WEBINAIRE

GESTION DE LA CONFIGURATION ET DES RÉSULTATS AVEC MLFLOW, HYDRA ET POUTYNE

30 OCTOBRE 2020

OBJECTIFS DE LA PRÉSENTATION

- Initier aux outils de gestion de l'entrainement, de la configuration et des résultats.
- Développer de bonnes pratiques.
- Améliorer votre productivité.

VOTRE CONFÉRENCIER

DAVID BEAUCHEMINCandidat au doctorat
Département d'informatique et de génie logiciel

- Introduit à la recherche reproductible en 2016 (R Markdown et git)
- Participation à REPROLANG de la conférence LREC [Garneau et al., 2020]
- Membre actif dans le développement d'une librairie facilitant la reproductibilité (Poutyne

 *)

AU MENU

Gestion de la configuration

Gestion des résultats

La gestion d'un projet

```
@experiment.config
def config():
 seed = 42
 num runs = 10
 iteration = 0
 source_language = "en"
 target language = "de"
  src_input = "path" # The input source embeddings
 trg input = "2e path" # The input target embeddings
  other input = "3e path" # Commentaire pas clair
  (ligne 500) ne paramètre
```

Quel paramètre fait ça déjà?

Quel paramètre fait ça déjà?

Quels paramètres sont nécessairement ensemble?

Quel paramètre fait ça déjà? Quels paramètres sont nécessairement ensemble?

Sont-ils tous essentiels?

Quel paramètre fait ça déjà?

Quels paramètres sont nécessairement ensemble?

Sont-ils tous essentiels?

Comment doit-on se retrouver dans le projet?

```
res_1.txt
res_2.txt
res_3.txt
res_4.txt
res_5_good.txt
res_5.txt
res_6_fix_a.txt
_ne fichier de résultats
```

Quelle configuration déjà avec ces résultats?

Quelle configuration Est-ce un succès ou déjà avec ces un échec cet résultats? entrainement?

résultats?

Quelle configuration Est-ce un succès ou déjà avec ces un échec cet entrainement?

Lequel contient mes meilleurs résultats?

déjà avec ces résultats?

Quelle configuration Est-ce un succès ou un échec cet entrainement?

Leguel contient mes meilleurs résultats? Comment doit-on se retrouver dans les résultats?

AU MENU

Gestion de la configuration

Gestion des résultats

GESTION DE LA CONFIGURATION

Simple et efficace

GESTION DE LA CONFIGURATION

Simple et efficace

Facilite l'expérimentation

GESTION DE LA CONFIGURATION

Extensible

HYDRA ☑*

Open source et licence MIT

Fichiers de configurations structurés YAML

Fichiers de configurations hiérarchiques

Balayage de configurations

CONFIGURATION STRUCTURÉ

CONFIGURATION STRUCTURE	
<pre>conf</pre>	
SGD.yaml	

CONFIGURATION HIÉRARCHIQUE

```
data loader:
  batch size: 2048
setting:
  seed: 42
  device: "cuda:0"
defaults:
  - optimizer : SGD
  - model: bi lstm
  - dataset : canadian
```

- embeddings : fast_text trainer :

num_epochs:1 patience:30

CONFIGURATION HIÉRARCHIQUE

optimizer: SGD

optimizer:

Ir: 0.1

type:sgd

BALAYAGE DE CONFIGURATIONS

python main.py -multirun task=1,2,3,4,5

python main.py -m 'main.x=int(interval(-5, 5))' 'main.y=interval(-5, 10)'

EN BONUS

- Journalisation automatique et personnalisable
- Instanciation paramétrique

```
# @package _group_
_target_: my_app.MySQLConnection
host: localhost
user: root
password: 1234
```

POINT NÉGATIF

hydra.utils.get_original_cwd()

AU MENU

Gestion de la configuration

Gestion des résultats

Simple à utiliser

Simple à utiliser

Journalisation des expérimentations

Journalisation des expérimentations

Visualisation rapide des expérimentations

MLFLOW TRACKING **□****

Open source et licence Apache 2.0

Suivie automatique de paramètres d'entrainement

Visualisation simple

Intégration avec Poutyne

SUIVIE AUTOMATIQUE DE PARAMÈTRES D'ENTRAINEMENT

- Version du code (git)*
- Horodatage de l'entrainement
- Succès/échec de l'entrainement
- Configuration de l'ordinateur
- Utilisateur

VISUALISATION SIMPLE

mlflow server -p 5000 -h 127.0.0.1 -backend-store-uri file:///absolute/path

VISUALISATION SIMPLE

nlflow										
Listing Price Prediction										
Experiment ID: 0 Artifact Location: /Users/matei/miltiow/demo/miruns/0										
Search Runs:		metrics.R2 > 0.24							Search	
Filter Params:		alpha, ir			Filter Metrics: rmse, r2				Clear	
4 matc	hing runs	Compare \$	Selected	wnload CSV 🕹						
					P	arameters		Metrics		
	Time	User	Source	Version	alpha	I1_ratio	MAE	R2	RMSE	
	17:37	matei	linear.py	3a1995	0.5	0.2	84.27	0.277	158.1	
	17:37	matei	linear.py	3a1995	0.2	0.5	84.08	0.264	159.6	
	17:37	matei	linear.py	3a1995	0.5	0.5	84.12	0.272	158.6	
	17:37	matei	linear.py	3a1995	0	0	84.49	0.249	161.2	

Figure 1 - Introducing MLflow: an Open Source Machine Learning Platform ♂*

VISUALISATION SIMPLE

- Tri sur les expérimentations
- Recherche des expérimentations
- Requêtes sur les résultats
- Exportation des résultats
- Visualisation les métriques

INTÉGRATION AVEC POUTYNE 2*

La version de « base » implique de

- journaliser manuellement les paramètres de configuration,
- journaliser manuellement les métriques à chaque étape et itération,
- journaliser manuellement la version du code.

INTÉGRATION AVEC POUTYNE 2*

La solution, MLFlowWriter, un callback permettant de

- journaliser semi-automatiquement les paramètres de configuration,
- journaliser automatiquement les métriques à chaque étape et itération,
- journaliser automatiquement la version du code,
- journaliser manuellement un modèle,
- journaliser automatiquement les métriques de test lors d'une phase de test.

POINT NÉGATIF

La documentation n'est pas toujours facile à naviguer.

PRÉSENTATION DES RÉSULTATS

Génération automatique des tableaux

Rapport dynamique

Itérations d'expérimentations

POUR ALLER PLUS LOIN (EN ORDRE)

- Notification de l'état d'entrainement Notif 🗗
- Continuous Machine Learning (CML) ♂*

PÉRIODE DE QUESTIONS

WEBINAIRE

MERCI DE VOTRE ÉCOUTE!

REFERENCES i

Garneau, N., Godbout, M., Beauchemin, D., Durand, A., and Lamontagne, L. (2020).

A Robust Self-Learning Method for Fully Unsupervised Cross-Lingual Mappings of Word Embeddings: Making the Method Robustly Reproducible as Well.