Docket No.: 21581-00320-US1

Listing of Claims

This listing of claims replaces all prior listings and versions of the claims.

1. (Previously Presented) A polycarboxylic acid cement dispersant which provides a cement composition having a penetrating resistance value exponent of 55 MPa or more and a slump retention exponent of 80% or more, wherein the polycarboxylic acid cement dispersant comprises a polycarboxylic acid polymer having a polyoxyalkylene ester constituent unit (I) represented by the following general formula (1):

$$\begin{array}{c}
\left(\begin{array}{c}
CH_2 & CH \\
COO(R^1O)_{m'}R^2
\end{array}\right)$$
(1)

wherein R¹O may be the same or different and each represents an oxyalkylene group containing 2 to 18 carbon atoms; m¹ represents the average molar number of addition of the oxyalkylene groups and is a number of 100 to 200; and R² represents a hydrogen atom or a hydrocarbon group containing 1 to 3 atoms, and a carboxylic acid constituent unit (II) represented by the following general formula (2):

$$\begin{array}{cccc}
-\left(\text{CH} & \text{CH} \right) \\
\downarrow & \downarrow \\
\text{R}^3 & \text{COOM}^1
\end{array} (2)$$

wherein R³ represents a hydrogen atom, a methyl group or -COOM²; and M¹ and M² may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium, wherein the polycarboxylic acid cement dispersant is obtained by copolymerizing the monomer components further comprising a sulfonic acid group-containing monomer represented by the following general formula (5):

$$\begin{array}{c|c}
R^{12} & R^{13} \\
 & \downarrow \\
C \longrightarrow C \\
 \downarrow & \downarrow \\
H & X
\end{array}$$
(5)

Docket No.: 21581-00320-US1

X:

NH
$$CH_3$$
 SO_3M^6 CH_3 CH_2 SO_3M^6 CH_3 CH_3 SO_3M^7 CH_3

wherein R¹² and R¹³ may be the same or different and each represents a hydrogen atom or a methyl group; Y and Z represent a hydroxyl group or -SO₃M⁹, wherein in the case when Y represents a hydroxyl group, Z represents -SO₃M⁹, while in the case when Y represents -SO₃M⁹, Z represents a hydroxyl group; R¹⁴ represents an alkylene group containing 2 to 4 carbon atoms; and M⁶, M⁷, M⁸ and M⁹ may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium.

- 2. (Canceled)
- 3. (Previously Presented) A method of producing a concrete product which comprises adding the polycarboxylic acid cement dispersant according to claim 1 to the concrete product and curing under a condition of a temperature of 30°C or more.
 - 4. (Canceled)
- 5. (Previously Presented) A method of producing a concrete product which comprises adding the polycarboxylic acid cement dispersant according to claim 1 curing by covering a periphery of a formwork with an insulating material.
 - 6. (Canceled)

Docket No.: 21581-00320-US1

7. (Withdrawn) A method of producing a concrete product which makes use of a copolymer derived by using monomer components comprising a monomer (A) represented by the following general formula (3):

(wherein R⁴, R⁵ and R⁶ may be the same or different and each represents a hydrogen atom or a methyl group; p¹ represents a number of 0 to 2; q¹ represents a number of 0 or 1; R⁷ O may be the same or different and each represents an oxyalkylene group containing 2 to 18 carbon atoms; n represents the average molar number of addition of the oxyalkylene groups and is a number of 2 to 300; and R⁸ represents a hydrogen atom or a hydrocarbon group containing 1 to 30 carbon atoms), monomer (B) represented by the following general formula (4)

$$\begin{array}{c|cccc}
R^9 & R^{11} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

(wherein R⁹ and R¹⁰ may be the same or different and each represents a hydrogen atom, a methyl group or -COOM⁴, provided that R⁹ and R¹⁰ does not simultaneously represent -COOM⁴; R¹¹ represents a hydrogen atom, a methyl group or CH₂COOM⁵, R⁹ and R¹⁰ may be the same or different and each represents a hydrogen atom or a methyl group; and M³, M⁴ and M⁵ may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium), and a monomer (C) represented by the following general formula (5):

$$\begin{array}{c|c}
R^{12} & R^{13} \\
\hline
C & C \\
\downarrow
\end{array}$$
(5)

X:

SEP. 8. 2006 3:04PM CBL&H 202 293 6229

NO. 5546 P. 7

Application No.: 10/820,798

Docket No.: 21581-00320-US1

$$CH_3$$
 CH_2
 SO_3M^6
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(wherein R¹² and R¹³ may be the same or different and each represents a hydrogen atom or a methyl group; Y and Z represent a hydroxyl group or -SO₃M⁹, in which in the case where Y represents a hydroxyl group, Z represents -SO₃M⁹, while in the case where Y represents -SO₃M⁹, Z represents a hydroxyl group; R¹⁴ represents an alkylene group containing 2 to 4 carbon atoms; and M⁶, M⁷, M⁸ and M⁹ may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium),

wherein the mass ratio of the monomer (C) relative to the total monomer components is not less than 0.1% by mass and not more than 35% by mass.

- 8. (Withdrawn) The method of producing a concrete product according to claim 7, which comprises a process of curing under a condition of a temperature of 30°C or more.
- 9. (Withdrawn) The method of producing a concrete product according to claim 7, which comprises a process of curing by covering a periphery of a formwork with an insulating material.
 - 10. (Canceled)

Docket No.: 21581-00320-US1

11. (New) The polycarboxylic acid cement dispersant according to claim 1

12. (New) The polycarboxylic acid cement dispersant according to claim 1

13. (New) The polycarboxylic acid cement dispersant according to claim 1

wherein X is

14. (New) The polycarboxylic acid cement dispersant according to claim 1

15. (New) The method of producing a concrete product according to claim 3

wherein X is

16. (New) The method of producing a concrete product according to claim 3

Docket No.: 21581-00320-US1

17. (New) The method of producing a concrete product according to claim 3

18. (New) The method of producing a concrete product according to claim 3

19 (New) The method of producing a concrete product according to claim 5

$$\begin{array}{c} CH_3 \\ CH_2 \\ CH_3 \end{array}$$
 SO₃M⁶

wherein X is

20. (New) The method of producing a concrete product according to claim 5

21. (New) The method of producing a concrete product according to claim 3

22. (New) The method of producing a concrete product according to claim 3