- 103

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-166145

(43) Date of publication of application: 22.06.2001

(51)Int.Cl.

G02B 5/30

G02F 1/1335

G02F 1/13363

(21)Application number : 2000-287402

(71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing:

21.09.2000

(72)Inventor: ITO YOJI

(30)Priority

Priority number: 11280705

Priority date : 30.09.1999

Priority country: JP

(54) ELLIPTICALLY POLARIZING PLATE AND LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an elliptically polarizing plate suited for TN(twisted nematic) liquid crystal cell.

SOLUTION: In an elliptic polarizing plate having a first optically anisotropic layer, a second optically anisotropic layer, a polarizing film and a transparent protection film, the first optically anisotropic layer is formed as a layer with an angle between the largest refractive index direction and the layer plane of ≥5° and <85° and the second optically anisotropic layer is formed as a layer with an angle between the largest refractive index direction and the layer plane of ≥0° and <5° and with an optically positive uniaxial property.

LEGAL STATUS

[Date of request for examination]

16.09.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to a elliptically-polarized-light plate and a liquid crystal display.

[0002]

[Description of the Prior Art] TN (Twisted Nematic) mold liquid crystal display is a liquid crystal display most widely used combining an active element like TFT (Thin Film Transistor) or MIM (Metal Insulator Metal). A TN liquid crystal display consists of a TN liquid crystal cel and a polarizing element of two sheets. A liquid crystal cell consists of an electrode layer for applying an electrical potential difference to two substrates and cylindrical liquid crystallinity molecule for enclosing a cylindrical liquid crystallinity molecule for enclosing a cylindrical liquid crystallinity molecule by 90-degree angle of torsion is prepared in two substrates. In order to improve the angle of visibility of a TN liquid crystal display, generally an optical compensation sheet (phase contrast plate) is prepared between a liquid crystal cell and a polarizing element. The layered product of a polarizing element (polarization film) and an optical compensation sheet functions as a elliptically-polarized-light plate. As an optical compensation sheet, the drawing birefringence film is used from the former.

[0003] Replacing with the optical compensation sheet which consists of a drawing birefringence film, and using the optical compensation sheet which has an optical anisotropy layer containing a liquid crystallinity molecule on a transparence base material is proposed. An optical anisotropy layer carries out orientation of the liquid crystallinity molecule, and is formed by fixing the orientation condition. Generally a liquid crystallinity molecule has a big rate of a birefringence. By using a liquid crystallinity molecule, the conventional drawing birefringence film enables it to manufacture the optical compensation sheet which has the optical property which cannot be obtained. About the optical compensation sheet for TN liquid crystal cels using a discotheque liquid crystallinity molecule, each description (JP,6-214116,A, a U.S. Pat. No. 5583679 number, said 5646703 numbers, and German JP,3911620,B A1 No.) has a publication. Moreover, about the optical compensation sheet for TN liquid crystal cels using a cylindrical liquid crystallinity molecule, JP,7-35924,A has a publication.

[Problem(s) to be Solved by the Invention] The object of this invention is offering the elliptically-polarized-light plate suitable for a TN liquid crystal display. [0005]

[Means for Solving the Problem] The object of this invention was attained by the liquid crystal display of following the (1) - (the elliptically-polarized-light plate of 7), and following (10).

(1) The elliptically-polarized-light plate with which it is the elliptically-polarized-light plate which has the 1st optical anisotropy layer, the 2nd optical anisotropy layer, the polarization film, and a transparence protective coat, and the include angle of the direction of the maximum refractive index and the field of a layer is characterized by being less than 85 degrees and 5 times or more being the layer

whose include angle of the direction of the maximum refractive index and the field of a layer the 2nd optical anisotropy layer is 0 times [less than 5] or more, which has optically uniaxial [forward] optically by the 1st optical anisotropy layer.

