PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-289175

(43) Date of publication of application: 04.10.2002

(51)Int.Cl.

H01M 4/02 H01M 4/58

H01M 10/40

(21)Application number: 2001-084751

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

23.03.2001

(72)Inventor: SUNAKAWA TAKUYA

MIYAMOTO KIKUZO

TAKAHASHI MASATOSHI

(54) LITHIUM SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lithium secondary battery wherein the mixing amount of a positive electrode active material is optimized even if a mixture positive electrode active material in which lithium cobalt compound is mixed with spinel type lithium manganate is used, while the mass ratio between the mixture positive electrode active material and a negative electrode active material is optimized, for improved discharge capacity and cycle characteristics.

SOLUTION: Related to the positive electrode, a positive electrode mixture whose main component is a mixture positive electrode active material in which lithium cobalt compound is mixed with spinel type lithium manganate is held by a positive electrode collector. The mass ratio (B/A) between a mass A of positive electrode active material and mass B of negative electrode active material is regulated to be within the range of 0.15X+0.263≤B/A≤0.11X+0.41, where A is mass of the positive electrode active material per a unit area of the positive electrode, B is mass of the negative electrode active material per a unit area of lithium cobalt compound in the mixture positive electrode active material.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

JP 2002-289175

"Lithium secondary battery"

[0015]

As for lithium cobalt oxides, similar results can be obtained when using lithium cobalt oxides represented by the general formula: $\text{LiCo}_{1-x}M_xO_2$ (wherein M is at least one element selected from B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Ni, Cu, Al, In, Nb, Mo, W, Y and Rh, and wherein $0 \le X \le 0.1$). Among them, in order to have particularly excellent discharge characteristics, it is preferable to use lithium cobalt oxides containing Cr, Mn, Al and Ti.

[0021]

3. Preparation of Negative Electrode

95 parts by mass of a natural graphite powder (with Lc value of not less than 150 Å and d value of not more than 3.38 Å) and 5 parts by mass of a powder of polyvinylidene fluoride (PVdF) as a binding agent were mixed together to prepare a negative electrode material mixture. Next, N-methyl pyrrolidone (NMP) was added to this mixture to prepare a negative electrode slurry. Subsequently, this negative electrode slurry was applied onto both sides of a negative electrode current collector (copper foil) having a thickness of 18 μ m by a doctor blade method, thereby to form a negative electrode material mixture layer on both sides of the negative electrode current collector. Herein, when forming the negative electrode material mixture layer, the amount of the

slurry applied was adjusted to have a mass B per unit area of the negative electrode as shown in Table 3 below. These were dried and rolled with a compressing roller to a predetermined thickness to have a filling density of $1.56~\rm g/cm^2$, and were then cut into a predetermined size (for example, width of 42 mm and length of 300 mm) to obtain negative electrodes x1 to x29.

[Table 7]

)Ce					,									
Capacity maintenance	rate (%)	82.7	87.6	88.8	91.8	91.8	84.6	80.2	80.4	85.5	91.3	83.8	88.9	86.4
Mass ratio	B/A	0.27	0.28	0.33	0.35	0.38	0.42	0.43	08.0	0.31	0.33	0.38	0.40	0.44
Mass B (g/m²) of negative	electrode active material	130	135	160	170	183	200	. 206	142	147	160	180	190	210
Negative	electrode	x 3	x4	8 ×	×10	x13	x18	, x19	3x	9 x	8 ×	×12	x14	×20
Mass A (g/m²) of positive	electrode active material	480	480	480	480	480	480	480	480	480	480	480	480	480
Positive	electrode	a2	a2	a2	a2	a2	a2	a2	b 2	b2	b 2	b 2	b2	p2
Ratio X of lithium	cobalt oxide	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3	0.3	0.3
Battery		A7	A8	A9	A10	A11	A12	A13	B7	B8	B9	B10	B11	B12

•

0.3	b2	480	x 22	215	0.45	82.2
0.5	c2	480	x7	155	0.32	82.0
0.5	c2	480	x8	160	0.33	88.1
0.5	c2	480	x 12	180	0.38	91.5
0.5	c2	480	x16	197	0.41	91.6
0.5	c2	480	x24	220	0.46	84.9
0.5	c2	480	x25	225	0.47	81.9

•

 \mathcal{U}

[Table 8]

	Ratio X of lithium	Positive	Mass A (g/m²) of positive	Negative	Mass B (g/m²) of negative	Mass ratio	Capacity maintenance
cok	cobalt oxide	electrode	electrode active material	electrode	electrode active material	B/A	rate (%)
	0.7	42	480	x10	170	0.35	83.4
	0.7	42	480	x11	176	0.37	91.3
	0.7	d2	480	x14	190	0.40	90.1
	0.7	d2	480	x19	206	0.43	90.1
	0.7	d 2	480	x26	230	0.48	86.9
u u	0.7	42	480	x27	235	0.49	82.6
	0.9	e2	480	x13	183	0.38	80.3
	6.0	e2	480	x14	190	0.40	89.8
	6.0	e2	480	x16	197	0.41	90.8
	6.0	e2	480	x21	213	77.0	89.1
	0.9	e2	480	x28	240	0.50	87.0
	0.9	e2	480	x29	246	0.51	81.4

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-289175 (P2002-289175A)

(43)公開日 平成14年10月4日(2002.10.4)

			•	
(51) Int.Cl. ⁷ H 0 1 M	4/02	酸別記号	F I H O 1 M 4/	デーマコート* (参考) C 5H029 D 5H050
	4/58 10/40		10,	/58 /40 Z
			審查請求	未請求 請求項の数7 OL (全 13 頁)
(21)出願番	 号	特願2001-84751(P2001-84751)	(71) 出願人	000001889 三洋電機株式会社
(22)出顯日		平成13年3月23日(2001.3.23)	(72)発明者	大阪府守口市京阪本通2丁目5番5号 砂川 拓也 大阪府守口市京阪本通2丁目5番5号 三
			(72)発明者	洋電機株式会社内 宮本 吉久三 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内
			(74)代理人	_
				最終頁に続

(54) 【発明の名称】 リチウム二次電池

(57)【要約】

【課題】 コバルト酸リチウムとスピネル型マンガン酸 リチウムが混合された混合正極活物質を用いても、正極 活物質の混合量を最適化するとともに、この混合正極活 物質と負極活物質の質量割合を最適化して、放電容量お よびサイクル特性が向上したリチウム二次電池を得られ るようにする。

【解決手段】 正極はコバルト酸リチウムとスピネル型 マンガン酸リチウムとが混合された混合正極活物質を主 体とした正極合剤が正極集電体に保持されており、この 正極の単位面積当たりの正極活物質の質量をAとし、負 極の単位面積当たりの負極活物質の質量をBとし、かつ 混合正極活物質中のコバルト酸リチウムの質量比をXと した場合に、正極活物質の質量Aに対する負極活物質の 質量Bの質量割合(B/A)が0.15X+0.263 ≦B/A≦0.11X+0.41の範囲になるように規 制している。

1

【特許請求の範囲】

【請求項1】 リチウムイオンの吸蔵・放出が可能な正 極活物質を含有する正極と、黒鉛を負極活物質として含 有する負極と、非水電解質とを備えたリチウム二次電池 であって、

前記正極はコバルト酸リチウムとスピネル型マンガン酸 リチウムとが混合された混合正極活物質を主体とした正 極合剤が正極集電体に保持されており、

前記正極の単位面積当たりの混合正極活物質の質量をA とし、前記負極の単位面積当たりの負極活物質の質量を 10 Bとし、前記混合正極活物質中の前記コバルト酸リチウ ムの質量比をXとした場合に、

