编程作业一实验报告

崔士强 PB22151743

2024年3月17日

1 算法

图 1: 示意图

在 Computational Mirror Cup and Saucer Art 中有以下结论:

当 $\angle POT$ 从 0 增加到 $\min \angle POQ$, $\angle POG$ 时,其中 $G \in \mathbb{C}$ 且满足 $PG \perp OG$, $\angle PTV$ 严格增加而 $\angle QTV$ 严格减小,并且 $\angle PTV - \angle QTV$ 从负值严格增加到正值.

因此,我们可以采用二分法找到点 T,使得 $\angle PTV - \angle QTV = 0$. 以 $\angle POQ$ 为上界,0 为下界,取角平分线,若 $\angle PTV - \angle QTV > 0$,则取左半边,否则取右半边,直到 $\angle PTV - \angle QTV$ 足够小.

Algorithm 1 Binary search for T

Input: x_P, x_O, y_O

Output: $T \in \mathbb{C}$, $\angle PTV - \angle QTV = 0$

1: $l \leftarrow 0$

2: $r \leftarrow \angle POQ$

3: while $\angle PTV - \angle QTV > \varepsilon$ do

4: $m \leftarrow (l+r)/2$

5: if $\angle PTV - \angle QTV > 0$ then

6: $l \leftarrow m$

7: else

8: $r \leftarrow m$

9: end if

10: end while

11: $\mathbf{return}\ T$

找到 T 后,通过延长 PT 可以找到 R,延长的长度为 QT

2 实验结果 2

2 实验结果

实验中对 8 个测试样例进行计算,通过np.set_printoptions(precision=20, suppress=True)设置输出精度以及格式. 上述算法中 $\varepsilon=10^{-8}$. 程序实现中使用递归实现二分法查找,输出结果包括递归深度,T,R 的坐标以及每个样例的计算时间. 结果如下图所示:

图 2: 计算结果

3 实验分析 3

3 实验分析

3.1 精确度

本算法的精度问题主要来自于二分法中设置的判定阈值 ε 以及int类型的精确度.

3.2 稳健性分析

- 1. 此程序并未对不合法输入进行处理,默认输入的两个点符合规则
- 2. 对于边缘情况,程序中通过提高输出精度的方法保证结果准确度. 可以看到对于边缘情况的处理需要更多层的递归.