(MATNA1901) Lineáris algebra vizsga

1. Mi az a vegyes szorzat és hogyan fejthető ki determináns segítségével?

(10 pont)

Vegyes szorzat: Az $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3$ vektorok vegyes szorzata:

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \mathbf{c}.$$

Állítás: A vegyes szorzat kifejezhető a determináns segítségével:

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

2. Adja meg az operátor fogalmát! Mit értünk egy operátor reprezentációja alatt? (10 pont)

Operátornak a lineáris vektor-vektor függvényeket nevezzük.

Az operátorok reprezentációját nevezzük mátrixnak. Azaz, legyen $\alpha_{ij} \in \mathbb{R}$ minden $i \in \{1, 2, ..., m\}$ és $j \in \{1, 2, ..., n\}$ estén, ahol $m, n \in \mathbb{N}^+$. Az

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

számtáblázatot $m \times n$ típusú mátrixnak nevezzük. Jelölje az $m \times n$ típusú mátrixok halmazát $M_{m \times n}$.

3. Határozza meg a determináns fogalmát!

(10 pont)

<u>Leibnitz-féle definíció:</u> Ha az **A** mátrix $n \times n$ -es típusú, ahol n > 1 és $n \in \mathbb{N}$ (vagyis négyzetes), akkor az **A** mátrix determinánsa alatt a következő számot értjük:

$$det(\mathbf{A}) = \sum_{\{i_1, i_2, \dots, i_n\} \in P_n} (-1)^{I(i_1, i_2, \dots, i_n)} \alpha_{1i_1} \cdot \alpha_{2i_2} \cdot \dots \cdot \alpha_{ni_n},$$

ahol az összegzés az $1, 2, \ldots, n$ számok összes permutációjára történik, és $I(i_1, i_2, \ldots, i_n)$ jelöli az (i_1, i_2, \ldots, i_n) permutációban lévő inverziók számát. Jelölése:

$$\det (\mathbf{A}), \begin{vmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{vmatrix}, \quad |\mathbf{A}|.$$

<u>Axiomatikus definíció:</u> Legyen $\mathbf{A} \in \mathbb{R}^{n \times n}$ négyzetes mátrix és det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény. Ezt a det (\mathbf{A}) függvényt az $\mathbf{A}^{n \times n}$ mátrix determinánsának hívjuk, ha

- (a) Homogén: $\det(\ldots \lambda_i \mathbf{a}_i \ldots) = \lambda_i \det(\ldots \mathbf{a}_i \ldots);$
- (b) Additív $\det(\ldots \mathbf{a}_i + \mathbf{b}_i \ldots) = \det(\ldots \mathbf{a}_i \ldots) + \det(\ldots \mathbf{b}_i \ldots);$
- (c) Alternáló: $\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_j \ldots) = -\det(\ldots \mathbf{a}_j \ldots \mathbf{a}_i \ldots);$
- (d) Az egységmátrix determinánsa 1: $\det(\mathbf{E}_n) = 1$,

ahol $\lambda_i \in \mathbb{R}$ és $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^n$ a $\mathbf{A}^{n \times n}$ mátrix oszlop vektorai. Ezt a leképezést egy n változós függvénynek tekinthetjük a mátrix oszlopai felett: $\mathbb{R}^n \to \mathbb{R}$. Ezek az axiómák egyértelműen meghatározzák a leképezést. Egy másik $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény ezekkel a tulajdonságokkal azonos a det-tel. Másképpen, a mátrix egyértelműen hozzá lehet rendelni egy értéket ezekkel a szabályokkal. Ha $\mathbf{A} \in \mathbb{R}^{n \times n}$, akkor a determináns n^{th} -ed rendű. A determináns egy funkcionál. Ez egy olyan leképezés, amely skalárt rendel egy függvényhez.

4. Mit értünk egy mátrix inverzén?

(10 pont)

Az $\mathbf{A} \in \mathcal{M}_{n \times n}$ (négyzetes) mátrixnak létezik inverze, ha van olyan $\mathbf{B} \in \mathcal{M}_{n \times n}$, hogy $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{E}_n$. Az \mathbf{A} mátrix inverzét \mathbf{A}^{-1} -gyel jelöljük.

5. Mit jelent a reguláris és a szinguláris mátrix?

(10 pont)

 $A \in \mathcal{M}_{n \times n}$ mátrixot regulárisnak nevezzük, ha $\det(A) \neq 0$. $A \in \mathcal{M}_{n \times n}$ mátrixot szingulárisnak nevezzük, ha $\det(A) = 0$.

