Questions

Information for Questions 1–2

We observe data y = (12.5, 15.2, 14.8, 13.9, 16.1).

- 1. The sample mean \bar{y} is closest to
 - A. 13.9
 - B. 14.5
 - C. 15.2
 - D. 12.5
 - E. 16.1
- 2. The sample standard deviation s is closest to
 - A. 0.9
 - B. 1.1
 - C. 1.4
 - D. 2.0
 - E. 3.0
- 3. While browsing past marathon results, we notice a finishing time of 2:07:30 in one race. Using only this information, select the best option:
 - A. This must be an unusually fast time.
 - B. Since it's one race, this time is typical for marathons.
 - C. We can't tell if it's unusual without knowing the distribution of marathon times.
 - D. It is normal that all elite marathons finish under 2:05.
 - E. Every marathon winner finishes at exactly 2:07:30.
- 4. Are variation and uncertainty important concepts in statistics?
 - A. Yes—models describe variation, and we quantify uncertainty wherever possible.
 - B. No—statistics finds exact population parameters without error.
 - C. Yes—but only to make analysis look sophisticated.
 - D. No—big data eliminates uncertainty.
 - E. No—once data are collected, uncertainty disappears.

Information for Questions 5–7

A discrete variable Y takes values $\{1, 2, 5\}$ with probabilities 0.20, 0.50, 0.30 respectively.

- 5. $Pr(Y \ge 2)$ equals
 - A. 0.20
 - B. 0.30
 - C. 0.50
 - D. 0.80
 - E. 1.00
- 6. E[Y] is
 - A. 2.1
 - B. 2.5
 - C. 2.7
 - D. 3.0
 - E. 3.2
- 7. Which best describes E[Y]?
 - A. A randomly selected person will have exactly E[Y].
 - B. The expected/average value in repeated sampling from this distribution.
 - C. Half the population will be below E[Y].
 - D. Having exactly E[Y] implies increased risk.
 - E. Y is normally distributed with mean E[Y].

Information for Questions 8–11

Let A be "a customer is a subscriber" and B be "they purchase a premium plan". Suppose $\Pr(A)=0.40, \Pr(B\mid A)=0.35, \Pr(B\mid A^c)=0.10.$

- 8. Best interpretation of $Pr(B \mid A^c)$:
 - A. Probability a non-subscriber purchases the premium plan.
 - B. Probability someone is not a subscriber given they purchased.
 - C. Probability a subscriber purchases the premium plan.
 - D. Probability someone is not a subscriber and purchases.
 - E. Probability of purchasing regardless of subscription.
- 9. $Pr(A \mid B)$ is closest to
 - A. 0.30
 - B. 0.50
 - C. 0.60
 - D. 0.70

- E. 0.90
- 10. Pr(A or B) is closest to
 - A. 0.20
 - B. 0.40
 - C. 0.46
 - D. 0.55
 - E. 1.00
- 11. Pr(B) is closest to
 - A. 0.10
 - B. 0.20
 - C. 0.30
 - D. 0.35
 - E. 0.50
- 12. What is the best description of a random variable?
 - A. A summary of both population and sample.
 - B. A variable that must be normal.
 - C. A random process with a numerical outcome.
 - D. A fixed but unknown value.
 - E. A value chosen by the analyst.
- 13. Which is best modelled as continuous?
 - A. Number of emails received today.
 - B. Count of customers who clicked "Buy".
 - C. CO_2 concentration in air (ppm).
 - D. Number of red cards in a match.
 - E. Count of goals in a game.

Information for Questions 14–15

Let X and Y be independent with E[X] = 8, Var(X) = 1.2 and E[Y] = 5, Var(Y) = 0.8. Define the score S = 3X - 2Y.

- 14. E[S] is
 - A. 6
 - B. 10
 - C. 12
 - D. 14

- E. 16
- 15. The standard deviation of S, sd(S), is closest to
 - A. 1.10
 - B. 2.24
 - C. 3.74
 - D. 4.50
 - E. 6.00

Information for Questions 16-19

A test score $Y \sim \mathcal{N}(\mu = 70, \ \sigma = 12)$ for healthy adults.

- 16. A person has Z = -0.75. Their score is closest to
 - A. 52.0
 - B. 58.0
 - C. 61.0
 - D. 70.0
 - E. 79.0
- 17. Which R command computes Pr(Y > 82)?
 - A. 1 pnorm(82)
 - B. 1 pnorm(1.0)
 - C. pnorm(82)
 - D. pnorm(1.0)
 - E. 1 pnorm(-1.0)
- 18. If n=100 independent adults are sampled, the sampling distribution of \bar{Y} is
 - A. Normal, mean 70, sd 12
 - B. Normal, mean 70, sd 1.2
 - C. Normal, mean 0, sd 1
 - D. t with 99 df
 - E. Unknown
- 19. If the population is not normal but not extremely skewed (still $\mu = 70, \sigma = 12$), for n = 100 the sampling distribution of \bar{Y} is approximately
 - A. Normal, mean 70, sd 12
 - B. Normal, mean 70, sd 1.2
 - C. Normal, mean 0, sd 1

- D. t with 99 df
- E. Unknown

Information for Questions 20-22

A researcher measures a continuous outcome with unknown σ . Sample size n=25. Data look roughly normal.

