

исследовательский

Томский государственный университет

Синтез адаптивных систем управления при неполной информации

Руководитель: доцент, канд. техн. наук Решетникова Г.Н.

Выполнила: студентка группы 1151 Володенок А.В.

Цель работы

Целью настоящей работы состоит в разработке программы для синтеза адаптивных систем управления при неполной информации на языке Python 3.

Описание модели объекта

Модель объекта для стационарной и нестационарной дискретной стохастической модели описывается в виде:

$$\dot{x}(t) = \bar{A}(t)x(t) + \bar{B}(t)u(t) + \bar{F}(t)q(t); \tag{1}$$

- $ar{A}(t)$ матрица описывающая динамические свойства,
- x(t) вектор, задающий состояние,
- $ar{B}(t)$ матрица влияния управляющих воздействий,
- u(t) вектор управления,
- $ar{F}(t)$ матрица внешних возмущений
- q(t) вектор внешних возмущений.

$$M\{q(t)\} = \bar{q}(t), M[(q(t) - \bar{q}(t))(q(\tau) - \bar{q}(\tau)^T)] = Q(t)\delta(t - \tau).$$
 (2)

Построение дискретной модели

Разностное уравнение, соответствующее (1), имеет вид:

$$x(k+1)=A(k)x(k)+B(k)u(k)+F(k)q(k), x(0)=x_0,$$
 (3)

где $A(k) = I_n + \Delta t \bar{A}(t_k), B(k) = \Delta t \bar{B}(t_k), F(k) = \sqrt{\Delta t} F(t_k),$ I_n – единичная матрица, Δt – шаг дискретизации.

Описание математических моделей измерительного комплекса

Для полного измерения:

$$y(k) = x(k) + r(k) \tag{4}$$

Для неполного измерения:

$$y(k) = Hx(k) + Hr(k)$$
 (5)

где Н – матрица канала измерений.

r(k) – гауссовские последовательности с характеристиками:

$$M\{r(k)\}=0, M\{r(k)r^{T}(j)\}=R\delta_{k,j}, M\{q(k)r^{T}(j)\}=0.$$
(6)

Оценивание состояния и параметров модели объекта

Математическая модель с учетом неизвестных параметров:

$$x(k+1) = A(k,\theta(k))x(k) + B(k,\theta(k))u(k) + F(k)q(k), \quad x(0) = x_0$$
 (7) где $\theta(k)$ - вектор неизвестных параметров.

$$M \left\{ \mathbf{x}_{0} \right\} = \bar{\mathbf{x}}_{0}, M \left\{ (\mathbf{x}_{0} - \bar{\mathbf{x}}_{0})(\mathbf{x}_{0} - \bar{\mathbf{x}}_{0})^{T} \right\} = \mathbf{P}_{\mathbf{X}}$$

$$M \left\{ \theta(0) \right\} = \bar{\theta}(0), M \left\{ (\theta(0) - \bar{\theta}(0))(\theta(0) - \bar{\theta}(0))^{T} \right\} = \mathbf{P}_{\theta}, \tag{8}$$

где $\mathbf{P}_{\mathbf{X}}$, $\mathbf{P}_{\bar{\theta}}$ ковариационные матрицы ошибок начальных условий.

Оценивание состояния модели объекта

Рекуррентный алгоритм для оценивания вектора состояния имеет вид: $\hat{x}(k+1) = \hat{x}(k+1/k) + K(k)[y(k+1) - H\hat{x}(k+1/k)],$

$$\hat{x}(k+1/k) = A(k,\hat{\theta}(k))\hat{x}(k) + B(k,\hat{\theta}(k))u(k) + F(k)\bar{q}(k), \hat{x}(0) = \bar{x}_{0},$$

$$K(k) = P_{\chi}(k+1/k)H^{T}[HP_{\chi}(k+1/k)H^{T} + HRH^{T}] - 1,$$

$$P_{\chi}(k+1/k) = A(k,\hat{\theta}(k))P_{\chi}(k)A^{T}(k,\hat{\theta}(k)) + F(k)Q(k)F^{T}(k),$$

$$P_{\chi}(k+1) = [I_{n} - K(k)H]P_{\chi}(k+1/k),$$

$$P_{\chi}(0) = P_{\chi}.$$

$$(9)$$

 $\hat{\chi}(k+1/k)$ - экстраполированная оценка вектора состояния $\chi(k+1)$, $P_{\chi}(k+1/k)$ - прогноз дисперсионной матрицы $P_{\chi}(k)$ на один шаг вперед.

Алгоритм для оценивания параметров модели

$$\begin{split} \hat{\theta}(k+1) &= \hat{\theta}(k) + L(k)[y(k+1) - H\Phi(\hat{x}(k), u(k))\hat{\theta}(k) - Hf(\hat{x}(k), u(k))], \ \hat{\theta}(0) = \bar{\theta}_{0}, \\ L(k) &= P_{\theta}(k)\Phi^{T}(\hat{x}(k), u(k))M^{-1}, \\ M(k) &= H\Phi(\hat{x}(k), u(k))P_{\theta}(k)\Phi^{T}(\hat{x}(k), u(k))H^{T} + HF(k)Q(k)F^{T}(k)H^{T} + HRH^{T}, \ (10)P_{\theta}(k+1) &= [I_{N_{e}} - L(k)H\Phi(\hat{x}(k), u(k))]P_{\theta}(k), \end{split}$$

