Estudo de desempenho computacional para computação paralela

O estudo será dividido em 2 partes: a primeira com dados hipotéticos e a segunda com dados medidos no computador Santos Dumont.

Desempenho hipotético

O estudo visa aprofundar a compreensão sobre o paralelismo e seus conceitos, focado no processo operacional das máquinas baseados nas métricas de desempenho como eficiência e speedup. Os tempos que surgem neste estudo hipotético são tempos de resposta, que é a duração da tarefa realizada pelo processador. Ao explorar cenários hipotéticos, este material tem o objetivo de aprimorar os conhecimentos relacionados ao desempenho do processamento. A análise crítica de métricas fictícias proporciona uma compreensão mais profunda de conceitos da computação paralela e como o paralelismo influencia no funcionamento do sistema.

Ilustração para o tamanhos dos modelos dos casos A e B

Estudo 1: Hipótese de uma máquina idealizada perfeita

Estudo 2: Hipótese de uma máquina idealizada realista

Definição de conceitos:

Desempenho - Capacidade de reduzir o tempo de resolução do problema à medida que os recursos computacionais aumentam.

Eficiência - Medida do grau de aproveitamento dos recursos computacionais. Mede o rácio entre o grau de desempenho e os recursos computacionais disponíveis.

$$Ef = Sp/n$$

Speedup - Aceleração - Medida do grau de desempenho. Mede o rácio entre o tempo de execução sequencial e o tempo de execução em paralelo.

$$Sp = Ts/Tp;$$

Tempo de resposta - Tempo de resposta (tr) ou tempo de execução (te) corresponde ao tempo entre o começo e o fim de um evento. Tempo de duração de uma tarefa.

1) No caso de máquina ideal perfeita

Para o caso da máquina ideal perfeita os speedups e as eficiências serão máximos.

caso A/M1				
np	tempos	Velocidade	speedup=aceleração	eficiência
1	T1A	1,00 QGf	1	100%
2	T1A/2,0	2,00 QGf	2	100%
4	T1A/4,0	4,00 QGf	4	100%

caso B/M1				
np	tempos	Velocidade	speedup=aceleração	eficiência
1	4,00 T1A	1.00 QGf	1	100%
2	2,00 T1A	2.00 QGf	2	100%
4	1,00 T1A	4.00 QGf	4	100%

No caso de máquina ideal realista

Para o caso da máquina ideal realista faremos a hipótese de eficiências menores que as máximas.

caso A/M2				
np	tempos	Velocidade	speedup=aceleração	eficiência
1	T1A	1,00 QGf	1.0	100%
2	T1A/1,6	1,60 QGf	1,6	80%
4	T1A/2,8	2,00 8QGf	2,8	70%

T1B=4T1A;

caso B/M2				
np	tempos	Velocidade	speedup=aceleração	eficiência
1	4,00 T1A	1,00 QGf	1.0	100%
2	2,00 T1A/1.8	1,80 QGf'	1,8	90%
4	4,00 T1A/1,6	1,60 QGf	1,6	80%

------Dados reais obtidos no computador Santos Dumont------

O intuito das tabelas é promover uma visualização dos resultados obtidos com a execução paralela dos programas com os **núcleos(n)**, **na primeira coluna**: 1(sequencial), 2, 4, 8, 16 e 24. Com estes núcleos, conseguimos visualizar, na execução do programa, as diferenças nas métricas que compõem a tabela como na segunda coluna o **Tempo 1**, que tende a diminuir, na terceira coluna o **mínimo**(menor valor quando se tem mais de uma coluna de tempos, ou seja, mais de uma execução para cada núcleo), e na quarta e quinta coluna o **speedup** e a **eficiência**.

Unidades:

Tempo 1 - Segundos Speedup - sem unidade Eficiência - Porcentagem

MPI Class A

n	tempo 1	mínimo	speed up	eficiência	speed up ideal
1	41,79	41,8	1,0	1,00	1
2	22,12	22,1	1,9	0,94	2
4	12,07	12,1	3,5	0,87	4
8	10,49	10,5	4,0	0,50	8
16	10,53	10,5	4,0	0,25	16
24	10,55	10,55	4,0	0,17	24

MPI Class B

n	tempo 1	mínimo	speed up	eficiência	speed up ideal
1	172,22	172,2	1,0	1,00	1
2	90,13	90,1	1,9	0,96	2
4	48,51	48,5	3,6	0,89	4
8	25,23	25,2	6,8	0,85	8
16	13,26	13,3	13,0	0,81	16
24	12,34	12,34	14,0	0,58	24

Estudo dos desempenhos reais obtidos com o repositório didático MiniWeather

Após os estudos com máquinas hipotéticas e os programas reais no sdumont, este próximo estudo visa analisar e aprofundar a compreensão sobre o paralelismo focado na **aplicação miniWeather** com o repositório didático para a pesquisa.

O código miniWeather tem como finalidade reproduzir a dinâmica básica observada na atmosfera.

Resultados obtidos:

Os tempos que surgem neste gráfico são tempos de resposta em uma máquina comum de 4 processadores...

Os tempos que surgem neste segundo gráfico do estudo são os tempos de duração da tarefa realizada pelo processador no Sdumont. Podemos observar a diferença dos tempos do primeiro gráfico onde rodamos a aplicação fora do sdumont e sem o scalasca...