Esercizi

ESERCIZIO 1

Data la seguente reazione (da bilanciare con il metodo empirico) e che procede in modo completo:

$$FeS_{(s)} + HCl_{(g)} \rightarrow FeCl_{2(s)} + H_2S_{(g)}$$

Calcolare la quantità in grammi di cloruro ferroso, FeCl₂, che si forma facendo reagire 100.0 g di solfuro ferroso, FeS, con 80.0 g di cloruro di idrogeno, HCl. Determinare inoltre quale dei due reagenti è in eccesso e la quantità in grammi di questo che rimane a fine reazione.

ESERCIZIO 2

Sia data la seguente reazione già bilanciata:

$$4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2 \text{O}_{(g)}$$

Se si fanno reagire 1.54 g di ammoniaca (NH₃) con 4.20 g di ossigeno (O₂), quale volume di monossido di azoto gassoso (NO, P = 1.5 atm, T = 25°C) si forma? Si consideri la reazione completa.

Test

(Punteggio per ogni test: risposta corretta = + 1 pt; risposta sbagliata = 0 pt; risposta non data = 0 pt)
(BARRARE UNA SOLA CASELLA O PER DOMANDA)

1	 Il numero atomico rappresenta: a) il numero di protoni in un nucleo atomico b) il numero di nucleoni in un nucleo atomico c) il numero di neutroni in un nucleo atomico d) il numero totale di protoni ed elettroni in un atomo 							
2	Il deuterio (A = 2, Z = 1) ed il trizio (A = 3, Z = 1) sono due:							
	a) isotopi dell'ossigc) gas nobili	,	b) isotopi dell'idrogenod) isobari					
3	La massa molecolare di SO3 è:							
	a) 80.06 <i>u.m.a.</i>	o b) 80.06 g/mol	Q c) 80.06 g	O d) 32 g				
4	È corretto affermare che in una reazione di ossidoriduzione, la specie che:							
	 si ossida aumenta il si riduce diminuisce 		2) si ossida diminuisce il suo <i>n.o</i>4) si riduce aumenta il suo <i>n.o</i>.					
	Q a) 1, 3	O b) 1, 4	Q c) 2, 3	Q d) 2, 4				

5	Secondo la teoria	di Cahuadingan	una cunaufi	ioio di ogni	nuobabilità india	a una sunarfiaia.
3	Secondo la teoria	ai Schrouinger,	una superfic	cie ai equi	<i>provavuua</i> mak	a una superncie:

- **Q** a) nella quale è costante la distanza dell'elettrone dal nucleo
- **O** b) a potenziale costante
- **Q** c) sulla quale è $|\psi|^2$ = costante
- Q d) nella quale vi è la certezza di trovare l'elettrone

Indicare quali delle seguenti configurazioni elettroniche violano il Principio di Esclusione di 6 Pauli:

1)
$$[He] \frac{\uparrow \uparrow}{2s} \frac{\uparrow}{2p_x} \frac{\uparrow}{2p_y} \frac{\uparrow}{2p_z}$$
 2) $[He] \frac{\uparrow \downarrow}{2s} \frac{\uparrow}{2p_x} \frac{\uparrow}{2p_y} \frac{\downarrow}{2p_z}$ 3) $[Ne] \frac{\uparrow \downarrow}{3s} \frac{\uparrow \downarrow}{3p_x} \frac{\uparrow \uparrow}{3p_y} \frac{\uparrow}{3p_z}$

2) [He]
$$\frac{\uparrow\downarrow}{2s} \frac{\uparrow}{2p_x} \frac{\uparrow}{2p_y} \frac{\downarrow}{2p_z}$$

3) [Ne]
$$\frac{\uparrow\downarrow}{3s} \frac{\uparrow\downarrow}{3p_x} \frac{\uparrow\uparrow}{3p_y} \frac{\uparrow}{3p_z}$$

- **a** a) 1, 3 **b** 1, 2 **c** 2, 3 **d** tutte

7 Quanto maggiore è la sovrapposizione tra due orbitali di due atomi A e B:

- a) tanto maggiore è la distanza di legame e tanto minore è la forza di legame
- O b)tanto maggiore è la distanza di legame e tanto maggiore è la forza di legame
- O c) tanto minore è la distanza di legame e tanto minore è la forza di legame
- O d)tanto minore è la distanza di legame e tanto maggiore è la forza di legame

8 L'energia libera di Gibbs (G) è definita come:

$$\mathbf{O} \quad \mathbf{a}) \quad G = H + PV$$

$$\bigcirc$$
 b) $G = U - TS$

$$\bigcirc$$
 c) $G = H - TS$

Q d)
$$G = H + TS$$