Vetores

Max Jáuregui

30 de Março de 2018

1 Introdução

A física é uma ciência fundamental, cujo principal objeto de estudo são os fenômenos naturais, também chamados de fenômenos físicos. O estudo desses fenômenos dá origem a teorias e princípios gerais, os quais são importantes para o próprio desenvolvimento da física assim como para eventuais aplicações práticas.

A física está sempre em constante desenvolvimento. Por exemplo, no século XVI, após várias observações da queda livre de objetos, Galileu propôs que, desprezando a resistência do ar, a aceleração de um corpo em queda livre é constante e não depende so seu peso. Isso pode ser verificado atualmente em uma câmera de vácuo (veja https://www.youtube.com/watch?v=hRkbxOYbHfU). No entanto, esse princípio somente é valido para corpos que caem de alturas pequenas quando comparadas com o raio da Terra. De fato, poucos anos depois da morte de Galileu, Newton desenvolveu a teoria da gravitação universal, a qual inclui a afirmação de Galileu como um caso particular aproximado. Pela sua vez, a teoria de Newton tem também um limite de validade e é um caso particular aproximado da teoria da relatividade geral de Einstein, proposta quase 200 anos depois da morte de Newton.

A física estuda os fenômenos físicos de forma qualitativa e quantitativa fazendo uso da linguagem da matemática. Para isso, na observação desses fenômenos são obtidos dados numéricos por meio de medições ou cálculos. Chamamos de uma **grandeza física** a uma quantidade numérica associada a um fenômeno físico; por exemplo, a massa de um corpo, o lapso de tempo entre dois eventos, a velocidade de um corpo, etc..

Para medir uma grandeza física associada a um sistema físico precisamos compará-la com um padrão, o qual define uma **unidade** da grandeza.

No nosso curso, usaremos o sistema internacional de unidades (SI):

- Unidade de tempo: segundo (s).
- Unidade de comprimento: metro (m).
- Unidade de massa: quilograma (kg).

O grama (g) não é unidade fundamental de massa segundo o SI. Para denotar múltiplos e frações de unidades, usamos prefixos:

Prefixo	Símbolo	Fator
quilo	k	10^{3}
centi	c	10^{-2}
$_{ m mili}$	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}

Por exemplo, $1 \text{cm} = 10^{-2} \text{m}$, $5 \mu \text{g} = 5 \times 10^{-6} \text{g}$. Exemplos de conversão de unidades:

• Se o velocímetro de um carro marca 90 km/h, qual é a velocidade do carro em m/s? Vemos que

$$90\frac{\mathrm{km}}{\mathrm{h}} = \left(90\frac{\mathrm{km}}{\mathrm{h}}\right) \left(\frac{1000\mathrm{m}}{1\mathrm{km}}\right) \left(\frac{1\mathrm{h}}{3600\mathrm{s}}\right) = 25\frac{\mathrm{m}}{\mathrm{s}}.$$

• Um mililitro (mL) equivale a 1cm³, a quantos litros equivale 1m³? Vemos que

$$1 \text{m}^3 = 1 \text{m}^3 \left(\frac{100 \text{cm}}{1 \text{m}}\right)^3 \left(\frac{1 \text{mL}}{1 \text{cm}^3}\right) \left(\frac{1 \text{L}}{1000 \text{mL}}\right) = 1000 \text{L}.$$

2 Vetores

Uma grandeza física é dita uma **grandeza escalar** quando é descrita por um único número; por exemplo, o lapso de tempo entre dois eventos é um exemplo de uma grandeza escalar. Outra classe importante de grandezas físicas, chamadas de **grandezas vetoriais**, não podem ser descritas por um único número. Por exemplo, para descrever a velocidade de um corpo, precisamos saber quão rápido ele se move (módulo da velocidade) e em qual direção. Grandezas vetoriais podem ser denotadas graficamente por segmentos de reta orientados (setas), os quais chamaremos de **vetores**.

