

1.109. LTE Band Edge(NTNV)(Subtest:109, Channel:19150, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:LOW)

1.110. LTE Band Edge(NTNV)(Subtest:110, Channel:19150, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:MID)

1.111. LTE Band Edge(NTNV)(Subtest:111, Channel:19150, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:HIGH)

1.112. LTE Band Edge(NTNV)(Subtest:112, Channel:19150, Bandwidth:10, Modulation:16QAM, RB Number: 50, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
1910	30	0.1	RMS	1910	-33.77	Pass	601		
Agilent Spectrum Analyzer - Swept SA INT REF Δ ALIGN OFF 10:25:34 AM Mar 31, 2016									
Ref Offset 9				Mkr1	1.910 00 G -33.768 dl	IT Z	Auto Tune		
Trace 1 Pass							enter Freq 0000000 GHz		
0.00		**************************************				1.895	Start Freq		
-10.0						1.925	Stop Freq		
-30.0			1			3	CF Step .000000 MHz		

VBW 300 kHz*

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

1.113. LTE Band Edge(NTNV)(Subtest:113, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.114. LTE Band Edge(NTNV)(Subtest:114, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.115. LTE Band Edge(NTNV)(Subtest:115, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.116. LTE Band Edge(NTNV)(Subtest:116, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:LOW)

1.117. LTE Band Edge(NTNV)(Subtest:117, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:MID)

1.118. LTE Band Edge(NTNV)(Subtest:118, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:HIGH)

VBW 470 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
1850	40	0.15	RMS	1847.933	-41.43	Pass	601		
Agilent Spectrum Analyzer - Swept SA									
Center Freq 1.85000 PASS	AC 10000 GHz PNO: Fast IFGain:Low	Trig: Fre	e Run A	⚠ ALIGN OFF Avg Type: RMS vg Hold: 1/1	10:26:16 AM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 ****** AAA	equency		
Ref Offset 9.8				Hz Bm	Auto Tune				
Trace 1 Pass							enter Freq		

Start Freq 1.830000000 GHz

Stop Freq 1.870000000 GHz

> CF Step 4.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

STATUS

Center 1.85000 GHz

#Res BW 150 kHz

1.119. LTE Band Edge(NTNV)(Subtest:119, Channel:18675, Bandwidth:15, Modulation:QPSK, RB Number: 75, RB Position:LOW)

1.120. LTE Band Edge(NTNV)(Subtest:120, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Fre	Center quency(MHz)	Span	(MHz)	RBW (MHz)	Detector		equency (MHz)	Power (dBm)	Verdict	Sweep Point
	185	0	40	0.15	RMS		1850	-22.58	Pass	601
Agilent Spectrum Analyzer - Swept SA LX RL RF S0 Ω AC INT REF ΔALIGN OFF 10:26:28 AM Mar 31, 2016 Frequency Center Freq 1.850000000 GHz PNO: Fast → IFGain:Low Trig: Free Run Atten: 32 dB Avg Hold: 1/1 TYPE AAAAAA TYPE AAAAAA										
10 dE							Mkr1	1.850 00 G -22.580 dl	П	Auto Tune
20.0	Trace 1 Pass									enter Freq
10.0										
0.00									1.830	Start Freq 0000000 GHz
-10.0										Stop Freq
-20.0					1				1.870	0000000 GHz
-30.0									4	CF Step .000000 MHz

 $\sqrt{V_{1}V_{2}V_{1}V_{2}}$

VBW 470 kHz*

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

0 Hz

Freq Offset

1.121. LTE Band Edge(NTNV)(Subtest:121, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:MID)

1.122. LTE Band Edge(NTNV)(Subtest:122, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
1850	40	0.15	RMS	1837.467	-36.53	Pass	601			
Agilent Spectrum Analyzer - Swept SA (M RL RF 50 Ω AC INT REF ALIGN OFF 10:26:40 AM Mar 31, 2016 Center Freq 1.850000000 GHz PASS PN0: Fast → Irig: Free Run Atten: 32 dB Psc Offset 9.9.1 dR Psc Offset 9.9.1 dR Mkr1 1.837 47 GHz										
Ref Offset 9.87 10 dB/div Ref 30.00 d	l dB Bm			Mkr1	1.837 47 G -36.527 dE		Auto Tune			
Trace 1 Pass					4		enter Freq 0000000 GHz			
0.00						1.830	Start Fred			
-10.0			-			1.870	Stop Fred			
-30.0			h			4 Auto	CF Step .000000 MHz Mar			
-50.0			1	New July	Manney		Freq Offset 0 Hz			
Center 1.85000 GHz	A Service Sparity Service Sparity				Span 40.00 N					

