REGIONALIZATION OF
LOW FLOW CHARACTERISTICS

NORTHEASTERN AND NORTHWESTERN ONTARIO

**AUGUST 1995** 



Ministry of Environment and Energy

# REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

#### AUGUST 1995



Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1993 This publication may be reproduced for non-commercial purposes with appropriate attribution.



# REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

Report prepared by:

Cumming Cockburn Limited 300 - 65 Allstate Parkway Unionville, Ontario L3R 9X1 July, 1993

Report prepared for:

Ontario Ministry of Environment and Energy

7354

July 21, 1993

Ministry of the Environment and Energy 40 St. Clair Ave. West 11th Floor Toronto, Ontario M4V 1M2

Attention:

Dr. Lloyd A. Logan, P. Eng., Coordinator

Hydrology and Networks Unit, Water Resources Branch

Dear Sir:

Re: Regionalization of Low Flow Characteristics Northeastern and Northwestern Ontario

Please find enclosed our final report on this study, incorporating your review and comments on the previous versions.

Thank you for the opportunity to undertake these challenging and interesting investigations.

Yours very truly,

CUMMING COCKBURN LIMITED

H. S. Belore, P. Eng. Project Manager Director of Resources Group

HSB:ty

#### DISCLAIMER

This report was prepared for the Ontario Ministry of Environment and Energy as part of a ministry-funded project. The views and ideas expressed in this report are those of the authors and do not reflect the policies of the Ministry, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

#### ACKNOWLEDGEMENTS

The following professionals, support staff and review personnel provided input and assistance throughout these investigations:

Dr. Lloyd Logan Ministry of the Environment and Energy

Mr. Harold Belore
Mr. Dave Ashfield
Mr. Ross Zhou
Mr. Sundaram Indrarajah
Mr. Perry Pearlston

Cumming Cockburn Limited
Cumming Cockburn Limited
Cumming Cockburn Limited
Cumming Cockburn Limited

This report was prepared for the Ontario Ministry of the Environment as part of a Ministry funded project. The views and ideas expressed in this report are those of the author and do not necessarily reflect the views and policies of the Ministry of the Environment, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The Ministry, however, encourages the distribution of information and strongly supports technology transfer and diffusion. Any person who wishes to republish part or all of this report should apply for permission to do so to the Research and Technology Branch, Ontario Ministry of the Environment, 135 St. Clair Avenue West, Toronto, Ontario, M4V 1P5, Canada.

|  |  | 1 |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |

### REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN REGIONS OF ONTARIO

### **TABLE OF CONTENTS**

PAGE #

| 1.0                                     | INTR | NTRODUCTION |                                                       |  |  |  |  |
|-----------------------------------------|------|-------------|-------------------------------------------------------|--|--|--|--|
|                                         | 1.1  | Gener       | al                                                    |  |  |  |  |
|                                         | 1.2  | Study       | Objectives                                            |  |  |  |  |
| 2.0                                     | LITE | RATURI      | E REVIEW                                              |  |  |  |  |
|                                         | 2.1  | Gener       | al                                                    |  |  |  |  |
|                                         | 2.2  | Litera      | ture Review                                           |  |  |  |  |
|                                         |      | 2.2.1       | Selected Low Flow Studies                             |  |  |  |  |
|                                         |      | 2.2.2       | Selected Trend Analysis Studies                       |  |  |  |  |
|                                         |      | 2.2.3       | Summary                                               |  |  |  |  |
| 3.0                                     | DATA | A BASE      | 3 - 1                                                 |  |  |  |  |
|                                         | 3.1  | Genera      | al                                                    |  |  |  |  |
|                                         | 3.2  | Trend       | Analysis                                              |  |  |  |  |
|                                         |      | 3.2.1       | Introduction 3 - 2                                    |  |  |  |  |
|                                         |      | 3.2.2       | Summary of Trend Analysis                             |  |  |  |  |
|                                         |      | 3.2.3       | Trend Adjustment                                      |  |  |  |  |
|                                         |      | 3.2.4       | Conclusions and Recommendations                       |  |  |  |  |
|                                         | 3.3  | Low F       | Flow Characteristics                                  |  |  |  |  |
|                                         |      | 3.3.1       | Data Base                                             |  |  |  |  |
|                                         |      | 3.3.2       | Station Screening                                     |  |  |  |  |
|                                         |      | 3.3.3       | Extreme Value Analysis                                |  |  |  |  |
|                                         |      | 3.3.4       | Summary Maps                                          |  |  |  |  |
|                                         |      | 3.3.5       | Winter/Summer/Annual Low Flow Population Analysis     |  |  |  |  |
|                                         |      | 3.3.6       | Summary of Data Analysis and Low Flow Characteristics |  |  |  |  |
| 3.4 Physiographic and Meteorologic Data |      | Physic      | ographic and Meteorologic Data                        |  |  |  |  |
|                                         |      | 3.4.1       | Criteria                                              |  |  |  |  |
|                                         |      | 3.4.2       | Parameters                                            |  |  |  |  |
|                                         |      | 3.4.3       | Summary of Physiographic and Meteorologic Data        |  |  |  |  |
|                                         | 3.5  | Sub-R       | egions                                                |  |  |  |  |
|                                         |      | 3.5.1       | General                                               |  |  |  |  |
|                                         |      | 3.5.2       | Statistical Homogeneity Test                          |  |  |  |  |
|                                         |      | 3.5.3       | Heterogeneity Measure                                 |  |  |  |  |

### TABLE OF CONTENTS continued

|      |        |                                                                | PAGE #  |
|------|--------|----------------------------------------------------------------|---------|
|      |        | 3.5.4 Cluster Analysis                                         | 3 - 19  |
|      |        | 3.5.5 Results and Conclusions                                  | 3 - 19  |
|      | 3.6    | Summary of Data Base                                           | 3 - 20  |
| 1.0  | REGI   | ONALIZATION OF LOW FLOW CHARACTERISTICS                        | 4 - 1   |
|      | 4.1    | General                                                        |         |
|      | 4.2    | Mapped Isoline Method                                          | 4 - 1   |
|      | 4.3    | Index Methods                                                  | 4 - 2   |
|      |        | 4.3.1 Graphical Index Method                                   |         |
|      |        | 4.3.2 Regional Index/Frequency Distribution Method             | 4 - 3   |
|      | 4.4    | Regression Method                                              | 4 - 4   |
|      |        | 4.4.1 General                                                  |         |
|      |        | 4.4.2 Methodology                                              | 4 - 5   |
|      |        | 4.4.3 Transformed and Derived Parameters                       |         |
|      |        | 4.4.4 Simple Correlation of Parameters                         | 4 - 6   |
|      |        | 4.4.5 Regression Equation Development                          | 4 - 6   |
|      |        | 4.4.6 Regression Equations for Statistical Homogeneous Regions | 4 - 6   |
|      |        | 4.4.7 Sensitivity Analysis                                     | 4 - 7   |
|      | 4.5    | Station Proration                                              | 4 - 7   |
|      | 4.6    | Summary                                                        | 4 - 8   |
| 5.0  | TEST   | NG PREDICTION METHODS                                          | 5 - 1   |
|      | 5.1    | General                                                        | 5 - 1   |
|      | 5.2    | Test Stations                                                  | 5 - 1   |
|      | 5.3    | Goodness of Fit                                                | 5 - 1   |
|      | 5.4    | Testing Results                                                | 5 - 2   |
|      |        | 5.4.1 Testing of Isoline Method                                | 5 - 2   |
|      |        | 5.4.2 Testing of Index Method                                  | 5 - 3   |
|      |        | 5.4.3 Statistical Index Method                                 | 5 - 3   |
|      |        | 5.4.4 Testing of Regression Method                             | 5 - 4   |
|      |        | 5.4.5 Testing of Station Proration Method                      |         |
|      | 5.5    | Summary                                                        | 5 - 5   |
| 5.0  | CON    | CLUSIONS AND RECOMMENDATIONS                                   | 6 - 1   |
|      | 6.1    | Conclusions                                                    |         |
|      | 6.2    | Recommendations                                                |         |
| REFE | ERENCE | S                                                              | REF - 1 |
|      |        |                                                                |         |

### LIST OF APPENDICES

| APPENDIX | A      | Trend Analysis Methodology                                               |
|----------|--------|--------------------------------------------------------------------------|
|          | В      | Low Flow Frequency Analysis                                              |
|          | С      | Winter/Summer/Annual Low Flow Population Analysis                        |
|          | D      | Statistical Regions                                                      |
|          |        | D.1 Statistical Homogeneity Test                                         |
|          |        | D.2 Heterogeneity Measure                                                |
|          |        | D.3 Cluster Analysis                                                     |
|          | E      | Regional Index Low Flow Frequency Distribution Method                    |
|          | F      | Meteorologic and Physiographic Data                                      |
|          | G      | Computer Generated Isolines                                              |
|          |        | LIST OF TABLES                                                           |
|          |        | (following page)                                                         |
| ΓABLE ·  | 2.1    | Summary of Literature Review                                             |
|          | 3.1(a) | Statistical Test Results Northwestern Region                             |
|          | 3.1(b) | Statistical Test Results Northeastern Region                             |
|          | 3.2(a) | Low Flow Characteristics for Stations with "Significant Trend" According |
|          |        | to Mann-Kendall Test (1990) Northwestern Region                          |
|          | 3.2(b) | Low Flow Characteristics for Stations with "Significant Trend" According |
|          |        | to Mann-Kendall Test (1990) Northeastern Region                          |
|          | 3.3(a) | Comparison of Results for Trend Testing (-1986)                          |
|          | 3.3(b) | Comparison of Results for Trend Testing (-1990)                          |
|          | 3.4    | Summary of Selected Low Flow Statistics                                  |
|          | 3.5    | Summary of $7Q_y$ (Means and Standard Deviation)                         |
|          | 3.6    | Summary of 7Q <sub>y</sub> Unit Area Average Low Flows                   |
|          | 3.7    | Comparison of Mean and S.D. Between L-Moment and Conventional            |
|          |        | Moment Method                                                            |
|          | 3.8(a) | Data Base, Parameters Used in Regression Northwestern Region 3 - 17      |
|          | 3.8(b) | Data Base, Parameters Used in Regression Northeastern Region 3 - 17      |
|          | 3.9(a) | Summary of Simple Statistics of the Meteorological and Physiographic     |
|          |        | Data Northern Ontario                                                    |
|          | 3.9(b) | , , , , , , , , , , , , , , , , , , ,                                    |
|          |        | Data Northwestern Region                                                 |
|          | 3.9(c) | Summary of Simple Statistics of the Meteorological and Physiographic     |
|          |        | Data Northeastern Region 3 - 17                                          |

### LIST OF TABLES continued

(following page #)

| 3.9(a) | Summary of Simple Statistics of the Meteorological and Physiographic                |
|--------|-------------------------------------------------------------------------------------|
|        | Data Region One                                                                     |
| 3.9(e) | Summary of Simple Statistics of the Meteorological and Physiographic                |
|        | Data Region Two                                                                     |
| 3.9(f) | Summary of Simple Statistics of the Meteorological and Physiographic                |
|        | Data Region Three                                                                   |
| 3.10   | Comparison of Sub-Regions                                                           |
| 3.11   | Results of Heterogeneity Measure (L-CV)                                             |
| 4.1    | Regional Parameters For Weibull III Distribution                                    |
| 4.2(a) | Summary of Correlation Analysis 7Q <sub>2</sub> With Transformed Parameters 4 - 5   |
| 4.2(b) | Summary of Correlation Analysis 7Q <sub>20</sub> With Transformed Parameters 4 - 5  |
| 4.3    | Summary of Regression Analysis                                                      |
| 4.4    | Results of Sensitivity Analysis of the Independent Parameters 4 - 7                 |
| 5.l(a) | Stations Selected for Testing Northwestern Region 5 - 1                             |
| 5.1(b) | Stations Selected for Testing Northeastern Region 5 - 1                             |
| 5.2    | Summary of Testing Results (N.S.R. <sup>2</sup> )                                   |
| 5.3    | Comparison of Actual and Estimated Average Low Flows for Test Stations 5 - 5        |
| 5.4    | Comparison of Methods By Testing Results                                            |
| A.1(a) | Trend Analysis for New Data Set (1990) Northwestern Region                          |
|        | $(Mann-Kendall) \qquad \qquad A - 7$                                                |
| A.1(b) | Trend Analysis for New Data Set (1990) Northeastern Region                          |
|        | (Mann-Kendall)                                                                      |
| A.2(a) | Summary of Stations With Significant Trend Northwestern Region $(-1986)$ A - 7      |
| A.2(b) | Summary of Stations With Significant Trend Northeastern Region (-1986) A - $7$      |
| A.3(a) | Trend Detection Before and After Trend Adjustment Northwestern Region A - $7$       |
| A.3(b) | Trend Detection Before and After Trend Adjustment Northeastern Region $\dots$ A - 7 |
| A.4(a) | Comparison of Frequency Analysis Before and After Trend Adjustment                  |
|        | Northwestern Region                                                                 |
| A.4(b) | Comparison of Frequency Analysis Before and After Trend Adjustment                  |
|        | Northeastern Region                                                                 |
|        | Summary of Low Flow Frequency Analysis Northwestern Region B - 3                    |
|        | Summary of Low Flow Frequency Analysis Northeastern Region B - 3                    |
|        | Summary of 1, 3, 7, 15, 30 day Low Flow Northwestern Region B - 3                   |
| , ,    | Summary of 1, 3, 7, 15, 30 day Low Flow Northeastern Region B - 3                   |
|        | Frequency Curve Parameters (a, e, u) Northwestern Region                            |
| B.3(b) | Frequency Curve Parameters (a, e, u) Northwestern Region                            |

### LIST OF TABLES continued

|                  | (following page #                                                                                                                                                                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C.1(b)<br>C.2(a) | Comparison of Winter/Summer/Annual Flows Northwestern Region C - Comparison of Winter/Summer/Annual Flows Northeastern Region C - Mann-Kendall Test for Trend (7 Days Low Flow) Northwestern Region C - Mann-Kendall Test for Trend (7 Days Low Flow) Northeastern Region C - Results of Heterogeneity Measure (L-CV) D.1 - C |
|                  | LIST OF FIGURES                                                                                                                                                                                                                                                                                                               |
|                  | (following page #)                                                                                                                                                                                                                                                                                                            |
| 1.1              | Study Location                                                                                                                                                                                                                                                                                                                |
| 3.1              | Low Flow Characteristics of Northwestern Region (in pocket)                                                                                                                                                                                                                                                                   |
| 3.2              | Low Flow Characteristics of Northeastern Region (in pocket)                                                                                                                                                                                                                                                                   |
| 3.3              | Example of Trend Analysis Statistics and Locally Weighted Regression Smooth 3 - 3                                                                                                                                                                                                                                             |
| 3.4              | Sub-Regions                                                                                                                                                                                                                                                                                                                   |
| 4.1              | 7Q <sub>2</sub> Isolines                                                                                                                                                                                                                                                                                                      |
| 4.2              | $7Q_{20}$ Isolines                                                                                                                                                                                                                                                                                                            |
| 4.3              | Index Method Northern Ontario, NW, NE, (7Q2)                                                                                                                                                                                                                                                                                  |
| 4.4              | Index Method Northern Ontario, Sub-Regions (7Q20)                                                                                                                                                                                                                                                                             |
| 4.5              | Index Method Homogeneous Regions, Cluster Analysis                                                                                                                                                                                                                                                                            |
| 4.6              | Index Method Ratio of 7Q <sub>y</sub> to 7Q <sub>2</sub>                                                                                                                                                                                                                                                                      |
| 4.7              | Index Method Ratio of 7Q <sub>y</sub> to nQ <sub>y</sub>                                                                                                                                                                                                                                                                      |
| 4.8              | Flow Chart of Low Flow Estimation Procedures                                                                                                                                                                                                                                                                                  |
| 5.1<br>5.2       | Method 1 - Testing Isoline Method                                                                                                                                                                                                                                                                                             |
| 5.3(a)           | Method 2 - Testing Graphical Index Method                                                                                                                                                                                                                                                                                     |
| . ,              | Method 3 - Testing Graphical Index Method                                                                                                                                                                                                                                                                                     |
|                  | Method 3 - Testing Graphical Index Method                                                                                                                                                                                                                                                                                     |
|                  | Method 3 - Testing Graphical Index Method       5 - 3         Method 3 - Testing Graphical Index Method       5 - 3                                                                                                                                                                                                           |
| 5.4              | Method 4 - Testing Regression Method                                                                                                                                                                                                                                                                                          |
| 5.5              | Method 5 - Testing Proration Method                                                                                                                                                                                                                                                                                           |
|                  | Mean of Prediction Methods vs. Observed Low Flows                                                                                                                                                                                                                                                                             |
| A.l to           |                                                                                                                                                                                                                                                                                                                               |
| B.1              | L-CS vs. L-CV Northern Ontario                                                                                                                                                                                                                                                                                                |
|                  | L-CS vs. L-CK Northern Ontario                                                                                                                                                                                                                                                                                                |
|                  |                                                                                                                                                                                                                                                                                                                               |

**FIGURE** 

#### LIST OF FIGURES continued

|      |                                                     | (following page #) |
|------|-----------------------------------------------------|--------------------|
| B.3  | L-CS vs. L-CV Northwestern of Ontario               | B - 3              |
| B.4  | L-CS vs. L-CK Northwestern of Ontario               |                    |
| B.5  | L-CS vs. L-CV Northeastern of Ontario               |                    |
| B.6  | L-CS vs. L-CK Northeastern of Ontario               |                    |
| B.7  | L-CS vs. L-CV Northern Ontario Region One           |                    |
| B.8  | L-CS vs. L-CK Northern Ontario Region One           |                    |
| B.9  | L-CV vs. L-CS Northern Ontario Region Two           | B - 3              |
| B.10 | L-CS vs. L-CK Northern Ontario Region Two           | B - 3              |
| B.11 | L-CV vs. L-CS Northern Ontario Region Two           | B - 3              |
| B.12 | L-CS vs. L-CK Northern Ontario Region Three         | B - 3              |
| D.1  | Homogeneity Test Region One                         | D.1 - 2            |
| D.2  | Homogeneity Test Region Two                         | D.1 - 2            |
| D.3  | Homogeneity Test Region Three                       | D.1 - 2            |
| F.1  | Mean Annual Precipitation                           | F - 1              |
| F.2  | Mean Annual Snowfall                                | F - 1              |
| F.3  | Mean Annual Runoff                                  | F - 1              |
| F.4  | Mean Annual Evapotranspiration                      | F - 1              |
| F.5  | Annual Groundwater Contribution To Local Streamflow | F - 1              |
| F.6  | Groundwater Yields From Bedrock                     | F - 1              |
| F.7  | Bedrock Geology                                     | F - 1              |
| F.8  | Surficial Geology                                   | F - 1              |

### LIST OF SYMBOLS

G.1

G.2

| Symbols                      | Defin | <u>ition</u>                                                          |
|------------------------------|-------|-----------------------------------------------------------------------|
| ı                            | -     | The shape parameter of Weibull III distribution                       |
| ACLS                         | -     | Area controlled by lakes and swamps                                   |
| $A_0 A_1, A_1^1, A_1^2 A_2,$ | -     | Parameter estimates obtained from the use of multi-variate regression |
| $A_2^{1} A_3, A_3^{1}$       |       | procedures                                                            |
| BFI                          | -     | Base flow index                                                       |
| C.V.                         | -     | Coefficient of variation                                              |
| DA                           | -     | Watershed area                                                        |
| D.F.                         | -     | Degrees of freedom                                                    |

#### LIST OF SYMBOLS continued

e - The lower boundary parameter of Weibull III distribution

E(S) - Mean value of S

EVA - Mean annual evaporation

F(X) - Probability of nonexceedence of X

H - Heterogeneity measure

Lat - Latitude

 $L - C_k$  - The coefficient of Kurtosis by L-moments  $L - C_s$  - The coefficient of skewness by L-moments  $L - C_v$  - The coefficient of variation by L-moments L - Moments - Linear probability weighted moments

Ln - Natural logarithm
LNTH - Stream length
Long - Longitude

MAP - Mean annual precipitation
MAR - Mean annual runoff
MAS - Mean annual snowfall
n Qmax - Maximum n days low flow
n Omean - Mean n days low flow

n Qy - n days low flow with y years recurrence interval  $N_1, N_2$  - Run numbers of the run test for randomness N.S.R.<sup>2</sup> - Nash - Sutcliffe measure of model efficiency

Minimum n days low flow

Q<sub>m</sub> - Mean discharge of the test stations

Qmean, Lambda 1 - Mean flow

n Omin

Q<sub>o</sub> - Observed discharge Q<sub>s</sub> - Simulated discharge

R<sup>2</sup> - Coefficient of simple determination

RLWRS - Robust locally weighted regression smooth

RN, REG - Regulation code
S - mann-Kendall statistic
S.D. Lambda 2 - Standard deviation

SF1 - Shape factor 1 defined by DA/LNTH<sup>2</sup>
SF2 - Shape factor 2 defined by DA/LNTH

Sgn - Sign function

S.T. - Studentized Coefficient

T.I. - Trend Indicator

### LIST OF SYMBOLS continued

T.L. - Test Limit

U - The characteristic drought of Weibull III distribution

V - Weighted L-moment standard deviation

Var (S) - Variance of S

y - Recurrence period

 $Z_m$  - Mann-Kendall variable

ε Error in sensitivity analysis testing

 $\phi(x)$  - Probability density function

o - Spearman statistic

- Mann-Kendall tau for trend test

#### 1.0 INTRODUCTION

#### 1.1 General

The knowledge of hydrologic low flow characteristics can be of primary importance for input to the watershed management decision making process. For example, when analysing water quality conditions, the low flow characteristics of a watercourse are of interest to all stakeholders including the Ontario Ministry of the Environment and Energy. Specific uses of low flow information may include the following:

- i) Instream pollutant analysis (point and non-point sources)
- ii) Reservoir design (low flow augmentation)
- iii) Environmental appraisals
- iv) Feasibility of small hydro developments
- v) Water supply and evaluation for water taking permits
- vi) Base flow/groundwater recharge and/or contamination analysis
- vii) Stream fisheries assessments
- viii) Analyse effects of changes in watershed on low flows (eg. deforestation, urbanization)
  - ix) Agricultural impacts and supply
  - x) MISA assessment and review
- xi) Provincial discharger dilution profiles
- xii) Wasteload allocation studies
- xiii) Watershed planning
- xiv) Contaminant transport times, for spills
- xv) Strategic planning and priority setting.

The identification of low flow characteristics within a watercourse is most easily accomplished using continuous hydrometric data recorded for the stream.

A primary source of information describing drought conditions is the "Low Flow Characteristics" maps which were recently updated by Cumming Cockburn Limited for the Ministry of the Environment and Energy. This information includes tables and graphs of low flow values and statistical characteristics for both extreme value and flow duration analyses. A large data base exists with all of this data. However, the effectiveness of utilizing single station analyses is limited since a hydrometric recording gauge may not be located in the vicinity of the particular site under study. (This is becoming a more serious problem as ongoing budget constraints continue to eliminate gauging stations at various locations across the Province).

Useful techniques do not presently exist for transferring this information to ungauged sites. The use of historical techniques (eg. station proration by unit flows, area, etc.) are limited by several assumptions, including:

- ignoring the effects of regulation or upstream storage (lakes, swamps, etc.)
- assuming the watersheds are homogeneous (i.e. physiographic characteristics are ignored)
- assuming the climatic regions are homogeneous.

Cumming Cockburn Limited recently completed preliminary research programs which describes the initial stages of development of techniques to produce low flow estimates for ungauged sites for the Southwestern and West Central regions, and Central and Southeastern Regions in Ontario.

The studies included a literature review of similar relevant investigations. In all, five methods for estimating low flows were identified.

The recent investigations have led to the identification of several areas of research to be further developed for estimating low flows for ungauged watersheds. The present study was undertaken to confirm the applicability of regional methods and to modify and enhance the applicability of available methods, and to develop further insight into predicting low flow values at ungauged locations. The test areas selected were the Northwestern and Northeastern regions of the Province of Ontario (see Figure 1.1).

#### 1.2 Study Objectives

The main objective was to further refine techniques for providing estimates of low flow characteristics for ungauged streams based on the physical parameters of the watershed and appropriate meteorological variables.

It is expected that the technique could then be further developed and adapted in order to provide estimates of low flows for ungauged watersheds at other locations in the Province.

The following points summarize the focus of this investigations:

- To develop an appropriate data base including the statistical characteristics of low flows and relevant hydrologic, physical and meteorologic characteristics of watersheds for evaluation and input to low flow prediction procedures;
- 2) To investigate procedures to evaluate possible trends in low flow records;



NORTHEASTERN OF ONTARIO NORTHWESTERN OF ONTARIO



Ε

F

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

STUDY LOCATION

- To identify new techniques suitable for low flow analysis and to improve the predicting accuracy of low flow characteristics; and
- 4) To test the various methodologies for predicting low flows int he Northwestern and Northeastern regions.
- To identify suitable techniques for application and required research/refinements (eg. by comparison of regression and mapping techniques).

The literature review is discussed in Section 2.0, and the relevant characteristics of the available data base are discussed in Section 3.0. The development of alternate regionalization techniques is discussed in Section 4.0 and testing of the procedures is summarized in Section 5.0. Conclusions and recommendations for future work are summarized in Section 6.0.

#### 2.0 LITERATURE REVIEW

#### 2.1 General

A review of the literature describing "Low Flow Characteristics" is beneficial for the identification of:

- existing prediction methods
- · significant parameters
- new techniques
- estimation errors
- data screening techniques

This review concentrated on updating the previous review of available literature (CCL, 1990; CCL, 1991) and on identifying additional literature applicable to this Northern Regions analysis. Since the present investigation also includes trend analysis, the literature review has been divided into two parts (i.e Section 2.2.1 - Selected Low Flow Studies, and Section 2.2.2 - Selected Trend Analysis Studies).

A brief review of individual studies follows and highlights are summarized in Section 2.2.3.

#### 2.2 Literature Review

#### 2.2.1 Selected Low Flow Studies

### Accuracy of Low Flow Characteristics Estimated by Correlation of Base Flow Measurements

(C.H. Hardison, 1972).

This study examined the inter-relationships of low flow characteristics of a stream at gauged and ungauged locations. An estimation technique based on a series of base flow measurements was developed to relate mean annual and seven day low flows at the site location. Following this, a method to determine the equivalent number of gauging years at the ungauged location that was required to produce the accuracy of the regressed base flow relationship was developed. In addition, extrapolation of the technique was extended to the more extreme low flow characteristic (i.e.  $7Q_{10}$ ).

Two sites on the Old Mill Stream branch in Maryland with drainage areas of 11.2 sq. mi. and 22.3 sq. mi ungauged and gauged respectively, were related based upon 16 base flow measurements made at the ungaged locations. It was determined that based on the 18 year gauged data analysis, that 12 years of record would have been required at the ungauged location to produce a prediction accuracy similar to the base flow interrelationship technique.

This study also discussed similarities between one and seven day low flows and suggests that longer durations such as 30 or 60 day duration low flow depend on hydrologic factors, other than base flow recession.

The estimation technique appears to be sensitive to the data skewness with negative skew coefficient requiring more gauging years to obtain similar standard error for those series with positive skewness.

### Techniques of Water Resources Investigations of the USGS, Low Flow Investigations (H.C. Riggs, 1972)

"This manual described methods for defining the low flow characteristics of streams, shows how certain basin characteristics influence the mean and variability of annual low flows, and recommends procedures for data collection, analysis, and reporting".

The report indicates that at the time of its writing, estimates of low flow characteristics at ungaged locations are generally inaccurate since low flows are highly dependent on the lithology and structure of rock formations and on the amount of evaporation, neither of which has been adequately described by indices. Other parameters identified as significant are:

- precipitation over the basin in time and space
- temperature regime (i.e. storage of water as snow)
- soil and geologic characteristics

A short discussion of the accuracy of zero low flows indicates that local knowledge may be important in determining the likelihood.

Extrapolation of nearby gauged data to a few base flow measurements at an ungaged location is identified as a possible estimation technique. However, differences between drought base flows and common base flow relationships are defined as possible inaccuracies in that processes causing extreme low flow may be different than the common base flow relationships.

A comparison of using data inter-relationships at a short term gauged station to the record at a nearby long term gauged station was analyzed. It was found that more accurate results were obtained from extending a probability graph from 10 years of record at the short duration station than the results obtained by extending the record with base flow interrelationships.

It was also indicated that 10 years of record was a good minimum record length on which to base estimates of 20 year recurrence interval low flows.

This report also notes that at less frequent recurrence intervals (i.e.  $nQ_{20}$  -  $nQ_{100}$ ), the effects of differences in geology and evapotranspiration become more significant.

A technique of measurements identified as seepage runs was identified as an excellent method for determining specific processes which affect low flows on a stream by stream basis. Seepage runs are when flow information is collected simultaneously along a river reach during a drought period to identify flow interrelationships.

### Technical Manual for Estimating Low-Flow Frequency Characteristics of Streams in the Susquehanna River Basin

(Jaffrey T. Armbruster, 1976)

The report presented procedures for estimating low flow frequency characteristics for streams in the Susquehanna River Basin. The techniques can be used at ungauged sites as well as sites where insufficient data are available to make a reliable estimate.

Streams have been divided into two types - Major and Minor. Points on the streams with 2,000 Mi<sup>2</sup> (5,180 km<sup>2</sup>) are included in the major stream category. Points on the streams with drainage area of less than 2,000 Mi<sup>2</sup> fall into the minor stream category.

Multiple - regression techniques were used to develop relations for estimating various duration low flows at occurrence intervals of 10, 20, 30 and 100 years for annual series data.

The form of the regression model used in the study was:

$$\log Y = \log C + b_1 \log X_1 + b_2 \log X_2 + \dots$$

$$+b_{n-1} \log X_{n-1} + b_n X_n$$

It is indicated that the determination of the appropriate basin characteristics is probably the most time consuming part of the computation.

### Application of Statistical Low Flow Analysis As a Basis for Water Quality Planning (Henning Rubock, 1982)

This study analyses the relations between runoff and water quality on a statistical basis. The authors indicated that it was unique because parallel measurements of runoff and water quality parameters were available. The study examined three river systems in Germany having dense population and management of runoff by reservoirs. The study concluded that it was not possible to assess water quality parameters using runoff information only. The results indicate that water quality extremes can be related to some threshold low flow values. Water quality is a function of the quantity of augmented flow and the quantity of original runoff. A technique for reservoir sizing for low flow augmentation was illustrated.

### Regional Hydrologic Analysis 1. Ordinary, Weighted and Generalized Least Squares Compared

(Jerry R. Stedinger and Gary D. Tasker, 1985)

This paper compared the performance of ordinary, weighted and generalized least squares estimators of the parameters for regional hydrologic relationships in situations where available streamflow records at gauged sites can be of different and widely varying lengths and concurrent flows at different sites are cross-correlated.

A Monte Carlo study illustrated the performance of an ordinary least squares (OLS) procedures and an operational generalized least squares (GLS) procedure which accounted for an directly estimated the precision of the predictive model being fit. The GLS procedure provided:

- 1) More accurate parameter estimates.
- Better estimates of the accuracy with which the regression models parameters were being estimated.
- 3) Almost unbiased estimates of the model error.

The OLS approach can provide very distorted estimates of the model's predictive precision (model error) and the precision with which the regression model's parameters are being estimated.

A weight least squares procedure which neglects the cross-correlations among concurrent flows does as well as the GLS procedure when the cross-correlation among concurrent flows is relatively modest.

The Monte Carlo examples also explored the value of streamflow records of different lengths in regionalization studies.

### A Method of Streamflow Drought Analysis (Emir Zelehasic and Atila Salvai, 1987)

"A method of completely describing and analyzing the stochastic process of streamflow droughts has been recommended. All important components of streamflow droughts such as deficit, duration, time of occurrence, number of streamflow droughts in a given time interval [0,t], the largest stream flow drought deficit, and the largest stream flow drought duration in a given time interval [0, t] are taken into consideration. A streamflow drought is related here to streamflow deficit. A stochastic model is presented for interpretation and analysis of the largest streamflow drought deficit below a given reference discharge and the largest streamflow drought duration concerning a time interval [0,t], at a given location of a river. The method is based on the assumption that streamflow droughts are independent, identically distributed random variables and that their occurrence is subject to the Poison probability law. This paper is actually a continuation of the previous E. Zelenhasic (1970, 1979, 1983) and P. Todorovic (1970) works on the extremes in hydrology. Application of the method is made on the 58-year record of Tisa River at Senta, Yugoslavia, and good agreement is found between the theoretical and empirical distribution functions for all analyzed drought components for the river. Only one complete example, the Sava River at Sr. Mitrovica, is given in the paper. The proposed method deals with hydrograph recessions of daily or instantaneous discharges in the region of low flows, and not with mean annual flows which were used by other investigators".

The study resulted in the following findings:

- The Zelenhasic Todorovic flood model can be easily modified for a complete analysis
  of droughts
- Other characteristics of low flow that are required in Yugoslavia are recurrence interval
  deficit volumes and maximum n-day durations for various recurrence intervals
- A frequency duration curve is used to identify what a low flow is (i.e. flows which
  occur less than 90% of the record length)

- The above low flows are then assessed over the period of record, not on an annual basis, (i.e. the station analyzed in the study had 72 drought occurrences in 58 years record of which 14 years no drought occurred)
- Statistical analysis indicated that the low flows for the stations analyzed are independent, and free of trend.

### A Comparison of Methods for Estimating Low Flow Characteristics of Streams (Gary D. Tasker, 1988)

Four methods for estimating the 7-day, 10 year and 7-day, 20-year low flows for streams are compared by the bootstrap method. The bootstrap method is a Monte Carlo technique in which random samples are drawn from an unspecified sampling distribution defined from observed data. The nonparametric nature of the bootstrap makes it suitable for comparing methods based on a flow series for which the true distribution is unknown. Results show that the two methods based on hypothetical distributions (Log-Pearson III and Weibull W3) had lower mean square errors than did the Box-Cox transformation method or the log-Boughton method which is based on a fit of plotting positions.

### Comparison of Method of Residuals and Cluster Analysis for Flood Regionalization (Nageshwar R. Bhaskar, Carol A. O'Connor, 1989)

The method of residuals was used by U.S. Geological Survey (USGS) to delineate seven flood regions for the state of Kentucky. An alternative approach is to use cluster analysis in conjunction with important statistical properties of the maximum annual flood peak series. Applying the FAST-CLUS clustering procedure of the statistical analysis system, five cluster regions are identified using a similar data base as the USGS study. Flood regions delineated under these two methods of flood regionalization are then compared by examining trends in important hydrological characteristics within each of the regions, and through a discriminant analysis based upon watershed physical attributes. Results show that, although cluster regions are in no way similar to those defined by the method of residuals nor coincident with geographical boundaries, they are more distinguishable and better discriminated in terms of the hydrological characteristics controlling flood response than the USGS regions. Furthermore, standard errors associated with the regression equations relating the log-Pearson, type III 50 year flood estimate to watershed physical attributes are comparable under the two methods of regionalization.

### Low Flow Frequency Analysis Using Probability-Plot Correlation Coefficients (Richard M. Vogel, Charles N. Kroll, 1989)

Although a vast amount of literature exists on the selection of an appropriate probability distribution for annual maximum flood flows, few studies have examined which probability distributions are most suitable to fit to sequences of annual minimum streamflows. Probability plots have been used widely in hydrology as a graphical aid to assess the goodness of fit of alternative distributions. Recently, probability-plot correlation-coefficient (PPCC) tests were introduced to test the normal, two parameter lognormal and Gumbel hypotheses. Those procedures are extended to include both regional and at-site tests for the two-parameter Weibull and lognormal distributional hypotheses. In theory, PPCC-hypothesis testing can only be developed for two-parameter distributions that exhibit a fixed shape. Nevertheless, the PPCC is a useful goodness-of-fit statistic for comparing three-parameter distributions. The PPCC derived from fitting the two and three-parameters lognormal, two and three-parameter Weibull, and log-Pearson type III distributions to sequences of annual minimum seven-day low flow at 23 sites in Massachusetts are compared. How the PPCC can be used to discriminate among both competing distributional hypotheses for the distribution of fixed shape and completing parameter-estimation procedures for the distributions with variable shape is described. An approximate regional PPCC test was developed and used to show that there is almost no evidence to contradict the hypothesis that annual minimum seven-day low flows in Massachusetts are two-parameter lognormal.

### Uncertainty Analysis of Runoff Estimates from a Runoff Contour Map (Barry P. Rochelle, Donald L. Stevens Jr., and M. Robbins Church, 1989)

"The U.S. Environmental Protection Agency (EPA) in cooperation with the U.S. Geological Survey (USGS) conducted an analysis to quantify the uncertainty associated with interpolating runoff to specific sites using a runoff contour map. Mean Annual Runoff for 93 gauged watershed were interpolated from a runoff contour map using (1) hand interpolation to the watershed outlet, (2) a computer interpolation to the watershed outlet, and (3) hand interpolation to the watershed centroid. The interpolated values were compared to the actual observed values and found that there was a bias in the average interpolated value for runoff estimated at basin outlets, with interpolated values being less than the actual. It was found that no significant difference between the hand interpolation method and the computer interpolation method except that the computer method tended to have higher variability due to factors inherent to the software used. There were no strong spatial correlations or regional patterns in the runoff interpolations, which indicates that there are no regional biases introduced in the development of the contour map.

It was determined that runoff could be estimated, on the average, within approximately 8.9 cm (3.5 in; 15 percent) of the measured value using the three methods. The results of this work indicate that runoff contour maps can be used in regional studies to estimate runoff to ungaged systems with quantifiable uncertainty".

### Analysis of Winter Low Flow Rates in New Hampshire Streams (Rae Ann Melloh, 1990)

This report investigated the regionalization of low flows in the White Mountain and Upland physiographic sections of New Hampshire. The preliminary effort established a data set that would be used in the development of improved analytical methods for estimating flows that occur in the winter. The primary objectives were to determine whether or not winter season low flows vary significantly between the physiographic areas and, if so, to provide possible explanations for this. The magnitude of basin-to-basin variation in winter low flow rates within the two physiographic sections was compared with average regional variation. The correlation between mean basin elevation and discharge per square mile was assessed as an indicator of the effect of elevation related climate gradients on stream flows. Summer low flows were also developed for use as a comparison set.

#### The results of the analysis indicate:

- Winter low flows occur more frequently than summer low flows for regions of high elevation
- Summer and winter low flows belong to different populations
- Winter low flow values are generally higher and increase more rapidly than summer low flows when compared to increases in drainage area
- The summer low flows are more highly correlated to elevation than are winter low flows
- Unit area flows of .5 ft<sup>3</sup>/s/mi<sup>2</sup> (5.5 l/s/km<sup>2</sup>) to .7 ft<sup>3</sup>/s/mi<sup>2</sup> (7.7 l/s/km<sup>2</sup>) were identified
  for the mean seven day duration winter low flows with close similarities between both
  regions

Unit area flows of 0.1 ft<sup>3</sup>/s/mi<sup>2</sup> (1.1 l/s/km<sup>2</sup>) to 0.03 ft<sup>3</sup>/s/mi<sup>2</sup> (0.3 l/s/km<sup>2</sup>) were identified for the mean seven day duration summer flows. The two regions differed substantially with respect to flow series

The following equations were developed for winter flows:

$$7Qm = 0.51 DA + 0.41$$
  $R^2 = .89 SE = 12.0 White Mountain Streams$   $7Qm = 0.71 DA - 11.29$   $R^2 = .93 SE = 7.8 Upland Streams$ 

The following equations were developed for summer flows:

$$7Qm = 0.34 \text{ DA} - 2.02$$
  $R^2 = .62 \text{ SE} = 17.7 \text{ White Mountain}$  Streams  $R^2 = .71 \text{ SE} = 4.2 \text{ Upland Streams}$ 

## Errors in Estimating Stream Flow Parameters and Storages for Ungaged Catchments (K.C. Gan, T.A. McMahon and I.C. O'Neill, 1990)

This study developed predictive equations for the mean and the coefficient of variation of annual stream flow for southeast Australia. The significant parameters were identified as drainage area and the mean annual rainfall.

$$Qm = 9.3 \times 10^{-6} DA^{0.99} MAR^{148}$$
  $R^2 = 0.97, SE = -35\% + 54\%, N = 80$ 

Sensitivity analysis of drainage area size, record length and subregional analysis were examined. It was determined that record lengths had insignificant affects, subregions were not significantly different than the complete region and drainage area size has some affect but further investigation is required.

Errors associated with catchment storage estimates based on the prediction equations were illustrated.

### Generalized Low-Flow Frequency Relationships for Ungauged Sites in Massachusetts (Richard M. Vogel and Charles N. Kroll, 1990)

This study developed generalized regional regression equations for estimating the n-day, T-year low flow discharge  $nQ_T$  at ungauged sites, where n=3, 7, 14 and 30 days. A two-parameters log normal distribution was fit to sequences of annual minimum n-day low-flows and the estimated parameters of the log normal distribution were then related to two drainage basin characteristics: drainage area and relief. The resulting models were general, simple to use and about as precise as most previous models that only provided estimates of a single statistic such as  $7Q_{10}$ .

Comparisons were provided of the impact of using ordinary least squares (OLS) regression, generalized least squares (GLS) regressions and streamflow record augmentation procedures to fit regional low-flow frequency models. It was conducted that the generalized least squares regression procedures led to almost identical regional regression model parameter estimates when compared with the ordinary least squares procedures. In general, GLS procedures will have significant advantages over OLS procedures in studies which seek to include very short records such as at partial record sites. In such instances GLS procedures can lead to significant improvements because the number of sites included in the analysis can be increased considerably.

### Practical Aspects of Low Flow Frequency Analysis (R.J. Nathan and T.A. McMahon, 1990)

"This paper considers some practical aspects concerning the application of the Weibull distribution to low flow frequency analysis. Two and Three-parameter forms of the distribution are fitted to a total of 987 distributions derived from the daily flow data of 134 catchments located in southeastern Australia. The relative performance of three estimation methods (moments, maximum likelihood, and probability weighted moments) is investigated, and it is found that the different estimation methods provide distinct sets of quantile estimates. The method of probability weighted moments is more likely to give unsatisfactory estimates of the smallest drought and in general tends to yield less severe estimates of drought volumes relative to the other two methods. The method of maximum likelihood, however, occasionally provides estimates of drought volumes that are many times greater than that yielded by the methods moments or probability weighted moments. In addition, the differences between low flow frequency estimates based on calendar and hydrologic years is investigated".

The following points summarize the main findings:

- Compared to a water year basis the use of a calendar year was found to be more conservative for annual minima.
- The study analysed 134 catchments in southeast Australia with an average record length of 21 years
- Low flow estimates based on calendar year are less than (approximately 12%) those based on a hydrologic year (i.e. wettest month is start of hydrologic year) for short duration low flows (i.e. n < 60 days)</li>

It is noted in the study that 85 of 1072 samples contained too few non-zero flows and were subsequently removed from further examination.

The study results confirmed that different estimation methods produce different low flow results (i.e. 5% to 20% for  $7Q_2$  and  $7Q_{20}$ ) but the differences decrease as sample size increases.

It is recommended in the study that adoption of a single technique would be best for regional analysis since result variability would be catchment process dependent and not estimation technique dependent.

### The Use of L-moments for Regionalizing Flow Records in the Rio Uruguai Basin: A Case Study

(Robin T. Clarke and Luis Edgar, Montenego Terrazas, 1990)

This paper explores the use of L-moments to regionalize annual maximum mean daily discharge (y1), using data from 29 sub-basins of the Rio Uruguai in Southern Brazil. As first assumptions, a Gumbel distribution was taken to describe the probability distribution of y1, and basin area was taken as the principle basin characteristic in regression analyses. Multivariable (as distinct from multivariate) regressions were used to obtain estimates of (a) L-moments of y1 for ungauged basins; (b) conventional moments of y1 for ungauged basins, and two sets of moments were used to derive estimates of:

- i) Gumbel parameters and hence;
- estimates of y1 with given return periods, together with their approximate confidence limits.

Use of L-moments gave estimates with narrower confidence limits than conventional moments, although the difference was not large.

### The Weibull Distribution Applied to Regional Low Flow Frequency Analysis (P.J. Pilon, 1990)

The inability to estimate accurately low flow of specific duration and probability for ungauged basins has long plagued the practitioner. The index-flood method is one tool which may assist in this regard, through its adaptation to low flows. This paper outlines the extension of the index flood method to low flow analysis when the regional distribution is assumed to be the three-parameter Weibull (W3). Flows corresponding to specific return periods of nonexceedance can be made dimensionless by dividing by some chosen index low flow.

Within a homogenous region, the dimensionless frequency curve at any station is considered a random sample. The best representation of the regional characteristics is obtained by averaging the dimensionless curves for all stations in the region. The resulting average dimensionless curve is the regional dimensionless frequency curve and is considered applicable throughout the region, providing the conditions of homogeneity are met. If the n-year low flow at an ungauged site can be estimated, the entire low flow frequency relationship can be developed by multiplying by the appropriate ratios of the dimensionless curve.

A homogeneity test is applied to the region. The authors suggested that L-moments ratio diagrams could be used to study the appropriateness of the choice of the parent distribution. When the parent is W3, the derived technique may provide useful results in many practical situations.

### Regional Hydrology of New Brunswick (Brian C. Burrell and James E. Anderson, 1991)

In this paper, an overview of the surface water hydrology of New Brunswick was presented; primarily within the context of high and low flows. The influence of physiographic and climatic factors on streamflows was examined and the delineation of zones of hydrologic similarity based upon these parameters were discussed. Regions of hydrologic homogeneity were presented and reviewed relative to the streamflow gauging network and the estimation of streamflows at ungauged sites.

It reviewed the development of statistical relationships between peak flows or low flows for specified recurrence intervals and the physiographic, hydrologic and climatic characteristics of gauged watersheds. The presentation of these relationships in a form readily useable for streamflow estimation was discussed.

The low flow regression analysis were performed for various regions and different basin sizes. The northern region equation is in the general form

$$LF_{TD} = (C*DA^{0.5} + d*MAP^{0.5} + K)^2$$

For the southern region, two equations were developed with one equation for basin drainage areas greater than or equal to  $400 \text{ km}^2$  and the other equation for drainage basin areas less than  $400 \text{ km}^2$ .

### Regionalization of Low Flow In Central and Southern Alberta (V.K. Khanna, 1992)

This paper developed regional models for the estimation of low flow characteristics at ungauged sites in six basins of central and Southern Alberta. eighty natural flow gauging stations were used in the regionalization study. Regional models are developed using the ordinary least squares (OLS) techniques to estimate N-day low flow at ungauged sites in the study area, where N could vary from 1 to 31 days.

The approach consists of finding the relationship of the 3, 7, 14, 21, and 28 day mean low flows to the 10-day mean low flow with a two year return period  $D_2$  (10). The relationship is of the following form:

$$D_2(N) = D_2(10) + (N - 10) * GRDM$$

where:

N = Duration of mean (with a 2 year return period) low flow varied from 3 to 28 days.

GRDM = Slope of mean flow duration relationship

$$= \frac{\sum ((N-10) * D_2 (10))}{\sum (N-10)^2}$$

The models were recommended for GRDM for each studied basin to estimate the two year N-day mean flows, where N varies from 1 to 31 days. The models are used in conjunction with the recommended models  $D_2$  (10) to estimate the low flow characteristics at ungauged sites.

The standard error of estimates of the recommended regional models in the study varies from 18.5 to 40.6 percent.

## Working Group II Receiving Water Assessment Techniques and Analysis, Low Flow Design Criteria

(Dr. L. Logan)

This paper examines the affects of using low flow statistics other than  $7Q_{20}$  when considering wastewater assimilation (i.e.  $7Q_2$  and  $7Q_{10}$ ). Economic and risk of failure is examined with respect to a number of Ontario Streams. The study recommends that  $7Q_{20}$  should be the low flow design criterion for Ontario. There is also some discussion of regulation (i.e. 50% of Ontario Streams are considered regulated) and its affects on risk of failure to meet the quality objectives of facility operation.

#### 2.2.2 Selected Trend Analysis Studies

### An Application of Time Series Analysis in Hydrometric Network Evaluation (R.G. Boals, 1979)

This report analyses time series modelling techniques for illustrating trends for two northern Manitoba streams. Types of data collection activities are discussed in addition to a network management scheme for base and satellite monitoring locations. Auto-correlation and spectral density functions were used to analyze the stream flow data. Both stations indicated significant trend components with respect to average monthly flows.

#### Assessment of Water Quality Time Series

#### (A. Ian McLeod, Keith W. Hipel and Fernando Comacho, 1983)

"A general methodology is described for identifying and statistically modelling trends which may be contained in a water quality time series. A range of useful exploratory data analysis tools are suggested for discovering important patterns and statistical characteristics of the data such as trends caused by external interventions. To estimate the entries in an evenly spaced time series when data are available at irregular time intervals, a new procedure based upon seasonal adjustment is described. Intervention analysis is employed at the confirmatory data

analysis stage to rigorously model changes in the mean levels of a series which are identified using exploratory data analysis techniques. Furthermore, intervention analysis can be utilized for estimating missing observations when they are not too numerous. The effects of cutting down a forest upon various water quality variable and also the consequences of acid rain upon the alkalinity in a stream provide illustrative applications which demonstrate the effectiveness of the methodology".

### Nonparametric Approaches to Environmental Impact Assessment

(There were nine papers dealing with nonparametric testing and estimation methods in Water Resources Bulletin Vol 24, No. 3, 1988)

Various nonparametric trends detection approaches were described. A distinct advantage of nonparametric tests is that they are usually very effective when applied to "messy" environmental data which may contain many missing observations and not be normally distributed. By applying their enhanced approaches for nonparametric methods to water quality time series, as well as employing well designed simulation experiments, the authors of the papers clearly demonstrate the efficacy of utilizing nonparametric tests in environmental Impact assessment.

The following briefly summarizes the approaches and the main conclusions for some of these papers:

# Multivariate Nonparametric Tests For Trend In Water Quality (Dennis P. Lettenmaier, 1988)

A test which is sensitive to up and down trends and has power approaching that of the covariance sum method, was described. A variation of a contrast test for discriminating trend directions and magnitudes among variables or seasons where correlation between seasons or variables is present was described, and tests of its performance reported.

# Nonparametric Tests for Trend Detection In Water Quality Time Series (David Berryman, Bernard Bobee, et al, 1988)

A review of nonparametric tests for trend leads to the conclusion that Mann-Whitney, Spearman and Kendall tests are the best choice for trend detection in water quality time series. These tests have been adapted to account for dependence and seasonality in such series. For monotonic trends, a procedures allowing to select the pertinent tests considering the characteristics of time series was proposed and the practical limitations of the tests were also brought out. When a

time series can be tested with the Mann-Whitney, Kendall, Spearman, or Lettenmaier test, the number of observations required to detect trends of a given magnitude, for selected significance and power levels can be calculated with the power function of the t test.

### Parametric and Nonparametric Tests for Dependant Data

(A. H. El-Shaarawi and Eivind Damsleth, 1988)

Simulation and aneclytical results shown that ignoring serial dependence can have serious effects on the performance of the t, sign and Wilcoxen tests. In particular, the true significance levels of these tests were altered significantly from the intended nominal levels. Modifications for these tests were given and shown to have the correct significance levels. Furthermore, an estimate of serial correlation was suggested for binary data and evaluated by simulation.

# Statistical Methods and Sampling Design for Estimating Step Trends in Surface-Water Quality

(Robert M. Hirsch, 1988)

The paper addressed two components of the problem of estimating the magnitude of step trends in surface water quality. The first was finding a robust estimator appropriate to the data characteristics expected in water-quality time series. The Hodges-Lehmann class of estimators was found to be robust in comparison to other nonparametric and moment-based estimators. A seasonal Hodges-Lehmann estimator was developed and shown to have desirable properties. Second, the effectiveness of various sampling strategies are examined using Monte Carlo simulation coupled with application at this estimator.

# Robust Trend Assessment of Water Quality Data Series (Byron Bodo, Keith Hipel, A.l. McLeod, 1989)

This paper discusses the reasons for trend analysis particularly with the Ontario Provincial Water Quality Monitoring Network (PWQMN). Discussions with respect to the difficulties related to water quality data sets are highlighted (i.e. uneven spacing on time, background variability, non-normality, numerous outlines and seasonal periodicity). While trend tests (i.e. Mann Kendall) are robust, they depend on monotonic trends (i.e. trends which proceed in one direction over time). Graphical procedures for trend analysis as corroborative evidence are illustrated. A main finding was that graphical procedures based on a Robust Locally Weighted Regression (RLWR) technique provided good results. It should be noted that RLWR using F values of 12 percent were ideal for smoothing seasonality and F values of 75 percent were good for illustrating annual trends.

### Identification of Large-Scale Spatial Trends in Hydrologic Data (Harishar Rajaram and Dennis McLaughlin, 1990)

It is often useful to distinguish different scales of variability in hydrologic properties. In the simplest two-scale case, large-scale fluctuations about this trend can be viewed as random residual. This paper described a method for estimating spatial trends from scattered field measurements

The basic concept is to treat both the trend and the residual as stationary random functions. These functions are distinguished by their spatial spectral (or covariance) properties, which may be estimated from available data or simply hypothesized.

Two versions of a general algorithm for estimating spatial trends were presented:

- A discrete version which is useful in practical applications where data are limited and irregularly spaced.
- 2) A continuous version which can be used to study the effects of using incorrect spectral parameters. Applications of the discrete algorithm to both synthetically generated data and field measurements yield satisfactory trend estimates. An analysis based on the continuous algorithm showed that the estimation error lower bound for these applications depends on two dimensions ratios, that is, the scale disparity (ratio of the trend and residual correlation scales) and the signal-to-noise ratio (ratio of the trend and residual variances). These ratios may be used to evaluate the feasibility of trend estimation before field samples are actually collected.

# Trend Analysis Methodology for Water Quality Time Series (A.I. McLeod, K.W. Kipel, 1990)

This study presents a general trend analysis methodology for detecting and modelling trends in water quality time series. The procedure is developed for problematic data series with characteristics such as non-normal positively skewed populations, irregularly spaced instantaneous observations, seasonal periodicities and coverable. Graphical methods, for example time series plots, robust regression smooths and box and whisker plots are used for illustrating trends. Non-parametric techniques are based on Kendall's rank correlation coefficient. Spearman's partial rank correlation is also used for analyzing trends especially for seasonal dependant and missing data series. The study illustrates the methodology on the Grand and Saugeen Rivers in southwestern Ontario.

Note: These techniques were subsequently used extensively in the present investigation. Further detailed information is given in Section 3.2.

### Exploratory Data Analysis

(Rory M. Leith, Keith W. Hipel and Herman Goertz, 1991)

"Exploratory data analysis techniques are used to detect trends and other statistical characteristics in nine streamflow time series at both the annual and monthly levels. For convenience of interpretation, the output from the analysis is displayed graphically, along with some numerical results from appropriate statistical tests. As well as providing indications and statistical tests of trends, non-normal behaviour and auto-correlated behaviour in flow sequences, exploratory data analysis may be used to place any particular response or collection of responses in context against the range of observed values, thus indicating periods of unusual flow conditions."

Nine stations are analyzed, five located in Ontario and four located in British Columbia. The report results indicate that two out of five Ontario stations illustrate increasing trend for mean annual flows. It is interesting to note that stations 04CJ001, 02AD008 (part of the subset of data available, for use in this report) are identified as having inconsistent record statistics and heavily regulated tendencies respectfully.

# Selection of Methods for the Detection and Estimation of Trends in Water Quality (Robert M. Hirsch, Richard B. Alexander, and Richard A. Smith, 1991)

This paper summarizes and examines some of the major issues and choices involved in detecting and estimating the magnitude of temporal trends in measures of stream water quality. The first issue is the type of trend hypothesis to examine; namely step trends versus monotonic trend. The second relates to the general category of statistical methods to employ, i.e. parametric versus nonparametric. The third issue relates to the kind of data to analyse; concentration data versus flux data. The fourth relates to issues of data manipulation to achieve the best results from the trend analysis. These issues include the use of mathematical transformations of the data and the removal of natural sources of variability in water quality due to seasonal and stream discharge variations. The final issue relates to the choice of a trend technique for the analysis of data records with censored or "less than" values.

The type of trend analysis (i.e. step trends versus monotonic trends) was illustrated. For example, step trends are used to establish that a data sample may be made up of two or more distinct populations and a monotonic trend is a continuous increasing or decreasing trend over time. Problems and possible solutions to temporal inconsistencies for groups of records is detailed.

Parametric and non-parametric tests are compared and it was concluded that the more nonnormal the data set was, the better the results are for parametric tests. However, the results indicate for large samples the modest advantage of efficiency for parametric tests are not comparable to the deficiency in applying parametric tests with biases of assumptions inherently involved in applying such techniques, and hence non-parametric tests are recommended for large group data sets.

# Statistical Estimation and Interpretation of Trends in Water Quality Time Series (Lena Zetterqvist, 1991)

Three approaches to trend analysis of water quality time series were discussed:

- seasonal model, with a test for trend based on ranks of observations, with observations assumed to be dependant;
- transfer function noise model, in which co-variate series may be included by means of transfer functions, with the remaining noise modeled as a seasonal auto-regressive moving average process;
- 3) component model, with the noise decomposed into their ability to include co-variate series, possibility of interpretation of trends, treatment of seasonal variation and serial dependence, and robustness for outlier. The component model has been regarded as the most realistic and the most informative of the three approaches.

### 2.2.3 Summary

A summary of relevant information for various investigations which included development of regional low flow prediction methods is given in Table 2.1.

In undertaking a review of the literature in previous investigations it was found that many investigators have analysed low flow characteristics over durations from 1 to 273 days in length, for return periods of 1 to 100 years. In general, it was determined that the Gumbel III and Log-

Pearson III distributions best fit the samples of low flow data for gauged streams (Tasker, 1987, Condie and Nix, 1975, Matalas, 1965 and Table 2.1). Several investigations considered techniques for predicting selected low flow characteristics while very few investigations have considered techniques for developing regionalized flow duration curves.

Parameters found to be significant in regression equations generally tended to be drainage area, base flow index, mean annual precipitation, area controlled by lakes and swamps, watershed relief, stream length, mean annual snowfall, mean annual evaporation, groundwater fluctuations, mean annual runoff and soil index. However, some parameters that were not found to be highly correlated in one region were found to be important in other regions (Institute of Hydrology, 1980).

With reference to the available literature, the previous investigation in Southern Ontario included the following parameters in development of the physiographic, meteorologic and hydrometric data base; drainage area (DA), mean annual snowfall (MAS), mean annual precipitation (MAP), mean annual runoff (MAR), mean annual evaporation (EVA), area controlled by lakes and swamps (ACLS), stream length (LNTH) and Base Flow Index (BFI).

Recent investigations (Cumming Cockburn Limited, 1990) also recommended that the Ministry of Environment and Energy should continue use of the 7Q<sub>20</sub> as a prime indicator of low flows for the Province of Ontario.

The following additional points and relevant information on analysis and regionalization of low flows and trends summarize the main highlights of the literature review as related to the objectives of this investigation.

### Low Flows

With regard to low flow characteristics, the review of literature identified the following points of interest:

- · Winter low flows appear to have greater magnitude than summer low flows
- Winter and summer low flows may belong to distinct populations in some areas
- Some data records have subsets which belong to different populations

- Record lengths of 10 years are a good minimum estimator for 20 year recurrence low flow
- Some years the drought statistic may not be significant in large record lengths compared to several base flow periods in one dry year
- Calendar year analysis of low flow characteristics provides more conservative results than those based on a water year for short durations
- The most common distribution for analysing low flow characteristics are the Weibull, two parameter log normal, Log Pearson Type III and Gumbel
- The use of L-moments gave estimates with narrower confidence limits than conventional moments, although the difference was not larger

With regard to regionalization of low flows the literature identified the following points of interest (see also Table 2.1):

- Long duration low flows may be affected by different physiographic and climatic characteristics
- Elevation related effects of climate parameters indicate high correlation coefficients of elevation to low flows
- Intercorrelation of base flows from nearby gauges is a good method of extending short record lengths to produce high recurrence interval estimates (i.e. base flows from a 2 year record length can be regressed against base flows of a nearby hydrologically similar long term station to predict nQ<sub>20</sub> extreme values)
- Isoline analysis of flow characteristics provides a fairly robust estimation technique for ungauged watersheds
- · Evapotranspiration is an important hydrometerologic process affecting low flows
- Several recent studies have developed statistical tests for identifying regions with homogeneous low flow characteristics.

TABLE 2.1 SUMMARY OF LITERATURE REVIEW

| Study                                    | No. of<br>Stations | Distri-<br>bution   | Method                         | Parameters<br>Examined                                                                | General Form of Equations                                                                                                                        |
|------------------------------------------|--------------------|---------------------|--------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Wright, 1970*                            |                    |                     | Regression                     | DA,BS,MAP                                                                             | MAM = f(Da, BS)<br>MAM = f(DA, BS, MAP)                                                                                                          |
| Osbom, 1974*                             | 20                 |                     | Index<br>Regression            | Q7L1P,P,DA,H,CL,DD                                                                    | $\log 7Q_2 = f(DA, H, Q7LIP, P)$                                                                                                                 |
| Taster, 1975*                            |                    | LN III              | Regression                     |                                                                                       | $7Q_{10} = f(DA, MAP, SI)$                                                                                                                       |
| Armbruster, 1976a*<br>Armbruster, 1976b* | 104                |                     | Regression                     | DA,CS,BL,EL,FC,MAP,ACLS,MAS<br>,SI,MAP, CF, DA                                        | $\log 7Q_{10} = f(DA, MAP, SI)$ $7Q^{10} = f(DA, MAP, CF)$                                                                                       |
| Armbruster, 1976c*                       | 115                | Pearson<br>Type III | Regression<br>Index            | DA,MAP                                                                                | LF = f(DA, MAP)                                                                                                                                  |
| Boyer, 1977*                             | 12                 | G                   | Regression                     | DA,CO,EL,LAT,LNTH,WF,T <sub>10</sub> ,R <sub>10</sub>                                 | In $(7Q_{10}) = f$ (CO, LNTH, WF, $T_{10}$ , $R_{10}$ )                                                                                          |
| Env. Cda., 1978*                         | 11                 | G                   | Regression                     | DA,R.AS,AL,ALS,OB,LEN,DD,<br>SLP,EL,MAP                                               | Correlation Matrix only produced                                                                                                                 |
| MacLaren Plansearch,<br>1981*            | 9                  | Eye Fit             | Regression                     | DA,SI,ALS                                                                             | $Q_1 = f(DA, SI, ALS)$<br>$Q_2 = f(DA, SI, ALS)$                                                                                                 |
| Condie, 1983*                            | 74                 | G                   | Regression                     | DA,MAP,BFI                                                                            |                                                                                                                                                  |
| Inst. of Hydrology,<br>1986*             | 232                | LN                  | Regression                     | BFI,MAP,ACLS                                                                          | (Q95(10) <sup>1/4</sup> = f(BFI, MAP, ACLS)<br>(Q95(10) <sup>1/4</sup> = f(BFI, ACLS)                                                            |
| Rochelle, 1989                           | 93                 |                     | Runoff<br>Contour Map          |                                                                                       |                                                                                                                                                  |
| Cumming Cockburn,<br>1990*               | 65                 | 3PLN                | Regression                     | DA,BFI,LNTH                                                                           | nQy = f(DA, BFI, LNTH)                                                                                                                           |
| Gray, 1990                               | 80                 |                     | Regression                     | DA,MAR                                                                                | LF = f(DA, MAR)                                                                                                                                  |
| Inst. of Hydrology,<br>1990*             |                    | G                   | Regression                     | Q <sub>95</sub> (10),BFI,DA,MAP, LNTH                                                 | $Q_{05}(10) = F(BFI)^5$ , $(DA)^5$ , $(LNTH)^5$<br>$Q_{05}(10) = F(BFI)^5$ , $(DA)^5$ , $(LNTH)^5$<br>$(100_2) = f(BFI)$<br>(1002) = f(BFI, MAP) |
| K. C. Gan, 1990                          | N/A                | N/A                 | Regression                     | N/A                                                                                   | $Qm = A \cdot DA^{B} \cdot MAR^{C}$                                                                                                              |
| Pilon, 1990                              | 11                 | Weibull             | Regional<br>Frequency<br>Curve | Regionalized Weibull parameters<br>A,E,U                                              |                                                                                                                                                  |
| Rae Ann Melloh, 1990                     | N/A                | N/A                 | Regression                     | N/A                                                                                   | $7Q_m = f(DA)$                                                                                                                                   |
| U.S. Army Corps of<br>Engineer, 1990     | 16                 |                     | Regression                     | Elev.,DA,R <sup>2</sup>                                                               | $7Qm = f(DA,R^2)$                                                                                                                                |
| Vogel & Kroll, 1990*                     | 23                 | LN                  | Regression                     | DA.H                                                                                  | 7Qy = f(DA, H)                                                                                                                                   |
| Винеі, 1991                              |                    |                     | Regression                     | DA,MAP                                                                                | $LF_{T,D} = f(DA,MAP)$                                                                                                                           |
| Khanna, 1992                             | 80                 | W3 and<br>3LN       | Regression                     | GRDM, DA, BFI, LNTH, ELEVC,<br>SSI, FOREST, PPT, DISTC,<br>SLOPE, LATC, LONGC, HYDRAD | LN(10Q <sub>2</sub> ) = A*LN(HYDRAD) +<br>B*LN(LATC) + C*LN(LONGC) + D                                                                           |

<sup>\*</sup> Source: Regional Analysis of Low Flow Characteristics Central and Southeastern Regions, Cumming Cockburn Limited, 1991

### Trends

With regard to analysis of trend in low flow series, the review of literature identified the following points of interest:

- Analysis of average annual flows found some evidence of trend for many station records
- Previous studies have identified significant trend components with respect to some flow characteristics (i.e. average monthly flows, Boals 1979, and mean annual flows, Leith 1991) for some hydrometric stations in Ontario
- Non parametric tests are preferable due to inherent assumptions which must be made to apply parametric tests
- The Mann and Kendall test for monotonic trends is a good indicator for trend significance and direction
- Other trend detention methodologies include Mann-Whitney, Spearman and Lettenmaier tests
- Graphical procedures are important for corroboration of trend statistics
- The robust locally weighted regression smoothed technique illustrates trends in noisy data.



### 3.1 General

The Northwestern and Northeastern regions identified by the Ministry of the Environment define the study area. One hundred and ninety-four (194) hydrometric stations were identified in the region for this analysis based upon the period of record and other station characteristics. Low flow characteristics for ninety-three (93) of these stations were analyzed to develop estimation techniques. Twenty-one of those remaining were set aside for testing of prediction methods. The remaining stations were omitted from the study based on selective screening criteria. (Station screening and selection is discussed in Section 3.3.2.)

Preliminary investigations were undertaken using the inhouse computerized data base. This data base was completed with flow records only extending to 1986 (due to availability early in the study). The methodology for analyzing extreme low flows and determining relevant recurrent intervals is discussed in the Low Flow Characteristics in Ontario report, Cumming Cockburn Limited, Ministry of the Environment, 1988

Flow records for the period of 1987-1990 were subsequently made available for each of the stations in Northern Ontario regions as the investigations proceeded. These new records possess more useful information which makes it possible to obtain more accurate results. Furthermore, among the 194 hydrometric stations, seventeen (17) are new stations which have more than ten years' flow records available for analysis due to the additional four year period (1987-1990). Eight (8) of the new stations were put into the data base for low flow regionalization. The remaining new stations were reserved for testing.

