

# CD4017BMS, CD4022BMS

CMOS Counter/Dividers

FN3297 Rev 0.00 August 1998

CD4017BMS - Decade Counter with 10 Decoded Outputs CD4022BMS - Octal Counter with 8 Decoded Outputs

CD4017BMS and CD4022BMS are 5-stage and 4-stage Johnson counters having 10 and 8 decoded outputs, respectively. Inputs include a CLOCK, a RESET, and a CLOCK INHIBIT signal. Schmitt trigger action in the CLOCK input circuit provides pulse shaping that allows unlimited clock input pulse rise and fall times.

These counters are advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. A high RESET signal clears the counter to its zero count. Use of the Johnson counter configuration permits high speed operation, 2-input decode gating and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counter sequence. The decoded output are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A CARRY-OUT signal completes one cycle every 10 clock input cycles in the CD4017BMS or every 8 clock input cycles in the CD4022BMS and is used to ripple-clock the succeeding device in a multi-device counting chain.

The CD4017BMS and CD4022BMS series types are supplied in these 16 lead outline packages

Braze Seal DIP \*H4W †H4X Frit Seal DIP \*H1F †H1E

Ceramic Flatpack H<sub>6</sub>W

\*CD4017B Only † CD4022B Only

# Functional Diagrams





#### Features

- High Voltage Types (20V Rating)
- · Fully Static Operation
- Medium-Speed Operation 10MHz (Typ) at VDD = 10V
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- · 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard Number 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

### **Applications**

- Decade Counter/Decimal Decode Display (CD4017BMS)
- · Binary Counter/Decoder
- Frequency Division
- Counter Control/Timers
- · Divide-by-N Counting
- For Further Application Information, See ICAN-6166 "COS/MOS MSI Counter and Register Design and Applications"

#### **Pinouts**

NC = NO





#### **Absolute Maximum Ratings**

# DC Supply Voltage Range, (VDD) ... -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs ... -0.5V to VDD +0.5V DC Input Current, Any One Input ... $\pm 10\text{mA}$ Operating Temperature Range ... -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (During Soldering) ... $\pm 265^{\circ}\text{C}$ At Distance 1/16 $\pm$ 1/32 Inch (1.59mm $\pm$ 0.79mm) from case for 10s Maximum

## **Reliability Information**

| <del>-</del>                                            |                           |                                                     |
|---------------------------------------------------------|---------------------------|-----------------------------------------------------|
| Thermal Resistance                                      | θ <sub>ja</sub><br>80°C/W | $^{	heta_{	extsf{jc}}}$ 20 $^{	extsf{c}/	extsf{W}}$ |
| Ceramic DIP and FRIT Package                            | 80°C/W                    | 20°C/W                                              |
| Flatpack Package                                        | 70°C/W                    | 20°C/W                                              |
| Maximum Package Power Dissipation (PI                   | D) at +125°C              |                                                     |
| For TA = -55°C to +100°C (Package Ty                    | pe D, F, K)               | 500mW                                               |
| For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package) | Type D, F, K              | ) Derate                                            |
| Linear                                                  | ity at 12mW/              | OC to 200mW                                         |
| Device Dissipation per Output Transistor                |                           | 100mW                                               |
| For TA = Full Package Temperature Ra                    | ange (All Pac             | kage Types)                                         |
| Junction Temperature                                    |                           | +175 <sup>0</sup> C                                 |
|                                                         |                           |                                                     |

#### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                                |        | GROUP A                           |               | GROUP A   |                      | LIMITS |       |       |
|--------------------------------|--------|-----------------------------------|---------------|-----------|----------------------|--------|-------|-------|
| PARAMETER                      | SYMBOL | CONDITIONS (                      | NOTE 1)       | SUBGROUPS | TEMPERATURE          | MIN    | MAX   | UNITS |
| Supply Current                 | IDD    | VDD = 20V, VIN = VDI              | O or GND      | 1         | +25 <sup>o</sup> C   | -      | 10    | μА    |
|                                |        |                                   |               | 2         | +125 <sup>o</sup> C  | -      | 1000  | μΑ    |
|                                |        | VDD = 18V, VIN = VDI              | O or GND      | 3         | -55 <sup>0</sup> C   | -      | 10    | μА    |
| Input Leakage Current          | IIL    | VIN = VDD or GND                  | VDD = 20      | 1         | +25°C                | -100   | -     | nA    |
|                                |        |                                   |               | 2         | +125 <sup>o</sup> C  | -1000  | -     | nA    |
|                                |        |                                   | VDD = 18V     | 3         | -55 <sup>0</sup> C   | -100   | -     | nA    |
| Input Leakage Current          | IIH    | VIN = VDD or GND                  | VDD = 20      | 1         | +25 <sup>o</sup> C   | -      | 100   | nA    |
|                                |        |                                   |               | 2         | +125 <sup>o</sup> C  | -      | 1000  | nA    |
|                                |        |                                   | VDD = 18V     | 3         | -55 <sup>0</sup> C   | -      | 100   | nA    |
| Output Voltage                 | VOL15  | VDD = 15V, No Load                | •             | 1, 2, 3   | +25°C, +125°C, -55°C | -      | 50    | mV    |
| Output Voltage                 | VOH15  | VDD = 15V, No Load (              | Note 3)       | 1, 2, 3   | +25°C, +125°C, -55°C | 14.95  | -     | ٧     |
| Output Current (Sink)          | IOL5   | VDD = 5V, VOUT = 0.4              | 1V            | 1         | +25 <sup>o</sup> C   | 0.53   | -     | mA    |
| Output Current (Sink)          | IOL10  | VDD = 10V, VOUT = 0               | .5V           | 1         | +25 <sup>o</sup> C   | 1.4    | -     | mA    |
| Output Current (Sink)          | IOL15  | VDD = 15V, VOUT = 1               | .5V           | 1         | +25°C                | 3.5    | -     | mA    |
| Output Current (Source)        | IOH5A  | VDD = 5V, VOUT = 4.6              | 6V            | 1         | +25 <sup>o</sup> C   | -      | -0.53 | mA    |
| Output Current (Source)        | IOH5B  | VDD = 5V, VOUT = 2.5              | 5V            | 1         | +25 <sup>o</sup> C   | -      | -1.8  | mA    |
| Output Current (Source)        | IOH10  | VDD = 10V, VOUT = 9               | .5V           | 1         | +25°C                | -      | -1.4  | mA    |
| Output Current (Source)        | IOH15  | VDD = 15V, VOUT = 1               | 3.5V          | 1         | +25°C                | -      | -3.5  | mA    |
| N Threshold Voltage            | VNTH   | VDD = 10V, ISS = -10µ             | ιA            | 1         | +25°C                | -2.8   | -0.7  | ٧     |
| P Threshold Voltage            | VPTH   | VSS = 0V, IDD = 10μA              |               | 1         | +25°C                | 0.7    | 2.8   | V     |
| Functional                     | F      | VDD = 2.8V, VIN = VD              | D or GND      | 7         | +25 <sup>o</sup> C   | VOH>   | VOL < | ٧     |
|                                |        | VDD = 20V, VIN = VDI              | O or GND      | 7         | +25 <sup>o</sup> C   | VDD/2  | VDD/2 |       |
|                                |        | VDD = 18V, VIN = VDI              | O or GND      | 8A        | +125 <sup>o</sup> C  |        |       |       |
|                                |        | VDD = 3V, VIN = VDD               | or GND        | 8B        | -55 <sup>0</sup> C   |        |       |       |
| Input Voltage Low<br>(Note 2)  | VIL    | VDD = 5V, VOH > 4.5\              | /, VOL < 0.5V | 1, 2, 3   | +25°C, +125°C, -55°C | -      | 1.5   | V     |
| Input Voltage High<br>(Note 2) | VIH    | VDD = 5V, VOH > 4.5\              | /, VOL < 0.5V | 1, 2, 3   | +25°C, +125°C, -55°C | 3.5    | -     | V     |
| Input Voltage Low<br>(Note 2)  | VIL    | VDD = 15V, VOH > 13<br>VOL < 1.5V | .5V,          | 1, 2, 3   | +25°C, +125°C, -55°C | 1      | 4     | V     |
| Input Voltage High (Note 2)    | VIH    | VDD = 15V, VOH > 13<br>VOL < 1.5V | .5V,          | 1, 2, 3   | +25°C, +125°C, -55°C | 11     | -     | V     |

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.



