Econ 106

Lecture 18

slides adapted from: https://github.com/dlab-berkeley/R-Geospatial-Fundamentals/tree/master/docs

https://datacarpentry.org/r-raster-vector-geospatial/index.html

Updates

- MS #3 is due Sunday, 11:59pm
- No class on Wednesday
- Week 10: Visualization for Communication

#30DayMapChallenge

- On the map:
 - locations of pizzerias (points)
 - road network
 - parks

Outline for today

- loading maps from TIGRIS
- Annotations
- Map projections
- Spatial Queries:
 - measuring area
 - measuring distance

Recap: Map of California Counties

- We read in a shapefile (CA_Counties) using st_read()
- We plot sf objects using geom_sf()

```
ggplot(data=CA_Counties) +
    geom_sf()
```


Need a Map of the US?

- The <u>US Census Bureau</u> has a large collection of geographies of the United States:
 - state
 - county
 - census tract
 - and so on

Need a Map of the US?

 We can use the tigris package to load the data directly into R library(tigris)

tigris package

- Choose the function name that corresponds to the geography you want (list available <u>here</u>)
- Arguments:
 - If you don't want all the US, specify the State and/or county
- Output: a sf object with California counties

library(tigris)

CA_Counties_Tigris<-counties("California")</pre>

Map of California Counties

 We can map this data using ggplot() and geom_sf() because it's a sf object

Borders for United States and Territories

 Leave the argument blank if you want geography for the entire US

US_States_Tigris<-states()</pre>

Map of the United States and Territories

 Map doesn't look great because it includes US territories

Map of the United States

- We can filter out territories (region 9)
- It's also helpful to relocate the noncontiguous states

```
only_states <- US_States_Tigris%>%
filter(REGION != "9") %>%
shift_geometry()
```

Map of the United States

```
ggplot(data=only_states) +
    geom_sf()
```


Annotations for sf

- geom_sf_label() add annotations to a geom_sf
- Arguments:
 - label
 - Remember to use aes() when referencing variable names

```
ggplot(data=only_states) +
geom_sf()+
geom_sf_label(aes(label=STUSPS))
```


Class Exercise

- create a data frame of the Los Angeles school district in California
- create a data frame of CSU campuses in Los Angeles county
- create a data frame of Los Angeles County
- Plot all three on a map:
 - Los Angeles county
 - LAUSD (purple)
 - CSU's (green)

https://pollev.com/vsovero

Spot the Differences

ggplot(data=CA_Counties) +
 geom_sf()

ggplot(data=CA_Counties_Tigris) +
 geom_sf()

Coordinate Reference System

 The maps look different because the geometries use different coordinate reference systems.

Coordinate Reference Systems (CRS)

- A CRS describes how the coordinates in a geospatial dataset relate to locations on the surface of the earth.
- A geographic CRS uses a 3D model of the shape of the earth
- A <u>projected</u> CRS consists of:
 - a geographic CRS
 - a specific map projection used to transform geographic coordinates from a curved to a flat surface

Common Projections

- Web Mercator (3857)
 - Preserves direction/angle/shape but distorts area and distance.
- U.S. National Atlas (Albers) Equal Area (2163)
 - Preserves area but distorts direction/angle/shape and distance.
- · California (Albers) Equal Area (3310)
 - · Equal Area projection optimized to California
 - Preserves area but distorts direction/angle/shape and distance.

Checking the CRS

- We can use st_crs() to check the CRS
- CA_Counties uses a projected CRS:
 - geographic CRS: NAD83
 - projection: California Albers
- CA_Counties_Tigris uses a geographic CRS: NAD83

```
> st_crs(CA_Counties_Tigris)
> st_crs(CA_Counties)
                                                                     Coordinate Reference System:
Coordinate Reference System:
  User input: NAD83 / California Albers
                                                                       User input: NAD83
PROJCRS["NAD83 / California Albers",
                                                                     GEOGCRS["NAD83",
    BASEGEOGCRS["NAD83",
                                                                         DATUM["North American Datum 1983",
        DATUM["North American Datum 1983",
                                                                              ELLIPSOID["GRS 1980",6378137,298.257222101,
            ELLIPSOID["GRS 1980",6378137,298.257222101,
                                                                                  LENGTHUNIT["metre",1]]],
                LENGTHUNIT["metre",1]]],
                                                                         PRIMEM["Greenwich",0,
        PRIMEM["Greenwich",0,
                                                                              ANGLEUNIT["degree", 0.0174532925199433]],
            ANGLEUNIT["degree", 0.0174532925199433]],
                                                                         CS[ellipsoidal,2],
        ID["EPSG",4269]],
                                                                              AXIS["latitude", north,
    CONVERSION["California Albers",
                                                                                  ORDER[1],
        METHOD["Albers Equal Area",
                                                                                  ANGLEUNIT["degree", 0.0174532925199433]],
```

