1、实验名称及目的

无人机飞行控制实验: 通过 RflySim 平台提供的 SendPosGlobal 函数接口实现控制无人机移动。

2、实验原理

利用平台提供的 SendPosGlobal 函数接口对无人机的位置控制,首先打开 MAVLink 以监控 CopterSim 数据并实时更新。然后发送指令让飞控中初始化为 Offboard 模式,并在 Pyt hon 中开始发送数据循环。然后发送位置数据给到函数接口进行对无人机的运动控制。该接口通过选择有三种不同的控制方式分别是控制位置,控制位置及偏航角,还有控制位置及角速率。

3、实验效果

运行实验 python 程序后,可以观察到无人机以全局位置原地向上飞行了一段距离。

4、文件目录

文件夹/文件名称	说明
PX4MavGPSCtrlTest.bat	启动仿真配置文件
PX4MavGPSCtrlTest.py	实现功能主文件
PX4MavCtrlV4.py	程序运行接口文件

5、运行环境

 	软件要求	硬件要求	
11, 4	状厅安 本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上		
3	Visual Studio Code		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

以管理员方式运行 PX4MavGPSCtrlTest.bat, 启动 SITL 软件在环仿真。将会启动 1 个QGC 地面站, 1 个CopterSim 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EKF init ialization finished 字样代表初始化完成, 并且 RflySim3D 软件内有 1 架无人机。如下图所示:

Step 2:

用 VScode 打开到本实验路径文件夹,运行 PX4MavGPSCtrlTest.py 程序,启动仿真。并且按 T 键开启或关闭飞机轨迹记录功能 , T+数字*开启/更改轨迹粗细为*号。可以观察 RflySim3D 中的飞机原地向上飞行了一段距离,如下图所示:

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无