前記正極活物質の質量Aに対する前記負極活物質の質量 Bの質量割合(B/A)が0.15X+0.26≦B/ A≤0.11X+0.41の範囲になるように規制され ていることを特徴とするリチウム二次電池。

【請求項2】 前記負極の単位面積当たりの負極活物質 の質量Bが160≤B≤39X+180の範囲になるよ うに規制されていることを特徴とする請求項1に記載の リチウム二次電池。

【請求項3】 正極合剤層の厚みをa(μm)とし、負 極合剤層の厚みをb(μm)とした場合に、前記正極合 剤層の厚みaに対する前記負極合剤層の厚みbの割合 (b/a)が0.29X+0.5≤b/a≤0.25X +0.95の範囲になるように規制されていることを特 徴とする請求項1または請求項2に記載のリチウム二次 電池。

【請求項4】 前記スピネル型マンガン酸リチウムは組 成式がLi1+xMn2-yMzO4(但し、MはB, Mg, C a, Sr. Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, In, Nb, Mo, W, Y, Rhから選択 される少なくとも一種の元素であり、0.54≤((1 $+X)+Z)/(2-Y) \le 0.62$ $(-0.15 \le$ $X \le 0$. 15°°, $Y \le 0$. 5°°, $0 \le Z \le 0$. 1°° δ る)で表されることを特徴とする請求項1から請求項3 のいずれかに記載のリチウム二次電池。

【請求項5】 前記Li_{1+x} M n_{2-y} M_z O₄で表されるス ピネル型マンガン酸リチウムのMはAlまたはMgであ ることを特徴とする請求項4に記載のリチウム二次電 池。

【請求項6】 前記L i 1+x M n 2-y Mz O4で表されるス ピネル型マンガン酸リチウムはLi1.07 М п1.89 М g 0.04 〇4であることを特徴とする請求項5に記載のリチ ウム二次電池。

【請求項7】 前記コバルト酸リチウムは組成式がLi Coi-xMxO2 (但し、MはB, Mg, Ca, Sr, B a, Ti, V, Cr, Fe, Ni, Cu, Al, In, Nb, Mo, W, Y, Rhから選択される少なくとも一 種の元素であり、 $0 \le X \le 0$. 1 である)で表されるこ

のリチウム二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はリチウムイオンの吸 蔵・放出が可能な正極活物質を含有する正極と、黒鉛を 負極活物質として含有する負極と、非水電解質とを備え たリチウム二次電池に係わり、特に、正極活物質と負極 活物質の質量割合の最適化に関する。

[0002]

【従来の技術】近年、小型ビデオカメラ、携帯電話、ノ ートパソコン等の携帯用電子・通信機器等に用いられる 電池として、リチウムイオンの吸蔵・放出が可能な黒鉛 を負極活物質とし、リチウム含有コバルト酸化物(Li CoO2)、リチウム含有マンガン酸化物(LiMn2O 4)等のリチウム含有遷移金属酸化物を正極活物質とす るリチウム二次電池が、小型軽量でかつ高容量な電池と して実用化されるようになった。

【0003】ところで、正極にリチウム含有コバルト酸 化物(LiCoO2)を用い、負極に黒鉛を用いたリチ ウム二次電池においては、充電されるに伴って正極合剤 層および負極合剤層が共に膨張し、放電するに伴って正 極合剤層および負極合剤層が共に収縮するため、充電時 においては正極合剤層および負極合剤層の圧力が増加し て、電解液の一部がこれらの合剤層から搾り出されると いう現象が生じる。このような現象を生じると、充放電 を繰り返すに伴って容量が低下してサイクル特性が劣化 するという問題を生じた。また、この正極合剤層および 負極合剤層の膨張・収縮は、活物質量が多くなるほど顕 著になる。

【0004】一方、充電時に正極合剤層および負極合剤 層が膨張すると、これらの合剤層と各集電体(活物質保 持体)との密着性が低下することとなるが、正極合剤層 および負極合剤層が共に膨張するため、正負極間の対向 圧力が増大する。これにより、正極合剤層および負極合 剤層が各集電体に押し付けられるようになって、各集電 体から正極合剤層あるいは負極合剤層が剥離することが 抑制されることとなる。このことから、正極活物質量お よび負極活物質量を必要以上に少なくすると、逆に、充 電時において、正極合剤層および負極合剤層が各集電体 40 から剥離することを抑制することができなるため、これ らの活物質量を必要以上に減少させることは不適当であ る。

[0005]

【発明が解決しようとする課題】これらのことを考慮す ると、正極活物質量と負極活物質量を調整してこれらの 活物質量を適度にバランスさせれば、放電容量とサイク ル特性が調和した特性を兼ね備えたリチウム二次電池が 設計できることとなる。そこで、充電時に収縮し、放電 時に膨張する性質を有するスピネル型結晶構造を有する とを特徴とする請求項1から請求項6のいずれかに記載 50 リチウム含有マンガン酸化物 (LiMn2O4:以下では

Ç

スピネル型マンガン酸リチウムという)と、充電時に膨張し、放電時に収縮する性質を有するリチウム含有コバルト酸化物(LiCo〇2:以下ではコバルト酸リチウムという)とを混合した混合正極活物質を用いることが特開平4-171660号公報にて提案されるようになった。

【0006】この特開平4-171660号公報にて提案された正極においては、スピネル型マンガン酸リチウムとコバルト酸リチウムとを混合して用いることで、コバルト酸リチウムのみを用いた正極よりも充放電による膨張収縮が少なくなる。このため、充電時において、正極合剤層および負極合剤層の膨張に起因する電解液の搾り出し現象を軽減することが可能となる。しかしながら、充電時において、正極合剤の膨張が少なくなると、負極合剤の膨張に起因する集電体からの剥離が抑制できなくなるという問題を生じた。

【0007】そこで、正極活物質量および負極活物質量を増やすようにして、充電時に負極合剤層をより膨張させるようにすると、負極合剤層の集電体からの剥離を抑制できるようになる。また、正極活物質量および負極活物質量の増加量を調整することにより、充電時の電解液の搾り出し現象を抑制することが可能になる。しかしながら、負極活物質量が多くなると、充放電に伴う負極をがら、負極活物質量が多くなるため、充電状態では正負極に適度の対向圧力を付与することが可能となるが、反面、放電状態では負極の収縮が大きくなるため、正負極に適度の対向圧力を付与することが困難になるという問題を生じた。

【0008】本発明は上記問題点を解消するためになされたものであって、コバルト酸リチウムとスピネル型マンガン酸リチウムとが混合された混合正極活物質を用いても、混合正極活物質の配合量を最適化するとともに、この混合正極活物質と負極活物質の質量割合を最適化して、放電容量およびサイクル特性が向上したリチウム二次電池を得られるようにすることを目的とするものである。

[0009]

【課題を解決するための手段およびその作用・効果】上記目的を達成するため、本発明のリチウム二次電池においては、正極はコバルト酸リチウムとスピネル型マンガ 40 ン酸リチウムとが混合された混合正極活物質を主体とした正極合剤が正極集電体に保持されており、この正極の単位面積当たりの頁極活物質の質量をAとし、負極の単位面積当たりの負極活物質の質量をBとし、かつ混合正極活物質中のコバルト酸リチウムの質量比をXとした場合に、正極活物質の質量Aに対する負極活物質の質量Bの質量割合(B/A)が0.15X+0.26≦B/A≤0.11X+0.41の範囲になるように規制している。

