Course Notes

Introduction to Abstract Algebra

Alex Rutar

Contents

0	A B	rief Introduction	3
1	Fun 1.1 1.2		5 5
2	Fun	damentals of Groups	7
	2.1	Subgroups	7
		2.1.1 Subgroup Tests	7
			8
			9
	2.2	Conjugacy Classes	9
		2.2.1 Group Homomorphisms	2
	2.3	Direct Products of Groups	
3	Exa	mples of Finite Groups and Rings	. 5
	3.1	Examples of Finite Groups	5
		3.1.1 Cyclic Groups	. 5
		3.1.2 Permutation Groups	6
		3.1.3 Dihedral Groups	9

Chapter 0 A Brief Introduction

Chapter 1

Fundamentals of Groups

1.1 Basics of Groups

Def'n. 1.1.1 We say that (G,*) with $*: G \times G \to G$ is a **group** if for all $a,b,c \in G$

- 1. (a*b)*c = a*(b*c)
- 2. $\exists e \in G$: a * e = a = e * a
- 3. $\exists u \in G$: a * u = e = u * a

We have our first basic proposition:

Prop. 1.1.2 The identity and inverses are unique.

PROOF If e, f are both identities, then e = e * f = f. If u, v are both inverses of x, then u * (x * v) = u * e = u and (u * x) * v = e * v = v so u = v.

Def'n. 1.1.3 *If* ab = ba *for all* $a, b \in G$ *then we say that* G *is* **commutative**.

Def'n. 1.1.4 Let G be a group with $G = \{g_1, g_2, ..., g_n\}$. Then the **Cayley Table** for G is the matrix $M \in M_n(G)$ where $M_{ij} = g_i g_j$.

Prop. 1.1.5 In each column or row, each element occurs exactly once. Furthermore, if $M_{ij} = e$, then $M_{ji} = e$.

PROOF This follows directly by left or right cancellation, and by commutativity of the elements with their inverse.

Def'n. 1.1.6 Let (G, \spadesuit) , (H, \star) be groups. A mapping $f: G \to H$ is called an **homomorphism** if

$$f(u \spadesuit v) = f(u) \star f(v)$$

If f is also a a bijection, then we call f an **isomorphism**.

Prop. 1.1.7 G and H are isomorphic if and only if their Cayley Tables are the same up to permutation of elements.

Proof Obvious.

1.2 The group \mathbb{Z}_m

To construct \mathbb{Z}_m , we define $\mathbb{Z}_m = \mathbb{Z}/\sim$ where $a \sim b$ if $a \cong b \pmod{m}$. Since we have a division algorithm in \mathbb{Z} , for any $d \in \mathbb{Z}$, we can write d = tm + r with $0 \le r \le m - 1$. Thus $\overline{d} = \overline{r}$, so we can represent $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$. As a result we usually do not bother writing $\overline{\cdot}$. To show that this is a group, we must show that its operations are well defined.

Prop. 1.2.1 We have $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \cdot \overline{b} = \overline{ab}$.

Thm. 1.2.2
$$\mathbb{Z}_m^{\times} = \{ \overline{a} \mid \gcd(a, m) = 1 \}.$$

PROOF Assume $\overline{a} \in \mathbb{Z}_m^{\times}$ so there exists \overline{x} with $\overline{x} \cdot \overline{a} = 1$. Then $\overline{xa} = \overline{1}$ so $xa \cong 1 \pmod{m}$ so m|xa - 1. Let $d = \gcd(a, m)$ so d|a and d|m. Thus d|xa - 1 and d|xa so d|1 and $\gcd(a, m) = 1$.

Conversely, suppose gcd(a, m) = 1. Then by Bézout's Lemma, get x, y so that xa + ym = 1, so $xa \cong 1 \pmod{1}$ and $\overline{xa} = \overline{1}$ and $\overline{xa} = \overline{1}$ and we have our multiplicative inverse.

We thus have $|\mathbb{Z}_m^{\times}| = \phi(m)$.

Chapter 2

Fundamentals of Groups

2.1 Subgroups

Def'n. 2.1.1 A subset H of a group G is called a **subgroup** if H is also a group with the same operation. We write $H \leq G$.

For example, $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +)$. Note that associativity automatically holds since every element of H is an element of H. Furthermore, $H = H_G$ since $H = H_G = H_$

2.1.1 Subgroup Tests

Prop. 2.1.2 (First Subgroup Test) A subset H of a group G is a subgroup if and only if

- 1. $H \neq \emptyset$
- 2. $x, y \in H \Rightarrow xy \in H$
- 3. $x \in H \Rightarrow x^{-1} \in H$

Proof Follows by above discussion.

