	таздаточный материа.			
1 2 3	from tkinter import * from tkinter import ttk	В результате импортирования в пространстве имён программы (скрипта) появляются имена, встроенные в tkinter, к которым можно обращаться непосредственно. Массовое импортирование имён может привести к их конфликту. Кроме того, для интерпретатора требуется больше времени, чтобы в списке доступных имён найти нужное. Основные виджеты - Раздаточный материал № 2 Подмодуль ttk предоставляет доступ к множеству стилизуемых виджетов tk, а так же предоставляет дополнительные виджеты. Импорт ttk должен следовать за импортом tk		
4 5 6	root = Tk() root.title("Привет мир!") root.geometry('300x40')	команда создаёт корневое (root) окно программы команда меняет заголовок окна команда устанавливает размеры окна		
8 9 10	def button_clicked(): print("Hello World!")	определение функции-обработчика события «нажата кнопка мыши» Функция-обработчик события «закрытие главного окна». Она останавливает главный цикл приложения и разрушает главное окно. Без неё закрыть программу		
11 12 13	<pre>def close(): root.destroy() root.quit()</pre>			
		можно, лишь если завершить процесс интерпретатора Python. Поскольку функция использует глобальную переменную root, объявление самой функции должно следовать после объявления переменной root.		
15 16 17	<pre>button = ttk.Button(root, text="Press Me", command=button_clicked)</pre>	Создание кнопки с текстом «Press Me» и привязка её к функции-обработчику. root можно опускать, т.к. это значение по умолчанию.		
18	button.pack(fill=BOTH)	«Упаковываем» созданную кнопку с помощью менеджера компоновки раск. fill=BOTH (также можно fill="both") указывает кнопке занимать все доступное пространство (по ширине и высоте) на родительском виджете root		
19 20 22	root.mainloop()	Привязываем событие закрытия главного окна с функцией-обработчиком close Запускаем главный цикл приложения		

Раздаточный материал № 2 - Основные виджеты (справочно)

Toplevel/root

Toplevel - окно верхнего уровня. Обычно используется для создания многооконных программ, а также для диалоговых окон.

Методы виджета

title - заголовок окна

overrideredirect - указание оконному менеджеру игнорировать это окно. Аргументом является True или False. В случае, если аргумент не указан - получаем текущее значение. Если аргумент равен True, то такое окно будет показано оконным

менеджером без обрамления (без заголовка и бордюра). Может быть использовано, например, для создания splashscreen при старте программы.

iconify / deiconify - свернуть / развернуть окно

withdraw - "спрятать" (сделать невидимым) окно. Для того, чтобы снова показать его, надо использовать метод deiconify.

minsize и maxsize - минимальный / максимальный размер окна. Методы принимают два аргумента - ширина и высота окна. Если аргументы не указаны - возвращают текущее значение.

state - получить текущее значение состояния окна. Может возвращать следующие значения: normal (нормальное состояние), icon (показано в виде иконки), iconic (свёрнуто), withdrawn (не показано), zoomed (развёрнуто на полный экран, только для Windows и Mac OS X)

resizable - может ли пользователь изменять размер окна. Принимает два аргумента - возможность изменения размера по горизонтали и по вертикали. Без аргументов возвращает текущее значение.

деотетту - устанавливает геометрию окна в формате ширинахвысота+x+y (пример: geometry("600x400+40+80") - поместить окно в точку с координатам 40,80 и установить размер в 600x400). Размер или координаты могут быть опущены (geometry("600x400") - только изменить размер, geometry("+40+80") - только переместить окно).

transient - сделать окно зависимым от другого окна, указанного в аргументе. Будет сворачиваться вместе с указанным окном. Без аргументов возвращает текущее значение.

protocol - получает два аргумента: название события и функцию, которая будет вызываться при наступлении указанного события. События могут называться WM_TAKE_FOCUS (получение фокуса), WM_SAVE_YOURSELF (необходимо сохраниться, в настоящий момент является устаревшим), WM_DELETE_WINDOW (удаление окна).

tkraise (синоним lift) и lower - поднимает (размещает поверх всех других окон) или опускает окно. Методы могут принимать один необязательный аргумент: над/под каким окном разместить текущее.

