Лекция 10 Линейное программирование

Задача линейного программирования

Целевая функция

$$\sum_{j=1}^{\Sigma} c_j x_j \to \max(min)$$

Ограничения

$$\sum_{i=1}^{n} a_{ij} x_j \left(=, \leq \atop \geq \right) b_i, i = 1, \dots, m.$$

Максимизировать $X_1 + X_2$

при условиях

$$4x_{1} - x_{2} \le 8$$

$$2x_{1} + x_{2} \le 10$$

$$5x_{1} - 2x_{2} \ge -2$$

$$x_{1}, x_{2} \ge 0$$

Стандартная форма задачи

Каноническая форма задачи

$$\min z = \sum_{j=1}^{n} c_j x_j$$

$$\min z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, i = 1, ..., m;$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \quad i = 1, ..., m;$$

$$x_j \ge 0, \quad j = 1, ..., n.$$

$$x_{j} \ge 0, \quad j = 1, ..., n.$$

Способы преобразования формы

- 1. Если задача на тах, то
- 2. Если ограничение $≤b_i$, а надо $≥b_i$, то
- 3. Если ограничение $≤b_i$, а надо $=b_i$, то
- 4. Если ограничение $=b_i$, а надо $\ge b_i$, то
- 5. Если x_j -свободная, то

Способы преобразования формы

- 1. Если задача на тах, то умножаем целевую функцию на -1.
- 2. Если ограничение $\leq b_i$, а надо $\geq b_i$, то умножаем ограничение на -1.
- 3. Если ограничение $\geq b_i$, а надо $=b_i$, то вычитаем y_i , заметим $y_i \geq 0$.
- 4. Если ограничение $=b_i$, а надо $\ge b_i$, то добавим огр. $\le b_i$ и $\ge b_i$,.
- 5. Если x_j -свободная, то представим $x_j = x_{j^1}$ x_{j^2} , заметим что x_{j^1} , $x_{j^2} \ge 0$.

Симплекс-метод работает с канонической формой!

Симплекс-метод

Применяя метод Гаусса можно привести уравнения ограничений к виду.

Случай І. Вам это удалось, и все правые части неотрицательны. Тогда вектор $(b_1;...;b_m;0;...;0)$ является допустимым решение задачи.

Определение. Назовем вектор $(b_1;...;b_m;0;...;0)$ базисным допустимым решением. Переменные $(x_1;...;x_m)$ будем называть базисными переменными, а остальные свободными переменными.

Любая базисная переменная выражается через свободные.

$$x_i = b_i' - \sum_{j=m+1}^n a_{ij}' x_j.$$

Подставив эти выражения в целевую функцию, получим её выражение через свободные переменные.

$$z = b_0' + \sum_{j=m'+1}^{n} c_j' x_j.$$

Перепишем это равенство следующим образом.

$$-z + \sum_{j=m'+1}^{n} c'_{j} x_{j} = b''_{0}.$$

Будем работать с системой, приведенной к базисному допустимому виду. Тогда штрихи можно опустить.

Обычно задача линейного программирования записывается с помощью симплекс-таблицы, в которую заносятся только коэффициенты.

	b	x_1	χ_2	• • •	\mathcal{X}_{m}	x_{m+1}	• • •	\mathcal{X}_n
<i>-z</i> .	b_0	0	0	•••	0	$a_{0,m+1}$	•••	$a_{0,n}$
x_1	b_1	1	0	•••	0	$a_{1,m+1}$	• • •	$a_{1,n}$
χ_2	b_2	O	1	• • •	O	$a_{2,m+1}$	• • •	$a_{2,n}$
•••	•••	•••	•••	•••	•••	•••	•••	•••
\mathcal{X}_m	b_m	0	O	• • •	1	$a_{m,m+1}$	• • •	$a_{m,n}$

Величина b_0 равна значению целевой функции на базисном решении, взятом с отрицательным знаком.

С-Т *прямо допустима*, если $b_i \ge 0$, i = 1,...,m.

С-Т двойственно допустима, если $a_{o,j} \ge 0, j=m+1,...,n$.

Лемма 1. Если $a_{o,j} \ge 0, j=m+1,...,n$, то базисное допустимое решение оптимально.

Доказательство. Рассмотрим произвольные значения свободных переменных. Тогда $-z = b_0 - \sum_{j=n+1}^n a_{0j} x_j \le b_0$. И, следовательно $z \ge -b_0$.

Пусть для некоторого s величина $a_{o,s}$ отрицательна. Тогда, увеличив значение s-ой свободной переменной на ε , мы получим изменение целевой функции

$$z = -b_0 + a_{0,s}\varepsilon < -b_0.$$

Лемма 2. Если $a_{i,s} \le 0$, i=1,...,m, для некоторого столбца s, то значение целевой функции не ограничено снизу.

Доказательство. Поскольку все $a_{i,s} \le 0$, то для любого $\varepsilon > 0$ величины $x_i = b_i - a_{is} \varepsilon \ge 0$ удовлетворяют условию и построенное решение допустимо, но тогда величина $z = -b_0 + a_{0s} \varepsilon$ не ограничена снизу. И задача не имеет решения.

Замечание. Если симплекс-таблица прямо и двойственно допустима, то соответствующее базисное решение является оптимальным.

Если величина $a_{i,s}>0$, то из условия неотрицательности переменных получаем ограничение $\varepsilon \leq \frac{b_i}{a_{is}}$.