Statistical tests for independence, randomness, trend and data homogeneity were undertaken for 149 stations (including the stations reserved for testing) for the purpose of station screening. Results of statistical testing are summarized in Tables 3.1 (for the available data base to 1990) (additional information on statistical tests for trend analysis is given in Section 3.2 and Appendix A). The remaining 45 stations are classified as multiple station (21), highly regulated (13) and undeterminable drainage area (11). Significant trend, lack of randomness and non-homogeneity was detected for a few of the low flow data. Nineteen (19) stations which showed significant trend together with non-randomness and non-homogeneity were screened out of the analysis. Section 3.2 describes the methods used in this study to analyse trend in low flow records. It should be noted that there are sixteen (16) stations records which contain too many

I ABLE 3.1(a) STATISTICAL TEST RESULTS NORTHWESTERN REGION (1990)

| 8           | 2 3         | 1-    | 2 5        | × 98   | \$   \$ | ž    | ٥.   | ě,    | 2     | 2 3      | 2    | >      | ۶.    | >       | 2 2   | >     | ۶       | : اح | ×1>  | ž       | 7     | ž    | <u>چ</u> اچ | 2      | ×      | ×      | , s   | ĕ   ĕ        | 2     | ×     | , s     | 2 3    | ×         | × =     | 2 2    | 1,0    | ž       | ۵ ×   | 2 2           | × 68   | × ×       | 5     | >               | Ž       | ž    | × 3   | 2        | . 2     | , e     | ,<br>(88 | 8 3     | 1 8     | ž               | 2       |
|-------------|-------------|-------|------------|--------|---------|------|------|-------|-------|----------|------|--------|-------|---------|-------|-------|---------|------|------|---------|-------|------|-------------|--------|--------|--------|-------|--------------|-------|-------|---------|--------|-----------|---------|--------|--------|---------|-------|---------------|--------|-----------|-------|-----------------|---------|------|-------|----------|---------|---------|----------|---------|---------|-----------------|---------|
| Mal         |             | -     | X No       | 2      | X 88    | Xes. |      | 71    | +     | 2 3      | S    | × 68   | Ύes   | 2 3     | 8 8   | 2     | ž       | χ.   | 8 3  | ž       | Yes   | ž    | S   S       | g S    | ž      | S      | 8     | 8 8          | 8 8   | Yes   | × 68    | 2 %    | × 88      |         | 2 2    |        |         | 8 8   | 2 2           | Yes    |           | \$ 8  | 8               | ,<br>∀  | S    | 8 8   | 2        | 2       | 2       | 2        | 2 3     | × 88    | 2               | 2       |
| Zm          | -233        | -2.33 | -233       | -2 33  |         |      | i    | -2 33 | -2 22 | 16.33    |      |        |       |         |       |       |         |      | -    |         |       |      |             |        |        |        |       |              | -2 33 |       |         |        | -2 33     | 000     | 16.33  |        | -2 33   | 23.33 | -233          |        | -233      | -6.33 |                 |         |      | -2 33 |          |         |         | i        | -       | -2 33   |                 |         |
| Critical Zm | 5%          | -165  | -165       | -165   |         |      | -    | -1.65 | 1 65  |          | -    |        |       | İ       |       |       |         |      |      |         |       |      |             |        |        |        |       |              | -165  |       |         | i      | -1 65     | 10,     | 001    |        | -1 65   |       | -1 65         |        | -165      | 0     |                 |         |      | 1 65  |          |         |         | 1        | -       | -1.65   |                 |         |
| Zm          | -0.81       | -2 05 | -2 82      | -1 73  |         |      | 10   | -0.05 | -2 A2 | 70.7     |      |        |       | 1       | İ     | Ì     |         | İ    |      | İ       |       | Ì    |             | İ      |        |        |       | İ            | -143  |       | 1       | 1      | -0.51     | 090     | 3      |        | -172    | -0.64 | -277          |        | -1.16     | 200   |                 |         |      | 11.17 |          |         |         |          | -       | -0.28   | Ī               |         |
| 1           | æ           |       | - 11       |        | 4 0     |      | ,    | Q.    | b     | 10       | =    | 22     | 10    | 33      | 7     | 31    | 31      | 9 9  | 28   | 32      | 35    | 35   | 28          | 35     | 31     | 32     | 36    | 22           |       | 19    | 30      | 94     |           | 94      | 25     | 31     |         | 47    | -             |        | -         | 10    | 16              | 16      | -    |       | 56       | 5       | 22      | 6        | 5 6     |         | 62              | 22      |
| Critical    | e<br>n      |       | 96         |        | 24      |      | 1    | 27    | 3     | 27       | 19   | 6      | 27    | 2 5     | 5     | 42    | 42      | 24   | 38   | 47      | 47    | 47   | 2 8         | 47     | 42     | 47     | 95    | 3.5          |       | - 27  | 47      | 110    |           | 116     | 46     | 45     |         | 19    | 5             |        |           | 27    | 27              | 54      | i    | 1     | 72       | 99      | 5       | 200      | 2 6     |         | 102             | 35      |
| <br>:>      |             |       | 129        |        | 38      | 195  | 19.5 | 345   | 5     | 46       | 15   | 48 5   | 44    | 9 9     | 24    | 41.5  | 34      | 9 9  | 84.5 | 27      | 61    | 58   | 2 2         | 36.5   | 3.     | 36     | 5 5   | 215          |       | 47    | 23      | 138    |           | 1545    | 21     | 90     | T       | 25    | 3             | 12     | İ         | 98    | 20              | 40      | 4    | Ť     | 56       | 53      | 9       | 54       | 5 8     |         | 74              | 18      |
| ator        | 8 2         | 2     | 8 8        | Xes:   | S ×     | Υes  | , A8 | 8 8   | 2     | 2        | 88   | ŝ      | ×8    | 8 2     | X GS  | Yes   | Yes     | X es | 8 8  | X 88    | Yes   | X 68 | 8 8         | X 88   | ٥      | Yes    | 8 8   | 8 2          | Yes   | Yes   | × ×     | 8 2    | Yes       | 8 2     | 8      | Yes    | 8 8     | 8 8   | 8             | ×8     | 8 8       | 8 8   | X <sub>es</sub> | Υ 685   | 8    | 8 2   | × 98     | Yes     | , Yes   | 8 8      | 8 8     | X BS    | χ               | Yes     |
| Indicator   |             |       | 8 8        | 8      | S 8     | Yes  | 8    | 8 8   | 2     | S        | Yes  | Š      | X 98  | 8 2     | 8     | 2     | X 68    | , es | 8 8  | X 685   | Yes   | Xes  | 8 8         | 88     | Š      | Yes    | 2 8   | 8 8          | Š     | Yes   | 8 48    | 8 8    | Υes       | 8 2     | 8      | Yes    | 8 2     | × ×   | 2             | Yes    | S 8       | 2     | Xes.            | Yes     | 8    | 2 2   | 2        | 8       | 2       | 8 2      | 2 8     | S<br>S  | X <sub>es</sub> | × 68    |
| al Zm       | 2 58        |       |            | 2.58   |         |      |      | ĺ     |       |          |      |        |       |         |       |       |         |      |      |         | i     |      |             |        |        |        |       |              |       |       |         |        |           |         |        |        | 257     | 201   | 2.58          |        | 256       | 20.4  |                 |         | 1    | 2 2 2 |          |         |         |          |         | 2 58    |                 |         |
| Critical    | 1 96        | -     | +          | 1.96   |         |      | 30   | _     |       |          |      |        |       |         |       |       |         |      |      |         |       | 1    |             |        |        |        |       |              |       |       | -       |        |           |         |        | П      | 1 98    | 1     | 1 96          | 1      | 1 96      | 1     |                 |         | -    | 8 8   |          |         |         | 1        |         | 1.96    | Ц               |         |
| Zm          |             | 2 873 | +          | 22     |         |      | ľ    |       |       |          |      |        |       |         |       |       |         |      |      |         |       |      |             |        |        |        |       |              |       |       |         |        |           |         |        | Н      | 2 53    | +     | 2.37          | _      | 2.09      | _     |                 |         |      | 2.08  | 1        |         |         |          |         | 2.04    | Ц               | _       |
| Range 5%    | E .         |       | 24         |        | 13      |      | 1    | 15    |       |          | 13   |        | 4     | 200     | 12    | 9     | 9       | 4    | 100  | 9       | 9     | 9 9  |             | -      | 10     | 91     | 0 00  | 200          | 1     | 15    | 13      | 25     | 1 26      | 25      | 16     | 18     | 1       | 20    | Ц             | 2      | 1         | 1     | 12              | 13      | 2    | 1     | 21       | 20      | 15      | İ        | 1       | Ц       | 24              | L       |
|             |             | OI 0  | 17 12      |        |         |      |      |       | Ĺ     | 0        |      | 0      | 0     | 2 0     | 1     | -     | 12      | 2010 | -    | 2       | _     | 2 0  | V -         | 2      | 2      | 2/2    | V -   |              | 2     | 0     |         | 2 8    | 1,        | 9 9     | -      | 2      | 2 2     | 10    | 38            | 9      | - 6       | 1     | 0               | _       | P 8  |       | -        | -       | 0       | 2 2      |         |         | 17 12           |         |
| Run *       |             |       | 1 71 (21)  |        | 1       |      |      |       |       |          |      |        |       | (5) (6) | -     |       | (10) 12 | -    | =    | 121     | 12    | 12   | 12) 11      | 12 1   | 1 12 1 | 12 1   | 111   | (12) 11      | (2) 0 | 100   | (10) 12 | 17 18  | (14) 19 2 | (1) 0   | 11 (0) | -      | (29) 35 | -     | $\rightarrow$ | 4      | (40) 43 4 | (2) 0 | 1) 0            | 0(1)    |      |       | 1 51 (8) | 4       | 0 0     | 2 0      | 20      |         | (16) 17         |         |
| -           | +           | -     | +          | +      | +-      | -    | +    | +     | +     | +        | -    | +      | +     | +       | +     | Н     | +       | +    | +    | Н       | 1     | 7    | +           |        | Н      | +      | +     | +            | Н     | +     | +       | +      | Н         | +       | +      | Н      | +       | ÷     | Н             | 0      | +         | -     | Н               | +       | -    | +     | L        | Н       | 88 5    | +        | 9       | H       | +               | -       |
| 0           |             | -     | ON ON      |        |         | 1    | 1    | 1     | ľ     | $\vdash$ | Н    | +      | +     | 8 0     | +     | H     | +       | +    | H    | Ĥ       | 0     | +    | No N        | × Kes  |        | +      | 2 2   | 2 2          | Yes   | 7     | 1       | N<br>N | 4         | -       | , Yes  |        | Se Xes  | -     |               | ž:     | 0 2       | 1     | H               | 2       | 7    | 2 2   | F        | П       | 8 2     | +        | +       | -       | No.             | , es    |
| 10          | 99          | V 99  | -274 N     | 99     | 2.9     | 90   | 0 0  | 88    | Y 17  |          | 1 1  | - 1    | - 1"  |         |       | 1 1   | - 1     | - 1  | 1    |         | 1     |      | 2 63        | ,      | 1      | 2.61 Y | 4     | <del>-</del> |       | _     | _1_     | !      |           |         |        |        |         | 1     | Ш             |        |           |       |                 | ∐'      |      |       | 1        |         |         |          |         | 2.69 h  |                 |         |
| Critical T  |             |       |            |        |         |      |      |       |       |          |      |        |       |         | L     |       |         |      |      |         |       |      |             |        |        |        |       |              | j     |       | L       |        |           | $\perp$ |        |        |         | L     |               |        |           |       |                 |         |      |       |          |         |         | $\perp$  | 1       | Ц       | 4               | _       |
| 0           | g l         |       | -2 03      | 1      | -2.1    | 2.1  | 200  | -22   | 2.0   | 2        | -2.1 | 2.0    | -21   | -2.0    | 2     | -50   | 20      | 2    | 20   | 2.0     | 20    | 200  | 200         | 20     | 20     | 20     | 200   | 20           | 2.0   | 2     | 200     | 20     | -20       | 2 0     | 20     | 2.0    | 1 1     | 2.0   | '             | 22     | 1 6       | 1     |                 | _       | 7    |       | 2.0      | 20      | 200     | 20       | 2.0     | 2.01    |                 |         |
| -           |             |       | -0.55      |        | -0 12   |      |      |       |       |          |      |        |       |         |       |       |         |      |      |         |       |      |             |        |        |        |       |              |       |       |         |        |           |         |        |        |         |       |               | 1.45   | 0.72      |       | 0.82            | 1       | 9    | -1.63 | 2.48     | 1.92    | 3.34    | 1.98     | 1.17    | 1       | 6               | - 1     |
| Rank        | -0.12       | 0 321 | -01        | 0.034  | -0 03   | 0 24 | -021 | 000   | 0.483 | 0 11     | -043 | 0.18   | 0 21  | -0.08   | 0.14  | -031  | 0.81    | 0.08 | 0.00 | 0.53    | 0 0 0 | 0 54 | 0.37        | 0.6    | 0.53   | 0.81   | 0.46  | 0.18         | 0 29  | 600   | 0.84    | 0 0    | -0 15     | 0.50    | 0.0    | 0.21   | -03/    | 0.54  | -0.4          | 0 42   | 900       | 0 57  | 0.2             | 0 36    |      | -0.19 | 0 42     | 0.35    | 0.04    | 0.31     | 0.20    | 0.2     | 0.314           | 0.72    |
| Indicator   | 2 S         | × ×   | 8 2<br>× 2 | Se Yes | 7 8 Y   | _    | 88 7 | 8 8   | -     | 88 Y     | -    | es Yes | , Yes | 8 8     | × × × | × Yes | × Yes   | 8 8  | × ×  | × × es  | × ×   | 8 8  | 8 8         | × × 88 | × 488  | X Yes  | 8 X   | - K          | × Kes | X X   | 8 8     | × ×    | Xes       | 8 8     | × es   | Se Yes | 8 8     | × × × | × 8           | × × 88 | Yes Yes   |       | -               | Yes Yes | 89 2 | X X 8 | /es Yes  | /es Yes | /es /es | 8 8      | (88 Yes | Se Yes  | X X 88          | es Yes  |
|             | 239 Yes     | 39 Y  | 2.45 Ye    | 2 0    | 2 60    | 2    | > >  | 7     | 43    | 57 Y     | 92 Y | 55 Y   | 28 7  | 2.55 Ye | 72 Ye | 52 Ye | 52 Ye   | 2 2  | 23   | . 51 Ye | 51 Ye | 200  | 53 Ye       |        | 52 Ye  |        | 23 Xe | 55 Ye        | 41 Ye | 57 Ye | 51 Ye   | 44 Ye  | 43 Ye     | 44 Ye   | 54 Ye  | 52 Ye  | 500     | 49 Y  | 39            |        |           |       | 1               | -11     |      |       |          |         |         |          |         | 2 41 Ye | 7               | 2.55 Y. |
| Critical    | _           | _     | 1.69       | -      | -       | _    | -    | _     | _     | Ĺ        |      |        | 1     | 1       | _     | Ш     | 1       |      | 1    |         | _     | _    | 1           |        | Ш      |        | _     | 1            | 1 68  | 1.74  | 122     | 1.89   | 1.89      | _       | _      |        | 1       | 1     | Ш             | 1      | -         | -     |                 | -       | 4    | +     |          | ш       | 1       | 1        | 1       | 1       | _               | -       |
| -           | 0           | 0     | 0          | 0      | 0       | 0    | 0    | 0     | 0     | 0        | 0    | 0      | 0     | 9       | 0     | 0     | 0       | P    | 0    | 0       | 0     | 0    | 0           | 0      | 0      | 0      | 0     | 0            | 0     | 0     | 0       | 0      | 0         | 0       | 0      | 0      | 00      | 0     | 0             | 0      | 010       | 0     | 0               | 0       | 9    | 0     | 0        | 0       | 0       | 0        | 0       | 0       | 0               | 0       |
| Rank        | o ge        | 0     | 0          | 0      | 0       | 0    | 0    |       | 0     | 0        | 0    | 0      | 0     |         | 0     | 0     | 0       | 0 0  | 0    | 0       | 0     | 0    | 00          | 0      | 0      | 0      |       | 0            | 0     | 0     |         | 0      | 0         | 0 0     | 0      | 0      | 0 0     | 0     | 0             | 0      | 00        | 0     | 0               | 0       | 9    | 0     | ٥        | 0       | 2 0     | 0        | 0       | 0       | 0               | 0       |
| Region      | 3 8         | 9     | 9 0        | 0      | 0       | 9    | 2    | 9 6   |       | 9        | 0    | 6      | 0     | 9 6     | -     | -     | -       | -    | -    | -       | -     | -    | -           | -      | -      | -      | -     | 9            | 6     | 6     | -       | -      | -         | -       | -      | -      | 20      | ~     | 2             | 2      | ~ ~       | ~     | 2               | 2       | 7    | 2     | 2        | 2       | 200     | 2        | 2       | 2       | 2               | ~       |
| _           | Years<br>68 | 68    | 34         | 89     | 19      | 4    | 4    | - 8   | 8     | 50       | 17   | 21     | 6     | 2 2     | 14    | 24    | 24      | 6    | 23   | 52      | 52    | 4 5  | 23          | 52     | 24     | 52     | 23    | 23           | 20    | 20    | 2 2     | 37     | -         | 25      | 22     | 24     | 0 6     | 28    | 7.5           | 12     | - 8       | 50    | 50              | 6       | 2 8  | 02    | 30       | 53      | 27      | 28       | 21      | 49      | 35              | 51      |
| Station     | A001        | 3004  | 3009       | 3010   | 3014    | 3015 | 3018 | 2007  | 0000  | 010      | 901  | 2005   | 003   | 200     | 200   | 003   | 100     | 100  | 005  | 100     | 3001  | 8 8  | 18          | 18     | 200    | 600    | 3 8   | 200          | 8     | 8     | 3 5     | 202    | 202       | 200     | 2      | 9      | 200     | 16    | 914           | 910    | 010       | 015   | 210             | 023     | 020  | 805   | 400      | 200     | 2003    | 900      | 9100    | 900     | 200             | 808     |

Yes - Significant, Null Hypothesis Rejected

| CAL IEST RESULIS | STERN REGION (1990) |
|------------------|---------------------|
| SIAHSHUALH       |                     |

| 5% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%                                                                                                                 | MN2 Low Mn3 Mn3 Mn3 Mn3 Mn3 Mn3 Mn3 Mn3 Mn3 Mn3                                     | h 4 33<br>186 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.58<br>2.58<br>2.58<br>2.58              | No No No No No No No No No No No No No N |         | 5%<br>5% | 1%<br>-4.3 |              | %           | 1%<br>1% | Ä        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|---------|----------|------------|--------------|-------------|----------|----------|
| 7% 5% 17% 17% 17% 17% 17% 17% 17% 17% 17% 17                                                                                                              | NN NN NN NN NN NN NN NN NN NN NN NN NN                                              | 3 8 5 3 3 8 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 2.58<br>2.58<br>2.58<br>2.58              |                                          |         | 2%       |            |              | -           | %        |          |
| 2 65 Yes No No No No No No No No No No No No No                                                                                                           | 35<br>36<br>37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38          | 2 4 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |                                          | _       | İ        | -          |              |             |          | Code     |
| 2 89 No No No No No No No No No No No No No                                                                                                               | 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                           | 3.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 5 8 2 5 8                               |                                          |         |          |            | 36 -165      |             | 2º       | Œ        |
| 2 82 No No No No No No No No No No No No No                                                                                                               | 2                                                                                   | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      |                                          | _       |          | _          | -2 -165      | -2.33       | S<br>S   | Œ        |
| 2 82 No No No No No No No No No No No No No                                                                                                               | 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.58                                      |                                          | 3 62 5  | 42       | 31         |              | Yes         | s Yes    | z        |
| 3 17 Yes No No No No No No No No No No No No No                                                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                               | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      |                                          | _       |          | 31         |              | Yes         | s Yes    | z        |
| 3 25 No No No No No No No No No No No No No                                                                                                               | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                              | 5.12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.58                                      |                                          | 9 2     |          |            |              | Yes         | s Yes    | z        |
| 3 17 Yes No No 336 No No No 2 88 No No 2 88 No No 2 2 77 Yes Yes 3 25 No No No 2 88 No No No 2 88 No No No No 2 88 No No No No No No No No No No No No No | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      |                                          | 13      |          |            |              | Yes         | s Yes    | z        |
| 3 36 No No No No No No No No No No No No No                                                                                                               | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             | 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      |                                          | _       |          |            |              | Yes         | s Yes    | z        |
| 3.25 No No<br>-2.62 No No<br>2.88 No No<br>2.71 Yes Yes<br>3.25 No No                                                                                     | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                               | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      |                                          | 10      |          | _          |              | Yes         | y Yes    | z        |
| 3 36 No No<br>-2.62 No No<br>2.71 Yes Yes<br>3.25 No No                                                                                                   | 20 15<br>20 15<br>20 15<br>20 15<br>20 15<br>11 11 11 11 11 11 11 11 11 11 11 11 11 | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      | No                                       | 13      |          | _          |              | × ×         | -        | Z        |
| 2.62 No No<br>2.88 No No<br>2.71 Yes Yes<br>3.25 No No                                                                                                    | 20 15 16 6 6 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18                     | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.58                                      | Yes Yes                                  | _       |          |            |              | Yes         | _        | z        |
| 2.88 No No<br>2.71 Yes Yes<br>3.25 No No                                                                                                                  | 20 15 20 15 11 12 12 12 12 12 12 12 12 12 12 12 12                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                          | L       | İ        | 1          | -1 37 - 1 65 | -2 22       | -        | 9        |
| 3.25 No No                                                                                                                                                | 20 15<br>5 3 1<br>20 15<br>11 15<br>12 11 15<br>12 11 15<br>13 11 15                | 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                         | _                                        | 36.5    | 27       | 0          |              | 3           |          | 2        |
| 3.25 No No                                                                                                                                                | 20 15 11 12 12 12 12 12 12 12 12 12 12 12 12                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                          | 1       | 1        | 2 2        | -            | 2           | _        | 2 0      |
| 0N C75                                                                                                                                                    | 20 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                          | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                          | 76      | 1        | *          | -            | 2           | +        | =        |
|                                                                                                                                                           | 20 15<br>20 15<br>15 11<br>5 3                                                      | 971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | _                                        |         |          | 1          |              | S           | 2<br>0   | z        |
| 2.71 No No                                                                                                                                                | 20<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | No<br>No                                 |         |          | Ĭ.         | -077 -1.65   | 5 -2 33 Yes | s Yes    | Œ        |
| -2.71 No No                                                                                                                                               | 15 11<br>5 3<br>12 8                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Yes Yes                                  | 200     | 138      | 114        |              | Yes         | s Yes    | Œ        |
| 2.05 2.76 No No                                                                                                                                           | 5 3                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                         | Yes Yes                                  |         | 77       | 19         |              | ×           | Yes      | Œ        |
| 2 28 3 25 No No                                                                                                                                           | 12 8                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | Yes Yes                                  | 13      |          |            | 1            | >           | -        | ۵        |
| 2 81 No                                                                                                                                                   | 2                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          |         | 47       | 35         |              | 3           |          | 2        |
| 90 6                                                                                                                                                      | -                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | 2                                        |         |          | 3          | -            | 102         | ÷        | z        |
| 2                                                                                                                                                         | _                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                          | 'n      |          |            | -            | Yes         | S /03    | =        |
| 3.06 No                                                                                                                                                   | 7                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          |         |          |            | 1            | Yes         | s Yes    | Œ        |
| 2.85 No No                                                                                                                                                | 11 8                                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Yes Yes                                  | 55      | 34       | 25         |              | Yes         | S Yes    | Œ        |
| 2.83 No No                                                                                                                                                | 11 8                                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Yes Yes                                  |         |          | 28         | _            | Yes         | × Yes    | z        |
| Yes No                                                                                                                                                    | (19) 22 22                                                                          | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | Yes Yes                                  |         |          | 1          | -1.81 -1.65  | 5 -2.33 No  | Yes      | Œ        |
| 2.65 No No                                                                                                                                                | (33) 38 38                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | Yes Yes                                  |         |          | -          |              | -233 Yes    | >        | æ        |
| 2 2.65 Yes Yes                                                                                                                                            |                                                                                     | 2.65 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.58                                      |                                          |         |          | -3         | 14 -165      | 2 33        | _        | ď        |
| 2.04 2.75 Yes Yes                                                                                                                                         | (7) 14 15 10 2                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | °Z                                       | 15      |          | -          |              |             | +-       | a        |
| -2.76 No No                                                                                                                                               | 14 10                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Yes                                      | -       | 77       | 9          |              | 2 5         |          | : Z      |
| 2.76 Yes Yes                                                                                                                                              | 14 10                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          |         |          | 56         |              | 2           | -        | 2        |
| 2.75 Vas                                                                                                                                                  | 14                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 2                                        | 1 2     | 1 6      | 9          |              | 2 2         | -        | 2 0      |
| 200                                                                                                                                                       |                                                                                     | 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                          | -       |          | 2          |              | 2           | -        | r        |
| 0 100                                                                                                                                                     | *                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                          | -       | -        | 1          | -            | Yes         | _        | œ        |
| 2.88 Yes No                                                                                                                                               | 7 01                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | \$ 22.5 | 27       | 19         |              | 2           | Yes      | z        |
| 3.06 No                                                                                                                                                   | 4                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | _       |          | 1          | -:           | Yes         | × × 63   | z        |
| -3.36 No No                                                                                                                                               | 4                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                          | 2       |          |            |              | Yes         | S Yes    | z        |
| 2.72 Yes Yes                                                                                                                                              | (12) 19 19 14 2                                                                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | No                                       | 29      | 120      | 107        |              | S           | 2        | æ        |
|                                                                                                                                                           | 5                                                                                   | . 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | Yes Yes                                  |         |          | _          |              | Yes         | Yes      | z        |
| 2 2.65 No No                                                                                                                                              | (22) 35 35                                                                          | 3.37 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.58                                      | No<br>No                                 |         |          |            | -0.5 -165    | -2.33       |          | Œ        |
| -2.01 -2.68 Yes Yes                                                                                                                                       | (2) 0 7 7 -                                                                         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | No<br>No                                 |         |          | -2         | 75 -1        | -2 33       | -        | z        |
| -2.01 -2.68 No No                                                                                                                                         | 26 1                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Yes Yes                                  |         |          | ī          | 38           | -2 33       | -        | <u> </u> |
| 2.01 2.69 No No                                                                                                                                           |                                                                                     | 1.79 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                          | 1       |          | ī          |              | -233        | -        | 4        |
| -2.06 -2.79 No No                                                                                                                                         | 0                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | 57      | 26       | _          |              |             |          | Z        |
| -2.04 2.74 Yes No                                                                                                                                         | 17 12                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | _       | _        | 82         | :            | 2           | -        | •        |
| L                                                                                                                                                         | 11                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | _       | 72       | 26         |              | XeX         | _        | 4        |
| 2.13 -2.95 No No                                                                                                                                          | 8 8                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | 27.5    |          | =          |              | ×           | _        | z        |
| 2.13 2.95 No No                                                                                                                                           | 90                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | _       | 1        | =          |              | , e         |          | 1 2      |

# TABLE 3.1(b) STATISTICAL TEST RESULTS NORTHEASTERN REGION (1990)

| 106   196   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198   198 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.96 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (6) 9 9 6 6 14<br>(4) 5 5 3 9 9 (4) 5 2) 11 11 8 16<br>(8) 9 9 6 114<br>(3) 0 3 3 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No (4) 5 5<br>No (12) 11 11<br>No (6) 9 9<br>No (3) 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.36 Yes No (4) 5  -2 83 No No (12) 11 1  2 9 No No (8) 9  2.7 Yes No (3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.34 2.11 2.9<br>2.4 2.02 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yes Yes 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Null Hypothesis Independence: Trend:

Randomness Homogeneity

The correlation is one (i.e. yes indicates independence)
The serial lag-one correlation is zero (i.e. yes indicates trend)
The data is not random (i.e. yes indicates the data is random)

There is location difference between the two time periods (i.e., yes indicates homogeneity).

zero flows, so that frequency analysis could not be performed and, therefore, these stations are screened out of the analysis.

Low flow characteristics were determined for flow records up to 1990 for the 93 selected stations using L-moment methods. The application of L-moments for low flows is new in Ontario and hence the results were compared to standard methods. The results of the low flow frequency analysis compare very well with the previous low flow characteristics for selected recurrent intervals (see Figure 3.1 and 3.2 and Section 3.3.3 for details). Relevant physiographic and meteorological characteristics were also determined as discussed in Section 3.4.

### 3.2 Trend Analysis

### 3.2.1 Introduction

Some previous work (Low Flow Characteristics in Ontario, Cumming Cockburn Limited, 1988) indicated that there might be trend in some of the low flow series for stations in the Northwestern and Northeastern Regions. A more detailed analysis was undertaken to determine if trend is present in these low flow statistics. If trend was found to be present, it was postulated that some correction method should be applied to those stations prior to developing a regionalization method. This might include the following options:

- Neglecting the trend if it is weak or insignificant or if it is considered to be part of a recurring cycle.
- Another approach would be to simply screen out all of the stations that show trend.
   However, this could result in a significant loss of useful information, especially if the regionalization results are unaffected.
- 3. Finally an approach could be developed in an effort to remove the trend to adjust the low flow series, then the "detrended" data could be used in the regionalization analysis. (however, this might require a means of accounting for the trend in practical applications if the effects on low flow predictions are significant).

The following sections summarize trend analysis and results (3.2.2, 3.2.3) and Appendix A describes in more detail the methods utilized.

# TABLE 3.2(a) LOW FLOW CHARACTERISTICS FOR STATIONS WITH "SIGNIFICANT TREND" ACCORDING TO MANN-KENDALL TEST (1990) NORTHWESTERN REGION

| Station # | Drianage<br>Area<br>(km²) | Period of<br>Record<br>(year - year) | Number<br>of<br>Years | Reg*<br>Code | 7Q Mean<br>(m³/s) | 7Q Max<br>(m³/s) | 7Q Min<br>(m³/s) | Rate of**<br>Change<br>(m³/s/Year) |
|-----------|---------------------------|--------------------------------------|-----------------------|--------------|-------------------|------------------|------------------|------------------------------------|
| 02AB004   | 3760                      | 1923-1990                            | 68                    | R            | 1.81              | 20.43            | 0                | -0.0079                            |
| 02AB013   | 526                       | 1951-1990                            | 40                    | R            | 0.23              | 2.99             | 0                | -0.0093                            |
| 02AD008   | 24600                     | 1950-1990                            | 41                    | R            | 222.45            | 356.57           | 92.34            | -1.72                              |
| 02BB002   | 1980                      | 1967-1990                            | 24                    | N            | 3.965             | 8.62             | 0.07             | -0.066                             |
| 04CA002   | 36500                     | 1965-1990                            | 25                    | N            | 75.9              | 282.43           | 33.7             | -1.511                             |
| 04CB001   | 10800                     | 1967-1990                            | 24                    | N            | 43.58             | 64.83            | 25.86            | -0.518                             |
| 04DA001   | 5960                      | 1966-1990                            | 25                    | N            | 9.88              | 24.39            | 5.22             | -0.142                             |
| 04DC001   | 50000                     | 1965-1990                            | 25                    | N            | 84.05             | 373.71           | 58.43            | -1.253                             |
| 04FA001   | 9010                      | 1966-1990                            | 25                    | R            | 16.91             | 37.39            | 8.5              | -0.2047                            |
| 04FA003   | 4900                      | 1966-1990                            | 25                    | N            | 6.55              | 10.93            | 2.8              | -0.0896                            |
| 04FB001   | 24200                     | 1965-1990                            | 24                    | N            | 48.11             | 74.11            | 15.43            | -1.2077                            |
| 04GD001   | 32400                     | 1966-1990                            | 22                    | R            | 55.98             | 88.6             | 27.71            | -1.041                             |
| 04JD002   | 4270                      | 1939-1990                            | 51                    | R            | 0.06              | 0.87             | 0                | -0.0023                            |
| 04JF001   | 5360                      | 1968-1990                            | 22                    | N            | 13.53             | 38.03            | 6.13             | -0.521                             |
| 05PA006   | 13400                     | 1921-1990                            | 70                    | N            | 35.54             | 71.03            | 15.1             | 0.1121                             |
| 05PB009   | 5880                      | 1963-1990                            | 28                    | R            | 12.94             | 34.33            | 0                | -0.4112                            |
| 05PB014   | 4870                      | 1914-1990                            | 72                    | N            | 11.86             | 22.64            | 1.45             | 0.0788                             |
| 05PD026   | 744                       | 1979-1990                            | 12                    | R            | 0.46              | 0.95             | 0.01             | -0.0439                            |
| 05PE006   | unknown                   | 1907-1990                            | 84                    | R            | 55.17             | 93.91            | 0                | 0.5765                             |
| 05QA004   | 4450                      | 1961-1990                            | 30                    | N            | 13.4              | 21.86            | 4.51             | -0.0999                            |
| 05QC003   | 2370                      | 1970-1990                            | 21                    | N            | 7.93              | 14.57            | 1.92             | -0.213                             |
| 05QE008   | 1690                      | 1970-1990                            | 21                    | N            | 4.39              | 7.97             | 1.73             | -0.1899                            |

<sup>\*</sup>R - Regulated Flow

N - Natural Flow

<sup>\*\* -</sup> By LWRS - see Appendix A

TABLE 3.2(b)
LOW FLOW CHARACTERISTICS FOR STATIONS WITH "SIGNIFICANT TREND"
ACCORDING TO MANN-KENDALL TEST (1990)
NORTHEASTERN REGION

| Station # | Drianage<br>Area<br>(km²) | Period of<br>Record<br>(year - year) | Number<br>of<br>Years | Reg*<br>Code | 7Q Mean<br>(m³/s) | 7Q Max<br>(m³/s) | 7Q Min<br>(m³/s) | Rate of**<br>Change<br>(m³/s/Year) |
|-----------|---------------------------|--------------------------------------|-----------------------|--------------|-------------------|------------------|------------------|------------------------------------|
| 02BD002   | 5130                      | 1920-1990                            | 71                    | R            | 30.25             | 61.01            | 5.39             | 0.179                              |
| 02BE002   | 2880                      | 1935-1990                            | 56                    | R            | 16.7              | 30.67            | 0                | 0.093                              |
| 02BF004   | 51.5                      | 1979-1990                            | 12                    | N            | 0.07              | 0.29             | 0.02             | -0.003                             |
| 02BF006   | 8.64                      | 1979-1990                            | 12                    | N            | 0.02              | 0.09             | 0                | -0.001                             |
| 02CB001   | 4040                      | 1946-1990                            | 40                    | R            | 7.77              | 23.03            | 0.39             | -0.123                             |
| 02CE001   | 11400                     | 1915-1990                            | 44                    | R            | 43.95             | 72.74            | 17.57            | -0.006                             |
| 02CE004   | 6800                      | 1920-1990                            | 71                    | R            | 31.35             | 54.17            | 0                | -0.078                             |
| 02CF005   | 89.1                      | 1968-1990                            | 32                    | R            | 0.164             | 0.32             | 0.08             | -0.003                             |
| 02CF008   | 155                       | 1960-1990                            | 30                    | N            | 0.744             | 3.34             | 0.05             | -0.033                             |
| 02CF009   | 21.5                      | 1959-1990                            | 32                    | R            | 0.02              | 0.09             | 0                | -0.0005                            |
| 02CF011   | 704                       | 1970-1990                            | 20                    | N.           | 2.414             | 3.89             | 1.01             | -0.033                             |
| 02DB005   | 3130                      | 1952-1990                            | 39                    | R            | 11.82             | 29.36            | 2.52             | -0.176                             |
| 02DC007   | 1360                      | 1938-1990                            | 53                    | R            | 0.38              | 3.79             | 0                | 0.008                              |
| 02DD009   | 316                       | 1956-1990                            | 35                    | R            | 1.57              | 2.91             | 0.22             | -0.012                             |
| 02DD016   | unknown                   | 1980-1990                            | 11                    | R            | 4.39              | 14.3             | 0.71             | -0.375                             |
| 02EA006   | 650                       | 1915-1990                            | 76                    | N            | 1.97              | 5.18             | 0.12             | -0.009                             |
| 02EB014   | 601                       | 1981-1990                            | 10                    | R            | 1.493             | 4.33             | 0.52             | -0.11                              |
| 04LD001   | 1190                      | 1920-1990                            | 70                    | R            | 30.01             | 53.73            | 7.85             | 0.105                              |
| 04LG002   | 60100                     | 1959-1982                            | 24                    | R            | 164.98            | 241              | 74.03            | -1.75                              |
| 04MC001   | 13300                     | 1920-1990                            | 71                    | R.           | 78.55             | 153.43           | 35.13            | 0.55                               |
| 04MD002   | 2870                      | 1938-1990                            | 53                    | R            | 0.19              | 1.86             | 0                | -0.0024                            |
| 04MD004   | 401                       | 1977-1990                            | 14                    | N            | 0.58              | 0.89             | 0.27             | 0.0273                             |
| 04ME004   | 23400                     | 1961-1990                            | 30                    | R            | 159.1             | 243.71           | 96.23            | -1.029                             |

\*R - Regulated Flow

N - Natural Flow

\*\* - By LWRS - see Appendix A

### 3.2.2 Summary of Trend Analysis

### Statistical Tests

The Mann-Kendall test and Spearman test (described in Appendix A) were used to check for trend in minimum flow series at each station. The results of the Spearman Test for Trend are summarized in Table 3.1. The results of the Mann-Kendall test for trend are summarized in Table 3.2, which also includes the "rate of change" as determined from the Locally Weighted Regression Smooth (see Section 3.2.3 and Appendix A).

The testing was undertaken for two data sets, the first data set has a data record from which 7 day average low flows were extracted for each station up to 1986. Part way through the study, an additional four years of data became available. The data base was then updated to 1990, and the trend tests were re-applied. A comparison of the test result was surprising since it revealed significant differences in findings regarding trend at numerous stations.

### a) The Old Data Base

Reference to Table 3.3 summarizes the frequency of trend detection. A higher percentage of stations were found to exhibit trend in the Northwestern Region compared to the Northeastern Region.

The locally weighted regression smooth technique was applied to those station records where the statistical tests indicated the presence of trend (see Section 3.2.3). (Typical results are presented in Figure 3.3 with additional graphs for other stations given in Appendix A.)

The statistical tests are compared in Appendix A, and it is generally concluded that the two tests agree with each other in most cases.

Note that the signs of Mann-Kendall's tau and Spearman's rho are different. That is, when the Mann-Kendall test detected an upward trend, the sign of tau is positive, whereas the rho of Spearman's test will be negative (see Appendix A). If it is assumed that the trends (if they actually exist) can be characterized as monotonic then based on the data sets extending to 1986 there is approximately a 50% split between stations exhibiting increasing and decreasing trend. Spatial analysis did not identify any significant clusters of stations which might reveal regional characteristics (in this case no trend adjustment is considered to be warranted).





T DAY LOW FLOW (M-3/S)



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

STATISTICS AND LOCALLY WEIGHTED FIGURE 3.3 EXAMPLE OF TREND ANALYSIS REGRESSION SMOOTH

### TABLE 3.3(a)

### COMPARISON OF RESULTS FOR TREND TESTING (-1986)

(Percentage of Stations)

|             |        | Northy  | vestern |      |        | Northe  | astern |      |
|-------------|--------|---------|---------|------|--------|---------|--------|------|
| Significant | Mann-I | Kendall | Spea    | rman | Mann-l | Kendali | Spear  | rman |
| Level       | Yes    | No      | Yes     | No   | Yes    | No      | Yes    | No   |
| 5%          | 17     | 83      | 21      | 79   | 28     | 72      | 33     | 67   |
| 1%          | 6      | 94      | 10      | 90   | 17     | 83      | 18     | 82   |

Yes - Trend present No - No trend present

**TABLE 3.3(b)** 

### COMPARISON OF RESULTS FOR TREND TESTING (-1990)

(Percentage of Stations)

|             |        | North   | vestern |      |        | Northe  | astern |      |
|-------------|--------|---------|---------|------|--------|---------|--------|------|
| Significant | Mann-I | Kendali | Spea    | rman | Mann-l | Kendall | Spea   | rman |
| Level       | Yes    | No      | Yes     | No   | Yes    | No      | Yes    | No   |
| 5%          | 28     | 72      | 34      | 66   | 29     | 71      | 34     | 66   |
| 1%          | 22     | 78      | 25      | 75   | 14     | 86      | 18     | 82   |

Yes - Trend present No - No trend present

### b) Revised Data Base

The data base was then updated to 1990 and the tests for trend were re-applied (see Appendix A). The locally weighted regression smooth technique was also applied to data records with significant trend for the new data set (see Appendix A). Appendix A compares the trend analysis between the two data sets. The updated analysis suggest that approximately 75% of the stations show significant trend, compared to 50% for the old data base. While the trend statistics indicate decreasing low flows at many locations, some data also show an increase in low flows with time.

The additional data resulted in a considerable change in results between the previous data set and the updated data set. The overall results are summarized in Tables 3.3(a) and 3.3(b) which indicate that stations in the Northwestern Region as a group show slightly more trend than the shorter data set. However, for specific stations, the change in record length significantly affected the statistical tests.

In the Northwestern region, twelve (12) stations show downward trend for the new data set, while there was no trend at these stations for the old data set. Two (2) stations that show upward trend previously did not have trend. In the Northeastern region, six (6) stations were found to have downward trend for the longer flow records, whereas these stations previously passed the trend tests when the shorter data set was used. There are also three (3) stations which indicated upward trend previously, but which did not show trend for the new data records. One (1) station was found to have an upward trend where no trend was detected with the old data set. The downward trend detected for one station was not evident when the record length was extended. These inconsistencies suggest that the statistical tests are vary sensitive to record length and/or some elements of change in low flows on a cyclic basis may be responsible.

With reference to Appendix A it is noted that it is very likely that for some of the stations the apparent trend may be due to regulated flow conditions. For some of those regulated stations when a trend is being detected, the data are also non-random and non-homogeneous. This shift of direction may suggest that the trends are not monotonic and we have been just experiencing a drought portion of a cycle. Here, no homogeneity means that if the data is split into the two subsets according to time span, the two subsets are significantly different from each other. In other words, the data comes from two populations in two time periods. It may be possible to explain this due to a change in regulation for these stations. Therefore, those stations showing trend with regulated flows should be screened out of the data base.

It concluded that the statistical trend indicators are sensitive to the record length. As discussed above, when an additional four years data is included, the trend indicated for many stations is inconsistent. This implies that the possibility of long term cyclic fluctuations in low flow time series should be examined over a longer time base in order to judge whether or not a trend really exists.

In general it was found (see Appendix A) that the Spearman trend test is a more strict statistical condition, compared to Mann and Kendall. It is also noted that longer hydrologic data sets are required in order to obtain more conclusive results in regard to trend analysis for low flow time series.

### 3.2.3 Trend Adjustment

A method was developed to adjust trend in low flow time series, (see Appendix A) and was applied to these stations identified by the statistical tests as having "significant trend". The Robust Locally Weighted Regression Smooth results were used to obtain the total change over the record period. Table 3.2 presents the rate of change per year for the flow records. A negative rate of change indicates that the low flow records show a downward trend and positive signs imply that the time series have an upward trend. The data set was adjusted and the statistical tests and analysis of low flow characteristics were re-calculated. Table A.3 compares the results of the Mann-kendall test for the low flow time series before and after applying these procedures and it is clear that the trend was removed from the records.

To evaluate the impacts of trend adjustment to the low flow characteristics, that is whether or not the low flow characteristics changed significantly, the frequency analysis procedures were applied to the time series after adjustment. Table A.4 gives the results of low flow frequency analysis for the time series before and after applying these procedures. In general, no major differences for the low flow characteristics are evident from Table A.3. This implies that it is not necessary to make a trend adjustment in the analysis of low flow characteristics for the purpose of regionalization. (On the other hand slightly more conservative estimates of  $7Q_{20}$  are produced from the unadjusted data set.)

### 3.2.4 Conclusions and Recommendations

The following summarizes the main conclusions and recommendations concerning the low flow trend analysis.

- In total, forty-five (45) stations were identified to have trend in the low flow records. Among these, twenty-six (26) stations are regulated. For the remaining stations with natural flows, only three have a significant record length (over 70 years of record), the other stations having up to only 30 years record, which is relatively short. The trend testing results were found to be sensitive to the length of record as discussed in Section 3.2.2. Thus, it is concluded that the trend component for short term stations may not be real. More detailed study should be undertaken to confirm whether the trend is real for stations with short record lengths.
- 2. There were found to be eighteen (18) more stations which have some downward trend for the new data set (to 1990) compared with the previous Mann-Kendall testing results for the old data set (to 1986). However, one third of these stations have a short record length, having been added to the data base as a consequence of the increase in the length of available record (i.e. from 1986 to 1990). Overall, about 82% of the stations tested showed no evidence of trend at the 1% level of significance (Table 3.3.b).
- 3. Five (5) stations which showed upward trend, for the old data set (-1986), do not show significant trend for the new data set (-1990).
- 4. One (1) station that showed downward trend for the shorter data set does not show trend for the longer data set.
- 5. One (1) station for the new data set shows upward trend (-1990) where no trend was previously detected (-1986).
- 6. For those stations with trend, the effect can be removed as described in Appendix A. However, it was found that there are no major impacts on the regionalization of low flow characteristics by making this adjustment since it was found that differences in the low flow frequency characteristics were small.

- 7. A cause and effect relationship for trend (if it actually exists) has not been established. It is possible that recent hydrologic fluctuations of a cyclic nature may be responsible for the test results at some stations. Other factors, such as climate change, may also be important. Additional research is required to investigate such relationships.
- Ongoing collection of discharge measurements at hydrometric stations should be encouraged. Long term measurements are required for further analysis of trend and low flow characteristics.

### 3.3 Low Flow Characteristics

### 3.3.1 Data Base

As discussed in Section 3.1, there are one hundred and ninety-four (194) stations in the Northwestern and Northeastern regions that were available for the purposes of this investigation. Twenty-one (21) stations were reserved for testing. Ninety-three (93) stations (47 in Northwestern region, 46 in Northeastern region) were analyzed to determine regional low flow characteristics. The remaining 80 stations were screened out for various reasons.

### 3.3.2 Station Screening

The stations which were not considered to possess a suitable low flow data base for the purposes of this investigation were not included in the regionalization analysis. These stations were excluded for the following reasons:

### i) Multiple Stations

It was determined that large river systems may have several streamflow gauges at several locations along the main channel. The use of all such highly correlated data could adversely bias the development of regionalization methods. Therefore, only representative gauges for such streams were retained for further analysis. A few of the multiple stations were used for testing the developed techniques.

### ii) Heavily Regulated

Low flows on heavily regulated streams are affected through the use of reservoirs for low flow augmentation. Since the main focus of this study is to produce a method for investigating low flows for ungauged watersheds, stations indicating a high degree of regulation were excluded from the data base. The Water Survey of Canada identifies gauges as regulated (R) or natural streams (N), however, the degree of regulation is not quantified for these regions. Of the 194 stations, 91 were identified as "regulated" to some degree. Therefore, objective screening of the "regulated" stations was undertaken (13 stations were removed). The remaining "regulated" stations were retained and assigned a regulatory code representing regulation or non-regulation. Subsequent simple correlation analysis (between the regulatory codes and the low flow statistics) confirmed that these stations could be retained in the data set due to insignificant levels of correlation. Future studies should investigate and quantify the degree of regulation and possible techniques to de-regulate low flow series.

### iii) Statistical Tests

Statistical data analysis tests were undertaken as described in detail in the Regional Analysis of Low Flow Characteristics for Northwestern and Northeastern Regions by Cumming Cockburn Limited (1990). Procedures for applying various statistical tests were recently made available as part of the LFA low flow package (Pilon and Jackson, 1987). The relevant test results are summarized in Table 3.1.

In general, it was found that a significant number of stations "failed" the non-parametric tests. Therefore, taken over the entire data base, application of these tests has indicated that the available data base of extreme low flows may exhibit some trend, dependence and non-homogeneity with some possibility of non-random characteristics (see Table 3.1).

The data was further analyzed by subdivision of the available data set according to length of record (ie. ≥20 years and <20 years) and according to regulation code. However, it was found that neither the length of record nor the possible effects of regulation could account for the conclusions of the test results. One explanation could be that the available record lengths are too short to permit reasonable application and interpretation of these non-parametric test results. Another explanation could relate to seasonal effects on low flows, for example low flows in the winter and summer may belong to distinct populations. A stronger possibility is that the available low flow data

sets do exhibit trend and non-random characteristics, which could possibly be attributed to slow cyclic change in groundwater levels or to climatic trends. Additional testing was beyond the scope of the current investigations. However, further studies are recommended since these results may call into question the basic assumptions underlying application of the extreme value analysis technique for analysis of low flow characteristics.

Only the stations simultaneously failing the statistical screening for trend, randomness and homogeneity were removed from the analysis (19 stations).

### iv) Undeterminable Drainage Area

It was found that the drainage areas of some stations are undeterminable for various reasons, such as multiple outlets. In this case, the records could not be used in the regionalization. Therefore, those stations with undeterminable drainage areas were excluded from the analysis (11 stations).

 Stations exhibiting questionable data characteristics from the graphical review were removed from the analysis (eg. a large number of zero flows, etc. see figures in Appendix A).

### 3.3.3 Extreme Value Analysis

Moving average low flows (n-day) were determined and extracted for each year of the available data base. Extreme low flows were then determined and extracted for the n-day durations and are available as part of the background files.

An extreme value analysis was then undertaken for each n-day (n = 1, 3, 7, 15, and 30) duration for each of the stations. General low flow statistics of the data base were then calculated (mean, standard deviation and coefficient of skew of the available low flow samples). These general statistics are summarized in Tables 3.4 to 3.7, and indicate that measured low flows in Northern Ontario are higher than other parts of Ontario. This is attributed to the higher number of large watersheds monitored in the North and to climate and physiographic differences.

The frequency analysis of n-day low flows was undertaken using both conventional moments and L-moments. The extreme-value analysis techniques are described in Appendix B.

TABLE 3.4
SUMMARY OF SELECTED LOW FLOW STATISTICS

| Region                    | Number of<br>Stations | n Day<br>Duration | Mean<br>(m³/s) | Standard<br>Deviation<br>(m³/s) | Skew | Coefficient<br>of<br>Variation | Mean<br>Value of<br>Number of<br>Years |
|---------------------------|-----------------------|-------------------|----------------|---------------------------------|------|--------------------------------|----------------------------------------|
| Ontario                   | 344                   | 7                 | 13.80          | 4.06                            | 0.75 | 0.62                           | 28                                     |
| Northwestern              | 47                    | 7                 | 31.0           | 43.9                            | 1.82 | 0.63                           | 29                                     |
| Northeastern              | 46                    | 7                 | 26.1           | 63.3                            | 6.68 | 0.64                           | 32                                     |
| Region One <sup>1</sup>   | 28                    | 7                 | 45.3           | 55.1                            | 1.63 | 0.61                           | 21                                     |
| Region Two <sup>1</sup>   | 14                    | 7                 | 44.9           | 54.5                            | 0.94 | 0.49                           | 31                                     |
| Region Three <sup>1</sup> | 51                    | 7                 | 14.9           | 50.1                            | 7.04 | 0.64                           | 32                                     |
| Northern<br>Ontario       | 93                    | 7                 | 28.6           | 54.4                            | 9.21 | 0.68                           | 30                                     |

See Section 3.5 for a discussion of sub-regions selected for Northern Ontario

SUMMARY OF 7Q<sub>y</sub>
(MEANS AND STANDARD DEVIATION)

TABLE 3.5

|              |              |       |              | Recu      | rrence I    | nterval ( | (Years)      | ·                       |       |
|--------------|--------------|-------|--------------|-----------|-------------|-----------|--------------|-------------------------|-------|
| Region       | Number<br>of |       | 'ear<br>³/s) | 5 Y<br>(m | ear<br>³/s) |           | rear<br>³/s) | 20 Y<br>(m <sup>3</sup> |       |
|              | Status       | Mean  | S.D.         | Mean      | S.D.        | Mean      | S.D.         | Mean                    | S.D.  |
| Northern     | 93           | 24.22 | 41.71        | 17.65     | 31.88       | 14.86     | 27.80        | 12.75                   | 24.96 |
| Northwestern | 47           | 29.85 | 42.43        | 20.99     | 29.93       | 17.38     | 25.08        | 14.45                   | 21.93 |
| Northeastern | 46           | 18.34 | 40.12        | 14.16     | 33.44       | 12.22     | 30.16        | 10.78                   | 27.64 |
| Region One   | 28           | 43.70 | 55.1         | 33.85     | 36.09       | 30.25     | 32.00        | 27.70                   | 36.64 |
| Region Two   | 14           | 43.20 | 53.30        | 26.96     | 34.40       | 20.13     | 26.39        | 14.50                   | 20.60 |
| Region Three | 51           | 14.31 | 49.81        | 10.83     | 35.1        | 9.1       | 35.11        | 7.46                    | 30.69 |

TABLE 3.6

### SUMMARY OF 7Q<sub>y</sub> UNIT AREA AVERAGE LOW FLOWS

|                  |              |               |      | Recurr        | ence In | terval (Y      | ears) |                |      |
|------------------|--------------|---------------|------|---------------|---------|----------------|-------|----------------|------|
| Region           | Number<br>of | 2 Y<br>(1/s/l |      | 5 Y<br>(l/s/l |         | 10 Y<br>(1/s/k |       | 20 Y<br>(1/s/l |      |
|                  | Stations     | Mean          | S.D. | Mean          | S.D.    | Mean           | S.D.  | Mean           | S.D. |
| Ontario          | 344          | 1.91          | 1.90 | 1.38          | 1.39    | 1.15           | 1.24  | 0.99           | 1.14 |
| Northern Ontario | 93           | 2.49          | 1.93 | 1.73          | 1.67    | 1.43           | 1.56  | 1.22           | 1.50 |
| Northwestern     | 47           | 2.43          | 2.17 | 1.73          | 1.91    | 1.45           | 1.82  | 1.26           | 1.77 |
| Northeastern     | 46           | 2.54          | 1.63 | 1.74          | 1.37    | 1.4            | 1.24  | 1.19           | 1.15 |
| Region One       | 28           | 2.84          | 2.88 | 2.27          | 2.52    | 2.04           | 2.39  | 1.87           | 2.31 |
| Region Two       | 14           | 2.41          | 0.91 | 1.42          | 0.74    | 1.03           | 0.62  | 0.74           | 0.50 |
| Region Three     | 51           | 2.3           | 1.38 | 1.53          | 1.10    | 1.2            | 0.96  | 0.99           | 0.87 |

TABLE 3.7

COMPARISON OF MEAN AND S.D. BETWEEN L-MOMENT AND CONVENTIONAL MOMENT METHOD

|              |         | L-Moment        |                 |                  |                  | Conventional Moment |       |                  |                  |
|--------------|---------|-----------------|-----------------|------------------|------------------|---------------------|-------|------------------|------------------|
| Region       |         | 7Q <sub>2</sub> | 7Q <sub>5</sub> | 7Q <sub>10</sub> | 7Q <sub>20</sub> | 7Q <sub>2</sub>     | 7Q5   | 7Q <sub>10</sub> | 7Q <sub>20</sub> |
| Northern     | Average | 21.14           | 15.64           | 13.27            | 11.40            | 21.59               | 16.01 | 13.40            | 11.46            |
| Ontario      | S.D.    | 38.62           | 29.73           | 25.72            | 22.69            | 39.13               | 29.84 | 25.41            | 22.11            |
| Northwestern | Average | 25.41           | 18.31           | 15.40            | 13.09            | 26.15               | 19.07 | 15.81            | 13.41            |
|              | S.D.    | 39.42           | 28.94           | 24.61            | 21.53            | 40.50               | 29.84 | 24.92            | 21.40            |
| Northeastern | Average | 16.25           | 12.58           | 10.82            | 9.47             | 16.35               | 12.51 | 10.65            | 9.22             |
|              | S.D.    | 37.08           | 30.32           | 26.72            | 23.80            | 36.71               | 29.44 | 25.68            | 22.69            |
| Region One   | Average | 36.43           | 28.96           | 25.62            | 23.18            | 37.00               | 29.25 | 25.59            | 22.82            |
|              | S.D.    | 50.53           | 41.11           | 36.46            | 32.87            | 51.12               | 40.79 | 35.56            | 31.48            |
| Region Two   | Average | 40.88           | 26.68           | 20.69            | 15.45            | 41.72               | 27.69 | 21.09            | 16.15            |
|              | S.D.    | 49.16           | 33.75           | 27.04            | 21.85            | 49.74               | 34.58 | 27.52            | 22.40            |
| Region Three | Average | 6.58            | 4.78            | 3.88             | 3.32             | 6.82                | 4.91  | 4.05             | 3.43             |
|              | S.D.    | 12.04           | 8.81            | 7.35             | 6.31             | 12.42               | 9.09  | 7.57             | 6.47             |

Note: 1. Conventional Moment data set (-1986); - stations L-moment data set (-1990); - stations

2. The sub-regions are defined in Section 3.5.

Recent research indicated that conventional moments are not always satisfactory in two respects, they do not always impart easily interpreted information about the shape of a distribution, and estimates of parameters of distribution fitted by the moments are often less accurate than those obtained by other methods such as maximum likelihood.

An alternative to conventional moments is L-moments. Theoretically, L-moments are able to characterize a wide range of distributions than conventional moments. They are less subject to bias in estimation, and they approximate their asymptotic normal distribution more closely. The main advantage of L-moments over conventional moments is that L-moments suffer less from the effects of sampling variability, they are more robust to outliers in the data. Therefore, L-moments were used in the extreme value analysis.

An updated version of LFA program (Hydrology Division, Water Resources Branch, Environment Canada, 1989), which incorporated the extreme value analysis techniques including L-moments described in Appendix B was utilized for undertaking the calculations for the Northwestern and Northeastern Regions of Ontario respectively.

The low flow frequency analysis results for the 7 day duration are summarized in Table B.1 (a) and B.1 (b). Table B.2 presents the low flow characteristics of 1, 3, 15, and 30 days duration (data to 1990). The frequency curves parameters are given in Table B.3. The following points summarize the main findings:

No significant changes were found between the previous results and the present study. The selected low flow values (7Q<sub>2</sub>, 7Q<sub>5</sub>, 7Q<sub>10</sub> and 7Q<sub>20</sub>) are comparable for most stations, although the extended record results in improved estimates at some stations.

Two statistical tests (T-test for means and  $X^2$  - test for standard deviation), for comparing the differences of the means and standard deviations calculated both by L-moments and conventional moments methods, were applied and the results shown that no significant differences could be identified between the two sets of results at the 5% or 1% probability levels for Northern Ontario and its sub-regions. However, the L-moment method normally gives more conservative estimations for the low flow characteristics (see Table 3.7). This finding is consistent with Clarke, et al, 1990.

For some stations, the minimum 7-day low flows in the data set are either equal to zero
or too many zero flows exist. Thus, the frequency analysis could not be undertaken and
16 stations were screened out from the data set as previously described (eg. 05PD015,
05PD017, 05PD023 ... etc.).

• From the results of the frequency analysis, it was found that almost all of the station's low flow data sets (except station 04CA004) could be best fitted by the Weibull distribution. This is an indicator of regional homogeneity in the sense of the selected probability distribution. In the case of station 04CA004, the three-parameter lognormal distribution was selected due to the large negative skewness in the available data base.

### 3.3.4 Summary Maps

Selected low flow characteristics were extracted and summarized on maps for the study area (see Figure 3.1 and 3.2 in pocket). The data shown is for the 7 day duration.

A relational data base management system (RDBMS) was established that contains both Hydex information regarding characteristics of the hydrometric stations (hydrometric station number, period of record, drainage area, regulation code, latitude, longitude, etc.) and low flow statistics (hydrometric station number,  $7Q_2$ ,  $7Q_{10}$ ,  $7Q_{20}$ , etc.). The Hydex and Low Flow data were stored in separate tables in the RDBMS, with a common column (hydrometric station number) that allows linkage of the two data sets.

The RDBMS data base file was linked to a digital map of the Province available through the Ministry of Natural Resources' Land and Resource Information Branch. Using the hydrometric station's latitude and longitude as reference points permits an automated transferral of tabular data to the digital map. A presentation chart format was created that allows display of specified data from the Low Flow table of the RDBMS (see Figure 3.1). This automated procedure provides flexibility to present any column of data from the RDBMS, and to make efficient updates to the mapping as additional data becomes available.

Providing a GIS/RDBMS link for the low flow data base enables an efficient means for undertaking spatial analysis of low flow characteristics. For example, preliminary isolines of  $7Q_2$  and  $7Q_{20}$  unit low flows were produced for Northeastern and Northwestern regions using data in the Low Flow table of the RDBMS.

By combining the longitude (x) and latitude (y) of the Hydex Table, with the  $7Q_2$  unit low flow (z) (or  $7Q_{20}$  unit low flow) of the Low Flow Table, a series of (x, y, z) coordinates were produced. This data was subsequently interpolated using a third party software contouring package, and imported into the GIS for presentation. Isolines can automatically be created for any (x, y, z) series of data in the RDBMS, and overlayed on other GIS data bases. An example preliminary computer generated isoline map is included in Appendix G.

The stations (on Figure 3.1 and 3.2) are identified by the 7 digit Water Survey Number. The boxes on the left from the top refer to the L-moments 7 day flow (m³/s) with a recurrence interval of 2, 5, 10 and 20 years, followed by the minimum average 7 day flow and the period of record for the station. The boxes on the right from the top refer to the conventional estimations of 7 day flow (m³/s) with a recurrence interval of 2, 5, 10 and 20 years. Other remaining boxes identify Minimum day, period of record (years) regulation identification (R or N) and watershed area (km²).

Station names are also listed along with the station numbers for identification purposes on Figure 3.1 and 3.2.

### 3.3.5 Winter/Summer/Annual Low Flow Population Analysis

From the literature review it is apparent that seasonal low flows may belong to distinct populations. Further investigations were undertaken to assess this possibility. For the purposes of this investigation summer is defined by the period of May to October, and Winter is defined by the period of November to April. The low flows for winter and summer were then extracted for each station. The analysis results are given in Appendix C.

To analyze the low flow populations in winter, summer, and annual, the mean values and the standard deviations, for each low flow series over the recorded period of each station, were computed and compared. Table C.1 presents the comparison of the means and standard deviation for each of the stations in Northern Ontario Regions. Table C.2 tabulates the Mann-Kendall trend testing results. From Table C.1, it is clear that significant differences can be found among the statistics of annual/winter/summer low flow records. As an example, station 05QE006's mean annual low flow is equal to 88.25 m³/s with standard deviation 45.82 m³/s. The mean value of low flows for winter and summer are 131.74 and 105.56 m³/s with standard deviation 63.46 and 61.06 m³/s, respectively. It is interesting to note that the flow time series for winter displayed significant upward trend, but the summer low flow sequence showed downward trend.

Generally, it was found that the summer low flows are higher than the low flows from winter at most of the stations. The mean summer low flow of the entire region is equal to 46.2 m³/s, while the mean winter low flow is 32.9 m³/s. However, with reference to the raw data records, it is known that some winter low flows were measured under ice conditions. Therefore, the accuracy of flow measurements may not be comparable for summer and winter conditions.

For the purposes of the regional analysis, the annual low flow series was used since more conservative results should be obtained. However, for cases where assessment of seasonal discharges is important, a low flow analysis on a seasonal basis should be considered.

### 3.3.6 Summary of Data Analysis and Low Flow Characteristics

Application of various non-parametric tests was undertaken for the available data base. The test results (Table 3.1) indicate that the available data base of extreme low flows may exhibit some trend and dependence with some possibility of non-random and non-homogeneous characteristics. Previous widespread application of the tests utilized have not been found in the literature describing low flow analyses.

The average length of record for the stations analysed in these regions is 26 years. It is possible that the available record lengths are too short to permit reasonable application and interpretation of these non-parametric test results. Another possibility, which should be investigated in more detail, is that the available low flow data sets do exhibit trend and non-random characteristics. The latter could possibly be attributed to slow cyclic changes in groundwater levels, seasonal effects, or climatic trends. This should be investigated in more detail since the underlying assumptions for application of the extreme value distribution and subsequent regression analyses are called into question.

A winter/summer/annual low flow population analysis was undertaken. The results indicated that the winter, summer, and annual low flows are from different populations for some of the stations. Generally speaking, the low flows from summer records are higher than the winter low flows at most of the stations. Therefore, where assessment of seasonal discharges is important, it may be more appropriate to undertake the analysis of low flow regionalization for different seasons. However, this would result in less conservative estimates of the annual average 7 day low flow and hence less conservative extreme low flows (re.  $7Q_{20}$ ).

The Gumbel Extreme Value (Weibull) Distribution was generally found to adequately fit the available low flow series for various low flow durations.

Extreme value analyses were undertaken on an annual basis for 114 stations. A total of 93 stations were retained for analysis and 21 for additional testing of results.

The data analyses were undertaken for both regulated and unregulated data series. Therefore, care should be taken in comparison and interpretation of results, notably for data series which may include the effects of regulation.

Figure 3.1 and 3.2 summarized the low flow characteristics for the 7 day extreme values for the 2, 5, 10 and 20 year recurrence intervals.

Data analysis and management techniques are now available which would allow efficiently updating the present analyses on a frequent basis. In our opinion, the low flow analyses should be updated every five years in order to provide reasonably accurate information for investigations requiring low flow information.

### 3.4 Physiographic and Meteorologic Data

### 3.4.1 Criteria

The review of background information (see Section 2.0) identified several criteria for selection of appropriate physiographic and climatic parameters which might be suitable for use in regionalizing low flow characteristics. These are discussed as follows:

### i) Statistical Significance

When undertaking a multivariate analysis, the variables chosen must make a contribution to explaining the variance of the low flows. The experience in undertaking similar investigations (discussed in Section 2.0) was used to identify parameters which have proven to be statistically significant in predicting low flows.

### ii) Physical Characteristics

Wherever possible, variables should be selected based on hydrologic significance. That is, the parameters should have some physical meaning with regard to estimates of low flows.

### iii) Reliability of Computation

It is preferable to select parameters which can easily be computed in a reliable manner by users who may not be familiar with regression procedures or the details of the statistical concepts. Therefore, from a practical point of view, it was desirable to make the parameter estimation procedure as uncomplicated as possible in order to minimize computation errors when applying the estimation technique.

### 3.4.2 Parameters

The parameters selected for use in this study are listed as follows:

| Hydrometeorologic Data                                                              | Symbol |
|-------------------------------------------------------------------------------------|--------|
| Index of mean annual precipitation at gauge location (mm) (Figure F.1) <sup>1</sup> | MAP    |
| Index of mean annual snowfall at gauge location (cm) (Figure F.2)                   | MAS    |
| Index of mean annual runoff at gauge location (mm) (Figure F.3)                     | MAR    |
| Index of mean annual evaporation at gauge location (mm) (Figure F.4)                | EVA    |

### Physiographic Data

| Drainage area (km²)                           | DA   |
|-----------------------------------------------|------|
| Index of area controlled by lakes and swamps  | ACLS |
| Length of main channel (km)                   | LNTH |
| Base Flow Index (dimensionless ratio)         | BFI  |
| Regulation Index (0 - natural, 1 - regulated) | RN   |

Definition of Parameters and a brief discussion of derivation is discussed in the following sections:

### $DA (km^2)$

The watershed drainage area was obtained from records published by the Water Survey of Canada.

### ACLS (%)

An index representing the percentage of the drainage area controlled by lakes and swamps (ACLS) was obtained from records available in the report Regional Flood Frequency Analysis (Moin and Shaw, 1986) published by Environment Canada.

Note: Index maps used to derive hydrometeorologic data are given in Appendix F.

### LNTH (km)

The length of the main channel was utilized from the Regional Flood Frequency Analysis (Moin and Shaw, 1986) and published by Environment Canada. The lengths for some stations were not previously calculated. For these stations the lengths were scaled from review of Water Survey of Canada watershed boundaries which delineated rivers on 1:50,000 and 1:250,000 scale NTS maps.

