Logic exercises 9 (unassessed) Thanks to Krysia Broda.

In questions 1-6, let L be the signature of slide 87, used for lists of type Nat. Let xs, ys be variables of sort [Nat], and n, m variables of sort Nat.

For questions 1–5, write *L*-formulas expressing the following. Do not write [x], [x, y], etc. in formulas — these are not *L*-formulas. **Example:** if you were asked to express '3 is an entry in xs', you could write $\exists n(n < \sharp(xs) \land xs!!n = \underline{3})$, or $\exists ys\exists zs(xs = ys + +(\underline{3}:zs))$.

- 1. xs is the list [4,6]. Don't you dare write xs = [4,6]; this is not an L-formula. Hint: the L-term $\underline{2}$: [] is interpreted as the list [2].
- 2. All entries in xs are zero (do you think this is true of the empty list?!)
- 3. For every entry in xs, there's a bigger entry in ys.
- 4. xs is the reverse of ys (e.g., xs = [3, 6, 2, 1], <math>ys = [1, 2, 6, 3]).
- 5. ys is the list of maximal entries of xs. (E.g., the list of maximal entries of the list [6,0,1,6,3,6] is [6,6,6], and the list of maximal entries of [] is [].) Use count or merge.
- 6. In plain English, what does the following say about xs and n?

$$\exists ys \Big(\sharp(ys) > \sharp(xs) \land ys!!\underline{0} = \underline{0}$$
$$\land \forall m(m < \sharp(xs) \to ys!!(m + \underline{1}) = ys!!m + xs!!m) \land n = ys!!(\sharp(xs))\Big)$$

- 7. Use equivalences to show the following, identifying the equivalences used at each step.
 - (a) $\neg \exists x [\operatorname{Martian}(x) \land \neg \operatorname{dislikes}(x, \operatorname{Mary}) \land \operatorname{age-more-than-25}(x)]$ is logically equivalent to $\forall x [\operatorname{Martian}(x) \land \operatorname{age-more-than-25}(x) \rightarrow \operatorname{dislikes}(x, \operatorname{Mary})]$
 - (b) $\forall x [\neg \forall y [\text{woman}(y) \rightarrow \neg \text{dislikes}(x, y)] \rightarrow \text{dislikes}(\text{Jane}, x)]$ is logically equivalent to $\forall x [\exists y [\text{woman}(y) \land \text{dislikes}(x, y)] \rightarrow \text{dislikes}(\text{Jane}, x)]$
 - (c) $\forall y [\exists x P(x,y) \to \neg S(y)]$ is logically equivalent to $\neg \exists y \exists x [P(x,y) \land S(y)]$
- 8. (a) Use propositional equivalences to show that $p \to (q \to r)$ is logically equivalent to $(p \land q) \to r$ (you did this by natural deduction in Ex. sheet 3 Q4 parts (d) & (f)).
 - (b) By using part (a), suitable first-order equivalences, and translating $\forall x : \mathbf{T} P(x)$ into $\forall x [(\text{is-a-T}(x) \to P(x)) \text{ and } \exists x : \mathbf{T} P(x) \text{ into } \exists x (\text{is-a-T}(x) \land P(x)), \text{ show that for any sort } \mathbf{T}, \forall x : \mathbf{T} [P(x) \to S] \text{ is logically equivalent to } (\exists x : \mathbf{T} P(x)) \to S.$
- 9. Using equivalences, show that the following sentences are logically equivalent:
 - (a) $\exists x(x=y \vee \operatorname{green}(x))$ and $\exists u(u=u \wedge y=u) \vee \exists v \operatorname{green}(v)$.
 - (b) $\exists x \forall y (\text{friend}(x, y) \to \text{happy}(x)) \text{ and } \forall x \exists y \text{friend}(x, y) \to \exists v \text{happy}(v).$
 - (c) $\forall t \neg \exists u (R(t,u) \land \neg \forall v (R(t,v) \rightarrow \exists w (R(v,w) \land R(u,w))))$ and $\forall t \forall u \forall v (R(t,u) \land R(t,v) \rightarrow \exists w (R(v,w) \land R(u,w)).$

