УДК 541.144.8

КОРОТКОЖИВУЩИЕ ФЕНОКСИЛЬНЫЕ И СЕМИХИНОНОВЫЕ РАДИКАЛЫ

И. В. Худяков, В. А. Кузьмин

Рассмотрены результаты основных работ, посвященных исследованию спектров поглощения и кинетики гибели короткоживущих феноксильных и семихиноновых радикалов в жидкой фазе. Систематизированы результаты исследований взаимодействия с соединениями металлов. Значительное внимание уделено фотохимическим методам генерации феноксильных и семихиноновых радикалов из фенольных и хиноидных соединений. Библиография — 205 ссылок.

ОГЛАВЛЕНИЕ

I.	. Введение	1748
11.		1749
	калов	1/48
111.	. Участие феноксильных и семихиноновых радикалов в темновых химических	
	и биологических процессах	1749
IV.	Элементарные фотопроцессы, протекающие при фотовозбуждении фенолов	
	и хинонов	1751
V.	Сенсибилизированное фотоокисление фенолов и фотовосстановление хинонов	1755
	Спектры поглощения и кислотно-основные свойства феноксильных и семи-	
	хиноновых радикалов	1756
VII.	Кинетика гибели	1761
ΥΠΊ	. Взаимодействие с соединениями металлов	1760
IX	 К. Некоторые квантовохимические расчеты	1776

і. введение

В подавляющем большинстве случаев превращения фенольных соединений в химических и биологических процессах осуществляются по свободно-радикальному механизму. Возникающие при этом в качестве промежуточных веществ феноксильные и семихиноновые радикалы, а также родственные флавосемихиноновые радикалы, являются л-радикалами и относятся к классу ароматических радикалов. Изучение характеристик феноксильных радикалов является важной задачей в связи с широким применением фенолов как ингибиторов-стабилизаторов в различных областях теоретической и прикладной химии 1-3, а в последнее время также в экспериментальной биологии и медицине 4. Внимание к исследованиям в этой области в последние полтора десятилетия необычайно возросло в связи с работами Н. М. Эмануэля и его сотрудников 4-11.

Стабильным феноксильным и семихиноновым радикалам посвящен ряд монографий и обзоров ^{3, 12-16}. В последние 10—15 лет благодаря развитию импульсных методов накоплен большой материал о физико-химических свойствах короткоживущих феноксильных и семихиноновых радикалов.

В свете новых фактов представляется целесообразным обобщить имеющийся в литературе материал по элементарным реакциям феноксильных и семихиноновых радикалов и их физико-химическим свойствам.

11. МЕТОДЫ ИССЛЕДОВАНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ КОРОТКОЖИВУЩИХ РАДИКАЛОВ

Применительно к феноксильным и семихиноновым радикалам можно использовать практически все методы исследования их реакционной способности. В данном обзоре термином «нестабильный» или «короткоживущий» назван радикал, имеющий время жизни меньше секунды, в отсутствие кислорода при комнатной температуре в невязком раство-

рителе и концентрации $10^{-7} - 10^{-5}$ моль/л.

До определенного времени метод ЭПР (в его обычном варианте) являлся основным методом изучения свойств радикалов. Применение метода ЭПР для исследования короткоживущих радикалов крайне затруднительно. В таких случаях используют проточную систему или производят облучение предшественника радикала непосредственно в резонаторе спектрометра. В некоторых случаях радикалы удается стабилизировать за счет особенностей растворителя — сильно щелочная среда (в случае семихиноновых радикалов) или образование комплексов с растворителем ¹³. Широкое применение получил метод низкотемпературной стабилизации ¹⁷, при котором радикалы получают стабилизированными в твердой матрице и регистрируют их спектры. В последние годы спектры поглощения ароматических и других радикалов, стабилизированных в твердой матрице ПММА или адамантана, регистрируют при комнатной температуре ¹⁸⁻²⁰.

Большие возможности для исследования свойств короткоживущих радикалов предоставляют импульсные методы — импульсный фотолиз

и импульсный радиолиз.

Весьма перспективным является применение метода импульсного фотолиза с регистрацией промежуточных продуктов по их спектрам ЭПР.

Поглощение света ароматической молекулой, например, фенолом, приводит к образованию нестабильного возбужденного состояния. Это возбужденное состояние дезактивируется либо в результате фотофизического процесса, например, флуоресценции или фосфоресценции, либо фотохимически — т. е. путем диссоциации на радикалы или ионизации. Образующиеся при этом радикалы и ион-радикалы могут быть зарегистрированы, например, по их спектрам поглощения. Метод импульсного радиолиза также широко использовался для изучения ароматических радикалов; метод отличается от метода импульсного фотолиза тем, что возбуждение производится коротким импульсом электронов высокой энергии *.

III. УЧАСТИЕ ФЕНОКСИЛЬНЫХ И СЕМИХИНОНОВЫХ РАДИКАЛОВ В ТЕМНОВЫХ ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ПРОЦЕССАХ

1. Феноксильные радикалы

Феноксильные радикалы являются промежуточными продуктами различных реакций окисления фенолов — неорганическими окислителями, кислородом, алкоксильными, перекисными радикалами, ферментами окислительного действия, анодного окисления и т. д. Феноксиль-

^{*} Для получения высоких неравновесных концентраций феноксильных и семихиноновых радикалов производился импульсный радиолиз воды в присутствии исходного фенольного или хиноидного соединения. При этом водные растворы содержали 0,1— 10% добавок органических соединений (спирт, ацетон, формиат и др.), а также могли быть насыщены N₂O для вывода из реакционной смеси нежелательных продуктов радиолиза воды. Все исследования выполнены при комнатной температуре.

ные радикалы образуются в процессах ингибированного фенолами окисления углеводородов. Механизм действия ингибиторов фенольного ряда в свободно-радикальных реакциях сводится к обрыву цепи за счет реакции фенола (RhOH) с ведущими цепь окисления радикалами R или RO: 1:

$$R^{\bullet}(RO_{2}) + PhOH \rightarrow RH(ROOH) + PhO.$$

Ароматические радикалы RhO не способны, как правило, вести дальше цепной процесс и гибнут, взаимодействуя друг с другом или с радикалом, ведущим цепь $^{1, 2, 21}$.

Арилоксильные радикалы образуются также при окислении кислородом конденсированных ароматических соединений, не содержащих ОН-группу. Окисление антрацена приводит к образованию соответствующего арилоксильного радикала ²²; окисление биантрила происходит путем замещения кислородом наиболее реакционноспособного атома водорода биантрила ²³:

Фенольные соединения весьма распространены в природе. Высказаны предположения, что фенольные вещества имеют отношение к росту, развитию, иммунитету, хладостойкости, устойчивости к вредным излучениям, дыханию и фотосинтезу растений, т. е. почти ко всем их жизненным процессам ^{24, 25}. Установлено, что определенные биологически важные фенольные вещества обладают свойствами обратимого окисления, протекающего с образованием соответствующих феноксильных радикалов в качестве промежуточных продуктов. Предполагается, что именно эти свойства фенольных соединений лежат в основе их фармакологического действия ²⁵. Фенольные соединения способны участвовать в различных ферментативных и световых окислительно-восстановительных процессах, имеющих большое биологическое значение ²⁵.

(;

В настоящее время считается доказанным, что окислительное сочетание фенолов является одним из основных этапов в биосинтезе природных соединений 26 .

2. Семихиноновые радикалы

о- и р-Оксифеноксильные радикалы и их анионы, а также их производные, составляют группу семихиноновых радиалов. Еще в 30-е годы Михаэлис с сотр. ²⁷ показали, что двухэлектронное окисление гидрохинона или восстановление хинона протекают через стадию образования промежуточного соединения, содержащего нечетное число электронов — семихиноновый радикал. Существование семихиноновых радикалов в процессах восстановления хинонов или окисления гидрохинонов было впервые показано в измерениях магнитной восприимчивости и потенциометрических измерениях ²⁷. о- и р-Бензосемихиноновые радикал-анионы сравнительно стабильны в щелочной среде, что позволяет регистрировать интенсивные сигналы ЭПР этих радикалов в водной или спиртовой средах при комнатной температуре ^{28, 29}. Семихиноновые радикалы, так же как и феноксильные, являются первичными продуктами окисления различных гидрохинонов неорганическими окислителями, кислородом воздуха, ферментативно ³⁰ и т. д. Семихиноновые радикалы могут образовываться, по-видимому, и при каталитическом окислении фенола кислородом, о чем свидетельствует образование гидрохинона и пирокатехина в качестве конечных продуктов такой реакции ³¹. Хиноны являются хорошо известными в органической химии акцепторами электронов, претерпевающими восстановление до дигидрохинона через стадию образования семихинонового радикала.

Большое количество разнообразных хиноидных соединений встречается в природе и принимает участие в окислительно-восстановительных реакциях $^{32, 33}$. Семихиноновые радикалы играют важную роль в биологических системах как активные агенты в реакциях переноса электрона в живых организмах, растениях и микроорганизмах $^{34, 35}$. Интерес к простейшим хинонам (p-бензохинон, хлоранил, дурохинон, нафтохинон) вызван тем, что эти соединения могут рассматриваться как модельные для более сложных хинонов — коэнзима Q, витаминов K, пластохинонов, флавинадепиндинуклеотида и др. Большой интерес с биологической точки зрения представляют исследования обратимых реакций окисления и восстановления рибофлавина (витамина B_2), протекающих также через образование флавосемихиноновых радикалов.

IV. ЭЛЕМЕНТАРНЫЕ ФОТОПРОЦЕССЫ, ПРОТЕКАЮЩИЕ ПРИ ФОТОВОЗБУЖДЕНИИ ФЕНОЛОВ И ХИНОНОВ

1. Фотолиз фенолов

Большинство реакций, приводящих к образованию феноксильных радикалов, связано с отщеплением водорода от гидроксильной группы фенола под действием окисляющих агентов. Разрыв О—Н-связи фенолов (а также связей PhO—CH₃, PhO—C₂H₅, PhO—COR) с образованием феноксильных радикалов может происходить также под действием ионизирующего, ультрафиолетового облучения или ультразвука $^{36-56}$.

Фотолиз простейших фенолов в газовой фазе происходит по реакции 45 :

$$PhOH + hv \rightarrow PhO' + H'$$
.

Для такого пути распада молекулы фенола построена энергетическая диаграмма 45 , согласно которой при поглощении кванта света фенол переводится из основного состояния в первое синглетное возбужденное состояние $^{4}\pi_{1}$. Этот уровень пересекается с диссоциативным уровнем $^{3}\sigma_{0}$; система может переходить в состояние $^{3}\sigma_{0}$, что приводит к разрыву О—Н-связи и к образованию радикалов PhO и H.

При импульсном фотолизе фенолят-иона в жидкой фазе, как и при фотолизе фенола, образуется феноксильный радикал, что указывает на протекание фотоионизации аниона по реакции ^{54, 55}:

PhO⁻ +
$$hv \rightarrow$$
 PhO⁺ + e_{rump}^- .

Фотоионизация фенолов и их анионов в твердой матрице при низких температурах происходит двухфотонным путем с участием триплетного возбужденного состояния ⁵⁶⁻⁶². Природа этого процесса в жидких средах, в частности в полярных жидкостях, менее ясна. Ранние попытки обнаружить нелинейную зависимость начального выхода сольватированных электронов, получавшихся при фотолизе *p*-крезола, от интенсивности света привели к отрицательным результатам ⁵⁰. Было предположено ⁶⁴, что в некоторых случаях однофотонный процесс может протекать через промежуточное полуионизированное состояние, которое непосредственно происходит из нерелаксировавшего возбужденного синглетного состояния. За счет выигрыша в энергии сольватации фото-ионизация может быть вызвана светом с энергией кванта, которая на 3-4 эв меньше, чем потенциал ионизации в газовой фазе 65 . В работе 18 было показано, что в матрице ПММА в случае α - и β -нафтолов соответствующие феноксильные радикалы образуются из синглетно-возбужденных молекул.

При фотовозбуждении фенолов в жидкой фазе образование фено-

ксильных радикалов происходит по реакциям 51, 66, 67:

$$(a) \atop -H^* \nearrow (PhO^-)^* \rightarrow [PhO^+ + e_{solv}] \rightarrow PhO^+ + e_{solv}$$

$$(b) \vdash (b) \vdash (PhO^-)^* \rightarrow PhO^+ + PhO^- + PhO$$

где в квадратные скобки заключена «клетка» растворителя.

