ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

В.П. Обрусник

МАГНИТНЫЕ ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ

Руководство к организации самостоятельной работы для студентов специальности 210106 «Промышленная электроника»

Федеральное агентство по образованию

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра промышленной электроники

В.П. Обрусник

МАГНИТНЫЕ ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ

Руководство к организации самостоятельной работы для студентов специальности 210106 «Промышленная электроника»

Рекомендовано Сибирским региональным учебно-методическим центром высшего профессионального образования для межвузовского использования в качестве учебного пособия

Рецензент: доцент кафедры промышленной электроники ТУСУР, канд. техн. наук Семенов В.Д.

Обрусник В.П.

Магнитные элементы электронных устройств: Руководство к организации самостоятельной работы для студентов специальности 210106 «Промышленная электроника». — Томск: Томский государственный университет систем управления и радиоэлектроники, 2006. — 61 с.

Изложены вопросы выполнения практических занятий в аудитории по учебному плану и самостоятельной работы студентов по рабочей программе дисциплины. Приведены примеры выполнения контрольных работ в аудитории, индивидуальных заданий для самостоятельного выполнения, контрольные вопросы для усвоения знаний по дисциплине и др.

Учебное пособие предназначено для студентов, обучаемых на специальности 210106 — промышленная электроника.

СОДЕРЖАНИЕ

Рабочая программа	4
2 Объемы выполнения практических занятий и самостоятельно работы студентов	
4 Индивидуальное задание № 1 (ИЗ1)	10
4.1 Содержание ИЗ1 и как оно формируется	
4.2 Варианты номинальных данных	
4.3 Пример техзадания на ИЗ1 при шифре САЕ18КГ	
4.4 Рейтинг ИЗ1	
4.5 Требования к оформлению отчета	
4.6 Пример выполнения ИЗ1 с шифром СМЕ12КГ	
4.7 Пример выполнения и оформления ИЗ1 с шифром ЧАЕ9МВ	
5 Индивидуальное задание № 2 (ИЗ2)	39
5.1 Содержание	
5.2 Рейтинг ИЗ2	
5.3 Пример выполнения ИЗ2	
6 Таблица 5 — Шифры для определения исходных данных	
ИЗ1, КР1, КР2	45
7 Контрольная работа № 1 (КР1)	46
7.1 Как формируется содержание и выполняется работа	
7.2 Таблица 2 — Параметры магнитных материалов для	
контрольной работы № 1 (КР1)	47
7.3 Таблица 3 — Исполнение и размеры сердечников для КР1	
7.4 Рейтинг КР1	48
7.5 Пример выполнения КР1 по варианту БМЕ11.3	48
8 Контрольная работа № 2 (КР2)	54
8.1 Как формируется содержание	
8.2 Рейтинг КР2	
8.3 Таблица 4 — Параметры для вариантов КР2	54
8.4 Пример выполнения КР2 по варианту 3	
9 Вопросы для проверки знаний, полученных при изучении	
дисциплины МЭ ЭУ	60
Литература	
VIII V W W I T D W	∪∠

Федеральное агентство по образованию

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

РАБОЧАЯ ПРОГРАММА

По дисциплине Магнитные элементы электронных устройств

Для направления 210100 «Электроника и микроэлектроника» Специальность 210106 «Промышленная электроника»

Факультет электронной техники

Профилирующая кафедра Промышленной электроники

Курс третий

Семестр пятый

Учебный план набора 2003 года и последующих лет

Распределение учебного времени

Лекции28 час.Практических занятий18 час.Всего ауд. занятий46 час.Самостоятельная работа54 час.Общая трудоемкость100 час.

Зачет 5 семестр

2006

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

- 1.1 Цель преподавания дисциплины изучить устройство, принцип действия, основные характеристики в статике и динамике типовых магнитных элементов (трансформаторов и дросселей), являющихся неотъемлемой частью электронных устройств.
- 1.2 Задачи изучения дисциплины научить студентов проектировать, рассчитывать параметры и характеристики трансформаторов и дросселей (индуктивностей) типовых конструктивных исполнений броневых, стержневых, тороидальных и чашечных.
- 1.3 Перечень дисциплин, необходимых студентам для изучения дисциплины «Магнитные элементы электронных устройств»: теоретические основы электротехники (ТОЭ) по разделу нелинейные цепи с ферромагнетиками; математика по разделам: линейная алгебра, аппроксимация нелинейных функций; физика по разделу электрические цепи с ферромагнитными устройствами.

2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Наименование тем лекционных занятий, их содержание, объем в часах (28 часов)

- 2.1.1 Основные электротехнические законы для магнитных элементов (МЭ): электромагнитной индукции, полного тока, намагничивания, электромагнетизма. Динамические процессы перемагничивания. Отличительные особенности МЭ электронных устройств, что о них должен знать инженер со специализацией «Электроника и микроэлектроника» (4 часа).
- 2.1.2 Типовые конструкции МЭ (броневые, стержневые, тороидальные, чашечные), их сравнительная оценка (4 часа).
- 2.1.3 Геометрические параметры МЭ, их влияние на оптимальное проектирование ферромагнитных устройств (4 часа).

- 2.1.4 Физические величины МЭ, их расчет: габаритная мощность, потери мощности, плотность тока обмоток, индукция магнитопровода, индуктивности и др. (4 часа).
- 2.1.5 Классификация МЭ по выполняемым функциям (дроссели электромагнитные, дроссели насыщения, магнитные усилители, умножители и делители частоты, трансформаторы). Принципиальные схемы, принцип работы, схемы замещения, основные характеристики в статике и динамике (6 часов).
- 2.1.6 Инженерные расчеты магнитных элементов на примерах для трансформаторов и дросселей (6 часов).

2.2 Практические и семинарские занятия, их содержание и объем в часах (18 часов)

- 2.2.1 Знакомство с разновидностями конструктивных исполнений МЭ. Измерение их параметров с выявлением по справочной литературе недостающих данных. Выдача индивидуальных заданий на дом 4 часа.
- 2.2.2 Расчет показателей МЭ по заданным параметрам магнитопровода и катушек (контрольная работа) 2 часа.
- 2.2.3 Расчет электрических величин трансформатора (контрольная работа) 2 часа.
- 2.2.4 Исследование параметров и характеристик однофазного трансформатора на лабораторном стенде 4 часа.
- 2.2.5 Инженерный расчет параметров и электромагнитных показателей однофазного трансформатора, оптимального для заданного тех. задания (защита домашних заданий) 4 часа.
- 2.2.6 Контрольная проверка полученных знаний по МЭ электронных устройств (с использованием ЭВМ) 2 часа.

2.3 Самостоятельная работа (54 часов)

No	Наименование работы	Кол-во часов	Форма контроля		
1	Расчет индивидуальных заданий	26	Защита отчета		
	с оформлением отчета				
2	Повторить разделы дисциплины	4	Опрос с оценкой на		

No	Наименование работы	Кол-во часов	Форма контроля
	«Преобразовательная техника»:		практических занятиях
	трансформаторы в ключевых		
	схемах, управляемые магнитные		
	ключи		
3	Подготовка к контрольным рабо-	2	Выполнение кон-
	там		трольной работы
4	Изучение содержания учебного	16	Получение рейтинго-
	пособия, работа с дополнитель-		вого балла за ответы
	ной литературой		на контрольные во-
			просы
4	Тренировочный контроль своих	6	Получение рейтинго-
	знаний на ЭВМ		вого балла за ответы
			на контрольные во-
			просы

Всего часов самостоятельной работы по дисциплине: 54

2.4 Методика формирования текущего рейтинга

Максимальный рейтинг по дисциплине составляет 120 баллов и определяется по таблице 1.

Таблица 1 — Распределение максимального рейтинга по элементам контроля

$N_{\overline{0}}$	Виды контроля	Максим.
Π/Π		балл.
1	Выполнение индивидуального задания № 1 (ИЗ1)	45
2	Выполнение индивидуального задания № 2 (ИЗ2)	20
3	Контрольная работа № 1	20
4	Контрольная работа № 2	10
5	Лабораторная работа	15

Всего: 110

Улучшение рейтинга — 10 баллов.

Итого: 120 бал-

ЛОВ

Для получения зачета по дисциплине МЭ ЭУ (экзамена нет) нужно получить $110 \cdot 0.75 \, \sqcup \, 82$ балла, не меньше.

3 УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

3.1 Основная литература

3.1.1 Обрусник В.П. Магнитные элементы электронных устройств: Учебное методическое пособие. — Томск: ТМЦДО, 2006. — 154 с.

3.2 Дополнительная литература

- 3.2.1 Бальян Р.Х., Обрусник В.П. Оптимальное проектирование силовых высокочастотных ферромагнитных устройств. Томск: Изд-во Томский Госуниверситет. 1987. 168 с.
- 3.2.2 Горский А.Н. и др. Расчет электромагнитных элементов источников вторичного электропитания. М.: Радио и связь, 1988. 178 с.
- 3.2.3 Миловзоров В.П. Электромагнитные устройства автоматики. М.: Высшая школа. 408 с.
- 3.2.4 Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры: Справочник. М.: Радио и связь. 198 с.
- 3.2.5 Найвельт Г.С. Источники электропитания радиоэлектронной аппаратуры: Справочник. М.: Радио и связь, 1985. 575 с.
- 3.2.6 Сидоров И.Н. и др. Малогабаритные трансформаторы и дроссели: Справочник. М.: Радио и связь, 1985. 416 с.
- 3.2.7 Сидоров И.Н. и др. Малогабаритные магнитопроводы и сердечники: Справочник. М.: Радио и связь, 1985. 416 с.

2 ОБЪЕМЫ ВЫПОЛНЕНИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ И САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Согласно рабочей программе учебного плана дисциплине МЭ ЭУ отводится на аудиторные занятия:

лекции — 28 акад. час.;

практические занятия — 18 акад. час.;

самостоятельная работа (дома, в библиотеке, вычислительных классах и др.) — 54 час.

На практических занятиях предусматривается:

- 1. Ознакомление студентов с рабочей учебной программой, рейтингом дисциплины, получение содержаний индивидуальных заданий (ИЗ1, ИЗ2) 2 акад. часа.
- 2. Написание двух контрольных работ (КР1, КР2) 2·2 = 4 акад. часа. Выполнение лабораторной работы «Исследование 2-х обмоточного однофазного трансформатора» 4 акад. часа.
- 3. Консультации по выполнению индивидуальных заданий, их защита, получение зачета 8 акад. часа.

Всего — 18 акад. часов.

Самостоятельная работа студентов предусматривает:

- 1. Выполнение индивидуального задания № 1 (ИЗ1) оптимальное проектирование однофазного двухобмоточного трансформатора по варианту техзадания 18 часов.
- 2. Выполнение индивидуального задания № 2 (ИЗ2) определение индуктивности дросселя при параметрах магнитопровода и обмоток МЭ, полученных в ИЗ1 8 часов.
- 3. Повторение (вспоминание) законов электромагнитной индукции из курса ТОЭ 4 часа.
- 4. Изучение содержания учебного пособия по МЭ ЭУ 12 часов.

- 5. Работа с дополнительной литературой для дисциплины MЭ ЭУ 4 часа.
- 6. Подготовка к выполнению на аудиторных занятиях контрольных работ (KP1, Kp2) 2 часа.
- 7. Подготовка к ответам на вопросы при защите индивидуальных заданий и на зачете (экзамене) 6 часов.

Всего — 54 часа.

4 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ № 1 (ИЗ1)

4.1 Содержание ИЗ1 и как оно формируется

Задание студентам для ИЗ1 выдается с подшифром, содержащим 5 составляющих, например — САЕ18КГ, что означает:

- С конструкция исполнения МЭ, стержневая;
- А материал обмоток, алюминий;
- Е охлаждение, естественное;
- 18 цифра шифра указывает номер варианта исходных данных для расчетов из табл. 1.

В целом, буквами в шифре обозначаются:

- Б, С, Т, Ч конструкции магнитопровода: броневая (Б), стержневая (С), тороидальная (Т), чашечная (Ч);
 - М, А медь и алюминий для проводников обмоток;
- E, Π вид охлаждения MЭ: естественное (E), принудительное (Π).

Параметры геометрии МЭ для условий оптимального проектирования по виду технико-экономического показателя:

- МВ минимум веса;
- МО минимум объема;
- МС минимум стоимости;
- КГ компромиссная геометрия.

Данные для параметров оптимальной геометрии приведены в табл. П.7, а, б, в, г.

Все необходимые исходные данные для расчетов в ИЗ1 студент выбирает самостоятельно, пользуясь таблицами Приложения к учебному пособию (см. табл. $\Pi.1 \div \Pi.16$). Можно также использовать табл. 3 для КР1.

При этом следует учитывать следующее:

- при **естественном** охлаждении катушки МЭ всегда выполняются с **полным** заполнением окна магнитопровода (ПЗ) и среднерасчетное значение коэффициента теплопередачи σ принимается равным 10 Вт/ м²-град.;
- для **принудительного** воздушного охлаждения катушки МЭ конструкций Б и С выполняются с **неполным** заполнением (НЗ) окна (нужны каналы охлаждения), величину σ принимают равной 30 Вт/ м²-град.;
- если не задана температура перегрева элементов трансформатора над окружающей средой, то берется $\tau = 50$ °C;
- рисунки конструкций трансформатора выполнять с обозначениями на рис. 1.1 с **обязательным** обеспечением соотношений линейных размеров x = c/a, y = b/a, z = h/a.

