МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский государственный национальный исследовательский университет»

Механико-математический факультет Кафедра фундаментальной математики

Курсовая работа на тему:

Алгебраические кривые

по дисциплине "Обыкновенные дифференциальные уравнения"

Направление 01.03.01 Математика

Выполнил студент группы MM/O MMT-2021 НБ Ляховой Д.С. Научный руководитель кандидат Волочков А.А. физико-математических наук, доцент кафедры фундаментальной математики

Содержание

1	ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ	
	1.1 АЛГЕБРА	
	1.2 ИДЕАЛЫ	
	1.3 ЛОКАЛИЗАЦИЯ КОЛЕЦ	
	1.4 МОДУЛИ	. 7
	1.5 ЛОКАЛИЗАЦИЯ МОДУЛЕЙ	. 10
	1.6 КАТЕГОРИИ И ФУНКТОРЫ	. 10
	1.7 СИСТЕМЫ УРАВНЕНИЙ И ФУНКТОРЫ	. 12
2	СХЕМЫ ГРАССМАНА	. 13
	2.1 ФУНКТОРЫ ГРАССМАНА	. 13
Л	Гитература	14

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

В этой главе введем необходимые для дальнейшей работы определения, леммы и теоремы. Также в данной работе будем полагать, что «кольцо» означает «коммутативное кольцо», если явным образом не оговаривается иное.

1.1. АЛГЕБРА

Определение 1.1.1. Пусть X – множество, \sim – отношение эквиваленции на X. *Классом* эквивалентности по отношению \sim элемента $x \in X$ назовем множество

$$X_x = \{x' \in X | x \sim x'\}$$

Определение 1.1.2. Множество, элементами которого являются классы эквивалентности (из 1.1.1) обозначим X/\sim и назовем фактормножеством.

Определение 1.1.3. Отображение $f: X \longrightarrow X/\sim$ называется естественным.

Определение 1.1.4. Множество всех отображений Y в X называется X^Y

Определение 1.1.5. Пусть L – кольцо. Множество L^* называется множеством обратимых элементов кольца L и определяется следующим образом

$$L^* = \{ l \in L | \exists l' \in L : ll' = l'l = 1_L \}$$

Определение 1.1.6. Пусть A, B – кольца. Отображение $f: A \longrightarrow B$ называется морфизмом колец, если:

- 1. f(1) = 1;
- 2. f(x+y) = f(x) + f(y);
- 3. f(xy) = f(x)f(y).

Определение 1.1.7. Инъективный морфизм $f: X \longrightarrow Y$ называется мономорфизмом. Обозначается $f: X \rightarrow Y$.

Определение 1.1.8. Сюръективный морфизм $f: X \longrightarrow Y$ называется *эпиморфизмом*. Обозначается $f: X \twoheadrightarrow Y$.

1.2. ИДЕАЛЫ

Определение 1.2.1. Идеалом кольца R называется произвольное подмножество $I\subseteq R$ такое, что

- 1. $I \neq \emptyset$;
- 2. Если $a, b \in I$, то $a + b \in I$ (замкнутость по сложению);
- 3. Если $a \in I, b \in R$, то $ab \in I$ (замкнутость по умножению на элементы кольца R).

Пример. Пусть R – кольцо. Подмножества $R, \{0\}$ – идеалы кольца R. Такие идеалы называются тривиальными.

Определение 1.2.2. Если $a \in R$, то множество

$$\langle a \rangle \coloneqq \{ab \mid b \in R\} =: aR = Ra$$

— главный идеал R, порожденный элементом a.

Пример. Пусть $R = \mathbb{Z}, m \in \mathbb{Z}$.

$$\langle m \rangle = m\mathbb{Z} = \{ mt \mid t \in \mathbb{Z} \}$$

Определение 1.2.3. Подмножество S кольца R называется *мультипликативным*, если

- 1. $1 \in S$ (где 1 нейтральный по умножению элемент кольца R);
- 2. Для любых $a, b \in S$: $ab \in S$.

Определение 1.2.4. Кольцо R называется *целостным*, если оно ненулевое и для любых ненулевых $a, b \in R : ab \neq 0$.

Определение 1.2.5. *Полем* называется кольцо, все ненулевые элементы которого обратимы.

