MATRICI

ESERCIZIO 1 Esercizi facili sulle operazioni tra matrici.

1. Date le matrici

$$A = \begin{bmatrix} 2 & 3 & 0 \\ -1 & 5 & 3 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 0 & 1 \\ 7 & -2 \\ 3 & 0 \end{bmatrix}$$

calcolare $2A - {}^{t}B$.

- 2. Date le matrici $A = \begin{bmatrix} 1 & 2 & -i \end{bmatrix}$ e $B = \begin{bmatrix} i & 4 & (2+i) \end{bmatrix}$ calcolare A + iB.
- 3. Date le matrici

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}, C = \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix}$$

trovare, se possibile, una matrice $X \in \mathbb{R}^{2,2}$ che soddisfi l'equazione matriciale: $3X + 2(A+B) - 3^tC = 0_M$.

Ripetere l'esercizio con l'equazione matriciale: $3X + CB - BC = 0_M$.

Osservazione. La non commutatività del prodotto ha conseguenze su formule ben note che valgono nel calcolo letterale reale. Per esempio, se A e B sono due matrici quadrate, in generale:

$$(A+B)^2 \neq A^2 + 2AB + B^2$$
 e $A^2 - B^2 \neq (A-B)(A+B)$.

ESERCIZIO 2 Date due matrici A e B, sapendo che $AB = 0_M$ e $BA = 0_M$, dire se sono vere o false le seguenti affermazioni:

- 1. AB = BA.
- 2. A oppure B sono la matrice nulla.

ESERCIZIO 3

1. Verificare che le seguenti coppie di matrici sono una l'inversa dell'altra:

$$A = \begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -3/2 \\ -1 & 2 \end{bmatrix}.$$

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -2 & 1 & 1 \\ 1 & -1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -3 & -2 \\ -3 & -7 & -5 \\ 1 & 2 & 1 \end{bmatrix}.$$

2. Calcolare poi (in modo sintetico) $({}^{t}A)^{-1}$, AB^{2} , $A^{2} + B^{2}$.

ESERCIZIO 4 Verificare che la seguente matrice non ammette inversa:

$$A = \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right].$$

ESERCIZIO 5 Si data l'equazione matriciale di secondo grado: $t^2 - 5t + 6 = 0$. Si discuta il numero di soluzioni dell'equazione seguendo le seguenti osservazioni.

- 1. Mostrare che la matrice $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$ è soluzione dell'equazione.
- 2. Verificare che anche la matrice $B = \begin{bmatrix} 0 & 6 \\ -1 & 5 \end{bmatrix}$ è soluzione.
- 3. Ci sono altre soluzioni? Si provi a modificare la matrice A per ottenere infinite soluzioni (basta scegliere $a_{1,2}$ a piacere).
- 4. Generalizzare mostrando che ogni matrice del tipo $P^{-1}AP$ è soluzione.

ESERCIZIO 7 Mostrare che ogni matrice quadrata si decompone nella somma di una matrice simmetrica più una antisimmetrica.

ESERCIZIO 8 Scrivere esempi di matrici in forma ridotta e fortemente ridotta.

Osservazione. Ricordarsi i seguenti fatti sul rango di $A \in \mathbb{R}^{m,n}$:

- 1. $0 \le r(A) \le min(m, n);$
- 2. se $B \in \mathbb{R}^{n,h} \Rightarrow r(AB) \leq min(r(A), r(B))$ (senza dim.);
- 3. se $B \in \mathbb{R}^{m,n} \Rightarrow r(A+B) \le r(A) + r(B);$
- $4. \ r(A) = r({}^tA);$
- 5. $r(A) = 0 \Leftrightarrow A = 0_M;$
 - $r(A) = 1 \Leftrightarrow$ tutte le righe sono proporzionali ad una non nulla;
 - $r(A) = 2 \Leftrightarrow$ ci sono due righe non proporzionali tra loro e le altre sono una combinazione di esse.

ESERCIZIO 9 Ridurre e calcolare il rango delle seguenti matrici (eventualmente dipendenti da parametro reale):

1.

$$A = \left[\begin{array}{rrrr} 1 & 4 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ -1 & 3 & 1 & -1 \\ 2 & 1 & 1 & 1 \end{array} \right].$$

Per questa matrice: ridurre e osservare che ha rango massimo 4; proseguire fino alla fortemente ridotta.

Osservare che una sua fortemente ridotta è I e che ciò capita sempre se la matrice di partenza è quadrata di rango massimo.

2.

$$B = \left[\begin{array}{cccc} 1 & 0 & i & 1 \\ 1 - i & 4 & i & 0 \\ 2 & 4 + 4i & 1 - i & 0 \end{array} \right].$$

3.

$$C = \left[\begin{array}{cccc} k & -k & 0 & 1 \\ 1 & -2 & -1 & 0 \\ 0 & 1 & k & 1 \end{array} \right].$$

4.

$$D = \left[\begin{array}{cc} h & h-1 \\ 1 & 3 \\ 1 & 2-h \end{array} \right].$$

Ripetere l'ultima riduzione con $D_{3,1} = 2 - 2h$.

ESERCIZIO 10 QUIZ

Q1. Sia M = (1, 0, 1, 0) e sia $A = {}^t M M$. Dire quale delle seguenti risposte è corretta:

(a)
$$r(A) = 0$$
; (b) $r(A) = 1$; (c) $r(A) = 2$; (d) $r(A) = 3$; (e) $r(A) = 4$.