<sup>2.</sup> Go/No Go test with limits applied to inputs

For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                          |        |                            | GROUP A LIMITS |                            | LIMITS | IITS  |       |     |    |
|--------------------------|--------|----------------------------|----------------|----------------------------|--------|-------|-------|-----|----|
| PARAMETER                | SYMBOL | CONDITIONS (Note 1, 2)     | SUBGROUPS      | TEMPERATURE                | MIN    | MAX   | UNITS |     |    |
| Propagation Delay        | TPHL1  | VDD = 5V, VIN = VDD or GND | 9              | +25°C                      | -      | 650   | ns    |     |    |
| Clock to Decode Out      | TPLH1  |                            | 10, 11         | +125°C, -55°C              | -      | 878   | ns    |     |    |
| Propagation Delay        | TPHL2  |                            |                | VDD = 5V, VIN = VDD or GND | 9      | +25°C | -     | 600 | ns |
| Clock to Carry Out       | TPLH2  |                            | 10, 11         | +125°C, -55°C              | -      | 810   | ns    |     |    |
| Propagation Delay        | TPHL3  |                            | 9              | +25°C                      | -      | 530   | ns    |     |    |
| Reset to Out             | TPLH3  |                            | 10, 11         | +125°C, -55°C              | -      | 716   | ns    |     |    |
| Transition Time          | TTHL   | VDD = 5V, VIN = VDD or GND | 9              | +25 <sup>o</sup> C         | -      | 200   | ns    |     |    |
| TTLH                     |        |                            | 10, 11         | +125°C, -55°C              | -      | 270   | ns    |     |    |
| Maximum Clock Input Fre- | FCL    | VDD = 5V, VIN = VDD or GND | 9              | +25°C                      | 2.5    | -     | MHz   |     |    |
| quency                   |        |                            | 10, 11         | +125°C, -55°C              | 1.85   | -     | MHz   |     |    |

#### NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

|                         |        |                               |       |                          | LIN  | MITS  |       |
|-------------------------|--------|-------------------------------|-------|--------------------------|------|-------|-------|
| PARAMETER               | SYMBOL | CONDITIONS                    | NOTES | TEMPERATURE              | MIN  | MAX   | UNITS |
| Supply Current          | IDD    | VDD = 5V, VIN = VDD or GND    | 1, 2  | -55°C, +25°C             | -    | 5     | μΑ    |
|                         |        |                               |       | +125°C                   | -    | 150   | μΑ    |
|                         |        | VDD = 10V, VIN = VDD or GND   | 1, 2  | -55°C, +25°C             | -    | 10    | μΑ    |
|                         |        |                               |       | +125°C                   | -    | 300   | μΑ    |
|                         |        | VDD = 15V, VIN = VDD or GND   | 1, 2  | -55°C, +25°C             | -    | 10    | μΑ    |
|                         |        |                               |       | +125°C                   | -    | 600   | μΑ    |
| Output Voltage          | VOL    | VDD = 5V, No Load             | 1, 2  | +25°C, +125°C, -<br>55°C | -    | 50    | mV    |
| Output Voltage          | VOL    | VDD = 10V, No Load            | 1, 2  | +25°C, +125°C, -<br>55°C | -    | 50    | mV    |
| Output Voltage          | VOH    | VDD = 5V, No Load             | 1, 2  | +25°C, +125°C, -<br>55°C | 4.95 | -     | V     |
| Output Voltage          | VOH    | VDD = 10V, No Load            | 1, 2  | +25°C, +125°C, -<br>55°C | 9.95 | -     | V     |
| Output Current (Sink)   | IOL5   | VDD = 5V, VOUT = 0.4V         | 1, 2  | +125°C                   | 0.36 | -     | mA    |
|                         |        |                               |       | -55 <sup>o</sup> C       | 0.64 | -     | mA    |
| Output Current (Sink)   | IOL10  | VDD = 10V, VOUT = 0.5V        | 1, 2  | +125°C                   | 0.9  | -     | mA    |
|                         |        |                               |       | -55 <sup>o</sup> C       | 1.6  | -     | mA    |
| Output Current (Sink)   | IOL15  | VDD = 15V, VOUT = 1.5V        | 1, 2  | +125°C                   | 2.4  | -     | mA    |
|                         |        |                               |       | -55°C                    | 4.2  | -     | mA    |
| Output Current (Source) | IOH5A  | VDD = 5V, VOUT = 4.6V         | 1, 2  | +125°C                   | -    | -0.36 | mA    |
|                         |        |                               |       | -55°C                    | -    | -0.64 | mA    |
| Output Current (Source) | IOH5B  | VDD = 5V, VOUT = 2.5V         | 1, 2  | +125°C                   | -    | -1.15 | mA    |
|                         |        |                               |       | -55 <sup>0</sup> C       | -    | -2.0  | mA    |
| Output Current (Source) | IOH10  | VDD = 10V, VOUT = 9.5V        | 1, 2  | +125°C                   | -    | -0.9  | mA    |
|                         |        |                               |       | -55 <sup>0</sup> C       | -    | -1.6  | mA    |
| Output Current (Source) | IOH15  | VDD =15V, VOUT = 13.5V        | 1, 2  | +125°C                   | -    | -2.4  | mA    |
|                         |        |                               |       | -55 <sup>o</sup> C       | -    | -4.2  | mA    |
| Input Voltage Low       | VIL    | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2  | +25°C, +125°C, -<br>55°C | -    | 3     | V     |
| Input Voltage High      | VIH    | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2  | +25°C, +125°C, -<br>55°C | 7    | -     | V     |

