2007年(数一)直题答案解析

一、选择题

(1) B

当 x→0⁺ 时,

$$\ln \frac{1+x}{1-\sqrt{x}} = \ln \left[1 + \left(\frac{1+x}{1-\sqrt{x}} - 1 \right) \right] = \ln \left(1 + \frac{x+\sqrt{x}}{1-\sqrt{x}} \right) \sim \frac{x+\sqrt{x}}{1-\sqrt{x}} \sim \sqrt{x} . \text{ is } \text{is } \text$$

(2) D

只有间断点 x=0.由于 $\lim_{x\to 0} y = \lim_{x\to 0} \left\lceil \frac{1}{x} + \ln(1+e^x) \right\rceil = \infty$,

故 x=0 为垂直渐近线.

$$\mathbb{Z}$$
 $\lim_{x \to -\infty} y = \lim_{x \to -\infty} \left[\frac{1}{x} + \ln(1 + e^x) \right] = 0 + \ln 1 = 0,$

故 $x \rightarrow -\infty$ 时有水平渐近线 v=0

$$\mathbb{Z} \quad \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left[\frac{1}{x^2} + \frac{\ln(1 + e^x)}{x} \right] = 0 + \lim_{x \to +\infty} \frac{e^x}{1 + e^x} = 1,$$

$$\lim_{x \to +\infty} (y - x) = \lim_{x \to +\infty} \left[\frac{1}{x} + \ln(1 + e^x) - \ln e^x \right] = 0 + \lim_{x \to +\infty} \ln \frac{1 + e^x}{e^x} = 0,$$

故 $x \rightarrow + \infty$ 时有斜渐近线 y = x.

综上,所求曲线的渐近线条数为3条,答案为D.

(3) C

如题目中图所示,大小半圆的面积分别为 π 与 $\frac{1}{4}\pi$.

按定积分的几何意义知,当 $x \in [0,2]$ 时 $f(x) \ge 0$,当 $x \in [2,3]$ 时 $f(x) \le 0$.则

$$F(3) = \int_{0}^{3} f(t) dt = \int_{0}^{2} f(t) dt + \int_{2}^{3} f(t) dt = \frac{1}{2} \left(\pi - \frac{\pi}{4} \right) = \frac{3}{8} \pi,$$

$$F(2) = \int_{0}^{2} f(t) dt = \frac{1}{2} \pi.$$

因为 f(x)为奇函数,所以 $F(x) = \int_{-x}^{x} f(t) dt$ 为偶函数.

得
$$F(-3) = F(3) = \frac{3}{8}\pi$$
, $F(-2) = F(2) = \frac{1}{2}\pi$.

因此 $F(-3) = \frac{3}{4}F(2)$.故应选 C.

(4) D

解 由选项 A 的条件得 $\lim_{x\to 0} f(x) = 0$,又 $\lim_{x\to 0} f(x) = f(0)$,从而 f(0) = 0. 由选项 B 的条件得 $\lim_{x\to 0} \left[f(x) + f(-x) \right] = f(0) + f(0) = 0$,从而 f(0) = 0.

由选项 C 的条件得 $\lim_{x\to 0} f(x) = f(0) = 0$,从而 $\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x) - f(0)}{x} = f'(0)$ 存在.

因此 A、B、C 正确.故应选 D.

(5) D

解 由 f''(x) > 0 (x > 0)得 f'(x)在(0,+ ∞)单调上升.f(x)只有以下三种情形:

(1)由存在 $x_0 \in (0, +\infty), f'(x_0) = 0$ 得

$$f'(x) \begin{cases} <0, & 0 < x < x_0, \\ =0, & x = x_0, \\ >0, & x > x_0. \end{cases}$$

从而 f(x)在 $(0,x_0]$,在 $[x_0,+\infty)$,

又 $x>x_1>x_0$ 时

$$f(x) > f(x_1) + f'(x_1)(x - x_1),$$

所以 $\lim_{x\to +\infty} f(x) = +\infty$.

(2) 对所有 $x \in (0, +\infty)$, f'(x) > 0 所以 f(x)在 $(0, +\infty)$, 且 $\lim_{x \to \infty} f(x) = +\infty$.

(3) 対 $\forall x \in (0, +\infty), f'(x) < 0, f(x)$ 在 $(0, +\infty)$ 人,则或 $\lim_{x \to +\infty} f(x)$ 当或 $\lim_{x \to +\infty} f(x) = -\infty$.

