Sandro Rigo sandro@ic.unicamp.br







## Introdução

- A árvore da IR expressa uma operação "simples" em cada nó
  - Acesso à memória
  - Operador Binário
  - Salto condicional
- Instruções da máquina podem realizar uma ou mais dessas operações





# Introdução



- Que instrução seria essa?
- Encontrar o conjunto de instruções de máquinas que implementa uma dada árvore da IR é o objetivo da **Seleção de** Instruções

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro







### Padrões de Árvores

- Expressão as instruções da máquina
- Seleção de instruções:
  - Cubra a árvore da IR com o menor número de padrões existentes para a máquina alvo
- Exemplo:
  - Máquina Jouette
    - r0 contém sempre zero





### Padrões - Jouette

| Name  | Effect                          | Trees                                                      |
|-------|---------------------------------|------------------------------------------------------------|
|       | $r_i$                           | TEMP                                                       |
| ADD   | $r_i \leftarrow r_j + r_k$      | +                                                          |
| MUL   | $r_i \leftarrow r_j \times r_k$ |                                                            |
| SUB   | $r_i \leftarrow r_j - r_k$      |                                                            |
| DIV   | $r_i \leftarrow r_j/r_k$        |                                                            |
| ADDI  | $r_i \leftarrow r_j + c$        | CONST CONST CONST                                          |
| SUBI  | $r_i \leftarrow r_j - c$        | CONST                                                      |
| LOAD  | $r_i \leftarrow M[r_j + c]$     | MEM MEM MEM MEM  I I I CONST  CONST CONST                  |
| STORE | $M[r_j + c] \leftarrow r_i$     | MOVE MOVE MOVE MOVE  MEM MEM MEM MEM  I I I I  + + + CONST |
| MOVEM | $M[r_j] \leftarrow M[r_i]$      | MEM MEM                                                    |







#### Padrões - Jouette

- Primeira linha não gera instrução
  - TEMP é implementado como registrador
- Duas últimas instruções não geram resultado em registrador
  - Alterações na memória
- Uma instrução pode ter mais de um padrão associado
- Objetivo é cobrir a árvore toda, sem sobreposição entre padrões









 Que operação seria essa?

- $r_1 \leftarrow M[\mathbf{fp} + a]$ LOAD
- $r_2 \leftarrow r_0 + 4$ ADDI
- 5 MUL  $r_2 \leftarrow r_i \times r_2$
- ADD  $r_1 \leftarrow r_1 + r_2$ 6
- $r_2 \leftarrow M[\mathbf{fp} + x]$ 8 LOAD
- $M[r_1+0] \leftarrow r_2$ 9 STORE









 A cobertura não é única!

- 2 LOAD  $r_1 \leftarrow M[\mathbf{fp} + a]$
- 4 ADDI  $r_2 \leftarrow r_0 + 4$
- 5 MUL  $r_2 \leftarrow r_i \times r_2$
- 6 ADD  $r_1 \leftarrow r_1 + r_2$
- 8 ADDI  $r_2 \leftarrow \mathbf{fp} + x$
- 9 MOVEM  $M[r_1] \leftarrow M[r_2]$







$$r1 \leftarrow r0 + a$$

ADD

$$r1 \leftarrow \mathbf{fp} + r1$$

LOAD

$$r1 \leftarrow M[r1 + 0]$$

ADDI

$$r2 \leftarrow r0 + 4$$

MUL

$$r2 \leftarrow ri \times r2$$

ADD

$$r1 \leftarrow r1 = r2$$

ADDI

$$r2 \leftarrow r0 + x$$

ADD

$$r2 \leftarrow fp + r2$$

LOAD

$$r2 \leftarrow M[r2 + 0]$$

• STORE 
$$M[r1 + 0] \leftarrow r2$$

Tente cobrir a árvore

com padrões de um

nó apenas

#### Optimal e Optimum

### Queremos a cobertura que nos traga o menor custo

- Normalmente a menor
- Caso as instruções tenham latências diferentes
  - A de menor tempo total

