The Determinant of a Matrix

Colby Community College

The **determinant of a** 2×2 **matrix** is defined:

$$|\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

The **determinant of a** 2×2 **matrix** is defined:

$$|\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Example 1

$$\begin{vmatrix} 3 & 8 \\ 5 & -1 \end{vmatrix} = 3 \cdot (-1) - 8 \cdot 5 = -43$$

For every element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **minor** \boldsymbol{M}_{ij} is an $(n-1) \times (n-1)$ matrix obtained by deleting the ith row and the jth column of \boldsymbol{A} .

For every element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **minor** \boldsymbol{M}_{ij} is an $(n-1) \times (n-1)$ matrix obtained by deleting the ith row and the jth column of \boldsymbol{A} .

Example 2

$$\mathbf{A} = \begin{bmatrix} 5 & 4 & -3 \\ 2 & -8 & 1 \\ 9 & 3 & 0 \end{bmatrix} \qquad \mathbf{M}_{12} =$$

For every element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **minor** \boldsymbol{M}_{ij} is an $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and the *j*th column of A.

Example 2

$$A = \begin{bmatrix} 5 & 4 & -3 \\ 2 & -8 & 1 \\ 9 & 3 & 0 \end{bmatrix} \qquad M_{12} = \begin{bmatrix} 2 & 1 \\ 9 & 0 \end{bmatrix}$$

$$M_{12} = \begin{bmatrix} 2 & 1 \\ 9 & 0 \end{bmatrix}$$

For every element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **minor** \boldsymbol{M}_{ij} is an $(n-1) \times (n-1)$ matrix obtained by deleting the ith row and the jth column of \boldsymbol{A} .

Example 2

$$\mathbf{A} = \begin{bmatrix} 5 & 4 & -3 \\ 2 & -8 & 1 \\ 9 & 3 & 0 \end{bmatrix} \qquad \mathbf{M_{12}} = \begin{bmatrix} 2 & 1 \\ 9 & 0 \end{bmatrix}$$

Cofactors of a Matrix

For every element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **cofactor** of a_{ij} is the scalar

$$C_{ij} = (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

For a $n \times n$ matrix **A**, choose any row or column.

For a $n \times n$ matrix \boldsymbol{A} , choose any row or column.

Expansion by the ith row:

$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} C_{ij} = \sum_{j=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

For a $n \times n$ matrix \boldsymbol{A} , choose any row or column.

Expansion by the *i*th row:

$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} C_{ij} = \sum_{j=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

Expansion by the jth column:

$$|{m A}| = \sum_{i=1}^n a_{ij} C_{ij} = \sum_{i=1}^n a_{ij} (-1)^{(i+j)} |{m M}_{ij}|$$

For a $n \times n$ matrix **A**, choose any row or column.

Expansion by the *i*th row:

$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} C_{ij} = \sum_{j=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

Expansion by the jth column:

$$|\mathbf{A}| = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

I recommend expanding across the first row.

Compute the determinant:

$$\begin{array}{cccc} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{array}$$

Compute the determinant:

$$\begin{vmatrix}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + + 3 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix}$$

Compute the determinant:

$$egin{array}{cccc} 3 & 1 & -1 \ 2 & 1 & 3 \ 0 & 1 & 2 \ \end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + + 3 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - + 1 \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix}$$

Compute the determinant:

$$\begin{vmatrix}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + + 3 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - + 1 \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + -1 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$

Compute the determinant:

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + + 3 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - + 1 \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + - 1 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 3(1 \cdot 2 - 3 \cdot 1) - (2 \cdot 2 - 3 \cdot 0) - (2 \cdot 1 - 1 \cdot 0)$$

Compute the determinant:

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + + 3 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - + 1 \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + - 1 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 3(1 \cdot 2 - 3 \cdot 1) - (2 \cdot 2 - 3 \cdot 0) - (2 \cdot 1 - 1 \cdot 0)$$
$$= -3 - 4 - 2$$

Compute the determinant:

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + + 3 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - + 1 \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + - 1 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 3(1 \cdot 2 - 3 \cdot 1) - (2 \cdot 2 - 3 \cdot 0) - (2 \cdot 1 - 1 \cdot 0)$$
$$= -3 - 4 - 2$$
$$= -9$$

$$\bullet \ \left| \boldsymbol{A}^{\mathsf{T}} \right| = \left| \boldsymbol{A} \right|$$

- $\bullet \ \left| \boldsymbol{A}^{\mathsf{T}} \right| = \left| \boldsymbol{A} \right|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is invertable.

