Similaridade do Cosseno

Ronaldo Pacheco Pereira

May 8, 2023

1 Similaridade do Cosseno

A similaridade do cosseno é uma métrica de similaridade comumente empregada em diversas áreas, tais como aprendizado de máquina, processamento de linguagem natural e recuperação de informações. Essa métrica é fundamentada no ângulo entre dois vetores em um espaço n-dimensional e é calculada por meio da função de similaridade do cosseno.

1.1 Cálculo da Similaridade do Cosseno

A similaridade do cosseno é calculada usando a fórmula:

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \cdot \|B\|}$$

1.2 Interpretação da Similaridade do Cosseno

A similaridade do cosseno é uma medida que varia de -1 a 1. Um valor de 1 indica que os dois vetores são idênticos (ângulo de 0°), enquanto um valor de -1 indica que os dois vetores são opostos (ângulo de 180°). Quando o valor é 0, isso significa que os vetores são ortogonais (ângulo de 90°).

1.3 Aplicações em Data Science

A similaridade do cosseno é amplamente utilizada em Data Science em diversas aplicações, tais como:

- Recomendação de itens: é comum utilizar a similaridade do cosseno para calcular a similaridade entre os itens que os usuários visualizaram, compraram ou classificaram, a fim de sugerir outros itens semelhantes com base na similaridade de seus vetores de características;
- Agrupamento de texto: é possível utilizar a similaridade do cosseno para agrupar documentos de texto em conjuntos com base em suas similaridades, considerando cada documento como um vetor de termos. Isso é útil para análise de tópicos e detecção de spam;
- Detecção de plágio: a similaridade do cosseno é uma ferramenta eficaz para detecção de plágio em documentos de texto, comparando a similaridade entre o documento original e o documento suspeito;
- Análise de sentimentos: a similaridade do cosseno pode ser usada para medir a semelhança entre palavras ou expressões em um corpus de textos, auxiliando na análise de sentimentos ou na identificação de sinônimos e antônimos;
- Classificação de imagens: a similaridade do cosseno pode ser usada para comparar vetores de características extraídos de imagens, a fim de classificá-las em categorias semelhantes com base em sua similaridade.

Esses são apenas alguns exemplos de como a similaridade do cosseno pode ser aplicada em Data Science. Ela é uma métrica útil para lidar com problemas em que a similaridade entre dois itens é importante, especialmente em casos em que os dados são esparsos e de alta dimensionalidade.

2 PyCharm IDE Python

Para esse trabalho, utilizei a IDE PyCharm (Python). O PyCharm é um IDE para Python, disponível em duas edições, Community e Professional. Ele possui recursos para autocompletar código, depuração, refatoração, testes automatizados e integração com controle de versão. O PyCharm inclui um gerenciador de projetos, terminal integrado e suporte a diferentes interpretes Python e ambientes virtuais. Além disso, oferece suporte a plugins para desenvolvimento em outras linguagens e plataformas. O PyCharm é amplamente utilizado por programadores e equipes de desenvolvimento em todo o mundo.

3 Bibliotecas utilizadas em Python

Abaixo a relação de bibliotecas utilizadas nesse trabalho.

```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.pyplot as plt
import seaborn as sns
import math
```

TfidfVectorizer:

Essa ferramenta é usada para obter informações relevantes de texto de um conjunto de documentos. Ela avalia o valor TF-IDF (frequência de termo—inverso da frequência nos documentos) para cada termo em cada documento, o que é uma medida estatística da importância de uma palavra em um documento.

cosine similarity:

Utilizada para calcular a similaridade do cosseno entre dois vetores. Isso possibilita comparar a similaridade entre diferentes documentos.

MatPlotLib.Pyplot:

Matplotlib.pyplot é um módulo do pacote Matplotlib para criação de gráficos em Python. Ele fornece funções simples e intuitivas para criação de diversos tipos de visualizações, como gráficos de linhas, de dispersão e de barras, permitindo a adição de títulos e legendas aos gráficos, ajuste de escala dos eixos, criação de múltiplos gráficos em uma única figura e salvamento dos gráficos em diversos formatos. O pyplot é frequentemente utilizado em conjunto com outras bibliotecas de análise de dados em Python, como NumPy e Pandas, tornando-se uma ferramenta essencial para análise e interpretação de dados.

pandas:

Pandas é uma biblioteca de análise de dados em Python, que fornece estruturas de dados flexíveis e eficientes para manipulação e análise de dados tabulares. Com pandas, é possível realizar diversas operações em dados, como limpeza, transformação, seleção e agregação, tornando-se uma ferramenta essencial para análise de dados em Python..

3.1 Dados Qualitativos

Os Dados foram baixados no site Kaggle e após ser limpo de inconsistências e erros, foi importado e agregado usando o pandas no formato final Xlsx, deixando assim, somente a informação util ao trabalho final.

