

RAID

Redundant Array of Independent (Inexpensive) Disk

Dr. Reiner Kupferschmidt

Gliederung

- Zweck
- Prinzip Möglichkeiten
- RAID-Level
- genutzte RAID-Level
- Hardware-RAID
- Software-RAID
- Host-RAID
- RAID-Arten, Vor- und Nachteile
- Lernzielkontrolle
- Quellen

Zweck

- Festplattenverbund von zwei oder mehr Festplatten, bei dem alle Daten mehrfach (redundant) vorhanden sind und man so vor Ausfall einer oder mehrerer Einzelplatten geschützt ist (außer RAID0)
- Geschwindigkeit steigern
- Daten-Verfügbarkeit erhöhen
- oder beides zusammen
- Achtung: Ein RAID ersetzt niemals eine Datensicherung

Prinzip - Möglichkeiten

- RAID-Adapter oder Betriebssystem fassen mindestens zwei oder mehr Festplatten zu einem logischen Verbund zusammen - Array
- BS "sieht" ein einziges logisches Laufwerk mit besonderen Eigenschaften
- Daten werden im "Hintergrund" auf die physischen Laufwerke verteilt
- Hilft nur bei Ausfall einer Platte (Ausnahme RAID 6)
- Redundanz nur wenn hohe Verfügbarkeit gefordert, auch bei Plattendefekt!
- Schützt nicht vor Viren, Würmern oder versehentlichem Löschen, da gleichzeitiger Zugriff auf alle physischen Laufwerke
- KEIN Ersatz für Backup!

Datenträger HDD/SSD??? IST?

- Physisch/logisch
- Laufwerke: optisch, magnetomechanisch, elektronisch
- Lese/Schreibgeschwindigkeit
- Schnittstelle
 - Übertragungsgeschwindigkeit
 - Protokoll
 - Formfaktor
- Firmware
 - Blockeinstellungen
 - Orientierung, Index, Winkel
 - Anzahl der Blöcke
 - **–** ...
- Cache
- Lebensdauer
- Betriebsart
- Speicherplatz
- Bootfähigkeit
- Lebensdauer
- Betriebsspannung, Stromversorgung
- Mechanische, Elektronische und Magnetische Beanspruchbarkeit und Empfindlichkeit

Datenträger HDD/SSD???

- IST: Laufwerk, Formatierung 512 Byte/Block
- SOLL: Wie geht es weiter?
 - Partitionstabelle schreiben
 - MBR
 - GPT
 - Partitionen anlegen
 - Formatierung, Filesystem anlegen
 - Blöcke werden zu Cluster
 - Maximale Dateigröße
 - Verschnitt
 - Bootfähigkeit?!
 - Speichern von Daten

Physisch – Logisch?

- Physisches Laufwerk
 - Physisch vorhandene Hardware
 - HDD, SSHD, SSD
 - Kann in logische Laufwerke (Partitionen) aufgeteilt werden
 - "Benutzer kann die Laufwerke anfassen"
- Logisches Laufwerk
 - Betriebssystem "sieht" nur ein Laufwerk
 - Mehrere physische Laufwerke können zusammengefasst werden oder
 - Partitionen eines physischen Laufwerks
 - "Benutzer kann die Laufwerke NICHT anfassen"

Hardware-RAID

- Klassische Form
- RAID-Controller
 - Meist über PCI oder PCIe connectiert
 - Organisiert die Datenverteilung auf den Festplatten
 - Berechnung der Prüfsummen, Paritäten
 - "verbirgt" die Plattenstruktur vor dem Betriebssystem – logisches Laufwerk!
 - Ermöglicht Start des BS von RAID-Laufwerk

Host-RAID

- Zwischenstufe Hard-/Software-RAID
- RAID-Chipsatz, RAID-Adapter (Motherboard)
- RAID-Funktionen werden von der Firmware bzw. den Treibern erledigt
- Aufwendige Berechnungen übernimmt der Hauptprozessor
- Hohe Belastung der CPU (Fake-RAID)
- RAID-Adapter kann nur durch kompatiblen, besser, gleichen ersetzt werden, ganzes Motherboard muss getauscht werden

Software-RAID

- Hauptprozessor muss Verteilung der Daten und Berechnung der Prüfsummen übernehmen
- Linux erlaubt neben RAID 0, 1 und 5 auch noch RAID 4 und 6
- MacOS beherrscht RAID 0 und 1
- Windows Server beherrscht RAID 0, 1 und 5
- Einzelplatz-Betriebssysteme von Microsoft beherrschen nur RAID 0 und 1

z. B. Windows 10

Z-111		i
	Neues übergreifendes Volume	١
	Neues Stripesetvolume	
	Neues gespiegeltes Volume	l
	Neues RAID-5-Volume	
	In dynamischen Datenträger konvertieren	
	Zu GPT-Datenträger konvertieren	
	Offline	l
	Eigenschaften	l
	Hilfe	