Prop. 2.1.3 (Second Subgroup Test) A subset H of a group G is a subgroup

- 1. $H \neq \emptyset$
- $2. \ x,y \in H \Rightarrow xy^{-1} \in H$

That the first subgroup test implies the second is obvious. Coversely, the identity is in H since $xx^{-1} \in H$. Thus get closure under inversion by choosing x as the identity to get inverses. Then if $x, y \in H$, $x, y^{-1} \in H$ so $x(y^{-1})^{-1} = xy \in H$.

Furthermore, if *G* is finite, it suffices to show closure under multiplication, since inverses can be optained by repeated multiplication.

Prop. 2.1.4 Arbitrary intersections of subgroups are also subgroups.

Proof Obvious.

2.1.2 Cosets of Subgroups

Def'n. 2.1.5 Let $H \le G$, $g \in G$. Then the **right coset** of H by g is the set $Hg := \{hg : h \in H\}$. Similarly, the **left coset** of H by g is the set $gH := \{gh : h \in H\}$.

Ex. 2.1.6 Consider $G = \mathbb{Z}_{13}^{\times} = \{1, 2, ..., 12\}$ and $H = \langle 3 \rangle = \{1, 3, 9\}$. Then the cosets of *H* are given by

$H1 = \{1, 3, 9\}$	$H2 = \{2, 5, 6\}$
H3 = H1	$H4 = \{4, 10, 12\}$
H5 = H2	H6 = H2
$H7 = \{7, 8, 11\}$	H8 = H7
H9 = H1	H10 = H4
H11 = H7	H12 = H4

so there are 4 disjoint cosets of *H*.

This inspires the following theorem:

Thm. 2.1.7 *Let* $H \leq G$. *Then*

- 1. |Hg| = |H|
- 2. $Hg = H \Leftrightarrow g \in H$
- 3. For any $x, y \in G$, either Hx = Hy or $Hx \cap Hy = \emptyset$
- 4. $Hx = Hy \Leftrightarrow xy^{-1} \in H$

PROOF 1. The map $g: H \to Hg$ is bijective since it has an inverse.

- 2. This is a special case of (4) with x = g, y = 1.
- 3. Suppose $Hx \cap Hy \neq \emptyset$. Thus let $z \in Hx \cap Hy$ so we can write $z = h_1x = h_2y$. Then for any $hx \in Hx$, $hx = hh_1^{-1}h_1x = hh_1^{-1}h_2y \in Hy$ so $Hx \subseteq Hy$. The identical argument works in reverse, so equality holds.
- 4. Assume Hx = Hy, and let $x \in Hx$. Then $x \in Hy$ as well so x = hy and $xy^{-1} = h \in H$. Conversely, suppose $xy^{-1} \in H$; then $xy^{-1}y \in Hy$ so $x \in Hy$. Also, $x \in Hx$ so $x \in Hx \cap Hy \neq \emptyset$ so by (3), Hx = Hy. □

Thus all the cosets of H have the same size as H, and cosets with different elements are disjoint. Therefore the following definition makes sense:

Def'n. 2.1.8 The *index* of a subgroup H in a group G is denoted [G:H] and denotes the number of distinct right cosets of H.

Thus G is a disjoint union of [G:H] right cosets of H, each of size |H|. Therefore we have

Cor. 2.1.9
$$|G| = |G:H| \cdot |H|$$

We also have the following theorem:

Prop. 2.1.10 $Hx \mapsto x^{-1}H$ is a one-to-one correspondence between right cosets and left cosets.

As an application of the previous results, we have the following theorem.

Thm. 2.1.11 (Lagrange) Suppose G is a finite group. Then

- 1. For any $H \leq G$, |H| | |G|.
- 2. For any $g \in G$, o(g)||G|.

Proof 1. Since $|G| = |G:H| \cdot |H|$, |G:H| is a positive integer.

2. $o(g) = |\langle g \rangle|$ and it follows by (1).

Center of a Group 2.1.3

Def'n. 2.1.12 For any $g \in G$, define

$$C_G(g) = \{x \in G : gx = xg\}$$

the **centralizer** of g in G. Then define the **center** of a group G

$$Z(G) = \bigcap_{g \in G} C_G(g) \le G$$

Note that the center of a group is the set of elements which commute with everything in the group. These are indeed groups: We certainly have $1 \in C_G(g)$. Also, if $x, y \in G$, then gx = xgand gy = yg so that gxy = xgy = xyg. If $x \in C_G(g)$, then gx = xg so $g = xgx^{-1}$ and $x^{-1}g = gx^{-1}$.

Conjugacy Classes 2.2

This definition inspires the following definition:

Def'n. 2.2.1 We say that f is a **conjugate** of g if and only if there exists $x \in G$ such that $x^{-1}gx = f$.

