

LLMS (2)

FEATURES++ & CHALLENGES

Aissam Outchakoucht

a.outchakoucht@emsi-edu.ma aissam.outchakoucht@gmail.com

RECAP: TOKENIZATION, EMBEDDING

										?
Le	solei	1 se	lève	à	l'est	et	se	couc	he à	
3.5	2.5	3.5					3.3	4.5	3.0	
2.7	9.7	2.7					1.2	1.7	2.0	
3.2	0.2	3.2					2.2	2.2	7.1	_
				•••						_
		•					•	•	-	
1.1	3.1	1.1					9.2	0.1	2.1	_

RECAP: TRANSFORMERS

GPT Assistant training pipeline

Stage	Pretraining	Supervised Finetuning	Reward Modeling	Reinforcement Learning
Dataset	Raw internet text trillions of words low-quality, large quantity	Demonstrations Ideal Assistant responses, ~10-100K (prompt, response) written by contractors low quantity, high quality	Comparisons 100K –1M comparisons written by contractors low quantity, high quality	Prompts ~10K-100K prompts written by contractors low quantity, high quality
	•	•	•	•
Algorithm	Language modeling predict the next token	Language modeling predict the next token	Binary classification predict rewards consistent w preferences	Reinforcement Learning generate tokens that maximize the reward
	• 2	init from	init from	init from SFT use RM
Model	Base model	SFT model	RM model	RL model
Notes	1000s of GPUs months of training ex: GPT, LLaMA, PaLM can deploy this model	1-100 GPUs days of training ex: Vicuna-13B can deploy this model	1-100 GPUs days of training	1-100 GPUs days of training ex: ChatGPT, Claude can deploy this model

RETRIEVAL AUGMENTED GENERATION -RAG-

RAG

RAG (Retrieval-Augmented Generation) est une technique qui combine deux composants :

- Récupération (Retrieval): Recherche d'informations pertinentes dans une base de connaissances externe (par ex. une base documentaire).
- Génération (Generation): Utilisation d'un modèle génératif (comme GPT) pour formuler une réponse basée sur les informations récupérées.

RAG

Pourquoi utiliser RAG?

- Permet de répondre à des questions nécessitant des informations précises et actualisées.
- 2. Réduit la dépendance aux données statiques dans les modèles de langage.
- 3. Idéal pour des cas comme :
 - a. Questions-réponses contextuelles.
 - b. Génération de résumés basés sur des documents.
 - c. Recherche documentaire interactive.

FINE-TUNING

Fine-tuning est le processus d'adaptation d'un modèle pré-entraîné à une tâche spécifique.

Pourquoi fine-tuner un modèle?

- Le modèle pré-entraîné a appris des représentations générales (par ex. GPT, BERT).
- La tâche spécifique (par ex. classification de textes médicaux) nécessite une adaptation aux données particulières.

FINE-TUNING

Create a fine-tuned model	
Method	
Specify the method to be used for fine-tuning.	
Supervised	\$
Base Model	
gpt-4o-2024-08-06	\$
add a jsonl file to use for training. By providing the file, you can ave the rights to use the data.	confirm that you
Training data Add a jsonl file to use for training. By providing the file, you chave the rights to use the data. Upload new Select existing	confirm that you
Add a jsonl file to use for training. By providing the file, you chave the rights to use the data. Upload new Select existing	confirm that you
Add a jsonl file to use for training. By providing the file, you chave the rights to use the data. Upload new Select existing Upload a file or drag and drop here	confirm that you
Add a jsonl file to use for training. By providing the file, you chave the rights to use the data. Upload new Select existing	confirm that you
Add a jsonl file to use for training. By providing the file, you chave the rights to use the data. Upload new Select existing Upload a file or drag and drop here (.jsonl)	confirm that you
Add a jsonl file to use for training. By providing the file, you chave the rights to use the data. Upload new Select existing Upload a file or drag and drop here	confirm that you

Create a fine-tuned model	
Add a custom suffix that will be appended to the output	model name.
my-experiment	
Seed	
The seed controls the reproducibility of the job. Passing job parameters should produce the same results, but malf a seed is not specified, one will be generated for you.	
Random	
Configure hyperparameters	
Configure hyperparameters Batch size ①	auto
	auto
▼ Batch size ①	auto
Learning rate multiplier ①	auto
 ✓ Batch size ① ✓ Learning rate multiplier ① In most cases, range of 0.0001- 10 is recommended 	auto

Permet aux développeurs de connecter des modèles de langage à des données et des systèmes externes. Vous pouvez définir un ensemble de fonctions comme des outils auxquels le modèle a accès, et il peut les utiliser lorsque c'est pertinent en fonction de l'historique de la conversation. Vous pouvez ensuite exécuter ces fonctions côté application et renvoyer les résultats au modèle.

Fonctions dédiées :

 Elles peuvent réaliser des tâches précises (récupérer une information, effectuer un calcul, interagir avec une API...).

Accès conditionnel:

 Le modèle ne les appellera que si cela est pertinent dans le contexte de la conversation.

Exécution côté application :

- Les fonctions sont codées et exécutées en dehors du modèle.
- Les résultats sont ensuite renvoyés au modèle pour continuer la génération de réponses.

Exemple d'utilisation:

- Vérifier la disponibilité d'un produit dans un inventaire.
- Récupérer la météo via une API.
- Envoyer un e-mail ou un message.

```
from openai import OpenAI
   client = OpenAI()
   tools = \Gamma
     {
         "type": "function",
         "function": {
             "name": "get_weather",
             "parameters": {
                  "type": "object",
                 "properties": {
                      "location": {"type": "string"}
14
                 },
             },
         },
18]
20 completion = client.chat.completions.create(
     model="gpt-4o",
     messages=[{"role": "user", "content": "What's the weather like in Paris today?"}],
     tools=tools,
24 )
26 print(completion.choices[0].message.tool_calls)
```

```
from openai import OpenAI
   client = OpenAI()
4
   tools = \Gamma
                                          "id": "call_12345xyz",
     {
                                          "type": "function",
         "type": "function",
                                          "function": { "name": "get_weather", "arguments": "{'location':'Paris'}" }
         "function": {
             "name": "get_weather" 6
             "parameters": {
                 "type": "object",
                "properties": {
                     "location": {"type": "string"}
14
                },
             },
         },
18]
20 completion = client.chat.completions.create(
     model="gpt-40",
     messages=[{"role": "user", "content": "What's the weather like in Paris today?"}],
     tools=tools,
24 )
                                                                                                                    15
26 print(completion.choices[0].message.tool_calls)
```


ADVERSARIAL ATTACKS ON NNS

Les réseaux profonds obtiennent de très bons résultats sur des données légitimes MATS

Il est extrêmement facile pour les "adversaires" (attaquants) de les tromper (surtout si ces derniers ont des connaissances à propos le modèle -boîte blanche-)

ADVERSARIAL ATTACKS ON NNS

DO WHAT I MEAN, NOT WHAT I SAY

- "Get my grandma out of the burning house"
- "Help me lose weight quickly."
- "Keep me safe"
- ...