

Quantum Error Correction - an Introduction

Sara Franco

Feb 2025

Contents

- 1. The classical repetition code
- 2. The three-qubit repetition code
- 3. Stabilizer formalism in quantum error correction
- 4. Surface code

The classical repetition code

 $0 \rightarrow 000$

Logical 0

 $1 \rightarrow 111$

Logical 1

111 000 101 111 000

"Majority Voting" Decoding

111 000 001 111 000

"Majority Voting" Decoding

p

Bit flip probability

Logical error probability

$$p_e = 3p^2(1-p) + p^3$$

Error threshold

$$p_e$$

$$0 \rightarrow 00000$$

$$1 \rightarrow 11111$$

Distance d = 5 code

Lower logical error probability (but same error threshold)

The three-qubit repetition code

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

$$|0\rangle
ightarrow |0_L\rangle \equiv |000
angle$$
 $|1\rangle
ightarrow |1_L\rangle \equiv |111
angle$

$$|\psi\rangle \rightarrow a|000\rangle + b|111\rangle$$

$$a | \mathbf{1}00 \rangle + b | \mathbf{0}11 \rangle$$

$$Z_1 Z_2 = (|00\rangle\langle 00| + |11\rangle\langle 11|) \otimes I - (|01\rangle\langle 01| + |10\rangle\langle 10|) \otimes I$$

Error	$Z \otimes Z \otimes I$	$Z \otimes I \otimes Z$	$I \otimes Z \otimes Z$
$X \otimes I \otimes I$	-1	-1	+1
$I \otimes X \otimes I$	-1	+1	-1
$I \otimes I \otimes X$	+1	-1	-1

$$\frac{1}{2} \left[|0\rangle \left(|\psi\rangle + A |\psi\rangle \right) + |1\rangle \left(|\psi\rangle - A |\psi\rangle \right) \right]$$

$$\left| 0\rangle P_{+} |\psi\rangle + |1\rangle P_{-} |\psi\rangle$$

Three qubit memory repetition code circuit

$$a \mid +++ \rangle + b \mid --- \rangle$$

Detecting Phase flips?

$$X_1X_2 = (|++\rangle \langle ++|+|--\rangle \langle --|) \otimes I - (|++\rangle \langle --|+|--\rangle \langle ++|) \otimes I$$

$$M = \alpha I + \beta X + \gamma Y + \delta Z$$

Any error can be decomposed into bit flips and phase flips

Stabilizer formalism for Quantum Error Correction

$$S|\psi\rangle = |\psi\rangle$$

DEFINITION OF STABILIZER

$$a|000\rangle + b|111\rangle$$

Stabilizer group:

$$\{I, Z_1Z_2, Z_2Z_3, Z_1Z_3\}$$

A set of generators

Error	$Z \otimes Z \otimes I$	$Z \otimes I \otimes Z$	$I \otimes Z \otimes Z$
$X \otimes I \otimes I$	-1	-1	+1
$I \otimes X \otimes I$	-1	+1	-1
$I \otimes I \otimes X$	+1	-1	-1

An n qubit code with m independent stabilizer generators defines a 2^{n-m} dim stabilizer space, encoding n-m logical qubits.

$$a|000\rangle + b|111\rangle$$

Stabilizer group:

$$\{I, Z_1Z_2, Z_2Z_3, Z_1Z_3\}$$

Error	$Z \otimes Z \otimes I$	$Z \otimes I \otimes Z$	$I \otimes Z \otimes Z$
$X \otimes I \otimes I$	-1	-1	+1
$I \otimes X \otimes I$	-1	+1	-1
$I \otimes I \otimes X$	+1	-1	-1

To detect an error, it suffices to measure m independent stabilizer generators.

