Signal Processing Summary

Mathematical Notes

October 27, 2025

Contents

1	Discrete-Time Signals					
	1.1	Basic Definitions				
	1.2	Elementary Signals				
	1.3	Signal Properties				
2	Line	ear Time-Invariant Systems				
	2.1	System Properties				
	2.2	Impulse Response				
	2.3	System Properties from Impulse Response				
3	Discrete Fourier Transform 4					
	3.1	Definition				
	3.2	DFT Properties				
	3.3	Fast Fourier Transform				
4	Z-T	ransform 4				
	4.1	Definition				
	4.2	Region of Convergence				
	4.3	Z-Transform Properties				
	4.4	Inverse Z-Transform				
5	Dig	ital Filters				
	5.1	FIR Filters				
	5.2	IIR Filters				
	5.3	Filter Design				
6	Free	quency Response				
	6.1	Definition				
	6.2	Magnitude and Phase				
	6.3	Filter Types				
7	Sampling Theory					
	7.1	Nyquist-Shannon Sampling Theorem				
	7.2	Aliasing				
	7.3	Anti-aliasing Filter				

			6
8.1 Downsampling			. 6
8.2 Upsampling			. 6
8.3 Rational Sampling Rate Conversion			. 7
Adaptive Filters			7
9.1 Least Mean Squares (LMS)			. 7
Statistical Signal Processing			7
10.1 Power Spectral Density			. 7
· ·			
Image Processing			8
			. 8
Compression			8
Applications			8
Important Algorithms			ç
Implementation Considerations			10
-			. 10
15.2 Computational Complexity			. 10
Key Theorems			10
			. 10
Important Transforms			10
•			
17.3 Karhunen-Loève Transform			
	8.2 Upsampling 8.3 Rational Sampling Rate Conversion Adaptive Filters 9.1 Least Mean Squares (LMS) 9.2 Recursive Least Squares (RLS) Statistical Signal Processing 10.1 Power Spectral Density 10.2 Wiener Filter Image Processing 11.1 2D Discrete Fourier Transform 11.2 Image Filtering Compression 12.1 Lossless Compression 12.2 Lossy Compression 12.3 Lossy Compression 12.4 Lossy Compression 13.1 Communication Systems 13.2 Audio Processing 13.3 Biomedical Signal Processing 13.4 Radar and Sonar Important Algorithms 14.1 Fast Convolution 14.2 Filter Banks 14.3 Wavelets Implementation Considerations 15.1 Finite Wordlength Effects 15.2 Computational Complexity Key Theorems 16.1 Parseval's Theorem 16.2 Convolution Theorem 16.3 Modulation Theorem 16.3 Modulation Theorem Important Transforms 17.1 Discrete Cosine Transform 17.2 Walsh-Hadamard Transform	8.1 Downsampling 8.2 Upsampling 8.3 Rational Sampling Rate Conversion Adaptive Filters 9.1 Least Mean Squares (LMS) 9.2 Recursive Least Squares (RLS) Statistical Signal Processing 10.1 Power Spectral Density 10.2 Wiener Filter Image Processing 11.1 2D Discrete Fourier Transform 11.2 Image Filtering Compression 12.1 Lossless Compression 12.1 Lossless Compression 12.2 Lossy Compression Applications 13.1 Communication Systems 13.2 Audio Processing 13.3 Biomedical Signal Processing 13.4 Radar and Sonar Important Algorithms 14.1 Fast Convolution 14.2 Filter Banks 14.3 Wavelets Implementation Considerations 15.1 Finite Wordlength Effects 15.2 Computational Complexity Key Theorems 16.1 Parseval's Theorem 16.2 Convolution Theorem 16.3 Modulation Theorem 16.3 Modulation Theorem 16.3 Modulation Theorem 16.4 Upsicrete Cosine Transform 17.1 Discrete Cosine Transform 17.1 Discrete Cosine Transform 17.2 Walsh-Hadamard Transform	8.1 Downsampling 8.2 Upsampling 8.3 Rational Sampling Rate Conversion Adaptive Filters 9.1 Least Mean Squares (LMS) 9.2 Recursive Least Squares (RLS) Statistical Signal Processing 10.1 Power Spectral Density 10.2 Wiener Filter Image Processing 11.1 2D Discrete Fourier Transform 11.2 Image Filtering Compression 12.1 Lossless Compression 12.2 Lossy Compression 12.2 Lossy Compression 13.1 Communication Systems 13.2 Audio Processing 13.3 Biomedical Signal Processing 13.4 Radar and Sonar Important Algorithms 14.1 Fast Convolution 14.2 Filter Banks 14.3 Wavelets Implementation Considerations 15.1 Finite Wordlength Effects 15.2 Computational Complexity Key Theorems 16.1 Parseval's Theorem 16.2 Convolution Theorem 16.3 Modulation Theorem 16.3 Modulation Theorem 16.4 Important Transforms 17.1 Discrete Cosine Transform 17.2 Walsh-Hadamard Transform

1 Discrete-Time Signals

1.1 Basic Definitions

Definition 1.1. A discrete-time signal is a sequence x[n] where $n \in \mathbb{Z}$ is the discrete time index.

