Линейни пространства.

Нека F е фиксирано числово поле. Неговите елементи ще наричаме скалари. Нека V е множество от елементи, наречени вектори, в което са въведени операциите събиране на вектори

$$a + b = c \in V \quad \forall a, b \in V$$

и умножение на векотр със скалар

$$\lambda a = d \in V \quad \forall a \in V, \forall \lambda \in F.$$

Казваме, че V е линейно пространство над полето F, ако са изпъленени следните осем аксиоми

- 1) $(a + b) + c = a + (b + c) \quad \forall a, b, c \in V$,
- 2) $\exists o \in V : a + o = o + a = a \quad \forall a \in V$,
- 3) $\forall a \in V \quad \exists (-a) \in V : a + (-a) = -a + a = o,$
- 4) $a + b = b + a \quad \forall a, b \in V$,
- 5) $1.a = a \quad \forall a \in V, 1 \in F$,
- 6) $\lambda(a+b) = \lambda a + \lambda b \quad \forall a, b \in V, \forall \lambda \in F$,
- 7) $(\lambda + \mu)a = \lambda a + \mu a \quad \forall a \in V, \forall \lambda, \mu \in F$,
- 8) $(\lambda \mu)a = \lambda(\mu a) \quad \forall a \in V, \forall \lambda, \mu \in F.$

Задача 1. Покажете, че множеството V на функциите

$$f:\mathbb{C}\longrightarrow\mathbb{C}$$

е линейно пространство над полето на комплексните числа $\mathbb C$ спрямо поточково определените събиране (f+g)(z)=f(z)+g(z) и умножение $(\lambda f)(z)=\lambda f(z).$

Peшение. Преди всичко трябва да проверим дали множеството V е затворено относно така определените операции събиране и умножение с

число. Взимаме две произволни фунцкии $f,g \in V$. Тогава трябва да докажем, че техният сбор f+gсъщо е функция от \mathbb{C} в \mathbb{C} и следоватено принадлежи на V. По определение (f+q)(z)=f(z)+q(z). За да бъде f + g функция, трябва да проверим дали съпоставя единствена стойност на всеки свой аргумент. Да допуснем, че това не е така, т.е. че имаме едновременно $(f+g)(z)=z_1$ и $(f+g)(z)=z_2$ с $z_1\neq z_2$. Според дефиницията на сбора, това ни дава, че $f(z) + g(z) \neq f(z) + g(z)$. Това обаче е невъзможно т.к. по начало f и g са функции и следователно $f(z)=f(z) \forall z \in \mathbb{C}$ и $g(z)=g(z) \forall z \in \mathbb{C}$. Противоречеито доказва, че f+gнаистина е функция и следователно $f + g \in V$, т.е. множеството V е затворено относно операцията събиране. По същия начин проверяваме и затовреност относно операцията умножение с число. Взимаме произволна функция $f \in V$ и произволно число $\lambda \in \mathbb{C}$. Искаме да докажем, че λf е функция от \mathbb{C} в \mathbb{C} . Да допуснем противното, т.е. че съществува $z \in \mathbb{C}$, такова че $(\lambda f)(z)=z_1$ и $(\lambda f)(z)=z_2$ с $z_1\neq z_2$. Според дефиницията на операцията умножение с число, това ни дава равенството $\lambda f(z) \neq \lambda f(z)$, което се свежда до $f(z) \neq f(z)$. Последното е невъзможно, т.к. по начало f е функция и следователно $f(z) = f(z) \forall z \in \mathbb{C}$. Противоречието доказва, че λf наистина е функция и следователно $\lambda f \in V$, т.е. множеството V е затворено относно операцията умножение с число.

Сега остава да проверим осемте аксиоми.

1) Имаме, че

$$[(f+g)+h](z) = (f+g)(z)+h(z) = f(z)+g(z)+h(z) = f(z)+(g+h)(z) = [f+(g+h)](z)$$

за произволно $z \in \mathbb{C}$ и произволни фунцкии $f, g, h \in V$.

