Conjectura do Jacobiano à la \mathbb{Z}_p

Wodson Mendson

UFMG

5 de fevereiro de 2018

Orientador: Israel Vainsencher

Introdução

Álgebra Linear

Sejam k um corpo e $f: k^n \longrightarrow k^n$ um k-mapa. Fixando uma base, digamos canônica, do k-espaço $k^n = ke_1 \oplus \cdots \oplus ke_n$ podemos representar o mapa f por polinômios $f_1, ..., f_n \in k[X_1, ..., X_n]$ homogêneos de grau 1. Nesse caso, é fácil verificar

Álgebra Linear

Sejam k um corpo e $f: k^n \longrightarrow k^n$ um k-mapa. Fixando uma base, digamos canônica, do k-espaço $k^n = ke_1 \oplus \cdots \oplus ke_n$ podemos representar o mapa f por polinômios $f_1, ..., f_n \in k[X_1, ..., X_n]$ homogêneos de grau 1. Nesse caso, é fácil verificar

• f é injetivo se e só se f é isomorfismo.

Álgebra Linear

Sejam k um corpo e $f: k^n \longrightarrow k^n$ um k-mapa. Fixando uma base, digamos canônica, do k-espaço $k^n = ke_1 \oplus \cdots \oplus ke_n$ podemos representar o mapa f por polinômios $f_1, ..., f_n \in k[X_1, ..., X_n]$ homogêneos de grau 1. Nesse caso, é fácil verificar

- f é injetivo se e só se f é isomorfismo.
- f é isomorfismo se e só se det $J_f \neq 0$, onde J_f é matriz jacobiana associada a tupla $f = (f_1, ..., f_n)$.

Mapas polinomiais

Sejam R um dominio, $f_1,...,f_n \in R[X_1,...,X_n]$ e

$$f = (f_1, ..., f_n) : \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

o mapa polinomial associado. Dizemos que f é um isomorfismo se existem $g_1,...,g_n \in R[Y_1,...,Y_n]$ tais que

$$f_i(g_1,...,g_n) = Y_i \in g_k(f_1,...,f_n) = X_k \text{ para } 1 \le i,k \le n.$$

Sejam R um dominio, $f_1, ..., f_n \in R[X_1, ..., X_n]$ e

$$f = (f_1, ..., f_n) : R^n \longrightarrow R^n$$

o mapa polinomial associado. Dizemos que f é um isomorfismo se existem $g_1, ..., g_n \in R[Y_1, ..., Y_n]$ tais que

$$f_i(g_1,...,g_n) = Y_i \in g_k(f_1,...,f_n) = X_k \text{ para } 1 \le i,k \le n.$$

Notações:

- $\mathcal{MP}_n(R) = \text{coleção de mapas polinomiais sobre } R.$
- $\mathcal{MPI}_n(R) := \{ f \in \mathcal{MP}_n(R) \mid f \text{ \'e isomorfismo } \}.$
- k = corpo.

Dado $f \in \mathcal{MP}_n(R)$ dizemos que f é um mapa de Keller se det $J_f = 1$.

Problema

Sejam k um corpo e $f_1, ..., f_n \in k[X_1, ..., X_n]$ e $f \in \mathcal{MP}_n(k)$ o mapa associado. Seja J_f a matriz jacobiana associada.

Problema

Sejam k um corpo e $f_1, ..., f_n \in k[X_1, ..., X_n]$ e $f \in \mathcal{MP}_n(k)$ o mapa associado. Seja J_f a matriz jacobiana associada.

• f é injetivo se e só se f é isomorfismo?

Problema

Sejam k um corpo e $f_1, ..., f_n \in k[X_1, ..., X_n]$ e $f \in \mathcal{MP}_n(k)$ o mapa associado. Seja J_f a matriz jacobiana associada.

- f é injetivo se e só se f é isomorfismo?
- $f \notin isomorfismo se e s \circ se J_f \in GL_n(k[X_1, ..., X_n])$?

Problema

Sejam k um corpo e $f_1,...,f_n \in k[X_1,...,X_n]$ e $f \in \mathcal{MP}_n(k)$ o mapa associado. Seja J_f a matriz jacobiana associada.

- f é injetivo se e só se f é isomorfismo?
- $f \notin isomorfismo se e s \acute{o} se J_f \in GL_n(k[X_1,...,X_n])$?

Na generalidade em questão: NÃO e NÃO.

Problema

Sejam k um corpo e $f_1,...,f_n \in k[X_1,...,X_n]$ e $f \in \mathcal{MP}_n(k)$ o mapa associado. Seja J_f a matriz jacobiana associada.

- f é injetivo se e só se f é isomorfismo?
- $f \notin isomorfismo se e s \acute{o} se J_f \in GL_n(k[X_1,...,X_n])$?

Na generalidade em questão: NÃO e NÃO.

• Se $k = \mathbb{F}_p$ então $f = (X_1 - X_1^p, ..., X_n - X_n^p) \in \mathcal{MP}_n(k)$ é tal que $\det J_f = 1 \text{ mas } f \text{ não \'e isomorfismo.}$

Problema

Sejam k um corpo e $f_1,...,f_n \in k[X_1,...,X_n]$ e $f \in \mathcal{MP}_n(k)$ o mapa associado. Seja J_f a matriz jacobiana associada.

- f é injetivo se e só se f é isomorfismo?
- $f \notin isomorfismo se e s \acute{o} se J_f \in GL_n(k[X_1,...,X_n])$?

Na generalidade em questão: NÃO e NÃO.

- Se $k = \mathbb{F}_p$ então $f = (X_1 X_1^p, ..., X_n X_n^p) \in \mathcal{MP}_n(k)$ é tal que $\det J_f = 1 \text{ mas } f \text{ não \'e isomorfismo.}$
- Se $k = \mathbb{Q}$ o mapa $f = (X_1^3, ..., X_n^3) \in \mathcal{MP}_n(k)$ é injetivo e não é isomorfismo.

Mas, restringindo ao caso em que k é algebricamente fechado com char(k) = 0 temos

Mas, restringindo ao caso em que k é algebricamente fechado com char(k) = 0 temos

Teorema (Cynk-Rusek)

Seja $X \subset \mathbb{A}^n_k$ uma variedade afim $e \ f : X \longrightarrow X$ um endomorfismo. São equivalentes:

- (i) f é bijeção.
- (ii) f é injetivo.
- (iii) f é isomorfismo.

Mas, restringindo ao caso em que k é algebricamente fechado com char(k) = 0 temos

Teorema (Cynk-Rusek)

Seja $X \subset \mathbb{A}^n_k$ uma variedade afim $e \ f : X \longrightarrow X$ um endomorfismo. São equivalentes:

- (i) f é bijeção.
- (ii) f é injetivo.
- (iii) f é isomorfismo.

Conjectura do Jacobiano (Keller - 1939)

Seja $f \in \mathcal{MP}_n(k)$ $(n \geq 2)$ mapa com det $J_f = 1$. Então f é isomorfismo.

Injetividade \Longrightarrow Sobrejetividade

Seja $W \subset \mathbb{A}^n_k$ uma variedade afim sobre um corpo algebricamente fechado k com $char(k) \geq 0$ e $G: W \hookrightarrow W$ um endomorfismo injetivo.

Injetividade \Longrightarrow Sobrejetividade

Seja $W \subset \mathbb{A}^n_k$ uma variedade afim sobre um corpo algebricamente fechado k com $char(k) \geq 0$ e $G: W \hookrightarrow W$ um endomorfismo injetivo.

Sejam $G_1, ..., G_n \in k[X_1, ..., X_n]$ polinômios representando o mapa G. Vamos formular as condições de **não-sobrejetividade**, **injetividade e pertinência** em termos de relações polinomiais.

$\overline{\text{Injetividade}} \Longrightarrow \overline{\text{Sobrejetividade}}$

Seja $W \subset \mathbb{A}^n_k$ uma variedade afim sobre um corpo algebricamente fechado $k \operatorname{com} \operatorname{char}(k) > 0 \operatorname{e} G : W \hookrightarrow W \operatorname{um} \operatorname{endomorfismo} \operatorname{injetivo}$.

Sejam $G_1, ..., G_n \in k[X_1, ..., X_n]$ polinômios representando o mapa G. Vamos formular as condições de **não-sobrejetividade**, **injetividade** e pertinência em termos de relações polinomiais.

Para isso, denote $F_1, ..., F_r \in k[X_1, ..., X_n]$ as equações definindo a variedade W.

Injetividade \Longrightarrow Sobrejetividade

Seja $W \subset \mathbb{A}^n_k$ uma variedade afim sobre um corpo algebricamente fechado k com $char(k) \geq 0$ e $G: W \hookrightarrow W$ um endomorfismo injetivo.

Sejam $G_1, ..., G_n \in k[X_1, ..., X_n]$ polinômios representando o mapa G. Vamos formular as condições de **não-sobrejetividade**, **injetividade e pertinência** em termos de relações polinomiais.

Para isso, denote $F_1, ..., F_r \in k[X_1, ..., X_n]$ as equações definindo a variedade W.

Pertinência: considere os ideais $I_1 = \langle F_1(G(X)), ..., F_r(G(X)) \rangle$ e $I_2 = \langle F_1(X), ..., F_r(X) \rangle$ em k[X, Y]. $G(W) \subset W$ se e só se para cada $1 \leq k \leq n$ existe $n_k \in \mathbb{N}$ tal que

$$F_k(G(X))^{n_k} = \sum_h r_h(X) F_h(X).$$

$$I = \langle X - Y \rangle$$
 e $J = \langle F(X), F(Y), G(X) - G(Y) \rangle$ em $k[X, Y]$.

G é injetivo se e só se para cada $1 \le k \le n$ existe $m_k \in \mathbb{N}$ e uma relação da forma $(X_k - Y_k)^{m_k} =$

$$\sum_{l_1} A_{l_1}(X,Y) F_{l_1}(X) + \sum_{l_2} B_{l_2}(X,Y) F_{l_1}(Y) + \sum_{l_1} A_{l_1}(X,Y) (G_{l_3}(X) - G_{l_3}(Y)).$$

Injetividade: considere os ideais

$$I = \langle X - Y \rangle$$
 e $J = \langle F(X), F(Y), G(X) - G(Y) \rangle$ em $k[X, Y]$.

