

Black-Box / White-Box Tesztelés

Black-Box Tesztelés (Specifikáció alapú tesztelés)

Alapja

- Specifikáció alapján készülnek el a tesztesetek, nem látjuk a mögötte lévő kódot
- Adott bemenetre előre meghatározott kimeneteket határozunk meg
- A program futásakor a kimenetet össze hasonlítjuk az elvárt kimenettel

Black-Box tesztelési típusok

- Ekvivalencia Particionálás
- Határérték Analízis
- 3. Döntési Tábla
- 4. Állapot átmenet
- 5. Use Case

Ekvivalencia Particionálás

- Lecsökkenti a szükséges Tesztesetek számát
- Nagyobb csoportokba szervezzük az azonos inputtal vagy outputtal rendelkező teszteseteket Input Partíciók / Output partíciók
- Meghatározunk Valid Partíciókat és Nem Valid Partíciókat
 - Valid Equivalence Partitions
 - Non-valid Equivalence Partitions
- Minden partícióból csak 1-et választunk

Intervallum: [-100, 100]

Ekvivalencia Particionálás - Feladat

Van egy banki program ami különböző kamatozásokat nyújt nekünk a számlán lévő összeg után a következőképpen:

- 0.5% az első 100.000 Ft-ra.
- 1% a következő 100.000 Ft-ra.
- 1.5% az e feletti összegekre

- A számla legkisebb összege 0.
- 2. Csak egész számok halmazán gondolkodjunk

Ekvivalencia Particionálás - Feladat

- 1.]-∞, 0 [
- 2. [0, 100]
- 3.]100, 200]
- 4. [201, ∞ [

Határérték Analízis

- A meghatározott partíciók határait vizsgálja
- A maximum és a minimum értékei egy partíciónak a határai.
- A határértéke egy valid partíciónak a valid határérték
- A határértéke egy nem valid partíciónak a nem valid határérték
- Gyakran mondják az Ekvivalencia particionálás kibővítésének

Intervallum: [-100, 100]

Határérték Analízis - Feladat

Egy alkalmazást csak 18 év felettiek használhatnak. A regisztrációkor meg kell adni a kort, ahol azonnal le is vizsgáljuk, hogy regisztrálhat-e vagy sem.

Határérték Analízis - Feladat

- 1.]-∞, 17]
- 2. [18, ∞[

Állapot Átmenet

- Hasznos, ha bizonyos események az input változásával vannak triggerelve
- Ennek a tesztnek az alapja, az Állapot Átmenet Diagram
- Az egyes körök az állapotok, a köztük lévő vonalak az egyes átmeneteket az állapotok közt

Állapot Átmenet Diagram

Use Case

- A felhasználók és a rendszer high-level szintű közti kapcsolatot mutatja
- Célja a hibák felderítése a folyamatokban
- Minden Use Case-nek van:
 - <u>Preconditions</u>: Amelyeknek meg kell felelnie a Use Case elkezdéséhez
 - <u>Post-Conditions</u>: Use Case forgatókönyv sikeres lefutását követően az eredménye a rendszernek vagy a végső állapota.

White-Box Tesztelés

(Struktúra alapú tesztelés)

Háttere, alapja

- Alapja egy meghatározott struktúrája a tesztelt szoftvernek vagy rendszernek
- Komponens szinten: A szoftver komponens struktúráján alapul (utasítások, döntési pontok, ágak, utak)
- Integrációs szinten: A struktúra lehet például egy hívási fa, diagram, ahol a modulok más modulokat hívnak
- Rendszer szinten: A struktúra egy teljes menürendszer, üzleti folyamat, vagy weboldal

Lefedettség

- A lefedettség értelmezése a struktúra szintjével változik
- **Integrációs szinten:** a modulok és interfészek hány százaléka lett letesztelve
- Funkcionális szinten: hány százaléka lett a menü struktúrának letesztelve
- Rendszer szintű: Hány százaléka lett letesztelve az összes lehetséges útnak, egy üzleti folyamatra nézve

Kódlefedettség

A struktúrális tesztelés magába foglalja hogy a teszteseteinket magából a kódból (pszeudó kód) hozzuk létre.

