Algoritmi e Strutture Dati

Algoritmi greedy

Alberto Montresor

Università di Trento

2020/03/25

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Greed is good

The point is, ladies and gentleman, that greed, for lack of a better word, is good. Greed is right, greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit. Greed, in all of its forms; greed for life, for money, for love, for knowledge has marked the upward surge of mankind. And greed, you mark my words, will not only save Teldar Paper, but that other malfunctioning corporation called the USA. Thank you very much.

Gordon Gekko, Wall Street

Sommario

- Introduzione
- 2 Insieme indipendente di intervalli
- 3 Resto
- 4 Scheduling
- Zaino frazionario
- 6 Compressione di Huffman
- 7 Alberi di copertura di peso minimo

Introduzione

Problemi di ottimizzazione

 Gli algoritmi per problemi di ottimizzazione eseguono una sequenza di decisioni

Programmazione dinamica

- In maniera bottom-up, valuta tutte le decisioni possibili
- Evitando però di ripetere sotto-problemi (decisioni) già percorse

Algoritmi greedy (ingordi, golosi)

- Seleziona una sola delle possibile decisioni...
- ... quella che sembra ottima (ovvero, è localmente ottima)
- È però necessario dimostare che si ottiene un ottimo globale

Quando applicare la tecnica greedy?

Se è possibile dimostrare che esiste una scelta ingorda

"Fra le molte scelte possibili, ne può essere facilmente individuata una che porta sicuramente alla soluzione ottima."

Se il problema ha sottostruttura ottima

"Fatta tale scelta, resta un sottoproblema con la stessa struttura del problema principale."

Note

- Non tutti i problemi hanno una scelta ingorda
- In alcuni casi, soluzioni non ottime possono essere comunque interessanti

Insieme indipendente massimale di intervalli

Input

Sia $S = \{1, 2, ..., n\}$ un insieme di intervalli della retta reale. Ogni intervallo $[a_i, b_i[$, con $i \in S$, è chiuso a sinistra e aperto a destra.

- a_i : tempo di inizio
- b_i : tempo di fine

Definizione del problema

Un insieme indipendente massimale è un sottoinsieme di massima cardinalità formato da intervalli tutti disgiunti tra loro.

i	a_i	b_i
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

Confronta con Insieme indipendente di intervalli pesati

Come affrontare il problema

Iniziamo con programmazione dinamica

- Individuiamo una sottostruttura ottima
- Scriviamo una definizione ricorsiva per la dimensione della soluzione ottima
- Scriviamo una versione iterativa bottom-up dell'algoritmo

Passiamo poi alla tecnica greedy

- Cerchiamo una possibile scelta ingorda
- Dimostriamo che la scelta ingorda porta alla soluzione ottima
- Scriviamo un algoritmo ricorsivo o iterativo che effettua sempre la scelta ingorda

Sottostruttura ottima

• Si assuma che gli intervalli siano ordinati per tempo di fine:

$$b_1 \leq b_2 \leq \ldots \leq b_n$$

• Definiamo il sottoproblema S[i...j] come l'insieme di intervalli che iniziano dopo la fine di i e finiscono prima dell'inizio di j:

$$S[i...j] = \{k | b_i \le a_k < b_k \le a_j\}$$

- Aggiungiamo due intervalli fittizi:
 - Intervallo 0: $b_0 = -\infty$
 - Intervallo n+1: $a_{n+1}=+\infty$
- Il problema iniziale corrisponde al problema S[0, n+1]

Sottostruttura ottima

Teorema

Supponiamo che A[i...j] sia una soluzione ottimale di S[i...j] e sia k un intervallo che appartiene a A[i...j]; allora

- ullet Il problema S[i...j] viene suddiviso in due sottoproblemi
 - S[i...k]: gli intervalli di S[i...j] che finiscono prima di k
 - $S[k \dots j]$: gli intervalli di $S[i \dots j]$ che iniziano dopo di k
- $A[i \dots j]$ contiene le soluzioni ottimali di $S[i \dots k]$ e $S[k \dots j]$
 - $A[i...j] \cap S[i...k]$ è la soluzione ottimale di S[i...k]
 - $A[i...j] \cap S[k...j]$ è la soluzione ottimale di S[k...j]

Dimostrazione

Utilizzando il metodo cut-and-paste

Definizione ricorsiva del costo della soluzione

Definizione ricorsiva della soluzione

$$A[i ... j] = A[i ... k] \cup \{k\} \cup A[k ... j]$$

Definizione ricorsiva del suo costo

- ullet Come determinare k? Analizzando tutte le possibilità
- Sia DP[i][j] la dimensione del più grande sottoinsieme $A[i...j] \subseteq S[i...j]$ di intervalli indipendenti

$$DP[i][j] = \begin{cases} 0 & S[i \dots j] = \emptyset \\ \max_{k \in S[i \dots j]} \{DP[i][k] + DP[k][j] + 1\} & \text{altrimenti} \end{cases}$$

Verso una soluzione ingorda

Programmazione dinamica

- La definizione precedente ci permette di scrivere un algoritmo basato su programmazione dinamica o su memoization
- Complessità $O(n^3)$: bisogna risolvere tutti i problemi con i < j, con costo O(n) per sottoproblema nel caso peggiore

Possiamo fare di meglio?

- Abbiamo visto una soluzione $O(n \log n)$ nel caso di intervalli pesati
- È possibile utilizzare quella soluzione con pesi pari a 1
- Questa soluzione è peggiore, ma...
- \bullet Siamo sicuri che sia necessario analizzare tutti i possibili valori k?