### Base Flow Index (BFI) (Dimensionless Ratio)

This parameter is an indicator of the hydrogeological effects of the drainage basin soil and geology type and also the retention characteristics (primarily due to lakes and swamps) of the drainage basin. BFI is defined as:

### BFI = Total Volume of Base Flow

Total Volume of Runoff

The median values calculated for all Ontario gauging stations having at least 2 years of continuous daily discharge data were plotted at the corresponding drainage basin centroid using 1:600,000 scale base maps for Southern Ontario and isolines drawn. The centroid were located by eye after delineating the drainage area. An isoline map was prepared to help provide estimates of BFI for ungauged basins when applying the regression equations (Regional Flood Frequency Analysis, Moin and Shaw, 1986). All estimates of BFI from the isoline maps must be made by first locating the basin centroid and then projecting this point to the closest point on the main channel. The BFI is then interpolated from the isolines at this location on the main channel. A better BFI estimate will be obtained for large basins and in areas where the isolines are very close together, if an average value of BFI, weighted by the area between isolines, is taken over the entire drainage basin.

### <u>RN</u>

Regulation code (i.e. an indication of possible regulation):

0 - Natural, non-regulated (N on Figure 3.1 and 3.2)

1 - Regulated (R on Figures 3.1 and 3.2)

NOTE:

Heavily regulated stations were not included in the analysis. A simple correlation analysis indicated insignificant levels of correlation with the observed low flows for the stations remaining.

### MAP (mm)

An index of mean annual precipitation was developed with reference to available publications (MNR, 1984, Environment Canada, 1978 and Flood Frequency Analysis, Moin and Shaw, 1986). The index of mean annual precipitation is interpolated for each watershed used in the analysis at the gauge location.

### MAS (mm)

An index of mean annual snowfall was obtained from available information published by the Ministry of Natural Resources (MNR, 1984) and Fisheries and Environment Canada, 1978. The index map was used to derive a snowfall index for each watershed. This index represents total annual snowfall for each watershed as determined at the gauge location.

### MAR (mm)

The index of mean annual runoff is expressed as a depth of water averaged over the drainage basin area. The isolines of runoff were obtained from existing information published by Environment Canada and adopted by the Ministry of Natural Resources (Sangal and Kallio, 1977, MNR, 1984 and Flood Frequency Analysis, Moin and Shaw, 1988). The mean annual runoff index was derived for each hydrometric station at the gauge location.

### EVA (mm)

An index for the mean annual evaporation was obtained from the publications by Fisheries and Environment Canada, 1978. The mean annual evaporation index was derived for each hydrometric station at the gauge location.

### 3.4.3 Summary of Physiographic and Meteorologic Data

Tables 3.8 (a) and 3.8 (b) summarize the parameters which were determined for each station remaining after screening for the Northwestern and Northeastern Regions, respectively. Tables 3.9 (a) to 3.9 (f) summarizes the mean, range and other simple statistics of the data base for various sub-regions in Northern Ontario (see Section 3.5)

### TABLE 3.8(a) DATA BASE, PARAMETERS USED IN REGRESSION NORTHWESTERN REGION

| Station | # of  | Region | RN* | LAT     | LONG    | MAP | MAS | MAR | EVA | DA    | BFI  | LNTH  | ACL | 7Q2     | 7Q20    |
|---------|-------|--------|-----|---------|---------|-----|-----|-----|-----|-------|------|-------|-----|---------|---------|
| Number  | Years | Code   | - 1 | (0)     | (0)     | mm  | mm  | mm  | mm  | km^2  |      | km    | (%) | m ^ 3/s | m ^ 3/s |
| 02AA001 | 68    | 3      | 0   | 44.0544 | 83.3658 | 800 | 230 | 292 | 500 | 1550  | 0.68 | 110   | 35  | 2.07    | 0.62    |
| 02AB006 | 64    | 3      | 1   | 48.3158 | 89.3539 | 785 | 232 | 297 | 500 | 6480  | 0.76 | 184   | 74  | 24.6    | 12.48   |
| 02AB009 | 34    | 3      | 1   | 48.332  | 89.4055 | 785 | 230 | 285 | 500 | 2800  | 0.7  | 162   | 55  | 4.49    | 2.37    |
| 02AB010 | 68    | 3      | 1   | 48.2456 | 89.3751 | 785 | 235 | 250 | 500 | 6710  | 0.71 | 183   | 60  | 21.12   | 10.98   |
| 02AB014 | 19    | 3      | 0   | 48.3004 | 89.1047 | 780 | 240 | 355 | 500 | 111   | 0.38 | 32.5  | 29  | 0.08    | 0.004   |
| 02AB015 | 14    | 3      | 1   | 48.321  | 89.141  | 780 | 240 | 327 | 500 | 492   | 0.62 | 44.25 | 97  | 0.52    | 0.24    |
| 02AB016 | 14    | 3      | 1   | 48.2507 | 89.1555 | 780 | 230 | 307 | 500 | 145   | 0.36 | 39.5  | 8   | 0.06    | 0       |
| 02AC001 | 20    | 3      | 0   | 48.4919 | 88.3207 | 785 | 240 | 299 | 495 | 736   | 0.67 | 45    | 10  | 0.67    | 0.26    |
| 02AD010 | 20    | 3      | 0   | 49.361  | 87.57   | 788 | 250 | 334 | 490 | 650   | 0.58 | 20    | 100 | 0.88    | 0.51    |
| 02AE001 | 17    | 3      | 0   | 48.5534 | 87.4127 | 805 | 245 | 382 | 480 | 616   | 0.59 | 15    | 0   | 0.81    | 0.31    |
| 02BA002 | 21    | 3      | 0   | 49.464  | 86.5304 | 840 | 230 | 389 | 490 | 1190  | 0.84 | 107.5 | 98  | 2.54    | 1.71    |
| 02BB002 | 24    | 3      | 0   | 48.412  | 86.1245 | 875 | 240 | 449 | 500 | 1980  | 0.64 | 150   | 71  | 3.93    | 2.49    |
| 02BB003 | 21    | 3      | 0   | 48.4626 | 86.1749 | 860 | 240 | 367 | 500 | 4270  | 0.66 | 465   | 55  | 7.12    | 4.52    |
| 04CA002 | 14    | 1      | 0   | 53.2927 | 91.3055 | 590 | 195 | 255 | 380 | 36500 | 0.98 | 305   | 100 | 95.44   | 44.03   |
| 04CA003 | 24    | 1      | 0   | 52.392  | 92.3215 | 590 | 200 | 294 | 390 | 619   | 0.65 | 59.06 | 20  | 0.62    | 0.23    |
| 04CB001 | 24    | 1      | 0   | 53.2055 | 91.473  | 590 | 200 | 325 | 390 | 10800 | 0.98 | 294.0 | 60  | 42.93   | 27.2    |
| 04CC001 | 19    | 1      | 0   | 55.223  | 89.193  | 595 | 230 | 236 | 340 | 94300 | 0.89 | 400   | 0   | 165.2   | 104.9   |
| 04CD002 | 20    | 1      | 0   | 53.594  | 92.055  | 55  | 190 | 273 | 350 | 4270  | 0.98 | 161.9 | 100 | 12.6    | 10.15   |
| 04CE002 | 23    | 1      | 0   | 53.46   | 89.33   | 600 | 230 | 287 | 370 | 4350  | 0.98 | 98.43 | 100 | 23.62   | 16.65   |
| 04DA001 | 25    | 1      | 0   | 52.345  | 90.112  | 650 | 240 | 337 | 380 | 5960  | 0.85 | 203.2 | 40  | 8.98    | 5.64    |
| 04DC001 | 14    | 1      | 0   | 54.3107 | 87.14   | 590 | 220 | 299 | 340 | 50000 | 0.94 | 419.7 | 80  | 86.23   | 58.67   |
| 04DC002 | 24    | 1      | 0   | 54.17   | 85.39   | 500 | 210 | 289 | 340 | 4710  | 0.61 | 155.9 | 0   | 2.62    | 1.13    |
| 04FA001 | 25    | 1      | 1   | 51.492  | 89.36   | 700 | 260 | 341 | 400 | 9010  | 0.86 | 227.3 | 100 | 16.05   | 12.14   |
| 04FA002 | 24    | 1      | 1   | 51.384  | 89.533  | 700 | 260 | 354 | 400 | 1540  | 0.85 | 165   | 50  | 3       | 2.02    |
| 04FA003 | 25    | 1      | 0   | 52.185  | 88.4515 | 690 | 260 | 289 | 400 | 4900  | 0.77 | 273.1 | 30  | 6.38    | 3.54    |
| 04FC001 | 23_   | 1      | 0   | 53.053  | 85.003  | 650 | 230 | 334 | 390 | 36000 | 0.88 | 317.5 | 95  | 55.27   | 43.77   |
| 04GA002 | 23    | 3      | 0   | 51.1    | 91.355  | 720 | 230 | 234 | 400 | 5390  | 0.99 | 163.8 | 100 | 13.51   | 1.05    |
| 04GB004 | 20    | 3      | 0   | 50.52   | 88.555  | 740 | 260 | 193 | 420 | 11200 | 0.86 | 187.3 | 100 | 42.84   | 35.44   |
| 04GC002 | 16    | 1      | 1   | 51.22   | 89.252  | 735 | 260 | 108 | 410 | 16300 | 0.96 | 197   | 60  | 17.56   | 7.21    |
| 04GD001 | 22    | 1      | 1   | 51.6417 | 86.3972 | 710 | 250 | 248 | 410 | 32400 | 0.96 | 228.2 | 100 | 56.57   | 30.23   |
| 04JA002 | 37    | 1      | 0   | 49.9439 | 84.0613 | 810 | 300 | 403 | 410 | 3780  | 0.86 | 187.9 | 74  | 10.37   | 6.71    |
| 04JC002 | 41    | 1      | 0   | 49.4644 | 84.3148 | 810 | 300 | 317 | 415 | 2410  | 0.81 | 105   | 50  | 4.41    | 2.15    |
| 04JF001 | 22    | 1      | 0   | 50.393  | 86.3157 | 770 | 300 | 308 | 410 | 5360  | 0.86 | 182.9 | 100 | 12.18   | 6.8     |
| 05PA012 | 64    | 2      | 1   | 48.0455 | 91.391  | 750 | 220 | 276 | 510 | 4510  | 0.87 | 128.2 | 100 | 10.15   | 3.77    |
| 05PB009 | 28    | 2      | 1   | 48.444  | 92.1705 | 790 | 220 | 242 | 505 | 5880  | 0.77 | 160   | 70  | 10.39   | 0.47    |
| 05PC018 | 11    | 2      | 1   | 48.3804 | 93.5447 | 750 | 228 | 228 | 515 | 50200 | 0.83 | 99    | 0   | 144     | 72.34   |
| 05PC019 | 30    | 2      | 1   | 44.365  | 93.24   | 755 | 220 | 226 | 515 | 38600 | 0.78 | 189   | 100 | 117.5   | 41.21   |
| 05PD026 | 22    | 2      | 1   | 49.263  | 93.59   | 740 | 220 | 154 | 500 | 744   | 0.79 | 27.5  | 100 | 0.4     | _0      |
| 05QA001 | 60    | 2      | 0   | 50.0415 | 91.564  | 790 | 220 | 273 | 500 | 13900 | 0.99 | 238.1 | 100 | 49.76   | 23.4    |
| 05QC001 | 29    | 2      | 1   | 50.522  | 93.29   | 720 | 220 | 406 | 490 | 4920  | 0.91 | 101.7 | 90  | 7.5     | 0.99    |
| 05QD003 | 27    | 2      | 0   | 49.472  | 93.114  | 775 | 225 | 195 | 510 | 2510  | 0.91 | 47    | 90  | 4.3     | 0.02    |
| 05QD006 | 28    | 2      | 1   | 49.572  | 93.235  | 770 | 220 | 225 | 510 | 6370  | 0.83 | 80.2  | 80  | 19.11   | 6.21    |
| 05QD016 | 21    | 2      | 1   | 49.4945 | 92.5215 | 775 | 230 | 169 | 510 | 2300  | 0.81 | 40.5  | 80  | 3.65    | 0.46    |
| 05QE006 | 49    | 2      | 1   | 50.38   | 93.123  | 700 | 200 | 253 | 490 | 26400 | 0.94 | 122.5 | 100 | 85.43   | 18.45   |
| 05QE007 | 35    | 2      | 1   | 50.3501 | 93.2715 | 695 | 200 | 295 | 490 | 37000 | 0.68 | 131.1 | 50  | 144.5   | 31.68   |
| 05QE008 | 21    | 2      | 0   | 50.303  | 93.153  | 750 | 190 | 195 | 490 | 1690  | 0.97 | 87.6  | 100 | 3.71    | 1.9     |
| 05QE009 | 31    | 2      | 0   | 50.212  | 94.273  | 760 | 190 | 223 | 490 | 1530  | 0.9  | 92.71 | 50  | 2.71    | 0.97    |

<sup>\* 1 -</sup> Regulated

<sup>0 -</sup> Natural

### TABLE 3.8(b) DATA BASE, PARAMETERS USED IN REGRESSION NORTHEASTERN REGION

| Station   | # of  | Region | RN*   | LAT   | LONG   | MAP  | MAS | MAR | EVA | DA    | BFI  | LNTH | ACL  | 702     | 7Q20  |
|-----------|-------|--------|-------|-------|--------|------|-----|-----|-----|-------|------|------|------|---------|-------|
| Number    | Years | Code   | , , , | (0)   | (0)    | mm   | mm  | mm  | mm  | km^2  | ווט  | km   | (%)  | m ^ 3/s |       |
| 02BF001   | 24    | 3      | 0     | 46.59 | 84.313 | 1000 | 300 | 598 | 520 | 1190  | 0.53 | 103  | 58   | 303     | 1.64  |
| 02BF002   | 24    | 3      | 0     | 46.51 | 83.581 | 895  | 300 | 516 | 520 | 1160  | 0.57 | 84.5 | 83   | 2.45    | 0.91  |
| 02BF004   | 12    | 3      | 0     | 46.31 | 84.275 | 900  | 300 | 486 | 520 | 51.5  | 0.34 | 27.6 | 100  | 0.04    | 0.02  |
| 02BF006   | 12    | 3      | 0     | 47.03 | 84.244 | 895  | 300 | 799 | 520 | 8.64  | 0.55 | 11.7 | 50   | 0.04    | 0.02  |
| 02CA002   | 20    | 3      | 0     | 46.33 | 84.165 | 930  | 300 | 563 | 525 | 108   | 0.35 | 17.5 | 24   | 0.07    | 0.01  |
| 02CC007   | 41    | 3      | 1     | 46.26 | 83.230 | 890  | 290 | 377 | 510 | 6840  | 0.56 | 77.6 | 100  | 18.48   | 1.63  |
| 02CC007   | 40    | 3      | 1     | 46.12 | 83.013 | 885  | 270 | 423 | 510 | 9300  | 0.64 | 88.9 | 100  | 38.88   | 17.23 |
| 02CC009   | 31    | 3      | 1     | 46.18 | 83.172 | 885  | 280 | 390 | 510 | 9010  | 0.57 | 86   | 100  | 31.43   | 7.32  |
| 02CC009   | 11    | 3      | 1     | 46.34 | 82.575 | 890  | 285 | 416 | 510 | 1190  | 0.58 | 47   | 50   | 4.09    | 2025  |
| 02CC010   | 25    | 3      | 0     | 46.12 | 82.303 | 900  | 255 | 508 | 500 | 1350  | 0.81 | 56   | 100  | 2.6     |       |
|           |       | 3      | 1     |       |        |      |     |     |     |       |      |      |      |         | 0.6   |
| 02CD002   | 14    | 3      |       | 46.29 | 82.383 | 900  | 250 | 502 | 500 | 109   | 0.53 | 7.6  | 70   | 0.06    | 0     |
| 02CD004   | 22    |        | 0     | 46.22 | 82.261 | 900  | 250 | 544 | 500 | 567   | 0.84 | 35   | 50   | 1.59    | 0.26  |
| 02CD006   | 23    | 3      |       | 46.31 | 82.37  | 900  | 255 | 575 | 500 | 157   | 0.7  | 4.5  | 100  | 0.61    | 0.26  |
| 02CE001   | 44    | 3      | 1     | 46.16 | 81.462 | 890  | 250 | 366 | 490 | 11400 | 0.71 | 147  | 30   | 43.56   | 22.6  |
| 02CE002   | 76    | 3      | 1     | 46.12 | 82.041 | 880  | 250 | 430 | 490 | 1350  | 0.77 | 128  | 72   | 3.99    | 2.6   |
| 02CF007   | 31    | 3      | 0     | 46.34 | 81.115 | 795  | 250 | 356 | 490 | 243   | 0.55 | 24.5 | 19   | 0.51    | 0.31  |
| 02CF010   | 15    | 3      | 1     | 46.36 | 81.225 | 800  | 250 | 242 | 490 | 1570  | 0.63 | 88   | 50   | 1.71    | 0.8   |
| 02CF012   | 14    | 3      | 0     | 46.25 | 81.055 | 800  | 260 | 497 | 490 | 207   | 0.57 | 31   | 20   | 0.79    | 0.39  |
| 02DB007   | 11    | 3      | 0     | 46.28 | 80.491 | 805  | 260 | 679 | 490 | 59    | 0.38 | 35   | 0    | 0.14    | 0.01  |
| 02DC003   | 70    | 3      | 1     | 46.27 | 79.514 | 830  | 270 | 413 | 480 | 6660  | 0.78 | 170  | 70   | 29.49   | 11.97 |
| 02DC008   | 52    | 3      | 1     | 46.40 | 79.594 | 825  | 265 | 422 | 480 | 2360  | 0.71 | 145  | 100  | 0.51    | 0.003 |
| 9 02DD005 | 47    | 3      | 1     | 46.05 | 79.284 | 830  | 270 | 471 | 500 | 787   | 0.58 | 41   | 100  | 2.15    | 0.75  |
| 02DD009   | 35    | 3      | 1     | 45.50 | 79.224 | 890  | 270 | 634 | 500 | 316   | 0.67 | 30   | 10   | 1.54    | 0.54  |
| 02DD010   | 30    | 3      | 1     | 46.03 | 80.342 | 850  | 270 | 414 | 500 | 13900 | 0.93 | 120. | 50   | 42.89   | 25.36 |
| 02DD013   | _ 17  | 3      | 0     | 46.15 | 79.234 | 860  | 270 | 443 | 500 | 70.4  | 0.36 | 3    | 100  | 0.06    | 0.01  |
| 02EA005   | 76    | 3      | 0     | 45.46 | 79.224 | 930  | 290 | 576 | 510 | 321   | 0.66 | 43.6 | 91   | 0.69    | 0.31  |
| 02EA006   | 76    | 3      | 1     | 45.37 | 79.231 | 930  | 290 | 523 | 510 | 650   | 0.76 | 63   | 90   | 1.89    | 0.5   |
| 02EA010   | 23    | 3      | 0     | 45.12 | 79.183 | 920  | 280 | 626 | 510 | 149   | 0.5  | 36   | 28   | 0.36    | 0.19  |
| 02EA011   | 18    | 3      | 1     | 45.46 | 80.284 | 935  | 280 | 522 | 510 | 2850  | 0.66 | 97   | 80   | 5.13    | 1.58  |
| 02EA013   | 11    | 3      | 0     | 45.11 | 80.262 | 940  | 280 | 530 | 510 | 35.5  | 0.66 | 4.5  | 80   | 0.01    | 0     |
| 02JC008   | 23    | 3      | 0     | 47.53 | 79.524 | 790  | 280 | 390 | 470 | 1780  | 0.64 | 95.3 | 80   | 3.82    | 2.38  |
| 02JD010   | 19    | 3      | 1     | 47.08 | 79.271 | 830  | 280 | 368 | 470 | 6600  | 0.23 | 132  | 100  | 14.63   | 1.98  |
| 02JE012   | 39    | 3      | 1     | 46.22 | 78.432 | 850  | 260 | 454 | 470 | 47900 | 0.71 | 105  | 90   | 365.5   | 225.1 |
| 02JE018   | 12    | 3      | 0     | 47.25 | 79.315 | 850  | 260 | 336 | 470 | 62.9  | 0.63 | 15.5 | 94   | 0.04    | 0     |
| 02JE019   | 19    | 3      | 1     | 46.18 | 78.524 | 850  | 260 | 470 | 470 | 1130  | 0.79 | 77.5 | 100  | 3.64    | 1.82  |
| 02JE020   | 20    | 3      | 1     | 46.17 | 78.542 | 850  | 260 | 537 | 470 | 909   | 0.59 | 39.1 | 100  | 1.49    | 0.88  |
| 04KA001   | 21    | 1      | 0     | 51.09 | 80.52  | 720  | 220 | 277 | 370 | 4250  | 0.56 | 229. | 0    | 1.09    | 0.41  |
| 04LA001   | 22    | 1      | 1     | 48.23 | 81.265 | 830  | 220 | 372 | 450 | 5540  | 0.79 | 150. | 50   | 25.91   | 17.73 |
| 04LF001   | 73    | 1      | 1     | 49.25 | 82.261 | 820  | 300 | 363 | 440 | 6760  | 0.68 | 236. | 0    | 12.15   | 4.85  |
| 04LG002   | 24    | 1      | 1     | 50.48 | 81.174 | 760  | 220 | 410 | 370 | 60100 | 0.69 | 476. | 0    | 166.1   | 95.99 |
| 04LJ001   | 71    | 1      | 0     | 49.37 | 83.151 | 820  | 300 | 370 | 420 | 8940  | 0.67 | 335. | 18   | 11.15   | 4.86  |
| 04LM001   | 19    | 1      | 0     | 50.35 | 82.07  | 780  | 250 | 339 | 390 | 22900 | 0.53 | 396. | 7    | 22.45   | 13.45 |
| 04MD004   | 14    | 1      | 0     | 48.33 | 81.052 | 815  | 300 | 456 | 410 | 401   | 0.49 | 25   | 90   | 0.58    | 0.29  |
| 04ME002   | 59    | 1      | 1     | 49.52 | 81.34  | 760  | 305 | 418 | 400 | 22900 | 0.64 | 167  | 0    | 144.3   | 98.1  |
| 04ME003   | 32    | 1      | 1     | 50.36 | 81.25  | 750  | 305 | 449 | 400 | 27500 | 0.66 | 259  | 19.5 | 172     | 130.1 |
| 04MF001   | 25    | 1      | 0     | 51.05 | 80.46  | 720  | 220 | 430 | 390 | 6680  | 0.65 | 123. | 0    | 6.03    | 2.8   |

<sup>\* 1 -</sup> Regulated

<sup>0 -</sup> Natural

TABLE 3.9(a)
SUMMARY OF SIMPLE STATISTICS OF THE
METEOROLOGICAL AND PHYSIOGRAPHIC DATA
NORTHERN ONTARIO

|                       | _                  | _                     | _                                 | _                         |                         | i                            |                        |                 |                       | _                                        |                                        |                                         |
|-----------------------|--------------------|-----------------------|-----------------------------------|---------------------------|-------------------------|------------------------------|------------------------|-----------------|-----------------------|------------------------------------------|----------------------------------------|-----------------------------------------|
| Lable                 | 93 Years of Record | 93 Reg. Code O-N, 1-R | 93 Mean Annual Precipitation (mm) | Mean Annual Snowfall (mm) | Mean Annual Runoff (mm) | Mean Annual Evaporation (mm) | 93 Drainage Area (km²) | Base Flow Index | 93 Stream Length (km) | 93 Area Controled By Lake and Swamps (%) | 93 7Q <sub>2</sub> (m <sup>3</sup> /s) | 93 7Q <sub>20</sub> (m <sup>3</sup> /s) |
| Maximum # of Stations | 93                 | 93                    | 93                                | 93                        | 93                      | 93                           | 93                     | 93              |                       | 93                                       | 93                                     | 93                                      |
| Maximum               | 92                 | -                     | 666                               | 305                       | 799                     | 525                          | 94300                  | 0.99            | 476.3                 | 100                                      | 172                                    | 130.1                                   |
| Minimum               | 11                 | 0                     | 200                               | 190                       | 108                     | 340                          | 9.8                    | 0.23            | က                     | 0                                        | 0.01                                   | 0                                       |
| Skewness              | 1.39               | 0.02                  | -0.63                             | 0.01                      | 0.62                    | -0.95                        | 3.12                   | -0.46           | 130                   | -0.61                                    | 2.33                                   | 3.09                                    |
| S. Dev.               | 17.7               | 0.5                   | 97                                | 32.2                      | 125.5                   | 52.7                         | 15057.5                | 0.18            | 109.4                 | 36.1                                     | 41.71                                  | 24.96                                   |
| Mean                  | 29.5               | 0.5                   | 788.1                             | . 249.3                   | 368.7                   | 465.3                        | 8422.3                 | 0.72            | 122.8                 | 92                                       | 24.22                                  | 12.75                                   |
| Variable              | Years              | NR.                   | MAP                               | MAS                       | MAR                     | EVA                          | DA                     | BFI             | LNTH                  | ACLS                                     | Q2                                     | Q20                                     |

TABLE 3.9(b)
SUMMARY OF SIMPLE STATISTICS OF THE
METEOROLOGICAL AND PHYSIOGRAPHIC DATA
NORTHWESTERN REGION

| Variable | Mean    | S. Dev. | Skewness | Minimum | Maximum | Maximum # of Stations | Lable                                    |
|----------|---------|---------|----------|---------|---------|-----------------------|------------------------------------------|
| Pars     | 28.9    | 15.4    | 1.51     | 1       | 89      | 47                    | 47 Years of Record                       |
| N. N.    | 0.44    | 0.5     |          | 0       | -       | 47                    | 47 Reg. Code O-N, 1-R                    |
| AAP      | 728     | 83.5    | -0.87    | 200     | 875     |                       | 47 Mean Annual Precipitation (mm)        |
| MAS      | 230.2   | 26.6    | 0.72     | 190     | 300     |                       | 47 Mean Annual Snowfall (mm)             |
| MAR      | 282.9   | 68.8    | -0.004   | 108     | 449     | 47                    | 47 Mean Annual Runoff (mm)               |
| EVA      | 453.4   | 57.9    | -0.62    | 340     | 515     |                       | 47 Mean Annual Evaporation (mm)          |
| DA       | 11218.9 | 17934.7 | 2.64     | 111     | 94300   |                       | 47 Drainage Area (km²)                   |
| BFI      | 0.81    | 0.16    | -1.2     | 0.36    | 0.99    |                       | 47 Base Flow Index                       |
| LNTH     | 144.88  | 110.29  | 0.98     | 4       | 465     |                       | 47 Stream Length (km)                    |
| ACLS     | 69.3    | 34.2    | -0.83    | 0       | 100     |                       | 47 Area Controled By Lake and Swamps (%) |
| 2        | 29.9    | 45.4    | 1.82     | 90.0    | 165.2   |                       | 47 7Q2 (m <sup>3</sup> /s)               |
| 020      | 14.5    | 21.9    | 2.42     | 0       | 104.9   |                       | 47 7Q <sub>20</sub> (m <sup>3</sup> /s)  |

TABLE 3.9(c)
SUMMARY OF SIMPLE STATISTICS OF THE
METEOROLOGICAL AND PHYSIOGRAPHIC DATA
NORTHEASTERN REGION

| Lable                 | Record             | 46 Reg. Code O-N, 1-R | 46 Mean Annual Precipitation (mm) | 46 Mean Annual Snowfall (mm) | 46 Mean Annual Runoff (mm) | 46 Mean Annual Evaporation (mm) | 46 Drainage Area (km <sup>2</sup> ) | v Index            | 46 Stream Length (km) | 46 Area Controled By Lake and Swamps (%) | (s                         | (s)                                     |
|-----------------------|--------------------|-----------------------|-----------------------------------|------------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------|-----------------------|------------------------------------------|----------------------------|-----------------------------------------|
|                       | 46 Years of Record | Reg. Coc              | Mean An                           | Mean An                      | Mean An                    | Mean An                         | Drainage                            | 46 Base Flow Index | Stream L              | Area Cor                                 | 46 7Q2 (m <sup>3</sup> /s) | 46 70 <sub>20</sub> (m <sup>3</sup> /s) |
| Maximum # of Stations | 46                 | 46                    | 46                                | 46                           | 46                         | 46                              | 46                                  | 46                 | 46                    | 46                                       | 46                         | 46                                      |
| Maximum               | 92                 | -                     | 666                               | 305                          | 299                        | 525                             | 60100                               | 0.93               | 476.3                 | 100                                      | 172                        | 130.1                                   |
| Minimum               | 11                 | 0                     | 720                               | 220                          | 242                        | 370                             | 8.64                                | 0.23               | 8                     | 0                                        | 0.01                       | 0                                       |
| Skewness              | 1.26               | -0.22                 | -0.27                             | -0.46                        | 0.65                       | -1.33                           | 3.73                                | -0.36              | 1.9                   | -0.4                                     | 3.22                       | 3.54                                    |
| S. Dev.               | 20.19              | 0.5                   | 61.09                             | 23.6                         | 103.6                      | 4316                            | 103824                              | 0.15               | 104.11                | 37.8                                     | 40.12                      | 27.6                                    |
| Mean                  | 30.23              | 0.55                  | 854.55                            | 270.4                        | 463.6                      | 478.4                           | 5328.1                              | 0.63               | 98.29                 | 60.3                                     | 18.34                      | 10.8                                    |
| Variable              | Years              | AN NA                 | MAP                               | MAS                          | MAR                        | EVA                             | DA                                  | BFI                | LNTH                  | ACLS                                     | 02                         | Q20                                     |

# TABLE 3.9(d) SUMMARY OF SIMPLE STATISTICS OF THE METEOROLOGICAL AND PHYSIOGRAPHIC DATA REGION ONE

| Variable | Mean  | S. Dev. | Skewness | Minimum |       | Maximum # of Stations | Lable                                    |
|----------|-------|---------|----------|---------|-------|-----------------------|------------------------------------------|
| (ears    | 27.9  | 15.4    | 2.1      | 14      | 73    | 28                    | 28 Years of Record                       |
| Z        | 0.32  | 0.48    | 0.81     | 0       | _     | 28                    | 28 Reg. Code O-N, 1-R                    |
| MAP      | 700.5 | 94.9    | -0.4     | 200     | 830   | 28                    | 28 Mean Annual Precipitation (mm)        |
| MAS      | 249.1 | 38.7    | 0.23     | 190     | 305   |                       | 28 Mean Annual Snowfall (mm)             |
| MAR      | 330.1 | 74.3    | -0.7     | 108     | 456   |                       | 28 Mean Annual Runoff (mm)               |
| FVA      | 391.3 | 27.5    |          | 340     | 450   |                       | 28 Mean Annual Evaporation (mm)          |
| P A      | 18160 | 21661   | 2        | 401     | 94300 |                       | 28 Drainage Area (km²)                   |
| HE!      | 0.79  | 0.15    | -0.38    | 0       | -     | 28                    | 28 Base Flow Index                       |
| NTH      | 229   | 111.6   |          | 25      | 476.3 |                       | 28 Stream Length (km)                    |
| ACLS     | 50.5  | 40.9    | -0.02    | 0       | 100   |                       | 28 Area Controled By Lake and Swamps (%) |
| 25       | 43.7  | 55.1    | 1.48     | 0.58    | 172   |                       | 28 70 <sub>2</sub> (m <sup>3</sup> /s)   |
| 020      | 27.7  | 36.64   | 1.65     | 0.23    | 130.1 | 28                    | 28 7Q <sub>20</sub> (m <sup>3</sup> /s)  |

TABLE 3.9(e)
SUMMARY OF SIMPLE STATISTICS OF THE
METEOROLOGICAL AND PHYSIOGRAPHIC DATA
REGION TWO

| 31.4         14.9         1.03         11         64         14         Years of Record           0.75         0.45         -1.28         0         1         14         Reg. Code O-N, 1-R           747.5         29.7         -0.31         695         790         14         Mean Annual Precipitation (mm)           211.75         14.66         -0.54         190         230         14         Mean Annual Precipitation (mm)           238.3         58.2         1.51         490         515         14         Mean Annual Evaporation (mm)           500.3         10.2         0.17         490         515         14         Mean Annual Evaporation (mm)           12284.6         16312.8         1,4         50200         14         Drainage Area (km²)           0.86         0.09         14         Base Flow Index           97.14         64.9         0.47         4         238.1         14         Stream Length (km)           81.9         27.9         100         100         14         Area Controled By Lake and Swamps (%)           43.2         53.3         0.94         0.4         144.5         14         70 <sub>20</sub> (m³/s)           43.5         20.6         1.34 <th>Mean</th> <th>S. Dev.</th> <th>Skewness</th> <th>Minimum</th> <th>Maximum</th> <th>Maximum # of Stations</th> <th>Lable</th> | Mean  | S. Dev. | Skewness | Minimum | Maximum | Maximum # of Stations | Lable                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------|---------|---------|-----------------------|---------------------------------------|
| 0.45     -1.28     0     1       29.7     -0.31     695     790       14.66     -0.54     190     230       58.2     1.51     490     515       10.2     0.17     490     515       16312.8     1.4     744     50200       0.09     -0.18     0.68     0.99       64.9     0.47     4     238.1       27.9     -1.99     0.4     144.5       20.6     1.94     0.4     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31    |         | Ì        | 11      | 64      | 14                    | Years of Record                       |
| 29.7     -0.31     695     790       14.66     -0.54     190     230       58.2     1.51     154     406       10.2     0.17     490     515       16312.8     1.4     744     50200       0.09     -0.18     0.68     0.99       64.9     0.47     4     238.1       27.9     -1.99     0     100       53.3     0.94     0.44     72.3       20.6     1.94     0     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7   |         | -1.28    | 0       | -       | 41                    | Reg. Code O-N, 1-R                    |
| 14.66     -0.54     190     230       58.2     1.51     154     406       10.2     0.17     490     515       16312.8     1.4     744     50200       0.09     -0.18     0.68     0.99       64.9     0.47     4     238.1       27.9     -1.99     0     100       53.3     0.94     0.4     144.5       20.6     1.94     0     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 747   |         | -0.31    | 695     | 790     | 14                    | Mean Annual Precipitation (mm)        |
| 58.2     1.51     154     406       10.2     0.17     490     515       16312.8     1.4     744     50200       0.09     -0.18     0.68     0.99       64.9     0.47     4     238.1       27.9     -1.99     0     100       53.3     0.94     0.4     144.5       20.6     1.94     0     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 211.7 |         |          | 190     | 230     | 14                    | Mean Annual Snowfall (mm)             |
| 10.2     0.17     490     515       16312.8     1.4     744     50200       0.09     -0.18     0.68     0.99       64.9     0.47     4     238.1       27.9     -1.99     0     100       53.3     0.94     0.4     144.5       20.6     1.94     0     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 238   |         |          | 154     | 406     | 14                    | Mean Annual Runoff (mm)               |
| 16312.8         1.4         744         50200           0.09         -0.18         0.68         0.99           64.9         0.47         4         238.1           27.9         -1.99         0         100           53.3         0.94         0.4         144.5           20.6         1.94         0         72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200   |         |          | 490     | 515     | 14                    | Mean Annual Evaporation (mm)          |
| 0.09         -0.18         0.68         0.99           64.9         0.47         4         238.1           27.9         -1.99         0         100           53.3         0.94         0.4         144.5           20.6         1.94         0         72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2284  |         | 1.4      | 744     | 50200   | 14                    | Drainage Area (km <sup>2</sup> )      |
| 64.9         0.47         4         238.1           27.9         -1.99         0         100           53.3         0.94         0.4         144.5           20.6         1.94         0         72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0   |         |          | 0.68    | 0.99    | 14                    | Base Flow Index                       |
| 27.9     -1.99     0     100       53.3     0.94     0.4     144.5       20.6     1.94     0     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.   |         |          | 4       | 238.1   | 14                    | Stream Length (km)                    |
| 53.3     0.94     0.4     144.5       20.6     1.94     0     72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81    |         | ·        | 0       | 100     | 14                    | Area Controled By Lake and Swamps (%) |
| 20.6 1.94 0 72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43    |         | 0.94     | 0.4     | 144.5   | 14                    | 7Q <sub>2</sub> (m <sup>3</sup> /s)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14    |         | 1.94     | 0       | 72.3    | 14                    | 70 <sub>20</sub> (m <sup>3</sup> /s)  |

# TABLE 3.9(f) SUMMARY OF SIMPLE STATISTICS OF THE METEOROLOGICAL AND PHYSIOGRAPHIC DATA REGION THREE

| Variable | Mean    | S. Dev. | Skewness | Minimum | Maximum | Maximum # of Stations | Lable                                   |
|----------|---------|---------|----------|---------|---------|-----------------------|-----------------------------------------|
| Years    | 30.2    | 19.7    | 1.21     | -1      | 92      |                       | 51 Years of Record                      |
| Z.       | 0.53    | 0.5     | -0.11    | 0       | -       | 51                    | 51 Reg. Code O-N, 1-R                   |
| MAP      | 849.2   | 58.4    |          | 720     | 666     | 51                    | 51 Mean Annual Precipitation (mm)       |
| MAS      | . 261.5 | 21.2    | 0.23     | 230     | 300     | 51                    | 51 Mean Annual Snowfall (mm)            |
| MAR      | 430.7   | 121.5   |          | 193     | 799     |                       | 51 Mean Annual Runoff (mm)              |
| EVA      | 494.2   | 21.6    | -2.29    | 400     | 525     |                       | 51 Mean Annual Evaporation (mm)         |
| A        | 3212.2  | 7019    |          | 8.64    | 47900   |                       | 51 Drainage Area $(km^2)$               |
| BFI      | 0.64    | 0.17    | -0.28    | 0.23    | 0.99    | 51                    | Base Flow Index                         |
| LNTH     | 77.42   |         | 2.54     | 3       | 465     |                       | 51 Stream Length (km)                   |
| ACLS     | 68.02   | 33.45   | -0.67    | 0       | 100     | 51                    | Area Controled By Lake and Swamps (%)   |
| 02       | 14.37   | 49.81   | 6.73     | 0.01    | 365.5   |                       | 51 7Q <sub>2</sub> (m <sup>3</sup> /s)  |
| Q20      | 7.46    | 30.69   | 98'9     | 0       | 225.1   | 51                    | 51 7Q <sub>20</sub> (m <sup>3</sup> /s) |

Other general physiographic information was referred to during the identification of sub-regions for Northern Ontario. With reference to Appendix F Figure F.8 illustrates general variations in surficial geology; Figure F.5 summarizes overall variations in annual groundwater contribution to local streamflow; and Figure F.6 summarizes, in a general way, the variations in groundwater yield from bedrock.

### 3.5 Sub-Regions

### 3.5.1 General

Previous investigations have indicated that the accuracy of prediction of low flows for ungauged watersheds can be increased somewhat by definition of statistically or physically homogeneous sub-regions. For the purpose of this investigations, three sub-regions were identified based on preliminary development of prediction methods (see Figure 3.4). The hydrologic characteristics of the sub-regions are summarized in Table 3.10, from which it is evident that there appears to be broad differences in meteorologic, physiographic and low flow characteristics supporting the use of a sub-regional analysis. The development and testing of low flow prediction techniques was undertaken for each of the sub-regions in an effort to evaluate the possibility of improving low flow estimates.

Three statistical tests were also applied in an effort to confirm the identification of subregions (see Section 3.5.2, 3.5.3, and 3.5.4).

### 3.5.2 Statistical Homogeneity Test

A test for statistical homogeneity for each of the sub-regions was developed and applied in an effort to confirm regional homogeneity on a statistical basis. P.J. Pilon (1990) applied a homogeneity test, developed by T. Dalrymple (1960) for flood frequency analysis, for the three-parameter Weibull distribution. This technique was modified for application in the present low flow regionalization study. The statistical aspects of the test are described in Appendix D.1.

### 3.5.3 Heterogeneity Measure

A heterogeneity measure technique, developed by J.R.M. Hosking and J.R. Wallis (1993) for regional flood frequency analysis, was also applied to test the homogeneity of the sub-regions.



TABLE 3.10

COMPARISON OF SUB-REGIONS

| Parameter                               | Region One                                                                 | Region Two                                      | Region Three                                                    |
|-----------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|
| 7Q <sub>20</sub> (l/s/km <sup>2</sup> ) | 1.87 (23 stations)                                                         | 0.74 (14 stations)                              | .99 (51 stations)                                               |
| MAP (mm)                                | 650 (500 - 800)                                                            | 700 (600 - 800)                                 | 900 (800 - 900)                                                 |
| EVA (mm)                                | 400 (300 - 500)                                                            | 400 (300 - 500)                                 | 450 (400 - 500)                                                 |
| MAR (mm)                                | 300 (200 - 400)                                                            | 200 (150 - 250)                                 | 400 (300 - 500)                                                 |
| General Climate                         | sub-arctic<br>boreal sub-humid to<br>boreal moist                          | boreal sub-humid                                | cool temperature to<br>boreal humid/moist                       |
| Surficial Soils                         | Surface ± 50%<br>bedrock; limestone<br>and dolomite towards<br>Hudsons Bay | thin cover; some<br>sands plus silt and<br>clay | thin cover, some<br>sands; gravels and<br>igneous bedrock       |
| General                                 | Hudsons Bay,<br>Lowland, James Bay                                         | Lac Seul, Lake of<br>Woods, Rainy Lake          | numerous shoreline<br>watersheds to Lake<br>Superior/Lake Huron |
| Sub-surface Yield                       | Bedrock well yield<br>50% < 1 l/s<br>50% ≥ 1 l/s                           | Bedrock well yield < 1 1/s                      | Bedrock well yield<br>< 1 l/s                                   |

The purpose of this measure is to estimate the degree of heterogeneity in a group of sites and to assess whether they might reasonably be treated as a homogeneous region. Specifically, the heterogeneity measure compares the between-site variations in sample L-moments for the group of sites with what would be expected for a homogeneous region. The procedures for application of the heterogeneity measure are described in Appendix D.2.

### 3.5.4 Cluster Analysis

The possibility to delimitate homogeneous regions, based on the statistical characteristics of the selected characteristics of hydrometric stations, was also undertaken using a cluster analysis.

In cluster analysis, group membership for all cases is unknown. In fact, even the number of groups is often unknown. The goal of the analysis is to identify homogeneous groups or clusters. A commonly used method for forming clusters is the hierarchical cluster analysis (which is available in the SPSS package).

There are many criteria for deciding which cases or clusters should be combined at each step of the analysis. All of these criteria are based on a matrix of either distances or similarities between pairs of cases. The two cases combined are those that have the smallest distance (or largest similarity). Clusters are formed by grouping cases into bigger and bigger clusters until all cases are members of a single cluster. A brief description of the cluster analysis and results given in Appendix D.3.

### 3.5.5 Results and Conclusions

A broad comparison of meteorological, physical and low flow characteristics (see Table 3.10) has indicated that it might be possible to consider low flow prediction methods based on three sub-regions in Northern Ontario.

However, the statistical homogeneity testing (see Appendix D.1) failed to confirm the statistical homogeneity of low flows for each of the selected sub-regions. Our preliminary assessment of this homogeneity test, as applied to low flows, indicates that the test may be too rigorous to apply to the available data base due to the short record length of available data and the statistical characteristics. (i.e. the test is apparently less accurate for low flows than for flood flows due to the shape of the probability density function).

The results of the cluster analysis indicated that the stations in Northern Ontario could be divided into two groups, which are, a Large Drainage Area Group and a Small Drainage Area Group. The cutoff point is about 17,000 km<sup>2</sup>. Among the 93 stations, 78 could be classified into the second group, while 15 stations are found in the first group.

The heterogeneity measure technique was found to confirm the homogeneity of the selected subregions in the sense of frequency distribution characteristics. Table 3.11 presents the results of this measure. The weighted standard deviation of the at-site sample L-CVs (represented by V in Table 3.11) present the variations of the L-CV of the regions. The expected V and its standard deviation from the simulation give the range of variation of the V statistics. The heterogeneity measure, which is the H value in Table 3.11, declares the region to be heterogeneous if H is sufficiently larger. The region would be regarded as "acceptable homogeneous" if H < 1, "possibly heterogeneous" if  $1 \le H < 2$ , and "definitely heterogeneous" if  $1 \le H < 2$ . From Table 3.11, it is evident that the data base available for Northern Ontario is heterogeneous (because  $1 \le H \le 1$ ). The Northwestern and Northeastern regions could be defined as possibly the heterogeneous regions and the sub-regions could be viewed as homogeneous. Therefore it is concluded that, the regionalization techniques could be applied to the sub-regions with some confidence.

Additional analysis using L-moments statistics (see plots of L-CV vrs. L-CS and L-CV vrs. L-CK in Appendix B) also confirmed regional homogeneity in regard to application of the frequency distribution.

It is also recognized that the available data base for region two (14 stations) may be insufficient to develop regionalization techniques. It could be postulated that the stations, in this region, may belong to a larger homogeneous area located between Ontario and Manitoba, although this requires further consideration in future investigations.

The ultimate objective of the sub-region analysis is to determine whether or not there would be an improvement in the regionalization of the low flow characteristics. The accuracy of predictions, by forming statistical based homogeneous regions (groups), will be discussed in Section 4.0.

### 3.6 Summary of Data Base

This section summarizes the main findings from the data base analysis for Northern Ontario, Northwestern and Northeastern and the three sub-regions.

TABLE 3.11

RESULTS OF HETEROGENEITY MEASURE (L-CV)

| Region               | V (recorded) | V <sup>e</sup> (simulated) | Std. Dev. of V<br>(simulated) | H    |
|----------------------|--------------|----------------------------|-------------------------------|------|
| Northern Ontario     | 0.016        | 0.013                      | 0.0014                        | 2.48 |
| Northwestern Ontario | 0.024        | 0.019                      | 0.0034                        | 1.56 |
| Northeastern Ontario | 0.008        | 0.0065                     | 0.0011                        | 1.29 |
| Sub-Region 1         | 0.0037       | 0.0031                     | 0.00061                       | 0.97 |
| Sub-Region 2         | 0.0095       | 0.0083                     | 0.0029                        | 0.41 |
| Sub-Region 3         | 0.022        | 0.020                      | 0.0033                        | 0.60 |

Note: H < 1 Homogeneous

1 < H < 2 Possibly Heterogeneous

H > 2 Heterogeneous

(500 simulations)

V weighted standard deviation of the at site L-CV's

Ve Simulated standard deviation of of L-CV

H Heterogeneity measure

Selected low flow characteristics were determined and are summarized on Figures 3.1 and 3.2 (with additional data in Appendix B).

Table 3.4 summarizes selected 7 day low flow statistics. It is apparent, from Table 3.4, that the mean values of low flows in Northern Ontario are above the average for the rest of Ontario. The mean low flow for the Northwestern Region is higher than that of Northeastern Region. The mean low flow for each of the three sub-regions are also distinguished from each other as shown in Table 3.4.

Table 3.5 summarizes the statistical characteristics for  $7Q_2$ ,  $7Q_5$ ,  $7Q_{10}$ , and  $7Q_{20}$ . It was confirmed that the three sub-regions identified do possess statistically different low flow characteristics. Table 3.6 tabulates the unit area 7-day low flows and unit area values also appear to be significantly different for Regions 1, 2, and 3.

Table 3.9 (a) through (f) summarizes ranges, means, and other statistics for the meteorological and physiographic data for the different regions. It also appears evident from Table 3.9 that it is appropriate to divide Northern Ontario into three sub-regions. Not only are the mean drainage area size for Region One and Two are much larger than the mean drainage area of Region Three, but the basic meteorological characteristics between Region One and Region Two are also quite different as is evident in Tables 3.9 (d), (e), and (f).

Table 3.8 (a) and 3.8 (b) summarize the data base used in low flow regionalization for Northern Ontario. Table 3.8 (a) is for the Northwestern Region, while Table 3.8 (b) is for the Northeastern Region. The three statistically based sub-regions shown on Figure 3.4 are represented by the appropriate code (1, 2, or 3) in Table 8. The regionalization then proceeded using the data in Table 8 and various data base analysis and graphical techniques (see Section 4.0).

### 4.0 REGIONALIZATION OF LOW FLOW CHARACTERISTICS

### 4.1 General

Four alternative methods for providing estimates of low flow characteristics for ungaged watershed were considered. They are; Multiple Linear Regression (Section 4.4), Mapped Isolines of unit low flows (Section 4.2), two types of Index Method (Section 4.3), and proration from nearby gauges (unit area technique) (Section 4.5). Emphasis was placed on determining  $7Q_{20}$  and  $7Q_2$  as these flows were identified to be the key low flow statistics required by the Ministry of the Environment and Energy. In addition to Northeastern and Northwestern Ontario, alternate prediction techniques were developed for the three sub-regions and the change in prediction accuracy was evaluated. Two statistically based homogeneous groups were also identified by means of cluster analysis and the relative prediction accuracy, based on the regression analysis, was evaluated.

### 4.2 Mapped Isoline Method

Isolines of unit area  $7Q_2$  and  $7Q_{20}$  low flows were drawn for the combined Northwestern and Northeastern regions (see Figures 4.1 and 4.2) using digital terrain modelling procedures and hand-drawn interpretations and modifications.

First, a digital terrain modelling package was used to create a triangulation matrix over the region to interpolate the location of "even values" isoline intersection points. The isolines were then created based on this interpolation (see Appendix G). The density of isolines is a reflection of station density. The higher density in the Northwestern region results in more closely packed isolines while the Northeastern region isolines are more spread out due to lower station density. Several patterns seem to become evident using this procedure. For example, there appears to be some kind of lake effect which influences isolines near Lake Superior and north of Lake Huron.

However, preliminary testing of low flow predictions found that the digital terrain modelling procedure was less accurate for low flow prediction than those from hand drawn interpretations using experience and judgement. This is attributed to the fact that the computer drawn isolines gave equal weight to all station values, independent of the station record and the quality of data. The computer drawn isolines (Appendix G) were then used as the overall basis for producing the final manually drawn isoline maps shown on Figures 4.1 and 4.2 for  $7Q_2$  and  $7Q_{20}$  respectively.



Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

FIGURE 4.1



It should also be noted that consideration was also given to utilizing a non-linear data transform prior to isoline mapping. From the correlation analysis of  $7Q_2$  with transformed parameters (see Table 4.2), it was found that no significant improvements could be expected by using a non-linear drainage area transform to predict  $7Q_2$  for Region One and Two. However, a marginal improvement could be achieved by using  $DA^2$  to estimate  $7Q_2$  for Region Three. Other mapping transforms were also attempted, with no overall success in improvement of prediction accuracy. It was concluded that basing the overall isoline maps on the reciprocal of drainage area provided a consistent technique across the study area which maximized the use of the existing data base.

### 4.3 Index Methods

Index methods rely on determination of a selected low flow characteristic or index value from which a relationship to other low flow statistics can be derived or empirically determined. Two distinct index methods were considered and evaluated, namely:

- 1) Graphical Index Method (Section 4.3.1)
- 2) Regional Index/Frequency Distribution Method (Section 4.3.2)

### 4.3.1 Graphical Index Method

The regression analysis (see Section 4.4) confirmed the conclusions drawn from the literature survey that a predictor based on drainage area (DA) can provide good estimates of low flows. Therefore, a simple method, using DA alone to estimate low flows was investigated. First, graphs of  $7Q_2$  as a function of DA were plotted as given on Figure 4.3, 4.4, and 4.5 for the total area, the Northwestern, Northeastern regions, sub-regions 1, 2, and 3 and the drainage area sizes. Figures 4.3, 4.4, and 4.5 also summarize the simple correlation of  $7Q_y$  versus the drainage area and indicates that the drainage area is well correlated with  $7Q_y$ .

Previous studies have developed some interrelationships between n-day and 10-day average low flows (Cumming Cockburn Limited, 1990). Further to this, the ratio of  $7Q_y$  to various n-day flows with Y year recurrence and the ratio of  $7Q_y/7Q_z$  for all these regions was calculated and are given in Figure 4.6.

To use this method, knowing the drainage area, the  $7Q_2$  index low flow could be estimated from Figure 4.3 or 4.4 depending upon the region in which the watershed of interest is located. When another  $7Q_y$  is needed, one can find the ratio of  $7Q_y/7Q_2$  from Figure 4.6 and then calculate the value of  $7Q_y$ . If another  $nQ_y$  flow is required, it can be estimated by using Figure 4.7 depending upon the region and the low flow to be estimated, by determining the appropriate





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

INDEX METHOD NORTHERN ONTARIO, NW, NE, (7Q<sub>3</sub>)

FIGURE 4.3





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO INDEX METHOD NORTHERN ONTARIO, SUB-REGIONS (7Q<sub>2</sub>)





### NORTHERN ONTARIO SMALL DA CLUSTER





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO INDEX METHOD HOMOGENEOUS REGIONS, CLUSTER ANALYSIS FIGURE 4.5

### 7Qy/7Q2 RATIO AS A FUNCTION OF RECURRENCE INTERVAL



### 7Qy/7Q2 RATIO AS A FUNCTION OF RECURRENCE INTERVAL



-- 70y/702



### N-DAY DURATIONS AS A FUNCTION OF RECURRENCE INTERVAL



### N-DAY DURATIONS AS A FUNCTION OF RECURRENCE INTERVAL





flow ratio as a function of  $7Q_y$ . The graphs of n-day low flows to 7-day low flows as well as the graph of 7-day y year recurrence ratio to  $7Q_2$  low flows give some insight to the interrelationships between the various extreme value low flows.

The development and use of the Index Method indicates that it may be possible to utilize short periods of record to estimate  $7Q_2$  low flows and then use the other graphs developed here to estimate low flows for other recurrence intervals (i.e. a few years of data may provide a reasonable estimate of  $7Q_2$  which can then be extended by use of the graphs). For example, for Northern Ontario the correlation between the mean 7 day low flows extracted from the data for each station (7Q mean  $m^3/s$ ) and the  $7Q_2$  low flow values ( $m^3/s$ ) determined for each station was found to take the following form:

$$7Q_2 = 0.47163 + 1.01008 7Q \text{ mean}$$
  $R^2 = 0.9984$   $n = 93$ 

Finally the isoline map of 7Q<sub>2</sub> could also be utilized to provide the index value from which other low flow statistics could be estimated using the procedures described above.

### 4.3.2 Regional Index/Frequency Distribution Method

The heterogeneity measure indicated that the three sub-regions of Northern Ontario are statistically homogeneous and, therefore, it is possible to establish a dimensionless regional frequency distribution for each region. According to the heterogeneity measure analysis, a useful by-product is that the three parameters of the Weibull III distribution have been regionalized. The parameters of Weibull III distribution for each sub-region are summarized in Table 4.1. These regional frequency curves could be used to estimate low flow characteristics for ungauged sites within the sub-regions, as described in Appendix E.

In order to use this method for predicting low flows for ungauged watersheds the first step is to estimate the index low flow. The index flow used herein is  $7Q_2$ , which can be estimated by using alternate procedures such as isolines, the regression method, graphical analysis for the region or short term measurements which may be available for the site. Next the regional parameters of the Weibull III distribution for the sub-region in which the site is located are identified from Table 4.1 and the following equation is used to estimate the regional quantile with recurrence interval.

$$\hat{q}_y = e + (u - e) \left\{ - \ln \left[ 1 - \frac{1}{y} \right] \right\}^{\frac{1}{a}}$$
(4 - 1)

TABLE 4.1 REGIONAL PARAMETERS FOR WEIBULL III DISTRIBUTION

| Region | Duration (days) | а     | e     | u     |
|--------|-----------------|-------|-------|-------|
|        | 1               | 1.952 | 0.341 | 1.136 |
|        | 3               | 2.150 | 0.349 | 1.121 |
| 1      | 7               | 1.272 | 0.403 | 1.105 |
|        | 15              | 2.031 | 0.407 | 1.117 |
|        | 30              | 1.095 | 0.424 | 1.116 |
|        | 1               | 1.362 | 0.090 | 1.281 |
|        | 3               | 1.484 | 0.089 | 1.255 |
| 2      | 7               | 1.772 | 0.050 | 1.190 |
|        | 15              | 1.694 | 0.078 | 1.223 |
|        | 30              | 1.842 | 0.104 | 1.197 |
|        | 1               | 1.400 | 0.194 | 1.241 |
|        | 3               | 1.610 | 0.190 | 1.207 |
| 3      | 7               | 1.580 | 0.221 | 1.203 |
|        | 15              | 1.605 | 0.239 | 1.195 |
|        | 30              | 1.503 | 0.259 | 1.205 |

where a, e, and u are obtained from Table 4.1.

The final step is to scale the low flow estimate to the site by the following equation:

$$Q_{y} = 7Q_{2} \hat{q}_{y} \tag{4-2}$$

The regional parameters of the Weibull III distribution for the 1, 3, 15, and 30 day durations were also calculated and are summarized in Table 4.1. This permits estimation of the low flow characteristics for the n-day duration for any occurrence interval.

### 4.4 Regression Method

### 4.4.1 General

Multiple linear regression equations take the following general form:

$$Q_v = a_0 + a_1 Z_1 + a_2 Z_2 + \dots + a_n Z_n$$
 (4 - 3)

where  $Q_y =$  the dependent variable (e.g.  $7Q_2$ )

 $Z_1,Z_2...Z_n$  = the independent variables (e.g. physiographic and meteorologic watershed characteristics)

 $a_0, a_1...a_n =$  regression coefficients

In order to obtain a more suitable cause and effect relationship, it is sometimes necessary to transform the data (eg. by taking logarithms, square roots, cubes, etc.). The transformations considered for this investigation are discussed in Section 4.4.3.

A number of regression procedures are available, including development of all possible equations, forward selection, backward selection, stagewise regression and stepwise regression. The stepwise regression procedure is generally recommended for use in practical applications (Draper and Smith, 1981) and was, therefore, adopted for the purposes of this investigation.

### 4.4.2 Methodology

The regression equations were developed utilizing the stepwise multiple linear regression procedure available in the Statistical Package for the Social Sciences (SPSS) (Nie, 1975). More specifically, the regression sub-program has been used and has the following special features:

- Out of various procedures for selecting variables, including forward selection, backward elimination and the stepwise selection, the last one which is really a combination of backward and forward procedures, was adopted for this investigation as it is the most commonly used procedure for this type of study.
- 2) Variable selection all independent variables can be stored and then only those variables desired for a particular analysis called up and used according to the desired form of the equation
- Combination of variables variable transformation and new variables may be computed from existing variables
- 4) Transformations the variables may be transformed (e.g. square root, logarithmic, squared, etc.) in order to more nearly laniaries the relationships
- 5) Calculation of statistics the SPSS regression package allows calculation of regression coefficients, statistics and residual statistics (difference between observed and calculated values). Also possible are scatter plots of residuals and statistical tests for residual analysis, etc.

The regression constant and regression coefficients are determined in order to minimize the sum of the square residuals. The residuals are the difference between the observed, dependent variable and the prediction by the regression equation. The SPSS program automatically includes those independent variables which meet the 95% confidence level based on the computed values of the F statistic. Only those variables which meet the specified level at any given step are retained in the regression equation and all those variables which fall below the specified level are deleted from the regression equation.

### 4.4.3 Transformed and Derived Parameters

The transformations used for this analysis were log<sub>10</sub>, square root, square and cube for selected meteorologic and physiographic parameters. The derived parameters used in this analysis are defined below:

1. Shape Factor 1, SF1 = 
$$\frac{DA}{LNTH^2}$$

2. Shape Factor 2, SF2 = 
$$\frac{DA}{LNTH}$$

The derived parameters SF1, and SF2, were also previously used for the investigation of low flow characteristics for Central and Southeastern Regions (Cumming Cockburn Limited, 1990).

TABLE 4.2(a) SUMMARY OF CORRELATION ANALYSIS 7Q2 WITH TRANSFORMED PARAMETERS

|   |       |       | -      |                                       |        |         |        |                        |        |         |        | CAAA    |                  |         |        | 4/4          |        |         |
|---|-------|-------|--------|---------------------------------------|--------|---------|--------|------------------------|--------|---------|--------|---------|------------------|---------|--------|--------------|--------|---------|
|   |       |       |        | MAP                                   | ۵.     |         |        | MAS                    |        |         |        | E AN    |                  |         |        | ב<br>ב       |        |         |
| _ | SF1   | SF2   |        |                                       |        |         |        |                        |        |         |        |         |                  |         |        | 000          | 0000   | 14/1/4/ |
| _ |       |       | MAP    | MAP 0.5                               | MAP~2  | Ln(MAP) | MAS    | MAS ^ 0.5 N            | IAS^2  | Ln(MAS) | MAR    | MAR 0.5 | MAR ^ 2          | Ln(MAH) | EVA    | EVA CUS      | EVA Z  | LV(A)   |
|   | 0,00  |       | 0 36 0 | 000                                   | -0.400 | -0400   | -0.180 | -0.220                 | -0.200 | -0.230  | -0.240 | -0.240  | -0.260           | -0.210  | -0.320 | -0.310       | -0.300 | -0.310  |
|   | 0.040 |       | 0.00   | 0.100                                 | 0400   | -0.380  | -0220  | -0.280                 | -0.260 | -0.280  | -0.200 | -0.100  | -0.160           | -0.070  | -0.150 | -0.180       | -0.170 | -0.190  |
|   | 0.480 |       | 0.0    | 0000                                  | 0.75   | -0.410  | 0.260  | 0 140                  | 0.160  | 0.130   | -0.210 | -0.200  | -0.220           | -0.190  | -0.530 | -0.450       | -0.440 | -0.460  |
|   | 0.0/0 |       | -0.44  | 0.400                                 | 8000   | 0.47    | 000    | 000                    | 0.005  | -0.002  | 0.140  | 0.120   | 0.170            | 0.110   | 0.290  | -0.290       | -0.280 | -0.290  |
|   | 0.590 |       | -0.003 | 0.00                                  | 2.450  | 0.00    | 0.030  | -0.020                 | -0.030 | -0.020  | 0.180  | 0.220   | 0.160            | 0.100   | 0.250  | 0.110 -0.100 | -0.100 | -0.110  |
|   | 0.040 | 0.300 | 0.430  | 0.400 - 0.050 - 0.040 - 0.010 - 0.010 | -0.050 | -0.040  | -0.010 | 0 -0.020 -0.030 -0.020 | -0.030 | -0.020  | -0.070 | -0.050  | -0.050 -0.070 -0 | -0.040  | -0.210 | -0.210       | -0.220 | -0.200  |

|        |       |       | 40    |       |       | PFI    |         |             |       | HIN               | _     |         |       | ACLS                | S         |         | 2%    |
|--------|-------|-------|-------|-------|-------|--------|---------|-------------|-------|-------------------|-------|---------|-------|---------------------|-----------|---------|-------|
|        |       | 2     | ς.    |       |       | i      |         |             |       |                   |       |         |       |                     |           |         | Slgn. |
| Hegion | 2     | 0 0 0 | 000   | 1000  |       | BEICOR | RFI ^ 2 | I n/BFI)    | NTH   | LNTH 0.5          | LNTHA | n(LNTH) | ACLS  | ACLS 0.5            | ACLS ~ 2L | N(ACLS) | Level |
|        | 5     | K .   | 2     | 1     |       |        | 000     | 0000        | 0     | 0.810             | 0 300 | 0.460   | -0.16 | 0900                | 0.070     | 0.060   | 0.195 |
| z      | 0.840 | 0.850 | 0.780 | 0.660 |       | 0.290  | 0.300   | 0.280       | 0.500 | 0.0               | 0.03  | 5       | 5     | 20.0                |           |         |       |
| MM     | O BEO | 0060  | 0.850 | 0.770 |       |        |         | 0.270       | 0.390 | 0.460             | 0.360 | 0.460   | -0.01 | 0.300               | 0.290     | 0.290   | 0.272 |
| . !    |       | 1 0   |       | 0 2 2 |       |        |         | 0.150       | 0.610 | 0.510             | 0.380 | 0.440   | -0.36 | -0.260              | -0.240    | -0.250  | 0.287 |
| N<br>N | 0.880 | 0.70  | 0.000 | 0.27  |       |        |         | 3           |       |                   | 000   | 000     | Ċ     | 000                 | 0         | 0.510   | 0.497 |
| æ      | 0.820 | 0.830 | 0690  | 0.740 |       |        |         | 0.090       | 0.580 | 0.550             | 0.00  | 0.430   | 7.0   | 0.00                | 5         | 2       |       |
| 6      | 0 990 | 0 980 | 0.940 | 0.910 |       |        |         | -0.410      | 0.420 | 0.450             | 0.330 | 0.460   | -0.49 | -0.160              | -0.100    | -0.180  | 0.468 |
| 4 5    | 2000  | 0000  | 000   | 0.470 | 0 140 | 0 160  |         | 0.150 0.150 | 0.150 | 0.190 0.040 0.200 | 0.040 | 0.200   | -0.13 | 0 0.140 0.120 0.130 | 0.120     | 0.130   | 0.260 |
| 2      | 0.300 | 20.00 | 0.000 | 2     |       | 1      |         |             |       |                   |       |         |       |                     |           |         |       |

## TABLE 4.2(b) SUMMARY OF CORRELATION ANALYSIS 7Q20 WITH TRANSFORMED PARAMETERS

|     | EVA ~ 2 In(EVA)  -0.430 -0.440  -0.440 -0.460  -0.470 -0.490  -0.270 -0.270  0.320 -0.210                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVA | EVA^0.5 EVA^2<br>-0.440 -0.430<br>-0.450 -0.440<br>-0.480 -0.470<br>-0.270 -0.270<br>0.320 0.320<br>-0.230 -0.230                                              | 5%<br>Sign. | 0.195<br>0.272<br>0.287<br>0.497<br>0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | EVA EVA -0.430 -0.360 -0.270 0.330 -0.210                                                                                                                      |             | LN(ACLS)<br>0.010<br>0.350<br>-0.290<br>0.530<br>-0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | Ln(MAR)<br>-0.140<br>-0.120<br>0.150<br>0.150<br>-0.040                                                                                                        | (0)         | ACLS^2<br>0.010<br>0.370<br>-0.280<br>0.430<br>0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | AAR ~ 2<br>-0.190<br>-0.150<br>-0.150<br>0.220<br>0.010<br>-0.060                                                                                              | ACLS        | ACLS ~ 0.5<br>ACLS ~ 2 LN(ACLS)<br>- 0.010<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.37 |
| MAR | MAH ~ 0.5 MAH ~ 2 Ln(MAH)<br>-0.160 -0.190 -0.140 -0.120<br>-0.130 -0.150 -0.120<br>0.170 0.220 0.150<br>0.110 0.010 0.150<br>0.060 -0.060 -0.040              |             | ACLS<br>-0.240<br>-0.080<br>-0.380<br>-0.220<br>-0.600<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | MAR<br>-0.160<br>-0.150<br>-0.170<br>0.140<br>0.090<br>-0.050                                                                                                  |             | 0.460<br>0.610<br>0.510<br>0.370<br>0.450<br>0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | -0.090<br>-0.090<br>-0.150<br>0.140<br>0.050<br>0.160<br>-0.030                                                                                                | I           | 0.470<br>0.580<br>0.580<br>0.370<br>0.540<br>0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | -0.140<br>-0.140<br>-0.160<br>0.060<br>-0.160                                                                                                                  | LIN         | 0.530 0.470 0.460 0.550 0.470 0.550 0.570 0.570 0.370 0.370 0.370 0.400 0.400 0.400 0.400 0.400 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MAS | MAS^ 0.5   MAS^ 2   Ln(MAS)                                                                                                                                    |             | 0.570<br>0.590<br>0.560<br>0.530<br>0.380<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | MAS<br>-0.050<br>-0.080<br>0.060<br>0.051<br>0.160                                                                                                             |             | Ln(BF)<br>0.270<br>0.350<br>0.160<br>0.040<br>-0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | -0.400 -0.050<br>-0.400 -0.050<br>-0.510 -0.080<br>-0.420 0.060<br>-0.200 0.050<br>-0.050 0.050                                                                | 1 = 1 =     | 0.280 0.290 0.390 0.160 0.040 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | MAP ~ 2<br>0.390<br>-0.510<br>-0.380<br>-0.090<br>0.200                                                                                                        | HB H        | 0.280<br>0.360<br>0.160<br>0.040<br>0.040<br>0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MAP | MAP MAP 0.5 MAP 2 Ln(MAP) -0.340 -0.450 -0.390 -0.400 -0.430 -0.570 -0.510 -0.510 -0.430 -0.410 -0.380 -0.420 -0.073 -0.050 -0.200 -0.200 -0.200 -0.200 -0.200 |             | 0.210<br>0.280<br>0.280<br>0.140<br>0.040<br>0.240<br>0.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                                |             | 0.580<br>0.790<br>0.700<br>0.700<br>0.700<br>0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 0.580<br>0.680<br>0.580<br>0.580<br>0.950<br>0.950                                                                                                             |             | 0.88C<br>0.88C<br>0.86C<br>0.65C<br>0.97C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | SFI<br>-0.040<br>0.160<br>-0.070<br>0.580<br>0.450                                                                                                             | DOS:0       | DA^0.5 DA^2 Li<br>0 0.740 0.690<br>0 0.910 0.880<br>0 0.670 0.860<br>0 0.780 0.650<br>0 0.920 0.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2   | Stations<br>99<br>52<br>47<br>14                                                                                                                               | 8           | 0.83<br>0.95<br>0.95<br>0.77<br>0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Region<br>NW<br>NE<br>R1                                                                                                                                       |             | Region<br>N<br>NW<br>NE<br>R1<br>R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### 4.4.4 Simple Correlation of Parameters

Simple correlations between independent and dependent parameters were examined to screen parameters for input to subsequent regression analyses.

