Cryptography Final - May 14th 2:45pm Review Sheet

Need to know:

• Advantages and Disadvantages of one time pad

Advantages:

- * Impossible to crack if the key is never reused, completely random and kept secret
- * Immune to brute force attacks trying all keys simply yields all plaintexts, all equally likely to be the acual plaintext.

Disadvantages:

- * Hard to find a truly random key, possible by: psuedorandom number generator
- * Security of the one time pad is only as secure as the exchange of the key if this is not secure, then the key isn't either.
- * It is difficult to make sure that it continues to remain a secret dispose of it after first use properly.
- Difference between Stream Ciphers and block ciphers

Block Ciphers:

- * More general i.e. can you convert a block cipher into a stream cipher? Yes, make block size one bit
- * Have no math involved has to be reversable function
- * Are good in hardware and software but not as good in terms of hardware as stream cipher

- Stream Ciphers:

- * stream ciphers have more mathematical structure statistical attacks easier to break and easier to study
- * stream ciphers are not suitable for software but highly efficient in hardware
- What is 3DES three 56 bit keys
 - * Keys to test in worse case $2^{56\cdot 3}$, average 2^{55*3}
 - * 3DES takes in 3 keys, and uses the first key to encrypt a message, the second key to decrypt the encrypted message and then uses the third key to reincrypt the decrypted message.
- DES bit length, keys to test in worse case
 - * Keys to test in worse case 2^{56} , average 2^{55}
- Why is 2 DES not secure?
 - * Not secure because the brute force attack of it is less than 2^{90} .
 - * Keys to test in worse case $2^{56\cdot 2}$.
 - \ast 2DES takes 2 keys and encrypts the message with one of them and then decrypts with the other key.
 - * Keys cannot be the same or else you are sending out the message with no decryption
- What is meet in the middle attack cuts in half the amount of keys to check
- BC what is one time pad attacks on one time pad use same key xoring two messages together gets the messages concatenated together.
- Brute force attacks and time it will take to do.
 - How to brute force decrypt something.

- Worst case: bits = n, so 2^n . Average case: bits = n, so $\frac{2^n}{2} = 2^{n-1}$
- Most likelyhood of something to happen probability you are on your own.
- Factorization of a number made of 2 primes product of 3 primes instead of 2 primes
 - how to find phi with 3 prime values (p-1)(q-1)(r-1)
 - given some cipher from Alice, how would you decrypt it?
 - also think about chinese remainder theorem
- diffie helman given q^a and q^b , finding q^{ab} is hard... how?
 - given generator, compute the q^{ab}
 - Elgamal- how it works.
 - how to involve 3 people into this?
 - sending encrypted message from alice to bob, you have g^{ab} and for bob and carol you get q^{bc} .
 - -m = 59, g = 2, p = 227.
 - Alice has a = 8, bob b = 6, carol c = 5. $H_a = 29$, $H_b = 64$, $H_c = 32$ (all mod 227).
 - Alice will generate g^{ab} using Bobs half mask. $F_{ab} = 12$. If you don't get the same full mask for bob and alice, its wrong. Same thing for bob and carol. $F_{bc} = 44$
 - p = 2q+1 safe prime q = $\frac{p-1}{2}$

 - $-g^1 \neq \tilde{1}$
 - $-q^2 \neq 1$
 - $-g^q \neq 1$
- Diffie helman Elliptic Curve
 - Same security in EC 128 as Elgamal 256.
 - Given a curve, only thing on the curve will be the quadratic residues.
 - given a set, show me a formula to find the quadratic residues. Legranges symbol. $\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \mod p$ if we get 1, it is a quadratic residue, -1 is going to be a non quadratic residue.
 - finding the square roots of x raise x to the (p+1)/4 and mod by p
 - get ascii character to the (x1, y1) character when turning it into a cipher m is a point on the curve. ALICE has her own multiplier, bob will have his own multiplier. - use them to encrypt their own half masks B = 4g and A = 3g. F = B * 3 (bobs halfmask times Alice's multiplier.
 - make sure you can find all of the points on the curve. you don't have to find the square roots if the number is not -1 when raised to the power of (p-1)/2 mod the number.
 - the generator value is a point on the curve and the message point is a point on the curve. ALL OF THE THINGS YOU GET IS A POINT ON THE CURVE.