Denote the binary relation by \sim : we will show that this is an equivalence relation:

- 1. Reflexive: $g \sim g$ by x = 1
- 2. Symmetric: If $g \sim f$, then $x^{-1}gx = f$ so $g = xfx^{-1} = (x^{-1})^{-1}fx^{-1}$ 3. Transitive: If $f \sim g$ and $g \sim h$, get x, y so $x^{-1}gx = f$ and $y^{-1}fy = h$ so

$$h = y^{-1}x^{-1}gxy = (xy)^{-1}g(xy)$$

Def'n. 2.2.2 These equivalence classes are called the **conjugacy classes** of G.

We denote the conjugacy class of $g \in G$ by $C_g = \{x^{-1}gx : x \in G\}$. Note that $|C_g| = 1$ if and only if $C_g = \{g\}$ if and only if $x^{-1}gx = g$ for any $x \in G$ if and only if gx = xg and $g \in Z(G)$.

Thm. 2.2.3 For any $g \in G$, $|C_g| \cdot |C_G(g)| = |G|$.

PROOF Consider α : {Right cosets of $D_G(g)$ } \longrightarrow C_g defined by $C_G(g) \cdot x \mapsto x^{-1}gx$. This is well defined and injective:

$$C_G(g)x = C_G(g)y \Leftrightarrow xy^{-1} \in C_G(g)$$
$$\Leftrightarrow g(xy^{-1})$$
$$\Leftrightarrow (xy^{-1})g$$

so it suffices to show the map is surjective. In fact, any element of C_g is of the form $x^{-1}gx = \alpha(C_G(g)x)$. Thus α is bijective, so $|G:C_G(x)| = |C_g|$ and

$$|G| = |G : C_G(g)| \cdot |C_G(g)| = |C_g| \cdot |C_G(g)|$$

Cor. 2.2.4 *If G is finite*, $g \in G$, *then* $|C_g| ||G|$.

We have the following nice application:

Thm. 2.2.5 If $|G| = p^2$ for p prime, then G is commutative.

Proof For any $g \in G$, $|C_g| \mid |G| = p^2$ so $|C_g|$ there are three cases. Note that $|C_g| = p^2$ is impossible, since $C_1 = \{1\}$ and the remainder has fewer elements. Thus let a denote the number of conjugacy classes of size 1 by a, and the number of conjugacy classes of size p by b. Since G is a disjoint union of conjugacy classes, we have $|G| = p^2 = a + bp$ so that p|a. Furthermore, $a \neq 0$ since $|C_1| = 1$, so $a \geq p$. Furthermore, $|C_g| = 1$ if and only if $g \in Z(G)$, so $a = |Z(G)| \geq p$. Since $Z(G) \leq G$, by Lagrance, $|Z(G)| \mid |G| = p^2$, so |Z(G)| = p or $|Z(G)| = p^2$. If |Z(G)| = p, pick any $x \in G$ with $x \notin Z(G)$ and consider $C_G(x)$. Since $Z(G) \leq C_G(x)$, we must have $p + 1 \leq |C_G(x)|$ and $|C_G(x)| = p^2$ so $|C_G(x)| = q$ and the group is commutative. \square

Note that if |G| = p prime, then G is cyclic. Since o(g)||G| = p, and $o(g) \ne 1$ if $g \ne 1$; we must have o(g) = p and $\langle g \rangle = G$.

Now if $H \le G$, then $x^{-1}Hx = \{x^{-1}hx : h \in H\} \le G$, as can be verified.

Def'n. 2.2.6 A subgroup K of G is **conjugate** to H in G if and only if there exists $x \in G$ with $x^{-1}Hx = K$. We write $H \sim K$, and the equivalence classes are called **conjugacy classes** of subgroups.

Thm. 2.2.7 1. Conjugate elements are of the same order.

2. Conjugate subgroups are isomorphic.

Proof 1. We have

$$(x^{-1}gx)^k = 1 \Leftrightarrow (x^{-1}gx)(x^{-1}gx)\cdots(x^{-1}gx) = 1$$
$$\Leftrightarrow x^{-1}g^Kx = 1$$
$$\Leftrightarrow g^kx = x$$
$$\Leftrightarrow g^k = 1$$

2. I claim that the map $\alpha: H \to x^{-1}Hx$ by $h \mapsto x^{-1}hx$ is an isomorphism. We have $\alpha(h_1h_2) = x^{-1}h_1h_2x = x^{-1}h)1xx^{-1}h_2x = \alpha(h_1)\alpha(h_2)$, and bijectivity can be verified easily. \square

For any group G, we always have $C_{\{1\}} = \{\{1\}\}$ and $C_G = \{G\}$. A particularly nice type of conjugacy class are the ones with only 1 element. We have

$$|C_H| = 1 \Leftrightarrow C_H = \{H\} \Leftrightarrow x^{-1}Hx = H(\forall x \in G) \Leftrightarrow Hx = xH(\forall x \in G)$$

Def'n. 2.2.8 A subgroup H which satisfies Hx = xH for all $x \in G$ is called a **normal** subgroup. We say $H \triangleleft G$.

