Media Delivery Network Simulator

Sponsor - Ericsson

Point of contact - Vladimir Katardjiev, Alvin Jude, Nimish Radia

Faculty Advisor - Jia Zhang

Team - Jeremy Fu, Jigar Patel, Vinay Kumar Vavili, Hao Wang

Project Background Presentation

- Project background
- State of the art
- What's the gap?
- Preliminary study
- Proposed methods

Project Background Presentation

- Project background
- State of the art
- What's the gap?
- Preliminary study
- Proposed methods

Project Background

- Erisson purchased Mediaroom from MS on 12/2013
 - Mediaroom is the world's most deployed IPTV platform, serving almost 13 million consumer households
 - Acquisition confirms Ericsson as a world leader for cutting edge
 TV-over-IP delivery with a combined market share of around 25%
 - http://www.ericsson.com/news/1727445
- Company strategy
 - Future that helps realize the greatest advantage, and most amazing consumer experience in a highly dynamic environment that demands true agility in any solution and services offering.
 - Cloud-based TV anywhere

Ericsson

- Communications technology provider
 - network equipments, software and services to mobile and fixed network operators
- TV and Media industry
 - It is predicted that within 5 years, 50% of the mobile data traffic will be video content
 - Ericsson interests enabling operators and content owners to efficiently deliver and monetize video content

Delivering Media - Key Question

How to deliver video (and other media) in real time (or even recorded) to millions of subscribers without any delay, packet loss or jitters in a cost-effective manner?

Answer - Media Delivery Network

- Designed to enable operators to manage the rapid growth in managed and unmanaged content, especially the massive growth in Over-The-Top services and applications
- Built differently as compared to existing networks (CDN or mobile) & specially for media (video) delivery

MDN - Benefits

- User-aware video optimization & delivery, saving bandwidth and enabling greater use of network capacity and richer experiences
- Single platform approach which offers converged visibility and control
- Smart routing driven by system heuristics and customer business logic
- Agile framework to launch innovative services, which enables monetization and fast time to market for new services

How to improve MDN?

- Experimentation with different algorithms and different types of loads
 - without using customers real networks
- Project Media Delivery Network Simulator

Project Goal

Build a "life sized" simulation of Internet-based media distribution, with a flexible **framework** that will allow tinkering, experimentation and evolution

Goals...

- Create different parts of MDN
- Generate different types of Traffic
- Consume that Traffic
- Monitor Key Metrics like end-to-end delay, packet loss, CPU Usage, Memory Usage
- Report Metrics in real-time
- Ability to script the simulator (configurable)
- Ability to extend the simulator

Project Background Presentation

- Project background
- State of the art
- What's the gap?
- Preliminary study
- Proposed methods

CDN vs MDN

Challenges in Enterprise Applications

- 1. Low Robustness
- 2. High End-to-End Latency
- 3. Limited Bandwidth

Content Delivery Network (CDN)

- Overlay Network over Internet
- Highly Distributed Deployed

Anatomy of CDN

- Mapping Systems
- Edge Servers
- Origin Servers
- Transport System
 - Pull or Push
 - Collaborative or not

Project Background Presentation

- Project background
- State of the art
- What's the gap?
- Preliminary study
- Proposed methods

Key Metrics of Streaming

- End-to-End Delay
 - Aimed at less than 60s
- Packet Loss
 - Adaptive Streaming Quality
 - Packet Recovery

Challenges in Live Streaming

- No Prefetching
- Intensive Computing at Nodes
 - Subtitle addition
 - Ads Insertion
 - Encoding (different resolutions, recovery corrections)

Media Delivery Network

- Application-Layer Multicast
 - Unicast v.s. Multicast
 - IP-Layer Multicast v.s. Application-Layer Multicast

Project Background Presentation

- Project background
- State of the art
- What's the gap?
- Preliminary study
- Proposed methods

Existing Solutionsand Limitations

Available Network Simulators

- Ns2
- Gns3 / NetSim
- Mininet
- Omnet++

Network Simulators Comparison

Network Simulator	Pros Cons		
NS-2/3	Be able to integrate with real network device Good for L1 and L2 layers simulation	Not scalable (memory intensive and computation intensive)	
Omnet++	Has parallel simulation capabilities Has modular extensible framework	Event Driven simulator, therefore cannot represent real packet transfer	
CDNSim	Has most common components, e.g. node types represented in CDNsim are similar to source, processing, relay and client	Unavailable Does not represent media traffic	
NetSim	Represents the packets and capture them from the simulator network.	Not Scalable: Can represent up to 200 nodes on one machine	

Network Simulators Summary

Network Simulator	Real Traffic	Scalable	Extensible	Memory Intensive
NS-2/3	V	×	V	V
Omnet++	×	\checkmark	V	×
CDNSim	V	V	V	×
NetSim	\checkmark	×	×	V

Advantages of existing simulators

- Provide scripting tools for describing the configuration of network elements, network topology and network traffic load
- Support for large number of network protocols
- Provide packet level detail of network events

Disadvantages

- Not Scalable: Simulations run on a single machine
- Cannot simulate dynamic load of a real network
- Nodes simulate L2 to L4 of the network stack and don't have functionality to simulate L7 processing

CDNsim

- Designed to support research in broad coverage CDN services
- Parallel discrete event trace-driven network simulation package that provides utilities and interfaces for content delivery on the Web
- Ability to simulate peer-to-peer (p2p) services as well as various internetwork configurations

CDNsim and MDN

- Streaming Audio/Video content is highly sensitive to delay and packet loss than normal content
- CDNsim does not have functionality to model streaming media content and node types like processing nodes (encoding, adinsertion, etc)

Service oriented architecture of CDNsim

Project Background Presentation

- Project background
- State of the art
- What's the gap?
- Preliminary study
- Proposed methods

Initial Approach

- Try out open source simulators and build on top of that, if possible
- Four kinds of nodes
 - Source
 - Processing
 - Relay
 - o Client

System structure, Server-Client

System structure, peer to peer

Our Goal

- A framework
- Implementation of components
 - Four kinds of nodes
- Highly configurable
 - Bandwidth
 - Delay
 - Package loss

Our Goal

- Scalable
 - Up to thousands of machines
- Generic
 - Plug in extra kinds of nodes
- Easy to use
 - Configuration file
 - RESTful API

Scratch Design

Questions?

