Advanced Risk Management

Week 2

Univariate Volatility Models

Outline

- The GARCH model
- Variance forecasting
- (Quasi-)Maximum likelihood estimation
- News impact curve
- Model checking
- Realized variance
- Volatility forecasting using realized variance

Volatility modelling

- Volatility = standard deviation, $\sqrt{\text{variance}}$.
- Recall the "generic" RiskMetrics volatility model:

$$R_{t+1} = \sigma_{t+1} z_{t+1}, \qquad \sigma_{t+1}^2 = \lambda \sigma_t^2 + (1 - \lambda) R_t^2.$$

Motivation: exploits volatility clustering ($Corr(R_t^2, R_{t-j}^2) > 0$).

Solution is exponentially weighted moving average of squared returns:

$$\sigma_{t+1}^2 = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j R_{t-j}^2;$$

more reasonable than equally weighted moving average $\sigma_{t+1}^2 = m^{-1} \sum_{j=0}^{m-1} R_{t-j}^2$.

 GARCH models provide a generalization of the RiskMetrics model, allowing for more flexibility.

The GARCH model

- GARCH = "Generalized AutoRegressive-Conditional Heteroskedasticity".
- Developed by Rob Engle (2003 Nobel laureate) and Tim Bollerslev.
- Returns R_{t+1} satisfy $E_t(R_{t+1}) = 0$ and $\operatorname{Var}_t(R_{t+1}) = \sigma^2_{t+1}$, where

$$\sigma_{t+1}^2 = \omega + \alpha R_t^2 + \beta \sigma_t^2, \qquad \omega, \alpha, \beta > 0, \qquad \alpha + \beta < 1.$$

- \bullet Three coefficients ω,α,β need to be positive so that σ_{t+1}^2 is always positive.
- Like RiskMetrics, variance can be written as weighted sum of squared returns plus constant:

$$\sigma_{t+1}^2 = \frac{\omega}{1-\beta} + \alpha \sum_{j=0}^{\infty} \beta^j R_{t-j}^2,$$

but weights do not sum to 1! RiskMetrics is obtained by $\omega =$ 0 and $\beta =$ 1 – $\alpha = \lambda$.

The GARCH model

- σ_{t+1}^2 is the time-varying conditional variance of R_{t+1} ; is there a constant unconditional variance?
- If so, it should satisfy

$$\sigma^2 = Var(R_{t+1}) = E(R_{t+1}^2) = E(E_t[R_{t+1}^2]) = E(\sigma_{t+1}^2),$$

so taking expectations in the GARCH equation gives

$$\sigma^{2} = E(\sigma_{t+1}^{2}) = \omega + \alpha E(R_{t}^{2}) + \beta E(\sigma_{t}^{2})$$
$$= \omega + \alpha \sigma^{2} + \beta \sigma^{2},$$

which is solved by

$$\sigma^2 = \frac{\omega}{1 - \alpha - \beta}.$$

• Therefore, $\alpha+\beta<$ 1 is needed for the unconditional variance to exist. In that case,

$$\sigma_{t+1}^2 = \sigma^2 + \alpha (R_t^2 - \sigma^2) + \beta (\sigma_t^2 - \sigma^2).$$

Variance forecasting

In risk management applications, we will be interested in

$$\operatorname{Var}_t(R_{t+1:t+K}) = \operatorname{Var}_t\left(\sum_{k=1}^K R_{t+k}\right) = \sum_{k=1}^K E_t(\sigma_{t+k}^2).$$

Covariance terms are zero because $E_t(R_{t+1}) = 0 \Rightarrow$ no autocorrelation in returns.

Final equation on previous slide implies

$$E_t(\sigma_{t+k}^2 - \sigma^2) = \alpha E_t(R_{t+k-1}^2 - \sigma^2) + \beta E_t(\sigma_{t+k-1}^2 - \sigma^2) = (\alpha + \beta) E_t(\sigma_{t+k-1}^2 - \sigma^2),$$

which can be further solved into

$$E_t(\sigma_{t+k}^2 - \sigma^2) = (\alpha + \beta)^{k-1}(\sigma_{t+1}^2 - \sigma^2).$$

• So GARCH with $\alpha + \beta < 1$ leads to mean-reversion in volatility:

$$\lim_{k\to\infty} \operatorname{Var}_t(R_{t+k}) = \sigma^2.$$

Variance forecasting

• Combining $\operatorname{Var}_t(R_{t+1:t+K}) = \sum_{k=1}^K E_t(\sigma_{t+k}^2)$ with

$$E_t(\sigma_{t+k}^2) = \sigma^2 + (\alpha + \beta)^{k-1}(\sigma_{t+1}^2 - \sigma^2),$$

we find

$$Var_t(R_{t+1:t+K}) = K\sigma^2 + \sum_{k=1}^K (\alpha + \beta)^{k-1} (\sigma_{t+1}^2 - \sigma^2).$$

The may be contrasted with RiskMetrics:

$$Var_t(R_{t+1:t+K}) = K\sigma_{t+1}^2$$

• So rule of thumb: "K-day VaR = $\sqrt{K} \times 1$ -day VaR", does not apply with GARCH.