STATUS

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.85000 GHz #Res BW 150 kHz

1.123. LTE Band Edge(NTNV)(Subtest:123, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:LOW)

Freq	Center juency(MHz)	Span(MH	lz)	RBW MHz)	Detector	•	equency (MHz)	Power (dBm)	Ve	rdict	Sweep Point
	1850	4	40	0.15	RMS		1850	-30.22	2 Pa	ss	601
Agilent Spectrum Analyzer - Swept SA LXI RL RF 50 Ω AC INT REF ALIGN OFF 10:26:46 AM Mar 31, 2016											- 100
Cente	er Freq 1.85000	0000 GHz	Fast ↔ :Low	I	Run	#Avg Type Avg Hold:		10:26:46 AM Mar TRACE 1 2 TYPE MW DET A A	3456		equency
10 dB/d	Ref Offset 9.8 div Ref 30.00 d						Mkr1	1.850 00 -30.222	GHz IBm		Auto Tune
20.0	Frace 1 Pass										enter Freq 0000000 GHz
0.00										1.830	Start Freq
-10.0					-					1.870	Stop Freq
-30.0				and the state of t	1	\	Mondal Market	1-	\dashv	4. Auto	CF Step .000000 MHz Man
-40.0		monor Common	M					Long Brown about of	դ ^{րի} Նուհ դ ո՜	F	Freq Offset

1.124. LTE Band Edge(NTNV)(Subtest:124, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1850	40	0.15	RMS	1850	-36.6	Pass	601
Agilent Spectrum Analyzer - Swe LX RL RF 50 Ω Center Freq 1.85000 PASS	AAA	equency Auto Tune					
Ref Offset 9.8: 10 dB/div Ref 30.00 d					1.850 00 G -36.597 dI	3m	
Trace 1 Pass							enter Freq 0000000 GHz
0.00				phones the state of the state o		1.830	Start Fred
-10.0			-			1.870	Stop Fred
-30.0			1	- Joseph	Marrogory		CF Step .000000 MH
-40.0	, and the second second	lannor and the second	,		The work who was	Auto	Mar Freq Offse
-60.0	Approximately the second						0 H:
Center 1.85000 GHz #Res BW 150 kHz	VB	W 470 kHz*		#Sweep	Span 40.00 N 1.000 s (601)		

STATUS

1.125. LTE Band Edge(NTNV)(Subtest:125, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:HIGH)

Center Frequency(MHz)	Span(N	1Hz)	RBW (MHz)	Detector	•	quency MHz)	Powe (dBm	i V	erdict	Sweep Point
1850)	40	0.15	RMS		1850	-41	1.9 P	ass	60
LXI RL RF 50	Center Freq 1.850000000 GHz #Avg Type: RMS TRACE 12 3 4 5 6									equency Auto Tune
Ref Offset 9	.81 dB dBm					Mkr1	1.850 00 -41.898	0 GHz 3 dBm		Auto Turk
Trace 1 Pass										enter Fred 0000000 GH:
0.00						~~~~~dh_dhhanlafhr			1.830	Start Free
-10.0									1.870	Stop Fre
-30.0				1	· Nordand		Acontorus .	hadrange Aldrew	4. <u>Auto</u>	CF Ste .000000 MH Ma
-50.0	and the same of th	مسمسه رستم المسائد	John Stanford May make make the stanford of th	- Armad					F	F req Offs e
-60.0 Center 1.85000 GHz							Span 40.	00 MH=		
#Res BW 150 kHz		VBW	470 kHz*			#Sweep	Span 40.0 1.000 s (6	oo mnz 301 pts)		

