OFFICE OF NAVAL RESEARCH

GRANT: N00014-89-J-3062

R&T Code 3132084

Technical Report No. 43

Improved Route to Bridged Planar Poly(p-phenylene) Derivatives for Maximization of Extended p-Conjugation

by

J. S. Lamba and J. M. Tour

Accepted for Publication in

Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1994, 35(2), 689.

Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208

June 7, 1995

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

19950705 054

DTIC QUALITY INSPECTED 5

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis High-Way, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED Technical Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Improved Route to Bridged Planar Poly(p-phenylene) G- N00014-89-J3062 Derivatives for Maximization of Extended p-Conjugation R&T 3132084 6. AUTHOR(S) K. Wynne J. S. Lamba and J. M. Tour 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Department of Chemistry and Biochemistry REPORT NUMBER University of South Carolina Columbia, SC 29208 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING Department of the Navy AGENCY REPORT NUMBER Office of Naval Research 800 North Quincy Street 43 Arlington, VA 22217-5000 11. SUPPLEMENTARY NOTES Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem) 1994, 35(2), 689. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Described will be an improved monomer synthesis for planar polyphenylene derivatives. A retrosynthetic approach is shown below. Both monomers come from a common arylbis (acid chloride).

OF_REPORT Unclassified OF THIS PAGE Unclassified

OF ABSTRACT Unclassified

20. LIMITATION OF ABSTRACT UL

Improved Route to Bridged Planar Poly(pphenylene) Derivatives for Maximization of Extended π -Conjugation

Jaydeep J. S. Lamba and James M. Tour*
Department of Chemistry and Biochemistry
University of South Carolina
Columbia, South Carolina 29208

Poly(p-phenylene) (PPP), a highly insoluble polymer that has been studied extensively for its possible electronic and photonic applications, has a 23° twist between the consecutive aryl units due to ortho hydrogen interactions. Attempts to enhance the solubility by substitution of the rings forces the consecutive aryl units even further out of plane resulting in a plummet of the extended conjugation (easily observed by the optical spectra). We recently described a route to soluble ladder PPP derivatives. Here we describe an improved synthetic route to the monomers as well as an aryl-substituted ladder PPP derivative.

Our retrosynthetic approach involved two key steps (Scheme I, M = metal). First, imine cleavage to the

Scheme I

$$= \underbrace{\stackrel{\text{N-1}}{\downarrow \vdash N}}_{R} \xrightarrow{R} \Rightarrow \underbrace{\stackrel{\text{H-2N}}{\downarrow \vdash \downarrow \vdash \vdash}}_{NH_2} \xrightarrow{O} \xrightarrow{R} \Rightarrow \underbrace{\stackrel{\text{N-1}}{\downarrow \vdash N}}_{H_2N} \xrightarrow{O} \xrightarrow{R} \Rightarrow \underbrace{\stackrel{\text{N-1}}{\downarrow \vdash N}}_{H_2N} \xrightarrow{O} \xrightarrow{R} \Rightarrow \underbrace{\stackrel{\text{N-1}}{\downarrow \vdash N}}_{R} \xrightarrow{N-1}_{R} \xrightarrow{N-1}$$

ketoamine functionalized PPP, and second, bond cleavage to the two arene systems shown. Since Pd(0)-catalyzed oxidative addition reactions are facilitated with electron deficient ring systems,⁴ we chose to keep the halides on the ketoaromatic portion.

After several nearly quantitative model reactions, we synthesized the two key monomers needed for the desired AB-type step growth polymerization. Dibromoxylene was oxidized by a two-step procedure⁵ which was superior to the one step Co(OAc)₂ procedure² described previously. The route described here is an improvement over our former approach in that the same dibromobis(acid chloride) (1) can be used for the synthesis of both the A and B monomer units. Conversion of 1 to the diketone was

Accesion For				
NTIS DTIC	CRA&I TAB	×		
Unannounced Justification				
By				
Availability Codès				
Dist	Avail and / or Special			
A-1				

accomplished with the use of the lower order alkylcyanocuprate, or an arylzinc halide and Pd(0) catalysis.⁶ This Pd(0)-catalyzed procedure proved to be superior for the aryl ketone formation. 1 could also be converted to the bis(acylazide) under phase transfer conditions. Photolysis with a UV TLC-spotting light affected the bis-Curtius rearrangement with N₂ expulsion. t-BuOH trapping of the bis(isocyanate) afforded the desired bis(BOC)-protected amine 5.7 These phase transfer conditions and subsequent photochemical rearrangements were the only set of conditions that worked, in our studies, for this transformation. The yield of 59% for 5 is after repeated crystallization, thus, the efficiency of this process is quite good.

