### Energy Balance and Climate

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #3: Friday, January 29 2021

#### Looking for a Good Home



Bad

-28°F



Good

71°F



Worst

800°F

# Basic Concepts

#### Vocabulary

- Energy, Heat:
  - Heat = energy flowing spontaneously from hot to cold
- Power: speed at which energy flows or transforms

Power, Flux = Heat flow/Time

Heat, Energy = Power × Time

Intensity: Concentration of power

Intensity = Power/Area

Power = Intensity  $\times$  Area

#### Temperature of a planet

Basic principle:

Steady temperature if and only if

- How can heat get in or out?
  - Electromagnetic radiation

#### Electromagnetic Waves

- Color and brightness
  - Color:
    - Two ways to measure color:
    - Wavelength (λ)
    - Wavenumber  $(n = 1/\lambda)$
  - Archer mostly uses wavenumber
    - Math is simpler that way
  - Brightness:
    - Intensity (power/area, Watts/square meter)

#### Colors

| Color       | wavelengths    | ths wavenumbers |  |
|-------------|----------------|-----------------|--|
| infrared    | > 0.70 µm      | < 14,000        |  |
| red         | ~ 0.70−0.64 µm | ~ 14,000-16,000 |  |
| orange      | ~ 0.64-0.59 µm | ~ 16,000-17,000 |  |
| yellow      | ~ 0.59−0.56 µm | ~ 17,000-18,000 |  |
| green       | ~ 0.56-0.49 µm | ~ 18,000-20,000 |  |
| blue        | ~ 0.49-0.45 µm | ~20,000-22,000  |  |
| violet      | ~ 0.45-0.40 µm | ~22,000-25,000  |  |
| ultraviolet | < 0.40 µm      | > 25,000        |  |

All you need to think about is shortwave vs. longwave radiation.

#### Shortwave and longwave:

- Shortwave:
  - Near-infrared, visible, ultraviolet
  - $\lambda < 3\mu m$
  - n > 3,300cm<sup>-1</sup> (cycles per centimeter)
- Longwave:
  - Mid-infrared, far-infrared
  - $\lambda > 3\mu m$
  - $n < 3,300 \text{cm}^{-1}$

More on this on Monday ...

#### 4 Laws of Radiation

- 1. All objects continually radiate energy
- 2. Hotter objects are brighter
- 3. Hotter objects radiate at shorter wavelengths
- 4. Objects that are good absorbers are also good emitters
  - Black objects emit & absorb the most
  - Transparent and white objects emit & absorb the least

#### Example of Radiant Heat





- Featuring my dog, Finley.
- All objects emit electromagnetic radiation
- Hotter objects emit
  - More intense the radiation
  - Shorter wavelengths

# Blackbody Radiation

#### Blackbody Radiation

**Emissivity** ( $\varepsilon$ ) measures how black something is:

- $\varepsilon = 1$  for perfectly black
- $\varepsilon = 0$  for perfectly white or transparent
- In between for gray.
- Black, white, and gray:  $\varepsilon$  is the same for all wavelengths.
- Colored objects:  $\varepsilon$  is different for different wavelengths.
- For simplicity: start by assuming everything is black, white, or gray.

Remember: Good emitters are good absorbers

Fundamental rule: Temperature and emissivity determine radiation.

#### Heating Up: What Changes??



#### Heating Up: What Changes?

- Hotter temperature:
  - Brighter (greater intensity)
  - Bluer (greater wavenumber, shorter wavelength)

A curious thing:

A hot black object glows with color!

**Total intensity =** area under curve



# Mathematical Description

#### Blackbody Radiation

Intensity (brightness):

Stefan-Boltzmann law

$$I = \varepsilon \sigma T^4$$

after Josef Stefan and Ludwig Boltzmann

- $\varepsilon$  = emissivity
  - Different for different objects.
- $\sigma$  = Stefan-Boltzmann constant.
- T = absolute (Kelvin) temperature.



Color: Peak wavenumber proportional to (Kelvin) temperature.

