01.04 rootfinding: newtons method

aka newton-raphson. newtons is a variant of FPI.

to find root of f(x)=0, start with guess x_0 . draw tangent line at $f(x_0)$. ie, where $f'(x_0)$ intersects x-axis is the next iteration x_1 . ie,

$$tan heta = rac{f(x_0)}{x_0 - x_1} = f'(x_0) \Rightarrow x_1 = x_0 - rac{f(x_0)}{f'(x_0)}.$$

code, visual: newtons

```
1  # requires prior execution of fpi_expanded()
2  # repurposed bisection animation for newtons method
3
4  if __name__ == "__main__": --
187
```

1 ani

newtons method

$$x_{i+1} = x_i - rac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, 2, 3, \ldots$$
 $= g(x_i), \quad g(x) = x - rac{f(x)}{f'(x)}.$

function
$$g(x)$$

return $x - f(x)/df(x)$
function $fpi(g,x0,epsilon,imax)$

✓ example 11

solve $f(x) = x^3 + x - 1$ using newtons.

$$f'(x)=3x^2+1$$
 $\Rightarrow x_{i+1}=x_i-rac{x_i^3+x_i-1}{3x_i^2+1}$
 $=rac{2x_i^3+1}{3x_i^2+1}, \quad ext{which looks strangely familiar...}$
 $\psi \quad x_0=-0.7$
 $x_1=rac{2(-0.7)^3+1}{3(-0.7)^2+1}pprox 0.1271$
 $x_2=rac{2x_1^3+1}{3x_i^2+1}pprox 0.9577.$

```
1 # example 11 revisits example 01 # repurposed previous code
2
3 if __name__ == "__main__":
```

example 11 ~ example 01 w newtons. x0 = -0.7.

x[i]	e[i]	"/e[i-1]^2
-0.70000000	1.38232780	
0.12712551	0.55520230	0.29055555
0.95767812	0.27535032	0.89327066
0.73482779	0.05249999	0.69244945
0.68459177	0.00226397	0.82139415
0.68233217	0.00000437	0.85266556
0.68232780	0.00000000	0.85407850
	-0.70000000 0.12712551 0.95767812 0.73482779 0.68459177 0.68233217	-0.70000000 1.38232780 0.12712551 0.55520230 0.95767812 0.27535032 0.73482779 0.05249999 0.68459177 0.00226397 0.68233217 0.00000437

1 ani

₹

- KK K - II - H H +

```
1 if __name__ == "__main__":
2
3    f = lambda x : pow(x,3) + x - 1
4    df = lambda x : 3*pow(x,2) + 1
5
6    g = lambda x : x - f(x)/df(x) # newtons method
7
8    ws = fpi_expanded(g,x=-0.7,tol=le-4,worksheet=True)
9    iterations,root = ws[len(ws)-1]
10    print(f"root {root} at {iterations} iterations.")
```

root 0.6823321742044841 at 5 iterations.

1 quadratic convergence

definition 10

let e_i denote error after step i of iterative method. iteration is **quadratically convergent** if

$$M=\lim_{i o\infty}rac{e_{i+1}}{e_i^2}<\infty.$$

✓ theorem 11

let f be twice continuously differentiable and f(r)=0. If $f'(r)\neq 0$, then newtons is locally and quadratically convergent to r. error e_i at step i satisfies

$$\lim_{i o\infty}rac{e_{i+1}}{e_i^2}=M,\quad ext{where }M=rac{f''(r)}{2f'(r)}.$$

