

■特徴

- ・小型の半導体3軸ジャイロセンサです。
- ・ST の MEMS 技術により大量生産と低価格を実現しました。
- ・回転角をディジタルで簡単に得られます。
- ・10ピン DIP 端子で扱いやすい
- ・ポータブルナビゲーションやロボットに
- · 2. 4 V ~ 3. 6 V 動作

■仕様

センサ	ST マイクロエレクトロニクス L3GD20
センサ軸数	3 軸(X 軸, Y 軸, Z 軸)
検出レンジ	±250 / ±500 / ±2000dps (゜/sec) からソフトウェアで選択
分解能	16 ビット
インターフェース	SPI または I2C
最大通信クロック	10MHz(SPI), 400kHz(I2C)
電源電圧(コア)	DC2.4V~3.6V ※5V 動作はできません
電源電圧(Ⅰ/Ο)	DC1.71V~ (VDD+0.1V)
消費電力	動作時で約 6.1mA
付加機能	8 ビット温度センサ内蔵,FIFO 機能,パワーダウンモード
モジュールサイズ	約13x10mm

※製作・使用にあたり巻末の使用上の注意をよく読んでお使いください。

■内容品

センサ基板 (部品ハンダ付け済)

ピンヘッダ(10ピン分)

ピンフレーム (10 ピン分)

※基板の外周は製造上の切断によるバリ (ガラスエポキシ基板の繊維) が出ています。これはカッターの背の部分などで擦ると簡単に キレイになります。バリで手・指を傷つけないようご注意ください。

■ピン配置 (通常のDIPと同じ反時計回りの配置です)

用途	名称	ピン番号	写真	ピン番号	名称	用途
電源	VDD	1		10	GND	電源グランド
I/O 電源	VDD_IO	2	6 2222	9	NC	<未接続>
クロック※1	SCL/SPC	3	S133 ()	8	INT1	割り込み
データ※1	SDA/SDI/SDO	4		7	DRDY/INT2	データレディ
アドレス選択※1	SDO/SA0	5		6	~CS	チップセレクト

%1: 通信端子は SPI と I2C で共用されます。詳しくは次ページをご覧ください。

%I/O 電源とセンサの電源は別になっています。単一電源でお使いになる場合は VDD と VDD_IO に同じ電圧を供給してください。

■センサの方向

図の回転方向に回すことで該当軸数値がプラスになります。逆回転でマイナスになります。

■接続方法

電源端子は2つあり異電圧対応になっています。3.3Vのシステムであれば VDDと VDD_IO を同じ電源に接続します。 インターフェースはうまくできていて SPI にも I2C にもどちらにも対応できる設計になっています。

接続するインターフェースによりピンの呼称が変わります。ピン名称の次の()の数字はピン番号を示します。

◎I2C で接続する場合

I2C では~CS(6)ピンを 1 に固定する必要があります。このモジュールには~CS ピンを 1 に固定できるようにハンダジャンパーを設けました。ここにハンダを載せていただければ VDD_IO と~CS が接続され、外部で繋ぐ必要がありません。

SCL(3), SDA(4)の2本をマイコンと接続してください。モジュール内ではプルアップされていませんので、外部でVDD_IOの間に抵抗を入れてプルアップしてください。もしくはお使いのマイコン内のプルアップ機能を利用することもできます。

SAO(5)ピンは I2C のスレーブアドレスを選ぶ端子になります。SAO を GND に接続すると 0b1101010x、VDD_IO に接続すると 0b1101011x になります。オープンでは不確定になり正しく動作しませんから SAOピンは必ず接続してください。この機能により 1 つの I2C バスで 2 個の同一ジャイロをコントロールすることができます。

◎SPI で接続する場合

SPC(3),SDI(4),SDO(5),~CS(6)の4端子で通信します。~CS がチップセレクト (アクティブ LOW), SPC がクロック, SDI がデータ入力, SDO がデータの出力ピンです。L3GD20 がクロックの立ち上がりで SDI を読みます。一般的な SPI 通信方式ですので問題はないでしょう。クロックの最大周波数は10MHzです。

