Web Scraping Assignment.

Lenskart Product Sales, Rating and things.

Dayashankar Mehta PRN - 19030141013 MBA-IT Sem 3rd

```
In [1]: import requests
    from bs4 import BeautifulSoup

In [2]: url = "https://www.lenskart.com/"

In [3]: headers = {'User-Agent':"Mozilla/5.0 (Windows NT 5.1; rv:7.0.1) Gecko/20100101 F:
```

```
In [4]:
        import re
        Brand = []
        Bought = []
        Selling Price = []
        Market Price = []
        Rating = []
        Product links = []
        for x in range(1,20):
            r = requests.get('https://www.lenskart.com/eyeglasses/collections/all-compute
            soup = BeautifulSoup(r.text, 'html.parser')
            for item in soup.find all(class ="productWidgetBox border"):
                 brand = item.find('div', class ="col-md-12 no-padding text-color-black f√
                 Brand.append(brand)
                 try:
                     bought = item.find('span', class ="display-ib text-color-grey border
                     Bought.append(bought)
                 except:
                     bought = 0
                     Bought.append(bought)
                 sellPrice = item.find('span', class_="text-color-black fw700").get_text(
                 Selling_Price.append(sellPrice)
                 try:
                     marketPrice = item.find('span', class ="text-color-grey strike-through
                     Market Price.append(marketPrice)
                 except:
                     marketPrice = None
                     Market Price.append(marketPrice)
                     rating = item.find('span', class ="text-color-white bg-color-green d
                     Rating.append(rating)
                 except:
                     rating = 0
                     Rating.append(rating)
                 for link in item.find_all('a', href=True):
                     Product links.append(url + link['href'])
                 #print(item)
                 #print(Productlinks)
                 #print(Bought)
```

```
In [5]: len(Brand)
Out[5]: 171
In [6]: #Bought = re.findall('\d+', ' '.join(Bought))
#Bought
```

```
In [7]: #removing None value and extract only Number and clean string"bought"
         Bought
         try:
             while True:
                  Bought[Bought.index(0)] = '0 bought'
         except ValueError:
             pass
         Bought = re.findall('\d+', ' '.join(Bought))
         Bought
          '110',
          '137',
          '121',
          '106',
          '203',
          '106',
          '81',
          '88',
          '682',
          '195',
          '94',
          '66',
          '98',
          '72',
          '1048',
          '931',
          '16',
          '0',
          '23',
          ימי
In [8]: | Selling_Price
Out[8]: ['₹999',
          '₹999',
          '₹999',
          '₹999',
          '₹999',
          '₹999',
          '₹1500',
          '₹999',
          '₹1500',
          '₹999',
          '₹999',
          '₹999',
          '₹999',
          '₹1500',
          '₹999',
          '₹999',
          '₹999',
          '₹999',
          '₹999',
```

```
In [9]: #cleaning preceding term Rs.
          Selling_Price = re.findall('\d+', ' '.join(Selling_Price))
          Selling_Price
 Out[9]: ['999',
           '999',
           '999',
           '999',
           '999',
           '999',
           '1500',
           '999',
           '1500',
           '999',
           '999',
           '999',
           '999',
           '1500',
           '999',
           '999',
           '999',
           '999',
           '999',
In [10]:
          #cleaning preceding term Rs.
          Market_Price = re.findall('\d+', ' '.join(Market_Price))
          Market_Price
          #len(Market_Price)
Out[10]: ['3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
           '3500',
            ו אראאו
```

```
In [11]: Rating
           '4.6',
           '5',
           '4.6',
           '3',
           '4.6',
           '1',
           '4.9',
           '5',
           '5',
           '5 '
           '4 '
           '4.5 ',
           '1',
           '4.5',
           '5',
           '4.6',
          0,
           '4',
           '4.4 '.
In [12]: | Product_links = set(Product_links)
In [26]:
         Name = []
         Product_Id = []
         for link in Product links:
              r = requests.get(link, headers = headers)
              soup = BeautifulSoup(r.content, 'html.parser')
              try:
                  name = soup.find('h1', class_='product-fullName padding-t10').get_text()
                  Name.append(name)
              except:
                  name = None
                  Name.append(name)
                  productId = soup.find('span', class_='color-green').get_text()
                  Product_Id.append(productId)
              except:
                  productId = None
                  Product Id.append(productId)
In [27]: #Name
In [28]: len(Name)
Out[28]: 251
In [29]: #Product_Id
In [30]: len(Product_Id )
Out[30]: 251
```

```
In [31]: Lenskart = {
                  'Brand':Brand,
                  'Name':Name,
                  'Product Id':Product Id,
                  'Selling_Price':Selling_Price,
                  'Market_Price':Market_Price,
                  'Rating':Rating,
                  'Bought':Bought,
          }
In [32]: Lenskart
            'Lenskart Air Computer Glasses',
            'Lenskart Blu',
            'Lenskart Air Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Lenskart Air Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Vincent Chase Computer Glasses',
            'Vincent Chase Computer Glasses',
In [33]: import pandas as pd
```

```
In [34]: df = pd.DataFrame.from_dict(Lenskart, orient = 'index')
    df = df.transpose()
    dfs = df.head(171)
    dfs
```

