18. (12分)

如图,四棱锥 P-ABCD 中,侧面 PAD 为等边 三角形且垂直于底面 ABCD, $AB=BC=\frac{1}{2}AD$, $\angle BAD=\angle ABC=90^{\circ}$.

- (1) 证明: BC // 平面 PAD;
- (2) 若 $\triangle PCD$ 的面积为 $2\sqrt{7}$,求四棱锥 P-ABCD 的体积.

19. (12分)

海水养殖场进行某水产品的新、旧网箱养殖方法的产值对比, 收获时各随机抽取了 100 个 网箱, 测量各箱水产品的产量(单位: kg), 其频率分布直方图如下:

- (1) 记 A 表示事件 "旧养殖法的箱产量低于 50 kg", 估计 A 的概率;
- (2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;

	箱产量 <50 kg	箱产量 ≥50 kg
旧养殖法		
新养殖法		

附:
$$\frac{P(K^2 \geqslant k) \quad 0.050 \quad 0.010 \quad 0.001}{k}, \quad K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}.$$

(3) 根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

20. (12分)

设 O 为坐标原点,动点 M 在椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 $\overrightarrow{NP} = \sqrt{2NM}$.

- (1) 求点 P 的轨迹方程;
- (2) 设点 Q 在直线 x=-3 上,且 $\overrightarrow{OP} \cdot \overrightarrow{PQ} = 1$. 证明: 过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .

21. (12分)

已知函数 $f(x) = (1 - x^2)e^x$, 且 $f(x) \ge 0$.

- (1) 讨论 f(x) 的单调性;
- (2) 当 $x \ge 0$ 时, $f(x) \le ax + 1$, 求 a 的取值范围.

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22. [选修 4-4: 坐标系与参数方程] (10 分)

在直角坐标系 xOy 中,以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C_1 的极坐标方程为 $\rho\cos\theta=4$.

- (1) M 为曲线 C_1 上的动点,点 P 在线段 OM 上,且满足 $|OM| \cdot |OP| = 16$,求点 P 的轨迹 C_2 的直角坐标方程;
 - (2) 设点 A 的极坐标为 $\left(2,\frac{\pi}{3}\right)$, 点 B 在曲线 C_2 上,求 $\triangle OAB$ 面积的最大值.
- 23. [选修 4-5: 不等式选讲] (10 分)

已知 $a > 0, b > 0, a^3 + b^3 = 2$. 证明:

- (1) $(a+b)(a^5+b^5) \geqslant 4$;
- (2) $a + b \leq 2$.