A kódlefedettséghez 2 főbb struktúrális (whitebox) technikát használhatunk.

- Utasítások alapján: Utasítás tesztelés (és lefedettség)
- Döntések alapján: Döntés tesztelés (és lefedettség)

Pszeudo kód

```
let a = 5
    let b = 10
    let c = 7
    var MAX = 0
    if a > b {
9
        if a > c {
            MAX = a
10
        } else {
11
12
            MAX = c
13
14
    else if b > c {
        MAX = b
16
    } else {
        MAX = c
18
19
20
    print(MAX)
21
22
```

Folyamat gráf (flow chart)

Vezérlési folyamat ábra (control flow graph)

Utasítás tesztelés és lefedettség

- Célja: hogy minden utasítás legalább egyszer végre legyen hajtva
- Csak a futtatható utasítások számítanak
- Lefedettség = tesztelt utasítás / összes utasítás * 100%
- 100% utasítás lefedettség nem jelenti hogy mindent leteszteltünk (hiányzó else utasítás), de egy jó viszonyítási alapot ad.
- Alapvetően "gyenge" metrika ahhoz hogy megfelelő eredményeket produkáljon és csak ezt az egy módszert alkalmazzuk

Folyamatábra

- Leírja milyen sorrendben kell egy adott tevékenységet (feladatot elvégezni)
- Segíti az üzleti folyamatok megértését és elemzését

Folyamatábra készítésének lépései

- Bemenetek / kimenetek meghatározása
- Lépések meghatározása
- Lépések összekapcsolása
- Diagram helyességének ellenőrzése

Folyamatábra a tesztelésben

- Gráf előállítása a forráskódból (manuálisan vagy cél sw segítségével)
- Lefedettség (cél) meghatározása
- Tesztesetek meghatározása a gráf alapján
- Tesztesetek végrehajtása
- Eredmények kiértékelése és konklúziók levonása (lezárás, javítás..)

Mikor "kész" a tesztelés?

- Minden út a bemenettől a kimenetig legalább egyszer tesztelve lett
- Minden "statement" legalább egyszer tesztelve lett
- Minden döntési ág legalább egyszer tesztelve lett

Control flow graph

PATHS	DE	CISI	ONS		PROCESS LINKS			
	4	6	7	9	abcdefghijkln			
abcde	T	T			****			
abhkgde	F	T		F	** ** ** *			
abhlibcde	TF	T		T	***** ** *			
	$\mid T \mid$	TF	T		******			
abcdfjgde	$ \hat{T} $	TF	\boldsymbol{F}		***** * *			
abcdfmibcde	· 1	II'	ľ					

Ciklomatikus komplexitás

M = E - N + 2P

E = edges/link (1 élet jelöl)

N = nodes (statement - utasítás)

P = components

VAGY

M = D + 1

D = Decision node (döntési pont, melyből 1-nél több nyíl indul ki)

Döntési tesztelés és lefedettség

- Célja hogy a program döntési ágait tesztelje (futassa)
- Lefedettség = (letesztelt döntési kimenetelek száma/ összes lehetséges döntési kimenetel) x 100%
- 100% döntési lefedettség = 100% utasítás lefedettség (fordítva nem igaz else)

Döntési tábla

Felt	ételek	Sza	bályo	k						
F1	1. zh nines	Y	Y	Y	N	N	N	N	N	N
F2	1. $zh = 1$	N	N	N	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	N	N	N
F3	1. zh >= 2	N	N	N	N	N	N	\mathbf{Y}	\mathbf{Y}	Y
F4	2. zh nines	Y	N	N	\mathbf{Y}	N	N	\mathbf{Y}	N	N
F5	2. $zh = 1$	N	\mathbf{Y}	N	N	\mathbf{Y}	N	N	\mathbf{Y}	N
F6	2. zh >= 2	N	N	\mathbf{Y}	N	N	\mathbf{Y}	N	N	\mathbf{Y}
Tev	Tevékenységek									
T1	Helyből UV	X	X		X	X				
T2	Pót 2. zh			X						
T3	Átlagjegy felkerek.						X	X	X	X

Miért hasznos?

