

Entwicklung eines Smart Mirrors zur Verwendung im Home Office mit Fokus auf einer Beleuchtungssteuerung

Ingenieurwissenschaftliche Applikationen SoSe 2023

Von:

Timon Faß

Matrikelnummer: 6032129 timon.fass@student.jade-hs.de

- 1) Forschungsthema und Forschungsfrage
- 2) Herangehensweise
 - 1) Methodik
 - 2) Arbeitsplan
 - 3) Softwareentwurf
- 3) Vorführung des Rechnerprogramms
- 4) Reflexion, Ausblick und Zusammenfassung

1) FORSCHUNGSTHEMA UND FORSCHUNGSFRAGE

- Relevanz von Smart Home Technologien in eigenen Haushalten nimmt zu
- Relevanz von Home Office nimmt zu
- Verknüpfung von beidem → Smart Mirror mit Fokus auf einer Beleuchtungssteuerung
- Norm DIN EN 12464-1 zur Beleuchtung von Arbeitsstätten in Innenräumen (500 lx)
- Forschungsfrage: "Entwicklung eines Smart Mirrors zur Verwendung im Home Office mit Fokus auf einer Beleuchtungssteuerung"

[1]

1) FORSCHUNGSTHEMA UND FORSCHUNGSFRAGE

Umsatz mit "Smart Home" in Deutschland

Anmerkungen: Daten werden in aktuellen Wechselkursen gezeigt. Daten reflektieren noch nicht den Einfluss des Russland-Ukraine Krieges auf den Markt, wir arbeiten aktuell an einem Update.

Letzte Aktualisierung: Dez 2022

Quelle: Statista

[2]

Anteil der Beschäftigten, die zumindest teilweise im Homeoffice arbeiten, nach Wirtschaftssektoren in Deutschland von Februar 2021 bis November 2022

1) FORSCHUNGSTHEMA UND FORSCHUNGSFRAGE

- Relevanz von Smart Home Technologien in eigenen Haushalten nimmt zu
- Relevanz von Home Office nimmt zu
- Verknüpfung von beidem → Smart Mirror mit Fokus auf einer Beleuchtungssteuerung
- Norm DIN EN 12464-1 zur Beleuchtung von Arbeitsstätten in Innenräumen (500 lx)
- Forschungsfrage: "Entwicklung eines Smart Mirrors zur Verwendung im Home Office mit Fokus auf einer Beleuchtungssteuerung"

[1]

2) HERANGEHENSWEISE2.1) METHODIK

Hardware

- PC mit Python
- Arduino Mikrocontroller
- Bluetooth Modul HC-06
- RGB-LEDs
- RGB-Farbsensor

Software

- Python 3.10.2
 - Tkinter (für die GUI)
 - Serial (für die Bluetooth Verbindung)
- Arduino IDE 1.8.13 C/C++
 - SoftwareSerial (für Bluetooth Verbindung)
 - Adafruit_TCS34725 (für RGB-Sensor)

2) HERANGEHENSWEISE2.2) ARBEITSPLAN

Woche	To Do
KW 18 (01.05.2023 - 05.05.2023)	Beschaffen und Aufbau der Hardware
	Vorbereitung der Entwicklungsumgebung für Software
	- Aufbau der Breadboards mit Arduino,
	Bluetooth Modul, RGB-Leuchtdioden und
	Vorwiderständen
	- Git mit Python Files für GUI und Arduino Projekt für
	Beleuchtungssteuerung einrichten
KW 19 (08.05.2023 - 12.05.2023)	Erstellen einer GUI in Python,
	Basisfunktionen des Smart Mirrors in GUI
	implementieren
	- Struktur für den Python Code erstellen
	- Basisfunktionen aus Vorarbeit übernehmen
	(schwarzer Hintergrund, Uhrzeit, Datum, Wetter)
KW 20 (15.05.2023 - 19.05.2023)	Pufferwoche
	Bei Problemen:
	- andere Bibliothek für die GUI (tkinter oder Qt) verwenden
KW 21 (22.05.2023 - 26.05.2023)	Beleuchtungssteuerung mit Arduino implementieren
	- Code zum Initialisieren der Bluetooth Verbindung
	und Auswählen der Lichtmodi aus Vorarbeit übernehmen
	- mehrere Lichtmodi hinzufügen
	Bei Problemen:
	- anderen Mikrocontroller verwenden (z.B. Raspberry Pi)
	- andere Beleuchtungseinrichtung verwenden
	\rightarrow Alle der oben aufgeführten Punkte würden jedoch
	Beschaffung alternativer Hardware voraussetzen und das
	Nutzen der Vorarbeit in Kapitel 6 einschränken oder verhindern.

