Learning dynamics in error-driven learning

Dorothée Hoppe & Jacolien van Rij October 2019, Formal Models of Cognition

cue vs. outcome competition

recap formula: cue competition

weight update

$$\Delta V_{ij}^t = \begin{cases} 0, & \text{cue i absent} \\ \eta(1 + a_j^t), & \text{cue i \& outcome j present} \\ \eta(0 + a_j^t), & \text{cue i present \& outcome j absent} \end{cases}$$

activation

$$a_j^t = \sum_{x \in cues(t)} v_{xj}^t$$

all currently present cues

aim: every cue set fully predicts exactly one outcome

recap formula: cue competition

weight update

$$\Delta V_{ij}^t = \begin{cases} 0, & \text{cue i absent} \\ \eta(1 + a_j^t), & \text{cue i \& outcome j present} \\ \eta(0 + a_j^t), & \text{cue i present \& outcome j absent} \end{cases}$$

activation

$$a_j^t = \sum_{x \in cues(t)} v_{xj}^t$$

all currently present cues

aim:

maximize activation of the current outcome!

cue competition: blocking

- cues that appear more frequently with an outcome are learned to be more informative (?)
- outcome activation is limited
 - ⇒ temporal order affects cue competition

cue competition

Trial

recap formula: outcome competition

weight update

$$\Delta V_{ij}^t = \begin{cases} 0, & \text{cue i absent} \\ \eta(1-a_j^t), & \text{cue i \& outcome j present} \\ \eta(0-a_j^t), & \text{cue i present \& outcome j absent} \end{cases}$$

activation

$$a_j^t = \sum_{x \in cues(t)} v_{xj}^t$$

aim:
every cue set fully predicts
exactly one outcome

outcome competition

a) training set

here, activations can never reach the maximum of 1!

b) with outcome competition

d) without outcome competition

$$= \begin{cases} 0, & \text{cue i absent} \\ \eta(1 - a_j^t), & \text{cue i & outcome j present} \\ \eta(0 - a_j^t), & \text{cue i present & outcome j} \end{cases}$$

outcome competition

⇒ estimation of conditional probabilities!

whole system

- ⇒ **cue** competition cancels the frequency effect (over time)
- **⇒ outcome** competition finds irrelevant dimension (size)

whole system

⇒ optimized outcome discrimination

is learning asymmetric? ⇒ assignment!

convergent network

divergent network

temporal dynamics

cue - outcome order:

c) Journy!

- trial order (e.g., random vs. blocked)

training time:

- iterative vs. batch learning (Danks (2003) equations, also in package *ndl*)

Example: color-word learning

Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010)

"blah... red.....blah.....blue"

time

Example: color-word learning

Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010)

"Look, there's a red niz and some blue wugs!"

Example: color-word learning

Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010)

Assumption: learner already has an idea what wugs and nizzes are

"Look, the **niz** is **red** and the **wugs** are **blue!**"

time

Data structure in error-driven learning models

elemental vs. configural representations

Cues	Outcomes
light	food
light_tone	food

probably too good?

Cues	Outcomes
light	food
-	
sound	food
LightTone	water

cues	activation	
<i>()</i>	_	outcomes
(I)))	1	food
(9)	1	1000
¥	•	
_		

Cues	Outcomes
light	food
sound	food
light_tone	water

Cues	Outcomes
light sound light_tone_LightTone	food food water

hidden layers vs. configural representations

- hidden layers compute relevant configural representations!
- but hidden layers make it hard to trace what happens in the model...

What kind of representations?

"All representations [original: models] are wrong but some are useful"

- adapted from George Box

Gluck, M. A., Mercado, E., & Myers, C. E. (2009). *Learning and memory: from brain to behavior.*

What kind of representations?

"All representations [original: models] are wrong but some are useful"

- adapted from George Box

- Best case: allow the model to discover the relevant levels of abstraction for a given task!
- We can never have too many representations
- But, we cannot include all possible features because of lack of knowledge/time/computational power/etc., thus, we still have to make **informed choices**