Natural Language Processing

Paper Code: CS-821/6 UG 8th Sem

Dr. Samit Biswas, Assistant Professor

Department of Computer Sc. and Technology

Indian Institute of Engineering Science and Technology, Shibpur

Email: samit@cs.iiests.ac.in

Plan for Today

- Morphology An Introduction
- Different Approaches

Morphology

- What's in a word?
 - Word processing so far:
 - Tokenization segmenting sentences into words.
 - Part-of-Speech tagging classifying words grammatically.
- Words have structure:
 - runs, ran and running are inflected forms of the verb run.
 - unfriendly is derived from friendly, which is derived from friend.
- Morphological analysis exploring the structure of words.
- Morphology tries to formulate rules.

Morphology

- Why does morphology matter?
 - Information retrieval: A query for phones should match both phone and phones.
 - Language modeling: If we have seen scrutinize, we can predict scrutinized.
 - Machine translation: English to Bengali.

Morphological Analysis

Morphological Analysis

- Morphology is a subdiscipline of linguistics that studies word structure. Analyzing words into their linguistic components (morphemes).
- "minimal unit of meaning" "the minimal unit of grammatical analysis".
- Consider a word like: "unhappines":

There are three Morphemes:

un means "not"ness means "being in a state or condition"Happy is a free morpheme

Morphems

Smallest meaning bearing units constituting a word

Few more examples

Root	Morphological variants
walk	walks, walked, walking
noise	Noisy, noisily
atom	atomic
order	reorder, orderly
active	hyperactive, proactive

Morphology

Morphology

- More example of morphemes
 - played = play-ed
 - cats = cat-s
 - unfriendly = un-friend-ly
- Two types of morphemes:
 - Stems: play, cat, friend
 - Affixes: -ed, -s, un-, -ly
- Two main types of affixes:
 - Prefixes precede the stem: un-
 - Suffixes follow the stem:-ed, -s, -ly

Morphology

Morphology

- There are many ways to combine morphemes to create words:
 - Inflectional morphology.
 - Derivational morphology.
 - cliticization

Inflectional Morphology

Inflectional morphology

Inflection relates different forms of the same word

Lemma	Singular	Plural
Cat	Cat	Cats
Dog	Dog	Dogs
Knife	Knife	Knives
Sheep	Sheep	Sheep
Mouse	Mouse	Mice

Note:

- Lemma is the Canonical form found in Dictionaries.
- Affixation sometimes involves spelling changes (Knife knives)
- Inflection does not always involve affixation (Mouse Mice)

Derivational Morphology

Derivational Morphology / Word Formation

- Morphological processes can be used to form new words.
- Derivation = stem + affix
 friend + -ly = friendly
 un- + -friendly = unfriendly
 unfriendly + -ness = unfriendliness
- Word composed of more than one free morpheme.

Compounding = stem + stem

Modifier	Head	Compound
Noun	Noun	football
Adjective	Noun	blackboard
Preposition	Adverb	without

usually applies to words of one lexical category and changes them into words of another category. Example: the English derivational suffix -ly changes adjectives into adverbs.

Inflectional vs. Derivational

Inflectional Morphology

- used to show some aspects of the grammatical function of a word.
- We use inflectional morphemes to indicate if a word is singular or plural, whether it is past tense or not, and whether it is a comparative or possessive form.
- inflectional morphemes never change the grammatical category

Derivational Morphology

- make words of a different grammatical class from the stem.
- addition of the derivational morpheme -ize changes the adjective normal to the verb normalize.
- Derivational morphemes often change the part of speech of a word.

Cliticization

- Combination of a word stem with a clitic
- Clitic: a morpheme that acts like a word but is reduced and attached to another word
- Example

Full Form	Clitic	Full Form	Clitic
am	'm	have	've
are	're	has	's
is	's	had	'd
will	'II	would	'd

Note: Clitics in English are ambiguous.

Morphological Analysis

Morphological Analysis

Morphological analyzers takes a word in isolation and predict all the possible analyses for that word.

- token → lemma + part of speech + grammatical features
 - Examples
 - \circ cats \rightarrow cat+N+plur
 - played → play+V+past
- Morphological Analyzer:
 - Input: flies
 - Output:
 - Lemma 1 = fly-1 (to move in the air) tag 1 = VBZ (verb, present tense 3rd person singular)
 - Lemma 2 = fly-2 (an insect) tag 2 = NNS (noun, plural)
- Output is not disambiguated with respect to context

Morphological parsing

To build a morphological parser we will need at least the following:

- Lexicon: the list of stems and affixes, together with basic information about them (whether a stem is a noun stem or a verb stem, etc.)
- Morphotactics: the model of morpheme ordering that explains which classes of morpheme can follow other class of morpheme inside a word.
- Orthographic rules: these spelling rules are used to model the changes that occur in a word, usually when when two morphemes combine.

