Bruno Felipe de Souza Araujo 3º Semestre CDN - Fatec Votorantim

Atividade: concessionária

Você trabalha em uma concessionária de carros e deseja

- entender como características técnicas dos veículos influenciam o consumo de combustível (mpg miles per gallon)
- Você tem à disposição a base de dados mtcars, que contém informações de 32 modelos de carro, com variáveis como:
 - o mpg: consumo (milhas por galão)
 - o hp: potência do motor (horsepower)
 - o wt: peso do carro
 - o cyl: número de cilindros
 - o am: tipo de transmissão (0 = automática, 1 = manual)

	Min. :10.4	0 Min.	:4.000	Min.	: 71.1	Min.	: 52.0	
	1st Qu.:15.4	3 1st Qu	.:4.000	1st Qu.	:120.8	1st Qu.	: 96.5	
	Median :19.2	0 Median	:6.000	Median	:196.3	Median	:123.0	
	Mean :20.0	9 Mean	:6.188	Mean	:230.7	Mean	:146.7	
	3rd Qu.:22.8	0 3rd Qu	.:8.000	3rd Qu.	:326.0	3rd Qu.	:180.0	
	Max. :33.9	0 Max.	:8.000	Max.	:472.0	Max.	:335.0	
	drat		wt		qsec		VS	
	Min. :2.76	0 Min.	:1.513	Min.	:14.50	Min.	:0.0000	
	1st Qu.:3.08	0 1st Qu	.:2.581	1st Qu.	:16.89	1st Qu.	:0.0000	
	Median :3.69	5 Median	:3.325	Median	:17.71	Median	:0.0000	
	Mean :3.59	7 Mean	:3.217	Mean	:17.85	Mean	:0.4375	
	3rd Qu.:3.92	0 3rd Qu	.:3.610	3rd Qu.	:18.90	3rd Qu.	:1.0000	
	Max. :4.93	0 Max.	:5.424	Max.	:22.90	Max.	:1.0000	
	am		gear	(arb			
	Min. :0.00							
	1st Qu.:0.00	00 1st Q	u.:3.000	1st Qu	1.:2.000			
	Median :0.00	00 Media	n :4.000	Mediar	1:2.000			
	Mean :0.40							
	3rd Qu.:1.00	00 3rd Q	u.:4.000	3rd Qu	1.:4.000			
	Max. :1.00	00 Max.	:5.000	Max.	:8.000			
'data.frame': 32 obs. of 11 variables:								
	\$ mpg : num	21 21 22.	8 21.4 18	.7 18.1	14.3 24.4	4 22.8 1	.9.2	
	\$ cyl : num	6 6 4 6 8	6 8 4 4	6				
	<pre>\$ disp: num</pre>	160 160 1	08 258 36	0				
	\$ hp : num	110 110 9	3 110 175	105 245	62 95 1	23		
	\$ drat: num	3.9 3.9 3	.85 3.08	3.15 2.7	76 3.21 3	.69 3.92	3.92	
	\$ wt : num	2.62 2.88	2.32 3.2	1 3.44 .				
	<pre>\$ qsec: num</pre>	16.5 17 1	8.6 19.4	17				
	\$ vs : num	00110	1011	1				
	\$ am : num	11100	00000	0				
	\$ gear: num	4 4 4 3 3	3 3 4 4	4				
	\$ carb: num	44112	1 4 2 2	4				


```
Residuals:
                   1Q Median
                                       3Q
     -5.7121 -2.1122 -0.8854 1.5819 8.2360
                  Estimate Std. Error t value Pr(>|t|)
30.09886    1.63392    18.421 < 2e-16 ***
-0.06823    0.01012    -6.742    1.79e-07 ***
     (Intercept) 30.09886
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.' 0.1 ', 1
     Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
  1 # Parte 2 - Regressão Linear Múltipla
  2 # Adicione o peso do carro como segunda variável
  4 model_multi <- lm(mpg ~ hp + wt, data = mtcars)
  5 summary(model_multi)
     lm(formula = mpg \sim hp + wt, data = mtcars)
    Residuals:

Min 1Q Median 3Q Max

-3.941 -1.600 -0.182 1.050 5.854
     Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                              1.59879 23.285 < 2e-16 ***
0.00903 -3.519 0.00145 **
0.63273 -6.129 1.12e-06 ***
     (Intercept) 37.22727
     hp
wt
                   -0.03177
                   -3.87783
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
     Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
 1 install.packages("scatterplot3d")
1 # Parte 3 - gráfico 3D
  2 # Existe algum ponto extremo (outlier) que parece não se ajustar bem à reta/plano de regressão?
  4 library(scatterplot3d)
  6 scatterplot3d(mtcars$hp, mtcars$wt, mtcars$mpg,
                       xlab = "Horsepower (hp)",
                       ylab = "Weight (wt)"
  8
  9
                       zlab = "Miles per Gallon (mpg)",
                       main = "3D Scatter Plot of mpg vs hp and wt with Regression Plane",
                       color = "blue",
 11
                       pch = 16,
12
13
                       type="h") # add vertical lines to the plane
3D Scatter Plot of mpg vs hp and wt with Regression Plane
```