При импульсном фотолизе фенола и крезолов относительный выход гидратированного электрона уменьшается, когда рН становится меньше рК соответствующей невозбужденной молекулы фенола 50 . После диссоциации синглетно-возбужденной молекулы фенола (путь (a)) происходит «выброс» электрона с образованием феноксильного радикала. Последующие работы подтвердили, что рК фенола и крезолов в первом синглетном состоянии на 5—6 единиц меньше, чем в основном состоянии 68 , 69 . Соотношение между направлениями распада возбужденной молекулы фенола (a) или (б) не зависит от ряда факторов, и в первую очередь от температуры, рН раствора и полярности среды 51 , 66 . Детальная схема фотоионизации ароматических молекул в жидкостях рассмотрена в работах 64 , 70 .

Согласно 51, более 70% радикалов, генерированных из фенолов, получаются путем фотоионизации (рН 7,0; 25° С), а остальные путем разрыва связи ОН. (Квантовый выход реакции разрыва ОН-связи составляет для различных сред ~ 0.01 53.) С другой стороны, фотоионизация фенола значительно менее эффективна, чем соответствующего аниона 71. Фотоионизация фенолов и их анионов в щелочной среде происходит путем двухфотонного и однофотонного процессов соответственно 65. Концентрация образующегося под действием вспышки феноксильного радикала пропорциональна интенсивности света I^n , где n меняется от 2 до 1 в сравнительно узком интервале рН. В воздушно-насыщенных растворах наблюдается поглощение феноксильного радикала, который

Ç,

образуется с несколько меньшим выходом, и n=1,5.

Исследования фотолиза водных растворов фенолов в отсутствие кислорода (25° C) с добавками 2,4-гексадиена, типичного тушителя триплетного состояния, показали, что выброс электрона при фотолизе ряда фенолов происходит также и из долгоживущего возбужденного состояния, возможно, триплетного 51.

При фотолизе галогензамещенных фенолов возможно образование либо галогензамещенных феноксильных радикалов, либо оксифенильных. При фотолизе иодфенолов получаются оксифенильные радикалы $^{18, \ 148}$, как и при фотолизе p-хлорфенола и монобромзамещенных фенолов $^{48, \ 73}$.

Фотолиз 2,4-дибромфенола и 2,4-6-трибромфенола приводит к соответствующим феноксильным радикалам 72, 45. Поглощение, зарегистрированное при импульсном фотолизе некоторых хлорзамещенных фенолов, обусловлено образованием хлорфеноксильных радикалов 45.

2. Фотохимические реакции, приводящие к образованию семихинонов

Семихиноновые радикалы могут быть получены путем фотоокисления соответствующих гидрохинонов или путем фотовосстановления хинонов. Фотоокисление гидрохинонов протекает, по-видимому, так жекак и при фотолизе фенолов (см. уравнение (1)). Так, при импульсном фотолизе гидрохинона и пирокатехина в воде наблюдали образование соответствующих семихиноновых радикалов и гидратированного электрона ⁵⁹.

Фотохимия хинонов интенсивно изучается в связи с выяснением на молекулярном уровне деструктивного действия света на некоторые биологические объекты ³³, а также возможного инициирования переноса электрона в биологических системах при поглощении света хиноном ⁷⁴. Было показано, что некоторые алкилзамещенные хиноны связаны с хлорофиллом в хлоропласте листьев ^{33, 34}. Предположили, что помимофункции этих хинонов как акцепторов в электронно-транспортной цепи, они могут играть определенную роль в фотофосфорилировании ⁷⁵.

Поражающее действие УФ-света на живые организмы связано с фотохимическими реакциями хинонов, которые являются наиболее вероятными мишенями для радиации 76 . При этом семихиноновые радикалычасто оказываются первичными продуктами реакций фотовозбужденных хинонов $^{76-78}$.

Процессы фотовосстановления хинонов изучены достаточно подробно. Молекулы хинона в возбужденном состоянии отрывают атом водорода (электрон) от молекулы растворителя или имеющегося в растворе другого донора водорода (электрона) с образованием семихинонового радикала. При этом, в соответствии со значением рН среды, для полувосстановленных форм хинонов быстро устанавливается кислотносновное равновесие. Возникает вопрос о природе этого возбужденного состояния хинона. Исследование кинетики гибели триплета дурохинона DQ(T) и семихинонового радикала DQH в жидком парафине 79,80 показало, что DQH образуется, главным образом, по реакции:

$$DQ(S^*) + RH \rightarrow DQH + R$$

Однако в экспериментах по переносу энергии было установлено, что DQH образуется и с участием триплетного состояния ⁸¹. Методом лазерного фотолиза впоследствии было показано, что дуросемихиноновый радикал в этаноле образуется действительно из триплетов ⁸².

Тот факт, что DQ(T) в жидком парафине гибнет, давая DQH', неявляется строго доказанным ⁸². Исследования по фотовосстановлению хлоранила также показывают, что фотовозбужденное триплетное состояние хлоранила тушится этанолом, приводя непосредственно к образованию семихинонового радикал-аниона ⁸³. Время жизни триплетного состояния p-бензохинона в этаноле меньше 10 нсек, следовательно, константа скорости реакции отрыва атома водорода от растворителя $k > 10^8$ сек $^{-1}$ ⁸³, ⁸⁴.

Механизм фотовосстановления p-бензохинона в этаноле при низких температурах рассмотрен в $^{85, \ 86}$. Фотовосстановление 1,4-нафтохинона происходит через стадию образования нейтрального нафтосемихинонового радикала 87 .

В некоторых случаях образование семихиноновых радикалов при фотовосстановлении хинонов сопровождается электронной поляризацией ^{84, 87}. Сразу же после вспышки появляется сигнал эмиссии в спект-

ре ЭПР, который превращается в сигнал поглощения, а затем уменьшается из-за гибели радикалов ^{84, 87}.

Значения рК семихиноновых радикалов в водной среде достаточно хорошо известны (см. табл. 2, стр. 1759). Приписание наблюдавшегося поглощения в органической среде нейтральному семихиноновому радикалу или радикал-аниону производится обычно на основании анализа спектров ЭПР ^{87, 88}, однако, и при этом возникают определенные сложности. Фотовозбуждение хлоранила в этаноле или метаноле приводит к образованию радикал-аниона хлоранила ⁸⁸, тогда как в работе ⁶⁹ первичным продуктом такого фотовосстановления в изопропаноле (или диоксане) считается нейтральный радикал.

Исследование фотовосстановления производных антрахинона в спиртовых средах изучено наиболее подробно, так как этот процесс моделирует механизм фотодеструкции целлюлозы, сенсибилизированной антрахиноновыми красителями, и имеет большое практическое значение ⁹⁰⁻⁹⁶

Производные антрахинона фотовосстанавливаются в спиртовых растворах по реакции

$$AQ(T) + RCH_2OH \rightarrow AQH^{\bullet} + R\dot{C}HOH$$

и по реакции

$$AQ(T) + OH^- \rightarrow AQ^+ + OH^-$$

в щелочной среде. Образующийся при этом семихиноновый радикаланион является довольно стабильным в щелочном растворе в отсутствие кислорода.

Хиноны, принимающие участие в фотобиологических процессах (пластохиноны, токохиноны, α-токоферилхиноны), также образуют при фотовозбуждении соответствующие семихиноновые радикалы. Конечными продуктами фотовосстановления некоторых пластохинонов и токохинонов являются о-хинометиды ^{76–78}. У ряда хинонов, имеющих заместители в кольце, фотовосстановление происходит внутримолекулярно ^{97–99}

Триплетное состояние, ответственное за образование семихинонового радикала для 1,4-бензохинона, 1,4-нафтохинона и антрахинона, имеет, по-видимому, характер $n-\pi^{*}$ 100–103, тогда как триплеты дурохинона и хлоранила имеют характер $\pi-\pi^{*}$ 82, 101, 104. Вероятно, во всех случаях образование семихинонов из хинонов предшественником радикала является низшее триплетное состояние соответствующего хинона 63, 87.

Образование флавосемихиноновых радикалов, в частности флавосемихиноновых радикалов рибофлавина, наблюдалось при фотовосстановлении флавинов или при восстановлении электронами 105-108, 110-115.

Первоначально предполагалось, что образование дигидрорибофлавина происходит путем отрыва двух атомов водорода от молекулы воды 116-118. Авторы работы 119 высказали возражения против этого механизма на основании рассмотрения энергетики процесса, и постулировали, что выцветание рибофлавина происходит путем фотоокисления собственной рибитильной цепи. Имеются доказательства внутримолекулярного механизма выцветания, полученные в серии кинетических, полярографических исследований, исследований методом импульсного фотолиза и теоретических расчетов 108, 109, 120-127. Было показано, что низшее долгоживущее триплетное состояние является фотореакционным в анаэробном фотовыцветании рибофлавина и флавинмононуклеотида 107-110, 119.

В работах 109, 127 было показано, что синглетное состояние рибофлавина может также принимать участие в фотовосстановлении и, по-видимому, этот путь является единственным путем образования флавосемихинонового радикала в насыщенных воздухом растворах.

V. СЕНСИБИЛИЗИРОВАННОЕ ФОТООКИСЛЕНИЕ ФЕНОЛОВ И ФОТОВОССТАНОВЛЕНИЕ ХИНОНОВ

При изучении фотохимического окисления ряда пространственнозатрудненных фенолов молекулярным кислородом было обнаружено, что при облучении без сенсибилизатора исходные фенолы остаются без изменения ¹²⁸. Сенсибилизированное фотоокисление пространственнозатрудненных фенолов протекает по следующему механизму: происходит образование комплекса между возбужденной молекулой сенсибилизатора и кислородом, который отрывает водород гидроксильной группы фенола с образованием феноксильного радикала ¹²⁸. (В случае фотоокисления незамещенного фенола и крезолов под действием света с λ =253,7 *нм* установлено ⁷³, что наличие кислорода или других окислителей не является необходимым для протекания реакции образования феноксильного радикала.)

Согласно другому механизму сенсибилизированного фотоокисления фенолов 129-135, происходит атака фенола возбужденной молекулой сенсибилизатора, приводящая к отрыву атома водорода фенольной группы или потере электрона фенолят-ионом. Реакции, протекающие по такому механизму, исследованы 130-136 на примере сенсибилизированного фотоокисления фенола и его производных эозином (Э) и родственными

ему красителями.

Реакции фотоокисления, сенсибилизированные эозином, представляют большой интерес для фотобиологии, так как было показано, что эозин вызывает фотодинамическую инактивацию белков ¹³⁶. Эксперименты, выполненные методом импульсного фотолиза (кинетические и спектрофотометрические), показывают, что в результате атаки фенола молекулой красителя в триплетном состоянии образуются феноксильный радикал и семихиноновый радикал красителя ¹³⁶:

$$\Im(T) + PhOH \rightarrow \Im H' + PhO'.$$

Установлено, что возбужденные состояния 2-, 2,6- и 2,7-сульфоантрахинонов-9,10 тушатся химически фенолом и гидрохиноном с образованием соответствующих феноксильных (*p*-бензосемихиноновых) и антрасемихиноновых радикалов ^{90, 72}. Различные α-дикетоны в возбужденном состоянии способны также окислять фенолы с образованием кетильных и феноксильных радикалов ^{137, 138}. При тушении люминесценции биацетила фенолами происходит обратимый отрыв атома водорода с образованием феноксильных радикалов ¹³⁹.

Некоторые красители и пигменты способны в возбужденном состоянии восстанавливать хиноны до семихиноновых радикалов. Так, при фотовозбуждении хлорофилла в спиртах в присутствии *p*-бензохинона (дурохинона, витамина K, α-токоферилхинона) протекает следующая реакция ^{132, 140–143}:

$$Chl^* + Q \rightarrow Chl^{+} + Q^{-}, \qquad (2)$$

где Chl* — молекула хлорофилла в возбужденном состоянии (вероятнее всего, в триплетном), Q^+ — семихиноновый радикал. Эозин в возбужденном триплетном состоянии восстанавливает p-бензохинон по реакции типа (2), окисляясь до радикал-катиона 144.

