TIME SERIES FORECASTING BUSINESS REPORT – ROSE WINE SALES

TEJAS PADEKAR

PGP-DSBA Online FEB' 22

Date: 20/02/2022

CONTENTS:

Problem 2	3
2.0 Read the data as an appropriate Time Series data and plot the data	3
2.1 Perform appropriate Exploratory Data Analysis to understand the data and also pe	
2.2 Split the data into training and test. The test data should start in 1991	15
2.3 Build all the exponential smoothing models on the training data and evaluate the using RMSE on the test data. Other models such as regression, naïve forecast mode simple average models. should also be built on the training data and check the perform on the test data using RMSE	ls and mance
2.4 Check for the stationarity of the data on which the model is being built on appropriate statistical tests and also mention the hypothesis for the statistical test. If the is found to be non-stationary, take appropriate steps to make it stationary. Check the data for stationarity and comment. Note: Stationarity should be checked at all 0.05	e data e new pha =
2.5 Build an automated version of the ARIMA/SARIMA model in which the paramete selected using the lowest Akaike Information Criteria (AIC) on the training data and evithis model on the test data using RMSE	aluate
2.6 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the tr data and evaluate this model on the test data using RMSE	_
2.7 Build a table with all the models built along with their corresponding parameters ar respective RMSE values on the test data	
2.8 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands	34
2.9 Comment on the model thus built and report your findings and suggest the measur that the company should be taking for future sales	es
ist of Figures	
igure 1- Time Series Plot	6
igure 2 – Yearly Boxplot of Rose Wine Sales	
igure 3 – Monthly Boxplot of Rose Wine Sales	
igure 4 – Monthly Boxplot with Median Values as Red Line	
igure 5 – Pivot Table of Rose Wine Sales	
igure 6 – Rose Wine Monthly Sales across Years	
igure 8 – Average Sales and Percentage Change of Sales	
0	0

Figure 9 – Sum of Rose Wine Sales for each Year	11
Figure 10 – Mean of Sparkling Wine Sales for each Year	13
Figure 11 – Additive Decomposition	14
Figure 12 – Train Test Dataset	15
Figure 13 – Linear Regression Plot	16
Figure 14 – Naïve Forecast Plot	17
Figure 15 – Simple Average Forecast	17
Figure 16 – Point-Wise Moving Average Forecast	18
Figure 17 – Point-Wise Trailing Moving Average Forecast	
Figure 18 - All Model Comparison Plots	19
Figure 19 - Simple Exponential Smoothing Model	20
Figure 20 - Double Exponential Smoothing Model	20
Figure 21 - Triple Exponential Smoothing Additive Model	21
Figure 22 - Triple Exponential Smoothing Multiplicative Model	21
Figure 23 - Arima Model	24
Figure 24 - Sarima Model with seasonality 6	26
Figure 25 - Sarima Model with Seasonality 12	27
Figure 26 - Arima Model based on ACF and PACF cut-off points	29
Figure 27 - Sarima Model with Seasonality 12 based on ACF and PACF cut-off points	33
Figure 28 – Future 12 months Forecast Plot	35
Figure 29 – Future 12 months Forecast with Confidence Bands	36

List of Tables

PROBLEM 2

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines (Sparkling & Rose). As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Rose Wine Sales in the 20th century.

2.0. Read the data as an appropriate Time Series data and plot the data

Dataset Head:

	YearMonth	Rose
0	1980-01	112.0
1	1980-02	118.0
2	1980-03	129.0
3	1980-04	99.0
4	1980-05	116.0

Dataset Tail:

	YearMonth	Rose
182	1995-03	45.0
183	1995-04	52.0
184	1995-05	28.0
185	1995-06	40.0
186	1995-07	62.0

The dataset contents 187 observations across 02 columns in total.

Date Time Index:

```
DatetimeIndex(['1980-01-31', '1980-02-29', '1980-03-31', '1980-04-30', '1980-05-31', '1980-06-30', '1980-07-31', '1980-08-31', '1980-09-30', '1980-10-31', ...
'1994-10-31', '1994-11-30', '1994-12-31', '1995-01-31', '1995-02-28', '1995-03-31', '1995-04-30', '1995-05-31', '1995-06-30', '1995-07-31'], dtype='datetime64[ns]', length=187, freq='M')
```

Time Stamp:

Rose

Time_Stamp				
1980-01-31	112.0			
1980-02-29	118.0			
1980-03-31	129.0			
1980-04-30	99.0			
1980-05-31	116.0			

We do not require the column of "YearMonth" as we have created a Time Stamp for the same and made it as our index column as well. Hence, we have dropped "YearMonth" from our dataset.

