Analyse des données et résultats

Dans ce chapitre, nous présentons les diverses analyses que nous avons menées sur les données, avec les mocks comme support de référence. Un élément clé à la construction des mocks a été de déterminer quels paramètres $Ly\alpha$ nous souhaitions avoir dans nos mocks. Ceci nous a conduit à mener une analyse des données DR16 dans quatre bins en redshift. En produisant cette analyse, nous nous sommes rendus compte que les paramètres $Ly\alpha$ obtenus dépendaient fortement de la modélisation des HCD. Nous avons dû faire un choix quant à cette modélisation. Nous présentons donc d'abord l'analyse des données qui a servi de référence pour l'ajustement des paramètres des mocks. Puis, nous discutons la modélisation des HCD et présentons des modélisations alternatives. #prov finir de donner les autres sections

1 L'analyse des données DR16

1.1 Résultats

L'analyse des données finale d'eBOSS (DR16), dont nous avons déjà parlé et qui est présentée dans **prov** utilise les fonctions de corrélation $Ly\alpha(Ly\alpha)\times Ly\alpha(Ly\alpha)$, $Ly\alpha(Ly\alpha)\times Ly\alpha(Ly\alpha)$, $Ly\alpha(Ly\alpha)\times QSO$ et Ly α (Ly β)×QSO. Ces fonctions de corrélation sont estimées sur la gamme en redshift complète, les paramètres ajustés sont donc donnés uniquement pour le redshift effectif $z_{\rm eff}=2{,}334$ de la mesure. L'appendice F de **prov** présente cependant l'analyse des données DR16 dans deux bins en redshift. Mais ces deux bins ne sont pas suffisant pour estimer l'évolution des paramètres Ly α dans la gamme en redshift 1.9 < z < 3.6. Afin d'estimer $b_{\rm eff,Ly\alpha}(z)$ et $\beta_{\rm Ly\alpha}(z)$ dans cette gamme, nous avons produit l'analyse des données DR16 dans quatres bins en redshift. De manière à limiter les potentielles systématiques, nous nous limitons à l'analyse de la fonction de corrélation $Ly\alpha(Ly\alpha)\times Ly\alpha(Ly\alpha)$ (abrégée en Ly $\alpha \times$ Ly α dans la suite de ce chapitre). Pour constituer chacun des bins en redshift, nous pourions séparer les paires de pixels selon leur redshift effectif. Cependant, à cause de l'ajustement du continuum, cette stratégie induit des corrélations parasites lorsqu'une forêt se trouve dans deux bins en redshift à la fois. Pour palier ce problème, nous divisons l'échantillon de forêts selon le redshift des quasars (voir Appendice B de Agathe et al. (2019)). Les quatres intervales choisis pour construire les bins en redshift des quasars sont [0;2,35], [2,35;2,65], [2,65;3,05] et [3,05;10]. Dans chacun des bins, nous calculons la fonction de corrélation $Ly\alpha \times Ly\alpha$, ainsi que la matrice de distorsion et la matrice des métaux. Enfin, nous procédons à l'ajustement des quatres fonctions de corrélation. Le modèle utilisé pour cet ajustement est le même que celui utilisé pour l'analyse des données finale d'eBOSS (**prov**), il est présenté dans la section ??. Le modèle est ajusté pour $10 \le r \le 180 \,h^{-1}$ Mpc. Chacune des fonctions de corrélation est ajustée au redshift effectif de la mesure. Ces redshifts sont $z_1 = 2,136$, $z_2 = 2,276$, $z_3 = 2,551$ et $z_4 = 2,914$.

La figure 1.1 présente la fonction de corrélation et le meilleur ajustement du modèle dans chacun des bins en redshift. Les différents graphiques montrent les différents bins en redshift. Dans chaque graphique, la fonction de corrélation est affichée dans plusieurs bins en μ . Le tableau 1.1 donne le résultat de l'ajustement dans chacun des bins en redshift. Une fois cette analyse produite, et toujours dans le but d'obtenir $b_{\rm eff,Ly\alpha}(z)$ et $\beta_{\rm Ly\alpha}(z)$ pour 1,9 < z < 3,6, nous ajustons les paramètres Ly α mesurés dans les données par une loi de puissance. La figure ?? donne les mesures $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ dans les quatre bins en redshift, ainsi que l'ajustement fait sur ces quatres points. Pour le biais effectif, nous obtenons $b_{\rm eff,Ly\alpha}(z) \propto (1+z)^{\gamma}$ avec $\gamma = 3,474 \pm 0,025$. Pour le paramètre RSD, nous obtenons $\beta_{\rm Ly\alpha}(z) \propto (1+z)^{\gamma}$ avec $\gamma = -2,32 \pm 1,97$. Ces deux ajustements sont utilisés comme référence pour l'ajustement des paramètres des mocks (section ??). Ils sont extrapolés de z = 1,9 jusqu'à z = 3,6.

1.2 Stabilité des paramètres Ly α

Après avoir produit les ajustements présentés dans la section précédente, nous avons cherché à savoir si la mesure des paramètres Ly α était fiable. Nous avons d'abord regardé la corrélation des pa-

FIGURE 1.1 – Fonctions de corrélation $Ly\alpha \times Ly\alpha$ dans chacun des bins en redshift de l'analyse. Les courbes en trait plein donne le meilleur ajustement du modèle obtenu avec picca. Chaque graphique correspond à un bin en redshift. Pour chacun des bins, la fonction de corrélation et l'ajustement sont montrés dans quatre bins en μ .

FIGURE 1.2 – Mesure des paramètres $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ dans les données DR16. Les mesures sont faites dans quatre bins en redshift, indiquées par les points. La ligne en pointillés donne le meilleur ajustement d'une loi de puissance.

TABLE 1.1 – Résultats de l'ajustement fait avec picca des fonctions de corrélation $\text{Ly}\alpha \times \text{Ly}\alpha$ calculées sur les données DR16. Chaque colonne donne le résultat de l'ajustement d'un bin en redshift. La dernière colonne donne le résultat de l'ajustement de la corrélation moyennée sur ces quatre bins en redshift. La première section du tableau donne les paramètres du modèle qui sont ajustés. La seconde donne le χ^2 et le redshift effectif z_{eff} . Le nombre de bins sur lesquels le modèle est ajusté est $N_{bin}=1590$. Le modèle comporte 13 paramètres libres. Enfin, la dernière section donne le biais et le biais effectif du $\text{Ly}\alpha$. Ils sont reliés aux paramètres $b_{\eta,\text{Ly}\alpha}$ et $\beta_{\text{Ly}\alpha}$ par les équations ?? et ??.

