L2 - Techniques mathématiques EEA - HAE304X

Feuille de TD nº 1

Limites, continuité et dérivabilité

Exercice 1

Déterminer les limites suivantes :

Déterminer les limites suivantes :
(a)
$$\lim_{x \to +\infty} -x^2 + 3x - 2$$
; (b) $\lim_{x \to -\infty} \frac{x^2 - 6x + 7}{3x^2 - 5}$; (c) $\lim_{x \to 0} \frac{1 - \cos x}{x}$;
(d) $\lim_{x \to +\infty} \sqrt{4x^2 + 2x - 1} - 2x + 3$; (e) $\lim_{x \to 1} \frac{\ln x}{x - 1}$.

Exercice 2

Calculer les dérivées des fonctions suivantes :

(a)
$$f(x) = x \ln x$$
; (b) $f(x) = \frac{x^2}{\cos x}$; (c) $f(x) = \sin x^2$; (d) $f(x) = x \left(x + \sqrt{1 + x^2}\right)$ et $g(x) = \sqrt{x} \left(x^2 + \frac{e^x}{\sqrt{x}}\right)$; (e) $f(x) = e^{\sqrt{x^2 + 1}}$; (f) $f(x) = \ln\left(\left(\frac{x^2 - 1}{x^2 + 1}\right)^{1/3}\right)$; (g) $f(x) = x \cdot 2^x$.

Exercice 3

(*) Calculer les dérivées successives de la fonction $f:]-1, +\infty[\to \mathbb{R}$ définie par $f(x) = \ln(x+1)$.

Exercice 4

Une application

On considère un filtre RLC série en régime permanent, avec en entrée un tension V_e sinusoïdale. La sortie V_s est mesurée sur la résistance R. Le courant parcourant ce circuit est I. La fonction de transfert associée est $H = V_s/V_e$.

- 1. Déterminer l'impédance Z associée à ce circuit, telle que $V_e = ZI$.
- 2. Ce circuit est résonant en courant lorsque |I| est maximal, c'est à dire lorsque |Z| est minimum. Déterminer la fréquence associée.
- 3. Tracer l'allure du diagramme de Bode de ce circuit, en déterminant les limites
 - (a) du module de H
 - (b) de l'argument de H

Développements limités

Exercice 5

Ecrire les expressions suivantes sous la forme de développements limités.

1.
$$(1+3x-x^2+o(x^3))+(-2+5x^2-x^4+o(x^4))$$

2.
$$(2x+5x^2-4x^3+o(x^5))(-1+3x-x^2+x^3+2x^4+x^5+o(x^5))$$

Exercice 6

Déterminer les développement limités suivants.

1.
$$DL_5(0)$$
 de $f(x) = \cos 3x$

2.
$$DL_3(0)$$
 de $f(x) = \frac{e^x}{1+x}$

3.
$$DL_4(0)$$
 de $f(x) = \frac{\sin x}{x}$, puis de $g(x) = \frac{x}{\sin x}$

4. (*)
$$DL_5(0)$$
 de $f(x) = \tan x$

Exercice 7

Déterminer les développement limités suivants.

1.
$$DL_5(0)$$
 de $f(x) = e^{\cos x}$

2.
$$DL_7(0)$$
 de $f(x) = \arctan(x)$

3.
$$DL_3(0)$$
 de $f(x) = \sqrt{2+x}$

4.
$$DL_2(1)$$
 de $f(x) = \sqrt{3+x}$

5. (*)
$$DL_1(0)$$
 de $f(x) = \frac{1}{1 + e^x}$

Exercice 8

A l'aide des développements limités, calculer la limite en 0 de

1.
$$f(x) = \frac{1 - \cos x}{x^2}$$

1.
$$f(x) = \frac{1 - \cos x}{x^2}$$
,
2. $f(x) = \frac{e^x - \sin x - \cos x}{x^2}$.