Ann Von Holle

Department of Epidemiology

January 16, 2017

- 1 Background
- 2 Specific Aims
- 3 Approach
- 4 Preliminary results
- **5** Conclusions

Dyslipidemia in Children

- Why is dyslipidemia important?
- A risk factor for cardiovascular disease
- contributes to the atherosclerotic process.
- Dyslipidemia affects xx proportion of the population with notable health disparities across racial/ethnic groups
 - Adverse lipid levels represent strong risk factors for mnay cardiovascular disease outcomes
 - Lipids are targets for intervention because they represent modifiable factors

Disparities in Lipids

Dyslipidemia can start in childhood

- How many have it in childhood?
- When you have it how likely are you to maintain dyslipidemia

Early childhood determinants of chronic disesae

- Researchers have noted a wide range of chronic diseases linked to early life determinants.
 - Birthweight started as one widely noted early life determinant
 - Hypotheses have evolved and now include weight change over time in infancy: growth trajectories.

Developmental Origins of Health and Disease¹ (DOoHAD)

¹Hanson MA; Gluckman PD. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology

Prior studies point towards association between postnatal growth and dyslipidemia later in life.

	Author	Year published	Direction of growth with increase in HDL-C	2+ observations in change measure	Non- European sample?
1	Corvalan	2009	+		✓
2	Ekelund	2007	+		
3	Howe	2010	-		
4	Kajantie	2008	+		
5	Leunissen	2009	-		
6	Oostvogels	2014	-		
7	Tzoulaki	2010	+	V	

The postnatal period is a critical window of time in which accelerated growth can influence risk of chronic disease later in life: developmental programming hypothesis

Directed Acyclic Graph (DAG)

Figure 1: Directed Acyclic Diagram (DAG) for research topic.

infant growth ——— dyslipidemia, adolesence

Aims

Overall:

- Investigate the association between postnatal growth trajectories and lipids in adolescence
 - Contemporary Chilean birth cohort with monthly measures of weight in the first year of life
 - \diamond High quality clinical measures of cardiovascular disease risk factors.
- Will investigate postnatal growth trajectories for weight-for-length, weight and length outcome measures.

Characterize growth trajectories for infants from 0 to 12 months and what are some significant predictors?

Aim 1 Characterize individual growth trajectories in the first year of life and replicate predictors of growth using external validation with an independent sample.

We expect to replicate previous findings² indicating a positive association between:

- Maternal characteristics such as pre-pregnancy BMI, height and age with trajectory size.
- 2. Maternal education and trajectory velocity.

²Pizzi C: Cole TJ: Richiardi L; dos-Santos-Silva I; Corvalan C; De Stavola B. Prenatal Influences on Size; Velocity and Tempo of Infant Growth: Findings from Three Contemporary Cohorts. PLoS ONE. 2014 Feb 27;9(2):e90291...

Aim 2

Do certain postnatal growth trajectories associate with dyslipidemia?

Aim 2 Examine the association between postnatal growth trajectories and dyslipidemia.

We expect:

Infants with faster growth trajectories will be more susceptible to dyslipidemia in adolescence.

Aim 3

Question Do growth trajectories modify the association between genetic variants related to lipid metabolism and dyslipidemia in adolescence?

Aim 3 Assess gene-environment interaction between growth trajectory characteristics and genetic variants of lipid metabolism with dyslipidemia at 18 years of age as an outcome.

We expect:

- 1. The selected genetic variants will associate with dyslipidemia in adolescence.
- A gene-environment interaction exists in which extreme and less favorable growth characteristics will exhibit stronger, deleterious associations between the genetic variants and dyslipidemia.

Use SITAR³ method to measure 3 types of postnatal growth: size, tempo, velocity

³Beath KJ; Heller GZ. Latent trajectory modelling of multivariate binary data. Statistical Modelling. 2009 Oct 21;9(3):199-2 Ben-Shlomo Y. SITAR - a useful instrument for growth curve analysis. International Journal of Epidemiology. 2010 Jul 20:39(6)

Latent growth mixture models (LGMM) can provide unobserved groups of peop

SLCS lipid variants and dyslipidemia in adolescence

Strengths and Limitation

- Strengths
- Limitations

Public Health Implications

• Add information from Messer 2015 paper.

Future Research

Put new approaches here.