Определение 1.2.6. [2, стр. 92] Идеал I кольца R — npocmoй, если $I \neq R$ и всякий раз, когда $a, b \in R$ и $ab \in I$, тогда $a \in I$ или $b \in I$.

Определение 1.2.7. [2, стр. 92] Идеал I кольца R— максимальный, если $I \neq R$ и нет такого идеала I' отличного от I и содержащего его.

 $\mathit{\Pi}\mathit{pumep}.$ Пусть I – простой идеал кольца R, тогда $R \smallsetminus I$ — мультипликативное подмножество.

 Π ример. Пусть $f \in R$, $S = \{f^n | n \in \mathbb{Z}_{\geqslant 0}\}$, тогда S — мультипликативное подмножество R.

Теорема 1.2.8. [1, стр. 92] Идеал I кольца R — максимальный тогда и только тогда, когда R/I — поле.

Теорема 1.2.9. [2, стр. 92] Любой максимальный идеал — простой.

Определение 1.2.10. Кольцо называется *покальным*, если оно имеет ровно один максимальный идеал.

Теорема 1.2.11. [1, стр. 91] Если I – идеал кольца R, то равносильны следующие утверждения:

- 1. $R \setminus I$ мультипликативное подмножество;
- 2. R/I целостное кольцо.

Определение 1.2.12. Идеал I кольца R-npocmoй, если выполняется хотя бы одно из утверждений теоремы 1.2.11.

1.3. ЛОКАЛИЗАЦИЯ КОЛЕЦ

Определение 1.3.1. Пусть S — мультипликативное подмножество кольца R. Морфизм колец $\lambda: R \longrightarrow L$ и кольцо L называются локализацией R по S, если $\lambda(S) \subseteq L^*$ и для любого морфизма $\lambda': R \longrightarrow L'$, такого что $\lambda'(S) \subseteq (L')^*$ существует единственный морфизм $\phi: L \longrightarrow L'$, для которого коммутативна диаграмма

Теорема 1.3.2. [1, стр. 94] Пусть S – мультипликативное подмножество кольца R. $\lambda: R \longrightarrow L$ и $\lambda': R \longrightarrow L'$ – локализации R по S. Тогда существует единственный изоморфизм $\phi: L \longrightarrow L'$, для которого коммутативна диаграмма

Теорема 1.3.3. [1, стр. 94] Пусть S – мультипликативное подмножество кольца R. Тогда существует локализация R по S.

Теорема 1.3.4. [5] Пусть R_S – локализация R по $S \subset R$. Тогда идеал \mathfrak{p} расширяется до соответствующего идеала $\mathfrak{p}R \subsetneq$ тогда, и только тогда, когда $S \cap \mathfrak{p} = \emptyset$.

Определение 1.3.5. Локализацией R по f назовем локализацию R по мультипликативному множеству $\{f^n|n\in\mathbb{Z}_{\geq 0}\}$

Определение 1.3.6. *Локализацией* R *по простому идеалу* \mathfrak{p} будем называть локализацию по множеству $R \setminus \mathfrak{p}$.

Определение 1.3.7. Пусть S – мультипликативное подмножество кольца R. Аннулятором S назовем следующее множество

$$\operatorname{Ann}(S) = \{a \in R | aS = \{0\}\}\$$

Теорема 1.3.8. [1, cmp. 96] Пусть S – мультипликативное подмножество кольца R, $\lambda: R \longrightarrow L$ – локализация R по S. Если $a \in R$, то $\lambda(a) = 0 \Leftrightarrow as = 0$ для некоторого $s \in S$.

Теорема 1.3.9. [1, стр. 97] Пусть S – мультипликативное подмножество кольца R, $\lambda: R \longrightarrow L$ – локализация R по S. Тогда равносильны следующие условия:

1.
$$L = \{0\};$$

 $2. \ 0 \in S.$

Определение 1.3.10. Paduкaлом / I идеала I кольца R назовем множество

$$\{a \in R | (\exists n \in \mathbb{N}) (a^n \in I) \}$$

Определение 1.3.11. Радикал нулевого идеала кольца R назовем *нильрадикалом* R и обозначим rad(R). Таким образом,

$$rad(R) = \{ a \in R | (\exists n \in \mathbb{N}) (a^n = 0) \}$$

Теорема 1.3.12. [1, стр. 97] Пусть I — идеал кольца R. Тогда \sqrt{I} совпадает c пересечением всех простых идеалов содержащих I.

