Listas 9-10: Equivalências e Consequências Lógicas

Nome: Miguel Thadeu Campos Reis dos Santos ADS Manhã – 1° Semestre

Avalie:

a)
$$p \rightarrow q \models \neg p \rightarrow \neg q$$

Introdução: Vamos avaliar se $p \rightarrow q \models \neg p \rightarrow \neg q$, ou seja, se as verdades de $p \rightarrow q$ (se p então q) se repetem em $\neg p \rightarrow \neg q$ (se não p então não q).

Desenvolvimento:

р	q	¬р	¬q	p → q	$\neg p \rightarrow \neg q$
V	V	F	F	V	V
V	F	F	V	F	V
F	V	V	F	V	F
F	F	V	V	V	V

Conclusão: Como demonstrado via tabela verdade, na primeira linha, a verdade de $p \rightarrow q$ se repete em $\neg p \rightarrow \neg q$, logo, $p \rightarrow q = p \rightarrow q$ ($\neg p \rightarrow q \neq q$).

b)
$$(p \rightarrow q) \land \neg q \models \neg p$$

Introdução: Vamos avaliar se $(p \rightarrow q) \land \neg q \models \neg p$, ou seja, se as verdades de $(p \rightarrow q) \land \neg q$ (se p então q e não q) se repetem em $\neg p$ (não p).

Desenvolvimento:

р	q	$p \rightarrow q$	¬q	$(p \rightarrow q) \land \neg q$	¬р
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Conclusão: Como demonstrado via tabela verdade, na última linha, a verdade de $(p \rightarrow q) \land \neg q$ se repete em $\neg p$, logo, $p \rightarrow q$ $\land \neg q \models \neg p$ $(\neg p \notin Consequência Lógica de <math>(p \rightarrow q) \land \neg q)$.

c)
$$p \rightarrow (q \land \neg q) \equiv \neg p$$

Desenvolvimento: Vamos avaliar se $p \rightarrow (q \land \neg q) \equiv \neg p$, ou seja, se a tabela verdade de $p \rightarrow (q \land \neg q)$ (se p então q e não q) é idêntica à tabela verdade de $\neg p$ (não p).

р	q	¬q	q ^ ¬q	p → (q ∧ ¬q)	¬р
V	V	F	F	F	F
V	F	V	F	F	F
F	V	F	F	V	V
F	F	V	F	V	V

Conclusão: Como demonstrado via tabela verdade, as tabelas de $p \rightarrow (q \land \neg q) e \neg p$ são idênticas, logo, $p \rightarrow (q \land \neg q) \equiv \neg p (p \rightarrow (q \land \neg q) \text{ é equivalente a } \neg p).$

d)
$$p \rightarrow q \land r \models (p \rightarrow q) \rightarrow r$$

Introdução: Vamos avaliar se $p \rightarrow q \land r \models (p \rightarrow q) \rightarrow r$, ou seja, se as verdades de $p \rightarrow q \land r$ (se p então q e r) se repetem em $(p \rightarrow q) \rightarrow r$ (se p implicação q então r).

Desenvolvimento:

р	q	r	q ^ r	p → q ^ r	$p \rightarrow q$	$(p \rightarrow q) \rightarrow r$
V	V	V	V	V	V	V
V	V	F	F	F	V	F
V	F	V	F	F	F	V
V	F	F	F	F	F	V
F	V	V	V	F	V	V
F	V	F	F	F	V	F
F	F	V	F	F	V	V
F	F	F	F	F	V	F

Conclusão: Como demonstrado via tabela verdade, a verdade da primeira linha de $p \rightarrow q \land r$ se repete em $(p \rightarrow q) \rightarrow r$, logo. $p \rightarrow q \land r \models (p \rightarrow q) \rightarrow r \text{ (}(p \rightarrow q) \rightarrow r \text{ é Consequência Lógica de } p \rightarrow q \land r\text{)}.$

e)
$$p \vee (\neg q \wedge r) \models q \vee \neg r \rightarrow p$$

Introdução: Vamos avaliar se p $\lor (\neg q \land r) \models q \lor \neg r \Rightarrow p$, ou seja, se as verdades de p $\lor (\neg q \land r)$ (p ou não q e r) se repetem em q $\lor \neg r \Rightarrow p$ (se q ou não r então p).