G é injetivo se e só se para cada $1 \leq k \leq n$ existe $m_k \in \mathbb{N}$ e uma relação da forma $(X_k - Y_k)^{m_k} =$

$$\sum_{l_1} A_{l_1}(X,Y) F_{l_1}(X) + \sum_{l_2} B_{l_2}(X,Y) F_{l_1}(Y) + \sum_{l_1} A_{l_1}(X,Y) (G_{l_3}(X) - G_{l_3}(Y)).$$

Não-sobrejetividade: o ideal

$$T = \langle F_1(X), ..., F_r(X), F_1(Y), ..., F_r(Y), G_1(X) - Y_1, ..., G_n(X) - Y_n \rangle$$

não tem zeros. Assim,

$$1 = \sum_{i} a(X, Y)F_{i}(X) + \sum_{i} b(X, Y)F_{j}(Y) + \sum_{k} c(X, Y)(G_{k}(X) - Y_{k})$$

Seja $\{\alpha_i\}_{i\in I}$ coleção de todos os coeficientes que ocorrem nas relações polinomiais acima. Agora, dividimos em casos:

Seja $\{\alpha_i\}_{i\in I}$ coleção de todos os coeficientes que ocorrem nas relações polinomiais acima. Agora, dividimos em casos:

• char(k) = p > 0: Seja $R = \mathbb{F}_p[\{\alpha_i\}]$ o subanel obtido por adjunção. Seja $\mathfrak{m} \in Spec_m(R)$. Pelo lema de Zariski, sabemos que R/\mathfrak{m} é uma extensão algébrica finita de \mathbb{F}_p . Em particular um corpo finito. Agora, reduzindo as relações polinomiais obtidas acima, obtemos um mapa polinomial $\overline{G}: X(R/\mathfrak{m}) \longrightarrow X(R/\mathfrak{m})$ injetivo mas não sobrejetivo. Absurdo já que $\#X(R/\mathfrak{m}) < \infty$.

Seja $\{\alpha_i\}_{i\in I}$ coleção de todos os coeficientes que ocorrem nas relações polinomiais acima. Agora, dividimos em casos:

- char(k) = p > 0: Seja $R = \mathbb{F}_p[\{\alpha_i\}]$ o subanel obtido por adjunção. Seja $\mathfrak{m} \in Spec_m(R)$. Pelo lema de Zariski, sabemos que R/\mathfrak{m} é uma extensão algébrica finita de \mathbb{F}_p . Em particular um corpo finito. Agora, reduzindo as relações polinomiais obtidas acima, obtemos um mapa polinomial $\overline{G}: X(R/\mathfrak{m}) \longrightarrow X(R/\mathfrak{m})$ injetivo mas não sobrejetivo. Absurdo já que $\#X(R/\mathfrak{m}) < \infty$.
- char(k) = 0: Seja $R = \mathbb{Z}[\{\alpha_i\}]$ o subanel obtido por adjunção. Seja $\mathfrak{m} \in Spec_m(R)$. Se R/\mathfrak{m} é um corpo finito podemos repetir o argumento acima e chegar a uma contradição.

Seja $\{\alpha_i\}_{i\in I}$ coleção de todos os coeficientes que ocorrem nas relações polinomiais acima. Agora, dividimos em casos:

- char(k) = p > 0: Seja $R = \mathbb{F}_p[\{\alpha_i\}]$ o subanel obtido por adjunção. Seja $\mathfrak{m} \in Spec_m(R)$. Pelo lema de Zariski, sabemos que R/\mathfrak{m} é uma extensão algébrica finita de \mathbb{F}_n . Em particular um corpo finito. Agora, reduzindo as relações polinomiais obtidas acima, obtemos um mapa polinomial $\overline{G}: X(R/\mathfrak{m}) \longrightarrow X(R/\mathfrak{m})$ injetivo mas não sobrejetivo. Absurdo já que $\#X(R/\mathfrak{m}) < \infty$.
- char(k) = 0: Seja $R = \mathbb{Z}[\{\alpha_i\}]$ o subanel obtido por adjunção. Seja $\mathfrak{m} \in Spec_m(R)$. Se R/\mathfrak{m} é um corpo finito podemos repetir o argumento acima e chegar a uma contradição. Isso é consequência do seguinte fato algébrico:

Teorema

Seja R uma \mathbb{Z} -álgebra de tipo finito e $\mathfrak{m} \in Spec(R)$. Então

 $\mathfrak{m} \in Spec_m(R) \iff R/\mathfrak{m} \ \'e \ um \ corpo \ finito$

Dado um mapa $f \in \mathcal{MP}_n(k)$ defina o grau de f pondo

$$deg(f) := \mathbf{Max}\{deg(f_1), \cdots, deg(f_n)\}.$$

Aplicações

Dado um mapa $f \in \mathcal{MP}_n(k)$ defina o grau de f pondo

$$deg(f) := \mathbf{Max}\{deg(f_1), \cdots, deg(f_n)\}.$$

Teorema (Wang)

Sejam k um corpo, algebricamente fechado com char(k) = 0, e $f \in \mathcal{MP}_n(k)$ um mapa de Keller com deg(f) < 3. Então f é invertível.

Sem perda de generalidade podemos supor f(0) = 0. Pelo teorema de Cynk-Rusek é suficiente mostrar que f é injetivo. Suponha que tal não ocorra e sejam $P \neq Q \in k^n$ tais que f(P) = f(Q). Sem perda podemos supor P = 0.

Sem perda de generalidade podemos supor f(0) = 0. Pelo teorema de Cynk-Rusek é suficiente mostrar que f é injetivo. Suponha que tal não ocorra e sejam $P \neq Q \in k^n$ tais que f(P) = f(Q). Sem perda podemos supor P = 0. Escreva $f = (f_1, ..., f_n) = f_{(1)} + f_{(2)}$ onde $f_{(d)} = (f_1^{(d)}, ..., f_n^{(d)})$ é a componente homogênea de grau d. Seja $c := 1/2 \in k$.

Sem perda de generalidade podemos supor f(0) = 0. Pelo teorema de Cynk-Rusek é suficiente mostrar que f é injetivo. Suponha que tal não ocorra e sejam $P \neq Q \in k^n$ tais que f(P) = f(Q). Sem perda podemos supor P = 0. Escreva $f = (f_1, ..., f_n) = f_{(1)} + f_{(2)}$ onde $f_{(d)} = (f_1^{(d)}, ..., f_n^{(d)})$ é a componente homogênea de grau d. Seja $c := 1/2 \in k$. Então

$$0 = f(Q) = f_{(1)}(Q) + 2cf_{(2)}(Q) = \frac{\partial [Tf_{(1)}(Q) + T^2f_{(2)}(Q)]}{\partial T}|_{T=c} =$$

$$\frac{\partial f(TQ)}{\partial T}|_{T=c} = J_f(cQ).Q,$$

Sem perda de generalidade podemos supor f(0) = 0. Pelo teorema de Cynk-Rusek é suficiente mostrar que f é injetivo. Suponha que tal não ocorra e sejam $P \neq Q \in k^n$ tais que f(P) = f(Q). Sem perda podemos supor P = 0. Escreva $f = (f_1, ..., f_n) = f_{(1)} + f_{(2)}$ onde $f_{(d)} = (f_1^{(d)}, ..., f_n^{(d)})$ é a componente homogênea de grau d. Seja $c := 1/2 \in k$. Então

$$0 = f(Q) = f_{(1)}(Q) + 2cf_{(2)}(Q) = \frac{\partial [Tf_{(1)}(Q) + T^2f_{(2)}(Q)]}{\partial T}|_{T=c} =$$

$$\frac{\partial f(TQ)}{\partial T}|_{T=c} = J_f(cQ).Q,$$

o que é um absurdo pela condição de Keller:

$$\det J_f = 1.$$

Aplicações

O seguinte resultado é importante nas considerações p-ádicas:

Teorema (Connell-van der Dries)

Seja $f \in \mathcal{MP}_n(\mathbb{C})$ um mapa de Keller não injetivo i.e. um contraexemplo para Conjectura do Jacobiano. Então existe um contra-exemplo $f \in \mathcal{MP}_N(\mathbb{C})$ com coeficientes em \mathbb{Z} .

Aplicações

O seguinte resultado é importante nas considerações p-ádicas:

Teorema (Connell-van der Dries)

Seja $f \in \mathcal{MP}_n(\mathbb{C})$ um mapa de Keller não injetivo i.e. um contraexemplo para Conjectura do Jacobiano. Então existe um contra-exemplo $f \in \mathcal{MP}_N(\mathbb{C})$ com coeficientes em \mathbb{Z} .

Para provar isso, usaremos o seguinte lema:

Lema

Seja $K|\mathbb{Q}$ uma extensão finita galoisiana de grau $m = [K : \mathbb{Q}] > 0$ e $f \in \mathcal{MP}_n(K)$ um mapa de Keller não injetivo. Então existe um mapa de Keller $g \in \mathcal{MP}_{nm}(\mathbb{Q})$ não injetivo.

Seja $f \in \mathcal{MP}_n(\mathbb{C})$ um mapa de Keller não injetivo, digamos f(P) = f(Q) para $P \neq Q$. Por uma mudança de coordenadas podemos supor P = (0, ..., 0) e Q = (1, 0, ..., 0).

Aplicações

Demostração.

Seja $f \in \mathcal{MP}_n(\mathbb{C})$ um mapa de Keller não injetivo, digamos f(P) = f(Q) para $P \neq Q$. Por uma mudança de coordenadas podemos supor P = (0, ..., 0) e Q = (1, 0, ..., 0).

Substituindo cada coeficiente de f por uma variável obtemos um mapa polinomial $F \in \mathcal{MP}_n(\mathbb{Z}[Y_1,...,Y_d])$. A condição em det J_f implica que det $J_F = 1 + p(X,Y)$ por algum $p(X,Y) \in \mathbb{Z}[X_1,...,X_n,Y_1,...,Y_d]$.

Seja $f \in \mathcal{MP}_n(\mathbb{C})$ um mapa de Keller não injetivo, digamos f(P) = f(Q) para $P \neq Q$. Por uma mudança de coordenadas podemos supor P = (0, ..., 0) e Q = (1, 0, ..., 0).

Substituindo cada coeficiente de f por uma variável obtemos um mapa polinomial $F \in \mathcal{MP}_n(\mathbb{Z}[Y_1,...,Y_d])$. A condição em det J_f implica que det $J_F = 1 + p(X,Y)$ por algum $p(X,Y) \in \mathbb{Z}[X_1,...,X_n,Y_1,...,Y_d]$.