例如,
$$f(x) = \frac{1}{x} \Rightarrow f''(x) = \frac{2}{x^3} > 0 \ (x > 0).$$

$$u_n = f(n) \setminus \lim_{n \to +\infty} f(n) = 0.$$

又如,
$$f(x) = \frac{1}{x} - x \Rightarrow f''(x) = \frac{2}{x^3} > 0(x > 0)$$
.

$$u_n = f(n) = \frac{1}{n} - n$$
, $\underbrace{\text{H} \lim_{n \to +\infty} u(n)} = -\infty$.

所以 A、B 不正确.

由(1),(2)得 C 不正确,而 D 正确.故应选 D.

(6) B

解 记点 M 与 N 的坐标分别为 (x_M, y_M) , (x_N, y_N) ,如右图所示.将 f(x,y)=1 代入被积表达式得

A项
$$\int_{\Gamma} f(x,y) dx = \int_{\Gamma} 1 dx = x_N - x_M > 0$$
;

B项
$$\int_{\Gamma} f(x,y) dy = \int_{\Gamma} 1 dy = y_N - y_M < 0;$$

$$C \, \overline{y} \int_{\Gamma} f(x,y) ds = \int_{\Gamma} ds = \Gamma$$
的弧长 >0 ;

D 项
$$\int_{\Gamma} f'_{x}(x,y) dx + f'_{y}(x,y) dy = 0,$$

因为将 f(x,y)=1 求全微分得 $f'_x(x,y)dx+f'_y(x,y)dy=0$.正确答案为 B.

解 因为
$$(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) + (\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3) + (\boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_1) = \mathbf{0},$$

所以向量组 $\alpha_1 - \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_1$ 线性相关.故应选 A.

(8) B

解 根据相似的必要条件: $\sum a_{ii} = \sum b_{ii}$, 易见 \mathbf{A} 和 \mathbf{B} 肯定不相似.由此可排除 \mathbf{A} 与 \mathbf{C} .

$$\pm |\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - 2 & 1 & 1 \\ 1 & \lambda - 2 & 1 \\ 1 & 1 & \lambda - 2 \end{vmatrix} = \begin{vmatrix} \lambda & \lambda & \lambda \\ 1 & \lambda - 2 & 1 \\ 1 & 1 & \lambda - 2 \end{vmatrix} = \lambda (\lambda - 3)^2,$$

知矩阵 A 的特征值为 3,3,0.故二次型 x^TAx 的正惯性指数 p=2,负惯性指数 q=0.而二次型 x^TBx 的正惯性指数亦为 p=2,负惯性指数 q=0,所以 A 与 B 合同.故应选 B.

(9) C

解 设事件 A = "第 4 次射击恰好第 2 次命中目标",则 A 表示共射击 4 次,其中前 3 次只有 1 次击中目标,且第 4 次击中目标.因此

$$P(A) = C_3^1 p (1-p)^2 \cdot p = 3p^2 (1-p)^2$$
. 故应选 C.

(10) A

解 由于(X,Y)服从二维正态分布,因此 X 与 Y 不相关可知 X 与 Y 相互独立.于是有 $f_{X|Y}(x|y) = f_X(x)$.

选项 A 正确.

若仔细分析,由于 X 与 Y 不相关,即 $\rho=0$,因此(X,Y)的联合密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]}.$$

而 X,Y 的边缘概率密度分别为

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, \qquad f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}},$$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} = f_X(x)$$
,故应选 A.

二、填空题

(11) $\frac{\sqrt{e}}{2}$

解 原式=
$$-\int_{1}^{2} \frac{1}{x} de^{\frac{1}{x}} = -\frac{1}{x} e^{\frac{1}{x}} \Big|_{1}^{2} + \int_{1}^{2} e^{\frac{1}{x}} d\left(\frac{1}{x}\right) = -\frac{1}{2} e^{\frac{1}{2}} + e + e^{\frac{1}{x}} \Big|_{1}^{2} = \frac{1}{2} e^{\frac{1}{2}} = \frac{\sqrt{e}}{2}.$$

(12) $yx^{y-1}f_1' + y^x \ln y f_2'$

解 由多元复合函数求导法则,有

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial}{\partial x} (x^{y}) + \frac{\partial f}{\partial v} \frac{\partial}{\partial x} (y^{x}) = yx^{y-1} f'_{1} + y^{x} \ln y f'_{2}.$$

(13) $C_1 e^{3x} + C_2 e^x - 2e^{2x}$

解 特征方程 $\lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0$ 的根为 $\lambda = 1, \lambda = 3$.