Шифры для ИЗ1 выдаются преподавателем, ведущим практические занятия.

4.2 Варианты номинальных данных

Таблица 14.1 — Варианты номинальных данных для ИЗ1

No	U_2	I_2	f_1	No	U_2	I_2	f_1
вар-та	В	A	кГц	вар-та	В	A	кГц
1	6	100	0,05	11	6	50	0,05
2	12	100	0,4	12	12	80	0,4
3	24	50	1	13	24	25	1
4	36	50	2	14	36	25	2
5	48	20	2,5	15	48	15	2,5
6	100	21	5	16	100	15	5
7	400	5	10	17	120	10	10
8	12	50	15	18	400	4	15
9	24	50	20	19	500	2,5	20
10	36	15	25	20	800	1,5	25

Для всех вариантов: $U_1 = 220$ В, $\eta = 0.95$, $\cos \varphi = 0.95$.

4.3 Пример техзадания на ИЗ1 при шифре САЕ18КГ

Расчитать:

- 1. Габаритную мощность.
- 2. Рабочую индукцию.
- 3. Сечение магнитопровода.
- 4. Плотность тока обмоток.
- 5. Линейные размеры магнитопровода.
- 6. Число витков обмоток.
- 7. Сечение проводников обмоток.
- 8. Конструктивные параметры катушки с раскладкой проводников обмоток в окне магнитопровода.
 - 9. Параметры схемы замещения:
 - активные сопротивления R_1 , R_2 ;
 - реактивные сопротивления X_{S1} , X'_{S2} , X_S ;
 - сопротивления контура намагничевания X_{μ} , R_{μ} .
 - 10. Технические показатели (по разделу 11.7).

4.4 Рейтинг ИЗ1

1. Выбор исходных данных с таблицами — 4 б.

- 2. Рисунок в масштабе 2 б.
- 3. Габаритная мощность и индукция 3 б.
- 4. Сечение магнитопровода 2 б.
- 5. Плотность тока 2 б.
- 6. Линейные размеры с округлением 2 б.
- 7. Число витков 1 б.
- 8. Сечения проводников, их выбор и раскладка в окне 10 б.
- 9. Весовые показатели 1 б.
- 10. Расчет технических показателей 4 б.
- 11. Оформление записки 4 б.
- 12. Защита 10 б.

Всего: 45 баллов.

Примечание: очень аккуратно нужно отнестись к расчетам индукции, плотности тока и сечения магнитопровода. Ошибки здесь приведут к неправильным результатам для других показателей.

4.5 Требования к оформлению отчета

Оформлять результаты выполнения индивидуальных заданий желательно на бумаге формата A4 (210×297 мм), можно на тетрадных листах. Изложение текста — рукописное или печатное. Основные требования: аккуратность, нумерация страниц, рисунков, таблиц и формул. Рисунки нужно выполнить в масштабах, учитывающих пропорции (соотношение размеров) рассчитываемых конструкций. После формулы в общем виде она быть записана cцифрами должна параметров $(S_c = a \cdot b = 20 \times 40 = 800 \text{ мм}^2)$. Нельзя писать формулу и сразу ответ, иначе трудно проверить правильность подстановки значений параметров, в том числе — их размерность. Обязательно нужно указывать размерности рассчитанных величин. Выполняемые действия должны кратко поясняться, в том числе — ссылками на литературу, и заканчиваться анализом полученного конечного результата. В конце отчета должен быть приведен список использованной литературы.

Форма обложки отчета

Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Кафедра промышленной электроники (ПрЭ)

Индивидуальное задание № 1 по дисциплине «Магнитные элементы электронных устройств»

Шифр ЧАЕ9МВ

ВЫПОЛНИЛ студент группы 364-5 Чатуров А.И. « 2 » ноября 2006

Γ.

(Подпись студента)

4.6 Пример выполнения ИЗ1 с шифром СМЕ12КГ

Рассчитать двухобмоточный трансформатор с медными (М) обмотками на стерневом (С) магнитопроводе, работающий в условии естественного (Е) воздушного охлаждения. Трансформатор должен удовлетворять критерию компромиссных удельно-экономических показателей (КГ) при номинальных данных:

Первичное напряжение $U_1 = 220 \text{ B}$; Вторичное напряжение $U_2 = 12 \text{ B}$; Вторичный ток $I_2 = 80 \text{ A}$; Частота сети питания $f_1 = 400 \text{ Гц}$.

Коэффициенты мощности соѕф и полезного действия η — не менее 0,95.

Рассчитать:

- 1. Габаритную мощность.
- 2. Рабочую индукцию.
- 3. Сечения магнитопровода.
- 4. Плотность тока обмоток.
- 5. Линейные размеры магнитопровода.
- 6. Число витков обмоток.
- 7. Сечение проводников обмоток.

- 8. Конструктивные параметры катушки.
- 9. Параметры схемы замещения.
- активные сопротивления R_1 и R_2 ;
- реактивные сопротивления X_{s1} , X_{s2} , X_s ;
- сопротивления контура намагничивания X_{μ} , R_{μ} .
- 10. Технические показатели.
- 11. Сделать раскладку проводников обмоток в катушке.

Решение.

Естественное охлаждение воздухом разрешает принять для расчетов значение коэффициента теплоотдачи $\sigma=10~\mathrm{Bt/m^2\cdot rpag}$. Температура перегрева элементов трансформатора над окружающей средой не задана, поэтому принимается среднерасчетное $\tau=50~\mathrm{^{\circ}C}$ и общая температура нагрева

$$t = t_0 + \tau = 20 + 50 = 70$$
 °C.

Низковольтность обмоток (до 1кВ) и невысокая температура их нагрева (до 105 °C) позволяет использовать простые обмоточные провода с изоляцией класса А и применять для межслойной и межобмоточной изоляции недорогую конденсаторную или кабельную бумагу с пропиткой. Ожидаются большие сечения обмоток. Например, при среднерасчитанной плотности тока $j = 2,5 \text{ A/мм}^2$ получается:

$$S_{n2} = I_{n2}/j = 80/2, 5 = 32 \text{ mm}^2;$$

 $S_{n1} = U_2 \cdot S_{n2}/U_1 = 12 \cdot 32/220 = 1,745 \text{ mm}^2.$

Наибольшее сечение проводников обмоток допускается не более

$$S_{nf} = 14/f_1 = 14/0, 4 = 35 \text{ mm}^2.$$

При заданной частоте $f_1 = 400$ Гц материалом для магнитопровода целесообразно выбрать нетекстурованную электротехническую сталь из листов горячей прокатки марки 3414(344) с толщиной листов 0,2 мм.

Пользуясь данными таблиц П1–П7, выбираем для расчёта трансформатора параметры материала магнитопровода, медных обмоток и показатели геометрии для минимальной стоимости. Выбранные параметры записаны в таблицах 1, 2, 3.

Таблица 1 — параметры материала магнитопровода

Пара-	Δ_c	K_{3C}	g_c	ρ_{co}	Кρ	f_{10}	B_0	f_1	γ	γ_1	B_s	μ_a
метр												
	MM	_	Γ/cm^3	Вт/кг	_	кГц	Тл	кГц	_	_	Тл	Гн/м
Марка												
3414(Э44	0,2	0,85	7,65	0,8	1,5	0,4	0,5	0,4	1,7	1,8	1,6	$0.5 \cdot 10^{-3}$

Таблица 2 — Параметры материала обмоток

Мате- риал	Форма се- чения	Класс	Вид	$\mathcal{K}_{3\mathcal{K}}$	g_{κ}	ρ_{κ}	τ	σ
		изоля- ции	охлаж- дения	_	Γ/cm^3	Ом·мм²/ м	0 C	Вт/м²-град
Медь	Круглый	A	естест-	0,35	8,8	0,021	50	10
	Прямо-		венное					
	угольный			0,45				

Таблица 3 — Геометрические параметры для компромиссно удельноэкономических показателей

Испол нение	3а- пол- не- ние окна	x	у	Z	K_s	N_c	N_{κ}	β	Б	l_c	l_{κ}
стерж- невой	пол-	1,4	2	2,8	2	4,3	4,8	1,3	2,5	8,1	5,5

Расчет электромагнитных показателей

1. Габаритная мощность:

$$P_1 = \frac{U_2 \cdot I_2}{(\cos \varphi \cdot \eta)} = \frac{12 \cdot 80}{0.95 \cdot 0.95} \cong 1064 \text{ BA}.$$

2. Рабочая индукция:

$$B_{p} = \sqrt[12]{(M_{b} \cdot N_{c})^{7} \cdot M_{j} \cdot N_{k} \cdot K_{s} \cdot M_{p}^{2} / (P_{1}^{2} \cdot f_{1*}^{7 \cdot \gamma - 2})}.$$

Определим: M_b, M_J, M_p .

Здесь взято v = 1, среднерасчетное; $g_c = 7,65 \cdot 10^3 \text{ кг/м}^3$,

$$M_{j} = \frac{\tau \cdot \sigma \cdot E}{\rho_{\kappa} \cdot \kappa_{o\kappa}} \cdot \frac{v}{v+1} = \frac{50 \cdot 10 \cdot 2.5}{2,1 \cdot 10^{-8} \cdot 0.35} \cdot \frac{1}{1+1} = 8,5 \cdot 10^{10} \,\text{A}^{2}/\text{m}^{2},$$

где $\kappa_{o\kappa} = \kappa_{3\kappa}$,

$$\begin{split} M_p &= 4 \cdot \kappa_\phi \cdot n_0 \cdot \kappa_{o\kappa} \cdot \kappa_{3c} \cdot B_0 \cdot f_{10} = \\ &= 4 \cdot 1,11 \cdot 0,5 \cdot 0,85 \cdot 0,35 \cdot 0,5 \cdot 400 = 1,32 \cdot 10^2 \text{ B/m}^2; \\ M_b &= \frac{\tau \cdot \sigma \cdot B}{\rho_{co} \cdot \kappa_\upsilon \cdot g_c \cdot \kappa_{3c}} \cdot \frac{v}{v+1} = \\ &= \frac{50 \cdot 10 \cdot 2,5}{0,8 \cdot 1,5 \cdot 7,65 \cdot 10^3 \cdot 0,85} \cdot \frac{1}{1+1} = 8 \cdot 10^{-2} \text{ m}. \end{split}$$

Здесь, для синусоидального напряжения $\kappa_{\phi} = 1,11$ и величина n_0 для трансформатора равна 0,5.

Определяем рабочую индукцию B_p трансформатора при вычисленных значениях M_b , M_J , M_p и $f_{1*} = \frac{f_1}{f_{10}} = \frac{0.4}{0.4} = 1$.

$$B_{p} = \sqrt[12]{(M_{b} \cdot N_{c})^{7} \cdot M_{j} \cdot N_{k} \cdot K_{s} \cdot M_{p}^{2} / (P_{1}^{2} \cdot f_{1*}^{7 \cdot \gamma - 2})}$$

получаем,

$$B_p = B_0 \cdot \frac{12}{\sqrt{\frac{(8 \cdot 10^{-2} \cdot 4,3)^7 \cdot 8,5 \cdot 10^{10} \cdot 4,8 \cdot 2 \cdot (1,32 \cdot 10^2)^2}{1064^2 \cdot 1^{7 \cdot 1,7 - 2}}}} = B_0 \cdot 5,8 \text{ Тл.}$$

Получаем:
$$B_p = 0.5 \cdot 5.8 = 2.9 \text{ Тл} > (B_s = 1.6 \text{Тл}).$$

Так как расчетное значение B_p превышает величину насыщения ферроматериала B_s , то принимаем что $B_p = B_s$

$$B_* = \frac{B_p}{B_0} = 3,2.$$

3. Сечение магнитопровода:

$$S_c = \sqrt[7]{\frac{P_1^4}{\left(M_p \cdot B_* \cdot f_{1^*}\right)^4 \cdot \left(K_s \cdot M_j \cdot N_\kappa\right)^2}};$$

$$S_c = \sqrt[7]{\frac{1064^4}{\left(1,32 \cdot 10^2 \cdot 3, 2 \cdot 1\right)^4 \cdot \left(2 \cdot 8, 5 \cdot 10^{10} \cdot 4, 8\right)^2}} = 1,63 \cdot 10^{-3} \,\mathrm{m}^2 = 16,3 \,\mathrm{cm}^2.$$

4. Усреднённая плотность обмоток:

$$j = \sqrt{M_j \cdot \frac{N_{\kappa}}{K_s \cdot S_c^{0,5}}} = \sqrt{8.5 \cdot 10^{10} \cdot \frac{4.8}{2 \cdot (1.63 \cdot 10^{-3})^{0.5}}} =$$
$$= 2.25 \cdot 10^6 \,\text{A/m}^2 = 2.25 \,\,\text{A/mm}^2.$$

5. Линейные расчёты магнитопровода:

рисунке

на

$$a = \sqrt{\frac{S_c}{y}} = \sqrt{\frac{16,3}{2}} = 2,85 \text{ cm} = 28 \text{ mm}.$$
 $c = a \cdot x = 28,5 \cdot 1,4 = 40 \text{ mm},$
 $b = a \cdot y = 28,5 \cdot 2 \approx 58 \text{ mm}.$
 $h = a \cdot z = 28,5 \cdot 2,8 = 80 \text{ mm}.$

Эскиз рассчитываемого стержневого трансформатора с ползаполнением окна показан ным 1.