- 20. A 95% CI for μ should be
 - A. $\hat{p} \pm z_{0.975} \sqrt{\hat{p}(1-\hat{p})/n}$
 - B. $\bar{y} \pm z_{0.975} \, \sigma / \sqrt{n}$
 - C. $\mu \pm z_{0.975} \, \sigma / \sqrt{n}$
 - D. $\bar{y} \pm z_{0.975} \, s / \sqrt{n}$
 - E. $\bar{y} \pm t_{24,0.975} s/\sqrt{n}$
- 21. If we raise confidence from 95% to 99%, what changes?
 - A. Estimate changes; unclear effect on width
 - B. Standard error changes; interval wider
 - C. Standard error changes; interval narrower
 - D. Multiplier changes; interval wider
 - E. Multiplier changes; interval narrower
- 22. A 99% CI for μ is (3.54, 3.82). Best interpretation:
 - A. 99% of individual observations lie in (3.54, 3.82).
 - B. A random future observation has 99% chance to lie in (3.54, 3.82).
 - C. There is probability 0.99 that the fixed μ is in (3.54, 3.82).
 - D. 99% of sample means fall in (3.54, 3.82).
 - E. We are 99% confident the true mean lies in (3.54, 3.82).
- 23. For $H_0: \mu = \mu_0$ vs $H_A: \mu \neq \mu_0$, with $\alpha = 0.01$ and $p = 10^{-6}$:
 - A. Very small p means a very large effect size must exist.
 - B. We can be certain $\mu \neq \mu_0$.
 - C. Data would be very unlikely if H_0 were true.
 - D. $Pr(\mu = \mu_0) = 10^{-6}$.
 - E. Pr(our calculations are correct) = 10^{-6} .
- 24. Which best describes estimation?
 - A. Assume population mean equals sample mean.
 - B. Compute SE as s/\sqrt{n} .
 - C. Use population data to compute a statistic.

- D. Guess data values to improve model fit.
- E. Use a statistic to make an informed guess about an unknown parameter.

Information for Questions 25–26

The R object otter has variables weight (kg) and length (cm).

- 25. What does mean(otter\$weight) compute?
 - A. Sample mean of length
 - B. Sample sd of length
 - C. Sample mean of weight
 - D. Sample sd of weight
 - E. Median weight
- 26. What does sd(otter\$length) compute?
 - A. Sample mean of length
 - B. Sample sd of length
 - C. Sample mean of weight
 - D. Sample sd of weight
 - E. Median length

Information for Questions 27–30 (Paired data)

Thirty patients' stress hormone levels are recorded before and after mindfulness training. R output:

```
t = -2.57, df = 29, p-value = 0.012
95 percent CI for mean difference (after - before): (-1.15, -0.15)
mean difference = -0.65
```

- 27. With $\alpha = 0.05$, best interpretation:
 - A. Since $p < \alpha$, the data would be unusual if there were truly no mean difference.
 - B. Since $p < \alpha$, the true after-level is 0.
 - C. Since $p < \alpha$, the data would not be unusual under no difference.
 - D. Since $p > \alpha$, there's no change.
 - E. Therefore mindfulness should be mandatory.
- 28. Which model is used?
 - A. Normal model with paired data
 - B. Normal model with two independent groups
 - C. Chi-squared test

- D. Linear regression
- E. Binomial model
- 29. In this context, power is
 - A. $Pr(H_0 \text{ true})$
 - B. $Pr(reject H_0 | H_0 true)$
 - C. Pr(reject $H_0 \mid H_A$ true)
 - D. Same as the p-value
 - E. Pr(p < 0.05) without context
- 30. Which definitely increases power?
 - A. Setting paired = TRUE in any test
 - B. Increasing α and decreasing n
 - C. Decreasing α
 - D. Repeating identical tests without more data
 - E. Increasing the sample size

Information for Questions 31-33 (Two independent groups)

Two drugs are compared on blood pressure reduction. Group 1 (Drug A): $\bar{y}_1 = 23.4$, $s_1 = 5.8$, $n_1 = 45$. Group 2 (Drug B): $\bar{y}_2 = 20.1$, $s_2 = 6.2$, $n_2 = 40$.

