LiRM 2010-2011 Examen final

Solucions comentades dels problemes de l'examen final

3. Considera la successió $\{a_n\}_{n\in\mathbb{N}}$ que es defineix de la següent forma recursiva:

$$a_0 \coloneqq 0$$
, $a_1 \coloneqq 1$, i, per $n \geqslant 2$, $a_n \coloneqq a_{n-1} + a_{n-2}$.

Demostra per inducció que per tot $n \ge 3$, a_n i a_{n+1} són primers entre si.

Observa que aquest exercici és el primer apartat de l'exercici 19 (de la llista 2), fet a la pissarra a classe de problemes. La successió és l'anomenada «sucessió de FIBONACCI». Si en calcules els primers termes, obtindràs 0,1,1,2,3,5,8,13,21,34,...

Recorda que dos nombres naturals a i b són primers entre si quan no tenen cap divisor comú diferent de 1; és a dir, quan no existeixen nombres naturals m, c, d tals que $m \ge 2$, $a = m \cdot c$ i $b = m \cdot d$ (i observa que c i d poden ser naturals qualssevol, inclòs el 0).

- Pas inicial (n = 3): És tracta de comprovar que a_3 i a_4 són primers entre sí. És a dir, hem de comprovar que 2 i 3 són primers entre sí. I això és clarament cert perquè el nombre 1 és l'únic divisor comú de 2 i 3.
- Pas d'inducció: Hem de demostrar que si l'afirmació és certa per $n = k \ge 3$ aleshores també és certa per n = k + 1. És a dir, hem de veure que si a_k i a_{k+1} són primers entre si, aleshores a_{k+1} i a_{k+2} són primers entre si. Raonarem per contrarecíproc, i demostrarem que si a_{k+1} i a_{k+2} no són primers entre si, aleshores a_k i a_{k+1} tampoc no són primers entre si.

Suposem que a_{k+1} i a_{k+2} no són primers entre si. Aleshores, per definició, existeixen nombres naturals m, c, d tals que $m \ge 2$, $a_{k+1} = m \cdot c$ i $a_{k+2} = m \cdot d$. Aprofitant que sabem (per la definició de la successió a l'enunciat) que $a_k = a_{k+2} - a_{k+1}$, resulta que $a_k = m \cdot d - m \cdot c = m \cdot (d - c)$. Així doncs, $m \ge 2$ i és un divisor comú de a_k i de a_{k+1} . Per tant, a_k i a_{k+1} no són primers entre sí.

4. Considera els següents conjunts:

$$A = \left\{ x \in \mathbb{N} : \exists y \in \mathbb{Z} (y^2 < 25 \land x < y) \right\}$$

$$B = \left\{ x \in \mathbb{Z} : |x| < 5 \land \forall y \in \mathbb{Z} (y > 2 \rightarrow |x| < y) \right\}$$

Dóna per extensió els conjunts A, B i $A \setminus B$.

- Com que $y \in \mathbb{Z}$, $y^2 < 25$ equival a |y| < 5, és a dir, $y \in \{-4, -3, ..., 3, 4\}$. Segons l'enunciat, $x \in A$ si i només si x és *natural* i x < y per a *algun* y dels anteriors. Això ho compleixen x = 0, 1, 2, 3 (tots compleixen x < 4 i amb això n'hi ha prou) i cap més: no hi ha naturals negatius, i els x més grans que 3 no complirien x < y per *cap* d'aquests y. Per tant, $A = \{0, 1, 2, 3\}$.
- Per la primera condició veiem que els possibles $x \in B$ són els *enters* amb |x| < 5, o sigui $x \in \{-4, -3, ..., 3, 4\}$. D'entre aquests cal triar els que compleixen la segona condició: |x| < y per a *tots* els enters y > 2, és a dir, han de compir *alhora* les condicions |x| < 3, |x| < 4, |x| < 5, etc. Evidentment, n'hi ha prou exigint que |x| < 3. Per tant obtenim un conjunt més petit: $B = \{-2, -1, 0, 1, 2\}$.
- Per definició $A \setminus B = \{x \in A : x \notin B\} = \{3\}.$

Observació: En moltes respostes a aquest problema s'ha observat precipitació a l'hora de tractar les desigualtats, i confondre < amb \le . Recorda que 4 < 4 és fals, per exemple. Una altra errada ha estat fer servir *intervals*, per exemple de la forma (-2,2), que són conjunts de nombres *reals*!