- (2) A elliptically-polarized-light plate given in (1) whose 1st optical anisotropy layer is a layer formed from the cylindrical liquid crystallinity molecule.
- (3) A elliptically-polarized-light plate given in (2) from which the tilt angle of a cylindrical liquid crystallinity molecule is changing in connection with the distance of a cylindrical liquid crystallinity molecule and the 2nd optical anisotropy stratification plane.
- (4) A elliptically-polarized-light plate given in (1) whose 2nd optical anisotropy layer is the polymer film which carried out uniaxial stretching.
- (5) A elliptically-polarized-light plate given in (1) whose 2nd optical anisotropy layer is the cellulose ester film which carried out uniaxial stretching.
- (6) A elliptically-polarized-light plate given in (1) which lies at right angles substantially in the same side of the direction which projected the direction of the maximum refractive index of the 1st optical anisotropy layer on the field of a layer, and the direction of the maximum refractive index of the 2nd optical anisotropy layer.
- (7) A elliptically-polarized-light plate given in (1) to which the laminating of the 1st optical anisotropy layer, the 2nd optical anisotropy layer, the polarization film, and the transparence protective coat is carried out in this sequence.
- (8) A elliptically-polarized-light plate given in (1) to which the direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film lie at right angles substantially in the same field.
- (9) The direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film are a elliptically-polarized-light plate given in parallel (1) substantially in the same side.
- (10) It is the liquid crystal display which consists of two polarizing plates arranged at a TN liquid crystal cel and its both sides. At least one side of a polarizing plate The 1st optical anisotropy layer, the 2nd optical anisotropy layer, It has the polarization film and a transparence protective coat, and the 1st optical anisotropy layer is [the include angle of the direction of the maximum refractive index and the field of a layer] 5 times [less than 85] or more. The liquid crystal display with which the 2nd optical anisotropy layer is characterized by being the elliptically-polarized-light plate which is the layer which is less than 5 times, and which has optically uniaxial [forward] optically by the include angle of the direction of the maximum refractive index, and the field of a layer 0 times or more. In addition, a rectangular cross or parallel means substantially that angular difference with the condition of a strict rectangular cross or parallel is less than **20 degrees. It is more desirable that it is less than **12 degrees, it is desirable that it is less than **16 degrees, and it is [as for angular difference, it is still more desirable that it is less than **8 degrees, and] most desirable that it is less than **4 degrees. [0006]

[Embodiment of the Invention] <u>Drawing 1</u> is the mimetic diagram showing the fundamental configuration of a TN liquid crystal display. The TN liquid crystal indicating equipment shown in <u>drawing 1</u> sequentially from a back light (BL) side A transparence protective coat (1a), the polarization film (2a), the 2nd optical anisotropy layer (3a), It consists of the 1st optical anisotropy layer (4a), the bottom substrate of a liquid crystal cell (5a), a cylindrical liquid crystallinity molecule (6), a liquid crystal cell top substrate (5b), the 1st optical anisotropy layer (4b), the 2nd optical anisotropy layer (3b), polarization film (2b), and a transparence protective coat (1b). The bottom substrate of a liquid crystal cell, a cylindrical liquid crystallinity molecule, and a liquid crystal cell top substrate (5a-5b) constitute a TN liquid crystal cel. The 1st optical anisotropy layer and the 2nd optical anisotropy layer (3a-4a, and 4b-3b) constitute an optical compensation sheet. A transparence protective coat, the polarization film, the 1st optical anisotropy layer, and the 2nd optical anisotropy layer (1a-4a, and 4b-1b) constitute a elliptically-polarized-light plate.

