6.9 Summary of Prox Computations

$f(\mathbf{x})$	dom(f)	$\operatorname{prox}_f(\mathbf{x})$	Assumptions	Reference
$ \frac{\frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c} $	\mathbb{R}^n	$(\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b})$	$\mathbf{A} \in \mathbb{S}^n_+, \ \mathbf{b} \in \mathbb{R}^n, \ c \in \mathbb{R}$	Section 6.2.3
λx^3	\mathbb{R}_{+}	$\frac{-1+\sqrt{1+12\lambda[x]_+}}{6\lambda}$	$\lambda > 0$	Lemma 6.5
μx	$[0, \alpha] \cap \mathbb{R}$	$\min\{\max\{x-\mu,0\},\alpha\}$	$\mu \in \mathbb{R}, \ \alpha \in [0,\infty]$	Example 6.14
$\lambda \ \mathbf{x}\ $	\mathbb{E}	$\left(1 - \frac{\lambda}{\max\{\ \mathbf{x}\ , \lambda\}}\right)\mathbf{x}$	$\ \cdot\ $ —Euclidean norm, $\lambda > 0$	Example 6.19
$-\lambda \ \mathbf{x}\ $	\mathbb{E}	$\left(1 + \frac{\lambda}{\ \mathbf{x}\ }\right)\mathbf{x}, \mathbf{x} \neq 0,$ $\{\mathbf{u} : \ \mathbf{u}\ = \lambda\}, \mathbf{x} = 0.$	$\ \cdot\ $ —Euclidean norm, $\lambda > 0$	Example 6.21
$\lambda \ \mathbf{x}\ _1$	\mathbb{R}^n	$\mathcal{T}_{\lambda}(\mathbf{x}) = [\mathbf{x} - \lambda \mathbf{e}]_{+} \odot \operatorname{sgn}(\mathbf{x})$	$\lambda > 0$	Example 6.8
$\ \boldsymbol{\omega} \odot \mathbf{x} \ _1$	$\mathrm{Box}[-oldsymbol{lpha},oldsymbol{lpha}]$	$\mathcal{S}_{oldsymbol{\omega},oldsymbol{lpha}}(\mathbf{x})$	$oldsymbol{lpha} \in \mathbb{R}^n_+ [0,\infty]^n,$ $oldsymbol{\omega} \in \mathbb{R}^n_+$	Example 6.23
$\lambda \ \mathbf{x}\ _{\infty}$	\mathbb{R}^n	$\mathbf{x} - \lambda P_{B_{\ \cdot\ _1}[0,1]}(\mathbf{x}/\lambda)$	$\lambda > 0$	Example 6.48
$\lambda \ \mathbf{x}\ _a$	\mathbb{E}	$\mathbf{x} - \lambda P_{B_{\ \cdot\ _{a,*}}[0,1]}(\mathbf{x}/\lambda)$	$\ \mathbf{x}\ _a$ — arbitrary norm, $\lambda > 0$	Example 6.47
$\lambda \ \mathbf{x}\ _0$	\mathbb{R}^n	$\mathcal{H}_{\sqrt{2\lambda}}(x_1) \times \cdots \times \mathcal{H}_{\sqrt{2\lambda}}(x_n)$	$\lambda > 0$	Example 6.10
$\lambda \ \mathbf{x}\ ^3$	\mathbb{E}	$\frac{2}{1+\sqrt{1+12\lambda\ \mathbf{x}\ }}\mathbf{x}$	$\ \cdot\ $ —Euclidean norm, $\lambda > 0$,	Example 6.20
$-\lambda \sum_{j=1}^{n} \log x_j$	\mathbb{R}^n_{++}	$\left(\frac{x_j + \sqrt{x_j^2 + 4\lambda}}{2}\right)_{j=1}^n$	$\lambda > 0$	Example 6.9
$\delta_C(\mathbf{x})$	\mathbb{E}	$P_C(\mathbf{x})$	$\emptyset \neq C \subseteq \mathbb{E}$	Theorem 6.24
