Diskrete Wahrscheinlichkeitstheorie

Abgabetermin: 9. Juli 2014, 10 Uhr in die DWT Briefkästen

Hausaufgabe 1 (5 Punkte)

Seien X_1, X_2, \ldots kontinuierliche Zufallsvariable, die identisch verteilt und unabhängig sind mit $E[X_i] = 2$ und $Var[X_i] = 4$. Wir betrachten $Y_n = \sum_{i=1}^n X_i$. Berechnen Sie die folgenden Grenzwerte und begründen Sie die Korrektheit Ihrer Herleitung.

- 1. $\lim_{n\to\infty}\Pr[\frac{Y_n}{n}=2]$. Benutzen Sie für Ihre Herleitung nicht den Zentralen Grenzwertsatz.
- 2. $\lim_{n \to \infty} \Pr[1, 9 < Y_n < 2, 1].$
- 3. $\lim_{n\to\infty} \Pr[1.99 < \frac{Y_n}{n} < 2.01].$

Hausaufgabe 2 (5 Punkte)

Gegeben sei eine Zufallsvariable 'Notenverteilung' N mit diskreten Werten $W_N = \{1, 2, 3, 4, 5\}.$

Annahme für Wahrscheinlichkeiten $\Pr[N=i]=p_i$: $p_1=0.05,\ p_2=0.05,\ p_3=0.2,\ p_4=0.4$ und $p_5=0.3$.

Zur Prüfung der Hypothese $H_0: \Pr[N=i] = p_i \ \forall i$, dass nämlich die angenommenen Wahrscheinlichkeiten alle zutreffen, wird ein χ^2 -Anpassungstest zum Signifikanzniveau 0.1 verwendet.

1. Kann die folgende Häufigkeitsverteilung der Notenvergabe bei n=120 Klausuren abgelehnt werden?

$$h_5 = 41$$
, $h_4 = 50$, $h_3 = 20$, $h_2 = 5$, $h_1 = 4$.

2. Für welchen maximalen Wert von $r \geq 0$ kann die folgende Häufigkeitsverteilung noch akzeptiert werden:

$$h_5' = 41 + r$$
, $h_4' = 50$, $h_3' = 20 - r$, $h_2' = 5$, $h_1' = 4$.

<u>Hinweis:</u> Den Wert von $\chi^2_{4,0.9}$ finden Sie auch in der Tabelle C im Anhang des Buches Schickinger/Steger.

Hausaufgabe 3 (5 Punkte)

Wir betrachten einen Spielautomaten, der in jedem Spiel mit Wahrscheinlichkeit $p \geq \frac{3}{4}$ auf Gewinn für den Betreiber entscheidet. Allerdings kommt es vor, dass der Automat aufgrund einer fehlerhaften Verhaltensänderung dauerhaft nur mit Wahrscheinlichkeit $p \leq \frac{1}{4}$ in einem Spiel auf Gewinn entscheidet. Der Betreiber testet den Automaten mit einer Stichprobe von 12 Spielen und nimmt dabei an, dass die Anzahl T des Auftretens eines Gewinns nach dem Satz von DeMoivre als normalverteilte Zufallsvariable angenähert werden darf.

- 1. Formulieren Sie einen Test zur Überprüfung der Hypothese $H_0: p \geq \frac{3}{4}$, die Sie ablehnen, wenn bei 12 Spielen höchstens 6 Mal Gewinn gemacht wird.
 - Berechnen Sie näherungsweise den Wert des Fehlers 1. Art.
- 2. Bestimmen Sie zu Ihrem Test den Wert des Fehlers 2. Art unter der Annahme, dass $\frac{1}{4} ausgeschlossen werden kann.$

Hausaufgabe 4 (5 Punkte)

Die folgende Tabelle gibt die Ziehungshäufigkeiten der Superzahlen wieder:

Wenden Sie den χ^2 -Anpassungstest auf die Nullhypothese, dass nämlich die Ziehungswahrscheinlichkeit für jede Superzahl $\frac{1}{10}$ ist, an (Signifikanzniveau 0.1).

Zusatzaufgabe 5 (Wird nicht korrigiert)

Beweisen oder widerlegen Sie die folgenden Aussagen. Begründen Sie Ihre Anworten.

- 1. Es gibt eine endliche (zeithomogene) Markov-Kette, die keinen absorbierenden Zustand besitzt.
- 2. Es gibt eine endliche (zeithomogene) Markov-Kette, die nur transiente Zustände besitzt.

Zusatzaufgabe 6 (Wird nicht korrigiert)

Beweisen oder widerlegen Sie die folgenden Aussagen. Begründen Sie Ihre Antworten.

