

K-Nearest Neighbors

Instructor: Hongfei Xue

Email: hongfei.xue@charlotte.edu

Class Meeting: Tue & Thu, 4:00 PM - 5:15 PM, WWH 130

Classification: Oranges and Lemons

Can construct simple linear decision boundary:

$$y = sign(w_0 + w_1x_1 + w_2x_2)$$

Linear Classification

- Classification is intrinsically non-linear
 - ▶ It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- Linear classification means that the part that adapts is linear (just like linear regression)

$$z(x) = \mathbf{w}^T \mathbf{x} + w_0$$

with adaptive \mathbf{w} , w_0

The adaptive part is followed by a non-linearity to make the decision

$$y(\mathbf{x}) = f(z(\mathbf{x}))$$

• What functions f() have we seen so far in class?

Classification as Induction

Instance-based Learning

- Alternative to parametric models are non-parametric models
- These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems)
- Learning amounts to simply storing training data
- Test instances classified using similar training instances
- Embodies often sensible underlying assumptions:
 - Output varies smoothly with input
 - Data occupies sub-space of high-dimensional input space

Nearest Neighbors

- Training example in Euclidean space: $\mathbf{x} \in \Re^d$
- Idea: The value of the target function for a new query is estimated from the known value(s) of the nearest training example(s)
- Distance typically defined to be Euclidean:

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^d (x_j^{(a)} - x_j^{(b)})^2}$$

Algorithm:

1. Find example (\mathbf{x}^*, t^*) (from the stored training set) closest to the test instance \mathbf{x} . That is:

$$\mathbf{x}^* = \underset{\mathbf{x}^{(i)} \in \text{train. set}}{\operatorname{argmin}} \operatorname{distance}(\mathbf{x}^{(i)}, \mathbf{x})$$

- 2. Output $y = t^*$
- Note: we don't really need to compute the square root. Why?

Nearest Neighbors: Decision Boundaries

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred
- Decision boundaries: Voronoi diagram visualization
 - show how input space divided into classes
 - each line segment is equidistant between two points of opposite classes

2D Decision Boundaries

3D Decision Boundaries

Multi-modal Data

Nearest Neighbor approaches can work with multi-modal data

k-Nearest Neighbors

- Nearest neighbors sensitive to mis-labeled data ("class noise"). Solution?
- Smooth by having k nearest neighbors vote

Algorithm (kNN):

- 1. Find k examples $\{\mathbf{x}^{(i)}, t^{(i)}\}$ closest to the test instance \mathbf{x}
- 2. Classification output is majority class

k-Nearest Neighbors

How do we choose k?

- Larger k may lead to better performance
- But if we set k too large we may end up looking at samples that are not neighbors (are far away from the query)
- We can use cross-validation to find k
- Rule of thumb is k < sqrt(n), where n is the number of training examples

Issues & Remedies

- If some attributes (coordinates of x) have larger ranges, they are treated as more important
 - normalize scale
 - ► Simple option: Linearly scale the range of each feature to be, e.g., in range [0,1]
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j m)/\sigma$)
 - be careful: sometimes scale matters

Pre-processing Features

- Features may have very different scales, e.g. x_1 = rooms vs. x_2 = size in sq ft.
 - Right (different scales): GD goes first towards the bottom of the bowl, then slowly along an almost flat valley.
 - Left (scaled features): GD goes straight towards the minimum.

Feature Scaling

- Scaling between [0, 1] or [−1, +1]:
 - For each feature x_j , compute min_j and max_j over the training examples.
 - Scale x_j as follows: $\hat{x}_j = \frac{x_j min_j}{max_j min_j}$
- Scaling to standard normal distribution:
 - For each feature x_j , compute sample μ_j and sample σ_j over the training examples.
 - Scale x_j as follows: $\hat{x}_j = \frac{x_j \mu_j}{\sigma_j}$
- Use the same scaling factors at test time:
 - Clip to min_i and max_i .

Issues & Remedies

- Expensive at test time: To find one nearest neighbor of a query point x, we must compute the distance to all N training examples. Complexity: O(kdN) for kNN
 - Use subset of dimensions
 - Pre-sort training examples into fast data structures (e.g., kd-trees)
 - Compute only an approximate distance (e.g., LSH)
 - Remove redundant data (e.g., condensing)
- Storage Requirements: Must store all training data
 - Remove redundant data (e.g., condensing)
 - Pre-sorting often increases the storage requirements
- High Dimensional Data: "Curse of Dimensionality"
 - Required amount of training data increases exponentially with dimension
 - Computational cost also increases

Remove Redundancy

• If all Voronoi neighbors have the same class, a sample is useless, remove it

Example: Digit Classification

Decent performance when lots of data

0123456789

- Yann LeCunn MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: *d* = 784
 - 60,000 training samples
 - 10,000 test samples
- Nearest neighbour is competitive

Test Error Rate (%)	
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	8.0
Boosted LeNet-4, [distortions]	0.7

Fun Example: Where on Earth is this Photo From?

• Problem: Where (e.g., which country or GPS location) was this picture taken?

Fun Example: Where on Earth is this Photo From?

- Problem: Where (e.g., which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with GPs info (dense sampling across world)
 - Represent each image with meaningful features
 - Do kNN!

Fun Example: Where on Earth is this Photo From?

- Problem: Where (eg, which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with gps info (dense sampling across world)
 - Represent each image with meaningful features
 - ▶ Do kNN (large k better, they use k = 120)!

Summary

- Naturally forms complex decision boundaries; adapts to data density
- If we have lots of samples, kNN typically works well
- Problems:
 - Sensitive to class noise
 - Sensitive to scales of attributes
 - Distances are less meaningful in high dimensions
 - Scales linearly with number of examples

Questions?

