S.NO	QUESTION	Α	В	С	D	ANSWER
1	What is a reusable resource?	that can be used by one process at a time and is not depleted by that use	that can be used by more than one process at a time that can be shared between various threads	that can be shared between various threads	none of the mentioned	A
2	Which of the following condition is required for a deadlock to be possible?	mutual exclusion	a process may hold allocated resources while awaiting assignment of other resources.	no resource can be forcibly removed from a process holding it	all of the mentioned	D
3	. A system is in the safe state if	the system can allocate resources to each process in some order and still avoid a deadlock	there exist a safe sequence	all of the mentioned	none of the mentioned	A
4	The circular wait condition can be prevented by	defining a linear ordering of resource types	using thread	using pipes	all of the mentioned	A
5	Which one of the following is the deadlock avoidance algorithm?	banker's algorithm	round-robin algorithm	elevator algorithm	karn's algorithm	A
6	What is the drawback of banker's algorithm?	in advance processes rarely know how much resource they will need	the number of processes changes as time progresses	resource once available can disappear	all of the mentioned	D
7	For an effective operating system, when to check for deadlock?	every time a resource request is made	at fixed time intervals	every time a resource request is made at fixed time intervals	none of the mentioned	С
8	A problem encountered in	deadlock	starvation	inversion	aging	В

9	multitasking when a process is perpetually denied necessary resources is called Which one of the following is a visual (mathematical) way to determine the deadlock occurrence?	resource allocation graph	starvation graph	inversion graph	none of the mentioned	A
10	To avoid deadlock	there must be a fixed number of resources to allocate	resource allocation must be done only once	all deadlocked processes must be aborted	inversion technique can be used	A
11	The number of resources requested by a process	must always be less than the total number of resources available in the system	must always be equal to the total number of resources available in the system	must not exceed the total number of resources available in the system	must exceed the total number of resources available in the system	С
12	The request and release of resources are	command line statements	interrupts	system calls	special programs	С
13	What are Multithreaded programs?	lesser prone to deadlocks	more prone to deadlocks	not at all prone to deadlocks	none of the mentioned	В
14	For a deadlock to arise, which of the following conditions must hold simultaneously?	Mutual exclusion	No preemption	Hold and wait	All of the mentioned	D
15	For Mutual exclusion to prevail in the system	at least one resource must be held in a non sharable mode	the processor must be a uniprocessor rather than a multiprocessor	there must be at least one resource in a sharable mode	all of the mentioned	A

				T	T	
16	For a Hold and wait condition to prevail	A process must be not be holding a resource, but waiting for one to be freed, and then request to acquire it	A process must be holding at least one resource and waiting to acquire additional resources that are being held by other processes	С	None of the mentioned	В
17	Deadlock prevention is a set of methods	to ensure that at least one of the necessary conditions cannot hold.	to ensure that all of the necessary conditions do not hold	to decide if the requested resources for a process have to be given or not	to recover from a deadlock	A
18	For non sharable resources like a printer, mutual exclusion	must exist	must not exist	may exist	none of the mentioned	А
19	For sharable resources, mutual exclusion	is required	is not required	may be or may not be required	none of the mentioned	В
20	The disadvantage of a process being allocated all its resources before beginning its execution is	Low CPU utilization	Low resource utilization	Very high resource utilization	None of the mentioned	В
21	Each request requires that the system consider the to decide whether the current request can be satisfied or must wait to avoid a future possible deadlock.	resources currently available	processes that have previously been in the system	resources currently allocated to each process	future requests and releases of each process	A

