WHAT IS MACHINE LEARNING?

(and what is it not?)

Charles-Pierre Astolfi, cp.astolfi@crans.org

POP QUIZ!

Machine Learning...

- · aims at replicating the brain.
- tries to find patterns and correlations.
- is not used in industry yet.
- is a black art more than a science.
- · can make scientific discoveries.
- · has no ethical ramifications yet.
- · can help you find your life partner.
- saves 5 millions lives per year.

WHAT IS MACHINE LEARNING?

Science Black art whose goal is to:

- Classify data.
- Capture characteristics from empirical data.
- Generate data "in the style of" what has been seen.
- Learn to take decisions based on the past course of actions.

Classification (and ranking)

Clustering

Regression

Reinforcement learning

CLASSIFICATION

(SUPERVISED LEARNING)

Input

Output

Age +

Year of operation

Number of axillary nodes detected

0 if the patient died within 5 years I if the patient survived 5 years or longer

CLUSTERING (UNSUPERVISED LEARNING)

Like classification, but the labels are unknown.

UNSUPERVISED LEARNING

State of the art:

- Andrew Ng & al. trained an unsupervised large-scale

 (16,000 cores) neural
 network
- This is a neuron that detects faces
- Precision: 19% on 22000 classes.

REGRESSION

- Like classification, but one has to predict a value rather than a label.
- E.g.: given some statistics about crime in a neighborhood, predict the number of crimes next year.

REINFORCEMENT LEARNING

- Predictions are decisions!
- Demo: Pendulum swing up learning

SUMMARY

If given... My predictions are... Then I'm doing... (Known) finite set Classification Vector of labels (Unknown) finite Clustering set of labels Real value Regression Reinforcement Actions Past events learning

RIDGE

Given $X \in \mathbb{R}^n \times \mathbb{R}^m$ (training data) and $Y \in \mathbb{R}^n$ (outcomes),

Find w that satisfies:

$$\min_{w} \sum_{i=1}^{n} (Xw - Y)_{i}^{2} + \alpha \sum_{i=1}^{m} w_{i}^{2}$$

RIDGE RESULTS

MLAPPLICATIONS

- Finding conservation equations for the double pendulum (a chaotic dynamic system!)
- Web search
- <u>Match people</u> (meetic, eharmony and okcupid hire a lot of ML people!)
- Discriminate gender on Twitter
 Most common words for females:

"!, love,:), haha, so"

For males: "Goog, googl, google, http"

ML IN INDUSTRY

- Automated mining: Rio Tinto and Nicta
- Web search: Google
- Ad selection: Google, Facebook
- Medical research
- Machine Vision: Driverless cars, animal census via drones
- Speech Recognition: Help desks, banking.
- Intelligence agencies!
- Snail mail: address recognition
- Sentiment mining: who's thinking what?

- Recommender systems: Netflix (IM\$ prize), Air France
- Automated translation
- Rare event detection (people fighting on CCTV)
- Stock prediction (finance or logistics)
- Energy consumption prediction
- Weather forecasting (that one's hard)
- Signal analysis
- Behavior analysis
- Job finding

ML DRAWBACKS

- No silver bullet. (SVM? Ridge? Lasso? Random Forests?)
- NP-Hardness is often an issue.
- Even for heuristics, complexity is usually more than linear.
- It's hard to get clean data.
- It's hard to select the good features.
- · It's often hard to understand your predictive model.
- It's next to impossible to ensure statistical significance.
- · There's this thing we call the "Curse of dimensionality"...

ITHINK WE'RE DONE HERE.

Questions?