Cotangent Sequenz

Proposition 1. (Relativ Cotangent Sequenz) [vgl. Proposition 16.2 David Eisenbud 1994]

Seien $\alpha:R\longrightarrow S$ und $\beta:S\longrightarrow T$ zwei Ringhomomorphismen. Dann existiert folgende exakte Sequenz:

$$T \otimes_S \Omega_{S/R} \xrightarrow{t \otimes d_S(s) \mapsto t(d_{T_R} \circ \beta)(s)} \Omega_{T/R} \xrightarrow{d_{T_R}(t) \mapsto d_{T_S}(t)} \Omega_{T/S} \longrightarrow 0$$

Im Besonderen gilt für die Differenzialräume von T über R und S:

$$\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S)\rangle$$

Beweis. Durch $st := \beta(S) \cdot t$ und $rt := (\beta \circ \alpha)(r) \cdot t$ können wir T als S- bzw. R-Algebra betrachten.

Zeige zunächst, dass $g:\Omega_{T/R}\longrightarrow\Omega_{T/S}\,,\,d_{T_R}(t)\longmapsto d_{T_S}(t)$ surjektiv ist:

 d_{T_S} ist R - Linear, da R durch $(\beta \circ \alpha)$ auf T wirkt, es lässt sich also die universelle Eigenschaft von d_{T_R} auf d_{T_S} anwenden:

$$T \xrightarrow[d_{T_S}]{d_{T_R}} \Omega_{T/R}$$

$$\Omega_{T/S}$$

Dies zeigt, dass $g:\Omega_{T/R}\longrightarrow\Omega_{T/S}$, $d_{T_R}(t)\longmapsto d_{T_S}(t)$ surjektiv ist.

Zeige nun, dass $\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle$ gilt:

Definiere zunächst folgende T-lineare Ableitung:

$$e: T \longrightarrow \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle, t \longmapsto [d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S) \rangle}$$

Wir sehen, dass e auch S-linear ist:

Seien dazu $s \in S$ und $t \in T$ beliebig, somit gilt:

$$e(st) = [d_{T_R}(st)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle}$$

$$= [\beta(s)d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle} + [td_T(\beta(s))]_{T\langle (d_T \circ \beta)(S)\rangle}$$

$$= [\beta(s)d_T(t)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle} + 0 = se(t)$$

Dies bedeutet, dass wir die universelle Eigenschaft von d_{T_S} anwenden können:

$$T \xrightarrow{d_{T_S}} \Omega_{T/S}$$

$$\downarrow \exists ! \varphi$$

$$\Omega_{T/R} / T \Omega_{S/R}$$

Dadurch erhalten wir $\varphi: \Omega_{T/S} \longrightarrow \Omega_{T/R}/T\Omega_{S/R}$. Für die Umkehrfunktion ϕ nutze $g: \Omega_{T/R} \longrightarrow \Omega_{T/S}$, $d_{T_R}(t) \longmapsto d_{T_S}(t)$ von Beginn des Beweises:

Für alle
$$s \in S$$
 gilt $d_{T_S}(s) = 0$.
Somit gilt $T\langle (d_{T_R} \circ \beta)(S) \rangle \subseteq kern(g)$.

Also ist die Umkehrfunktion ϕ von φ wohldefiniert:

$$\phi: \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S)\rangle \longrightarrow \Omega_{T/S}\,,\, [d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle} \longmapsto d_{T_S}(t).$$

Damit gilt $\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S)\rangle$. Auf unsere Sequenz bezogen bedeutet dies:

Es gilt
$$im(\Omega_{T/R} \to \Omega_{T/S}) \simeq \Omega_{T/R}/im(T \otimes_S \Omega_{S/R} \to \Omega_{T/R}).$$

Somit gilt auch $im(T \otimes_S \Omega_{S/R} \to \Omega_{T/R}) = kern(\Omega_{T/R} \to \Omega_{T/S}).$

Damit haben wir gezeigt, dass die **Relative Cotangent Sequenz** exakt ist.

