Introduction to Classification

Rita P. Ribeiro

Data Mining I - 2023/2024

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

1

Summary

- Machine Learning
- Predictive Modelling
 - Classification Problem
 - Regression Problem
- Classification
 - Binary and Multiclass Classification
 - · Evaluation Metrics

Machine Learning: Where we at?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." - Mitchell, T. (1997)

"Machine Learning is the systematic study of algorithms and systems that improve their knowledge or performance with experience"- Flach, P. (2012)

Goal:

 Build models that capture the knowledge from observed cases to make inferences in unseen cases. In principle, more observations should lead to better models!

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

3

Machine Learning Tasks

- Unsupervised Learning:
 - no target label/value is associated to each example
 - the goal of learning is to obtain a description (e.g. structure, relationships) of the data set
 - e.g. descriptive / predictive clustering, association rules

Machine Learning Tasks

Supervised Learning:

- there is a target label/value that is associated to each example
- the goal of the learning task is to learn a function (model) that maps each example with its target variable
- → Predictive Modelling

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

5

Machine Learning Tasks

• Reinforcement Learning:

- the learning algorithm builds examples from a set of rules; then an iterative process is used to improve (or "reinforce") the set of examples until some evaluation criterion is good enough.
- a common example: learn to play chess, make a robot find the best path between two points

Machine Learning Tasks

What are the main learning paradigms?

- Batch learning
- · Online learning

Is there an assumption on data distribution?

- Parametric
- Non-parametric

What to do when new data points arrive?

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

7

Predictive Modelling

Example: Medical Diagnosis}

 Given an historical record containing the symptoms observed in several patients and the respective diagnosis

<u>Headache</u>	Temperature	<u>Age</u>	Throath Inflam.	Flu?
None	36.6	35	No	No
None	38.3	40	Yes	No
Moderate	38.6	86	No	Yes
Strong	40.0	26	No	Yes
Strong	38.2	50	No	Yes
Strong	36.5	70	Yes	No
Moderate	39.1	65	Yes	Yes
None	38.3	15	No	No
()				

 Predict the correct diagnosis for a new patient for which we know the symptoms.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

8

Predictive Modelling

- Prediction Models are obtained on the basis of the assumption that there is an unknown mechanism that maps the characteristics of the observations into conclusions/diagnoses.
- The goal of prediction models is to discover this mechanism.
- Medical Diagnosis
 - what we want is to know how symptoms influence the diagnosis
 - use a data set with "examples" of this mapping, e.g. this patient had symptoms s_1 , s_2 , s_3 and the conclusion was that he had flu.
- Using the available data, obtain a good approximation of the unknown function that maps the observation descriptors into the conclusions

- Descriptors / Predictors / Independent Variables
 - set of variables that describe the properties (features, attributes, predictors) of the cases in the data set
- Target / Dependent Variable:
 - what we want to predict/conclude regards the observations
- It is assumed that the target variable Y is a variable whose values depend on the values of the variables which describe the cases.
- · We just do not know how!
- The goal is to obtain an approximation of the function that maps the descriptors to the target variable.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

10

Predictive Modelling

Given a set of predictor variables \mathbf{X} and a target variable Y, there is a function f, such that $f(\mathbf{X}) = Y$

Since f is unknown, the goal is to learn the best approximation to f, h_{θ} , so that the target values can be obtained from the input data set.

With the built model h_{θ} , it is possible to make predictions for new, unseen observations!

- Underfitting:
 - · model is too simple to capture patterns in data
- Overfitting:
 - model performs well on training data but does not generalize well to unseen data.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

12

Predictive Modelling

Predictive models have two main uses:

- 1. Prediction:
 - use the obtained models to make predictions regards the target variable of new cases given their descriptors.
- 2. Comprehensibility:
 - use the models to better understand which are the factors that influence the conclusions.

