บทที่ 1

บทนำ

1.1 ที่มาและความสำคัญ

จากข้อจำกัดของความทรงจำของมนุษย์ที่ที่มีความจำกัดในการจดจำโดย Art Kohn ซึ่งได้ กล่าวไว้ว่า มนุษย์เราจะสูญเสียความทรงจำสิ่งต่างๆที่พึ่งรับรู้มาใน 1 ชั่วโมงไปประมาณ 50% และ ภายใน 1 วัน จะลืมไปโดยเฉลี่ย 70 % และ ภายในหนึ่งสัปดาจะลืมไปถึง 90% ทำให้เห็นได้ว่ามนุษย์นั้นมักจะลืม เรื่องราวต่างๆที่เกิดขึ้นตลอดในช่วงชีวิต [1] จึงถือกำเนิดแนวคิดการทำ ไลฟ์ล็อกกิง (Life logging) หรือ การ บันทึกเรื่องราวส่วนตัวในชีวิตประจำวัน ซึ่งเป็นคำที่คิดค้นโดยกอร์ดอน เบลล์ (Gordon Bell) แต่แนวคิด ของไลฟ์ล็อกกิงมาจากแวนเนวาร์ บุช (Vannevar Bush) โดยบุชได้กล่าวถึงแนวคิดเกี่ยวกับมีมส์ (Memex) ในบทความ "As We May Think" ว่าเป็นอุปกรณ์สำหรับจัดเก็บและบับอัดหนังสือ หรือบันทึกเพื่อให้ผู้ใช้ สามารถเข้าถึงข้อมูลทั้งหมดผ่านทางเครื่องกลไฟฟ้าได้ [2-3]

จึงทำให้เกิดผลิตภัณฑ์ที่สามารถเก็บข้อมูลส่วนตัวในชีวิตประจำวันที่หลากหลายรูปแบบ และมีผลิตภัณฑ์มากมายที่ประสบความสำเร็จแต่ไลฟ์ล็อกกิงประเภทที่จัดเก็บข้อมูลในรูปแบบรูปภาพกลับ ไม่ประสบความสำเร็จเพราะด้วยปัญหาเพราะด้วยปัญหาความกังวลด้านความปลอดภัยของข้อมูลของผู้ใช้ เนื่องขาดความไว้วางใจจากบริษัทที่ให้บริการหรือการขาดวัตถุประสงค์และคุณประโยชน์ของการเก็บ ข้อมูลปริมาณมากจากข้อจำกัดด้านฟังก์ชั่นการค้นหารูปภาพ [4]

ผู้จัดทำโครงงานจึงมีแนวคิดที่ว่าจะพัฒนาโค้ดต้นแบบสำหรับใช้งาน life logging เพื่อให้ผู้ ใช้งานเป็นผู้มีสิทธิ์ในการเข้าถึงข้อมูลเพียงผู้เคียว และเพิ่มความสามารถให้ระบบสามารถค้นหารูปภาพตาม ลักษณะสภาพแวคล้อมที่อยู่ภายในรูปภาพที่ต้องการ เพื่อทำให้ผู้ใช้เห็นประโยชน์กับการใช้งานไลฟ์ลีอกกิง และลดความกังวลค้านความปลอดภัยของข้อมูลผู้ใช้งาน

โดยผู้จัดทำจะพัฒนาโค้ดต้นแบบสำหรับการใช้งานบริการการประมวล และเก็บข้อมูลบน ระบบการประมวลผลกลุ่มเมฆ (Cloud computing) สำหรับใช้งานกับไมโครโพรเซสเซอร์ เพื่อสั่งงาน สำหรับการถ่ายรูปและส่งรูปขึ้นไปประมวลผลบนการประมวลผลกลุ่มเมฆเพื่อทำการประมวลผลภาพ (Image Processing) เพื่อค้นหาองค์ประกอบที่อยู่ในรูปภาพสำหรับการจัดหมวดหมู่องค์ประกอบของภาพ รวมทั้งออกแบบเว็บไซต์แอปพลิเคชันสำหรับการค้นหารูปภาพตามหมวดหมู่ที่สนใจ