Kapitel 1

Körpererweiterungen

1.1 Differential von Körpererweiterungen

Definition der Differenzialbasis [vlg. Chapter 16.5 David Eisenbud 1994]

Definition 1. Sei $L \supset k$ eine Körpererweiterung. Dann nennen wir eine Teilmenge $\{b_i\}_{i\in\Lambda} \subseteq L$ eine <u>Differenzialbasis</u> von L über k, falls $\{d_K(b_i)\}_{i\in\Lambda}$ eine Vektorraumbasis von $\Omega_{L/R}$ über L ist.

Differential von rationalen Funktionen 1 [vlg. Chapter 16.5 David Eisenbud 1994]

Beispiel 2. Sei k ein Körper und $L = k(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über k.

Dann gilt:

$$\Omega_{L/k} \simeq L \langle d_{k[x_1, \dots x_n]}(x_i) \rangle$$

Insbesondere ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ eine Differenzialbasis von $\Omega_{L/k}$.

Beweis. Betrachte $L=k[x_1,\ldots,x_n][k[x_1,\ldots,x_n]^{-1}]$ als Lokalisierung um ?? anwenden zu können. Anschließend forme noch $\Omega_{k[x_1,\ldots,x_n]/k}$ mithilfe von ?? isomorph um:

$$\Omega_{L/k} \simeq L \otimes \Omega_{k[x_1, \dots, x_n]/k}$$

$$\simeq L \otimes \bigoplus_{i \in \{1, \dots, n\}} k[x_1, \dots, x_n] \langle d_{k[x_1, \dots x_n]}(x_i) \rangle$$

$$\simeq L \langle d_{k[x_1, \dots x_n]}(x_i) \rangle$$

Damit ist $\{d_L(x_i)\}_{i\in\{1,\ldots,n\}}$ eine Vektorraumbasis von $\Omega_{L/k}$.

Differential von rationalen Funktionen 2 [Aufgabe 16.6 David Eisenbud 1994]

Korrolar 3. Sei k ein Körper und $L \supset k$ eine Körpererweiterung und $T = L(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über L. Dann gilt:

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis. Betrachten T als Lokalisierung von $L[x_1, \ldots, x_n]$ und gehen dann analog zu beispiel 2 vor:

$$\Omega_{T/k} \simeq T \otimes_{L[x_1, \dots, x_n]} \Omega_{L[x_1, \dots, x_n]/k} (???)$$

$$\Omega_{L[x_1, \dots, x_n]/R} \simeq (L[x_1, \dots, x_n] \otimes_L \Omega_{L/R}) \bigoplus_{i \in \{1, \dots, n\}} L[x_1, \dots, x_n] \langle d_{L[x_1, \dots, x_n]}(x_i) \rangle (???)$$

$$\Rightarrow \Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Cotangent Sequenz von Koerpern 1 [Aufgabe 16.6 David Eisenbud 1994]

Bemerkung 4. Sei $L \supset k$ eine Körpererweiterung und $T = L(x_1, ..., x_n)$ der Körper der rationalen Funktionen in n Variablen über L. Dann ist die COTAN-GENT SEQUENZ (proposition 1) von $k \hookrightarrow L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Im Genauen ist $\varphi: T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k}$, $t \otimes d_L(l) \longmapsto t \cdot d_T(l)$ injektiv.

Beweis. Die Injektivität von φ folgt direkt aus der isomorphen Darstellung von $\Omega_{T/k}$, die wir uns in korrolar 3 erarbeitet haben.

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Um sicher zu gehen definiere $\varphi' \simeq \varphi$ und durchlaufe die in korrolar 3 genutzten Isomorphismen noch einmal Schritt für Schritt:

$$\varphi': T \otimes_L \Omega_{L/k} \longrightarrow T \otimes_L \Omega_{L/R} \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

$$T \otimes_L \Omega_{L/k} \qquad \qquad t \otimes d_L(l)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega_{T/k} \qquad \qquad t d_T(l)$$

$$\downarrow ?? \qquad \qquad \downarrow$$

$$T \otimes_S \Omega_{L[x_1, \dots, x_n]/k} \qquad \qquad t \otimes d_S(l)$$

$$\downarrow ?? \qquad \qquad \downarrow$$

$$T \otimes_S ((S \otimes_L \Omega_{L/k}) \oplus \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle) \qquad \qquad t \otimes (d_L(l), 0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle \qquad \qquad (t \otimes d_L(l), 0)$$

Damit ist φ eine injektive Einbettung von $T \otimes_L \Omega_{L/k}$ in $\Omega_{T/k}$.