Def'n. 2.2.9 The centralizer of a subgroup H in G is

$$C_G(H) = \{x \in G : hx = xh(\forall h \in H)\} = \bigcap_{h \in H} C_G(h) \le G$$

Note that intersections of subgroups are subgroups.

Def'n. 2.2.10 The normalizer of a subgroup H in G is

$$N_G(H) = \{x \in G : Hx = xH\} = \{x \in G : x^{-1}Hx = H\} \le G$$

It is easy to verify this is a subgroup. We thus have $H \triangleleft G$ if and only if $N_G(H) = G$. We have some properties:

Prop. 2.2.11 1. $C_G(G) \leq N_G(H)$. In general, equality does not hold.

- 2. $H \leq N_G(H)$.
- 3. $H \leq C_G(H)$ iff H is commutative.
- 4. $N_G(H) = G$ iff H is normal.
- 5. $C_G(H) = G \text{ iff } H \leq Z(G)$.

Ex. 2.2.12 Let $G = D_4$, $H = \langle r \rangle$. Then $s \in N_6(H)$ but $s \notin C_G(H)$.

Prop. 2.2.13 A subgroup H in G is normal if and only if

- 1. Hx = xH for all $x \in G$.
- 2. $x^{-1}Hx = H$ for all $x \in G$.
- 3. $N_G(H) = G$.
- 4. For any $h \in H$, $x \in G$, $x^{-1}hx \in H$.
- 5. H is a union of some conjugacy classes.

Proof We only see $(4) \Leftrightarrow (5)$. We have

$$\forall h \in H \forall x \in Gx^{-1}hx \in H \Leftrightarrow \forall h \in HC_h \subseteq H$$

which means that all conjugacy classes are either disjoint from H, or in H.

We will most commonly use condition (4) to check normality.

Ex. 2.2.14 For example, fix $G = GL_n(\mathbb{R})$, so $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) = 1\}$. This is indeed a subgroup: let's also verify that it is a normal subgroup. Also, if $h \in SL_n(\mathbb{R})$ and $x \in GL_n(\mathbb{R})$, then $\det(x^{-1}hx) = \det(x^{-1})\det(h)\det(x) = \det(h) = 1$ so $x^{-1}hx \in SL_n(\mathbb{R})$.

Why are normal subgroups nice? If $H \triangleleft G$, and $x, y \in G$, then (Hx)(Hy) = Hxy. We thus have an operation on cosets of H. Furthermore, this action satisfies the properties of the group. Thus $\{Hx : x \in G\}$ with the operation HxHy = Hxy is a group, called the factor group or quotient group of G by H.

Ex. 2.2.15 Consider $G = \mathbb{Z}_{13}^{\times}$, $H = \langle 3 \rangle$. Then $H2 = \{256\}$, $H4 = \{4, 10, 12\}$, $H7 = \{7, 8, 11\}$. We

		Н	H2	H4	H7
	Н	Н	H2	H4	H7
have	H2	H2	H4	H7	Н
	H4	H4	H7	Н	H2
	H7	H7	Н	H2	H4

Prop. 2.2.16 1. Index 2 subgroups are normal.

- 2. Any subgroup of a commutative group is normal.
- 3. Any subgroup of the center is normal.
- 4. If $H \leq G$, |H| = K and H is the only subgroup of G of size K, then $H \triangleleft G$.

PROOF 1. If $H \le G$ with [G: H] = 2, we know $g^2 \in H$ for all $g \in G$. Then for $h \in H$, $x \in G$, $x^{-1}hx = x^{-2}xhxhh^{-1} = (x^{-1})^2(xh)^2h^{-1} \in H$.

- 2. If $H \le G$, G commutative, if $h \in H$ and $x \in G$, then hx = xh and $x^{-1}hx = h \in H$.
- 3. Elements of the center commute with everything.

4. For any
$$x \in G$$
, $x^{-1}Hx \le G$ and $|x^{-1}Hx| = |H|$ so $x^{-1}Hx = H$

2.2.1 Group Homomorphisms

Def'n. 2.2.17 A map $\alpha : G \to H$ is called a **homomorphism** (of groups) iff $\alpha(xy) = \alpha(x)\alpha(y)$ for every $x, y \in G$.

