

X

几何空间与n维向量空间疑难分析

电子科极大学

王转德 副教授

一. 向量组线性相关(无关)及线性表出的基本概念

1. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关

 \Leftrightarrow 存在不全为零的数 k_1,k_2,\cdots,k_m ,使得 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$

2. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关

 \Leftrightarrow " $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0 \Rightarrow k_1=k_2=\cdots=k_m=0$ "

3. $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ $R\{\alpha_1, \alpha_2, \dots, \alpha_n\}$

 $(1)\alpha_1,\alpha_2,\cdots,\alpha_n \in \mathbb{R}^m$)线性相关 $\Leftrightarrow R(A) < n \Leftrightarrow Ax = 0$ 有非零解

 $(2)\alpha_1,\alpha_2,\cdots,\alpha_n \in \mathbb{R}^m$)线性无关 $\Leftrightarrow R(A)=n \Leftrightarrow Ax=0$ 只有零解

4. β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出 \Leftrightarrow 存在 k_1,k_2,\cdots,k_n ,使得 $\beta=k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n$

5. b可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出 $\Leftrightarrow Ax = b$ 有解 $\Leftrightarrow R(A) = R(A|b)$

6. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关

⇔存在一个向量可由其余的线性表出

7. 向量组(I): $\alpha_1, \alpha_2, \cdots, \alpha_s$ 可由向量组(II): $\beta_1, \beta_2, \cdots, \beta_t$ 线性表出 $\Rightarrow R(I) \leq R(II)$.

8. 向量组(I): $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与向量组(II): $\beta_1, \beta_2, \cdots, \beta_t$ 等价 $\Rightarrow R(I) = R(II)$.

1.设 $\alpha_1,\alpha_2,\dots,\alpha_r$ 可由 $\beta_1,\beta_2,\dots,\beta_s$ 线性表示,则r与s的关系是()

(A) $r \le s$ (B) $r \ge s$ (C) r < s (D) r = s无关.

答案:(D).

注:

 $\alpha_1, \alpha_2, \dots, \alpha_r$ 可由 $\beta_1, \beta_2, \dots, \beta_s$ 线性表出 $\begin{cases} (1)\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关 $\Rightarrow r \leq s \end{cases}$ (2) $r > s \Rightarrow \alpha_1, \alpha_2, \dots, \alpha_r$ 线性相关

(1):(I)
$$\binom{1}{2}$$
, $\binom{2}{1}$; (II) $\binom{1}{0}$, $\binom{0}{1}$.

$$(2): (I) \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}; (III) \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

(3):(I)
$$\binom{1}{2}$$
, $\binom{2}{1}$; (III) $\binom{1}{0}$, $\binom{0}{1}$, $\binom{1}{1}$.

2.设 $\alpha_1,\alpha_2,\alpha_3$ 线性相关, $\alpha_2,\alpha_3,\alpha_4$ 线性无关,证明:

- (1). α_1 能由 α_2 , α_3 线性表出;
- $(2).\alpha_4$ 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出.

证明:

 $(1)\alpha_2, \alpha_3, \alpha_4$ 线性无关 $\Rightarrow \alpha_2, \alpha_3$ 线性无关 $\Rightarrow \alpha_1$ 可由 α_2, α_3 线性表出 又 $\alpha_1, \alpha_2, \alpha_3$ 线性相关 $\Rightarrow \alpha_1 = l_2\alpha_2 + l_3\alpha_3$

(2) α_4 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出 $\Leftrightarrow \alpha_4 = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 \Rightarrow$ $\alpha_4 = k_1 (l_2 \alpha_2 + l_3 \alpha_3) + k_2 \alpha_2 + k_3 \alpha_3 = (k_1 l_2 + k_2) \alpha_2 + (k_1 l_3 + k_3) \alpha_3,$ 矛盾!

3. 已知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,证明: $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关.

证(法1):
$$k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = 0$$

$$\Leftrightarrow$$
 $(k_1 + k_3)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 = 0$

 $\alpha_1,\alpha_2,\alpha_3$ 线性无关 1

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases} \stackrel{1}{=} 0 \stackrel{1}{=} 0 \stackrel{1}{=} 2 \neq 0 \implies k_1 = k_2 = k_3 = 0$$

 $\Rightarrow \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关.

 $(P_{128}:Ex9; P_{131}:Ex4)$

3. 已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,证明: $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1$ 线性无关.

分析: 令
$$\beta_1 = \alpha_1 + \alpha_2$$
, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_1$

$$"\beta_1, \beta_2, \beta_3$$
线性无关⇔ $B = (\beta_1, \beta_2, \beta_3), R(B) = 3$ "
(相关)

证(法2):
$$B = (\beta_1, \beta_2, \beta_3) = (\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \alpha_2, \alpha_3)$$

$$|P| = 2 \neq 0 \Leftrightarrow P$$
可逆"
$$P$$

$$R(B) = R(AP) = R(A)$$

$$\alpha_1, \alpha_2, \alpha_3$$
线性无关 $\Leftrightarrow R(A) = 3 \Leftrightarrow R(B) = 3 \Leftrightarrow \beta_1, \beta_2, \beta_3$ 线性无关

 $\alpha_1, \alpha_2, \alpha_3$ 线性无关 $\Leftrightarrow \beta_1, \beta_2, \beta_3$ 线性无关

4. 己知
$$\alpha_1, \alpha_2, \dots, \alpha_m; \beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \dots, \beta_m = \alpha_m + \alpha_1.$$

证明:(1)
$$m=2k \Rightarrow \beta_1, \beta_2, \cdots, \beta_m$$
线性相关;
(2) $m=2k+1$,

 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关 $\Leftrightarrow \beta_1,\beta_2,\cdots,\beta_m$ 线性无关.

