Transformations on API Source

Kaylynn Mosier

```
12 May 2024
```

```
In [203. # Load required packages
import joan
import requests
import pandas as pd
```

API key

I have saved my API key in a json file to keep in secret. I used json.dump() to do this. I have omitted this section of code from the assignment to keep my key private.

```
In [204_ # Opening JSON file that stores API key
with open("OpenMeaterAPIKey.json", "r") as openfile:
    # Reading from JSON file
    json_object = json.load(openfile)

# Saving API key as variable
api_key = json_object['api_key']
```

Testing Air Quality API

Before I begin to write my functions, I want to check that my API requests are working correctly.

```
In [285. # Soves base UNI # Soves base U
```

Constructing DataFrame of API data

Looks like my API calls are working correctly and I can access the data I need to!

```
return lat, lon
In [213... def get_air_quality(lat, lon):
                               Function that finds Air Quality data from the OpenWeatherMap Air Quality API
                               Returns response from API
                               base_url = "http://api.openweathermap.org/data/2.5/air_pollution?"
                               # api_key = '7db0bf338907c0e424aee048b1d8369a'
url = base_url + 'lat=' + str(lat) + '&lon=' + str(lon) + '&appid=' + api_key
                               # Submits request to API
response = requests.get(url).json()
                               return response
In [214... def build dataframe(cities):
                               Takes a list of city names
                               Returns a DataFrame with needed air quality information from OpenWeatherMap Air Quality API
                               # This section of code parses required data and appends it to the dictionary
for city in cities:

lat, lon = get_coordinates(city)
response = get_air_quality(lat, lon)
city_dict['city'].append(city)
city_dict['city'].append(city)
city_dict['ciny'].append(lat)
city_dict['concentration (CO'].append(response['list'][0]['main']['aqi'])
city_dict['Concentration (CO'].append(response['list'][0]['components']['no'])
city_dict['Concentration NO'].append(response['list'][0]['components']['no'])
city_dict['Concentration NO'].append(response['list'][0]['components']['nab'])
city_dict['Concentration NO'].append(response['list'][0]['components']['nab'])
city_dict['Concentration O'].append(response['list'][0]['components']['nab'])
city_dict['Concentration PO'].append(response['list'][0]['components']['mpd'])
city_dict['Concentration PO'].append(response['list'][0]['components']['mpd'])
city_dict['Concentration PO'].append(response['list'][0]['components']['mpd'])
city_dict['Concentration PO'].append(response['list'][0]['components']['mpd'])
                               return pd.DataFrame(city_dict)
```

Construct a dataframe of all API information using list of cities in Milestone 2 air_pollution_data = build_dataframe(cities_list) air_pollution_data

5		City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Lat	Lon
	0	Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	1717034229	36.775361	3.060188
	1 Bu	ujumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	1717034230	-3.363812	29.367503
	2	Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	1717034231	6.367695	2.425251
	3	Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	1717034233	4.390715	18.550913
	4 B	razzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	1717034234	-4.269441	15.271226
			***									***		
1	15	Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	1717034359	26.223504	50.582244
1	16	Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	1717034360	32.085300	34.781806
1	17	Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	1717034361	31.951569	35.923963
1	18	Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	1717034362	29.379653	47.973417
1	19	Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	1717034363	33.895920	35.478430

120 rows × 13 columns

Transformation 1- Change date type of DateTime column

```
# Check data types of dataframe columns
air_pollution_data.dtypes
                  City
Quality Rating
Concentration CO
Concentration NO
Concentration NO2
                                                             float64
float64
float64
                   Concentration NH3
                                                             float64
                   Concentration 03
                                                             float64
                                                           float64
float64
float64
float64
int64
float64
                   Concentration SO2
Concentration PM2.5
Concentration PM10
                   DateTime
                   Lat
                   Lon
                                                             float64
                   dtype: object
In [217... # Imports datetime package from datetime import datetime
In [218... # Uses to_datetime to transform column to datetime format
air_pollution_data['DateTime'] = pd.to_datetime(air_pollution_data['DateTime'], unit='s')
air_pollution_data
```

