Chapitre 05 Sécurité des

adresses IPv6

Introduction

L'adoption croissante du protocole IPv6 répond à l'épuisement des adresses IPv4, mais elle introduit également de nouveaux défis en matière de sécurité.

Ce chapitre détaille les vulnérabilités des adresses IPv6 et les mécanismes permettant d'assurer leur sécurité dans les réseaux modernes.

1. Spécificités de l'adressage IPv6

IPv6 introduit plusieurs types d'adresses et de mécanismes d'autoconfiguration qui diffèrent fondamentalement d'IPv4:

- Longueur de l'adresse : 128 bits contre 32 bits en IPv4.
- Types d'adresses : unicast, multicast, anycast (pas de broadcast).
- Auto-configuration Stateless (SLAAC) et DHCPv6.
- Présence obligatoire d' IPSec (dans la spécification, mais pas toujours activée).

2. Attaques IPv6 : Détails et Mécanismes

1. Attaques sur le Neighbor Discovery Protocol (NDP)

1.1. NDP Spoofing / Poisoning

• **Description**: L' attaquant envoie de fausses réponses NDP (Neighbor Advertisement) pour lier une adresse IPv6 à sa propre adresse MAC.

- **Conséquence**: Redirection du trafic vers l'attaquant (MITM), déni de service, usurpation d'identité.
- Comparable à : ARP Spoofing en IPv4.

1.2. NDP DoS (Cache Exhaustion)

• **Description**: L' attaquant envoie des milliers de faux paquets NDP avec des adresses IPv6 aléatoires.

- Conséquence: Remplissage du cache NDP du routeur ou de la machine cible → saturation mémoire → crash ou ralentissement du système.
- Outil: THC-IPv6 (fake router6, flood advertise6).

2. Attaques sur Router Advertisement (RA)

2.1. RA Spoofing

Description: Un attaquant envoie de faux paquets RA (Router
 Advertisement) pour annoncer sa machine comme routeur par défaut.

- Effet: Les hôtes sur le réseau peuvent rediriger leur trafic vers
 l' attaquant.
- Utilisation: MITM, interception de trafic.
- Contre-mesure: RA Guard, contrôle du port.

2.2. RA Flooding

• **Description**: Bombardement du réseau avec des RA contenant des préfixes ou paramètres falsifiés.

 Effet: Création massive d'adresses IPv6, surcharge CPU et mémoire → déni de service.

3. SLAAC (Stateless Address Auto-Configuration) Attacks

3.1. Faux préfixe IPv6

- Description: L' attaquant insère un nouveau préfixe via RA,
 provoquant la génération d' une fausse adresse IPv6.
- Effet: L' hôte peut devenir inaccessible ou rediriger le trafic.

3.2. Attaque de type Rogue DHCPv6 Server

 Description: Un faux serveur DHCPv6 fournit des informations incorrectes (ex. DNS, routeur, passerelle).

Effet: Redirection vers des serveurs malveillants.

4. Attaques sur l' Interface Identifier (IID)

4.1. EUI-64-Based Tracking

Description: L' adresse IPv6 est calculée automatiquement à partir de
 l' adresse MAC → traçabilité permanente de l' appareil.

- Effet: Atteinte à la vie privée, surveillance inter-réseaux.
- Solution: Activer les adresses temporaires (RFC 4941), désactiver EUI-64.

5. Attaques sur le multicast et scanning

5.1. Multicast Flooding

- **Description**: Utilisation d' adresses multicast (ff02::1, ff02::2) pour envoyer des paquets à tous les hôtes/routeurs du lien.
- Effet : Saturation de la bande passante, CPU élevé sur les hôtes.

5.2. IPv6 Scanning

• **Difficulté**: Impossible de scanner l'espace entier (2^64 adresses par sous-réseau), mais...

Méthodes utilisées :

- Scans ciblés (ex. adresses avec suffixes connus comme ::1, ::2, etc.).
- Analyse des adresses générées par EUI-64.
- Utilisation d' heuristiques et de dictionnaires.
- Outils: nmap, zmap, scan6.

6. Attaques Man-in-the-Middle (MITM)

6.1. MITM via RA/NDP Spoofing

- Redirection du trafic à travers l'attaquant.
- Possibilité de modification, inspection ou suppression de paquets.

6.2. MITM avec DHCPv6

 Attribution de DNS ou routeurs malveillants → détournement de navigation, phishing.

7. Abus d' IPSec et fragmentation

7.1. Tunneling malveillant (IPv6-in-IPv4)

• **Description**: Utilisation abusive de tunnels automatiques (6to4, Teredo, ISATAP) pour contourner les règles de sécurité.

• Effet: Infiltration dans le réseau IPv6 via une couche IPv4, souvent non surveillée.

7.2. Fragmentation abuse

• IPv6 permet la fragmentation uniquement à l'hôte émetteur.