- 10. Use natural deduction to prove the following. Do not rewrite any sentences by equivalences.
 - (a) $\forall x \neg P(x) \vdash \neg \exists x P(x)$, and $\neg \exists x P(x) \vdash \forall x \neg P(x)$.
 - (b) $\exists x \neg P(x) \vdash \neg \forall x P(x)$, and $\neg \forall x P(x) \vdash \exists x \neg P(x)$ (the second is nasty: try assuming $\neg \forall x P(x), \neg \exists x \neg P(x)$ and deriving \bot).
 - (c) $\exists x (F(x) \lor G(x)) \vdash \exists x F(x) \lor \exists x G(x)$, and $\exists x F(x) \lor \exists x G(x) \vdash \exists x (F(x) \lor G(x))$.
 - (d) $\forall x [F(x) \land G(x)] \vdash \forall x F(x) \land \forall x G(x)$, and $\forall x F(x) \land \forall x G(x) \vdash \forall x [F(x) \land G(x)]$.
 - (e) $a = b \lor a = c$, $a = b \lor c = b$, $P(a) \lor P(b) \vdash P(a) \land P(b)$ [Hint: think whether a = b or not.]
 - (f) $\forall x[x=a \lor x=b], g(a)=b, \forall x\forall y[g(x)=g(y)\to x=y] \vdash g(g(a))=a$
- 11. Show (a), (b), (c), (d), (e) \vdash (f), where
 - (a) $\forall x [\forall y [\operatorname{child}(y, x) \to \operatorname{fly}(y)] \land \operatorname{dragon}(x) \to \operatorname{happy}(x)]$
 - (b) $\forall x [\operatorname{green}(x) \wedge \operatorname{dragon}(x) \to \operatorname{fly}(x)]$
 - (c) $\forall x [\exists y [\operatorname{parent}(y, x) \land \operatorname{green}(y)] \rightarrow \operatorname{green}(x)]$
 - (d) $\forall z \forall x [\operatorname{child}(x, z) \land \operatorname{dragon}(z) \rightarrow \operatorname{dragon}(x)]$
 - (e) $\forall x \forall y [\operatorname{child}(y, x) \to \operatorname{parent}(x, y)]$
 - (f) $\forall x [\operatorname{dragon}(x) \to (\operatorname{green}(x) \to \operatorname{happy}(x))]$

```
happy(x) is read as x is happy, child(x, y) is read as x is a child of y, fly(x) is read as x can fly, green(x) is read as x is green, parent(x, y) is read as x is a parent of y
```

- 12. [Compactness for propositional logic; not examinable]
 - (a) Suppose p_1, p_2, \ldots, p_k are propositional atoms, where $k \geq 1$ is some natural number, and A_1, A_2, \ldots are propositional formulas all involving only these atoms (at most), and no others. Suppose that for every number $n \geq 1$, there is a situation s_n in which all the formulas A_1, \ldots, A_n are true. Show that there is a situation s_∞ making all of A_1, A_2, \ldots true. (You might ease into it by imagining that k = 1.)
 - (b) [Quite hard] Suppose now that A_1, A_2, \ldots are any propositional formulas written with atoms p_1, p_2, \ldots Taken together, the formulas may involve infinitely many atoms. Suppose again that for every number $n \geq 1$, there is a situation s_n in which A_1, A_2, \ldots, A_n are all true. Again, show that there is some situation making all of A_1, A_2, \ldots true.

Note: the same is true if A_1, A_2, \ldots are first-order sentences. This fact is called *compactness*. It is a fundamental property of first-order logic, but too difficult to prove in the course. You can look it up in the books if you like.