		City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Lat	Lon
	0	Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	2024-05-30 01:57:09	36.775361	3.060188
	1 Buj	jumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	-3.363812	29.367503
	2 (Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	6.367695	2.425251
	3	Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	4.390715	18.550913
	4 Bra	azzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	-4.269441	15.271226
1	15 N	Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	26.223504	50.582244
1	16	Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	32.085300	34.781806
1	17	Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	31.951569	35.923963
1	18	Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	29.379653	47.973417
1	19	Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30 01:59:23	33.895920	35.478430

120 rows × 13 columns

Transformation 2- Add column for decode of Quality Rating

Using information from the API documentation, the values in the quality rating column are equilavent to qualitative ratings.

- 1 Good 2 Fair 3 Moderate 4 Poor 5 Very Poor

In [219_ # Duplicate quality rating values in a new column titled qualitative name
air_pollution_data['Qualitative Name'] = air_pollution_data['Quality Rating']
air_pollution_data

Out[219.

19		City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Lat	Lon	Qualitative Name
	0	Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	2024-05-30 01:57:09	36.775361	3.060188	1
	1	Bujumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	-3.363812	29.367503	3
	2	Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	6.367695	2.425251	1
	3	Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	4.390715	18.550913	1
	4	Brazzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	-4.269441	15.271226	1
							***					***			
1	15	Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	26.223504	50.582244	4
1	16	Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	32.085300	34.781806	3
1	17	Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	31.951569	35.923963	2
1	18	Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	29.379653	47.973417	4
1	19	Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30 01:59:23	33.895920	35.478430	2

120 rows × 14 columns

In [220_ # Replace numerical values with qualitative name air_pollution_data['Qualitative Name'].replace([1, 2, 3, 4, 5], ['Good', 'Fair', 'Moderate', 'Poor', 'Very Poor']) air_pollution_data

	r	2		

ð		City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Lat	Lon	Qualitative Name
	0	Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4,29	8.38	2024-05-30 01:57:09	36.775361	3.060188	Good
	1	Bujumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	-3.363812	29.367503	Moderate
	2	Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	6.367695	2.425251	Good
	3	Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	4.390715	18.550913	Good
	4	Brazzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	-4.269441	15.271226	Good

1	15	Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	26.223504	50.582244	Poor
1	16	Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	32.085300	34.781806	Moderate
1	17	Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	31.951569	35.923963	Fair
1	18	Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	29.379653	47.973417	Poor
1	19	Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30 01:59:23	33.895920	35.478430	Fair

120 rows × 14 columns

Transformation 3- Set index

In [221_ air_pollution_data = air_pollution_data.set_index(air_pollution_data['City']) # Sets index as City air_pollution_data = air_pollution_data.drop('City', axis=1) # Drops city column air_pollution_data

Out[221...

	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Lat	Lon	Qualitative Name
City													
Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	2024-05-30 01:57:09	36.775361	3.060188	Good
Bujumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	-3.363812	29.367503	Moderate
Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	6.367695	2.425251	Good
Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	4.390715	18.550913	Good
Brazzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	-4.269441	15.271226	Good
Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	26.223504	50.582244	Poor
Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	32.085300	34.781806	Moderate
Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	31.951569	35.923963	Fair
Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	29.379653	47.973417	Poor
Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30 01:59:23	33.895920	35.478430	Fair

120 rows × 13 columns

Transformation 4- Drop Lat and Lon columns

None of my other datasets include latitude and longitude inforamation. This information was useful at first to ensure my functions were working correctly, but since the city is already included as a column, this information a redundent.

