

- 1. Find the first order partial derivatives of the following functions at the point (x, y) from the first principles/definitions.
 - (i) $f(x,y) = x^2 + y^2 + x$
 - (ii) $f(x,y) = \sin(2x + 3y)$
- 2. Show that the function

$$f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x+y} & ; x+y \neq 0\\ 0 & ; x+y = 0 \end{cases}$$

is continuous at (0,0) but its partial derivatives f_x and f_y do not exist at (0,0).

3. Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$$

is not continuous at (0,0) but its partial derivatives f_x and f_y exist at (0,0).

4. Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$$

has partial derivatives $f_x(0,0)$ and $f_y(0,0)$, but the partial derivatives are not continuous at (0,0).

- 5. Let $f(x,y) = x^2 xy + y^2 y$. Find the direction **u** and the value of $D_{\mathbf{u}}f(1,-1)$ for which
 - (i) $D_{\mathbf{u}}f(1,-1)$ is largest
 - (ii) $D_{\mathbf{u}}f(1,-1)$ is smallest
 - (iii) $D_{\mathbf{u}}f(1,-1)=0$
 - (iv) $D_{\mathbf{u}}f(1,-1)=4$
 - (v) $D_{\mathbf{u}}f(1,-1)=-3$
- 6. Is there a direction **u** in which the rate of change of $f(x,y) = x^2 3xy + 4y^2$ at P(1,2) equals 14? Give reason for your answer.
- 7. The derivative of f(x, y, z) at a point P is greatest in the direction of $\vec{v} = \vec{i} + \vec{j} \vec{k}$. In this direction the value of the derivative is $2\sqrt{3}$.
 - (i) What is ∇f at P? Give reason for your answer.
 - (ii) What is the derivative of f at P in the direction of $\vec{i} + \vec{j}$?

1