ISIE 2023

Model Predictive Torque Control of Synchronous Machines Without a Current or Stator Flux Reference Generator

Kyunghwan Choi¹ and Ki-Bum Park²

- 1) School of Mechanical Engineering, GIST (khchoi@gist.ac.kr)
- ²⁾ CCS Graduate School of Mobility, KAIST (ki-bum.park@kaist.ac.kr)

2023. 06. 20

1. Introduction

2. Proposed MPTC

3. Validation

4. Conclusion & Further Work

Contents

1. Introduction

Synchronous Machines (SMs)

Modeling

Flux-based model

$$\begin{aligned} \frac{d\lambda_d}{dt} &= -R_s i_d + w_r \lambda_q + v_d, \\ \frac{d\lambda_q}{dt} &= -R_s i_q - w_r \lambda_d + v_q, \\ T_e &= 1.5P(\lambda_d i_q - \lambda_q i_d). \end{aligned}$$

Current-based model

$$\begin{split} \frac{d(L_d i_d)}{dt} &= -R_s i_d + w_r L_q i_q + v_d, \\ \frac{d(L_q i_q)}{dt} &= -R_s i_q - w_r (L_d i_d + \lambda_{pm}) + v_q, \\ T_e &= 1.5 P(\lambda_{pm} + (L_d - L_q) i_d) i_q. \end{split}$$

[•] $L_{d(q)}: d(q)$ -axis inductance, $\lambda_{pm}: d(q)$ -axis magnetic flux linkage, R_s : stator resistance, P: number of pole pairs, J: rotational inertia, B: damping coefficient, T_l : load torque.

Synchronous Machines (SMs)

Torque control

Note DOF in the torque equation: $T_e = 1.5P(\lambda_{pm} + (L_d - L_q)i_d)i_q$

Need to optimize operating points [1]

- [1] H. Eldeeb, et al., 2017.
- [2] K. Choi, et al., 2020.
- [3] B. Gallert, et al., 2017

How to determine the operating point?

1) Solve the optimization analytically [1] / numerically [2]

Case 1.
$$T_e^* \le T_e^{\max}$$

min $i_d^2 + i_q^2$
subject to $T_e^* = (k_1 + k_2 i_d) i_q$,
 $v_d^2 + v_q^2 \le V_{\max}^2$.

Case 2. $T_e^* > T_e^{\text{max}}$
$\max \operatorname{sgn}(T_e)T_e$
subject to $v_d^2 + v_q^2 \le V_{\text{max}}^2$,
$i_d^2 + i_q^2 \le I_{\max}^2 .$

2) Identify experimentally [3]

Stor	red
in Ll	JTs

Speed	Torque	i_d^*	i_q^*
$W_{r,1}$	$T_{\sigma,1}$	f _{d,11}	fq.11
$w_{r,1}$	$T_{e,2}$	i _{d,12}	i _{q,12}
$w_{r,i}$	$T_{e,j-1}$	$i_{d,i(j-1)}$	$i_{q,i(j-1)}$
$w_{r,i}$	$T_{e,j}$	idij	$i_{q,ij}$
$w_{r,m}$	$T_{e,n-1}$	$i_{d,m(n-1)} \\$	$i_{q,m(n-1)}$
$w_{r,m}$	$T_{e,n}$	i _{d,mn}	i _{q,mn}

- [4] S.-K. Sul, Control of electric machine drive systems. John Wiley & Sons, 2011, vol. 88.
- [5] J. Rodriguez, et al., "Predictive current control of a voltage source inverter," IEEE TIE, vol. 54, no. 1, pp. 495 503, 2007.
- [6] T. Englert and K. Graichen, "Nonlinear model predictive torque control of PMSMs for high performance applications," CEP Eng. Prac., vol. 81, pp. 43 54, 2018.

- Most schemes rely on a reference generator.
 - However, implementing a reference generator requires a lot of resources.

In addition, using a reference generator restricts MPC from fully utilizing the DOF.

One of the few attempts not to use a reference generator.