Paramètre	0 < z < 2,35	2,35 < z < 2,65	2,65 < z < 3,05	3,05 < z < 10	0 < z < 10
	0 < 2 < 2,50	2,50 < 2 < 2,00	2,00 \ 2 \ 3,00	3,00 < 2 < 10	
$lpha_{\parallel}$	1.063 ± 0.066	1.019 ± 0.041	1.029 ± 0.072	1.12 ± 0.081	1.047 ± 0.034
$lpha_{\perp}^{"}$	1.063 ± 0.108	0.965 ± 0.057	1.016 ± 0.058	0.926 ± 0.072	0.98 ± 0.042
$b_{\eta, \mathrm{Ly}\alpha}$	-0.1796 ± 0.0058	-0.1938 ± 0.0053	-0.2237 ± 0.0084	-0.2929 ± 0.0187	-0.1998 ± 0.0039
$\beta_{ m Lylpha}$	2.094 ± 0.21	1.711 ± 0.133	1.427 ± 0.138	1.265 ± 0.194	1.633 ± 0.087
$10^3 b_{n, SiII(1190)}$	-1.83 ± 1.1	-3.66 ± 0.68	-2.8 ± 1.01	0.36 ± 1.64	-3.02 ± 0.51
$10^{3}b_{n,\text{SiII}(1193)}$	-4.83 ± 1.1	-1.94 ± 0.69	-0.79 ± 0.97	-2.13 ± 1.72	-2.07 ± 0.5
$10^{9}b_{\eta, \text{SiII}(1260)}$	-3.38 ± 1.33	-1.97 ± 0.8	-1.32 ± 1.05	0.9 ± 1.79	-2.16 ± 0.63
$10^{6}b_{\eta, SiIII(1207)}$	-7.87 ± 1.1	-4.52 ± 0.75	-2.11 ± 1.05	-2.89 ± 1.74	-4.59 ± 0.52
$10^3 b_{\eta,CIV(\text{eff})}$	-4.77 ± 2.54	-5.15 ± 2.64	-5.06 ± 2.62	-5.02 ± 2.61	-5.12 ± 2.63
$b_{ m HCD}$	-0.0596 ± 0.007	-0.0452 ± 0.006	-0.0665 ± 0.01	-0.0228 ± 0.0218	-0.0521 ± 0.0045
$\beta_{ m HCD}$	0.551 ± 0.086	0.56 ± 0.086	0.508 ± 0.088	0.502 ± 0.09	0.603 ± 0.083
$10^2 A_{sky}$	1.585 ± 0.098	0.87 ± 0.082	0.729 ± 0.133	0.646 ± 0.338	0.947 ± 0.06
σ_{sky}	32.5 ± 1.8	31.6 ± 2.6	31.9 ± 4.3	34.1 ± 16.0	31.4 ± 1.7
χ^2	1568	1512	1681	1675	1602
$z_{ m eff}$	2.136	2.276	2.551	2.914	2.334
$b_{ m Ly}\alpha$	-0.0832 ± 0.0065	-0.1099 ± 0.0063	-0.1521 ± 0.0103	-0.2247 ± 0.023	-0.1187 ± 0.0046
$b_{ ext{eff,Ly}lpha}$	-0.1506 ± 0.0046	-0.1814 ± 0.0045	-0.2336 ± 0.0074	-0.3305 ± 0.0168	-0.1922 ± 0.0033

Table 1.2 – Corrélations des paramètres du modèle avec le paramètre $b_{\eta, Ly\alpha}$ et $\beta_{Ly\alpha}$ lors de l'ajustement de la fonction de corrélation $Ly\alpha \times Ly\alpha$. L'ajustement est fait sur l'addition des fonctions de corrélations calculées dans chaque bin en redshift, soit l'ensemble des données DR16.

Paramètre	$b_{\eta, \mathrm{Ly}\alpha}$	$\beta_{\mathrm{Ly}lpha}$
α_{\parallel}	0%	0%
$lpha_{\perp}^{\cdot\cdot}$	1%	-2%
$b_{\eta, { m Ly}lpha}$	100%	-87%
$eta_{ m Lylpha}$	-87%	100%
$10^{3}b_{\eta, \text{SiII}(1190)}$	2%	-8%
$10^3 b_{\eta, \text{SiII}(1193)}$	3%	-6%
$10^3 b_{\eta, \text{SiII}(1260)}$	-1%	-3%
$10^3 b_{\eta, \text{SiIII}(1207)}$	6%	5%
$10^3 b_{\eta,CIV(\text{eff})}$	-7%	-10%
$b_{ m HCD}$	48%	-75%
$eta_{ m HCD}$	35%	-23%
$10^2 A_{sky}$	34%	-19%
σ_{sky}	-10%	-2%

FIGURE 1.3 – Evolution des mesures des paramètres b_{HCD} et β_{HCD} en fonction de la valeur L_{HCD} choisie pour l'ajustement. Le biais des HCD est corrélé avec la valeur de L_{HCD} .

ramètres $b_{n,\text{Lv}\alpha}$ et $\beta_{\text{Lv}\alpha}$ avec les autres paramètres du modèle. Le tableau 1.5 présente ces corrélations. Premièrement, nous pouvons remarquer que les deux paramètres $Ly\alpha$ sont très anticorrélés entre eux. Deuxièmement, les paramètres du Ly α sont très corrélés avec ceux des HCD, notament $\beta_{\rm Ly}$ qui est corrélé à -75% avec b_{HCD} . Ceci pose plusieurs problèmes : d'abord, la modélisation des HCD choisie dans **prov** et utilisée ici consiste à identifier puis masquer les HCD avec $\log n_{\rm HI} > 20,3$, les HCD non masqués étant pris en compte par le terme F_{HCD} (voir section ??). Cependant, l'algorithme utilisé ne possède pas une efficacité de 100 % (#prov ref papier solene). Des HCD avec une grande densité de colonne ne sont donc pas masqués. Ces HCD produisent des absorptions intenses, non prises en compte par le terme F_{HCD} , ce qui a pour effet d'augmenter le biais du Ly α . De plus, le paramètre effectif $L_{\rm HCD}$ est fixé à $10\,h^{-1}$ Mpc car il est corrélé avec les autres paramètres. Sa valeur, qui dépend de la distribution des HCD non masqués, est difficile à déterminer. Du fait des corrélations avec les autres paramètres, les paramètres des HCD obtenus dépendent de la valeur de $L_{\rm HCD}$ choisie. La figure 1.3 montre la dépendance de b_{HCD} et β_{HCD} avec L_{HCD} . A cause des corrélations entre les paramètres liés aux HCD et ceux liés au Ly α , le fait de changer L_{HCD} change aussi les paramètres Ly α obtenus. La figure 1.4 montre la dépendance de $b_{\text{eff,Ly}\alpha}$ et $\beta_{\text{Ly}\alpha}$ avec L_{HCD} . Ainsi, le paramètre RSD $\beta_{\text{Ly}\alpha}$ est très corrélé avec $L_{
m HCD}$. Lorsque nous laissons libre $L_{
m HCD}$, en utilisant un prior gaussien centré sur $10\,h^{-1}\,\mathrm{Mpc}$ et avec une largeur $\sigma=1\,h^{-1}\,\mathrm{Mpc}$, nous mesurons une corrélation entre L_{HCD} et $\beta_{\mathrm{Ly}\alpha}$ de -38%. Lorsque $L_{\rm HCD}$ est laissé totalement libre, il est corrélé, en valeur absolue, à plus de 85% avec les paramètres $b_{\text{eff,Ly}\alpha}$, $\beta_{\text{Ly}\alpha}$, b_{HCD} et $b_{\eta,\text{SiIII}(1207)}$.

Enfin, le modèle des HCD choisi influence la mesure des paramètres $Ly\alpha$. Toujours dans le but d'avoir une mesure robuste des paramètres $Ly\alpha$, nous avons essayé d'utiliser un autre modèle pour les HCD, développé par Edmond Chaussidon et Julien Guy (modèle C-G). Nous détaillons l'analyse en utilisant ce modèle dans la section 2.3.