分析: "
$$\beta_1, \beta_2, \dots, \beta_m$$
线性无关 $\Leftrightarrow B = (\beta_1, \beta_2, \dots, \beta_m), R(B) = m$ " (4)

$$\mathbf{i} \mathbf{E} : \mathbf{B} = (\beta_1, \beta_2, \cdots, \beta_m) = (\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \cdots, \alpha_m + \alpha_1)$$

$$= (\alpha_{1}, \alpha_{2}, \dots, \alpha_{m}) \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \ddots & & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & 1 & 1 \end{pmatrix} = AP$$

$$|P| = \begin{vmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \ddots & & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & 1 & 1 \end{vmatrix} = 1 + (-1)^{m+1} = \begin{cases} 0, & m = 2k \\ 2, & m = 2k + 1 \end{cases}$$

$$(2)m = 2k + 1 \Rightarrow P$$
可逆 $\Rightarrow R(B) = R(AP) = R(A)$
$$\Leftrightarrow \beta_1, \beta_2, \dots, \beta_m = \alpha_1, \alpha_2, \dots, \alpha_m$$
有相同的相关与无关性

$$\alpha_1, \alpha_2, \dots, \alpha_m$$
线性无关 $\Leftrightarrow R(A) = m \Leftrightarrow R(B) = m \Leftrightarrow \beta_1, \beta_2, \dots, \beta_m$ 线性无关 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关 $\Leftrightarrow R(A) < m \Leftrightarrow R(B) < m \Leftrightarrow \beta_1, \beta_2, \dots, \beta_m$ 线性相关

思考. 已知 $\alpha_1, \alpha_2, \dots, \alpha_m$; $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, \dots, \beta_m = \alpha_1 + \alpha_2 + \dots + \alpha_m$.

证明: $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关 $\Leftrightarrow \beta_1, \beta_2, \dots, \beta_m$ 线性无关.

5. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 中 $\alpha_1 \neq 0$,且每个 $\alpha_i (i = 1, 2, \dots, n)$ 都不能由它前面的i - 1个向量 $\alpha_1, \alpha_2, \dots, \alpha_{i-1}$ 线性表出,求证:向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关.

分析: $\alpha_1 \neq 0 \Leftrightarrow "k_1 \alpha_1 = 0 \Leftrightarrow k_1 = 0"$

 $i : \quad \diamondsuit k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n = 0$

$$\Delta R k_n \neq 0 \Rightarrow \alpha_n = -\frac{k_1}{k_n} \alpha_1 - \frac{k_2}{k_n} \alpha_2 - \dots - \frac{k_{n-1}}{k_n} \alpha_{n-1}$$

$$\alpha_n \text{可由} \alpha_1, \alpha_2, \dots, \alpha_{n-1} \text{线性表出, 与假设矛盾.}$$

以此
$$k_n = 0 \Rightarrow k_1\alpha_1 + k_2\alpha_2 + \dots + k_{n-1}\alpha_{n-1} = 0$$

同理 $k_{n-1} = 0$, 以此类推 $k_{n-2} = k_{n-3} = \cdots = k_2 = k_1 = 0$

 \rightarrow 向量组 $\alpha_1,\alpha_2,...,\alpha_n$ 线性无关

6.设A是n阶方阵,若存在正整数k,使 $A^k x = 0$ 有解向量 α ,且 $A^{k-1} \alpha \neq 0$,

证明: α , $A\alpha$, $A^2\alpha$, ..., $A^{k-1}\alpha$ 线性无关.

分析:
$$(1)A^k\alpha = 0 \Rightarrow A^m\alpha = 0 (m \ge k)$$

$$(2)A^{k-1}\alpha \neq 0 \implies "lA^{k-1}\alpha = 0 \Leftrightarrow l = 0"$$

$$\Rightarrow A^{k-1}(l_0\alpha + l_1A\alpha + l_2A^2\alpha + \dots + l_{k-1}A^{k-1}\alpha) = 0 \Rightarrow l_0 = 0$$

$$\Rightarrow A^{k-2}(l_1A\alpha + \underline{l_2}A^2\alpha + \dots + \underline{l_{k-1}}A^{k-1}\alpha) = 0 \quad \Rightarrow \underline{l_1} = 0$$

$$\Rightarrow l_i = 0 (i = 0, 1, ..., k-1)$$

 $\Rightarrow \alpha, A\alpha, A^2\alpha, \dots, A^{k-1}\alpha$ 线性无关.

6'. 设A是n阶方阵, α_1 , α_2 , α_3 为n维向量组,其中 $\alpha_1 \neq 0$,且满足: $A\alpha_1 = 2\alpha_1$, $A\alpha_2 = \alpha_1 + 2\alpha_2$, $A\alpha_3 = \alpha_2 + 2\alpha_3$,证明: α_1 , α_2 , α_3 线性无关.

分析: $\alpha_1 \neq 0 \Leftrightarrow "l\alpha_1 = 0 \Leftrightarrow l = 0"$

$$\begin{cases} A\alpha_1 = 2\alpha_1 \iff (A - 2I)\alpha_1 = 0; \\ A\alpha_2 = \alpha_1 + 2\alpha_2 \iff (A - 2I)\alpha_2 = \alpha_1; \\ A\alpha_3 = \alpha_2 + 2\alpha_3 \iff (A - 2I)\alpha_3 = \alpha_2. \end{cases}$$

$$\Rightarrow \begin{cases} (A-2I)^2 \alpha_1 = 0 \\ (A-2I)^2 \alpha_2 = 0 \\ (A-2I)^2 \alpha_3 = \alpha_1 \end{cases}$$

证: $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$ (1),则

$$(A-2I)(k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3) = 0 \Longrightarrow k_2\alpha_1 + k_3\alpha_2 = 0(2)$$

将 $k_3 = 0$ 代入(2)、(1) $\Rightarrow k_1 = k_2 = k_3 = 0 \Rightarrow \alpha_1, \alpha_2, \alpha_3$ 线性无关.

思考: $A\alpha_1, A\alpha_2, A\alpha_3$ 线性属性如何?

7. 设 η^* 是非齐次线性方程组Ax = b的一个解, $\xi_1,\xi_2,...,\xi_{n-r}$ 是对应 齐次线性方程组的一个基础解系,

证明: $(1)\eta^*, \xi_1, \xi_2, \dots, \xi_{n-r}$ 线性无关; $(2)\eta^*, \eta^* + \xi_1, \eta^* + \xi_2, \dots, \eta^* + \xi_{n-r}$ 线性无关.

$$m{\iota}:(1)(m{k}1)\ m{\xi}_1,m{\xi}_2,\cdots,m{\xi}_{n-r}$$
线性无关 $m{\lambda}$ $m{\eta}^*,m{\xi}_1,m{\xi}_2,\cdots,m{\xi}_{n-r}$ 线性相关

 $\Rightarrow \eta^* = k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r}$ $\mathbb{P} \eta^* \to Ax = 0$ 的解. 矛盾!

