DOI:10.19353/j.cnki.dzsj.2019.18.055

本文介绍了一种体积小、重量轻、便于携带的单端口阻抗 分析仪。该系统由本地振荡器信号产生部分、信号处理分析部 分组成。本地振荡器信号产生部分通过两个集成的锁相环芯片 产生待测信号的激励源和与待测信号具有频率差的参考信号。 信号处理分析部分,采用混频器对被测网络和严格匹配的50欧 参考信号进行频率变换和幅度调整,采用微处理器对模拟和数 字信号进行采集和分析。该系统可以对单端口RF电路的S11参数 进行测量并且方便携带,降低了基站的维修成本以及提前发现 基站的潜在问题,将问题扼杀在萌芽当中。

1. 概述

矢量阻抗分析仪早已成为工程师们最常用测量工具之 一。矢量阻抗分析仪能够在误差校正后提供无源器件的S11 参数信息,这使得阻抗分析仪在实验室以及户外应用之中很 好的用处。然而,一般的阻抗分析仪太大而且太重而不能在 户外使用。所以阻抗网络分析仪很少被带到户外使用。为了 降低基站的维修成本以及提前发现基站的潜在问题,将问题 扼杀在萌芽当中, 矢量阻抗分析仪的使用是很有必要的。

2. 系统设计

单端口矢量阻抗测量仪, 其特征在于包括本振信号发生部 分、信号处理部分,单端口矢量阻抗测量仪分别连接到被测的单 端口天线器件。单端口网络后的待测信号和参考信号由两个集成 的锁相环频率合成器产生,后经混频器和放大器信号处理后由微 处理器片上ADC采集,之后再进行比处理得到S11的模值。

集成锁相环频率合成器作为激励源使用,它产生的信号 频率范围决定了阻抗分析仪对天线的测量范围。在阻抗分析 仪的结构中, 主要由集成锁相环信号合成器、Ⅱ型衰减器、 巴伦匹配电路、混频器、低通滤波器、差动放大器、微处理 器及信号采集处理部分。总体框图如图1所示。

图1总体框图

3.硬件部分

3.1 集成锁相环

在该设计中,集成锁相环信号合成电路的芯片是选择的ADI 公司的PLL芯片ADF4351,它能够实现分数型的N或整数型的N分 频。本系统通过两片ADF4351,一路通过标准50欧负载,作为参 考信号; 另一路作为激励源激励外部待测的单端口器件, 输出作 为待测信号。够用于将输出的信号分频为35MHz到4400MHz内的 任意频点,最小的频率分辨率步长能够达到100Hz。即阻抗分析 仪能够测35MHz至4400MHz频率内被测器件的阻抗特性。

本设计中所使用的衰减器是Ⅱ型的纯电阻的衰减器,它 将集成锁相环信号合成器的输出信号减弱3dB,衰减器的输 入端口和输出的端口的阻抗都是50欧姆。

3.3 巴伦匹配电路

巴伦从本质上来说是一个变压器,它在电路中起到的作 用是转换以及匹配。

单端口矢量阳抗分析仪

桂林电子科技大学 陈李坤 张宗昌 曾 羽 卢 讯 刘 涛

端的电信号转换成为差分的电信号。之后再将一路信号接到测试接口, 另一端连接电容和50欧姆平衡负载到地。

3.4 混频器电路

本设计中的混频器级电路采用SA612A双平衡混频器,这款混频器集 成了内部振荡器件以及电压调节器,最适合用在低成本、低功耗的电路 系统当中。锁相环ADF4351输出级连接至混频器本振和待测通道。混频 器输入通道采用 II 型电阻衰减网络,输入信号衰减3dB并匹配50欧姆,利 用1:1巴伦的单端转差分信号,作为外部输入混频器,锁相环差分输出 子路连接混频器的本机振荡输入, 混频输出后经无源低通滤波器取得下 变频分量,差分输入至后级的运放。

3.5 差动放大电路

本设计中的差动放大器使用的是MCP6022集成芯片,其GWP=10M, 具有低噪声系数和失调电压, 轨至轨的输入输出。运放级采用差动放大 的方式,增益17dB,同时具有阻抗变换和ADC驱动作用。另一路运放电 路与之对称结构,由电容隔直输出,供单片机模数采集。混频级和增益 级电源电路采用AMS1085-5.0 LDO调节至5.0V,最大输出电流可达3A。 具有0.1%极佳的负载调整率,适合为该系统所有部件供电。

3.6 微控制处理器及信号采集部分

本设计中所使用的微控制处理器是STM32 F103R8T6,是一款32位基 于cortex-M3的嵌入式处理器,片上集成USART、AD/DA、USB、RTC等 丰富外设,核心最高主频可达72MHz,具备多种低功耗休眠模式,性价 比高,因集成内部高低频振荡器,可省略外部的晶振电路,系统的电路 比较简单, 比较适合用于便携式设备的开发和选用上。

图2 系统总流程图

其中所使用的模数转换器是STM32片上ADC, 对待测通道和参考通道两路讲行信号采集, 再使用 STM32处理数据,再用FTF屏显示,因此ADC的性能就 成为了重要的考虑因素之一,片上ADC是12位SAR类 型,具有18个通道,可配置为单个,连续或扫描多种 工作模式。最高采样转化速率可达1Msps,可满足设计 需要。信号输入调理电路包括电位抬高和钳位电路的 保护,因ADC采集端口无法对负电压采集,故进行电 位抬高,通过电阻节点分压实现。

4. 软件部分

本设计采用MDK5软件编写锁相环驱动程 序,且使用ST-LINK下载并调试程序。

首先将需要用到的控制引脚进行初始化,之 后再延迟一秒, 再写入一个频率值配置分频器。 程序总流程图如图2所示。

5.结束语

本文重点讨论了便携式的单端口阻抗测量仪的硬 件电路设计和实现过程。在设计和制作的过程中, 重 点研究了单端口矢量阻抗测量仪的基本原理,电路的

构架和工作过程的原理,实现了一种便携式单端口阻抗测量仪,具有低功耗、

本设计中所使用的是1: 1的巴伦,其主要作用就是将单 便携式、高精度、界面友好等特点,具有极其广阔的市场前景。(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net