非齐次项 $f(x) = e^{\alpha x}$, $\alpha = 2$ 不是特征根,非齐次方程有特解 $\gamma^* = A e^{2x}$.

代入方程得 $(4A-8A+3A)e^{2x}=2e^{2x} \Rightarrow A=-2$.

因此,通解为 $y = C_1 e^{3x} + C_2 e^x - 2e^{2x}$.

$$(14) \frac{4}{3} \sqrt{3}$$

解 如图所示.Σ 关于 yOz 平面对称,x 关于 x 为奇函数,从而 $\iint_{\Sigma} x dS = 0$.

由变量的轮换对称性

得
$$\iint_{\Sigma} y \, dS = \iint_{\Sigma} x \, dS = \iint_{\Sigma} z \, dS.$$

即 $I = \iint_{\Sigma} (x + |y|) dS = \iint_{\Sigma} y \, dS$

$$= \frac{1}{3} \iint_{\Sigma} (|x| + |y| + |z|) dS$$

$$= \frac{1}{3} \iint_{\Sigma} (|x| + |y| + |z|) dS$$

$$=\frac{1}{3}$$
 $\iint_{\Sigma} 1 dS = \frac{1}{3}$ · 曲面 Σ 的面积.

记 Σ 在第一卦限部分的面积为 σ_1 ,则 $\sigma_1 \cos \gamma = \frac{1}{2}$,即 $\sigma_1 = \frac{\sqrt{3}}{2}$.

因此
$$I = \frac{1}{3} \cdot 8\sigma_1 = \frac{8}{3} \cdot \frac{\sqrt{3}}{2} = \frac{4}{3}\sqrt{3}$$
.

(15) 1

可知秩 $r(\mathbf{A}^3)=1$

(16) $\frac{3}{4}$

这是一个几何型概率的计算题.设所取的两个数分别为 x 和 y,则 以x 为横坐标以y 为纵坐标的点(x,y)随机地落在边长为1的正方形 内,如右图所示.

设事件 Λ 表示"所取两数之差的绝对值小于 $\frac{1}{2}$ ",则样本空间 Ω = $\{(x,y):0 < x < 1,0 < y < 1\};$ 事件 A 的样本点集合为区域 G 中所 有的点,而 $G = \{(x,y): 0 < x < 1, 0 < y < 1, |y-x| < \frac{1}{2}\}$.区域 Ω 的面

积
$$S_a = 1$$
,区域 G 的面积 $S_G = S_a - S_{G_1} - S_{G_2} = 1 - \frac{1}{4} = \frac{3}{4}$.

因此
$$P(A) = \frac{S_G}{S_g} = \frac{3}{4}$$
.

三、解答题

$$\begin{cases} f'_{x} = 2x - 2xy^{2} = 0, \\ f'_{y} = 4y - 2x^{2}y = 0, \end{cases}$$

得 D 内驻点为($\pm\sqrt{2}$,1), $f(\pm\sqrt{2}$,1)=2.

在边界 $L_{1:y}=0$ ($-2 \le x \le 2$)上,记

$$g(x) = f(x,0) = x^2,$$

显见在 L_1 上 f(x,y)的最大值为 4,最小值为 0.

在边界 $L_2: x^2 + y^2 = 4(y \ge 0)$ 上,记

$$h(x) = f(x, \sqrt{4-x^2}) = x^4 - 5x^2 + 8(-2 \le x \le 2),$$

 $h'(x) = 4x^3 - 10x = 0$ 得驻点

$$x_1 = 0, x_2 = -\sqrt{\frac{5}{2}}, x_3 = \sqrt{\frac{5}{2}},$$

 $h(0) = f(0,2) = 8.$
 $h\left(\pm\sqrt{\frac{5}{2}}\right) = f\left(\pm\sqrt{\frac{5}{2}},\sqrt{\frac{3}{2}}\right) = \frac{7}{4}.$

综上, f(x,y)在 D 上的最大值为 8,最小值为 0.

