[30240604 面向计算机科学的离散数学-图论 2023]

面向计算机科学的离散数学

图论—平面图与色数

苏航

suhangss@mail.tsinghua.edu.cn 清华大学 计算机系

道路/回路、树 存在、唯一、计数、最短、最长、图到矩阵

> 仔细观察、发挥想象 实际需求?

印刷电路板设计

高速公路设计

不交叉!

现实中这种平面图并不多见,但我们能将许多实际模型抽象为平面图模型:如景区空调管道的设计、房屋内设施的连线 因此我们研究抽象的平面图的定义、判定与性质,对我们解 决实际问题有着重要价值

道路/回路、树 存在、唯一、计数、最短、最长、图到矩阵

- ◈平面图
- ◈极大平面图
- ◆非平面图
- ◆图的平面性检测
- ◈对偶图

重点:

- 1. 平面图的概念和性质
- 2. 欧拉公式及其变形和应用
- 3. 极大平面图与非平面图的性质和证明
- 4. 对偶图概念和特点
- 5. 五色定理和四色猜想

平面图

- ◆ 定义4.1.1
 - □ 若能把图G画在一个平面上,使任何两条边都不相交,就 称G可嵌入平面,或称G是可平面图
 - 。可平面图在平面上的一个嵌入,是平面图

◈例: b和c都是a的一个平面嵌入,因此a是一个可平面图, b和c都是平面图

平面图(2)

- ◆ 若G是可平面图,那么它导出子图是否是可平面图? 为什么?
 - 可平面图的任何导出子图也是可平面图。

点一》线一》?

平面图(3)

- ◆ 定义4.1.2
 - 。设G是一个平面图,由它的若干边所构成的一个区域,若区域 内不含任何结点及边,就称该区域为G的一个面或域
 - 。包围这个域的诸边称为该域的边界
- ◆ 如果两个域有共同的边界,就说它们是相邻的,否则

是不相邻的

- ◆ 将平面图G外边无限区域称为 无限域,其他区域叫内部域
- ◆ 如果e不是割边,则它必为 某两个域的公共边界

平面图 (4)

- ◈ 域:设G是一个平面图,由它的若干边构成的一个区域内如果不含任何节点及边,就称该区域为G的一个域
- ◆ 平面图G外的无限区域称为无限域,所有其他域称为内部域
- ◆ 本图中
 - □ ④为无限域
 - ①②③为内部域
- ◆ 有限域和无限域一样吗?

无限大的平面

测地变换(1)

- ◆光源N点所在的域(也即球面上三角形ABC以 外的部分)对应平面上的无限域
- ◆ 无限域对应光源所在区域

测地变换 (2)

- ◆ 无限域对应光源所在区域
- ◈ 光源的选择是任意的!
- ◆若选择ABC内的某点 N'作为光源重新进行球到 平面的测地变换,此时**三角形ABC对应平面上 的无限域**

(b)

测地变换(3)

- ◆ 无限域对应光源所在区域
- ◈ 光源的选择是任意的!
- ◆ 若选择*ABC*内的某点 *N*′作为 光源重新进行 球到平面的测地变换,此时**三角形***ABC***对应平 面上的无限域**

测地变换(4)

- ◆ 无限域对应光源所在区域
- ◈ 光源的选择是任意的!
- ◆ 若选择ABC内的某点 N'作为 光源重新进行球到 平面的测地变换,此时**三角形ABC对应平面上的无 限域**
- 可以通过"先将平面图用测地变换画到球面上,重新选取任意一个域 d 中的一点作为光源,再进行到平面的测地变换"的方式,来使平面图G的任意一个域 d 变为无限域
- ◆ 内部域和无限域可以进行转换:不同的嵌入方式

测地变换 (5)

- ◆ 平面图中相邻的两个域经过测地变换到球面,再重新选择"北极点"测地变换到平面,这两个域是否仍然相邻?
 - □ 某两个域的公共边经过测地变换后,仍然是公共边
- ◆ 我们将球面投射到平面的方法有什么缺陷?
 你是否有更好的方法?
 - ✓ 我们把球面投射到一个无限大的平面,这在现实中是 不可行的;
 - 球面上的图案会出现严重的比例失真

欧拉公式

欧拉公式: 设 G 是平面连通图,则 G 的域的数目是 d=m-n+2

m增加 $1 \Rightarrow d$ 增加1

$$d = 1 \Rightarrow m = n - 1$$

欧拉公式

欧拉公式:设 G 是平面连通图,则 G 的域的数目是 d = m - n + 2

G 是连通图,有支撑树 T ,它包含 n-1条 边,不产生回路,因此对T来说只有一个(无限)域。

平面图(5)