Missing Values:

YearMonth 0 Rose 2 dtype: int64

	YearMonth	Rose
174	1994-07	NaN
175	1994-08	NaN

We observe that there a 2 months of July and August 1994 where the Rose Wine sales figures are missing.

Dataset Description:

	Rose
count	185.000000
mean	90.394595
std	39.175344
min	28.000000
25%	63.000000
50%	86.000000
75%	112.000000
max	267.000000

We observe from a historical record of 187 months since Jan 1980 until July 1995 that average sales over the period of Rose wine was 90 bottles. The least being 28 bottles and highest being 267 bottles. The data however is missing the sales for the 2 months of July and August 1994 which we will fill accurately through interpolate function later. Now, we have our data ready for the Time Series Analysis.

Time Series Plot

Figure 1: Time Series Plot

For above figure, we observe presence of trend and seasonality throughout the time series. The trend is downward indicating that the sales figures of the Rose Wine have been dropping over the years. We can also observe a slight cut between the plot line between the years 1994 and 1995 due to the missing values.

2.1 Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Yearly Boxplot:

Figure 2 – Yearly Boxplot of Rose Wine Sales

The sales figures can be seen to pretty much ranges between 25 bottles to 175 bottles from 1982 till 1995 with outlier present in some years. The sales figures were higher in 1980 and 1981 after which there has been a significant drop in the sales figures. The sales have been on a continuous drop in most years dropping to the lowest in 1995 which can be clearly seen from the downward trend.

Monthly Boxplot:

Figure 3 – Monthly Boxplot of Rose Wine Sales

The sales have been better in the 2nd half of the year throughout the time series especially from July onwards. The least sales have come in the month of April and highest from December throughout various years!

Outliers are present for June, July, August, September and December months.

Monthly Boxplot with Median Values as Red Line:

Figure 4 - Monthly Boxplot with Median Values as Red Line

The median values are within 50 and 100 bottles until October and 100 to 150 bottles for November and December. There is actually a huge spike in the median value for December compared to November . Also, we can see that the median values for July and August are not seen as there are missing values for these months in the time series dataset.

Pivot Table Monthly Sales:

Time_Stamp	1	2	3	4	5	6	7	8	9	10	11	12
Time_Stamp												
1980	112.0	118.0	129.0	99.0	116.0	168.0	118.0	129.0	205.0	147.0	150.0	267.0
1981	126.0	129.0	124.0	97.0	102.0	127.0	222.0	214.0	118.0	141.0	154.0	226.0
1982	89.0	77.0	82.0	97.0	127.0	121.0	117.0	117.0	106.0	112.0	134.0	169.0
1983	75.0	108.0	115.0	85.0	101.0	108.0	109.0	124.0	105.0	95.0	135.0	164.0
1984	88.0	85.0	112.0	87.0	91.0	87.0	87.0	142.0	95.0	108.0	139.0	159.0
1985	61.0	82.0	124.0	93.0	108.0	75.0	87.0	103.0	90.0	108.0	123.0	129.0
1986	57.0	65.0	67.0	71.0	76.0	67.0	110.0	118.0	99.0	85.0	107.0	141.0
1987	58.0	65.0	70.0	86.0	93.0	74.0	87.0	73.0	101.0	100.0	96.0	157.0
1988	63.0	115.0	70.0	66.0	67.0	83.0	79.0	77.0	102.0	116.0	100.0	135.0
1989	71.0	60.0	89.0	74.0	73.0	91.0	86.0	74.0	87.0	87.0	109.0	137.0
1990	43.0	69.0	73.0	77.0	69.0	76.0	78.0	70.0	83.0	65.0	110.0	132.0
1991	54.0	55.0	66.0	65.0	60.0	65.0	96.0	55.0	71.0	63.0	74.0	106.0
1992	34.0	47.0	56.0	53.0	53.0	55.0	67.0	52.0	46.0	51.0	58.0	91.0
1993	33.0	40.0	46.0	45.0	41.0	55.0	57.0	54.0	46.0	52.0	48.0	77.0
1994	30.0	35.0	42.0	48.0	44.0	45.0	NaN	NaN	46.0	51.0	63.0	84.0
1995	30.0	39.0	45.0	52.0	28.0	40.0	62.0	NaN	NaN	NaN	NaN	NaN
			Figure	5 – Pi	ivot Tab	ole of Ro	ose Wir	e Sales				

Monthly Sales across Years:

Figure 6 –Rose Wine Monthly Sales across Years

December has the highest sales across all years

Empirical Cumulative Distribution:

Figure 7 –Rose Wine Sales Empirical Cumulative Distribution Plot

Average Sales and Percentage Change of Sales:

Figure 8 – Average Sales and Percentage Change of Sales

Sum of Sales of each year in Plot:

Figure 9 –Sum of Rose Wine Sales for each Year

The sales have dropped over the years, only exception being 1981 where they have slightly increased.