In [222_ air_pollution_data = air_pollution_data.drop(['Lat', 'Lon'], axis=1) # Drop Lat and Lon columns air_pollution_data

2		Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name
	City											
	Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	2024-05-30 01:57:09	Good
Bu	jumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	Moderate
	Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	Good
	Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	Good
Br	azzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	Good
							***	***			***	
	Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	Poor
	Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	Moderate
	Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	Fair
	Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	Poor
	Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30 01:59:23	Fair

120 rows × 11 columns

Transformation 5- Add country column

Multiple countries can have the same city names. To make sure comparisons to my other datasets are correct, it is useful to know the country each city is in. This will require an additional request to the Geocoding API.

```
In [223... def get_country(city):
                     Function to find country of cities using OpenWeatherMap Geocoding API
                     Returns country code
                     geocoding_base = "http://api.openweathermap.org/geo/1.0/direct?" # Base URL for geocoding API api_key = '7db0bf338907c0e424aee048bld8369a' limit = '1'
                     limit = '1'
geocoding_url = geocoding_base + 'q=' + city + '&limit=' + limit + '&appid=' + api_key # Final URL for geocoding API
geocoding_response = requests.get(geocoding_url).json() # Submits request to API
country_code = geocoding_response[0]['country'] # Finds latitude
In [224... def build_city_country_dict(cities):
                     Takes a list of city names
                     Returns a dictionary with city names and country code
                     city_country_dict = {'City':[], 'Country Code':[]} # Creates empty dictionary to store data
                    for city in cities_list:
    city_country_dict['City'].append(city) # Appends city to dictionary
    country_code * get_country(city) # Calls function to get country_code
    city_country_dict['Country Code'].append(country_code) # Appends country_code to dictionary
                     return pd.DataFrame(city_country_dict)
In [225_
# Create dictionary of cities and countries
city_country_df = build_city_country_dict(cities_list)
             city_country_df = city_country_df.set_index(city_country_df['City']) # Setting index
city_country_df = city_country_df.drop('City', axis=1) # Dropping city column because it is now the index
city_country_df
                                Country Code
                        City
                                              DZ
                     Algiers
                Bujumbura
                                              ВІ
                   Cotonou
                                               BJ
                   Bangui
                                              CF
                 Brazzaville
                                              CG
                   Manama
                                              ВН
                   Tel Aviv
                                              IL
                    Amman
                                              KW
                     Beirut
                                               LB
              120 rows x 1 columns
              # Join dataframes together based on index
air_pollution_data = air_pollution_data.join(city_country_df)
In [228... air_pollution_data
```

	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name	Country Code
City												
Algiers	1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	2024-05-30 01:57:09	Good	DZ
Bujumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	Moderate	ВІ
Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	Good	ВЈ
Bangui	1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	Good	CF
Brazzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	Good	CG

Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	Poor	ВН
Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	Moderate	IL
Amman	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	Fair	JO
Kuwait	4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	Poor	KW
Beirut	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30	Fair	LB

120 rows × 12 columns

Transformation 6- Add column for country name using additional dataset

In [229_ # Open dataset that contains country name and alpha2 code
Found at: https://www.kaggle.com/datasets/emolodov/country-codes-alpha2-alpha3
country_codes_data = pd.read_csv("C:/Users/kayly/OneDrive/Desktop/MSDS/DSC540/Tem Project/CountryCodes.csv")
country_codes_data

country alpha2 alpha3 numeric **0** Afghanistan AF AFG 1 Albania AL ALB 8 2 Algeria DZ DZA 12 **3** American Samoa AS ASM 16 4 Andorra AD AND 20
 244
 Western Sahara
 EH
 ESH
 732

 245
 Yemen
 YE
 YEM
 887

 246
 Zambia
 ZM
 ZMB
 894

 247
 Zimbabwe
 ZW
 ZWE
 716

248 Åland Islands AX ALA 248

249 rows × 4 columns

In [230_ # Drop columns that are not needed country_codes_data = country_codes_data.drop(['alpha3', 'numeric'], axis=1) country_codes_data

Out[230...