Homomorphisms are isomorphisms that are not (necessarily) bijective.

Ex. 2.2.18 1. The identity map $(g \mapsto g)$, the constant identity map $(g \mapsto 1)$.

- 2. The map $\alpha: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ given by $z \mapsto |z|$.
- 3. The map $\alpha : GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ by $A \mapsto \det(A)$, since $\det(AB) = \det(A)\det(B)$.
- 4. If $H \triangleleft G$, the map $\alpha : G \rightarrow G/H$ by $x \mapsto Hx$.

For a homomorphism $\alpha: G \to H$ of groups, we have the following properties.

Prop. 2.2.19 1. $\alpha(1_G) = 1_H$

- 2. $\alpha(g^{-1}) = \alpha(g)^{-1}$
- 3. $\alpha(g^k) = \alpha(g)^k$ for any $k \in \mathbb{Z}$.

PROOF 1. $1_H \alpha(1_G) = \alpha(1_G) = \alpha(1_G 1_G) = \alpha(1_G) \alpha(1_G)$

- 2. $\alpha(g)\alpha(g^{-1}) = \alpha(gg^{-1}) = \alpha(1_G) = 1_H$, so they are inverses.
- 3. Follows directly by above and induction.

Def'n. 2.2.20 The *image* of α is given by $im(\alpha) = {\alpha(g) : g \in G} \le H$.

The image of α is a subgroup since it is a subgroup. We also define

Def'n. 2.2.21 The **kernel** of α is given by $\ker(\alpha) = \{x \in G : \alpha(x) = 1_H\} \leq G$.

To see it is a normal subgroup, we have $1_G \in \ker(\alpha)$, and it is certainly a subgroup. Then by the normality test, if $x \in \ker(\alpha)$ and $g \in G$, then

$$\alpha(g^{-1}xg) = \alpha(g^{-1})\alpha(x)\alpha(g)$$

$$= \alpha(g^{-1})\alpha(g)$$

$$= \alpha(1_G)$$

$$= 1_U$$

so $g^{-1}xg \in \ker(\alpha)$ as well.

Thm. 2.2.22 (First Isomorphism) *For a homomorphism* $\alpha : G \to H$, $G/\ker(\alpha) \cong \operatorname{im}(\alpha)$.

Proof Consider the map $\beta: G/\ker(\alpha) \to \operatorname{im}(\alpha)$ given by $\ker(\alpha)x \mapsto \alpha(x)$.

This map is well defined and injective: we have

$$\ker(\alpha)x = \ker(\alpha)y \Leftrightarrow xy^{-1} \in \ker(\alpha)$$
$$\Leftrightarrow \alpha(xy^{-1}) = 1$$
$$\Leftrightarrow \alpha(x)\alpha(y)^{-1} = 1$$
$$\Leftrightarrow \alpha(x) = \alpha(y)$$

It is also surjective since any element if $im(\alpha)$ is of the form $\alpha(x)$, which is the image of $\beta(\ker(\alpha)x)$. Finally,

$$\beta((\ker(\alpha)x)(\ker(\alpha)x)) = \beta(\ker(\alpha)xy)$$

$$= \alpha(xy)$$

$$= \alpha(x)\alpha(y)$$

$$= \beta(\ker(\alpha)x)\beta(\ker(\alpha)y)$$

so β is a bijective homomorphism, which is an isomorphism.

Ex. 2.2.23 Consider the map $\alpha \operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}^{\times}$ given by $A \mapsto \det(A)$. We have $\operatorname{im}(\alpha) = \mathbb{R}^{\times}$ and $\ker(\alpha) =_n(\mathbb{R})$, so $_n(\mathbb{R}) \leq \operatorname{GL}_n(\mathbb{R})$.

Thm. 2.2.24 Let N denote the set of normal subgroups of G. For any group G, the set of normal subgroups of G is equal to the collection of kernels of homomorphisms of G, and the factor G is subgroups of G = kernels of homomorphisms of G Factor groups of G = images of homomorphisms of G

PROOF We know $\ker(\alpha) \leq G$ for all homomorphisms $\alpha: G \to H$. Conversely, for $N \leq G$, consider $\alpha: G \to G/N$ by $g \mapsto Ng$. Then $\operatorname{im}(\alpha) = \{Ng: g \in G\} = G/N$, and $\ker(\alpha) = \{g \in G: Ng = N\} = N$. This also show that any factor group is the image of a homomorphism. Conversely, for any $\alpha: G \to H$, and $\operatorname{im}(\alpha) \cong G/\ker(\alpha)$ by the first isomorphism theorem. \square

2.3 Direct Products of Groups

Def'n. 2.3.1 For groups A, B, the **direct product group** is the group with set $A \times B$ and operation $(a_1, b_1)(a_2, b_2) = (a_1 a_2, b_1 b_2)$.