Sum of Sales of each year in Figures:

	Rose
Time_Stamp	
1980-12-31	1758.0
1981-12-31	1780.0
1982-12-31	1348.0
1983-12-31	1324.0
1984-12-31	1280.0
1985-12-31	1183.0
1986-12-31	1063.0
1987-12-31	1060.0
1988-12-31	1073.0
1989-12-31	1038.0
1990-12-31	945.0
1991-12-31	830.0
1992-12-31	663.0
1993-12-31	594.0
1994-12-31	488.0
1995-12-31	296.0

The highest sales were recorded in the year 1981 with total 1780 bottles sold and the least sales were for 1995 with total 296 bottles sold within the first seven months. On a 12 monthly basis, the least sales can be seen for the year 1994 with 488 bottles sold in total.

Mean of Sales of each year in Plot:

Figure 10 – Mean of Sparkling Wine Sales for each Year

Mean of Sales of each year in Figures:

	Rose
Time_Stamp	
1980-12-31	146.500000
1981-12-31	148.333333
1982-12-31	112.333333
1983-12-31	110.333333
1984-12-31	106.666667
1985-12-31	98.583333
1986-12-31	88.583333
1987-12-31	88.333333
1988-12-31	89.416667
1989-12-31	86.500000
1990-12-31	78.750000
1991-12-31	69.166667
1992-12-31	55.250000
1993-12-31	49.500000
1994-12-31	48.800000
1995-12-31	42.285714

The mean sales ranged between 42 and 146.5 from 1980 till 1995. With lowest in 1995 and highest in 1981 similar to earlier observation for sum of monthly sales.

Interpolate Missing Values:

Time_Stamp	
1994-01-31	30.0
1994-02-28	35.0
1994-03-31	42.0
1994-04-30	48.0
1994-05-31	44.0
1994-06-30	45.0
1994-07-31	45.0
1994-08-31	45.0
1994-09-30	46.0
1994-10-31	51.0
1994-11-30	63.0
1994-12-31	84.0

Rose

We have interpolated the missing values for July and August 1994 as the same sales figures for June of 45 bottles. Now, that we have interpolated the missing values, we can now decompose the time series.

Decomposing the Time Series: Additive Method

Figure 11 – Additive Decomposition

As per the 'additive' decomposition, we see that there is a pronounced trend until 1991. There is a seasonality as well. A lot of residuals are located around 0 from the plot of the residuals in the decomposition.

Trend, Seasonality and Residual:

Trend				Residual	
Time_Stamp		Seasonality		Time_Stamp	
1980-01-31	NaN	Time Stamp		1980-01-31	NaN
1980-02-29	NaN	1980-01-31	-27.908647	1980-02-29	NaN
1980-03-31	NaN	1980-02-29	-17.435632	1980-03-31	NaN
1980-04-30	NaN	1980-03-31	-9.285830	1980-04-30	NaN
1980-05-31	NaN	1980-04-30	-15.098330	1980-05-31	NaN
1980-06-30	NaN	1980-05-31	-10.196544	1980-06-30	NaN
1980-07-31	147.083333	1980-06-30	-7.678687	1980-07-31	-33.980241
1980-08-31	148.125000	1980-07-31 1980-08-31	4.896908 5.499686	1980-08-31	-24.624686
1980-09-30	148.375000	1980-09-30	2.774686	1980-09-30	53.850314
1980-10-31	148.083333	1980-10-31	1.871908	1980-10-31	-2.955241
1980-11-30	147.416667	1980-11-30	16.846908	1980-11-30	-14.263575
1980-12-31	145.125000	1980-12-31	55.713575	1980-12-31	66.161425
Name: trend,	dtype: float64	Name: season	al, dtype: float64	Name: resid,	dtype: float64

2.2 Split the data into training and test. The test data should start in 1991

Training Data Shape (132, 1) Testing Data Shape (55, 1)

Figure 12 – Train Test Dataset

Training and Test Time Instances:

```
Training Time instance
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3
4, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132]
Test Time instance
```

[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 18 3, 184, 185, 186, 187]

We see that we have successfully the generated the numerical time instance order for both the training and test set.

