Esteganografía

Miguel Angel Astor Romero

4 de junio de 2019

Esteganografía

Agenda

- 1 Repaso
- 2 Criptoanálisis
- 3 Generación de números aleatorios
- 4 Esteganografía
- 5 Conclusiones

Tipos de cifrado

Cifrado simétrico

Conjunto de algoritmos y técnicas de cifrado que utilizan una única clave de cifrado secreta, compartida entre los participantes de la comunicación cifrada.

Cifrado asimétrico

Conjunto de algoritmos y técnicas de cifrado que utiliza dos claves de cifrado: una secreta o privada conocida solo a su dueño, y otra publica conocida por todo el mundo.

Cuando es Posible Romper Algoritmos de Cifrado

En general, es posible romper un criptosistema si se posee alguno de los siguientes:

- Conocimiento del algoritmo aplicado.
- Propiedades estadísticas del texto cifrado.
- Muchos textos cifrados de ejemplo.

Criptoanálisis por Análisis de Frecuencia

A	12,53	В	1,42	C	4,68	D	5,86	E	13,68	\mathbf{F}	0,69
\mathbf{G}	1,01	Н	0,70	I	6,25	J	0,44	K	0,01	\mathbf{L}	4,97
\mathbf{M}	3,15	N	6,71	$ ilde{\mathbf{N}}$	0,31	O	8,68	P	2,51	Q	0,88
R	6,87	\mathbf{S}	7,98	T	4,63	U	3,93	V	0,90	\mathbf{W}	0,02
\mathbf{X}	0,22	Y	0,90	\mathbf{Z}	0,02						

- En español las vocales suelen ocupar el 45 % del texto.
- La E y la A son las letras más fáciles de identificar.
- Las consonantes más frecuentes son: S, R, N, D, L y C.
- Las menos frecuentes son: Z, J, Ñ, X, W y K.
- También se aplica por frecuencia de palabras.

Examen de Kasiski

Repaso

Se aplica al cifrado de Vigenère. Ayuda a estimar la longitud de la clave.

CLAVE ABCDABCDABCDABCDABCDABCDABCD
Texto plano CRYPTOISSHORTFORCRYPTOGRAPHY
Cifrado CSASTPKVSIQUTGQUCSASTPIUAQJB

Criptoanálisis a Criptosistemas Digitales

- Se distinguen tres clases principales de criptoanálisis para cifrados de flujo y bloques:
 - Lineal búsqueda de aproximaciones afines al algoritmo de cifrado.
 - Diferencial análisis de la transformación que realiza el algoritmo sobre el texto plano.
 - Fuerza bruta búsqueda exhaustiva en el espacio de claves.

Esteganografía

Ataques de Fuerza Bruta

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

- Mecanismo inventado para el sistema operativo UNIX en 1970.
- Consiste en concantenar una sal aleatoria a las contraseñas antes de almacenarlas.
- Las contraseñas saladas no se almacenan directamiente, sino su hash.
- Archivo /etc/shadow/.

Sal Aleatoria

Número aleatorio concatenado a una contraseña antes de almacenarla.

Que Pasa si no se Salan las Contraseñas

HACKERS RECENTLY LEAKED 153 MILLION ADOBE USER EMAILS, ENCRYPTED PASSWORDS, AND PASSWORD HINTS.

ADOBE ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING BLOCK-MODE 3DES. THE RESULT IS SOMETHING WONDERFUL:

USER PASSWORD	HINT	
4e18acc1ab27b2d6 4e18acc1ab27b2d6	WEATHER VANE SWORD	
4e18acclab27a2d6 aDa2876eblealfica	NAME1	
8babb6299e06eb6d	DUH	
8babb6299e06eb6d a0a2876eblea1fca		
8babb6299e06eb6d 85e9da81a8a78adc	57	
877ab7889d3862b1	OBVIOUS	\vdash
877ab7889J3862b1	MICHAEL JACKSON	
38a7c9279cadeb44 9dcald79d4dec6d5		
38a7c9279cadeb44 9dcald79d4dec6d5	HE DID THE MASH, HE DID THE	
38a7c9279cadeb44	PURLOINED	
0800574507670f70 9dc07d79d4dec6J5	FAVILIATER-3 POKEMON	

