Sprawozdanie

Projekt z przedmiotu Metody Statystyczne

Temat ćwiczenia: Projekt nr 8

AEil, informatyka, sem. 4, 2015/2016 Grupa dziekańska: 3 Numer sekcji projektowej: 5

Skład sekcji:

Przemyslaw Pawlas Radosław Wojaczek Zbigniew Kmonk Rafał Grzelec Dawid Kubów

Temat projektu

"Wśród losowo wybranych klientów dóch marketów przeprowadzono badanie dotyczące miesięcznych wydatków na jedną osobę (w złotych), na pieczywo i produkty zbożowe. W pierwszym markecie uzyskano następujące odpowiedzi:

```
56,2; 51,97; 38,63; 40,38; 36,56; 39,27; 60,56; 47,08; 46,51; 34,06; 45,36; 31,81; 39,95; 56,52; 51,27; 48,58; 29,61; 46,28; 43,87; 49,45; 33,38; 32,67; 51,61; 48,83; 43,73; 37,5; 52,54; 31,44; 38,6; 51,23; 55,65; 42,93; 54,69; 43,36; 21,22; 64,39; 31,99; 54,83; 51,95; 27,08; 36,35; 50,82
```

W drugim markecie wyniki badań były następujące:

```
34,92; 27,72; 28,31; 44,99; 39,63; 44,36; 46,45; 59,64; 32,8; 41,07; 44,17; 25,98; 40,04; 45,76; 43,53; 34,07; 38,23; 36,9; 40,9; 50,53; 55,31; 50,35; 64,78; 32,17; 45,46; 45,24; 28,92; 71,31; 39,75; 60,04; 65,15; 52,95; 21,14; 40,31; 60,93; 35,54; 47,05; 33,78; 54,16; 40,46; 47,86; 37,99; 31,18; 54,73; 63,11; 56,48; 36,1"
```

Zadanie 1

"Dokonać analizy miesięcznych wydatków na jedną osobę, na pieczywo i produkty zbożowe klientów wybranych marketów, wyznaczając miary przeciętne, zróżnicowania, asymetrii i koncentracji. Opracować histogramy rozkładów empirycznych. Miary wyznaczyć dwoma sposobami: a) na podstawie szeregu szczegółowego, b) na podstawie szeregu rozdzielczego."

Aby wyznaczyć wszystkie miary wyszczególnione w zadaniu, skorzystaliśmy z następujących wzorów:

	Szereg szczegółowy	Szereg rozdzielczy
Średnia	$\frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{N} \sum_{i=1}^{k} \dot{x}_i n_i$
Mediana	$\begin{cases} \frac{n}{2} \\ \frac{n+1}{2} \end{cases}$	$\begin{cases} x_0 + (\frac{n}{2} - n_{isk-1}) \frac{h_{Me}}{n_{Me}} \\ x_0 + (\frac{n+1}{2} - n_{isk-1}) \frac{h_{Me}}{n_{Me}} \end{cases}$