Limitation 1. Trade-off b/w the objectives

300 160 200 - 140 120 100 100 -60 -40 -MTPA line -100-200 $T_e = T_e^*$ -300-150 -100 -250-200 i_d (A)

Limitation 2. Instability in the FW region

FW: Fluxweakening

Research Objectives

- Develop a MPTC scheme for SMs that
 - Does not rely on a reference generator
 - But guarantees optimal operation under all operating regions
 - Can be implemented based on both the FCS and CCS
 - FCS: finite control set, CCS: continuous control set
 - Can be implemented with various performance indices (Jp)

Primary objectives

Secondary objectives

^[5] J. Rodriguez, et al., "Predictive current control of a voltage source inverter," IEEE TIE, vol. 54, no. 1, pp. 495 - 503, 2007.

^[6] T. Englert and K. Graichen, "Nonlinear model predictive torque control of PMSMs for high performance applications," Control Eng. Prac., vol. 81, pp. 43 - 54, 2018.

- Overcome two limitations of the existing MPTC [8] by modifying it.
 - Limitation 1. Trade-off in the objective function
 - Resolved by moving the torque error term to the equality constraint.
 - Limitation 2. Instability in the FW region
 - Resolved by modifying the voltage constraint.

Existing MPTC [8]

$$\min \left[\left(T_{e,k+1}^{cmd} - T_{e,k+1} \right)^{2} \right] + \alpha J_{p,k+1}$$
s.t. system model,
$$I_{\max}^{2} - \left\| \mathbf{i}_{dq,k+1} \right\|^{2} \ge 0,$$

$$V_{\max}^{2} - \left\| \mathbf{v}_{dq,k+1} \right\|^{2} \ge 0.$$

$$\min_{\mathbf{v}_{dq,k}} J_{p}(\mathbf{v}_{dq,k}) = J_{p,k+1}
\text{s.t. } c_{t}(\mathbf{v}_{dq,k}) = T_{e,k+1}^{cmd} - T_{e,k+1} = 0,
c_{i}(\mathbf{v}_{dq,k}) = I_{\max}^{2} - \|\mathbf{i}_{dq,k+1}\|^{2} \ge 0,
c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^{2} - \|\mathbf{v}_{dq,k+1}\|^{2} \ge 0.$$

- Overcome two limitations of the existing MPTC [8] by modifying it.
 - Limitation 1. Trade-off in the objective function
 - Resolved by moving the torque error term to the equality constraint.
 - Is it possible to consider the tracking error as an equality constraint?

Yes, with a solver that allows tolerance during the optimization process.

Existing MPTC [8]

$$\min \left(T_{e,k+1}^{cmd} - T_{e,k+1}\right)^2 + \alpha J_{p,k+1}$$

s.t. system model,

$$I_{\max}^2 - \left\| \mathbf{i}_{dq,k+1} \right\|^2 \ge 0,$$

$$V_{\max}^2 - \left\| \mathbf{v}_{dq,k} \right\|^2 \ge 0.$$

$$\begin{aligned} \min_{\mathbf{v}_{dq,k}} J_{p}(\mathbf{v}_{dq,k}) &= J_{p,k+1} \\ \text{s.t.} \ \ c_{t}(\mathbf{v}_{dq,k}) &= T_{e,k+1}^{cmd} - T_{e,k+1} = 0, \\ c_{i}(\mathbf{v}_{dq,k}) &= I_{\max}^{2} - \left\| \mathbf{i}_{dq,k+1} \right\|^{2} \geq 0, \\ c_{\tilde{v}}(\mathbf{v}_{dq,k}) &= V_{\max}^{2} - \left\| \mathbf{v}_{dq,k+1} \right\|^{2} \geq 0. \end{aligned}$$

- Overcome two limitations of the existing MPTC [8] by modifying it.
 - Limitation 2. Instability in the FW region
 - Resolved by modifying the voltage constraint.

