

Chapter 3
CONCEPTUALIZING
INTERACTION DESIGN?

1

Conceptualizing design

Proof of concept

Conceptualize what the proposed product will do

Why the need to conceptualizing design?

- To scrutinize vague ideas and assumptions about the benefits of the proposed product in terms of their feasibility
- How realistic is it to develop?
- How desirable and useful?

www.id-book.com

Assumptions and claims

- Write down your assumptions and claims when coming up with a new design
- Try to defend and support them by what they will provide
- Those that are difficult to articulate
 - Can highlight what ideas are vague or unrealistic
 - Identify human activities and interactivities that are problematic
- Iteratively work out how the design ideas might be improved

www.id-book.com

3

What is an assumption?

- Taking something for granted when it needs further investigation
 - For example, people will want to watch TV while driving

Technotopic Narratives and Networked Subjects: Preparations for Everyday Life in Cooltown

www.id-book.com

Δ

What is a claim?

- A claim is stating something to be true when it is still open to question
 - For example, "a multimodal style of interaction for controlling GPS — one that involves speaking while driving — is safe."

www.id-book.com

5

Activity: How will enabling robot waiters to speak to customers enhance their experience?

Source: Xinhua, Guo Cheng

www.id-book.com

What is the problem being addressed?

- The benefits:
 - The robot could take orders and entertain customers by having a conversation with them
 - The robot could make recommendations for different customers, such as restless children or fussy eaters
- But just assumptions
- The real problem being addressed:

"It is difficult to recruit good wait staff who provide the level of customer service to which we have become accustomed."

www.id-book.com

7

Working through assumptions

- Many unknowns need to be considered in the initial stages of a design project
 - Where do your ideas come from?
 - What sources of inspiration were used?
 - Is there any theory or research that can be used to inform them?
- During the early ideation process
 - Ask questions, reconsider assumptions, and articulate concerns

A framework for analyzing the problem space

- Are there problems with an existing product or user experience? If so, what are they?
- · Why do you think there are problems?
- How do you think your proposed design ideas might overcome these?
- If you are designing for a new user experience, how do you think your proposed design ideas support, change, or extend current ways of doing things?

www.id-book.com

Q

Activity

 What were the assumptions and claims made about watching 3D TV?

Figure 3.2 A family watching 3D TV Source: Andrey Popov, Shutterstock

www.id-book.com

Assumptions and claims: how realistic?

- There was no existing problem to overcome
 - What was being proposed was a new way of experiencing TV
- An assumption
 - People would really enjoy the enhanced clarity and color detail provided by 3D
- A claim
 - People would not mind paying a lot more for a new 3Denabled TV screen because of the new experience

www.id-book.com

11

Benefits of conceptualizing

Orientation

 Enables design teams to ask specific questions about how the conceptual model will be understood

Open-minded

Prevents design teams from becoming narrowly focused early on

Common ground

Allows design teams to establish a set of commonly agreed terms

From problem space to design space

- Having a good understanding of the problem space can help inform the design space
 - For example, what kind of interface, behavior, functionality to provide
- Before deciding upon these, it is important to develop a conceptual model

www.id-book.com

13

Conceptual model

- · A conceptual model is:
 - "...a high-level description of how a system is organized and operates" (Johnson and Henderson, 2002, p26)
- · A conceptual model enables:
 - "...designers to straighten out their thinking before they start laying out their widgets" (Johnson and Henderson, 2002, p28)
- Provides a working strategy and framework of general concepts and their interrelations

Components

- Metaphors and analogies
 - Understand what a product is for and how to use it for an activity
- Concepts that people are exposed to through the product
 - Task-Domain objects, their attributes, and operations (for example, saving, revisiting, organizing)
- Relationship and mappings between these concepts

www.id-book.com

15

First steps in formulating a conceptual model

- What will the users be doing when carrying out their tasks?
- How will the system support these?
- What kind of interface metaphor, if any, will be appropriate?
- What kinds of interaction modes and styles to use?
 - Always keep in mind when making design decisions how the user will understand the underlying conceptual model

Conceptual models

- Many kinds and ways of classifying them
- The best conceptual models are often those that appear:
 - Obvious and simple
 - The operations they support are intuitive to use

www.id-book.com

17

Interface metaphors

- Interface designed to be similar to a physical entity but also has own properties
 - For example, desktop metaphor, and web portals
- Can be based on activity, object, or a combination of both
- Exploit user's familiar knowledge, helping them to understand 'the unfamiliar'
- Conjures up the essence of the unfamiliar activity, enabling users to leverage this to understand more aspects of the unfamiliar functionality