Scelta ingorda (Greedy Choice)

Teorema

Sia S[i...j] un sottoproblema non vuoto, e m l'intervallo di S[i...j] con il minor tempo di fine, allora:

- lacksquare il sottoproblema $S[i \dots m]$ è vuoto
- ${\color{red} 2} \hspace{0.1cm} m$ è compreso in qualche soluzione ottima di $S[i \ldots j]$

Dimostrazione 1

Sappiamo che: $a_m < b_m$ (Definizione di intervallo)

Sappiamo che: $\forall k \in S[i...j] : b_m \leq b_k$ (m ha minor tempo di fine)

Ne consegue: $\forall k \in S[i...j] : a_m < b_k$ (Transitività)

Se nessun intervallo in S[i...j] termina prima di a_m , allora $S[i...m] = \emptyset$

Scelta ingorda (Greedy Choice)

Teorema

Sia S[i...j] un sottoproblema non vuoto, e m l'intervallo di S[i...j] con il minor tempo di fine, allora:

- lacktriangledown il sottoproblema $S[i \dots m]$ è vuoto
- ${\color{red} 2} \ m$ è compreso in qualche soluzione ottima di $S[i \ldots j]$

Dimostrazione 2

- Sia A'[i...j] una soluzione ottima di S[i...j]
- Sia m' l'intervallo con minor tempo di fine in A'[i...j]
- Sia $A[i...j] = A'[i...j] \{m'\} \cup \{m\}$ una nuova soluzione ottenuta togliendo m' e aggiungendo m ad A'[i...j]
- A[i...j] è una soluzione ottima che contiene m, in quanto ha la stessa dimensione di A'[i...j] e gli intervalli sono indipendenti.

Conseguenze

- \bullet Non è più necessario analizzare tutti i possibili valori di k:
 - \bullet Faccio una scelta "ingorda", ma sicura: seleziono l'attività m con il minor tempo di fine
- Non è più necessario analizzare due sottoproblemi:
 - Elimino tutte le attività che non sono compatibili con la scelta ingorda
 - Mi resta solo un sottoproblema da risolvere: $S[m \dots j]$

Algoritmo

```
SET independentSet(int[] a, int[] b)
\{ \text{ ordina } a \in b \text{ in modo che } b[1] \leq b[2] \leq \cdots \leq b[n] \}
Set S = Set()
S.insert(1)
int last = 1
                                                                         Ultimo intervallo inserito
for i = 2 to n do
    if a[i] \geq b[last] then
                                                                        % Controllo indipendenza
        S.\mathsf{insert}(i) last = i
return S
```

Complessità: $O(n \log n)$ se input non è ordinato O(n) se l'input è già ordinato.

Approccio a partire da Programmazione Dinamica

- Abbiamo cercato di risolvere il problema della selezione delle attività tramite programmazione dinamica:
 - Abbiamo individuato una sottostruttura ottima
 - Abbiamo scritto una definizione ricorsiva per la dimensione della soluzione ottima
- Abbiamo dimostrato la proprietà della scelta greedy:
 - Per ogni sottoproblema, esiste almeno una soluzione ottima che contiene la scelta greedy
 - Abbiamo scritto un algoritmo iterativo che effettua sempre la scelta ingorda

Problema del resto

Input

- Un insieme di "tagli" di monete, memorizzati in un vettore di interi positivi t[1 ... n].
- ullet Un intero R rappresentante il resto che dobbiamo restituire.

Definizione del problema

Trovare il più piccolo numero intero di pezzi necessari per dare un resto di R centesimi utilizzando i tagli disponibili, assumendo di avere un numero illimitato di monete per ogni taglio.

Formalmente, trovare un vettore x di interi non negativi tale che:

$$R = \sum_{i=1}^{n} x[i] \cdot t[i]$$
 e $m = \sum_{i=1}^{n} x[i]$ ha valore minimo

Soluzione basata su programmazione dinamica

Sottostruttura ottima

- Sia S(i) il problema di dare un resto pari ad i
- Sia A(i) una soluzione ottima del problema S(i), rappresentata da un multi-insieme; sia $j \in A(i)$
- Allora, S(i-t[j]) è un sottoproblema di S(i), la cui soluzione ottima è data da $A(i) \{j\}$.

Definizione ricorsiva

- Tabella di programmazione dinamica: DP[0...R]
- DP[i]: minimo n. di monete per risolvere il problema S[i]

$$DP[i] = \begin{cases} 0 & i = 0\\ \min_{1 \le j \le n} \{DP[i - t[j]] \mid t[j] \le i\} + 1 & i > 0 \end{cases}$$

Algoritmo

```
int[] resto(int[] t, int n, int R)
int[] DP = new int[0...R]
                                                             % Value of the solution
int[] coin = new int[0...R]
                                               % Coin to be used for a specific value
DP[0] = 0
for i = 1 to R do
   DP[i] = +\infty
   for j = 1 to n do
       if i > t[j] and DP[i - t[j]] + 1 < DP[i] then
        DP[i] = DP[i - t[j]] + 1
coin[i] = j
```

Algoritmo

```
[int[]] resto(int[]] t, int n, int R)
```

[...]

% Solution reconstruction

 $int[] x = new int[1...n] = \{0\}$ while R > 0 do

x[coin[r]] = x[coin[r]] + 1

R = R - t[coin[R]]

 $\operatorname{return} x$

% Output vector, initialized to zero

Complessità?

Algoritmo

 $\underline{\mathbf{return}\ x}$

Complessità? O(nR)

Scelta greedy

Domanda

È possibile pensare ad una soluzione greedy?

Scelta greedy

Domanda

È possibile pensare ad una soluzione greedy?

