M2: Lecture 8 Theory of the Consumption Function (I)

Andreas Schaab

Outline of today's lecture

- 1. Canonical income fluctuations problem in discrete time
- 2. Permanent income hypothesis
- 3. Certainty equivalence and consumption as a martingale
- 4. Linearization of Euler equation
- 5. Euler equation empirics

1. Canonical model of consumption

 The standard model is known as the consumption-savings or income-fluctuations problem

$$V(a_0) = \max_{\{c_t\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to

$$a_{t+1} = R_{t+1}(a_t - c_t) + y_t$$

- a_t is wealth, $\{R_{t+1}\}$ is deterministic (gross) interest rate process, and y_t is iid. income risk
- Assume $u(\cdot)$ concave (u'>0 and u''<0 for all c) and $\lim_{c\to 0} u'(c)=\infty$
- What should we assume about borrowing capacity?
 - Natural borrowing limit: $a_t \ge a^n$
 - − Ad-hoc borrowing limit: $a_t \ge \underline{a}$

• Bellman equation:

$$V_t(a) = \max_{c, a'} \left\{ u(c) + \beta \mathbb{E}_t V_{t+1}(a') \right\} \ s.t. \ a' = R_{t+1}(a-c) + y$$

- Bellman equation may not be stationary or time-independent: R_t
- If income process $\{y_t\}$ persistent, would need y as second state variable
- First-order conditions (with ad-hoc borrowing limit *a*):

$$u'(c_t(a)) = \beta R_{t+1} \mathbb{E}_t \frac{\partial V_{t+1}(a')}{\partial a'} \quad \text{if } a' > \underline{a}$$

$$u'(c_t(a)) \ge \beta R_{t+1} \mathbb{E}_t \frac{\partial V_{t+1}(a')}{\partial a'}$$
 if $a' = \underline{a}$

- Envelope theorem: $\frac{\partial V_t(a)}{\partial a} = u'(c_t(a))$
- So we again get a consumption Euler equation:

$$u'(c_t) = \beta R_{t+1} \mathbb{E}_t u'(c_{t+1}) \quad \text{if } a' > \underline{a}$$

$$u'(c_t) \ge \beta R_{t+1} \mathbb{E}_t u'(c_{t+1}) \quad \text{if } a' = \underline{a}$$

Perturbation intuition:

• What is the cost of consuming ϵ dollars less today?

Utility loss today =
$$\epsilon \cdot u'(c_t)$$

• What is the expected, discounted gain of consuming $\epsilon \cdot R_{t+1}$ dollars more tomorrow?

Utility gain tomorrow =
$$\beta(\epsilon \cdot R_{t+1})\mathbb{E}_t u'(c_{t+1})$$