FMI, Info, Anul II, 2021-2022 Fundamentele Limbajelor de programare

Seminar 1 Unificatori

Teorie

O substituție este o funcție parțială de la variabile la termeni, adică $\sigma: V \to Trm_{\mathcal{L}}$. Un unificator pentru doi termeni t_1 și t_2 este o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$. Un unificator ν pentru t_1 și t_2 este un cel mai general unificator dacă pentru orice alt unificator ν pentru t_1 și t_2 , există o substituție μ astfel încât $\nu' = \nu$; μ .

Algoritmul de unificare:

	Lista soluţie	Lista de rezolvat
	S	R
Iniţial	Ø	$t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	$R',t\stackrel{\cdot}{=}t$
	S	R'
DESCOMPUNE	S	$R', f(t_1, \ldots, t_n) \stackrel{\cdot}{=} f(t'_1, \ldots, t'_n)$
	S	$R', t_1 = t'_1, \dots t_n = t'_n$
REZOLVĂ	S	$R', x \stackrel{.}{=} t$ sau $t \stackrel{.}{=} x, x$ nu apare în t
	$x \doteq t, S[x \leftarrow t]$	$R'[x \leftarrow t]$
Final	\overline{S}	\emptyset

Algoritmul se termină normal dacă $R = \emptyset$ (în acest caz, în S are un unificator pentru termenii din lista inițială R).

Algoritmul este oprit cu concluzia inexistenței unui unificator dacă:

- (i) În R există o ecuație de forma $f(t_1, \ldots, t_n) \stackrel{\cdot}{=} g(t'_1, \ldots, t'_k)$ cu $f \neq g$. Simbolurile de constantă se consideră simboluri de funcție de aritate 0.
- (ii) În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

(S1.1) Considerăm

- x, y, z, u, v variabile,
- a, b, c simboluri de constantă,
- $h,g,(\mbox{\ \ })^{-1}$ simboluri de funcție de aritate 1,

- f, *, + simboluri de funcție de aritate 2,
- p simbol de funcție de aritate 3.

Aplicați algoritmul de unificare de mai sus pentru a găsi un unificator pentru termenii:

- 1) p(a, x, h(g(y))) şi p(z, h(z), h(u))
- -2) f(h(a), g(x)) si f(y, y)
 - 3) p(a, x, g(x)) și p(a, y, y)
- 4) p(x,y,z) și p(u,f(v,v),u)
- 5) f(x, f(x, x)) și f(g(y), f(z, g(a)))
- 6) x + (y * y) si (y * y) + z
- 7) $(x*y)*z ext{ si } u*u^{-1}$
- 8) $x * u \text{ si } u * u^{-1}$
- 9) $x * y ext{ si } x * (y * (u * v)^{-1})$
- 10) $x * y \le y \cdot (u * v)^{-1}$
- 11) f(g(x), x) și f(y, y)
- 12) p(x,z,z) si p(y,y,b)
- -13) p(a, u, h(x)) si p(y, f(y, z), z)
- 14) f(x, f(b, x)) şi f(f(y, a), f(b, f(z, z)))
- 15) p(x,b,x) şi p(y,y,c)
- 16) f(x,y), f(h(x),x) si f(x,b)
- 17) f(x, f(x, g(y))), f(u, z) şi f(q(y), y)
- 18) $f(f(x,y),x), f(g(y),z) \neq f(a,h(z))$
- 19) f(f(x,y),x), f(v,u) și f(u,h(z))
- 20) $f(f(x,y),x), f(v,u) \neq f(u,z)$
- 21) f(f(g(x),h(y)),h(z)), f(f(u,h(h(x))),h(y)) și f(v,w)
- 22) $p(x,x,z),\,p(f(a,a),y,y)$ și p(f(x,a),b,z)
- 23) p(x, x, z), p(f(a, a), y, y) şi p(x, b, z)
- 24) p(x, x, z), p(f(a, a), y, y) și p(x, f(a, a), z)
- 25) $p(f(x,a), g(y), z), p(f(a,a), z, a) \neq p(v, u, z)$