Logic exercises 9 (unassessed) Solutions

- 1. $xs = \underline{4} : (\underline{6} : [])$, or if preferred, $\sharp (xs) = \underline{2} \land xs!!\underline{0} = \underline{4} \land xs!!\underline{1} = \underline{6}$
- 2. $\forall n : \mathtt{Nat}(n < \sharp(xs) \to xs!!n = \underline{\mathtt{O}}).$

This is true for [], and I'd say the English is true of [] too.

- 3. $\forall n : \mathtt{Nat}(n < \sharp(xs) \to \exists m : \mathtt{Nat}(m < \sharp(ys) \land xs!!n < ys!!m)).$
- 4. $\sharp(xs)=\sharp(ys)\wedge\forall n\forall m: \mathtt{Nat}(n+m+1=\sharp(xs)\to xs!!n=ys!!m).$

$$\exists zs \big(\mathtt{merge}(ys, zs, xs) \big)$$

 $\exists zs \Big(\mathtt{merge}(ys,zs,xs) \\ \wedge \forall x \forall y (in(x,xs) \wedge in(y,ys) \rightarrow y \geq x) \\$ "all entries in ys are maximal in xs" $\wedge \forall z (in(z,zs) \to \exists x (in(x,xs) \land x > z))$ "all entries in zs are not maximal in xs"

Here, x, y, z are variables of sort Nat, and zs: [Nat]. Note that the formula is true if xs = ys = []. In the formula, in(x,xs) abbreviates $\exists n(n < \sharp(xs) \land xs!!n = x)$ as in class.

