BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130704 Date: 3/12/2019

Subject Name: Digital Fundamentals

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS			
Q.1*	(a)	Do as Directed				
		1. Given that $(16)_{10} = (100)_{x}$. Find the value of x.				
		2. Add (6E) ₁₆ and (C5) ₁₆ .				
	4 \	3. $(101101110110110)_2 = (\underline{})_8 = (\underline{})_{16}$.	0.4			
	(b)	State and explain De Morgan's theorems with truth tables.	04			
	(c)	Implement AND, OR, & EX-OR gates using NAND & NOR gates.	07			
Q.2	(a)	Express the Boolean function $F = A + B'C$ in a sum of minterms.	03			
•	(b)	Reduce the expression $F = A [B + C'(AB + AC')']$	04			
	(c)	Simplify the following Boolean function by using the tabulation method.	07			
		$F(A, B, C, D) = \Sigma m(0, 1, 2, 8, 10, 11, 14, 15)$				
		OR				
	(c)	,	07			
		F = A'B'C' + A'B'CD + A'BCE' + A'BC'E + AB'C + ABC + ABC'D'.				
Q.3	(a)	Simplify the Boolean function	03			
	(1.)	$F(w, x, y, z) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$				
	(b)	e e i	04			
	(c)	Design a full adder and realize full adder using 3X8 Decoder and 2 OR gates. OR	07			
Q.3	(a)	Simplify the Boolean function $F = A'B'C' + B'CD' + A'BCD' + AB'C'$	03			
V.	(b)	Explain 4 – bit parallel adder.	04			
	(c)	Implement the following function using 8X1 MUX	07			
	()	$F(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$				
Q.4	(a)		03			
	(b)		04			
	(c)	Design a counter with the following binary sequence: 0, 1, 3, 7, 6, 4 and				
		repeat. Use T – flip-flops.				
0.4	()	OR	0.2			
Q.4	(a)	What is the race around condition in JK flip-flop?	03			
	(b)	Design 4-bit Ring counter using D flip-flip.	04			
Q.5	(c) (a)	Design JK flip-flip using D flip-flip. Explain the specification of D/A converter.	07 03			
Q.S	(a) (b)	Explain R-2R ladder type D/A converter,	03			
	(c)	Explain Successive Approximation type A/D converter.	07			
	(0)	OR				
Q.5	(a)	Explain classification of Memories.	03			
-	(b)	Explain the types of ROM.	04			
	(c)	A combinational circuit is defined by the function	07			
		$F_1(A, B, C_1) = \sum m(4, 5, 7)$ $F_2(A, B, C_2) = \sum m(3, 5, 7)$				
		Implement the circuit with a PLA having 3 inputs, 3 product term & 2 outputs.				

Seat No.:	Enrolment No.

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020

Subject Code:3130704 Date:05/03/2021

Subject Name:Digital Fundamentals

Time:10:30 AM TO 12:30 PM Total Marks:56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b) (c)	Do as directed: (a) $(1111.11)_2 = (?)_8 = (?)_{10}$ (b) $23 - 48$ using 2's complement method	03 04 07
Q.2	(a) (b) (c)		03 04 07
Q.3	(a) (b) (c)		03 04 07
Q.4	(a) (b) (c)	Draw truth table of 2-bit digital comparator. Minimize following Boolean function using K-map: $F(A,B,C,D) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$ Design a 4-bit synchronous down counter using T flip-flops.	03 04 07
Q.5	(a) (b) (c)	Design D FF using SR FF. Write truth table of D FF. Draw & explain in brief the logic diagram of 4-bit bidirectional shift register. List out various commonly used D/A converters. Draw & explain any one D/A converter.	03 04 07
Q.6	(a) (b) (c)	List out and explain any one application of the register. Design a 4-bit ripple up counter using JK flip-flops. List out various commonly used A/D converters. Draw & explain any one A/D converter.	03 04 07
Q.7	(a) (b) (c)	Draw internal organization of a 16 x 4 memory chip. Write a brief note on quantization and encoding. Write a detailed note on various types of memories.	03 04 07