0	Afghanistan	AF
1	Albania	AL
2	Algeria	DZ
3	American Samoa	AS
4	Andorra	AD

244	Western Sahara	EH
245	Yemen	YE
246	Zambia	ZM
247	Zimbabwe	ZW
248	Åland Islands	AX

249 rows × 2 columns

"" Nermine Columns (columns={'alpha2':'Country Code', 'country':'Country'}, inplace=True) country_codes_data

	Country	Country Code
0	Afghanistan	AF
1	Albania	AL
2	Algeria	DZ
3	American Samoa	AS
4	Andorra	AD
	***	***
244	Western Sahara	EH
245	Yemen	YE
246	Zambia	ZM
247	Zimbabwe	ZW
248	Åland Islands	AX

249 rows × 2 columns

In [232_ # Set index
 country_codes_data.set_index('Country Code', inplace=True)
 country_codes_data

Out[232...

Country Code											
AF	Afghanistan										
AL	Albania										
DZ	Algeria										
AS	American Samoa										
AD	Andorra										

EH	Western Sahara										
YE	Yemen										
ZM	Zambia										

ZW Zimbabwe

AX Åland Islands 249 rows × 1 columns

In [234_ air_pollution_data = air_pollution_data.reset_index() air_pollution_data.set_index('Country Code', inplace=True) air_pollution_data

Out[234...

	inde	x City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name
Country													
DZ	:	0 Algiers	. 1	240.33	0.01	39.07	0.43	23.60	5.54	4.29	8.38	2024-05-30 01:57:09	Good
В	ı	1 Bujumbura	3	647.54	0.00	4.16	2.41	10.46	0.48	27.18	60.28	2024-05-30 01:57:10	Moderate
В.	ı	2 Cotonou	1	343.80	0.00	0.51	1.30	36.84	0.57	3.66	9.32	2024-05-30 01:57:11	Good
CI	:	3 Bangu	i 1	263.69	0.00	0.11	0.07	0.15	0.00	0.50	1.16	2024-05-30 01:57:13	Good
co	i	4 Brazzaville	1	357.15	0.00	0.91	0.81	18.95	0.30	6.04	16.23	2024-05-30 01:57:14	Good
				***			***		***		***	***	
BH	I 11	5 Manama	4	260.35	0.00	11.48	0.65	91.55	29.56	54.10	173.35	2024-05-30 01:59:19	Poor
II	. 11	6 Tel Aviv	3	185.25	0.00	0.34	0.00	110.15	0.64	10.57	23.45	2024-05-30 01:59:20	Moderate
JC	11	7 Ammar	2	180.24	0.00	6.00	0.96	60.08	3.55	13.34	33.41	2024-05-30 01:59:21	Fair
KW	1 11	8 Kuwai	: 4	230.31	0.00	1.95	0.35	92.98	2.12	35.86	127.23	2024-05-30 01:59:22	Poor
LE	3 11	9 Beiru	2	196.93	0.00	2.87	0.00	98.71	3.43	13.17	25.16	2024-05-30 01:59:23	Fair

120 rows × 13 columns

In [235_ # Join datasets on index (country code)
air_pollution_data = air_pollution_data.join(country_codes_data)

In [236_ air_pollution_data = air_pollution_data.reset_index()
air_pollution_data