Types of Prediction Problems

Depending on the type of the target variable Y we may be facing two different types of prediction models:

- Classification Problems
 - the target variable Y is nominal
 - e.g. medical diagnosis given the symptoms of a patient try to predict the diagnosis
- Regression Problems
 - the target variable Y is numeric
 - e.g. forecast the market value of a certain asset given its characteristics
- DATA MINING I 23/24 PREDICTIVE MODELLING I

14

Prediction Models

- There are many techniques that can be used to obtain prediction models based on a data set.
- Independently of the pros and cons of each alternative, all have some key characteristics:
- They assume a certain functional form for the unknown function f()
- Given this assumed form the methods try to obtain the best possible model based on:
 - the given data set
 - a certain preference criterion that allows comparing the different alternative model variants

Prediction Models

- · Distance-based approaches
 - e.g. kNN
- Probabilistic approaches
 - · e.g. naive Bayes, logistic regression
- Mathematical formulae
 - e.g. linear discriminants, linear regression

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

16

Prediction Models

- Logical approaches
 - · e.g. classification or regression trees, rules
- Optimization approaches
 - e.g. neural networks, SVMs
- Sets of models (ensembles)
 - e.g. random forests, adaBoost

Prediction Models

These different approaches entail different compromises in terms of:

- assumptions on the unknown form of dependency between the target and the predictors;
- · computational complexity of the search problem;
- flexibility in terms of being able to approximate different types of functions;
- interpretability of the resulting model;
- ...

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

18

Classification

Classification: Problem Definition

Setting

- $D = \{\langle \mathbf{x_i}, y_i \rangle\}_{i=1}^N$
- $\mathbf{x_i} = \langle x_{i1}, x_{i2}, \dots, x_{ip} \rangle$ the feature vector value
- $y_i \in Y$ is the value of the nominal variable Y

Goal: Learn the best approximation of the unknown function $Y = f(\mathbf{x})$

Approach

- Assume a functional form $h_{\theta}(\mathbf{x})$ for the unknown function f(), where θ are a set of parameters
- Assume a preference criterion over the space θ of possible parameterizations of h()
- Search for the "best" h() according to the criterion and the data set
- DATA MINING I 23/24 PREDICTIVE MODELLING I

19

Classification: Problem Definition

Binary Classification Problems (most common)

- when the target variable only assumes two possible values (classes), usually referred as positive and negative class.
- e.g. flu: yes/no, credit: yes/no
- Output of a classification model:
 - class assigned to a case
 - score / probability of case belonging to a certain class; a decision threshold is chosen to establish the predicted class
 - e.g. if $h_{\theta}(\mathbf{x}_i) \geq 0.5$ then is positive example, otherwise is negative.

Classification: Problem Definition

Multiclass Classification Problems

- when the target variable assumes more than two possible classes
- e.g. insurance risk: low, medium, high
- Some algorithms cannot handle multiclass; the alternative is to combine several binary classifiers
 - one-vs-all: train a model for each class; for k classes, we have k binary classifiers
 - one-vs-one: train a model for each pair of classes; for k classes, we have k(k-1)/2 classifiers

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

21

Classification: Evaluation Metrics

Goal:

- Obtain reliable estimates of performance and compare different classification models
- Where to assess the performance?
- Which evaluation metrics should be used?

Error Rate: proportion of predctions that are incorrect

$$L_{0/1} = \frac{1}{N} \sum_{i=1}^{N} I(\hat{y}_i, y_i)$$

where

- N is the number of cases
- $\hat{y}_i = h_{\theta}(\mathbf{x_i})$ is the predicted class by the model for the case i
- y_i is the respective true class
- I() is an indicator function such that $I(\hat{y}_i, y_i) = 0$ if $\hat{y}_i = y_i$ and 1 otherwise.

Accuracy = 1 - Error Rate

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

23

Classification: Evaluation Metrics

Confusion Matrices

- A square nc × nc matrix, where nc is the number of class values of the problem
- A special kind of contingency table, with two dimensions ("true class" and "predicted class")
- Each value reports the number of predictions made by the model of a class for a given true class.