- 2) Директно се проверява, че тъждествно нулевата функция $O: \mathbb{C} \to \mathbb{C}$, дефинирана чрез $O(z) = 0, \forall z \in \mathbb{C}$ играе ролята на нулев вектор.
- 3) Директно се проверява, че на всяка функция $f \in V$ се съпоставя функцията (-f), дефинирана с (-f)(z) = -f(z) и за тях е изпълнено, че $[f+(-f)](z) = [(-f)+f](z) = f(z)-f(z) = 0, \forall z \in \mathbb{C}$ или с други думи f+(-f)=-f+f=0.
 - 4) Имаме, че

$$(f+g)(z) = f(z) + g(z) = g(z) + f(z) = (g+f)(z)$$

за произволно $z \in \mathbb{C}$ и произволни функции $f, g \in V$.

5) Очевидно, по определение

$$(1.f)(z) = 1.f(z) = f(z)$$

за произволна функция $f \in V$.

6) Според така дадените дефиниции на операциите имаме, че

$$[\lambda(f+g)](z) = \lambda(f+g)(z) = \lambda(f(z)+g(z)) = \lambda f(z) + \lambda g(z) = (\lambda f)(z) + (\lambda g)(z)$$

за произволни функции $f,g\in V$ и произволно число $\lambda\in\mathbb{C}.$

Свойства 7) и 8) се проверяват абсолютно аналогично.

 ${\bf C}$ всичко това доказвахме, че V е линейно пространство над ${\bf C}$. \square

Ако $U\subseteq V$ е подмножество на линейното пространство V над F, то казваме, че U е подпространство на V и пишем $U\leq V$, ако

$$\lambda a + \mu b \in U \quad \forall a,b \in U, \forall \lambda,\mu \in F$$

или, алтернативно, ако U самостоятелно е затворено относно операциите събиране и умножение с число, наследени от V.

Задача 2. Нека V е линейното пространство от Задача 1. Кои от следните подмножества на V

a)
$$U_1 = \{ f \in V | f(1) + 2f(2) + 3f(3) = 0 \},\$$

6)
$$U_2 = \{ f \in V | f(1) + 2f(2) + 3f(3) = 1 \}$$

са негови подпространства?

Peшение. Да проверим затовреността на всяко от подмножествата, относно наследените от V операции.

а) Нека $f, g \in U_1$, т.е. е изпълнено

$$f(1) + 2f(2) + 3f(3) = 0$$
 и $g(1) + 2g(2) + 3g(3) = 0$.

Тогава за f+g и λf (за произволно $\lambda \in \mathbb{C}$) имаме съответно

$$(f+g)(1)+2(f+g)(2)+3(f+g)(3) = f(1)+g(1)+2[f(2)+g(2)]+3[f(3)+g(3)] =$$

$$= f(1)+g(1)+2f(2)+2g(2)+3f(3)+3g(3) =$$

$$[f(1)+2f(2)+3f(3)]+[g(1)+2g(2)+3g(3)] = 0+0=0$$

И

$$(\lambda f)(1) + 2(\lambda f)(2) + 3(\lambda f)(3) = \lambda f(1) + 2\lambda f(2) + 3\lambda f(3) =$$
$$= \lambda [f(1) + 2f(2) + 3f(3)] = \lambda .0 = 0,$$

което доказва затвореността на U_1 и следователно $U_1 \leq V$.

б) Нека $f, g \in U_2$. Тогава за сбора им имаме, че

$$(f+g)(1)+2(f+g)(2)+3(f+g)(3) = f(1)+g(1)+2f(2)+2g(2)+3f(3)+3g(3) =$$

$$= [f(1)+2f(2)+3f(3)]+[g(1)+2g(2)+3g(3)] = 1+1=2 \neq 1,$$

което показва, че U_2 не е затворено относно събирането на функции и следователно нямам как да е подрпостранство.

