Série 2016

Procédures de qualification

Electricienne de montage CFC Electricien de montage CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 60 minutes

Auxiliaires: Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

 Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés

deux fois.

- Le cheminement de la solution doit être clair et son contrôle aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

1,0

Barème: Nombres de points maximum: 29,0

0.0 -

28,0	-	29,0	Points = Note	6,0
25,0	-	27,5	Points = Note	5,5
22,0	-	24,5	Points = Note	5,0
19,0	-	21,5	Points = Note	4,5
16,0	-	18,5	Points = Note	4,0
13,5	-	15,5	Points = Note	3,5
10,5	-	13,0	Points = Note	3,0
7,5	-	10,0	Points = Note	2,5
4,5	-	7,0	Points = Note	2,0
1,5	-	4,0	Points = Note	1,5

1,0 Points = Note

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le **1**^{er} **septembre 2017**.

Créé par: Groupe de travail EFA de l'USIE pour la profession

d'électricienne de montage CFC / électricien de montage CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices				Nombre of maximal	de points obtenus
1.	5.1.1 Quelles tensions mesure suivant? U = 400 V / 230		moteur triphasé alimenté	avec le bornier	3	
	Complétez le tableau.					
	L1 L2 L3	PE				
	U1 V1 W1		Mesure entre	Valeur mesurée		
			U1 et V1	mesuree	0,5	
		^	U1 et W1		0,5	
			U1 et V2		0,5	
	W2 U2 V2 V2		U2 et W2		0,5	
	 		W1 et W2		0,5	
			PE et U2		0,5	
	Solution: Mesure entre	Valeur				
	U1 et V1	mesurée 400 V				,
	U1 et W1	400 V				
	U1 et V2	230 V				
	U2 et W2	0 V				
	W1 et W2	230 V				
	PE et U2	0 V				
2.	5.1.4 Nommez deux avantages différentiel résiduel (DDR		t de l'utilisation d'un dispo	ositif à courant	2	
	a) Avantage 1:				1	
	h) Avants == 0					
	b) Avantage 2:				1	
	Solution:					
	Amélioration de la prote Amélioration de la prote Amélioration de la mise Détection de courant de	ection contre à terre et de	les incendies	le		

Exer	cices		de points
	5.1.6	maximal	obtenus
3.	Transformateur de séparation monophasé	2	
	a) Esquissez un transformateur monophasé avec séparation galvanique.	1	
	b) Décrivez chacune des parties qui le composent.	1	
	Solution:		
	Noyau de fer Noyau de fer		
	Enroulement primaire Enroulement secondaire Enroulement primaire Enroulement primaire Enroulement primaire Enroulement primaire		
	(Description: Noyau ferromagnétique 0,5 point, Enroulement primaire et secondaire 0,5 point)		
4.	5.2.3 Il existe trois types de transmission de la chaleur. Nommez-en deux.	2	
	a)	1	
	b)	1	
	Solution:		
	Convection		
	Conduction		
	Rayonnement		
5.	5.2.4 Les informations suivantes sont disponibles sur la plaquette signalétique d'un moteur à courant continu: $U = 110 \text{ V}$; $P_{utile} = 2 \text{ kW}$; $\eta = 0.79$.	2	
	Calculez:		
	a) la puissance absordée P _{abs.}	1	
	b) la valeur du courant consommé	1	
	Solution:		
	a) $P_{abs.} = \frac{P_{utile}}{\eta} = \frac{2000 \text{ W}}{0.79} = \underline{\frac{2532 \text{ W}}{0.79}}$		
	b) $I = \frac{P_{abs.}}{U} = \frac{2532 \text{ W}}{110 \text{ V}} = \underline{\frac{23 \text{ A}}{110 \text{ V}}}$		

ercices	Nombre maximal	de points obtenu
5.1.7 Dessinez sur le schéma ci-dessous les instruments de mesure perimesurer:	mettant de 3	
a) la tension aux bornes de R5	1	
b) le courant qui circule dans R3	1	
c) la puissance consommée par l'ensemble du circuit	1	
© R1 R3 R4	R5	
Solution:		
R2	R5	
5.3.4 Calculez la puissance apparente consommée par une bobine dans l un courant de 560 mA sous une tension 230 V / 50 Hz. Solution:	aquelle circule 1	
$S = U \cdot I = 230 V \cdot 0,56 A = 129 VA$		

