CS 3510 — Algorithms, Spring 2022

Homework 3A Solutions

1 Restricted Paths

Description. First, we want to compute the distance from v_0 to every other node. This can be done using Dijkstra. Hence, we run Dijkstra $(G = (V, E), v_0)$ to get a distance $(dist_{fwd})$ map from $v_0 \to v : \forall v \in V$.

Now, set $E^R = \{(v,u) : (u,v) \in E\}$ which are the reversed edges in a graph and define $G^R = (V,E^R)$ as the reversed edge graph. Run Dijkstra $(G^R = (V,E^R),v_0)$ to get a distance $(dist_{bwd})$ map from $v_0 \to u: \forall u \in V$ in the reversed graph. This distance map also corresponds to $u \to v_0: \forall u \in V$ in G.

Hence, for any pair (u, v), the shortest path from $u \to v$ that goes through (u, v) can be given by $dist_{bwd}[u] + dist_{fwd}[v]$.

Justification. This algorithm is correctly as Dijkstra is an algorithm that returns a distance map from a fixed source to every possible destination in the graph from that source. The forward direction is trivially correct as it is a literal application of the algorithm.

Since Dijkstra's algorithm uses a fixed source with variable destinations, then reversing the edges lets us get the shortest paths from variable sources to a fixed destination. This is the exact necessity for the first half of the path from $u \to v_0$.

Finally, the shortest combined path is also the shortest path from $u \to v_0$ and $v_0 \to v$ when v_0 must be crossed. Hence, computing these two distances seperately and adding them is minimal.

Runtime. This algorithm runs the Dijkstra algorithm twice taking $\mathcal{O}((|V|+|E|)\log|V|)$ runtime and reverses the edges taking $\mathcal{O}(|E|)$ time giving a total runtime of $\mathcal{O}((|V|+|E|)\log|V|)$.