- Kompakt és struktúrált módon képes bemutatni az üzleti folyamatot
- Könnyebben kimutatja a hibákat (inkonzisztencia, vagy hiányzó kritérium)

Döntési tábla

- Általában 1 oszlop = 1 teszteset
- Oszlopok száma általában a feltételek négyzetével egyenlő
- Egyes esetek összevonhatóak, ha a feltétel "don't care"
- Egyforma oszlopok összevonhatóak
- Invalid (értelmetlen) kombinációk is előfordulhatnak, ezeket szintén törölni kell (pl vki senior és junior egyszerre ...stb)
- Minden oszlophoz tevékenység meghatározása (a követelményekből derül ki a tevékenység)
- Oszlopok elnevezése (R1, R2.. vagy kifejező elnevezés is lehet)

Példa

Egy vevő az ATM ből szeretne pénzt felvenni

Szabály az ATM ben, hogy csak akkor fizeti ki az összeget, ha a vevőnek van elegendő pénz a számláján (R1), **VAGY** a tranzakció jóvá lett hagyva (R2)

Feltételek	R1	R2	R3
Felvevendő összeg <= egyenleg	Т	F	F
Tranzakció jóváhagyva	-	Т	F
Tevékenységek			
Pénzfelvét jóváhagyva	Т	Т	F

Tesztesetek elkészítése

Feltételek	R1	R2	R3
Felvevendő összeg <= egyenleg	Т	F	F
Tranzakció jóváhagyva	_	Т	F
Tevékenységek			
Pénzfelvét jóváhagyva	Т	Т	F

Test case R1:

Egyenleg = 200

Kért összeg = 200

Elvárt eredmény: Pénzfelvét jóváhagyása

Test case R3:

Egyenleg = 100 Kért összeg = 200

"Hitel elutasítva"

Elvárt eredmény: Pénzfelvét megtagadva

Test case R2:

Egyenleg = 100 Kért összeg = 200

"Hitel jóváhagyva" *Elvárt eredmény:* Pénzfelvét jóváhagyása

Döntési Tábla - Feladat

Don't Care kategória

	Női köszöntő	Férfi Köszöntő	Női köszöntő évforduló	Férfi köszöntő évforduló	Női köszöntő szilveszter	Férfi köszöntő szilveszter
Hölgy a címzett?	Т	F	Т	F	T	F
Évforduló?	F	F	Т	Т	F	F
Szilveszter?	F	F	F	F	Т	Т
Napi SMS Férfi	N	Y	N	Y	N	N
Napi SMS Hölgy	Y	N	Y	N	N	N
Plusz 500 MB	N	N	Y	Y	N	N
BUÉK	N	N	N	N	Y	Y

Döntési Tábla - Feladat

Minden nap SMS küldés Hölgy vagy Férfiak számára külön megszólítással.

Ha évfordulója van, akkor + 500 MB net üzenetet is kap.

Ha Szilveszter van, akkor BUÉK üzenet küldése mindegy, hogy férfi vagy nő, viszont ebben az esetben napi köszöntőt nem küldünk!

Egyéb technikák

- **Entry/exit coverage** Minden lehetséges hívás és visszatérés meg lett hívva a függvényben?
- **Function coverage** Minden függvény meg lett hívva ami a kódbázisban van?
- Path coverage Minden lehetséges út be lett e járva a kód egy adott részén / moduljában. Az út lefedettség magába foglalja a döntési és utasítás lefedettséget és az belépési/kilépési lefedettséget.
- Loop coverage ...

Köszönjük a figyelmet!

Attrecto Zrt.
Attrecto Next Tech Digital Solutions

H-9024 Győr, Wesselényi str. 6. info@attrecto.com