【〇〇10】正極活物質に対する負極活物質の質量割合 50

B/Aが0.15X+0.26より少なくなると、正極 活物質量に対して負極活物質量が相対的に少なくなるた め、充電時の正負極活物質の膨張の度合いが少なくな る。これは、正極においては、充電時にコバルト酸リチ ウムは膨張する反面、スピネル型マンガン酸リチウムは 収縮して膨張が相殺されるとともに、負極においては、 活物質量が少なくなったことで膨張が少なくなったこと による。この結果、充電時の正極と負極の対向圧力が低 下して、負極合剤層と負極集電体との密着性が低下する ためにサイクル特性が低下する。また、正極活物質に対 する負極活物質の質量比B/Aが0.11X+0.41 より多くなると、正極活物質量に対して負極活物質量が 相対的に多くなるため、負極合剤層の充放電による体積 変化が大きくなって、放電時の正極と負極の対向圧力が 必要以上に大きくなり、電解液が搾り出されることによ りサイクル特性が低下する。

【0011】このため、コバルト酸リチウムの混合比を Xとした場合の正極活物質に対する負極活物質の質量比 B/Aは、0.15X+0.26 \leq B/A \leq 0.11 X + 0.41 の関係を有する範囲に規制することが望ましい。ここで、正極の単位面積当たりの正極活物質量を 4 30 g/m² (A=430)として実験を行った結果、0.372 \leq B/A \leq 0.0907 X+0.419 の関係を有する範囲に規制することがさらに望ましいことが分かった。この場合、正極活物質量は 430 g/m² (A=430)であるから、160 \leq B \leq 39 X+180 という関係が得られる。

【0012】また、正極の単位面積当たりの正極活物質量を480g/ m^2 (A=480)として実験を行った結果、0.333 \leq B/A \leq 0.0813X+0.375の関係を有する範囲に規制することがさらに望ましいことが分かった。この場合は、正極活物質量は480g/ m^2 (A=430)であるから、160 \leq B \leq 39X+180という関係が得られる。即ち、負極活物質の単位面積当たりの質量Bを160 \leq B \leq 39X+180という関係が得られるように規制すれば、正極活物質の単位面積当たりの質量Aを変化させても、正極と負極の対向圧力がより適正な範囲に維持されるということができる。

【0013】また、正極合剤層の厚みをa(μm)とし、負極合剤層の厚みをb(μm)とした場合に、正極合剤層の厚みaに対する負極合剤層の厚みbの割合(b/a)が0.29X+0.50≤b/a≤0.25X+0.95の関係を有する範囲に規制すると、正極と負極の対向圧力がより適正な範囲に維持されてサイクル特性が向上するので望ましい。

【0014】なお、本発明に用いるスピネル型マンガン酸リチウムは、組成式がLi1+xMn2-yMzO4(但し、MはB, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, In, Nb, Mo, W,

Y,Rhから選択される少なくとも一種の元素であり、 0. $54 \le ((1+X)+Z)/(2-Y) \le 0.62$ で、 $-0.15 \le X \le 0.15$ で、 $Y \le 0.5$ で、 $0 \le$ Z≦0.1である)で表される組成のものであれば同様 な結果が得られるが、このうち、特に優れた高温特性 (高温での充放電サイクル、高温保存性等)を示すため には、Mg添加系あるいはAl添加系のものを用いるの が望ましい。

【0015】また、コバルト酸リチウムとしては、組成 式がLiCo1-x MxO2 (但し、MはB, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Ni, Cu, A l, In, Nb, Mo, W, Y, Rhから選択される少 なくとも一種の元素であり、0≤X≤0.1である)で 表されるコバルト酸リチウムを用いれば、同様な結果が 得られるが、このうち、特に優れた放電特性を示すため には、Cr添加系、Mn添加系、Al添加系、Ti添加 系のものを用いるのが望ましい。

[0016]

【発明の実施の形態】ついで、本発明の実施の形態を以 下に説明する。

1. 混合正極活物質の作製

まず、正極活物質として、平均粒径が5μmのコバルト 酸リチウム(LiCoO2)粉末と、平均粒径が10μ mのスピネル型マンガン酸リチウム(Li1.07Mn1.89 Mg0.04 O4)粉末とをそれぞれ公知の方法で合成し た。ついで、これらのコバルト酸リチウム(LiCoO 2) 粉末とマンガン酸リチウム (Li1.07 Mn1.89 Mg 0.04 〇4)粉末とを下記の表1に示すような質量比とな るように混合して、各混合正極活物質lpha、eta、 γ 、 δ 、 εをそれぞれ作製した。この場合、コバルト酸リチウム 30 (LiCoO2)の混合質量比をXとし、スピネル型マ ンガン酸リチウム (Li1.07 Mn1.89 Mg0.04 O4)の 混合質量比を1-Xとした。

[0017]

【表1】

混合正極活物質の	混合正極	活物質の混合質量比
種類	LiCoO ₂ (X)	Li 1. 07MII 1. 89Mga, 04O4 (1-X)
α	0.1	0.9
β	0.3	0.7
7	0.5	0.5
δ	0.7	0.3
٤	0.9	0.1

【0018】2. 正極の作製

ついで、上述のようにして作製された各混合正極活物質 $\alpha \sim \epsilon$ を用い、これらの混合正極活物質 $\alpha \sim \epsilon$ がそれぞ

0 質量部で、結着剤としてのフッ化ビニリデン系重合体 が5質量部となるようにそれぞれ混合して、正極合剤を それぞれ作製した。ついで、得られた各正極合剤をN-メチルピロリドン (NMP)と混合して正極スラリーと した後、これらの正極スラリーを厚みが20μmの正極 集電体 (アルミニウム箔またはアルミニウム合金箔)の 両面にドクターブレード法により塗布(なお、正極リー ドを取り付けるために間欠塗布により未塗布部を設け た)して、正極集電体の両面に正極合剤層を形成した。 10 【0019】この場合、各正極合剤層を形成するに際し て、正極の単位面積当たりの各混合正極活物質α~εの 質量Aが430g/m²となるように塗布量を調整し た。これを乾燥させた後、正極合剤の充填密度が下記の 表2に示すような値になるように圧縮ローラを用いて圧 延し、所定寸法(例えば幅が40mmで、長さが280 mm)に切断して、正極a1~e1をそれぞれ作製し た。なお、各正極a1~e1の各正極合剤の充填密度を 下記の表2に示す範囲に変化させた理由は、正極合剤中 の各活物質粒子の電気的接触を充放電中も維持できるよ うにして、コバルト酸リチウムとスピネル型マンガン酸 リチウムの混合質量比が異なっても、各正極のサイクル 特性に違いを生じさせないためである。

6

[0020]

【表2】

正極種類	極活物	コパルト酸 リチウムの 混合比 (X)		
a 1	α	0.1	430	2.96
b 1	β	0.3	430	3.08
c 1	γ	0.5	430	3.20
d 1	δ	0.7	430	3. 32
e 1	ε	0.9	430	3. 44

【0021】3. 負極の作製

天然黒鉛(Lc値が150Å以上で、d値が3. 38Å 以下のもの)粉末が95質量部で、結着剤としてのポリ フッ化ビニリデン(PVdF)粉末が5質量部となるよ 40 うに混合して負極合剤を調製した後、これを Nーメチル ピロリドン (NMP) と混合して負極スラリーを調製し た。この後、得られた負極スラリーを厚みが18µmの 負極集電体 (銅箔) の両面にドクターブレード法により 塗布して、負極集電体の両面に負極合剤層を形成した。 この場合、負極合剤層を形成するに際して、下記の表3 に示すような負極の単位面積当たりの質量Bとなるよう に塗布量を調整した。これを乾燥させた後、充填密度が 1.56g/cm²になるように圧縮ローラを用いて所定 の厚みになるまで圧延し、所定寸法(例えば幅が42m れ85質量部で、導電剤としてのカーボンブラックが1 50 mで、長さが300mm)に切断して負極×1~×29

