Homework Assignment 8

Matthew Tiger

May 2, 2016

Problem 1. Write at least two necessary conditions and at least two sufficient conditions for a function $f: \mathbb{R}^n \to \mathbb{R}$ to be concave.

Solution. By definition, a function $f: \mathbb{R}^n \to \mathbb{R}$ is concave over the convex set $\Omega \subset \mathbb{R}^n$ if -f is convex over Ω . This definition will allow us to obtain results for concave functions by replacing f with -f in previously obtained results concerning convex functions.

Using this definition and Theorem 22.2, we see that the condition that if for all $\alpha \in (0,1)$ and for all $x, y \in \Omega$, we have that

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \ge \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y})$$

is a necessary and sufficient condition for f to be concave on the convex set Ω .

Further, if the function f is \mathcal{C}^1 -smooth, we see from the above definition and Theorem 22.4 that the condition that if for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$, we have that

$$f(\boldsymbol{x}) \leq f(\boldsymbol{y}) + Df(\boldsymbol{x})(\boldsymbol{x} - \boldsymbol{y})$$

is a necessary and sufficient condition for f to be concave on the open convex set Ω .

Going one last step further, if the function f is \mathcal{C}^2 -smooth, we see from the above definition and Theorem 22.5 that the condition that if for all $\boldsymbol{x} \in \Omega$, the Hessian matrix $\boldsymbol{F}(\boldsymbol{x})$ of f at \boldsymbol{x} is a negative semi-definite matrix is a necessary and sufficient condition for f to be concave on the open convex set Ω .

Problem 2. Let $S \subset \mathbb{R}^n$ be a convex set and let $\mathbf{x}^* \in S$. Prove that a vector $\mathbf{d} \in \mathbb{R}^n$ is a feasible direction at \mathbf{x}^* (relative to S) if and only there exists $t_0 > 0$ such that $\mathbf{x}^* + t_0 \mathbf{d} \in S$ with $\mathbf{d} \neq \mathbf{0}$.

Solution. Suppose first that the vector $\mathbf{d} \in \mathbb{R}^n$ is a feasible direction at \mathbf{x}^* (relative to S). By definition, the vector \mathbf{d} is a feasible direction at $\mathbf{x}^* \in S$ if there exists $t_0 > 0$ such that $\mathbf{x}^* + t\mathbf{d} \in S$ for all $t \in [0, t_0]$ with $\mathbf{d} \neq \mathbf{0}$. Thus, choosing $t = t_0$, we have by the above definition that there exists $t_0 > 0$ such that $\mathbf{x}^* + t_0\mathbf{d} \in S$ with $\mathbf{d} \neq \mathbf{0}$, proving the first implication.

Now suppose that there exists $t_0 > 0$ such that $\boldsymbol{x}^* + t_0 \boldsymbol{d} \in S$ with $\boldsymbol{d} \neq \boldsymbol{0}$. Since S is convex and $\boldsymbol{x}^* \in S$, any convex combination of \boldsymbol{x}^* and $\boldsymbol{x}^* + t_0 \boldsymbol{d}$ will also be in S, i.e. for all $\alpha \in [0, 1]$, we have that

$$\alpha \boldsymbol{x}^* + (1 - \alpha)(\boldsymbol{x}^* + t_0 \boldsymbol{d}) = \boldsymbol{x}^* + (1 - \alpha)t_0 \boldsymbol{d} \in S.$$

Since $t_0 > 0$, we have that the following two sets are equal:

$$\{(1-\alpha)t_0 \mid 0 \le \alpha \le 1\} = \{t \mid 0 \le t \le t_0\}.$$

Thus, if $\mathbf{x}^* + (1 - \alpha)t_0\mathbf{d} \in S$ for all $\alpha \in [0, 1]$, then $\mathbf{x}^* + t\mathbf{d} \in S$ for all $t \in [0, t_0]$. Therefore, if $\mathbf{x}^* \in S$ with S a convex set and there exists $t_0 > 0$ such that $\mathbf{x}^* + t_0\mathbf{d} \in S$ with $\mathbf{d} \neq \mathbf{0}$, then $\mathbf{x}^* + t\mathbf{d} \in S$ for all $t \in [0, t_0]$, i.e. the vector \mathbf{d} is a feasible direction at \mathbf{x}^* (relative to S).

Problem 3. Recall that

$$\max\{\alpha, \beta\} := \begin{cases} \alpha & \text{if } \alpha \ge \beta \\ \beta & \text{if } \alpha < \beta \end{cases}.$$

Given two convex functions $f_1: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $f_2: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, prove that for $x \in \mathbb{R}^n$, the function

$$f(x) := \max\{f_1(x), f_2(x)\}$$

is convex.