System model

$$d\lambda_d / dt = -R_s i_d + w_r \lambda_q + v_d,$$

$$d\lambda_q / dt = -R_s i_q - w_r \lambda_d + v_q.$$

Existing MPTC [8]

$$\min \left(T_{e,k+1}^{cmd} - T_{e,k+1}\right)^{2} + \alpha J_{p,k+1}$$
s.t. system model,
$$I_{\max}^{2} - \left\|\mathbf{i}_{dq,k+1}\right\|^{2} \ge 0,$$

$$V_{\max}^{2} - \left\|\mathbf{v}_{dq,k}\right\|^{2} \ge 0.$$

System model in steady-states

$$0 = -R_s i_d + w_r \lambda_q + \tilde{v}_d,$$

$$0 = -R_s i_q - w_r \lambda_d + \tilde{v}_q.$$

$$\begin{aligned} & \min_{\mathbf{v}_{dq,k}} J_{p}(\mathbf{v}_{dq,k}) = J_{p,k+1} \\ & \text{s.t.} \ \ c_{t}(\mathbf{v}_{dq,k}) = T_{e,k+1}^{cmd} - T_{e,k+1} = 0, \\ & c_{i}(\mathbf{v}_{dq,k}) = I_{\max}^{2} - \left\| \mathbf{i}_{dq,k+1} \right\|^{2} \geq 0, \\ & c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^{2} - \left\| \mathbf{v}_{dq,k+1} \right\|^{2} \geq 0. \end{aligned}$$

- Overcome two limitations of the existing MPTC [8] by modifying it.
 - Limitation 2. Instability in the FW region
 - Resolved by modifying the voltage constraint.

Solver

- The augmented Lagrangian method is adopted to solve the proposed MPTC.
 - Concept

Nonlinear Programming (NLP)

$$\min_{x} J_{p}(x)$$
s.t. $c_{i}(x) = 0, i \in E$,
$$c_{i}(x) \ge 0, i \in I$$
.

Minimize the augmented Lagrangian function instead

$$\min_{x} L_{A}(x, \lambda_{k}; \mu_{k})$$

$$= J_{p}(x) - \sum_{i \in E} \lambda_{i} c_{i}(x) + \frac{1}{2\mu} \sum_{i \in E} \lambda_{i} c_{i}^{2}(x) + \sum_{i \in I} \psi(c_{i}(x), \lambda_{i}; \mu)$$

Multiplier update: $\lambda_{i,k+1} = \lambda_{i,k} - c_i(x_k) / \mu_k$, $i \in E$, $\lambda_{i,k+1} = \max(\lambda_{i,k} - c_i(x_k) / \mu_k, 0)$, $i \in I$.

- Properties
 - 1. Can handle NLP \rightarrow Allow J_p to be any function (e.g., copper loss or inverter loss)
 - 2. Allow tolerances to constraints
 - → Allow the tracking error to be the equality constraint
 - → Allow smooth transitions b/w operating regions (i.e., MTPA, FW, MC, MTPV)

Solver

Implementation

Proposed MPTC based on CCS

 $\mathbf{V}_c = \{ \mathbf{v}_{da,k} \in \mathbb{R}^2 | \mathbf{v}_{da,k} \text{ is within the limit hexagon} \}$

Algorithm 1: CCS-based GMPTC solver

Determine the expression of J_p ;

Choose positive parameters μ_t , $\mu_{\tilde{v}}$, μ_i

Set $\lambda_{t,1} \leftarrow 0$, $\lambda_{i,1} \leftarrow 0$, $\lambda_{\tilde{v},1} \leftarrow 0$, $\mathbf{v}_{dq,0}^* \leftarrow 0$;

for k = 1, 2, 3, ... do

Tunina Input: $T_{e,k+1}^{cmd}$ parameters

Set $\mathbf{v}^*_{dq,k} \leftarrow \mathbf{v}^*_{dq,k-1}$;

$$\begin{bmatrix} \mathbf{v}_{dq,k}^* \leftarrow \mathbf{v}_{dq,k}^* - \\ \nabla^2 L_{A1}^{-1} \left(\mathbf{v}_{dq,k}^*, \boldsymbol{\lambda}_k, \boldsymbol{\mu} \right) \nabla L_{A1} \left(\mathbf{v}_{dq,k}^*, \boldsymbol{\lambda}_k, \boldsymbol{\mu} \right); \end{bmatrix}$$

until
$$\left\| \nabla L_{A1} \left(\mathbf{v}_{dq,k}^*, \boldsymbol{\lambda}_k, \boldsymbol{\mu} \right) \right\| \leq \tau;$$

 $\boldsymbol{\lambda}_{t,k+1} = \boldsymbol{\lambda}_{t,k} - c_t(\mathbf{v}_{dq,k}^*) / \mu_t;$

$$\lambda_{i,k+1} = \max \left(\lambda_{i,k} - c_i(\mathbf{v}_{dq,k}^*) / \mu_i, 0 \right);$$

