

Computer-assisted enumeration and classification of multi-qubit doilies

(partially funded by Agence Nationale de la Recherche, Plan France 2030, contract ANR-22-PETQ-0007)

Axel Muller¹, Metod Saniga², Alain Giorgetti¹, Henri de Boutray³ and Frédéric Holweck^{4,5,6}

¹ FEMTO-ST institute (UMR 6174 - CNRS/UBFC/UFC/ENSMM/UTBM), Université Bourgogne Franche-Comté,

² Astronomical Institute of the Slovak Academy of Sciences,

³ColibrITD, France,

⁴Université de Technologie de Belfort-Montbéliard,

⁵Laboratoire Interdisciplinaire Carnot de Bourgogne (UMR 6303 - CNRS/ICB/UTBM)

⁶Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

Introduction

Contextual geometries
The Mermin-Peres magic square
Multi-qubit doilies

Contributions

Some properties of (numbers of) multi-qubit doilies Numbers of multi-qubit doilies Doily generation program

Contextuality

Kochen-Specker theorem

No non-contextual hidden-variable theory can reproduce the outcomes predicted by quantum physics

Without loss of generality, a non-contextual hidden-variable (NCHV) theory admits the existence of a function $\mathbf{v}:\mathcal{P}_N \to \{-1,1\}$ that determines (as $\mathbf{v}(M)$) the result of any measurement with the multi-qubit Pauli observable M (among its two eigenvalues -1 and 1) independently of former measurements, even when they are compatible (commuting)

Mermin-Peres square proves Kochen-Specker theorem by describing experiments with nine two-qubit Pauli observables which contradict the NCHV hypothesis

Kochen and Specker. "The Problem of Hidden Variables in Quantum Mechanics". *Indiana Univ. Math. J.*. 1968.

The Mermin-Peres magic square

Finite geometry with 9 points and 6 lines

- ightharpoonup Each point \equiv an observable
- ► Each line = a measurement context

Quantum geometries

Definition of a quantum geometry (O, C):

- \triangleright *O* is a finite set of observables (points): hermitian operators ($M = M^{\dagger}$) of finite dimension.
- C is a finite set of sub-sets of O called contexts (lines) such that:
 - each observable $M \in O$ satisfies $M^2 = Id$ (eigenvalues in $\{-1, 1\}$)
 - every observable M and N of a context commute (MN = NM)
 - ► The product of all observables of a context is the identity matrix Id or -Id

Contextual finite quantum geometries

the product of observables on I_i is $(-1)^{E_i} I$

The geometry is *contextual* if $\exists x.Ax = E$

Abramsky and Brandenburger. "The Sheaf-Theoretic Structure of Non-Locality and Contextuality". New Journal of Physics. 2011.

The W_2 doily

7

The doily is the contextual geometry of all the 2-qubit observables using Pauli observables except $I \otimes I$

N-qubit doilies

N-qubit doily: Contextual geometry on N qubits with the same point/line structure as the W_2 doily

Example of 4-qubit doily

Doily Classification

- Signature: number of /s per observable (A: N − 1 I per observable, B: N − 2, C: N − 3...)
- **Nature** ν of the doily

For any tricentric triad (3 observables commuting with 3 common observables)

 $ZYXI.IYZI.ZIYI = I^4 \Leftrightarrow Linear$

XIZI.IIXI.YYZX \neq $I^4 \Leftrightarrow$ Quadratic

Configuration of the negative lines

Introduction

Contextual geometries
The Mermin-Peres magic square
Multi-qubit doilies

Contributions

Some properties of (numbers of) multi-qubit doilies Numbers of multi-qubit doilies Doily generation program

Contextuality degree

For every contextual geometry with an incidence matrix A, and for the valuation vector E related to the value of each line, we have

$$\not\exists x; Ax = E$$

We are looking for the minimal difference between E and a vector Ax called the Hamming distance:

$$d_{H} \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} = 2$$

Property: every N-qubit doily has a contextuality degree of 3

de Boutray, Holweck, Giorgetti, Masson, and Saniga. "Contextuality degree of quadrics in multi-qubit symplectic polar spaces". 2022.

Numbers of multi-qubit doilies

Numbers D(N) (resp. $D_l(N)$, $\overline{D}_q(N)$) of (resp. linear, quadratic) N-qubit doilies

$$D(N) = D_{I}(N) + D_{q}(N)$$

$$D_{I}(N) = \begin{bmatrix} 2N \\ 4 \end{bmatrix}_{2} - \begin{bmatrix} N \\ 4 \end{bmatrix}_{2} \prod_{i=1}^{4} (2^{N+1-i} + 1) - 7 \begin{bmatrix} N \\ 3 \end{bmatrix}_{2} 2^{2N-6} \prod_{i=1}^{3} (2^{N+1-i} + 1) / 3$$

$$D_{q}(N) = 16 \left(\begin{bmatrix} 2N \\ 5 \end{bmatrix}_{2} - \begin{bmatrix} N \\ 5 \end{bmatrix}_{2} \prod_{i=1}^{5} (2^{N+1-i} + 1) - 15 \begin{bmatrix} N \\ 4 \end{bmatrix}_{2} 2^{2N-8} \prod_{i=1}^{4} (2^{N+1-i} + 1) / 3 \right)$$

Ν	$D_I(N)$	$D_q(N)$	D(N)
2	1	_	1
3	336	1 008	1 344
4	91 392	1 370 880	1 462 272
5	23 744 512	1 495 904 256	1 519 648 768
6	6 100 942 848	1 555 740 426 240	1 561 841 369 088
7	1 563 272 675 328	1 599 227 946 860 544	1 600 791 219 535 872
8	400 289 425 260 544	1 639 185 196 441 927 680	1 639 585 485 867 188 224
9	102 479 956 839 235 584	1 678 929 132 897 196 572 672	1 679 031 612 854 035 808 256