Следствие 1.3.13. Пусть R – кольцо. Тогда rad(R) совпадает с пересечением всех простых идеалов кольцо R.

Теорема 1.3.14. [1, стр. 98] Пусть R – кольцо, $f \in R$, $\lambda : R \longrightarrow L$ – локализация R по f, $a \in R$. Тогда равносильны следующие условия:

- 1. $\lambda(a) = 0$;
- 2. $af^n = 0$, для некоторого $n \in \mathbb{Z}_{\geq 0}$;
- 3. $f \in \sqrt{\operatorname{Ann}(a)}$.

Теорема 1.3.15. [1, стр. 98] Пусть S – мультипликативное подмножество кольца R, $\lambda: R \longrightarrow L$ – морфизм колец. Тогда равносильны следующие условия:

- 1. λ локализация R по S;
- 2. (a) $\lambda(S) \subseteq L^*$
 - (b) $L = \{\lambda(a)/\lambda(s)|a \in R, s \in S\}$
 - $(c) \, \forall a \in R \, \lambda(a) = 0 \Leftrightarrow as = 0 \, \partial \Lambda s$ некоторого S.

Пример. Пусть B – кольцо, A – его подкольцо, S – мультипликативное подмножество кольца $A, S \subseteq B^*, L = \{a/s | a \in A, s \in S\}, \lambda : A \longrightarrow L, \lambda(a) = a$. Тогда λ – локализация A по S.

Теорема 1.3.16. [1, стр. 99] Пусть $f: A \longrightarrow B$ – гомоморфизм колец, S – мультипликативное подмножество A, T – мультипликативное подмножество $B, f(S) \subseteq T,$ $\alpha: A \longrightarrow A'$ – локализация A по $S, \beta: B \longrightarrow B'$ – локализация B по T. Тогда существует единственный такой гомоморфизм $f': A' \longrightarrow B'$, что коммутативна диаграмма

$$A' \xrightarrow{f'} B'$$

$$\alpha \uparrow \qquad \uparrow^{\beta}$$

$$A \xrightarrow{f} B$$

Теорема 1.3.17. [1, стр. 100] Пусть \mathfrak{p} – простой идеал кольца R и $\lambda: R \longrightarrow L$ – локализация R в \mathfrak{p} . Тогда L – локальное кольцо c максимальным идеалом

$$\mathfrak{m} = \{\lambda(a)/\lambda(b) | a \in R, b \in R \setminus \mathfrak{p}\}$$

1.4. МОДУЛИ

Определение 1.4.1. Пусть R – кольцо. R-модуль состоит из множества M вместе с законом сложения $M \times M \longrightarrow M$, $(a,b) \mapsto a+b$ и законом умножения на скаляр $\alpha \in R$ $R \times M \longrightarrow M$, $(\alpha,a) \mapsto \alpha \cdot a$ такими, что для любых $\alpha,\beta \in R$, $a,b \in M$:

- 1. M абелева группа по сложению;
- 2. $(\alpha + \beta) \cdot a = \alpha \cdot a + \beta \cdot a$ и $\alpha \cdot (a + b) = \alpha \cdot a + \alpha b$;
- 3. $(\alpha \cdot \beta) \cdot a = \alpha \cdot (\beta \cdot a)$
- 4. $1 \cdot a = a$ для единичного элемента $1 \in R$.

Определение 1.4.2. Пусть R – кольцо. Левый модуль M кольца R или левый R-модуль M, если для любых $a,b \in R$ и $x,y \in M$ выполняется следующее:

- 1. (a + b)x = ax + bx;
- $2. \ a(x+y) = ax + ay.$

Аналогичным образом определяется правый R-модуль. Если модуль M является одновременно левым и правым, то будем называть его просто R-модуль.

Определение 1.4.3. [2, стр. 119] Пусть M, M' – модули кольца R. Морфизмом модулей будем называть отображение такое $f: M \longrightarrow M'$, что для любых $a, b \in R$ и $x, y \in M$ выполняется:

$$f(ax + by) = af(x) + bf(y)$$

Определение 1.4.4. Модуль M является nрямой суммой своих подмодулей M_1 , M_2 , если для любого $m \in M$ найдутся единственный $m_1 \in M_1$ и единственный $m_2 \in M_2$, такие, что $m = m_1 + m_2$. Выражение «M является nрямой суммой M_1 и M_2 » будем записывать $M = M_1 \oplus M_2$.