Variance forecasting – illustration

Figure 4.2 Variance forecast for 1–250 days cumulative returns.

Maximum likelihood estimation

- To apply model in practice, parameters ω, α, β need to be estimated from data R_1, \dots, R_T .
- Model cannot be estimated by OLS. Instead, use maximum likelihood estimation.
- If $z_t = R_t/\sigma_t$ is i.i.d. N(0,1), then conditional density of R_t given information at t-1 is

$$\ell_t = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{R_t^2}{2\sigma_t^2}\right), \qquad \sigma_t^2 = \omega + \alpha R_{t-1}^2 + \beta \sigma_{t-1}^2.$$

• Maximum likelihood estimators $\hat{\omega}$, $\hat{\alpha}$ and $\hat{\beta}$ are solutions to

$$\max_{\omega,\alpha,\beta} \ln L = \sum_{t=1}^T \ln \ell_t \qquad \Leftrightarrow \qquad \min_{\omega,\alpha,\beta} \sum_{t=1}^T \left(\ln \sigma_t^2 + \frac{R_t^2}{\sigma_t^2} \right).$$

Need to make assumption about σ_1^2 , e.g., $\sigma_1^2 = T^{-1} \sum_{t=1}^T R_t^2$.

Quasi-maximum likelihood estimation

- In practice, distribution of standardized returns z_t does not look like N(0, 1) (longer tails).
- We still get good estimates by maximizing the normal likelihood, but need to adjust the standard errors of the estimates. This is known as QMLE.
- Sometimes "variance targeting" is useful:
 - first estimate $\hat{\sigma}^2 = T^{-1} \sum_{t=1}^{T} R_t^2$;
 - then estimate α and β by maximizing $\ln L$, using

$$\sigma_t^2 = \hat{\sigma}^2 + \alpha (R_{t-1}^2 - \hat{\sigma}^2) + \beta (\sigma_{t-1}^2 - \hat{\sigma}^2)$$

= $\hat{\sigma}^2 (1 - \alpha - \beta) + \alpha R_{t-1}^2 + \beta \sigma_{t-1}^2$,

implying an estimate $\hat{\omega} = \hat{\sigma}^2 (1 - \hat{\alpha} - \hat{\beta})$.

Implementation in Python

Install arch package:
 conda install -c bashtage arch

Code:

```
from arch import arch_model
am = arch_model(R)
res = am.fit()
print(res.summary())
sigma = res.conditional_volatility
sigma.plot()
```

• To avoid numerical problems, R has been multiplied by 100 (percentage returns).

Results – estimation output

Constant Mean - GARCH Model Results

Dep. Variable:	:		R R-s	quared:	-0.001
Mean Model:	Constant Mean		Mean Adj	. R-squared	-0.001
Vol Model:	GARCH		ARCH Log	-Likelihood	: -3719.07
Distribution:		No	rmal AIC	:	7446.15
Method:	Maximum Likelihood			:	7469.47
			No.	Observation	ns: 2514
Date:	W	led, Feb 07	2018 Df	Residuals:	2510
Time:	22:40:22			Model:	4
Mean Model					
		std err			95.0% Conf. Int.
mu		1.759e-02		1.685e-02	[7.561e-03,7.650e-02]
					95.0% Conf. Int.
					[1.744e-03,2.318e-02]
alpha[1]	0.0791	1.154e-02	6.858	6.986e-12	[5.652e-02, 0.102]
•					[0.888, 0.936]
==========		========	=======	========	

Results – volatility plot

Implementation in Stata

Code:

```
import excel "C:\Work\ARM2020\Week2\R.xlsx", sheet("R") firstrow
replace R = 100*R
bcal create busdates, from(Date)
bcal load busdates
replace Date = bofd("busdates",Date)
format %tbbusdates Date
tsset Date
save "C:\Work\ARM2020\Week2\R.dta"
arch R if Date>252, arch(1) garch(1) nolog
```

• The bcal statements ("business calendar") are to communicate to the program that business holidays should not be interpreted as "gaps" in the data set.

