STATS 100A HW5

Problem 1 Suppose $X \sim f(x)$, and let Y = aX + b, where a and b are constants.

- (1) Prove E(Y) = aE(X) + b, and $Var(Y) = a^2Var(X)$.
- (2) Assuming a > 0, calculate the density of Y, g(y).

Problem 2 Suppose $Z \sim N(0, 1)$, i.e.,

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

- (1) Calculate E(Z), Var(Z) and E(|Z|).
- (2) Let $X = \mu + \sigma Z$. Calculate the density of X, g(x), E(X), and Var(X) based on Problem 1.
- (3) Suppose $P(Z \in [-2, 2]) = 95\%$, then what is $P(X \in [\mu 2\sigma, \mu + 2\sigma])$?

Problem 3 Poisson process: Suppose we divide the time axis into small periods $(0, \Delta t)$, $(\Delta t, 2\Delta t)$, ..., $(t, t + \Delta t)$, ... Suppose within each interval, we flip a coin independently. Suppose the probability of getting a head is $\lambda \Delta t$. Let T be the time until the first head. Let X be the number of heads within [0, t].

- (1) Find the probability density function of T, and calculate $\mathcal{E}(T)$ based on Geometric distribution.
- (2) Calculate E(X) based on Binomial distribution. Find the probability mass function P(X = k) as $\Delta t \to 0$.

Problem 4 Brownian motion or diffusion: Suppose a particle starts from 0, and within each period, it moves forward or backward by Δx , each with probability 1/2. Let X_t be the position at time t (assuming t is a multiple of Δt). Suppose there are n periods within [0,t], i.e., $\Delta t = t/n$. Then we can write

$$X_t = \sum_{i=1}^n \epsilon_i \Delta x,$$

where $P(\epsilon_i = 1) = P(\epsilon_i = -1) = 1/2$, and Z_i are independent.

- (1) Calculate $E(X_t)$ and $Var(X_t)$.
- (2) What is the relationship between Δx and Δt so that $\text{Var}(X_t)$ does not depend on discretization?
 - (3) According to the central limit theorem, what is the distribution of X_t ?

Problem 5 (1) Suppose we flip a fair coin 100 times independently. Let X be the number of heads. Based on normal approximation, find the 95% probability interval for X.

- (2) Suppose 20% of the population support a candidate A. Suppose we randomly sample 100 people for the population (with replacement). Let $\hat{p} = X/100$ be the proportion of people in the sample who support candidate A. Based on normal approximation, find the 95% probability interval for \hat{p} .
- (3) Suppose we randomly throw 10,000 points into the unit square $[0,1]^2$. Let A be the region $x^2+y^2 \le 1$. Let m be the number of points that fall into A. Let $\hat{\pi}=4m/10000$ be our Monte Carlo estimate of π . What is the approximate normal distribution of $\hat{\pi}$? What is the 95% probability interval of $\hat{\pi}$?

Problem 6 Read Wikipedia about the following distributions: Negative Binomial, Hyper-Geometric, Zipf, Chi-square, student t, Cauchy, Gamma, Beta, Weibull, Gumbel, Pareto. Write down their probability mass functions or probability density functions.