

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI - UFSJ DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEPEL COORDENAÇÃO DE ENGENHARIA ELÉTRICA - COELE

Cássia Reis Afonso de Freitas - 190900048 Gabriel Luis de Sousa - 180950030 Lucas Xavier de Morais - 19095011

ESTUDO DE CASO IV - FLUXO DE POTÊNCIA ÓTIMO

Professor: Dr. Fernando Aparecido de Assis

São João del-Rei - MG Setembro de 2024

SUMÁRIO

1	INTI	RODUÇ	CAO	1
	1.1	Fluxo	de Potência Ótimo	1
	1.2	Objetiv	vos Gerais	1
2	SIS	ΤΕΜΑ Ι	EM ESTUDO - ANÁLISE INICIAL	1
3	MET	TODOL	OGIA	3
4	ANÁ	LISE [DOS RESULTADOS	4
	4.1	Sistem	a Com Cenário de Carga Nominal	4
	4.2	Sistem	a Com Cenário de Carga 120% da Nominal	7
		4.2.1	Resultados Iniciais para 120% de Carga Instalada	7
		4.2.2	Otimizando o Sistema	
	4.3	Anális	e dos Resultados Marginais	1
		4.3.1	Sistema com Carga Nominal	1
		4.3.2	Sistema com 120% da Carga Nominal	3
	4.4	Valida	ção de Resultados	5
5	CON	NCLUS	ÃO	5
RE	EFER	ÊNCIA	S BIBLIOGRÁFICAS	
1A	NEXC			

1 INTRODUÇÃO

1.1 Fluxo de Potência Ótimo

"O Fluxo de Potência Ótimo (FPO) é uma opção diante à necessidade de desenvolver uma ferramenta mais inteligente e eficiente que proporcione aos planejadores do sistema habilidades para analisar problemas complexos que envolvem múltiplas variáveis e alternativas soluções". [1]

O FPO, consiste na minimização do custo de operação, enquanto atende-se um conjunto de restrições físicas e operacionais impostas pelo próprio Sistema Elétrico de Potência (SEP). Ademais, o FPO, nos permite realizar alguns estudos dentro da área do SEP, sendo alguns deles:

- Despacho econômico e seguro (operação em tempo-real, simulação do despacho em estudos de planejamento da operação e expansão);
- Redespacho preventivo e corretivo (operação em tempo-real);
- Minimização de perdas;
- Avaliação da confiabilidade composta de sistemas geração e transmissão;
- Tarifação de serviços de transmissão;
- Determinação de preços nodais de energia.

1.2 Objetivos Gerais

O presente estudo, tem como objetivo resolver o Fluxo de Potência Ótimo Linearizado, com minimização do custo total e do corte de carga, para dois cenários de carga (100% e 120%). Desta forma, ao decorrer desta análise será identificado o despacho ótimo dos geradores, afim de, minimizar o custo de produção da energia elétrica mais os eventuais cortes de carga.

2 SISTEMA EM ESTUDO - ANÁLISE INICIAL

O sistema apresentado na Figura 1, é um sistema que apresenta 12 Barras e 15 Circuitos de Transmissão, os quais contém ao todo, 4 unidades geradoras, 3 transformadores, 1 unidade de controle de reativo e 6 unidades consumidoras.

Também se encontram em ANEXO, as condições iniciais de operação definidas para o presente cenário de estudo, como o despacho inicial dos geradores, consumo nas cargas, Tap's e defasagem angular dos transformadores, controle de reativo, assim como as características de impedâncias das linhas de transmissão.

Figura 1 – Sistema Base do Estudo

A Tabela 1 apresenta os valores do fluxo de potência não linear implementado para o Sistema Base do Estudo sem o FPO, ou seja, com os despachos iniciais visto em ANEXO. Podemos observar que o sistema apresenta sobrecarga nos circuitos 5,10 e 12

NCIR	BDE	BPARA	SKM(kVA)	SMK(kVA)	Cap. Máx.(kVA)	% de uso
1	1	2	27,17	26,97	100,00	27,17%
2	1	4	94,32	88,36	100,00	94,32%
3	2	3	25,32	25,50	100,00	25,50%
4	3	6	42,80	42,80	100,00	42,80%
5	4	7	88,36	88,25	80,00	110,45%
6	5	8	43,89	41,66	80,00	54,86%
7	5	6	43,89	45,60	80,00	57,00%
8	6	9	71,18	71,30	80,00	89,13%
9	7	8	36,39	35,53	50,00	72,78%
10	7	10	54,89	49,29	50,00	109,78%
11	8	11	16,02	15,53	50,00	32,04%
12	9	11	52,90	46,76	50,00	105,80%
13	9	12	9,83	9,82	50,00	19,67%
14	9	12	9,83	9,82	50,00	19,67%
15	10	11	24,39	25,70	50,00	51,41%

Tabela 1 – Fluxos de Potência Inicial

Ademais, nas Tabelas 2 e 3, podemos analisar as tensões nas barras em conjunto com a defasagem das mesmas e as potências geradas no sistema, respectivamente.