		Predicted Class			
		C ₁	<i>C</i> ₂	<i>C</i> ₃	
True Class	C ₁	n_{c_1,c_1}	n_{c_1,c_2}	n_{c_1,c_3}	
	<i>C</i> ₂	n_{c_1,c_1}	n_{c_2,c_2}	n_{c_1,c_1}	
	<i>c</i> ₃	n_{c_3,c_1}	n_{c_2,c_3}	n_{c_3,c_3}	

• The error rate can be calculated from the information on this table.

Confusion matrix for a binary classification problem

		Predicted Class		
		Р	N	
True Class	Р	TP	FN	
		True Positive	False Negative	
	N	FP	TN	
		False Positive	True Negative	

- Accuracy = $\frac{TP+TN}{TP+FP+TN+FN}$
 - proportion of correct predictions
- Precision = $\frac{TP}{TP+FP}$
 - · proportion of the positive predictions of the model that are correct
- Recall = $\frac{TP}{TP+FN}$
 - proportion of the positive examples that are captured by the model
- DATA MINING I 23/24 PREDICTIVE MODELLING I

25

Classification: Evaluation Metrics

Adapted from wikipedia

- Precision/Recall tradeoff:
 - increasing precision may reduce recall and vice versa.
- It is easy to obtain 100% Recall: always predict P
- F-measure is a statistic that combines Precision an Recall

$$F_{\beta} = \frac{(\beta^2 + 1) \times Precision \times Recall}{\beta^2 \times Precision + Recall}$$

where β controls the relative importance of Precision and Recall.

- If $\beta = 1$ then is the harmonic mean between Precision and Recall;
- When $\beta \rightarrow 0$ the weight of Recall decreases.
- When $\beta \to \infty$ the weight of Precision decreases.
- DATA MINING I 23/24 PREDICTIVE MODELLING I

27

Classification: Evaluation Metrics

- · Some classifiers may require higher precision:
 - e.g. classifier that detects videos that are safer for kids. Keep high precision with only safe videos and may reject other videos that are good (low recall).
- Some classifiers may require higher recall:
 - e.g. classifier that detects disease on image samples. High recall to get all disease samples. Can handle some false positives (lower precision) that later will be double checked by doctors.
- There are several tradeoff measures that account for the performance in both classes differently:
 - e.g. G-mean, IBA (Index of Balanced Accuracy)

- Receiver Operating Characteristic (ROC) Curve:
 - trade-off between *TPR* (*recall*) and *FPR* as the discrimination threshold for the two classes varies.
- False Positive Rate (FPR): $\frac{FP}{TN+FP}$
 - proportion of negative cases wrongly predicted as positive.

True Class	Predicted Probability	FPR	TPR	Thr.
1 0	0.95 0.92	1/4	1/2	> 0.9
0	0.85 0.81	3/4	1/2	> 0.8
1 0	0.78 0.73	4/4	2/2	> 0.7

- DATA MINING I 23/24 - PREDICTIVE MODELLING - I

29

Classification: Evaluation Metrics

• Area Under Curve (AUC) of ROC: performance measure that tells how good the model is in distinguishing the two classes.

- · A perfect classifier has AUC of 1;
- A random classifier has AUC of 0.5;
- The higher the AUC, the better.

References

References

Aggarwal, Charu C. 2015. Data Mining, the Texbook. Springer.

Ferreira, Pedro G. 2019. "Fundamentals and Applications of ML Course." Slides.

Flach, Peter. 2012. *Machine Learning: The Art and Science of Algorithms That Make Sense of Data*. Cambridge University Press.

https://doi.org/10.1017/CBO9780511973000.

Gama, João, André Carlos Ponce de Leon Ferreira de Carvalho, Katti Faceli, Ana Carolina Lorena, and Márcia Oliveira. 2015. *Extração de Conhecimento de Dados: Data Mining -3rd Edition*. Edições Sílabo.

Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. *Data Mining: Concepts and Techniques*. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Tan, Pang-Ning, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. *Introduction to Data Mining*. 2nd ed. Pearson.

Torgo, Luís. 2017. "Data Mining i Course." Slides.