Теорема 1.4.5. Пусть M модуль над кольцом R, тогда равносильны следующие условия:

- 1. $M = M_1 \oplus M_2$;
- 2. $M = M_1 + M_2 \ u \ M_1 \cap M_2 = \{0\}.$

Определение 1.4.6. Подмодуль S модуля M выделяется прямым слагаемым, если найдется такой подмодуль T модуля M, что $M = S \oplus T$.

Определение 1.4.7. [3, стр. 140] Пусть M-R-модуль кольца R. Некоторое семейство $x_1,...,x_n\in M$ линейно независимо, если для любых $a_i\in R, i\in I$ справедливо $\sum\limits_{i\in I}a_ix_i=0$ только тогда, когда $a_1=...=a_n=0$.

Определение 1.4.8. Семейство $x_1, ..., x_n$ из определения 1.4.7 будем называть *базисом* R-модуля M.

Определение 1.4.9. Модуль свободный, если имеет базис.

Определение 1.4.10. Модуль P над кольцом R называется npoexmuehum, если для любого эпиморфизма $f: N \twoheadrightarrow M$ R-модулей и любого морфизма $g: P \longrightarrow M$ существует такой морфизм $h: P \longrightarrow N$, что коммутативна диаграмма

$$P \xrightarrow{q} M$$

Теорема 1.4.11. Модуль проективен тогда и только тогда, когда он является прямым слагаемым некоторого свободного модуля.

Теорема 1.4.12. Проективный модуль над локальным кольцом свободен.

Теорема 1.4.13. Пусть R – коммутативное кольцо, \mathfrak{p} – простой идеал в R. Если M – проективный R-модуль, то $M_{\mathfrak{p}}$ – свободный $R_{\mathfrak{p}}$ -модуль.

Определение 1.4.14. Проективный модуль M над коммутативным кольцом R имеет ранг $r \in \mathbb{Z}_{\geq 0}$, если для любого простого идеала \mathfrak{p} кольца R свободный $R_{\mathfrak{p}}$ -модуль $M_{\mathfrak{p}}$ имеет (свободный) ранг r.

Определение 1.4.15. Пусть K – кольцо, U, V, W – R-модули, $f: U \times V \longrightarrow W$ – билинейное отображение. Составим R-модуль T и билинейное отображение $g: U \times V \longrightarrow T$ такие, что для любого f существует отображение $h: T \longrightarrow W$, что коммутативна диаграмма

Модуль T с соответствующими свойствами назовем mензорным nроизведением U на V над кольцом R и обозначим $U \otimes_R V$.

Определение 1.4.16. R-модуль N называют плоским, если для любого мономорфизма R-модулей $M' \longrightarrow M$ отображение $M' \otimes_R N \longrightarrow M \otimes_R N$ полученое с помощью тензорного произведения с N над R инъективно. Гомоморфизм колец $\phi: R \longrightarrow R'$ называют плоским, если рассматриваемый как R-модуль модуль R' по средством ϕ – плоский.

Определение 1.4.17. R-модуль N называют вполне плоским, если выполняются следующие условия:

- 1. N плоский;
- 2. Если M R-модуль такой, что $M ⊗_R N = 0$, то M = 0;

Гомоморфизм колец $\phi: R \longrightarrow R'$ называют вполне плоским, если рассматриваемый как R-модуль модуль R' по средством ϕ – вполне плоский.

Теорема 1.4.18. [5] Пусть $(N_i)_{i \in I}$ семейство R-модулей. Прямая сумма $\bigoplus_{i \in I} N_i$ плоская тогда и только тогда, когда модуль N_i плоский для всех $i \in I$.

Теорема 1.4.19. [5] Для любого R-модуля N равносильны следующие условия:

- 1. N достаточно плоский;
- 2. N плоский и для любого максимального идеала $\mathfrak{m} \subset R$ справедливо $\mathfrak{m} N = N$.

Определение 1.4.20. $\phi: A \longrightarrow B$ — морфизм k-алгебр, $n \in \mathbb{Z}_{\geqslant 0}$, S — подмодуль A-модуля A^n . Обозначим $S^B := \langle \phi(S) \rangle_B$ B-линейную оболочку подмножества $\phi(S) \subseteq B^n$.