grab_set - устанавливает фокус на окно, даже при наличии открытых других окон grab_release - снимает монопольное владение фокусом ввода с окна

Пример:

```
from Tkinter import *
def window_deleted():
    print u'Окно закрыто'
    root.quit() # явное указание на выход из программы
    root=Tk()
    root.title(u'Пример приложения')
    root.geometry('500x400+300+200') # ширина=500, высота=400, x=300, y=200
    root.protocol('WM_DELETE_WINDOW', window_deleted) # обработчик закрытия
    окна
```

root.resizable(True, False) # размер окна может быть изменён только по горизонтали

root.mainloop()

Таким способом можно предотвратить закрытие окна (например, если закрытие окна приведёт к потере введённых пользователем данных).

Button

Виджет Button - самая обыкновенная кнопка, которая используется в тысячах программ. Пример кода:

```
from Tkinter import *
root=Tk()
button1=Button(root,text='ok',width=25,height=5,bg='black',fg='red',font='arial 14')
button1.pack()
root.mainloop()
```

За создание, собственно, окна, отвечает класс Tk(), и первым делом нужно создать экземпляр этого класса. Этот экземпляр принято называть гооt, хотя вы можете назвать его как угодно. Далее создаётся кнопка, при этом мы указываем её свойства (начинать нужно с указания окна, в примере - root). Здесь перечислены некоторые из них:

```
text - какой текст будет отображён на кнопке (в примере - ок) width, height - соответственно, ширина и длина кнопки. bg - цвет кнопки (сокращенно от background, в примере цвет - чёрный) fg - цвет текста на кнопке (сокращённо от foreground, в примере цвет - красный) font - шрифт и его размер (в примере - arial, размер - 14)
```

Label

Label - это виджет, предназначенный для отображения какой-либо надписи без возможности редактирования пользователем. Имеет те же свойства, что и перечисленные свойства кнопки.

Entry

Entry - это виджет, позволяющий пользователю ввести одну строку текста. Имеет дополнительное свойство bd (сокращённо от borderwidth), позволяющее регулировать ширину границы.

```
borderwidth - ширина бордюра элемента
bd - сокращение от borderwidth
width - задаёт длину элемента в знакоместах.
show - задает отображаемый символ.
```

Text

Text - это виджет, который позволяет пользователю ввести любое количество текста. Имеет дополнительное свойство wrap, отвечающее за перенос (чтобы, например, переносить по словам, нужно использовать значение WORD). Например,

```
from Tkinter import *
root=Tk()
text1=Text(root,height=7,width=7,font='Arial 14',wrap=WORD)
text1.pack()
root.mainloop()
```

Методы insert, delete и get добавляют, удаляют или извлекают текст. Первый аргумент - место вставки в виде 'x.y', где x – это строка, а y – столбец. Например,

```
text1.insert(1.0,'Добавить Текст\п\ в начало первой строки') text1.delete('1.0', END) # Удалить все text1.get('1.0', END) # Извлечь все
```

Listbox

Listbox - это виджет, который представляет собой список, из элементов которого пользователь может выбирать один или несколько пунктов. Имеет дополнительное свойство selectmode, которое, при значении SINGLE, позволяет пользователю выбрать только один элемент списка, а при значении EXTENDED - любое количество. Пример:

```
from Tkinter import *
root=Tk()
listbox1=Listbox(root,height=5,width=15,selectmode=EXTENDED)
listbox2=Listbox(root,height=5,width=15,selectmode=SINGLE)
list1=[u"Москва",u"Санкт-Петербург",u"Саратов",u"Омск"]
list2=[u"Канберра",u"Сидней",u"Мельбурн",u"Аделаида"]
for i in list1:
    listbox1.insert(END,i)
for i in list2:
    listbox2.insert(END,i)
listbox1.pack()
listbox2.pack()
root.mainloop()
```

Frame

Виджет Frame (рамка) предназначен для организации виджетов внутри окна. Рассмотрим пример:

```
from tkinter import *
root=Tk()
frame1=Frame(root,bg='green',bd=5)
frame2=Frame(root,bg='red',bd=5)
button1=Button(frame1,text=u'Первая кнопка')
button2=Button(frame2,text=u'Вторая кнопка')
frame1.pack()
frame2.pack()
button1.pack()
button2.pack()
root.mainloop()
Свойство bd отвечает за толщину края рамки.
```