Doily generation program

Goal: Generate all *N*-qubit doilies for a given *N* in order to classify and check various properties about them

The C language is used because it allows for

- quick execution
- the use of test and proof tools

Execution time (Intel® Core™ i7-8665U CPU @ 1.90GHz, 8 cores):

- ▶ 4 qubits: 1 462 272 doilies in 0.5s and 1.4 Mo
- **5 qubits**: 1519648768 doilies in 12min and 1.8 Mo

Observables

The N-qubit observable $G_1 G_2 \cdots G_N$, with

$$G_j \leftrightarrow (g_j, g_{j+N}), \ j \in \{1, 2, \dots, N\},$$

knowing that

$$I \leftrightarrow (0,0), \ X \leftrightarrow (0,1), \ Y \leftrightarrow (1,1), \ \text{and} \ Z \leftrightarrow (1,0).$$

no need to know the phase

Operations

Product of observables

$$ZZZZ.XYZI = 11110000_2 \oplus 01101100_2 = 10011100_2 = p.YXIZ$$

Symplectic product

$$\langle a,b \rangle = a_1b_{N+1} + a_{N+1}b_1 + a_2b_{N+2} + a_{N+2}b_2 + \ldots + a_Nb_{2N} + a_{2N}b_N$$

Computing process of the symplectic product

Representation of the doily

Every N-qubit doily is an injective labeling of the W_2 doily We use the binary representation of the observables as array indices

Representation of the 2-qubit doily with the bitvector used in the program

0	l II	IX	ΧI	XX	ΙZ	ΙY	XZ	XY	ZI	ZX	ΥI	YX	ZZ	ZY	YZ	YY
bv	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f(O)	Ø	ZYXI	IIIX	ZYXX	ZIYI	IYZI	ZIYX	IYZX	ZZYZ	IXZZ	ZZYY	IXZY	IZIZ	ZXXZ	IZIY	ZXXY

Doily generation process steps

Doily generation algorithm

Algorithm 1 Description of the doily generation algorithm

```
1: for each ovoid O = \{o_1, o_2, o_3, o_4, o_5\} in W_N, with o_1 < o_2 < o_3 < o_4 < o_5 do
2: f(|X) \leftarrow o_1 \mid \mid f(|Z) \leftarrow o_2 \mid \mid f(XY) \leftarrow o_3 \mid \mid f(ZY) \leftarrow o_4 \mid \mid f(YY) \leftarrow o_5
3: for each center c of \{o_1, o_2, o_3\} in W_N that anticommutes with o_4 and o_5 do
4: f(XI) \leftarrow c
5: for each line (p, q, r) in the order of the sequence S do f(r) \leftarrow |f(p).f(q)| end for
6: if O is not the smallest ovoid of f then discard f end if
7: ... \triangleright Classification of f
8: end for
9: end for
```

$$S \equiv (XI, IX, XX), (XI, IZ, XZ), (XI, XY, IY), (ZY, XX, YZ), (ZY, XZ, YX), (ZY, IY, ZI), (YY, XX, ZZ), (YY, XZ, ZX), (YY, IY, YI)$$

Parallelization

Use of the parallelization library OpenMP

Doily generation process

```
#pragma omp parallel for schedule(dynamic,1) //dynamic distribution
for (bv i = 1; i < BV_LIMIT; i++) {//For all observables of Wn
   bv bv1[OVOID_COUNT]; //We initialize an array representing the doily
   bv1[0] = i; //we assign its first value
   find_ovoid_fast(bv1); //We keep on generating the doily in this thread
}</pre>
```

The parallelization occurs at the generation of the first observable o_1 of the ovoid: 4^N iterations

Classification results

	Ol	osei	vab	les	1	Configuration of negative lines											
Туре	A	В	С	D	ν	3	4	5	6	7A	7B	8A	8B	9	10	11	12
1	0	3	0	12	q	216				648				648			
2	0	4	0	11	q				3888			3888					
3	0	5	0	10	q	972		1944		4860	1944			1944			
4	1	0	5	9	q	648								648			
5	3	0	3	9	1	144											
6	0	6	0	9	q		1296		5184								
7	0	1	6	8	q	972				3888						972	
8	1	1	5	8	q				7776								
9	2	1	4	8	q	1944		1944									
10	2	1	4	8	1	972					972						
11	0	7	0	8	q			1944		972							
12	0	2	6	7	q				15552			11664	19440				
13	1	2	5	7	q	7776		13608			15552			1944			
14	1	2	5	7	1	3888					7776						
15	2	2	4	7	q		11664						3888				

Partial results for the number of 4-qubit doilies

Conclusion

7

Review

- Work leading to a recent publication
- Results available at https://quantcert.github.io/doilies

Perspectives

- Extend the scope of the program to other contextual geometries
- Formal proof of the properties found

Muller, Saniga, Giorgetti, de Boutray, and Holweck. "Multi-Qubit Doilies: Enumeration for All Ranks and Classification for Ranks Four and Five". Journal of Computational Science. 2022.

Questions?

Fundings

- Agence Nationale de la Recherche, Plan France 2030, EPiQ project, ANR-22-PETQ-0007
- EIPHI Graduate School, contract ANR-17-EURE-0002
- Slovak VEGA Grant Agency, Project # 2/0004/20