Transforming the CRS

- To change a CRS, we need to **project** (or re-project) our data using st_transform()
- Arguments:
 - The sf object
 - The CRS (four digit code)

```
CA_Counties_Tigris_Mercator<-
st_transform(CA_Counties_Tigris, crs=3857)</pre>
```

Mercator Projection

CA Albers Projection

Class Exercise

- Transform LA county to the Mercator Projection
- Transform LA county to the Albers Projection

Beyond Mapping: Spatial Queries

- Queries are software operations that allow us to ask questions of our data and which return data metrics, subsets or new data objects.
- The basic types of spatial queries are:
 - Spatial Measurement Queries
 - Spatial Relationship Queries

Beyond Mapping: Spatial Queries

Spatial Measurement Queries

- What is feature A's **area**?
 - What is the area of Alameda County?
- What is feature A's length?
 - What is the length of the BART train line between Walnut Creek and Rockridge?
- What is feature A's **distance** from feature B?
 - What is the distance between Berkeley High School and Berkeley BART Station?

Spatial Relationship Queries

- Is feature A within feature B?
 - What schools are in Berkeley?
- Does feature A intersect with feature B?
 - *What in what cities is Tilden Regional Park located?
- Does feature A cross feature B?
 - Does the BART line cross into Albany?

Measuring Area

- We will use st_area() to calculate the area of Riverside County
- Arguments:
 - the sf object
- Output: area printed to the console

```
st_area(Riverside_County_Albers)
```

18921433643 [m^2]

Area Measurements under different Projections

- The calculated area of Riverside county is very different depending on the CRS
- Albers: distorts shape,
 preserves area and distance
- Mercator: preserves shape, distorts area and distance

```
st_area(Riverside_County_Albers)
18921433643 [m^2]
```

```
st_area(Riverside_County_Mercator)
```

27426748703 [m^2]

Changing the units

- The default unit of measurement is square meters
- we can use set_units() from the units package to change the unit of measurement to square miles
- Arguments:
 - the measure you want converted
 - the unit of measurement
- Output: Area of Riverside County in square miles

set_units(st_area(Riverside_County_Albers), mi^2)

7303.084 [mi^2]

Class Exercise

- Calculate the area of LA county in the Mercator Projection (sq miles)
- Calculate the area of LA county to the Albers Projection (sq miles)

Measuring Distance

- What is the distance between UCR and CSU San Bernadino?
- First, make sure that your simple features (UCR and CSUSB are using the same CRS (CA Albers)

```
CSUSB<-CSU_sf%>%
filter(IALIAS=="Cal State San Bernardino")
```

CSUSB_Albers<-st_transform(CSUSB, crs=3310)

Measure Distance

we will use
 st_distance() to
 measure distance
 between two sf objects

```
st_distance(UCR_Albers, CSUSB_Albers)

Units: [m]
        [,1]
[1,] 23316.02

set_units(st_distance(UCR_Albers, CSUSB_Albers),mi)

Units: [mi]
        [,1]
[1,] 14.48791
```

Measuring Distance between all the UC's and all the CSU's

- Can we do it? Sure.
- Output will be a matrix of all the pairwise combinations of UC's and CSU's
- Hard to read the output that's printed to the console

```
CSU_Albers<-st_transform(CSU_sf, crs=3310)
UC_Albers<-st_transform(UC_sf, crs=3310)
```

set_units(st_distance(UC_Albers, CSU_Albers),mi)

