Jelátvitel

Programozható irányítóberendezések és szenzorrendszerek

KOVÁCS Gábor gkovacs@iit.bme.hu

Jelforrások osztályozása

Földelés szerint

- Földelt: a jelforrás egyik kimenete a földre csatlakozik
- Földfüggetlen: a jelforrás egyik kimenete sem csatlakozik a földre

Szimmetria szerint

- Szimmetrikus: a jelforrás kimenetei és a belső feszültségforrás kapcsai között mérhető impedanciák azonosak
- Aszimmetrikus: a jelforrás kimenetei és a belső feszültségforrás kapcsai között mérhető impedanciák azonosak

Eltolt nullszintű

- a belső feszültségforrás referenciaszintje a föld
- ebben az esetben a kimeneti kapcsok egyike sem földelhető

Jelforrások típusai

Jelvevők felépítése

Árnyékolás nélküli jelvevők

- Aszimmetrikus földelt
 - A bemeneti pontok és a föld között mérhető impedanciák nagysága különböző
 - Az egyik be- és kimeneti pont és a külső ház földelt
- Szimmetrikus földelt
 - A bemeneti pontok és a föld között mérhető impedanciák nagysága azonos
 - Az impedanciák kivezetett közös pontja, az egyik kimeneti pont és a külső ház földelt

Aszimmetrikus árnyékolt jelvevő

- A bemeneti vezetékek a földtől és a külső háztól szigeteltek
- Az egyik bemeneti pontot leföldelve a bemeneti pontok és a föld között mérhető impedanciák nagysága különböző
- Az egyik kimeneti pont és a külső ház földelt °
- Az egyik bemeneti pont a földfüggetlen védőárnyékoláshoz csatlakozik

Védőárnyékolt jelvevők

- Szimmetrikus földfüggetlen védőárnyékolt
 - Védőárnyékolás (Guard, GU) kivezetve
 - A bemeneti vezetékek és a védőárnyékolás vezetéke közti szórt impedanciák megegyeznek
 - A külső ház és az egyik kimeneti vezeték földelt
 - A védőárnyékolás vezetékét és az egyik bemeneti vezetéket összekötve aszimmetrikus földfüggetlen árnyékolt vevőt kapunk

- Védőárnyékolás (Guard, GU) kivezetve
- A bemeneti vezetékek és a védőárnyékolás vezetéke közti szórt impedanciák különböznek
- A külső ház és az egyik kimeneti vezeték földelt
- A védőárnyékolás vezetékét és az egyik bemeneti vezetéket összekötve aszimmetrikus földfüggetlen árnyékolt vevőt kapunk

Zavarjelek megjelenése a jelátvitelben

Zajforrások és csatolásuk

- Zajforrások ipari környezetben
 - Nagyteljesítményű villamos gépek
 - Nagyfeszültségű vezetékek
 - Elektromágneses sugárzás
- Csatolások típusai
 - Konduktív csatolás
 - Induktív csatolás
 - Kapacitív csatolás
 - Sugárzásos csatolás

Ellenfázisú zavarjel

(Normal mode noise, differential noise)

- Azonos nagyságú zavaró jel halad a két vezetéken, de ellenkező irányban
- A két jelvezeték között ellenfázisú jel figyelhető meg
- A hasznos jellel sorosan jelentkezik

Ellenfázisú zavarjel

$$U_{be} = \frac{R_{be}}{R_{be} + 2R_v + R_H} U_{EF}$$

Ellenállás-értékek szokásos nagyságrendje:

- Adó kimeneti ellenállása: $R_H \sim \Omega$
- Vezeték ellenállása: $R_v \sim \Omega$
- Vevő bemeneti ellenállása (műveleti erősítő): $R_{he} \sim M\Omega$

$$U_{be} \approx \frac{R_{be}}{R_{be} + 0 + 0} U_{EF} = U_{EF}$$

Az ellenfázisú zavarjel maradó torzulást okoz, melynek utólagos kiszűrése szinte lehetetlen.

Közös fázisú zavarjel

(Common mode noise)

- A két jelvezeték közös pontja és egy rögzített pont (föld) közötti zavaró jel
- A vevő bemeneti pontjait azonos fázisban vezérli
- Ha differenciálisan mérünk, akkor nincs is probléma!
- De van: a közös fázisú zavaró jelből belső azonos fázisú zavaró jel keletkezhet

Hogyan lesz a közös fázisú zavaró jelből ellenfázisú?

$$U_{be} = \frac{R_{be}}{R_{be} + R_v + R_H} U_{AF}$$

Ellenállás-értékek szokásos nagyságrendje:

Adó kimeneti ellenállása: R_H~Ω

• Vezeték ellenállása: $R_v \sim \Omega$

• Vevő bemeneti ellenállása (műveleti erősítő): $R_{be}{\sim}M\Omega$

$$U_{be} \approx \frac{R_{be}}{R_{be} + 0 + 0} U_{AF} = U_{AF}$$

Hogyan lesz a közös fázisú zavaró jelből ellenfázisú?

