恒远传感称重软件使用说明

蚌埠恒远传感器科技有限公司

官网: www. hychuangan. cn 联系电话: 18095608686

目 录

一 、	软件说明	1
	(一) 电源供电:	1
	(二) 串口连接:	1
	(三) 接线:	1
二、	软件界面	2
三、	软件操作说明	2
	(一) 连接设备	3
	(二) 数据校准	3
	1、 二次校准	3
	一、 称重系统软件校准	4
	二、 Modbus poll 软件校准	7
	三、 PLC 校准	13
	2 、非线性标定	15
	(三) 重量曲线和记录	18
	1、重量曲线	18
	2、重量记录	21
	(四)进出货报表打印	21
	(五)数据备份及恢复	23
	(六) 系统设置	24

一、软件说明

本软件适用与我公司的 1-4 路称重采集模块连接使用,采用串口通讯方式,实现对设备 采集数据的曲线显示,数据的线性和非线性校准,同时设备内部集成了,进出货表单打印功 能,方便工作人员直接录入称重数据,打印进出货单,更加人性化。

(一) 电源供电:

HY-485称重模块系列产品供电均为 DC7-30V;使用通用的 12V1A、24V1A 直流电源适配器均可,设备上供电部分为接线端子;

(二) 串口连接:

HY-485称重模块系列产品提供的通讯接口均为 485 接口,使用 PC 电脑连接设备通讯 , 需使用 485 转 232 转换器或 485 转 USB 转换器。

(三)接线:

打开设备外壳,将准备好的电源线和485通讯线通过外壳接口接入设备,将传感器接入设备,可只接一路通道进行测试。

接线方式如下:

引脚定义:

管脚	定义	含义
1	POWER	模块供电电源正
2	GND	模块供电电源负
3	485+	485 通信 A+信号线
4	485-	485 通信 B-信号线
5	E+	传感器供电电源正
6	IN1-	传感器 1 信号负
7	IN1+	传感器 1 信号正
8	E-	传感器供电电源负
9	IN2-	传感器 2 信号负

官网: www. hychuangan. cn

10	IN2+	传感器 2 信号正
11	IN3-	传感器 3 信号负
12	IN3+	传感器 3 信号正
13	IN4-	传感器 4 信号负
14	IN4+	传感器 4 信号正

二、软件界面

工具栏分为: 进出货、报表、校准、工具、系统设定这五栏。

三、 软件操作说明

主要操作

- 1、连接设备,参数设定;
- 2、数据校准,包括线性校准和非线性校准;
- 3、重量曲线显示设置及记录;
- 4、进出货报表打印;
- 5、数据备份及恢复;
- 6、系统设置。

(一) 连接设备

使用 RS232 或者 RS485 接口正确连接设备,打开软件,选择"系统设定"里的"串口设定"。

打开串口后,点击"校准"栏内的"模块参数",显示如下,点击读取,

(二) 数据校准

1、二次校准

根据接入设备的传感器,需要先对设备进行校准标定(即 **0** 点标定或置零)。 以接入称重模块的第一通道测试为例:

校准方式有三种:

- 1、使用我公司提供的称重系统软件进行校准;
- 2、使用 Modbus poll 软件进行校准;
- 3、使用 PLC 进行校准。
- 一、 称重系统软件校准

1)软件操作

正确连接设备后,打开称重系统文件夹内的称重软件 — JYHgs.exe 应用程序。

2) 串口连接

① 点击"系统设定"栏内的"串口设定";

② 通讯参数设置

选择正确的通讯串口,默认波特率 9600,数据位 8,校验方式 None,停止位 2,如下所示:

③ 点击"打开串口"按钮,打开串口。

4) 参数读取

打开串口后,

① 点击"校准"栏内的"模块参数";

② 选择设备的型号;

- ③ 点击"读取"按钮,读取设备参数;
- ④ 若显示"读取成功",则表示 PC 与设备成功通讯,若一直显示"读取中",则表示通讯有问题,需检查通讯线或使用的转换器。

5) 数据校准

设备成功建立通讯后,

① 点击"校准"栏内的"校准"按钮;

进入校准界面,如下所示:

② 点击"进入校准模式",开始校准标定;

③ 零点校准标定

接入的传感器静置时,即未在称重传感器上放置砝码,写入"实际下限值"数值为:0

④ 选择第一通道,点击该通道的"校准下限1",完成下限值校准;

⑤ 二次校准标定

在称重传感器上放置砝码,比如重量为 1000g,写入"实际上限值"1000 (标定的数值可以是任意数值,建议放大 10 倍或者 100 倍,标定数值为 10000 时,此时数据单位为 0.1q,标定数值为 100000 时,此时数据单位为 0.01q);

