Analisi Matematica A.A 2022-2023

7 Infinitesimi

7.1 O-piccolo

Definizione 7.1.1 (O-piccolo). Prendiamo $A \subset \mathbb{R}, x_0 \in Acc(A), f, g : A \to \mathbb{R}$ $(x_0 \in \overline{\mathbb{R}})$. Si dice che f è **o-piccolo** di g per x che tende a x_0 , e si scrive f(x) = o(g(x)) per $x \to x_0$ se esiste una funzione $\omega(x)$ t.c. $\lim_{x \to x_0} \omega(x) = 0$ e $f(x) = g(x) \cdot \omega(x)$.

Osservazione 7.1.1. Se esiste un intorno U di x_0 t.c. $g(x) \neq 0 \forall x \in U \setminus \{x_0\}$ allora $f(x) = o(g(x)) \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$ (vuol dire che $f(x) = \omega(x) \cdot g(x) = \frac{f(x)}{g(x)} = \omega(x) \to 0$), possiamo infatti scrivere:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \text{ allora } f(x) = o(g(x))$$

Intuitivamente possiamo dire anche che se f(x) = o(g(x)) vuol dire che f(x) è infinitesimamente più piccola di g(x) per $x \to x_0$.

Esempio 7.1.1. Se prendiamo una $f(x) = x^3$ e $g(x) = x^2$, f(x) = o(g(x)) per $x \to 0$. Infatti $\frac{f(x)}{g(x)} = \frac{x^3}{x^2} = x \to 0$ per $x \to 0$.

Possiamo vedere l'applicazione della definizione con $f(x) = g(x) \cdot \omega(x)$ con $\omega(x) = x$ e visto $\omega(x) \to 0$.

7.2 Proprietà o-piccolo

Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, e due funzioni $f, g : A \to \mathbb{R}$ e con tutti gli o-piccoli che si intendono per $x \to x_0$, valgono le seguenti proprietà.

- 1. $f(x) \cdot o(g(x)) = o(f(x) \cdot g(x))$.
- 2. Se $k \in \mathbb{R}$, e $k \neq 0 \Longrightarrow o(k \cdot g(x)) = o(g(x))$.
- 3. o(g) + o(g) = o(g). 8
- 4. Se $\lim_{x \to x_0} f(x) = 0 \Longrightarrow f(x) \cdot g(x) = o(g(x)).$
- 5. Se $\lim_{x \to x_0} f(x) = 0 \Longrightarrow o(g) + o(f \cdot g) = o(g)$.
- 6. o(o(g)) = o(g).
- 7. o(f+g) = o(f) + o(g).
- 8. $o(g) \cdot o(f) = o(f \cdot f)$.

Osservazione 7.2.1. Facciamo un osservazione relativa alla proprietà (3) e di essa valga anche nel caso o(g) - o(g).

$$o(g) - o(g) = o(g) + (-1) \cdot o(g) = o(g) + o(-1 \cdot g) = o(g) + o(g) = o(g).$$

Vediamo dunque che la proprietà (2) comprende anche i casi con il meno.

Esempio 7.2.1. Facciamo un esempio per capire meglio l'osservazione sopra.

Prendiamo $f(x) = x^3$, $g(x) = x^2$ e $h(x) = x^4$, vediamo che $x^3 = o(x^2)$ e $x^3 = o(x^2)$ ma che $x^3 - x^4 \neq 0$.

Osservazione 7.2.2. Una casistica molto frequente e quella con q = potenza di x (o di $x - x_0$).

Infatti se prendiamo $\alpha, \beta \in \mathbb{R}$ con $\alpha > \beta \Longrightarrow x^{\alpha} = o(x^{\beta})$ perché $x^{\alpha} = x^{\beta} \cdot x^{\alpha - \beta}$. Quindi quando $\omega(x) = x^{\alpha - \beta} \to 0$ perché $\alpha > \beta$. Mentre quando $\omega(x) = \frac{x^{\alpha}}{x^{\beta}} \to 0$ sempre perché $\alpha > \beta$.

Esempio 7.2.2. Prendiamo $f(x) = \tan(x) \cdot \sin(x)$ e dico che f(x) = o(x) per $x \to 0$. Infatti $\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{\tan(x) \cdot \sin(x)}{x} = \lim_{x \to 0} \tan(x) \cdot \lim_{x \to 0} \frac{\sin(x)}{x} = 0 \cdot 1 = 0$ (ricorda il limite notevole $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$)

⁸Scrivere o(g(x)) oppure o(g) è equivalente

Analisi Matematica A.A 2022-2023

7.3 Sviluppi al primo ordine

• Dai limiti notevoli sappiamo che $\lim_{x\to 0} \frac{\sin(x)}{x} = 1 \Longrightarrow \lim_{x\to 0} \frac{\sin(x)}{x} - 1 = 0$. Possiamo dunque dire che $\lim_{x\to 0} \frac{\sin(x)-x}{x} = 0$ quindi per definizione:

$$\sin(x) - x = o(x)$$
 e che $\sin(x) = x - o(x)$ per $x \to 0$

• Dal limite notevole $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$ ottengo, come prima, che:

$$1 - \cos(x) - \frac{1}{2} = o(x^2)$$
 e che $\cos(x) = 1 - \frac{x^2}{2} + o(x^2)$

- $\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{\cos(x)} \cdot \frac{1}{x} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{1}{\cos(x)} = 1 \cdot \frac{1}{1} = 1 \Longrightarrow \tan(x) = x + o(x)$
- $\lim_{x \to x_0} \frac{e^x 1}{x} = 1 \Longrightarrow e^x = 1 + x + o(x)$
- $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1 \Longrightarrow \log(1+x) = x + o(x)$

Esempio 7.3.1. Esempio risolvendo $(\tan(x))^2$ in termini di o-piccoli. Sappiamo che $\tan(x) = x + o(x)$.

$$\tan(x)^2 = (x + o(x))^2 = x^2 + 2x \cdot o(x) + (o(x))^2 = x^2 + o(2x^2) + o(x^2) = x^2 + o(x^2) + o(x^2) + o(x^2) = x^2 + o(x^2) + o(x^$$

Quindi il risultato è che $tan(x)^2 = x^2 + o(x^2)$

Esempio 7.3.2. Proviamo a risolvere $\lim_{x\to 0} \frac{\cos(\sin^2(x))-1}{x^4}$. Ricorda che $\sin(x)=x+o(x)$, quindi

Ricorda che $\sin(x) = x + o(x)$, quindi $\sin^2(x) = (x + o(x))^2 = x^2 + o(x^2)$

$$\cos(\sin^2(x)) - 1 = \cos(x^2 + o(x^2)) - 1$$
 poniamo $t = x^2 + o(x^2)$

Abbiamo quindi che in termini di o-piccolo $\cos(t) = 1 + \frac{t^2}{2} + o(t^2)$ con $t \to 0$

Possiamo fare questa sostituzione perché $\cos(t)=1+\frac{t^2}{2}+o(t^2)$ vale con $t\to 0$, se $t=x^2+o(x^2)$ ottengo che se $x\to 0$ allora $x^2+o(x^2)\to 0$ quindi $t\to 0$.

Ri-sostituendo la t abbiamo che $\cos(t) = 1 - \frac{t^2}{2} + o(t^2) = 1 - \frac{(x^2 + o(x^2))^2}{2} + o((x^2 + o(x))^2) = 0$

$$=1-\frac{x^4+2x^2\cdot o(x^2)+(o(x^2))^2}{2}+o(x^4+2x^2\cdot o(x^2)+o(x^2)^2)=1-\frac{x^4+o(x^4)+o(x^4)}{2}+o(x^4+o(x^4)+o(x^4))=1$$

 $=1-\frac{x^4}{2}+o(x^4)+o(x^4)=1-\frac{x^4}{2}+o(x^4)$ quindi abbiamo che:

$$\frac{\cos(\sin^2(x)) - 1}{x^4} = \frac{1 - \frac{x^4}{2} + o(x^4) - 1}{x^4} = \frac{-\frac{x^4}{2} + o(x^4)}{x^4} = -\frac{1}{2} + \frac{o(x^4)}{x^4}$$

Visto che $\frac{o(x^4)}{x^4}$ tende a 0 abbiamo che $\lim_{x\to 0}\frac{\cos(\sin^2(x))-1}{x^4}=-\frac{1}{2}$

7.4 O-grande

Definizione 7.4.1 (O-grande). Dato $A \subset \mathbb{R}$, $x_0 \in Acc(A)$, $e f, g : A \to \mathbb{R}$. Se $\exists M \in \mathbb{R}$ t.c. $|f(x)| \geq M \cdot |g(x)| \forall x \in U \cap A \setminus \{x_0\}$ dove U è un intorno di x_0 , allora si dice che f è O-grande di g per x che tende a x_0 e si scrive f(x) = O(g(x)) per $x \to x_0$.

Osservazione 7.4.1. Se q non si annulla in un intorno di x_0 allora possiamo scrivere che:

$$f(x) = O(g) \iff \left| \frac{f(x)}{g(x)} \right| \ge M$$
 in un intorno di x_0

Esempio 7.4.1. Facciamo un esempio prendendo $f(x) = x \sin(x)$ e g(x) = x. Vediamo che $\left|\frac{f(x)}{g(x)}\right| = \left|\frac{x \sin(x)}{x}\right| = |\sin(x)| \ge 1$ quindi f(x) = O(g(x)) per $x \to x_0$ per qualunque $x_0 \to \overline{\mathbb{R}}$ Analisi Matematica A.A 2022-2023

Definizione 7.4.2. Dato $A \subset \mathbb{R}$, $x_0 \in Acc(A)$, $e f, g : A \to \mathbb{R}$ infinitesime per $x \to x_0$ (cioè $\lim_{x \to x_0} f(x) = 0$ e $\lim_{x \to x_0} g(x) = 0$). Se esistono $L, \alpha \in \mathbb{R}$ con $L \neq 0$ t.c. $f(x) = L \cdot (g(x))^{\alpha} + o((g(x))^{\alpha})$ per $x \to x_0$ si dice che f è infinitesima di ordine α rispetto a g con parte principali $L(g(x))^{\alpha}$ per x che tende a x_0 .

Stessa definizioni del caso in. cui f e g siano divergenti (cioè $\lim_{x\to x_0} f(x) = \pm \infty$ e $\lim_{x\to x_0} g(x) = \pm \infty$)

Esempio 7.4.2. Prendiamo $f(x) = 3\sin(x) + x^2$ e g(x) = x con $x_0 = 0$. f è di ordine 1 rispetto a g per $x \to 0$ con parte principale 3x. Infatti $3\sin(x) + x^2 = 3x + o(x)$. (Perché $\sin(x) = x + o(x) \Longrightarrow 3\sin(x) + x^3 = 3x + o(x) + x^2 = 3x + o(x)$)

Esempio 7.4.3. Prendiamo il caso con $f(x) = 5x^4 + (2\sin(x)) \cdot x^2 + 3x$ e g(x) = x. f è di ordine 4 rispetto a x per $x \to +\infty$ con parte principale $5x^4$ Questo perché $(2\sin(x)) \cdot x^2 + 3x = o(x^4)$ quindi, $f(x) = 5x^4 + o(x^4)$ infatti $\frac{(2\sin(x)) \cdot x^2 + 3x}{x^4} \to 0$

Esempio 7.4.4. Guardiamo un esempio con $f(x) = \log(e^{3x} + x^2)$ per $x \to +\infty$

parte principale 3x per $x \to +\infty$. Quindi f(x) = 3x + o(x)

 $\log(e^{3x}+x^2) = \log(e^{3x}\cdot(1+\frac{x^2}{e^{3x}}) = \log(e^{3x}) + \log(1+\frac{x^2}{e^{3x}}) = 3x + \log(1+\frac{x^2}{e^{3x}})$ Abbiamo che $\frac{x^2}{e^{3x}} \to 0$ per $x \to +\infty$. Possiamo dunque dire che f(x) è di ordine 1 rispetto a x con

7.4 O-grande 40