Risposta

Selezionare la moneta j più grande tale per cui $t[j] \leq R$, e poi risolvere il problema S(R-t[j]).

Scelta greedy

Domanda

È possibile pensare ad una soluzione greedy?

Risposta

Selezionare la moneta j più grande tale per cui $t[j] \leq R$, e poi risolvere il problema S(R-t[j]).

Esempi

- Tagli: 200, 100, 50, 20, 10, 5, 2, 1
- Tagli: 50, 10, 5, 1
- Tagli: 10, 8, 1
- Tagli: $c^k, c^{k-1}, ..., c, 1 \quad (c \in \mathbb{Z}^+)$

Algoritmo

return x

Complessità: $O(n \log n)$ se input non è ordinato O(n) se l'input è già ordinato.

Dimostrazione scelta greedy t = [50, 10, 5, 1]

• Sia x una qualunque soluzione ottima; quindi

$$\sum_{i=1}^{4} x[i] \cdot t[i] = R \qquad m = \sum_{i=1}^{4} x[i] \quad \text{è minimo}$$

• Sappiamo che $t[k] \cdot x[k] < t[k-1]$, altrimenti basterebbe sostituire un certo numero di monete di taglia t[k] con quelle del taglio t[k-1].

$$\begin{array}{llll} t[2] \cdot x[2] &= 10 \cdot x[2] &< t[1] &= 50 & \Rightarrow x[2] < 5 \\ t[3] \cdot x[3] &= 5 \cdot x[3] &< t[2] &= 10 & \Rightarrow x[3] < 2 \\ t[4] \cdot x[4] &= 1 \cdot x[4] &< t[3] &= 5 & \Rightarrow x[2] < 5 \end{array}$$

Dimostrazione scelta greedy t = [50, 10, 5, 1]

• Sia m_k la somma delle monete di taglio inferiore a t[k]:

$$m_k = \sum_{i=k+1}^4 x[i] \cdot t[i]$$

• Se dimostriamo che $\forall k: m_k < t[k]$, allora la soluzione (ottima) è proprio quella calcolata dall'algoritmo

$$m_4 = 0$$
 $= t[4]$
 $m_3 = 1 \cdot x[4] + m_4 < 5 + m_4 < 5 + 0$ $= 5 = t[3]$
 $m_2 = 5 \cdot x[3] + m_3 < 5 + m_3 < 5 + 5 = 10 = t[2]$
 $m_1 = 10 \cdot x[2] + m_2 < 40 + m_2 < 40 + 10 = 50 = t[1]$

Fun facts

US Treasury, 1865-1873

US Treasury, 1875-1878

http://moneyart.biz/

Fun facts

What This Country Needs is an 18¢ Piece*

Jeffrey Shallit
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
shallit@graceland.uwaterloo.ca

May 26, 2003

Abstract

We consider sets of coin denominations which permit change to be made using as few coins as possible, on average, and explain why the United States should adopt an 18¢ piece.

Approccio greedy, senza programmazione dinamica

- Evidenziare i "passi di decisione"
 - Trasformare il problema di ottimizzazione in un problema di "scelte" successive
- Evidenziare una possibile scelta ingorda
 - Dimostrare che tale scelta rispetto il "principio della scelta ingorda"
- Evidenziare la sottostruttura ottima
 - Dimostrare che la soluzione ottima del problema "residuo" dopo la scelta ingorda può essere unito a tale scelta
- Scrittura codice: top-down, anche in maniera iterativa
 - Nota: può essere necessario pre-processare l'input

Scheduling

Input

Supponiamo di avere un processore e n job da eseguire su di esso, ognuno caratterizzato da un tempo di esecuzione t[i] noto a priori.

Problema

Trovare una sequenza di esecuzione (permutazione) che minimizzi il tempo di completamento medio.

Tempo di completamento

Dato un vettore A[1...n] contenente una permutazione di $\{1, ...n\}$, il tempo di completamento dell'h-esimo job nella permutazione è:

$$T_A(h) = \sum_{i=1}^h t[A[i]]$$

Esempio

Esempio

Tempo di completamento medio:

$$(4+5+11+14)/4 = 34/4 = 8.5$$

Esempio

Esempio

Tempo di completamento medio:

$$(4+5+11+14)/4 = 34/4 = 8.5$$

Shortest job first

Tempo di completamento medio:

$$(1+4+8+14)/4 = 27/4 = 6.75$$

Dimostrazione di correttezza

Teorema - Scelta greedy

Esiste una soluzione ottima A in cui il job con minor tempo di fine m si trova in prima posizione (A[1] = m).

Teorema – Sottostruttura ottima

Sia A una soluzione ottima di un problema con n job, in cui il job con minor tempo di fine m si trova in prima posizione. La permutazione dei seguenti n-1 job in A è una soluzione ottima al sottoproblema in cui il job m non viene considerato.

Dimostrazione – Scelta greedy

Trasformazione soluzione ottima

• Si consideri una permutazione ottima A:

- \bullet Sia m la posizione in A in cui si trova il job con minor tempo di fine
- Si consideri una permutazione A' in cui i job in posizione 1, m vengono scambiati:

$$A' = \begin{bmatrix} 1 & 2 & m-1 & m & m+1 & n-1 & n \\ A[m] & A[2] & \dots & A[m-1] & A[1] & A[m+1] & \dots & A[n-1] & A[n] \end{bmatrix}$$

 \bullet Il tempo di completamento medio di A' è minore o uguale al tempo di completamento medio di A

Dimostrazione – Scelta greedy

La soluzione trasformata è anch'essa ottima

 \bullet Il tempo di completamento medio di A' è minore o uguale al tempo di completamento medio di A

- Job in posizione 1, ..., m-1 in A' hanno tempo di completamento \leq dei job in posizione 1, ..., m-1 in A
- \bullet Job in posizione $m,\,...,n$ in A'hanno tempo di completamento = dei job in posizione $m,\,...,n$ in A
- Poichè A è ottima, A' non può avere tempo di completamento medio minore e quindi anche A' è ottima.

