- 1. 이차함수인 것은? (4점)
- ① y = 2x + 1
- $y = -\frac{2}{x^2}$
- $\mathfrak{A} \quad y = x(x-1)+1$
- 5 $y = x(x-2)+3-x^2$
- 2. y가 x에 대한 이차함수인 것은? (4점)
 - ① 반지름의 길이가 xcm인 구의 부피 ycm³
 - ② 한 변의 길이가 2x+1인 정사각형의 둘레 y
 - ③ 자동차가 시속 70km로 x시간 달린 거리 ykm
 - ④ 꼭짓점의 개수가 x개인 다각형의 대각선의 개수 y개
 - 5 반지름의 길이가 2x 높이가 x+2인 원기등의 부피 y

- 3. 이차함수 $f(x) = -2x^2 x + 3$ 에 대하여 f(1) + 2f(-2)의 값은? (4점)
- (1) -6
- (2) -3
- 3) -1
- **4**) 3
- (5) 6

- 4. 어느 창던지기 선수가 던진 창의 t초 후의 높이를 hm라고 할 때 h=-5t²+20t+1.7인 관계가 성립한다고 한다. 이때 단진 지 2초 후의 창의 높이는? (5점)
- 1 20.7m
- ② 21.7m
- ③ 22.7m
- 4 23.7m
- 5 24.7m
- 5. 이차함수 $f(x) = 3x^2 5x 6$ 에서 f(a) = -4일 때. a의 값을 모두 구하면? (5점)
 - ① a=3 또는 a=2
 - 2 $a = \frac{1}{3}$ 또는 a = 2
 - ③ a=-3 또는 a=-2
 - 4) $a = -\frac{1}{3}$ 또는 a = 2
 - ⑤ $a = -\frac{1}{3}$ 또는 a = -2

- 6. 이차함수 $y = ax^2$ 의 그래프는 점 (4,b)를 지나고, 이차함수 $y = -2x^2$ 의 그래프와 x축에 서로 대칭이다. 이때 상수 a.b의 합 a+b의 값은? (4점)
 - 1 28
 - 2 30
 - 3 32
 - 4 34
 - 5 36

· 다음 면세 계속

- 1 4
- 2 6
- 3 8
- (4) 10
- 5 12
- 8. 그림은 이차함수 $y=x^2$, $y=ax^2$ 의 그래프이다. 직선 l은 x축과 평행하고 이차함수 $y=x^2$ 의 그래프와 점 A. B에서 만나고 이차함수 $y=ax^2$ 의 그래프와 점 C. D에서 만난다. $\overline{\text{CD}}=3\overline{\text{AB}}$ 일 때, 상수 a의 값은? (6점)

- $\mathbb{D} \frac{1}{9}$
- $2\frac{1}{8}$
- $3\frac{1}{c}$
- (4) $\frac{1}{3}$
- $\Im \frac{1}{2}$

[9~10] 자동차를 운전할 때, 전방의 위험을 감지하고 브레이크를 밟는 순간부터 자동차가 완전히 멈출 때까지 움직인 거리를 제동 거리라고 한다. 제동거리는 같은 조건에서라면 달리는 속력의 제곱에 비례한다. 자동차가 x km/h의 속력으로 달릴 때, 제동 거리를 y m라고 하자. 어느 맑은 날 어떤 자동차로 같은 조건에서 조사하였더니 x와 y사이에 아래 표와 같은 관계가 있었다고한다. 이때, 다음 물음에 답하시오. (단 자동차는 타이어와도로 상태 등에 영향을 받지 않으며 마찰력의 크기가 일정한 도로에서 일정한 속력을 유지한다.)

