

Lambda calculus 3

Bolo:

- vlastnosti β-redukcie
- λ-kalkul ako programovací jazyk (Churchove čísla, dátové štruktúry)
- rekurzia a operátor pevného bodu

Dnes:

- viac o rekurzii trochu technickejšie rozprávanie bez kódenia ⊗
- de Bruijnove indexy (odstránenie mien premenných) slajd 28...
- logika kombinátorov SKi (odstránenie mien premenných inak)

Cvičenie:

- de Bruijn indexy cesta tam a späť a β-redukcia v teórii dB
- logika kombinátorov cesta tam a späť a β-redukcia v teórii SKi

Rekurzia

To, čo stále nevieme, je definovať rekurzívnu funkciu, resp. cyklus. Na to sa používa konštrukcia pomocou operátora pevného bodu.

```
Príklad:
FAC := \lambda n.(if (= n \ 0) \ 1 (* n (FAC (- n \ 1))))
FAC := \lambdan.if (n = 0) then 1 else (n * FAC (n - 1))
... trik: \eta-redukcia (\lambda x.M x) = M, ak x nie je Free(M)
FAC := (\lambda fac.(\lambda n.(if (= n 0) 1 (* n (fac (- n 1)))))) FAC)
     := \lambda fac.(\lambda n.(if (= n 0) 1 (* n (fac (- n 1)))))
hľadáme funkciu FAC, ktorá má túto vlastnosť:
FAC := (H FAC) f x = x
hľadaná funkcia FAC je pevný bod funkcie H
```

Pevný bod

Potrebujeme trochu teórie:

Veta:

Pre ľubovoľný λ -term F existuje pevný bod, t.j. X také, že X = F X.

```
Dar nebies (operátor pevného bodu):

Y = \lambda f.(\lambda x. (f(x x))) (\lambda x. f(x x))

potom

(Y F) je pevný bod F, t.j. (Y F) = F (Y F).
```

Skúsme to (aspoň) overiť:

```
Y F = (\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))) F \rightarrow_{\beta} (\lambda x. F(x x)) (\lambda x. F(x x)) \rightarrow_{\beta}

• (\lambda x'. F(x' x')) (\lambda x. F(x x)) \rightarrow_{\beta} F(x' x')[x':\lambda x. F(x x)] \rightarrow_{\beta}
```

- $F(\lambda x.F(x x) \lambda x.F(x x)) =$
- F (Y F) preto (Y F) je naozaj pevný bod a je jediný ?

FAC := (H FAC) FAC := Y H H:= λ fac.(λ n.(if (= n 0) 1 (* n (fac (- n 1))))) Platí Y H = H (Y H)

Operátor Y Platí Y H = H (Y H)

Presvedčíme sa, že Y nám pomôže definovať rekurzívnu funkciu:

```
FAC = Y H = Y (\lambdafac.(\lambdan.(if (= n 0) 1 (* n (fac (- n 1))))))
(\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))) (\lambda fac.(\lambda n.(if (= n 0) 1 (* n (fac (- n 1)))))))

    toto je faktoriál – verzia nevhodná pre slabšie povahy

FAC 1 = (Y H) 1
                                      ... z vlastnosti pevného bodu Y H=H (Y H)
         = (H (Y H)) 1
         = \lambda fac.(\lambda n.(if (= n 0) 1 (* n (fac (- n 1))))) (Y H) 1
         = \lambda n.(if (= n 0) 1 (* n ((Y H)(- n 1)))) 1
         = if (= 1 0) 1 (* 1 ((Y H) (- 1 1)))
         = (*1((Y H)(-11)))
         = (*1 ((Y H) 0))
         = (*1 (H (Y H) 0)) ... trochu zrýchlene
         = (*11)
```