While 5 was nearly insoluble in ether at 0°C, it could be tetralithiated in ether to form a soluble intermediate 6 in almost quantitative yield (checked by addition of TMSCI and isolation of the arylbis(silane) after aqueous work-up). Treatment of 6 with methyl pinacol borate afforded the monomer 7 which could be purified by passage through a flash chromatography column containing a mixture of activated charcoal and Celite as the stationary phase (silica gel or neutral alumina caused rapid decomposition of the intermediate) and CH2Cl2 as the eluant followed by recrystallized to form pure 7.

Reaction of 2, 3, or 4 with 7, in the presence of a Pd(0) catalyst, yielded the soluble polymers 8, 9, and 10, respectively, from which size exclusion chromatography (SEC) could be used to determine the hydrodynamic volumes relative to polystyrene (8: 63% yield after fractional precipitation, $M_n = 9,850$ with $M_w/M_n = 1.85$; 9: 97% yield after fractional precipitation, $M_n = 28,400$ with $M_w/M_n = 3.70$; 10: 80% yield after fractional precipitation, $M_n = 18,500$ with $M_w/M_n = 2.75$). Upon exposure of 8, 9, or 10 to trifluoroacetic acid (TFA), quantitative loss of the BOC protecting group and cyclization afforded 11 (90% yield), 12 (97% yield), and 13 (90% yield), respectively.⁸ All stretches for the ketone, carbamate, and amine in 8, 9, and 10 were absent in the FTIR spectrum of the planar polymers.

2, 3 or 4 + 7

$$\begin{array}{c}
Pd(dba)_{2} (10 \text{ mol}\%) \\
PPh_{3} (45 \text{ mol} \%)
\end{array}$$

$$\begin{array}{c}
B, R = C_{4}H_{9}-n \\
9, R = C_{12}H_{25}-n \\
10, Ar = (p - C_{6}H_{4}) - C_{8}H_{17}-n
\end{array}$$

$$\begin{array}{c}
11, R = C_{4}H_{9}-n \\
12, R = C_{12}H_{25}-n \\
13, Ar = (p - C_{6}H_{4}) - C_{8}H_{17}-n
\end{array}$$

The optical absorption data showing enormous bathochromic shifts in the polymers upon cyclization (conversion of 8 to 11, 9 to 12, and 10 to 13); an observation consistent with the proposed ladder formation (Table I). The UV-vis spectrum of 13 in a CH₂Cl₂/trifluoroacetic acid (3/2) mixture is shown in Figure 1. The absorptions of these planar polymers are far more bathochromically-shifted than those of the planar trimers, 9 oligo(p-phenylenes), and PPP.10

Table I. Optical Absorption Data

Compound	λ in solution (nm) ^a	λ of solid (nm) ^a
8	CH ₂ Cl ₂ : <u>250</u> , 306 (sh)	<u>248,</u> 308b
9	CH ₂ Cl ₂ : <u>250</u> , 388	<u>250</u> , 398b
1 0	· CH ₂ Cl ₂ : <u>254</u>	<u>254</u>
11	CH ₂ Cl ₂ /TFA: 374, <u>396</u> , 426	
	(sh), 514, 520 (ed) ^c	*****
12	CH ₂ Cl ₂ /TFA: 376, <u>400</u> ,	463-490 ^d
	428, 478, 516, 530 (ed) ^c	
13	CH ₂ Cl ₂ /TFA:380, <u>402</u> , 458,	
	506, 549 ^c	******
N=C4H9-n	CH ₂ Cl ₂ : <u>300</u> (ref 9)	
N=C4 H _g n	CH ₂ Cl ₂ : <u>294</u> (ref 9)	
p- sexiphenylene	CHCl3: 318 (ref 10)	
PPP (calcd infinite M _n)	<u>344</u> (ref 10)	

 $^{a}\lambda_{m\,a\,x}$ is underlined, (sh) is shoulder, (ed) is tailing edge at ~10% of $\lambda_{m\,a\,x}$ intensity. b Also a strong carbonyl absorption at 196 nm. c Spectrum recorded on the acid solublized, therefore, multiprotonated system. d These $\lambda_{m\,a\,x}$ values were recorded on a series of four different polymer samples of 9 in order to insure their reproducibility. 1

Figure 1. UV-vis spectrum of 13 in a CH₂Cl₂/TFA (3/2) mixture

Acknowledgments. We are grateful for support from the Office of Naval Research, and the National Science Foundation (EHR-91-08772, DMR-9158315), and generous industrial contributors to the NSF Presidential Young Investigator Award (1991-96): Hercules, IBM, Ethyl, Shell, Exxon, Farchan, Molecular Design Ltd., and Eli Lilly Corporations.

