

PRISM WORLD

सामान्य विज्ञान

Chapter: 5

रिकाम्या जागा भरा. **Q.1**

इलेक्ट्रॉनवर प्रभार असतो.

Ans इलेक्ट्रॉनवर ऋण प्रभार असतो.

मॅग्नेशिअमचे इलेक्ट्रॉन संरूपण 2, 8, 2 आहे. यावरून असे समजते की मॅग्नेशिअमचे संयुजा कवच हे आहे. 2

Ans मॅग्नेशिअमचे इलेक्ट्रॉन संरूपण 2, 8, 2 आहे. यावरून असे समजते की मॅग्नेशिअमचे संयुजा कवच M हे आहे.

इलेक्ट्रॉन, प्रोटॉन, न्यूट्रॉन हे अणूमध्ये असणारेचे प्रकार आहेत.

Ans इलेक्ट्रॉन, प्रोटॉन, न्यूट्रॉन हे अणूमध्ये असणारे अवअणुकणांचे प्रकार आहेत.

H₂O ह्या रेणुसूत्रानुसार हायड्रोजनची संयुजा 1 आहे. त्यामुळे Fe₂O₃ ह्या सूत्रानुसार Fe ची संयुजाठरते.

Ans H₂O ह्या रेण्सूत्रानुसार हायड़ोजनची संयुजा 1 आहे. त्यामुळे Fe₂O₃ ह्या सूत्रानुसार Fe ची संयुजा 3 ठरते.

..... हे इलेक्ट्रॉन कवच अणुकेंद्रकापासून सर्वात जवळचे आहे.

Ans K हे इलेक्ट्रॉन कवच अणुकेंद्रकापासून सर्वात जवळचे आहे.

जोडी जुळवा. Q.2

1	

अ	ब	
i. प्रोटॉन	अ. ऋणप्रभारित	lours of your Dreams
ii. इलेक्ट्रॉन	आ. उदासीन	gean breams
iii. न्यूट्रॉन	इ. धनप्रभारित	

Ans

i. प्रोटॉन	धनप्रभारित
ii. इलेक्ट्रॉन	ऋणप्रभारित
iii. न्यूट्रॉन	उदासीन

शास्त्रीय कारणे लिहा. Q.3

अणुवस्तुमानांक पूर्णांकात असते.

Ans i. मूलद्रव्याच्या अणूमध्ये प्रोटॉन व न्यूट्ॉन हे अवअणुकण अणुकेंद्रकामध्ये असतात.

- ii. अणूमधील प्रोटॉन व न्यूटॉन यांच्या एकत्रित संख्येस त्या मूलद्रव्याचा अणुवस्तुमानांक म्हणतात.
- प्रोटॉनची संख्या व न्यूट्रॉनची संख्या नेहमी पूर्ण संख्याच असते, कधीही अपूर्ण नसते. म्हणून अणुवस्तुमानांक नेहमी पूर्णांकात असते.
- परिभ्रमण करणारे प्रभारित इलेक्ट्रॉन असूनही सामान्यपणे अणू स्थायी असतो.

Ans बोरच्या अणुप्रारूपानुसार, अणूच्या केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन केंद्रकापासून विशिष्ट अंतरावर असणाऱ्या समकेंद्री वर्त्वाकार कक्षांमध्ये असतात.

- ii. या कवचांना विशिष्ट ऊर्जा असते.
- iii.विशिष्ट कक्षेत असताना इलेक्ट्रॉनची ऊर्जा स्थिर असते.
- iv.इलेक्ट्रॉन एका कक्षेतून दुसऱ्या कक्षेत जाताना त्यांच्यातील फरकाइतकी ऊर्जा शोषण करतो किंवा उत्सर्जित करतो.
- v. त्यामुळे परिभ्रमण करणारे प्रभारित इलेक्ट्रॉन असूनही ते आपली कक्षा सोडू शकत नाहीत.म्हणून सामान्यपणे अणू स्थायी असतो.
- अणू विद्युतदृष्ट्या उदासीन असतो. 3

