Introducción a los Sistemas Operativos

Capítulo 2

Objetivos del Sistema Operativo

- Comodidad
 - Hace que el ordenador sea más cómodo de usar
- Eficiencia
 - Permite un uso eficiente de los recursos del sistema
- Capacidad de evolucionar
 - Permitir desarrollo efectivo, testeo e introducción de nuevas funcionalidades sin interferir con el servicio

Sistema Operativo

Es difícil definirlo...

- Un programa que controla la ejecución de los programas de aplicación
- Un interfaz entre las aplicaciones y el hardware

El Sistema Operatico como Interfaz Usuario/Computador

Niveles del Computador

Figure 2.1 Layers and Views of a Computer System

Servicios proporcionados por el Sistema Operativo

- Desarrollo de programas
 - Editores y depuradores (debuggers)
- Ejecución de programas
- Acceso a dispositivos de entrada/salida
- Controlar el acceso a los ficheros
- Acceso al sistema

Servicios proporcionados por el Sistema Operativo

- Contabilidad
 - realizar estadísticas
 - monitorizar el rendimiento
 - usado para anticipar futuras mejoras
 - usado para cobrarle a los usuarios

Servicios proporcionados por el Sistema Operativo

- Detección y respuesta a errores
 - Errores hardware internos y externos
 - error de memoria
 - fallo en un dispositivo
 - errores software
 - desbordamiento aritmético (overflow)
 - · acceso prohibido a posiciones de memoria
 - el S.O. no puede conceder la petición de una aplicación

El Sistema Operativo como Gestor de Recursos

- Funciona igual que cualquier otro programa de ordenador
 - Es un programa que se ejecuta
- El sistema operativo renuncia al control del procesador para que lo usen otros programas
 - Depende del procesador para volver a tomar el control
- No realiza trabajo neto
 - Sólo dirige al procesador en el uso de recursos y en la temporización de otros trabajos

Figure 2.2 The Operating System as Resource Manager

Evolución de un Sistema Operativo

- Actualizaciones de hardware y nuevos tipos de HW
- Nuevos servicios
- Mejoras

Núcleo (Kernel)

- Parte del sistema operativo que está en memoria principal
- Contiene las funciones más frecuentemente utilizadas

Evolución de los Sistemas Operativos

- Procesamiento Serie (final de los 40, mitad de los 50)
 - Sin sistema operativo
 - Las máquinas ejecutan desde una consola con luces e interruptores, dispositivo de entrada e impresora
 - Libro de reserva (Schedule tome)
 - El 'setup' incluía la carga del compilador, el programa fuente, salvar el programa compilado, cargarlo y linkarlo

Evolución de los Sistemas Operativos

- Sistemas con procesamiento por lotes
 - Mitad de los años 50, principios de los 60
 - Monitores
 - Software que controla los programas que se ejecutan
 - Los lotes se ejecutan juntos
 - El programa devuelve el control al monitor cuando termina
 - El monitor residente permanece en memoria principal y está listo para ejecutarse

Lenguaje de control de procesos (JCL)

- Tipos especial de lenguaje de programación
- Proporciona instrucciones al monitor
 - qué compilador utilizar
 - qué datos usar

Características Hardware

No son estrictamente necesarias aunque se incluían:

- Protección de memoria
 - Que no se altere el espacio de memoria del monitor
- Temporización
 - Evitar que un trabajo monopolice el sistema
- Instrucciones privilegiadas
 - Instr. máquina que sólo debe ejecutar el monitor: E/S,...
- Interrupciones
 - Computadores más modernos ofrecen más flexibilidad

'Monoprogramación'

• El procesador debe esperar a que terminen las instrucciones de entrada/salda para poder continuar

Multiprogramación

 Cuando un trabajo necesita esperar entrada/salida, el procesador puede cambiar a otro trabajo

Figure 2.6 Utilization Histograms

Multiprogramación

Ejemplo

	TRABAJO1	TRABAJO2	TRABAJO3
Tipo de trabajo	Cálculo intenso	I/O	I/O
Duración	5 min.	15 min.	10 min.
Memoria	50 K	100 K	80 K
Necesita disco	No	No	SI
Necesita terminal	No	SI	No
Necesita imprimir	No	No	SI

Efectos de la Multiprogramación

	Monoprogramación	Multiprogramación
Uso del Procesador	22%	43%
Uso de la Memoria	30%	67%
Uso del Disco	33%	67%
Uso de la Impresora	33%	67%
Tiempo Transcurrido	30 min.	15 min.
Productividad (ratio)	6 trabajos/hr	12 trabajos/hr
Tiempo Medio de Respuesta	18 min.	10 min.