References and Notes

- (1) For some recent reviews on polyphenylene, see: (a) Kovacic, P.; Jones, M. B. Chem. Rev. 1987, 87, 357. (b) Noren, G. K.; Stille, J. K. Macromol. Rev. 1971, 5, 385. (c) Elsenbaumer, R. L.; Shacklette, L. W. In Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Dekker: New York, 1986. (d) Tourillion, G. in ref 1c. (e) Baughman, R. H.; Brédas, J. L.; Chance, R. R.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209. For a discussion of twist angle versus degree of extended conjugation, see: (f) Brédas, J. L. in ref 1c. (g) Ferraris, J. P.; Andrus, R. G.; Hrncir, D. C. J. Chem. Soc., Chem. Commun. 1989, 1318. (h) Gorman, C. B.; Ginsburg, E. J.; Moore, J. S.; Grubbs, R. H. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1991, 32(3), 714. (i) Orchard, B. J.; Freidenreich, B.; Tripathy, S. K. Polymer 1986, 27, 1533.
- (2) Tour, J. M.; Lamba, J. J. S. J. Am. Chem. Soc. 1993, 115, 4935.
- (3) For some discussions of aromatic ladder polymers, see: (a) Overberger, C. G.; Moore, J. A. Adv. Polym. Sci. 1970, 7, 113. (b) Schlüter, A.-D. Adv. Mater. 1991, 3, 282. (c) Yu, L.; Chen, M. Dalton, L. R. Chem. Mater. 1990, 2, 649. (d) Hong, S. Y.; Kertesz, M.; Lee, Y. S.; Kim, O.-K. Chem. Mater. 1992, 4, 378. (e) Godt, A.; Schlüter, A.-D. Adv. Mater. 1991, 3, 497. (f) Yu. L.; Dalton, L. R. Macromolecules 1990, 23, 3439. (g) Scherf, U.; Müllen, K. Makromol. Chem., Rapid Commun. 1991, 12, 489. (h) Scherf, U.; Müllen, K. Synthesis 1992, 23. (i) Scherf, U.; Müllen, K. Macromolecules 1992, 25, 3546.
- (4) (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513. (b) Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett. 1988, 29, 5463. (c) Gronowitz, S.; Lawitz, K. Chem. Scripta 1984, 24, 5.
 - (5) Swager, T. M., personal communication.
- (6) Negishi, E.; Baba, S. J. Chem. Soc., Chem. Commun. 1976, 596.
- (7) We developed these rearrangements conditions at the same time that Swager described an analogous procedure without BOC protection. See: Zhou, Q.; Swager, T. M. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1994, 35(1), 277. Our development was based on work by Pfister. See: Pfister, J. R.; Wymann, W. E. Synthesis 1983, 38.
- (8) 8: Anal. calc'd for $(C_{32}H_{42}N_{2}O_{6})_{n}$: C, 69.79; H, 7.69; N, 5.07. Found: C, 70.55; H, 7.25; Br, <0.5; N, 5.13. 9: Anal. calc'd for $(C_{48}H_{74}N_{2}O_{6})_{n}$: C, 74.38; H, 9.62; N, 3.61. Found: C, 74.99; H, 9.40; Br, <0.5; N, 3.55. 11: Anal. calc'd for $(C_{22}H_{22}N_{2})_{n}$: C, 84.04; H, 7.05; N, 8.91. Found: C, 79.13; H, 6.77; Br, <0.5; N, 8.56. 12: Anal. calc'd for $(C_{38}H_{54}N_{2})_{n}$: C, 84.70; H, 10.10; N, 5.20. Found: C, 81.45; H, 9.64; Br, <0.5; N, 5.22.
- (9) The planar trimers were prepared during our model studies for the polymerizations described here using Pd-catalyzed couplings.
- (10) Ried, W.; Freitag, D. Angew. Chem. Intern. Ed. Engl. 1968, 7, 835.
- (11) Drs. R. Gaudiana and P. Mehta of Polaroid Corporation kindly provided the solid-state UV-vis data.