Рис. 1 — Эскиз рассчитываемого трансформатора

6. Число витков обмоток:

Первичной:

$$\begin{split} W_1 &= \frac{U_1}{4\kappa_{\phi} \cdot f_1 \cdot B_p \cdot S_c \cdot \kappa_{3c}} = \\ &= \frac{220}{4 \cdot 1,11 \cdot 0,4 \cdot 10^3 \cdot 1,6 \cdot 1,63 \cdot 10^{-3} \cdot 0,85} \approx 264 \text{ витков.} \end{split}$$

Вторичной:

$$W_2 = \frac{U_2 \cdot 1,05}{U_1} \cdot W_1 = \frac{12 \cdot 1,05}{220} \cdot 264 \approx 16$$
 витков.

В одной катушке:

$$W_{1\kappa} = \frac{W_1}{n_{\kappa}} = \frac{264}{2} = 132$$
 витков; $W_{2\kappa} = \frac{W_2}{n_{\kappa}} = \frac{16}{2} = 8$ витков,

где n_{κ} — число катушек в трансформаторе.

7. Сечения проводников обмоток:

Первичной:

$$S_{n1} = \frac{I_{1H}}{j} = \frac{P_1}{U_1 \cdot j} = \frac{1064}{220 \cdot 2.3} = 2.1 \text{ mm}^2.$$

Вторичной:

$$S_{n2} = \frac{I_{2H}}{j} = \frac{80}{2.3} = 33,33 \text{ mm}^2.$$

$$S_{nf} = 35 \text{ мм}^2 > S_{n1} \text{ и } S_{n2}.$$

Решено мотать Вторичную обмотку проводом прямоугольного сечения (шинка) с ширенной $a_{n2}=2,44$ мм и высотой $b_{n2}=14,5$ и толщиной изоляции $\Delta_u=0,5$ мм (таблица $\Pi.13$) . Первичную обмотку нужно мотать одним проводником с сечением $S_{n1}=2,06$ мм 2 и диаметром с изоляцией $d_{1u}=1,73$ мм стандартным проводом марки $\Pi \ni B-2$ (таблица $\Pi.14$) .

8. Конструктивные параметры катушки:

Высота для одного слоя витков обмотки в катушке:

$$h_{cn} = (h_{\kappa} = h \cdot n_h) - 2\Delta_{\kappa},$$

где Δ_{κ} — толщена каркаса катушки; для напряжения до 1кВ $\Delta_{\kappa} = 2$ мм, $n_h = h_{\kappa}/h = 1$ для полного заполнения, n_h — относительная величина, показывающая во сколько раз высота катушки меньше высоты окна.

$$h_{c_{7}} = 80 \cdot 1 - 2 \cdot 2 = 76 \text{ MM}$$

Число витков в слое:

$$W_{cn1} = \frac{h_{cn} \cdot \kappa_{y\kappa}}{d_{1u}}, \ W_{cn2} = \frac{h_{cn} \cdot \kappa_{y\kappa}}{b_{2u}}$$

где $\kappa_{y\kappa}$ — коэффициент укладки, учитывающий неплотность прилегания витков;

 d_{1u} — диаметр провода с изоляцией первичной W_1 обмотки. $d_{1u}=1,73$ мм (выбрано в пункте7)

Ширина шинки для W_2 с изоляцией.

$$a_{2u} = a_{n2} + 2 \cdot \Delta_u = 2,44 + 2 \cdot 0,5 = 3,44 \text{ MM}.$$

Высота шинки для W_2 с изоляцией:

$$b_{2u}=b_{n2}+2\cdot\Delta_{u}=14,5+2\cdot0,5=15,5$$
 мм; $\kappa_{y\kappa}=0,85,\;$ так как $d_{1u}\!\!>\!\!1$ мм (таблица 11,4).

$$W_{cn1} = \frac{76 \cdot 0,85}{1,73} \approx 38$$
 витков.

$$W_{c\pi 2} = \frac{76 \cdot 0,85}{15.5} \approx 5$$
 витков

Число слоев:

$$n_{cn} = \frac{W_i}{W_{cni}},$$
 $n_{cn1} = \frac{132}{38} \approx 4$ слоя.
 $n_{cn2} = \frac{8}{5} \approx 2$ слоя.

Толщина катушки:

$$c_{\kappa 1} = d_{nu1} \cdot n_{cn1} + \Delta_{MO} + \Delta_{cn} \cdot (n_{cn1} - 1);$$

$$c_{\kappa 2} = a_{nu2} \cdot n_{cn2} + \Delta_{MO} + \Delta_{cn} \cdot (n_{cn2} - 1),$$

где Δ_{cn} — толщена межслойной изоляции, в среднем — 0,1 мм; Δ_{mo} — изоляция между обмотками и с наружи катушки $\Delta_{mo} \approx 0,2$ мм

$$c_{\kappa 1} = 1,73 \cdot 4 + 0,2 + 0,1 \cdot (4-1) = 7,4 \text{ mm};$$

 $c_{\kappa 2} = 3,44 \cdot 2 + 0,2 + 0,1 \cdot (2-1) = 7,2 \text{ mm};$
 $c = c_{\kappa 1} + c_{\kappa 2} + \Delta_{\kappa} = 7,4 + 7,2 + 2 = 16,6 \text{ mm}.$

9. Параметры схемы замещения:

Активные сопротивления

$$R_i = \frac{\rho_{k_i} \cdot W_i \cdot L_{k_i}}{S_{n_i}},$$

где ρ_k — удельное сопротивление материала проводников обмоток;

 S_n — сечение провода без изоляции; L_k — средние длины витков катушек:

$$c_k = 0.5 \cdot c$$
:

первичная обмотка:

$$L_{k1} = 2 \cdot (a+b+\frac{\pi}{2} \cdot (c_{\kappa 1} + \Delta_{\kappa}));$$

$$L_{k2} = 2 \cdot (28 + 58 + \frac{\pi}{2} \cdot (7, 4 + 2)) = 201,52 \text{ mm} \approx 201 \text{ mm};$$

вторичная обмотка:

$$\begin{split} L_{k2} &= 2 \cdot (a + b + \frac{\pi}{2} \cdot (c_{\kappa 2} + \Delta_{\kappa}))\,; \\ L_{k2} &= 2 \cdot (28 + 58 + \frac{\pi}{2} \cdot (7, 2 + 2)) \approx 200 \text{ mm}\,; \\ R_{1} &= \frac{\rho_{k} \cdot W_{1\kappa} \cdot L_{k_{1}}}{S_{n1}} \,, \; R_{2} = \frac{\rho_{k} \cdot W_{2\kappa} \cdot L_{k_{2}}}{S_{n2}}; \end{split}$$

$$R_1 = \frac{0.021 \cdot 132 \cdot 0.201}{2.1} = 0.27 \text{ Om};$$

$$R_2 = \frac{0.021 \cdot 8 \cdot 0.200}{33.33} = 0.017 \text{ Om}.$$

Реактивные сопротивления

$$X_S = 2 \cdot \pi \cdot f_1 \cdot L_S;$$

$$X_{S1} = X'_{S2} = 0.5X_S,$$

где L_S — индуктивность рассеяния обмоток

$$L_S = \mu_0 \cdot \frac{c_k \cdot W_1^2 \cdot L_k}{3h_k \cdot n_k},$$
 где $L_\kappa = (L_{\kappa 1} + L_{\kappa 2}) \cdot 0,5$.
$$L_\kappa = (201 + 200) \cdot 0,5 = 200,5 \text{ мм};$$

$$L_S = 4\pi \cdot 10^{-7} \cdot \frac{0,0074 \cdot 264^2}{3 \cdot 0,080 \cdot 2} \cdot 0,2005 = 2,7 \cdot 10^{-4} \Gamma \text{H};$$

$$X_{S1} = 2 \cdot \pi \cdot 0,4 \cdot 10^3 \cdot 2,7 \cdot 10^{-4} = 0,678 \text{ Om};$$

$$X_{S11} = X'_{S2} = 0,5 \cdot 0,678 = 0,339 \text{ Om}.$$

10. Весовые показатели трансформатора:

Вес магнитопровода:

$$G_c = S_c \cdot L_c \cdot \kappa_{3c} \cdot g_c = a \cdot b \cdot 2 \cdot (h + c + \frac{\pi \cdot a}{2}) \cdot \kappa_{3c} \cdot g_c =$$

$$= 2,8 \cdot 5,8 \cdot 2 \cdot (8 + 4 + \frac{3.14 \cdot 2,8}{2}) \cdot 0,85 \cdot 7,65 = 3,4 \cdot 10^3 \,\text{f} = 3,4 \,\text{kg}.$$

Вес обмоток:

$$G_{\kappa} = V_{\kappa} \cdot \kappa_{3\kappa} \cdot g_{\kappa} = c_{\kappa} \cdot L_{\kappa} \cdot L_{c} \cdot \kappa_{3\kappa} \cdot g_{\kappa} = c_{\kappa} \cdot L_{\kappa} \cdot 2 \cdot (h + c + \frac{\pi \cdot a}{2}) \cdot \kappa_{3\kappa} \cdot g_{\kappa};$$

$$G_{\kappa} = 0.5 \cdot 4 \cdot 20.05 \cdot 2 \cdot (8 + 4 + \frac{3.14 \cdot 2.8}{2}) \cdot 0.35 \cdot 8.8 = 4 \cdot 10^{3} \, \text{G} \approx 4 \, \text{kg}.$$

Общий вес трансформатора:

$$G = G_c + G_{\kappa} = 3,4 + 4 = 7,4 \text{ Kg}.$$

Удельный вес на единицу мощности:

$$\Theta_g = \frac{G}{P_1} = 7,4/1,06 \text{ кг/кВт} = 6,9 \text{ г/ВА}.$$

Сопротивления контура намагничивания

Силовая линия магнитопровода:

$$L_c = 2 \cdot \left(h + c + \frac{\pi \cdot a}{2}\right) = 2\left(80 + 40 + \frac{\pi \cdot 28}{2}\right) = 327,92 \text{ mm} \approx 0,328 \text{ m}$$

Потери мощности в магнитопроводе:

$$\Delta P_c = \rho_{c0} \cdot k_{\rho} \cdot G_c \cdot \left(\frac{B}{B_0}\right)^{\gamma_1} \cdot \left(\frac{f_1}{f_{10}}\right)^{\gamma} = 0.8 \cdot 1.5 \cdot 3.4 \cdot \left(\frac{1.6}{0.5}\right)^{1.8} \cdot \left(\frac{0.4}{0.4}\right)^{1.7} = 33 \text{ Bt.}$$

Сопротивление параллельных ветвей:

$$R_0 = \frac{U_1^2}{\Delta P_c} = \frac{220^2}{33} = 1467 \approx 1,5 \text{ кОм;}$$

$$L_0 = \frac{S_c \cdot W_1^2 \cdot \mu_a}{L_c \cdot 2 \cdot 10^2 \cdot 5 \cdot 10^{-4}} = \frac{1,63 \cdot 10^{-3} \cdot 264^2 \cdot 5 \cdot 10^{-4}}{0,33 \cdot 2 \cdot 10^2 \cdot 5 \cdot 10^{-4}} = 1,15 \text{ Om;}$$

$$X_0 = 2\pi f_1 \cdot L_0 = 2 \cdot \pi \cdot 0, 4 \cdot 10^3 \cdot 1,15 = 2889 \text{ Om;}$$

$$X_{\mu} = X_0 \cdot \frac{R_0^2}{R_0^2 + X_0^2} = 2889 \cdot \frac{1467^2}{1467^2 + 2889^2} = 592,22 \text{ Ом};$$

$$R_{\mu} = R_0 \cdot \frac{X_0^2}{R_0^2 + X_0^2} = 1467 \cdot \frac{2889^2}{1467^2 + 2889^2} = 1,2 \text{ кОм}.$$

Потери мощности в активных сопротивлениях обмотки:

$$\Delta P_{\kappa} = \tau \cdot \sigma \cdot \Pi_{o\kappa} \cdot \frac{B}{1 + \nu};$$

$$\Pi_{o\kappa\Pi3} = 2 \cdot (c + h)(L_{\kappa} - b) =$$

$$= 2 \cdot (0,040 + 0,08) \cdot (0,2005 - 0,058) = 34 \cdot 10^{-3} \,\text{m}^{2};$$

$$\Delta P_{\kappa} = 50 \cdot 10 \cdot 34 \cdot 10^{-3} \cdot \frac{2,5}{1+1} = 20,4 \,\text{BT}.$$

Потери в изоляции катушек:

$$\Delta P_{u_3} \approx 0.05 (\Delta P_{\kappa} + \Delta P_c) = 0.05 \cdot (20.4 + 33) \approx 2.67 \text{ Bt}.$$

Фактическое соотношение потерь:

$$v = \frac{\Delta P_c}{\left(\Delta P_{\kappa} + \Delta P_{us}\right)} = \frac{33}{20,4+2,67} = 1,4.$$

Коэффициент мощности:

$$\cos \varphi = \frac{\sqrt{U_1^2 - U_x^2}}{U_1},$$

где
$$U_x = \frac{P_1 \cdot X_S}{U_1} = \frac{1064 \cdot 1, 4}{220} = 6,8 \text{ B}.$$

$$\cos \phi = \frac{\sqrt{220^2 - 6, 8^2}}{220} = 1.$$

Коэффициент потерь мощности $\Delta \eta$ и КПД:

$$\Delta \eta = \frac{\Delta P_{\kappa} + \Delta P_{c} + \Delta P_{u3}}{P_{1} \cdot \cos \varphi} = \frac{20, 4 + 33 + 2, 67}{1064 \cdot 1} = 0,053;$$
$$\eta = 1 - \Delta \eta = 1 - 0,053 = 0,947.$$

Фактическое заполнение окна:

$$\kappa_{o\kappa} = \frac{\sum W_i \cdot S_{n_i}}{S_{or}} = \frac{264 \cdot 2, 1 + 16 \cdot 33, 33}{1600} = 0,68.$$

11. Раскладка проводников:

Рис. 2 — Раскладка проводников.