Problema dello zaino

Input

- ullet Un intero positivo C la capacità dello zaino
- ullet n oggetti, tali che l'oggetto *i*-esimo è caratterizzato da
 - un profitto $p_i \in \mathbb{Z}^+$
 - un peso $w_i \in \mathbb{Z}^+$

Zaino 0/1

Trovare un sottoinsieme S di $\{1, ..., n\}$ di oggetti tale che il loro peso totale non superi la capacità massima e il loro profitto totale sia massimo.

Zaino reale (o Zaino frazionario)

È possibile prendere frazioni di oggetti.

Esempio

Consideriamo i tre oggetti a lato ed una capacità di 70

i	p_{i}	w_i
1	60\$	10
2	200\$	40
3	120\$	30

Approccio 1: Ordinati per profitto decrescente

Approccio 2: Ordinati per peso crescente

Esempio

Consideriamo i tre oggetti a lato ed una capacità di 70

i	p_{i}	w_i	p_i/w_i
1	60\$	10	6\$
2	200\$	40	5\$
3	120\$	30	4\$

Approccio 3: Ordinati per profitto specifico p_i/w_i decrescente

Approccio 3 non funziona per Zaino 0/1

Algoritmo

```
\begin{aligned} & & \textbf{float}[] \ z \texttt{aino}(\textbf{float}[] \ p, \ \textbf{float}[] \ v, \textbf{float} \ C, \ \textbf{int} \ n) \\ & & & \textbf{float}[] \ x = \textbf{new} \ \textbf{float}[1 \dots n] \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

return x

Complessità: $O(n \log n)$ se input non è ordinato O(n) se l'input è già ordinato.

 $x[i] \in [0,1]$ rappresenta la proporzione dell'oggetto i-esimo che deve essere prelevata.

Correttezza

Informalmente

- Assumiamo che gli oggetti siano ordinati per profitto specifico decrescente
- Sia x una soluzione ottima
- Supponiamo che $x[1] < \min(C/w[i], 1) < 1$
- Allora possiamo costruire una nuova soluzione in cui $x'[1] = \min(C/w[i], 1)$ e la proporzione di uno o più oggetti è ridotta di conseguenza
- Otteniamo così una soluzione x' di profitto uguale o superiore, visto che il profitto specifico dell'oggetto 1 è massimo

Problema della compressione

Rappresentare i dati in modo efficiente

- Impiegare il numero minore di bit per la rappresentazione
- Obiettivo: risparmio spazio su disco e tempo di trasferimento

Una possibile tecnica di compressione: codifica di caratteri

- Tramite funzione di codifica f: f(c) = x
 - \bullet cè un possibile carattere preso da un alfabeto Σ
 - x è una rappresentazione binaria
 - "c è rappresentato da x"

Possibili codifiche

Esempio

- ullet Supponiamo di avere un file di n caratteri
- Composto da caratteri nell'alfabeto abcdef
- Di cui conosciamo la frequenza relativa

Caratteri	a	b	С	d	е	f	Dim.
Frequenza	45%	13%	12%	16%	9%	5%	
ASCII	01100001	01100010	01100011	01100100	01100101	01100110	8n
Codifica 1	000	001	010	011	100	101	3n

Possiamo fare di meglio?

Possibili codifiche

Esempio

- ullet Supponiamo di avere un file di n caratteri
- Composto da caratteri nell'alfabeto abcdef
- Di cui conosciamo la frequenza relativa

Caratteri	a	b	С	d	е	f	Dim.
Frequenza	45%	13%	12%	16%	9%	5%	
ASCII	01100001	01100010	01100011	01100100	01100101	01100110	8n
Codifica 1	000	001	010	011	100	101	3n
Codifica 2	0	101	100	111	1101	1100	2.24n

Costo totale: $(0.45 \cdot 1 + 0.13 \cdot 3 + 0.12 \cdot 3 + 0.16 \cdot 3 + 0.09 \cdot 4 + 0.05 \cdot 4) \cdot n = 2.24n$

Codifica a prefissi

Codice a prefisso

In un codice a prefisso (meglio sarebbe "senza prefissi"), nessun codice è prefisso di un altro codice (condizione necessaria per la decodifica).

Esempio 1

• "babaca": 100 · 0 · 100 · 0 · 101 · 0

Esempio 2

- Codice: "a" \rightarrow 0, "b" \rightarrow 1, "c" \rightarrow 11
- 111111?

Rappresentazione ad albero per la codifica

Alcune domande

- È possibile che il testo codificato sia più lungo della rappresentazione con 3 bit?
- Esistono testi "difficili" per questa codifica?
- Come organizzare un algoritmo per la decodifica?

Cenni storici

- David Huffman, 1952
- Algoritmo ottimo per costruire codici prefissi
- Oggi utilizzato come complemento di altri metodi di compressione (e.g. in pkzip, zip, winrar)

Rappresentazione ad albero per la decodifica

Alberi binari di decodifica

- Figlio sinistro/destro: 0 / 1
- Caratteri dell'alfabeto sulle foglie

a	b	С	d	е
00	010	011	100	101

Algoritmo di decodifica

parti dalla radice

while file non è finito do

leggi un bit

if bit è zero then

vai a sinistra

else

vai a destra

if nodo foglia thenstampa il carattere

torna alla radice

Rappresentazione ad albero per la decodifica

Alberi binari di decodifica

- Figlio sinistro/destro: 0 / 1
- Caratteri dell'alfabeto sulle foglie

a	b	С	d	е
00	010	011	100	101

Algoritmo di decodifica

parti dalla radice

while file non è finito do

leggi un bit

if bit è zero then

vai a sinistra

else

vai a destra

if nodo foglia then stampa il carattere

torna alla radice

Rappresentazione ad albero per la decodifica

Alberi binari di decodifica

- Figlio sinistro/destro: 0 / 1
- Caratteri dell'alfabeto sulle foglie

a	b	С	d	е
00	010	011	10	11

Algoritmo di decodifica

parti dalla radice

while file non è finito do

leggi un bit

if bit è zero then

vai a sinistra

else

vai a destra

if nodo foglia then
stampa il carattere
torna alla radice

Definizione formale del problema

Input

 \bullet un file Fcomposto da caratteri nell'alfabeto Σ

Quanti bit sono richiesti per codificare il file?

- \bullet Sia T un albero che rappresenta la codifica
- Per ogni $c \in \Sigma$, sia $d_T(c)$ la profondità della foglia che rappresenta c
- Il codice per c richiederà allora $d_T(c)$ bit
- Se f[c] è il numero di occorrenze di c in F, allora la dimensione della codifica è

$$C[F,T] = \sum_{c \in \Sigma} f[c] \cdot d_T(c)$$

Algoritmo di Huffman

Principio del codice di Huffman

- Minimizzare la lunghezza dei caratteri che compaiono più frequentemente
- Assegnare ai caratteri con la frequenza minore i codici corrispondenti ai percorsi più lunghi all'interno dell'albero

Ogni codice è progettato per un file specifico

- Si ottiene la frequenza di tutti i caratteri
- Si costruisce il codice
- Si rappresenta il file tramite il codice
- Si aggiunge al file una rappresentazione del codice, per la decodifica

• Costruire una lista ordinata di nodi foglia per ogni carattere, etichettato con la propria frequenza

f:5 e:9 c:12 b:13 d:16 a:45

- \bullet Rimuovere i due nodi con frequenze minori $f_x,\,f_y$
- Creare un nodo padre con etichetta "-" e frequenza $f_x + f_y$
- Collegare i due nodi rimossi con il nuovo nodo
- Aggiungere il nodo così creato alla lista, mantenendo l'ordine

- Rimuovere i due nodi con frequenze minori f_x , f_y
- Creare un nodo padre con etichetta "-" e frequenza $f_x + f_y$
- Collegare i due nodi rimossi con il nuovo nodo
- Aggiungere il nodo così creato alla lista, mantenendo l'ordine

- \bullet Rimuovere i due nodi con frequenze minori $f_x,\,f_y$
- Creare un nodo padre con etichetta "-" e frequenza $f_x + f_y$
- Collegare i due nodi rimossi con il nuovo nodo
- Aggiungere il nodo così creato alla lista, mantenendo l'ordine

- Rimuovere i due nodi con frequenze minori f_x , f_y
- Creare un nodo padre con etichetta "-" e frequenza $f_x + f_y$
- Collegare i due nodi rimossi con il nuovo nodo
- Aggiungere il nodo così creato alla lista, mantenendo l'ordine

Funzionamento algoritmo

• Si termina quando resta un solo nodo nella lista

Funzionamento algoritmo

• Al termine, si etichettano gli archi dell'albero con bit 0,1

a	0
b	101
С	100
d	111
е	1101
f	1100

Algoritmo

