Daniel Subocz 154777 Mateusz Stencel 149110 Adam Dzierżawski 136929 Marcin Bieszk 160232

Roboty mobilne

Sprawozdanie z projektu

1. Wstęp

W realizowanym projekcie skonstruowano robota jeżdżącego, na pokładzie którego zamontowano akcelerometr oraz żyroskop w celu zebrania informacji o położeniu i orientacji robota. Komunikacja z robotem została zrealizowana poprzez moduł radiowy. Zebrane dane zostały przetworzone w środowisku Matlab. Budowa robota oraz wyniki obliczeń zostaną przedstawione w niniejszym sprawozdaniu.

Rysunek 1. Robot.

Rysunek 2. Nadajnik.

2. Konstrukcja robota

a) Czujniki [1]

W robocie wykorzystano moduł MPU-6050. Zawiera on 3-osiowy żyroskop oraz 3-osiowy akcelerometr. Wskład modułu wchodzi również czujnik temperatury, lecz nie jest on wykorzystywany w tym projekcie. Podczas pomiarów temperatura była stała. Na rysunku 3. przedstawiono wygląd modułu MPU-6050.

Rysunek 3. Płytka modułu 6050.

Żyroskop umożliwia pomiar prędkości obrotu. Wykorzystywany układ zawiera 3 niezależne żyroskopy służące do pomiaru obrotu dla każdej z osi X, Y i Z.

Akcelerometr służy do pomiaru przyspieszenia. Podobnie jak w przypadku żyroskopu w układzie zastosowano 3 akcelerometry, po jednym dla każdej z osi X, Y oraz Z.

Na rysunku 4 przedstawiono układ współrzędnych wykorzystany w module MPU-6050.

Rysunek 4. Układ współrzędnych modułu MPU-6050.

b) Komunikacja [2]

Do komunikacji robota ze stacją Arduino wykorzystano moduł radiowy nRF24L01. Zawiera nadajnik i odbiornik pracujący na częstotliwości 2,4 GHz.Wygląd modułu przedstawiono na rysunku 5.

Rysunek 5. Moduł radiowy nRF24L01.

3. Sterowanie

Operator steruje robotem za pomocą joysticka umieszczonego przy nadajniku. Kąt oraz kierunek wychylenia gałki jest przekształcany przez przetwornik do postaci cyfrowej, a następnie przesyłany za pomocą modułu radiowego. Informacja odebrana przez moduł znajdujący się w robocie jest przekazywana do Arduino.

Do sterowania silnikami wykorzystywane są wyjścia PWM (pozwalające na modulację szerokości impulsów), przez które sygnał sterujący trafia do wzmacniaczy. Za każdy z silników odpowiedzialne są dwa wzmacniacze. W zależności od pożądanego kierunku ruchu (a zatem odpowiadającym mu kierunkom obrotów silnika) sygnały przesyłane są na odpowiednie wyjścia.

Informacja o położeniu robota w przestrzeni jest otrzymywana poprzez akcelerometr i żyroskop. Dane z nich przesyłane są do operatora poprzez kanał modułu radiowego.

4. Filtr komplementarny [3]

Ideą filtru komplementarnego jest wykorzystanie kilku źródeł informacji (czujników) obarczonych różnym rodzajem zakłóceń. Głównym kryterium podziału zakłóceń jest częstotliwość ich występowania. Każdy pomiarjest filtrowany, a następnie sumowany z innymi, dając informację o badanym parametrze.

Kąt był estymowany za pomocą filtru komplementarnego korzystając ze wzoru:

$$\alpha_{k} = p\alpha_{k-1} + (1-p)\alpha_{k}^{A} + p(\alpha_{k}^{G} - \alpha_{k-1}^{G})$$

- α_k oznacza estymowany kąt,
- α_{k-1} oznacza estymowany kąt w poprzednim obiegu pętli,
- α_k^A oznacza kąt wyznaczony z akcelerometru,
- α_k^G oznacza kąt wyznaczony z żyroskopu.

$$p = \frac{T}{\Lambda t + T}$$

- T jest stałą czasową elementu inercyjnego i określa dynamikę filtru,
- Δt oznacza jeden okres próbkowania.

Dane z akcelerometru w pliku data.txt przedstawiają pomiar kolejno dla osi x, y ,z. Podczas pomiaru robot poruszał się tak, jak zostało to zaprezentowane w pliku Film.avi. Podczas jazdy robot jest lekko pochylony. Akcelerometr na robocie został zamontowany pionowo, układ współrzędnych został przedstawiony na rysunku poniżej.