 $\lambda_{\tilde{v},k+1} = \max \left(\lambda_{\tilde{v},k} - c_{\tilde{v}}(\mathbf{v}_{da,k}^*)/\mu_{\tilde{v}}, 0 \right);$

Output: $\mathbf{v}_{dq,k}^*$

Any combinations of

- Copper loss
- Iron loss
- Inverter loss
- **Temperature**

Proposed MPTC based on FCS

$$\mathbf{V}_{f} = \left\{ \mathbf{v}_{dq,k}^{(0)}, \mathbf{v}_{dq,k}^{(1)}, \mathbf{v}_{dq,k}^{(2)}, \mathbf{v}_{dq,k}^{(3)}, \mathbf{v}_{dq,k}^{(4)}, \mathbf{v}_{dq,k}^{(5)}, \mathbf{v}_{dq,k}^{(6)}, \mathbf{v}_{dq,k}^{(7)} \right\}$$

Algorithm 2: FCS-based GMPTC solver

Determine the expression of J_n ;

Choose positive parameters μ_t , $\mu_{\tilde{v}}$, μ_i

Set $\lambda_{t,1} \leftarrow 0$, $\lambda_{i,1} \leftarrow 0$, $\lambda_{\tilde{v},1} \leftarrow 0$, $\mathbf{v}_{da,0}^* \leftarrow \mathbf{0}$;

for k = 1, 2, 3, ... do

Input: $T_{e,k+1}^{cmd}$

Compute $L_{A1}\left(\mathbf{v}_{dq,k}^{(n)}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}\right)$ for $n = 0, \dots, 7$;

 $n^* = \arg\min L_{A1}(\mathbf{v}_{da,k}^{(n)}, \boldsymbol{\lambda}_k, \boldsymbol{\mu});$

 $\lambda_{t,k+1} = \lambda_{t,k} - c_t(\mathbf{v}_{da,k}^{(n^*)})/\mu_t;$

 $\lambda_{i,k+1} = \max\left(\lambda_{i,k} - c_i(\mathbf{v}_{dq,k}^{(n^*)})/\mu_i, 0\right);$

 $\lambda_{\tilde{v},k+1} = \max\left(\lambda_{\tilde{v},k} - c_{\tilde{v}}(\mathbf{v}_{dq,k}^{(n^*)})/\mu_{\tilde{v}}, 0\right);$

Set $\mathbf{v}_{dq,k}^* \leftarrow \mathbf{v}_{dq,k}^{(n)}$;

Output: $S^{(n^*)}$

FCS: finite control set

CCS: continuous control set

Schematic Diagrams

Proposed MPTC

Existing MPTC [6]

$$\begin{split} & \min_{u_{k},u_{k+1},\cdots,u_{k+N-1}} \sum_{j=1}^{N_{p}} \left(T_{e}^{cmd} - T_{e,k+j} \right)^{2} + \left(i_{d}^{*} - i_{d,k+j} \right)^{2} + \alpha J_{p,k+j} \\ & \text{s.t. } i_{d,k+j}^{2} + i_{q,k+j}^{2} \leq I_{\max}^{2}, \ v_{d,k+j-1}^{2} + v_{q,k+j-1}^{2} \leq V_{\max}^{2} \end{split}$$

3. Validation

Simulation Setup

Use MATLAB/SIMULINK example and modify the control part.

$$J_p = P_{cu}$$

- Simulation 1. Validation of the Proposed MPTC
 - Based on the CCS $(T_s = 50 \mu s)$

Guarantee optimal operations in all regions.

$$J_p = P_{cu}$$

- Simulation 1. Validation of the Proposed MPTC
 - Based on the FCS $(T_s = 20\mu s)$

Guarantee optimal operations in all regions.

$$J_p = P_{cu}$$

- Simulation 1. Validation of the Proposed MPTC
 - Computation time

$$\boldsymbol{J}_p = \boldsymbol{P}_{cu}$$
 vs. $\boldsymbol{J}_p = \boldsymbol{P}_{cu} + \boldsymbol{P}_{inv}$

- Simulation 2. Effects of Using Different Performance Indices
 - Based on the FCS $(T_s = 20 \mu s)$

- Different performance indices result in different current loci.

$$J_p = P_{cu}$$
 vs. $J_p = P_{cu} + P_{inv}$

- Simulation 2. Effects of Using Different Performance Indices
 - Based on the FCS $(T_s = 20\mu s)$

- Using a different performance index can improve performance significantly.

