x) + x + \mathcal{U}(x) = 0_E$, donc $2x = 0_E$, d'où $x \in \{0_E\}$, soit $E_1(\mathcal{U}) \cap E_{-1}(\mathcal{U}) \subset \{0_E\}$.

Comme $E_1(\mathcal{U})$ et $E_{-1}(\mathcal{U})$ sont deux sous-espaces vectoriels de E, alors $0_E \in E_1(\mathcal{U})$ et $0_E \in E_{-1}(\mathcal{U})$, donc $\{0_E\} \subset E_1(\mathcal{U}) \cap E_{-1}(\mathcal{U})$.

D'où $E_1(\mathcal{U}) \cap E_{-1}(\mathcal{U}) = \{0_E\}$. Finalement, on obtient $E = E_1(\mathcal{U}) \oplus E_{-1}(\mathcal{U})$.

- ii. Supposons que $\dim(E_1(\mathcal{U})) = 1$.
 - A. Soit $a \in E$ tel que $E_1(\mathcal{U}) = \mathbb{R}.a$. Montrons qu'il existe $\varphi \in \mathcal{L}(E,\mathbb{R})$ une forme linéaire de E telle que $\operatorname{Ker}(\varphi) = E_{-1}(\mathcal{U})$ et $\varphi(a) = 2$: en effet, comme $\dim(E_1(\mathcal{U})) = 1$ alors $E_1(\mathcal{U})$ est une droite vectorielle, donc il existe $a \in E$ et $a \neq 0_E$ tel que $E_1(\mathcal{U}) = \mathbb{R} a$, d'où $E = \mathbb{R} a \oplus E_{-1}(\mathcal{U})$, soit $\dim(E_{-1}(\mathcal{U})) = n 1$; ce qui prouve que $E_{-1}(\mathcal{U})$ est un hyperplan de E.

Pour $x \in E$, on a $x = y + \lambda a$ où $y \in E_{-1}(\mathcal{U})$. On pose $\varphi(x) = 2\lambda$, on a alors a = 0 + 1a, donc $\varphi(a) = 2 * 1 = 2$ et $Ker(\varphi) = E_{-1}(\mathcal{U})$.

B. D'après ii-A), pour $x = x_1 + \lambda a \in E$ où $x_1 \in E_{-1}(\mathcal{U})$ et $\lambda \in \mathbb{R}$, on a $\varphi(x) = 2\lambda$.

$$x_1 \in E_{-1}(\mathcal{U})$$
 \Leftrightarrow $\mathcal{U}(x_1) + x_1 = 0_E$
 \Leftrightarrow $\mathcal{U}(x_1) = -x_1$

 et

$$a \in E_1(\mathcal{U}) = \mathbb{R} a \qquad \Leftrightarrow \qquad \mathcal{U}(a) - a = 0_E$$

 $\Leftrightarrow \qquad \mathcal{U}(a) = a$

donc $\mathcal{U}(x) = \mathcal{U}(x_1) + \mathcal{U}(\lambda a) = -x_1 + \lambda \mathcal{U}(a) = -x_1 + \lambda a$; or $-x_1 = -x + \lambda a$, alors $\mathcal{U}(x) = -x + \lambda a + \lambda a = -x + 2\lambda a$, donc $\mathcal{U}(x) = -x + \varphi(x) a$,

d'où on déduit qu'il existe $a\in E$ et $\varphi\in \mathscr{L}(E,\mathbb{R})$ tels que $\forall x\in E,$ $\mathscr{U}(x)=-x+\varphi(x)\,a.$

C. Soit V une autre involution de E telle que $E_1(V) = E_1(V)$.

*Montrons qu'il existe $\psi \in \mathcal{L}(E, \mathbb{R})$ telle que $\forall x \in E, \mathcal{V}(x) = -x + \psi(x).a$: en effet, il existe $a \in E_{-1}(\mathcal{U})$ et $\varphi \in \mathcal{L}(E, \mathbb{R})$ tels que $\forall x \in E, \mathcal{U}(x) = -x + \varphi(x) a$ et $\varphi(a) = 2$

d'après ii-A), il existe $b \in E_1(\mathcal{V})$ et $\psi_1 \in \mathcal{L}(E,\mathbb{R})$ tels que $\forall x \in E$, $\mathcal{V}(x) = -x + \psi_1(x) b$,

or $b \in E_1(\mathcal{V}) = E_1(\mathcal{U}) = \mathbb{R} a$, alors il existe $\alpha \in \mathbb{R}$ tel que $b = \alpha a$, donc $\mathcal{V}(x) = -x + \alpha \psi_1(x) a$. On pose $\psi(x) = \alpha \psi_1(x)$,

d'où $\mathcal{V}(x) = -x + \psi(x) a$ *On a $\mathcal{U}(x) = -x + \varphi(x) a$ et $\mathcal{V}(x) = -x + \psi(x) a$, alors

$$\mathcal{U} \circ \mathcal{V}(x) = \mathcal{U}(\mathcal{V}(x)) = \mathcal{U}(-x + \psi(x) a)$$

$$= -\mathcal{U}(x) + \psi(x) \mathcal{U}(a) = -\mathcal{U}(x) + \psi(x) a$$

$$= x - \varphi(x) a + \psi(x) a$$

$$= x + (\psi(x) - \varphi(x)) a$$

donc $\mathcal{U} \circ \mathcal{V}(x) - x = (\psi(x) - \varphi(x)) a$. On pose $g(x) = \psi(x) - \varphi(x)$, alors g est une forme linéaire non nulle sur E, donc H = Ker(g) est un hyperplan de E.

- Soit $x \in H$, alors g(x) = 0, donc $\psi(x) \varphi(x) = 0$, d'où $\mathcal{U} \circ \mathcal{V}(x) = x \in H$.
- Soit $x \in E$, alors $\mathcal{U} \circ \mathcal{V}(x) x = (\psi(x) \varphi(x)) a$ et on a

$$g((\psi(x) - \varphi(x)) a) = (\psi(x) - \varphi(x)) g(a)$$
$$= (\psi(x) - \varphi(x)) (\psi(a) - \varphi(a))$$
$$= (\psi(x) - \varphi(x)) 0 = 0$$

donc $\mathcal{U} \circ \mathcal{V}(x) - x = (\psi(x) - \varphi(x)) a \in \text{Ker}(g) = H$ d'où $\mathcal{U} \circ \mathcal{V}$ est une transvection de E.

