

If the relationship between y and the x's is perfectly linear, then the fitted values will equal the observed y's exactly. When this hoppens our residuals are all zero and so SSE = 0. In this case the model perfectly captures the variability in the response (R²=1).

Vi= Bot Bixi

when there is no relationship between the response and explanatory varieties than the slape of the fitted values is 0 and so 55R=0. In this case, the model captures none of the variability in the response $(R^2=0)$

 $A = B + 2i \cdot Ei^{iid} N(a_1 \sigma^2)$ $A = B + 2i \cdot Ei^{iid} N(a_1 \sigma^2)$ $A = A + 2i \cdot N(a_1 \sigma^2)$

MBA Example:

Source	df	SS	MS	F
Regression	١	0.08585	0.08585	0.3026
Error	10	2.83498	0-28370	1111/1
Total	11	2.92283	Will	1661

MSE = ô2

$$R^2 = \frac{SSR}{SST} = \frac{0.08585}{2.92283} = 0.0294$$

:. GMAT score explains just 2.94% of the variability in GPA scores.

Sales Example

Source	df	55	m.s	F
Regression	4	89285	22321.25	851.96
Errar	10	262	26.2	11/1/
Total	14	89547	((/////	111
		•		
			~	1

$$R^2 = \frac{55R}{55T} = \frac{89285}{89547} = 0.9971$$

:. The model (i.e., the four explanatory variables) explain 99.71% of the variability in the response variable.