Claims

1. (currently amended) A nanocomposite material comprising

inr

- a) a synthetic polymer,
- b) a natural or synthetic phyllosilicate or a mixture of such phyllosilicates in nanoparticles,
- c) a phenolic antioxidant and/or a processing stabilizer, and
- d) a mono or polyfunctional compound selected from the class consisting of the epoxides bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, diglycidyl 1,2-cyclohexanedicarboxylate, phenol novolak epoxy resin, oxazolines, oxazolones, oxazines[[,]] and isocyanates and/or anhydrides.
- 2. (original) A nanocomposite material according to claim 1, wherein component (a) is a polyolefin.
- **3.** (original) A nanocomposite material according to claim **1**, wherein component (b) is a layered silicate clay in nanoparticles.
- **4. (original)** A nanocomposite material according to claim **1**, wherein component (b) is a montmorillonite, bentonite, beidelite, mica, hectorite, saponite, nontronite, sauconite, vermiculite, ledikite, magadite, kenyaite, stevensite, volkonskoite or a mixture thereof in nanoparticles.
- **5. (original)** A nanocomposite material according to claim **1**, wherein component (b) is modified by an ammonium or phosphonium compound.
- **6.** (currently amended) A nanocomposite material according to claim 1, wherein component (c) is athe phenolic antioxidant as component (c) is a compound of the formula I

4/51

$$\begin{bmatrix} H_3C & CH_3 & \\ H_3C & CH_3 & \\ HO & X & R_2 \\ \end{bmatrix}$$

in which

R₁ is C₁-C₄alkyl,

n is 1, 2, 3 or 4,

X is methylene,
$$-CH_2-CH_2-C-Y$$
 or $-CH_2-C-O-CH_2-CH_2-$,

Y is hydrogen or -NH-; and,

if n is 1,

R₂ is C₁-C₂₅alkyl; and,

if n is 2,

$$X$$
 is $-CH_2-CH_2-C-Y-$, where Y is attached to R_2 , and

 R_2 is C_2 - C_{12} alkylene, C_4 - C_{12} alkylene interrupted by oxygen or sulfur; or, if Y is -NH-, R_2 is additionally a direct bond; and,

if n is 3,

X is methylene or $-CH_2-C-O-CH_2-CH_2-$, where the ethylene group is attached to R2, and

£ .- 7. 9.

8, ,,-

if n is 4,

$$X$$
 is $-CH_2-CH_2-C-Y-$, where Y is attached to R_2 , and

 R_2 is C_4 - C_{10} alkanetetrayl.

7. (currently amended) A nanocomposite material according to claim 1, wherein the processing stabilizer as component (c) is a processing stabilizer compound of the formula II, III, IV or V

(II)
$$R'_{1}-Y'-P$$
 $O-R'_{2}$
 $O-R'_{3}$
 $A'-X'-P$
 $O-R'_{3}$
 $O-R'_{3}$
 $O-R'_{3}$

$$R'_1 - O - P'_0 - Q'_1 - O - R'_1$$
 (IV)

$$E' - P - Z' - R'_{14} - R'_{15} - R'_{15} - R'_{14} -$$

in which

n' is the number 2 and y' is the number 1, 2 or 3;

A' is C₂-C₁₈alkylene, p-phenylene or p-biphenylene,

E', if y' is 1, is C₁-C₁₈alkyl, -OR'₁ or fluorine;

E', if y' is 2, is p-biphenylene,

E', if y' is 3, is $N(CH_2CH_2O-)_3$,

R'₁, R'₂ and R'₃ independently of one another are C₁-C₁₈alkyl, C₇-C₉phenylalkyl, cyclohexyl, phenyl, or phenyl substituted by 1 to 3 alkyl radicals having in total 1 to 18 carbon atoms;

R'₁₄ is hydrogen or C₁-C₉alkyl,

R'₁₅ is hydrogen or methyl;

X' is a direct bond,

Y' is oxygen,

Z' is a direct bond or -CH(R'16)-, and

R'₁₆ is C₁-C₄alkyl; or a benzofuran-2-one.

8. (original) A nanocomposite material according to claim 1, wherein component (c) is tris(2,4-ditert-butylphenyl) phosphite, bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite, bis(2,4-ditert-butylphenyl) pentaerythritol diphosphite, tetrakis(2,4-ditert-butylphenyl) 4,4'-biphenylenediphosphonite, 3-(3,4-dimethylphenyl)-5,7-ditert-butylbenzofuran-2-one, 3-(2,3-dimethylphenyl)-5,7-ditert-butylbenzofuran-2-one, and/or a compound of the formula la, lb, lc, ld or lg

$$H_3C$$
 CH_3
 H_3C
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3

$$\begin{bmatrix} H_3C \\ H_3C \\ HO \end{bmatrix} CH_2 CH_2 CH_2 C-O-CH_2 -CH_2 O-CH_2 \\ \end{bmatrix}_2 (Id)$$

9. (canceled)
10. (canceled)
11. (original) A nanocomposite material according to claim 1, wherein component (d) is bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, diglycidyl 1,2-cyclohexanedicarboxylate or phenol novolak epoxy resin.
12. (original) A nanocomposite material according to claim 1 , wherein component (b) is present in an amount of from 0.01 to 30 %, based on the weight of component (a).
13. (original) A nanocomposite material according to claim 1 , wherein component (c) is present in an amount of from 0.01 to 5 %, based on the weight of component (a).
14. (original) A nanocomposite material according to claim 1 , wherein component (d) is present in an amount of from 0.01 to 5 %, based on the weight of component (a).
15. (original) A nanocomposite material according to claim 1 , comprising in addition, besides components (a), (b), (c) and (d), further additives.
16. (currently amended) A nanocomposite material according to claim 15, comprising as further additives modification agents for nanocomposites, compatibilizers, light-stabilizers, dispersing or

solvating agents, pigments, dyes, plasticizers and/or toughening agents.

- **17.** (currently amended) A nanocomposite material according to claim **15**, comprising as further additives <u>modification</u> agents for nanocomposites, compatibilizers and/or metal passivators.
- **18. (original)** A nanocomposite material according to claim **1** in the form of a masterbatch comprising component (b) in an amount of from 0.03 to 90 %, based on the weight of component (a), component (c) in an amount of from 0.03 to 15 %, based on the weight of component (a), and component (d) in amount of from 0.03 to 15 %, based on the weight of component (a).
- **19. (original)** A process for stabilizing a synthetic polymer against oxidative, thermal or light-induced degradation, which comprises incorporating in or applying to said material at least one each of components (b), (c) and (d) according to claim **1**.
- 20. (canceled)