## CISS245: Advanced Programming Quiz q2101

| Name: | jdoe5@cougars.ccis.edu | Score: |  |
|-------|------------------------|--------|--|
|       |                        |        |  |

Open main.tex and enter answers (look for answercode, answerbox, answerlong). Turn the page for detailed instructions. To rebuild and view pdf, in bash shell execute make. To build a gzip-tar file, in bash shell execute make s and you'll get submit.tar.gz.

In any of the following questions, write ERROR if there's an error in the code fragment.

Q1. The following program does not run. Insert *one* statement to correct the problem. Answer:

```
#include <iostream>
int sum(int start, int end, int step);
int main()
{
    std::cout << sum(5, 10, 1) << std::endl;
    return 0;
}
int sum(int start, int end, int step)
{
    int s = 0;
    for (int i = start; i <= end; i += step)
    {
        s += i;
    }
    return s;
}</pre>
```

Q2. The function play\_audio() plays music file an audio file. The parameters are:

- filename: a C-string that is the name of the audio file to be load
- track\_number: an integer. 0 is the first track, 1 is the second track, etc. The default value is -1 which is "play all tracks".
- repeat: a boolean. The default is false.

The function returns a 0 if there are no errors, a -1 if the file cannot be found using the filename, -2 if the track\_number is not -1 and the track number is not found

in the audio file. Write down the prototype of this function.

Answer:

```
int play_audio(char filename[], int track_number, bool repeat = false);
```

Q3. The following function call

```
push_back(x, x_len, 42);
```

sets  $x[x_len]$  to 42 and increments  $x_len$  by 1. Write down the function prototype of push\_back.

Answer:

```
void push_back(int x[], int & x_len, int value);
```

## Instructions

In main.tex change the email address in

```
\renewcommand\AUTHOR{jdoe5@cougars.ccis.edu}
```

yours. In the bash shell, execute "make" to recompile main.pdf. Execute "make v" to view main.pdf. Execute "make s" to create submit.tar.gz for submission.

For each question, you'll see boxes for you to fill. You write your answers in main.tex file. For small boxes, if you see

```
1 + 1 = \langle answerbox \{ \}.
```

vou do this:

```
1 + 1 = \answerbox{2}.
```

answerbox will also appear in "true/false" and "multiple-choice" questions.

For longer answers that needs typewriter font, if you see

```
Write a C++ statement that declares an integer variable name x.
\begin{answercode}
\end{answercode}
```

you do this:

```
Write a C++ statement that declares an integer variable name x.
\begin{answercode}
int x;
\end{answercode}
```

answercode will appear in questions asking for code, algorithm, and program output. In this case, indentation and spacing is significant. For program output, I do look at spaces and newlines.

For long answers (not in typewriter font) if you see

```
What is the color of the sky?
\begin{answerlong}
\end{answerlong}
```

you can write

```
What is the color of the sky?
\begin{answerlong}
The color of the sky is blue.
\end{answerlong}
```

For students beyond 245: You can put LATEX commands in answerlong.

A question that begins with "T or F or M" requires you to identify whether it is true or false, or meaningless. "Meaningless" means something's wrong with the statement and it is not well-defined. Something like " $1+_2$ " or " $\{2\}^{\{3\}}$ " is not well-defined. Therefore a question such as "Is  $42=1+_2$  true or false?" or "Is  $42=\{2\}^{\{3\}}$  true or false?" does not make sense. "Is  $P(42)=\{42\}$  true or false?" is meaningless because P(X) is only defined if X is a set. For "Is 1+2+3 true or false?", "1+2+3" is well-defined but as a "numerical expression", not as a "proposition", i.e., it cannot be true or false. Therefore "Is 1+2+3 true or false?" is also not a well-defined question.

When writing results of computations, make sure it's simplified. For instance write 2 instead of 1 + 1. When you write down sets, if the answer is  $\{1\}$ , I do not want to see  $\{1, 1\}$ .

When writing a counterexample, always write the simplest.

Here are some examples (see instructions.tex for details):

3. T or F or M: 
$$1+^2 = \dots M$$

4. 
$$1+2=\boxed{3}$$

5. Write a C++ statement to declare an integer variable named x.

6. Solve  $x^2 - 1 = 0$ .

Since 
$$x^2 - 1 = (x - 1)(x + 1)$$
,  $x^2 - 1 = 0$  implies  $(x - 1)(x + 1) = 0$ . Therefore  $x - 1 = 0$  or  $x = -1$ . Hence  $x = 1$  or  $x = -1$ .

- - (A) 1+1=0
  - (B) 1+1=1
  - (C) 1+1=2
  - (D) 1+1=3
  - (E) 1+1=4