Aufbaulemma Koerperdifferenzial [vlg. Lemma 16.15 David Eisenbud 1994]

Lemma 5. Sei $L \subset T$ eine seperable und algebraische Körpererweiterung und $R \longrightarrow L$ ein Ringhomomorphismus. Dann gilt:

$$\Omega_{T/R} = T \otimes_L \Omega_{L/R}$$

Insbesondere ist in diesem Fall die COTANGENT SEQUENZ (proposition 1) von $R \to L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/R} \longrightarrow \Omega_{T/R} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Beweis. Wähle $\alpha \in T$ mit $L[\alpha] = T$. Sei weiter f(x) das Minimalpolynom von α . Betrachte dazu die conormale Sequenz von $\pi : L[x] \longrightarrow L[x]/(f) \simeq T$ (??):

$$(f)/(f^2) \stackrel{1 \otimes d_{L[x]}}{\longrightarrow} T \otimes_{L[x]} \Omega_{L[x]/R} \stackrel{D\pi}{-} \Omega_{T/R} \longrightarrow 0$$

Wende nun Proposition 16.6 auf $\Omega_{L[x]/R}$ an und tensoriere mit T, somit gilt:

$$T \otimes_{L[x]} \Omega_{L[x]/R} \simeq T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle$$

Zusammen mit der conormalen Sequenz bedeutet dies:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle) / (d_{L[x]}(f))$$

Wenn wir $d_{L[x]}:(f)\longrightarrow T\otimes_L\Omega_{L/R}\oplus T\langle d_{Lx}\rangle$ wie in ?? betrachten , sehen wir:

$$d_{L[x]}((f)) = J \oplus (f'(\alpha)d_{L[x]}) = J \oplus T\langle d_{S[x]}(x)\rangle$$
, wobei $J \subseteq T \otimes_L \Omega_{L/R}$ ein Ideal ist.

Für die letzte Gleichheit nutze, dass $T \supset L$ seperabel und somit $f'(\alpha) \neq 0$ ist und nach obiger Wahl $T = L[\alpha]$ gilt.

Damit erhalten wir nun:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R})/J$$

$$\Rightarrow T \otimes_L \Omega_{L/R} \hookrightarrow \Omega_{T/R} \text{ ist surjektiv.}$$

Somit muss J = 0 gelten und es folgt $T \otimes_L \Omega_{L/R} \simeq \Omega_{T/R}$.

Damit haben wir insbesondere auch gezeigt, dass $T \otimes_L \Omega_{L/R} \to \Omega_{T/R}$ injektiv und somit die COTANGENT SEQUENZ von $R \to L \hookrightarrow T$ eine kurze exakte Sequenz ist.

Transzendenzbasis ist Differenzialbasis [vlg. Theorem 16.4 David Eisenbud 1994]

Theorem 6. Sei $T \supset k$ eine seperabel generierte Körpererweiterung und $B = \{b_i\}_{i \in \Lambda} \subseteq T$. Dann ist B genau dann eine Differenzialbasis von T über k, falls eine der folgedenen Bedingungen erfüllt ist:

- 1. char(k) = 0 und B ist eine Transzendenzbasis von T über k.
- **2.** char(k) = p und B ist eine p-Basis von T über k.

Beweis.

1.,, \Leftarrow ": Sei B eine Transzendenzbasis von T über k.

