ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Cơ sở trí tuệ nhân tạo

Tác tử logic

Nguyễn Ngọc Đức 2022

Nội dung

- 1 Tác tử dựa trên hệ cơ sở tri thức
- 2 Logic
- 3 Logic mệnh đề
- 4 Ngữ pháp và ngữ nghĩa
- 5 Hợp giải

Tác tử dựa trên hệ cơ sở tri thức

Bài toán tìm kiếm

- Các phương pháp tìm kiếm trước:
 - Đều có dạng lập luận từ tri thức đã biết
 - Hệ thống Open-Loop
- CSP cho phép giải các bài toán tổng quát hơn (ít phụ thuộc hơn vào tri thức đã biết)

Tác tử logic (logical agent)

Một tác tử logic cũng hành động dựa trên lập luận từ các tri thức đã biết

Tác tử logic (logical agent)

- Một tác tử logic cũng hành động dựa trên lập luận từ các tri thức đã biết
- Các thuật toán tìm kiếm trước chỉ được mô tả kết quả khi thực hiện hành động
- CSP hiệu quả hơn nhờ các suy diễn ràng buộc
- Tác tử logic suy diễn dựa trên thể hiện logic của tri thức
- Biểu diễn logic của tri thức: cho phép tích hợp tri thức mới vào tri thức đã biết

Logic

Logic là gì

- Logic nghiên cứu có hệ thống về hình thức tranh luận
 - Một tranh luận hợp lệ khi giả thiết và kết luận liên hệ với nhau dựa trên nền tảng các khái niệm logic
- Chủ đề:
 - Phân loại
 - Trình bày
 - Nghiên cứu về suy diễn (hay ngụy biện)
 - Nghiên cứu về ngữ nghĩa (nghịch lý)

Suy diễn

L, T và J là 3 người khác nhau. L luôn nói dôi còn T luôn nói thật L cho biết vào ngày thứ bảy

- J đi làm
- J không đọc báo, J nấu ăn

T cho biết vào ngày thứ bảy

- J không làm việc, J cũng không xem tivi
- J đọc báo, xem tivi hoặc nấu ăn

Xác định J làm gì vào ngày thứ bảy

Các thành phần chính

- II Hệ cơ sở tri thức (Knowledge Base KB)
 - Tập các biểu diễn tri thức
 - Khả năng thêm tri thức mới
- 2 Cơ chế suy diễn
 - Suy diễn tri thức mới
 - Quyết định hành động dựa trên suy diễn

Tác tử logic


```
function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB, Make-Percept-Sentence(percept, t)) action \leftarrow Ask(KB, Make-Action-Query(t)) Tell(KB, Make-Action-Sentence(action, t)) t \leftarrow t + 1 return action
```

Đưa vào một quan sát:

- Tác tử thêm quan sát vào kho tri thức
- Truy vấn hành động tốt nhất
- Truyền hành động cần thực hiện cho tác tử

4.4	0.4	0.4	4.4
1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
-,-	_,_	-,_	-,-
OK			
1,1	2,1	3,1	4,1
A			,
OK	OK		

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square

P	= Pit
\mathbf{S}	= Stench
V	- Vicited

V	=	Visited

 $\mathbf{A} = Agent$

 $\overline{\mathbf{B}} = Breeze$

G = Glitter, Gold

OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

V = Visited

W = Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

1,1 V OK	2,1 B V OK	3,1 P!	4,1
1,2A S OK	2,2 OK	3,2	4,2
1,3 W!	2,3	3,3	4,3
1,4	2,4	3,4	4,4

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square

-	_ , ,,
S	= Stench
V	= Visited

 $\mathbf{W} = Wumpus$

 \mathbf{A} = Agent

B = Breeze
G = Glitter, Gold

OK = Safe square

 $\mathbf{P} = \mathbf{Pit}$

S = Stench

V = Visited

W = Wumpus

1,4	2,4 P ?	3,4	4,4
1,3 _{W!}	2,3 A S G B	3,3 P ?	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

Logics

Logics là các ngôn ngữ hình thức thể hiện thông tin và có thể rút ra các kết luận:

- Ngữ pháp định nghĩa các mệnh đề trong ngôn ngữ
- Ngữ nghĩa thể hiện ý nghĩa của các mệnh đề, cụ thể: chân lý (sự thực) trong một thế giới nào đó

Ví dụ ngôn ngữ toán học:

 $\blacksquare x + 2y \ge y$ là một mệnh đề

Logic mệnh đề

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2022 16 / 40

Logic mệnh đề l

Định nghĩa

Mệnh đề là một phát biểu có giá trị chân lý đúng hoặc sai

Ví dụ:

- Mặt trời quay quanh trái đất
- 1+1=2
- Học bài đi!(không phải là mệnh đề)