2.3 Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

MODEL 1 – Linear Regression Model:

Figure 13 – Linear Regression Plot

	Test RMSE
RegressionOnTime	15.268955

MODEL 2 – Naïve Model:

Figure 14 – Naïve Forecast Plot

NaiveModel 79.718773

MODEL 3 – Simple Average Model:

Figure 15 – Simple Average Forecast

53.46057

MODEL 4 – Moving Average Model:

Figure 16 – Point-Wise Moving Average Forecast

Figure 17 – Point-Wise Trailing Moving Average Forecast

2pointTrailingMovingAverage	11.529278
4pointTrailingMovingAverage	14.451403
6pointTrailingMovingAverage	14.566327
9pointTrailingMovingAverage	14.727630
12pointTrailingMovingAverage	15.236052

Plotting of all the models:

Figure 18 – All Model Comparison Plots

MODEL 5 – Simple Exponential Smoothing Model:

Figure 19 – Simple Exponential Smoothing Model

Alpha=0.0987,SimpleExponentialSmoothing 36.796243

MODEL 6 – Double Exponential Smoothing:

Figure 20 – Double Exponential Smoothing Model

Test RMSE

For Alpha =0, Beta = 0 DoubleExponentialSmoothing 15.268961

MODEL 7 – Triple Exponential Smoothing Additive:

Figure 21 – Triple Exponential Smoothing Additive Model

Alpha=0.095,Beta=0,Gamma=0.0007,TripleExponentialSmoothing 14.176738

MODEL 8 – Triple Exponential Smoothing Multiplicative:

Figure 22 – Triple Exponential Smoothing Multiplicative Model

Test RMSE

Alpha=0.074,Beta=0.043,Gamma=0 TripleExponentialSmoothingMultiplicative

19.741738

Performance using RSME on Test Data:

From the observations so far, we can clearly see that Trailing Moving Average models have performed better than the other models as they have a lower RMSE on the test data. The 2 point Trailing Moving Average Model has performed the best due to its lower RMSE of 11.52.

2.4 Build all the Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

Hypothesis for Statistical Test:

Null Hypothesis – H0 = Time Series is not Stationary Alternative Hypothesis – HA = Time Series is Stationary

Stationarity Check Using Dickey-Fuller Test:

Results of Dickey-Fuller Test:	
Test Statistic	-1.876699
p-value	0.343101
#Lags Used	13.000000
Number of Observations Used	173.000000
Critical Value (1%)	-3.468726
Critical Value (5%)	-2.878396
Critical Value (10%)	-2.575756
dtype: float64	

We observe the Time Series is non-stationary for alpha = 0.05 as the p-value is > alpha at 0.34. Hence, we fail to reject the null hypothesis.

Let us take a difference of order 1 and check whether the Time Series is stationary or not.

Stationarity Check Using Dickey-Fuller Test by taking difference of Order 1:

```
Results of Dickey-Fuller Test:
Test Statistic
                             -8.044392e+00
                             1.810895e-12
p-value
                             1.200000e+01
#Lags Used
Number of Observations Used
                            1.730000e+02
                           -3.468726e+00
Critical Value (1%)
Critical Value (5%)
                           -2.878396e+00
Critical Value (10%)
                           -2.575756e+00
dtype: float64
```

We observe the Time Series is now stationary for alpha = 0.05 as the p-value at less than alpha.

2.5 Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

MODEL 9 – ARIMA Model:

```
Some parameter combinations for the Model...

Model: (0, 1, 1)

Model: (0, 1, 2)

Model: (1, 1, 0)

Model: (1, 1, 1)

Model: (1, 1, 2)

Model: (2, 1, 0)

Model: (2, 1, 1)

Model: (2, 1, 2)
```

Above is some combination of different parameters of p and q in the range of 0 and 2

ARIMA AIC SCORES for Parameters in range of 0 & 2:

param	AIC
(0, 1, 2)	1279.671529
(1, 1, 2)	1279.870723
(1, 1, 1)	1280.574230
(2, 1, 1)	1281.507862
(2, 1, 2)	1281.870722
(0, 1, 1)	1282.309832
(2, 1, 0)	1298.611034
(1, 1, 0)	1317.350311
(0, 1, 0)	1333.154673
	(0, 1, 2) (1, 1, 1) (1, 1, 1) (2, 1, 1) (2, 1, 2) (0, 1, 1) (2, 1, 0) (1, 1, 0)

We can see the best AIC is for ARIMA (0,1,2) of 1279.67. Below, we will built our ARIMA Model for this parameter and check the performance.

ARIMA (0,1,2) Model Results:

|--|

Dep. Varia	ble:	Ro	se No.	Observations:		132	
Model:		ARIMA(0, 1,	 Log 	Likelihood		-636.836	
Date:	Wee	d, 02 Mar 20	22 AIC			1279.672	
Time:		00:08:	56 BIC			1288.297	
Sample:		01-31-19	80 HQIC			1283.176	
		- 12-31-19	90				
Covariance	Type:	0	pg				
	=========		======				
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.6970	0.072	-9.689	0.000	-0.838	-0.556	
ma.L2	-0.2042	0.073	-2.794	0.005	-0.347	-0.061	
sigma2	965.8407	88.305	10.938	0.000	792.766	1138.915	
Ljung-Box	(L1) (Q):		0.14	Jarque-Bera	(JB):	39	9.24
Prob(Q):			0.71	Prob(JB):		(0.00
Heterosked	asticity (H):		0.36	Skew:		(3.82
Prob(H) (t	wo-sided):		0.00	Kurtosis:			5.13

