

Definición

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Volumen

Sirve para almacenar grandes volúmenes de información

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Volumen

Sirve para almacenar grandes volúmenes de información

Backups

Guarda copias de la información en diferentes nodos

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Volumen

Sirve para almacenar grandes volúmenes de información

Backups

Guarda copias de la información en diferentes nodos

Tolerancia a fallos

En caso de que se caiga un nodo, cuenta con otros para mantener el servicio

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Volumen

Sirve para almacenar grandes volúmenes de información

Backups

Guarda copias de la información en diferentes nodos

Tolerancia a fallos

En caso de que se caiga un nodo, cuenta con otros para mantener el servicio

YARN

Gestor de recursos de Hadoop

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Volumen

Sirve para almacenar grandes volúmenes de información

Backups

Guarda copias de la información en diferentes nodos

Tolerancia a fallos

En caso de que se caiga un nodo, cuenta con otros para mantener el servicio

YARN

Gestor de recursos de Hadoop

Escalabilidad

Es cuestión de añadir nuevos nodos, de hardware económico

Definición

"Apache Hadoop es un framework de código abierto que permite el almacenamiento distribuido y el procesamiento de grandes conjuntos de datos en base a un hardware comercial"

Volumen

Sirve para almacenar grandes volúmenes de información

Backups

Guarda copias de la información en diferentes nodos

Tolerancia a fallos

En caso de que se caiga un nodo, cuenta con otros para mantener el servicio

YARN

Gestor de recursos de Hadoop

Escalabilidad

Es cuestión de añadir nuevos nodos, de hardware económico

HDFS

High Distributed File System

"Sistema de ficheros distribuidos de Hadoop. Sirve para el almacenamiento masivo de información, tanto para datos estructurados, semi-estructurados y no estructurados."

HDFS

High Distributed File System

"Sistema de ficheros distribuidos de Hadoop. Sirve para el almacenamiento masivo de información, tanto para datos estructurados, semi-estructurados y no estructurados."

Parquet files

Formato de almacenamiento de datos orientado a columnas, lo que facilita el uso de una codificación y compresión eficientes para reducir tu tamaño. Es gratuito y de código abierto, característico del ecosistema Hadoop.

Dataset	Columns	Size on Amazon S3	Data Scanned	Cost
Data stored as CSV file	4	4TB	4TB	\$20 (4TB x \$5/TB)
Data stored as GZIP CSV file	4	1TB	1TB	\$5 (1TB x \$5/TB)
Data stored as Parquet file	4	1TB	.25TB	\$1.25 (.25TB x \$5/TB)

Shadoop

Paradigma de programación

"MapReduce es una técnica de procesamiento y un programa modelo de computación distribuida basada en java. Mediante el Map se generan pares clave-valor y en el Reduce se produce la agregación."

Paradigma de programación

"MapReduce es una técnica de procesamiento y un programa modelo de computación distribuida basada en java. Mediante el Map se generan pares clave-valor y en el Reduce se produce la agregación."

La "primera" versión, junto con YARN, de

Paradigma de programación

Paradigma de programación

- **1.División de Datos**: Los datos de entrada se dividen en fragmentos (splits) que se asignan a diferentes nodos del clúster.
- **2.Procesamiento de Map**: Cada nodo aplica una función de mapeo a su fragmento de datos. La función de mapeo transforma los datos en pares clave-valor.

Paradigma de programación

Fase Map

1.División de Datos: Los datos de entrada se dividen en fragmentos (splits) que se asignan a diferentes nodos del clúster.

2.Procesamiento de Map: Cada nodo aplica una función de mapeo a su fragmento de datos. La función de mapeo transforma los datos en pares clave-valor.

Paso 1: División de Datos

•Doc1: "apple orange apple"

Doc2: "orange banana banana"

•Doc3: "banana apple orange"

Estos documentos se dividen en fragmentos y se distribuyen a diferentes nodos.