Exer	cices	Nombre maximal	de points obtenus
8.	5.3.1; 5.3.2 Quatre résistances identiques de 1 k Ω chacune sont couplées en parallèle sous 230 V.	3	
	Calculez:		
	a) la résistance équivalente	1	
	b) le courant total	1	
	c) le courant partiel I ₁	1	
	Solution:		
	a) $R_{\text{\'equ}} = \frac{R}{N} = \frac{1000 \ \Omega}{4} = \underline{\frac{250 \ \Omega}{}}$		
	b) $I = \frac{U}{R} = \frac{230 \text{ V}}{250 \Omega} = \underline{0.92A}$		
	c) $I_1 = \frac{U}{R} = \frac{230 \text{ V}}{1000 \Omega} = \underline{0.23 \text{ A}}$		
9.	5.3.5 Un courant de 8,5 A circule dans la ligne d'alimentation d'un récepteur ohmique	1	
	triphasé, couplé en triangle. La tension du réseau est de 3 x 395 V. Calculez la puissance totale du récepteur.		
	Solution:		
	$P = U \cdot I \cdot \sqrt{3} = 395 V \cdot 8, 5 A \cdot \sqrt{3} = 5815 W = 5,82 kW$		

rcices	Nombre maximal	de po
5.1.3		
Dispositif de protection contre les surintensités	3	
a) Comment nomme-t-on le dispositif de protection contre les surintensités représenté ci-dessous?	1	
b) Que signifie l'inscription C16 sur le dispositif de protection contre les surintensités représenté ci-dessous?	1	
c) Quelles sont les deux types de surintensités que ce dispositif va couper?	1	
AHP SAN C16 C16 C16 C17 C14 C16 C16 C17 C14 C17		
Solution:		
a) Disjoncteur ou LS		
b) C = caractéristique de déclenchement 16 = Courant nominal en Ampère		
c) Couper en cas de surcharge et en cas de court-circuit		
		l

cices			Nombre of maximal	de points obtenus
5.3.3 Indiquez avec une croix si les affirmations sont justes ou fau	isses.		2	
Déclarations / Affirmations	juste	faux		
Un moteur à courant alternatif a moins de puissance réactive qu'un chauffe-eau (boiler).			0,5	
L'énergie électrique peut être convertie en d'autres formes d'énergie (par exemple: énergie mécanique).			0,5	
La puissance apparente peut être calculée à partir des puissances actives et réactives.			0,5	
La puissance apparente peut être mesurée avec un wattmètre.			0,5	
Solution:				
Déclarations / Affirmations	juste	faux		
Un moteur à courant alternatif a moins de puissance réactive qu'un chauffe-eau (boiler).				
L'énergie électrique peut être convertie en d'autres formes d'énergie (par exemple: énergie mécanique).				
La puissance apparente peut être calculée à partir des puissances actives et réactives.	\boxtimes			
La puissance apparente peut être mesurée avec un wattmètre.		\boxtimes		
	t être éten	due	1 1	
	Déclarations / Affirmations	Déclarations / Affirmations juste	Déclarations / Affirmations juste faux	Déclarations / Affirmations juste faux Un moteur à courant alternatif a moins de puissance

ices					Nombre maximal
grandeurs différe	entes.	esure suivants, o		directement des	3
A) OFF V= Q A~ A~ OM OM OM OM OM OM OM OM OM O	B)	C)	(0)	kWh z	
Instrument de		Mes	ures		
Instrument de mesure	Energie	Mes Tension	ures Courant	Résistance	
	Energie			Résistance	1
mesure	Energie			Résistance	1 1
mesure Instrument A	Energie			Résistance	
Instrument A Instrument B Instrument C Solution:		Tension			1
Instrument A Instrument B Instrument C Solution: Instrument de mesure	Energie	Tension	Courant	Résistance	1
Instrument A Instrument B Instrument C Solution:		Tension	Courant		1
Instrument A Instrument B Instrument C Solution: Instrument de mesure		Tension Mes Tension	Courant ures Courant	Résistance	1
Instrument A Instrument B Instrument C Solution: Instrument de mesure Instrument A		Tension Mes Tension	Courant ures Courant X	Résistance	1
Instrument A Instrument B Instrument C Solution: Instrument de mesure Instrument A Instrument B Instrument C	Energie	Tension Mes Tension	Courant ures Courant X	Résistance X	1