Sprawozdanie XII

Zastosowanie ekstrapolacji Richardsona do całkowania przy użyciu wzorów Simpsona i Milne`a.

Adam Łaba

28 maja 2021

1. Wstęp teoretyczny

1.1. Ekstrapolacja Richardsona

Ekstrapolacja polega na szacowaniu wartości pewnej funkcji w punkcie nie należącym do zakresu, który znamy. Ekstrapolacja Richardsona jest metodą iteracyjną opartą o wykorzystanie algorytmu, którego kolejne kroki to:

1) Wybór h i obliczenia oparte o wzór:

$$D_{n,0} = \phiig(rac{h}{2^n}ig), \;\; n=0,1,\ldots,M$$
Wzór 1.

2) Obliczenie:

$$D_{n,k} = rac{4^k}{4^k-1}D_{n,k-1} - rac{1}{4^k-1}D_{n-1,k-1} \ k = 1,2,\ldots,M \ n = k,k+1,\ldots,M$$

Poprzez rekurencyjne powtarzanie obliczeń z poprzedniego wzoru, otrzymujemy w ten sposób kolejne przybliżenia szacowanej wartości. Całość opisuje wzór:

$$D_{n,k-1} = L + \sum_{\substack{j=k \ ext{ wzors} 3.}}^{\infty} A_{jk}ig(rac{h}{2^n}ig)^{2j}$$

1.2. Wzór Simpsona

Wzór ten służy do przybliżania wartości całki oznaczonej funkcji. Opiera się o znane wartości w trzech punktach takich, że $x_2-x_1=x_1-x_0=h$. Podstawowy wzór ma postać:

$$\int_{x_0}^{x_1} f(x) dx pprox rac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$

Wzór numeryczny:

$$S = \sum_{i=0}^{(N/2)-1} rac{h}{3} (f_{2i} + 4f_{2i+1} + f_{2i+2})$$
Wzór 5.

Gdzie (N + 1) jest liczbą węzłów kwadratury (indeksowanych od 0).

1.3. Wzór Milne`a

Wzór ten służy do przybliżania wartości całki oznaczonej funkcji w oparciu o znane wartości w kilku punktach. Wzór prezentuje się:

$$\int_{x_0}^{x_1} f(x) dx pprox rac{4h}{90} (7f(x_0) + 32f(x_1) + 12(x_2) + 32f(x_3) + 7f(x_4))$$

Wzór 6.

Numerycznie:

$$S = \sum_{i=0}^{(N/4)-1} rac{4h}{90} (7f_{4i} + 32f_{4i+1} + 12f_{4i+2} + 32f_{4i+3} + 7f_{4i+4})$$
wzór 7.

Gdzie oznaczenia są takie same jak w przypadku wzoru Simpsona.

2. Zadanie do wykonania

2.1. Całka do obliczenia

Zadanie polegało na numerycznym obliczeniu całki:

$$\int_0^1 \ln \left(x^3 + 3x^2 + x + 0.1 \right) \sin \left(18x \right) \quad (= -0.186486896)$$

2.2. Wykonanie zadania

W celu wykonania zadania napisano w języku C program obliczający numerycznie wartość całki oparty o wykorzystanie wzoru Simpsona lub Milne`a wraz z ekstrapolacją Richardsona. Konieczne było wykorzystanie różnych szerokości podprzedziałów dla obu wzorów. Wyniki metody Simpsona lub Milne`a były zapisywane do pierwszej kolumny macierzy, a następnie za pomocą ekstrapolacji Richardsona obliczano kolejne kolumny. Macierz powyżej diagonali była pusta. W ten sposób, na przekątnej macierzy uzyskano kolejne przybliżenia. Do pliku zapisano wyniki dla obu metod: elementy pierwszej kolumny macierzy oraz elementy leżące na diagonali.

3. Wyniki

3.1. Wyniki dla metody Simpsona

Pierwsza kolumna		Diagonala	
D_{00}	-0.097141049857	D_{00}	-0.097141049857
D_{10}	0.408385198882	D_{11}	0.576893948462
D_{20}	-0.220968141180	D_{22}	-0.497929023623
D_{30}	-0.188006399665	D_{33}	-0.154741281667
D_{40}	-0.186574721061	D_{44}	-0.187251920741
D_{50}	-0.186492282719	D_{55}	-0.186482645547
D_{60}	-0.186487231111	D_{66}	-0.186486901050
D_{70}	-0.186486916928	D_{77}	-0.186486896008
D_{80}	-0.186486897315	D_{88}	-0.186486896008

3.2. Wyniki dla metody Milne'a

Pierwsza kolumna		Diagonala	
D_{00}	0.442086948798	D_{00}	0.442086948798
D_{10}	-0.262925030518	D_{11}	-0.497929023623
D_{20}	-0.185808950231	D_{22}	-0.137581894570
D_{30}	-0.186479275821	D_{33}	-0.189283835683
D_{40}	-0.186486786829	D_{44}	-0.186432161862
D_{50}	-0.186486894337	D_{55}	-0.186487183642
D_{60}	-0.186486895982	D_{66}	-0.186486895672
D_{70}	-0.186486896008	D_{77}	-0.186486896008
D_{80}	-0.186486896008	D_{88}	-0.186486896008

4. Wnioski

Wykorzystane w zadaniu metody Simpsona oraz Milne'a, zaliczające się do kwadratur Newtona-Cotesa, pozwoliły na numeryczne obliczenie wartości całki dają wynik niemalże równy wynikowi analitycznemu.

Porównując wyniki obu metod, zauważalna jest przewaga metody Milne`a pod względem dokładności uzyskanych wyników - ekstrapolacja Richardsona w przypadku metody Milne`a nie była konieczna.

Wyniki dobrze uwidaczniają działanie metod - znajdujące się w pierwszej kolumnie wartości są z każdą iteracją coraz dokładniejsze, a odpowiadające im elementy na diagonali uzyskane za pomocą ekstrapolacji Richardsona są od nich bliższe wartości rzeczywistej.

Warto zauważyć, że w praktyce nie powinno się stosować tych metod ze sztywno narzuconą liczbą iteracji, tylko wprowadzić warunek stopu związany ze zbieżnością kolejnych otrzymanych wyników.