を作製した。

[0022]

*【表3】

*

負極種類	負極活物質の 質量(g/m²)	負極充填密度 (g/cm²)	負極 種類	負極活物質の 質量(g/m²)	負極充填密度 (g/cm²)
x 1	1 1 5	1.56	x 16	197	1.56
x 2	1 2 0	1.56	x 17	199	1.56
x 3	1 3 0	1.56	x 18	200	1.56
x 4	1 3 5	1.56	x 19	206	1.56
x 5	1 4 2	1. 56	x 20	210	1.56
x 6	1 4 7	1.56	× 21	2 1 3	1.56
x 7	155	1.56	x 22	2 1 5	1.56
x 8	160	1. 56	× 23	217	1.56
x 9	165	1. 56	x 24	220	1.56
× 10	170	1. 56	× 25	2 2 5	1.56
x 11	176	1. 56	× 26	230	1.56
x 12	180	1.56	× 27	2 3 5	1.56
x 13	183	1. 56	x 28	2 4 0	1.56
x 14	190	1.56	x 29	246	1.56
x 15	195	1.56			

【0023】4. リチウム二次電池の作製 ついで、上述のように作製した各正極a 1~e1と、上 述のようにして作製した各負極×1~×29とをそれぞ れ用いて、これらを下記の表4および表5に示すように 組み合わせるとともに、これらの間にポリプロピレン製 微多孔膜からなるセパレータを介在させて積層した後、 これらを渦巻状にそれぞれ巻回して渦巻状電極群とし た。これらをそれぞれ円筒状の金属製外装缶に挿入した 後、各集電体から延出する集電タブを各端子に溶接し、 エチレンカーボネート(EC)とジエチルカーボネート (DEC)との等体積混合溶媒に、LiPF6を1モル /リットル溶解した非水電解液を注入した。この後、外 装缶の開口部に絶縁パッキングを介して正極蓋を取り付 けた後、封口してリチウム二次電池A1~A6、B1~ B6、C1~C6、D1~D6およびE1~E6をそれ ぞれ作製した。ここで、正極alを用いたものをリチウ ム二次電池A1~A6とし、正極b1を用いたものをリ チウム二次電池B1~B6とし、正極c1を用いたもの をリチウム二次電池C1~C6とし、正極d1を用いた ものをリチウム二次電池D1~D6とし、正極e1を用 いたものをリチウム二次電池E1~E6とした。

30%【0024】なお、混合溶媒としては、上述したエチレ ンカーボネート(EC)にジエチルカーボネート(DE C)を混合したもの以外に、水素イオンを供給する能力。 のない非プロトン性溶媒を使用し、例えば、プロピレン カーボネート (PC)、ビニレンカーボネート (V C)、ブチレンカーボネート(BC)、アーブチロラク トン (GBL)等の有機溶媒や、これらとジメチルカー ボネート(DMC)、メチルエチルカーボネート(EM C)、1,2-ジエトキシエタン(DEE)、1,2-ジメトキシエタン (DME)、エトキシメトキシエタン (EME) などの低沸点溶媒との混合溶媒を用いてもよ い。また、これらの溶媒に溶解される溶質としては、し iPF6以外に、LiBF4、LiCF3SO3、LiAs F₆, LiN(CF₃SO₂)₂, LiC(CF₃S O2)3、LiCF3(CF2)3SO3等を用いてもよい。 さらに、ポリマー電解質、ポリマーに非水電解液を含浸 させたようなゲル状電解質、固体電解質なども使用でき る。

【0025】5. リチウム二次電池の充放電試験 これらの各電池A1~A6、B1~B6、C1~C6、 ※50 D1~D6およびE1~E6を用いて、室温(約25 9

℃)で、60mAの充電電流で、電池電圧が4.2Vになるまで定電流充電した後、600mAの放電電流で電池電圧が3.1Vになるまで放電させるという充放電を1サイクルとして、充放電サイクルを繰り返して行い、1サイクル目の放電容量に対する300サイクル目の放電容量を容量維持率(容量維持率(%)=(300サイ*

*クル目の放電容量/1サイクル目の放電容量)×10 0)として求める、下記の表4および表5に示すような 結果となった。

[0026]

【表4】

, 4	#11 - (20)	\ -	0091	ተ			
電池種類	コリチウム剤	使用 正極	「質の質量	使用負極	負極活物質の質量 B (g/m²)	質量 出 B/A	容量維持(%)
A 1	0.1	a 1	430	x 1	115	0.27	
A 2	0.1	a 1	430	x 2	120	0.28	87.3
A 3	0.1	a 1	430	x 8	160	0.37	88.3
A 4	0.1	a 1	430	x 10	170	0.40	88.8
A 5	0.1	a 1	430	x 12	180	0.42	88.6
A 6	0.1	a 1	430	x 13	183	0.43	81.1
B 1	0.3	b 1	430	x 3	1 3 0	0.30	83.9
B 2	0.3	b 1	4 3 0	x 4	1 3 5	0.31	84.4
В 3	0.3	b 1	430	x 8	160	0.37	91.8
B 4	0.3	b 1	430	x 12	1 8 0	0.42	91.7
B 5	0.3	b 1	4 3 0	x 14	190	0.44	91.6
B 6	0.3	b 1	4 3 0	x 15	195	0.45	81.4
C 1	0.5	c 1	4 3 0	x 5	1 4 2	0.33	81.3
C 2	0.5	c 1	4 3 0	x 6	147	0.34	84.3
C 3	0.5	c 1	430	x 8	160	0.37	88.6
C 4	0.5	c 1	4 3 0	× 12	180	0.42	89.9
C 5	0.5	c 1	430	x 17	199	0.46	89.4
C 6	0.5	c 1	4 3 0	x 19	206	0.48	81.1

[0027]

※ ※【表5】

	7				12001		
電池種類	コパルト酸 リチウム混 合比 (X)	使用正極	正極活物 質の質量 A (g/m)	使用負極	負極活物 質の質量 B (g/m²)	質量比B/A	容量維持(%)
D 1	0,7	d 1	430	x 7	155	0.36	82.0
D 2	0.7	d 1	4 3 0	x 8	160	0.37	89.0
D 3	0.7	d 1	430	× 12	180	0.42	90.2
D 4	0.7	d 1	430	x 19	206	0.48	91.8
D 5	0.7	d 1	430	x 21	2 1 3	0.50	82.8
E 1	0.9	e 1	4 3 0	x 9	165	0.38	80.5
E 2	0.9	e 1	430	× 10	170	0.40	90.1
E 3	0.9	e 1	430	x 17	199	0.46	90.4
E 4	0.9	e 1	430	x 21	2 1 3	0.50	91.1
E 5	0.9	e 1	4 3 0	x 23	2 1 7	0.50	87.4
E 6	0.9	e 1	430	x 24	220	0.51	81.1

【0028】6. 試験結果の検討

★質量比(B/A)を縦軸としてグラフで表すと図1に示上記表4および表5の結果から、コバルト酸リチウムの すような結果となった。なお、図1において、容量維持混合比Xを横軸とし、正極活物質に対する負極活物質の★50 率が84%未満の電池を×印で示し、容量維持率が84