 $\rightarrow \eta^*, \xi_1, \xi_2, \dots, \xi_{n-r}$ 线性无关.

证:(法2)

$$k_0 \eta^* + k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r} = 0$$

证:(法3)
$$A\eta^* = b, A\xi_i = 0 (i = 1, 2, \dots, n-r)$$

$$k_0 \eta^* + k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r} = 0$$

$$\Rightarrow A(k_0\eta^* + k_1\xi_1 + k_2\xi_2 + \dots + k_{n-r}\xi_{n-r}) = 0 \Rightarrow k_0b = 0(b \neq 0)$$
$$\Rightarrow k_0 = 0$$

$$\Rightarrow$$
 $k_1 = k_2 = \cdots = k_{n-r} = 0 \Rightarrow \eta^*, \xi_1, \xi_2, \cdots, \xi_{n-r}$ 线性无关.

$$m{\omega}: (2)(m{k}1)$$
 $k_0\eta^* + k_1(\eta^* + \xi_1) + k_2(\eta^* + \xi_2) + \dots + k_{n-r}(\eta^* + \xi_{n-r}) = 0$

$$\Rightarrow (k_0 + k_1 + \dots + k_{n-r})\eta^* + k_1\xi_1 + k_2\xi_2 + \dots + k_{n-r}\xi_{n-r} = 0$$

$$\Rightarrow k_0 + k_1 + \dots + k_{n-r} = 0 , k_1 = k_2 = \dots = k_{n-r} = 0$$

$$\Rightarrow k_0 = k_1 = k_2 = \dots = k_{n-r} = 0$$

$$\eta^*, \eta^* + \xi_1, \eta^* + \xi_2, \dots, \eta^* + \xi_{n-r}$$
 线性无关

$$B = (\eta^*, \eta^* + \xi_1, \eta^* + \xi_2, \dots, \eta^* + \xi_{n-r}) = (\eta^*, \xi_1, \xi_2, \dots, \xi_{n-r}) \begin{vmatrix} 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix}$$

$$= AP$$

$$egin{pmatrix} 1 & 1 & 1 & \cdots & 1 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 \ \end{pmatrix}$$

P可逆 $\Rightarrow R(B) = R(AP) = R(A) = n - r + 1 \Rightarrow \eta^*, \eta^* + \xi_1, \eta^* + \xi_2, \dots, \eta^* + \xi_{n-r}$ 线性无关.

$$\boldsymbol{\lambda}$$
: $\eta^*, \eta^* + \xi_1, \eta^* + \xi_2, \dots, \eta^* + \xi_{n-r}$ 线性无关 $\boldsymbol{\leftrightarrow} \eta^*, \xi_1, \xi_2, \dots, \xi_{n-r}$ 线性无关

8. 设
$$\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}^n$$
,证明:

证:
$$A = (\alpha_1, \alpha_2, \dots, \alpha_n)$$
,则

 $"\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关 \Leftrightarrow det $A \neq 0$ "

$$A^{\mathsf{T}}A = \begin{pmatrix} \boldsymbol{\alpha}_{1}^{\mathsf{T}} \\ \boldsymbol{\alpha}_{2}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{\alpha}_{n}^{\mathsf{T}} \end{pmatrix} (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{n}) = \begin{pmatrix} \boldsymbol{\alpha}_{1}^{\mathsf{T}}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{1}^{\mathsf{T}}\boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{1}^{\mathsf{T}}\boldsymbol{\alpha}_{n} \\ \boldsymbol{\alpha}_{2}^{\mathsf{T}}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}^{\mathsf{T}}\boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{2}^{\mathsf{T}}\boldsymbol{\alpha}_{n} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{\alpha}_{n}^{\mathsf{T}}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{n}^{\mathsf{T}}\boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{n}^{\mathsf{T}}\boldsymbol{\alpha}_{n} \end{pmatrix}$$

$$\alpha_1, \alpha_2, \dots, \alpha_n$$
线性无关 \Leftrightarrow det $A \neq 0 \Leftrightarrow 0 \neq (\det A)^2 = \det(A^T A) = D$.

二. 关于向量组的秩及矩阵秩的结论

- 1. $A_{m \times n}$, $B_{m \times p}$, \mathbb{Z} : $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$.
- 2. $A_{m\times n}$, $B_{m\times n}$, $\mathbb{R}(A+B) \leq R(A,B) \leq R(A) + R(B)$.
- 3. $A_{m \times n}$, $B_{n \times p}$, 证明: $R(AB) \leq \min\{R(A), R(B)\}$.(待续)
- 4. $A_{m\times n}$, $B_{n\times p}$ $\perp AB = O$, $\sim R(A) + R(B) \leq n$.

5.导出结论:

(1)
$$R(A^*) = \begin{cases} n, & R(A) = n \\ 0, & R(A) < n-1 \\ 1, & R(A) = n-1 \end{cases}$$

(2)
$$A_{n\times n}$$
, $A^2 = A \Rightarrow R(A) + R(A - I) = n$.

$$A_{n\times n}$$
, $A = A = 0 \Rightarrow R(A) + R(A+I) = n$.

$$A_{n\times n}$$
, $B_{n\times n}$, $ABA = B^{-1} \Rightarrow R(AB+I) + R(AB-I) = n$.

1. proof: $A_{m \times n}$, $B_{m \times n}$, \mathbb{Z} !! $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$.

证(法1):
$$\triangle A = (\alpha_1, \alpha_2, \cdots, \alpha_n), B = (\beta_1, \beta_2, \cdots, \beta_p),$$
则
$$(A, B) = (\alpha_1 \alpha_2, \cdots, \alpha_n, \beta_1, \beta_2, \cdots, \beta_p)$$
(II)

$$C = (\underline{\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_s}}, \underline{\beta_{j_1}, \beta_{j_2}, \cdots, \beta_{j_t}})$$
(I)的极大无关组 (II)的极大无关组

则(A,B)的列向量组与C的列向量组等价.

$$\Rightarrow \begin{cases} R(A) \\ R(B) \end{cases} \le R(A,B) = R(C) \le s + t = R(A) + R(B)$$

 \implies max $\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$.