Q.8	(a)	List out various characteristics of a D/A converter. Discuss any one.	03
	(b)	Obtain 2048 x 8 memory using 256 x 8 memory chips.	04
	(c)	Draw and explain in detail the block diagram of CPLD.	07

Seat No.:	Enrolment No
-----------	--------------

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021

Su	bject	Code:3130704 Date:23-02-	-2022
Tiı	Subject Name:Digital Fundamentals Fime:10:30 AM TO 01:00 PM Total Marks Instructions:		
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.		MARKS
Q.1	(a)	Implement EX-NOR using NAND gate.	03
	(b) (c)	Convert the decimal number 225.225 to octal and hexadecimal. Give classification of logic families and compare CMOS and TTL.	04 07
Q.2	(a)	Convert $F(A,B,C) = BC+A$ into standard minterm form.	03
	(b)	With logic diagram and truth table, explain the working of 3 line to 8 line decoder.	04
	(c)	Explain Successive Approximation A/D converter in detail. OR	07
	(c)	A combinational logic is defined by functions:	07
		$F_1(A,B,C) = \sum m (3,5,6,7)$ $F_2(A,B,C) = \sum m (0,2,4,7)$ Implement the circuit with PLA having 3 inputs, 4 product terms & 2 outputs.	
Q.3	(a)	Simplify the Boolean expression: $F(x,y,z) = \sum m(0,1,3,4,5,7)$	03
	(b)	Explain S-R clocked flip flop.	04
	(c)	Design full adder circuit using decoder and multiplexer. OR	07
2.3	(a)	Generate AND & EX-OR gates using NOR gate.	03
_	(b)	Implement D flip flop using JK flip flop.	04
	(c)	Design a counter to generate the repetitive sequence 0,4,2,1,6.	07
Q.4	(a)	What is race around condition in JK flip flop.	03
	(b)	Construct a ring counter with five timing signals.	04
	(c)	Design BCD to Excess 3 code converter using minimum number of NAND gates.	07
		OR	
Q.4	(a)	Explain 2-bit comparator circuit.	03
	(b) (c)	Write a short note on FPGA. What is Digital to Analog converter? Draw and Explain R-2R DAC.	04 07
	(C)	What is Digital to Alialog converter: Draw and Explain K-2K DAC.	07
Q.5	(a)	Perform following operation using 2's complement method. $(11010)_2 - (1000)_2$	03
	(b)	Write a short note on Read Only Memory (ROM).	04
	(c)	Explain the working of 4 bit binary ripple counter. OR	07
Q.5	(a)	Obtain the truth table of the function: $F = xy+yz+zx$.	03
	(b)	Implement following functions using ROM.	04
	(c)	$F_1 = \sum m (1,3,4,6)$ and $F_2 = \sum m (0,1,5,7)$. Explain in detail Dual Slope A/D converter.	07
	(-)		31

Seat No.:	Enrolment No.

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2021

Subject Code:3130704 Date	e:06/10/2021
---------------------------	--------------