Лемма 1.4.21. Пусть $\phi: A \longrightarrow B$ – морфизм k-алгебр, $n \in \mathbb{Z}_{\geq 0}$, S, T – подмодули A-модуля A^n , $A^n = S \oplus T$. Тогда выполняются следующие утверждения:

1. Существует такой изоморфизм В-модулей

$$\psi: (B \otimes_A S) \oplus (B \otimes_A T) \longrightarrow B^n$$

что для всех $b \in B$, $s \in S$, $t \in T$

$$(b \otimes_A s, b \otimes_A t) \stackrel{\psi}{\mapsto} b(s+t);$$

2.

$$\psi((B \otimes_A S) \times \{0\}) = S^B,$$

$$\psi(\{0\} \times (B \otimes_A B)) = T^B,$$

$$B^n = (A^n)^B = S^B \oplus T^B;$$

3. Ранг проективного B-модуля S^B равен рангу проективного A-модуля S. (1.4.14)

Определение 1.4.22. Пусть M-R-модуль кольца R. Множество всех $\operatorname{End}_R(M)$ будем называть главной линейной группой. Обозначается главная линейная группа $\operatorname{GL}_R(M)$.

Определение 1.4.23. Любой морфизм колец $\phi: k \longrightarrow A$ будем называть k-алгеброй.

A автоматически является k-модулем по операции умножения

$$c \cdot a = \phi(c)a, c \in k$$

1.5. ЛОКАЛИЗАЦИЯ МОДУЛЕЙ

Определение 1.5.1. Пусть S — мультипликативное подмножество кольца R, M — R-модуль. Морфизм R-модулей $\lambda: M \longrightarrow L$ и R-модуль L называются локализацией M по S, если выполняются следующие условия:

- 1. $S_L \subseteq GL_R(L)$;
- 2. для любого морфизма R-модулей $\lambda': M \longrightarrow L'$, для которого $S'_L \subseteq GL_R(L')$, существует и единственен такой морфизм $\phi: L \longrightarrow L'$, что коммутативна диаграмма

1.6. КАТЕГОРИИ И ФУНКТОРЫ

Определение 1.6.1. Граф G – это любая упорядоченная четверка (V, A, dom, cod), где V, A – любые множества, dom, $\text{cod}: A \longrightarrow V$ – произвольные отображения. Элементы V – вершины графа G, элементы A – стрелки, или ребра графа G. Если $a \in A$, то $\text{dom}(a) \in V$ называется началом, или областью определения a, $\text{cod}(a) \in V$ – концом, или областью значений a, или кообластью a.

Пример 1.6.1. Граф G состоит из множества вершин $V = \{A, B, C, D\}$, множества стрелок $A = \{e, f, g, h\}$, отображений dom, cod : $A \longrightarrow V$, cod(e) = cod(e) = A, dom(f) = A, cod(f) = B, dom(g) = A, cod(d) = B, dom(h) = B, cod(h) = C.

$$e \xrightarrow{f} A \xrightarrow{f} B \xrightarrow{h} C \qquad D$$

Определение 1.6.2. Если a, b – вершины графа G, то множество стрелок графа G из a в b обозначим G(a, b), или $\mathrm{Mor}_G(a, b)$, или $\mathrm{Mor}_G(a, b)$, если ясно, о каком графе идет речь.

Пример. В графе G из 1.6.1 $G(A,A) = \{e\}, G(A,B) = \{f,g\}, G(A,C) = \emptyset, G(C,D) = \emptyset$ и так далее.

Если стрелка f имеет начало a и конец b, то мы пишем $f:a\longrightarrow b$, или $a\stackrel{f}{\longrightarrow} b$. Если мы желаем подчеркнуть, что стрелка $f:a\longrightarrow b$ относится к графу G, то пишем $a\stackrel{f}{\longrightarrow} b$ Это бывает нужным, если на одном и том же множестве V определено более одного графа с множеством вершин V.

Определение 1.6.3. Множество вершин графа G обозначим Ob(G).

