Dot and Cross products

Dot product

The dot product of two vectors A and B is defined as:

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

$$dot(\vec{A}, \vec{B}) = length(\vec{A}) * length(\vec{B}) * cos(\theta)$$

$$dot(\vec{A}, \vec{B}) = A_x * B_x + A_y * B_y + A_z * B_z$$

Dot product

The result of the dot product is a **scalar value**.

It denotes the degree of projection of one vector onto the other.

If \vec{A} is normalized (i.e. $|\vec{A}| == 1$), $dot(\vec{A}, \vec{B})$ gives us the amount of \vec{B} projected onto \vec{A} .

$$dot(\overrightarrow{A}, \overrightarrow{B}) = A_x * B_x + A_y * B_y + A_z * B_z$$

The cross product of two vectors \vec{A} and \vec{B} is defined as:

$$\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin \theta \vec{N}$$

 $\cos(\vec{A}, \vec{B}) = \text{length}(\vec{A}) * \text{length}(\vec{B}) * \cos(\theta) * \vec{N}$

It gives us a **vector** which is **perpendicular** to both \vec{A} and \vec{B} .

The **Right Hand Rule** tells us the direction of the resulting vector.

The cross product of two vectors \overrightarrow{A} and \overrightarrow{B} can be computed as follows:

$$c_{x} = a_{y}b_{z} - a_{z}b_{y}$$

$$c_{y} = a_{z}b_{x} - a_{x}b_{z}$$

$$c_{z} = a_{x}b_{y} - a_{y}b_{x}$$

The magnitude of the resulting vector is the area of the parallelogram defined by A and B.

The magnitude of the resulting vector is the area of the parallelogram defined by A and B.

Most of the time we will be interested in the resulting vector direction, not magnitude, so **remember to normalize the result before using it**.

Dot product vs. Cross product

Dot product

- Result: A scalar value
- Projection of a onto b
 - Normalize b to find the projection measure in the current base coordinates.

Cross product

- Result: A third vector
- Perpendicular to a and b
- Area of the parallelogram
- Right Hand Rule