- ◆ 定理4.1.1(欧拉公式:域的数目d)
 - 设G是平面连通图,则G的域的数目是d=m-n+2,(即n-m+d=2)
 - □ 证明(构造法):
 - G是连通图,有支撑树T,它包含n-1条边,不产生回路,因此对T来说只有一个无限域
 - 由于G是平面图,可加入一条余树 边,它一定不与其他边相交,即一定是跨在某个域的内部,把 该域分成两部分
 - 共有m-n+1条余树边,构成m-n+2个域

平面图(6)

- 例
 - 。考察下列平面图的域数量

d=m-n+2=6-4+2=4

d=m-n+2=8-6+2=4

平面图(7)

- . 欧拉公式:对平面连通图G有n-m+d=2,那么非连通图呢?
- ◆ 推论4.1.1
- 。 若平面图有k个连通分支,则n-m+d=k+1
 - 考虑如何将k个连通分支连通
 - 设G'(m')为将k个连通支连通后的新图
 - m'=m+(k-1), n-m'+d=2
- ◆ 推论4.1.2
- 。 对一般平面图G, 恒有 n-m+d≥2

域边界数和公式

考虑域的边界数之和与边数m的关系

设平面<mark>连通</mark>图G有d个域, f_i ($1 \le i \le d$)为其域,记记 $\varphi(f)$ 表示f的边界数, m_{cut} 表示G的割边数

$$\sum_{i=1}^{a} \varphi(f_i) + m_{cut} = 2m$$

证明: 任取 $e \in G$,若 e 是两个域的公共边,则被计算两次;否则e为割边,仅被某一个域计算一次,此时e在等式左端 m_{cut} 中被计算一次。

· 割边数和每个域的边数不因嵌入方式不同而变化

$$n = 6, m = 7, d = 3$$

 $\varphi = 3, 3, 7, m_{cut} = 1$

域边界数和公式

例

$$n = 8, m = 12, d = 6$$

$$n = 8, m = 10, d = 4$$

域边界数和公式: $\sum_{i=1}^{d} \varphi(f_i) + m_{cut} = 2m$

$$\varphi(f_i) = 4$$
$$\sum_{i=1}^{6} \varphi(f_i) = 24 = 2m$$

$$\varphi(f_1) = 4 \ \varphi(f_2) = 4$$

$$\varphi(f_3) = 2 \ \varphi(f_4) = 9$$

$$\sum_{i=1}^{4} \varphi(f_i) + 1 = 19 + 1 = 2m$$

注意无穷域!

平面图(8)

- 定理4.1.3
 - 设平面图没有割边,且每个域的边界数至少为t,

则 $m \leq t (n-2)/(t-2)$

m/n/t的关系?

欧拉公式 d = m-n+2

- 证明(思路?)
 - 因为没有割边,所以每条边都与两个不同的域相邻
 - 将域边界数对域求和等于2m
 - 设G有d个域,每个域的边界数至少是t,有td≤2m
 - 代入欧拉公式

$$(2m/t) \geqslant d = m-n+2$$

• 亦即

$$2m \ge tm-t(n-2)$$

 $m \le t(n-2)/(t-2)$

回顾

回顾:已经学习的三个基本的定量公式

①欧拉公式

$$d = m - n + 2$$

②域边界数和公式

$$\sum_{i=1}^{d} \varphi(f_i) + m_{cut} = 2m$$

③对 $n \ge 3$ 简单平面连通图G有3 $d \le 2m$, G为极大平面图时取等

上述公式的推论

重要思路

- (1)n-m+d=k+1 2. 内部域和无限域相互转换
- 1. 反证法
- ② $m \leq \frac{t(n-2)}{t-2}$, t为最少边界数

平面图的特殊情况?

- ◆平面图
- ◈极大平面图
- ◆非平面图
- ◈图的平面性检测
- ◆对偶图

极大平面图

- ◆本节只限于讨论简单平面图
- ◆ 定义4. 2. 1: 极大平面图
 - 。设G是n≥3的简单平面图
 - 。若在任意两个不相邻的结点V_i, V_j之间加入边(V_i, V_j), 就会破坏图的平面性,则称G是极大平面图

极大平面图(2)

• 示例

- •图中加入(v₃, v₅)是否一定与某些边相交?
- 能否改画一下边 (v_2, v_4) 后,就可以加入 (v_3, v_5) 并不破坏其平面性?
- 因此(a)不是极大平面图

• 非极大平面图

对画好的G,加入某边e总会与其他边相交, 但换种画法G+e仍然是可平面的,则G并非 是极大平面图

究竟如何才是极大平面图呢?

极大平面图(3)

- ◈ 极大平面图G的性质:
 - G是连通的
 - G不存在割边

- G的每个域的边界数? 都是3!