Estimation output in Stata

ARCH family regression

```
Sample: 03jan2001 - 31dec2010
                                          Number of obs
                                                              2,514
Distribution: Gaussian
                                          Wald chi2(.)
Log likelihood = -3719.971
                                          Prob > chi2
                          OPG
         R. I
             Coef. Std. Err. z P>|z| [95% Conf. Interval]
R
      cons | .0421904 .018227 2.31 0.021 .0064661 .0779147
AR.CH
      arch I
       L1. I
             .0786345 .0080383 9.78
                                         0.000
                                                 . 0628798
                                                            .0943891
      garch |
       L1. I
             .9128176 .0085148 107.20
                                        0.000
                                                 .8961289
                                                            .9295063
              .0123212
                      .0020622 5.97 0.000
                                                 .0082794
                                                            .016363
      cons
```

News impact curve

- Standardized return $z_t = R_t/\sigma_t$ may be interpreted as today's "shock to return", or "news".
- News impact curve (function) is effect of z_t on σ_{t+1}^2 , keeping σ_t^2 fixed.
- Standard GARCH model:

$$\sigma_{t+1}^2 = \omega + \alpha R_t^2 + \beta \sigma_t^2 = \omega + \alpha \sigma_t^2 z_t^2 + \beta \sigma_t^2,$$

so NIC is quadratic. So positive shock $z_t = c$ has same effect as negative shock $z_t = -c$.

- Leverage effect implies for equity returns: $z_t = -c$ has bigger impact than $z_t = c$.
- Extension that allows for this is GJR-GARCH:

$$\sigma_{t+1}^2 = \omega + \alpha R_t^2 + \gamma I_t R_t^2 + \beta \sigma_t^2, \qquad I_t = \mathbb{I}(R_t < 0),$$

where $\mathbb{I}(A) = 1$ if A is true, and zero otherwise.

- Model can be estimated by QMLE; in practice, $\hat{\gamma}$ is much larger than $\hat{\alpha} \approx 0$.
- Python implementation: am = arch_model(R,p=1,o=1,q=1)

Example – NIC of GARCH and GJR-GARCH, S&P 500 returns

Model checking

- Assumption that $\sigma_{t+1}^2 = \text{Var}_t(R_{t+1})$ satisfies (GJR-)GARCH specification may be violated:
 - we might need another form of NIC;
 - we might need (more) lags of R_t^2 and σ_t^2 in the equation \Rightarrow GARCH(p, q);
 - perhaps it's better to formulate a linear model for $\ln \sigma_{t+1}^2 \Rightarrow \text{EGARCH}$.
- When model 0 is a special case of model 1 ("nested") then test of 0 against 1 is

$$LR = 2 \left(\ln(L_1) - \ln(L_0) \right) \stackrel{H_0}{\sim} \chi_m^2,$$

where m is number of extra parameters in model 1, and L_i is likelihood of model i = 0, 1.

- We can also check whether $Var_t(z_{t+1}) = 1$, as predicted by model, using estimated shocks \hat{z}_t :
 - ▶ plot of \hat{z}_t against time should not display volatility clustering;
 - ightharpoonup autocorrelations of \hat{z}_t^2 should not be significantly different from zero.

S&P 500 returns and shocks

Autocorrelations of squared S&P 500 returns and shocks

High-frequency data

- GARCH & RiskMetrics applied to daily returns: log-difference in closing prices.
- Behaviour of prices during the day should be even more informative about risk than daily return.
- ullet Example: Chart of SPY (S&P 500 tracking ETF) on two days with returns pprox 0:

Realized variance - motivation

- Suppose we observe price every minute during 24 hours in interval [t-1, t] (realistic for forex).
- This leads to $m = 24 \times 60 = 1440$ log-returns during the day:

$$R_{t,j} = \ln(S_{t-1+j/m}) - \ln(S_{t-1+(j-1)/m}), \qquad j = 1, \dots, m.$$

The daily return then satisfies $R_t = \ln(S_t) - \ln(S_{t-1}) = \sum_{j=1}^m R_{t,j}$.

• For estimation of mean daily return, these intra-day returns do not help:

$$\hat{\mu} = rac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{m} R_{t,j} = rac{1}{T} \sum_{t=1}^{T} R_{t} = rac{1}{T} \left(\ln(S_{T}) - \ln(S_{0})
ight).$$

For estimation of daily return variance, it can be shown that

$$\hat{\sigma}_m^2 = \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{m} R_{t,j}^2$$

is a factor 1/m more precise than $\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} R_t^2$.

