

Physics-Informed Neural Networks (PINNs)

Ben Tapley

Outline

- 1. Data-driven neural network approach to solving differential equations (DEs)
- 2. Physics-informed neural network approach for DEs
- 3. Applications and limitations
- 4. Coding exercise

[HTML] **Physics-informed neural networks**: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis - Journal of Computational physics, 2019 - Elsevier

... We introduce **physics-informed neural networks** – **neural networks** that are trained to solve supervised learning tasks while respecting any given laws of physics described by general ...

☆ Save ⑰ Cite Cited by 6267 Related articles All 7 versions

Neural networks recap

A neural network can be viewed as a function

$$u^{\theta}: R^n \to R^m$$

that depends on trainable parameters θ .

• Given observations $(x_i, t_i) \in X$ and their labels $u_i \in Y$ then we can train u^{θ} by minimising the loss function

$$L = \sum |u^{\theta}(x_i, t_i) - u_i|$$

• Neural networks $u_{ heta}$ are *universal approximators*

E.g.:
$$u^{\theta}: R^3 \to R^2$$

Neural networks recap

Single layer: $f_i(x) = \sigma(W_i x + b_i)$ Multiple layers: $y = f_n \circ \cdots \circ f_1(x)$

Universality:

Solving differential equations

• A differential equation (DE) can be expressed as

$$DE[u,\lambda]=0$$

- Examples:
 - PDE: heat equation $DE[u, \lambda] = u_t \lambda u_x$, where u(x,t) is a scalar temperature field.
 - ODE: dampened oscillator $DE[u, \lambda] = \ddot{u} + \lambda_1 \dot{u} + \lambda_2 u$, where u(t) is the amplitude of the mass.
- The forward problem (traditional numerics): Given $DE[u, \lambda]$, solve for u.
 - Is feasable when we know all the physics.
 - That is, we know $DE[u, \lambda]$ and all parameters λ
- Problem: what if we have incomplete knowledge of physics
 - Example: we know $DE[u,\ \lambda]$ is the heat equation, but we don't know the thermal diffusivity constant λ

Heat equation

Dampened oscillator

Potential solution: data-driven approach

- Given incomplete knowledge of physics, and lots of labeled data $(x_i, t_i), u_i \in X \times Y$, we can take a **traditional data**-driven approach to train $u^{\theta}(x, t)$.
- This is done by optimising the loss function for θ :

$$L = \sum |u^{\theta}(x_i, t_i) - u_i|$$

- This approach can suffice given enough data, but usually leads poor generalisation, when making predictions on unseen data.
 - Especially in the common case where we have sparse data!
- Why? u_{θ} has no knowledge of the underlying physics that generates the data!

Some physics and some data

- We have outlined two scenarios for solving PDEs:
 - 1. Forward problem: complete knowledge of physics, no data.
 - Traditional numerics: given the DE $DE[u,\lambda]=0$ and initial conditions, solve for u(x,t).
 - 2. Inverse problem: no knowledge of physics, lots of data.
 - Traditional learning: given enough data $\{(x_i, t_i), u_i\}_{i=1}^N$, solve for u(x, t).
- What about a third scenario where we have some physics and some data?

Physics informed neural networks (PINNs)

- Example: The heat equation $u_t(x,t) = \lambda u_x(x,t)$, where λ is unknown
 - We know the structure of the DE $DE[u,\lambda]$, but not all the physical constants λ
 - We also have some observational data (x_i, t_i) , u_i
 - Here we should be able to use the data to infer what λ must be!
- How can we use the data plus the PDE to find u? Train it on the informed loss function

PINN Loss — Traditional, datadriven loss + Additional physics loss

Physics informed neural networks (PINNs)

• In general, for $DE[u, \lambda] = 0$ the loss function $L = \sum |u^{\theta}(x_i, t_i) - u_i|^2 + \sum |DE[u^{\theta}(x_i, t_i), \lambda]|^2$

Is (weakly) constraining the neural net to learn a form that satisfies

$$DE[u^{\theta}, \lambda] < tol$$

- The equation $DE[u^{\theta}, \lambda]$ can contain partial derivatives w.r.t time and space
 - This is computed using automatic differentiation

Advantages of PINNs

- Data Efficiency
- Interpretable Models
- Incomplete models and imperfect data
- Strong generalization in small data regime
- Tackling high dimensionality
- Difficult geometries where meshing is not feasible

Applications – 2D Navier-Stokes toy problem

Correct PDE	$u_t + (uu_x + vu_y) = -p_x + 0.01(u_{xx} + u_{yy})$ $v_t + (uv_x + vv_y) = -p_y + 0.01(v_{xx} + v_{yy})$	
Identified PDE (clean data)	$u_t + 0.999(uu_x + vu_y) = -p_x + 0.01047(u_{xx} + u_{yy})$ $v_t + 0.999(uv_x + vv_y) = -p_y + 0.01047(v_{xx} + v_{yy})$	M. I Physic learnin inverse
Identified PDE (1% noise)	$u_t + 0.998(uu_x + vu_y) = -p_x + 0.01057(u_{xx} + u_{yy})$ $v_t + 0.998(uv_x + vv_y) = -p_y + 0.01057(v_{xx} + v_{yy})$	

Raissi, P. Perdikaris, G.E. Karniadakis, hys cs-informed neural networks: A deep arning framework for solving forward and terse problems involving nonlinear partial differential equations, Journal of Computational Physics

Applications – Flow over coffee cup

Applications – Flow through aorta

Software

- DeepXDE Python github.com/lululxvi/deepxde
 - Implementation from original authors
 - Supports: TensorFlow, JAX, PyTorch
 - DeepONets, MFNNs, PINNs

Others:

- PyDEns Python, TensorFlow
- NeuroDiffEq Python, PyTorch
- NeuralPDE Julia

Challenges and limitations

- Computational complexity
- Requirement for physical laws
- "Weakly" enforces physical constraints.
- Multiscale and multi-physics problems
- Non-robust training and convergence

Comparison DeepXDE vs PyTorch vs Crank—Nicolson for 1D heat equation

Coding a PINN from scratch

github.com/bentaps/PINN-example

- Simulate the dynamics of an oscillating spring with resistance.
- Use a data-driven, physics agnostic approach
- Inform the loss function about the physics (i.e., the ODE)
- First, assume μ and k are known
- Second, assume μ and k are unknown and learn them.
- Add noise
- Experiment with hyperparams

• ODE is given by $DE[x(t), (\mu, k)] = \ddot{x} + \mu \dot{x} + kx = 0$

Where μ is the dampening constant and k is the spring constant.

Pseudo-Hamiltonian Neural Nets

- An alternative to PINNs
- Symmetries and laws are enforced intrisically through network architechture
 - Exact preservation of physics (as opposed to "weak")
- More data efficient
 - Does not require user-defined collocation points
- Simpler loss function
 - More efficient back prop.

Eidnes, Sølve, et al. "Pseudo-Hamiltonian neural networks with state-dependent external forces." *Physica D: Nonlinear Phenomena* 446 (2023): 133673