Lecture #12: Logistic Regression and Gradient Descent

AM 207: Advanced Scientific Computing

Stochastic Methods for Data Analysis, Inference and Optimization

Fall, 2020

Outline

- 1. Logistic Regression
- 2. Gradient Descent
- 3. Convex Optimization

Logistic Regression

Coin-Toss Revisited: Modeling a Bernoulli Variable with Covariates

Let's revisit our model for coin-toss: we'd assumed that the outcomes $Y^{(n)}$ were independently and identically distributed as Bernoulli's, $Y^{(n)} \sim Ber(\theta)$. Today, we will reexamine the *identical* part of the modeling assumptions.

Realistically, the probability of $Y^{(n)} = 1$ depends on variables like force, angle, spin etc.

Let $\mathbf{X}^{(n)} \in \mathbb{R}^D$ be D number of such measurements of the n-th toss. We model the probability of $Y^{(n)} = 1$ as a function of these **covariates** $\mathbf{X}^{(n)}$:

$$Y^{(n)} \sim Ber\left(\text{sigm}\left(f\left(\mathbf{X}^{(n)};\mathbf{w}\right)\right)\right)$$

where **w** are the parameters of f and sigm is the sigmoid function sigm $(z) = \frac{1}{1+e^{-z}}$.

Note: we need the sigmoid function to transform an arbitrary real number $f\left(\mathbf{X}^{(n)};\mathbf{w}\right)$ into a probability (i.e. a number in [0,1]).

The Logistic Regression Model

Given a set of N observations $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})$. We assume the following model for the data.

$$Y^{(n)} \sim Ber\left(\text{sigm}\left(f\left(\mathbf{X}^{(n)};\mathbf{w}\right)\right)\right).$$

This is called the *logistic regression* model.

Fitting this model on the data means *inferring* the parameters \mathbf{w} that best aligns with the observations.

Once we have inferred the parameters \mathbf{w} , given a new set of covariates \mathbf{x}^{new} , we can **predict** the probability of $\mathbf{Y}^{\text{new}} = 1$ by computing

sigm
$$(f(\mathbf{X}^{(n)}; \mathbf{w}))$$
.

For now, we will assume that f is a linear function:

$$f\left(\mathbf{X}^{(n)};\mathbf{w}\right) = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{(n)}.$$

Interpreting a Logistic Regression Model

Suppose that you fit a logistic regression model to predict whether a loan application should be approved. Suppose that you have three covariates:

- 1. x_1 representing gender: 0 for male, 1 for female
- 2. x 2 for the income
- 3. x_3 for the loan amount

Suppose that the parameters you found are:

$$p(y = 1 | x_1, x_2, x_3) = \text{sigm}(-1 + 3x_1 + 1.5x_2 + 1.75x_3).$$

What are the parameters telling us about the most influential attribute for predicting loan approval? What does this say about our data?

Maximizing the Logistic Regression Log-likelihood

Given a set of N observations $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})$. We want to find \mathbf{w}_{MLE} that maximizes the log (joint) likelihood:

$$\mathbf{w}_{\text{MLE}} = \underset{\mathbf{w}}{\operatorname{argmax}} \ \mathcal{E}(\mathbf{w}) \equiv \underset{\mathbf{w}}{\operatorname{argmin}} - \mathcal{E}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} - \log \prod_{n=1}^{N} p(y^{(n)} | \mathbf{x}^{(n)})$$

$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} -\log \left(\operatorname{sigm}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)})^{y^{(n)}} (1 - \operatorname{sigm}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}))^{1 - y^{(n)}} \right)$$

$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} -y^{(n)} \log \operatorname{sigm}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)})$$

$$- (1 - y^{(n)}) \log(1 - \operatorname{sigm}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}))$$

Optimizing the likelihood requires us to find the stationary points of the gradient of $\ell(\mathbf{w})$:

$$\nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w}) = -\sum_{n=1}^{N} \left(y^{(n)} - \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}}} \right) \mathbf{x}^{(n)} = \mathbf{0}$$

Can we solve for w?

Gradient Descent

Gradient as Directional Information

The gradient is orthogonal to the level curve of f at x^* and hence, when it is not zero, points in the direction of the greatest instantaneous increase in f.

An Intuition for Gradient Descent

The intuition behind various flavours of gradient descent is as follows:

Gradient Descent: the Algorithm

- 1. start at random place: $\mathbf{w}^{(0)} \leftarrow \mathbf{random}$
- 2. until (stopping condition satisfied):
 - a. compute gradient at $\mathbf{w}^{(t)}$: gradient ($\mathbf{w}^{(t)}$) = $\nabla_{\mathbf{w}}$ loss_function ($\mathbf{w}^{(t)}$)
 - b. take a step in the negative gradient direction: $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} \eta^*$ gradient ($\mathbf{w}^{(t)}$)

Here η is called the *learning rate*.

Diagnosing Design Choices with the Trajectory

If this is your objective function during training, what can you conclude about your step-size?

Diagnosing Issues with the Trajectory

If this is your objective function during training, what can you conclude about your step-size?

Gradient Descent: Step Size Matters

Diagnosing Issues with the Trajectory

If this is your objective function during training, what can you conclude about your step-size?

Gradient Descent for Logistic Regression

When diagnosing our gradient descent learning, we can:

- 1. Visualize the log-likelihood. What does this tell us?
- 2. Visualize the norm of the gradients. What does this tell us?

What else should we visualize to check that our learned model aligns with the data?

```
In [3]: fig, ax = plt.subplots(1, 2, figsize=(20, 5))
    ax = plot_diagnostics(ax, nlls, grad_norms)
    plt.show()
```


But Did We Optimize It?