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure 23 – Arima Model

RMSE

ARIMA(0,1,2) 37.30648

MODEL 10 – SARIMA Model with seasonality 6:

```
Examples of some parameter combinations for Model...

Model: (0, 1, 1)(0, 0, 1, 6)

Model: (0, 1, 2)(0, 0, 2, 6)

Model: (1, 1, 0)(1, 0, 0, 6)

Model: (1, 1, 1)(1, 0, 1, 6)

Model: (1, 1, 2)(1, 0, 2, 6)

Model: (2, 1, 0)(2, 0, 0, 6)

Model: (2, 1, 1)(2, 0, 1, 6)

Model: (2, 1, 2)(2, 0, 2, 6)
```

Above is some combination of different parameters of p and q in the range of 0 and 2

SARIMA AIC SCORES for Parameters in range of 0 & 2:

	param	seasonal	AIC
53	(1, 1, 2)	(2, 0, 2, 6)	1041.655818
26	(0, 1, 2)	(2, 0, 2, 6)	1043.600261
80	(2, 1, 2)	(2, 0, 2, 6)	1045.220389
71	(2, 1, 1)	(2, 0, 2, 6)	1051.673461
44	(1, 1, 1)	(2, 0, 2, 6)	1052.778470

We can see the best AIC is for SARIMA (1,1,2) (2,0,2,6) of 1041.65. Below we will built our SARIMA Model for this parameter and check the performance.

SARIMA (1,1,2) (2,0,2,6) Model Results:

			SARIMAX Re	sults			
Dep. Variab	le:			v No. (Dbservations:		13:
Model:		MAX(1, 1, 2)x(2, 0, 2, 6	,			-512.828
Date:			d, 02 Mar 202				1041.656
Time:			00:15:3	4 BIC			1063.685
Sample:				0 HQIC			1050.598
			- 13	2			
Covariance	Type:		ор	g			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.5939	0.152	-3.914	0.000	-0.891	-0.296	
ma.L1	-0.1954	188.566	-0.001	0.999	-369.777	369.387	
ma.L2	-0.8046	151.765	-0.005	0.996	-298.258	296.649	
ar.S.L6	-0.0625	0.035	-1.794	0.073	-0.131	0.006	
ar.S.L12	0.8451	0.039	21.889	0.000	0.769	0.921	
ma.S.L6	0.2226	188.635	0.001	0.999	-369.495	369.940	
ma.S.L12	-0.7774	146.598	-0.005	0.996	-288.104	286.549	

sigma2	335.1965	0.906	369.902	0.000	333.420	336.973
Ljung-Box	x (L1) (Q):		0.07	Jarque-Bera	(JB):	56.68
Prob(Q):			0.78	Prob(JB):		0.00
Heterosk	edasticity (H):		0.47	Skew:		0.52
Prob(H)	(two-sided):		0.02	Kurtosis:		6.26

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
 [2] Covariance matrix is singular or near-singular, with condition number 1.37e+21. Standard errors may be unstable.

Figure 24 – Sarima Model with seasonality 6

Summary Frame for Alpha = 0.05:

y	mean	mean_se	mean_ci_lower	mean_ci_upper
0	62.839941	18.848279	25.897993	99.781888
1	67.629885	19.300121	29.802343	105.457427
2	74.746081	19.412682	36.697924	112.794238
3	71.324859	19.475628	33.153329	109.496389
4	76.016791	19.483907	37.829034	114.204548

RMSE

SARIMA(1, 1, 2)(2,0,2,6) 26.134254

MODEL 11 - SARIMA Model with seasonality 12:

Examples of some parameter combinations for Model... Model: (0, 1, 1)(0, 0, 1, 12)

Model: (0, 1, 2)(0, 0, 2, 12) Model: (1, 1, 0)(1, 0, 0, 12)

Model: (1, 1, 1)(1, 0, 1, 12)

Model: (1, 1, 2)(1, 0, 2, 12)

Model: (2, 1, 0)(2, 0, 0, 12) Model: (2, 1, 1)(2, 0, 1, 12)

Model: (2, 1, 2)(2, 0, 2, 12)

Above is some combination of different parameters of p and q in the range of 0 and 2

SARIMA AIC SCORES for Parameters in range of 0 & 2:

	param	seasonal	AIC
26	(0, 1, 2)	(2, 0, 2, 12)	887.937509
80	(2, 1, 2)	(2, 0, 2, 12)	890.668798
69	(2, 1, 1)	(2, 0, 0, 12)	896.518161
53	(1, 1, 2)	(2, 0, 2, 12)	896.686897
78	(2, 1, 2)	(2, 0, 0, 12)	897.346444

We can see the best AIC is for SARIMA (0,1,2) (2,0,2,12) of 887.94. Below we will built our SARIMA Model for this parameter and check the performance.