VI. СПЕКТРЫ ПОГЛОЩЕНИЯ И КИСЛОТНО-ОСНОВНЫЕ СВОИСТВА ФЕНОКСИЛЬНЫХ И СЕМИХИНОНОВЫХ РАДИКАЛОВ

При импульсном фотолизе и радиолизе фенольных и хиноидных соединений были зарегистрированы спектры поглощения ряда феноксильных и семихиноновых радикалов. Проблема приписания наблюдающегося поглощения при импульсном фотолизе ароматических соединений какой-либо конкретной структурной формуле решается в большинстве случаев индивидуально $^{42, 43}$. Ответственным за поглощение может быть либо триплетное состояние молекулы, либо радикал. Решить этот вопрос позволяют дополнительные исследования кинетики взаимодействия с кислородом, применение метода T-T переноса энергии, изучение взаимодействия промежуточных продуктов с различными добавками, сравнение спектров поглощения в жидкой и твердой фазе и т. д. Исследования зависимости поглощения от полярности среды, рН, ионной силы раствора и других параметров позволяют определить заряд радикала.

При исследовании замещенных фенолов методом импульсного фотолиза было обнаружено, что существует принципиальная возможность образования различных радикалов. Так, например, при импульсном фотолизе *p*-крезола возможно образование бензильного и феноксильного

радикалов. В таких случаях возникает вопрос, какому из радикалов приписать наблюдаемый спектр. Спектры бензильного и феноксильного радикалов заметно различаются по форме полос и относительной интенсивности длинноволновых и коротковолновых переходов. При импульсном фотолизе *р*-крезола был получен спектр, почти идентичный по форме и интенсивности спектру феноксильного радикала. На этом основании сделано заключение, что первичным фотохимическим процессом является образование *р*-метилфеноксильного радикала ⁴².

Вообще идентификация спектров ароматических радикалов проводилась на основе изучения серии родственных замещенных соединений ^{43, 145}: метод особенно удобен и надежен для ароматического ряда, так как имеется много соединений и возможен в большинстве случаев перекрестный контроль.

1. Феноксильные радикалы

Спектры феноксильных радикалов характеризуется системой полос в области 300 и 400 нм ⁴². Впервые спектр поглощения незамещенного феноксильного радикала был зарегистрирован при импульсном фотолизе паров фенола и анизола в газовой фазе ³⁶. Спектр состоит из одиночной диффузной полосы с максимумом при 292 нм. Длинноволновую полосу в области 400 нм при импульсном фотолизе фенола в различных растворителях наблюдали в ^{37, 38}. Низкотемпературные исследования подтвердили правильность произведенного отнесения полос ^{40, 42}.

В работе ⁴⁴ также было установлено образование феноксильных радикалов при фотолизе фенола, анизола и фенитола в азотной матрице при температуре 4,2° К. В дополнение к данным ⁴⁰, были найдены полосы при 295, 396,5 нм и широкая полоса при 240 нм, отвечающие поглощению феноксильного радикала. Дальнейший фотолиз светом 225—345 нм приводил к деструкции самого феноксильного радикала. Впоследствии при импульсном фотолизе паров фенола в присутствии ар-

тона была обнаружена длинноволновая система полос с максимумами при 395 и 382 *н.м.* ^{42, 46}.

Спектры поглощения 18 различных алкилзамещенных феноксильных радикалов были получены при импульсном фотолизе соответствующих фенолов Лэндом и Портером 45. Они показали, что алифатические заместители незначительно влияют на спектр поглощения феноксильного радикала, приводя к небольшим сдвигам длинноволновой системы полос в зависимости от положения заместителя в кольце. Феноксильные радикалы являются основными короткоживущими частицами, наблюдаемыми при импульсном фотолизе белков, таких как яичный альбумин, в которых они образуются из соединений типа тирозина 145.

Феноксильные радикалы, включающие большие алкильные заместители, сохраняют в основном расположение полос такое, как в спектре незамещенного феноксильного радикала, но интенсивная окраска обусловлена широкими полосами, простирающимися в видимую область. Алкилированные феноксилы — синего цвета, а алкоксильные и фенильные группы вызывают гипсохромный сдвиг в видимом поглощении, давая радикалы с $\lambda_{\text{макс.}} \sim 530$ нм. Наоборот, электроно-акцепторные заместители (альдегиды, кетоны, нитрилы) производят батохромный сдвиг, и радикалы могут быть синими или зелеными 12. Слабое широкое поглощение наблюдается в районе 600 нм в спектрах некоторых триалкилированных феноксильных радикалов 48. Существование такой полосы ожидалось и для незамещенного феноксильного радикала 42; она была обнаружена в газовой фазе при высоком разрешении 46. Помимо полос 380 и 395 нм, которые, как и полоса 292 нм, носят характер $\pi-\pi^*$ -поглощения, была зарегистрирована широкая и слабая полоса поглощения в районе 530—610 нм с $\lambda_{\text{макс}}$ = 600 нм и обусловена, по-видимому, поглощением типа $n-\pi^{*}$ 43,46.

Как показали результаты исследований спектров поглощения феноксильных радикалов в ПММА, длинноволновый предел поглощения радикала равен 850 нм ¹⁸. Однако автор ¹⁸, основываясь на данных квантовохимических расчетов, считает, что и длинноволновое поглощение в феноксильном радикале в районе 600 нм является поглощением π — π *-типа. Теория спектров поглощения простейших ароматических

радикалов рассмотрена в работе 42.

Спектры поглощения феноксильных радикалов зарегистрированы при импульсном радиолизе фенола и p-крезола в воде 49. Коэффициенты экстинкции феноксильных радикалов определялись либо в результате исследований методом импульсного радиолиза (где известны радиационные выходы продуктов радиолиза) 49, либо из сравнения с поглощением гидратированного электрона, образующегося при фотолизе фенолят-ионов. При использовании последнего метода в ряде случаев получались, по-видимому, завышенные значения коэффициентов экстинкции. Это обусловлено, вероятно, тем, что гидратированный электрон имеет очень малое время жизни, сравнимое с временем вспышки импульсных ламп. В работе 72 предложен сравнительно простой и надежный способ определения коэффициентов экстинкции феноксильных радикалов в опытах по сенсибилизированному 2,6-дисульфоантрахиноном фотоокислению фенолов. При использовании этого метода можно получать коэффициенты экстинкции галогензамещенных феноксилов 72, 146. (Галогензамещенные фенолы не образуют гидратированного электрона при фотовозбуждении, или его эффективно тушат в.) Данные по спектрам простейших феноксильных радикалов приведены в табл. 1.

ТАБЛИЦА 1 Максимумы поглощения и коэффициенты экстинкции феноксильных радикалов в воде, $20^{\circ}\mathrm{C}$

				
Раднкал	λ _{Makc} , нм	E, моль ⁻¹ ·л·см ⁻¹	Ссылки на литературу	
Феноксильный	$\begin{array}{c} 402 \\ 299 \\ 400 \pm 5 \\ 290 \pm 5 \\ 399 \\ 400 \end{array}$	$\begin{array}{c} 1800*\\ 5000\\ 2200\pm\!200\\ 4000\pm\!800\\ 11000\\ 2300\\ \end{array}$	42 42 49 49 50 72	
<i>о-</i> Метилфеноксильный	395, 380, 363 395 405	8 700 3 400	45 50 72	
<i>m</i> -Метилфеноксильный	412, 381, 372 412 420	4 800 3 000	45 50 72	
<i>p-</i> Метилфеноксильный	$\begin{array}{c} 405,385,368\\ 388,405\\ 405\\ 405\pm 5\\ 295\pm 5\\ 410\\ 400\\ \end{array}$	$\begin{array}{c} -\\ 15000\\ 2400{\pm}400\\ 5000{\pm}1000\\ 3200{\pm}300\\ 2500 \end{array}$	45 54 50 49 49 51 72	
<i>т-</i> Нитрофеноксильный	450	490	72	
2,4-Дибромфеноксильный	420	3 700	72	
Феноксильный радикал из тирозина	410 410	$2100\ 2750\pm200$	72 51	
<i>р-</i> Иодфеноксильный	420	2 800	146	

^{*} В гексане.

Различия в спектрах радикалов с изменением температуры и природы растворителя обычно малы. Небольшие изменения в максимумах поглощения и форме полос наблюдаются при переходах газ — жидкость — твердое тело ⁴².

В растворе во всем интервале кислотностей (вплоть до растворов, содержащих $12~M~H_2SO_4$) феноксильные радикалы присутствуют в виде незаряженных частиц $^{40,~43}$. Протонирование радикала обычно значительно меняет спектр поглощения, и такие изменения могут быть легко обнаружены. Протонированный феноксильный радикал $PhOH^+$ является очень сильной кислотой и не может наблюдаться в заметной равновесной концентрации $^{40,~43}$. Методом импульсного фотолиза были получены величины pK некоторых замещенных феноксильных радикалов, все значения pK < -1 43 .

Квантовохимические расчеты, проведенные в работе ¹⁴⁷, показали, что существование незамещенных феноксильного и семихинонового радикал-катионов в водной среде практически невозможно.

2. Спектры поглощения и константы диссоциации семихиноновых радикалов

Спектры поглощения ряда короткоживущих *р*-семихиноновых радикалов были зарегистрированы методами импульсного фотолиза ^{79, 80, 147–153} и импульсного радиолиза ^{74, 154–166} при исследовании гидро-

ТАБЛИЦА 2 Максимумы поглощения, коэффициенты экстинкции и константы диссоциации семихиноновых радикалов в водной, водно-органической и органической средах, 20° С

	Q-		ÓН.			
Исходный хинон	λ _{макс.} , нм	ε, моль ⁻¹ · л ·см ⁻¹	λ, нм	E, MOA5 ⁻¹ . ·A·CM ⁻¹	р <i>Қ</i>	Ссылки на литературу
р-Бензохинон	430 425 430 404 371 316 310 425	6 1 ₀ 0 7 300 5 400 4 600 3 700 40 000 33 000 7 200	410 415 — — — — — — 415	4 300 5 500 — — — — — — 4 500	4,1 4,0 - - - - 4,0	164 ^a 154 167 167 167 167 167 163
Дурохинон	445 445 	7 100 —	430 425 410	4 000 3 500	5,1 5,1 —	158 ^B 163 6 168 ^Д
1,4-Нафтохинон	390 390 390	12 500 13 000	380 370 370	7 100 7 300	4,1 4,1 4,1	158 ^B 164 ^a 163
Витамин К ₃	400 395 300	10 200 12 000 12 509	380 370 290	9 900 9 500 6 000	5,5 4,5 —	164 ^B 165 165
Антрахинон-9,10	395 480	7 800 7 300	375 	11 000 —	5,3	163 ^г 163
1-Сульфоантрахинон- 9,10	400 500	8 000 8 000	385	12 000	5,4 —	74 74
2-Сульфоантрахинон- 9,10	500 398 465 496	8 200 9 800 8 000 9 500	387 —	14 000	3,25 3,9 — —	74 166 166 166
2,6-Дисульфоант рахи- нон-9,10	395 525 520	 8 000	390 — —	 	3,2	158 ^B 158 ^B 153
Рибофлавин	560 ^ж	170	560	5 130	8,3	105
Флавиномононуклеотид	-	_	560	3050	_	106
9,10-Фенантренохинон- 3-сульфонат	_	_	485; 525	-	7,5	169
Хлоранил ³	<u>-</u> -		420 435 448	7 300 7 700 6 000		89 89 89

Водные растворы содержали: а) изопропанол (1M) и ацетон (1M); б) трет-бутанол (1-2M); в) изопропанол (5M) и ацетон (2M); г) изопропанол (3M); д) раствор в циклогексане; ж) не максимум поглощения; з) раствор в диоксане. В остальных случаях растворитель — вода.