5	C	Country Code	index	City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name	Country
	0	AL	70	Tirana	1	208.62	0.00	3.90	2.95	40.41	0.30	8.70	10.92	2024-05-30 01:58:36	Good	Albania
	1	AM	101	Yerevan	1	175.24	0.00	6.86	5.00	38.62	0.60	6.12	15.66	2024-05-30 01:59:07	Good	Armenia
	2	AT	71	Vienna	1	216.96	0.00	7.28	3.01	28.61	0.66	5.24	6.72	2024-05-30 01:58:36	Good	Austria
	3	AU	64	Brisbane	2	247.00	1.72	6.94	0.58	62.94	5.54	2.28	3.93	2024-05-30 01:58:29	Fair	Australia
	4	AU	65	Canberra	1	223.64	0.09	0.39	0.13	47.92	0.23	3.46	3.73	2024-05-30 01:58:32	Good	Australia
								***	***			***		***		***
1	15	US	23	Capetown	2	196.93	0.05	0.34	0.00	87.98	0.45	0.79	2.25	2024-05-30 01:57:34	Fair	United States of America (the)
1	16	UZ	62	Tashkent	1	367.17	23.69	35.30	3.77	11.36	2.92	9.00	14.01	2024-05-30 01:58:28	Good	Uzbekistan
1	17	VN	63	Hanoi	3	827.79	1.30	25.71	9.12	9.66	13.95	34.47	47.49	2024-05-30 01:50:24	Moderate	Viet Nam
1	18	XK	102	Pristina	1	203.61	0.01	6.26	4.18	18.06	1.73	8.37	11.71	2024-05-30 01:59:08	Good	NaN
1	19	ZM	28	Lusaka	2	1415.25	0.00	6.34	11.65	37.19	6.14	11.48	19.94	2024-05-30 01:57:44	Fair	Zambia

120 rows × 15 columns

In [237... # Check for NA values
air_pollution_data.isna().sum()

Country Code index City Quality Rating Concentration NO Concentration NO Concentration NO2 Concentration NO3 Concentration O3 Concentration PM10 Concentration PM10 DateTime Qualitative Name Country dtype: int64

There are two countries with NA values for the Country Name column.

In [238...

Find rows with NA values
air_pollution_data[air_pollution_data['Country'].isna()]

Quality Concentration CO Concentration NO Concentration NO2 Country Code index Concentration NH3 Qualitative Name Concentration PM10 Concentration O3 Concentration SO2 Concentration PM2.5 DateTime Country City 2024-05-30 01:57:29 18 Windhoek 216.96 0.00 0.40 0.20 33.62 0.87 7.79 10.34 NA Good NaN 2024-05-30 01:59:08 118 XK 102 Pristina 203.61 0.01 6.26 4.18 18.06 1.73 8.37 11.71 Good NaN

The country names in rows 86 and 118 are, I will drop these rows.

air_pollution_data.set_index('Country Code', inplace=True)
air_pollution_data = air_pollution_data.drop(['NA', 'XK'])
air_pollution_data In [239...

Out[239.

Out[238...

	index	City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name	Country
Country Code														
AL	70	Tirana	1	208.62	0.00	3.90	2.95	40.41	0.30	8.70	10.92	2024-05-30 01:58:36	Good	Albania
AM	101	Yerevan	1	175.24	0.00	6.86	5.00	38.62	0.60	6.12	15.66	2024-05-30 01:59:07	Good	Armenia
AT	71	Vienna	1	216.96	0.00	7.28	3.01	28.61	0.66	5.24	6.72	2024-05-30 01:58:36	Good	Austria
AU	64	Brisbane	2	247.00	1.72	6.94	0.58	62.94	5.54	2.28	3.93	2024-05-30 01:58:29	Fair	Australia
AU	65	Canberra	1	223.64	0.09	0.39	0.13	47.92	0.23	3.46	3.73	2024-05-30 01:58:32	Good	Australia
UG	27	Kampala	5	1628.88	0.09	7.45	6.59	2.48	2.27	98.01	132.54	2024-05-30 01:57:42	Very Poor	Uganda
US	23	Capetown	2	196.93	0.05	0.34	0.00	87.98	0.45	0.79	2.25	2024-05-30 01:57:34	Fair	United States of America (the)
UZ	62	Tashkent	1	367.17	23.69	35.30	3.77	11.36	2.92	9.00	14.01	2024-05-30 01:58:28	Good	Uzbekistan
VN	63	Hanoi	3	827.79	1.30	25.71	9.12	9.66	13.95	34.47	47.49	2024-05-30 01:50:24	Moderate	Viet Nam
ZM	28	Lusaka	2	1415.25	0.00	6.34	11.65	37.19	6.14	11.48	19.94	2024-05-30 01:57:44	Fair	Zambia

