```
In [1]: # -*- coding: utf-8 -*-
        import random
        import torch
        from torch.autograd import Variable
        class DynamicNet(torch.nn.Module):
            def __init__(self, D_in, H, D_out):
                In the constructor we construct three nn.Linear instances that we
        will use
                in the forward pass.
                super(DynamicNet, self).__init__()
                self.input_linear = torch.nn.Linear(D_in, H)
                self.middle_linear = torch.nn.Linear(H, H)
                self.output_linear = torch.nn.Linear(H, D_out)
            def forward(self, x):
                For the forward pass of the model, we randomly choose either 0, 1,
                and reuse the middle linear Module that many times to compute hidd
        en layer
                representations.
                Since each forward pass builds a dynamic computation graph, we can
         use normal
                Python control-flow operators like loops or conditional statements
         when
                defining the forward pass of the model.
                Here we also see that it is perfectly safe to reuse the same Modul
        e many
                times when defining a computational graph. This is a big improveme
        nt from Lua
                Torch, where each Module could be used only once.
                h_relu = self.input_linear(x).clamp(min=0)
                for _ in range(random.randint(0, 3)):
                    h_relu = self.middle_linear(h_relu).clamp(min=0)
                y pred = self.output linear(h relu)
                return y_pred
        # N is batch size; D_in is input dimension;
        # H is hidden dimension; D_out is output dimension.
        N, D in, H, D out = 64, 1000, 100, 10
        # Create random Tensors to hold inputs and outputs, and wrap them in Varia
        bles
        x = Variable(torch.randn(N, D_in))
        y = Variable(torch.randn(N, D_out), requires_grad=False)
```

```
# Construct our model by instantiating the class defined above
model = DynamicNet(D_in, H, D_out)
# Construct our loss function and an Optimizer. Training this strange mode
1 with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
for t in range (500):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)
    # Compute and print loss
    loss = criterion(y_pred, y)
    print(t, loss.data[0])
    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero grad()
    loss.backward()
    optimizer.step()
0 617.4964599609375
1 586.7207641601562
2 594.462890625
3 584.2737426757812
4 582.7604370117188
5 448.11956787109375
6 581.6450805664062
7 560.4078369140625
8 550.8650512695312
9 326.7133483886719
10 526.0846557617188
11 271.10186767578125
12 497.96246337890625
13 480.2035827636719
14 574.2371826171875
15 171.4656982421875
16 562.2449340820312
17 129.00836181640625
18 567.35595703125
19 91.0340347290039
20 560.6006469726562
21 64.0407485961914
22 520.9205322265625
23 545.0962524414062
24 494.73541259765625
25 474.9066467285156
26 449.0616760253906
27 258.177490234375
28 471.19976806640625
29 351.294189453125
30 410.5562744140625
31 369.94610595703125
32 247.9542694091797
33 232.91111755371094
34 220.1400146484375
35 180.5821533203125
```

- 36 195.04095458984375
- 37 170.70648193359375
- 38 147.42210388183594
- 39 130.0604705810547
- 40 129.25
- 41 175.88394165039062
- 42 159.11351013183594
- 43 110.16151428222656
- 44 90.27572631835938
- 45 85.23445129394531
- 46 140.77098083496094
- 47 80.3070068359375
- 48 299.40576171875
- 49 175.52284240722656
- 50 160.46807861328125
- 51 112.88336181640625
- 52 160.72097778320312
- 53 88.89665985107422
- 54 84.09154510498047
- 55 95.96849060058594
- 56 105.40737915039062
- 57 161.2249298095703
- 58 59.2724494934082
- 59 150.36978149414062
- 60 32.99752426147461
- 61 63.87287139892578
- 62 77.5291976928711
- 63 28.106475830078125
- 64 56.13401794433594
- 65 45.39598846435547
- 66 69.26172637939453
- 67 33.775001525878906
- 68 50.69169616699219
- 69 46.71824264526367
- 70 29.331144332885742
- 71 17.41274070739746
- 72 23.169130325317383
- 73 60.33283233642578
- 74 43.14490509033203
- 75 21.277198791503906
- 76 20.213865280151367
- 77 38.46455383300781
- 78 37.77091598510742
- 79 13.811922073364258
- 80 11.173827171325684
- 81 22.871294021606445
- 82 35.649566650390625
- 83 14.941598892211914
- 84 14.705291748046875
- 85 14.09249496459961
- 86 12.003541946411133
- 87 15.535683631896973
- 88 11.029898643493652
- 89 13.333113670349121
- 90 7.82374382019043
- 91 10.962665557861328
- 92 7.802312850952148

- 93 18.658042907714844
- 94 6.890983581542969
- 95 7.18881893157959
- 96 6.156620979309082
- 97 7.817047595977783
- 98 4.329520225524902
- 99 6.894481182098389
- 100 12.170260429382324
- 101 6.716583728790283
- 102 5.814269542694092
- 103 17.671649932861328
- 104 4.881534099578857
- 105 14.49454116821289
- 106 10.76485538482666
- 107 7.746699333190918
- 108 8.56892204284668
- 109 5.658292770385742
- 110 5.030376434326172
- 111 5.626359462738037
- 112 8.0494966506958
- 113 4.980729103088379
- 114 4.507913589477539
- 115 6.668847560882568
- 116 3.400421380996704
- 117 5.216052055358887
- 118 2.8582923412323
- 119 5.035233497619629
- 120 4.2797088623046875
- 121 2.0455820560455322
- 122 3.380805253982544
- 123 2.1711719036102295
- 124 3.088573932647705
- 125 4.6662211418151855
- 126 3.303863286972046 127 2.1570217609405518
- 128 4.15886116027832
- 129 2.5761682987213135
- 130 2.398016929626465
- 131 3.5235066413879395
- 132 4.511153221130371
- 133 2.107137441635132 134 1.5901541709899902
- 135 3.369044780731201
- 136 3.3211681842803955
- 137 3.6903843879699707
- 138 2.796448230743408
- 139 1.6557893753051758
- 140 2.0419225692749023 141 1.5717331171035767
- 142 2.225872278213501
- 143 1.8292890787124634
- 144 4.478525161743164
- 145 1.6952733993530273
- 146 1.859634280204773
- 147 4.831842422485352
- 148 0.9982556700706482
- 149 2.1715002059936523

- 150 1.9586626291275024
- 151 2.1136515140533447
- 152 1.3249876499176025
- 153 2.5335443019866943
- 154 0.9659452438354492
- 155 1.6678433418273926
- 156 1.3219949007034302
- 157 4.030327796936035
- 158 0.9548989534378052 159 3.8564045429229736
- 160 0.6781408786773682
- 161 2.7413361072540283
- 162 2.3992137908935547
- 163 1.5485725402832031
- 164 1.6324256658554077
- 165 1.5675405263900757
- 166 2.9987711906433105
- 167 1.915053367614746
- 168 1.0318866968154907
- 169 2.04632306098938
- 170 5.08028507232666
- 171 1.0896153450012207
- 172 1.2423239946365356
- 173 14.853652954101562
- 174 1.6805720329284668
- 175 2.0311498641967773
- 176 4.8007025718688965
- 177 16.79224395751953
- 178 0.9883328676223755
- 179 2.6131718158721924
- 180 4.563420295715332
- 181 8.250673294067383
- 182 2.6278228759765625
- 183 3.5495855808258057
- 184 1.1998058557510376
- 185 1.2639880180358887
- 186 1.2520971298217773
- 187 2.652158737182617
- 188 1.2062733173370361
- 189 2.8759870529174805
- 190 1.5796542167663574
- 191 3.877002477645874
- 192 2.7653510570526123
- 193 8.453703880310059
- 194 6.103426933288574
- 195 1.9580942392349243
- 196 2.4415130615234375
- 197 5.864106178283691
- 198 11.303057670593262
- 199 0.9691779613494873
- 200 22.905794143676758
- 201 7.470695972442627 202 1.1197893619537354
- 203 15.502533912658691
- 204 3.773719549179077
- 205 1.4057092666625977
- 206 2.066617965698242

- 207 10.620091438293457
- 208 0.6033884286880493
- 209 1.7042262554168701
- 210 2.14969801902771
- 211 1.1560842990875244
- 212 2.2531049251556396
- 213 0.6178454160690308
- 214 2.419261932373047
- 215 3.7376160621643066
- 216 3.54567289352417
- 217 6.498558521270752
- 218 3.392005443572998
- 219 6.798036098480225
- 220 0.2540091872215271
- 221 1.5067037343978882
- 222 6.246980667114258
- 223 3.2084572315216064
- 224 3.7739193439483643
- 225 1.4191114902496338
- 226 0.6949692964553833
- 227 16.48684310913086
- 228 8.658540725708008
- 229 2.4220564365386963
- 230 4.220971584320068
- 231 7.836079120635986
- 232 20.76011085510254
- 233 0.4346191883087158
- 234 11.331007957458496
- 235 5.6215314865112305
- 236 4.780257701873779
- 237 3.506639003753662
- 238 1.2792421579360962
- 239 7.938282012939453
- 240 6.497415065765381
- 241 2.939133644104004
- 242 3.32114315032959
- 243 2.800471544265747
- 244 5.428300380706787
- 245 0.6228451132774353
- 246 0.3326306641101837
- 247 7.4255571365356445
- 248 1.00912606716156
- 249 2.436945915222168
- 250 1.5155794620513916
- 251 1.9352447986602783
- 252 2.458794355392456
- 253 6.955153465270996 254 3.1197938919067383
- 255 2.2026214599609375 256 0.3747260272502899
- 257 2.607583999633789
- 258 0.5932360887527466
- 259 7.845485210418701
- 260 2.0091772079467773
- 261 8.53829574584961
- 262 2.1867425441741943
- 263 2.263881206512451

- 264 1.0491591691970825
- 265 0.48314815759658813
- 266 0.9175407290458679
- 267 1.1300252676010132
- 268 24.631303787231445
- 269 1.4745445251464844
- 270 6.909215450286865
- 271 12.641260147094727
- 272 57.27519226074219
- 273 0.5653321743011475
- 274 4.688138008117676
- 275 9.574002265930176
- 276 95.72614288330078
- 277 24.40271759033203
- 278 3.313650369644165
- 279 13.107523918151855
- 280 20.444656372070312
- 281 25.748130798339844
- 282 21.845626831054688
- 283 6.494312286376953
- 284 2.6667439937591553
- 285 11.61217975616455
- 286 12.990994453430176
- 287 7.207010746002197
- 288 9.37540054321289
- 289 6.768373489379883
- 290 3.8008391857147217
- 291 2.7420644760131836
- 292 3.5836541652679443
- 293 36.96145248413086
- 294 23.076881408691406
- 295 7.872142314910889
- 296 7.252026081085205
- 297 61.25562286376953
- 298 4.7811665534973145
- 299 4.283871650695801 300 6.03846549987793
- 301 16.74391746520996
- 302 14.682907104492188
- 303 12.277552604675293
- 304 8.576719284057617
- 305 8.677407264709473
- 306 10.543718338012695
- 307 6.608772277832031
- 308 5.564152717590332
- 309 3.348787546157837
- 310 7.60455846786499
- 311 7.37207555770874
- 312 3.251549482345581
- 313 13.723657608032227
- 314 3.4809303283691406
- 315 6.241969108581543
- 316 2.031262159347534
- 317 0.9793280363082886
- 318 3.077669382095337
- 319 5.346007347106934
- 320 5.276621341705322

