

Dérivation globale

I. Fonctions dérivables sur un intervalle I

1. Fonction dérivée d'une fonction donnée

Définition 1.

On dit que f est dérivable sur un intervalle I si f est dérivable en **tout point** x_0 de I. La fonction qui, à chaque réel x de I, associe le nombre dérivé f'(x) de f en x est appelée **fonction dérivée de** f et se note f'.

$$f': x \longmapsto f'(x)$$

Exercice 1.8. Démontrons que la fonction $f: x \mapsto ax^2 + bx + c$ est dérivable en tout x_0 de \mathbb{R} et que $f'(x_0) = 2ax_0 + b$.

2. Dérivées de fonctions usuelles

Théorème. Tableau des dérivées à connaître par cœur.

Fonction f	\mathscr{D}_f	Fonction f'	$\mathscr{D}_{f'}$
$x \mapsto k \text{ (constante)}$	\mathbb{R}	$x \mapsto 0$	\mathbb{R}
$x \mapsto ax + b$	\mathbb{R}	$x \mapsto a$	\mathbb{R}
$x \mapsto x^2$	\mathbb{R}	$x \mapsto 2x$	\mathbb{R}
$x \mapsto x^n \text{ et } n \in \mathbb{N}^*$	\mathbb{R}	$x \mapsto nx^{n-1}$	\mathbb{R}
$x \mapsto \frac{1}{x}$	\mathbb{R}^*	$x \mapsto -\frac{1}{x^2}$	\mathbb{R}^*
$x \mapsto \sqrt{x}$	$[0;+\infty[$	$x \mapsto \frac{1}{2\sqrt{x}}$	$]0;+\infty[$

Remarque. Toutes ces formules se démontrent à l'aide du taux d'accroissement vu au chapitre 4.

2

Quid de la valeur absolue?.

La fonction valeur absolue f définie sur \mathbb{R} par f(x) = |x| est dérivable sur $]-\infty$; $0[\cup]0$; $+\infty[$ et :

$$f'(x) = \begin{cases} -1 & \text{si} \quad x < 0\\ 1 & \text{si} \quad x > 0 \end{cases}$$

Démonstration à faire.

- 1. Démontrer le résultat de la fonction carré.
- **2.** Soit f définie sur \mathbb{R} par $f(x) = x^5$. Calculer f'(x) pour tout réel x.

3. Dérivée d'une somme, d'un polynôme

Théorème.

Soit u et v deux fonctions définies et **dérivables** sur un même intervalle.

• La dérivée d'une *somme* de deux fonctions est la somme des dérivées de ces fonctions :

$$(u+v)' = u' + v'$$

ullet La dérivée d'un produit d'une fonction par un nombre k est le produit par k de la dérivée de la fonction :

$$(k \times u)' = k \times u'$$

Exercice 3.8. Soit $f(x) = -x^3 + 6x^2 - 10x + 5$. Calculer f'(x) pour tout réel x.

4. Dérivée d'un produit, d'un quotient

A. Dérivée d'un produit

Théorème.

Soit deux fonctions u et v définies et $d\acute{e}rivables$ sur le même intervalle. La dérivée du produit de ces deux fonctions est :

$$(u \times v)' = u' \times v + u \times v'$$

Exercice 4.8. Soit $f(x) = (x^2 + 1)(3x - 4)$. Calculer f'(x) en utilisant la formule précédente.

B. Dérivée de l'inverse

Théorème.

Soit une fonction v définie et dérivable sur un intervalle I telle que v ne s'annule pas par sur cet intervalle I. La dérivée de l'inverse de v est :

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$$

Exercice 5.8. Soit la fonction f définie sur $\mathscr{D} = \mathbb{R} \setminus \{1\}$ par $f(x) = \frac{1}{3x-3}$. Calculez f'(x) pour tout x de $\mathbb{R} \setminus \{1\}$.

C. Dérivée d'un quotient

Théorème.

Soit deux fonctions u et v définies et $d\acute{e}rivables$ sur le même intervalle où v ne s'annule par sur cet intervalle. La dérivée du quotient de ces deux fonctions est :

$$\left(\frac{u}{v}\right)' = \frac{u' \times v - u \times v'}{v^2}$$

Exercice 6.8. Soit la fonction f définie sur $\mathscr{D} = \mathbb{R} \setminus \{4\}$ par $f(x) = \frac{2x+3}{4-x}$. Calculez f'(x) pour tout x de $\mathbb{R} \setminus \{4\}$.

D. Dérivation et composition

Théorème.

Soit g une fonction $d\acute{e}rivable$ sur un intervalle I. Pour tout réel x tel que mx + p appartient à I, la fonction f définie par f(x) = g(mx + p) est dérivable sur I et pour tout réel x de I,

$$f'(x) = m \times g'(mx + p)$$

Exercice 7.8. Soit f définie sur \mathbb{R} par $f(x) = (7x - 4)^9$. Calculer f'(x).

II. Sens de variation et dérivée

Le théorème suivant, permet de déterminer *les variations* d'une fonction sur un intervalle suivant le signe de sa dérivée. Soit f une fonction dérivable sur un intervalle I de \mathbb{R} et f' la dérivée de f sur I.

Théorème admis.

- Si f' est nulle sur I, alors f est constante sur I.
- Si f' est *strictement positive* sur I, sauf éventuellement en un nombre fini de points où elle s'annule, alors f est *strictement croissante* sur I.
- Si f' est strictement $n\'{e}gative$ sur I, sauf éventuellement en un nombre fini de points où elle s'annule, alors f est strictement $d\'{e}croissante$ sur I.

Théorème admis.

Soit f une fonction dérivable sur un intervalle ouvert I de $\mathbb R$ et x_0 un réel appartenant à I.

- Si f admet un *extremum local* en x_0 , alors $f'(x_0) = 0$.
- Si la dérivée f' s'annule en x_0 en changeant de signe, alors f admet un extremum local en x_0 .

Exemples:

1. Cas d'un minimum:

x	a	x_0	b
signe de $f'(x)$	_	Ó +	
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	m	inimum	•

2. Cas d'un maximum:

x	a x_0	b
signe de $f'(x)$	+ 0 -	
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	maximum	

Un classique corrigé.

Déterminer les variations de la fonction f, définie et dérivable sur \mathbb{R} par l'expression : $f(x) = x^3 + 4x^2 - 3x + 5$.

Étape 1 : Dériver la fonction La fonction f est un polynôme, donc sa dérivée est :

$$f'(x) = 3 \times x^{2} + 4 \times 2x - 3$$
$$f'(x) = 3x^{2} + 8x - 3$$

Étape 2 : Déterminer le signe de la dérivée La dérivée f' est un trinôme du second degré, avec a=3, b=8 et c=-3. Son discriminant est $\Delta=b^2-4ac=8^2-4\times3\times(-3)=100$.

Le discriminant est strictement positif, donc le trinôme a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-8 - \sqrt{100}}{2 \times 3} = -3$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-8 + \sqrt{100}}{2 \times 3} = \frac{1}{3}$$

Son tableau de signes est donc :

x	$-\infty$	-3		$\frac{1}{3}$		$+\infty$
f'(x)		+ 0	_	0	+	
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	/	23 .		121 27		A

Étape 3 : Déduire les variations de la fonction du signe de sa dérivée. Fait à la fin du tableau précédent.