实验六步进电动机

单步运行状态

角位移和脉冲数的关系

表格	序号	实际电机偏转角度	理论电机偏转角度	
步数=100 步	1	45°	45°	
	2	40°	40°	
步数=200 步	1	85°	90°	
	2	92°	90°	

空载突跳频率的测定

电机不失步启动的最高频率为步进电机的空载突跳频率. 记为 13750 Hz.

定子绕组中电流和频率的关系

序号	1	2	3	4	5	6	7	8
f (Hz)	1000	2500	4000	5500	7000	8500	1000	1150
I (A)	2.012	2.000	1.879	1.283	0.824	0.526	0.381	0.193

平均转速和脉冲频率的关系

序号	f(Hz)	n (r/min)	$\frac{n}{3}$ (r/min)	
1	1000	222	74	
2	2000	442	147.3	
3	3000	674	224.7	
4	4000	895	298.3	
5	5000	1122	374	
6	6000	1340	446.7	
7	7000	1563	521	
8	8000	1793	597.7	

转速表显示的转速单位为 r/min,由于皮带传动的原因,其值为步进电机实际转速的 3 倍.根据

$$n = \frac{60f}{N_p},$$

$$N_p = 74.$$

实验报告

经过上述实验后,须对照实验内容写出数据总结并对电机试验加以小结.

- 1. 单步运行状态
- 2. 角位移和脉冲数的关系: 角位移与脉冲数成正比
- 3. 空载突跳频率的测定
- 4. 转子振荡状态的观察

- 5. 定子绕组中电流和频率的关系: 电流随频率增大而减小
- 6. 平均转速和脉冲频率的关系: 本实验中电机步距角为 1.8°, 根据 1.8° = $\theta_b = \frac{\theta_t}{N} = \frac{360^\circ}{Z_rN}$ 得

$$Z_r = \frac{360^{\circ}}{N\theta_b} = \frac{360}{2 \times 1.8} = 100.$$

实验测得 $N_p = 74$,与理论值有一定偏差,可能是出现失步所致.

思考题

- 1. 影响步进电机步距的因素有哪些? 对实验用步进电机, 采用何种方法步距最小?
 - · $\theta = \frac{360^{\circ}}{Z_r N}$, 步距与转子齿数和拍数有关.
 - · 增加齿数和定子相数可以减小步距.
- 2. 平均转速和脉冲频率的关系怎样? 为什么特别强调是平均转速?
 - · $n = \frac{60f}{N_n}$, 平均转速和脉冲频率成正比.
 - · 步进电机由电脉冲控制,运动是离散的,因此需要用平均转速来描述其运动特性.