$Steven\ Rosendahl\\ Proofs\ Homework$

1. (a) Let a, b and c be natural numbers with a odd. Prove that if a|(b-c) and a|(b+c), then a|b and a|c.

Proof: Let a|(b-c) and a|(b+c). Then b-c=ax and b+c=ay for some $x,y\in\mathbb{N}$. We have that b=ax+c. Then

$$ax + c + c = ay$$

$$ax + 2c = ay$$

$$2c = ay - ax$$

$$2c = a(y - x).$$

Since a is odd, y-x must be even since 2c is even. Then 2|(y-x), and we have $c=a\frac{y-x}{2}$, or c=az for $z\in\mathbb{N}$. Therefore a|c. If we let c=b-ax, we have

$$b + b - ax = ay$$

$$2b - ax = ay$$

$$2b = ay + ax$$

$$2b = a(y+x)$$

Since 2b is even and a is odd, y-x must be even, or 2|(y+x). Therefore $b=a\frac{y+x}{2}$, or b=aj for $j\in\mathbb{N}$. Therefore a|b.

 \triangle

(b) Using a truth table, show that $\neg(P \land Q)$ and $(\neg P \lor \neg Q)$ are logically equivalent.

P	Q	$\neg (P \land Q)$	$(\neg P \lor \neg Q)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

2. (a) Establish the following identity using induction.

$$\sum_{i=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Proof:

Base Case: n=1

$$\sum_{i=1}^{1} i^3 = \left(\frac{1(1+1)}{2}\right)^2$$

$$1^3 = \left(\frac{2}{2}\right)^2$$

$$1 = 1$$

Assume:

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Prove:

$$\sum_{i=1}^{n+1} i^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2$$

$$\sum_{i=1}^{n} i^3 + \sum_{i=n}^{n+1} i^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2$$

$$\left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2 \text{ By Induction Hypothesis}$$

$$n^2(n+1)^2 + 4(n+1)^3 = (n+1)^2(n+2)^2$$

$$(n+1)^2(n^2 + 4n + 4) = (n+1)^2(n+2)^2$$

$$(n+2)^2 = (n+2)^2$$

 \triangle

(b) Prove that if n^3 is odd, then n is odd.

Proof: Assume that if n is even, then n^3 is even. Then n=2k for $k \in \mathbb{Z}$, which mean that $n^3=(2k)^3$. $(2k)^3=2(2^2k^3)$ where $(2^2k^3)\in\mathbb{Z}$. Therefore n^3 is even.

Δ

3. (a) Using the definition, prove that $f: \mathbb{Q} \to \mathbb{Q}$ given by f(x) = 3x + 2 is bijective.

Proof: Let $x, y \in \mathbb{Q}$ such that f(x) = f(y). Then

$$3x + 2 = 3y + 2$$
$$3x = 3y$$
$$x = y$$

Therefore f is injective.

Let $y \in \mathbb{Q}$ such that $y = \frac{x-2}{3}$. Then

$$f(y) = 3\left(\frac{x-2}{3}\right) + 2$$
$$= x - 2 + 2$$
$$= x$$

Therefore f is surjective.

Therefore f is bijective.

 \triangle

(b) Define a relation on $\mathbb{N} \times \mathbb{N}$ by $(a, b) \sim (c, d)$ if a + d = b + c. Prove that \sim is an equivalence relation.

Symmetric: Let $(a,b) \sim (c,d)$. Then

$$a+d=b+c$$

$$-b-c=-a-d$$

$$(-1)(b+c)=(-1)(a+d)$$

$$b+c=a+d$$

Therefore $(c,d) \sim (a,b)$, and \sim is symmetric.

Reflexive: Let $(a,b) \in \mathbb{N} \times \mathbb{N}$. If $(a,b) \sim (a,b)$, then a+b=a+b. Therefore $(a,b) \sim (a,b)$, and \sim is reflexive.

Transitive: Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then a+d=b+c and c+f=d+e. Solving for c yields c=d+e-f, and substituting gives us a+d=b+d+e-f. Then a+f=e+b, and $(a,b) \sim (e,f)$. Therefore, \sim is transitive.

