Real Analysis, 2nd Edition, G.B.Folland Chapter 4 Point Set Topology*

Yung-Hsiang Huang[†]

4.1 Topological Spaces

1.	If $card(X) \ge 2$, there is a topology on X that is T_0 but not T_1 .
	Proof.
2.	If X is an infinite set, the cofinite topology on X is T_1 but not T_2 , and is first countable iff X is countable.
	Proof.
3.	Every metric space is normal.
	Proof.
4.	Let $X=\mathbb{R}$, and let \mathscr{T} be the family of all subsets of \mathbb{R} of the form $U\cup (V\cap \mathbb{Q})$ where U,V are open in the usual sense. Then \mathscr{T} is a topology that is Hausdroff but not regular. (In view of Exercise 3, this shows that a topology stronger than a normal topology need not be normal or even regular.)
	Proof.
5.	Every separable metric space is second countable.
	Proof. *Last Modified: 2017/10/13. †Department of Math. National Taiwan University. Email: d04221001@ntu.edu.tw
	[†] Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

¹

6.	Let $\mathscr{E} = \{(a, b] : -\infty < a < b < \infty\}$.
	(a) $\mathscr E$ is a base for a topology $\mathscr T$ on $\mathbb R$ in which the members of $\mathscr E$ are both open and closed.
	(b) \mathscr{T} is first countable but not second countable. (If $x \in \mathbb{R}$, every neighborhood base at x contains a set whose supremum is x .)
	(c) $\mathbb Q$ is dense in $\mathbb R$ with respect to $\mathscr T.$ (Thus the converse of Proposition 4.5 is false.)
	Proof.
7.	If X is a topological space, a point $x \in X$ is called a cluster point of the sequence $\{x_j\}$ if for every neighborhood U of $x, x_j \in U$ for infinitely many j. If X is first countable,, x is a cluster point of $\{x_j\}$ iff some subsequence of $\{x_j\}$ converges to x.
	Proof.
8.	If X is an infinite set with the cofinite topology and $\{x_j\}$ is a sequence of distinct points in X, then $x_j \to x$ for every $x \in X$.
	Proof.
9.	If X is a linearly order set, the topology $\mathscr T$ generated by the sets $\{x:x< a\}$ and $\{x:x>a\}(a\in X)$ is called the order topology.
	(a) If $a, b \in X$ and $a < b$, there exist $U, V \in \mathcal{T}$ with $a \in U, b \in V$, and $x < y$ for all $x \in U$ and $y \in V$. the order topology is the weakest topology with this property.
	(b) If $Y \subset X$, the order topology on Y is never stronger than, but may be weaker

10. A topological space X is called disconnected if there exist nonempty open sets U, V such that $U \cap V = \emptyset$ and $U \cup V = X$; otherwise, X is connected/ When we speak of connected or disconnected subsets of X, we refer to the relative topology on them.

than, the relative topology on Y induced by the order topology on X.

(c) The order topology on $\mathbb R$ is the usual topology.

Proof.

- (a) X is connected iff \emptyset and X are the only subsets of X that are both open and closed.
- (b) If $\{E_{\alpha}\}_{{\alpha}\in A}$ is a collection of connected subsets of X such that $\cap_{{\alpha}\in A}E_{\alpha}\neq\emptyset$, then $\cup_{{\alpha}\in A}E_{\alpha}$ is connected.
- (c) If $A \subset X$ is connected, then \overline{A} is connected.
- (d) Every point $x \in X$ is contained in a unique maximal connected subset of X, and this subset is closed. (It is called the connected component of x)