In general it was found that the independent parameters which are most highly correlated to low flows are DA, EVA, LNTH, and MAR. (Some other parameters were found to be intercorrelated with these.) The data transforms also indicated that the square and the square root of the drainage area remained highly correlated with the low flow statistics. It was also found that the Regulation Code (RN) is not significantly correlated with low flows.

### 4.4.5 Regression Equation Development

A large number (several hundred) of preliminary regression equations were developed in order to predict the  $7Q_2$  and  $7Q_{20}$  low flows as a function of basin physiographic and hydrometeorologic parameters.

The results indicated that the most significant parameters for predicting low flow characteristics in Northern Ontario are drainage area (DA), stream length (LNTH) and the mean annual runoff (MAR).

The final regression equations are presented in Table 4.3 for the study area.

However, while the R<sup>2</sup> values are generally high it is also noted that the standard error of estimate (as a percentage) is also large in some cases. This indicates that care should be taken in application of the Regression Method for prediction of low flows.

### 4.4.6 Regression Equations For Statistical Homogeneous Regions

Regression equations developed for the various sub-regions are also compared to those developed for the Northeastern and Northwestern Regions in Table 4.3. The comparisons indicate some improvement in the standard error of estimate for the equations developed for Regions 1, 2, and 3 compared to the equations for other areas.

TABLE 4.3 SUMMARY OF REGRESSION ANALYSIS  $Y=A_0+A_1\ DA+A_1\ DA^3+A_2\ DA^2+A_2\ LNTH^4+A_2\ LNTH^9+A_3\ *\ MAR+A_3\ MAR^2$ 

|                                                                            |                |                     | 1      | Independent Parameters                           | Parameter | 90     |                  |          | Number   | 9     | D <sub>2</sub> |
|----------------------------------------------------------------------------|----------------|---------------------|--------|--------------------------------------------------|-----------|--------|------------------|----------|----------|-------|----------------|
| Region                                                                     | A <sub>0</sub> | A,                  | A,¹    | A <sub>1</sub> ²                                 | $A_2$     | A,1    | A,               | Α,1      | Stations | 3E    | 4              |
| Northwestern 7Q <sub>2</sub>                                               | 23.779         | 0.00232             | 0.317  |                                                  |           | -1.81  |                  |          | 47       | 21.16 | 0.76           |
| Northeastern $7Q_2$ $7Q_2$                                                 | 6.549          | 0.00436             |        |                                                  | -0.123    |        |                  |          | 46<br>46 | 17.81 | 0.81           |
| Region One<br>7Q <sub>2</sub><br>7Q <sub>20</sub>                          | -35.766        |                     | 0.8628 |                                                  |           | -4.130 |                  | 0.000353 | 28<br>28 | 10.21 | 0.89           |
| Region Two<br>7Q <sub>2</sub><br>7Q <sub>20</sub>                          | 21.65          | 0.00337             |        |                                                  |           | -4.791 | 0.1088           |          | 14       | 19.34 | 0.85           |
| Region Three 7Q <sub>20</sub>                                              | 7.506          | -                   |        | 1.581*10 <sup>-7</sup><br>9.777*10 <sup>-8</sup> |           | 0.5491 | -0.0156          |          | 51       | 3.78  | 0.98<br>0.98   |
| Large DA Group<br>(DA > 17,000 Km²)<br>7Q <sub>2</sub><br>7Q <sub>20</sub> | -127.91        | 0.00351<br>0.002217 |        |                                                  | -0.461    |        | 0.7219<br>0.5726 |          | 15       | 31.17 | 0.91           |
| Small DA Group<br>(DA < 17,000 Km²)<br>7Q <sub>2</sub><br>7Q <sub>2</sub>  | -3.15<br>-2.45 | 0.00323             |        |                                                  | -0.01898  |        | 0.00756          |          | 78       | 6.07  | 0.87           |

### 4.4.7 Sensitivity Analysis

Some error in estimating watershed characteristics (eg. DA, LNTH and MAR) could occur when predicting low flows for ungauged watersheds using the regression equations. Therefore, a sensitivity analysis was undertaken using the following equation:

$$\epsilon = \left[ \frac{7Q_y - 7Q_y}{7Q_y} \right] x \quad 100 \tag{4 - 4}$$

where y = 2 or 20 year recurrence interval  $\varepsilon = \text{resulting error in percent}$ 

For the purpose of this analysis the base value  $7Q_y$  was calculated using the mean value of the independent parameter in the indicated region. The  $7Q'_y$  was then calculated by changing one parameter to a selected percentage of the real value (10% for example) while keeping all of the other parameters constant.

A summary of the sensitivity testing results is given in Table 4.4. In general, changes in drainage area were directly reflected in the low flow estimate, while  $\pm$  10% changes in the LNTH parameter resulted in smaller changes in low flow. It was also found that small changes in MAR give large changes in low flow for the Small and Large Drainage Area Groups and for Sub-Region One. Generally, the use of Sub-Regions 1, 2, and 3 appears to be reasonable, although care should be taken in applying and interpreting the results obtained from the regression equations.

### 4.5 Station Proration

In the past it has been common practice to prorate unit flows from nearby gauged watersheds to estimate low flows for ungauged watersheds. This is generally done by experienced hydrologists who have a good understanding of local stream characteristics and other factors within the region (i.e. diversions and regulation, etc.).

For assessment of this method, the  $7Q_2$  and  $7Q_{20}$  low flow characteristics were determined for stations in the region and summarized in Figures 3.1 and 3.2 (in pocket) and Table 3.8.

TABLE 4.4
RESULTS OF SENSITIVITY ANALYSIS OF THE INDEPENDENT PARAMETERS

| Region         | Low              |               | ε (%)       |               |
|----------------|------------------|---------------|-------------|---------------|
|                | Flows            | DA*           | LNTH*       | MAR*          |
| Northwestern   | 7Q <sub>2</sub>  | -9.30, 9.30   | 3.99, -3.79 | N/A           |
|                | 7Q <sub>20</sub> | -8.31, 7.90   | 2.71, -2.58 | N/A           |
| Northeastern   | 7Q <sub>2</sub>  | -13.13, 13.13 | 6.83, -6.83 | N/A           |
|                | 7Q <sub>20</sub> | -14.49, 14.49 | 7.69, -7.69 | N/A           |
| Region One     | 7Q <sub>2</sub>  | -10.44, 9.93  | 5.55, -5.28 | -12.64, 13.97 |
|                | 7Q <sub>20</sub> | -10.89, 10.36 | 6.33, 6.02  | -15.87, 17.54 |
| Region Two     | 7Q <sub>2</sub>  | -9.91, 9.91   | 5.80, -5.52 | -6.21, 6.21   |
|                | 7Q <sub>20</sub> | -11.67, 11.67 | 3.06, -2.91 | 1.88, -1.88   |
| Region Three   | 7Q <sub>2</sub>  | -4.28, 4.73   | -3.42, 3.25 | 9.26, -9.27   |
|                | 7Q <sub>20</sub> | -6.28, 6.94   | -5.03, 4.79 | 7.75, -7.76   |
| Large DA Group | 7Q <sub>2</sub>  | -11.40, 11.40 | 9.70, -9.70 | -18.57, 18.57 |
|                | 7Q <sub>20</sub> | -13.05, 13.05 | 8.47, -8.47 | -26.7, 26.7   |
| Small DA Group | 7Q <sub>2</sub>  | -12.49, 12.49 | 2.21, -2.21 | -3.18, 3.18   |
|                | 7Q <sub>20</sub> | -11.83, 11.83 | 0.47, -0.47 | -3.78, 3.78   |

<sup>\*</sup>Note:  $\pm$  10% of error assumed independently for these variables.

To estimate low flows at a location between sites located on Figures 3.1 and 3.2, the reciprocal distance can be used in the proration (i.e. the distance to nearby gauges would be estimated and the unit low flow values are then weighted by the reciprocal of the distance as a percentage (of the total distances) and then averaged).

### 4.6 Summary

The general procedures for estimating low flows at ungauged sites in Northern Ontario are summarized in Figure 4.8.

Of the four low flow estimating methods, the Mapped Isolines and the Index Method are the easiest to use. The relative prediction accuracy of all these methods is evaluated and discussed in Section 5.0. The Station Proration Method has been included due to its widespread use and to evaluate whether the alternate techniques provide improved estimation of low flow characteristics.

The first step in estimating low flow characteristics is to identify the region in which the site is located.

To use the mapped isoline method, the unit low flow value is extracted from the relevant map. The drainage area in  $km^2$  is then multiplied by the unit low flow  $7Q_2$  ( $7Q_{20}$ ) to obtain the appropriate estimate.

To apply the index method, one should follow the procedures described in Section 4.3 which describes both the graphical technique and index method based on regional statistics.

Alternative equations are also available for regression estimates, based on either large or small regions (see Section 4.4). It is likely that equations for Regions 1, 2, or 3 will be preferred.

Finally it is suggested no single method should be used in isolation due to significant variations in watershed and low flow characteristics in Northern Ontario. The various methods and estimating methods should be compared to obtain an appropriate low flow estimate.





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

FLOW CHART OF LOW FLOW ESTIMATION PROCEDURES

FIGURE 4.8

|  |  | , |
|--|--|---|
|  |  | 1 |
|  |  | ; |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

# 5.0 TESTING PREDICTION METHODS

## 5.1 General

The relative prediction accuracy of the low flow prediction methods described in Section 4.0 was examined by application to a total of 21 stations for Northern Ontario (12 in the Northwestern and 9 in the Northeastern Region, respectively). The hydrometric records available at these stations were not previously included in the development of the regional low flow estimation techniques, and therefore, it was possible to compare the at station estimates of low flow characteristics to the estimates provided by the regional techniques.

For ease of reference, the various estimating procedures are referred to as follows:

- 1) Method 1: Mapped Isolines;
- 2) Method 2: Graphical Index Method;
- 3) Method 3: Statistical Index Method;
- 4) Method 4: Regression Method; and
- 5) Method 5: Proration Method.

# 5.2 Test Stations

The test stations all have at least 10 years of record, and are active within the last 5 years. Stations were selected spatially to cover the complete region and with a range of watershed characteristics similar to the overall data base. The data base for these stations is summarized in Tables 5.1(a) and (b) for the Northwestern and Northeastern regions, respectively.

# 5.3 Goodness of Fit

To test the goodness of fit, the Nash-Sutcliffe (1970) model efficiency parameter (N.S.R.<sup>2</sup>) was utilized. The goodness of fit statistic is calculated by the following relationship:

$$N.S.R.^{2} = 1 - \frac{\sum_{i=1}^{n} (Q_{s} - Q_{o})^{2}}{\sum_{i=1}^{n} (Q_{o} - Q_{m})^{2}}$$
(5 - 1)

TABLE 5.1(a) STATIONS SELECTED FOR TESTING NORTHWESTERN REGION

| 7Q20                                   | (m <sub>3</sub> /s) | 0.07    | 2.20      | 11.21     | 0.15      | 3.54      | 3.71      | 0.88      | 20.74     | 0.48      | 9.01       | 0.01       | 4.85       |
|----------------------------------------|---------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| 702                                    | (m <sub>3</sub> /s) | 0.17    | 2.79      | 16.26     | 1.23      | 6.38      | 6.8       | 3.73      | 34.05     | 1.16      | 21.22      | 0.39       | 8.26       |
| ACLS                                   | (%)                 | 0       | 69        | 100       | 72        | 30        | -         | 45        | 100       | 40        | 90         | 80         | 70         |
| LNTH                                   | (km)                | 25.0    | 128.5     | 304.2     | 145.0     | 273.1     | 107.7     | 44.8      | 196.9     | 80.5      | 54.3       | 56.4       | 191.7      |
| BFI                                    |                     | 0.37    | 0.62      | 0.94      | 0.77      | 0.77      | 0.75      | 92.0      | 0.99      | 0.84      | 0.98       | 0.80       | 0.83       |
| DA                                     | (km <sup>2</sup> )  | 210     | 1320      | 7950      | 1890      | 4900      | 3290      | 1170      | 13400     | 332       | 6230       | 443        | 5730       |
| EVA                                    | (mm)                | 200     | 490       | 360       | 400       | 400       | 415       | 390       | 510       | 505       | 200        | 468        | 450        |
| MAR                                    | (mm)                | 392     | 365       | 328       | 380       | 389       | 347       | 310       | 255       | 244       | 287        | 180        | 235        |
| MAS                                    | (mm)                | 240     | 230       | 230       | 280       | 260       | 300       | 300       | 220       | 220       | 220        | 190        | 190        |
| MAP                                    | (mm)                | 785     | 850       | 610       | 710       | 069       | 810       | 745       | 750       | 800       | 790        | 999        | 069        |
| Period of                              | Record              | 80-90   | 72-90     | 06-99     | 20-90     | 06-99     | 20-87     | 06-89     | 21-90     | 78-90     | 21-90      | 63-90      | 80-90      |
| No. of                                 | Years               | Ξ       | 19        | 52        | 18        | 25        | 37        | 21        | 20        | 12        | 20         | 18         | Ξ          |
| Regulation Sub-Region No. of Period of | Code                | ဇ       | က         | -         | -         | -         | -         | -         | 2         | 2         | 2          | 2          | 2          |
| Regulation                             | Code                | 0       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0          |
| Plotting Station No.                   |                     | 02AB017 | 2 02BA003 | 3 04DB001 | 4 04GF001 | 5 04FA003 | 6 04JC003 | 7 04GB005 | 8 05PA006 | 9 05PB018 | 10 05QA002 | 11 05PB015 | 12 05RC001 |
| Plotting                               | Code                | -       | 2         | 9         | 4         | S         | 9         | 7         | 8         | 6         | 10         | 11         | 12         |

# TABLE 5.1(b) STATIONS SELECTED FOR TESTING NORTHEASTERN REGION

| Plotting | lotting Station No. | Regulation | Sub-Region | No. of | No. of Period of | MAP  | MAS  | MAR  | EVA | DA                 | BFI  | LNTH | ACLS | 702                 | 7020                |
|----------|---------------------|------------|------------|--------|------------------|------|------|------|-----|--------------------|------|------|------|---------------------|---------------------|
| Code     |                     | Code       | Code       | Years  | Record           | (mm) | (mm) | (mm) | ٤   | (km <sup>2</sup> ) |      | (km) | (%)  | (m <sup>3</sup> /s) | (m <sup>3</sup> /s) |
| 13       | 02BF005             | 0          | က          | =      | 80-90            | 905  | 300  | 826  |     | 11.5               | 0.52 | 20.5 | 20   | 0.01                | 0                   |
| 14       | 02CB003             | 1          | က          | Ξ      | 80-90            | 850  | 290  | 363  | 200 | 1440.0             | 0.56 | 40.6 | 30   | 3.10                | 1.69                |
| 15       | 02CD003             | 0          | 3          | 4      | 77-90            | 900  | 255  | 200  | 200 | 319.0              | 69.0 | 5.0  | Т    | 0.75                | 0.01                |
| 16       | 02CF011             | 0          | က          | 20     | 20-90            | 800  | 260  | 240  | 490 | 704.0              | 0.63 | 57.0 | 87   | 2.36                | 1.26                |
| 17       | 17 02CF013          | 0          | က          | 10     | 81-90            | 800  | 255  | 413  | 490 | 40.6               | 0.49 | 35.0 |      | 0.03                | 0                   |
| 18       | 18 02DD008          | 0          | 8          | 27     | 56-82            | 860  | 270  | 929  | 200 | 90.4               | 0.41 | 34.3 | 28   | 0.13                | 0.03                |
| 19       | 19 02DD015          | 0          | က          | 17     | 74-90            | 880  | 270  | 537  | 200 | 106.0              | 0.53 | 10.5 | 1    | 0.11                | 0.04                |
| 20       | 20 02EB013          | 0          | က          | 18     | 73-90            | 820  | 280  | 380  | 200 | 593.0              | 0.62 | 44.5 |      | 1.90                | 1.027               |
| 21       | 21 04KA002          | 0          | -          | 15     | 06-92            | 710  |      | 360  | 370 | 133.0              | 0.65 | 46.8 | 20   | 0.04                | 0.01                |

where  $Q_o$  and  $Q_s$  are the observed and simulated discharges, and  $Q_m$  is the mean of the observed discharges and n is the total number of test stations (21 in this case) (N.S.R.<sup>2</sup> = 1.0 for a perfect comparison of actual and estimated values).

The "observed" low flows  $(7Q_2 \text{ and } 7Q_{20})$  were determined by undertaking a single station low flow frequency analysis for each of the stations listed in Table 5.1. (It is recognized that these flows will also contain estimating error, but it is assumed that the comparison will provide a means of comparing the relative accuracy of the various techniques). Each prediction method was then utilized in turn to provide a simulated low flow estimate. Graphical and statistical  $(N.S.R.^2)$  comparisons were then made for each method as discussed in Section 5.4.

# 5.4 Testing Results

Testing was initially undertaken applying the procedures developed for the Northeastern and Northwestern Regions and for the three Sub-Regions previously identified. The overall testing results are summarized in Table 5.2. It is evident from Table 5.2 that application of the techniques, which were developed for the three Sub-Regions, provided better low flow flow estimates compared to the techniques for the NE/NW regions. (However, estimates by methods developed for the two sub-regions could be used for checking calculations by other methods). The more detailed discussion of testing results in the following sections focuses on testing using the procedures developed for Regions 1, 2, and 3 in Northern Ontario.

# 5.4.1 Testing of Isoline Method

The isoline maps were used to predict flows for each of the test stations (see Figures 4.1 and 4.2). The  $7Q_2$  and  $7Q_{20}$  unit low flows were estimated for the test stations by interpolating the values between the contour lines at the location of interest. The results of this analysis are presented in Figure 5.1.

The N.S.R<sup>2</sup> for all test stations for  $7Q_2$  and  $7Q_{20}$  is 0.97 and 0.96, respectively, which is reflected in the results on Figures 5.1.

It is generally concluded that, compared to the other techniques, the isoline method is a robust method which produced good estimates of the  $7Q_2$  and  $7Q_{20}$  low flows.

TABLE 5.2 SUMMARY OF TESTING RESULTS (N.S.R.<sup>2</sup>)

| Way of<br>Regionalization |      | od 1<br>line     | Meth<br>Inc     | od 2<br>dex      | Meth<br>Index | od 3             | Meth<br>Regre   | od 4<br>ession   | 1               | hod 5<br>ation   |
|---------------------------|------|------------------|-----------------|------------------|---------------|------------------|-----------------|------------------|-----------------|------------------|
|                           | 7Q2  | 7Q <sub>20</sub> | 7Q <sub>2</sub> | 7Q <sub>20</sub> | 7Q2           | 7Q <sub>20</sub> | 7Q <sub>2</sub> | 7Q <sub>20</sub> | 7Q <sub>2</sub> | 7Q <sub>20</sub> |
| NW/NE                     | 0.97 | 0.96             | 0.86            | 0.82             | N/A           | N/A              | 0.57            | 0.85             | 0.92            | 0.48             |
| Sub-regions               | 0.97 | 0.96             | 0.92            | 0.87             | 0.97          | 0.92             | 0.79            | 0.87             | 0.92            | 0.48             |

\*\* Index from isoline method

Note: No difference for isoline method and Station Proration Method in different regions since both methods are spatially determined.





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 1 - TESTING ISOLINE METHOD

# 5.4.2 Testing of Index Method

Index values for  $7Q_2$  were derived for each station by using Figure 4.3, 4.4, and 4.5. The results of the comparison are summarized on Figure 5.2.

The 7Q<sub>20</sub> value was then calculated with reference to Figure 4.6.

Application of the index method resulted in N.S.R.<sup>2</sup> values of 0.92 and 0.87 for  $7Q_2$  and  $7Q_{20}$  respectively. Generally speaking, the index method gives a better prediction for  $7Q_2$  than for  $7Q_{20}$ . However, overall, the comparison with the isoline method indicates that it might be preferable to determine the  $7Q_2$  index value from the isoline maps rather than the drainage area index relationships. (When this was done, the N.S.R.<sup>2</sup> value for the index method changed to 0.90 for  $7Q_{20}$ .

# 5.4.3 Statistical Index Method (Regional Index Low Flow Frequency Distribution Method)

This method uses an index low flow and the characteristics of a regional frequency distribution to estimate  $7Q_{20}$ . The method is described in Section 4.3.2. The statistics of the regional frequency distribution are summarized in Table 4.1 for Regions I, 2, and 3, and were used together with various index method estimates of  $7Q_2$  in order to estimate  $7Q_{20}$ . Results of estimates using the isoline map for  $7Q_2$  are summarized in Table 5.2. However, other index method estimates were also undertaken for the test stations:

- 1)  $7Q_2$  from isoline map; N.S.R<sup>2</sup> = 0.92 for  $7Q_{20}$ ; see Figure 5.3 (a)
- 2)  $7Q_2$  from graphical index method; N.S.R.<sup>2</sup> = 0.89 for  $7Q_{20}$ ; see Figure 5.3(b)
- 3)  $7Q_2$  from station mean 7 day low flow; N.S.R.<sup>2</sup> = 0.996 for  $7Q_2$ ; N.S.R<sup>2</sup> = 0.97 for  $7Q_{20}$ ; see Figure 5.3 (c)
- 4)  $7Q_2$  from test station frequency analysis; N.S.R<sup>2</sup> = 0.96 for  $7Q_{20}$ ; see Figure 5.3 (d)

The use of available data at the test stations improved the overall estimates of  $7Q_{20}$ . This implies that the use of available measurements (either directly or obtained by correlation with other long term data) can significantly improve low estimates by the statistical index method. Therefore, ongoing collection of hydrometric data at a large number of locations in Northern Ontario should be encouraged (One strategy could be to collect enough short term data to obtain a reasonable estimate of the mean 7 day low value. Once this data is obtained the data collection platform could be moved to another location to maximize the use of resources.)







REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 2 - TESTING GRAPHICAL INDEX METHOD FIGURE 5.2

# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q2

# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q20





ESTIMATED LOW FLOW ( M^3/S )

ESTIMATED LOW FLOW ( M^3/S )

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 3 - TESTING STATISTICAL INDEX METHOD

FIGURE 5.3(a)





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO METHOD 3 - TESTING STATISTICAL INDEX METHOD

FIGURE 5.3(b)

# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q2



# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q20 NORTHERN ONTARIO (SUB-R.), 70MEAN





ESTIMATED LOW FLOW ( M^3/S )

ESTIMATED LOW FLOW ( M^3/S )

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 3 - TESTING STATISTICAL INDEX METHOD

FIGURE 5.3(c)





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 3 - TESTING STATISTICAL INDEX METHOD

FIGURE 5.3(d)

The overall accuracy of this prediction method depends, somewhat, on how well the index low flow is estimated. For example, if the index flow can be estimated from the locally available date base, then the overall prediction accuracy for  $7Q_{20}$  can be improved.

# 5.4.4 Testing of Regression Method

The Sub-Regions 1, 2, and 3 and regression equations summarized in Table 4.3 were used to estimate low flows at the test stations. A comparison of the observed and estimated low flows is shown in Figure 5.4 for  $7Q_2$  and  $7Q_{20}$ . Comparison of the overall regression results to the other prediction techniques indicates that, in general, the other techniques (except for proration) provide better low flow estimates for  $7Q_{20}$ . This is somewhat disappointing since the present regression equations were obtained after several hundred iterations and a great deal of effort trying various transformations and derived forms of parameters. Even after this effort, a significant improvement in low flow prediction results was not obtained using multiple linear regression.

# 5.4.5 Testing of Station Proration Method

The method of reciprocal distance was used in obtaining pro-rated low flow estimates (i.e. the distances from the test stations to nearby gauges were measured and the weighted average of the unit low flows as determined from Figure 3.1 and 3.2 was estimated for the test stations by using the reciprocal of distances to nearby stations and their observed unit area low flows). The results are summarized on Figure 5.5.

It is also noted that over half of the 21 test stations are located on the same river system from which some of the low flow statistics are pro-rated. Therefore, better results might be expected from this method.

In this case, the overall prediction of  $7Q_2$  was found to be fairly good while that for  $7Q_{20}$  is considered to be poor. N.S.R<sup>2</sup> statistics are 0.92 and 0.48, respectively. It was also found that low flow estimates were better for stations in close proximity to hydrometric measurements (the more data/stations the better the estimate). In general, the use of the station proration method appears to provide poor estimates of regional low flows compared to the other methods.







REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 4 - TESTING REGRESSION METHOD

FIGURE 5.4

# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q2



# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q20





ESTIMATED LOW FLOW ( M^3/S )

ESTIMATED LOW FLOW ( M^3/S )

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

METHOD 5 - TESTING PRO RATION METHOD

FIGURE 5.5

# 5.5 Summary

A sub-set of 21 stations was reserved for testing the following low flow prediction methods:

- 1) Mapped Isolines;
- 2) Graphical Index Method;
- 3) Statistical Index Method;
- 4) Regression Method; and
- 5) Proration Method.

The prediction methods were applied using the procedures outlined in Figure 4.8.

The prediction methods developed for the three sub-regions (Region 1, Region 2, and Region 3) provided better overall accuracy compared to the methods developed for two sub-regions (Northeastern and Northwestern Ontario); however, the method for the latter regions could be used for the purposes of checking low flow estimates by other techniques. (The isoline and index methods produced the best results). The use of the sub-regions applies to application of the index and regression methods (2, 3, and 4 above).

Table 5.3 gives an overall summary of the ability of the prediction methods to calculate the mean  $7Q_2$ ,  $7Q_{20}$  and associated unit low flows for the 21 test stations (i.e the average  $7Q_2$  for the 21 test stations was found to be 2.90 m<sup>3</sup>/s with a corresponding unit runoff value of .0012 m<sup>3</sup>/s/km<sup>2</sup> (this is low compared to other stations in Northern Ontario - eg. refer to Table 3.6). The corresponding values predicted by the isoline method were 2.76 m<sup>3</sup>/s and .0012 m<sup>3</sup>/s/km<sup>2</sup>). The relative accuracy of the various methods are also approximately ranked in Table 5.4.

Even though the N.S.R.<sup>2</sup> statistic may be high, poor low flow estimates can occur at individual stations. This is observed to occur for all methods (for example see Figure 5.I to 5.5, from which it is evident that significant errors occur at several stations when comparing "observed" and "estimated" low flows. Of course part of the "error" may also be due to error in estimating the "observed" value). Large estimating errors for low flows were also evident in the literature and in previous investigations. It is not possible to accurately quantify the estimating error at individual stations since the absolute error calculation is exacerbated in many cases by the small observed low flow (eg. for several stations the 7Q<sub>20</sub> value is close to zero and any non-zero simulated value could have very large absolute error). Therefore, for the purposes of this investigation, in order to compare the relative absolute errors of the different estimating techniques, the absolute value of the difference between the observed and simulated low flows

TABLE 5.3 COMPARISON OF ACTUAL AND ESTIMATED AVERAGE LOW FLOWS FOR TEST STATIONS\*\*

|                                 | <del></del>                  | <del>-,</del>                        |                                      |                                                |                |
|---------------------------------|------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|----------------|
|                                 | $7Q_2$ (m <sup>3</sup> /s)   | 7Q <sub>20</sub> (m <sup>3</sup> /s) | $7Q_2  (m^3/s/km^2)$                 | $7Q_{20}$ (m <sup>3</sup> /s/km <sup>2</sup> ) | Method<br>Rank |
| oserved Average (21 Stations)*  | 5.28                         | 2.90                                 | 0.0022                               | 0.0012                                         |                |
| ethod l Mapped Isolines         | 5.94                         | 2.76                                 | 0.0025                               | 0.0012                                         | 1              |
| ethod 2 Graphical Index         | 6.25                         | 2.67                                 | 0.0026                               | 0.0011                                         | 2              |
| ethod 3 Stat. Index 1) 2) 3) 4) | 5.94<br>6.26<br>5.28<br>5.28 | 2.45<br>3.33<br>2.60<br>2.50         | 0.0025<br>0.0026<br>0.0022<br>0.0022 | 0.0010<br>0.0014<br>0.0011<br>0.0010           | 3              |
| ethod 4 Regression              | 6.18                         | 3.30                                 | 0.0026                               | 0.0014                                         | 5              |
| ethod 5 Proration               | 5.33                         | 2.27                                 | 0.0022                               | 0.0009                                         | 4              |

Average DA = 2395 km $^2$  (Range 11.5 - 13400 km $^2$ ) (21 Stations) Based on Sub-Regions 1, 2, and 3.

TABLE 5.4
COMPARISON OF METHODS BY TESTING RESULTS

|     |                                                                                                                                                                             | Method 1          | 1 1        | Method 2                  | 1 2        | Method 3                    | 3          | Method 4                           | 4      | Method 5          | w             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|---------------------------|------------|-----------------------------|------------|------------------------------------|--------|-------------------|---------------|
|     |                                                                                                                                                                             | Mapped Isolines   | solines    | Graphical Index<br>Method | Index      | Statistical Index<br>Method | Index<br>I | Regression Method Proration Method | 1ethod | Proration N       | <b>Tethod</b> |
|     |                                                                                                                                                                             | Error<br>Measure* | **<br>Rank | Error<br>Measure*         | **<br>Rank | Error<br>Measure*           | **<br>Rank | Error<br>Measure*                  | Rank   | Error<br>Measure* | Rank          |
|     | Comparison of sample mean 7Q2                                                                                                                                               | (13, -5)          | -          | (18, -8)                  | 2          | (13, -16)                   | 3          | (17, 13)                           | 5      | (1, -22)          | 4             |
| 2.  | Comparison of sample mean unit low flow $7Q_2$ (.0022 m³/s/km²) $7Q_{20}$ (.0012 m³/s/km²)                                                                                  | (14,0)            | _          | (18, -8)                  | 2          | (14, -17)                   | 3***       | (18, 17)                           | 2***   | (0, -25)          | * *           |
| 3.  | Comparison based on N.S.R. <sup>2</sup>                                                                                                                                     | (.97, .96)        | 1          | (.92, .87)                | 3          | (.97, .92)                  | 2          | (.79, .87)                         | 4      | (.92, .48)        | 5             |
| 4.  | Comparison of average absolute error in the low flow estimate relative to the average low flow estimate for the 21 stations.                                                | (15, 22)          | -          | (24, 39)                  | 3          | (15, 28)                    | 2          | (43, 47)                           | 5      | (25, 48)          | 4             |
| 5.  | Comparison of average absolute error in the unit low flow estimate relative to the average unit low flow estimate for the 21 stations                                       | (23, 34)          | -          | (54, 60)                  | 4          | (23, 39)                    | 2          | (136, 100)                         | 5      | (35, 45)          | æ             |
| * * | *** Indicated methods "about equal for 7Q <sub>20</sub> "  * Error measure % for (7Q <sub>2</sub> , 7Q <sub>20</sub> )  ** Rank of Method    = Best    = Worst Overall Rank |                   | _          |                           | 3          |                             | 2          |                                    | \$     |                   | 4             |

at each station was determined and the average found for the 21 sites. The "average absolute error" was then calculated as a percentage of the average recorded low flow for the 21 sites. A similar calculation was also done for the corresponding unit low flows for the 21 stations.

A comparison of the test results using the various estimating procedures and error assessment procedures is given in Table 5.4.

Overall, the Isoline Method produced the best results followed by the Statistical Index Method and Graphical Index Method in that order. The station Proration Method out-performed the regression method, although this might be attributed to the fact that over half of the stations tested were located within watersheds with other gauging stations.

The application of the prediction methods at the test station has confirmed that, overall, the isoline method is the most robust technique for estimating low flows in the Northwestern and Northeastern Ontario.

It was also found that all the estimation techniques could not produce satisfactory results for some stations, based on the relatively high absolute error of estimate. It was found to be particularly difficult to estimate low flows for small watersheds in the north or areas where the  $7Q_2$  or  $7Q_{20}$  are observed to be very small or zero. In the latter case, only the use of methods where the index value can be calculated as zero (i.e. regression or use of local data) might provide acceptable results.

When utilizing a particular technique for predicting low flows at the test stations, it was found to be useful to compare the various prediction methods. This should also be undertaken when applying the procedures at ungauged watershed. For example, the mean of prediction methods (for each station) versus the observed low flows are given in Figure 5.6. The differences at some locations indicate that care should be taken when using these methodologies in estimating low flows for ungauged watersheds.



# OBSERVED VERSUS ESTIMATED LOW FLOW 7Q20





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

MEAN OF PREDICTION METHODS VS. OBSERVED LOW FLOWS

FIGURE 5.6

# 6.0 CONCLUSIONS AND RECOMMENDATIONS

### 6.1 Conclusions

- No significant differences in 7Q<sub>2</sub> and 7Q<sub>20</sub> low flow statistics were found when the flow records were updated to the period of 1987 - 1990 when compared with the previously available data set.
- 2) The statistical indicators for trend were found to be very sensitive to changes in the available record length. However, it is possible that the apparent trend component, which has been identified using statistical tests, may not be an indicator of real trend in the data set due to the possibility of a cyclic nature in low flow statistics.
- No significant changes in regional low flow statistics for 7Q<sub>2</sub> and 7Q<sub>20</sub> were found after trend adjustment techniques were applied to the original low flow time series.
- 4) The low flows appear to be homogeneous in the sense of probability frequency distribution. The Weibull III (W3) distribution was successfully fitted to almost all of the low flow time series available for Northern Ontario.
- 5) The low flows determined independently for winter and summer were found to belong to different populations for some of the stations in Northern Ontario.
- 6) The new application of a heterogeneity measure confirmed the identification of three statistical sub-regions in Northern Ontario.
- 7) The development of prediction techniques found that the most important parameter in the regionalization of low flow characteristics is the variation in watershed drainage area. Research should be undertaken to develop appropriate procedures to identify and incorporate other relevant factors such as seasonal and temporal variations in groundwater discharge, etc.
- 8) The isoline method was found to be the most robust estimating method, and provided the best prediction results on a regional basis, followed by the Statistical Index method and the Graphical Index Method.

- 9) The station proration method out performed the regression method, although this might be attributed to the fact that over half the test stations were located within watersheds with other gauging stations.
- The accuracy of the prediction techniques for low flow (7Q2 and 7Q20) is acceptable on a Regional Basis. However, large absolute errors at individual test stations were found to occur. Some of this "error" could be attributed to the higher information content provided by the regional estimating procedures. In any case, application of the techniques should be tempered by hydrologic experience and judgement and by comparison of methods.
- 11) Prediction of low flow characteristics for individual ungauged watersheds has proven to be significantly more difficult than for other hydrologic characteristics (eg. mean flow and peak flow conditions are relatively easier to predict).
- 12) The use of available at-site measurements (eg. short term data) can significantly improve low flow estimates (eg. by the statistical index method).

# 6.2 Recommendations

- Additional research should be undertaken to examine possible trends in low flow time series. The sensitivity of trend indicators to the length of time period should be further investigated with additional long term data sets. This should include the investigation of possible relationships of low flow trend with climate change. Statistical and graphical techniques (such as RLWRS technique) should also be applied to assess the low flow data in the other regions of the Province of Ontario.
- 2) More detailed statistical tests should be applied to confirm the conclusions that the Annual/Winter/Summer low flows belong to different populations for some of the stations in Northern Ontario. This should include an assessment of the relative accuracy of low flow measurements during winter and summer.
- 3) The need for a seasonal low flow regionalization analysis should be investigated as a possible means of providing more accurate low flow predictions. (This would also be useful where seasonal i.e. less conservative estimates of low flows are required).

- 4) The development and application of non-dimensional statistical cluster analysis should be considered in similar future investigations for the purpose of refining the identification of homogeneous regions.
- 5) The low flow characteristics, (maps and isolines) for the remainder of Ontario should be updated to 1990 (or the most recent data base) using L-moments for fitting the data to the Weibull distribution. This should also include cluster and Statistical Homogeneity tests for the updated data base to provide consistency across the Province.
- 6) An overall operation manual should be developed for use in estimating low flow characteristics for all regions of Ontario using the findings from this and previous research investigations.
- 7) Up to date isoline maps should be refined with consistent areal and data base coverage across the entire Province.
- 8) An expanded data collection program for hydrometric data at a large number of locations in Northern Ontario should be undertaken. Strategies such as collection of short term data (eg. 5 10 years) should be considered to improve low flow estimates. Data collection platforms could then be moved from one location to another to maximize the use of resources over the long term.
- 9) Data analysis and management techniques are now available which would allow updating of low flow statistics on a frequent basis. We recommend that low flow characteristics should be updated every five (5) years in order to provide reasonably accurate information for investigations requiring low flow information.



# REFERENCES

- Armbruster, Jaffrey T., "Technical Manual For Estimating Low Flow Frequency Characteristics of Stream in the Susquehanna River Basin". PB-255455, U.S. Dept. of Commerce, National Tech. Information serve, U.S. Geological Survey, 1976
- Berryman, David, Bernard Bobe, et al.. "Nonparametric Tests for Trend Detection in Water Quality Time Series", Water Resources Bulletin, Vol. 24, No. 3, 1988
- Bhaskar, Nageshwar R. and Carol A. O'Connor, "Comparison of Method of Residuals and Cluster Analysis for Flood Regionalization", Journal of Water Resources Planning and Management, Vol. 115, No. 6, 1989
- Boals, R.G., "An Application of Time Series Analysis in Hydrometric Network Evaluation" Water Survey of Canada, Inland Water Directorate, Environment Canada, 1979
- Bodo, Byron, Keith W. Hipel, A.I. McLeod, "Robust Trend Assessment of Water Quality Data Series" Environment Monitoring and Assessment, Vol 12, 1989
- Burrel, Brian C., and James E. Anderson, "Regional Hydrology of New Brunswick", Canadian water Resources Journal, Vol. 16, No.4, 1991
- Clarke, Robin T. and Luis Edgar, Montenego Terrazas, "The Use of L-Moments for Regionalizating Flow Records in the Rio Uruguai Basin: A Case Study", Regionalization in Hydrology, IAHS Publ. No. 191, 1990
- Cumming Cockburn Limited, "Regional Analysis of Low Flow Characteristics for Southwestern and West Central Regions", Ministry of Environment, 1990
- Cumming Cockburn Limited, "Regional Analysis of Low Flow Characteristics for Central and Southwestern Regions", Ministry of the Environment, 1991
- El-Shaarawi, A.H. and Eivinal Damsleth, "Parametric and Nonparametric Tests for Dependent Data", Water Resources Bulletin, Vol. 24, No. 3, 1988
- Gan K.C., T.A. McMahon, and I.C. O'Neill, "Errors in Estimated Streamflow Parameters and Storages for Ungauged Catchments", Water Resources Bulletin, Australia, 1990
- Hardison, Clayton H., and Marshall E. Moss, "Accuracy of Low Flow Characteristics Estimated by Correlation of Base Flow Measurements", U.S. Department of the Interior, 1972
- Hirsch, Robert M., "Statistical Methods and Sampling Design for Estimating Step Trends in Surface Water Quality", Water Resources Bulletin, Vol. 24, No. 3, 1988
- Hirsch, Robert M., Richard B. Alexander and Richard A. Smith, "Selection of Methods for the Detection and Estimation of Trends in Water Quality", Water Resources Research, 1991
- Hosking J.R.M., "L-moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics", J.R Statistics Vol. 51, No. 3, 1989

- Hosking J.R.M. and J.R. Wallis, "Some Statistics Useful in Regional Frequency Analysis", Water Resources Research, Vol. 29, 1993
- Khanna, V.K., "Regionalization of Low Flows in Central and Southern Alberta", Proceedings of The Canadian Hydrology Sumposium, No. 9, 1992 pp183 196
- Leith, Rory M., Keith W. Hipel and Herman Goertz, "Exploratory Data Analysis", Canadian Water Resources Journal, 1991
- Lettermaier, Dennis P., "Multivariate Nonparametric Tests for Trend in Water Quality", Water Resources Bulletin, Vol. 24, No. 3, 1988
- Logan, L., "Working Group II Receiving Water Assessment Techniques and Analysis", Water Management in Ontario Implementation
- McLeod, A.I., "Trend Analysis Procedures for Water Quality Time Series", Dept. of Statistical and Actuarial Science, The University of Western Ontario, London, Ontario, 1990
- McLeod, A. Ian, Keith W. Hipel, Fernando Comacho, "Trend Assessment of Water Quality Time Series", Water Resources Bulletin, 1983
- McLeod, A.I., K.W. Hipel, "Trend Analysis Methodology for Water Quality Time Series", Environment Ontario, 1990
- Melloh, Rae Ann, "Analysis of Winter Low Flow Rates in New Hampshire Streams", U.S. Army Corps of Engineers, 1990
- Nathan, R.J. and T.A. McMahon, "Practical Aspects of Low Flow Frequency Analysis", Water Resources Research, Volume 26, No. 9, Australia 1990
- Nie, N.H. et al, "Statistical Package for the Social Sciences (SPSS)", McGraw Hill, 1975
- Norusis, M.J., "Stacking Beers: Cluster Analysis", Advanced Statistics SPSS/PC+, SPSS Inc., 1986
- Pilon, P.J., "The Weibull Distribution Applied to Regional Low Flow Frequency Analysis", Regionalization in Hydrology, IAHS Publ. No. 191, 1990
- Rajaram, Harishar and Dennis McLaughlin, "Identification of Large-Scale Spatial Trends in Hydrologic Data", Water Resources Research, Vol. 26, No. 10, 1990
- Riggs, H.C., "Techniques of Water Resources Investigations of the United States Geological Survey", U.S. Department of the Interior, 1972
- Rochelle, Barry P., Donald L. Stevens Jr., and M. Robbins Church, "Uncertainty Analysis of Runoff Estimates From a Runoff Contour Map", Water Resources Bulletin, 1989
- Rubach, Henning, "Application of Statistical Low Flow Analysis As a Basis for Water Quality Planning", International Symposium on Hydrometeorology, Germany, 1982

- Stedinger, Jerry R. and Gray D. Tasker, "Regional Hydrologic Analysis, Ordinary, Weighted and Generalized Least Squares compared", Water Resources Research, Vol. 21, No. 9, 1985
- Tasker, Gary D., "A comparison of Methods for Estimating Low Flow Characteristics of Streams", Water Resources Bulletin, Vol. 23, No. 6, 1988
- Vogel, Richard M. and Charles N. Kroll, "Low Flow Frequency Analysis Using Probability Plot Correlation Coefficients", Journal of Water Resources Planning and Management, Vol. 115, No. 3, 1989
- Vogel, Richard M. and Charles N. Kroll, "Generalized Low Flow Frequency Relationships for Ungauged Sites in Massachusetts", Water Resources Bulletin Vol. 26, No. 2, 1990
- Zelenhasic, Emir, and Atila Salvai, "A Method of Streamflow Drought Analysis", Water Resources Research, Vol. 23, No. 1, 1987
- Zettergrist, Lena, "Statistical Estimation and Interpretation of Trends in Water Quality Time Series", Water Resources Research, Vol. 27, No. 7, 1991

APPENDIX A TREND ANALYSIS METHODOLOGY



# APPENDIX A TREND ANALYSIS METHODOLOGY

# A.1 Statistical Tests for Trend

# i) Mann-Kendall Test

Mann (1945) and Kendall (1975) present a non-parametric test for trend. Letting  $X_1$ ,  $X_2$ , ...,  $X_n$  be a sequence of low flow over time, Mann proposed to test the null hypothesis,  $H_o$ , that the data comes from a population where the random variables are independent and identically distributed. The alternative hypothesis,  $H_o$ , is the data follow a monotonic trend over time. Under  $H_o$ , the Mann-Kendall test statistic is:

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} sgn (x_i - x_k)$$
 (A - 1)

where sgn = 1 if 
$$x > 0$$
  
= 0 if  $x = 0$   
= -1 if  $x < 0$ 

Kendall shows that S is asymptotically normally distributed and gave the mean and variance of S:

$$E(S) = 0 (A-2)$$

Var (S) = 
$$n (n-1) (2n + 5)/18$$
 (A - 3)

A positive value of S indicates there is an upward trend where the low flow increases with time. On the other hand, a negative value of S means that there is a downward trend. Because it is known that S is asymptotically normally distributed and has a mean of zero and variance given by equation A - 3, one can check whether or not an upward or downward trend is significantly different from zero. If the S is significantly different from zero, based upon the available information,  $H_0$  can be rejected at a chosen significant level and the presence of a monotonic trend,  $H_1$ , can be accepted.

The exact distribution of S for  $n \ge 10$  was derived. Even for small values of n, the normality approximation is good provided one employs the standard normal variable Z given by:

$$Z_m = (S-1)/(Var(S))^{\frac{1}{2}}$$
 if  $S > 0$   
= 0 if  $S = 0$   
=  $(S+1)/(Var(S))^{\frac{1}{2}}$  if  $S < 0$ 

A statistic which is closely related to S is Kendall's tau defined by:

$$\tau = S/D \tag{A - 5}$$

where

$$D = n (n-1)/2 (A - 6)$$

Due to the relationship between  $\tau$  and S, the distribution of  $\tau$  can be easily obtained from the distribution of S.

The Mann-Kendall Test results for 7 day average low flows are given in Table A.1(a) for the Northwestern Region and Table A.1(b) for the Northeastern Region. Test results for the "old" data set (to 1986) and for the "new" data set (to 1990) are also summarized and compared in Table A.1.

### ii) Spearman's Rho Test

Spearman (1904) introduced a non-parametric coefficient of rank correlation denoted as  $\rho_{xy}$  which is based upon the squared differences of ranks between two variables. By letting one of the variables represent time, Spearman's rho test can be interpreted as a trend test.

Let the sample consist of a bivariate sample  $(X_i, t_i)$  for i = 1, 2, ..., n, where n is the sample size. Suppose that the values of X variable are ranked from smallest to largest such that the rank of the smallest value is one and that of the largest value is n. Let  $R_1^{(X)}$  represent the rank of X variable measured at time  $t_i$ . Likewise, the values of Y variable can be ranked and  $R_i^{(Y)}$  can represent the value of the rank for the Y variable. The sum of the squared differences of the rank is:

$$S(d^2) = D^2 = \sum_{i=1}^{n} (R_i^{(x)} - R_i^{(y)})^2$$
 (A - 7)

Spearman's rho is then defined as:

$$\rho_{xy} = 1 - \frac{6 \ s \ (d^2)}{n^3 - n} \tag{A - 8}$$

When the two rankings of X and Y are identical  $\rho_{xy} = 1$ , whereas  $\rho_{xy} = -1$  when the rankings of X and Y are in reverse order.

When using  $\rho_{xT}$  in a statistical test to check for a trend, the null hypothesis,  $H_0$ , is that there is no correlation, that is no trend on the time series.  $\rho_{xT}$  is distributed as  $N(0, \frac{1}{n-1})$ , where n is the sample size. The alternative hypothesis,  $H_1$ , is that there

is correlation between X and T variables. If the estimated value of  $\rho_{xT}$  is significantly different from zero, then one can argue that time and X variable are significantly correlated, which in turn means there is a trend.

The Spearman Test results for trend are given in Table 3.1. A comparison of Spearman and Mann-Kendall test results (for selected stations) is given in Table A.2.

It was found that an additional four years of record could significantly affect trend statistics. Additional long term discharge measurements are required in order to undertake a complete statistical analysis of low flow trend.

# A.2) Robust Locally Weighted Regression Smooth

In essence, robust locally weighted regression is a method for smoothing a scatter of  $(X_i, Y_i)$ , i = 1, 2, ..., n, in which the fitted value at  $X_k$  is in the value of a polynomial fitted to the data using weighted least squares. The weight for  $(X_i, Y_i)$ , is large if  $X_i$  is close to  $X_k$  and is small if this is not the case. To display graphically the RLWRS on the scatter plot of  $(X_i, Y_i)$ , one plots  $(X_i, \hat{Y}_i)$  on the same graph as the scatter plot of  $(X_i, Y_i)$ , where  $(X_i, \hat{Y}_i)$  is called the smoothed point at  $X_i$  and  $Y_i$  is called the fitted value at  $X_i$ .

### General Procedure:

The general idea behind the smoothing procedure is as follows. Let W be a weight function which has the following properties:

- 1) W(x) > 0 for |X| < 1
- 2) W(-X) = W(X)
- 3) W (X) is a non-increasing function for  $X \ge 0$
- 4)  $W(X) = 0 \text{ for } |X| \ge 1$

If one lets 0 < f < 1 and r be fin rounded to the nearest integer, the outline of the procedure is as given below. For each  $X_i$ , weight  $W_k$  ( $X_i$ ), are defined for all  $X_k$ , k = 1, 2, ..., n, by employing the weight function W. To accomplish this, centre W at  $X_i$  and scale W so that the point at which W first becomes zero is the rth nearest neighbour of  $X_i$ . To obtain the initial fitted value,  $Y_i$ , at each  $X_i$ , a dth degree polynomial is fitted to the data using weighted least squares with weights  $W_k$  ( $X_i$ ). This procedure is called locally weighted regression. Based upon the size of the residual  $Y_i - \hat{Y}_i$ , a different set of weights,  $\delta_i$ , is defined for each ( $X_i$ ,  $Y_i$ ). In general, large residuals produce small weights while small residuals result in large weights. Because large residuals cause small weights, the effects of extremes tend to be toned down or smoothed, thereby making the procedure robust. After replacing  $W_k$  ( $X_i$ ) by  $\delta_i$   $W_k$  ( $X_i$ ), new fitted values are computed using locally weighted regression. The determination of new weights and fitted values are repeated as often as required. All of the foregoing steps are referred to as robust locally weighted regression.

In the smoothing procedure, points in the neighbourhood of  $(X_i, Y_i)$  are used to calculate  $\hat{Y}_i$ . Because the weights  $W_k$   $(X_i)$  decrease as the distance of  $X_k$  from  $X_i$  increases, points whose abscissae are closer to  $X_i$ , have a larger effect upon the calculation of  $\hat{Y}_i$  while further points play a lesser role. By increasing f, the neighbourhood of points affecting  $\hat{Y}_i$  becomes larger. Therefore, larger values of f tend to cause smoother curves.

In the RLWRS procedure, local regression means that regression at a given point is carried out for a subset of nearest neighbours such that the observations closer to the specified point are given larger weights. By taking the size of the residuals into account for obtaining revised weights, robustness is brought into the procedure. Finally, the robust locally weighted regression analysis is carried out for each observation.

#### Specific Procedure:

Let the distance from X<sub>i</sub> to the rth nearest neighbour of X<sub>i</sub> be denoted by h<sub>i</sub> for each i.
 Hence, h<sub>i</sub> is the smallest number among | X<sub>i</sub> - X<sub>j</sub> | , for j = 1, 2, ..., n. For k = 1, 2, ..., n, let

$$W_{k}(X_{1} = W((X_{k} - X_{1})/h_{1})$$
(A - 9)

A possible form for the weight function is the tricube given by:

$$W(X) = (1 - |X|^{3})^{3} \text{ for } |X| < 1$$

$$= 0 \text{ for } |X| > 1$$
(A - 10)

2) The second step describes how locally weighted regression is carried out. For each i, determine the estimates β<sub>j</sub> (X<sub>i</sub>)<sub>1</sub> j = 1, ..., d, of the parameters in a polynomial regression of degree d of Y<sub>k</sub> on X<sub>k</sub>. This is fitted using weighted least squares having weight W<sub>k</sub> (X<sub>j</sub>) for (X<sub>k</sub>, Y<sub>k</sub>). Therefore, the β<sub>j</sub> (X<sub>i</sub>) are the values of β<sub>j</sub> which minimize

$$\sum_{k=1}^{n} W_{k}(X_{i}) (y_{k} - \beta_{0} \beta_{i} X_{k} - \beta_{2} X_{k}^{2} - ... - \beta_{d} X_{k}^{d})^{2}$$
(A - 11)

When using locally weighted regression of degree d, the smoothed point at  $X_i$  is  $(X_i, \hat{Y}_i)$  for which  $\hat{Y}_i$  is the fitted value of the regression at  $X_i$ . Hence

$$\hat{y}_{i} = \sum_{j=0}^{d} \hat{\beta}_{i} (X_{i}) x_{i}^{i} = \sum_{k=1}^{n} r_{k} (X_{i}) Y_{k}$$
(A - 12)

Where  $\gamma_k$  ( $X_1$ ) does not depend on  $Y_i$ , j=1, 2, ..., n. The  $\gamma_k$  ( $X_1$  are the coefficients for the  $Y_k$  coming from the regression.

3) Let the bisquare weight function be given by:

B (X) = 
$$(1 - X^2)^2$$
 for  $|X| < 1$  (A - 13)  
= 0 for  $|X| \ge 1$ 

Let the residuals for the current fitted values be  $e_i = Y_i - Y_i$ . The robustness weights are defined by:

$$\delta_K = \beta \ (e_k/6S) \tag{A - 14}$$

where S is the median of the | e<sub>i</sub> |

- 4) For each i, determine new  $\hat{Y}_i$  by fitting a dth degree polynomial using weighted least squares having the weight  $\delta_k$   $W_k$   $(X_k)$  at  $(X_k, Y_k)$ .
- Interactively execute steps 3 and 4 for a total t times. The final  $\hat{Y}_i$  constitute the fitted values for the robust locally weighted regression and the  $(X_i, \hat{Y}_i)$ , i = 1, 2, ..., n, from the RLWRS. An increase in f causes an increase in the smoothness of the RLWRS. f = 0.5 often produces reasonable results. In practice, one can experiment with two or three value of f and select the one which produces the most informative smooth.

The parameter d is the order of the polynomial that is locally fitted to each point. d = 1, a linear polynomial usually results in a good smoothed curve that does not require high computational effort.

The parameter t stands for the number of iterations. t = 1 is sufficient for most applications.

The RLWRS analyses are summarized on Figure A.1 to A.46 for stations identified using the statistical tests as having "significant trend".

#### A.3 Trend Adjustment

In dealing with apparent trend in flow records, a technique was developed to adjust the time series. The procedure is as follows:

- Fit a Robust Locally Weighted Regression Smooth, or just simply a linear regression smooth curve to the low flow time series.
- 2. Estimate the trend component in the data series for each station.
- 3. Obtain the rate of change per year  $(R_i, i = 1, ..., N)$  through the regression curve.

4. Adjust the recorded low flow  $Q_i$  by subtracting the total trend component in year i  $(R_i * i)$  in linear regression,  $\sum_{k=1}^{i} R_k$  in the case of RLWRS, i = 1, ..., N).

The graphical analyses summarized on Figures A.1 to A.46 summarize the RLWRS analysis. (The rate of change at there stations is given in Table 3.2). Subsequent to the adjustment for trend, the statistical tests were re-applied with the results summarized in Table A.3 it is evident that the trend was removed from the data at each station.

The low flow frequency analyses was then compared for the actual data set for these stations and for the "trend adjusted" data set. The results are summarized in table A.4. It was found that the trend adjustment did not result in any significant overall regional differences in low flow characteristics.



#### TABLE A.1(a) TREND ANALYSIS FOR NEW DATA SET (1990) NORTHWESTERN REGION

(Mann-Kendall)

| Station | # of  | Region |        | (1986) Dat | a Set |     |        | (1990) Dat | a Set |     |
|---------|-------|--------|--------|------------|-------|-----|--------|------------|-------|-----|
| Number  | Years | Code   | Т      | Zm         | 5%    | 1%  | T      | Zm         | 5%    | 1%  |
| 02AA001 | 68    | 3      | 0.15   | 1.732      | No    | No  | 0.086  | 1.032      | No    | No  |
| 02AB004 | 68    | 3      | -0.148 | -1.714     | No    | No  | -0.221 | -2.657     | Yes   | Yes |
| 02AB006 | 64    | 3      | -0.118 | -1.287     | No    | No  | -0.118 | -1.373     | No    | No  |
| 02AB008 | 38    | 3      | 0.25   | 2.03       | Yes   | No  | 0.233  | 2.049      | Yes   | No  |
| 02AB009 | 34    | 3      | 0.197  | 1.48       | No    | No  | 0.091  | 0.741      | No    | No  |
| 02AB010 | 68    | 3      | 0.045  | 0.51       | No    | No  | -0.018 | -0.206     | No    | No  |
| 02AB011 | 67    | 3      | 0.085  | 0.97       | No    | No  | 0.023  | 0.271      | No    | No  |
| 02AB013 | 40    | 3      | -0.313 | -2.627     | Yes   | Yes | -0.422 | -3.822     | Yes   | Yes |
| 02AB014 | 19    | 3      | 0.152  | 0.743      | No    | No  | 0.053  | 0.28       | No    | No  |
| 02AB015 | 14    | 3      | -0.165 | -0.767     | No    | No  | -0.154 | -0.712     | No    | No  |
| 02AB016 | 14    | 3      | 0.154  | 0.712      | No    | No  | 0.198  | 0.932      | No    | No  |
| 02AB017 | 11    | 3      | N/A    | N/A        | N/A   | N/A | -0.145 | -0.545     | No    | No  |
| 02AC001 | 20    | 3      | 0.13   | 0.676      | No    | No  | 0.189  | 1.136      | No    | No  |
| 02AD008 | 41    | 3      | -0.33  | -2.82      | Yes   | Yes | -0.326 | -2.988     | Yes   | Yes |
| 02AD009 | 48    | 3      | 0.045  | 0.425      | No    | No  | 0.045  | 0.444      | No    | No  |
| 02AD010 | 20    | 3      | -0.105 | -0.495     | No    | No  | -0.121 | -0.714     | No    | No  |
| 02AE001 | 17    | 3      | 0.455  | 1.992      | Yes   | No  | 0.338  | 1.854      | No    | No  |
| 02BA002 | 21    | 3      | -0.059 | -0.288     | No    | No  | -0.138 | -0.846     | No    | No  |
| 02BA003 | 19    | 3      | 0.165  | 0.766      | No    | No  | -0.146 | -0.84      | No    | No  |
| 02BB002 | 24    | 3      | -0.135 | -0.77      | No    | No  | -0.348 | -2.357     | Yes   | No  |
| 02BB003 | 21    | . 3    | 0.033  | 0.135      | No    | No  | 0.019  | 0.091      | No    | No  |
| 04CA002 | 14    | 1      | -0.19  | -1.061     | No    | No  | -0.337 | -2.336     | Yes   | No  |
| 04CA003 | 24    | 1      | 0.292  | -1.741     | No    | No  | 0.207  | 1.389      | No    | No  |
| 04CA004 | 19    | 1      | -0.268 | -1.515     | No    | No  | -0.24  | -1.399     | No    | No  |
| 04CB001 | 24    | 1      | -0.368 | -2.169     | Yes   | No  | -0.428 | -2.902     | Yes   | Yes |
| 04CC001 | 19    | 1      | 0.103  | 0.428      | No    | No  | -0.041 | -0.21      | No    | No  |
| 04CD002 | 20    | 1      | N/A    | N/A        | N/A   | N/A | -0.253 | -1.525     | No    | No  |
| 04CE002 | 23    | 1      | 0.039  | 0.189      | No    | No  | -0.055 | -0.343     | No    | No  |
| 04DA001 | 25    | 1      | -0.295 | -1.784     | No    | No  | -0.413 | -2.873     | Yes   | Yes |
| 04DB001 | 25    | 1      | 0.247  | 1.492      | No    | No  | -0.07  | -0.467     | No    | No  |
| 04DC001 | 14    | 1      | -0.279 | -1.525     | No    | No  | -0.383 | -2.663     | Yes   | Yes |
| 04DC002 | 24    | 1      | 0.013  | 0.038      | No    | No  | -0.098 | -0.645     | No    | No  |
| 04EA001 | 23    | 1      | -0.02  | -0.076     | No    | No  | -0.257 | -1.691     | No    | No  |
| 04FA001 | 25    | 1      | -0.253 | -1.53      | No    | No  | -0.423 | -2.943     | Yes   | Yes |
| 04FA002 | 24    | 1      | -0.263 | -1.539     | No    | No  | -0.275 | -1.861     | No    | No  |
| 04FA003 | 25    | 1      | -0.409 | -2.414     | Yes   | No  | -0.463 | -3.223     | Yes   | Yes |
| 04FB001 | 24    | 1      | -0.058 | -0.324     | No    | No  | -0.357 | -2.476     | Yes   | No  |
| 04FC001 | 23    | 1      | -0.105 | -0.595     | No    | No  | -0.273 | -1.796     | No    | No  |
| 04GA002 | 23    | 3      | -0.15  | -0.766     | No    | No  | -0.119 | -0.725     | No    | No  |
| 04GB001 | 50    | 3      | -0.026 | -0.245     | No    | No  | -0.064 | -0.652     | No    | No  |
| 04GB004 | 20    | 3      | 0.124  | 0.594      | No    | No  | -0.105 | -0.616     | No    | No  |
| 04GC002 | 16    | 1      | -0.143 | -0.693     | No    | No  | -0.25  | -1.306     | No    | No  |

1

#### TABLE A.1(a) TREND ANALYSIS FOR NEW DATA SET (1990) NORTHWESTERN REGION

(Mann-Kendall)

| Station | # of  | Region |        | (1986) Dat     | a Set |     |        | (1990) Dat     | a Set |     |
|---------|-------|--------|--------|----------------|-------|-----|--------|----------------|-------|-----|
| Number  | Years | Code   | T      | Z <sub>m</sub> | 5%    | 1%  | Т      | Z <sub>m</sub> | 5%    | 1%  |
| 04GD001 | 22    | 1      | -0.311 | -1.882         | No    | No  | -0.47  | -3.27          | Yes   | Yes |
| 04JA002 | 37    | 1      | -0.019 | -0.15          | No    | No  | -0.06  | -0.51          | No    | No  |
| 04JC002 | 41    | 1      | 0.162  | 1.376          | No    | No  | 0.102  | 0.932          | No    | No  |
| 04JC003 | 37    | 1      | -0.09  | -0.763         | No    | No  | -0.129 | -1.112         | No    | No  |
| 04JD002 | 51    | 1      | -0.224 | -2.24          | Yes   | No  | -0.213 | -2.193         | Yes   | No  |
| 04JD003 | 52    | 1      | -0.134 | -1.333         | No    | No  | -0.155 | -1.618         | No    | No  |
| 04JF001 | 22    | 1      | -0.235 | -1.277         | No    | No  | -0.446 | -2.877         | Yes   | Yes |
| 04JG001 | 24    | 1      | N/A    | N/A            | N/A   | N/A | -0.167 | -1.116         | No    | No  |
| 05PA006 | 70    | 2      | 0.213  | 2.485          | Yes   | No  | 0.242  | 2.961          | Yes   | Yes |
| 05PA012 | 64    | 2      | 0.095  | 1.053          | No    | No  | 0.117  | 1.362          | No    | No  |
| 05PB009 | 28    | 2      | -0.269 | -1.77          | No    | No  | -0.373 | -2.766         | Yes   | Yes |
| 05PB014 | 72    | 2      | 0.233  | 2.693          | Yes   | No  | 0.254  | 3.155          | Yes   | Yes |
| 05PB018 | 12    | 2      | N/A    | N/A            | N/A   | N/A | -0.288 | -1.236         | No    | No  |
| 05PC018 | 11    | 2      | 0.147  | 1.623          | No    | No  | 0.047  | 0.534          | No    | No  |
| 05PC019 | 30    | 2      | 0.032  | 0.416          | No    | No  | -0.051 | -0.697         | No    | No  |
| 05PD015 | 20    | 2      | -0.343 | -1.733         | No    | No  | -0.279 | -1.687         | No    | No  |
| 05PD017 | 20    | 2      | 0      | 0              | No    | No  | 0      | 0              | No    | No  |
| 05PD023 | 19    | 2      | -0.343 | 1.733          | No    | No  | -0.094 | -0.525         | No    | No  |
| 05PD026 | 12    | 2      | N/A    | N/A            | N/A   | N/A | -0.652 | -2.885         | Yes   | Yes |
| 05PE005 | 23    | 2      | 0.229  | 1.288          | No    | No  | 0.241  | 1.585          | No    | No  |
| 05PE006 | 33    | 2      | 0.437  | 5.69           | Yes   | Yes | 0.411  | 5.528          | Yes   | Yes |
| 05PE011 | 33    | 2      | 0.161  | 2.014          | Yes   | No  | 0.095  | 1.221          | No    | No  |
| 05QA001 | 60    | 2      | 0.06   | 0.676          | No    | No  | 0.026  | 0.286          | No    | No  |
| 05QA002 | 70    | 2      | 0.123  | 1.44           | No    | No  | 0.123  | 1.496          | No    | No  |
| 05QA004 | 30    | 2      | -0.087 | -0.584         | No    | No  | -0.274 | -2.105         | Yes   | No  |
| 05QB006 | 34    | 2      | 0.046  | 0.339          | No    | No  | 0.041  | 0.326          | No    | No  |
| 05QC001 | 29    | 2      | -0.076 | -0.496         | No    | No  | -0.246 | -1.857         | No    | No  |
| 05QC003 | 21    | 2      | -0.324 | -1.772         | No    | No  | -0.448 | -2.809         | Yes   | Yes |
| 05QD003 | 27    | 2      | -0.187 | -1.085         | No    | No  | -0.145 | -1.042         | No    | No  |
| 05QD006 | 28    | 2      | -0.068 | -0.542         | No    | No  | -0.175 | -1.534         | No    | No  |
| 05QD016 | 21    | 2      | N/A    | N/A            | N/A   | N/A | -0.186 | -1.148         | No    | No  |
| 05QE006 | 49    | 2      | -0.091 | -1.181         | No    | No  | -0.064 | -0.638         | No    | No  |
| 05QE007 | 35    | 2      | -0.154 | -1.178         | No    | No  | -0.183 | -1.534         | No    | No  |
| 05QE008 | 21    | 2      | -0.5   | -2.761         | Yes   | No  | -0.581 | -3.655         | Yes   | Yes |
| 05QE009 | 31    | 2      | -0.094 | -0.62          | No    | No  | -0.249 | -1.955         | No    | No  |
| 05QE012 | 11    | 2      | N/A    | N/A            | N/A   | N/A | -0.236 | -0.934         | No    | No  |
| 05RC001 | 11    | 2      | N/A    | N/A            | N/A   | N/A | -0.164 | -0.623         | No    | No  |