На рисунке 2 обозначено:

 Δ_{κ} — толщина изоляции каркаса для магнитопровода;

 Δ_{cn} — толщина изоляции в слое;

 Δ_{MO} — толщина межобмоточной изоляции;

h, a, c — геометрические параметры.

Раскладка сделана верно, если выполняется условие:

$$c \leq 2 \cdot c_{\kappa} + \Delta c$$
,

где Δc — технологический зазор $\Delta c = 2$ мм.

Имеем:

$$\Delta c = c - 2 \cdot c_{\kappa} = 40 - 2 \cdot 16, 6 = 6,8 \text{ MM}.$$

Раскладка верна, так как $\Delta c = 6.8 \text{ мм} > 2 \text{ мм}$, что допускается.

4.7 Пример выполнения и оформления ИЗ1 с шифром ЧАЕ9МВ

Рассчитать двухобмоточный трансформатор с алюминиевыми (A) обмотками на чашечном (Ч) магнитопроводе, работающий в условиях естественного воздушного охлаждения. Трансформатор должен удовлетворять критерию минимального веса (MB) на единицу входной мощности при номинальных данныхервичное напряжение U_1 , B 220;

вторичное напряжение U_2 , В 24; вторичный ток I_2 , А 50; частота питания сети f_1 , Γ ц 20000; коэффициент мощности $\cos(\varphi)$ — не менее 0,95.

Рассчитать:

- 1. Габаритную мощность.
- 2. Рабочую индукцию.
- 3. Сечение магнитопровода.
- 4. Плотность тока обмоток.
- 5. Линейные размеры магнитопровода.
- 6. Число витков обмоток.
- 7. Сечение проводников обмоток.
- 8. Конструктивные параметры катушки.
- 9. Параметры схемы замещения:
 - активные сопротивления *R1*, *R2*.
 - реактивные сопротивления X_{s1} , X_{s2} , X_{s} .
 - сопротивления контура намагничивания X_{μ} и R_{μ} .
- 10. Технические показатели.
- 11. Сделать раскладку проводников обмоток в катушке.

Решение.

Естественное охлаждение разрешает принять для расчетов значение коэффициента теплоотдачи $\sigma=10~\mathrm{Bt/m^2}\cdot\mathrm{град}$. Температура перегрева элементов трансформатора над окружающей средой не задана, поэтому принимается среднерасчетное $\tau=50~\mathrm{^oC}$ и общая температура нагрева

$$t = t_0 + \tau = 20 + 50 = 70$$
 °C.

Низковольтность обмоток (до 1 кВ) и невысокая температура их нагрева (до 105 °C) позволяет использовать простые обмоточные провода с изоляцией класса А и применять для межслойной и межобмоточной изоляции недорогую конденсаторную или кабельную бумагу с пропиткой.

Наибольшее сечение проводников обмоток допускается не более

$$S_{nf} = \frac{14}{f_1, \kappa \Gamma \mu} = \frac{14}{20} = 0,7 \text{ mm}^2.$$

При заданной рабочей частоте f_1 = 20 к Γ ц материалом для магнитопровода выбрать феррит.

Выбранные исходные данные для расчетов сведены в табл. 1 и табл. 2.

Таблица 1 — Показатели материала магнитопровода

	Δ_c	K_{3C}	g_c	$ ho_{co}$	$\kappa_{ ho}$	f_{10}	B_0	f_1	γ	γ_1	B_{s}
	MM	_	$\kappa\Gamma/M^3$	Вт/кг	1	кГц	Тл	кГц		1	Тл
Ферри- ты	_	1	5·10 ³	10	1,1	10	0,2	20	1,2	2,4	0,35

Таблица 2 — Показатели материала обмоток и геометрии для минимальной стоимости

	Man		Гаог		77 <i>7</i> 1 <i>7</i>	******	-	0770111	r 0 0 mr. r		
$\kappa_{_{3k}}$	$g_{\scriptscriptstyle k}$	$ ho_{\scriptscriptstyle k}$	au	σ	Геометрия для минимальной стоимости						
_	кг/м ³	Ом·м	град	Вт/м ² · град	x	У	Z	K_s	N_c	$N_{\scriptscriptstyle k}$	Б
0,35	$2,7\cdot10^3$	$3,4\cdot10^{-8}$	50	10	0,6	2	1,3	1,2	4	4	1

Эскиз рассчитываемого чашечного трансформатора представлен на рис. 1.

Рис. 1 — Эскиз чашечного трансформатора

Расчет электромагнитных показателей

1. Габаритная мощность

$$P_1 = \frac{U_2 \cdot I_2}{\cos(\varphi) \cdot \eta} = \frac{24 \cdot 50}{0,95 \cdot 0,95} \approx 1330 \,\text{BA}.$$

2. Рабочая индукция

$$B = B_0 \cdot 12 \sqrt{\frac{(M_B \cdot N_c)^7 \cdot M_j \cdot N_k \cdot K_s \cdot M_p^2}{P_1^2 \cdot f_{1*}^{7\gamma - 2}}},$$

где

$$f_{1*} = \frac{f_1}{f_{10}} = \frac{20000}{10000} = 2;$$

$$M_B = \frac{\tau \cdot \sigma \cdot B}{\rho_{co} \cdot \kappa_o \cdot g_c \cdot \kappa_{3c}} \cdot \frac{v}{1+v} = \frac{10 \cdot 50 \cdot 1}{10 \cdot 1, 1 \cdot 5 \cdot 10^3 \cdot 1} \cdot \frac{1}{1+1} \approx 0,005 \text{ m}.$$

Здесь взято v = 1, среднерасчетное;

$$M_{j} = \frac{\tau \cdot \sigma \cdot B}{\rho_{k} \cdot \kappa_{ok} \cdot (1 + \nu)} = \frac{10 \cdot 50 \cdot 1}{3.4 \cdot 10^{-8} \cdot 0.35 \cdot (1 + 1)} \approx 2 \cdot 10^{10} \frac{A^{2}}{M^{3}};$$

$$M_p = 4 \cdot \kappa_{\phi} \cdot n_0 \cdot \kappa_{ok} \cdot \kappa_{sc} \cdot B_0 \cdot f_{10} = 4 \cdot 1,11 \cdot 0,5 \cdot 0,35 \cdot 1 \cdot 0,2 \cdot 10000 = 1554 \frac{B}{M};$$

Здесь для синусоидального напряжения $\kappa_{\phi} = 1,11$ и величина n_{θ} для трансформатора равна 0,5.

$$B = B_0 \cdot \sqrt[12]{\frac{(5 \cdot 10^{-3} \cdot 4)^7 \cdot 2 \cdot 10^{10} \cdot 4 \cdot 1, 2 \cdot 1554^2}{1330^2 \cdot 2^{7 \cdot 1, 2 - 2}}} \approx 0, 6 \cdot B_0.$$

Получаем,

$$B = 0, 2 \cdot 0, 6 = 0, 12 \,\text{T} \pi < (B_s = 0, 35 \,\text{T} \pi);$$

 $B_* = \frac{B}{B_0} = \frac{0, 12}{0.2} = 0, 6.$

3. Сечение магнитопровода

$$S_c = \sqrt[7]{\frac{P_1^4}{(M_p \cdot B_* \cdot f_{1*})^4 \cdot (K_s \cdot M_j \cdot N_k)^2}} = \sqrt[7]{\frac{1330^4}{(1554 \cdot 0, 6 \cdot 2)^4 \cdot (1, 2 \cdot 2 \cdot 10^{10} \cdot 4)^2}} \approx 0,0006 \,\mathrm{m}^2 \approx 6 \,\mathrm{cm}^2.$$

4. Плотность тока

$$j = \sqrt{M_j \cdot \frac{N_k}{K_s \cdot S_c^{0,5}}} = \sqrt{2 \cdot 10^{10} \cdot \frac{4}{1,2 \cdot (6 \cdot 10^{-4})^{0,5}}} \approx 1,7 \cdot 10^6 \frac{A}{M^2} \approx 1,7 \frac{A}{MM^2}.$$

5. Линейные размеры магнитопровода

$$a = \sqrt{\frac{4 \cdot S_c}{\pi}}, \quad c = a \cdot x, \quad h = a \cdot z.$$

$$a = \sqrt{\frac{4 \cdot S_c}{\pi}} = \sqrt{\frac{4 \cdot 6 \cdot 10^{-4}}{3,14}} = 0,028 \text{ m} = 28 \text{ mm};$$

$$c = 28 \cdot 0,6 \text{ m} = 17 \text{ mm};$$

$$h = 28 \cdot 1,3 = 36 \text{ mm}.$$

В табл. П.12 гостовских размеров выпускаемых чашечных МЭ нет близких к расчетным. Поэтому полученные значения a, c, h оставляем без изменения.

6. Число витков обмоток

Первичной:

$$W_1 = \frac{U_1}{4 \cdot \kappa_{cb} \cdot f_1 \cdot B \cdot S_c \cdot \kappa_{3c}} = \frac{220}{4 \cdot 1,11 \cdot 20000 \cdot 0,12 \cdot 6 \cdot 10^{-4} \cdot 1} \approx 34 \text{ витка.}$$

Вторичной:

$$W_2 = \frac{U_2 \cdot 1,05 \cdot W_1}{U_1} = \frac{24 \cdot 1,05 \cdot 34}{220} \approx 4$$
 витка.

7. Сечения проводников обмоток

Первичной:

$$S_{n1} = \frac{I_{1H}}{j} = \frac{P_1}{U_1 \cdot j} = \frac{1330}{220 \cdot 1, 7 \cdot 10^6} \approx 3,6 \cdot 10^{-6} \text{ m}^2 \approx 3,6 \text{ mm}^2.$$

Вторичной:

$$S_{n2} = \frac{I_{2H}}{j} = \frac{50}{1,7 \cdot 10^6} \approx 29,4 \cdot 10^{-6} \text{ m}^2 \approx 29,4 \text{ mm}^2.$$

Проводники первичной и вторичной обмоток необходимо сделать многожильными, так как рассчитанные сечения значительно больше $S_{nf}=0,7~{\rm mm}^2$ при частоте 20 кГц.

8. Раскладка проводников обмоток в окне МЭ

Высота для одного слоя (ряда) витков обмотка в катушке

$$h_{c\pi} = (h_{\kappa} = h) - 2 \cdot \Delta_{\kappa} = 36 - 2 \cdot 2 = 32 \text{ mm},$$

где Δ_{κ} — толщина каркаса катушки; для напряжения до 1 кВ $\Delta_{\kappa}=2$ мм.

Поскольку $S_{n1} > S_{nf}$ в 4 и $S_{n2} > S_{nf}$ в 22 раза, мотать обмотки нужно многожильными проводами, рассчитывая их диаметры по формуле

$$d_{nu} = \sqrt{\frac{4}{\pi} \cdot \frac{S_n}{\kappa_{3,3c}}} + 2 \cdot \Delta_u,$$

где $\kappa_{_{3\mathcal{H}}}=0,8$ — коэффициент заполнения провода жилой; $\Delta_u = \text{толщина изоляции, при напряжении до 1 кB,}$ $\Delta_u = 0,1$ мм .

Диаметр многожильного провода с изоляцией первичной обмотки:

$$d_{1u} = \sqrt{\frac{4}{\pi} \cdot \frac{S_{n1}}{\kappa_{_{3\mathcal{H}C}}}} + 2 \cdot \Delta_u = \sqrt{\frac{4}{3,14} \cdot \frac{3,6}{0,8}} + 2 \cdot 0,1 \approx 2,6 \text{ mm}.$$

Диаметр многожильного провода с изоляцией вторичной обмотки:

$$d_{2u} = \sqrt{\frac{4}{\pi} \cdot \frac{S_{n2}}{\kappa_{_{3,\!3\!2\!c}}}} + 2 \cdot \Delta_u = \sqrt{\frac{4}{3,14} \cdot \frac{29,4}{0,8}} + 2 \cdot 0,1 \approx 7 \text{ mm}.$$

Число витков в слое первичной обмотки

$$W_{c\pi 1} = \frac{h_{c\pi} \cdot \kappa_{y\kappa}}{d_{1u}} = \frac{32 \cdot 0.85}{2.6} \approx 11$$
 витков.