```
TREE huffman(int[] c, int[] f, int n)
PRIORITYQUEUE Q = MinPriorityQueue()
for i = 1 to n do
    Q.\mathsf{insert}(f[i],\mathsf{Tree}(f[i],c[i]))
for i = 1 to n - 1 do
    z_1 = Q.\mathsf{deleteMin}()
    z_2 = Q.\mathsf{deleteMin}()
    z = \mathsf{Tree}(z_1.f + z_2.f, \mathbf{nil})
    z.left = z_1
    z.right = z_2
    Q.\mathsf{insert}(z.f,z)
return Q.deleteMin()
```

Input

n: numero caratteri c[]: caratteri alfabeto f[]: frequenze

Tree	
\overline{c}	% Carattere
f	% Frequenza
left	% Figlio sinistro
right	% Figlio destro

Complessità: $O(n \log n)$

Correttezza

Teorema

L'output dell'algoritmo Huffman per un dato file è un codice a prefisso ottimo

Proprietà della scelta greedy

Scegliere i due elementi con la frequenza più bassa conduce sempre ad una soluzione ottimale

Sottostruttura ottima

Dato un problema sull'alfabeto Σ , è possibile costruire un sottoproblema con un alfabeto più piccolo

Scelta greedy

Ipotesi

- ullet Siano Σ un alfabeto, f un vettore di frequenze
- ullet Siano x,y i due caratteri con frequenza più bassa

Tesi

• Esiste un codice prefisso ottimo per Σ in cui x, y hanno la stessa profondità massima e i loro codici differiscono solo per l'ultimo bit (sono foglie sorelle)

Dimostrazione

- Al solito, basata sulla trasformazione di una soluzione ottima
- Supponiamo che esista un codice ottimo T in cui i due caratteri a,b con profondità massima siano diversi da x,y

Scelta greedy

- Assumiamo senza perdere di generalità: $f[x] \leq f[y], f[a] \leq f[b]$
- Poiché le frequenze di x e y sono minime: $f[x] \leq f[a], f[y] \leq f[b]$
- Scambiamo x con a: otteniamo T'
- Scambiamo y con b: otteniamo T"

Scelta greedy

• Dimostriamo che: $C(f,T") \leq C(f,T') \leq C(f,T)$

$$C(T) - C(T') = \sum_{c \in \Sigma} f[c]d_T(c) - \sum_{c \in \Sigma} f[c]d_{T'}(c)$$

$$= (f[x]d_T(x) + f[a]d_T(a)) - (f[x]d_{T'}(x) + f[a]d_{T'}(a))$$

$$= (f[x]d_T(x) + f[a]d_T(a)) - (f[x]d_T(a) + f[a]d_T(x))$$

$$= (f[a] - f[x])(d_T(a) - d_T(x))$$

$$\geq 0$$

$$C(T') - C(T'') \geq 0 \quad \text{Come sopra}$$

- Ma poiché T è ottimo, sappiamo anche che: $C(f,T) \leq C(f,T)$ "
- ullet Quindi T" è anch'esso ottimo

MC Microcomputer n.49 - Febbraio 1986

ABCDDAAEAD CCADADABGB

Figura 54 - Immaginiamo di voler trasferire auesto esempio che alcuni caratteri siano più frequenti e altri meno frequenti. Fortunatamente ciò accade anche nella lingua italiana, dove consonanti come la Q sono certamente più rare della S

o della T o roba simile.

Figura 5B - Primo

Figura 5C - Si fond di G e di H (insien

invia un bit dopo l'altro. A questo sempre in figura 5. Il primo passo condice la didascalia immaginiamo di voler trasferire tale insieme di simboli. Da una veloce scorsa si nota subito una forte maggioranza di caratteri come la A e la B, contro un numero limitato di G e di H. Siamo in un caso abbastanza ottimale per applicare il codice Huffman, Senza di questo, come detto prima, dovremmo associare biu-

olo, po	er esempio co
A	000
В	001
C	010
D	011
E	100
F	101
G	110
H	111
erendo	l'insieme de

Oltre a questo, per poter funzionare, boli di 5A invieremmo in tutto 300 bit il codice Huffman necessita di trasferi- (100 simboli × 3 bit l'uno). Vediamo tutti i rami sinistri dell'albero e con mento seriale che, come detto prima, di fare qualcosa di meglio: seguite uno 0 tutti i rami destri come indicato

	sequenza di 0 e 1 a
o, pe	r esempio cosi:
A	000
В	001
C	010
D	011
E	100
F	101
G	110
H	111

lei 100 sim-

								in fig	t. 5F. Possia	mo ora ge
	В	С	D	Ε	F	G	Н	giun; nota	Huffman d o dalla occe giamo i var del percors	caratter o che fac
	25	10	10	5	5	3	2	mo.	vando gli l Quindi alla dice l, al B i	lettera A
N	isso: si eli	можо і т	ari caratt	tri ponem	lo souo di	essi la re	lativa occorrenza nel	risali	re da 100 fi a, dobbiamo	no alla B.
			D	15	E		딦	ramo	destro po	i un ran
	Щ	1		1	111	L	177	A	1	Tot
								В	01	
	25	10	10	5	5	3	2	C	0011	
						1	/	D	0010	
						1	/	Ε	80811	
								F	00010	
								G	00001	
90		le occorr	сиге рін р	sccole (3 e	2) offere	ndo una i	ткога оссотепза (5)	H	00000	
1	н	T.		Ε	F	G	H	acco	proviamo a rgeremo di noi dobbian	aver risp
	В	C	I D	IE.	I ^r	16	L"I		noi dobbian	

Appunti di informatica

punto passiamo alla figura 5A e come siste nell'elencare tutti i simboli del testo ponendo sotto di essi la relativa occorenza (fig. 5B). Abbiamo infatti 40 A, 25 B, 10 C

> Si tratta di costruire l'albero di figura 5F procedendo nel seguente modo: (fig. 5C) și fondono le occorrenze più piccole, 3 e 2 rispettivamente dei caratteri G e H ottenendo così una nuova occorrenza (5) dei caratteri G e H considerati insieme. Si itera il procedimento scegliendo sempre le occorrenoccorrenze ottenute per fusione. Ad esempio, dopo le fusioni di fig. 5E le occorrenze da scegliere saranno 5 e 10

ottenendo cosi l'occorrenza 15. Alla fine otterremo l'occorrenza 100 che è naturalmente quella dei simboli boli dalla A alla H sono in tutto presenti 100 volte, ovvio Ultimo passo, etichettare con un 1

ratteri: parassima, ragprendendo ciamo ossia ere prima un no sinistro).

ratte	ii cource sa	ra dunque			
A	1	Tot.	1	bit	
В	01		2		
C	0011		4		
D	0010		4		
E	80811		5		
F	00010	-	5		
G	00001		5		
H	00000		5		

e il testo ci

atti	по	i d	obbi	am	o t	rasi	erire		
40	A	*	40	×	1	-	40	bit	+
								bit	
10	C	=	10	×	4	=	40	bit	+
10	D	=	10	×	4	=	40	bit	+
5	C	-	5	×	5		25	bit	+
5	C	=	5	×	5		25	bit	+
3	C	=	3	×	5	=	15	bit	+
2	C	=	5	×	5		10	bit	

Nelle pubblicità:

- Hard-disk 10MB per l'equivalente di 2400 Euro