SARIMA (0,1,2) (2,0,2,12) Model Results:

Model: SARIMAX(0, 1, 2)x(2, 0, 2, 12) Log Likelihood -436.96 Date: Wed, 02 Mar 2022 AIC 887.95 Time: 00:24:11 BIC 906.44 Sample: 0 HQIC 895.43 Covariance Type: opg coef std err z P> z [0.025 0.975] ma.L1 -0.8427 189.512 -0.004 0.996 -372.279 370.593 ma.L2 -0.1573 29.773 -0.005 0.996 -58.512 58.197 ar.S.L12 0.3467 0.079 4.375 0.000 0.191 0.502 ar.S.L24 0.3023 0.076 3.996 0.000 0.154 0.451 ma.S.L24 0.0767 0.133 0.577 0.564 -0.184 0.337 ma.S.L24 -0.0726 0.146 -0.498 0.618 -0.358 0.213 sigma2 251.3136 4.76e+04 0.005 0.996 -9.31e+04 9.36e+04 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q):				SARIMAX	Results			
Date:	Dep. Variab	le:			y No.	Observations:		13
Date:	Model:	SAR	IMAX(0, 1,	2)x(2, 0, 2	, 12) Log	Likelihood		-436.969
Sample: 0 HQIC 895.43 Covariance Type: opg Coef std err z P> z [0.025 0.975]	Date:		, , ,					887.938
- 132	Time:			00:	24:11 BIC			906.448
Covariance Type: opg coef std err z P> z [0.025 0.975] ma.L1 -0.8427 189.512 -0.004 0.996 -372.279 370.593 ma.L2 -0.1573 29.773 -0.005 0.996 -58.512 58.197 ar.S.L12 0.3467 0.079 4.375 0.000 0.191 0.502 ar.S.L24 0.3023 0.076 3.996 0.000 0.154 0.451 ma.S.L12 0.0767 0.133 0.577 0.564 -0.184 0.337 ma.S.L24 -0.0726 0.146 -0.498 0.618 -0.358 0.213 sigma2 251.3136 4.76e+04 0.005 0.996 -9.31e+04 9.36e+04 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q): 0.75 Prob(JB): 0.31	Sample:					0		895.437
coef std err z P> z [0.025 0.975] ma.L1 -0.8427 189.512 -0.004 0.996 -372.279 370.593 ma.L2 -0.1573 29.773 -0.005 0.996 -58.512 58.197 ar.S.L12 0.3467 0.079 4.375 0.000 0.191 0.502 ar.S.L24 0.3023 0.076 3.996 0.000 0.154 0.451 ma.S.L12 0.0767 0.133 0.577 0.564 -0.184 0.337 ma.S.L24 -0.0726 0.146 -0.498 0.618 -0.358 0.213 sigma2 251.3136 4.76e+04 0.005 0.996 -9.31e+04 9.36e+04 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q): 0.75 Prob(JB): 0.31					- 132			
ma.L1 -0.8427 189.512 -0.004 0.996 -372.279 370.593 ma.L2 -0.1573 29.773 -0.005 0.996 -58.512 58.197 ar.S.L12 0.3467 0.079 4.375 0.000 0.191 0.502 ar.S.L24 0.3023 0.076 3.996 0.000 0.154 0.451 ma.S.L12 0.0767 0.133 0.577 0.564 -0.184 0.337 ma.S.L24 -0.0726 0.146 -0.498 0.618 -0.358 0.213 sigma2 251.3136 4.76e+04 0.005 0.996 -9.31e+04 9.36e+04 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q): 0.75 Prob(JB): 0.31	Covariance	Type:			opg			
ma.L2		coef	std err		P> z	[0.025	0.975]	
ma.L2								
ar.S.L12								
ar.S.L24 0.3023 0.076 3.996 0.000 0.154 0.451 ma.S.L12 0.0767 0.133 0.577 0.564 -0.184 0.337 ma.S.L24 -0.0726 0.146 -0.498 0.618 -0.358 0.213 sigma2 251.3136 4.76e+04 0.005 0.996 -9.31e+04 9.36e+04 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q): 0.75 Prob(JB): 0.31								
ma.S.L12								
ma.S.L24								
sigma2 251.3136 4.76e+04 0.005 0.996 -9.31e+04 9.36e+04 Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q): 0.75 Prob(JB): 0.31								
Ljung-Box (L1) (Q): 0.10 Jarque-Bera (JB): 2.33 Prob(Q): 0.75 Prob(JB): 0.31	ma.S.L24	-0.0726	0.146					
Prob(Q): 0.75 Prob(JB): 0.31	sigma2	251.3136	4.76e+04	0.005	0.996	-9.31e+04	9.36e+04	
Prob(Q): 0.75 Prob(JB): 0.31								
()	Ljung-Box ((L1) (Q):		0.10	Jarque-Ber	a (JB):		2.33
Untranslandantisity (U). 0.99 Charry	Prob(Q):			0.75	Prob(JB):			0.31
neteroskedasticity (n): 0.00 Skew: 0.57	Heteroskeda	sticity (H)	:	0.88	Skew:			0.37
Prob(H) (two-sided): 0.70 Kurtosis: 3.03	Prob(H) (tv	ιο-sided):		0.70	Kurtosis:			3.03

