Planche nº 10. Généralités sur les fonctions. Corrigé

Exercice nº 1

1) f_1 est définie sur \mathbb{R} qui est symétrique par rapport à 0. De plus, pour tout réel x

$$f_1(-x) = 3(-x)^4 - 5(-x)^2 + 1 = 3x^4 - 5x^2 + 1 = f_1(x)$$
.

La fonction f_1 est paire.

2) f_2 est définie sur $\mathbb{R} \setminus \{-1,1\}$ qui est symétrique par rapport à 0. De plus, pour tout x de $\mathbb{R} \setminus \{-1,1\}$

$$f_2(-x) = \frac{(-x)^5 - (-x)}{(-x)^2 - 1} = -\frac{x^5 - x}{x^2 - 1} = -f_2(x).$$

La fonction f_2 est impaire.

- 3) $f_3(-1)$ existe mais $f_3(1)$ n'existe pas. Le domaine de définition de la fontion f_3 n'est pas symétrique par rapport à 0 et donc, la fonction f_3 n'est ni paire, ni impaire.
- 4) Pour tout réel x, $e^x + 1 > 1$, en particulier pour tout réel x, $e^x + 1 \neq 0$. f_4 est définie sur $\mathbb R$ qui est symétrique par rapport à 0. De plus, pour tout x de $\mathbb R$

$$f_4(-x) = \frac{e^{-x} - 1}{e^{-x} + 1} = \frac{\frac{1}{e^x} - 1}{\frac{1}{e^x} + 1} = \frac{1 - e^x}{1 + e^x} = -\frac{e^x - 1}{e^x + 1} = -f_4(x).$$

La fonction f_4 est impaire.

 $\textbf{5)} \ \ \textbf{f}_2 \ \text{est d\'efinie sur} \ \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right) \ \text{qui est sym\'etrique par rapport \'a 0. De plus, pour tout } x \ \text{de} \ \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$

$$f_5(-x) = \cos(-2x) + \tan^2(-x) = \cos(2x) + \tan^2(x) = f_5(x).$$

La fonction f_5 est paire.

6) f_2 est définie sur $\mathbb R$ qui est symétrique par rapport à 0. De plus, pour tout x de $\mathbb R$

$$f_6(-x) = \sin(-x) - (-x) = -(\sin(x) - x) = -f_6(x).$$

La fonction f_6 est impaire.

7) Pour tout réel $x, x^2+1 \geqslant 0$. Donc f_7 est définie sur $\mathbb R$ qui est symétrique par rapport à 0. De plus, pour tout x de $\mathbb R$

$$f_7(-x) = \sqrt{(-x)^2 + 1} = \sqrt{x^2 + 1} = f_7(x).$$

La fonction f_7 est paire.

8) On ne peut pas déterminer le domaine de définition de la fonction f_8 . Mais comme $(-x)^6 - (-x)^4 - 31(-x)^2 + 3 = x^6 - x^4 - 31x^2 + 3$, pour tout réel x, $f_8(-x)$ existe si et seulement si $f_8(x)$ existe. Donc f_8 est définie sur un domaine D qui est symétrique par rapport à 0. De plus, pour tout x de D

$$f_8(-x) = \frac{-x}{(-x)^6 - (-x)^4 - 31(-x)^2 + 3} = -\frac{x}{x^6 - x^4 - 31x^2 + 3} = -f_8(x).$$

La fonction f_8 est impaire.

9) $f_9(0) = 1 \neq 0$ et donc f_9 n'est pas impaire. $f_9\left(-\frac{\pi}{2}\right) = -1 \neq 1 = f_9\left(\frac{\pi}{2}\right)$. Donc, f_9 n'est pas paire. La fonction f_9 n'est ni paire, ni impaire.

Exercice nº 2

Soit f une application de \mathbb{R} dans \mathbb{R} .

Unicité. Supposons qu'il existe deux fonctions g et h telles que g est paire, h est impaire et f = g + h. Nécessairement pour tout réel x,

$$\begin{cases} f(x) = g(x) + h(x) \\ f(-x) = g(x) - h(x) \end{cases}.$$

En additionnant et en retranchant membre à membre ces deux égalités, on obtient pour tout réel x

$$g(x) = \frac{1}{2}(f(x) + f(-x))$$
 et $h(x) = \frac{1}{2}(f(x) - f(-x))$.

