

MECH468: Modern Control Engineering MECH509: Controls

L24: Observer-based control

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

Zoom lecture to be recorded and posted on Canvas

MECH 468/509

Course plan

Topics	СТ	DT
Modeling Stability Controllability/observability Realization → State feedback/observer LQR/Kalman filter		

Review & today's topic

- During the last two weeks
 - State feedback
 - Observer
- Today
 - Observer-based control (i.e., combination of state feedback and observer)
 - Separation principle

State feedback & observer (review)

State feedback

Observer

Observer-based control

Observer-based control

• LTI plant
$$\Sigma$$
:
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- Observer $\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu(t) + L(y(t) C\hat{x}(t))$
- Feedback $u(t) = r(t) K\hat{x}(t)$
- Closed-loop system

$$\begin{cases}
\begin{bmatrix} \dot{x}(t) \\ \hat{x}(t) \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A - LC - BK \end{bmatrix} \begin{bmatrix} \dot{x}(t) \\ \hat{x}(t) \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} \dot{x}(t) \\ \hat{x}(t) \end{bmatrix}$$

Observer-based control (cont'd)

• Take a new state vector $\begin{bmatrix} x(t) \\ e(t) \end{bmatrix} := \underbrace{\begin{bmatrix} I & 0 \\ I & -I \end{bmatrix}}_{T} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}$ $(T^{-1} = T)$

$$\left\{ \begin{bmatrix} \dot{x(t)} \\ e(t) \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

Analysis of CL system

- Stability: CL system is internally stable if and only if both (A-BK) and (A-LC) are stable.
- Separation principle: Eigenvalues of (A-BK) and (A-LC) does not affect each other. Namely, design of state feedback and observer can be carried out separately!
- Transfer function: as if there were no observer.

$$G_{yr}(s) = C(sI - A + BK)^{-1}B$$

Rule of thumb: eig(A-LC) should be far left to eig(A-BK), but such eigs may amplify initial e.

- State vector $x := \left[z, \dot{z}, \theta, \dot{\theta}\right]^T$
- SS model around x=0

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{(I+ml^2)b}{d} & -\frac{m^2l^2g}{d} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{mlb}{d} & \frac{(M+m)mgl}{d} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{I+ml^2}{d} \\ 0 \\ -\frac{ml}{d} \end{bmatrix} u \\ d := I(M+m) + Mml^2 \\ y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x \end{cases}$$

Use the estimate of the state for state feedback. Then, what will happen?

Inverted pendulum example

$$\sigma(A - LC) = \{-40, -41, -42, -43\}$$

$$\sigma(A - BK) = \{-8 \pm 7j, -5 \pm j\}$$

$$\left[\begin{array}{c} x(0) \\ e(0) \end{array}\right] = \left[\begin{array}{c} 0.1 \\ 0.1 \\ \vdots \\ 0.1 \end{array}\right]$$

$$r = 0$$

Inv. pendulum example (cont'd)

$$\sigma(A - LC) = \{-8 \pm 7j, -5 \pm j\}$$

$$\sigma(A - BK) = \{-40, -41, -42, -43\}$$

$$\left[\begin{array}{c} x(0) \\ e(0) \end{array}\right] = \left[\begin{array}{c} 0.1 \\ 0.1 \\ \vdots \\ 0.1 \end{array}\right]$$

$$r = 0$$

State feedback with an integrator (Review)

Observer-based servo control

Observer-based servo control

• LTI plant
$$\Sigma$$
:
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- Observer $\frac{d}{dt}\hat{x}(t) = A\hat{x}(t) + Bu(t) + L(y(t) C\hat{x}(t))$ Feedback $u(t) = -[K, K_a]\begin{bmatrix} \hat{x}(t) \\ x_a(t) \end{bmatrix}$ $\dot{x}_a(t) = r(t) Cx(t)$
- Closed-loop system

$$\begin{cases}
\begin{bmatrix} x(t) \\ x_a(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} A - BK & -BK_a & BK \\ -C & 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_a(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} C & 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_a(t) \\ x_a(t) \\ e(t) \end{bmatrix}$$

Observer-based servo control When y for observer and y for feedback signal are different

Observer-based servo control (cont'd)

(cont'd)
• LTI plant
$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \\ y_o(t) &= C_ox(t) \end{cases}$$

- Observer $\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y_o(t) C_o\hat{x}(t))$
- Feedback $u(t) = -[K, K_a] \begin{bmatrix} \hat{x}(t) \\ x_a(t) \end{bmatrix}$ $\dot{x}_a(t) = r(t) Cx(t)$
- Closed-loop system

$$\begin{cases}
\begin{bmatrix} x(t) \\ x_a(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} A - BK & -BK_a & BK \\ -C & 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_a(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} C & 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_a(t) \\ x_a(t) \\ e(t) \end{bmatrix}$$

Summary

- Observer-based control
 - Separation principle
 - Inverted pendulum example ("pendulum3.m")
- State feedback and observer for DT systems are exactly the same as those for CT systems.
- Next,
 - Linear Quadratic Regulator (optimal state feedback)
 - Kalman Filter (optimal state estimator)

Course plan

Topics	СТ	DT	
Modeling Stability Controllability/observability Realization State feedback/observer LQR/Kalman filter	✓✓✓✓✓6 lec	√ √ √ tures	

MECH 468/509