Barra	Ângulo	Tensão (PU)	Base de tensão (kV)
	grau	pu	
1	-2,0744	1,0000	500
2	-2,9561	0,9928	500
3	-0,0000	1,0000	500
4	-8,5803	0,9369	500
5	-7,6575	0,9624	500
6	-4,5532	1,0000	500
7	-11,0092	0,9357	345
8	-14,0157	0,9136	345
9	-9,0351	1,0018	345
10	-20,5190	0,8403	345
11	-15,4840	0,8855	345
12	-10,6266	1,0000	345

Tabela 2 – Tabela de Tensão e Defasagem por Barra

Barra	PG(PU)	CGmax(PU)
	PU	PU
1	1.20	1.20
3	1.09	1.00
6	0.70	1.00
12	0.35	0.80

Tabela 3 – Potência de Geração

Observa-se violações de tensão em inúmeras Barras do sistema, assim como, geradores sub-despachados, ou seja, com despacho muito inferior ao seu limite de geração. Desta forma, visto os resultados obtidos nesse capítulo, se faz necessário realizar a otimização, FPO, do Sistema Base.

3 METODOLOGIA

O problema de FPO, é definido como um problema de otimização NÃO LINEAR com restrições, matematicamente formulado como:

$$\begin{aligned} \min \quad f(x) &\to \text{Função objetivo} \\ s.a \quad g(x) &= 0 \to \text{Restrições de igualdade} \\ h(x) &\leq 0 \to \text{Restrições de desigualdade} \\ lb &\leq x \leq ub \to \text{Restrições de limite superior e inferior} \end{aligned}$$

Onde a função objetivo é principalmente modulada como, custo de produção, corte de carga, perdas de transmissão e desvio do ponto de operação. As restrições de igualdade correspondem as equações do balanço de potência ativa e reativa do fluxo potência A.C e as restrições de desigualdade referem-se aos limites operativos e dos equipamentos.

Devido a complexidade do FPO, afim de realizar a minimização do custo de produção opta-se pelo Fluxo de Potência Ótimo Linearizado, onde consegue-se estimar com baixo custo computacional e uma

menor complexidade, o fluxo de potência ativa no sistema de transmissão.

O FPO Linearizado modela o problema de maneira análoga ao cálculo do fluxo de potência linearizado. A metodologia usada não considera perdas no sistema e permite o corte de cargas caso necessário, a construção dessa metodologia segue os seguinte passos:

- 1. Montar e executar problema de otimização
 - a) Definir função objetivo;
 - b) Definir restrições de igualdade e desigualdade;
 - c) Definir restrições de limite superior e inferior de geração;
 - d) Implementar o problema de otimização;
- 2. Implementar dados de otimização ao Fluxo de Potência Linearizado Sem Perdas
- 3. Confirmar resultados de otimização com Fluxo de Potência Não Linear

A solução deste problema foi feita utilizando a biblioteca scipy.optimize.

4 ANÁLISE DOS RESULTADOS

4.1 Sistema Com Cenário de Carga Nominal

Através da implementação da rotina de otimização, foram obtidos os resultados apresentados nas Tabelas 4, 5 e 6, onde podemos observar os ângulos das tensões nas barras, assim como, o despacho ótimo dos geradores e os cortes de cargas do sistema. O custo de produção obtido neste cenário é de: \$ 109,24.

Barra	Ângulo Ótimo
1	-3,2217
2	-3,8364
3	0,0000
4	-8,4372
5	-5,8032
6	-2,3922
7	-10,2223
8	-11,8522
9	-7,4343
10	-17,2314
11	-13,1610
12	-9,6327

Tabela 4 – Resultados Ângulos Ótimos no Sistema Com Carga Nominal

Barra	Despacho Ótimo
1	0,9213
3	1,0000
6	0,9821
12	0,2310

Tabela 5 – Resultados Despachos Ótimos no Sistema Com Carga Nominal

Barra	Carga Atual	Corte	Nova Carga	% de corte
2	0,5194	0,0000	0,5194	0,00 %
3	0,4250	0,0000	0,4250	0,00 %
8	0,5610	0,0000	0,5610	0,00 %
10	0,7350	0,0000	0,7350	0,00 %
11	0,3630	0,0000	0,3630	0,00 %
12	0,5310	0,0000	0,5310	0,00 %