- 321 27.445606231689453
- 322 28.65699005126953
- 323 26.991525650024414
- 324 38.68727111816406
- 325 55.18824768066406
- 326 12.477653503417969
- 327 4.929076671600342
- 328 13.613712310791016
- 329 14.591026306152344
- 330 15.918105125427246
- 331 14.886709213256836
- 332 5.447444915771484
- 333 5.6419878005981445
- 334 25.929611206054688
- 335 9.424022674560547
- 336 6.24612283706665
- 337 4.999917030334473
- 338 4.090578079223633
- 339 8.248003005981445
- 340 17.481401443481445
- 341 1.399496078491211
- 342 2.0626049041748047
- 343 6.712996482849121
- 344 6.91818380355835
- 345 4.869098663330078
- 346 2.8310725688934326
- 347 5.74797248840332
- 348 2.603666305541992
- 349 7.299453258514404
- 350 1.7987719774246216
- 351 1.1637463569641113
- 352 2.222529888153076
- 353 7.670896530151367
- 354 1.3952560424804688
- 355 1.0159368515014648
- 356 1.2963148355484009
- 357 2.6970505714416504
- 358 1.865067958831787
- 359 0.8906550407409668
- 360 1.1378997564315796
- 361 1.3592840433120728
- 362 1.199123740196228
- 363 3.1202688217163086
- 364 2.5934956073760986
- 365 0.7691701650619507
- 366 2.9970085620880127
- 367 0.9741449952125549
- 368 0.4719432294368744
- 369 0.9354196190834045
- 370 1.8485444784164429
- 371 0.470345675945282
- 372 1.4169516563415527
- 373 1.1111966371536255
- 374 0.45924073457717896
- 375 1.3810803890228271
- 376 0.38162529468536377
- 377 1.035822868347168

- 378 1.039865255355835
- 379 1.013710379600525
- 380 0.24925124645233154
- 381 0.9570943713188171
- 382 0.2069171965122223
- 383 1.1371022462844849
- 384 0.781284749507904
- 385 0.5542237162590027
- 386 0.22487430274486542
- 387 0.7474405765533447
- 388 0.6208946108818054
- 389 0.19531965255737305
- 390 0.5539401769638062
- 391 0.226301908493042
- 392 0.40292954444885254
- 393 1.694028615951538
- 394 1.4330745935440063
- 395 0.14397381246089935
- 396 0.5758671760559082
- 397 0.14175888895988464
- 398 0.12704035639762878
- 399 0.10257995873689651
- 400 2.051517963409424
- 401 1.0105328559875488
- 402 1.0537744760513306
- 403 1.2365745306015015
- 404 1.4436901807785034
- 405 0.42905786633491516
- 406 0.8277648091316223
- 407 0.1363527923822403
- 408 0.9801706671714783
- 409 0.9845675230026245
- 410 0.17707951366901398
- 411 0.6263932585716248
- 412 0.10676196217536926
- 413 1.6918052434921265
- 414 0.08687221258878708
- 415 0.9948474168777466
- 416 0.8633851408958435
- 417 0.8391584753990173
- 418 0.9019174575805664
- 419 0.7176405191421509
- 420 0.09812083840370178
- 421 0.8930495381355286
- 422 0.91794753074646
- 423 0.6222383379936218
- 424 0.5952858924865723
- 425 0.5641317367553711
- 426 1.110972285270691
- 427 0.12041153013706207
- 428 0.13540488481521606
- 429 0.15196429193019867
- 430 1.2471449375152588
- 431 0.0910307914018631
- 432 0.3556502163410187
- 433 0.35611391067504883
- 434 0.0994490534067154

- 435 0.11399756371974945
- 436 1.6917039155960083
- 437 0.046628717333078384
- 438 0.6359814405441284
- 439 1.1207636594772339
- 440 0.7801993489265442
- 441 0.46574991941452026
- 442 0.04961245507001877
- 443 0.05201117694377899
- 444 1.5348111391067505
- 445 0.06092946603894234
- 446 0.5069867372512817
- 447 0.06881222873926163
- 448 0.9531847238540649
- 449 0.19873511791229248
- 450 0.8506504893302917
- 451 0.2495613694190979
- 452 0.15855902433395386
- 453 0.5126480460166931
- 454 0.048380088061094284
- 455 0.5856323838233948
- 456 0.6962810754776001
- 457 0.2926711142063141
- 458 0.49724799394607544
- 459 0.25228527188301086
- 460 1.1223406791687012
- 461 0.6005898118019104
- 462 0.6434618830680847
- 102 0.0151010050000017
- 463 0.8075220584869385
- 464 0.6333624720573425
- 465 0.4601361155509949
- 466 0.4571605324745178
- 467 0.6399435997009277
- 468 0.4992857277393341
- 469 0.4062232971191406
- 470 0.17993730306625366
- 471 0.8852510452270508
- 472 0.516291081905365
- 473 0.3104937672615051
- 474 0.5995038747787476
- 475 0.7114810943603516
- 476 0.07153534889221191
- 477 0.2936292290687561
- 478 0.8982550501823425
- 479 0.6369932293891907
- 480 0.47761425375938416
- 481 0.08314242959022522
- 482 0.8414137363433838
- 483 0.7177855372428894
- 484 0.34585222601890564
- 485 0.2613247334957123
- 486 0.45507505536079407
- 487 0.22859375178813934
- 488 0.6225958466529846
- 489 0.06258411705493927
- 490 0.3562828600406647
- 491 0.376590758562088

- 492 0.5920135378837585
- 493 0.25771933794021606
- 494 0.662420392036438
- 495 0.5979882478713989
- 496 0.4690578579902649
- 497 0.45877304673194885
- 498 0.42165857553482056
- 499 0.3244536221027374

```
In [3]: %matplotlib inline
         import matplotlib.pyplot as plt
         import numpy as np
         import torch
         from torch import autograd
         import torch.nn.functional as F
         images = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject_data/images.npy")
         labels = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject_data/labels.npy")
         test = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_proj
         ect data/test images.npy")
         height = images.shape[1]
         width = images.shape[2]
         size = height * width
         images = (images - images.mean()) / images.std()
         data = images.reshape(images.shape[0],size)
         test_data = test.reshape(test.shape[0], size)
         test_data = (test_data - test_data.mean()) / test_data.std()
         batch_size = 1
         NUM_OPT_STEPS = 5000
         train segs = data[0:45000,:]
         train labels = labels[0:45000]
         val_seqs = data[45000:,:]
         val labels = labels[45000:]
In [12]: class_1 = images[labels == 0]
         class 2 = images[labels == 1]
         class 3 = images[labels == 2]
         class_4 = images[labels == 3]
         class_5 = images[labels == 4]
         print(len(class_1))
         print(len(class_2))
         print(len(class 3))
         print(len(class_4))
         print(len(class_5))
         10000
         10000
         10000
         10000
         10000
```

Using a random classifier would give you an accuracy of 0.2 because you have a 1/5 chance of getting a prediction correct. A majority vote classifier would get also an accuracy of 0.2 because there are 10000 images of each kind. Therefore we would only get 10000/50000 predictions correct which is 0.2

```
In [2]: class LinearModel(torch.nn.Module):
    def __init__(self):
```

```
super().__init__()
self.linear = torch.nn.Linear(height * width, 5)

def forward(self, x):
    x = self.linear(x)
    return x
```

From the documentation, torch.nn.Linear creates "in features out features" number of weights and "out features" number of biases (which are booleans). In our case our number of in features is 2626 = 676 and our number of out features is 5. Therefore the number of weights we have is 6765 and the number of biases will be 5. This makes sense because our input is a vector of 676 and we have 5 different classes to predict and therefore we would need at least 6765 weights to compute our prediction, and a bias associated with each prediction.

```
In [3]: model = LinearModel()
  optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
```

In our previous homeworks we implemented were torch.nn.SGD and torch.nn.Adam, which are the stochastic gradient descent and Adam optimizations. The two most important arguments these optimizers need us to provide are the model parameters themselves and the rate of update. These two allow us to update the weights of our model with a provided rate.

```
In [4]: def train(batch_size):
            # model.train() puts our model in train mode, which can require differ
            # behavior than eval mode (for example in the case of dropout).
            model.train()
            # i is is a 1-D array with shape [batch_size]
            i = np.random.choice(train_seqs.shape[0], size=batch_size, replace=Fal
        se)
            x = autograd.Variable(torch.from_numpy(train_seqs[i].astype(np.float32
        ) ) )
            y = autograd.Variable(torch.from_numpy(train_labels[i].astype(np.int))
        ).long()
            optimizer.zero_grad()
            y_hat_ = model(x)
            loss = F.cross_entropy(y_hat_, y)
            loss.backward()
            optimizer.step()
            return loss.data[0]
```

```
In [5]: def approx_train_accuracy(model):
    i = np.random.choice(train_seqs.shape[0], size=1000, replace=False)
    x = autograd.Variable(torch.from_numpy(train_seqs[i].astype(np.float32
))))
    y = autograd.Variable(torch.from_numpy(train_labels[i].astype(np.int))
)

    y_hat_ = model(x)
    y_hat = np.zeros(1000)
    for i in range(1000):
        y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
    return accuracy(y_hat, y.data.numpy())
```

```
In [6]: def val_accuracy(model):
             x = autograd.Variable(torch.from_numpy(val_seqs.astype(np.float32)))
             y = autograd.Variable(torch.from_numpy(val_labels.astype(np.int)))
             y_hat_ = model(x)
             y_hat = np.zeros(5000)
             for i in range(5000):
                 y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
             return accuracy(y_hat, y.data.numpy())
 In [7]: def accuracy(y, y_hat):
             return (y == y_hat).astype(np.float).mean()
 In [8]: def plot(train_accs, val_accs):
             plt.figure(200)
             plt.title('Training Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(train_accs, 'b')
             plt.show()
             plt.figure(300)
             plt.title('Validation Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(val_accs, 'b')
             plt.show()
 In [9]: def runModel(model, batch_size):
             train_accs, val_accs = [], []
             for i in range(NUM_OPT_STEPS):
                 train(batch_size)
                 if i % 100 == 0:
                     train_accs.append(approx_train_accuracy(model))
                     val_accs.append(val_accuracy(model))
                     print("%6d %5.2f %5.2f" % (i, train_accs[-1], val_accs[-1]))
             plot(train_accs, val_accs)
In [10]: runModel(model, 1)
              0 0.17 0.18
            100 0.18 0.18
            200 0.20 0.18
            300 0.19 0.18
            400 0.19 0.18
            500 0.17 0.18
            600 0.19 0.18
            700 0.18 0.18
            800 0.18 0.18
            900 0.21 0.19
           1000 0.21 0.19
           1100 0.20 0.19
           1200 0.20 0.19
           1300 0.19 0.19
           1400 0.18 0.19
           1500 0.21 0.19
           1600 0.21 0.19
           1700
                0.20 0.19
```

1800	0.21	0.19
1900	0.20	0.19
2000	0.19	0.19
2100	0.19	0.19
2200	0.21	0.19
2300	0.20	0.19
2400	0.19	0.19
2500	0.20	0.19
2600	0.19	0.19
2700	0.18	0.19
2800	0.20	0.19
2900	0.20	0.19
3000	0.20	0.20
3100	0.21	0.19
3200	0.20	0.20
3300	0.22	0.20
3400	0.20	0.20
3500	0.19	0.20
3600	0.19	0.20
3700	0.20	0.20
3800	0.20	0.20
3900	0.21	0.20
4000	0.20	0.20
4100	0.23	0.20
4200	0.22	0.20
4300	0.20	0.20
4400	0.21	0.20
4500	0.22	0.21
4600	0.19	0.21
4700	0.21	0.21
4800	0.20	0.21
4900	0.21	0.21

The top train and validation accuracies we reached were 0.23 for training and 0.21 for validation. The problem here is that we may not have the best hyperparameters for our model. Our learning rate could have been too small which means that our model was not making enough progress toward an optima within our 5k optimization steps.

```
In [11]:
          model = LinearModel()
          optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
In [12]:
          runModel(model, 1)
                  0.24
                         0.24
               0
             100
                  0.57
                         0.61
             200
                  0.64
                         0.66
             300
                  0.65
                         0.68
                  0.67
             400
                         0.69
             500
                  0.69
                         0.70
                  0.70
                        0.68
             600
             700
                  0.69
                        0.70
             800
                  0.68
                         0.68
             900
                  0.67
                        0.70
                  0.73
                         0.72
            1000
            1100
                  0.69
                         0.69
            1200
                  0.71
                         0.71
                  0.72
            1300
                        0.71
            1400
                  0.70
                        0.72
            1500
                  0.72
                        0.72
                  0.71
            1600
                         0.73
            1700
                  0.68
                        0.72
            1800
                  0.71
                         0.73
            1900
                  0.74
                        0.73
            2000
                  0.70
                        0.69
                  0.71
            2100
                         0.71
            2200
                  0.70
                         0.72
            2300
                  0.68
                        0.69
            2400
                  0.69
                        0.70
                  0.70
                         0.73
            2500
            2600
                  0.73
                         0.73
            2700
                  0.71
                         0.73
```

```
2800
      0.69
             0.71
      0.69
2900
             0.69
      0.69
             0.71
3000
      0.70
             0.71
3100
3200
      0.72
             0.73
3300
      0.70
             0.72
3400
      0.70
             0.72
      0.74
3500
             0.73
      0.70
3600
             0.70
3700
      0.70
             0.71
3800
      0.70
             0.73
3900
      0.73
             0.74
      0.70
             0.74
4000
      0.69
4100
             0.71
4200
      0.70
             0.71
4300
      0.70
             0.73
4400
      0.71
             0.74
4500
      0.69
             0.72
4600
      0.73
             0.72
4700
      0.70
             0.74
      0.73
4800
             0.74
      0.75
4900
             0.75
```


