Phrase Retrieval Learns Passage Retrieval, Too

Princeton University 이진혁 연구원

CONTENTS

- 01 Background
- 02 Research Motivation
- 03 Formulation / Experiments #1, #2
- 04 Analysis / Experiments #3
- 05 Complexity Analysis
- 06 Conclusion

01 Background

Open-Domain Question Answering

Open-Domain Question Answering

The Free Encyclopedia

Phrase Retrieval for Open-Domain QA

Phrase = any contiguous segment of text up to L words (Seo et al., 2019)

Phrase Retrieval is Accurate and Fast

Phrase Retrieval is Accurate and Fast

Without any reader model, phrase retrieval is competitive with retriever-reader approaches.

Dense phrase retrieval makes open-domain QA fast and simple!

02 Research Motivation

Fixed Granularity for Text Retrieval

Sentence Retrieval

SBERT (Reimers et a., 2019), SimCSE (Gao et al., 2021): 1 sentence

Passage Retrieval

ORQA (Lee et al., 2019): 288 BPE tokens for a passage

DPR (Karpukhin et al., 2020): 100 words for a passage

Different index for **different** granularity?

Phrases as a Basic Retrieval Unit

Retrieving Phrases \Rightarrow Sentences \Rightarrow Passages \Rightarrow Documents \Rightarrow ...

Single index for **multi** granularity!

Q1: Is this **better** than passage retrievers?

Experiment #1: Passage Retrieval / Experiment #2: Open-domain QA

Q2: Why does this work?

Analysis / Experiment #3: Entity Linking & Dialogue

Q3: How **efficient** is this?

Phrase Filtering & Quantization-aware Fine-tuning

O3 Formulation / Experiments #1, #2

Passage Retrieval

Phrase-based Passage Retrieval

Multiple (phrase) vectors for each passage

Passage Retrieval: DPR vs DensePhrases

Passage Retrieval: DPR vs DensePhrases

Without any re-training, **DensePhrases outperforms DPR** on passage retrieval!

Larger gains when k is small.

Fusion-in-Decoder for Open-domain QA

Izacard and Grave, 2021

Feeds top-k passages from **DPR** to **T5** (Raffel et al., 2020) to generate answers.

FiD achieves state-of-the-art performance when k is large (e.g., k=100).

Requires 64 **32GB** V100 GPUs for training!

Feed top-k passages from **DensePhrases** to T5 to generate answers?

Open-domain QA: DPR vs DensePhrases

Open-domain QA: DPR vs DensePhrases

DensePhrases outperforms DPR on open-domain QA (+6.4 EM when k=5).

k=25~50 is enough for good performance ($k \le 50$ fits in **24GB**)

O4 Analysis / Experiments #3

Why DensePhrases > DPR on Passage Retrieval?

In-passage negatives in DensePhrases work similar to **BM25 hard negatives** in DPR!

04 Analysis

Analysis With $L_{
m topic}$ and $L_{
m hard}$

For both metrics, lower numbers are better.

DPR has good L_{topic} while **DensePhrases** has good L_{hard} .

L_{topic} and L_{hard} : What Do They Really Mean?

DPR (Karpukhin et al., 2020)

http://qa.cs.washington.edu:2020/

DensePhrases (Lee et al., 2021)

http://densephrases.korea.ac.kr

Good L_{hard} can give correct answer even when the passage is less relevant.

topically less relevant, but still correct answer!

For many coarse-granularity retrieval, we need good L_{topic} !

Entity Linking

[START_ENT] **Security Council** [END_ENT] members expressed concern on Thursday.

United Nations Security Council

Knowledge-grounded Dialogue

Have you heard of Yamaha? They started as a piano manufacturer in 1887!

Yamaha Corporation

Only **one document** is relevant (annotated) for each query! (KILT; Petroni et al., 2021)

Retrieval for Entity Linking & Dialogue

Retrieval for Entity Linking & Dialogue

Maximize the marginal probability of any phrases in the relevant document

Retrieval for Entity Linking & Dialogue

DensePhrases can be adapted to **retrieve topically relevant documents**!

05 Complexity Analysis

Problem of Multi-vector Encoding Luan et al., 2021; Khattab and Zaharia, 2020

More vectors, **more space!**

Phrase indexes are **heavy!**

1.2TB (Seo et al., 2019)

1.5TB (Lee et al., 2020)

320GB (Lee et al., 2021)

Reducing the Size of Phrase Index

"The New York metropolitan area is home to many prestigious institutions of higher education."

"The New York metropolitan area"

"prestigious institutions"

"higher education"

...

Optimized Product Quantization

(Ge et al., 2013)

 \vdash

Query-side Fine-tuning

(Lee et al., 2021)

=

Quantization-aware Fine-tuning

Reducing the Size of Phrase Index

We can safely reduce the size down to **23GB!** (DPR = 69GB)

DensePhrases with # vector/passage = 8.8 is similar to DPR.

06 Conclusion

06 Conclusion

Q1: Is this **better** than passage retrievers?

Yes! **DensePhrases > DPR** on passage retrieval and open-domain QA!

Q2: **Why** does this work?

Better at fine-grained entailment, can be used for coarse retrieval.

Q3: How **efficient** is this?

Can safely reduce the index size from **307GB to 23GB!**

Paper: https://arxiv.org/abs/2109.08133

Code & Models: https://github.com/princeton-nlp/DensePhrases

Demo: http://densephrases.korea.ac.kr/

E-mail: jinhyuklee@cs.princeton.edu

감사합니다

Phrase Retrieval Learns Passage Retrieval, Too