Положим
$$\varepsilon = \min \left\{ \frac{b_i}{a_{is}} \mid i$$
 – базисная переменная и $a_{is} > 0 \right\}$. При таком выборе ε уменьше-

ние целевой функции максимально. Кроме того как минимум одна базисная переменная становится равной 0 и, с помощью метода Гаусса, её можно удалить из базиса введя вместо неё в базис переменную s.

	b	x_1	• • •	x_i	•••	\mathcal{X}_m	x_{m+1}	• • •	$\mathcal{X}_{\mathcal{S}}$	•••	\mathcal{X}_n
- Z	b_0	0	•••	0	•••	0	$a_{0,m+1}$	•••	$a_{0,s} < 0$	•••	$a_{0,n}$
x_1	b_1	1	•••	0	•••	0	$a_{1,m+1}$	•••	$a_{1,s}$	•••	$a_{1,n}$
x_2	b_2	0	• • •	O	•••	0	$a_{2,m+1}$	•••	$a_{2,s}$	•••	$a_{2,n}$
•••	• • •	•••	•••	• • •	•••	• • •	•••	•••	• • •	•••	•••
x_i	b_i	0	• • •	1	•••	0	$a_{i,m+1}$	•••	$a_{i,s}>0$	•••	$a_{i,n}$
•••	•••	• • •	• • •	•••	• • •	•••	•••	• • •	•••	•••	
\mathcal{X}_m	b_m	0	• • •	0	• • •	1	$a_{m,m+1}$	• • •	$a_{m,s}$	•••	$a_{m,n}$

Переход к новой симплекс-таблице

	b	x_1	•••	x_i	•••	χ_m	x_{m+1}	•••	$\mathcal{X}_{\mathcal{S}}$	•••	\mathcal{X}_n
-z	$b_0 - a_{0s} \frac{b_i}{a_{i,s}}$	0	•••	$-a_{0s}\frac{1}{a_{i,s}}$	•••	0	$a_{0,m+1} - a_{0s} \frac{a_{i,m+1}}{a_{i,s}}$		0	•••	$a_{0,n} - a_{0s} \frac{a_{i,n}}{a_{i,s}}$
χ_I	$b_1 - a_{1s} \frac{b_i}{a_{i,s}}$	1	•••	$-a_{1s}\frac{1}{a_{i,s}}$	•••	0	$a_{1,m+1} - a_{1s} \frac{a_{i,m+1}}{a_{i,s}}$	•••	0	•••	$a_{1,n} - a_{1s} \frac{a_{i,n}}{a_{i,s}}$
•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	•••
\mathcal{X}_{S}	b_i	0	•••	_1_	•••	0	$\underline{a_{i,m+1}}$	•••	1	•••	$a_{i,n}$
	$a_{i,s}$			$a_{i,s}$			$a_{i,s}$				$a_{i,s}$
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
χ_m	$b_m - a_{ms} \frac{b_i}{a_{i,s}}$	0	• • •	$-a_{ms}\frac{1}{a_{i,s}}$	•••	1	$a_{m,m+1} - a_{ms} \frac{a_{i,m+1}}{a_{i,s}}$	•••	0	•••	$a_{m,n} - a_{m,s} \frac{a_{i,n}}{a_{i,s}}$

Симплекс-метод

o was. Построить с.-т., соответствующую заданному базисному допустимому решению (таблица должна быть прямо допустимой). 1 was. Если с.-т. двойственно допустима, то КОНЕЦ (опт. решение). 2 was. Иначе выбрать ведущий столбец s такой что $a_{i,s} < 0$, $s \ge 1$; $a_{i,s} < 0$, $a_{i,s} < 0$,

Иначе КОНЕЦ (задача неразрешима из-за неограниченности ц.ф.). $4\, mar$. Преобразовать с.-т., заменить базисную переменную x_r на x_s и перейти на mar 1.

Метод искусственного базиса

Случай II. Вам не удалось найти базисное допустимое решение.

uaro. Построить симплекс-таблицу для новой задачи:

$$\xi = \sum_{i=1}^{m} x_{n+i} \to min,$$
 $a_i x + x_{n+i} = b_i, i = 1, ..., m;$
 $x_i \ge 0, j = 1, ..., n + m.$

Допустимое решение состоит из искусственных переменных. Выражая базисные через небазисные запишем целевую функцию

$$\xi = \sum_{i=1}^{m} (b_i - a_i x)$$

шаг 1. Решить построенную задачу симплекс-методом.

Задача всегда разрешима. (да?)

Получена прямо и двойственно допустимая таблица.

uar 2. Если оптимальное решение $\xi^*>0$, то КОНЕЦ (исходная задача не имеет допустимых решений).

Иначе удалить из симплекс-таблицы все столбцы, соответствующие искусственным переменным $(x_j, j>n)$, и нулевую строку.

mae g. Если базисными переменными являются только переменные исходной задачи $(x_j, j \le n)$, то перейти на шаг 7.

 $mae\ 4$. Выбрать строку r, соответствующую искусственной переменной x_r . $mae\ 5$. Если в строке существует ненулевой элемент, то выполнить элементарное преобразование с этим ведущим элементом и перейти на шаг 3.

mar 6. Если в строке только нули, то удалить ее и перейти на шаг 3. (строки исходной матрицы линейно зависимы)

 $mae\ 7$. Добавить нулевую строку в симплекс-таблицу, записав в нее коэффициенты целевой функции исходной задачи, выраженные через небазисные переменные. Получена прямо допустимая симплекс-таблица исходной задачи.

шаг 8. Решить задачу используя симплекс-метод.

В исходную задачу добавили искусственные переменные и решили задачу симплекс-методом. В результате получилась такая симплекс таблица. Что делать дальше?

		x_1	x_2	x_3	x_4	x_{5}	x_6	x_7	x_8
									1
x_5	1/2	-1/2	3/2	-1/2	0	1	1/2	0	$-1/2 \\ 0$
x_7	1	-1	-1	-1	0	0	-1	1	0
x_4	0	2	-3	1	1	0	0	0	1