Ceci montre l'unicité d'un couple (g, h) tel que g est paire, h est impaire et f = g + h.

Existence. Réciproquement, posons pour tout réel x

$$g(x) = \frac{1}{2}(f(x) + f(-x))$$
 et $h(x) = \frac{1}{2}(f(x) - f(-x))$.

- $\bullet \text{ Pour tout r\'eel } x, \ g(x) + h(x) = \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) f(-x)) = f(x) \text{ et donc } f = g + h.$
- Pour tout réel x, $g(-x) = \frac{1}{2}(f(-x) + f(x)) = g(x)$ et donc la fonction g est paire. Pour tout réel x, $h(-x) = \frac{1}{2}(f(-x) f(x)) = -\frac{1}{2}(f(x) f(-x)) = -h(x)$ et donc la fonction h est impaire.

Ainsi, les fonctions g et h conviennent ce qui montre l'existence d'un couple (g,h) tel que g est paire, h est impaire et f = g + h.

Exercice nº 3

Soit n un entier naturel. Supposons que f est n fois dérivable sur \mathbb{R} . Pour tout réel x, posons g(x) = f(-x). Alors g est n fois dérivable sur \mathbb{R} et pour tout réel x,

$$g^{(n)}(-x) = (-1)^n f^{(n)}(-x).$$

Si de plus f est paire, alors g=f et donc pour tout réel x, $f^{(n)}(x)=(-1)^nf^{(n)}(-x)$ ou encore

pour tout réel x,
$$f^{(n)}(-x) = (-1)^n f^{(n)}(x)$$
.

Si n est un entier pair, posons n=2p où p est un entier. L'égalité précédente s'écrit

pour tout réel x,
$$f^{(2p)}(-x) = f^{(2p)}(x)$$

et donc $f^{(2p)}$ est paire. Ainsi, les fonctions $f, f'', f^{(4)}, f^{(6)}$... sont paires.

Si n est un entier impair, posons n=2p+1 où p est un entier. L'égalité précédente s'écrit

pour tout réel x,
$$f^{(2p+1)}(-x) = -f^{(2p+1)}(x)$$

et donc $f^{(2p+1)}$ est impaire. Ainsi, les fonctions f', $f^{(3)}$, $f^{(5)}$... sont impaires. On résume ces résultats en disant que

Si f est impaire, alors f' est paire et on peut lui appliquer les résultats précédents. Donc,

si f est impaire,
$$f^{(n)}$$
 a la parité contraire de celle de n .

Une primitive de fonction impaire est automatiquement une fonction paire. Démontrons-le.

Soit f une fonction continue sur \mathbb{R} et impaire. Soit F une primitive de f. Pour tout réel x, posons G(x) = F(x) - F(-x). G est dérivable sur \mathbb{R} et pour tout réel x

$$G'(x) = F'(x) + F'(-x) = f(x) + f(-x) = 0.$$

Donc, la fonction G est constante sur \mathbb{R} puis, pour tout réel x.

$$G(x) = G(0) = F(0) - F(0) = 0.$$

On en déduit que pour tout réel x, F(-x) = F(x) et donc que F est paire.

Le résultat analogue est faux si on suppose que f est paire car une fonction constante est paire. Voici une succession de primitives pour exemple:

$$x \mapsto 1$$
, $x \mapsto x + 4$, $x \mapsto \frac{x^2}{2} + 4x - 5$, $x \mapsto \frac{x^3}{6} + 2x^2 - \frac{5}{2}x + 1$...

Exercice nº 4

1) La fonction f est définie sur \mathbb{R} qui est symétrique par rapport à $\frac{3}{2}$. De plus, pour tout réel x,

$$f(3-x) = (3-x)^2 - 3(3-x) + 2 = x^2 - 3x + 2 = f(x).$$

Donc, la droite d'équation $x = \frac{3}{2}$ est un axe de symétrie du graphe dans un repère orthonormé de la fonction f.

2) La fonction f est définie sur $\mathbb{R} \setminus \{1\}$ qui est symétrique par rapport à 1. De plus, pour tout réel x de $\mathbb{R} \setminus \{1\}$

$$f\left(2x_{I}-x\right)+f(x)=\frac{2(2-x)+1}{(2-x)-1}+\frac{2x+1}{x-1}=\frac{2x-5}{x-1}+\frac{2x+1}{x-1}=\frac{4x-4}{x-1}=\frac{4(x-1)}{x-1}=4=2y_{I}.$$

Donc, le point I de coordonnées (1,2) est centre de symétrie du graphe de la fonction f.

3) La fonction f est définie sur $\mathbb R$ qui est symétrique par rapport à 0. De plus, pour tout réel x,

$$f(2x_{I}-x)+f(x)=\frac{e^{-x}}{e^{-x}+1}+\frac{e^{x}}{e^{x}+1}=\frac{\frac{1}{e^{x}}}{\frac{1}{e^{x}}+1}+\frac{e^{x}}{e^{x}+1}=\frac{1}{e^{x}+1}+\frac{e^{x}}{e^{x}+1}=\frac{e^{x}+1}{e^{x}+1}=1=2y_{I}.$$

Donc, le point I de coordonnées $\left(0,\frac{1}{2}\right)$ est centre de symétrie du graphe de la fonction f.

4) • La fonction f est paire et donc l'axe des ordonnées est un axe de symétrie du graphe de f. Plus généralement, pour tout entier relatif k et pour tout réel x,

$$f(2k\pi - x) = \cos(2k\pi - x) + \cos(6k\pi - 3x) = \cos(-x) + \cos(-3x) = \cos(x) + \cos(3x) = f(x).$$

On en déduit que pour tout entier relatif k, la droite d'équation $x = k\pi$ est un axe de symétrie du graphe de f.

• Pour tout réel x,

$$f(\pi - x) = \cos(\pi - x) + \cos(3\pi - 3x) = \cos(\pi - x) + \cos(\pi - 3x) = -\cos(x) - \cos(3x) = -f(x),$$

et donc pour tout réel x, $f(\pi-x)+f(x)=0$. On en déduit que le point de coordonnées $\left(\frac{\pi}{2},0\right)$ est un centre de symétrie du graphe de f. Plus généralement, pour tout entier relatif k, le point de coordonnées $\left(\frac{\pi}{2}+2k\pi,0\right)$ est un centre de symétrie du graphe de f.

Exercice nº 5

Chacune des fonctions considérées est définie sur \mathbb{R} .

- 1) Pour tout réel x, $f_1(x+1) = \lfloor x+1 \rfloor (x+1) = E(x) + 1 x 1 = \lfloor x \rfloor x = f_1(x)$ et donc la fonction f_1 est 1-périodique. Plus généralement, pour tout entier relatif k, f_1 est k-périodique.
- 2) Pour tout réel x, $f_2\left(x+\frac{1}{2}\right)=\lfloor 2x+1\rfloor-(2x+1)=\lfloor 2x\rfloor-2x=f_2(x)$ et donc la fonction f_2 est $\frac{1}{2}$ -périodique. Plus généralement, pour tout entier relatif k, f_2 est $\frac{k}{2}$ -périodique.
- 3) Pour tout réel x, $f_3(x + \pi) = \cos(2x + 2\pi) \sin(4x + 4\pi) = \cos(2x) \sin(4x) = f_3(x)$ et donc la fonction f_3 est π -périodique. Plus généralement, pour tout entier relatif k, f_3 est $k\pi$ -périodique.
- 4) Pour tout réel x, $f_4\left(x+\frac{\pi}{2}\right)=\cos(4x+2\pi)=\cos(4x)=f_4(x)$ et donc la fonction f_4 est $\frac{\pi}{2}$ -périodique. Plus généralement, pour tout entier relatif k, f_4 est $\frac{k\pi}{2}$ -périodique.
- 5) Pour tout réel x, $f_5\left(x+\frac{4\pi}{3}\right)=\cos\left(\frac{3x}{2}+2\pi\right)=\cos\left(\frac{3x}{2}\right)=f_5(x)$ et donc la fonction f_5 est $\frac{4\pi}{3}$ -périodique. Plus généralement, pour tout entier relatif k, f_5 est $\frac{4k\pi}{3}$ -périodique.
- 6) Pour tout réel x, $f_6(x+3\pi) = \cos\left(\frac{2x}{3}+2\pi\right) = \cos\left(\frac{2x}{3}\right) = f_6(x)$ et donc la fonction f_6 est 3π -périodique. Plus généralement, pour tout entier relatif k, f_6 est $3k\pi$ -périodique.

Exercice nº 6

Pour tout réel x, $x^2 + 1 > 1$ et en particulier, pour tout réel x, $x^2 + 1 \neq 0$. Donc, les deux fonctions sont définies sur \mathbb{R} .

1) Pour tout réel x,

$$0 \leqslant \frac{x^2}{x^2 + 1} \leqslant \frac{x^2 + 1}{x^2 + 1} = 1.$$

Donc, pour tout réel $x,\,0\leqslant f(x)\leqslant 1.$ La fonction $f\ :\ x\mapsto \frac{x^2}{x^2+1}$ est bornée sur $\mathbb R.$

2) Pour tout réel x,

$$(|x|-1)^2 \geqslant 0 \Rightarrow x^2 - 2|x| + 1 \geqslant 0 \Rightarrow x^2 + 1 \geqslant 2|x| \Rightarrow \frac{1}{2} \geqslant \frac{|x|}{x^2 + 1}$$
$$\Rightarrow \left| \frac{x}{x^2 + 1} \right| \leqslant \frac{1}{2} \Rightarrow -\frac{1}{2} \leqslant f(x) \leqslant \frac{1}{2}.$$

Donc, pour tout réel $x, -\frac{1}{2} \le f(x) \le \frac{1}{2}$. La fonction $f: x \mapsto \frac{x}{x^2 + 1}$ est bornée sur \mathbb{R} .

Exercice nº 7

1) Pour tout réel x, f(x)=k(h(g(x))) où $g:x\mapsto x+1,\,h:y\mapsto y^2$ et $k:z\mapsto -z+1.$

La fonction g est strictement croissante sur $[-1, +\infty[$ à valeurs dans $[0, +\infty[$, la fonction h est strictement croissante sur $[0, +\infty[$ à valeurs dans $\mathbb R$ et la fonction k est strictement décroissante sur $\mathbb R$. Donc la fonction $f = k \circ h \circ g$ est strictement décroissante sur $[-1, +\infty[$.

La fonction g est strictement croissante sur $]-\infty,-1]$ à valeurs dans $]-\infty,0]$, la fonction h est strictement décroissante sur $]-\infty,0]$ à valeurs dans $\mathbb R$ et la fonction k est strictement décroissante sur $\mathbb R$. Donc la fonction $f=k\circ h\circ g$ est strictement croissante sur $]-\infty,-1]$.

2) Pour tout réel x, f(x) = k(h(g(x))) où $g: x \mapsto 2x + 1$, $h: y \mapsto \frac{1}{y}$ et $k: z \mapsto 3 - 5z$.

La fonction g est strictement croissante sur $\left]-\infty,\frac{1}{2}\right[$ à valeurs dans $]-\infty,0[$, la fonction h est strictement décroissante sur $]-\infty,0[$ à valeurs dans $\mathbb R$ et la fonction k est strictement décroissante sur $\mathbb R$. Donc la fonction $f=k\circ h\circ g$ est strictement croissante sur $]-\infty,\frac{1}{2}\left[$.

- 3) La fonction $x \mapsto 1 + e^x$ est strictement croissante sur \mathbb{R} , à valeurs dans $]0, +\infty[$ et la fonction $X \mapsto \ln X$ est strictement croissante sur $]0, +\infty[$. Donc, $x \mapsto \ln (1 + e^x)$ est strictement croissante sur $]\mathbb{R}$.
- 4) La fonction $x\mapsto \exp\left(1-\frac{1}{\ln^2|x|+1}\right)$ est définie sur \mathbb{R}^* et paire.

La fonction $x \mapsto \ln x$ est croissante et négative sur]0,1]. Donc, la fonction $x \mapsto 1 + \ln^2 x$ est décroissante et strictement positive sur]0,1]. Par suite, la fonction $x \mapsto 1 - \frac{1}{\ln^2 x + 1}$ est décroissante sur]0,1] et enfin, la fonction $x \mapsto \exp\left(1 - \frac{1}{\ln^2 |x| + 1}\right)$ est décroissante sur]0,1]. De même, la fonction $x \mapsto \exp\left(1 - \frac{1}{\ln^2 |x| + 1}\right)$ est croissante sur $[1,+\infty[$. Par parité, la fonction $x \mapsto \exp\left(1 - \frac{1}{\ln^2 |x| + 1}\right)$ est décroissante sur $]-\infty,-1]$ et croissante sur [-1,0[.

- 5) Soient x et x' deux réels tels que $x \le x'$. Alors, pour tout réel t de l'intervalle [x, x'], $\frac{1}{1+t^2} \ge 0$ et donc, $f_5(x') f_5(x) = \int_x^{x'} \frac{1}{1+t^2} dt \ge 0$ (par positivité de l'intégrale et car $x' \ge x$). f_5 est croissante sur \mathbb{R} .
- 6) Soient x et x' deux réels tels que $x \le x'$. Alors, pour tout réel t de l'intervalle [0,1], on a $xt \le x't$, puis pour tout réel t de [0,1], $e^{xt} \le e^{x't}$. Par croissance de l'intégrale, on a alors $f_6(x) \le f_6(x')$. f_6 est croissante sur \mathbb{R} .

Exercice nº 8

1) La fonction $x \mapsto \sin x$ est strictement croissante sur $\left[0, \frac{\pi}{4}\right]$. La fonction $x \mapsto \cos x$ est strictement décroissante sur $\left[0, \frac{\pi}{4}\right]$ et donc la fonction $x \mapsto -\cos x$ est strictement croissante sur $\left[0, \frac{\pi}{4}\right]$. f_1 est strictement croissante sur $\left[0, \frac{\pi}{4}\right]$ en tant que somme de deux fonctions strictement croissantes sur $\left[0, \frac{\pi}{4}\right]$.

- 2) Les deux fonctions $x \mapsto x$ et $x \mapsto \ln x$ sont croissantes et positives sur $[1, +\infty[$. Donc, f_2 est croissante sur $[1, +\infty[$ en tant que produit de fonctions croissantes et positives sur $[1, +\infty[$.
- 3) f_3 est paire. $x \mapsto \frac{\pi}{2(x^2+1)}$ est décroissante sur \mathbb{R}^+ à valeurs dans $\left[0,\frac{\pi}{2}\right]$ et la fonction $X \mapsto \cos X$ est décroissante sur $\left[0,\frac{\pi}{2}\right]$. Donc, la fonction $x \mapsto \cos \left(\frac{\pi}{2(x^2+1)}\right)$ est croissante sur \mathbb{R}^+ , et de plus positive sur \mathbb{R}^+ . f_3 est croissante sur \mathbb{R}^+ en tant que produit de fonctions croissantes et positives sur \mathbb{R}^+ . Par parité, f_3 est décroissante sur \mathbb{R}^- .
- 4) $\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = 2 \times (-1) 1 \times (3) = -5 < 0$. Donc, f_4 est strictement décroissante sur $]-\infty, 1[$ et strictement décroissante sur $]1, +\infty[$.
- 5) f_5 est paire. La fonction $x \mapsto x^4$ est croissante sur \mathbb{R}^+ à valeurs dans \mathbb{R}^+ . Puisque $1 \times 1 1 \times (-1) = 2 > 0$, la fonction $X \mapsto \frac{X-1}{X+1}$ est croissante sur $]-1,+\infty[$ et en particulier sur \mathbb{R}^+ . f_5 est croissante sur \mathbb{R}^+ . Par parité, f_5 est décroissante sur \mathbb{R}^- .
- 6) Les fonctions $x \mapsto -x^7$ et $x \mapsto x^4 + x^2 + 3$ sont strictement décroissantes sur $]-\infty,0]$. Donc, f_6 est strictement décroissante sur $]-\infty,0]$ en tant que somme de fonctions strictement décroissantes sur $]-\infty,0]$.

Exercice nº 9

- 1) Si $1 \le x \le 2$, $3 \le 2x + 1 \le 5$ et $0 < 7 \le 4x + 3 \le 11$. Par suite, $0 < 3 \le 2x + 1 \le 5$ et $0 < \frac{1}{11} \le \frac{1}{4x + 3} \le \frac{1}{7}$, puis $\frac{3}{11} \le \frac{2x + 1}{4x + 3} \le \frac{5}{7}$.
- 2) $\frac{2x+1}{4x+3} = \frac{3}{11} \Leftrightarrow 11(2x+1) = 3(4x+3) \Leftrightarrow 10x = -2 \Leftrightarrow x = -\frac{1}{5}$. La solution obtenue n'est pas dans l'intervalle [1,2], ou encore l'équation $\frac{2x+1}{4x+3} = \frac{3}{11}$ n'a pas de solution dans l'intervalle [1,2]. Ceci signifie que l'encadrement fourni au 1) est trop large et peut donc sûrement être amélioré.
- 3) Puisque $2 \times 3 1 \times 4 = 2 > 0$, la fonction $f: x \mapsto \frac{2x+1}{4x+3}$ est croissante sur [1,2]. Par suite, si $x \in [1,2]$,

$$\frac{3}{7} = f(1) \leqslant \frac{2x+1}{4x+3} = f(x) \leqslant f(2) = \frac{5}{11}$$
.

Exercice nº 10

- 1) f_1 est décroissante sur [-1,0] et croissante sur [0,2]. f_1 admet donc un minimum égal à $f_1(0)=0$ et un maximum égal à $\operatorname{Max}\{f_1(-1),f_1(2)\}=4$. Pour $x\in[-1,2],\,0\leqslant x^2\leqslant 4$.
- 2) Pour $x \in [0,4], x^2 3x + 2 = \left(x \frac{3}{2}\right)^2 \frac{1}{4}$. Donc, pour $x \in [0,4], = -\frac{1}{4} = f_2\left(\frac{3}{2}\right) \leqslant f_2(x) \leqslant f_2(4) = 6$.
- 3) f_3 est décroissante sur [-2,-1]. Donc, pour $x \in [-2,-1]$, $f_2(-1) \leqslant f_2(x) \leqslant f_2(-2)$, ou encore $-1 \leqslant \frac{1}{x} \leqslant -\frac{1}{2}$.
- 4) f_4 est paire, décroissante sur]0,1]. f_4 n'est pas majorée sur]0,1] et admet un minimum égal à $f_4(1)=1$. Pour $x\in [-1,1]\setminus\{0\}, \frac{1}{x^2}\geqslant 1$.
- 5) f_5 est décroissante sur $\left[\frac{\pi}{4}, \pi\right]$. Pour $x \in \left[\frac{\pi}{4}, \pi\right]$, $-1 = \cos \pi \leqslant \cos x \leqslant \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.
- 6) f_6 est dérivable sur [0,4] (car $-\frac{2}{13} \notin [0,4]$) et pour $x \in [0,4]$, $f_6'(x) = \frac{5 \times 2 13 \times 1}{(13x + 2)^2} = -\frac{3}{(13x + 2)^2} < 0$. f_6 est donc décroissante sur [0,4] et pour $x \in [0,4]$, $\frac{7}{18} = f_6(4) \leqslant f_6(x) = \frac{5x + 1}{13x + 2} \leqslant f_6(0) = \frac{1}{2}$.
- 7) Pour $x \neq \frac{9}{2}$, posons $f_7(x) = \frac{2x+3}{2x-9}$. Puisque $2 \times (-9) 3 \times 2 < 0$, f_7 est décroissante sur $\left[0, \frac{9}{2}\right]$ et aussi sur $\left[\frac{9}{2}, +\infty\right]$. Par suite, pour $n \geqslant 5$, $1 = \lim_{p \to +\infty} \frac{2p+3}{2p-9} \leqslant \frac{2n+3}{2n-9} = f_7(n) \leqslant \frac{2 \times 5 + 3}{2 \times 5 9} = 13$ et pour $0 \leqslant n \leqslant 4$, $-11 = \frac{2 \times 4 + 3}{2 \times 4 9} \leqslant \frac{2n+3}{2n-9} \leqslant \frac{2 \times 0 + 3}{2 \times 0 9} = -\frac{1}{3}$. La plus petite valeur de $\frac{2n+3}{2n-9}$ est -11 (obtenue pour n=4) et la plus grande valeur de $\frac{2n+3}{2n-9}$ est -13 (obtenue pour n=5).

