A0 Studium spekter γ-záření polovodičovým spektrometrem

Úkoly:

- 1. Proveďte kalibraci spektrometru pomocí preparátu obsahujícího ²²⁶Ra (hodinky).
- 2. Změřte spektrum γ–záření z ¹³⁷Cs. Z aparaturního spektra určete:
 - o energii γ–záření (FEP),
 - o polohu comptonovy hrany,
 - o hraniční energii dvojného comptonova rozptylu,
 - o polohu píku zpětného rozptylu,
 - o energii/e γ-záření přirozeného pozadí a identifikujte zdroj/e.
- 3. Změřte spektrum γ–záření z ²⁴Na. Z aparaturniho spektra určete:
 - o energie γ–záření (FEP1, FEP2),
 - o polohy comptonových hran příslušných k oběma FEP,
 - o polohu píku zpětného rozptylu (společný oběma FEP),
 - o polohy viditelných únikových píků (SEP2, DEP2, případně DEP1),
 - o polohu anihilačního píku.
- 4. Vysvětlete mechanizmy vzniku pozorovaných objektů v aparaturních spektrech.
- 5. Porovnejte změřené polohy všech pozorovaných objektů ve spektrech s tabulkovými nebo teoretickými hodnotami.

Studium spekter γ-záření pomocí polovodičových spektrometrů patří mezi velmi rozšířené a přesné metody experimentální a aplikované jaderné fyziky. Jako aktivní část spektrometru se používají nejčastěji krystaly germania dopovaného lithiem (GeLi detektory) nebo krystaly velmi čistého germania (HPGe detektory). Schématické uspořádání spektrometru je na obrázku 1.

I. Odezva spektrometru

Polovodičový spektrometr je založen na interakci nabitých ("přímo ionizujících") částic s aktivní oblastí detektoru. Částice předá detektoru kinetickou energii T a vytvoří $n=T/\omega$ párů kladných a záporných nosičů náboje (ω je střední energie potřebná na vytvoření páru). Sebraný náboj q vytvoří na elektrodách detektoru napěťové pulsy velikosti

$$V = \frac{q}{C} = \alpha \frac{T}{\omega \cdot C} \tag{1}$$

(C je kapacita detektoru, α závisí na vlastnostech detektoru). Spektrum pulsů, registrované po elektronickém zpracování mnohokanálovým analyzátorem, odpovídá tedy energetickému spektru registrovaných částic.

Při měření γ -záření se registrují elektrony vznikající v aktivní oblasti detektoru v důsledku interakce záření s materiálem detektoru. Spektrum pulsů na elektrodách detektoru proto odpovídá energetickému spektru všech vzniklých elektronů. Uveďme si proto procesy, konvertující γ -záření na elektrony a odpovídající energie elektronů, je-li počáteční energie fotonů $E_{\gamma}^{0} = E_{0}$ (monoenergetické záření).

A.Hlavní procesy

1. Fotoefekt:

Foton je absorbován, z něhož je z hladiny o výstupní energii I_i ("ionizační potenciál") uvolněn elektron, který odnáší kinetickou energii

$$T_e = E_0 - I_i \tag{2}$$

Pro vnější hladiny atomu je $I_i \ll E_0$ a tedy $T_e \doteq E_0$. Ionizační potenciál vnitřních slupek je však $I_i > \sim$ keV a tedy $T_e < E_0$. Avšak atom velmi rychle deexcituje a převážně emituje x-záření (rentgenovské záření). To je však absorbováno již tenkou vrstvou detektoru a tedy celková energie E_α předaná detektoru bude opět $E_\alpha \doteq E_0$ a na elektrodách bude vytvořen napěťový impuls (1) o výšce V = A. E_0 . Odpovídající pík v pulsním spektru je označován jako "pík plné absorpce" (FEP "Full Energy Peak").

2. Comptonův efekt:

Pokud $E_0 \gg I_i$, lze proces uvažovat jako rozptyl fotonu na volných elektronech. Označme klidovou energii elektronu (= 511 keV) $m_{eo}c^2 = \varepsilon$. Potom lze energii fotonu po rozptylu na úhel ϑ vzhledem l původnímu směru zapsat ve tvaru

$$E(\vartheta) = \frac{E_0 \cdot \varepsilon}{\varepsilon + E_0 (1 - \cos \vartheta)} \Rightarrow E_1 = E(180^\circ) = \frac{E_0 \varepsilon}{\varepsilon + 2E_0} \le E(\vartheta) \le E_0$$
 (3)

Odražené elektrony budou mít kinetickou energii $T_e = E_0 - E(\vartheta)$ a tedy jejich energetické spektrum je spojité v oblasti $0 \le T_e \le \left(T_e\right)_{\max}$, kde $\left(T_e\right)_{\max}$ ("comptonovská hrana") je

$$(T_e)_{\text{max}} = E_0 - E_1 = \frac{2E_0^2}{\varepsilon + 2E_0} < E_0$$
 (4)

Odpovídající spektrum napěťových pulsů (1) bude tedy rovněž spojité.

