Ministère de l'enseignement supérieur et de la recherche scientifique

École supérieure en informatique de Sidi Bel Abbès

Module: RÉSEAUX I

Chapitre 5: Adressage et Routage

Partie 5: IP - Plan

- 1. Interconnexion IP
- 2. Relayage et routage IP
- 3. Adressage IP
- 4. Datagramme IP
- 5. Fragmentation
- 6. ICMP

IP - Plan

1. Interconnexion IP

- ✓ concept d'interconnexion
- ✓ rôle de IP
- ✓ service de IP
- 2. Relayage et routage IP
- 3. Adressage IP
- 4. Datagramme IP
- 5. Fragmentation
- 6. ICMP

Interconnexion

- une concaténation de réseaux
 - à l'intérieur d'un réseau, les nœuds utilisant la technologie spécifique de leur réseau

- l'interconnexion consiste à faire transiter des informations depuis une machine sur un réseau vers une autre machine sur un autre réseau
 - les différences entre tous les réseaux ne doivent pas apparaître à l'utilisateur

Interconnexion

- Principe
 - mise en œuvre d'une couche réseau
 - masquant les détails de la communication physique du réseau
 - détachant les applications des problèmes de routage
- le logiciel d'interconnexion
 - fait apparaître l'ensemble des réseaux disparates comme un seul et unique réseau
 - offre un service commun à toutes les applications

Interconnexion IP

- la glue qui lie l'Internet : le protocole IP (Internet Protocol)
- une pile de protocoles

Encapsulations successives

• cas application / TCP / IP / Ethernet

Internet Protocol (IP)

• protocole de la couche d'interconnexion

- caractéristiques de l'interface IP
 - adresse unique et homogène
 - transfert par blocs (datagrammes)
 - service sans connexion
 - service *best effort* (les datagrammes ne sont pas éliminés sans raison)
- fonctions de IP
 - adressage
 - routage
 - fragmentation

Service IP

- utilise un service minimum
 - envoi d'une unité de transfert d'un point à ses voisins
 - voisin : partage la même connexion physique
- rend un service minimum
 - service en mode non connecté
 - absence d'états dans les routeurs
 - transmission de datagrammes
 - remise best effort
 - service non fiable
 - service de connectivité
- avantages
 - **©**robustesse
 - ©efficace pour les échanges brefs
 - ©simplicité d'utilisation

Primitives de service IP

```
SEND (
adresse source
adresse destination
TCP ou UDP: protocole supérieur
indicateurs de QOS: high ou normal
  rapidité: de remise demandée
  priorité: traitement d'abord
  débit:
  sécurité:
identificateur du paquet courant
indicateur de fragmentation: oui ou non
durée de vie
longueur des données
données optionnelles: sécurité (mot de passe
         une
               passerelle),
                            routage/
                                       source,
  pour
  enregistrement du chemin, estampillage
  (enregistrement de l'heure de chaque passage)
données )
```

DELIVER (

adresse source adresse destination TCP ou UDP: protocole supérieur indicateurs de QOS: high ou normal longueur des données données optionnelles et données)

IP - Plan

- 1. Interconnexion IP
- 2. Relayage et routage IP
 - relayage IP
 - routage IP
- 3. Adressage IP
- 4. Datagramme IP
- 5. Fragmentation
- 6. ICMP

Relayage vs. routage

- relayage (forwarding)
 - action de retransmettre sur une interface un datagramme reçu sur une autre interface et n'étant pas arrivé à destination
- routage
 - action de chercher (1) l'interface sur laquelle transmettre un datagramme, et (2) le destinataire immédiat
- interface (réseau) : point d'accès au réseau (physique)

Relayage par IP

• Vue topologique

Relayage par IP

• Vue architecturale

Que fait un routeur ?

Pour chaque datagramme IP qui traverse le routeur, IP:

- vérifie le checksum, si faux destruction du datagramme
- détermine si ce sont des données *utilisateur* ou de *contrôle* destinées au routeur
- décrémente la durée de vie, si nulle

 destruction du datagramme
- décide du routage
- fragmente le datagramme si nécessaire
- reconstruit l'en-tête IP avec les champs mis à jour
- transmet le(s) datagramme(s) au protocole d'accès de l'interface réseau de sortie avec l'adresse de sous-réseau correspondante

A réception dans l'hôte destinataire, IP:

- vérifie le checksum
- s'il y a eu fragmentation, mémorise puis réassemble
- délivre au niveau supérieur les données et les paramètres par la primitive DELIVER

Routage

• fonction déterminant un chemin vers une adresse destinataire

\$\table de routage

• informations nécessaires pour atteindre le prochain nœud

salgorithme de routage

• calcul d'un chemin optimal pour atteindre une adresse destinataire

\$protocole de routage

- échange d'informations de routage
- dépend du domaine dans lequel se trouve le routeur
- ex : RIP, OSPF, ...

