Rechnerarchitekturen für Deep-Learning Anwendungen (RADL)

Dustin Heither, Maximilian Achenbach and Robert Kagan

Application

Dustin Heither, Maximilian Achenbach and Robert Kagan

Application purpose: Classification

Dataset: MNIST

Kind of application: General purpose laptops and desktops

Targeted architecture

Hardware: CPU vs. GPU

– Device:

- Apple M3 Pro (ARMv8.6-A)
- Intel Core i7 1065G7 (x86-64-v4)
- Nvidia GeForce RTX 2080

Developer:

Dustin Heither

Robert Kagan

Maximilian Achenbach

Approach and responsibilities

- The final result:
 - Deep Learning Framework with CPU-GPU switch
 - Possibly: Combination of Multithreading and SIMD
 - Evaluation of:
 - Performance gains
 - Resource consumption
 - Performance per watt
 - PCIe latency
- Kind of optimization:
 - Multithreading
 - SIMD (SSE vs. AVX2 vs. AVX-512)Rober
 - CUDA tuning

Developer:

Dustin Heither

Robert Kagan

Maximilian Achenbach