1. proof: $A_{m \times n}$, $B_{m \times p}$, $\mathbb{Z}[B]$: $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$.

证(法2):
$$(A,B) = (I_m,I_m) \begin{pmatrix} A \\ B \end{pmatrix} \Rightarrow R(A,B) \leq R \begin{pmatrix} A \\ B \end{pmatrix} = R(A) + R(B)$$

$$\left\{ \begin{array}{l} A = (A,B) \begin{pmatrix} I_n \\ 0 \end{pmatrix} \Rightarrow R(A) \leq R(A,B) \\ B = (A,B) \begin{pmatrix} 0 \\ I_p \end{pmatrix} \Rightarrow R(B) \leq R(A,B) \end{array} \right\} \Rightarrow \max\{R(A),R(B)\} \leq R(A,B)$$

 \Rightarrow max{R(A), R(B)} $\leq R(A, B) \leq R(A) + R(B)$.

注:
$$A_{m \times n}, B_{p \times n} \implies \max\{R(A), R(B)\} \le R \binom{A}{B} \le R(A) + R(B).$$

2. proof:
$$A_{m \times n}$$
, $B_{m \times n}$, $\mathbb{R}(A + B) \leq R(A, B) \leq R(A) + R(B)$.

证(法1):
$$\diamondsuit A = (\alpha_1, \alpha_2, \dots, \alpha_n), B = (\beta_1, \beta_2, \dots, \beta_n),$$
则
$$A + B = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_n + \beta_n)$$

$$(A,B) = (\alpha_1,\alpha_2,\cdots,\alpha_n,\beta_1,\beta_2,\cdots,\beta_n)$$

$$\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_n + \beta_n$$
可由 $\alpha_1 \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_n$ 线性表出

$$\Rightarrow R\{\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_n + \beta_n\} \leq R\{\alpha_1 \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_n\}$$

$$\Rightarrow R(A+B) \leq R(A,B) \leq R(A) + R(B)$$

证(法2):
$$(A,B)$$
 $\xrightarrow{c_2+c_1}$ $(A+B,B)$ \Rightarrow $R(A+B) \le R(A+B,B) = R(A,B)$ $(\le R(A)+R(B))$

证(法3):
$$A + B = (A, B) \begin{pmatrix} I_n \\ I_n \end{pmatrix} \implies R(A + B) \le R(A, B) \ (\le R(A) + R(B))$$

缓性代数 獎难分析

4. $A_{m \times n}$, $B_{n \times p}$ 且 AB = O, 证明: $R(A) + R(B) \le n$. $(A_{n \times n}, B_{n \times n} \perp AB = O, 证明: R(A) + R(B) \le n. \quad (P_{143}: Ex4))$

证: (1). 若
$$B = 0$$
,则 $R(A) + R(B) = R(A) + 0 = R(A) \le n$.

(2). 设
$$B = (b_1, b_2, \dots, b_p) \neq O$$
,则 $b_l \neq 0$
 $(Ab_1, Ab_2, \dots, Ab_p) = A(b_1, b_2, \dots, b_p) = AB = O = (0, 0, \dots, 0)$
 $Ab_i = 0 (i = 1, 2, \dots, p)$ 且 $Ab_l = 0 (b_l \neq 0)$

$$b_i(i=1,2,\cdots,p)$$
为 $Ax=0$ 的解 有基础解系 $\xi_1,\xi_2,\cdots,\xi_{n-r}$ ($r=R(A)$)

$$R(B)=R\{b_1,b_2,\dots,b_p\} \le R\{\xi_1,\xi_2,\dots,\xi_{n-r}\} = n-r = n-R(A)$$

$$\Leftrightarrow R(A) + R(B) \leq n$$
.

证:
$$R(A) = r \Rightarrow$$
 存在 P, Q 可逆, 使得 $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$

$$PAB = PAQQ^{-1}B = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}C = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} C_1 \\ 0 \end{pmatrix}$$

$$(1)R(AB) = R(PAB) = R\begin{pmatrix} C_1 \\ 0 \end{pmatrix} = R(C_1),$$

 $(2)R(C_2) \le n - r$

$$(3)R(B) = R(C) = R\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \le R(C_1) + R(C_2) \le R(AB) + n - r = R(AB) + n - R(A)$$

$$\Rightarrow R(B) + R(A) - n \le R(AB)$$

Sylvester推论: $A_{m \times n}$, $B_{n \times n}$ 且 $AB = O \Longrightarrow R(A) + R(B) \le n$

问题1. 设A,B为AB=O的任意两个非零矩阵,则必有()

- (A)A的列向量组线性相关,B的行向量组线性相关.
- (B)A的列向量组线性相关,B的列向量组线性相关.
- (C)A的行向量组线性相关,B的行向量组线性相关。
- (D)A的行向量组线性相关,B的列向量组线性相关.

分析:
$$A_{m\times n}$$
, $B_{n\times s}$

$$(1)AB = O \Longrightarrow R(A) + R(B) \le n$$

$$(2)A,B$$
非零 $\Rightarrow R(A) \ge 1,R(B) \ge 1$

A的列向量组线性相关

$$R(\alpha_1, \alpha_2, \dots, \alpha_n)$$

$$\Rightarrow 1 \le R(A) < n, 1 \le R(B) < n.$$

В的行向量组线性相关 ← R

问题2.
$$A_{m \times n}$$
, $R(A) = m < n$,则()

- (A)A的任意m个列向量所成向量组线性无关.
- (B)A的任意一个m阶子式不为零
- (C)若BA = O,则B = O
- (D)通过行初等变换,必可化为(E_m ,O)

$$\begin{array}{c} \mathscr{P}: (\not \succeq 1) BA = O \Longrightarrow R(B) + R(A) \leq m \\ R(A) = m \end{array} \Longrightarrow R(B) \leq 0 \Longrightarrow R(B) = 0 \Longleftrightarrow B = O \\ R(A) = m \end{array}$$

$$\begin{array}{c} (\not \succeq 2) BA = O \Longrightarrow \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ b_{21} & \cdots & b_{2m} \\ \vdots \\ b_{r1} & \cdots & b_{rm} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Leftrightarrow \sum_{j=1}^m b_{ij} \alpha_j = 0 (\forall i)$$