Multiprogramación por lotes versus Tiempo Compartido

	Multiprogramación por Lotes	Tiempo Compartido
OBJETIVO PRINCIPAL	MAXIMIZAR EL USO DEL PROCESADOR	MINIMIZAR EL TIEMPO DE RESPUESTA
Fuente de directivas al sistema operativo	Comandos del lenguaje de control de trabajos proporcionados con el trabajo	Comandos introducidos desde el terminal

Tiempo Compartido

- Utilizar multiprogramación para gestionar varios programas interactivos
- El tiempo del procesador se comparte entre múltiples usuarios
- Muchos usuarios simultáneamente acceden al sistema a través de terminales

Figure 2.7 CTSS Operation

Mayores Logros

- Procesos
- Gestión de Memoria
- Protección y seguridad de la Información
- Planificación y gestión de recursos
- Estructura del Sistema

Dificultades con el diseño del software del sistema

- Sincronización inadecuada
 - Asegurar que un proceso que espera una entrada/salida reciba una y sólo una señal
- Fallo en la exclusión mutua
- Comportamiento indeterminado
 - los programas deben depender sólo de la entrada proporcionada, no debe confiar en áreas de memoria común
- Interbloqueos (deadlocks)

Procesos

- Un programa en ejecución
- Una instancia de un programa ejecutando en un ordenador
- La entidad que puede ser 'asignada a' y 'ejecutada en' un procesador
- Una unidad de actividad caracterizada por: un hilo secuencial de ejecución, un estado actual y un conjunto de recursos asociados

Procesos

- Consta de tres componentes
 - Un programa ejecutable
 - Los datos asociados que necesita el programa
 - El contexto de ejecución del programa
 - Toda la información que necesita el sistema operativo para gestionar el proceso

Process

Figure 2.8 Typical Process Implementation

Memoria Virtual

- Permite a los programadores direccionar la memoria desde un punto de vista lógico
- Evitar que haya un vacío entre el desalojo de un proceso a disco y la carga del siguiente
- Necesita soporte hardware
- El HW y el SO proporcionan al usuario un "procesador virtual"

Gestión de Memoria

- Aislar procesos
- Gestión y asignación automática
- Soporte para programación modular
- Protección y control de acceso
- Almacenamiento de larga duración

Sistema de Ficheros

- Implementa el almacenamiento de larga duración (long-term)
- La información se almacena en objetos con nombres llamados ficheros

Paginación

- Permite a los procesos estar constituidos por un número de bloques de tamaño fijo, llamados páginas
- La dirección virtual se descompone en un número de página y un desplazamiento dentro de la página
- Cada página puede situarse en cualquier sitio de la memoria (marcos de página, frames)
- La dirección real o física se refiere a la memoria principal

B.0 B.1 B.2 B.3 B.4 B.5 B.6 Main Memory

Main memory consists of a number of fixed-length frames equal to the size of a page For a program to execute, some or all of its pages must be in

Disk

Secondary memory (disk) can hold many fixed-length pages. A user program consists of some number of naces. Pages for all programs plus the operating system are on disk, as are files

Figure 2.9 Virtual Memory Concepts

Direccionamiento de la Memoria Virtual

Figure 2.10 Virtual Memory Addressing

Seguridad y Protección de la Información

- Control de Acceso
 - regular el acceso de los usuarios al sistema
- Control del flujo de la Información
 - regular el flujo de datos entre el sistema y la entrega a los usuarios
- Certificación
 - comprobar que los controles de acceso y de flujo se realizan de acuerdo a las especificaciones

Planificación y Gestión de Recursos

- Justicia
 - Proporcionar un acceso igual y justo a todos los procesos de la misma clase (prioridad)
- Respuesta diferencial
 - discriminar entre diferentes clases de trabajos
- Eficiencia
 - maximizar la productividad, minimizar el tiempo de respuesta y acomodar al mayor numero de usuarios posible

Estructura del Sistema

- Vista del sistema como una serie de niveles
- Cada nivel realiza un conjunto de funciones
- Cada nivel confía en el inmediato inferior para que realice la funciones primitivas
- Esto descompone el problema en un número de subproblemas manejables

Elementos Principales del Sistema Operativo

Figure 2.11 Key Elements of an Operating System for Multiprogramming

Diseño de Sistemas Operativos Jerarquía

Nivel	Nombre	Objetos	Ejemplos de Operaciones
13	Shell	Entorno de progra- mación del usuario	Comandos en lenguaje del shell
12	Procesos del usuario	Procesos del usuario	Quit, kill, suspend, resume
11	Directorios	Directorios	Create, destroy, attach, detach, search, list
10	Dispositivos	Dispositivos externos, tales como impresoras, pantallas y teclados	± '
9	Sistema de ficheros	Ficheros	Create, destroy, open, close read, write
8	Comunicaciones	Pipes (tuberias)	Create, destroy, open. close, read, write

Diseño de Sistemas Operativos Jerarquía

Nivel	Nombre	Objetos	Ejemplos de Operaciones
7	Memoria Virtual	Segmentos, páginas	Read, write, fetch
6	Almacenamiento secundario local	Bloques de datos, canales de dispositivos	Read, write, allocate, free
5	Primitivas de procesos	Primitivas de procesos, Suspend, resume, wait, signal semáforos, lista de preparados, bloqueados	