Definition 1.2. A signal is **causal** if x[n] = 0 for n < 0.

Definition 1.3. A signal is **finite-length** if x[n] = 0 for n < 0 and $n \ge N$.

1.2 Elementary Signals

- Unit impulse: $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$
- Unit step: $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$
- Complex exponential: $e^{j\omega_0 n}$
- Sinusoid: $\cos(\omega_0 n + \phi)$

1.3 Signal Properties

Definition 1.4. A signal is **periodic** with period N if x[n] = x[n+N] for all n.

Definition 1.5. The energy of a signal is $E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2$.

Definition 1.6. The **power** of a periodic signal with period N is $P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$.

2 Linear Time-Invariant Systems

2.1 System Properties

Definition 2.1. A system is linear if $T[ax_1[n] + bx_2[n]] = aT[x_1[n]] + bT[x_2[n]]$.

Definition 2.2. A system is **time-invariant** if T[x[n-k]] = y[n-k] for any k.

2.2 Impulse Response

Definition 2.3. The impulse response of an LTI system is $h[n] = T[\delta[n]]$.

Theorem 2.1 (Convolution Sum). For an LTI system with impulse response h[n], the output is:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

3

2.3 System Properties from Impulse Response

- Causal: h[n] = 0 for n < 0
- Stable: $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$
- **FIR**: Finite impulse response (finite length)
- IIR: Infinite impulse response (infinite length)

3 Discrete Fourier Transform

3.1 Definition

Definition 3.1. The **Discrete Fourier Transform** (DFT) of a length-N sequence x[n] is:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

Definition 3.2. The **Inverse DFT** is:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$

3.2 DFT Properties

• Linearity: DFT[ax[n] + by[n]] = aX[k] + bY[k]

• Circular shift: DFT[$x[(n-m)_N]$] = $X[k]e^{-j2\pi km/N}$

• Parseval's theorem: $\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$

• Circular convolution: $DFT[x[n] \otimes y[n]] = X[k]Y[k]$

3.3 Fast Fourier Transform

Theorem 3.1 (FFT Algorithm). The DFT can be computed in $O(N \log N)$ operations using the FFT algorithm.

4 Z-Transform

4.1 Definition

Definition 4.1. The **Z-transform** of a sequence x[n] is:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

4.2 Region of Convergence

Definition 4.2. The **Region of Convergence** (ROC) is the set of z values for which the Z-transform converges.

4

4.3 Z-Transform Properties

• Linearity: $\mathcal{Z}[ax[n] + by[n]] = aX(z) + bY(z)$

• Time shift: $\mathcal{Z}[x[n-k]] = z^{-k}X(z)$

 $\bullet \ \, \textbf{Convolution} \colon \, \mathcal{Z}[x[n]*y[n]] = X(z)Y(z)$

• Multiplication by $n: \mathcal{Z}[nx[n]] = -z \frac{dX(z)}{dz}$

4.4 Inverse Z-Transform

- Partial fraction expansion
- Power series expansion
- \bullet Contour integration: $x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$

5 Digital Filters

5.1 FIR Filters

Definition 5.1. A **Finite Impulse Response** filter has impulse response:

$$h[n] = \begin{cases} b_n & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

The system function is:

$$H(z) = \sum_{n=0}^{M} b_n z^{-n}$$

5.2 IIR Filters

Definition 5.2. An **Infinite Impulse Response** filter has system function:

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

The difference equation is:

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k]$$

5.3 Filter Design

- Window method for FIR filters
- Impulse invariance for IIR filters
- Bilinear transform for IIR filters
- Least squares design

6 Frequency Response

6.1 Definition

Definition 6.1. The **frequency response** of an LTI system is:

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

6.2 Magnitude and Phase

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{j\angle H(e^{j\omega})}$$

6.3 Filter Types

• Lowpass: Passes low frequencies, attenuates high frequencies

• Highpass: Passes high frequencies, attenuates low frequencies

• Bandpass: Passes frequencies in a specific band

• Bandstop: Attenuates frequencies in a specific band

7 Sampling Theory

7.1 Nyquist-Shannon Sampling Theorem

Theorem 7.1 (Sampling Theorem). A bandlimited signal with maximum frequency f_m can be perfectly reconstructed from its samples if the sampling rate $f_s \geq 2f_m$.

7.2 Aliasing

Definition 7.1. Aliasing occurs when the sampling rate is insufficient, causing high-frequency components to appear as low-frequency components.

7.3 Anti-aliasing Filter

An anti-aliasing filter is a lowpass filter applied before sampling to prevent aliasing.

