1.4 Laws of Exponents and Scientific Notation

Definition For any real number x and any positive integer a,

$$x^a =$$

where x is the _____ and a is the ____

Exponent of 1: For any real number $x, x^1 =$

Exponent of 0: For any non zero real number $x, x^0 =$

Ex 1) Find the indicated value of the expression.

a.
$$-3y^1$$
 $b)^1$

b.
$$-(2x)^0$$
 c. $5x^0$ **d.** $(-7a+$

c.
$$5x^0$$

Product Rule of Exponents

For any nonzero real number x and for any positive integers a and b

$$x^a \cdot x^b =$$

Ex 2) Express in terms of a base raised to a single power if possible.

$$\mathbf{a.} \quad n^3 \cdot n$$

a.
$$n^3 \cdot n^7$$
 b. $(-4x)^3 \cdot (-4x)$ $(y+5)^0$ **d.** $p^6 \cdot q^3$

c.
$$(y+3)^5$$
.

Quotient Rule of Exponents

For any nonzero real number x and for any positive integers a and b

$$\frac{x^a}{x^b} =$$

Ex 3) Rewrite each expression as a base to a power if possible.

a.
$$\frac{s^8}{s^2}$$

b.
$$\frac{(-3r)^{10}}{(-3r)^9}$$

c.
$$\frac{(t-2)^6}{(t-2)^4}$$

d.
$$\frac{a^4}{b}$$

Negative Exponents

For any nonzero real number x and for any integer a

$$x^{-a} =$$

Ex 4) Rewrite with a positive exponent.

- **b.** $(-4y)^{-1}$ **c.** $(-5+x)^{-3}$

Reciprocal of x^{-a}

For any nonzero real number x and for any positive integer a

$$\frac{1}{x^{-a}} =$$

Ex 5) Rewrite as expressions as using only positive exponents.

b. $\frac{5}{x^{-2}}$

Power Rule of Exponents

For any nonzero real number x and for any integers a and b

$$(x^a)^b =$$

Ex 6) Simplify.

a.
$$(y^7)^2$$

b.
$$-(n^{-1})^5$$

c.
$$(p^{-3})^{-3}$$

Raising a Product to a Power

For any nonzero real numbers x and y and any integer a

$$(xy)^a =$$

Ex 7) Simplify.

a. $(-4x)^2$

b. $(5a^9)^2$

c. $(-q^7r^8)^2$

d. $-6(a^5b^3)^3$

e. $(7x^{-4}y^{-1})^{-2}$

Raising a Quotient to a Power

For any nonzero real numbers x and y and any integer a

$$\left(\frac{x}{y}\right)^a =$$

Ex 8) Simplify.

a. $\left(\frac{y}{2}\right)^5$

b. $\left(\frac{u^4}{v^6}\right)^2$

 $\mathbf{c.} \quad \left(\frac{-5a^5}{2b^2}\right)^3$

 $\mathbf{d.} \quad \left(\frac{v^6}{u^4}\right)^{-2}$

Raising a Quotient to a Negative Power

For any nonzero real numbers x and y and any integer a

$$\left(\frac{x}{y}\right)^{-a} =$$

Ex 9) Simplify.
$$\left(\frac{3x^3}{2y^2}\right)^{-4}$$

Definition A number is in _____ if it is written in the form $a \times 10^n$ where n is an integer and a is greater than or equal to 1 but less than 10 $(1 \le a < 10)$ Note: With scientific notation, positive powers represent ____ bers while negative powers represent ______ numbers. Note: When converting a number from scientific notation to standard notation, move the decimal point to the ______ if the power of 10 is positive and to the ______ if the power of 10 is negative. Ex 10) Express in standard notation. 5.193×10^{8} **b.** 4.82×10^{-7} a. Ex 11) Write each number in scientific notation. 4,000,000,000,000 **b.** 0.000000000067

Ex 12) Carry out the computation. Express the result in scientific notation.

a. $(4 \times 10^4)(7 \times 10^3)$ (6×10^{-4})

b. $(1.32 \times 10^4) \div$