#### **Helpful Hint:**

Fourth power on a calculator: press the  $x^2$  button twice.



Processing math: 100%

#### Earth and Radiation



False-color images of radiation from Earth, seen by NASA Terra satellite:

- Left: Thermal radiation (blue  $\rightarrow$  red  $\rightarrow$  yellow = dim  $\rightarrow$  bright)
- Right: Reflected sunlight (blue → green → white = dim → bright)

#### Efficiency of Light Bulbs

| Type of Bulb             | <b>Efficiency</b> |
|--------------------------|-------------------|
| Standard 40W             | 1.8%              |
| Standard 60W             | 2.1%              |
| Standard 100W            | 2.6%              |
| Quartz Halogen           | 3.5%              |
| Ideal black body @ 7000K | 14.0%             |
| Compact Fluorescent      | 8-12%             |
| LED                      | 20-44%            |

- 7000K is the optimal temperature for a black body to emit visible light, but it will melt every known substance.
- Standard light bulbs operate at around 2000–3300 K.

# Calculating Earth's Temperature: Bare-Rock Model

# Basics Steady Temperature

- Heat in must balance heat out
- Total Heat Flux (Power) = Area × Intensity
  - Total heat flux in  $(F_{in})$ :
    - Intensity depends on solar constant and albedo
    - Does not depend on earth's temperature
  - Total heat flux out  $(F_{out})$ :
    - Intensity depends on earth's temperature and emissivity
- Strategy:
  - 1. Figure out  $F_{\rm in}$ .
  - 2. Figure out temperature T that makes  $F_{\text{out}} = F_{\text{in}}$ .



#### What is $F_{in}$ ?

- $F_{\text{in}}$  = Area × Intensity absorbed
  - Intensity absorbed =  $(1 \alpha) \times I_{in}$ 
    - $I_{in} = 1350 \text{ W/m}^2$
    - Average albedo  $\alpha = 0.30$  (30% of sunlight is reflected)

#### What is area?

- Area = silhouette or shadow
- Circle:  $\pi r^2$



#### What is $F_{in}$ ?

• 
$$F_{\text{in}} = \pi r_{\text{Earth}}^2 \times (1 - \alpha)I_{\text{in}}$$

$$\pi r^2 = 1.3 \times 10^{14} \text{m}^2$$

$$\alpha = 0.30$$

$$\circ$$
  $(1 - \alpha) = 0.70$ 

$$I_{in} = 1350 \text{ W/m}^2$$

• 
$$F_{\text{in}} = 1.3 \times 10^{14} \,\text{m}^2 \times 0.70 \times 1350 \,\text{W/m}^2$$
  
=  $1.2 \times 10^{17} \text{Watts}$ 

■ 11,000 times total human energy production.

#### What is $F_{\text{out}}$ ?

• 
$$F_{\text{out}} = \text{Area} \times I_{\text{out}}$$

$$I_{\text{out}} = \varepsilon \sigma T^4$$

$$\circ \varepsilon = 1$$
 (blackbody)

$$\sigma = 5.67 \times 10^{-8} \, \text{W/m}^2/\text{K}^4$$

- What is area?
  - Sphere:  $4\pi r^2$
- $F_{\text{out}} = 4\pi r_{\text{earth}}^2 \times \varepsilon \sigma T^4$



#### Putting it all together

$$F_{\text{out}} = F_{\text{in}}$$

$$4\pi r^2 \times \varepsilon \sigma T^4 = \pi r^2 (1 - \alpha) I_{\text{in}}$$

$$4\pi r^2 \times \varepsilon \sigma T^4 = \pi r^2 (1 - \alpha) I_{\text{in}}$$

$$4\varepsilon\sigma T^4 = (1 - \alpha)I_{\rm in}$$

$$T^4 = \frac{(1-\alpha)I_{\text{in}}}{4\varepsilon\sigma}$$

- Total flux (power) radiated from sun doesn't change with distance.
- At a distance r total flux spreads over sphere of radius r
- Intensity = Total Flux / Area:
  - Proportional to  $1/r^2$
- At edge of Earth's atmosphere, solar intensity =  $1350 \text{ W/m}^2$ .