Число витков в слое вторичной обмотки

$$W_{c\pi 2} = \frac{h_{c\pi} \cdot \kappa_{y\kappa}}{d_{2\mu}} = \frac{32 \cdot 0,85}{7} \approx 4$$
витка.

Здесь $\kappa_{y\kappa}$ — коэффициент укладки, учитывающий неплотность прилегания витков.

Число слоев:

$$n_{c\pi 1}=rac{W_1}{W_{c\pi 1}}=rac{34}{11}pprox 3\,$$
 слоя, для первичной обмотки; $n_{c\pi 2}=rac{W_2}{W_{c\pi 2}}=rac{4}{4}=1\,$ слой, для вторичной обмотки.

Толщина катушки:

$$\begin{split} c_{\kappa 1} &= d_{1u} \cdot n_{c \pi 1} + \Delta_c \left(n_{c \pi 1} - 1 \right) + \Delta_{\kappa} + \Delta_{o m}; \\ c_{\kappa 1} &= 2, 6 \cdot 3 + 0, 1(3 - 1) + 2 + 0, 2 = 10, 2 \text{ mm}; \\ c_{\kappa 2} &= d_{2u} \cdot n_{c \pi 2} + \Delta_c \left(n_{c \pi 2} - 1 \right) + \Delta_{o m}; \\ c_{\kappa 2} &= 7 \cdot 1 + 0, 1(1 - 1) + 0, 2 = 7, 2 \text{ mm}; \\ c_{\kappa} &= c_{\kappa 1} + c_{\kappa 2}; \\ c_{\kappa} &= 10, 2 + 7, 2 = 17, 4 \text{ mm} < (c = 17 \text{ mm}). \end{split}$$

Здесь Δ_c — толщина межслойной изоляции, в среднем — 0,1 мм. Между обмотками выполняется дополнительный слой изоляции (кроме межслойной) с толщиной $\Delta_{MO} \approx 0,2$ мм.

Нужно увеличить ширину окна c на $1\div 2$ мм, так как нет места для технологического зазора, принимаем c=19 мм.

Раскладка проводников показана на рис. 2.

9. Параметры схемы замещения

Активное сопротивление обмоток

$$R_i = \frac{\rho_k \cdot W_i \cdot L_{\kappa i}}{S_{ni}},$$

где ρ_k — удельное сопротивление Ом*мм²/м при заданном перегреве τ ;

 $W_i,\,L_{\kappa i}$ — число витков и средняя длина витка [м] i-ой обмотки;

 S_{ni} — сечение провода, мм² (без изоляции, чистое).

Средняя длина витка первичной обмотки

$$L_{\kappa 1} = \pi \cdot (a + \frac{c_{\kappa 1}}{2}) = 3,14 \cdot (28 + 5,2) = 104 \text{ mm}.$$

Средняя длина витка вторичной обмотки

$$L_{\kappa 2} = \pi \cdot (a + c_{\kappa 1} + \frac{c_{\kappa 2}}{2}) = 3,14 \cdot (28 + 10,2 + \frac{7,2}{2}) = 13 \text{ mm} = 0,13 \text{ m}.$$

Активное сопротивление первичной обмотки

$$R_1 = \frac{\rho_k \cdot W_1 \cdot L_{\kappa 1}}{S_{n1}} = \frac{0.034 \cdot 10^{-3} \cdot 34 \cdot 104}{3.6} \approx 36.3 \cdot 10^{-3} \text{ Om}.$$

Рис. 2 — Раскладка проводников Активное сопротивление вторичной обмотки

$$R_2 = \frac{\rho_k \cdot W_2 \cdot L_{\kappa 2}}{S_{n2}} = \frac{0.034 \cdot 10^{-3} \cdot 4 \cdot 131}{29.4} \approx 0.62 \cdot 10^{-3} \text{ Om.}$$

Индуктивное сопротивление обмоток. Поток рассеяния

$$X_s = 2 \cdot \pi \cdot f_1 \cdot L_s,$$

где L_s — индуктивность рассеяния.

$$L_{s} = \frac{\mu_{0} \cdot L_{\kappa} \cdot c_{\kappa} \cdot W_{1}^{2}}{3 \cdot h_{\kappa} \cdot n_{\kappa}},$$

где L_{κ} , n_{κ} — средняя длина катушки по периметру и число катушек на магнитопроводе;

 c_{κ} , h_{κ} — толщина и высота катушки;

 W_1 — число витков первичной обмотки.

Средняя длина катушки по периметру

$$L_k = \pi \cdot (a+c) = 3.14 \cdot (28+17) \approx 141 \text{ MM}.$$

Численное значение индуктивности рассеяния

$$L_s = \frac{4 \cdot \pi \cdot 10^{-7} \cdot 19 \cdot 10^{-3} \cdot 141 \cdot 10^{-3} \cdot 34^2}{3 \cdot 36 \cdot 10^{-3} \cdot 1} \approx 3,6 \cdot 10^{-5} \text{ Гн};$$

Сопротивление индуктивности рассеяния

$$\begin{split} X_s &= 2 \cdot \pi \cdot f_1 \cdot L_s = 2 \cdot 3,14 \cdot 20000 \cdot 3,6 \cdot 10^{-5} \approx 4,53 \text{ Om}; \\ X_{s1} &= X'_{s2} = 0,5 \cdot X_s; \\ X_{s1} &= X'_{s2} = 0,5 \cdot 4,53 \approx 2,27 \text{ Om}. \end{split}$$

Сопротивления контура намагничивания

$$X_{\mu} = X_0 \cdot \frac{R_0^2}{R_0^2 + X_0^2};$$

$$R_{\mu} = R_0 \cdot \frac{X_0^2}{R_0^2 + X_0^2};$$

$$R_0 = \frac{U_1^2}{\Delta P_c}.$$

Потери мощности в магнитопроводе

$$\Delta P_c = \rho_{co} \cdot \kappa_{\rho} \cdot G_c \cdot \left(\frac{B}{B_0}\right)^{\gamma_1} \cdot \left(\frac{f_1}{f_{10}}\right)^{\gamma}.$$

Длина силовой линии

$$L_c = 2 \cdot (h + c + 0.5 \cdot a) = 2 \cdot (36 + 17 + 0.5 \cdot 28) = 134 \text{ MM}.$$

Вес магнитопровода

$$G_c = S_c \cdot L_c \cdot g_c = 0,0006 \cdot 0,1134 \cdot 5 \cdot 10^3 \approx 0,4 \text{ Kg}.$$

Потери мощности в магнитопроводе

$$\begin{split} \Delta P_c &= \rho_{co} \cdot \kappa_{\rm p} \cdot G_c \cdot \left(\frac{B}{B_0}\right)^{\gamma_1} \cdot \left(\frac{f_1}{f_{10}}\right)^{\gamma} = 10 \cdot 1, 1 \cdot 0, 4 \cdot \left(\frac{0,12}{0,2}\right)^{2,4} \cdot \left(\frac{20000}{10000}\right)^{1,2} \approx 2,98 \; \mathrm{Bt}; \\ R_0 &= \frac{U_1^2}{\Delta P_c} = \frac{220^2}{2,98} = 16, 2 \; \mathrm{KOM}; \\ X_0 &= 2 \cdot \pi \cdot f_1 \cdot L_0; \\ L_0 &= \frac{S_c \cdot W_1^2 \cdot \mu_a}{L_c + 2 \cdot 10^2 \cdot \mu_a} = \frac{0, 6 \cdot 10^{-3} \cdot 34^2 \cdot 5 \cdot 10^{-4}}{0, 134 + 2 \cdot 10^2 \cdot 5 \cdot 10^{-4}} = 1, 5 \cdot 10^{-3} \; \mathrm{OM}; \\ X_0 &= 2 \cdot \pi \cdot f_1 \cdot L_0 = 2 \cdot \pi \cdot 2 \cdot 10^3 \cdot 0, 0015 = 186, 4 \; \mathrm{OM}. \end{split}$$

Сопротивления контура намагничивания

$$X_{\mu} = X_0 \cdot \frac{R_0^2}{R_0^2 + X_0^2} = 186, 4 \cdot \frac{16200^2}{16200^2 + 186, 4^2} = 186,35 \text{ Om};$$

$$R_{\mu} = R_0 \cdot \frac{X_0^2}{R_0^2 + X_0^2} = 16200 \cdot \frac{186, 4^2}{16200^2 + 186, 4^2} = 2,14 \text{ Om.}$$

10. Технические показатели

Вес проводников катушки:

$$G_k = \sum S_{ni} \cdot L_{ki} \cdot W_i \cdot g_k = 3,6 \cdot 10^{-6} \cdot 0,113 \cdot 34 \cdot 2,7 \cdot 10^3 + 29,4 \cdot 10^{-6} \cdot 0,135 \cdot 4 \cdot 2,7 \cdot 10^3 = 0,043 \text{ Kg}.$$

Общий вес трансформатора:

$$G = G_c + G_k = 0,4+0,043 = 0,443$$
 Kg.

Потери мощности в активных сопротивлениях обмотки

$$\Delta P_k = \sum I_i^2 \cdot R_i = I_1 \cdot R_1 + I_2 \cdot R_2 = \frac{P_1}{U_1} \cdot R_1 + I_2 \cdot R_2 =$$

$$= 36, 3 \cdot 10^{-3} \cdot \frac{1330}{24} + 50 \cdot 0,062 \cdot 10^{-3} \approx 2,97 \text{ Bt.}$$

Потери мощности в магнитопроводе

$$\Delta P_c = \rho_{co} \cdot \kappa_{\rho} \cdot G_c \cdot \left(\frac{B}{B_0}\right)^{\gamma_1} \cdot \left(\frac{f_1}{f_{10}}\right)^{\gamma} = 2,98 \text{ Bt.}$$

Потери в изоляции катушек

$$\Delta P_{u3} \approx 0.05 \cdot (\Delta P_k + \Delta P_c) = 0.05 \cdot (2.98 + 2.97) \approx 0.298 \text{ Bt.}$$

Фактическое соотношение потерь

$$v = \frac{\Delta P_c}{\Delta P_k + \Delta P_{u3}} = \frac{2,98}{2,97 + 0,298} = 0,912.$$

Коэффициент мощности

$$\cos \varphi = \frac{\sqrt{U_1^2 - U_x^2}}{U_1},$$

где
$$U_x = \frac{P_1 \cdot X_s}{U_1}$$
.

$$U_x = \frac{1330 \cdot 4,53}{220} = 27,39 \text{ B};$$

 $\cos \varphi = \frac{\sqrt{220^2 - 27,39^2}}{220} = 0,992.$

Коэффициент потерь мощности $\Delta \eta$ и КПД

$$\Delta \eta = \frac{\Delta P_k + \Delta P_c + \Delta P_{u3}}{P_1 \cdot \cos \varphi}.$$

$$\Delta \eta = \frac{2,97 + 2,98 + 0,298}{1330 \cdot 0,992} = 0,005;$$

$$\eta = 1 - \Delta \eta = 1 - 0,005 = 0,995.$$

5 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ № 2 (ИЗ2)

5.1 Содержание

Используя данные, полученные при выполнении ИЗ1: $S_c = a \cdot b \cdot \kappa_{3c}, \ W_1, \ W_2, \ d_{1u}, \ d_{2u},$ определить для МЭ индуктивность

L, если этот элемент будет использован в качестве дросселя, то есть индуктивности без подмагничивания.

Для этого:

1. Записать формулу для индуктивности L_1 , если обмотка МЭ будет выполнена с сечением и диаметром проводников для W_1 в ИЗ1, то есть:

$$W_{L1} = \left(W_{\kappa 1} + W_{\kappa 2} \cdot \frac{d_{u2}}{d_{u1}}\right) \cdot n_{\kappa}. \tag{5.1}$$

2. Определить значение L_2 , если W_{L2} будет выполнена с числом витков

$$W_{L2} = \left(W_{\kappa 2} + W_{\kappa 1} \cdot \frac{d_{u2}}{d_{u1}}\right) \cdot n_{\kappa}. \tag{5.2}$$

- 3. Определить таблично значение L_1 и L_2 при немагнитных зазорах $\delta = 0$, 1, 2, 3, 4, 5 мм.
- 4. Для пунктов 1 и 2 построить кривые зависимости L от δ $L=f(\delta)$.
 - 5. Проанализировать полученные результаты.

5.2 Рейтинг И32

- 1. Формула индуктивности L_1 , когда окно магнитопровода заполнено проводниками с параметрами для W_{L1} 2 б.
- 2. Формула индуктивности L_2 , когда окно магнитопровода заполнено проводниками с параметрами для W_{L2} 2 б.
- 3. Таблица значений индуктивностей L_1 и L_2 при немагнитных зазорах $\delta \neq 0$ 4 б.
- 4. Кривая $L_1 = f(\delta)$ и $L_2 = f(\delta)$, при $\delta \ge 0$ 5 б.
- 5. Анализ полученных результатов 2 б.
- 6. Защита 5 б.

