CS 440: Introduction to Artificial Intelligence Lecture 14

Matthew Stone

October 26, 2015

Supervised categorization—Recap

- Infer category of real-world object from features
- Start from examples
- Learn decision boundary
- Apply learned rule to new cases

Understanding classification via probability—Recap

We want to decide the most likely category

- Compute $P(C = c_1 | O = o)$
- ▶ Compute $P(C = c_2 | O = o)$, etc.
- Pick whichever one is the largest

Allows us to describe the optimum decision boundary

Naive Bayes assumption—Recap

- Ignore certain kinds of interactions in world
- Lets you use same data to learn multiple relationships
- Mathematically:

$$P(F_i|C) = P(F_i|C, F_1 \dots F_{i-1})$$

► As a result:

$$P(F_1 \dots F_n | C) = P(F_1 | C)P(F_2 | C) \dots P(F_n | C)$$

Back to our case study

We have this training data:

T	S	С	count
$T = w_1$	$S = h_1$	$C=c_1$	32
$T=f_2$	$S=h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S=h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

We will build a Naive Bayes model

What is step 1?

What is step 1?

Compute the priors

What is step 1?

Compute the priors

$$P(C = c_1)$$

$$P(C = g_2)$$

Compute the Priors

T	S	C	count
$T = w_1$	$S=h_1$	$C=c_1$	32
$T=f_2$	$S = h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S = h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

$$P(C = c_1) = P(C = g_2) =$$

Compute the Priors

T	S	C	count
$T = w_1$	$S=h_1$	$C=c_1$	32
$T=f_2$	$S = h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S=h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

$$P(C = c_1) = 0.6$$

 $P(C = g_2) = 0.4$

What is step 2?

What is step 2?

What is step 2?

Compute the likelihoods

$$P(T = w_1 | C = c_1)$$

 $P(T = f_2 | C = c_1)$
 $P(T = w_1 | C = g_2)$
 $P(T = f_2 | C = g_2)$

and

$$P(S = h_1 | C = c_1)$$

 $P(S = t_2 | C = c_1)$
 $P(S = h_1 | C = g_2)$
 $P(S = t_2 | C = g_2)$

T	S	С	count
$T = w_1$	$S=h_1$	$C=c_1$	32
$T=f_2$	$S = h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S = h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

$$P(T = w_1 | C = c_1) = P(T = f_2 | C = c_1) = P(T = w_1 | C = g_2) = P(T = f_2 | C = g_2) =$$

T	S	С	count
$T = w_1$	$S=h_1$	$C=c_1$	32
$T=f_2$	$S=h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S = h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

$$P(T = w_1 | C = c_1) = .8$$

 $P(T = f_2 | C = c_1) = .2$
 $P(T = w_1 | C = g_2) = .4$
 $P(T = f_2 | C = g_2) = .6$

T	S	С	count
$T = w_1$	$S=h_1$	$C=c_1$	32
$T=f_2$	$S = h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S=h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

$$P(S = h_1 | C = c_1) = P(S = t_2 | C = c_1) = P(S = h_1 | C = g_2) = P(S = t_2 | C = g_2) =$$

T	S	С	count
$T = w_1$	$S=h_1$	$C=c_1$	32
$T=f_2$	$S = h_1$	$C=c_1$	8
$T = w_1$	$S=t_2$	$C=c_1$	16
$T=f_2$	$S=t_2$	$C=c_1$	4
$T = w_1$	$S=h_1$	$C=g_2$	4
$T=f_2$	$S=h_1$	$C=g_2$	6
$T = w_1$	$S=t_2$	$C=g_2$	12
$T=f_2$	$S=t_2$	$C=g_2$	18

$$P(S = h_1 | C = c_1) = \frac{2}{3}$$

 $P(S = t_2 | C = c_1) = \frac{1}{3}$
 $P(S = h_1 | C = g_2) = .25$
 $P(S = t_2 | C = g_2) = .75$

Classifying a new example

New item comes in: $T = f_2$, $S = h_1$. What do you do?

$$T=f_2$$
, $S=h_1$

Model:

$$P(T = w_1 | C = c_1) = .8$$
 $P(S = h_1 | C = c_1) = \frac{2}{3}$
 $P(C = c_1) = 0.6$ $P(T = f_2 | C = c_1) = .2$ $P(S = t_2 | C = c_1) = \frac{1}{3}$
 $P(C = g_2) = 0.4$ $P(T = w_1 | C = g_2) = .4$ $P(S = h_1 | C = g_2) = .25$
 $P(T = f_2 | C = g_2) = .6$ $P(S = t_2 | C = g_2) = .75$