(18) **解** 取 Σ_1 为 xOy 平面上被椭圆 $x^2 + \frac{y^2}{4} = 1$ 所围部分的下侧,记 Ω 为由 Σ 和 Σ_1 围成的空间闭区域.根据高斯公式,得

$$I_{1} = \iint_{\Sigma + \Sigma_{1}} xz \, dy \, dz + 2zy \, dz \, dx + 3xy \, dx \, dy$$

$$= \iint_{\Omega} (z + 2z + 0) \, dx \, dy \, dz$$

$$= \int_{0}^{1} 3z \, dz \iint_{x^{2} + \frac{y^{2}}{4} \le 1 - z} dx \, dy$$

$$= \int_{0}^{1} 6\pi z \, (1 - z) \, dz = \pi.$$

$$I_{2} = \iint_{\Sigma_{1}} xz \, dy \, dz + 2zy \, dz \, dx + 3xy \, dx \, dy$$

$$= -3 \iint_{x^{2} + \frac{y^{2}}{4} \le 1} xy \, dx \, dy = 0,$$

$$I_{3} = I_{3} - I_{4} = \pi.$$

又

所以

 $I-I_1$ I_2-n .

(19) 证 令 h(x) = f(x) - g(x),则 h(a) = h(b) = 0. 设 f(x),g(x)在(a,b)内的最大值 M 分别在 $\alpha \in (a,b)$, $\beta \in (a,b)$ 取得. 当 $\alpha = \beta$ 时,取 $\eta = \alpha$,则 $h(\eta) = 0$.

当 $\alpha \neq \beta$ 时,

$$h(\alpha) = f(\alpha) - g(\alpha) = M - g(\alpha) \geqslant 0,$$

$$h(\beta) = f(\beta) - g(\beta) = f(\beta) - M \leqslant 0,$$

由介**值**定理,存在介于 α 与 β 之间的点 η ,使得 $h(\eta)=0$.

综上,存在 $\eta \in (a,b)$,使得 $h(\eta)=0$.

因此由罗尔定理可知,存在 $\xi_1 \in (a,\eta), \xi_2 \in (\eta,b)$,使得

$$h'(\xi_1) = h'(\xi_2) = 0,$$

再由罗尔定理可知,存在 $\xi \in (\xi_1, \xi_2) \subset (a, b)$,使得 $h''(\xi) = 0$,即

$$f''(\xi) = g''(\xi).$$

(20) **解** (I) 对
$$y = \sum_{n=0}^{\infty} a_n x^n$$
 求一、二阶导数,得 $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$,

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2},$$
代人 $y'' - 2xy' - 4y = 0$ 并整理得
$$\sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}x^n - \sum_{n=1}^{\infty} 2na_n x^n - \sum_{n=0}^{\infty} 4a_n x^n = 0,$$
于是
$$\begin{cases} 2a_2 - 4a_0 = 0, \\ (n+1)(n+2)a_{n+2} - 2(n+2)a_n = 0, n = 1, 2, \cdots, \end{cases}$$
从而
$$a_{n+2} = \frac{2}{n+1}a_n, n = 1, 2, \cdots.$$
(II) 因为 $y(0) = a_0 = 0, y'(0) = a_1 = 1$ 故
$$a_{2n} = 0, n = 0, 1, 2, \cdots,$$

 $a_{2n} = 0, y = 0, y = 1 \text{ fix}$ $a_{2n} = 0, n = 0, 1, 2, \cdots,$ $a_{2n+1} = \frac{2}{2n} a_{2n-1} = \cdots = \frac{2^n}{2n \cdot (2n-2) \cdot \cdots \cdot 4 \cdot 2} a_1$ $= \frac{1}{n!}, n = 1, 2, \cdots,$

从而

$$y = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_{2n+1} x^{2n+1} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$
$$= x \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = x e^{x^2}, x \in (-\infty, +\infty).$$

(21)解 因为方程组①与②的公共解,即为联立方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 + 2x_2 + ax_3 = 0, \\ x_1 + 4x_2 + a^2x_3 = 0, \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$

$$3$$

的解.

对万程组③的增厂矩阵A 施以初等行变换,有

$$\bar{\mathbf{A}} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 - a \\ 0 & 1 & 0 & a - 1 \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 0 & 0 & (a - 1)(a - 2) \end{pmatrix} = \mathbf{B}.$$

由于方程组③有解,故③的系数矩阵的秩等于增广矩阵 \overline{A} 的秩,于是(a-1)(a-2)=0,即 a=1 或 a=2.

当a=1时,

因此①与②的公共解为

$$x=k\begin{pmatrix} -1\\0\\1 \end{pmatrix}$$
,其中 k 为任意常数.