Chúng ta dùng các ký hiệu P,Q,R,\ldots để chỉ mệnh đề

Logic mệnh đề II

- Một mệnh đề chỉ có thể nhận giá trị đúng hoặc sai. Khi mệnh đề P đúng ta nói P có **chân trị đúng**, ngược lại P có **chân trị sai**
- Mệnh đề gồm 2 loại:
 - Mệnh đề phức hợp: được xây dựng từ các mệnh đề khác nhờ các phép toán logic.
 - Mệnh đề sơ cấp: là mệnh đề không thể xây dựng từ các mệnh đề khác

Các phép toán trên mệnh đề

- **11 Phép phủ định** của mệnh đề P, ký hiệu $\neg P$ là mệnh đề được định bởi: $\neg P = 1 \Leftrightarrow P = 0$
- Phép nối liền (hội, giao) của hai mệnh đề P và Q là mệnh đề được đinh bởi: $P \wedge Q = 1 \Leftrightarrow P = Q = 1$
- **Phép nối rời (tuyển, hợp)** của hai mệnh đề P và Q là mệnh đề được định bởi: $P \lor Q = 0 \Leftrightarrow P \land Q = 0$
- 4 Phép kéo theo của hai mệnh đề P và Q là mệnh đề được định bởi: $P \to Q = 0 \Leftrightarrow P = 1 \land Q = 0$
- 5 Phép kéo theo hai chiều của hai mệnh đề P và Q là mệnh đề được định bởi: $P\leftrightarrow Q=1\Leftrightarrow P=Q$

Mô hình

Mô hình là các thế giới được hình thức hóa dựa trên chân lý có khả năng đánh giá

- \blacksquare Một mô hình m trong logic mệnh đề là một phép gán chân trị cho các mệnh đề
- lacksquare 3 mệnh đề A,B,C
- \blacksquare $2^3 = 8$ mô hình

Ngữ pháp và ngữ nghĩa

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2022 21 / 40

Thể hiện đồ thị l

■ Một mô hình có thể được biểu diễn bằng một đồ thị có hướng:

- 5 đối tượng
- 2 quan hệ 2 ngôi
- 3 quan hệ 1 ngôi
- 4 1 hàm bậc nhất

• Ký hiệu hằng cho các đối tượng: $m(R) = o_1; m(J) = o_2$

Thể hiện đồ thị II

■ Ký hiệu hàm cho các cặp đối tượng

$$m(person) = \{o_1, o_2\}$$

$$m(king) = \{o_2\}$$

$$m(crown) = \{o_5\}$$

$$m(brother) = \{(o_1, o_2), (o_2, o_1)\}$$

$$m(onhead) = \{(o_5, o_2)\}$$

$$m(leftleg) = \{(o_1, o_3), (o_2, o_4)\}$$

Ngữ nghĩa

■ Ngữ nghĩa cho biết câu có chân trị true/false với mỗi mô hình

Suy dẫn

Định nghĩa (Suy dẫn)

KB suy dẫn câu α , ký hiệu $KB \models \alpha$ khi và chỉ khi $M(\alpha) \supseteq M(KB)$

Ví dụ

- Nếu hôm nay trời nắng, mình sẽ vui vẻ
- Nếu mình vui vẻ, bài giảng sẽ tốt
- Hôm nay trời nắng
- Bài giảng tốt?

Biểu diễn logic mệnh đề:

Ví dụ

- Nếu hôm nay trời nắng, mình sẽ vui vẻ
- Nếu mình vui vẻ, bài giảng sẽ tốt
- Hôm nay trời nắng
- Bài giảng tốt?

Biểu diễn logic mệnh đề:

- $lacksquare S = {
 m H\^{o}m}$ nay trời nắng, $H = {
 m M\`{i}}$ nh vui vẻ, $G = {
 m B\`{a}i}$ giảng tốt
- \blacksquare $(S \to H), (H \to G), (S) \to (G)$?

Liệt kê

S	Н	G	$S \to H$	$H \to G$	S	G
1			1	1	1	1
1	1	0	1	0	1	0
1	0	1	0	1	1	1
1	0	0	0	1	1	0
0	1	1	1	1	0	1
0	1	0	1	0	0	0
0	0	1	1	1	0	1
0	0	0	1	1	0	0

Hợp giải

Hợp giải

Số lượng mô hình khả thi là không giới hạn → Kiểm tra suy diễn bằng phương pháp liệt kê là không khả thi

Hình 1: 137,506,194,466 mô hình với số đối tượng ít hơn 6

Định nghĩa (Luật hợp giải)

Tiền đề là 2 mệnh đề phức hợp, trong đó tồn tại 2 mệnh đề sơ cấp tương phản giữa chúng. Kết luận là một mệnh đề phức hợp được tạo ra từ 2 tiền đề, trong đó 2 mệnh đề sơ cấp tương phản bị bỏ đi.

- Ví dụ:
 - $\blacksquare KB = \{A \lor B, \neg B \lor C\}$
 - Ta có thể thêm $A \lor C$ vào KB:

$$KB = \{A \lor B, \neg B \lor C, A \lor C\}$$

Luật hợp giải có đầy đủ không?

