¿CUÁL ES LA RELACIÓN ENTRE EL USO DE ENERGÍA NUCLEAR Y LAS EMISIONES DE CO2 DESDE 1965 A 2021?

DAVID ABRAHAM NARANJO SALGADO 730697 ANA PAULINA VELOSO RAMIREZ 720517 JOSE JORGE VILLAREAL FARIAS 734422

DATASETS

ENERGÍA NUCLEAR GENERADA (TERA WATTS) CON RESPECTO AL TIEMPO DESD3 1965 HASTA 2021

	Nuclear terawatt-hours						
Country ↓♣	1965 ↓ ₹	2021 ↓₹	Absolute Change 🐙	Relative Change 🗼			
Afghanistan	2000 () 0.00 TWh	0.00 TWh	+0.00 TWh				
Africa	0.00 TWh	12.15 TWh	+12.15 TWh				
Africa (BP)	0.00 TWh	10.42 TWh	+10.42 TWh				
Africa (Ember)	2000 ⑤ 13.01 TWh	12.15 TWh	-0.86 TWh	-7%			
Albania	1990 ③ 0.00 TWh	2020 ⑤ 0.00 TWh	+0.00 TWh				
Algeria	0.00 TWh	0.00 TWh	+0.00 TWh				
American Samoa	2000 ⑤ 0.00 TWh	0.00 TWh	+0.00 TWh				
Angola	2000 ③ 0.00 TWh	0.00 TWh	+0.00 TWh				
Antigua and Barbuda	2000 ⑤ 0.00 TWh	0.00 TWh	+0.00 TWh				
Argentina	0.00 TWh	10.17 TWh	+10.17 TWh				
Armenia	2000 1.84 TWh	1.85 TWh	+0.01 TWh	+1%			
▶ 1965 ○				202			

Ritchie, H., Rosado, P., & Roser, M. (2022). Our World In Data. Obtenido de Nuclear Energy: https://ourworldindata.org/nuclear-energy

EMISIONES DE CO2 (TONELADAS) CON RESPECTO AL TIEMPO DESDE 1750 HASTA 2021

	Annual CO ₂ emissions tonnes							
Country ↓♣	1750 ↓ ₹	2021 👢	Absolute Change 👢	Relative Chang				
Afghanistan	1949 (1) 14,656.00 t	11,874,211.00 t	+11,859,555.00 t	+80				
Africa	0.00 t	1,450,796,300.00 t	+1,450,796,300.00 t					
Africa (GCP)	1850 ① 0.00 t	1,450,782,500.00 t	+1,450,782,500.00 t					
Albania	1933 ⑤ 7,328.00 t	4,619,109.00 t	+4,611,781.00 t	+62				
Algeria	1916 ③ 3,664.00 t	176,269,070.00 t	+176,265,406.00 t	+4,810				
Andorra	0.00 t	452,888.00 t	+452,888.00 t					
Angola	1950 1 86,864.00 t	21,362,716.00 t	+21,175,852.00 t	+11				
Anguilla	1990 ⑤ 51,296.00 t	144,744.00 t	+93,448.00 t	4				
Antarctica	1987 (1) 3,664.00 t	2007 10,992.00 t	+7,328.00 t	4				
Antigua and Barbuda	1957 ① 21,984.00 t	468,695.00 t	+446,711.00 t	+2				
Argentina	1887 ()	186,448,290.00 t	+185,363,746.00 t	+17				
▶ 1750 ○				202				

Ritchie, H., Rosado, P., & Roser, M. (2022). Our World In Data. Obtenido de CO2 emissions: https://ourworldindata.org/co2-emission