хинона и хинонов. Импульсный радиолиз оказался удобным методом исследования свойств семихиноновых радикалов (исследования выполнены в основном в водных растворах). При использовании этого метода для генерации радикалов не требуется образования возбужденного состояния (которое может легко тушиться примесями или кислородом), а также открывается возможность определения коэффициентов экстинкции. Исследование зависимости величины поглощения радикала

ТАБЛИЦА З Константы скоростей реакций гибели феноксильных радикалов по реакциям второго порядка

x	Среда, температура, °С	k/ε, см·сек−1	k, моль ⁻¹ ·л·сек ⁻¹	Ссылки на литературу
Н	вода, 17—23	3,5.105	5,4.108	45
»	вода, 25	' -	5,6·10°	50
»	бензол, 29—31		$6.3 \cdot 10^{8}$	137
»	хлорбензол, 29—31	-	$5.5 \cdot 10^{7}$	137
»	вода, 12	$1,2 \cdot 10^{5}$	2,8.108	72
2-CH _a	вода, 12	4,7.104	$1,6 \cdot 10^8$	72
.3-СН ₃	вода, 12	2.5.104	$7,5 \cdot 10^7$	72
4-CH ₃	вода, 25		$6.5\pm0.3\cdot10^{9}$	50
»	вода, 25	$5,9\pm0,3\cdot10^{5}$	$1.9\pm0.3\cdot10^{9}$	51
»	бензол, 29—31	' <u>-</u>	1,5.109	137
»	вода, 12	$4,4.10^{4}$	1,1.108	72
Радикал тирозина	вода, 25	$4.5\pm0.2\cdot10^{5}$	$1.2\pm2\cdot10^9$	51
»	вода, 12	1,2.105	$2,7 \cdot 10^{8}$	147
4-CH₃O	бензол, 29—31		$1,7 \cdot 10^7$	137
*	хлорбензол, 29—31		$1,4.10^{6}$	137
4-Метил-2,6-ди- <i>трет</i> -бутил		$8,2\cdot10^4$	1,5.108	45
4-Этил-2,6-ди-трет-бутил	CCl ₄ 17—23	$7,4\cdot 10^3$	1,3.107	45
2,4-Ди-трет-бутил	жидкий парафин, 17—23		2,0.107	45
3-NO ₂	вода, 12	$2.6 \cdot 10^{4}$	$1,3\cdot 10^{7}$	72
2,4-Ди-Вг	вода, 12	$2,7 \cdot 10^4$	1,0.108	72
4-I	вода, 20	$1,9 \cdot 10^{5}$	$5,5 \cdot 10^{8}$	146
2-OH	вода, 20	$8,0.10^{5}$	$3,9 \cdot 10^{8}$	172
2-OH-3,6-ди- <i>трет</i> -бутил	голуол, 27	_	5,4.106	173

 $^{^{}a}$ E_{a} =3.1 ккал/моль в толуоле 11 .

от рН раствора при прочих не меняющихся условиях позволяет получать «кривые титрования» радикалов и находить величины рK, значения рK для большинства p-семихиноновых радикалов заключены в интервале 3—6 (см. табл. 2).

Спектры большинства семихиноновых радикал-анионов имеют максимумы, расположенные в области 400—450 нм (см. табл. 2), а максимумы поглощения нейтральных радикалов сдвинуты в УФ-область и расположены в области 370—425 нм ¹⁶³. Это согласуется с общим положением о том, что основные формы свободных радикалов поглощают при более низких энергиях по сравнению с кислыми формами ¹⁶³. В большинстве случаев семихиноновые радикалы и радикал-анионы имеют полосы поглощения в УФ- и далекой УФ-области ¹⁶⁵, ¹⁶⁶, но за исключением работы ¹⁶⁷ эти полосы детально не исследовались.

Электрон, принятый возбужденной молекулой хинона, превращает хиноидную структуру молекулы в ароматическую, и при поглощении света в семихиноновых радикалах происходят переходы типа π — π^* 125.

Тщательное исследование спектра поглощения *p*-бензосемихинонового радикал-аниона выполнено в работе ¹⁶⁷. Радикал-анион получали путем окисления гидрохинона двуокисью марганца и записывали его спектр поглощения и спектр ЭПР; последнее позволило определить концентрацию радикал-аниона. Результаты приведены в табл. 2. Спектры поглощения ряда семихиноновых и флавосемихиноновых радикалов приведены также в работах ⁷⁰, ¹¹⁰, ¹⁰⁵, ¹⁰⁶, ¹⁶⁴, ¹⁶⁶, ¹⁷⁰, ¹⁷¹. Исследованные флавосемихиноновые радикалы отличаются лишь заместителями в изоаллоксазиновом кольце и имеют весьма схожие спектры поглощения.

Некоторые нейтральные семихиноновые радикалы способны принимать ион H⁺ и переходить в кислую форму:

QH
$$\stackrel{\text{H+}}{\rightleftharpoons}$$
 QH $_{2}^{\stackrel{\cdot}{+}}$.

Так, для дуросемихинонового радикала, по данным 148 , рK такого равновесия равно —1,1, а для флавосемихинонового радикала рибофлавина, по данным 105 , рK = 2,3.

VII. КИНЕТИКА ГИБЕЛИ

1. Феноксильные радикалы

Димеризация является одной из наиболее важных реакций в химии феноксильных радикалов. Димеризация лежит в основе окислительного сочетания фенолов и происходит с образованием связей С—С, С—О и О—О ²⁵. Димеризация по С—С- и С—О-связям происходит исключительно в орто- и пара-положениях по отношению к феноксильному кислороду 26. Например, p-крезол, окисляемый в различных условиях с помощью феррицианида калия в щелочном растворе, дает различные конечные продукты: o-димер (2,2'-дигидрокси-5,5'-диметилбифенил), тример, кетон Пуммерера и полимеры 26. Образование более сложных продуктов объясняется дальнейшим взаимодействием димеров с феноксильными радикалами или изомеризацией димеров. Кинетика гибели р-метилфеноксильного радикала, получающегося при импульсном фотолизе p-крезола, подробно исследована в работе 50 . Было найдено, что кинетика описывается уравнением второго порядка, т. е. радикалы исчезают путем димеризации. Величина k/ϵ , определяемая из опыта, остается постоянной в пределах ошибки в широком интервале концентраций исходного p-крезола ⁵⁰. Значения константы скорости и величины k/ϵ приведены в табл. 3. В таблице приведены данные о феноксильных радикалах, имеющих вид

где X — различные заместители.

Главным продуктом димеризации *р*-метилфеноксильного радикала в водном растворе, насыщенном азотом, является *о*-димер:

При димеризации двух незамещенных феноксильных радикалов образуется значительно большее количество продуктов (около десяти) ²⁶. При димеризации двух α-нафтоксильных радикалов получаются все возможные продукты орто- и пара-сочетания и отсутствуют продукты, содержащие С—О-связь; β-нафтоксильные радикалы гибнут с образованием бинафтолов, соединенных в основном связью С(1) — С(1) и в значительно меньшей степени связью О—С(1) ¹⁷⁴.

Абсолютные значения констант скоростей реакций гибели феноксильных радикалов, естественно, сильно зависят от величины прини-

маемого коэффициента экстинкции и в среднем являются меньшими, чем $k_{\rm дяфф}$, вычисляемые по формуле Дебая 45, 51, 72, 137. Завышенные значения констант, нередко получаемые по формуле Дебая 175, отчасти объясняются нестрогостью допущений, производимых при ее выводе.

В работе 12 установлена некоторая зависимость между строением и константой скорости реакции рекомбинации феноксильных радикалов.

В работе 137 использован метод вращающегося сектора в сочетании с облучением в резонаторе ЭПР α -дикетона в присутствии фенола. Метод позволяет определять константы скорости реакции димеризации феноксильных радикалов. Константы скорости изменяются в бензоле от $1.7 \cdot 10^7$ моль $^{-1} \cdot \Lambda \cdot cek^{-1}$ для p-метилфеноксильного радикала до $4.5 \cdot 10^9$ моль $^{-1} \cdot \Lambda \cdot cek^{-1}$ для 2-нафтоксильного радикала при 30° С (см. табл. 3). Как правило, величины констант в бензоле на порядок выше,

чем в хлорбензоле, но меньше $k_{\pi^{\mathbf{u}}\Phi\Phi}$.

В работе ¹⁷⁶ были измерены энергии активации реакций димеризации 14 феноксильных радикалов в бензоле и хлорбензоле. Сравнение этих результатов с данными термохимического анализа промежуточных соединений, образующихся в реакции димеризации показало, что изучавшиеся радикалы делятся на два класса. Радикалы, для которых теплота образования начального промежуточного соединения — кетодимера — превышает 20 ккал/моль, имеют абсолютные значения констант димеризации и энергии активации, согласующиеся с диффузионной теорией. Для некоторых других радикалов, например 4-фенили 4-метоксифеноксильных, теплота образования промежуточного кето-димера значительно меньше 20 ккал/моль и значения констант скорости и энергии активации существенно различаются с предсказанными теорией ¹⁷⁶. Конечные продукты гибели RhO образуются через изомерное дикето-промежуточное соединение, получающееся в результате димеризации PhO, которое затем енолизуется с образованием конечных продуктов ^{137, 138}:

В органических растворителях (бензол, хлорбензол) стадия (б) может быть лимитирующей стадией процесса и добавление кислоты резко ускоряет процесс. Такой же механизм рекомбинации PhO применим и к водной среде. Несмотря на то, что скорость процесса (б) в водной среде должна быть высокой 176 , в работе 147 наблюдалось увеличение k_3 при уменьшении pH среды от 8 до 1. Так, для o-метилфеноксильных радикалов $k_3 = 1.6 \cdot 10^8$ моль $^{-1} \cdot \Lambda \cdot ce\kappa^{-1}$ при pH = 8 и $1.9 \cdot 10^8$ моль $^{-1} \cdot \Lambda \cdot ce\kappa^{-1}$ при pH = 8 и $1.9 \cdot 10^8$ моль $^{-1} \cdot \Lambda \cdot ce\kappa^{-1}$ при pH = 1. Аналогичный вывод можно сделать при рассмотрении экспериментальных данных работ 50 , 51 .

Введение в водные растворы о-крезола солей щелочных металлов приводит к уменьшению диэлектрической проницаемости раствора и, следовательно, к уменьшению константы скорости рекомбинации полярных частиц — феноксильных радикалов ¹⁷⁷.

Влияние кислорода воздуха на кинетику гибели большинства ко-

роткоживущих феноксильных радикалов незначительно 72.

Диспропорционирование является реакцией гибели некоторых 4-алкил-2,6-ди-трет-бутилфеноксильных радикалов ¹³. Например, 2,6-ди-третбутил-4-изо-пропилфеноксильные радикалы гибнут по реакциям второго порядка с образованием исходного фенола и хинометида ⁴⁸. Отклонение от закона гибели по второму порядку и гибель по закону первого порядка, наблюдавшиеся для 4-метил-2,6-ди-трет-бутилфеноксильных и некоторых других радикалов авторы работ 45, 178, 179 объяснили наличием изомеризации феноксильного в оксибензильный радикал с перемещением атома водорода р-метильной группы на феноксильный кислород. Однако более убедительным представляется объяснение перехода от реакции гибели второго порядка к реакции первого порядка образованием промежуточного 4-(2,6-ди-трет-бутил-4-метилфенокси)-4-метил-2,6-ди-трет-бутилциклогекса-2,6-диенона 183.

Экспериментальный факт отсутствия взаимопревращений незамещенного феноксильного и p-оксифенильного радикалов з согласуется с высокой энергией активации этого процесса (больше 100 $\kappa \kappa \alpha n/monb$), рассчитанной методом MIND $O/2^{146}$. Кинетика реакций гибели феноксильных радикалов, имеющих сравнительно сложное строение, рас-

смотрена также в работах 13, 180-182.

Скорость реакции гибели 4-метил-2,6-ди-трет-бутил феноксильного радикала в ацетонитриле в присутствии тетрабутилгидроксида аммония (ТБГА) описывается кинетическим уравнением первого порядка ¹⁸⁴. При увеличении концентрации ТБГА скорость расходования феноксила уменьшается. Авторы считают, что ТБГА образует комплекс с феноксильным радикалом, и что образование такого донорно-акцепторного комплекса может снижать скорость расходования феноксильного радикала ввиду его стабилизации.

2. Семихиноновые радикалы

Кинетика исчезновения семихиноновых радикалов описывается уравнением реакции второго порядка. Реакция гибели нейтральных семихиноновых радикалов представляет собой реакцию диспропорционирования:

$$QH' + QH' \rightarrow Q + QH_2, \tag{4}$$

а реакция гибели радикал-анионов является, по-видимому, реакцией переноса электрона:

$$Q - + Q - \xrightarrow{+2H^+} Q + QH_2. \tag{5}$$

Константы скорости реакций гибели нейтральных семихиноновых радикалов при комнатной температуре в невязких растворителях обычно имеют значение $\sim 10^9~\text{моль}\cdot\text{л}\cdot\text{сек}^{-1}$ (табл. 4). Диффузионная константа, вычисленная по формуле Дебая, имеет тот же порядок, но как и в случае феноксильных радикалов, является в большинстве случаев численно большей.