1+2+3+...+n


```
SUM = \lambda s. \lambda n. if (= n 0) 0 (+ n (s (- n 1)))
```

(Y SUM) 2 =

- Y (λs.λn.if (= n 0) 0 (+ n (s (- n 1)))) 2
- $(\lambda s.\lambda n.if (= n 0) 0 (+ n (s (- n 1)))) (Y SUM) 2$
- (λn.if (= n 0) 0 (+ n ((Y SUM) (- n 1)))) 2
- if (= 2 0) 0 (+ 2 ((Y SUM) (- 2 1)))
- (+ 2 ((Y SUM) 1))
- $(+ 2 ((\lambda s.\lambda n.if (= n 0) 0 (+ n (s (- n 1)))) (Y SUM) 1))$
- $(+ 2 ((\lambda n.if (= n 0) 0 (+ n ((Y SUM) (- n 1)))) 1))$
- (+ 2 ((if (= 1 0) 0 (+ n ((Y SUM) (- 1 1))))))
- (+ 2 (+ 1 ((Y SUM) 0)))
- $(+ 2 (+ 1 ((\lambda s.\lambda n.if (= n 0) 0 (+ n (s (- n 1)))) (Y SUM) 0)))$
- $(+ 2 (+ 1 ((\lambda n.if (= n 0) 0 (+ n ((Y SUM) (- n 1)))) 0)))$
- (+ 2 (+ 1 ((if (= 0 0) 0 (+ 0 ((Y SUM) (- 0 1)))))))
- + (+ 2 (+ 1 0)) = 3

Cvičenie

 (na zamyslenie) nájdite príklady funkcií s nekonečným počtom pevných bodov s práve jedným pevným bodom,

fix-point : f x = x

 realizujte interpreter λkalkulu, pokračujte v kóde z minulého cvičenia tak, aby počítal hodnoty rekurzívnych funkcii

Cvičenie

```
-- plati Y f = f(Y f)

y = LAMBDA "f"

(APP (LAMBDA "x" (APP (ID "f") (APP (ID "x") (ID "x"))))

(LAMBDA "x" (APP (ID "f") (APP (ID "x") (ID "x"))))

Vyhodnot'te (APP (APP y sucet) CN 4)

1+2+3+4=10?

A čo faktorial?
```

Poznámka:

Obohaťte Váš interpreter o vstavané celé čísla so základnými operáciami (+1, -1, +, *), plus test (napr. na nulu). V opačnom prípade budete bojovať s Church.číslami a interpreter sa vám bude ťažšie ľadiť.

-

Operátor pevného bodu

```
Dar nebies (operátor pevného bodu):

Y = \lambda f.(\lambda x. (f(x x))) (\lambda x. f(x x))

potom

(Y F) je pevný bod F,

t.j.

(Y F) = F (Y F).
```

ı

Viacnásobná rekurzia

(idea)

```
foo x y = ... (goo x' y') ... (foo x" y") ...
         goo x y = ... (foo x' y') ... (foo x'' y'') ...
organizujem to vektorovo:
       foogoo (x,y) = (
                                         ... snd $ (foogoo (x',y')) ... fst $ (foogoo (x", y")) ...
                                         ... fst $ (foogoo (x', y')) ... snd $ (foogoo (x", y")) ...
\underline{\mathbf{X}} = (x,y) = \lambda \underline{\mathbf{z}}.(\text{foo (fst }\underline{\mathbf{z}}, \text{ snd }\underline{\mathbf{z}}), \text{ goo (fst }\underline{\mathbf{z}}, \text{ snd }\underline{\mathbf{z}})) \underline{\mathbf{X}}
preto
\underline{\mathbf{X}} = \mathbf{Y} \left( \lambda \underline{\mathbf{z}} . (\text{foo (fst } \underline{\mathbf{z}}, \text{ snd } \underline{\mathbf{z}}), \text{ goo (fst } \underline{\mathbf{z}}, \text{ snd } \underline{\mathbf{z}}) \right) \right)
```

Viacnásobná rekurzia

Veta o pevnom bode:

Pre l'ubovol'né
$$F_1$$
, F_2 , ..., F_n existujú X_1 , X_2 , ..., X_n , že $X_1 = F_1 X_1 X_2 ... X_n$ $X_2 = F_2 X_1 X_2 ... X_n$... $X_n = F_n X_1 X_2 ... X_n$... $X_n = F_n X_1 X_2 ... X_n$. vektorovo: $(X_1, X_2, ..., X_n) = (F_1 X_1 X_2 ... X_n, F_2 X_1 X_2 ... X_n, ..., F_n X_1 X_2 ... X_n)$ $\mathbf{X} = (F_1 (p_1 \mathbf{X}) (p_2 \mathbf{X}) ... (p_n \mathbf{X}), ..., F_n (p_1 \mathbf{X}) (p_2 \mathbf{X}) ... (p_n \mathbf{X}))$ $\mathbf{X} = \lambda \mathbf{z} . (F_1 (p_1 \mathbf{z}) (p_2 \mathbf{z}) ... (p_n \mathbf{z}), ... F_n (p_1 \mathbf{z}) (p_2 \mathbf{z}) ... (p_n \mathbf{z}))$ \mathbf{X} $p_i = i$ -ta projekcia vektora. preto $\mathbf{X} = \mathbf{Y} (\lambda \mathbf{z} . (F_1 (p_1 \mathbf{z}) (p_2 \mathbf{z}) ... (p_n \mathbf{z}), ... F_n (p_1 \mathbf{z}) (p_2 \mathbf{z}) ... (p_n \mathbf{z})))$

Primitívna rekurzia

(ideovo)

Rózsa Peter, founding mother of recursion theory

Due to the effects of the <u>Great Depression</u>, many university graduates could not find work and Péter began private tutoring. At this time, she also began her graduate studies.

https://en.wikipedia.org/wiki/R%C3%B3zsa_P%C3%A9ter

Primitívne rekurzívna funkcia je:

0,

+1,

 $p_i x_1 x_2 ... x_n = x_i$

• f.g

resp. nulová funkcia $N^n \rightarrow N$,

resp. succ: $N \rightarrow N$,

resp. projekcia p_i: $N^n \rightarrow N$, $p_i x_1 x_2 ... x_n = x_i$

resp. kompozícia

$$f x_1 x_2 ... x_n = g(h_1(x_1 x_2 ... x_n) ... h_m(x_1 x_2 ... x_n))$$

číselná rekurzia z n+1 na n:

primitívna rekurzia g : $N^n \rightarrow N$, h : $N^{n+2} \rightarrow N$, potom f : $N^{n+1} \rightarrow N$

Primitívna rekurzia

Wilhelm Ackermann

Primitívne rekurzívne funkcia je totálna, resp. všade definovaná

- je akákoľvek číselná totálna funkcia (N->N) primitívne rekurzívna?
- je akákoľvek číselná "haskellovská" totálna funkcia primitívne rekurzívna ?
 (je predpoklad n+1 -> n vážne obmedzujúci ?)
- je, Ackermannova funkcia, je jednoduchým príkladom funkcie, ktorá nie je primitívne rekurzívna (1935):

$$egin{array}{lll} {
m A}(0,n) & = & n+1 \ {
m A}(m+1,0) & = & {
m A}(m,1) \ {
m A}(m+1,n+1) & = & {
m A}(m,A(m+1,n)) \end{array}$$

Ackermannova funkcia rastie rýchlejšie ako akákoľvek primitívne rekurzívna

Viac než primitívna rekurzia

Primitívne rekurzívna funkcia je:

- nulová funkcia Nⁿ→N,
- succ: N→N,
- projekcia p_i : $N^n \rightarrow N$, $p_i x_1 x_2 ... x_n = x_i$
- kompozícia f $x_1 x_2 ... x_n = g(h_1(x_1 x_2 ... x_n) ... h_m(x_1 x_2 ... x_n))$

[Parciálne/Čiastočne] [vyčíslitelná/rekurzívna] (nemusí byť totálna): nech $r: N^{n+1} \rightarrow N$ je primitívne rekurzívna funkcia

operátor µ-rekurzie µ-rekurzia definuje f : Nⁿ⁺¹→N

$$f y x_1 x_2 ... x_n = \min_{z} (r(z x_1 x_2 ... x_n) == y)$$

pohľad programátora:

f y
$$x_1 x_2 ... x_n =$$

for (int z = 0; ; z++)
if (r(z $x_1 x_2 ... x_n$) == y) return z;

operátor µ-rekurzie [Parciálne/Čiastočne] [vyčíslitelná/rekurzívna] (nemusí byť totálna):

nech r : Nⁿ⁺¹→N je primitívne rekurzívna funkcia

µ-rekurzia definuje f : Nⁿ⁺¹→N

f y
$$x_1 x_2 ... x_n = \min_{z} (r(z x_1 x_2 ... x_n) == y)$$

pohľad informatika:

Nech r(z $x_1 x_2$)

- je funkcia, ktorá ku kódu TM x_1 , kódu vstupnej pásky x_2 kódu povie, v ktorom stave stojí TM po z krokoch
- chce to prax a chvíľku by to trvalo, ale zistili by sme, že to je primitívne rekurzívna funkcia...
- r ... povie, či TM stoj stojí v koncovom stave, alias, akceptuje slovo x₂

Operátor µ-rekurzia nás privedie k čiastočne rekurzívnej funkcii, ktorá

- vie zistiť, po koľkých krokoch TM zastaví, ak zastaví
- ak nie, nevie nič

Asi tušíte, že toto z princípu veci nemôže byť totálne funkcia, ani primitívne rekurzívna

sme v inej galaxii...

λ-vypočítateľná funkcia

(technické – na dlhé letné večery)

Parciálna funkcia f : $N^n \rightarrow N$ je λ -vypočítateľná, ak existuje λ -term F taký, že F $\underline{x_1}$ $\underline{x_2}$... $\underline{x_n}$ sa zredukuje na \underline{f} $\underline{x_1}$ $\underline{x_2}$... $\underline{x_n}$, ak n-tica $\underline{x_1}$ $\underline{x_2}$... $\underline{x_n}$ patrí do def.oboru f F $\underline{x_1}$ $\underline{x_2}$... $\underline{x_n}$ nemá normálnu, ak n-tica $\underline{x_1}$ $\underline{x_2}$... $\underline{x_n}$ nepatrí do def.oboru f

Veta: Každá parciálne vyčíslitelná funkcia je λ-vypočítateľná. Dôkaz:

- nulová fcia, succ, projekcie p_{i,} kompozícia priamočiaro
- primitívna rekurzia g : $N^n \rightarrow N$, h : $N^{n+2} \rightarrow N$, potom f : $N^{n+1} \rightarrow N$

f 0
$$x_1 x_2 ... x_n = g(x_1 x_2 ... x_n)$$

f $(n+1) x_1 x_2 ... x_n = h(f(n x_1 x_2 ... x_n) n x_1 x_2 ... x_n)$
F = **Y** $(\lambda f. \lambda y. \lambda x_1. \lambda x_2 ... \lambda x_n)$ (if (isZero y) $G(x_1 x_2 ... x_n)$ then else $H(f((pred y) x_1 x_2 ... x_n))$ (pred y) $x_1 x_2 ... x_n)$))

• μ -rekurzia $r: \mathbb{N}^{n+1} \to \mathbb{N}$ $F = \lambda y \lambda x_1 \lambda x_2 \dots \lambda x_n$. $\mathbf{Y}(\lambda h.\lambda z._ (if (eq y G(z x_1 x_2 \dots x_n)) then z else h (succ z)))$

Veta: Každá λ-vypočítateľná je parcialne vyčíslitelná funkcia.

Weak head normal form

(slabo hlavová normálna forma)

Head normal form (h.n.f)

- $(\lambda x_1, \lambda x_2, ..., \lambda x_k, v) M_1 M_2 ... M_n$
- v je premenná (resp. konštanta),
- pre l'ubovol'né $r \le n$, (...($(v M_1) M_2$)... M_r) nie je redex .

Ak k=0, konštanta či premenná s málo argumentami

Ak k>0, λ-abstrakcia s nereducibilným telom

Weak head normal form (w.h.n.f)

- $V M_1 M_2 ... M_n$
- v je premenná alebo λ -abstrakcia (resp. konštanta),
- pre l'ubovol'né $r \le n$, (...($(v M_1) M_2$)... M_r) nie je redex .

Konštanta, premenná alebo λ-abstrakcia s málo argumentami.

 $\lambda x.((\lambda y.y) z)$ nie je h.n.f. (až po red. $((\lambda y.y) z) \rightarrow_{\beta} z)$, ale je w.h.n.f.

 $(k, n \in N)$

 $(n \in N)$

Najznámejšie stratégie

- weak leftmost outermost (call by need/output driven/lazy/full lazy)
 (λx. λy.(x y)) (λz.z) → β λy.((λz.z) y)
 redukuje argumenty funkcie, len ak ich treba
 Keďže w.h.n.f. môže obsahovať redex, tak nenormalizuje úplne...
- strong leftmost outermost (call by name/demand driven)
 (λx. λy.(x y)) (λz.z) → β λy.((λz.z) y) → β λy.y n.f.
 redukuje argumenty funkcie, len ak ich treba, ale pokračuje v hľadaní redexov, kým nejaké sú
 normalizuje úplne...
- eager argumenty najprv (call by value/data driven/strict) nenormalizuje...

Lazy

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- ($\lambda y.(* (+ ((\lambda x.x)(* 3 4)) ((\lambda x.x)(* 3 4))) y)) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (* (+ (($\lambda x.x$)(* 3 4)) (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ (* 3 4) (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 (* 3 4)) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 12) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 (+2 6)) \rightarrow_{β}
- (* 24 8) \rightarrow_{β}
- 192

Full lazy

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- ($\lambda y.(* (+ ((\lambda x.x)(* 3 4)) ((\lambda x.x)(* 3 4))) y)) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (* (+ (($\lambda x.x$)(* 3 4)) (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ (* 3 4) (* 3 4)) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 12) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 ($\lambda x.(+2 x) 6$)) $\rightarrow _{\beta}$
- (* 24 (+2 6)) \rightarrow_{β}
- (* 24 8) \rightarrow_{β}
- **192**

Strict

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (+2 6) \rightarrow_{\beta}$
- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) 8 \rightarrow_{\beta}$
- $(\lambda x. \lambda y.(* (+ x x) y) (* 3 4)) 8 \rightarrow_{\beta}$
- (λx . λy .(* (+ x x) y) 12) 8 \rightarrow 8
- ($\lambda y.(* (+ 12 12) y)) 8 \rightarrow_{\beta}$
- (* (+ 12 12) 8) \rightarrow_{β}
- (* 24 8) \rightarrow_{β}
- **192**

Eager

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (λx . λy .(* (+ x x) y) ((λx .x) 12)) (λx .(+2 x) 6) \rightarrow 8
- $(\lambda x. \lambda y.(* (+ x x) y) 12) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (λx . λy .(* (+ x x) y) 12) (+26) \rightarrow_{β}
- (λx . λy .(* (+ x x) y) 12) 8 \rightarrow 8
- ($\lambda y.(* (+ 12 12) y)) 8 \rightarrow _{\beta}$
- $(\lambda y.(*24 y)) 8 \rightarrow_{\beta}$
- (* 24 8) \rightarrow_{β}
- **192**

Church-Rosser vlastnost'

(konzistentnosť λ-kaklulu – *Janko/Marienka vlastnosť*)

pre ľubovoľnú trojicu termov M, M₁, M₂ takých, že

$$M \rightarrow {}_{\beta}^* M_1 a \rightarrow {}_{\beta}^* M_2$$

existuje R, že

$$M_1 \rightarrow {}_{\beta}{}^*R$$
 a $M_2 \rightarrow {}_{\beta}{}^*R$

Inak:

$$(\leftarrow_{\beta}^{*} \circ \rightarrow_{\beta}^{*}) \subseteq (\rightarrow_{\beta}^{*} \circ \leftarrow_{\beta}^{*})$$

teda ak M1 \leftarrow_{β}^{*} M \rightarrow_{β}^{*} M2, potom existuje R, že M1 \rightarrow_{β}^{*} R \leftarrow_{β}^{*} M2

Veta: β-redukcia spĺňa Church-Rosserovu vlastnosť Dôkazy sú technicky náročné:

- 1936 Church, Rosser: Some properties of conversion
- 1981 Barendregt
- 1981 Löf, Tait

Dôsledok:

ak term má normálnu formu vzhľadom na \rightarrow_{β} , potom je jednoznačne určená

Vysvetlenie

$$(\leftarrow_{\beta}^{*} \circ \rightarrow_{\beta}^{*}) \subseteq (\rightarrow_{\beta}^{*} \circ \leftarrow_{\beta}^{*})$$

$$x (\leftarrow_{\beta}^* \circ \rightarrow_{\beta}^*) y => x (\rightarrow_{\beta}^* \circ \leftarrow_{\beta}^*) y$$

■ \forall m, \exists r: $x \leftarrow_{\beta}^{*} m \rightarrow_{\beta}^{*} y => x \rightarrow_{\beta}^{*} r \leftarrow_{\beta}^{*} y$

■ \forall $m \exists r$: $x \leftarrow_{\beta}^* m \land m \rightarrow_{\beta}^* y => x \rightarrow_{\beta}^* r \land r \leftarrow_{\beta}^* y$

$K I \Omega =_{\beta} I I$ I

β ekvivalenica

■ =_β definujeme ako $(→_β ∪ ←_β)^*$ Príklad: KIΩ =_β II

Slabá Church-Rosser vlastnosť

(slabá Janko/Marienka vlastnosť)

pre l'ub.trojicu termov M, M_1 , M_2 takých, že $M \rightarrow M_1$ a $M \rightarrow M_2$

existuje R, že

$$M_1 \rightarrow {}^*R \text{ a } M_2 \rightarrow {}^*R$$

Inak:

$$(\leftarrow \circ \rightarrow) \subseteq (\rightarrow^* \circ \leftarrow^*)$$

teda ak M1 \leftarrow M \rightarrow M2, potom existuje R, že M1 \rightarrow *R \leftarrow * M2

• $\forall m \exists r: x \leftarrow_{\beta} m \land m \rightarrow_{\beta} y => x \rightarrow_{\beta}^{*} r \land r \leftarrow_{\beta}^{*} y$

Veta: Nech → je noetherovská/silne normalizujúca/terminujúca relácia.

- → má Church-Rosser vlastnosť (confluent) je ekvivalentné s
- → má slabú Church-Rosser vlastnosť (local confluent)

Dôkaz: CR => SCR, to je jasné...
preto zostáva SCR =>?? CR

Zamyslenie: je noetherovská podmienka podstatná, neplatí veta aj bez nej?

Slabá Church-Rosser vlastnosť

Veta: Nech → je noetherovská/silne normalizujúca/terminujúca relácia

- → má Church-Rosser vlastnosť (confluent) je ekvivalentné s
- → má slabú Church-Rosser vlastnosť (local confluent)

Dôkaz sporom:

NOE & SCR implikuje CR, ukážeme **spor**: NOE & SCR & ¬CR:

- (¬CR): Nech M má dve normálne formy, M1<>M2, t.j. M \rightarrow^* M₁ a M \rightarrow^* M_{2.}
- M nie je v normálnej forme (ak by bolo, M=M1=M2 a pritom M1<>M2),
- potom existuje M', že M → M',
- M' má tiež dve normálne formy, ak by nie, spor s lokálnou konfluentosťou,
- M", M", M"", a t.d' (noetherovskosť relácie vyrobí spor).

Zamyslenie: je noetherovská podmienka podstatná, neplatí veta aj/bez nej?

de Bruijn index

čo robilo problémy pri substitúcii, sú mená premenných idea (pána de Brujin): *premenné nahradíme de Bruijn - <u>indexami</u>*

•
$$\lambda x.(+ x 1)$$

• $\lambda.(+ 0 1)$

de Bruijn index: neformálne:

cez koľko λ treba preskákať hore, aby sme našli λ-príslušnej/danej premennej

- Dôsledok 1: α-konverzia tu neexistuje, lebo premenné nemajú/stratili mená
- Dôsledok 2: rôzne premenné môžu mať rovnaký index v rôznych kontextoch
- Dôsledok 3: voľné premenné majú index >= hľbku λ-vnorení
- Dôsledok 4: voľné premenné musia mať rôzne indexy

$$(\lambda.\lambda.3 \frac{1}{1} (\lambda.0 \frac{2}{2})) (\lambda.4 \frac{0}{1})$$

de Bruijn index (príklady)

- λx.λy.x (<u>K-kombinátor</u>):λ λ <u>1</u>
- $\lambda x.\lambda y.\lambda z.$ ((x z) (y z)) (S-kombinátor): $\lambda \lambda \lambda ((2 0) (1 0))$
- λz.((λy.y (λx.x)) (λx.(z x)))

$$\lambda ((\lambda \underline{0} (\lambda \underline{0})) (\lambda (\underline{1} \underline{0})))$$

pekná grafika, ale my máme indexy od <u>0</u>, preto decr <u>1</u>

Syntax de Bruijnovej notácie:

$$L_{dB} ::= \underline{n} \mid (L_{dB} L_{dB}) \mid \lambda L_{dB}$$

```
data LExpDB = LAMBDADB LExpDB |
    IDDB Int |
    APPDB LExpDB LExpDB deriving(Eq)
```

β-redukcia s de Bruijn-indexami

(pointa)

Príklady:

- K=λx.λy.x
 - λ.λ.<u>1</u>
- $S=\lambda x.\lambda y.\lambda z.((x z) (y z))$
 - λ.λ.λ.((2 0) (1 0))
- $\lambda x.(+ x 1) 5$
 - $\lambda \cdot (+ 0 1) 5 = (+ 5 1)$
- K a b = $(\lambda x. \lambda y. x)$ a b
 - $(\lambda.\lambda.\underline{1} \ a) \ b = \lambda.a \ b = a$

hypotéza, ako by to mohlo fungovat' β-redukcia (λ.M) $N = M[\underline{0}:N]$??? ale nefunguje... ⊗

skúsme intuitívne

- (λx.λy.((z x) (λu.(u x))))(λx.(w x))
 - $(\lambda.\lambda.((3 1) (\lambda.(0 2)))) (\lambda.(4 0))$
 - $(\lambda.\lambda.((3 \square) (\lambda.(0 \square)))) (\lambda.(4 0))$ označíme si miesta \square , kam sa substituuje
 - $(\lambda.(\underline{2} (\lambda.\underline{5} \underline{0})) (\lambda.(\underline{0} (\lambda.\underline{6} \underline{0}))))$ $(\lambda y.\underline{z} (\lambda x.\underline{w} \underline{x}) (\lambda u.\underline{u} (\lambda x.\underline{w}' \underline{x})))$

nahrad'me, ale pozor na vol'né premenné tie sa posunú/*shiftujú* s indexom hore

β-redukcia s de Bruijn-indexami

(príklad)

Keďže nemáme mená premenných, substituujeme len za indexy

Substitúcia
$$[t_0, t_1, ..., t_n] = [\underline{0}:t_0][\underline{1}: t_1]...[\underline{n}: t_n]$$

type SubstDB = [LExpDB] --
$$[t_0, t_1, ...]$$
 znamená $\{\underline{0}/t_0, \underline{1}/t_1, ...\}$

Aplikácia substitúcie:

- $\underline{k}[t_0, t_1, ..., t_n] = t_k, k <= n$
- (M N) $[t_0, t_1, ..., t_n] = (M[t_0, t_1, ..., t_n] N[t_0, t_1, ..., t_n])$
- (λ M) [t_0 , t_1 , ..., t_n] = (λ M[$\underline{0}$, t_0 ^1, t_1 ^1,..., t_n ^1]) t^1 – pripočítaj 1 k voľným premenným

Beta redukcia:

```
β: (λΜ) N = M[N,0,1,2,3, ...]

Príklad: (K a) b = (λ.λ.1 a) b = ((λ.1) [a,0,1,2,...])b

= (λ.(1 [0, a, 1, 2,...])) b = λ.a b = ... zrychlene = a

...ak a, b sú konštanty neobsahujúce premenné
```

β-redukcia s de Bruijn-indexami

(príklad vhodný do domácej úlohy)

```
• (\lambda M) [t_0, t_1, ..., t_n] = (\lambda M[0, t_0^1, t_1^1, ..., t_n^1])
t^1 - \text{pripočítaj } 1 \text{ k voľným premenným}
\beta: (\lambda M) N = M[N, 0, 1, 2, 3, ...]
```

Príklad z predpredošlého slajdu:

- $(\lambda.\lambda.((3\ 1)\ (\lambda.(0\ 2))))\ (\lambda.(4\ 0)) =$
 - $\lambda.((3\ 1)\ (\lambda.(0\ 2)))\ [(\lambda.(4\ 0)),0,1,2,...] =$
 - $\lambda.(((3 \ 1)[0,(\lambda.(5 \ 0)),1,2,...])$ $((\lambda.(0 \ 2))[0,(\lambda.(5 \ 0)),1,2,...])) =$
 - $\lambda.((2(\lambda.(50))) (\lambda.(02))[0,(\lambda.(50)),1,2,...])) =$
 - $\lambda.((2(\lambda.(50))) (\lambda.(02)[0,1,(\lambda.(60)),2,3,4,...]))) =$
- $(\lambda y.(\underline{z} (\lambda x.(\underline{w} \underline{x}))) (\lambda u.(\underline{u} (\lambda x.(\underline{w}' \underline{x})))))$

SKK

- K=λx.λy.x
 - λ.λ.<u>1</u>
- $S=\lambda x.\lambda y.\lambda z.x z (y z)$
 - λ.λ.λ.<u>2</u> <u>0</u> (<u>1</u> <u>0</u>)

Ďalší testovací príklad

- SKK = $((\lambda.\lambda.\lambda.20(10))\lambda.\lambda.1)\lambda.\lambda.1$
 - $(\lambda.\lambda.2 \ 0 \ (1 \ 0) \ [\lambda.\lambda.1, \ 0,1,2,...]) \ \lambda.\lambda.1 =$
 - $(\lambda.\lambda.(2\ 0\ (1\ 0))\ [0,1,\lambda.\lambda.1,\ 0,1,2,...]) \lambda.\lambda.1 =$
 - $(\lambda.\lambda.((\lambda.\lambda.\underline{1}) \ \underline{0} \ (\underline{1} \ \underline{0}))) \ \lambda.\lambda.\underline{1} =$
 - $(\lambda.((\lambda.\lambda.\underline{1}) \ \underline{0} \ (\underline{1} \ \underline{0}))) \ [\lambda.\lambda.\underline{1},\underline{0},\underline{1},\underline{2},...] =$
 - $\lambda.(((\lambda.\lambda.\underline{1})\ \underline{0}\ (\underline{1}\ \underline{0}))\ [\underline{0},\lambda.\lambda.\underline{1},\underline{0},\underline{1},\underline{2},...]) =$
 - $\lambda.((\lambda.\lambda.\underline{1}) \underline{0} (\lambda.\lambda.\underline{1} \underline{0})) =$

Cvičenie

Prepíšte do de Bruijn notácie

- λx.λy.y (λz.z x) x
- λx.(λx.x x) (λy.y (λz.x))
- $(\lambda x. + x ((\lambda y.y) (-x (\lambda z.3)(\lambda y.y y)))$

Definujte funkciu na prevod do a z de Bruijn notácie

Implementujte aplikáciu substitúcie a β-redukciu v de Bruijn kalkule s pomocnými funkciami.

Domáca úloha, časť 1

de Bruijnova notácia

V module DB definujte:

- •funkciu todb :: Lexp -> Lexpdb, ...ale vstupný λ-term môže obsahovať voľné premenné
- •funkciu from DB:: LExpDB -> LExp, ...pri tom si treba vedieť vymýšľať mená premenných
- •ak substitúcia v kalkule de Bruijna je definovaná type SubstDB = [LExpDB], tak definujte:
 - •aplikáciu substitúcie na λ-term, teda subst :: LExpDB -> SubstDB -> LExpDB
 - •potom beta :: LExpDB -> LExpDB
 - •a potom oneStep::Lexpdb -> Lexpdb a normálnu formu nf::Lexpdb -> Lexpdb dostávate ako veľkonočný výslužku v priloženom súbore db.hs.

Príklady nájdete v priloženom súbore DB.hs a Terms.hs