- JBOD
- RAID 0
- RAID 1
- RAID 5 (nur Win. Server)
- Basisfestplatte in dynamischen Datenträger - können Sie Volumes erstellen, die sich über mehrere Datenträger erstrecken (übergreifende und Stripesetvolumes)..
- Basisfestplatten unterstützen nur primäre Partitionen, erweiterte Partitionen und logische Laufwerke.

Übersicht

Bezeichnung	Software-RAID	Host-RAID	HW-RAID
Controller-Chip	nein	ja	ja
CPU-Berechnung	ja	ja	nein
Performance	mittel	hoch	hoch
Alarmfunktion	nein	möglich	ja
Kosten	integriert	gering	hoch
Vorteile	Hardware- unabhängig	billig	Hohe Performance
Nachteile	BS-abhängig	unzuverlässig	Hohe Kosten durch Controller

Nur ein Hardware-RAID schützt ausreichend vor Hardware-Defekten.

Einrichten von RAID

- Prüfen der Tauglichkeit der HW
- Vorher planen, vor allem bei HW-RAID über MB, da BS u. U. neu aufgesetzt werden muss
- Gleiche Festplatten einsetzen (Zugriffsgeschwindigkeit, Größe, Hersteller)
- Platten müssen für Dauerbetrieb geeignet sein
- Bei HW-RAID eventuell 2. Controller vorhalten
- Datensicherung rechtzeitig planen

RAID-Level

- RAID 0 Striping
- RAID 1 Mirroring
- RAID 10 Mirrored-Striping-Array
- RAID 5 Block-Striping mit verteilter Parität
- RAID 6 Block-Striping mit waagerechter und senkrechter Parität
- Weitere Mischformen sind je nach Anforderungen möglich und im Einsatz – dabei werden Vorteile kombiniert und Nachteile minimiert

BERUFSFÖRDERUNGSWERK Berlin Brandenburg e. V.

Genutzte RAID-Level

RAID- Level	Lesege- schwindigkeit	Schreibge- schwindigkeit	Daten- sicherheit	Speicher- kapazität
RAID 0	+ +	+ +		+
RAID 1	+ +	+	+ +	
RAID 5	+	-	+	_

- RAID 0: Nicht ausfallsicher, dafür schnelle Lese- und Schreibgeschwindigkeit
- RAID 1: Ausfallsicher, aber teuer
- RAID 5: Ausfallsicher, aber langsame Schreibgeschwindigkeit

RAID-Level Vergleich

Betrieb	RAID 0	RAID 1	RAID 5	RAID 6
Redundanz	-	+	+	+
min. Datenträger	2	2	3	4
Rechenaufwand	sehr gering	sehr gering	mittel (XOR)	hoch
Datentransferrate	höher als Einzelplatte	beim Lesen höher als Einzelplatte	abhängig vom Controller	abhängig vom Controller
Kapazität bei 2 Platten	2	1	-	-
Kapazität bei 3 Platten	3	-	2	-
Kapazität bei 4 Platten	4	2	3	2
Kapazität bei 5 Platten	5	-	4	3

Je nach Implementierung bremst der Rechenaufwand für RAID 5 und 6 beim Schreiben. Das Lesen von mehreren Platten geht in der Regel schneller als von nur einer Platte. Um die Datentransferrate von RAID 1, 5 und 6 zu steigern werden zwei RAID-Verbünde zu einem RAID 0 zusammengeschaltet. Dadurch entstehen ein RAID 10, 50 bzw. 60.

RAID Level 0

- Striping
- 0-Datenredundanz

Vorteile RAID 0

- Schreiben der Datenblöcke erfolgt abwechselnd auf die Platten während die andere Platte beschäftigt ist
 - ideal doppelte Geschwindigkeit
- auch Lesen der Daten von RAID 0 ist die Transferrate schneller
- RAID 0 eignet sich also ausschließlich zur Geschwindigkeitssteigerung, allerdings gilt das nur bei sequenziellem Datentransfer
- beim sequenziellen Lesen und Schreiben von großen Dateien lassen sich alle Festplatten gleichzeitig nutzen