Beleuchtungssteuerung in GUI implementieren
- Buttons zur GUI hinzufügen
- Bluetooth Verbindung zum Arduino herstellen
Bei Problemen:
- andere Wireless-Verbindung ausprobieren (z.B. WiFi)
- Schlägt die Wireless-Verbindung fehl, wird auf eine
USB-Verbindung des Arduino mit dem PC zurückgegriffen und
die Python Bibliothek "pyFirmata" verwendet.
\rightarrow Ebenfalls Beschaffung alternativer Hardware nötig und
Einschränkungen in Umsetzung der Vorarbeit in Kapitel 6.
Präsentation erstellen und üben
Fortsetzung Beleuchtungssteuerung
- Buttons mit Funktionen versehen
- Anzeige für gemessene Werte integrieren
Präsentation halten, 80% Meilenstein erreicht
Dokumentation für das Rechnerprogramm
erstellen (README, Auswertung etc.)
Funktionalität final überprüfen
Sind alle Ziele umgesetzt?
Pufferwoche
Finale Abgabe des Rechnerprogramms

2) HERANGEHENSWEISE

2.3) SOFTWAREENTWURF

Funktionale Anforderungen

- Graphische Benutzeroberfläche mit Basisfunktionen eines Smart Mirror (Anzeigen des Wetters, Uhrzeit, Datum)
- Benutzeroberfläche für Beleuchtungssteuerung mit Buttons für unterschiedliche Lichtmodi und Anzeige der gemessenen Beleuchtungsstärken und Farbtemperaturen

Nichtfunktionale Anforderungen

- Die GUI muss sich zur Laufzeit ständig aktualisieren
- Die GUI muss so robust sein, dass sie im Dauerbetrieb laufen könnte
- Die GUI muss übersichtlich sein
- Die GUI läuft auch, ohne dass der Arduino eingeschaltet ist

Welche Programmumgebung/Software steht bereits zur Verfügung?

- PC mit Python 3.10.2
- Arduino IDE und Hardware
- Python GUI in Tkinter
- Beleuchtungssteuerung von RGB-LEDs mit dem Arduino

Welche Bestandteile müssen neu erstellt/angepasst werden?

- Beleuchtungssteuerung in der GUI
- Initialisieren der Bluetooth Verbindung zwischen Python Skript und Arduino

Wie wird dies in der Codestruktur abgebildet?

- Python: Funktionen für Aktualisieren der GUI und Empfangen und Senden von Bluetooth Nachrichten
- Arduino: Funktion für Senden / Empfangen von Bluetooth Nachrichten und Ein-/Ausschalten der unterschiedlichen Lichtmodi

9

3) VORFÜHRUNG DES RECHNERPROGRAMMS

3) VORFÜHRUNG DES RECHNERPROGRAMMS

4) REFLEXION UND ZUSAMMENFASSUNG

Probleme

- Andere Bibliothek f
 ür Bluetooth Verbindung (Serial statt PyBluez)
- Komplett neuer Entwurf für die Wetteranzeige

Positives

- Forschungsfrage gut gewählt
- Realistischer Zeitplan
- Durch Vorarbeit hat vieles auf Anhieb funktioniert

Ausblick

- Echten Smart Mirror mit Spiegelfolie bauen
- RGB-LEDs im Modell durch echte Lampe ersetzen

QUELLENVERZEICHNIS

- [1] Besserer, D. et al. (2016). FitMirror: A Smart Mirror For Positive Affect in Everyday User Morning Routines. Universität Ulm.
- [2] Statista (2022). Smart Home Deutschland Umsatz. ger. url: https://de.statista.com/outlook/dmo/smart-home/deutschland#umsatz (besucht am 15. 04. 2023).
- [3] Statista (2022). Anteil der Beschäftigten, die zumindest teilweise im Homeoffice arbeiten, nach Wirtschaftssektoren in Deutschland von Februar 2021 bis November 2022. ger. url: https://de.statista.com/statistik/daten/studie/1260179/umfrage/beschaeftigte-im-homeoffice-nach-sektoren/ (besucht am 15. 04. 2023).

Vielen Dank für Ihre Aufmerksamkeit