- 6. n is the sum of the entries in xs.
- 7. The following are logically equivalent (using the numbered propositional and first-order equivalences in the notes):
 - (a) $\neg \exists x [Martian(x) \land \neg dislikes(x, Mary) \land age-more-than-25(x)]$ $\neg \exists x [(Martian(x) \land age-more-than-25(x)) \land \neg dislikes(x, Mary)] (by equiv. (28))$ $\forall x \neg [(Martian(x) \land age-more-than-25(x)) \land \neg dislikes(x, Mary)]$ (by equiv. (31)) $\forall x [\text{Martian}(x) \land \text{age-more-than-} 25(x) \rightarrow \text{dislikes}(x, \text{Mary})] \text{ (by equiv. (20))}.$
 - (b) $\forall x [\neg \forall y [\text{woman}(y) \rightarrow \neg \text{dislikes}(x, y)] \rightarrow \text{dislikes}(\text{Jane}, x)]$ $\forall x [\exists y \neg [\text{woman}(y) \rightarrow \neg \text{dislikes}(x,y)] \rightarrow \text{dislikes}(\text{Jane},x)] \text{ (by equiv. (30))}$ $\forall x [\exists y [\text{woman}(y) \land \neg \neg \text{dislikes}(x,y))] \rightarrow \text{dislikes}(\text{Jane},x)] \text{ (by equiv. (20))}$ $\forall x [\exists y [\text{woman}(y) \land \text{dislikes}(x,y)] \rightarrow \text{dislikes}(\text{Jane},x)] \text{ (by equiv. (13))}.$
 - (c) $\forall y [\exists x P(x,y) \rightarrow \neg S(y)]$ $\forall y \forall x [P(x,y) \rightarrow \neg S(y)]$ (by equiv. (37)) (note: x is not free in S(y)) $\forall y \forall x \neg [P(x,y) \land \neg \neg S(y)] \text{ (by equiv. (20))}$ $\forall y \forall x \neg [P(x,y) \land S(y)] \text{ (by equiv. (13))}$ $\forall y \neg \exists x [P(x,y) \land S(y)] \text{ (by equiv. (31))}$ $\neg \exists y \exists x [P(x,y) \land S(y)]$ (by equiv. (31)).
- 8. The following are logically equivalent or got by sorted-unsorted translation:
 - (a) $p \to (q \to r)$ $\neg(p \land \neg(q \to r))$ (by equiv. (19)) $\neg (p \land (q \land \neg r))$ (by equiv. (20)) $\neg((p \land q) \land \neg r)$ (by equiv. (5)) $(p \wedge q) \rightarrow r$ (by equiv. (19)).
 - (b) $\forall x : \mathbf{T} [P(x) \to S]$ $\forall x (\text{is-a-T}(x) \to [P(x) \to S]) \text{ (sorted-to-unsorted translation)}$ $\forall x([\text{is-a-T}(x) \land P(x)] \rightarrow S) \text{ (by part a)}$

```
\exists x (\text{is-a-T}(x) \land P(x)) \rightarrow S \text{ (by equiv. 37)})
             (\exists x: \mathbf{T} \ P(x)) \to S (unsorted-to-sorted translation).
              \exists x (x = y \lor \operatorname{green}(x))
                                                                   is logically equivalent to
              \exists x(x=y) \lor \exists x \operatorname{green}(x)
                                                                    (by equivalence(33): \exists distributes over \lor)
9. (a) \exists u(u=y) \lor \exists v \operatorname{green}(v)
                                                                    (by equivalence(38): rename bound variables)
              \exists u(u = u \land u = y) \lor \exists v \operatorname{green}(v)
                                                                   (by equivalences (39) and (2): u = u is valid)
              \exists u(u = u \land y = u) \lor \exists v \operatorname{green}(v)
                                                                   (by equivalence (40): = symmetry).
              \exists x \forall y ( \text{friend}(x, y) \rightarrow \text{happy}(x) )
                                                                       is logically equivalent to
                                                                       (by equivalence(37): \forall y(A(y) \to B) \equiv \exists y A(y) \to B
              \exists x (\exists y \text{ friend}(x, y) \rightarrow \text{happy}(x))
              \exists x (\neg \exists y \text{ friend}(x, y) \lor \text{happy}(x))
                                                                       (by equivalence(19): A \to B \equiv \neg A \lor B)
              \exists x \neg \exists y \text{ friend}(x, y) \lor \exists x \text{ happy}(x)
                                                                       (by equivalence(33): \exists distributes over \lor)
              \neg \forall x \exists y \text{ friend}(x,y) \lor \exists v \text{ happy}(v)
                                                                       (equivs (30) and (38): \exists x \neg \equiv \neg \forall x, rename bound vars)
              \forall x \exists y \text{ friend}(x,y) \to \exists v \text{ happy}(v)
                                                                       (by equivalence(19): A \to B \equiv \neg A \lor B).
      (c) The following are logically equivalent:
```

```
\forall t \neg \exists u (R(t,u) \land \neg \forall v (R(t,v) \rightarrow \exists w (R(v,w) \land R(u,w))))
\forall t \forall u \neg (R(t,u) \land \neg \forall v (R(t,v) \rightarrow \exists w (R(v,w) \land R(u,w)))) by equivalence(31)
\forall t \forall u (R(t,u) \rightarrow \forall v (R(t,v) \rightarrow \exists w (R(v,w) \land R(u,w)))) by equivalence(19)
\forall t \forall u \forall v (R(t,u) \rightarrow (R(t,v) \rightarrow \exists w (R(v,w) \land R(u,w)))) by equivalence(36)
\forall t \forall u \forall v (\underbrace{R(t,u)}_{p} \land \underbrace{R(t,v)}_{q} \rightarrow \underbrace{\exists w (R(v,w) \land R(u,w))}_{r})) p \( \rightarrow (q \rightarrow r) \equiv p \rightarrow q \rightarrow r.
```

We'd better show that $p \to (q \to r)$ is equivalent to $p \land q \to r$:

```
\begin{array}{ll} p \to (q \to r) \\ \neg p \lor (\neg q \lor r) & \text{by equivalence} (19) \\ (\neg p \lor \neg q) \lor r & \text{by equivalence} (10) \text{ (associativity of } \lor) \\ \neg (p \land q) \lor r & \text{by equivalence} (23) \text{ (De Morgan law)} \\ p \land q \to r & \text{by equivalence} (19) \text{ again.} \end{array}
```

10. (a)

