ECE 8 Robotics Notes 10-25-22

Lecture 10

- Introducing: proportional control Not Included in midterm
- a variation of the pervious class (see 10-20-22)

Example 7: Cruise Control System

- See professors Handwritten notes:
 - o Find the diagram of the car approaching a hill, this is where lecture begins
 - \circ v_k
- Current velocity "speed"
- Is labeled on the car with an arrow to the right
- O We want to know:
 - Given desired velocity v_d --design an algorithm that guarantees that the vehicle velocity v_k converges to v_d even in the presence of a terrain change. In particular see diagram, where the hill is the terrain change.
 - Converge: we get as close to the desired value as possible (it may never actually reach it, but it can be 0.00000000000000001 away or closer but never zero.
 - The incline
 - Initially the incline is zero
 - Going up the hill we have a positive incline
 - Going down the hill we have a negative incline
 - In short:
 - Given a target v_d
 - Make a program/model that takes v_k "current position" and have it become $v_k pprox v_d$
 - i.e., "where were away from the door, but my model helped me get to the door"
- To solve this problem:
 - FIND THE MODEL+ALGORITHM! That helps the car move over the hill!
 - o Solution:
 - lacktriangle We design an algorithm that measures velocity v_k at its current position
 - We adjust the "gas pedal or the brake pedal" appropriately to attain
 - $v_k \approx v_d$ " v_k converges to v_d i.e., gets as close as possible"
 - A model is given in a later diagram
 - MATLAB code is provided as the first steps to solving this problem

- Prof. Question: Guess what would be placed in our closed loop system diagram
 - o Answer: professor redraws the diagram "velocity model"
 - See Diagram: the following are equations of interest
 - Velocity model has inputs and outputs:
 - Input: Desired speed: v_d
 - input because we are trying to tell the car to go somewhere we desire
 - output: Current speed: v_k
 - output because this is what the car does after we tell it how fast to go
 - Error equations:
 - $e = v_d v_k$
 - error is equal to the speed we want less the current speed
 - e.g.: if we want to go 5 mph and we are currently at 2mph then
 - \circ error = 5 mph 2 mph = 3 mph
 - o we are 3 mph off from what we should be
 - o Recall the Equations of motion/Newton's equations

 - "the derivative of position is equal to the speed"
 - this is a dynamic equation for continuous time t
 - To get this equation into the discrete time k we use the Forward Euler Model:
 - Forward Euler always has a recursive k, k + 1 variable

$$\circ \quad v_{x,k+1} = v_k + \Delta \frac{(-bv_k + h_k + u_k)}{m}$$

- o this is the discrete version of the previous Newton model
- Proportional control Model:
 - $\circ \quad k(v_d v_k) + u^*$
 - o This equation is in the red box, in the professors diagram
 - u^* = force input that controls the speed
 - we design this variable such that we have a steady state input for a fixed input
 - meaning we have a constant force moving the vehicle
- It is important to know how to jump between continuous and discrete systems

Velocity model

- the model we will use is obtained by modeling the change of velocity (Δv_x) as a function of several parameters playing a role in the problem set up
- in this case we will use the following discrete time model:

$$\circ \qquad v_{x,k+1} = v_k + \Delta \frac{(-bv_k + h_k + u_k)}{m}$$

where,

- v_k is the forward velocity "speed" "current"
- Δ step size
- h_k represents the incline of the road
 - o so if $h_k = 0$ the road is flat
 - o if $h_k > 0$, is positive, then we are in downhill
 - downhill means v_x is positive moving to the right
 - so if b = 0 and $u_k = 0$ then h_k should be positive ??
 - o if h_k < 0, is negative, then we are uphill
 - v_x is negative? because its slowing down as it moves uphill?
 - so the incline is negative?? the prof made no sense here to-be-honest
- m =mass of the vehicle
- u_k is the force i.e. the control
- if $u_k > 0$ we are increasing the speed
 - gas pedal is pressed
- if $u_k < 0$ we are decreasing the speed
 - o brake pedal is pressed
- if $u_k = 0$ then no effect on speed
- $-bv_k$ some sort of resistance
 - \circ the value -b will remove speed until the vehicle stops moving, unless we have a stronger force that overcomsit
 - o for now, we will assume *b* is a constant
 - o friction
 - e.g.:
 - contact with ground
 - air affects
 - water
 - grit from the road
- Recall from Physics: Kinetic Energy
 - $\circ K = \frac{1}{2} mv^2$

Handwritten Notes

- professor completes the closed loop diagram by plugging in the velocity model we wrote above
 - \circ we can only control the u_k so we call it the control input
 - o disturbance variables: h_k incline
- this is shown as an input but it does not loop, it's only in (not out)

MATLAB

- See files from 10/25/22 for full examples of using the previous models

Control system

- To achieve convergence of v_k to v_d we need to properly design u_k .
 - One way is through proportional control (P control)
 - the structure is the given equations in the newest closed loop model the professor has drawn a diagram representing the models
- Namely, the input u_k is assigned as follows:

$$\triangleright u_k = k(v_d - v_k) + u^*$$
: Givens (k, v_d, v_k) We **NEED** to determine u^*

- k : control gain
- $v_d v_k$ is the error
- u^* is the constant that induces the convergence $v_k = v_d$
 - To design u^* , notice that if $v_0 = v_d$, where v_0 is our initial velocity then we have,
 - (all equations after this is for the case: if $v_0 = v_d$

- where $h_k = 0$ we assigned to be constant for all values of k
- Then for the k = 0 case: (plug in k = 0)

- then we consider $u_0 = k(v_d v_0) + u^*$ since $v_d = v_0$ then $u_0 = u^*$
- We can then change the equation for v_1

• Now, if we let $v_1 = v_d$ to be true we change the previous equation again

$$v_d = v_d + \Delta \frac{(-bv_d + u^*)}{m}$$

- We WANT: $v_d = v_d$ so we NEED the 2nd term to be zero, since Δ is never zero we have,
 - $\frac{(-bv_d + u^*)}{m} = 0$ or If we solve for our control input u^*
 - $\triangleright u^* = bv_d$!!! The correct choice for our u^*

End of day Announcements

Thursday: Review for 1hour, recorded

End of Thur, Quiz on previous lecture

- familiarize the closed loop diagram

Tuesday: Midterm, just bring a pen/pencil

Review: lectures, be capable to write code, discrete to continous models, trajectory, inputs, sensors, quizes

Friday: