Southwest Social Networks

Nick Gauthier

Data import

First import the SWSN attribute file. Use tidyverse packages for data munging.

Site coordinates are in UTM, so first use rgdal to reproject to LatLon.

```
library(tidyverse)
library(rgdal)

swsn.pts <- read_csv('Data/attributes_orig.csv') %>%
  select(easting = EASTING, northing = NORTHING) %>%
  SpatialPoints(proj4string=CRS("+proj=utm +zone=12 +datum=WGS84")) %>%
  spTransform(CRS("+proj=longlat +datum=WGS84")) %>%
  coordinates %>%
  data.frame
```

Now reimport the attribute file, select the relevant data, and combine with the reprojected site coordinates.

```
swsn.attr <- read_csv('Data/attributes_orig.csv') %>%
select(ID = SWSN_ID, site = SWSN_Site, macro = Macro, micro = Micro) %>%
cbind(swsn.pts)
```

Now define a function to import the SWSN adjacency matrix for a given time step. This function imports the adjacency matrix, keeps only those connections with $\geq 75\%$ similarity, and creates an igraph object. Then it adds attribute data from above to the graph object.

```
library(igraph)

readSWSN <- function(net){
  net.in <- read.csv(net, row.names = 1, check.names = F)
  net.in[net.in < .75] <- 0
  net.in <- net.in %>%
      as.matrix %>%
      graph_from_adjacency_matrix(mode = 'undirected', weighted = T, diag = F)

ord <- match(V(net.in)$name, swsn.attr$site)

V(net.in)$lon <- swsn.attr[ord, 5]
  V(net.in)$lat <- swsn.attr[ord, 6]
  V(net.in)$region <- swsn.attr[ord, 3] %>% as.character

return(net.in)
}
```

Use the function to import the network datasets.

```
ad1200 <- readSWSN('Data/AD1200sim.csv')
ad1250 <- readSWSN('Data/AD1250sim.csv')
ad1300 <- readSWSN('Data/AD1300sim.csv')
ad1350 <- readSWSN('Data/AD1350sim.csv')
ad1400 <- readSWSN('Data/AD1400sim.csv')
```

Plotting

First get a terrain basemap to plot the networks over. The terrain-background basemap from Stamen is a nice choice. Download this map and store a ggmap plot of it.

```
library(ggmap)
terrain.background <- get_map(location = c(left = -113.5, right = -106.5, bottom = 31, top = 37.5),
    zoom = 8,
    color = "color",
    source = "stamen",
    maptype = "terrain-background")

map <- ggmap(terrain.background) +
    labs(x = "Longitude", y = "Latitude")</pre>
```

Now plot the networks.

More Minimal network maps

Checking rgeos availability: TRUE

```
library(GGally)
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
##
       nasa
library(ggmap)
## Google Maps API Terms of Service: http://developers.google.com/maps/terms.
## Please cite ggmap if you use it: see citation("ggmap") for details.
library(maps)
##
## Attaching package: 'maps'
## The following object is masked from 'package:purrr':
##
##
       map
library(raster)
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
##
##
       select
## The following object is masked from 'package:tidyr':
##
       extract
library(maptools)
```

```
states <- map('state', regions = c('arizona', 'new mexico'), fill = T, plot = F)
IDs <- sapply(strsplit(states$names, ":"), function(x) x[1])</pre>
states.ply <- map2SpatialPolygons(states, IDs=IDs)</pre>
base <- ggplot(data = states) +</pre>
  geom_polygon(aes(x = long, y = lat, group = region), color = 'black', fill = 'white') +
  coord quickmap() +
  theme minimal() +
  labs(x = "Longitude", y = "Latitude")
n1 <- ggnetworkmap(base, ad1200, great.circles = T, size = .5, segment.alpha = I(.5)) +
  geom_label(x = -106, y = 35, label = 'AD 1200')
## Loading required package: network
## network: Classes for Relational Data
## Version 1.13.0 created on 2015-08-31.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
                       Mark S. Handcock, University of California -- Los Angeles
##
##
                       David R. Hunter, Penn State University
##
                       Martina Morris, University of Washington
##
                       Skye Bender-deMoll, University of Washington
## For citation information, type citation("network").
   Type help("network-package") to get started.
##
##
## Attaching package: 'network'
## The following objects are masked from 'package:igraph':
##
##
       add.edges, add.vertices, %c%, delete.edges, delete.vertices,
##
       get.edge.attribute, get.edges, get.vertex.attribute,
##
       is.bipartite, is.directed, list.edge.attributes,
##
       list.vertex.attributes, %s%, set.edge.attribute,
##
       set.vertex.attribute
## Loading required package: sna
## Loading required package: statnet.common
## sna: Tools for Social Network Analysis
## Version 2.4 created on 2016-07-23.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
## For citation information, type citation("sna").
## Type help(package="sna") to get started.
##
## Attaching package: 'sna'
## The following objects are masked from 'package:igraph':
##
##
       betweenness, bonpow, closeness, components, degree,
##
       dyad.census, evcent, hierarchy, is.connected, neighborhood,
       triad.census
## Loading required package: geosphere
```

```
n2 <- ggnetworkmap(base, ad1250, great.circles = T, size = .5, segment.alpha = I(.5)) +
  geom_label(x = -106, y = 35, label = 'AD 1250')
n3 <- ggnetworkmap(base, ad1300, great.circles = T, size = .5, segment.alpha = I(.5)) +
  geom_label(x = -106, y = 35, label = 'AD 1300')
n4 <- ggnetworkmap(base, ad1350, great.circles = T, size = .5, segment.alpha = I(.5)) +
  geom label(x = -106, y = 35, label = 'AD 1350')
n5 <- ggnetworkmap(base, ad1400, great.circles = T, size = .5, segment.alpha = I(.5)) +
  geom_label(x = -106, y = 35, label = 'AD 1400')
plotEOF <- function(x){</pre>
  rasterVis::gplot(x) +
  geom_raster(aes(fill = value), na.rm = T, show.legend = F) +
  scale_fill_distiller(palette = 'RdBu', na.value = NA) +
  geom_polygon(data = states, aes(x = long, y = lat, group = region), color = 'black', fill = NA) +
  coord_quickmap() +
  theme_minimal() +
  labs(x = "Longitude", y = "Latitude")
eof1200 <- brick('Data/eof1200.nc')[[3]] %>%
  mask(states.ply) %>%
 plotEOF
## Loading required namespace: ncdf4
e1 <- ggnetworkmap(eof1200, ad1200, great.circles = T, size = .5, segment.alpha = I(.5)) #+ geom label(
eof1250 <- brick('Data/eof1250.nc')[[3]] %>%
  mask(states.ply) %>%
    plotEOF
e2 <- ggnetworkmap(eof1250, ad1250, great.circles = T, size = .5, segment.alpha = I(.5)) #+ qeom_label
eof1300 <- brick('Data/eof1300.nc')[[3]] %>%
  mask(states.ply) %>%
    plotEOF
e3 <- ggnetworkmap(eof1300, ad1300, great.circles = T, size = .5, segment.alpha = I(.5))# + geom_label(
eof1350 <- brick('Data/eof1350.nc')[[3]] %>%
  mask(states.ply) %>%
    plotEOF
e4 <- ggnetworkmap(eof1350, ad1350, great.circles = T, size = .5, segment.alpha = I(.5)) #+ geom_label(
eof1400 <- brick('Data/eof1400.nc')[[3]] %>%
  mask(states.ply) %>%
    plotEOF
```

```
e5 <- ggnetworkmap(eof1400, ad1400, great.circles = T, size = .5, segment.alpha = I(.5)) #+ geom_label(
```

Get basemap for elevation.

```
#multiplot(n1, n2, n3, n4, layout = matrix(c(1,2,3,4), byrow = T, nrow = 2))
multiplot(e1, e2, e3, e4, layout = matrix(c(1,2,3,4), byrow = T, nrow = 2))
```


#multiplot(n1, n2, n3, n4, n5, m1, layout = matrix(c(1,2,3,4,5,6), byrow = T, nrow = 3))#multiplot(e1, e2, e3, e4, e5, layout = matrix(c(1,2,3,4,5,6), byrow = T, nrow = 3))

eof1200 <- brick('Data/eof1200.nc')[[4]] %>% mask(states.ply) %>% plotEOF

e1 <- ggnetworkmap(eof1200, ad1200, great.circles = T, size = .5, segment.alpha = I(.5)) + geom_label(x = -106, y = 35, label = 'AD 1200')

eof
1250 <- brick('Data/eof1250.nc')[[4]] %>% mask(states.ply) %>% plotEOF

e2 <- ggnetworkmap(eof1250, ad1250, great.circles = T, size = .5, segment.alpha = I(.5)) + geom_label(x = -106, y = 35, label = 'AD 1250')

eof1300 <- brick('Data/eof1300.nc')[[4]] %>% mask(states.ply) %>% plotEOF

e3 <- ggnetworkmap(eof1300, ad1300, great.circles = T, size = .5, segment.alpha = I(.5)) + geom_label(x = -106, y = 35, label = 'AD 1300')

eof1350 <- brick('Data/eof1350.nc')[[4]] %>% mask(states.ply) %>% plotEOF

 $\operatorname{multiplot}(e1, e2, e3, e4, \operatorname{layout} = \operatorname{matrix}(c(1,2,3,4), \operatorname{byrow} = T, \operatorname{nrow} = 2))$