Talk 10: Examples of induced representations

Remark. In this talk all groups are finite and all representations are finite dimensional over \mathbb{C} .

1 Normal subgroups

Definition 1 (Normal subgroup). Recall that $N \subseteq G : \iff gNg^{-1} = N, \forall g \in G$.

Definition 2 (Isotypical representation). A representation is called *isotypical* if its a direct sum of isomorphic irred. representations.

Proposition 3. Let $A \subseteq G$, $\rho: G \to \operatorname{GL}(V)$ be an irreducible representation, then either

(a) $\exists H \lneq G \ containing \ A \ and \ an \ irred. \ \sigma: H \to \operatorname{GL}(W) \ so \ that \ \rho = \operatorname{Ind}_H^G(\sigma), \ or$

(b) the restriction $\rho|_A$ is isotypic.

Remark 4. If A is abelian, then (b) $\iff \rho(a)$ is a homothety $\forall a \in A$.

Corollary 5. If $A \subseteq G$ is abelian, then $\forall \rho$ irred. representation of G we have $\deg \rho \mid [G:N]$.

Remark 6. If $A \leq G$ is an abelian subgroup (not necessarily normal), this doesn't hold in general, but we still have the bound $\deg \rho \leq [G:A]$ like we have seen in corollary 1.3. from talk 4.

2 Semidirect products by an abelian group

Construction 7. Let $G = A \rtimes H$, where $A \subseteq G$ is an abelian normal subgroup.

- (1) Let $X := \operatorname{Hom}(A, \mathbb{C}^{\times})$ be the set of irred. characters of A, and let $G \curvearrowright X$ by $s \cdot \chi(a) = \chi(s^{-1}as)$.
- (2) Let $(\chi_i)_{i \in X/H}$ be representatives for the orbits of the action $H \curvearrowright X$, and write $H_i := \operatorname{Stab}_H(\chi_i)$ and $G_i := A \rtimes H_i$.

- (3) Extend χ_i to G_i by $\widetilde{\chi}_i(a \cdot h) = \chi_i(a)$.
- (4) Let $\rho: H_i \to \operatorname{GL}(W)$ be irreducible and extend it to an irred. representation of G_i by $\widetilde{\rho}(a \cdot h) = \rho(h)$.
- (5) The tensor $\widetilde{\chi}_i \otimes \widetilde{\rho}$ will be also irreducible.
- (6) Finally define $\theta_{i,\rho} = \operatorname{Ind}_{G_i}^G(\widetilde{\chi}_i \otimes \widetilde{\rho}).$

Proposition 8. (a) $\theta_{i,o}$ is irred.

- (b) $\theta_{i,\rho} \cong \theta_{i',\rho'} \implies i = i' \text{ and } \rho \cong \rho'.$
- (c) These are all the irred. representations of G.

Example 9. Application to D_n , A_4 and S_4 .

3 Review on classes of groups

Definition 10. A group G is called

(a) solvable, if G has a normal series

$$\{e\} = G_0 \le G_1 \le \cdots \le G_n = G$$

where all factors G_i/G_{i-1} are abelian.

- (b) supersolvable, if G is solvable, all $G_i \leq G$ are normal in G and all factors G_i/G_{i-1} are cyclic.
- (c) nilpotent, if G has a normal series with $G_{i+1}/G_i \leq Z(G/G_i)$
- (d) a p-group, if $|G| = p^k$ for some prime.

Remark 11. (a)
$$\Leftarrow$$
 (b) \Leftarrow (c) \Leftarrow (d)

Definition 12. A p-subgroup $H \leq G$ is called a $Sylow\ p$ -subgroup of G if it's maximal.

Theorem 13 (Sylow). Let G be a group, then for each prime factor of |G|

(a) Sylow p-subgroups exist, and their number is congruent to 1 mod p.

Handout: Examples of induced representations

- (b) They are conjugates.
- (c) Each p-subgroup is contained in a Sylow p-subgroup.

4 Representations of supersolvable groups

Definition 14 (Monomial). A group G is monomial, if \forall irred. ρ is induced by a degree 1 rep. of a subgroup.

Lemma 15. Let G be supersolvable and non-abelian. Then $\exists A \subseteq G$ abelian not contained in Z(G).

Theorem 16. Every supersolvable group is monomial.

Corollary 17. If $G = A \rtimes H$, where $A \leq G$ is abelian and H is supersolvable, then G is monomial.

References

[Ser77] Jean-Pierre Serre: Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.