EG2133 芯片用户手册

三相独立半桥驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2017年08月16日	EG2133 数据手册初稿

目 录

1	性州	· · · · · · · · · · · · · · · · · · ·
3.	应用领	領域
		引脚定义
	4.2	引脚描述
5.	结构机	框图
		应用电路
•	7.1	极限参数
	7.2	典型参数
		开关时间特性及死区时间波形图
		设计
		VCC 端电源电压
	8.2	输入逻辑信号要求和输出驱动器特性
9.		Max (を) Max (
		TCCOD20 封准卫士

EG2133 芯片数据手册 V1.0

1. 特性

- 高端悬浮自举电源设计,耐压可达 300V
- 集成三路独立半桥驱动
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- 低端 VCC 电压范围 4.5V-20V
- 输出电流能力 IO +1.2A/-1.4A
- 内建死区控制电路
- 自带闭锁功能,彻底杜绝上、下管输出同时导通
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN输入通道低电平有效,控制低端 LO 输出
- 封装形式: TSSOP20

2. 描述

EG2133 是一款高性价比的大功率 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路。

EG2133 高端的工作电压可达 300V,低端 VCC 的电源电压范围宽 4.5V~20V。该芯片具有闭锁功能 防止输出功率管同时导通,输入通道 HIN 和 LIN 内建了一个下拉和上拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO +1.2A/-1.4A,采用 TSSOP20 封装。

3. 应用领域

■ 三相直流无刷电机驱动器

4. 引脚

4.1 引脚定义

图 4-1. EG2133 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述
1, 2, 3	HIN1, HIN2, HIN3	I	逻辑输入控制信号高电平有效,控制高端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管"1"是开启功率 MOS 管
4, 5, 6	LIN1, LIN2, LIN3	I	逻辑输入控制信号低电平有效,控制低端功率 MOS 管的导通与截止 "1"是关闭功率 MOS 管"0"是开启功率 MOS 管
7	VCC	Power	模拟电源
8	GND	-	模拟电源

9, 10, 11	LO, 1LO2, LO3	0	输出控制低端 MOS 功率管的导通与截止
12, 15, 18	VS1, VS2, VS3	0	高端悬浮地端
13, 16, 19	HO1, HO2, HO3	0	输出控制高端 MOS 功率管的导通与截止
14, 17, 20	VB1, VB2, VB3	Power	高端悬浮电源

5. 结构框图

图 5-1. EG2133 内部电路图

6. 典型应用电路

图 6-1. EG2133 典型应用电路图

7. 电气特性

7.1 极限参数

符号	参数名称	测试条件	最小	最大	单位
自举高端 VB 电源	VB1、VB2、VB3	-	-0.3	300	V
高端悬浮地端	VS1、VS2、VS3	1	VB-25	VB+0.3	V
高端输出	HO1、HO2、HO3	-	VS-0.3	VB+0.3	V
低端输出	LO1、LO2、LO3	-	-0.3	VCC+0.3	V
电源	VCC	-	-0.3	25	V
高通道逻辑信号 输入电平	HIN1、HIN2、HIN3	-	-0.3	VCC+0.3	V

低通道逻辑信号 输入电平	LIN1, LIN2, LIN3	-	-0.3	6	V
环境温度	环境温度	-	-40	125	°C
储存温度	储存温度	-	-55	150	°C
焊接温度	焊接温度	T=10S	-	300	ပ

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, Vcc=12V,负载电容 CL=1nF 条件下

参数名称	符号	测试条件	最小	典型	最大	单位
电源	VDD	-	4.5	12	20	V
静态电流	lcc	输入悬空,VCC=12V	-	•	300	uA
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.5	-	-	V
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	V
输入逻辑信号高 电平的电流	lin(H)	Vin=5V	-	-	15	uA
输入逻辑信号低 电平的电流	lin(L)	Vin=0V	-15	-	-	uA
悬浮电源漏电流	ILK	VB1,2,3=VS1,2,3=300V	-	0.1	1	uA
V _B s 静态电流	IQBS	VIN=0 或者 VIN=5V	-	0.1	10	uA
V _{BS} 动态电流	IPBS	f=16KHZ	-	100	200	uA
Vcc 静态电流	IQcc	VIN=0 或者 VIN=5V	-	0.1	10	uA
Vcc 动态电流	IPcc	f=16KHZ	-	300	500	uA
VS 静态负压	Vsn	-	-	-6	-	V
LIN高电平输入 偏置电流	llinh	VLIN=5V	•	20	30	uA
LIN低电平输入 偏置电流	İLINL	VLIN=0V	-	30	40	uA
HIN 高电平输入 偏置电流	lhinh	VLIN=5V	-	20	40	uA
HIN 低电平输入 偏置电流	IHINL	VLIN=0V	-	-	1	uA

