Normal standardization

$$z = \frac{x - \mu}{\sigma} \qquad x = \mu + z\sigma$$

Central Limit Theorem

If:

- W is "any" random variable with mean = μ_w and standard deviation = σ_w .
- Random variable *X* is **sum** of *n* instances of *W*.

$$X = W_1 + W_2 + W_3 + \cdots + W_n$$

• Random variable Y is **average** of n instances of W.

$$Y = \frac{W_1 + W_2 + W_3 + \dots + W_n}{n}$$

Then:

• The following formulas are exactly true:

$$\mu_x = n\mu_w$$
 $\mu_y = \mu_w$

$$\sigma_x = \sigma_w \sqrt{n}$$
 $\sigma_y = \frac{\sigma_w}{\sqrt{n}}$

- X and Y are approximately normal (if n > 30)
- X and Y are exactly normal if W is normal

Special case of central limit theorem: Bernoulli, Binomial, and \hat{p} sampling

If:

• W is a Bernoulli random variable:

w	P(w)
0	q
1	p

- X is sum of n instances of W (X is binomial)
- \hat{p} is average of n instances of W (proportion sampling)

Then:

• The following are exactly true:

$$\mu_w = p$$
 $\mu_x = np$ $\mu_{\hat{p}} = p$ $\sigma_w = \sqrt{pq}$ $\sigma_x = \sqrt{pq}\sqrt{n}$ $\sigma_{\hat{p}} = \frac{\sqrt{pq}}{\sqrt{n}}$

• X and \hat{p} are approximately normal (if $np \ge 10$ and $nq \ge 10$)

A farm produces 4 types of fruit: A, B, C, and D. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
A	80	8
B	130	10
C	95	15
D	115	5

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)
A	92
B	142
C	81.5
D	109

a. Determine a z-score for each specimen.

b. Which specimen was most unusually large?

c. Which specimen was most unusually small?

A normal random variable X has a mean $\mu=77$ and standard deviation $\sigma=13$. Please label the density curve with:

- a. The appropriate values of x.
- b. The areas of the sections.

Let X be normally distributed with mean 25 and standard deviation 5. Please calculate the probabilities shown below and also shade a corresponding region under the density curve.

a.
$$P(X < 21)$$

b.
$$P(X > 23)$$

c.
$$P(17 < X < 33)$$

Let random variable W have a **mean of** $\mu_w=10.50$ and a **standard deviation of** $\sigma_w=5.77$.

Let X represent the sum of n=81 instances of W, and let Y represent the average of n=81 instances of W.

- a. Determine μ_x
- b. Determine σ_x
- c. What is the probability that X is between 773 and 928? Do NOT use a continuity correction.

- d. Determine μ_y
- e. Determine σ_y
- f. What is the probability that Y is between 10.2 and 10.8? Do NOT use a continuity correction.

An unfair coin has a p=0.63 chance of landing tails. When n=100 of these unfair coins are flipped, what is the probability of getting at least 55 but at most 71 tails? Please use a **normal approximation** with a **continuity correction**.

About 8% of men are color blind (p=0.08). If you gather a simple random sample of n=121 men, what is the probability that the sample proportion (\hat{p}) is between 0.03 and 0.07? Please use a **normal approximation**, but *do NOT use a continuity correction*.

Extra Credit

1. Let random variable X be normally distributed with mean $\mu=85$ and standard deviation $\sigma=10$. Determine a such that P(|X-85|< a)=0.8064.

PRACTICE

2. A population has a proportion p=0.7. The sample proportion is \hat{p} . Determine n such that $P(0.68 < \hat{p} < 0.72) = 0.9544$. In other words, determine the necessary sample size such that the sample proportion is between 0.68 and 0.72 in 95.44% of random samples of that size.