Define an operation $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)$.

Chapter 3

Examples of Finite Groups and Rings

3.1 Examples of Finite Groups

3.1.1 Cyclic Groups

Def'n. 3.1.1 The order of an element $g \in G$ is $o(g) := |\{g^d | d \in \mathbb{Z}\}|$. The order of a group G is |G|.

We certainly have $o(g) \le |G|$ for any $g \in G$. Equality holds when $o(g) = \infty$ and G is countable, or $G = \{g^d : d \in \mathbb{Z}\}.$

Def'n. 3.1.2 A collection $H = \{g_1, g_2, ..., g_k\}$ **generates** G if we can write any $g \in G$ as a product of elements in H.

Def'n. 3.1.3 We say that G is cyclic if $G = \{g^d : d \in \mathbb{Z}\}$ for some $g \in G$. Equivalently, it is generated by a set of cardinality one.

Ex. 3.1.4 Note that \mathbb{Z}_{13}^{\times} is cyclic with generator 2.

Lemma 3.1.5 *If* o(g) *is finite and* $d \in \mathbb{Z}$ *, then*

$$o(g^d) = \frac{o(g)}{\gcd(o(g), d)}$$

PROOF Let o(g) = K and $t = \gcd(K, d)$ and write $K = tK_1$ and $d = td_1$ with K_1, d_1 coprime. Thus $o(g^d)$ is the smallest positive integer l with $(g^d)^l = 1$. But then $(g^d)^l = 1 \Leftrightarrow g^{dl} = 1 \Leftrightarrow o(g)|dl$ and k|dl, that is $tK_1|td_1l$ and $k_1|d_1l$. Thus $K_1|l$ so the smallest positive integer l is K_1 and $o(g^d) = K_1 = \frac{o(g)}{\gcd(o(g),d)}$ as desired.

Subgroups of Cyclic Groups

Thm. 3.1.6 Any subgroup of a cyclic group is also cyclic.

PROOF Let $G = \langle g \rangle$ be a cyclic group, $H \leq G$. If $H = \{1\}$, then $H = \langle 1 \rangle$ is cyclic. Otherwise, there exists some $0 \neq m \in \mathbb{Z}$ with $g^m \in H$. Now, there exists a smallest positive integer k with $g^k \in H$. We see that $H = \langle g^k \rangle$. The reverse inclusion is obvious since $(g^k)^t \in H$ for all $t \in \mathbb{Z}$. For the forward inclusion, pick $x \in H$ so $x = g^d$ for some d. Then division with remainder yields d = tk + r with $0 \leq r \leq k - 1$ so that $g^d = g^{tk+r}$ and $x = (g^k)^t g^r$ so $g^r = x(g^k)^{-t} \in H$. Minimality of k forces r = 0, so d = tk, $x = g^d = (g^k)^t \in \langle g^k \rangle$.

If |G| = o(g) = n finite, write n = tk + r, for $0 \le r \le k - 1$. Then $g^r = g^n(g^k)^{-t} = (g^k)^{-t} \in H$, and again r = 0, n = tk, k|n.

Now suppose $G = \langle g \rangle$ with finite order n. Then $G = \{1, g, g^2, \dots, g^{n-1}\}$, and subgroups of G correspond to positive diviors of n. Then $k|n \leftrightarrow \langle g^k \rangle = \{1, g^k, g^{2k}, \dots, g^{n-k}\}$ Now suppose $G = \langle g \rangle$ is infinite, and $G = \{\dots, g^{-1}, 1, g, g^2, \dots\}$. Then subgroups of G correspond to nonnegative integers, and $k \ge 0 \leftrightarrow \langle g^k \rangle = \{\dots, g^{-k}, 1, g^k, g^{2k}, \dots\}$.

Ex. 3.1.7 Consider
$$G = \mathbb{Z}_{13}^{\times} = \langle 2 \rangle$$
, $|\mathbb{Z}_{13}^{\times}| = 12 = o(2)$.

Divisor of 12	Subgroup of \mathbb{Z}_{13}^{\times}
1	$\langle 2^1 \rangle = \langle 2 \rangle = \mathbb{Z}_{13}^{\times}$
1	$\langle 2^2 \rangle = \langle 4 \rangle = \{1, 4, 3, 12, 9, 10\}$
1	$\langle 2^3 \rangle = \langle 8 \rangle = \{1, 8, 12, 5\}$
1	$\langle 2^4 \rangle = \langle 3 \rangle = \{1, 3, 9\}$
1	$\langle 2^6 \rangle = \langle 12 \rangle = \{1, 12\}$
1	$\langle 2^{12} \rangle = \langle 1 \rangle = \{1\}$

3.1.2 Permutation Groups

Recall that S_n is the symmetric group of degree n, consisting of all permutations of [n]. Thus $|S_n| = n!$. Instead of using the matrix form, we can write the permutation group using the cycle form.

