Python for Orbital Mechanics

Husseinat Etti-Balogun March 2024

COORDINATE SYSTEMS

WHAT IS A COORDINATE SYSTEM?

A coordinate system is a method for identifying the location of a point.

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space.

DIFFERENT COORD SYSTEMS COMMONLY USED

SPHERICAL COORDINATES (r, θ, φ)

<u>r:</u> the distance of the radial line r connecting the point to the fixed point of origin (which is located on a fixed zenith direction axis); $\underline{\theta}$: the polar or inclination angle θ of the radial line r (latitude) $\underline{\varphi}$: the azimuthal angle φ of the radial line r (longitude)

The equations for converting from rectangular to spherical

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$\varphi = \cos^{-1} \left(\frac{z}{\rho}\right)$$

The equations for converting from spherical to rectangular

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

FUNDAMENTAL PLANES

GEOCENTRIC FRAMES OF REFERENCE

Earth Centric Inertial: inertial, not rotating, with respect to the stars; useful to describe motion of celestial bodies and spacecraft.

Earth Centric Earth Fixed:

not inertial, accelerated, rotating with respect to the stars; useful to describe motion of objects on Earth surface.

OTHER FRAMES OF REFERENCE

SATELLITE NORMAL

<u>x</u>: the velocity vector

 $\underline{\mathbf{y}}$: the angular momentum (cross product of x & z)

<u>z:</u> the (nadir) negative of the position vector from the source of orbit

PERIFOCAL COORDINATES (r, θ, φ)

 \hat{p} : pointing along the x axis

 \hat{q} : the pointing along the x axis

 $\widehat{\underline{w}}$: pointing along the x axis

FRAME CONVERSIONS

Position vector in one frame can be converted to another frame using a rotation matrix. Bear in mind that vector rotations are different to coordinate rotations.

$$\begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow R_z$$

$$\begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow R_x$$

$$\begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow R_y$$

READING TLES

An example TLE for the International Space Station:

```
ISS (ZARYA)
1 25544U 98067A 08264.51782528 -.00002182 00000-0 -11606-4 0 2927
2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537
```

LINE 1

Field	Columns	Content	Example
1	01	Line number	1
2	03–07	Satellite catalog number	25544
3	08	Classification (U: unclassified, C: classified, S: secret) [12]	U
4	10–11	International Designator (last two digits of launch year)	98
5	12–14	International Designator (launch number of the year)	067
6	15–17	International Designator (piece of the launch)	Α
7	19–20	Epoch year (last two digits of year)	08
8	21–32	Epoch (day of the year and fractional portion of the day)	264.51782528
9	34–43	First derivative of mean motion; the ballistic coefficient [13]	00002182
10	45–52	Second derivative of mean motion (decimal point assumed) [13]	00000-0
11	54–61	B*, the drag term, or radiation pressure coefficient (decimal point assumed) [13]	-11606-4
12	63–63	Ephemeris type (always zero; only used in undistributed TLE data) [14]	0
13	65–68	Element set number. Incremented when a new TLE is generated for this object. ^[13]	292
14	69	Checksum (modulo 10)	7

LINE 2

Field	Columns	Content	Example
1	01	Line number	2
2	03–07	Satellite Catalog number	25544
3	09–16	Inclination (degrees)	51.6416
4	18–25	Right ascension of the ascending node (degrees)	247.4627
5	27–33	Eccentricity (decimal point assumed)	0006703
6	35–42	Argument of perigee (degrees)	130.5360
7	44–51	Mean anomaly (degrees)	325.0288
8	53–63	Mean motion (revolutions per day)	15.72125391
9	64–68	Revolution number at epoch (revolutions)	56353
10	69	Checksum (modulo 10)	7

REFERENCES

https://www.youtube.com/watch?v=DbYapFLJsPA

https://www.youtube.com/watch?v=uuKzfwQu6eQ

https://www.youtube.com/watch?v=OOSQm8R9AsY&t=1832s

https://www.youtube.com/watch?v=qEdHZP_jRIE

https://en.wikipedia.org/wiki/Coordinate_system

https://en.wikipedia.org/wiki/Spherical_coordinate_system

https://en.wikipedia.org/wiki/Astronomical coordinate systems

http://hyperphysics.phy-astr.gsu.edu/hbase/eclip.html

https://en.wikipedia.org/wiki/Earth-centered_inertial

https://en.wikibooks.org/wiki/Astrodynamics/Coordinate_Systems

https://en.wikipedia.org/wiki/Earth-centered, Earth-fixed coordinate system

https://orbital-mechanics.space/classical-orbital-elements/perifocal-frame.html

https://medium.com/@zackfizell10/reference-frames-every-aerospace-engineer-should-know-db10638b6d7a

https://en.wikipedia.org/wiki/Two-line_element_set