Paradigma de programación

Fase Map

1.División de Datos: Los datos de entrada se dividen en fragmentos (splits) que se asignan a diferentes nodos del clúster.

2.Procesamiento de Map: Cada nodo aplica una función de mapeo a su fragmento de datos. La función de mapeo transforma los datos en pares clave-valor.

Paso 1: División de Datos

Doc1: "apple orange apple"

•Doc2: "orange banana banana"

•Doc3: "banana apple orange"

Estos documentos se dividen en fragmentos y se distribuyen a diferentes nodos.

Paso 2: Función Map

Cada nodo aplica la función de mapeo a su fragmento:

•Nodo 1 (Doc1): [("apple", 1), ("orange", 1), ("apple", 1)]

•Nodo 2 (Doc2): [("orange", 1), ("banana", 1), ("banana", 1)]

•Nodo 3 (Doc3): [("banana", 1), ("apple", 1), ("orange", 1)]

Paradigma de programación

- **1.Agrupamiento**: Todos los pares clavevalor generados por la fase de mapeo se agrupan por clave.
- **2.Procesamiento de Reduce**: Cada grupo de claves se pasa a una función de reducción que combina los valores asociados con esa clave para producir un resultado final.

Paradigma de programación

1.Agrupamiento: Todos los pares clavevalor generados por la fase de mapeo se agrupan por clave.

2.Procesamiento de Reduce: Cada grupo de claves se pasa a una función de reducción que combina los valores asociados con esa clave para producir un resultado final.

Paso 3: Agrupamiento

Los pares clave-valor se agrupan por clave:

•"apple": [1, 1, 1]

•"orange": [1, 1, 1]

•"banana": [1, 1, 1]

Paradigma de programación

Fase Reduce

- **1.Agrupamiento**: Todos los pares clavevalor generados por la fase de mapeo se agrupan por clave.
- **2.Procesamiento de Reduce**: Cada grupo de claves se pasa a una función de reducción que combina los valores asociados con esa clave para producir un resultado final.

Paso 3: Agrupamiento

Los pares clave-valor se agrupan por clave:

- •"apple": [1, 1, 1]
- •"orange": [1, 1, 1]
- •"banana": [1, 1, 1]

Paso 4: Función Reduce

Cada grupo se pasa a la función de reducción que suma los valores:

- •"apple": 1 + 1 + 1 = 3
- •"orange": 1 + 1 + 1 = 3
- •"banana": 1 + 1 + 1 = 3

Paradigma de programación

Fase Reduce

- **1.Agrupamiento**: Todos los pares clavevalor generados por la fase de mapeo se agrupan por clave.
- **2.Procesamiento de Reduce**: Cada grupo de claves se pasa a una función de reducción que combina los valores asociados con esa clave para producir un resultado final.

Paso 3: Agrupamiento

Los pares clave-valor se agrupan por clave:

- •"apple": [1, 1, 1]
- •"orange": [1, 1, 1]
- •"banana": [1, 1, 1]

Paso 4: Función Reduce

Cada grupo se pasa a la función de reducción que suma los valores:

- •"apple": 1 + 1 + 1 = 3
- •"orange": 1 + 1 + 1 = 3
- •"banana": 1 + 1 + 1 = 3

Resultado Final

La frecuencia de palabras es:

- •"apple": 3
- •"orange": 3
- •"banana": 3

Paradigma de programación

Fase Map

- **1.División de Datos**: Los datos de entrada se dividen en fragmentos (splits) que se asignan a diferentes nodos del clúster.
- **2.Procesamiento de Map**: Cada nodo aplica una función de mapeo a su fragmento de datos. La función de mapeo transforma los datos en pares clave-valor.

Fase Reduce

- **1.Agrupamiento**: Todos los pares clavevalor generados por la fase de mapeo se agrupan por clave.
- **2.Procesamiento de Reduce**: Cada grupo de claves se pasa a una función de reducción que combina los valores asociados con esa clave para producir un resultado final.