4. Conclusion & Further Work

Conclusion

- A novel MPTC scheme was presented that
 - Does not rely on a reference generator,
 - Guarantees optimal operation under all operating regions.

Two key ideas were

- Moving the torque error term to the equality constraint,
- Redefining the voltage constraint.

The proposed MPTC is a general approach in that

- It can be implemented without a reference generator,
- It can be implemented based on both the FCS and CCS,
- Various performance indices can be used.

Further Work - Toward Intelligent SM controller

How to control SMs without prior information and offline tuning?

Appendix

When the torque command (T_e^{cmd}) is not achievable

Need to solve a different MPTC problem

When T_e^{cmd} is achievable

$$\min_{\mathbf{v}_{dq,k}} J_p(\mathbf{v}_{dq,k}) = J_{p,k+1} \tag{10a}$$

s.t.
$$c_t(\mathbf{v}_{dq,k}) = T_{e,k+1}^{cmd} - T_{e,k+1} = 0,$$
 (10b)

$$c_i(\mathbf{v}_{dq,k}) = I_{\max}^2 - \|\mathbf{i}_{dq,k+1}\|^2 \ge 0,$$
 (10c)

$$c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^2 - \|\tilde{\mathbf{v}}_{dq,k+1}\|^2 \ge 0.$$
 (10d)

When T_e^{cmd} is not achievable

$$\min_{\mathbf{v}_{dq,k}} \operatorname{sgn}(T_{e,k+1}^{cmd}) c_t(\mathbf{v}_{dq,k})$$
(11a)

s.t.
$$c_i(\mathbf{v}_{dq,k}) = I_{\max}^2 - \|\mathbf{i}_{dq,k+1}\|^2 \ge 0,$$
 (11b)

$$c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^2 - \|\tilde{\mathbf{v}}_{dq,k+1}\|^2 \ge 0.$$
 (11c)

Simulation result

Modified voltage constraint

$$\min_{\mathbf{v}_{dq,k}} J_{p}(\mathbf{v}_{dq,k}) = J_{p,k+1}$$
s.t. $c_{t}(\mathbf{v}_{dq,k}) = T_{e,k+1}^{cmd} - T_{e,k+1} = 0$,
$$c_{i}(\mathbf{v}_{dq,k}) = I_{\max}^{2} - \left\| \mathbf{i}_{dq,k+1} \right\|^{2} \ge 0$$
,
$$c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^{2} - \left\| \mathbf{v}_{dq,k+1} \right\|^{2} \ge 0$$
.

Intelligent SM controller

SM: Synchronous Machine

LUT: Look-Up Table

Experimental setup for AI-based automatic gain tuning

MPC application to SM torque control

- Two control schemes [11]
 - 1) Model predictive current control (MPCC) w/ current reference generator

Primary objective

$$\min_{u_k,u_{k+1},\cdots,u_{k+N-1}} \sum_{j=0}^{N_p-1} \left(i_d^* - i_{d,k+j+1} \right)^2 + \left(i_q^* - i_{q,k+j+1} \right)^2$$

2) Model predictive torque control (MPTC) w/ flux reference generator

Primary objective

$$\min_{u_{k},u_{k+1},\cdots,u_{k+N-1}} \sum_{j=0}^{N_{p}-1} \left(T_{e}^{*} - T_{e,k+j+1}\right)^{2} + \rho \left(\left\|\lambda_{dq}^{*}\right\| - \left\|\lambda_{dq,k+j+1}\right\|\right)^{2}$$

Optimal current reference generation

Problem statement

Case 1.
$$T_e^* \leq T_e^{\max}$$

min $i_d^2 + i_q^2$

subject to $T_e^* = (k_1 + k_2 i_d) i_q$,

 $v_d^2 + v_q^2 \leq V_{\max}^2$.

Case 2.
$$T_e^* > T_e^{\max}$$

$$\max \quad \pm_t T_e$$
subject to $v_d^2 + v_q^2 \le V_{\max}^2$,
$$i_d^2 + i_q^2 \le I_{\max}^2$$
.