3d=2m

域边界数之和

- =度数之和
- =2m

极大平面图(4)

- 证明(极大平面图G的每个域的边界数都是3)
 - 因为G是简单图,没有自环和重边,因此不存在边界数为1和2的域
 - 假定G存在边界数大于3的域d_j, 不妨设d_j是其内部域, 如右图所示
 - 若结点i₁和i₃不相邻,则在域d_j内加入(i₁, i₃) 仍然是平面图,与G是极大平面图矛盾,因此 一定存在边e(i₁, i₃)且位于域d_i之外
 - 而此时,在dj之外不可能存在边(i2, i4)
 - 亦即i₂, i₄不相邻,但在域d_j内加入(i₂, i₄)并不 影响G的平面性。矛盾。证毕

3d=2m

是否能加边?

极大平面图(5)

- ◆ 定理4. 2. 1
 - □ 极大平面图G中, 有m=3n-6, d=2n-4
 - □证明
 - •由极大平面图的性质4: 3d=2m
 - 代入欧拉公式: d=m-n+2
 - 整理后即得以上结论
 - 。该定理可以用于极大平面图的判定
 - 前提是简单平面图

极大平面图(7)

◈ 例4. 2. 1

简单平面图的一般情况呢?

- 。若简单平面图G有6个结点12条边,则每个域的边界数都 是3
- □证明
 - ●由于n=6, m=12, 满足定理4.2.1 (极大平面图G中有m=3n-6)
 - 因此G是极大平面图,每个域的边界数都是3

极大平面图(6)

- ◆ 推论4. 2. 1
 - 。 简单平面图G满足m≤3n-6, d≤2n-4
 - □ 证明(考虑G是否含有割边)
 - 设G中没有割边
 - 因为G中没有自环和重边,所以每个域的边界数至少为
 3,故3d≤2m,代入欧拉公式:
 d=m-n+2
 - 如果G里有割边e,由于e并不能增加G的域数,也有3d < 2m
 - 代入欧拉公式即得以上结论

极大平面图(8)

- ◈ 例4. 2. 2
 - 若简单图G不含K₃子图,则有 m ≤ 2n-4
 - □证明

- 代入欧拉公式(m/2) ≥ d = m-n+2
- 即 m≤2n-4

极大平面图(9)

- ◆ 定理4. 2. 2
 - 。简单平面图G中存在度小于6的结点
 - □ 证明 (反证法: 欧拉公式n-m+d≥2)
 - 设每个结点的度都不小于6
 - 由度数之和 $\sum d(v_i) = 2m$, 得到 $6n \leq 2m$
 - 因为G是简单平面图,又有3d ≤2m
 - ●代入欧拉公式的一般形式n-m+d≥2

• 有
$$\frac{1}{3}$$
m - m + $\frac{2}{3}$ m ≥ 2

• 矛盾

极大平面图(10)

- 例4. 2. 3
 - 结点数不超过11的简单平面图G一定存在度小于5的结点
 - 证明(反证法)
 - 假定每个结点的度都不小于5,则5n≤2m
 - •因为G是简单平面图,满足m≤3n-6
 - ●因此得n≥12,与已知矛盾

极大平面图(11)

- ◈ 例4. 2. 4
 - 。K₇图不是平面图
 - □证明
 - 因为K₇图每个结点的度都为6
 - 由定理4.2.2 (简单平面图G中存在度小于6的 结点)即得证

- ◆平面图
- ◆极大平面图
- ◆非平面图
- ◆图的平面性检测
- ◆对偶图

特殊的非平面图

n=3: K_3 是可平面图

n=4: K_4 是可平面图

n = 5: K_5 是非平面图, $K_5 - e$ 是可平面图

 K_5 是点数最少的非平面图

特殊的非平面图

n=5: K_5 不是可平面图, K_5-e 是可平面图

n=6: K_6 包含 K_5 ,不是可平面图, $K_{3,3}$ 是非平面图

K_{3,3}: 二分图

三个设施与三个用户的模型 $m=3\times 3=9$

 $K_{3,3}$ 是边数最少的非平面图

非平面图

◆非平面图

- 。如果图G不能嵌入平面使得任意两边只能在结点处相交,那么 G就称为非平面图
- K₅是非平面图吗?
- ◆ 定理4.3.1: K₅是非平面图!
 - □ 证明 (反证法)
 - 在K₅中 , n=5, m=10, 如果
 它是可平面图, 应有m≤3n-6
 - 而此时3n-6=9, 矛盾
- ◆ 结点最少? 边数最少?

非平面图的 特殊情况?

非平面图(2)

- ◈ 图G是可平面图吗?
- ◆去掉一条边, G'可平面吗?
 - 。移去一条对角边, G'可平面
 - 。移去任一边, G'可平面
- ◈ 图G似曾相识?