 $8) \text{ Pour } n \in \mathbb{N}, \ \frac{4n+1}{3n+7} = \frac{\frac{4}{3}(3n+7) - \frac{28}{3} + 1}{3n+7} = \frac{4}{3} - \frac{25}{9\left(n+\frac{7}{3}\right)}. \text{ La suite } \left(\frac{4n+1}{3n+7}\right)_{n \in \mathbb{N}} \text{ est donc croissante. On en déduit que pour tout entier naturel } n, \ \frac{1}{7} = u_0 \leqslant \frac{4n+1}{3n+7} < \lim_{p \to +\infty} u_p = \frac{4}{3}.$

Exercice nº 11

- 1) Soit $x \in [1,3]$. $(2x^2 5x + 3) (3x 3) = 2x^2 8x + 6 = 2(x^2 4x + 3) = 2(x 1)(x 3) \le 0$. Donc, pour $x \in [1,3]$, $2x^2 5x + 3 \le 3x 3$.
- 2) Pour $x \ge 1$, $\frac{2x^2 7x + 1}{x + 3} \le \frac{2x^2 + 7x + 1}{x + 3} \le \frac{2x^2 + 7x^2 + x^2}{x} = 10x$.
- 3) Pour tout réel x, $x^2 x + 1 = \left(x \frac{1}{2}\right)^2 + \frac{3}{4} > 0$ et donc $\sqrt{x^2 x + 1}$ existe pour tout réel x. De plus, pour tout réel x, $\sqrt{x^2 x + 1} > 0$.

Pour $x \le 0$, $\sqrt{x^2 - x + 1} - x > 0$ et donc $\sqrt{x^2 - x + 1} + x$ a le même signe que

$$\left(\sqrt{x^2 - x + 1} + x\right)\left(\sqrt{x^2 - x + 1} - x\right) = -x + 1 \geqslant 0.$$

Ainsi, pour tout réel $x \le 0$, $\sqrt{x^2 - x + 1} + x \ge 0$ et donc pour tout réel $x \le 0$, $\sqrt{x^2 - x + 1} \ge -x$.

Exercice nº 12

Pour tout réel x, $x^2 + 1 \ge 0$ et donc, pour tout réel x, $\sqrt{x^2 + 1}$ existe. Ensuite, pour tout réel x,

$$\sqrt{x^2+1} > \sqrt{x^2} = |x|.$$

Par suite, pour tout réel x, $\sqrt{x^2+1} > |x| \ge x$ et donc $\sqrt{x^2+1}-x>0$ et aussi, pour tout réel x, $\sqrt{x^2+1} > |x| \ge -x$ et donc $\sqrt{x^2+1}+x>0$.

Exercice nº 13

1) Pour $x \ge 0$, posons $f(x) = \sin x - x$. f est dérivable sur $[0, +\infty[$ et pour $x \ge 0$, on a $f'(x) = \cos x - 1 \le 0$. f est donc décroissante sur $[0, +\infty[$. Mais f(0) = 0 et donc, f est négative sur $[0, +\infty[$ ce qui démontre l'inégalité de l'énoncé.

Commentaire. La démonstration précédente ne tient pas debout car la formule $(\sin)' = \cos$ a été établie en sachant que pour $x \in \left[0, \frac{\pi}{2}\right]$, on a $\sin(x) \le x$. Néanmoins, c'est ce qui est attendu dans la pratique (et il se trouve qu'on est capable de démontrer que $(\sin)' = \cos$ sans utiliser l'inégalité $\sin(x) \le x$).

- 2) Pour $x \in \mathbb{R}$, posons $f(x) = e^x 1 x$. f est dérivable sur \mathbb{R} et pour $x \in \mathbb{R}$, on a $f'(x) = e^x 1$. f' est négative sur \mathbb{R}^- et positive sur \mathbb{R}^+ . f admet donc un minimum en 0 égal à f(0) = 0. f est négative sur \mathbb{R} ce qui démontre l'inégalité de l'énoncé.
- 3) Pour x > -1, posons $f(x) = \ln(1+x) x$. f est dérivable sur $]-1, +\infty[$ et pour x > -1, on a $f'(x) = \frac{1}{1+x} 1 = -\frac{x}{1+x}$. f' est positive sur]-1, 0] et négative sur \mathbb{R}^+ . f admet donc un maximum en 0 égal à f(0) = 0. On en déduit que f est négative sur $]-1, +\infty[$ ce qui démontre l'inégalité de l'énoncé.