Checkbutton

Checkbutton - это виджет, который позволяет отметить "галочкой" определенный пункт в окне. При использовании нескольких пунктов нужно каждому присвоить свою переменную. Разберем пример:

```
from tkinter import *
```

```
root=Tk()
var1=IntVar()
var2=IntVar()
check1=Checkbutton(root,text=u'1 пункт',variable=var1,onvalue=1,offvalue=0)
check2=Checkbutton(root,text=u'2 пункт',variable=var2,onvalue=1,offvalue=0)
check1.pack()
check2.pack()
root.mainloop()
```

IntVar() - специальный класс библиотеки для работы с целыми числами. variable - свойство, отвечающее за прикрепление к виджету переменной. onvalue, offvalue - свойства, которые присваивают прикреплённой к виджету переменной значение, которое зависит от состояния(onvalue - при выбранном пункте, offvalue - при невыбранном пункте).

Radiobutton

Виджет Radiobutton выполняет функцию, схожую с функцией виджета Checkbutton. Разница в том, что в виджете Radiobutton пользователь может выбрать лишь один из пунктов. Реализация этого виджета несколько иная, чем виджета Checkbutton:

```
from tkinter import *
root=Tk()
var=IntVar()
rbutton1=Radiobutton(root,text='1',variable=var,value=1)
rbutton2=Radiobutton(root,text='2',variable=var,value=2)
rbutton3=Radiobutton(root,text='3',variable=var,value=3)
rbutton1.pack()
rbutton2.pack()
rbutton3.pack()
root.mainloop()
```

В этом виджете используется уже одна переменная. В зависимости от того, какой пункт выбран, она меняет своё значение. Если присвоить этой переменной какое-либо значение, поменяется и выбранный виджет.

Scale

Scale (шкала) - это виджет, позволяющий выбрать какое-либо значение из заданного диапазона. Свойства:

orient - как расположена шкала на окне. Возможные значения: HORIZONTAL, VERTICAL (горизонтально, вертикально).

```
length - длина шкалы.
```

from_ - с какого значения начинается шкала.

to - каким значением заканчивается шкала.

tickinterval - интервал, через который отображаются метки шкалы.

resolution - шаг передвижения (минимальная длина, на которую можно передвинуть движок)

Пример кода:

```
from tkinter import * root = Tk() def getV(root):
```

```
a = scale1.get()
print "Значение", a
scale1 = Scale(root,orient=HORIZONTAL,length=300,from_=50,to=80,tickinterval=5,
resolution=5)
button1 = Button(root,text=u"Получить значение")
scale1.pack()
button1.pack()
button1.bind("<Button-1>",getV)
root.mainloop()
```

Здесь используется специальный метод get(), который позволяет снять с виджета определенное значение, и используется не только в Scale.

Scrollbar

Этот виджет даёт возможность пользователю "прокрутить" другой виджет (например, текстовое поле). Необходимо сделать две привязки: command полосы прокрутки привязываем к методу xview/yview виджета, а xscrollcommand/yscrollcommand виджета привязываем к методу set полосы прокрутки.

Пример:

```
from tkinter import *
root = Tk()
text = Text(root, height=3, width=60)
text.pack(side='left')
scrollbar = Scrollbar(root)
scrollbar.pack(side='left')
# первая привязка
scrollbar['command'] = text.yview
# вторая привязка
text['yscrollcommand'] = scrollbar.set
root.mainloop()
```

Раздаточный материал № 3 - Упаковщики (справочно)

pack()

Упаковщик pack() является самым интеллектуальным (и самым непредсказуемым). При использовании этого упаковщика с помощью свойства side нужно указать к какой стороне родительского виджета он должен примыкать. Как правило этот упаковщик используют для размещения виджетов друг за другом (слева направо или сверху вниз). Пример:

```
from tkinter import *
root=Tk()
button1 = Button(text="1")
button2 = Button(text="2")
button3 = Button(text="3")
button4 = Button(text="4")
button5 = Button(text="5")
button1.pack(side='left')
button2.pack(side='left')
button3.pack(side='left')
button4.pack(side='bottom')
button5.pack(side='right')
root.mainloop()
```

Для создания сложной структуры с использованием этого упаковщика обычно используют Frame, вложенные друг в друга.