Rysunek 6. Układ współrzędnych akcelerometru.

Na podstawie pomiarów z akcelerometru i żyroskopu dokonano estymacji orientacji robota poprzez wyznaczenie kątów przechylenia, pochylenia i odchylenia. Pomiar z żyroskopu został scałkowany, natomiast z danych z akcelerometru kąty obliczono za pomocą wzorów^[4]:

- przechylenie: $\varphi = \operatorname{atan2}(a_z, a_y)$ obrót względem osi x,
- pochylenie: $\theta = \text{atan2}(-a_x, \sqrt{a_z^2 + a_y^2})$ obrót względem osi z,
- odchylenie: $\psi = 0$ obrót względem osi y.

Robot poruszał się w kierunku osi x.

Poniższe wykresy przedstawiają estymowane kąty dla T = 0.3.

Wartość kąta przechylenia jest w przybliżeniu równa 0, co wiąże się z tym, że robot poruszał się na dwóch jednakowych kołach i nie "bujał się" na boki.

Wartość kąta pochylenia wynosi kilka stopni (wartości ujemne), gdyż robot jest lekko pochylony do tyłu. Można tu zauważyć wpływ zakłóceń żyroskopu – od 12 s do 14 s robot nie porusza się, a mimo to wartość mierzona przez żyroskop maleje.

Wyznaczenie kąta ψ – kąt odchyleniajest wyznaczany tylko na podstawie kąta wyliczanego z całkowania prędkości kątowej wokół osi pionowej (Y). Równanie opisujące działanie filtru dla kąta ψ ma następującą postać^[4]:

$$\psi_k = p \psi_{k-1} + \; (1-p) \psi_k^A + \; p (\psi_k^G - \psi_{k-1}^G)$$

Wartość kąta ψ^G wyznaczona z pomiaru żyroskopu w osi Y robota:

$$\psi_k^G = \psi_{k-1}^G + g_{Yk} \Delta t$$

Ze względu na zastosowanie akcelerometru bez magnetometru nie można wyznaczyć wielkości ψ^A , gdyż poniższe równanie wymaga pomiarów z magnetometru^[4]:

$$\psi = \operatorname{atan}\left(\frac{m_y \sin \phi - m_z \cos \phi}{m_x \cos \theta + m_y \sin \phi \sin \theta + m_z \cos \phi \cos \theta}\right)$$

Gdzie m_x, m_y, m_z oznaczają pomiary z magnetometru.

Na poniższym rysunku przedstawiono przebieg wartości kata ψ :

Wartości otrzymane z obliczeń zgadzają się z rzeczywistością. Na filmie widać, że robot najpierw wykonuje niepełny obrót w lewo (ok. 300 stopni), następnie obrót w prawo, a potem jedzie lekko na lewo względem kierunku startu, a na końcu cofa. Skręt w lewo oznacza na wykresie wzrost wartości kąta ψ , a skręt w prawo – spadek wartości tego kąta.

5. Bibliografia

- 1. https://www.mschoeffler.de/2017/10/05/tutorial-how-to-use-the-gy-521-module-mpu-6050-breakout-board-with-the-arduino-uno/?fbclid=IwAR1b4nwctzE7MN69sv8sQ6Hz9cEpuNamm4CjHQWHaZxuYZGf0z2r41AdSrU (data dostępu 29.12.2018)
- 2. https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/?fbclid=IwAR2TgYz_7AKmRegPGXhLKy8uoDyBC4oRMnuNGZOJC40nlX4D24kpoXRiclU (data dostępu 29.12.2018)
- 3. Grygiel R., Bieda R., Wojciechowski K.: *Metody wyznaczania kątów z żyroskopów dla filtru komplementarnego na potrzeby określania orientacji IMU, Przegląd Elektrotechniczny*, ISSN 0033-2097, R. 90 NR 9/2014.
- 4. Bieda R. Wyznaczanie orientacji IMU w przestrzeni 3D z wykorzystaniem macierzy tensora rotacji oraz niestacjonarnego filtru Kalmana, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 89 NR 12/2013. https://www.researchgate.net/profile/Robert_Bieda/publication/289714998_Det ermining_the_IMU_orientation_in_3D_space_using_tensor_matrix_rotation_a

nd_non-

stationary_Kalman_filter/links/586ab8d508ae8fce4918e609/Determining-the-IMU-orientation-in-3D-space-using-tensor-matrix-rotation-and-non-stationary-Kalman-filter.pdf