THE GREATEST CROSSWORD PUZZLE IN THE HISTORY OF THE WORLD

Criptoanálisis

000000000

Generadores Pseudo-Aleatorios

Basados en una pareja de funciones:

$$f: X \to X$$

$$g: X \to Y$$

donde

Repaso

X conjunto grande de números.

Dada una semilla $s \in X$, se define la suseción:

$$\begin{cases} x_0 = s \\ x_i = f(x_{i-1}) \end{cases}$$

Finalmente, la sucesión aleatoria $y_0, y_1, y_2, ...$ se define como:

$$y_i = g(x_i) \quad \forall i \geqslant 0$$

El Problema de la Generación de Números Aleatorios

Las computadoras son máquinas determinísticas por naturaleza.

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Generador RC4

Repaso

Generación de Claves

```
for i from 0 to 255
        S[i] := i
endfor
j := 0
for i from 0 to 255
        j := j + S[i]
        j := j + key[i % keylength]
        j := j % 256
        swap(S[i], S[j])
endfor
```

Generación Pseudo-Aleatoria

```
i := 0
j := 0
while GeneratingOutput:
    i := (i + 1) % 256
    j := (j + S[i]) % 256
    swap(S[i], S[j])
    K := S[(S[i] + S[j]) % 256]
    print(K)
endwhile
```

Interfaces de Linux para Generación de Números Aleatorios

- Linux introdujo el concepto de generación de números aleatorios en el *kernel* del sistema operativo.
- Se proveen dos interfaces:
 - Los archivos especiales /dev/random/ y /dev/urandom.
 - La llamada al sistema getrandom().

¿Que ventajas tiene generar números aleatorios en el *kernel*?

/dev/random - random(4)

- Introducido en 1994 por Theodore Ts'o.
- Basado en funciones *hash* en lugar de criptosistemas.
 - Evade las leyes de exportación de Estados Unidos.
- Considerado obsoleto.

Procedimiento

- Mantener un *pool* de entropía.
- Al solicitar N bits del archivo, retornar el hash de los primeros N bits del pool si están disponibles.
 - La lectura es bloqueante si no están disponibles los bits.

/dev/urandom - random(4)

- Utiliza el *pool* de entropía para alimentar un generador de números pseudo-aleatorios.
- No es bloqueante.
- Apto para uso en criptografía si se da tiempo suficiente para alimentar el pool de entropía.
- \$ head -200 /dev/urandom | cksum | cut -f1 -d " "

getrandom(2)

Repaso

Banderas Disponibles

GRND_RANDOM usar /dev/random en lugar de /dev/urandom.
GRND_NONBLOCK llamada no bloqueante bajo ninguna circunstancia.

Valor de Retorno

Bytes aleatorios almacenados en buf.

- Steganos: oculto Graphos: escritura.
- Técnica de ocultación de mensajes.
- Provee confidencialidad y anonimato.

Esteganograma

- El objetivo es transmitir un mensaje garantizando confidencialidad.
- El mensaje confidencial debe ir embebido en un mensaje portador aparentemente inocente.
- La confidencialidad viene dada por que tan bien se puede confundir el mensaje portador con otros mensajes legítimos similares.