Yes – There is a Trend No – No Trend

#### TABLE A.1(b)

#### TREND ANALYSIS FOR NEW DATA SET (1990) NORTHEASTERN REGION

(Mann-Kendall)

| Station | # of  | Region |        | (1986) D | ata Set |     |        | (1990) D       | ata Set |     |
|---------|-------|--------|--------|----------|---------|-----|--------|----------------|---------|-----|
| Number  | Years | Code   | T      | Zm       | 5%      | 1%  | T      | Z <sub>m</sub> | 5%      | 1%  |
| 02BD002 | 71    | 3      | 0.389  | 4.34     | Yes     | Yes | 0.421  |                | Yes     | Yes |
| 02BE002 | 56    | 3      | 0.398  | 4.11     | Yes     | Yes | 0.266  | 2.891          | Yes     | Yes |
| 02BF001 | 24    | 3      | 0.076  | 0.42     | No      | No  | -0.178 | -1.191         | No      | No  |
| 02BF002 | 24    | 3      | -0.018 | -0.07    | No      | No  | -0.199 | -1.34          | No      | No  |
| 02BF004 | 12    | 3      | N/A    | N/A      | N/A     | N/A | -0.5   | -2.198         | Yes     | No  |
| 02BF005 | 11    | 3      | N/A    | N/A      | N/A     | N/A | -0.2   | -0.778         | No      | No  |
| 02BF006 | 12    | 3      | N/A    | N/A      | N/A     | N/A | -0.455 | -1.992         | Yes     | No  |
| 02BF007 | 10    | 3      | N/A    | N/A      | N/A     | N/A | -0.067 | -0.179         | No      | No  |
| 02BF008 | 11    | 3      | N/A    | N/A      | N/A     | N/A | -0.236 | -0.934         | No      | No  |
| 02BF009 | 10    | 3      | N/A    | N/A      | N/A     | N/A | 0      | 0              | No      | No  |
| 02CA001 | 118   | 3      | N/A    | N/A      | N/A     | N/A | 0.003  | 0.049          | No      | No  |
| 02CA002 | 20    | 3      | 0.067  | 0.297    | No      | No  | -0.163 | -0.973         | No      | No  |
| 02CB001 | 40    | 3      | N/A    | N/A      | N/A     | N/A | -0.29  | -2.622         | Yes     | Yes |
| 02CB003 | 11    | 3      | N/A    | N/A      | N/A     | N/A | -0.345 | -1.401         | No      | No  |
| 02CC007 | 41    | 3      | N/A    | N/A      | N/A     | N/A | -0.051 | -0.461         | No      | No  |
| 02CC008 | 41    | 3      | 0.448  | 3.584    | Yes     | Yes | 0.024  | 0.21           | No      | No  |
| 02CC009 | 31    | 3      | N/A    | N/A      | N/A     | N/A | -0.123 | -0.952         | No      | No  |
| 02CC010 | 11    | 3      | N/A    | N/A      | N/A     | N/A | -0.127 | -0.467         | No      | No  |
| 02CD001 | 25    | 3      | 0.011  | 0.032    | No      | No  | -0.193 | -1.331         | No      | No  |
| 02CD002 | 14    | 3      | N/A    | N/A      | N/A     | N/A | -0.253 | -1.206         | No      | No  |
| 02CD003 | 14    | 3      | N/A    | N/A      | N/A     | N/A | -0.275 | -1.315         | No      | No  |
| 02CD004 | 22    | 3      | N/A    | N/A      | N/A     | N/A | -0.165 | -1.044         | No      | No  |
| 02CD006 | 23    | 3      | 0.055  | 0.156    | No      | No  | -0.166 | -1.083         | No      | No  |
| 02CE001 | 44    | 3      | -0.189 | -1.635   | No      | No  | -0.254 | -2.417         | Yes     | No  |
| 02CE002 | 76    | 3      | -0.012 | -0.013   | No      | No  | -0.019 | -0.242         | No      | No  |
| 02CE004 | 71    | 3      | -0.195 | -2.308   | Yes     | No  | -0.216 | -2.656         | Yes     | Yes |
| 02CF005 | 32    | 3      | -0.422 | -3.064   | Yes     | Yes | -0.462 | -3.698         | Yes     | Yes |
| 02CF007 | 31    | 3      | 0.323  | 2.293    | Yes     | No  | 0.144  | 1.122          | No      | No  |
| 02CF008 | 31    | 3      | 0.121  | 0.481    | No      | No  | -0.402 | -3.105         | Yes     | Yes |
| 02CF009 | 32    | 3      | -0.24  | -1.66    | No      | No  | -0.369 | -2.592         | Yes     | Yes |
| 02CF010 | 15    | 3      | 0.273  | 1.09     | No      | No  | 0.029  | 0.009          | No      | No  |
| 02CF011 | 20    | 3      | -0.303 | -1.305   | No      | No  | -0.384 | -2.336         | Yes     | No  |
| 02CF012 | 14    | 3      | N/A    | N/A      | N/A     | N/A | -0.011 | 0              | No      | No  |
| 02CF013 | 10    | 3      | N/A    | N/A      | N/A     | N/A | 0.022  | 0              | No      | No  |
| 02DB005 | 39    | 3      | -0.314 | -2.594   | Yes     | Yes | -0.424 | -3.787         | Yes     | Yes |
| 02DB007 | 11    | 3      | N/A    | N/A      | N/A     | N/A | -0.091 | -0.311         | No      | No  |
| 02DC003 | 70    | 3      | 0.058  | 0.674    | No      | No  | -0.042 | -0.512         | No      | No  |
| 02DC007 | 53    | 3      | 0.119  | 1.182    | No      | No  | 0.239  | 2.516          | Yes     | No  |
| 02DC008 | 53    | 3      | 0.166  | 1.653    | No      | No  | 0.115  | 1.204          | No      | No  |
| 02DD005 | 47    | 3      | -0.154 | -1.552   | No      | No  | -0.153 | -1.504         | No      | No  |
| 02DD008 | 27    | 3      | 0.218  | 1.543    | No      | No  | 0.179  | 1.293          | No      | No  |
| 02DD009 | 35    | 3      | -0.133 | -0.994   | No      | No  | -0.25  | -2.102         | Yes     | No  |

1

#### TABLE A.1(b) TREND ANALYSIS FOR NEW DATA SET (1990) NORTHEASTERN REGION

(Mann-Kendall)

| Station | # of  | Region |        | (1986) [       | Data Set |     |        | (1990) D       | ata Set |     |
|---------|-------|--------|--------|----------------|----------|-----|--------|----------------|---------|-----|
| Number  | Years | Code   | T      | Z <sub>m</sub> | 5%       | 1%  | T      | Z <sub>m</sub> | 5%      | 1%  |
| 02DD010 | 30    | 3      | 0.33   | 2.289          | Yes      | No  | 0.179  | 1.374          | No      | No  |
| 02DD013 | 17    | 3      | 0.409  | 1.786          | No       | No  | -0.272 | -1.483         | No      | No  |
| 02DD015 | 17    | 3      | 0.333  | 1.442          | No       | No  | -0.147 | -0.783         | No      | No  |
| 02DD016 | 11    | 3      | N/A    | N/A            | N/A      | N/A | -0.527 | -2.18          | Yes     | No  |
| 02DD017 | 11    | 3 .    | N/A    | N/A            | N/A      | N/A | -0.127 | -0.467         | No      | No  |
| 02EA005 | 76    | 3      | 0.159  | 1.956          | No       | No  | 0.064  | 0.812          | No      | No  |
| 02EA006 | 76    | 3      | -0.136 | -1.678         | No       | No  | -0.229 | -2.929         | Yes     | Yes |
| 02EA010 | 23    | 3      | 0.018  | 0.07           | No       | No  | -0.292 | -1.928         | No      | No  |
| 02EA011 | 18    | 3      | 0.179  | 0.794          | No       | No  | -0.229 | -1.288         | No      | No  |
| 02EA013 | 12    | 3      | 0.473  | 1.946          | No       | No  | 0.473  | 1.946          | No      | No  |
| 02EA014 | 10    | 3      | N/A    | N/A            | N/A      | N/A | -0.556 | -2.147         | Yes     | No  |
| 02JC008 | 23    | 3      | 0.078  | 0.417          | No       | No  | 0.237  | 1.559          | No      | No  |
| 02JD010 | 19    | 3      | N/A    | N/A            | N/A      | N/A | -0.228 | -1.329         | No      | No  |
| 02JD011 | 45    | 3      | N/A    | N/A            | N/A      | N/A | -0.098 | -0.939         | No      | No  |
| 02JE012 | 39    | 3      | N/A    | N/A            | N/A      | N/A | -0.178 | -1.585         | No      | No  |
| 02JE018 | 12    | 3      | -0.255 | -1.012         | No       | No  | -0.288 | -1.236         | No      | No  |
| 02JE019 | 19    | 3      | 0.086  | 0.396          | No       | No  | 0.047  | 0.245          | No      | No  |
| 02JE020 | 20    | 3      | -0.01  | 0              | No       | No  | -0.168 | -1.006         | No      | No  |
| 02JE021 | 45    | 3      | N/A    | N/A            | N/A      | N/A | -0.081 | -0.773         | No      | No  |
| 04KA001 | 21    | 3      | 0.017  | 0.045          | No       | No  | -0.243 | -1.51          | No      | No  |
| 04LA002 | 22    | 1      | N/A    | N/A            | N/A      | N/A | -0.177 | -1.128         | No      | No  |
| 04LD001 | 70    | 1      | 0.217  | 2.503          | Yes      | No  | 0.221  | 2.697          | Yes     | Yes |
| 04LF001 | 73    | 1      | -0.077 | -0.926         | No       | No  | -0.066 | -0.824         | No      | No  |
| 04LG002 | 24    | 1      | -0.36  | -2.377         | Yes      | No  | -0.37  | -2.506         | Yes     | No  |
| 04LJ001 | 71    | 1      | 0.004  | 0.039          | No       | No  | 0.009  | 0.104          | No      | No  |
| 04LM001 | 19    | 1      | 0.077  | 0.305          | No       | No  | 0.018  | 0.07           | No      | No  |
| 04MB003 | 37    | 1      | N/A    | N/A            | N/A      | N/A | -0.054 | -0.458         | No      | No  |
| 04MC001 | 71    | 1      | N/A    | N/A            | N/A      | N/A | 0.452  | 5.574          | Yes     | Yes |
| 04MD002 | 53    | 1      | -0.213 | -2.124         | Yes      | No  | -0.239 | -2.516         | Yes     | No  |
| 04MD004 | 14    | 1      | 0.778  | 3.041          | Yes      | Yes | 0.626  | 3.069          | Yes     | Yes |
| 04ME002 | 59    | 1      | 0.029  | -0.298         | No       | No  | 0.019  | 0.203          | No      | No  |
| 04ME003 | 32    | 1      | N/A    | N/A            | N/A      | N/A | -0.01  | -0.065         | No      | No  |
| 04ME004 | 30    | 1      | -0.387 | -2.686         | Yes      | Yes | -0.269 | -2.07          | Yes     | No  |
| 04MF001 | 25    | 1      | -0.374 | -2.271         | Yes      | No  | -0.277 | -1.915         | No      | No  |

Yes – There is a Trend No – No Trend

# SUMIMAKT OF STATIONS WITH SIGNIFICANT INCINE NORTHWESTERN REGION (-1986)

|             |        |      |        |               |      | Tre    | 1d (7 Day | Trend (7 Day Low Flow) | (W)   |            |                   |         |      |      |
|-------------|--------|------|--------|---------------|------|--------|-----------|------------------------|-------|------------|-------------------|---------|------|------|
|             |        |      | Sp     | Spearman Test | est  |        |           |                        |       | Manr       | Mann-Kendall Test | ll Test |      |      |
| Station No. |        |      | į      | 5%            | 9,   | 1%     |           |                        | į     |            | 5.                | 5%      | %1   | ,    |
|             | S.C.   | D.F. | S.T.   | T.L.          | T.I. | T.L.   | T.I.      | ,                      | S.D.  | <b>Z</b> m | T.L.              | T.I.    | T.L. | Т.1. |
| 02AB008     | -0.351 | 31   | -2.088 | -2.04         | Yes  | -2.745 | No        | 0.25                   | 64.5  | 2.03       | 96:1              | Yes     | 2.57 | No   |
| 02AB013     | 0.431  | 33   | 2.743  | 2.036         | Yes  | 2.736  | Yes       | -0.313                 | 70.4  | -2.627     | 1.96              | Yes     | 2.57 | Yes  |
| 02AD008     | 0.505  | 34   | 3.407  | 2.034         | Yes  | 2.732  | Yes       | -0.33                  | 73.4  | -2.82      | 1.96              | Yes     | 2.57 | Yes  |
| 02AE001     | -0.608 | 01   | -2.424 | -2.228        | Yes  | -3.169 | No        | 0.455                  | 14.6  | 1.992      | 1.96              | Yes     | 2.57 | No   |
| 04CB001     | 0.521  | 17   | 2.517  | 2.11          | Yes  | 2.898  | No        | -0.368                 | 28.6  | -2.169     | 1.96              | Yes     | 2.57 | ν̈́  |
| 04FA002     | 0.537  | 17   | 2.624  | 2.11          | Yes  | 2.898  | No        | -0.263                 | 28.6  | -1.539     | 1.96              | No      | 2.57 | No   |
| 04FA003     | 0.532  | 17   | 2.589  | 2.11          | Yes  | 2.898  | No        | -0.409                 | 28.6  | -2.414     | 1.96              | Yes     | 2.57 | No   |
| 04GA001     | 0.874  | 49   | 12.619 | 2.012         | Yes  | 2.684  | Yes       | -0.625                 | 123.1 | -6.465     | 1.96              | Yes     | 2.57 | Yes  |
| 04JD002     | 0.573  | 46   | 4.742  | 2.015         | Yes  | 2.691  | Yes       | -0.224                 | 112.5 | -2.24      | 1.96              | Yes     | 2.57 | oN   |
| 05PA006     | -0.331 | 62   | -2.762 | -1.998        | Yes  | -2.659 | Yes       | 0.213                  | 172.6 | 2.485      | 1.96              | Yes     | 2.57 | No   |
| 05PB009     | 0.416  | 21   | 2.094  | 2.080         | Yes  | 2.831  | No        | -0.269                 | 37.9  | -1.77      | 1.96              | No      | 2.57 | No   |
| 05PB014     | -0.365 | 19   | -3.061 | -2.0          | Yes  | -2.659 | Yes       | 0.233                  | 9.891 | 2.693      | 1.96              | Yes     | 2.57 | Yes  |
| 05PD023     | 0.546  | 13   | 2.351  | 2.16          | Yes  | 3.012  | No        | -0.343                 | 20.2  | -1.733     | 1.96              | No      | 2.57 | No   |
| 05PE006     | -0.611 | 77   | -6.778 | -1.994        | Yes  | -2.648 | Yes       | 0.437                  | 236.2 | 5.69       | 1.96              | Yes     | 2.57 | Yes  |
| 05PE011     | -0.239 | 71   | -2.071 | -1.996        | Yes  | -2.652 | No        | 0.161                  | 209.9 | 2.014      | 1.96              | Yes     | 2.57 | No   |
| 05QE008     | 0.652  | 15   | 3.33   | 2.131         | Yes  | 2.947  | Yes       | -0.5                   | 29.3  | -2.761     | 1.96              | Yes     | 2.57 | Yes  |

Speaman Coefficient
Degrees of Freedom
Studentized
Coefficient
Test Limit LEGEND: S.C. : Spe D.F. : Deg S.T. : Stu

: Trend Indicator : Tau : Standard Deviation : Mann-Kendall Variable T.I. t S.D. Z

# SUMMARY OF STATIONS WITH SIGNIFICANT TREND NORTHEASTERN REGION (-1986)

|             |        |      |        |               |      | Trei   | nd (7 Day      | Trend (7 Day Low Flow) | (W)   |            |                   |        |      |      |
|-------------|--------|------|--------|---------------|------|--------|----------------|------------------------|-------|------------|-------------------|--------|------|------|
|             |        |      | Sp     | Spearman Test | Fest |        |                |                        |       | Man        | Mann-Kendall Test | l Test |      |      |
| Station No. |        |      |        | 2%            | %    | 1%     | ,0             |                        |       |            | Ś                 | 2%     | 1%   |      |
|             | S.C.   | D.F. | S.T.   | T.L.          | T.I. | T.L.   | T.I.           | -                      | S.D.  | <b>Z</b> m | T.L.              | T.I.   | T.L. | T.I. |
| 02BD002     | -0.528 | 57   | -4.693 | -2.003        | Yes  | -2.667 | Yes            | 0.389                  | 152.9 | 4.34       | 1.96              | Yes    | 2.57 | Yes  |
| 02BE002     | -0.495 | 49   | -3.983 | -2.012        | Yes  | -2.684 | Yes            | 0.398                  | 123.1 | 4.11       | 1.96              | Yes    | 2.57 | Yes  |
| 02CC008     | -0.607 | 30   | -4.406 | -2.042        | Yes  | -2.750 | Yes            | 0.448                  | 61.7  | 3.584      | 1.96              | Yes    | 2.57 | Yes  |
| 02CE004     | 0.31   | 64   | 2.610  | 1.999         | Yes  | 2.657  | No             | -0.195                 | 180.7 | -2.308     | 1.96              | Yes    | 2.57 | No   |
| 02CF004     | 0.363  | 99   | 3.168  | 1.998         | Yes  | 2.656  | Yes            | -0.25                  | 188.9 | -3.007     | 1.96              | Yes    | 2.57 | Yes  |
| 02CF005     | 0.607  | 25   | 3.824  | 2.060         | Yes  | 2.787  | Yes            | -0.422                 | 49.9  | -3.064     | 1.96              | Yes    | 2.57 | Yes  |
| 02CF007     | 0.478  | 24   | -2.663 | -2.064        | Yes  | -2.797 | No             | 0.323                  | 45.4  | 2.293      | 1.96              | Yes    | 2.57 | No   |
| 02DB005     | 0.474  | 32   | 3.043  | 2.038         | Yes  | 2.741  | Yes            | -0.314                 | 67.5  | -2.594     | 1.96              | Yes    | 2.57 | Yes  |
| 02DC007     | -0.419 | 46   | -3.128 | -2.015        | Yes  | -2.691 | Yes            | 0.119                  | 112.5 | 1.182      | 1.96              | No     | 2.57 | No   |
| 02DC008     | -0.29  | 46   | -2.057 | -2.015        | Yes  | -2.691 | No             | -0.166                 | 112.5 | 1.653      | 1.96              | No     | 2.57 | No   |
| 02DD010     | -0.43  | 23   | -2.285 | -2.069        | Yes  | -2.807 | Ñ              | 0.33                   | 43.8  | 2.289      | 1.96              | Yes    | 2.57 | No   |
| 02EA013     | -0.696 | 6    | -2.908 | -2.262        | Yes  | -3.25  | N <sub>o</sub> | 0.473                  | 12.8  | 1.946      | 1.96              | No     | 2.57 | No   |
| 02JD012     | -0.688 | 39   | -5.915 | -2.023        | Yes  | -2.709 | Yes            | 0.449                  | 89.0  | 4.122      | 1.96              | Yes    | 2.57 | Yes  |
| 04LD001     | -0.318 | 19   | -2.623 | -2.0          | Yes  | -2.659 | S <sub>o</sub> | 0.217                  | 168.6 | 2.503      | 1.96              | Yes    | 2.57 | No   |
| 04LG002     | 0.512  | 21   | 2.730  | 2.08          | Yes  | 2.831  | No             | -0.360                 | 37.9  | -2.377     | 1.96              | Yes    | 2.57 | No   |
| 04MD002     | 0.429  | 46   | 3.224  | 2.015         | Yes  | 2.691  | Yes            | -0.213                 | 112.5 | -2.124     | 1.96              | Yes    | 2.57 | No   |
| 04MD004     | -0.927 | 8    | -7.005 | -2.306        | Yes  | -3.355 | Yes            | 0.778                  | 11.2  | 3.041      | 1.96              | Yes    | 2.57 | Yes  |
| 04ME004     | 0.492  | 23   | 2.713  | 2.069         | Yes  | 2.807  | Š              | -0.387                 | 42.8  | -2.686     | 1.96              | Yes    | 2.57 | Yes  |
| 04MF001     | 0.536  | 18   | 2.69   | 2.101         | Yes  | 2.878  | Š              | -0.374                 | 30.8  | -2.271     | 1.96              | Yes    | 2.57 | No   |

LEGEND: S.C. : Sp. D.F. : De S.T. : Stu T.L. : Tea

: Spearman Coefficient : Degrees of Freedom : Studentized Coefficient : Test Limit

T.I. t S.D. Z

: Trend Indicator : Tau : Standard Deviation : Mann-Kendall Variable

TABLE A.3(a)
TREND DETECTION BEFORE AND AFTER TREND ADJUSTMENT
NORTHWESTERN REGION

After Adjustment

Before Adjustment

| Number  | Years | Code | T      | $z_{\rm m}$ | 5%  | 1%  | T      | Z <sub>m</sub> | 5% | 1% |
|---------|-------|------|--------|-------------|-----|-----|--------|----------------|----|----|
| 02AB004 | 68    | 3    | -0.221 | -2.657      | Yes | Yes | 0.007  | 0.085          | No | No |
| 02AB013 | 40    | 3    | -0.422 | -3.822      | Yes | Yes | 0.062  | 0.548          | No | No |
| 02AD008 | 41    | 3    | -0.326 | -2.988      | Yes | Yes | -0.107 | -0.977         | No | No |
| 02BB002 | 24    | 3    | -0.348 | -2.357      | Yes | No  | -0.152 | -1.017         | No | No |
| 04CA002 | 14    | 1    | -0.337 | -2.336      | Yes | No  | -0.1   | -0.677         | No | No |
| 04CB001 | 24    | 1    | -0.428 | -2.902      | Yes | Yes | -0.275 | -1.861         | No | No |
| 04DA001 | 25    | 1    | -0.413 | -2.873      | Yes | Yes | -0.173 | -1.191         | No | No |
| 04DC001 | 14    | 1    | -0.383 | -2.663      | Yes | Yes | -0.033 | -0.21          | No | No |
| 04FA001 | 25    | 1    | -0.423 | -2.943      | Yes | Yes | -0.167 | -1.144         | No | No |
| 04FA003 | 25    | 1    | -0.463 | -3.223      | Yes | Yes | -0.247 | -1.705         | No | No |
| 04FB001 | 24    | 1    | -0.357 | -2.476      | Yes | No  | 0.143  | 0.981          | No | No |
| 04GD001 | 22    | 4    | -0.47  | -3.27       | Yes | Yes | -0.043 | -0.28          | No | No |
| 04JD002 | 51    | 4    | -0.213 | -2.193      | Yes | No  | 0.082  | 0.845          | No | No |
| 04JF001 | 22    | 4    | -0.446 | -2.877      | Yes | Yes | 0.281  | 1.805          | No | No |
| 05PA006 | 70    | 2    | 0.242  | 2.961       | Yes | Yes | 0.122  | 1.485          | No | No |
| 05PB009 | 28    | 2    | -0.373 | -2.766      | Yes | Yes | -0.153 | -1.126         | No | No |
| 05PB014 | 72    | 2    | 0.254  | 3.155       | Yes | Yes | 0.009  | 0.112          | No | No |
| 05PD026 | 12    | 2    | -0.652 | -2.885      | Yes | Yes | -0.409 | -1.786         | No | No |
| 05PE006 | 33    | 2    | 0.411  | -5.528      | Yes | Yes | 0.133  | 1.785          | No | No |
| 05QA004 | 30    | 2    | -0.274 | -2.105      | Yes | No  | -0.11  | -0.839         | No | No |
| 05QC003 | 21    | 2    | -0.448 | -2.809      | Yes | Yes | -0.214 | -1.329         | No | No |
| 05QE008 | 21    | 2    | -0.581 | -3.655      | Yes | Yes | -0.219 | -1.359         | No | No |

Yes - There is a Trend No - No Trend

Station

# of

Region

TABLE A.3(b)
TREND DETECTION BEFORE AND AFTER TREND ADJUSTMENT
NORTHEASTERN REGION

| Station | # of  | Region |        | Before Adj     | ustment | _   |        | After Adjus    | stment |    |
|---------|-------|--------|--------|----------------|---------|-----|--------|----------------|--------|----|
| Number  | Years | Code   | T      | Z <sub>m</sub> | 5%      | 1%  | T      | Z <sub>m</sub> | 5%     | 1% |
| 02BD002 | 70    | 3      | 0.421  | 5.192          | Yes     | Yes | 0.096  | 1.181          | No     | No |
| 02BE002 | 56    | 3      | 0.266  | 2.891          | Yes     | Yes | 0.134  | 1.456          | No     | No |
| 02BF004 | 12    | 3      | -0.5   | -2.198         | Yes     | No  | -0.167 | -0.687         | No     | No |
| 02BF006 | 12    | 3      | -0.455 | -1.992         | Yes     | No  | 0      | 0              | No     | No |
| 02CB001 | 40    | 3      | -0.29  | -2.622         | Yes     | Yes | -0.106 | -0.955         | No     | No |
| 02CE001 | 44    | 3      | -0.254 | -2.417         | Yes     | No  | -0.199 | -1.891         | No     | No |
| 02CE004 | 71    | 3      | -0.216 | -2.656         | Yes     | Yes | -0.124 | -1.519         | No     | No |
| 02CF005 | 32    | 3      | -0.462 | -3.698         | Yes     | Yes | -0.161 | -1.281         | No     | No |
| 02CF008 | 30    | 3      | -0.402 | -3.105         | Yes     | Yes | 0.021  | 0.143          | No     | No |
| 02CF009 | 32    | 3      | -0.369 | -2.952         | Yes     | Yes | 0      | 0              | No     | No |
| 02CF011 | 20    | 3      | -0.384 | -2.336         | Yes     | No  | -0.226 | -1.363         | No     | No |
| 02DB005 | 39    | 3      | -0.424 | -3.787         | Yes     | Yes | -0.188 | -1.669         | No     | No |
| 02DC007 | 53    | 3      | 0.239  | 2.516          | Yes     | No  | -0.073 | -0.767         | No     | No |
| 02DD009 | 35    | 3      | -0.25  | -2.102         | Yes     | No  | -0.113 | -0.937         | No     | No |
| 02DD016 | 11    | 3      | -0.527 | -2.18          | Yes     | No  | 0.018  | 0              | No     | No |
| 02EA006 | 76    | 3      | -0.229 | -2.929         | Yes     | Yes | -0.093 | -1.188         | No     | No |
| 02EB014 | 10    | 3      | -0.556 | -2.147         | Yes     | No  | -0.089 | -0.268         | No     | No |
| 04LD001 | 70    | 4      | 0.221  | 2.697          | Yes     | Yes | 0.09   | 1.1            | No     | No |
| 04LG002 | 24    | 4      | -0.37  | -2.506         | Yes     | No  | -0.188 | -1.265         | No     | No |
| 04MC001 | 36    | 4      | 0.452  | 5.574          | Yes     | Yes | 0.12   | 1.479          | No     | No |
| 04MD002 | 53    | 4      | -0.239 | -2.516         | Yes     | No  | 0.076  | 0.798          | No     | No |
| 04MD004 | 14    | 4      | 0.626  | 3.069          | Yes     | Yes | 0.352  | 1.699          | No     | No |
| 04ME004 | 30    | 4      | -0.269 | -2.07          | Yes     | No  | -0.126 | -0.964         | No     | No |

Yes - There is a Trend No - No Trend

TABLE A.4(a) COMPARISON OF FREQUENCY ANALYSIS BEFORE AND AFTER TREND ADJUSTMENT NORTHWESTERN REGION

|              |             |                                         |        |       | Ì     | 1              |                 |       |       |       |        |        |        |        |         |         |       |        |        |
|--------------|-------------|-----------------------------------------|--------|-------|-------|----------------|-----------------|-------|-------|-------|--------|--------|--------|--------|---------|---------|-------|--------|--------|
|              | # of Hegion | -                                       | -      | 0     |       | lambdat I lamb | Coppulation     | 70    | 0     | X)    | 702    | 705    | 70,07  | 7020   | lambda1 | lambda2 | r-cv  | r-cs   | L-CK   |
| Number Years | ars Code    | _                                       | 705    | 7010  |       | ampdai         | Kampaaz<br>, 45 | 200   | 000   | 5 6   | 0.516  | 0.061  | -      | 0000   | 1 84    | 1.452   | 0.789 | 0.685  | 0.427  |
| 02AB004 68   | 3           | 0.48                                    | 0.05   |       | 0.003 | 10.            | 04.1            | 0.02  | 0.03  |       | 2 0    |        | 000    | 0      | 0.038   | 0.142   | 0.597 | 0.559  | 0.504  |
| 02AB013 40   | 3           | _                                       | 10.0   | 0.001 | 0     | 0.23           | 0.16            | 0.72  | 0.0   | 0.44  | 0.070  | 0.0    | 20.0   | 000    | 000     | 1 1     | 1     |        | 0      |
| -            | 6           | -                                       | 168.4  | 136.3 | 109.6 | 222.5          | 37.2            | 0.17  | 0.12  | 0.148 | 222.4  | 173.2  | 149.6  | 132    | 224.1   | 33.05   | 0.147 | -0.01  | 0.107  |
| -            |             | 3 92B                                   | 2 49   | 1.77  | 1.21  | 3.97           | 0.84            | 0.211 | 0.005 | 0.357 | 3.958  | 2.744  | 2.147  | 1.692  | 3.998   | 0.737   | 0.184 | 0.06   | 0.274  |
| 20000        |             | 78 52                                   | 62 73  | 52 5B | 43 07 | 75.9           | 9.84            | 0.13  | -0.18 | 0.26  | 78.46  | 66.85  | 54.23  | 46.02  | 104.1   | 20.44   | 0.196 | 0.155  | 0.328  |
| 04CA002      |             | 40.04                                   | 24.20  | 90 08 | 27.0  | 43.58          | 6.54            | 0.15  | -0.01 | 0.03  | 44     | 36.19  | 32.19  | 59.06  | 43.83   | 5.44    | 0.124 | -0.036 | 0.04   |
| -            |             | 00 a                                    | 07.70  | 60.00 | 5.64  | 9.88           | 1.97            | 0.2   | 0.32  | 0.28  | 9.6    | 6.88   | 5.76   | 5.01   | 10.02   | 1.723   | 0.172 | 0.269  | 0.343  |
| _            | 0           | 0.00                                    | 74 47  | 0 99  | 60.00 | 84.05          | 7 49            | 0.09  | -0.18 |       | 88.44  | 69.07  | 65.15  | 63.61  | 107.32  | 18.28   | 0.17  | 0.48   | 0.594  |
| +            | 4           | 17.00                                   | 10.17  | 10.67 | 9 75  | 1691           | 2.78            | 0.16  | 0.26  |       | 16.54  | 12.77  | 11.21  | 10.17  | 17.12   | 2.39    | 0.14  | 0.239  | 0.319  |
| -            | 0 1         | 0.00                                    | 474    | 000   | 2 54  | 6.55           | 1 18            | 0.18  | 0.12  | 0.13  | 6.368  | 5.11   | 4.632  | 4.333  | 6.64    | 1.001   | 0.151 | 0.111  | 0.061  |
| +            | 0           | 0.00                                    | 1 00   | 20 00 | 26.00 | 48.11          | 6 41            | 0.13  | -0.14 | 0.3   | 47     | 34.97  | 31.86  | 30.4   | 54.35   | 10.18   | 0.187 | 0.37   | 0.45   |
| <u>.</u>     | 4 .         | 20 0                                    | 30.00  | 70.20 | 30.03 | 7.7.08         | B 42            | 0.15  | -0.11 | 0.25  | 60.78  | 45.01  | 39.22  | 35.7   | 64.69   | 12.07   | 0.187 | 0.217  | 0.28   |
| _            | 22 4        | 26.97                                   | 43.62  | 20.07 | 30.63 | 90.00          | 0.05            | 0 93  | 0.86  | 0.68  | 0.015  | 0.0014 | 0.0003 | 0.0001 | 0.065   | 0.053   | 0.809 | 0.705  | 0.502  |
| 04JD002 51   | 4           | 0.001                                   | 0 0    | 2     | 0     | 2000           | 2 7 6           | 0.0   | 0.24  | 0.45  | 12.75  | 9.554  | 8.481  | 7.868  | 13.789  | 2.517   | 0.183 | 0.251  | 0.334  |
| 04JF001 2    | 2 4         | 12.18                                   | 8.58   | 44.   | 0.0   | 00.00          | 1.7             | 100   |       | Ĺ     | 24 63  | 25.0R  | 20 95  | 18.06  | 35 49   | 6 472   | 0.182 | 0.114  | 0.165  |
| 05PA006 7    | 70 2        | 34.05                                   | 24.59  | 20.74 | 18.18 | 35.54          | 0.83            | 0.13  | ò     |       | 20.45  | 2000   | 0000   | 440    | 40 450  | 5 444   | 0.414 | 0 105  | -0.013 |
| 05PB009 2    | 28 2        | 10.39                                   | 3.73   | 1.62  | 0.47  | 12.94          | 6.26            | 0.48  | 0.14  | 1     | 5      | 4,000  | 2.303  |        | 2.130   |         |       | 0      |        |
| +            |             | 11 73                                   | 7 91   | 6.08  | 4.71  | 11.86          | 2.53            | 0.213 | 90.0  | 0.13  | 11.6   | 8.123  | 6.533  | 5.387  | 11.839  |         | 7.0   | 0.101  | 0.     |
| +10014       | 1 0         | 2 0                                     | 0 14   | 0.05  | 0     | 0.46           | 0.21            | 0.46  | 0.02  | -0.13 | 0.407  | 0.275  | 0.238  | 0.22   | 0.478   |         | 0.299 | 0.27   | -0.032 |
| 0350020      | 2 0         | 52 54                                   | 27 99  | 17.36 | 10.01 | 55.17          |                 | 0.31  | -0.07 | -0.08 | 99.09  | 36.85  | 25.52  | 17.06  | 61.25   | 16.26   | 0.266 | 0.025  | 0.024  |
| 021-5000     | 4 6         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10 14  | 8 25  | 6.7   | 13.4           |                 |       | -0.06 | 0.21  | 13.64  | 10.38  | 8.58   | 7.07   | 13.449  | 2.045   | 0.152 | -0.041 | 0.188  |
| +            | -           | 7.74                                    | 4      | 3.47  | 2.52  | 7.93           |                 | 0.27  | -0.01 | 0.05  | 8.342  | 5.731  | 4.294  | 3.098  | 8.144   | 1.787   | 0.219 | -0.076 | 0.059  |
| 020003       | 2 0         | 271                                     | 2 43   | 2 08  | 6     | 4.39           |                 | 0.27  | 0.1   | 0     | 4.739  | 3.507  | 2.765  | 2.105  | 4.584   | 0.796   | 0.174 | -0.118 | 0.176  |
|              | -           | 32.79                                   | 24 43  |       | 16.76 |                |                 |       |       |       | 33.44  | 25.31  | 27.76  | 19.09  |         |         |       |        |        |
| Average      |             | 0.000                                   | 0.0014 | -     | 6000  |                |                 |       |       |       | 0.0021 | 0.0015 | 0.0013 | 0.0011 |         |         |       |        |        |

COMPARISON OF FREQUENCY ANALYSIS BEFORE AND AFTER TREND ADJUSTMENT NORTHEASTERN REGION TABLE A.4(b)

| # of Region |        |       |        | BEFOR  | BEFORE ADJUSTMENT | JENT    |       |       |       |        |        |        | AFTER  | AFTER ADJUSTMENT | IENT   |       |        |        |
|-------------|--------|-------|--------|--------|-------------------|---------|-------|-------|-------|--------|--------|--------|--------|------------------|--------|-------|--------|--------|
| _           | 202    | 70,5  | 7010   | 7020   | lampda1           | lambda2 | L-CV  | r-cs  | L-CK  | 70,    | 7Q5    | 7010   | 7020   | lambda1          | ambda2 | ١-    | L-CS   | L-CK   |
|             | 29.33  | 19.29 | 14.86  | 11.76  | 30.25             | 66.9    | 0.23  | 0.13  | 1.1   | 30.07  | 20.46  | 15.33  | 11.18  | 29.81            | 5.758  | 0.193 | 0.004  | 0.243  |
| _           | 16.77  | 10.55 | 7.39   | 4.91   | 16.7              | 4.14    | 0.25  | 0     | 0.11  | 16.86  | 10.94  | 7.837  | 5.356  | 16.649           | 3.92   | 0.235 | -0.028 | 0.096  |
| _           | 0.04   | 0.23  | 0.02   | 0.02   | 0.07              | 0.03    | 0.44  | 0.58  | 0.51  | 0.049  | 0.033  | 0.03   | 0.029  | 0.073            | 0.028  | 0.383 | 0.646  | 0.524  |
|             | 0.01   | 0.005 | 0      | 0      | 0.02              | 0.01    | 0.7   | 0.46  | 0.16  | 0.014  | 0.003  | 0.0005 | 0      | 0.021            | 0.011  | 0.549 | 0.423  | 0.311  |
|             | 6.36   | 2.64  | 1.46   | 0.81   | 77.7              | 3.4     | 0.44  | 0.19  | 0.05  | 6.298  | 2.863  | 1.832  | 1.29   | 7.827            | 3.115  | 0.398 | 0.208  | 0.094  |
|             | 43.56  | 32.14 | 26.67  | 22.6   | 43.95             | 7.73    | 0.18  | 0.05  | 0.13  | 43.45  | 32.55  | 27.44  | 23.07  | 44.01            | 7.456  | 0.169 | 0.057  | 0.133  |
|             | 32.01  | 25.92 | 17.83  | 13.54  | 31.35             | 5.72    | 0.18  | -0.05 | 0.1   | 31.94  | 23.16  | 18.3   | 14.25  | 31.42            | 5.47   | 0.174 | -0.037 | 0.124  |
|             | 0.149  | 0.107 | 0.092  | 0.084  | 0.164             | 0.037   | 0.228 | 0.196 | 0.09  | 0.153  | 0.12   | 0.109  | 0.103  | 0.165            | 0.029  | 0.178 | 0.22   | 0.122  |
|             | 0.449  | 0.143 | 0.086  | 0.056  | 0.744             | 0.434   | 0.583 | 0.439 | 0.166 | 0.549  | 0.168  | 990'0  | 0.018  | 0.767            | 0.373  | 0.486 | 0.399  | 0.282  |
|             | 0.02   | 0.01  | 0.003  | 0.001  | 0.05              | 0.01    | 0.41  | 0.34  | 0.23  | 0.019  | 0.0078 | 0.0037 | 0.0014 | 0.022            | 0.008  | 0.358 | 0.274  | 0.318  |
|             | 2.363  | 1.739 | 1.46   | 1.263  | 2.414             | 0.448   | 0.186 | 0.101 | 0.116 | 2.375  | 1.836  | 1.602  | 1.44   | 2.431            | 0.401  | 0.165 | 690.0  | 0.014  |
|             | 10.54  | 6.08  | 4.51   | 3.58   | 11.82             | 3.59    | 0.31  | 0.15  | 0.13  | 11.05  | 7.177  | 5.757  | 4.89   | 11.999           | 3.036  | 0.253 | 0.172  | 0.129  |
|             | 90.0   | 0.005 | 0.001  | 0      | 0.38              | 0.34    | 0.9   | 0.8   | 0.55  | 0.0895 | 0.0086 | 0.0018 | 0.0003 | 0.401            | 0.339  | 0.846 | 0.733  | 0.476  |
|             | 1.54   | 0.99  | 0.73   | 0.54   | 1.57              | 0.39    | 0.25  | 0.05  | 0.09  | 1.549  | 1.016  | 0.772  | 0.596  | 1.585            | 0.369  | 0.233 | 0.085  | 0.131  |
|             | 2.78   | 1.08  | 0.73   | 0.59   | 4.39              | 2.22    | 0.51  | 0.54  | 0.37  | 3.454  | 1.906  | 1.566  | 1.424  | 4.76             | 1.973  | 0.415 | 0.486  | 0.292  |
|             | 1.89   | 1.09  | 0.74   | 0.5    | 1.97              | 0.54    | 0.27  | 90.0  | 0.18  | 1.884  | 1.149  | 0.834  | 0.617  | 1.97             | 0.507  | 0.257 | 0.111  | 0.168  |
|             | 1.096  | 0.624 | 0.52   | 0.477  | 1.493             | 0.634   | 0.425 | 0.434 | 0.196 | 1.22   | 0.805  | 0.711  | 0.671  | 1.548            | 0.535  | 0.345 | 0.448  | 0.211  |
|             | 29.75  | 20.84 | 16.56  | 13.37  | 30.01             | 6.1     | 0.2   | -0.01 | 0.09  | 29.55  | 21.08  | 17.11  | 14.2   | 29.95            | 5.821  | 0.194 | 0.009  | 0.107  |
|             | 166.1  | 129.9 | Ξ      | 95.99  | 164.98            | 24.66   | 0.15  | -0.02 | 90.0  | 167    | 134.6  | 117.5  | 103.8  | 165.8            | 21.71  | 0.131 | -0.018 | 0.124  |
|             | 80.38  | 64.52 | 55.07  | 46.71  | 78.55             | 9.85    | 0.13  | -0.23 | 0.05  | 97.84  | 79.78  | 69.69  | 61.2   | 99.96            | 10.921 | 0.113 | -0.039 | 0 232  |
|             | 0.04   | 0.003 | 0.001  | 0      | 0.19              | 0.17    | 0.88  | 0.77  | 0.49  | 0.048  | 0.005  | 0.0011 | 0.0002 | 0.199            | 0.166  | 0.832 | 0.719  | 0.465  |
|             | 0.58   | 0.42  | 0.34   | 0.29   | 0.58              | 0.12    | 0.2   | -0.04 | 0.07  | 0.558  | 0.463  | 0.421  | 0.392  | 0.566            | 0.073  | 0.128 | -0.02  | -0.031 |
|             | 155.7  | 127.6 | 115.6  | 107.4  | 129.1             | 20.47   | 0.13  | 0.07  | 0.14  | 156.4  | 130.3  | 119.2  | 111.6  | 159.6            | 19.31  | 0.121 | 0.064  | 0.094  |
|             | 25.28  | 19.26 | 16.33  | 14.11  |                   |         |       |       |       | 26.2   | 20.45  | 17.66  | 15.48  |                  |        |       |        |        |
|             | ACOO O | 00000 | 0.0014 | 0.0012 |                   |         |       |       |       | 00000  | 0000   | 0      | 0.000  |                  |        |       |        |        |

## KAMINISTIQUIA RIVER, STATION No.02AB004 MANN-KENDALL Tau=-0.221, S.L.=0.0096



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

## NEEBING RIVER, STATION No.02AB008



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A.2

## KASHABOWIE RIVER, STATION No.02AB013 MANN-KENDALL Tau=-0.422, S.L.=0.009



EXCLUDED FROM THE STUDY



Cumming Cockhurn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A.4

### BLACK RIVER, STATION NO. 02BB002 MANN-KENDALL Tau=-0.348, S.L.=0.009



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

## MICHIPICOTEN RIVER, STATION No.02bd002 MANN-KENDALL Tau=0.421, S.L.=0.000



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

## MONTREAL RIVER, STATION No. 02BE002 MANN-KENDALL Tau=0.266, S.L.=0.000



**EXCLUDED FROM THE STUDY** 



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

REGIONALIZATION OF LOW FLOW

CHARACTERISTICS NORTHEASTERN

AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

FIGURE A.8

## NORBERG CREEK, STATION NO. 02BF006 MANN-KENDALL Tau=-0.455, S.L.=0.007





Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

## MISSISSAGI RIVER, STATION No.02CB001 MANN-KENDALL Tau=-0.345, S.L.=0.000



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

### SPANISH RIVER, STATION No.02CE001 MANN-KENDALL Tau=-0.254, S.L.=0.006





Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO



**EXCLUDED FROM THE STUDY** 



Consulting Engineers, Planners and Environmental Scientists

Cumming Cockburn

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A. 12

## JUNCTION RIVER, STATION No.02CF005



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

### WHITSON RIVER, STATION No.02CF008 MANN-KENDALL Tau=-0.369, S.L.=0.002



EXCLUDED FROM THE STUDY





CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

FIGURE A. 14

#### NOLIN CREEK, STATION No.02CF009 MANN-KENDALL Tau=-0.369, S.L.=0.003



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO



TESTING STATION



CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

**TREND ANALYSIS STATISTICS AND** LOCALLY WEIGHTED REGRESSION SMOOTH FIGURE A.

FIGURE A. 16

# WANAPITEI RIVER, STATION No.02DB005 MANN-KENDALL Tau=-0.424, S.L.=0.0096



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO



EXCLUDED FROM THE STUDY



Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

#### SOUTH RIVER, STATION No.02DD009 MANN-KENDALL Tau=-0.25, S.L.=0.005





Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A.20





Y DAY LOW FLOW (M-3/S)



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO



## EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A.22

# SEVERN RIVER, STATION No.=04CA002 MANN-KENDALL Tau=-0.337, S.L.=0.0012





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW

AND NORTHWESTERN ONTARIO

FIGURE A 23 TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

# WINDIGO RIVER, STATION No.04CB001





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

# WINISK RIVER, STATION No.04DC001 MANN-KENDALL Tau=-0.383, S.L.=0.009





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A.26

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A 27 TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH





AND NORTHWESTERN ONTARIO Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW

FREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

### ATTAWAPISKAT RIVER, STATION No.04FB001 MANN-KENDALL Tau=-0.301, S.L.=0.002





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A 29 TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH





AND NORTHWESTERN ONTARIO Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW





Y DAY LOW FLOW (M-3/S)

EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A 31 TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH





AND NORTHWESTERN ONTARIO Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

**TREND ANALYSIS STATISTICS AND** LOCALLY WEIGHTED REGRESSION SMOOTH CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW

### GROUNDHOG RIVER, STATION No.=04LD001 MANN-KENDALL Tau=0.221, S.L.=0.012



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

## MOOSE RIVER, STATION No.=04LG002





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

REGIONALIZATION OF LOW FLOW

CHARACTERISTICS NORTHEASTERN

AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

#### ABITIBI RIVER, STATION No.=04MC001 MANN-KENDALL Tau=0.452, S.L.=0.012



EXCLUDED FROM THE STUDY



Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

### FREDERICK H. RIVER, STATION No.=04MD002 MANN-KENDALL Tau=-0.239, S.L.=0.033



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

### MANN-KENDALL Tau=-0.269, S.L.=0.0073 ABITIBI RIVER, STATION No.=04ME004



TESTING STATION



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A.38

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTII

# NAMAKAN RIVER, STATION No. 05PA006





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE A 39 TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH

## SEINE RIVER, STATION No.05PB009





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW

FIGURE A.40

SMOOTH

AND NORTHWESTERN ONTARIO

#### TURTLE RIVER, STATION No.05PB014 MANN-KENDALL Tau=0.254, ST =0.009



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH FIGURE A.41

### STURGEON RIVER, STATION No.05QA004 MANN-KENDALL Tau=-0.274, S.L.=0.01



EXCLUDED FROM THE STUDY



Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

REGIONALIZATION OF LOW FLOW

CHARACTERISTICS NORTHEASTERN

AND NORTHWESTERN ONTARIO

**TREND ANALYSIS STATISTICS AND** LOCALLY WEIGHTED REGRESSION SMOOTH

## LAKE OF WOODS RIVER, STATION No.05PE006 MANN-KENDALL Tau=0.411, S.L.=0.000



EXCLUDED FROM THE STUDY



Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTII FIGURE A.43

#### MANN-KENDALL Tau=-0.652, S.L.=0.007 BERRY CREEK, STATION No.05PD026





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

REGIONALIZATION OF LOW FLOW

CHARACTERISTICS NORTHEASTERN

AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTII

### TROUTLAKE RIVER, STATION No.05QC003 MANN-KENDALL Tau=-0.448, S.L.=0.012



EXCLUDED FROM THE STUDY



Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN

AND NORTHWESTERN ONTARIO

TREND ANALYSIS STATISTICS AND LOCALLY WEIGHTED REGRESSION SMOOTH FIGURE A:46



#### APPENDIX B

#### LOW FLOW FREQUENCY ANALYSIS

#### B.1 Frequency Analysis - Weibull Distribution

The Weibull distribution has been widely adopted as the parent distribution of low flows on most Canadian rivers (Cumming Cockburn Limited, 1990). The present study has also confirmed that all of the stations, with one exception, were best fitted by the three-parameter Weibull distribution. Thus, only the W3 distribution is described here briefly.

The probability density function of the W3 distribution is:

$$\phi(x) = \frac{a}{u - e} \left[ \frac{x - e}{u - e} \right]^{a - 1} \exp \left[ -\left[ \frac{x - e}{u - e} \right]^{a} \right]$$
(B - 1)

Where e is the lower boundary parameter, u is the characteristic drought, and a is the shape parameter. The density function can be integrated to the following form:

$$F(X) = 1 - \exp\left[-\left[\frac{x-e}{u-e}\right]^{a}\right]$$
(B - 2)

where F(X) is the probability of nonexceedance of X and is the inverse of the return period of nonexceedance, y. X can be obtained by rearranging equation (3-2) to give:

$$X = e + (u-e) \left\{ -\ln[1-F(X)] \right\}^{\frac{1}{a}}$$
(B - 3)

#### B.2 Frequency Analysis - L-Moments

Moment based methods have long been established in statistics for estimating distribution parameters from available sample data sets. Conventional moments are not always satisfactory in two major respects. They do not always impart easily interpreted information about the shape of a distribution (especially Skew and Kurtosis), and estimates of parameters of distributions fitted by the moments are often less accurate than those obtained by other methods such as maximum likelihood.

An alternative to conventional moments is L-moments. These can be estimated by linear combinations of order statistics. Theoretically, L-moments are able to characterize a wider range of distributions than conventional moments. Practically, they are less subject to bias in

estimation, and they approximate their asymptotic normal distribution more closely. The main advantage of L-moments over conventional moments is that L-moments suffer less from the effects of sampling variability; they are more robust to outliers in the data.

If the order statistics of a random sample of size n that has been drawn from the distribution of a real valued random variable X with cumulative distribution function F(X) and quantile function X(F) are:

$$X_{1:n} \le X_{2:n} \le \dots \le X_{n:n}$$
 (B - 4)

then the L-moments for r = 1, 2, ... are:

$$\beta_r = r^{-1} \sum_{k=0}^{r-1} (-1)^k {r-1 \choose k} E X_{r-k:r}$$
(B - 5)

The expectation of an order statistic is:

$$EX_{j:r} = \frac{r!}{(j-1)!(r-j)!} \int X[F(X)]^{j-1} [1-F(X)]^{r-j} dF(X)$$
(B - 6)

The first L-moment is the mean of the distribution. The second is a measure of scale or dispersion. Standardizing higher moments r > 2:

$$\tau_r = \frac{\beta_r}{\beta_2} \tag{B-7}$$

and defining a function of L-moments analogous to the coefficients of variation (CV):

$$L - CV = \frac{\beta_2}{\beta_1} \tag{B-8}$$

$$L - Skew = \tau_3 = \frac{\beta_3}{\beta_2}$$
 (B - 9)

$$L - Kurtosis = \tau_4 = \frac{\beta_4}{\beta_2}$$
 (B - 10)

To fit the Weibull distribution, by L-moments the values of the three parameters, that is a, e and u, should be estimated. Hosking et al (1985) suggested the approximate solution for the shape parameter as:

$$k = \frac{1}{a} = 7.8590 \ C + 2.9554 \ C^2$$
 (B - 11)

where:

$$C = \frac{(2\beta_1 - \beta_0)}{(3\beta_2 - \beta_0)} - \frac{\log 2}{\log 3}$$

where  $\beta_0$ ,  $\beta_1$  and  $\beta_2$  are defined in equation (B-5). And let:

$$\psi = \frac{\beta_2 k}{(1-2^{-k}) \Gamma (1+k)}$$

where  $\beta_2$  is the second L-moments computed by equation (B - 5). Thus, the characteristic drought u is calculated by:

$$u = \beta_1 - \psi \{ 1 - \Gamma (1+k) \} / k$$
 (B - 12)

Finally, the lower boundary parameter e can be estimated using the above information:

$$e = u - \psi a \tag{B-13}$$

The low flow statistics calculated by the conventional moments (-1986) and by the L-moments (1990) are summarized in Table B.1. In general, the L-moments method gives conservative estimations of low flow statistics.

Table B.2 presents the summary of 1, 3, 7, 15, and 30 days duration low flow statistics and Table B.3 provides the a, e, and u parameters of Weibull III distribution for 1, 3, 7, 15, and 30 days duration low flow of the stations in Northern Ontario. The parameters may be applied to estimate any low flow statistics.

Figures B.1 to B.12 show the distribution patterns of L-moments ratios (i.e. L-CS vs. L-CV and L-CS vs. L-CK) for Northern Ontario and its Sub-regions.

This analysis appears to be consistent with Hosking (1989), who plotted the L-moments ratios for some common distributions by Monte Carlo simulation using 100, 000 simulated samples. Comparing Figures B.1 to B.12 with the L-moments ratios of Weibull III distribution (theoretical) confirms that the low flow records could be best fitted by Weibull III distribution.

|         |       | ,    |        |       | -      |             |        |       |       | 0     |       |       |       |       |       |          |          |      |      |       |
|---------|-------|------|--------|-------|--------|-------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|------|------|-------|
| Number  | Years | Code | 702    | 705   | 7010   | 7Q20        | Q Mean | 용     | S     | 3     | Š     | 702   | 705   | 70,10 | 7020  | lambda 1 | lambda 2 | 1-CV | r-cs | L_CK  |
| 02AA001 | 68    | က    | 2.105  | 1.292 | 0.909  | 0.626       | 2.12   | 0.92  | 0.44  | 29.0  | 4.52  | 2.07  | 1.27  | 6.0   | 0.62  | 2.12     | 0.5      | 0.24 | 0.1  | 0.21  |
| 02AB006 | 64    | 3    | 25.45  | 18.65 | 15.49  | 13.18       | 25.11  | 8.32  | 0.33  | 0.35  | 2.89  | 24.59 | 17.76 | 14.68 | 12.48 | 25.11    | 4.74     |      | 0.06 | 0.1   |
| 02AB009 | 34    | ၈    | 4.629  | 3.12  | 2.641  | 2.379       | 5.04   | 2.24  | 0.45  | 0.91  | 3.63  | 4.49  | 3.07  | 2.62  | 2.37  | 5.04     | 1.25     | 0.25 | 0.2  | 0.1   |
| 02AB010 | 89    | က    | 21.45  | 15.45 | 12.86  | 11.08       | 21.82  | 7.44  | 0.34  | 0.44  | 2.85  | 21.12 | 15.23 | 12.71 | 10.98 | 21.82    | 4.24     |      | 0.1  | 0.09  |
| 02AB014 | 19    | ဗ    | 0.071  | 0.032 | 0.018  | 0.01        | 0.08   | 0.05  | 0.63  | 1.08  | 6.21  | 0.075 | 0.03  | 0.016 | 0.004 | 0.08     |          |      |      | 0.28  |
| 02AB015 | 14    | ဇ    | 0.518  | 0.341 | 0.28   | 0.245       | 0.57   | 0.26  | 0.46  | 1.02  | 4.88  | 0.52  | 0.34  | 0.28  | 0.24  |          |          | 0.26 | 0.22 | 0.18  |
| 02AB016 | 14    | 6    | 0.056  | 0.021 | 0.007  | 0           | 90.0   | 0.05  | 0.77  | 0.27  | 2.98  | 0.056 | 0.05  | 0.007 | 0     |          |          |      | 0.08 | 0.0   |
| 02AB017 | =     | ဧ    | A/N    | A/A   | A/A    | <b>∀</b> /2 | 0.2    | 0.1   | 0.53  | 6.0   | 4.12  | 0.17  | 0.11  | 90.0  | 0.07  |          |          |      | 0.25 | 1.18  |
| 02AC001 | 50    | က    | 0.641  | 0.41  | 0.314  | 0.25        | 0.7    | 0.32  | 0.45  | 0.54  | 3.23  | 29.0  | 0.43  | 0.33  | 0.26  |          |          |      | L    | 0.09  |
| 02AD010 | 50    | 3    | 0.826  | 0.636 | 0.558  | 0.506       | 0.88   | 0.23  | 0.27  | -0.18 | 2.89  | 0.88  | 69.0  | 0.59  | 0.51  |          |          |      |      | 0.07  |
| 02AE001 | 17    | ဇ    | 0.758  | 0.543 | 0.417  | 0.308       | 0.92   | 0.55  | 9.0   | 2.78  | 13.87 | 0.81  | 0.48  | 0.37  | 0.31  |          |          |      |      | 0.51  |
| 02BA002 | 21    | 3    | 2.659  | 2.056 | 1.831  | 1.693       | 2.7    | 0.8   | 0.3   | 0.45  | 2.38  | 2.54  | 2.003 | 1.82  | 1.71  | 2.7      |          |      | 1    | 0.003 |
| 02BA003 | 19    | 9    | 2.778  | 2.344 | 2.178  | 2.074       | 2.922  | 0.839 | 0.287 | 1.204 | 5.809 | 2.79  | 2.2   | 1.97  | 1.83  |          |          |      |      | 0 212 |
| 02BB002 | 24    | 6    | 4.01   | 3.382 | 3.12   | 2.945       | 3.965  | 1.595 | 0.402 | 0.349 | 6.774 | 3.928 | 2.489 | 1.768 | 1.21  |          |          |      |      | 0.357 |
| 02BB003 | 21    | ၈    | 7.353  | 5.586 | 4.893  | 4.448       | 7.474  | 2.205 | 0.295 | 0.279 | 2.759 | 7.115 | 5.504 | 4.896 | 4.515 |          |          |      |      | 0.054 |
| 04CA002 | 14    | -    | Α/N    | A/A   | N/A    | A/A         | 102.6  | 46.21 | 0.45  | 2.43  | 12.74 | 95.44 | 63.48 | 51.48 | 44.03 |          |          |      | 1    | 0.289 |
| 04CA003 | 24    | -    | 0.635  | 0.425 | 0.315  | 0.228       | 0.64   | 0.26  | 0.41  | 0.46  | 4.28  | 0.62  | 0.4   | 0.3   | 0.23  | _        |          |      |      | 0.22  |
| 04CB001 | 24    | -    | 45.27  | 36 23 | 31.72  | 28.74       | 43.58  | 11.16 | 0.26  | -0.02 | 2.47  | 42.93 | 34.06 | 30.06 | 27.2  | 43.58    | 6.54     | 0.15 |      | 0 0   |
| 04CC001 | 19    | -    | 173.1  | 134.7 | 115.8  | 101.2       | 168.6  | 44.2  | 0.26  | 0.07  | 2.87  | 165.2 | 130.6 | 115.5 | 104.9 |          |          |      |      | 0.08  |
| 04CD002 | 50    | -    | 13.48  | 11.98 | 11.48  | 11.2        | 15.17  | 7.12  | 0.47  | 3.82  | 19.31 | 12.6  | 10.61 | 10.27 | 10.15 |          |          |      |      | 0.59  |
| 04CE002 | 23    | -    | 24.77  | 21.09 | 19.08  | 17.4        | 23.62  | 4.4   | 0.19  | -0.04 | 3.16  | 23.62 | 19.92 | 18.07 | 16.65 |          |          |      |      | 0.1   |
| 04DA001 | 52    | -    | 9.395  | 7.402 | 6.562  | 5.994       | 9.88   | 3.96  | 0.4   | 2.21  | 10.22 | 8.98  | 6.72  | 6.02  | 5.64  |          |          | i    |      | 0.28  |
| 04DB001 | 52    | -    | 16.75  | 13.76 | 12.62  | 11.91       | 17.73  | 5.86  | 0.33  | 2.05  | 8.93  | 16.26 | 12.81 | 11.76 | 11.21 |          |          | 1    |      | 0.33  |
| 04DC001 | 4     | -    | N/A    | N/A   | A/N    | A/N         | 106.1  | 28.07 | 0.55  | 4.36  | 24.2  | 86.23 | 64.89 | 60.45 | 58.67 |          |          |      |      | 0.533 |
| 04DC002 | 24    | -    | 2.468  | 1.721 | 1.449  | 1.283       | 2.7    | 1.07  | 0.4   | 0.5   | 2.97  | 2.62  | 1.77  | 4.1   | 1.13  |          |          |      |      | 0.09  |
| 04FA001 | 25    | -    | 16.79  | 13.67 | 12.06  | 10.77       | 16.91  | 5.58  | 0.33  | 2.08  | 10.36 | 16.05 | 12.14 | 10.67 | 9.75  |          |          |      |      | 0.31  |
| 04FA002 | 24    | -    | 3.046  | 2.031 | 2.173  | 1.998       | 3.07   | 0.73  | 0.24  | 0.71  | 3.94  | က     | 2.43  | 0.19  | 2.02  |          |          |      |      | 0.16  |
| 04FA003 | 52    | -    | 6.387  | 5.018 | 4.507  | 4.191       | 6.55   | 5.06  | 0.31  | 0.51  | 3.35  | 6.38  | 4.74  | 4.03  | 3.54  | 6.55     |          |      |      | 0.13  |
| 04FB001 | 24    | -    | 50.88  | 43.46 | 39.94  | 37.32       | 48.11  | 11.88 | 0.25  | -0.72 | 5.46  | 48.93 | 38.32 | 32.23 | 56.99 |          |          |      |      | 0.3   |
| 04FC001 | 23    | -    | 57.13  | 49.1  | 46.42  | 44.89       | 27.96  | 12.04 | 0.208 | 1.276 | 6.515 | 55.27 | 47.64 | 45.15 | 43.77 |          | _        |      |      | 0.141 |
| 04GA002 | 23    | 9    | Ψ/Z    | A/A   | A/A    | ĕ,          | 14.02  | 8.43  | 9.0   | -0.56 | 2.66  | 13.51 | 6.5   | 3.33  | 1.05  | Ì        |          | 0.34 |      | 0.01  |
| 04GB004 | 20    | ၉    | ĕ<br>Z | Α/N   | Y<br>V | ₹<br>Z      | 41.57  | 8.3   | 0.2   | -1.01 | 5.16  | 45.84 | 35.44 | 30.65 | 26.13 | 41.57    |          | 0.11 |      | 0.22  |
| 04GC002 | 16    | -    | 16.84  | 11.58 | 8.897  | 6.795       | 17.74  | 6.93  | 0.39  | -0.03 | 3.79  | 17.56 | 11.91 | 9.22  | 7.21  | 17.74    |          | 0.22 |      | 0.2   |
| 04GD001 | 22    | -    | 62.21  | 43.29 | 36.11  | 31.63       | 55.98  | 15.48 | 0.28  | -0.34 | 3.89  | 26.57 | 43.22 | 36.07 | 30.23 | 55.98    |          | 0.15 |      | 0.25  |
| 04JA002 | 37    | -    | 10.23  | 7.24  | 6.647  | 5.905       | 10.61  | 3.18  | 0.3   | 0.18  | 2.93  | 10.37 | 7.83  | 6.71  | 5.92  | 10.61    |          | 0.17 |      | 0.11  |
| 04JC002 | 14    | -    | 4.305  | 3.108 | 2.531  | 2.098       | 4.45   | 1.45  | 0.33  | 0.24  | 3.11  | 4.41  | 3.18  | 2.59  | 2.15  | 4.45     |          | 0.19 | !    | 0.15  |
| 0470003 | 37    | -    | 6.736  | 5.234 | 4.393  | 3.684       | 29.9   | 1.7   | 0.26  | -0.44 | 3.48  | 6.8   | 5.3   | 4.44  | 3.71  | 6.67     |          | 0.15 | 1    | 0.14  |
| 04JF001 | 22    | -    | Α/N    | A/A   | ΑX     | ₹<br>Z      | 13.53  | 6.22  | 0.46  | 2.97  | 15.58 | 12.18 | 8.59  | 7.44  | 6.8   | 13.53    |          | 0.2  |      | 0.45  |
| 05PA006 | 20    | 2    | 34.5   | 24.95 | 21.04  | 18.44       | 35.54  | 12.22 | 0.34  | 0.59  | 3.05  | 34.05 | 24.59 | 20.74 | 18.18 | 35.54    | 6.85     | 0.19 | 0.1  | 0.16  |
| 05PA012 | 64    | 2    | 10.15  | 995.9 | 4.897  | 3.679       | 10.35  | 4.17  | 0.4   | 0.35  | 3.54  | 10.15 | 6.63  | 4.98  | 3.77  | 10.35    |          | 0.23 | 90.0 | 0.18  |
| 05PB009 | 28    | 2    | A/N    | A/A   | A/A    | A/N         | 12.94  | 10.84 | 0.84  | 0.44  | 2.32  | 10.39 | 3.73  | 1.62  | 0.47  | 12.94    | 6.26     | 0.48 | 0.14 | -0.02 |

#### SUMMARY OF LOW FLOW FREQUENCY ANALYSIS TABLE B.1(a)

## NOBTHWESTERN BEGION

|                                         | in of Dogi | NO Just | Bearing CONVENTIONAL | NAM MOMENTS | (-1986) |        |       |       |       |       |       | L-MOM | MOMENTS (-1990) | (0661 |          |                     |       |       |       |
|-----------------------------------------|------------|---------|----------------------|-------------|---------|--------|-------|-------|-------|-------|-------|-------|-----------------|-------|----------|---------------------|-------|-------|-------|
| Station                                 |            | 202     | VEN IONAL            | 70.0        | 7020    | Q Mean | g     | 2     | cs    | Š     | 702   | 7Q5   | 7010            | 7Q20  | lambda 1 | lambda 1   lambda 2 | r-cv  | 1-cs  | L-CK  |
| 1 ~                                     | -          | -       | N/A                  | A N         | N/N     | 1.31   | 0.7   | 0.53  | 0.89  | 3.93  | 1.16  | 0.71  | 0.57            | 0.48  | 1.31     | 0.4                 | 0.3   | 0.24  | 0.1   |
| 15PC018                                 | 1 -        | 14      | 2                    | -           | 1       | 145.84 | 46.62 | 0.32  | 0.328 | 3.091 | 144   | 104.5 | 85.99           | 72.34 | 145.84   | 26.46               | 0.181 | 0.071 | 0.13  |
| 05PC019                                 | 30         | 1       |                      | 1           |         | 121.27 | 50.52 | 0.417 | 1.078 | 6.382 | 117.5 | 74.48 | 55.07           | 41.21 | 121.27   | 26.96               | 0.222 | 0.111 | 0.196 |
| 0500000                                 | -          | -       | _                    |             |         | 0.46   | 96.0  | 0.78  | 0.07  | 2.31  | 0.4   | 0.14  | 0.05            | 0     | 0.46     | 0.21                | 0.46  | i     | -0.13 |
| 050A001                                 | 60 2       | 24      | 9                    |             | 23.42   | 48.78  | 14.7  | 0.3   | -0.39 | 3.1   | 49.76 | 36.78 | 29.52           | 23.42 |          | 8.29                | 0.17  | -     | 0.16  |
| 050A002                                 | 70 20      | 32      |                      | į           | 8.817   | 21.15  | 7.16  | 0.34  | 0.04  | 3.4   | 21.22 | 14.86 | 11.58           | 9.01  | 21.15    | 4.02                | 0.19  | 0.01  | 0.17  |
| 100000                                  | 20         | 00      |                      | 2.561       | 1.44    | 8.82   | 6.45  | 0.73  | 1.6   | 7.38  | 2.5   | 3.27  | 1.83            | 0.99  | 8.82     | 3.35                | 0.38  | 0.19  | 0.25  |
| 0000000                                 | 27 2       | 9       |                      |             |         |        | 13.28 | 1.46  | 4.27  | 23.78 | 4.3   | 9.0   | 0.22            | 0.02  | 9.12     | 4.86                | 0.53  | 0.49  | 0.47  |
| 900000                                  | 28 2       | -       |                      |             |         |        | 8.83  | 0.45  | 0.04  | 2.37  | 19.11 | 11.92 | 19.8            | 6.21  | 19.51    |                     | 0.26  | 0.01  | 90.0  |
| 000000000000000000000000000000000000000 | +          | -       |                      |             |         |        | 4.5   | 0.91  | 2.08  | 8.65  | 3.65  | 1.36  | 0.75            | 0.46  | 4.96     | 2.24                | 0.45  | 0.4   | 0.29  |
| S C C C C C C C C C C C C C C C C C C C | +          | +       | 1                    |             | 1       |        | 45.82 | 0.519 | 0.3   | 2.82  | 85.43 | 47.71 | 30.65           | 18.45 | 88.25    | 26.021              | 0.295 | 0.056 | 0.116 |
| OSCIEDO?                                | -          | -       | z                    | _           |         | 150.86 | 78.84 | 0.52  | 0.7   | 5.13  | 144.5 | 80.1  | 51.6            | 31.68 | 150.86   | 43.45               | 0.29  | 90.0  | 0.17  |
| OFOFOR                                  | 21         | 4       | 80                   | 22          | 2.223   | 4.39   | 2.03  | 0.46  | 0.38  | 2.57  | 3.71  | 2.43  | 2.08            | 1.9   | 4.39     | 1.18                | 0.27  | 0.1   | 0     |
| OFOFOOG                                 | 3 6        |         |                      | }           |         | 3.03   | 1.57  | 0.52  | 0.43  | 2.76  | 2.71  | 1.6   | 1.21            | 0.97  | 3.03     | 0.9                 | 0.3   | 0.1   | 0.09  |
| 000000                                  |            | Ž       | 2                    |             | A/N     | 8 13   | 1.87  | 0.23  | -0.35 | 2.75  | 8.26  | 6.58  | 5.64            | 4.85  | 8.13     | 1.09                | 0.13  | -0.11 | -0.06 |

