# Data Science Assignment eCommerce Transactions

# **Objective**

To Perform customer segmentation using clustering techniques. Using both profile information (from Customers.csv) and transaction information (from Transactions.csv).

# **Dataset Description**

Files Description:

#### 1. Customers.csv

- CustomerID: Unique identifier for each customer.
- CustomerName: Name of the customer.
- Region: Continent where the customer resides.
- SignupDate: Date when the customer signed up.

#### 2. Products.csv

- ProductID: Unique identifier for each product.
- ProductName: Name of the product.
- Category: Product category.
- Price: Product price in USD.

#### 3. Transactions.csv

- TransactionID: Unique identifier for each transaction.
- CustomerID: ID of the customer who made the transaction.
- ProductID: ID of the product sold.
- TransactionDate: Date of the transaction.
- Quantity: Quantity of the product purchased.
- TotalValue: Total value of the transaction.
- Price: Price of the product sold.

## **Procedures**

## 1.Data Collection

The first step is collecting the data. The code assumes that the data is available in CSV format for three tables:

- Customers.csv: Contains customer-specific information such as CustomerID, SignupDate, and Region.
- **Products.csv**: Contains details about the products sold.
- **Transactions.csv**: Contains transactional data such as TransactionID, CustomerID, TotalValue, and TransactionDate.

## 2. Importing Libraries

The necessary libraries are imported to handle various tasks:

- **Pandas**: Used for data manipulation and handling.
- NumPy: Used for numerical operations.
- Matplotlib and Seaborn: For visualization, though these are not used in the final code snippet.
- **Scikit-learn**: For machine learning and clustering, particularly KMeans, NearestNeighbors, StandardScaler, etc.
- **Datetime**: For working with dates.

## 3. Data Preprocessing

## a. Datetime Conversion

The SignupDate and TransactionDate columns are converted to datetime objects to facilitate date-based calculations:

## b. Customer Aggregation

Customer-level aggregates are computed from the transactional data:

- TotalValue: Total money spent by each customer.
- Quantity: Total number of items bought by each customer.

### c. Recency, Frequency, and Monetary (RFM) Calculation

The **RFM** values are calculated to represent each customer's activity:

- **Recency**: The number of days since the customer's last purchase.
- **Frequency**: The number of transactions made by the customer.
- **Monetary**: The total value of all transactions by the customer.

#### d. Normalization of RFM Values

The RFM values are normalized to ensure they are on the same scale.

## 4. Feature Engineering

The **LabelEncoder** is used to convert categorical variables (such as Region) into numerical values, which makes it suitable for machine learning models.

## 5. Clustering (KMeans)

## a. Selecting Features for Clustering

The features selected for clustering include Region, Recency, Frequency, and Monetary

## b. Determining Optimal Number of Clusters (Elbow Method)

To find the optimal number of clusters, the **elbow method** is applied. This involves running KMeans clustering for a range of cluster numbers (1 to 10), and plotting the **Within-Cluster Sum of Squares** (**WCSS**) to visualize the elbow point:



Figure: To determine number of clusters using elbow method

## c. KMeans Clustering

A KMeans model is created with the chosen number of clusters, 9 number was chosen for this assignment

## 6. Model Evaluation

## a. Davies-Bouldin Index

The **Davies-Bouldin Index** is computed to evaluate the quality of the clustering. A lower DB index indicates better-defined clusters:

### DB Index value:1.14

### b. Visualization

A **3D scatter plot** is created to visualize the clusters. The axes represent Recency, Frequency, and Monetary:



Figure: Customer Segmentation

# 7. Cluster Profiling

After clustering, an analysis of the clusters is performed to understand their characteristics:

| Cluster | Region | Recency | Frequency | Monetary |
|---------|--------|---------|-----------|----------|
| 0       | 0      | -0.44   | 1.43      | 1.43     |
| 1       | 2      | -0.25   | 0.145     | -0.33    |
| 2       | 0      | -0.41   | -0.73     | -0.76    |
| 3       | [0,1]  | 1.41    | -0.81     | -0.26    |
| 4       | 3      | -0.35   | 0.16      | 0.23     |
| 5       | 3      | 0.60    | -0.98     | -0.87    |
| 6       | [0,2]  | 3.31    | -1.66     | -1.41    |
| 7       | 1      | 0.02    | 0.32      | 0.57     |
| 8       | 3      | -0.54   | 1.45      | 1.46     |

Table: Cluster profiling

# **Conclusion**

In this analysis, we used **KMeans clustering** to segment customers based on their **Recency**, **Frequency**, and **Monetary** (RFM) values, along with their **Region**. The key steps involved data preprocessing (such as calculating RFM metrics), feature engineering (encoding categorical variables), and clustering customers using the **Elbow Method** to determine the optimal number of clusters.

## Key findings include:

- **Customer Segments**: Different customer groups were identified, each with unique purchasing behaviors.
- **Business Implications**: These segments can guide targeted marketing strategies. High-value customers can be offered loyalty programs, while low-value ones may benefit from personalized promotions.