Ex. 3.1.8 Write

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 3 & 1 & 2 & 9 & 8 & 5 & 6 \end{pmatrix} = (14)(2785)(3)(69)$$

We can also write (14)(2785)(69), in other words excluding elements which map to themselves.

In general, a cycle $(a_1a_2...a_k)$ indicates that $a_1f = a_2$, $a_2f = a_3$,..., $a_kf = a_1$. In S_n , each permutation can be expressed in a cycle form (using disjoint cycles). The cycle form is unique up to ordering within the cycles, and ordering among the cycles.

Ex. 3.1.9 In S_5 , the possible cycle structures are

$$I$$
, (ab) , (abc) , $(abcd)$, $(abcde)$, (ab) (cd), (ab) (cde)

We then have

$$o(I) = 1$$

$$o((ab)) = 2$$

$$o((abc)) = 3$$

$$o((abcd)) = 4$$

$$o((abcde)) = 5$$

$$o((ab)(cd)) = 2$$

$$o((ab)(cde)) = 6$$

For f = (abc), $f^2 = (abc)(abc) = (acb)$, $f^3 = (abc)(acb) = abc$. For f = (abcd), $f^2 = (ac)(bd)$, $f^3 = (abdc)(ac)(bd)(adcb)$, and $f^4 = (abcd)(adcb) = (abcd)$. If $f = (a_1 a_2 ... a_k)$, o(f) = k.

Prop. 3.1.10 Suppose $f = \gamma_1 \gamma_2 \dots \gamma_i$ for disjoint cycles. Then $o(f) = lcm(o(\gamma_1), o(\gamma_2), \dots, o(\gamma_i))$.

Proof Note that the γ_i commute, so that

$$f^{d} = I \Leftrightarrow (\gamma_{1}\gamma_{2}...\gamma_{i})^{d} = I$$
$$\Leftrightarrow \gamma_{1}^{d}\gamma_{2}^{d}...\gamma_{i}^{d} = I$$
$$\Leftrightarrow \gamma_{i}^{d} = I \quad \forall i$$

The last line holds since the γ_i^d operates on disjoint sets. Thus we have our formula, as desired.

Note that any finite permutation of $f \in S_n$ can be expressed as a composition of 2-cycles. For example, (abc) = (ab)(ac) and in general $(a_1a_2...a_k) = (a_1a_2)(a_1a_3)...(a_1a_k)$. In general, any k-cycle can be replaced by a composition of (k-1) 2-cycles. This motivates the following definition:

Def'n. 3.1.11 A permutation $f \in S_n$ is **even** if it can be expressed as a composition of an even number of 2-cycles. Then $f \in S_n$ is **odd** if it can be expressed as a composition of an odd number of 2-cycles.

For example, (15362)(4798) = (15)(13)(16)(12)(47)(49)(48) can be written as a composition of 7 2-cycles. This is certainly not unique: for example (26) = (21)(16)(21).

Lemma 3.1.12 The identity permutation is not odd.

Proof For contradiction, assume

$$I = \alpha_1 \alpha_2 \dots \alpha_k$$

and assume that such an odd k is a minimal counterxample. We certainly have $k \ge 3$. Say $\alpha_1 = (cd)$, so c must be involved in another α_i , or d is mapped to c. Let α_r be the last 2-cycle involving c, say $\alpha_r = (cx)$. Now we rewrite α_{r-1} without changing $\alpha_{r-1}\alpha_r$.

- 1. If $\alpha_{r-1} = (yz)$ disjoint from $\alpha_r = (cx)$, then (yz)(cx) = (cx)(yz).
- 2. If $\alpha_{r-1} = (cy)$ with $y \neq x$, then (cy)(cx) = (xc)(xy).
- 3. If $\alpha_{r-1} = (xy)$, $y \neq c$, then (xy)(cx) = (yc)(yx).
- 4. $\alpha_{r-1} = \alpha_r$ so (cx)(cx) = I, contradicting minimality.

We can repeat this process until the last 2-cycle involving c is α_1 , a contradiction.

Prop. 3.1.13 A permutation cannot be both even and odd.