STATUS

1.126. LTE Band Edge(NTNV)(Subtest:126, Channel:18675, Bandwidth:15, Modulation:16QAM, RB Number: 75, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
1850	40	0.15	RMS	1850	-33.01	Pass	601		
Agilent Spectrum Analyzer - Swept SA W RL RF 50 \(\text{RE} \) AC INT REF ALIGN OFF 10:27:05 AM Mar 31, 2016 Center Freq 1.850000000 GHz PNO: Fast P									
Ref Offset 9.8	Hz Bm	Auto Tune							
Trace 1 Pass							enter Freq 0000000 GHz		
0.00			Julium variance grant		n	1.830	Start Freq		
-10.0			-			1.870	Stop Freq		
20.0							CF Step		

VBW 470 kHz*

4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.127. LTE Band Edge(NTNV)(Subtest:127, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.128. LTE Band Edge(NTNV)(Subtest:128, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.15	RMS	1910.333	-52.69	Pass	60
Agilent Spectrum Analyzer - Swe (X) RL RF 50 Ω Center Freq 1.91000 PASS Ref Offset 9.8: 10 dB/div Ref 30.00 d Trace 1 Pass	pt SA AC 0000 GHz PNO: Fast IFGain:Low		INT REF	ALIGN OFF #Avg Type: RMS Avg Hold: 1/1	10:27:22 AM Mar 31, TRACE 1 2 3 TYPE M WAWA DET A A A 1.910 33 G -52.688 dE	2016 4 5 6 4 5 6 A A A A A B M	equency Auto Tune Center Free
-10.0							Stop Fred
-30.0 -40.0 -50.0		Jan Marker	1	- Towns of Esperant Park and Section S	e transfer to the second se	<u>Auto</u>	OF Step .000000 MH: Mar Freq Offse
Center 1.91000 GHz #Res BW 150 kHz	VBI	N 470 kHz*		#Sweep	Span 40.00 N 1.000 s (601	/IHz pts)	

STATUS

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

STATUS

Center 1.91000 GHz

#Res BW 150 kHz

1.129. LTE Band Edge(NTNV)(Subtest:129, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 150 kHz

1.130. LTE Band Edge(NTNV)(Subtest:130, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:LOW)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 150 kHz

1.131. LTE Band Edge(NTNV)(Subtest:131, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:MID)

1.132. LTE Band Edge(NTNV)(Subtest:132, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
1910	40	0.15	RMS	1910.4	-29.27	Pass	601			
Agilent Spectrum Analyzer - Swept SA LY RL RF 50 \(\text{SD} \(\text{AC} \) INT REF Center Freq 1.910000000 GHz PASS PNO: Fast PRO: Frequency Trig: Free Run Atten: 32 dB Avg Hold: 1/1 TYPE MAXWAY A A A A A A A A A A A A A A A A A A										
Ref Offset 9.8 10 dB/div Ref 30.00 d				Mkr1	1.910 40 G -29.272 dl	П	Auto Tune			

1.133. LTE Band Edge(NTNV)(Subtest:133, Channel:19125, Bandwidth:15, Modulation:QPSK, RB Number: 75, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point	
1910	40	0.15	RMS	1910	-33.99	Pass	601	
Agilent Spectrum Analyzer - Swept SA LX RF 50 Ω AC INT REF Δ ALIGN OFF 10:27:51 AM Mar 31, 2016 Free Run Atten: 32 dB #Avg Type: RMS TRACE 12 3 4 5 6 TYPE MWWWWW DET A A A A A A A A A A A A A A A A A A A								
Trace 1 Pass							enter Freq 0000000 GHz	
0.00	A wildlift - the affirm of a product of the angle of the affirm of a product of the affirm of the af	mana				1.890	Start Freq 0000000 GHz	
-10.0							Stop Freq	

VBW 470 kHz*

1.930000000 GHz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

1.134. LTE Band Edge(NTNV)(Subtest:134, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

1.135. LTE Band Edge(NTNV)(Subtest:135, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center Frequency(Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	1910	40	0.15	RMS	1910.333	-53.12	Pass	601
Agilent Spectrum Ar								
Center Freq				e Run 🕹	ALIGN OFF #Avg Type: RMS Avg Hold: 1/1	10:28:03 AM Mar 31, TRACE 1 2 3 TYPE M AAA DET A A A	456 MMW AAA	equency
10 dB/div Re	f Offset 9.89 f 30.00 d	5 dB Bm			Mkr1	1.910 33 G -53.125 dl	ΠZ	Auto Tune
20.0 Trace 1 F	Pass							enter Freq 0000000 GHz
0.00							1.890	Start Freq
-10.0							1.930	Stop Freq
-30.0							4 <u>Auto</u>	CF Step .000000 MHz Man
-50.0	h			1			F	req Offset

