Premična pika

$$x = (-1)^S m \cdot b^e$$

$$m = c_0 + c_1 b^{-1} + c_2 b^{-2} + \dots + c_t b^{-t}$$

S ... predznak

b ... baza, ponavadi 2

m ... vrednost mantise

t . . . dolžina mantise

e ... vrednost eksponenta $L \leq e \leq U$

 c_i ... števke v mejah $0 \le c_i \le b-1$

Sistem premične pike označimo z P(b, t, L, U).

Standard IEEE

Eksponent je zapisan z odmikom:

$$E = e + \text{odmik}$$

Če je E=0, uporabimo **denormiran zapis**:

$$x = (-1)^S (c_1 b^{-1} + c_2 b^{-2} + \dots + c_t b^{-t}) \cdot b^{e+1}$$

Sicer pa normiran zapis:

$$x = (-1)^S (1 + c_1 b^{-1} + c_2 b^{-2} + \dots + c_t b^{-t}) \cdot b^e$$

Če so vsi biti eksponenta 1 in vsi biti mantise 0, je $x = (-1)^S \infty$.

Če so vis biti eksponenta 1 in v
si biti mantise niso 0, je $x=\mathrm{NaN}.$

• Single precision b = 2, t = 23, L = -126, U = 127, odmik: 127

predznak 1	exponent 8	mantisa 23

• Double precision $b=2,\,t=52,\,L=-1022,\,U=1023,\,{\rm odmik:}\,1023$

nredznak 1	ernonent 11	mantisa 52

Zaokroževanie

Naj bo x pozitivno število z neskončnim zapisom $x = (c_1b^{-1} + c_2b^{-2} + \dots + c_tb^{-t} + c_{t+1}b^{-t-1}) + \dots b^e$

Kandidata za približek fl(x) sta:

$$x_{-} = (c_1b^{-1} + c_2b^{-2} + \dots + c_tb^{-t})b^e$$

$$x_{+} = (c_1b^{-1} + c_2b^{-2} + \dots + c_tb^{-t} + b^{-t})b^e$$

Vzamemo tistega, ki je bljižje. Če sta enako blizu, izberemo tistega, ki ima zadnjo števko sodo.

Osnovna zaokrožitvena napaka

$$u = \frac{1}{2}b^{-t}$$

$$f(x) = x(1+\delta) \quad \text{za} \quad |\delta| \le u$$

$$\frac{|f(x) - x|}{|x|} \le u$$

Napake pri numeričnem računanju

• Neodstranljiva napaka Namesto x imamo približek \bar{x} .

$$D_n = f(x) - f(\bar{x})$$

• Napaka metode Namesto funkcije f imamo približek g.

$$D_m = f(\bar{x}) - g(\bar{x})$$

• Zaokrožitvena napaka Pri računanju $\tilde{y} = f(\bar{x})$ se pri vsaki operaciji se pojavi zaokrožitvena napaka. Namesto \tilde{y} dobimo \hat{y} .

$$D_z = \tilde{y} - \hat{y}$$

Celotna napaka je $D = |D_n| + |D_m| + |D_z|$.

Stopnja občutljivosti

Razmerje velikosti spremembe podatkov in spremembe rezultata.

Naj bo $f:\mathbb{R}\to\mathbb{R}$ zvezno odvedlijva funkcija in δx majhna motnja.

 Absolutna občutljivost f v točki x:

$$|f(x + \delta x) - f(x)| \approx |f'(x)| \cdot |\delta x|$$

• Relativna občutljivost f v točki x:

$$\frac{|f(x+\delta x) - f(x)|}{|f(x)|} \approx \frac{|f'(x)| \cdot |\delta x|}{|f(x)|}$$

Obratna in direktna stabilnost

- Direktna stabilnost: za vsak x direktna napaka $(|f(x) f(x + \Delta x)|)$ majhna (absolutno oz. relativno).
- Obratna stabilnost: za vsak x razlika Δx , ki bi nam dala pravi rezultat majhna.

|direktna napaka| \le občutlijvost \cdot |obratna napaka|

Nelinearne enačbe

Iščemo ničle funkcije f.