 $R(A) = m \Leftrightarrow \alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关 $\Rightarrow b_{ij} = 0 (\forall i, j) \Leftrightarrow B = 0$

导出结论(2).proof: $A_{n\times n}$ 且 $A^2 = A \Rightarrow R(A) + R(A - I) = n$.

$$A^2 = A \Leftrightarrow A(A - I) = O$$

$$\Rightarrow$$
 (1) $R(A) + R(A - I) \le n$.

$$(2)R(A) + R(A-I) = R(A) + R(I-A) \ge R(A+I-A) = R(I) = n.$$

$$\Rightarrow R(A) + R(A - I) = n.$$

三. 如何判断向量组线性表出关系?

(1) Ax = b有解 $\Leftrightarrow R(A) = R(A|b) \Leftrightarrow b$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出 $\Leftrightarrow \alpha_1, \alpha_2, \dots, \alpha_n = \alpha_1, \alpha_2, \dots, \alpha_n$,与 $\alpha_1, \alpha_2, \dots, \alpha_n$,与 $\alpha_1, \alpha_2, \dots, \alpha_n$,为等价

$$(2) \begin{cases} (\mathbf{I}) : \alpha_1, \alpha_2, \cdots, \alpha_n; (\mathbf{II}) : b_1, b_2, \cdots, b_l \\ A = (\alpha_1, \alpha_2, \cdots, \alpha_n); B = (b_1, b_2, \cdots, b_l) \end{cases}, \quad (\mathbf{II}) 可由(\mathbf{I}) 表出 \Leftrightarrow R(A) = R(A \mid B)$$

证:(II)可由(I)表出 $\Leftrightarrow \forall b_j (j=1,2,\cdots,l), b_j$ 可由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 表出 $\Leftrightarrow R(A)=R(A\mid b_j)$

$$\Leftrightarrow R(A) = R(A \mid b_1) = R(A \mid b_2) = \dots = R(A \mid b_l) \Leftrightarrow R(A) = R(A \mid b_1, b_2, \dots, b_l) = R(A \mid B)$$

$$(3) \begin{cases} (\mathbf{I}) : \alpha_1, \alpha_2, \cdots, \alpha_n; (\mathbf{II}) : b_1, b_2, \cdots, b_l \\ A = (\alpha_1, \alpha_2, \cdots, \alpha_n); B = (b_1, b_2, \cdots, b_l) \end{cases}, (\mathbf{II}) 与(\mathbf{I}) 等价 \Leftrightarrow R(A) = R(B) = R(A \mid B)$$

证:(II)与(I)等价
$$\Leftrightarrow$$

$$\begin{cases} (II) \overline{\eta} \text{ 由}(I) \overline{\otimes} \mathbb{H} \Leftrightarrow R(A) = R(A \mid B) \\ (I) \overline{\eta} \text{ h}(II) \overline{\otimes} \mathbb{H} \Leftrightarrow R(B) = R(B \mid A) \end{cases} \Leftrightarrow R(A) = R(B) = R(A \mid B)$$

1.设向量组: $a_1 = (1,-1,1,-1)^T$ 、 $a_2 = (3,1,1,3)^T$;

向量组: $b_1 = (2,0,1,1)^T$ 、 $b_2 = (1,1,0,2)^T$ 、 $b_3 = (3,-1,2,0)^T$.

证明:向量组 a_1 、 a_2 与 b_1 、 b_2 、 b_3 等价.

证:
$$\diamondsuit$$
 $A = (a_1, a_2), B = (b_1, b_2, b_3)$

两向量组等价 \Leftrightarrow R(A) = R(B) = R(A|B)

$$(A \mid B) = \begin{pmatrix} 1 & 3 \mid 2 & 1 & 3 \\ -1 & 1 \mid 0 & 1 & -1 \\ 1 & 1 \mid 1 & 0 & 2 \\ -1 & 3 \mid 1 & 2 & 0 \end{pmatrix} \xrightarrow{r_3 + r_4} \begin{pmatrix} 1 & 3 \mid 2 & 1 & 3 \\ 0 & 4 \mid 2 & 2 & 2 \\ 0 & 2 \mid 1 & 1 & 1 \\ 0 & 4 \mid 2 & 2 & 2 \end{pmatrix} \xrightarrow{r_2 + r_4} \begin{pmatrix} 1 & 3 \mid 2 & 1 & 3 \\ 0 & 2 \mid 1 & 1 & 1 \\ 0 & 0 \mid 0 & 0 & 0 \\ 0 & 0 \mid 0 & 0 & 0 \end{pmatrix},$$

$$\Rightarrow \begin{cases} (1)R(A) = R(A \mid B) = 2 \\ (2)\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1 \neq 0 \Rightarrow R(B) = 2 \end{cases} \Rightarrow R(A) = R(B) = R(A \mid B)$$

$$\Rightarrow \text{两向量组等价}$$

四. 如何从向量组线性表出的观点认识两矩阵的乘积?

1.
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times p} \perp C = AB, \parallel$$

(1)矩阵C = AB的列向量组能由A的列向量组线性表出.

(2)矩阵C = AB的行向量组能由B的行向量组线性表出.

$$egin{aligned} egin{aligned} eg$$

- ⇔矩阵C=AB的列向量组能由A的列向量组线性表出。
- ⇒矩阵 $C^T == B^T A^T$ 的列向量组能由 B^T 的列向量组线性表出.
- (2) 矩阵C = AB的行向量组能由B的行向量组线性表出.