L3GD20 は3線式の SPI 通信もできるようになっています。SDO を使用せず、SDI ピンが双方向となり、SDI と SDO の両方の機能を果たすことができます。これは内部レジスタの設定により行えます。

■レジスタマップ

N	Туре	Registe		
Name		Hex	Binary	Default
Reserved	-	00-0E	-	-
WHO_AM_I	r	0F	000 1111	11010100
Reserved	-	10-1F	-	-
CTRL_REG1	rw	20	010 0000	00000111
CTRL_REG2	rw	21	010 0001	00000000
CTRL_REG3	rw	22	010 0010	00000000
CTRL_REG4	rw	23	010 0011	00000000
CTRL_REG5	rw	24	010 0100	00000000
REFERENCE	rw	25	010 0101	00000000
OUT_TEMP	r	26	010 0110	output
STATUS_REG	r	27	010 0111	output
OUT_X_L	r	28	010 1000	output
OUT_X_H	r	29	010 1001	output
OUT_Y_L	r	2A	010 1010	output
OUT_Y_H	r	2B	010 1011	output
OUT_Z_L	r	2C	010 1100	output
OUT_Z_H	r	2D	010 1101	output
FIFO_CTRL_REG	rw	2E	010 1110	00000000
FIFO_SRC_REG	r	2F	010 1111	output
INT1_CFG	rw	30	011 0000	00000000
INT1_SRC	r	31	011 0001	output
INT1_TSH_XH	rw	32	011 0010	00000000
INT1_TSH_XL	rw	33	011 0011	00000000
INT1_TSH_YH	rw	34	011 0100	00000000
INT1_TSH_YL	rw	35	011 0101	00000000
INT1_TSH_ZH	rw	36	011 0110	00000000
INT1_TSH_ZL	rw	37	011 0111	00000000
INT1_DURATION	rw	38	011 1000	00000000

■使い方

内部レジスタ $0x0F(WHO_AN_I)$ を呼んで 0xD4 が読めれば通信は正常です。レジスタ 0x20 に 0x0F を書き込むジャイロの動作が開始します。あとは $0x28\sim0x2D$ のレジスタに X, Y, Z の角度データが入りますからそれを読みだすだけです。(デフォルトは ±250 dps レンジ) データは 2 の補数で $0x8000(-32768)\sim0x7FFF(32767)$ の範囲をとります。センサが静止している状態でほぼ 0 を返します。回転中はその該当軸の数値が回転スピードに比例して大きくなります。逆回転では符号が逆になりスピードが速くなると小さくなります。測定値に次の数値をかけると 2 dps の単位になります。

±250dps レンジ	[OUT] * 0.00875dps
±500dps レンジ	[OUT] * 0.01750dps
±2000dps レンジ	[OUT] * 0.070dps

例えば時計の秒針は 1 分で 1 回転(360 度)しますから毎秒 6 度の変化です。L3GD20 を秒針と同じスピードで回転させると 6[°]/0.00875[dps/LSB] = 686 となり、測定値は 700 前後を示すことになります。このようにゆっくりした動きでも高感度に捉えることができます。大きいレンジにすれば測定範囲が最大 8 倍になり俊敏な動きでもオーバーフローにならず測定することができます。FIFO などの細かい使い方についてはデータシートをご覧ください。

■使用上の注意

- ・電源極性・モジュールの向きを間違えないでください。一瞬でもICが破壊されてしまいます。
- ・本キットはエンジニアの方を対象にした製品です。本製品をお使いになるにはある程度の電気的知識を必要とします。・ 本モジュールを使用したことによる、損害・損失については一切補償できません。
- ・製造上の不良がございましたら、良品とお取替えいたします。それ以外の責についてはご容赦ください。
- ・この製品は鉛フリー・RoHS 適合品です。MADE IN JAPAN

Copyright (c) 2013 Strawberry Linux Co.,Ltd. 無断転載を禁止します 株式会社ストロベリー・リナックス 2013年2月1日 第1版