A közös fázisú zavarjel tehát ellenfázisúvá alakul!

Közös fázisú zavarjel-elnyomás

- Cél: minél kisebb ellenfázisú zavarás
- Legalább az azonos fázisúból ne jöjjön létre belső ellenfázisú
- Mérőszám: közös fázisú zavarjel-elnyomás (Common Mode Noise Rejection, CMNR):

$$CMNR = 20log_{10} \frac{U_{AF}}{U_{EF}}$$

ahol U_{AF} az azonos fázisú, U_{EF} pedig az abból keletkező ellenfázisú zavarjel

- CMNR ideális értéke ∞
- Nem összetévesztendő a CMR-rel!

Zavarjelek kiküszöbölésének lehetőségei

- Zajforrás megszüntetése
- Csatolás csökkentése (ideális esetben megszüntetése)
- Zavarjel kiszűrése a torzult jelből

Induktív csatolás csökkentése

- Ismert tény: vezető hurokban a mágneses tér feszültséget indukál
- Az indukált feszültség egyenesen arányos a hurok felületével, illetve a mágneses térrel
- A csatolás elsősorban ellenfázisú zavarjelet okoz
- Csatolás csökkentése
 - Vezetékpár távolságának csökkentése
 - A mágneses tér csökkentése, AC és DC vezetékek térbeli elkülönítése

- Olcsó és egyszerű megoldás
- A zajcsökkentés függ a csavarási hurok hosszától
- Akár 40dB-es zajcsökkentés

Sodrott érpár

Mágneses árnyékolás

- Az induktív csatolás mágneses árnyékolással tovább csökkenthető
- Lehetséges árnyékolási módok
 - Mágneses árnyékoló szalag (egy vagy több rétegben)
 - Ferromágneses kábelvezető

Kapacitív csatolás

- Legfőbb oka: szórt kapacitások
- Csökkentése:
 - vezetékek térbeli elkülönítése (ökölszabály: 0.5 m a jel- és tápvezeték között)
 - elektrosztatikus árnyékolás

Elektrosztatikus árnyékolás

- Galvanikusan folytonos árnyékoló réteg a vezeték körül
 - Fólia: alumínium/poliészter
 - Fonat: rézötvözet
 - Kombinált
- Az árnyékolást fix potenciálra kell kötni

Elektrosztatikus árnyékolás

Árnyékolás típusa	Árny	yéko	lás	típ	usa
--------------------------	------	-------------	-----	-----	-----

Zajcsökkentés [dB]

Árnyékolatlan vezeték

0 dB

Rézfonat árnyékolás, 85% fedettség

-40 dB

Spirálisan feltekercselt rézlemez, 90% fedettség

-50 dB

Aluminium Mylar szalag vezető drain szállal, 100% fedettség

-76 dB

Egyéb zavarjelek

- Kontakt potenciál DC ellenfázisú zavarjel
- Termikus potenciál DC ellenfázisú zavarjel
- Tápforrásból eredő zavarjelek
- RF zavarjelek
- Tranziens zavarjelek

Földelés

- Védelmi föld
 - Nem szigetelő felületekre kötve
 - Áram nem folyhat rajta
- Teljesítmény föld
 - AC vagy DC hálózat közös vezetéke
 - Áramvezetés a feladata
- Analóg és digitális jelföldek
 - Információt hordozó jelvezetékek referenciapontja
- Közös földelések
 - Az életvédelmi föld nem közösíthető mással
 - Teljesítményföld és jelföldek közösíthetők

Földelés

- Földek megkülönböztetése
 - Felhasználói föld (FF): technológia oldali föld (érzékelő vagy beavatkozó szerv)
 - Rendszerföld (RF): az irányítóberendezés földje
- RF és FF feszültségszintje nem feltétlenül egyezik meg!

Felhasználói- és rendszerföld

Földhurok

- Földhurok (földáramkör): két olyan pont között kialakuló áramkör, melyeknek elvben azonos potenciálon (tipikusan földön) kéne lenniük
- Oka: a különböző helyeken lévő földelések egymástól eltérő potenciálja

A földhurok azonos fázisú, illetve abból keletkező belső ellenfázisú zavarjelet okoz!

Hogyan lesz a közös fázisú zavaró jelből ellenfázisú?

A földvezeték okozta csatolás miatt CMNR ≈ 0

Egy helyen földelt áramkör

- Az áramkör nem záródik, ha csak a vevő vagy csak az adó föltelt
- Elvben nem keletkezik belső ellenfázisú zavarjel:

$$CMNR = 20 \log_{10} \frac{U_{AF}}{U_{EF}} = \infty$$

Az áramkört csak egy helyen szabad leföldelni!