## SUMMARY OF LOW FLOW FREQUENCY ANALYSIS NORTHEASTERN REGION

| Station | jo#   | Region         | Region CONVENTI | TIONAL M | OMENTS | (-1986) |       |       |       |       |       | L-MOM | ENTS (- | (0661 |       |          |          |       | -      |       |
|---------|-------|----------------|-----------------|----------|--------|---------|-------|-------|-------|-------|-------|-------|---------|-------|-------|----------|----------|-------|--------|-------|
| Number  | Years | Code           | 702             | 705      | 7010   | 7020    | o     | ę     | S     | CS    | Š     | 702   | 705     | 7010  | 7020  | lambda 1 | lambda 2 | L-CV  | r-cs   | L-CK  |
| 028F001 | 24    | ၈              | 3.696           | 2.588    | 2.037  | 1.612   | 3.78  | 1.94  | 0.52  | 2     | 10.06 | 3.3   | 2.17    | 1.83  | 1.64  |          | 0.98     | 0.26  | 0.19   | 0.18  |
| 02BF002 | 24    | ဇ              | 2.768           | 1.798    | 1289   | 0.88    | 2.86  | 1.79  | 0.63  | 2.29  | 11.34 | 2.45  | 1.41    | 1.09  | 0.91  |          | 0.88     | 0.31  | 0.26   | 0.25  |
| 02BF004 | 12    | 3              | N/A             | A/A      | N/A    | N/A     | 0.07  | 0.07  | 1.02  | 2.92  | 13.31 | 0.04  | 0.23    | 0.05  | 0.05  |          | 0.03     | 0.44  | 0.58   | 0.51  |
| 02BF005 | Ξ     | က              | N/A             | N/A      | A/A    | A/A     | 0.05  | 0.05  | 1.03  | 0.44  | 2.46  | 0.01  | 0.003   | 0     | 0     |          | 0.01     | 0.59  | 0.18   | 0.18  |
| 0285006 | 12    | 0              | N/A             | N/A      | A/A    | A/A     | 0.02  | 0.03  | 1.35  | 1.77  | 7.5   | 0.01  | 0.002   | 0     | 0     |          | 0.01     | 0.7   | 0.46   | 0.16  |
| 02CA002 | 20    | ၈              | 0.07            | 0.037    | 0.024  | 0.017   | 0.08  | 90.0  | 92.0  | 0.79  | 3.15  | 0.07  | 0.03    | 0.05  | 0.01  |          | 0.03     | 0.43  | 0.23   | 0.04  |
| 02CB003 | =     | ဗ              | N/A             | N/A      | A/A    | A/N     | 3.18  | 1.04  | 0.33  | 0.61  | 4.63  | 3.1   | 2.29    | 1.94  | 1.69  |          | 0.57     | 0.18  | 0.21   | 0.28  |
| 02CC007 | 14    | ဇ              | N/A             | N/A      | A/A    | A/N     | 18.82 | 11.22 | 9.0   | 0.05  | 2.77  | 18.48 | 9.25    | 4.87  | 1.63  |          | 6.41     | 0.34  | -0.05  | 0.05  |
| 02CC008 | 40    | 8              | 40.34           | 29.28    | 22.56  | 16.52   | 37.55 | 11.37 | 0.3   | -0.67 | 3.44  | 38.88 | 28.83   | 22.72 | 17.23 |          | 6.34     | 0.17  | -0.16  | 0.17  |
| 02CC009 | 31    | 3              | N/A             | N/A      | N/A    | N/A     | 33.04 | 16.96 | 0.51  | 1.16  | 8.42  | 31.43 | 17.55   | 11.51 | 7.32  |          | 8.64     | 0.26  | -0.02  | 0.25  |
| 02CC010 | =     | 6              | N/A             | A/A      | N/A    | A/N     | 4.08  | 1.2   | 0.29  | -0.19 | 3.14  | 4.09  | 3.12    | 2.63  | 2.25  |          | 0.72     | 0.18  | -0.06  | 0.03  |
| 02CD001 | 25    | 6              | 3.045           | 1.574    | 1.022  | 0.68    | 3.06  | 1.99  | 0.65  | 0.77  | 3.62  | 2.6   | 1.28    | 0.84  | 9.0   |          | 1.13     | 0.37  | 0.16   | 0.13  |
| 02CD002 | 4     | е.             | 0.129           | 0.033    | 0.005  | 0       | 0.12  | 0.16  | 1.37  | 1.8   | 7.09  | 90.0  | 0.011   | 0.002 | 0     |          | 0.08     | 0.69  | 0.49   | 0.2   |
| 02CD003 | 4     | 6              | 1.147           | 0.645    | 0.347  | 0.084   | 0.83  | 0.59  | 0.71  | 0.19  | 2.7   | 0.75  | 0.3     | 0.12  | 0.01  |          | 0.35     | 0.42  | 0.05   | -0.00 |
| 02CD004 | 55    | 6              | 2.39            | 1.548    | 1.185  | 0.934   | 1.885 | 1.291 | 0.685 | 0.488 | 2.631 | 1.59  | 0.715   | 0.424 | 0.26  |          | 0.746    | 0.396 | 0.134  | 0.052 |
| 02CD006 | 23    | က              | 0.719           | 0.498    | 0.4    | 0.331   | 0.652 | 0.291 | 0.446 | 0.512 | 2.943 | 609.0 | 0.396   | 0.313 | 0.261 |          | 0.168    | 0.258 | 0.133  | 0.09  |
| 02CE001 | 44    | 6              | 45.84           | 35.13    | 30.01  | 26.19   | 43.95 | 13.57 | 0.31  | 0.14  | 2.91  | 43.56 | 32.14   | 26.67 | 2.26  |          | 7.73     | 0.18  | 0.05   | 0.13  |
| 02CE002 | 9/    | 6              | 4.004           | 3,185    | 2.833  | 2.591   | 4.08  | -     | 0.25  | 0.62  | 3.22  | 3.99  | 3.19    | 2.84  | 2.6   |          | 0.56     | 0.14  | 0.13   | 0.13  |
| 02CF007 | 31    | 6              | 0.49            | 0.404    | 0.376  | 0.361   | 0.523 | 0.15  | 0.286 | 0.562 | 2.762 | 0.51  | 0.392   | 0.341 | 0.307 |          | 0.085    | 0.162 | 0.17   | 0.082 |
| 02CF010 | 15    | 6              | 1.778           | 1.288    | 1.138  | 1.058   | 1.84  | 0.8   | 0.44  | 0.98  | 4.95  | 1.71  | 1.15    | 0.95  | 0.82  |          | 0.45     | 0.24  | 0.19   | 0.14  |
| 02CF011 | 20    | ල <sub> </sub> | 2.396           | 1.918    | 1.753  | 1.657   | 2.414 | 0.779 | 0.323 | 0.321 | 3.038 | 2.632 | 1.739   | 1,46  | 1.263 |          | 0.448    | 0.186 | 0.101  | 0.116 |
| 02CF012 | 4     | 6              | N/A             | N/A      | N/A    | A/A     | 92'0  | 0.21  | 0.28  | 69.0- | 4.38  | 0.79  | 0.61    | 0.49  | 0.39  | 0.76     | 0.12     | 0.16  | -0.12  | 0.24  |
| 02CF013 | 0     | 6              | N/A             | N/A      | N/A    | N/A     | 0.04  | 0.03  | 96.0  | Ξ.    | 4.34  | 0.03  | 0.01    | 0.001 | 0     |          | 0.05     | 0.53  | 0.36   | 0.15  |
| 0208007 | =     | 6              | A/A             | N/A      | N/A    | N/A     | 0.13  | 0.07  | 0.53  | -0.46 | 3.38  | 0.14  | 0.08    | 0.04  | 0.01  |          | 0.04     | 0.31  | -0.13  | 0.1   |
| 02DC003 | 20    | 8              | 30.41           | 20.33    | 15.6   | 12.11   | 30.32 | 12.38 | 0.41  | 0.07  | 2.15  | 29.49 | 19.53   | 12.1  | 11.97 |          | 7.18     | 0.24  | 0.05   | 0.04  |
| 02DC008 | 52    | 9              | 0.503           | 90.0     | 0.014  | 0.003   | 1.73  | 3.43  | 1.98  | 2.12  | 6.52  | 0.51  | 90.0    | 0.01  | 0.003 |          | 1.43     | 0.83  | 0.67   | 0.34  |
| 0200005 | 47    | 0              | 2.15            | 1.291    | 0.961  | 0.753   | 2.33  | 1.15  | 0.5   | 0.38  | 2.87  | 2.15  | 1.29    | 96.0  | 0.75  |          | 99.0     | 0.28  | 90.0   | 0.08  |
| 02DD008 | 27    | က၊             | 0.121           | 0.075    | 0.053  | 0.036   | 0.12  | 90.0  | 0.46  | -0.16 | 2.46  | 0.13  | 0.08    | 0.05  | 0.03  |          | 0.03     | 0.26  | -0.04  | 0.02  |
| 0200009 | 32    | 3              | 1.677           | 1.099    | 0.808  | 0.582   | 1.57  | 0.68  | 0.43  | 0.2   | 2.71  | 1.54  | 0.99    | 0.73  | 0.54  |          | 0.39     | 0.25  | 0.05   | 0.09  |
| 0200010 | 30    | 0              | 43.15           | 31.04    | 27.18  | 25.05   | 47.06 | 18.48 | 0.39  | 0.89  | 3.29  | 42.89 | 31.24   | 27.46 | 25.36 |          | 10.36    | 0.22  | 0.23   | 0.1   |
| 02DD013 | 17    | e              | 0.062           | 0.047    | 0.042  | 0.04    | 90.0  | 0.03  | 0.51  | 0.45  | 4.36  | 90.0  | 0.03    | 0.02  | 0.01  |          | 0.05     | 0.29  | 0.05   | 0.23  |
| 0200015 | 17    | က              | 0.136           | 0.078    | 90.0   | 0.051   | 0.19  | 0.22  | 1.16  | 3.19  | 15.24 | 0.11  | 0.05    | 0.042 | 0.039 |          | 60.0     | 0.49  | 0.51   | 0.41  |
| 02EA005 | 9/    | 0              | 0.749           | 0.479    | 0.39   | 0.34    | 0.8   | 0.43  | 0.54  | 1.23  | 4.79  | 0.69  | 0.43    | 0.35  | 0.31  |          | 0.23     | 0.29  | 23     | 0.14  |
| 02EA006 | 9/    | က              | 1.95            | 1.196    | 0.85   | 9.0     | 1.97  | 0.97  | 0.49  | 0.54  | 4.15  | 1.89  | 1.09    | 0.74  | 0.5   |          | 0.54     | 0.27  | 90.0   | 0.18  |
| 02EA010 | 23    | 6              | 0.4             | 0.299    | 0.27   | 0.255   | 0.41  | 0.19  | 0.47  | 1.07  | 3.59  | 0.36  | 0.25    | 0.21  | 0.19  |          | 0.1      | 0.26  | 0.29   | 0.14  |
| 02EA011 | 80    | en .           | N/A             | N/A      | A/A    | N/A     | 6.312 | 4.438 | 0.703 | 1.558 | 5.592 | 5.125 | 2.658   | 1.946 | 1,583 |          | 2.318    | 0.367 | 96.0   | 0.237 |
| 02EA013 | =     | က <sub>1</sub> | 0.014           | 0.005    | 0      | 0       | 0.03  | 0.04  | 1.47  | 1.57  | 5.4   | 0.01  | 0.002   | 0     | 0     |          | 0.05     | 0.74  | 0.51   | 0.16  |
| 02JC008 | 23    | 6              | 3.808           | 2.964    | 2.622  | 2.398   | 3.94  | =     | 0.28  | 0.44  | 3.81  | 3.82  | 2.97    | 2.61  | 2.38  |          | 0.62     | 0.16  | 90.0   | 0.2   |
| 0230010 | 19    | 9              | A/A             | N/A      | N/A    | A/A     | 14.51 | 7.46  | 0.51  | -0.59 | 2.84  | 14.63 | 8.05    | 4.66  | 1.98  |          | 4.29     | 0.3   | -0.16  | 70.0  |
| 02JE012 | 6     | 0              | A/A             | A/A      | N/A    | N/A     | 35.74 | 82.6  | 0.231 | 0.037 | 3.072 | 356.5 | 286.2   | 251.5 | 225.1 |          | 47.32    | 0.132 | -0.007 | 0.122 |
| 02JE018 | 12    | 0              | 0.37            | 0.11     | 0.003  | 0       | 0.05  | 0.05  | 0.88  | 1.27  | 4.88  | 0.04  | 0.01    | 0.003 | 0     |          | 0.03     | 0 48  | 0.35   | 0.19  |

|              |                                        |                     |                                     | L-CK            | 96.0    | 0.16     | 0.27    | 0.01    | 0.19    | 90.0     | 0.16    | 0.16    | 0.07    | 0.18    | 0.126   | 0.54    |
|--------------|----------------------------------------|---------------------|-------------------------------------|-----------------|---------|----------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|
|              |                                        |                     | !                                   | 1-CS 1          | 0.32    | 0.45     | 0.42    | 0.08    | -0.02   | -0.02    | 0.01    | 0.09    | -0.04   | 0.07    | 0.08    | 0.55    |
|              |                                        |                     |                                     | L-CV            | 0.24    | 0.35     | 0.39    | 0.16    | 0.2     | 0.15     | 0.2     | 0.16    | 0.2     | 0.09    | 0.1     | 0.35    |
|              |                                        |                     |                                     | lambda 2        | 26.0    | 0.68     | 0.56    | 4.5     | 2.41    | 24.66    | 2.31    | 3.74    | 0.12    | 14.01   | 17.62   | 3.18    |
|              |                                        |                     |                                     | 7Q20 lambda 1   | 3.99    | 1.95     | 1,45    | 27.67   | 12.17   | 164.98   | 11.31   | . 22.95 | 0.58    | 142.71  | 174.78  | 9.12    |
|              |                                        |                     |                                     | 7Q20            | 1.82    | 0.88     | 0.41    | 17.73   | 4.85    | 95.99    | 4.86    | 13.45   | 0.29    | 1.86    | 130.1   | 2.81    |
|              | <u>S</u>                               |                     | (0661                               | 7010            | 2.05    | 0.92     | 0.47    | 18.77   | 6.37    | =        | 6.07    | 15.03   | 0.34    | 108.9   | 137.3   | 2.97    |
|              | NALYS                                  |                     | L-MOMENTS (-1990)                   | 70 <sub>5</sub> | 2.46    | 1.01     | 0.59    | 20.57   | 8.31    | 129.9    | 7.7     | 17.3    | 0.42    | 121.6   | 147.7   | 3.44    |
|              | ACY A                                  | N<br>N              | L-MOM                               | 702             | 3.64    | 1.09     | 1.09    | 25.91   | 12.15   | 1.991    | 11.15   | 22.45   | 0.58    | 144.3   | 172     | 6.03    |
| (q)          | EQUE                                   | HEG!(               |                                     | Š               | 4.57    | 5.6      | 6.61    | 2.59    | 3.9     | 5.06     | 3.33    | 3.49    | 2.97    | 3.91    | 3.11    | 21.4    |
| TABLE B.1(b) | OW FR                                  | NORTHEASTERN REGION |                                     | cs              | 1.22    | 1.56     | 1.87    | 0.3     | 0.03    | -0.13    | 0.16    | 0.4     | -0.14   | -0.44   | 0.41    | 4.02    |
| TABI         | W FL                                   | THEAS               |                                     | S               |         | 0.69     | 0.78    | 0.28    | 98.0    | 0.26     | 0.36    | 0.28    | 0.34    | 0.18    | 0.18    | 0.95    |
|              | OFLC                                   | NOR                 |                                     | g               | 1.82    | 1.34     | 1.13    | 7.72    | 4.36    | 42.42    | 4.1     | 6.49    | 0.19    | 215.22  | 30.76   | 8.65    |
|              | SUMMARY OF LOW FLOW FREQUENCY ANALYSIS |                     |                                     | o               | 3.99    | 1.95     | 1.45    | 27.67   | 12.17   | 164.98   | 11.31   | 25.95   | 0.58    | 142.71  | 174.78  | 9.12    |
|              | SUN                                    |                     | - 1986)                             | 7020            | 1.791   | 0.859    | 0.401   | ¥/N     | 4.057   | 95.04    | 4.734   | 12.78   | 0.25    | 96.88   | A/A     | 3.302   |
|              |                                        |                     | OMENTS (                            | 7010            | 2.03    | 0.907    | 0.483   | ĕ,×     | 5.75    | 10.93    | 5.947   | 14.24   | 0.292   | 107.8   | A/N     | 3.761   |
|              |                                        |                     | Region CONVENTIONAL MOMENTS (-1986) | 70,             |         | 1.021    | 0.641   | Α,<br>N | 7.884   | 127.7    | 2.603   | 16.37   | 0.355   | 120.7   | ₹<br>Z  | 4.549   |
|              |                                        |                     | CONVENT                             | 50,             | 3.742   | 1.527    | 1.181   | A/N     | 12      | 163.9    | 11.14   | 21.4    | 0.502   | 143.7   | ₹<br>X  | 6.832   |
|              |                                        |                     |                                     |                 | 6       | 6        | 6       | -       | -       | -        | -       | -       | -       | -       | -       | -       |
|              |                                        |                     | * of                                | Years           | 19      | 20       | 21      | 22      | 73      | 24       | 71      | 19      | 4       | 29      | 32      | 25      |
|              |                                        |                     | Station                             | Number          | 02JE019 | 02.JE020 | 04KA001 | 04LA002 | 04LF001 | 041,G002 | 041,001 | 04LM001 | 04MD004 | 04ME002 | 04ME003 | 04MF001 |

#### TABLE B.2(a) SUMMARY OF 1, 3, 7, 15 & 30 DAY LOW FLOW NORTHWESTERN REGION

|       | 620 0210<br>960 7.150<br>970 1.570<br>810 5.390<br>000 0.000 |        | 2 690<br>2 690<br>12.030                  | -                       | 21.200                                                                          | 5.360                                                                                                    | 20 100<br>0 610 0 200<br>7 7 7 10 5 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 20 100 2<br>0 870 0 610 0 2000 2 000<br>9 480 1 710 5 360 21 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.610 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|--------------------------------------------------------------|--------|-------------------------------------------|-------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 24 590<br>24 590<br>4 4 90<br>21 120<br>0 080                | 0210   |                                           | 0.890 0.620 0.210       | 1 260 0 890 0 620 0 210<br>14 800 11 960 9 860 7 150<br>2 890 2 320 1 970 1 570 | 0.200 2.030 1.260 0.890 0.620 0.210<br>5.300 21.200 14.800 11.960 9.600 7.150<br>1.400 2.300 2.300 1.500 | 0610 0200 2 050 1260 080 0620 0210 17710 5360 2130 14800 14800 11960 9 960 7 159 159 1770 14800 11960 9 960 7 159 159 1770 14800 14800 11960 9 960 7 159 159 1770 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800 14800  | 0610 0200 2 050 1260 0890 0620 0210<br>7710 5500 21,500 14,600 11,960 9,600 7,150<br>1 700 1400 2 640 2 330 1970 1570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.870 0.610 0.200 2.030 1.260 0.890 0.620 0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -     | 24 590<br>4 490<br>21 120<br>0 080                           | 7.150  | 9 960 7 150<br>1 970 1 570<br>7 810 5 390 |                         | 2 690 2 320 1 970 1 570                                                         | 5.360 21.200 14.800 11.960 9.960 7.150                                                                   | 7.710 5.360 21.200 14.800 11.960 9.960 7.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.710 5.360 21.200 14.800 11.960 9.960 7.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 21.120                                                       |        | 7.810 5.390                               | 11 960 9 960 7.150      | 2 690 2 320 1 970 1 570                                                         | 1 470 1 0201 0 9800 0 1 570                                                                              | 1 200 1 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1790 1400 4430 2890 2320 1970 1570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 480 7.710 5.360 21.200 14 800 11 960 9 960 7.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 21.120                                                       | 1 570  | 7.810 5.390                               | 2 320 1 970 1 570       |                                                                                 | 0.60 4.80 2.000 2.000 1.000                                                                              | 016 018 026 3 060 3 084 1 087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0001 0003 0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 130 1 790 1 400 4 430 2 690 2 320 1 970 1 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _     | 0000                                                         | 5 390  |                                           | 9.550 7.810 5.390       | 12.030 9.550 7.810 5.390                                                        | 0.570 17.650 12.030 9.550 7.810 5.390                                                                    | 3 710 0 570 17.650 12.030 9.550 7.810 5.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 710 0 570 17.650 12.030 9.550 7.810 5.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 700 3 710 0 570 17.650 12.000 9.550 7.810 5 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _     |                                                              | 0000   | 0000 0000                                 | 0000 0000 0000          | 0000 0000 0000 0000                                                             | 0000 0000 0000 0000 0000                                                                                 | 0000 0000 0100 0000 0100 0000 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000 0000 0100 0000 0100 0000 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000 0000 0100 0000 0100 0000 0100 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -     | 0.530                                                        | 0 200  | 0 250 0 200                               | 0 290 0 250 0 200       | 0.350 0.290 0.250 0.200                                                         | 0.240 0.530 0.350 0.290 0.250 0.200                                                                      | 0.260 0.240 0.530 0.350 0.290 0.250 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.260 0.240 0.530 0.350 0.290 0.250 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0290 0290 0240 0530 0.350 0290 0250 0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0     | 0 0                                                          | 0000   | 0000 0000                                 | 0000 0000 9000          | 00017 0000 0000 0000                                                            | 0000 0000 00017 0000 0000 0000                                                                           | 0000 0000 0001 0011 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000 0000 0001 0011 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005 0.000 0.000 0.053 0.017 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0     | 0 87                                                         | 0 185  | 0.262 0.185                               | 0331 0262 0185          | 0.431 0.331 0.262 0.185                                                         | 0.150 0.857 0.431 0.331 0.262 0.185                                                                      | 0.260 0.150 0.657 0.431 0.331 0.262 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.260 0.150 0.657 0.431 0.331 0.262 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.330 0.260 0.150 0.857 0.431 0.331 0.262 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0     | 0.88                                                         | 0 391  | 0.507 0.391                               | 0.580 0.507 0.391       | 0 674 0 580 0 507 0 391                                                         | 0.402 0.861 0.674 0.560 0.507 0.391                                                                      | 0.503 0.402 0.861 0.674 0.580 0.507 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.503 0.402 0.861 0.674 0.580 0.507 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.569 0.503 0.402 0.861 0.674 0.500 0.507 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0     | 0.81                                                         | 0.230  | 0 300 0 530                               | 0.300 0.300 0.230       | 0 470 0 360 0 300 0 230                                                         | 0230 0790 0470 0360 0300 0230                                                                            | 0.300 0.230 0.790 0.470 0.360 0.300 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.300 0.230 0.790 0.470 0.360 0.300 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.360 0.300 0.230 0.790 0.470 0.360 0.300 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19    | 255                                                          | 1540   | 1.670 1.540                               | 1 780 1.670 1.540       | 1970 1 780 1.670 1.540                                                          | 1520 2520 1970 1780 1670 1540                                                                            | 1660 1530 2530 1970 1780 1,670 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1660 1530 2530 1970 1780 1,670 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1770 1660 1530 2520 1970 1780 1.670 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9     | 38                                                           | 0 280  | 1220 0280                                 | 1 780 1 220 0 280       | 2500 1780 1220 0280                                                             | 0.270 3.910 2.500 1.780 1.220 0.280                                                                      | 1220 0270 3410 2500 1780 1220 0280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1220 0270 3410 2500 1780 1220 0280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1200 1220 0210 2500 1780 1220 0280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18    | 7                                                            | 4 060  | 4420 4 060                                | 4 700 4 420 4 060       | 5 320 4 700 4 420 4 060                                                         | 0 780 A 040 A 700 A 4000                                                                                 | 2 000 4 000 4 700 4 420 4 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 000 4 000 4 700 4 420 4 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A 560 2 580 6 050 5 320 A 700 A 420 4 060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 210   | 05.44                                                        | 35 350 | 44 010 35 330                             | 000 36 000 44 000 36 35 | 025 25 010 44 050 25 050 58                                                     | 000 20 000 00 00 00 00 00 00 00 00 00 00                                                                 | 0505 50 010 44 050 51 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0505 50 010 44 050 51 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000 20 000 44 000 13 000 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2   5 | 0                                                            | 0110   | 0 220 0 110                               | 0300 0000               | 0200 0200 0110                                                                  | 0110 0000 0000 0000 0000                                                                                 | 0110 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0110 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0110 0000 0000 0000 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1     | 40.00                                                        | 2 2    | 02 500                                    | 0110 0270 0270          | 030 00 00 00 00 00 00 00                                                        | 0110 0220 0230 0230 0330                                                                                 | 0110 0220 0820 0800 0010 0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0110 0220 0820 0800 0010 0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 031 03 037 0 0300 0000 0000 0000 0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -     | 46.00                                                        | 00000  | 000 000 000 000                           | 061 62 061 122 068 62   | 20 000 000 000 000 000 000 000 000 000                                          | 23 300 42 040 33 050 24 050 50 50 50 50 50 50 50 50 50 50 50 50                                          | 27.100 23.300 42.040 33.630 24.500 27.130 23.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.100 23.300 42.040 33.630 24.500 27.130 23.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 001 62 001 12 000 62 000 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| +     | 200                                                          | 250    | 104 000 100 300                           | 115 000 104 000 100 501 | 122 900 115 000 104 600 80 320                                                  | 90.240 164.500 129.900 115.000 104.600 190.300                                                           | 104 400 90 240 164 500 125 900 115 000 104 600 80 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104 400 90 240 164 500 125 900 115 000 104 600 80 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114 800 104 400 90 240 104 300 175 900 115 000 104 800 80 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -     | 12 600                                                       | 9 970  | 10.040 9.970                              | 10 150 10.040 9 970     | 10 500 10 160 10 040 9 970                                                      | 9 850 12 470 10 500 10 160 10 040 9 970                                                                  | 9 9 10 9 8 50 12 4 70 10 500 10 160 10 040 9 9 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 9 10 9 8 50 12 4 70 10 500 10 160 10 040 9 9 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 020 9 910 9 850 12 470 10 500 10 160 10 040 9 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -     | 23 620                                                       | 14.410 | 16.590 14.410                             | 17 960 16 590 14 410    | 19 770 17 960 16 590 14 410                                                     | 14 470 23 420 19 770 17 960 16 590 14 410                                                                | 18 540 14 470 23 420 19 770 17 960 16 590 14 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 540 14 470 23 420 19 770 17 960 16 590 14 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 680 16 540 14 470 23 420 19 770 17 960 16 590 14 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _     | 9 990                                                        | 5.160  | 5 550 5.160                               | 5 940 5 550 5.160       | 6 860 5 840 5 550 5 160                                                         | 5 160 8 920 8 960 5 940 5 550 5.160                                                                      | 5 540 5 160 8 920 8 860 5 940 5 550 5 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 540 5 160 8 920 8 860 5 940 5 550 5 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 930 5 540 5 160 8 920 8 860 5 940 5 550 5 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _     | 88 230                                                       | 57 030 | 58 290 57 000                             | 60 200 58 290 57 000    | 64 870 60 200 58 290 57 000                                                     | 57.000 86 480 64 870 60 200 58 290 57 000                                                                | 58 300 57 000 86 480 64 870 60 200 58 290 57 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58 300 57 000 86 480 64 870 60 200 58 290 57 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 270 56 300 57.000 86 480 64 870 60 200 58 290 57 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 2 620                                                        | 0.770  | 1.130 0.770                               | 1,380 1,130 0,770       | 0.770 0.110 0.770                                                               | 0770 2 800 1,750 1,380 1,130 0,770                                                                       | 0.770 0.770 2.600 1.750 1.380 1.130 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.770 0.770 2.600 1.750 1.380 1.130 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,370 1,120 0,770 2,600 1,750 1,380 1,130 0,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _     | 16 050                                                       | 9 660  | 0926                                      | 10 860 9 760 8 660      | 12.150 10.880 9.760 8.660                                                       | 8 650 15 980 12 150 10 880 9 760 8 660                                                                   | 9 760 8 650 15 980 12 150 10 880 9 760 8 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 760 8 650 15 980 12 150 10 880 9 760 8 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 680 9 760 8 650 15 980 12 150 10 880 9 760 8 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _     | 3000                                                         | 1.800  | 2 020 1.800                               | 2 160 2 020 1.800       | 2 420 2 160 2 020 1.800                                                         | 1,800 2,980 2,420 2,180 2,020 1,800                                                                      | 2010 1,800 2,980 2,420 2,180 2,020 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2010 1,800 2,980 2,420 2,180 2,020 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 170 2 010 1,800 2,980 2,420 2,180 2,020 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 48.930                                                       | 16 240 | 20 710 16 240                             | 24 830 20 710 16 240    | 31 050 24 830 20 710 16 240                                                     | 18 190 48 490 31 050 24 830 20 710 18 240                                                                | 20.740 18 190 48 490 31 050 24 830 20 710 18 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.740 18 190 48 490 31 050 24 830 20 710 18 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 690 20 740 18 190 48 490 31 050 24 830 20 710 18 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 55 27                                                        | 42.300 | 43 670 42 300                             | 45.040 43.670 42.300    | 47 490 45 040 43 670 42 300                                                     | 42.300 55.040 47.490 45.040 43.670 42.300                                                                | 43 870 42 300 55 040 47 490 45 040 43 670 42 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43 870 42 300 55 040 47 490 45 040 43 670 42 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 020 43 670 42 300 55 040 47 490 45 040 43 670 42 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6     | 17.45                                                        | 8 410  | 9.050                                     | 9.650 9.060 8.410       | 11 460 9 650 9 060 8 410                                                        | 8 390 17 340 11 460 9 650 9 060 8 410                                                                    | 0.040 8.300 17.340 11.460 9.650 9.060 8.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.040 8.300 17.340 11.460 9.650 9.060 8.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 830 0 0A0 17 380 11 460 9 650 9 060 8 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9     | 42.64                                                        | 15.050 | 28.080 15.950                             | 20.810 26.080 15.950    | 35 360 30 810 26 080 15 950                                                     | 15 040 45 620 35 360 30 00 05 040 15 950                                                                 | 35 000 35 000 36 000 36 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 | 35 000 35 000 36 000 36 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 000 15 | 25 CA CA CA CA CA CA CA CA CA CA CA CA CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9     | 17.8                                                         | 4 080  | 7 410                                     | 7 410                   | 7 410                                                                           | 7 410                                                                                                    | 000 4 016 0 016 0 016 0 000 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000 4 016 0 016 0 016 0 000 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000 0 000 0 000 0 000 0 000 0 000 0 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 8   | 7 93                                                         | 02.0   | 076.30                                    | 0400 00000              | 070 00 000 000 000 00                                                           | 070 00 00 00 00 00 00 00 00 00 00 00 00                                                                  | 078 7 03000 010 40 000 01 000 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 078 7 03000 010 40 000 01 000 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 078 7 03000 010 40 000 01 000 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3 8   | 3                                                            | 2000   | 2000                                      | 2000                    | 000000000000000000000000000000000000000                                         | 2000 SO SO SO SO SO SO SO SO SO SO SO SO SO                                                              | 010 CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 010 CO CO CO CO CO CO CO CO CO CO CO CO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 523 200 00 2015 NO 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 202 00 200 00 |
| 2     | 2                                                            | 4.000  | 2.820 4.000                               | 0 0000 2 0000           | 7.760 0 630 5.920 4.000                                                         | 4 8/0 10:2/0 / / / 600 0 630 2:8/0 4.000                                                                 | 5910 4870 10.270 7.780 6830 5.820 4.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5910 4870 10.270 7.780 6830 5.820 4.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 660 5 910 4 870 10.270 7.780 8 850 5.820 4.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0     | 4                                                            | 1 250  | 2:010 1 250                               | 2 480 2 010 1 250       | 3.100 2.480 2.010 1.250                                                         | 0 990 4 350 3 100 2 480 2 010 1 250                                                                      | 1680 0 990 4 350 3 100 2 480 2 010 1 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1680 0 990 4 350 3 100 2 480 2 010 1 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 360 1 680 0 990 4 350 3 100 2 480 2 010 1 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8     | 121                                                          | 6 140  | 6 780 6 140                               | 7 430 6 780 6 140       | 8 580 7 430 6 780 6 140                                                         | 6 120 12 150 8 580 7 430 6 780 6 140                                                                     | 6770 6120 12150 8580 7430 6780 6140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6770 6120 12150 8580 7430 6780 6140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 420 6 770 6 120 12 150 8 580 7 430 6 780 6 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8     | 101                                                          | 1 680  | 3 700 1 680                               | 4 910 3 700 1 680       | 6 540 4 910 3 700 1 680                                                         | 1860 10020 8540 4910 3700 1680                                                                           | 3670 1860 10020 8540 4910 3700 1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3670 1860 10020 8540 4910 3700 1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 870 3 670 1 860 10 020 8 540 4 910 3 700 1 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0     | 10.39                                                        | 0000   | 0.140 0.000                               | 0 620 0 140 0 000       | 1 680 0 620 0 140 0 000                                                         | 0000 5 920 1 680 0 620 0 140 0 000                                                                       | 0110 0000 5 920 1 680 0 620 0 140 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0110 0000 5 920 1 680 0 620 0 140 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0410 0110 0000 5 920 1 680 0 620 0 140 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0     | 8                                                            | 44 810 | 62 630 44 810                             | 74 590 62 630 44 810    | 91.240 74.690 62.630 44.810                                                     | 34 960 126 900 91.240 74 690 62 630 44 810                                                               | 51,390 34,960 126,900 91,240 74,690 62,630 44,810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34 960 126 900 91.240 74 690 62 630 44 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62.730 51.390 34.960 126.900 91.240 74.690 62.630 44.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0     | 117.50                                                       | 15 480 | 28 560 15 480                             | 38.720 28.560 15.480    | 53 940 38.720 28 560 15 480                                                     | 3 680 90 670 53 640 38 720 28 580 15 480                                                                 | 11,000 3 680 90 670 53 640 38,720 28 560 15 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,000 3 680 90 670 53 640 38,720 28 560 15 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.520 11.000 3.680 90.670 53.640 38.720 28.560 15.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0     | 0                                                            | 0.000  | 0000 0000                                 | 0.040 0.000 0.000       | 0 130 0 0040 0 000 0 0000                                                       | 0.000 0.340 0.130 0.040 0.000 0.000                                                                      | 0 000 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 000 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000 0.000 0.000 0.340 0.130 0.040 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _     | 49 76                                                        | 15 370 | 23 270 15 370                             | 28 340 23 270 15 370    | 35 060 28 340 23 270 15 370                                                     | 15 320 48 900 35 060 28 340 23 270 15 370                                                                | 23.260 15.320 48.900 35.060 28.340 23.270 15.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.260 15.320 48.900 35.060 28.340 23.270 15.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28 330 23 260 15 320 48 900 35 060 28 340 23 270 15 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -     | 7 500                                                        | 0 120  | 0.870 0.120                               | 1810 0870 0120          | 2 950 1 810 0 870 0 120                                                         | 0 120 7 010 2 950 1 810 0 870 0 120                                                                      | 0.800 0.120 7.010 2.950 1.810 0.870 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.800 0.120 7.010 2.950 1.810 0.870 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.800 0.120 7.010 2.950 1.810 0.870 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -     | 4 300                                                        | 0000   | 0000 0000                                 | 0.180 0.000 0.000       | 0.670 0.180 0.020 0.020                                                         | 0.000 0.000 0.180 0.000                                                                                  | 0.150 0.000 3.690 0.670 0.180 0.020 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.150 0.000 3.690 0.670 0.180 0.020 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.550 0.150 0.000 3.650 0.670 0.160 0.020 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| t     | 10 110                                                       | 0.670  | 0290 0003                                 | 0290 000 3 000 8        | 0290 000 2 000 0 0230                                                           | 0790 000 3 000 0 020 0                                                                                   | 07.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0730 0003 00000 0730 00000 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                              | 200    | 2000                                      | 0.050                   | 9.010                                                                           | 2000 0000 0000                                                                                           | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2     | 36                                                           | 930    | 05/0 0/20                                 | 0.540 0.570 0.050       | 1110 0.540 0.270 0.050                                                          | 0 000 3 230 1 1 10 0 240 0 2 10 0 0 0 0                                                                  | 0010 0000 3230 1110 0.540 0270 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0010 0000 3230 1110 0.540 0270 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0200 0010 0000 3230 1110 0.540 0270 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0     | 65 43                                                        | 0.850  | 16.340 0.850                              | 27.410 16.340 0.850     | 43.160 27.410 16.340 0.850                                                      | 0.350 78.800 43.160 27.410 16.340 0.850                                                                  | 13.270 0.350 78.800 43.160 27.410 16.340 0.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.270 0.350 78.800 43.160 27.410 16.340 0.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22 930 13 270 0 350 78 800 43 160 27.410 16.340 0 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8     | 144 5                                                        | 0000   | 11.010 0 000                              | 22.200 11.010 0.000     | 39 680 22.200 11.010 0 000                                                      | 0 000 84 370 39 680 22.200 11.010 0 0000                                                                 | 0.870 0.000 84.370 39.680 22.200 11.010 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.870 0.000 84.370 39.680 22.200 11.010 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.870 0.000 84.370 39.680 22.200 11.010 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0     | 37                                                           | 1.740  | 1.900 1.740                               | 2.070 1.900 1.740       | 2 430 2.070 1.900 1.740                                                         | 1,740 3,690 2,430 2,070 1,900 1,740                                                                      | 1890 1,740 3,690 2,430 2,070 1,900 1,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1890 1,740 3,690 2,430 2,070 1,900 1,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 060 1 890 1,740 3 690 2 430 2.070 1.900 1,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8     | 27                                                           | 0 720  | 0.000 0.720                               | 1170 0960 0720          | 1 550 1170 0 960 0 720                                                          | 0.720 0.860 1.550 1.170 0.960 0.720                                                                      | 0.050 0.720 2.640 1.550 1.170 0.050 0.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.050 0.720 2.640 1.550 1.170 0.050 0.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 150 0 050 0 720 2 640 1 550 1 170 0 050 0 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                              |        |                                           |                         |                                                                                 |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### TABLE B.2(b) SUMMARY OF 1, 3, 7, 15 & 30 DAY LOW FLOW NORTHEASTERN REGION

| STATION          |           | 1   | 4             |     |             |               | ร     | 2             |          | _        |               |         | 2     |       |               |       |       | DAN   |          | _             |              | 3     | DAY           |          |       |
|------------------|-----------|-----|---------------|-----|-------------|---------------|-------|---------------|----------|----------|---------------|---------|-------|-------|---------------|-------|-------|-------|----------|---------------|--------------|-------|---------------|----------|-------|
|                  | 2         | -   | -             | _   |             | -             | -     |               | $\vdash$ | -        | -             | -       | -     | -     |               |       | -     | -     | -        |               | -            | -     | _             | _        | 8     |
| 02BF001 3 1      | 50 2.090  | -   | 1.740 1.550   | _   | 1.350 3.200 | -             | 2.090 | 1.740         | 1.560    | 1.390    | 3.300         | 2.170 1 | 1.830 | 1.640 | 1.470 3       | 3.570 | 2.350 | 1.960 | 1,750    | 1.540         | 4.010        | 2 660 | 2.190         | 1.920    | 1.630 |
| 22               | 20 1.2    | -   | ,             | L   | 0           |               | -     | -             | _        | _        | _             | -       | -     | -     | -             | _     | -     | -     |          |               |              | -     | 10            | -        | 0 930 |
| 00               | 36        | 10  | -             | -   | C           | 1             | -     | -             |          | _        | 1             | -       | Ь.    |       | _             | _     |       | -     | _        | ~             | -            | -     |               | 1-       | 0 005 |
| 00 U 000         | 91        |     | -             |     | 0           |               | -     |               | -        | -        | -             | -       | -     |       | -             | _     |       |       |          | _             | _            | -     | 1-            | t        | 000   |
|                  | +         | +   | +-            | 1   | ie          | i.            |       |               | ٠        | 100      | 1             | -       | ÷     | +     | i.            | 1     | -     | t     | -        | la.           | +            | 1     |               | Ť        | 0     |
|                  | -         | -   | -             |     | 2 0         |               | -     | 10            | +        | +        |               | -       |       | +     |               | _     | 1.    |       | 1        | 1             | -            | 21    | ۲.            | _        | 2000  |
|                  | _         | -   | -             | _   | 3           |               | -     | 7             | -        | _        |               | _       | -     | -     | - 1           | _     | _     | _     | _        | _             | -            | _     | _             | _        | 000   |
| 02CC008 25 1     | -         | _   | _             | _   | _           | _             | -     | _             | _        | _        | _             | -       | _     | _     | _             | _     | -     | _     | _        | $\overline{}$ | _            | _     | _             | Ξ        | 6 490 |
| 02CC009 15 20    | -         | _   | -             |     | 0           | Ξ             | _     | _             | _        | _        | _             | -       | -     | =     | _             | _     | _     | =     | _        | _             | -            |       | -             | Ξ        | 3 030 |
| İ                |           | +   | -             | 1   | 6           | :=            | -     | 10            | -        | -        | -             | +       | -     | ÷     | 1             | 1_    |       | t     | -        |               | -            | -     |               |          | 2 10  |
| Ť                | -         | -   | -             | 4   | 1           | 1.            | -     | 1             | +        | -        | 1             | +       | +     | +     | 1             | +     | 1.    | +     | +        | J             | _            | -     | 1.            |          | 3 2   |
| j                | +         | -   | -             | 4   | - 1         |               |       |               | +        | 1        |               | +       | -     | ÷     |               | _     |       |       | -        | 1             | -            |       | -             | 7        | 40    |
|                  | _         | _   | _             | _   | 0           | _             | -     | _             | _        | _        | _             | -       | -     | _     | _             | _     | _     |       | _        | $\overline{}$ | _            | _     | _             | _        | 8     |
|                  | -         | _   | _             | ш   | _           | _             | -     | $\overline{}$ | _        | _        | _             | _       | _     | _     | Ξ             | _     | _     | Ξ     | _        | $\overline{}$ | _            | _     | _             | _        | 0.110 |
| 02CD008 0 5      | -         | -   |               | _   | 5           | -             | -     |               | -        | -        | -             | -       | -     | -     | _             | -     | -     | -     |          | ~             | <del>-</del> |       |               | -        | 0 305 |
| 02CF001 20 950   | -         | -   | 780 5 580     | _   | ic          | t             | -     | 10            | -        | -        | 1-            | -       | 1     | -     | -             | -     | -     | Ť.    | -        | 1             | -            | 1     | 10            | 1        | 0 170 |
|                  | 1         | _   |               | _   | 10          | -             |       | 1             | +        | -        | 16            | +       | ÷     | +     |               | _     | -     | 1     | t        |               | ÷            | 1     |               | 1        | 0270  |
|                  | Ť.        | +   | -             | _   | 10          | -             | -     | -             |          | 10       |               | -       | +     |       |               | _     | +     | +     | +        | 1             | _            |       |               | -        | 27.7  |
| 0.400            | -         | -   |               |     | 2 10        |               | -     | <u> </u>      | +        | 1        | 1             | ÷       | +     | +     | _             | -     | 7     | -     | 7        | 21            | -            | 7     | _             | _        | 7/70  |
| i                | _         | -   | _             | _   | 5           | _             | -     | _             | _        | -        | 7             | -       | =     | _     | - 1           | _     | _     | 7     | _        | 21            | _            | _     | _             | _        | 0.800 |
| 02CF012 0 6      | -         |     | _             | _   | 0           | _             |       | $\overline{}$ | _        | _        | _             | _       | _     | _     | _             | _     | _     | _     | _        | $\overline{}$ | _            | _     | $\overline{}$ | _        | 0.150 |
| -                | -         | _   | _             | _   | 0           | Ξ             | -     | _             | _        | _        | _             | _       | Ξ     | _     | _             | _     | -     | _     | -        | _             | -            |       | -             |          | 0000  |
| ٠                | -         | -   | ,             | _   | 10          | Ξ             | -     | 5             |          | 5        | =             | -       | -     | _     | -             | -     | -     | :-    | -        | -             | -            | 1     | 1             | 1=       | 9 440 |
| 090 0            | -         | -   | _             |     | 0           | -             | -     | -             | -        | 5        |               | -       | =     | -     | -             | -     | -     | Ξ     | ÷        | -             | _            | 1     | -             | 1-       | 000   |
| -                | +         | +   | -             |     | -           | 1-            | +     | 100           | t        | -        | 10            | +       | -     | -     | 10            | -     | +     | +-    | -        | 100           | +            | 1     |               | 1.       | 1 333 |
| 1                | 0 506     | -   | +             | 1   |             | -             | +     | 100           | 1.       |          | 10            | +-      | 1     | -     |               | 1.    | -     | -     | -        |               | ÷            | 1     | -1-           | 1        | 0.00  |
| 050 040 040 030  | +         | _   | -             | -   |             |               | +-    | 7             | t        | 1        | 1             | +       | +     | +     | 1             | 1     | -     | +     |          |               |              | 10    | 100           | 1.       | 200   |
| +                | +         | ÷   | -             | 1   | 15          |               | +     | 1             | +        |          | J             | t       | 1     | ÷     |               |       | ٠.    | ٠.    | Ť,       | , lu          | -            |       | -             | -        | 3     |
| -                |           | -   | -             |     | r ic        | _             | -     | 10            | +        |          |               | +       | +     | 1     | 10            |       |       |       | +        | 200           | -            |       |               | -        | 200   |
| /000             | -         | -   | _             | 1   | VII.        | 1.            | ÷     |               | +        | 210      | 210           | +       | +     | ٠.    |               | -1    | -     | _     |          |               | -            | -     | - 1           | _        | 0 338 |
| 1                | -         | -   | -             | 4   | 0           |               | _     | -             | _        |          | _             | -       | _     | _     |               | _     | _;    |       | _        |               | _            | _     | _             | _        | 0.607 |
| _                | _         | _   | _             | _   | 7           | Ξ             | -     | _             | _        | _        | $\overline{}$ |         | _     | _     | _             |       | _     |       | _        | 3             | _            | ~     | -             |          | 0 239 |
| _                | -         | _   |               | _   | 0           | $\overline{}$ | -     | ~             | _        | _        |               |         | _     | _     | _             | _     | _     | -     | _        | ~             | -            | _     | ~             | -        | 1 228 |
| _                | _         | -   | 000 000       | _   | 0           | <u>.</u> .    | -     | $\overline{}$ | _        | _        | _             | _       | _     | _     | $\overline{}$ | _     | _     | -     | _        | _             | _            | ~     |               | -        | 0000  |
| 02JC008 3 660    | 60 2.779  | _   | 2 393 2.123   | _   | 8           | _             | -     | _             | -        | ~        | _             | -       | _     | _     |               | -     | -     | =     | -        | ~             | -            | -     | 10            | 1        | 2.327 |
| 02JD010 0.880    | -         | -   | 025 0.000     | -   | 0           | -             | -     | ~             | _        | _        | -             | -       | -     | _     | _             | -     | -     | -     | -        | 100           | -            | 1     | -             | -        | 2 215 |
| 02JE012 149,500  | -         | _   | 32.580 13.800 |     | 0           | -             | =     | -             |          | <u>e</u> |               | ZA.     | CA    | Ξ     | -             | -     | -24   | 7.4   | 124      | _             | (7)          | 17.2  | 100           | 10       | 5.800 |
| 02JE018 0.0214   | 14 0.0043 | 1   | 0000          | -   | 0           | -             | -     | ~             | _        | _        | 10            | -       | -     | -     | _             | 1.    | +     | -     | -        | -             | ÷            | -     | t             | -        | 0 030 |
| 9 3.429          | -         | -   |               | -   | 6           | Ξ             | -     | _             |          | -        | 10            |         | _     | -     | -             | 1-    | -     | t     |          | 100           | -            | _     | -             | -        | 1 857 |
| 02JE020          |           | -   | _             | -   | 6           | -             | -     | ~             | _        | Ξ        | 10            | -       | _     | _     | -             | 1.    | +-    | -     | -        | -             | -            | 1.0   | 1             | -        | 0.633 |
| 1                | 060       | -   |               | 1   | 6           | 1             | -     | 6             | _        | 0        | 1             | -       | -     | -     | -             |       | ١.    | +=    |          | -             | -            | 1     |               | +-       | 0 412 |
| -                |           | -   | -             | -   | 10          |               | -     | 7             |          | -        | 15            | t       | ١.    |       | -             | -     | -     | 1     | -        | 10            |              |       |               | 200      | 9 760 |
| Ī                | 4         | -   | -             | -   | lo          | 1             | +     | _             | -        | -        | 10            | +       | -     | -     | -             | -     | +     | 1-    | -        |               |              | -     | i.            | 8 42B    | 3 870 |
| 10               | 1-        |     | 67 470 53 780 | 100 | 0           |               | ÷     | 10            |          | t        | 1             | 1       | Ť.    |       | -             | 1.    |       |       | +        |               |              |       | Ť             | 000      | 200   |
| T                |           | -   |               |     | -           |               | +-    | -             |          | in       |               | -       | -     | -     |               |       |       | -     | -        |               | _            | 1     | 8 8           | 5 573    | 26.48 |
| 041 84001 22 150 | -         | -   |               |     |             |               | -     |               |          |          |               | -       |       | T.    |               | 1.    |       | +     |          |               | _            |       | 3 5           | 0.00     | 2 2   |
|                  | -         | +   | +             | 9   | 3 0         |               | -     | 10            |          | 10       | 10            | +       | +     | +     |               |       |       |       | 0000     | 2 10          | _            | -     | 3 5           | 0/0      | 200   |
|                  | -         | -   | 45 820 37.0   | 200 | 760 112     | 10            | 040   | 080           |          |          | 1             | -       |       |       | 1             | - 1   | -     | -     | 200      | 6420          | - 4          | 500   | 608           | 790      | 223   |
|                  | 20.00     | 3 3 | 37.75         | 3 5 | 3 5         | 310           | 2 000 | 300           | 1        | 1        | 1             | - 1     | 1     | 7     | 2             | 200   | 3000  | -     | 3        | 1/0           | 300          | 30    | 000           | 99       | 3     |
| 2                | 8         | 200 | 37 150 282    | 18  | 8           | 5             | 200   | 420           | -        | =        | 147           | 200/    | 300   | =     | 2,200         | 7.800 | 5.100 | =     | 7.500 13 | 6.900 20      | 2 300 180    | 300   | 300           | 3 200 14 | 2 500 |
|                  |           |     | 2             |     | -           | _             |       | -             |          |          |               |         |       |       |               |       |       |       |          |               |              |       |               |          |       |

| -                 | _                |
|-------------------|------------------|
| _                 | $\overline{}$    |
| / OUTVER NEAMETER | THWESTERN REGION |
| _                 | 7.5              |
| Г.                | U                |
| ш                 | 111              |
| F                 | ш                |
| 22                | $\mathbf{m}$     |
| -                 |                  |
| ≥                 | $\overline{}$    |
| I.                | =                |
| ~                 | ш                |
| •                 | 111              |
|                   | ,                |
| ٠.                | -                |
| <u>.</u>          | S                |
| -                 | 111              |
| _                 | ш                |
| I                 | >                |
| en.               | >                |
| 2                 | $\tau$           |
| n                 | _                |
| •                 | -                |
| <u>-</u>          | $\sim$           |
| 1                 | $\overline{}$    |
| 2                 | NOR              |
| 7                 | -                |
| -                 | _                |

Ĭ

| TATION  |        | 700      | _       |        | > < 0    | NORTH   | 1WESTE | NORTHWESTERN REGION | NO      |       |         |         |        |         |         |
|---------|--------|----------|---------|--------|----------|---------|--------|---------------------|---------|-------|---------|---------|--------|---------|---------|
|         |        | 200      |         |        | 200      |         |        | LAN                 |         |       | 15 DAY  |         |        | 30 DAY  | × - 1   |
|         | 0000   | 0000     | 0       | 000    | 0        | 0 0     | 0 100  | 9                   | 2       | e .   | Ф       | 5       | B      | Ф       | ٦,      |
| 02AA001 | 2.860  | -0.320   | 2.310   | 2.860  | - 0.33   | 2.350   | 2.768  | -0.311              | 2.412   | 2.860 | -0.340  | 2.520   | 2.910  | -0.350  | 2.730   |
| UZABOOG | 2.150  | 3.270    | 20.920  | 2.380  | 4.290    | 24.010  | 2.490  | 5.910               | 27.550  | 2.670 | 008.9   | 29.830  | 3.590  | 1.910   | 32.560  |
| 02AB009 | 1.640  |          | 4.950   | 1.640  | 1.330    | 5.210   | 1.310  | 2.040               | 5.280   | 1.420 | 2.080   | 5.680   | 1.710  | 2.140   | 6.540   |
| 02AB010 | 3.140  | -4.0500  | 15.910  | 2.350  | 2.960    | 20.130  | 2.180  | 6.570               | 23.790  | 2.650 | 6.070   | 26.570  | 3.260  | 3.230   | 29.040  |
| 02AB014 | 2.010  | -0.010   | 0.080   | 2.240  | -0.030   | 0.082   | 2.363  | -0.032              | 0.093   | 2.330 | -0.020  | 0.100   | 3.140  | -0.050  | 0.120   |
| 02AB015 | 1.230  | 0.230    | 0.590   | 1.640  | 0.170    | 0.620   | 1.493  | 0.184               | 0.611   | 1.220 | 0.280   | 0.670   | 1.540  | 0.210   | 0.660   |
| 02AB016 | 1.340  | -0.010   | 0.070   | 1.380  | -0.010   | 0.070   | 1.704  | -0.017              | 0.073   | 1.680 | -0.020  | 0.100   | 1.540  | -0.010  | 0.110   |
| 02AC001 | 2.750  | 0.010    | 0.740   | 2.330  | 0.070    | 092.0   | 2.012  | 0.111               | 0.780   | 1.620 | 0.220   | 0.800   | 1,400  | 0.350   | 0.860   |
| 02AD010 | 2.940  | 0.260    | 0.920   | 3.370  | 0.200    | 0.940   | 3.575  | 0.168               | 0.958   | 2.920 | 0.290   | 0.980   | 2.920  | 0.300   | 1 030   |
| 02AE001 | 1.430  | 0.200    | 0.960   | 1.430  | 0.200    | 1.970   | 1.424  | 0.212               | 0.987   | 1 440 | 0.220   | 1.040   | 1.360  | 0.270   | 1 090   |
| 02BA002 | 1.530  | 1.470    | 2.800   | 1.520  | 1.480    | 2.800   | 1.463  | 1.546               | 2.819   | 1.510 | 1,550   | 2.880   | 1.490  | 1 630   | 2 970   |
| 02BB002 | 3.830  | -1.530   | 4.440   | 3.690  | -1.400   | 4.460   | 3.195  | -0.105              | 4.452   | 2.980 | -0.790  | 4.620   | 2.450  | -0.340  | 4 830   |
| 02BB003 | 2.300  | 2.000    | 7.750   | 1.540  | 3.860    | 7.730   | 1.713  | 3.788               | 7.908   | 1.950 | 3.570   | 8.170   | 1.880  | 3 640   | 8 600   |
| 04CA002 | 1.720  | 29.800   | 109.960 | 1.700  | 29.900   | 110.500 | 1.894  | 23.272              | 113.450 | 1.680 | 30,200  | 112.700 | 1.720  | 29 990  | 115 400 |
| 04CA003 | 2.730  | -0.030   | 0.680   | 2.730  | -0.030   | 0.690   | 2.575  | 0.010               | 0.714   | 2.500 | 0.040   | 092.0   | 2.460  | 0.110   | 0.810   |
| 04CB001 | 2.420  | 19.290   | 46.100  | 2.470  | 18.890   | 46.440  | 3.670  | 14.590              | 47.090  | 2.530 | 18.430  | 47.400  | 2.740  | 16.940  | 48 600  |
| 04CC001 | 2.260  | 76.790   | 179.800 | 2.260  | 76.800   | 179.800 | 2.301  | 76.258              | 180.526 | 2.350 | 76.340  | 181,900 | 2.520  | 75.900  | 185.800 |
| 04CD002 | 0.720  | 9.840    | 13.860  | 0.730  | 9.970    | 14.100  | 0.728  | 10.080              | 14.243  | 0.700 | 10.210  | 14.400  | 0.680  | 10.530  | 14 900  |
| 04CE002 | 3.070  | 11.520   | 24.800  | 3.220  | 11.100   | 24.900  | 3.350  | 10.370              | 25.110  | 3.430 | 10.610  | 25.300  | 3.540  | 10.500  | 25 600  |
| 04DA001 | 1.310  | 5.000    | 10.130  | 1.320  | 5.000    | 10.200  | 2.024  | 3.260               | 10.860  | 1.210 | 5.360   | 10.400  | 1.630  | 5 460   | 10.350  |
| 04DC001 | 0.880  | 56.760   | 102.000 | 0.870  | 56.800   | 102.000 | 0.826  | 62.500              | 102.930 | 0.790 | 59.300  | 101.700 | 0.670  | 65.500  | 100 800 |
| 04DC002 | 2.270  | 0.430    | 2.970   | 2.890  | 0.430    | 2.980   | 2.360  | 0.395               | 2.999   | 2.460 | 0.340   | 3.040   | 2.640  | 0.240   | 3.120   |
| 04FA001 | 1.770  | 7.910    | 17.790  | 1.750  | 7.940    | 17.860  | 2.022  | 7.748               | 18.280  | 1.630 | 8.160   | 18.280  | 1.580  | 8 400   | 18 870  |
| 04FA002 | 2.150  | 1.610    | 3.220   | 2.150  | 1.610    | 3.230   | 2.144  | 1.611               | 3.258   | 2.200 | 1.600   | 3.320   | 2.360  | 1.560   | 3.440   |
| 04FB001 | 1.660  | 13.480   | 57.100  | 1.630  | 13.620   | 57.300  | 1.033  | 28.940              | 54.693  | 1.520 | 14.500  | 59.600  | 1.390  | 16.000  | 60 900  |
| 04FC001 | 1.360  | 41.710   | 29.060  | 1.360  | 41.720   | 59.180  | 1.360  | 41.780              | 59.450  | 1.440 | 41.640  | 60.280  | 1.340  | 43.620  | 61.590  |
| 04GA002 | 1.090  | 8.190    | 20.920  | 1.100  | 8.210    | 20.990  | 2.519  | -5.825              | 16.535  | 1.090 | 8.400   | 21,350  | 1.100  | 8.560   | 21.910  |
| 04GB004 | 93.610 | -559.400 | 44.890  | 95.430 | -571.980 | 44.990  | 42.590 | -238.690            | 45.270  | 9.870 | -26.670 | 45.500  | 8.250  | -17.590 | 46.350  |
| 04GC002 | 2.190  | 2.840    | 20.490  | 2.220  | 2.730    | 20.580  | 2.925  | -0.005              | 19.900  | 2.420 | 1.900   | 21.160  | 2.600  | 1.140   | 21.930  |
| 04GD001 | 1.650  | 22.900   | 69.300  | 1.620  | 23.300   | 67.500  | 1.625  | 29.369              | 68.720  | 1.470 | 25.200  | 69.100  | 1.310  | 27.200  | 71.100  |
| 04JA002 | 2.310  | 3.860    | 11.290  | 2.320  | 3.820    | 11.370  | 2.338  | 3.747               | 11.496  | 2.650 | 3.210   | 11.800  | 2.780  | 2.930   | 12.350  |
| 04JC002 | 3.720  | -0.590   | 4.850   | 3.260  | 0.080    | 4.860   | 2.938  | 0.573               | 4.920   | 2.870 | 0.720   | 5.060   | 2.660  | 0.890   | 5.340   |
| 04JF001 | 1.360  | 5.840    | 14.080  | 1.350  | 5.870    | 14.120  | 1.418  | 6.942               | 14.462  | 1.300 | 5.970   | 14.370  | 1.240  | 6.070   | 14.820  |
| 05PA012 | 2.790  | -0.410   | 11.410  | 2.800  | -0.430   | 11.480  | 2.745  | -0.267              | 11.643  | 2.630 | 0.020   | 11.950  | 2.570  | 0.140   | 12.450  |
| 05PB009 | 0.990  | -0.310   | 8.590   | 066.0  | -0.320   | 069.8   | 1.422  | -0.731              | 14.460  | 1.130 | 0.750   | 16.800  | 1.710  | 0.490   | 21.870  |
| 05PC018 | 2.550  | 16.640   | 128.100 | 2.680  | 23.600   | 142.100 | 2.780  | 26.050              | 160.530 | 2.110 | 55.700  | 170.500 | 1.790  | 72.700  | 179.900 |
| 05PC019 | 1.520  | 0.180    | 76.800  | 2.020  | 4.930    | 107.900 | 2.490  | 960.0-              | 136.180 | 2.630 | -0.820  | 148.500 | 2.650  | 3.800   | 159 300 |
| 05PD026 | 1.720  | -0.095   | 0.400   | 1.800  | -0.110   | 0.440   | 1.109  | 0.201               | 0.488   | 2.010 | -0.220  | 0.660   | 1.790  | -0.210  | 0.840   |
| 05QA001 | 3.100  | 3.840    | 54.400  | 3,070  | 4.110    | 54.580  | 5.618  | -21.273             | 54.550  | 3.000 | 4.480   | 55.570  | 3.040  | 3.950   | 56.790  |
| 05QC001 | 1.310  | -0.150   | 8.940   | 1.370  | -0.210   | 9.220   | 1,457  | -0.319              | 9.736   | 1.490 | -0.240  | 10.180  | 1.650  | 0.010   | 11,190  |
| 05QD003 | 1.320  | -0.390   | 4.730   | 0.700  | -0.070   | 6.270   | 0.709  | -0.088              | 7.271   | 0.740 | -0.110  | 7.890   | 0.680  | 1 680   | 8.190   |
| 05QD006 | 1.720  | 1.490    | 18.240  | 1.970  | 0.870    | 19.520  | 2.632  | -1.422              | 22.175  | 5.040 | -14.770 | 24.710  | 10.790 | -53 560 | 26.240  |
| 05QD016 | 0.940  | -0.160   | 3.850   | 1.070  | -0.020   | 4.550   | 1.069  | 0.152               | 5.085   | 1.100 | 0.450   | 5.610   | 1.040  | 0 9 2 0 | 5.900   |
| 05GE006 | 2.160  | -11.100  | 85.500  | 2.460  | -14.700  | 94.500  | 2.505  | -18.190             | 101.760 | 2.430 | -13.900 | 106.900 | 2.700  | -20.150 | 114.100 |
| 05GE007 | 0.960  | -1.080   | 45.200  | 1.820  | -12.100  | 105.900 | 2.360  | -24.180             | 172.840 | 2.670 | -35.400 | 194.800 | 2.890  | -41.990 | 216.200 |

