It is easily shown that the structure $E_{\mathbb{C}}$ is a complex vector space. It is also immediate that

$$(0, v) = i(v, 0),$$

and thus, identifying E with the subspace of $E_{\mathbb{C}}$ consisting of all vectors of the form (u, 0), we can write

$$(u, v) = u + iv.$$

Observe that if (e_1, \ldots, e_n) is a basis of E (a real vector space), then (e_1, \ldots, e_n) is also a basis of $E_{\mathbb{C}}$ (recall that e_i is an abbreviation for $(e_i, 0)$).

A linear map $f: E \to E$ is extended to the linear map $f_{\mathbb{C}}: E_{\mathbb{C}} \to E_{\mathbb{C}}$ defined such that

$$f_{\mathbb{C}}(u+iv) = f(u) + if(v).$$

For any basis (e_1, \ldots, e_n) of E, the matrix M(f) representing f over (e_1, \ldots, e_n) is *identical* to the matrix $M(f_{\mathbb{C}})$ representing $f_{\mathbb{C}}$ over (e_1, \ldots, e_n) , where we view (e_1, \ldots, e_n) as a basis of $E_{\mathbb{C}}$. As a consequence, $\det(zI - M(f)) = \det(zI - M(f_{\mathbb{C}}))$, which means that f and $f_{\mathbb{C}}$ have the *same* characteristic polynomial (which has real coefficients). We know that every polynomial of degree n with real (or complex) coefficients always has n complex roots (counted with their multiplicity), and the roots of $\det(zI - M(f_{\mathbb{C}}))$ that are real (if any) are the eigenvalues of f.

Next we need to extend the inner product on E to an inner product on $E_{\mathbb{C}}$.

The inner product $\langle -, - \rangle$ on a Euclidean space E is extended to the Hermitian positive definite form $\langle -, - \rangle_{\mathbb{C}}$ on $E_{\mathbb{C}}$ as follows:

$$\langle u_1 + iv_1, u_2 + iv_2 \rangle_{\mathbb{C}} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle + i(\langle v_1, u_2 \rangle - \langle u_1, v_2 \rangle).$$

It is easily verified that $\langle -, - \rangle_{\mathbb{C}}$ is indeed a Hermitian form that is positive definite, and it is clear that $\langle -, - \rangle_{\mathbb{C}}$ agrees with $\langle -, - \rangle$ on real vectors. Then given any linear map $f \colon E \to E$, it is easily verified that the map $f_{\mathbb{C}}^*$ defined such that

$$f_{\mathbb{C}}^*(u+iv) = f^*(u) + if^*(v)$$

for all $u, v \in E$ is the adjoint of $f_{\mathbb{C}}$ w.r.t. $\langle -, - \rangle_{\mathbb{C}}$.

Proposition 17.6. Given a Euclidean space E, if $f: E \to E$ is any self-adjoint linear map, then every eigenvalue λ of $f_{\mathbb{C}}$ is real and is actually an eigenvalue of f (which means that there is some real eigenvector $u \in E$ such that $f(u) = \lambda u$). Therefore, all the eigenvalues of f are real.