Lecture 1: Limits and Continuity

August 27, 2019

What is a Limit?

We are often interested in values of f(x) of a function f when x is very close to a number a, but not necessarily equal to a. In many cases f(a) is not defined.

$$\lim_{x \to a} f(x) = L$$

In words: The limit of f(x) as x approaches a is equal to L.

Example:

- (a) $\lim_{x\to 4} \frac{1}{2}(3x-1)$
- (b) $\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$
- (c) $\lim_{x\to 2} x^2 x + 2$

Formal Definition of Limit

Let f(x) be a function of x defined on some open interval \mathbb{R} that contains a point a except possibly a itself. Then

$$\lim_{x \to a} f(x) = L$$

if and only if for every $\epsilon > 0$ there is $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$.

Some notes:

- 1. f(x) does not have to equal L for the limit to exist.
- 2. Examine the behavior of f(x) as $x \to \infty$.
- 3. The limit does not have to exist.

One-sided Limits

We can examine the limit as x approaches from the left or right. This is called a one-sided limit.

Left-handed limit :
$$\lim_{x \to a^{-}} f(x) = L^{-}$$

Left-handed limit :
$$\lim_{x \to a^-} f(x) = L^-$$

Right-handed limit : $\lim_{x \to a^+} f(x) = L^+$

For the limit to exist $L^- = L^+ = L$

Example:

$$f(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \geqslant 0 \end{cases}$$

Limit Laws

Suppose *c* is a constant, *n* is a positive integer, and $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist.

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{G(X)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 if $\lim_{x \to a} g(x) \neq 0$

6.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

Limit Laws

7.
$$\lim_{x\to a} c = c$$

8.
$$\lim_{x \to a} x = a$$

9.
$$\lim_{r \to a} x^n = a^n$$

$$10. \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

Examples:

- (a) Find $\lim_{x \to 2} \frac{3x+4}{5x+7}$
- (b) Show that for every real number a, $\lim_{x\to a} x^3 = a^3$
- (c) Find $\lim_{x\to 2} (3x + 4)^5$

Continuity

A function is continuous at a number a if $\lim_{x\to a} f(x) = f(a)$. This definition requires that:

- 1. f(a) is defined
- 2. $\lim_{x \to a} f(x)$ exists.
- 3. $\lim_{x \to a} f(x) = f(a)$

A continuous function has the property that a small change in x produces only a small change in f(x).

Example:

Is $f(x) = \frac{x^2 - x + 2}{x - 2}$ continuous at 8 and 4?

Types of Continuity

Left & Right Continuity

We can examine the continuity of a function from either the left or the right.

Left continuous :
$$\lim_{x \to a^{-}} f(x) = f(a)$$

Right continuous :
$$\lim_{x \to a^+} f(x) = f(a)$$

f is continuous if and only if f is continuous from the left and right at every point in its domain.

Interval Continuity

f is continuous on [a,b] if it is continuous on every point on the interval

Example:

Show that
$$f(x) = 1 - \sqrt{1 - x^2}$$
 is continuous on $\begin{bmatrix} -1, 1 \end{bmatrix}$