### Cada instrução recebe um custo

- A melhor cobertura da árvore é a que a soma dos custos dos padrões utilizados é a menor possível
- Este é o optimum







### Optimal e Optimum

- Uma cobertura onde nenhum par de padrões adjacentes possa ser combinado em um par de menor custo é optimal
- Caso haja um padrão que possa ser quebrado e diminua o custo total, ele deve ser descartado
- Optimum => optimal
- Optimal <≠ optimum</li>



### Optimal e Optimum

#### No exemplo anterior assuma:

- MOVEM tem custo m
- Todas as outras têm custo 1
- O que acontece com as duas coberturas apresentadas se
  - m = 0, 1 ou 2?





#### Algoritmos

### Achar coberturas "optimais" é mais fácil

#### CISC

- Dada a complexidade das instruções, os padrões costumam ser grandes
- A diferença entre optimal e optimum se torna mais considerável

#### RISC

- Instruções simples levam a padrões pequenos
- Custo costuma ser mais uniforme
- A diferença entre optimal e optimum praticamente desaparece





#### **Maximal Munch**

- Encontra cobertura optimal
- Bastante simples
  - Inicie na raiz
  - Encontre o maior padrão que possa ser encaixado nesse nó
    - Cubra o raiz e provavelmente outros nós
  - Repita o processo para cada sub-árvore a ser coberta
- A cada padrão selecionado, uma instrução é gerada
- Ordem inversa da execução! A raiz é a última a ser executada







#### **Maximal Munch**

- O maior padrão é aquele com maior número de nós
- Se dois padrões do mesmo tamanho encaixam, a escolha é arbitrária
- Facilmente implementado através de funções recursivas
  - Ordene as cláusulas com a prioridade de tamanho dos padrões
  - Se para cada tipo de nó da árvore existir um padrão de cobertura de um nó, nunca pode ficar travado.





#### **Maximal Munch**

- Faça a cobertura Maximal Munch das seguintes árvores:
  - MOVE(MEM(+(+(CONST 1000, MEM(TEMPx)), TEMPfp)), CONST0)
  - BINOP(MUL, CONST5, MEM(CONST100))





- Encontra um cobertura ótima (optimum)
- PD monta uma solução ótima baseada em soluções ótimas de sub-problemas
- O algoritmo atribui um custo a cada nó da árvore
  - A soma do custo de todas as instruções da melhor cobertura da sub-árvore com raiz no respectivo nó
  - Para um dado nó n
    - Encontra o melhor custo para suas sub-árvores
    - Analisa os padrões que podem cobrir n
    - Algoritmo Botton-up















| Tile                   | Instruction | Tile Cost | Leaves Cost | <b>Total Cost</b> |
|------------------------|-------------|-----------|-------------|-------------------|
| MEM<br>I               | LOAD        | 1         | 2           | 3                 |
| MEM<br>I<br>+<br>CONS  | LOAD<br>T   | 1         | 1           | 2                 |
| MEM<br> <br>+<br>CONST | LOAD        | 1         | 1           | 2                 |







- Após computar o custo da raiz, emitir as instruções
- Emissão de (n)
  - Para cada folha f do padrão selecionado para n, execute emissão(f)
  - Emita a instrução do padrão de n





#### Comentários sobre Eficiência

#### Seja:

- T: números de padrões diferentes
- K: no. médio de nós não-folhas dos padrões casados
- K': maior # de nós a serem olhados para identificar quais padrões casam a uma dada sub-árvore. Aprox. o tamanho do maior padrão
- T': média de padrões diferentes que casam em cada nó
- N: # nós da árvore
- RISC típico:
  - T=50, K=2, K'=4, T'=5
- Maximal Munch: N/K \* (K'+ T')
- Programação Dinâmica: N \* (K'+ T')
  - Requer duas passadas na árvore



#### Comentários sobre Eficiência

- Ambos são lineares
- Seleção de instruções é bastante rápida comparada com outras fases da compilação
- Até analise léxica pode ser mais demorada