Ţ

%以上で88%未満の電池を△印で示し、容量維持率が88%以上の電池を○印で示している。

【0029】ここで、図1において、〇印および△印と×印とを区画する下限線(図1の下方の実線)を引くと、B/A=0.15X+0.26という式が得られ、〇印および△印と×印とを区画する上限線(図1の上方の実線)を引くと、B/A=0.11X+0.41という式が得られた。このことから、コバルト酸リチウムの混合比をXとした場合の正極活物質に対する負極活物質の質量比B/Aは、0.15X+0.26≦B/A≦0.11X+0.41の関係を有する範囲に規制すると、高容量維持率でサイクル特性に優れたリチウム二次電池が得られることが分かる。

【0030】ここで、正極活物質に対する負極活物質の 質量比B/AがO. 15X+O. 26より少なくなる と、正極活物質量に対して負極活物質量が相対的に少な くなるため、充電時の正負極活物質の膨張が少なくな る。これは、正極においては、充電時にコバルト酸リチ ウムは膨張する反面、スピネル型マンガン酸リチウムは 収縮して膨張が相殺されるとともに、負極においては、 活物質量が少なくなったことで膨張が少なくなったこと による。この結果、充電時の負極合剤層と負極集電体と の密着性が低下して、容量維持率(サイクル特性)が低 下したと考えられる。また、正極活物質に対する負極活 物質の質量比B/AがO.11X+O.41より多くな ると、正極活物質量に対して負極活物質量が相対的に多 くなるため、負極合剤層の充放電による体積変化が大き くなって、放電時の正極と負極の対向圧力が必要以上に 大きくなり、電解液が搾り出されることにより容量維持 率 (サイクル特性)が低下すると考えられる。

【0031】さらに、図1において、○印をできる限り 多く含むような下限線(図1の下方の破線)を引くと、*

*B/A=0.372という式が得られ、上限線(図1の上方の破線)を引くと、B/A=0.0907X+0.419という式が得られた。このことから、コバルト酸リチウムの混合比をXとした場合の正極活物質に対する負極活物質の質量比B/Aを、0.372≦B/A≦0.0907X+0.419の関係を有する範囲に規制すると、さらに容量維持率が向上してサイクル特性に優れたリチウム二次電池を得ることが可能となる。この場合、正極の単位面積当たりの正極活物質量は430g/10 m²であるので、上記の範囲は160≦B≦39X+180となる。このことは、負極活物質量がこの範囲内であれば、正極と負極の対向圧力がより適正な範囲に維持されるということができる。

1 2

【0032】7. 混合正極活物質量の検討 上述においては、正極の単位面積当たりの質量が430 g/m²となるように塗布量を調整した例について検討 したが、以下においては、正極の単位面積当たりの質量 を変化させた場合について検討した。ここで、上述と同 様に各混合正極活物質 $\alpha \sim \epsilon$ を用いて、上述と同様に正 極合剤および正極スラリーを調製し、これを厚みが20 μmの正極集電体(アルミニウム箔またはアルミニウム 合金箔)の両面にドクターブレード法により塗布して、 正極集電体の両面に正極合剤層を形成した。この場合、 各正極合剤層を形成するに際して、正極の単位面積当た りの各混合正極活物質 $\alpha \sim \epsilon$ の質量が $480\,\mathrm{g/m^2}$ と なるように塗布量を調整した。これを乾燥させた後、正 極合剤の充填密度および厚みが下記の表2に示すような 値になるように圧縮ローラを用いて圧延し、所定寸法 (例えば幅が40mmで、長さが280mm)に切断し

30 て、正極a 2~e 2をそれぞれ作製した。

【0033】 【表6】

正極種類	混合正 極活物 質種類	コパルト酸 リチウムの 混合比(X)	混合正極活 物質の質量 (g/m²)	正極合剤の 充填密度 (g/c m³)	正極合剤 層の厚み (μm)
a 2	α	0.1	480	2.96	162
b 2	β	0.3	480	3.08	156
c 2	γ	0.5	480	3.20	150
d 2	δ	0.7	480	3. 32	1 4 5
e 2	ε	0.9	480	3, 44	1 4 0

【0034】ついで、上述のように作製した各正極 a 2 ~ e 2 と、上述と同様の各負極 x 1 ~ x 2 9 とをそれぞれ用いて、これらを下記の表 7 および表 8 に示すように組み合わせるとともに、これらの間にポリプロピレン製 微多孔膜からなるセパレータを介在させて積層して、上述と同様に渦巻状電極群とした後に円筒状の金属製外装缶に挿入した。ついで、各集電体から延出する集電タブ※50

※を各端子に溶接し、上述と同様な非水電解液を注入した後、外装缶の開口部に絶縁パッキングを介して正極蓋を取り付けて、封口してリチウム二次電池A7~A13、B7~B13、C7~C12、D7~D11およびE7~E12をそれぞれ作製した。

【0035】これらの各電池A7~A13、B7~B1 3、C7~C12、D7~D11およびE7~E12を 13

用いて、室温(約25℃)で、60mAの充電電流で、電池電圧が4.2 Vになるまで定電流充電した後、600mAの放電電流で電池電圧が3.1 Vになるまで放電させるという充放電を1サイクルとして、充放電サイクルを繰り返して行い、1サイクル目の放電容量に対する300サイクル目の放電容量を容量維持率(容量維持率*

