CE30 – Discussion 5

Analysis of Truss Structures

Textbook: 6.1 - 6.2

Çağlar Tamur

caglar.tamur@berkeley.edu

Spring 2024

Instructor: Shaofan Li

Announcements

HW5 Problems from the textbook:
6.14, 6.18, 6.41, 6.44, 6.48, 6.99, and 6.100

Truss Structures

- Straight members, pinned together at joints
 - Each member is a two-force member
 - No member is continuous through a joint
- Can be treated as 2D
- Loads are applied to the joints

Truss Structures

- Single forces at each member, no couple (moment)
- Each member will be in either tension or compression
- Connections are assumed to be pins
- Internal forces:

Simple Trusses

- Obtain simple trusses from rigid trusses:
 - Add two new members to existing joints
 - Connect them at a new joint

Rigid Truss

Total number of members (*m*) in a simple truss:

$$m=2n-3$$

n = Number of joints

Analysis of Trusses: *Method of Joints*

- 1. Find the support reactions by considering the entire truss FBD
- 2. Dismember the truss into pins and members
 - Draw the FBD of each pin; force exerted by a member to the pin is directed along that member
- 3. Use the force equilibrium at each pin to solve for member forces

Practice

Determine the force in each member, using the method of joints

Determine the force in each member, using the method of joints

Analysis of Trusses: *Method of Sections*

- Method of Joints solves for all the member forces, not very efficient!
- Method of Sections is usually preferred
 - 1. Pass a section through the member you want to solve
 - 2. Draw the FBD for the portion of the truss
 - 3. Use 3 equilibrium equations (2 force + 1 moment) to solve for member forces

Section *n*, cutting through the interested members

Treat the portion of the truss as a free body

Determine the force in member GJ of the truss shown. (*Hint:* Use section a-a.)

Determine the force in members DG and FH of the truss shown. (*Hint:* Use section a-a.)

Compound Trusses

Simple truss: m = 2n - 3

- Made up combining simple trusses
- At each pin we have 2 equilibrium equations, total (2n) equations available
- Total number of unknowns = m + r (member forces + reactions)

Completely constrained, statically determinate, rigid

$$m + r = 2n$$

Statically indeterminate

$$m + r > 2n$$

• Partially constrained: m + r < 2n

Classify each of the given structures as completely, partially, or improperly constrained; if completely constrained, further classify as determinate or indeterminate. All members can act both in tension and in compression.