- Mouse (con rotellina) per l'equivalente di 200 Euro

https://www.cise.ufl.edu/~manuel/huffman/press.release.html

Albero di copertura di peso minimo

Problema

Dato un grafo pesato, determinare come interconnettere tutti i suoi nodi minimizzando il costo del peso associato ai suoi archi.

- Albero di copertura (di peso) minimo
- Albero di connessione (di peso) minimo
- Minimum spanning tree

Esempio di applicazione

Una compagnia di telecomunicazioni deve stendere una nuova rete in un quartiere; deve seguire le connessioni esistenti (la rete stradale) e ogni arco ha un costo associato distinto (costi di scavo, etc.)

Definizione del problema

Input

- G = (V, E): un grafo non orientato e connesso
- $w: V \times V \to \mathbb{R}$: una funzione di peso (costo di connessione)
 - \bullet se $[u,v] \in E,$ allora w(u,v) è il peso dell'arco [u,v]
 - se $[u, v] \notin E$, allora $w(u, v) = +\infty$
- Poiché G non è orientato, w(u, v) = w(v, u)

Definizione del problema

Albero di copertura (Spanning tree)

Dato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottografo $T = (V, E_T)$ tale che

- \bullet Tè un albero
- $E_T \subseteq E$
- T contiene tutti i vertici di G

Definizione del problema

Output: albero di copertura di peso minimo

Trovare l'albero di copertura il cui peso totale sia minimo rispetto a ogni altro albero di copertura.

$$w(T) = \sum_{[u,v] \in E_T} w(u,v)$$

Non è detto che l'albero di copertura minimo sia univoco

Cammini minimi / alberi di copertura di peso minimo

Questi due alberi di copertura sono identici?

- ullet un albero dei cammini minimi da singola sorgente A
- un albero di copertura di peso minimo

Cammini minimi / alberi di copertura di peso minimo

Questi due alberi di copertura sono identici?

- ullet un albero dei cammini minimi da singola sorgente A
- un albero di copertura di peso minimo

Cammini minimi / alberi di copertura di peso minimo

Questi due alberi di copertura sono identici?

- ullet un albero dei cammini minimi da singola sorgente A
- un albero di copertura di peso minimo

Algoritmo generico

Schema della lezione

- Progettiamo un algoritmo di tipo "goloso" generico
- Mostriamo due "istanze" di questo algoritmo: Kruskal e Prim

Approccio

L'idea è di accrescere un sottoinsieme A di archi in modo tale che venga sempre rispettata la seguente invariante:

ullet A è un sottoinsieme di qualche albero di connessione minimo

Algoritmo generico

Arco sicuro

Un arco [u, v] è detto sicuro per A se $A \cup \{[u, v]\}$ è ancora un sottoinsieme di qualche albero di connessione minimo.

Set mst-generico(Graph G, $\mathbf{int}[\]$ w)

Set $A = \emptyset$

while A non forma un albero di copertura do

trova un arco sicuro [u, v]

$$A = A \cup \{[u, v]\}$$

return A

Definizioni

- Un taglio (S, V S) di un grafo non orientato G = (V, E) è una partizione di V in due sottoinsiemi disgiunti
- Un arco [u, v] attraversa il taglio se $u \in S$ e $v \in V S$
- Un taglio rispetta un insieme di archi A se nessun arco di A attraversa il taglio
- Un arco che attraversa un taglio è leggero nel taglio se il suo peso è minimo fra i pesi degli archi che attraversano un taglio

Arco sicuro

Teorema

- Sia G = (V, E) un grafo non orientato e connesso
- Sia $w: V \times V \to \mathbb{R}$
- \bullet Sia $A\subseteq E$ un sottoinsieme contenuto in un qualche albero di copertura minimo per G
- \bullet Sia (S,V-S) un qualunque taglio che rispetta A
- \bullet Sia [u,v] un arco leggero che attraversa il taglio

Allora l'arco [u, v] è sicuro per A

Esempio: arco non sicuro perché il taglio non rispetta A

8

Arco blu sicuro

Arco blu non sicuro

Esempio: arco non sicuro perché non leggero

Arco blu sicuro

Arco blu non sicuro

Dimostrazione

Dimostrazione

Sia T un albero di copertura minimo che contiene A. Due casi:

- $(u, v) \in T$: allora (u, v) è sicuro per A
- $(u, v) \notin T$: trasformiamo T in un albero T' contenente (u, v) e dimostriamo che T' è un albero di copertura minimo
- u, v sono connessi da un cammino $C \subseteq T$ (per definizione di albero)
- u, v stanno in lati opposti del taglio ((u, v) attraversa il taglio)
- $\exists (x,y) \in C$ che attraversa il taglio

Dimostrazione

Sia T un albero di copertura minimo che contiene A. Due casi

- $(u, v) \in T$: allora (u, v) è sicuro per A
- $(u, v) \notin T$: trasformiamo T in un albero T' contenente (u, v) e dimostriamo che T' è un albero di copertura minimo
- $T' = T \{(x, y)\} \cup \{(u, v)\}$
- \bullet T' è un albero di copertura
- $w(T') \le w(T)$ (perchè $w(u, v) \le w(x, y)$)
- $w(T) \le w(T')$ (perchè T minimo)

Archi sicuri

Corollario

- Sia G = (V, E) un grafo non orientato e connesso
- Sia $w: V \times V \to \mathbb{R}$
- Sia $A \subseteq E$ un sottoinsieme contenuto in un qualche albero di copertura minimo per G
- Sia C una componente connessa (un albero) nella foresta $G_A = (V, A)$
- Sia [u, v] un arco leggero che connette C a qualche altra componente in G_A Allora l'arco [u, v] è sicuro per A

Algoritmo di Kruskal

Idea

- Ingrandire sottoinsiemi disgiunti di un albero di copertura minimo connettendoli fra di loro fino ad avere l'albero complessivo
- Si individua un arco sicuro scegliendo un arco [u,v] di peso minimo tra tutti gli archi che connettono due distinti alberi (componenti connesse) della foresta
- L'algoritmo è greedy perché ad ogni passo si aggiunge alla foresta un arco con il peso minore

Implementazione

• Si utilizza una struttura dati Merge-Find Set

Algoritmo di Kruskal

