Part One. Statistical Report

Variable

PCB52

PCB118 0.236

PCB

Part Two. Textbook Exercises

11.42 Relationships among PCB congeners

Min

6.10

0.020

1st Qu.

30.18

0.228

1.490

Consider the following variables: PCB(the total amount of PCB) and four congeners: PCB52, PCB118, PCB138, and PCB180.

(a) Using numerical and graphical summaries, describe the distribution of each of these variables.

Table 1: Numerical Summaries

Median

47.96

0.477

2.420

Mean

68.47

0.958

3.256

3rd Qu.

91.63

0.892

3.890

Max

318.70

9.060

18.900

	PCB138 PCB180	$0.640 \\ 0.395$	3.180 1.240	4.920 2.690	6.827 4.158	$8.650 \\ 4.490$	$32.300 \\ 31.500$	
0 50 100 150 200 250 300	8	0 - 2 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	0 0 0	0 5 10 15	©	0 5 10 15 20 25 30	0000	
			5 10 15 20 25 30	0				

Figure 1: Boxplots of PCB, PBC52, PCB118, PCB138 and PCB180

Figure 1 shows that the distribution of PCB and PCB180 is right skewed with about six outliers for both, while all the distribution of others are right skewed with about five outliers.

(b) Using numerical and graphical summaries, describe the relationship between each pair of variables.

Table 2: Correlations Variable 2 Variable 1 Correlation $\overline{\text{PCB52}}$ PCB 0.5963572 PCB PCB118 0.843298PCB PCB138 0.9288353PCB PCB180 0.8008549PCB52PCB118 0.6849073PCB52 PCB138 0.3008983PCB52 PCB180 0.08692971PCB118 PCB138 0.7293792PCB118 PCB180

PCB180

PCB138

0.4374443

0.8823022

11.43 Predictiong the total amount of PCB

Use the four congeners PCB52, PCB118, PCB138, and PCB180 in a multiple regression to predict PCB.

(a) Write the statistical model for this analysis. Include all assumptions.

The multiple linear regression model for the data with 69 observations:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + i \text{ for } i = 1, 2, \dots, 69$$

We assume that the residuals are independent and are normally distributed.

(b) Run the regression and summarize the results.

Multiple regression analyses were conducted to examine the relationship between PCB and four congeners. Running the multiple regression model in R with the four congeners produced the following:

```
subdf <- subset(df, select = c("pcb", "pcb52", "pcb118", "pcb138", "pcb180"))</pre>
> lm1 = lm(pcb^pcb52 + pcb118 + pcb138 + pcb180, data=subdf)
> coef(lm1)
(Intercept)
                  pcb52
                              pcb118
                                          pcb138
                                                       pcb180
  0.9369203 11.8726953
                           3.7610694
                                       3.8842264
                                                    4.1823010
> summary(lm1)
Call:
lm(formula = pcb ~ pcb52 + pcb118 + pcb138 + pcb180, data = subdf)
Residuals:
     Min
               1Q
                    Median
                                  3Q
                                          Max
```

Coefficients:

-22.0864 -2.4554

Estimate Std. Error t value Pr(>|t|)

0.0278

2.7726 22.5487

```
(Intercept)
                        1.2293
                                 0.762
                                          0.449
             0.9369
pcb52
             11.8727
                        0.7290 16.287 < 2e-16 ***
pcb118
             3.7611
                        0.6424
                                 5.855 1.79e-07 ***
                        0.4978
                                 7.803 7.19e-11 ***
pcb138
             3.8842
pcb180
             4.1823
                        0.4318 9.687 3.64e-14 ***
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 6.382 on 64 degrees of freedom
Multiple R-squared: 0.9891, Adjusted R-squared: 0.9885
F-statistic: 1456 on 4 and 64 DF, p-value: < 2.2e-16
> anova(lm1)
Analysis of Variance Table
Response: pcb
          Df Sum Sq Mean Sq F value
                                       Pr(>F)
pcb52
           1 85302
                     85302 2094.273 < 2.2e-16 ***
           1 85429
                     85429 2097.405 < 2.2e-16 ***
pcb118
pcb138
           1 62693
                     62693 1539.202 < 2.2e-16 ***
                      3822
                             93.834 3.64e-14 ***
pcb180
           1
              3822
                        41
Residuals 64
               2607
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
We gathered the following from the results of the regression:
  + The multiple R^2 = 0.988
  + The residual SE = 6.249
```

(c) Examine the residuals. Do they appear to be approximately Normal? When you plot them versus each of the explanatory variables, are any patterns evident?