- (b) i. Soit une transvection \mathcal{T} et $\sigma \in \operatorname{Aut}(E)$ un automorphisme de E. Montrons que $\sigma \circ \mathcal{T} \circ \sigma^{-1}$ est une transvection : en effet, on pose $\tilde{\mathcal{T}} = \sigma \circ \mathcal{T} \circ \sigma^{-1}$, alors $\tilde{\mathcal{T}}$ est une application linéaire bijective de E dans lui-même.
 - On a $\tilde{\mathcal{T}}(x) = x$ est équivalent à $\sigma \circ \mathcal{T} \circ \sigma^{-1}(x) = x$,

$$\sigma \circ \mathcal{T} \circ \sigma^{-1}(x) = x \qquad \Leftrightarrow \qquad \mathcal{T} \circ \sigma^{-1}(x) = \sigma^{-1}(x) \quad \text{car } \sigma \text{ est bijectif}$$

$$\Leftrightarrow \qquad \mathcal{T} \circ \sigma^{-1}(x) - \sigma^{-1}(x) = 0_E$$

$$\Leftrightarrow \qquad \sigma^{-1}(x) \in \text{Ker}(\mathcal{T} - \text{id}_E)$$

$$\Leftrightarrow \qquad x \in \sigma(\text{Ker}(\mathcal{T} - \text{id}_E))$$

on pose $H = \sigma(\text{Ker}(\mathcal{T} - \text{id}_E))$. On a \mathcal{T} est une transvection de E, alors $\text{Ker}(\mathcal{T} - \text{id}_E)$ est un hyperplan de E; et comme σ est un automorphisme de E, alors $H = \sigma(\text{Ker}(\mathcal{T} - \text{id}_E))$ est un hyperplan de E.

- Soit $x \in E$, on a $\sigma \circ \mathcal{T} \circ \sigma^{-1}(x) - x = \sigma \left(\mathcal{T} \circ \sigma^{-1}(x) - \sigma^{-1}(x) \right)$ or $\mathcal{T} \circ \sigma^{-1}(x) - \sigma^{-1}(x) \in \text{Ker}(\mathcal{T} - \text{id}_E)$, alors

$$\sigma\left(\mathcal{T}\circ\sigma^{-1}(x)-\sigma^{-1}(x)\right)\in H=\sigma(\operatorname{Ker}(\mathcal{T}-\operatorname{id}_E))$$

d'où $\sigma \circ \mathcal{T} \circ \sigma^{-1}(x) - x = \tilde{\mathcal{T}}(x) - x \in H.$

ce qui prouve que $\tilde{\mathcal{T}} = \sigma \circ \mathcal{T} \circ \sigma^{-1}$ est une transvection de E d'hyperplan $H = \sigma(\operatorname{Ker}(\mathcal{T} - \operatorname{id}_E))$.

Soit \mathcal{D} la droite de \mathcal{T} , alors il existe $u \in E$ tel que $u \neq 0_E$ et $\mathcal{D} = \mathbb{R} u$, donc pour tout $x \in E$ on a $\mathcal{T}(x) - x = \varphi(x) u$, donc

$$\sigma \circ \mathcal{T} \circ \sigma^{-1}(x) - x = \sigma \left(\mathcal{T} \circ \sigma^{-1}(x) - \sigma^{-1}(x) \right)$$

$$= \sigma \left(\varphi(\sigma^{-1}(x)) u \right)$$

$$\operatorname{car} \mathcal{T}(\sigma^{-1}(x)) - \sigma^{-1}(x) = \varphi(\sigma^{-1}(x)) u$$

$$= \varphi(\sigma^{-1}(x)) \sigma(u)$$

donc $\sigma \circ \mathcal{T} \circ \sigma^{-1}(x) - x = \varphi \circ \sigma^{-1}(x) \sigma(u)$, d'où la droite $\tilde{\mathcal{D}}$ de $\tilde{\mathcal{T}} = \sigma \circ \mathcal{T} \circ \sigma^{-1}$ est engendrée par le vecteur $\sigma(u)$, finalement $\tilde{\mathcal{D}} = \sigma(\mathcal{D})$.

ii. Prouvons que si \mathcal{T}_1 et \mathcal{T}_2 sont deux transvections, alors il existe $\sigma \in \operatorname{Aut}(E)$ tel que $\mathcal{T}_2 = \sigma \circ \mathcal{T}_1 \circ \sigma^{-1}$: en effet, soient \mathcal{T}_1 et \mathcal{T}_2 deux transvections de E. On considère Φ l'application de $\operatorname{Aut}(E)$ définie pour tout $\sigma \in \operatorname{Aut}(E)$ par $\Phi(\sigma) = \sigma \circ \mathcal{T} \circ \sigma^{-1}$ où \mathcal{T} est une tranvection de E, montrons que Φ est injective. Soient σ_1 et σ_2 dans $\operatorname{Aut}(E)$ tels que $\Phi(\sigma_1) = \Phi(\sigma_2)$, alors

$$\sigma_1 \circ \mathcal{T} \circ \sigma_1^{-1} = \sigma_2 \circ \mathcal{T} \circ \sigma_2^{-1}$$

donc les transvections $T_1 = \sigma_1 \circ \mathcal{T} \circ \sigma_1^{-1}$ et $T_2 = \sigma_2 \circ \mathcal{T} \circ \sigma_2^{-1}$ ont le même hyperplan H et la même droite \mathcal{D} , c'est à dire que $\sigma_1(H) = \sigma_2(H)$ et $\sigma_1(u) = \sigma_2(u)$ où $E = H \oplus \mathbb{R} u$ et $u \notin H$ avec $u \neq 0_E$, donc $\sigma_1 = \sigma_2$, d'où Φ est injectif.

D'après 3.(b)-i, pour toute tranvection \mathcal{T} de E et tout automorphisme σ , on a $\sigma \circ \mathcal{T} \circ \sigma^{-1}$ est une transvection de E, d'où $\sigma^{-1}\Phi(\sigma)\sigma = \mathcal{T}$ est une transvection, ce qui prouve que Φ est sujectif.

D'où Φ est bijectif, ce qui prouve que pour toutes tranvections \mathcal{T}_1 et \mathcal{T}_2 , il existe $\sigma \in \operatorname{Aut}(E)$ tel que $\mathcal{T}_2 = \sigma \circ \mathcal{T}_1 \circ \sigma^{-1}$ où bien $\mathcal{T}_2 \circ \sigma = \sigma \circ \mathcal{T}_1$.

Problème 2

On considère l'espace vectoriel $\mathbb{C}[X]$ ainsi le sous-ensemble $\mathbb{C}_n[X]$ des polynômes de degré inférieur ou égal à n avec $n \in \mathbb{N}^*$.

- 1. Montrer que $\mathbb{C}_n[X]$ est un sous-espace vectoriel de $\mathbb{C}[X]$. Que peut-on en déduire?
- 2. Montrer que l'application $\mathcal{D}: \mathbb{C}[X] \to \mathbb{C}[X]$ définie par :

$$\forall P \in \mathbb{C}[X], \quad \mathcal{D}(P) = P'$$
: la dérivée de P

est linéaire.