Examples of interface metaphors

- · Conceptualizing what users are doing
 - For instance, surfing the Web
- A conceptual model instantiated at the interface
 - For example, the desktop metaphor
- · Visualizing an operation
 - For instance, an icon of a shopping cart into which the user places items

www.id-book.com

19

The card metaphor

- The card is a very popular UI. Why?
 - It has familiar form factor
 - It can easily be flicked through, sorted, and themed
 - It structures content into meaningful chunks (similar to how paragraphs are used to chunk a set of related sentences into distinct sections)
 - Its material properties give the appearance of the surface of paper

For you

Yesterday

Yesterday

Vesterday

Unique hor for you

Jürgenshof

4.3 ** * * * (214)
German Restaurant - Bremen

You seem interested in German

Not interested

Already been

Water to go

Ray you

Figure Congress

For you

for restaurant recommendation in Germany

Source: Johannes Shonning

www.id-book.com

Benefits of interface metaphors

- Makes learning new systems easier
- Helps users understand the underlying conceptual model
- Can be very innovative and enable the realm of computers and their applications to be made more accessible to a greater diversity of users

www.id-book.com

21

Problems with interface metaphors

- Break conventional and cultural rules
 - For instance, recycle bin placed on desktop
- Can constrain designers in the way that they conceptualize a problem space
- Conflicts with design principles
- Forces users to understand only the system in terms of the metaphor
- Designers can inadvertently use bad existing designs and transfer the bad parts over
- Limits designers' imagination in coming up with new conceptual models

Activity

- Describe the components of the conceptual model underlying most online shopping websites, for example:
 - Shopping cart
 - Proceeding to check-out
 - 1-click
 - Gift wrapping
 - Cash register

www.id-book.com

23

Interaction types

- Instructing
 - Issuing commands and selecting options
- Conversing
 - Interacting with a system as if having a conversation
- Manipulating
 - Interacting with objects in a virtual or physical space by manipulating them
- Exploring
 - Moving through a virtual environment or a physical space
- Responding
 - The system initiates the interaction and the user chooses whether to respond

1. Instructing

- Where users instruct a system and tell it what to do
 - For example: Tell the time, print a file, or save a file
- Very common conceptual model underlying a diversity of devices and systems
 - For instance: Word processors, VCRs, and vending machines
- The main benefit is that instructing supports quick and efficient interaction
 - Good for repetitive kinds of actions performed on multiple objects

www.id-book.com

25

Which is easiest and why?

www.id-book.com

2. Conversing

- Underlying model of having a conversation with another human
- Ranges from simple voice recognition menudriven systems to more complex 'natural language' dialogs
- Examples include timetables, search engines, advice-giving systems, and help systems
- Also virtual agents, chatbots, toys, and pet robots designed to converse with you

www.id-book.com

27

Pros and cons of conversational model

- Allows users, especially novices, to interact with a system in a way that is familiar to them
 - Can make them feel comfortable, at ease, and less scared
- Misunderstandings can arise when the system does not know how to parse what the user says
 - For example, voice assistants can misunderstand what children say

29

3. Manipulating

- Involves dragging, selecting, opening, closing and zooming actions on virtual objects
- Exploit's users' knowledge of how they move and manipulate in the physical world
- Can involve actions using physical controllers (for example, Nintendo Wii) or air gestures (such as, Microsoft Kinect) to control the movements of an on-screen avatar
- Tagged physical objects (for instance, balls) that are manipulated in a physical world result in physical/digital events (such as animation)

Direct Manipulation (DM)

- Ben Shneiderman (1983) coined the term DM
- Three core properties:
 - Continuous representation of objects and actions of interest
 - Physical actions and button pressing instead of issuing commands with complex syntax
 - Rapid reversible actions with immediate feedback on object of interest

www.id-book.com

31

Benefits of direct manipulation

- Novices can learn the basic functionality quickly
- Experienced users can work extremely rapidly to carry out a wide range of tasks—even defining new functions
- Intermittent users can retain operational concepts over time
- Error messages rarely needed
- Users can immediately see if their actions are furthering their goals, and if not, do something else
- Users experience less anxiety
- Users gain confidence and mastery and feel in control

Disadvantages of DM

- Some people take the metaphor of direct manipulation too literally
- Not all tasks can be described by objects, and not all actions can be done directly
- Some tasks are better achieved through delegating, for example, spell checking
- Can become screen space 'gobblers'
- Moving a cursor using a mouse or touchpad can be slower than pressing function keys to do the same actions

www.id-book.com

33

4. Exploring

- Involves moving through virtual or physical environments
 - Users can explore aspects of a virtual 3D environment
 - Physical environments can also be embedded with sensors that when detect the presence of someone will trigger digital or physical events to happen
- Many examples of virtual environments, including cities, parks, buildings, rooms, and datasets
 - Enable users to fly over them and zoom in and out of different parts

