The group G is isomorphic to the group labelled by [24, 13] in the Small Groups library. Ordinary character table of $G\cong C2$ x A4:

Trivial source character table of $G \cong C2 \times A4$ at p = 3:

Tivital boarder transfer of C = C2 ii Ti ac p			_		_	
Normalisers N_i	N_1				N_2	
p-subgroups of G up to conjugacy in G	P_1				P_2	
Representatives $n_j \in N_i$	1a	2a	2b	2c	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	3	3	3	3	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	3	-3	3	-3	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	3	-3	-1	1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	3	3	-1	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	-1	1	-1	1	-1
701 702 700 701 701 700 700 701 700						

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 3, 9)(2, 6, 13)(4, 11, 23)(5, 19, 17)(7, 15, 24)(8, 22, 20)(10, 18, 12)(14, 21, 16)]) \cong C3$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,8)(9,13)(10,14)(11,15)(12,16)(17,20)(18,21)(19,22)(23,24), (1,3,9)(2,6,13)(4,11,23)(5,19,17)(7,15,24)(8,22,20)(10,18,12)(14,21,16), (1,4)(2,7)(3,10)(5,12)(6,14)(8,16)(9,17)(11,19)(13,20)(15,22)(18,23)(21,24), (1,5)(2,8)(3,11)(4,12)(6,15)(7,16)(9,18)(10,19)(13,21)(14,22)(17,23)(20,24)]) \cong C2 \times A4$ $N_2 = Group([(1,3,9)(2,6,13)(4,11,23)(5,19,17)(7,15,24)(8,22,20)(10,18,12)(14,21,16), (1,2)(3,6)(4,7)(5,8)(9,13)(10,14)(11,15)(12,16)(17,20)(18,21)(19,22)(23,24)]) \cong C4 \times A4$

-1 E(3)

E(3) $E(3)^2$

-E(3) -1 $E(3)^2$

 $E(3)^{2}$