Different Approaches

Different Approaches for Morphological Analysis

Based on:

- Corpus
- Paradigm
- Finite-state automata
- Finite-state transducer

Corpus Based Morphological Analysis

- Corpus (plural corpora) or text corpus is a large and structured set of annotated texts.
- used to do statistical analysis and hypothesis testing, checking occurrences or validating linguistic rules within a specific language territory.
- require a large amount of human intervention to annotate the data.

Paradigm based Morphological Analysis

paradigm is the complete set of related word-forms associated with a given lexeme.

- provides all the inflectional forms of a word.
- An input data stream of natural language words can then be processed by generating a lemma for each input word.
- matching the input word against the dictionary and using the resulting paradigm references to access a set of paradigms.

Basic Paradigm Process

• Basic paradigm Process

Basic Paradigm Process

English Regular Verb Paradigm

- Example: Park Affixes for
 - Present Participle: -ing
 - Past Participle: -ed
 - Present Tense: -s
 - Past Tense: -ed

English Regular Noun Paradigm

- Example: book
- Affixes for
 - singular: -
 - plural: -s

Basic Paradigm Process

English Irregular Verb Paradigm

- Example: Find
- Affixes for
 - Present Participle: -ing
 - Past Participle: -ound
 - Present Tense: -s
 - Past Tense: -ed

Morphological Analysis using Finite State Automata (FSA)

Finite State Morphology

- Finite state systems are mathematically well understood.
- Finite state systems are computationally efficient (fast and little memory usage)
- Finite state systems provide compact representations for many NLP tasks.
- Finite State systems can be used for
 - Tokenization: divide text into tokens (= words)
 - Morphological analysis/generation
 - o Part-of-speech tagging: assign a single tag such as VERB or NOUN

FSA Morphology

- Alphabet: set of valid symbols
- Words: sequence of accepted symbols
- Language: set of accepted words
- The description of a finite state acceptor is finite
 - Finite number of states
 - Finite number of alphabet symbols
 - Finite number of transitions
 - Number of accepted strings can be infinite

Finite State Automata

FSAutomata have Input Labels.

1 of later late input Labore.		
Q	a finite set of N states $q_0, q_1, \ldots, q_{N-1}$	
Σ	a finite set corresponding to the input alphabet	
$a_0 \in \Omega$	the start state	
$F\subseteq Q$	the set of final states	
$\delta(\mathbf{q}, \mathbf{w})$	$Q \times \Sigma^* \to 2^Q$	

Morphological Analysis using Finite State Automata (FSA)

Example: Small Finite State Acceptor

- Network accepts the single word "elephant".
- alphabet (set of valid symbols): e,l,p,h,a,n,t
- When entering the input sequence e,l,e,p,h,a,n,t, the machine transitions through a series of states until the final state and the input word will be accepted.
- No other words (e.g. "elephants" or "ant") are accepted by this network.
- IMPORTANT NOTE: In this case there will always be a single start state (which is the leftmost state on the slide)

Example: Small Finite State Acceptor

• Network for the forms "cat", "cats", "car", "cars"

• States and transitions can be shared

Which word forms are recognized by this network?

• "clear", "ear", "clever", "ever"

FSAs for derivational morphology


```
\begin{aligned} &\textit{noun}_1 = \{\textit{fossil}, \textit{mineral}, \ldots\}, \\ &\textit{adj}_1 = \{\textit{equal}, \textit{neutral}\}, \\ &\textit{adj}_2 = \{\textit{minim}, \textit{maxim}\}, \\ &\textit{noun}_2 = \{\textit{nation}, \textit{form}, \ldots\}, \\ &\textit{noun}_3 = \{\textit{natur}, \textit{structur}, \ldots\} \end{aligned}
```

References

References

- Diana Maynard, Kalina Bontcheva, Isabelle Augenstein, "Natural Language Processing for the Semantic Web", A Publication in the Morgan & Claypool Publishers series.
- Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", By O'Reilly.
- Christopher Manning and Hinrich Schtze, "Foundations of Statistical Natural Language Processing",
 The MIT Press.
- Daniel Jurafsky & James H. Martin, "Speech and Language Processing", Prentice Hall

Thank You

Contacts:

Dr. Samit Biswas
Department of CST,
IIEST, Shibpur

samit@cs.iiests.ac.in
https://www.iiests.ac.in/IJEST/Faculty/cs-sami

