MAP 565

Time series analysis: Lecture VII

François Roueff

http://perso.telecom-paristech.fr/~roueff/

Telecom ParisTech – École Polytechnique

January 27, 2016

Outline of the course

- Stochastic modeling
 - I Random processes.
 - II Spectral representation.
- ▶ Linear models
 - III Linear filtering, innovation process.
 - IV ARMA processes.
 - V Linear forecasting.
- Statistical inference
 - VI Overview of goals and methods.
 - VII Asymptotic statistics in a dependent context. ←
- Non-linear models
 - VIII Standard models for financial time series.
 - IX Complements.

Outline of lecture VII

- Asymptotic statistics for time series
 - Basic definitions
 - Consistency
 - Asymptotic normality

2 An illustrative example with R

- Asymptotic statistics for time series
 - Basic definitions
 - Consistency
 - Asymptotic normality
- 2 An illustrative example with R

- Asymptotic statistics for time series
 - Basic definitions
 - Consistency
 - Asymptotic normality
- 2 An illustrative example with R

Convergence of random variables

Let $(W_n)_{n\geq 1}$ and W be real valued random variables defined on the same probability space.

We denote

- (i) $W_n \xrightarrow{\text{a.s.}} W$ if W_n converges to W almost surely.
- (ii) $W_n \xrightarrow{P} W$ or $W_n = W + o_P(1)$ if W_n converges to W in probability.
- (iii) $W_n \Longrightarrow W$ if W_n converges weakly to W.
- (iv) $W_n = O_p(1)$ if W_n is bounded in probability.

Recall that

$$(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$$

and

$$\lim_{n\to\infty} {\color{red}W}_n = {\color{red}W} \ \text{in} \ L^2 \Rightarrow (ii) \ .$$

Extension to more general spaces

All these definitions can be extended to random variables valued in a general metric space (introducing the notion of tight sequences in place of bounded in probability).

- Finite dimensional space: In \mathbb{R}^p , the convergence of a random vector is equivalent to the convergence of its entries, except for the weak convergence: the weak convergence of a vector is equivalent to the weak convergence of all linear combinations (this is called the Cramér-Wold device).
- Infinite dimensional space : In \mathbb{R}^T for an infinite T, the fidi weak convergence is defined by

$$W_n \stackrel{\mathrm{fidi}}{\Longrightarrow} W$$
 if $\left[W_n(t)\right]_{t \in I} \Longrightarrow \left[W(t)\right]_{t \in I}$ for all finite $I \subset T$.

Consistency and asymptotic normality

Let θ be an unknown parameter of a stationary model on a time series $(X_t)_{t\in\mathbb{Z}}$ and let $\widehat{\theta}_n$ be an estimator based on the n-sample $X_{1:n}$.

Definition: weak consistency

 $\widehat{\theta}_n$ is said to be weakly consistent if $\widehat{\theta}_n \stackrel{P}{\longrightarrow} \underline{\theta}$.

Definition: strong consistency

 $\widehat{\theta}_n$ is said to be strongly consistent if $\widehat{\theta}_n \overset{\mathrm{a.s.}}{\longrightarrow} \underline{\theta}$.

Definition: asymptotic normality

 $\widehat{\theta}_n$ is said to be asymptotically normal with asymptotic covariance matrix Σ if

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \Longrightarrow \mathcal{N}(0, \boldsymbol{\Sigma})$$
.

Classical examples in the i.i.d. setting

Let $(X_t)_{t\in\mathbb{Z}}$ be an i.i.d. sequence with mean μ and variance σ^2 and let $\widehat{\mu}_n$ denote the empirical mean estimator.

Theorem: Law of large numbers (LLN)

If μ is finite, then $\widehat{\mu}_n$ is a strongly consistent estimator of μ ,

$$\widehat{\mu}_n \stackrel{\text{a.s.}}{\longrightarrow} \mu$$
.

Theorem: Central limit theorem (CLT)

If σ^2 is finite, then $\widehat{\mu}_n$ is an asymptotically normal estimator of μ with asymptotic variance σ^2 .

$$\sqrt{n}(\widehat{\mu}_n - \underline{\mu}) \Longrightarrow \mathcal{N}(0, \underline{\sigma}^2)$$
.

- Asymptotic statistics for time series
 - Basic definitions
 - Consistency
 - Asymptotic normality
- 2 An illustrative example with R

Consistency of the empirical mean

Assumption: weak stationarity

Let (X_t) be a real-valued weakly stationary process with mean μ and autocovariance function γ /spectral density f.

