Laboratorium 6

Analiza bayesowska

(3+2+2)

W pliku *obserwacje. dat* znajduje się zbiór 200 pomiarów $\{x_i\}$ z zakresu [-6,12]. Te pomiary opisujemy rozkładem

$$S\frac{1}{\sqrt{2\pi}\sigma}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) + (1-S)\frac{1}{18}$$

o trzech parametrach, siła sygnału S, położenie i szerokość piku sygnału μ i σ .

- 1. Ograniczamy się do jednego parametru, ustalając $\mu=3$ oraz $\sigma=.3$. Przyjmujemy jako rozkład a priori dla zmiennej S, rozkład jednorodny z przedziału [0,1].
 - narysować rozkład prawdopodobieństwa a posteriori, $P(S|\{x_i\})$
 - obliczyć wartość oczekiwaną i odchylenie standardowe dla parametru S.
- 2. Jak powyżej, ograniczamy się do jednego parametru, ustalając $\mu=3$ oraz $\sigma=.3$. Na podstawie opublikowanych wyników innych eksperymentów, przyjmujemy jako rozkład a priori dla zmiennej S, rozkład normalny o średniej 0.3 i odchyleniu standardowym 0.05
 - narysować rozkład prawdopodobieństwa a posteriori, $P(S|\{x_i\})$
 - obliczyć wartość oczekiwana i odchylenie standardowe dla parametru S.
- 3. Ustalamy parametrS=0.2. A priori, dla parametru μ przyjmujemy rozkład jednorodny z przedziału [2,4], a dla parametru σ rozkład jednorodny z przedziału [0.1,0.5].
 - narysować dwuwymiarowy rozkład a posteriori $P(\mu, \sigma | \{x_i\})$
 - obliczyć wartość oczekiwaną i odchylenie standardowe dla parametru μ .
 - obliczyć wartość oczekiwaną i odchylenie standardowe dla parametru σ .

Z powodu ograniczonej dokładności numerycznej, cześć obliczeń warto wykonać używając logarytmu funkcji największej wiarygodności.