Problem L. Array Elimination

Time limit 2000 ms Mem limit 524288 kB

You are given array a_1, a_2, \ldots, a_n , consisting of non-negative integers.

Let's define operation of "elimination" with integer parameter k ($1 \leq k \leq n$) as follows:

- Choose k distinct array indices $1 \le i_1 < i_2 < \ldots < i_k \le n$.
- Calculate $x = a_{i_1} \& a_{i_2} \& \ldots \& a_{i_k}$, where & denotes the <u>bitwise AND operation</u> (notes section contains formal definition).
- Subtract x from each of $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$; all other elements remain untouched.

Find all possible values of k, such that it's possible to make all elements of array a equal to 0 using a finite number of elimination operations with parameter k. It can be proven that exists at least one possible k for any array a.

Note that you firstly choose k and only after that perform elimination operations with value k you've chosen initially.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). Description of the test cases follows.

The first line of each test case contains one integer n (1 $\leq n \leq$ 200 000) — the length of array a.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($0 \le a_i < 2^{30}$) — array a itself.

It's guaranteed that the sum of n over all test cases doesn't exceed $200\,000$.

Output

For each test case, print all values k, such that it's possible to make all elements of a equal to 0 in a finite number of elimination operations with the given parameter k.

Print them in increasing order.

Sample 1

Input	Output
5 4	1 2 4 1 2
4 4 4 4	1
4 13 7 25 19	1 2 3 4 5
6 3 5 3 1 7 1	
1 1	
5 0 0 0 0 0	

Note

In the first test case:

- If k=1, we can make four elimination operations with sets of indices $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$. Since & of one element is equal to the element itself, then for each operation $x=a_i$, so $a_i-x=a_i-a_i=0$.
- If k=2, we can make two elimination operations with, for example, sets of indices $\{1,3\}$ and $\{2,4\}$: $x=a_1 \& a_3=a_2 \& a_4=4 \& 4=4$. For both operations x=4, so after the first operation $a_1-x=0$ and $a_3-x=0$, and after the second operation $-a_2-x=0$ and $a_4-x=0$.
- If k=3, it's impossible to make all a_i equal to 0. After performing the first operation, we'll get three elements equal to 0 and one equal to 4. After that, all elimination operations won't change anything, since at least one chosen element will always be equal to 0.
- If k=4, we can make one operation with set $\{1,2,3,4\}$, because $x=a_1 \& a_2 \& a_3 \& a_4 = 4$.

In the second test case, if k=2 then we can make the following elimination operations:

- Operation with indices $\{1,3\}$: $x=a_1 \& a_3=13 \& 25=9$. $a_1-x=13-9=4$ and $a_3-x=25-9=16$. Array a will become equal to [4,7,16,19].
- Operation with indices $\{3,4\}$: $x=a_3 \ \& \ a_4=16 \ \& \ 19=16$. $a_3-x=16-16=0$ and $a_4-x=19-16=3$. Array a will become equal to [4,7,0,3].
- Operation with indices $\{2,4\}$: $x=a_2 \& a_4=7 \& 3=3$. $a_2-x=7-3=4$ and $a_4-x=3-3=0$. Array a will become equal to [4,4,0,0].
- Operation with indices $\{1,2\}$: $x=a_1 \& a_2=4 \& 4=4$. $a_1-x=4-4=0$ and $a_2-x=4-4=0$. Array a will become equal to [0,0,0,0].

Formal definition of bitwise AND:

Let's define bitwise AND (&) as follows. Suppose we have two non-negative integers x and y, let's look at their binary representations (possibly, with leading zeroes): $x_k \dots x_2 x_1 x_0$ and

 $y_k \dots y_2 y_1 y_0$. Here, x_i is the i-th bit of number x, and y_i is the i-th bit of number y. Let $r=x \ \& \ y$ is a result of operation & on number x and y. Then binary representation of r will be $r_k \dots r_2 r_1 r_0$, where:

$$r_i = \left\{ egin{aligned} 1, ext{ if } x_i = 1 ext{ and } y_i = 1 \ 0, ext{ if } x_i = 0 ext{ or } y_i = 0 \end{aligned}
ight.$$