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

|                              |        |            |         |             | LIN | IITS |       |
|------------------------------|--------|------------|---------|-------------|-----|------|-------|
| PARAMETER                    | SYMBOL | CONDITIONS | NOTES   | TEMPERATURE | MIN | MAX  | UNITS |
| Propagation Delay Clock      | TPHL1  | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 270  | ns    |
| to Decode Out                | TPLH1  | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 170  | ns    |
| Propagation Delay Clock      | TPHL2  | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 250  | ns    |
| to Carry Out                 | TPLH2  | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 160  | ns    |
| Propagation Delay Reset      | TPHL3  | VDD = 10V  | 1, 2, 3 | +25°C       | 1   | 230  | ns    |
| to out                       | TPLH3  | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 170  | ns    |
| Transition Time              | TTHL   | VDD = 10V  | 1, 2, 3 | +25°C       | 1   | 100  | ns    |
|                              | TTLH   | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 80   | ns    |
| Maximum Clock Input Fre-     | FCL    | VDD = 10V  | 1, 2, 3 | +25°C       | 5.0 | -    | MHz   |
| quency                       |        | VDD = 15V  | 1, 2, 3 | +25°C       | 5.5 | -    | MHz   |
| Minimum Setup Time           | TS     | VDD = 5V   | 1, 2, 3 | +25°C       | -   | 230  | ns    |
| Clock Inhibit to Clock       |        | VDD = 10V  | 1, 2, 3 | +25°C       | 1   | 100  | ns    |
| Setup                        |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 70   | ns    |
| Minimum Reset Pulse          | TW     | VDD = 5V   | 1, 2, 3 | +25°C       | -   | 260  | ns    |
| Width                        |        | VDD = 10V  | 1, 2, 3 | +25°C       | 1   | 110  | ns    |
|                              |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 60   | ns    |
| Minimum Clock Pulse<br>Width | TW     | VDD = 5V   | 1, 2, 3 | +25°C       | -   | 200  | ns    |
|                              |        | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 90   | ns    |
|                              |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 60   | ns    |
| Input Capacitance            | CIN    | Any Input  | 1, 2    | +25°C       | -   | 7.5  | pF    |

#### NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

|                              |              |                             | LIMITS     |             | LIMITS |                          |       |
|------------------------------|--------------|-----------------------------|------------|-------------|--------|--------------------------|-------|
| PARAMETER                    | SYMBOL       | CONDITIONS                  | NOTES      | TEMPERATURE | MIN    | MAX                      | UNITS |
| Supply Current               | IDD          | VDD = 20V, VIN = VDD or GND | 1, 4       | +25°C       | =      | 25                       | μΑ    |
| N Threshold Voltage          | VTN          | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -2.8   | -0.7                     | V     |
| N Threshold Voltage<br>Delta | ΔVTN         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -      | ±1                       | V     |
| P Threshold Voltage          | VTP          | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | 0.2    | 2.8                      | V     |
| P Threshold Voltage<br>Delta | ΔVΤΡ         | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | -      | ±1                       | V     |
| Functional                   | F            | VDD = 18V, VIN = VDD or GND | 1          | +25°C       | VOH >  | VOL <                    | V     |
|                              |              | VDD = 3V, VIN = VDD or GND  |            |             | VDD/2  | VDD/2                    |       |
| Propagation Delay Time       | TPHL<br>TPLH | VDD = 5V                    | 1, 2, 3, 4 | +25°C       | -      | 1.35 x<br>+25°C<br>Limit | ns    |

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns. 4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25<sup>O</sup>C

| PARAMETER               | SYMBOL | DELTA LIMIT              |
|-------------------------|--------|--------------------------|
| Supply Current - MSI-2  | IDD    | ± 1.0μA                  |
| Output Current (Sink)   | IOL5   | ± 20% x Pre-Test Reading |
| Output Current (Source) | IOH5A  | ± 20% x Pre-Test Reading |

**TABLE 6. APPLICABLE SUBGROUPS** 

| CONFORMANCE GROUP    |                  | MIL-STD-883<br>METHOD | GROUP A SUBGROUPS                     | READ AND RECORD              |
|----------------------|------------------|-----------------------|---------------------------------------|------------------------------|
| Initial Test (P      | Pre Burn-In)     | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test         | 1 (Post Burn-In) | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test         | 2 (Post Burn-In) | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note            | e 1)             | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Interim Test         | 3 (Post Burn-In) | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note            | e 1)             | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Final Test           |                  | 100% 5004             | 2, 3, 8A, 8B, 10, 11                  |                              |
| Group A              |                  | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11         |                              |
| Group B Subgroup B-5 |                  | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 |
| Subgroup B-6         |                  | Sample 5005           | 1, 7, 9                               |                              |
| Group D              |                  | Sample 5005           | 1, 2, 3, 8A, 8B, 9                    | Subgroups 1, 2 3             |

