Project 1: 4G Mobile Core Capacity Analysis

Team No. 4

Tadeo Aguilar Carlos Palomino Federico López

Brief Introduction

Project Proposal

Our project is to uncover patterns in the Capacity KPIs of a 4G Core Network.
 We'll examine relationships between the KPIs; network capacity use, days and times of day when peaks are presented; capacity forecasts; and the related questions

Finding Data

 We are going to use real data from a 4G mobile operator in Mexico; the data consists of 6 Excel files containing capacity measured data during one week for 2 elements of the Core Network: MME and SAEGW

4G Network Architecture

- It is composed of Access Network (E-UTRAN), Core Network (Evolved Packet Core) and Packet Data Network (typically the Internet)
- In this project we are analyzing the Core Network: MME and SAEGW (combined SGW + PGW)

Excel files description

- mme.xlsx: containing KPIs measurements for MME, there is a total of 6
 MMEs
- mme_cpu_mem.xlsx : containing CPU and memory KPIs measurements for MMEs
- 3. saegw.xlsx: containing KPIs measurements for SAEGW, there are 11 SAEGWs in total
- saegw_bearers.xlsx: containing bearers measurements for SAEGW; it is separated as it is measured in a different frequency basis
- 5. saegw_cpu_mem.xlsx: containing CPU and memory KPIs meas. for SAEGW
- 6. max_capacity.xlsx: containing maximum capacity information for each element

KPIs description

The KPIs that we will analyze are the following:

MME:

- ATTACHED UE: Attached user equipments
- BEARERS: Quantity of data channels
- AVECPUUSAGE: Average CPU utilization in the current interval. Unit: % Range: 0-100
- PEAKCPUUSAGE: Peak CPU utilization in the current interval. Unit: % Range: 0-100

SAEGW:

- THROUGHPUT: Data rate measured in gigabits per second
- BEARERS: Quantity of data channels
- MAXCPUUTILIZATION: Max CPU utilization in the current interval. Unit: % Range: 0-100

Methodology

Business Understanding

Meeting with data owner to understand the files and Kpis

Data questions

- -Descriptive
- -Diagnostic
- -Predictive

Data Cleansing

-Outlier identifications -Empty and Nan treatment

Data Preparation

-DF Manipulation -Regression tests

-Api integration

Data Analysis

-Data Visualizations

-Presentation

Are there any outlier in KPI.s

No

Is there a relationship in Attached UE and Average CPU Usage

There is no visible relationship in this variables

Is there a relationship in Attached UE and Average CPU Usage

There is no visible relationship in this variables

Is there a relationship in Attached UE and Bearers and other KPIs

There is a visible relationship in attached UE and EPS Bearers

Regression test

Can we predict the Bearers if we know the Attached UE.

Yes. What if these trends continues?

Can we identify in a Map the cities with the highest demand.

	мме	city	lat	Ing	Attached UE				EPS Bearers	
					mean	sum	max	min	mean	sum
0	MME- 140000- MME01- TULTITLAN	tultitlan	19.639212	-99.166865	200128.092262	33621519.50	220623.75	176803.25	208229.254464	34982514.75
1	MME- 140000- MME02- TULTITLAN	tultitlan	19.639212	-99.166865	19927.809524	3347872.00	47176.00	3601.25	20773.763393	3489992.25
2	MME- 180000- MME01- APODACA	apodaca	25.776468	-100.185874	45980.971726	7724803.25	50866.00	40431.00	48048.677083	8072177.75
3	MME- 180000- MME02- APODACA	apodaca	25.776468	-100.185874	4270.041667	717367.00	9186.00	956.75	4551.828869	764707.25
4	MME- 250000- MME01- HERMOSILLO	hermosillo	29.072967	-110.955919	945.319940	158813.75	1137.25	678.50	1199.958333	201593.00
5	MME- 300000- MME01- MERIDA	merida	20.967370	-89.592586	1928.985119	324069.50	2375.75	1467.25	1989.684524	334267.00
c	uun u 22 nolur	mno								

What is the day with highest demand by MME

•	мме	DATEDAY	Attached UE
0	MME-140000-MME01-TULTITLAN	2019-12-08	220623.75
1	MME-140000-MME02-TULTITLAN	2019-12-08	47176.00
2	MME-180000-MME01-APODACA	2019-12-08	50866.00
3	MME-180000-MME02-APODACA	2019-12-08	9186.00
4	MME-250000-MME01-HERMOSILLO	2019-12-08	1137.25
5	MME-300000-MME01-MERIDA	2019-12-08	2375.75

What is the utilization percentage by MME?

	мме	DATEDAY	capperc
0	MME-140000-MME01-TULTITLAN	2019-12-02	9.01%
1	MME-140000-MME01-TULTITLAN	2019-12-03	9.18%
2	MME-140000-MME01-TULTITLAN	2019-12-04	9.23%
3	MME-140000-MME01-TULTITLAN	2019-12-05	9.27%
4	MME-140000-MME01-TULTITLAN	2019-12-06	8.89%
5	MME-140000-MME01-TULTITLAN	2019-12-07	7.66%
6	MME-140000-MME01-TULTITLAN	2019-12-08	7.70%

What is the time with highest demand by MME

Equipments are turned off during nights.

If there are any SAEGW way below critical, could we afford to shut one down?

Tultitlan Maximum Throughput 1

	SAEGW	Throuhgput
0	140000-SAE01-TULTITLAN	22271.29
1	140000-SAE02-TULTITLAN	22482.07
2	140000-SAE03-TULTITLAN	23684.76
3	140000-SAE04-TULTITLAN	23028.11

What day of the week gets the most SAEGW traffic?

What day of the week gets the most SAEGW traffic?

Conclusions

MME

- Data is free of outliers.
- The most significant relationship in KPI's is between Attached UE and Bearers
- Bearer behavior can be predicted based on attached UE
- Number of attached US grows everyday
- Tultitlan is the city with the highest demand in Users

SAEGW

- There aren't any SAEGW above their critical load.
- We could shut down many towers based on critical load, yet for redundancy we have to keep many of them
- Every city consumes data differently throughout the week.