Nachteile RAID 0

- keine Datenredundanz
- Ausfall einer Platte alle Daten "weg"
- Datenrettung nicht möglich
- höhere Ausfallwahrscheinlichkeit
- Fehler durch Controller
- Motherboarddefekt Datencrash
- nur für temporäre Daten, wie Auslagerungsdateien und SWAP

Einzel-HDD Testprotokoll

- Zustand WD-Festplatte vor dem RAID
- Datenrate Schreiben, Lesen annähernd gleich bis 16 MB
- ab 32 MB -Lesegeschwindigkeit deutlich höher

RAID 0 Testprotokoll

- Darstellung der Datenrate (Schreiben, Lesen)
- konstant ansteigende
 Datenmenge Schreib- und Leserate in etwa gleich
- Performancegewinn fast 100 Prozent
- etwas höhere Lesegeschwindigkeit

WD- HDD-Festplatten, WD800AAJS, 80 GB, 08.03.2016

RAID Level 1

- Mirroring
- bestmöglicher Schutz vor Datenverlust und Festplattenausfall
- RAID 1E 3 Festplatten-Mirroring
- Duplexing

Vorteile RAID 1

- Schreiben nur so schnell, wie die langsamste Festplatte
- Lesen schneller als einzelne Platte Daten werden von der Platte geholt, die sie als erstes bereitstellen kann
- bei Ausfall einer Platte kann mit geringem Geschwindigkeitsverlust weiter gearbeitet werden

Nachteile RAID 1

- teuerster RAID-Level
- gleicher Speicherplatz doppelter Preis
- höchste Datensicherheit, halber Speicherplatz, für kleine Server oder NAS

RAID1 Testprotokoll

- Schreibdurchsatz in Mbit/s
 - roter Balken
- Lesedurchsatz in Mbit/s
 - grüner Balken
- Gesteigerte Datenrate
 (Lesen) durch Zugriff auf verschiedene Sektoren von verschiedenen Platten
- Datenrate (Schreiben) gleichbleibend
- steigende Datenmenge = steigender Unterschied

WD- HDD-Festplatten, WD800AAJS, 80 GB, 08.03.2016

Gegenüberstellung

© Dr.-Ing. Reiner Kupferschmidt

- RAID-Level 5 ist Weiterentwicklung aus RAID-Leveln 3 und 4
- wie bei RAID 0 werden die Daten in Blöcke, den Stripes, aufgeteilt und über die gesamte Festplatte verteilt
- Aus den Datenblöcken wird eine Parität ermittelt, rotierend auf andere DT verteilt
- gute Kombination aus Datensicherheit und Speicherausnutzung (80 % der Gesamtkapazität bei 5 Festplatten)

Α	В	AB _P	B'
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	1

Berechnung der Parität über XOR

Aufbau RAID 5 (2)

verzögertes Schreiben und Lesen

Aufbau von RAID 5

- Block Striping mit verteilter Parität mit mindestens
 3 Festplatten
- dabei wird ein Datenblock von 128 kByte in zwei Datenblöcke von 64 kByte geteilt
- aus den beiden Datenblöcken wird die Paritätsinformation gebildet, die einem dritten Block von 64 kByte entspricht
- Parität ist das Ergebnis einer Exklusiv-Oder-Verknüpfung (XOR) der Datenblöcke eines Sektors
- Parität wird aus Sicherheitsgründen nicht auf einem separaten Laufwerk gespeichert, sondern gleichmäßig auf alle Festplatten zwischen den Datenblöcken verteilt (Rotating Parity)

Vorteile RAID 5

- Daten vergleichsweise sicher gespeichert, solange bis eine Festplatte ausfällt
- bei Ausfall werden die Paritätsinformationen benötigt, um die fehlenden Daten zu rekonstruieren
- im Vergleich zu RAID 1 wird die Speicherkapazität besser ausgenutzt

Nachteile RAID 5

- Hauptnachteil ist die Notwendigkeit bei jedem Schreibzugriff den Paritäts-Sektor auszulesen, neu zu berechnen und wieder zu speichern
- langsame Schreibgeschwindigkeit im Vergleich zu anderen RAID-Leveln (geschickte Berechnungen, Puffer)
- Kapazitätsverlust durch die Speicherung der Paritätsinformationen

Wichtig: Fällt im RAID 5 eine Festplatte aus, so sind die Daten in höchstem Maße gefährdet. Denn fällt noch eine Festplatte aus, so sind die Daten endgültig verloren. Ein RAID 5 verkraftet den Ausfall einer zweiten Festplatte NICHT!!!

