Assignment No.2

- 1. Show that $\log_b f(n)$ is $\Theta(\log_2 f(n))$ if b > 1 is a constant.
- 2. Prove that if d(n) is O(f(n)) and e(n) is O(g(n)) then:
 - d(n) + e(n) is O(f(n) + g(n))
 - d(n).e(n) is O(f(n).g(n))
- 3. Which of the two functions $y = e^x$ and $y = (100).2^x$ grows faster and why.
- 4. Order the following functions on the basis of their growth rate: $\log\log n,\ \log n,\ \log^2 n,\ \sqrt{n},\ n,\ n.\log n,\ n^2,\ n^3,\ 2^n,\ e^n,\ 3^n$
- 5. Show that $\sqrt{x^2+5}$ and $(2\sqrt{x}-1)^2$ grow at the same rate.
- 6. Show that $\lceil f(n) \rceil$ is O(f(n)) if f(n) is always greater than 1.
- 7. Prove without using limits that $f(n) = 12n^2 + 6n$ is $o(n^3)$ and $\omega(n)$.
- 8. Show that the summation $\sum_{i=1}^{n} \lceil \log_2 i \rceil$ is $O(n \log_2 n)$.
- 9. Show that the summation $\sum_{i=1}^{n} \lceil \log_2 i \rceil$ is $\Omega(n \log_2 n)$.
- 10. Algorithm A uses $10n \log_2 n$ operations, while algorithm B uses n^2 operations. Determine the value n_0 (as small as you can without using a calculator) such that A is better than B for $n \ge n_0$.