

AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Technika cyfrowa

TIMER

Dulewicz Antoni Smyda Tomasz

29 kwietnia 2024

Spis treści

1	Tres	ć ćwiczenia	2											
2	Opis rozwiązania													
3	Pro	jekt logiczny	3											
	3.1	Tabela prawdy	3											
	3.2	Tabele prawdy, tabele Karnaugh i schematy dla poszczególnych wyjść	4											
		3.2.1 Wyjście Y ₄	4											
			5											
		3.2.3 Wyjście Y ₂	7											
		3.2.4 Wyjścio V-	a											

1 Treść ćwiczenia

Korzystając wyłącznie z wybranych przerzutników oraz dowolnych bramek logicznych, proszę zaprojektować czterobitowy układ TIMER, odmierzający ustawiany za pomocą przełączników czas (od 0 do 15).

Po wciśnięciu przycisku START, układ rozpoczyna odmierzanie czasu do tyłu (proszę dobrać częstotliwość tak, aby efekt był dobrze widoczny na ekranie). Po wyzerowaniu się licznika czasu, układ powinien się zatrzymać i włączyć alarm świetlny wykorzystujący diodę LED. Po ponownym wciśnięciu przycisku START, układ powinien wyłączyć alarm i ponownie rozpocząć odmierzanie ustawionego na przełącznikach czasu.

Aktualny wskazywany przez układ czas proszę pokazywać na wyświetlaczach siedmiosegmentowych.

2 Opis rozwiązania

Na początku tworzymy tabelę prawdy, która reprezentuje stany logiczne transkodera dla przerzutników typu T. Następnie przy pomocy tabel Karnaugh wyprowadzamy funkcje logiczne reprezentujące ten układ i przechodzimy do części projektowania układu w programie Multisim oraz testujemy go za pomocą układu testujacego.

3 Projekt logiczny

3.1 Tabela prawdy

Przejście	D	С	В	A	D_{+}	C_{+}	B ₊	A_{+}	Y_4	Y_3	Y_2	Y_1
$15 \to 14$	1	1	1	1	1	1	1	0	0	0	0	1
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	0	0	1	1
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0	0	0	1
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0	0	0	1
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	0	0	1	1
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0	0	0	1
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0	0	0	1
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	0	0	1	1
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0	0	0	1
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0	0	0	1
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	0	0	1	1
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0	0	0	1
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0	0	0	0

Tabela 1: Tabela prawdy dla transkodera

Т	Q_t	Q_{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

Tabela 2: Tabela prawdy dla przerzutnika typu T

3.2 Tabele prawdy, tabele Karnaugh i schematy dla poszczególnych wyjść

Na podstawie tabeli prawdy tworzymy tabele Karnaugh dla wyjść transkodera. Zaznaczamy największe grupy pól z jedynkami i zapisujemy powstałą formułę. Szkicujemy schemat układu, następnie projektujemy w Multisimie.

3.2.1 Wyjście Y₄

Przejście	D	С	В	A	D_{+}	C_{+}	B ₊	A ₊	Y_4
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	0
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	0
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	0
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	0
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	0
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	0
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 3: Tabela prawdy dla wyjścia \mathbf{Y}_4

Rysunek 1: Tabela Karnaugh dla wyjścia \mathbf{Y}_4

$$Y_4 = D\overline{C}\overline{B}\overline{A}$$

3.2.2 Wyjście Y_3

Przejście	D	С	В	A	D_{+}	C_{+}	B ₊	A_{+}	Y_3
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	0
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	0
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	0
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	0
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 4: Tabela prawdy dla wyjścia \mathbf{Y}_3

		BA								
		00	01	11	10					
	00	0	0	0	0					
DC	01	1	0	0	0					
DC	11	1	0	0	0					
	10	1	0	0	0					

Rysunek 2: Tabela Karnaugh dla wyjścia Y_3

$$Y_3 = \overline{CBA} + \overline{DCBA}$$

3.2.3 Wyjście Y_2

Przejście	D	С	В	A	D_{+}	C_{+}	B ₊	A_{+}	Y_2
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	1
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	1
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	1
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	1
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 5: Tabela prawdy dla wyjścia \mathbf{Y}_2

		BA									
		00	01	11	10						
	00	0	0	0	1						
DC	01	1	0	0	1						
DC	11	1	0	0	1						
	10	1	0	0	1						

Rysunek 3: Tabela Karnaugh dla wyjścia \mathbf{Y}_2

$$Y_2 = \overline{CBA} + \overline{DCBA} + \overline{BA}$$

3.2.4 Wyjście Y_2

Przejście	D	С	В	A	D_{+}	C_{+}	B ₊	A_{+}	Y_1
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	1
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	1
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	1
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	1
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	1
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	1
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	1
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	1
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	1
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	1
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	1
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	1
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 6: Tabela prawdy dla wyjścia \mathbf{Y}_1

Rysunek 4: Tabela Karnaugh dla wyjścia \mathbf{Y}_1

$$Y_1 = D + C + B + A$$