						N 46-91-0
输入下拉电阻	Rın	-		240		ΚΩ
低端输出 LO、 Lo	7 开关时间特性					
开延时	Ton	见图 7-1	-	300	400	nS
关延时	Toff	见图 7-1	-	100	200	nS
上升时间	Tr	见图 7-1	-	25	200	nS
下降时间	Tf	见图 7-1	-	20	100	nS
IO 输出最大驱动能	注力					
高端输出电压	Voн	IO=100mA	-	0.7	1.0	Α
低端输出电压	Vol	IO=100mA	-	0.3	0.45	Α
IO 输出拉电流	lO+	Vo=0V,VIN=VIH PW≤10uS	-	+1.2	-	А
IO 输出灌电流	IO-	Vo=12V,VIN=VIL PW≤10uS	-	-1.4	-	А
高端输出 HO、HC	开关时间特性					
开延时	Ton	见图 7-2	-	220	400	nS
关延时	Toff	见图 7-2	-	200	400	nS
上升时间	Tr	见图 7-2	-	25	200	nS
下降时间	Tf	见图 7-2	-	20	100	nS
死区时间特性			•			
死区时间	DT	见图 7-3 , 无负载电容 CL=0	50	100	300	nS

7.3 开关时间特性及死区时间波形图

图 7-1. 低端输出 LO 开关时间波形图

图 7-2. 高端输出 HO 开关时间波形图

8. 应用设计

8.1 VCC 端电源电压

针对不同的MOS管,选择不同的驱动电压,高压开启MOS管推荐电源VDD工作电压典型值为10V-15V; 低压开启 MOS管推荐电源 VCC工作电压 4.5V-10V。

8.2 输入逻辑信号要求和输出驱动器特性

EG2133 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG2133 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 1.2A 和最大输出电流可达 1.4A,高端上桥臂通道可以承受 300V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 300nS、关断传导延时为 100nS,高端输出开通传导延时为 220nS、关断传导延时为 200nS。低端输出开通的上升时间为 25nS、关断的下降时间为 20nS。高端输出开通的上升时间为 25nS、关断的下降时间为 20nS。

输入信号和输出信号逻辑功能图如图 8-2:

图 8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输出				
输入、输出逻辑						
HIN	LIN	НО	LO			
0	0	0	1			
0	1	0	0			
1	0	0	0			
1	1	1	0			

从真值表可知,当输入逻辑信号 HIN 为"1"和LIN为"1"时,驱动器控制输出 HO 为"1"上管打开,LO 为"0"下管关断;当输入逻辑信号 HIN 为"0"和LIN为"0"时,驱动器控制输出 HO 为"0"上管关断,LO 为"1"下管打开;在输入逻辑信号 HIN 为"1"和LIN为"0"或者 HIN 为"0"和LIN为"1"时,驱动器控制输出 HO、LO 为"0"将上、下功率管同时关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

9. 封装尺寸

9.1 TSSOP20 封装尺寸

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
D	6.400	6.600	0. 252	0.259	
E	4.300	4. 500	0.169	0.177	
ь	0.190	0.300	0.007	0.012	
c	0.090	0. 200	0.004	0.008	
E1	6.250	6. 550	0. 246	0.258	
Α		1.200		0.047	
A2	0.800	1.000	0.031	0.039	
A1	0.050	0.150	0.002	0.006	
e	0.65	BSC)	0.026	(BSC)	
L	0.500	0.700	0.020	0.028	
Н	0.25(1	YP)	0.01(TYP)	
θ	1°	7°	1 °	7°	