CS471 – Web Technologies (Laboratory)

Lab 1

The Internet Protocols

This lab session covers the usage of the Wireshark application to monitor and capture the outgoing and incoming packets from a network connection (WIFI, ethernet, etc.). Specifically, students should be able to analyze HTTP, HTTPS, TCP/IP, and UDP protocols using Wireshark, a network protocol analyzer, and draw conclusions.

Pre-lab Preparation:

- 1. Review the basics and the structure of HTTP, TCP/IP, and UDP protocols,
- 2. Install Wireshark and ensure it is running on your computer,
- 3. Create an online, *publically accessible* Git repository to host and upload your work in the labs. We recommend you use GitHub or GitLab.

Lab Activities:

Part 1: Capturing HTTP Traffic.

Task 1: Start Wireshark and capture packets.

- Step 1: Open Wireshark.
- Step 2: Select the network interface connected to the internet (e.g., Ethernet or Wi-Fi).
- Step 3: Click the "Start Capturing Packets" button (the shark fin icon).
- Step 4: Open your favorite web browser and navigate to (http://neverssl.com/) website.
- Step 5: After the website has fully loaded, stop capturing packets by clicking the red stop button in Wireshark.

Task 2: Filter HTTP packets and analyze them.

- Step 1: In the filter bar, type http and press Enter. This filters out only the HTTP packets from the capture.
- Step 2: Select any HTTP packet to view its details.
- Step 3: Observe the HTTP request and response messages. Note the method (GET, POST), URL, response codes (200 OK, 404 Not Found), etc.

Part 2: Analyzing TCP/IP Traffic.

Task 1: Filter TCP packets

- Step 1: Clear the previous filter and type TCP to focus on TCP packets.
- **Step 2:** Select a TCP packet related to your HTTP request/response.
- **Step 3:** Right-click on the packet and select "Follow" -> "TCP Stream".
- **Step 4:** This shows the entire conversation between the client and server.

Task 2: Analyze TCP handshake and investigate Data Transfer and Termination

- **Step 1:** Find and select packets related to the TCP three-way handshake:
 - o SYN: Initiates a connection.
 - SYN-ACK: Acknowledges and responds to the SYN.
 - o ACK: Acknowledges the SYN-ACK and establishes the connection.
- **Step 2:** Note the sequence and acknowledgment numbers. Screenshot and upload your image to your online git repository.
- **Step 3:** Observe the data packets exchanged between the client and server. Take a screenshot and upload it to your online git repo.
- **Step 4:** Look at the TCP termination process (FIN, ACK packets).

CS471 – Web Technologies (Laboratory)

Lab 1

The Internet Protocols

Part 3: Capturing and Analyzing UDP Traffic

Task 1: Generate UDP traffic and capture packets

- **Step 1:** Open a network application that uses UDP (e.g., streaming video, VoIP software, or custom script).
- **Step 2:** Start the application to generate UDP traffic.
- **Step 3:** Start capturing packets in Wireshark while the UDP application is running.
- **Step 4:** After sufficient traffic is generated, stop capturing packets.

Task 2: Filter and analysis UDP Packets

- **Step 1:** In the filter bar, type UDP and press Enter.
- **Step 2:** This filters out only the UDP packets from the capture.
- Step 3: Select any UDP packet to view its details.
- **Step 4:** Observe the source and destination ports, length, and data.
- **Step 5:** Compare the simplicity of UDP headers with TCP headers.

Part 4: Comparing TCP and UDP by filling in the following tables. Save your work (e.g., in an MS Word document), and upload it to your online git repo.

Task 1: Fill in the following table and provide reasons.

	TCP or UDP	Reasons
Reliability and Connection Establishment	ТСР	Provides reliable communication by establishing a three-way handshake before data transfer. Ensures retransmission if packets are lost.
Data Integrity and Ordering	ТСР	Guarantees that data arrives in the correct order and without duplication using sequence and acknowledgment numbers.

Task 2: Identify the use Cases and Performance of TCP and UDP.

