(a)
$$\chi(t) = 10 + 16 \cos(4\pi t - \pi/3) + 8 \cos(12\pi t - \pi/2)$$

(b) Yes,
$$\chi(t)$$
 in periodic signal. The fundamental frequency of $\chi(t)$ in the gcd of the frequencies of the undividual signal.

i. $gcd(\pm 2, \pm 6) = 2Hz$

(c) Negative frequency components are included for completiness, even though for real signals, there are conjugates of the corresponding there are conjugates of the corresponding positive frequency components.

2)
$$\pi(k) = 2 \cos(6\pi k + \pi/4) - 10 \cos(15\pi k) + 2 \cos(24\pi k - \eta/3)$$
(a) $\pi(k) = \frac{2}{2} e^{i\pi/4} \cdot e^{i2\pi(i)k} + \frac{2}{2} e^{i\pi/4} \cdot e^{i2\pi(i)k} + \frac{10}{2} e^{i\pi} \cdot e^{i2\pi(i)k} + \frac{10}{2} e^{i\pi} \cdot e^{i2\pi(i)k} + \frac{10}{2} e^{i\pi/3} \cdot e^{i$

Scanned with CamScanner

 $g \neq (\pm 3, \pm 5, \pm 7.5, \pm 12)$ in 0.5 .. The freq fundmental frequency is of fundamental peid 2) $\frac{1}{0.5} = \frac{2 \text{ Sec}}{2}$ 3) (a) $\chi(t) = Sin^3 (27nt)$ $= \left(\frac{1}{2i}e^{i27nt} - \frac{1}{2i}e^{-27nt}\right)^3$ Using $(a-b)^3 = a^3 = b^3 - 3ab(a-b)$ $X(t) = \int_{8}^{1} \left(e^{j8n/t} - 3e^{j54nt-j27nt} + 3e^{j27nt-j34nt} \right)$ $\chi(x) = \frac{1}{8} e^{\int x/2} e^{\int 8/\pi t} + \frac{3}{8} e^{\int x/2} e^{\int 27\pi t} +$ 3 ein12 e-j27nt + 1 e-jn/2 e-j8/nt $\chi(t) = \frac{1}{4} \cos(31\pi t + n(2) + \frac{3}{4} \cos(27\pi t - \pi/2)$

(b) There one two Signals with W1 = 817 W2= 27T $2\pi /_2 = 81\pi$ $2\pi/2 = 27\pi$ $b_1 = \frac{\rho_1}{2}$ $\sqrt{2^2 - \frac{27}{3}}$ $\frac{1}{2} = 3 \times \frac{27}{2}$ ged of 12 and 12 is The 27 H2 Henre, fundamental frequency is $\frac{27}{2}$ Hz Time Period $\dot{m} = \frac{2}{27} sec$ 3 e jul 2 (C) 0

4) $7e^{j\pi}$ $3e^{-jn/3}$ $3e^{-jn/4}$ $3e^{-jn/4}$ $3e^{-jn/4}$ $3e^{-jn/4}$ $3e^{-jn/4}$

(a) fundament forguency = $G(R) \left(\pm 3.6\pi, \pm 8.4\pi \right) = 1.2\pi \text{ sad/s}$

fundamental levial \Rightarrow $2\pi \omega = \omega$ $2\pi = 1.2\pi$ = 0.6 $T_{0} = \frac{1}{4} = \frac{20}{6} = \frac{5}{3} \sec \omega$

(c) The Dexhargnal is

TI	he fu	endamental fr el non-zero	Philippe of A A	lues are
Ŗć.		W	a _k Mar	Am b Share
 -	0	0	te = 1. J	20
+	-3	3.6 π	$4e^{3n/3} = 2 - 2\sqrt{3}$	4 N3
	-3	-3·6π	$4e^{jn/3} = 2 + 2\sqrt{3}j^2$	
	+7	8.4π	$3e^{i\pi/4} = 3\sqrt{2} + 3\sqrt{2}$	1
	-7	-8.4T	$3e^{-jn/4} = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}$	3 32

7(x) = 3 Gas (2000 nf + n/4) + Gas (400 ont + n/2) 5) y(t) = [3 cos (2n/03nt + n/4) + cos (2n.2.103 + + n/2) + A] (a) Cos (21. 620.103 t) from the triginometry, we can use equation $Cos \theta_1$. $Cos \theta_2 = \frac{1}{2} Cos (\theta_1 + \theta_2) + \frac{1}{2} Cos (\theta_1 - \theta_2)$ with, A = 2- y(+)= 2, Cos (27. 620.1034) 4 $+\frac{3}{2}\cos(2\pi.620.10^3t+2\pi.10^3t+1/4)$ + 3 (21.620.103t - 21.103t + 17/4) + \frac{1}{2} \left(\alpha \) (\alpha \) 1.620. (\delta f + \alpha \) \(\tau \) \(\ta + \frac{1}{2} Cos (271.620.1031 - 271.2.1031 - 1/2) $W_3 = 2\pi \cdot 620.10^3 \text{ f}$. $\phi_3 = 0$ $A_3 = \frac{2}{2} = 1$.'(3) 95= n/2 Wz= 2n. 622.103t, (\mathcal{S}) A5 = 34 \$ = n/4 W31= 27 621 10t, A = 3 (4) 92 = - n/4 $W_{2} = 2\pi.619.10^{3} t$, $A_{\alpha} = \frac{13}{2}$ (2)

 $W_{4} = 2\pi.618.10^{3}t$

A = 1

Scanned with CamScanner

9= -n/2

Scanned with CamScanner