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is invertable.
- If $|\mathbf{A}| \neq 0$, then $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is invertable.
- If $|\mathbf{A}| \neq 0$, then $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$
- If a row (or column) of **A** contains all zeros, then $|\mathbf{A}| = 0$

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is invertable.
- If $|\mathbf{A}| \neq 0$, then $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$
- If a row (or column) of **A** contains all zeros, then $|\mathbf{A}| = 0$
- If two rows (or two columns) of \boldsymbol{A} are equal, then $|\boldsymbol{A}|=0$

- $ullet |m{A}^{\mathsf{T}}| = |m{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is invertable.
- If $|\mathbf{A}| \neq 0$, then $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$
- If a row (or column) of **A** contains all zeros, then $|\mathbf{A}| = 0$
- If two rows (or two columns) of ${m A}$ are equal, then $|{m A}|=0$
- If A is an diagonal, upper triangular, or lower triangular matrix, the determinant is the product of the diagonal elements:

$$|\mathbf{A}| = \prod_{i=1}^m a_{ii}$$

Cramer's Rule

Consider the matrix equation:

$$\mathbf{A}\mathbf{\vec{x}} = \mathbf{\vec{b}}$$
 where $|\mathbf{A}| \neq 0$

The matrix A_j is obtained by replacing the jth column of A with \vec{b} .

The jth solution is:

$$x_j = \frac{\left| \mathbf{A_j} \right|}{\left| \mathbf{A} \right|}$$

The line of best fit is the line that gets "closest" to every point.

The line of best fit is the line that gets "closest" to every point.

Least Squares Approximation

A general strategy for finding the line y = mx + b that best describes a data set is to find b and m that minimizes the sums of the squares of the vertical distances between the data points and the line, given by F(b, m)

$$F(b, m) = \sum_{i=1}^{n} (y_i - (b + mx_i))^2$$

Least Squares Approximation

A general strategy for finding the line y = mx + b that best describes a data set is to find b and m that minimizes the sums of the squares of the vertical distances between the data points and the line, given by F(b, m)

$$F(b, m) = \sum_{i=1}^{n} (y_i - (b + mx_i))^2$$

To find such a b and m, we need to solve the system:

$$\frac{\partial F}{\partial b} = 0$$
 and $\frac{\partial F}{\partial m} = 0$

Least Squares Method

The best-fit straight line for n data points (x_i, y_i) , i = 1, 2, ..., n, has y-intercept b and slope m as determined by the system

$$\begin{bmatrix} \sum\limits_{i=1}^n 1 & \sum\limits_{i=1}^n x_i \\ \sum\limits_{i=1}^n x_i & \sum\limits_{i=1}^n x_i^2 \\ \sum\limits_{i=1}^n x_i & \sum\limits_{i=1}^n x_i^2 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} \sum\limits_{i=1}^n y_i \\ \sum\limits_{i=1}^n x_i y_i \\ \sum\limits_{i=1}^n x_i y_i \end{bmatrix}$$

Consider the data comparing the high school and college GPA for four students.

i	Χį	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8

Consider the data comparing the high school and college GPA for four students.

i	Χį	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8

The Least Squares Method system for this dataset is:

$$\begin{bmatrix} 4 & 11.1 \\ 11.1 & 33.79 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 10.3 \\ 31.33 \end{bmatrix}$$

Consider the data comparing the high school and college GPA for four students.

i	Χį	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8

The Least Squares Method system for this dataset is:

$$\begin{bmatrix} 4 & 11.1 \\ 11.1 & 33.79 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 10.3 \\ 31.33 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 0.023 \\ 0.92 \end{bmatrix}$$

Consider the data comparing the high school and college GPA for four students.

i	x _i	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8

The Least Squares Method system for this dataset is:

$$\begin{bmatrix} 4 & 11.1 \\ 11.1 & 33.79 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 10.3 \\ 31.33 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 0.023 \\ 0.92 \end{bmatrix}$$

So, the line of best fit is y = 0.92x + 0.023.