6个点 9条边

非平面图(3)

- ◆ 定理4. 3. 2
 - · K_{3.3}是非平面图
 - . 证明(反证法)
 - 假定K3 3是可平面图
 - 由于n=6, m=9, 考虑m≤3n-6?
 - 由欧拉公式 d=m-n+2, 得到d=5
 - G是二分图,即G中没有K₃子图
 - 因此4d≤2m,亦即20 ≤ 18,矛盾。证毕。
- ◆ K₅和K_{3,3}分别记为K⁽¹⁾和K⁽²⁾图

考虑: 域的边界数 之和=2m

什么图是非平面图?

非平面图(4)

- ◈ 定义4.3.1
 - 。在K⁽¹⁾和K⁽²⁾图上任意增加一些度为2的结点(绿色),得到的图称为K⁽¹⁾型图和K⁽²⁾型图,统称为K型图

定理4.3.3(库拉图斯基Kuratowski): G是可平面图的充要条件是G不存在K型子图

第四章 平面图与图的着色

- ◆平面图
- ◆极大平面图
- ◆非平面图
- ◈图的平面性检测
- ◈对偶图
- ◆色数与色数多项式

图的平面性检测

- ◈判断一个图的可平面性的预备工作(化简图):
 - 若G是非连通的,则分别检测每个连通支。 仅当所有的连通分支都是可平面的,G就是可平面的

图的平面性检测

- ◈判断一个图的可平面性的预备工作(化简图):
 - 2. 如果G中存在割点v,这时可将图G从割点处分离,构成若干个不含割点的连通子图,或称块,然后检测每一块。

G是可平面的当且仅当每一块都是可平面的

3.移去自环

图的平面性检测(2)

◆预备工作(续)

移去度为2的结点 v_i 及其关联的边,而在它的两个邻点 v_j , v_k 之间加入边 $(v_j$, v_k),原图是可平面的当且仅当新图是可平面的

图的平面性检测(2)

- ◆预备工作(续)
 - 5. 移去重边
- ◈ 反复运用4、5。最后如下判断
 - a 若m<9或n<5,则G是可平面图
 - 。 若m>3n-6,则G是非平面图
 - 。 不满足a和b,需要进一步测试

图的平面性检测

- 例4.4.1 判断下图的可平面性
- 解:运用前述判定规则,G有两个割点 v_1, v_2 ;可分成三个块分别检测。

图的平面性检测

- 例4.4.1 判断下图的可平面性
- 解:运用前述判定规则,G有两个割点 v_1, v_2 ;可分成三个块分别检测。

图的平面性检测—例题 B_1 m < 9

图的平面性检测

• 最后要么n < 5,要么m < 9,因此G是可平面的。

图的平面性检测(4)

- ◆ 如果在预处理之后无法判定
 - □需要进一步检测
 - 。具体过程详见DMP算法(教材P74-P79)
 - □利用平面嵌入的思路

第四章 平面图与图的着色

- ◆平面图
- ◆极大平面图
- ◆非平面图
- ◆图的平面性检测
- ◆对偶图

对偶图(序)

- 对偶
 - 对语文中字数相等、语法相似、词性相同的文句,成双成对地排列,借以表达相对或相关意思的修辞方法,称为"对偶"
 - 泛函分析理论: 对偶空间
 - 线性规划: 对偶问题
 - 任何一个求极大化的线性规划问题都有一个求极小化的线性规 划问题与之对应,反之亦然
 - 如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题, 并称这一对互相联系的两个问题为一对对偶问题
 - 图论中什么是对偶?

对偶图(序)

- 放飞你的想象力
 - 1. 对称?
 - 2. 图与补图?
 - 3. 对偶道路?

如果不看书的话,想破头也想不出来居然是这么定义的

域边界数之和

- =度数之和
- =2m
- 4. 平面图与非平面图(已有余补共轭等修饰)
- 5. 最长道路与最短道路(转换后为对方?)
- 6. 最长图与最短图,回路v.s.道路?
- 7. 点对边、边对点(对偶的对偶?)
- 8. 区域对点、点对区域?

