Secure Software Development Training at Comcast

About the Green Belt Security Training

and some of the material covered

TPX Security Learning Program

THE BELT SYSTEM

LEVELS OF LEARNING AND DEVELOPMENT

Modeled after the popular belt-system in martial arts, the following four levels of learning are designed to take professionals along a journey from the most fundamental aspects of security to the most advanced.

What's a Green Belt?

- A six month program for acquiring skills and knowledge on security topics
- Focuses on building security into the development process
- Structured following a Learn, Share and Do model

OK, but what did you study?

- Data privacy within Comcast
- Threat Modeling Overview
- Web Application Pen Testing Fundamentals
- Secure Coding Practices (Android)
- Cryptography overview
- Mobile Device Security
- HTTPS in depth
- Kali Linux and Ethical Hacking

CIA Triad of Infosec

- Confidentiality only authorized individuals, entities or processes have access to the data.
- Integrity the data must be accurate and complete.
- **Availability** the data must be available when needed.

Cryptography: Art & Science

- The art of writing and solving codes (Google)
- The science of encipherment and decipherment in secret code or cipher (Merriam-Webster)

Cryptanalysis

The art of breaking codes and ciphers

Caesar Cipher

Modern Examples

- SSL, TLS (HTTPS)
- VPN
- Hash
- Digital Signatures

Hashing Algorithms

~ data integrity ~

- A Hash algorithm is a one-way function that once data is run through it, produces a unique value that will be the same every time the same file is run through.
- SSL uses hash algorithms for digital signatures

Hashing Algorithms

~ collisions ~

Hashing Algorithms ~ collisions ~

- Collisions are when the same hash can be produced by entering a different input.
- An attacker can create collisions to pass off malicious files or data as having a correct and proper hash
- MD2 and MD4 produce 128 bit value and are considered vulnerable to collision attacks since 1989 and 1990

Hashing Algorithms

~ birthday attack ~

/vp/ Birthday Attack Game

Month

January - Fire

February - Water

March - Grass

April - Electric

May - Ground

June - Dark

July - Fist

August - Normal

September - Rock

October - Poison

November - Wing

December - Dragon

Day

1 - Hitter 2 - Explosion

3 - Slash

4 - Beam 5 - Punch

6 - Spray

7 - Cannon

8 - Wave

9 - Dance

10 - Attack

11 - Twinkle

12 - Headbutt

13 - Charge

14 - Eruption

15 - Rain

16 - Blade

17 - Dodge

18 - Boost

19 - Blow

20 - Kick

21 - Spikes

22 - Song

23 - Guard

24 - Fang

25 - Tail

26 - Slam

Hashing Algorithms

~ birthday attack ~

- MD5 incorporates an additional round of encryption than MD4 and outputs a fixed, 128 bit string for every input
- Because of the fixed output, MD5 is susceptible to birthday attack (1992) and is no longer used in SSL or digital signatures

Hashing Algorithms ~ SHA-256~

- Secure Hash Algorithms
- The SSL industry has picked SHA as its hashing algorithm for digital signatures
- Since 2016, SHA-2 has been considered the secure hash standard
- SHA-256 produces a 256 bit hash, with such a large number of possible combinations that the chance for collisions is minimal

The Keys

Symmetric Key

- Uses the same key to encrypt and decrypt (shared key)
- Strength comes from the key size and algorithm
- Difficult to crack when config has long enough keys
- Current uses: Credit card transactions

Symmetric Key

- DES key size of 56 bits became vulnerable to brute force attacks as computational power increased
- Triple DES uses a key bundle of 3 DES keys, but due to discovered vulnerabilities is considered a weak cipher
- AES Support 128-, 192- and 256-bit encryption keys.
 Accepted as current standard for symmetric encryption

- Uses a private and a public key
- The public key is made available to anyone who wants to send a message
- The sender encrypts using the public key
- The message can only be decrypted with the receiver's private key

Strengths

- Secure key exchange and simplified key management
- Provides authentication as well as encryption
- Supports digital signatures

Weaknesses

Slower and less efficient than symmetric key algorithms

- Popular asymmetric key encryption algorithms include
 - ElGamal
 - RSA
 - DSA
 - Elliptic curve techniques
 - PKCS

- Diffie-Hellman Algorithm
 - Meant to address shortfalls of symmetric key encryption
 - Uses public and private keys to generate a symmetric key
 - Vulnerable to man-in-the middle attacks because it does not provide authentication when public keys are exchanged

Thank you!

Thank you for letting me share some of what I learned during the Green Belt program. I hope you found the material informative and useful!