1 Covariância & Correlação

Seja $X \in S \to \mathbb{R}^N$ um vetor aleatório e sejam $i, j \in \{1, 2, 3, ..., N\}$ com $i \neq j$. A covariância entre as componentes i e j é definida por

$$Cov(X_i, X_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_i - \mu_i) \cdot (x_j - \mu_j)^* \cdot f_{X_i X_j}(x_i, x_j) dx_i dx_j$$

onde $f_{X_iX_j}(x_i, x_j)$ é a PDF marginal das duas componentes e μ_i, μ_j são as expectâncias respectivas das 2 componentes.

A covariância visa observar como o comportamento estatístico de uma componente X_i afeta o comportamento de X_j . Uma covariância positiva significa que o aumento de uma das variáveis em relação a sua média individual aumenta a expectativa de que a outra variável também cresça em relação a sua média individual. Uma covariância negativa significa que o aumento aumenta a expectativa de uma redução em outra variável. Finalmente, uma covariância nula mostra que o aumento de uma variável em relação a sua média não altera a expectativa de que outra variável aumente ou diminua. Mas pode haver outro tipo de dependência!

Observação: X_1, X_2 independentes \rightarrow covariância nula. X_1, X_2 com covariância nula não implica em independência!

1.1 Estimando Covariância

Considere que temos M realizações de X_i, X_j . A partir dessas realizações temos um estimador (unbiased) da covariância.

O estimador pode ser tratado como uma nova variável aleatória na qual o valor esperado coincide com o valor teórico da covariância. Estamos aproximando a covariância com uma margem de erro! (Dica de leitura [livro]: Kay, Statistical Signal Processing)

$$\overline{Cov_{X_i,X_j}} = \frac{1}{M-1} \sum_{n=1}^{M} (x_i^{(n)} - \overline{\mu_i}) \cdot (x_j^{(n)} \overline{\mu_j})^*$$
$$\text{com } \overline{\mu_i} = \sum_{n=1}^{M} x_i^{(n)} \qquad \overline{\mu_j} = \sum_{n=1}^{M} x_j^{(n)}$$

Definição: X_i e X_j são não-correlatos se e somente se $Cov_{X_i,X_j} = 0$. Não confundir com correlação!

2 Correlação

Correlação entre X_i e X_j é $R(X_i, X_j)$.

$$R(X_i, X_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_i \cdot x_j^* \cdot f_{X_i X_j}(x_i, x_j) dx_i dx_j$$

O interesse por essa grandeza: $Cov(X_i, X_j) = R(X_i, X_j) - \mu_i \cdot \mu_j^*$ Lembrando que $Var[X_i] = \mathbb{E}[X_i^2] - (\mu_i)^2$. **Observação:** $R(X_i, X_j) = \mathbb{E}(X_i X_j^*)$ Para $Cov(X_i, X_j) = 0$, a correlação torna-se o produto das médias.

3 Matrizes de Covariância e Correlação

Seja $X \in S \to \mathbb{R}^N$ um vetor aleatório e sejam X_i, X_j duas componentes, podemos obter a correlação e a covariância:

$$R(X_i, X_j), Cov(X_i, X_j)$$

Considerando esses valores para todas combinações de i, j dentro do vetor, podemos calcular N^2 correlações e N^2 covariâncias e organizar em duas matrizes:

 $\mathbf{R}_{\mathbf{X}\mathbf{X}} = \text{Matriz de autocorrelação}$

 $\mathbf{C}_{\mathbf{X}\mathbf{X}} = \text{ Matriz de autocovariância}$

$$\begin{split} &\sigma_1^2 \mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)^*] \mathbb{E}[(X_1 - \mu_1)(X_3 - \mu_3)^*] \dots \mathbb{E}[(X_1 - \mu_1)(X_N - \mu_N)^*] \\ &\mathbb{E}[(X_2 - \mu_2)(X_1 - \mu_1)^*] \sigma_2^2 \mathbb{E}[(X_2 - \mu_2)(X_3 - \mu_3)^*] \dots \mathbb{E}[(X_2 - \mu_2)(X_N - \mu_N)^*] \\ &\mathbb{E}[(X_N - \mu_N)(X_1 - \mu_1)^*] \mathbb{E}[|(X_N - \mu_N)(X_2 - \mu_2)|^2] \mathbb{E}[(X_N - \mu_N)(X_3 - \mu_3)^*] \dots \sigma_N^2 \end{split}$$

Observação: para matriz de autocovariância Simétrica no caso real (parte imaginária núla) Hermitiana sempre (é igual a Hermitiana dela própria) Positiva semidefinida (positive semidefinite) " $\rightarrow n \geq 0$ " (autovalores reais não-negativos) É positiva definida desde que não haja componentes com variância nula (autovalores são reais

3.1 Notação Matricial

positivos)

Para matriz de correlação: $R_{XX} = \mathbb{E}[X \cdot X^H]$, valor esperado de uma matriz aleatória.

Para matriz de covariância:

$$C_{XX} = \mathbb{E}[(X - \mu_X)(X - \mu_X)^H]$$

$$C_{XX} = \mathbb{E}[(X - \mu_X)(X^H - \mu_X^H)]$$

$$C_{XX} = \mathbb{E}[XX^H - X\mu_X^H - \mu_X X^H + \mu_X \mu_X^H]$$

$$C_{XX} = R_{XX} - \mathbb{E}[X\mu_X^H] - \mathbb{E}[\mu_X X^H] + \mu_X \mu_X^H$$

$$C_{XX} = R_{XX} - \mathbb{E}[X]\mu_X^H - \mu_X \mathbb{E}[X^H] + \mu_X \mu_X^H$$

$$C_{XX} = R_{XX} - \mu_X \mu_X^H - \mu_X \mu_X^H + \mu_X \mu_X^H$$

$$C_{XX} = R_{XX} - \mu_X \mu_X^H - \mu_X \mu_X^H + \mu_X \mu_X^H$$

$$C_{XX} = R_{XX} - \mu_X \mu_X^H \qquad \text{uma generalização de: } Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

3.2 Estimador da matriz de covariância

Considere um vetor aleatório $X \in S \to \mathbb{R}^N$. Suponha que temos M realizações de X sendo: $X^{(1)}, X^{(2)}, X^{(3)}, \dots, X^{(N)}$. Como estimar a matriz de covariância de C_{XX} ?

Defina uma matriz de dados $D_{[N \times M]}$ em que cada coluna é uma realização $X^{(i)}$. Com isso, estimamos o vetor média μ_X somando ao longo das linhas e dividindo por M. Realizamos a subtração de D pelo valor médio correspondente a cada coluna obtendo D_{μ} .

Para obter a estimativa $\overline{C_{XX}}$, fazemos $\overline{C_{XX}}_{[N \times N]} = D_{\mu}D_{\mu}^{H}$.