对偶图

- 定义4.5.1: 对偶图
 - 由原图G来构造对偶图G*的做图方法
 - 1. G中每个确定的域fi内设置一个结点vi*
 - 对域 f_i 与 f_j 的共同边界 e_k ,有一条边 e_k *= $(v_i$ *, v_j *) ∈ E(G*),并与 e_k 相 交一次
 - 3. 非共同边界:若 e_k 处于 f_i 之内,则 v_i *有一个自环 e_k *与 e_k 相交一次

• 对偶图作图过程

- 给出了求对偶图G*的 方法,也称为对偶图
 - D (drawing)过程
- G*是平面图,避免边交叉

对偶图(1)

- ◈ 例4. 5. 1
 - 。以下两个图的对偶图如虚线边所示

G*中结点的度数? G中域边界数 割边加倍

对偶图(2)

- ◆ 性质4.5.1
 - □ 如果G是平面图,G一定有 对偶图G*,而且G*是唯一的
 - 由D过程可确定点和边
- ◆ 回顾定义4.5.1: 对偶图
 - 。由原图G来构造对偶图G*的做图方法
 - 1. G中每个确定的域fi内设置一个结点vi*
 - 2. 对域 f_i 与 f_j 的共同边界 e_k ,有一条 $\dot{\upsilon}_{e_k}$ *= $(v_i$ *, v_i *) $\in E(G^*)$,并与 e_k 相交一次
 - 3. 非共同边界:若e¸处于f¸之内,则v¸*有 一个自环e¸*与e¸相交一次

对偶图(3)

- ◆性质4.5.1:对平面图G,对偶图G*存在且唯一
 - □ 思考(G*)*=G吗?
- ◈ 性质4.5.2
 - 。G*是连通图
 - □ 证明:
 - G*中的结点对应G中的域
 - 在平面图G里,每个域f都存在相邻的域
 - 对G的任何部分域来说,剩余的域中都存在与他们之中某个域相邻的域
 - 这样由对偶图的定义可知, G*连通

对偶图的性质

- 性质4.5.3
 - 若G是平面连通图,则(G*)*=G。
- 性质4.5.4:
 - 平面连通图G与其对偶图G*的结点n、边m、域d之间 有对应关系:
 - m*=m, n*=d: 由定义过程即可知
 - d*=n: 考虑G中一个点的所有出边,对应的G*的边, 围成了G*当中的一个域

对偶图(5)

◆ 性质4.5.5

图G与G*对应的特性?如边集?

□设C是平面图G的一个初级回路,S*是G*中与C的各边e;对应的e;* 的集合,则S*是G*的一个割集。

□证明

- C把G的域分成了两部分,即把域 所对应G*的节点集分成两部分
- 因此E(G*)-S*把G*的结点分 成不连通的两部分
- 由性质4.5.2(即G*是连通图), G*这两部分分别是连通的, 因此S* 是G* 的一个割集

对偶图(6)

- •定理4.5.1 G有对偶图的充要条件是G为平面图
 - 证明
 - 充分性由性质4.5.1(平面图G存在唯一G*)得证
 - 必要性(反证法),即非平面图没有对偶图
 - 由库拉图斯基定理, 非平面图一定含有K⁽¹⁾和K⁽²⁾型子图
 - 而K⁽¹⁾、K⁽²⁾型子图是K⁽¹⁾和K⁽²⁾图中增加了一些度为2的结点
 - 不影响对偶图的存在性,只增加重边而已
 - 因此如果K⁽¹⁾、K⁽²⁾图没有对偶图,那么K⁽¹⁾、K⁽²⁾型,进 而非平面图也没有对偶图

对偶图(7)

- 证(续)
 - 对K⁽¹⁾图, m=10, n=5, d=?

- d≥7
- 假定K⁽¹⁾有对偶图,由性质4.5.4
 (边域点的对应关系),
- m*=10, n* ≥7
- 由于 $K^{(1)}$ 中没有自环和重边, 即 $K^{(1)}$ 中 每个域边界数 \geq 3, 即度数 $d(v_i*) \geq$ 3, 则 $\sum d(v_i^*) \geq 3 \times 7 > 2m^*$
- 因此K⁽¹⁾没有对偶图

对偶图(8)

- 证(续)
 - 对K⁽²⁾图, m=9, n=6, d≥5
 - 假定K⁽²⁾有对偶图,由性质4.5.4, m*=9, n*≥5
 - 由于 $K^{(2)}$ 中每个域的边界数至少为4,故度数 $d(v_i^*) \ge 4$,则

- $\sum_{\bullet} d(v_i^*) \ge 4 \times 5 > 2m^*$ 因此 $K^{(2)}$ 沒有对偶图
- K⁽¹⁾、K⁽²⁾型无对偶图,即非平面图没有对偶图

· 综上, G有对偶图的充要条件是G为平面图

对偶图(9)

- ◈ 例4. 5. 2
 - □图4.16是一所房子的俯视图,设每一面墙都有一个门
 - 。问能否从某个房间开始过每扇门一次最后返回?
 - 考虑结点和边的位置?

