Suggested pre-NGS wet-lab protocol

]
5x
J
]
35x
J

Flu B Multi-Segment RT-PCR					
RT-PCR		45º	60'		
		55º	30'		
ddH ₂ O	7 μΙ	94º	2'		
2x RT-PCR Buffer	12,5 μl	94º	20"	1	
FluB universal primer cocktail*	2 µl	40º	30"	5x	
SSIII/Platinum Taq HiFi Enzyme Mix	0,5 μΙ	68º	3'30"]	
Mix	22 µl	94º	20"		
RNA	3 µl	58º	30"	40x	
Total	25 μΙ	68º	3'30"]	
		68º	10'		
		4º	∞		
		<u> </u>			

* Universal IBV-GA2 primer cockt	ail
B-PBs-UniF (10μM)	100 µl
B-PBs-UniR (10μM)	100 µl
B-PA-UniF (10μM)	50 μl
B-PA-UniR (10μM)	50 μl
B-HANA-UniF (10μM)	100 µl
B-HANA-UniR (10μM)	100 µl
B-NP-UniF (10μM)	60 µl
B-NP-UniR (10μM)	60 µl
B-M-UniF (10μM)	30 µl
B-Mg-UniF (10μM)	30 µl
B-M-UniR (10μM)	60 µl
B-NS-UniF (10μM)	50 μl
B-NS-UniR (10μM)	50 μl
FluB universal primer cocktail	840 µl

Adapted* from a RT-PCR assay described by Zhou and colleagues (Zhou et al, 2009, for Influenza A; Zhou et al, 2014, for Influenza B; Zhou and Wentworth DE, 2012).

REFERENCES:

- Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, Wentworth DE. 2009. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol, 83:10309-13.
- Zhou B, Lin X, Wang W, Halpin RA, Bera J, Stockwell TB, Barr IG, Wentworth DE. 2014. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol, 52:1330-1337.
- Zhou B, Wentworth DE. 2012. Influenza A virus molecular virology techniques. Methods Mol Biol, 865:175-92.

ACKNOWLEDGEMENTS:

* We acknowledge the training (Twinning Project on Optimization of Next Generation Sequencing procedures applied to the whole genome characterisation of influenza viruses) at Virus Reference Department, Microbiology Services of Public Health England supported by the European Reference Laboratory Network for Human Influenza (ERLI-Net), ECDC.