Discrete Math for Computing

Ch 2.1 Basic Structures: Sets

- What are sets?
- Sets collection of objects, used to group objects together with similar properties
- Fundamental discrete structure on which all other discrete structures are built

Practical examples

Sets

An unordered collection of objects.

- German mathematician Georg Cantor in 1895
- Elements

Objects in a set, a.k.a. members

A set 'contains' its elements

Notations

 $a \in A$ to denote that a is an element of the set A

- a ∉A to denote that a is not an element of the set A
- Lower case letters are usually used to denote elements of sets

Notations

Describe a set: List all the members of a set, within braces

- The set V of all vowels in the English alphabet can be written as V = {a, e, i, o, u}
- The set O of odd positive integers less than 10 can be written as O = {1, 3, 5, 7, 9}

Notations

Ellipses (...) are used when the general pattern of elements is obvious.

Set of positive integers less than 100 can be denoted by {1, 2, 3,..., 99}

- Often we are dealing with sets where it is impossible to list all of their elements.
- In set builder notation, we give a rule that characterizes all members of a set.
 - $S = \{x \mid x \text{ is the square of an integer}\}$
- "S is the set of all x such that x is the square of an integer".

- Boldfaced notation is used to describe sets
- $N = \{0, 1, 2, 3,...\}$, the set of natural numbers

$$Z = {..., -2, -1, 0, 1, 2,...}$$
, the set of integers

$$Z^+ = \{1, 2, 3,...\}$$
, the set of positive integers

$$\mathbf{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$$
, the set of rational numbers

R, the set of real numbers

R+, the set of positive real numbers

C, the set of complex numbers

Set Builder Notation

States the property or properties elements must have to be members

The set 'O' of all odd positive integers less than 10

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$

$$O = \{x \in Z^+ \mid x \text{ is odd and } x < 10\}$$