Definition 0.11. For any $T \in \mathcal{L}(V, W)$, set null $T = \{v \mid Tv = 0\}$ is called the **null space** of T.

This is also called the **kernal** of T in algebra.

Theorem 0.13. For any $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof.

- We have $0 \in \text{null } T$ since T0 = 0, which is the property of linear transformation.
- For any $Ta, Tb \in \text{null } T$, we have 0 = Ta + Tb = T(a + b), so $a + b \in \text{null } T$.
- For any $Ta \in \text{null } T$ and $\lambda \in F$, we have $\lambda Ta = T(\lambda a)$, so $\lambda a \in \text{null } T$.

Definition 0.15. For any $T \in \mathcal{L}(V, W)$, set range $T = T(V) = \{ Tv \mid v \in V \}$ is called the **range** of T.

This is also called the **image** of T in math.

Theorem 0.18. For any $T \in \mathcal{L}(V, W)$, range T is a subsapce of W.

Proof. Consider the basis $_0 \cdots$

Exercise 0.1. Suppose V is a finite vector space, Show that the only two ideal of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$. A subspace \mathcal{E} of $\mathcal{L}(V)$ is called an ideal, if $TE \in \mathcal{E}$ and $ET \in \mathcal{E}$ for any $T \in \mathcal{L}(V)$ and $E \in \mathcal{E}$.

Proof. We will use the concept Matrix. Suppose $\lambda_0 v_0 + \cdots + \lambda_n v_v$ the basis of V. We want to construct T_i that $T(\lambda_0 v_0 + \cdots + \lambda_n v_n) = \lambda_i v_i$ for all $0 \le i < n$, which is a matrix with all zero but 1 at i, i.

For any matrix, we can always select a non-zero value at a, b and place it at i, b, this can be done by left multiply a matrix with 1 at i, a (this produce a vector at line i with values from line a), then right multiply a matrix with 1 at i, b (this produce a vector at column b with values from line i).

Also, we can always select a non-zero value at a, b and place it at a, i, this can be done by right multiply a matrix with 1 at b, i, then left multiply a matrix with 1 at a, i.

By combining these two operations, we calselect a non-zero value at a, b and place it at i, i. Now, consider any non-zero $E \in \mathcal{E}$, we can construct a matrix with non-zero value at i, i for every $0 \le i < \dim V$. These matrix are in \mathcal{E} since \mathcal{E} is an ideal, then we can multiply an appropriate scalar to them so that they are matrices with 1 at i, i. By adds up these matrices, we get I, we know $I \in \mathcal{E}$ since \mathcal{E} is a vector space, and now all $T \in \mathcal{L}(V)$ is also in \mathcal{E} since \mathcal{E} is an ideal, then $\mathcal{E} = \mathcal{L}(V)$.

The only exception is $\mathcal{E} = \{0\}$, in this case we can't pick any non-zero element.