Measuring Distance between UC's and CSU's

- First, save our output to an object (distance_matrix)
- Next, assign the names of the schools to the rows and columns
- Finally, save it as a data frame

```
distance_matrix<-set_units( st_distance(UC_Albers, CSU_Albers) , mi)
rownames(distance_matrix)=c(UC_Albers$INSTNM)
colnames(distance_matrix)=c(CSU_Albers$INSTNM)
```

distance data<-data.frame(distance matrix)

Measuring Distance between UC's and CSU's

distance_matrix<-set_units(st_distance(UC_Albers, CSU_Albers) , mi)

rownames(distance_matrix)=c(UC_Albers\$INSTNM)
colnames(distance_matrix)=c(CSU_Albers\$INSTNM)

distance_data<-data.frame(distance_matrix)

	California.Polytechnic.State.University.San.Luis.Obispo	California.State.University.Bakersfield	California.State.University.Stanislaus
University of California-Berkeley	198.68028 [mi]	246.97558 [mi]	80.65708 [mi]
University of California-Davis	231.75624 [mi]	264.33181 [mi]	85.39446 [mi]
University of California-Irvine	196.91959 [mi]	137.69986 [mi]	316.64743 [mi]
University of California-Los Angeles	151.85055 [mi]	95.88027 [mi]	274.05436 [mi]
University of California-Riverside	210.53132 [mi]	138.78428 [mi]	315.07573 [mi]
University of California-San Diego	257.56390 [mi]	201.27443 [mi]	380.22267 [mi]
University of California-San Francisco	197.40039 [mi]	249.93902 [mi]	89.45233 [mi]
University of California-Santa Barbara	76.36671 [mi]	76.94940 [mi]	221.90838 [mi]
University of California-Santa Cruz	140.84311 [mi]	200.24578 [mi]	75.81441 [mi]
University of California-Merced	143.28797 [mi]	157.43604 [mi]	25.92998 [mi]

Make it Tidy

- Things you will need to use:
 - row_names_to_columns()
 - pivot_longer()

↓□ ⇒ ₽ Filter			Q,
*	UC campus	CSU campus	Distance [‡]
1	University of California-Berkeley	California. Polytechnic. State. University. San. Luis. Obispo	198.68028 [mi]
2	University of California-Berkeley	California.State.University.Bakersfield	246.97558 [mi]
3	University of California-Berkeley	California.State.University.Stanislaus	80.65708 [mi]
4	University of California-Berkeley	California. State. University. Chancellors. Of fice	363.52333 [mi]
5	University of California-Berkeley	California.State.University.San.Bernardino	375.53819 [mi]
6	University of California-Berkeley	California.State.Polytechnic.University.Pomona	361.93581 [mi]
7	University of California-Berkeley	California.State.University.Chico	130.24696 [mi]
8	University of California-Berkeley	California.State.University.Dominguez.Hills	356.12420 [mi]
9	University of California-Berkeley	California.State.University.Fresno	156.50786 [mi]
10	University of California-Berkeley	California.State.University.Fullerton	368.66805 [mi]
11	University of California-Berkeley	California.State.University.East.Bay	18.60597 [mi]
12	University of California-Berkeley	California.State.University.Long.Beach	365.67316 [mi]
13	University of California-Berkeley	California.State.University.Los.Angeles	348.40508 [mi]
14	University of California-Berkeley	California.State.University.Northridge	326.09514 [mi]
15	University of California-Berkeley	California.State.University.Sacramento	65.74962 [mi]

Measuring Distance between Counties and UC Campuses

- Let say we wanted to measure the distance between every county in California and every UC campus
- Problem: Distance needs to be measured between two points, counties are polygons
- What do we do?

Measuring Distance between Counties and UC Campuses

 Problem: Distance needs to be measured between two points, counties are polygons

 Solution: find the centroid (center) of each county

Blue: UC Campuses

Red: County Centroids

County Centroids

CA_Counties_Centroids<-st_centroid(CA_Counties_Tigris_Albers_CA)

- We will use st_centroid() to find the centroid of each county
- Arguments: a simple features object (polygons)
- Output: a simple features object (points)

Class Exercise

- Create a data frame that measures the distance between every county centroid and every UC campus
- What is the distance of LA county to all of the UC campuses?
- How many campuses are within 100 miles of the centroid of LA County?