Midterm1 - Practice test

Discrete Structures 2

Spring 2019

Instructions:

- Please verify that your paper contains **8 pages** including this cover and **1 blank page**.
- Don't forget to write down your **NID on top of each page** of this test.
- This exam is **closed book**. No notes or other materials are permitted.
- To receive full credit, you must show your work clearly with **enough details if mentioned**, but not too much that you run out of time.
- Calculators are not allowed.

Question	points	Score
1	20	
2	10	
3	8	
4	10	
5	12	
6	8	
Total	100	

Section 1: (20 points) True or False?

Q1-a	If a language is described by a regular expression, then it is regular.		F
Q1-b	b If regular expression R=a for some $a \in \Sigma$. Then L(R)={a, ε}		F
Q1-c	$0^*10^* = \{w w \text{ contains a single1}\}$	T	F
Q1-d	$(0 \cup \varepsilon)1^* = 01^* \cup 1^*$	T	F
Q1-e	Let $N1=(Q1,\Sigma,\delta1,q1,F1)$ recognize A1, $N2=(Q2,\Sigma,\delta2,q2,F2)$ recognizeA2, and $N=(Q,\Sigma,\delta,q0,F)$ recognizes A1UA2. Then $Q=\{q0\}\cup Q1\cup Q2$.	Т	F
Q1-f	Predicate is a function whose range is {TRUE, FALSE}.	T	F
Q1-g	A Tree is a connected graph without simple cycles.		F
Q1-h	A Graph is a collection of points and lines connecting some pairs of points		F
Q1-i	A Directed graph is a collection of points and arrows connecting some pairs of points.		F
Q1-k	Function $f: N \rightarrow N$ where $f(x) = 2x + 1$ is onto.	T	F

Section 2:

Q2: (15 points) Find regular expression for the language accepted by the following automata. (Show the steps.)

Q3: (20 points) convert the following finite automata to DFA.

Q4: (10 points) Draw the state diagram of a DFA for the following language. (Assume $\Sigma = \{a,b\}$).

 $\{w|w\ does\ not\ contain\ the\ substring\ baba\ \}$

Q5: (15 points) Convert the regular expression ($a \cup b^+$) a^+b^+ to NFA. (show the steps.)

Q6: (20 points) Use the pumping lemma to show that the following language is not regular.

A3 =
$$\{a^{2^n} | n \ge 0\}$$
 (Here, a^{2^n} means a string of 2^n a's.)