1.2 วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของ Image processing
- 2. เพื่อศึกษาปัญหาที่เกิดขึ้นกับผลิตภัณฑ์ที่เกี่ยวข้อง
- 3. เพื่อศึกษาการใช้งาน AWS services
- 4. เพื่อพัฒนาโค้ดต้นแบบสำหรับการใช้งานใลฟ์ล็อกกิง (Life logging)
- 5. เพื่อศึกษาและออกแบบเว็บไซต์แอปพลิเคชัน

1.3 ขอบเขตของโครงงาน

ไลฟ์ล็อกกิง (Life logging) ที่วางระบบการทำงานบนการประมวลผลกลุ่มเมฆ และ ประมวลผลภาพเพื่อสำหรับค้นหาบนเว็บไซต์มีขอบเขตการทำงานคังนี้

- 1. อุปกรณ์ใมโครโพรเซสเซอร์สำหรับการใช้งานระบบต้องเป็น raspberry pi zero 2w โดยทำ งานบน ระบบปฏิบัติการ Raspberry Pi OS(32-bit) Debian Bulleye
- 2. ระบบต้องเชื่อมต่อ Internet ระหว่างการใช้งาน
- 3. จำเป็นต้องใช้งานบัญชีของ AWS(Amazon Web Services) services
- จำเป็นจะต้องเชื่อมต่อกับคอมพิวเตอร์เพื่อติดตั้งระบบ
- 5. ผู้ใช้จำเป็นต้องมีความรู้ด้านการพัฒนาโปรแกรม
- 6. กลุ่มผู้ใช้ต้องเป็นผู้ที่บรรลุนิติภาวะ

1.4 ประโยชน์ของโครงงาน

- 1. ช่วยให้ผู้ใช้งานสามารถติดตั้งระบบได้ด้วยตนเอง
- 2. ช่วยให้ผู้ใช้เห็นประโยชน์ของการใช้งานไลฟ์ล็อกกิง (Life logging)
- 3. เพื่อให้เกิดความเข้าใจการทำงานของการะประมวลผลแบบกลุ่มหมอกมากยิ่งขึ้น

บทที่ 2

วรรณกรรมและงานวิจัยที่เกี่ยวข้อง

2.1 ทฤษฎีและแนวคิคที่เกี่ยวข้อง

2.1.1 การประมวลผลแบบกลุ่มเมฆ

การประมวลผลแบบกลุ่มเมฆ หรือ Cloud Computing คือ รูปแบบการให้บริการที่ผู้ให้ บริการเป็นผู้ดูแลทรัพยากรทั้งหมดโดยที่ผู้ใช้บริการไม่จำเป็นต้องคำนึงถึงที่อยู่ของระบบ การติดตั้ง การ ดูแล และไม่จำเป็นต้องลงทุนซื้อคอมพิวเตอร์สำหรับการใช้ โดยการบริการจะให้ผู้ใช้งานสามารถเข้าถึง ทรัพยากรเสมือนว่าผู้ใช้งานเป็นเจ้าของทรัพยากรเองผ่านทางอินเทอร์เน็ต อีกทั้งยังมีการบริการที่ครอบคลุม ด้านการจัดเก็บข้อมูล การประมวลผล ความปลอดภัย และบริการอื่นๆอีกมากมาย รวมถึงการใช้งานที่ สามารถใช้งานได้ตลอดเวลาตามต้องการ หรือปรับขนาดของระบบได้ตามต้องการของผู้ใช้งาน [5]

ภาพที่ 2.1.1 ประเภทการให้บริการของระบบกลุ่มเมฆ [6]