Theorem

Then the empirical mean $\hat{\mu}_n$ satisfies the following assertions.

- $\triangleright \widehat{\mu}_n$ is an unbiased estimator of μ ($\mathbb{E}[\widehat{\mu}_n] = \mu$ for all $n \ge 1$).
- If $\lim_{h\to\infty} \gamma(h) = 0$, then $\lim_{n\to\infty} \mathbb{E}\left[(\widehat{\mu}_n \mu)^2\right] = 0$ and $\widehat{\mu}_n$ is a weakly consistent estimator of μ .
- ▶ If moreover $\gamma \in \ell^1$, then, as $n \to \infty$,

$$\operatorname{Var}(\widehat{\mu}_n) \le n^{-1} \|\gamma\|_1,$$

 $\operatorname{Var}(\widehat{\mu}_n) = n^{-1} (2\pi f(0) + o(1)),$

and $\widehat{\mu}_n$ is a strongly consistent estimator of μ .

Consistency of the empirical autocovariance : assumptions

Assumption: linear process with short memory

X admits the representation $X = \mu + F_{\psi}(Z)$ where $\mu \in \mathbb{R}$, $Z \sim \mathrm{WN}(0, \sigma^2)$ is real valued and $(\psi_t)_{t \in \mathbb{Z}} \in \ell^1$ is also real valued.

Then X is weakly stationary with mean μ and autocovariance and spectral density given by

$$\gamma(t) = \sigma^2 \sum_{k \in \mathbb{Z}} \psi_{k+h} \psi_k$$
 and $f(\lambda) = \frac{\sigma^2}{2\pi} \left| \sum_{k \in \mathbb{Z}} \psi_k \mathrm{e}^{-\mathrm{i}k\lambda} \right|^2$.

Assumption on the noise

Moreover Z satisfies, for a constant $\eta \geq 1$, for all $s \leq t \leq u \leq v$,

$$\mathbb{E}[Z_s \, Z_t \, Z_u \, Z_v] = \begin{cases} \eta \sigma^4 & \text{if } s = t = u = v, \\ \sigma^4 & \text{if } s = t < u = v, \\ 0 & \text{otherwise.} \end{cases}$$

François Roueffattp://perso.telecom-pari MAP 565 January 27, 2016 12 / 23

Consistency of the empirical autocovariance : conclusions

Theorem

Then, for all $p, q \in \mathbb{Z}$,

$$\mathbb{E}\left[\widehat{\gamma}_n(p)\right] = \frac{\gamma(p) + O(n^{-1})}{n + \infty},$$

$$\lim_{n \to \infty} n \operatorname{Cov}\left(\widehat{\gamma}_n(p), \widehat{\gamma}_n(q)\right) = V(p, q),$$

where

$$V(p,q) = (\eta - 3)\gamma(p)\gamma(q) + \sum_{u \in \mathbb{Z}} [\gamma(u)\gamma(u-p+q) + \gamma(u+q)\gamma(u-p)] . \quad (1)$$

Corollary

We have $\widehat{\gamma}_n(p) = \gamma(p) + O_P(n^{-1/2})$ and $\widehat{\gamma}_n(p)$ is a weakly consistent estimator of $\gamma(p)$,

- Asymptotic statistics for time series
 - Basic definitions
 - Consistency
 - Asymptotic normality
- 2 An illustrative example with R

Asymptotic normality: basic assumption

We use the same kind of assumption as for consistency of the empirical autocovariance function.

Assumption: linear process with short memory

X admits the representation $X = \mu + \mathrm{F}_{\psi}(Z)$ where $\mu \in \mathbb{R}$,

 $Z \sim \mathrm{WN}(0, \sigma^2)$ is real valued and $(\psi_t)_{t \in \mathbb{Z}} \in \ell^1$ is also real valued.

Recall that it implies that X is weakly stationary with mean μ and autocovariance and spectral density given by

$$\gamma(t) = \sigma^2 \sum_{k \in \mathbb{Z}} \psi_{k+h} \psi_k \quad ext{and} \quad f(\lambda) = rac{\sigma^2}{2\pi} \left| \sum_{k \in \mathbb{Z}} \psi_k \mathrm{e}^{-\mathrm{i}k\lambda}
ight|^2 \; .$$

Additional assumptions will be made on Z.