3. Soit $B_n = \{U_p \,:\, p \in \{0,1,\ldots,n\}\}$ la base de $\mathbb{C}_n[X]$ formée par les polynômes

$$U_p = X^p (1 - X)^{n-p}$$
 où $p \in \{0, 1, \dots, n\}.$

- (a) Rappeler la formule du binôme $(a+b)^p$, puis montrer que $1 = \sum_{k=0}^p C_p^k X^{p-k} (1-X)^k$.
- (b) Montrer que $\forall 0 \leq p \leq n$, on a $X^{n-p} = \sum_{k=0}^p \mathcal{C}_p^k U_{n-k}$, où $\mathcal{C}_p^k = \frac{p!}{k!(p-k)!}$.
- (c) Soit $B = \{1, X, X^2, \dots, X^n\}$ la base canonique de $\mathbb{C}_n[X]$, déterminer la matrice de passage T de B à B_n . Exprimer la matrice T lorsque n = 2, puis calculer la matrice inverse T^{-1} .
- 4. On considère l'application β qui à tout élément $Q \in \mathbb{C}[X]$ associe le polynôme

$$\beta(Q) = \sum_{p=0}^{n} Q\left(\frac{p}{n}\right) C_n^p U_p$$

- (a) Montrer que β est une application linéaire de $\mathbb{C}[X]$ dans $\mathbb{C}_n[X]$.
- (b) Montrer que $\beta(1) = 1$.

5. (a) Montrer que $\forall 0 \leq p \leq n$, on a

$$\frac{X(1-X)}{n}\mathcal{D}(U_p) = \frac{p}{n}U_p - XU_p.$$

Traiter les cas p = 0 et p = n à part.

(b) Montrer, en utilisant la linéarité de l'application \mathcal{D} , que :

$$\forall k \in \mathbb{N}^* : \mathcal{D}(\beta(X^k)) = \sum_{k=0}^p \left(\frac{p}{n}\right)^k C_n^p \mathcal{D}(U_p)$$

(c) Déduire, en utilisant 4-a), que : $\forall k \in \mathbb{N}$ on a

$$\frac{X(1-X)}{n}\mathcal{D}(\beta(X^k)) = \beta(X^{k+1}) - X\beta(X^k).$$

- 6. (a) Soit $Q = \sum_{k=0}^{m} \lambda_k X^k$, montrer que $\beta(XQ) = \sum_{k=0}^{m} \lambda_k \beta(X^{k+1})$.
 - (b) Déduire, grâce à la linéarité de $\mathcal D$ et β , et d'après ce qui précède que :

$$\forall Q \in \mathbb{C}[X] \quad \beta(XQ) = \frac{X(1-X)}{n} \mathcal{D}(\beta(Q)) + X\beta(Q)$$

(c) Calculer $\beta(X)$ et $\beta(X^2)$.

Solution :Considère l'espace vectoriel $\mathbb{C}[X]$ et le sous-ensemble $\mathbb{C}_n[X]$ des polynômes de degré inférieur ou égal à n avec $n \in \mathbb{N}^*$.

1. Montrons que $\mathbb{C}_n[X]$ est un sous-espace vectoriel de $\mathbb{C}[X]$: D'abord $\mathbb{C}_n[X] \neq \emptyset$ car le polynôme nul est un élément dans $\mathbb{C}_n[X]$. Soient P et Q deux éléments dans $\mathbb{C}_n[X]$ et λ et γ deux scalaires complexes, on a

$$P = \sum_{i=0}^{n} a_i X^i \quad \text{et} \quad Q = \sum_{j=0}^{n} b_j X^j$$

alors

$$\lambda P + \gamma Q = \sum_{i=0}^{n} (\lambda a_i + \gamma b_i) X^i = \sum_{i=0}^{n} c_i X^i \quad \text{où} \quad c_i = \lambda p_i + \gamma q_i$$

donc $\lambda P + \gamma Q \in \mathbb{C}_n[X]$, d'où $\mathbb{C}_n[X]$ est un \mathbb{C} -espace vectoriel de $\mathbb{C}[X]$. On en déduit que $\dim_{\mathbb{C}}(\mathbb{C}_n[X]) = n + 1$.

2. Montrons que l'application $\mathcal{D}:\mathbb{C}[X]\to\mathbb{C}[X]$ définie par :

$$\forall P \in \mathbb{C}[X], \quad \mathcal{D}(P) = P'$$
 est linéaire

Soient P et Q deux éléments dans $\mathbb{C}_n[X]$ et λ et γ deux scalaires complexes, on a

$$P = \sum_{i=0}^{n} a_i X^i$$
 et $Q = \sum_{j=0}^{n} b_j X^j$

alors

$$\mathcal{D}(\lambda P + \gamma Q) = (P + Q)' = \left(\sum_{i=0}^{n} (\lambda a_i + \gamma b_i) X^i\right)' = \sum_{i=1}^{n} i (\lambda a_i + \gamma b_i) X^{i-1}$$
$$= \lambda \sum_{i=1}^{n} i a_i X^{i-1} + \gamma \sum_{i=1}^{n} i b_i X^{i-1} = \lambda \left(\sum_{i=0}^{n} a_i X^i\right)' + \gamma \left(\sum_{i=0}^{n} b_i X^i\right)'$$

 $\mathrm{donc}\ \mathcal{D}(\lambda\,P+\gamma\,Q)=\lambda\,P'+\gamma\,Q'=\lambda\,\mathcal{D}(P)+\gamma\,\mathcal{D}(Q),\,\mathrm{d'où\ la\ linéarité\ de\ }\mathcal{D}.$

3. Soit $B_n = \{U_p \,:\, p \in \{0,1,\ldots,n\}\}$ la base de $\mathbb{C}_n[X]$ formée par les polynômes

$$U_p = X^p (1 - X)^{n-p}$$
 où $p \in \{0, 1, \dots, n\}$.

(a) La formule du binôme $(a+b)^p$: soient a et b deux réels, alors $a\,b=b\,a$, donc il vient

$$(a+b)^p = \sum_{k=0}^p C_p^k a^{p-k} b^k.$$

Pour a = 1 - X et b = X, alors $(a + b)^p = (1 - X + X)^p = 1^p = 1$, donc

$$1 = \sum_{k=0}^{p} C_p^k X^{p-k} (1 - X)^k.$$

(b) Montrons que $\forall 0 \leq p \leq n$, on a $X^{n-p} = \sum_{k=0}^p \mathcal{C}_p^k U_{n-k}$, où $\mathcal{C}_p^k = \frac{p!}{k!(p-k)!}$. Pour tout $0 \leq p \leq n$, on a

$$\sum_{k=0}^{p} C_p^k U_{n-k} = \sum_{k=0}^{p} C_p^k X^{n-k} (1-X)^k = \sum_{k=0}^{p} C_p^k X^{n-p} X^{p-k} (1-X)^k$$
$$= X^{n-p} \sum_{k=0}^{p} C_p^k X^{p-k} (1-X)^k$$
$$= X^{n-p} (X+1-X)^p$$

d'où
$$\sum_{k=0}^{p} C_{p}^{k} U_{n-k} = X^{n-p}$$
.