- Steady Temperature:
  - Heat flux in must balance heat flux out  $(F_{out} = F_{in})$ .
  - $\blacksquare F_{\text{in}}$ :
    - Does not depend on earth's temperature.
    - Depends on solar constant and earth's albedo.
  - *F* out:
    - Depends on earth's tempera
  - *T* adjusts until heat out = heat

#### **Helpful hint:**

To take the fourth root on a calcula press the square-root key () twice

$$T = \sqrt[4]{\frac{(1-\alpha)I_{\text{in}}}{4\varepsilon\sigma}}$$

$$T = \sqrt[4]{\frac{(1-\alpha)I_{\text{in}}}{4\varepsilon\sigma}}$$

#### Earth:

(Note: My numbers are slightly different from Archer's textbook)

- $I_{\rm in} = 1350 \, {\rm W/m^2}$
- $\alpha = 0.30$
- *ε* = 1
- $\sigma = 5.67 \times 10^{-8} \,\text{W/(m}^2\text{K}^4)$
- Calculate *T*:
- $T = 254 \text{ K} = -19 \,^{\circ}\text{C} = -2 \,^{\circ}\text{F}$ .

# If the sun got 5% brighter, how much warmer would the earth become?

$$T = \sqrt[4]{\frac{(1-\alpha)I_{\text{in}}}{4\varepsilon\sigma}}$$

- Normal:  $I_{in} = 1350 \text{ W/m}^2$ :
  - T = 254 K
- 5% Brighter:  $I_{in} = 1.05 \times 1350 \text{ W/m}^2 = 1418 \text{ W/m}^2$ :
  - T = 257 K
- $\Delta T = 3 \text{ K} = 6 \,^{\circ} \text{F}$

$$T = \sqrt[4]{\frac{(1-\alpha)I_{\text{in}}}{4\varepsilon\sigma}}$$

#### Earth:

(Note: My numbers are slightly different from Archer's textbook)

- $I_{\rm in} = 1350 \, {\rm W/m^2}$
- $\alpha = 0.30$
- *ε* = 1
- $\sigma = 5.67 \times 10^{-8} \,\text{W/(m}^2\text{K}^4)$
- $T = 254 \text{ K} = -19 \,^{\circ}\text{C} = -2 \,^{\circ}\text{F}$ .

How does this compare to Earth's actual temperature?

# Comparing Theory and Observation

#### Radiative Temperature

- Satellites orbiting in space can measure longwave radiation from earth
- To the satellites, the earth looks very much like a blackbody at the bare-rock temperature (254 K).
- Thus, scientists generally call the bare-rock temperature the **radiative temperature** because it describes the radiation coming off the earth.
- However, the surface temperature of the earth is around 295 K = 71  $^{\circ}$ F, which is significantly different from the radiative, or bare-rock, temperature.

# Terrestrial Planets

#### The Terrestrial Planets







Earth 295 K



venus 700 K

#### Terrestrial Planets

|                         | Earth                 | Mars                 | Venus                 |
|-------------------------|-----------------------|----------------------|-----------------------|
| Distance from sun       | 1 AU                  | 1.5 AU               | 0.72 AU               |
| 1/Distance <sup>2</sup> | 1.00                  | 0.44                 | 1.9                   |
| Solar constant          | $1350 \mathrm{W/m^2}$ | $600 \mathrm{W/m^2}$ | 2604 W/m <sup>2</sup> |
| Albedo                  | 0.30                  | 0.17                 | 0.71                  |
| T <sub>bare rock</sub>  | 254 K ( – 2 ° F)      | 216 K ( – 70 °F)     | 240 K ( – 27 ° F)     |
| $T_{ m surface}$        | 295 K (71 °F)         | 240 K ( – 28 °F)     | 700 K (800 °F)        |
| $\Delta_T$              | 41 K (74°F)           | 24 K (42 °F)         | 460 K (828 °F)        |