Therefore \sim is an equivalence relation.

 \triangle

4. (a) Let \mathcal{X} be a finite set with cardinality n. Prove that the power set, $\mathcal{P}(\mathcal{X})$, has cardinality 2^n .

Proof:

Base Case: A set of size 1.

Let \mathcal{X} be the set $\{x\}$. Then $\mathcal{P}(\mathcal{X})$ is $\{\emptyset, \{x\}\}$, which has a cardinality of $2^{||\mathcal{X}||}$, or 2^1 .

Assume: $||\mathcal{P}(\{x_0, x_1, x_2, \dots, x_n\})|| = 2^{||\mathcal{X}||}.$

Prove: $||\mathcal{P}(\{x_0, x_1, x_2, \dots, x_n, x_{n+1}\})|| = 2^{||\mathcal{X}||+1}$.

We know that \mathcal{P} is the set of all subsets of \mathcal{X} . If we count the number of subsets of $\{x_0, x_1, x_2, \ldots, x_n, x_{n+1}\}$, we know that the subset will either contain x_{n+1} , or it will not contain x_{n+1} . If the subset γ does not contain x_{n+1} , then $\gamma \subseteq \{x_0, x_1, x_2, \ldots, x_n\}$, and there are $2^{||\mathcal{X}||}$ γ by the induction hypothesis. If the subset λ contains x_{n+1} , then it is the result of some set $\gamma \cup \lambda$. Since $\gamma \subseteq \{x_0, x_1, x_2, \ldots, x_n\}$, we only need $\gamma \cup \{x_{n+1}\}$ to account for all possible sets. Therefore $||\mathcal{P}(\gamma \cup \{x_{n+1}\})||$ is $||\mathcal{P}(\gamma)|| \cdot ||\mathcal{P}(\{x_{n+1}\})||$, or $2^{||\mathcal{X}||} \cdot 2^{||\{x_{n+1}\}||}$. This is equivalent to $2^{||\mathcal{X}||} \cdot 2^{||}$, or $2^{||\mathcal{X}||+1}$.

 \triangle

(b) Let $n \geq 2$ be an integer. Prove that $a \equiv b \pmod{n}$ if $n \mid (b-a)$ is an equivalence relation on \mathbb{Z} .

Proof: Let $n \ge 2$ and n | (b-a). Therefore b-a=nk, $k \in \mathbb{Z}$. Then $b-a \equiv 0 \mod n$. It follows that $b \equiv a$, and since $mod\ n$ is an equivalence relation, $a \equiv b$ by symmetry.

 \triangle

(c) Let A and B be sets. Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof:

 $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$: Let $x \in \overline{A \cup B}$. Then $x \notin A$ or B. Since $x \notin A$, $x \in \overline{A}$. Since $x \notin B$, $x \in \overline{B}$. Therefore $x \in \overline{A}$ and $x \in \overline{B}$, or $x \in \overline{A} \cap \overline{B}$.

 $\overline{A \cup B} \supseteq \overline{A} \cap \overline{B}$: Let $x \in \overline{A} \cap \overline{B}$. Then $x \notin A$ and $x \notin B$. Therefore $x \notin A \cup B$, or $x \in \overline{A \cup B}$.

 \triangle

(d) Prove that $\sqrt{5}$ is irrational.

Proof: Assume $\sqrt{5}$ is rational. Then $\sqrt{5} = \frac{p}{q}$ for some $p,q \in \mathbb{Z}$ with $q \neq 0$, and p and q have opposite parity. It follows that $5 = \frac{p^2}{q^2}$, or $5q^2 = p^2$. If q is odd, then p must be even. However, an odd number squared and multiplied by an odd number is odd, which means that $5q^2 \in \{2k+1|k \in \mathbb{Z}\}$. This implies that p^2 is odd, but p is even, so p^2 is even. Therefore by contradiction, $\sqrt{5}$ must be irrational.

 \triangle