(c) Soit $B = \{1, X, X^2, \dots, X^n\}$ la base canonique de $\mathbb{C}_n[X]$,

– La matrice de passage T de B à B_n : on a $\sum_{k=0}^p C_p^k U_{n-k} = X^{n-p}$, alors

pour
$$p = n$$
, on a $1 = \sum_{k=0}^{n} C_n^k U_{n-k}$,

on pose h = n - k, alors $1 = \sum_{h=0}^{n} C_n^{n-h} U_h$ et comme $C_n^{n-h} = C_n^h$ alors

$$1 = \sum_{h=0}^{n} C_n^h U_h = C_n^0 U_0 + C_n^1 U_1 + \ldots + C_n^n U_n.$$

De même, $\sum_{k=0}^{p} C_p^k U_{n-k} = X^{n-p}$, on pose h = n - p, alors p = n - h, donc

$$X^h = \sum_{k=0}^{n-h} \mathcal{C}_{n-h}^k U_{n-k}$$

or on a $0 \le k \le n-h$, alors $h \le n-k \le n$, on pose j=n-k, donc

$$X^h = \sum_{j=h}^n C_{n-h}^{n-j} U_j$$

pour h=1, on a $X=\mathrm{C}_{n-1}^0U_1+\mathrm{C}_{n-1}^1U_2+\mathrm{C}_{n-1}^2U_3+\ldots+\mathrm{C}_{n-1}^{n-1}U_n$, pour h=2, on a $X^2=\mathrm{C}_{n-2}^0U_2+\mathrm{C}_{n-2}^1U_3+\mathrm{C}_{n-2}^2U_4+\ldots+\mathrm{C}_{n-2}^{n-2}U_n$, pour h=n-1, on a $X^{n-1}=\mathrm{C}_1^1U_{n-1}+\mathrm{C}_1^0U_n$, pour h=n, on a $X^n=\mathrm{C}_0^0U_n$, d'où la matrice de passage T de B à B_n est

e passage T de D a D_n est

$$T = \begin{bmatrix} \mathbf{C}_{n}^{0} & 0 & 0 & \dots & 0 \\ \mathbf{C}_{n}^{1} & \mathbf{C}_{n-1}^{0} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{C}_{n}^{n-1} & \mathbf{C}_{n-1}^{n-2} & \dots & \mathbf{C}_{1}^{0} & 0 \\ \mathbf{C}_{n}^{n} & \mathbf{C}_{n-1}^{n-1} & \dots & \mathbf{C}_{1}^{1} & \mathbf{C}_{0}^{0} \end{bmatrix}$$

- La matrice T pour n = 2: on a

$$T = \begin{bmatrix} C_2^0 & 0 & 0 \\ C_2^1 & C_1^0 & 0 \\ C_2^1 & C_1^0 & C_0^0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- La matrice inverse T^{-1} de T est

$$T^{-1} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -1 & 1 \end{array} \right].$$

4. Considère l'application β qui à tout élément $Q \in \mathbb{C}[X]$ associe le polynôme

$$\beta(Q) = \sum_{p=0}^{n} Q\left(\frac{p}{n}\right) C_n^p U_p$$

(a) Montrons que β est une application linéaire de $\mathbb{C}[X]$ dans $\mathbb{C}_n[X]$: soit Q dans $\mathbb{C}[X]$ alors pour tout $0 \le p \le n$ on a $Q\left(\frac{p}{n}\right) C_n^p \in \mathbb{C}$ et que

$$d^{o}U_{p} = d^{o}(X^{p}(1-X)^{n-p}) = n \text{ donc } d^{o}\beta(Q) \le n$$

d'où pour tout Q dans $\mathbb{C}[X]$ on a $\mathrm{d}^o\beta(Q) \leq n$, soit $\beta(Q) \in \mathbb{C}_n[X]$ c'est à dire que β est bien défini de $\mathbb{C}[X]$ dans $\mathbb{C}_n[X]$.

Soient P et Q deux éléments dans $\mathbb{C}[X]$ et λ un scalaire complexe, alors

$$\beta(\lambda Q) = \sum_{p=0}^{n} (\lambda Q) \left(\frac{p}{n}\right) C_n^p U_p = \lambda \sum_{p=0}^{n} Q \left(\frac{p}{n}\right) C_n^p U_p = \lambda \beta(Q)$$

$$\beta(P+Q) = \sum_{p=0}^{n} (P+Q) \left(\frac{p}{n}\right) C_n^p U_p = \sum_{p=0}^{n} P\left(\frac{p}{n}\right) C_n^p U_p + \sum_{p=0}^{n} Q\left(\frac{p}{n}\right) C_n^p U_p$$

donc $\beta(P+Q)=\beta(P)+\beta(Q),$ d'où la linéarité de $\beta.$

(b) Montrons que $\beta(1) = 1$: on a $\beta(Q) = \sum_{p=0}^{n} Q\left(\frac{p}{n}\right) C_n^p U_p$, alors pour Q = 1 il; vient

$$\beta(1) = \sum_{p=0}^{n} 1 C_n^p U_p = \sum_{p=0}^{n} C_n^p X^p (1-X)^{n-p} = (X+1-X)^n = 1.$$

5. (a) Montrons que $\forall 0 \leq p \leq n$, on a

$$\frac{X(1-X)}{n}\mathcal{D}(U_p) = \frac{p}{n}U_p - XU_p.$$

Pour $0 \le p \le n$, on a

$$\frac{X(1-X)}{n}\mathcal{D}(U_p) = \frac{X(1-X)}{n} \left(X^p (1-X)^{n-p} \right)'
= \frac{X(1-X)}{n} \left(p X^{p-1} (1-X)^{n-p} - (n-p) X^p (1-X)^{n-p-1} \right)
= \frac{X(1-X)}{n} X^{p-1} (1-X)^{n-p-1} \left(p (1-X) - (n-p) X \right)
= \frac{1}{n} X^p (1-X)^{n-p} (p-n X)$$

donc
$$\frac{X(1-X)}{n}\mathcal{D}(U_p) = \frac{p}{n}X^p (1-X)^{n-p} - XX^p (1-X)^{n-p} = \left(\frac{p}{n}-X\right)U_p.$$