	TCP	UDP
Hro caror	Web browsing (HTTP/HTTPS), Email (SMTP, IMAP, POP3), File transfer (FTP)	Streaming video/audio, Online gaming, Voice over IP (VoIP)
Performance	Slower due to reliability mechanisms (handshake, acknowledgments, retransmissions)	Faster because it has minimal overhead, no handshake, and does not check for reliability

*Wi-Fi × +asK Help Tools Wireless Telephony Statistics Analyze Capture Go Apply a display filter ... < Ctrl-/> Info ength stocol Destination Time .No Source Protected Payload (KP0) 89 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:812 QUIC 3.861032 235 Standard query response 0xc00c A wonderousoldastoundingday.neverssl.com A 34.223.124.45 114 DNS 192.168.100.18 3.862398 236 192.168.100.1 Protected Payload (KP0), DCID=f0d39f6987b0413e 596 QUIC 2a00:1450:4006:80d::200e ...2001:16a3:d26:fd00:4 3.871459 237 Seq=0 Win=64952 Len=0 MSS=1412 WS=256 SACK PERM [SYN] 443 → 49703 86 TCP 2600:1f13:37c:1400:ba21:7165:5fc7:736e ...2001:16a3:d26:fd00:4 3.873793 238 ...Standard query response 0xbe93 HTTPS wonderousoldastoundingday.neverssl.com SOA ns-1716.aw 182 DNS 192,168,100,18 3.880643 239 192.168.100.1 Protected Payload (KP0), DCID=f048149de78a12a8 94 QUIC 2a00:1450:4006:812::200a ...2001:16a3:d26:fd00:4 3.889907 240 Protected Payload (KP0) 324 QUIC 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:812 3.905545 241 Protected Payload (KP0) 218 QUIC 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:812 3.905656 242 Protected Payload (KP0), DCID=f048149de78a12a8 97 OUIC 2a00:1450:4006:812::200a ...2001:16a3:d26:fd00:4 3.906611 243 Protected Payload (KP0) 90 QUIC 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:80d 3.977616 244 Protected Payload (KP0) 189 OUIC 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:80d 3.985832 245 Protected Payload (KP0) 84 OUIC 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:80d 3.985832 246 Protected Payload (KP0), DCID=f0d39f6987b0413e 97 QUIC 2a00:1450:4006:80d::200e ...2001:16a3:d26:fd00:4 3.986032 247 Protected Payload (KP0) 86 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:812 OUIC 4.018749 248 Protected Payload (KP0), DCID=f0d39f6987b0413e 94 QUIC 2a00:1450:4006:80d::200e ...2001:16a3:d26:fd00:4 4.019090 249 2001:16a3:d26:fd00:4165:175d:1761:b78d ...::2a00:1450:4006:80d Protected Payload (KP0) 86 OUIC 4.091035 250 Seg=0 Ack=1 Win=26883 Len=0 MSS=1412 SACK PERM WS=4096 [SYN, ACK] 49703 → 443 86 TCP 2001:16a3:d26:fd00:4165:175d:1761:b78d ...2600:1f13:37c:1400:b 4.104955 251 Seq=1 Ack=1 Win=131072 Len=0 [ACK] 443 → 49703 74 TCP 2600:1f13:37c:1400:ba21:7165:5fc7:736e ...2001:16a3:d26:fd00:4 4.105078 252 Seq=1 Ack=1 Win=131072 Len=1412 [TCP PDU reassembled in 254] [ACK] 443 → 49703 1486 TCP 2600:1f13:37c:1400:ba21:7165:5fc7:736e ...2001:16a3:d26:fd00:4 4.105897 253 Client Hello (SNI=wonderousoldastoundingday.neverssl.com) 442 ...TLS 2600:1f13:37c:1400:ba21:7165:5fc7:736e ...2001:16a3:d26:fd00:4 4.105897 254 49699 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM [TCP Retransmission] 66 34.223.124.45 4.135516 255 192.168.100.18 49700 → 80 [SYN] Seg=0 Win=64240 Len=0 MSS=1460 WS=256 SACK PERM [TCP Retransmission] 66 4.135866 256 34.223.124.45 192.168.100.18 TCP Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK PERM [SYN] 80 → 49704 66 34.223.124.45 192.168.100.18 4.167724 257 TCP Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK PERM [SYN] 80 → 49705 66 34.223.124.45 192.168.100.18 4.167909 258 Sen-1 Ack-1 Win-510 Len-1 [ACV] 5228 - 49477 75 TCD 2=00.1450.400c.coh..hc 2001.16=3.426.fd00.4 4 255660 250 7 0 wireshark_Wi-FiKBNSC3.pcapng Profile: Default Packets: 427 · Selected: 3 (0.7%) · Dropped: 0 (0.0%) ۸ ﷺ 🖆 (ډ ک