Tabela 6 – Resultados de Cortes de Carga no Sistema Com Carga Nominal

Assim, foi avaliado as alterações nos despachos pelos cálculos dos fluxos não linear e linear sem perdas. Os resultados do fluxo linear sem perdas são mostrados nas Tabelas 7, 8 e 9, onde podemos observar uma sobrecarga de 2,49% no circuito 12 (Em amarelo, pois o limite foi violado em um porcentagem inferior a 5%).

Barra	Ângulo	Tensão (PU)	Base de tensão (kV)
	grau	pu	
1	-3,2217	1,0000	500
2	-3,8364	1,0000	500
3	0,0000	1,0000	500
4	-8,4372	1,0000	500
5	-5,8032	1,0000	500
6	-2,3922	1,0000	500
7	-10,2223	1,0000	345
8	-11,8522	1,0000	345
9	-7,4343	1,0000	345
10	-17,2314	1,0000	345
11	-13,1610	1,0000	345
12	-9,6327	1,0000	345

Tabela 7 – Tabela de Tensão e Defasagem por Barra

Barra	PG(PU)	CGmax(PU)
	PU	PU
1	0.92	1.20
3	1.00	1.00
6	0.98	1.00
12	0.23	0.80

Tabela 8 – Potência de Geração

NCIR	BDE	BPARA	PKM(kVA)	PMK(kVA)	Cap. Máx.(kVA)	% de Sobrecarga
1	1	2	18,15	-18,15	100,00	0,00%
2	1	4	75,24	-75,24	100,00	0,00%
3	2	3	-33,56	33,56	100,00	0,00%
4	3	6	23,83	-23,83	100,00	0,00%
5	4	7	74,01	-74,01	80,00	0,00%
6	5	8	41,89	-41,89	80,00	0,00%
7	5	6	-41,78	41,78	80,00	0,00%
8	6	9	80,00	-80,00	80,00	0,00%
9	7	8	28,97	-28,97	50,00	0,00%
10	7	10	46,31	-46,31	50,00	0,00%
11	8	11	14,64	-14,64	50,00	0,00%
12	9	11	51,24	-51,24	50,00	2,49%
13	9	12	30,22	-30,22	50,00	0,00%
14	9	12	30,22	-30,22	50,00	0,00%
15	10	11	-27,79	27,79	50,00	0,00%

Tabela 9 – Fluxos de Potência

Os resultados do fluxo não linear são mostrados nas tabelas 10, 11 e 12. Pode ser observado que houveram violações nos circuitos 8, 10 e 11. Isso aconteceu pois a metologia utilizada para modelar a otimização, não leva em conta as perdas nos circuitos. As sobrecargas encontradas são bem graves, considerando que para o circuito 8, a sobrecarga é de 657 kVA, e a maior carga instalada no sistema é de 7,35 MVA. Essa sobrecarga representa quase 9% da maior carga instalada no sistema.

NCIR	BDE	BPARA	SKM(kVA)	SMK(kVA)	Cap. Máx.(kVA)	% de Sobrecarga
1	1	2	12,90	12,81	100,00	0,00%
2	1	4	84,15	79,10	100,00	0,00%
3	2	3	43,25	43,56	100,00	0,00%
4	3	6	35,87	35,87	100,00	0,00%
5	4	7	79,09	78,86	80,00	0,00%
6	5	8	49,52	47,26	80,00	0,00%
7	5	6	49,52	51,45	80,00	0,00%
8	6	9	86,11	86,57	80,00	8,21%
9	7	8	28,17	27,61	50,00	0,00%
10	7	10	53,05	47,68	50,00	6,11%
11	8	11	16,21	15,67	50,00	0,00%
12	9	11	55,49	49,03	50,00	10,98%
13	9	12	16,08	15,99	50,00	0,00%
14	9	12	16,08	15,99	50,00	0,00%
15	10	11	26,20	27,62	50,00	0,00%

Tabela 10 – Fluxos de Potência

Barra	Ângulo	Tensão (PU)	Base de tensão (kV)
	grau	pu	
1	-3,2217	1,0000	500
2	-3,8364	1,0000	500
3	0,0000	1,0000	500
4	-8,4372	1,0000	500
5	-5,8032	1,0000	500
6	-2,3922	1,0000	500
7	-10,2223	1,0000	345
8	-11,8522	1,0000	345
9	-7,4343	1,0000	345
10	-17,2314	1,0000	345
11	-13,1610	1,0000	345
12	-9,6327	1,0000	345