118 rows × 14 columns

Previous drop successfully dropped needed row
air_pollution_data[air_pollution_data['Country'].isna()]

Out[240... Concentration NO Concentration CO Concentration NO2 Concentration NH3 Concentration PM2.5 ntration PM10 DateTime Qualitative Name Country index City Country Code

In [245_ air_pollution_data = air_pollution_data.drop('index', axis=1)
air_pollution_data

	Country Code	City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name
Country													
Albania	AL	Tirana	1	208.62	0.00	3.90	2.95	40.41	0.30	8.70	10.92	2024-05-30 01:58:36	Good
Armenia	AM	Yerevan	1	175.24	0.00	6.86	5.00	38.62	0.60	6.12	15.66	2024-05-30 01:59:07	Good
Austria	AT	Vienna	1	216.96	0.00	7.28	3.01	28.61	0.66	5.24	6.72	2024-05-30 01:58:36	Good
Australia	AU	Brisbane	2	247.00	1.72	6.94	0.58	62.94	5.54	2.28	3.93	2024-05-30 01:58:29	Fair
Australia	AU	Canberra	1	223.64	0.09	0.39	0.13	47.92	0.23	3.46	3.73	2024-05-30 01:58:32	Good
Uganda	UG	Kampala	5	1628.88	0.09	7.45	6.59	2.48	2.27	98.01	132.54	2024-05-30 01:57:42	Very Poor
United States of America (the)	US	Capetown	2	196.93	0.05	0.34	0.00	87.98	0.45	0.79	2.25	2024-05-30 01:57:34	Fair
Uzbekistan	UZ	Tashkent	1	367.17	23.69	35.30	3.77	11.36	2.92	9.00	14.01	2024-05-30 01:58:28	Good
Viet Nam	VN	Hanoi	3	827.79	1.30	25.71	9.12	9.66	13.95	34.47	47.49	2024-05-30 01:50:24	Moderate
Zambia	ZM	Lusaka	2	1415.25	0.00	6.34	11.65	37.19	6.14	11.48	19.94	2024-05-30 01:57:44	Fair

118 rows × 13 columns

Final Dataset

In [246_ air_pollution_data = air_pollution_data.reset_index() air_pollution_data.set_index('Country', inplace=True) air_pollution_data

Out[246...

	Country Code	City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name
Country													
Albania	AL	Tirana	1	208.62	0.00	3.90	2.95	40.41	0.30	8.70	10.92	2024-05-30 01:58:36	Good
Armenia	AM	Yerevan	1	175.24	0.00	6.86	5.00	38.62	0.60	6.12	15.66	2024-05-30 01:59:07	Good
Austria	AT	Vienna	1	216.96	0.00	7.28	3.01	28.61	0.66	5.24	6.72	2024-05-30 01:58:36	Good
Australia	AU	Brisbane	2	247.00	1.72	6.94	0.58	62.94	5.54	2.28	3.93	2024-05-30 01:58:29	Fair
Australia	AU	Canberra	1	223.64	0.09	0.39	0.13	47.92	0.23	3.46	3.73	2024-05-30 01:58:32	Good
	•••				***	•••	***	***				***	
Uganda	UG	Kampala	5	1628.88	0.09	7.45	6.59	2.48	2.27	98.01	132.54	2024-05-30 01:57:42	Very Poor
United States of America (the)	US	Capetown	2	196.93	0.05	0.34	0.00	87.98	0.45	0.79	2.25	2024-05-30 01:57:34	Fair
Uzbekistan	UZ	Tashkent	1	367.17	23.69	35.30	3.77	11.36	2.92	9.00	14.01	2024-05-30 01:58:28	Good
Viet Nam	VN	Hanoi	3	827.79	1.30	25.71	9.12	9.66	13.95	34.47	47.49	2024-05-30 01:50:24	Moderate
Zambia	ZM	Lusaka	2	1415.25	0.00	6.34	11.65	37.19	6.14	11.48	19.94	2024-05-30 01:57:44	Fair