Um vetor \vec{A} está caracterizado pelo seu **módulo** $|\vec{A}|$ (comprimento da seta) e pela sua direção. Logo, dois vetores paralelos que têm o mesmo módulo são iguais. Podemos ter também dois vetores \vec{A} e \vec{B} com $|\vec{A}| = |\vec{B}|$ tais que $\vec{A} \neq \vec{B}$. Para ver isso, podemos desenhar um círculo e considerar dois vetores \vec{A} e \vec{B} não paralelos, ambos com origem no centro do círculo e com as pontas na circunferência.

A adição de dois vetores \vec{A} e \vec{B} produz um vetor $\vec{R} = \vec{A} + \vec{B}$. Depois de unir a origem de \vec{B} com a ponta de \vec{A} , o vetor \vec{R} será obtido unindo a origem de \vec{A} com a ponta do vetor \vec{B} . Fazendo o desenho, podemos concluir que $|\vec{A} + \vec{B}| \leq |\vec{A}| + |\vec{B}|$, onde a igualdade acontece quando \vec{A} e \vec{B} são paralelos. Pode-se verificar geometricamente que a adição de vetores é uma operação comutativa $(\vec{A} + \vec{B} = \vec{B} + \vec{A})$ e associativa $(\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C})$.

Multiplicar um vetor \vec{A} por um número c > 0 (c < 0) produz um vetor $\vec{B} = c\vec{A}$ que é paralelo (antiparalelo) ao vetor \vec{A} e tem módulo $|\vec{B}| = |c||\vec{A}|$.

Um **vetor unitário** é um vetor \vec{a} que tem módulo $|\vec{a}| = 1$. Se \vec{a} é um vetor unitário, usualmente escrevemos \hat{a} no lugar de \vec{a} .

Dado qualquer vetor \vec{A} , podemos obter um vetor unitário \hat{a} paralelo a \vec{A} . Com efeito, multiplicando o número $1/|\vec{A}|$ ao vetor \vec{A} , obtemos $\hat{a} = \vec{A}/|\vec{A}|$. Verificamos facilmente que $|\hat{a}| = 1$.

3 Componentes de vetores

Os eixo x de um sistema de coordenadas cartesianas no plano é paralelo a um vetor unitário que denotaremos por \hat{i} . Analogamente, o eixo y é paralelo a um vetor unitário \hat{j} . No caso de coordenadas cartesianas no espaço, além dos vetores unitários \hat{i} e \hat{j} , teremos o vetor unitário \hat{k} , que é paralelo ao eixo z.

Utilizando coordenadas cartesianas, um vetor \vec{A} pode ser escrito como $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$. Os números A_x , A_y e A_z são chamados de **componentes** do vetor \vec{A} .

Desenhando um vetor $\vec{A} = A_x \hat{i} + A_y \hat{j}$, podemos concluir, após usar o teorema de Pitágoras, que $|\vec{A}| = \sqrt{A_x^2 + A_y^2}$. Analogamente podemos verificar que, se $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, $|\vec{B}| = \sqrt{B_x^2 + B_y^2 + B_z^2}$.

Se um vetor \vec{A} no plano forma um ângulo θ com o semieixo positivo x, então, fazendo um desenho, podemos concluir que $A_x = |\vec{A}|\cos\theta$ e $A_y = |\vec{A}|\sin\theta$. A partir dessas relações concluímos o seguinte:

- conhecendo o módulo de um vetor \vec{A} e o ângulo θ que ele forma com o semieixo positivo x, podemos determinar os componentes A_x e A_y ;
- conhecendo os componentes A_x e A_y de um vetor \vec{A} , podemos determinar $|\vec{A}|$ e o ângulo θ que o vetor \vec{A} forma com o semieixo positivo x.

Por exemplo, se $\vec{A} = 3\hat{i} - 3\sqrt{3}\hat{j}$, vamos ter que $|\vec{A}| = \sqrt{3^2 + (-3\sqrt{3})^2} = 6$. Além disso, se θ é o ângulo entre o vetor \vec{A} e o semieixo positivo x, temos que $\cos\theta = 3/6 = 1/2$ e sen $\theta = -3\sqrt{3}/6 = \sqrt{3}/2$, de onde obtemos que $\theta = 300^\circ$ (θ deve pertencer ao quarto quadrante, pois $\cos\theta > 0$ e sen $\theta < 0$).

