

Corso di Laurea in Ingegneria Biomedica - Canale 1 (Prof. G. Naletto) Prima Prova in Itinere di Fisica Generale 1 - Padova, 4 aprile 2022

Cognome	Nome	Matricola

Aula Posto #

Problema 1

Due punti materiali, $P \in Q$, sono inizialmente fermi in A. All'istante $t_o = 0$, P inizia un moto rettilineo uniformemente accelerato con accelerazione $a_P = 0.42$ m/s² lungo l'asse orizzontale x passante per B, con AB = 2R (R = 1.6 m). Anche Q si mette in moto all'istante t_o , con un moto circolare uniformemente accelerato con accelerazione angolare α su una circonferenza orizzontale di diametro AB. I due punti arrivano in B nello stesso istante t_B . Determinare:

- a) il modulo α dell'accelerazione angolare cui è soggetto Q;
- b) il modulo a_Q dell'accelerazione di Q quando ha percorso un arco di circonferenza $s = \frac{\pi}{3}R$ (partendo da A). Per $t > t_B$, l'accelerazione di P diventa α'_P , costante, e l'accelerazione angolare di Q si inverte ($\alpha' = -\alpha$). Determinare:
- c) modulo e segno dell'accelerazione a'_P affinché P incontri nuovamente Q quando questo ripassa per la prima volta in A.

Problema 2

Un corpo di dimensioni trascurabili e massa m=0.75 kg collegato ad un filo ideale di lunghezza L=0.62 m fissato al soffitto è mantenuto fermo grazie all'azione di una forza orizzontale di modulo F=5 N, con il filo teso che forma un angolo θ_0 rispetto alla verticale (vedi figura). Ad un certo istante si toglie la forza \vec{F} , si applica istantaneamente al corpo un impulso perpendicolare al filo e contenuto nel piano verticale, e il corpo si mette in moto con velocità iniziale di modulo $v_0=0.6$ m/s. Determinare:

- a) l'angolo θ_o di cui è inizialmente inclinato il filo rispetto alla verticale;
- b) il modulo v_{max} della massima velocità raggiunta dal corpo;
- c) il modulo T^* della tensione del filo nell'istante in cui forma nuovamente un angolo θ_o rispetto alla verticale.

Problema 3

Due corpi di massa rispettivamente $m_1 = 1.8$ kg e m_2 sono appoggiati su un piano liscio inclinato di un angolo $\theta = 35^{\circ}$. I due corpi sono a contatto, con m_2 sopra m_1 , e comprimono di Δx_o una molla ideale di costante elastica k = 330 N/m parallela al piano inclinato e vincolata all'altro estremo (vedi figura). Il corpo di massa m_1 è attaccato alla molla. Sapendo che in queste condizioni la forza che m_1 applica su

 m_2 ha modulo $F_{12} = 14$ N determinare:

- a) il valore della massa m_2 ;
- b) la compressione iniziale Δx_0 della molla.

Successivamente si porta la compressione della molla al valore, in modulo, di $\Delta x' = 0.15$ m e poi si lasciano i corpi liberi di muoversi. Determinare:

- c) il modulo a' dell'accelerazione istantanea con cui i corpi iniziano il moto;
- d) il modulo F_{12}^* della forza tra i due corpi al momento del distacco di m_2 da m_1 ;
- e) (facoltativo) la massima estensione Δx_{max} della molla.

Soluzioni

Problema 1

a)
$$\begin{cases} 2R = \frac{1}{2}a_P t_B^2 \\ \pi = \frac{1}{2}\alpha t_B^2 \end{cases} \Rightarrow \alpha = \frac{\pi a_P}{2R} = 0.41 \text{ rad/s}^2$$

b)
$$a_Q = \sqrt{a_{Q,T}^2 + a_{Q,N}^2} = \sqrt{(\alpha R)^2 + (\omega^2 R)^2} = \sqrt{(\alpha R)^2 + (2\alpha \frac{\pi}{3}R)^2} = \alpha R \sqrt{1 + \frac{4\pi^2}{9}} = 1.53 \text{ m/s}^2$$