# FREQUENCY CURVE PARAMETERS (a, e, u) NORTHEASTERN REGION

| 1.330<br>1.350<br>1.350<br>0.800<br>1.240<br>1.300<br>1.420<br>1.720<br>1.720<br>1.720<br>2.830<br>1.720<br>2.830<br>1.720<br>2.830<br>1.720<br>2.830<br>1.720<br>1.720<br>2.850<br>2.850<br>2.850<br>2.850<br>2.850<br>2.850<br>2.850<br>2.850<br>3.240<br>3.240<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3.250<br>3. | 3.947<br>0.0639<br>0.0030<br>0.0080<br>0.0080<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0090<br>0.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.401<br>0.029<br>0.029<br>0.039<br>0.034<br>0.186<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.039<br>0.039<br>0.343<br>0.343<br>0.343<br>0.343<br>0.343<br>0.343 | 3.830 1.256 1.401 2.850 0.027 0.050 0.086 0.029 0.020 1.022 -0.002 0.060 1.282 -0.003 10.840 2.871 -3.956 37.400 1.220 -65.700 26.300 2.277 -3.956 3.300 0.360 0.766 -0.004 2.070 1.423 0.014 2.070 1.423 0.014 2.070 1.423 0.014 2.070 1.810 -1.199 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380 0.140 9.447 -0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 830 1.256 1.401 2 850 0.627 0.050 0.686 0.029 0.020 1.022 -0.002 0.060 1.220 -0.003 10.840 2.841 -9.596 37.400 11.220 -65.700 26.300 2.277 -3.956 3.430 3.362 0.237 0.080 0.766 -0.004 2.070 1.423 0.014 2.070 1.423 0.014 2.070 1.423 0.014 0.630 2.229 1.978 0.770 1.1810 -1.199 0.770 0.546 -0.001 1.960 1.758 0.343 1.580 2.573 0.052 0.300 0.661 2.303 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,320         3,830         1,256         1,401           0,660         2,850         1,290         0,027           0,020         0,020         0,029         0,029           0,004         0,060         1,282         -0,003           -0,430         0,084         -3,296         -3,596           -1,330         26,300         2,277         -3,956           -0,0470         4,430         3,522         0,574           -0,0470         2,040         0,766         -0.004           0,040         2,070         1,423         0,014           -0,120         0,699         1,779         0,156           0,170         39,500         2,749         1,559           1,350         2,229         1,378         0,216           0,210         0,530         2,188         0,216           0,210         0,530         2,188         0,216           0,210         0,530         2,188         0,216           0,500         0,170         1,447         -0,380           -1,090         29,370         2,397         3,052           -1,090         29,370         2,397         3,032           -1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.270         1.320         3.830         1.256         1.401           0.660         0.260         0.686         0.029         0.027           0.660         0.020         0.025         0.686         0.020           1.360         0.004         0.020         1.282         0.003           1.360         0.004         0.066         1.282         0.003           1.160         -0.430         10.840         2.871         -3.566           4.840         -17.300         3.240         1.220         -5.70           1.390         -1.130         26.300         2.277         -3.956           4.620         -0.470         4.430         1.220         -6.570           1.280         0.040         2.070         1.423         0.014           1.280         0.040         2.070         1.423         0.014           2.800         -0.120         0.080         0.766         -0.04           2.100         0.070         2.070         1.423         0.014           2.100         0.070         2.070         1.423         0.014           2.100         0.070         2.070         1.423         0.014           2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.270         1.320         3.830         1.256         1.401           1.260         0.660         2.850         1.256         0.027           0.660         0.020         0.025         0.028         0.029           0.760         -0.0006         0.020         1.022         -0.002           1.360         -0.030         10.840         2.841         -9.596           4.840         -17.300         2.070         2.277         -3.566           4.840         -17.300         2.277         -3.566         -0.004           1.390         -1.130         2.6.300         2.277         -3.566           4.620         -0.470         4.430         1.220         -65.700           1.400         0.200         3.230         1.385         0.574           1.280         0.040         2.070         1.423         0.014           2.800         -0.120         0.080         0.766         -0.034           2.100         0.040         2.070         1.423         0.014           2.100         0.120         0.089         1.779         0.156           2.160         0.210         0.530         2.188         0.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.350<br>0.8010<br>0.8010<br>0.8010<br>1.240<br>1.720<br>1.720<br>1.720<br>2.830<br>1.720<br>1.720<br>1.720<br>2.830<br>2.830<br>2.830<br>2.830<br>2.830<br>2.830<br>2.720<br>1.720<br>2.720<br>1.720<br>2.720<br>1.720<br>1.720<br>2.720<br>2.720<br>1.720<br>1.720<br>2.720<br>2.720<br>1.720<br>1.720<br>2.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720<br>1.720    | 3 032<br>0 0063<br>0 0068<br>0 0086<br>22 350<br>2 035<br>1 985<br>1 985<br>1 1003<br>1 1003<br>1 1003<br>1 1003<br>1 1003<br>1 1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0677<br>0.029<br>0.0029<br>0.003<br>0.003<br>0.574<br>0.574<br>0.014<br>0.014<br>0.014<br>0.015<br>0.298<br>0.217<br>0.298<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.218<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      | 2.850 1.290 0.050 0.0686 0.020 1.282 0.060 1.282 0.060 1.282 26.300 2.277 4.430 3.522 26.300 1.385 0.080 0.766 2.070 1.423 3.500 2.229 0.530 2.188 1.910 1.631 0.740 9.447 29.970 2.397 0.480 0.576 1.560 2.573 4.550 2.289 0.530 2.188 0.140 9.447 29.970 2.397 0.600 1.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.850 1.290 0.050 0.686 0.0050 1.282 0.060 1.282 10.840 2.841 37.400 11.220 26.300 0.770 4.430 3.522 3.230 1.385 0.689 1.779 0.689 1.779 0.770 11.810 0.770 11.810 0.770 11.810 0.770 1.810 0.770 1.810 0.770 1.810 0.770 1.810 0.770 1.810 0.770 1.800 0.370 0.546 1.560 2.573 4.850 2.573 4.850 0.554 0.370 0.546 0.370 0.546 0.370 0.546 0.370 0.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.060 2.850 1.290 0.020 0.025 0.0686 0.003 0.025 0.0686 0.004 0.060 1.282 0.040 3.230 1.352 0.040 2.070 0.433 0.120 0.699 1.779 0.170 39.500 2.188 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.631 0.500 1.910 1.580 0.210 0.530 2.188 0.500 1.910 1.358 0.500 1.910 1.358 0.500 1.910 1.358 0.500 1.910 1.358 0.500 1.910 1.358 0.500 1.910 1.358 0.500 1.910 1.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,260         0,660         2,850         1,280           0,680         0,020         0,026         0,028           0,760         -0,0004         0,060         1,282           1,360         -0,000         37,400         1,282           1,390         -1,130         26,300         2,841           4,820         -1,300         26,300         1,222           1,390         -1,130         26,300         1,222           1,400         0,200         3,230         1,385           0,700         0,0040         2,070         1,423           2,800         -0,102         0,699         1,779           3,110         0,170         39,500         2,740           2,160         0,210         0,590         1,779           3,110         0,170         39,500         2,740           2,160         0,210         0,530         2,189           2,160         0,210         0,530         2,189           2,560         -1,090         29,970         2,397           2,560         -1,090         29,970         2,397           2,800         -0,0002         0,990         2,546           1,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.650         2.760         1.260         0.660         2.850         1.290           0.020         0.050         0.050         0.050         0.0586           0.004         0.060         0.106         1.360         0.000         1.282           0.004         0.060         1.360         0.004         0.050         0.2841           0.520         8.830         1.160         -0.430         10.840         2.841           0.520         8.830         1.360         -0.070         1.282         1.220           0.740         4.390         4.620         -0.470         4.430         3.522           0.170         3.160         1.400         0.200         3.230         1.385           0.040         2.000         1.280         0.040         2.070         1.423           0.100         0.670         2.800         -0.120         0.699         1.779           0.150         2.100         2.170         1.950         2.220           0.150         2.100         2.100         0.200         2.180           0.150         2.100         2.100         0.200         2.229           0.150         2.160         0.200 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.810<br>0.800<br>1.2800<br>5.210<br>10.300<br>2.830<br>0.790<br>1.720<br>1.720<br>1.720<br>2.250<br>2.250<br>2.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.029<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0 |                                                                                                                                                                                                                      | 0.050 0.686<br>0.020 1.022<br>0.060 1.1022<br>0.060 1.1220<br>26.300 2.277<br>4.400 1.220<br>3.230 1.385<br>0.080 0.766<br>0.080 0.740<br>4.250 2.229<br>0.530 2.188<br>1.910 0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 9.447<br>0.140 0.140 0.140<br>0.140 9.447<br>0.140 0.140 0.140<br>0.140 0.140 0.140<br>0.140 0.140 0.140<br>0.140 0.140 0.140<br>0.140 0.140 0.140<br>0.0140 0.140 0.140<br>0.0140 0.140 0.140<br>0.0140 0.140 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.050 0.686<br>0.020 1.022<br>0.060 1.282<br>10.840 2.841<br>37.400 11.220<br>-26.300 2.277<br>4.430 2.277<br>4.430 1.385<br>0.080 0.766<br>2.070 1.423<br>0.689 1.749<br>39.500 2.740<br>4.250 2.229<br>0.530 2.740<br>0.770 11.810<br>0.770 11.810<br>0.770 1.810<br>0.770 2.397<br>0.370 2.397<br>0.370 2.387<br>0.640 2.47<br>0.370 2.387<br>0.640 2.303<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.020 0.050 0.686  -0.0004 0.020 1.022  -0.430 10.840 2.841  -17.300 37.400 11.220  -0.470 4.430 2.277  -0.470 3.230 2.277  -0.002 0.080 0.766  -0.004 2.070 1.729  -0.120 0.699 1.729  0.170 39.500 2.740  0.170 39.500 2.740  0.170 39.500 2.188  0.500 1.910 1.631  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.810  -0.060 0.770 11.758  -0.0002 0.370 0.546  -0.0003 0.061 2.397  -0.0003 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.680         0.020         0.050         0.686           0.760         -0.0008         0.020         1.022           1.360         -0.430         10.840         2.841           1.150         -0.430         10.840         2.841           1.390         -1.130         26.300         2.277           4.620         -0.200         3.230         1.326           1.720         -0.200         3.230         1.352           1.720         -0.002         0.080         0.766           0.700         -0.002         0.080         0.766           2.100         -0.120         0.500         1.723           2.170         1.950         4.250         2.229           2.170         1.950         4.250         2.229           2.170         0.710         0.530         2.188           2.170         0.500         1.910         2.47           2.560         -0.050         0.140         9.47           2.560         -0.050         0.140         9.47           2.560         -0.000         0.300         1.580         2.54           1.360         2.970         0.360         1.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020         0.050         0.060         0.020         0.050         0.060           0.006         0.010         0.760         -0.0008         0.020         1.022           0.020         1.360         -0.0008         0.020         1.022           0.520         8.830         1.160         -0.430         10.840         2.841           0.520         8.9800         4.840         -17.300         37.400         11.220           0.100         20.400         1.390         -1.130         26.300         2.277           0.101         2.0400         1.390         -0.700         3.240         1.385           0.002         0.070         0.700         -0.002         0.080         0.765           0.002         0.070         0.700         -0.002         0.080         0.766           0.003         0.020         1.280         0.040         2.070         1.423           0.100         0.600         1.700         3.600         1.779           0.100         0.700         1.950         4.250         2.229           0.100         2.100         2.100         0.500         1.181           0.100         0.100         0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.800<br>- 1.240<br>- 5.100<br>- 6.100<br>- 1.300<br>- 1.420<br>- 1.340<br>- 1.720<br>- 1.720<br>- 1.720<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250<br>- 2.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 0000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 0000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0 000<br>- 0                                                                                                                 |                                                                                                                                                                                                                      | 0.020 1.022<br>0.060 1.282<br>1.080 11.220<br>26.300 2.277<br>26.300 2.277<br>26.300 0.766<br>0.080 0.766<br>0.080 1.779<br>39.500 1.779<br>39.500 2.229<br>0.530 2.188<br>1.970 1.1810<br>0.770 1.1810<br>0.770 1.1810<br>0.140 9.447<br>29.970 2.397<br>0.370 0.546<br>1.560 2.573<br>48.590 1.350<br>0.0800 1.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.020 1.022<br>0.040 1.220<br>26.300 2.277<br>26.300 2.277<br>2.070 1.423<br>0.080 0.766<br>0.080 0.766<br>0.080 2.740<br>0.500 2.740<br>0.500 2.740<br>0.500 2.740<br>0.500 2.740<br>0.500 2.740<br>0.500 2.740<br>0.500 2.740<br>0.770 11.810<br>0.140 9.447<br>0.370 0.546<br>1.960 1.758<br>1.960 1.758<br>0.640 2.573<br>0.660 2.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0008 0.020 1.022<br>-0.004 0.060 1.282<br>-1.300 37.400 11.220<br>-1.130 26.300 2.277<br>-0.470 4.430 3.522<br>-0.002 0.080 0.766<br>-0.002 0.080 1.769<br>-0.0040 2.070 1.423<br>-0.120 0.699 1.779<br>-0.120 0.699 1.779<br>0.210 0.530 2.188<br>-0.050 0.140 9.447<br>-1.090 29.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0003 0.061 2.303<br>-0.0003 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.766         -0.0008         0.020         1.022           1.360         0.004         0.060         1.282           1.136         0.004         0.060         1.282           1.390         -1.130         26.300         2.277           1.4620         -0.470         37.400         11.220           1.700         -0.470         3.52         1.385           0.700         -0.002         0.080         0.766           0.700         -0.020         0.080         0.766           1.280         0.040         2.070         1.423           2.180         -0.120         0.699         1.779           3.170         1.950         4.250         2.229           2.170         1.950         4.250         2.229           2.170         0.500         1.910         1.841           2.160         0.500         1.910         1.841           2.560         -0.050         0.140         9.447           2.560         -0.000         0.770         1.810           2.810         -0.000         0.140         9.447           2.560         -0.000         0.140         9.447           2.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0006         0 010         0 760         -0 0008         0 020         1 028           0 024         0 060         1 360         0 .004         0 .066         1 282           0 520         2 800         4 840         -1 7.300         37.400         1 1.220           0 520         2 9 800         4 840         -1 7.300         37.400         1 1.220           1 100         2 0.400         1 390         -1 130         26.300         2 2.77           0 170         3 160         1 4.00         0 .000         0 .207         0 .766           0 170         2 .000         1 .280         0 .040         2 .070         1 .439           0 100         2 .000         1 .280         0 .040         2 .070         1 .423           0 100         2 .000         1 .280         0 .040         2 .070         1 .423           0 100         0 .070         2 .170         1 .950         4 .250         2 .249           0 100         0 .070         2 .170         1 .950         2 .186         2 .249           0 100         0 .190         2 .160         0 .210         0 .189         2 .189           0 100         0 .130         2 .650         -0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.240<br>6.510<br>10.300<br>1.420<br>1.720<br>1.720<br>1.720<br>2.250<br>2.250<br>2.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      | 0.060 1.282<br>1.26.300 2.277<br>26.300 2.277<br>3.230 1.385<br>0.080 0.766<br>2.070 1.423<br>3.230 1.385<br>0.080 2.229<br>0.530 2.188<br>1.910 1.631<br>0.770 1.1810<br>0.770 1.1810<br>0.770 1.1810<br>0.770 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397<br>0.447<br>29.370 2.397<br>0.46 2.373<br>48.590 1.350<br>0.600 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.060 1.282<br>10.840 1.2841<br>37.400 11.2841<br>26.300 2.277<br>4.430 3.522<br>3.230 1.385<br>0.069 1.779<br>39.500 2.740<br>4.250 2.229<br>0.770 1.1810<br>0.770 1.1810<br>0.770 1.1810<br>0.370 0.546<br>1.560 2.397<br>0.370 0.546<br>1.560 2.397<br>0.370 0.546<br>1.560 2.397<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.004         0.060         1.282           -0.403         10.840         2.841           -1.130         26.300         2.277           -0.470         4.430         3.522           -0.020         3.230         1.385           -0.040         2.070         1.423           -0.120         0.699         1.779           -0.120         0.699         1.779           -0.120         0.530         2.740           0.210         0.530         2.186           0.200         1.910         1.631           -0.050         0.770         1.810           -0.050         0.770         1.810           -0.050         0.770         1.810           -0.050         0.770         1.810           -0.050         0.770         1.810           -0.050         0.770         1.810           -0.000         0.770         2.397           -0.000         0.370         0.546           0.520         1.960         1.758           -0.000         0.940         1.350           -0.000         0.000         1.247           -0.000         0.000         2.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.360         0.004         0.060         1.282           1.160         -0.430         10.840         2.841           4.840         -17.300         37.400         1.220           1.390         -1.130         26.300         2.277           4.620         -0.470         4.430         3.522           0.700         0.200         0.080         0.766           0.700         0.040         2.070         1.423           2.800         -0.120         0.080         0.766           2.170         1.050         2.270         1.423           2.170         1.050         2.070         1.743           2.170         1.050         2.270         2.240           2.170         1.050         2.229         2.148           2.160         0.210         0.530         2.188           2.160         0.500         1.910         1.631           2.550         -0.060         0.140         9.447           2.560         -0.060         0.750         2.397           2.600         -0.0002         0.300         1.580         2.578           2.1810         -0.0002         0.000         2.578 <tr< td=""><td>0.04         0.060         1.360         0.004         0.066         1.282           0.520         8.830         1.160         -0.430         10.840         2.841           0.520         29.800         4.840         -1.130         26.300         2.277           1.100         20.400         1.390         -1.130         26.300         2.277           0.740         1.390         -0.470         4.430         3.522           0.170         0.070         0.000         0.207         1.365           0.170         0.700         -0.002         0.300         1.763           0.100         0.670         1.280         0.040         2.700         1.423           0.100         0.700         -0.120         0.699         1.779           0.150         2.170         1.950         2.229         1.769           0.150         2.170         1.950         2.229         1.742           0.150         2.170         1.950         2.242           0.150         2.160         0.210         0.530         2.188           0.150         2.510         2.160         0.210         0.530         2.188           0.250         <td< td=""></td<></td></tr<> | 0.04         0.060         1.360         0.004         0.066         1.282           0.520         8.830         1.160         -0.430         10.840         2.841           0.520         29.800         4.840         -1.130         26.300         2.277           1.100         20.400         1.390         -1.130         26.300         2.277           0.740         1.390         -0.470         4.430         3.522           0.170         0.070         0.000         0.207         1.365           0.170         0.700         -0.002         0.300         1.763           0.100         0.670         1.280         0.040         2.700         1.423           0.100         0.700         -0.120         0.699         1.779           0.150         2.170         1.950         2.229         1.769           0.150         2.170         1.950         2.229         1.742           0.150         2.170         1.950         2.242           0.150         2.160         0.210         0.530         2.188           0.150         2.510         2.160         0.210         0.530         2.188           0.250 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.210<br>10.300<br>10.300<br>1.420<br>1.340<br>1.720<br>3.240<br>2.250<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | 10.840 2.841<br>37.400 11.220<br>26.300 3.522<br>3.200 1.385<br>0.080 0.766<br>2.070 1.423<br>3.500 2.229<br>4.250 2.229<br>0.530 2.188<br>1.910 1.631<br>0.740 9.447<br>0.740 9.447<br>29.970 2.397<br>0.370 0.546<br>1.580 2.573<br>48.590 1.350<br>0.600 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.840 2.841<br>37.400 11.220<br>26.300 3.522<br>3.230 1.385<br>0.080 0.766<br>2.070 0.770<br>4.470 2.229<br>0.530 2.740<br>0.770 11.810<br>0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.430 10.840 2.841<br>-1.130 26.300 11.220<br>-0.470 4.430 3.522<br>0.200 3.230 1.385<br>-0.040 0.699 1.779<br>-0.120 0.699 1.779<br>0.170 39.500 2.740<br>1.950 4.250 2.229<br>0.210 0.530 2.188<br>0.500 1.910 1.631<br>-0.050 0.770 11.810<br>-0.050 0.370 0.546<br>0.520 1.960 1.758<br>-0.0002 0.370 0.546<br>0.520 1.960 1.758<br>-0.0002 0.370 0.546<br>-0.390 1.580 2.573<br>21.960 48.590 1.350<br>-0.0003 0.061 2.307<br>-0.0003 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,160         -0.430         10.840         2.841           4,840         -17.300         26.300         11.220           1,390         -6.300         3.220         11.220           1,400         -0.200         3.230         1.385           1,200         -0.040         2.070         1.423           2,800         -0.120         0.699         1.779           3,110         0.170         39.500         2.740           2,160         0.210         0.530         2.188           2,160         0.210         0.530         2.188           1,760         0.050         1.910         1.631           4,550         -0.050         0.140         9.447           2,560         -0.050         0.140         9.447           2,560         -0.050         0.140         2.397           2,560         -0.000         0.70         1.580           2,180         0.520         1.960         2.397           2,600         -0.000         0.546         1.758           2,000         -0.000         1.960         2.573           1,300         -0.000         0.000         1.350           2,000 </td <td>0.520         8 830         1.160         -0.430         10.840         2.841           0.530         29.800         4.840         -17.300         37.400         1.122           0.740         4.390         4.620         -0.470         4.430         3.522           0.170         3.180         1.400         -0.200         3.230         1.385           0.040         2.000         1.280         -0.040         2.070         1.423           0.100         0.670         2.800         -0.120         0.699         1.779           0.150         2.570         3.110         0.710         39.500         2.740           1.530         4.180         2.170         1.950         4.250         2.229           0.190         0.510         2.160         0.210         0.530         2.189           0.190         1.850         1.760         -0.050         0.191         1.631           0.190         0.710         0.200         0.191         1.631           0.190         0.710         0.050         0.140         2.947           0.190         0.140         0.050         0.140         0.397           0.100         0.140</td>                     | 0.520         8 830         1.160         -0.430         10.840         2.841           0.530         29.800         4.840         -17.300         37.400         1.122           0.740         4.390         4.620         -0.470         4.430         3.522           0.170         3.180         1.400         -0.200         3.230         1.385           0.040         2.000         1.280         -0.040         2.070         1.423           0.100         0.670         2.800         -0.120         0.699         1.779           0.150         2.570         3.110         0.710         39.500         2.740           1.530         4.180         2.170         1.950         4.250         2.229           0.190         0.510         2.160         0.210         0.530         2.189           0.190         1.850         1.760         -0.050         0.191         1.631           0.190         0.710         0.200         0.191         1.631           0.190         0.710         0.050         0.140         2.947           0.190         0.140         0.050         0.140         0.397           0.100         0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.100 - 1.300 - 2.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -65.70<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-                                                                                                                                                                                                                                                                                                     | <u>'                                    </u>                                                                                                                                                                         | 26.300 2.277 4.430 2.2277 4.430 2.2277 4.430 2.227 2.200 0.069 1.729 39.500 2.740 4.250 2.229 0.050 2.148 1.910 0.140 9.447 2.29 377 0.141 810 0.140 9.447 0.370 1.360 0.140 9.447 0.370 0.140 9.447 0.370 0.140 9.447 0.370 0.140 9.447 0.370 0.140 9.447 0.397 0.397 0.397 0.390 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.246 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.240 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.240 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.240 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.240 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.240 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.247 0.000 1.240 0.000 1.240 0.000 1.240 0.000 1.240 0.000 1.240 0.000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97.400 11.220 - 26.300 2.277 4.430 2.527 4.430 2.527 2.506 0.766 2.070 1.729 39.500 2.740 39.500 2.740 3.770 11.810 0.770 11.810 0.770 11.810 0.770 11.810 0.770 11.810 0.770 11.810 0.770 11.810 0.0770 2.397 0.370 0.546 1.560 2.573 48.500 2.573 48.500 0.061 2.303 0.001 2.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -17.300 37.400 11.220 -1.130 26.300 2.277 -0.470 3.290 1.365 -0.002 0.080 0.776 0.080 0.179 0.179 0.170 3.250 1.350 1.350 0.200 0.210 0.200 0.210 0.200 0.210 0.200 0.210 0.200 0.210 0.200 0.210 0.200 0.210 0.200 0.200 0.370 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,840         -17,300         37,400         11,220           4,840         -1,130         26,300         25,277           4,620         -0,470         4,430         3,522           1,400         -0,202         3,230         1,385           1,280         -0,002         0,080         0,766           1,280         -0,102         0,699         1,773           2,170         -0,170         39,500         2,740           2,170         0,210         0,699         1,779           2,170         0,210         0,530         2,229           2,160         0,210         0,530         2,188           1,760         0,530         1,181         2,560           1,760         -0,060         0,140         9,447           2,550         -0,060         0,140         9,447           2,560         -0,000         1,580         2,397           0,480         0,520         1,580         2,573           1,360         2,040         2,573           1,360         0,000         1,580         2,573           2,000         -0,000         0,000         1,580           2,000         -0,000 </td <td>0.930         29,800         4,840         -17,300         37,400         11,220           1.740         4,300         1,390         -6,130         26,370         2,277           0.170         3,180         1,400         0,200         3,230         1,362           0.002         0,002         0,002         0,002         0,700         1,363           0.002         2,000         1,280         0,040         2,070         1,759           0.100         0,670         2,800         -0,120         0,699         1,779           0.100         0,670         2,800         -0,120         0,699         1,779           0.150         2,570         3,110         0,170         39,500         2,740           1,530         4,180         2,170         1,910         1,639         2,740           0,190         0,510         2,160         0,210         0,530         2,189         2,289           0,190         0,700         4,540         -0,050         0,140         9,47         4,470         2,397           0,190         0,140         0,480         -0,005         0,140         0,540         1,560         1,560           0,100</td>          | 0.930         29,800         4,840         -17,300         37,400         11,220           1.740         4,300         1,390         -6,130         26,370         2,277           0.170         3,180         1,400         0,200         3,230         1,362           0.002         0,002         0,002         0,002         0,700         1,363           0.002         2,000         1,280         0,040         2,070         1,759           0.100         0,670         2,800         -0,120         0,699         1,779           0.100         0,670         2,800         -0,120         0,699         1,779           0.150         2,570         3,110         0,170         39,500         2,740           1,530         4,180         2,170         1,910         1,639         2,740           0,190         0,510         2,160         0,210         0,530         2,189         2,289           0,190         0,700         4,540         -0,050         0,140         9,47         4,470         2,397           0,190         0,140         0,480         -0,005         0,140         0,540         1,560         1,560           0,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.420<br>0.790<br>0.790<br>1.720<br>1.720<br>2.250<br>2.150<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>0.23<br>0.23<br>0.15<br>0.15<br>0.21<br>1.15<br>1.15<br>0.21<br>1.15<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21                                                                                                                                                                                                       |                                                                                                                                                                                                                      | 4.430<br>4.430<br>3.230<br>1.365<br>0.080<br>0.700<br>1.720<br>0.699<br>1.770<br>0.220<br>0.530<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.430<br>2.230<br>3.230<br>1.365<br>0.080<br>0.700<br>1.723<br>0.699<br>1.773<br>0.590<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>1.810<br>0.770<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0.810<br>0. | -0.470 20.300 2.527<br>-0.200 3.230 1.365<br>-0.002 0.080 0.766<br>-0.0120 0.699 1.779<br>0.170 39.500 2.740<br>1.950 4.250 2.789<br>0.210 0.530 1.881<br>-0.050 0.770 11.810<br>-0.050 0.770 11.810<br>-0.050 0.770 11.810<br>-0.050 0.770 1.810<br>2.196 0.570 2.397<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0003 0.061 2.303<br>2.1960 1.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,620         -0.1100         2.0.30         3.527           1,400         -0.200         3.230         1.385           1,280         -0.002         0.080         0.766           1,280         -0.100         0.699         1.779           2,170         0.170         39,500         2.740           2,170         0.210         0.699         1.779           2,170         0.210         0.699         1.779           2,170         0.210         0.530         2.229           2,160         0.210         0.530         2.188           1,760         0.500         1.910         1.631           4,540         -0.060         0.140         9.447           2,560         -0.050         0.140         9.447           2,560         -0.050         0.140         9.447           2,510         -0.050         0.140         9.447           2,510         -0.030         1.580         2.54           1,180         0.520         1.960         1.758           2,000         -0.000         1.580         2.573           1,360         -0.000         0.000         1.207           2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.420<br>0.790<br>1.720<br>1.720<br>2.250<br>2.150<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.053<br>0.011<br>0.011<br>0.011<br>0.021<br>1.125<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                      | 3.230 1.385<br>0.080 0.766<br>2.070 1.723<br>0.699 1.772<br>39.500 2.740<br>4.250 2.229<br>0.530 2.188<br>1.910 1.631<br>0.140 9.447<br>2.937 2.397<br>0.370 0.546<br>1.580 2.573<br>48.590 1.350<br>0.601 2.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.230 1.385<br>0.080 0.766<br>2.070 1.423<br>0.699 1.779<br>39.500 2.740<br>4.250 2.229<br>0.770 11.810<br>0.770 11.810<br>0.770 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397<br>0.370 2.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.200 3.230 1.365<br>-0.002 0.060 0.766<br>-0.120 0.090 1.779<br>0.170 39.500 2.740<br>1.950 4.250 2.229<br>0.500 1.910 1.631<br>-0.050 0.770 11.810<br>-0.050 0.770 11.810<br>-0.050 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0002 0.370 0.546<br>-0.0003 0.061 2.303<br>2.1960 1.350<br>-0.0003 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,400         0.200         3.230         1.385           0,700         -0.002         0.080         0.766           1,280         -0.100         0.099         1.779           2,170         0.170         39,500         2.740           2,170         0.210         0.530         2.229           2,170         0.210         0.530         2.188           1,760         0.500         1.910         1.810           2,650         -0.050         0.140         9.447           2,560         -0.050         0.140         9.447           2,560         -0.050         0.140         9.447           2,560         -0.050         0.140         9.447           2,560         -0.050         0.140         9.447           2,510         -0.030         1.580         2.54           1,180         0.520         1.560         1.758           2,810         -0.030         1.580         2.573           1,360         2.040         2.573           1,200         -0.0003         0.61         2.573           1,200         -0.040         0.600         1.247           2,120         -0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.170         3.180         1.400         0.200         3.230         1.385           0.002         0.070         0.700         -0.002         0.090         0.766           0.040         2.000         1.280         0.070         1.779           0.100         0.670         2.800         -0.120         0.689         1.779           1.530         25.700         3.110         0.170         39.500         2.740           1.950         4.180         2.170         1.950         4.250         2.229           0.190         0.510         2.160         0.510         2.229         2.188           0.500         1.850         0.770         1.810         0.477         1.810           0.030         0.130         2.650         -0.050         0.140         9.447           0.030         0.140         0.480         -0.050         0.140         9.447           0.000         0.140         0.480         -0.050         0.370         1.810           0.000         0.140         0.480         -0.050         0.370         1.754           0.000         0.140         0.0520         1.350         2.548           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.790<br>1.340<br>1.720<br>3.240<br>2.250<br>2.150<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01<br>0.01<br>1.97<br>1.97<br>1.97<br>1.97<br>1.97<br>1.97<br>1.97<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      | 2.070 0.766<br>2.070 1.423<br>0.659 2.740<br>4.250 2.229<br>0.530 2.188<br>1.910 0.140 9.447<br>2.937 2.397<br>0.370 0.546<br>1.580 2.573<br>48.590 1.350<br>0.601 2.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.070 0.766<br>2.070 1.423<br>0.690 2.740<br>4.250 2.229<br>0.530 2.188<br>1.910 1.1810<br>0.770 11.810<br>0.140 9.447<br>29.970 2.397<br>0.370 0.546<br>1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.002 0.080 0.766 0.040 0.766 0.040 2.070 1.423 0.0170 39.509 2.7479 0.170 0.210 0.530 2.128 0.500 1.910 0.540 0.340 0.340 0.250 1.350 0.250 0.340 0.340 0.250 0.340 0.340 0.250 0.340 0.240 0.061 2.397 0.250 0.340 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2.393 0.061 2. | 0.700         -0.002         0.080         0.766           1.280         0.040         2.070         1.423           2.800         -0.120         0.6950         2.779           3.110         -0.120         0.5500         2.740           2.170         1.950         4.250         2.229           2.160         0.210         0.530         2.188           1.760         0.050         1.910         9.447           2.650         -0.050         0.140         9.447           2.560         -0.050         0.140         9.447           2.560         -0.050         0.140         9.447           2.560         -0.050         0.140         9.447           2.560         -0.050         0.140         9.47           2.560         -0.050         0.140         9.47           2.560         -0.005         0.140         9.47           2.810         -0.005         0.290         1.580         2.54           1.360         2.196         1.350         2.573           1.200         -0.000         0.000         1.247           2.120         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002         0.070         0.700         -0.002         0.080         0.766           0.040         2.000         1.280         0.040         2.070         1.423           0.100         0.670         3.110         -0.170         39.500         2.740           1.950         4.180         2.170         1.950         4.250         2.249           0.190         0.510         2.160         0.210         0.530         2.186           0.500         1.850         1.760         0.500         1.181         0.447           0.030         0.130         2.650         -0.050         0.140         9.447           0.030         0.140         0.480         -0.050         0.140         9.447           0.030         0.140         0.480         -0.050         0.140         9.447           0.030         0.140         0.480         -0.050         0.140         9.447           0.030         0.140         0.480         -0.050         0.140         9.447           0.030         0.140         0.0500         0.370         1.784         0.060           0.030         1.280         2.800         -0.050         0.370         1.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.340<br>1.720<br>3.240<br>2.250<br>2.150<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01<br>1.25<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15                                                                                                                                                                                                       |                                                                                                                                                                                                                      | 2.070 1.423<br>0.699 1.779<br>39.500 2.229<br>0.530 2.188<br>1.970 1.1810<br>0.140 9.447<br>28.970 2.397<br>0.370 0.546<br>1.560 1.758<br>1.560 2.573<br>48.590 1.350<br>0.000 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.070 1.423<br>0.699 1.779<br>39.500 2.740<br>4.250 2.229<br>0.530 2.188<br>1.910 1.631<br>0.140 9.447<br>29.970 2.397<br>0.370 0.346<br>0.370 0.346<br>1.960 1.758<br>1.560 2.573<br>48.590 1.350<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.040 2.070 1423<br>-0.170 9.699 1.779<br>0.170 0.699 1.779<br>0.210 0.530 2.229<br>0.210 0.530 2.188<br>-0.056 0.140 1.831<br>-0.056 0.140 2.947<br>-1.090 29.970 2.397<br>-0.0002 0.370 0.546<br>-0.390 1.580 1.350<br>-0.0003 0.061 2.373<br>21.960 48.590 1.350<br>-0.0003 0.061 2.373<br>-0.0003 0.061 2.373<br>-0.0003 0.061 2.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1280         0.040         2.070         1.428           2.800         -0.120         0.699         1.779           2.170         1.950         4.250         2.740           2.170         0.500         2.178           1.760         0.500         1.910         1.631           4.760         0.500         1.910         1.631           2.650         -0.050         0.140         9.447           2.560         -0.050         0.140         9.447           2.560         -0.000         0.770         1.810           0.480         0.0002         0.940         2.397           0.480         0.0002         1.960         1.756           1.180         -0.390         1.580         2.573           1.360         2.000         0.000         2.573           2.000         -0.0002         0.000         1.350           2.000         -0.000         0.000         1.247           2.120         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.040 2.000 1.280 0.040 2.070 1.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.240<br>2.250<br>2.150<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                      |                                                                                                                                                                                                                      | 0.689 1.779 39.500 2.229 0.530 2.189 1.970 1.631 0.770 1.1810 0.140 9.447 2.937 0.337 0.546 1.560 1.560 1.350 0.060 1.247 0.000 1.247 0.000 1.247 0.000 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.689 1.779 39.500 2.240 4.250 2.229 0.530 2.188 1.910 1.631 0.770 11.810 0.370 0.546 1.260 1.758 48.590 0.061 2.303 48.590 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.120 0.699 1.779 0.170 39.500 2.240 1.789 0.210 0.530 2.289 0.210 0.530 2.188 0.500 1.910 1.810 0.000 29.970 2.397 0.520 1.960 1.580 0.520 1.960 1.580 0.330 1.580 0.2573 21.960 48.590 1.350 0.240 0.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 1.247 0.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000  | 2,800         -0,120         0,699         1,779           3,110         0,170         39,500         2,240           2,170         1,950         4,250         2,224           2,160         0,210         0,530         2,188           1,760         0,500         1,910         1,631           2,650         -0,060         0,140         9,447           2,560         -1,090         29,970         2,397           0,480         -0,002         1,960         1,758           1,180         0,530         1,580         2,578           1,360         2,196         48,590         1,350           2,000         -0,0002         0,000         1,350           1,200         -0,000         0,000         2,573           1,200         -0,000         0,000         1,350           1,200         -0,000         0,000         1,247           2,120         -0,140         2,040         2,203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.100 0.670 2.800 -0.120 0.689 1.779 1.5950 25.700 3.110 0.170 39.500 2.229 1.719 0.150 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. |
| 2.250<br>2.150<br>1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.11<br>0.059<br>0.034<br>0.034<br>0.059<br>0.059<br>0.059<br>0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                      | 39,500 2,740<br>4,250 2,229<br>0,530 2,188<br>1,910 1,631<br>0,770 1,1810<br>0,140 2,397<br>29,970 2,397<br>0,370 0,546<br>1,580 2,573<br>48,590 1,350<br>0,061 2,573<br>0,060 1,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29,500 2,740 2,229 0,550 2,188 1,910 1,631 0,770 1,810 0,370 0,370 0,546 1,560 1,758 1,560 0,061 2,303 0,000 1,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.170 39.500 2.229<br>0.210 0.530 2.229<br>0.210 0.530 2.188<br>0.500 1.910 1.631<br>-0.050 0.140 9.447<br>-1.090 29.970 2.397<br>-0.0002 0.370 0.546<br>0.520 1.960 1.758<br>-0.390 1.580 2.573<br>21.960 48.590 1.350<br>-0.0003 0.061 2.303<br>-0.0003 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,110         0.170         39,500         2.729           2,160         0.210         4.250         2.229           2,160         0.210         0.530         2.188           1,760         0.000         1.910         1.631           4,540         0.050         0.140         9.447           2,560         -0.005         0.140         9.447           2,560         -0.000         29.970         2.397           0,480         -0.000         2.970         2.346           1,180         0.520         1.960         2.46           1,180         0.520         1.960         2.573           1,360         2,196         48.590         1.350           2,000         -0.003         0.060         1.350           2,000         -0.003         0.000         1.247           2,120         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,530 25,700 3,110 0,170 39,500 2,229 0,190 0,170 1950 4,190 2,170 1950 0,210 0,170 0,170 0,190 0,170 0,100 0,170 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,190 0,140 0,190 0,140 0,140 0,190 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140 0,140  |
| 2.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.375<br>22.375<br>22.375<br>22.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                      | 0.530<br>0.770<br>0.770<br>0.770<br>0.370<br>0.370<br>0.370<br>0.546<br>1.560<br>1.560<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061 | 0.530 2.188 1.910 1.631 0.770 1.1810 0.370 0.546 1.758 1.758 1.560 1.758 1.560 0.061 2.303 0.061 2.303 0.000 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.210 0.530 2.188 0.520 0.2210 0.530 0.218 0.050 0.370 1.810 0.050 0.370 0.397 0.530 0.520 0.370 0.546 0.520 1.580 2.573 0.050 0.0003 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.06 | 2.160         0.210         0.530         2.188           2.160         0.210         0.530         2.188           1.760         0.500         1.910         1.631           2.650         -0.060         0.770         1.1810           2.560         -1.090         29.970         2.397           2.840         -0.0002         0.370         0.546           1.180         -0.390         1.580         2.573           2.810         -0.390         1.580         2.573           2.000         -0.003         0.646         1.350           2.000         -0.003         0.61         2.573           2.000         -0.003         0.001         1.350           2.000         -0.003         0.001         1.247           2.120         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.190 0.510 2.160 0.210 0.530 2.188 0.0500 1.910 0.530 2.188 0.0500 1.910 1.631 0.010 0.0500 1.910 1.631 0.010 0.000 0.140 0.0140 0.0500 0.140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 |
| 1.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22237<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      | 1.910 1.631 0.770 1.1810 0.770 1.1810 0.370 2.397 0.3307 0.346 1.960 1.758 1.580 2.573 4.8590 1.350 0.600 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.910 1.631<br>0.770 1.1810<br>0.770 1.1810<br>0.370 0.546<br>1.960 1.756<br>1.580 2.573<br>48.590 2.573<br>48.690 1.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.500 1.910 1.631 -0.050 0.770 11810 -0.050 0.770 11810 -0.050 0.370 0.546 0.527 -0.0002 0.370 0.546 -0.0003 0.051 1.350 -0.0003 0.051 2.303 0.051 2.303 0.051 2.303 0.051 2.303 0.051 2.303 0.240 0.0003 0.001 2.303 -0.0003 0.001 2.303 0.001 1.347 -0.0003 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.001 2.303 0.00 | 1,700         0,500         1,910         1,630           4,540         -0,060         0,770         11,810           2,650         -0,050         0,140         9,447           2,550         -0,050         0,140         2,47           0,480         -0,000         0,370         0,546           1,180         0,520         1,960         1,758           2,810         -0,390         1,580         2,573           1,360         2,196         48,590         1,350           2,000         -0,0003         0,061         2,573           1,200         0,240         0,800         1,247           2,120         -0,140         2,040         2,203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      | 0.770 11.810<br>0.140 9.447<br>29.370 2.397<br>0.370 0.546<br>1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.770 11.810<br>0.140 9.447<br>29.970 2.397<br>0.370 0.546<br>1.960 1.756<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303<br>0.061 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.060 0.770 11.810<br>-0.050 0.140 9.447<br>-1.090 29.970 2.397<br>-0.0002 0.370 0.546<br>0.520 1.960 1.758<br>-0.390 1.580 2.573<br>21.960 48.590 1.350<br>-0.0003 0.061 2.303<br>-0.140 2.000 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.540         -0.060         0.770         11.810           2.650         -0.050         0.140         9.447           2.560         -1.090         29.970         2.397           0.480         -0.0002         0.370         0.546           1.180         0.520         1.960         1.758           2.810         -0.390         1.580         2.573           1.360         21.960         48.590         1.350           2.000         -0.0003         0.001         2.303           1.200         0.240         0.800         1.247           2.120         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.110 0.700 4.540 -0.060 0.770 11.810 0.030 0.130 2.650 -0.050 0.140 9.447 0.000 0.030 0.140 0.487 0.000 0.140 0.480 1.768 0.0500 1.280 1.280 2.810 -0.0390 1.580 2.573 0.000 1.768 0.090 1.280 2.810 -0.0390 1.580 2.573 0.000 0.060 0.060 0.060 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 |
| 14.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | 29.970 2.397 2.397 2.397 2.397 2.397 2.366 1.366 1.580 2.573 48.590 1.350 0.001 2.297 0.0001 2.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.370 2.397 0.346 1.580 1.350 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.060 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.050 0.140 9.447<br>-1.090 29.970 2.397<br>-0.0002 0.370 0.546<br>-0.390 1.560 2.573<br>21.960 48.590 1.350<br>-0.0003 0.061 2.303<br>-0.140 2.000 1.247<br>-0.140 2.000 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.650         -0.050         0.140         9.447           2.560         -1.090         29.970         2.397           0.480         -0.0002         0.340         1.758           1.180         -0.390         1.580         2.573           2.810         -0.390         1.580         2.573           1.360         2.196         48.590         1.350           2.000         -0.0003         0.061         2.303           1.200         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.030         0.130         2.650         -0.050         0.140         9.447           4.260         2.2490         2.560         -1.090         29.970         2.397           0.000         0.140         0.040         -0.0002         0.370         0.546           0.090         1.280         2.810         -0.390         1.580         2.573           1.700         48.300         1.360         21.960         48.590         1.350           0.003         0.060         0.0003         0.061         2.303           0.130         0.060         0.0003         0.061         2.303           0.130         1.300         0.240         0.240         2.303           0.143         0.800         1.247         0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                      | 29.970 2.397<br>0.370 0.546<br>1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.370 2.397<br>0.370 0.546<br>1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,090 29,970 2,397<br>-0,0002 0,370 0,546<br>-0,320 1,960 1,758<br>-0,390 1,580 2,573<br>21,960 48,590 1,350<br>-0,0003 0,061 2,303<br>-0,400 0,000 1,247<br>-0,140 2,040 2,203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.560         -1.090         29.970         2.397           0.480         -0.0002         0.370         0.546           1.180         -0.390         1.580         2.573           1.360         2.1960         48.590         1.350           2.000         -0.003         0.061         2.373           1.200         -0.200         0.240         0.800         1.247           2.120         -0.140         2.040         2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.260         22.490         2.560         -1.090         29.370         2.397           0.000         0.140         0.480         -0.0002         0.370         0.546           0.050         1.280         2.810         -0.390         1.580         2.573           1.700         48.300         1.360         2.1960         2.573           0.090         0.000         2.000         -0.000         1.350           0.000         2.000         -0.000         0.006         2.303           0.430         0.430         0.000         2.000         0.000         2.303           0.430         0.800         1.247         0.240         0.240         0.800         2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      | 0.370 0.546<br>1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.370 0.546<br>1.960 1.758<br>1.590 2.573<br>48.590 1.350<br>0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0002 0.370 0.546<br>0.520 1.960 1.758<br>-0.390 1.580 2.573<br>21.960 48.590 1.350<br>-0.0003 0.061 2.303<br>0.240 0.000 1.247<br>-0.140 2.000 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,480 -0,0002 0,370 0,546<br>1,180 0,520 1,580 1,580<br>2,810 -0,390 1,580 2,573<br>1,360 21,960 48,590 1,350<br>2,000 -0,0003 0,061 2,303<br>1,200 -0,140 2,040 2,203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000 0.140 0.480 -0.0002 0.370 0.546 0.500 0.500 1.360 1.180 0.520 1.580 1.580 1.786 0.000 1.360 2.180 0.0000 0.000 1.360 2.573 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.0001 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      | 1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303<br>0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.960 1.758<br>1.580 2.573<br>48.590 1.350<br>0.061 2.303<br>0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.520 1.960 1.758<br>-0.390 1.580 2.573<br>21.960 48.590 2.573<br>-0.0003 0.061 2.303<br>0.240 0.800 1.247<br>-0.140 2.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,180         0,520         1,960         1,758           2,810         -0,390         1,580         2,573           1,360         21,960         48,590         1,350           2,000         -0,003         0,611         2,303           1,200         0,240         0,800         1,247           2,120         -0,140         2,040         2,203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.500 1.360 1.180 0.520 1.960 1.758 0.090 1.280 2.810 -0.390 1.580 2.573 1.3700 48.300 1.360 -0.0003 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                      | 1.580 2.573<br>48.590 1.350<br>0.061 2.303<br>0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1580 2.573<br>48.590 1.350<br>0.061 2.303<br>0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.390 1.580 2.573 -0.390 1.580 0.2573 -0.0003 0.061 2.303 -0.247 -0.140 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.810 -0.390 1.580 2.573<br>1.360 21.960 48.590 1.350<br>2.000 -0.0003 0.061 2.303<br>1.200 0.240 0.800 1.247<br>2.120 -0.140 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.090 1.280 2.810 -0.390 1.580 2.573 1.700 48.300 1.360 2.000 -0.0003 0.061 2.303 0.430 1.340 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0. |
| 2.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                      | 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.061 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0003 0.061 2.303<br>-0.240 0.800 1.247<br>-0.140 2.040 2.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                    | 0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.240 0.800 1.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.200 0.240 0.800 1.247<br>2.120 -0.140 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 0 000 1 000 1 000 0 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0 140 2 040 2 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.120 -0.140 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.53.1   0.00.0   0.53.0   0.03.1   0.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      | 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.940 2.120 -0.140 2.040 2.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.259 0                                                                                                                                                                                                              | 0.380 1.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.380 1.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.170 0.380 1.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.160 0.170 0.380 1.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.370 1.160 0.170 0.380 1.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.160 6.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      | 6.320 1.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.320 1.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.170 6.320 1.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.170 6.320 1.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.170 6.170 1.150 1.170 6.320 1.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 800 1 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>آ</u> [آ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                    | 4 4 4 0 2 067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 4 4 0 2 067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2230 -0.0009 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 050 C 0240 4 540 A 440 2 057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.789 -10                                                                                                                                                                                                            | 2.810 3.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.810 3.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.080 2.810 3.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.780 -0.080 2.810 3.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,000 0.780 -0.080 2.810 3.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.740 387.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                    | 260.000 3.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.000 260.000 3.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.000 260.000 3.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.000 120.000 260.000 3.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 193.100 22.000 120.000 260.000 3.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                    | 0.050 1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050 1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.006 0.050 1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.160 -0.006 0.050 1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.030 1.160 -0.006 0.050 1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\rightarrow$                                                                                                                                                                                                        | 4.110 1.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.420 4.110 1.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.420 4.110 1.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.440 1.420 4.110 1.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.440 1.420 4.110 1.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.250 0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.829                                                                                                                                                                                                                | 1.600 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.710 1.600 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.600 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.770 0.710 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.530 0.770 0.710 1.600 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      | 1.420 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.360 0.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.360 0.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.980 0.361 0.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.420 0.360 0.360 0.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7 0 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 26.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,435                                                                                                                                                                                                                | 12 070 050 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 000 12 020 2 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 000 12 020 2 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 000 12 020 2 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.450 26.120 1.530 14.030 27.250 1.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.324                                                                                                                                                                                                                | 458 000 4445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.500 15.070 3.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.500 15.070 3.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.200 -3.300 -3.000 3.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.900 0.200 0.200 0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      | 100.000 4.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.550 156.500 4.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.550 156.500 4.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.040 3.000 100.000 4.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.040 3.000 100.000 4.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | اٰد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.829 0.                                                                                                                                                                                                             | 12.350 2.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.580 12.350 2.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.580 12.350 2.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.780 0.580 12.350 2.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.780 0.580 12.350 2.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 2.400 8.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.339                                                                                                                                                                                                                | 24.500 2.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 24.500 2.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 24.500 2.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,340 8,990 24,500 2,339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,340 8,990 24,500 2,339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.369 0                                                                                                                                                                                                              | 0.620 2.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.620 2.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.620 2.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,450 -0.070 0.620 2,369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,450 -0.070 0.620 2,369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 5.240 39.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.754 152.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.790 16                                                                                                                                                                                                             | 121.200 5.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.200 5.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.200 5.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.200 5.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.420 12.570 121.200 5.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 2.510 125.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>ٿ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.201 111                                                                                                                                                                                                            | 150.100 2.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150.100 2.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150.100 2.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.310 -25.500 150.100 2.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.310 -25.500 150.100 2.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5 0.700 2.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 069 7.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.9934.                                                                                                                                                                                                              | 8.110 7.993 -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.690 8.110 7.993 -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.780 2.690 8.110 7.993 -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.110 0.780 2.690 8.110 7.9934.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9 1.560 1.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 597 5.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.8496.                                                                                                                                                                                                              | 9.849 -6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.700 4.460 9.849 -6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.130 1.700 4.460 9.849 -6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.420 1.130 1.700 4.460 9.849 -6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.690 4.420 1.130 1.700 4.460 9.849 -6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6 1.610 0.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 588 3.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.524 0.                                                                                                                                                                                                             | 3.220 1.524 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.610 3.220 1.524 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.470 0.610 3.220 1.524 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.190 1.470 0.610 3.220 1.524 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.620 3.190 1.470 0.610 3.220 1.524 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

FIGURE B.1







Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CIIARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

NORTHERN ONTARIO L-CS vs. L-CV





CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

FIGURE B 2

L-CS vs. L-CK NORTHERN ONTARIO







Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE B 3 NORTHWESTERN OF ONTARIO L-CS vs. L-CV





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

FIGURE B.4

NORTHWESTERN OF ONTARIO

CHARACTERISTICS NORTHEASTERN

REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

L-CS vs. L-CK





Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

L-CS vs. L-CV NORTHEASTERN OF ONTARIO FIGURE B S



Cumming Cockburn
Consulting Engineers, Planners
CIIARACTERISTICS NORTHEASTI

NORTHEASTERN OF ONTARIO L-CS vs. L-CK CIIARACTERISTICS NORTIIEASTERN REGIONALIZATION OF LOW FLOW





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

L-CS vs. L-CV NORTHERN ONTARIO REGION ONE FIGURE B.7





Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE B.8 NORTHERN ONTARIO REGION ONE L-CS vs. L-CK





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

L-CV vs. L-CS NORTHERN ONTARIO REGION TWO FIGURE B 9





Cumming Cockburn
Consulting Engineers, Planners
and Environmental Scientists

kburn

REGIONALIZATION OF LOW FLOW
CHARACTERISTICS NORTHEASTERN
AND NORTHWESTERN ONTARIO

FIGURE B. 10

L-CS vs. L-CK NORTHERN ONTARIO REGION TWO





Cumming Cockburn Consulting Engineers, Planners

and Environmental Scientists

REGIONALIZATION OF LOW FLOW
CHARACTERISTICS NORTHEASTERN

AND NORTHWESTERN ONTARIO

L-CV vs. L-CS NORTHERN ONTARIO REGION TWO

FIGURE B 11





Cumming Cockburn
Consulting Engineers, Planners

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

NORTHERN ONTARIO REGION THREE

L-CS vs. L-CK

FIGURE B 12

## APPENDIX C WINTER/SUMMER/ANNUAL LOW FLOW POPULATION ANALYSIS

#### Winter/Summer/Annual Low Flow Population Analysis

From the literature review it is apparent that seasonal low flows may belong to distinct populations. Further investigations were undertaken to assess this possibility. For the purposes of this investigation summer is defined by the period of May to October, and Winter is defined by the period of November to April. The low flows for winter and summer were then extracted for each station. The analysis results are given in the following Tables.

To analyze the low flow populations in winter, summer, and annual, the mean values and the standard deviations, for each low flow series over the recorded period of each station, were computed and compared. Table C.1 presents the comparison of the means and standard deviation for each of the stations in Northern Ontario Regions. Table C.2 tabulates the Mann-Kendall trend testing results. From Table C.1, it is clear that significant differences can be found among the statistics of annual/winter/summer low flow records. As an example, station 05QE006's mean annual low flow is equal to 88.25 m<sup>3</sup>/s with standard deviation 45.82 m<sup>3</sup>/s. The mean value of low flows for winter and summer are 131.74 and 105.56 m<sup>3</sup>/s with standard deviation 63.46 and 61.06 m<sup>3</sup>/s, respectively. It is interesting to note that the flow time series for winter displayed significant upward trend, but the summer low flow sequence showed downward trend.

Generally, it was found that the summer low flows are higher than the low flows from winter at most of the stations. The mean summer low flow of the entire region is equal to 46.2 m³/s, while the mean winter low flow is 32.9 m³/s. However, with reference to the raw data records, it is known that some winter low flows were measured under ice conditions. Therefore, the accuracy of flow measurements may not be comparable for summer and winter conditions.

For the purposes of the regional analysis, the annual low flow series was used since more conservative results should be obtained. However, for cases where assessment of seasonal discharges is important, a low flow analysis on a seasonal basis should be considered.

When undertaking the seasonal analysis, the relative frequency of the annual flow by season of occurrence was also analysed. The highest frequency of occurrence for the annual low flow from the available data set was found to occur in March and September (about 17 - 18% of the time for each month). This appears to be more or less constant over the time period of the available record. However, for the remaining samples it was also found, that in a general sense, there appears to be some noticeable shift in the time period of occurrence of low flow on an annual basis, with approximately a 20% shift in frequency of occurrence from colder months to warmer months during the year. The main change was observed to occur in the months of October, November and December where recent sampling shows about a 5% reduction in frequency of occurrence of low flows (i.e. comparing recent and earlier records) for each month. Further seasonal analyses should give some consideration to possible factors (climatic variations? changes in data collection methods?) and statistical implications of such changes.

TABLE C.1 (a)
COMPARISON OF WINTER/SUMMER/ANNUAL FLOWS
NORTHWESTERN REGION

| Station | # of  | Region | Yea    | r     | Wir    | iter   | St     | ummer  |
|---------|-------|--------|--------|-------|--------|--------|--------|--------|
| Number  | Years | Code   | Mean   | S.D.  | Mean   | S.D.   | Mean   | S.D.   |
| 02AA001 | 68    | 3      | 2.12   | 0.92  | 2.48   | 1.12   | 3.33   | 2.19   |
| 02AB006 | 64    | 3      | 25.11  | 8.32  | 32.4   | 11.43  | 28.1   | 9.37   |
| 02AB009 | 34    | 3      | 5.04   | 2.24  | 6.91   | 2.77   | 6.68   | 3.78   |
| 02AB010 | 68    | 3      | 21.82  | 7.44  | 28.37  | 9.09   | 24.19  | 8.41   |
| 02AB014 | 19    | 3      | 0.08   | 0.05  | 0.17   | 0.11   | 0.1    | 0.07   |
| 02AB015 | 14    | 3      | 0.57   | 0.26  | 0.72   | 0.3    | 0.84   | 0.47   |
| 02AB016 | 14    | 3      | 0.06   | 0.05  | 0.08   | 0.07   | 0.2    | 0.26   |
| 02AC001 | 20    | 3      | 0.7    | 0.32  | 0.91   | 0.58   | 1.42   | 0.96   |
| 02AD010 | 20    | 3      | 0.88   | 0.23  | 0.97   | 0.21   | 1.63   | 0.822  |
| 02AE001 | 17    | 3      | 0.92   | 0.55  | 0.92   | 0.29   | 1.5    | 1.04   |
| 02BA002 | 21    | 3      | 2.7    | 0.8   | 3.15   | 0.98   | 4.98   | 2.68   |
| 02BB002 | 24    | 3      | 3.965  | 1.595 | 4.55   | 1.18   | 7.3    | 3.03   |
| 02BB003 | 21    | 3      | 7.474  | 2.205 | 8.23   | 2.89   | 15.38  | 7.11   |
| 04CA002 | 14    | 1      | 97.18  | 27.84 | 102.6  | 46.21  | 204.87 | 84.46  |
| 04CA003 | 24    | 1      | 0.64   | 0.26  | 0.76   | 0.36   | 1.98   | 1.92   |
| 04CB001 | 24    | 1 1    | 43.58  | 11.16 | 45.26  | 10.96  | 84.14  | 31.17  |
| 04CC001 | 19    | 1      | 168.6  | 44.2  | 173.02 | 47.31  | 428.18 | 244.93 |
| 04CE002 | 23    | 1      | 23.62  | 4.4   | 24.61  | 4.22   | 27.83  | 5      |
| 04DA001 | 25    | 1      | 9.88   | 3.96  | 9.65   | 2.58   | 31.75  | 16.67  |
| 04DC001 | 14    | 1      | 96.33  | 17.74 | 106.1  | 58.07  | 233.74 | 132.8  |
| 04DC002 | 24    | 1      | 2.66   | 1.05  | 2.7    | 1.07   | 11.05  | 10.72  |
| 04FA001 | 25    | 1      | 16.91  | 5.58  | 16.96  | 3.81   | 58.38  | 37.13  |
| 04FB001 | 24    | 1      | 48.11  | 11.88 | 51.28  | 8.75   | 151.99 | 63.91  |
| 04FC001 | 23    | 1      | 57.96  | 12.04 | 59.86  | 12.13  | 175.82 | 93.03  |
| 04GA002 | 23    | 3      | 14.02  | 8.43  | 19.82  | 4.53   | 30.86  | 13.37  |
| 04GB004 | 20    | 3      | 41.42  | 8.94  | 41.57  | 8.3    | 66.77  | 27.82  |
| 04GC002 | 16    | 1      | 17.74  | 6.93  | 18.51  | 9.78   | 37.37  | 25.34  |
| 04GD001 | 22    | 1      | 55.98  | 15.48 | 70.18  | 36.07  | 160.66 | 106.63 |
| 04JA002 | 37    | 1      | 10.61  | 3.18  | 11.17  | 3.54   | 18.1   | 8.75   |
| 04JC002 | 41    | 1 1    | 4.45   | 1.45  | 4.67   | 1.35   | 8.51   | 4.91   |
| 04JF001 | 22    | 1      | 12.96  | 2.94  | 13.53  | 6.22   | 28.28  | 14.77  |
| 05PA012 | 64    | 2      | 10.35  | 4.17  | 11.01  | 4.66   | 15.04  | 7.05   |
| 05PB009 | 28    | 2      | 12.94  | 10.84 | 23.91  | 10.01  | 16.2   | 13.1   |
| 05PC018 | 11    | 2      | 145.84 | 46.62 | 168.31 | 60.4   | 187.42 | 65.37  |
| 05PC019 | 86    | 2      | 74.87  | 23.57 | 137.75 | 53.69  | 146.45 | 54.15  |
| 05QA001 | 60    | 2      | 48.78  | 14.7  | 49.5   | 14.93  | 72.96  | 31.08  |
| 05QA002 | 70    | 2      | 21.15  | 7.16  | 21.77  | 6.95   | 33.12  | 18.47  |
| 05QD003 | 27    | 2      | 8.59   | 4.38  | 9.12   | 13.28  | 9.39   | 6.01   |
| 05QD006 | 28    | 2      | 19.51  | 8.83  | 22.58  | 7.58   | 24.98  | 10.16  |
| 05QD016 | 21    | 2      | 4.96   | 4.5   | 13.33  | 32.62  | 16.4   | 45.13  |
| 05QE006 | 49    | 2      | 88.25  | 45.82 | 131.74 | 63.46  | 105.56 | 61.06  |
| 05QE007 | 35    | 2      | 150.86 | 78.84 | 223.17 | 106.38 | 167.18 | 86.55  |
| 05QE008 | 21    | 2      | 4.39   | 2.03  | 4.96   | 1.99   | 6.96   | 3.26   |
| 05QE009 | 31    | 2      | 0.03   | 1.57  | 3.53   | 1.63   | 4.69   | 2.97   |

TABLE C.1 (b)
COMPARISON OF WINTER/SUMMER/ANNUAL FLOWS
NORTHEASTERN REGION

| Station | # of  | Region | Yea    | r     | Win    | ter   | St     | ımmer |
|---------|-------|--------|--------|-------|--------|-------|--------|-------|
| Number  | Years | Code   | Mean   | S.D.  | Mean   | S.D.  | Mean   | S.D.  |
| 02BF001 | 24    | 3      | 3.78   | 1.94  | 4.94   | 1.6   | 4.51   | 1.82  |
| 02BF002 | 24    | 3      | 2.86   | 1.79  | 4.04   | 1.46  | 3.45   | 1.9   |
| 02CA002 | 20    | 3      | 0.08   | 0.06  | 0.32   | 0.16  | 0.1    | 0.06  |
| 02CC007 | 41    | 3      | 18.82  | 11.22 | 31.83  | 17.33 | 24.99  | 12.19 |
| 02CC008 | 40    | 3      | 34.42  | 20.09 | 41.42  | 31.77 | 37.55  | 11.37 |
| 02CC009 | 31    | 3      | 33.04  | 16.96 | 44.13  | 24.2  | 38.2   | 8.2   |
| 02CD001 | 25    | 3      | 3.06   | 1.9   | 7.59   | 3.61  | 3.45   | 2.15  |
| 02CD006 | 23    | 3      | 0.652  | 0.291 | 1.25   | 0.38  | 0.77   | 0.3   |
| 02CE001 | 44    | 3      | 43.95  | 13.57 | 61.25  | 15.34 | 49.99  | 14.31 |
| 02CE002 | 76    | 3      | 4.08   | 1     | 5.51   | 1.95  | 4.58   | 1.53  |
| 02CF007 | 31    | 3      | 0.523  | 0.15  | 0.72   | 0.22  | 0.61   | 0.21  |
| 02CF010 | 15    | 3      | 1.84   | 0.8   | 3.09   | 0.8   | 2.24   | 1.19  |
| 02DC003 | 70    | 3      | 30.32  | 12.38 | 41.02  | 14.13 | 33.26  | 13.15 |
| 02DC008 | 52    | 3      | 1.73   | 3.43  | 4.17   | 6.57  | 4.95   | 5.96  |
| 02DD005 | 47    | 3      | 2.33   | 1.15  | 4.61   | 1.5   | 2.45   | 1.31  |
| 02DD009 | 35    | 3      | 1.57   | 0.68  | 2.51   | 0.71  | 1.75   | 0.76  |
| 02DD010 | 30    | 3      | 47.06  | 18.48 | 124.02 | 44.69 | 47.73  | 19.48 |
| 02DD013 | . 17  | 3      | 0.06   | 0.03  | 0.15   | 0.05  | 0.07   | 0.04  |
| 02DD015 | 17    | 3      | 0.17   | 0.12  | 0.49   | 0.09  | 0.19   | 0.22  |
| 02EA005 | 76    | 3      | 0.8    | 0.43  | 1.75   | 0.52  | 0.91   | 0.6   |
| 02EA006 | 76    | 3      | 1.97   | 0.97  | 4      | 1.62  | 2.18   | 1.23  |
| 02EA010 | 23    | 3      | 0.41   | 0.19  | 0.74   | 0.27  | 0.47   | 0.22  |
| 02EA013 | 11    | 3      | 0.03   | 0.04  | 0.74   | 0.53  | 0.03   | 0.05  |
| 02JC008 | 23    | 3      | 3.94   | 1.1   | 4.29   | 1.73  | 4.11   | 2.14  |
| 02JE018 | 12    | 3      | 0.05   | 0.05  | 0.13   | 0.04  | 0.05   | 0.05  |
| 02JE019 | 19    | 3      | 3.99   | 1.82  | 6.83   | 2.1   | 4.93   | 3.3   |
| 02JE020 | 20    | 3      | 1.95   | 1.34  | 5.46   | 1.38  | 2.01   | 1.4   |
| 04KA001 | 21    | 1      | 1.43   | 0.95  | 1.45   | 1.13  | 8.45   | 5.99  |
| 04LF001 | 73    | 1      | 12.17  | 4.36  | 12.89  | 4.47  | 20.55  | 12.14 |
| 04LG002 | 24    | 1      | 164.98 | 42.42 | 176.58 | 44.17 | 247.11 | 94.06 |
| 04LM001 | 19    | 1      | 22.95  | 6.49  | 23.29  | 9.89  | 50.19  | 22.58 |
| 04MD004 | . 14  | 1      | 0.58   | 0.19  | 0.62   | 0.19  | 0.71   | 0.4   |
| 04ME002 | 59    | 1      | 142.71 | 25.22 | 155.91 | 26.59 | 155.43 | 26.8  |
| 04MF001 | 25    | 1 1    | 7.53   | 3.5   | 9.12   | 8.65  | 26.75  | 15.12 |

## TABLE C.2(a) MANN-KENDALL TEST FOR TREND (7 Days Low Flow) NORTHWESTERN REGION

|         |        | Anr    | nual  |       |        | Wir            | nter  |       |        | Summer      |     |        |
|---------|--------|--------|-------|-------|--------|----------------|-------|-------|--------|-------------|-----|--------|
| Station |        |        | Indic | cator |        |                | Indic | cator |        |             | Ind | icator |
| Number  | tau    | Zm     | 5%    | 1%    | tau    | z <sub>m</sub> | 5%    | 1%    | tau    | $z_{\rm m}$ | 5%  | 1%     |
| 2AA001  | 0.15   | 1.732  | No    | No    | 0.178  | 2.052          | Yes   | No    | 0.079  | 0.913       | No  | No     |
| 2AB004  | -0.148 | -1.714 | No    | No    | -0.198 | -2.283         | Yes   | No    | -0.164 | ~1.892      | No  | No     |
| 2AB006  | -0.118 | -1.287 | No    | No    | 0.024  | 0.255          | No    | No    | -0.159 | -1.735      | No  | No     |
| 2AB008  | 0.25   | 2.03   | Yes   | No    | 0.167  | 1.348          | No    | No    | 0.256  | 2.076       | Yes | No     |
| 2AB009  | 0.197  | 1.48   | No    | No    | -0.133 | -0.994         | No    | No    | 0.138  | 1.032       | No  | No     |
| 2AB010  | 0.045  | 0.51   | No    | No    | 0.149  | 1.72           | No    | No    | -0.07  | -0.807      | No  | No     |
| 2AB011  | 0.085  | 0.97   | No    | No    | 0.107  | 1.227          | No    | No    | 0.016  | 0.176       | No  | No     |
| 2AB013  | -0.313 | -2.627 | Yes   | Yes   | -0.272 | -2.287         | Yes   | No    | -0.324 | -2.727      | Yes | Yes    |
| 2AB014  | 0.152  | 0.743  | No    | No    | 0.314  | 1.584          | No    | No    | 0.095  | 0.446       | No  | No     |
| 2AB015  | -0.165 | -0.767 | No    | No    | -0.055 | -0.219         | No    | No    | -0.121 | -0.548      | No  | No     |
| 2AB016  | 0.154  | 0.712  | No    | No    | 0.231  | 1.096          | No    | No    | 0.209  | 0.986       | No  | No     |
| 2AC001  | 0.13   | 0.676  | No    | No    | -0.1   | -0.495         | No    | No    | 0.05   | 0.225       | No  | No     |
| 2AC002  | 0.029  | 0.099  | No    | No    | 0.067  | 0.297          | No    | No    | -0.314 | -1.584      | No  | No     |
| 2AD008  | -0.33  | -2.82  | Yes   | Yes   | -0.256 | -2.179         | Yes   | No    | -0.259 | -2.207      | Yes | No     |
| 2AD009  | 0.045  | 0.425  | No    | No    | -0.042 | -0.394         | No    | No    | 0.093  | 0.88        | No  | No     |
| 2AD010  | -0.105 | -0.495 | No    | No    | 0.124  | 0.594          | No    | No    | -0.181 | -0.891      | No  | No     |
| 2AE001  | 0.455  | 1.992  | Yes   | No    | 0.152  | 0.618          | No    | No    | 0.303  | 1.305       | No  | No     |
| 2BA002  | -0.059 | -0.288 | No    | No    | 0      | 0              | No    | No    | 0.015  | 0.041       | No  | No     |
| 2BA003  | 0.165  | 0.766  | No .  | No    | 0.143  | 0.658          | No    | No    | 0.033  | 0.11        | No  | No     |
| 2BB002  | -0.135 | -0.77  | No    | No    | -0.228 | -1.329         | No    | No    | 0.053  | 0.28        | No  | No     |
| 2BB003  | 0.033  | 0.135  | No    | No    | 0.033  | 0.135          | No    | No    | -0.05  | -0.225      | No  | No     |
| 2BC004  | 0.252  | 1.786  | No    | No    | -0.098 | -0.683         | No    | No    | 0.206  | 1.455       | No  | No     |
| 4CA002  | -0.19  | -1.061 | No    | No    | -0.19  | -1.061         | No    | No    | 0.007  | 0           | No  | No     |
| 4CA003  | 0.292  | -1.741 | No    | No    | 0.316  | 1.854          | No :  | No    | 0.041  | 0.21        | No  | No     |
| 4CA004  | -0.268 | -1.515 | No    | No    | -0.229 | -1.288         | No    | No    | -0.059 | -0.303      | No  | No     |
| 4CB001  | -0.368 | -2.169 | Yes   | No    | -0.38  | -2.239         | Yes   | No    | -0.123 | -0.7        | No  | No     |
| 4CC001  | 0.103  | 0.428  | No    | No    | 0.103  | 0.428          | No    | No    | 0      | 0           | No  | No     |
| 4CE002  | 0.039  | 0.189  | No    | No    | 0.046  | 0.227          | No    | No    | 0.085  | 0.455       | No  | No     |
| 4DA001  | -0.295 | -1.784 | No    | No    | -0.295 | -1.784         | No    | No    | -0.158 | 0.941       | No  | No     |
| 4DB001  | 0.247  | 4.492  | No    | No    | 0.247  | 1.492          | No    | No    | 0.289  | 1.752       | No  | No     |
| 4DC001  | -0.297 | -1.525 | No    | No    | -0.324 | -1.772         | No    | No    | -0.015 | -0.041      | No  | No     |
| 4DC002  | 0.013  | 0.038  | No    | No    | 0.013  | 0.038          | No    | No    | 0.059  | 0.303       | No  | No     |
| 4EA001  | -0.02  | -0.076 | No    | No    | -0.02  | -0.076         | No    | No    | -0.111 | -0.606      | No  | No     |
| 4FA001  | 0.253  | -1.53  | No    | No    | -0.221 | -1.33          | No    | No    | -0.3   | 1.87        | No  | No     |
| 4FA002  | -0.263 | -1.539 | No    | No    | -0.24  | -1.399         | No    | No    | -0.38  | -2.239      | Yes | No     |
| 4FA003  | -0.409 | -2.414 | Yes   | No    | -0.409 | -2.414         | Yes   | No    | -0.421 | -2.484      | Yes | No     |
| 4FB001  | -0.058 | -0.324 | No    | No    | -0.058 | -0.324         | No    | No    | -0.095 | -0.552      | No  | No     |
| 4FC001  | -0.105 | -0.595 | No    | No    | -0.105 | -0.595         | No    | No    | -0.158 | -0.91       | No  | No     |
| 4GA001  | -0.625 | -6.465 | Yes   | Yes   | -0.573 | -5.921         | Yes   | Yes   | -0.651 | -6.733      | Yes | No     |
| 4GA002  | 0.15   | -0.766 | No    | No    | -0.15  | -0.766         | No    | No    | -0.133 | -0.676      | No  | No     |
| 4GB001  | -0.026 | -0.245 | No    | No    | -0.072 | -0.685         | No    | No    | -0.052 | -0.489      | No  | No     |
| 4GB004  | 0.124  | 0.594  | No    | No    | 0.162  | 0.792          | No    | No    | -0.124 | -0.594      | No  | No     |

