King Saud University College of Computer and Information Sciences Computer Science Department

Computer Science Department			College of Computer & Information Sciences
	computer strained 2 open on		Computer Science Department
Course Code	CSC 220		
Course Title	Computer Organization		
Semester	S1 – 1443 (Fall-2021)		
Exam	Midterm 1		
Date	24/10/2021	Duration	90 minutes
Student Name			
Student ID			
Section No.			

Course Learni	Relevant question	Full mark	Student mark	
CLO 1.1	Data Representation	1	8	
CLO 1.2	Digital circuit design and simplification	2	6	
CLO 1.2	Digital circuit design and simplification	3	5	
CLO 2.1	Combinational and sequential circuits design	4	6	
Total			25	

	1 10	4
HAAAIN	ocz/C	omments:
rccuba		omments.

Question 1. (8 Marks)

Q#1.a Marks 4

1) Write octal number corresponds to the hexadecimal number EF.C

 $(357.6)_8$

2) Write Binary number that corresponds to the decimal number 45.125

(101101.001)₂

3) Write BCD code corresponds to the binary number 1101.1

(0001 0011 . 0101)_{BCD}

4) Write The decimal number corresponds to the octal number 21.4

(17.5)₁₀

Q#1.b

Write smallest and largest Positive and negative number represented in 6 bits representation in 2's complement. Mark 1

Ans: Largest: +31

Smallest: -32

Q#1.C

Complete following Table

Marks 3

A	A in Sign Magnitude (8 bits)	A in 1's Comp. (8 bits)	A in 2's comp. (8 bits)
10	00001010	00001010	00001010
-1	10000001	11111110	11111111
-7	10000111	11111000	11111001

Question 2 (6 Marks: 2+2+2)

(a) Suppose A and B are input waveform for a NOR Gate, show the output waveform X

- (b) Suppose a combinational circuit accepts a 3-bit binary number and generate a 4-bit binary output equal to double of the input number (e.g. if input is 011 the output is 0110).
 - i. Write the truth table for the function
 - ii. Represent the functions in SOP form (without simplification).

Answer of Question 2 (b)

A	В	С	w	X	у	Z
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	0	1	1	0
1	0	0	1	0	0	0
1	0	1	1	0	1	0
1	1	0	1	1	0	0
1	1	1	1	1	1	0

$$w = \sum m (4, 5, 6, 7)$$

$$x = \sum m(2, 3, 67)$$

$$y = \sum m(1, 3, 5, 7)$$

$$z = 0$$

Question 3 (5 Marks: 2+1+2)

(a) Find the Simplified function of Boolean function F together with the don't-care conditions d in sum-of-products form

$$F(w,x,y,z) = \sum (0,1,2,3,7,8,10)$$

$$d(w,x,y,z) = \sum{(5,6,11,15)}$$

(b) Find the Simplified function of the following Boolean function in sum-of-products form by means of a four-variable k-map.

$$F(w, x, y, z) = \sum m(0, 1, 8, 9, 10, 12, 13)$$

(c) Draw the logic diagram of simplified function of (b) with NAND gates only.

Answer of Question 3 (a)

$$F = x'z' + w'z$$

Answer of Question 3 (b)

$$F = AC' + B'C' + AB'D'$$

Answer of Question 3 (c)

Question 4 (6 Marks: 2+2+2)

(a) Consider the following bloc diagram of a full-adder

Give the truth table of the circuit and drive the output expressions of Sn and C out.

An	Bn	Cin	Sn	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$Cout = (An \oplus Bn)Cin + AnBn$$

$$S = An \oplus Bn \oplus Cin$$

(b) Using this circuit show how can we built a circuit capable of performing the subtraction, using 2's complement method, between two words A and B of 4 bits each one.

(c) Give a solution to detect sign overflow for the circuit that is proposed in (b)

THE END