โดยแบ่งออกเป็น 3 ประเภทตามรูปแบบการให้บริการ

- 1. Software as a service (SaaS): เป็นรูปแบบการใช้งานเฉพาะด้าน โดยมักมีขอบเขตการใช้งานที่ จำกัด ผู้ใช้งานสามารถใช้งานเฉพาะด้านตามที่ทางผู้ให้บริการกำหนด
- 2. Platform as a service (PaaS): เป็นรูปแบบการใช้งานที่มุ่งเน้นไปทางค้านการพัฒนาหรือการ สร้างสรรค์แอปพลิเคชันต่าง ๆ ขึ้นมาใหม่จากระบบ

3. Infrastructure as a Service (IaaS): เป็นรูปแบบการใช้งานที่ผู้ใช้งานมีสิทธิ์แก้ใขหรือปรับเปลี่ยน ระบบปฏิบัติการของเครื่องที่ให้บริการได้อย่างอิสระตามความต้องการของผู้ใช้งาน [6]

2.1.2 การประมวลผลภาพ

ภาพที่ 2.1.2 การประมวลผลภาพ [7]

การประมวลผลภาพ หรือ Image processing สามารถนิยามได้ว่า "การประมวลผลภาพเป็น กระบวนการจัดการและวิเคราะห์รูปภาพให้เป็นข้อมูลในแบบดิจิทัล โดยใช้คอมพิวเตอร์ในการประมวลผล โดยวิธีการต่าง ๆ เพื่อให้ได้ภาพที่มีคุณสมบัติตามความต้องการทั้งในเชิงคุณภาพและปริมาณ มีหลากหลาย รูปแบบซึ่งเราเรียกโดยรวมว่าปรับปรุงคุณภาพของภาพ (Image Enhancement) การปรับเปลี่ยนหรือแปลง รูปภาพทั้งขนาดและรูปร่าง (Image Transformation) การกรองภาพหรือการกำจัดสัญญาณรบกวนออกจาก ภาพ (Image Filters) การซ้อนทับภาพ (Image Registration) การคืนสภาพของภาพ (Image Restoration) การ ตัดแบ่งภาพหรือคัดเลือกส่วนที่ต้องการและการหาขอบภาพในวัตถุ (Image Segmentation and EdgDeTection) การบีบอัดภาพ (Image Compression) การสร้างภาพ 3 มิติ (3D Image Reconstruction) เป็นต้น" [8]

2.2 เทคโนโลยีที่เกี่ยวข้อง

2.2.1 ใพธอน (Python)

ภาพที่ 2.2.1 Logo Python [9]

Python คือ ภาษาโปรแกรมระดับสูง(High-Level programing language) ที่ได้รับความนิยม เนื่องจากรูปแบบไวยกรณ์ และโครงสร้างที่สามารถใช้งานได้ง่าย ไลบรารี (Library) ที่หลากหลายให้เลือก ใช้งานจึงทำให้ไพธอนได้รับความนิยมใช้งานด้าน การเรียนรู้ของเครื่อง (Machine Learning) อีกทั้งยัง เหมาะสำหรับผู้เริ่มต้นใช้งานเพราะความเข้าใจง่ายของไพธอน [10]

2.2.2 ใมโครโพรเซสเซอร์ (Microprocessor)

ภาพที่ 2.2.2 Microprocessor [11]

ใมโครโพรเซสเซอร์ หรือ หน่วยประมวลผลกลาง (Central Processing Unit - CPU) ซึ่ง ประกอบด้วย 3 ส่วน

1. หน่วยคำนวณและตรรกะ (Arithmetic & Logical Unit: ALU)

เป็นหน่วยที่รับหน้าที่ในการการคำนวณต่างๆด้านคณิตศาสตร์ที่เกิดขึ้นในระบบ เช่น การ บวก ลบ คูณ หาร และ หน่วยตรรกะที่ทำหน้าที่เปรียบเทียบเพื่อได้ผลลัพธ์ว่าค่าเป็นจริงหรือเป็นเท็จ เช่น ค่าเท่ากัน ค่าที่มากกว่า ค่าที่น้อยกว่า เป็นต้น