Realized variance

Definition (notation slightly different from Christoffersen):

$$RV_t^m = \sum_{j=1}^m R_{t,j}^2.$$

- Ex-post estimate of variance during day *t*; can only be calculated at end of day;
 - do not divide by m: we want estimate of daily return variance, not 1-minute return variance.
- Theoretical result: if log-asset price follows Ito process $d \ln(S_t) = \mu_t dt + \sigma_t dW_t$, then

$$\underset{m\to\infty}{\text{plim}} RV_t^m = \int_{t-1}^t \sigma_s^2 ds.$$

So in the continuous-time limit $(m \to \infty)$, we estimate average variance without error.

Realized variance in practice

- When taking *m* very large, so very small time intervals, then RV is affected by (market microstructure) noise.
- Therefore, in practice it is recommended to use 5-minute returns.
- Stock markets are open 9.30–16.00. Then RV_t^m estimates open-to-close return variance;
- close-to-close return variance requires analysis overnight return $\ln(S_t^{open}) \ln(S_{t-1}^{close})$.
- Unlike daily financial data, historical intra-day data are not available free of charge.
- Daily RV time series of some common stock indices are available from

```
https://realized.oxford-man.ox.ac.uk/
```

Properties of realized variance

- Realized variance RV_t^m is less noisy measurement than $R_t^2 = RV_t^1$;
 - compare $|R_t| = \sqrt{R_t^2}$ with $RVol_t^m = \sqrt{RV_t^m}$ for S&P 500 index:

Properties of realized variance

• RV is persistent, with positive autocorrelations at long lags ("long memory"):

Volatility forecasting using realized variance

- Realized variance may help in volatility forecasting in two ways:
 - by using RV_t^m as predictive variable for σ_{t+1}^2 (or RV_{t+1}^m);
 - ② by comparing σ_{t+1}^2 from different GARCH models with RV_{t+1}^m .
- For the first part, we may simply extend the GARCH model as

$$\sigma_{t+1}^2 = \omega + \alpha R_t^2 + \beta \sigma_t^2 + \gamma R V_t^m,$$

which can again be estimated by QMLE;

- ▶ in practice, RV_t^m makes R_t^2 redundant: $\hat{\gamma}$ will be significantly positive, and $\hat{\alpha} \approx 0$.
- For multi-day forecasting $E_t(\sigma_{t+k}^2)$, we need an equation to forecast RV_{t+k-1}^m ;
 - Realized GARCH model, see Section 5.3.3.

Volatility forecasting using realized variance

- For forecasting RV_{t+k} directly, models need to replicate the long-memory property.
- In AR(1) model for RV_t or $ln(RV_t)$, the estimated AR parameter will be close to 1 (random walk).
- Better models are heterogeneous autoregressions (HAR), e.g.

$$RV_{t+1} = \phi_0 + \phi_D RV_{D,t} + \phi_W RV_{W,t} + \phi_M RV_{M,t} + \varepsilon_{t+1},$$

where

$$RV_{D,t} = RV_t, \qquad RV_{W,t} = \frac{1}{5} \sum_{j=0}^4 RV_{t-j}, \qquad RV_{M,t} = \frac{1}{20} \sum_{j=0}^{19} RV_{t-j}.$$

 Models in logs are preferred; errors are closer to homoskedastic and normally distributed.

Volatility forecast evaluation using realized variance

- Suppose we have estimated a (realized) GARCH model, and wish to evaluate how well the model predicts future variance.
- Assume that model is estimated from sample $\{R_t, t = 1, ..., T\}$, and evaluated for out-of-sample period t = T + 1, ..., T + n.
- Measure of forecast quality is mean squared error: traditionally evaluated as

$$\frac{1}{n}\sum_{t=T}^{T+n-1}(R_{t+1}^2-\sigma_{t+1}^2)^2.$$

• But we know that R_{t+1}^2 is more noisy measurement than RV_{t+1}^m ; therefore, we prefer to use

$$MSE = \frac{1}{n} \sum_{t=T}^{T+n-1} (RV_{t+1}^m - \sigma_{t+1}^2)^2.$$

Copyright statement

Figure 4.2 on Slide 8 has been extracted from:

Christoffersen, P. F. (2012), *Elements of Financial Risk Management*, Second Edition. Waltham (MA): Academic Press. ISBN 978-0-12-374448-7.

► Back to first slide