*(%)=(300サイクル目の放電容量/1サイクル目の放電容量)×100)として求める、下記の表7および表8に示すような結果となった。 【0036】

14

1002

【表7】

A 7			т (д	(里水田)寸字:	•			
A 7 0.1 a 2 480 x 3 130 0.27 82.7 A 8 0.1 a 2 480 x 4 135 0.28 87.6 A 9 0.1 a 2 480 x 8 160 0.33 88.8 A 10 0.1 a 2 480 x 10 170 0.35 91.8 A 11 0.1 a 2 480 x 13 183 0.38 91.8 A 12 0.1 a 2 480 x 18 200 0.42 84.6 A 13 0.1 a 2 480 x 19 206 0.43 80.2 B 7 0.3 b 2 480 x 5 142 0.30 80.4 B 8 0.3 b 2 480 x 6 147 0.31 85.5 B 9 0.3 b 2 480 x 12 180 0.38 89.8 B 11 0.3 b 2 480 x 14 190 0.40 88.9 B 12 0.3 b 2 480 x 22 2 15		リチウム猪	使用正極	質の質量		質の質量		持 率
A9 0. 1 a2 480 x8 160 0. 33 88.8 A10 0. 1 a2 480 x10 170 0. 35 91.8 A11 0. 1 a2 480 x13 183 0. 38 91.8 A12 0. 1 a2 480 x18 200 0. 42 84.6 A13 0. 1 a2 480 x19 206 0. 43 80.2 B7 0. 3 b2 480 x5 142 0. 30 80.4 B8 0. 3 b2 480 x6 147 0. 31 85.5 B9 0. 3 b2 480 x8 160 0. 33 91.3 B10 0. 3 b2 480 x12 180 0. 38 89.8 B11 0. 3 b2 480 x14 190 0. 40 88.9 B12 0. 3 b2 480 x22 210 0. 44 86.4 B13 0. 3 b2 480 x22 215	A 7	0.1	a 2	480	x 3			
A10 0.1 a2 480 x10 170 0.35 91.8 A11 0.1 a2 480 x13 183 0.38 91.8 A12 0.1 a2 480 x18 200 0.42 84.6 A13 0.1 a2 480 x19 206 0.43 80.2 B7 0.3 b2 480 x5 142 0.30 80.4 B8 0.3 b2 480 x6 147 0.31 85.5 B9 0.3 b2 480 x12 180 0.38 89.8 B10 0.3 b2 480 x12 180 0.38 89.8 B11 0.3 b2 480 x14 190 0.40 88.9 B12 0.3 b2 480 x22 210 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.38 <td< td=""><td>A 8</td><td>0.1</td><td>а 2</td><td>480</td><td>x 4</td><td>135</td><td>0.28</td><td>87.6</td></td<>	A 8	0.1	а 2	480	x 4	135	0.28	87.6
A11 0. 1 a 2 4 8 0 x 13 1 8 3 0. 3 8 9 1. 8 A12 0. 1 a 2 4 8 0 x 18 2 0 0 0. 4 2 8 4. 6 A13 0. 1 a 2 4 8 0 x 19 2 0 6 0. 4 3 8 0. 2 B 7 0. 3 b 2 4 8 0 x 5 1 4 2 0. 3 0 8 0. 4 B 8 0. 3 b 2 4 8 0 x 6 1 4 7 0. 3 1 8 5. 5 B 9 0. 3 b 2 4 8 0 x 8 1 6 0 0. 3 3 9 1. 3 B 10 0. 3 b 2 4 8 0 x 12 1 8 0 0. 3 8 8 9. 8 B 11 0. 3 b 2 4 8 0 x 14 1 9 0 0. 4 0 8 8. 9 B 12 0. 3 b 2 4 8 0 x 20 2 1 0 0. 4 4 8 6. 4 B 13 0. 3 b 2 4 8 0 x 22 2 1 5 0. 4 5 8 2. 2 C 7 0. 5 c 2 4 8 0 x 8 1 6 0 0. 3 3 8 8. 1 C	A 9	0.1	a 2	480	x 8	160	0.33	88.8
A12 0. 1 a 2 4 8 0 x 18 2 0 0 0. 4 2 8 4. 6 A13 0. 1 a 2 4 8 0 x 19 2 0 6 0. 4 3 8 0. 2 B 7 0. 3 b 2 4 8 0 x 5 1 4 2 0. 3 0 8 0. 4 B 8 0. 3 b 2 4 8 0 x 6 1 4 7 0. 3 1 8 5. 5 B 9 0. 3 b 2 4 8 0 x 8 1 6 0 0. 3 3 9 1. 3 B 10 0. 3 b 2 4 8 0 x 12 1 8 0 0. 3 8 8 9. 8 B 11 0. 3 b 2 4 8 0 x 14 1 9 0 0. 4 0 8 8. 9 B 12 0. 3 b 2 4 8 0 x 20 2 1 0 0. 4 4 8 6. 4 B 13 0. 3 b 2 4 8 0 x 22 2 1 5 0. 4 5 8 2. 2 C 7 0. 5 c 2 4 8 0 x 7 1 5 5 0. 3 2 8 2. 0 C 8 0. 5 c 2 4 8 0 x 12 1 8 0 0. 3 8 9 1. 5 C	A 10	0.1	a 2	480	x 10	170	0.35	91.8
A13 0. 1 a 2 4 8 0 x 19 2 0 6 0. 4 3 8 0. 2 B 7 0. 3 b 2 4 8 0 x 5 1 4 2 0. 3 0 8 0. 4 B 8 0. 3 b 2 4 8 0 x 6 1 4 7 0. 3 1 8 5. 5 B 9 0. 3 b 2 4 8 0 x 8 1 6 0 0. 3 3 9 1. 3 B 10 0. 3 b 2 4 8 0 x 12 1 8 0 0. 3 8 8 9. 8 B 11 0. 3 b 2 4 8 0 x 14 1 9 0 0. 4 0 8 8. 9 B 12 0. 3 b 2 4 8 0 x 20 2 1 0 0. 4 4 8 6. 4 B 13 0. 3 b 2 4 8 0 x 22 2 1 5 0. 4 5 8 2. 2 C 7 0. 5 c 2 4 8 0 x 7 1 5 5 0. 3 2 8 2. 0 C 8 0. 5 c 2 4 8 0 x 12 1 8 0 0. 3 8 9 1. 5 C 10 0. 5 c 2 4 8 0 x 16 1 9 7 0. 4 1 9 1. 6 C 11	A11	0.1	a 2	480	x 13	183	0.38	91.8
B7 0.3 b2 480 x5 142 0.30 80.4 B8 0.3 b2 480 x6 147 0.31 85.5 B9 0.3 b2 480 x8 160 0.33 91.3 B10 0.3 b2 480 x12 180 0.38 89.8 B11 0.3 b2 480 x14 190 0.40 88.9 B12 0.3 b2 480 x20 210 0.44 86.4 B13 0.3 b2 480 x22 215 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.38 91.5 C10 0.5 c2 480 x12 180 0.38 91.5 C11 0.5 c2 480 x12 180 0.38 91.5	A 12	0.1	a 2	480	x 18	200	0.42	84.6
B8 0.3 b2 480 x6 147 0.31 85.5 B9 0.3 b2 480 x8 160 0.33 91.3 B10 0.3 b2 480 x12 180 0.38 89.8 B11 0.3 b2 480 x14 190 0.40 88.9 B12 0.3 b2 480 x20 210 0.44 86.4 B13 0.3 b2 480 x22 215 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.33 88.1 C9 0.5 c2 480 x12 180 0.38 91.5 C10 0.5 c2 480 x16 197 0.41 91.6 C11 0.5 c2 480 x24 220 0.46 84.9	A 13	0.1	a 2	480	x 19	206	0.43	80.2
B9 0.3 b2 480 x8 160 0.33 91.3 B10 0.3 b2 480 x12 180 0.38 89.8 B11 0.3 b2 480 x14 190 0.40 88.9 B12 0.3 b2 480 x20 210 0.44 86.4 B13 0.3 b2 480 x22 215 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.33 88.1 C9 0.5 c2 480 x12 180 0.38 91.5 C10 0.5 c2 480 x16 197 0.41 91.6 C11 0.5 c2 480 x24 220 0.46 84.9	B 7	0.3	b 2	480	x 5	142	0.30	80.4
B10 0.3 b2 480 x12 180 0.38 89.8 B11 0.3 b2 480 x14 190 0.40 88.9 B12 0.3 b2 480 x20 210 0.44 86.4 B13 0.3 b2 480 x22 215 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.33 88.1 C9 0.5 c2 480 x12 180 0.38 91.5 C10 0.5 c2 480 x16 197 0.41 91.6 C11 0.5 c2 480 x24 220 0.46 84.9	B 8	0.3	b 2	480	х 6	1 4 7	0.31	85.5
B11 0.3 b2 480 x14 190 0.40 88.9 B12 0.3 b2 480 x20 210 0.44 86.4 B13 0.3 b2 480 x22 215 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.33 88.1 C9 0.5 c2 480 x12 180 0.38 91.5 C10 0.5 c2 480 x16 197 0.41 91.6 C11 0.5 c2 480 x24 220 0.46 84.9	B 9	0.3	b 2	480	x 8	160	0.33	91.3
B 12 0.3 b 2 480 x 20 2 1 0 0.44 86.4 B 13 0.3 b 2 480 x 22 2 1 5 0.45 82.2 C 7 0.5 c 2 480 x 7 155 0.32 82.0 C 8 0.5 c 2 480 x 8 160 0.33 88.1 C 9 0.5 c 2 480 x 12 180 0.38 91.5 C 10 0.5 c 2 480 x 16 197 0.41 91.6 C 11 0.5 c 2 480 x 24 2 20 0.46 84.9	B 10	0.3	b 2	480	x 12	180	0.38	89.8
B13 0.3 b2 480 x22 215 0.45 82.2 C7 0.5 c2 480 x7 155 0.32 82.0 C8 0.5 c2 480 x8 160 0.33 88.1 C9 0.5 c2 480 x12 180 0.38 91.5 C10 0.5 c2 480 x16 197 0.41 91.6 C11 0.5 c2 480 x24 220 0.46 84.9	BII	0.3	ь 2	480	x 14	190	0.40	88.9
C 7 O . 5 C 2 480 x 7 155 O . 32 82. 2 C 8 O . 5 C 2 480 x 8 160 O . 33 88. 1 C 9 O . 5 C 2 480 x 12 180 O . 38 91. 5 C 10 O . 5 C 2 480 x 16 197 O . 41 91. 6 C 11 O . 5 C 2 480 x 24 2 20 O . 46 84. 9	B 12	0.3	b 2	480	× 20	210	0.44	86.4
C 8 O . 5 C 2 4 8 0 x 8 1 6 0 O . 3 3 8 8 . 1 C 9 O . 5 C 2 4 8 0 x 12 1 8 0 O . 3 8 9 1 . 5 C 10 O . 5 C 2 4 8 0 x 16 1 9 7 O . 4 1 9 1 . 6 C 11 O . 5 C 2 4 8 0 x 24 2 2 0 O . 4 6 8 4 . 9	B 13	0.3	b 2	480	× 22	2 1 5	0.45	82.2
C 9 0.5 c 2 480 x 12 180 0.38 91.5 C 10 0.5 c 2 480 x 16 197 0.41 91.6 C 11 0.5 c 2 480 x 24 220 0.46 84.9	 	0.5	c 2	480	x 7	1 5 5	0.32	82.0
C10 0.5 c2 480 x16 197 0.41 91.6 C11 0.5 c2 480 x24 220 0.46 84.9	\vdash	0.5	c 2	480	x 8	160	0.33	88. 1
C11 0. 5 c2 480 x24 220 0. 46 84. 9	C 9	0.5	c 2	480	x 12	180	0.38	91.5
C12 0 5 C2 4 8 0 125 0 0 5 0 1 5		0.5	c 2	480	x 16	197	0.41	91.6
C12 0. 5 c2 480 x25 225 0. 47 81 9		0.5	c 2	480	x 24	220	0.46	84.9
	C 12	0.5	c 2	480	x 25	2 2 5	0.47	81.9