Pour $p=0$, on a $U_0=X^0(1-X)^{n-0}=(1-X)^n$, alors $\mathcal{D}(U_0)=-n(1-X)^{n-1}$ donc

$$\frac{X(1-X)}{n}\mathcal{D}(U_0) = -X(1-X)^n = -XU_0$$

et pour p = n on a $U_n = X^n(1 - X)^{n-n} = X^n$, alors $\mathcal{D}(U_n) = n X^{n-1}$, donc

$$\frac{X(1-X)}{n}\mathcal{D}(U_n) = (1-X)X^n = (1-X)U_n.$$

(b) Montrons, en utilisant la linéarité de l'application \mathcal{D} , que :

$$\forall k \in \mathbb{N}^* : \mathcal{D}(\beta(X^k)) = \sum_{k=0}^p \left(\frac{p}{n}\right)^k C_n^p \mathcal{D}(U_p).$$

Soit $k \in \mathbb{N}^*$, pour $Q = X^k$ on a $\beta(X^k) = \sum_{p=0}^n \left(\frac{p}{n}\right)^k C_n^p U_p$, alors

$$\mathcal{D}(\beta(X^k)) = \mathcal{D}\left(\sum_{k=0}^p \left(\frac{p}{n}\right)^k C_n^p U_p\right) = \left(\sum_{k=0}^p \left(\frac{p}{n}\right)^k C_n^p U_p\right)'$$

comme \mathcal{D} est linéaire alors

$$\mathcal{D}(\beta(X^k)) = \sum_{k=0}^{p} \left(\frac{p}{n}\right)^k C_n^p (U_p)'$$

d'où le résultat $\mathcal{D}(\beta(X^k)) = \sum_{k=0}^p \left(\frac{p}{n}\right)^k C_n^p \mathcal{D}(U_p).$

(c) D'après la question 5-a), on a $\frac{X(1-X)}{n}\mathcal{D}(U_p) = \frac{p}{n}U_p - XU_p$, alors en replaçant U_p par $\beta(X^k)$ il vient

$$\frac{X(1-X)}{n}\mathcal{D}(\beta(X^k)) = \frac{p}{n}\beta(X^k) - X\beta(X^k)$$

$$= \frac{p}{n}\sum_{p=0}^{n}\left(\frac{p}{n}\right)^k C_n^p U_p - X\beta(X^k)$$

$$= \sum_{n=0}^{n}\left(\frac{p}{n}\right)^{k+1} C_n^p U_p - X\beta(X^k)$$

d'où on déduit que $\frac{X(1-X)}{n}\mathcal{D}(\beta(X^k)) = \beta(X^{k+1}) - X\beta(X^k)$.

6. (a) Soit $Q = \sum_{k=0}^{m} \lambda_k X^k$, montrons que $\beta(XQ) = \sum_{k=0}^{m} \lambda_k \beta(X^{k+1})$. En effet, on a

$$X Q = X \sum_{k=0}^{m} \lambda_k X^k = \sum_{k=0}^{m} \lambda_k X^{k+1}$$

alors

$$\beta(X Q) = \beta\left(\sum_{k=0}^{m} \lambda_k X^{k+1}\right) = \sum_{n=0}^{n} \sum_{k=0}^{m} \lambda_k \left(\frac{p}{n}\right)^{k+1} C_n^p U_p$$

donc, en faisant intervertir les signes somme, il vient

$$\beta(X|Q) = \sum_{k=0}^{m} \lambda_k \left(\sum_{p=0}^{n} \left(\frac{p}{n} \right)^{k+1} C_n^p U_p \right)$$

d'où
$$\beta(X Q) = \sum_{k=0}^{m} \lambda_k \beta(X^{k+1}).$$

(b) D'après la question 5-(c) on a $\frac{X(1-X)}{n}\mathcal{D}(\beta(X^k)) = \beta(X^{k+1}) - X\beta(X^k)$, alors

$$\lambda_k \frac{X(1-X)}{n} \mathcal{D}(\beta(X^k)) = \lambda_k \beta(X^{k+1}) - \lambda_k X \beta(X^k)$$

comme $\beta(XQ) = \sum_{k=0}^m \lambda_k \beta(X^{k+1})$ et $\beta(Q) = \sum_{k=0}^m \lambda_k \beta(X^k)$ alors d'après la linéarité de \mathcal{D} il vient

$$\mathcal{D}(\beta(Q)) = \sum_{k=0}^{m} \lambda_k \, \mathcal{D}\left(\beta(X^k)\right)$$

donc

$$\frac{X(1-X)}{n} \mathcal{D}\left(\beta(X^k)\right) = \sum_{k=0}^m \lambda_k \frac{X(1-X)}{n} \mathcal{D}(\beta(X^k))$$

$$= \sum_{k=0}^m \lambda_k \left(\beta(X^{k+1}) - X\beta(X^k)\right)$$

$$= \sum_{k=0}^m \lambda_k \beta(X^{k+1}) - X \sum_{k=0}^m \lambda_k \beta(X^k)$$

$$= \beta(XQ) - X\beta(Q)$$

car
$$\beta(XQ) = \sum_{k=0}^m \lambda_k \beta(X^{k+1})$$
 et $\beta(Q) = \sum_{k=0}^m \lambda_k \beta(X^k)$, d'où on déduit que

$$\forall Q \in \mathbb{C}[X]$$
 on a $\beta(XQ) = \frac{X(1-X)}{n} \mathcal{D}(\beta(Q)) + X\beta(Q)$

(c) Calculons $\beta(X)$ et $\beta(X^2)$: en effet, pour Q = 1 on a $\mathcal{D}(1) = 0$, alors d'après la question 6-(b) il vient

$$\beta(X) = \frac{X(1-X)}{n} \mathcal{D}(\beta(1)) + X\beta(1) = \frac{X(1-X)}{n} \mathcal{D}(1) + X$$

donc $\beta(X) = X$,

et pour Q = X, on a $\beta(X^2) = \frac{X(1-X)}{n} \mathcal{D}(\beta(X)) + X\beta(X)$, donc

$$\beta(X^2) = \frac{X(1-X)}{n} \mathcal{D}(X) + X^2 = \frac{X(1-X)}{n} + X^2$$

d'où
$$\beta(X^2) = \frac{n-1}{n}X^2 + \frac{1}{n}X$$
.

On peut continuer les calculs pour $Q = X^3$ on trouve

$$\beta(X^2) = \frac{n^2 - 3n + 2}{n^2} X^3 + \frac{n^2 + 2n - 3}{n^2} X^2 + \frac{1}{n^2} X.$$

Problème 3

Soient $P = X^3 - X - 1$ et $Q = X^3 + X^2 - 1$ deux polynômes.