RAID 6

- ein RAID-6-Verbund benötigt mindestens vier Festplatten
- Block-Level Striping mit doppelter verteilter Paritätsinformation
- gleichzeitiger Ausfall von 2 Festpl. mgl.
- Wiederherstellung d. Redundanz kann mehrere Tagen dauern
- bessere Schreibleistung wird durch erhöhten Rechenaufwand erkauft
- zusätzliche XOR-Operation über eine orthogonale Datenzeile
- Paritäten werden rotierend auf Platten verteilt

SPAN

- VIA Maßnahme zur Kapazitätserweiterung ohne Leistungsgewinn
- Daten gelangen zusammenhängend auf eine Festplatte
- auch unterschiedlich große HDD möglich ohne Kapazitätsverlust

JBOD

- Just a Bunch of Disks, also: Nur ein Haufen Festplatten
- kann auch an
 verschiedenen
 Schnittstellen
 angeschlossenen HDD
 als ein log. LW
 zusammenfassen –
- VMS Volume
 Management Software

RAID-Level 10 / 0+1

- Mirrored Striping Array
- RAID 10, auch RAID 0+1, Kombination aus RAID 0 und RAID 1, Striping und Mirroring
- RAID 10 bietet die Vorteile von RAID 0 und RAID 1
- RAID 10 erfordert mindestens 4 Festplatten
- RAID 10 ist besonders geeignet um große Datenmengen redundant zu speichern
- doppelte Anzahl von Festplatten, wie RAID 1

RAID 10(0 + 1)

- RAID-10-Verbund ist ein RAID 0 über mehrere RAID 1
- mind, 4 HDD
- erst Striping dann Mirroring
- Sicherheit und gesteigerte Schreib-/Lesegeschwindigkeit
- RAID 10 gegenüber RAID 0+1 eine bessere Ausfallsicherheit und schnellere Rekonstruktion
- eine Festpl. pro RAID 1 kann ausfallen
- ½ HDD-Kapazität

RAID 15

- drei RAID-1-Arrays als
 Bestandteile für ein RAID 5
- Striping erfolgt mit einer Parität
- bei RAID 15 mit acht HDD dürfen bis zu drei beliebige Platten gleichzeitig ausfallen
- RAID-15-Verbund benötigt mindestens sechs HDD
- Datendurchsatz ist gut, aber nicht sehr hoch
- Risiko eines kompletten Datenverlustes recht gering

Hot Swapping

- Hot Swapping ist die Möglichkeit, Festplatten im laufenden Betrieb auszutauschen
- Dazu muss der Bus-Controller Hot-Plugging unterstützen (i. d. R. nur SCSI, SAS oder SATA)
- Festplatte muss im Controller/BIOS dafür vorgesehen sein/werden
- Damit es nicht zu Datenverlust führt, ist ein Austausch nur in Arrays mit redundanter Datensicherung (z.B. RAID 1, 5 u.a.) möglich

Hot-Spare-Laufwerk

- Hot-Spare-Laufwerk ist ein unbenutztes Reservelaufwerk
- Fällt ein Laufwerk innerhalb des RAID-Verbundes aus, wird es durch das Reservelaufwerk ersetzt
- Die physischen Laufwerke werden durch das S.M.A.R.T-Monitoring des Controllers überwacht
- Passiv-HotSpare Das zusätzliche Laufwerk wird erst "gestartet", wenn ein RAID-LW einen Fehler meldet und ausfällt
- Aktiv-HotSpare Das zusätzliche Laufwerk "läuft" während der ganzen Zeit mit, "nutzt" sich also ab. Wenn ein RAID-LW einen Fehler meldet und ausfällt wird es sofort eingebunden du es beginnt die Datenrekonstruktion

	RAID 0	RAID 1	RAID 10	RAID 5	RAID 6
Anzahl Laufwerke	n >1	n = 2	n => (2n)	n ≥ 3	n ≥ 4
Redundante Laufwerke	0	1	1 (**)	1	2
Kapazitäts-Overhead bei min. Laufwerksanzahl (%)	0	50	50	100 / n	100 / n-2
Parallele Lese- Operationen	n	2	n / 2	n – 1	
Parallele Schreib- Operationen	n	1	1	n / 2	
Maximaler Lesedurchsatz (*)	n	2	n / 2	n – 1	
Maximaler Schreibdurchsatz (*)	N	1	1	n / 2	
Kapazität (Q _{RAID} , Q _{HDD} , n)	$\begin{vmatrix} Q_{RAID} \\ = (n) * Q_{HDD} \end{vmatrix}$	Q _{RAID} = (n/2) * Q _{HDD}	Q _{RAID} =(n/2) * Q _{HDD}	Q _{RAID} = (n-1) * Q _{HDD}	Q _{RAID} =(n-2) * Q _{HDD}