Proof Suppose f can be written as an even and odd permutation:

$$f = \alpha_1 \alpha_2 \dots \alpha_m$$
$$f = \beta_1 \beta_2 \dots \beta_n$$

but then

$$I = \alpha_1 \alpha_2 \dots \alpha_m \alpha_m \dots \alpha_2 \alpha_1 = \beta_1 \beta_2 \dots \beta_n \alpha_m \alpha_{m-1} \dots \alpha_1$$

so *I* is odd, a contradiction.

Def'n. 3.1.14 We define the **signature** sgn(f) to be 1 of f is even, and -1 if f is odd.

Prop. 3.1.15 1.
$$sgn(f^{-1}) = sgn(f)$$

2. $sgn(fg) = sgn(f) sgn(g)$

Proof Follows directly from the 2-cycle decomposition.

Def'n. 3.1.16 The alternating group of degree n is the group $A_n = \{f \in S_n : \operatorname{sgn}(f) = 1\} \leq S_n$.

Thm. 3.1.17 $|A_n| = \frac{n!}{2}$.

Proof We see two separate proofs.

- 1. Consider $\phi: A_n \to S_n \setminus A_n$ by $f \mapsto f(12)$. This is injective since if $\phi(f) = \phi(g)$, then f(12) = g(12) and f = g. It is surjective: if g is odd, then g(12) is even that $\phi(g(12)) = g$. Thus ϕ is bijective and $|A_n| = |S \setminus A_n| = |A| |A_n|$ so $|A_n| = |S_n|/2 = n!/2$.
- 2. We claim that $|S_n:A_n|=2$. For $f\in S_n$ even, $f\in A_n$ so $A_nf=A_n$. For $f\in S_n$ odd, f^{-1} is odd and $(12)f^{-1}$ is even and $(12)f^{-1}\in A_n$. Thus $A_n(12)=A_nf$, so there are only two cosets of A_n : A_n and $A_n(12)$, and the result follows by Lagrange's Theorem.

As well, we also have $A_n \triangleleft S_n$, and $S_n/A_n \cong C_2$.

Centralizers of Permutation Groups

Ex. 3.1.18 Consider $g = (12)(34) \in S_4$. Then

$$C_{S_4}(g) = \{x \in S_4 \mid gx = xg\} = \{I, (12)(34), (12), (34), (14)(23), (1324), (1423)\}$$

The key idea is to observe that $x^{-1}gx = g$, which is called the conjugate of g by x.

Ex. 3.1.19 Consider f = (34)(1572)(86)(9), g = (194)(368)(257).

$$g^{-1}fg = (752)(863)(491)(34)(1572)(86)(194)(368)(257)$$

$$= (16)(2597)(38)(4)$$

$$= (3g)(4g)(1g5g7g2g)(8g6g)(9g)$$

In general, if $f, g \in S_n$ and $(a_1 a_2, ..., a_k)$ is a cycle in the cycle form of f, then $(a_1 z a_2 z ... a_k z)$ is a cycle in the cycle form of $z^{-1} f z$. To see this, $a_1 z (z^{-1} f z) = a_1 f z = a_2 z$, so $a_1 z$ maps to $a_2 z$, and similarly for all the pairs of elements in the cycle.

If we now return to (12)(34)x = x(12)(34), we have $x^{-1}(12)(34)x = (12)(34)$ so

$$(1x 2x)(3x 4x) = (12)(34)$$

Since the cycle form is unique up to rearranging within cycles, we have

LHS	1x	2x	3x	4x	x
(12)(34)	1	2	3	4	I
(21)(34)	2	1	3	4	(12)
(12)(43)	1	2	4	3	(34)
(21)(43)	2	1	4	3	(12)(34)
(34)(12)	3	4	1	2	(13)(24)
(34)(21)	3	4	2	1	(1324)
(43)(12)	4	3	1	2	(1423)
(43)(21)	4	3	2	1	(14)(23)

Let's now compute the conjugacy classes of S_n . Let's do S_3 first: The conjugacy classes are given by

$$\{1\}, \{(12), (13), (23)\}, \{(123)\}$$

In general, the conjugacy classes in S_n correspond to the possible cycle structures in S_n . None

3.1.3 Dihedral Groups

Fix a regular polygon with n vertices. Let D_n be the collection of rigid motions with map the regular n-polygon to itself. Since $r^n = 1$ and $s^2 = 1$, we have

$$D_n = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$$

Thus $|D_n| = 2n$. We can compute the oprations on D_n :

$$r^{a} \cdot r^{b} = r^{a+b}$$

$$sr^{a} \cdot r^{b} = sr^{a+b}$$

$$r^{a} \cdot sr^{b} = sr^{b-a}$$

$$sr^{a} \cdot sr^{b} = r^{b-a}$$

Thus $o(sr^a) = 2$ and $o(r^a)$ is given by the usual formula.