LiRM 2010-2011 Examen final

5. Demostra que $(A \times B) \cup ((B \setminus A) \times B) = (A \cup B) \times B$, on A i B són dos conjunts qualssevol.

Cal demostrar les dues inclusions:

• $(A \times B) \cup ((B \setminus A) \times B) \subseteq (A \cup B) \times B$:

Sigui $(x,y) \in (A \times B) \cup ((B \setminus A) \times B)$. Per la definició d'unió cal distingir dos casos:

- Si $(x,y) \in A \times B$, aleshores $x \in A$ i $y \in B$. Per tant, com que $x \in A$ implica $x \in A \cup B$, i $y \in B$, tenim que $(x,y) \in (A \cup B) \times B$.
- Si $(x,y) \in ((B \setminus A) \times B)$, aleshores $x \in B \setminus A$ i $y \in B$. Per tant $x \in B$ i $x \notin A$ i $y \in B$. Donat que $x \in B$ implica $x \in A \cup B$ i $y \in B$, tenim $(x,y) \in (A \cup B) \times B$.

En els dos casos hem vist que $(x,y) \in (A \cup B) \times B$, per tant es compleix la inclusió.

• $(A \cup B) \times B \subseteq (A \times B) \cup ((B \setminus A) \times B)$:

Sigui $(x, y) \in (A \cup B) \times B$. Aleshores $x \in A \cup B$ i $y \in B$. Hem de considerar dos casos:

- + Si $x \in A$, aleshores $(x,y) \in A \times B$. Per tant $(x,y) \in (A \times B) \cup ((B \setminus A) \times B)$.
- + Si $x \in B$, aleshores pot ocórrer que $x \in A$ o be $x \notin A$. Si $x \in A$ estem en el cas anterior, i ja està fet. Si $x \notin A$, aleshores $x \in B \setminus A$ y com que $y \in B$, tenim que $(x,y) \in (B \setminus A) \times B$. Per tant $(x,y) \in (A \times B) \cup ((B \setminus A) \times B)$.

En els dos casos hem vist que $(x,y) \in (A \cup B) \times B$, per tant la inclusió es compleix.

Observacions:

- ★ Els elements de $A \times B$ són parells ordenats (x, y); posar $x, y \in A \times B$ no sols és incorrecte sinó que pot induir a errors.
- ★ En el segon cas marcat amb + de la segona inclusió, que $x \in B$ no implica automàticament que $x \notin A$, ja que A i B són arbitraris, i enlloc ens diuen que podem suposar que $A \cap B = \emptyset$.
- ★ La separació per casos marcada amb + també es pot fer considerant directament si $x \in A$ i si $x \notin A$; en aquest segon cas, com que la hipòtesi és que $x \in A \cup B$, ha de ser $x \in B$, d'on $x \in B \setminus A$, i es segueix igual.
- **6.** Sigui \sim la relació en \mathbb{R} definida a continuació:

Per tot
$$a, b \in \mathbb{R}$$
, $a \sim b$ si, i només si $a = b$ o $(|a| - 2) \cdot (|b| - 2) > 0$.

(*Observa* que la condició sobre el producte equival a dir que |a| - 2 i |b| - 2 són no nuls i tenen el mateix signe, positiu o negatiu.)

(a) Demostra que \sim és una relació d'equivalència.

Reflexiva: Per la pròpia definició, si a = b aleshores $a \sim b$. És a dir, $a \sim a$ per tot $a \in \mathbb{R}$.

