ECOLES PRIVEES ELMAARIF- ERRAJA

مدارس الرجاء والمعارف الحرة

BAC BLANC
Classes :7D

EPREUVE DE MATHS
Durée : 4H

23/12/2016

La qualité de la rédaction, la clarté et la précision des raisonnements-entreront pour une part-importante dans l'appréciation de la copie du candidat.

Exercice 1 (3 points)

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

N°	Questions	uestions Réponses Réponses								
	_	A	B	C	D					
1	Si $z_1 = \sqrt{3} - i$, alors $ z_1^3 =$	3√3	$\left(\sqrt{3}-1\right)^3$	8	27					
2	Si $z_2 = 2 + 2i$; alors un argument de $(\overline{z}_2)^2$ est:	$\theta_2 = \left(\frac{\pi}{4}\right)^2$	$\theta_2 = \frac{-\pi}{2}$	$\theta_2 = \frac{\pi}{2}$	$\theta_2 = \frac{-\pi}{8}$					
3	A, B et C trois points d'affixes respectives z_A , z_B et z_C telles que $z_C - z_A = \frac{z_B - z_A}{2}$, alors :	C est le milieu du segment [AB]	B est le milieu du segment [AC]	A est le milieu du segment [BC]	A,B, et C ne sont pas alignés					
	Dans tout ce qui suit (u_n) est une suite à termes strictement positifs, on définit la suite $v_n = \frac{2}{u_n}$;									
4	si (u _n) est majorée par 2 alors :	(v _n) est majorée	(v _n) est minorée	(v n) est minorée	(v_n) est					
		par 2	par 2	par 1	bornée					
5	si (u_n) et (v_n) sont adjacentes alors:	$\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n = 2$	$\lim_{n\to\infty} \mathbf{u}_n = \lim_{n\to\infty} \mathbf{v}_n = \sqrt{2}$	$\lim_{n\to\infty} \mathbf{u}_n = \lim_{n\to\infty} \mathbf{v}_n = 1$	$\lim_{n\to\infty} u_n < \lim_{n\to\infty} v_n$					
6	si (u_n) est décroissante alors (v_n) est:	Croissante	Décroissante	Constante	Non monotone					

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée :

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2 (5 points)

Soit (u_n) et (v_n) les suites numériques définies par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n + v_n}{2} \end{cases}$ et $\begin{cases} v_0 = 4 \\ v_{n+1} = \frac{u_{n+1} + v_n}{2} \end{cases}$

- 1) Calculer u_1, u_2 et v_1, v_2 .
- 2) Pour tout $n \in \mathbb{N}$, on pose $w_n = v_n u_n$
 - a) Montrer que w_n est une suite géométrique de raison $\frac{1}{4}$.
 - b) Exprimer w_n en fonction de n et préciser sa limite.
- 3) Etudier les sens de variations de deux suites u_n et v_n , puis démontrer que (u_n) et (v_n) sont adjacentes
- 4) a) Démontrer que la suite (t_n) définie par : $t_n = \frac{u_n + 2v_n}{3}$ est une suite constante.
 - b) En déduire la limite commune de (u_n) et (v_n) .

Exercice 3 (5 points)

On considère le polynôme P(z) défini pour tout nombre complexe z par : $P(z) = z^3 - 6z^2 + 13z - 10$.

- 1) Calculer P(2).
- 2) Déterminer les réels a et b tels que : $P(z) = (z-2)(z^2 + az + b)$.
- 3) Résoudre dans l'ensemble \mathbb{C} l'équation (E): $z^2-4z+5=0$, et soient z_1 et z_2 ses solutions telles que $Im(z_1)>0$.
- 4) Le plan complexe étant muni d'un repère orthonormé($0, \vec{u}, \vec{v}$), on considère les points A, B et C d'affixes respectives $z_A = 2$, $z_B = z_1 + i$ et $z_C = z_2 i$
 - a) Placer les points A, B et C dans le repère $(0, \vec{u}, \vec{v})$.
 - b) Que représente le point A pour le segment [BC]? Justifier par un calcul d'affixes.
 - c) Déterminer la forme algébrique du nombre complexe $Z = \frac{z_C}{z_R}$, puis interpréter graphiquement.
- 5) Déterminer puis construire dans le repère $(0, \vec{u}, \vec{v})$ les ensembles suivants :
 - a) Γ_1 ensemble des points M d'affixe z tels que |z-2| = |z-2-2i|.
 - b) Γ_2 ensemble des points M d'affixe z tels que $\frac{z-2-2i}{z-2+2i}$ soit imaginaire pur.
 - c) Γ_3 ensemble des points M d'affixe z tels que |z-2|=3.
 - d) Γ_4 ensemble des points M d'affixe z tels que $\arg\left(\frac{z-2-2i}{z-2}\right) = 0[2\pi]$.

Exercice 4 (5 points)

On considère la suite complexe $(z_n)_{n\in\mathbb{N}}$ définie par : $z_0=i$ et pour tout entier n, $z_{n+1}=\frac{1+i}{2}z_n$.

Pour n entier naturel, on appelle M_n le point d'affixe z_n .

- 1) Calculer z_1, z_2, z_3 et z_4 .
- 2) Donner le module et un argument du nombre complexe $\alpha = \frac{1+i}{2}$, puis en déduire sa forme exponentielle.
- 3) Démontrer que pour tout entier naturel n on a : $z_n = \frac{ie^{i\frac{n\pi}{4}}}{\left(\sqrt{2}\right)^n}$
- 4) En déduire que la suite $V_n = |z_n|$ est une suite géométrique. Donner son terme général et sa limite.
- 5) Déterminer les valeurs de n dans les cas suivants :
 - a) M_n est un point de l'axe des ordonnées (oy).
 - b) M_n appartient à la droite d'équation : y = x.

Présentation: 2 points

Fin.