VBW 470 kHz*

0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 150 kHz

1.136. LTE Band Edge(NTNV)(Subtest:136, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

1.137. LTE Band Edge(NTNV)(Subtest:137, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:LOW)

Center Frequency(Span(N	ЛНz)	RBW (MHz)	Detector	·	quency MHz)	Power (dBm)	Verdict	Sweep Point
	1910		40	0.15	RMS		1910	-41.26	Pass	601
Agilent Spectrum An. XI RF Center Freq ' PASS	50 Ω	AC 0000 GH PN	Z IO: Fast		e Run	#Avg Type Avg Hold:		10;28;15 AM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 ************************************	equency
10 dB/div Ref	Offset 9.89 F 30.00 d				7		Mkr1	1.910 00 G -41.257 dl	IT 4	Auto Tune
Trace 1 P	ass									enter Freq 0000000 GHz
0.00	-full-manut	╌╍┸							1.890	Start Freq
-20.0									1.930	Stop Freq
-30.0			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						4	CF Step .000000 MHz

VBW 470 kHz*

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

1.138. LTE Band Edge(NTNV)(Subtest:138, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:MID)

	enter ncy(MHz)	Span(I	MHz)	RBW (MHz)	Detector	•	quency (MHz)	Power (dBm)	Verdict	Sweep Point
	1910		40	0.15	RMS		1910	-36.79	Pass	601
LXI RL	Center Freq 1.910000000 GHz #Avg Type: RMS TRACE 123456 Type Run AvgHold: 1/1									
Ref Offset 9.85 dB 10 dB/div Ref 30.00 dBm Mkr1 1.910 00 GHz										Auto Tune
Z0.0	e 1 Pass									enter Freq
0.00		and the second of the second o	ol-ardbap-paring						1.89	Start Freq
-10.0									1.93	Stop Freq
-30.0				N. Market	1				4	CF Step .000000 MHz

VBW 470 kHz*

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

1.139. LTE Band Edge(NTNV)(Subtest:139, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:HIGH)

VBW 470 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.15	RMS	1910.2	-31.43	Pass	601
Agilent Spectrum Analyzer - Swe X	AC	Trig: Fre	e Run A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	10:28:27 AM Mar 31, TRACE 1 2 3 TYPE M MANY DET A A A 1.910 20 G -31.429 dl	456 MMW AAA	equency Auto Tune
Trace 1 Pass							enter Freq

Start Freq 1.890000000 GHz

Stop Freq 1.930000000 GHz

> CF Step 4.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.140. LTE Band Edge(NTNV)(Subtest:140, Channel:19125, Bandwidth:15, Modulation:16QAM, RB Number: 75, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.15	RMS	1910	-35.1	Pass	601
Agilent Spectrum Analyzer - Swe W RL RF 50 Ω Center Freq 1.91000 PASS	AC	Trig: Fre	e Run 🛮 A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	10:28:33 AM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	4 5 6	equency
Ref Offset 9.8 10 dB/div Ref 30.00 d	5 dB B m			Mkr1	1.910 00 G -35.101 dl	пΖ	Auto Tune
Trace 1 Pass							enter Freq 0000000 GHz
0.00	toposaconya dynastkom nany Adminis					1.890	Start Freq
-10.0						1.930	Stop Freq
-30.0			1			4	CF Step .000000 MHz

VBW 470 kHz*

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.141. LTE Band Edge(NTNV)(Subtest:141, Channel:18700, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

VBW 620 kHz*

1.142. LTE Band Edge(NTNV)(Subtest:142, Channel:18700, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.143. LTE Band Edge(NTNV)(Subtest:143, Channel:18700, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.144. LTE Band Edge(NTNV)(Subtest:144, Channel:18700, Bandwidth:20, Modulation: QPSK, RB Number: 50, RB Position: LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1850	40	0.2	RMS	1850	-29.58	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA		INT REF	⚠ ALIGN OFF	10:29:02 AM Mar 31,	2016	
Center Freq 1.85000	Trig: Fre	# eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3	456 ₩₩	equency	
Ref Offset 9.8	PNO: Fast IFGain:Low Atten: 32 dB Ref Offset 9.81 dB Ref 30 00 dBm PNO: Fast Atten: 32 dB Avg Hold: 1/1 Avg Hold: 1/1						Auto Tune

