Materials 22 - GMM of simple anchoring function

Laura Gáti

March 25, 2020

Overview

1 Specifications of anchoring function and estimation
2 Estimation issues
2 Robustness to different filters
2 Estimates
3 The other thing: numerical implementation of target criterion
3

1 Specifications of anchoring function and estimation

• Anchoring function

$$k_t = k_{t+1} + \frac{1}{(d\ fe)^2} \tag{1}$$

Agents update their PLM using the inverse gain k_t^{-1} . Thus the bigger $\frac{1}{(d f e)^2}$, the more the gain is decreasing. Higher forecast errors f e or a higher d means closer to constant gains. I tried the inverse formulation with $h_t \equiv k_t^{-1}$ and

$$h_t = h_{t-1} + (d f e_{t-1})^2 (2)$$

but it always led to explosive simulations.

• Target: I gather the time series of inflation, output gap and federal funds rate, filter them, and compute empirical autocovariances:

$$ac^{data}(h) \equiv cov(y_t, y_{t-h})$$
 (3)

for $h=0,\ldots,K$, selecting K=4. I gather these autocovariances for the three variables in the matrix AC. The target then is $ac^{data} \equiv \text{vec}(AC)$ (a $n_y(K+1) \times 1$ vector, i.e. 15×1). Thus the

objective function can be written as:

$$J \equiv (ac^{data} - ac^{model})'W^{-1}(ac^{data} - ac^{model})$$
(4)

• Initial $d_0 = 10$.

2 Estimation issues

• W: Ideally I'd want to use a weighting matrix with the estimated variances of the target moments on the diagonal:

$$W = \begin{pmatrix} \hat{\sigma}_{ac(\pi,0)}^2 & 0 & \dots & 0 \\ 0 & \hat{\sigma}_{ac(x,0)}^2 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & 0 & \hat{\sigma}_{ac(i,K)}^2 \end{pmatrix}$$
 (5)

Since I don't fit the data to a time series process, I create bootstrapped samples from the original (filtered) data. This however results in tiny bootstrapped variances, so W^{-1} is huge.

3 Robustness to different filters

Figure 1: Cyclical component of inflation filtered using different methods

(c) Baxter-King, (6,32) quarters, truncation at 12 lags

4 Estimates

Figure 2: Inverse gain for \hat{d} for the different filters

(c) Baxter-King, (6,32) quarters, truncation at 12 lags

Table 1: \hat{d}

	W = I	$W = \operatorname{diag}(\hat{\sigma}_{ac(0)}, \dots, \hat{\sigma}_{ac(K)})$
HP	77.7899	10
Hamilton	32.1649	10
BK	90.3929	10

5 The other thing: numerical implementation of target criterion

The target criterion in the simplified model:

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right\}$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=1}^{i-1} (1 - k_{t+j}^{-1}(\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j})) \right) \right\}$$
(6)

• I think this is the highest priority.