Time Factors and Rates

April 7, 2016

When measuring change over time, lower-case variables reflect rates while the corresponding upper-case variable connects adjacent discrete periods. 1,2 So, for example, if the annual interest rate is r=0.03 or three percent, then the annual interest factor is R=1.03.

Code	Output	Description
\Rfree	R	Riskfree interest factor
\rfree	r	Riskfree interest return
\Risky	${f R}$	The return factor on a risky asset
\risky	${f r}$	The return rate on a risky asset
\Rport	\mathfrak{R}	The return factor on the entire portfolio
\rport	t	The return rate on the entire portfolio
\rport	r	The return rate on the entire portfolio
\RSave	<u>R</u>	Return factor earned on positive end-of-period assets
\rsave	<u>r</u> R	Return rate earned on positive end-of-period assets
\RBoro	R	Return factor paid on debts
\rboro	\overline{r}	Return rate paid on debts

 Table 1 Factors and Rates

We depart from the upper-lower case scheme when the natural letter to use has an even more natural or urgent use elsewhere in our scheme. A particularly common example occurs in the case of models like Blanchard (1985) in which individual agents are subject to a Poisson probability of death. Because death was common in the middle ages, we use the archaic Gothic font for the death rate; and the probability of survival is the cancellation of the probability of death:

Code	LaTeX	Description
\DieFac	D	Probabilty of death
\LivFac	\mathscr{D}	Probability to not die = $(1 - \mathfrak{D})$

 Table 2
 Special Cases: Factors and Rates

¹This convention rarely conflicts with the usage we endorse elsewhere of indicating individual-level variables by the lower and aggregate variables by the upper case.

²If there is a need for the continuous-time representation, we endorse use of the discrete-time rate defined below. Any author who needs a continuous-time rate, a discrete-time rate, and a discrete-time factor is invited to invent their own notation.

References

Blanchard, Olivier J. (1985): "Debt, Deficits, and Finite Horizons," *Journal of Political Economy*, 93(2), 223–247.