Señal Portadora

Comparación con la Criptografía

		Criptografía	Est eg an ografía		
Objetivo		Ofuscar el contenido	Oculta el hecho		
		de la comunicación.	de comunicación		
Características	Confidencialidad	Mensaje visible	Mensaje invisible		
		pero ilegible.	a un observador incauto.		
	Seguridad	Depende de la clave	Depende del método de		
		de cifrado	inserción del mensaje		
	Robustés	Depende del algoritmo de cifrado	Invisibilidad perceptual, estadísitica o de protocolo.		
	Ataques	Detección simple, extracción compleja.	Detección y extaccion complejas		
Contramedidas	Técnicas	Ingeniería inversa, criptoanálisis.	Est eg o an álisis.		
	Legales	Leyes de exportación.	Especificaciones rígidas		

Historia de la Esteganografía

- Esteganografía lingüistica.
- Esteganografía en medios digitales.
- Esteganografía en sistemas de archivos.
- Esteganografía en redes.

Esteganografía Lingüistica

- Uso del espaciado y/o signos de puntuación:
 - Lenguajes esotéricos.
 - Macros e interpretes automáticos.
- Selección y ordenamiento cuidadoso de palabras y sinónimos.
- SPAM!

Whitespace

Anfang

7,8-32

Esteganografía en Medios Digitales

Imágenes

Repaso

- Por dominio espacial o dominio de frecuencia.
- Aprovechando características de los formatos.
 - JPEG → Stegosploit.
- Puede usarse para firmar imágenes.

Audio

- Enmascaramiento de frecuencia, ocultación en ecos, codificación de fase, técnicas de espectro disperso.
- Códigos de corrección de errores.

Esteganografía en Sistemas de Archivos

- Inventados por Anderson, Needham y Shamir (1998):
 - Oculta los archivos y la metadata de los mismos.
 - Los archivos solo se pueden recuperar con sus respectivas claves.
 - Provee negación plausible.
 - Dos métodos:
 - Archivos aleatorios con vectores marcadores.
 - Particiones aleatorias.
- StegFS, Pang et al. 2003.

- Concatenación en archivos binarios.
- Nombres de archivos.

Figura: Narbonic, © 2000-2006 por Shaenon K. Garrity.

rednaeroc darnoc lrac skoob dlo This inscription could be seen on the glass door of a small shop but naturally this was only the way it looked if you were inside the dimly lit shop looking out at the street through the plate-glass door Outside it was a gray cold rainy November morning The rain ran down the the glass and over the ornate letters Through the glass there was nothing to be seen but the rain-splotched wall across the street endquote Meanwhile Im saving my money I want to buy one of those yellow inflatable life rafts Also Im looking around for a really intelligent chicken endquote

- Explotar características de protocolos de red.
- Intra-protocolo o inter-protocolo.
- Aprovecha las siguientes características de las redes:
 - La existencia de retrasos o errores en la transmisión.
 - Información redundante o reservada en los protocolos.
 - Libertad de implementación en los protocolos.
- Tecnologías VoIP y de streaming de video pueden ser susceptibles a esteganografía de audio y de redes.

- Modificación del PDU, el payload o ambos.
- Alteración de la secuencia de envío de mensajes.
- Codificar el mensaje en retrasos controlados.
- Introducir "errores" en los mensajes.
- Esteganografía de transcoding (TranSteg):
 - Utiliza principalmente el protocolo RTP.

₹

900

TranSteg

Repaso

intentionally not changed Checksums recalculated

Ejemplos con Protocolos Específicos

- SkyDe (2 Kbps):
 - Utiliza paquetes de Skype.
 - Esconde los mensajes en los silencios.
- StegTorrent (270 bps):
 - Utiliza el mecanismo de números de secuencia de µTP.
- WiPad (1.5 Mbps):
 - Utiliza el padding de frames en redes inalámbricas que usan OFDM.

Conclusiones

- Se estudiaron varias clases de criptoanálisis.
- Usualmente el eslabón más debil de un criptosistema son sus usuarios.
- La generación de números aleatorios es un problema dificil para las computadoras.
- La esteganografía es fascinante.

Tarea

- Hay 1 mensaje oculto en esta presentación.
- La tarea es identificarlo y realizar la actividad que indica.

Esteganografía

Próxima Clase

- Taller 1:
 - Critpografía Simétrica
 - Esteganografía.
 - Estegoanálisis.
 - Stegosploit.