A condição F(P) = F(Q) pode ser expressa em relações polinomiais nas variáveis $Y_1, ..., Y_d$, digamos $G_1, ..., G_m \in \mathbb{Z}[Y]$. Ainda, a condição det $J_F = 1$ pode ser expressa em relações polinomiais na variável Y, digamos $h_1 = \cdots = h_r = 0$.

$$I = \langle G_1, ..., G_m, h_1, ..., h_r \rangle \subset \mathbb{Z}[Y_1, ..., Y_d] \subset \overline{\mathbb{Q}}[Y_1, ..., Y_d].$$

$$I = \langle G_1, ..., G_m, h_1, ..., h_r \rangle \subset \mathbb{Z}[Y_1, ..., Y_d] \subset \overline{\mathbb{Q}}[Y_1, ..., Y_d].$$

Sobre \mathbb{C} , sabemos que o ideal I possui um zero. Em particular, pelo Nullstelenzatz $1 \notin I$. Assim, I possui um zero sobre $\overline{\mathbb{Q}}$.

$$I = \langle G_1, ..., G_m, h_1, ..., h_r \rangle \subset \mathbb{Z}[Y_1, ..., Y_d] \subset \overline{\mathbb{Q}}[Y_1, ..., Y_d].$$

Sobre \mathbb{C} , sabemos que o ideal I possui um zero. Em particular, pelo Nullstelenzatz $1 \notin I$. Assim, I possui um zero sobre $\overline{\mathbb{Q}}$. Tal zero "produz" um contraexemplo para conjectura do Jacobiano com coeficientes em uma extensão galoisiana finita $K|\mathbb{Q}$.

Aplicações

$$I = \langle G_1, ..., G_m, h_1, ..., h_r \rangle \subset \mathbb{Z}[Y_1, ..., Y_d] \subset \overline{\mathbb{Q}}[Y_1, ..., Y_d].$$

Sobre \mathbb{C} , sabemos que o ideal I possui um zero. Em particular, pelo Nullstelenzatz $1 \notin I$. Assim, I possui um zero sobre $\overline{\mathbb{Q}}$. Tal zero "produz" um contraexemplo para conjectura do Jacobiano com coeficientes em uma extensão galoisiana finita $K|\mathbb{Q}$.

Usando o lema acima e um argumento de cancelamento de denominadores garantimos que existe um contraexemplo $f \in \mathcal{MP}_n(\mathbb{C})$ com coeficientes em \mathbb{Z} e com det $J_f = 1$. Isso encerra a prova.

$$I = \langle G_1, ..., G_m, h_1, ..., h_r \rangle \subset \mathbb{Z}[Y_1, ..., Y_d] \subset \overline{\mathbb{Q}}[Y_1, ..., Y_d].$$

Sobre \mathbb{C} , sabemos que o ideal I possui um zero. Em particular, pelo Nullstelenzatz $1 \notin I$. Assim, I possui um zero sobre $\overline{\mathbb{Q}}$. Tal zero "produz" um contraexemplo para conjectura do Jacobiano com coeficientes em uma extensão galoisiana finita $K|\mathbb{Q}$.

Usando o lema acima e um argumento de cancelamento de denominadores garantimos que existe um contraexemplo $f \in \mathcal{MP}_n(\mathbb{C})$ com coeficientes em \mathbb{Z} e com det $J_f = 1$. Isso encerra a prova.

Corolário

Conjectura do Jacobiano sobre \mathbb{Z} é equivalente a conjectura do Jacobiano sobre \mathbb{C} .

Reduções

É suficiente considerar o caso deg(f) = 3:

Reduções

É suficiente considerar o caso deg(f) = 3:

Teorema (Connell-Bass-Wright)

Suponha que para, $n \in \mathbb{Z}_{>1}$ e qualquer mapa $f \in \mathcal{MP}_n(k)$ na forma f = X + H com JH matriz nilpotente e H homogêneo de grau 3 o mapa f é invertível. Então a Conjectura do Jacobiano (sobre k) é verdadeira.

Reduções

É suficiente considerar o caso deg(f) = 3:

Teorema (Connell-Bass-Wright)

Suponha que para, $n \in \mathbb{Z}_{>1}$ e qualquer mapa $f \in \mathcal{MP}_n(k)$ na forma f = X + H com JH matriz nilpotente e H homogêneo de grau 3 o mapa f é invertível. Então a Conjectura do Jacobiano (sobre k) é verdadeira.

Existe um refinamento devido a Essen-Bondt:

Teorema (Essen-Bondt)

Suponha que para, $n \in \mathbb{Z}_{>1}$ e qualquer mapa $f \in \mathcal{MP}_n(\mathbb{C})$ na forma f = X + H com H homogêneo cúbico e JH matriz nilpotente simétrica o mapa f é invertível. Então a Conjectura do Jacobiano (sobre \mathbb{C}) é verdadeira.

Redução do grau

Daremos um argumento para redução de grau:

Teorema

Seja $f \in \mathcal{MP}_n(k)$. Então existem $G, H \in \mathcal{MP}_{n+m}(k)$ mapas invertíveis para algum $m \in \mathbb{N}$, tais que $g := G \circ f^{[m]} \circ H$ satisfaz $deg(g) \leq 3$. Aqui, $f^{[m]}$ denota a m-expansão de f i.e. $f^{[m]} = (f_1, ..., f_n, X_{n+1}, ..., X_{n+m})$.

Denote d o grau de f. A prova será por indução em d. Se d < 4 então OK.

Denote d o grau de f. A prova será por indução em d. Se d < 4 então OK. Se d > 4 seja M um monômio de grau > 3 que ocorre em f. Sem perda de generalidade podemos supor M ocorre em f_1 .

Denote d o grau de f. A prova será por indução em d. Se d < 4 então OK. Se d > 4 seja M um monômio de grau > 3 que ocorre em f. Sem perda de generalidade podemos supor M ocorre em f_1 . Escreva M = PQ onde $deg(P) \le d - 2$ e $deg(Q) \le d - 2$. Considere os mapas

$$H = (X_1, ..., X_n, X_{n+1} + P, X_{n+2} + Q)$$

$$G = (X_1 - X_{n+1}X_{n+2}, X_2, ..., X_{n+2}).$$

Denote d o grau de f. A prova será por indução em d. Se d < 4 então OK. Se d > 4 seja M um monômio de grau > 3 que ocorre em f. Sem perda de generalidade podemos supor M ocorre em f_1 . Escreva M = PQ onde $deg(P) \le d - 2$ e $deg(Q) \le d - 2$. Considere os mapas

$$H = (X_1, ..., X_n, X_{n+1} + P, X_{n+2} + Q)$$

$$G = (X_1 - X_{n+1}X_{n+2}, X_2, ..., X_{n+2}).$$

Seja $g := G \circ f^{[2]} \circ H$. Considerando g_1 temos

$$g_1 = f_1 - PX_{n+2} - QX_{n+1} - M - X_{n+1}X_{n+2}.$$

Denote d o grau de f. A prova será por indução em d. Se d < 4 então OK. Se d > 4 seja M um monômio de grau > 3 que ocorre em f. Sem perda de generalidade podemos supor M ocorre em f_1 . Escreva M = PQ onde $deg(P) \le d - 2$ e $deg(Q) \le d - 2$. Considere os mapas

$$H = (X_1, ..., X_n, X_{n+1} + P, X_{n+2} + Q)$$

$$G = (X_1 - X_{n+1}X_{n+2}, X_2, ..., X_{n+2}).$$

Seja $q := G \circ f^{[2]} \circ H$. Considerando q_1 temos

$$g_1 = f_1 - PX_{n+2} - QX_{n+1} - M - X_{n+1}X_{n+2}.$$

Por um argumento análogo e por um número finito de passos podemos eliminar todos os monômios de grau d que ocorrem em q. Assim, obtemos um mapa de grau d' < d e por indução obtemos o resultado.

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local. Se $f = (f_1, ..., f_n) \in \mathcal{MP}_n(\mathcal{O})$ é um mapa linear de Keller é fácil verificar que existe $b \in \mathcal{O}^n$ tal que $f_j(b) \notin \mathcal{M}$ para algum j.

Abordagem \mathbb{Z}_p

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local. Se $f = (f_1, ..., f_n) \in \mathcal{MP}_n(\mathcal{O})$ é um mapa linear de Keller é fácil verificar que existe $b \in \mathcal{O}^n$ tal que $f_j(b) \notin \mathcal{M}$ para algum j. O caso geral é um problema em aberto:

Conjectura Unimodular

Seja $f \in \mathcal{MP}_n(\mathcal{O})$ (n > 1) um mapa de Keller sobre um dominio local $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$. Seja $\overline{f} \in \mathcal{MP}_n(k)$ o mapa obtido por redução mod \mathcal{M} . Então \overline{f} é não nulo.

Dominios Unimodulares

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local $e \ d \in \mathbb{N} \ e \ f \in \mathcal{MP}_n(\mathcal{O})$.

Dominios Unimodulares

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local e $d \in \mathbb{N}$ e $f \in \mathcal{MP}_n(\mathcal{O})$. Dizemos que

• f é unimodular se satisfaz condição da conjectura unimodular.

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local e $d \in \mathbb{N}$ e $f \in \mathcal{MP}_n(\mathcal{O})$. Dizemos que

- f é unimodular se satisfaz condição da conjectura unimodular.
- \mathcal{O} é um dominio d**-unimodular** se para qualquer mapa de Keller $f = (f_1, ..., f_n) \in \mathcal{MP}_n(\mathcal{O})$, com de $g(f) \leq d$ satisfaz condição da conjectura unimodular

Dominios Unimodulares

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local e $d \in \mathbb{N}$ e $f \in \mathcal{MP}_n(\mathcal{O})$. Dizemos que

- f é unimodular se satisfaz condição da conjectura unimodular.
- \mathcal{O} é um dominio d**-unimodular** se para qualquer mapa de Keller $f = (f_1, ..., f_n) \in \mathcal{MP}_n(\mathcal{O})$, com $deg(f) \leq d$ satisfaz condição da conjectura unimodular
- \mathcal{O} é um dominio **unimodular** se é d-unimodular para todo $d \in \mathbb{N}$.

Para uma classe de aneis locais a conjectura acima é verdadeira:

Teorema

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com k um corpo infinito. Então qualquer mapa de Keller $f \in \mathcal{MP}_n(\mathcal{O})$ (n > 1) é unimodular.

