

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Capacitance
 - Capacitance example
 - A circuit has a source voltage of 24vdc and stores one coulomb of charge
 - Find the circuit capacitance in milli-farads

$$C = \frac{1coulomb}{24V}$$

C = ?? mF

MECH 10 Fundamentals of Electronics

Mechatronics

Capacitance

SIERRA Cellege

- Capacitive phase shift
 - ICE current leads voltage
 - 90° for a perfect capacitor

Capacitors resist changes in their applied voltage by converting electrostatic field strength into CEMF

MECH 10 Fundamentals of Electronics

- Inductance & Capacitance
 - ELI the ICE man

MECH 10 Fundamentals of Electronics

- Capacitance
 - Series Capacitance
 - Plate area same
 - Dielectric thicker
 - Capacitance reduced

$$C_T = \frac{C}{N}$$

$$C_T = \frac{C_1 \times C_2}{C_1 + C_2}$$

$$C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}}$$

Equal value capacitors

Two capacitor circuits

General formula

SIERRA

MECH 10 Fundamentals of Electronics

Capacitance

- Series Capacitance Example
 - A circuit has two 0.043µF capacitors in
 - Find the total circuit capacitance

$$C_T = \frac{C}{N}$$

$$C_T = \frac{C_1 \times C_2}{C_1 + C_2}$$

$$C_T = \frac{C_1 \times C_2}{C_1 + C_2} \qquad C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}}$$

Equal value capacitors

Two capacitor circuits

General formula

MECH 10 Fundamentals of Electronics

Capacitance

- Series Capacitance Example
 - A circuit has two 0.043µF capacitors in series
 - Find the total circuit capacitance

Equal value capacitors

$$C_{T} = \frac{C}{N}$$

$$C_{T} = \frac{0.0430 \mu F}{2}$$

$$C_{T} = 0.???? \mu F$$

MECH 10 Fundamentals of Electronics

Capacitance

- Parallel Capacitance
 - Plate area increased
 - Dielectric same
 - Capacitance additive

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

Capacitance

- Parallel Capacitance Example
 - A circuit has 3 0.043μF capacitors in parallel
 - Find total capacitance

$$C_T = C_1 + C_2 + C_3 + ... C_n$$

 $C_T = 0.043 \mu F + 0.043 \mu F 0.043 \mu F$
 $C_T = 0.??? \mu F$

MECH 10 Fundamentals of Electronics

• Lab 13 – RC Time Constants

Learning Objectives

- Characterize the output of an RC time constant circuit
- Calculate RC time constants for specified components
- Calculate and measure frequency and period

		Points Possible
Documentation	Quality of documentation (neatness, darity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
RC Time Constant	Resistance and capacitance values recorded	5
	Scatter plot drawn accurately with time constants shown	5
Astable Multivibrator	Scatter plot drawn, accurate with annotations	5
	Expected charge and discharge times calculated and compared to measured values	5
	Expected output frequency calculated and compared to measured values	5
Monostable Multivibrator	Expected output operation time calculated and compared to measured value	5
	Waveforms drawn accurately with annotations	5
Conclusions	Questions answered completely & accurately.	10
	Total	55

SDG 8