При применении этого упаковщика можно указать следующие аргументы:

side ("left"/"right"/"top"/"bottom") - к какой стороне должен примыкать размещаемый виджет.

fill (None/"x"/"y"/"both") - необходимо ли расширять пространство предоставляемое виджету.

expand (True/False) - необходимо ли расширять сам виджет, чтобы он занял всё предоставляемое ему пространство.

in_ - явное указание в какой родительский виджет должен быть помещён.

Дополнительные функции

pack_configure - синоним для pack.

pack_slaves (синоним slaves) - возвращает список всех дочерних упакованных виджетов.

pack_info - возвращает информацию о конфигурации упаковки.

раск_propagate (синоним propagate) (True/False) - включает/отключает распространении информации о геометрии дочерних виджетов. По умолчанию виджет изменяет свой размер в соответствии с размером своих потомков. Этот метод может отключить такое поведение (pack_propagate(False)). Это может быть полезно, если необходимо, чтобы виджет имел фиксированный размер и не изменял его по прихоти потомков.[7]

pack_forget (синоним forget) - удаляет виджет и всю информацию о его расположении из упаковщика. Позднее этот виджет может быть снова размещён.

grid()

Этот упаковщик представляет собой таблицу с ячейками, в которые помещаются виджеты.

Аргументы

row - номер строки, в который помещаем виджет.

rowspan - сколько строк занимает виджет

column - номер столбца, в который помещаем виджет.

columnspan - сколько столбцов занимает виджет.

padx / pady - размер внешней границы (бордюра) по горизонтали и вертикали.

ipadx / ipady - размер внутренней границы (бордюра) по горизонтали и вертикали. Разница между раd и ipad в том, что при указании раd расширяется свободное пространство, а при ipad расширяется помещаемый виджет.

sticky ("n", "s", "e", "w" или их комбинация) - указывает к какой границе "приклеивать" виджет. Позволяет расширять виджет в указанном направлении. Границы названы в соответствии со сторонами света. "n" (север) - верхняя граница, "s" (юг) - нижняя, "w" (запад) - левая, "e" (восток) - правая.

in_ - явное указание в какой родительский виджет должен быть помещён.

Для каждого виджета указываем, в какой он находится строке, и в каком столбце. Если нужно, указываем, сколько ячеек он занимает (если, например, нам нужно разместить три виджета под одним, необходимо "растянуть" верхний на три ячейки). Пример:

entry1.grid(row=0,column=0,columnspan=3)

button1.grid(row=1,column=0)

button2.grid(row=1,column=1)

button3.grid(row=1,column=2)

Дополнительные функции

grid_configure - синоним для grid.

grid_slaves (синоним slaves) - см. pack_slaves.

grid info - cm. pack info.

grid_propagate (синоним propagate) - см. pack_propagate.

grid_forget (синоним forget) - см. pack_forget.

grid_remove - удаляет виджет из-под управления упаковщиком, но сохраняет информацию об упаковке. Этот метод удобно использовать для временного удаления виджета.

grid_bbox (синоним bbox) - возвращает координаты (в пикселях) указанных столбцов и строк.

grid_location (синоним location) - принимает два аргумента: х и у (в пикселях). Возвращает номер строки и столбца в которые попадают указанные координаты, либо -1 если координаты попали вне виджета.

grid_size (синоним size) - возвращает размер таблицы в строках и столбцах.

grid_columnconfigure (синоним columnconfigure) и grid_rowconfigure (синоним rowconfigure) - важные функции для конфигурирования упаковщика. Методы принимают номер строки/столбца и аргументы конфигурации. Список возможных аргументов:

minsize - минимальная ширина/высота строки/столбца.

weight - "вес" строки/столбца при увеличении размера виджета. 0 означает, что строка/столбец не будет расширяться. Строка/столбец с "весом" равным 2 будет расширяться вдвое быстрее, чем с весом 1.

uniform - объединение строк/столбцов в группы. Строки/столбцы имеющие одинаковый параметр uniform будут расширяться строго в соответствии со своим весом.

pad - размер бордюра. Указывает, сколько пространства будет добавлено к самому большому виджету в строке/столбце.