Para uma classe de aneis locais a conjectura acima é verdadeira:

Teorema

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com k um corpo infinito. Então qualquer mapa de Keller $f \in \mathcal{MP}_n(\mathcal{O})$ (n > 1) é unimodular.

Por outro lado:

Teorema

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com char $(\mathcal{O}) > 0$ e k finito. Então \mathcal{O} não é unimodular.

Para uma classe de aneis locais a conjectura acima é verdadeira:

Teorema

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com k um corpo infinito. Então qualquer mapa de Keller $f \in \mathcal{MP}_n(\mathcal{O})$ (n > 1) é unimodular.

Por outro lado:

Teorema

Seja $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com char $(\mathcal{O}) > 0$ e k finito. Então \mathcal{O} não é unimodular.

De fato, se $char(\mathcal{O}) = p > 0$ e q = #k considere o mapa

$$f = (X_1 - X_1^q, ..., X_n - X_n^q) \in \mathcal{MP}_n(\mathcal{O})$$

e note que f não é unimodular já que qualquer elemento do corpo residuo satisfaz $\alpha^q = \alpha$.

Observação

$char(\mathcal{O})$	char(k)	#k	tipo
p = 0	q > 0	∞	unimodular
p = 0	q > 0	$< \infty$?
p = 0	q = 0	∞	unimodular
p > 0	q = p	$<\infty$	$n\~ao\ unimodular$
p > 0	q = p	∞	unimodular

O caso interessante é

$$(char(\mathcal{O}), char(k), \#k, \text{tipo}) = (0, p, < \infty, ?)$$

onde p > 0.

Teorema

Suponha que a Conjectura do Jacobiano sobre \mathbb{C} é verdadeira. Então qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ é unimodular.

Conjectura do Jacobiano e Unimodularidade

Teorema

Suponha que a Conjectura do Jacobiano sobre \mathbb{C} é verdadeira. Então qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ é unimodular.

Demonstração.

É um fato geral que se Conjectura do Jacobiano é verdadeira sobre \mathbb{C} então é verdadeira sobre qualquer dominio R com char(R) = 0.

Conjectura do Jacobiano e Unimodularidade

Teorema

Suponha que a Conjectura do Jacobiano sobre \mathbb{C} é verdadeira. Então qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ é unimodular.

Demonstração.

 $\dot{\mathbf{E}}$ um fato geral que se Conjectura do Jacobiano é verdadeira sobre \mathbb{C} então é verdadeira sobre qualquer dominio R com char(R) = 0.Em particular, dado um mapa de Keller $f = (f_1, ..., f_n) \in \mathcal{MP}_n(\mathcal{O})$ temos que $f \circ g = X$ onde $g = f^{-1}$. Seja $b = (b_1, ..., b_n) \in \mathcal{O}^n$ um vetor unimodular e considere c := q(b).

Vale a reciproca no seguinte sentido:

Teorema

A Conjectura do Jacobiano (sobre \mathbb{C}) é equivalente a seguinte afirmação:

• Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ é unimodular.

Vale a reciproca no seguinte sentido:

Teorema

A Conjectura do Jacobiano (sobre \mathbb{C}) é equivalente a seguinte afirmação:

• Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ é unimodular.

Isso é consequência do seguinte

Teorema (Essen-Lipton)

Suponha que para quase todo primo $p \in \mathbb{Z}$ o dominio \mathbb{Z}_p é unimodular. Então a Conjectura do Jacobiano (sobre \mathbb{C}) é verdadeira.

2-transitividade

Sejam R um dominio, $n \in \mathbb{N}$ e denote por $S_R(n,2)$ a categoria cujos objetos são pares ordenados (P,Q) com $P,Q \in R^n$ distintos. Diremos que (P,Q) é um 2-set em dimensão n. Um mapa entre (P_1,Q_1) e (P_2,Q_2) é a restrição de um mapa polinomial $f \in \mathcal{MP}_n(R)$ com a condição $f(P_1) = P_2$ e $f(Q_1) = Q_2$.

2-transitividade

Sejam R um dominio, $n \in \mathbb{N}$ e denote por $S_R(n,2)$ a categoria cujos objetos são pares ordenados (P,Q) com $P,Q \in R^n$ distintos. Diremos que (P,Q) é um 2-set em dimensão n. Um mapa entre (P_1,Q_1) e (P_2,Q_2) é a restrição de um mapa polinomial $f \in \mathcal{MP}_n(R)$ com a condição $f(P_1) = P_2$ e $f(Q_1) = Q_2$.

Teorema

Sejam X = (a,b) e Y = (c,d) 2-sets em dimensão n sobre um dominio R. Então

- $Hom(X,Y) \neq \emptyset \iff \langle d-c \rangle \subset \langle b-a \rangle$.
- $X \cong Y \iff \langle d c \rangle = \langle b a \rangle$.

2-transitividade

Sejam R um dominio, $n \in \mathbb{N}$ e denote por $S_R(n,2)$ a categoria cujos objetos são pares ordenados (P,Q) com $P,Q \in R^n$ distintos. Diremos que (P,Q) é um 2-set em dimensão n. Um mapa entre (P_1,Q_1) e (P_2,Q_2) é a restrição de um mapa polinomial $f \in \mathcal{MP}_n(R)$ com a condição $f(P_1) = P_2$ e $f(Q_1) = Q_2$.

Teorema

Sejam X = (a,b) e Y = (c,d) 2-sets em dimensão n sobre um dominio R. Então

- $Hom(X,Y) \neq \emptyset \iff \langle d-c \rangle \subset \langle b-a \rangle$.
- $X \cong Y \iff \langle d c \rangle = \langle b a \rangle$.

Teorema

Seja R um PID e X = (a, b), Y = (c, d) 2-sets em dimensão n sobre R. Se $X \cong Y$ então existe um automorfismo Keller afim $g \in \mathcal{MP}_n(R)$ tal que g(a) = c e g(b) = d.

Conjectura da Invariância

Conjectura da Invariância

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com char $(\mathcal{O}) = 0$ e $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller unimodular. Então

$$f - f(a)$$
 e $f \circ g \circ f$

são mapas unimodulares para quaisquer $a \in \mathcal{O}^n$ e $g \in Aut_n(\mathcal{O})$ automorfismo Keller afim.

Conjectura da Invariância

Conjectura da Invariância

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local com char $(\mathcal{O}) = 0$ e $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller unimodular. Então

$$f - f(a)$$
 e $f \circ g \circ f$

são mapas unimodulares para quaisquer $a \in \mathcal{O}^n$ e $g \in Aut_n(\mathcal{O})$ automorfismo Keller afim.

Observação

Como no caso unimodular, se k é infinito então a conjectura acima é verdadeira. De fato, é claro que unimodularidade \Longrightarrow invariância. No caso char $(\mathcal{O}) = p > 0$ com k finito a conjectura é falsa.

Dominios Invariantes

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local $e \ d \in \mathbb{N} \ e \ f \in \mathcal{MP}_n(\mathcal{O})$.

Dominios Invariantes

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local e $d \in \mathbb{N}$ e $f \in \mathcal{MP}_n(\mathcal{O})$. Dizemos que

• $f \notin um \ mapa \ invariante \ se \notin Keller, \ unimodular \ e \ para \ todo$ $g \in Aut_n(\mathcal{O}) \ automorfismo \ Keller \ e \ a \in \mathcal{O}^n \ temos \ f \circ g \circ f \ e$ $f - f(a) \ mapas \ unimodulares.$

Dominios Invariantes

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local e $d \in \mathbb{N}$ e $f \in \mathcal{MP}_n(\mathcal{O})$. Dizemos que

- $f \notin um \ mapa \ invariante \ se \notin Keller, \ unimodular \ e \ para \ todo$ $g \in Aut_n(\mathcal{O}) \ automorfismo \ Keller \ e \ a \in \mathcal{O}^n \ temos \ f \circ g \circ f \ e$ $f - f(a) \ mapas \ unimodulares.$
- $f \notin um \ mapa \ fortemente \ invariante \ se \notin invariante \ e \ para \ quaisquer \ automorfismos \ afim \ Keller \ g_1, \cdots, g_m \in Aut_n(\mathcal{O}) \ temos \ f_1 \circ \cdots \circ f_m \ um \ mapa \ invariante \ onde \ f_i = f \circ g_i.$

Dominios Invariantes

Definição

Sejam $(\mathcal{O}, \mathcal{M}, k)$ um dominio local e $d \in \mathbb{N}$ e $f \in \mathcal{MP}_n(\mathcal{O})$. Dizemos que

- $f \notin um \ mapa \ invariante \ se \notin Keller, \ unimodular \ e \ para \ todo$ $g \in Aut_n(\mathcal{O}) \ automorfismo \ Keller \ e \ a \in \mathcal{O}^n \ temos \ f \circ g \circ f \ e$ $f - f(a) \ mapas \ unimodulares.$
- $f \notin um \ mapa \ fortemente \ invariante \ se \notin invariante \ e \ para \ quaisquer \ automorfismos \ afim \ Keller \ g_1, \cdots, g_m \in Aut_n(\mathcal{O}) \ temos \ f_1 \circ \cdots \circ f_m \ um \ mapa \ invariante \ onde \ f_i = f \circ g_i.$
- \mathcal{O} é um dominio invariante se qualquer mapa Keller e unimodular $g \in \mathcal{MP}_n(\mathcal{O})$ (n > 1) é invariante.

Lema

Seja R um dominio e $f \in \mathcal{MP}_n(R)$. Suponha que f(a) = f(b) para alguns $a, b \in \mathbb{R}^n$ distintos. Então,

(a) Se det
$$J_f(0) = 1$$
 então $\langle a_1, ..., a_n, b_1, ..., b_n \rangle = R$.

(b) Se det
$$J_f = 1$$
 então $\langle a_1 - b_1, ..., a_n - b_n \rangle = R$

Lema

Seja R um dominio e $f \in \mathcal{MP}_n(R)$. Suponha que f(a) = f(b) para alguns $a, b \in R^n$ distintos. Então,

- (a) Se det $J_f(0) = 1$ então $\langle a_1, ..., a_n, b_1, ..., b_n \rangle = R$.
- (b) Se det $J_f = 1$ então $\langle a_1 b_1, ..., a_n b_n \rangle = R$

Demonstração.

E suficiente mostrar (a). Sem perda de generalidade podemos supor R dominio noetheriano e f(0) = 0. Nesse caso, seja g a inversa formal de f sobre R.