- I) Soit $B = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{Z}[X].$
 - 1. Montrer que si un nombre rationel $\frac{p}{q} \in \mathbb{Q}$, $(p \in \mathbb{N}, q \in \mathbb{Z}^*, p \text{ et } q \text{ sont premiers entre eux})$, est une racine de B, alors :

$$a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n = 0.$$

- 2. En déduire que p divise a_0 et q divise a_n .
- 3. Déduire de ce qui précède que les polynômes P et Q ne possèdent aucune racine dans \mathbb{Q} .
- II) Par la suite, on désigne par ω l'unique racine réelle de P.

- 1. En utilisant le fait que $\omega \notin \mathbb{Q}$, montrer que P n'est pas divisible par aucun polynôme non constant de $\mathbb{Q}[X]$ de degré ≤ 2 .
- 2. Soit $D=r_0X^2+r_1X+r_2\in\mathbb{Q}[X]$ un polynôme de degré 2. On suppose que ω est une racine de D.
 - a. Montrer que : $\omega^3 = \omega + 1 = -\frac{r_1}{r_0}\omega^2 \frac{r_2}{r_0}\omega$.
 - b. En déduire que $r_1 \neq 0$ et que $\frac{r_0}{r_1} + \frac{r_2}{r_1} = \frac{r_1}{r_0}$ et $\frac{r_0}{r_1} = \frac{r_2}{r_0}$. (**Indication**: pour cela écrire ω^2 de deux façons différentes).
 - c. Montrer que $\frac{r_0}{r_1}$ est alors une racine de Q, et en déduire que ω ne peut être une racine de D.
- 3. Déduire de ce qui précède que P est premier, dans $\mathbb{R}[X]$, avec tout polynôme de $\mathbb{Q}[X]$ de degré 1 ou 2.
- 4. Montrer que les nombres réels 1, ω et ω^2 sont linéairement indépendants dans \mathbb{R} considéré comme espace vectoriel sur \mathbb{Q} .
- 5. On désigne par F l'ensemble des nombres réels de la forme $R(\omega)$ où R(X) est un polynôme de $\mathbb{Q}[X]$; $F = \{R(\omega) / R(X) \in \mathbb{Q}[X]\}.$
 - a. Montrer que F est un sous-espace vectoriel de $\mathbb R$ considéré comme espace vectoriel sur $\mathbb Q$.
 - b. Montrer par récurrence sur n que :

$$\forall n \in \mathbb{N}, \quad \exists q_0, q_1, q_2 \in \mathbb{Q} \quad \text{tel que} \quad \omega^n = q_0 + q_1\omega + q_2\omega^2.$$

c. En déduire que $\{1,\omega,\omega^2\}$ est une base du sous-espace vectoriel F.

Solution : Soient $P = X^3 - X - 1$ et $Q = X^3 + X^2 - 1$ deux polynômes.

- I) Soit $B = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{Z}[X].$
 - 1. Montrons que si un nombre rationel $\frac{p}{q} \in \mathbb{Q}$, $(p \in \mathbb{N}, q \in \mathbb{Z}^*, p \text{ et } q \text{ sont premiers entre eux})$, est une racine de B, alors :

$$a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n = 0.$$

le nombre rationel $\frac{p}{q} \in \mathbb{Q}$ est une racine de B, alors $B\left(\frac{p}{q}\right) = 0$, donc

$$B\left(\frac{p}{q}\right) = a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \ldots + a_1 \left(\frac{p}{q}\right) + a_0 = 0$$

soit $a_n\left(\frac{p^n}{q^n}\right) + a_{n-1}\left(\frac{p^{n-1}}{q^{n-1}}\right) + \dots + a_1\left(\frac{p}{q}\right) + a_0 = 0$, donc

$$\frac{a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n}{q^n} = 0$$

on multiplie l'équation fois q^n , il vient

$$q^{n} \frac{a_{n} p^{n} + a_{n-1} p^{n-1} q + \ldots + a_{1} p q^{n-1} + a_{0} q^{n}}{q^{n}} = q^{n} 0 = 0$$

d'où $a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n = 0.$

2. Le nombre p divise a_0 et q divise a_n : en effet, on a

$$a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n = 0,$$

alors $p\left(a_n p^{n-1} + a_{n-1} p^{n-2} q + \ldots + a_1 q^{n-1}\right) = -a_0 q^n$, donc p divise $a_0 q^n$, comme p et q sont premiers entre eux, alors $p \wedge q^n = 1$, donc on déduit que p divise a_0 .

De même, on a $-a_n p^n = q (a_{n-1} p^{n-1} + \ldots + a_1 p q^{n-2} + a_0 q^{n-1})$, alors q divise $a_n p^n$, et comme $p \wedge q^n = 1$ donc on déduit que q divise a_n .

3. Soient $P = X^3 - X - 1$ et $Q = X^3 + X^2 - 1$, alors $P \in \mathbb{Z}[X]$ et $Q \in \mathbb{Z}[X]$. Pour les deux polynômes P et Q on a $a_n = 1$ et $a_0 = -1$. Si le nombre rationel $\frac{p}{q} \in \mathbb{Q}$ est une racine de P et de Q, alors

$$P\left(\frac{p}{q}\right) = 0$$
 et $Q\left(\frac{p}{q}\right) = 0$

 $\begin{array}{lll} \operatorname{donc}\,P\left(\frac{p}{q}\right)=0 &\Leftrightarrow & p \ \operatorname{divise}\, -1, & \operatorname{d'où} & p=1 \ \operatorname{où} \ \operatorname{bien} \ p=-1, \\ \operatorname{et} \ \operatorname{de} \ \operatorname{même}, \ Q\left(\frac{p}{q}\right)=0 &\Leftrightarrow & q \ \operatorname{divise}\, 1, & \operatorname{d'où} & q=1 \ \operatorname{où} \ \operatorname{bien} \ q=-1, \\ \operatorname{d'où} \ \frac{p}{q}=1 \ \operatorname{où} \ \operatorname{bien} \ \frac{p}{q}=-1, \\ \operatorname{or} \ P\left(1\right)=1^3-1-1=-1\neq 0, \ P\left(-1\right)=(-1)^3-(-1)-1=-1\neq 0, \ Q\left(1\right)=1^3+1^2-1=1\neq 0 \ \operatorname{et} \ Q\left(-1\right)=(-1)^3+(-1)^2-1=-1\neq 0, \ \operatorname{alors} \\ -1 \ \operatorname{et} \ 1 \ \operatorname{ne} \ \operatorname{sont} \ \operatorname{pas} \ \operatorname{des} \ \operatorname{racines} \ \operatorname{de} \ P \ \operatorname{et} \ Q, \ \operatorname{d'où} \ \operatorname{les} \ \operatorname{polynômes} \ P \ \operatorname{et} \ Q \ \operatorname{ne} \ \operatorname{possèdent} \\ \operatorname{pas} \ \operatorname{de} \ \operatorname{racines} \ \operatorname{dans} \ \mathbb{Q}. \end{array}$

- II) On désigne par ω l'unique racine réelle de P avec $\omega \notin \mathbb{Q}$.
 - 1. Montrons que P n'est pas divisible par aucun polynôme non constant de $\mathbb{Q}[X]$ de degré ≤ 2 : en effet, on a ω l'unique racine réelle de P, alors $X-\omega$ divise le polynôme P et par une division euclidienne il vient

$$P = (X - \omega)(X^2 + \omega X + \omega^2 - 1),$$

comme $\omega \notin \mathbb{Q}$, alors $X^2 + \omega X + \omega^2 - 1 \notin \mathbb{Q}[X]$, donc P n'est divisible par aucun polynôme de degré égal à 2 dans $\mathbb{Q}[X]$.