Damit ist die Körpererweiterung $L := k(B) \supset k$ algebraisch und seperabel. Mit lemma 5 folgt:

$$\Omega_{T/k} = T \otimes_L \Omega_{L/k}$$

Betrachte $L = k[B][k[B] \setminus 0^{-1}]$ als Lokalisierung und wende ?? auf $\Omega_{L/k}$ an, somit gilt:

$$\Omega_{L/k} = L \otimes_{k[B]} \Omega_{k[B]/k}$$

In ?? haben wir gesehen, dass $\Omega_{k[B]/k}$ ein freis Modul über k[B] mit $\{b_i\}_{i\in\Lambda}$ als Basis ist. Dies liefert uns letztendlich die gewünschte Darstellung

$$\Omega_{T/k} = \bigoplus_{\{i \in \Lambda\}} T \langle d_T(b_i) \rangle.$$

1.,, \Rightarrow ": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$.

Zeige zunächst, dass T algebraisch über L := k(B) ist:

Die COTANGENT SEQUENZ (proposition 1) von $k \hookrightarrow L \hookrightarrow T$ besagt $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(S) \rangle$ und nach Vorraussetzung gilt $\Omega_{T/k} = T \langle d_T(B) \rangle$. $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$

Da, wie wir in " \Leftarrow_1 ."gezeigt haben, jede Transzendenzbasis B' von T über L auch eine Differenzialbasis von $\Omega_{T/L}=0$ ist, gilt für diese $B'=\emptyset$. Somit ist T schon algebraisch über L.

Zeige noch, dass B auch algebraisch unabhängig über L ist: Sei dazu Γ eine minimale Teilmenge von Λ , für welche T noch algebraisch über $k(\{b_i\}_{i\in\Gamma})$ ist. Für diese ist $\{b_i\}_{i\in\Gamma}$ algebraisch unabhängig über K. Damit ist nach $, \Leftarrow_1.$ " $\{b_i\}_{i\in\Gamma}$ ebenfalls eine Differenzialbasis von T über k. Also muss schon $\Gamma = \Lambda$ gegolten haben und B ist eine Transzendenzbasis von T über k.

2.,,←": Sei B eine p-Basis von T über k.

Somit wird nach DEFINITION-PROPOSITION T von B als Algebra über $(k*T^p)$ und $\Omega_{T/(k*T^p)}$ von $d_T(B)$ als Vektorraum über T (PROPOSITION) erzeugt. Zeige also $\Omega_{T/k} \simeq \Omega_{T/(T^p*k)}$:

Die Cotangent Sequenz (proposition 1) von $K \hookrightarrow (k*T^p) \hookrightarrow T$ besagt:

$$\Omega_{T/(T^p*k)} \simeq \Omega_{T/k}/d_T(T^p*k)$$

Für beliege $t^p \in T^p$ gilt $d_T(t^p) = pt^{p-1}d_T(t) = 0$, da char(T) = p. $\Rightarrow d_T(T^p * k) = d_T(k(T^p)) = 0$

Damit ist $d_T: T \longrightarrow \Omega_{T/k}$ auch $(T^p * k)$ -linear und es gilt $\Omega_{T/k} \simeq \Omega_{T/(T^p * k)}$.

2.,,⇒": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$.

Zeige zunächst, dass T von B als Algebra über k erzeugt wird:

Die COTANGENT SEQUENZ (proposition 1) von $k \hookrightarrow L := k(B) \hookrightarrow T$ besagt $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle$ und nach Vorraussetzung gilt $\Omega_{T/k} = T \langle d_T(B) \rangle$. $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$

Da, wie wir in " \Leftarrow_2 ."gezeigt haben, jede p-Basis B' von T über L auch eine Differenzialbasis von $\Omega_{T/L} = 0$ ist, gilt für diese $B' = \emptyset$. Somit wird T schon von B als Algebra über k erzeugt.

Zeige noch, dass B auch minimal als Erzeugendensystem von T als Algebra über k ist:

Sei dazu Γ die minimale Teilmenge von Λ , für welche T noch von $\{b_i\}_{i\in\Gamma}$ als Algebra über k erzeugt wird. Dann ist $\{b_i\}_{i\in\Gamma}$ eine p-Basis von T über

k. Somit ist nach " \Leftarrow_2 ." $\{b_i\}_{i\in\Gamma}$ ebenfalls eine Differenzialbasis von T über k. Es muss also schon $\Gamma=\Lambda$ gegolten haben und B ist eine p-Basis von T über k.