WHAT IS CLAIMED IS:

1	1. A method for measuring a mechanical property of a vascular					
2	wall which deforms in response to a transmural force under usual physiologic					
3	pressures, the method comprising:					
4	altering the transmural force to obtain an altered transmural force;					
5	measuring local deformation of the vascular wall resulting from					
6	physiologic pressures with the altered transmural force; and					
7	determining a value for the mechanical property based on a measure					
8	amount of local deformation.					
1	2. The method as claimed in claim 1, wherein the mechanical					
2	property is a non-linear elastic property of the vascular wall.					
1	3. The method as claimed in claim 1, wherein the step of					
2	measuring includes the step of non-invasively, ultrasonically imaging the vascular					
3	wall.					
1	4. The method as claimed in claim 1, wherein the step of altering					
2	includes the step of reducing the transmural force to obtain a reduced transmural					
3	force.					
1	5. The method as claimed in claim 4, wherein the step of					
2	reducing includes the step of applying an external pressure to the vascular wall.					
1	6. The method as claimed in claim 5, wherein the external					
2	pressure is substantially equal to a baseline internal pressure and wherein the					
3	vascular wall deforms by pulse pressure during a cardiac cycle.					
1	7. The method as claimed in claim 4, wherein the step of					
2	reducing includes reducing an internal pressure to the vascular wall.					

1	8. The method as claimed in claim 1, wherein the vascular wall					
2	deforms a relatively small amount in response to a transmural force under usual					
3	physiologic pressures and a relatively large amount in response to physiologic					
4	pressures with the altered transmural force.					
1	9. The method as claimed in claim 1, wherein the step of					
2	determining includes the step of directly estimating strain of the vascular wall.					
1	10. A method for measuring a mechanical property of a vascular					
2	wall, the vascular wall being characterized by a relationship of arterial pressure					
3	versus strain that exhibits a relatively large slope under physiologic pressure caused					
4	by an arterial pressure pulse having a first mean arterial pressure and that exhibits					
5	a relatively small slope under physiologic pressure caused by an arterial pressure					
6	pulse having a second mean arterial pressure, the method comprising:					
7	altering the first mean arterial pressure to obtain the second mean					
8	arterial pressure;					
9	measuring local deformation of the vascular wall at the second mean					
10	arterial pressure; and					
11	determining a value for the mechanical property based on the					
12	measured amount of local deformation.					
1	11. The method as claimed in claim 10, wherein the step of					
2	measuring includes the step of non-invasively, ultrasonically imaging the vascula					
3	wall.					
1	12. The method as claimed in claim 10, wherein the step of					
2	altering includes the step of reducing the first mean arterial pressure to obtain the					
3	second mean arterial pressure.					
1	13. The method as claimed in claim 12, wherein the step of					
2	reducing includes the step of applying an external pressure to the vascular wall.					

1

1	14. The method as claimed in claim 13, wherein the external				
2	pressure is substantially equal to a baseline internal pressure and wherein the				
3	vascular wall deforms by pulse pressure during a cardiac cycle.				
1	15. The method as claimed in claim 12, wherein the step of				
2	reducing includes reducing an internal pressure to the vascular wall.				
1	16. The method as claimed in claim 10, wherein the step of				
2	determining includes the step of directly estimating strain of the vascular wall.				
1	17. A method for determining health of a vascular structure				
2	including a vascular wall which deforms in response to a transmural force under				
3	usual physiologic pressures, the method comprising:				
4	altering the transmural force to obtain an altered transmural force;				
5	measuring local deformation of the vascular wall resulting from				
6	physiologic pressures with the altered transmural force; and				
7	determining the health of the vascular structure based on the				
8	measured amount of local deformation.				
1	18. The method as claimed in claim 17, wherein the step of				
2	measuring includes the step of ultrasonically imaging the vascular wall.				
1	19. The method as claimed in claim 17, wherein the step of				
2	altering includes the step of reducing the transmural force to obtain a reduced				
3	transmural force.				
1	20. The method as claimed in claim 19, wherein the step of				
2	reducing includes the step of applying an external pressure to the vascular wall.				
1	21. The method as claimed in claim 20, wherein the external				
2	pressure is substantially equal to a baseline internal pressure and wherein the				
3	vascular wall deforms by pulse pressure during a cardiac cycle.				

ļ	22. The method as claimed in claim 19, wherein the step of
2	reducing includes reducing an internal pressure to the vascular wall.
	23. The method as claimed in claim 17, wherein the vascular wall
2	deforms a relatively small amount in response to a transmural force under usual
3	physiologic pressures and a relatively large amount in response to physiologic
1	pressures with the altered transmural force.
l	24. The method as claimed in claim 17, wherein the step of
2	determining includes the step of directly estimating strain of the vascular wall.
l	25. A system for measuring a mechanical property of a vascular
2	wall which deforms in response to a transmural force under usual physiologic
3	pressures, the system comprising:
4	means for altering the transmural force to obtain an altered transmural
5	force;
5	means for measuring local deformation of the vascular wall resulting
7	from physiologic pressures with the altered transmural force; and
8	means for determining a value for the mechanical property based on
9	the measured amount of local deformation.
1	26. The system as claimed in claim 25, wherein the mechanical
2	property is a non-linear elastic property of the vascular wall.
1	27. The system as claimed in claim 25, wherein the means for
2	measuring includes means for non-invasively, ultrasonically imaging the vascular
3	wall.
1	28. The system as claimed in claim 25, wherein the means for
2	altering includes means for reducing the transmural force to obtain a reduced
3	transmural force.