속력(km/h)	제동거리(m)
16	2
24	4.5
32	8
40	12.5

9. y를 x에 대한 식으로 나타내면? (5점)

$$y = \frac{1}{128}x^2$$

②
$$y = \frac{1}{136}x^2$$

$$\Im y = \frac{1}{156}x^2$$

$$4 y = \frac{1}{182}x^2$$

(5)
$$y = \frac{1}{196}x$$

- 10. 이 가동차 운전자가 시속 80km로 운전하다 전방의 위험을 발전하고 1초가 지나 브레이크를 밟았다. 운전자가 위험을 발전한 후 자동차가 완전히 멈출 때까지 움직인 거리는? (단. 움직인 거리는 소수 푯래 자리 에서 반올림하여 소수 둘째 자리까지 구한다.) (6점)
 - ① 52.22m
 - 2 57.22m
 - 3 62.22m
 - ④ 67.22m
 - ⑤ 72.22m

11. 그림은 이차함수 $y=2x^2$ 의 그래프를 y축의 방향으로 평행이동한 그래프이다. 이 그래프가 점 (-1,k)를 지날 때, 상수 k의 값은? (4점)

- (1) -5
- 2 4
- $\bar{3} 3$
- ④ −2
- $\hat{5} 1$
- 12. 이차함수 $y = -4(x+1)^2$ 의 그래프에 대한 설명 중 옳은 것은? (4점)
 - ① 아래로 볼록한 포물선이다.
 - ② 꼭짓점의 좌표는 (0,-1)이다.
 - ③ 그래프와 y축이 만나는 점은 (0,-4)이다.
 - ④ x < −1일 때, x값이 증가하면 y값은 감소한다.
 - ⑤ $y=-4x^2$ 의 그래프를 x축 방향으로 1만큼 평행이동한 그래프이다.
- 13. 일차함수 y=ax+b의 그래프가 그림과 같을 때. 이차함수 $y=x^2+4ax+\frac{b}{2}$ 의 꼭짓점의 좌표는? (단. a.b는 상수) (5점)

- ① $(\frac{1}{2}, \frac{1}{2})$
- $2 \left(\frac{1}{2},1\right)$
- $(3, (1, \frac{1}{2}))$
- (1,2)
- (5) (2, 1)

- 14. 이차함수 $y=\frac{1}{3}x^2$ 의 그래프를 x축의 방향으로 -5만큼, y축의 방향으로 a만큼 평행이동한 그래프가 두 점 (-2,6), (1,b)를 지난다. 상수 a+b의 값은? (5점)
 - 1 6
 - 2 9
 - 3 12
 - 4 155 18
- 15. 이차함수 $y=-(x+2)^2+9$ 의 그래프를 x축 방향으로 3만큼, y축 방향으로 7만큼 평행이동 한 그래프가 x축과 두 점 Λ , B 에서 만난다. \overline{AB} 의 길이는? (6점)
 - 1 7
 - 2 8
 - 3 9
 - 4 10
 - 5 11

- 16. 이차함수 $y=3x^2-12x+4$ 의 그래프가 지나지 <u>않는</u> 사분면은? (5점)
 - 1 제 1사분면
 - ② 제 2사분면
 - ③ 제 3사분면
 - 제 4사분면
 - 5 지나지 않는 사분면은 없다.

** 다음 면에 계속

17. 이차함수 y=(x-4)²-3의 그래프와 x축과의 교점을 각각 A, B, y축과의 교점을 C라 하자. 이때 ΔABC의 넓이는? (6점)

- 1 $13\sqrt{3}$
- ② $13\sqrt{6}$
- $3 \ 26\sqrt{3}$
- $4 26\sqrt{6}$
- (5) $32\sqrt{3}$
- 18. 그림은 이차함수 $y=ax^2+bx+c$ 의 그래프이다. 이 이차함수의 식을 구하면? (단, a,b,c는 상수) (5점)

- (1) $y = -x^2 4x + 1$
- 2 $y = -2x^2 2x + 1$
- (3) $y = -2x^2 4x + 1$
- $4 y = -2x^2 6x + 1$
- $5 \quad y = -4x^2 6x + 1$

- 19. 이차함수 y=a(x-p)²+2의 그래프는 직선 x=3을 축으로 하고 점 (5,4)를 지난다. 이때, 상수 a.p의 곱 ap의 값은? (5점)
 - 1 -1
 - $2 \frac{1}{2}$
 - $3 \frac{1}{2}$
 - **4** 1
 - $5 \frac{3}{2}$

- 20. 이차함수 y=-2(x-p)²+p+3의 그래프는 점 (1.-2)를
 지나고 꼭짓점이 제 1사분면에 있다. 이때 상수 p의 값은?
 (6점)
 - 1 2
 - 2 3
 - 3 4
 - 4 5
- 5 6