- Ans अणूमध्ये प्रोटॉन व न्यूट्रॉन हे अवअणुकण अणुकेंद्रकामध्ये असतात; आणि इलेक्ट्रॉन अणूकेंद्रकाबाहेर केंद्रकाभोवती असलेल्या i. वेगवेगळ्या कक्षांमध्ये परिभ्रमण करतात.
 - ii. प्रोटॉन धनप्रभारित, इलेक्ट्ॉन ऋणप्रभारित तर न्यूट्ॉन उदासीन अवअणुकण आहेत.
 - iii.अणूमध्ये प्रोटॉनची संख्या इलेक्ट्रॉनच्या संख्येइतकीच असते.
 - त्यामुळे सर्व इलेक्ट्रॉनवरील एकत्रित ऋणप्रभार हा केंद्रकातील प्रोटॉनवरील धनप्रभाराएवढा होतो. त्यामुळे विद्युतप्रभारांचे iv. संतुलन होते. म्हणून अणू विद्युतदृष्ट्या उदासीन असतो.
- अणूचे सगळे वस्तुमान केंद्रकात एकवटलेले असते.
- Ans अणूमध्ये प्रोटॉन व न्यूट्रॉन हे अवअणुकण अणुकेंद्रकामध्ये असतात; आणि इलेक्ट्रॉन अणूकेंद्रकाबाहेर केंद्रकाभोवती असलेल्या i. वेगवेगळ्या कक्षांमध्ये परिभ्रमण करतात.
 - एका प्रोटॉनचे वस्तुमान सुमारे 1u असते. एका न्यूट्रॉनचे वस्तुमान पण सुमारे 1u असते. एका इलेक्ट्रॉनचे वस्तुमान प्रोटॉनच्या ^{i.} वस्तुमानापेक्षा **1800** पटीने कमी असते. म्हणजे इलेक्ट्रॉनचे वस्तुमान प्रोटॉन व न्यूट्रॉनच्या वस्तुमानापेक्षा नगण्य असते.
 - iii. म्हणजे वस्तुमान असलेले अवअणुकण केंद्रकामध्येच असतात. म्हणून अणुचे सगळे वस्तुमान केंद्रकात एकवटलेले असते.

Q.4 पुढील प्रश्नांची उत्तरे लिहा.

1 व्याख्या लिहा. अणू

Ans अणूः सर्व भौतिक व रासायनिक बदलांमध्ये आपली रासायनिक ओळख कायम राखणाऱ्या मूलद्रव्याच्या लहानात लहान कणास अणू म्हणतात.

व्याख्या लिहा.
 अणुभट्टीतील मंदक

Ans अणुभट्टीतील मंदक: अणुभट्टीमध्ये शृंखला अभिक्रिया नियंत्रित करण्यासाठी न्यूट्रॉन्सचा वेग कमी (मंद) करण्याची आवश्यकता असते. न्यूट्रॉन्सचा वेग कमी करण्यासाठी ज्या गोष्टींचा वापर केला जातो, त्यांना अणुभट्टीतील मंदक / संचलक म्हणतात. उदा. ग्रॅफाईट, जड पाणी

3 दिलेल्या माहितीवरून शोधून काढा.

माहिती शोधा ²³₁₁Naन्यूट्रॉन संख्या ¹²₆C अणुवस्तुमानांक ³⁷₁₇CI प्रोटॉन संख्या

Ans माहिती स्पष्टीकरण शोधा

23₁₁NaZ=11, A=23 न्यूट्रॉन संख्या = A - Z
= 23 - 11 = 12

12₆C Z=6, A=12 अणुवस्तुमानांक = A = 12

37₁₇Cl Z=17, A=37प्रोटॉन संख्या = Z = 17

4 व्याख्या लिहा. अणुवस्तुमानांक:

Ans अणुवस्तुमानांक: अणूमधील प्रोटॉन व न्यूट्रॉन यांच्या एकत्रित संख्येस त्या मूलद्रव्याचा अणुवस्तुमानांक म्हणतात. अणुवस्तुमानांक 'A' ह्या संज्ञेने दर्शवितात.

व्याख्या लिहा.समस्थानिके

Ans समस्थानिके: एकाच मूलद्रव्याच्या अणुअंक समान परंतु अणुवस्तुमानांक विभिन्न असलेल्या अणूंना समस्थानिके म्हणतात.