Figure 25 – Sarima Model with Seasonality 12

Summary Frame for Alpha = 0.05:

y	mean	mean_se	mean_ci_lower	mean_ci_upper
0	62.867261	15.928500	31.647975	94.086547
1	70.541189	16.147658	38.892362	102.190017
2	77.356410	16.147655	45.707587	109.005233
3	76.208813	16.147655	44.559990	107.857637
4	72.747397	16.147655	41.098574	104.396220

2.6 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

ACF Plot:

PACF Plot:

Here, we have taken alpha=0.05.

- The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 4.
- The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 2.

MODEL 12 – Manual ARIMA Model based on cut-Off point (4,1,2):

SARIMAX Results						
Dep. Variable	:	Ro	se No.	Observations:		132
Model:	Δ	RIMA(4, 1,	 Log 	Likelihood		-635.859
Date:	Sun	, 06 Mar 20	22 AIC			1285.718
Time:		12:51:	01 BIC			1305.845
Sample:		01-31-19	80 HQIC			1293.896
•		- 12-31-19	90			
Covariance Ty	pe:	o	pg			
	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.3838	0.923	-0.416	0.677	-2.192	1.425
ar.L2	0.0046	0.258	0.018	0.986	-0.502	0.511
ar.L3	0.0414	0.113	0.366	0.714	-0.180	0.263
ar.L4	-0.0054	0.177	-0.031	0.976	-0.353	0.342
ma.L1	-0.3239	0.933	-0.347	0.729	-2.153	1.505
ma.L2	-0.5407	0.874	-0.619	0.536	-2.254	1.172
sigma2	951.1524	93.870	10.133	0.000	767.170	1135.135
-						
Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB):					32.85	
Prob(Q):			0.88	Prob(JB):		0.00
Heteroskedasticity (H):			0.37	Skew:		0.77
Prob(H) (two-sided): 0.00 Kurtosis: 4.9					4.91	

Warnings:

Figure 26 – Arima Model based on ACF and PACF cut-off points

RMSE

ARIMA(4,1,2) 37.037639

MODEL – 13 Manual SARIMA Model based on cut-Off point (4,1,2):

ACF Plot:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

We see that there can be a seasonality of 12. We will run our auto SARIMA models by setting seasonality for 12.

Plot with Seasonal Difference of 12:

Plot without Trend and Only Seasonality:

ACF plot for the new modified Time Series with Stationarity:

PACF plot for the new modified Time Series with Stationarity:

Manual SARIMA (4,1,2) (4,1,2,12) Model Results:

SARIMAX Results							
Dep. Variab	le:			y No.	Observations 0 4 1	:	132
Model:	SAR	IMAX(4, 1,	2)x(4, 1, 2	, 12) Log	Likelihood		-277.661
Date:			Sun, 06 Mar	2022 AIC			581.322
Time:			13:	16:32 BIC			609.983
Sample:				0 HQI	C		592.663
				- 132			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1					-1.364		
ar.L2					-0.670		
ar.L3		0.277			-0.647		
ar.L4	-0.1285	0.162	-0.794		-0.446	0.189	
ma.L1		299.757	0.001		-587.353	587.674	
		251.668	-0.003		-494.099	492.420	
ar.S.L12	-0.1441	0.364	-0.396		-0.858	0.569	
ar.5.L24	-0.3596	0.227	-1.587	0.113	-0.804	0.085	
ar.S.L36	-0.2153	0.106	-2.039	0.041	-0.422	-0.008	
ar.S.L48	-0.1195	0.093	-1.281	0.200	-0.302	0.063	
ma.S.L12	-0.5158	0.343	-1.502	0.133	-1.189	0.157	
ma.S.L24	0.2085	0.373	0.559	0.576	-0.523	0.940	
sigma2	215.3526	6.46e+04	0.003	0.997	-1.26e+05	1.27e+05	
Ljung-Box (L1) (Q):				Jarque-Bera	a (JB):		2.41
Prob(Q):			0.86	Prob(JB):			0.30
Heteroskeda	sticity (H)	:	0.49	Skew:			0.32
Prob(H) (two-sided):			0.10	Kurtosis:			3.68