DATASETS SECUNDARIOS

CRECIMIENTO POBLACIONAL A TRAVÉS DE LOS AÑOS DESDE 1950 A 2021

		Population people							
Country	₽	1950 ↓₹	2021 ↓₹	Absolute Change 🐙	Relative Change 🐙				
Afghanistan		7,480,464	40,099,460	+32,618,996	+436%				
Africa (UN)		227,549,260	1,393,676,400	+1,166,127,140	+512%				
Albania		1,252,587	2,854,710	+1,602,123	+128%				
Algeria		9,019,866	44,177,964	+35,158,098	+390%				
American Samoa		19,057	45,056	+25,999	+136%				
Andorra		6,028	79,057	+73,029	+1,211%				
Angola		4,478,186	34,503,776	+30,025,590	+670%				
Anguilla		5,036	15,779	+10,743	+213%				
Antigua and Barbuda		45,456	93,229	+47,773	+105%				
Argentina		17,017,748	45,276,788	+28,259,040	+166%				
Armenia		1,385,038	2,790,971	+1,405,933	+102%				
Aruba		38,818	106,543	+67,725	+174%				
Asia (UN)		1,379,048,300	4,694,576,000	+3,315,527,700	+240%				
Australia		8,177,169	25,921,094	+17,743,925	+217%				
Austria		6,936,443	8,922,086	+1,985,643	+29%				
Azerbaijan		3,158,966	10,312,992	+7,154,026	+226%				
Bahamas		81,651	407,920	+326,269	+400%				
Bahrain		117,160	1,463,266	+1,346,106	+1,149%				
Bangladesh		39,728,540	169,356,240	+129,627,700	12240/				

Ortiz, E., Ritchie, H., Rodes, L., & Roser, M. (2022). Our World In Data. Obtenido de World Population Growth: https://ourworldindata.org/world-population-growth

CONTINENTES DE ACUERDO A "OUR WORLD IN DATA"

Country	Continent ↓2015 ↓ ↓ □
Abkhazia	Asia
Afghanistan	Asia
Akrotiri and Dhekelia	Asia
Albania	Europe
Algeria	Africa
American Samoa	Oceania
Andorra	Europe
Angola	Africa
Anguilla	North America
Antarctica	Antarctica
Antigua and Barbuda	North America
Argentina	South America
Armenia	Asia
Aruba	North America
Australia	Oceania
Austria	Europe
Austria-Hungary	Furone

Our World In Data. (2022). Obtenido de Continents according to Our World In Data: https://ourworldindata.org/grapher/continents-according-to-our-world-in-data

LISTA DE PAISES

Argentina ,Armenia, Netherlands , Pakistan, Romania, Russia, Slovakia , Slovenia, South Africa ,South Korea , Spain , Sweden , Switzerland , Taiwan , Ukraine , United Arab Emirates , United Kingdom , Mexico , Lithuania , Kazakhstan , Czechia , Belarus , Belgium , Brazil , Bulgaria , Canada , China , Finland , Japan , France , Germany , Hungary , India , Iran , Italy y United States.

Dando un total de 36 Países con 57 entradas cada uno.

TIPOS DE DATOS

Energía	Nuclear	luclear Emisiones de CO2			Poblacional	Continentes	
Country							
Year	Intervalo					Continent	Nominal
Electricity	Razón	Emissions	Razón	Population	Razón		

PREGUNTAS FASE EXPLORATORIA

- 1. ¿Ha tenido algún efecto la producción de energía nuclear respecto a las emisiones de CO2?
- 2. ¿Cuál ha sido la tendencia por país para generación nuclear?
- 3. ¿Hubo una reducción de emisiones de CO2 en los años que cada país genero mayor energía nuclear?
- 4. ¿Hubo alguna relación entre el punto más alto de energía nuclear con la generación de CO2?

DATOS A DESTACAR EN EL ANALISIS

EMISIONES ANUALES DE CO2

DATOS A DESTACAR EN EL ANALISIS

- + El país con una mediana mayor en términos de producción de energía nuclear es United States.
- + El país con la mínima menor en términos de energía nuclear es United Arab Emirates.
- + Países aparte de Uniated States que presentan datos de generación de energia nuclear más variada son: France y Japan.

