環論 (第7回) の解答

問題 7-1

(1) f(x+y) = f(x) + f(y) について.

$$f(x+y) = \overline{x+y} = \overline{x} + \overline{y} = f(x) + f(y).$$

(2) f(xy) = f(x)f(y) について.

$$f(x \cdot y) = \overline{x \cdot y} = \overline{x} \cdot \overline{y} = f(x) \cdot f(y).$$

(3) $f(1) = \overline{1} = 1$.

以上(1)~(3)より f は環準同型.

問題 7-2

可換環 $R = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\}$ と例題 7-1 の環準同型

$$\varphi: R \to R \ \left(a + b\sqrt{2} \mapsto a - b\sqrt{2} \right)$$

を考える. ここで,

$$p_n + q_n \sqrt{-2} = (1 + \sqrt{-2})^n$$
 (eq1)

であり、φは環準同型なので

$$p_n - q_n \sqrt{-2} = \varphi \left(p_n + q_n \sqrt{-2} \right) = (\varphi (1 + \sqrt{-2}))^n = (1 - \sqrt{-2})^n.$$
 (eq2)

(eq1), (eq2) より

$$p_n = \frac{1}{2} \left\{ (1 + \sqrt{-2})^n + (1 - \sqrt{-2})^n \right\}, \quad q_n = \frac{1}{2\sqrt{-2}} \left\{ (1 + \sqrt{-2})^n - (1 - \sqrt{-2})^n \right\}$$

が従う.

問題 7-3

(i) $x_1, x_2 \in \ker(f)$ とする. $f(x_1) = f(x_2) = 0_B$ より

$$f(x_1 - x_2) = f(x_1) - f(x_2) = 0_B - 0_B = 0_B.$$

よって $x_1 - x_2 \in \ker(f)$.

$$f(ax) = f(a)f(x) = f(a) \cdot 0_B = 0_B.$$

よって $ax \in \ker(f)$.

以上より ker(f) は A のイデアルである.

問題 7-4

(I) $\ker(\varphi)=(x-a)$ を示す. $\varphi(x-a)=a-a=0$ より $x-a\in\ker(\varphi)$. よって

$$(x-a) \subseteq \ker(\varphi)$$
.

逆に $f(x) \in \ker(\varphi)$ とする. 割り算の原理より

$$f(x) = (x - a)q(x) + b \quad (q(x) \in \mathbb{Z}[x], \ b \in \mathbb{Z})$$

と表せる. 0 = f(a) = b より

$$f(x) = (x - a)q(x) \in (x - a).$$

これで $\ker(\varphi) \subseteq (x-a)$ も示せた.

(II) $Im(\varphi)=\mathbb{Z}$ を示すには、 φ が全射を言えばよい. $c\in\mathbb{Z}$ とする. f(x)=x+c-a と置けば、

$$\varphi(f(x)) = f(a) = c.$$

よって φ は全射.