Convex Optimization

Convex Sets

A convex set $S \subset \mathbb{R}^D$ is a set that contains the line segment between any two points in S. Formally, if $x, y \in S$ then S contains all convex combinations of x and y:

$$tx + (1 - t)y \in S$$
, $t \in [0, 1]$.

Convex Functions

A function f is a **convex function** if domain of f is a convex set, and the line segment between the points (x, f(x)) and (y, f(y)) lie above the graph of f. Formally, for any $x, y \in \text{dom}(f)$, we have

$$\underbrace{f(tx + (1-t)y)} \leq \underbrace{tf(x) + (1-t)f(y)}$$

height of graph of f at a point between x and y

height of point on line segment between (x, f(x)) and (y, f(y))

$$t \in [0, 1]$$

Convex Function: First Order Condition

How do we check that a function f is convex? If f is differentiable then f is convex if the graph of f lies above every tangent plane.

Theorem: If f is differentiable then f is convex if and only if for every $x \in \text{dom}(f)$, we have

$$\underbrace{f(y)}_{\text{height of graph of } f \text{ over } y} \ge \underbrace{f(x) + \nabla f(x)^{\top}(y - x)}_{\text{height of plane tangent to } f \text{ at } x, \text{ evaluated over } y}_{\text{height of plane tangent to } f \text{ at } x, \text{ evaluated over } y$$

Convex Function: Second Order Condition

If f is twice-differentiable then f is convex if the "second derivative is positive".

Theorem: If f is twice-differentiable then f is convex if and only if the Hessian $\nabla^2 f(x)$ is positive semi-definite for every $x \in \text{dom}(f)$.

Properties of Convex Functions

How to build complex convex functions from simple convex functions:

- 1. if $w_1, w_2 \ge 0$ and f_1, f_2 are convex, then $h = w_1 f_1 + w_2 f_2$ is convex
- 2. if f and g are convex, and g is univariate and non-decreasing then $h=g\circ f$ is convex
- 3. Log-sum-exp functions are convex: $f(x) = \log \sum_{k=1}^{K} e^x$

Note: there are many other convexity preserving operations on functions.

Convex Optimization

A convex optimization problem is an optimization of the following form:

min
$$f(x)$$
 (convex objective function) subject to $h_i(x) \le 0, i = 1, ..., i$ (convex inequality constraints) $a_i^{\mathsf{T}} x - b_j = 0, j = 1, ..., J$ (affine equality constraints)

The set of points that satisfy the constraints is called the *feasible set*.

You can prove that the a convex optimization problem optimizes a convex objective function over a convex feasible set. But why should we care about convex optimization problems?

Theorem: Let f be a convex function defined over a convex feasible set Ω . Then if f has a local minimum at $x \in \Omega$ -- $f(y) \ge f(x)$ for y in a small neighbourhood of x -- then f has a global minimum at x.

Corollary: Let f be a differentiable convex function:

- 1. if f is unconstrained, then f has a **local minimum** and hence **global minimum** at x if $\nabla f(x) = 0$.
- 2. if f is constrained by equalities, then f has a global minimum at x if $\nabla J(x, \lambda) = 0$, where $J(x, \lambda)$ is the Lagrangian of the constrained optimization problem.

Convexity of the Logistic Regression Negative Log-Likelihood

But why do we care about convex optimization problems? Let's connect the theory of convex optimization to MLE inference for logistic regression. Recall that the negative log-likelihood of the logistic regression model is

$$-\ell(\mathbf{w}) = -\sum_{n=1}^{N} y^{(n)} \log \operatorname{sigm}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}) + (1 - y^{(n)}) \log(1 - \operatorname{sigm}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}))$$
$$= \sum_{n=1}^{N} y^{(n)} \log(e^{0} + e^{\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}}) + (1 - y^{(n)})(-\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)})$$

Proposition: The negative log-likelihood of logistic regression $-\ell(\mathbf{w})$ is convex.

What does this mean for gradient descent? If gradient descent finds that \mathbf{w}^* is a stationary point of $-\nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w})$ then $-\mathcal{E}(\mathbf{w})$ has a global minimum at \mathbf{w}^* . Hence, $\mathcal{E}(\mathbf{w})$ is maximized at \mathbf{w}^* .

Proof of the Proposition: Note that

- 1. $-\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}$ and $(1 y^{(n)})(-\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)})$ are convex, since they are linear 2. $\log(e^0 + e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}})$ is convex since it is the composition of a log-sum-exp function (which is convex) and a convex function $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}$
- 3. $\sum_{n=1}^{N} y^{(n)} \log(e^0 + e^{\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}})$ is convex since it is a nonnegative linear combination of convex functions
- 4. $-\ell(\mathbf{w})$ is convex since it is the sum of two convex functions

But Does It Scale?

Gradient is such a simple algorithm that can be applied to **any optimization problem** for which you can compute the gradient of the objective function.

Question: Does this mean that maximum likelihood inference for statistical models is now an easy task (i.e. just use gradient descent)?

For every likelihood optimization problem, evaluating the gradient at a set of parameters \mathbf{w} requires evaluating the likelihood of the entire dataset using \mathbf{w} :

$$\nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w}) = -\sum_{n=1}^{N} \left(y^{(n)} - \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)}}} \right) \mathbf{x}^{(n)} = \mathbf{0}$$

Imagine if the size of your dataset N is in the millions. Naively evaluating the gardient **just** once may take up to seconds or minutes, thus running gradient descent until convergence may be unachievable in practice!

Idea: Maybe we don't need to use the entire data set to evaluate the gradient during each step of gradient descent. Maybe we can approximate the gradient at \mathbf{w} well enough with just a subset of the data.

