MapReduce I

Big Data Management

Knowledge objectives

- 1. Enumerate several use cases of MapReduce
- 2. Explain 6 benefits of using MapReduce
- 3. Describe what the MapReduce is in the context of a DDBMS
- 4. Recognize the signature of Map and Reduce functions
- 5. Justify to which extent MapReduce is generic

Understanding objectives

1. Simulate the execution of a simple MapReduce algorithm from the user (agnostic of implementation details) perspective

Application objectives

- 1. Identify the usefulness of MapReduce in a given use case
- 2. Define the key in the output of the map for a simple problem
- 3. Provide the pseudo-code of map and reduce functions for a simple problem

Distributed processing framework

Origins

- Based on Google development
 - Conceived to compute the page Rank
- Data processing framework
 - Facilitate scalability
 - Hidden parallelism
 - Transparent distribution
 - Exploit data locality
 - Balance workload
 - Resilience to failure
 - Fine grained fault tolerance
- Useful in any domain

MapReduce as a DDBMS component

Chain production

Components and use

Formal definition

- Single input
 - Data are represented as <key, value> pairs
 - Value can be anything (structured or not)
- Functional programming
 - Map phase, for each input <key, value> a function f is applied that returns a multiset of new <key, value> pairs:

$$f(\langle k, v \rangle) \mapsto \{\langle k_1, v_1 \rangle, \dots, \langle k_n, v_n \rangle\}$$

• Reduce phase, all pairs with the same key are grouped and a function g is applied, which returns also a multiset of new < key, value > pairs:

$$g(\langle k, \{v_1, \dots, v_n\} \rangle) \mapsto \{\langle k_1, v_1 \rangle, \dots, \langle k_m, v_m \rangle\}$$

The MapReduce framework

The MapReduce framework in detail

- 1. <u>Input</u>: read input from a DFS
- 2. Map: for each input <key_{in}, value_{in}>
 - generate zero-to-many <key_{map}, value_{map}>
- 3. Partition: assign sets of $\langle \text{key}_{\text{map}} \rangle$ value_{map} to reducer machines
- 4. Shuffle: data are shipped to reducer machines using a DFS
- 5. Sort&Merge: reducers sort their input data by key
- 6. <u>Reduce</u>: for each key_{map}
 - the set value_{map} is processed to produce zero-to-many <key_{red}, value_{red}>
- 7. Output: writes the result of reducers to the DFS

MapReduce examples

Word count example

WordCount Code Example

```
public void map(
                               Value
                   Key
                              Blackbox
    write(
                    Key
                                         Value
public void reduce Key
                                Values
                              Blackbox
  write( Key
                  Value
```


Friends in common example

- In a social network (e.g., Facebook) we aim to compute the friends in common
 - This is a value that does not frequently change, so it can be precomputed
- Friends are stored as

Person -> [List of friends]

- \bullet A \rightarrow B C D
- B \rightarrow A C D E
- $\cdot C \rightarrow ABDE$
- D → A B C E
- E → B C D

Friends in common – Map task

- For every friend in the list, the mapper will generate a <k,v>
 - Key: the input key and one friend in alphabetical order
 - Value: the list of friends
- Keys will be sorted, a pair of friends go to the same reducer

$$A \rightarrow BCD$$

$$(AB) \rightarrow BCD$$

$$(AC) \rightarrow BCD$$

$$(AD) \rightarrow BCD$$

$$B \rightarrow ACDE$$
 $(AB) \rightarrow ACDE$
 $(BC) \rightarrow ACDE$
 $(BD) \rightarrow ACDE$
 $(BE) \rightarrow ACDE$

$$C \rightarrow ABDE$$
 $(AC) \rightarrow ABDE$
 $(BC) \rightarrow ABDE$
 $(CD) \rightarrow ABDE$
 $(CE) \rightarrow ABDE$

Friends in common – Reduce task

Reducers receive two lists of friends per pair of people

$$(A B) \rightarrow (B C D) (A C D E)$$

 $(A C) \rightarrow (B C D) (A B D E)$
 $(A D) \rightarrow (B C D) (A B C E)$

• The reduce function intersects the lists of values and generates the same key

$$(A B) \rightarrow (C D)$$

 $(A C) \rightarrow (B D)$
 $(A D) \rightarrow (B C)$

. . .

 Now, when D visits A's profile we can lookup (A D) to see their common friends

Relational algebra in MapReduce

Relational operations: Projection

$$\pi_{a_{i_1},\dots,a_{i_n}}(T) \mapsto \begin{cases} \operatorname{map}(\ker k, \operatorname{value} v) \mapsto [(\operatorname{\texttt{prj}}_{a_{i_1},\dots,a_{i_n}}(k \oplus v), 1)] \\ \operatorname{\texttt{reduce}}(\ker ik, \operatorname{\texttt{vset}} ivs) \mapsto [(ik)] \end{cases}$$

Relational operations: Cross Product

```
\begin{cases} \mathsf{map}(\mathsf{key}\ k, \mathsf{value}\ v) \mapsto \\ \left[ (\mathsf{h}_T(k)\ \mathsf{mod}\ D, k \oplus v) \right] & \text{if input}(k \oplus v) = T, \\ \left[ (0, k \oplus v), ..., (D - 1, k \oplus v) \right] & \text{if input}(k \oplus v) = S. \end{cases} \\ \mathsf{T} \times S \quad \Leftrightarrow \quad \begin{cases} \mathsf{reduce}(\mathsf{key}\ ik, \mathsf{vset}\ ivs) \mapsto \\ \left[ \mathsf{crossproduct}(T_{ik}, S) \mid \\ T_{ik} = \{iv \mid iv \in ivs \land \mathsf{input}(iv) = T\}, \\ S = \{iv \mid iv \in ivs \land \mathsf{input}(iv) = S\} \end{cases} \end{cases}
```


Genericity

- The MapReduce programming paradigm is computationally complete
 - Any data process can be adapted to it
 - Some tasks better adapt to it than others
 - Not necessarily efficient
 - Optimization is very limited because of lack of expressivity
- MapReduce's signature is closed
 - MapReduce iterations can be chained
 - Fault tolerance is not guaranteed in between
 - Resources are released to be just requested again
- Supported in many store systems
 - HBase, MongoDB, CouchDB, etc.
- Criticized for being too low-level
 - APIs for Ruby, Python, Java, C++, etc.
 - Attempts to build declarative languages on top
 - SQL-like
 - HiveQL
 - Cassandra Query Language (CQL)

Closing

Summary

- MapReduce usefulness and benefits
- MapReduce programming model
 - Expressivity
- Relational algebra in MapReduce

References

- J. Dean et al. *MapReduce: Simplified Data Processing on Large Clusters*. OSDI'04
- A. Pavlo et al. A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD, 2009
- J. Dittrich et al. *Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing)*. Proc. VLDB Endow. 3(1-2), 2010
- M. Stonebraker et al. *MapReduce and parallel DBMSs: friends or foes?* Communication of ACM 53(1), 2010
- S. Abiteboul et al. Web data management. Cambridge University Press, 2011
- A. Rajaraman et al. *Mining massive data sets*. Cambridge University Press, 2012
- P. Sadagale and M. Fowler. NoSQL distilled. Addison-Wesley, 2013

