REPARTIZAREA temelor de proiect studenților

Spec.: MTI2, 2021

Nr	Problema	Metoda	Studentul
	1. Se considera ca este necesar de a ne deplasa din orasul A in orasul B. Dar nu exista o		
1	ruta directa, sau ruta directa este cea mai costisitoare (de timp, de bani, de nervi, etc). Exista		
	insa o retea formata din x1,, xN orase care au unele legaturi intre ele. O restrictie a		Hîrdău Adrian
	problemei este si faptul ca in drumul nostru trebuie sa efectuam si o campanie electorala in		
	fiecare dintre orașele x1,, xN. Sa se determine ruta cea mai putin costisitoare.		
2	2. Consideram o variantă a problemei rucsacului. Fie avem un rucsac in care trebuie sa punem unele obiecte. Forta noastra fiind limitata, nu putem duce mai mult de G kilograme. Şi	6	Alexandrean Corina
	volumul rucsacului V este limitat. Este clar ca nu putem lua toate lucrurile cu noi. Atunci vom		
	considera ca unele lucruri sunt mai importante/utile decât altele. Scopul este de a maximiza		
	utilitatea sumară a obiectelor puse în rucsac. // //. – 4-5 metode diferite pot fi utilizate.		
3	3. Se doreste sa se aproximeze o functie arbitrara f(x) pe segmentul [a, b] cu un polinom		Name Alamandan
	de gradul 5. Sa se determine coeficientii acelui polinom. Este clar că un rol important în		Negură Alexandru
	soluționarea acestei probleme îl reprezintă sensul noțiunii aproximare a unei funcții de către		Marian
4	4. Se consideră o matrice rară, adică o matrice în care numărul de elemente diferite de		
	zero este mult mai mic decât numărul total de elemente din matrice. Astfel de matrice par		
	frecvent, de exemplu, în probleme de mecanică, care folosesc metoda elementelor finite		
	pentru calculul unor parametri. Soluționarea sistemelor de ecuații liniare în care sunt		Pintea Cătălina
	implicate astfel de matrice în cazul când dimensiunile sistemului sunt mari reprezintă o		
	dificultate relativă. O parte din aceste dificultăți pot fi eliminate dacă în matricea inițială		
	liniile și coloanele sunt permutate astfel încât elementele diferite de zero ale matricei să fie		
	situate de-a lungul diagonalei. Scopul proiectului: de a determina permutările respective astfel încât să se obțină o matrice maximal apropiată de matricea diagonală. //		
	5. Se consideră o rețea neuronală, să zicem una multistrat de tip feed-forward. O rețea		
5	neuronală este perfectă pentru soluționarea unei probleme/categorii de probleme dacă ne		
	dă răspunsul dorit fără eroare, sau eroarea este mică. Instruirea unei rețele neuronale		
	presupune niște algoritmi de ajustare a ponderilor rețelei neuronale, care ne-ar conduce la		
	ponderile optimale. Să se elaboreze și să se folosească algoritmi genetici/euristici la		
	antrenarea rețelei neuronale. ()		
6	6. Să se elaboreze și să se implementeze un algoritm genetic pentru rezolvarea unei	6	Dumitru Carmen
	probleme de programare liniară . (sunt posibile 4-5 metode diferite)	<u> </u>	Danniti a Carmen
7	7. Se consideră problema clasică echilibrată de transport. Există N depozite a unui bun și		
	M consumatori al acelui bun. Sunt cunoscute costurile unitare de transport Cij de transport a		Mereuță Ricardo-
	unei unitati de bun de la depozitul Di la consumatorul Sj. Să se prezinte un algoritm euristic		Gabriel
	de soluţionare a acestei probleme. // // 8. Se consideră o problemă de programare matematică aproape liniară, în care		
8	restricțiile sunt egalități și inegalități liniare, iar funcția obiectiv este o funcție neliniară. Să se		
	construiască algoritmul genetic, care ar propune o soluție pentru ea. ()		
	9. Se consideră o problemă de optimizare cu restricții neliniare, iar funcția obiectiv este o		
9	funcție liniară. Să se construiască algoritmul genetic, care ar propune o soluție pentru ea. ()		
10	10. Se consideră o problemă concretă de optimizare a unei funcții neliniare în prezența		
10	unor restricții arbitrare. Să se construiască algoritmul genetic, care ar propune o soluție		
11			Niculiță Constantin-
11	11. Determinarea maximumului unei funcţii polinomiale arbitrare. // //		Cătălin
12	12. Să se determine valoarea minimă și punctul de minim al unei funcții polinom de gradul		
12	8 pe segmentul [a; b].		
13	13. Se consideră că o firmă produce 4 tipuri de bunuri, A, B, C, D. La producția lor se		
	folosesc 3 resurse: capital, forță de muncă, timp. Costul fiecărei resurse este de 4, 3, 2, si sunt		
	disponibile în cantitatea 1000, 1200, 900. Pentru producerea unei unități de bunuri de tipul A,		
	B, C, sau D se folosesc corespunzător resursele în următoarele cantități: (3,4,5) pentru A,		
	(2,5,3) pentru B, (5,2,1) pentru C, şi (1,3,5) pentru D. Preţul de realizare a unei unităţi de bun produs A, B, C, sau D este 40, 30, 50, 20 respectiv. Din cauza producției concomitente a		
	bunurilor costurile de producție cresc cu o valoare egala cu Ln(A) + Ln(B) + Ln(C) + Ln(D). Să se		
	determine planul optimal de producție pentru a avea un profit maxim. // avem 4-5 metode //		
	14. Se consideră o funcție f(x), natura căreia este arbitrară, este definită pe segmentul (a;b)		
14	şi dorim să o optimizăm (max). // //		
15	15. Problema alocării de resurse în spațiu și în timp în anume condiții: problema orarului de		
	muncă - avem consultanți specializați pe anumite probleme, avem clienți care au de rezolvat		
	probleme, fiecare consultant nu poate lucra cu mai mult de 5 clienți la o anumită categorie de		Călin Beji
	probleme. Se dorește de optimizat timpul necesar pentru a asigura consultarea tuturor		
	clienților. Evident, că atât clienții, cât și consultanții au și ei restricțiile lor ce țin de întâlniri.		
16	Optimizarea unei funcții de 2 variabile pe un domeniu drepunghiular.		Mitac Mirela