第四章 随机变量的数字特征

第一节 随机变量的数学期望

第二节 随机变量的方差与矩

第三节 协方差与相关系数

一. 协方差

covariance

定义
$$\operatorname{cov}(X,Y) = E[(X-E(X))(Y-E(Y))]$$

性质 1)
$$cov(X,X) = D(X)$$
 $E[(X-E(X))(X-E(X))]$

2)
$$\operatorname{cov}(X,c) = E[(X-E(X))(c-E(c))] = 0$$
 c为常数

3)
$$cov(X,Y) = cov(Y,X)$$

4)
$$cov(aX,bY) = ab cov(X,Y)$$
 a,b 是常数
$$= E[(aX - E(aX))(bY - E(bY))] = E[ab(X - E(X))(Y - E(Y))]$$

5)
$$\operatorname{cov}(X+Y,Z) = \operatorname{cov}(X,Z) + \operatorname{cov}(Y,Z)$$

6)
$$D(X+Y) = D(X) + D(Y) + 2 \operatorname{cov}(X,Y)$$

方差与协方差的关系

$$D(X+Y) = D(X) + D(Y) + 2\operatorname{cov}(X,Y)$$

证明:
$$D(X+Y) = E[X+Y-E(X+Y)]^{2}$$
$$= E\{[X-E(X)] + [Y-E(Y)]\}^{2}$$
$$= D(X) + D(Y) + 2E\{[X-E(X)][Y-E(Y)]\}$$
$$= D(X) + D(Y) + 2\operatorname{cov}(X,Y)$$

计算协方差的公式

$$cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

证明:由协方差的定义及期望的性质,

$$cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

$$= E[XY - XE(Y) - YE(X) + E(X)E(Y)]$$

$$= E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

注: 显然, 若X与Y相互独立,则: cov(X, Y)=0

例1
$$\frac{X}{0}$$
 $\frac{1}{0.2}$ $\frac{2}{0.5}$ $\frac{1}{0.5}$ $\frac{2}{0.5}$ $\frac{1}{0.4}$ $\frac{0.1}{0.6}$ $\frac{0.5}{0.4}$ $\frac{0.5}{0.5}$ $\frac{1}{0.6}$ $\frac{0.4}{0.4}$ $\frac{0.5}{0.5}$ $\frac{0.5}{0.5}$ $\frac{1}{0.6}$ $\frac{0.5}{0.4}$ $\frac{1}{0.5}$ $\frac{1}{0.6}$ $\frac{1}{0.5}$ $\frac{2}{0.5}$ $\frac{1}{0.5}$ $\frac{1}{0.5}$

例1
$$\begin{bmatrix} X \\ Y \end{bmatrix}$$
 1 $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} cov(X-3,Y+2) \\ cov(X+Y,X-Y) \end{bmatrix}$ 1 0.4 0.1 0.5 $D(X-Y)$ 0.6 0.4

解 易算得:
$$E(X)=0.5$$
, $E(Y)=1.4$, $E(XY)=0.6$

$$D(X) = E(X^{2}) - [E(X)]^{2} = 0^{2} \cdot 0.5 + 1^{2} \cdot 0.5 - 0.5^{2} = 0.25$$
同理: $D(Y) = 0.24$
 $cov(X + Y, X - Y)$
 $= cov(X, X) - cov(X, Y) + cov(Y, X) - cov(Y, Y)$
 $= D(X) - D(Y) = 0.01$

$$D(X - Y) = D(X) + D(Y) - 2cov(X, Y) = 0.69$$

二. 相关系数

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$
$$= E(XY) - E(X) \cdot E(Y)$$

1. 定义2. 量(无量纲)
$$\frac{\text{cov}(X,Y)}{\sqrt{D(X)}\cdot\sqrt{D(Y)}}$$
 称为随机变量

X, Y 的相关系数,记为: ρ_{XY}

$$\mathbb{P}: \quad \rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

2. 相关系数的性质

(1).
$$|\rho_{XY}| \leq 1$$

X和Y以概 率1存在着 线性关系

(2). $|\rho_{XY}|=1 \Leftrightarrow$ 存在常数 a,b, 使得.

$$P(Y = aX + b) = 1$$

定理 设 ρ 为X与Y的相关系数

- $|\rho| \leq 1$
- ii) $|\rho|=1\Leftrightarrow P\{Y=aX+b\}=1$ a,b为常数且a不为0

若 $|\rho_{XY}|=1$,则 Y与 X 以概率1存在线性关系;

若 0≤ $|\rho_{XY}|$ ≤1,

 $|\rho_{XY}|$ 的值越接近于1,Y与X线性关系的程度越高;

 $|\rho_{XY}|$ 的值越接近于0,Y与X线性关系的程度越弱.

相关系数刻划了X和 Y之间线性关系的紧密程度.