Center 1.85000 GHz

#Res BW 200 kHz

1.145. LTE Band Edge(NTNV)(Subtest:145, Channel:18700, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:MID)

VBW 620 kHz*

<u>Auto</u>

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

Center 1.85000 GHz

#Res BW 200 kHz

1.146. LTE Band Edge(NTNV)(Subtest:146, Channel:18700, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:HIGH)

VBW 620 kHz*

1.870000000 GHz

<u>Auto</u>

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

STATUS

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

1.147. LTE Band Edge(NTNV)(Subtest:147, Channel:18700, Bandwidth:20, Modulation:QPSK, RB Number: 100, RB Position:LOW)

1.148. LTE Band Edge(NTNV)(Subtest:148, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Center 1.85000 GHz #Res BW 200 kHz

1.149. LTE Band Edge(NTNV)(Subtest:149, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1850	40	0.2	RMS	1850	-55.92	Pass	601
Agilent Spectrum Analyzer - Swe RL RF 50 \(\text{SO} \) Center Freq 1.85000 PASS Ref Offset 9.8	O000 GHz PNO: Fast IFGain:Low	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	10:29:32 AM Mar 31, TRACE 12 3 TYPE M WWW DET A A A 1.850 00 G -55.925 d	456 From	equency Auto Tune
10 dB/div Ref 30.00 d Trace 1 Pass	BM				-55.925 ui	С	enter Freq 0000000 GHz
0.00						1.830	Start Freq
-10.0							Stop Fred

VBW 620 kHz*

1.870000000 GHz

<u>Auto</u>

The row warming

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

CF Step 4.000000 MHz

Freq Offset

Man

0 Hz

Center 1.85000 GHz #Res BW 200 kHz

1.150. LTE Band Edge(NTNV)(Subtest:150, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Ū	enter ency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	1850	40	0.2	RMS	1833.267	-37.16	Pass	601
	ctrum Analyzer - Swe							
Center PASS	Freq 1.85000		Trig: Fre	e Run	ALIGN OFF #Avg Type: RMS Avg Hold: 1/1	10:29:38 AM Mar 31, TRACE 1 2 3 TYPE M AWY DET A A A	456 ///// AAA	equency
10 dB/div					Mkr1	1.833 27 G -37.156 dl	ITZ PERSON	Auto Tune
20.0 ——	ace 1 Pass							enter Freq 0000000 GHz
0.00							1.830	Start Freq
-10.0							1.870	Stop Freq
-30.0	• 1						Auto 4	CF Step .000000 MHz Man
-50.0						کہم	F	req Offset

VBW 620 kHz*

0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.151. LTE Band Edge(NTNV)(Subtest:151, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:LOW)

Center 1.85000 GHz #Res BW 200 kHz

1.152. LTE Band Edge(NTNV)(Subtest:152, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:MID)

VBW 620 kHz*

_	enter ency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	1850	40	0.2	RMS	1849.80	-35.87	Pass	601
	trum Analyzer - Swe							
XI RL Center I PASS	RF 50 Ω Freq 1.85000	0000 GHz PNO: Fast IFGain:Low	→ Trig: Fre	e Run A	Avg Type: RMS vg Hold: 1/1	10:29:51 AM Mar 31 TRACE 123 TYPE MWW DET A A A	456 	equency
10 dB/div	Ref Offset 9.8 Ref 30.00 d				Mk	r1 1.849 87 C -35.870 d	7 N Z	Auto Tune
Tra	ce 1 Pass						C	enter Freq
20.0							1.850	0000000 GHz

Stop Freq 1.870000000 GHz

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

Center 1.85000 GHz #Res BW 200 kHz

1.153. LTE Band Edge(NTNV)(Subtest:153, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1850	40	0.2	RMS	1849.933	-42.71	Pass	601
Agilent Spectrum Analyzer - Swe M	O000 GHz PNO: Fast IFGain:Low	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	10:29:57 AM Mar 31 TRACE 1 2 3 TYPE MWW DET A A A 1.849 93 G -42.714 dl	456 WWW AAA	equency Auto Tune
Trace 1 Pass							enter Freq 0000000 GHz
0.00				~~~~	Transform Charles debyton - many	1.830	Start Freq
-10.0							Stop Freq