6 व्याख्या लिहा. अण्अंक:

Ans अणुअंक: अणूच्या केंद्रकातील प्रोटॉनची संख्या किंवा अणुकेंद्रकाबाहेरील इलेक्ट्रॉनची संख्या यास त्या मूलद्रव्याचा अणूअंक म्हणतात. अणूअंक 'Z' ह्या संज्ञेने दर्शवतात.

7 अणुवस्तुमानांक म्हणजे काय? कार्बनचा अणुअंक 6 तर अणुवस्तुमानांक 12 आहे. हे कसे ते स्पष्ट करा.

Ans अणूमधील प्रोटॉन व न्यूट्रॉन यांच्या एकत्रित संख्येस त्या मूलद्रव्याचा अणुवस्तुमानांक म्हणतात. अणुवस्तुमानांक 'A' ह्या संज्ञेने ^{i.} दर्शवितात.

अणूच्या केंद्रकातील प्रोटॉनची संख्या किंवा अणुकेंद्रकाबाहेरील इलेक्ट्रॉनची संख्या यास त्या मूलद्रव्याचा अणूअंक म्हणतात. ii. अणूअंक '**z**' ह्या संज्ञेने दर्शवतात. 16

iii.अणुसंज्ञा, अणुअंक व अणुवस्तुमानांक हे एकत्रितपणे चिन्हांकित संकेतरूपात ^Azसंज्ञा असे दर्शवितात;

iv.कार्बनचा अणु चिन्हांकित संकेतरूपात ¹²6**C** असा दर्शवितात.

म्हणजे कार्बनसाठी Z=6, A=12. Z = अणुअंक = 6, A = अणुवस्तुमानांक = 12. म्हणून कार्बनचा अणुअंक 6 तर v. अणुवस्तुमानांक 12 आहे.

8 थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांत कोणता फरक आहे?

Ans i. थॉमसनच्या प्लम पुडिंग प्रारूपानुसार, अणूमध्ये सर्वत्र धनप्रभार पसरलेला असतो व त्यामध्ये ऋणप्रभारित इलेक्ट्रॉन जडवलेले असतात.

रूदरफोर्डच्या केंद्रकीय प्रारूपानुसार, अणूच्या केंद्रभागी धनप्रभारित केंद्रक असते व केंद्रकाभोवती ऋणप्रभारित इलेक्ट्रॉन ^{ii.} परिभ्रमण करीत असतात.

iii.थॉमसनच्या प्रारूपामध्ये केंद्रक नाही. रूदरफोर्डच्या प्रारूपामध्ये अणूच्या केंद्रभागी केंद्रक आहे.

iv. थॉमसनच्या प्रारूपामध्ये धनप्रभार सर्व अणुमध्ये आहे. तर रूदरफोर्डच्या प्रारूपामध्ये धनप्रभार केंद्रकामध्येच आहे.

Q.5 उत्तरे स्पष्टीकरणासह लिहिणे.

1 नामनिर्देशित सुबक आकृती काढा.

रूदरफोर्डचा विकीरण प्रयोग.

नामनिर्देशित सुबक आकृती काढा.

मॅग्नेशिअमच्या (अणुअंक 12) इलेक्ट्रॉन संरूपणाचे रेखा<mark>टन.</mark>

Colours of your Dreams

उ रूदरफोर्डचा विकीरण प्रयोग सुबक व नामनिर्देशित आकृतीच्या सहाय्याने स्पष्ट करा.

Ans रूदरफोर्ड यांनी अणूच्या अंतरंगाचा वेध घेण्यासाठी विकीरण प्रयोग केला. तो पुढीलप्रमाणे;

सोन्याचा अतिशय पातळ पत्रा (जाडी:10^{—4}mm) घेऊन त्यावर किरणोत्सारी मूलद्रव्यातून उत्सर्जित होणाऱ्या धनप्रभारित α -ं कणांचा मारा केला.

ii. सोन्याच्या पत्र्या भोवती प्रतिदीप्तीमान पडदा लावून कणांच्या मार्गांचा वेध घेतला.