[0007] Drawing 2 is the mimetic diagram showing another fundamental configuration of a TN liquid

crystal display. The TN liquid crystal indicating equipment shown in drawing 2 sequentially from a back light (BL) side It consists of a transparence protective coat (1a), the polarization film (2a), the 2nd optical anisotropy layer (3a), the 1st optical anisotropy layer (4a), the bottom substrate of a liquid crystal cell (5a), a cylindrical liquid crystallinity molecule (6), a liquid crystal cell top substrate (5b), a transparence protective coat (1b), polarization film (2b), and a transparence protective coat (1c). The bottom substrate of a liquid crystal cell, a cylindrical liquid crystallinity molecule, and a liquid crystal cell top substrate (5a-5b) constitute a TN liquid crystal cel. The 1st optical anisotropy layer and the 2nd optical anisotropy layer (3a-4a) constitute an optical compensation sheet. A transparence protective coat, the polarization film, the 1st optical anisotropy layer, and the 2nd optical anisotropy layer (1a-4a) constitute a elliptically-polarized-light plate.

[0008] Drawing 3 is the mimetic diagram showing still more nearly another fundamental configuration of a TN liquid crystal display. The TN liquid crystal indicating equipment shown in drawing 3 sequentially from a back light (BL) side It consists of a transparence protective coat (1a), the polarization film (2a), a transparence protective coat (1b), the bottom substrate of a liquid crystal cell (5a), a cylindrical liquid crystallinity molecule (6), a liquid crystal cell top substrate (5b), the 1st optical anisotropy layer (4b), the 2nd optical anisotropy layer (3b), polarization film (2b), and a transparence protective coat (1c). The bottom substrate of a liquid crystal cell, a cylindrical liquid crystallinity molecule, and a liquid crystal cell top substrate (5a-5b) constitute a TN liquid crystal cel. The 1st optical anisotropy layer and the 2nd optical anisotropy layer (4b-3b) constitute an optical compensation sheet. A transparence protective coat, the polarization film, the 1st optical anisotropy layer, and the 2nd optical anisotropy layer (4b-1c) constitute a elliptically-polarized-light plate. As shown in drawing 1 -3, as for a elliptically-polarized-light plate, it is desirable that the laminating of the 1st optical anisotropy layer, the 2nd optical anisotropy layer, the polarization film, and the transparence protective coat is carried out in this sequence. As for the elliptically-polarized-light plate, the laminating of the 2nd optical anisotropy layer, the 1st optical anisotropy layer, the polarization film, and the transparence protective coat may be carried out in this sequence.

[0009] The include angle of the direction of the maximum refractive index and the field of a layer of the 1st optical anisotropy layer of the [1st optical anisotropy layer] is 5 times [less than 85] or more. As for the 1st optical anisotropy layer, it is desirable to be able to form from the liquid crystallinity molecule or the polymer film which carried out the slanting drawing which carried out slanting orientation, and especially to form the 1st optical anisotropy layer from a cylindrical liquid crystallinity molecule by this invention. When the cylindrical liquid crystallinity molecule is carrying out orientation to homogeneity, the direction of a major axis of a molecule corresponds in the maximum refractive-index direction. Therefore, when forming the 1st optical anisotropy layer from a cylindrical liquid crystallinity molecule, the average tilt angle (average include angle of a cylindrical liquid crystallinity molecule and the field of a layer) of a cylindrical liquid crystallinity molecule is made into less than 85 degrees 5 times or more. As for the tilt angle of a cylindrical liquid crystallinity molecule, it is desirable to change in connection with the distance of a cylindrical liquid crystallinity molecule and the 2nd optical anisotropy stratification plane.

[0010] As a cylindrical liquid crystallinity molecule, azomethines, AZOKISHI, cyano biphenyls, cyanophenyl ester, benzoates, cyclohexane-carboxylic-acid phenyl ester, cyanophenyl cyclohexanes, cyano permutation phenyl pyrimidines, alkoxy permutation phenyl pyrimidines, phenyl dioxanes, tolan, and alkenyl cyclohexyl benzonitriles are used preferably. In addition, a metal complex is also contained in a cylindrical liquid crystallinity molecule. About a cylindrical liquid crystallinity molecule, Chapter 4 edited by the Quarterly Chmistry Survey, No. 22, The Chemistry of Liquid Crystals (1994) Chemical Society of Japan, Chapter 7, Chapter 11, and Chapter 3 for 142nd committee of liquid crystal device handbook Japan Society for the Promotion of Science have a publication. As for the rate of a birefringence of a cylindrical liquid crystallinity molecule, it is desirable that it is 0.001 thru/or 0.7. As for a cylindrical liquid crystallinity molecule, it is desirable to have a polymerization nature machine. The example of a polymerization nature machine (Q) is shown below. [0011]

