ABE 457

Practice Problems Spring 2018

- 1. Calculate the D value of an organism which shows 100 survivors from an initial inoculum of 10⁶ spores after 9 min at 250 F.
- 2. If an initial inoculum of 100 spores per gram of produce ($D_{250} = 1.2 \text{ min}$) and a spoilage rate of 1 can in 100,000 is desired, calculate an F value for the process that will give the desired level of inactivation. Calculate the F_{280} for a z value of 20 F. Assume that can will hold 12 oz.
- 3. The following heat penetration data were obtained on chili can processed at 250 F in a retort.

Time (min)	Temp (F)	Time (min)	Temp (F)
0	170	30	216
5	170	35	223
10	180	40	230
15	187	45	245
20	200	50	250
25	209		

Calculate the probability of spoilage from FS 1518 if it has a D value of 3 min at 250 F and a z value of 18 F for an initial spore load of 1.0/can.

- 4. Calculate the length of a holding tube in high temperature processing in an aseptic packaging system that is necessary to provide a 6 D reduction of spores of ($D_{250} = 1.8 \,\mathrm{min}$) at 280 F. Use a z value of 18 F. The rate of flow is 10 gal/min, density is 65 lb/ft³. The tube has a 1.5 in outside diameter and a wall thickness of 0.064 in. Calculate the extent of overprocessing if the fluid is powerlaw fluid with flow behavior index of 0.4. You can assume the flow to be laminar.
- 5. Problem 5.5-1 of Geonkoplis.