PART 1

PART 2

Database_Manager (<u>username:</u> string, password: string)

Users (<u>username</u>: string, name: string, surname: string, email: string, password: string, department_id: string)

Students (<u>username</u>: string, student_id: integer, added_courses: list)

Instructors (<u>username</u>: string, title: string)

Grades (grade: real, student id: integer, course id: string)

Departments (<u>department_id</u>: string, department_name: string)

Courses (<u>course id:</u> string, name: string, department_id: string, course_code: integer, prerequisite_id: string, quota: integer, classroom_id: string, credits: integer, time_slot: integer, instructor_username: string)

Classrooms (classroom_id: string)

Physical_Locations (<u>classroom id</u>: string, classroom_capacity: integer, campus: string)

PART 3

Database_Manager (username: string, password: string) (U, P)

 $U \rightarrow UP$ (U is the primary key)

This relation is in BCNF form as each left-hand side of FDs contains a key. (U)

User (<u>username</u>: string, name: string, surname: string, email: string, password: string, department_id: string) (U, N, S, E, P, D)

 $U \rightarrow UNSEPD$ (U is the primary key)

 $U \rightarrow D$ (Each user is associated with exactly one department)

This relation is in BCNF form as each left-hand side of FDs contains a key. (U)

Students (username: string, student_id: integer, added_courses: list) (U, S, A)

 $U \rightarrow USA$ (U is the primary key)

 $S \rightarrow USA$ (Student ID is unique for each student \rightarrow S is a key)

This relation is in BCNF form as each left-hand side of FDs contains a key. (U, S)

Instructors (username: string, title: string) (U, T)

 $U \rightarrow UT$ (U is the primary key)

This relation is in BCNF form as each left-hand side of FDs contains a key. (U)

Grades (grade: real, student id: integer, course id: string) (G, S, C)

 $SC \rightarrow GSC$ (SC is the primary key)

This relation is in BCNF form as each left-hand side of FDs contains a key. (SC)

Departments (department id: string, department_name: string) (I, N)

 $I \rightarrow IN$ (I is the primary key)

 $N \rightarrow IN$ (Department name is unique for each department $\rightarrow N$ is a key)

This relation is in BCNF form as each left-hand side of FDs contains a key. (U, N)

Courses(<u>course_id</u>: string, name: string, department_id: string, course_code: integer, prerequisite_id: string, quota: integer, classroom_id: string, credits: integer, time_slot: integer, instructor_username: string) (I, N, D, C, P, Q, A, K, T, U)

 $I \rightarrow INDCPQAKTU$ (I is the primary key)

 $N \rightarrow INDCPQAKTU$ (Course name is unique for each course $\rightarrow N$ is a key)

 $C \rightarrow INDCPQAKTU$ (Course code is unique for each course $\rightarrow C$ is a key)

 $AT \rightarrow INDCPQAKTU$ (Classroom and time slot are decisive for each course \rightarrow AT is a key)

 $U \rightarrow D$ (Each instructor has a unique department)

This relation is not in BCNF form as there is an FD that does not contain a key on its left-hand side. (U \rightarrow D) This relation is not in 3NF form either as right hand side of an FD is not part of some key. (U \rightarrow D)

We decided not to decompose this relation because if we did, each time we wanted to reach D from U we would need to join courses, instructors and users table. This would be quite inefficient for computational reasons.

HATİCE ERK - 2018400090 FURKAN KESKİN - 2018400150

Classrooms(classroom_id: string) (I)

 $I \rightarrow I$

This relation is in BCNF form as each left-hand side of FDs contains a key. (I)

Physical_Locations(<u>classroom_id</u>: string, classroom_capacity: integer, campus: string) (I, N,C)

 $I \rightarrow INC$

This relation is in BCNF form as each left-hand side of FDs contains a key. (I)