- 1. Ein transienter Zustand einer Markov-Kette wird mit Wahrscheinlichkeit 1 verlassen.
- 2. Sei $\begin{pmatrix} 0,5&0,5\\0,1&0,9 \end{pmatrix}$ die Übergangsmatrix einer Markov-Kette M mit entsprechenden Zuständen 1 und 2. M sei im Zustand 1. Dann ist die Wahrscheinlichkeit gleich 1, dass irgendwann ein Zustandsübergang in den Zustand 2 erfolgt.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Seien $(X_t)_{t\in\mathbb{N}_0}$ die Zufallsvariablen einer zeithomogenen Markov-Kette über den Zuständen $Q = \{0, 1, 2\}$ mit Übergangsmatrix

$$P = (p_{i,j}) = \begin{pmatrix} 0.25 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{pmatrix}.$$

Die Dichtefunktion von X_0 , d. h., die Startverteilung der Markov-Kette sei $q_0 = (s_0, s_1, s_2)$.

- 1. Berechnen Sie die Dichtefunktion q_1 von X_1 .
- 2. Bestimmen Sie die Menge aller stationären Startverteilungen.
- 3. Beweisen Sie die Unabhängigkeit der beiden Variablen X_0 und X_1 . Dabei sind X_0 und X_1 als Zufallsvariable über dem zugeordneten Wahrscheinlichkeitsraum $\langle \Omega, \Pr \rangle$ zu betrachten mit

$$\Omega = \{(x_0, x_1) : x_0, x_1 \in Q\}, \quad \Pr[(x_0, x_1)] = (q_0)_{x_0} \cdot \Pr[X_1 = x_1 | X_0 = x_0],$$

$$X_0((x_0, x_1)) = x_0 \quad \text{und} \quad X_1((x_0, x_1)) = x_1.$$

Vorbereitung 2

- 1. Wir betrachten Markov-Ketten M mit 6 Zuständen. Wie viele transiente Zustände kann M höchstens besitzen? Begründung!
- 2. Wie viele stationäre Verteilungen besitzt die Markovkette mit Übergangsmatrix

$$P = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{array}\right)?$$

Begründung!

3. Gegeben sei eine Markov-Kette M mit Zustandsmenge $S = \{0, 1, 2, ...\}$, $p_{n,(n+1)} = 2/3$ und $p_{n,0} = 1/3$ für alle $n \in S$. Wie groß ist die Wahrscheinlichkeit, sich nach langer Zeit im Zustand i zu befinden?

Tutoraufgabe 1

Zwei Zustände A und B einer Markov-Kette gehören zu einer Kommunikationsklasse genau dann, wenn A von B aus erreichbar ist und umgekehrt. Gegeben sei eine Markovkette mit Zustandsmenge $S = \{0, 1, 2, 3, 4, 5\}$ und Übergangsmatrix

$$M = \begin{pmatrix} 0, 5 & 0, 5 & 0 & 0 & 0 & 0 \\ 0, 3 & 0, 7 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0, 1 & 0 & 0, 9 & 0 \\ 0, 25 & 0, 25 & 0 & 0 & 0, 25 & 0, 25 \\ 0 & 0 & 0, 7 & 0 & 0, 3 & 0 \\ 0 & 0, 2 & 0 & 0, 2 & 0, 2 & 0, 4 \end{pmatrix}.$$

- 1. Welche Zustände bilden eine Kommunikationsklasse? Welche davon sind rekurrent, welche transient?
- 2. Wir starten im Zustand 0. Wie groß ist die Wahrscheinlichkeit, nach einer längeren Zeit im Zustand 0 zu sein?

Tutoraufgabe 2

Wir betrachten eine Markov-Kette M mit der Zustandsmenge $S = \{0, 1, 2\}$ und der Folge $X_0, X_1, X_2, X_3, \ldots$ von Zufallsvariablen, die durch das folgende Übergangsdiagramm in Abhängigkeit eines Parameters p mit 0 gegeben ist:

- 1. Bestimmen Sie die Übergangsmatrix P von M.
- 2. Geben Sie die Wahrscheinlichkeit $Pr[T_{0,2} = 3]$ an. Dabei sei $T_{0,2}$ die Zufallsvariable der Übergangszeit von Zustand 0 in den Zustand 2.
- 3. Berechnen Sie die erwartete Übergangszeit $h_{0,2}$. Der Rechenweg muss aus Ihrem Protokoll hervorgehen.
- 4. Berechnen Sie die stationäre Verteilung q^T von M.

Tutoraufgabe 3

Gegeben sei die Übergangsmatrix P einer Markov-Kette M mit Zuständen $S = \{0, 1, 2, 3\}$ wie folgt:

$$P = \left(\begin{array}{cccc} 0.4 & 0.6 & 0 & 0\\ 0 & 0 & 0.8 & 0.2\\ 0 & 0.2 & 0.8 & 0\\ 0 & 0 & 0 & 1 \end{array}\right).$$

- 1. Bestimmen Sie die Menge der transienten Zustände. Begründung!
- 2. Berechnen Sie die Ankunftswahrscheinlichkeit $f_{0,2}$. Dabei muss jeweils der Rechenweg aus dem Protokoll hervorgehen.