Ако $a_1, \ldots, a_n \in V$ са вектори, а $\lambda_1, \ldots, \lambda_n \in F$ са скалари, то векторът

$$b = \lambda_1 a_1 + \dots + \lambda_n a_n = \sum_{i=1}^n \lambda_i a_i \in V$$

се нарича линейна комбинация на векотрите a_1, \ldots, a_n с коефициенти $\lambda_1, \ldots, \lambda_n$.

Казваме, че векотрите a_1, \ldots, a_n са линейно зависими, ако съществува ненулева n-торка $(\lambda_1, \ldots, \lambda_n)$, такава, че

$$\sum_{i=1}^{n} \lambda_i a_i = o.$$

Казваме, че векторите a_1, \dots, a_n са линейно независими, ако от равенството

$$\sum_{i=1}^{n} \lambda_i a_i = o$$

следва, че $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$.

Нека $A = \{a_1, \ldots, a_n\} \subseteq V$ е подмножество от вектори на линейното пространство V над поле F. Линейнта обвивка $\ell(A)$ на A е множеството на всички вектори от A и техните всевъзможни линейни комбинации. Тогава $\ell(A) \leq V$ и $\ell(A)$ е най-малкото подпространство на V, съдържащо A.

Казваме, че векторите $a_1, \ldots, a_n \in V$ образуват базис на линейното прстранство V, ако a_1, \ldots, a_n са линейно независими и $\ell(a_1, \ldots, a_n) = V$. Броят на векторите в кой да е базис на V е един и същ и се нарича размерност на V. Означава се с dim V.

Задача 3. Нека векторите $e_1 = (1,0,0), e_2 = (0,1,0)$ и $e_3 = (0,0,1)$ образуват стандартния базис на линейното пространство V. Докажете, че векторите $a_1 = e_1 + 2e_2 + 2_3, a_2 = -2e_1 - e_2 + e_3$ и $a_3 = -2e_1 - e_2 + e_3$ и $a_3 = -2e_1 - e_2 + e_3$ и $a_3 = -2e_1 - e_2 + e_3$

 $3e_1+e_2-2e_3$ също образуват базис на V. Намерете координатите на вектора $u=2e_1+2e_2+e_3$ спрямо базиса a_1,a_2,a_3 и коррдинатите на вектора $v=2a_1+2a_2+a_3$ спрямо базиса e_1,e_2,e_3 .

Peшение. Ясно е, че $\dim V=3$ и в такъв случай е достатъчно да докажем, че векторите a_1,a_2,a_3 са линейно независими. Образуваме линейната комбинация

$$\lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3 = o.$$

Преобразувайки равенството, получаваме

$$\lambda_1(e_1 + 2e_2 + 2_3) + \lambda_2(-2e_1 - e_2 + e_3) + \lambda_3(3e_1 + e_2 - 2e_3) = o,$$

$$(\lambda_1 - 2\lambda_2 + 3\lambda_3)e_1 + (2\lambda_1 - \lambda_2 + \lambda_3)e_2 + (2\lambda_1 + \lambda_2 - 2\lambda_3) = o.$$

Тъй като e_1, e_2, e_3 са базис, то те са линейно независими и тогава последното равенство е еквивалентно на това да е изпълнена ситемата

$$\begin{vmatrix} \lambda_1 & -2\lambda_2 & +3\lambda_3 & = 0, \\ 2\lambda_1 & -\lambda_2 & +\lambda_3 & = 0, \\ 2\lambda_1 & +\lambda_2 & -2\lambda_3 & = 0. \end{vmatrix}$$

Това е възможно единствено при $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$. Оттук вече следва, че a_1, a_2, a_3 са линейно независими.

