

MASTER IN CITY & TECHNOLOGY AI IN URBANISM 2019/2020

FACULTY DIEGO PAJARITO

Setting up the cloud for Al

What is Colaboratory?

Colaboratory, or "Colab" for short, allows you to write and execute Python in your browser, with

- · Zero configuration required
- · Free access to GPUs
- · Easy sharing

Whether you're a **student**, a **data scientist** or an **Al researcher**, Colab can make your work easier. Watch <u>Introduction to Colab</u> to learn more, or just get started below!

Source: https://colab.research.google.com/notebooks/intro.ipynb#
GitHub Repository: https://github.com/laaC/MACT19.20 Al Urbanism

```
[ ] print("Hello World")

☐→ Hello World
```

	names		country		grades
0	Student	1	Country	1	5
1	Student	2	Country	2	5
2	Student	3	Country	3	5
3	Student	4	Country	4	5

GitHub Repository: https://github.com/laaC/MACT19.20_Al_Urbanism

Python "Hello World" using colab

Run python code Clone the repository Create your own notebook Link Colab and GitHub

GitHub Repository: https://github.com/laaC/MACT19.20_Al_Urbanism

Standard exercises

Training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.

It is good database for learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting.

MNIST data set: http://yann.lecun.com/exdb/mnist/

Learning Objectives:

- Train both a linear model and a neural network to classify handwritten digits from the classic MNIST data set
- Compare the performance of the linear and neural network classification models
- Visualize the weights of a neural-network hidden layer

Softmax function or softargmax or normalized exponential function

Input:

A vector of K real numbers

Output:

K probabilities proportional to the exponentials of the input numbers. Each component will be in the interval (0,1). The components will add up to 1.

```
{
     k<sub>1</sub>: 1%
     k<sub>2</sub>: 14%
     k<sub>3</sub>: 0%
     k<sub>4</sub>: 80%
     k<sub>5</sub>: 5%
}
```

Components can be interpreted as probabilities.

Gtion usin

```
[12] rand_example = np.random.choice(training_examples.index)
   _, ax = plt.subplots()
   ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28))
   ax.set_title("Label: %i" % training_targets.loc[rand_example])
   ax.grid(False)
```


Play with some parameters of the linear classification model

- batch size
- learning rate
- steps

(10 to 20 min)

How these changes affect the model?

Elements

Neurons: activation function provides a smooth, differentiable transition as input values change Connections and Weights: the output of one neuron as an input to another neuron Propagation function: computes input from outputs of predecessors as a weighted sum

Tensorflow

Easy model building

Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.

Robust ML production anywhere

Easily train and deploy models in the cloud, onprem, in the browser, or on-device no matter what language you use.

Powerful experimentation for research

A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster.

The first exercise proposed in tensorflow

It trains a neural network model to classify images of clothing, like sneakers and shirts.

https://www.tensorflow.org/tutorials/keras/classification

MASTER IN CITY & TECHNOLOGY AI IN URBANISM 2019/2020

FACULTY DIEGO PAJARITO