Определение 1.6.4. Пусть G, H – графы. Морфизмом $G \longrightarrow H$ назовем любое отображение $\phi: V(G) \cup A(G) \longrightarrow V(H) \cup A(H)$ такое, что $\phi(V(G)) \subseteq V(H)$ (т. е. вершины G переходят в вершины H), $\phi(A(G)) \subseteq A(H)$ (т. е. ребра G переходят в ребра H), и если $a,b \in V(G), f \in \mathrm{Mor}_G(a,b),$ то $\phi(f) \in \mathrm{Mor}_H(\phi(a),\phi(b))$ (т. е. из $f: a \longrightarrow b$ следует $\phi(f): \phi(a) \longrightarrow \phi(b)$).

Определение 1.6.5. *Категория* C – это граф G, в котором для произвольных $A, B, C \in Ob(C)$ задано произведение $Mor(B, C) \times Mor(A, B) \longrightarrow Mor(A, C)$, причем выполняются следующие условия.

- 1. Для $A, B, C, D \in Ob((C))$ и $f \in Mor(A, B)$, $g \in Mor(B, C)$, $h \in Mor(C, D)$ выполняется закон ассоциативности (hg)f = h(gf);
- 2. Для каждого $A \in \mathrm{Ob}(\mathcal{C})$ найдется $e \in \mathrm{Mor}(A,A)$ такой, что для любого $B \in \mathrm{Ob}(\mathcal{C})$ и $f \in \mathrm{Mor}(A,B), g \in \mathrm{Mor}(B,A)$ выполняются равенства fe = f и eg = g.

Определение 1.6.6. Элементы Ob(C) называются объектами категории C.

Определение 1.6.7. Элементы Mor(X,Y) называются *морфизмами* $X \in Y$, или морфизмами $X \longrightarrow Y$.

Если $\alpha \in \text{Mor}(X,Y)$ и ясно, о какой категории идет речь, то мы пишем $\alpha: X \longrightarrow Y$, или $X \stackrel{\alpha}{\longrightarrow} Y$. Морфизм $e: A \longrightarrow A$ из аксиомы 2 определения 1.6.5 называется тождественным, или единичным морфизмом объекта A.

Определение 1.6.8. Множество всех морфизмов категории \mathcal{C} обозначим $Mor(\mathcal{C})$.

Определение 1.6.9. Пусть \mathcal{A}, \mathcal{B} – категории. Говорят, что F – функтор $\mathcal{A} \longrightarrow \mathcal{B}$, если каждому $X \in \mathrm{Ob}(\mathcal{A})$ сопоставлен некоторый объект $F(X) \in \mathrm{Ob}(\mathcal{B})$ и для каждого морфизма $\phi: X \longrightarrow Y$ в \mathcal{A} определен морфизм $F(\phi): F(X) \longrightarrow F(Y)$ в \mathcal{B} таким образом, что выполняются следующие свойства

- 1. Если $A \in \mathrm{Ob}(\mathcal{A})$, то $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$;
- 2. Если $\alpha: A \longrightarrow B$, $\beta: B \longrightarrow C$ морфизмы в \mathcal{A} , то $F(\beta\alpha) = F(\beta)F(\alpha)$.

Условие $F(\beta\alpha)$ = $F(\beta)F(\alpha)$ означает, что функтор переводит любой коммутативный треугольник в категории $\mathcal A$ в коммутативный треугольник в категории $\mathcal B$

Вообще, очевидно, функтор переводит любую коммутативную диаграмму в коммутативную диаграмму. Интуитивно, функтор — это морфизм категорий.

Теорема 1.6.10. [1, стр. 49] Пусть I – множество, $(F_i)_{i\in I}$ – семейство функторов из категории C в категорию U-множеств S. Существует и единственен такой функтор $F: C \longrightarrow S$, что

- 1. для каждого $X \in Ob(\mathcal{C})$ $F(X) = \prod_{i \in I} F_i(X)$;
- 2. для любого морфизма $\phi: X \longrightarrow Y$ в \mathcal{C} $F(\phi) = \prod_{i \in I} F_i(\phi)$.

1.7. СИСТЕМЫ УРАВНЕНИЙ И ФУНКТОРЫ

Определение 1.7.1. Любой функтор $\mathbf{Alg_k} \longrightarrow \mathbf{Set}$ – k-функтор.

Определение 1.7.2. Пусть $F: \mathbf{Alg_k} \longrightarrow \mathbf{Set}$ – функтор забвения, Γ – множество. Аффинным пространством A_k^{Γ} над k размерности $|\Gamma|$ назовем k-функтор F^{Γ} (1.6.10).