Tabela 11 – Tabela de Tensão e Defasagem por Barra

Barra	PG(PU)	CGmax(PU)
	PU	PU
1	0.92	1.20
3	1.00	1.00
6	0.98	1.00
12	0.23	0.80

Tabela 12 – Potência de Geração

4.2 Sistema Com Cenário de Carga 120% da Nominal

4.2.1 Resultados Iniciais para 120% de Carga Instalada

Primeiro foi feita uma analise inicial do sistema com carga instalada de 120% da nominal. Os resultados desta analise são apresentados nas Tabelas 13, 14 e 15. É possível ver, que antes dos ajuste deste sistema pELO FPO, há vários limites sendo violados, destacados em vermelhos nas Tabelas.

Barra	PG(PU)	CGmax(PU)
	PU	PU
1	1.20	1.20
3	1.87	1.00
6	0.70	1.00
12	0.35	0.80

Tabela 13 – Potência de Geração

Barra	Ângulo	Tensão (PU)	Base de tensão (kV)
	grau	pu	
1	-6,5313	1,0000	500
2	-6,6444	0,9914	500
3	-0,0000	1,0000	500
4	-14,3257	0,9143	500
5	-12,6756	0,9491	500
6	-8,7278	1,0000	500
7	-17,3806	0,9108	345
8	-21,0637	0,8846	345
9	-14,8224	1,0009	345
10	-29,8154	0,7857	345
11	-22,9483	0,8479	345
12	-17,4134	1,0000	345

Tabela 14 – Tabela de Tensão e Defasagem por Barra

NCIR	BDE	BPARA	SKM(kVA)	SMK(kVA)	Cap. Máx.(kVA)	% de Sobrecarga
1	1	2	14,24	14,12	100,00	0,00%
2	1	4	115,89	105,96	100,00	15,89%
3	2	3	56,37	56,87	100,00	0,00%
4	3	6	81,98	81,98	100,00	0,00%
5	4	7	105,94	105,52	80,00	32,42%
6	5	8	56,01	52,21	80,00	0,00%
7	5	6	56,02	59,03	80,00	0,00%
8	6	9	96,70	96,80	80,00	21,00%
9	7	8	42,08	40,87	50,00	0,00%
10	7	10	67,62	58,34	50,00	35,24%
11	8	11	19,83	19,01	50,00	0,00%
12	9	11	67,58	57,25	50,00	35,16%
13	9	12	15,96	15,94	50,00	0,00%
14	9	12	15,96	15,94	50,00	0,00%
15	10	11	29,95	32,32	50,00	0,00%

Tabela 15 – Fluxos de Potência

4.2.2 Otimizando o Sistema

Através da implementação da rotina de otimização, foram obtidos os resultados apresentados nas Tabelas 16, 17 e 18, onde podemos observar os ângulos das tensões nas barras, assim como, o despacho ótimo dos geradores e os cortes de cargas do sistema. O custo de produção obtido neste cenário é de: \$ 161,35.

Barra	Ângulo Ótimo
1	-2,4259
2	-3,4951
3	0,0000
4	-8,0638
5	-5,3913
6	-1,8376
7	-9,9935
8	-11,6935
9	-6,5357
10	-17,7399
11	-12,2624
12	-8,3342

Tabela 16 – Resultados Ângulos Ótimos

Barra	Despacho Ótimo
1	1,1152
3	1,0000
6	1,0000
12	0,3918

Tabela 17 – Resultados Despachos Ótimos

Barra	Carga Atual	Corte	Nova Carga	% de corte
2	0,6233	0,0000	0,6233	0,00 %
3	0,5100	0,0000	0,5100	0,00 %
8	0,6732	0,0000	0,6732	0,00 %
10	0,8820	0,0017	0,8803	0,20 %
11	0,4356	0,2526	0,1830	57,99 %
12	0,6372	0,0000	0,6372	0,00 %

Tabela 18 – Resultados de Cortes de Carga

Neste caso foi necessário fazer cortes nas cargas das barras 10 e 11. O corte na barra 10 foi de apenas 0,2%, já na barra 11 foi necessário fazer um corte mais severo de 57,99%. O custo de corte de carga foi definido como 4x o custo da maior geração do sistema.

Os resultados do fluxo linear sem perdas são mostrados nas Tabelas 19, 20 e 21, onde podemos observar uma sobrecarga de 2,6% no circuito 10 e 2,49% no circuito 12.

