UE11 Topologie Quizz 1

1) Dans chacun des cas ci-dessous, préciser si la notion définie est une distance ou pas, en précisant le ou les conditions invalidées. Décrire, lorsqu'il s'agit d'une distance, et que cela est possible, la forme des boules.
Vrai \square Faux \square La somme de deux distances Correction. $Vrai$
Vrai \square Faux \square Le produit de deux distances
CORRECTION. Faux : considérer par exemple le carré de la distance usuelle sur \mathbb{R} . On a
$d(0,2)^2 = 4 < d(0,1)^2 + d(1,2)^2,$
qui invalide l'inégalité triangulaire.
Vrai \square Faux \square Le symbole de Kronecker $(x,y) \in X \times X \mapsto \delta_{xy} = 1$ si $x \neq y$, et 0 sinon. Correction. Vrai.
Vrai \square Faux \square Le nombre de composantes différentes entre deux vecteurs (x_1, \ldots, x_n) et (y_1, \ldots, y_n) de \mathbb{R}^n . CORRECTION. Vrai : si x diffère de z sur a composantes, et si y diffère de z sur b composantes, alors x diffère de y sur au plus $a+b$ composantes.
2) Dans chacun des cas ci-dessous, préciser si l'ensemble proposé est un ouvert ou pas (\mathbb{R}^n est supposé muni de la distance euclidienne canonique)
Vrai \square Faux \square $]0, +\infty[\subset \mathbb{R}$ Correction. $Vrai$
Vrai \square Faux \square \mathbb{Q} Correction. Faux
Vrai \square Faux \square $\bigcup]q_k-1/2^k, q_k+1/2^k[$, où q_k est une énumération des rationnels. Correction. Vrai, c'est une réunion d'ouverts
(•) Vrai \Box Faux \Box $\bigcap]q_k - 1/2^k, q_k + 1/2^k[$, où q_k est une énumération des rationnels. Correction. Vrai. A priori une intersection infinie d'ouverts peut ne pas être ouverte, mais ici cet inter-

 $section\ est\ vide,\ donc\ ouverte$

Vrai \square Faux \square $]0,1[\times]0,1[\times\{0\}\subset\mathbb{R}^3$
CORRECTION. Faux, tout boule centrée en un point de cet ensemble contient des points de troisième coordonnée non nulle, donc hors de l'ensemble
3) Soit X un espace métrique, et $A \subset B \subset X$.
Vrai \square Faux \square $\bar{A} \subset \overline{B}$
Correction. $Vrai: \overline{B}$ est un fermé qui contient B , donc A , donc il contient le plus petit fermé qui contient A .
Vrai \square Faux \square $\partial A \subset \partial B$
CORRECTION. Faux : Considérer par exemple $[0,1]$ et $[0,2]$
(\bullet) Vrai \square Faux \square Un ensemble discret est d'intérieur vide.
Correction. Vrai pour une partie de \mathbb{R} par exemple, il ne peut contenir aucune boule ouverte. Mais faux en général : on peut considérer par exemple l'espace métrique $X=\mathbb{N}$, qui est discret, mais aussi ouvert comme espace métrique, donc d'intérieur égal à lui-même.
4) Suites
Vrai \square Faux \square Une suite convergente sur $\mathbb R$ est bornée Correction. $Vrai$
Vrai \square Faux \square Une suite bornée sur $\mathbb R$ est convergente CORRECTION. Faux, exemple $(-1)^n$
(\bullet) Vrai \square Faux \square Une suite sur $\mathbb R$ peut admettre une infinité de valeurs d'adhérence
Correction. Vrai, considérer par exemple une énumération des rationnels, tout réel est valeur d'adhérence de la suite.
Vrai \square Faux \square Une partie K finie d'un espace métrique est toujours compacte.
Correction. Vrai : une suite dans K visite nécessairement une infinité de fois au moins l'un des points de K .
Vrai \square Faux \square Une partie finie d'un espace métrique est toujours complète .
Correction. Vrai : toute suite de Cauchy est stationnaire sur l'un des points de l'ensemble au delà d'un certain rang
Vrai \square Faux \square L'image réciproque d'un compact par une application continue est compacte.

CORRECTION.

Faux : considérer par exemple la fonction $f: \mathbb{R} \longrightarrow e^x$, on a $f^{-1}([0,1]) =]-\infty, 0]$, qui n'est pas compact car non borné.