Solution. Note that it is clear that the set \mathbb{R}^n is convex. Therefore, the function $f(\boldsymbol{x}) := \max\{f_1(\boldsymbol{x}), f_2(\boldsymbol{x})\}$ is convex if for all $\alpha \in (0, 1)$ and for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ we have that

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}). \tag{1}$$

If either $f(\boldsymbol{x}) = +\infty$ or $f(\boldsymbol{y}) = +\infty$, then for all $\alpha \in (0,1)$ and for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ we see that $\alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{y}) = +\infty$ and inequality (1) holds showing the convexity of f in this case.

Now suppose that both $f(\boldsymbol{x})$ and $f(\boldsymbol{y})$ are finite. Without loss of generality, we may assume that at the point $\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}$, we have that the max of f_1 and f_2 at that point occurs at f_1 , i.e.

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) = \max\{f_1(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}), f_2(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y})\}\$$
$$= f_1(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}).$$

Then, due to the convexity of f_1 , we have that for all $\alpha \in (0,1)$ and for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$,

$$f_1(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f_1(\boldsymbol{x}) + (1 - \alpha)f_1(\boldsymbol{y}).$$

From the above definition of max, we readily see that

$$\alpha f_1(\boldsymbol{x}) + (1 - \alpha) f_1(\boldsymbol{y}) \le \alpha \max\{f_1(\boldsymbol{x}), f_2(\boldsymbol{x})\} + (1 - \alpha) \max\{f_1(\boldsymbol{y}), f_2(\boldsymbol{y})\}$$
$$= \alpha f(\boldsymbol{x}) + (1 - \alpha) f(\boldsymbol{y}).$$

Therefore, combining, we have that for all $\alpha \in (0,1)$ and for all $x, y \in \mathbb{R}^n$,

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) = f_1(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y})$$

showing that inequality (1) holds and that the function f is convex.

Problem 4. Consider the pair of linear programming problems in asymmetric duality:

(P_a) minimize
$$f(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 (D_a) maximize $F(\lambda) = \lambda^{\mathsf{T}}\mathbf{b}$ subject to $A\mathbf{x} = \mathbf{b}$ subject to $\lambda^{\mathsf{T}}A \leq \mathbf{c}^{\mathsf{T}}$ $\mathbf{x} > \mathbf{0}$

- a. Prove that (D_a) is a convex programming problem.
- b. Write the KKT conditions for (D_a) .
- c. Suppose that \boldsymbol{x}^* is feasible for (P_a) and $\boldsymbol{\lambda}^*$ is feasible for (D_a) . Use the KKT conditions to prove that if $(\boldsymbol{c}^{\mathsf{T}} \boldsymbol{\lambda}^{*\mathsf{T}} A) \boldsymbol{x}^* = 0$, then $\boldsymbol{\lambda}^*$ is optimal for (D_a) .

Solution. For the problem above, we assume that $\boldsymbol{x} \in \mathbb{R}^n$ and that A is an $m \times n$ matrix with m < n. This implies that $\boldsymbol{\lambda} \in \mathbb{R}^m$.

a. Note that (D_a) is a convex programming problem if the constraint set

$$\Omega = \{ \boldsymbol{\lambda} \in \mathbb{R}^m \mid \boldsymbol{\lambda}^\mathsf{T} A \le \boldsymbol{c}^\mathsf{T} \}$$

is a convex set and if $F: \Omega \to \mathbb{R}^m \cup \{+\infty\}$ where $F(\lambda) := \lambda^\mathsf{T} b$ is a convex function.

It is straight-forward to show that Ω is a convex set. Let $\boldsymbol{x}, \boldsymbol{y} \in \Omega$ be given. Then $\boldsymbol{x}^\mathsf{T} A \leq \boldsymbol{c}^\mathsf{T}, \boldsymbol{y}^\mathsf{T} A \leq \boldsymbol{c}^\mathsf{T}$ and for all $\alpha \in [0,1]$

$$\alpha \boldsymbol{x}^{\mathsf{T}} A \leq \alpha \boldsymbol{c}^{\mathsf{T}}$$
 and $(1 - \alpha) \boldsymbol{y}^{\mathsf{T}} A \leq (1 - \alpha) \boldsymbol{c}^{\mathsf{T}}$.

