Course 1

Relations

Prof. dr. Septimiu Crivei

Coordinates: structure

Algebra - First year - CS & Al

- Chapter 1: Preliminaries
- Chapter 2: Vector Spaces
- Chapter 3: Matrices and Linear Systems
- Chapter 4: Introduction to Coding Theory

Relations

Course 1

Coordinates: bibliography

S. Crivei, *Basic Linear Algebra*, Presa Universitară Clujeană, Cluj-Napoca, 2022.

W. J. Gilbert, W. K. Nicholson, *Modern Algebra with Applications*, John Wiley, 2004.

J. S. Golan, *The Linear Algebra a Beginning Graduate Student Ought to Know*, Springer, Dordrecht, 2007.

P. N. Klein, *Coding the Matrix. Linear Algebra through Applications to Computer Science*, Newtonian Press, 2013.

R. Lidl, G. Pilz, Applied Abstract Algebra, Springer-Verlag, 1998.

I. Purdea, C. Pelea, *Probleme de algebră*, Eikon, Cluj-Napoca, 2008.

L. Robbiano, *Linear Algebra for Everyone*, Springer, Milan, 2011.

G. Strang, Linear Algebra and its Applications, Brooks/Cole, 1988.

Coordinates: course and seminar

- Course materials will be available in MS Teams Algebra-CS-AI (2023-2024) (code: w7w03xe).
- Students may get up to 1 bonus point from course projects to the final grade: up to 5 projects, each for 0.2 points [you will receive details in due time...].
- Minimum attendance: 75% for seminar classes in order to be allowed to participate in the second partial exam and pass the course.
- Problems for the next week will be available in MS Teams Algebra-CS-AI (2023-2024) (code: w7w03xe).
- Students may get up to 0.5 bonus points from seminar to the final grade: 5 problems solved during the seminar, each for 0.1 points [you will receive details during seminars...].

Coordinates: exam

- Written partial exams in:
 Week 8 (Chapters 1-2): Saturday, November 25, 2023
 Week 14 (Chapters 3-4): Saturday, January 20, 2024
- The final grade is computed as follows:

$$G = 1 + P_1 + P_2 + B,$$

where:

G =the final grade

 P_1 = the points from the first partial exam (max. 4.5)

 P_2 = the points from the second partial exam (max. 4.5)

B =bonus points from seminar or course (max. 1.5)

 Students may not pass the exam unless they participate in the second partial exam.

Computer Science topics using Linear Algebra I

The Association for Computing Machinery (ACM) has developed the 2012 ACM Computing Classification System for the research topics in the field of Computer Science (www.acm.org) under the form of a multi-level tree.

We mention some higher level branches of this tree in which Linear Algebra has important applications.

Networks

- Network architectures
 - Network design principles
- Network types
 - Public Internet

Theory of Computation

- Models of computation
 - Quantum computation theory
- Computational complexity and cryptography
 - Cryptographic protocols

Computer Science topics using Linear Algebra II

- Randomness, geometry and discrete structures
 - Error-correcting codes
- Theory and algorithms for application domains
 - Machine learning theory

Mathematics of Computing

- Information theory
 - Coding theory
- Mathematical analysis
 - Mathematical optimization

Information Systems

- World Wide Web
 - Web searching and information discovery
- Information retrieval
 - Retrieval models and ranking

Security and Privacy

- Cryptography
 - Symmetric cryptography and hash functions

Computer Science topics using Linear Algebra III

- Network security
 - Security protocols

Computing Methodologies

- Machine learning
 - Machine learning approaches
- Computer graphics
 - Image manipulation

Applied Computing

- Electronic commerce
 - Online banking
- Operations research
 - Decision analysis

Chapter 1. Preliminaries

Relations

2 Functions

3 Equivalence relations and partitions

Application: relational database

ID (Integer)	Surname (String)	Name (String)	Grade (Integer)
7	Ionescu	Alina	9
11	Ardelean	Cristina	10
23	Ionescu	Dan	7

10

Relations

Definition

A triple r = (A, B, R), where A, B are sets and

$$R \subseteq A \times B = \{(a, b) \mid a \in A, b \in B\},\$$

is called a (binary) relation.