2 Etude de la modélisation des HCD

Suite aux différents points énoncés dans la section précédente, nous avons étudié l'effet qu'ont les HCD sur le Ly α dans les mocks. En effet, les mocks sont l'outil parfait pour ce genre d'analyse : ils permettent, contrairement aux données, de connaître la quantité de Ly α présente, et de comparer cette quantité à ce qui est mesuré par l'ajustement. De plus, nous connaissons le nombre et les distributions en z et en $\log n_{\rm HI}$ des HCD ajoutés dans les mocks, ce qui n'est pas le cas des données. Dans cette section, nous comparons les paramètres Ly α mesurés dans les mocks sans HCD (raw mocks, eboss-0.0) et avec HCD (eboss-0.2 et eboss-0.3

FIGURE 1.4 – Evolution des mesures des paramètres $b_{\text{eff,Ly}\alpha}$ et $\beta_{\text{Ly}\alpha}$ en fonction de la valeur L_{HCD} choisie pour l'ajustement. Le paramètre RSD du Ly α est très corrélé avec la valeur de L_{HCD} .

#prov). Nous comparons aussi les paramètres ${\rm Ly}\alpha$ mesurés en utilisant différentes modélisations des HCD.

2.1 Comparaison des mocks

Comme expliqué dans le chapitre $\ref{eq:constraint}$, nous avons analysé 30 réalisations des raw mocks, des mocks eboss-0.0 et des mocks eboss-0.2. Dans chacun des cas, nous ajustons le modèle sur $20 < r < 180\,h^{-1}$ Mpc, et mesurons les paramètres Ly α . La figure $\ref{eq:constraint}$ présente les mesures de ces paramètres dans chaque bin en redshift pour chacune des versions des mocks. Nous pouvons remarquer que les valeurs des paramètres Ly α mesurés changent selon la version des mocks. Les paramètres mesurés dans les raw mocks sont très proches des paramètres visés, mesurés dans les données DR16. Ceci montre que la procédure d'ajustement des paramètres des mocks que nous avons mise en place est efficace pour obtenir les bons $b_{\rm eff,Ly}$ et $\beta_{\rm Ly}$.

Lorsque nous comparons maintenant les valeurs de $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ mesurées dans les raw mocks à celle mesurées dans les mocks eboss-0.0, nous observons un écart statistiquement significatif. L'effet sur $\beta_{\rm Ly\alpha}$ est faible, et les valeurs de $\beta_{\rm Ly\alpha}$ mesurées dans les mocks eboss-0.0 restent compatibles avec les données DR16. Cependant, l'effet sur le biais effectif $b_{\rm eff,Ly\alpha}$ est important (de l'ordre de 5 %) et statistiquement significatif. Il semble que la matrice de distorsion ne prenne pas totalement en compte l'ajout du continuum et du bruit par quickquasars et l'ajustement du continuum dans l'analyse.

Enfin, nous observons un écart entre les valeurs de $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ mesurées dans les mocks eboss-0.0 et eboss-0.2. L'écart mesuré pour $b_{\rm eff,Ly\alpha}$ est comparable à celui mesuré entre les mocks eboss-0.0 et les raw mocks. L'écart mesuré sur $\beta_{\rm Ly\alpha}$ est plus important. Les valeurs obtenues dans l'ajustement des mocks eboss-0.2 ne sont pas compatibles avec celles mesurées dans les données DR16. Comme expliqué dans la section 1.2, les paramètres ${\rm Ly}\alpha$ sont très corrélés avec ceux des HCD, en particulier avec $L_{\rm HCD}$ qui est fixé à $10~h^{-1}$ Mpc. Dans un premier temps, nous étudions si en changeant $L_{\rm HCD}$, nous obtenons des mesures des paramètres ${\rm Ly}\alpha$ compatibles dans les mocks eboss-0.0 et eboss-0.2. Pour ce faire, nous ajustons la corrélation ${\rm Ly}\alpha\times{\rm Ly}\alpha$ estimée à partir des 30 réalisations des mocks eboss-0.2 et moyennée dans les quatre bins en redshift. Cet ajustement est fait en fixant les paramètres ${\rm Ly}\alpha$ aux valeurs obtenues lors de l'ajustement des mocks eboss-0.0 et en laissant libre le paramètre $L_{\rm HCD}$. Puis dans un second temps, nous ajustons de nouveau les mocks eboss-0.2 en utilisant la valeur de $L_{\rm HCD}$ obtenue avec l'ajustement précédent. Le tableau 1.3 résume les ré-

TABLE 1.3 – Résultats des ajustements de l'auto-corrélation $\text{Ly}\alpha \times \text{Ly}\alpha$ estimée sur 30réalisations des mocks et moyennée sur les quatre bins en redshift. La première ligne donne l'ajustement des mocks eboss-0.0. La deuxième donne l'ajustement des mocks eboss-0.2 comme décrit dans la section ??. La troisième ligne donne le même ajustement que la deuxième mais avec les paramètres $\text{Ly}\alpha$ fixés et L_{HCD} libre. Enfin la dernière ligne donne le même ajustement que la deuxième mais en utilisant la valeur de L_{HCD} obtenue dans l'ajustement de la troisième ligne. Le paramètre L_{HCD} est donné en h^{-1} Mpc.

version	$b_{ ext{eff,Ly}lpha}$	$\beta_{ m Ly} _{lpha}$	$b_{ m HCD}$	$eta_{ m HCD}$	$L_{ m HCD}$	$\chi^2 \left(n_{dof} \right)$
eboss-0.0	-0.1956 ± 0.0002	1.687 ± 0.008				1562 (1570)
eboss-0.2	-0.2044 ± 0.0007	1.548 ± 0.014	-0.0080 ± 0.0010	0.487 ± 0.089	10	1573 (1568)
eboss-0.2 & Ly α fixé	-0.1956	1.687	-0.0174 ± 0.0005	0.174 ± 0.048	4.38 ± 0.47	1591 (1569)
eboss-0.2 & $L_{HCD} = 4.38$	-0.1984 ± 0.0015	1.596 ± 0.023	-0.0127 ± 0.0017	0.464 ± 0.089	4.38	1576 (1568)

sultats de ces ajustements. Comme le suggère la figure 1.4, la valeur de $L_{\rm HCD}$ obtenue dans l'ajustement des mocks eboss-0.2 avec les paramètres lya fixés est plus faible que $10\ h^{-1}$ Mpc. Réduire cette valeur permet d'obtenir un biais ${\rm Ly}\alpha$ plus faible et un paramètre RSD ${\rm Ly}\alpha$ plus grand. Cependant, lorsque nous relâchons les paramètres ${\rm Ly}\alpha$ et utilisons $L_{\rm HCD}=4,38\ h^{-1}$ Mpc, les paramètres ${\rm Ly}\alpha$ que nous obtenons ne sont toujours pas en accord avec ceux mesurés dans les mocks eboss-0.0. En effet, l'ajustement fait avec les paramètres ${\rm Ly}\alpha$ fixés préfère une valeur de $\beta_{\rm HCD}$ plus faible pour compenser la valeur plus importante de $\beta_{\rm Ly}\alpha$. Nous avons esayé de produire un autre ajustement dans lequel, en plus des paramètres ${\rm Ly}\alpha$, nous fixons $\beta_{\rm HCD}=0,487$. Mais lorsque nous relâchons ces paramètres et utilisons la nouvelle valeur de $L_{\rm HCD}$ obtenue, le problème se déplace sur $b_{\rm HCD}$. Ainsi, nous n'arrivons pas à produire un ajustement des mocks eboss-0.2 dans lequel les mesures des paramètres ${\rm Ly}\alpha$ sont en accord avec les mesures faites sur les mocks eboss-0.0.

