Big Data Agglomeration for Connectomics

Hayk Saribekyan, Yaron Meirovitch, Nir Shavit (MIT EECS)

MIT EECS – Landsman Undergraduate Research and Innovation Scholar

Background: What is Connectomics?

- Connectomics aims to produce a dense mapping of cells and their connections in the nervous system of an organism
- Current Research is focused on segmentation of 3D electron microscopy images into individual cells

Few segmented cells in mouse cortex
Kasthuri et al.

High Performance Segmentation Pipeline

EM Images of Tissue Slices 3

Image Alignment

Chunking Data Into Blocks

Segmentation of Blocks

Agglomeration

- Images correspond to 30nm slices of the tissue
- Data representing 1 cubic millimeter of tissue is 2PB!
 - The pipeline operates on a single 72-core machine for high parallelism

3D models

Neural skeletons

Connectivity graphs

Segmentation of Blocks

EM image

- Segmentation
- NeuroProof (NP) generates high quality segmentation for GB sized blocks
- Does not scale to larger datasets
- Need to agglomerate segmentation from multiple blocks

Block Agglomeration

- A small sub-volume of blocks is enough to decide merges of segments between them
- Use NeuroProof again on the sub-volume to detect pairs of segments to merge
- Disjoint-set data structure for efficient relabeling of segments

Results and Evaluation

- Less than 10 hours to process 1TB data
- State-of-the-art quality of segmentation
- Achieves VI metric of about 1.66 for areas that have ground truth

- Automatically constructed from data by Kasthuri et al.
- Spans more than 100 segmentation blocks
- Traverses about 40µm in space

Next Steps

- Reconstruction of neural connectivity graphs from cell skeletons and synapses
- Building efficient data structures to query the connectivity graphs and to merge them at a larger scale
- Continue improving the quality of segmentation

References

- [1] Saturated Reconstruction of a Volume Neocortex, Kasthuri et al., 2015
- [2] https://www.janelia.org/open-science/neuroproof
- [3] Variation of Information, Melia M., 2003