Desenvolvimento:

р	q	r	¬q	¬q ^ r	p v (¬q ^ r)	¬r	q v ¬r	q v ¬r →
\	\	V			W		\ /	p V
V	V	V	Г	Г	V	Г	V	V
V	V	F	F	F	V	V	V	V
V	F	V	V	V	V	F	F	V
V	F	F	V	F	V	V	V	V
F	V	V	F	F	F	F	V	F
F	V	F	F	F	F	V	V	F
F	F	V	V	V	V	F	F	V
F	F	F	V	F	F	V	V	F

Conclusão: Como demonstrado via tabela verdade, as verdades de p $\lor (\neg q \land r)$ se repetem em p $\lor (\neg q \land r)$, logo, p $\lor (\neg q \land r) \models q \lor \neg r \rightarrow p (q \lor \neg r \rightarrow p \& Consequência Lógica de p <math>\lor (\neg q \land r)$).

$$f) \neg p \models p \land \neg q \Rightarrow p \land q$$

Introdução: Vamos avaliar se $\neg p \models p \land \neg q \Rightarrow p \land q$, ou seja, se as verdades de $\neg p$ (não p) se repetem em $p \land \neg q \Rightarrow p \land q$ (se p e não q então p e q).

Desenvolvimento:

р	q	¬q	p ^ ¬q	p ^ q	¬р	p ^ ¬q → p ^ q
V	V	F	F	V	F	V
V	F	V	V	F	F	F
F	V	F	F	F	V	V
F	F	V	F	F	V	V

Conclusão: Como demonstrado via tabela verdade, as verdades de $\neg p$ se repetem em $p \land \neg q \Rightarrow p \land q$, logo, $\neg p \models p \land \neg q \Rightarrow p \land q$ ($p \land \neg q \Rightarrow p \land q$ é Consequência Lógica de $\neg p$).

$$\mathbf{g}$$
) $\neg (\mathbf{p} \wedge \mathbf{q}) \equiv \neg \mathbf{p} \vee \neg \mathbf{q}$

Introdução: Vamos avaliar se $\neg (p \land q) \equiv \neg p \lor \neg q$, ou seja, se a tabela verdade de $\neg (p \land q)$ (não p e q) é idêntica à tabela verdade de $\neg p \lor \neg q$ (não p ou não q).

Desenvolvimento:

р	q	p ^ q	¬(p ^ q)	¬p	¬q	¬p v ¬q
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

Conclusão: Como demonstrado via tabela verdade, as tabelas verdade de $\neg(p \land q)$ e $\neg p$ v $\neg q$ são idênticas, logo, $\neg(p \land q) \equiv \neg p \lor \neg q$ ($\neg(p \land q)$ é equivalente a $\neg p \lor \neg q$).

$$h) (p \lor q) \land (\neg p \rightarrow \neg q) \equiv q$$

Introdução: Vamos avaliar se $(p \lor q) \land (\neg p \rightarrow \neg q) \equiv q$, ou seja, se a tabela verdade de $(p \lor q) \land (\neg p \rightarrow \neg q)$ (p ou q e se não p então não q) é idêntica à tabela verdade de q.

Desenvolvimento:

р	q	pvq	¬р	¬q	$\neg p \rightarrow \neg q$	$(p \ \lor \ q) \ \land \ (\neg p \to \neg q) \equiv q$
V	V	V	F	F	V	V
V	F	F	F	V	V	F
F	V	F	V	F	F	F
F	F	F	V	V	V	F

Conclusão: Como demonstrado via tabela verdade, as tabelas verdade de $(p \lor q) \land (\neg p \to \neg q)$ e q não são idênticas, logo, $(p \lor q) \land (\neg p \to \neg q) \not\equiv q ((p \lor q) \land (\neg p \to \neg q)$ não é equivalente a q).

i)
$$(p \land q) \lor r \equiv (p \rightarrow \neg q) \rightarrow r$$

Introdução: Vamos avaliar se $(p \land q) \lor r \equiv (p \rightarrow \neg q) \rightarrow r$, ou seja, se a tabela verdade de $(p \land q) \lor r$ (p e q ou r) é idêntica $(p \rightarrow \neg q) \rightarrow r$ (se p implicação não q então r).

Desenvolvimento:

р	q	r	¬q	p ^ q	(p ^ q) v r	$p \rightarrow \neg q$	$(p \to \neg q) \to r$
V	V	V	F	V	V	F	V
V	V	F	F	V	V	F	V
V	F	V	V	F	V	V	V
V	F	F	V	F	F	V	F
F	V	V	F	F	V	V	V
F	V	F	F	F	F	V	F
F	F	V	V	F	V	V	V
F	F	F	V	F	F	V	F

Conclusão: Como demonstrado via tabela verdade, as tabelas verdade de $(p \land q) \lor r e (p \rightarrow \neg q) \rightarrow r$ são idênticas, logo, $(p \land q) \lor r \equiv (p \rightarrow \neg q) \rightarrow r ((p \land q) \lor r é equivalente a <math>(p \rightarrow \neg q) \rightarrow r)$.

$$\mathbf{j}$$
) $(\mathbf{p} \vee \mathbf{q}) \wedge (\neg \mathbf{p} \rightarrow \neg \mathbf{q}) \equiv \mathbf{p}$

Introdução: Vamos avaliar se $(p \lor q) \land (\neg p \rightarrow \neg q) \equiv p$, ou seja, se a tabela verdade de $(p \lor q) \land (\neg p \rightarrow \neg q)$ (p ou q e se não p então não q) é idêntica à tabela verdade de p.