2.2 Effet du masquage des HCD

Dans l'analyse des mocks eboss-0.2, comme pour les données, les HCD pour lesquels $\log n_{\rm HI} > 20.3$ sont masqués lors du calcul des δ_F . Comme expliqué dans la section 1.2, le masquage des HCD dans les données s'effectue selon le résultat de l'agorithme d'identification. Les HCD identifiés avec $\log n_{\rm HI} > 20.3$ sont masqués. Dans le cas des mocks, les HCD sont masqués à partir du "vrai" catalogue. Nous étudions ici l'effet du masquage à partir du catalogue produit par l'algorithme d'identification. Pour ce faire, nous produisons l'analyse d'une réalisation de mock eboss-0.2, pour laquelle nous utilisons l'algorithme d'identification pour créer un catalogue de HCD. Le champ δ_F est calculé en masquant les HCD identifiés par l'algorithme, puis la fonction de corrélation $Ly\alpha \times Ly\alpha$ est estimée dans les quatre bins en redshift utilisés jusqu'ici. Nous nommons cette analyse eboss-0.2_finder. La figure 1.5 présente la fonction de corrélation Ly $\alpha \times \text{Ly}\alpha$ estimée à partir de la même réalisation des mocks, en version eboss-0.0, eboss-0.2 et eboss-0.2 finder. Les fonctions de corrélation affichées sont la moyenne des fonctions de corrélation estimées dans les quatre bins en redshift. Dans les trois versions, le code quickquasars utilise les mêmes quasars pour produire les spectres synthétiques, et ajoute le même bruit à ces spectres dans les trois cas. Ceci nous permet d'avoir les mêmes fluctuations statistiques dans le calcul de la corrélation $Ly\alpha \times Ly\alpha$, et ainsi d'avoir des mesures de biais comparables. L'effet des HCD (avec $17.2 < \log n_{\rm HI} < 20.3$) est visible en comparant la corrélation montrée en rouge à celle montrée en bleu. Comme expliqué dans la section ??, l'effet principal des HCD est d'augmenter le biais effectif. Par ailleurs, le fait que l'effet des HCD soit légèrement plus important sur la corrélation de la version eboss-0.2 que sur celle de la version eboss-0.2_finder suggère que l'algorithme identifie et masque les HCD pour lesquels $\log n_{\rm HI} > 20.3$, et identifie une petite partie des HCD avec $\log n_{\rm HI} < 20.3$ et les reconstruit avec $\log n_{\rm HI} > 20.3$. Ceci a

FIGURE 1.5 – Fonctions de corrélation Ly $\alpha \times$ Ly α estimées à partir d'une réalisation des mocks eboss-0.0 (bleu), eboss-0.2 (rouge) et eboss-0.2_finder (vert). La version eboss-0.2_finder correspond aux mocks eboss-0.2, dans lesquels les HCD ont été masqués en utilisant le catalogue de HCD produit par l'algorithme d'identification. Le graphique de gauche montre les corrélations dans quatre gammes en μ . Ces gammes sont, de haut en bas : $0\mu0.5$, $0.5\mu0.8$, $0.8\mu0.95$ et $0.95\mu1$. Le graphique de droite montre les corrélations moyennées sur $0 < \mu < 1$.

TABLE 1.4 – Résultat de l'ajustement de la corrélation $Ly\alpha \times Ly\alpha$ estimées à partir d'une réalisation des mocks eboss-0.0, eboss-0.2 et eboss-0.2_finder. La version eboss-0.2_finder correspond aux mocks eboss-0.2, dans lesquels les HCD ont été masqués en utilisant le catalogue de HCD produit par l'algorithme d'identification.

version	$b_{\mathrm{eff,Ly}lpha}$	$\beta_{ m Lylpha}$	$b_{ m HCD}$	$\beta_{ m HCD}$
eboss-0.0	-0.1970 ± 0.0009	1.641 ± 0.039		
eboss-0.2	-0.1979 ± 0.0038	1.578 ± 0.069	-0.0201 ± 0.0053	0.499 ± 0.090
eboss-0.2_finder	-0.1951 ± 0.0039	1.592 ± 0.074	-0.0186 ± 0.0054	0.494 ± 0.091

pour effet de masquer des HCD qui ne possèdent pas une densité de colonne supérieure à 20,3. Ceci est confirmé par la figure 1.6, qui compare la densité de colonne $\log n_{\rm HI}$ trouvée par le finder (output) à la densité de colonne des HCD des mocks (input). Nous voyons sur cette figure que l'algorithme a tendance à surestimer $\log n_{\rm HI}$, ce qui est en accord avec nos observations. Notons par ailleurs que l'algorithme d'identification possède une efficacité de 90 % pour $\log n_{\rm HI} > 20,3$. L'effet de ces HCD non identifiés avec $\log n_{\rm HI} > 20,3$ est donc plus faible que l'effet des HCD dont le $\log n_{\rm HI}$ est surestimé. Ceci s'explique par le faible nombre de HCD avec $\log n_{\rm HI} > 20,3$.

Le tableau 1.4 donne les résultats des ajustements des trois corrélations présentées sur la figure 1.5. La statistique d'une seule réalisation n'est pas suffisante pour identifier des potentielles systématiques. Cependant, la précision de la mesure des paramètres $\text{Ly}\alpha$ dans les données DR16 étant comparable à celle des mocks eboss-0.2, les potentielles systématiques sont inférieures à l'erreur statistique sur cette mesure. Il serait tout de même intéressant de mener cette analyse sur un plus grand nombre de réalisations.