The final optimizer used was the Adam optimizer with a learning rate of 0.001. This lead to an accuracy in the mid 70s. The best validation accuracy achieved was 76.

```
In [18]: %matplotlib inline
         import matplotlib.pyplot as plt
         import numpy as np
         import torch
         from torch import autograd
         import torch.nn.functional as F
         import time
         images = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject data/images.npy")
         labels = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject data/labels.npy")
         test = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_proj
         ect data/test images.npy")
         height = images.shape[1]
         width = images.shape[2]
         size = height * width
         images = (images - images.mean()) / images.std()
         data = images.reshape(images.shape[0],size)
         test_data = test.reshape(test.shape[0], size)
         test_data = (test_data - test_data.mean()) / test_data.std()
         NUM_OPT_STEPS = 5000
         train segs = data[0:45000,:]
         train labels = labels[0:45000]
         val_seqs = data[45000:,:]
         val labels = labels[45000:]
In [19]: class TwoLayerNN(torch.nn.Module):
             def init (self):
                 super().__init__()
                 self.layer_1 = torch.nn.Linear(height * width, 100)
                 self.layer_2 = torch.nn.Linear(100, 5)
             def forward(self, x):
                 x = self.layer_1(x)
                 y = F.relu(x)
                 z = self.layer_2(y)
                 return z
In [20]: def train(batch size):
             # model.train() puts our model in train mode, which can require differ
         ent
             # behavior than eval mode (for example in the case of dropout).
             model.train()
             # i is is a 1-D array with shape [batch_size]
             i = np.random.choice(train_seqs.shape[0], size=batch_size, replace=Fal
         se)
             x = autograd.Variable(torch.from_numpy(train_seqs[i].astype(np.float32
         ) ) )
             y = autograd.Variable(torch.from_numpy(train_labels[i].astype(np.int))
         ).long()
             optimizer.zero_grad()
             y_hat_ = model(x)
             loss = F.cross_entropy(y_hat_, y)
```

```
loss.backward()
             optimizer.step()
             return loss.data[0]
In [21]: def approx_train_accuracy(model):
             i = np.random.choice(train_seqs.shape[0], size=1000, replace=False)
             x = autograd.Variable(torch.from_numpy(train_seqs[i].astype(np.float32
         ) ) )
             y = autograd.Variable(torch.from_numpy(train_labels[i].astype(np.int))
             y_hat_ = model(x)
             y_hat = np.zeros(1000)
             for i in range(1000):
                 y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
             return accuracy(y hat, y.data.numpy())
In [22]: def val_accuracy(model):
             x = autograd.Variable(torch.from_numpy(val_seqs.astype(np.float32)))
             y = autograd.Variable(torch.from_numpy(val_labels.astype(np.int)))
             y_hat_ = model(x)
             y_hat = np.zeros(5000)
             for i in range(5000):
                 y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
             return accuracy(y_hat, y.data.numpy())
In [23]: def accuracy(y, y_hat):
             return (y == y_hat).astype(np.float).mean()
In [24]: def plot(train_accs, val_accs):
             plt.figure(200)
             plt.title('Training Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(train_accs, 'b')
             plt.show()
             plt.figure(300)
             plt.title('Validation Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(val_accs, 'b')
             plt.show()
In [25]: def runModel(model, batch_size):
             train accs, val accs = [], []
             for i in range(NUM_OPT_STEPS):
                 train(batch_size)
                 if i % 100 == 0:
                     train_accs.append(approx_train_accuracy(model))
                     val_accs.append(val_accuracy(model))
                     print("%6d %5.2f %5.2f" % (i, train accs[-1], val accs[-1]))
             plot(train_accs, val_accs)
In [26]: model = TwoLayerNN()
         optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```

_				
runMode	el(mode	21, 1)		
0	0.18	0.18		
100	0.58	0.61		
200	0.59	0.58		
300	0.70	0.70		
400	0.67	0.69		
500	0.65	0.67		
600	0.70	0.72		
700	0.70	0.72		
800	0.71	0.72		
900	0.74	0.09		
1000	0.72	0.72		
1100	0.72	0.73		
1200	0.70	0.72		
1300	0.71	0.73		
1400	0.75	0.75		
1500	0.76	0.75		
1600	0.75	0.75		
1700	0.76	0.76		
1800	0.75	0.76		
1900	0.73	0.75		
2000	0.75	0.75		
2100	0.69	0.74		
2200	0.74	0.76		
2300	0.74	0.76		
2400	0.74	0.75		
2500	0.77	0.77		
2600	0.75	0.76		
2700	0.68	0.68		
2800	0.76	0.75		
2900	0.78	0.77		
3000	0.76	0.75		
3100	0.75	0.74		
3200	0.75	0.77		
3300	0.78	0.76		
3400	0.78	0.78		
3500	0.77	0.77		
3600	0.73	0.77		
3700	0.74	0.75		
3800	0.78	0.77		
3900	0.71	0.75		
4000	0.73	0.74		
4100	0.76	0.78		
4200	0.79	0.77		
4300	0.76	0.77		
4400	0.77	0.77		
4500	0.77	0.78		
4600	0.74	0.77		
4700	0.76	0.78		
4800	0.74	0.77		
4900	0.76	0.76		


```
In [27]:
          for m in model.children():
              m.reset_parameters()
In [28]:
          model = TwoLayerNN()
          optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
          runModel(model, 10)
                  0.29
               0
                         0.34
                  0.72
                         0.74
             100
                  0.76
             200
                         0.76
             300
                  0.71
                         0.73
             400
                  0.77
                         0.79
                  0.79
                         0.79
             500
             600
                  0.79
                         0.79
             700
                  0.80
                         0.79
             800
                  0.81
                         0.80
                  0.78
                         0.80
             900
            1000
                  0.81
                         0.81
            1100
                  0.80
                         0.80
            1200
                  0.85
                         0.83
            1300
                  0.84
                         0.82
```

0.81

0.81

1400

1500	0.83	0.82
1600	0.83	0.83
1700	0.81	0.82
1800	0.84	0.83
1900	0.83	0.84
2000	0.83	0.83
2100	0.83	0.83
2200	0.83	0.84
2300	0.84	0.83
2400	0.86	0.84
2500	0.81	0.82
2600	0.82	0.83
2700	0.84	0.83
2800	0.86	0.84
2900	0.86	0.84
3000	0.84	0.84
3100	0.84	0.84
3200	0.86	0.84
3300	0.85	0.84
3400	0.83	0.82
3500	0.84	0.84
3600	0.84	0.83
3700	0.86	0.84
3800	0.85	0.84
3900	0.84	0.84
4000	0.86	0.84
4100	0.86	0.85
4200	0.88	0.84
4300	0.87	0.85
4400	0.85	0.85
4500	0.86	0.84
4600	0.87	0.84
4700	0.86	0.85
4800	0.85	0.85
4900	0.87	0.85


```
In [29]:
          for m in model.children():
              m.reset_parameters()
In [30]: start = time.time()
          runModel(model, 64)
          end = time.time()
          print(end - start)
               0
                   0.23
                         0.21
                   0.79
                         0.78
             100
             200
                   0.81
                         0.80
                   0.81
             300
                         0.81
             400
                   0.83
                         0.82
                   0.84
                         0.83
             500
                   0.82
             600
                         0.84
             700
                   0.82
                         0.84
             800
                   0.85
                         0.84
             900
                   0.85
                         0.83
            1000
                   0.86
                         0.84
                   0.85
            1100
                         0.84
                   0.86
            1200
                         0.84
            1300
                   0.85
                         0.85
            1400
                   0.87
                         0.85
                   0.86
                         0.84
            1500
            1600
                   0.88
                         0.86
                   0.88
            1700
                         0.85
                   0.87
            1800
                         0.86
            1900
                   0.90
                         0.86
            2000
                   0.88
                         0.86
            2100
                   0.87
                         0.86
            2200
                   0.88
                         0.86
                   0.90
            2300
                         0.87
            2400
                   0.89
                         0.86
                   0.89
                         0.86
            2500
                   0.90
            2600
                         0.86
            2700
                   0.89
                         0.86
            2800
                   0.90
                         0.87
            2900
                   0.92
                         0.87
                   0.91
            3000
                         0.86
```

```
3100
      0.90
             0.86
3200
      0.91
             0.86
      0.90
             0.87
3300
      0.92
             0.86
3400
3500
      0.93
             0.86
3600
      0.91
             0.86
3700
      0.90
             0.87
3800
      0.92
             0.87
3900
      0.92
             0.87
4000
      0.93
             0.86
      0.90
4100
             0.86
4200
      0.90
             0.87
      0.93
4300
             0.86
4400
      0.92
             0.87
4500
      0.90
             0.87
4600
      0.93
             0.87
4700
      0.93
             0.86
4800
      0.92
             0.87
4900
      0.93
             0.87
```


18.778249740600586

The best validation accuracy I achieved was 88. The batch size used was 64 and the learning rate

was 0.001. I used 5000 optimization steps to reach this accuracy. Initially I had tried 10k however it seemed to not improve after about 5k steps. Training only took ~19 seconds.

```
In [17]: %matplotlib inline
         import matplotlib.pyplot as plt
         import numpy as np
         import torch
         from torch import autograd
         import torch.nn.functional as F
         import time
         images = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject data/images.npy")
         labels = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject data/labels.npy")
         test = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_proj
         ect data/test images.npy")
         height = images.shape[1]
         width = images.shape[2]
         size = height * width
         images = (images - images.mean()) / images.std()
         data = images.reshape(images.shape[0],size)
         test_data = test.reshape(test.shape[0], size)
         test_data = (test_data - test_data.mean()) / test_data.std()
         NUM_OPT_STEPS = 2000
         NUM CLASSES = 5
         train segs = data[0:45000,:]
         train_labels = labels[0:45000]
         val segs = data[45000:,:]
         val_labels = labels[45000:]
In [18]: class TooSimpleConvNN(torch.nn.Module):
             def ___init___(self):
                 super().__init__()
                 # 3x3 convolution that takes in an image with one channel
                 # and outputs an image with 8 channels.
                 self.conv1 = torch.nn.Conv2d(1, 8, kernel_size=3, stride=2)
                 # 3x3 convolution that takes in an image with 8 channels
                 # and outputs an image with 16 channels. The output image
                 # has approximately half the height and half the width
                 # because of the stride of 2.
                 self.conv2 = torch.nn.Conv2d(8, 16, kernel_size=3, stride=2)
                 # 1x1 convolution that takes in an image with 16 channels and
                 # produces an image with 5 channels. Here, the 5 channels
                 # will correspond to class scores.
                 self.final_conv = torch.nn.Conv2d(16, 5, kernel_size=1)
             def forward(self, x):
                 # Convolutions work with images of shape
                 # [batch_size, num_channels, height, width]
                 x = x.view(-1, height, width).unsqueeze(1)
                 x = F.relu(self.conv1(x))
                 x = F.relu(self.conv2(x))
                 n, c, h, w = x.size()
                 x = F.avg_pool2d(x, kernel_size=[h, w])
                 x = self.final\_conv(x).view(-1, NUM\_CLASSES)
                 return x
```

A fully connected neural network has all units connected to each other where as Convolutional neural nets only have some close by units connected to each other. This makes convolutional neural nets less expensive.