6. Mit értünk egy vektorendszer rangján?

(10 pont)

Legyenek $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s \in V$ vektorok. Az $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s\}$ vektorrendszer rangja alatt az $\mathcal{L}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s)$ altér dimenzióját értjük. Jele: $\rho(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s)$.

7. Mikor mondjuk, hogy egy V halmaz vektortér?

(10 pont)

A $V \neq \emptyset$ halmazt vektortérnek nevezzük $\mathbb R$ felett, ha értelmezve van rajta egy +-al jelölt művelet az alábbi tulajdonságokkal:

$$\begin{aligned} \mathbf{a} + \mathbf{b} &= \mathbf{b} + \mathbf{a}, \operatorname{ahol} \left(\mathbf{a}, \mathbf{b} \in V \right) \\ \left(\mathbf{a} + \mathbf{b} \right) + \mathbf{c} &= \mathbf{a} + \left(\mathbf{b} + \mathbf{c} \right), \operatorname{ahol} \left(\mathbf{a}, \mathbf{b}, \mathbf{c} \in V \right) \\ \exists \mathbf{0} \in V \operatorname{\acute{u}gy}, \operatorname{hogy} \ \mathbf{a} + \mathbf{0} &= \mathbf{a} \ \forall \mathbf{a} \in V \ \operatorname{eset\acute{e}n} \end{aligned}$$

$$\forall \mathbf{a} \in V \exists \left(-\mathbf{a} \right) \in V : \mathbf{a} + \left(-\mathbf{a} \right) = \mathbf{0},$$

továbbá minden $\lambda \in \mathbb{R}$ és minden $\mathbf{a} \in V$ esetén értelmezve van $\lambda \mathbf{a} \in V$ és teljesülnek az alábbi műveleti tulajdonságok:

$$\lambda (\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}, \text{ahol} (\mathbf{a} \in V, \lambda, \mu \in \mathbb{R})$$

$$\lambda (\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}, \text{ahol} (\mathbf{a}, \mathbf{b} \in V, \lambda \in \mathbb{R})$$

$$(\lambda + \mu) \mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}, \text{ahol} (\mathbf{a} \in V \text{ \'es} \lambda, \mu \in \mathbb{R})$$

$$\forall \mathbf{a} \in V - \text{re } 1 \cdot \mathbf{a} = \mathbf{a}.$$

8. Mikor mondjuk, hogy az $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in V^3$ vektorok lineárisan függetlenek?

(10 pont)

Azt mondjuk, hogy az $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in V^3$ vektorok lineárisan függetlenek, ha

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_n \mathbf{a}_n = \mathbf{0},$$

ahol $(\lambda_i \in \mathbb{R}, i \in \{1, 2, ..., n\}, n \in \mathbb{N}^+)$ csak úgy teljesülhet, ha $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$. Ellenkező esetben: ha van olyan, nem csupán 0-kból álló $\lambda_1, \lambda_2, ..., \lambda_n$, hogy $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \cdots + \lambda_n \mathbf{a}_n = \mathbf{0}$, akkor azt mondjuk, hogy az $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ vektorok lineárisan függőek. Ez utóbbi esetben valamelyik vektor előáll a többiek lineáris kombinációjaként.

9. Mit értünk egy mátrix sajátértékén, sajátvektorán és sajátalterén?

(10 pont)

Legyen V egy vektortér \mathbb{R} felett. Legyen $\varphi:V\to V$ lineáris leképezés. Ha az $\mathbf{a}\in V$ nemnulla vektorra és $\lambda\in\mathbb{R}$ -re $\varphi(a)=\lambda\mathbf{a}$ teljesül, akkor azt mondjuk, hogy \mathbf{a} sajátvektora φ -nek és λ az \mathbf{a} -hoz tartozó sajátértéke φ -nek.

Legyen $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$ a λ -hoz tartozó sajátvektorok és a nullvektor halmaza. A L_{λ} alteret alkot, ezért a λ -hoz tartozó sajátaltérnek nevezzük.

10. Mit jelent a mátrix diagonális alakja? Mikor diagonizálható egy mátrix?

(10 pont)

A mátrix diagonális alakja azt jelenti, hogy csak a főátlóban találhatóan nem nulla elemek.

Az $n \times n$ -es **A** mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz, azaz ha létezik egy olyan diagonális Λ és egy invertálható **C** mátrix, hogy $\Lambda = \mathbf{C}^{-1}\mathbf{AC}$.

<u>A vizsga osztályzása:</u> 0–40 pont: elégtelen (1), 41–55 pont: elégséges (2), 56–70 pont: közepes (3), 71–85 pont: jó (4), 86–100 pont: jeles (5).

 ${\bf Facsk\acute{o}~G\acute{a}bor} \\ facskog@gamma.ttk.pte.hu$

Pécs, 2025. június 11.