- 2. On prend $D=r_0X^2+r_1X+r_2\in\mathbb{Q}[X]$ un polynôme de degré 2. Supposons que ω est une racine de D.
 - a. Montrons que : $\omega^3 = \omega + 1 = -\frac{r_1}{r_0}\omega^2 \frac{r_2}{r_0}\omega$: en effet, ω est une racine de P, alors $P(\omega) = \omega^3 \omega 1 = 0$, donc $\omega^3 = \omega + 1$.

De même, ω est une racine de D, alors $D(\omega) = r_0 \omega^2 + r_1 \omega + r_2 = 0$, comme $r_0 \neq 0$, alors $\omega^2 + \frac{r_1}{r_0} \omega + \frac{r_2}{r_0} = 0$, donc $\omega^2 = -\frac{r_1}{r_0} \omega - \frac{r_2}{r_0}$, donc

$$\omega^3 = -\frac{r_1}{r_0}\omega^2 - \frac{r_2}{r_0}\omega$$

d'où le résultat $\omega^3=\omega+1=-\frac{r_1}{r_0}\,\omega^2-\frac{r_2}{r_0}\,\omega$

b. Si $r_1 = 0$, alors $\omega^3 = \omega + 1 = -\frac{r_2}{r_0}\omega$, donc

$$\left(1 + \frac{r_2}{r_0}\right) \omega = -1$$
 d'où $\omega = -\frac{r_0}{r_0 + r_2}$

soit $\omega \in \mathbb{Q}$ ce qui est absurde puisque ω n'est pas un rationel, d'où on déduit que $r_1 \neq 0$.

D'une part on a $\omega + 1 = -\frac{r_1}{r_0}\omega^2 - \frac{r_2}{r_0}\omega$, alors

$$\frac{r_1}{r_0}\omega^2 = -\left(1 + \frac{r_2}{r_0}\right)\omega - 1$$
, d'où $\omega^2 = -\left(\frac{r_0}{r_1} + \frac{r_2}{r_1}\right)\omega - \frac{r_0}{r_1}$

et d'autre part, on a $\omega^2 + \frac{r_1}{r_0}\omega + \frac{r_2}{r_0} = 0$, alors

$$\omega^2 = -\frac{r_1}{r_0}\omega - \frac{r_2}{r_0}$$

donc il vient

$$-\frac{r_1}{r_0}\omega - \frac{r_2}{r_0} = -\left(\frac{r_0}{r_1} + \frac{r_2}{r_1}\right)\omega - \frac{r_0}{r_1} \quad \Leftrightarrow \quad \left(\frac{r_0}{r_1} + \frac{r_2}{r_1} - \frac{r_1}{r_0}\right)\omega = \frac{r_0}{r_1} - \frac{r_2}{r_0}\omega - \frac{r_2}{r_0}\omega = \frac{r_0}{r_0}\omega - \frac{r_2}{r_0}\omega - \frac{r_0}{r_0}\omega - \frac{r_0}{r_0}$$

c'est à dire que $\frac{r_0}{r_1} + \frac{r_2}{r_1} - \frac{r_1}{r_0} = 0$ et $\frac{r_0}{r_1} - \frac{r_2}{r_0} = 0$, car sinon

$$\omega = \frac{\frac{r_0}{r_1} - \frac{r_2}{r_0}}{\frac{r_0}{r_1} + \frac{r_2}{r_1} - \frac{r_1}{r_0}} = \frac{r_0^2 - r_1 r_2}{r_0^2 + r_0 r_2 - r_1^2} \quad \text{serait un rationel ce qui est absurde}$$

d'où on déduit que $\frac{r_1}{r_0}=\frac{r_0}{r_1}+\frac{r_2}{r_1}$ et $\frac{r_2}{r_0}=\frac{r_0}{r_1}$

c. Montrons que $\frac{r_0}{r_1}$ est alors une racine de Q: en effet, on a $\frac{r_1}{r_0} = \frac{r_0}{r_1} + \frac{r_2}{r_1}$ et $r_0^2 = r_1 r_2$, alors

$$\frac{r_2}{r_1} = \frac{r_0^2}{r_1^2} = \left(\frac{r_0}{r_1}\right)^2$$
 donc $\frac{r_1}{r_0} = \frac{r_0}{r_1} + \left(\frac{r_0}{r_1}\right)^2$

on multiplie l'équation fois $\frac{r_0}{r_1}$, il vient

$$1 = \left(\frac{r_0}{r_1}\right)^2 + \left(\frac{r_0}{r_1}\right)^3$$
 soit $\left(\frac{r_0}{r_1}\right)^3 + \left(\frac{r_0}{r_1}\right)^2 - 1 = 0$

d'où $Q\left(\frac{r_0}{r_1}\right) = 0$, ce qui prouve que $\frac{r_0}{r_1}$ est une racine de Q.

On a $\frac{r_0}{r_1} \in \mathbb{Q}$ est une racine rationel de Q et comme Q ne peut pas avoir de racine dans \mathbb{Q} , d'où l'hypothèse ω est une racine de D est fausse. D'où on déduit que ω ne peut être une racine de D.

3. On a $P = X^3 - X - 1$, soit $D \in \mathbb{Q}[X]$ un polunôme de degré $d^o D \leq 2$. Soit $R \in \mathbb{R}[X]$ un diviseur commun de P et D.

- Si d $^oR=1$, alors R admet une racine réelle, notée ω_0 ; et comme R divise P alors $\omega_0=\omega$ puisque P admet ω comme l'unique racine réelle, donc ω est une racine de D car R divise D, donc $D(\omega)=0$ ce qui est absurde car d'après II 2) on a $D\in \mathbb{Q}[X]$. D'où R n'est pas de degré 1.
- Si $d^oR = 2$, alors R divise D et $d^oD = 2$, donc il existe un sclaire λ non nul tel que $R = \lambda D$, donc $D = \frac{1}{\lambda} R$ appartient à $\mathbb{Q}[X]$ ce qui est faux. D'où R n'est pas de degré 2.