Пример, текстовый виджет с двумя полосами прокрутки:

```
from tkinter import *
root=Tk()
text = Text(wrap=NONE)
vscrollbar = Scrollbar(orient='vert', command=text.yview)
text['yscrollcommand'] = vscrollbar.set
hscrollbar = Scrollbar(orient='hor', command=text.xview)
text['xscrollcommand'] = hscrollbar.set
# размещаем виджеты
text.grid(row=0, column=0, sticky='nsew')
vscrollbar.grid(row=0, column=1, sticky='ns')
hscrollbar.grid(row=1, column=0, sticky='ew')
# конфигурируем упаковщик, чтобы текстовый виджет расширялся
root.rowconfigure(0, weight=1)
root.columnconfigure(0, weight=1)
root.mainloop()
```

place()

рlace представляет собой простой упаковщик, позволяющий размещать виджет в фиксированном месте с фиксированным размером. Также он позволяет указывать координаты размещения в относительных единицах для реализации "резинового" размещения. При использовании этого упаковщика, нам необходимо указывать координаты каждого виджета. Например:

```
button1.place(x=0,y=0)
```

Этот упаковщик, хоть и кажется неудобным, предоставляет полную свободу в размещении виджетов на окне.

```
Аргументы
```

anchor ("n", "s", "e", "w", "ne", "nw", "se", "sw" или "center") - какой угол или сторона размещаемого виджета будет указана в аргументах x/y/relx/rely. По умолчанию "nw" - левый верхний

bordermode ("inside", "outside", "ignore") - определяет в какой степени будут учитываться границы при размещении виджета.

in_ - явное указание в какой родительский виджет должен быть помещён.

х и у - абсолютные координаты (в пикселях) размещения виджета.

width и height - абсолютные ширина и высота виджета.

relx и rely - относительные координаты (от 0.0 до 1.0) размещения виджета. relwidth и relheight - относительные ширина и высота виджета.

Относительные и абсолютные координаты (а также ширину и высоту) можно комбинировать. Так например, relx=0.5, x=-2 означает размещение виджета в двух пикселях слева от центра родительского виджета, relheight=1.0, height=-2 - высота виджета на два пикселя меньше высоты родительского виджета.

```
Дополнительные функции
```

place_slaves, place_forget, place_info - см. описание аналогичных методов упаковщика pack.

- <Button-1> клик левой кнопкой мыши
- <Button-2> клик средней кнопкой мыши
- <Button-3> клик правой кнопкой мыши
- <Double-Button-1> двойной клик левой кнопкой мыши
- <Motion> движение мыши и т. д.

Раздаточный материал № 5

lambda <аргумент(ы)>: <выражение>

Раздаточный материал № 6

```
# список целых чисел, которые нужно возвести в квадрат L = [1, 2, 3, 4] print(list(map(lambda x: x**2, L)))
```

Раздаточный материал № 7

```
print(list(filter(lambda x: x \% 2 == 0, [1, 3, 2, 5, 20, 21])))
```

Раздаточный материал № 8

```
from functools import reduce

print(reduce(lambda x,y: y-x, L))  # paGota reduce

# 3 - 1 = 2

# 2 - 2 = 0

# 5 - 0 = 5

# 20 - 5 = 15

# 21 - 15 = 6
```



```
# в интернет-магазине сегодня 10% скидка на ряд товаров

price = [500, 1200, 800, 600, 150]

price_new = [n * (1 - 0.1) for n in price]

print('Старый прайс', price)

print('Новый прайс', price_new)

#2

>>> nums = [n for n in range(1,6)]

>>> print(nums)

[1, 2, 3, 4, 5]
```

Раздаточный материал № 11

```
новый_список = [«операция» for «элемент списка» in «список» if «условие»]

<u>Важно</u>: здесь невозможно использовать elif, else или другие if

price_new1 = [n * (1 - 0.1) for n in price if n < 1000]

print('Новый прайс со стоимостью менее 1 тыс. руб.', price new1)
```

Раздаточный материал № 12

новый_список = [«операция» if «условие» for «элемент списка» in «список»] Важно: условие может дополняться вариантом else (но elif невозможен).