Barra	PG(PU)	CGmax(PU)
	PU	PU
1	1.12	1.20
3	1.00	1.00
6	1.00	1.00
12	0.39	0.80

Tabela 19 – Potência de Geração

Barra	Ângulo	Tensão (PU)	Base de tensão (kV)
	grau	pu	
1	-2,4259	1,0000	500
2	-3,4951	1,0000	500
3	0,0000	1,0000	500
4	-8,0638	1,0000	500
5	-5,3913	1,0000	500
6	-1,8376	1,0000	500
7	-9,9935	1,0000	345
8	-11,6935	1,0000	345
9	-6,5357	1,0000	345
10	-17,7399	1,0000	345
11	-12,2624	1,0000	345
12	-8,3342	1,0000	345

Tabela 20 – Tabela de Tensão e Defasagem por Barra

NCIR	BDE	BPARA	PKM(kVA)	PMK(kVA)	Cap. Máx.(kVA)	% de Sobrecarga
1	1	2	31,61	-31,61	100,00	0,00%
2	1	4	81,45	-81,45	100,00	0,00%
3	2	3	-30,60	30,60	100,00	0,00%
4	3	6	18,28	-18,28	100,00	0,00%
5	4	7	80,00	-80,00	80,00	0,00%
6	5	8	43,65	-43,65	80,00	0,00%
7	5	6	-43,52	43,52	80,00	0,00%
8	6	9	74,54	-74,54	80,00	0,00%
9	7	8	30,22	-30,22	50,00	0,00%
10	7	10	51,30	-51,30	50,00	2,60%
11	8	11	6,34	-6,34	50,00	0,00%
12	9	11	51,24	-51,24	50,00	2,49%
13	9	12	24,69	-24,69	50,00	0,00%
14	9	12	24,69	-24,69	50,00	0,00%
15	10	11	-37,18	37,18	50,00	0,00%

Tabela 21 – Fluxos de Potência

Os resultados do fluxo não linear são mostrados nas tabelas 22, 23 e 24. Novamente foram observadas sobrecargas em alguns circuitos devido ao modelo utilizado para otimização.

Barra	PG(PU)	CGmax(PU)
	PU	PU
1	1.12	1.20
3	1.24	1.00
6	1.00	1.00
12	0.39	0.80

Tabela 22 – Potência de Geração

Barra	Ângulo	Tensão (PU)	Base de tensão (kV)
	grau	pu	
1	-4,3210	1,0000	500
2	-4,9519	0,9914	500
3	0,0000	1,0000	500
4	-10,4743	0,9298	500
5	-7,2818	0,9572	500
6	-3,3751	1,0000	500
7	-12,8818	0,9256	345
8	-15,3042	0,9061	345
9	-8,4910	1,0039	345
10	-23,3140	0,8145	345
11	-15,6142	0,8841	345
12	-10,6088	1,0000	345

Tabela 23 – Tabela de Tensão e Defasagem por Barra

NCIR	BDE	BPARA	SKM(kVA)	SMK(kVA)	Cap. Máx.(kVA)	% de Sobrecarga
1	1	2	22,34	22,15	100,00	0,00%
2	1	4	93,12	86,58	100,00	0,00%
3	2	3	42,12	42,48	100,00	0,00%
4	3	6	31,73	31,73	100,00	0,00%
5	4	7	86,57	86,18	80,00	8,21%
6	5	8	53,15	50,32	80,00	0,00%
7	5	6	53,15	55,53	80,00	0,00%
8	6	9	81,38	81,70	80,00	2,12%
9	7	8	29,23	28,62	50,00	0,00%
10	7	10	59,79	52,62	50,00	19,58%
11	8	11	9,86	9,62	50,00	0,00%
12	9	11	56,42	49,69	50,00	12,85%
13	9	12	13,17	13,12	50,00	0,00%
14	9	12	13,17	13,12	50,00	0,00%
15	10	11	35,78	38,84	50,00	0,00%

Tabela 24 – Fluxos de Potência

4.3 Análise dos Resultados Marginais

A biblioteca .*scipy* utilizada, retorna do cálculo da otimização do sistema dois valores, sendo estes um valor residual e um valor marginal. O valor marginal é o *lâmbda*, utilizado para definir qual seria o impacto na função objetivo ao se relaxar algum limite.

Já o resultado residual, refere-se à diferença entre o lado esquerdo e o lado direito das restrições do problema, e basicamente nos mostra o quão bem a solução atende às restrições.