Всего — 20 баллов.

5.3 Пример выполнения ИЗ2

Исходные данные: берутся по результатам выполнения ИЗ1. Например, для выполненного ИЗ1 в разделе 4.6 получены данные: $W_1 = 264$, $W_{\kappa 1} = 132$, $d_{1u} = 1,73$ мм, $c_{\kappa 1} = 7,4$ мм, $n_{cn 1} = 4$; $W_{cn 1} = 38$, $W_2 = 16$, $W_{\kappa 2} = 8$, $a_{2u} = 3,44$ мм (толщина шинки вторичной обмотки с учетом изоляции), $c_{\kappa 2} = 7,2$ мм.

Параметры магнитопровода: a=28 мм, b=58 мм, c=40 мм, h=80 мм, $\mu_a=0,5\cdot 10^{-3}$ Гн/м, $\kappa_{3c}=0,85$. Расшифровки величин см. в примере для ИЗ1.

Требуется определить: значения индуктивностей МЭ, если использовать рассчитанный в ИЗ1 трансформатор в качестве дросселя, имеющего одну обмотку W_{L1} или W_{L2} с параметрами W_1 или W_2 для трансформатора в ИЗ1. Индуктивность рассчитать для дискретных значений немагнитного зазора $\delta = 0, 1, 2, 3, 4, 5$ мм. Построить характеристики $L = f(\delta)$. Сделать выводы по результатам.

Решение.

5.3.1 Индуктивности рассчитываются по выражению (6.6) учебного пособия [1]

$$L_1 = \frac{S_c \cdot W_{L1}^2}{L_c / \mu_a + 0.8 \cdot 10^6 \cdot \delta};$$
 (5.3)

$$L_2 = \frac{S_c \cdot W_{L2}^2}{L_c / \mu_a + 0.8 \cdot 10^6 \cdot \delta}.$$
 (5.4)

Здесь,

 S_c — сечение магнитопровода с учетом заполнения его ферромагнетиком

$$S_c = a \cdot b \cdot \kappa_{3c} = 28 \cdot 58 \cdot 0,85 = 1380 \text{ mm}^2 = 1,38 \cdot 10^{-3} \text{ m}^2;$$

 L_c — средняя длина магнитопровода

$$L_c = 2\left(h + c + \frac{\pi \cdot a}{2}\right) = 2\left(80 + 40 + \frac{\pi \cdot 28}{2}\right) \square 308 \text{ mm} = 0,308 \text{ m};$$

 μ_a — абсолютное значение магнитной проницаемости ферроматериала магнитопровода; значение это взято по ИЗ1

$$\mu_a = 0.5 \cdot 10^{-3} \text{ FH/M};$$

 $W_{L1},\,W_{L2}$ — числа витков индуктивности, пересчитанные от трансформатора.

Всегда $W_{L1}>W_1$, так как добавляются витки, расположенные в пространстве для W_2 . $W_{L2}>W_2$, добавляются витки в пространстве для W_1 .

5.3.2 Определяется число слоев $n_{cn.1\partial}$ для W_{L1} , добавляемых за счет толщины вторичной обмотки $c_{\kappa 2}$ трансформатора по ИЗ1.

$$n_{c \pi. 1 \partial} = \frac{c_{\kappa 2}}{d_{1n}} = \frac{7, 2}{1, 73} = 4, 16 = 4$$
 слоя.

5.3.3 Определяется число витков W_{L1} при параметрах проводников $W_{\kappa 1}=132$, $W_{1c\pi}=38$ по ИЗ1

$$W_{L1} = (W_{\kappa 1} + W_{1c\pi} \cdot n_{c\pi.1\partial}) \cdot n_{\kappa} = (132 + 38 \cdot 4) \cdot 2 = 568$$
 витков.

5.3.4 Определяется число слоев для W_{L2} , добавляемых за счет толщины $c_{\kappa 1}$ трансформатора по ИЗ1.

$$n_{cn.2\partial} = \frac{c_{\kappa 1}}{a_{2u}} = \frac{7,4}{3,44} = 2,15 \square 2$$
 слоя.

Получаем число витков W_{L2} при параметрах проводников $W_{\kappa 2}=8$, $W_{2c\pi}=5$ по ИЗ1:

$$W_{L2} = (W_{\kappa 2} + W_{2c\pi} \cdot n_{c\pi.2\partial}) \cdot n_{\kappa} = (8 + 5 \cdot 2) \cdot 2 = 36$$
 витков.

5.3.5 Согласно выражениям (5.3) и (5.4) при подстановке численных значений величин получаем:

$$L_1 = \frac{1,38 \cdot 10^{-3} \cdot 568^2}{0,308 + 0,8 \cdot 10^6 \cdot \delta} = \frac{445}{616 + 0,8 \cdot 10^6 \cdot \delta}.$$

Если δ задано в мм, то при $\delta = 1$ мм имеем $\delta = 10^{-3}$ мм. Получаем:

$$L_1 = \frac{445}{616 + 800 \cdot \delta}. ag{5.5}$$

Для L_2 с подстановкой численных значений в (5.4) имеем:

$$L_2 = \frac{1,38 \cdot 10^{-3} \cdot 36^2}{0,308 + 800 \cdot \delta} = \frac{1,79}{616 + 800 \cdot \delta}.$$
 (5.6)

По выражениям (5.5) и (5.6) построим зависимости L_1 , L_2 от δ .

Данные расчетов приведены в табл. 5.1.

Таблица 5.1

δ [мм]	0	0,5	1	2	3	4	5
L_1	720	440	310	200	150	120	100
[мГн]							
L_2 [м Γ н]	3	1,8	1,3	0,8	0,6	0,5	0,4

Кривые $L_1(\delta)$, $L_2(\delta)$ показаны на рис. 5.1.

Выводы по результатам ИЗ2

1. При сохранении постоянства МДС

$$I_1 \cdot W_1 = I_2 \cdot W_2.$$

Численные значения индуктивностей МЭ существенно зависят от линейных размеров магнитопровода S_c , L_c , его магнитной проницаемости и особенно от числа витков обмотки. При изменении W в 10 раз — индуктивность меняется в 100 раз.

2. Зависимость индуктивности от толщины немагнитного зазора δ нелинейная. С увеличением δ она сначала уменьшается, но при $\delta > 4$ мм почти не меняется.

6 ТАБЛИЦА 5 — ШИФРЫ ДЛЯ ОПРЕДЕЛЕНИЯ ИСХОДНЫХ ДАННЫХ ИЗ1, КР1, КР2

$N_{\underline{0}}N_{\underline{0}}$		Шифры работ	
вариантов	ИЗ1	KP1	КР2
1	БАП1МВ	БАП1.4	1
2	САП2МВ	САП2.6	2
3	БАП2МВ	ТАПЗ.12	3
4	ТАП2МВ	БМП4.2	4
5	БМП4МО	СМП5.3	5
6	СМП4МО	СМП6.3	6
7	ТМП4МО	ТМП9.9	7
8	БАЕ1МВ	БАЕ8.1	8
9	ЧАЕ9МВ	CAE5.2	9
10	БМЕ7МС	TAE10.10	10
11	CME7MC	БМЕ3.5	11
12	TME7MC	CME2.4	12
13	ЧМЕ7МС	TME17.11	13
14	БМЕ12КГ	БМЕ8.2	14
15	СМЕ12КГ	CME1.3	15
16	БМЕ1КГ	CME8.4	16
17	ЧАП19МС	БМЕ7.5	17
18	ЧМП19МС	CME7.5	18
19	ЧАЕ9МВ	TME7.10	19
20	ЧМЕ9МВ	БМП20.3	20
21	БМЕ7КГ	СМП20.3	21
22	СМЕ7КГ	ТМП20.9	22
23	ТМЕ7КГ	TAE11.3	23
24	ЧМЕ7КГ	БАЕ11.3	24
25	БМЕ7МС	CAE11.9	25

7 КОНТРОЛЬНАЯ РАБОТА № 1 (КР1)

7.1 Как формируется содержание и выполняется работа

Контрольная работа выполняется студентами в часы занятий по расписанию, отводится на неё 2 академических часа. Тексты вариантов КР1 составляются преподавателями, согласно шифрам в табл. 5. Буквенные составляющие шифров такие же, как для ИЗ1 (см. раздел 4.1). Первая цифра шифра указывает номер варианта в табл. 2, по которому выбираются параметры магнитных материалов магнитопровода. Вторая цифра указывает вариант в табл. 3, определяющий тип и линейные размеры магнитопровода. Параметры проводников обмоток (М — медные, А — алюминиевые) выписываются из табл. П.1, табл. П.2 Приложения. Особенности естественного (Е) и принудительного (П) охлаждений и соответствующие им значения коэффициентов теплоотдачи σ , пояснены в разделе 4.1.

В целом преподаватели, ведущие практические занятия, имеют по 2 комплекта заданий на КР1 из 25 вариантов в каждом.

Пример одного из вариантов КР1 с шифром БМЕ.11.3 с его исполнением приведен в разделе 7.5.

Контрольная работа имеет свой рейтинг (см. 7.4) с итогом в 20 баллов.

Ошибки и неточности, допущенные при выполнении контрольной по пунктам рейтинга, снижают фактическое значение итогового балла.

Неявка студентов на контрольную работу без уважительной причины приводит к полной потере 20 баллов.

7.2 Таблица 2 — Параметры магнитных материалов для контрольной работы № 1 (KP1)

No	Мате-	Δ_{c}	k_{3c}	γ	γ_1	$k_{ ho}$	ρ_{c0}	f_{10}	f_1	B_0	B_S	g_c
вар.	риал	MM	1	_	1	_	Вт/кг	кГц	кГц	Тл	Тл	Γ/cm^3
1	3412	0,5	0,95	1,5	2	1,4	1,6	0,05	0,05	1	1,25	
2	(342)	0,35	0,93	1,5	2	1,4	1,4	0,05	0,05	1	1,25	
3	3414	0,2	0,9	1,5	2	1,5	10,5	0,4	0,4	1	1	7,65
4	(344)	0,1	0,85	1,5	2	1,5	9	0,4	0,4	1	1	
5	3423	0,2	0,9	1,7	1,8	1,5	9	0,4	0,5	1	1,65	
6	(Э330)	0,1	0,85	1,6	1,8	1,5	34	1	1	1	1,65	
7		0,08	0,8	1,5	1,8	1,55	28	1	1	1	1,65	7,65
8	3425	0,05	0,75	1,4	2	1,6	26	2,5	5	0,5	1,6	
9	(3350)	0,02	0,62	1,4	2	1,65	25	2,5	5	0,5	1,5	
10		0,1	0,85	1,4	1,6	1,7	5	1	1	0,5	1,2	
11	50H	0,05	0,75	1,2	1,5	1,8	12	2,5	5	0,5	1	
12		0,02	0,62	1,2	1,4	1,9	60	10	10	0,5	1	
13		0,1	0,85	1,4	1,6	1,7	5	1	1	0,5	1,2	8,2
14	50НП	0,05	0,75	1,3	1,5	1,8	4,5	1	2	0,5	1	
15		0,02	0,62	1,2	1,4	1,9	2,8	1	5	0,5	1	
16	80HXC,	0,1	0,85	1,65	2	2,5	2	1	1	0,5	1	
17	79HM	0,05	0,75	1,5	2	2,8	6,3	2,5	5	0,5	1	8,5
18		0,02	0,62	1,4	2	3	30	10	15	0,5	1	
19	2000HM		1	1,2	2,5	1,2	21	20	20	0,2	0,5	5
20	3000HM	_	1	1,1	2,5	1,2	23	20	25	0,2	0,35	3

Примечание. Для шахтованных и ленточных магнитопроводов B_S соответствует H_S =5 A/cм; для ферритов B_S соответствует H_S =0,2 A/cм; всегда $\mu_a = B_S/H_S$ [Тл·м/А].

7.3 Таблица 3 — Исполнение и размеры сердечников для KP1

$N_{\circ}N_{\circ}$	Разъемный ПЛ				$N_{\circ}N_{\circ}$	Тороид				
вариан-	а	b	С	h	вариан-	а	b	c=d	D	
TOB					тов					
1	6,5	12,5	8	16	6	4	5	10	18	
2	10	12,5	12,5	32	7	6	8	20	32	
3	12,5	16	16	32	8	8	10	25	41	
4	16	32	25	50	9	12	20	40	64	
5	20	40	32	50	10	24	50	80	128	

Линейные размеры в мм.

7.4 Рейтинг КР1

- 1. Рисунок МЭ с обозначением геометрических параметров 2 б.
- 2. Расчет геометрических показателей 6 б.
- 3. Допустимые потери мощности 3 б.
- 4. Значение допустимой индукции 3 б.
- 5. Плотность тока в обмотках 2 б.
- 6. Максимальная габаритная мощность 2 б.
- 7. Весовые показатели 2 б.

Всего — 20 баллов.

Примечание: ошибки в п. 1 не учитываются в других пунктах, хотя они при этом получаются с неверными результатами.