Out[34]:

	Brand	Name	Product_ld	Selling_Price	Market_Price	Rating	Bought
0	Vincent Chase Computer Glasses	Blue Block Phone & Computer Glasses: Golden Bl	143656	999	3500	4.6	896
1	Vincent Chase Computer Glasses	Blue Block Phone & Computer Glasses: Tortoise	133212	999	3500	4.4	756
2	Lenskart Blu	Blue Block Phone & Computer Glasses: Transpare	138877	999	3500	4.4	1849
3	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Gunmetal	142708	999	3500	4.8	765
4	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Matte Bla	141855	999	3500	4.5	455
166	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Matte Gol	144479	999	3500	5	4
167	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Matte Bla	144473	999	3500	5	3
168	Lenskart Air Computer Glasses	None	None	999	3500	2	3
169	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Matte Gre	144304	999	3500	5	0
170	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Matte Ger	144217	999	3500	4.8	13

171 rows × 7 columns

```
In [35]: dfs.to_csv(r'C:\Users\win\Desktop\Lenskart.csv', index=False)
In [36]: dfs = pd.read_csv('C:\\Users\\win\\Desktop\\Lenskart.csv')
```

In [37]:	dfs									
	0	Vincent Chase Computer Glasses	Blue Block Phone & Computer Glasses: Golden Bl	143656.0	999	3500	4.6	896		
	1	Vincent Chase Computer Glasses	Blue Block Phone & Computer Glasses: Tortoise	133212.0	999	3500	4.4	756		
	2	Lenskart Blu	Blue Block Phone & Computer Glasses: Transpare	138877.0	999	3500	4.4	1849		
	3	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Gunmetal	142708.0	999	3500	4.8	765		
	4	Lenskart Air Computer Glasses	Blue Block Phone & Computer Glasses: Matte Bla	141855.0	999	3500	4.5	455		
									•	