Se $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ e $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, usando as propriedades comutativa e associativa da adição de vetores, obtemos que

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k}$$
.

Por outro lado, podemos verificar geometricamente que, para qualquer número c,

$$c\vec{A} = cA_x\hat{i} + cA_y\hat{j} + cA_z\hat{k}.$$

4 Produto escalar

Definimos o **ângulo** θ entre dois vetores \vec{A} e \vec{B} como sendo o menor dos ângulos obtidos ao fazer coincidir as origens de \vec{A} e \vec{B} . Dessa maneira, temos que $0^{\circ} \le \theta \le 180^{\circ}$.

Dados dois vetores \vec{A} e \vec{B} que formam um ângulo θ entre eles, definimos o **produto** escalar deles por

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta .$$

Observamos que o produto escalar de dois vetores é um número. Também vemos imediatamente da definição que $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$.

Dependendo do ângulo formado entre os vetores \vec{A} e \vec{B} , o produto escalar desses vetores pode ser positivo, negativo ou zero. Em particular, vemos que $\vec{A} \cdot \vec{B} = 0$ quando \vec{A} e \vec{B} são perpendiculares (lembre que $\cos 90^{\circ} = 0$). Por outro lado, se \vec{A} e \vec{B} são vetores paralelos, então $\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}|$ (lembre que $\cos 90^{\circ} = 1$) e, em particular, $\vec{A} \cdot \vec{A} = |\vec{A}|^2$. Se \vec{A} e \vec{B} são vetores antiparalelos, então $\vec{A} \cdot \vec{B} = -|\vec{A}||\vec{B}|$ (lembre que $\cos 180^{\circ} = -1$). Usando essas propriedades vemos que $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$ e $\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0$.

Se $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ e $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, então, usando a distributividade do produto escalar $(\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C})$, encontramos que $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$.

Usando o produto escalar podemos encontrar o ângulo θ entre dois vetores \vec{A} e \vec{B} . Por exemplo, se $\vec{A} = \hat{i} - 2\hat{j} + \hat{k}$ e $\vec{B} = 3\hat{i} + \hat{j} - 2\hat{k}$, então $\vec{A} \cdot \vec{B} = 3 - 2 - 2 = -1$. Por outro lado, $|\vec{A}| = \sqrt{6}$ e $|\vec{B}| = \sqrt{14}$. Logo, $\sqrt{6}\sqrt{14}\cos\theta = \vec{A} \cdot \vec{B} = -1$ e, por conseguinte, $\cos\theta = -1/\sqrt{84}$. Portanto, $\theta = \arccos(-1/\sqrt{84})$.

5 Produto vetorial

O **produto vetorial** de dois vetores \vec{A} e \vec{B} , denotado por $\vec{A} \times \vec{B}$, é definido como sendo um vetor perpendicular ao plano formado pelos vetores \vec{A} e \vec{B} cujo módulo é $|\vec{A}||\vec{B}|\sin\theta$, onde θ é o ângulo formado por \vec{A} e \vec{B} . Como existe mais de um vetor perpendicular ao plano formado pelos vetores \vec{A} e \vec{B} , para determinar de forma única o produto vetorial $\vec{A} \times \vec{B}$, usamos a chamada **regra da mão direita**. Para descrever essa regra, consideremos que os vetores \vec{A} e \vec{B} estão no plano desta folha de papel. Logo,

- 1. fazemos coincidir a origem dos vetores \vec{A} e \vec{B} ;
- 2. giramos o vetor \vec{A} barrendo o ângulo θ até chegar no vetor \vec{B} ;
- 3. se o giro é anti-horário, $\vec{A} \times \vec{B}$ será um vetor que sai perpendicularmente da folha; se o giro é horário, $\vec{A} \times \vec{B}$ será um vetor que entra perpendicularmente na folha.