The set A is called the *domain*, the set B is called the *codomain* and the set R is called the *graph* of the relation r.

If A = B, then the relation r is called homogeneous.

If $(a, b) \in R$, then we sometimes write a r b and we say that ahas the relation r to b or a and b are related with respect to the relation r.

Relation classes

Definition

Let r = (A, B, R) be a relation and let $X \subseteq A$. Then the set

$$r(X) = \{b \in B \mid \exists x \in X : x r b\}$$

is called the *relation class of* X *with respect to* r. If $x \in X$, then we denote

$$r < x >= r(\{x\}) = \{b \in B \mid x r b\}.$$

Notice that

$$r(X) = \bigcup_{x \in X} r < x > .$$

Relation representation

If A,B are finite sets, then r=(A,B,R) may be represented by a diagram consisting of two sets with elements and connecting arrows. For instance, let r=(A,B,R), where $A=\{1,2,3\}$, $B=\{1,2\}$ and

$$R = \{(1,1), (1,2), (3,1)\}.$$

Figure: Diagram of a relation.

Also note that $r < 1 >= \{1, 2\} = r(A)$.

Examples of relations I

(a) Let C be the set of all children and let P be the set of all parents. Then we may define the relation r = (C, P, R), where

$$R = \{(c, p) \in C \times P \mid c \text{ is a child of } p\}.$$

(b) The triple $r = (\mathbb{R}, \mathbb{R}, R)$, where

$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \le y\}$$

is a homogeneous relation, called the *inequality relation* on $\mathbb{R}.$ We have

$$r < 1 >= [1, \infty) = r([1, 2]).$$

(c) There are several examples from Number Theory, such as divisibility on $\mathbb N$ or on $\mathbb Z$, and Geometry, such as parallelism of lines, perpendicularity of lines, congruence of triangles, similarity of triangles.

Examples of relations II

(d) Let A and B be two sets. Then the triples

$$o = (A, B, \emptyset), \quad u = (A, B, A \times B)$$

are relations, called the *void relation* and the *universal relation* respectively.

(e) Let A be a set. Then the triple $\delta_A = (A, A, \Delta_A)$, where

$$\Delta_A = \{(a, a) \mid a \in A\}$$

is a relation called the equality relation on A.

(f) Every function is a relation. Indeed, a function $f: A \to B$ is determined by its domain A, its codomain B and its graph

$$G_f = \{(x, y) \in A \times B \mid y = f(x)\}.$$

Then the triple (A, B, G_f) is a relation.

Examples of relations III

(g) Every directed graph is a relation. For instance, the directed graph

Figure: Directed graph.

may be seen as a relation (A, A, R), where $A = \{1, 2, 3, 4\}$ and

$$R = \{(1,2), (1,3), (2,4), (3,4), (4,1)\}.$$

16

Functions

Definition

A relation r = (A, B, R) is called a *function* if

$$\forall a \in A, \quad |r < a >| = 1,$$

that is, the relation class with respect to r of every $a \in A$ consists of exactly one element.

In what follows, if f = (A, B, F) is a function, we will mainly use the classical notation for a function, namely $f : A \to B$ or sometimes $A \xrightarrow{f} B$. The unique element of the set f < a > will be denoted by f(a). Then we have

$$(a,b) \in F \iff f(a) = b.$$

Functions - related notions

From relations we get the following notions.

Definition

Let $f:A\to B$ be a function. Then A is called the *domain*, B is called the *codomain* and

$$F = \{(a, f(a)) \mid a \in A\}$$

is called the graph of the function f.

Definition

Let $f: A \to B$ be a function and let $X \subseteq A$. We call the *image* of X by f the relation class of X with respect to f, that is,

$$f(X) = \{b \in B \mid \exists x \in X : x f b\} = \{f(x) \mid x \in X\}.$$

We denote Im f = f(A) and call it the *image of f*.