7.5 Пример выполнения КР1 по варианту БМЕ11.3

Определить показатели трансформатора, выполненного на *броневом* магнитопроводе из *двух* ленточных сердечников типа ПЛ с размерами: ширина $a_c = 12,5$ мм, толщина $b_c = 16$ мм, ширина окна c = 16 мм, высота окна h = 32 мм (взяты из табл. 3 для варианта 3). Заполнение окна — *полное*, ввиду естественного охлаждения.

По варианту 11 из табл 2 материал сердечника марки 50Н имеет параметры:

коэффициент заполнения сечения $\kappa_{3c}=0,75$; удельный вес $g_c=8,2$ г/см³; удельные потери мощности $\rho_c=12$ Вт/кг; при индукции $B_0=0,5$ Тл и частоте $f_{10}=2,5$ кГц; индукция насыщения $B_S=1$ Тл; коэффициент потерь мощности на стыке сердечников $\kappa_{\rho}=1,8$;

коэффициент влияния частоты на потери в стали $\gamma = 1,2$.

Трансформатор будет выполнен с *медными* обмотками для работы с частотой питающего напряжения $f_1 = 5$ к Γ ц в условиях *естественного* воздушного охлаждения.

Параметры обмоточного материала из <u>меди</u> для температуры нагрева 70 °C принимаются (взято $\tau = 50$ °C, так как не задано): удельное сопротивление $\rho_{\kappa} = 2,1\cdot 10^{-8}$ Ом·м, удельный вес $g_{\kappa} = 8,8$ г/см³, среднерасчетный коэффициент заполнения катушки сечениями проводников обмоток $\kappa_{3\kappa} = 0,35$ (данные из табл. П.1).

Требуется определить (после выполнения рис. 7.1)

- 1. Геометрические параметры трансформатора: объем магнитопровода V_c , объем катушек V_κ , поверхность охлаждения сердечников Π_{oc} и катушек $\Pi_{o\kappa}$.
 - 2. Потери мощности в обмотках и сердечниках ΔP_{κ} , ΔP_{c} .
- 3. Среднюю плотность тока обмоток j и рабрчую индукцию магнитопровода B_p , допустимые при номинальном нагреве трансформатора.
 - 4. Максимальную габаритную мощность P_1 .
- 5. Вес трансформатора и его удельное значение \mathcal{G}_g на единицу габаритной мощности.

Рис. 7.1

Решение.

1. Геометрические показатели трансформатора.

Рассчитываются по рис. 2 для броневой конструкции. Здесь выдержаны соотношения размеров, согласно данным задачи: $c/a=x=1,3\,,\;b/a=y=1,3\,,\;h/a=z=2,6\,.$ Магнитопровод выполняется из 2-х составляющих частей с размерами по сечению a_c , b_c . Для стандартных обозначений размеров имеем $a=2a_c\,,\;b=b_c\,.$

Средняя длина сердечника магнитопровода (табл. 2.1 методического пособия):

$$L_c = 2\left(c + h + \frac{\pi a_c}{2}\right) = 2\left(16 + 32 + \pi \cdot 12, 5/2\right) = 135 \text{ mm} = 0,135 \text{ m}.$$

Сечение магнитопровода:

$$S_c = 2a_c \cdot b = 2 \cdot 12,5 \cdot 16 = 400 \text{ mm}^2 = 0,4 \cdot 10^{-3} \text{ m}^2.$$

Сечение окна магнитопровода:

$$S_{o\kappa} = h \cdot c = 32 \cdot 16 = 512 \text{ MM}^2 = 0.512 \cdot 10^{-3} \text{ M}^2.$$

Объем магнитопровода

$$V_c = S_c \cdot L_c = 0.4 \cdot 10^{-3} \cdot 0.135 = 5.4 \cdot 10^{-5} \text{ m}^3.$$

Объем катушки:

$$V_{\kappa} = c_{\kappa} \cdot h_{\kappa} \cdot L_{\kappa} = c \cdot h \cdot L_{\kappa} = 0,016 \cdot 0,032 \cdot 0,107 = 5,48 \cdot 10^{-5} \text{ м}^3.$$
 Здесь $c_{\kappa} = c$, $h_{\kappa} = h$, поскольку заполнение окна — полное.

Поверхность охлаждения магнитопровода (табл. 2.1):

$$\Pi_{oc\ \Pi3} = (2a_c + b) \cdot (L_c - h) \cdot 2 =$$

= $(2 \cdot 0, 0125 + 0, 016)(0, 135 - 0, 032) \cdot 2 = 8, 4 \cdot 10^{-3} \text{ m}^2.$

Поверхность охлаждения катушки (табл. 2.1):

$$\Pi_{o\kappa \Pi 3} = (2c_{\kappa} + h_{\kappa})(L_{\kappa} - 2b) = (2c + h)(L_{\kappa} - 2b) =
= (2 \cdot 0,0016 + 0,032)(0,107 - 2 \cdot 0,016) = 4,8 \cdot 10^{-3} \text{ m}^2.$$

Примечание: при *неполном* заполнении окна, но охлаждении естественном, следует брать эту же формулу. То есть $\Pi_{o\kappa\;\Pi 3}$, но не $\Pi_{o\kappa\;H 3}$.

2. Расчет допустимых потерь мощности.

Потери мощности в катушках

$$\Delta P_{\kappa} = \tau \cdot \sigma \cdot \Pi_{o\kappa} \cdot \frac{B}{1+\nu},$$

$$B = 1 + \beta \sqrt{\frac{\nu + 0.6}{1+0.2B \cdot \nu}}, \qquad \beta = \frac{\Pi_{oc}}{\Pi}, \qquad \nu = 1.$$

где

Получаем,

$$\beta = \frac{8, 4 \cdot 10^{-3}}{4.8 \cdot 10^{-3}} = 1,75,$$

$$E = 1 + 1,75\sqrt{\frac{1 + 0,6}{1 + 0,2 \cdot 1,75 \cdot 1}} = 1 + 1,75 \cdot 1,09 = 2,9$$

$$\Delta P_{\kappa} = 50 \cdot 10 \cdot 4.8 \cdot 10^{-3} \cdot \frac{2.9}{1+1} = 3.48 \text{ Bt.}$$

Потери мощности в магнитопроводе

$$\Delta P_{c} = \Delta P_{\kappa} \cdot v = 3,48 \cdot 1 = 3,48 \text{ Bt.}$$

Принимаем $\Delta P_c = \Delta P_{\kappa} \approx 3.5$ Вт.

3. Значение допустимой индукции:

$$B_p = B_0 \sqrt{\frac{\Delta P_c}{G_c \cdot \rho_{co} \cdot \kappa_{\rho} \cdot \left(\frac{f_1}{f_{10}}\right)^{\gamma}}}.$$

Определяем сначала вес магнитопровода:

$$G_c = V_c \cdot \kappa_{3c} \cdot g_c = 5,4 \cdot 10^{-5} \cdot 0,75 \cdot 8,2 \cdot 10^3 = 0,332$$
 кг.

Здесь взято $g_c = 8.2 \text{ г/см}^3 = 8.2 \cdot 10^3 \text{ кг/м}^3$.

Теперь находим индукцию:

$$B_p = 0.5 \cdot \sqrt{\frac{3.5}{0.332 \cdot 12 \cdot 1.8 \cdot (5/2.5)^{1.2}}} 0 = 0.5 \cdot \sqrt{0.212} = 0.23 \text{ Тл.}$$

Рабочая индукция меньше индукции насыщения $B_S = 1 \, {\rm Tr}$, поэтому дальше она не корректируется.

4. Плотность тока обмоток

$$j = \sqrt{\frac{\Delta P_{\kappa}}{V_{\kappa} \cdot \kappa_{3\kappa} \cdot \rho_{\kappa}}} = \sqrt{\frac{3.5}{5.48 \cdot 10^{-5} \cdot 0.35 \cdot 2.1 \cdot 10^{-8}}} = 2.3 \cdot 10^{6} \,\text{A/m}^{2} =$$
$$= 2.95 \,\text{A/mm}^{2}.$$

5. Максимальная габаритная мощность

$$\begin{split} P_1 &= 4 \cdot \kappa_{\phi} \cdot n_0 \cdot \kappa_{o\kappa} \cdot \kappa_{sc} \cdot S_{o\kappa} \cdot S_c \cdot B \cdot f_1 \cdot j = \\ &= 4 \cdot 1,\!11 \cdot 0,\!5 \cdot 0,\!35 \cdot 0,\!75 \cdot 0,\!512 \cdot 10^{-3} \cdot 0,\!4 \cdot 10^{-3} \cdot 0,\!23 \cdot 5000 \cdot 2,\!95 \cdot 10^6 = \\ &= 405,\,\mathrm{BA}. \end{split}$$

6. Весовые показатели.

Вес обмоток:

$$G_{\kappa} = V_{\kappa} \cdot \kappa_{3\kappa} \cdot g_{\kappa} = 5.48 \cdot 10^{-5} \cdot 0.35 \cdot 8.8 \cdot 10^{3} = 0.17 \text{ Kg}.$$

Вес магнитопровода найден в п.3:

$$G_c = 0.332$$
 кг.

Общий вес трансформатора:

$$G = G_{\kappa} + G_{c} = 0.17 + 0.332 \approx 0.5 \text{ Kg}.$$

Удельный вес на единицу мощности

$$\Theta_g = \frac{G}{P_1} = \frac{500 \text{ r}}{405 \text{ BA}} = 1,23 \text{ r/BA}.$$

8 КОНТРОЛЬНАЯ РАБОТА № 2 (КР2)

8.1 Как формируется содержание

В отличие от индивидуальных заданий, где студенты многие параметры выбирают сами, КР2, как и КР1, имеет завершенный вид и выдается на аудиторных практических занятиях как один из 25 вариантов пакета, имеющегося у преподавателя. Студенту надлежит лишь выполнить контрольную за 2 академических часа.

Пример содержания и выполнения КР2 дан в разделе 8.4. Для преподавателей, составляющих тексты КР2, необходимые параметры приведены в табл. 5. Эти параметры не являются единственными, при необходимости их можно корректировать (преподавателю).

8.2 Рейтинг КР2

- 1. Исходные данные, схема замещения 2 б.
- 2. Расчет электрических величин 2 б.
- 3. Расчет резонансных частот 2 б.
- 4. Расчет КПД 1 б.
- 5. Расчет коэффициента мощности 2 б.
- <u>6. Расчет длительностей переходных процессов 1 б.</u> Всего 10 баллов.

8.3 Таблица 4 — Параметры для вариантов КР2

No No	X_S	R_1	R_2	X_{μ}	R_{μ}	C_{II}	K_T	U_1	f_1	I_{2H}	$\cos \varphi_{\scriptscriptstyle H}$
вар.	Ом	Ом	Ом	кОм	кОм	пФ	-	В	кГц	A	_
1	20	5	0,05	1,5	0,5	400	8	220	5	12	0,85
2	15	2	0,4	1,2	0,4	250	5	220	2	8	0,8
3	12	2	0,2	2,5	0,4	160	4	220	1,2	4	0,9

Околи	ание т	абЖ.14	R_2	X_{μ}	R_{μ}	C_{II}	K_T	U_1	f_1	$I_{2\mu}$	$\cos \varphi_{_{\scriptscriptstyle H}}$
вар.	Ом	Ом	Ом	кОм	кОм	пФ	_	В	кГц	A	_
4	6	2	0,25	2	0,6	200	2	220	0,5	2	0,7
5	2,5	0,4	0,1	1,4	0,4	500	2	127	1	20	0,7
6	2,5	0,4	0,03	1,5	0,4	250	4	127	0,5	40	0,8
7	2,5	0,4	0,01	1,8	0,5	250	8	127	0,05	80	0,9
8	4	1	0,25	0,8	0,2	500	2	380	5	10	0,7
9	4	1	0,25	0,8	0,2	500	2	380	2,5	10	0,7
10	8	2	0,25	1,5	0,4	250	4	380	1	10	0,8
11	4	1	0,25	0,9	0,2	250	2	380	0,5	10	0,9
12	1	0,25	0,02	0,2	0,05	350	4	100	10	20	0,7
13	1	0,25	0,06	0,2	0,05	250	2	100	5	10	0,8
14	1	0,25	0,25	0,2	0,05	200	1	100	1	5	0,9
15	0,2	0,05	5	0,025	0,01	800	0,1	25	1	10	0,6
16	0,05	0,02	0,6	0,05	0,02	600	0,2	25	0,5	5	0,7
17	0,2	0,05	1,4	0,05	0,02	400	0,2	25	0,05	2	0,8
18	0,05	0,01	0,25	0,01	0,05	300	0,2	50	10	20	0,7
19	0,05	0,01	1	0,01	0,05	250	0,1	50	5	10	0,8
20	0,05	0,01	4	0,01	0,05	500	0.05	50	1	5	0,9
21	0,5	0,1	0,05	0,02	0,01	400	2	110	0,5	20	0,85
22	0,8	0,1	0,05	0,04	0,01	500	2	110	0,5	20	0,8
23	0,8	0,1	0,05	0,03	0,01	500	2	110	1	20	0,8
24	1	0,1	0,04	0,04	0,01	400	2	110	1	20	0,85

No No	X_{S}	R_1	R_2	X_{μ}	R_{μ}	C_{II}	K_T	U_1	f_1	I_{2H}	$\cos \phi_{\scriptscriptstyle H}$
вар.	Ом	Ом	Ом	кОм	кОм	пФ	_	В	кГц	A	_
25	1	0,2	0,1	0,04	0,05	500	2	110	1	15	0,8

8.4 Пример выполнения КР2 по варианту 3

Для этого варианта из табл. 5 схема замещения трансформатора (рис. 8.1) имеет параметры:

- суммарное индуктивное сопротивление рассеяния $X_S = 12$ [Ом],
 - активное сопротивление первичной обмотки $R_1 = 2 \, \mathrm{Om},$
 - активное сопротивление вторичной обмотки $R_2 = 0.2$ Ом,
 - сопротивление току намагничивания $X_{\mu} = 2500$ [Ом],
 - активное сопротивление от потерь в стали $R_{\mu} = 400$ [Ом],
 - проходная емкость $C_n = 160 \text{ п}\Phi$,
 - коэффициент трансформации $\kappa_T = 4$,
 - напряжение питающей сети $U_1 = 220$ B,
 - частота первичного напряжения $f_1 = 1200 \, \Gamma$ ц,
 - номинальный ток нагрузки $I_{2h} = 4$ A,
 - коэффициент мощности нагрузки $\cos \varphi_{H} = 0.9$.