1	$\forall x \neg P(x)$	c) giv	ven 1	$\neg \exists x P(x)$	given
2	$\exists x P(x)$	a	ass 2	c	$\forall I \text{ const}$
3	P(c)	ass	3	P(c)	ass
4	$\neg P(c)$	$\forall E(1)$	4	$\exists x P(x)$	$\exists I(3)$
5	\perp	$\neg E(4,3)$	5	\perp	$\neg E(1,4)$
6		$\exists E(2,3,$	$5)$ $\boxed{6}$	$\neg P(c)$	$\neg I(3,5)$
7	$\neg \exists x P(x)$	r) $\neg I(2,$	$\overline{(,6)}$ $\overline{7}$	$\forall x \neg P(x)$	$\forall I(2,6)$

(b)

1	$\exists x \neg P(x)$	given
2	$\neg P(c)$	ass
3	$\forall x P(x)$	ass
4	P(c)	$\forall E(3)$
5	\perp	$\neg E(2,4)$
6	$\neg \forall x P(x)$	$\neg I(3,5)$
$\overline{7}$	$\neg \forall x P(x)$	$\exists E(1,2,6)$

1	$\neg \forall x P(x)$	giver
2	$\neg \exists x \neg P(x)$	ass
3	c	$\forall I \text{ const}$
$\ 4$	$\neg P(c)$	ass
$\parallel 5$	$\exists x \neg P(x)$	$\exists I(4)$
$\parallel 6$	\perp	$\neg E(2,5)$
$ \overline{7} $	P(c)	PC(4,6)
8	$\forall x P(x)$	$\forall I(3,7)$
9	\perp	$\neg E(1,8)$
10	$\exists x \neg P(x)$	PC(2,9)

(c)

1	$\exists x (F(x) \lor G(x))$			given
2	$F(c) \vee G(c)$			ass
3	F(c)	ass 6	G(c)	ass
$\ 4$	$\exists x F(x)$	$\exists I(3) 7$	$\exists x G(x)$	$\exists I(6)$
5	$\exists x F(x) \lor \exists x G(x)$	$\vee I(4) 8$	$\exists x F(x) \lor \exists x G(x)$	$\vee I(7)$
9	$\exists x F(x) \lor \exists x G(x)$	•	$\vee E(2,3)$	(5, 6, 8)
$\overline{10}$	$\exists x F(x) \lor \exists x G(x)$		$\exists E$	$\overline{z(1,2,9)}$

1	$\exists x F(x) \lor \exists x G(x)$	c)			given
2	$\exists x F(x)$	a	ss 7	$\exists x G(x)$	ass
3	F(c)	ass	8	G(d)	ass
4	$F(c) \vee G(c)$	$\vee I(3)$	9	$F(d) \vee G(d)$	$\vee I(8)$
5	$\exists x (F(x) \lor G(x))$	$\exists I(4)$	10	$\exists x (F(x) \lor G(x))$	$\exists I(9)$
6	$\exists x (F(x) \lor G(x))$	$\exists E(2,3,$	5) 11	$\exists x (F(x) \lor G(x))$	$\exists E(7, 8, 10)$
$\overline{12}$	$\exists x (F(x) \lor G(x))$)		$\vee I$	$\overline{E(1,2,6,7,11)}$

(d)

1	$\forall x (F(x) \land G(x))$	given
2	c	$\forall I \text{ const}$
3	$F(c) \wedge G(c)$	$\forall E(1)$
4	F(c)	$\wedge E(3)$
5	$\forall x F(x)$	$\forall I(2,4)$
6	c	$\forall I \text{ const}$
7	$F(c) \wedge G(c)$	$\forall E(1)$
8	G(c)	$\wedge E(7)$
9	$\forall x G(x)$	$\forall I(6,8)$
10	$\forall x F(x) \land \forall x G(x)$	$\wedge I(5,9)$

1	$\forall x F(x) \land \forall x$	cG(x) given
2	c	$\forall I \text{ const}$
3	$\forall x F(x)$	$\wedge E(1)$
4	F(c)	$\forall E(3)$
5	$\forall x G(x)$	$\wedge E(1)$
6	G(c)	$\forall E(5)$
7	$F(c) \wedge G(c)$	$\wedge I(4,6)$
8	$\forall x(F(x) \land G$	$\overline{G(x)}$ $\forall I(2,7)$

(e) Idea: show a = b first.