- Luật hợp giải có đầy đủ không?
 - \blacksquare Không, luật hợp giải không đảm bảo việc tìm ra tất cả các câu được suy dẫn từ KB

- Luật hợp giải có đầy đủ không?
 - \blacksquare Không, luật hợp giải không đảm bảo việc tìm ra tất cả các câu được suy dẫn từ KB
 - Nhưng, với một câu α bất kỳ ta có thể dùng luật hợp giải để kiểm tra $KB \models \alpha$
- Một mệnh đề α được gọi là không suy dẫn được khi và chỉ khi không có mô hình nào làm cho α đúng: $M(\alpha) = \emptyset$. Ngược lại: $M(\alpha) \neq \emptyset$

Luật hợp giải

- $\blacksquare KB \models \alpha \Leftrightarrow$
- $\blacksquare KB \models \alpha \Leftrightarrow$

Luật hợp giải

- $\blacksquare KB \models \alpha \Leftrightarrow M(KB) \cap M(\neg \alpha) = \emptyset$
- $\blacksquare KB \models \alpha \Leftrightarrow$

Luật hợp giải

- $\blacksquare KB \models \alpha \Leftrightarrow M(KB) \cap M(\neg \alpha) = \emptyset$
- $\blacksquare \ KB \models \alpha \Leftrightarrow KB \land \neg \alpha = 0$

Ví dụ

- 1 Chứng minh rằng: Với mọi số tự nhiên n nếu n^2 là số chẵn thì n là số chẵn.
- Chứng minh rằng nếu nhốt 25 con thỏ vào 6 cái chuồng thì sẽ có ít nhất 1 chuồng chứa nhiều hơn 4 con thỏ.

Dạng chuẩn CNF

- Câu dạng CNF (Conjunctive Normal Form) là câu gồm các mệnh đề phức hợp được nối lại với nhau bằng phép ∧
 - Ví dụ: $(A \lor B) \land (\neg C \lor D)$
- Bất kỳ câu nào đều có thể chuyển sang dạng chuẩn CNF

 - $\blacksquare \ \alpha \to \beta : \neg \alpha \lor \beta$

Ví dụ

- Cho $KB = \{A \rightarrow (B \lor \neg C), A, \neg B\}$
- \blacksquare Hỏi: $KB \models C$

STT	KB
1	$\neg A \vee B \vee C$
2	A
3	$\neg B$
4	$\neg C$
5	$B \lor \neg C$ (từ 1 và 2)
6	$\neg A \lor C$ (từ 1 và 3)

Ví dụ

■ Hổi: $KB \models C$

STT	KB
1	$\neg A \vee B \vee C$
2	A
3	$\neg B$
4	$\neg C$
5	$B \lor \neg C$ (từ 1 và 2)
6	$\neg A \lor C$ (từ 1 và 3)

 \blacksquare Không thể ra câu mới mà chưa xuất hiện mâu thuẫn $\to KB \not\models C$

Nhược điểm

- lacksquare Việc duyệt hết các mệnh đề trong KB mất nhiều thời gian và không khả thi
 - \blacksquare Khi kích thước KB lớn và mệnh đề kiểm tra không suy dẫn từ KB?

Nhược điểm

- lacksquare Việc duyệt hết các mệnh đề trong KB mất nhiều thời gian và không khả thi
 - lacktriangle Khi kích thước KB lớn và mệnh đề kiểm tra không suy dẫn từ KB?
 - Duyệt tất cả các cặp mệnh đề có thể và áp dụng luật hợp giải !!!
- Cần phải có phương pháp hiệu quả hơn

Phương pháp Davis Putnam

- Với mỗi mệnh đề sơ cấp mà có cặp mệnh đề phức hợp để hợp giải:
 - Hợp giải tất cả cặp các mệnh đề phức hợp có thể có, dừng khi gặp mâu thuẫn $\to KB \models \alpha$
 - Thêm các mệnh đề phức hợp kết quả, bỏ các mệnh đề phức hợp chứa biến mệnh đề này
- lacksquare Nếu không xuất hiện cặp mệnh đề mâu thuẫn: $KB \not\models \alpha$

Bài tập I

$$KB \models (A \to F)$$

$$A \to (B \lor C)$$

$$B \to (D \lor F)$$

$$A \land D \to F$$

$$C \to F$$

$$KB \models R$$

$$(P \to Q) \to Q$$

$$R \to (R \to \neg P)$$

$$(R \to S) \to \neg (S \to Q)$$

Bài tập II

$$KB \models C$$

$$KB \models (B \rightarrow \neg C)$$

$$A \rightarrow B \lor C$$

$$A \rightarrow D$$

$$C \lor D \rightarrow \lor F$$

$$B \rightarrow F$$

$$A$$

Tài liệu tham khảo

- [1] Trần Trung Kiên, Bộ môn Khoa học máy tính Bài giảng môn Cơ sở trí tuệ nhân tạo
- [2] Bùi Tiến Lên, Bộ môn Khoa học máy tính Bài giảng môn Cơ sở trí tuệ nhân tạo
- [3] Michael Negnevitsky

Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition)