Course Project, Spring 2016

Cluster-State Quantum Computing

Mayra Amezcua, Dileep V. Reddy, Zach Schmidt

May 25, 2016

CIS410/510 Introduction to Quantum Information Theory

Lecturer: Prof. Xiaodi Wu

Computer and Information Science, University of Oregon

Table of Contents (optional frame. Can delete.)

- Motivation
 - Gates through teleportation
- Cluster states (CS)
 - Definition
 - Representations
 - Properties
- Universal computation through CS

- Linear wire
- Arbitrary single qubit operations
- Two qubit operations
- Advantages and disadvantages
 - Parallelizability
 - Experimental implementations
 - CS model as an analysis tool
- References

template frame (delete me)

test block

some text

test varblock

Variable block (here 4cm)

test alert

some alert

test example

some example citation ¹

¹Auth, DV, 123, 2001.

Arbitrary quantum circuit involving unitary operations on 3 qubits.

A new model, proposed by Briegel and Raussendorf [Raussendorf and Briegel, 2000], demonstrates that quantum computation can be achieved by using single qubit measurements as computational steps.

This so-called cluster model or *one-way quantum computer (1WQC)* relies on an entangled state of a large number of qubits or *cluster state* as the resource.

Interestingly, 1WQC's have no classical analogues and probe into new territory in regards to entanglement and measurements.

Basic teleporation

Cluster states form a class of multiparty entangled quantum states which belong to the larger set of so-called graph states.

Examples of graph states:

- Bell states
- Greenberger-Horne-Zeilinger (GHZ) states
- states that appear in quantum error correction

Intuitively, graph states can be thought of as multi-qubit states that can be represented by a graph.

- Each qubit is represented by a vertex of the graph
- An edge between vertices represents an interacting pair of qubits

Representations

Figure: Figure showing representative 2-D cluster shapes. The vertices are qubits with integer indices, and the edges indicate entanglement connectivity between select neighbors.

A method to prepare cluster states is given in [Jorrand and Perdrix, 2005], consisting of "cascading" C_z gates on n qubits.

A circuit to prepare a linear cluster state

A circuit to prepare a non-linear cluster state

The spacial layout of the graph representation of the cluster state plays a role in the computational power of that state.

Operations on a linearly prepared cluster state can be efficiently simulated on a classical computer in $O(n \log^c(1/n))$, where n is the initial number of qubits, and c is the cost of floating point multiplication [Nielsen, 2006].

In general, measurement based models can be polynomial time reduced to the gate array model, and thus have the same power, but they are more easily parallelizable [Jozsa, 2006].

Gate $C_z^{(0,1)}$, followed by measurements $M_X^{(0)}$, $M_X^{(1)}$, & $M_X^{(2)}$.

Callback to teleportation discussion

Linear wire Arbitrary single qubit operations

Apply $C_z^{(A,1)}$ and $C_z^{(B,5)}$ to input quantum information into cluster state.

Apply $C_z^{(A,1)}$ and $C_z^{(B,5)}$ to input quantum information into cluster state.

Experimental implementations

Four Optical Qubit Cluster State

This generates a square cluster state. Two pairs of entangle photons are created and then separate pairs are entangled.

Cluster States in Optical Frequency Combs

Experimental implementations

[Jorrand and Perdrix, 2005] Jorrand, P. and Perdrix, S. (2005).

Unifying quantum computation with projective measurements only and one-way quantum computation.

In Moscow, Russia, pages 44-51. International Society for Optics and Photonics.

[Jozsa, 2006] Jozsa, R. (2006).

An introduction to measurement based quantum computation.

NATO Science Series, III: Computer and Systems Sciences. Quantum Information Processing-From Theory to Experiment, 199:137–158.

[Nielsen, 2006] Nielsen, M. A. (2006).

Cluster-state quantum computation.

Reports on Mathematical Physics, 57(1):147-161.

[Raussendorf and Briegel, 2000] Raussendorf, R. and Briegel, H. J. (2000).

Quantum computing via measurements only.

eprint arXiv:quant-ph/0010033.