Sub	ject	Name:Di	igital F	Fundamen	itals
~~	.,,	- 100			

Time:10:30 AM TO 01:00 PM	Total Marks:70
---------------------------	----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Solve the following Boolean functions by using K-Map. Implement the simplified function by using logic gates	03
	(b)	$F = (w,x,y,z) = \Sigma (0,1,4,5,6,8,9,10,12,14) + d(2,15)$ Do no directed	0.4
	(b)	Do as directed a. Convert 378.93 ₁₀ to octal	04
		 a. Convert 378.93₁₀ to octal b. Add 27.5₈ and 74.4₈ 	
		c. Convert 5C7 ₁₆ to decimal	
		d. Multiply 1101 ₂ by 110 ₂	
	(c)	With a neat block diagram explain the function of decoder. Design BCD to seven segment decoder	07
Q.2	(a)	Solve below function using 4 * 1 multiplexer	03
	` '	$F(w,x,y) = \sum (1,2,4,7)$	
	(b)	Compare CMOS and TTL Logic Family	04
	(c)	Design full adder and subtractor using mode control	07
		OR	
	(c)	Obtain the minimal expression for $f = \sum m(1,2,3,5,6,7,8,9,12,13,15)$ using	07
		the tabular method(Q McCluskey)	
Q.3	(a)	Explain D flip flop with proper diagram	03
	(b)	Explain 4 bit Ring counter. What is the limitation in Ring counter?	04
	(c)	Design the Synchronous Mod – 6 counter using JK flip flop	07
0.2	(0)	OR Evaloin T flin flor with proper diagram	02
Q.3	(a)	Explain T flip flop with proper diagram Design 2 bit Pipple country using two odgs triggered IV flip flop	03 04
	(b)	Design 2 bit Ripple counter using –ve edge triggered JK flip flop Design 3 bit down Synchronous counter using T flip flop	0 4 07
	(c)	Design 3 bit down Synchronous counter using 1 mp nop	07
Q.4	(a)	Explain below terms for DAC:	03
	()	a. Resolution b. Settling time	
	(b)	Draw the logic diagram of Parallel in serial out shift register	04
	(c)	Draw and Explain R-2R ladder type DAC	07
	` /	OR	
Q.4	(a)	Explain two input TTL Nand Gate	03
	(b)	Draw and Explain the successive approximation type ADC	04
	(c)	Draw and Explain 4 bit Universal Shift Register	07

Q.5	(a)	Explain below memory types a. MROM b. EEPROM	03
	(b) (c)	Draw internal logic of a 32*8 ROM Draw PAL design to implement F1= a'bc+ab'c+ac' and F2=a'b'c'+bc	04 07
		OR	
Q.5	(a) (b) (c)	What are the advantages of PLD over the fixed function ICs Draw a structure of an unprogrammed PLA circuit Implement the following two Boolean functions with a PLA a. $F1(A,B,C)=\sum m(0,1,4)$ b. $F2(A,B,C)=\sum m(0,5,6,7)$	03 04 07

Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE-SEMESTER-III (NEW) EXAMINATION - SUMMER 2022

Suhi	oct (Code:3130704 Date:18-0	07-2022		
•)		
•		Name:Digital Fundamentals	1 70		
Time:02:30 PM TO 05:00 PM Total Marks Instructions:					
Instru		is: Attempt all questions.			
		Make suitable assumptions wherever necessary.			
		Figures to the right indicate full marks.			
	4.	Simple and non-programmable scientific calculators are allowed.	MADEC		
			MARKS		
Q.1	(a)		03		
	, ,	What is signal? Explain different types of signal.	04		
	(c)		07		
		a) $F(A,B,C) = \sum (1,3,6)$			
		b) $F(A,B,C) = \pi(2,3,5)$			
Q.2	(a)	Perform the binary subtraction using 2's complement	03		
		$(0111)_2 - (1101)_2$			
	(b)		04		
	(c)	Design a Combinational circuit that convert 8- 4-2-1 code to BCD OR	07		
	(c)	Explain various logic gates.	07		
Q.3	(a)	Compare Half adder and Full adder.	03		
	(b)	· ·	04		
	(c)		07		
Q.3	(a)	OR Simplify Boolean function using K-MAP	03		
Q.J	(a)	F(A, B, C, D)=ABC'D' + ABC'D + ABCD' + AB'CD'	05		
	(b)		04		
	(c)	Explain Minterm and Maxterm.	07		
Q.4	(a)	Give the difference between sequential circuit and combinational	03		
		circuit.			
	(b)	· ·	04		
	(c)	Explain JK Flip-Flop. OR	07		
Q.4	(a)	Explain NAND SR Latch.	03		
۲۰۰	(b)	•	03		
	(c)	What is race around condition (racing)? How to solve it?	07		
0.5	(a)	Classify different types of digital to analog converters.	03		
Q.5	(a) (b)	• • • • • • • • • • • • • • • • • • • •	03		
	(c)	List out different types of ROM. Also explain ROM.	0 4 07		
	(0)	OR	07		
Q.5	(a)		03		
	(b)		04		
	(c)	Describe operation of D/A converter with binary-weighted resisters.	07		