对偶图(10)

◈解:

- □ 做G的对偶图G*,原问题得到转换
- 。原问题(过每扇门一次最后返回)就转化为G* 是否存在欧拉回路
- 。显见与G的域 f_1 和 f_2 所对应的G*的结点 v_1 *和 v_2 *的度为奇,因此不存在欧拉回路

f₂ (v₂*)

对偶图(11)

- ◈ 例4. 5. 3
 - □设i, j是平面连通图无限域上的两个结点, 求G割集v.S. 回路?中分离i, j的所有割集
 - □ 解:
 - 。在无限域中填入边(i, j), 得到G₁
 - 。做G₁的对偶G₁*
 - 。 G₁*中除了(i', j')之外的从i'到j'的 初级道路所对应的G的诸边都构 成了G中分离i和j的割集

四色猜想(1)

• 四色猜想

- 1852年, Francis Guthrie猜测,对任何地图,只需用四种颜色对地图上的国家涂色,就能使任何两个相邻的国家涂有不同的颜色,这一猜测就是著名的"四色问题"
- 1878~1880年两年间,著名的律师兼数学家肯普(Kempe)和泰勒 (Tait)两人分别提交了证明四色猜想的论文,宣布证明了四色定 理
- 1890年,数学家赫伍德(Heawood)以自己的精确计算指出肯普的证明是错误的。不久,身为英国皇家学会院士的肯普向英国皇家学会
 正式报告了他的错误!不久,泰勒的证明也被人们否定了
- 到目前为止,关于四色问题的研究,最为著名的是W. Haken和
 K. Appel在1976年所给出的计算机证明:将地图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查
- 但是,四色问题的手写证明,即逻辑推理形式的证明,至今未果
- 世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)
- 时代在等待名垂千古的英雄!

四色猜想(2)

◆ 四色猜想

。对于任意一个平面图,只需4种不同的颜色就可以对它的域进 行染色,满足相邻的域染以不同的颜色。

◆ 定理4.5.2

- □ 每一平面图都是5一可着色的(域着色)
- □ 证明(转变为点?简单平面图?)
 - 作G的对偶图G*,命题转为 证G*的结点5-可着色
 - G*也是可平面的
 - 由于自环和重边不影响点染色,所以可以移去G* 中的自环、重边,得到简单图 G_0
 - 命题又转化为任意简单平面图G₀可以结点5着色

五色定理证明示意图

四色猜想(3)

- ◆ 证(续)
 - 。以下对简单平面图Go的结点进行归纳证明
 - 」当n≤5时,结论显然成立
 - 。假设n-1时成立

图中一定存在孤立点就好了 2

- 。要证结点数为n时成立,怎么办?
- 。由于 G_0 是结点数为n的简单平面图,由定理4.2.2(简单平面图中存在度小于6的结点), G_0 中存在结点v,d(v)<6
- 。移去v以后得到G₀',由假设条件,G₀'的结点5-可着色, 着好色之后,再把v放回

四色猜想(4)

◆ 证(续)

- □ 考虑将v放回G₀'的过程, 注: d(v)<6
- 。如果d(v) ≤4,或者d(v)=5且v 的邻接点没有用完5种颜色,则v可以着第5种颜色,即G₀ 的点可以5着色
- 。如果v的邻接点恰好用了5种颜色,怎么办呢?
- 如c₁~c₅, 其中设结点v;用c₁着色

四色猜想(5)

◆ 证(续)

- 。考虑能否将v₁结点换成c₃颜色?
- 。 $\Diamond G_{13} \neq G_0$ '= G_0 -v的一个子图,由 C_1 和 C_3 着色的结点导出
- □ 若v₁和v₃分属G₁₃ 的不同连通支
 - 将v₁所在连通支各结点的c₁、c₃颜色互换,v可以着c₁
 - 得到G₀的一个5着色
- □ 如果v₁和v₃属于G₁₃的同一个连通支
 - 则一定存在v₁到v₃的结点交替c₁和c₃颜色的道路P
 - 道路P加上边(v, v₁)和(v, v₃)构成一个封闭回路
 - 封闭回路把v₂与v₄、v₅分割在不同的区域
 - 道路P上任意节点颜色为c₁或c₃

怎么办?

四色猜想(6)

◈证(续)

- □考虑c₂和c₄对结点染色,是 否构成连接v₂和v₄的道路P'
 - 不会存在由 c_2 和 c_4 交替 对结点染色的道路连接 v_2 和 v_4
 - 否则与G₀ 是平面图矛盾
- □ 在G_0 -v的子图 G_{24} 中, v_2 和 v_4 分属于不同的支
- 。将 v_2 所在连通支各结点的 c_2 、 c_4 颜色对换,此时 v_2 着以 c_4 ,可令v着以 c_2 ,则 G_0 可5着色
- □证毕

思考该方法能够证明四色问题? V_5 可能与 V_1 、 V_3 、 V_4 均连着

四色猜想(7)