2. หน่วยควบคุม (Control Unit)

เป็นหน่วยที่ทำหน้าควบคุมลำดับขึ้นตอนการประมวลผลของชุดคำสั่งรวมทั้งทำหน้าที่ ประสานงานในการทำงานร่วมกันของอุปกรณ์ต่างๆที่เชื่อมต่อกับหน่วยประมวลผล

3. หน่วยความจำหลัก (Main Memory)

เป็นหน่วยที่ที่ทำหน้าที่เก็บข้อมูลชุดคำสั่งในระหว่างการทำงานของโปรเซส (Process) เพราะการทำงานของคอมพิวเตอร์

2.3 แอปพลิเคชันและโปรแกรมที่เกี่ยวข้อง

2.3.1 Narrative Clips

ภาพที่ 2.3.1 ตัวอย่างสินค้า Narrative Clips [13]

Narrative Clips คือ อุปกรณ์สำหรับ life logging โดยให้ผู้ใช้นำอุปกรณ์ติดไว้ที่เสื้อผ้าโดย อุปกรณ์จะทำการถ่ายรูปไปเรื่อยๆตลอดทั้งวัน และเมื่อตัวเครื่องถูกเชื่อมต่อกับคอมพิวเตอร์จะทำการ อัปโหลดรูปภาพทั้งหมดขึ้นไปเก็บไว้บนอินเตอร์เน็ต และผู้ใช้สามารถเรียกดูรูปภาพต่าง ๆ ผ่านทางแอปพลิ เคชันได้ [9]

บทที่ 3

วิธีการวิจัย

3.1 ภาพรวมและสภาพแวคล้อมของระบบ

ภาพที่ 3.1 แสคง สถาปัตยกรรมของระบบไลฟ์ล็อกกิง

จากภาพที่ 3.1 เป็นสถาปัตยกรรมขอระบบสรุปสารถสำคัญจากวิดีโอ ซึ่งแบ่งเป็นสถาปัตยกรรม แต่ละอย่างได้ ดังนี้

- 1. User คือ ผู้ใช้งานระบบไลฟ์ล็อกกิง โดยผู้ใช้งานจะต้อง สมัครบัญชี AWS services และ ติดตั้ง โค้ดต้นแบบลงบน raspberry pi ก่อนจึงจะสามารถเข้าใช้งานการค้นหารูปภาพของ ไลฟ์ล็อกกิงได้ ผ่านทางเว็บแอปพลิเคชัน
- 2. S3 หรือชื่อเต็มว่า Simple Storage Service ซึ่งทำหน้าที่จัดเก็บข้อมูลต่างๆในระบบของผู้ใช้งานไว้ บนอินเตอร์เน็ต โดยจะเก็บข้อมูลรูปภาพที่ถูกอัปโหลด และไฟล์ JSON ที่เก็บชื่อรูปภาพกับวัตถุที่ เจอในภาพ

