数理と実装 2015 (10月3日)

私の実装

- Real-Time Human Pose Recognition in Parts from Single Depth Images (CVPR 2011 Best Paper)
- X-Box 360 の Kinect V1 の元になっている手法

簡単なおさらい(1/3)

デプスマップから各ピクセルでセグメンテーションを行います

原理説明(超簡単版)

原理説明(超簡易版)

• クイズ: このデプスはどの部位でしょうか

原理説明(超簡易版)

・ クイズ: このデプスはどの部位でしょうか

クイズ

• クイズ:このデプスはどの部位でしょうか

クイズ

• このデプスはどの部位でしょうか

人間は経験則から、切り取られた Window から、どの部位かは推測出来る

if(デプス(v1) – デプス(v2) > 20cm) 右手?

if(デプス(v1) – デプス(v2) > 20cm) 右手?

if(デプス(1) – デプス(v2) > 20cm) 右手?

if(デプス(v1) – デプス(v2) > 20cm) 右手? else

左手?

簡単なおさらい(2/3)

これを繰り返すと Kinect v1 で使われている、 木構造の Decision Tree になります (神速!)

```
if(デプス(v1) - デプス(v2) > 20cm)
if(デプス(v3) – デプス(v4) > 11cm)
 if(デプス(v5) – デプス(v6) > 32cm)
   右手:
 else
   頭:
```

簡単なおさらい(2/3)

Decision Tree は弱識別機です → 極端な話、正解率 51 % とかでもいい。。。

簡単なおさらい(3/3)

サンプルを適当に分割して、Decision Tree を作成して解決! (弱識別器 x 100 = 強識別器)

→ Random Forest

しかし、この研究のキモは、 ランタイムのアルゴリズムで はない気がします

学習時にて、Decision Tree を作る際、正解データはどう用意する?

学習データ

学習データの自動生成

- ・学習データの生成の流れ
 - Autodesk MotionBuilderより素体を選択
 - 素体の各関節にモーションキャプチャのデータを設定し、 3Dメッシュを変形
 - ・色々なパラメータをランダムに設定
 - 身長・幅・形状・カメラ姿勢・カメラノイズ・衣服・髪など
 - 3Dメッシュをレンダリングし、デプスを取得

藤吉(MIRU)より無断引用

- •もつと詳しい解説は Computer Graphics Gems JP 2015 に載ってます
 - •ソースコードも git にあがってます
 - https://github.com/DaidaYamamoto/KansaiCV/tree/master/BodyTrack
 - ・藤吉先生の「Random Forestsとその応用」の方が100倍分かりやすいです
- *デモしたかったんですが、Kinect 持ってくるの面倒だったです

ここから本番

- ・これだとただCVPR 論文実装しただけで 終わってしまう
 - •製品向けのアルゴリズムなんで、そもそも 新規性が薄い
 - •伸びしろの無さが凄い
- •他に応用例を考えてみる

世界中の人々が機械学習を連呼している時代

我々の強みを出すなら、今まで培ってきた CG の技法を使わないと出来ないことを考える

Reminder.... (学習サンプルの生成)

学習データの自動生成

- ・学習データの生成の流れ
 - Autodesk MotionBuilderより素体を選択
 - 素体の各関節にモーションキャプチャのデータを設定し、 3Dメッシュを変形
 - ・色々なパラメータをランダムに設定
 - 身長・幅・形状・カメラ姿勢・カメラノイズ・衣服・髪など
 - 3Dメッシュをレンダリングし、デプスを取得

Reminder.... (学習サンプルの生成)

• 手動タイプ

- ・イメージから物体識別
 - CIFAR image classification benchmark
- 手書きの数字
 - MNIST handwritten digits benchmark
- 顔のランドマーク
 - 300 Faces in-the-Wild Challenge

- Real-Time Hand-Tracking with a Color Glove (Siggraph 2009)
 - 手の3Dモデルを使って自動でアニメーションさせて、3Dレンダリング
- Real-Time Human Pose Recognition in Parts from Single Depth Images (CVPR 2011)
 - モーションキャプチャのデータを人にあてはめて、3Dレンダリング

(Procedual) Modeling + (PhotoRealistic) Rendering

- 顔
 - •もう出来てる
 - Face Alignment at 3000 FPS via Regressing Local Binary Feature (CVPR 2014)
 - Caffeで試す絵師判定(SIG2D)
 - ・製品化もしてる
 - OKAO, FACE++, Motion Portrait

- •手
 - ・みんなやってる
 - Cascaded Hand Pose Regression (CVPR 2015 Poster)
 - Latent regression forest: Structured estimation of 3d articulated hand posture (CVPR 2014)
 - Real-Time Hand-Tracking with a Color Glove (Siggraph 2009)
 - ・製品化もしてる
 - Leap Motion, Kinect v2....