• =

IP Fragmentation and Reassembly (Example)

length	ID	fragflag	offset
4000	Х	0	0

MTU = 1500 Bytes, Offset = 1480/8

length	ID	fragflag	offset
1500	Х	1	0

length	ID	fragflag	offset
1500	Х	1	185

20k checksum	
1020k data	1.04k

length	ID	fragflag	offset
1040	Х	0	370

Length - The size of the fragmented datagram

ID - The ID of the datagram being fragmented

Fragflag - Indicates whether there are more incoming fragments

Offset - Details the order the fragments should be placed in during reassembly

Des fragments mal formés ou délibérément séparés peuvent bypasser
 les systèmes de détection d' intrusion (IDS).

Outils courants d'attaque IPv6

Outil	Fonction	
THC-IPv6	Suite complète d'attaques NDP, RA, SLAAC	
Metasploit	Modules d'exploitation IPv6	
IPv6		
Scapy6	Forge de paquets IPv6 personnalisés	
Nmap/Zmap	Scan IPv6	
Chiron	Génération et manipulation de paquets IPv6 (attaque et	
	fuzzing)	

Résumé des vulnérabilités et vecteurs d'attaque

Vecteur	Attaque	Impact
NDP	Spoofing / DoS	MITM, déni de service
RA	Falsification	Redirection, crash
SLAAC	Faux préfixes	Hijacking, perte de connectivité
Multicast	Flooding	Ralentissement réseau
Tunneling	Bypass de sécurité	Intrusion
IID	Tracking	Atteinte à la vie privée
Fragmentation	IDS evasion	Contournement sécurité

3. Contre-mesures et bonnes pratiques

3.1. Filtrage et pare-feu

- Utiliser des firewalls compatibles IPv6.
- Bloquer les RAs non autorisées sur les réseaux clients.
- Restreindre les paquets NDP aux segments de réseau local.

3.2. Sécurisation de NDP

- SeND (Secure Neighbor Discovery): ajout de certificats cryptographiques à NDP.
- RA Guard: blocage de RAs suspects.
- ND Inspection (ou ND Protection): analyse des messages NDP dans les commutateurs de niveau 2.

3.3. Adressage sécurisé

- Activer les adresses temporaires pour la confidentialité.
- Désactiver SLAAC ou EUI-64 si non nécessaire.
- Mettre à jour et durcir les configurations DHCPv6.

3.4. Surveillance et journalisation

- Activer la journalisation IPv6 sur tous les équipements réseau.
- Mettre en place une détection d'intrusion IPv6-aware.
- Surveiller l' usage abusif des adresses multicast (ex. ff02::1, ff02::2).

4. Bonnes pratiques pour les administrateurs

Recommandation	Détail
Formation IPv6	Former les équipes aux spécificités IPv6.
Test de sécurité	Réaliser des audits réguliers et des tests de pénétration.
Mise à jour	Maintenir à jour les firmwares des équipements réseau.
Dual Stack	Assurer la sécurité des deux piles (IPv4/IPv6).

IPSEC

IPSEC est un standard ouvert de l' IETF pour sécuriser les réseaux IP.

Il s'agit d'une technologie VPN de couche 3 qui transmet les données via un canal sécurisé établi entre deux points de terminaison (par exemple, deux passerelles de sécurité). Ce canal sécurisé est généralement appelé tunnel IPsec.

Il assure les fonctions de sécurité suivantes :

Service	Description	Méthode
Confidentilité des	Des algorithmes de chiffrement	DES,
données	confidentialisent le trafic	3DES, AES
Intégrité des	Empêche les attaques d'homme-du-milieu	HMAC :
données	et s'assure que les données n'ont pas été	MD5 ou
	modifiée lors de leur transport	SHA
Authentification	Vérifie l'identité des pairs par un mécanisme	PSK,
de l'origine	d' authentification	certificats
		ou
		nonces

		RSA,
		signatures
		ECDSA
Protection anti-	-	-
rejeu		
Gestion des clés	Algorithme de chiffrement asymétrique	Diffie-
secrètes		Hellman
		(DH) ou
		ECDH

Principe de fonctionnement

IPSEC propose deux protocoles de couche 3 pour encapsuler le trafic de manière sécurisée : AH (Authentication Header, IP51) et ESP (Encapsulating Security Payload, IP50).

Mode de fonctionnement

IPSec Modes

Transport Mode

IP payload is encrypted

IP header is not encrypted

Original IP header is used for routing decisions

Provides protection for the payload from end to end

Tunnel Mode

IP payload is encrypted

IP header is encrypted

New IP packet encapsulates the encrypted one with a new header that is used for routing decisions

Encapsulation ipsec

Mode Protocol	Transport	Tunnel
АН	IP AH Data	IP AH IP Data
ESP	IP ESP Data ESP-T	IP ESP IP Data ESP-T
AH-ESP	IP AH ESP Data ESP-T	IP AH ESP IP Data ESP-T

Conclusion

IPv6 apporte des améliorations majeures, mais introduit aussi de nouvelles vulnérabilités.

Une approche proactive combinant pare-feux, chiffrement (IPsec) et surveillance (IDS) est essentielle pour sécuriser les réseaux IPv6. Les administrateurs doivent également suivre les bonnes pratiques de configuration et de mise à jour pour minimiser les risques.