Given an error E, the measurement of stabilizer S returns:

•
$$+1$$
, if $ES = SE$

•
$$-1$$
, if $ES = -SE$

If
$$ES = SE$$
, then $E|\psi\rangle = ES|\psi\rangle = SE|\psi\rangle$;

If
$$ES = -SE$$
, then $E|\psi\rangle = ES|\psi\rangle = -SE|\psi\rangle$;

What about the logical operators?

$$|0_L\rangle \equiv |000\rangle$$

 $|1_L\rangle \equiv |111\rangle$
 $\{I, Z_1Z_2, Z_2Z_3, Z_1Z_3\}$

$$LS_j\big|\psi\big\rangle = L\big|\psi\big\rangle$$

$$X_L = X_1 X_2 X_3$$
$$Z_L \equiv Z_1$$

$$I_L = \{III, ZZI, IZZ, ZIZ\}$$

$$X_L = \{XXXX, -YYXX, -YXY, -XYY\}$$

$$Z_L = \{ZII, IZI, IIZ, ZZZ\}$$

$$Y_L = \{YXXX, XYX, XXY, -YYY\}$$

Surface code

- Distance d = 3 surface code
- $n = d^2 = 9$ data qubits in a $d \times d$ lattice
- n-1 stabilizer generators

$$\{X_1X_2, X_0X_1X_3X_4, X_4X_5X_7X_8, X_6X_7, Z_0Z_3, Z_1Z_2Z_4Z_5, Z_3Z_4Z_6Z_7, Z_5Z_8\}$$

Logical operators?

- Must commute with all stabilizers
- Must not belong to the stabilizer
- Must satisfy anti-commutation
 properties of X and Z

$$|0_L\rangle \equiv$$

 $\begin{aligned} &|000\,000\,000\rangle + |011\,000\,000\rangle + |110\,110\,000\rangle + |101\,110\,000\rangle \\ &+ |000\,011\,011\rangle + |011\,011\,011\rangle + |110\,101\,011\rangle + |101\,101\,011\rangle \\ &|000\,000\,110\rangle + |011\,000\,110\rangle + |110\,110\,110\rangle + |101\,110\,110\rangle \\ &+ |000\,011\,101\rangle + |011\,011\,101\rangle + |110\,101\,101\rangle + |101\,101\,101\rangle \end{aligned}$

Logical operators?

- Must commute with all stabilizers
- Must not belong to the stabilizer
- Must satisfy anti-commutation properties of X and Z

Code degeneracy

The relationship between errors and syndromes is not one-to-one:

Given an error E, any error of the form E' = EL, where L commutes with the stabilizer, produces the same error syndrome.

$$X_5$$

$$Z_1Z_2Z_4Z_5$$

$$Z_5Z_8$$

Given an error E, any error of the form E' = EL, where L commutes with the stabilizer, produces the same error syndrome.

Given an error E, any error of the form E' = EL, where L commutes with the stabilizer, produces the same error syndrome.

Decoders

Algorithms that automate the choice of error correction operator given an error syndrome.

Ideally, given an error E, a decoder suggests a correction operator of the form C = SE.

The error threshold of a QEC code depends on the choice of decoder.

Minimum Weight Perfect Matching (MWPM)

Google Quantum Al 2024 paper

Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature (2024). https://doi.org/10.1038/s41586-024-08449-y

References

- Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge UniversityPress, 2010
- For understanding surface codes:
 - Dan Browne, <u>Lecture notes on Topological Codes and Quantum Computation</u>
 - Austin Fowler et.al. Surface codes: Towards practical large-scale quantum computation. arXiv:1208.0928
 - Lecture notes of the Quantum Error Correction course by Prof. Kastoryano at University of Cologne
- For a tutorial on how to simulate QEC codes with STIM: Hands-on quantum error correction with Google Quantum AI, available for free on Coursera
- <u>Description of Stim software for simulation of QEC codes</u>: Craig Gidney. Stim: a fast stabilizer circuit simulator. <u>arXiv:2103.02202</u>

Thank you!

sara.rdf7@gmail.com sara.franco@inl.int