```
In [19]: | model = TooSimpleConvNN()
         optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
In [20]: def train(batch size):
             # model.train() puts our model in train mode, which can require differ
         ent
             # behavior than eval mode (for example in the case of dropout).
             model.train()
             # i is is a 1-D array with shape [batch_size]
             i = np.random.choice(train_seqs.shape[0], size=batch_size, replace=Fal
         se)
             x = autograd.Variable(torch.from_numpy(train_seqs[i].astype(np.float32
         ) ) )
             y = autograd.Variable(torch.from_numpy(train_labels[i].astype(np.int))
         ).long()
             optimizer.zero_grad()
             y_hat_ = model(x)
             loss = F.cross_entropy(y_hat_, y)
             loss.backward()
             optimizer.step()
             return loss.data[0]
In [21]: def approx train accuracy(model):
             i = np.random.choice(train_seqs.shape[0], size=1000, replace=False)
             x = autograd.Variable(torch.from_numpy(train_seqs[i].astype(np.float32
             y = autograd.Variable(torch.from_numpy(train_labels[i].astype(np.int))
             y_hat_ = model(x)
             y_hat = np.zeros(1000)
             for i in range(1000):
                 y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
             return accuracy(y_hat, y.data.numpy())
In [22]: def val_accuracy(model):
             x = autograd.Variable(torch.from_numpy(val_seqs.astype(np.float32)))
             y = autograd.Variable(torch.from_numpy(val_labels.astype(np.int)))
             y_hat_ = model(x)
             y_hat = np.zeros(5000)
             for i in range(5000):
                 y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
             return accuracy(y_hat, y.data.numpy())
In [23]: def accuracy(y, y_hat):
             return (y == y_hat).astype(np.float).mean()
In [24]: def plot(train_accs, val_accs):
             plt.figure(200)
             plt.title('Training Accuracy')
```

```
plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(train_accs, 'b')
             plt.show()
             plt.figure(300)
             plt.title('Validation Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(val_accs, 'b')
             plt.show()
In [25]: def runModel(model, batch_size):
             train_accs, val_accs = [], []
             for i in range(NUM_OPT_STEPS):
                 train(batch size)
                 if i % 100 == 0:
                    train_accs.append(approx_train_accuracy(model))
                    val_accs.append(val_accuracy(model))
                    print("%6d %5.2f %5.2f" % (i, train_accs[-1], val_accs[-1]))
             plot(train_accs, val_accs)
In [26]: def reset(model):
             for m in model.children():
                 m.reset_parameters()
In [27]: runModel(model, 10) #2000 steps
                0.20 0.18
              0
            100
                0.44 0.44
            200 0.47 0.49
            300 0.49 0.50
            400 0.48 0.49
            500 0.56 0.55
            600 0.55 0.56
            700 0.48 0.51
            800 0.55 0.57
            900 0.57 0.56
           1000 0.55 0.57
           1100 0.61 0.63
           1200 0.60 0.63
           1300 0.61 0.63
           1400 0.61 0.63
           1500 0.61 0.63
           1600 0.63 0.64
           1700 0.61 0.62
           1800 0.66 0.65
           1900 0.62 0.62
```



```
In [14]: reset(model)
          start = time.time()
          runModel(model, 60)#10k steps
          end = time.time()
          print(end - start)
               0
                  0.21
                         0.21
                  0.55
             100
                         0.55
                  0.68
                         0.68
             200
             300
                  0.70
                         0.71
             400
                  0.65
                         0.66
             500
                  0.72
                         0.71
                  0.69
             600
                         0.71
                  0.72
             700
                         0.73
             800
                  0.73
                         0.74
             900
                  0.71
                         0.73
            1000
                  0.74
                         0.74
            1100
                  0.77
                         0.76
                  0.76
                         0.77
            1200
            1300
                  0.80
                         0.78
            1400
                  0.79
                         0.78
                   0.77
            1500
                         0.76
```

0.80

0.78

1600

1700 1800 1900 2000 2100	0.76 0.81 0.78 0.79 0.81	0.76 0.80 0.79 0.80 0.80
2200 2300 2400 2500 2600 2700	0.81 0.79 0.79 0.82 0.83 0.82 0.78	0.81 0.79 0.80 0.80 0.82 0.81 0.80
2800 2900 3000 3100 3200 3300 3400	0.78 0.82 0.82 0.80 0.82 0.82	0.80 0.82 0.80 0.82 0.81 0.82
3500 3600 3700 3800 3900 4000	0.83 0.80 0.85 0.85 0.80 0.82	0.82 0.83 0.80 0.83 0.83 0.82 0.81
4100 4100 4200 4300 4400 4500 4600	0.85 0.84 0.79 0.83 0.84	0.81 0.82 0.82 0.80 0.83 0.83
4700 4800 4900 5000 5100 5200	0.82 0.86 0.83 0.83 0.83 0.80 0.85	0.83 0.84 0.84 0.82 0.81 0.84
5300 5400 5500 5600 5700 5800	0.83 0.84 0.83 0.85 0.84 0.85	0.83 0.83 0.84 0.84 0.83
5900 6000 6100 6200 6300 6400	0.83 0.85 0.83 0.82 0.83	0.83 0.83 0.82 0.84 0.83 0.82
6500 6600 6700 6800 6900	0.82 0.85 0.83 0.84 0.86	0.83 0.85 0.84 0.84
7000 7100 7200 7300	0.83 0.85 0.84 0.84	0.83 0.84 0.84 0.84

0.84 7400 0.83 0.83 7500 0.83 0.87 7600 0.83 0.85 0.83 7700 7800 0.82 0.82 7900 0.85 0.85 8000 0.85 0.84 8100 0.86 0.84 0.83 8200 0.83 8300 0.84 0.85 8400 0.85 0.84 8500 0.84 0.84 0.84 8600 0.83 0.86 8700 0.84 8800 0.85 0.85 8900 0.85 0.85 9000 0.85 0.86 9100 0.86 0.84 9200 0.83 0.83 9300 0.89 0.85 0.85 9400 0.84 9500 0.85 0.85 9600 0.83 0.84 9700 0.88 0.85 9800 0.86 0.85 9900 0.84 0.84

213.13990354537964

The best validation accuracy I obtained was 86. The configuration I used was 60 batch size, 10k optimization steps, 0.01 learning rate. It took a total of 212 seconds to run.

```
In [2]: %matplotlib inline
         import matplotlib.pyplot as plt
         import numpy as np
         import torch
         from torch import autograd
         import torch.nn.functional as F
         import time
         images = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject data/images.npy")
         labels = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
         oject data/labels.npy")
         test = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_proj
         ect data/test images.npy")
         height = images.shape[1]
         width = images.shape[2]
         size = height * width
         images = (images - images.mean()) / images.std()
         data = images.reshape(images.shape[0],size)
         data = torch.from_numpy(data).float()
         labels = torch.from_numpy(labels).float()
         test_data = test.reshape(test.shape[0], size)
         test_data = (test_data - test_data.mean()) / test_data.std()
         train segs = data[0:45000,:]
         train_labels = labels[0:45000]
         val segs = data[45000:,:]
         val_labels = labels[45000:]
 In [3]: class TwoLayerNN(torch.nn.Module):
             def __init__(self, layer_1):
                 super().__init__()
                 self.layer_1 = torch.nn.Linear(height * width, layer_1)
                 self.layer_2 = torch.nn.Linear(layer_1, 5)
                 self.drop = torch.nn.Dropout(p = 0.3)
             def forward(self, x):
                 x = self.layer 1(x)
                 y = F.relu(x)
                 y = self.drop(y)
                 z = self.layer_2(y)
                 return z
In [14]: class ThreeLayerNN(torch.nn.Module):
             def __init__(self, layer_1, layer_2):
                 super().__init__()
                 self.layer_1 = torch.nn.Linear(height * width, layer_1)
                 self.layer_2 = torch.nn.Linear(layer_1, layer_2)
                 self.layer_3 = torch.nn.Linear(layer_2, 5)
             def forward(self, x):
                 x = self.layer_1(x)
                 y = F.relu(x)
                 z = self.layer_2(y)
                 a = F.relu(z)
                 b = self.layer_3(a)
```

```
return b
```

```
In [15]: class FourLayerNN(torch.nn.Module):
             def __init__(self, layer_1, layer_2, layer_3):
                 super().__init__()
                 self.layer_1 = torch.nn.Linear(height * width, layer_1)
                 self.layer_2 = torch.nn.Linear(layer_1, layer_2)
                 self.layer_3 = torch.nn.Linear(layer_2, layer_3)
                 self.layer 4 = torch.nn.Linear(layer 3, 5)
             def forward(self, x):
                 x = self.layer_1(x)
                 y = F.relu(x)
                 z = self.layer_2(y)
                 a = F.relu(z)
                 b = self.layer 3(a)
                 c = F.relu(b)
                 d = self.layer_4(c)
                 return d
```

```
In [4]: def train(model, optimizer, batch_size):
            # model.train() puts our model in train mode, which can require differ
        ent
            # behavior than eval mode (for example in the case of dropout).
            model.train()
            # i is is a 1-D array with shape [batch size]
            i = np.random.choice(train_seqs.shape[0], size=batch_size, replace=Fal
        se)
            i = torch.from_numpy(i).long()
            x = autograd.Variable(train_seqs[i, :])
            y = autograd.Variable(train labels[i]).long()
            optimizer.zero grad()
            y_hat_ = model(x)
            loss = F.multi_margin_loss(y_hat_, y) #using multi_margin_loss for las
        t one
            #loss = F.cross_entropy(y_hat_, y)
            loss.backward()
            optimizer.step()
            return loss.data[0]
```

```
In [5]: def approx_train_accuracy(model):
    model.eval()
    i = np.random.choice(train_seqs.shape[0], size=1000, replace=False)
    i = torch.from_numpy(i).long()
    x = autograd.Variable(train_seqs[i, :])
    y = autograd.Variable(train_labels[i]).long()
    y_hat_ = model(x)
    y_hat = np.zeros(1000)
    for i in range(1000):
        y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
    return accuracy(y_hat, y.data.numpy())
```

```
y = autograd.Variable(val_labels)
             y_hat_ = model(x)
             y hat = np.zeros(5000)
             for i in range(5000):
                 y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
             return accuracy(y_hat, y.data.numpy())
 In [7]: def accuracy(y, y_hat):
             return (y == y_hat).astype(np.float).mean()
 In [8]: def plot(train_accs, val_accs):
            plt.figure(200)
             plt.title('Training Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(train_accs, 'b')
             plt.show()
             plt.figure(300)
             plt.title('Validation Accuracy')
             plt.xlabel('Iteration')
             plt.ylabel('Accuracy')
             plt.plot(val_accs, 'b')
             plt.show()
 In [9]: def runModel(model, batch size, NUM OPT STEPS, optimizer):
             train_accs, val_accs = [], []
             for i in range(NUM_OPT_STEPS):
                 train(model, optimizer, batch size)
                 if i % 100 == 0:
                     train_accs.append(approx_train_accuracy(model))
                     val accs.append(val accuracy(model))
                     print("%6d %5.2f %5.2f" % (i, train_accs[-1], val_accs[-1]))
             plot(train_accs, val_accs)
In [22]: three_layer = ThreeLayerNN(200, 100)
         optimizer_three_layer = torch.optim.Adam(three_layer.parameters(), lr=0.00
         1)
         runModel(three layer, 32, 10000, optimizer three layer)
              0 0.37 0.36
            100 0.78 0.79
            200 0.78 0.79
            300 0.80 0.80
            400 0.80 0.81
            500 0.85 0.83
            600 0.83 0.83
            700 0.84 0.83
            800 0.86 0.85
            900 0.87 0.84
           1000 0.87 0.84
           1100 0.86 0.85
           1200 0.87 0.85
           1300 0.88 0.86
           1400 0.85 0.86
           1500 0.88 0.86
           1600 0.89 0.86
```

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 3100 3200 3300 3400 3500 3600 3700 4200 4200 4200 4300 4400 4500 4600 4700 4800 5100 5500 5500 5500 5700 5800 5900 6000 6100	0.88 0.87 0.89 0.87 0.89 0.87 0.89 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.92 0.92 0.93 0.92 0.93 0.92 0.93 0.93 0.94 0.94 0.95 0.94	0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.87 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88
5600 5700 5800 5900	0.92 0.94 0.94 0.95	0.88 0.88 0.88
6100 6200 6300 6400	0.94 0.93 0.94 0.93	0.88 0.87 0.87 0.87
6500 6600 6700 6800 6900	0.95 0.94 0.94 0.94	0.87 0.87 0.88 0.87 0.87
7000 7100 7200 7300	0.93 0.95 0.95 0.95	0.87 0.87 0.87 0.87

7400	0.95	0.88
7500	0.95	0.87
7600	0.94	0.87
7700	0.95	0.87
7800	0.95	0.87
7900	0.95	0.87
8000	0.94	0.88
8100	0.94	0.87
8200	0.94	0.87
8300	0.93	0.87
8400	0.94	0.87
8500	0.94	0.88
8600	0.95	0.87
8700	0.96	0.88
8800	0.95	0.87
8900	0.96	0.88
9000	0.95	0.87
9100	0.95	0.87
9200	0.94	0.87
9300	0.96	0.87
9400	0.95	0.87
9500	0.95	0.86
9600	0.96	0.86
9700	0.96	0.87
9800	0.94	0.87
9900	0.96	0.87


