- Don't forget Lecture quiz
- First midterm in 1 week (look for email announcements)

Evolution (recap)

- Descent with modification; genetic (allele frequency) change in <u>populations</u> of organisms over <u>generations</u>.
- Natural selection was the mechanism emphasized by Darwin and Wallace
- However, several other forces of evolution can cause changes in populations of living things

Forces of **Evolution**? (evolutionary agents)

- Forces of Evolutionary Change in a population include:
- -Natural Selection
- -Sexual Selection (often considered a kind of nat. selec.)
- -Genetic Drift
- -Gene Flow
- -Mutation

Fossil pygmy mammoths illustrate rapid evolution on islands

NATURAL SELECTION

Natural selection accumulates and maintains favorable genotypes (higher fitness) in a population- leading to adaptation

Modes of natural selection:

- -Stabilizing selection
- -Directional selection
- -Disruptive selection

@ 2011 Pearson Education, Inc.

(a) Directional selection

© 2011 Pearson Education, Inc.

Example: Stabilizing Selection

Mutation

- Mutations produce new variation
- Often caused by DNA polymerase* errors in DNA synthesis (or DNA repair)

(*the enzyme that helps duplicate DNA)

Mutations can be spontaneous errors or caused by mutagens

Kinds of mutations (a partial list)

- Large scale: large changes the number of chromosomes changes (e.g. chromosomes fused or cut in two)
- Small scale:, e.g. substitutions or insertions or deletions of single nucleotide pair (point mutations); or of more than one nucleotide pair

Large scale mutation

- Large scale example: many apes (incl. chimpanzees) have 24 pairs of chromosomes, while humans have 23 pairs
- Genetic studies show that two chromosomes fused during the evolution of the genus *Homo* to form our Chromosome 2

Small scale: Point mutations

Point mutations

Point mutations

Point mutations (deletion, insertion) can also lead to frameshift (subsequent codon triplets shifted and all wrong)

Gene flow

- Consists of "flow" of alleles between populations due to movement of fertile individuals (or gametes, e.g. in pollen)
- Causes populations to have more similar gene pools (can benefit pop., but also sometimes be maladaptive)

Genetic Drift

- Random changes in allele frequencies within populations which result from <u>chance</u> variation in individual survival and reproduction
- Most important in small populations
- Changes can be neutral, maladaptive, or adaptive

Examples:

- -Bottleneck effect
- -Founder effect

Genetic drift: Bottleneck effect (happens at near-extinction events)

- Dramatic decrease of population size leaves only part of the genetic variation
- Example: Northern elephant seals

Greater prairie chicken

Range of greater prairie chicken

(a)

Location	Population size	Number of alleles per locus	Percentage of eggs hatched
Illinois 1930–1960s 1993	1,000–25,000 <50	5.2 3.7	93 <50
Kansas, 1998 (no bottleneck)	750,000	5.8	99
Nebraska, 1998 (no bottleneck)	75,000– 200,000	5.8	96

(b)

Genetic drift: Founder effect (happens at dispersion events)

 Dispersion to small founder population can lead to random differences in allele frequencies

Mainland population gene pool

Genetic drift: Founder effect examples

- Amish small founder population EVC syndrome (Ellis Van Creveld); polydactyl, short-limb dwarfism
- Descendants of British colonizers of Tristan da Cunha – retinitis pigmentosa; blindness

The Modern Synthesis

- First half of the 20th century e.g. Ernst Mayr and Theodosius Dobzhansky
- <u>Natural selection</u> combined with <u>genetics</u>, particularly Mendel's inheritance laws (also DNA transcription, plus paleontology, speciation, and phylogenetics)

Dobzhansky 1900-1975

Mayr 1904-2005