3. Tvorba elektron-pozitronových párů:

Pro energie $E_0 > 2\varepsilon (= 2m_{eo}c^2)$ může dojít k zániku fotonu a k vytvoření páru elektronů e^+ a e^- . Jejich celková energie bude

$$T = T_1 + T_2 = E_0 - 2\varepsilon \tag{5}$$

Oba elektrony se v aktivní oblasti velmi rychle zastaví. Pozitron však prakticky okamžitě anihiluje $\left(e^+ + e^- \to 2\gamma\right)$ a vynikají dvě γ kvanta o energii 511 keV (= ϵ) emitovaná ve vzájemně opačných směrech. Tato kvanta však mohou z aktivní oblasti uniknout dříve než znovu interagují (fotoefekt nebo comptonefekt). Nastávají tedy tři případy předání celkové energie E_q aktivní oblasti detektoru:

a)
$$E_q^{(1)} \doteq E_0 = E_{FE}$$
 - oba fotony jsou absorbovány
b) $E_q^{(2)} = E_0 - \varepsilon = E_{SE}$ - jeden foton unikne
c) $E_q^{(3)} = E_0 - 2\varepsilon = E_{DE}$ - oba fotony uniknou

Odpovídající spektrum napěťových pulsů (1) bude tedy obsahovat tři ostré píky: $V_1 \sim E_q^1$ opět totožný s FEP, $V_2 \sim E_q^2$ - "pík jednoho úniku" (SEP- Single Escape Peak") a $V_3 \sim E_q^3$ - "pík dvou úniků" (DEP - "Double Escape Peak").

Bude tedy energetické spektrum elektronů (a tedy i odpovídající spektrum napěťových pulsů (1)) značně složité a podíl jednotlivých složek bude záviset na energii E_0 prostřednictvím závislosti účinných jednotlivých procesů (viz obr.2).

B. Druhotné efekty

K vytváření odezvy polovodičového spektrometru na spektrum ½záření přispívají některé další efekty.

1.Comptonovsky rozptýlené fotony s energií $E(\vartheta)$ (viz (3)) mohou v aktivní oblasti znovu interagovat. Pokud je druhou - sekundární - interakcí fotonefekt (tvorba párů) předá se energie $E(\vartheta)$ fotoelektronu (resp. páru $e^+ + e^-$ - viz (2) a (5)). Bude tedy celková energie T_i absorbovaná detektorem $T = \left(T_e\right)_c + \left(T_e\right)_\gamma$ (resp. $T = \left(T_e\right)_c + T_\pi$) a tedy odpovídající napěťové pulsy přispívají do píků FEP (resp. FEP,SEP a DEP).

Je-li sekundárním procesem opět comptonefekt, je uvolněn další elektron s energií $T_e(\vartheta_2)$

$$0 \le T_e(\vartheta_2) \le \frac{2[E(\vartheta)]^2}{\varepsilon + 2E(\vartheta)}$$

Snadno lze ukázat, že minimální energie fotonu je po dvojnásobném rozptylu na 180^0 $E(180^0, 180^0) = E_2 = (E_0 \cdot \varepsilon)/(\varepsilon + 4E_0)$. Maximální energie $(T)_{\text{max}}$ obou elektronů tedy bude

$$(T)_{\text{max}} = (T_1)_{\text{max}} + (T_2)_{\text{max}} = E_0 - E_2 = \frac{4E_0^2}{\varepsilon + 4E_0} > (T_e)_{\text{max}}$$
 (7)

Bude tedy za comptonovskou hranou (4) v napěťovém spektru ještě další "hrana" (7). Četnost pulsů v oblasti $(T)_{\text{max}} - (T_e)_{\text{max}}$ (viz (7) a (4)) však bude značně nižší než pro pulsy před první hranou (4) (účastní se jen fotony rozptýlené primárním procesem).

- 2. Primární záření může interagovat také mimo aktivní zónu detektoru (obal krystalu a.p.). To vede ke dvěma efektům:
- a) V důsledku comptonovského roztylu na úhly φ vstupují do aktivní oblasti fotony s energií $E(\varphi)$. Vzhledem ke geometrii zdroj-detektor zpravidla převládá rozptyl na velké úhly a podle (3) je tedy energie fotonů poměrně malá. Jejich absorpce vede ke vzniku značně širokého píku ("pík zpětného odrazu") s ostrým poklesem při energii blízké E_1 ("hrana zpětného odrazu").
- b) Je-li $E_0 > 2m_{eo}c^2 = \varepsilon$, dochází mimo aktivní oblasti detektoru k tvorbě párů $e^+ + e^-$ anihilace pozitronu vede ke vzniku dvou fotonů o energii 511 keV. Protože jsou fotony emitovány v opačných směrech, prakticky vždy jeden z nich vnikne do aktivní oblasti detektoru a jeho absorpcí (fotoefekt) vznikne v napěťovém spektru pík odpovídající $E_{\gamma} = 511 \ keV$ ("anihilační pík").