- ◆介绍了35个著名数学问题的 极富创造性和独具匠心的证明。
- ◆ 其中有些证明不仅想法奇特、 构思精巧,作为一个整体更 是天衣无缝。
- ◆ 有些虔诚的数学家将这类杰作比喻为上帝的创造。
- ◆ 数学天书中的证明

四色猜想(7)

- •定理4.5.3
 - 如果平面图有Hamilton回路,则四色猜想成立
 - 证明
 - 此结论已在第二章中给出
 - 请回忆·······

四色猜想(8)

• 证明

- 用一个示意图来加以直观的说明
- 设粗线边是G中的一个哈密顿回路,则它 将G的域划分成内外两部分
- 每一部分的域用两种颜色可以染色,满足相邻域染不同颜色
- 不然,一定存在三个以上的域互相连接的 情形
- 此时必出现v这样的结点。这与H是哈密顿 回路相悖
- 因此结论正确

无限域染绿色

如何用H回路来证明四色猜想?

四色猜想(9)

•定理4.5.4

- 3-正则平面图是指每个结点的度都是3的平面图
- 若任何一个3-正则平面图的域可4着色,则任意平面图的域也可以4着色可以4着色构造:将图改造为3-正则

平面图,不影响着色

•证明(基本方法?)

- 任何一个平面图G,如果存在度为1的结点v,则它一定处于某个域的内部,移去v并不影响这个域的染色
- 如果存在度为2的结点v_i, 删去v_i及其关联的边(v_i, v_j), (v_i, v_k), 同时增加一条边(v_j, v_k), 也不会影响域的染色

四色猜想(10)

- 证(续)
 - 如果存在结点v,满足d(v) ≥4。它关 联于边e₁, e₂, ···e_k, 设这些边依次环绕 于v
 - 我们对应每一条e_i构造一个新结点v_i,
 然后移去v,并加入新的边
 (v₁, v₂), (v₂, v₃), ···, (v_k, v₁)
 - 新加入的每一个结点的度为3
 - 即图G转化为3-正则平面图G'

四色猜想(11)

- 证(续)
 - 已将原图G转化为: 3-正则平面图G'
 - 原命题要证"若任何一个3-正则平面图(G')的域可4着 色,则任意平面图(G)的域也可以4着色"
 - 转化为要证"若G'的域可4着色,则G可域4着色"
 - 由已知条件G'的域可以四着色,再把由v₁, v₂, ···, v_k作为 边界点的域收缩,最后还原成一个结点v, 那么G'的域染色

彼德森图(3正则图)

- ◈由10个顶点和15条边构成的连通简单图
- ◆ 有哈密顿路但不是哈密尔顿图,常常作为反例出现 在图论之中

继续开启梦想之旅

- ◈ 四色猜想?
 - □ 从对域着色还能想到什么?
 - 。可否对点着色、对边着色?
 - □ 点4着色?
 - □ 特殊情况?
 - □ 联系之前的内容(如欧拉回路)

色数与色数多项式

- ◆基本概念
- ◆ 结合对偶图的证明方法
- 通过信道分配问题,了解图论建模的不同方法及其在 着色当中的应用

色数与色数多项式

- •定义4.6.1
 - 给定图G,满足相邻结点着以不同颜色的最少颜色数目 称为G的色数,记为 γ (G)
- •定义4.6.2
 - 给定图G, 满足相邻边着以不同颜色的最少颜色数目称 为G的边色数, 记为β(G)

色数与色数多项式(2)

- 边着色与点着色是否有什么联系?
 - 在G的每条边e;上设置一个结点v;'
 - 如果e;与e;关联于同一结点vk,则G'中有边(vi', vj')
 - G的边着色问题等价于虚线边所示G'的结点着色问题
 - 本课程仅讨论:结点着色问题

$$\gamma(G) = 3$$

$$\beta(G) = 4$$

色数与色数多项式(3)

一些直观结论

- 1. 若G是空图:
 - Y(G) = 1

- 2. 若G是n个结点的完全图:
 - 则 γ (G) = n
- 3. G=K_n−e, 则:

$$\gamma$$
 (G)=n-1

4. G是二分图**,**则:

$$Y(G) = 2$$

色数与色数多项式(3)

一些直观结论

5. G是2n个节点的回路

$$Y(G) = 2$$

6. G是2n+1个节点的回路

$$Y(G) = 3$$

7. G是n(n>=2) 个结点的树

$$y(G) = 2$$

$$\gamma$$
 (G) = 2的一般情况?

