StepuP: Steps against the burden of **P**arkinson's Disease

Sjoerd Bruijn

Department of Human Movement Sciences Vrije Universiteit Amsterdam, the Netherlands

StepuP: Steps against the burden of Parkinson's Disease

Netherlands, Vrije Universiteit Amsterdam

Germany, University Hospital Schleswig-Holstein Kiel

Israel, Tel Aviv Sourasky Medical Center

Australia, University of New South Wales

Switzerland, Swiss Federal Institute of Technology (ETH Zürich)

Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna

treadmill training in PD is effective

32 trials (n = 823) compared treadmill training with no exercise or sham treatment. Treadmill training improved gait outcomes, with a moderate effect on the 10MWT and a moderately large effect on gait speed.

Radder et al. Neurorehabil Neural Repair 2020

SDTT:

total walking distance 266 (82) m - 726 (93 (P < 0.001). maximum 1.9 (0.75) km/h - 2.61 (0.77) km/h (P < 0.001). Berg Balance Test (P < 0.01) Dynamic Gait Index (P < 0.01) Falls Efficacy Scale (P < 0.01).

Cakit et al. Clin Rehabil 2007

But why?

WP 1

gait improvement obtained with treadmill training

WP 2

biomechanical and neurophysiological mechanisms

WP3

transfer of gait improvements to daily-life gait quantity and quality

WP 4

individual responses to treadmill training

WP 5

management, dissemination and ECR training

T0 [Pre-Training]

Home assessment

Psychological and environmental (social and physical) factors

Daily-life gait quantity and quality (IMU recordings)

Functional assessment

Neurophysiological and Kinematic recordings (EEG, EMG, MoCap)

Clinical and neuropsychological outcomes

Figure 1. Protocol overview for the StepuP clinical centers.

Training

Training visits

12 session of Speed dependent Treadmill training (SDTT)

SDTT + perturbations (unidirectional, multidirectional, VR)

T1 [Post-Training]

Home assessment

Psychological and environmental (social and physical) factors

Daily-life gait quantity and quality (IMU recordings)

Functional assessment

Neurophysiological and Kinematic recordings (EEG, EMG, MoCap)

Clinical and neuropsychological outcomes

T2 [Follow-up]

Functional assessment

Neurophysiological and Kinematic recordings (EEG, EMG, MoCap)

Clinical and neuropsychological outcomes

Primary outcome (WP1, Kiel)

- Walking speed and stride length
- Secondary;
 - timed-up-and-go (TUG) tes
 - 2-minute walk test74
 - balance and fall risk with the MiniBESTest
 - cognition using the MOCA76
 - motor symptoms of PD with the MDS-UPDRS, part III

Mechanisms (WP2, Amsterdam)

- Why does treadmill training (with perturbations) work?
 - improved foot placement coordination
 - improved center of mass state estimation
 - decreased beta band oscillations in sensorimotor areas
 - Increased corticulmuscular coherence

Mechanisms: foot placement coordination in PD

Mechanisms: cortico-muscular coherence in PD

Mechanisms (WP2, Amsterdam)

 Most important outcome is not these measures per-se, but correlation between these measures, and increases in primary outcome (WP1)

Daily life effects (WP3, Zurich)

- Amount of daily life activity
- Quality of daily life gait
- Expect improvements due to training

Bringing it together; WP4(Sydney)

- Qualitative analysis of treadmill training
- Combining data from all WP to understand for which patients treadmill training works best

WP 1

gait improvement obtained with treadmill training

WP 2

biomechanical and neurophysiological mechanisms

WP3

transfer of gait improvements to daily-life gait quantity and quality

WP 4

individual responses to treadmill training

WP 5

management, dissemination and ECR training