Regression metrics: (R)MSE, R-squared, MAE

Plan for the video

1) Regression

- MSE, RMSE, R-squared
- MAE
- (R)MSPE, MAPE
- (R)MSLE

2) Classification:

- Accuracy, LogLoss, AUC
- Cohen's (Quadratic weighted) Kappa

Plan for the video

1) Regression

- MSE, RMSE, R-squared
- MAE
- (R)MSPE, MAPE
- (R)MSLE

2) Classification:

- Accuracy, LogLoss, AUC
- Cohen's (Quadratic weighted) Kappa

Notation

- N number of objects
- $y \in \mathbb{R}^N$ target values $\hat{y} \in \mathbb{R}^N$ predictions
- $\hat{y}_i \in \mathbb{R}$ prediction for i-th object $y_i \in \mathbb{R}$ target for i-th object

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

X	Y
•••	5
•••	9
•••	8
•••	6
•••	27

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

X	Y
•••	5
•••	9
•••	8
•••	6
•••	27

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

X	Υ
•••	5
•••	9
•••	8
•••	6
•••	27

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

X	Y
•••	5
•••	9
•••	8
•••	6
•••	27

MSE: optimal constant

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \alpha)^2$$

Best constant: ?

X	Y
•••	5
•••	9
•••	8
•••	6
•••	27

MSE: optimal constant

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \alpha)^2$$

Best constant: target mean

X	Y
•••	5
•••	9
•••	8
•••	6
•••	27

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Root mean square error

• RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{\text{MSE}}$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Root mean square error

• RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{\text{MSE}}$$

• $MSE(a) > MSE(b) \iff RMSE(a) > RMSE(b)$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Root mean square error

• RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{\text{MSE}}$$

• $MSE(a) > MSE(b) \iff RMSE(a) > RMSE(b)$

•
$$\frac{\partial \text{RMSE}}{\partial \hat{y}_i} = \frac{1}{2\sqrt{MSE}} \frac{\partial \text{MSE}}{\partial \hat{y}_i}$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

R-squared:

$$R^{2} = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = 1 - \frac{MSE}{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

MAE: Mean Absolute Error

AE: Mean Absolute
$$\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

X	Y
-1	5
1	9
-2	8
3	6
3	27

MAE: optimal constant

MAE: derivatives

MAE vs MSE

- Do you have outliers in the data?
 - Use MAE
- Are you sure they are outliers?
 - Use MAE
- Or they are just unexpected values we should still care about?
 - Use MSE

Conclusion

- Discussed the following metrics:
 - MSE, RMSE, R-squared
 - They are the same from optimization perspective
 - MAE
 - Robust to outliers