色数与色数多项式(4)

- •定理4. 6. 1: 非空图G, γ(G)=2当且仅当它没有奇回路
- •证明
 - 充分性(构造法)
 - 在G中确定一个林T', 其每个连通子图都是树T, 按树层次结构, 从树根开始可以构造出: γ(T)=2
 - 由于每个回路都是偶回路
 - 所以加入的每条余树边,都是连接某个 奇数层节点v;和某个偶数层节点v;的,不 会使结点着色发生变化
 - 因此γ(G)=2
 - 必要性(反证法)
 - 如果G中有奇回路,则γ(G)≥3,矛盾

色数与色数多项式(5)

- 推论: 二分图中的回路都是偶回路
 - 思考:如何证明?
- 例4. 6. 2
 - 平面连通图G的域可2着色 当且仅当G中存在欧拉回路

域着色转化为点着色

G存在对偶图G*,原命题变为:G*点2着色,当且仅当 连通图G有欧拉回路。

色数与色数多项式(6)

• 证明

要证: G*点2着色当且仅当 连通图G有欧拉回路

- 必要性
- 因为G*可点2着色,由定理4.6.1(即γ(G)=2当且仅当它没有奇回路),G*无奇回路,即每个回路都是偶回路
- 考虑G*中回路围成的域,则G*每个域f_i*的边界数都是偶数
- 由于(G*)*=G,G*每个域 f_i *对应G的一个结点 v_i ,由D过程知,域 f_i *的边界(数)对应结点 v_i 的边(度)
- 因此对任意v_i, 度d(v_i)是偶数,故G有欧拉回路

色数与色数多项式(7)

- 要证: G*点2着色当且仅当连通图G有欧拉回路
- 充分性
 - G有欧拉回路
 - 即G 中每个结点的度都是偶数
 - G*中每个域的边界数都是偶数
 - 因此G*中包围每个域的回路都 是偶回路
 - 由于任意两个偶回路的对称差依然是偶回路
 - 所以G* 中没有奇回路, γ(G*)=2

色数与色数多项式(8)

- ◈ 着色应用:无线Mesh网络中的信道分配
- ◆ 无线Mesh网络
 - 提供大范围高速 无线接入
 - 。两类节点
 - Mesh路由器
 - Mesh客户端
 - □多跳无线传输

色数与色数多项式(9)

◆ 信道特性

- 。信道广播造成干扰
- 多跳无线传输受干 扰的影响尤其严重
- 。需要避免干扰冲突
- □如何建模???

色数与色数多项式(10)

- ◆ 基于网络节点的信道分配模型
- ◆ 单天线:每个节点任意时刻处于某一个信道
 - □结点着色模型
 - 网络节点→结点
 - 无线链路→边
 - 信道→结点的颜色

♦ 多天线

- 每个节点可以同时与多个节点通信
- 。 边着色模型
 - 用边的颜色代表链路的信道分配
 - 所需要的信道数量: 是边色数吗?

色数与色数多项式(11)

- ◆基于干扰链路集合的信道分配模型
 - □ 如何表示链路的相互干扰情况?
 - □ 干扰图建模(干扰图的点着色:信道分配)
 - 干扰关系→边
 - 无线链路→结点
 - 无线链路的信道→结点的颜色

哪个是正确的? 点着色、边着色、 干扰图

链路	干扰链路
e1	e2, e3, e5
e2	e1, e3
e3	e1, e2, e4
e4	e3, e5
e5	e1, e4

色数与色数多项式(12)

- ◆ 更多的实际问题
 - □ 着色问题的复杂度
 - ——NP难问题
 - 启发式算法
 - 。信道数量有限,难以避免冲突
 - 允许出现相同颜色的 相邻结点,但应尽量减少冲突

边的着色

- ◆ 某一天内有n个教师给m个班上课. 每个教师在同课时只能给一个班上课.
 - (1) 这一天内至少排多少节课?
 - (2) 不增加节数情况下至少需要几个教室?

边的着色

◆ 令二部图 G = ⟨T, C; E⟩ , 其中
 T = { t₁, t₂, ···, tₙ }
 C = { c₁, c₂, ···, cォ }
 E = { (tᵢ, cᵢ) | tᵢ给cᵢ上一节课 }
 给G进行边着色.

边的着色

- ◆ 同色边代表的教学可以同时进行.
 所以颜色数就是节数,同色边数就是教室数.
- (1) 最少节数 = β (G).

第四章 小结

- 欧拉公式
 - 平面图: 连通d=m-n+2, n-m+d=2; k支:n-m+d=k+1
 - 一般平面图G, 恒有 n-m+d≥2
- 极大平面图
 - 极大平面图每个域的边界数都是3, 即3d=2m
 - 极大平面图中, m=3n-6, d=2n-4
 - 简单平面图G满足3d≤2m, m≤3n-6, d≤2n-4
 - 简单平面图G中存在度小于6的结点
 - G是可平面图的充要条件是G不存在K型子图

• 对偶图

- 域和节点的关系转化
- G是平面连通图,则(G*)*=G
- m=m*, n=d*, d=n*
- 每一平面图都是5一可着色的(域着色)