- 31. The estimated standard error of $\bar{y}_1 \bar{y}_2$ is closest to
 - A. 0.95
 - B. 1.10
 - C. 1.31
 - D. 1.60
 - E. 2.00
- 32. A two-sided test of equal means gives $t\approx 2.52$ with $p\approx 0.013$. At $\alpha=0.05$, we should
 - A. Fail to reject; no evidence of a difference.
 - B. Reject; evidence of a difference.
 - C. Conclude Drug B is superior.
 - D. Conclude both drugs are identical in effect.
 - E. Need a paired test instead.
- 33. A plausible 95% CI for $\mu_1 \mu_2$ is
 - A. (-5.9, -0.7)

- B. (-0.7, 5.9)
- C. (0.7, 5.9)
- D. (1.3, 6.5)
- E. (3.3, 6.0)

Information for Questions 34–36 (Proportions)

In n = 150 visitors, x = 45 purchased.

- 34. A 95% CI for the proportion p should be
 - A. $\bar{y} \pm t \, s / \sqrt{n}$
 - B. $\hat{p} \pm z \sqrt{\hat{p}(1-\hat{p})/n}$
 - C. $\hat{p} \pm t \sqrt{\hat{p}(1-\hat{p})/n}$
 - D. $\mu \pm z \, \sigma / \sqrt{n}$
 - E. Not possible without σ
- 35. If we increase n from 150 to 600 (same \hat{p}), the CI width
 - A. Doubles
 - B. Stays the same
 - C. Halves
 - D. Becomes four times wider
 - E. Is unpredictable
- 36. A 90% CI for p is (0.22, 0.36). Best interpretation:
 - A. 90% of individuals have outcomes in this range.
 - B. There's a 90% chance the random future sample proportion lies in this range.
 - C. We are 90% confident the true population proportion lies between 0.22 and 0.36.
 - D. 90% of possible samples will produce \hat{p} equal to 0.29.
 - E. p varies from study to study.

Normal tools in R

- 37. Which gives Pr(Z > 1.2) for $Z \sim \mathcal{N}(0, 1)$?
 - A. pnorm(1.2)
 - B. pnorm(-1.2)
 - C. 1 pnorm(1.2)
 - D. 1 pnorm(-1.2)

- E. pnorm(0)
- 38. Which gives the 97.5th percentile of $Z \sim \mathcal{N}(0,1)$?
 - A. qnorm(0.025)
 - B. qnorm(0.975)
 - C. pnorm(0.975)
 - D. 1 qnorm(0.975)
 - E. qnorm(1.975)
- 39. Which best describes a random sample?
 - A. Every unit is selected with equal probability and independently (or via a valid random design).
 - B. The most convenient units are selected.
 - C. Units chosen until results look "about right".
 - D. Units with the largest values are over-sampled deliberately (without model).
 - E. Volunteers only.
- 40. Which action reduces the standard error of \bar{Y} ?
 - A. Halving n
 - B. Doubling n
 - C. Quadrupling n
 - D. Doubling s
 - E. None of the above
- 41. Which is a parameter, not a statistic?
 - A. Sample mean sodium = 3.4 mg
 - B. Sample sd = 1.1 mg
 - C. Population mean sodium μ
 - D. \bar{y} from a study of 40 people
 - E. The sample median
- 42. Suppose $\sigma=8,\ n=64,\ \bar{y}=102,\ H_0:\mu=100.$ The two-sided p-value equals
 - A. pnorm(2)
 - B. 2 * (1 pnorm(2))
 - C. 1 pnorm(2)
 - D. pnorm(-2)

- E. 2 * pnorm(2)
- 43. When should a paired t-test be preferred over a two-sample t-test?
 - A. When two groups are independent.
 - B. When measurements are "before-after" on the same units.
 - C. When one group is twice as large.
 - D. When variances are equal.
 - E. When sample sizes are both ≥ 30 .
- 44. Even if the population is not normal, the distribution of \bar{Y} is approximately normal when
 - A. n is large (and the population isn't extremely skewed).
 - B. s = 0.
 - C. n = 2.
 - D. We take medians instead.
 - E. Only if the population is uniform.
- 45. For $Y \sim \mathcal{N}(100, 15^2)$, which R command gives the 90th percentile?
 - A. qnorm(0.1, 100, 15)
 - B. pnorm(0.9, 100, 15)
 - C. qnorm(0.9, mean=100, sd=15)
 - D. 1 qnorm(0.9, 100, 15)
 - E. qnorm(1.9, 100, 15)
- 46. Which statement about the sampling distribution of \bar{Y} is correct?
 - A. Mean is μ , standard error is $\sigma\sqrt{n}$.
 - B. Mean is \bar{y} , standard error is s/\sqrt{n} .
 - C. Mean is μ , standard error is σ/\sqrt{n} .
 - D. Mean is 0, standard error is 1.
 - E. It is never approximately normal.

