**Problem** (Problem 1): Describe the topology of the Grassmanian Gr(k, n) in a uniform way, so that  $\mathbb{RP}^n$  becomes the special case of Gr(1, n).

**Solution:** We let elements of Gr(k, n) be defined as equivalence classes of linearly independent k-tuples of vectors in  $\mathbb{R}^n$ , where  $(v_1, \dots, v_k) \sim (w_1, \dots, w_k)$  if  $span\{v_1, \dots, v_k\} = span\{w_1, \dots, w_k\}$ .

By extending  $(v_1, ..., v_k)$  and  $(w_1, ..., w_k)$  to ordered bases  $\mathcal{B}_1 = (v_1, ..., v_n)$  and  $\mathcal{B}_2 = (w_1, ..., w_n)$ , we see that these k-tuples are equivalent if and only if there is a change of basis transformation Q with matrix representation

$$Q = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix},$$

where A is a  $k \times k$  invertible matrix, and B is a  $(n-k) \times (n-k)$  matrix. The subgroup of all such  $Q \subseteq GL_n(\mathbb{R})$ , which we call P, is the stabilizer of Gr(k,n) as we have defined it, so by the orbit-stabilizer theorem (seeing as  $GL_n(\mathbb{R})$  acts transitively on all ordered bases of  $\mathbb{R}^n$ ), we obtain  $Gr(k,n) \cong GL_n(\mathbb{R})/P$ , where the latter coset space is given the quotient topology.

Note that this definition comports with the definition of  $\mathbb{RP}^n$  as the space of one-dimensional subspaces, as the invertible  $1 \times 1$  matrices are precisely the nonzero scalars.

**Problem** (Problem 2): Fix an inner product on  $\mathbb{R}^n$ . Show that the map  $V \mapsto V^{\perp}$  induces a  $C^{\infty}$  diffeomorphism  $Gr(k,n) \to Gr(n-k,n)$ .

**Solution:** We know that, since there is an inner product, we may express the smooth atlas of Gr(n, k) by  $\{(U_V, \phi_V)\}$ , where

$$U_V = \{ W \in Gr(k, n) \mid W \cap V^{\perp} = 0 \},$$

and  $\varphi = P_{V^{\perp}} P_V|_W^{-1}$  is the sequence of projections. By pre-composing with the map  $V \mapsto V^{\perp}$ , we get the atlas  $\{(U_{V^{\perp}}, \varphi_{V^{\perp}})\}$  for Gr(n-k, n) consisting of charts of the form

$$U_{V^{\perp}} = \{ W \in Gr(n - k, n) \mid W \cap V = 0 \}$$
  
$$\varphi_{V^{\perp}} = P_{V} P_{V^{\perp}}|_{W'}^{-1},$$

Since the maps  $\varphi_V \circ (V \mapsto V^{\perp}) \circ \varphi_{V^{\perp}}^{-1}$  are a composition of smooth bijections with smooth inverses, we see that this is a  $C^{\infty}$  diffeomorphism between  $Gr(k,n) \cong Gr(n-k,n)$ .

**Problem** (Problem 3): Prove that a  $C^k$  map which is a  $C^1$  diffeomorphism is necessarily a  $C^k$  diffeomorphism.

**Problem** (Problem 4): Recall that a topological space is paracompact if every open cover admits a locally finite refinement. Prove that a connected, paracompact manifold of dimension one is either  $\mathbb{R}$  or  $S^1$ , depending on whether it is compact or not.

**Solution:** Let M be a connected, paracompact manifold with dimension 1, and let  $\{(U_i, \phi_i)\}_{i \in I}$  be an atlas for M, where  $\phi_i$  are homeomorphisms between  $U_i$  and  $\mathbb{R}$ .

Let  $\{V_j\}_{j\in J}$  be a locally finite refinement of  $\{U_i\}_{i\in J}$ , where the restrictions  $\psi_j \coloneqq \phi_i|_{V_j}$  are homeomorphisms to  $O_j \subseteq \mathbb{R}$ . We see that for any  $p \in M$ , since the family of  $V_j$  with  $p \in V_j$ , which we call  $\mathcal{V}_p = \{V_j \mid p \in V_j\}$ , is finite, the intersection  $\bigcap \mathcal{V}_p$  is open; similarly, the intersection  $\bigcap \mathcal{O}_p \subseteq \mathbb{R}$  is open, where  $\mathcal{O}_p = \{\phi|_{V_j}(V_j) \subseteq \mathbb{R} \mid V_j \in \mathcal{V}_p\}$ .

We see that  $M = \bigcup_{p \in M} \cap \mathcal{V}_p$ . Note that for any distinguished point  $p_1$ , the corresponding sets  $\cap \mathcal{V}_{p_1}$  and  $\bigcup_{p \neq p_1} \cap \mathcal{V}_p$  must have nonempty (open) intersection, by the assumption that M is connected. Thus, the corresponding union  $\bigcup_{p \in M} \cap \mathcal{O}_p$  is an open and connected subset of  $\mathbb{R}$ . We may similarly map  $\bigcup_{p \in M} \cap \mathcal{O}_p$  into  $\S^1$  by composing with the quotient map.