```
In [23]: four_layer = FourLayerNN(200, 100, 50)
          optimizer_four_layer = torch.optim.Adam(four_layer.parameters(), lr=0.001)
          runModel(four_layer, 32, 10000, optimizer_four_layer)
               0
                  0.29
                        0.28
             100
                  0.78
                        0.76
             200
                  0.77
                        0.79
             300
                  0.80
                        0.81
             400
                  0.85
                        0.82
                  0.83
             500
                        0.82
                  0.82
                        0.82
             600
             700
                  0.84
                        0.84
             800
                  0.82
                        0.83
             900
                  0.83
                        0.83
                  0.85
           1000
                        0.84
                  0.84
           1100
                        0.85
                  0.85
                        0.85
           1200
                  0.88
           1300
                        0.85
           1400
                  0.88
                        0.86
           1500
                  0.87
                        0.85
           1600
                  0.86
                        0.85
                  0.87
                        0.86
           1700
                  0.89
                        0.86
           1800
           1900
                  0.85
                        0.85
           2000
                  0.89
                        0.86
           2100
                  0.88
                        0.86
           2200
                  0.87
                        0.86
           2300
                  0.87
                        0.86
           2400
                  0.89
                        0.86
                  0.89
           2500
                        0.86
           2600
                  0.88
                        0.86
                  0.89
            2700
                        0.86
           2800
                  0.88
                        0.86
           2900
                  0.91
                        0.87
           3000
                  0.89
                        0.87
                  0.89
                        0.86
           3100
            3200
                  0.90
                        0.87
                  0.91
           3300
                        0.87
```

0.87

0.92

6600 0.94 0.88 6700 0.91 0.87 6800 0.93 0.87 6900 0.94 0.88 7000 0.94 0.87 7100 0.94 0.87 7200 0.93 0.88 7300 0.94 0.88	6700 0.91 0.87 6800 0.93 0.87 6900 0.94 0.88 7000 0.94 0.87 7100 0.94 0.87 7200 0.93 0.88 7300 0.94 0.88 7400 0.95 0.88 7500 0.92 0.88 7600 0.95 0.88 7700 0.94 0.87	6700 0.91 0.87 6800 0.93 0.87 6900 0.94 0.88 7000 0.94 0.87 7100 0.94 0.87 7200 0.93 0.88 7300 0.94 0.88 7400 0.95 0.88 7500 0.92 0.88 7600 0.95 0.88 7700 0.94 0.87
	7500 0.92 0.88 7600 0.95 0.88 7700 0.94 0.87 7800 0.95 0.87	7500 0.92 0.88 7600 0.95 0.88 7700 0.94 0.87 7800 0.95 0.87 7900 0.95 0.88 8000 0.96 0.88 8100 0.94 0.87 8200 0.95 0.87 8300 0.93 0.87 8400 0.94 0.88

```
9200
      0.94
             0.87
9300
      0.95
             0.88
      0.95
             0.88
9400
      0.96
             0.87
9500
9600
      0.95
             0.88
9700
      0.94
             0.87
9800
      0.94
             0.87
9900
      0.95
             0.87
```



```
In [24]: two_layer = TwoLayerNN(100) #using dropout at 0.3
    optimizer_two_layer = torch.optim.Adam(two_layer.parameters(), lr=0.001)
    runModel(two_layer, 32, 10000, optimizer_two_layer)
```

```
0
     0.29
            0.30
100
     0.78
            0.78
200
     0.78
            0.79
     0.80
            0.80
300
400
     0.80
            0.81
500
     0.82
            0.81
600
     0.80
           0.82
     0.83
            0.82
700
800
     0.83
            0.82
     0.84
            0.83
900
```

5700 0.89 0.87 5800 0.88 0.87	1000 1100 1200 1300 1400 1500 1600 1700 2200 2300 2400 2500 2500 2600 2700 2800 3000 3100 3200 3300 3400 3500 3600 3700 3800 4000 4100 4200 4400 4500 4600 4700 4800 4900 5000 5100 5500 5500 5600 5700	0.84 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.87 0.88 0.89	$\begin{smallmatrix} 0.83\\ 0.84\\ 0.84\\ 0.885\\ 5.55\\ 5.55\\ 5.55\\ 5.56\\ 6.66\\ 0.886\\ 6.66\\ 6.886\\ $
	5200	0.88	0.86
	5300	0.90	0.87
	5400	0.89	0.86
	5500	0.90	0.86
	5600	0.91	0.87

6700	0.89	0.86
6800	0.91	0.87
6900	0.89	0.86
7000	0.89	0.87
7100	0.90	0.86
7200	0.90	0.86
7300	0.90	0.87
7400	0.91	0.87
7500	0.91	0.87
7600	0.90	0.87
7700	0.91	0.87
7800	0.90	0.87
7900	0.90	0.87
8000	0.92	0.87
8100	0.91	0.87
8200	0.91	0.87
8300	0.92	0.87
8400	0.89	0.87
8500	0.90	0.87
8600	0.92	0.87
8700	0.89	0.87
0088	0.92	0.87
8900	0.92	0.87
9000	0.91	0.87
9100	0.93	0.87
9200	0.91	0.87
9300	0.92	0.87
9400	0.91	0.86
9500	0.91	0.87
9600	0.91	0.87
9700	0.91	0.86
9800	0.92	0.86
9900	0.91	0.87


```
In [10]: start = time.time()
         two_layer = TwoLayerNN(200) #using dropout at 0.3
         optimizer_two_layer = torch.optim.Adam(two_layer.parameters(), lr=0.001)
         runModel(two_layer, 65, 10000, optimizer_two_layer)#using multi hinge loss
         end = time.time()
         print(end - start)
               0
                  0.44
                        0.43
            100
                  0.78
                       0.79
            200
                  0.81
                        0.81
                 0.82
            300
                       0.82
            400
                  0.84
                       0.83
            500
                  0.83
                       0.84
            600
                  0.85
                       0.85
            700
                  0.87
                        0.83
                  0.86
            800
                       0.85
            900
                  0.86
                        0.86
                  0.86
           1000
                       0.86
           1100
                  0.88
                       0.86
           1200
                  0.88
                       0.86
           1300
                  0.89
                        0.85
                  0.88
                        0.85
           1400
           1500
                  0.90
                       0.85
           1600
                  0.89
                       0.86
           1700
                  0.91
                        0.86
           1800
                  0.89
                        0.86
           1900
                  0.89
                        0.86
           2000
                  0.88
                        0.87
           2100
                  0.89
                       0.86
           2200
                 0.89
                       0.87
           2300
                  0.91
                        0.87
           2400
                  0.89
                        0.87
           2500
                  0.90
                       0.86
           2600
                  0.89
                       0.87
           2700
                  0.89
                       0.86
                  0.90
           2800
                        0.87
           2900
                  0.92
                        0.87
           3000
                  0.90
                        0.87
```

0.87

0.90

3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4600 4700 4800 4700 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6700	0.90 0.90 0.91 0.91 0.91 0.92 0.91 0.92 0.93 0.92 0.93 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98 0.99	0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88
6300	0.92	0.87
6500	0.94	0.87
6800	0.94 0.94	0.87
6900	0.94	0.87
7000	0.94	0.87
7100	0.94	0.88
7200	0.94	0.88
7300	0.95	0.87
7400	0.94	0.87
7500	0.95	0.88
7600	0.94	0.87
7700	0.94	0.87
7800	0.95	0.87
7900	0.95	0.88
8000	0.94	0.87
8100	0.95	0.87
8200	0.94	0.87
8300	0.94	0.88
8400	0.95	0.87
8500 8600	0.95 0.96 0.95	0.87 0.87 0.87
8700 8800	0.96 0.95	0.88

```
8900
       0.95
             0.87
9000
       0.95
             0.87
       0.96
             0.88
9100
       0.95
9200
             0.87
9300
       0.96
             0.87
9400
       0.95
             0.88
9500
       0.94
             0.88
       0.95
             0.88
9600
       0.95
             0.87
9700
       0.95
9800
             0.88
9900
       0.95
             0.87
```


80.23156976699829

Best validation accuracy achieved was 88. This was using my two layer neural net with 200 units, learning rate of 0.001 using Adam optimizer, 10k optimization steps, and 65 batch size. This was also run with a dropout before the second layer with probability 0.3 and using multi hinge loss instead of cross entropy loss. The total time was about 76 seconds.

```
In [1]: %matplotlib inline
        import matplotlib.pyplot as plt
        import numpy as np
        import torch
        from torch import autograd
        import torch.nn.functional as F
        import csv
        import time
        images = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
        oject_data/images.npy")
        labels = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_pr
        oject data/labels.npy")
        test = np.load("D:/work/JHUschoolStuff/machinelearning/project1/cs475_proj
        ect_data/part_2_test_images.npy")
        height = images.shape[1]
        width = images.shape[2]
        size = height * width
        images = (images - images.mean()) / images.std()
        data = images.reshape(images.shape[0],size)
        data = torch.from_numpy(data).float()
        labels = torch.from_numpy(labels).float()
        test data = test.reshape(test.shape[0], size)
        test_data = (test_data - test_data.mean()) / test_data.std()
        test_data = torch.from_numpy(test_data).float()
        batch size = 1
        NUM_OPT_STEPS = 5000
        train_seqs = data[0:45000,:]
        train labels = labels[0:45000]
        val segs = data[45000:,:]
        val_labels = labels[45000:]
        NUM CLASSES = 5
In [2]: class TooSimpleConvNN(torch.nn.Module):
            def ___init___(self):
                super(). init ()
                # 3x3 convolution that takes in an image with one channel
                # and outputs an image with 8 channels.
                self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=3, stride = 2)
                # 3x3 convolution that takes in an image with 8 channels
                # and outputs an image with 16 channels. The output image
                # has approximately half the height and half the width
                # because of the stride of 2.
                self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=3, stride = 2)
                # 1x1 convolution that takes in an image with 16 channels and
                # produces an image with 5 channels. Here, the 5 channels
                # will correspond to class scores.
                self.final conv = torch.nn.Conv2d(32, 5, kernel size=1)
            def forward(self, x):
                # Convolutions work with images of shape
                # [batch_size, num_channels, height, width]
                x = x.view(-1, height, width).unsqueeze(1)
                x = F.relu(self.conv1(x))
```