Moda (dominanta)		$x_{i_0} + \frac{n_{i_0} - n_{i_0 - 1}}{(n_{i_0} - n_{i_0 - 1}) + (n_{i_0} - n_{i_0 + 1})} \cdot h_{i_0}$		
Kwartyl pierwszy	$\begin{cases} \frac{n}{4} \\ \frac{n+1}{4} \end{cases}$	$\begin{cases} x_0 + (\frac{n}{4} - n_{isk-1}) \frac{h_{Me}}{n_{Me}} \\ x_0 + (\frac{n+1}{4} - n_{isk-1}) \frac{h_{Me}}{n_{Me}} \end{cases}$		
Kwartyl trzeci	$\begin{cases} \frac{3n}{4} \\ \frac{3(n+1)}{4} \end{cases}$	$\begin{cases} x_0 + (\frac{3n}{4} - n_{isk-1}) \frac{h_{Me}}{n_{Me}} \\ x_0 + (\frac{3(n+1)}{4} - n_{isk-1}) \frac{h_{Me}}{n_{Me}} \end{cases}$		
Wariancja obciążona	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x_i})^2$	$\frac{1}{n} \sum_{i=1}^{k} (\dot{x}_i - \bar{x})^2 \cdot n_i$		
Wariancja nieobciążona	$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x_i})^2$	$\frac{1}{n-1} \sum_{i=1}^{k} (\dot{x}_i - \bar{x})^2 \cdot n_i$		
Odchylenie standardowe obciążone	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x_i})^2}$	$\sqrt{\frac{1}{n}\sum_{i=1}^{k}(\dot{x}_i-\bar{x})^2\cdot n_i}$		
Odchylenie standardowe nieobciążone	$\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x_i})^2}$	$\sqrt{\frac{1}{n-1} \sum_{i=1}^{k} (\dot{x}_i - \bar{x})^2 \cdot n_i}$		
Odchylenie ćwiartkowe	$\frac{Q_3-Q_1}{2}$			
Odchylenie przeciętne od średniej	$\frac{1}{n}\sum_{i=1}^{n} x_i-\bar{x} $	$\frac{1}{n} \sum_{i=1}^{k} x_i - \bar{x} \cdot n_i$		
Odchylenie przeciętne od mediany	$\frac{1}{n}\sum_{i=1}^{n} x_i-Me $	$\frac{1}{n} \sum_{i=1}^{k} x_i - Me \cdot n_i$		
Rozstęp	x_{max} -	$x_{max} - x_{min}$		
Współczynnik zmienności	$\frac{s}{\bar{x}} \cdot 100\%$			

Współczynnik asymetrii	$\frac{1}{n} \sum_{i=1}^{n} [(x_i - \bar{x})^3] \cdot \frac{1}{s^3}$	$\frac{1}{n} \sum_{i=1}^{k} [(x_i - \bar{x})^3 \cdot n_i] \cdot \frac{1}{s^3}$
Skosność	$\frac{3 \cdot (\bar{x} - Me)}{s}$	
Kurtoza	$\frac{1}{n} \sum_{i=1}^{n} [(x_i - \bar{x})^4] \cdot \frac{1}{s^4}$	$\frac{1}{n} \sum_{i=1}^{k} [(x_i - \bar{x})^4 \cdot n_i] \cdot \frac{1}{s^4}$
Eksces	K-3	

Po przeprowadzeniu translacji wzorów na język programowania R i uruchomieniu programu, otrzymaliśmy następujące wyniki:

	Szereg szczegółowy		Szereg rozdzielczy	
	Sklep pierwszy	Sklep drugi	Sklep pierwszy	Sklep drugi
Średnia	44,065	44,09	44,347	44,243
Mediana	44,615	43,53	46,403	43,239
Moda (dominanta)	Brak	Brak	50,654	40,252
Kwartyl pierwszy	36,795	35,82	37,152	36,37
Kwartyl trzeci	51,525	51,74	52,289	51,959
Wariancja obciążona	93,791	130,508	86,984	128,315
Wariancja nieobciążona	96,078	133,345	89,106	131,105
Odchylenie standardowe obciążone	9,685	11,424	9,327	11,328
Odchylenie standardowe nieobciążone	9,802	11,548	9,44	11,45
Odchylenie	7,365	7,96	7,569	7,794

1		1	1	
ćwiartkowe				
Odchylenie przeciętne od średniej	8,141	9,223	7,929	9,344
Odchylenie przeciętne od mediany	8,141	9,211	7,538	9,366
Rozstęp	43,17	50,17	43,17	50,17
Współczynnik zmienności	21,978%	25,91%	21,031%	25,603%
Współczynnik asymetrii	-0,178	0,348	-0,312	0,331
Skosność	-0,171	0,147	-0,661	0,266
Kurtoza	2,381	2,519	2,18	2,424
Eksces	-0,619	-0,481	-0,82	-0,576

Histogramy utworzone przez środowisko R:

Histogram of dane_sklepu2_vec

Wnioski:

Porównując wyniki szeregów zauważamy, że pomimo tych samych danych wyniki niekoniecznie są identyczne, takie same uzyskaliśmy tylko w rozstępie, w innych miejscach wyniki różnią się już nieznacząco, lecz występują również większe różnice. Obliczenie i użycie naszych własnych punktów przerwań przedziałów w funkcji hist() zmniejszyło różnice pomiędzy niektórymi wartościami.

