Irrational Equation (HKMO Classified Questions by topics)

1990 FI1.2

對 $K \ge 0$, \sqrt{K} 表 K 的非負平方根。若 b 是方程 $\sqrt{5-x}=x-3$ 的根,求 b 的值。

 \sqrt{K} denotes the nonnegative square root of K, where $K \ge 0$.

If b is the root of the equation $\sqrt{5-x} = x-3$, find the value of b.

1992 FI5.4

設
$$\sqrt{2x+23} + \sqrt{2x-1} = 12$$
 及 $d = \sqrt{2x+23} - \sqrt{2x-1}$ 。 求 d 的值。

Let $\sqrt{2x+23} + \sqrt{2x-1} = 12$ and $d = \sqrt{2x+23} - \sqrt{2x-1}$. Find the value of d.

1998 HI9

設
$$a$$
 為方程 $\sqrt{\frac{x+2}{x-1}} + \sqrt{\frac{x-1}{x+2}} = \frac{5}{2}$ 的正根,求 a 的數值。

Let *a* be the positive root of the equation $\sqrt{\frac{x+2}{x-1}} + \sqrt{\frac{x-1}{x+2}} = \frac{5}{2}$,

find the value of a.

1999 FI3.2

若
$$\sqrt[3]{13b+37} - \sqrt[3]{13b-37} = \sqrt[3]{2}$$
 , 其中 $b > 0$, 求 b 之值。

If $\sqrt[3]{13b+37} - \sqrt[3]{13b-37} = \sqrt[3]{2}$, where b > 0, find the value of b.

2001 FG3.1

已知方程
$$\sqrt{3x+1} + \sqrt{3x+6} = \sqrt{4x-2} + \sqrt{4x+3}$$
 的解為 a , 求 a 的值。

Given that the solution of the equation $\sqrt{3x+1} + \sqrt{3x+6} = \sqrt{4x-2} + \sqrt{4x+3}$ is a, find the value of a.

2005 FI2.2

設
$$1=\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}$$
 , 求 b 的值。

Let $1 = \sqrt[3]{2 + \sqrt{b}} + \sqrt[3]{2 - \sqrt{b}}$. Find the value of b.

2009 FG1.3

已知
$$x$$
及 y 為非零實數且滿足方程 $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$ 及 $x - y = 7$ 。

若 w = x + y, 求 w 的值。

Given that x and y are non-zero real numbers satisfying the equations

$$\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$$
 and $x - y = 7$. If $w = x + y$, find the value of w.

2009 FG4.1

設P為實數。若 $\sqrt{3-2P} + \sqrt{1-2P} = 2$,求P的值。

Let P be a real number. If $\sqrt{3-2P} + \sqrt{1-2P} = 2$, find the value of P.

2012 FI2.1

若 P 是方程 $x^2 + 9x + 13 = 2\sqrt{x^2 + 9x + 21}$ 的所有實根之乘積,求 P 的值。

If the product of the real roots of the equation $x^2 + 9x + 13 = 2\sqrt{x^2 + 9x + 21}$ is P, find the value of P.

2013 HI8

解
$$\sqrt{31-\sqrt{31+x}} = x \circ \text{Solve } \sqrt{31-\sqrt{31+x}} = x$$
.

2014 HG1

已知
$$\sqrt{2014-x^2} - \sqrt{2004-x^2} = 2$$
。 求 $\sqrt{2014-x^2} + \sqrt{2004-x^2}$ 的值。

Given that $\sqrt{2014 - x^2} - \sqrt{2004 - x^2} = 2$,

find the value of $\sqrt{2014 - x^2} + \sqrt{2004 - x^2}$.

2014 FI2.1

求方程
$$\sqrt{(x+\sqrt{x})}-\sqrt{(x-\sqrt{x})}=\sqrt{x}$$
 的正實根 α 。

Determine the positive real root, α , of $\sqrt{(x+\sqrt{x})} - \sqrt{(x-\sqrt{x})} = \sqrt{x}$.

2015 HG5

已知方程 $x^2 + 15x + 58 = 2\sqrt{x^2 + 15x + 66}$ 有兩個實根,求兩根之和。

Given that the equation $x^2 + 15x + 58 = 2\sqrt{x^2 + 15x + 66}$ has two real roots. Find the sum of the roots.

2015 FG3.3

求以下方程的根
$$x = \left(x - \frac{1}{x}\right)^{\frac{1}{2}} + \left(1 - \frac{1}{x}\right)^{\frac{1}{2}}$$
。

Determine a root to $x = \left(x - \frac{1}{x}\right)^{\frac{1}{2}} + \left(1 - \frac{1}{x}\right)^{\frac{1}{2}}$.

2016 FG3.3

若方程
$$\sqrt[3]{5+\sqrt{x}}+\sqrt[3]{5-\sqrt{x}}=1$$
,求實數根 x 。

Solve $\sqrt[3]{5+\sqrt{x}} + \sqrt[3]{5-\sqrt{x}} = 1$ for real number x.

2019 HI10

設
$$c = \sqrt[3]{7 + 5\sqrt{2}} + \sqrt[3]{7 - 5\sqrt{2}}$$
。若 $w = c^2$,求 w 的值。

Let $c = \sqrt[3]{7 + 5\sqrt{2}} + \sqrt[3]{7 - 5\sqrt{2}}$. If $w = c^2$, find the value of w.

2023 HI15

求方程
$$\sqrt[3]{x} + \sqrt[3]{x-4} = \sqrt[3]{x-2}$$
 的根之積。

Find the product of roots of the equation $\sqrt[3]{x} + \sqrt[3]{x-4} = \sqrt[3]{x-2}$.

Answers

1000 EII 0	1000 FIG 4	1000 III0	1000 FI2 2	2001 EG2 1
1990 FI1.2	1992 FI5.4	1998 HI9	1999 FI3.2	2001 FG3.1
4	2	2	7	3
2005 FI2.2 5	2009 FG1.3 25	2009 FG4.1 $\frac{3}{8}$	2012 FI2.1 5	2013 HI8 5
2014 HG1 5	2014 FI2.1 $\frac{4}{3}$	2015 HG5 -15	$\frac{2015 \text{ FG3.3}}{\frac{1+\sqrt{5}}{2}}$	2016 FG3.3 52
2019 HI10 4	2023 HI15 $\frac{2}{7}$			