VBW 620 kHz*

1.870000000 GHz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.154. LTE Band Edge(NTNV)(Subtest:154, Channel:18700, Bandwidth:20, Modulation:16QAM, RB Number: 100, RB Position:LOW)

1.155. LTE Band Edge(NTNV)(Subtest:155, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.156. LTE Band Edge(NTNV)(Subtest:156, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910.133	-55.8	Pass	60
Agilent Spectrum Analyzer - Swej Of RL RF 50 Ω Center Freq 1.910000	AC	Trig: Fre	eRun A	Avg Type: RMS vg Hold: 1/1	10:30:20 AM Mar 31, TRACE 123 4 TYPE MWWW	Fr.	equency
Ref Offset 9.85 10 dB/div Ref 30.00 d	5 dB	Atten. o.	. 40	Mkr1	1.910 13 G -55.802 dE	Hz	Auto Tune
Trace 1 Pass							enter Fred
0.00						1.890	Start Fre
-10.0						1.930	Stop Fre
-40.0						Auto 4	CF Ste .000000 MH Ma
-50.0	Prove of the second	Arap and Inner	1	and the second s	-L-w-marked ~\range \chi	ı	Freq Offse 0 H
Center 1.91000 GHz #Res BW 200 kHz		W 620 kHz*			Span 40.00 M 1.000 s (601 p		

STATUS

1.157. LTE Band Edge(NTNV)(Subtest:157, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Center 1.91000 GHz #Res BW 200 kHz

1.158. LTE Band Edge(NTNV)(Subtest:158, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910.8	-42.66	Pass	60 ⁻
gilent Spectrum Analyzer - Swe R R SO \Q Center Freq 1.91000 PASS	AC	Trig: Fre	e Run 🛮 A	▲ ALIGN OFF Avg Type: RMS	10:30:31 AM Mar 31, TRACE 1 2 3 TYPE M MANN DET A A A	456	equency
Ref Offset 9.8	5 dB IBm			Mkr1	1.910 80 G -42.658 dl	L	Auto Tune
Trace 1 Pass							enter Fred
0.00						1.890	Start Fre
20.0						1.930	Stop Fre
30.0	h h					4.	CF Ste 000000 MH Ma

VBW 620 kHz*

Freq Offset 0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

Center 1.91000 GHz #Res BW 200 kHz

1.159. LTE Band Edge(NTNV)(Subtest:159, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910.533	-37.07	Pass	601
Agilent Spectrum Analyzer - Swe X RL RF 50 Ω Center Freq 1.91000 PASS Ref Offset 9.8 10 dB/div Ref 30.00 d	O000 GHz PNO: Fast IFGain:Low	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	10:30:37 AM Mar 31, TRACE 1 2 3 TYPE MWW DET A A A 1.910 53 G -37.070 dl	456 MMM AAA	equency Auto Tune
Trace 1 Pass							enter Freq 0000000 GHz
0.00						1.890	Start Freq
-10.0							Stop Freq

VBW 620 kHz*

1.930000000 GHz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

STATUS

Center 1.91000 GHz

#Res BW 200 kHz

1.160. LTE Band Edge(NTNV)(Subtest:160, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:HIGH)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.161. LTE Band Edge(NTNV)(Subtest:161, Channel:19100, Bandwidth:20, Modulation:QPSK, RB Number: 100, RB Position:LOW)

1.162. LTE Band Edge(NTNV)(Subtest:162, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Span 40.00 MHz #Sweep 1.000 s (601 pts)