Seja R um dominio e $f \in \mathcal{MP}_n(R)$. Suponha que f(a) = f(b) para alguns $a, b \in R^n$ distintos. Então,

- (a) Se det $J_f(0) = 1$ então $\langle a_1, ..., a_n, b_1, ..., b_n \rangle = R$.
- (b) Se det $J_f = 1$ então $\langle a_1 b_1, ..., a_n b_n \rangle = R$

Demonstração.

É suficiente mostrar (a). Sem perda de generalidade podemos supor R dominio noetheriano e f(0) = 0. Nesse caso, seja g a inversa formal de f sobre R. Suponha que $I := \langle a_1, ..., a_n, b_1, ..., b_n \rangle$ seja um ideal próprio e seja \mathfrak{m} um ideal maximal sobre I. Considere \tilde{R} o completamento \mathfrak{m} -ádico de R.

Seja R um dominio e $f \in \mathcal{MP}_n(R)$. Suponha que f(a) = f(b) para alguns $a, b \in R^n$ distintos. Então,

- (a) Se det $J_f(0) = 1$ então $\langle a_1, ..., a_n, b_1, ..., b_n \rangle = R$.
- (b) Se det $J_f = 1$ então $\langle a_1 b_1, ..., a_n b_n \rangle = R$

Demonstração.

É suficiente mostrar (a). Sem perda de generalidade podemos supor R dominio noetheriano e f(0) = 0. Nesse caso, seja g a inversa formal de f sobre R. Suponha que $I := \langle a_1, ..., a_n, b_1, ..., b_n \rangle$ seja um ideal próprio e seja \mathfrak{m} um ideal maximal sobre I. Considere \tilde{R} o completamento \mathfrak{m} -ádico de R. Como $a_i, b_i \in \mathfrak{m}$ temos $f(a), f(b) \in \mathfrak{m}$ de modo que g(f(a)), g(f(b)) são elementos bem definidos em \tilde{R} .

Lema

Seja R um dominio e $f \in \mathcal{MP}_n(R)$. Suponha que f(a) = f(b) para alguns $a, b \in \mathbb{R}^n$ distintos. Então,

- (a) Se det $J_f(0) = 1$ então $\langle a_1, ..., a_n, b_1, ..., b_n \rangle = R$.
- (b) Se det $J_f = 1$ então $\langle a_1 b_1, ..., a_n b_n \rangle = R$

Demonstração.

E suficiente mostrar (a). Sem perda de generalidade podemos supor Rdominio noetheriano e f(0) = 0. Nesse caso, seja g a inversa formal de f sobre R. Suponha que $I := \langle a_1, ..., a_n, b_1, ..., b_n \rangle$ seja um ideal próprio e seja \mathfrak{m} um ideal maximal sobre I. Considere R o completamento \mathfrak{m} -ádico de R. Como $a_i, b_i \in \mathfrak{m}$ temos $f(a), f(b) \in \mathfrak{m}$ de modo que g(f(a)), g(f(b)) são elementos bem definidos em R. Como g é inversa fomal de f temos a = g(f(a)) = g(f(b)) = b. Contradição!.

Lema de Hensel

Seja \mathcal{O} um anel de valoração discreta completo com corpo residuo k. Sejam $f_1, ..., f_n \in \mathcal{O}[X_1, ..., X_n]$ e $\alpha \in \mathcal{O}^n$ tais que

$$f_1(\alpha) \equiv \cdots \equiv f_n(\alpha) \equiv 0 \mod \mathcal{M}^{2m+1}$$

onde $m := ord_{\mathcal{M}}(\det J_f(\alpha)) < \infty$. Então existe único $a \in \mathcal{O}^n$ tal que $a \equiv \alpha \mod \mathcal{M}^{m+1}$ e $f_1(a) = \cdots = f_n(a) = 0$.

Lema de Hensel

Seja \mathcal{O} um anel de valoração discreta completo com corpo residuo k. Sejam $f_1, ..., f_n \in \mathcal{O}[X_1, ..., X_n]$ e $\alpha \in \mathcal{O}^n$ tais que

$$f_1(\alpha) \equiv \cdots \equiv f_n(\alpha) \equiv 0 \mod \mathcal{M}^{2m+1}$$

onde $m := ord_{\mathcal{M}}(\det J_f(\alpha)) < \infty$. Então existe único $a \in \mathcal{O}^n$ tal que $a \equiv \alpha \mod \mathcal{M}^{m+1}$ e $f_1(a) = \cdots = f_n(a) = 0$.

Corolário

Nas condições acima, suponha que $f = (f_1, ..., f_n) \in \mathcal{MP}_n(\mathcal{O})$ é um mapa de Keller. Se R é uma \mathcal{O} -álgebra denote X(R) o conjunto de R-pontos. Então existe uma bijeção

$$X(\mathcal{O}) \longrightarrow X(k) : \alpha \mapsto \overline{\alpha}$$

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa **fortemente invariante** $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa fortemente invariante $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Corolário

Seja $(\mathcal{O}, \mathcal{M}, k)$ um AVD invariante com k finito. Então qualquer mapa de Keller unimodular $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa **fortemente invariante** $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Corolário

Seja $(\mathcal{O}, \mathcal{M}, k)$ um AVD invariante com k finito. Então qualquer mapa de Keller unimodular $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Demonstração.

Suponha que tal não ocorra, digamos $f(a_1) = \cdots = f(a_m) = c \in \mathcal{O}^n$ para m > 1.

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa fortemente invariante $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Corolário

Seja $(\mathcal{O}, \mathcal{M}, k)$ um AVD invariante com k finito. Então qualquer mapa de Keller unimodular $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Demonstração.

Suponha que tal não ocorra, digamos $f(a_1) = \cdots = f(a_m) = c \in \mathcal{O}^n$ para m > 1. Como $f(a_1) = f(a_2)$ e det $J_f = 1$ obtemos $\langle a_2 - a_1 \rangle = \mathcal{O}.$

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa **fortemente invariante** $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Corolário

Seja $(\mathcal{O}, \mathcal{M}, k)$ um AVD invariante com k finito. Então qualquer mapa de Keller unimodular $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Demonstração.

Suponha que tal não ocorra, digamos $f(a_1) = \cdots = f(a_m) = c \in \mathcal{O}^n$ para m > 1. Como $f(a_1) = f(a_2)$ e det $J_f = 1$ obtemos $\langle a_2 - a_1 \rangle = \mathcal{O}$. Pela condição invariante sabemos que existe $b \in \mathcal{O}^n$ tal que $\langle f(b) - f(a_1) \rangle = \mathcal{O}$. Assim, $\langle a_2 - a_1 \rangle = \langle f(b) - f(a_1) \rangle$.

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa fortemente invariante $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Corolário

Seja $(\mathcal{O}, \mathcal{M}, k)$ um AVD invariante com k finito. Então qualquer mapa de Keller unimodular $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Demonstração.

Suponha que tal não ocorra, digamos $f(a_1) = \cdots = f(a_m) = c \in \mathcal{O}^n$ para m > 1. Como $f(a_1) = f(a_2)$ e det $J_f = 1$ obtemos $\langle a_2 - a_1 \rangle = \mathcal{O}$. Pela condição invariante sabemos que existe $b \in \mathcal{O}^n$ tal que $\langle f(b) - f(a_1) \rangle = \mathcal{O}$. Assim, $\langle a_2 - a_1 \rangle = \langle f(b) - f(a_1) \rangle$. Daí, segue que existe um automorfismo afim Keller $h \in Aut_n(\mathcal{O})$ tal que $h(f(b)) = a_2 e h(f(a_1)) = a_1.$

Seja $(\mathcal{O}, \mathcal{M}, k)$ um anel de valoração discreta completo com k finito. Qualquer mapa **fortemente invariante** $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Corolário

Seja $(\mathcal{O}, \mathcal{M}, k)$ um AVD invariante com k finito. Então qualquer mapa de Keller unimodular $f \in \mathcal{MP}_n(\mathcal{O})$ é injetivo.

Demonstração.

Suponha que tal não ocorra, digamos $f(a_1) = \cdots = f(a_m) = c \in \mathcal{O}^n$ para m > 1. Como $f(a_1) = f(a_2)$ e det $J_f = 1$ obtemos $\langle a_2 - a_1 \rangle = \mathcal{O}$. Pela condição invariante sabemos que existe $b \in \mathcal{O}^n$ tal que $\langle f(b) - f(a_1) \rangle = \mathcal{O}$. Assim, $\langle a_2 - a_1 \rangle = \langle f(b) - f(a_1) \rangle$. Daí, segue que existe um automorfismo afim Keller $h \in Aut_n(\mathcal{O})$ tal que $h(f(b)) = a_2$ e $h(f(a_1)) = a_1$. Defina $g := f \circ h \circ f$. Então, $g \in f$ fortemente invariante e g(b) = c e $g(a_1) = c$. Note que $b \neq a_j$ para todo j. Contradição pelo corolário do lema de Hensel.

Lema

Sejam $(\alpha_1, ..., \alpha_m) \in \overline{\mathbb{Q}}^m$. Para uma infinidade de primos $p \in \mathbb{Z}$ existe um mergulho:

$$\varphi: \mathbb{Z}[\alpha_1, ..., \alpha_m] \hookrightarrow \mathbb{Z}_p.$$

Lema

Sejam $(\alpha_1, ..., \alpha_m) \in \overline{\mathbb{Q}}^m$. Para uma infinidade de primos $p \in \mathbb{Z}$ existe um mergulho:

$$\varphi: \mathbb{Z}[\alpha_1, ..., \alpha_m] \hookrightarrow \mathbb{Z}_p.$$

Teorema

A Conjectura do Jacobiano (sobre \mathbb{C}) é equivalente a seguinte afirmação:

• Para quase todo primo $p \in \mathbb{Z}$ o dominio \mathbb{Z}_p é invariante.

A implicação relevante é \longleftarrow .

A implicação relevante é \iff . Suponha que tal não ocorra. Pelo teorema de Connell-van der Dries existe $f \in \mathcal{MP}_n(\mathbb{Z})$ um mapa de Keller que não é isomorfismo.

A implicação relevante é \Leftarrow . Suponha que tal não ocorra. Pelo teorema de Connell-van der Dries existe $f \in \mathcal{MP}_n(\mathbb{Z})$ um mapa de Keller que não é isomorfismo. Em particular, $f \otimes \overline{\mathbb{Q}}$ não é injetivo. Pelo lema da imersão $f \otimes \mathbb{Z}_p$ não é injetivo para uma infinidade de primos p.