Константы скорости реакций гибели радикал-анионов имеют значения на порядок меньше, чем константы скоростей реакций гибели соответствующих нейтральных радикалов (табл. 4). Наиболее простое объяснение, которое можно дать этому факту, заключается в том, что если взаимодействие радикал-анионов во многом определяется диффузией, то для заряженных частиц константа скорости диффузионно-контролируемой реакции вычисляется по формуле Дебая, учитывающей кулоновское отталкивание (притяжение):

$$k_{\mathrm{muff}} = rac{8RT}{3000\,\mathrm{n}} \cdot rac{\delta}{e^{\delta}-1}$$
 ,

где η — вязкость растворителя, δ — величина, зависящая от произведения зарядов реагирующих частиц.

TAБЛИЦА 4 Константы скоростей реакций гибели семихиноновых радикалов по реакциям второго порядка ($\sim\!20^\circ$ C)

,	Констан	Ссылки на		
Исходный хинон	QН,	Q÷	растворитель	литературу
<i>р</i> -Бензохинон ^в	1,1·10° 1,2·10° 1,5·10° 5,4·10° 2,7·108	1,7·10 ⁸ 5,5·10 ⁷ —	вода вода ^а изопропанол диоксан этанол	154 163 87 87 187
Дурохинон ^г	1′,8·10 ⁹ 7,2·10 ⁸ 8,0·10 ⁸ 7,3·10 ⁸ 2,9·10 ⁹	$\begin{array}{c} 1,2 \cdot 10^8 \\ 2,9 \cdot 10^7 \\ 4,6 \cdot 10^6 \\ \\ \end{array}$	вода — пропанол вода ^а этанол/вода изопропанол диоксан	185 163 80 87 87
Хлоранил	1,7·108 8,2·108	4,06·10 ⁶ 1,16·10 ⁷ —	этанол метанол изопропанол диоксан	88 88 87 87
1,4-Нафтохинон	$\begin{array}{c} 1,3 \cdot 10^{9} \\ 2,3 \cdot 10^{8} \\ 9 \cdot 10^{8} \\ 2,6 \cdot 10^{8} \end{array}$	1,0.108	вода ^а изопропанол диоксан этанол	163 87 87 187
Витамин К ₃	$3,4\cdot 10^9$ $1,3\cdot 10^9$	$5,5\cdot 10^{8}$ $1,6\cdot 10^{8}$	вода вода ^а	165 163
Антрахинон	1,2.109	4,9·10 ⁷	изопропанол диоксан	87 87
Антрохинон-1-сульфонат	1,6.109		вод а а	74
Рибофлавин	$\begin{vmatrix} 1,14\cdot10^9 \\ 3,5\pm0,5\cdot10^{96} \\ - \end{vmatrix}$	$ \begin{array}{c c} 7,0.108 \\\\ (1,0\pm0.5).108 \end{array} $	вода вода ДМФА	105 186 186
Флавинмононуклеотид	3,5.108	1,0.108	вода	106
Люмифлавин	(0,75—1,0)·109	_	вода	113

а) Растворы содержали 1-3 M изопропанола. 6) Ионная сила раствора $\mu\approx 0$, в работе 186 наблюдалось уменьшение константы скорости реакции гибели радикалов при увеличении нонной силы раствора. в) Для реакции гибели нейтрального радикала $E_{\rm 2KT}=3,7\pm 0,3$ и $3,9\pm 0,4$ $\kappa\kappa an/monb$ в изопропаноле и диоксане, соответственно 187 . г) Для реакции гибели нейтрального радикала $E_{\rm 2KT}=-3,3\pm 0,3$ и $3,8\pm 0,4$ $\kappa\kappa an/monb$ в изопропаноле и диоксане, соответственно 87 .

Величина $\delta/(e^6-1) < 1$ для одноименно-заряженных частиц. Например, этот член равен 0,1 при зарядах частиц —1 и расстоянии наибольшего сближения 2 $^{\rm A}$ 188.

Исследование кинетики гибели семихиноновых радикалов производилось методами импульсного радиолиза $^{115,\ 125-129,\ 132}$, импульсного фотолиза $^{79,\ 80,\ 82,\ 83,\ 88,\ 106,\ 111,\ 113,\ 147,\ 149,\ 153}$ (в том числе с регистрацией по спектрам ЭПР), а также методом ЭПР в сочетании с методом вращающегося сектора $^{87,\ 187}$; некоторые данные приведены в табл. 4.

Как видно из данных табл. 3 и 4, во многих случаях величины констант скоростей реакций гибелы феноксильных и семихиноновых радикалов в сходных условиях сильно различаются (данные разных авторов). Причины такого различия остаются неясными; возможно, что основные ошибки можно отнести за счет неточного определения концентрации радикалов (коэффициентов экстинкции).

В работе ⁸⁷ было найдено, что константы скоростей реакций гибели ряда нейтральных семихиноновых радикалов в диоксане примерно в

4 раза больше, чем в изопропаноле (см. табл. 4), что обусловлено различием в вязкости этих растворителей. Это может указывать на то, что реакция гибели радикалов является диффузионно-контролируемой ⁸⁷. Авторы работы ¹⁸⁷ также считают, что гибель ряда нейтральных семихиноновых радикалов в органических растворителях лимитируется диффузией, и что вращательная диффузия радикалов в клетке является фактором, влияющим на скорость реакции.

Гибель антрасемихинонового радикала AQ^{-} в изопропаноле подчинялась закону второго порядка ⁸⁷. Авторами предложен следующий механизм гибели AQ^{-} , который является, по-видимому, общим для семихиноновых радикал-анионов в органической не щелочной среде:

$$AQ^{-} + H^{+} AQH, \qquad (6)$$

$$2 AQH^{\bullet} \rightarrow AQ + AQH_{2}. \tag{7}$$

Таким образом, дифференциальное уравнение для скорости гибели AQ^{-} будет уравнением реакции второго порядка:

$$-\frac{d[AQ^{-}]}{dt} = \frac{k_7[H^+]}{k_6}[AQ^{-}]^2$$

и
$$k_{\text{набл}} = \frac{k_6 [H^+]}{k_7}$$
.

Семихиноновые радикалы сильно различаются по способности реагировать с кислородом, что явилось предметом ряда исследований $^{149, 153, 157, 158, 184, 189, 199}$. Так, радикал-анионы 2,6-дисульфоантрахинона ($\mathbf{AQ}^{\dot{-}}$) и 2-сульфоантрахинона эффективно взаимодействуют с кислородом.

$$AQ^{-} + O_2 \rightarrow AQ + O_2^{-}$$

 $(k=5\cdot 10^8\ \text{моль}^{-1}\cdot \Lambda\cdot \text{сек}^{-1}, 95\%\ \text{воды}, 5\%\ \text{изопропанол} + \text{ацетон}, 20^\circ\text{C}^{-164}),$ тогда как радикал-анионы p-бензохинона (BQ^-) не взаимодействуют 149, 164. В случае p-бензохинона и ряда других хинонов (триметилбензохинона, витамина K_3 и др.) исследован обратный процесс — перенос электрона с супероксид-иона на хинон 157, 189, 190:

$$BQ + O_2^{-} \rightarrow BQ^{-} + O_2$$

 $(k=9,6\cdot 10^{8}\ \text{моль}^{-1}\cdot \text{л}\cdot \text{сек}^{-1}$, водный раствор, содержащий 1 M трет-бутанола, 20° С 167). В случае дурохинона (DQ) наблюдается протекание обратимой реакции

$$O_2^{-} + DQ \rightleftharpoons O_2 + DQ^{-}$$
 (8)

 $(K_{c_8} = (2,3\pm0,2)\cdot 10^{-2}~95\%$ воды, 5% изопропанол + ацетон, 20° С¹⁶⁴) Образующиеся при фотовосстановлении хинонов семихиноновые радикалы не реагируют с радикалами (радикал-катионами) растворителя ⁸⁸. Однако семихиноновые радикалы, получающиеся путем фотоокисления неорганических анионов возбужденной молекулой хинона или при фотовосстановлении хинонов возбужденными молекулами пигментов, эффективно взаимодействуют с образовавшимися радикаланионами и радикал-катионами ¹⁴¹, ¹⁵², ¹⁵³. Например, радикал-анион 2,6-дисульфоантрахинона AQ^{-} гибнет по реакциям:

$$AQ^{-} + CO_{3}^{-} \rightarrow AQ + CO_{3}^{2-}, \tag{9}$$

$$AQ^{\dot{-}} + Chl^{\dot{+}} \rightarrow AQ - Chl. \tag{10}$$

где $k_9 = 1,4 \cdot 10^9$ моль $^{-1} \cdot \Lambda \cdot ce\kappa^{-1}$ в водном растворе и $k_{10} = 2,3 \cdot 10^9$ моль $^{-1} \cdot$ $\cdot \Lambda \cdot ce\kappa^{-1}$ в метаноле (комнатная температура), Chl $\dot{+}$ — радикал-катион хлорофилла 152.

VIII. ВЗАИМОДЕЙСТВИЕ С СОЕДИНЕНИЯМИ МЕТАЛЛОВ

Исследование механизма ингибирующего и стимулирующего действия соединений металлов в реакциях жидкофазного окисления тесно связано с изучением совместного действия этих соединений и ряда важных ингибиторов (фенолов, гидрохинона, пирокатехина и др.). Образующиеся в системе соответствующие феноксильные и семихиноновые радикалы могут взаимодействовать с соединениями металлов. Во многих химических и биолого-химических системах, где образуются феноксильные и семихиноновые радикалы, присутствуют ионы и соединения переходных металлов, поэтому исследование взаимодействия этих радикалов с соединениями металлов представляет значительный интерес. Радикальные реакции такого типа сравнительно мало изучены и имеют принципиальное значение как для химии свободных радикалов, так и для выяснения механизма многих процессов гомогенного катализа.

В работе 147 показано, что взаимодействие феноксильных и семихиноновых радикалов с соединениями переходных металлов протекает по одному из следующих путей:

$$\mathbb{R}^{\pm} + \mathbb{M}^{(n \mp 1) + \text{Li}_m}$$
 Перенос электрона (11)

1

$$R^{\pm} + M^{(n\mp1)+} Li_{m}$$
 Перенос электрона (11)
 $R^{\cdot} + M^{n+} Li_{m} \longrightarrow RMLi_{m-1} + Li$ Замещение лиганда (12)
 $R^{\cdot} \dots M^{n+} Li_{m}$ Образование КПЗ (13)

$$\searrow_{\mathbb{R}^{+} \dots M^{n+} \text{Li}_{m}}$$
 Образование КПЗ (13)

Если реакции (11) — (13) не являются доминирующими, то в системе, как правило, протекают параллельные реакции (3) — (5).

В работе 177 было обнаружено изменение спектра поглощения и кинетики гибели о-метилфеноксильного радикала в кислом водном растворе в присутствии CuCl, вызванное образованием комплекса с переносом заряда. Аналогично были получены спектрально-кинетические доказательства существования комплексов между о-метилфеноксильными радикалами и ионами Cu²⁺, Mn²⁺, Fe²⁺. Связь в комплексах довольно слабая, и образование комплексов в полярной среде является процессом обратимым, так как диссоциации комплексов способствует сольватация образующихся иона и радикала. Стабилизацию феноксильных радикалов, происходящую за счет их комплексообразования, можно наблюдать в малополярных средах 11.

Импульоное фотовозбуждение о-крезола в бензоле, толуоле и гексане приводит к образованию о-метилфеноксильного радикала ($\lambda_{\text{макс}} = 405 \ \text{нм}$ во всех растворителях) 11. Введение в растворы добавки ацетилацетоната кобальта (II) приводит к изменению спектров поглощения промежуточных продуктов, выражающемуся в появлении новой полосы поглощения в области 440—450 нм. Такие изменения спектров поглощения о-метилфеноксильного радикала вызваны образованием комплекса по быстрой реакции:

$$PhO' + Co (acac)_2 \rightarrow PhO' \dots Co (acac)_2.$$
 (14)

Гибель феноксильных радикалов и комплексов с Со(асас) подчинялась закону второго порядка

$$2PhO^{*}\dots Co (acac)_{2} \rightarrow Продукты$$
 (15)

При этом было обнаружено, что $k_{15} < k_{14}$. Значения энергий активации

для реакций гибели феноксильных радикалов и комплексов в бензоле составили 3,1 и 6,5 ккал/моль, соответственно. Уменьшение константы скорости реакции гибели комплексов и увеличение энергии активации по сравнению с реакцией гибели феноксильных радикалов указывает на то, что Co(acac)₂ кинетически ведет себя как пространственно-объемный заместитель в феноксильном радикале 11. Изменения спектра поглощения и кинетики гибели р-метилфеноксильного радикала, указывающее на образование новой частицы — комплекса, наблюдалось при импульсном фотолизе p-крезола в толуоле в присутствии $Fe(acac)_2^{-647}$.