Center 1.91000 GHz #Res BW 200 kHz

1.163. LTE Band Edge(NTNV)(Subtest:163, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910.2	-56.04	Pass	601
Agilent Spectrum Analyzer - Swe							
Center Freq 1.91000 PASS		Trig: Fre	e Run A	ALIGN OFF Avg Type: RMS avg Hold: 1/1	10:31:01 AM Mar 31, TRACE 1 2 3 A TYPE M WAAA DET A A A	456 Fr	equency
Ref Offset 9.8	5 dB Bm		_	Mkr1	1.910 20 G -56.040 dE	ΠZ	Auto Tune
Trace 1 Pass	л						enter Freq
10.0							Start Freq
0.00						1.890	0000000 GHz
-10.0						1.930	Stop Freq
-30,0	/						CF Step .000000 MHz
-40.0	,					Auto	Man
-50.0 - shaft	Had broken	Mary man	1	~~~hyra~~arlp~dishels-aqsats-~as-sqsla	-and and and and and and and and and and	Y714-3-4-	Freq Offset 0 Hz
-60.0							

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.91000 GHz #Res BW 200 kHz

1.164. LTE Band Edge(NTNV)(Subtest:164, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910	-26.91	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA						
RL RF 50 Ω Center Freq 1.91000			INT REF	ALIGN OFF AVg Type: RMS	10:31:07 AM Mar 31, TRACE 1 2 3		equency
PASS PASS	PNO: Fast	Trig: Fre	eRun A	vg Hold: 1/1	TYPE M WWW.	///////	
	IFGain:Low	Atten: 32	2 90	Mket	1.910 00 G		Auto Tune
Ref Offset 9.8 10 dB/div Ref 30.00 d	5 dB I B m			WIKI	-26.907 dI	3m	
Trace 1 Pass							
20.0							enter Freq
20.0		/\				1.910	JUUUUUU GHZ
10.0			++				
						4.004	Start Freq
0.00						1.890	0000000 GHz
-10.0							
10.0						4.020	Stop Freq
-20.0		/	1			1.930	0000000 GHZ
h	,		†				CF Step
-30.0			\			4	.000000 MHz
-40.0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			<u>Auto</u>	Man
	11/4						req Offset
-50.0		Ly A	\\\ <u>\</u>	/			0 Hz
-60.0			W College Coll	mareeny programmes are	and the state of t		

Center 1.91000 GHz #Res BW 200 kHz

1.165. LTE Band Edge(NTNV)(Subtest:165, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:LOW)

	enter ncy(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	1910	40	0.2	RMS	1910	-41.92	Pass	601
LXI RL	rum Analyzer - Swe RF 50 Ω req 1.91000	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS Avg Hold: 1/1	10:31:13 AM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 WWW AAA	equency
10 dB/div	Ref Offset 9.89 Ref 30.00 d	5 dB Bm		1	Mkr1	1.910 00 G -41.917 dI		Auto Tune
20.0	e 11 ass							enter Freq 0000000 GHz
0.00	TI-V-W-WWW.	non					1.890	Start Freq 0000000 GHz
-10.0							1.930	Stop Freq
-30.0		N. Mary					4	CF Step .000000 MHz

VBW 620 kHz*

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

1.166. LTE Band Edge(NTNV)(Subtest:166, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910.267	-37.52	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA						- 100
LXI RL RF 50Ω	AC		INT REF	⚠ ALIGN OFF	10:31:19 AM Mar 31,	2016	
Center Freq 1.91000	0000 GHz			Avg Type: RMS	TRACE 1 2 3	4 3 0	equency

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.167. LTE Band Edge(NTNV)(Subtest:167, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:HIGH)

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.91000 GHz #Res BW 200 kHz

1.168. LTE Band Edge(NTNV)(Subtest:168, Channel:19100, Bandwidth:20, Modulation:16QAM, RB Number: 100, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1910	40	0.2	RMS	1910	-35.42	Pass	601
Agilent Spectrum Analyzer - Swell Mark RF SO \(\text{Center Freq 1.91000} \) PASS Ref Offset 9.8t 10 dB/div Ref 30.00 d Trace 1 Pass 20.0 -10.0 -20.0 -30.0 -40.0	PI SA AC D0000 GHz PNO: Fast IFGain:Low	Trig: Fre	INT REF	ALIGN OFF Avg Type: RMS avg Hold: 1/1	10:31:31 AM Mar 31, TRACE 1 2 3 TYPE M WWW. DET A A A 1.910 00 G -35.423 dE	2016 4 5 6 A A A A A A 3 HZ 3 M 1.910 1.890 4 Auto	equency Auto Tune Senter Freq 0000000 GHz Start Freq 0000000 GHz CF Step 0000000 MHz Man Freq Offset 0 Hz
-60.0							

END