Características de los Sistemas Operativos Modernos

- Arquitectura de Microkernel
 - asigna sólo unas pocas funciones esenciales al kernel
 - direccionamiento del espacio
 - comunicación interprocesos (IPC)
 - planificación básica

Diseño de Sistemas Operativos Jerarquía

Nive	el Nombre	Objetos	Ejemplos de Operación
4	Interrupciones	Rutinas de tratamiento de interrupción	Invoke, mask, unmask, retry
3	Procedimientos	Procedimientos, pila de, llamadas	Mark stack, call, return
2	Conjunto de Instrucciones	Pila de evaluación, interprete de micro- programa, datos escalares y arrays	Load, store, add, subtract branch
1	Circuitos Electrónicos	Registros, puertas, buses, etc.	Clear, transfer, activate, complement

Características de los Sistemas Operativos Modernos

- Multithreading
 - el proceso se divide en threads que se pueden ejecutar simultáneamente
- Thread (en español: hilos, hebras)
 - unidad de trabajo planificable
 - se ejecuta secuencialmente y es interrumpible
- Un proceso es una colección de uno o más threads más los recursos asociados

Características de los Sistemas Operativos Modernos

- Multiprocesamiento simétrico (SMP)
 - hay múltiples procesadores
 - estos procesadores comparten el mismo espacio de memoria y I/O
 - todos los procesadores pueden realizar las mismas funciones

Características de los Sistemas Operativos Modernos

- Diseño Orientado a Objetos
 - usado para añadir extensiones modulares a un kernel pequeño
 - permite a los programadores 'personalizar' un sistema operativo sin afectar a la integridad del sistema
 - simplifica el desarrollo de sistemas distribuidos

Características de los Sistemas Operativos Modernos

- Sistemas operativos distribuidos
 - clusters de PCs, cada máquina es completa por separado: procesador, memoria, disco, ...
 - proporciona la ilusión de una única memoria principal y un único espacio de memoria secundaria (disco)
 - usado para sistemas de ficheros distribuidos

Windows 2000

- Explota la potencia de los procesadores actuales de 32 bits
- Proporciona multitarea real en un entorno mono-usuario
- Computación Cliente/Servidor

Arquitectura del Windows 2000

- Estructura modular por flexibilidad
- Se ejecuta en una gama de plataformas hardware
- Soporta aplicaciones escritas para otros sistemas operativos (windows 95, 98,..., MSDOS,...)

Estructura por capas

- Capa de abstracción del hardware (HAL)
 - Aisla al sistema operativo de la diferencias entre plataformas hardware específicas
- Microkernel
 - Los componentes más usados y fundamentales del sistema operativo
- Drivers de dispositivos
 - Traducen llamadas de I/O del usuario peticiones al dispositivo hardware específico

Organización del SO

- Arquitectura de microkernel modificada
 - No es un microkernel puro
 - Muchas funciones del externas al microkernel se ejecutan en modo kernel
- Cualquier módulo puede ser eliminado, actualizado o reemplazado sin necesidad de volver a escribir el sistema entero

Ejecutiva del W2K

- Gestor de entrada/salida
- Gestor de objetos
- Monitor de seguridad
- Planificador de Procesos/threads
- Servicio de llamadas a procedimiento local (LPC)
- Gestor de memoria virtual
- Gestor de cache (de disco)
- Módulos de ventana y gráficos

Procesos de usuario

- Procesos de soporte especial del sistema
 - Ej.: proceso de conexión y gestión de sesión
- Procesos servidores
- Subsistema de entorno
- Aplicaciones de usuario

Threads y SMP

- Diferentes rutinas pueden ejecutarse simultáneamente en diferentes procesadores
- Múltiples threads de ejecución de un proceso pueden ejecutarse en diferentes procesadores simultáneamente.
- Los procesadores servidores pueden usar múltiples threads
- Comparten datos y recursos entre procesos

Modelo cliente/servidor

- Simplifica la 'ejecutiva'
 - Es posible construir una variedad de APIs
- Mejora la fiabilidad
 - Cada servicio se ejecuta en un proceso aparte con su propia partición de memoria
 - los clientes no pueden acceder al hardware directamente
- Proporciona una forma uniforme para que las aplicaciones se comuniquen via LPC
- Proporciona una base para la programación distribuida

Figure 2.13 Windows 2000 Architecture

UNIX

- El hardware es 'rodeado' por el sistema operativo
- El sistema operativo es lo que se llama kernel
- Viene con un conjunto de servicios e interfaces
 - shell
 - compilador de C

– ...

Sistemas UNIX modernos

- System V Release 4 (SVR4)
- Solaris 2.x
- 4.4BSD
- Linux

UNIX

Figure 2.15 General UNIX Architecture