22	Given a priori information about the number of resources of each type that maybe requested for each process, it is possible to construct an algorithm that ensures that the system will never enter a deadlock state.	minimum	average	maximum	approximate	С
23	A deadlock avoidance algorithm dynamically examines theto ensure that a circular wait condition can never exist	resource allocation state	system storage state	operating system	resources	A
24	A state is safe, if	the system does not crash due to deadlock occurrence	the system can allocate resources to each process in some order and still avoid a deadlock	the state keeps the system protected and safe	all of the mentioned	В
25	A system is in a safe state only if there exists a	safe allocation	safe resource	safe sequence	all of the mentioned	С
26	All unsafe states are	deadlocks	not deadlocks	fatal	none of the mentioned	В
27	If no cycle exists in the resource allocation graph	then the system will not be in a safe state	then the system will be in a safe state	all of the mentioned	none of the mentioned	В
28	The resource allocation graph is not applicable to a resource allocation system	with multiple instances of each resource type	with a single instance of each resource type	single & multiple instances of each resource type	none of the mentioned	A
29	The Banker's algorithm is than the	less efficient	more efficient	equal	none of the mentioned	Α

	T	T	T	T	T	1
	resource allocation graph algorithm.					
30	The data structures available in the Banker's algorithm are	Available	Need	Allocation	All of the mentioned	D
31	The content of the matrix Need is	Allocation – Available	Max – Available	Max – Allocation	Allocation – Max	С
32	A deadlock can be broken by	abort one or more processes to break the circular wait	abort all the process in the system	preempt all resources from all processes	none of the mentioned	А
33	The two ways of aborting processes and eliminating deadlocks are	Abort all deadlocked processes	Abort all processes	Abort one process at a time until the deadlock cycle is eliminated	All of the mentioned	С
34	Those processes should be aborted on occurrence of a deadlock, the termination of which?	is more time consuming	incurs minimum cost	safety is not hampered	all of the mentioned	В
35	The process to be aborted is chosen on the basis of the following factors?	priority of the process	process is interactive or batch	how long the process has computed	all of the mentioned	D
36	Cost factors for process termination include	Number of resources the deadlock process is not holding	CPU utilization at the time of deadlock	Amount of time a deadlocked process has thus far consumed during its execution	All of the mentioned	С
37	If we preempt a resource from a process, the	aborted	rolled back	terminated	queued	В

	process cannot continue with its normal execution and it must be					
38	To to a safe state, the system needs to keep more information about the states of processes.	abort the process	roll back the process	queue the process	none of the mentioned	В
39	If the wait for graph contains a cycle	then a deadlock does not exist	then a deadlock exists	then the system is in a safe state	either deadlock exists or system is in a safe state	В
40	A deadlock eventually cripples system throughput and will cause the CPU utilization to	increase	drop	stay still	none of the mentioned	В

S.N O	QUESTION	А	В	С	D	ANSW ER
1	What is Address Binding?	going to an address in memory	locating an address with the help of another address	binding two addresses together to form a new address in a different memory space	a mapping from one address space to another	D
2	. Binding of instructions and data to memory addresses can be done at	Compile time	Load time	Execution time	All of the mentione d	D
3	If the process can be moved during its execution from	delayed until run time	prepone d to compile	preponed to load	none of the	А

	one memory segment to another, then binding must be		time	time	mentione d	
4	What is Dynamic loading?	loading multiple routines dynamicall y	loading a routine only when it is called	loading multiple routines randomly	none of the mentione d	В
5	What is the advantage of dynamic loading?	A used routine is used multiple times	An unused routine is never loaded	CPU utilization increases	All of the mentione d	В
6	In contiguous memory allocation ————	each process is contained in a single contiguous section of memory	all processe s are containe d in a single contiguo us section of memory	the memory space is contiguous	none of the mentione d	A
7	The relocation register helps in	providing more address space to processes	a different address space to processe s	to protect the address spaces of processes	none of the mentione d	С
8	With relocation and limit registers, each logical address must be the limit register.	less than	equal to	greater than	none of the mentione d	A