Proof. (a) is trivial. (b) Let $E := \bigcup_{\alpha \in A} E_{\alpha}$. Given O_1, O_2 open in X such that $O_1 \cap E, O_2 \cap E$ are non-empty, $O_1 \cup O_2 \supset E$. Choose $x \in \bigcap_{\alpha \in A} E_{\alpha}$, and WLOG assume $x \in O_1$. Choose $y \in O_2 \cap E$, then $y \in E_{\beta}$ for some $\beta \in A$. Note that $(O_1 \cap E_{\beta}) \cup (O_2 \cap E_{\beta}) = (O_1 \cup O_2) \cap E_{\beta} = E_{\beta}$ and $x \in O_1 \cap E_{\beta}, y \in O_2 \cap E_{\beta}$. By the connectedness of $E_{\beta}, O_1 \cap O_2 \neq \emptyset$. Since O_1, O_2 are arbitrary chosen, E is connected.

- (c) Given O_1, O_2 open in X such that $O_1 \cap \overline{A}, O_2 \cap \overline{A}$ are non-empty, $O_1 \cup O_2 \supset \overline{A} \supset A$. Given $x \in O_1 \cap \overline{A}$, since O_1 is an open neighborhood of x, $O_1 \cap A \neq \emptyset$. Similar for $O_2 \cap A \neq \emptyset$. By the connectedness of A, $O_1 \cap O_2 \neq \emptyset$. Since O_1, O_2 are arbitrary chosen, \overline{A} is connected.
- (d) Let $\mathscr{C} := \{A \subset X : A \text{ is connected and contains } x\}$. Let $C = \bigcup_{A \in \mathscr{C}} A$. By (b), C is connected. Then it's obvious maximal, unique. The closedness follows from (c).
- 11. If $E_1, \dots E_n$ are subsets of a topological space, then $\overline{\bigcup_{1}^n E_j} = \bigcup_{1}^n \overline{E_j}$.

(It's not true for intersection, e.g. $E_1=\mathbb{Q}$ and $E_2=\mathbb{Q}^c$; it's also not true for infinitely many E_j , e.g. $E_j=\{\frac{1}{j}\}$.)

Proof. This is easy, we omit it.

- 12. Let X be a set. A Kuratowski closure operator on X is a map $A \mapsto A^*$ from $\mathscr{P}(X)$ to itself satisfying (i) $\emptyset^* = \emptyset$, (ii) $A \subset A^*$ for all A, (iii) $(A^*)^* = A^*$ for all A, and (iv) $(A \cup B)^* = A^* \cup B^*$ for all A, B.
 - (a) If X is a topological space, the map $A \mapsto \overline{A}$ is a Kuratowski closure operator.
 - (b) Conversely, given a Kuratowski closure operator, let $\mathscr{F} = \{A \subset X : A = A^*\}$ and $\mathscr{T} = \{U \subset X : U^c \in \mathscr{F}\}$. Then \mathscr{T} is a topology, and for any set $A \subset X, A^*$ is its closure with respect to \mathscr{T} .

Proof.

	(It's not true if U is not open, e.g. $X = \mathbb{R}, U = \mathbb{R} \setminus \mathbb{Q}$ and $A = \mathbb{Q}$.)	
	<i>Proof.</i> Of course, $\overline{U} \supset \overline{U \cap A}$.	
	Given $x \in U$, if $x \in A$, then $x \in U \cap A$. If $x \notin A$, then $x \in \operatorname{acc}(A)$. Given V open in X U is open, $V \cap U$ is open in X and hence there is a point y lying in $A \cap (V \cap U) = V \cap (A)$ and hence $y \neq x$. Since V is given, $x \in \operatorname{acc}(A \cap U)$. Consequently, $x \in \overline{U \cap A}$.	
	Since x is given, $U \subset \overline{U \cap A}$. Since $\overline{U \cap A}$ is closed, $\overline{U} \subset \overline{U \cap A}$.	
	4.2 Continuous Maps	
14.	. Proof.	
15.	. Proof.	
16.	. Proof.	
17.	. Proof.	
18.	. Proof.	
19.	. Proof.	
20.	. Proof.	
21.	. Proof.	
22.	. Proof.	
23.	. Proof.	
24.	. Proof.	
25.	. Proof.	
26.	. Proof.	
27.	. Proof.	