1. 设 $A_{m \times n}$, $B_{n \times n}$, 证明: $R(AB) \leq \min\{R(A), R(B)\}$.

$$\mathbf{L}(\mathbf{L}1)$$
: \diamondsuit $C_{m \times p} = AB$

$$\Rightarrow (c_1, \cdots, c_p) = (\alpha_1, \cdots, \alpha_n) \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ b_{21} & \cdots & b_{2p} \\ \cdots & \cdots & \cdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix}$$

$$\Rightarrow c_k = b_{1k}\alpha_1 + b_{2k}\alpha_2 + \dots + b_{nk}\alpha_n, (k = 1, \dots, p)$$

⇒矩阵C = AB的列向量组能由A的列向量组线性表出.

(1)
$$R(AB) = R(C) = R\{c_1, \dots, c_p\} \le R\{\alpha_1, \dots, \alpha_n\} = R(A)$$

(2)
$$R(AB) = R(C) = R(C^{T}) = R(B^{T}A^{T}) \le R(B^{T}) = R(B)$$

$$\Rightarrow R(AB) \leq \min\{R(A),R(B)\}.$$

1.设 $A_{m \times n}$, $B_{n \times n}$, 证明: $R(AB) \leq \min\{R(A), R(B)\}$

证(法2): 设
$$R(A) = r$$
,则存在 P,Q 可逆,使得 $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$

$$\Rightarrow PAB = PAQQ^{-1}B = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}C = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} C_1 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} (1)R(AB) = R(PAB) = R \begin{pmatrix} C_1 \\ 0 \end{pmatrix} \le r = R(A) \\ (2)R(AB) = R((AB)^{T}) = R(B^{T}A^{T}) \le R(B^{T}) = R(B) \end{cases}$$

 $\Rightarrow R(AB) \leq \min\{R(A), R(B)\}$

2. $A_{n\times m}$, $B_{m\times n}$ (其中n < m), $I_{n\times n}$. 若AB = I, 证明: B的列向量组线性无关.

$$\Leftrightarrow Bx = 0 \implies x = Ix = ABx = A0 = 0 \implies \beta_1, \beta_2, \dots, \beta_n$$
 线性无关.

$$m{\iota_{\mathbf{L}}(\mathbf{k}2)}$$
: $\{ (1)R(B) \le n \}$ $\{ R(\beta_1, \beta_2, \cdots, \beta_n) \}$ $\{ R(\beta_1, \beta_2, \cdots, \beta_n) \}$ $\{ R(B) = n \}$

3.设A,B为n阶矩阵,则下列结论正确的是()

(A)
$$R(A,AB) = R(A);$$
 (B) $R(A,BA) = R(A);$

(C)
$$R(A,B) = \max\{R(A),R(B)\};$$
 (D) $R(A,B) = R(A^{T},B^{T}).$

$$(1). \quad (A,AB) = A(I,B) \implies R(A,AB) \le R(A)$$

$$R(A,AB) \le R(A,AB) \implies R(A,AB) = R(A)$$

(多).记
$$A = (\alpha_1, \alpha_2, \cdots, \alpha_n), C = AB = (\gamma_1, \gamma_2, \cdots, \gamma_n)$$
 \Longrightarrow $R(A, AB) = R\{\alpha_1, \alpha_2, \cdots, \alpha_n, \gamma_1, \gamma_2, \cdots, \gamma_n\} = R\{\alpha_1, \alpha_2, \cdots, \alpha_n\} = R(A)$

(2).
$$\Leftrightarrow A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \text{ If } BA = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \Longrightarrow (A, BA) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\Rightarrow$$
 1= $R(A) \neq R(A,BA) = 2$

$$(3,4). \diamondsuit A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \Longrightarrow$$

$$\Rightarrow 1 = R(A) \neq R(A, BA) = 2$$

$$(3,4). \Rightarrow A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \Rightarrow \begin{cases} R(A, B) = R \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = 2$$

$$\max\{R(A), R(B)\} = 1$$

$$R(A^{T}, B^{T}) = R \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 1$$

五."矩阵A = B等价"与"向量组 $\alpha_1, \alpha_2, \dots, \alpha_n = \beta_1, \beta_2, \dots, \beta_n$ 等价"的关系?

(1)矩 阵A与B等 价 \Leftrightarrow $A_{m \times n}$ $\xrightarrow{\text{fReynies physical Properties of Properties o$

 \Leftrightarrow 存在初等矩阵 $E_1, \dots, E_s, F_1, \dots, F_t$,使得 $E_s \dots E_1 A F_1 \dots F_t = B$

⇔ 存在可逆矩阵P,Q,使得 $PAQ = B \Leftrightarrow R(A) = R(B)$

(2)矩 阵A与B行等 价 \Leftrightarrow A $\xrightarrow{\text{有限次行初等变换}}$ B

 \Leftrightarrow 存在可逆矩阵P, 使得PA = B

 $\Leftrightarrow A = P^{-1}B = QB$

⇒A与B的行向量组等价

(3)矩 阵A与B列 等 价 \Leftrightarrow A $\xrightarrow{\text{有限次列初等变换}}$ B

⇔ 存在可逆矩阵Q,使得AQ = B

 $\Leftrightarrow A = BQ^{-1} = BP$

⇒A与B的列向量组等价

i: 1° . 矩阵A与B等价 $\Leftrightarrow A_{m \times n} \xrightarrow{\text{fR(N)} \text{ if } Y \text{ i$

 \Rightarrow A与B的行向量组未必等价,A与B的列向量组未必等价.

举例: (1)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

 \Rightarrow A与B等价, 但 α_1,α_2 与 β_1,β_2 不等价.

(2)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = (\alpha_1, \alpha_2), B = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix} = (\beta_1, \beta_2)$$

- \Rightarrow A 与 B 等价, $\mathcal{Q}_1, \alpha_2 = \beta_1, \beta_2$ 不等价.
- 2° . 设两列向量组等价(m维), 若它们所含向量个数不相同,则它们对应的两个矩阵不同型,因而不等价;若它们所含向量个数相同(如都为n个)那么它们对应的两个 $m \times n$ 矩阵列等价,从而一定等价,但不一定行等价.

六. 矩阵的行初等变换对列向量组和行向量组各有什么作用?

$$A_{m \times n} \xrightarrow{f
 } B_{m \times n} (\Leftrightarrow 矩阵A
 与B的行等价)$$

 \Rightarrow $\begin{cases} (1)$ 矩阵A与B的行向量组等价. (2)矩阵A与B的列向量组有相同的线性(相关与无关)关系.