9	When memory is divided into several fixed sized partitions, each partition may contain	exactly one process	at least one process	multiple processes at once	none of the mentione d	A
10	Logical memory is broken into blocks of the same size called	frames	pages	backing store	none of the mentione d	В
11	Every address generated by the CPU is divided into two parts. They are	frame bit & page number	page number & page offset	page offset & frame bit	frame offset & page offset	В
12	The is used as an index into the page table	frame bit	page number	page offset	frame offset	В
13	The table contains the base address of each page in physical memory.	process	memory	page	frame	С
14	The size of a page is typically	varied	power of 2	power of 4	none of the mentione d	В
15	If the size of logical address space is 2 to the power of m, and a page size is 2 to the power of n addressing units, then the high order bits of a logical address designate the page number, and the low order bits designate the page offset	m, n	n, m	m – n, m	m – n, n	D

16	n paging the user provides only which is partitioned by the hardware into and	one address, page number, offset	one offset, page number, address	page number, offset, address	none of the mentione d	A
17	Each entry in a segment table has a	segment base	segment peak	segment value	none of the mentione d	A
18	The segment base contains the	starting logical address of the process	starting physical address of the segment in memory	segment length	none of the mentione d	В
19	The segment limit contains the	starting logical address of the process	starting physical address of the segment in memory	segment length	none of the mentione d	С
20	The offset 'd' of the logical address must be 	greater than segment limit	between 0 and segment limit	between 0 and the segment number	greater than the segment number	В
21	Because of virtual memory, the memory can be shared among	processes	threads	instruction s	none of the mentione d	A
22	is the concept in which a process is copied into the main memory from the	Paging	Demand paging	Segmentati on	Swapping	В

	secondary					
	memory					
	according to the					
	requirement					
23	The pager	individual	entire	entire	first page	А
	concerns with the	page of a	process	thread	of a	
		process			process	
24	Swap space exists	primary	seconda	cpu	none of	В
	in	memory	ry		the	
			memory		mentione	
25	Whon a program	cogmontat:	fatal	naga facilt	d	С
23	When a program tries to access a	segmentati on fault	fatal error	page fault occurs	no error occurs	
	page that is	occurs	occurs	occurs	occurs	
	mapped in	occurs	occurs			
	address space but					
	not loaded in					
	physical memory,					
	then					
26	Virtual memory	execution	а	a program	execution	Α
	allows	of a	program	to be	of a	
		process	to be	larger than	process	
		that may	smaller	the	without	
		not be	than the	secondary	being in	
		completely	physical	storage	physical	
		in memory	memory		memory	
27	The instruction	physical	logical	physical &	none of	Α
	being executed,	memory	memory	logical	the	
	must be in			memory	mentione	
20		1 .			d	
28	Error handler	almost	execute	executed	none of	А
	codes, to handle unusual e	never	d very often	periodicall	the mentione	
	rrors are	executed	orten	У	d	
	11013 ale				u	
29	The ability	The	Program	Throughpu	All of the	D
	to execute a	amount of	s for an	t increases	mentione	
	program that is	physical	extremel		d	
	only partially in	memory	y large			
	memory has	cannot put	virtual			

	benefits like	а	space			
		constraint on the program	can be created			
30	In virtual memory. the programmer of overlays.	has to take care	does not have to take care	all of the mentioned	none of the mentione d	В
31	Which of the following page replacement algorithms suffers from Belady's Anomaly?	Optimal replaceme nt	LRU	FIFO	Both optimal replacem ent and FIFO	С
32	A process refers to 5 pages, A, B, C, D, E in the order: A, B, C, D, A, B, E, A, B, C, D, E. If the page replacement algorithm is FIFO, the number of page transfers with an empty internal store of 3 frames is?	8	10	9	7	С
33	In question 32, if the number of page frames is increased to 4, then the number of page transfers	decreases	increase s	remains the same	none of the mentione d	В
34	A memory page containing a heavily used variable that was initialized very	LRU	LFU	FIFO	None of the mentione d	С

	early and is in constant use is removed, then the page replacement algorithm used is					
35	A virtual memory system uses First In First Out (FIFO) page replacement policy and allocates a fixed number of frames to a process. Consider the following statements. P: Increasing the number of page frames allocated to a process sometimes increases the page fault rate Q: Some programs do not exhibit locality of reference Which of the following is TRUE?	Both P and Q are true, and Q is the reason for P	Both P and Q are true, but Q is not the reason for P	P is false but Q is true	Both P and Q are false	C
36	A process is thrashing if	it spends a lot of time executing, rather than paging	it spends a lot of time paging than executin g	it has no memory allocated to it	none of the mentione d	В