Раздаточный материал № 13

```
# Генерация таблицы умножения от 3 до 7
table = [
    [x * y for x in range(3, 8)]
    for y in range(3, 8)]
print(table)
```

```
# выбрать все гласные буквы из исходной фразы fraza = "я изучаю язык Питон" new_fraza = {i for i in fraza if i in 'аеёиоуэюя'} print(new_fraza)

#в словаре в качестве значения ключа поместить его квадрат squares = {i: i * i for i in range(10)} print(squares)
```

```
id = [1, 2, 3, 4]
name = ['Меркурий', 'Венера', 'Земля', 'Марс']
rec = zip(id, name) # объединение для двух списков
print(list(rec))
radius = [2439, 6051, 3678, 3376]
rec1 = zip(id, name, radius) # объединение для трех списков
print(list(rec1))
radius 1 = [2439, 6051, 3678]
rec2 = zip(id, name, radius_1) # объединение для трех списков по длине
наименьшего
print(list(rec2))
name_dict_1 = {i: nd for i, nd in zip(id, name)} # создание словаря с
использованием dict comprehension
print(name_dict_1)
name dict 2 = dict(zip(id, name)) # создание словаря с использованием
dict comprehension
print(name dict 2)
# добавим в словарь новые значения
new id = [5]
new name = ['Юпитер']
name dict 2.update(zip(new id, new name))
print(name dict 2)
# zip и выполнение расчетов
diff = [a-b for a, b in zip(radius, radius[1:])]
print(diff)
```

```
) >>> lst = [1, 6, 8, 10, 20, 2, 5]
 >>> type(lst)
 <class 'list'>
 >>> lst_it = iter(lst)
 >>> type(lst_it)
 <class 'list_iterator'>
 >>> dir(lst)
 ['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format_
 >>> dir(lst_it)
 ['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__'
 >>> next(lst_it)
 >>> next(lst_it)
 6
 >>> next(lst_it)
 8
 >>> next(lst_it)
 >>> next(lst_it)
 >>> next(lst_it)
 >>> next(lst_it)
 >>> next(lst_it)
 Traceback (most recent call last):
  File "<input>", line 1, in <module>
 StopIteration
```

Раздаточный материал № 18

```
numbers = [6, 57, 4, 7, 68, 95]
sq = (n**2 \text{ for n in numbers})
```

```
# Вариант 1
def sq all(numbers):
    for n in numbers:
       yield n ** 2
numbers = [6, 57, 4, 7, 68, 95]
squares = sq all(numbers)
for i in squares:
  print(i)
# Вариант 2
def sq all(numbers):
    # оператор for убирается как самостоятельная конструкция
    yield from [n ** 2 for n in numbers]
numbers = [6, 57, 4, 7, 68, 95]
squares = sq_all(numbers)
for i in squares:
print(i)
```

```
# В заданной строке найти все прописные буквы, посчитать их количество. 
# Использовать библиотеку string

from string import ascii_uppercase

string_new = 'In PyCharm, you can specify third-party standalone 
applications and run them as External Tools'

str_1 = [i for i in string_new if i in ascii_uppercase]

print(len(str 1))

print(str_1)
```

Раздаточный материал № 21 Константы библиотеки srting (справочно)

string.ascii_letters

Объединение констант ascii_lowercase и ascii_uppercase описано ниже. Значение не зависит от языкового стандарта.

string.ascii_lowercase

Строчные буквы 'abcdefghijklmnopqrstuvwxyz'.

string.ascii_uppercase

Заглавные буквы 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

string.digits

Строка '0123456789'.

string.hexdigits

Строка '0123456789abcdefABCDEF'.

string.octdigits

Строка '01234567'.

string.punctuation

Строка символов ASCII, которые считаются символами пунктуации: $!"#\%\&'()*+,-./:;<=>?@[\]^_`{|}~.$

string.printable

Строка символов ASCII, которые считаются печатаемыми. Комбинация digits, ascii letters, punctuation и whitespace.

string.whitespace

Строка, содержащая все символы ASCII, считающиеся пробелами. Включает в себя пространство символов, табуляцию, перевод строки, возврат, перевод страницы и вертикальную табуляцию.