P GCD Infro

+ Properties of GCD

- How to find GCD

- GCD of all clements in a aboy.

- Check if there exist a subsequence.

Delet 1 element, find max GCD

GCD = GREATEST COMMON DIVISOR

$$X$$
 is the lassest number for which $a^{3}/x = 0$ & $b^{3}/x = 0$

(Vizzes

3)
$$g(d(10, -25) \neq 5$$

 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{10}$

4)
$$g(d(-16, -24) = 8$$

1 1

2 2

4 3

4 4

8 6

16 8

5)
$$g(d(0,8) = 8 / | g(d(0,a) = a)$$

1 1
2 2
4 4
8 8

Proposties of GCD

gcd(a,b) = gcd(|a|,|b|)

2) gcd (a,b) = gcd(b,a)

3) gcd(a,0) = |a|# $gcd(0,0) \neq onderlined$.

4) $gcd(a_1b_1c) \rightarrow gcd(gcd(a_1b),c)$ $gcd(gcd(a_1c),b)$

O1) Given 2 numbers AkB find gcd(A,B).

A1B>0.

Approach 1: Inf $gcd \neq min(A,B)$;

for (infi=gcd; $i \geq 1$; i--) \mathcal{L} if $(a\%i ==0 bl b\%i ==0) \mathcal{L}$ return i;

detuan i;

TC: 0 (mm (A,B)) Sc:0(1)

Approach 2

D Find factors of min (A1B):

2) Check for largest factor found
above for which max(A1B) % factor >0

TC: O (Tim (A1B))

$$a \ge b$$

$$g cd(a,b) = g cd(a-b,b)$$
$g cd(2^0,8)$
$g cd(1^2,8)$
$g cd(1^2,8)$
$g cd(4,h)$
$g cd(4,h)$
$g cd(0,h)$
$g cd(0,h)$
$g cd(0,h)$
$g cd(18,5)$

 $= \gcd(23,5)$ $\Rightarrow \gcd(18,5) \Rightarrow 23-5(1)$ $\Rightarrow \gcd(3,5) \Rightarrow 23-5(2)$ $\Rightarrow \gcd(8,5) \Rightarrow 23-5(3)$ $\Rightarrow \gcd(8,5) \Rightarrow 23-5(4)$ $\Rightarrow \gcd(3,5) \Rightarrow 23-5(4)$ $\Rightarrow \gcd(5,3)$

gcd (a,b)

₱ gcd (a%b,b)

₱ gcd (b,a%b)

gcd(26,12) $\neq gcd(12,26\%)$ $\Rightarrow gcd(2,12\%)$ $\Rightarrow gcd(2,12\%)$ $\Rightarrow gcd(2,12\%)$ $\Rightarrow gcd(2,0)$ $\Rightarrow 2$ # gcd(12,26) $\Rightarrow gcd(26,12\%)$ $\Rightarrow gcd(26,12\%)$ $\Rightarrow gcd(26,12\%)$

Pseudo Code

int gcd (inta, intb) 2

if (b==0)

between a:

return ged (b, a%b).

G: O (log_ max(A,B))

(12) Given N Array clements. Find GCD of all clemente # [2, 4, 6] \$ 2 [13, 69, 10, 14] 7 1 Approach 1 : Int ars 70 /Arol for (Indi=0; izn; 1++) } ars = grd(ars, arr [i]); Tc: O(nx log (max (add)))

(13) Given N Array Elements. Find GCD
more of factorials of all given clements?
Exi: [4, 3, 8, 6] adr [i] < n
[4!,3!,8!,6!]
417 1 x 2 x 3 x 4
317 1 x 2 x 3
8! => 1 x2 x3 x4 x5x6x7x8
6! 7 2 x 3 x 4 x 5 x 6
$gcd(a,b,c,d) \leq min(a,b,c,d)$
Find factorial of minimum Number
To find min \$ O(n) = O(n) 3) To find feel \$ O(n)
Sc: O(1)

SUBSE QUENCE

- A sequence generated by deleting of more elements from array.

Ext [A, 2, 1 4, 5]

[2, 1, 2, 5] X

[1, 2, 5] X

(JH) Given an array reduon if there exists a subsequence where ged = 1. Tove Ex1) [4 6 3 8] a, a, a, a, a, a, gcd (a,,a3,a5) 71 acd (a2, a4, a6) => X Approach 1: Find GCD of assau. if GCD==1 Tc: O(n max (azs))

Q4) Given an array. Delete exactly 1 element such that the GCD of the remaining array is Maximised.

Ex A = [12, 15, 18]

1) Delete 12 Gra (15,18) \$73

2) Deleke 15 gcd (12,18)=6

3) Delete 18

als \$\frac{1}{A}\$ \quad \left(12\sqrt) \frac{1}{A} \quad \quad \frac{1}{A} \quad \quad \frac{1}{A} \quad \frac{1}{A} \quad \quad \frac{1}{A} \quad \quad \quad \frac{1}{A} \quad \

Porfix 4 4 1 1 1 1 1

Solfin 121214/16

Tc: nxlogmax(A)

(15) There are N Players, cach with strength A [1]. FB, When a player i, attorbes player i strength reduces to [A[i]-A[i]] or O, depending on who extracked. When a player strength reaches zero, it loses the game, and the game continues in the same manner among other players until only 1 Sugrivor remains, Can you tell the minimum health list groving person can have? # A

(cs. 1: A addachs B (x.2: B addack A)

(G) (6) (9)

(G) (6) (6) (6)

(6,4) + (4,2) + (2,2) + (2,0) S_1 S_2 + G(2,0) S_3 S_4 + G(2,0) S_3 S_4 + G(2,0) S_4 + G(2,0) S_5 + G(2,0) +

•

Inverse modulo

(b) % m = (b) % m

(b) x 1 % m

(b) m x a 1 % m) % m

(b) m x a 1 % m) % m

 $\# \left(\left(\alpha^{-1} \right)^{0} \right)$

$$(a^{-1}\%m) \neq b$$

b will exist if $(gcd(a,m) \Rightarrow 1)$
 $(axb)\%m \Rightarrow 1$,

 $(axb)\%m \Rightarrow 1$,

 $(axb)\%m \Rightarrow 1$

2) $(axb)\%m \Rightarrow 1$
 $(axb)\%m \Rightarrow 1$

Little fermat m => prime no 2/0,+79 $\int \left(\alpha^{p-1}\right)^{0} \left(\alpha^{p-1}\right$ $(a^{-1})^{\circ}/P + (a^{p-2})^{\circ}/P$ Tc: O(logP)