 $P_{ heta}(0) = P_{ heta}$. В (10) матрица $\Phi(\cdot) \in R^{n \times N} R$ и вектор $f(\cdot) \in R^n$ получаются при представлении системы (7) в виде:

$$x(k+1) = \Phi(x(k), u(k))\theta(k) + f(x(k), u(k)) + F(k)q(k), x(0) = x_0$$

Формирование управляющих воздействий

Квадратический функционал

$$J(k) = M\left\{ \left(x(k+1) - x_{\mathcal{Z}}(k)\right)^{T} C\left(x(k+1) - x_{\mathcal{Z}}(k)\right) + u^{T}(k)Du(k) \right\}$$
(11)

где C и D — заданные весовые матрицы,

 $x_{Z}(k)$ - состояние, за которым осуществляется слежение.

$$u(k) = -[B^{T}(k,\hat{\theta}(k))CB(k,\hat{\theta}(k)) + D]^{-1}B^{T}(k,\hat{\theta}(k))C[A(k,\hat{\theta}(k))\hat{x}(k) + F(k)\bar{q}(k) - x_{\mathcal{Z}}(k)]$$
(12)

где $\hat{\mathbf{x}}(k)$, $\hat{\theta}(k)$ оценки состояния и параметров, полученные с помощью фильтров Калмана. В матрицах $A(k,\hat{\theta}(k))$, $B(k,\hat{\theta}(k))$ вместо точечных значений параметров указываются их оценки.

Ограничения на управление

$$U_{\min i}(k) \le u_i(k) \le U_{\max i}(k), i = \overline{1,m}$$

Разработка синтеза адаптивных систем

Общая структура программного обеспечения может быть представлена следующей схемой:

Рисунок 1 – Общая архитектура программного обеспечения

Отношение классов

Рисунок 2 – Отношение классов

Интерфейс программы

□ Нестационарная модель	
Введите количество заданных значений для нестационарной модели и их размерность	
n = ntao =	
Введите размерность следующих параметов для стационарной модели:	
An = Bn =	Fn =
х0 - вектор начального состояния	хо0 - оценка вектора начального состояния
x0 = 0x	xo0 =
R - матрица погрешностей	Рх0 - дисперсионная матрица ошибок
R =	Px0 =
delta =	N =
С - весовая матрица	D - весовая матрица
C =	D =
Для адаптивного управления введите следующие параметры:	
Ptheta - дисперсионная матрица ошибок	theta - количество неизвестных параметров
Ptheta =	theta =
ввести значения	

Стационарная модель к0 - вектор начального состояния хо0 - оценка вектора начального состояния ×0 = xo0 = С - весовая матрица D - весовая матрица R - матрица погрешностей Н - матрица канала измерений хz - вектор конечного состояния ___ xz = Ptheta0, Px0 - ковариационные матрицы ошибок начальных условий векторов параметров и состоянии модели объекта. Ptheta0 = Px0 =uMaxP = uMaxN = uMinP = uMinN =

Рисунок 3 – Ввод размерностей матриц

Рисунок 4 — Ввод параметров модели

Моделирование адаптивной системы управления судном при изменении курса

Модель задана в виде:

$$\dot{x}(t) = \bar{A}(t)x(t) + \bar{B}(t)u(t) + \bar{F}(t)q(t); x(t_0) = x_0,$$

где компоненты векторов состояния

$$x(t) = (x_1(t), x_2(t), x_3(t), x_4(t))^T = (\beta, \omega, v, \psi)^T$$

и управления

$$u(t) = (u_1(t) = \delta, u_2(t))^T$$

модели объекта имеют следующий смысл

β – отклонение угла дрейфа,

ω-отклонение угловой скорости,

v-отклонение скорости движения,

ψ-отклонение угла курса,

 u_1 = δ – отклонение угла перекладки руля, u_2 – отклонение ружима работы главного двигателя.

Рисунок 5 – Модель судна

Ввод параметров модели

Рисунок 6 – Ввод размерностей матриц

Рисунок 7 – Ввод параметров модели

Численных результатов

Заключение

В настоящей работе построена дискретная математическая модель объекта. Построена стохастическая модель объекта и измерительного комплекса, выполнено моделирование управления по вектору измерений.

Построены оценки вектора состояния с помощью рекуррентного алгоритма статистической обработки типа фильтра Калмана, выполнено моделирование при полном и неполном наборе измеряемых компонент состояния объекта.

Данная работа может быть использована для обнаружения минимального набора датчиков измерительного комплекса при котором будет осуществляться управление без существенного ухудшения качества управления объекта в целом.

Спасибо за внимание

Литература

- Решетникова Г.Н. Адаптивные системы: учеб.пособие. Томск: Издательский дом Томского государственного университета, 2016. 112с.
- Решетникова Г.Н. Моделирование систем: учеб. пособие/Г.Н. Решетникова; Федеральное агентство по образованию, Томск. гос. ун-т систем упр и радиоэлектротехники. 2-е изд., перераб и доп. Томск: Томск, гос. ун-т систем упр. и радиоэлктротехник, 2007. 441 с.
- Соболев Г.Н. Управляемость корабля и автоматизация судовождения: учеб.пособие. Ленинград: Издательство Судостроение, 1976. 477с.