```
x = F.relu(self.conv2(x))
                n, c, h, w = x.size()
                x = F.avg_pool2d(x, kernel_size=[h, w])
                x = self.final\_conv(x).view(-1, NUM\_CLASSES)
                return x
In [3]: def train(model, optimizer, batch_size):
            model.train()
            # i is is a 1-D array with shape [batch size]
            i = np.random.choice(train_seqs.shape[0], size=batch_size, replace=Fal
        se)
            i = torch.from_numpy(i).long()
            x = autograd.Variable(train_seqs[i, :])
            y = autograd.Variable(train_labels[i]).long()
            optimizer.zero grad()
            y_hat_ = model(x)
            loss = F.cross_entropy(y_hat_, y)
            loss.backward()
            optimizer.step()
            return loss.data[0]
In [4]: def approx_train_accuracy(model):
            i = np.random.choice(train_seqs.shape[0], size=1000, replace=False)
            i = torch.from_numpy(i).long()
            x = autograd.Variable(train segs[i, :])
            y = autograd.Variable(train_labels[i]).long()
            y_hat_ = model(x)
            y_hat = np.zeros(1000)
            for i in range(1000):
                y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
            return accuracy(y_hat, y.data.numpy())
In [5]: def val_accuracy(model):
            x = autograd. Variable(val segs)
            y = autograd.Variable(val_labels)
            y_hat_ = model(x)
            y_hat = np.zeros(5000)
            for i in range(5000):
                y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
            return accuracy(y_hat, y.data.numpy())
In [6]: def accuracy(y, y_hat):
            return (y == y_hat).astype(np.float).mean()
In [7]: def plot(train_accs, val_accs):
            plt.figure(200)
            plt.title('Training Accuracy')
            plt.xlabel('Iteration')
            plt.ylabel('Accuracy')
            plt.plot(train accs, 'b')
            plt.show()
            plt.figure(300)
```

plt.title('Validation Accuracy')

plt.xlabel('Iteration')
plt.ylabel('Accuracy')

```
plt.plot(val_accs, 'b')
            plt.show()
 In [8]: def runModel(model, batch_size, NUM_OPT_STEPS, optimizer):
            train_accs, val_accs = [], []
            for i in range(NUM_OPT_STEPS):
                train(model, optimizer, batch_size)
                if i % 100 == 0:
                    train_accs.append(approx_train_accuracy(model))
                    val_accs.append(val_accuracy(model))
                    print("%6d %5.2f %5.2f" % (i, train_accs[-1], val_accs[-1]))
            plot(train_accs, val_accs)
In [20]: model = TooSimpleConvNN()
         optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
In [21]: runModel(model, 32, 30000, optimizer)
             0
                0.21 0.19
                0.52 0.50
           100
           200
               0.59 0.61
                0.65 0.65
           300
           400 0.67 0.69
                0.66 0.70
           500
           600 0.70 0.71
                0.70 0.70
           700
           800
                0.71 0.72
           900 0.71 0.74
          1000
               0.73 0.74
          1100 0.70 0.73
          1200
               0.74 0.76
          1300 0.73 0.75
          1400 0.75 0.75
          1500
               0.73 0.75
          1600 0.77 0.78
               0.75 0.77
          1700
          1800 0.75 0.77
          1900 0.76 0.76
          2000
                0.77 0.77
          2100 0.75 0.78
               0.78 0.77
          2200
          2300 0.77 0.77
          2400 0.75 0.78
                0.77 0.79
          2500
          2600
               0.77 0.78
                0.78 0.78
          2700
          2800 0.79 0.78
          2900
               0.77 0.79
          3000 0.77 0.80
               0.79 0.79
          3100
          3200
                0.77 0.79
          3300 0.80 0.80
          3400 0.81 0.80
          3500 0.79 0.81
          3600
                0.80 0.81
          3700
                0.82 0.80
```

3800	0.80	0.81
3900	0.81	0.80
4100	0.83	0.81
4200	0.78	0.80
4300	0.81	0.81
4400	0.80	0.80
4500	0.80	0.81
4700	0.80	0.82
4800	0.81	0.81
5100	0.82	0.82
5200	0.81	0.82
5500	0.82	0.82
5700	0.81	0.82
5800	0.83	0.83
6100	0.82	0.83
6200	0.81	0.83
6300	0.83	0.83
6400	0.82	0.84
6300	0.81	0.83
6400	0.83	0.83
6700	0.83	0.84
6800	0.83	0.83
6700	0.84	0.83
7100	0.85	0.84
7200	0.83	0.83
7300	0.83	0.83
7400	0.83	0.84
7500	0.83	0.83
7600	0.83	0.83
7700	0.83	0.84
7800	0.83	0.83
7800	0.83	0.83
7800	0.84	0.84
7800	0.85	0.83
7800	0.85	0.84
7800	0.87	0.83
7800	0.86	0.83
7800	0.87	0.84
7800	0.87	0.83
7800	0.87	0.84
7800	0.87	0.83
7800	0.87	0.84
7800	0.88	0.83
7800	0.88	0.84
7800	0.89	0.83
7800	0.89	0.84
7800	0.81	0.83
7800	0.81	0.84
7800	0.81	0.83
7800	0.82	0.84
7800	0.81	0.83
7800	0.83	0.84
7800	0.83	0.83
7800	0.84	0.84
7800	0.85	0.83
7800	0.85	0.84
7800	0.85	0.83
7800	0.85	0.84
7800	0.85	0.83
7800	0.85	0.84
7800	0.85	0.83
7800	0.85	0.84
7800	0.85	0.83
7800	0.85	0.84
7800	0.85	0.85
7800	0.85	0.85
7800	0.85	0.86
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
7800	0.85	0.87
8200	0.82	0.84
8300	0.82	0.84
8400	0.84	0.84
8500	0.82	0.84

9500 9600 9700 9800 9900 10000 10100 10200 10300 10400 10500 10600 10700 11000 11100 11200 11300 11400 11500 11500 11600 11700 11800 11900 12000 12100	0.84 0.83 0.85 0.85 0.84 0.82 0.83 0.82 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.83 0.82 0.83 0.84 0.83 0.84 0.83 0.84 0.84 0.83 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85
11200 11300 11400 11500 11600 11700 11800 11900 12000	0.84 0.85 0.85 0.85 0.84 0.85 0.85 0.85	0.84 0.85 0.85 0.84 0.85 0.85 0.85

15200	0.86	0.85
15300	0.85	
15400	0.87	
15500	0.87	0.85 0.85
15600 15700	0.84	
15800	0.84	0.84
15900	0.84	
16000	0.84	
16100	0.84	
16200	0.85	
16300	0.85	0.84
16400	0.87	0.86
16500	0.85	0.85
16600	0.85	0.85
16700	0.87	0.86
16800 16900	0.86 0.87	
17000	0.85	0.86
17100	0.83	0.85
17200	0.87	0.86
17300	0.85	0.86
17400	0.85	0.85
17500	0.85	0.86
17600	0.85	
17700	0.86	
17800	0.86	0.86
17900 18000	0.84	0.85 0.84
18100	0.88	0.86
18200	0.85	0.85
18300	0.88	
18400	0.86	
18500	0.87	0.84
18600	0.88	0.86
18700	0.87	0.85
18800	0.86	0.86
18900 19000	0.87	0.85
19100	0.86	0.85 0.86
19200	0.88	0.86
19300	0.86	0.86
19400	0.85	0.86
19500	0.87	0.85
19600	0.84	0.84
19700	0.85	0.86
19800	0.84	0.86
19900 20000	0.84	0.86 0.86
20000	0.87	0.86 0.87
20100	0.88	0.86
20300	0.88	0.85
20400	0.88	0.86
20500	0.86	0.86
20600	0.87	0.86
20700	0.87	0.85
20800	0.86	0.86

20900	0.87	0.86
21000	0.83	0.86
21100	0.88	0.85
21200 21300 21400 21500	0.84 0.87 0.86 0.86	0.86 0.86 0.86
21600	0.83	0.86
21700	0.87	0.87
21800	0.88	0.87
21900	0.86	0.86
22000	0.82	0.83
22100	0.86	0.86
22200	0.88	0.87
22300	0.87	0.86
22400	0.85	0.85
22500	0.88	0.85
22600	0.87	0.86
22700	0.86	0.86
22800	0.85	0.86
22900	0.86	0.86
23000	0.88	0.85
23100	0.86	0.85
23200	0.86	0.86
23300	0.87	0.86
23400	0.88	0.86
23500	0.85	0.85
23600 23600 23700 23800	0.89 0.86 0.86	0.86 0.85 0.86
23900	0.87	0.85
24000	0.87	0.86
24100	0.87	0.86
24200	0.86	0.86
24300	0.88	0.86
24400	0.86	0.87
24500	0.87	0.87
24600	0.87	0.86
24700	0.86	0.86
24800	0.85	0.86
24900	0.84	0.86
25000	0.88	0.86
25100	0.86	0.87
25200	0.89	0.87
25300	0.86	0.86
25400	0.86	0.86
25500	0.88	0.86
25600	0.83	0.86
25700	0.86	0.86
25800	0.88	0.87
25900	0.87	0.87
26000	0.85	0.86
26100	0.87	0.86
26200	0.89	0.86
26300	0.85	0.86
26400	0.88	0.86
26500	0.86	0.86

```
26600
       0.88
              0.86
26700
       0.86
              0.86
       0.87
26800
              0.86
       0.86
26900
              0.86
27000
       0.85
              0.86
27100
       0.89
              0.86
27200
       0.89
              0.86
       0.86
27300
              0.86
       0.88
27400
              0.86
       0.88
27500
              0.87
27600
       0.86
              0.85
27700
       0.87
              0.86
27800
       0.88
              0.85
27900
       0.88
              0.86
       0.88
28000
              0.86
       0.88
28100
              0.86
28200
       0.87
              0.86
28300
       0.90
              0.86
28400
       0.87
              0.87
       0.84
28500
              0.86
       0.87
28600
              0.87
28700
       0.89
              0.87
28800
       0.85
              0.84
28900
       0.86
              0.86
29000
       0.90
              0.87
29100
       0.85
              0.86
29200
       0.88
              0.86
29300
       0.89
              0.87
       0.88
29400
              0.87
29500
       0.88
              0.87
29600
       0.87
              0.87
29700
       0.87
              0.85
29800
       0.89
              0.87
29900
       0.89
              0.87
```