Figure 27 – Sarima Model with Seasonality 12 based on ACF and PACF cut-off points

Summary Frame for Alpha = 0.05:

у	mean	mean_se	mean_ci_lower	mean_ci_upper
0	46.385325	14.770634	17.435414	75.335237
1	62.932846	14.989764	33.553449	92.312244
2	63.527810	14.999436	34.129455	92.926165
3	66.473786	15.179628	36.722261	96.225311
4	63.540811	15.180505	33.787567	93.294055

RMSE

SARIMA(4,1,2)(4,1,2,12) 17.529039

2.7 Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

MODELS	TEST RMSE
2pointTrailingMovingAverage	11.529278
Alpha=0.095,Beta=0,Gamma=0.0007,TripleExponentialSmoothing	14.176738
4pointTrailingMovingAverage	14.451403

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

6pointTrailingMovingAverage	14.566327
9pointTrailingMovingAverage	14.72763
12pointTrailingMovingAverage	15.236052
RegressionOnTime	15.268955
For Alpha =0, Beta = 0 DoubleExponentialSmoothing	15.268961
SARIMA(4,1,2)(4,1,2,12)	17.529039
SARIMA(1, 1, 2)(2,0,2,6)	26.134254
Alpha=0.074,Beta=0.043,Gamma=0 TripleExponentialSmoothingMultiplicative	19.741738
SARIMA(0, 1, 2)(2, 0, 2, 12)	26.928361
Alpha=0.0987,SimpleExponentialSmoothing	36.796243
ARIMA(4,1,2)	37.037639
ARIMA(0,1,2)	37.30648
Simple Average	53.46057
Naive Model	79.718773

Table 1 – All Models with RMSE

2.8 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

The best model built is **2pointTrailingMovingAverage** with Test RMSE of **11.529278**. However, moving average models are somewhat outdated and there are new models such as Arima/Sarima which are more robust and more advanced. Also, it is somewhat incorrect to use a 2point trailing moving average to future forecast 12 months. Hence, we will be building our model on the 2nd best optimum model, "Alpha=0.095,Beta=0,Gamma=0.0007,TripleExponentialSmoothing" which has the Test RMSE as **14.176** .Now we will built the best optimum full model on the same parameters

Future 12 Months Sales Forecast:

1995-08-31	49.878500
1995-09-30	46.705164
1995-10-31	45.439534
1995-11-30	60.040383
1995-12-31	98.313260
1996-01-31	13.835254
1996-02-29	24.144658
1996-03-31	31.704142
1996-04-30	24.511248
1996-05-31	27.880899
1996-06-30	33.379915
1996-07-31	44.016469
Freq: M, dtyp	oe: float64

Future 12 Months Forecast Plot:

Figure 28 – Future 12 months Forecast Plot

Summary Frame of next 12 months for Alpha = 0.05:

	lower_CI	prediction	upper_ci
1995-08-31	15.161545	49.878500	84.595455
1995-09-30	11.988209	46.705164	81.422119
1995-10-31	10.722579	45.439534	80.156489
1995-11-30	25.323428	60.040383	94.757338
1995-12-31	63.596305	98.313260	133.030215
1996-01-31	-20.881701	13.835254	48.552209
1996-02-29	-10.572297	24.144658	58.861613
1996-03-31	-3.012813	31.704142	66.421097
1996-04-30	-10.205707	24.511248	59.228203
1996-05-31	-6.836056	27.880899	62.597854
1996-06-30	-1.337040	33.379915	68.096870
1996-07-31	9.299514	44.016469	78.733424

Forecast for next 12 months along with confidence band:

Figure 29 - Future 12 months Forecast with Confidence Bands

2.9 Based Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

- The sales for Rose Wine has been dropping over the years. Hence, there is a need to reintroduce this variant and maybe with a little bit of refreshing touch, perhaps a different breed of grapes could be tried or cultivation at more cooler places, indoor cultivation at specific temperatures could work.
- It also could be evaluated if transportation of the grapes/bottles is having any effect on the quality of the wine or if there could be modifications made to the barrels that are used.
- The future forecast shows a slight uptick which is a good sign but it still remains a question if the popularity of Rose wine is sliding down or there is something which can turn around and increase the popularity.
- The company could also look at marketing strategies during peak season to boost sales even further which can maybe cover up for the lower sales during off-season or/and they can come up with impressive offers during off-season to increase the sales