D'où d $^{o}R = 0$, d'où on déduit que R est constant, soit $P \wedge D = 1$

4. Soit \mathbb{R} un espace vectoriel sur \mathbb{Q} , soit r_0 , r_1 et r_2 des scalaires dans \mathbb{Q} tels que $r_0 \omega^2 + r_1 \omega + r_2 = 0$, alors ω est la racine de $D = r_0 X^2 + r_1 X + r_2$ dans $\mathbb{Q}[X]$. Si $r_0 \neq 0$, alors d'après II -2), D ne peut avoir ω comme racine, donc $r_0 = 0$. Si $r_1 \neq 0$, alors $r_1 \omega + r_2 = 0$ implique $\omega = -\frac{r_2}{r_1} \in \mathbb{Q}$ ce qui est absurde d'après II -2), donc $r_1 = 0$, d'où $r_2 = 0$.

Finalement $r_0 = r_1 = r_2 = 0$, ce qui prouve que le système $\{1, \omega, \omega^2\}$ est libre dans \mathbb{R} comme espace vectoriel sur \mathbb{Q} .

- 5. Soit $F = \{R(\omega) / R(X) \in \mathbb{Q}[X]\}$ l'ensemble des nombres réels de la forme $R(\omega)$ où R(X) est un polynôme de $\mathbb{Q}[X]$;.
 - a. Montrons que F est un sous-espace vectoriel de \mathbb{R} considéré comme espace vectoriel sur \mathbb{Q} : en effet, d'abord $F \neq \emptyset$ car $\omega^2 1 \in F$ avec $R(X) = X^2 1$. Soient α et β dans \mathbb{Q} et R_1 et R_2 dans $\mathbb{Q}[X]$, alors

$$\alpha R_1(\omega) + \beta R_2(\omega) \in F \quad \text{car} \quad \alpha R_1 + \beta R_2 \in \mathbb{Q}[X]$$

d'où F est un sous-espace vectoriel de $\mathbb R$ considéré comme espace vectoriel sur $\mathbb O$.

b. Montrons par récurrence sur n que :

$$\forall n \in \mathbb{N}, \quad \exists q_0, q_1, q_2 \in \mathbb{Q} \quad \text{tel que} \quad \omega^n = q_0 + q_1\omega + q_2\omega^2$$

en effet.

- pour n=0, on a $\omega^0=q_0+q_1\omega+q_2\omega^2$, alors

$$\omega^{0} = q_{0} + q_{1} \omega + q_{2} \omega^{2} \qquad \Rightarrow \qquad q_{0} - 1 + q_{1} \omega + q_{2} \omega^{2} = 0$$

$$\Rightarrow \qquad (q_{0} - 1)\omega + q_{1} \omega^{2} + q_{2} \omega^{3} = 0$$
en multipliant fois ω

$$\Rightarrow \qquad (q_{0} - 1)\omega + q_{1} \omega^{2} + q_{2} (\omega + 1) = 0$$

$$\operatorname{car} \quad \omega^{3} = \omega + 1$$

$$\Rightarrow \qquad q_{2} + (q_{0} + q_{2} - 1)\omega + q_{1} \omega^{2} = 0$$

or le système $\{1, \omega, \omega^2\}$ est libre dans \mathbb{R} comme espace vectoriel sur \mathbb{Q} , alors $q_2 = 0$, $q_1 = 0$ et $q_0 + q_2 - 1 = 0$, d'où $q_2 = q_1 = 0$ et $q_0 = 1$, ce qui prouve que l'égalité $0 \omega^2 + 0 \omega + 1 = 1 = \omega^0$ est vraie pour n = 0.

– Supposons que l'équation est vraie jusqu'à l'ordre n, c'est à dire que pour n on a $\omega^n=q_0+q_1\,\omega+q_2\,\omega^2$. Montrons que l'équation reste encore vraie

pour l'ordre n+1. On a $\omega^n=q_0+q_1\,\omega+q_2\,\omega^2$, alors en multipliant cette équation fois ω , il vient

$$\omega^{n+1} = q_0 \,\omega + q_1 \,\omega^2 + q_2 \,\omega^3$$

or $\omega^3 = \omega + 1$, alors $\omega^{n+1} = q_0 \omega + q_1 \omega^2 + q_2 (\omega + 1) = q_2 + (q_0 + q_2) \omega + q_1 \omega^2$, donc il existe $\tilde{q}_0 = q_2$, $\tilde{q}_1 = q_0 + q_2$ et $\tilde{q}_2 = q_1$ tels que $\omega^{n+1} = \tilde{q}_0 + \tilde{q}_1 \omega + \tilde{q}_2 \omega^2$, d'où la propriété est encore vraie pour l'ordre n+1.

- D'après la propriété de récurrence, $\forall n \in \mathbb{N}, \quad \exists q_0, q_1, q_2 \in \mathbb{Q}$ tels que $\omega^n = q_0 + q_1\omega + q_2\omega^2$
- c. Le système $\{1,\omega,\omega^2\}$ est libre dans F. Il reste à montrer qu'elle est génératrice.

Soit P dans $\mathbb{Q}[X]$ avec $P = \sum_{k=0}^{n} \lambda_k X^k$, alors

$$P(\omega) = \sum_{k=0}^{n} \lambda_k \, \omega^k$$

or pour tout $k \in \mathbb{N}$, il existe α_k , β_k et γ_k dans \mathbb{Q} tels que $\omega^k = \alpha_k + \beta_k \omega + \gamma_k \omega^2$, alors

$$P(\omega) = \sum_{k=0}^{n} \lambda_k \left(\alpha_k + \beta_k \omega + \gamma_k \omega^2 \right)$$
$$= \left(\sum_{k=0}^{n} \lambda_k \alpha_k \right) + \left(\sum_{k=0}^{n} \lambda_k \beta_k \right) \omega + \left(\sum_{k=0}^{n} \lambda_k \gamma_k \right) \omega^2$$

donc $P(\omega) = \rho + \eta \omega + \theta \omega^2$ où $\rho = \sum_{k=0}^n \lambda_k \alpha_k$, $\eta = \sum_{k=0}^n \lambda_k \beta_k$ et $\theta = \sum_{k=0}^n \lambda_k \gamma_k$, ce qui montre que la famille $\{1, \omega, \omega^2\}$ engendre F, d'où $\{1, \omega, \omega^2\}$ est une base du sous-espace vectoriel F.

Finalement, on déduit la dimension de $F : \dim_{\mathbb{Q}}(F) = 3$.