38	Thrashing the CPU utilization What is a locality?	a set of pages that are actively used	keeps constant a space in memory	an area near a set of processes	none of the mentione d none of the mentione d	C A
39	When a subroutine is called	it defines a new locality	it is in the same locality from where it was called	it does not define a new locality	none of the mentione d	A
40	In the working set model, for: 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 if DELTA = 10, then the working set at time t1 (7 5 1) is?	{1, 2, 4, 5, 6}	{2, 1, 6, 7, 3}	{1, 6, 5, 7, 2}	{1, 2, 3, 4, 5}	С

S.N	QUESTION	А	В	С	D	ANSWE
0						R
1	In information is recorded magnetically on platters.	magnetic disks	electrical disks	assemblies	cylinders	A
2	. The heads of the magnetic disk are attached to a that moves all the heads as a unit.	spindle	disk arm	track	none of the mentioned	В

3	The set of tracks that are at one arm position make up a	magnetic disks	electrical disks	assemblies	cylinders	D
4	The time taken to move the disk arm to the desired cylinder is called the	positionin g time	random access time	seek time	rotational latency	С
5	The time taken for the desired sector to rotate to the disk head is called	positionin g time	random access time	seek time	rotational latency	D
6	When the head damages the magnetic surface, it is known as	disk crash	head crash	magnetic damage	all of the mentioned	В
7	A floppy disk is designed to rotate as compared to a hard disk drive.	Faster	Slower	at the same speed	none of the mentioned	В
8	What is the host controller?	controller built at the end of each disk	controller at the computer end of the bus	all of the mentioned	none of the mentioned	В
9	controller sends the command placed into it,	host, host	disk, disk	host, disk	disk, host	С

	via messages to the controller.					
10	What is the disk bandwidth?	the total number of bytes transferre d	total time between the first request for service and the completio n on the last transfer	the total number of bytes transferred divided by the total time between the first request for service and the completion on the last transfer	none of the mentioned	С
11	Whenever a process needs I/O to or from a disk it issues a	system call to the CPU	system call to the operating system	a special procedure	all of the mentioned	В
12	If a process needs I/O to or from a disk, and if the drive or controller is busy then	the request will be placed in the queue of pending requests for that drive	the request will not be processed and will be ignored completel	the request will not be processed and will be ignored completely	none of the mentioned	A
13	Consider a disk queue with requests for I/O to blocks on cylinders. 98 183 37 122 14 124 65 67 Considering	600	620	630	640	D

	FCFS (first cum first served) scheduling, the total number of head movements is, if the disk head is initially at 53 is? memory.					
14	Consider a disk queue with requests for I/O to blocks on cylinders. 98 183 37 122 14 124 65 67 Considering SSTF (shortest seek time first) scheduling, the total number of head movements is, if the disk head is initially at 53 is?	224	236	245	240	В
15	Random access in magnetic tapes is compared to magnetic disks	Fast	Very fast	Slow	Very slow	D
16	Magnetic tape drives can write data at a	much lesser than	comparabl e to	much faster than	none of the mentioned	В

	speed					
	disk drives					
17	On media that use constant linear velocity (CLV), the	density of bits on the disk	density of bits per sector	the density of bits per track	none of the mentioned	С
	is uniform.					
18	SSTF algorithm, like SJF of some requests.	may cause starvation	will cause starvation	does not cause starvation	causes aging	A
19	In the algorithm, the disk arm starts at one end of the disk and moves toward the other end, servicing requests till the other end of the disk. At the other end, the direction is reversed and servicing continues	LOOK	SCAN	C-SCAN	C-LOOK	В
20	In the algorithm, the disk head moves from one end to the other, servicing requests along the way. When the head reaches the other end, it immediately returns to the	LOOK	SCAN	C-SCAN	C-LOOK	С

