

U-Net: Convolution Networks

Semantic Segmentation

Table of contents

- Theoretical part
 - Definition
 - U-Net architecture
 - History
- Pratical part
 - Used dataset
 - Implementation
 - Result
 - Challenges
- Conclusion

Definition

- U-Net learns semantic segmentation in an end-to-end setting
- each pixel is classified
- supervised learning

Contraction path (encoder):

Convolution → Convolution → Max Pooling

$$K \circ IN = OUT$$

Expansion path (decoder):

Transposed Convolution → Concatenate → Convolution → Convolution

Expansion path (decoder):

 $K \circ IN = OUT$

sparse-kernel (4, 16) SK

flatten-input (16, 1) FIN

Expansion path (decoder):

flatten-input (16, 1) FIN

History

- Created in 2015 at the University of Freiburg
- Extended and modified network of the FCN (fully convolutional network)
- work with fewer training images and yield more precise segmentations

Used dataset

Overview: TGS salt dataset from kaggle

Implementation

Implementation:

- U-Net-Model (Standard)
 - with skip-connections
 - without skip-connections
- U-Net-Model with data augmentation
 - horizontal flip
 - vertical flip
- Evaluation metric: Intersection over union

Result

Comparison (test data):

U-Net-Model	Loss	Mean IoU
standard	0.152	0.788
standard without skip-connections	0.169	0.775
horizontal flip	0.146	0.793
vertical flip	0.177	0.749

Result

Challenges

Conclusion

- U-Net = Semantic segmentation (pixelwise classification)
- Contraction and expansion path
- Skip connections
- Challenges

I The end

Sources

- https://github.com/vdumoulin/conv_arithmeticChallenges
- https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5
- https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
- https://medium.com/activating-robotic-minds/up-sampling-withtransposed-convolution-9ae4f2df52d0
- https://www.codeastar.com/u-net-object-detection-iou/