1	29. The system as claimed in claim 28, wherein the means for
2	reducing includes means for applying an external pressure to the vascular wall.
1	30. The system as claimed in claim 29, wherein the external
2	pressure is substantially equal to a baseline internal pressure and wherein the
3	vascular wall deforms by pulse pressure during a cardiac cycle.
1	31. The system as claimed in claim 28, wherein the means for
2	reducing includes means for reducing an internal pressure to the vascular wall.
1	32. The system as claimed in claim 25, wherein the vascular wall
2	deforms a relatively small amount in response to a transmural force under usual
3	physiologic pressures and a relatively large amount in response to physiologic
4	pressures with the altered transmural force.
1	33. The system as claimed in claim 25, wherein the means for
2	determining includes means for directly estimating strain of the vascular wall.
1	34. A system for measuring a mechanical property of a vascular
2	wall, the vascular wall being characterized by a relationship of arterial pressure
3	versus strain that exhibits a relatively large slope under physiologic pressure caused
4	by an arterial pressure pulse having a first mean arterial pressure and that exhibits
5 .	a relatively small slope under physiologic pressure caused by an arterial pressure
6	pulse having a second mean arterial pressure, the system comprising:
7	means for altering the first mean arterial pressure to obtain the second
8	mean arterial pressure;
9	means for measuring local deformation of the vascular wall at the
10	second mean arterial pressure; and
11	means for determining a value for the mechanical property based on
12	the measured amount of local deformation.

1		35.	The system as claimed in claim 34, wherein the means for
2	measuring inc	ludes m	eans for non-invasively, ultrasonically imaging the vascular
3	wall.		
1		36.	The system as claimed in claim 34 wherein the means for
2	altering includes means for reducing the first mean arterial pressure to obtain the		
3 second mean arterial pressure.			
			·
1	•	37.	The system as claimed in claim 36, wherein the means for
2	reducing inclu	des me	ans for applying an external pressure to the vascular wall.
			·
1		38.	The system as claimed in claim 37, wherein the external
2	pressure is su	ıbstantia	ally equal to a baseline internal pressure and wherein the
3	vascular wall	deforms	s by pulse pressure during a cardiac cycle.
1		39.	The system as claimed in claim 36, wherein the means for
2	reducing inclu	des the	means for reducing an internal pressure to the vascular wall.
1		40.	The system as claimed in claim 34, wherein the means for
2	determining in	ncludes	means for directly estimating strain of the vascular wall.
1		41.	A system for determining health of a vascular structure
2	including a va	scular	wall which deforms in response to a transmural force under
3	usual physiolo	gic pre	ssures, the system comprising:
4		means	for altering the transmural force to obtain an altered transmural
5	force;		
6		means	for measuring local deformation of the vascular wall resulting
7.	from physiolo	gic pres	ssures with the altered transmural force; and
8		means	for determining the health of the vascular structure based on
9	the measured amount of local deformation.		

1	42. The system as claimed in claim 41, wherein the means for			
2	measuring includes means for non-invasively, ultrasonically imaging the vascular			
3	wall.			
1	43. The system as claimed in claim 41, wherein the means of			
2	altering includes means for reducing the transmural force to obtain a reduced			
3	transmural force.			
1	The freeton or claimed in claim 42, whomin the moone for			
1 2	44. The system as claimed in claim 43, wherein the means for reducing includes means for applying an external pressure to the vascular wall.			
1	45. The system as claimed in claim 44, wherein the external			
2	pressure is substantially equal to a baseline internal pressure and wherein the			
3	vascular wall deforms by pulse pressure during a cardiac cycle.			
1	46. The system as claimed in claim 43, wherein the means for			
2	reducing includes means for reducing an internal pressure to the vascular wall.			
1	47. The system as claimed in claim 41, wherein the vascular wall			
2	deforms a relatively small amount in response to a transmural force under usual			
3	physiologic pressures and a relatively large amount in response to physiologic			
4	pressures with the altered transmural force.			
1	48. The system as claimed in claim 41, wherein the means for			
	determining includes means for directly estimating strain of the vascular wall.			
1	49. The method as claimed in claim 1, wherein the loca			
2	deformation is an intramural deformation.			
1	50. The method as claimed in claim 10, wherein the loca			
2	deformation is an intramural deformation			

- 1 51. The method as claimed in claim 17, wherein the local deformation is an intramural deformation.
- 1 52. The system as claimed in claim 25, wherein the local deformation is an intramural deformation.
- 1 53. The system as claimed in claim 34, wherein the local deformation is an intramural deformation.
- 1 54. The system as claimed in claim 41, wherein the local deformation is an intramural deformation.