अशी अपेक्षा होती की, जर अणूंमध्ये धनप्रभारित वस्तुमानाचे वितरण सर्वत्र एकसमान असेल तर धन प्रभारित a - कणांचे iii-पत्र्यावरून परावर्तन होईल.

iv. पण अनपेक्षितपणे पुढील निरीक्षण आढळले;

v. अणूच्या संयुजेचा संबंध अणूमधील संयुजा इलेक्ट्रॉनच्या संख्येशी असतो.

vi.अ. बहसंख्य α -कण पत्र्यातून आरपार सरळ गेले.

- काही थोड्या α -कणांचे मूळ मार्गापासून लहान कोनामधून विचलन झाले.
- आणखी थोड्या α कणांचे मोठ्या कोनातून विचलन झाले.
- क. 20000 पैकी एक α कण मूळ मार्गाच्या उलट दिशेने उसळला.

21

रूदरफोर्डचा विकीरण प्रयोग

- 4 अवअणुकण म्हणजे काय? विद्युतप्रभार, वस्तुमान व स्थान ह्या संदर्भात तीन अवअणुकणांची थोडक्यात माहिती लिहा.
- Ans i. अणूच्या अंतरंगात जे कण असतात, त्यांना अवअणुकण म्हणतात.
 - ii.अवअणुकण तीन प्रकारचे आहेत- प्रोटॉन, इलेक्ट्रॉन, न्यूट्रॉन

अवअणुकण	विद्युतप्रभार	वस्तुमान	स्थान
प्रोटॉन, p	+1e = 1.6 x 10 3 3	1 डाल्टन = 1 u = 1.66 x 10 ⁻²⁷ g हायड्रोजनच्या एका अणूच्या वजनाइतके	अणुकेंद्रकात
न्यूट्रॉन, n		1 डाल्टन = 1 u = 1.66 x 10 ⁻²⁷ g एका प्रोटॉनच्या वजनाइतके	अणुकेंद्रकात
इलेक्ट्रॉन, e ⁻	ऋणप्रभार, -1e = -1.6 x 10-19 कूलॉम	हायड्रोजन अणूच्या वस्तूमानापेक्षा 1800 पटीने कमी, नगण्य	अणुकेंद्रकाबाहेरील भागात केंद्रकाभोवती वेगवेगळ्या कक्षांमध्ये परिभ्रमण करतात.

- 5 मूलद्रव्यांची संयुजा म्हणजे काय? संयुजा इलेक्ट्रॉन संख्या व संयुजा यांच्यातील संबंध काय?
- Ans i. मूलद्रव्याच्या एका अणूने तयार केलेल्या रासायनिक बंधांची संख्या म्हणजे त्या मूलद्रव्याची संयुजा होय.
 - ii. अणू आपल्या बाह्यतम कवचातील इलेक्ट्रॉन वापरून रासायनिक बंध तयार करतो.
 - iii.बाह्यतम कवचाच्या इलेक्ट्रॉन संरूपणावरून अणूची संयुजा ठरते.
 - iv. म्हणून बाह्यतम कवचातील इलेक्ट्रॉनना संयुजा इलेक्ट्रॉन म्हणतात. तसेच बाह्यतम कवचाला संयुजा कवच म्हणतात.
 - v. अणूच्या संयुजेचा संबंध अणूमधील संयुजा इलेक्ट्रॉनच्या संख्येशी असतो.
 - vi.अ.संयुजा इलेक्ट्रॉनची संख्या आठ असते म्हणजे इलेक्ट्रॉन अष्टक पूर्ण असते, तेव्हा त्या मूलद्रव्याची संयुजा शून्य असते.
 - ब. संयुजा इलेक्ट्रॉनची संख्या चार किंवा त्यापेक्षा कमी असते तेव्हा संयुजा इलेक्ट्रॉनची संख्या त्या मूलद्रव्याची संयुजा असते.
 - संयुजा इलेक्ट्रॉनची संख्या चारहून अधिक असते तेव्हा अष्टक पूर्ण होण्यासाठी जितके इलेक्ट्रॉन कमी असतात. ती संख्या क म्हणजे त्या मूलद्रव्याची संयुजा असते.
- 6 नामनिर्देशित सुबक आकृती काढा.
 - ॲरगॉनच्या (अणुअंक 18) इलेक्ट्रॉन संरूपणाचे रेखाट<mark>न.</mark>

Colours of your Dreams

नामनिर्देशित सुबक आकृती काढा.
 थॉमसनचे अणुप्रारूप

Ans