- 3. Pozadí. Spektrometr registruje také γ záření z okolí ("přírodní pozadí"). Pokud není detektor speciálně stíněn, pozorují se při dlouhodobějších měřeních zpravidla fotony, odpovídající radionuklidům Ra (nejintensivnější při $E_{\gamma}=295,2~a~609,3~keV$), Th (238,6; 583,1;911,1 a 2614,6 keV) a zejména ⁴⁰K (1460,8 keV).
- 4. Sumační píky. Často pracujeme se zářiči, ve kterých následují bezprostředně po sobě dva nebo více γ přechodů (např. kaskádní přechody mezi stavy $\varepsilon_1 \to \varepsilon_2 \to \varepsilon_3$ s energiemi $E_{1\to 2}$ a $E_{2\to 3}$. Při špatné geometrii zářič-detektor mohou být současně registrována dvě kvanta a energie, předaná detektoru bude součtem jejich (např. $E_{\alpha} = E_{1\to 2} + E_{2\to 3}$). Odpovídající píky plné absorpce (FEP) jsou označovány jako "sumační píky".

Shrnutí:

Odezva polovodičového spektrometru i na monoenergetické γ záření vede obecně ke značně složitému spektru výstupních napěťových pulsů, jehož konkrétní tvar a struktura závisí na energii záření E_0 . S růstem počtu přechodů ve studovaném zářiči se spektrum stává velmi složitým a jeho rozbor (t.j. identifikace jednotlivých γ přechodů) představuje obecně značně složitý úkol.

II. Cíl úlohy a postup práce Cíl úlohy:

Cílem studované úlohy je seznámit posluchače s vlastnostmi spekter γ -záření získaných polovodičovým spektrometrem. Měření se provádí na spektrometru KJF s GeLi detektorem o objemu aktivní oblasti 55 ccm (průměr čela detektoru je 70mm). Měření je prováděno se zářiči s jednoduchým spektrem γ -záření: $^{137}\text{Cs}(E_{\gamma}=661,66~keV), ^{60}\text{Co}(E_{\gamma}=1173,24~a~1332,50~keV)$ a $^{24}\text{Na}(E_{\gamma}=1368,63~a~2754,03~keV)$, které jsou současně používány ke kalibraci spektrometru.

Postup práce:

1. Kalibrace spektrometru

Lineární kalibraci spektrometru proveďte buď pomocí zářičů 137 Cs a 60 Co, nebo s pomocí zářiče 226 Ra. Kalibraci vypište na pásku (tiskárnu) a porovnejte vypočtené a zadané energie. Zhodnoť te vhodnost použité lineární závislosti E_{γ} (kanál).

2. Studium jednoduchého spektra ^{137}Cs

Označte ve spektru všechny pozorované píky. Výsledek zapište na pásku a graficky znázorněte pomocí tiskárny.

Úkol: (používejte grafu z tiskárny)

- a) Porovnejte naměřenou energii comptonovské hrany zpětného odrazu a vypočtenou hodnotou.
- b) Pokuste se z grafu určit hranu dvojnásobného zpětného rozptylu a porovnejte s ní určenou energii s výpočtem podle (7).
- 3. Studium spektra ⁶⁰Co

Úkol: (používejte opět grafu)

- a) Porovnejte naměřené energie comptonovských hran a hrany zpětného rozptylu s vypočtenými
- b) Identifikujte všechny pozorované píky, zapsané na pásce z tiskárny.
- 4. Studium složeného spektra ²⁴Na + ³⁶Cl

Dobu měření volte aspoň 1800 s (případně podle volného času delší). Označte všechny pozorované píky a určete jejich energie a plochy. *Úkol:*

- a) Identifikujte pozorované píky a porovnejte jejich přiřazení konkrétním zářičům.
- b) Na základě plochy všech FEP určete relativní intenzity jednotlivých přechodů. Pro efektivitu detektoru použijte vztah normovací podmínku I(1172 keV) = 100. (pro geometrický faktor při měření sodíku používejte předpokladu, že měření je prováděno v 2π geometrii).
- c) Všechny výsledky zpracujte ve formě vhodných tabulek doprovázených stručným komentářem.

Obr. 1 Schéma uspořádání

Obr.2. $\sigma_c(\varepsilon)$, $\sigma_f(\varepsilon)$, $\sigma_{\pi}(\varepsilon)$, Z=32(Ge)