Ex 11A

- a) when t=1, s=9-1=8 metres b) when s=0, $t^{3}-9t=0$
- b) when s=0, t3-9t=0 t(t3-9)=0 t=0, ±3

$2.5=5t^{2}-t^{3}$

- a) Δs from t=2 to t=4 t=2: s=20-8=12 t=4:80-64=16:. $\Delta s=16-12=4$ m
- b) Δs in the 3rd second = Δs from t=2 to t=3t=2: s=12 t=3: s=45-27=18 $\therefore \Delta s=18-12=6m$

3. v=3+5t-t², t≥0

- a) when t=1, V=3+5-1=7 ms-1
- b) $\frac{dv}{dt} = 5 2t = 0$ When $t = \frac{5}{2}$, $v = 3 + \frac{25}{2} \frac{25}{4} = \frac{37}{4} = 9.25$ ms⁻¹
- c) when t=7, v=3+35-49=-11ms⁻¹
 Particle is travelling in reverse (back towards origin)

4.
$$S=\frac{1}{5}(4t-t^2)$$
 metres away from point P (when $t=0$, $S=0$)

a)
$$\frac{ds}{dt} = \frac{1}{4t} \left(\frac{4}{5}t - \frac{1}{5}t^2 \right) = \frac{4}{5} - \frac{2}{5}t = 0$$
 when $t = 2$, $s = \frac{1}{5}(8 - 4) = \frac{4}{5}$ metres $t = 2$

b)
$$s=0$$
, $\frac{4}{5}t^{-1}5t^{-2}=0$
 $\frac{1}{5}t(4-t)=0$
 $t=0,4$... 4 Seconds

c) total distance =
$$\frac{4}{5} \times 2 = \frac{8}{5}$$
 metres.

a) initial velocity is when
$$t=0: v=0-0+f=8 \text{ ms}^{-1}$$

b)
$$v=0$$
, $3t^{2}-10t+8=0$ $(3t-4)(t-2)=0$ $t=\frac{4}{3}$ or 2 seconds