Infinitesimal Calculus

Paul Schulze

History

- Newton & Leibniz formulated calculus using the idea of infinitesimals
- Infinitesimals are really really small, but not 0
- ▶ Considered nonsensical, replaced with δ - ϵ
- Early 1960's: Abraham Robinson formalizes Nonstandard Analysis
- Our formulation of infinitesimals is based off work by Jerzy Łoś

(a) Abraham Robinson

(b) Jerzy Łoś

Basic Idea

- \blacktriangleright We construct a set of *hyperreals*, denoted * $\mathbb R$
- $ightharpoonup *\mathbb{R}$ includes \mathbb{R} , along with (a lot of) hyperreals
- We construct a language of mathematical logic, using symbols like \neg , \wedge , \vee , \forall , etc.
- ▶ We show that any sentence of that language is true in \mathbb{R} iff it is true in \mathbb{R} (transfer principle)
- ightharpoonup We use transfer to prove things about $\mathbb R$

Constructing ${}^*\mathbb{R}$

- ightharpoonup We start with the ring \mathbb{R}^{∞}
- Identify sequences that are the same "almost everywhere," like $\langle 0,1,1,\ldots \rangle \sim \langle 1,1,1,\ldots \rangle$
- Sequences are the same almost everywhere if the set of indices at which they are the same is "big"
- ▶ The set of "big" sets of natural numbers is an *ultrafilter* $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$

Constructing ${}^*\mathbb{R}$

- Now we can define our equivalence relation \sim by saying that $\langle r_1, r_2, r_3, \ldots \rangle \sim \langle s_1, s_2, s_3, \ldots \rangle$ iff $\{n \in \mathbb{N} \mid r_n = s_n\} \in \mathcal{F}$
- Write the equivalence class $[\langle r_1, r_2, r_3, \ldots \rangle]$
- ▶ Define * \mathbb{R} as the quotient ring of \mathbb{R}^{∞} under \sim , i.e. * $\mathbb{R} = \{ [\langle r_1, r_2, r_3, \ldots \rangle] \mid \langle r_1, r_2, \ldots \rangle \in \mathbb{R}^{\infty} \}$
- Extend any function $f: \mathbb{R} \to \mathbb{R}$ to a new $f: \mathbb{R} \to \mathbb{R}$ * $f([\langle r_1, r_2, r_3, \ldots \rangle]) = [\langle f(r_1), f(r_2), f(r_3), \ldots \rangle]$
- ▶ We can also extend relations, like "≤" $\langle r_1, r_2, r_3, \ldots \rangle \leq \langle s_1, s_2, s_3, \ldots \rangle$ iff $\{n \in \mathbb{N} \mid r_n \leq s_n\} \in \mathcal{F}$
- ▶ For any $x \in \mathbb{R}$, we can take $x \in {}^*\mathbb{R}$ to mean $[\langle x, x, x, \ldots \rangle]$

Transfer Principle—Language

- Our language is made up of:
 - \blacktriangleright logical connectives \land , \lor , \rightarrow , \leftrightarrow , and \neg
 - ▶ quantifiers ∀, ∃
 - parenthesis (and)
 - ightharpoonup variables v_1, v_2, v_3, \ldots
 - \blacktriangleright symbols for every element of $\mathbb R,$ every relation on $\mathbb R,$ and every function on $\mathbb R$

Infinitesimals

- ▶ We construct a set of *hyperreals* $*\mathbb{R} \supseteq \mathbb{R}$.
- ▶ * \mathbb{R} is "like" \mathbb{R} , but it includes *infinitesimals*, elements δ such that $\delta \neq 0$ but $|\delta| < r$ for every $r \in \mathbb{R}^+$.
- We can add these infinitesimals to other numbers to get things like $1 + \delta$, a number that is "infinitely close to" 1 but not 1.
- ▶ If |x y| is infinitesimal or 0, we say $x \simeq y$
- If $x \in {}^*\mathbb{R}$, we denote by $\operatorname{st}(x)$ the standard part of x, the unique real number that is infinitely close to x. $\operatorname{st}(1+\delta)=1$.
- We can also take the recipricals of these infinitesimals to get unbounded hyperreals, like $\frac{1}{\delta}$. These have no standard part.
- We can of course combine all these elements however we'd like. If δ and γ are infinitesimals, we have $\frac{1}{\delta} + 4 + \pi + \gamma \in {}^*\mathbb{R}$.

Derivatives, the way Leibniz intended

- ▶ Say $f : \mathbb{R} \to \mathbb{R}$. We "extend" f to f : * $\mathbb{R} \to \mathbb{R}$.
- ▶ Fix $b \in \mathbb{R}$. Let Δx be infinitesimal, and let Δf be $^*f(b+\Delta x)-^*f(b)$.
- ▶ Then define $f'(b) = \operatorname{st}\left(\frac{\Delta f}{\Delta x}\right)$. So $f'(b) \simeq \frac{\Delta f}{\Delta x}$.
- **Example:** Say $f(x) = x^2$. Then we have

$$f'(3) \simeq \frac{(3+\Delta x)^2 - 3^2}{\Delta x} = \frac{9+6\Delta x + (\Delta x)^2 - 9}{\Delta x}$$
$$= \frac{6\Delta x + (\Delta x)^2}{\Delta x} = 6 + \Delta x \simeq 6$$

So $f'(3) \simeq 6$. But these are both real numbers, so their difference can't be infinitesimal. Hence f'(3) = 6.

Proof: Chain Rule

Let $f,g:\mathbb{R}\to\mathbb{R}$ be differentiable. Let Δx be any infinitesimal, and $\Delta g=g(x+\Delta x)-g(x)$. Since $g'(x)=\operatorname{st}(\Delta g/\Delta x)$ is defined, Δg must be infinitesimal. Then

$$(f \circ g)'(x) \simeq \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}$$

$$= \frac{f(g(x) + \Delta g) - f(g(x))}{\Delta g} \cdot \frac{\Delta g}{\Delta x}$$

$$\simeq f'(g(x)) \cdot g'(x)$$

So $(f \circ g)'(x) \simeq f'(g(x)) \cdot g'(x)$. But since both of these numbers are real, they must be identical.

In the case where $\Delta g=0$, we clearly have $f(g(x)+\Delta g)-f(g(x))=0$ and so $(f\circ g)'(x)=0$.