4.3.1 Sistema com Carga Nominal

Nas Tabelas 25 e 26 são apresentados os resultados residuais e marginais de cada variável. Pode-ser observar que houve um valor residual maior que zero para várias restrições, isso mostra que a solução

encontrada não atende 100% das restrições, e conforme validado com o fluxo de potência, isso de fato acontece em alguns circuitos. Além disso, o resultado dos *lâmbdas* trazem algumas informações importantes.

Da Tabela 25, vemos que o circuito 12 apresenta um *lâmbda* de 11,1057, indicando que caso o limite desse circuito seja incrementado, por exemplo de 0,1 p.u., será possível impactar o resultado objetivo em 11,1057.

Ademais, da Tabela 26, que houveram *lâmbdas* positivos para as variáveis de corte de carga. Neste caso os *lâmbdas* existem apenas pois atingiram o valor do limite inferior de 0. Desta mesma Tabela, também verifica-se que um incremento na capacidade de geração do gerador 3 também pode impactar o custo do sistema.

NCIRC	DE	PARA	Residual	Lâmbda
1	1	2	1,1812	-0,0000
1	1	2	0,8188	-0,0000
2	1	4	1,7401	-0,0000
2	1	4	0,2599	-0,0000
3	2	3	0,6618	-0,0000
3	2	3	1,3382	-0,0000
4	3	6	1,2368	-0,0000
4	3	6	0,7632	-0,0000
5	4	7	1,5401	-0,0000
5	4	7	0,0599	-0,0000
6	5	8	1,2189	-0,0000
6	5	8	0,3811	-0,0000
7	5	6	0,3811	-0,0000
7	5	6	1,2189	-0,0000
8	6	9	1,6000	-0,0000
8	6	9	0,0000	-0,9838
9	7	8	0,7876	-0,0000
9	7	8	0,2124	-0,0000
10	7	10	0,9524	-0,0000
10	7	10	0,0476	-0,0000
11	8	11	0,6456	-0,0000
11	8	11	0,3544	-0,0000
12	9	11	1,0000	-0,0000
12	9	11	0,0000	-11,1057
13	9	12	0,8000	-0,0000
13	9	12	0,2000	-0,0000
14	9	12	0,8000	-0,0000
14	9	12	0,2000	-0,0000
15	10	11	0,2174	-0,0000
15	10	11	0,7826	-0,0000

Tabela 25 – Resultados Inequações

Variável	Residual superior	Lâmbda superior	Residual inferior	Lâmbda inferior
θ 1	3,1978	0,0000	3,0854	0,0000
θ 2	3,2086	0,000	3,0746	0,000
$-\theta 4$	3,2888	0,0000	2,9943	0,0000
θ 5	3,2429	0,0000	3,0403	0,0000
θ 6	3,1833	0,0000	3,0998	0,0000
θ 7	3,3200	0,0000	2,9632	0,0000
$\theta 8$	3,3485	0,0000	2,9347	0,0000
θ 9	3,2713	0,0000	3,0118	0,0000
θ 10	3,4423	0,0000	2,8408	0,0000
θ 11	3,3713	0,0000	2,9119	0,0000
θ 12	3,3097	0,0000	2,9735	0,0000
G1	0,2787	0,0000	0,9213	0,0000
G3	0,0000	-4,2201	1,0000	0,0000
G6	0,0179	0,0000	0,9821	0,0000
G12	0,5690	0,0000	0,2310	0,0000
BARRA 2	0,5194	0,0000	0,0000	114,4097
BARRA 3	0,4250	0,0000	0,0000	115,7799
BARRA 8	0,5610	0,0000	0,0000	112,6199
BARRA 10	0,7350	0,0000	0,0000	111,6355
BARRA 11	0,3630	0,0000	0,0000	110,4994
BARRA 12	0,5310	0,0000	0,0000	118,0000

Tabela 26 – Resultados Limites

4.3.2 Sistema com 120% da Carga Nominal

Nas Tabelas 27 e 28 são apresentados os resultados residuais e marginais de cada variável.

Pode-ser observar que houve um valor residual maior que zero para várias restrições, isso mostra que a solução encontrada não atende 100% das restrições, e conforme validado com o fluxo de potência, isso de fato acontece em alguns circuitos. Além disso, o resultado dos *lâmbdas* traz algumas informações importantes.

Da Tabela 27, vemos que os circuitos 5, 10 e 12 apresentam *lâmbdas* diferentes de zero, indicando que caso os limites nestes circuitos impactam o resultado. É possível notar também, que o circuito 8, que apresentou violação no fluxo, não apresentou um *lâmbda* diferente de zero, mas apresentou valores residuais consideráveis em comparação com outros valores residuais, explicando que a otimização de fato não atendeu as restrições deste circuito conforme validado pelo cálculo do fluxo.