A implicação relevante é Suponha que tal não ocorra. Pelo teorema de Connell-van der Dries existe $f \in \mathcal{MP}_n(\mathbb{Z})$ um mapa de Keller que não é isomorfismo. Em particular, $f \otimes \mathbb{Q}$ não é injetivo. Pelo lema da imersão $f \otimes \mathbb{Z}_p$ não é injetivo para uma infinidade de primos p.Fixe um primo p tal que

• $f \otimes \mathbb{Z}_p$ não é injetivo.

A implicação relevante é \Leftarrow . Suponha que tal não ocorra. Pelo teorema de Connell-van der Dries existe $f \in \mathcal{MP}_n(\mathbb{Z})$ um mapa de Keller que não é isomorfismo. Em particular, $f \otimes \overline{\mathbb{Q}}$ não é injetivo. Pelo lema da imersão $f \otimes \mathbb{Z}_p$ não é injetivo para uma infinidade de primos p. Fixe um primo p tal que

- $f \otimes \mathbb{Z}_p$ não é injetivo.
- \mathbb{Z}_p é invariante.

A implicação relevante é \Leftarrow . Suponha que tal não ocorra. Pelo teorema de Connell-van der Dries existe $f \in \mathcal{MP}_n(\mathbb{Z})$ um mapa de Keller que não é isomorfismo. Em particular, $f \otimes \overline{\mathbb{Q}}$ não é injetivo. Pelo lema da imersão $f \otimes \mathbb{Z}_p$ não é injetivo para uma infinidade de primos p. Fixe um primo p tal que

- $f \otimes \mathbb{Z}_p$ não é injetivo.
- \mathbb{Z}_p é invariante.
- $f \otimes \mathbb{Z}_p$ é unimodular.

A implicação relevante é \Leftarrow . Suponha que tal não ocorra. Pelo teorema de Connell-van der Dries existe $f \in \mathcal{MP}_n(\mathbb{Z})$ um mapa de Keller que não é isomorfismo. Em particular, $f \otimes \overline{\mathbb{Q}}$ não é injetivo. Pelo lema da imersão $f \otimes \mathbb{Z}_p$ não é injetivo para uma infinidade de primos p. Fixe um primo p tal que

- $f \otimes \mathbb{Z}_p$ não é injetivo.
- \mathbb{Z}_p é invariante.
- $f \otimes \mathbb{Z}_p$ é unimodular.

Assim, obtemos um mapa Keller unimodular e não injetivo sobre o dominio invariante \mathbb{Z}_p . Absurdo pelo corolário acima.

Preliminares

No que se segue usaremos o seguinte resultado:

Teorema

Seja K um corpo local com corpo residuo k. Existe uma correspodencia 1-1:

 $\{extens\~oes\ finitas\ n\~ao\ ramificadas\ de\ K\} \longrightarrow \{extens\~oes\ finitas\ de\ k\}$

$$L \mapsto l$$

onde l é o corpo residuo de L.

Suponha que \mathbb{Z}_p seja um dominio invariante. Seja $K|\mathbb{Q}_p$ uma extensão finita e $f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa **Keller unimodular**. Então $f \otimes \mathcal{O}_K$ é injetivo.

Suponha que \mathbb{Z}_p seja um dominio invariante. Seja $K|\mathbb{Q}_p$ uma extensão finita e $f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa **Keller unimodular**. Então $f \otimes \mathcal{O}_K$ é injetivo.

Lema

Seja $K|\mathbb{Q}_p$ uma extensão finita galoisiana e $f \in \mathcal{MP}_n(\mathcal{O}_K)$ um mapa Keller unimodular não injetivo. Então existe $g \in \mathcal{MP}_{nm}(\mathbb{Z}_p)$ um mapa Keller unimodular não injetivo onde $m = [K : \mathbb{Q}_p]$.

Suponha que \mathbb{Z}_p seja um dominio invariante. Seja $K|\mathbb{Q}_p$ uma extensão finita e $f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa **Keller unimodular**. Então $f \otimes \mathcal{O}_K$ é injetivo.

Lema

Seja $K|\mathbb{Q}_p$ uma extensão finita galoisiana e $f \in \mathcal{MP}_n(\mathcal{O}_K)$ um mapa Keller unimodular não injetivo. Então existe $g \in \mathcal{MP}_{nm}(\mathbb{Z}_p)$ um mapa Keller unimodular não injetivo onde $m = [K : \mathbb{Q}_p]$.

Pela separabilidade de $K|\mathbb{Q}_p$ garantimos que \mathcal{O}_K é um \mathbb{Z}_p -módulo livre de posto $[K:\mathbb{Q}]$. Seja $\{e_1,...,e_n\}$ uma \mathbb{Z}_p -base e escreva $X_i = X_{1i}e_1 + \cdots + X_{mi}e_m$. Um mapa de Keller unimodular e não injetivo $g = (g_{11},...,g_{m1},...,g_{1n},...,g_{mn}) \in \mathcal{MP}_{nm}(\mathbb{Z}_p)$ é obtido pelas relações:

$$f_k(X_1,...,X_n) = g_{1k}(\{X_{ij}\})e_1 + \cdots + g_{mk}(\{X_{ij}\})e_m.$$

Lema da imersão forte

Lema da imersão

Seja $\alpha = (\alpha_1, ... \alpha_n) \in \overline{\mathbb{Q}}^n$. Para quase todo primo $p \in \mathbb{N}$ existe uma extensão finita $K|\mathbb{Q}_p$ tal que se $\mathcal{O}_{K,p}$ denota o anel de inteiros de K então existe um mergulho

$$\varphi_p: \mathbb{Z}[\alpha_1, ..., \alpha_n] \hookrightarrow \mathcal{O}_{K,p}.$$

Lema da imersão forte

Lema da imersão

Seja $\alpha = (\alpha_1, ... \alpha_n) \in \overline{\mathbb{Q}}^n$. Para quase todo primo $p \in \mathbb{N}$ existe uma extensão finita $K|\mathbb{Q}_p$ tal que se $\mathcal{O}_{K,p}$ denota o anel de inteiros de K então existe um mergulho

$$\varphi_p: \mathbb{Z}[\alpha_1, ..., \alpha_n] \hookrightarrow \mathcal{O}_{K,p}.$$

Usaremos o seguinte

Lema

Seja $f(T) \in \mathbb{Z}[T]$ um polinomio irredutível. Então para quase todo primo p existe $a \in \mathcal{O}_{K,p}$ tal que f(a) = 0.

Para n = 1: Seja $m_{\alpha_1}(T) \in \mathbb{Q}[T]$ o polinomio minimo associado. Temos $m_{\alpha_1}(T) = c(m_{\alpha_1}(T))f(T)$ onde $f(T) \in \mathbb{Z}[T]$ é primitivo. Como $f(T)\mathbb{Q}[T] \cap \mathbb{Z}[T] = f(T)\mathbb{Z}[T]$ considerado o mapa de anéis

$$v_{\alpha_1}: \mathbb{Z}[T] \to \mathbb{Z}[\alpha_1]$$

temos que $Ker(v_{\alpha_1}) = \langle f(T) \rangle$. Assim, $\mathbb{Z}[T]/\langle f(T) \rangle \cong \mathbb{Z}[\alpha_1]$. Para quase todo primo $p \in \mathbb{Z}$ temos f(a) = 0 para algum $a \in \mathcal{O}_{K,p}$. Obtemos:

$$\mathbb{Z}[\alpha_1] \cong \mathbb{Z}[T]/\langle f(T)\rangle \hookrightarrow \mathbb{Q}[T]/\langle f(T)\rangle \hookrightarrow K: \alpha_1 \mapsto a$$

Caso geral: temos $R := \mathbb{Z}[\alpha_1, ..., \alpha_m] \subset \mathbb{Q}(\beta)$ para algum $\beta \in \overline{\mathbb{Q}}$. Seja $d \in \mathbb{Z}$ tal que $dR \subset \mathbb{Z}[\beta]$. Tome $S := \{d^n \mid n \in \mathbb{N}\}$ sistema multiplicativo e note que $R \hookrightarrow S^{-1}\mathbb{Z}[\beta]$. Para uma infinidade de primos $p: S^{-1}\mathbb{Z}[\beta] \subset \mathcal{O}_{K,p}$.

Refinamento

Teorema

A conjectura do Jacobiano (sobre \mathbb{C}) é equivalente a seguinte afirmação:

• Para uma infinidade de primos $p \in \mathbb{Z}$ o dominio \mathbb{Z}_p é invariante.

Refinamento

Teorema

A conjectura do Jacobiano (sobre \mathbb{C}) é equivalente a seguinte afirmação:

• Para uma infinidade de primos $p \in \mathbb{Z}$ o dominio \mathbb{Z}_p é invariante.

Argumento:

Seja $f \in \mathcal{MP}_n(\mathbb{Z})$ um contraexemplo para JC. Em particular, $f \otimes \overline{\mathbb{Q}} \in \mathcal{MP}_n(\overline{\mathbb{Q}})$ não é injetivo. Assim, existem $\alpha \neq \beta \in \overline{\mathbb{Q}}$ tais que $f(\alpha) = f(\beta)$.

Refinamento

Teorema

A conjectura do Jacobiano (sobre \mathbb{C}) é equivalente a seguinte afirmação:

• Para uma infinidade de primos $p \in \mathbb{Z}$ o dominio \mathbb{Z}_p é invariante.

Argumento:

Seja $f \in \mathcal{MP}_n(\mathbb{Z})$ um contraexemplo para JC. Em particular, $f \otimes \overline{\mathbb{Q}} \in \mathcal{MP}_n(\overline{\mathbb{Q}})$ não é injetivo. Assim, existem $\alpha \neq \beta \in \overline{\mathbb{Q}}$ tais que $f(\alpha) = f(\beta)$. Pelo lema acima, para quase todo primo p existe uma extensão finita $K|\mathbb{Q}_p$ e um mergulho: $\mathbb{Z}[\alpha, \beta] \hookrightarrow \mathcal{O}_{K,p}$.

Fixe um primo $p \in \mathbb{Z}$ tal que:

•
$$\mathbb{Z}[\alpha,\beta] \hookrightarrow \mathcal{O}_{K,p}$$
.

