S.No.	X1	X2	Х3
1	100	234	20
2	203	450	60
3	95	250	24
4	240	500	70

$$\frac{A(x, y_1)}{J(A, B)} = \frac{B(x_2 y_2)}{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

S.No.	X1	X2	Х3

S.No.	X1	X2	Х3
1	100	78	0.3
2	90	87	1.4
3	200	90	0.4
4	190	100	1.9

min

```
In [46]:
    ...: scaler = MinMaxScaler()
    ...: scaler.fit_transform(data)
array([[0.09090909, 0.
                   , 0.40909091, 0.6875
       [0.
                   , 0.54545455, 0.0625
                                             ],
]])
       [1.
       [0.90909091, 1.
```

$$d(1,3) = \sqrt{(100-90)^{2} + (78-87)^{2} + (0.3-1.4)^{2}}$$

$$(x-min)/(max-min)$$

$$100 (100-90)/(200-90) = 10/110$$

$$90 (90-90)/(200-90) = 0$$

$$200 (200-90)/(200-90) = 1$$

$$190 (190-90)/(200-90) = 100/110$$

$$min 90$$

$$max 200$$