Segue da regra da mão direita que $\vec{B} \times \vec{A} = -\vec{A} \times \vec{B}$ para quaisquer vetores \vec{A} e \vec{B} . Por outro lado, da relação $|\vec{A} \times \vec{B}| = |\vec{A}||\vec{B}| \sec \theta$ segue que $\vec{A} \times \vec{B} = \vec{0}$ se \vec{A} e \vec{B} são paralelos ou antiparalelos, pois em ambos os casos $\sec \theta = 0$. Em particular, temos então que $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$. Além disso, podemos verificar facilmente que $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$ e $\hat{k} \times \hat{i} = \hat{j}$.

Se $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ e $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, então, usando a distributividade do produto vetorial $(\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C})$, encontramos que

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$

o que pode ser escrito também na forma de determinante:

$$\vec{A} \times \vec{B} = \left| egin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{array} \right| \, .$$

Apêndice*

Vamos provar que o produto escalar é distributivo em relação à adição, ou seja,

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} \tag{1}$$

Para isso vamos provar primeiro que se \vec{B} é paralelo ou antiparalelo a \vec{A} e \vec{C} é perpendicular a \vec{A} , então $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B}$. Denotemos por θ o ângulo que $\vec{B} + \vec{C}$ forma com \vec{A} . Se \vec{B} é paralelo a \vec{A} , fazendo um desenho vamos ver que $|\vec{B} + \vec{C}| \cos \theta = |\vec{B}|$ e, por conseguinte, $\vec{A} \cdot (\vec{B} + \vec{C}) = |\vec{A}| |\vec{B} + \vec{C}| \cos \theta = |\vec{A}| |\vec{B}| = \vec{A} \cdot \vec{B}$. Analogamente, se \vec{B} é antiparalelo a \vec{A} , vamos ter que $|\vec{B} + \vec{C}| \cos \theta = -|\vec{B}|$ e, por conseguinte, $\vec{A} \cdot (\vec{B} + \vec{C}) = -|\vec{A}| |\vec{B}| = \vec{A} \cdot \vec{B}$. Vamos obter agora a Eq. (1). O vetor arbitrário \vec{B} pode ser decomposto como a soma de um vetor \vec{B}_{\parallel} , que é paralelo ou antiparalelo a \vec{A} , e um vetor \vec{B}_{\perp} que é perpendicular a \vec{A} . De forma análoga, o vetor C pode ser escrito como $\vec{C} = \vec{C}_{\parallel} + \vec{C}_{\perp}$. Logo,

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot (\vec{B}_{\parallel} + \vec{B}_{\perp} + \vec{C}_{\parallel} + \vec{C}_{\perp}) = \vec{A} \cdot [(\vec{B}_{\parallel} + \vec{C}_{\parallel}) + (\vec{B}_{\perp} + \vec{C}_{\perp})].$$

Como $\vec{B}_{\parallel} + \vec{C}_{\parallel}$ é paralelo ou antiparalelo a \vec{A} e $\vec{B}_{\perp} + \vec{C}_{\perp}$ é perpendicular a \vec{A} , vamos ter que $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot (\vec{B}_{\parallel} + \vec{C}_{\parallel})$. É fácil de se verificar que $\vec{A} \cdot (\vec{B}_{\parallel} + \vec{C}_{\parallel}) = \vec{A} \cdot \vec{B}_{\parallel} + \vec{A} \cdot \vec{C}_{\parallel}$. Portanto, $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B}_{\parallel} + \vec{A} \cdot \vec{C}_{\parallel} = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$.

O produto vetorial também é distributivo em relação à adição, ou seja,

$$\vec{A}\times(\vec{B}+\vec{C})=\vec{A}\times\vec{B}+\vec{A}\times\vec{C}$$

A demonstração dessa propriedade é similar à do produto escalar. O primeiro passo é mostrar que $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{C}$ quando \vec{B} é paralelo ou antiparalelo a \vec{A} e \vec{C} é perpendicular a \vec{A} . O caso do produto vetorial apresenta uma pequena dificuldade a mais devido a que a relação $\vec{A} \times (\vec{B}_{\perp} + \vec{C}_{\perp}) = \vec{A} \times \vec{B}_{\perp} + \vec{A} \times \vec{C}_{\perp}$ não é evidente e requer demonstração.