淘宝店铺: 光速考研工作室

当a=2时,

$$\boldsymbol{B} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

因此①与②的公共解为

$$\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

(22) 解 (I) 由 $A\alpha_1 = \lambda_1 \alpha_1$,知

$$B\alpha_1 = (A^5 - 4A^3 + E)\alpha_1 = (\lambda_1^5 - 4\lambda_1^3 + 1)\alpha_1 = -2\alpha_1$$

故 α_1 是B的属于特征值-2的一个特征向量.

因为 A 的全部特征值为 λ_1 , λ_2 , λ_3 , 所以 B 的全部特征值为 $\lambda_i^5 - 4\lambda_i^3 + 1$ (i = 1, 2, 3), 即 B 的全部特征值为-2, 1, 1.

由 $\mathbf{B}\alpha_1 = -2\alpha_1$,知 \mathbf{B} 的属于特征值-2 的全部特征向量为 $k_1\alpha_1$,其中 k_1 是不为零的任意常数. 因为 \mathbf{A} 是实对称矩阵,所以 \mathbf{B} 也是实对称矩阵.设 $(x_1,x_2,x_3)^{\mathrm{T}}$ 为 \mathbf{B} 的属于特征值 1 的任一特征向量.因为实对称矩阵属于不同特征值的特征向量正交,所以 $(x_1,x_2,x_3)\alpha_1 = 0$,即

$$x_1 - x_2 + x_3 = 0.$$

解得该方程组的基础解系为

$$\boldsymbol{\alpha}_2 = (1,1,0)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (-1,0,1)^{\mathrm{T}},$$

故 B 的属于特征值 1 的全部特征向量为 $k_2 \alpha_2 + k_3 \alpha_3$,其中 k_2 , k_3 为不全为零的任意常数.

因为

$$\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

所以

$$\mathbf{B} = \mathbf{P} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{P}^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

(23) **AP** (I)
$$P\{X>2Y\} = \iint_{x>2y} f(x,y) dx dy$$

$$= \int_{0}^{1} dx \int_{0}^{\frac{x}{2}} (2-x-y) dy$$

$$= \int_{0}^{1} \left(x - \frac{5}{8}x^{2}\right) dx$$

$$= \frac{7}{24}.$$

其中
$$f(x,z-x) = \begin{cases} 2-x-(z-x), 0 < x < 1, 0 < z-x < 1, \\ 0, & \text{其他,} \end{cases}$$
$$= \begin{cases} 2-z, & 0 < x < 1, 0 < z-x < 1, \\ 0, & \text{其他.} \end{cases}$$

当 $z \le 0$ 或 $z \ge 2$ 时, $f_z(z) = 0$;

当 0 < z < 1 时,

$$f_Z(z) = \int_0^z (2-z) dx = z(2-z);$$

当 $1 \leq z < 2$ 时,

$$f_Z(z) = \int_{z-1}^1 (2-z) dx = (2-z)^2$$

即 Z 的概率密度为

$$f_{z}(z) = \begin{cases} z(2-z), & 0 < z < 1, \\ (2-z)^{2}, & 1 \leq z < 2, \\ 0, & 其他. \end{cases}$$

(24) **M** (I)
$$EX = \int_{-\infty}^{+\infty} x f(x;\theta) dx = \int_{0}^{\theta} \frac{x}{2\theta} dx + \int_{\theta}^{1} \frac{x}{2(1-\theta)} dx = \frac{1}{4} + \frac{\theta}{2}.$$

令 $\overline{X} = EX$,即 $\overline{X} = \frac{1}{4} + \frac{\theta}{2}$,得 的矩估计量为

$$\hat{\theta} = 2\overline{X} - \frac{1}{2}$$
.

(11)因为

$$E(4\overline{X}^{2}) = 4E(\overline{X}^{2}) = 4\left[D\overline{X} + (E\overline{X})^{2}\right]$$

$$= 4\left[\frac{1}{n}DX + \left(\frac{1}{4} + \frac{1}{2}\theta\right)^{2}\right]$$

$$= \frac{4}{n}DX + \frac{1}{4} + \theta + \theta^{2},$$

又

 $DX \geqslant 0, \theta > 0,$

所以

 $E(4\overline{X}^2) > \theta^2$,

нп

 $E(4\overline{X}^2)\neq\theta^2$,

因此 $4\overline{X}^2$ 不是 θ^2 的无偏估计量.