3.2 Texto em Vetor

A partir dos dados limpos, transformaremos cada frase em um vetor numérico.

```
vetorizador = TfidfVectorizer()

# vetorizar as descrições dos produtos
vetores = vetorizador.fit_transform(dados_texto))
```

```
# carregar dados do arquivo CSV
dados = pd.read_excel('Luxurywatch.xlsx')

# selecionar as colunas relevantes para comparação
dados_selecionados = dados[['Brand', 'Model', 'Case_mat_strap', 'Type', 'price']]

# transformar os dados em um formato de texto unificado para vetorização
dados_texto = dados_selecionados.apply(lambda x: ' '.join(x.astype(str)), axis=1)

# criar o vetorizador TF-IDF
vetorizador = TfidfVectorizer()

# vetorizar as descrições dos produtos
vetores = vetorizador.fit_transform(dados_texto)
```

3.3 Transformar o input do usuário em Vetor numérico

Nesse trabalho, sugeri ao usuário que informe a marca, modelo ou material do relógio a ser verificado.

```
# exemplo de rel gio fornecido pelo usu rio
relogio_usuario = input('Digite_a_marca,_modelo_ou
   _material_do_relogio_que_voc _quer_verificar_a_
    similaridade_(separados_por_espa o):_').split()

# transformar o exemplo em um vetor num rico
relogio_usuario_vetor = vetorizador.transform(['_'
    .join(map(str, relogio_usuario + [''] * (len(
    dados_selecionados.columns) - len(
    relogio_usuario))))])
```

3.4 Similaridade

A similaridade do cosseno é obtido pelo código baixo citado. A função recebe a variável e retorna uma matriz de similaridade entre o que foi pesquisado e o que consta no arquivo.

```
similaridades = cosine similarity (
   relogio usuario vetor, vetores)
indices similares = similaridades.argsort()
   [0][::-1]
# selecionar os 10 rel gios mais similares,
   excluindo aqueles com a mesma marca que o
   exemplo dado
marca usuario = relogio usuario [0]
top similares = | |
for i in indices similares:
    if dados.loc[i, 'Brand'] != marca_usuario:
        top similares.append(i)
    if len(top similares) >= 10:
        break
# imprimir os 10 rel gios mais similares
print ("Os_10_rel gios_mais_similares_a", '_'.join
   (map(str, relogio usuario)), "s o:")
for i in top similares:
    print(dados.loc[i, ['Brand', 'Model', '
       Case_mat_strap', 'Type', 'price']
\# adicionar as colunas de similaridade do cosseno
   e ngulo
             do cosseno
dados selecionados.loc[:, 'Cosine_Similarity'] =
   similaridades [0]
dados selecionados.loc[:, 'Cosine_Angle'] = [math.
   degrees (math. acos (similarity)) for similarity in
    similaridades [0]]
# imprimir os 10 Relogios mais similares com as
   colunas adicionais
print(dados selecionados.loc[top similares, ['
   Brand', 'Model', 'price', 'Cosine_Similarity', '
   Cosine_Angle']])
```

Abaixo uma visualização de parte do resultado quando a pesquisa feita foi pelo material Titanium.

```
Os 10 relógios mais similares a titanium são:
Brand
                                     Bulgari
Model
                                        Octo
                Titanium - Titanium - Titanium
Case_mat_strap
                                   Automatic
Type
price
                                        4400
Name: 115, dtype: object
Brand
                                    Hublot
Model
                                   Classic
Automatic
Type
price
                                      6500
Name: 197, dtype: object
Brand
                                    Hublot
                                   Classic
Model
Case_mat_strap
                Titanium - Titanium - Rubber
Type
                                 Automatic
price
                                      9500
```

3.5 Finalização

Por fim, para visualizar a similaridade de cosseno e o angulo do cesseno temos o código abaixo.

```
vetores_similares = vetores[top similares]
\# calcular os
                ngulos
                        dos vetores
angulos = []
for vetor in vetores similares:
    angulo = np.arccos(cosine similarity(
       relogio usuario vetor, vetor)[0][0]) * 180 /
        np. pi
    angulos.append(angulo)
# extrair as coordenadas dos vetores dos 10
   rel gios mais similares
coordenadas similares = vetores similares.toarray
# adicionar as colunas de similaridade do cosseno
      nqulo
             do \ cosseno
dados selecionados ['Cosine_Similarity'] =
   similaridades [0]
dados_selecionados['Cosine_Angle'] = [math.degrees
   (math.acos(similarity)) for similarity in
   similaridades | 0 | |
print ("Os_relogios_mais_similares_a_", '_'.join (
  map(str, relogio_usuario)), "s o:")
display (dados_selecionados.loc [top similares, ['
   Brand', 'Model', 'Cosine_Similarity', 'Cosine_
   Angle ' ] ] )
# extrair as coordenadas dos vetores dos 10
   rel gios mais similares
coordenadas similares = vetores similares.toarray
   ()
plt.show()
```

115	Bulgari	Octo	0.729920	43.120313
197	Hublot	Classic	0.645550	49.793050
199	Hublot	Classic	0.636452	50.472227
200	Hublot	Classic	0.620726	51.630845
312	Panerai	Luminor	0.619590	51.713822
179	Hublot	Big Bang	0.617990	51.830533
180	Hublot	Big Bang	0.617990	51.830533
198	Hublot	Classic	0.602565	52.946148
204	Hublot	Classic	0.600211	53.114999
189	Hublot	Big Bang	0.596455	53.383548

	Brand	Model	price	Cosine Similarity	Cosine Angle
115	Bulgari	0cto	4400	0.729920	43.120313
197	Hublot	Classic	6500	0.645550	49.793050
199	Hublot	Classic	9500	0.636452	50.472227
200	Hublot	Classic	12000	0.620726	51.630845
312	Panerai	Luminor	5700	0.619590	51.713822
179	Hublot	Big Bang	7500	0.617990	51.830533
180	Hublot	Big Bang	7500	0.617990	51.830533
198	Hublot	Classic	8200	0.602565	52.946148
204	Hublot	Classic	595	0.600211	53.114999
189	Hublot	Big Bang	16000	0.596455	53.383548