```
SET kruskal(EDGE[] A, int n, int m)
Set T = Set()
MFSET M = Mfset(n)
\{ \text{ ordina } A[1,\ldots,m] \text{ in modo che } A[1].weight \leq \cdots \leq A[m].weight \} 
int count = 0
int i=1
% Termina quando l'albero ha n-1 archi o non ci sono più archi
while count < n-1 and i \le m do
    if M.\mathsf{find}(A[i].u) \neq M.\mathsf{find}(A[i].v) then
       M.\mathsf{merge}(A[i].u,A[i].v)
       T.\mathsf{insert}(A[i])
        count = count + 1
   i = i + 1
```


Analisi della complessità algoritmo di Kruskal

- Il tempo di esecuzione per l'algoritmo di Kruskal dipende dalla realizzazione della struttura dati per Merge-Find Set
- Utilizziamo la versione con euristica sul rango + compressione,
 (*) le cui operazioni hanno costo ammortizzato costante

Fase	Volte	Costo
Inizializzazione	1	O(n)
Ordinamento	1	$O(m \log m)$
Operazioni find(),merge()	O(m)	$O(1)^{(*)}$

• Totale: $O(n + m \log m + m) = O(m \log m) = O(m \log n^2) = O(m \log n)$

Algoritmo di Prim

Idea

- L'algoritmo di Prim procede mantenendo in A un singolo albero
- ullet L'albero parte da un vertice arbitrario r (la radice) e cresce fino a quando non ricopre tutti i vertici
- Ad ogni passo viene aggiunto un arco leggero che collega un vertice in V_A con un vertice in $V-V_A$, dove V_A è l'insieme di nodi raggiunti da archi in A

Correttezza

- $(V_A, V V_A)$ è un taglio che rispetta A (per definizione)
- Per il corollario, gli archi leggeri che attraversano il taglio sono sicuri

Implementazione

Struttura dati per i nodi non ancora nell'albero

- Durante l'esecuzione, i vertici non ancora nell'albero si trovano in una coda con min-priorità Q ordinata in base alla seguente definizione di priorità
- "La priorità del nodo v è il peso minimo di un arco che collega v ad un vertice nell'albero, o $+\infty$ se tale arco non esiste""

Albero registrato come vettore dei padri

- \bullet Ogni nodo vmantiene un puntatore al padre p[v]
- A è mantenuto implicitamente: $A = \{[v, p[v]] \mid v \in V Q \{r\}\}$

Algoritmo di Prim