(求最大无关组及用最大无关组表出其它向量的理论基础)

(3)R(A) = A的行秩=A的列秩.

1. 求向量组:

$$\alpha_1 = (1, 2, 3, 4)^T, \alpha_2 = (2, 3, 4, 5)^T, \alpha_3 = (3, 4, 5, 6)^T, \alpha_4 = (4, 5, 6, 7)^T$$

的秩与一个最大无关组,并用所求最大无关组表示其余向量.

 α_1,α_2 为一个最大无关组;

$$\begin{cases} \alpha_3 = -\alpha_1 + 2\alpha_2 \\ \alpha_4 = -2\alpha_1 + 3\alpha_2 \end{cases}$$

七. 相关与无关两个对偶结论

- 1. (I): $\alpha_1, \alpha_2, \dots, \alpha_s \in \mathbb{R}^n$); (II) $\alpha_1, \alpha_2, \dots, \alpha_s, \alpha_{s+1}, \dots, \alpha_m \in \mathbb{R}^n$);

 - "部分相关⇒整体相关" "整体无关⇒部分无关"

分析: " $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关 $\Leftrightarrow A=(\alpha_1,\alpha_2,\cdots,\alpha_s),Ax=0$ 只有零解" (相关) (有非零解)

则(II)的前r个方程就是(I)的方程 \Rightarrow (II)的解必是(I)的解,即

{0}⊂**{(II)**的解集}⊂**{(I)**的解集}

 $(1)\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关 \Leftrightarrow (I)只有零解 \Rightarrow (II)只有零解 \Rightarrow (II)只有零解 \Rightarrow $\leftrightarrow \gamma_1,\gamma_2,\cdots,\gamma_s$ 线性无关.

 $(2)\gamma_1,\gamma_2,\cdots,\gamma_s$ 线性相关 \Leftrightarrow (II)有非零解 \Rightarrow (I)有非零解 \Leftrightarrow $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关.

证:
$$A = (\gamma_1, \dots, \gamma_m) = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \\ a_1^2 & a_2^2 & \cdots & a_m^2 \\ \vdots & \vdots & & \vdots \\ a_1^n & a_2^n & \cdots & a_m^n \end{bmatrix}$$
 $(m \le n)$, 由A的前 m 行与 m 列
$$D = \begin{vmatrix} a_1 & a_2 & \cdots & a_m \\ a_1^2 & a_2^2 & \cdots & a_m^2 \\ \vdots & \vdots & & \vdots \\ a_1^m & a_2^m & \cdots & a_m^m \end{vmatrix} = a_1 a_2 \cdots a_m \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_m \\ \vdots & \vdots & & \vdots \\ a_1^{m-1} & a_2^{m-1} & \cdots & a_m^{m-1} \end{vmatrix}$$

 $= (\prod a_i) \{ \prod (a_i - a_i) \} \neq 0,$

 β_1 β_2 ,..., $\beta_m \in \mathbb{R}^m$

八. 线性方程组解的结构

- 1.设R(A) = r < n,则Ax = 0有基础解系且所含向量个数为n r, 即dimW = n r,(其中n为方程组未知量的个数, $W = \{x \mid Ax = 0\}$).
- 3.Ax = 0的通解:设 $\xi_1, \xi_2, \dots, \xi_{n-r}$ 为Ax = 0一个基础解系,则 $\forall \alpha (Ax = 0)$ 的解),

$$\alpha = k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-1} \xi_{n-r}, \forall k_1, k_2, \dots, k_{n-1} \in \mathbb{R}.$$

4.Ax = b的通解: 设 η_0 为Ax = b一个特解, $\xi_1,\xi_2,\dots,\xi_{n-r}$ 为其导出组的一个基础解系,则

$$\forall \alpha (Ax = b) MM),$$

$$\alpha = \eta_0 + k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-1} \xi_{n-r}, \forall k_1, k_2, \dots, k_{n-1} \in \mathbb{R}.$$

1.设矩阵 $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$,其中 $\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\alpha_1=2\alpha_2-\alpha_3$.

如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,求非齐次线性方程组 $Ax = \beta$ 的通解.

解:(1) $\alpha_1 = 2\alpha_2 - \alpha_3 \Rightarrow \alpha_1, \alpha_2, \alpha_3$ 线性相关 $\Rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关

 \Rightarrow Ax = 0 有非零解 \Leftrightarrow Ax = 0 有基础解系.

 $(2)\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关 \Rightarrow $R\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}=3$ \Rightarrow $R(A)=3\Rightarrow$ 基础解系含向量的个数为4-R(A)=4-3=1.

$$(3)\alpha_{1} = 2\alpha_{2} - \alpha_{3} \Rightarrow 1\alpha_{1} - 2\alpha_{2} + 1\alpha_{3} + 0\alpha_{4} = 0 \Leftrightarrow (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} = 0$$

$$\Rightarrow Ax = 0$$
的基础解系为 $(1, -2, 1, 0)^{T}$.
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(4)\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow (1, 1, 1, 1)^T 为 Ax = \beta 的特解.$$

⇒ $Ax = \beta$ 的通解为: $(1,1,1,1)^T + k(1,-2,1,0)^T, \forall \in \mathbb{R}$.

2.证则:
$$R(A^{T}A) = R(A)$$
.

分析:
$$A_{m \times n} \Rightarrow (A^{T}A)_{n \times n}$$
. $R(A^{T}A) = R(A) \Leftrightarrow n - R(A^{T}A) = n - R(A)$
$$\downarrow W_{1} = \{x \mid Ax = 0, x \in R^{n}\}, \qquad \dim W_{2} \quad \dim W_{1}$$
$$W_{2} = \{x \mid (A^{T}A)x = 0, x \in R^{n}\}$$

证:

$$(1)\forall x \in W_1, Ax = 0 \Longrightarrow A^{\mathrm{T}}(Ax) = A^{\mathrm{T}}0 = 0 \Longrightarrow x \in W_2 \Longrightarrow W_1 \subset W_2.$$

(2)
$$\forall x \in W_2, A^{\mathrm{T}} A x = 0 \Rightarrow x^{\mathrm{T}} A^{\mathrm{T}} A x = x^{\mathrm{T}} 0 = 0 \Rightarrow A x = 0 \Rightarrow x \in W_1 \Rightarrow W_2 \subset W_1$$

$$\Rightarrow W_1 = W_2 \Rightarrow \dim W_1 = \dim W_2$$

$$n-R(A)$$
 $n-R(A^{\mathrm{T}}A) \implies R(A^{\mathrm{T}}A)=R(A).$

$$\mathbf{R}(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = \mathbf{R}(\mathbf{A}) = \mathbf{R}(\mathbf{A}\mathbf{A}^{\mathrm{T}})$$

$$2'$$
.设 $A_{m \times p}$, $B_{p \times n}$, 证明: $R(AB) \leq \min\{R(A),R(B)\}$.