Desenvolvimento:

р	q	pvq	¬р	¬q	$\neg p \rightarrow \neg q$	$(p \lor q) \land (\neg p \to \neg q)$
V	V	V	F	F	V	V
V	F	V	F	V	V	V
F	V	V	V	F	F	F
F	F	F	V	V	V	F

Conclusão: Como demonstrado via tabela verdade, as tabelas verdade de p v q e $\neg p \rightarrow \neg q$ são idênticas, logo, (p v q) $\land (\neg p \rightarrow \neg q) \equiv p ((p \lor q) \land (\neg p \rightarrow \neg q) \text{ é equivalente a p}).$

$$k)\;((p\mathop{\rightarrow} q)\mathop{\rightarrow} q)\mathop{\rightarrow} q\;\equiv\;p\mathop{\rightarrow} q$$

Introdução: Vamos avaliar se $((p \rightarrow q) \rightarrow q) \rightarrow q \equiv p \rightarrow q$, ou seja, se as tabelas verdade de $(p \rightarrow q) \rightarrow q) \rightarrow q$ (se p implicação q implicação q então q) e p \rightarrow q (se p então q) são idênticas.

Desenvolvimento:

р	q	p → q	$((p \to q) \to q)$	$((p \to q) \to q) \to q$
V	V	V	V	V
V	F	F	V	F
F	V	V	V	V
F	F	V	F	V

Conclusão: Como demonstrado via tabela verdade, as tabelas de $((p \rightarrow q) \rightarrow q) \rightarrow q$ e $p \rightarrow q$ são idênticas, logo, $((p \rightarrow q) \rightarrow q) \rightarrow q \equiv p \rightarrow q$ $(((p \rightarrow q) \rightarrow q) \rightarrow q) \rightarrow q$ é equivalente a $p \rightarrow q$).

Leis Lógicas(Tabelas Verdade):

9- Leis de Associação

(a)
$$p \wedge q \wedge r \equiv (p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

р	q	r	p ^ q ^ r	(p ^ q) ^ r	p ^ (q ^ r)
V	V	V	V	V	V
V	V	F	F	F	F
V	F	V	F	F	F
V	F	F	F	F	F
F	V	V	F	F	F
F	V	F	F	F	F
F	F	V	F	F	F
F	F	F	F	F	F

(b)
$$p \lor q \lor r \equiv (p \lor q) \lor r \equiv p \lor (q \lor r)$$

р	q	r	pvqvr	(p v q) v r	p v (q v r)
V	V	V	V	V	V
V	V	F	V	V	V
V	F	V	V	V	V
V	F	F	V	V	V
F	V	V	V	V	V
F	V	F	V	V	V
F	F	V	V	V	V
F	F	F	F	F	F

10 – Leis Distributivas

(a)
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

р	q	r	p ^ q	p ^ r	qvr	p ^ (q v r)	(p ^ q) v (p ^ r)
V	V	V	V	V	V	V	V
V	V	F	V	F	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	F	F	F	F
F	V	V	F	F	V	F	F
F	V	F	F	F	V	F	F
F	F	V	F	F	V	F	F
F	F	F	F	F	F	F	F

(b) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

р	q	r	q ^ r	pvq	pvr	p v (q ^ r)	(p v q) ^ (p v r)
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	V	F	F	F
F	F	V	F	F	V	F	F
F	F	F	F	F	F	F	F

