STANISLAS Exercices

Équations différentielles linéaires

PSI2021-2022

Chapitre XV

I. Résolutions d'équations

Exercice 1. [IMT] Résoudre l'équation différentielle $t(t^2 - 1)y' + 2y = t^2$. Y-a-t-il des solutions définies sur \mathbb{R} ?

Exercice 2. Résoudre sur \mathbb{R} l'équation différentielle $(\sinh x)y' - y \cosh x =$ -1.

Exercice 3. [CCP] On considère l'équation différentielle

$$x(1-x)y'' + (1-3x)y' - y = 0$$

- 1. Déterminer les fonctions développables en série entière solutions de (*). Pourquoi y a-t-il d'autres solutions sur [0,1]?
- **2.** Déterminer toutes les solutions de l'équation différentielle sur \mathbb{R} . Indication. On effectuera le changement de variable y(x) = z(x)/(1-x) et on soignera les raccords.

Exercice 4. On considère l'équation différentielle $ty' + y = 3t^2 \cos(t^{3/2})$.

- 1. Déterminer une solution de l'équation différentielle développable en série entière au voisinage de 0.
- **2.** En déduire l'ensemble des solutions de l'équation sur \mathbb{R}_{+}^{*} .

Exercice 5. [X-ENS] Déterminer toutes les fonctions continues f de \mathbb{R} dans \mathbb{R} telles que

$$\forall x \in \mathbb{R}, f(x) + \int_0^x (x - t)f(t) dt = 1.$$

Exercice 6. [Mines] Déterminer une condition sur la fonction $\lambda: \mathbb{R} \to \mathbb{R}$ pour que la fonction $f: t \mapsto \frac{t}{\cosh(t)}$ soit solution sur \mathbb{R} de $y'' + \lambda y' + y = 0$. Résoudre alors cette équation.

Indic.: Étudier la fonction $f \cdot \cosh$.

II. Coefficients constants

Exercice 7. [IMT] Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.

1. Justifier sans calcul que A est diagonalisable.

- **2.** Déterminer les valeurs propres et une base de vecteurs propres de A.
- **3.** Résoudre le système différentiel (x' = x + 2z, y' = y, z' = 2x + z).

Exercice 8. Résoudre le système différentiel

$$\begin{cases} x' = x + 2y - z \\ y' = 2x + 4y - 2z \\ z' = -x - 2y + z \end{cases}$$

Exercice 9. Soient A une matrice antisymétrique d'ordre n et X une solution du système différentiel X' = AX. Montrer que ||X|| est constante.

Exercice 10. Dériver $t \mapsto ||X(t)||^2$.

III. Comportement des solutions

Exercice 11. [Centrale]

- **1.** Soient I un intervalle de \mathbb{R} , $t_0 \in I$, $f, g \in \mathscr{C}^0(I, \mathbb{R})$ et $x_0 \in \mathbb{R}$. Montrer que l'équation y' + f(t)y = g(t) admet une unique solution φ telle que $\varphi(t_0) = x_0$. Exprimer φ à l'aide d'intégrales.
- **2.** Soient $a \in \mathbb{R}_+^*$ et h une fonction bornée sur \mathbb{R}_+ . Montrer que l'équation y'-ay=h admet une unique solution bornée sur \mathbb{R}_+ .

IV. Avec Python

Exercice 12. [Centrale] Soient $a \in \mathbb{R}$ et $\omega \in \mathbb{R}_{+}^{*}$.

1. Déterminer une fonction x de classe \mathscr{C}^2 sur un intervalle I de \mathbb{R} contenant 0 telle que $x'' + \omega^2 x = 0$, x(0) = 0 et x'(0) = a.

Exercices XV PSI

- **2.** On considère l'équation différentielle x'' + x = 0, x(0) = 0 et x'(0) = a. En utilisant Python, tracer la courbe représentative de x sur [0, 10] pour $a \in \{0.5, 1, 1.5, 2, 2.5\}.$
- 3. Soient $r \in]0,1[$ et $F: t \mapsto \int_0^t \frac{\mathrm{d}u}{\sqrt{1-r^2\sin^2(\omega u)}}$.

 a) Montrer que F est une bijection de $\mathbb R$ sur $\mathbb R$, strictement croissante
- et impaire.
- **b)** Montrer que F est de classe \mathscr{C}^{∞} puis que sa réciproque F^{-1} est de classe \mathscr{C}^{∞} .
- c) Pour r=0.9 et $\omega=1$, en utilisant Python, tracer la courbe représentative de F sur [-5, 5].
- **4. a)** Tracer la courbe représentative de $t \mapsto 2\arcsin(r\sin(\omega F^{-1}(t)))$ sur [-5, 5].
- **b)** On suppose que $0 < a < 2\omega$. On pose $r = \frac{a}{2\omega}$ et $\varphi(t) = 2\arcsin(r\sin(\omega F^{-1}(t)))$. Montrer que $\varphi'' + \omega^2\sin(\varphi) = 0$.

A. Camanes