

Prática de Circuitos Eletrônicos 1

Tutorial 05

Familiarização com a Bancada e Sinais DC

Professor: Marcus Vinícius Chaffim Costa **Tutora:** Camila Ferrer

Programa Tutoria

Universidade de Brasília

Faixa de Tensão de Saída
• É a faixa de tensões que o aparelho fornecer em sua

saída e pode ser ajustada de 0 até o limite nominal

de tensão. Faixa de Corrente de Saída

 É a faixa de corrente que o aparelho fornecer em sua saída e pode ser ajustada de 0 até o limite nominal de corrente.

Corrente Limite

 A corrente limite máxima é a corrente a partir da qual a proteção contra sobrecorrente atua. Esta proteção desliga o ponto com sobrecorrente para evitar danos ao módulo.

Modos de Operação de Fontes de Alimentação

Fixa

 A fonte MPL-3305M é uma fonte com duas saídas variáveis e uma saída especial de 5V fixa.

Instrumentos de Bancada

Simples

 A corrente máxima que a fonte pode fornecer é de aproximadamente 5A.

Paralelo

 Nesta condição de trabalho, pode-se conseguir a corrente máxima de aproximadamente 10A.

Universidade de Brasília

Série

 Nesta condição de trabalho, pode-se conseguir a tensão máxima de aproximadamente 64V.

Simétrica

 Nesta condição de trabalho, pode-se conseguir um terra comum para ambas as fontes variáveis, com saídas positiva e negativa de no máximo +32V e -32V, respectivamente.

 Medição de Tensão com Multímetro: Posicione a chave rotativa em V= e conecte as pontas de prova em paralelo no circuito em teste.

 Medição de Resistência com Multímetro: Posicione a chave rotativa em "Ω". Conecte as pontas de prova sobre o objeto a ser medido.

Simulações

 Na aba Componentes, vá em componentes agrupados e coloque três resistores no esquemático.
 Vá em Fontes e coloque três fontes de tensão DC. Vá em Ponteiras e coloque três amperímetros.

 Medição de Corrente com Multímetro: Posicione a chave rotativa em 2000µA, 200mA ou 10A.
 Conecte as pontas de prova em série no local a ser medido.

Universidade de Brasília

 Integridade de Trilhas: Posicione a chave rotativa em → . O aparelho sonoriza um beep quando a resistência de um circuito em teste for <10Ω.

Universidade de Brasília

• Determine a tensão V_R e a corrente i_R esperadas sobre o resistor R = 100Ω para valores de tensão V_f iguais a 3V, 5V e 10V.

 Abra o QUCS, vá em Main Dock e crie um novo projeto.

Universidade de Brasília

 Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício.

• Nomeie os nós para medir a tensão V_R.

• Coloque a Simulação DC no esquemático, salve e simule.

• Assim, verifica-se que para os valores pedidos no exercício.

Universidade de Brasília

 Na aba Componentes, vá em componentes agrupados e coloque seis resistores no esquemático. Vá em Fontes e coloque três fontes de tensão DC no esquemático. Vá em Ponteiras e coloque três amperímetros no esquemático.

Universidade de Brasília

• Vá em Diagramas e insira uma tabela. Coloque os valores das correntes i_{R1} .I, i_{R2} .I e i_{R3} .I. Insira outra tabela e coloque os valores das tensões dos nós V_{R1}.V, V_{R2}.V e V_{R3}.V.

Universidade de Brasília

• Determine a tensão V_R e a corrente i_R esperadas sobre o resistor R = 100Ω e R₂ = 50Ω para valores de tensão V_f iguais a 3V, 5V e 10V.

Abra um novo esquemático.

Universidade de Brasília

• Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício como na figura abaixo.

Nomeie os nós para medir a tensão V_R.

• Coloque a Simulação DC no esquemático, salve e simule.

• Vá em Diagramas e insira uma tabela. Coloque os valores das correntes $i_{R1}.I$, $i_{R2}.I$ e $i_{R3}.I$. Insira outra tabela e coloque os valores das tensões dos nós V_{R1}.V, V_{R2}.V e V_{R3}.V.

Universidade de Brasília

Universidade de Brasília

exercício.

simulação cc

Programa Tutoria

VR3

iR3

• Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático já montado para a segunda parte da simulação do Circuito B.

• Assim, verifica-se que para os valores pedidos no

number iR1.1 iR2.1 iR3.1 1 0.02 0.0333 0.0667

R22 R=50 Ohm

iR2

Universidade de Brasília

• Faça V_f = 10V e calcule os valores de corrente fornecidos pela fonte se R_2 for um resistor de: $1k\Omega$, 500Ω , 200Ω , 100Ω e 50Ω .

Universidade de Brasília

• Altere o valor das fontes e resistores para que fique igual ao mostrado abaixo.

• Assim, verifica-se que para os valores pedidos no exercício.

Universidade de Brasília

• Salve e simule. Depois insira uma tabela e coloque os valores das correntes i_{R1} .I, i_{R2} .I, i_{R3} .I, i_{R4} .I e i_{R5} .I. Insira outra tabela e coloque os valores das tensões dos nós V_{R1} .V, V_{R2} .V, V_{R3} .V, V_{R4} .V e V_{R5} .V.