2.3 Modélisation alternative des HCD

Toujours dans l'optique de tester la robustesse de la mesure des paramètres $Ly\alpha$, nous avons utilisé une modélisation des HCD différente de celle décrite dans la section ?? et utilisée jusqu'ici pour modéliser les mocks et les données. Ce modèle est développé par Edmond Chaussidon et Julien Guy,

FIGURE 1.6 – Densité de colonne $\log n_{\rm HI}$ trouvée par le finder (logNHI output) en fonction de la densité de colonne des HCD des mocks (logNHI input). Cette comparaison est produite par Jim Rich et Solène Chabannier, du groupe cosmologie du CEA, à l'aide des mocks.

au sein du groupe Ly α de la collaboration DESI. Nous faisons référence à ce modèle via le nom modèleC-G. Le modèle des HCD décrit dans la section ?? est dénommé modèle de Rogers. Le modèle C-G, contrairement au modèle de Rogers, n'a pas besoin de masquer les HCD identifiés par l'algorithme. Il prend en compte les effets sur les corrélations $Ly\alpha \times Ly\alpha$ et $Ly\alpha \times QSO$ produits par l'ensemble des HCD dans les données. Les deux modèles utilisent la modélisation définie dans l'équation ??. Cependant, dans le cas du modèle C-G, plutôt que de définir F_{HCD} comme une fonction exponentielle avec une paramètre L_{HCD} qui reflète la taille caractéristique des HCD non masqués (équation ??), la fonction F_{HCD} est calculée en prenant en compte la distribution en $\log n_{\rm HI}$ des HCD présents dans les données. L'avantage de cette méthode est qu'elle n'utilise pas le paramètre effectif L_{HCD} . Elle permet donc de modéliser des distributions de HCD avec une plus grande gamme en $\log n_{\rm HI}$, là où le modèle de Rogers, utilisé pour analyser les données DR16, ne fonctionne plus très bien. De plus, le modèle C-G permet de s'affranchir des potentiels systématiques produites par l'utilisation de l'algorithme de détection. Cependant, afin de calculer le terme $F_{\rm HCD}$ correspondant à la distribution de HCD présents, nous devons justement connaître cette distribution. Si cela est possible pour les mocks, ce n'est pas possible pour les données, car nous ignorons la distribution en $\log n_{\rm HI}$ des HCD pour lesquels $\log n_{\rm HI} < 20,3$. Ainsi, lorsque nous analysons les données DR16 avec le modèle C-G, nous supposons que la distribution de HCD dans les données est celle du modèle pyigm, utilisée dans les mocks.

Nous comparons ici les résultats de l'ajustement des fonctions de corrélation obtenues à partir des données et des mocks en utilisant la modélisation des HCD de Rogers, aux résultats obtenus en utilisant le modèle C-G. Premièrement, nous comparons l'ajustement des fonctions de corrélation estimées à partir du champ δ_F où les HCD ont été masqués. Ceci nous permet de faire une comparaison directe des deux modèles ajustés sur les mêmes fonctions de corrélation. Le terme $F_{\rm HCD}$ que nous utilisons ici est le terme $F_{\rm HCD}$ calculé à partir de la distribution des HCD des mocks pour lesquels $\log n_{\rm HI} < 20,3$.

TABLE 1.5 – Corrélations des paramètres du modèle avec le paramètre $b_{\eta,Ly\alpha}$ et $\beta_{Ly\alpha}$ lors de l'ajustement de la fonction de corrélation $Ly\alpha \times Ly\alpha$ en utilisant le modèle C-G. L'ajustement est fait sur l'addition des fonctions de corrélation calculées dans chaque bin en redshift, soit l'ensemble des données DR16.

Paramètre	$b_{\eta, \mathrm{Ly}\alpha}$	$\beta_{\mathrm{Ly}\alpha}$
α_{\parallel}	-1%	1 %
$lpha_{\perp}^{"}$	1%	-2%
$b_{\eta, { m Ly}lpha}$	100%	-61%
$eta_{ m Lylpha}$	-61%	100%
$10^{3}b_{\eta, \text{SiII}(1190)}$	-2%	-21%
$10^3 b_{\eta, \text{SiII}(1193)}$	-2%	-16%
$10^3 b_{\eta, \text{SiII}(1260)}$	-2%	-11%
$10^3 b_{\eta, \text{SiIII}(1207)}$	4%	-28%
$10^3 b_{\eta,CIV(\text{eff})}$	-5%	-7%
$b_{ m HCD}$	35%	-91%
$\beta_{ m HCD}$	78%	-49%
$10^2 A_{sky}$	29%	-12%
σ_{sky}	-15%	-7%

La figure 1.7 montre la mesure des paramètres $b_{\rm eff,Ly\alpha}$, $\beta_{\rm Ly\alpha}$, $b_{\rm HCD}$ et la somme $b_{\rm Ly\alpha}+b_{\rm HCD}$ sur l'autocorrélation issues des données et des mocks eboss-0.2, en utilisant le modèle de Rogers et le modèle C-G. Sur cette figure, nous pouvons remarquer que l'ajustement des mocks avec le modèle de Rogers et l'ajustement avec le modèle C-G donnent des mesures de $b_{\rm eff,Ly\alpha}$, $\beta_{\rm Ly\alpha}$ et $b_{\rm HCD}$ très similaires. De plus, la somme $b_{\rm Ly\alpha}+b_{\rm HCD}$ est identique. Ceci est rassurant car la somme $b_{\rm Ly\alpha}+b_{\rm HCD}$ donne l'amplitude de la fonction de corrélation. La corrélation ajustée étant la même, nous nous attendons à mesurer la même somme $b_{\rm Ly\alpha}+b_{\rm HCD}$. En ce qui concerne les données, les mesures de $b_{\rm eff,Ly\alpha}$ et $b_{\rm HCD}$ en utilisant le modèle de Rogers ou le modèle C-G ne sont pas compatibles. Les sommes $b_{\rm Ly\alpha}+b_{\rm HCD}$ dans ces deux cas ne sont pas identiques mais restent compatibles. Ainsi, les proportions de HCD et de Ly α mesurés avec le modèle de Rogers et le modèle C-G ne sont pas les mêmes. Nous pouvons aussi remarquer que les barres d'erreurs liées à la mesure des paramètres, notamment celles de $\beta_{\rm Ly\alpha}$, sont bien plus importantes dans le cas du modèle C-G. Ceci vient du fait que les paramètres Ly α sont davantage corrélés avec ceux des HCD. Le modèle C-G a donc davantage de mal à faire la distinction entre la contribution du Ly α et celle des HCD.

Le fait que l'ajustement des mocks avec le modèle de Rogers et le modèle C-G donne des résultats compatibles est rassurant, car dans les deux cas, c'est la même corrélation qui est ajustée. Cependant, le fait que les résultats des ajustements dans le cas des données ne soient pas compatibles suggère qu'il y a quelque chose de non identifié dans les données, et qui est pris en parti en compte par la modélisation des HCD, notamment par le modèle C-G. Ce dernier point est appuyé par le fait que le χ^2 dans l'ajustement de la corrélation moyennée sur les quatres bins en redshift avec le modèle C-G est 15 points plus bas que celui obtenu dans l'ajustement avec le modèle de Roger.

Nous comparons maintenant la mesure des paramètres $Ly\alpha$ faite sur la corrélation $Ly\alpha \times Ly\alpha$, où les HCD sont masqués, ajustée avec le modèle de Rogers, à la mesure faite sur la corrélation $Ly\alpha \times Ly\alpha$, où aucun HCD n'est masqué, ajustée avec le modèle C-G. Pour ce faire, nous estimons la corrélation $Ly\alpha \times Ly\alpha$ sur 10 réalisations eboss-0.2 où les HCD ne sont pas masqués lors du calcul du champ δ_F . La figure 1.8 présente la comparaison des deux modèles pour les données et les mocks eboss-0.2. Sur cette figure, nous avons ajouté la mesure faite sur les mocks eboss-0.0, afin

FIGURE 1.7 – Mesure des paramètres $b_{\rm eff,Ly\alpha}$ (haut gauche), $\beta_{\rm Ly\alpha}$ (haut droite), $b_{\rm HCD}$ (bas gauche) et $b_{\rm Ly\alpha} + b_{\rm HCD}$ (bas droite) sur l'auto-corrélation ${\rm Ly}\alpha \times {\rm Ly}\alpha$ estimée à partir des données DR16 et des mocks eboss-0.2. Les données sont ajustées avec le modèle de Rogers (orange) et le modèle C-G (rouge). Les mocks sont ajustés avec le modèle de Rogers (bleu) et le modèle C-G (vert). Les points verts sont décalés des points bleus de $\Delta z = 5 \times 10^{-3}$ pour des raisons de visibilité. Idem pour les points rouges et jaunes.