11. This looks 'orrible but isn't really very difficult. You just have to be methodical, remember what you've been taught, and use all your skill.

Idea: to show $\forall x (dragon(x) \to (green(x) \to happy(x)))$, take an arbitrary object c and show $dragon(c) \to (green(c) \to happy(c))$. So assume dragon(c) and show $green(c) \to happy(c)$. So also assume green(c), and show happy(c).

To show this, we probably will use sentence (a) — the only one with a happy ending. So we'd like to show $\forall y (child(y,c) \rightarrow fly(y)) \land dragon(c)$. We have dragon(c) already — we assumed it — so we only need to show $\forall y (child(y,c) \rightarrow fly(y))$ (all c's children can fly).

To do this, we take an arbitrary object d and show $child(d,c) \to fly(d)$. So assume child(d,c) — that d is indeed a child of c — and show fly(d).

To do this, we'd like to use sentence (b) — the only one with fly in its conclusion. It tells us that $green(d) \wedge dragon(d) \rightarrow fly(d)$. So we'd like to show d is a green dragon.

It's easy to show d's a dragon: use sentence (d), the only one with dragon in its conclusion, to get $child(d,c) \wedge dragon(c) \rightarrow dragon(d)$, and observe that we already have child(d,c) and dragon(c).

To show d is green, we want to use (c) — the only one with green in its conclusion. It gives $\exists y (parent(y,d) \land green(y)) \rightarrow green(d)$. (We pick x = d because we want to

show d is green.) So we want $\exists y(parent(y,d) \land green(y)) \longrightarrow d$ has a green parent. The obvious candidate is $c \longrightarrow d$ is a child of c, so by (e), c is a parent of d; and c is green (remember?). So we're done.

The natural deduction uses exactly the same idea but is shorter:

22

happy(c)

 $green(c) \rightarrow happy(c)$

 $dragon(c) \rightarrow (green(c) \rightarrow happy(c))$

 $\forall x (dragon(x) \rightarrow (green(x) \rightarrow happy(x)))$

```
\forall x (\forall y (child(y, x) \rightarrow fly(y)) \land dragon(x) \rightarrow happy(x))
1
                                                                                                       given
^2
        \forall x (green(x) \land dragon(x) \rightarrow fly(x))
                                                                                                       given
3
        \forall x (\exists y (parent(y, x) \land green(y)) \rightarrow green(x))
                                                                                                       given
4
        \forall z \forall x (child(x, z) \land dragon(z) \rightarrow dragon(x))
                                                                                                       given
        \forall x \forall y (child(y, x) \rightarrow parent(x, y))
                                                                                                       given
6
                                                                            \forall I \text{ const}
        dragon(c)
                                                                                   ass
         green(c)
                                                                                   ass
                                                              \forall I \text{ const}
         d
   10
          child(d,c)
   11
          parent(c,d)
                                                         \forall \rightarrow E(10,5)
   12
          parent(c,d) \land green(c)
                                                             \wedge I(8,11)
   13
          \exists y (parent(y, d) \land green(y))
                                                                 \exists I(12)
   14
          green(d)
                                                        \forall \rightarrow E(13,3)
   15
         child(d,c) \wedge dragon(c)
                                                             \wedge I(7,10)
   16
          dragon(d)
                                                        \forall \rightarrow E(15,4)
   17
          green(d) \wedge dragon(d)
                                                           \wedge I(14, 16)
   18
         fly(d)
                                                        \forall \rightarrow E(17,2)
  \overline{19}
                                                          \to I(10, 18)
         child(d,c) \rightarrow fly(d)
 20
         \forall y (child(y,c) \rightarrow fly(y))
                                                                          \forall I(9,19)
  21
        \forall y (child(y, c) \rightarrow fly(y)) \land dragon(c)
                                                                         \wedge I(7,20)
```