18

Examples of functions and relations

(a) Let A be a set. Then the equality relation (A, A, Δ_A) is a function called the *identity function on* A, denoted by $1_A : A \to A$.

(b) Let
$$A = \{1, 2, 3\}$$
, $B = \{1, 2\}$ and let $r = (A, B, R)$, $s = (A, B, S)$, $t = (A, B, T)$ be the relations having the graphs

$$R = \{(1,1), (2,1), (3,2)\},\$$

$$S = \{(1,2), (3,1)\},\$$

$$T = \{(1,1), (1,2), (2,1), (3,2)\}.$$

Figure: Diagrams of functions or relations.

Which of them are functions?

Equivalence relations

Recall that a relation r = (A, B, R) is called *homogeneous* if A = B.

Definition

A homogeneous relation r = (A, A, R) on A is called:

- (1) reflexive (r) if: $\forall x \in A, x r x$.
- (2) transitive (t) if: $x, y, z \in A$, x r y and $y r z \Longrightarrow x r z$.
- (3) symmetric (s) if: $x, y \in A, x r y \Longrightarrow y r x$.

A homogeneous relation r = (A, A, R) is called an *equivalence relation* if r has the properties (r), (t) and (s).

20

Examples of equivalence relations

- (a) The equality relation δ_A on a set A is an equivalence relation.
- (b) The similarity of triangles is an equivalence relation on the set of all triangles.
- (c) The inequality relation " \leq " on \mathbb{N} , \mathbb{Z} , \mathbb{Q} or \mathbb{R} has (r) and (t), but not (s). Hence it is not an equivalence relation.
- (d) Let $n \in \mathbb{N}$ and let ρ_n be the relation defined on \mathbb{Z} by

$$x \rho_n y \Longleftrightarrow x \equiv y \pmod{n}$$
,

that is, n|(x-y) or equivalently for $n \neq 0$, x and y give the same remainder when divided by n. Then ρ_n is called the *congruence modulo* n and it is an equivalence relation.

For n=0, we have $x \rho_0 y \iff 0 | x-y \iff x=y$, hence $\rho_0 = \delta_{\mathbb{Z}} = (\mathbb{Z}, \mathbb{Z}, \Delta_{\mathbb{Z}})$.

For n=1, we have $x \rho_1 y \iff 1|x-y$, which is always true, and thus $\rho_1 = u = (\mathbb{Z}, \mathbb{Z}, \mathbb{Z} \times \mathbb{Z})$.

Partitions

Definition

Let A be a non-empty set. Then a family $(A_i)_{i \in I}$ of non-empty subsets of A is called a *partition* of A if:

(i) The family $(A_i)_{i \in I}$ covers A, that is,

$$\bigcup_{i\in I}A_i=A.$$

(ii) The A_i 's are pairwise disjoint, that is,

$$i,j \in I, i \neq j \Longrightarrow A_i \cap A_j = \emptyset.$$

22

Examples of partitions

- (a) Let $A = \{1, 2, 3, 4, 5\}$ and $A_1 = \{1, 2, 3\}$, $A_2 = \{4\}$, $A_3 = \{5\}$. Then $\{A_1, A_2, A_3\}$ is a partition of A.
- (b) Let A be a set. Then $\{\{a\} \mid a \in A\}$ and $\{A\}$ are partitions of A.
- (c) Let A_1 be the set of even integers and A_2 the set of odd integers. Then $\{A_1, A_2\}$ is a partition of \mathbb{Z} .
- (d) Consider the intervals

$$A_n = [n, n+1)$$

for every $n \in \mathbb{Z}$. Then the family $(A_n)_{n \in \mathbb{Z}}$ is a partition of \mathbb{R} .

23

Quotient set

Denote by E(A) the set of all equivalence relations and by P(A) the set of all partitions on a set A.

Definition

Let $r \in E(A)$.

