Feedback — Advanced MaxEnt / POS Tagging / Parsing Intro

You submitted this quiz on **Wed 18 Apr 2012 5:56 AM PDT**. You got a score of **5.00** out of **5.00**.

Question 1

Suppose we build a maxent model for part of speech tagging a word (x), over a set of just 3 parts of speech (y): Noun, Verb, and Other. Our model has just one feature:

$$f(x,y) = [x="breeze" \& y="Noun"]$$

Our training data consists of 5 observations:

```
[x="breeze" & y="Verb"]
[x="breeze" & y="Verb"]
[x="breeze" & y="Verb"]
[x="breeze" & y="Noun"]
[x="breeze" & y="Noun"]
```

The maxent model will be trained in the usual way to give the feature f a weight λ , so that the model expectation for the feature matches its empirical expectation.

The weight of the feature will be $\log X$ (natural log).

What is X?

Your Answer		Score	Explanation	
4/3	~	1.00	Correct!	
O 2				
$\bigcirc 3/5$				
O 15				
Total		1.00 / 1.00		

Question Explanation

The empirical expectation of f is 2 from 5 identical observed data x. So P(Noun|breeze)=0.4.

$$P(Noun|breeze) = 0.4 = e^{\lambda}/(e^{\lambda} + e^{0} + e^{0}) = e^{\lambda}/(e^{\lambda} + 2)$$

So:

$$egin{aligned} 0.4[e^{\lambda}+2] &= e^{\lambda} \ 0.8 &= 0.6e^{\lambda} \ 4/3 &= e^{\lambda} \ \lambda &= \log(4/3) \end{aligned}$$

Question 2

Suppose we build a maxent model for part of speech tagging a word (x), over a set of just 3 parts of speech (y): Noun, Verb, and Other. Our model has just one feature:

$$f(x,y) = [x="breeze" \& y="Noun"]$$

Our training data consists of 5 observations:

```
[x="breeze" & y="Verb"]
[x="breeze" & y="Verb"]
[x="breeze" & y="Verb"]
[x="breeze" & y="Noun"]
[x="breeze" & y="Noun"]
```

The maxent model will be trained in the usual way to give the feature f a weight λ , so that the model expectation for the feature matches its empirical expectation.

What probability will the model give to P(Other|breeze)?

Your Answer		Score	Explanation
0 1/10			
3/10	~	1.00	Correct!
○ 3/7			
3/14			
Total		1.00 / 1.00	

Question Explanation

P(Noun|breeze) = 0.4, and the rest is uniform, so 0.3 for each other class.

You can also confirm this from:

$$P(Noun|make) = P(Other|make) = e^{0}/(e^{\log(4/3)} + e^{0} + e^{0}) = 1/(4/3 + 1 + 1) = 3/10$$

Question 3

Suppose we build a maxent model for part of speech tagging a word (x), over a set of just 3 parts of speech (y): Noun, Verb, and Other. Our model has just one feature:

$$f(x,y) = [x="make" \& y="Verb"]$$

Our training data consists of 5 observations:

```
[x="make" & y="Verb"]
[x="make" & y="Verb"]
[x="make" & y="Verb"]
[x="make" & y="Verb"]
[x="make" & y="Noun"]
```

The maxent model will be trained in the usual way to give the feature f a weight λ , so that the model expectation for the feature matches its empirical expectation. Suppose we now put gaussian regularization into the same model over the same data with $\sigma=1$.

The optimal weight of the feature will still be of the form $\log X$ (natural log). What is X?

Your Answer		Score	Explanation
○ 3/4			
5/8	~	1.00	Incorrect.
3			
O 9			
Total		1.00 / 1.00	

Question Explanation

We have in terms of expectations that:

$$4-predicted_count(\lambda)-\sigma=0$$

I.e.,
$$4-5[e^{\lambda}/(e^{\lambda}+2)]-1=0$$
 So,
$$3/5=e^{\lambda}/(e^{\lambda}+2)$$
 $3/5e^{\lambda}+6/5=e^{\lambda}$ $6/5=2/5e^{\lambda}$ $3=e^{\lambda}$ $\lambda=\log 3$

Question 4

Do the part-of-speech tagging by hand for the following sentence using Penn Treebank POS tags:

Stanford/? and/? Open/? University/? have/? been/? downloaded/? 50/? million/? times/? on/? iTunes/? !/?

Your Answer		Score	Explanation
Stanford/NNP and/CC Open/NNP University/NNP have/VBP been/VBN downloaded/VBN 50/SYM million/CD times/NNS on/IN iTunes/NNS !/.			
Stanford/NNP and/CC Open/NNP University/NNP have/VBP been/VBN downloaded/VBN 50/CD million/CD times/NNS on/IN iTunes/NNP!/.	~	1.00	Correct!
Stanford/NNP and/CC Open/NNP University/NNP have/VB been/VBN downloaded/VBN 50/CD million/CD times/NNS on/JJ iTunes/NNS!/.			
○ Stanford/NNP and/CC Open/JJ University/NN have/VBP been/VBN downloaded/VBN 50/CD million/CD times/NNS on/IN iTunes/NNP!/.			
Total		1.00 /	
		1.00	

Question 5

Which of the given bracket groups is a constituent in the following sentence?

Sentence: When she was younger she would play outside with her friends until the bell rang for

dinner.

[When she was younger] [[she would play] outside] [with her friends] [[until the bell rang] for dinner].

Your Answer		Score	Explanation
outside with her friends			
she would play outside	~	1.00	Correct!
play outside			
o she was younger			
Total		1.00 / 1.00	