MATH 3430-02 WEEK 9-1

Key Words: The Laplace transform.

The definition of a **Laplace transform** is simple: taking an *appropriate* function f(t) as input, the output is

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty e^{-st} f(t) dt = \lim_{A \to \infty} \int_0^A e^{-st} f(t) dt,$$

which is a function in s.

Note that \mathcal{L} is linear in the sense that

$$\mathcal{L}\{c_1f_1(t) + c_2f_2(t)\} = c_1\mathcal{L}\{f_1(t)\} + c_2\mathcal{L}\{f_2(t)\}.$$

Q1. Find $\mathcal{L}\{1\}$.

Q2. Find $\mathcal{L}\{t\}$.

Q3. Find $\mathcal{L}\{t^n\}\ (n>0)$.

Q4. Find $\mathcal{L}\{e^{at}\}$.

Q5. Find $\mathcal{L}\{\cos(bt)\}$ and $\mathcal{L}\{\sin(bt)\}$.

Q6. Express $\mathcal{L}\{y'(t)\}$ and $\mathcal{L}\{y''\}$ in terms of $Y(s) = \mathcal{L}\{y(t)\}, y(0)$ and possibly y'(0).