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

#### **TABLE 7. TOTAL DOSE IRRADIATION**

|                    | MIL-STD-883 | TEST PRE-IRRAD POST-IRRAD |         | READ AND  | RECORD     |
|--------------------|-------------|---------------------------|---------|-----------|------------|
| CONFORMANCE GROUPS | METHOD      |                           |         | PRE-IRRAD | POST-IRRAD |
| Group E Subgroup 2 | 5005        | 1, 7, 9                   | Table 4 | 1, 9      | Table 4    |

## TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

|                            |                  |           |                        |                | OSCIL | LATOR |
|----------------------------|------------------|-----------|------------------------|----------------|-------|-------|
| FUNCTION                   | OPEN             | GROUND    | UND VDD 9V $\pm$ -0.5V | 9V $\pm$ -0.5V | 50kHz | 25kHz |
| PART NUMBER (              | CD4017BMS AND CE | 04002B    |                        |                |       |       |
| Static Burn-In 1<br>Note 1 | 1 - 7, 9 - 12    | 8, 13, 15 | 14, 16                 | -              | -     | -     |
| Static Burn-In 2<br>Note 1 | 1 - 7, 9 - 12    | 8, 14     | 13, 15, 16             | -              | -     | -     |
| Dynamic Burn-<br>In Note 1 | -                | 8, 13, 15 | 16                     | 1 - 7, 9 - 12  | 14    | -     |
| Irradiation<br>Note 2      | 1 - 7, 9 - 12    | 8         | 13 - 16                | -              | -     | -     |

#### NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K  $\pm$  5%, VDD = 18V  $\pm$  0.5V
- 2. Each pin except VDD and GND will have a series resistor of  $47K \pm 5\%$ ; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD =  $10V \pm 0.5V$



## Logic Diagram



<sup>\*</sup> All Inputs Protected by CMOS Protection Network

FIGURE 1. CD4017BMS

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see <a href="https://www.intersil.com/en/products.html">www.intersil.com/en/products.html</a>

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at <a href="https://www.intersil.com/en/support/qualandreliability.html">www.intersil.com/en/support/qualandreliability.html</a>

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see <a href="https://www.intersil.com">www.intersil.com</a>



# Logic Diagram (Continued)



FIGURE 2. CD4022BMS

# Timing Diagram



# **Typical Performance Characteristics**



FIGURE 5. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 7. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS



FIGURE 9. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE



FIGURE 6. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 8. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS



FIGURE 10. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (CLOCK TO DECODE OUTPUT)

## Typical Performance Characteristics (Continued)



FIGURE 11. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (CLOCK TO CARRY OUT)



FIGURE 12. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF CLOCK INPUT FREQUENCY



Delays Measured Between 50% levels on All Waveforms

FIGURE 13. PROPAGATION DELAY, SETUP, AND RESET REMOVAL TIME WAVEFORMS



FIGURE 14. DIVIDE BY N COUNTER (N  $\leq$  10) WITH N DECODED OUTPUTS



FIGURE 15. CASCADING THE CD4017BMS

When the N<sup>th</sup> decoded output is reached (N<sup>th</sup> clock pulse) the S-R flip-flop (constructed from two NOR gates of the CD4001B) generates a reset pulse which clears the CD4017BMS or CD4022BMS to its zero count. At this time, if the N<sup>th</sup> decoded output is greater than or equal to 6 in the CD4017BMS or 5 in the CD4022BMS, the C<sub>OUT</sub> line goes high to clock the next CD4017BMS or CD4022BMS counter section. The "0" decoded

output also goes high at this time. Coincidence of the clock low and decoded "0" output low resets the S-R flip-flop to enable the CD4017BMS or CD4022BMS. If the N $^{th}$  decoded output is less than 6 (CD4017BMS) or 5 (CD4022BMS), the C $_{OUT}$  line will not go high and, therefore, cannot be used. In this case "0" decoded output may be used to perform the clocking function for the next counter.



# Chip Dimensions and Pad Layouts



CD4017BMSH



Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( $10^{-3}$  inch)

#### CD4022BMSH

**METALLIZATION:** Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN

DIE THICKNESS: 0.0198 inches - 0.0218