W przypadku mody (dominanty) zauważamy zasadniczą różnicę pomiędzy szeregami, mianowicie dla szeregu szczegółowego nie byliśmy w stanie uzyskać wyniku (wszystkie wartości występują tylko jeden raz), a dla szeregu rozdzielczego uzyskaliśmy.

Zadanie 2

"Sprawdzić, czy miesięczne wydatki na jedną osobę, na pieczywo i produkty zbożowe mają rozkład normalny (test zgodności Kołmogorowa-Lillieforsa, współczynik ufności 0,95)."

Test zgodności Kołmogorowa – Lillieforse'a sprawdza czy rozkład w populacji dla pewnej zmiennej losowej różni się od założonego rozkładu teoretycznego, gdy znana jest pewna skończona liczba obserwacji tej zmiennej (próba statystyczna). Dodatkowo test ten często wykorzystywany jest w celu sprawdzenia czy zmienna ma rozkład normalny, co było naszym głównym celem.

Na podstawie danych pobranych z zadania wyznaczyliśmy dystrybuantę skumulowaną, wartość testową oraz różnicę między dystrybuantą skumulowaną a dystrybuantą dla rozkładu normalnego niezbędne do przeprowadzenia testu.

Następnie dla wyznaczonej maksymalnej różnicy między dystrybuantą skumulowaną a dystrybuantą dla rozkładu normalnego oraz wartości krytycznej sprawdziliśmy, czy podane rozkłady są normalne (tzn. czy wartość krytyczna jest większa od maksymalnej różnicy). W obu przypadkach założenie to się sprawdza – oba testy podają, iż występuje rozkład normalny.

Wzór statystyki testowej:

$$d = \sup |F_n(x) - F_0(x)|$$

Gdzie:

 $F_n(x)$ - dystrybuanta empiryczna

 $F_0(x)$ - dystrybuanta rozkładu normalnego

Postać zbioru krytycznego:

$$K_0 = \langle k(1-\alpha), 1 \rangle$$

Gdzie:

$$k(1-\alpha) = \frac{0.881}{\sqrt{n}}$$

Wartość statystyki testowej dla zestawu danych sklepu 1: 0.06676955

Wartość statystyki testowej dla zestawu danych sklepu 2: 0.0936088

Wartość krytyczna dla zestawu danych sklepu 1: 0.1359413

Wartość krytyczna dla zestawu danych sklepu 2: 0.1285071

Wyniki z konsoli po uruchomieniu programu:

"Wynik testu Kołmogorowa - Lillieforse'a dla zestawu danych sklepu 1

(H0 - podane dane mają rozkład normalny

H1 - nie maja...): brak podstaw do odrzucenia hipotezy zerowej - rozkład jest normalny."

"Wynik testu Kolmogorowa - Lillieforse'a dla zestawu danych sklepu 2

(H0 - podane dane mają rozkład normalny

H1 - nie mają): brak podstaw do odrzucenia hipotezy zerowej - rozkład jest normalny."

Wnioski:

Udało nam się potwierdzić przypuszczenia, że wartości obu sklepów mają rozkład normalny. Pozwoliło nam to wykorzystać wzory dla rozkładu normalnego w kolejnych zadaniach, co znacznie uprościło pracę.

Zadanie 3

"Oszacować przedziałowo (współczynnik ufności 0,95) przeciętną wartość miesięcznych wydatków na jedną osobę, na pieczywo i produkty zbożowe klientów pierwszego marketu. Obliczyć względną precyzję oszacowania i sprawdzić, czy mamy podstawy do uogólniania otrzymanego przedziału ufności na całą populację miesięczynych wydatków, na jedną osobę, na pieczywo i produkty zbożowe klientów pierwszego marketu."