Известно, что ароматические соединения способны образовывать комплексы с ионами переходных металлов и координационными соединениями. Это относится, по-видимому, и к ароматическим свободным радикалам. Разница заключается в том, что при образовании комплекса между неустойчивым (в термодинамическом смысле) радикалом и соединением металла не происходит, как правило, уничтожения свободной валентности, и комплексы такого типа также будут неустойчивыми. При этом может происходить делокализация неспарейного электрона по электронной оболочке металла, что может повышать относительную стабильность комплекса.

В работе 191 было обнаружено при помощи метода ЭПР существование комплекса между стабильным 2,4,6-три-*трет*-бутилфеноксильным радикалом и Co(acac)₂. При этом наблюдалось взаимодействие между неспаренным электроном и ядром кобальта; наряду с триплетом, отвечающим феноксильному радикалу, наблюдался октет, обусловленный наличием комплекса.

В работе 11 было сделано заключение, что Со(acac), должен обладать свойствами ингибитора цепных жидкофазных реакций окисления углеводородов. Действительно, исследование жидкофазного окисления кумола в присутствии Со(асас), показало, что последний ведет себя как сильный ингибитор. Окисление кумола в присутствии о-крезола и Co(acac)₂ представляло собой сложный процесс, в котором промежуточное образование — комплекс о-метилфеноксильного радикала с хелатом — играет определенную роль и влияет на величину периода индук-ЦИИ ¹⁹².

В работе ¹⁹³ зарегистрирован спектр поглощения радикал-аниона p-бензохинона (Q^-) в водно-пропанольной среде при импульсном фотолизе гидрохинона (QH_2). При фотолизе QH_2 в присутствии Cu^+ и Cu^{2+} наблюдалось исчезновение полос поглощения Q и появление полос поглощения других промежуточных продуктов, образующихся по реакциям

$$Q^{-} + Cu^{+} \gtrsim X_{1}^{\cdot} \tag{16}$$

$$Q^{-} + Cu^{+} \stackrel{\sim}{\sim} X_{1}^{+}$$

$$Q^{-} + Cu^{2+} \stackrel{\sim}{\sim} X_{2}^{+}$$
(16)

Установлено, что состав комплексов 1:1. Константы равновесия процессов (16) и (17) были вычислены с использованием зависимости

$$\frac{1}{\{X_{1,2}^{'}\}} = \frac{1}{K_{i}\{Q^{-}\}_{0} \cdot \{Cu^{n+}\}} + \frac{1}{\{Q^{-}\}_{0}}$$

Процессы (16) и (17) представляют собой взаимодействие между разноименно заряженными ионами, поэтому при прочих равных условиях K_{17} должна иметь большее значение, чем K_{16} , что согласуется с полученными экспериментальными значениями: $K_{16} = 7.0 \cdot 10^3$; $K_{17} = 1.0 \cdot 10^4 \ M^{-1}$ (20° C). Следует отметить важное значение кулоновского взаимодействия при образовании этих комплексов. При введении в кислый раствор QH₂ (pH=1,0; при этом образуется радикал QH') солей CuCl и CuSO₄ комплексообразования с QH не наблюдалось; спектры поглощения промежуточных продуктов совпадали со спектром QH и влияние на кинетику гибели QH было незначительным. Расчеты зарядов, произведенные по методу MINDO/2 на атомах кислорода в молекуле воды, нейтральном p-бензосемихиноновом радикале и радикал-анионе p-бензохинона показали, что наибольший заряд на атоме кислорода имеет радикаланион, который вытесняет молекулу воды из координационной сферы иона меди, а наименьший — нейтральный бензосемихинонный радикал, который не образовывал комплексов. Таким образом, реакция комплексообразования представляет собой, по-видимому, реакцию нуклеофильного замещения ¹⁴⁷.

Кинетика гибели радикальных частиц в исследованных системах подчинялась закону второго порядка ¹⁹³:

$$X_1 + X_1 \rightarrow \text{Продукты}$$
 (18)

$$X_{\frac{1}{2}}^{\ddagger} + X_{\frac{1}{2}}^{\ddagger} \rightarrow \text{Продукты}$$
 (19)

В водно-пропанольной среде при 20° С $k_{18} = 1.6 \cdot 10^{7}$, $k_{19} = 3.8 \cdot 10^{6}$ моль⁻¹ $\cdot \lambda \cdot ce\kappa^{-1}$ при ионной силе раствора $\mu = 0$.

Как видно из приведенных значений констант k_{18} и k_{19} , взаимодействие семихинонового радикала с ионами меди приводит к образованию более стабильных радикальных частиц. Увеличение стабильности комплексов по сравнению с исходным радикалом может быть вызвано частичной делокализацией неспаренного электрона по электронной оболочке меди, и, возможно, появлением стерических препятствий при рекомбинации комплексов. о-Бензосемихиноновые радикаль и флавосемихиноновые радикальные комплексы, выступая при этом как бидентатные лиганды. о-Бензосемихиноновые радикал-анионы и их производные образуют комплексы со многими ионами металлов I—III трупп и некоторыми другими $^{194-197}$. Эти комплексы, исследованные методом ЭПР, в зависимости от иона металла имеют природу контактных или сольвент-разделенных ионных пар 197 или же внутрисферных комплексов 172 , 194 .

В работе ¹⁷² зарегистрирован спектр поглощения нейтрального *о*-бензосемихинонового радикала, получавшегося в водно-пропанольном растворе при импульсном фотолизе пирокатехина. *о*-Бензосемихиноновый радикал образует внутрисферный комплекс с ионом Cu^{2+} где, по-видимому, $n \le 4$.

Были получены также спектрально-кинетические характеристики такого комплекса, значения констант комплексообразования, констант скоростей реакций образования и распада комплексов. Установлено, что состав комплекса 1:1. Константа скорости реакции гибели комплексов имеет значение на два порядка меньшее, чем константа скорости реакции диспропорционирования о-бензосемихиноновых радикалов (μ =0). Таким образом, образование комплекса стабилизирует радикал за счет экранирования реакционного центра по атому кислорода и делокализации неспаренного электрона по электронной оболочке иона Cu^{2+172} .

Исследование взаимодействия различных радикальных флавиновых соединений с ионами металлов имеет важное значение для изучения природы активных центров металлосодержащих флавопротеинов.

В работах ^{127, 170, 198, 199} исследовали комплексы флавосемихиноновых радикал-анионов и чонов Zn²⁺ и Cd²⁺ методами электронной спектроскопии и ЭПР. Равновесие

в присутствии ионов этих металлов сдвигается вправо:

$$F1 + F1H_2 + 2M^{2+} \rightleftharpoons 2[\dot{F}1M]^+ + 2H^+.$$

При этом концентрация спинов увеличивалась в 15 раз, достигнув примерно 34% общей концентрации флавина. Показано, что некоторые нейтральные флавиносемихиноновые радикалы, имеющие электронодонорные заместители в изоаллоксанизиновом кольце, способны образовывать комплексы с этими же ионами 127.

При импульсном фотовозбуждении рибофлавина в ДМФА в присутствии основания был зарегистрирован опектр поглощения радикал-аниона $Fl \,\dot{}^-$ 186. Кинетика гибели $Fl \,\dot{}^-$ следует закону второго порядка:

$$Fl^{\dot{-}} + Fl^{\dot{-}} \rightarrow \Pi$$
родукты. (20)

В присутствии солей $CdCl_2$ и $ZnSO_4$ кинетика гибели промежуточных соединений состоит из двух компонент (быстрой и медленной). Быстрой компоненте отвечают реакции (20) и (21):

$$F1^{-} + M^{2+} \rightarrow \dot{F}1 M^{+},$$
 (21)

а медленной компоненте — реакция гибели образовавшихся комплексов:

$$\dot{F}$$
IM + \dot{F} IM+ \rightarrow Продукты (22)

 $k_{22} = 2,5 \cdot 10^6$ и $1,0 \cdot 10^6$ моль $^{-1} \cdot \Lambda \cdot cek^{-1}$ для комплексов кадмия и цинка соответственно 186 . Флавосемихиноновый радикал-анион выступает как бидентатный лиганд, способный образовывать комплексы с ионами металлов, имеющими d-электроны. При образовании комплекса происходит делокализация неспаренного электрона по электронной оболочке металла, что стабилизирует радикал. Образование комплекса между радикалом и ионом металла приводит к изменению окислительно-восстановительного потенциала. Применительно к биологическим окислительно-восстановительным процессам, протекающим с участием металлорганических флавоферментов, это означает, что система может охватывать большой диапазон потенциалов совершая не только переходы $Fl \leftrightarrow FlH_2$, но и $Fl \leftrightarrow MFl^+$ и $MFl^+ \leftrightarrow FlH_2$ $^{127, 186}$.

Комплексы между парамагнитными лигандами и диамагнитными ионами металлов очень редки. Комплексы такого рода представляют интерес для изучения природы металл-лигандного связывания, а также для создания спиновых меток, связанных с металлом в ферментах. Использование таких меток должно быть весьма перспективным при исследовании свойств ферментов, так как при этом должен происходить перенос опина через металл на остальные части лигандного окружения.

При импульсном фотолизе рибофлавина в воде был зарегистрирован спектр поглощения флавосемихинонового радикала FlH. Введение в водный раствор Fl солей металлов (в том числе Cd и Zn) не приводилок образованию комплексов. При этом наблюдалось некоторое уменьшение k_{20} , вызванное увеличением ионной силы раствора. Таким образом, p-бензосемихиноновый радикал может служить моделью для выяснения процессов комплексообразования более сложных семихиноновых ради-

калов: радикал FГ способен образовывать комплексы с ионами металлов в отличие от нейтрального радикала FlH 147.

Для семихиноновых радикалов, помимо реакций образования комплексов с ионами переходных металлов, наблюдаются реакции окисления—восстановления.

Авторы работы 149 исследовали влияние ионов Cu⁺, Cu²⁺, Fe²⁺, Fe³⁺, Mn²⁺, Ho³⁺, Cd²⁺, Co²⁺, Mg²⁺, Hg²⁺, Zn²⁺, Ni²⁺, K⁺ на кинетику гибели семихиноновых радикал-анионов, получающихся из 2-метилентрахинона. В некоторых случаях ионы металлов сильно сокращали время жизни радикалов, в других мало или совсем не влияли на кинетику гибели радикал-аниона. В среднем парамагнитные ионы оказывали больший эффект, чем диамагнитные. Резкое сокращение времени жизни радикала, наблюдавшееся при добавлении ионов Cu²⁺ и Fe³⁺, вызвано окислением семихинона ионом металла:

$$M^{n+} + SQ^{-} \rightarrow M^{(n-1)+} + SQ.$$

p-Бензохиноновые радикалы участвуют в окислительно-восстановительных реакциях с ионами железа. В работе 185 методом импульсного фотолиза исследовали реакции

$$Q^{-} + Fe^{2+} \xrightarrow{+2H^{+}} QH_2 + Fe^{3+},$$
 (23)

$$QH^{\bullet} + Fe^{2+} \xrightarrow{+H^{+}} QH_{2} + Fe^{3+},$$
 (24)

$$QH' + Fe^{3+} \xrightarrow{-H^{+}} Q + Fe^{2+}$$
 (25)

ІХ. НЕКОТОРЫЕ КВАНТОВОХИМИЧЕСКИЕ РАСЧЕТЫ ФЕНОКСИЛЬНЫХ И СЕМИХИНОНОВЫХ РАДИКАЛОВ

Феноксильные и семихиноновые радикалы были объектом ряда теоретических исследований ^{20, 201–205}. Основное внимание исследователей уделялось вычислению распределения спиновых плотностей. Расчеты феноксильных радикалов по методу МОХ приводят к плохому согласию с опытом ²⁰¹. В расчетах спиновых плотностей Портер с сотр. ²⁰² учитывали вклад пяти возбужденных дублетных состояний, что привело к качественному согласию с данными спектров ЭПР.

