Data Mining Data: Part 2

Exploratory Data Analysis (EDA)

Mohammed Brahimi & Sami Belkacem

Exploratory Data Analysis (EDA)

- EDA is a set of **statistical** and **visualization** techniques.
- ☐ Used for seeing what the data can tell us before the **preprocessing** and **modeling**:
 - Understand the data and summarize its keys properties.
 - Discover noisy data and outliers.
 - Comprehend the distribution of the data.
 - Decide which set of data cleaning techniques to be applied.
- EDA is cross-classified in two ways:
 - 1. The method is either **non-graphical** or **graphical**.
 - 2. The method is either **univariate** or **multivariate** (usually just bivariate).

Exploratory Data Analysis (EDA)

1. Statics of Data

2. Data visualization

1: Statics of Data

- Population vs Sample
- Measuring the Central Tendency
- Mean, Median, and Mode
- Measuring the distribution of data
- Variance and Standard deviation
- Analysis of two variables
- Covariance and Correlation

Population vs Sample

Population

The entire group that you want to draw conclusions about.

Sample

- Subset of the population, used when the population size is too large to analyze
- A sample is an unbiased subset that best represents the entire population.

Measuring the Central Tendency: (1) Mean

Mean (algebraic measure) (sample vs. population):

n is sample size and **N** is population size.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

Weighted arithmetic mean:
$$\overline{x} = \frac{\displaystyle\sum_{i=1}^n w_i x_i}{\displaystyle\sum_{i=1}^n w_i}$$

Trimmed mean: Chopping extreme values (e.g., olympics gymnastics score computation)

Measuring the Central Tendency: (2) Median

Median is the middle value in a data set when values are ordered.

How to calculate

- Sort data in ascending order.
- Repeat values according to their frequency.
- If there's an odd number of data points, the median is the middle value.
- If there's an even number of data points, the median is the average of the two middle values.

Why use the Median

- Resistant to extreme outliers.
- Useful for skewed distributions.

Example 1: Calculating the median

Number of cars	Frequency
0	4
1	5
2	3
3	1

^	•	^	^	4	4 /	(4)	1	4	2	_		2
U	U	U	U	1	1 (_ ` I) '∎	1			4	3
							<u></u>					

- N = 4+5+3+1=13
- Median is in the position ceil(13/2)= 7
- The median is the value 1

Example 2: Calculating the median

	Age	Frequency
0	5-10	4
1	10-20	5
2	20-50	3
3	50-55	1

0	0	0	0	1	1	1	1	1	2	2	2	3	
---	---	---	---	---	---	---	---	---	---	---	---	---	--

- N = 4+5+3+1=13
- Median is in the position ceil(13/2)= 7
- The median bin is the value 10-20

How to find the median value?

Median calculation for grouped data

Estimated Median =
$$L + \frac{(n/2) - B}{G} imes w$$

- ☐ L: the lower class boundary of the median bin.
- n: the total number of values.
- **B**: cumulative frequency of the bins before the median bin.
- ☐ G: the frequency of the median bin.

	group	width.
--	-------	--------

	Age	Frequency
0	5-10	4
1	10-20	5
2	20-50	3
3	50-55	1

10

Example 2: Calculating the median for grouped data

Estimated Median =
$$L + \frac{(n/2) - B}{G} imes w$$

	Age	Frequency
0	5-10	4
1	10-20	5
2	20-50	3
3	50-55	1

The median bin is the value 10-20

- □ L = 10
- □ n=13
- \Box B = 4 and G = 5
- \Box w = 20-10 = 10

Median value =
$$10 + ((6.5-4)/5) *10 = 15$$

Measuring the Central Tendency: (3) Mode

Mode: Value that occurs most frequently in the data

Unimodal

Empirical formula: $mean - mode = 3 \times (mean - median)$

Right skewed distribution: Mean is to the right

Multimodal

- Bimodal (a)
- Trimodal (b)

Symmetric vs. Skewed Data

Median, mean and mode of symmetric, positively and negatively skewed data

Properties of Normal Distribution Curve

Measuring Data Distribution: Variance and Standard Deviation

- $lue{}$ sample: $oldsymbol{s}$, population: $oldsymbol{\sigma}$
 - Variance: Measure dispersion around the mean

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Note: The subtle difference of formulae for sample vs. population

- **n**: the size of the sample
- **N**: the size of the population

- **Standard deviation** s (or σ) is the square root of variance s^2 (or σ^2)
- Measures dispersion around the mean, but in the same units as the

Covariance for Two Numerical Variables

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

- The goal is to understand relationships between two variables.
- Covariance shows how two variables change together.
 - Positive Covariance: both variables move together.
 - Negative Covariance: variables move in opposite directions.
 - Zero Covariance: bo clear pattern in variable movements.