11 – Leis da Absorção

(a)
$$\mathbf{p} \wedge (\mathbf{p} \vee \mathbf{q}) \equiv \mathbf{p}$$

р	q	pvq	p ^ (p v q)
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

$$(b) p \lor (p \land q) \equiv p$$

р	q	p ^ q	p v (p ^ q)
V	V	V	V
V	F	F	V
F	V	F	F
F	F	F	F

1) Usando as Leis Lógicas, mostre que:

$$a) p \lor q \equiv \neg p \rightarrow q$$

$$p v q DNF \equiv \neg p \rightarrow q$$

$$\mathbf{b})\;\mathbf{p}\;\wedge\;\mathbf{q}\;\equiv\;\neg(\mathbf{q}\Rightarrow\neg\mathbf{p})$$

$$\neg (q \Rightarrow \neg p) \ DNF \equiv \ \neg (\neg q \ v \ \neg p)$$

$$\neg(\neg q \ v \ \neg p) \ D.M. \equiv q \land p$$

$$q \land p COM. \equiv p \land q$$

$$\mathbf{c}) \neg (\mathbf{p} \rightarrow \mathbf{q}) \equiv \mathbf{p} \wedge \neg \mathbf{q}$$

$$\neg (p \rightarrow q) DNF \equiv \neg (\neg p \lor q)$$

$$\neg(\neg p \ v \ q) \ D.M. \equiv \ p \ ^{\wedge} \neg q$$

$$\mathbf{d})\;(\mathbf{p}\rightarrow\mathbf{q})\;\wedge\;(\mathbf{p}\rightarrow\mathbf{r})\;\equiv\;\mathbf{p}\rightarrow(\mathbf{q}\;\wedge\;\mathbf{r})$$

$$p \rightarrow (q \land r) \; \text{DIST.} \equiv \; (p \rightarrow q) \land (p \rightarrow r)$$

e)
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow r) \land (q \rightarrow r) \text{ DIST.} \equiv (p \land q) \rightarrow r$$

$$(p \land q) \mathbin{\rightarrow} r \; \mathrm{D.M.} \equiv \; \neg (p \land q) \mathbin{\rightarrow} r$$

$$\neg p \ v \ \neg q \Rightarrow r \sim \sim \ \equiv \ \neg (\neg p \ v \ \neg q) \Rightarrow r$$

$$\neg(\neg p \ v \ \neg q) \mathbin{\rightarrow} r \ \equiv \ (p \ v \ q) \mathbin{\rightarrow} r$$

$$f)\;(p\rightarrow q)\;\vee\;(p\rightarrow r)\;\equiv\;p\rightarrow (q\;\vee\;r)$$

$$p \mathbin{\rightarrow} (q \ v \ r) \ DIST. \equiv \ (p \mathbin{\rightarrow} q) \ v \ (p \mathbin{\rightarrow} r)$$

$$\mathbf{g}) (\mathbf{p} \rightarrow \mathbf{r}) \lor (\mathbf{q} \rightarrow \mathbf{r}) \equiv (\mathbf{p} \land \mathbf{q}) \rightarrow \mathbf{r}$$

$$(p \land q) \rightarrow r DNF \equiv \neg (p \land q) \lor r$$

$$\neg (p \land q) \lor r D.M. \equiv (\neg p \lor \neg q) \lor r$$

$$(\neg p \ v \ \neg q) \ v \ r \ DIST. \equiv (\neg p \ v \ r) \ v \ (\neg q \ v \ r)$$

$$(\neg p \ v \ r) \ v \ (\neg q \ v \ r) \ DNF \equiv (p \rightarrow r) \ v \ (q \rightarrow r)$$

2) Use as leis Lógicas para trazer todas as proposições compostas à sua forma DNF e remover negações a esquerda de parênteses.

$$a) \, \neg (\, \neg p \, \wedge \, q)$$

$$\neg (\neg p \land q) D.M \equiv p \lor \neg q$$

$$\mathbf{b})\ (\mathbf{p}\ \land\ \neg\mathbf{q}) \Leftrightarrow (\neg\ \mathbf{p}\ \land\ \mathbf{q})$$

 $(p \land \neg q) \Leftrightarrow (\neg p \land q) \equiv (p \land \neg q \Rightarrow \neg p \land q) \land (\neg p \land q \Rightarrow p \land \neg q)$

 $(p \ \land \ \neg q \mathbin{\rightarrow} \neg \ p \ \land \ q) \ ^ (\neg \ p \ \land \ q \mathbin{\rightarrow} p \ \land \ \neg q) \ DNF \equiv (\neg p \ v \ q \ v \ \neg p \ ^ q) \ ^ (p \ v \ q \ v \ p \ ^ \neg q)$

 $(\neg p \ v \ q \ v \ \neg p \ ^{\wedge} \ q) \ ^{\wedge} \ (p \ v \ q \ v \ p \ ^{\wedge} \ \neg q) \ D.M. \equiv \ \neg ((\neg p \ v \ q \ v \ \neg p \ ^{\wedge} \ q) \ ^{\wedge} \ (p \ v \ q \ v \ p \ ^{\wedge} \ \neg q))$