Używając współczynnika ufności 0.95 oraz danych sklepu 1 wraz z uzyskanymi wynikami z zadania 1 przystąpiliśmy do oszacowania przedziałów przeciętnej wartości.

Na poziomie istotności 0.05 i na podstawie liczebności danych możemy wyznaczyć przedziały:

a) gdy liczebność jest mała - n <= 30:

$$(\overline{x} - t(1 - \frac{\alpha}{2}, n - 1) * \frac{s}{\sqrt{n-1}}, \overline{x} + t(1 - \frac{\alpha}{2}, n - 1) * \frac{s}{\sqrt{n-1}})$$

b) gdy liczebność jest duża - n > 30:

$$(\overline{x} - u(1 - \frac{\alpha}{2}) * \frac{s}{\sqrt{n}}, \overline{x} + u(1 - \frac{\alpha}{2}) * \frac{s}{\sqrt{n}})$$

Następnie na podstawie błędu maksymalnego (różnicy górnej i dolnej wartości przedziału podzielonej przez 2) oraz średniej próby uzyskaliśmy precyzję względna.

Wyniki z konsoli po uruchomieniu programu:

"Przedzial sredniej: (41.135629126748 , 46.9934184922996)"

"Precyzja wzgledna: 6.646832% jest miedzy 5% a 10%, wiec możemy stwierdzic, ze istnieją podstawy do uogólnienia, jednak musimy pozostac ostrożni"

Wnioski:

Precyzja względna pozwala nam uogólnić średnią próby, jednakże musimy być ostrożni.

Zadanie 4

"Oszacować przedziałowo (współczynnik ufności 0,95) odchylenie standardowe miesięcznych wydatków na jedną osobę, na pieczywo i produkty zbożowe klientów drugiego marketu. Obliczyć względną precyzję oszacowania i sprawdzić, czy mamy podstawy do uogólniania otrzymanego przedziału ufności na całą populację miesięczynych wydatków na jedną osobę, na pieczywo i produkty zbożowe klientów drugiego marketu."

Używając współczynnika ufności 0.95 oraz danych sklepu 2 wraz z uzyskanymi wynikami z zadania 1 przystąpiliśmy do oszacowania przedziałów odchylenia standardowego.

Na poziomie istotności 0.05 i na podstawie liczebności danych możemy wyznaczyć przedziały:

a) gdy liczebność jest mała - n <= 30:

$$\left(\sqrt{\frac{n*s^2}{\chi^2(1-\frac{\alpha}{2},n-1)}}, \sqrt{\frac{n*s^2}{\chi^2(\frac{\alpha}{2},n-1)}}\right)$$

b) gdy liczebność jest duża - n > 30:

$$\left(\frac{s}{1+\frac{u(1-\frac{\alpha}{2})}{\sqrt{2n}}}, \frac{s}{1-\frac{u(1-\frac{\alpha}{2})}{\sqrt{2n}}}\right)$$

Następnie na podstawie błędu maksymalnego (różnicy górnej i dolnej wartości przedziału podzielonej przez 2) oraz odchylenia standardowego obciążonego próby uzyskaliśmy precyzję względną.

Wyniki z konsoli po uruchomieniu programu:

"Przedzial odchylenia: (9.5029334266443, 14.3185648211095)"

"Precyzja wzgledna: 21.076823% jest większe od 10%, wiec nalezy odrzucic teze, ze istnieją podstawy do uogólnienia"

Wnioski:

Precyzja względna nie pozwala nam na uogólnienie.

Zadanie 5

"Czy na poziomie istotności 0,05 można twierdzić, że wartości miesięcznych wydatków na jedną osobę, na pieczywo i produkty zbożowe są większe dla klientów pierwszego marketu (sformułować i zweryfikować odpowiednią hipotezę)?"