1 # Parte 1 - Regressão Linear Simples

lm(formula = mpg ~ hp, data = mtcars)

5 summary(model_simple)

30

20

100

150

200

Miles per Gallon (mpg) 25

₹ Call:

4 model_simple <- lm(mpg ~ hp, data = mtcars)

2 # Ajuste um modelo de regressão linear simples prevendo mpg a partir de hp

Perform ANOVA test to compare the simple and multiple regression models anova_result <- anova(model_simple, model_multi)</pre> # Display the ANOVA test results print(anova result)

Parte 4 - Interpretação

1. O que significa o sinal dos coeficientes?

- No modelo de regressão linear simples (model), o coeficiente para hp tem um sinal negativo. Isso indica que, à medida que a
 potência do motor (hp) aumenta, o consumo de combustível (mpg) tende a diminuir.
- No modelo de regressão linear múltipla (model_multi), o coeficiente para hp também é negativo, indicando a mesma relação inversa com mpg. O coeficiente para wt (peso do carro) também é negativo, sugerindo que carros mais pesados tendem a ter menor mpg. O coeficiente constante (intercepto) representa o mpg esperado quando hp e wt são zero (embora isso não tenha um significado prático real neste contexto, pois hp e wt não podem ser zero).

2. O modelo com duas variáveis é melhor que o modelo simples? Justifique usando o anova()

- Após executar a função anova() comparando model_simple e model_multi, observamos o valor-p (Pr(>F)) na saída para a linha correspondente a model_multi.
 - Se o valor-p for menor que o nosso nível de significância escolhido (geralmente 0.05), rejeitamos a hipótese nula. A hipótese nula, neste caso, é que a variável adicional (wt) em model_multi não melhora significativamente o ajuste do modelo em comparação com model_simple. Rejeitar a hipótese nula significa que a inclusão de wt melhorou significativamente o modelo.
 - Se o valor-p for maior que 0.05, falhamos em rejeitar a hipótese nula, sugerindo que adicionar wt não melhorou significativamente o ajuste do modelo.
- Com base na saída do ANOVA, se o valor-p para model_multi for menor que 0.05, podemos concluir que o modelo com duas variáveis (hp e wt) é estatisticamente significativo melhor do que o modelo simples (apenas com hp) na explicação da variância em mpg. Isso ocorre porque a variável adicional wt explica uma quantidade significativa da variância restante não explicada após considerar hp.

3. Que variáveis poderiam ser incluídas para melhorar o modelo?

- Observando a descrição da base de dados e os gráficos de dispersão, outras variáveis que poderiam ser incluídas para potencialmente melhorar o modelo incluem:
 - cy1 (número de cilindros): É razoável supor que o número de cilindros pode influenciar o consumo de combustível.
 - am (tipo de transmissão): O tipo de transmissão (automática vs. manual) também é conhecido por afetar a eficiência do combustível.
 - Outras variáveis como disp (cilindrada), drat (relação do eixo traseiro), qsec (tempo no quarto de milha), vs (tipo de motor V-shape vs. straight), e gear (número de marchas) também poderiam ser consideradas, dependendo de sua correlação com mpg e sua multicolinearidade com as variáveis já incluídas. A seleção de variáveis adicionais deve ser feita com base em análise exploratória, conhecimento do domínio (carros e consumo de combustível) e técnicas de seleção de modelos (como stepwise regression, análise de VIF para multicolinearidade, etc.).