Clustering With K Means - Python Tutorial

```
In [4]: from sklearn.cluster import KMeans
   import pandas as pd
   from sklearn.preprocessing import MinMaxScaler
   from matplotlib import pyplot as plt
   %matplotlib inline
```

In [12]: df = pd.read_csv(r"D:\abc\abc\abc\ML\13_kmeans\income.csv")
df

Out[12]:

	Name	Age	Income(\$)
0	Rob	27	70000
1	Michael	29	90000
2	Mohan	29	61000
3	Ismail	28	60000
4	Kory	42	150000
5	Gautam	39	155000
6	David	41	160000
7	Andrea	38	162000
8	Brad	36	156000
9	Angelina	35	130000
10	Donald	37	137000

```
In [198]: plt.scatter(df.Age,df['Income($)'])
    plt.xlabel('Age')
    plt.ylabel('Income($)')
```

Out[198]: <matplotlib.text.Text at 0x159c7655ac8>


```
In [13]: km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['Age','Income($)']])
y_predicted
```

Out[13]: array([2, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0])

```
In [17]: df['cluster']=y_predicted
df
```

Out[17]:

	Name	Age	Income(\$)	cluster
0	Rob	27	70000	2
1	Michael	29	90000	2
2	Mohan	29	61000	0
3	Ismail	28	60000	0
4	Kory	42	150000	1
5	Gautam	39	155000	1
6	David	41	160000	1
7	Andrea	38	162000	1
8	Brad	36	156000	1
9	Angelina	35	130000	1
10	Donald	37	137000	1
11	Tom	26	45000	0
12	Arnold	27	48000	0
13	Jared	28	51000	0
14	Stark	29	49500	0
15	Ranbir	32	53000	0
16	Dipika	40	65000	0
17	Priyanka	41	63000	0
18	Nick	43	64000	0
19	Alia	39	80000	2
20	Sid	41	82000	2
21	Abdul	39	58000	0

```
In [10]: 1 = df[df.cluster==0]
2 = df[df.cluster==1]
3 = df[df.cluster==2]
t.scatter(df1.Age,df1['Income($)'],color='green')
t.scatter(df2.Age,df2['Income($)'],color='red')
t.scatter(df3.Age,df3['Income($)'],color='black')
t.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',mark
t.xlabel('Age')
t.ylabel('Income ($)')
t.legend()
```

Out[10]: <matplotlib.legend.Legend at 0x20105063b80>

In [20]: df1

Out[20]:

	Name	Age	Income(\$)	cluster
2	Mohan	29	61000	0
3	Ismail	28	60000	0
11	Tom	26	45000	0
12	Arnold	27	48000	0
13	Jared	28	51000	0
14	Stark	29	49500	0
15	Ranbir	32	53000	0
16	Dipika	40	65000	0
17	Priyanka	41	63000	0
18	Nick	43	64000	0
21	Abdul	39	58000	0

```
In [21]: df2
```

Out[21]:

	Name	Age	Income(\$)	cluster
4	Kory	42	150000	1
5	Gautam	39	155000	1
6	David	41	160000	1
7	Andrea	38	162000	1
8	Brad	36	156000	1
9	Angelina	35	130000	1
10	Donald	37	137000	1

```
In [22]: df3
```

Out[22]:

	Name	Age	Income(\$)	cluster
0	Rob	27	70000	2
1	Michael	29	90000	2
19	Alia	39	80000	2
20	Sid	41	82000	2

Preprocessing using min max scaler

```
In [203]: scaler = MinMaxScaler()
scaler.fit(df[['Income($)']])
df['Income($)'] = scaler.transform(df[['Income($)']])
scaler.fit(df[['Age']])
df['Age'] = scaler.transform(df[['Age']])
```

```
In [204]: df.head()
```

Out[204]:

	Name	Age	Income(\$)	cluster
0	Rob	0.058824	0.213675	2
1	Michael	0.176471	0.384615	2
2	Mohan	0.176471	0.136752	0
3	Ismail	0.117647	0.128205	0
4	Kory	0.941176	0.897436	1

```
In [205]: plt.scatter(df.Age,df['Income($)'])
Out[205]: <matplotlib.collections.PathCollection at 0x159c78f2358>
            1.0
            0.8
            0.6
            0.4
            0.2
            0.0
                                 0.4
                         0.2
                                          0.6
                                                  0.8
                                                          1.0
                 0.0
In [206]: km = KMeans(n_clusters=3)
           y_predicted = km.fit_predict(df[['Age','Income($)']])
           y_predicted
Out[206]: array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2])
          df['cluster']=y_predicted
In [207]:
           df.head()
Out[207]:
               Name
                          Age Income($) cluster
            0
                 Rob 0.058824
                               0.213675
                                             0
            1
              Michael 0.176471
                               0.384615
                                             0
               Mohan 0.176471
                               0.136752
            3
               Ismail 0.117647
                               0.128205
                                             0
                 Kory 0.941176
                               0.897436
                                             1
In [208]: km.cluster_centers_
Out[208]: array([[ 0.1372549 ,
                                  0.11633428],
```

[0.72268908, 0.8974359], [0.85294118, 0.2022792]])

```
In [209]: df1 = df[df.cluster==0]
    df2 = df[df.cluster==1]
    df3 = df[df.cluster==2]
    plt.scatter(df1.Age,df1['Income($)'],color='green')
    plt.scatter(df2.Age,df2['Income($)'],color='red')
    plt.scatter(df3.Age,df3['Income($)'],color='black')
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',maplt.legend()
```

Out[209]: <matplotlib.legend.Legend at 0x159c7982f60>

Elbow Plot

```
In [211]: plt.xlabel('K')
    plt.ylabel('Sum of squared error')
    plt.plot(k_rng,sse)
```

Out[211]: [<matplotlib.lines.Line2D at 0x159c7a34978>]

Exercise

- 1. Use iris flower dataset from sklearn library and try to form clusters of flowers using petal width and length features. Drop other two features for simplicity.
- 2. Figure out if any preprocessing such as scaling would help here
- 3. Draw elbow plot and from that figure out optimal value of k