 $\neg(\neg p \lor q \lor \neg p \land q) \lor \neg(p \lor q \lor p \land \neg q)$

 $(p \land \neg q \land p \lor q) \lor (p \land q \land \neg p \lor \neg q)$

c) $\neg(\neg p \lor q) \lor (r \rightarrow \neg s)$

 $\neg(\neg p \lor q) \lor (r \rightarrow \neg s) DNF \equiv \neg(\neg p \lor q) \lor (\neg r \lor \neg s)$

 $\neg(\neg p \lor q) \lor (\neg r \lor \neg s) D.M \equiv (p \land \neg q) \lor \neg(\neg r \lor \neg s)$

 $(p \land \neg q) \lor \neg (\neg r \lor \neg s) \equiv (p \land \neg q) \lor (r \land s)$

$\mathbf{d})\ (\neg\mathbf{p}\rightarrow\mathbf{q})\rightarrow(\mathbf{q}\rightarrow\neg\mathbf{r})$

 $(\neg p \rightarrow q) \rightarrow (q \rightarrow \neg r) \; DNF \equiv \; (p \; v \; q) \; v \; (q \rightarrow \neg r)$

 $(p \ v \ q) \ v \ (q \rightarrow \neg r) \ DNF \equiv (p \ v \ q) \ v \ (\neg q \ v \ \neg r)$

e) $\neg(\neg p \lor q) \lor (r \rightarrow \neg s)$

 $\neg(\neg p \lor q) \lor (r \Rightarrow \neg s) D.M \equiv (p \land \neg q) \lor (r \Rightarrow \neg s)$

 $(p \land \neg q) \lor (r \Rightarrow \neg s) \ DNF \equiv \ (p \land \neg q) \lor (\neg r \lor \neg s)$

$f) (\neg p \rightarrow q) \rightarrow (q \rightarrow \neg r)$

 $(\neg p \rightarrow q) \rightarrow (q \rightarrow \neg r) DNF \equiv (p \lor q) \lor (q \rightarrow \neg r)$

 $(p \lor q) \lor (q \Rightarrow \neg r) DNF \equiv (p \lor q) \lor (\neg q \lor \neg r)$

$g) p \rightarrow (q \wedge r)$

 $p \rightarrow (q \land r) DNF \equiv \neg p \lor (q \land r)$

$h) (p \lor q) \rightarrow r$

 $(p \lor q) \rightarrow r DNF \equiv \neg (p \lor q) \lor r$

 $\neg (p \ v \ q) \ v \ r \ \equiv \ (\neg p \ ^ \neg q) \ v \ r$

i)
$$\neg(\neg p \lor q) \lor (r \rightarrow \neg s)$$

$$\neg(\neg p \lor q) \lor (r \rightarrow \neg s) D.M. \equiv (p \land \neg q) \lor (r \rightarrow \neg s)$$

$$(p \land \neg q) \lor (r \rightarrow \neg s) DNF \equiv (p \land \neg q) \lor (\neg r \lor \neg s)$$

$$\mathbf{j}) \neg ((((\mathbf{a} \rightarrow \mathbf{b})) \rightarrow \mathbf{a}) \rightarrow \mathbf{a})$$

$$\neg((((a \rightarrow b)) \rightarrow a) \rightarrow a) \text{ D.M.} \equiv \neg(((a \rightarrow b)) \rightarrow a) \rightarrow \neg a$$

$$\neg(((a \rightarrow b)) \rightarrow a) \rightarrow \neg a \equiv \neg((a \rightarrow b)) \rightarrow \neg a \rightarrow \neg a$$

$$\neg ((a \rightarrow b)) \rightarrow \neg a \rightarrow \neg a \equiv \neg (a \rightarrow b) \rightarrow \neg a \rightarrow \neg a$$

$$\neg(a \rightarrow b) \rightarrow \neg a \rightarrow \neg a \text{ DNF} \equiv \neg(\neg a \lor b) \lor a \lor \neg a$$

$$\neg(\neg a \lor b) \lor a \lor \neg a \equiv (a \land \neg b) \lor (a \lor \neg a)$$

$$k) \neg (a \lor (a \rightarrow b)$$

$$\neg (a \lor (a \rightarrow b) D.M. \equiv \neg a \land \neg (a \rightarrow b)$$

$$\neg a \land \neg (a \rightarrow b) \equiv \neg a \land (\neg a \rightarrow \neg b)$$

$$\neg a \land (\neg a \rightarrow \neg b) DNF \equiv \neg a \land (a \lor \neg b)$$

$$\neg a \land (a \lor \neg b) DIST. \equiv (\neg a \land a) \lor (\neg a \land \neg b)$$