Asymptotic normality of the empirical mean

Assumption

Let X be a linear process with short memory as above and suppose that Z satisfies

$$n^{-1/2} \sum_{t=1}^{n} Z_t \Longrightarrow \mathcal{N}(0, \sigma^2)$$
.

Theorem

Then the empirical mean is asymptotically normal with asymptotic variance $2\pi f(0)$,

$$\sqrt{n}(\widehat{\mu}_n - \underline{\mu}) \Longrightarrow \mathcal{N}(0, 2\pi \underline{f}(0))$$
.

Remark: note that the general result follows from the case where $\mu = 0$, which we assume in the following.

Proof, key ingredient: approximation lemma

$$\begin{array}{ccc} X_n & \stackrel{?}{\Longrightarrow} & \Longrightarrow & W \\ & & \uparrow \uparrow & & \uparrow \uparrow \\ W_{n,m} & \Longrightarrow & W_m \end{array}$$

Lemma

Let $(W_{n,m})_{n,m\geq 1}$ be an array of random variables in \mathcal{X} . Suppose that for all $m\geq 1$, $W_{n,m}$ converges weakly to W_m as $n\to\infty$ and that W_m converges weakly to W as $m\to\infty$. Let now $(X_n)_{n\geq 1}$ be random variables in \mathcal{X} such that, for all $\epsilon>0$,

$$\lim_{m\to\infty} \limsup_{n\to\infty} \mathbb{P}(d(X_n, \mathbf{W}_{m,n}) > \epsilon) = 0.$$

Then X_n converges weakly to W as $n \to \infty$.

Proof, Step 1: FIR approximation

FIR approximation

Consider a linear process $X = F_{\psi}(Z)$. An approximation of X is obtained by setting

$$X^{(m)} = \mathcal{F}_{\psi^m}(Z) ,$$

where $\psi_k^m = \psi_k \mathbb{1}_{\{|k| \le m\}}$.

In order to use the approximation lemma, we must show that

$$\lim_{m \to \infty} \limsup_{n \to \infty} \mathbb{P}(\left| \sqrt{n} \left(\widehat{\mu}_n - \widehat{\mu}_n^{(m)} \right) \right| > \epsilon) = 0 ,$$

where

$$\widehat{\mu}_n^{(m)} = \frac{1}{n} \sum_{k=1}^n X_k^{(m)} .$$

Proof, Step 2: the FIR case

To conclude, it only remains to show that (remember that $\mu=0$ here), for all $m\geq 1$, as $n\to\infty$,

$$\sqrt{n}\widehat{\mu}_n^{(m)} = \frac{1}{\sqrt{n}} \sum_{k=1}^n \sum_{t=-m}^m \psi_t Z_{k-t} \Longrightarrow \mathcal{N}(0, 2\pi f^{(m)}(0)) , \qquad (2)$$

with $f^{(m)}$ denoting the spectral density of $X^{(m)}$, and that, as $m \to \infty$,

$$\mathcal{N}(0, 2\pi \mathbf{f}^{(m)}(0)) \Longrightarrow \mathcal{N}(0, 2\pi \mathbf{f}(0)) . \tag{3}$$

 \triangleright Eq. (2) is obtained by using that, for all $t \in \mathbb{Z}$, as $n \to \infty$,

$$\sum_{k=1}^{n} Z_{k-t} = \sum_{k=1}^{n} Z_k + O_P(1) .$$

 $\,\,{\,\trianglerighteq}\,$ Eq. (3) is equivalent to $\lim_{m\to\infty} f^{(m)}(0) = f(0)$.

Asymptotic normality of the empirical autocovariance

Assumption

Let X be a linear process with short memory as above and suppose that Z is i.i.d. with $\mathbb{E}\left[Z_0^4\right] = \eta \sigma^4$.

Theorem

Then the empirical autocovariance is asymptotically normal with asymptotic covariance \ensuremath{V} ,

$$\sqrt{n}\left(\widehat{\gamma}_n - \underline{\gamma}\right) \stackrel{\text{fidi}}{\Longrightarrow} \mathcal{N}(0, \underline{V})$$
,

where
$$V(p,q)=(\eta-3)\gamma(p)\gamma(q)$$

$$+\sum_{u\in\mathbb{Z}}\left[\gamma(u)\gamma(u-p+q)+\gamma(u+q)\gamma(u-p)\right]\;.$$

Remark: note that we can again take $\mu = 0$ without loss of generality.

