Inpartheure noise 2 znabl

- (1) Com $\phi \neq A \subseteq I$. More \exists yurpaquerp na I codepresquit {A} - fip => F ~=> F >A
- (2) Cymecologet ne rabusit ynotpa parosp na N, codepitanjui bce në trusie nucia / nevituose nucia

F & NZK, NZK+1

For fip

F"UN, F"UN - fip

Teopera 2.6.1

F- Mezzabani ado ecm 1 = F = I\1 & F, no F=F

(3) Умераральтр на конечном множестве облательно главный.

øe F = 1 = 7 1 e F

(4) HEP(I), F (i) F 2 K (ii) F - Harmestertum us takex

 $\mathcal{P}_{\text{остаточно поизыть, ито }} \mathcal{F}^{\text{LR}} - \mathcal{H}_{\text{questy}}$ и любой фильту содержащий \mathcal{H} содержит \mathcal{F}^{LR}

(ii)
$$F$$
 - диграфильтр (=> F - моженимомым собетвения ст фильтр на I .

Moin punto, noporté messie AUF Sousse F - moro Esperence

Yapamenne n esabe 3

3.3

- (1) = 0740 menne sububasentemocra
 - i) r=r ,T.K. [r=r] = NEF
 - ii) r= \$ <=> \$=r
 - iii) r=>= t => [r=s] N[s=t] = [r=t] => [r=t] = F
- (z) r=r', s=s'

 $[r=r'] \cap [s=s'] \subseteq [r+s=r'+s'] \cap [rs=r's'] => r+s=v'+s', rs=r's'$ (3) $[\frac{1}{h}=0] = \emptyset \notin \mathcal{P} => \frac{1}{h} \neq 0$

3.5

- (1),(2) paururecau bour
- (3) anarowetho
- (4) (3) l de cropones

3 a beponeme Domasatemento e monem:

[0] < [v], [0] < [s] => [0< r] \(\int_{0< s}\) \(\int_{0< s}\) \(\int_{0

(3.8.1)

Ecm [8] - MODERNETERMAN SECRETION MARAR, TO [OCE] & F

[ECT] & F YV

Moida Dre [8] 66140146400 [OCE] & F L [OCE] N[ECT] & F =>

=> [rce] & F

- 3.10 Упроточения по расширению
- (1) Ecm A-noneuro, 70 robar mochedolaremmente, noutre bee useme notopoù remat b A observa codepmate become une nomme be en rememble us a. [$v \in A$] $\in \mathcal{F}$ \iff [v = a,] \sqcup ... \sqcup [v = a,] \in \mathcal{F} \iff [v = a,] \in \mathcal{F} , no a; ne nomet best tame, 470 on baspeureter numb nomet une pas = 7 $\overset{*}{a}$; $\overset{*}{=}$ v
- (2) ACB => *AC*B-04e badro
 - € Ecm A>B, TO 7 B: 64 A. Town

(3) A,B = AUB => AUB = (AUB)

*AUB = (AUB) - Occolore

ANB = A,B == (ANB) = ANB (r) = ANB == [veA] n [veB] = F == [r] = (ANB)

$$(A-B) \cap B = ((A-B) \cap B) = \emptyset = \emptyset$$

 $(A-B) \cap A = (A-B)$
 $= (A-B) = A-B$

- (4) $*N = * (U ?n?) \supseteq U * \{n? = N$
- (5) XEA == XEA u XER == XEA nir XE AND == XER u XEA == XEA
- (6) [a,b] MNOHECTO TORRY, MOTORINE NORTH BRE LEGIST B [a,b], T.R. $\{r \in [a,b]\} \in \mathcal{F}_{\{r\}} = \{x \in [R: a \leq x \leq b]\}$

(8)
$$*(R^{+}) = (*R)^{+}$$

 $[x] \in (R^{+}) \leftarrow [x > 0] \in \mathcal{F} \leftarrow [x] > [0] \leftarrow [x] \in (R)^{+}$

3.12

(1)
$$r \in \mathbb{R} = 7$$
 $f(r) = \langle f(r) ... \rangle = f(r)$ $R \longrightarrow \mathbb{R}$ $f \mid Q \mid \mathbb{T}$ $R \longrightarrow \mathbb{R}$

(2)
$$f(r) = f(r') = f$$

Nyoro
$$f$$
 - cappentulace u $[r_n] \in {}^{t}\mathbb{R}$
Ucnonbyge anemously backopa objection $[f^{-1}(r_n)]$.
Torda $f([f^{-1}(r_n)]) = [r_n] = 7 \quad f$ - coppentulation

(3) Kado monagett, 470

$$|x| = \begin{cases} x & \text{even} & \times 70 \\ 0 & \text{even} & \times 20 \end{cases} = |x|$$
 $|x| = \begin{cases} -x & \text{even} & \times 40 \end{cases}$

$$(4) \qquad \chi_{\mathbf{A}}: \quad \mathbb{R} \longrightarrow \{0,1\}$$

$${}^{\star}(\chi_{A}): {}^{\star}[R \longrightarrow \{0, \ell\} \\ [r_{n}] \longrightarrow [\chi_{A}(r_{n})]$$

$$[r_n] \longrightarrow [\chi_A(v_n)]$$

1, where

 $\chi_A(v_n)$

(5)
$$f: (\mathbb{R}^m \longrightarrow \mathbb{R}$$

$$x = \langle x^1 ... x^n \rangle \longrightarrow f(x)$$

$$\langle [x_n^1] ... [x_n^m] \rangle \longrightarrow [f(x_n^1 ... x_n^m)]$$

$$X_{n}^{1} = y_{n}^{1} \dots x_{n}^{m} = y_{n}^{m} = \sum_{i} [x_{n}^{2} - y_{n}^{2}] \subseteq [\langle x_{n}^{1} \dots x_{n}^{m} \rangle = \langle y_{n}^{1} \dots y_{n}^{m} \rangle]$$

$$= \sum_{i} [f(x_{n}^{1} \dots x_{n}^{m})] = [f(y_{n}^{1} \dots y_{n}^{m})]$$

3.15

(2) ([1], [1]) = *(dom P) (=> (r1, r2) = dom P Dra morra been n (=> P(r1, r2) Dra morra been n (=> "P([1], [1]) (=> ([1], [1]) = dom P

(3)
$$P(v_1...v_n) = r_1...v_n \in A$$
 $u \exists s : f(v_1...v_n)$

No obosyceus $(z) : dom P = dom^2 P$
 $P(v_1...v_n) = P(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $u \exists s = f(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $u \exists s = f(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $u \exists s = f(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $u \exists s = f(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $u \exists s = f(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $u \exists s = f(v_1...v_n) = 0$
 $v_1 \dots v_n \in A$ $v_n \in A$ $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in A$
 $v_n \in$

3 recur * dom f = dom *f