- 胴体
- ・みんなやってる
 - Real-Time Human Pose Recognition in Parts from Single Depth Images (CVPR 2011)
 - Accurate Realtime Full-body Motion Capture Using a Single Depth Camera (Siggraph Asia 2012)
 - Mosh: Motion and Shape Capture from Sparse Markers (Siggraph Asia 2014)
 - ・製品化もしてる
 - Kinect v2, Softkinetics

CG の Procedural modeling (Rendering) (SG14/15 SGASIA 15 EG 15 から抜粋)

• 建物

- Advanced Procedural Modeling of Architecture (SG15)
- Learning Shape Placements by Example (SG15)
- Interactive Dimensioning of Parametric Models (EG15)

• 林•木

 WorldBrush: Interactive Example-based Synthesis of Procedural Virtual Worlds (SG15)

- Controlling Procedural Modeling Programs with Stochastically-Ordered Sequential Monte Carlo (SG15)
- Inverse Procedural Modeling of Trees (EG14)

• 外観

 Procedural Design of Exterior Lighting for Buildings with Complex Const (SG14)

• 滝

• Interactive Procedural Modeling of Coherent Waterfall Scenes (EG15)

Deep Cherry Tomato

クイズ:この画像はチェリートマトのどこでしょう

- 1)花 or 実
- 2)茎
- ・3)葉っぱ

クイズ:この画像はチェリートマトのどこでしょう

- 1)花 or 実
- 2)茎
- ・3)葉っぱ

なんか、出来そうな気もする。。。

Deep Cherry Tomato Framework

Deep Cherry Tomato Framework

Rendered with

Deep Cherry Tomato Framework

Rendered with

Deep Cherry Tomato Framework

128x128 の画像 x 50000 x 4 クラス (7 モデル x Cherry Tomato から)

花

葉

茎

Deep Cherry Tomato Framework

Google のイメージ検索の画像を突っ込んで、 per pixel でセグメンテーション

- →Deep Learning の精度をあげるには、
 - 本当は画角とかを合わせて撮影したほうがいいのだが。。。
- →手持ちのデジカメの公開情報が少ないため
- →チェリートマトってどこで撮影出来るの。。。?

Based on tutorials by the Caffe creators at UC Berkeley

Caffe: Open Source Deep Learning Library

結果

青色:実 or 花 緑色:葉っぱ 赤色:茎

トマト多め?

- →全体的にざっくりセグメンテーション
- →赤色見つけたら問答無用でトマトにする傾向?
- →学習にはまったくないケースだが頑張ってる

青色:実 or 花 緑色:葉っぱ

赤色:茎

青色:実 or 花 緑色:葉っぱ 赤色:茎

描画と実際のシーンの違い

- →トマトにスペキュラが乗ってる
- →トマトが一列に並んでいる(人工的だから?)

青色:実 or 花 緑色:葉っぱ

赤色:茎

青色:実 or 花 緑色:葉っぱ 赤色:茎

当然だが、サンプルには全くないケース

青色:実 or 花 緑色:葉っぱ

赤色:茎

突っ込みどころも一杯 言いたいことも一杯

今日話をしたいこと

	今回	今後に向けて
モデラ (Xfrog)	無料ダウンロード出来る、 7 モデルを使用	自然界にある物が生成出来ない CUI やバッチでモデルが生成出来ない
テクスチャ	無料ダウンロード出来る サンプルを使用	BSDF が無い キャプチャも実測ベースでやるべきかも
天体モデル	Mitsuba の天体モデルを 使用(ランダム)	タ日が出ない。雲も出ない IBLを使った方がいいかもしれない。。。
カメラモデル	Mitsuba で画角をランダ ムに変更	手持ちのカメラに合わせた方がよさそう
トーンマップ	Mitsuba の Reihhard を 使用	手持ちのカメラで実測する必要がある?
Deep Learning	Caffe の AlexNet を使用	素人なので勉強しないと
応用例	チェリートマトのみ	他の花、木や街にも応用できるかも? けど需要ある?