Определить:

- токи холостого хода I_{10} и короткого замыкания $I_{1\kappa}$,
- $-\,$ выходное напряжение U_2 при номинальном токе $I_{2{\scriptscriptstyle H}}$,
- резонансные частоты на холостом ходу f_{px} и под нагрузкой $f_{p\mu}$,
- коэффициент полезного действия η и коэффициент мощности схемы замещения соя φ при номинальном токе нагрузки,
- длительности переходных процессов при включениях трансформатора на холостом ходу и под нагрузкой.

Решение.

Расчеты ведутся согласно схеме замещения трансформатора на рис. 8.1, по формулам из раздела 10.2 уч. пособия [1].

Рис. 8.1

 ${\it 1}.$ Определение токов холостого хода I_{10} и короткого замыкания $I_{1\kappa}.$

$$I_{10} = \frac{U_1}{Z_{xx}} = \frac{U_1}{\sqrt{x_{\mu}^2 + R_{\mu}^2}} = \frac{220}{\sqrt{2500^2 + 400^2}} = 0,09 \text{ A}.$$

$$I_{1\kappa} = \frac{U_1}{Z_{\kappa 3}} = \frac{U_1}{\sqrt{x_S^2 + (R_1 + R_2 \kappa_T^2)^2}} =$$

$$= \frac{220}{\sqrt{12^2 + (2 + 0.2 \cdot 4^2)^2}} = \frac{220}{13,08} = 16,82 \text{ A}.$$

2. Вторичное напряжение при номинальном токе нагрузки:

$$U_{2_{H}} = \frac{1}{\kappa_{T}} \left(U_{1} - Z_{\kappa_{3}} \frac{I_{2_{H}}}{\kappa_{T}} \right) = \frac{1}{4} \left(220 - 13,08 \cdot \frac{4}{4} \right) = 54,18 \approx 54 \, \mathrm{B}.$$

3. Резонансные частоты трансформатора. Резонансная частота на холостом ходу:

$$f_{px} = \frac{1}{2\pi \cdot \sqrt{L_{\mu} \cdot C_n}}$$
, где $L_{\mu} = \frac{X_{\mu}}{2\pi f_1} = \frac{2500}{2\pi \cdot 1200} = 0,33$ Гн.

Получаем:

$$f_{px} = \frac{1}{2\pi \cdot \sqrt{0.33 \cdot 160 \cdot 10^{-12}}} = 2.19 \cdot 10^4 \, \, \Gamma$$
ц $\approx 22 \, \, \text{к}$ Гц.

Здесь $C_n = 160 \text{ п}\Phi = 160 \cdot 10^{-12} \text{ }\Phi.$

Резонансная частота под нагрузкой:

$$f_{p_H} = \frac{1}{2\pi\sqrt{L_{\kappa_3}\cdot C_{II}}},$$
 при $L_{\kappa_3} = \frac{X_S}{2\pi f_1} = \frac{12}{2\pi\cdot 1200} = 1,6\cdot 10^{-3}$ Гн.

Получаем:

$$f_{pH} = \frac{1}{2\pi\sqrt{1,6\cdot10^{-3}\cdot160\cdot10^{-12}}} = 3,15\cdot10^5$$
 Гц.

Резонансные частоты для трансформатора не опасны, так как в десятки раз превышают рабочую частоту $f_1 = 1,2$ к Γ ц:

$$f_{px}/f_1 = \frac{22}{1.2} = 18.3$$
; $f_{pH}/f_1 = \frac{315}{1.2} = 263$.

4. Коэффициент полезного действия схемы замещения при номинальной нагрузке.

$$\eta = \frac{\left(I'_{2H}\right)^2 \cdot R'_{H}}{\left(I'_{2H}\right)^2 R'_{H} + \left(I'_{2H}\right)^2 \left(R_1 + R'_2\right)} = \frac{R'_{H}}{R'_{H} + R_1 + R'_2}.$$

Здесь

$$R'_{\scriptscriptstyle H} = R_{\scriptscriptstyle H} \cdot \kappa_T^2, \quad R_{\scriptscriptstyle H} = \frac{U_{\scriptscriptstyle 2H}}{I_{\scriptscriptstyle 2H}} \cdot \cos \varphi$$
;

$$R'_{H} = \frac{52}{4} \cdot 0,9 \cdot 4^{2} = 187,2 \text{ Om.}$$

Получаем:

$$\eta = \frac{187,2}{187,2+2+0,2\cdot 4^2} \approx 0,973 \approx 97\%.$$

5. Коэффициент мощности схемы замещения при номинальной нагрузке $\cos \varphi$:

$$\varphi = arctg \frac{X_c + X'_H}{R_1 + R'_2 + R'_H},$$

где

$$X'_{H} = Z'_{H} \cdot \sin \varphi_{H} = Z_{H} \cdot \sqrt{1 - \cos^{2} \varphi_{H}} = \frac{U_{2H} \cdot \kappa_{T}^{2}}{I_{2H}} \sqrt{1 - \cos^{2} \varphi_{H}} = \frac{52 \cdot 4^{2}}{4} \cdot \sqrt{1 - 0.9^{2}} = 208 \cdot 0.436 = 90.7 \text{ Om.}$$

Получаем:

$$\varphi = arctg \frac{12 + 90.7}{2 + 3.2 + 187.2} = 28^{\circ},$$
$$\cos \varphi = \cos 28^{\circ} = 0.882.$$

6. Длительности переходных процессов при включениях трансформатора на холостом ходу и под нагрузкой. Определяется, примерно, четырьмя значениями постоянных времени

$$t_{nx} = 4T_x, \quad t_{nH} = 4T_H,$$

где

$$T_{_{X}} = \frac{L_{_{\mu}}}{R_{_{\mu}}} = 0,825 \text{ mc},$$

$$T_{_{H}} = \frac{X_{_{S}} + X_{_{H}}'}{R_{_{1}} + R_{_{2}}' + R_{_{H}}'} \cdot \frac{1}{2\pi f_{_{1}}} = \frac{12 + 90,7}{2 + 3,2 + 187,2} \cdot \frac{1}{2\pi \cdot 1200} = 0,07 \text{ mc}.$$

Время переходного процесса включения без нагрузки:

$$t_{nx} = 4T_x = 4 \cdot 0.825 = 3.3$$
 Mc.

Это составит
$$t_{nx}/T = 1/f_1 = t_{nx} \cdot f_1 = 3,3 \cdot 10^{-3} \cdot 1,2 \cdot 10^3 \approx 4$$
, то

есть 4 периода рабочей частоты.

Время переходного процесса включения под нагрузкой:

$$t_{nH} = 4T_H = 4.0,07 = 0,28 \text{ Mc},$$

в 3,6 раз меньше времени переходного процесса на холостом ходу.

Литература для выполнения контрольной работы

1. Обрусник В.П. Магнитные элементы электронных устройств: Учебное пособие. — Томск: ТУСУР, 2006.

9 ВОПРОСЫ ДЛЯ ПРОВЕРКИ ЗНАНИЙ, ПОЛУЧЕННЫХ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИНЫ МЭ ЭУ

- 1. Назвать 4 основных типоисполнений МЭ ЭУ, их отличительные свойства.
- 2. Нарисовать по памяти одну из типовых конструкций МЭ ЭУ.
- 3. Показать (нарисовать) сечение магнитопровода МЭ, выполненного на 2-х типовых сердечниках (броневое, стержневое или тороидальное исполнений).
- 4. Почему есть МЭ с неполным заполнением окна, когда применение их является целесообразным?
- 5. Почему при естественном охлаждении формула для поверхности охлаждений катушек берется для случая полного заполнения окна, хотя оно неполное?
 - 6. Как определить объем магнитопровода и катушек?
- 7. Составить и записать выражения для L_c и L_κ у одной из типовых конструкций МЭ, указанных преподавателем.
- 8. От каких величин и параметров зависит входная мощность M \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I} .
- 9. Какие величины определяют потери мощности в сердечниках магнитопровода? (3.4).
- 10. Какими величинами определяется плотность тока в обмотках? (3.5).
- 11. Формула закона электромагнитной индукции, пояснить её составляющие. (4.1).
- 12. Формула закона полного тока, пояснить её составляющие. (4.2).
- 13. Кривая намагничивания. Нарисовать и пояснить её свойства (рис. 6.1, δ).

- 14. Разновидность МЭ по их функциональному назначению (назвать основные).
 - 15. Чем отличается дроссель от дросселя насыщения?
- 16. Чем отличается магнитный усилитель от дросселя насыщения?
- 17. Схема замещения трансформатора и состав её параметров (рис. 10.3).
- 18. Чем отличается трансформатор напряжения от трансформатора тока?
- 19. Как найти коэффициент трансформации трансформатора напряжения?
- 20. Как определить КПД и коэффициент мощности трансформатора напряжения? (11.39), (11.40).
- 21. Как проверить правильность заполнения окна магнито-провода обмотками?
- 22. Какие параметры определяют допустимые потери мощности в обмотках МЭ? (3.2).
- 23. Какие параметры определяют допустимые потери мощности в магнитопроводе? (3.4).
 - 24. Принцип действия трансформатора напряжения.
- 25. Охарактеризовать 4 типа ферроматериалов для магнитопроводов МЭ, их показатели для B_s , f_1 , Δ_c и др.
- 26. Какие параметры определяют рабочую индукцию МЭ? (3.6).
- 27. Какие параметры определяют плотность тока в обмотках? (3.5).
- 28. Как определить ток намагничивания трансформатора напряжения?
- 29. Как определить ток короткого замыкания трансформатора напряжения?
- 30. Отличительные свойства ферритов, когда они применяются?
- 31. От чего зависит индуктивность обмоток? От потоков рассеяния? Как её уменьшить?
- 32. Что является центральным для установления номинальных значений токов и напряжений обмоток МЭ?

Примечание: в скобках после вопросов стоят номера формул и рисунков учебного пособия [1], которые можно использовать для ответов.

ЛИТЕРАТУРА

- 1. Обрусник В.П. Магнитные элементы электронных устройств. Томск: ТУСУР, 2006. 58 с.
- 2. Бальян Р.Х., Обрусник В.П. Оптимальное проектирование силовых высокочастотных ферромагнитных устройств. Изд-во Томского Госуниверситета, 1987. 165 с.
- 3. Белопольский И.И., Каретникова Е.И., Пикалова Л.Г. Расчет трансформаторов и дросселей малой мощности. М.: Энергия, 1973. 400 с.
- 4. Горский А.Н. и др. Расчет электромагнитных элементов источников вторичного электропитания. М.: Радио и связь, 1988. 176 с.
- 5. Миловзоров В.П. Электромагнитные устройства автоматики. М.: Высшая школа, 1983. 408 с.
- 6. Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. М.: Радио и связь, 1983. 198 с.
- 7. Моин В.С. Стабилизированные транзисторные преобразователи. М.: Энергоиздат, 1986. 376 с.
- 8. Найвельт Г.С. Источники электропитания радиоэлектронной аппаратуры. Справочник. М.: Радио и связь, 1985. 575 с.
- 9. Обрусник В.П. Дискретно-управляемые ферромагнитные элементы для преобразования параметров электроэнергии. М.: Наука, 1978. 320 с.
- 10. Русин Ю.С. Трансформаторы звуковой и ультразвуковой частоты. М.: Энергия, 1973. 152 с.

- 11. Сидоров И.Н. и др. Малогабаритные магнитопроводы и сердечники. Справочник. М.: Радио и связь, 1989. 384 с.
- 12. Сидоров И.Н. и др. Малогабаритные трансформаторы и дроссели. Справочник. М.: Радио и связь, 1985. 416 с.
- 13. Бамдас А.М., Блинов И.В., Захаров И.В., Шапиро С.В. Ферромагнитные умножители частоты. М.: Энергия, 1968. 268 с.