Ademais, da Tabela 28, houveram *lâmbdas* para os geradores 3 e 6, que atingiram seus limites, e para as cargas 10 e 11 não tem mais lâmbda para seus limites inferiores.

DE	PARA	Residual	Lâmbda
1	2	1,3152	-0,0000
1	2	0,6848	-0,0000
1	4	1,8000	-0,0000
1	4	0,2000	-0,0000
2	3	0,6919	-0,0000
2	3	1,3081	-0,0000
3	6	1,1819	-0,0000
3	6	0,8181	-0,0000
4	7	1,6000	-0,0000
4	7	0,0000	-97,1930
5	8	1,2365	-0,0000
5	8	0,3635	-0,0000
5	6	0,3635	-0,0000
5	6	1,2365	-0,0000
6	9	1,5454	-0,0000
6	9	0,0546	-0,0000
7	8	0,8000	-0,0000
7	8	0,2000	-0,0000
7	10	1,0000	-0,0000
7	10	0,0000	-21,9798
8	11	0,5633	-0,0000
8	11	0,4367	-0,0000
9	11	1,0000	-0,0000
9	11	0,0000	-149,9514
9	12	0,7454	-0,0000
9	12	0,2546	-0,0000
9	12	0,7454	-0,0000
9	12	0,2546	-0,0000
10	11	0,1197	-0,0000
10	11	0,8803	-0,0000
	1 1 1 2 2 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 8 8 9 9 9 9 9 9 9	1 2 1 2 1 4 1 4 2 3 2 3 3 6 3 6 4 7 5 8 5 8 5 6 6 9 6 9 7 8 7 8 7 10 8 11 8 11 9 11 9 12 9 12 9 12 9 12 10 11	1 2 1,3152 1 2 0,6848 1 4 1,8000 1 4 0,2000 2 3 0,6919 2 3 1,3081 3 6 1,1819 3 6 0,8181 4 7 1,6000 4 7 0,0000 5 8 1,2365 5 6 0,3635 5 6 1,2365 6 9 1,5454 6 9 0,0546 7 8 0,8000 7 8 0,2000 7 10 1,0000 7 10 0,0000 8 11 0,5633 8 11 0,4367 9 11 1,0000 9 11 0,0000 9 12 0,7454 9 12 0,7454

 $Tabela\ 27-Resultados\ Inequações$

Variável	Residual superior	Lâmbda superior	Residual inferior	Lâmbda inferior
$\theta 1$	3,1839	0,0000	3,0993	0,0000
θ 2	3,2026	0,0000	3,0806	0,0000
θ 4	3,2823	0,0000	3,0009	0,0000
θ 5	3,2357	0,0000	3,0475	0,0000
θ 6	3,1737	0,0000	3,1095	0,0000
θ 7	3,3160	0,0000	2,9672	0,0000
θ 8	3,3457	0,0000	2,9375	0,0000
θ 9	3,2557	0,0000	3,0275	0,0000
θ 10	3,4512	0,0000	2,8320	0,0000
θ 11	3,3556	0,0000	2,9276	0,0000
θ 12	3,2871	0,0000	2,9961	0,0000
G1	0,0848	0,0000	1,1152	0,0000
G3	0,0000	-14,0584	1,0000	0,0000
G6	0,0000	-16,5821	1,0000	0,0000
G12	0,4082	0,0000	0,3918	0,0000
BARRA 2	0,6233	0,0000	0,0000	112,1452
BARRA 3	0,5100	0,0000	0,0000	105,9416
BARRA 8	0,6732	0,0000	0,0000	25,0785
BARRA 10	0,8803	0,0000	0,0017	0,0000
BARRA 11	0,1830	0,0000	0,2526	0,0000
BARRA 12	0,6372	0,0000	0,0000	118,0000

Tabela 28 – Resultados Limites

4.4 Validação de Resultados

Buscando uma confirmação dos resultados obtidos previamente, outra rotina foi gerada, desta vez utilizando o *software Octave* para encontrar a melhor solução para o problema, apresentando valores de ângulo, tensão e potências, bem como valores para os multiplicadores de Lagrange.

5 CONCLUSÃO

Com base nos estudos feitos sobre o sistema, foi visto que a otimização foi capaz de respeitar a maior parte dos limites. Porém o modelo utilizado, não foi capaz de atender à todos os limites, assim, não obteve-se um despacho ótimo dos geradores.