FIGURE 1.8 – Mesure des paramètres $b_{\rm eff,Ly\alpha}$ (gauche) et $\beta_{\rm Ly\alpha}$ (droite) sur l'auto-corrélation ${\rm Ly\alpha}\times{\rm Ly\alpha}$. Les données représentées sont : les données DR16 avec les HCD masqués et ajustées avec le modèle de Rogers (bleu), les données DR16 sans masquage des HCD et ajustées avec le modèle C-G (vert), les mocks eboss-0.2 avec masquages des HCD et ajustés avec le modèle de Rogers (jaune) et les mocks eboss-0.2 sans masquage des HCD et ajustés avec le modèle C-G (rouge). A titre de comparaison, la mesure sur les mocks eboss-0.0 est représentée en gris. Les points jaunes et gris sont mesurés sur la corrélation moyennée sur 30 réalisations. Les points rouges sont mesurés sur la corrélation moyennée sur 10 réalisations. Les points verts sont décalés des points bleus de $\Delta z = 5 \times 10^{-3}$ pour des raisons de visibilité. Les points gris, jaunes et rouges sont décalés de la même manière.

de pouvoir comparer les valeurs de $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ obtenues dans l'ajustement des mocks eboss-0.2 à la valeur obtenue sans HCD. Nous pouvons noter que, dans le cas des mocks, l'écart entre le modèle de Roger (jaune) et le modèle C-G (rouge) est un peu plus important que dans la comparaison faite sur la figure 1.7. Les mesures de $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ faites sur les mocks eboss-0.2 sans masquage des HCD avec le modèle C-G (rouge) sont presque compatibles avec les mesures faites sur les mocks eboss-0.0 (gris). En ce qui concerne les données, au contraire l'écart entre le modèle C-G (vert) et le modèle de Rogers (bleu) est moins important que dans la comparaison faite sur la figure 1.7. Nous ne comprenons pas vraiment cela.

Nous avons aussi pu vérifier que ces deux modèles, lorsqu'ils sont ajustés sur les mocks eboss-0.0, mesurent une quantité de HCD compatible avec 0. Par ailleurs, dans une étude préliminaire au choix des paramètres Ly α à utiliser pour construire les mocks, nous étudions comment ces deux modèles se comportent lorsque nous augmentons la quantité de HCD. Pour ce faire, à partir d'une même réalisation des mocks, nous produisons deux versions de quickquasars eboss-0.2 : l'une avec le catalogue de HCD standard, l'autre avec un catalogue contenant 3 fois plus de HCD. Dans ces deux versions, les HCD qui vérifient $\log n_{\rm HI} > 20.3$ sont masqués. Afin de faciliter la comparaison des résultats, nous utilisons le même sous-échantillon de quasars pour produire les spectres synthétiques et calculer la corrélation Ly $\alpha \times$ Ly α à partir de ces deux versions. Puis, nous ajustons la fonction de corrélation $Ly\alpha \times Ly\alpha$, estimées à partir de ces deux versions, avec le modèle de Rogers et le modèle C-G. Le paramètre b_{HCD} étant proportionnel au nombre de HCD, nous nous attendons à mesurer un biais trois fois plus grand dans la réalisation possédant trois fois plus de HCD. Cependant, ce n'est pas ce que nous observons. Le tableau 1.6 résume ces mesures. Comme observé précédemment, pour une même version, les mesures de $b_{\rm HCD}$ faites avec le modèle de Rogers ou le modèle C-G ne sont pas compatibles. De plus, pour un même modèle, nous remarquons que b_{HCD} mesuré dans la version contenant 3 fois plus de HCD n'est pas compatible avec 3 fois le biais des HCD mesuré dans l'autre

Table 1.6 – Mesures des paramètres $b_{\rm eff,Ly\alpha}$, $\beta_{\rm Ly\alpha}$ et $b_{\rm HCD}$ à partir de l'auto-corrélation ${\rm Ly}\alpha\times{\rm Ly}\alpha$ estimée sur une réalisation des mocks eboss-0.2, où les HCD avec $\log n_{\rm HI} > 20,3$ ont été masqués. La première section donne les mesures faites avec le modèle de Rogers, et la seconde celles faites avec le modèle C-G. Le détail de chaque ajustement est donné dans le texte.

Version	$b_{ ext{eff,Ly}lpha}$	$\beta_{ m Lylpha}$	$b_{ m HCD}$	$\beta_{ m HCD}$
Rogers & $3\times HCD$ Rogers & $3\times HCD$ & Ly α fixé	$-0.1910 \pm 0.0020 \\ -0.2095 \pm 0.0025 \\ -0.1910$	1.561 ± 0.039 1.295 ± 0.039 1.561	$-0.0167 \pm 0.0030 \\ -0.0296 \pm 0.0037 \\ -0.0555 \pm 0.0017$	0.509 ± 0.089 0.514 ± 0.087 0.465 ± 0.061
C-G C-G & $3\times$ HCD C-G & $3\times$ HCD & Ly α fixé	-0.1704 ± 0.0058 -0.1713 ± 0.0071 -0.1704	1.752 ± 0.096 1.561 ± 0.110 1.752	$-0.0327 \pm 0.0062 \\ -0.0598 \pm 0.0077 \\ -0.0651 \pm 0.0014$	0.487 ± 0.089 0.477 ± 0.087 0.277 ± 0.040

version. Le biais des HCD mesuré dans la version contenant 3 fois plus de HCD est sous-estimé. Ceci a pour effet de réduire la mesure de $\beta_{\text{Ly}\alpha}$. Nous pouvons toute fois noter que le modèle C-G produit des mesures de $b_{\text{eff,Ly}\alpha}$ compatibles dans ces deux versions, ce qui n'est pas le cas du modèle de Rogers.

Enfin, nous regardons si en fixant les paramètres Ly α , nous obtenons un biais des HCD compatible avec 3 fois le biais des HCD mesuré dans la version standard. Nous faisons ce test pour le modèle de Rogers et pour le modèle C-G. Le résultat de ces ajustements est donné dans le tableau 1.6 (voir les lignes "3×HCD & Ly α fixé"). Similairement aux ajustements présentés dans le tableau 1.3, fixer les paramètres Ly α ne résout pas les tensions observées. Pour le modèle de Rogers, le fait de fixer les paramètres Ly α est compensé par un biais des HCD trop grand. Nous attendons $b_{\text{HCD}} \sim -0.045$ et mesurons $b_{\text{HCD}} \sim -0.0555 \pm 0.0017$. Dans le modèle C-G, c'est le paramètre β_{HCD} qui compense les paramètres Ly α fixés. Ainsi, aucun des modèles n'est capable d'identifier correctement les quantités relative de HCD dans deux versions de mocks.