Очевидно, $A_k^\Gamma-k$ -функтор, любой k-алгебре A сопоставляющий A^Γ , и произвольному морфизму k-алгебр $\phi:A\longrightarrow B$ соотносящий отображение $\phi^\Gamma:A^\Gamma\longrightarrow B^\Gamma.$

Если $n \in \mathbb{N}$ и $\Gamma = \{1,...,n\}$ ($\Gamma = \emptyset$ при n = 0), то для любых $a_1,...,a_n$ мы считаем, что $(\alpha_\gamma)_\gamma \in \Gamma = (a_1,...,a_n)$. Таким образом, для произвольного множества S мы очевидным образом отождествляем S^Γ и S^n . Для краткости мы пишем $A_k^n \coloneqq A_k^\Gamma$, и называем k-функтор A_k^n аффинным k-пространством над k. Если ясно, о каком k идет речь, можно писать A^n .

Определение 1.7.3. Системой уравнений над k называется тройка

$$S = (P, (T_{\gamma})_{\gamma \in \Gamma}, (f_{\delta})_{\delta \in \Delta})$$
(1.7.1)

где P-k-алгебра многочленов, $(T_{\gamma})_{\gamma\in\Gamma}=:T$ – ее базис, и $(f_{\delta})_{\delta\in\Delta})$ – любое семейство многочленов из P.

Определение 1.7.4. Решением системы уравнений 1.7.1 в k-алгебре A называется произвольное семейство $a \in A^{\Gamma}$ такое, что $f_{\delta}(a) = 0$ для всех $\delta \in \Delta$.

2. СХЕМЫ ГРАССМАНА

2.1. ФУНКТОРЫ ГРАССМАНА

Определение 2.1.1. Пусть $r, n \in \mathbb{N}$. Для любой k-алгебры A определим $\mathcal{G}_{n,r}(A)$ как множество таких подмодулей S A-модуля A^{r+n} , что

- 1. S выделяется прямым слагаемым в A^{r+n} (в частности, в силу 1.4.11, S проективный A-модуль);
- 2. A-модуль S имеет ранг r.

Для любого морфизма $\phi: A \longrightarrow B$ пусть $S \in \mathcal{G}_{n,r}(A)$ и $S^B \in \mathcal{G}_{n,r}(B)$ (в силу 1.4.21). Тогда построим естественное отображение $\mathcal{G}_{n,r}(\phi): \mathcal{G}_{n,r}(A) \longrightarrow \mathcal{G}_{n,r}(B)$, определим как $S \mapsto S^B$.

Докажем, что $\mathcal{G}_{n,r}-k$ -функтор.

 \mathcal{A} оказательство. Пусть $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ – морфизмы k-алгебр. Покажем, что $\mathcal{G}_{n,r}(\beta\alpha) = \mathcal{G}_{n,r}(\beta)\mathcal{G}_{n,r}(\alpha)$. Пусть $S \in \mathcal{G}_{n,r}(A)$.

$$(\mathcal{G}_{n,r}(\beta)\mathcal{G}_{n,r}(\alpha))(S) = \mathcal{G}_{n,r}(\beta)(\mathcal{G}_{n,r}(\alpha)(S)) =$$

$$\mathcal{G}_{n,r}(\beta)(\langle \alpha(S) \rangle_B) = \langle \beta(\langle \alpha(S) \rangle_B) \rangle_C = \langle \langle (\beta\alpha)(S) \rangle_B \rangle_C =$$

$$\langle (\beta\alpha)(S) \rangle_C = \mathcal{G}_{n,r}(\beta\alpha)(S).$$

Мы доказали, что $\mathcal{G}_{n,r}-k$ -функтор.

Литература

- 1. Волочков, А.А. Схемы. / А.А.Волочков Пермь: [б./и.], 2023. 233.
- 2. Lang, S. Algebra / S.Lang New York: Sprinter, 2002 918.
- 3. Cohn, P.M. Algebra Volume 2 / P.M. Cohn 2nd ed. Avon: John Willey & Sons Ltd., 1989-428.
- 4. Atiyah, M. F., MACDONALD I. G. Introduction to Commutative Algebra / M. F. Atiyah, I. G. Macdonald London: Addison-Wesley, 1969-128.
- 5. Siegfried, B. Algebraic Geometry and Commutative Algebra / S. Bosch London: Springer-Verlag, 2013-504.