kWIP: The k-mer Weighted Inner Product And the rest of my PhD...

Kevin Murray

Borevitz Lab, CPEB, ANU

April 15, 2016

Large-scale population genomics

- ▶ Moving from 100s to 1,000s or 10,000s of samples per study!
- ▶ Efficient algorithms to analyse large-scale genomic data
 - ▶ Reference & alignment free: less bias, de novo
 - ▶ Platform/protocol agnostic: future proof
 - ► Computationally efficient: not the bottleneck

Phylogeny Population Structure Mapping Mapping Mapping Genomic Scans

after Peterson et al. [1]

- ▶ Rough approximation of sample relatedness required
 - ► For natural collections
 - ► As a technical control

after Brachi et al. [2]

- ▶ Rough approximation of sample relatedness required
 - ▶ For natural collections
 - ► As a technical control

after Brachi et al. [2]

- ▶ Rough approximation of sample relatedness required
 - ▶ For natural collections
 - ► As a technical control

after Brachi et al. [2]

- ▶ Rough approximation of sample relatedness required
 - ▶ For natural collections
 - ▶ As a technical control

- ▶ Rough approximation of sample relatedness required
 - ▶ For natural collections
 - ▶ As a technical control

Initially, we care mostly about the deepest and shallowest branches of the tree.

Presenting kWIP

- ▶ k-mer based de novo genetic relatedness estimator
- ▶ Produces a distance matrix from raw NGS reads
- \triangleright Uses Weighted Inner Product between k-mer counts

k-mer Sequence Comparison

- ► Many existing tools
 - ▶ D2 and related statistics
 - ► Early steps in many sequence aligners
 - ▶ spaced and other spaced-word approaches^{3,4}
 - ▶ Cnidaria and other Jaccard distance approaches⁵
 - ▶ mash and other MinHash approaches⁶
- ► Most require assembled gene/genome sequence
- ▶ Most target deeper relationships
- \triangleright Many use inner product between k-mer counts
- ▶ kWIP extends these tools:
 - ▶ No assembly required
 - ▶ Weights inner product to improve accuracy

Entropy Weighting

- \triangleright kWIP weights by Shannon entropy: H(frequency)
- ▶ Shannon entropy: measure of information
- $-(P_i log_2(P_i) + (1 P_i) log_2(1 P_i))$

kWIP Algorithm

- \triangleright For each run: count all k-mers probabilistically
- ► For each analysis set:
 - ightharpoonup Calculate the entropy of k-mer frequency (H)
 - \blacktriangleright For each pair of runs with k-mer counts A and B, calculate

$$\sum_{i=1}^{n} A_i \cdot B_i \cdot H_i$$

- A 0 2 0 2 0 1 0 1 0
- B 0 2 1 7 0 1 0 0 0
- H $oxedsymbol{h}_1$ $oxedsymbol{h}_n$

- ► The software:
 - \triangleright C++11, \approx 2000 lines of code
 - ▶ Uses khmer for k-mer counting
 - ▶ GNU GPL licensed, source code on GitHub
 - Precompiled binaries provided

kWIP Case Studies

- ▶ 3000 rice genomes
 - ▶ 3000 rice samples (25k runs)
 - ► The 3,000 rice genomes project [7]
- Chlamydomonas
 - $\triangleright \approx 20$ lines from USA
 - ▶ Flowers et al. [8]
- ► Simulation
 - ► Fake population genome sequencing studies

96 Rice Runs

- ► Set of 96 rice runs from 16 samples (6 tech reps ea)
- ▶ About half/half from 2 major groups (Indica, Japonica)
- ► Expectations:
 - ▶ All runs cluster into groups of 6 reps (16 samples)
 - ▶ Big split between two groups: (7 and 9 respectively here)
- ► Recover known grouping w/kWIP, not w/ unweighted IP
- Sensitive to read depth
- ▶ Took 6 hours on 16 CPU, 64GB RAM supercomputer node

WIP

IP

Chlamydomonas

- ► High coverage re-sequencing with leftover assembly
 - ▶ Map to reference
 - ▶ Assemble missing sample genome from leftover reads
 - ► Map again to reference + leftovers
 - Call variants
 - ► Calculate distance
- ▶ Compare kWIP to SNP-based distance calculation
 - ► Compare PCA visualisation of each

Chlamydomonas

"Sample CC-4414 (red) is hidden behind the cluster of laboratory strains (light blue)"

Population structure of Chlamydomonas in USA

Data from Flowers et al. [8]

Chlamydomonas

Population structure of ${\it Chlamydomonas}$ in USA

Data from Flowers et al. [8]

Simulation

- ▶ Perform simulated sequencing experiment:
 - ► Simulate natural population structure
 - ► Simulate sample genomes, sequencing runs
 - ► Hash reads, kWIP
 - Compare known truth to kWIP results (with Spearmans Rank Correlation, ρ)
- ▶ kWIP quantitatively outperforms unweighted equivalent
 - ▶ Effect of coverage on accuracy
 - ► Accuracy across scale of variation

Simulation Results

Coverage vs Accuracy

Simulation Results

Average variation vs Accuracy

kWIP Summary

- ▶ kWIP is implemented, no known bugs
- ▶ Publicly available at github.com/kdmurray91/kwip
- ▶ We show the utility of kWIP
- ▶ Publication coming soon

What's next?

- ► Finish kWIP paper
- ► Complete & Publish GBS analysis tools
 - ▶ GBS is a quick & cheap sequencing method
 - ▶ Have written improved analysis tools
 - ► These need publication

What's next?

- ► Finish kWIP paper
- ► Complete & Publish GBS analysis tools
 - ▶ GBS is a quick & cheap sequencing method
 - ▶ Have written improved analysis tools
 - ▶ These need publication
- \triangleright Further k-mer analysis methods
 - \blacktriangleright Marrying assembly and k-mer comparison concepts
 - ▶ Pan-genome representations
- ► Eucalyptus population genomics
 - ▶ Collaboration with Rose Andrew @ UNE
 - Extending a pilot study in a hybrid population of *E. sideroxylon* and *E. albens*.

Thanks

- ► My kWIP collaborators
 - Norman Warthmann, Christfried Webers, Cheng Soon Ong, Sylvain Forêt
- ► Supervisors:
 - ▶ Justin Borevitz, Gavin Huttley, Barry Pogson, Sylvain Forêt
- ▶ khmer folks (DIB-lab, UC Davis)
- Yourselves

- Peterson, B. K. *et al.* Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. *PLoS ONE* 7, e37135 (2012).
 - Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. *Genome biology* 12, 232 (2011).
 - Morgenstern, B. et al. Estimating evolutionary distances between genomic sequences from spaced-word matches. Algorithms for Molecular Biology 10, 5 (2015).
 - Leimeister, C.-A. et al. Fast alignment-free sequence comparison using spaced-word frequencies. Bioinformatics, btu177 (2014).
 - Aflitos, S. A. et al. Cnidaria: fast, reference-free clustering of raw and assembled genome and transcriptome NGS data. BMC Bioinformatics 16, 352 (2015).
 - Ondov, B. D. *et al.* Fast genome and metagenome distance estimation using MinHash. *bioRxiv*, 029827 (2015).
 - The 3,000 rice genomes project. The 3,000 rice genomes project. GigaScience 3, 7 (2014).
 - Flowers, J. M. et al. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii. The Plant Cell 27, 2353–2369 (2015).