CS/COE 0447

Multiplication

wilkie (with content borrowed from:

Jarrett Billingsley

Dr. Bruce Childers)

Multiplication

50 Ways to Move A Number

Negative Re-enforcement?

- Here's where most people would teach you Booth's Algorithm
- There are a few problems with it:
 - it's really complicated
 - it's really confusing
 - most importantly, *literally no one uses it anymore*
 - and we haven't for decades
- As far as I can tell, Booth's Algorithm is a waste of time used to torture architecture students and nothing more
 - Although Booth's Encoding can sometimes be useful
 - Don't ask me how though because I don't know

Multiplication by repeated addition

 in A × B, the **product** (answer) is "A copies of B, added together"

$$6 \times 3 = 18$$

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18

how many additions would it take to calculate

Back to grade school

- Remember your multiplication tables?
- Binary is so much easier
- If we list 0 too, the product logic looks awfully familiar...

X	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

A	В	P
0	0	0
0	1	0
1	0	0
1	1	1

Just like you remember

You know how to multiply, riiiight?

Wait, why does this work?

- What are we actually doing with this technique?
- remember how positional numbers are really polynomials?

FOIL...

$$78 \times 54 = 70 \times 50 + 70 \times 4 + 8 \times 50 + 8 \times 4$$

we're eliminating many addition steps by **grouping them together.**

$$= 78 \times 50 + 78 \times 4$$

we group them together by **powers of the base.**

How many bits?

- When we added two n-digit/bit numbers, at most how many digits/bits was the sum?
- How about for multiplication?
- When you multiply two n-digit/bit numbers, the product will be at most 2n digits/bits
- So if we multiply two 32-bit numbers...
 - we could get a **64-bit result!** AAAA!
 - if we just ignored those extra 32 bits, or crashed, we'd be losing a lot of info.
 - so we have to store it.

99					
× 99					
9801	9999				
×	9999				
999	80001				
1	111				
× 1	<u> 111</u>				
11100001					

32-bit multiplier

- Here's the first algorithm.
 - It's the Elementary School One

- For each bit in our multiplier,
 - Look at the current first bit of the multiplier
 - If it is a "1", add the multiplicand to the result
 - Shift left our result by 1
 - Shift right multiplier by 1

What is this O.o.

- It's an ALU!
 - Arithmetic and Logic Unit
- What does it do?
 - It adds and subtracts numbers
 - It also does logical operations OR, AND, NOR, NAND, etc.
- What about overflows?
 - Let's not worry about those right away \odot
- But how does it work??
 - Soon...

CS447

In version 1 of the multiplier, the **ALU** and the registers **Multiplicand** and **Result** are 64-bit registers

CS447 11

Example 1

• Let's exemplify by multiplying 86 by 66. The result should be 5676.

```
01010110
      × 01000010
        0000000
       01010110
       010101100
+ 01010110
 001011000101100
```

(example with 8 bit registers: $01000010 \times 01010110 = 00010110 00101100$)

Let's think about this

• There is a relative movement between the Multiplicand and the Result!

- The shift
- What if we moved the result to the right instead?

0000	0000
+ <u>0000</u>	+ 0000
0000	0000
+ 0101	+ 0101
01010	01010
+ 0101	+ 0101
011110	011110
+ 0000	+ 0000
0011110	0011110

Let's think about this

- We also see that in every iteration, the value of a bit is set to it's final value.
 - Starting in the LSB moving to the MSB
- And the top bit is always 0
 - So there is no carry!
 - 0+0=0 and 0+1=1
- So we are only operating on 32 bits
 - Therefore we only need a 32-bit adder

In version 2 of the multiplier, the **ALU** and the **Multiplicand** register only need to be 32-bit registers

(example with 8 bit registers: $01000010 \times 01010110 = 00010110 00101100$)

Let's think about this

- Both the Result and the Multiplier register are shifted right identically.
- Every time we add a new bit to the result, we lose a bit in the Multiplier
- What if we store the Multiplier on the less significant part of the Result register?
 - This would reduce the amount of space required by multiplication

In version 3 of the multiplier, the **Multiplier** register is removed, its value is stored in the least significant half of the result.

How (and why) MIPS does it

- MIPS has two more 32-bit registers, HI and LO. if you do this:
 mult t0, a0
- then HI = upper 32 bits of the product and LO = lower 32 bits
- to actually get the product, we use these:

```
mfhi t0 # move From HI (t0 = HI)
mflo t1 # move From LO (t1 = LO)
```

- the mul pseudo-op does a mult followed by an mflo
- MIPS does this for 2 reasons:
 - multiplication can take longer than addition
 - we'd otherwise have to change two different registers at once
- if you wanted to check for 32-bit multiplication overflow, how could you do it?

Signed multiplication

Multiplication can be mean and negative, too

Grade school (but like, 5th, instead of 3rd)

• if you multiply two **signed** numbers, what's the rule?

Product			<u>Sign</u>			
A	В	P	A	В	S	
3	5	15	+	+	+	
3	-5	-15	+	-	-	
-3	5	-15	_	+	-	
-3	-5	15	-	-	+	

if the signs of the operands **differ**, the output is **negative**.

Don't repeat yourself

- We already have an algorithm to multiply unsigned numbers
- Multiplying signed numbers is exactly the same (except for the signs)
- So why not use what we already made?

```
long prod = unsigned_mult(abs(A), abs(B));
if(sgn(A) == sgn(B))
    return prod;
else
    return -prod;
```