[0037]

※ ※【表8】

15							
電池 種類	コパルト酸 リチウム混 合比(X)	使用 正極	正極活物 質の質量 A(g/m²)	使用 負極	負極活物 質の質量 B(g/m)	質 虽 比 B/A	容量維持(%)
		d 2	480	x 10	170	0.35	83.4
D 6				x 11	176	0.37	91.3
D 7	0.7	d 2	480	X 11	110		
D 8	0.7	d 2	480	x 14	190	0.40	90.1
D 9	0.7	d 2	480	x 19	206	0.43	90.1
D 10	0.7	d 2	480	x 26	230	0.48	86.9
DII	0.7	d 2	480	× 27	2 3 5	0.49	82.6
E 7	0.9	e 2	480	× 13	183	0.38	80.3
E 8	0.9	e 2	480	x 14	190	0.40	89.8
E 9	0.9	e 2	480	x 16	1 9 7	0.41	90.8
E 10		e 2	480	x 21	2 1 3	0.44	89.1
E11		e 2	480	× 28	2 4 0	0.50	87.0
E 12	 	e 2	480	× 29	246	0.51	81.4

酸リチウムの混合比Xを横軸とし、正極活物質に対する 負極活物質の質量比(B/A)を縦軸としてグラフで表 20 すと図2に示すような結果となった。なお、図2におい て、容量維持率が84%未満の電池を×印で示し、容量 維持率が84%以上で88%未満の電池を△印で示し、 容量維持率が88%以上の電池を○印で示している。 【0039】ここで、図2において、〇印および△印と ×印とを区画する下限線(図2の下方の実線)を引く と、B/A=0.15X+0.26という式が得られ、 ○印および△印と×印とを区画する上限線(図2の上方 の実線)を引くと、B/A=0.11X+0.41とい う式が得られた。このことから、コバルト酸リチウムの 30 ·混合比をXとした場合の正極活物質に対する負極活物質 の質量比B/Aは、0.15X+0.26≦B/A≦ 0.11X+0.41の関係を有する範囲に規制する と、高容量維持率でサイクル特性に優れたリチウム二次 電池が得られることが分かる。なお、この範囲は図1で 求めた範囲と一致する。このことは、正極の単位面積当 たりの質量を変化させても、正極活物質に対する負極活 物質の質量比(B/A)の好ましい範囲は等しいことを

【0038】上記表7および表8の結果から、コバルト

【0040】さらに、図2において、〇印のみを含むよ 40 うに下限線(図2の下方の破線)を引くと、B/A= 0.333という式が得られ、上限線(図2の上方の破 線)を引くと、B/A=0.0813X+0.375と いう式が得られた。このことから、コバルト酸リチウム の混合比をXとした場合の正極活物質に対する負極活物 質の質量比B/Aを、0.333≤B/A≤0.081 3X+0.375の関係を有する範囲に規制すると、さ らに高容量維持率でサイクル特性に優れたリチウム二次 電池を得ることが可能となる。この場合、正極の単位面 積当たりの正極活物質は 480 g/m^2 であるので、上 *50

意味している。

*記の範囲は160≤B≤39X+180となり、図1で 求めた範囲と一致する。

16

【0041】9. 負極の厚みの検討

上述と同様な天然黒鉛(Lc値が150Å以上で、d値 が3.38 Å以下のもの)粉末を用いて、上述と同様に 負極スラリーを調製した後、これを厚みが18μmの負 極集電体(銅箔)の両面にドクターブレード法により塗 布して、負極集電体の両面に負極合剤層を形成した。こ の場合、負極合剤層を形成するに際して、下記の表9に 示すような負極の単位面積当たりの質量となるように塗 布量を調整した。これを乾燥させた後、圧縮ローラを用 いて負極合剤層が表りに示すような厚みになるまで圧延 し、所定寸法(例えば幅が42mmで、長さが300m m) に切断して負極x30~x47を作製した。なお、 下記の表9には、上述した負極×10,×12,×1 4, x16の結果も併せて示している。

[0042]

【表9】

		_	Τ.					
	負極類		負極活物質 質量(g/m	の ²)	負極合剤層 厚み (μm)	の		
	$\times 30$		170		8 1			
	x 31		170		8 6			
	x 10		170		115			
	x 3	2	170		1 5 8			
	x 33		170		1 6 3			
	x 34		180		8 6			
	x 35		180		9 2			
	× 36		180		9 7			
	x 12		180		1 1 5			
	x 37		180		159	1		
	× 38		180		1 6 0			
	× 39		180		1 6 5			
	× 40		190		9 7	1		
	x 41		190		1 0 2			
	× 14		190		1 2 2			
L	× 42		190		162			
x 43			190		168			
x 44			197		101			
x 45		<u> </u>	197		106			
x 16			197		1 2 6			
x 46			197		163			
x 47			197		168			

*【0043】ついで、上述のように作製した各正極 a 2 ~e2と、上述のようにして作製した各負極×30~x 47とをそれぞれ用いて、これらを下記の表10に示す ように組み合わせるとともに、これらの間にポリプロピ レン製微多孔膜からなるセパレータを介在させて積層し て、上述と同様に渦巻状電極群とした後に円筒状の金属 製外装缶に挿入した。ついで、各集電体から延出する集 電タブを各端子に溶接し、上述と同様な非水電解液を注 入した後、外装缶の開口部に絶縁パッキングを介して正 10 極蓋を取り付けて、封口してリチウム二次電池A14~ A17, B14~B17, C13~C16, D12~D 15およびE13~E16をそれぞれ作製した。 【0044】これらの各電池A14~A17、B14~ B17、C13~C16、D12~D15およびE13 ~E16を用いて、室温(約25℃)で、60mAの充 電電流で、電池電圧が4.2 Vになるまで定電流充電し た後、600mAの放電電流で電池電圧が3.1Vにな るまで放電させるという充放電を1サイクルとして、充 放電サイクルを繰り返して行い、1サイクル目の放電容 20 量に対する300サイクル目の放電容量を容量維持率 (容量維持率(%)=(300サイクル目の放電容量/ 1サイクル目の放電容量)×100)として求める、下 記の表10および表11に示すような結果となった。 [0045]