Расчеты спиновой плотности в ряде феноксильных радикалов, произведенные по методу МО в приближении Хюккеля и Мак-Лечлана и метода валентных схем приводят к результатам, согласующимся с экспериментальными данными ²⁰³. В работе ²⁰⁴ производили расчет распределения спиновой плотности бензосемихиноновых радикалов-анионов по методу МО ЛКАО ССП в приближении Мак-Лечлана с вариацией параметров МО; результаты расчета находятся в хорошем согласии с данными эксперимента.

Был произведен расчет простейшего феноксильного радикала по методу INDO ²⁰. Рассчитана геометрия феноксильного радикала, π-заряды

на атомах О и С, константы сверхтонкого взаимодействия и некоторые другие параметры. Оказалось, что в феноксильном радикале по сравнению с изоэлектронным бензильным и анилино-радикалами, наименьшим образом искажено бензольное кольцо. Аналогичный вывод можно сделать, рассматривая вклады в структуру радикалов от различных валентных схем. В 205 произведен расчет незамещенного феноксильного радикала ab initio. Получены значения электронной, ядерной и общей энергии радикала, собственные значения ряда операторов для различных волновых функций и константы сверхтонкого взаимодействия; эти данные находятся в качественном согласии с экспериментальными данными. Вообще расчеты ab initio таких систем дают менее удовлетворительное согласие с экспериментальными данными, чем расчеты полуэмпирическими методами.

ЛИТЕРАТУРА

- 1. Н. М. Эмануэль, Е. Т. Денисов, З. К. Майзус, Цепные реакции окисления углеводородов в жидкой фазе, «Наука», М., 1965.
- 2. Н. М. Эмануэль, Ю. И. Лясковская, Торможение окисления пишевых жиров, Пищепромиздат, М., 1961.
- 3. Л. М. Стригун, Л. С. Вартанян, Н. М. Эмануэль, Усп. химии, 37, 969 (1968). 4. Н. М. Эмануэль и др., Доклад на совещании по проблеме «Биохимические и физико-химические основы биологического действия радиации», М., 1957.
- 5. Н. М. Эмануэль, Доклад на V МБК, симпозиум 4, М., 1961. 6. Н. М. Эмануэль, В сб. Материалы 2-го Всесоюзного симпозиума по фенольным соединениям, «Наука», М., 1968. 7. Н. М. Эмануэль, К. Е. Круглякова, Н. А. Захарова, И. И. Сарежинский, ДАН,
- 131, 1451 (1960).

- 131, 1451 (1960).

 8. Н. М. Эмануэль, Нефтехимия, 13, 323 (1973).

 9. Н. М. Эмануэль, Изв. АН СССР, сер. хим., 1974, 1056.

 10. Е. Б. Бурлакова, Н. М. Эмануэль, ДАН, 135, 599 (1960).

 11. В. А. Кузьмин, И. В. Худяков, Н. М. Эмануэль, ДАН, 206, 1154 (1972).

 12. А. R. Forrester, J. М. Нау, R. Н. Tomson, Organic Chemistry of Stable Free Radicals. Academic Press, London, 1968.
- 13. В. Д. Походченко, Феноксильные радикалы, «Наукова думка», Киев, 1963.
- 14. А. Л. Бучаченко, А. М. Вассерман, Стабильные радикалы, «Химия», М., 1973. 15. В. Д. Походенко, В. А. Хижный, В. А. Бидзиля, Усп. химии, 37, 998 (1968). 16. Е. R. Altwicker, Chem. Rev., 67, 475 (1967).

- 17. G. N. Lewis, D. Lipkin, J. Am. Chem. Soc., 64, 2801 (1942).

- 17. G. N. Lewis, D. Liprin, J. Am. Chem. Soc., 64, 2801 (1942).
 18. R. L. DeGroot, Mol. Photochem., 3, 1 (1971).
 19. J. Jordan, D. Pratt, D. Wood, J. Am. Chem. Soc., 96, 659 (1974).
 20. R. V. Lloyd, D. E. Wood, Там же, 96, 659 (1974).
 21. Е. Т. Денисов, Усп. химии, 42, 361 (1973).
 22. R. Fernández-Prini, Trans. Faraday Soc., 65, 3311 (1969).
 23. L. S. Singer, I. C. Lewis, T. Richerzhagen, G. Vincow, J. Phys. Chem., 75, 290 (1971).
 24. П. А. Колесников, В сб. Фенольные соединения и соединениям «Наука» М. 1968. териалы I Всесоюзи, симпозиума по фенольным соединениям, «Наука», М., 1968.
- стр. 139. 25. Р. Х. Томпсон, В сб. Биохимия фенольных соединений, «Мир», М., 1968, стр. 9. 26. Н. Musso, В сб. Oxidative Coupling of Phenols, ed. W. I. Taylor, A. R. Battersby,
- Marsel Dekker, N. Y., 1967. 27. L. Michaelis, Ann. N. Y. Acad. Sci., 40, 39 (1940). 28. B. Venkataraman, G. K. Fraenkel, J. Am. Chem. Soc., 77, 2707 (1955).
- 29. R. Hoskins, J. Chem. Phys., 23, 1975 (1955).
- 29. R. Hoskins, J. Chem. Phys., 20, 1910 (1993).
 30. The Biochemistry of Copper, ed. J. Peisach, P. Aisen, W. E. Blumberg, Acad. Press, N. Y., 1966. стр. 131, 339, 343, 373.
 31. Б. И. Макалец, Л. Г. Иванова, В. В. Курзанова, Нефтехимия, 11, 729 (1971).
 32. L. Michaelis, M. P. Schubert, Chem. Rev., 22, 437 (1938).

- 33. B c6. Biochemistry of Quinones, ed. R. A. Morton, Academic Press, London N. Y., 1965, стр. 343, 384.
- 34. F. L. Crane, B co. Biological Oxidations, ed. T. P. Singer, Inetrscience, N. Y., 1968, стр. 533.
 35. Л. А. Блюменфельд, Проблемы биологической химии, «Наука», М., 1974.
 36. G. Porter, F. J. Wright, Trans. Faraday Soc., 51, 1469 (1955).
 37. L. I. Grossweiner, W. A. Mulac, Rad. Research, 10, 515 (1959).

```
38. L. I. Grossweiner, E. F. Zwikcer, J. Chem. Phys., 32, 305 (1960).
39. I. Norman, G. Porter, Proc. Roy. Soc., A230, 399 (1955).
40. E. J. Land, G. Porter, E. Strachan, Trans. Faraday Soc., 57, 1885 (1961).
41. J. Jortner, B. Sharf, J. Chem. Phys., 37, 2506 (1965).
42. E. J. Land, Progr. React. Kinetics, 3, 369 (1965).
43. G. Porter, Mol. Spectrosc. Proc. Conf., IV, 1968, crp. 305.

    G. Porter, Mol. Spectrosc. Proc. Com., 17, 1906, Crp. 806.
    J. Roebber, J. Chem. Phys., 37, 1974 (1962).
    E. J. Land, G. Porter, Trans. Faraday Soc., 59, 2026 (1963).
    G. Porter, B. Ward, J. Chim. Phys., Physicochim. biol., 61, 1517 (1964).
    H. T. Chilton, G. Porter, J. Phys. Chem., 63, 904 (1959).
    C. D. Cook, B. E. Norcross, J. Am. Chem. Soc., 81, 1176 (1959).
    E. J. Land, M. Ebert, Trans. Faraday Soc., 63, 1181 (1967).
    G. Pokson, I. I. Grossmeiner, Trans. Faraday Soc., 61, 708 (1965).

 50. G. Dobson, L. I. Grossweiner, Trans. Faraday Soc., 61, 708 (1965).
 51. J. Feitelson, E. Hayon, J. Phys. Chem., 77, 10 (1973).
52. B. Robert, R. Prudhomme, P. Grabar, Bull. soc. chim. biol., 37, 897 (1955).
53. The Chemistry of Hydroxyl Group, ed. S. Patai, Interscience Publishers, N. Y., 1971,
            гл. 16.
 54. L. I. Grossweiner, G. W. Swenson, E. F. Zwicker, Science, 141, 805 (1963).
 55. J. Jortner, B. Sharf, J. Chem. Phys., 37, 2506 (1963).
56. H. Linschitz, M. Berry, D. Schwitzer, J. Am. Chem. Soc., 76, 5833 (1954).
57. W. Gibbons, G. Porter, M. Savadatti, Nature, 206, 1356 (1965).
 58. Y. A. Vladimirov, E. E. Fesenko, Photochem. Photobiol., 8, 209 (1968).
 59. H.-I. Joschek, L. I. Grossweiner, J. Am. Chem. Soc., 88, 3261 (1966).
 60. K. Cadogan, A. Albrecht, J. Chem. Phys., 43, 2550 (1965).
 61. L. I. Grossweiner, B c6. Photophysiology, v. 5, Academic Press, N. Y., 1970, crp. 1. 62. Y. A. Vladimirov, D. I. Roshupkin, E. E. Fesenko, Photochem. Photobiol., 11, 227
             (1970)
63. M. S. Walker, M. A. Abkowitz, R. W. Bieglow, J. H. Sharp, J. Phys. Chem., 77, 987
             (1973)

    M. Ottolenghi, Chem. Phys. Lett., 12, 339 (1971).
    J. Feitelson, E. Hayon, A. Treinin, J. Am. Chem. Soc., 95, 1025 (1973).

66. L. I. Grossweiner, B co. Energetics and Mechanisms in Radiation Biology, Academic Press, London — N. Y., 1968, crp. 303.
67. M. Ottolenghi, J. Am. Chem. Soc., 85, 1595 (1963).

 68. W. Bartok, R. Hartman, P. Lucchesi, Photochem. Photobiol., 4, 499 (1965). 69. E. Yeagers, Там же, 13, 165 (1971). 70. M. Ottolenghi, Chem. Phys. Lett., 12, 339 (1971).
 71. J. Jortner, M. Ottolenghi, G. Stein, J. Am. Chem. Soc., 85, 2712 (1963). 72. И. В. Худяков, В. А. Кузьмин, Химия высоких энергий, 7, 331 (1973). 73. H.-I. Joschek, S. Miller, J. Am. Chem. Soc., 88, 3269, 3273 (1966).

    B. E. Hulme, E. J. Land, G. O. Phillips, Faraday Trans. 1, 68, 1992 (1972).
    M. Vilkas, E. Lederer, Experimentia, 18, 546 (1962).
    D. Creed, B. J. Hales, G. Porter, Proc. Roy. Soc. Lond., A334, 505 (1973).

 77. G. Leary, J. Chem. Soc., (A), 1971, 2248.
78. D. R. Kemp, G. Porter, Там же, 1971, 3510.
79. N. K. Bridge, G. Porter, Proc. Roy. Soc., A244, 259 (1958).
80. N. K. Bridge, G. Porter, Там же, A244, 276 (1958).
81. F. Wilkinson, G. M. Seddon, K. Tickle, Ber. Bunsen-Ges. phys. Chem., 72, 315 (1968).
82. D. R. Kemp, G. Porter, Proc. Roy. Soc., A260, 117 (1971).
82. D. R. Kemp, G. Porter, Proc. Roy. Soc., A326, 117 (1971).
83. D. R. Kemp, G. Porter, Chem. Comm., 1969, 1029.
84. S. K. Wong, J. K. S. Wan, J. Am. Chem. Soc., 94, 7197 (1972).
85. B. E. Холмогоров, ТЭХ, 5, 826 (1969).
86. J. R. Harbour, G. Tollin, Photochem. Photobiol., 20, 387 (1974).
87. S. K. Wong, W. Sitnyk, J. K. S. Wan, Canadian J. Chem., 50, 3052 (1972).
88. B. J. Hales, J. R. Bolton, Photochem. Photobiol., 12, 239 (1970).
89. S. K. Wong, L. Fabes, W. J. Green, J. K. S. Wan, Faraday Trans., 68, 2211 (1972).
90. H. R. Cooper, Trans. Faraday Soc., 62, 2865 (1966).
91. G. O. Phillips, N. W. Worthington, J. F. McKellar, R. R. Sharpe, J. Chem. Soc., (A), 1969, 767
 92. G. O. Phillips, J. C. Arthur, Textile Res. J., 34, 497, 572 (1964).
93. J. L. Bolland, H. R. Cooper, Proc. Roy. Soc., A225, 405 (1954).
94. C. F. Weiis, Trans. Faraday Soc., 57, 1703 (1961).
95. J. J. Moran, H. I. Stonehill, J. Chem. Soc., 1957, 788.
96. J. F. Brennan, T. Beutel, J. Phys. Chem., 73, 3245 (1969).
97. J. M. Bruce, D. Creed, K. Dawes, J. Chem. Soc. (C), 1971, 3749.
 98. D. Creed, H. Werbin, E. T. Strom, J. Am. Chem. Soc., 93, 502 (1971).
99. T. J. King, A. R. Forrester, M. M. Oglivy, R. H. Thomson, Chem. Communs, 1973,
```