- 3. Lamda เป็นบริการของ AWS services โดยทำหน้าที่ประมวลผลโปรแกรมเมื่อถูกเรียกใช้งานโดยจะ ถูกเรียกใช้งานผ่าน S3 bucket ทุกครั้งที่มีการอัปโหลดภาพใหม่เข้าสู่ระบบ จะเรียกใช้งานบริการ Rekognition เพื่อทำการประมวลผลภาพต่อไป
- 4. Rekognition เป็นบริการที่ใช้ในการประมวลผลภาพเพื่อหาวัตถุที่ประกอบอยู่ในภาพ และส่งข้อมูล วัตถุที่พบออกมาในรูปแบบ JSON โดยข้อมูลภายในประกอบไปด้วยวัตถุที่ค้นพบและค่าความ ความเชื่อถือของวัตถุภายในรูปในรูปแบบความน่าจะเป็นซึ่งจะถูกส่งไปยัง S3 bucket สำหรับการ เรียกใช้ต่อในเว็บแอปพลิเคชัน
- 5. Web Application เป็นส่วนที่ใช้งานในการทดสอบระบบ พัฒนาโดย Flask ซึ่งเป็น framework ที่ พัฒนาด้วยภาษา Python ไว้ใช้สำหรับสร้างเว็บแอปพลิเคชันโดย Flask จะทำหน้าที่จัดการด้าน Back-end ให้กับเว็บแอปพลิเคชันโดยจะมีการใช้งาน AWS SDK โดยเป็น API สำหรับในการสั่ง งานคำสั่งต่างๆบน AWS cloud services โดยจะใช้งานคำสั่ง โดยจะทำการใช้งานคำสั่ง boto3 เพื่อ ดึงข้อมูล JSON จาก S3 bucket ซึ่งประกอบด้วยข้อมูลชื่อไฟล์รูปภาพและองค์ประกอบวัตถุที่อยู่ใน รูปภาพแต่ละรูป จากนั้นจึงรับคำสั่งการค้นหาซึ่งเป็นข้อความที่ผู้ใช้งานกรอกเพื่อนำมาเปรียบเทียบ กับข้อมูลของรูปภาพแต่ละรูปใน JSON ไฟล์ เพื่อบันทึกรายชื่อรูปภาพที่พบเจอวัตถุจากข้อความที่ผู้ ใช้งานค้นหา ไว้สำหรับ request รูปภาพเหล่านั้นจาก S3 เพื่อมาประมวลผลบน Web application
- 6. Raspberry pi & cam เป็นอุปกรณ์สำหรับการทำงานวนซ้ำของชุดคำสั่งที่ถูกติดตั้งเข้าไปเพื่อส่ง ข้อมูลรูปภาพพร้อมรายละเอียดเวลาที่ถูกบันทึกไว้บนไฟล์ของแต่ละรูปก่อนจะทำการอัปโหลดไป ยัง S3 เพื่อรอการประมวลผลต่อในอนาคต

3.2 การวิเคราะห์ขอบเขตและความต้องการของระบบ

3.2.1 แผนภาพกรณีศึกษา (Use Case Diagrams)

ภาพที่ 3.2 ภาพแสคงกรณีใช้งานของระบบไลฟ์ล็อก

จากภาพที่ 3.2 เป็นภาพที่แสดงกรณีใช้งานของระบบไลฟ์ล็อกกิง โดยผู้ใช้งานระบบต้อง สร้าง instance ผ่าน cloud formation บน AWS services และ มี Raspberry pi zero 2w พร้อมกับติดตั้งกล้อง บนบอร์ด และติดตั้ง Raspberry Pi OS(32-bit) Debian Bulleye พร้อมทั้งสั่งทำงานโปรแกรมบนบอร์ด เพื่อให้เริ่มการ อัปโหลดภาพไปยังอินเทอร์เน็ต เมื่อเสร็จสิ้นการตั้งค่าระบบผู้ใช้งานสามารถที่จะเริ่มค้นหารูปภาพจากข้อความที่ป้อนบนเว็บแอปพลิเคชันที่ติดตั้งไว้บนระบบได้ โดยเว็บแอปพลิเคชันจะแสดง ผลลัพธ์ขึ้นทางหน้าจอ

ตาราง 3.1 รายละเอียคกรณีการใช้งานระบบทั้งหมด

Use Case ID	Use Case Name	Description
UC-01		ผู้ใช้งานกรอกข้อความในช่องค้นหา
UC-02	อัปโหลดรูปภาพ	ผู้ใช้งานเปิดใช้งานอุปกรณ์ Raspberry pi

3.3 การออกแบบขั้นตอนการทำงานของระบบ

- 3.3.1 รายละเอียดแต่ละกรณีการใช้งานของระบบไลฟ์ล็อกกิ่ง
 - 3.3.1.1 รายละเอียดกรณีการใช้งานการค้นหารูปภาพด้วยข้อความ