c) Per simmetria, il punto Q impiega lo stesso tempo $t_B = \sqrt{\frac{4R}{a_P}}$ per ritornare in A. Quindi:

$$v_{P,B} = v_P(t_B) = a_P t_B = \sqrt{4a_P R}; -R = R + v_{P,B} t_B + \frac{1}{2} a'_P t_B^2 \Rightarrow$$

$$\Rightarrow -2R = \sqrt{4a_P R} \sqrt{\frac{4R}{a_P}} + \frac{1}{2} a'_P \frac{4R}{a_P} \Rightarrow a'_P = -3a_P = -1.26 \text{ m/s}^2$$

Problema 2

a)
$$\vec{T} + \vec{F} + m\vec{g} = 0 \implies \begin{cases} F - T\sin\theta_o = 0 \\ T\cos\theta_o - mg = 0 \end{cases} \Rightarrow F = mg\tan\theta_o \Rightarrow \theta_o = \tan^{-1}\left(\frac{F}{mg}\right) = 34.2^{\circ}$$

b)
$$\frac{1}{2}mv_o^2 + mgL(1 - \cos\theta_o) = \frac{1}{2}mv_{max}^2 \implies v_{max} = \sqrt{v_o^2 + 2gL(1 - \cos\theta_o)} = 1.57 \text{ m/s}$$

c) Per la conservazione dell'energia, $v(\pm \theta_0) = v_0$. Quindi:

$$T^* - mg\cos\theta_o = m\frac{v_o^2}{L} \Rightarrow T^* = m\left(\frac{v_o^2}{L} + g\cos\theta_o\right) = 6.52 \text{ N}$$

Problema 3

a)
$$F_{12} - m_2 g \sin \theta = 0 \implies F_{12} (= F_{21}) = m_2 g \sin \theta \implies m_2 = \frac{F_{12}}{g \sin \theta} = 2.49 \text{ kg}$$

b)
$$-k\Delta x_o - F_{21} - m_1 g \sin \theta = 0 \Rightarrow \Delta x_o = -\frac{1}{k} (F_{21} + m_1 g \sin \theta) = \frac{1}{k} (m_1 + m_2) g \sin \theta = -0.073 \text{ m}$$

c)
$$\begin{cases} -k\Delta x' - m_1 g \sin \theta - F'_{21} = m_1 a' \\ F'_{12} - m_2 g \sin \theta = m_2 a' \end{cases} \Rightarrow \begin{cases} a' = -\frac{k\Delta x'}{m_1 + m_2} - g \sin \theta = 5.92 \text{ m/s}^2 \\ F'_{12} = -\frac{m_2}{m_1 + m_2} k\Delta x' \end{cases}$$

- d) Le equazioni appena scritte valgono in generale finché i due corpi rimangono in contatto. Man mano che la molla si decomprime ($\Delta x \to 0$) il modulo della forza di interazione tra m_1 e m_2 diminuisce. Il distacco tra i due corpi avviene quando questa interazione si annulla: $F_{12}^* = 0$.
- e) Applicando la conservazione dell'energia tra il momento iniziale del moto e quello del distacco tra i corpi, e poi per il solo corpo m_1 , che rimane attaccato alla molla, si ottiene:

$$\frac{1}{2}k\Delta x'^{2} = \frac{1}{2}(m_{1} + m_{2})v^{*2} + (m_{1} + m_{2})g\Delta x'\sin\theta \quad \Rightarrow \quad v^{*2} = \frac{k\Delta x'^{2}}{m_{1} + m_{2}} - g\Delta x'\sin\theta$$

$$\frac{1}{2}m_{1}v^{*2} = \frac{1}{2}k\Delta x_{max}^{2} + m_{1}g\Delta x_{max}\sin\theta \quad \Rightarrow$$

$$\Rightarrow \Delta x_{max} = -\frac{m_{1}g}{k}\sin\theta + \sqrt{\left(\frac{m_{1}g}{k}\sin\theta\right)^{2} + \frac{m_{1}v^{*2}}{k}} = 0.09 \text{ m}$$