- ✓ proof
 - 1. local convergence

note that newtons method is a particular form of FPI where

$$g(x) = x - rac{f(x)}{f'(x)},$$
 $g'(x) = 1 - rac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = rac{f(x)f''(x)}{f'(x)^2}.$

g'(r)=0 so locally convergent by theorem 06. \checkmark

2. quadratic convergence

derive newtons method with taylors formula. at i steps,

$$f(r) = f(x_i) + (r - x_i)f'(x_i) + \frac{(r - x_i)^2}{2}f''(c_i)$$
 $\Downarrow c_i ext{ between } x_i, r$
 $0 = f(x_i) + (r - x_i)f'(x_i) + \frac{(r - x_i)^2}{2}f''(c_i)$
 \Downarrow
 $-\frac{f(x_i)}{f'(x_i)} = r - x_i + \frac{(r - x_i)^2}{2}\frac{f''(c_i)}{f'(x_i)}, \quad f'(x_i) \neq 0$
 \Downarrow
 $x_i - \frac{f(x_i)}{f'(x_i)} - r = \frac{(r - x_i)^2}{2}\frac{f''(c_i)}{f'(x_i)}$
 $\Downarrow e_i = |x_i - r|$
 $x_{i+1} - r = e_i^2 \frac{f''(c_i)}{f'(x_i)}$
 \Downarrow
 $e_{i+1} = e_i^2 \frac{f''(c_i)}{f'(x_i)}$

bc c_i is between x_i, r , it converges to r as x_i converges to r and

$$\lim_{i o\infty}rac{e_{i+1}}{e_i^2}=\left|rac{f''(r)}{2f'(r)}
ight|,$$

which is the definition of quadratic convergence. \checkmark

$$e_{i+1}pprox Me_i^2, \quad M=\left|rac{f''(r)}{2f'(r)}
ight|, \ \ f'(r)
eq 0.$$

compare with linearly convergent methods with $e_{i+1} \approx Se_i$, where S = |g'(r)| for FPI and $S = \frac{1}{2}$ for bisection. while S is critical for linearly convergent methods, M is less critical bc of the division by the square of the previous error.

example 11, revisited

f'''(x)=6x and at $x_cpprox 0.6823$, Mpprox 0.85 which agrees with error ratio of displayed with iteration.

example 6, revisited

let a be positive and consider roots of $f(x)=x^2-a$ using newtons method.

$$egin{aligned} x_{i+1} &= x_i - rac{f(x_i)}{f'(x_i)} = x_i - rac{x_i^2 - a}{2x_i} \ &= rac{x_i^2 + a}{2x_i} = rac{x_i + rac{a}{x_i}}{2}. \quad \checkmark \quad ext{babylonia!} \end{aligned}$$

wrt convergence,

$$f'(\sqrt{a}) = 2\sqrt{a}, \ f''(\sqrt{a}) = 2$$

 $\Downarrow \quad ext{quadratically convergent bc } f'(\sqrt{a}) = 2\sqrt{a}
eq 0$

$$e_{i+}pprox Me_i^2, \quad M=rac{f''(r)}{2f'(r)}=rac{2}{2\cdot 2\sqrt{a}}=rac{1}{2\sqrt{a}}.$$

2 linear convergence

✓ example 12

find root of $f(x) = x^2$ using newtons method.

obviously r=0, but

$$egin{aligned} x_{i+1} &= x_i - rac{f(x_i)}{f'(x_i)} \ &= x_i - rac{x_i^2}{2x_i} \ &= rac{x_i}{2}. \end{aligned}$$

which gets you linear converge of $S=\frac{1}{2}. \quad \downarrow \text{see?}$

✓ code, example 12

```
1  # example 12 # mod example 11
2
3  if __name__ == "__main__":...
53
```

example 12. $\times 0 = 1$.

i	x[i]	e[i]	"/e[i-1]
000 001 002 003 004	1.00000000 0.50000000 0.25000000 0.12500000 0.06250000 0.03125000	1.00000000 0.50000000 0.25000000 0.12500000 0.06250000 0.03125000	0.50000000 0.50000000 0.50000000 0.50000000 0.50000000
022 023 024 025 026	0.00000024 0.00000012 0.00000006 0.00000003 0.00000001	0.00000024 0.00000012 0.00000006 0.00000003 0.00000001	 0.50000000 0.50000000 0.50000000 0.50000000

example 13

find root of $f(x)=x^{m}$ using newtons method.