A partir do estudo também, foi possível entender que há a possibilidade de melhoria do sistema, onde, relaxando as violações de alguns circuitos e geradores, há uma redução no custo do sistema, em específico no circuito 12 e no gerador 3, que aparecem como soluções de melhoria em ambos os cenários de carga estudados. Além destes, os circuitos 5 e 10, e o gerador 6 também são capazes de melhorar o custo do sistema para o cenário de 120% de carga.

Ademais, verificou-se também que, quando o sistema opera com cargas em 120% da nominal, a otimização sugere cortes de carga.

Assim, verificou-se que devem ser feitos alguns ajustes no sistema, como ajustes de defasagem de alguns transformadores para contornar as violações de sobrecarga encontradas, fazendo assim, com que o despacho ótimo encontrado seja possível de ser implementado no sistema.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] Fernando A. Assis, "Notas de aula." Online, 2024. [Acesso em: Setembro 2024]	[1]	Fernando A. As	ssis, "Notas o	de aula." Online,	2024. [Acesso er	n: Setembro 2024]
--	-----	----------------	----------------	-------------------	------------------	-------------------

ANEXO

					AILAO				
DBAR									
	xx x x		x x	x xx	хх	хх	xx	xx	
BARRA		QD(PU) Bsh(F	PU) TIPO	Vesp(PU)	Oesp(°)	PGesp(PU)	Cus(\$/MW)	
01 0.00	0		0 0	.00 PV	1.0000	0.00	1.200	38.00	
02	0.5194		0 0	.00 PQ	1.0000	0.00	0	00.00	
0.00 03	0.00 0.4250	(0 0	.00 SW	1.0000	0.00	0	32.00	
0.00 04	1.00 0		0 0.	.00 PQ	1.0000	0.00	0	00.00	
0.00 05	0.00 0		0 0.	.00 PQ	1.0000	0.00	0	00.00	
0.00 06	0.00	9		.00 PV		0.00	0.700	35.00	
0.00	1.00	9							
07 0.00	0 0.0		0 0.	.00 PQ	1.0000	0.00	0	00.00	
0.00	0.5610 0.00		0 0	.00 PQ	1.0000	0.00	0	00.00	
09 0.00	0 0.0		0 0	.00 PQ	1.0000	0.00	0	00.00	
10	0.7350	(0 0	.00 PQ	1.0000	0.00	0	00.00	
0.00	0.00 0.3630	(0 0	.00 PQ	1.0000	0.00	0	00.00	
0.00 12	0.00 0.5310		0 0	.00 PV	1.0000	0.00	0.350	34.00	
0.00 ####	0.86	9							
DCIR									
_	xx x-	x x-	x	xx	xx	X>	κ X	x x	x
x									
BDE CAP(I		NCIR R	ES(PU)	REAT(PU)	SUCsh(PU)	TAP(PU)) DEF(GRAUS) LIG(L)DE	SL(D)
01 1	02 .00	01	0.0194	0.0592	0.0000	1.00	00.00	00	L
01 1	04 .00	02	0.0540	0.1230	0.0000	1.00	00.00	00	L
02	03	03	0.0470	0.1980	0.0000	1.00	00.00	10	L
03		04	0.0581	0.1763	0.0000	1.00	00.00	00	L
04		05	0.0000	0.0421	0.0000	1.00	00.00	00	L
0 05	.80 08	06	0.0000	0.2520	0.0000	1.00	00.00	10	L
0 05	.80 06	07	0.0134	0.1421	0.0000	1.00	00.00	10	L
0 06	.80 09	08	0.0000	0.1100	0.0000	1.00	00.00	10	L
	.80		0.0950	0.0989					L
	.50			0.000	3.0000	1.00		. •	_

07	10	10	0.1271	0.2704	0.0000	1.00	00.000	L
0.5 08	11	11	0.1351	0.1569	0.0000	1.00	00.000	L
0.5 09	11	12	0.2209	0.1999	0.0000	1.00	00.000	L
0.5 09	50 12	13	0.1229	0.2558	0.0000	1.00	00.000	L
0.5 09	50 12	14	0.1229	0.2558	0.0000	1.00	00.000	L
0.5 10	50 11	15	0.1709	0.2514	0.0000	1.00	00.000	L
0.5	50							

####

OBS.:

- 01 Na existência de mais de um circuito entre duas barras, cada um deve ser inserido em DCIR separadamente.
- 02 A suceptância shunt da barra (Bsh) deve ser inserida como: + (positiva) para C e -(negativa) para L.
- 03 A suceptância shunt do circuito (SUCsh) de DCIR é a total do circuito.