```
In [9]: model = TooSimpleConvNN()
         optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
         runModel(model, 32, 15000, optimizer) #using stride = 1
              0
                 0.19
                       0.19
                 0.45
            100
                       0.46
            200
                 0.56
                       0.58
            300
                 0.56
                        0.60
            400
                 0.60
                       0.63
                 0.62
            500
                       0.64
                 0.65
            600
                       0.67
                 0.67
            700
                       0.67
            800
                 0.68
                       0.67
            900
                 0.66
                       0.69
                 0.70
                       0.70
           1000
                 0.69
           1100
                       0.69
                 0.69
                       0.68
           1200
                 0.68
           1300
                       0.69
           1400
                 0.67
                       0.67
           1500
                 0.73
                       0.71
           1600
                 0.72
                       0.71
                 0.72
                       0.72
           1700
           1800
                 0.74
                       0.72
           1900
                 0.69
                       0.71
           2000
                 0.72
                       0.73
                 0.68
           2100
                       0.71
           2200
                 0.69
                       0.72
           2300
                 0.74
                       0.74
           2400
                 0.75
                       0.73
                 0.73
           2500
                       0.75
           2600
                 0.75
                       0.74
                 0.73
           2700
                       0.74
           2800
                 0.75
                       0.76
           2900
                 0.76
                       0.77
           3000
                 0.75
                       0.76
                 0.79
           3100
                       0.76
           3200
                 0.77
                        0.76
```

0.77

0.76

0.77

0.74

3300

3500 3600 3700 3800 3700 3800 41000 4200 4200 4400 4500 4500 5500 5500 5	0.76 0.79 0.76 0.77 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.78 0.80 0.81 0.80 0.81 0.76 0.78 0.81 0.76 0.79 0.76 0.78 0.81 0.79 0.79 0.79 0.79 0.78 0.80 0.81 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.78 0.79 0.79 0.78 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.78 0.79	0.77 0.77 0.77 0.77 0.76 0.77 0.78 0.79 0.77 0.79 0.79 0.79 0.79 0.79 0.79
8100	0.81	0.80
8200	0.79	0.80
8300	0.81	0.81
8400	0.80	0.81

9200	0.81	0.80
9300	0.82	0.81
9400	0.81	0.80
9500	0.83	0.82
9600	0.80	0.82
9700	0.82	0.81
9800	0.81	0.81
9900	0.81	0.81
10000	0.79	0.80
10100	0.80	0.82
10200 10300 10400 10500 10600 10700	0.79 0.82 0.82 0.80 0.80 0.83	0.80 0.82 0.82 0.81 0.81
10800 10900 11000 11100 11200 11300	0.81 0.86 0.83 0.85 0.82 0.83	0.82 0.82 0.82 0.82 0.81
11400	0.82	0.81
11500	0.85	0.83
11600	0.80	0.82
11700	0.83	0.81
11800	0.83	0.82
11900 12000 12100 12200 12300 12400	0.84 0.85 0.81 0.81 0.83	0.82 0.83 0.81 0.82 0.83 0.82
12500	0.82	0.83
12600	0.81	0.82
12700	0.82	0.82
12800	0.83	0.83
12900	0.81	0.83
13000	0.83	0.81
13100	0.83	0.82
13200	0.82	0.83
13300	0.82	0.83
13400	0.81	0.82
13500	0.85	0.83
13600	0.83	0.83
13700	0.82	0.83
13800	0.82	0.82
13900	0.84	0.83
14000	0.84	0.83
14100 14200 14300 14400 14500 14600	0.85 0.84 0.83 0.86 0.84 0.85	0.83 0.83 0.83 0.83 0.83
14700 14800	0.84	0.83

14900 0.85 0.84

0.59 0.59 200 0.61 0.62 300 0.65 0.67 400 0.69 0.69 500 0.69 0.71 0.71 0.72 600 700 0.71 0.73 800 0.72 0.74 900 0.76 0.75 0.73 1000 0.75 1100 0.75 0.77 1200 0.74 0.76 1300 0.74 0.77 0.76 0.75 1400 1500 0.78 0.78 0.77 0.78 1600

5700 0.83 0.83	5700 0.83 0.83 5800 0.84 0.84 5900 0.83 0.84 6000 0.83 0.84 6100 0.82 0.84 6200 0.83 0.83 6300 0.82 0.82 6400 0.85 0.84	1700 1800 1900 2000 2100 2200 2300 2400 2500 2700 2800 3300 3100 3200 3300 3400 3500 3600 3700 3800 4100 4200 4400 4500 4500 4500 4500 4500 5500 5	0.78 0.81 0.79 0.80 0.79 0.80 0.79 0.79 0.79 0.81 0.82 0.80 0.79 0.81 0.83	0.77 0.79 0.80 0.79 0.80 0.79 0.81 0.81 0.81 0.82 0.82 0.82 0.83 0.82 0.83 0.82 0.83 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
	5800 0.84 0.84 5900 0.83 0.84 6000 0.83 0.84 6100 0.82 0.84 6200 0.83 0.83 6300 0.82 0.82	5100 5200 5300 5400 5500 5600	0.86 0.81 0.85 0.83 0.85 0.85	0.84 0.83 0.84 0.83 0.83

7400 7500 7600 7600 7700 7800 7900 8000 8100 8200 8400 8500 8600 8700 9100 9200 9300 9400 9500 9600 9700 9800 9700 9800 10100 10200 10300 10400 10500 10500 10600 10700 10800 11000 11200 11300 11400 11500	0.82 0.84 0.85 0.85 0.86 0.83 0.86 0.84 0.85 0.86 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.87 0.86 0.87 0.86 0.87 0.86 0.87 0.86 0.87 0.86 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	0.84 0.85 0.84 0.85 0.84 0.85
10600 10700 10800 10900 11000 11100 11200 11300 11400	0.86 0.86 0.86 0.83 0.87 0.84 0.86	0.85 0.85 0.85 0.84 0.85 0.86 0.86

```
13100
       0.85
              0.86
13200
        0.87
              0.86
        0.87
              0.85
13300
13400
       0.87
              0.86
13500
        0.86
              0.85
13600
       0.88
              0.86
13700
        0.88
              0.86
13800
        0.86
              0.85
        0.84
13900
              0.84
        0.86
14000
              0.85
14100
        0.87
              0.86
14200
        0.85
              0.85
14300
       0.87
              0.85
14400
        0.86
              0.86
        0.86
14500
              0.86
        0.87
              0.86
14600
14700
        0.84
              0.85
14800
        0.88
              0.86
              0.86
14900
        0.88
```


The best validation accuracy I achieved after changing the stride to 2 was 86. I used a batch size of 64, 15000 optimization steps, and Adam as my optimizer with a learning rate of 0.001. My training

and validation accuracies were about the same after running them for 15000 steps, however increasing the steps and batch size seems to give me a much higher training accuracy than validation accuracy which suggests that I had begun to overfit my training data. To increase performance further, possibly more convolutional layers may help me detect more complex features and give me a better accuracy. Increasing the channels may also help increase the accuracy of my predictions. I could also add in max pooling between the convolution layers to help with down sampling and reducing computational cost, which in turn will help me reduce overfitting.

In [103]: %matplotlib inline

```
import matplotlib.pyplot as plt
         import numpy as np
         import torch
         from torch import autograd
         import torch.nn.functional as F
         import csv
         import skimage
         import skimage.transform
         images = np.load("./images.npy")
         labels = np.load("./labels.npy")
         test = np.load("./part_2_test_images.npy")
         height = images.shape[1]
         width = images.shape[2]
         size = height * width
         pre images = images
         images = (images - images.mean()) / images.std()
         data = images.reshape(images.shape[0],size)
         data = torch.from_numpy(data).float().cuda()
         labels = torch.from_numpy(labels).float().cuda()
         test_data = test.reshape(test.shape[0], size)
         test_data = (test_data - test_data.mean()) / test_data.std()
         test_data = torch.from_numpy(test_data).float().cuda()
         batch_size = 1
         NUM OPT STEPS = 5000
         train_seqs = data[0:45000,:]
         train_labels = labels[0:45000]
         val segs = data[45000:,:]
         val labels = labels[45000:]
         NUM_CLASSES = 5
In [11]: class TooSimpleConvNN(torch.nn.Module):
             def __init__(self, chan_1, chan_2, chan_3, chan_4):
                 super().__init__()
                 # 3x3 convolution that takes in an image with one channel
                 # and outputs an image with 8 channels.
                 self.conv1 = torch.nn.Conv2d(1, chan_1, kernel_size=3)
                 # 3x3 convolution that takes in an image with 8 channels
                 # and outputs an image with 16 channels. The output image
                 # has approximately half the height and half the width
                 # because of the stride of 2.
                 self.conv2 = torch.nn.Conv2d(chan_1, chan_2, kernel_size=3, stride
         =1)
                 self.conv3 = torch.nn.Conv2d(chan 2, chan 3, kernel size=3, stride
         =1)
                 self.conv4 = torch.nn.Conv2d(chan_3, chan_4, kernel_size=3, stride
         =1)
                 # 1x1 convolution that takes in an image with 16 channels and
                 # produces an image with 5 channels. Here, the 5 channels
                 # will correspond to class scores.
                 self.final_conv = torch.nn.Conv2d(chan_4, 5, kernel_size=1)
             def forward(self, x):
```

```
# Convolutions work with images of shape
# [batch_size, num_channels, height, width]
x = x.view(-1, height, width).unsqueeze(1)

x = F.relu(self.conv1(x))
x = F.max_pool2d(x, kernel_size=3, stride=1)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, kernel_size=3, stride=1)
x = F.relu(self.conv3(x))
x = F.max_pool2d(x, kernel_size=3, stride=1)
x = F.relu(self.conv4(x))
x = F.max_pool2d(x, kernel_size=3, stride=2)
n, c, h, w = x.size()
x = F.avg_pool2d(x, kernel_size=[h, w])
x = self.final_conv(x).view(-1, NUM_CLASSES)
return x
```

```
In [12]: def train(model, optimizer, batch size):
         #def train(batch_size):
             # model.train() puts our model in train mode, which can require differ
         ent
             # behavior than eval mode (for example in the case of dropout).
             model.train()
             # i is is a 1-D array with shape [batch_size]
             i = np.random.choice(train_seqs.shape[0], size=batch_size, replace=Fal
             i = torch.from_numpy(i).long().cuda()
             x = autograd.Variable(train_seqs[i, :])
             y = autograd.Variable(train_labels[i]).long()
             i.cpu()
             optimizer.zero_grad()
             y_hat_ = model(x)
             loss = F.cross_entropy(y_hat_, y)
             loss.backward()
             optimizer.step()
             return loss.data[0]
```

```
In [13]: def approx_train_accuracy(model):
    i = np.random.choice(train_seqs.shape[0], size=1000, replace=False)
    i = torch.from_numpy(i).long().cuda()
    x = autograd.Variable(train_seqs[i, :])
    y = autograd.Variable(train_labels[i]).long()
    y_hat_ = model(x)
    y_hat = np.zeros(1000)
    for i in range(1000):
        y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
    return accuracy(y_hat, y.data.cpu().numpy())
```

```
In [14]: def val_accuracy(model):
    x = autograd.Variable(val_seqs)
    y = autograd.Variable(val_labels)
    y_hat_ = model(x)
    y_hat = np.zeros(5000)
    for i in range(5000):
        y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
    return accuracy(y_hat, y.data.cpu().numpy())
```

```
In [15]: def accuracy(y, y_hat):
              return (y == y_hat).astype(np.float).mean()
In [16]: def plot(train_accs, val_accs):
              plt.figure(200)
              plt.title('Training Accuracy')
              plt.xlabel('Iteration')
              plt.ylabel('Accuracy')
              plt.plot(train_accs, 'b')
              plt.show()
              plt.figure(300)
              plt.title('Validation Accuracy')
              plt.xlabel('Iteration')
              plt.ylabel('Accuracy')
              plt.plot(val_accs, 'b')
              plt.show()
In [17]: def runModel(model, batch_size, NUM_OPT_STEPS, optimizer):
              train_accs, val_accs = [], []
              for i in range(NUM_OPT_STEPS):
                  train(model, optimizer, batch_size)
                  if i % 100 == 0:
                      train_accs.append(approx_train_accuracy(model))
                      val_accs.append(val_accuracy(model))
                      print("%6d %5.2f %5.2f" % (i, train_accs[-1], val_accs[-1]))
              plot(train_accs, val_accs)
In [110]: layer_1 = 8 #average
          layer_2 = 16
          layer 3 = 24
          layer 4 = 32
          batch = 64
          rate = 0.001
          step = 5000
          model = TooSimpleConvNN(layer_1, layer_2, layer_3, layer_4)
          model.cuda()
          optimizer = torch.optim.Adam(model.parameters(), lr=rate)
          runModel(model, batch, step, optimizer)
                 0.20 0.20
               0
             100 0.69 0.68
             200 0.76 0.75
             300 0.77 0.79
             400 0.84 0.81
             500 0.82 0.82
             600 0.83 0.83
             700 0.84 0.83
             800 0.84 0.84
             900 0.84 0.84
            1000 0.84 0.84
            1100 0.84 0.85
            1200 0.85 0.85
            1300 0.86 0.86
            1400 0.84 0.85
            1500
                 0.86 0.86
```

1600	0.87	0.86
1700	0.88	0.86
1800	0.86	0.87
1900	0.88	0.87
2000	0.87	0.88
2100	0.88	0.88
2200	0.87	0.87
2300	0.89	0.88
2400	0.87	0.88
2500	0.85	0.86
2600	0.87	0.88
2700	0.90	0.88
2800	0.89	0.89
2900	0.89	0.89
3000	0.88	0.89
3100	0.88	0.88
3200	0.89	0.89
3300	0.88	0.89
3400	0.87	0.88
3500	0.88	0.89
3600	0.90	0.89
3700	0.91	0.90
3800	0.90	0.89
3900	0.91	0.89
4000	0.91	0.90
4100	0.89	0.89
4200	0.89	0.89
4300	0.88	0.89
4400	0.92	0.90
4500	0.88	0.89
4600	0.90	0.88
4700	0.91	0.89
4800	0.91	0.90
4900	0.92	0.90


