Guillaume T. 10-2024

Probabilité conditionnelle

PST

4 - Probabilité conditionnelle

Résumé du document

Definition

Table des matières

1. Probabilité conditionnelle	2
1.1. Concept	
1.1.1. Remarques	
1.2. Théorème de multiplication	
1.3. Théorème des probabilités totales	
2. Théorème de Bayes	
2.1. Version simplifiée	
2.2. Version composée	

Guillaume T. 10-2024

1. Probabilité conditionnelle

1.1. Concept

La probabilité conditionnelle nous permet de calculer la probabilité d'un événement en fonction d'une condition.

L'opération permettant de calculer la probabilité conditionnelle est la suivante:

$$A=$$
 probabilité que l'évenement A se passe
$$B=$$
 événement qui s'est réalisé

Nous cherchons donc la chance que l'évenement A se passe en sachant que l'événement B s'est réalisé:

$$P(A \mid B)$$

La formule de base permettant de calculer cette probabilité est:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \ P(B) \neq 0$$

1.1.1. Remarques

$$P(B \mid B) = 1$$

si A est inclus dans B, alors $A \cap B = A$ et donc

$$P(A \mid B) = \frac{P(A)}{P(B)}$$

1.2. Théorème de multiplication

En utilisant l'inverse de la formule présentée au point 2 nous pouvons retrouver $P(A \cap B)$, pour cela nous aurons la formule suivante:

$$P(A \cap B) = P(A \mid B) * P(B)$$
$$= P(B \mid A) * P(A)$$

1.3. Théorème des probabilités totales

Soient A et B deux événements quelconques. Comme B et \overline{B} forment une partition de Ω , on aura selon le théorème des probabilités totales,

$$\begin{split} P(A) &= P(A \mid B) * P(B) + P\Big(A \mid \overline{B}\Big) * P\Big(\overline{B}\Big) \\ &= P(A \mid B) * P(B) + P\Big(A \mid \overline{B}\Big) * P(1 - P(B)) \end{split}$$

Guillaume T. 10-2024

2. Théorème de Bayes

Le théorème de Bayes qui fait appel aux théorèmes de multiplication et de probabilités totales est très important. Par exemple, il donna naissance à une autre approche de la statistique. Nous présenterons d'abord la version simple du théorème puis sa version composée.

2.1. Version simplifiée

Supposons que A et B soient deux événements d'un ensemble fondamental Ω , avec $P(B) \neq 0$. Alors,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A) * P(A)}{P(B)}$$

2.2. Version composée

Soient une partition $H_1, H_2, ..., H_k$ et un événement B d'un ensemble fondamental Ω , avec $P(B) \neq 0$. Pour tout indice $1 \leq j \leq k$, on aura,

$$\begin{split} P\big(H_j \mid B\big) &= \frac{P\big(H_j \cap B\big)}{P(B)} \\ &= \frac{P\big(B \mid H_j\big) * P\big(H_j\big)}{P(B \mid H_1) * P(H_1) + \ldots + P(B \mid H_k) * P(H_k)} \end{split}$$