Tables de routage

- contiennent 3 informations
 - destination
 - réseau
 - sous-réseau
 - machine
 - default
 - chemin
 - interface locale à la machine
 - un routeur intermédiaire
 - coût ou *métrique*
 - nombre de hops
 - débit ...

Table du nœud C

Préfixe @destinataire	@routeur par où passer
10.0.0	20.0.0.10
20.0.0	eth0
30.0.0	eth1
40.0.0	30.0.0.10

Routage direct/indirect

- le module IP examine l'adresse de destination du datagramme et détermine si la destination est sur un même réseau physique
 - si oui : routage direct
 - la destination étant sur un même réseau physique, le datagramme est transmis directement \$\times\text{l'adresse physique suivante est celle de la destination}
 - si non : routage indirect
 - la destination étant sur un réseau physique différent, le datagramme est transmis au routeur suivant

\$\text{'adresse physique suivante est celle du routeur suivant}

Différentes "adresses"

\$2 niveaux de conversion

- nom ⇔ adresse IP
- adresse IP ⇔ adresse physique

Adressage physique

- Principe
 - adresse propre au système de transmission
 - identifie le périphérique
 - multitude d'espaces d'adressage
 - exemples
 - @ Ethernet : sur 6 octets, adressage absolu
 - @ ATM : sur 20 octets, adressage hiérarchique
- besoin d'une glue : Address Resolution Protocol

IP - Plan

- 1. Interconnexion IP
- 2. Relayage et routage IP
- 3. Adressage IP
 - classes d'adresses
 - subnetting
- 4. Datagramme IP
- 5. Fragmentation
- 6. ICMP

Adressage IP

- adressage
 - pour l'identification d'un équipement réseau
 - pour le routage
- plan d'adressage homogène
 - format : 4 octets → 4,3 milliards d'adresses ???
 - notation décimale pointée : x1.x2.x3.x4
- adresse globalement unique et hiérarchique
- format : <réseau> <machine>
 - localisateur ou préfixe réseau : identificateur de réseau
 - identificateur : identificateur de machine

réseau	machine	
localisateur	identificateur	

Attribution des adresses

Adressage réseau

• un préfixe réseau par réseau physique

• au niveau IP

Classes d'adresses

• le découpage <réseau> / <machine> n'est pas fixe \$5 classes d'adresses

• comment reconnaître ces classes ?

Classes d'adresses

Classes d'adresses

```
• classe A : 2<sup>7</sup> réseaux (128)
```

```
• réservé: 0.0.0.0 et 127.0.0.0
```

- disponible: 1.0.0.0 à 126.0.0.0
 - 126 réseaux classe A et 16 777 214 machines/réseau
- classe B : 2¹⁴ réseaux (16 384)
 - réservé: 128.0.0.0 et 191.255.0.0
 - disponible 128.1.0.0 à 191.254.0.0
 - 16 382 réseaux classe B et 65 534 machines/réseau
- classe C : 2²¹ réseaux (2 097 152)
 - réservé 192.0.0.0 et 223.255.255.0
 - disponible 192.0.1.0 à 223.255.254.0
 - 2 097 150 réseaux classe C et 254 machines/réseau

Une adresse IP dont la valeur hostid ne comprend que des 1 ne peut être attribuée à une machine réelle

• c'est une adresse de diffusion dirigée

une adresse IP dont la valeur hostid ne comprend que des 0 ne peut être attribuée à une machine réelle

• c'est une adresse de réseau

Subnetting

• Problème

Sous-adressage

- Principe
 - ajout d'un niveau hiérarchique dans l'adressage
 - adresse de sous-réseau
 - subdivision de la partie <hôte>

réseau	sous-réseau	machine		
rácagu	identificateur théorique			

- le sous-réseau
 - est un réseau physique (i.e. un réseau IP connexe) du réseau de site
 - a une visibilité purement interne

Le masque de sous-réseau

- le masque indique la frontière entre la partie <sous-réseau> et la partie <machine>
- le masque est propre au site
- le masque est de 32 bits
- bits du masque de sous-réseau (subnet mask)
 - positionnés à 1 **→** partie réseau
 - positionnés à 0 **→** partie machine
- exemple
 - 11111111 11111111 11111111 00000000