## TABLE C.2(a) MANN-KENDALL TEST FOR TREND (7 Days Low Flow) NORTHWESTERN REGION

|         |        | Anr                      | augl. |       |        | \A/ir                   | nter |       |        | Summer                  |     |          |
|---------|--------|--------------------------|-------|-------|--------|-------------------------|------|-------|--------|-------------------------|-----|----------|
| Station |        | AIII                     |       | cator |        | VVII                    |      | cator |        | Summer                  | 1   | icator   |
|         | tou    | 7                        | 5%    | 1%    | tau    | 7                       | 5%   | 1%    | tou    | 7                       | 5%  |          |
| Number  | -0.286 | Z <sub>m</sub><br>-0.693 | No    | No    | -0.2   | Z <sub>m</sub><br>-0.99 | No   | No    | 0.086  | Z <sub>m</sub><br>0.396 |     | 1%<br>No |
| 04GC002 |        |                          |       |       | -0.316 | -1.914                  |      |       |        |                         | No  |          |
| 04GD001 | -0.311 | -1.882                   | No    | No    |        |                         | No   | No    | -0.179 | -1.071                  | No_ | No       |
| 04HA001 | -0.085 | -0.455                   | No    | No    | -0.085 | -0.455                  | No   | No    | -0.203 | -1.136                  | No  | No       |
| 04JA002 | -0.019 | -0.15                    | No    | No    | -0.038 | -0.313                  | No   | No    | 0.098  | 0.831                   | No  | No       |
| 04JC002 | 0.162  | 1.376                    | No    | No    | 0.181  | 1.539                   | No   | No    | 0.149  | 1.267                   | No  | No       |
| 04JC003 | -0.09  | -0.763                   | No    | No    | -0.038 | -0.313                  | No   | No    | -0.03  | -0.245                  | No  | No       |
| 04JD002 | -0.224 | 2.24                     | Yes   | No    | -0.224 | 2.24                    | Yes  | No    | -0.289 | -2.889                  | Yes | Yes      |
| 04JD003 | -0.134 | -1.333                   | No    | No    | 0.056  | 0.551                   | No   | No    | -0.066 | -0.658                  | No  | No       |
| 04JD005 | -0.094 | -0.525                   | No    | No    | 0.018  | 0.07                    | No   | No    | -0.181 | -1.05                   | No  | No       |
| 04JF001 | -0.235 | -1.277                   | No    | No    | -0.235 | -1.277                  | No   | No    | -0.118 | -0.618                  | No  | No       |
| 05PA006 | 0.213  | 2.485                    | Yes   | No    | 0.229  | 2.665                   | Yes  | Yes   | 0.171  | 1.993                   | Yes | No       |
| 04JG001 | -0.125 | -0.77                    | No    | No    | -0.099 | -0.56                   | No   | No    | -0.088 | -0.49                   | No  | No       |
| 05PA012 | 0.095  | 1.053                    | No    | No    | 0.182  | 2.034                   | Yes  | No    | 0.05   | 0.549                   | No  | No       |
| 05PB009 | -0.269 | -1.77                    | No    | No    | -0.095 | -0.608                  | No   | No    | -0.289 | -1.902                  | No  | No       |
| 05PB014 | 0.233  | 2.693                    | Yes   | Yes   | 0.26   | 3.001                   | Yes  | Yes   | 0.128  | 1.477                   | No  | No       |
| 05PC018 | 0.147  | 1.623                    | No    | No    | 0.319  | 3.528                   | Yes  | Yes   | -0.022 | -0.235                  | No  | No       |
| 05PC019 | 0.032  | 0.416                    | No    | No    | 0.167  | 2.198                   | Yes  | No    | -0.081 | -1.06                   | No  | No       |
| 05PD015 | -0.343 | -1.733                   | No    | No    | -0.305 | -1.535                  | No   | No    | -0.343 | -1.733                  | No  | No       |
| 05PD017 | 0      | 0                        | No    | No    | -0.038 | -0.149                  | No   | No    | -0.19  | -0.941                  | No  | 'No      |
| 05PD023 | -0.343 | -1.733                   | No    | No    | 0.552  | 2.822                   | Yes  | Yes   | -0.371 | -1.881                  | No  | No       |
| 05PE005 | 0.229  | 1.288                    | No    | No    | 0.15   | 0.833                   | No   | No    | 0.163  | 0.909                   | No  | No       |
| 05PE006 | 0.437  | 5.69                     | Yes   | Yes   | 0.468  | 6.1                     | Yes  | Yes   | 0.375  | 4.89                    | Yes | Yes      |
| 05PE011 | 0.161  | 2.014                    | Yes   | No    | 0.281  | 3.515                   | Yes  | Yes   | 0.111  | 1.381                   | No  | No       |
| 05QA001 | 0.06   | 0.676                    | No    | No    | 0.073  | 0.816                   | No   | No    | 0.003  | 0.032                   | No  | No       |
| 05QA002 | 0.123  | 1.44                     | No    | No    | 0.196  | 2.304                   | Yes  | No    | 0.078  | 0.917                   | No  | No       |
| 05QA004 | -0.087 | -0.584                   | No    | No    | -0.037 | -0.234                  | No   | No    | -0.12  | -0.817                  | No  | No       |
| 05QB006 | 0.046  | 0.339                    | No    | No    | 0.062  | 0.464                   | No   | No    | -0.002 | 0                       | No  | No       |
| 05QC001 | -0.076 | -0.496                   | No    | No    | 0      | 0                       | No   | No    | -0.087 | 0.57                    | No  | No       |
| 05QC003 | -0.324 | -1.772                   | No    | No    | -0.368 | -2.019                  | Yes  | No    | -0.176 | -0.948                  | No  | No       |
| 05QD003 | -0.187 | -1.085                   | No    | No    | -0.205 | -1.19                   | No   | No    | -1.175 | -1.015                  | No  | No       |
| 05QD006 | -0.068 | -0.542                   | No    | No    | -0.011 | -0.077                  | No   | No    | -0.095 | -0.759                  | No  | No       |
| 05QE006 | -0.091 | 1.181                    | No    | No    | 0.246  | 3.205                   | Yes  | Yes   | 0.167  | -2.172                  | Yes | No       |
| 05QE007 | -0.154 | -1.178                   | No    | No    | -0.136 | -1.035                  | No   | No    | -0.094 | -0.714                  | No  | No       |
| 05QE008 | -0.5   | -2.761                   | Yes   | No    | -0.515 | -2.843                  | Yes  | Yes   | 0.191  | -1.03                   | No  | No       |
| 05QE009 | -0.094 | -0.62                    | No    | No    | -0.174 | -1.166                  | No   | No    | -0.094 | -0.62                   | No  | No       |

Yes - There is a Trend No - No Trend

# TABLE C.2(b) MANN-KENDALL TEST FOR TREND (7 Days Low Flow) NORTHEASTERN REGION

|         |        | Anr            | ıual |       |        | Wir            | nter  |       |        | Summer         |      |       |
|---------|--------|----------------|------|-------|--------|----------------|-------|-------|--------|----------------|------|-------|
| Station |        |                | Indi | cator |        |                | Indic | cator |        |                | Indi | cator |
| Number  | tau    | z <sub>m</sub> | 5%   | 1%    | tau    | z <sub>m</sub> | 5%    | 1% :  | tau    | z <sub>m</sub> | 5%   | 1%    |
| 02BD002 | 0.389  | 4.34           | Yes  | Yes   | 0.441  | 4.924          | Yes   | Yes   | 0.339  | 3.786          | Yes  | Yes   |
| 02BD003 | 0.009  | -0.044         | No   | No    | 0.028  | 0.176          | No    | No ;  | -0.058 | -0.397         | No   | No    |
| 02BE002 | 0.398  | 4.11           | Yes  | Yes   | 0.407  | 4.207          | Yes   | Yes   | 0.463  | 4.784          | Yes  | Yes   |
| 02BF001 | 0.076  | 0.42           | No   | No    | 0.123  | 0.7            | No    | No    | -0.088 | -0.49          | No   | No    |
| 02BF002 | -0.018 | -0.07          | No   | No    | 0.076  | 0.42           | No    | No    | -0.053 | -0.28          | No   | No    |
| 02CA002 | 0.067  | 0.297          | No   | No    | 0.181  | 0.891          | No    | No    | 0.067  | 0.297          | No   | No    |
| 02CC005 | -0.021 | -0.192         | No   | No    | 0.047  | 435            | No    | No    | 0.027  | 0.253          | No   | No    |
| 02CC008 | 0.448  | 3.584          | Yes  | Yes   | 0.373  | 2.984          | Yes   | Yes   | 0.413  | 3.308          | Yes  | Yes   |
| 02CD001 | 0.011  | 0.032          | No   | No    | 0.053  | 0.292          | No    | No    | 0.011  | 0.032          | No   | No    |
| 02CD006 | 0.055  | 0.156          | No   | No    | 0.091  | 0.311          | No    | No    | 0.055  | 0.156          | No   | No    |
| 02CE001 | -0.189 | -1.625         | No   | No    | 0.225  | 1.949          | No    | No    | -0.317 | -2.747         | Yes  | Yes   |
| 02CE002 | -0.012 | -0.137         | No   | No    | -0.069 | -0.0842        | No    | No    | 0.008  | 0.091          | No   | No    |
| 02CE005 | -0.195 | -2.308         | Yes  | No    | 0.23   | 2.723          | Yes   | Yes   | -0.205 | -2.441         | Yes  | No    |
| 02CF004 | -0.25  | -3.007         | Yes  | Yes   | 0.155  | -1.858         | No    | No    | -0.248 | -2.986         | Yes  | Yes   |
| 02CF005 | -0.422 | -3.064         | Yes  | Yes   | 0.274  | -1.98          | Yes   | No    | -0.553 | -4.023         | Yes  | Yes   |
| 02CF007 | -0.323 | 2.293          | Yes  | No    | 0.012  | 0.066          | No    | No :  | 0.255  | 1.808          | No   | No    |
| 02CF008 | -0.121 | 0.481          | No   | No    | 0.333  | 1.442          | No    | No :  | 0.152  | 0.618          | No   | No    |
| 02CF009 | -0.24  | -1.66          | No   | No    | -0.113 | -0.771         | No    | No    | -0.387 | -2.686         | Yes  | Yes   |
| 02CF010 | 0.273  | 1.09           | No   | No    | 0.364  | 1.479          | No    | No    | 0.2    | 0.778          | No   | No    |
| 02CF011 | -0.303 | -1.305         | No   | No    | -0.061 | -0.206         | No    | No    | -0.333 | -1.442         | No   | No    |
| 02DB005 | -0.314 | -2.594         | Yes  | Yes   | 0.02   | -0.148         | No    | No    | -0.326 | -2.698         | Yes  | Yes   |
| 02DC003 | 0.058  | 0.674          | No . | No    | 0.242  | 2.848          | Yes   | Yes   | -0.03  | -0.345         | No   | No    |
| 02DC004 | 0.179  | 1.293          | No   | No    | 0.151  | 1.084          | No    | No    | 0.003  | 0              | No   | No    |
| 02DC007 | 0.119  | 1.182          | No   | No    | 0.056  | 0.551          | No    | No    | 0.202  | 2.018          | Yes  | No    |
| 02DC008 | 0.166  | 1.653          | No   | No    | 0.07   | 0.693          | No    | No    | 0.308  | 3.075          | Yes  | Yes   |
| 02DD005 | 0.154  | -1.522         | No   | No    | 0.221  | 2.183          | Yes   | No    | -0.179 | -1.761         | No   | No    |
| 02DD008 | 0.218  | 1.543          | No   | No    | 0.049  | 0.331          | No    | No    | 0.185  | 1.301          | No   | No    |
| 02DD009 | -0.133 | -0.994         | No   | No    | 0.18   | 1.351          | No    | No    | -0.148 | -1.107         | No   | No    |
| 02DD010 | 0.33   | 2.289          | Yes  | No    | 0.14   | 0.958          | No    | No    | 0.327  | 2.266          | Yes  | No    |
| 02DD012 | 0.308  | 1.405          | No   | No    | 0.282  | 1.283          | No    | No    | 0.436  | 2.016          | Yes  | No    |
| 02DD013 | 0.409  | 1.786          | No   | No    | 0.288  | 1.236          | No    | No    | 0.47   | 2.06           | Yes  | No    |
| 02DD015 | 0.333  | 1.442          | No   | No    | 0.045  | 0.137          | No    | No    | 0.333  | 1.442          | No   | No    |
| 02EA005 | 0.159  | 1.956          | No   | No    | 0.055  | 0.675          | No    | No    | 0.141  | 1.737          | No   | No    |
| 02EA006 | -0.136 | -1.678         | No   | No    | 0.204  | 2.517          | Yes   | No    | -0.145 | -1.787         | No   | No    |
| 02EA010 | 0.018  | 0.07           | No   | No    | 0.298  | 1.749          | No    | No    | 0.006  | 0              | No   | No    |
| 02EA011 | 0.179  | 0.794          | No   | No :  | 0.141  | 0.611          | No    | No    | 0.385  | 1.771          | No   | No    |
| 02EA013 | 0.473  | 1.946          | No   | No    | -0.018 | 0              | No    | No    | 0.473  | 1.946          | No   | No    |
| 02JC008 | 0.078  | 0.417          | No   | No    | -0.052 | -2.65          | No    | No    | 0.222  | 1.25           | No   | No    |
| 02JD009 | 0      | 0,             | No   | No    | 0.265  | 1.442          | No    | No    | 0.059  | -0.288         | No   | No    |
| 02JD012 | 0.449  | 4.122          | Yes  | Yes   | 0.495  | 4.549          | Yes   | Yes   | 0.295  | 2.707          | Yes  | Yes   |
| 02JE018 | -0.255 | -1.012         | No   | No    | -0.055 | -0.156         | No    | No    | -0.309 | -1.246         | No   | No    |
| 02JE019 | 0.086  | 0.396          | No   | No    | -0.143 | 0.693          | No    | No    | 0.048  | 0.198          | No   | No    |

# TABLE C.2(b) MANN-KENDALL TEST FOR TREND (7 Days Low Flow) NORTHEASTERN REGION

|         |        | Anı            | nual |       |        | Wii            | nter |       |        | Summer         |      |        |
|---------|--------|----------------|------|-------|--------|----------------|------|-------|--------|----------------|------|--------|
| Station |        |                | Indi | cator | 1      |                | Indi | cator |        |                | Indi | icator |
| Number  | tau    | Z <sub>m</sub> | 5%   | 1%    | tau    | z <sub>m</sub> | 5%   | 1%    | tau    | z <sub>m</sub> | 5%   | 1%     |
| 02JE020 | -0.01  | 0              | No   | No    | 0.39   | 1.98           | Yes  | No    | -0.01  | 0              | No   | No     |
| 04HA001 | -0.085 | -0.91          | No   | No    | -0.085 | 0.455          | No   | No    | -0.203 | -1.136         | No   | No     |
| 04JA002 | -0.019 | -0.15          | No   | No    | -0.038 | -0.313         | No   | No    | 0.098  | 0.831          | No   | No     |
| 04JC002 | 0.162  | 1.376          | No   | No    | 0.181  | 1.539          | No   | No    | 0.149  | 1.267          | No   | No     |
| 04JC003 | -0.09  | -0.763         | No   | No    | -0.038 | 0.313          | No   | No    | 0.03   | -0.245         | No   | No     |
| 04KA001 | 0.017  | 0.045          | No   | No    | 0.017  | 0.045          | No   | No    | 0      | 0              | No   | No     |
| 04LB001 | 0.096  | 1.129          | No   | No    | 0.415  | 4.925          | Yes  | Yes   | 0.135  | -1.594         | No   | No     |
| 04LD001 | 0.217  | 2.503          | Yes  | No    | 0.355  | 4.104          | Yes  | Yes   | 0.022  | 1.751          | No   | No     |
| 04LF001 | -0.077 | -0.926         | No   | No    | -0.072 | -0.868         | No   | No    | 0.057  | -0.683         | No   | No     |
| 04LG002 | -0.36  | -2.377         | Yes  | No    | -0.328 | -2.166         | Yes  | No    | 0.289  | -1.902         | No   | No     |
| 04LJ001 | 0.004  | 0.039          | No   | No    | -0.013 | -0.144         | No   | No    | 0.037  | 0.437          | No   | No     |
| 04LM001 | 0.077  | 0.305          | No   | No    | 0.103  | 0.428          | No   | No    | -0.154 | -0.672         | No   | No     |
| 04MD002 | -0.213 | -2.124         | Yes  | No    | -0.186 | -1.858         | No   | No    | -0.072 | -0.711         | No   | No     |
| 04MD004 | 0.778  | 3.014          | Yes  | Yes   | 0.556  | 2.147          | Yes  | No    | 0.6    | 2.326          | Yes  | No     |
| 04ME002 | -0.029 | -2.98          | No   | No    | 0.235  | 2.507          | Yes  | No    | -0.082 | -0.873         | No   | No     |
| 04ME004 | -0.387 | -2.686         | Yes  | Yes   | -0.147 | -1.004         | No   | No    | -0.263 | -1.822         | No   | No     |
| 04MF001 | -0.374 | -2.271         | Yes  | No    | -0.374 | -2.271         | Yes  | No    | 0.079  | -0.454         | No   | No     |

APPENDIX D STATISTICAL REGIONS



### APPENDIX D STATISTICAL REGIONS

#### Statistical Regions

Low flow estimation may be improved by identification of statistically homogeneous regions or sub-regions. Various statistical tests were applied to evaluate the identification of sub-regions. These test included the following:

- 1. Statistical Homogeneity Test (see Appendix D.1);
- 2. Heterogeneity Measure (see Appendix D.2); and
- 3. Cluster Analysis (see Appendix D.3).

The tests and relevant results are described in the following sub-sections.



APPENDIX D.1 STATISTICAL HOMOGENEITY TEST

#### APPENDIX D.1 STATISTICAL HOMOGENEITY TEST

#### Statistical Homogeneity Test

For every station, a low flow frequency analysis is performed based on the W3 distribution. Flows corresponding to specific return periods of nonexceedance can be made dimensionless by dividing by some chosen index low flow.

Within a homogeneous region, the dimensionless frequency curve at any station is considered a random sample. The best representation of the regional characteristics is obtained by averaging the dimensionless curves for all stations in the region. The resulting average dimensionless curve is the regional dimensionless frequency curve and is considered applicable throughout the region, providing the conditions of homogeneity are met. From equation (B - 3), any three low flows and their return periods of nonexceedance give three simultaneous transcendental equations which, when solved, yield parameters a, e and u. If the 2, 12.488, and 100-year low flows are selected, then the solution is simplified to the evaluation of the three functions. The value 12.488 is the mid-point between 2 and 100-year return periods in W3 reduced variate terms.

The procedure then is to find the median values of the dimensionless 12.488 and 100-year low flows in the region.

When the index low flows are selected as the 2-year low flows, the median dimensionless value of all the 2-year low flow is unity. The medians are then substituted into the following expressions to obtain the parameters of the regional dimensionless curve:

$$e = (Q_{100} - Q_{12.488}) / (1 + Q_{100} - 2Q_{12.488})$$
 (D - 1)

$$a = 4.23464 / \ln \left[ (1-e) / (Q_{100} - e) \right]$$
 (D - 2)

$$u = [(1-e) / 0.69315^{\frac{1}{a}}] + e$$
 (D - 3)

For each station, the 10-year nonexceedance flow is tested by multiplying its estimated 2-year nonexceedance flow by the regional  $Q_{10}$  index ratio. Using the station analysis, the return period Y of the estimated 10-year nonexceedance flow  $X_{100}$  can be found from:

$$y = 1/\{1 - \exp[-\exp(a \ln (X_{10} - e)/(u - e))]\}$$
 (D - 4)

The value of y should fall within two standard errors of the return period for a given sample size N to be expected in random sampling from W3 distribution.

The following expression is used to estimate the standard error of the y-year nonexceedance. For the 10-year nonexceedance low flow:

$$y = 0.10536/N^{\frac{1}{2}} \tag{D-5}$$

From this relationship the approximate upper and lower 95% confidence limits can be computed for any sample size N. Thereafter, the corresponding upper and lower limits of the return period  $y_i$  and  $y_u$  can be calculated from equation (D - 4).

The results of the statistical homogeneity test for the three sub-regions in Northern Ontario (see Figure 3.4) are summarized on Figures D.1, D.2, and D.3. In all cases, a significant scatter of data above and below the  $\pm$  95% confidence limit band was found. This is attributed mainly to the shape of the probability density function. Generally, it was found that (compared to flood frequency curves) the low flow frequency curves are "flat", giving rise to significant estimating error in determining the recurrence interval for plotting using the available data and the procedures described above.





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

HOMOGENEITY TEST REGION ONE

FIGURE D 1





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CHARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

FIGURE D.2

HOMOGENEITY TEST REGION TWO





Consulting Engineers, Planners and Environmental Scientists Cumming Cockburn

CIIARACTERISTICS NORTHEASTERN REGIONALIZATION OF LOW FLOW AND NORTHWESTERN ONTARIO

HOMOGENEITY TEST REGION TIIREE



APPENDIX D.2 HETEROGENEITY MEASURE

|  |  | 0 |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |

# APPENDIX D.2 HETEROGENEITY MEASURE

The purpose of this technique is to estimate the degree of heterogeneity in a group of sites and to assess whether they might reasonably be treated as a homogeneous region. Specifically, the heterogeneity measure compares the between-site variations in sample L-moments for the group of sites with what would be expected for a homogeneous region.

## Heuristic Description

In a homogeneous region all sites have the same population L-moments. Their sample L-moments will, however, be different, owing to sampling variability. Thus a natural question to ask is whether the between-site dispersion of the sample L-moments for the group of sites under consideration is larger than would be expected of a homogeneous region.

A simple measure of the dispersion of the sample L-moments is the standard deviation of the at-site L-CVs. It is reasonable to concentrate on L-CV, since between-site variation of L-CV has a much larger effect than variations in L-skewness or L-kurtosis on the variance of the estimates of all quantiles  $Q_i(F)$ , except those in the far tail of the distribution with  $F \ge 0.998$ . To allow for the greater variability of L-moments in small samples, average should be weighted proportionally to the sites' record lengths.

To establish what "would be expected" a simulation technique could be used. By repeated simulation of a homogeneous region with sites having record lengths the same as those of the observed data, the mean and standard deviation of the chosen dispersions measure could be obtained. To compare the observed and simulated dispersions, an appropriate statistic is:

A large positive value of this statistic indicates that the observed L-moments are more dispersed than is consistent with the hypothesis of homogeneity.

#### Formal Definition

Calculate the weighted standard deviation of the at-site sample L-CVs.

$$V = \sum_{i=1}^{N} Ni (L - CV^{(i)} - L - CV)^{2} / \sum_{i=1}^{N} Ni$$
 (D - 7)

Fit a Weibull distribution to the group average L-moments to obtain parameters a, e, and u.

Simulate a large number  $N_{nm}$  of groups from this Weibull distribution. For each simulation calculate V. From the simulations determine the mean and standard deviation of the  $N_{nm}$  values of V. Call these  $\mu_{v}$  and  $\sigma_{v}$ . Calculate the heterogeneity measure.

$$H = \frac{(V - \sigma_{v})}{\sigma_{v}} \tag{D - 8}$$

Declare the region to be heterogeneous if H is sufficiently larger. It is suggested that the region would be regarded as "acceptable homogeneous" if H < 1, "possibly heterogeneous" if  $1 \le H < 2$ , and "definitely heterogeneous" if  $H \ge 2$ .

A summary of the results for 500 simulations is given in Table D.1.

The heterogeneity measure technique was found to confirm the homogeneity of the selected sub-regions in the sense of similar frequency distribution characteristics. The weighted standard deviation of the at-site sample L-CVs (represented by V in Table D.1) present the variations of the L-CV of the regions. The expected V and its standard deviation from the simulation give the range of variation of the V statistics. The heterogeneity measure, which is the H value in Table D.1, declares the region to be heterogeneous if H is sufficiently larger. The region would be regarded as "acceptable homogeneous" if H < 1, "possibly heterogeneous" if H < 1, and "definitely heterogeneous" if  $H \ge 1$ . From Table D.1, it is evident that the database available for Northern Ontario is heterogeneous (because H = 1). The Northwestern and Northeastern regions could be defined as possibly the heterogeneous regions and the sub-regions could be viewed as homogeneous. Therefore it is concluded that, the regionalization techniques could be applied to the sub-regions with some confidence.

| Region               | V (recorded) | V <sup>e</sup> (simulated) | Std. Dev. of V<br>(simulated) | Н    |
|----------------------|--------------|----------------------------|-------------------------------|------|
| Northern Ontario     | 0.016        | 0.013                      | 0.0014                        | 2.48 |
| Northwestern Ontario | 0.024        | 0.019                      | 0.0034                        | 1.56 |
| Northeastern Ontario | 0.008        | 0.0065                     | 0.0011                        | 1.29 |
| Sub-Region 1         | 0.0037       | 0.0031                     | 0.00061                       | 0.97 |
| Sub-Region 2         | 0.0095       | 0.0083                     | 0.0029                        | 0.41 |
| Sub-Region 3         | 0.022        | 0.020                      | 0.0033                        | 0.60 |

Note: H < 1 Homogeneous

1 < H < 2 Possibly Heterogeneous

H > 2 Heterogeneous

(500 simulations)

V weighted standard deviation of the at site L-CV's

Ve Simulated standard deviation of of L-CV

H Heterogeneity measure

|  |  | e e |  |
|--|--|-----|--|
|  |  |     |  |
|  |  |     |  |

APPENDIX D.3 CLUSTER ANALYSIS



# APPENDIX D.3 CLUSTER ANALYSIS

### Cluster Analysis

Cluster analysis is, basically, a pattern recognition procedure consisting of the following five steps.

- 1. choose the appropriate variables;
- 2. transform and standardize the variables, if necessary;
- 3. choose the appropriate distance or similarity measure;
- 4. choose the clustering algorithm; and
- 5. run the analysis and interpret the results.

#### Standardization

Variables may be standardized (Z values) by centering them about their mean  $(\overline{x})$  and rescalling them by the reciprocal of their standard deviation(s):

$$Z = \frac{x - \overline{x}}{s} \tag{D-9}$$

The standardized values are called Z values or Z scores. The unstandardized variables may have different units and may be scaled differently. When converted to Z scores the variables contribute equally to the cluster analysis. Weighting the variable equally is generally preferred unless there is a prior information identifying that some variables are more important than others.

#### Distance or Similarity Measure

Clustering methods begin with a matrix of distances or similarities between samples. This procedure produces an  $n \times n$  matrix whose elements consist of the distance between, or similarity of, two samples. Many different definitions for distance have been defined. In this study, the following equation was used to evaluate the distance:

Distance (A, B) = 
$$\sqrt{\sum_{i=1}^{m} (A_i - B_i)^2}$$

where Distance (A, B) is the distance between samples A and B.

### Clustering Algorithm

Clustering algorithms may be either hierarchical or non hierarchical. Hierarchical algorithms produce dendograms that show the sample similarities. Non hierarchical algorithms produce groups directly. A hierarchical algorithm used in the analysis. The SPSS may produce clustering results based on the distance matrix.

#### Results and Conclusion

The cluster analysis was undertaken using all the variables identified suitable for regression analysis (see Table 3.8). The variables were not standardized because some of the variables, such as drainage area, stream length and the mean annual runoff, are more important than the others. Therefore, it is desirable that these variables have more effects on the clustering of low flow records. The results show that the drainage area dominated the clustering. This is consistent with the correlation analysis which indicate that the drainage areas are the most important parameter in estimating low flow characteristics.

The 93 stations were divided into two groups namely a Large Drainage Area group and a Small Drainage Area group. The 78 stations, whose  $DA < 17,000 \text{ km}^2$ , may be classified into the small drainage area group. The remaining 15 stations, with larger drainage, belong to the cluster of Large Drainage Area.

The attached printouts show the results in more detail.

```
SPSS/PC+ The Statistical Package for IBM PC
T /FILE 'C:\7354\BASET.SPS'.
e SPSS/PC+ system file is read from
  file C:\7354\BASET.SPS
e file was created on 8/14/92 at 12:20:35
d is titled
e SPSS/PC+ system file contains
  99 cases, each consisting of
59 Cases, each consisting of 52 variables (including system variables).
52 variables will be used in this session.
ge 2
                                     SPSS/PC+
                                                                                      7/13/93
is procedure was completed at 14:42:54
   3 SPSS/PC+ 7/13/93
ge 3
JUSTER YEAR RN MAP MAS MAR EVA DA BFI LNTH ACL Q2 /ID NEMBER /PRINT
USTER (2,4) DISTANCE SCHEDULE /METHOD COMPLETE /MEASURE EUCLID /PLOT VICICLE
NDROGRAM.
JUSTER requires 30216 BYTES of workspace for execution.
---
ge 4
                                  SPSS/PC+
                                                                                     7/13/93
* * * * HIERARCHICAL CLUSTER ANALYSIS * * * * *
ata Information
        99 unweighted cases accepted.
        O cases rejected because of missing value.
uclidean measure used.
. Agglomeration method specified.
uclidean Dissimilarity Coefficient Matrix
                                                                                      7/13/93
ige 77
luster Membership of Cases using Complete Linkage
                                             Number of Clusters
Label
                         Case 4 3 2
02AA001 68 0 800 23 1 1 1 1 1 1 02AB006 64 1 785 23 2 1 1 1 1 1 02AB009 34 1 785 23 3 1 1 1 1 1 02AB010 68 1 785 23 4 1 1 1 1 02AB011 67 1 780 23 5 1 1 1 02AB014 19 0 780 24 6 1 1 1 02AB015 14 1 780 24 7 1 1 1 02AB016 14 1 780 23 8 1 1 1 02AB016 14 1 780 23 8 1 1 1 02AC001 20 0 785 24 9 1 1 1 02AD009 48 1 780 25 10 1 1 1 02AD010 20 0 788 25 11 1 1 1 02AB010 17 0 805 24 12 1 1 1 02BB002 24 0 875 24 14 1 1
```

|                                                                                                                                                                                         | 21 0 8                                                                                                                                   |                                                                                                                                            | 15                                                                                                       | 1                                                                       | 1                                                                                                                                                                                                         | 1                                       |          |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|---------|
| 04GA002                                                                                                                                                                                 | 23 0 7                                                                                                                                   | 720 23<br>                                                                                                                                 | 16                                                                                                       | 1                                                                       | 1<br>                                                                                                                                                                                                     | 1                                       |          |         |
| Page 78                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                            |                                                                                                          | SPSS                                                                    | S/PC+                                                                                                                                                                                                     |                                         |          | 7,13.91 |
|                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                            |                                                                                                          |                                                                         | Numb                                                                                                                                                                                                      | per of                                  | Clusters |         |
| Label                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                            | Case                                                                                                     | 4                                                                       | 3                                                                                                                                                                                                         | 2                                       |          |         |
|                                                                                                                                                                                         | 20 0 5                                                                                                                                   | 740 26                                                                                                                                     |                                                                                                          | 1                                                                       | 1                                                                                                                                                                                                         |                                         |          |         |
|                                                                                                                                                                                         | 20 0 7                                                                                                                                   |                                                                                                                                            | 17<br>18                                                                                                 | 1<br>2                                                                  | 1<br>2                                                                                                                                                                                                    | 1<br>1                                  |          |         |
| 04CA003                                                                                                                                                                                 | 24 0 5                                                                                                                                   |                                                                                                                                            | 19                                                                                                       | 1                                                                       | 1                                                                                                                                                                                                         | 1                                       |          |         |
| 04CA004<br>04CB001                                                                                                                                                                      | 19 0 5                                                                                                                                   |                                                                                                                                            | 20<br>21                                                                                                 | 1<br>1                                                                  | 1<br>1                                                                                                                                                                                                    | 1<br>1                                  |          |         |
| 04CC001                                                                                                                                                                                 | 19 0 5                                                                                                                                   |                                                                                                                                            | 22                                                                                                       | 3                                                                       | 3                                                                                                                                                                                                         | 2                                       |          |         |
|                                                                                                                                                                                         | 20 0 5                                                                                                                                   | 550 19                                                                                                                                     | 23                                                                                                       | 1                                                                       | 1                                                                                                                                                                                                         | 1                                       |          | 1       |
| 04CE002                                                                                                                                                                                 | 23 0 6                                                                                                                                   |                                                                                                                                            | 24                                                                                                       | 1                                                                       | 1                                                                                                                                                                                                         | 1                                       |          |         |
| 04DA001<br>04DC001                                                                                                                                                                      | 25 0 6<br>14 0 5                                                                                                                         |                                                                                                                                            | 25<br>26                                                                                                 | 1<br>4                                                                  | 1<br>2                                                                                                                                                                                                    | 1<br>1                                  |          |         |
|                                                                                                                                                                                         | 24 0 5                                                                                                                                   |                                                                                                                                            | 27                                                                                                       | i                                                                       | ī                                                                                                                                                                                                         | î                                       |          |         |
|                                                                                                                                                                                         | 25 1 7                                                                                                                                   |                                                                                                                                            | 28                                                                                                       | 1                                                                       | 1                                                                                                                                                                                                         | 1                                       |          |         |
|                                                                                                                                                                                         | 24 1 7                                                                                                                                   |                                                                                                                                            | 29                                                                                                       | 1                                                                       | 1<br>2                                                                                                                                                                                                    | 1<br>1                                  |          |         |
|                                                                                                                                                                                         | 24 0 7<br>23 0 6                                                                                                                         |                                                                                                                                            | 30<br>31                                                                                                 | 2 2                                                                     | 2                                                                                                                                                                                                         | 1                                       |          |         |
| 04GC002                                                                                                                                                                                 | 16 1 7                                                                                                                                   | 735 26                                                                                                                                     | 32                                                                                                       | ĩ                                                                       |                                                                                                                                                                                                           | 1                                       |          |         |
|                                                                                                                                                                                         | 22 1 7                                                                                                                                   |                                                                                                                                            | 33                                                                                                       | 2                                                                       | 2                                                                                                                                                                                                         | 1                                       |          |         |
| 04JA002                                                                                                                                                                                 | 37 0 8                                                                                                                                   | 310 30                                                                                                                                     | 34                                                                                                       | 1                                                                       |                                                                                                                                                                                                           | 1                                       |          |         |
| Page 79                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                            |                                                                                                          | SPSS                                                                    | S/PC+                                                                                                                                                                                                     |                                         |          | 7/13/93 |
|                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                            |                                                                                                          |                                                                         | Numb                                                                                                                                                                                                      | ner of                                  | Clusters |         |
|                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                            |                                                                                                          |                                                                         |                                                                                                                                                                                                           |                                         |          |         |
|                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                            |                                                                                                          |                                                                         |                                                                                                                                                                                                           |                                         |          |         |
| Label                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                            | Case                                                                                                     | 4                                                                       | 3                                                                                                                                                                                                         | 2                                       |          |         |
| \\\\                                                                                                                                                                                    | 41 0 8                                                                                                                                   | 310 30                                                                                                                                     | Case                                                                                                     | 1                                                                       | 3                                                                                                                                                                                                         | 2                                       |          |         |
| 04JC002<br>04JF001                                                                                                                                                                      | 22 0 7                                                                                                                                   | 770 30                                                                                                                                     | 35<br>36                                                                                                 | 1                                                                       | 3 1 1                                                                                                                                                                                                     | 2 1 1                                   |          |         |
| 04JC002<br>04JF001<br>05PA012                                                                                                                                                           | 22 0 7<br>64 1 7                                                                                                                         | 770 30<br>750 22                                                                                                                           | 35<br>36<br>37                                                                                           | 1<br>1<br>1                                                             | 3<br>1<br>1                                                                                                                                                                                               | 2<br>1<br>1                             |          |         |
| 04JC002<br>04JF001<br>05PA012                                                                                                                                                           | 22 0 7                                                                                                                                   | 770 30<br>750 22<br>790 22                                                                                                                 | 35<br>36                                                                                                 | 1                                                                       | 3 1 1                                                                                                                                                                                                     | 2 1 1                                   |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019                                                                                                                          | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7                                                                                           | 770 30<br>750 22<br>790 22<br>750 22<br>755 22                                                                                             | 35<br>36<br>37<br>38<br>39<br>40                                                                         | 1<br>1<br>1<br>4<br>2                                                   | 3<br>1<br>1<br>1<br>2<br>2                                                                                                                                                                                | 2 1 1 1 1 1 1 1 1                       |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026                                                                                                               | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7                                                                                 | 770 30<br>750 22<br>790 22<br>750 22<br>755 22<br>740 22                                                                                   | 35<br>36<br>37<br>38<br>39<br>40<br>41                                                                   | 1<br>1<br>1<br>4<br>2<br>1                                              | 3<br>1<br>1<br>1<br>2<br>2<br>2                                                                                                                                                                           | 2 1 1 1 1 1 1 1 1 1 1                   |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026<br>05PE005                                                                                                    | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7                                                                       | 770 30<br>750 22<br>790 22<br>750 22<br>755 22<br>740 22<br>720 19                                                                         | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                             | 1<br>1<br>1<br>4<br>2<br>1                                              | 3<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1                                                                                                                                                                 | 2 1 1 1 1 1 1 1 1 1 1 1                 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026                                                                                                               | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7                                                                                 | 770 30<br>750 22<br>790 22<br>750 22<br>755 22<br>740 22<br>720 19                                                                         | 35<br>36<br>37<br>38<br>39<br>40<br>41                                                                   | 1<br>1<br>1<br>4<br>2<br>1                                              | 3<br>1<br>1<br>1<br>2<br>2<br>2                                                                                                                                                                           | 2 1 1 1 1 1 1 1 1 1 1                   |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026<br>05PE005<br>05PE011<br>05QA001<br>05QC001                                                                   | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>60 0 7<br>29 1 7                                                   | 770 30<br>750 22<br>790 22<br>750 22<br>755 22<br>740 22<br>720 19<br>720 19<br>790 22<br>720 22                                           | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                           | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1                                    | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1                                                                                                                                                            | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD003                                                        | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>33 1 7<br>29 1 7<br>27 0 7                                         | 770 30<br>750 22<br>790 22<br>750 22<br>755 22<br>740 22<br>720 19<br>720 19<br>790 22<br>720 22                                           | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                     | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1                               | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1                                                                                                                                                       | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QC001                                                        | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>60 0 7<br>29 1 7                                                   | 770 30<br>750 22<br>790 22<br>750 22<br>755 22<br>740 22<br>720 19<br>720 19<br>790 22<br>720 22<br>775 22                                 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                           | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1                                    | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1                                                                                                                                                            | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PD026<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD003<br>05QD006<br>05QD006<br>05QD016<br>05QE006            | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>23 1 7<br>23 1 7<br>29 1 7<br>27 0 7<br>27 0 7<br>28 1 7<br>21 1 7                     | 770 30<br>750 22<br>790 22<br>755 22<br>740 22<br>720 19<br>720 19<br>720 22<br>772 22<br>775 22<br>775 22<br>775 23<br>700 20             | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                   | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>2                | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1                                                                                                          | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PC005<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD006<br>05QD006<br>05QE006<br>05QE006                       | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>33 1 7<br>60 0 7<br>29 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>35 1 6           | 770 30<br>750 22<br>790 22<br>755 22<br>740 22<br>720 19<br>720 19<br>720 22<br>775 22<br>775 22<br>775 22<br>775 23<br>700 20<br>595 20   | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50             | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2           | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PC005<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD006<br>05QD006<br>05QD016<br>05QE007<br>05QE008            | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>23 1 7<br>29 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>49 1 7<br>21 0 7 | 770 30<br>750 22<br>790 22<br>755 22<br>740 22<br>720 19<br>720 22<br>720 22<br>775 22<br>775 22<br>7775 23<br>7700 20<br>695 20<br>750 19 | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                   | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>2                | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1                                                                                                          | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD003<br>05QD006<br>05QD016<br>05QE006<br>05QE007<br>05QE008<br>05QE009 | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>23 1 7<br>29 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>35 1 6<br>31 0 7 | 770 30<br>750 22<br>790 22<br>755 22<br>755 22<br>720 19<br>720 19<br>720 22<br>770 22<br>770 22<br>770 20<br>750 19<br>750 19<br>760 19   | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50             | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1           | 3 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                   | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PC010<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD006<br>05QD006<br>05QE007<br>05QE008<br>05QE009            | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>23 1 7<br>29 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>35 1 6<br>31 0 7 | 770 30<br>750 22<br>790 22<br>755 22<br>755 22<br>720 19<br>720 19<br>720 22<br>770 22<br>770 22<br>770 20<br>750 19<br>750 19<br>760 19   | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51       | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1           | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | 7/13/93 |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC019<br>05PC019<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD003<br>05QD006<br>05QD016<br>05QE006<br>05QE007<br>05QE008<br>05QE009 | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>23 1 7<br>29 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>35 1 6<br>31 0 7 | 770 30<br>750 22<br>790 22<br>755 22<br>755 22<br>720 19<br>720 19<br>720 22<br>770 22<br>770 22<br>770 20<br>750 19<br>750 19<br>760 19   | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51       | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1           | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Clusters |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC019<br>05PC019<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD003<br>05QD006<br>05QD016<br>05QE006<br>05QE007<br>05QE008<br>05QE009 | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>23 1 7<br>29 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>35 1 6<br>31 0 7 | 770 30<br>750 22<br>790 22<br>755 22<br>755 22<br>720 19<br>720 19<br>720 22<br>770 22<br>770 22<br>770 20<br>750 19<br>750 19<br>760 19   | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51       | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1           | 3<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |
| 04JC002<br>04JF001<br>05PA012<br>05PB009<br>05PC018<br>05PC019<br>05PC010<br>05PE005<br>05PE011<br>05QA001<br>05QC001<br>05QD006<br>05QD006<br>05QD006<br>05QE007<br>05QE008<br>05QE009 | 22 0 7<br>64 1 7<br>28 1 7<br>11 1 7<br>30 1 7<br>12 1 7<br>23 1 7<br>23 1 7<br>27 0 7<br>28 1 7<br>21 1 7<br>35 1 7<br>31 0 7           | 770 30<br>750 22<br>790 22<br>755 22<br>740 22<br>720 19<br>720 22<br>775 22<br>770 22<br>770 20<br>750 19<br>760 19<br>760 19             | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52 | 1<br>1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1 | 3 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 3 5/PC+ Numb                                                                                                                                                        | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |         |

```
24 0 895 30
                             54
02BF002
                                             1
           12
              0
                900 30
                             55
                                       1
                                             1
02BF004
                                                   1
           12
                             56
              0 895
                      30
                                       1
                                             1
                                                   1
02BF006
                             57
02CA002
           20 0 930 30
                                       1
                                             1
02CC007
           41
              1 890
                      29
                             58
                                       1
                                             1
                                                   1
           40
              1
                 885
                      27
                             59
                                       1
02CC008
                                             1
                                                   1
              1
                 885
                      28
                             60
b2CC009
           31
                                             1
                                                   1
02CC010
           11
              1
                 890
                      28
                             61
                                             1
                                                   1
02CD001
           25 0 900
                      25
                             62
                                       1
                                             1
b2CD002
           14 1 900
                      25
                             63
                                       1
                                             1
                                                   1
           22
              1 900
                      25
                             64
                                       1
                                             1
02CD004
                                                   1
02CD006
           23
              0 900
                      25
                             65
                                       1
                                             1
02CE001
           44
              1 890
                      25
                             66
                                       1
                                             1
                                                   1
02CE002
           76
              1 880
                      25
                             67
                                       1
                                             1
                                                   1
           31 0 795 25
                             68
02CF007
                                      1
                                             1
02CF010
           15 1 800 25
                             69
                                       1
                                             1
                                                   1
02CF012
           14 0 800 26
                             70
                                       1
                                             1
                                                   1
    81
                                       SPSS/PC+
                                                                                     7/13/93
                                             Number of Clusters
Label
                          Case
                                             3
                                                   2
                                       4
02DB007
          11 0 805 26
                             71
                                       1
                                             1
                                                   1
02DC003
                             72
          70 1 830 27
                                       1
                                             1
D2DC008
          53 1 825 26
                             73
                                      1
                                             1
                                                   1
02DD005
          47
              1 830
                     27
                             74
                                      1
                                             1
                                                   1
02DD009
          35
             1 890 27
                             75
                                      1
                                             1
                                                   1
02DD010
          30 1
                850
                     27
                             76
                                      1
                                             1
02DD013
          17 0
                860
                     27
                             77
                                      1
                                             1
                                                   1
02DD016
          11
             1 870
                     27
                             78
                                      1
                                             1
                                                   1
02DD017
                             79
                                      1
          11
              1
                870
                     27
                                             1
                                                   1
          76 0
02EA005
                930
                     29
                             80
                                      1
                                            1
                                                   1
02EA006
          76 1
                930
                    29
                             81
                                      1
                                            1
                                                   1
02EA010
          23 0 920
                     28
                             82
                                      1
                                                   1
02EA011
          18 1 935 28
                            83
                                      1
                                             1
                                                   1
02EA013
          11 0 940 28
                            84
                                      1
                                            1
                                                   1
02JC008
          23
              0 790
                    28
                            85
                                      1
                                            1
                                                   1
D2JD010
          19 1 830
                    28
                            86
                                      1
                                             1
                                                   1
D2JE018
          12 0 850 26
                            87
                                      1
                                             1
                                                   1
02JE019
          19 1 850 26
                            88
                                             1
    82
                                      SPSS/PC+
                                                                                    7/13/93
                                            Number of Clusters
Label
                          Case
                                                   2
                                      4
                                            3
02JE020
          20 1 850 26
                            89
                                      1
                                            1
                                                   1
04KA001
          21 0 720 22
                            90
                                      1
                                            1
                                                   1
04LA002
          22 1 830 22
                             91
                                      1
04LF001
          73 1 820 30
                            92
                                      1
                                            1
                                                   1
04LG002
          24
              1 760
                     22
                            93
                                      4
                                             2
                                                   1
04LJ001
          71 0 820 30
                                      1
                            94
04LM001
          19 0 780 25
                            95
                                      2
                                            2
                                                  1
04MD004
          14 0
                                                  1
                815
                     30
                            96
                                      1
                                            1
04ME002
          59
              1 760
                                      2
                    30
                            97
                                                  1
04ME003
          32 1 750 30
                                      2
                             98
                                             2
                                                  1
04MF001
          25 0 720 22
                            99
                                                  1
```

| Page 113                                                                                                                                                                                           |                                                                                              |                                                                                  |                                                                            |                                                                                                  |                                                                       | SPSS     | /PC+        |       |              |       |             |                       | 7    | /13/93  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------|-------------|-------|--------------|-------|-------------|-----------------------|------|---------|
| Dendrogra                                                                                                                                                                                          | m usir                                                                                       | ng Co                                                                            | mple                                                                       | ete L                                                                                            | inkage                                                                | <b>=</b> |             |       |              |       |             |                       |      |         |
|                                                                                                                                                                                                    |                                                                                              |                                                                                  |                                                                            |                                                                                                  |                                                                       | Re       | escale      | d Dis | tance        | Clu   | ster        | Combine               | :    |         |
| Label                                                                                                                                                                                              | CAS                                                                                          | E                                                                                |                                                                            | Seq                                                                                              | 0<br>éáááá                                                            | ááááá    | 5<br>áéáááá |       | .0<br>.éáááá | áááá  | 15<br>áéááá | 20<br><b>áááááá</b> á |      | iáááááá |
| 02DD017<br>02BF004<br>02EA013<br>02CD002<br>02DD013<br>02AB014<br>02AB016<br>02CF007<br>02JE018<br>02DD009<br>02EA005                                                                              | 14 1<br>31 0<br>12 0<br>35 1<br>76 0<br>20 0                                                 | 870<br>900<br>940<br>900<br>860<br>780<br>795<br>850<br>890<br>930<br>930        | 27<br>30<br>28<br>25<br>27<br>24<br>23<br>25<br>26<br>27<br>29<br>30<br>28 | 78<br>79<br>55<br>84<br>63<br>77<br>6<br>8<br>88<br>77<br>80<br>57<br>82<br>65                   | $\phi$ $\phi$ $\phi$ $\phi$ $\phi$ $\phi$ $\phi$ $\phi$ $\phi$ $\phi$ |          |             |       |              |       |             |                       |      |         |
| Page 114                                                                                                                                                                                           |                                                                                              | <b></b> ·                                                                        |                                                                            |                                                                                                  |                                                                       | SPSS     | /PC+        |       |              |       |             |                       | 7    | //13/93 |
|                                                                                                                                                                                                    | CAS                                                                                          | E                                                                                |                                                                            |                                                                                                  | 0                                                                     |          | 5           |       | .0           |       | 15          | 20                    |      | 2       |
| Label                                                                                                                                                                                              |                                                                                              |                                                                                  |                                                                            | Seq                                                                                              | éááá                                                                  | ááááá    | áéáááá      | ááááá | iéáááá       | ááááá | iáéááá      | ááááááá               | ááá  | iáááááá |
| 02CF012<br>02BF006<br>02DB007<br>02AB011<br>02AD009<br>05PE005<br>05PE011<br>04CA004<br>02CD004<br>02EA006<br>02AB015<br>04MD004<br>02DD005<br>02JE020<br>02AD010<br>02AE001<br>02AC001<br>04CA003 | 48 1<br>23 1<br>33 1<br>19 0<br>22 1<br>76 1<br>14 1<br>14 0<br>47 1<br>20 1<br>20 0<br>20 0 | 895<br>780<br>780<br>720<br>720<br>590<br>930<br>780<br>815<br>830<br>850<br>788 | 30<br>23<br>25<br>19<br>19<br>25<br>24<br>30<br>26<br>25<br>24<br>24       | 70<br>56<br>71<br>5<br>10<br>42<br>43<br>20<br>64<br>81<br>7<br>96<br>74<br>89<br>11<br>12<br>19 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                               | 0        |             |       |              |       |             |                       |      |         |
| Page 115                                                                                                                                                                                           |                                                                                              |                                                                                  |                                                                            |                                                                                                  |                                                                       | SPSS     | PC+         |       |              |       |             |                       |      | 7/13/93 |
|                                                                                                                                                                                                    | C A S                                                                                        | E                                                                                |                                                                            |                                                                                                  | 0                                                                     |          | 5           |       | 10           |       | 15          | 2(                    |      | 2       |
| Label                                                                                                                                                                                              |                                                                                              |                                                                                  |                                                                            | Seq                                                                                              | éááá                                                                  | ááááá    | iáéáááá     | ááááá | áéááá        | áááá  | ááéáá       | ááááááá               | eāáa | aaaaaaa |
| 05PD026<br>02AB009                                                                                                                                                                                 | 12 1<br>34 1                                                                                 | 740<br>785                                                                       | 22 23                                                                      | 41<br>3                                                                                          | áÇ<br>áÇ                                                              | 0        |             |       |              |       |             |                       |      |         |

| 02EA011<br>04JC002<br>02DC008<br>05QD003<br>05QD016<br>02CD001<br>02CE002<br>02BF002<br>02JE019<br>02BA002<br>02CC010<br>02BF001<br>02BB002<br>02JC008<br>02AA001<br>02CF010 | 18 41 53 21 25 76 24 19 21 11 24 23 68 15                                  | 0101010000      | 935<br>810<br>825<br>775<br>900<br>885<br>895<br>850<br>840<br>899<br>875<br>790<br>800 | 30<br>22<br>23<br>25<br>25<br>25<br>26<br>23<br>28<br>30<br>24<br>28<br>23       | 83<br>73<br>46<br>48<br>62<br>54<br>81<br>81<br>85<br>14<br>85<br>14                           |                                        | ááá¢<br>°<br>°                                                |            |                                 |             |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|------------|---------------------------------|-------------|------------------------------|
| ge 116                                                                                                                                                                       |                                                                            |                 |                                                                                         |                                                                                  |                                                                                                | SP                                     | SS/PC+                                                        |            |                                 |             | 7/13/93                      |
|                                                                                                                                                                              | C A                                                                        | S               | E                                                                                       |                                                                                  |                                                                                                | 0                                      | 5                                                             | 10         | 15                              | 20          | 25                           |
| Label                                                                                                                                                                        |                                                                            |                 |                                                                                         |                                                                                  | Seq                                                                                            | éáááááá                                | áááéáááá                                                      | áááááéáááá | áááááéáá                        | láááááááéáá | íáááááááé                    |
| 05QE009<br>04FA002<br>05QE008<br>04DC002<br>05QC001<br>04CD002<br>04KA001<br>05PA012<br>02BB003<br>04JA002<br>02AB006<br>05QD006<br>02AB010<br>04LF001<br>02DC003<br>02JD010 | 21<br>24<br>29<br>20<br>23<br>21<br>64<br>21<br>37<br>64<br>28<br>68<br>73 | 100010001111111 | 550<br>600<br>720<br>750<br>860<br>810<br>785<br>770<br>785                             | 26<br>19<br>21<br>22<br>19<br>23<br>22<br>24<br>30<br>23<br>22<br>23<br>30<br>27 | 52<br>29<br>51<br>27<br>45<br>23<br>24<br>90<br>37<br>15<br>34<br>247<br>47<br>92<br>726<br>89 | 00000000000000000000000000000000000000 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | áááááááááá | ááááááá¢<br>°<br>°<br>°<br>°    |             |                              |
| ge 117                                                                                                                                                                       |                                                                            |                 |                                                                                         |                                                                                  |                                                                                                | SP                                     | SS/PC+                                                        |            |                                 |             | 7/13/93                      |
|                                                                                                                                                                              | C A                                                                        | S               | Ε                                                                                       |                                                                                  |                                                                                                | 0                                      | 5                                                             | 10         | 15                              | 20          | 25                           |
| Label                                                                                                                                                                        |                                                                            |                 |                                                                                         |                                                                                  | Seq                                                                                            | éáááááá                                | áááéááááá                                                     | iááááéáááá | áááááéáá                        | áááááááéáá  | áááááááé                     |
| 02CC007<br>04DA001<br>05PB009<br>04GA002<br>04JF001<br>04LA002<br>05QA001<br>02DD010<br>04GC002<br>04FA001<br>04LJ001<br>02CC008                                             | 25<br>28<br>23<br>22<br>22<br>60<br>30<br>16<br>25<br>71                   | 0100101110      | 890<br>650<br>790<br>720<br>770<br>830<br>790<br>850<br>735<br>700<br>820<br>885        | 24<br>22<br>23<br>30<br>22<br>22<br>27<br>26<br>26<br>30                         | 58<br>25<br>38<br>16<br>36<br>91<br>44<br>76<br>32<br>28<br>94                                 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  | o -<br>o<br>o<br>o<br>o<br>o<br>o                             |            | 0<br>0<br>0<br>0<br>0<br>0<br>0 | ááááááááá   | ááááááá¢<br>°<br>°<br>°<br>° |

| 031 2010   |      | -   | . 50  |      |       |        |           |              |             |           |        |
|------------|------|-----|-------|------|-------|--------|-----------|--------------|-------------|-----------|--------|
| Page 118   |      |     |       |      |       | S      | PSS/PC+   |              |             | 7         | /13/9. |
|            | C A  | S   | E     |      |       | 0      | 5         | 10           | 15          | 20        |        |
| Label      |      |     |       |      | Seq   | éááááá | ááááéáááá | ááááááéáááá  | áááááéááááá | iááááéááá | áááááá |
| 04LG002    | 24   | 1   | 760   | 22   | 93    | ááááá  | ì         | ٥            | ۰           |           |        |
| 05QE006    | 49   | 1   | 700   | 20   | 49    | áôá¢   |           | 0            | 0           |           |        |
| 04ME003    |      |     |       |      |       | áì ûá  | áááá¢     | ûáááá        | áááááááì    |           |        |
| 04LM001    |      |     |       |      |       | ᢰ      | 0         | •            |             |           |        |
| 04ME002    |      |     |       |      |       | áéáì   | 0         | 0            |             |           |        |
| 04FB001    |      |     |       |      | _     | áì     | ûáááá     | ááááááì      |             |           |        |
| 04CA002    |      |     |       |      |       | á¢     | 0         |              |             |           |        |
| 04FC001    |      |     |       |      |       | áÇ     | 0         |              |             |           |        |
| 050E007    |      |     |       |      |       | áéá¢   | 0         |              |             |           |        |
| 05PC019    |      |     |       |      |       | áì ûá  | áááái     |              |             |           |        |
| 04GD001    |      |     |       |      |       | áááì   | aaaaz     |              |             |           |        |
| 04CC001    |      |     |       |      |       |        | ááááááááá | áááááááááááá | áááááááááá  | ááááááááá | áááááá |
|            |      |     |       |      |       |        |           |              |             |           |        |
| Page 119   |      |     |       |      |       | S      | PSS/PC+   |              |             | 7         | /13/93 |
| This proce | edur | e 1 | was ( | comp | leted | at 14: | 56:24     |              |             |           |        |
| Page 120   |      |     |       |      |       | <br>c  | PSS/PC+   |              |             | 7         | /13/93 |
| Fage 120   |      |     |       |      |       | J      | 100/204   |              |             | ,         | 1 1    |

áì ûáááááááááááá¢

0

áéáì

áôááá¢

áÇ áÇ áì

60

17

66

21

26

39

FINISH.

End of Include file.

02CC009 31 1 885 28

04GB004 20 0 740 26

02CE001 44 1 890 25

04CB001 24 0 590 20

04DC001 14 0 590 22

05PC018 11 1 750 22

APPENDIX E REGIONAL INDEX LOW FLOW FREQUENCY DISTRIBUTION METHOD



### APPENDIX E

# REGIONAL INDEX LOW FLOW FREQUENCY DISTRIBUTION METHOD

The regional index frequency distribution method for predicting low flow characteristics is described below:

Suppose that data is available at N sites in a region, with sample size  $N_i$  at site i. Let  $Q_i(F)$  be the quantile of probability F at site i. The key assumption of an index drought procedure is that the region is homogeneous, that is the frequency distributions of the N sites are identical apart from a site-specific scaling factor, the index drought. It may then be written:

$$Q_i(F) = Q_{index} q(F) \qquad i = 1,...N$$
(E - 1)

Where  $Q_{index}$  is the index low flow. For the purposes of this study,  $Q_{index}$  is taken to be the  $7Q_2$  of the at-site frequency distribution, though any location parameter of the frequency distribution may be used instead. Determination of the remaining factor in (E-1), q(F), 0<F<1, identifies the "regional frequency curve", which defines a dimensionless regional frequency distribution common to all sites.

The dimensionless rescaled data  $q_{ij} = Q_{ij}/Q_{index}$ ,  $j = 1,...,N_i$ ,  $i = 1,...,N_i$ , are the basis for estimating q(F). In this study, the parameters are estimated separately at each site. The site i estimate of parameter  $Q_k$  is denoted by  $\hat{Q}_k^{(j)}$ . The at-site estimates are combined to give regional estimates:

$$\hat{Q}_{k}^{(R)} = \sum_{i=1}^{N} N_{i} \hat{Q}_{k}^{(i)} / \sum_{i=1}^{N} N_{i}$$
(E - 2)

This is a weighted average, with the site i estimate given weight proportional to  $N_i$  since for regular statistical models the variance of  $\hat{Q}_k^{(i)}$  is inversely proportional to  $N_i$ . Substituting these estimates into q(F) gives the estimated regional quantiles q(F).

The site i quantile estimates are obtained by combining the estimates of  $7Q_{2i}$  and  $\hat{q}(F)$ .

$$\hat{Q}_i(F) = 7Q_{2i} \hat{q}(F) \tag{E-3}$$

To use this method, the following steps can be followed:

 Estimate 7Q<sub>2i</sub> for ungauged site i by using isolines, the regression method graphical analysis for the region or short term measurements which may be available for the site.

- 2. If another low flow characteristic is required,  $7Q_{20i}$  for example, then find the regional frequency curve parameters, that is regional a, e, and u for the Weibull III distribution based on the location of the site (see Table 4.1).
- 3. Using the regional parameters to estimate the quantile of dimensionless low flow,  $\hat{q}_y$ , where v is the occurrence interval.

$$\hat{q}_y = e + (u - e) \left\{ -\ln \left[ 1 - \frac{1}{y} \right] \right\}^{\frac{1}{a}}$$
(E - 4)

where a, e, and u are obtained from Table 4.1.

4. The final step is to transfer the low flow quantile  $\hat{q}_v$  to the site:

$$Q_{y} = 7Q_{2} \hat{q}_{y} \tag{E-5}$$

As example application of this technique for station #02DD015 (one of the stations reserved for testing) is described as follows:

- 1. Find the low flow index  $(7Q_2)$  based on the isoline method. The estimation is  $7Q_2 = 0.106 \text{ m}^3/\text{s}$  for 02DD015.
- 2. Find the regional Weibull III distribution parameters. Station 02DD015 belongs to Sub-Region Three, and thus the a, e, and u values for 7 day low flows of the sub-regions should be 1.580, 0.221 and 1.203 respectively (see Table 4.1).
- 3. Compute the regional 20 years low flow quantile

$$\hat{q}_{20} = 0.221 + (1.203 - 0.221) \left\{ -\ln \left[ 1 - \frac{1}{20} \right] \right\}^{\frac{1}{1.580}} = 0.37086$$

4. Calculate the 7Q<sub>20</sub> for 02DD015 as:

$$7Q_{20} = 0.37086*0.106 \text{ m}^3/\text{s}$$
  
= 0.0393 \text{ m}^3/\text{s}

The recorded  $7Q_{20}$  for 02DD015 is 0.04 m<sup>3</sup>/s which compared well with the estimated  $7Q_{20}$  of 0.0393 m<sup>3</sup>/s.

# APPENDIX F METEOROLOGIC AND PHYSIOGRAPHIC DATA

### Meteorologic and Physiographic Data

The maps showing physiographic and meteorologic information used in this study, such as MAP, MAS, MAR and EVA etc, are presented in Appendix F. Other related information which was useful in helping to identify the sub-regions is also summarized, including; annual groundwater contribution to local streamflow, groundwater yields from bedrock, bedrock geology and surficial geology.

Figure F.1 Title: Mean Annual Precipitation

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.2 Title: Mean Annual Snowfall

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.3 Title: Mean Annual Runoff

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.4 Title: Mean Annual Evapotranspiration

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.5 Title: Annual Groundwater Contribution to Local Streamflow

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.6 Title: Groundwater Yields From Bedrock

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.7 Title: Bedrock Geology

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984

Figure F.8 Title: Surficial Geology

Source: Water Quality Resource of Ontario, Ministry of Natural Resources, 1984







REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO MEAN ANNUAL PRECIPITATION

FIGURE F.1





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO MEAN ANNUAL SNOWFALL

FIGURE F.2





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO MEAN ANNUAL RUNOFF

FIGURE F 3

|  |  | 4   |
|--|--|-----|
|  |  | . 0 |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO MEAN ANNUAL EVAPOTRANSPIRATION.

FIGURE F 4





CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

ANNUAL GROUNDWATER CONTRIBUTION TO LOCAL STREAMFLOW FIGURE F.5





REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO GROUNDWATER YIELDS FROM BEDROCK

FIGURE F 6





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

FIGURE F.7





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

SURFICIAL GEOLOGY

FIGURE F 8

APPENDIX G
COMPUTER GENERATED ISOLINES



# APPENDIX G COMPUTER GENERATED ISOLINES

### Computer Generated Isolines

Figure G.1 and G.2 show the computer generated isolines of  $7Q_2$  and  $7Q_{20}$ . These were used as a starting point for generating the manually drawn isolines (see Figures 4.1 and 4.2) taking into account station density and hydrologic experience and judgement.

| 1  |
|----|
| 1  |
| ji |
| ļ  |
| 1  |
| Į. |
| j  |
|    |
|    |
| 1  |
|    |
| 1  |
| 1  |
|    |
|    |
|    |
|    |
| ,  |
| ,  |
|    |





Cumming Cockburn Consulting Engineers, Planners and Environmental Scientists

REGIONALIZATION OF LOW FLOW CHARACTERISTICS NORTHEASTERN AND NORTHWESTERN ONTARIO

 $7Q_2$  ISOLINES (COMPUTER GENERATED)

# LOW FLOW CHARACTERISTICS OF STREAMS IN NORTHWESTERN ONTARIO



Cumming Cockburn Limited Consulting Engineers and Planners

50 39.10 91 7.990 161 4.960 153 2.440 520 0.906 -83 787.0 2DDOO5<sub>R</sub>

ARIO



6 736 137 0 5 234 18 70 4 393 10 50 3 684 6 700 1 810 4 390 5 1-86 3290



Consulting Engineers and Planners



|    | 52.40 |  |  |  |  |
|----|-------|--|--|--|--|
|    | 12.00 |  |  |  |  |
| >  | 7.010 |  |  |  |  |
| 1  | 3 340 |  |  |  |  |
| 5  | 2.370 |  |  |  |  |
| 5  | 1130  |  |  |  |  |
| ĪΕ |       |  |  |  |  |

### 150 39.10 291 7.990 .961 4 960 .753 2.440 .520 0.906 .7-63 787.0

# TINU

LOW-FLOW CHARACTERISTICS OF STREA NORTHWESTERN ONTARIO Z

Ministry of the Environment
Water Resources Branch

TARIO

Cumming Cockburn Limited
Consulting Engineers and Planners







# LOW FLOW CHARACTERISTICS OF STREAMS IN NORTHEASTERN ONTARIO

Gumming Lightburn Limited





LOW FLOW CHARACTERISTICS OF STREAMS IN NORTHEASTERN ONTARIO

DD pariet out to



## UNIT LOW FLOW CHARACTERISTICS OF STREAMS IN NORTHEASTERN ONTARIO

Cumming Cockburn Limited Consulting Engineers and Planners