ø

```
100. F. Wilkinson, J. Phys. Chem., 66, 2569 (1962).
101. H. A. Шеглова, Д. Н. Шигорин, Г. Г. Якобсон, Л. Ш. Тушишвили, ЖФХ, 43, 1984
             (1969).
  102. H. H. Dearman, A. Chan, J. Chem. Phys., 44, 416 (1966).
  103. A. I. Attia, B. H. Loo, A. H. Francis, Chem. Phys. Lett., 22, 537 (1973).
 104. J. A. Barltrop, B. Heap, J. Chem. Soc., (C), 1967, 1625. 105. E. J. Land, A. J. Swallow, Biochemistry, 8, 2117 (1969)
  106. B. Holmström, Photochem. Photobiol., 3, 97 (1964).
 107. M. Green, G. Tollin, Photochem. Photobiol., 7, 129 (1968).108. B. Holmström, Arkiv Kemi, 22, 329 (1964).

109. P.-S. Song, D. E. Metzler, Photochem. Photobiol., 6, 691 (1967).
110. B. Holmström, Bull. Soc. Chim. Belg., 71, 869 (1962).
111. R. H. Dekker, B. N. Srinivasan, J. H. Huber, K. Weiss, Photochem. Photobiol., 18,

            457 (1973).
 112. L. Tègner, B. Holmström, Photochem. Photobiol., 5, 233 (1966). 113. A. Knowles, E. M. F. Roe, Photochem. Photobiol., 5, 233 (1966).
 114. S. Vaish, G. Tollin, Bioenergetics, 1, 181 (1970).
115. S. Vaish, G. Tollin, Tam жe, 2, 61 (1971).
116. J. R. Merkel, W. J. Nicherson, Biochim. Biophys. Acta, 14, 303 (1954).
117. G. Strauss, W. J. Nickerson, J. Am. Chem. Soc., 83, 3187 (1961).

    L. P. Vernon, Biochim. Biophys. Acta, 36, 177 (1959).
    B. Holmström, G. Oster, J. Am. Chem. Soc., 83, 1867 (1961).
    G. Oster, J. Bellin, B. Holmström, Experimentia, 18, 249 (1962).

121. E. S. Smith, D. E. Metzler, J. Am. Chem. Soc., 85, 3285 (1963).
122. P.-S. Song, W. E. Kurtin, Mol. Photochem., I, 1 (1969).
123. W. M. Moore, J. T. Spence, F. A. Raymond, S. D. Colson, J. Am. Chem. Soc., 85,

3367 (1963).
124. P.-S. Song, E. C. Smith, D. E. Metzler, Tam ke, 87, 4181 (1965).
125. G. K. Radda, M. Calvin, Biochemistry, 3, 384 (1964).
126. G. R. Penzer, G. K. Radda, Quart. Rev. (London), 21, 43 (1967).
127. Flavins and Flavoproteins, III Congress, ed. H. Kamin, University Park Press, Lon-
            don, 1971, стр. 37, 107.
doll, 1971, Ctp. 37, 107.

128. T. Matsuura, K. Omura, R. Nakashima, Bull. Chem. Soc. Japan, 38, 1358 (1965).

129. J. Chrysochoos, J. Ovadia, L. I. Grossweiner, J. Phys. Chem., 71, 1629 (1967).

130. J. Chrysochoos, L. I. Grossweiner, Photochem. Photobiol., 8, 193 (1968).

131. L. I. Grossweiner, E. F. Zwicker, J. Chem. Phys., 31, 1141 (1959).

132. G. S. Beddard, G. Porter, G. M. Weese, Proc. Roy. Soc., A342, 317 (1975).

133. L. I. Grossweiner, E. F. Zwicker, J. Chem. Phys., 34, 1411 (1961).

134. E. F. Zwicker, L. I. Grossweiner, J. Phys. Chem., 67, 549 (1963).
135. L. I. Grossweiner, E. F. Zwicker, J. Chem. Phys., 39, 2774 (1963).
136. A. G. Kepka, L. I. Grossweiner, Photochem. Photobiol., 14, 621 (1971).

137. S. A. Weiner, J. Am. Chem. Soc., 94, 581 (1972).
138. L. R. Mahoney, S. A. Weiner, Tam жe, 94, 1412 (1972).
139. N. J. Turro, T.-J. Lee, Mol. Photochem., 2, 185 (1970).
140. B. J. Hales, J. R. Bolton, J. Am. Chem. Soc., 94, 3314 (1972).
141. A. K. Chibisov, Photochem. Photobiol., 10, 331 (1969).
142. V. B. Evstigneev, J. Chim. Phys. Physicochim. Biol., 65, 1447 (1968).
143. J. M. Kelly, G. Porter, Proc. Roy. Soc., A319, 319 (1970).
144. T. Ohno, S. Kato, M. Koizumi, Bull. Chem. Soc. Japan, 39, 232 (1966).
145. Дж. Портер, Усп. химии, 39, 919 (1970).
146. И. В. Худяков, В. А. Кузьмин, Н. М. Эмануэль, ДАН, 217, 144 (1974).
 147. И. В. Худяков, Кандид. диссерт., ИХФ АН СССР, М., 1975.
147. И. В. Лубяков, Кандид. диссерт., ИЛФ АП СССР, М., 1975.

148. Е. J. Land, G. Porter, Proc. Chem. Soc., 1960, 84.

149. N. K. Bridge, M. Reed, Trans. Faraday Soc., 56, 1796 (1960).

150. C. Leary, G. Porter, J. Chem. Soc., 1970, 2273.

151. V. A. Kuzmin, A. K. Chibisov, A. V. Karyakin, Intern. J. Chem. Kinet., 4, 639 (1972).

152. В. А. Кузьмин, А. В. Карякин, А. К. Чибисов, Химия выс. энергий, 6, 502 (1972).

153. В. А. Кузьмин, Кандид. диссерт., ГЕОХИ АН СССР, М., 1971.
154. G. E. Adams, B. D. Michael, Trans. Faraday Soc., 63, 1171 (1967) 155. B. E. Hulme, E. J. Land, G. O. Phillips, Chem. Comm., 1969, 518. 156. E. J. Land, A. J. Swallow, J. Biol. Chem., 245, 1890 (1970).
157. R. L. Willson, Trans. Faraday Soc., 67, 3020 (1971). 158. R. L. Willson, Chem. Comm., 1971, 1249.
159. R. L. Willson, Там же, 1970, 1005.

    E. J. Land, M. Simic, A. J. Swallow, Biochem. Biophys. Acta, 226, 239 (1971).
    G. E. Adams, C. L. Greenstock, T. T. van Hemmen, R. L. Willson, Rad. Res., 49, 85
```

162. K. P. Klark, H. I. Stonehill, Faraday Trans., I, 68, 577 (1972).

- 163. R. S. Rao, E. Hayon, J. Phys. Chem., 77, 2274 (1973).

- 164. K. B. Patel, R. L. Willson, Faraday Trans., 1, 69, 814 (1973). 165. E. Hayon, M. Simic, J. Am. Chem. Soc., 95, 1029 (1973). 166. E. Hayon, T. Ibata, N. N. Lichtin, M. Simic, J. Phys. Chem., 76, 2072 (1972). 167. S. Fukuzumi, Y. Ono, T. Keli, Bull. Chem. Soc. Japan, 46, 3353 (1973).

- 168. E. J. Land, Trans. Faraday Soc., 65, 2815 (1969).
 169. M. W. Cheung, J. H. Swinehart, J. Phys. Chem., 76, 1875 (1972).
 170. F. Müller, P. Hemmerich, A. Ehrenberg, European J. Biochem., 5, 158 (1968).
 171. A. Terenin, V. Tachin, P. Shakhverdov, Photochem. Photobiol., 4, 505 (1965).

A

O

- 172. В. А. Кузьмин, И. В. Худяков, А. В. Попов, Л. Л. Короли, Изв. АН СССР, сер. хим., 1975, 1223.
- 173. Б. Л. Туманский, А. И. Прокофьев, Н. Н. Бубнов, С. П. Солодовников, М. И. Ка-бачник, Изв. АН СССР, сер. хим., 1975, 1333.
 174. Н. Musso, Angew. Chem. Internat. Edn., 2, 723 (1963).
- 175. M. J. Gibian, R. C. Corley, Chem. Rev., 73, 441 (1973).
- 176. R. L. Mahoney, S. A. Weiner, J. Am. Chem. Soc., 94, 585 (1972). 177. И. В. Худяков, В. А. Кузьмин, Химия выс. энергий, 8, 176 (1974)
- 178. В. Д. Походенко, Л. Н. Ганюк, А. И. Бродский, ДАН, 145, 815 (1962). 179. В. Д. Походенко, Л. Н. Ганюк, Е. А. Яковлева, А. И. Шатенштейн, А. И. Бродский, ДАН, 148, 1314 (1963)
- 180. C. Cook, B. Norcross, J. Am. Chem. Soc., 78, 3797 (1956). 181. R. Bauer, C. Coppinger, Tetrahedron, 19, 1201 (1963). 182. W. Adam, W. T. Chim, J. Am. Chem. Soc., 93, 3687 (1971)

- 183. R. D. Parnell, K. E. Russel, J. Chem. Soc. Perkin Trans. II, 1974, 161. 184. Э. П. Платонова, В. Д. Походенко, Электрохимия, 10, 278 (1974). 185. В. А. Кузьмин, Р. М. Давыдов, И. В. Худяков, С. Ф. Бурлацкий, Изв. АН СССР. сер. хим., 1975, 955.
- 186. И. В. Худаков, А. В. Попков, В. А. Кузьмин, Изв. АН СССР, сер. хим., 1974, 2208. 187. Р. В. Ayscough, R. C. Sealy, J. Chem. Soc. Perkin Trans. II, 1973, 543.

- 188. Е. Колдин, Быстрые реакции в растворах, «Мир», М., 1966. 189. R. Poupko, I. Rosental, J. Phys. Chem., 77, 1722 (1973). 190. I. B. Afanas'ev, S. V. Prigoda, T. Ya. Mal'tseva, G. I. Samokhvalov, Intern. J. Chem. Kinet., 6, 643 (1974).
- 191. A. Tkac, K. Vesely, L. Omelka, J. Phys. Chem., 75, 2575, 2580 (1971).
 192. Т. В. Сирота, И. В. Худяков, В. А. Кузьмин, Н. М. Эмануэль, Тезисы IV Всесоюзн. конф. по каталитическим реакциям в жидкой фазе, Алма-Ата, 1974.
- 193. И. В. Худяков, А. М. Маттуччи, В. А. Кузьмин, Н. М. Эмануэль, ДАН, 215, 388 (1974)
- 194. D. R. Eaton, Inorg. Chem., 3, 1268 (1964).

- 195. Г. А. Абакумов, В. А. Мураев, Г. А. Разуваев, ДАН, 215, 1113 (1974). 196. Г. А. Абакумов, В. А. Мураев, ДАН, 217, 1313 (1974). 197. А. И. Прокофьев, С. П. Солодовников, И. С. Белостоцкая, В. В. Ершов, Изв. АН
- СССР, сер. хим., 1974, 199.
 198. P. Hemmerich, D. V. Der Vartanian, C. Veeger, J. D. W. Van Voorst, Biochim. Biophys. Acta, 77, 504 (1963).
- F. Müller, L. Erikson, A. Ehrenberg, Europ. J. Biochem., 12, 93 (1970).
 D. Behar, A. Samuni, R. W. Fessenden, J. Phys. Chem., 77, 2055 (1973).
 C. Besev, A. Lund, T. Vanngard, R. Hakansson, Acta Chem. Scand., 17, 2281 (1963).
- 202. N. M. Atherton, E. J. Land, G. Porter, Trans. Faraday Soc., 59, 818 (1963).
- 203. Ю. А. Кругляк, в кн. Радиоспектроскопические и квантовохимические методы в
- структурной химии, «Наука», М., 1967. 204. G. Vincow, J. Chem. Phys., 38, 917 (1963)
- 205. A. Hinchliffe, Chem. Phys. Lett., 27, 454 (1974).

Ин-т химической физики

АН СССР, Москва