Ejercicio 9 Relación 1

Manuel Vicente Bolaños Quesada

Es cierto que de un número n_0 en adelante se tiene que $100^n < n!$; encuéntrelo y demuestre por inducción lo dicho a partir de ese número n_0 .

Las series de Taylor nos dicen que

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad \forall x \in \mathbb{R}$$

luego, para $n \in \mathbb{N}$ se tiene que

$$e^{n} = 1 + n + \frac{n^{2}}{2} + \dots + \frac{n^{n}}{n!} + \dots > \frac{n^{n}}{n!}$$

así que $n! > \left(\frac{n}{e}\right)^n$. Por tanto, para $n = 272 = \lceil 100e \rceil$ se tiene

$$n! > \left(\frac{n}{e}\right)^n > \left(\frac{100e}{e}\right)^n = 100^n$$

Sea ahora $P = \{n \in \mathbb{N} : n! > 100^n\}$. Acabamos de ver que $272 \in P$. Supongamos que $n \in P$, con $n \ge 272$, y demostremos que $n + 1 \in P$.

$$(n+1)! = n!(n+1) > 100^n(n+1) > 100^n \cdot 100 = 100^{n+1}$$

luego $n+1 \in P$, tal y como queríamos. Concluimos, por el principio de inducción, que de n=272 en adelante se tiene que $100^n < n!$.