Обработка данных с помощью Live Tasks

Ускорение обработки данных с помощью "живых" задач (доступно с R2019b)

Содержание

Загрузка данных	
Обработка сигнала ch3	2
Замена выбросов	
Замена пропусков	
Осреднение шумов	
Передискретизация данных	
Анализ сигналов	6

Загрузка данных

Настраиваем хранилище данных, в виде папки с текстовыми файлами одинаковой структуры

```
ds = datastore('data');
ds.FileEncoding = 'Windows1251';
ds.DatetimeLocale = 'ru_RU';
preview(ds)
```

ans = 8×5 table

	time	ch1	ch2	ch3	ch4
1	15.08.2	-14	-16	-290	27
2	15.08.2	4	45	NaN	15
3	15.08.2	5	-12	53	5
4	15.08.2	5	12	-279	16
5	15.08.2	16	9	68	-11
6	15.08.2	15	-22	101	37
7	15.08.2	16	-4	-300	8
8	15.08.2	5	-12	17	8

Считываем данные из хранилища

```
data = readall(ds);
```

Переводим данные в формат timetable

```
data = table2timetable(data);
```

Визуализируем данные таблицы

```
stackedplot(data);
```


Обработка сигнала ch3

Обработаем сигнал ch3 из таблицы data с помощью "живых" задач

Замена выбросов

На графике сигнала ch3 отчетливо видно несколько выбросов. Заполним их интерполированными значениями

```
% Fill outliers
[ch31,outlierIndices,thresholdLow,thresholdHigh] = ...
    filloutliers(data.ch3,'linear','SamplePoints',data.time);

% Visualize results
clf
plot(data.time,data.ch3,'Color',[109 185 226]/255,'DisplayName','Input data')
hold on
plot(data.time,ch31,'Color',[0 114 189]/255,'LineWidth',1.5,...
'DisplayName','Cleaned data')

% Plot outliers
plot(data.time(outlierIndices),data.ch3(outlierIndices),'x',...
'Color',[64 64 64]/255,'DisplayName','Outliers')
title(['Number of outliers: ' num2str(nnz(outlierIndices))])

% Plot filled outliers
plot(data.time(outlierIndices),ch31(outlierIndices),'.','MarkerSize',12,...
```

```
'Color',[217 83 25]/255,'DisplayName','Filled outliers')

% Plot outlier thresholds
plot([xlim missing xlim],[thresholdLow*[1 1] NaN thresholdHigh*[1 1]],...
    'Color',[145 145 145]/255,'DisplayName','Outlier thresholds')

hold off
legend
```


clear outlierIndices thresholdLow thresholdHigh

Замена пропусков

clear missingIndices

Осреднение шумов

```
% Smooth input data
ch33 = smoothdata(ch32,'movmean',seconds(15),'SamplePoints',data.time);

% Visualize results
clf
plot(data.time,ch32,'Color',[109 185 226]/255,'DisplayName','Input data')
hold on
plot(data.time,ch33,'Color',[0 114 189]/255,'LineWidth',1.5,...
    'DisplayName','Smoothed data')
hold off
legend
```


Передискретизация данных

Записываем обработанный сигнал ch3 в таблицу

```
data.ch3 = ch33;
```

Передискретизируем сигналы с тактом 0,25 с

```
data1 = retime(data, 'regular', 'linear', 'TimeStep', seconds(0.25));
```

Визуализируем данные

```
stackedplot(data1);
```


Анализ сигналов

(Signal Processing Toolbox)

Переведем вектор времени в формат duration (длительность)

```
data2 = data1;
data2.time = data2.time - data2.time(1);
```

Запустим инструмент Signal Analyzer

```
signalAnalyzer(data2)
```

Pavel Roslovets, ETMC Exponenta © 2019