⑥ 选择第一通道,点击该通道的"校准上限1",完成上限值校准。

联系电话: 18095608686

非线性校准参考软件使用说明。

6) 曲线显示

点击"重量曲线",显示当前的实时重量曲线图。

点击"高速模式"按钮,可在"高速模式"、"中速模式"、"校准模式"、"配置模式"之间进行切换。

安装好 modbus poll 软件后,打开下载的"Modbus 工程"文件中的 ¹ resume.mbw 文件。

通讯连接

① 点击 Connection;

② 打开后进行通讯参数设置,选择正确的通讯串口,默认波特率 9600,数据位 8,校验方式 None,停止位 2,如下所示:

通讯参数设置完成后,点击"OK"进行连接,设备通讯成功时,显示如下:

如提示"timeout",则表示设备没有通讯成功,检查 485 通讯线或转换器,如下所示:

3) 设备参数设置

通讯成功后,对设备参数进行设置,如下所示,测试可使用默认参数。

更改参数时,参考参数说明进行修改:

寄存器地址(十进 制)	定义	数据类型	说明
1000	波特率(0~5)	U16	09600
			12400
			24800
			39600
			419200
			538400
1002	偏移地址(1~255)	U16	设备的偏移地址 设备地址=拨码开关地址+设备偏移地址
1003	采集速度(0,1)	U16	010Hz
			133Hz
1005	刷新时间(0~15)	U16	平滑滤波次数
1006	滤波次数 (0~15)	U16	数值越大滤波时间越长

0.1S*滤波次数

修改参数说明内的相关参数即可,其他选型默认。

4) 数据校准

① 在通讯连接中的"170校准模式"中写入10进制的"170"进入校准模式;

② 在称重传感器静置时(不建议 0 点标定,建议放置一个小砝码进行标定),原始数据如下:

③ 特数据稳定后,将采集的"第一通道原始字 1"写入 Mbpoll3.mbp 中的"写入采集数据 Adc2";

Mbpoll5.mbp 文件与 Mbpoll3.mbp 文件中写入数据的对应关系如下:

- ④ 将要标定的数值写入 写入的校准数据Line2 0
- ⑤ 同理进行第二次标定; 放置砝码, 重量为 100g, "写入采集数据 Adc1 为 12728;
- ⑥ 将要标定的数值写入 2 写入的校准数据Line1 1000 比如: 1000 (标 定的数值可以是任意数值,建议放大 10 倍或者 100 倍,标定数值为 10000 时,此时数据单位为 0.1g,标定数值为 100000 时,此时数据单位为 0.01g);
- ⑦ 此时 Mbpoll8.mbp 中的显示重量 1 显示为校准后的重量值 1000,单位为 0.1g, 数值类型为整型(int 整型)最大值为 32768,如果标定值超过最大值,更改数据类型为 "Unsigned";

⑧ Mbpoll7.mbp 中的显示重量 1 为校准后的重量值,数值类型为浮点型(float inverse 类型)。

三、 PLC 校准

寄存器说明:

1) 通讯设定寄存器说明:

使用读写寄存器(03,06 功能码)

其中只需要设置波特率即可,其他设置可使用默认值。

寄存器地址(十进制)	定义	数据类型	说明
4x1001	波特率(0~5)	U16	09600
			12400
			24800
			39600
			419200
			538400
4x1003	偏移地址(1~255)	U16	设备的偏移地址
			设备地址=拨码开关地址 +设备偏移地址
4x1004	采集速度 (0,1)	U16	010Hz
			133Hz
4x1006	刷新时间(0~15)	U16	平滑滤波次数
4x1007	滤波次数 (0~15)	U16	数值越大滤波时间越长 0.1S*滤波次数

2) 校准寄存器说明:

使用读写寄存器(03,06 功能码)

寄存器地址(十进制)	定义	数据类型	说明
4x1010	校准模式	U16	写十进制 170 值,设备进入校准模式
传感器二点标定(必须进入校准模式)		
4x0301	第一通道 ADC 校准字 1	S32	放入1砝码采集到的传感 器数据
4x0303	第一通道 ADC 校准字 1 对应标定值	S32	进行第一次校准时写入的 数据
4x0305	第一通道 ADC 校准字 2	S32	放入 2 砝码采集到的传感 器数据
4x0307	第一通道 ADC 校准字 2 对应标定值	S32	进行第二次校准时写入的 数据

3) 读取通道重量值寄存器说明:

使用读写寄存器(03,06 功能码)