2.4 Mieux comprendre les HCD

Afin de comprendre pourquoi les deux modèles discutés dans la section précédente ont beaucoup de mal à distinguer la contribution des HCD de celle du Ly α , nous avons essayé de comprendre l'effet des HCD sur les fonctions de corrélation. La figure 1.9 présente les différentes composantes du modèle ajusté sur l'auto-corrélation Ly $\alpha \times \text{Ly}\alpha$ estimée à partir des données DR16. Ce modèle est présenté dans la section ??. Sur cette figure, la ligne bleue donne le modèle de Kaiser, c'est à dire la fonction de corrélation obtenue à partir du spectre de puissance P_{QL} (équation ??) et multiplié par le facteur de Kaiser $b_{\text{eff,Ly}\alpha}^2(1+\beta_{\text{Ly}\alpha}\mu^2)$. La ligne verte donne le modèle de Kaiser multiplié par le terme $F_{\text{NL}}^{\text{autp}}$ qui prend en compte les non-linéarités aux petites échelles. La ligne orange donne le modèle précédent auquel la contribution des HCD a été ajoutée (équation ??). La ligne rouge donne le modèle précédent plus la contribution des métaux et la ligne violette donne le modèle complet. L'auto-corrélation Ly $\alpha \times \text{Ly}\alpha$ estimée à partir des données DR16 est représentée par les points noirs. La figure 1.10 donnent ces mêmes modèles non multipliés par la matrice de distorsion. Nous pouvons remarquer sur ces figures que les HCD ont un effet très similaire à un biais plus important. Ceci est d'autant plus vrai lorsque les modèles sont multipliés par la matrice de distorsion (figure 1.9). Cela explique en partie la dégénérescence entre les paramètres Ly α et ceux des HCD.

Nous avons ensuite regardé l'effet des différentes gammes de $\log n_{\rm HI}$ des HCD sur la fonction de corrélation ${\rm Ly}\alpha\times{\rm Ly}\alpha$. Pour ce faire, à partir de la même réalisation des mocks, nous avons produit cinq versions eboss-0.2. Dans chacune de ces versions, nous ajoutons les HCD avec une valeur de $\log n_{\rm HI}$

FIGURE 1.9 – Les différentes composantes du modèle ajusté sur l'auto-corrélation $Ly\alpha \times Ly\alpha$ des données DR16. Elles sont décrites dans le texte. Les points noirs donnent l'estimation de la corrélation $Ly\alpha \times Ly\alpha$ des données DR16.

Figure 1.10 – bla

FIGURE 1.11 – Fonctions de corrélation Ly $\alpha \times$ Ly α estimée à partir d'une réalisation. Chaque couleur donne la densité de colonne $\log n_{\rm HI}$ utilisée pour générer les HCD. Le détail est donné dans le texte. Le graphique de gauche montre les corrélations dans quatre gammes en μ . Ces gammes sont, de haut en bas : $0 < \mu < 0.5, \ 0.5 < \mu < 0.8, \ 0.8 < \mu < 0.95$ et $0.95 < \mu < 1$. Le graphique de droite montre les corrélations moyennées sur $0 < \mu < 1$.

fixe. Ces valeurs pour les six versions sont $\log n_{\rm HI} \in [17,6;18,2;18,8;19,4;20]$. Les nombres relatifs de HCD entre ces versions suit la distribution en $\log n_{\rm HI}$ utilisée pour construire le catalogue standard de HCD (présentée sur la >figure ??). La distribution en z utilisée est trois fois plus importante que dans le catalogue standard afin d'avoir suffisamment de HCD.

La figure 1.11 présente les fonctions de corrélation $\text{Ly}\alpha \times \text{Ly}\alpha$ pour les différentes versions des mocks décrites précédemment. Pour simplifier les comparaisons, nous n'utilisons pas de bins en redshift, les fonctions de corrélation sont donc calculées sur l'ensemble des quasars. La ligne bleue foncée donne la corrélation pour les mocks eboss-0.0 (sans HCD). La ligne violette donne la corrélation pour les mocks eboss-0.2 incluant les HCD avec $17,2 < \log n_{\text{HI}} < 20,3$. Les autres couleurs donnent les corrélations pour les mocks eboss-0.2 incluant des HCD avec une valeur fixe en $\log n_{\text{HI}}$. Nous pouvons voir sur cette figure que les HCD qui ont le plus grand effet sur la fonction de corrélation sont les HCD avec une grande densité de colonne, malgé leur nombre plus restreint. L'effet causé par les HCD avec une densité de colonne de 17,6, 18,2et 18,8 est similaire : la faible densité de colonne est compensée par le nombre plus important de HCD.

Nous étudions maintenant comment le modèle de Rogers et le modèle C-G se comportent lorsque nous ajustons les mocks contenant des HCD avec une densité de colonne fixée. Dans chacun des ajustements, nous devons utilser pour chaque modèle un terme $F_{\rm HCD}$ adéquat aux HCD présents. En ce qui concerne le modèle de C-G, le code picca permet de calculer le terme $F_{\rm HCD}$ pour une distribution en $\log n_{\rm HI}$ données. Nous calculons donc $F_{\rm HCD}$ pour chacune des valeurs de $\log n_{\rm HI}$. Pour le modèle de Rogers, la forme de $F_{\rm HCD}$ est fixée (voir équation ??). Il nous suffit, pour chaque valeur de $\log n_{\rm HI}$, de trouver la valeur de $L_{\rm HCD}$ à utiliser. Mais ceci n'est pas chose aisée. Dans l'analyse DR16, $L_{\rm HCD}$ est choisie de manière approximative à $10 \, h^{-1}$ Mpc, car il n'influence peu la mesure des paramètres BAO. Mais comme nous l'avons vu à plusieurs reprises, $L_{\rm HCD}$ influence grandement la mesure des paramètres Ly α . Nous devons donc le choisir avec précaution.

Nous déterminons L_{HCD} de deux façons différentes. La première consiste à choisir, pour chaque valeur de $\log n_{\text{HI}}$, une valeur de L_{HCD} qui reproduise le comportement de $F_{\text{HCD}}(k)$ dans la gamme $k > 0.3 \, h \, \text{Mpc}^{-1}$, c'est à dire pour des échelles supérieures à $r \sim 10 \, h^{-1} \, \text{Mpc}$. Les valeurs de L_{HCD} que nous obtenons pour $\log n_{\text{HI}} \in [17.6;18.2;18.8;19.4;20]$ sont [0.28;0.60;1.2;2.4;4.8]. La figure ??

FIGURE 1.12 – Les fonctions $F_{\rm HCD}$ utilisées dans le cadre du modèle C-G (lignes continues) ou du modèle de Rogers (lignes tiretées) pour différentes valeurs de $\log n_{\rm HI}$.

présente les fonctions $F_{\rm HCD}(k)$ ainsi obtenus. Les lignes continues donnent les fonctions $F_{\rm HCD}(k)$ calculées par picca. Ce sont les fonctions utilisées dans le cadre du modèle de C-G. Les lignes tiretées donnent les termes $F_{\rm HCD}(k)$ pour le modèle de Rogers, c'est à dire $F_{\rm HCD}(k) = \exp(-L_{\rm HCD}k)$. Pour chaque valeur de $\log n_{\rm HI}$, les fonctions $F_{\rm HCD}$ sont similaires dans les deux modèles, par construction. Aussi, la figure présente les fonctions $F_{\rm HCD}$ obtenues pour la distribution 17,2 < $\log n_{\rm HI}$ 20,3 (en rose). Afin de reproduire le comportement de $F_{\rm HCD}(k)$ dans la gamme $k > 0,3\,h$ Mpc⁻¹, nous choisissons $L_{\rm HCD} = 3\,h^{-1}$ Mpc, ce qui est loin des $10\,h^{-1}$ Mpc utilisés jusqu'à présent. Ceci explique les différences que nous observons lorsque nous ajustons les mocks ou les données avec le modèle C-G ou avec le modèle de Rogers en utilisant $L_{\rm HCD} = 10\,h^{-1}$ Mpc.

