0.1 Holder's Inequality

Proof by Jensen's inequality (convexity) on convex function $g(h) = |h|^p$

$$g(\mathbf{E}h) \le \mathbf{E}(g) \Rightarrow |\int hd\mu|^p \le \int |h|^p d\mu \Rightarrow \int hd\mu \le \left(\int |h|^p d\mu\right)^{1/p}$$
 (1)

0.2 Minkowski Inequality

Given the measure μ on the L^p space, $1 \leq p \leq \infty$, where f(x) and g(x) are in $L^p(S)$, $x \in S$, we have the triangle inequality

$$||f+g||_p \le ||f||_p + ||g||_p,$$
 (2)

where the *p*-norm of f is $||f||_p = (\int_S |f|^p d\mu)^{1/p}$.

Proof:

First prove that p-norm of f + g is bounded if f and g are both bounded, i.e., proving that $|f + g|^p$ is bounded by $|f|^p$ and $|g|^p$.

 $|0.5f + 0.5g|^p \le |0.5|f| + 0.5|g||^p \le 0.5|f|^p + 0.5|g|^p$ (convexity of $h(x) = |x|^p$ for $p \ge 1$ gives $h(0.5|f| + 0.5|g|) \le 0.5h(|f|) + 0.5h(|g|) \Rightarrow |0.5|f| + 0.5|g||^p \le 0.5|f|^p + 0.5|g|^p$). Therefore the inequality becomes

$$|f+g|^p \le 2^{p-1}(|f|^p + |g|^p),$$
 (3)

finishing the boundedness proof.

The Minkowski inequality is proven by using triangular inequality and Holder's inequality as, $||f+g||_p^p = \int |f+g|^p d\mu = \int |f+g||f+g|^{p-1} d\mu \le \int (|f|+|g|)|f+g|^{p-1} d\mu = \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu \le \int |f||f+g|^{p-1} d\mu$