What do we compute?

$$T=f_2$$
, $S=h_1$

Model:

$$P(T = w_1 | C = c_1) = .8$$
 $P(S = h_1 | C = c_1) = \frac{2}{3}$
 $P(C = c_1) = 0.6$ $P(T = f_2 | C = c_1) = .2$ $P(S = t_2 | C = c_1) = \frac{1}{3}$
 $P(C = g_2) = 0.4$ $P(T = w_1 | C = g_2) = .4$ $P(S = h_1 | C = g_2) = .25$
 $P(T = f_2 | C = g_2) = .6$ $P(S = t_2 | C = g_2) = .75$

What do we compute?

$$P(C = c_1) \times P(T = f_2 | C = c_1) \times P(S = h_1 | C = c_1)$$

$$P(C = g_2) \times P(T = f_2 | C = g_2) \times P(S = h_1 | C = g_2)$$

$$T = f_2, S = h_1$$

Model:

$$P(T = w_1 | C = c_1) = .8$$
 $P(S = h_1 | C = c_1) = \frac{2}{3}$
 $P(C = c_1) = 0.6$ $P(T = f_2 | C = c_1) = .2$ $P(S = t_2 | C = c_1) = \frac{1}{3}$
 $P(C = g_2) = 0.4$ $P(T = w_1 | C = g_2) = .4$ $P(S = h_1 | C = g_2) = .25$
 $P(T = f_2 | C = g_2) = .6$ $P(S = t_2 | C = g_2) = .75$

What do we compute?

►
$$P(C = c_1) \times P(T = f_2 | C = c_1) \times P(S = h_1 | C = c_1) =$$

 $.6 \times .2 \times \frac{2}{3} = .08$

►
$$P(C = g_2) \times P(T = f_2 | C = g_2) \times P(S = h_1 | C = g_2) =$$

.4 × .6 × .25 = .06

Evaluation Questions

- ▶ Is the Naive Bayes assumption justified in this example?
- ▶ What error do you expect for the learned classifier?

Depend on how estimated parameters relate to actual data.

Need for More General Algorithms

Intuition — simple case

We know what the decision boundary should be here

Need for More General Algorithms

Intuition — simple case

Naive Bayes might not find this if independence assumptions are violated

Α	В	C	P(A&B&C)
0	0	0	.10
0	0	1	.15
0	1	0	.10
0	1	1	.15
1	0	0	.25
1	0	1	0
1	1	0	.10
1	1	1	.15

Supports classification rule:

Α	В	С	P(A&B&C)
0	0	0	.10
0	0	1	.15
0	1	0	.10
0	1	1	.15
1	0	0	.25
1	0	1	0
1	1	0	.10
1	1	1	.15

Naive Bayes parameters:

$$P(C = 0) = 11/20$$

 $P(C = 1) = 9/20$
 $P(A = 0|C = 0) = 4/11$
 $P(B = 0|C = 0) = 7/11$
 $P(A = 0|C = 1) = 6/9$
 $P(B = 0|C = 1) = 3/9$

Actual distribution:

,			
Α	В	С	P(A&B&C)
0	0	0	.10
0	0	1	.15
0	1	0	.10
0	1	1	.15
1	0	0	.25
1	0	1	0
1	1	0	.10
1	1	1	.15

Naive Bayes distribution:

= -,					
Α	В	С	P(A&B&C)		
0	0	0	.127		
0	0	1	.100		
0	1	0	.072		
0	1	1	.200		
1	0	0	.222		
1	0	1	.050		
1	1	0	.127		
1	1	1	.100		

Naive Bayes model learns wrong rules

- ▶ Classifies A = 0, B = 0 as C = 0
- ▶ Classifies A = 1, B = 1 as C = 0
- ▶ Best rule is to output C = 1 for these cases

Even though best rule is one it can represent!

Linear Classifiers

Equation (2D):

$$ax + by > 1$$

Or:

$$w_1x_1 + w_2x_2 > 1$$

Or (any number of dimensions):

$$w \cdot x > 1$$