13. If X is a topological space, U is open in X and A is dense in X, then $\overline{U} = \overline{U \cap A}$.

28.	Let X be a topological space equipped with an equivalence relation, \widetilde{X} the set of equivalence classes, $\pi:X\to\widetilde{X}$ the map taking each $x\in X$ to its equivalence class, and $\mathscr{T}=\{U\subset\widetilde{X}:\pi^{-1}(U)\text{ is open in }X\}.$
	(a) $\mathscr T$ is a topology on $\widetilde X$. (It is called the quotient topology.)
	(b) If Y is a topological space, $f:\widetilde{X}\to Y$ is continuous iff $f\circ\pi$ is continuous
	(c) \widetilde{X} is T_1 iff every equivalence class is closed in X .
	<i>Proof.</i> (a) Since $\pi^{-1}(\emptyset_{\widetilde{X}}) = \emptyset_X$ and $\pi^{-1}(\widetilde{X}) = X$, $\emptyset_{\widetilde{X}}$ and \widetilde{X} are in \mathscr{T} . Given $\{U_{\alpha}\} \subset \mathscr{T}$, then
	$\pi^{-1}(\cup_{\alpha}U_{\alpha}) = \cup_{\alpha}\pi^{-1}U_{\alpha}$
	hence $\cup_{\alpha} U_{\alpha} \in \mathscr{T}$. Similarly $\cap_{i=1}^{n} U_{i} \in \mathscr{T}$ for every finite set $\{U_{1}, \dots U_{n}\} \subset \mathscr{T}$.
	(b) By definition, π is continuous. So $f \circ \pi$ is continuous provided f is. Conversely, if $f \circ \pi$ is continuous, then for every open set $V \subset Y$, $f^{-1}(V)$ is open in \widetilde{X} since $\pi^{-1}f^{-1}(V) = (f \circ \pi)^{-1}(V)$ is open in X . Therefore, f is continuous.
	(c) Suppose \widetilde{X} is T_1 . Given any equivalence class $\pi^{-1}(\{[x]\})$ for some $[x] \in \widetilde{X}$, since the singleton $\{[x]\}$ is closed, by continuity, $\pi^{-1}(\{[x]\})$ is closed.
	Conversely, suppose every equivalence class is closed. Given $[x] \in \widetilde{X}$, then $\pi^{-1}(\{[x]\})$ is closed. Since $\pi^{-1}(\{[x]\}^c) = \left(\pi^{-1}(\{[x]\})\right)^c$ is open, $\{[x]\}^c \in \mathscr{T}$. So $\{[x]\}$ is closed. Hence \widetilde{X} is T_1 .
29.	Proof.
	4.3 Nets
30.	Proof.
31.	Proof.
32.	Proof.
33.	Proof.
34.	Proof.
35.	Proof.
36.	Proof.

4.4 Compact Spaces

37.	Proof.	
38.	Proof.	
39.	Proof.	
40.	Proof.	
41.	Proof.	
42.	Proof.	
43.	Proof.	
44.	Proof.	
45.	Proof.	
	4.5 Locally Compact Hausdorff Spaces	
46.	Proof.	
47.	Proof.	
48.	Proof.	
49.	Proof.	
50.	Proof.	
51.	Proof.	
52.	Proof.	
53.	Proof.	
54.	Proof.	
55.	Proof.	
56.	Proof.	

4.6 Two Compactness Theorems

58.	Proof.	
59.	Proof.	
60.	Proof.	
61.	Proof.	
62.	Proof.	
63.	Proof.	
64.	By Arezla-Ascoli Theorem.	
65.	Proof.	
	4.7 The Stone-Weierstrass Theorem	
66.	Proof.	
67.	Proof.	
68.	Proof.	
69.	Proof.	
70.	Proof.	
71	Proof.	

References