Derivative free optimization and evolutionary strategies

Exercise 1: Coordinate descent

Minimize Ridge regression, i.e.,

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

for $\lambda \geq 0$ via coordinate descent under the assumption that $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p}$.

Exercise 2: CMA-ES

Assume we have drawn the current population $\mathbf{x}_{1:\lambda}$ from the bivariate Gaussian distribution $\mathcal{N}(\mathbf{m}^{[0]}, \mathbf{C}^{[0]})$ with $\mathbf{m}^{[0]} = (1, 1)^{\top}, \mathbf{C}^{[0]} = \mathbf{I}$, such that

Id	x_1	x_2	Fitness value
1	1.14	0.24	0.67
2	1.54	-0.86	0.41
3	2.1	2.16	0.09
4	1.5	2.69	0.09
5	1.25	0.51	0.47
6	0.92	2.19	0.15
	1 2 3 4 5	1 1.14 2 1.54 3 2.1 4 1.5 5 1.25	1 1.14 0.24 2 1.54 -0.86 3 2.1 2.16 4 1.5 2.69 5 1.25 0.51

We want to do a simplified CMA-ES update step:

- Assume the parent number $\mu = 3$.
- Find $\mathbf{m}^{[1]}$ by updating $\mathbf{m}^{[0]}$ in the mean weighted direction of $\mathbf{x}_{1:\mu}$ with stepsize 0.5.
- Compute C_{μ} , the (unweighted) sample covariance of $\mathbf{x}_{1:\mu}$ w.r.t. $\mathbf{m}^{[0]}$, and compute

$$\mathbf{C}^{[1]} = (1 - c) \cdot \mathbf{C}^{[0]} + c \cdot \mathbf{C}_{\mu}$$

with c = 0.1.

 $^{^{1}\}mathrm{Simply}$ scale the fitness values such that they sum up to one.