```
In [9]: layer_1 = 16 #better
        layer 2 = 32
        layer_3 = 64
        layer_4 = 128
        batch = 50
        rate = 0.001
        step = 10000
        model = TooSimpleConvNN(layer_1, layer_2, layer_3, layer_4)
        model.cuda()
        optimizer = torch.optim.Adam(model.parameters(), lr=rate)
        runModel(model, batch, step, optimizer)
                0.19
                      0.20
             0
           100
                0.79
                     0.77
           200
                0.84
                     0.81
                0.84 0.83
           300
           400
                0.82 0.83
                0.86 0.86
           500
           600
                0.84 0.85
           700
                0.88
                     0.86
           800
                0.89
                     0.88
           900
                0.87
                     0.88
          1000
                0.88 0.88
          1100
                0.88 0.89
          1200
                0.90 0.89
                0.91
          1300
                     0.89
                0.88
                     0.87
          1400
          1500
                0.91
                     0.90
          1600
                0.91
                     0.90
                0.90 0.90
          1700
          1800
                0.91
                     0.90
                0.89
          1900
                      0.90
          2000
                0.91 0.91
          2100
                0.91 0.91
          2200
                0.93 0.91
                0.91 0.91
          2300
          2400
                0.90
                     0.91
```

0.89 0.90

0.91

0.91

6600 0.94 0.92 6700 0.95 0.94 6800 0.93 0.93 6900 0.94 0.93 7000 0.93 0.93 7100 0.95 0.94 7200 0.95 0.93 7300 0.95 0.94	66000.940.9267000.950.9468000.930.9369000.940.9370000.930.9371000.950.9472000.950.93	2700 2800 2900 3000 3100 3200 3300 3600 3700 3800 4000 4100 4200 4300 4400 4500 4700 4800 4700 5200 5300 5400 5500 5600 5700 5800 6100 6200 6300 6400 6500	0.94 0.91 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.92 0.93 0.94 0.94 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.98 0.99	0.92 0.91 0.92 0.92 0.93 0.92 0.92 0.92 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
6400 0.93 0.94 6500 0.93 0.93 6600 0.94 0.92 6700 0.95 0.94 6800 0.93 0.93 6900 0.94 0.93 7000 0.93 0.93 7100 0.95 0.94 7200 0.95 0.93 7300 0.95 0.94	6400 0.93 0.94 6500 0.93 0.93 6600 0.94 0.92 6700 0.95 0.94 6800 0.93 0.93 6900 0.94 0.93 7000 0.93 0.93 7100 0.95 0.94 7200 0.95 0.93 7400 0.95 0.94 7500 0.94 0.94 7600 0.95 0.94 7700 0.95 0.94 7800 0.95 0.94 7800 0.95 0.94	5900 6000 6100 6200	0.94 0.92 0.94 0.95	0.93 0.93 0.94 0.93
7000 0.93 0.93 7100 0.95 0.94 7200 0.95 0.93 7300 0.95 0.94	7000 0.93 0.93 7100 0.95 0.94 7200 0.95 0.93 7300 0.95 0.94 7400 0.96 0.94 7500 0.94 0.94 7600 0.95 0.94 7700 0.95 0.94 7800 0.95 0.94	6400 6500 6600 6700	0.93 0.93 0.94 0.95	0.94 0.93 0.92 0.94
	7500 0.94 0.94 7600 0.95 0.94 7700 0.95 0.94 7800 0.95 0.94	7000 7100 7200 7300	0.93 0.95 0.95 0.95	0.93 0.94 0.93 0.94

```
8400
      0.97
             0.94
      0.94
             0.94
8500
      0.92
             0.93
8600
8700
      0.94
             0.94
8800
      0.95
             0.94
8900
      0.96
             0.94
9000
      0.95
             0.94
9100
      0.95
             0.94
      0.95
9200
             0.94
9300
      0.95
             0.94
9400
      0.95
             0.94
9500
      0.95
             0.94
      0.96
             0.94
9600
9700
      0.96
             0.94
9800
      0.95
             0.94
9900
      0.95
             0.93
```



```
In [9]: layer_1 = 16 #better
layer_2 = 32
layer_3 = 64
layer_4 = 128
batch = 32
rate = 0.001
```

```
step = 10000
model = TooSimpleConvNN(layer_1, layer_2, layer_3, layer_4)
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=rate)
runModel(model, batch, step, optimizer)
       0.20 0.20
    0
       0.76 0.79
  100
  200
       0.80 0.80
  300
       0.81 0.81
  400
       0.82 0.82
  500
       0.85 0.83
  600
       0.82 0.85
       0.82 0.80
  700
  800
       0.86 0.85
  900
       0.87 0.87
 1000
       0.86 0.87
       0.88 0.87
 1100
 1200
       0.88 0.87
 1300
       0.88 0.87
 1400
       0.86 0.86
 1500
       0.88 0.87
 1600
       0.87 0.86
 1700
       0.88 0.88
 1800 0.86 0.88
       0.89 0.89
 1900
 2000
       0.88 0.88
       0.88 0.88
 2100
       0.91 0.89
 2200
 2300 0.91 0.89
 2400
       0.89 0.89
 2500
       0.89 0.89
 2600
       0.90 0.91
       0.89 0.89
 2700
 2800
       0.91 0.90
       0.89 0.90
 2900
 3000
       0.90 0.90
       0.91 0.90
 3100
 3200
       0.91 0.91
       0.92 0.92
 3300
 3400
       0.91 0.91
       0.90 0.90
 3500
 3600
       0.93 0.92
 3700
       0.90 0.88
 3800
       0.92 0.91
 3900
       0.90 0.91
 4000
       0.92 0.91
       0.92 0.92
 4100
       0.93 0.92
 4200
 4300
       0.92 0.92
 4400
       0.92 0.92
 4500
       0.93 0.92
       0.91 0.91
 4600
 4700
       0.93 0.92
 4800
       0.92 0.92
 4900
       0.91 0.92
```

0.94 0.92

5100	0.92	0.92
5200	0.94	0.91
5300	0.92	0.92
5400	0.91	0.92
5500		
5600	0.94	0.92
5700	0.90	0.89
5800	0.91	0.92
5900	0.93	0.92
6000		0.91
6100	0.94	0.93
6200	0.93	0.92
6300	0.94	0.92
6400	0.93	0.93
6500	0.92	0.92
6600	0.91	0.89
6700	0.93	0.92
6800	0.94	0.92
6900	0.92	0.92
7000	0.94	0.93
7100	0.93	0.92
7200	0.93	0.93
7300	0.92	0.93
7400	0.94	0.93
		0.92
7500		
7600	0.95	0.93
7700	0.94	0.93
7800	0.94	0.93
7900	0.93	0.93
8000	0.94	0.92
	0.95	
8100		
8200	0.92	0.93
8300	0.94	0.93
8400	0.94	0.93
8500	0.95	0.93
8600	0.95	0.93
8700		
	0.94	
8800	0.93	0.92
8900	0.94	0.93
9000	0.94	0.93
9100	0.94	0.93
9200	0.95	0.93
9300		
9400	0.94	0.93
9500	0.94	0.93
9600	0.94	0.93
9700	0.95	0.93
9800	0.94	0.93
9900	0.93	0.93

My starting point was with the basic two layer neural network. I tried optimizing the hyper parameters for it and found that my accuracy was capped around 86.

I started trying more convolutional layers to get better accuracy and was able to raise it to 94-95 accuracy using 4 convolutional layers.

The optimizer I used was the Adam optimizer at a learning rate of 0.001 with a mini batch size of 64. I tried varying the batch size but when I chose something over 100 my training became incredibly slow. My training was also particularly slow when I increased the number of channels at every convolution layer. To circumvent this problem i decided to train on my GPU which allowed for faster training.

Along with that, intially I had a bit of overfitting with my model and to decrease my overfitting I decided to max pool after every convolution layer to help with down sampling.

The most important changes to achieving high accuracy I made were increasing the number of layers, and getting a pyramid like structure with my channels.

What my model does is that it has 4 convolution layers which each output an image with different number of channels. The number of channels I usually set it up with are in a "pyramid" shape, IE 32 64 128 256. When my model makes its prediction it will first take in image data with one channel and

then take a 3x3 convolution and then output an image with chan_1 number of channels. I then send that output into my relu activation function and run a max pool in order to get data that is closer bounded and get some down sampling to reduce some overfitting. I then run through the rest of the layers in the same fashion with the only difference being that each layer outputs an image with a different number of channels. I still feed my output of every layer into my relu activation function and run a max pool each time. At the very end I run a 1x1 convolution and output an image with 5 channels that correspond to the class scores. I then take the argmax of those scores and use that as my prediction.

```
In [20]: with open('jzhan127_part2.csv', 'w', newline='') as csvfile:
    filewriter = csv.writer(csvfile, delimiter=',',quotechar='|', quoting=
csv.QUOTE_MINIMAL)
    filewriter.writerow(['id', 'label'])

x = autograd.Variable(test_data)
y_hat_ = model(x)
for i in range(5000):
    filewriter.writerow([i, torch.max(y_hat_[i,:].data, 0)[1][0]])
```

Kaggle Submission: jzhan127_part2.csv

EXPLORING FAILURE MODES

```
In [18]: with open('test.csv', 'w', newline='') as csvfile:
             filewriter = csv.writer(csvfile, delimiter=',',quotechar='|', quoting=
         csv.QUOTE MINIMAL)
             filewriter.writerow(['id', 'label'])
             x = autograd.Variable(val_seqs)
             y_hat_ = model(x)
             for i in range(45000, 50000):
                 filewriter.writerow([i-45000, torch.max(y_hat_[i - 45000,:].data,
         0)[1][0], val_labels[i - 45000]])
In [79]: wrong = [images[45000], images[45002], images[45004], images[45012], image
         s[45013], images[45017], images[45024], images[45038], images[45041], imag
         es[45075]]
         right = [images[45001], images[45003], images[45005], images[45006], image
         s[45007], images[45008], images[45010], images[45014], images[45015], imag
         es[45029]]
         print("RIGHT IMAGES")
         for i in range(10):
             plt.figure(i)
             plt.imshow(right[i])
```

RIGHT IMAGES


```
In [78]: print("WRONG IMAGES")
    for j in range(10):
        plt.figure(j+10)
        plt.imshow(wrong[j])
```

WRONG IMAGES

10

15

20

25

The image quality of both sets are about the same. However in the wrong set the images seem to have slightly different features that make it more difficult to classify. The misclassified examples are slightly more difficult to classify as a human because it is hard to make out what the image is. They're fairly unclear and messy which make it hard to discern what the image is supposed to be.

```
In [88]: noise_add = right
    for i in range(10):
        noise_add[i]= skimage.util.random_noise(noise_add[i], mode='gaussian',
        seed=None, clip=True)
        plt.figure(i)
        plt.imshow(noise_add[i])
```



```
In [97]: right_lab = [labels[45001], labels[45003], labels[45005], labels[45006], l
    abels[45007], labels[45008], labels[45010], labels[45014], labels[45015],
    labels[45029]]
    right_lab = np.array(right_lab)
    x = autograd.Variable(torch.from_numpy(np.array(noise_add)).cuda().float()
    )
    y_hat_ = model(x)
    y_hat = np.zeros(10)
    for i in range(10):
        y_hat[i] = torch.max(y_hat_[i,:].data, 0)[1][0]
    print(accuracy(y_hat, right_lab))

0.1
```

It does not classify the 10 images correctly. In fact it led to an even worse accuracy.

```
In [106]:
    to_flip = right
    for i in range(10):
        to_flip[i] = skimage.transform.rotate(to_flip[i], 90)
        plt.figure(i)
        plt.imshow(to_flip[i])
```


0.0

My classifier was not able to classify these 10 images correctly.

Yes there are scenarios when we want to remain invariant to horizontal flipping because there are certain objects that may be sensitive to orientation which would allow us to classify them as those objects. To remain invariant to horizontal flipping we could randomly flip images when we are training and our model will have to train with these flips which will allow our model to be sensitive to flipping and allow our model to remain robust to such transformations.

Kaggle submission: jzhan127_part2.csv