118 rows × 13 columns

Writing final table to CSV file

In [242... import csv In [247_ # Writing dataframe to a csv file air_pollution_data.to_csv('AirPollutionData', sep=',', encoding='utf-8', index=True)

In [244_ # Checking that writing to file worked correctly csvFile = pd.read_csv("C:/Users/kayly/OneDrive/Desktop/MSDS/DSC540/Tem Project/AirPollutionData") csvFile

Out[244...

	Country	Country Code	index	City	Quality Rating	Concentration CO	Concentration NO	Concentration NO2	Concentration NH3	Concentration O3	Concentration SO2	Concentration PM2.5	Concentration PM10	DateTime	Qualitative Name
0	Albania	AL	70	Tirana	1	208.62	0.00	3.90	2.95	40.41	0.30	8.70	10.92	2024-05-30 01:58:36	Good
1	Armenia	AM	101	Yerevan	1	175.24	0.00	6.86	5.00	38.62	0.60	6.12	15.66	2024-05-30 01:59:07	Good
2	Austria	AT	71	Vienna	1	216.96	0.00	7.28	3.01	28.61	0.66	5.24	6.72	2024-05-30 01:58:36	Good
3	Australia	AU	64	Brisbane	2	247.00	1.72	6.94	0.58	62.94	5.54	2.28	3.93	2024-05-30 01:58:29	Fair
4	Australia	AU	65	Canberra	1	223.64	0.09	0.39	0.13	47.92	0.23	3.46	3.73	2024-05-30 01:58:32	Good

113	Uganda	UG	27	Kampala	5	1628.88	0.09	7.45	6.59	2.48	2.27	98.01	132.54	2024-05-30 01:57:42	Very Poor
114	United States of America (the)	US	23	Capetown	2	196.93	0.05	0.34	0.00	87.98	0.45	0.79	2.25	2024-05-30 01:57:34	Fair
115	Uzbekistan	UZ	62	Tashkent	1	367.17	23.69	35.30	3.77	11.36	2.92	9.00	14.01	2024-05-30 01:58:28	Good
116	Viet Nam	VN	63	Hanoi	3	827.79	1.30	25.71	9.12	9.66	13.95	34.47	47.49	2024-05-30 01:50:24	Moderate
117	Zambia	ZM	28	Lusaka	2	1415.25	0.00	6.34	11.65	37.19	6.14	11.48	19.94	2024-05-30 01:57:44	Fair

118 rows × 15 columns

Ethical implications

The API I used provided thorough clean data that did not require much manipulation. I changed the DateTime information into a more human-readable format. Other than that, I did not alter any data provided by the API, I basically just re-formatted the dataframe to be more compatable with my other data sources. I do not see any additional risk being added or created by my transformations. As far as I am aware, there are no legal or regulatory guidelines for my topic.

The API documentation did note that each country has their own standard for air quality ratings. This means that a quality rating of Medium in the UK may be a different rating in the US. It is not clear if the API returns a quality rating for each country based on that country's standards or by a chosen set of standards. It makes more sense that a chosen set of standards would be used (for example, apply US standards to all countries) because this allows for normalization of the quality ratings. If this is not the case, it would be difficult to compare quality ratings accross countries. I chose to assume all cities are being held to the same standard. This could be a risky assumption because it could lead to false correlations and incorrect conclusions.

I got my data from OpenWeatherMap which is a well known and reputable API source. I do not have concerns about the quality of validity of my data. I also do not have ethical concerns about sourcing of the data.