Wertung

Auswahl eines RAID-Levels erfordert Kompromiss:

- Performance
- Sicherheit
- Kosten

Übersicht RAID-Varianten

Bezeichnung	Software-RAID	Hardware-RAID	Host-RAID
Controller-Chip	nein	ja	ja
CPU-Berechnung	erechnung ja nein		ja
Performance	mittel	hoch	hoch
Alarmfunktion	nein	möglich	möglich
Kosten	integriert	mittel - hoch	gering
Vorteile	Hardware- unabhängig	entlastet Prozessor	preiswert, Motherboard
Nachteile	zusätzlicher DT für BS, BS-abhängig	hohe Kosten f. Vorhaltung d. HW	unzuverlässig, Belastung d. CPU

ZFS (Zetabyte File System)

- Server und Rechenzentren
- große Dateisystemgröße
- Einfache Verwaltung komplexer Konfigurationen
- Integrierte RAID-Funktionalität
 - Volumen-Management
 - Prüfsummenbasierter Schutz cor Übertragungsfehlern
- Datenträgerpools
- Einfache Administration
- Redundanz
- Snapshots
- Automatische Datenfehlerkorrektur
- Deduplikation
- Performance
- Datenkapazität

Wortlänge	128 Bit
Volume Manager	integriert
Ausfallsicherheit	RAID-1 RAID-Z1 (1 Parity-Bit, ~RAID 5) RAID-Z2 (2 Parity-Bits, ~RAID 6) und RAID-Z3 (3 Parity-Bits) integriert
max. Größe des Dateisystems ¹	16 <u>EiB</u> (= 2 ⁶⁴ Byte)
max. Anzahl an Dateien in einem Dateisystem	2 ⁴⁸
max. Größe einer Datei ¹	16 EiB (= 2 ⁶⁴ Byte)
max. Größe jedes Pools	2 ¹²⁸ Byte
max. Anzahl an Dateien in einem Verzeichnis	2 ⁴⁸
max. Anzahl an Geräten im Pool	2 ⁶⁴
max. Anzahl an Dateisystemen im Pool	2 ⁶⁴
max. Anzahl an Pools im System	2 ⁶⁴

IEC-Präfixe zur Basis 2

Name	Symbol	Wert
kibi	Ki	$2^{10} = 1024^1 = 1.024$
mebi	Mi	$2^{20} = 1024^2 = 1.048.576$
gibi	Gi	$2^{30} = 1024^3 = 1.073.741.824$
tebi	Ti	$2^{40} = 1024^4 = 1.099.511.627.776$
pebi	Pi	$2^{50} = 1024^5 = 1.125.899.906.842.624$
exbi	Ei	$2^{60} = 1024^6 = 1.152.921.504.606.846.976$
zebi	Zi	$2^{70} = 1024^7 = 1.180.591.620.717.411.303.424$
yobi	Yi	280 = 10248 = 1.208.925.819.614.629.174.706.176

Lernzielkontrolle

- Was bedeutet die Abkürzung RAID? Anmerkung: Das I hat je nach Sichtweise zwei Bedeutungen.
- 2. Welche Standard-RAID-Level finden heute Verwendung?
- 3. Skizzieren Sie anhand von vier Festplatten die prinzipielle Verteilung der Blöcke bei RAID-Level 10!
- 4. Nennen Sie einen Einsatzbereich für RAID-Level 0 und begründen Sie diese!
- 5. Was versteht man unter dem RAID-Level 1?
- 6. Wie viele Festplatten benötigt mindestens ein RAID-Level 5-System?
- 7. Was versteht man unter dem RAID-Level 15 und nennen Sie jeweils ein Vor- und einen Nachteil?
- 8. Was versteht man unter dem RAID-Level 10?
- 9. Was versteht man unter RAID-Level 6?
- 10. Was verstehen Sie unter JBOD?
- 11. Was verstehen Sie unter einem physischen und was unter einem logischen Laufwerk?
- 12. Welche Aufgaben hat ein RAID-Controller?
- 13. Was verstehen Sie unter einem Hotspare-Laufwerk?
- 14. Was verstehen Sie unter Hotplug? Was müssen Sie dabei beachten?
- 15. Was verstehen Sie unter SMART-Monitoring? Nennen Sie mindestens 5 relevante Werte und erläutern Sie diese?

(Zeit 45 min)

BERUFSFÖRDERUNGSWERK Berlin Brandenburg e. V.

Abschluss

Vielen Dank für Ihre Aufmerksamkeit!

Für weitere Fragen stehe ich Ihnen gerne zur Verfügung.