Fixe um primo $p \in \mathbb{Z}$ tal que:

- $\mathbb{Z}[\alpha,\beta] \hookrightarrow \mathcal{O}_{K,p}$.
- \mathbb{Z}_p é invariante.

Fixe um primo $p \in \mathbb{Z}$ tal que:

- $\mathbb{Z}[\alpha,\beta] \hookrightarrow \mathcal{O}_{K,p}$.
- \mathbb{Z}_p é invariante.
- $f \otimes \mathbb{Z}_p \in \mathcal{MP}_n(\mathbb{Z}_p)$ é unimodular.

Fixe um primo $p \in \mathbb{Z}$ tal que:

- $\mathbb{Z}[\alpha,\beta] \hookrightarrow \mathcal{O}_{K,p}$.
- \mathbb{Z}_p é invariante.
- $f \otimes \mathbb{Z}_p \in \mathcal{MP}_n(\mathbb{Z}_p)$ é unimodular.

Pelo lema acima existe $g \in \mathcal{MP}_M(\mathbb{Z}_p)$ mapa Keller unimodular e não injetivo. Contradição!!

Corolário

Existe um conjunto finito de primos E tal que para qualquer primo $p \in \mathbb{Z} \setminus E$ temos

 $\mathbb{Z}_p \notin invariante \iff \mathbb{Z}_p \notin unimodular$

Corolário

Existe um conjunto finito de primos E tal que para qualquer primo $p \in \mathbb{Z} \setminus E \ temos$

 $\mathbb{Z}_p \notin invariante \iff \mathbb{Z}_p \notin unimodular$

Demonstração.

A implicação ← é verdadeira em qualquer caso. Para mostrar ⇒ suponha que tal não ocorra. Então para uma infinidade de primos temos \mathbb{Z}_p invariante e não-unimodular. Pelo teorema de Essen-Lipton segue que a conjectura do Jacobiano (sobre C) é falsa. Por outro lado, o teorema acima garante que a conjectura do Jacobiano é verdadeira. Contradição!!.

Teorema

Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com $q := \#k < \infty$ é (q-1)-unimodular.

Teorema

Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com $q := \#k < \infty$ \acute{e} (q-1)-unimodular.

Demonstração.

Seja $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller de grau $\leq q-1$ e considere o conjunto algébrico afim X em $\mathbb{A}^n_{\overline{k}}$ descrito pelas equações

$$\overline{f}_1 = \dots = \overline{f_n} = 0.$$

Teorema

Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com $q := \#k < \infty$ \acute{e} (q-1)-unimodular.

Demonstração.

Seja $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller de grau $\leq q-1$ e considere o conjunto algébrico afim X em $\mathbb{A}^n_{\overline{k}}$ descrito pelas equações

 $\overline{f}_1 = \dots = \overline{f}_n = 0$. Afirmamos que dim X = 0. De fato, $X = \overline{f}^{-1}(0)$, onde \overline{f} é o mapa induzido em \overline{k}^n .

Teorema

Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com $q := \#k < \infty$ \acute{e} (q-1)-unimodular.

Demonstração.

Seja $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller de grau $\leq q-1$ e considere o conjunto algébrico afim X em $\mathbb{A}^n_{\overline{k}}$ descrito pelas equações

 $\overline{f}_1 = \dots = \overline{f}_n = 0$. Afirmamos que dim X = 0. De fato, $X = \overline{f}^{-1}(0)$, onde \overline{f} é o mapa induzido em \overline{k}^n . Pelo [1, Theorem 1.1.32] temos $\#X \leq [\overline{k}(X_1, \dots, X_n) : \overline{k}(\overline{f}_1, \dots, \overline{f}_n)] < \infty$.

Teorema

Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com $q := \#k < \infty$ \acute{e} (q-1)-unimodular.

Demonstração.

Seja $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller de grau $\leq q-1$ e considere o conjunto algébrico afim X em $\mathbb{A}^n_{\overline{k}}$ descrito pelas equações

 $\overline{f}_1 = \dots = \overline{f_n} = 0$. Afirmamos que dim X = 0. De fato, $X = \overline{f}^{-1}(0)$, onde \overline{f} é o mapa induzido em \overline{k}^n . Pelo [1, Theorem 1.1.32] temos $\#X \leq [\overline{k}(X_1, ..., X_n) : \overline{k}(\overline{f}_1, ..., \overline{f}_n)] < \infty$. Pela desigualdade de Bézout obtemos

$$\#X(k) \le \#X(\overline{k}) \le \prod_{i} deg(\overline{f_i}) < q^n.$$

Teorema

Qualquer dominio local $(\mathcal{O}, \mathcal{M}, k)$ com $q := \#k < \infty$ \acute{e} (q-1)-unimodular.

Demonstração.

Seja $f \in \mathcal{MP}_n(\mathcal{O})$ um mapa de Keller de grau $\leq q-1$ e considere o conjunto algébrico afim X em $\mathbb{A}^n_{\overline{k}}$ descrito pelas equações

 $\overline{f}_1 = \dots = \overline{f_n} = 0$. Afirmamos que dim X = 0. De fato, $X = \overline{f}^{-1}(0)$, onde \overline{f} é o mapa induzido em \overline{k}^n . Pelo [1, Theorem 1.1.32] temos $\#X \leq [\overline{k}(X_1, ..., X_n) : \overline{k}(\overline{f}_1, ..., \overline{f}_n)] < \infty$. Pela desigualdade de Bézout obtemos

$$\#X(k) \le \#X(\overline{k}) \le \prod_{i} deg(\overline{f_i}) < q^n.$$

Logo, f é unimodular.

Algumas consequências

Observação

 $Para\ char(\mathcal{O}) = p > 0\ esse\ \'e\ o\ melhor\ resultado.\ De\ fato,\ considere$ $\mathcal{O} = \mathbb{F}_q[[T]] e$

$$f = (X_1 - X_1^q, ..., X_n - X_n^q) \in \mathcal{MP}_n(\mathbb{F}_q[[T]]).$$

Então, f é um mapa não unimodular e deg(f) = q.

Algumas consequências

Observação

 $Para\ char(\mathcal{O}) = p > 0\ esse\ \'e\ o\ melhor\ resultado.\ De\ fato,\ considere$ $\mathcal{O} = \mathbb{F}_q[[T]]\ e$

$$f = (X_1 - X_1^q, ..., X_n - X_n^q) \in \mathcal{MP}_n(\mathbb{F}_q[[T]]).$$

Então, f é um mapa não unimodular e deg(f) = q.

Corolário

 $\mathbb{F}_p[[T]]$ e \mathbb{Z}_p são dominios (p-1) unimodulares.

Algumas consequências

Observação

 $Para\ char(\mathcal{O}) = p > 0\ esse\ \acute{e}\ o\ melhor\ resultado.\ De\ fato,\ considere$ $\mathcal{O} = \mathbb{F}_q[[T]]\ e$

$$f = (X_1 - X_1^q, ..., X_n - X_n^q) \in \mathcal{MP}_n(\mathbb{F}_q[[T]]).$$

Então, f é um mapa não unimodular e deg(f) = q.

Corolário

 $\mathbb{F}_p[[T]]$ e \mathbb{Z}_p são dominios (p-1) unimodulares.

Corolário

Para qualquer primo p > 3 o dominio \mathbb{Z}_p é 3-unimodular.

Dimensão 2

No caso AVD e dimensão 2 o teorema anterior pode ser refinado.

Dimensão 2

No caso AVD e dimensão 2 o teorema anterior pode ser refinado.

Teorema

Seja $f \in \mathcal{MP}_2(\mathcal{O})$ um mapa de Keller sobre um anel de valoração discreta completo $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ e $q := \#k < \infty$. Se $deg(f_1) < q^2$ então f é unimodular.

Dimensão 2

No caso AVD e dimensão 2 o teorema anterior pode ser refinado.

Teorema

Seja $f \in \mathcal{MP}_2(\mathcal{O})$ um mapa de Keller sobre um anel de valoração discreta completo $(\mathcal{O}, \mathcal{M}, k)$ com char $(\mathcal{O}) = 0$ e $q := \#k < \infty$. Se $deg(f_1) < q^2$ então f é unimodular.

Usaremos o resultado principal da tese de Yitang Zhang:

Teorema(Yitang Zhang)

Seja $f \in \mathcal{MP}_2(K)$ um mapa de Keller sobre K, um corpo algebricamente fechado com char(K) = 0. Então

$$[K(X,Y):K(f_1,f_2)] \leq Min\{deg(f_1),deg(f_2)\}.$$

Seja $f \in \mathcal{MP}_2(\mathcal{O})$ mapa Keller com $deg(f_1) < q^2$ e denote $K := Frac(\mathcal{O})$.

Seja $f \in \mathcal{MP}_2(\mathcal{O})$ mapa Keller com $deg(f_1) < q^2$ e denote $K := Frac(\mathcal{O}).$

Pelo lema de Hensel é suficiente mostrar que $\#X(\mathcal{O}) < q^2$ onde $X(\mathcal{O})$ denota o conjunto de \mathcal{O} -pontos de $f_1 = f_2 = 0$. Agora,

$$\#X(\mathcal{O}) = f^{-1}(0) \le (f \otimes \overline{K})^{-1}(0) \le [\overline{K}(X,Y) : \overline{K}(f_1, f_2)].$$

onde última desigualdade é [1, Theorem 1.1.32].

Seja $f \in \mathcal{MP}_2(\mathcal{O})$ mapa Keller com $deg(f_1) < q^2$ e denote $K := Frac(\mathcal{O})$.

Pelo lema de Hensel é suficiente mostrar que $\#X(\mathcal{O}) < q^2$ onde $X(\mathcal{O})$ denota o conjunto de \mathcal{O} -pontos de $f_1 = f_2 = 0$. Agora,

$$\#X(\mathcal{O}) = f^{-1}(0) \le (f \otimes \overline{K})^{-1}(0) \le [\overline{K}(X,Y) : \overline{K}(f_1,f_2)].$$

onde última desigualdade é [1, Theorem 1.1.32]. Usando o resultado de Zhang e a condição $deg(f_1) < q^2$, obtemos

$$\#X(\mathcal{O}) \leq [\overline{K}(X,Y) : \overline{K}(f_1,f_2)] < q^2.$$

Seja $f \in \mathcal{MP}_2(\mathcal{O})$ mapa Keller com $deg(f_1) < q^2$ e denote $K := Frac(\mathcal{O})$.