\$3 octets pour le champ réseau, 1 octet pour le champ machine

- notations
 - décimale pointée
 - exemple : 255.255.255.0
 - adresse réseau/masque
 - exemple : 193.49.60.0/27 (27 = nombre de bits contigus du masque)

Masque de sous-réseau

classe • utilisation	réseau	machine				
	masque réseau					
interne au site ┌	&&					
uu siie	réseau	ss-réseau	machine			

exemple

- le réseau 142.68.0.0 (classe B!) a comme masque 255.255.255.0
- soit l'hôte d'@IP 142.68.2.6

```
10001110.01000100.00000010.00000110 142.68.2.6

&& 11111111.11111111111111111111.00000000 255.255.255.0

= 10001110.01000100.00000010.00000000 142.68.2.0
```

\$\text{l'hôte est sur le sous-réseau numéro \(\alpha \), et a comme identificateur 6

Le masque de sous-réseau

- Le choix du découpage <réseau> / <hôte> dépend des perspectives d'évolution du site
 - exemple classe B:
 - 8 bits pour la partie sous réseau → 256 sous réseaux de 254 machines
 - 3 bits pour la partie sous réseau → 8 sous-réseaux de 8190 machines
 - exemple classe C:
 - 4 bits pour la partie sous-réseau → 16 sous-réseaux de 14 machines

Configuration de Connexion du réseau loc

Adresse dynamique : DHCP

@IP: ??? @IP: 132.227.64.254 src: 0.0.0.0, 68 dest: 255.255.255.255, 67 **DHCP DISCOVER** yiaddr: 0.0.0.0 transaction ID: 123 src: 132.227.64.254, 67 dest: 255.255.255, 68 **DHCP OFFER** yiaddr: 132.227.64.10 transaction ID: 123 src: 0.0.0.0, 68 DHCP server ID: 132.227.64.254 dest: 255.255.255.255, 67 Lifetime: 3600 s **DHCP REQUEST** yiaddr: 132.227.64.10 transaction ID: 124 DHCP server ID: 132.227.64.254 src: 132.227.64.254, 67 Lifetime: 3600 s dest: 255.255.255, 68 **DHCP ACK** yiaddr: 132.227.64.10 transaction ID: 124 DHCP server ID: 132.227.64.254 Lifetime: 3600 s

IP - Plan

- 1. Interconnexion IP
- 2. Relayage et routage IP
- 3. Adressage et nommage
- 4. Adressage IP
- 5. Datagramme IP
- 6. Fragmentation
- 7. ICMP

Le datagramme IP

header								
data						***************************************		
	0	4	8	16	19	24	31	
	version	IHL	ToS		t	otal length		
identif			ication flo		flags fragment offset			
	TTL			checksum				
			source address					
			dest	destination address				
			options				padding	

Les champs de l'en-tête IP

- version : identification de la version courante du protocole (4 pour IPv4)
- 4 Ipv4 et 6 IPv6
- IHL (IP Header Length) : longueur de l'en-tête IP (en mots de 32 bits)
- Par défaut 5mots
- TOS (*Type Of Service*) : type de service à appliquer au paquet en fonction de certains paramètres comme le délai de transit, la sécurité, QOS
 - 3bit priorité exemple prioritaire, urgent, très urgent, critique
 - 1bit délai normal ou bas
 - 1bit débit normal ou haut
 - 1bit fiabilité normal ou haute
 - 1bit coût normal ou faible
 - 1bit MBZ 0
- total length: longueur totale du datagramme (en octets)
- identification : valeur fournie par la source aidant la destination au réassemblage des différents fragments du datagramme
- flags : utilisé par la fragmentation et composé de
 - réservé
 - DF (Don't Fragment) valeur 1
 - MF (*More Fragment*) 1 existe autre fragment
- offset : déplacement par rapport au datagramme
 - Premier fragment 0

Les champs de l'en-tête IP

- TTL (*Time To Live*) : limite supérieure du temps de vie d'un datagramme
- protocol : protocole utilisé pour le champ de données
 - 1 pour ICMP
 - 6 pour TCP
 - 17 pour UDP
- checksum : zone de contrôle d'erreur portant uniquement sur l'en-tête du datagramme
- source address : @ IP de la source du datagramme
- destination address : @ IP de la destination du datagramme
- options : fonctions de contrôle utiles dans certaines situations (sécurité, routage particulier, etc.)
- padding : pour aligner l'en-tête sur 32 bits