Simètrica: Si per $a, b \in \mathbb{R}$ arbitraris es compleix $a \sim b$, aleshores per la simetria de la relació d'igualtat i la commutativitat del producte en \mathbb{R} es compleix també que $b \sim a$.

Transitiva: Suposem que $a \sim b$ i $b \sim c$ per a $a,b,c \in \mathbb{R}$ qualssevol. Si a = b o b = c, substituint trobem que $a \sim c$. Resta el cas on $(|a|-2)\cdot(|b|-2)>0$ i $(|b|-2)\cdot(|c|-2)>0$. És a dir, que |a|-2 i |b|-2 són no nuls i tenen el mateix signe, i que |b|-2 i |c|-2 són no nuls i tenen el mateix signe. Per tant, |a|-2 i |c|-2 són no nuls i tenen el mateix signe. Això implica que $a \sim c$.

- (b) Troba $\overline{2}$ i $\overline{-3}$.
 - $\overline{2} = \{a \in \mathbb{R} : a \sim 2\} = \{a \in \mathbb{R} : a = 2 \text{ o } (|a| 2) \cdot (|2| 2) > 0\}$. Però |2| 2 = 2 2 = 0, per tant la segona condició no es compleix mai, i només queda a = 2. Per tant, $\overline{2} = \{2\}$.

LiRM 2010–2011 Examen final

• $\overline{-3} = \{a \in \mathbb{R} : a \sim -3\} = \{a \in \mathbb{R} : a = -3 \text{ o } (|a|-2) \cdot (|-3|-2) > 0\}$. Com que |-3|-2=3-2=1>0, la segona condició equival a dir que |a|-2>0, és a dir |a|>2, o bé $a \in (-\infty, -2) \cup (2, \infty)$. Observem que $-3 \in (-\infty, -2)$. Per tant, $\overline{-3} = (-\infty, -2) \cup (2, \infty)$.

(c) Dóna el conjunt quocient de la relació \sim .

Dos punts diferents estan relacionats per \sim si i només si en calcular |x|-2 per a cadascun d'ells, donen el mateix signe, i no són 0. Aquest signe només pot ser, doncs, positiu, o negatiu. Per tant, només hi ha dues classes que incloguin elements diferents. Com hem vist al càlcul de l'apartat anterior, $(-\infty, -2) \cup (2, +\infty)$ correspon als casos de signe positiu. Per al signe negatiu resulta que |x|-2<0 si i només si x pertany a l'interval (-2,2), per tant aquest interval és una altra classe d'equivalència. Finalment queden els punts "aïllats", que no estan relacionats amb ningú més: Ja hem vist que 2 ho és, i només queda un punt de la recta per analitzar: -2. Com que |-2|-2=2-2=0, no pot complir la segona part de la definició amb cap altre punt, per tant només està relacionat amb si mateix.

En conclusió, doncs, el conjunt quocient de la relació \sim està format per les 4 classes d'equivalència següents: $\{2\}$, $\{-2\}$, $(-\infty, -2) \cup (2, +\infty)$ i (-2, 2).

Si ho volem escriure més formalment, podem posar

$$\mathbb{R}/\!\sim = \big\{\left.\left\{2\right\}, \left\{-2\right\}, \left(-\infty, -2\right) \cup \left(2, +\infty\right), \left(-2, 2\right)\right.\big\}.$$

Observacions:

- * Les propietats reflexiva, simètrica i transitiva contenen un "per tot a", "per tots a, b" i "per tots a, b, c" respectivament. Això cal posar-ho si es posa l'enunciat de la propietat. I les demostracions han de ser generals, no poden consistir en comprovar un exemple.
- * Es segueix produint l'error incomprensible d'enunciar la propietat simètrica com una "i" ($a \sim b$ i $b \sim a$), en comptes d'una implicació (si $a \sim b$ aleshores $b \sim a$).