ตาราง 3.3 รายละเอียดกรณีการใช้งานการค้นหารูปภาพด้วยข้อความ

รหัสยูสเคส (Use Case ID)	UC-01
ชื่อยูสเคส (Use Case Name)	ค้นหารูปภาพด้วยข้อความ
ผู้ใช้งาน (Actor)	ผู้ใช้งาน
คำอธิบาย (Description)	ผู้ใช้งานกรอกข้อความในช่องค้นหา
เงื่อนไขก่อนหน้า (Pre-condition)	ผู้ใช้งานต้องมีบัญชี AWS services และมีการเปิด ใช้งานบริการ ตาม CloudFormation ของระบบ, ผู้ ใช้งานต้องใช้งานคอมพิวเตอร์พร้อมทั้งติดตั้ง Web Application ลงบนเครื่อง, ผู้ใช้งานจำเป็นต้องเชื่อม ต่ออินเทอร์เน็ตระหว่างการใช้งาน
เงื่อนไขภายหลัง	รูปภาพที่ผู้ใช้ค้นหาจะมีจำนวนที่ขึ้นอยู่กับปริมาณ รูปภาพที่ถูกอัปโหลคไว้ใน S3 bucket ของผู้ใช้งาน
กระแสหลัก (Basic Flow)	
กระแสรอง (Alternative Flow)	หากผู้ใช้ข้อความที่ค้นหาไม่มีอยู่ในระบบ ระบบจะ แสดงแจ้งเตือนว่าไม่พบรูปภาพที่เกี่ยวข้องกับ ข้อความนั้น

3.3.1.2 รายละเอียดกรณีการใช้งานการอัปโหลดรูปภาพ

ตาราง 3.3 รายละเอียคกรณีการใช้งานการค้นหารูปภาพค้วยข้อความ

รหัสยูสเคส (Use Case ID)	UC-02
ชื่อชูสเคส (Use Case Name)	อัปโหลดรูปภาพ
ผู้ใช้งาน (Actor)	ผู้ใช้งาน
คำอธิบาย (Description)	ผู้ใช้งานเปิดใช้งานอุปกรณ์ Raspberry pi
เงื่อนไขก่อนหน้า (Pre-condition)	ผู้ใช้งานต้องมีบัญชี AWS services และมีการเปิด ใช้งานบริการ ตาม CloudFormation ของระบบ, ผู้ ใช้งานจำเป็นต้องติดตั้งระบบให้กับ Raspberry pi พร้อมทั้งติดตั้งโมคูลกล้อง, ผู้ใช้งานต้องตั้งค่า API key ให้ตรงกับบัญชี AWS services ของตนเอง
เงื่อนไขภายหลัง	รูปภาพจะถูกอัปโหลดขึ้นไปที่ S3 bucket ซึ่งเป็น บริการของ AWS services
กระแสหลัก (Basic Flow)	1. ผู้ใช้งานเปิดการทำงานอุปกรณ์ Raspberry pi 2. ผู้ใช้งานตรวจสอบการเชื่อมต่ออินเทอร์เน็ตของ อุปกรณ์
กระแสรอง (Alternative Flow)	หากระบบไม่ได้เชื่อมอินเทอร์เน็ต หรือ API key ไม่ถูกต้องระบบจะไม่สามารถอัปโหลดรูปภาพได้