IP - Plan

- 1. Interconnexion IP
- 2. Relayage et routage IP
- 3. Adressage et nommage
- 4. Adressage IP
- 5. Datagramme IP
- 6. Fragmentation
- 7. ICMP

Fragmentation et réassemblage

Motivations

- l'Internet est par nature hétérogène
- le MTU (Maximum Transmission Unit) varie selon la technologie
- certains protocoles de niveau supérieur génèrent des datagrammes de longueur supérieure au MTU

sadaptation de la taille du datagramme au MTU

Fragmentation et réassemblage

- Principe
 - découpage de la charge utile et duplication de l'en-tête

IP Fragmentation and Reassembly

Example

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

length	ID	fragflag	offset	
=4000			=0	

One large datagram becomes several smaller datagrams

length	ID	fragflag	offset	
=1500			* =185	ı

length	ID	fragflag	offset	Γ
=1040			=370	

IP - Plan

- 1. Interconnexion IP
- 2. Relayage et routage IP
- 3. Adressage et nommage
- 4. Adressage IP
- 5. Datagramme IP
- 6. Fragmentation
- 7. ICMP & ARP

Protocole de contrôle ICMP

- Motivation
 - pas de signalisation dans IP
 - pas de retour d'information
 - pas de messages d'anomalies
- ICMP (Internet Control Message Protocol)
 - instrumentation et test
 - signalisation d'anomalies
 - mise en œuvre obligatoire
 - messages ICMP encapsulés dans des datagrammes IP
 - même si:

Messages ICMP

• format

• les messages ICMP ont tous le même format pour le premier mot de 32 bits type code checksum

• champ type

Туре	Message	Objet				
0	Echo Reply	Réponse en écho.				
3	Destination Unreachable	Destination inaccessible.				
4	Source Quench	Interruption de la source.				
5	Redirect	Redirection, changement de route.				
8	Echo	Demande d'écho.				
11	Time Exceeded	Temps de vie d'un datagramme dépassé.				
12	Parameter Problem	Datagramme mal formé.				
13	Timestamp	Demande de date d'estampillage.				
14	Timestamp Reply	Réponse à une demande d'estampillage.				
15	Information Request	Demande d'information.				
16	Information Reply	Réponse à une demande d'information.				
17	Address Mask Request	Demande de masque d'adresse.				
18	Address Mask Reply	Réponse à une demande de masque				
		d'adresse.				

Outil ping

- Principe
 - exploite la fonction d'écho de ICMP
 - un routeur ou un hôte recevant un "echo request" retourne un "echo reply" \$\permet de
 - tester l'accessibilité d'une machine
 - obtenir des statistiques sur la qualité de la route
- Exemple
- Ping 192.168.1.1

```
$ ping castor.univ-reunion.fr
PING castor.univ-reunion.fr (194.199.73.51): 56 data bytes
64 bytes from 194.199.73.51: icmp_seq=0 ttl=246 time=570.800 ms
64 bytes from 194.199.73.51: icmp_seq=1 ttl=246 time=581.364 ms
64 bytes from 194.199.73.51: icmp_seq=2 ttl=246 time=571.022 ms
64 bytes from 194.199.73.51: icmp_seq=3 ttl=246 time=572.722 ms
64 bytes from 194.199.73.51: icmp_seq=4 ttl=246 time=579.121 ms
64 bytes from 194.199.73.51: icmp_seq=4 ttl=246 time=579.121 ms
64 bytes from 194.199.73.51: icmp_seq=5 ttl=246 time=571.619 ms
^C
----castor.univ-reunion.fr PING Statistics----
6 packets transmitted, 6 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 570.800/574.441/581.364/4.598 ms
```

Résolution des adresses

Matériel	Protocole	Taille Matériel	Taille Protocole	OP	@Matériel Source	@Protocole Source	@MatérielCible00000	@ProtocoleCible

2 2 1 2 2

Protocole ARP

- Broadcaste un appel à l'aide...
 - @source.ethernet = @émetteur
 - @destination.ethernet = FF-FF-FF-FF-FF
 - Type = 0x 0800

Matériel	Protocole	Taille Matériel	Taille Protocole	OP	@Matériel Source	@Protocole Source	@Matériel Cible	@Protocole Cible
2	2	1	1	2				

Réponse :

Même trame, champs remplis par machine cible

- FF FF FF FF FF 00 04 80 5F 68 00 08 06 00 01
- 08 00 06 04 00 01 00 04 80 5F 68 00 89 C2 A2 03
- 00 00 00 00 00 00 89 C2 A2 F3 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00 00 00 00 00