Pelo lema de Hensel é suficiente mostrar que $\#X(\mathcal{O}) < q^2$ onde $X(\mathcal{O})$ denota o conjunto de \mathcal{O} -pontos de $f_1 = f_2 = 0$. Agora,

$$\#X(\mathcal{O}) = f^{-1}(0) \le (f \otimes \overline{K})^{-1}(0) \le [\overline{K}(X,Y) : \overline{K}(f_1, f_2)].$$

onde última desigualdade é [1, Theorem 1.1.32]. Usando o resultado de Zhang e a condição $deg(f_1) < q^2$, obtemos

$$\#X(\mathcal{O}) \leq [\overline{K}(X,Y) : \overline{K}(f_1,f_2)] < q^2.$$

Logo, f é unimodular.

Observação

 $char(\mathcal{O}) = 0$ é relevante. Para ver isso, considere o exemplo canônico:

$$f = (X_1 - X_1^p, X_2 - X_2^p) \in \mathcal{MP}_2(\mathbb{F}_p[[T]])$$

Temos $deg(f_1) = p < p^2 mas f não é unimodular.$

Seja $d \in \mathbb{Z}$. Então existe uma extensão finita $K|\mathbb{Q}_p$ tal que $\mathcal{O}_{K,p}$ é d-unimodular.

Seja $d \in \mathbb{Z}$. Então existe uma extensão finita $K|\mathbb{Q}_p$ tal que $\mathcal{O}_{K,p}$ é d-unimodular.

Demonstração.

Seja $m \in \mathbb{Z}$ tal que $p^m > d$ e considere o corpo \mathbb{F}_{p^m} .

Seja $d \in \mathbb{Z}$. Então existe uma extensão finita $K|\mathbb{Q}_p$ tal que $\mathcal{O}_{K,p}$ é d-unimodular.

Demonstração.

Seja $m \in \mathbb{Z}$ tal que $p^m > d$ e considere o corpo \mathbb{F}_{p^m} . Seja K/\mathbb{Q}_p a extensão finita associada. Dado qualquer mapa de Keller $f \in \mathcal{MP}_n(\mathcal{O}_K)$ de grau $\leq d$ denote $X \subset \mathbb{A}^n_{\overline{\mathbb{F}_p}}$ o conjunto algébrico descrito por $\overline{f}_1, ... \overline{f}_n$.

Seja $d \in \mathbb{Z}$. Então existe uma extensão finita $K|\mathbb{Q}_p$ tal que $\mathcal{O}_{K,p}$ é d-unimodular.

Demonstração.

Seja $m \in \mathbb{Z}$ tal que $p^m > d$ e considere o corpo \mathbb{F}_{p^m} . Seja K/\mathbb{Q}_p a extensão finita associada. Dado qualquer mapa de Keller $f \in \mathcal{MP}_n(\mathcal{O}_K)$ de grau $\leq d$ denote $X \subset \mathbb{A}^n_{\overline{\mathbb{F}_p}}$ o conjunto algébrico descrito por $\overline{f}_1, ... \overline{f}_n$. Condição de Keller implica que $\#X < \infty$ e além disso,

$$\#X \le \prod deg(f_i) \le d^n < (p^m)^n.$$

Seja $d \in \mathbb{Z}$. Então existe uma extensão finita $K|\mathbb{Q}_p$ tal que $\mathcal{O}_{K,p}$ é d-unimodular.

Demonstração.

Seja $m \in \mathbb{Z}$ tal que $p^m > d$ e considere o corpo \mathbb{F}_{p^m} . Seja K/\mathbb{Q}_p a extensão finita associada. Dado qualquer mapa de Keller $f \in \mathcal{MP}_n(\mathcal{O}_K)$ de grau $\leq d$ denote $X \subset \mathbb{A}^n_{\mathbb{F}_n}$ o conjunto algébrico descrito por $\overline{f}_1,...\overline{f}_n$. Condição de Keller implica que $\#X<\infty$ e além disso,

$$\#X \le \prod deg(f_i) \le d^n < (p^m)^n.$$

Assim, $\exists \alpha \in \mathbb{F}_{p^m}^n \setminus X$. Em particular, \mathcal{O}_K é d-unimodular.

Proposição

Seja $p \in \mathbb{Z}_{>3}$ um primo $e f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa de Keller. Suponha que

$$d(f) < log(2)^{-1}log(nlog(p/3)/log(3)).$$

Então f é unimodular.

Proposição

Seja $p \in \mathbb{Z}_{>3}$ um primo $e f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa de Keller. Suponha que

$$d(f) < log(2)^{-1}log(nlog(p/3)/log(3)).$$

Então f é unimodular.

Demonstração.

Dado f podemos encontrar isomorfismos $G, H \in \mathcal{MP}_{m+n}(R)$, com $m = 2^{d(f)}$ tais que

Proposição

Seja $p \in \mathbb{Z}_{>3}$ um primo $e f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa de Keller. Suponha que

$$d(f) < log(2)^{-1}log(nlog(p/3)/log(3)).$$

Então f é unimodular.

Demonstração.

Dado f podemos encontrar isomorfismos $G, H \in \mathcal{MP}_{m+n}(R)$, com $m = 2^{d(f)}$ tais que

• H(0) = G(0) = 0 e $deg(g) \le 3$ onde $g := G \circ f^{[m]} \circ H$.

Proposição

Seja $p \in \mathbb{Z}_{>3}$ um primo $e f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa de Keller. Suponha que

$$d(f) < log(2)^{-1}log(nlog(p/3)/log(3)).$$

Então f é unimodular.

Demonstração.

Dado f podemos encontrar isomorfismos $G, H \in \mathcal{MP}_{m+n}(R)$, com $m = 2^{d(f)}$ tais que

•
$$H(0) = G(0) = 0$$
 e $deg(g) \le 3$ onde $g := G \circ f^{[m]} \circ H$.

Agora, considerando o conjunto de \mathbb{Z}_p -pontos associados à g e f temos

$$\#X_f(\mathbb{Z}_p) = \#X_{f^{[m]}}(\mathbb{Z}_p) = \#X_g(\mathbb{Z}_p) \le 3^{m+n}.$$

Proposição

Seja $p \in \mathbb{Z}_{>3}$ um primo $e f \in \mathcal{MP}_n(\mathbb{Z}_p)$ um mapa de Keller. Suponha que

$$d(f) < log(2)^{-1}log(nlog(p/3)/log(3)).$$

Então f é unimodular.

Demonstração.

Dado f podemos encontrar isomorfismos $G, H \in \mathcal{MP}_{m+n}(R)$, com $m = 2^{d(f)}$ tais que

•
$$H(0) = G(0) = 0$$
 e $deg(g) \le 3$ onde $g := G \circ f^{[m]} \circ H$.

Agora, considerando o conjunto de \mathbb{Z}_p -pontos associados à g e f temos

$$\#X_f(\mathbb{Z}_p) = \#X_{f^{[m]}}(\mathbb{Z}_p) = \#X_g(\mathbb{Z}_p) \le 3^{m+n}.$$

A condição em d(f) implica que $3^{m+n} < p^n$. Assim, $\#X_f(\mathbb{Z}_p) < p^n$.

• Existe um teorema de redução de grau para conjectura unimodular?

- Existe um teorema de redução de grau para conjectura unimodular?
- Encontrar um primo p tal que \mathbb{Z}_p é unimodular.

- Existe um teorema de redução de grau para conjectura unimodular?
- Encontrar um primo p tal que \mathbb{Z}_p é unimodular.
- Dado um primo p encontrar uma extensão finita $K|\mathbb{Q}_p$ tal que \mathcal{O}_K é unimodular.

- Existe um teorema de redução de grau para conjectura unimodular?
- Encontrar um primo p tal que \mathbb{Z}_p é unimodular.
- Dado um primo p encontrar uma extensão finita $K|\mathbb{Q}_p$ tal que \mathcal{O}_K é unimodular.
- No teorema invariância \cong unimodularidade, o que podemos dizer sobre #E?

- Existe um teorema de redução de grau para conjectura unimodular?
- Encontrar um primo p tal que \mathbb{Z}_p é unimodular.
- Dado um primo p encontrar uma extensão finita $K|\mathbb{Q}_p$ tal que \mathcal{O}_K é unimodular.
- No teorema invariância \cong unimodularidade, o que podemos dizer sobre #E?
- Seja $f: \mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ um mapa de Keller e suponha que $f \otimes \mathcal{O}$ é injetivo, onde \mathcal{O} é o fecho inteiro de \mathbb{Z} em $\overline{\mathbb{Q}}$. f é isomorfismo?

Na direção da última questão temos:

Teorema

Seja $f: \mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ um mapa de Keller e suponha que $f \otimes \overline{\mathbb{Q}}$ é injetivo. Então f é isomorfismo.

Observação

Na direção da última questão temos:

Teorema

Seja $f: \mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ um mapa de Keller e suponha que $f \otimes \overline{\mathbb{Q}}$ é injetivo. Então f é isomorfismo.

Prova: Aplique o teorema de Cynk-Rusek.

Observação

Na direção da última questão temos:

Teorema

Seja $f: \mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ um mapa de Keller e suponha que $f \otimes \overline{\mathbb{Q}}$ é injetivo. Então f é isomorfismo.

Prova: Aplique o teorema de Cynk-Rusek.Por outro lado:

Teorema

O último problema da lista acima é equivalente a Conjectura do Jacobiano sobre \mathbb{C} .

Mais precisamente, suponha que qualquer mapa de Keller $\underline{f}: \mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ é tal $f \otimes \mathcal{O}$ é injetivo, onde \mathcal{O} é o fecho inteiro de \mathbb{Z} em $\overline{\mathbb{Q}}$. Então JC (sobre \mathbb{C}) é verdadeira.

Referências

- Arno van den Essen (2000). Polynomial Automorphisms and the Jacobian Conjecture (Vol. 190). Springer Science & Business Media.
- Bass, H., Connell, E. H., Wright, D. (1982). The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bulletin of the American Mathematical Society, 7(2), 287-330.
- Arno van den Essen and Richard J. Lipton. A p-adic approach to the Jacobian Conjecture. Journal of Pure and Applied Algebra 219.7 (2015): 2624-2628.
- Hartshorne, R. (1977). Algebraic Geometry; Graduate Texts in Mathematics..
- Greenberg, M. J. (1969). Lectures on forms in many variables (Vol. 31).

 ${\bf Obrigado!!!}$