Statistik 2, Übung 12

HENRY HAUSTEIN

Aufgabe 1

(a) Der MLE-Schätzer für $\hat{\mu}$ ist der Mittelwert \bar{x} der Stichprobe

$$\hat{\mu} = \bar{x} = \frac{1}{20}(1.45 + 1.30 + 1.31 + \dots + 1.44)$$
$$= \frac{1}{20} \cdot 29.15$$
$$= 1.4575$$

Der MLE-Schätzer für $\hat{\sigma}$ ist gegeben durch

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$
= 0.7848941

Wenn man statt durch n durch n-1 teilt, ergibt sich eine andere Schätzung für $\hat{\sigma}=0.8052844$. Siehe https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation für mehr Informationen.

(b) Eine Messung in der Grafik ergibt, dass der Abstand zwischen 0 und 1 auf der y-Achse genau 4.49 cm ist. Der maximale Abstand zwischen der empirischen Verteilungsfunktion (= Teststatistik D) ist 1.66 cm. Es gilt:

$$\frac{1}{4.49 \text{ cm}} = \frac{D}{1.66 \text{ cm}}$$

$$D = \frac{1.66 \text{ cm}}{4.49 \text{ cm}}$$

$$= 0.3697108$$

Der kritische Wert kann in der Tabelle abgelesen werden und ist 0.294. Die Nullhypothese wird also abgelehnt. Eine Durchführung dieses Test mittels R ergibt ein genaueres Ergebnis:

```
1 x = c(1.45,1.30,1.31,1.18,1.20,1.70,1.22,1.30,1.26,1.23,0.95,
2 4.80,1.28,1.22,1.22,1.12,1.46,1.00,1.51,1.44)
3 # eventuell install.packages("fitdistrplus")
4 library(fitdistrplus)
5 fitdistrplus::fitdist(x,pnorm,method = "mle")
6
7 ks.test(x,'pnorm',1.4575,0.7848941)
```

(c) Der Ausreißer war ein Fußgänger, der sehr schnell über die Ampel gegangen ist. Wenn man allerdings nach einer Mindest-Freigabezeit fragt, interessiert man sich tendenziell für den langsamsten Fußgänger.

Aufgabe 2

(a) Es gilt für die theoretischen Quantile $v_i = \Phi^{-1}\left(\frac{i-0.5}{n}\right)$, also

i	1	2	3	4	5	6	7
gemessene Quantile	10	24	30	30	35	78	81
theoretische Quantile	-1.4652	-0.7916	-0.3661	0	0.3661	0.7916	1.4652

- (b) Die Teststatistik ergibt sich zu W=0.83588, der kritische Wert ist 0.803. Die Nullhypothese wird nicht abgelehnt.
- (c) Der p-Wert ist recht klein, was Zweifel an der Nullhypothese weckt. Die Nullhypothese wird also abgelehnt, was man auch gut im QQ-Plot sieht: Die Punkte liegen nicht auf einer Geraden.

Aufgabe 3

Wir testen hier auf eine diskrete Verteilung, das heißt wir können nicht den Kolmogorov-Smirnov-Test anwenden, sondern müssen auf den χ^2 -Anpassungstest zurückgreifen.

	0	1	2	3	4	5	6	7	8	9	> 9	\sum
S_i	18	24	56	63	61	39	26	6	5	2	0	300
p_i	0.0333	0.1135	0.1929	0.2186	0.1858	0.1264	0.0716	0.0348	0.0148	0.0056	0.0027	1
np_i	9.99	34.05	57.87	65.58	55.74	37.92	21.48	10.44	4.44	1.68	0.81	300

Die Teststatistik ergibt sich zu 13.8588 und der kritische Wert ist 15.5073, also kann die Nullhypothese nicht abgelehnt werden.