```
prim(GRAPH G, NODE r, int[] p)
PRIORITYQUEUE Q = MinPriorityQueue()
PriorityItem[] pos = new PriorityItem[1...G.n]
foreach u \in G.V() - \{r\} do
pos[u] = Q.insert(u, +\infty)
pos[r] = Q.insert(r, 0)
p[r] = 0
while not Q.isEmpty() do
   Node u = Q.deleteMin()
   pos[u] = nil
   foreach v \in G.adj(u) do
      if pos[v] \neq nil and w(u, v) < pos[v]. priority then
```


Algoritmo di Prim: Analisi

L'efficienza dell'algoritmo di Prim dipende dalla coda con priorità

• Se si utilizza uno heap binario:

Fase	Volte	Costo
Inizializzazione	1	$O(n \log n)$
deleteMin()	O(n)	$O(\log n)$
decreasePriority()	O(m)	$O(\log n)$

Tempo totale: $O(n + n \log n + m \log n) = O(m \log n)$, asintoticamente uguale a quello di Kruskal.

• Cosa succede se la coda con priorità è implementata tramite vettore non ordinato?

Discussione

Vero o falso

- L'arco con peso minimo è sicuro
- L'arco con il secondo peso minimo è sicuro
- L'arco con il terzo peso minimo è sicuro

Albero di copertura minima in un piano

- ullet Input: n punti nel piano
- Il peso di una coppia di punti è dato dalla distanza euclidea fra di essi
- Trovare un insieme di connessioni di peso minimo
- Da non confendere con gli Steiner tree

Applicazioni

Applicazioni dirette per la progettazione

- Reti di telecomunicazione
- Reti idriche
- Reti di trasporto
- Reti elettriche

Alcuni utilizzi particolari

- Segmentazione di immagini
- Riconoscimento scrittura manuale
- Disegno di circuiti elettronici
- Progettazione tassonomie

Prospettiva storica

- $O(m \log n)$:
 - Primo algoritmo: Boruvka (1926)
 - Kruskal (1956)
 - Prim (1957), ma anche Jarnik (1930)
- $O(m + n \log n)$:
 - Fredman-Tarjan (1987)
 - Modifica di Prim che utilizza gli heap di Fibonacci
- \bullet O(m+n):
 - Algoritmo probabilistico di Karger, Klein, Tarjan (1995)
 - Vari algoritmi in tempo lineare per casi particolari
 - Questione aperta se si possa risolvere il problema in tempo lineare deterministico

Conclusioni

Vantaggi

- Semplici da programmare
- Molto efficienti
- Quando è possibile dimostrare la proprietà di scelta ingorda, danno la soluzione ottima
- La soluzione sub-ottima può essere accettabile

Svantaggi

• Non sempre applicabili se si vuole la soluzione ottima