Comparison of Two Unfolding Approaches

Jan Lochman

Czech Technical University jan.lochman@cern.ch

Inclusive Jet Meeting

April 23, 2015

Intro

- Double differential inclusive jet cross section in p_T and |y|
- Data
 - mc14_13TeV, AntiKt4LCTopoJets
- Event Seelction
 - $p_T > 15 \,\text{GeV}, \, |y| < 4$
 - # reco jets ≥ 1 & # truth jets ≥ 1
 - $0.6 < p_{T,leading}^{reco}/p_{T,leading}^{truth} < 1.4$.
- Jet matching
 - Angular matching starting from lowest dR_{ij}
 - $dR_{ij} = \sqrt{d\phi_{ij}^2 + dy_{ij}^2} < 0.2$

Intro to Unfolding

- Used two approaches to unfolding
- Simple Unfolding
 - Matching only within the same rapidity bins.
 - 8 transfer matrices 46x46 (8 = # *y*-Bins, 46 = # *p*_T-Bins).
 - Unfolding done for each transfer matrix separately.

2D Unfolding

- Matching between different rapidity bins allowed.
- 1 transfer matrix 368×368 ($368 = 8 \times 46$).

• Differences:

- Different transfer matrices.
- Different matching efficiencies.

Transfer matrices

2D unfolding

Simple unfolding

High p_T Difference in Matched Jets

mc14.13TeV.147915.Pythia8_AU2CT10.jetjet_JZ5W.merge.AOD.e2743_s1982_s2008_r5787_r5853/ AOD.01598029..000003.pool.root.1 event # 1087 (left) mc14.13TeV.147916.Pythia8_AU2CT10.jetjet_JZ6W.merge.AOD.e2743_s1982_s2008_r5787_r5853/ AOD.01598030..000005.pool.root.2 event # 1388 (right)

Jet Level	PT	у	ϕ
RECO	1948.9	0.7973	-2.996
TRUTH	1913.0	0.8159	-2.996
RECO	1526.4	-0.686	0.1032
TRUTH	1851.6	-0.674	0.1646
RECO	330.04	-0.732	0.5231
TRUTH	30.748	-0.839	0.5972
RECO	101.92	-0.271	-0.133
TRUTH	97.678	-0.266	-0.116
RECO	55.632	-0.086	-2.942
TRUTH	52.407	-0.014	-2.905
RECO	17.514	-2.471	-2.271
TRUTH	25.189	-2.472	-2.377
RECO	19.760	-1.650	2.6354
RECO	19.303	-0.242	-1.035
RECO	17.814	0.4432	2.8272
RECO	16.998	1.8389	0.9921
RECO	15.435	-0.692	-2.578

Jet Level	PT	у	ϕ
RECO	1468.5	0.1580	2.0229
TRUTH	1420.1	0.1633	2.0300
RECO	1267.6	0.1966	-0.928
TRUTH	963.99	0.2578	-0.857
RECO	177.77	2.1969	-2.344
TRUTH	169.13	2.2085	-2.349
RECO	112.19	2.0599	-1.753
TRUTH	108.35	2.0499	-1.759
RECO	56.778	1.4397	2.0556
TRUTH	31.550	1.3559	2.0508
RECO	19.091	-0.111	-1.313
TRUTH	340.94	0.0072	-1.195
RECO	20.420	0.6798	-0.871
RECO	19.792	0.3520	-1.622

Slices in Transfer Matrix

Matching Efficiencies Reco Jets

Matching Efficiencies Truth Jets

Different y-bins, $p_T > 1000 \,\text{GeV}$

Jet Level	рт	у	ϕ
RECO	1047.2	0.50084	-0.525
TRUTH	1043.6	0.49142	-0.515
RECO	919.36	-0.8124	3.0295
TRUTH	859.44	-0.8250	3.0283
RECO	202.45	0.15152	1.5866
TRUTH	209.20	0.13535	1.5925
RECO	107.19	3.20412	0.9019
TRUTH	110.20	3.20996	0.8821
RECO	86.126	-1.0504	2.4963
TRUTH	94.136	-1.0531	2.5268
RECO	62.074	-1.3096	-3.053
TRUTH	52.706	-1.2922	-3.057
RECO	22.069	-0.7635	2.0193
TRUTH	31.753	-0.8044	1.8596
RECO	16.189	0.79967	2.1690
TRUTH	23.677	0.93080	2.1237
TRUTH	19.405	3.71203	1.5590

n-		
PT	у	ϕ
1139.3	0.15506	-2.8719
1196.3	0.12358	-2.8624
1083.3	-0.9936	0.29643
1052.4	-1.0141	0.29564
66.773	-0.1154	0.48034
56.250	-0.1492	0.47566
37.744	0.47975	0.69324
39.587	0.46135	0.67427
35.383	-1.3730	-0.4060
47.301	-1.4579	-0.4784
33.156	0.79242	0.02433
33.734	0.76861	0.01449
27.010	1.82468	1.61042
22.444	-0.2102	1.59064
	-1.5798	1.49738
		2.87425 -2.2601
	1196.3 1083.3 1052.4 66.773 56.250 37.744 39.587 35.383 47.301 33.156 33.734 27.010	1196.3 0.12358 1083.3 -0.9936 1052.4 -1.0141 66.773 -0.1154 56.250 -0.1492 37.744 0.47975 39.587 0.46135 35.383 -1.3730 47.301 -1.4579 33.156 0.79242 33.734 0.76861 27.010 1.82468 22.444 -0.2102 21.114 -1.5798 13.381 -2.9413

Unfolding Results Reco & 2D Unfold / Truth

Unfolding Results Simple Unfold & 2D Unfold / Truth

Unfolding Results for Modified p_T Reco Spectrum

Reco Original & Reco Modified & Simple Unfold & 2D Unfold / Truth

Unfolding trained on Reco Original, but executed on Reco Modified

Conclusions

Matching Efficiencies

2D Unfolding: > 99 % for almost every bin with $p_T >$ 100 GeV. Simple Unfolding: $\sim 2-5$ % worse.

Unfolding Results

Small differences between both of these approaches.