Thus, for all $\alpha \in [0, 1]$

$$(\alpha \boldsymbol{x}^{\mathsf{T}} + (1 - \alpha) \boldsymbol{y}^{\mathsf{T}}) A = \alpha \boldsymbol{x}^{\mathsf{T}} A + (1 - \alpha) \boldsymbol{y}^{\mathsf{T}} A \leq \alpha \boldsymbol{c}^{\mathsf{T}} + (1 - \alpha) \boldsymbol{c}^{\mathsf{T}} = \boldsymbol{c}^{\mathsf{T}},$$

i.e. the convex combination $\alpha x + (1 - \alpha)y \in \Omega$ and that Ω is a convex set.

Since F is a linear function, it is of course convex showing that the problem (D_a) is a convex programming problem.

b. The KKT conditions for the convex programming problem (D_a) are stated below: If the function $F \in \mathcal{C}^1$ is a convex function on the convex set of feasible points

$$\Omega = \{ \boldsymbol{\lambda} \in \mathbb{R}^m \mid \boldsymbol{\lambda}^\mathsf{T} A \leq \boldsymbol{c}^\mathsf{T} \} = \{ \boldsymbol{\lambda} \in \mathbb{R}^m \mid \boldsymbol{q}(\boldsymbol{\lambda}) = A^\mathsf{T} \boldsymbol{\lambda} - \boldsymbol{c} \leq \boldsymbol{0} \}$$

where $\mathbf{g} \in \mathcal{C}^1$ and if there exists $\boldsymbol{\lambda}^* \in \Omega$, $\boldsymbol{\mu}^* \in \mathbb{R}^n$ such that

i
$$\mu^* \geq 0$$
.

ii
$$-DF(\lambda^*) + \mu^{*T}Dg(\lambda^*) = -b^{T} + \mu^{*T}A^{T} = 0^{T}.$$

iii
$$\boldsymbol{\mu}^{*\mathsf{T}} \boldsymbol{g}(\boldsymbol{\lambda}) = \boldsymbol{\mu}^{*\mathsf{T}} (A^{\mathsf{T}} \boldsymbol{\lambda}^* - \boldsymbol{c}) = (\boldsymbol{\lambda}^{*\mathsf{T}} A - \boldsymbol{c}^{\mathsf{T}}) \boldsymbol{\mu}^* = 0.$$

then λ^* is a global maximizer of F over Ω .

c. Suppose that \boldsymbol{x}^* is feasible for (P_a) and $\boldsymbol{\lambda}^*$ is feasible for (D_a) and that $(\boldsymbol{c}^\mathsf{T} - \boldsymbol{\lambda}^{*\mathsf{T}} A) \boldsymbol{x}^* = 0$. Since $\boldsymbol{\lambda}^*$ is feasible for (D_a) , we know that $\boldsymbol{\lambda}^* \in \Omega$. Choose $\boldsymbol{\mu}^* = \boldsymbol{x}^*$. Then $\boldsymbol{\mu}^*$ satisfies the KKT conditions above, which we will now demonstrate.

Since x^* is feasible for (P_a) , condition i. is readily seen to be true and since $Ax^* = b$ or $b - Ax^* = 0$, we see that

$$\mathbf{0}^{\mathsf{T}} = \boldsymbol{b}^{*\mathsf{T}} - (A\boldsymbol{x}^{*})^{\mathsf{T}} = \boldsymbol{b}^{*\mathsf{T}} - \boldsymbol{x}^{*\mathsf{T}}A^{\mathsf{T}} = \boldsymbol{b}^{*\mathsf{T}} - \boldsymbol{\mu}^{*\mathsf{T}}A^{\mathsf{T}}$$

or that $-\boldsymbol{b}^{*\mathsf{T}} + \boldsymbol{\mu}^{*\mathsf{T}} A^{\mathsf{T}} = \boldsymbol{0}^{\mathsf{T}}$ and condition ii. is satisfied. Since by assumption we have that $(\boldsymbol{c}^{\mathsf{T}} - \boldsymbol{\lambda}^{*\mathsf{T}} A) \boldsymbol{x}^* = (\boldsymbol{c}^{\mathsf{T}} - \boldsymbol{\lambda}^{*\mathsf{T}} A) \boldsymbol{\mu}^* = 0$, we see also that $(\boldsymbol{\lambda}^{*\mathsf{T}} A - \boldsymbol{c}^{\mathsf{T}}) \boldsymbol{\mu}^* = 0$ and condition iii. is satisfied. Therefore, since $\boldsymbol{\lambda}^*$ and $\boldsymbol{\mu}^*$ both satisfy the KKT conditions stated above, $\boldsymbol{\lambda}^*$ is optimal for (D_a) .