Sistemas Distribuídos

José Orlando Pereira

Departamento de Informática Universidade do Minho

Coordination

- Distributed system usually defined as:
 - Collection of autonomous computing elements
 but
 - Resulting in a <u>single coherent system</u>
- This is possible as computing elements <u>coordinate</u> to perform a coherent function

Learning outcomes

- Recognize how concrete real world problems map to generic distributed systems problems
- Recommend a solution that fits a given environment
 - Know the trade-offs of each algorithm!

Decentralized systems

- Distributed systems with:
 - Very large number of participants
 - Dynamic participation (churn)
 - Geographically distributed
 - Multiple authority and administration domains
- Typical problems:
 - Lookup by name (e.g., file sharing)
 - Information dissemination (e.g., streaming)
- A.k.a. peer-to-peer or P2P

Hierarchical lookup

U. Minho

Hierarchical lookup

- Efficient lookup:
 - Depth of tree and number of hops is ~log N
- Allows distributed but coordinated administrative authority
- There is still a bottleneck and SPOF at root node

Distributed Hash Table (DHT)

Distributed Hash Table (DHT)

- Steps in distributed hashing:
 - 1) map names to integers in an interval (bucket)
 - 2) map integer intervals (buckets) to servers
 - 3) build overlay network that finds the desired servers
- Within each server, use any data structure to map names to objects

Chord DHT

- Wrap around hash space
- Split in halves:
 - At most m times
- Results in m pointers in each node
- Lookup: O(m)

Distributed Hash Table (DHT)

- No single root node:
 - No bottleneck and no SPOF
- Efficient lookup:
 - ~log N hops
- Example: BitTorrent

Application Level Multicast

- Reliably send to multiple destinations (group)
- Informally, reliability means that:
 - all destinations deliver all messages sent
- In reality, senders and receiver fail, thus:
 - all correct destinations deliver the same messages

Worst case scenario: Message to only some of the destinations

General approach

Buffer and retransmit until acknowledged

General approach

Depends on sender correctness:

Multicast with agreement

 Acks need to be sent to all destinations resulting in "O(n²) ack implosion":

Gossip

- Simple protocol to multicast a message:
 - Select a small subset of random targets
 - Forward message only to those targets
 - Discard message
- Upon receiving a new message, act as the sender

Gossip

Gossip

Gossip and Epidemics

- Similarity with epidemics:
 - Sender = contagious = spreads rumor
 - Receiver = infected = knows rumor
 - Ignores duplicated = dead = old news...
- Interesting parameters:
 - -n size of the population
 - f number of targets

Fanout vs Reliability

Redundancy

Summary

- DHTs are now the scalable, dependable, widely used solution to distributed search
- Gossip protocols implicitly ensure w.h.p. that all correct processes have received the same messages