За да намерим координатите на u в новия базис е необходимо да изразим векторите e_1, e_2 от стария базис чрез векторите a_1, a_2 . Имаме, че

$$\begin{vmatrix} a_1 = e_1 & +2e_2 & +2e_3, \\ a_2 = -2e_1 & -e_2 & +e_3, \\ a_3 = 3e_1 & +e_2 & -2e_3. \end{vmatrix}$$

Ако решим тази система за e_1, e_2, e_3 (например по метода на Гаус), получаваме, че

$$e_1 = a_1 +6a_2 +4a_3,$$

 $e_2 = -a_1 -8a_2 -5a_3,$
 $e_3 = a_1 +5a_2 +3a_3.$

В такъв случай

$$v = 2(a_1 + 6a_2 + 4a_3) + 2(-a_1 - 8a_2 - 5a_3) + (a_1 + 5a_2 + 3a_3) =$$
$$= a_1 + a_2 + a_3.$$

За да намерим координатите на v в стандартния базис просто заместваме

$$v = 2(e_1 + 2e_2 + 2_3) + 2(-2e_1 - e_2 + e_3) + (3e_1 + e_2 - 2e_3) =$$

= $e_1 + 3e_2 + 4e_3$.

Системата от вектори a_1, \ldots, a_n е линейно независима точно когато матрицата, чиито редове са съставени от координатите на тези вектори не може да се преобразува с гаусови преобразувания до матрица с нулев ред. Ако $a_1, \ldots, a_n \in V$ и $\dim V = n$, то векторите a_1, \ldots, a_n са базис на V точно когато матрицата, чиито редове са съставени от координатите им, може да бъде преобразувана с гаусови преобразувания в триъгълна матрица.

Задача 4. Покажете, че векторите $a_1 = (1, -1, 2, 3)$ и $a_2 = (2, -2, 1, 1)$ са линейно независими и ги допълнете до басиз на четиримерното пространство $V = F^4$.

Решение. Съставяме матрицата

$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & -2 & 1 & 1 \end{pmatrix} \xrightarrow{-2} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 0 & -3 & -5 \end{pmatrix} .$$

Оттук е ясно, че няма какво да направим, за да превърнем който и да е ред на матрицата в нулев и следователно векторите a_1 и a_2 са линейно независими. За да допълним до базис добавяме два допълнителни реда в матрицата така, че тя да бъде триъгълна. Нека например $a_3=(0,1,0,0)$ и $a_4=(0,0,0,1)$ и сложим a_3 за втори, а a_4 за четвърти ред на матрицата. Тогава тя има вида

$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

която очевидно има триъгълен вид и следователно векторите a_1, a_2, a_3, a_4 са базис на четиримерното пространство.

Задача 5. За кои стойности на параметъра λ векторът $v=(2,-3,\lambda)$ е линейна комбинация на векторите $a_1=(1,2,-1), a_2=(2,3,1), a_3=(1,0,5)$?

Peшение. Да допуснем, че v е линейна комбинация на посочените вектори с коефициенти $\lambda_1, \lambda_2, \lambda_3$, т.е.

$$v = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3.$$

Ако запишем това покоординатно, получаваме системата

$$\begin{vmatrix} \lambda_1 & +2\lambda_2 & +\lambda_3 & = 2, \\ 2\lambda_1 & +3\lambda_2 & = -3, \\ -\lambda_1 & +\lambda_2 & +5\lambda_3 & = \lambda \end{vmatrix}$$

и остава единстено да видим за кои стойности на параметъра λ тя е съвместима. Преобразуваме разширената матрица

$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 0 & -3 \\ -1 & 1 & 5 & \lambda \end{pmatrix} \stackrel{-2}{\longleftarrow} \stackrel{1}{+} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & -2 & -7 \\ 0 & 3 & 6 & \lambda + 2 \end{pmatrix} \stackrel{3}{\longleftarrow} \stackrel{3}{\longleftarrow} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & -2 & -7 \\ 0 & 0 & 0 & \lambda - 19 \end{pmatrix} .$$

Оттук е ясно, че системата е съвместима единствено при $\lambda=19$.