3.3.2 กระบวนการทำงานแต่ละกรณีการใช้งานของระบบไลฟ์ล็อกกิง

3.3.2.1 กระบวนการทำงานกรณีการค้นหารูปภาพด้วยข้อความ

ภาพที่ 3.3 กระบวนการทำงานกรณีการใช้งานการค้นหารูปภาพคั่วยข้อความ

3.3.2.1 กระบวนการทำงานกรณีการอัปโหลดรูปภาพ

ภาพที่ 3.4 กระบวนการทำงานกรณีการใช้งานการกันหารูปภาพคัวยข้อความ

รายการอ้างอิง

- [1] A. Kohn. (2014, March 13). "Brain Science: The Forgetting Curve—the Dirty Secret of Corporate
 Training" [Online] จาก
 https://learningsolutionsmag.com/articles/1379/brain-science-the-forgetting-curvethe-dirty-secret
 -of-corporate-training [สืบคันเมื่อ 2 กันยายน 2565]
- [2] E. Dolina. (2019, October 15). "What Is Lifelogging and Why Do People Do It?" [Online] จาก https://www.movavi.io/lifelogging-en/ [สีบค้นเมื่อ 2 กันยายน 2565]
- [3] hmong. "Memex" [Online]. จาก https://hmong.in.th/wiki/Memex [สีบค้นเมื่อ 5 กันยายน 2565]
- [4] A. Boxall. (2021, April 14) . "Lifelogging isn't dead. It lives on, just without any of the promised benefits" [Online]. จาก
 https://www.digitaltrends.com/mobile/lifelogging-lives-on-without-the-promised-benefits/[สืบค้นเมื่อ 5 กันยายน 2565]
- [5] ศูนย์คอมพิวเตอร์ มหาวิทยาลัยเทค โน โลยีสุรนารี . "รู้จักคลาวค์คอมพิวติ้ง (Cloud Computing)"
 [Online] จาก http://web.sut.ac.th/g/index.php/documentation/google-plus?id=114 [สืบค้นเมื่อ 4
 กันยายน 2565]

- [6] W. Chai, J. Bigelow (2021, December). "cloud computing" [Online]. จาก https://www.techtarget.com/searchcloudcomputing/definition/cloud-computing [สีบคันเมื่อ 5 กันยายน 2565]
- [7] R. Ganesh (2015, October). "FPGA Implementation of Binary Morphological Processing for Image Feature Extraction". [Online]. จาก https://www.researchgate.net/figure/Image-pixel-generation-In-Digital-Image-Processing -the-digital-image-feature-extraction_fig1_283800375 [สิบคันเมื่อ 5 กันยายน 2565]
- [8] ณัฐคนัย เนียมทอง (23 กรกฎาคม 2561). "Image Processing กับประโยชน์ทางการแพทย์" [Online]. จาก https://www.scimath.org/article-technology/item/7864-image-processing#:~:text=การประมวลผล ภาพหรือ,ใช้ประโยชน์ในด้านการ [สืบค้นเมื่อ 5 กันยายน 2565]
- [9] Wikipedia (2022, September 16). "Python (programming language)" [Online]. จาก
 https://en.wikipedia.org/wiki/Python_%28programming_language%29 [สิบคันเมื่อ 15 กันยายน
 2565]
- [10] Pacharee Toorakidsana (2021, May 25). "Python คืออะไร? เป็นภาษาที่ง่ายที่สุดจริงหรือ?" [Online].
 จาก https://blog.skooldio.com/what-is-python/ [สืบค้นเมื่อ 15 กันยายน 2565]
- [11] J. Miller (2021, November 15). "The Microprocessor at 50: How the 4004 Changed The World"
 [Online]. จาก https://www.pcmag.com/news/how-the-4004-changed-the-world [สืบค้นเมื่อ 6
 พฤศจิกายน 2565]

- [12] มนัสนันท์ เหิรอดิศัย (18 กันยายน 2545). "ไมโคร โปรเซสเซอร์" [Online]. จาก
 https://www.nectec.or.th/schoolnet/library/create-web/10000/generality/10000-8151.html [สืบค้น
 เมื่อ 16 กันยายน 2565]
- [13] B. Heater (2016, September 29). "The Narrative Clip lifelogging camera is no more" [Online]. จาก https://techcrunch.com/2016/09/28/narrative [สืบค้นเมื่อ 5 กันยายน 2565]