again, only roor r=0 and

▼ theorem 12

assume (m+1)-times continuously differentiable function f on [a,b] has multiplicity m root at r. then newtons is locally convergent to r and error e_i at step i satisfies

$$\lim_{i o\infty}rac{e_{i+1}}{e_i}=S,\quad S=rac{m-1}{m}.$$

✓ example 14

find multiplicity of root r=0 of $f(x)=\sin x+x^2\cos x-x^2-x$ and estimate iterations required using newtons method with convergence of six decimal places beginning with $x_0=1$.

$$x_0=1 \quad \Rightarrow \quad e_0=1$$
 $\downarrow \downarrow$
 $\left(\frac{2}{3}\right)^n < 0.5 imes 10^{-6}$
 $\downarrow \downarrow$
 $n> rac{log_{10}(0.5)-6}{log_{10}(rac{2}{3})} pprox 35.78 \quad o \quad 36 ext{ iterations.}$

✓ code, example 14

```
1  # example 14 # mod example 12
2
3  if __name__ == "__main__": ...
3
```

example 14. x0 = 1.

i	x[i]	e[i]	"/e[i-1]
000 001 002 003 004	1.00000000 0.72159024 0.52137095 0.37530831 0.26836349 0.19026161	1.00000000 0.72159024 0.52137095 0.37530831 0.26836349 0.19026161	0.72159024 0.72159024 0.72253049 0.71984890 0.71504809 0.70896981
031 032 033 034 035	0.00000622 0.00000414 0.00000276 0.00000184 0.00000123	0.00000622 0.00000414 0.00000276 0.00000184 0.00000123	 0.66667262 0.66666644 0.66665531 0.66668266 0.66667984

▼ theorem 13

if (m+1)-times continuously differentiable function f on [a,b] has multiplicity m>1 root at r, then **modified** newtons method

$$x_{i+1} = x_i - \frac{m\,f(x_i)}{f'(x_i)}$$

converges locally and quadratically to r.

ie, if multiplicity known, newtons can be improved.

- example 14, revisited
- code, example 14, revisited

```
1 # example 14 with modified newtons
2
3 if __name__ == "__main__":
4
```

example 14. x0 = 1.

and then the conflict with machine precision wins bc its the machine. another reminder to mind the machine.

ie, backwards error is driven near $\epsilon_{
m mach}$ but forward error x_i is several orders of magnitude larger.

3 more fail

example 15

apply newtons method to $f(x)=4x^4-6x^2-\frac{11}{4}$ with $x_0=\frac{1}{2}$.

the function has roots bc it is continuous and negative at x=0 and goes to $+\infty$ for large positive and negative x.

$$x_{i+1} = x_i - rac{4x_i^4 - 6x_i^2 - rac{11}{4}}{16x_i^3 - 12x_i}.$$

however, $x_1=-rac{1}{2} \;\; \mapsto \;\; x_2=-rac{1}{2} \;\; \mapsto \;\; {
m lol}.$

code, example 15

thats worth some code.

```
3 if __name__ == "__main__":
4
```

₹

example 15 \sim newton fails. $\times 0 = 0.5$.

i	x[i]	e[i]	"/e[i-1]^2
000	0.50000000	0.86676040	
001	-0.50000000	1.86676040	2.48479439
002	0.50000000	0.86676040	0.24872641
003	-0.50000000	1.86676040	2.48479439
004	0.50000000	0.86676040	0.24872641
005	-0.50000000	1.86676040	2.48479439

1 ani

in addition to examples 14 and 15, if $f'(x_i)=0$. also, iterations unto infinity or mimicry of an rng. however, theorems 11 and 12 guarantee a neighborhood of initial guesses surrounding each root for which convergence to that root is assured.

resources

✓ code, fpi, from lecture 01_02

```
1 # algorithm, expanded for lecture 01_02
2
3 def fpi_expanded(g,x,tol=le-8,max_iter=100,worksheet=False):
4
```