Now, if M is compact, then  $\bigcup_{p \in M} \cap \mathcal{V}_p$  covers M, so there is a finite subcover  $M = \bigcup_{i=1}^n \cap \mathcal{V}_{p_i}$ , so that  $\bigcup_{i=1}^n \cap \mathcal{O}_{p_i}$  fully covers the corresponding range, meaning that, composing with the quotient map  $\bigcup_{i=1}^n \cap \mathcal{O}_{p_i}$ , we have that  $M \cong S^1$ . Similarly, if M is non-compact, then  $\bigcup_{p \in M} \cap \mathcal{O}_p$  is an open and connected subset of  $\mathbb{R}$  that does not admit any finite subcover, hence it is homeomorphic to  $\mathbb{R}$ .

**Problem** (Problem 5): In this problem, we prove a weak version of the Whitney Embedding Theorem.

- (a) Find a  $C^{\infty}$  function  $\lambda$  on  $\mathbb{R}^n$  with values in [0,1] such that  $\lambda$  takes the value 1 on the closed ball B(0,1), and vanishes outside the closed ball B(0,2).
- (b) Suppose M is a compact  $C^k$  manifold of dimension n. Find a  $C^k$  atlas  $\{U_i, \phi_i\}_{i \in I}$  such that  $\phi_i(U_i)$  contains B(0,2), and such that M is covered by the union of  $\phi_i^{-1}(B(0,1))^{\circ}$ .
- (c) Let  $\lambda_i$  be defined by  $\lambda \circ \phi_i$  on  $U_i$ , and 0 outside  $U_i$ . Let  $f_i \colon M \to \mathbb{R}^n$  be defined by  $\lambda_i \circ \phi_i$  on  $U_i$  and zero otherwise. Use these functions to embed M as a submanifold of some Euclidean space.

**Problem** (Problem 6): Use the ideas of the previous exercise to prove that a C<sup>k</sup> manifold admits a C<sup>k</sup> partition of unity subordinate to any locally finite cover.

**Problem** (Problem 7): Let X and Y be topological spaces, and let C(X,Y) be the set of continuous maps from X to Y. Equip C(X,Y) with the compact-open topology, where the basic open sets are

$$U_{K,V} = \{f \mid f(K) \subseteq V\},\$$

where  $K \subseteq X$  is compact and  $V \subseteq Y$  is open.

If Y is a metric space, and if X is compact, prove that this topology is the same as the topology of uniform convergence.

**Solution:** Let Y be a metric space and let X be compact. We note that a neighborhood basis in the topology of uniform convergence on C(X, Y) consists of sets of the form

$$U_{f,\varepsilon} = \left\{ g \middle| \sup_{x \in X} d(f(x), g(x)) < \varepsilon \right\}.$$

Similarly, a subbase for the compact open topology consists of sets of the form

$$U_{f,K,\varepsilon} = \left\{ g \middle| \sup_{x \in K} d(f(x), g(x)) < \varepsilon \right\};$$

the fact that Y is a metric space allows us to take this refinement of the compact-open topology.

Thus, to prove that the compact-open topology and the topology of uniform convergence are equivalent, we show that any basis element of the topology of uniform convergence is contained in a basis element of the compact-open topology, and vice versa.

First, we see that almost by definition, if  $K \subseteq X$  is any compact subset, then

$$U_{f,\varepsilon} \subseteq U_{f,K,\varepsilon}$$

as any function whose supremum distance is less than  $\varepsilon$  over X must have that supremum distance hold over  $K \subseteq X$ .

Now, in the reverse direction, we fix f and  $\varepsilon$ . We wish to show that there is a finite family of subsets  $U_{K_i,V_i}$  with  $f \in U_{K_i,V_i}$  for each i, and their intersection lies in  $U_{f,\varepsilon}$ . We see that every point  $x \in X$  has a pre-compact open neighborhood  $U_x$  such that  $f(\overline{U_x}) \subseteq U(f(x), \varepsilon/3)$ . The family  $\{x \in X\}U_x$  is an open cover for X, so admits a finite subcover  $\{U_{x_i}\}_{i=1}^n$ . Since each  $\overline{U_{x_i}}_{i=1}^n$  is compact, and  $f \in U_{\overline{U_{x_i}},U(f(x_i),\varepsilon/3)}$ 

for each i, we see that

$$V = \bigcap_{i=1}^n U_{\overline{U_{x_i}}, U(f(x_i), \varepsilon/3)}$$

is an open subset in the compact-open topology on C(X,Y) that contains f and is contained in  $U_{f,\epsilon}$ , so the topologies are thus equal.