寄存器地址(十进制)	定义	数据类型	说明
3x0001	第一通道重量值	U16	
3x0002	第二通道重量值	U16	
3x0003	第三通道重量值	U16	
3x0004	第四通道重量值	U16	
3x0051	第一通道重量值	Float	
3x0053	第二通道重量值	Float	
3x0055	第三通道重量值	Float	
3x0057	第四通道重量值	Float	

使用只读寄存器(04功能码)

寄存器地址(十进制)	定义	数据类型	说明
3x0001	第一通道重量值	U16	
3x0002	第二通道重量值	U16	
3x0003	第三通道重量值	U16	
3x0004	第四通道重量值	U16	
3x0051	第一通道重量值	Float	
3x0053	第二通道重量值	Float	
3x0055	第三通道重量值	Float	
3x0057	第四通道重量值	Float	
3x0101	第一通道原始 ADC 值	S32	
3x0111	第二通道原始 ADC 值	S32	

3x0121	第三通道原始 ADC 值	S32	
3x0131	第四通道原始 ADC 值	S32	

4) 校准说明

- ① 在 4x1010 寄存器中写入 10 进制 170 数值,进入校准模式;
- ② 读取原始 ADC 值的寄存器地址如下:

3x0101	第一通道原始 ADC 值	S32	
3x0111	第二通道原始 ADC 值	S32	
3x0121	第三通道原始 ADC 值	S32	
3x0131	第四通道原始 ADC 值	S32	

- ③ 放入重物 1, 读取此时的原始 ADC 值, 写入寄存器 4x301 中, 在寄存器 4x303 中写 入要标定的数值
- ④ 放入重物 2, 读取此时的原始 ADC 值, 写入寄存器 4x305 中, 在寄存器 4x307 中写 入要标定的数值。
- ⑤ 标定完成,重新上电即可。

注:根据不同传感器的量程,重物1的重量较小,重物2的重量要求介于传感器量程的 1/2 到 2/3 之间。

2、非线性标定

点击"校准"栏内的"^{非线性标定}",如下所示:

选择"校准通道",选择"校准模板";点击"重新加载"按钮。(注:校准模板可在 软件目录下的校准模板文件内添加或修改,校准次数也自行添加,系统自带模板为 5 次)。

点击"进入校准模式",在下方的 excel 校准模板内进行数据校准。

(1)、在第二列"采集原始数据"第一行中写入称重传感器上放置的称重物体的原始重量,如:100,点击"校准",如下:

(2)、以第一步为例,进行 2、3、4、5 行校准,采集原始数据分别为: 200、300、500、700 如下:

(3)、点击"线性回归系数",如下:

(4)、点击 写入校准字 ,右侧可看到对应通道中写入的校准数据。

通道	二次系数	一次系数	常数	重里
1	0	1	3	700.0707
2	0	0	0	284
3	0	0	0	166.3333
4	0	0	0	347.2422

(5)、校准完成

(三) 重量曲线和记录

1、重量曲线

(1)、点击"报表"栏内的"重量曲线",显示如下:

(2)、点击 显示设置

(3)、可选择各通道是否显示,显示内容可选择,如下所示:

(4)、显示格式选项:

- (5)、曲线类型可通过下拉选择;
- (6)、固定小数位数设置当前重量显示的小数点位数;统计方式可选择。

(7)、点击 ,可在"校准模式"、"高速模式"、"中速模式"之间转换。高速模式下,曲线刷新速率较快。如显示平缓。可通过修改"模块参数"内的"转换速率"为"33Hz",点击"写入",解决此问题。

2、重量记录

点击"重量记录",点击查询,可获取历史曲线记录,如下所示:

点击"数据"显示为数字记录。

点击导出,可导出曲线记录或者 Excel 表格历史记录数据。

(四) 进出货报表打印

1、点击"进出货"工具栏内的"进出货",如下所示:

2、点击"设置",可对进出货表内的相关参数进行设置和修改,

- 3、填写进出货表单数据,点击皮重写入皮重重量值,点击"毛重",写入毛重重量值;
- 4、点击"记录",将录入的数据保存;
- 5、点击"打印",弹出打印 excel 表格;

6、点击报表模板类型 原料入库模板.xlsx , 可选择报表模板, 报表模板可在软件目录内的"报表模板"文件内进行添加和修改。

(五)数据备份及恢复

1、点击"工具"栏内的"数据备份",进行数据备份,如下所示:

2、点击"工具"栏内"数据恢复",选择备份的数据文件,进行数据恢复。

称重软件使用说明

(六) 系统设置

1、系统日志

点击"系统设定"栏内的"系统日志",可查看系统操作日志,如下:

2、软件皮肤设置

,选择皮肤进行设置。