La seconde méthode consiste à calculer, pour chaque valeur de $\log n_{\rm HI}$, le profil de Voigt correspondant à l'absorption causée par un HCD avec cette densité de colonne. Une fois ces profils de Voigt calculés, nous choisissons $L_{\rm HCD}$ comme étant la largeur à mi-hauteur de ces profils. Les valeurs de $L_{\rm HCD}$ que nous obtenons de cette manière pour $\log n_{\rm HI} \in [17,6;18,2;18,8;19,4;20]$ sont [2;3;4;8;16]. Aussi, nous estimons le $L_{\rm HCD}$ effectif correspondant à la distribution $17,2 < \log n_{\rm HI}20,3$: nous calculons la moyenne des largeurs à mi-hauteur pondérée par le nombre de HCD pour chaque densité de colonne (voir figure ??). Ceci nous donne un $L_{\rm HCD}$ effectif de $11,5\,h^{-1}$ Mpc.

Nous pouvons remarquer que les valeurs de $L_{\rm HCD}$ obtenues avec la première méthode ne sont pas compatibles avec celles obtenues avec la seconde. Nous utilisons les valeurs de $L_{\rm HCD}$ obtenues avec ces deux méthodes pour réaliser les ajustements des mocks contenant des HCD avec une densité de colonne fixe. Nous ajustons aussi ces mocks avec le modèle C-G. La mesure des paramètres $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ faites avec ces ajustements est présentée sur la figure 1.13. L'ajustement avec le modèle C-G est montré en rouge. L'ajustement avec le modèle de Rogers et en utilisant $L_{\rm HCD}$ déterminée par la première méthode est donné en orange (que nous appelons Rogers 1). L'ajustement avec le modèle de Rogers et $L_{\rm HCD}$ déterminée avec la seconde méthode est montré en violet (que nous appelons Rogers 2). Aussi, nous donnons les paramètres Ly α mesurées sur la même réalisation, mais sans y avoir ajouté de HCD. Cette mesure est représentée par la line horizontale bleue. Les pointillés bleus

FIGURE 1.13 – Mesures des paramètres $b_{\text{eff,Ly}\alpha}$ et $\beta_{\text{Ly}\alpha}$ dans les mocks possédant des HCD avec une colonne de densité fixe. Le détail des modèles utilisés et donné dans le texte.

donnent les erreurs à $\pm 1\sigma$. Nous pouvons remarquer premièrement que le paramètre $\beta_{\rm Ly\alpha}$ n'est pas du tout contraint pour les faibles densités de colonne lorsque nous utilisons le modèle C-G et le modèle Rogers 1. Nous pensons que ceci vient du fait que les profils $F_{\rm HCD}$ sont trop étroits dans l'espace réel. Lorsque nous diminuons $r_{\rm min}$ à $10\,h^{-1}$ Mpc lors de l'ajustement, cela améliore les constraintes sur $\beta_{\rm Ly\alpha}$. Par ailleurs, nous pouvons remarquer que le modèle C-G et le modèle Rogers 1 produisent des mesures très similaires. Ceci est attendu car les fonctions $F_{\rm HCD}(k)$ utilisées dans ces deux modèles sont très similaires pour $k>0,3\,h$ Mpc⁻¹. Enfin et surtout, aucun de ces modèles ne produit une mesure en accord avec les paramètres Ly α mesurés dans les mocks eboss-0.0. Si ces modèles ne parviennent pas à distinguer l'effet du Ly α de l'effet des HCD possédant une densité de colonne fixe, alors il y a peu d'espoirs qu'ils parviennent à le faire lorsque les HCD sont distribués dans une large gamme en log $n_{\rm HI}$.

Le dernier test que nous présentons consiste à fixer les paramètres Ly α lors de l'ajustement des modèles décrits dans le paragraphe précédent sur les mocks qui possédent des HCD avec une densité de colonne fixe, et ajuster le paramètre $L_{\rm HCD}$. Puis, refaire l'ajustement avec le modèle de Rogers en relâchant les paramètres Ly α et en utilisant la valeur de $L_{\rm HCD}$ obtenue précédemment. La figure 1.14 présente la mesure de $L_{\rm HCD}$ lorsque les paramètres Ly α sont fixés (points roses). A titre de comparaison, nous représentons les valeurs de $L_{\rm HCD}$ obtenues avec la première et la seconde méthode, et utilisées respectivement dans les modèles Rogers 1 et Rogers 2. Nous pouvons remarquer que le modèle de Rogers lorsqu'il est ajusté sur les mocks avec les HCD possédant la plus faible densité de colonne donne des mesures de $L_{\rm HCD}$ bien plus grandes que lorsqu'il est ajusté sur les mocks avec les HCD possédant une grande densité de colonne. Nous ne comprenons pas cet effet.

Finalement, nous utilisons les valeurs de $L_{\rm HCD}$ obtenues avec la méthode précédente pour ajuster les mocks avec le modèle de Rogers. La figure 1.15 présente les mesures de $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ produites de cette façon. Nous pouvons remarquer que, contrairement au cas des mocks où les HCD sont distribués dans une large gamme en $\log n_{\rm HI}$ (voir section 2.1), le fait d'ajuster au préalable $L_{\rm HCD}$ puis d'utiliser le modèle de Rogers avec le $L_{\rm HCD}$ obtenu pour mesurer les paramètres ${\rm Ly}\alpha$ produit des mesures en accord avec les mocks eboss-0.0. Cependant, ceci est nuancé par le fait que les barres d'erreurs sont bien plus grande ici que dans le cas de l'ajustement des 30 réalisations des mocks eboss-0.2.

FIGURE 1.14 – Evolution du paramètre $L_{\rm HCD}$ en fonction de la densité de colonne. Le détail est donné dans le texte.

FIGURE 1.15 – Mesures des paramètres $b_{\rm eff,Ly\alpha}$ et $\beta_{\rm Ly\alpha}$ dans les mocks contenant des HCD avec une densité de colonne fixe (points roses). La mesure des paramètres ${\rm Ly}\alpha$ dans les mocks eboss-0.0 est représentée par la line horizontale bleue. Les pointillés donnent les erreurs à $\pm 1\sigma$. Les détails de l'ajustement sont donnés dans le texte.

Bibliographie

AGATHE, Victoria de Sainte et al. (2019). « Baryon acoustic oscillations at z=2.34 from the correlations of Lyman alpha absorption in eBOSS DR14 ». In : DOI : 10.1051/0004-6361/201935638. arXiv : 1904.03400.