Proof, Step 1: FIR approximation, again

The proof follows the same path but under the stronger assumption used in this therem, Step 1 leads to a stronger consequence.

Definition: m-dependent processes

A process $(W_t)_{t\in\mathbb{Z}}$ is said to be m-dependent if for all $t\in\mathbb{Z}$, $(W_s)_{s\leq t}$ is independent of $(W_s)_{s>t+m}$.

Consequence of FIR approximation

If $Z \sim \text{IID}(0, \sigma^2)$, then $X^{(m)}$ is a (2m)-dependent approximation of X.

Proof, Step 2: independent blocks approximations

An m-dependent sequence can be approximated by a sequence of independent blocks :

$$W_1, \ldots, W_k, W_{k+1}, \ldots, W_{k+m}, W_{k+m+1}, \ldots, W_{2k+m}, \ldots,$$

$$W_1, \ldots, W_k, W_{k+1}, \ldots, W_{k+m}, W_{k+m+1}, \ldots, W_{2k+m}, \ldots,$$

Consequence

Show that the approximation lemma can be applied and use the usual central limit theorem on the sequence of independent blocks.

- Asymptotic statistics for time series
- 2 An illustrative example with R

```
Examples stat. inference
              ARMA FORECASTING
plotarimapred <- function(x.mvorder=c(0.0.0).ratio=0.9){
 # select a part for arma modeling and then forecast
 dur \leftarrow end(x)[1]-start(x)[1]
 y <- window(x,start=start(x)[1],end=start(x)[1]+dur*ratio)
 vf <- window(x.start=start(x)[1]+dur*ratio.end=end(x)[1])
 # fit an ARMA(1.1) model (with mean)
 est <- arima(y,order=myorder)
 print(est)
 vp <- predict(est,n.ahead=length(x)-floor(length(x)*ratio))</pre>
 ts.plot(y,yf,yp$pred,yp$pred+1.96*yp$se,yp$pred-1.96*yp$se,
          col=c(1,2,3,4,4))
# SOI Southern Oscillation Index
# pressure differences Tahiti - Darwin (Pacific Ocean)
#(ne. -> El Nino/ pos. -> La nina)
x <- t(read.table('~/data/dataset/climate/soi.tsv'))
x <- x[is.finite(x)]
soi <- ts(x,start=1951,frequency=12)
op \leftarrow par(mfrow=c(3,1))
acf(soi)
pacf(soi)
ts.plot(soi)
abline(h=0)
par(op)
plotarimapred(soi,myorder=c(0,0,0),ratio=0.9)
plotarimapred(soi,myorder=c(3,0,0),ratio=0.9)
plotarimapred(soi,myorder=c(2,0,2),ratio=0.9)
graphics.off()
# Steel import time series
steeldat <- paste('~/data/dataset/financial/macro/',
                  'steel-sheets-shipments-usa.csv'.sep='')
st <- read.csv(steeldat.header=TRUE.sep=":")
```

```
# this is monthly data
all <- ts(st$Steel.Sheets.Shipments.for.United.States.
          start=1919.frequency=12)
ts.plot(all)
plotarimapred(all.myorder=c(0.0.0),ratio=0.9)
plotarimapred(all,myorder=c(0,1,0),ratio=0.9)
plotarimapred(all,myorder=c(2,1,5),ratio=0.9)
graphics.off()
# Volatility prediction for sp500 index
spdata <- paste('~/data/dataset/financial/sp500/',
                'sp500-1950--2010.csv',sep=',')
sp <- read.csv(spdata,header=TRUE,sep=",")
attach(sp)
plot(as.POSIXct(Date),Open, type='1',xlab='Date',ylab="SP500 index")
# order dates and select post 2009
ind <- order(Date[as.POSIXct(Date) >
                  as.POSIXct("2009-01-01")])
r <- ts(diff(log(Open[ind])))
sd <- Date[ind[2:length(ind)]]
plot(as.POSIXct(sd),r, type='1',xlab='Date',ylab="SP500 index log returns")
# correlations for log returns and squared log returns
nn <- 15
op \leftarrow par(mfrow=c(2,1))
acf(r, lag.max=nn, main='Log-returns autocor')
par(op)
# Squarred log-returns
op \leftarrow par(mfrow=c(2,1))
acf(r**2.lag.max=nn)
pacf(r**2,lag.max=nn)
par(op)
plotarimapred(r**2,myorder=c(1,0,1))
```