SAS OPTIMIZATION CHALLENGE

Report

SAS Poets

Aditya Kothari Padmapriya Pannerselvam Padma Dwivedi Rohit Soans Neha Gupta

Contents

Problem StatementProblem Statement	. 2
Forecasting the requirements for next 4 weeks	. 2
Exploratory Data Analysis	. 2
Business Insights	. 4
How many gallons will XYZ buy from The Water Co. each week?	. 4
How many gallons will XYZ use from their Water Storage Tank each week?	. 5
What is XYZ's projected total water cost at the end of the next four weeks?	. 5
What is XYZ's projected ending Water Storage Tank inventory at the end of each week?	. 5
How much money will XYZ save by choosing the recommended contract over the alternative contract?	. 5
How many more/less gallons will be in the Water Storage Tank at the end of the four-week period compared to if the alternative contract was chosen?	. 6
Recommendations	. 6

Problem Statement

Building T in XYZ Corporation meets its water requirements from two sources, the Water Co. and its own water storage tank. Based on a year and a half of historical weekly gallon usage of water, we need to predict their water requirements for the next 4 weeks. To meet the predicted requirements, XYZ has two contract options at hand, each involving a certain cost. We need to optimize the cost function to help XYZ decide which contract to opt for. There are multiple constraints like water in the storage tank should not drop below 30000 gallons at any point, at least 25% of the water requirements should be met from the water storage tank, etc., which needs to be met while optimizing the cost.

Forecasting the requirements for next 4 weeks

Exploratory Data Analysis

We observed that the distributions for cooling and main types are significantly different through our initial data analysis. Hence they needed to be predicted through different models and added up to calculate the final demand.

Here we can observe that main has more water requirements than cooling and less variance than cooling.

Time series graph for Cooling and Main:

We can observe that cooling peaks during summer whereas main dips during summer.

ARIMA model has been used to forecast the water requirements for the next 4 weeks.

Final Prediction for the following 4 weeks:

Business Insights

How many gallons will XYZ buy from The Water Co. each week?

Week	WaterCo	
	Quantity used	
1	41,135	
2	35,000	
3	35,000	
4	35,000	
Total	146,135	

How many gallons will XYZ use from their Water Storage Tank each week?

Week	Water Tank Quantity		
	used		
1	13,712		
2	20,158		
3	24,365		
4	25,676		
Total	83,911		

What is XYZ's projected total water cost at the end of the next four weeks?

Week	Water	
	Tank Cost	
1	2,468.1	
2	3,628.5	
3	2,436.5	
4	2,567.6	
Total	11,100.7	

What is XYZ's projected ending Water Storage Tank inventory at the end of each week?

Week	Inventory = Prev Weeks inventory + precipitation - Amount from tank used by building T	Precipitation	Amount from tank used by building T
1	60,788	12,000	13,712
2	58,630	18,000	20,158
3	56,265	22,000	24,365
4	52,589	22,000	25,676
Total	228,272	74,000	83,911

How much money will XYZ save by choosing the recommended contract over the alternative contract?

Recommended Contract: Contract B

Week	Total Cost	
1	7,404.3	
2	7,828.5	
3	6,636.5	
4	6,767.6	
Total	28,637	

Alternative Contract: Contract A:

Week	Total Cost Used
1	8,638.3
2	8,687.4
3	7,186.5
4	7,317.6
Total	31,829.8

We will end up saving \$3,129 which is 10% lesser than what contract A would end up costing.

How many more/less gallons will be in the Water Storage Tank at the end of the four-week period compared to if the alternative contract was chosen?

Week	Inventory = Prev Weeks inventory + precipitation - Amount from tank used by building T	Precipitation	Amount from tank used by building T
1	60,788	12,000	1,712
2	64,999	18,000	13,790
3	52,634	22,000	34,365
4	38,958	22,000	35,676

Recommendations

We recommend XYZ Co. to go ahead with Contract B as Contract 2 is 10 % cheaper than Contract A.

We can use our forecasting model to predict water needs for longer duration so that we can negotiate better with Water Co. and we can initiate a bidding process to invite more bids which would be evaluated using our optimization model. That way we can save more cost for XYZ Co.