Optimal current reference generation

Problem statement

$$\begin{aligned} \textbf{Case 1.} \quad & T_e^* \leq T_e^{\max} \\ & \min \ i_d^2 + i_q^2 \\ & \text{subject to} \quad & T_e^* = (k_1 + k_2 i_d) i_q, \\ & v_d^2 + v_q^2 \leq V_{\max}^2. \end{aligned}$$

Case 2.
$$T_e^* > T_e^{\max}$$

$$\max \ \pm_t T_e$$
subject to $v_d^2 + v_q^2 \le V_{\max}^2$,
$$i_d^2 + i_q^2 \le I_{\max}^2$$
.

Optimal current reference generation

- Experimental solution [12]
 - Experimentally find solutions and store them in a LUT

- Require extensive experiments
- A specific solution just for one product,
 which <u>cannot handle parameter deviations</u> resulting from tolerances

Synchronous Machines in Electric Vehicles

Example of EVs on the market from 2010 to 2020 and their machines [14]

TABLE 1. Example of EVs on the market from 2010 to 2020, including their model, motor categories, and power.

EV model Power(kW) Motor Year Mahindra e2o Plus 19-30 IM 2016 Renault Kangoo ZE 44 PMSM 2011 Mitsubishi i-MiEV 47 PM 2010 Volkswagen E-up 60 PMSM 2019 Renault Zoe 65 PMSM 2012 LandRover 70 SRM 2013 Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 2012 Hyundai Ioniq Electric 88 PMSM 2019 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 <td< th=""><th></th><th></th><th></th><th></th></td<>				
Renault Kangoo ZE 44 PMSM 2011 Mitsubishi i-MiEV 47 PM 2010 Volkswagen E-up 60 PMSM 2019 Renault Zoe 65 PMSM 2012 LandRover 70 SRM 2013 Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 2010 BJEV EC5 80 PMSM 2019 2019 2019 2019 2019 2018 2016 2018	EV model	Power(kW)	Motor	Year
Mitsubishi i-MiEV 47 PM 2010 Volkswagen E-up 60 PMSM 2019 Renault Zoe 65 PMSM 2012 LandRover 70 SRM 2013 Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Mahindra e2o Plus	19-30	IM	2016
Volkswagen E-up 60 PMSM 2019 Renault Zoe 65 PMSM 2012 LandRover 70 SRM 2013 Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Renault Kangoo ZE	44	PMSM	2011
Renault Zoe 65 PMSM 2012 LandRover 70 SRM 2013 Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Mitsubishi i-MiEV	47	PM	2010
LandRover 70 SRM 2013 Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model S 235-568 IM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Volkswagen E-up	60	PMSM	2019
Renault Fluence Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Renault Zoe	65	PMSM	2012
Z.E. 70 PMSM 2012 Nissan Leaf 80 PMSM 2010 BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	LandRover	70	SRM	2013
BJEV EC5 80 PMSM 2019 Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020		70	PMSM	2012
Hyundai Ioniq Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Nissan Leaf	80	PMSM	2010
Electric 88 PMSM 2016 Hyundai Kona 88-150 PMSM 2018 BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	BJEV EC5	80	PMSM	2019
BYD E6 90 PMSM 2014 BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020		88	PMSM	2016
BMW i3 125 PMSM 2013 Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Hyundai Kona	88-150	PMSM	2018
Xpeng G3 139 PMSM 2018 Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	BYD E6	90	PMSM	2014
Mercedes-Benz EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	BMW i3	125	PMSM	2013
EQC 150*2 IM 2019 BJEV EU5 160 PMSM 2018 Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Xpeng G3	139	PMSM	2018
Tesla Model X 193-375 IM 2015 Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020		150*2	IM	2019
Tesla Model 3 211-340 PMSM 2020 Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	BJEV EU5	160	PMSM	2018
Tesla Model S 235-568 IM 2012 NIO EC6 320 PMSM 2020	Tesla Model X	193-375	IM	2015
NIO EC6 320 PMSM 2020	Tesla Model 3	211-340	PMSM	2020
	Tesla Model S	235-568	IM	2012
NIO ES6 320 PMSM 2020	NIO EC6	320	PMSM	2020
	NIO ES6	320	PMSM	2020

