Lecture 1: Introduction

CS 341: Algorithms

Outline For Today

- 1. Administrative Information
- 2. Overview of CS 341
- 3. Example 1: Sorting-Merge Sort-Divide & Conquer

Outline For Today

- 1. Administrative Information
- 2. Overview of CS 341
- 3. Example 1: Sorting-Merge Sort-Divide & Conquer

Administrative Info (1)

- ◆ Instructor: Semih Salihoglu (semih.salihoglu@uwaterloo.ca)
- ◆ TAs: Many, please see the website
- Office Hours: Semih: Thursdays at 4pm @ DC 3351
- ◆ Website: https://www.student.cs.uwaterloo.ca/~cs341/
- ◆ Piazza: https://piazza.com/uwaterloo.ca/winter2019/cs341/home
- Weekly Tutorials: 2 sections on Fridays. Website for time/location.
- ◆ Textbook: Cormen, Leirserson, Rivest, Stein 3rd edition
 - Online version available once you login to library.uwaterloo.ca
 - https://tinyurl.com/yc7bhe3y (if doesn't work, do a keyword search)

Administrative Info (2)

- Workload & Grade Distribution
 - 5 Problem Sets: 30%
 - 2 or 3 of them will have programming questions
 - Two or three weeks to complete each, on Fridays at 6pm
 - First one is out this Friday. Due Jan 25th
 - Others: Check the website
 - 1 Midterm: 25%, Feb 26th, 7pm-8:50pm, TBA
 - 1 Final: 45%: TBA
- No late policy

Prerequisites

- ◆ CS 240: Standard data structures
 - Queues, stacks, heaps
- Comfort with proofs
 - Proof by induction
 - Proof by contradiction
- Programming in a standard language: TBA

Outline For Today

- 1. Administrative Information
- 2. Overview of CS 341
- 3. Example 1: Sorting-Merge Sort-Divide & Conquer

Why is CS 341 Important For You? (1)

- ◆ Algorithms is the heart of CS
- Appear in later courses

Connections to Other CS Courses

- ◆ CS 350: Operating Systems
 - Scheduling Algorithms
- ◆ CS 482: Computational Biological Sequence Analysis
 - Sequence Alignment Algorithms
- ◆ CS 485: Machine Learning
 - Closest-pair/Clustering algorithms
- ◆ CS 456: Computer Networks
 - Shortest-Paths Algorithms for Routing
- ◆ CO 331: Coding Theory
 - Huffman's Algorithm for Huffman Codes

Connections to Other Disciplines

- Biology
 - Sequence Alignment Algorithms
- **♦** Economics
 - > Gale & Shapley's Stable Marriage Algorithm
 - > Shapley: Mathematician with a Nobel-prize in Economics
- Sociology: Milgram's 6-degrees of separation phenomenon
 - Shortest paths algorithms
 - "The Small World Problem" Milgram, 1969

Why is CS 341 Important For You? (2)

- Algorithms is the heart of CS
- Appear in later courses
- Appear in technical interviews
 - Willing to take bets on this!
- ◆ For some of you, designing algorithms will be a lot of fun!

What is an Algorithm?

Informally: A well-defined procedure (or a set of instructions) to solve a computational problem?

- What's a computational problem?
 - Informally: Any problem w/ an input & an expected output

Computational Problem	Input	Output	
Sorting	An array of integers in arbitrary order	Same array of integers in increasing order	
Matrix Multiplication	Two nxn matrices A, B	C=A*B	
Traveling Salesman Problem	A set S of cities, and distances between each pair of cities	Minimum distance starting from city X, visiting each city once and come back to X	

Example 1: Sorting

◆ Input: An array of integers in *arbitrary* order

10	2	37	5	9	55	20
						l .

Output: Same array of integers in increasing order

2 5	9	10	20	37	55
-----	---	----	----	----	----

Example 2: Matrix Multiplication

◆ Input: 2 nxn matrices A, B

2	1	5	
3	2	2	
1	4	6	
Δ			

1	3	4	
2	1	1	
3	7	2	
В			

◆ Output: C=A*B

19	41	18
13	25	19
27	49	20

C

Example 3: Traveling Salesman Problem

Input: Map of cities & distances between each pair of cities

- Output: min distance it takes to go from a city c1, visit every other city once, and come back to X?
 - Output is just an integer.

Example 3: Traveling Salesman Problem

◆ Input: Map of cities & distances between each pair of cities

- Output: min distance it takes to go from a city c1, visit every other city once, and come back to c1?
 - Output is just an integer.

 Answer: 12

What is an Algorithm?

Informally: A well-defined procedure (or a set of instructions) to solve a computational problem.

Think of an algorithm as a: machine or software program

What is "Analysis" of Algorithms? (1)

- Any machine/software program uses resources
- Example Resources:
 - ◆ Time (i.e., CPU time or number of operations)
 - ◆ Memory (RAM) => referred more formally as "space"
 - ◆ Network I/O or communication (ethernet)

What is "Analysis" of Algorithms? (2)

- Answering **how much** questions about the resources an algorithm uses:
 - ◆ How much time does it take to run Algorithm X?
 - ◆ How much memory does Algorithm X use?
 - ◆ How much network I/O does Algorithm X perform?
- ◆ CS 341: We'll analyze time
 - Specifically: number of computer operations performed

Types of Algorithms

- No real taxonomy; but 3 classic ways to classify algorithms
 - 1. Serial vs Parallel
 - Serial: One operation at a time
 - Parallel: Multiple operations at a time
 - 2. Deterministic vs Randomized
 - D: On multiple runs on same input, always do same ops
 - R: On multiple runs on same input, may do different ops
 - 3. Exact vs Approximate one or two algorithms towards the end
 - Exact: Exact output
 - Approximate: Approximate output
- CS 341: serial, deterministic, exact algorithms

CS 341 Diagram

Fundamental (& Fast) Algorithms to Tractable Problems

- MergeSort
- Strassen's MM
- BFS/DFS
- Dijkstra's SSSP
- Kosaraju's SCC
- Kruskal's MST
- Floyd Warshall APSP
- Topological Sort
- •

Common Algorithm Design Paradigms

- Divide-and-Conquer
- Greedy
- Dynamic Programming

Mathematical Tools to Analyze Algorithms

- Big-oh notation
- Recursion Tree
- Master method
- Substitution method
- Exchange Arguments
- Greedy-stays-ahead Arguments

Intractable Problems

- P vs NP
- Poly-time Reductions
- Undecidability

Other (Last Lecture)

 Randomized/Online/Para Ilel Algorithms

Before/After CS 341

A Comment About Tractability/Intractability

