SOLUCIÓN BÁSICA INICIAL

ACTIVIDAD

Objetivo— Al finalizar esta actividad, el estudiante debe hacer estar en capacidad de realizar operaciones elementales que permitan reemplazar un sistema lineal por otro equivalente.

Tipo de actividad— Grupo de Trabajo.

Formato - Parejas.

Duración— 45 minutos.

Descripción— Obtenga una solución básica inicial para el problema propuesto y resuélvalo usando el método simplex.

El problema solo tiene restricciones ≤. Se transforma el problema a la forma estándar agregando variables de holgura, las cuales conforman la base inicial. El problema se optimiza usando el simplex tal como se indicó.

El problema tiene restricciones ≥ o =. Se transforma el problema a la forma estándar. Se agregan variables artificiales a dichas restricciones. La base esta conformada por las variables de holgura y las artificiales. La optimización se realiza en dos fases: en la primera se minimiza la suma de variables artificiales. Se retorna al problema original cuando todas las variables artificiales salen de la base y se continua la optimización como ya se explicó.

$$\min z = x_1 + 3x_2$$

s/a:

$$\begin{array}{rcl}
-x_1 & +x_2 & \ge 0 \\
-3x_1 & +x_2 & \le 3 \\
+x_1 & +2x_2 & = 6 \\
x_i \ge 0, & i = 1, 2
\end{array}$$

Solución inicial para aplicar el simplex:

Noté que las variables artificiales (x_5, x_6) aparecen con coeficiente diferente de cero en la función objetivo y no es posible aplicar el método simplex. Qué se puede hacer?

Rta/. Realice operaciones elementales en la última ecuación para eliminar x_5 y x_6 .

```
a <- c(-1, -3,
        1,
                2,
                    3,
            1,
       -1,
            0,
                 0,
        0,
                0,
                     0,
            0,
            0,
                 1,
                     0,
        0,
            0,
                 0, -1,
                0,
                     0,
                        -1,
            0,
            3,
                 6,
                         0)
x1 x2 x3 x4 x5 x6
                           Z
## [1,] -1 1 -1 0 1
                         0
                               0 3
   [2,] -3
            1 0
                        0
                            a
                      0
## [3,] 1 2
               0
                   0
                      0
                        1
                            0
                               0 6
   [4,]
            3 0
##
         1
                   0
                      0
                         0
                           -1 0 0
## [5,]
            0
               0
         0
                   1
                      1
                         1
                            0 - 1 0
## los coeficientes de las variables artificiales
## se hacen cero en la función objetivo
a[5,] <- a[5,] - a[1,]
a[5,] <- a[5,] - a[2,]
a[5,] \leftarrow a[5,] - a[3,]
        x1 x2 x3 x4 x5 x6
## [1,] -1 1 -1
                  0
                     1
                         0
## [2,] -3 1 0
## [3,] 1 2 0
                   0
                      0
                         1 0
                               0
                                  6
            3 0
## [4,]
         1
                   0
                      0
                        0
                           -1
                               0
                                  0
## [5,]
                   0
                      0
## entra x2 a la base, sale x5 de la base
a[2,] \leftarrow a[2,] - 1 * a[1,] 
 a[3,] \leftarrow a[3,] - 2 * a[1,]
a[4,] \leftarrow a[4,] - 3 * a[1,]
a[5,] \leftarrow a[5,] + 4 * a[1,]
        x1 x2 x3 x4 x5 x6
## [1,] -1 1 -1 0 1 0
                            0
## [2,] -2
            0
              1
                 1 -1
                         0
                            a
                               0
## [3,]
         3
            0 2
                   0 -2
                        1
                            0
                                  6
                               0
## [4,] 4
            0 3 0 -3 0 -1 0
                                  0
## [5,] -1 0 -3 0 4 0
## entra x3 a la base, sale x6 de la base
a[3,] \leftarrow a[3,] / 2
a[1,] \leftarrow a[1,] + 1 * a[3,]
a[2,] \leftarrow a[2,] - 1 * a[3,]
a[4,] \leftarrow a[4,] - 3 * a[3,]
a[5,] \leftarrow a[5,] + 3 * a[3,]
          x1 x2 x3 x4 x5
                            x6
## [1,] 0.5 1 0
                        0
                          0.5
                    0
                                0
## [2,] -3.5
              0
                 0
                    1
                        0 -0.5
                                   0
## [3,] 1.5
              0
                 1 0 -1 0.5
## [4,] -0.5
              0
                 0
                    0
                        0 - 1.5
                               -1
                                   0
## [5,] 3.5
              0
                 0
                    0
                        1 1.5
```

Resuelva los siguientes problemas usando el método simplex.

Problema 1.

$$\max z = 2x_1 + 3x_2$$

s/a:

$$x_1 + 2x_2 \le 6$$

$$2x_1 + x_2 \le 8$$

$$x_1 \ge 8$$

$$x_1, x_2 \ge 0$$

Problema 2.

$$\max z = 3x_1 + 5x_2$$

s/a:

$$x_1 \ge 5$$

$$x_2 \le 10$$

$$x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$