DevilBotz 2876 Swerve Bring-Up Checklist

DevilBotz 2876 2024-01-24

Resources

- YAGSL Wiki https://yagsl.gitbook.io/yagsl/
- REV Robotics Hardware Client https://docs.revrobotics.com/rev-hardware-client/
 - o for configuring Spark Max Motor Controllers and other Rev devices
- Phoenix Tuner X https://v6.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
 - o for configuring CanCoders and other CTR devices

Swerve Orientation Diagram

Note: When viewed from the top, make sure the sides of the wheel with the bevel gear are pointing to the left

CCW Drive Motor = Increasing Drive

Encoder

Step 1: Module Types

	Model, Version, Etc
Motor	
Controller	
Absolute Encoder	
IMU	

Step 2: Build Specific Details

☐ Measure the module center relative to the robot center

	Location (Inches)			
Module	х		Y	
Front Left (FL)	+		+	
Front Right (FR)	+		-	
Back Left (BL)	-		+	
Back Right (BR)	-		ı	

\sqcup	Measure	the whee	el diameter
----------	---------	----------	-------------

- ☐ Determine the *reported* internal encoder resolution
 - Note: Most encoders now normalize the reported values to -1 to 1, so the Encoder Resolution when computing the conversion factors should generally be "1". One known exception is the TalonSRX.
- ☐ Find the drive/angle gear ratio from the swerve module manufacturer specs
- ☐ Calculate the drive/angle conversion factors
 - Drive Motor Conversion Factor (meters/rotation) = (PI * WHEEL DIAMETER IN METERS) / (GEAR RATIO * ENCODER RESOLUTION)
 - Angle Motor Conversion Factor (degrees/rotation) = 360 / (GEAR RATIO * ENCODER RESOLUTION)

Note: For Absolute Encoders attached directly to the dataport on the SparkMAX, the Conversion Factor is 360

Motor	Wheel Diameter	Encoder Resolution (CPR)	Gear Ratio	Conversion Factor
Drive				
Angle				

Step 3: Electrical Characteristics ☐ Set/Verify the CAN IDs for each module ☐ Check Inversion Rotate the *drive* wheel **CCW** (moving "forward") The built-in encoder value should **increase**. If not, invert the drive motor. Rotate the *angle* wheel **CCW** (when viewed from the top) ☐ The built-in encoder value should **increase**. If not, invert the angle motor. ☐ The absolute encoder value should **increase**. If not, invert the absolute encoder. Rotate the entire robot CCW. The gyro angle (yaw) should increase. If not, invert the IMU Note: If you are using the hardware utilities for accessing the motors controllers and/or absolute encoders, the RoboRio must not be active on the CAN bus. The most reliable way to disable the RoboRio is to temporarily disconnect it from power. Motor/Encoder CAN IDs Inverted? Module Absolute **Drive Absolute** IMU **Drive** Angle **Angle** Encoder Encoder Front Left (FL) Front Right (FR) Back Left (BL) Back Right (BR) Step 4: Absolute Encoder Offsets ☐ Turn Robot On (Disabled so the wheels can be turned manually) ☐ Manually Turn All 4 wheels so that they are all pointing forward and forward rotation results in increasing drive encoder values (see the black arrows in Orientation Diagram). ☐ Measure the absolute encoder value for each module (the offset is the **negative** of the value reported) Angle Absolute Offset Module (rotations 0-1) (degrees 0-360) Front Left (FL) Front Right (FR) Back Left (BL)

Back Right (BR)