Stat 134: Section 25

Ani Adhikari

May 1, 2017

Problem 1

Here is a summary of Pre-SAT and SAT scores of a large group of students.

LOCATION.		
PSAT scores:	average: 1200	SD: 100
SAT scores:	average: 1300	SD: 90
	correlation: 0.6	

- a. Of the students who scored 1000 on the PSAT, about what percentage scored above average on the SAT?
- b. Of the students who scored below average on the PSAT, about what percentage scored above average on the SAT?
- c. About what percentage of students got at least 50 points more on the SAT than on the PSAT?

Ex 6.5.1 in Pitman's Probability

Problem 2

Data from a large population indicate that the heights of mothers and daughters in this population follow the bivariate normal distribution with correlation 0.5. Both variables have mean 5 feet 4 inches, and standard deviation 2 inches. Among the daughters of above average height, what percent were shorter than their mothers? *Ex 6.5.2 in Pitman's Probability*

Problem 3

Suppose *X* and *Y* are standard normal variables. Find an expression for $P(X+2Y \le 3)$ in terms of the standard normal distribution function Φ ,

- a. in case *X* and *Y* are independent;
- b. in case *X* and *Y* have bivariate normal distribution with correlation 1/2.

Ex 6.5.4 in Pitman's Probability

Problem 4

Let *X* and *Y* be independent standard normal variables.

- a. For a constant k, find P(X > kY).
- b. If $U = \sqrt{3}X + Y$, and $V = X \sqrt{3}Y$, find P(U > kV).
- c. Find $P(U^2 + V^2 < 1)$.
- d. Find the conditional distribution of X given V = v.

Ex 6.5.6 in Pitman's Probability