The relation class r < x > of an element $x \in A$ with respect to r is called the *equivalence class of* x *with respect to* r, while the element x is called a *representative* of r < x >.

The set

$$A/r = \{r < x > | x \in A\},$$

which is the set of all equivalence classes of elements of A with respect to r, is called the *quotient set of* A *by* r.

Relation associated to a partition

Definition

Let $\pi = (A_i)_{i \in I} \in P(A)$ and define the relation r_{π} on A by

$$x r_{\pi} y \iff \exists i \in I : x, y \in A_i$$
.

Then r_{π} is called the relation associated to the partition π .

Figure: Relation associated to a partition.

25

Equivalence relations and partitions

$\mathsf{Theorem}$

- (i) Let $r \in E(A)$. Then $A/r \in P(A)$.
- (ii) Let $\pi = (A_i)_{i \in I} \in P(A)$. Then $r_{\pi} \in E(A)$.
- (iii) Let $F: E(A) \rightarrow P(A)$ be defined by

$$F(r) = A/r, \quad \forall r \in E(A).$$

Then F is a bijection, whose inverse is $G: P(A) \rightarrow E(A)$, defined by

$$G(\pi) = r_{\pi}, \quad \forall \pi \in P(A).$$

26

Illustrations of the theorem I

(a) Let $A = \{1, 2, 3\}$ and let r and s be the homogeneous relations defined on A with the graphs

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\},\$$

$$S = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}.$$

Then r is an equivalence relation, but s is not. What is the partition corresponding to r?

(b) Consider the following families of sets:

$$\pi = \{\{1\}, \{2,3\}, \{4\}\},$$

$$\pi' = \{\{1,2\}, \{2,3\}, \{4\}\}.$$

Then π is a partition of $A = \{1, 2, 3, 4\}$, but π' is not. What is the equivalence relation corresponding to π ?

< ロ > ∢ 回 > ∢ 直 > ∢ 直 >) 直 り へ ○

27

Illustrations of the theorem II

(c) The congruence relation modulo n is an equivalence relation on \mathbb{Z} and its corresponding partition is

$$\mathbb{Z}/\rho_n = \{\rho_n < x > | x \in \mathbb{Z}\} = \{x + n\mathbb{Z} \mid x \in \mathbb{Z}\} = \{\widehat{x} \mid x \in \mathbb{Z}\},\$$

where an equivalence class is denoted by \hat{x} . For $n \geq 2$, we denote

$$\mathbb{Z}_n = \mathbb{Z}/\rho_n = \{\widehat{0}, \widehat{1}, \dots, \widehat{n-1}\}.$$

For n=0 and n=1, we have seen that $\rho_0=\delta_{\mathbb{Z}}$ and $\rho_1=u$, and we get

$$\mathbb{Z}/\rho_0 = \left\{ \left\{ x \right\} \mid x \in \mathbb{Z} \right\} \quad \text{and} \quad \mathbb{Z}/\rho_1 = \left\{ \mathbb{Z} \right\},$$

that are the two extreme partitions of \mathbb{Z} .

28

Extra: Relational database I

Binary relations may be naturally generalized as follows.

Definition

A (finite) tuple

$$r=(A_1,\ldots,A_n,R),$$

where A_1, \ldots, A_n are sets and

$$R \subseteq A_1 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1, \ldots, a_n \in A_n\},\$$

is called an (n-ary) relation.

The sets A_1, \ldots, A_n are called the *domains* of r, and the set R is called the *graph* of r.

The number n is called the degree (arity) of r.

A relational database is a (finite) set of relations.

Extra: Relational database II

Consider the relation

$$student = (Integer, String, String, Integer, Student),$$

where

$$Student \subseteq Integer \times String \times String \times Integer$$

is given by the following table:

ID (Integer)	Surname (String)	Name (String)	Grade (Integer)
7	Ionescu	Alina	9
11	Ardelean	Cristina	10
23	Ionescu	Dan	7

Some known relational database management systems are:

- Oracle and RDB Oracle
- SQL Server and Access Microsoft