Implementing Multiple Linear Regression on Lenskart Dataset

```
In [71]:
         import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
         from sklearn import linear_model
In [72]: #Extracting useful columns to predict bought item
         x=dfs.iloc[:,[3,4,5]].values
Out[72]: array([[9.990e+02, 3.500e+03, 4.600e+00],
                 [9.990e+02, 3.500e+03, 4.400e+00],
                 [9.990e+02, 3.500e+03, 4.400e+00],
                 [9.990e+02, 3.500e+03, 4.800e+00],
                 [9.990e+02, 3.500e+03, 4.500e+00],
                 [9.990e+02, 3.500e+03, 4.700e+00],
                 [1.500e+03, 3.500e+03, 4.300e+00],
                 [9.990e+02, 3.500e+03, 4.400e+00],
                 [1.500e+03, 3.500e+03, 4.600e+00],
                 [9.990e+02, 3.500e+03, 4.500e+00],
                 [9.990e+02, 3.500e+03, 4.500e+00],
                 [9.990e+02, 3.500e+03, 4.500e+00],
                 [9.990e+02, 3.500e+03, 4.800e+00],
                 [1.500e+03, 3.500e+03, 4.500e+00],
                 [9.990e+02, 3.500e+03, 4.600e+00],
                 [9.990e+02, 3.500e+03, 4.600e+00],
                 [9.990e+02, 3.500e+03, 4.500e+00],
                 [9.990e+02, 3.500e+03, 4.400e+00],
                 [9.990e+02, 3.500e+03, 4.700e+00],
```

```
In [73]: y=dfs.iloc[:,6].values
          У
Out[73]: array([ 896,
                         756, 1849,
                                      765,
                                            455,
                                                   397,
                                                         421,
                                                                887,
                                                                       105,
                                                                             430,
                                                                                    244,
                                            419,
                   301,
                         253,
                               484,
                                      409,
                                                   261,
                                                         205,
                                                                254, 1170,
                                                                             634, 1918,
                         588, 2776,
                                      330,
                                             233,
                                                   147,
                   158,
                                                         169,
                                                                183,
                                                                       189,
                                                                             168,
                                                                                    283,
                                                         153,
                   375,
                         291,
                                664,
                                      491,
                                            174,
                                                   145,
                                                                185,
                                                                       140,
                                                                             139,
                                                                                    114,
                         218,
                                195,
                                                   111,
                   184,
                                      155,
                                            187,
                                                         109,
                                                                110,
                                                                       110,
                                                                             137,
                                                                                    121,
                                                                 94,
                   106,
                         203,
                                106,
                                       81,
                                              88,
                                                   682,
                                                         195,
                                                                        66,
                                                                              98,
                                                                                     72,
                  1048,
                         931,
                                 16,
                                        0,
                                              23,
                                                     0,
                                                           14,
                                                                140,
                                                                        39,
                                                                              84,
                                                                                     13,
                           9,
                                        3,
                                                                              15,
                     2,
                                 31,
                                               2,
                                                                  9,
                                                                         8,
                                                                                      0,
                                                    68,
                                                            8,
                     6,
                           3,
                                  0,
                                                                 47,
                                                                         6,
                                                                              16,
                                                                                     64,
                                        2,
                                               6,
                                                     0,
                                                           11,
                    74,
                         143,
                               151,
                                       82,
                                            199,
                                                    28,
                                                           57,
                                                                 22,
                                                                        16,
                                                                              47,
                                                                                    111,
                                            143,
                                                                        22,
                    44,
                          42,
                                       74,
                                 11,
                                                   151,
                                                           82,
                                                                 74,
                                                                              61,
                                                                                    167,
                    54,
                          11,
                                 64,
                                       77,
                                              64,
                                                    31,
                                                           51,
                                                                 16,
                                                                         5,
                                                                              46,
                                                                                     81,
                    44,
                          21,
                                       39,
                                                    23,
                                                           21,
                                105,
                                               1,
                                                                  0,
                                                                         8,
                                                                               0,
                                                                                      0,
                     0,
                          17,
                                 12,
                                       56,
                                               8,
                                                    32,
                                                            0,
                                                                  0,
                                                                         0,
                                                                               0,
                                                                                      1,
                           4,
                                 7,
                                        4,
                                               3,
                                                     3,
                                                                 13,
                                                                                      4,
                    12,
                                                            0,
                                                                         1,
                                                                              12,
                                  3,
                                        3,
                                                    13], dtype=int64)
                     7,
                           4,
                                               0,
In [76]:
          #split data 25% test data and 75% train data
          from sklearn.model selection import train test split
          x train, x test, y train, y test = train test split(x, y, test size=0.4,
                                                                   random state=1)
In [77]: reg = linear model.LinearRegression()
          reg.fit(x_train, y_train)
Out[77]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [78]: reg.coef
Out[78]: array([-1.40502094e-01, 6.44001059e-03, 2.74521647e+01])
In [79]: | reg.score(x_test, y_test)
Out[79]: -0.013217899546207335
          #predict the Bought of item with our model
In [82]:
          prd = reg.predict([[1000,5000,4]])
          int(prd)
Out[82]: 233
          prd = reg.predict([[1000,5000,0]])
          int(prd)
Out[83]: 123
In [84]:
          prd = reg.predict([[999,3000,4]])
          int(prd)
Out[84]: 220
```


In []: