Theory of Computing

Sudhan Chitgopkar

January 28, 2021

Contents

1	01.28.29							
	1.1	Nondeterministic Finite Automata						
		1.1.1 DFA Review						
		1.1.2 NFA's						
2	01.2	26.21 - 01.28.20						
_	2.1	Closure Introduction						
	2.2 Closure Continued							
	2.3 Closure Properties of DFAs							
	$\frac{2.5}{2.4}$	Closure Properties of DFAs						
	2.1	2.4.1 Premise:						
		2.4.2 Coding M						
		2.4.3 Derivation						
		2.4.4 Correctness						
		2.4.5 Mathematical Induction						
0	01.6	21.01						
3	01.21.21							
	3.1 3.2	Deterministic Finite Automata						
		Aside: On Σ and Σ^*						
	3.3	Recursively Testing 101						
		3.3.1 TODO Complete Recursion Sequence						
4	01.1	19.21						
	4.1	Tuples & DFAs						
	4.2	Domains & Codomains						
	4.3	Strings						
	4.4	TODO Review Recursive Definitions						
	4.5	Languages						
5	01.14.21							
	5.1	Automaton (automata)						
	5.2	The Mathematics of Automata						
		5.2.1 Mathematicians & History						
		5.2.2 Sequential Logic						
	5.3	Necessary Review						
	5.4	Functions						

5.5	TODO Types of Functions - Definition & Logical Statement	10
5.6	Finite Automaton (Finite State Machine)	10

$1 \quad 01.28.29$

1.1 Nondeterministic Finite Automata

1.1.1 DFA Review

- DFA's are 5-tuples with
 - δ: Q × Σ → Q
 - The number of transitions, δ , is $|\mathbf{Q}||\mathbf{\Sigma}|$
- There is no real decision-making here, an input is simply being used alongside a rule to find an output

1.1.2 NFA's

- NFAs are also a 5-tuple
- $\delta: Q \times \Sigma \to p(Q)$
- $|P(Q)| = 2^{|Q|}$

2 01.26.21 - 01.28.20

2.1 Closure Introduction

- The language recognized by a DFA, M, (L(M)) is the set of all string accepted by M
- Thus, $M = (Q, \Sigma, \delta, q_0,F)$
- And Σ^* is the universe of all possible inputs to M
- $\bullet \ \forall$ strings w $\in \Sigma^*,$ M either accepts or rejects w
- It follows that L(M) $\subset \Sigma^*$
- And $\neg L(M) = \Sigma^* L(M)$
- Therefore, M accepts every string in L(M) and rejects everything in $\neg L(M)$

2.2 Closure Continued

- • A set, A, is closed under a binary operation, OP, if $\forall~x~,~y\in A~[x~OP~y\in A]$
- Ex. Natural Numbers (N)
 - 1. \mathbb{N} is closed under +
 - 2. \mathbb{N} is closed under \times
 - 3. \mathbb{N} is not closed under -
 - 4. \mathbb{N} is not closed under \setminus
- \bullet The class of all languages that are recognized by DFAs is closed under \cup

2.3 Closure Properties of DFAs

- Union (\cup)
- Intersection (\cap)
- Complement (\neg)
- Reverse

2.4 Applying Closure Properties

- If $L(M_1) \cup L(M_2)$ are DFAs, then \exists DFA, M, with $L(M) = L(M_1) \cup L(M_2)$
- The purpose of a state machine is to make a yes/no decision

2.4.1 Premise:

- \bullet $M_1=\{Q_1,\!\Sigma,\!\delta_1,\!q_{0_1},\!F_1\}$ and $M_2=\{Q_2,\!\Sigma,\!\delta_2,\!q_0,\!F_2\}$ are DFAs
- M₁ accepts binary strings ending in 1
- M₂ accepts binary strings of odd length
- $L(M) = L(M_1) \cup L(M_2)$
 - Accepts binary strings that either end in 1 OR have odd length (or both)
- M₁: q₁, q₂ distinguished between ending in 0 and 1
- M₂: r₁, r₂ distinguished between odd and even length
- Accordingly, M must be able to distinguish between:
 - even length ending in 1
 - even length ending in 0
 - odd length ending in 1
 - odd length ending in 0

2.4.2 Coding M

- Consider $Q = Q_1 \cdot Q_2 = \{q_1r_1, q_2r_1, q_1r_2, q_2r_2\}$
- wherein
 - $q_1 r_1 = even string ending in 0$
 - $-q_1r_2 = odd$ string ending in 0
 - $-q_2r_1 = \text{even string ending in } 1$
 - $-q_2r_2 = odd$ string ending in 1
- Ex. $\delta(q_1r_1,1) = q_1r_2$
- Applying this logic to a DFA, we know that

```
\begin{split} &- \ Q = \{q1r1,q1r2,q2r1,q2r2\}; \\ &- \ S = \{0,1\}; \\ &- \ d:Q \ \backslash *sigma \to Q; \\ &- \ d(q1r1,0) = q1r2; \\ &- \ d(q1r1,1) = q2r2; \\ &- \ d(q1r2,0) = q1r1; \\ &- \ d(q1r2,1) = q2r1; \\ &- \ d(q2r1,0) = q1r2; \\ &- \ d(q2r1,1) = q2r2; \\ &- \ d(q2r2,0) = q1r1; \\ &- \ d(q2r2,1) = q2r1; \\ &- \ q0 = q1r1; \\ &- \ F = \{q1r2,q2r1,q2r2\}; \end{split}
```

2.4.3 Derivation

- Construct M and show that $L(M) = L(M_1) \cup L(M_2)$.
- $\bullet \ Q = Q_1 \cdot Q_2$
- let $q_i \in Q_1$ and let $r_j \in Q_2$. and let $c \in \Sigma$
- \bullet and $q_i r_j \in Q$
- thus, $\delta(q_i r_i, c) = \delta_1(q_i, c) \delta_2(r_i, c)$
- and $q_0 = q_{01}, q_{02}$
- so that $F = \{q_i r_i : q_i \in F_1 \cup r_i \in F_2\}$

2.4.4 Correctness

- Show that M accepts exactly the strings that are accepted by M₁ or M₂
- If $w \in \Sigma^*$, tjem w is accepted by M and w is accepted by either M_1 or $M\{2\}$
- To do this, we can organize Σ^* into strings of length 0, length 1, length 2...
- We solve with mathematical induction, which is how we prove recurrence relationships

2.4.5 Mathematical Induction

- Need base case and induction hypothesis
- Induction hypothesis says something is true about k, where k is the length of strings
- δ^* (q₀,w) is the ending state of M on w where
- $\delta^* (q_0, w) = \delta^*_1(q_{01}, w) \delta^*_2(q_{02}, w)$

- Induction Hypothesis: If |w|=k, then $\delta^*(q_0,w)\in F\iff \delta^*_1(q_{0_1},w)\in F_1$ or $\delta^*_2(q_{02},w)$ inf F_2
- Let $x \in \Sigma$.
- Then $|\mathbf{w} \cdot \mathbf{x}| = \mathbf{k} + 1$
- And $\delta^*(q_{0,wx}) = \delta^*_1(q_{01},wx)\delta^*_2(q_{02},wx)$
- If $\delta^*_{1}(q_{01},wx) \in F_1$, $\delta^*(q_{0,wx}) \in F$
- Similarly, if delta* $_2(q_{02},wx)$, then $\delta^*(q_{0,wx}) \in F$

$3 \quad 01.21.21$

3.1 Deterministic Finite Automata

- We know that $\delta = Q \times \Sigma \to Q_2$
- We want a function that takes a starting state and a string, then returns the state after the machine has read that string
- Let's define $\delta^* = Q \times \Sigma^* \to Q$
 - $-\delta^*$ takes a state and a string
 - δ takes a state and a symbol
- Now, we need a recursive definition
 - Base case:
 - $* \ \mathrm{Let} \ q_i \in Q$
 - * $\delta^*(q_i,\epsilon) = q_i$
 - Recursive step:
 - * If $q_i \in Q$, $w \in \Sigma^*$, and $c \in \Sigma$
 - * then $\delta^*(q, w \cdot c) = \delta(\delta^*(q_i, w), c)$

3.2 Aside: On Σ and Σ^*

- Σ^* is the universe of all strings over Σ
 - $-\Sigma = \{0,1\}$
 - $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 11, 10, 000, \dots\}$
- We can see this recursively
 - Base step: $\epsilon \in \Sigma^*$
 - Recursive step:
 - Let $w \in \Sigma^*$, let $c \in \Sigma$
 - Then $w \times c \in \Sigma^*$
- We can see this recursion graphically

w	\mathbf{c}	$\mathbf{w} \cdot \mathbf{c}$	step
ϵ		-	base
ϵ	1	1	recursive
1	0	10	recursive
10	1	101	recursive

3.3 Recursively Testing 101

- Solve $\delta^*(q_1,101)$
- $\delta(\delta^*(q_1,10),1)$
- $\delta^*(q_1,10)$
- $\delta(\delta^*(q_1,1),0)$

3.3.1 TODO Complete Recursion Sequence

$4 \quad 01.19.21$

4.1 Tuples & DFAs

- Tuples are sequences which are always finite in length
- The deterministic finite automaton shown is a 5-tuple:
 - 1. Q: finite nonempty set of states
 - state: configuration of logic of a machine
 - 2. Σ (Sigma) input alphabet
 - alphabet: a finite, nonempty set of symbols where symbols are an object of length 1
 - 3. δ (Delta) transition function
 - 4. $Q_0 \in Q$ starting state
 - 5. F \subset Q set of final states
- For this deterministic finite automaton,

$$-\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}_2$$

Represented as a table,

Step	State	Input	Transition
1	Q_1	1	$Q_1 \rightarrow Q_2$
2	Q_2	0	$Q_2 \to Q_1$
3	Q_1	1	$Q_1 \to Q_2$
4	Q_2	1	$Q_2 \to Q_2$

4.2 Domains & Codomains

- Domain: set of all possible function inputs
- Codomain: set of all possible outputs

4.3 Strings

- In computer science, strings are character arrays
- In mathematics, strings are sequences of symbols
- Specifically a string over an alphabet, Σ , is a sequence of symbols belonging to Σ
- ϵ is the empty string
- Concatenation: If $w_1, w_2 \in \Sigma, w_1 \cdot w_2 = w_1 w_2$
- If $c \in \Sigma$, then $\epsilon \cdot c = c \cdot \epsilon = c$

4.4 TODO Review Recursive Definitions

- Base step: a step that can not be broken down any further, a fact that is always true regardless of the input
- Recursive step:
- Defining the length of a string over Σ
 - Base: $|\epsilon| = 0$
 - Recursive:
 - * let w be a string over Σ , and $c \in \Sigma$
 - * then $|\mathbf{w} \cdot \mathbf{c}| = |\mathbf{w}| + 1$
- Using this to define |1011|,

1.
$$|1011| = |101 \cdot 1| = |101| + 1 =$$

$$2. |10 \cdot 1| + 1 = |10| + 1 + 1 =$$

3.
$$|1 \cdot 0| + 1 + 1 = |1| + 1 + 1 + 1 = |1|$$

4.
$$|\epsilon \cdot 1| + 1 + 1 + 1 =$$

5.
$$|\epsilon| + 1 + 1 + 1 + 1 =$$

6.
$$0+1+1+1+1=4$$

4.5 Languages

- Languages recognized by an automaton, M, L(M) is the language accepted by M
- \emptyset is the empty language
- $\epsilon \neq \emptyset$
- $\epsilon \neq \{\epsilon\}$
- ϵ is not a symbol in any alphabet

$5 \quad 01.14.21$

5.1 Automaton (automata)

- Self running machine requiring a continuous power source
 - Historically used power sources include water, steam, and electricity
- Course revolves around defining the mathematics powering machines

5.2 The Mathematics of Automata

5.2.1 Mathematicians & History

- Cantor defines sets as collections of objects
- Cantor also argues that infinites can be of different magnitudes there are infinitely more real numbers than natural numbers
- Goedel eventually derives his incompleteness theorem
 - No logical system that contains the natural numbers can prove its own soundness
 - Every sound logical system containing the natural numbers contains valid statements that cannot be proved or disproved
- In 1936, Turing proves The Halting Problem is not decidable, it is impossible
 - The Halting Problem is an algorithm that can analyze any other algorithm and determine whether or not it goes into an infinite loop
- Turing creates the turing machine as an object consisting of sets and processes wherein the object can use any finite process to complete an action.
- Turing machine sets the basis for a computer, which leads to a series of important questions:
 - What can & can't a machine do?
 - What does it mean for a problem of be harder than another?
 - What does it mean for a machine to be more powerfule than another?

5.2.2 Sequential Logic

- Sentential Logic- based on boolean results
 - Predicated on AND, OR, NOT
 - XOR, XAND, etc. can be derived using the above

5.3 Necessary Review

- Textbook Ch. 0
- Logic Statements
- Set Theory
- Functions

5.4 Functions

- Functions something that maps objects from one set to another
- Given f: $a \rightarrow b$;
 - Everything in a is mapped to something in b
 - * For every x, such that x is an element of a, there exists a y, such that y is an element of b
 - No one point in the domain can be mapped to two different points in the codomain
 - * Logically, you can't have a function that takes in one input and returns two different outputs
 - * If f maps $x \to y1$ and y2, y1 = y2
 - $\text{-}\forall~x\in A~y_1,\!y_2\in B~[f(x){=}y_1~\wedge~f(x){=}y_2~\rightarrow~y_1~=~y_2]$

5.5 TODO Types of Functions - Definition & Logical Statement

- Injective Functions
- Surjective Functions
- Proof by Induction (∀)
- Proof by Contradiction $(\neg \exists)$

5.6 Finite Automaton (Finite State Machine)

- States are logical confirgurations
- States are generally based upon input
- Purpose of a state machine is to make a yes/no decision