Systemy algebraiczne

- 1. Czy zbiór $\{2^i : i \in \mathbb{N}\}$ jest zamknięty ze względu na dodawanie?
- 2. Niech A będzie niepustym zbiorem. Udowodnij, że zbiór wszystkich bijekcji ze zbioru A w A z operacją składania funkcji tworzy algebre.
- 3. Udowodnij, że zbiory (a) $\{0,3\}$ i (b) $\{0,2,4\}$ tworzą podalgebry algebry $\mathbb{Z}_6 = \langle \{0,1,2,3,4,5\}, +_{mod6}, \times_{mod6} \rangle$, gdzie $a +_{mod6} b = (a+b) mod 6$, $a \times_{mod6} b = (a \times b) mod 6$.
- 4. Udowodnij, że algebra $\mathbb{Z}_4 = <\{0,1,2,3\}, +_{mod4} > \text{jest izomorficzna z algebra} <\{1,3,7,9\}, \times_{mod10} >.$
- 5. Udowodnić, że jeśli dwa dowolne skończone grafy są izomorficzne, to sumy rzędów wierzchołków tych grafów są takie same.
- 6. Udowodnij, że algebra $<\mathbb{R},+,\ominus,0>$ jest izomorficzna z algebrą $<\mathbb{R}^+,\times,\otimes,1>$, gdzie operacje $+,\times$ są zwykłymi dwuargumentowymi operacjami dodawania i mnożenia liczb rzeczywistych, a operacje \ominus i \otimes są jednoargumentowymi operacjami określonymi następująco: $\ominus a = -a, \otimes b = b^{-1}$ dla dowolnego $a \in \mathbb{R}, b \in \mathbb{R}^+$.
- 7. Niech h będzie funkcją odwzorowującą zbiór liczb całkowitych \mathbb{Z} w \mathbb{Z} , h(x) = 2x dla $0 \le x$, h(x) = -2x 1 dla x < 0. Wyznacz zbiór $h(\mathbb{Z})$. Zbadaj, czy h jest homomorfizmem odwzorowującym algebrę $< \mathbb{Z}, +>$ na algebrę $< h(\mathbb{Z}), +>$?
- 8. Zbadaj, czy relacja ~ określona w zbiorze liczb rzeczywistych \mathbb{R} , $x \sim y$ wttw |x| = |y|, jest kongruencją w podanej algebrze. Jeśli odpowiedź jest twierdząca, wyznacz system ilorazowy. (a) $< \mathbb{R}, \times >$. (b) $< \mathbb{R}, + >$.
- 9. Udowodnij, że (a) zbiór $A = \{3^k : k \in \mathbb{N}\}$ jest podalgebrą algebry $\mathbb{Z}, \times \mathbb{Z}, \times \mathbb{Z}$ (b) zbiór $B = \{3k : k \in \mathbb{N} \setminus \{0\}\}$ jest podalgebrą algebry $\mathbb{Z}, + \mathbb{Z}$. W każdym z rozważanych przypadków wyznacz zbiory generatorów.
- 10. Udowodnij, że odwzorowanie h(x) = x+1 jest izomorfizmem odwzorowującym algebrę $\langle \mathbb{Q}, \oplus, \otimes \rangle$ w algebrę $\langle \mathbb{Q}, +, \times \rangle$, gdzie operacje \oplus i \otimes są zdefiniowane następująco: $a \oplus b = (a+b+1)$, $a \otimes b = a \times b + a + b$, dla dowolnych liczb wymiernych a, b.
- 11. Niech ρ będzie relacją równoważności w algebrze $\mathbf{A} = \langle A, (f_i)_{i \in I} \rangle$, gdzie f_i jest operacją jednoargumentową w A, dla wszystkich i. Udowodnij, że jeżeli dla kazdego $a \in A$, [a] jest podalgebrą algebry A, to ρ jest kongruencją w A. Wyznacz system ilorazowy A/ρ .
- 12. Niech U będzie niepustym zbiorem i niech A będzie ustalonym podzbiorem U. W zbiorze P(U) definiujemy relację \sim_A następująco: $X \sim_A Y$ wttw $X \cup A = Y \cup A$, dla dowolnych $X,Y \in U$. Udowodnij, że \sim_A jest kongruencją w algebrze zbiorów $< P(U), \cup, \cap >$. Wyznacz system ilorazowy.
- 13. Rozważmy system relacyjny $\langle \Sigma^*, o \rangle$, gdzie Σ^* jest zbiorem słów nad alfabetem Σ , a o jest operacją konkatenacji słów. Niech \sim będzie relacją binarną taką, że $w \sim w'$ wtedy i tylko wtedy, gdy pierwsze litery słów w i w' są identyczne. Udowodnij, że jest to relacja kongruencji i określ system ilorazowy.
- 14. Niech Σ będzie zbiorem cyfr w systemie dziesiętnym, $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}.$ Rozważmy algebrę

$$\Xi = \langle \Sigma \cup \mathbb{N}, push, pop, top, empty \rangle$$

gdzie

$$push(i,n) = (n+1) \times 10 + i$$

$$pop(n) = n \ div 10 - 1$$

$$top(n) = n \ mod10$$

$$empty(n) = true \text{ wttw } n = 0$$

dla dowolnej liczby naturalnej n i dowolnej cyfry i. Zbadaj, czy podana struktura jest modelem nastepującego zbioru formuł.

- (a) $not\ empty(push(i,s))$
- (b) not $empty(s) \rightarrow push(top(s), pop(s)) = s$
- (c) top(push(i, s)) = i