三. 不相关
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$
 定义 若 $\rho_{X,Y} = 0$,则称 X, Y 不相关

等价命题

X, Y 不相关

$$\rho_{X,Y} = 0$$

$$\operatorname{cov}(X,Y) = 0$$
 X,Y 相互独立

$$\longleftarrow E(XY) = E(X) \cdot E(Y)$$

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

$$\longrightarrow D(X+Y) = D(X) + D(Y)$$

$$D(X+Y) = D(X) + D(Y) + 2\operatorname{cov}(X,Y)$$

例2. 设 X, Y在 $x^2 + y^2 \le 1$ 上服从均匀分布,

$$\exists f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0 & x^2 + y^2 > 1 \end{cases} \qquad f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$$

验证: X 与 Y 是不相关的,但不是相互独立的。

$$\rho_{xy} = 0$$

$$f(x,y) \neq f_X(x) f_Y(y)$$

证明: 由已知, X, Y 的边缘概率密度为:

$$f_X(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & |x| \le 1 \\ 0, & |x| > 1 \end{cases} \qquad f_Y(y) = \begin{cases} \frac{2}{\pi} \sqrt{1 - y^2}, & |y| \le 1 \\ 0, & |y| > 1 \end{cases}$$

显然, $f(x,y) \neq f_X(x) f_Y(y)$ 故 X 与 Y 是不独立的

$$f_{|X}(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

$$f(x, y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0, & |y| > 1 \end{cases}$$

$$f(x, y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0 & x^2 + y^2 > 1 \end{cases}$$
数在
对称
区间
上的
积分
$$E(X) = \int_{-1}^{1} x \frac{2}{\pi} \sqrt{1 - x^2} dx = 0$$

$$E(XY) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dy$$

$$E(Y) = \int_{-1}^{1} y \frac{2}{\pi} \sqrt{1 - y^2} dy = 0$$

$$E(Y) = \int_{-1}^{1} y \frac{2}{\pi} \sqrt{1 - y^2} dy = 0$$

$$E(XY) = \int_{x^2 + y^2 \le 1}^{\pi} xy \frac{1}{\pi} dxdy = \frac{1}{\pi} \int_{-1}^{1} dx \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} xy dy = 0$$

从而有:
$$cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

于是得: $\rho_{xv} = 0$ 故得: X,Y 是不相关的。

X与Y不相关,但不相互独立。

独立与不相关的关系:

$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

结论: X和 Y独立 \longrightarrow $\rho_{XY} = 0$ X与Y不相关 反之不一定

但对下述情形,独立与不相关等价:

若 (X,Y) 服从二维正态分布,则: $\rho_{XY} = \rho$

因此, X与 Y相互独立 \iff X与 Y不相关

$$E(X) = \mu_1, E(Y) = \mu_2, D(X) = \sigma_1^2, D(Y) = \sigma_2^2$$

例3
$$\frac{X^{Y}}{0}$$
 $\frac{1}{0.2}$ $\frac{2}{0.5}$ $\frac{1}{0.5}$ $\frac{2}{0.5}$ $\frac{2}{0.5}$

例4
$$(X, Y)$$
 的密度为 $f(x, y) = \begin{cases} 2, & 0 < x < y < 1 \\ 0, & \text{其他} \end{cases}$
 $\Re : \rho_{X,Y}$

解 $E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy = \iint_{D} 2x dx dy = \frac{1}{3}$
 $E(X^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{2} f(x, y) dx dy = \iint_{D} 2x^{2} dx dy = \frac{1}{6}$
 $D(X) = E(X^{2}) - [E(X)]^{2}$
 $\longrightarrow D(X) = \frac{1}{18}.$ 同理 $E(Y) = \frac{2}{3}, E(Y^{2}) = \frac{1}{2}, D(Y) = \frac{1}{18}$
 $E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f(x, y) dx dy = \iint_{D} 2xy dx dy = \frac{1}{4}$
 $\cot(X, Y) = E(XY) - E(X)E(Y)$
 $\rightarrow \cot(X, Y) = \frac{1}{36}$
 $\rightarrow \rho_{X,Y} = \frac{1}{2}$

复习

随机变量的数字特征

		离散型随机变量	连续型随机变量
_	X	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx \bigstar$
D($= E[X -$	(X) $E(X)$] ²	$D(X) = \sum_{k=1}^{\infty} (x_k - E(X))^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$
Y = g连		$E(Y) = E[g(X)]$ $= \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = E[g(X)] \qquad \bigstar$ $= \int_{-\infty}^{+\infty} g(x) f(x) dx$
Z=g g 连	·(X,Y) 续	$E(Z) = E[g(X,Y)]$ $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$	$E(Z) = E[g(X,Y)] $ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$

复习

随机变量的数字特征

*	E(X)性质	E(c) = c $E(cX) = cE(X)$ $E(X+Y) = E(X) + E(Y)$ X,Y独立 $E(XY) = E(X)E(Y)$
	D (X)性质	$D(X) = E(X^{2}) - [E(X)]^{2}$ $D(c) = 0$ $D(cX) = c^{2}D(X)$ $X, Y \stackrel{\text{def}}{=} 1, D(X + Y) = D(X) + D(Y)$ $D(X) = 0 \stackrel{\text{def}}{=} P(X = c) = 1$
	协方差	$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$ = $E(XY) - E(X)E(Y)$ $\text{in } \text{in } D(X + Y) = D(X) + D(Y) + 2 \operatorname{cov}(X,Y) = D(X) + D(Y)$
	相关系数	$ \rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} $ (1). $ \rho_{XY} \le 1$ (2). $ \rho_{XY} = 1 \Leftrightarrow $ 存在常数 a , b , 使得: $P(Y = aX + b) = 1$

复习

★几种常见分布的数学期望和方差

	概率	分布	E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
型	泊松分布	$X \sim P(\lambda)$	λ	λ
<u> </u>	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连续型	指数分布	$X \sim Exp(\theta)$	heta	$oldsymbol{ heta}^2$
坐	正态分布	$X \sim N(\mu, \sigma^2)$	μ	σ^2