Seeing things larger than life in VR

Cyber-Insects in the CAVE Source: Alexei A. Sharov

www.id-book.com

35

Exploring data in VR

Image courtesy of Kalev Leetaru, National Center for Supercomputing Applications, University of Illinois. www.id-book.com

Responding

- System takes the initiative to alert user to something that it "thinks" is of interest
- System does this by:
 - Detecting the location and-or presence of someone in a vicinity and notifies them on their phone or watch,
 - What it has learned from their repeated behaviors
- Examples:
 - Alerts the user of a nearby coffee bar where some friends are meeting
 - User's fitness tracker notifies them of a milestone reached
- Automatic system response without any requests made by the user

This type suggested by Christopher Lueg et al. (2018)

www.id-book.com

37

Potential cons of system-initiated notifications

- Can get tiresome or frustrating if too many notifications or the system gets it wrong
- What does it do when it gets something wrong?
 - Does it apologize?
 - Does it allow the user to correct the advise or information?

Choosing an interaction type

- Direct manipulation is good for 'doing' types of tasks, for example, designing, drawing, flying, driving, or sizing windows
- Issuing instructions is good for repetitive tasks, for example, spell-checking and file management
- Having a conversation is good for certain services, for instance, finding information or requesting music
- Hybrid conceptual models are good for supporting multiple ways of carrying out the same actions

www.id-book.com

39

Difference between interaction types and interface styles

Interaction type:

 A description of what the user is doing when interacting with a system, for example, instructing, talking, browsing, or responding

Interface style:

 The kind of interface used to support the interaction, for instance, command, menu-based, gesture, or voice

Many kinds of interface styles available (see Chapter 7)...

- Command
- Speech
- · Data-entry
- · Form fill-in
- Query
- Graphical
- Web
- Pen
- · Augmented reality
- Gesture

www.id-book.com

41

Other sources

Conceptual knowledge that is used to inform design and guide research include:

- Paradigms
- Visions
- Theories
- Models
- Frameworks

Paradigm

- Inspiration for a conceptual model
- General approach adopted by a community for carrying out research
 - Shared assumptions, concepts, values, and practices
 - For example, desktop, ubiquitous computing, in the wild

www.id-book.com

43

Examples of new paradigms in HCI

- Ubiquitous computing
- · Pervasive computing
- · Wearable computing
- Internet of Things (IoT)

Visions

- A driving force that frames research and development
- Invites people to imagine what life will be like in 10, 15, or 20 years' time
 - For example, Apple's 1987 knowledge navigator
 - Smart cities, smart health
 - Human-centered AI
- Provide concrete scenarios of how society can use the next generation of imagined technologies
- Also raise ethical questions such as, privacy and trust

www.id-book.com

45

Questions raised by tech visions

- How to enable people to access and interact with information in their everyday lives
- How to design user experiences where there is no obvious user control
- How and in what form to provide contextuallyrelevant information to people
- How to ensure that information passed around interconnected devices and objects is secure

Theory

- Explanation of a phenomenon
 - For example, information processing that explains how the mind, or some aspect of it, is assumed to work
- Can help identify factors relevant to the design and evaluation of interactive products
 - Such as cognitive, social, and affective
- Can be used to predict what users will do with different interfaces

www.id-book.com

47

Models

A simplification of an HCI phenomenon

- Enables designers to predict and evaluate alternative designs
- Abstracted from a theory coming from a contributing discipline, for example:
 - Don Norman's (1996) model of the Seven Stages of Action
 - Marc Hassenzahl's (2010) model of the user experience

Frameworks

- Set of interrelated concepts and-or specific questions for 'what to look for'
- Provide advice on how to design user experiences
 - Helping designers think about how to conceptualize learning, working, socializing, fun, and emotion
- Focus on how to design particular kinds of interfaces to evoke certain responses
- Come in various forms:
 - Such as steps, questions, concepts, challenges, principles, tactics, and dimensions

www.id-book.com

49

A classic HCI framework

Don Norman's (1988) framework of the relationship between the design of a conceptual model and a user's understanding of it

Consists of three interacting components:

- The Designer's Model
 - The model the designer has of how the system should work
- System Image
 - How the system actually works, which is portrayed to the user through the interface, manuals, help facilities, and so on
- The User's Model
 - How the user understands how the system works

www.id-book.com

Summary

- · Developing a conceptual model involves:
 - Understanding the problem space
 - Being clear about your assumptions and claims
 - Specifying how the proposed design will support users
- A conceptual model is a high-level description of a product in terms of:
 - What users can do with it and the concepts they need to understand how to interact with it
- Interaction types provide a way of thinking about how to support user's activities
- Paradigms, visions, theories, models, and frameworks
 - Provide ways of framing design and research

www.id-book.com