8 Multirate Signal Processing

8.1 Downsampling

Definition 8.1. Downsampling by factor M: y[n] = x[Mn]

In frequency domain:

$$Y(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j(\omega - 2\pi k)/M})$$

8.2 Upsampling

Definition 8.2. Upsampling by factor L: $y[n] = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{otherwise} \end{cases}$

In frequency domain:

$$Y(e^{j\omega}) = X(e^{jL\omega})$$

6

8.3 Rational Sampling Rate Conversion

To change sampling rate by factor L/M:

- 1. Upsample by L
- 2. Filter to prevent aliasing
- 3. Downsample by M

9 Adaptive Filters

9.1 Least Mean Squares (LMS)

Definition 9.1. The LMS algorithm updates filter coefficients as:

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \mu e[n]\mathbf{x}[n]$$

where μ is the step size and e[n] is the error signal.

9.2 Recursive Least Squares (RLS)

Definition 9.2. The RLS algorithm minimizes the weighted least squares cost function:

$$J[n] = \sum_{i=0}^{n} \lambda^{n-i} |d[i] - \mathbf{w}^{T}[n]\mathbf{x}[i]|^{2}$$

where λ is the forgetting factor.

10 Statistical Signal Processing

10.1 Power Spectral Density

Definition 10.1. The power spectral density of a wide-sense stationary process is:

$$S_{xx}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} R_{xx}[m]e^{-j\omega m}$$

where $R_{xx}[m] = E[x[n]x^*[n-m]]$ is the autocorrelation function.

10.2 Wiener Filter

Definition 10.2. The **Wiener filter** minimizes the mean-square error between the desired signal and filter output.

For FIR Wiener filter:

$$\mathbf{w}_{\mathrm{opt}} = \mathbf{R}_{xx}^{-1} \mathbf{r}_{xd}$$

where \mathbf{R}_{xx} is the autocorrelation matrix and \mathbf{r}_{xd} is the cross-correlation vector.

11 Image Processing

11.1 2D Discrete Fourier Transform

Definition 11.1. The **2D DFT** of an $M \times N$ image f[m, n] is:

$$F[u,v] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi(um/M + vn/N)}$$

11.2 Image Filtering

• Spatial domain: Convolution with filter kernel

• Frequency domain: Multiplication with frequency response

• Edge detection: Sobel, Prewitt, Laplacian operators

• Smoothing: Gaussian, median filtering

12 Compression

12.1 Lossless Compression

• Huffman coding: Variable-length coding based on symbol probabilities

• Lempel-Ziv: Dictionary-based compression

• Predictive coding: Encode prediction errors

12.2 Lossy Compression

• Transform coding: DCT, wavelet transforms

• Quantization: Reduce precision of coefficients

• JPEG: DCT-based image compression

• MPEG: Motion-compensated video compression

13 Applications

13.1 Communication Systems

• Modulation and demodulation

• Channel equalization

• Error correction coding

• Synchronization

13.2 Audio Processing

- Speech recognition
- Audio compression (MP3, AAC)
- Noise reduction
- Echo cancellation

13.3 Biomedical Signal Processing

- ECG analysis
- EEG signal processing
- Medical image analysis
- Heart rate variability

13.4 Radar and Sonar

- Target detection
- Range and velocity estimation
- Beamforming
- Clutter suppression

14 Important Algorithms

14.1 Fast Convolution

- Overlap-add method
- Overlap-save method
- Use FFT for efficient computation

14.2 Filter Banks

- Analysis filter bank: Decompose signal into subbands
- Synthesis filter bank: Reconstruct signal from subbands
- Perfect reconstruction: Input equals output

14.3 Wavelets

- Continuous wavelet transform
- Discrete wavelet transform
- Wavelet packet decomposition
- Applications in compression and denoising

15 Implementation Considerations

15.1 Finite Wordlength Effects

- Quantization noise
- Overflow and underflow
- Limit cycles
- Coefficient sensitivity

15.2 Computational Complexity

• FIR filters: O(N) per output sample

• IIR filters: O(N) per output sample

• **FFT**: $O(N \log N)$ for length-N transform

• Convolution: O(NM) for length-N and length-M sequences

16 Key Theorems

16.1 Parseval's Theorem

Theorem 16.1.

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

16.2 Convolution Theorem

Theorem 16.2.

$$\mathcal{F}[x[n]*y[n]] = X(e^{j\omega})Y(e^{j\omega})$$

16.3 Modulation Theorem

Theorem 16.3.

$$\mathcal{F}[x[n]e^{j\omega_0 n}] = X(e^{j(\omega - \omega_0)})$$

17 Important Transforms

17.1 Discrete Cosine Transform

Definition 17.1. The **DCT** is defined as:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cos\left(\frac{\pi(2n+1)k}{2N}\right)$$

17.2 Walsh-Hadamard Transform

Definition 17.2. The **WHT** uses Walsh functions as basis functions and is computationally efficient.

17.3 Karhunen-Loève Transform

 $\textbf{Definition 17.3.} \ \ \text{The KLT} \ \text{is the optimal transform for decorrelating signals with known statistics.}$