Covariance for Two Numerical Variables

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

- Understanding relationships between variables.
- Covariance shows how two variables change together.

Covariance is useful but sensitive to scale, while correlation addresses this issue by standardizing the measurement.

Covariance for Two Numerical Variables

$$cov(X, Y) = E[XY] - E[X] E[Y]$$

- Two Stocks X1 and X2 Weekly Stock Prices:
 - X: (2, 3, 5, 4, 6) Y: (5, 8, 10, 11, 14)
- Calculate the Covariance
 - \Box E(X) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - \Box E(Y) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6
 - \Box E(XY) = $(2\times5 + 3\times8 + 5\times10 + 4\times11 + 6\times14)/5 = 42.4$
- \bigcirc Cov(X,Y) = 42.4 4*9.6 = 4
- Thus, X and Y rise together since Cov(X,Y)>0

Covariance Matrix

■ The variance and covariance information for the two variables can be summarized as 2X2 covariance matrix as:

$$\Sigma_{i,j} = \begin{bmatrix} \sigma_{ii}^2 & \sigma_{ij}^2 \\ \sigma_{ji}^2 & \sigma_{jj}^2 \end{bmatrix}$$

Generalizing it to d dimensions:

$$\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

Correlation between Two Numerical Variables

 \square **Correlation** between two variables X_1 and X_2 is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_{1}\sigma_{2}} = \frac{\sigma_{12}}{\sqrt{\sigma_{1}^{2}\sigma_{2}^{2}}}$$

 \boldsymbol{n} is the number of tuples, $\boldsymbol{\mu_1}$ and $\boldsymbol{\mu_2}$ are the respective means of $\boldsymbol{X_1}$ and $\boldsymbol{X_2}$,

 σ_1 and σ_2 are the respective standard deviation of X_1 and X_2

- If $\rho_{12} > 0$: A and B are positively correlated $(X_1's)$ values increase as $X_2's$
- If $\rho_{12} = 0$: independent (under the same assumption as discussed in co-variance)
- □ If ρ_{12} < 0: negatively correlated

Correlation Matrix (Correlation Heatmap)

The correlation matrix is a matrix that shows the correlations between each pair of variables in a dataset

Visualizing Changes of Correlation Coefficient

- Correlation coefficient value range: [−1, 1]
- A set of scatter plots shows sets of points and their correlation coefficients changing from −1 to 1

Exploratory Data Analysis (EDA)

1. Statics of Data

2. Data visualization

2- Data Visualization

- Boxplot
- Histogram and Bar chart
- Quantile plot
- Quantile-quantile (Q-Q) plot
- Scatter plot
- Line chart
- Parallel Coordinates plot

Measuring the Dispersion of Data: Quartiles & Boxplots

- **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
- ☐ Interquartile range: $IQR = Q_3 Q_1$
- **Tive number summary**: min, Q_1 , median, Q_3 , max
- Box plot: Data is represented with a box
 - Q₁, Q₃, IQR: The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - \square Median (\mathbb{Q}_2) is marked by a line within the box

Outliers: points beyond a specified threshold (e.g. value higher/lower than 1.5 x IQR)

Measuring the Dispersion of Data: detect Outliers

Histograms vs Bar charts

- ☐ **Histogram:** Tabulated frequencies represented by bars.
- **Bar chart:** Categorical data with bars proportional to the values they represent.

Differences between Histograms and Bar charts:

- Histograms show distributions of variables, while bar charts compare variables
- Histograms plot binned quantitative/categorical data, while bar charts only plot categorical data
- Bars can be reordered in bar charts, but not in histograms
- In histograms, it is the area of the bar that denotes the

value, not the height as in bar charts.

Histograms Often Tell More than Boxplots

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket.
- Partitioning rules:
 - **Equal-width:** equal bucket range
 - Equal-frequency (or equal-depth)

Quantile Plot

Purpose: Visualizes all quantile information for a specific attribute

Benefits

- Provides a comprehensive view of the attribute's distribution.
- Helps identify both general trends and outliers.

Construction

- For a data {X1, X2, ..., XN} sorted in increasing order.
- □ f_i indicates that approximately f_i of the data point have values $\leq x_i$

Quantile-Quantile (Q-Q) Plot

Purpose

 Assess the distributional similarity between an attribute and either another attribute or a theoretical distribution.

Interpreting a Q-Q Plot

- □ If the points closely follow a straight line ⇒ The two distributions are similar.
- Deviations from the line indicate differences in distribution.

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane.

Positively and Negatively Correlated Data

Uncorrelated Data

Line chart

- A line chart displays information as a series of data points called 'markers'.
- The markers are connected to each other by straight line segments

Parallel Coordinates Plots of Iris Data

- A parallel coordinate plot maps each row in the data table as a line, or profile.
- Each attribute of a row is represented by a point on the line.