RESULTADOS UNIVARIADO PARA LA ENERGIA NUCLEAR

HALLAZGOS DEL ANALISIS UNIVARIADO

- Los países con mayor tasa de emisiones anuales son los de primer mundo
- Muchos países no optaron por la energía nuclear en 1965 sino hasta las fechas más recientes
- En la mayoría de los casos, Estados unidos y Emiratos árabes encabezan listas de mayor emisión de CO2
- De manera general, Emiratos árabes a pesar de generar la mayor cantidad de CO2, han generado la menor cantidad de energía nuclear (promedio)
- La producción de energía nuclear no ha sido constante para todos los países.

PREGUNTAS DE INVESTIGACIÓN E HIPÓTESIS

LINEAR MIXED EFFECTS MODELS

- 1. ¿Existe una tendencia significativa en la generación de energía ni a lo largo del tiempo por continente?
- 2. ¿Existe una tendencia significativa en las emisi ones anuales de CO2 a lo largo del tiempo por continente?
- 3. Existe una relación entre las emisiones anuales de CO2 y la población de los países?
- 4. Existe una relación entre las emisiones anuales de CO2 y generación de energía nuclear de los países?

ANOVARM

¿Existe alguna diferencia significativa en el uso de energía nuclear en los países de continentes desde 1965 hasta 2021?

RESULTADOS ANOVARM

ANOVARM EN EUROPA

Anova F Value Num DF Den DF Pr > F Year 5.1356 56.0000 952.0000 0.0000

ANOVARM EN AMERICA

ANOVARM EN ASIA

PREGUNTAS DE INVESTIGACIÓN E HIPÓTESIS

ELECTRICIDAD NUCLEAR POR CONTINENTE

Mixed Linear Model Regression Results								
Model: MixedLM Dependent Variable: Nuclear_Electricity No. Observations: 2052 Method: REML No. Groups: 5 Scale: 10706.2656 Min. group size: 57 Log-Likelihood: inf Max. group size: 1140 Converged: Yes Mean group size: 410.4								
Co	ef. S	td.Err.	z	P> z	[0.025	0.975]		
Year 1	0.000 1.481 0.000	0.139 ======	10.664	0.000	1.208	1.753		

TONELADAS DE CO2 EMITIDAS

Mixed Linear Model Regression Results								
	2052 5	Dependent Method: Scale: Log-Likel: Converged	ihood:	: Annual REML 39.361: inf Yes	_	ssions		
C	oef.	Std.Err.	z	P> z	[0.025	0.975]		
Year -	 0.000 0.018 0.000	0.008	-2.089	0.037	-0.034	-0.001		

HALLAZGOS DEL ANALISIS BIVARIADO

Linear Mixed Effects Models

- coeficiente de producción de energía nuclear aumento
 1.481 unidades por años
- varianza de grupo es 0 = variación en producción de energía nuclear nula
- Emisiones de CO2, coeficiente por año fue de -0.018
- Varianza es 0 = variación en generación de CO2 nula
- Posible suponer que hay una relación entre producción de energía nuclear y emisión de gases con hechos históricos.

ANOVA RM

 Tanto en Europa, América y Asia hay diferencias significativas en el uso de energía nuclear, mostrando que el p value es menor al 0.05 en todos los casos

CONCLUSIONES

PROYECTO

 Las correlaciones proveen una manera sencilla de entender que variables se relacionan y de forma rápida dar una idea de que tan correcta o incorrecta es una hipótesis

CURSO

- El uso de la librería seaborn permite el desarrollo de un análisis mas visual y sencillo de llevar a cabo en comparación a el uso de Matlab
- El uso de ANOVA-RM permitió el estudio de un conjunto de datos longitudinales
- La limpieza de datos es un paso muy importante al llevar a cabo un proyecto de análisis