Solutions

- 1. B. 14.5. $\bar{y} = (12.5 + 15.2 + 14.8 + 13.9 + 16.1)/5 = 72.5/5 = 14.5$.
- 2. C. 1.4. Compute s (unbiased, n-1 in denominator); $s \approx 1.37$, closest is 1.4.
- 3. C. We need the distribution (range/variability) of times to judge "unusual".
- 4. A. Models describe variability; we quantify uncertainty (confidence, p-values, etc.).
- 5. D. 0.50+0.30=0.80.
- 6. C. E[Y] = 1(0.20) + 2(0.50) + 5(0.30) = 0.2 + 1.0 + 1.5 = 2.7.
- 7. B. It's the long-run average under the distribution.
- 8. A. Probability a non-subscriber purchases the premium plan.

9. D.
$$Pr(A \mid B) = \frac{0.35 \cdot 0.40}{0.35 \cdot 0.40 + 0.10 \cdot 0.60} = 0.14/0.20 = 0.70.$$

- 10. C. $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B) = 0.40 + 0.20 0.14 = 0.46$.
- 11. B. Pr(B) = 0.35(0.40) + 0.10(0.60) = 0.14 + 0.06 = 0.20.
- 12. C. A random process with a numerical outcome.
- 13. C. CO_2 concentration is continuous (in practice, measured on a continuum).
- 14. D. E[3X 2Y] = 3(8) 2(5) = 24 10 = 14.
- 15. C. Var(3X 2Y) = 9(1.2) + 4(0.8) = 10.8 + 3.2 = 14; $sd = \sqrt{14} \approx 3.74$.
- 16. C. $y = \mu + z\sigma = 70 + (-0.75) \cdot 12 = 70 9 = 61$.
- 17. B. z = (82 70)/12 = 1.0; $Pr(Y > 82) = 1 \Phi(1.0) = 1 pnorm(1.0)$.
- 18. B. $\bar{Y} \sim \mathcal{N}(70, (12/\sqrt{100})^2) \Rightarrow sd = 1.2.$
- 19. B. By CLT, approximately normal with mean 70, sd $12/\sqrt{100} = 1.2$.
- 20. E. With unknown σ , smallish n=25, use t: $\bar{y}\pm t_{24,0.975}\,s/\sqrt{n}$.
- 21. D. Only the multiplier changes (larger), making the interval wider.
- 22. E. Confidence refers to the true mean lying in the interval.
- 23. C. A tiny p-value indicates data are very unlikely under H_0 .
- 24. E. Estimation uses a statistic (e.g., \bar{y}) to infer a parameter (e.g., μ).

- 25. C. The sample mean of weight.
- 26. B. The sample standard deviation of length.
- 27. A. Since p = 0.012 < 0.05, data would be unusual if there were truly no difference.
- 28. A. Paired t-test (normal model for paired differences).
- 29. C. Power = $Pr(reject H_0 | H_A true)$.
- 30. E. Increasing sample size increases power (all else equal).
- 31. C. SE = $\sqrt{s_1^2/n_1 + s_2^2/n_2} = \sqrt{5.8^2/45 + 6.2^2/40} \approx 1.31$.
- 32. B. With $p \approx 0.013 < 0.05$, reject H_0 ; there is evidence of a difference.
- 33. C. 95% CI $\approx 3.3 \pm 1.96 \times 1.31 \approx (0.7, 5.9)$
- 34. B. For a single proportion: $\hat{p} \pm z \sqrt{\hat{p}(1-\hat{p})/n}$.
- 35. C. Width scales with $1/\sqrt{n}$. $n \times 4 \Rightarrow$ width $\times 1/2$.
- 36. C. Confidence speaks to the population proportion.
- 37. C. $Pr(Z > 1.2) = 1 \Phi(1.2) = 1 pnorm(1.2)$.
- 38. B. 97.5th percentile is qnorm(0.975).
- 39. A. Random sampling requires a legitimate random mechanism (independence/equal chance).
- 40. C. Quadrupling n halves s/\sqrt{n} .
- 41. C. μ is a parameter (population quantity).
- 42. B. $z = (102 100)/(8/\sqrt{64}) = 2$; two-sided $p = 2(1 \Phi(2))$.
- 43. B. Paired test for before–after on the same units.
- 44. A. CLT: for large n, \bar{Y} approximately normal (non-extreme skewness).
- 45. C. qnorm(0.9, mean=100, sd=15).
- 46. C. Mean μ , standard error σ/\sqrt{n} .