Szórt kapacitások földcsatolása

•
$$Z_1 = \frac{1}{j\omega C_1}, Z_2 = \frac{1}{j\omega C_2}$$

• $Z_a = R_v + R_H, Z_b = R_v$

•
$$Z_a = R_v + R_H$$
, $Z_b = R_v$

•
$$U_{be} = U_{AF} \left(\frac{Z_a}{Z_a + Z_1} - \frac{Z_b}{Z_b + Z_2} \right)$$

•
$$Z := Z_1 \approx Z_2$$
, $|Z| \gg |Z_a|$

•
$$U_{be} \approx U_{AF} \frac{Z_a - Z_b}{Z_{\cdot}}$$

•
$$Z_a := Z_b + \Delta Z$$

•
$$U_{be} \approx U_{AF} \frac{\Delta Z}{Z}$$

Szórt kapacitások földcsatolása

•
$$U_{EF} \approx U_{AF} \frac{\Delta Z}{Z} \Rightarrow CMNR = 20 \log_{10} \frac{U_{AF}}{U_{EF}} = 20 \log_{10} \frac{|Z|}{|\Delta Z|}$$

- Lehetőségek a CMNR növelésére
 - ΔZ csökkentése: szimmetrikus kialakítás
 - Z növelése: árnyékolás

Szimmetrikus kialakítású jelforrás

- Szimmetrikus adó: az adó kimeneti pontjai és a jel forrása között mérhető impedanciák azonosak
- A gyakorlatban tökéletesen szimmetrikus jelforrás nem alakítható ki
- Érdemes törekedni a szimmetrikus kialakításra

•
$$Z_a = R_v + R_H/2$$

•
$$Z_b = R_v + R_H/2$$

•
$$Z_a = Z_b \Rightarrow \Delta Z = 0$$

•
$$Z_a = Z_b \Rightarrow \Delta Z = 0$$

• $CMNR = 20 \log_{10} \frac{|Z|}{|\Delta Z|} = \infty$

Árnyékolás

Árnyékolás

•
$$Z_1 = \frac{1}{i\omega C_1}$$
, $Z_2 = \frac{1}{i\omega C_2}$, $Z = Z_1 = Z_2$

•
$$Z_a = R_v + R_H$$
, $Z_b = R_v$, $Z_a = Z_b + \Delta Z$

•
$$|Z| \gg |Z_1|, |Z_2|$$

•
$$Z_{s1} = R_s$$

•
$$Z_{s2} = \frac{1}{j\omega C_s}$$

•
$$|Z_{s2}| \gg |Z_{s1}|$$

$$U_{be} = U_{AF} \frac{Z_{s1}}{Z_{s1} + Z_{s2}} \frac{\Delta Z}{Z} \approx U_{AF} \frac{Z_{s1}}{Z_{s2}} \frac{\Delta Z}{Z}$$

CMNR =
$$20 \log_{10} \frac{|Z_{s2}|}{|Z_{s1}|} \frac{|Z|}{|\Delta Z|}$$

Mivel $|Z_{s2}| \gg |Z_{s1}|$, így CMNR értéke jelentősen növelhető.

Árnyékolás potenciáljának rögzítése

- Csak egyetlen pontban
- Földelt jelforrás esetén a jelforrásnál
- Földfüggetlen jelforrás esetén a vevőnél
- Földelt és eltolt nullszintű jelforrás esetén az eltolt nullszinten
- Földelt jelforrás és földfüggetlen árnyékolt vevő esetén a jelforrásnál földre, a vevőnél pedig az árnyékoláshoz kell rögzíteni

Jelforrások és jelvevők összekapcsolásának szabályai

- 1. Földelés csak egy ponton (jelforrásnál vagy jelvevőnél)
- 2. Árnyékolást csak egy ponton szabad fix potenciálra (általában földre) kötni, egy pontban viszont szükséges is
- 3. Ha lehet, törekedni kell a szimmetrikus kialakításra

Két pontban szükséges földelés problémája

- Földelt adók esetén földfüggetlen vevő alkalmazása a megoldás
- Mit tegyünk, ha mégis földelt vevőre van szükség, illetve az áll rendelkezésre?
- Megoldás: galvanikus leválasztás
 - A földtől függetlenítjük a jelet
 - Az azonos fázisú zavarjel hatása megszűnik

Transzformátoros leválasztás

- AC-DC és DC-AC konverterek
- AC leválasztás transzformátorral
- Hátrány: lineáris átvitelű transzformátort és pontos AC-DC, DC-AC konvertereket igényel

Optoizolátoros leválasztás

- Feszültség-frekvencia átalakító (VFC): olyan VCO, aminek a frekvenciája a bemeneti feszültséggel arányos
- Megfelelő frekvenciájú optocsatoló szükséges
- Frekvencia-bemenetű jelvevő esetén nincs szükség visszaalakításra

Repülőkondenzátoros leválasztás

- A kondenzátort a jelforrásra kapcsoljuk, az feltöltődik annak feszültségére (analóg memória)
- Átkapcsolunk a jelvevőre, annak kapcsain megjelenik a forrás feszültsége
- Szűrőként is funkcionál (ellenállással kiegészítve)
- A feszültséget hosszú ideig megőrzi ez problémát is okozhat!