分析:
$$A_{m \times p}$$
, $B_{p \times n} \Longrightarrow (AB)_{m \times n}$:

$$R(AB) \le R(B) \iff n - R(AB) \ge n - R(B)$$

$$\Leftrightarrow W_1 = \{x \mid Bx = 0, x \in \mathbb{R}^n\}, \qquad \dim W_2 \quad \dim W_1$$

$$W_2 = \{x \mid (AB)x = 0, x \in \mathbb{R}^n\}$$

$$\exists x \in W_1 \implies Bx = 0 \implies ABx = A0 = 0 \implies x \in W_2$$

$$\Longrightarrow W_1 \subset W_2 \implies n - R(B) \implies \dim W_1 \leq \dim W_2 \implies n - R(AB)$$

$$(1)$$
 $R(AB) \le R(B)$

$$\Rightarrow$$
 (2) $R(AB) = R[(AB)^T] = R(B^T A^T) \le R(A^T) = R(A)$

$$Arr$$
 $R(AB) \leq \min\{R(A),R(B)\}.$

2''.证明: $A^{T}Ax = A^{T}b$ 有解.

分析:
$$A^{T}Ax = A^{T}b$$
有解 $\Leftrightarrow R(A^{T}A) = R(A^{T}A, A^{T}b)$

i: $A_{m \times n}, b \in \mathbb{R}^m$

$$(A^{\mathsf{T}}A, A^{\mathsf{T}}b) = A^{\mathsf{T}}(A, b) \Longrightarrow (1) \quad R(A^{\mathsf{T}}A, A^{\mathsf{T}}b) = R[A^{\mathsf{T}}(A, b)]$$

$$\leq R(A^{\mathsf{T}}) = R(A) = R(A^{\mathsf{T}}A)$$

$$(2) R(A^{\mathsf{T}}A) \leq R(A^{\mathsf{T}}A, A^{\mathsf{T}}b)$$

$$\Rightarrow R(A^{\mathrm{T}}A) = R(A^{\mathrm{T}}A, A^{\mathrm{T}}b)$$

$$\Rightarrow A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$$
有解.

九. 几何空间

1.设 $\alpha \times \beta + \beta \times \gamma + \gamma \times \alpha = 0$,证明: α, β, γ 共面.

$$\alpha \bullet (\alpha \times \beta + \beta \times \gamma + \gamma \times \alpha) = \alpha \bullet 0 = 0$$

$$\alpha \bullet (\alpha \times \beta) + \alpha \bullet (\beta \times \gamma) + \alpha \bullet (\gamma \times \alpha) = \alpha \bullet 0 = 0$$

幹:
$$[\alpha\beta\gamma] = \alpha \bullet (\beta \times \gamma) = 0 \Rightarrow \alpha, \beta, \gamma$$
共面

2.有3个平面两两相交且交线相互平行,它们的方程为:

$$a_{i1}x + a_{i2}y + a_{i3}z = d(i = 1, 2, 3)$$

组成的线性方程组的系数矩阵和增广矩阵分别为 A, \overline{A}, y

(A)
$$R(A) = 2, R(\overline{A}) = 3;$$
 (B) $R(A) = 2, R(\overline{A}) = 2;$

(C)
$$R(A) = 1, R(\overline{A}) = 2;$$
 (D) $R(A) = 1, R(\overline{A}) = 1.$

(1).3个平面无公共交点
$$\Rightarrow Ax = b$$
 无解 $\Rightarrow R(A) < R(\overline{A}) \le 3$

(2).记
$$n_i = (a_{i1}, a_{i2}, a_{i3})(i = 1, 2, 3) \Rightarrow A = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$

$$\pi_i \cap \pi_j (j \neq i) \Leftrightarrow n_i \not \searrow n_j \Leftrightarrow n_i, n_j$$
线性无关 $\Rightarrow R(A) \geq 2$ $\Rightarrow R(A) < R(\bar{A}) \leq 3$

$$\Rightarrow$$
 2 \le R(A) < R(\bar{A}) \le 3 \iff 2 = R(A) < R(\bar{A}) = 3

3.已知直线
$$L_1$$
: $\frac{x-a_2}{a_1} = \frac{y-b_2}{b_1} = \frac{z-c_2}{c_1}$ 与 L_2 : $\frac{x-a_3}{a_2} = \frac{y-b_3}{b_2} = \frac{z-c_3}{c_2}$ 相交于一点,记向量 $\alpha_i = (a_i, b_i, c_i), i = 1, 2, 3, 则$

- (A) α_1 可由 α_2 , α_3 线性表出; (B) α_2 可由 α_1 , α_3 线性表出;
- (C) α_3 可由 α_1,α_2 线性表出; (D) $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

$$P_1(a_2,b_2,c_2) \in L_1, P_2(a_3,b_3,c_3) \in L_2$$
 $\Rightarrow \alpha_1, \alpha_2, \overrightarrow{P_1P_2}$ 共面 L_1 与 L_2 相交 $\Rightarrow L_1, L_2$ 共面 $\Leftrightarrow [\alpha_1,\alpha_2,\overrightarrow{P_1P_2}] = 0$

缓性代数 疑难分析

$$(2) \quad (2) \quad (2)$$

$$\Leftrightarrow \alpha_1, \alpha_2, \alpha_3$$
线性相关
 $\Rightarrow \alpha_3$ 可由 α_1, α_2 线性表出.