Po przeanalizowaniu treści zadania postanowiliśmy wysunąć następującą hipotezę:

Hipoteza $H_0: m_1 = m_2$ Kontrhipoteza $H_1: m_1 < m_2$

Na początku sprawdziliśmy równość wariancji w obu populacjach:

H₀ - są równe

H₁ - wariancja pierwszego sklepu jest mniejsza

Wykorzystujemy do tego test Fishera o statystyce:

$$F = \frac{wariancja\ nieobciążona\ pierwszego\ sklepu}{wariancja\ nieobciążona\ drugiego\ sklepu}$$

oraz obszarze krytycznym:

$$(-\infty, f[1-\alpha, m-1, n-1])$$

gdzie:

 α - poziom istotności

m - liczebność danych pierwszego sklepu

n - liczebność danych drugiego sklepu

f - wartość odczytana funkcją qf()

Po podstawieniu wartości otrzymaliśmy:

F = 0.720526

Obszar krytyczny: $(-\infty, 1.650216)$

Wniosek z testu:

Wartość statystyki F zawiera się w obszarze krytycznym, wobec tego należy odrzucić hipotezę zerową. Wariancja populacji pierwszego sklepu jest mniejsza, stosujemy więc test Cochrana-Coxa aby porównać wartości przeciętne.

Gdy otrzymamy wynik testu, na jego podstawie należy sprawdzić wartości przeciętne:

a) gdy wariancje są równe wykonujemy test t-Studenta o statystyce:

$$C_n = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2} \cdot \frac{m+n}{mn}}}$$

gdzie:

 \overline{x} - średnia próby

s² - wariancja próby

i obszarze krytycznym:

$$(-\infty, t[1 - \alpha, m + n - 2])$$

gdzie:

t - wartość odczytana funkcją qt()

b) z kolei gdy wariancje są różne, przeprowadzamy test Cochrana-Coxa o statystyce:

$$C_{n} = \frac{\overline{x}_{1} - \overline{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{m} + \frac{s_{2}^{2}}{n}}}$$

i obszarze krytycznym:

$$\left(-\infty, \frac{\frac{S_1^2 * t(1-\alpha, m-1)}{m} + \frac{S_2^2 * t(1-\alpha, n-1)}{n}}{\frac{S_1^2}{m} + \frac{S_2^2}{n}}\right)$$

Na podstawie wyznaczonych wartości oraz tego czy zawierają się w przedziałach można stwierdzić czy nie ma podstaw do odrzucenia hipotezy zerowej H_0 . W naszym wypadku wynikiem testu Cochrana-Coxa były:

Cn = -0.011572

Obszar krytyczny: (-∞, -1.680540)

Wniosek z testu:

Wartość statystyki C nie należy do obszaru krytycznego, zatem nie mamy podstaw do odrzucenia hipotezy zerowej. Możemy stwierdzić, że wartości przeciętne obu populacji są równe.

Wyniki z konsoli po uruchomieniu programu:

Wynik testu: różne wariancje populacji [statystyka F = 0.720526, przedział (- ∞ , 1.650216), odrzucamy hipotezę zerową o równości], więc: statystyka C = -0.011572, obszar krytyczny (- ∞ , -1.680540). Wartość nie należy do przedziału - przyjmujemy hipotezę zerową - wartości przeciętne sa równe.

Wnioski do całego zadania:

Test na danym poziomie istotności wykazał, że wartości przeciętne dla obu sklepów są równe, więc nasze założenie, że pierwszy sklep ma większą wartość przeciętną, było niepoprawne.

Wnioski

Projekt zebrał całą wiedzę, którą nabyliśmy w trakcie ćwiczeń i wykładu. Zadania rozwiązane przez nas w projekcie wykorzystały wiele wzorów statystycznych, których działanie oraz zastosowanie mieliśmy okazję przetestować w trakcie realizacji celu.

Poznaliśmy nowy język programowania, którym jest R. Na początku sprawił nam on kilka trudności z powodu braku wiedzy na temat jego funkcjonowania, jednakże praca w środowisku sprawiła, że nauczyliśmy się nim posługiwać i zrobienie zadań nie stanowiło już większych przeszkód.

Wnioski do wyników poszczególnych zadań zostały zamieszczone powyżej.