 $\forall \rightarrow E(21,1)$

 $\rightarrow I(8,22)$

 $\rightarrow I(7,23)$

 $\forall I(6,24)$

- 12. (a) There are only 2^k situations (lines in a truth table) for atoms p_1,\ldots,p_k . So among the situations s_1,s_2,\ldots , some situation must crop up infinitely often. That is, there are infinitely many numbers n_1,n_2,n_3,\ldots such that $s_{n_1}=s_{n_2}=s_{n_3}=\cdots$ (restricting to just the atoms p_1,\ldots,p_k). Write s_∞ for one such repeating situation (there may be several choices for it, but there is at least one). Then s_∞ makes all of A_1,A_2,\ldots true. For, take any $n\geq 1$. There is some i such that $n_i\geq n$. So $s_\infty=s_{n_i}$. But s_{n_i} makes all the formulas A_1,A_2,\ldots,A_{n_i} true, and A_n is among these because $n_i\geq n$. So $s_\infty=s_{n_i}$ makes A_n true. As in $\forall I$, since n was arbitrary, this shows that s_∞ makes all the A_n true.
 - (b) Sketch: Obviously, either infinitely many s_n make p_1 true, or infinitely many s_n make p_1 false (or both). Either way, we can select infinitely many s_n that all give the *same* value (e.g., 'false') to p_1 .
 - Now of these infinitely many s_n that we selected, either infinitely many make p_2 true or infinitely many make it false (or both). So from our previous selection of infinitely many s_n , we can now select infinitely many of them that all give the

same value (e.g., 'true') to p_2 . Now, these infinitely many s_n all give the same value ('false', in our example) to p_1 , and they all give the same value ('true') to p_2 .

Continuing like this forever, we see that we are creating a situation s_{∞} say, that makes p_1 false, p_2 true, and so on, as above. So s_{∞} has the following property:

• For any $k \geq 1$, there are infinitely many situations from s_1, s_2, \ldots that agree with s_{∞} on all of the atoms p_1, p_2, \ldots, p_k .

(We say two situations agree on the atom p if they both give the same truth value — true or false — to p.)

We now show that s_{∞} makes all the A_n true. So as in $\forall I$, we take an arbitrary n, and show that s_{∞} makes A_n true.

OK, here goes. We don't know which atoms A_n involves, but it's a formula — a finite string of symbols — so it can involve only finitely many atoms. Choose a large enough k so that it involves only the atoms p_1, p_2, \ldots, p_k at most. Now there are infinitely many situations from s_1, s_2, \ldots that agree with s_{∞} on p_1, p_2, \ldots, p_k , so we can take one, say s_l , with $l \geq n$. We are told that s_l makes A_1, A_2, \ldots, A_l true, and A_n is one of these; so s_l makes A_n true. But s_l and s_{∞} agree on all the atoms in A_n . So s_{∞} must make A_n true as well. QED.

Remark If $S_1, S_2, ...$ are first-order sentences, and for every n, there is a structure in which $S_1, S_2, ..., S_n$ are all true, then there is a structure in which all the S_n are true. More generally,

• if S is any set (for JMC: even uncountable) of first-order sentences and for every $S_1, \ldots, S_n \in S$ there is a structure in which S_1, S_2, \ldots, S_n are all true, then then there is a structure in which $all S \in S$ are true.

This is called the *compactness theorem* for first-order logic. It is a very important and useful property of first-order logic. Perhaps the simplest way to prove it is using 'ultraproducts', which can construct a 'limit' of structures analogous to the limit s_{∞} above. A possibly more revealing way is using a so-called 'Henkin construction'. These go way beyond the course, but you might be interested in following up on them. You could look at any book on model theory — e.g, Chang & Keisler, Hodges — or Bell & Slomson's *Models and ultraproducts* (for mathematicians).