1. Conventional scheme [4]

- Involve a number of components
- Require a lot of time (e.g., 3 months) to finalize this scheme

Existing schemes for Torque control of SMs MTPA Inverter point loss 2. Model Predictive Current Control (MPCC) [5] $\min_{u_{k},u_{k+1},\cdots,u_{k+N-1}} \sum_{i=1}^{N_{p}} \left(i_{d}^{*} - i_{d,k+j} \right)^{2} + \left(i_{q}^{*} - i_{q,k+j} \right)^{2} + \alpha J_{p,k+j}$ s.t. $i_{d,k+i}^2 + i_{a,k+i}^2 \le I_{\text{max}}^2$, $v_{d,k+i-1}^2 + v_{a,k+i-1}^2 \le V_{\text{max}}^2$ **Voltage** source T_e^{cmd} Current reference **MPCC Inverter** generator

- Guarantee improved current tracking performance But torque?
- Still rely on a current reference generator
 - Problem 1. Need to solve another optimization problem other than MPC

Flux info.

- **Problem 2**. Two optimization problems **handle the DOF separately**

SM

 \mathcal{W}

3. Model Predictive Torque Control (MPTC)

- Guarantee improved torque tracking performance
- Still rely on a current reference generator

3. Model Predictive Torque Control (MPTC)

- Guarantee improved torque tracking performance
- Still rely on a current reference generator
 - Problem 1. Need to solve another optimization problem other than MPC
 - **Problem 2.** Two optimization problems handle the DOF separately

$$J_p = P_{cu}$$
 vs. $J_p = P_{cu} + P_{inv}$

- Simulation 2. Effects of Using Different Performance Indices
 - Discussion

Proposed MPTC

$$\min_{\mathbf{v}_{dq,k}} J_{p}(\mathbf{v}_{dq,k}) = P_{cu,k+1} + P_{inv,k+1}$$
s.t. $c_{t}(\mathbf{v}_{dq,k}) = T_{e,k+1}^{cmd} - T_{e,k+1} = 0$,
$$c_{i}(\mathbf{v}_{dq,k}) = I_{\max}^{2} - \left\|\mathbf{i}_{dq,k+1}\right\|^{2} \ge 0,$$

$$c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^{2} - \left\|\mathbf{v}_{dq,k+1}\right\|^{2} \ge 0.$$

The MPTC fully utilizes the DOF.

Existing MPTC [5]

$$\min_{\mathbf{v}_{dq,k}} J_p(\mathbf{v}_{dq,k}) = \left\| \mathbf{i}_{dq,k+1} - \mathbf{i}_{dq}^{MTPA} \right\|^2 + \alpha P_{inv,k+1}$$
s.t. $c_i(\mathbf{v}_{dq,k}) = I_{\max}^2 - \left\| \mathbf{i}_{dq,k+1} \right\|^2 \ge 0$,
$$c_{\tilde{v}}(\mathbf{v}_{dq,k}) = V_{\max}^2 - \left\| v_{dq,k} \right\|^2 \ge 0.$$

The MPTC partially utilizes the DOF.

VS.

Research Objectives

Summary of Literature review

Concept	Reference generator MPCC [5] or MPTC [6]	MPTC [7]	
Proporty	Good tracking performance	Steady-state error, Instability	
Property	Two optimization problems	One optimization problem	

Research objectives

- Develop a MPTC scheme for SMs that
 - Does not rely on a reference generator
 - But guarantees optimal operation under all operating regions
 - Can be implemented based on both the FCS and CCS
 - Can be implemented with various performance indices (J_p)
 - FCS: finite control set
 - CCS: continuous control set

Primary objectives

Secondary objectives

^[5] J. Rodriguez, et al., "Predictive current control of a voltage source inverter," IEEE TIE, vol. 54, no. 1, pp. 495 - 503, 2007.

^[6] T. Englert and K. Graichen, "Nonlinear model predictive torque control of PMSMs for high performance applications," Control Eng. Prac., vol. 81, pp. 43 - 54, 2018.

^[7] L. Samaranayake and S. Longo, "Degradation control for electric vehicle machines using nonlinear model predictive control," IEEE TCST, vol. 26, no. 1, pp. 89 - 101, 2017.