	beginning of the disk without servicing any requests on					
	the return trip.					
21	In the algorithm, the disk arm goes as far as the final request in each direction, then reverses direction immediately without going to the end of the disk.	LOOK	SCAN	C-SCAN	C-LOOK	A
22	The process of dividing a disk into sectors that the disk controller can read and write, before a disk can store data is known as	partitionin g	swap space creation	low-level formatting	none of the mentioned	С
23	The data structure for a sector typically contains	Header	data area	Trailer	all of the mentioned	D
24	The header and trailer of a sector contain information used by the disk controller	main section & disk identifier	error correcting codes (ECC) & sector number	sector number & main section	disk identifier & sector number	В

	such as and					
25	The two steps the operating system takes to use a disk to hold its files are and	partitionin g & logical formattin g	swap space creation & caching	caching & logical formatting	logical formatting & swap space creation	A
26	The program initializes all aspects of the system, from CPU registers to device controllers and the contents of main memory, and then starts the operating system	main	Bootloade	Bootstrap	rom	С
27	For most computers, the bootstrap is stored in	RAM	ROM	Cache	Tertiary storage	В
28	A disk that has a boot partition is called a	start disk	end disk	boot disk	all of the mentioned	С
29	Defecti ve sectors on disks are often known as	good blocks	destroyed blocks	bad blocks	none of the mentioned	С
30	The scheme used in the above	sector sparing &	forwardin g & sector utilization	backwardi ng & forwarding	sector utilization &	A

	question is known as or	forwardin g			backwardi ng	
31	An unrecoverable error is known as	hard error	tough error	soft error	none of the mentioned	A
32	In SCSI disks used in high end PCs, the controller maintains a list of on the disk. The disk is initialized during formatting which sets aside spare sectors not visible to the operating system.	destroyed blocks, high level formattin g	bad blocks, partitionin g	bad blocks, low level formatting	destroyed blocks, partitionin g	С
33	Disk scheduling includes deciding	which should be accessed next	order in which disk access requests must be serviced	the physical location of the file	the logical location of the file	В
34	Virtual memory uses disk space as an extension of	secondary storage	main memory	tertiary storage) none of the mentioned	b
35	Using swap space significantly	Both P and Q are true, and Q is the reason for	Both P and Q are true, but Q is not the reason	P is false but Q is true	Both P and Q are false	С

	system	Р	for P			
	performance		1011			
	periormanee					
36	Linux	Allows	does not	may allow	none of the	2
30		Allows	allow	may allow	mentioned	а
	the		allow		mentioned	
	use of					
	multiple swap					
37	spaces.	Can	Cannot	movest met	none of the	
37	A single swap	Call	Carmot	must not		а
	space reside in two				mentioned	
38	places.	special	normal file	normal file	SWAD SDAG	b
30	If the swap	special routines	system		swap space	5
	space is	must be	routines	system routines	storage	
	simply a large file, within the	must be	can be	cannot be	manager is	
			carribe	Cariffor De		
	file system,					
	used to create					
	it, name it and					
	allocate its					
	space.					
39	For swap	special	normal file	normal file	swap	D
	space created	routines	system	system	space	D
	in a separate	must be	routines	routines	storage	
	disk partition	mase se	can be	cannot be	manager is	
	where no file		can be	carmorse	indiager is	
	system or					
	directory					
	structure is					
	placed,					
	12.2.2.2.4					
	used to					
	allocate and					
	deallocate the					
	blocks					
40	When a fixed	only I	only II	both I and II	neither I	С
	amount of				nor II	
	swap space is					
	created					
	3. 00.100	<u>I</u>	İ	İ	<u> </u>	

during disk			
partitioning,			
more swap			
space can be			
added only			
by?			
1)			
repartitioning			
of the disk			
II) adding			
another swap			
space			
elsewhere			