*								
	電池種類	「リチウム猪	使用正極	正極合剤 層の厚み a(μ m)	使用負極	負極合剤 層の厚み b (μm)	厚み出 b/a	容量維持(%)
	A 14		a 2	162	× 30	8 1	0.50	88.7
	A 15	0.1	а 2	162	x 31	8 6	0.53	89.7
	A 10	0.1	a 2	162	x 10	115	0.71	91.8
	A 16	0.1	a 2	162	x 32	158	0.97	91.3
Ì	A17	0.1	a 2	162	x 33	163	1.01	88.1
	B 14	0.3	b 2	156	× 34	8 6	0.55	88.8
	B 15	0.3	b 2	156	x 35	9 2	0.59	90.2
	B10	0.3	b 2	156	x 12	1 1 5	0.74	89.8
	B16	0.3	b 2	156	x 37	159	1.02	90.1
	B 17	0.3	b 2	156	x 39	165	1.06	88.6
L	C 13	0.5	c 2	150	× 35	9 2	0.61	8 8 . 1
	C 14	0.5	c 2	1 5 0	x 36	9 7	0.65	90.2
	C 9	0.5	c 2	1 5 0	x 12	115	0.77	91.5
(C 15	0.5	c 2	150	x 38	160	1.07	90.1
(C 16	0.5	c 2	150	x 39	165	1.10	88.0
								

【表10】

20

19								
電池		ト龍	使用	正極合剤層の厚み	使用	負極合剤 層の厚み	厚み比	容量維持。
種類	合比 [2	ζ) ⁽⁽⁾	正極	a (µm)	負極	b (μm)	b/a	(%)
D 12	0.	7	d 2	1 4 5	$\times 40$	9 7	0.67	88.5
D 13	0.	7	d 2	1 4 5	x 41	102	0.71	90.4
D 8	0.	7	d 2	1 4 5	x 14	1 2 2	0.84	90.1
	0.	7	d 2	1 4 5	x 42	162	1. 12	89.5
D 14	 		d 2	1 4 5	× 43	168	1. 16	88.8
D 15	0.	7	+	140	× 44	101	0.72	88.3
E13	0.	9	e 2				0.76	89.8
E 14	0.	9	e 2	140	× 45	<u> </u>		
E 9	0.	9	e 2	140	x 16	126	0.90	
E 15	0.	9	e 2	140	× 46	163	1. 17	90.0
E 16	_	9	e 2	140	× 47	168	1. 20	88.1
الاخداد	' I ' ' '	-	T T	1				

【0047】上記表10および表11の結果から、コバ ルト酸リチウムの混合比Xを横軸とし、正極合剤層の厚 みに対する負極合剤層の厚みの比(b/a)を縦軸とし てグラフで表すと図3に示すような結果となった。な お、図3において、容量維持率が89%未満の電池を× 20 印で示し、容量維持率が89%以上の電池を○印で示し ている。

【0048】ここで、図3において、〇印と×印を区画 する下限線 (図3の下方の実線)を引くと、b/a= 0.29X+0.5という式が得られ、○印と×印を区 画する上限線(図3の上方の実線)を引くと、b/a= 0.25X+0.95という式が得られる。このことか ら、コバルト酸リチウムの混合比をXとした場合の正極 合剤層の厚みに対する負極合剤層の厚みの比(b/a) は、0.29X+0.5≦b/a≦0.25X+0.9 5の関係を有する範囲に規制すると、高容量維持率でサ イクル特性に優れたリチウム二次電池を得ることが可能 となる。

【0049】上述したように、本発明においては、正極 の単位面積当たりの正極活物質の質量をAとし、負極の 単位面積当たりの負極活物質の質量をBとし、かつ混合 正極活物質中のコバルト酸リチウムの質量比をXとした 場合に、正極活物質の質量Aに対する負極活物質の質量 Bの質量割合(B/A)が0.15X+0.26≦B/ A≦O.11X+O.41の範囲になるように規制して 40 いる。このため、充電時に正負極活物質が膨張し、また 正極活物質のスピネル型マンガン酸リチウムとコバルト 酸リチウムの混合比が変化して、正極活物質の膨張の幅 が変化しても、正極と負極の対向圧力は適度に調整され るため、負極合剤と負極集電体との密着性が低下するこ とが抑制できるようになる。また、放電時に、正負極活 物質が収縮しても、負極の活物質量が調整されているた め、放電時の正負極の対向圧力が必要以上に小さくなる ことが抑制できるようになる。この結果、高容量維持率 でサイクル特性に優れたリチウム二次電池が得られるよ*50

*うになる。

【0050】なお、上述した実施の形態においては、ス ピネル型マンガン酸リチウムとしてLi1.07 Mn1.89 M g0.04 O4 を用いる例について説明したが、スピネル型 マンガン酸リチウムとしては、組成式がLi1+x М п2-ү MzO4 (但し、MはB, Mg, Ca, Sr, Ba, T i, V, Cr, Fe, Co, Ni, Cu, Al, In, Nb, Mo, W, Y, Rhから選択される少なくとも一 種の元素であり、O.54≦((1+X)+Z)/(2 -Y) ≤ 0.62 \bar{c} , -0.15 ≤ X ≤ 0.15 \bar{c} , Y ≤ 0.5 で、 $0 \leq Z \leq 0.1$ である)で表される組成の ものも同様な結果が得られる。このうち、特に優れた高 温特性(高温での充放電サイクル、高温保存性等)を示 すためには、Mg添加系あるいはA1添加系のものを用 30 いるのが望ましい。

【0051】また、上述した実施の形態においては、コ バルト酸リチウムとしてLiCoO2を用いる例につい て説明したが、コバルト酸リチウムとしては、組成式が LiCo1-xMxO2 (但し、MはB, Mg, Ca, S r, Ba, Ti, V, Cr, Fe, Ni, Cu, Al, In, Nb, Mo, W, Y, Rhから選択される少なく とも一種の元素であり、0≤X≤0.1である)で表さ れる組成のものも同様な結果が得られる。このうち、特 に優れた放電特性を示すためには、Cr添加系、Mn添 加系、A1添加系、Ti添加系のものを用いるのが望ま しい。

【図面の簡単な説明】

【図1】 正極の単位面積当たりの質量を430g/m 2とした場合の正極活物質のコバルト酸リチウムの混合 比と正負極活物質の質量比の関係を示す図である。

【図2】 正極の単位面積当たりの質量を480g/m 2とした場合の正極活物質のコバルト酸リチウムの混合 比と正負極活物質の質量比の関係を示す図である。

【図3】 コバルト酸リチウムの混合比と正負極活物質 層の厚み比との関係を示す図である。

コパルト酸リチウム混合比(X)

フロントページの続き

(72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 F ターム(参考) 5H029 AJ03 AJ05 AK03 AK19 AL07 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 CJ08 CJ28 HJ00 HJ02 HJ04 5H050 AA07 AA08 BA17 CA00 CA01 CA08 CA08 CA09 CA29 CB08 DA02 DA03 FA05 GA10 GA27 HA00 HA02 HA04