• Enostavne ničle:

$$f(\alpha) = 0$$
 in $f'(\alpha) \neq 0$

• m-kratne ničle:

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0$$

Občutljivost ničle

Naj bo α *m*-kratna ničla $\hat{\alpha}$ približek, da je $f(\hat{\alpha}) = \varepsilon$.

Čefrazvijemo v Taylorjevo vrsto okoli α in vzamemo prvih m+1členov dobimo:

$$\varepsilon \doteq \frac{f^{(m)}(\alpha)}{m!} (\hat{\alpha} - \alpha)^m \quad |\hat{\alpha} - \alpha| \doteq \sqrt[m]{\frac{\varepsilon \cdot m!}{|f^{(m)}(\alpha)|}}$$

Bisekcija

 $\textit{vhod}\colon$ funkcija $f:[a,b]\to\mathbb{R},\; f(a)f(b)<0,$ natancnost ε $\textit{izhod}\colon$ nicla funkcije f

$$\begin{aligned} & \textit{dokler} \quad |b-a| > \varepsilon \colon \\ & c \leftarrow \frac{a+b}{2} \\ & ce \ \operatorname{sign}(f(c)) = \operatorname{sign}(f(a)) \colon \\ & a \leftarrow c \\ & \textit{sicer} \colon \\ & b \leftarrow c \end{aligned}$$

c je približek ničle α . Velja

$$|\alpha - c| \le \frac{b - a}{2^m} \le \varepsilon$$

Za natančnost ε potrebujemo $\log_2\left(\frac{b-a}{\varepsilon}\right)$ korakov.

Navadna iteracija

Rešujemo f(x) = 0. Enačbo pretvorimo v x = g(x). Načinov je veliko:

- q(x) = f(x) + x
- g(x) = cf(x) + x
- g(x) = h(x)f(x) + x kjer je h(x) funkcija, ki nima ničle v α .

Izrek o konvergenci navadne iteracije

Naj bo α negibna točka za g in naj g na intervalu $[\alpha - d, \alpha + d]$ (d > 0) zadošča Lipschitzovemu pogoju:

$$\exists m \in [0,1) \ \forall x,y \in I : |q(x) - q(y)| < m|x - y|$$

tedaj je q skrčitev na I.

Potem za vsak $x_0 \in I$ zaporedje $x_{r+1} = g(x_r)$ konvergira k α in velja:

$$|x_r - \alpha| \le \frac{m}{1 - m} |x_r - x_{r-1}|$$

Posledica: Če je g zvezno odvedljiva v α in velja $g'(\alpha) < 1$, obstaja interval I, ki vsebuje α , da za vsak $x_0 \in I$ zaporedje konvergira k α .

- Če je $|g'(\alpha)| < 1$, je α privlačna negibna točka
- Če je $|g'(\alpha)| > 1$, je α odbojna negibna točka

Če je α odbojna za g, je privlačna za g^{-1} : $q(x) = x \implies x = q^{-1}(x)$

Hitrost konvergence

p>0 je red konvergence, če $\exists C_1,C_2>0$, da za vse dovolj pozne člene zaporedja $x_{r+1}=g(x_r)$ velja:

$$C_1|x_r - \alpha|^p \le |x_{r+1} - \alpha| \le C_2|x_r - \alpha|^p$$

Vsak korak se št. decimalk pomnoži s p.

Naj bogv okolici α p-kratzvezno odvedlijva in naj velja $g(\alpha)=\alpha,\ g'(\alpha)=\cdots=g^{(p-1)}(\alpha)=0$ in $g^{(p)}(\alpha)\neq 0.$ Tedaj je red konvergence enak p.

Standardni redi konvergence

 $p=1 \quad \dots \quad$ linearna konvergenca

p=2 ... kvadratična konvergenca