$\lambda \sigma_C(\mathbf{x})$	\mathbb{E}	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda)$	$\lambda > 0, C \neq \emptyset$ closed convex	Theorem 6.46
$\lambda \max\{x_i\}$	\mathbb{R}^n	$\mathbf{x} - \lambda P_{\Delta_n}(\mathbf{x}/\lambda)$	$\lambda > 0$	Example 6.49
$\lambda \sum_{i=1}^k x_{[i]}$	\mathbb{R}^n	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda),$ $C = H_{\mathbf{e},k} \cap \text{Box}[0, \mathbf{e}]$	$\lambda > 0$	Example 6.50
$\lambda \sum_{i=1}^{k} x_{\langle i \rangle} $	\mathbb{R}^n	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda),$ $C = B_{\ \cdot\ _1}[0, k] \cap \text{Box}[-\mathbf{e}, \mathbf{e}]$	$\lambda > 0$	Example 6.51
$\lambda M_f^{\mu}(\mathbf{x})$	\mathbb{E}	$\frac{\mathbf{x} + \frac{\lambda}{\mu + \lambda} \left(\operatorname{prox}_{(\mu + \lambda)f}(\mathbf{x}) - \mathbf{x} \right)}{\left(\operatorname{prox}_{(\mu + \lambda)f}(\mathbf{x}) - \mathbf{x} \right)}$	$\lambda, \mu > 0, f$ proper closed convex	Corollary 6.64
$\lambda d_C(\mathbf{x})$	\mathbb{E}	$\min \left\{ \frac{\mathbf{x} + \\ \min \left\{ \frac{\lambda}{d_C(\mathbf{x})}, 1 \right\} (P_C(\mathbf{x}) - \mathbf{x}) \right\}$	$\emptyset \neq C \text{ closed }$ convex, $\lambda > 0$	Lemma 6.43
$rac{\lambda}{2}d_C^2(\mathbf{x})$	\mathbb{E}	$\frac{\lambda}{\lambda+1}P_C(\mathbf{x}) + \frac{1}{\lambda+1}\mathbf{x}$	$\emptyset \neq C \text{ closed }$ convex, $\lambda > 0$	Example 6.65
$\lambda H_{\mu}(\mathbf{x})$	\mathbb{E}	$\left(1 - \frac{\lambda}{\max\{\ \mathbf{x}\ , \mu + \lambda\}}\right)\mathbf{x}$	$\lambda, \mu > 0$	Example 6.66
$ ho\ \mathbf{x}\ _1^2$	\mathbb{R}^n	$ \frac{\left(\frac{v_i x_i}{v_i + 2\rho}\right)_{i=1}^n, \mathbf{v} = \left[\sqrt{\frac{\rho}{\mu}} \mathbf{x} - 2\rho\right]_+, \mathbf{e}^T \mathbf{v} = 1 \ (0 $ when $\mathbf{x} = 0$	$\rho > 0$	Lemma 6.70
$\lambda \ \mathbf{A}\mathbf{x}\ _2$	\mathbb{R}^n	$\mathbf{x} - \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T} + \alpha^{*} \mathbf{I})^{-1} \mathbf{A} \mathbf{x},$ $\alpha^{*} = 0 \text{ if } \ \mathbf{v}_{0}\ _{2} \leq \lambda; \text{ oth-}$ $\text{erwise, } \ \mathbf{v}_{\alpha^{*}}\ _{2} = \lambda; \mathbf{v}_{\alpha} \equiv (\mathbf{A} \mathbf{A}^{T} + \alpha \mathbf{I})^{-1} \mathbf{A} \mathbf{x}$	$\mathbf{A} \in \mathbb{R}^{m \times n}$ with full row rank, $\lambda > 0$	Lemma 6.68