[Formula 1] (Q1) (Q2) (Q3) (Q4)
—CH=CH₂ —CH=CH-CH₃ —CH=CH-C₂H₅ —CH=CH-n-C₃H₇ (Q5) (Q6) (Q7) (Q8) (Q9) (Q10)
—C=CH₂ —CH=C-CH₃ —C=CH O H —SH
—CH=CH₂
$$CH_3$$
 CH_3 —CH=CH₂ N —CH=CH₂ (Q11) (Q12) (Q13) (Q14) (Q15) (Q16) (Q-17)
—CHO —OH —CO₂H —N=C=O —NH₂ —SO₃H —N=C=S

[0012] It is desirable that they are a partial saturation polymerization nature machine (Q1-Q7), an epoxy group (Q8), or an aziridinyl radical (Q9), as for a polymerization nature machine (Q), it is still more desirable that it is a partial saturation polymerization nature machine, and it is most desirable that it is an ethylene nature partial saturation polymerization nature machine (Q1-Q6). Below, the example of a polymerization nature cylindrical liquid crystallinity molecule is shown.

[0013]

[0014] [Formula 3]

[0019] [Formula 8]

C5H11

ĊN

OC₅H₁₁

[0021] [Formula 10]

[0023] [Formula 12] ÇO Ç−CH₃ CH₂

[0025] [Formula 14]

[0026] Two or more kinds of cylindrical liquid crystallinity molecules may be used together. For example, a polymerization nature cylindrical liquid crystallinity molecule and a non-polymerization nature cylindrical liquid crystallinity molecule can be used together. The 1st optical anisotropy layer forms the liquid crystal constituent (coating liquid) containing a cylindrical liquid crystallinity molecule or the following polymerization nature initiator, or the additive (an example, a plasticizer, a monomer, a surfactant, cellulose ester) of arbitration by applying on the orientation film. As a solvent used for preparation of a liquid crystal constituent, an organic solvent is used preferably. An amide (an example, N.N-dimethylformamide), a sulfoxide (an example, dimethyl sulfoxide), a heterocycle compound (an example, pyridine), a hydrocarbon (an example, benzene, hexane), alkyl halide (an example, chloroform, dichloromethane), ester (an example, methyl acetate, butyl acetate), a ketone (an example, an acetone, methyl ethyl ketone), and the ether (an example, a tetrahydrofuran, 1, 2-dimethoxyethane) are contained in the example of an organic solvent. Alkyl halide and a ketone are desirable. Two or more kinds of organic solvents may be used together. Spreading of a liquid crystal constituent can be carried out by the well-known approach (an example, a wire bar coating method, an extrusion coating method, the direct gravure coating method, the reverse gravure coating method, die coating method). [0027] It is desirable to carry out orientation to homogeneity substantially, as for a cylindrical liquid crystallinity molecule, it is still more desirable to be fixed in the condition of carrying out orientation to homogeneity substantially, and it is most desirable that the liquid crystallinity molecule is being fixed by the polymerization reaction. The thermal polymerization reaction which uses a thermal polymerization initiator, and the photopolymerization reaction using a photopolymerization initiator are included in a polymerization reaction. A photopolymerization reaction is desirable, the example of a photopolymerization initiator -- alpha-carbonyl compound (a U.S. Pat. No. 2367661 number --) Each description publication of said 2367670 numbers, the acyloin ether (U.S. Pat. No. 2448828 number

description publication), alpha-hydrocarbon permutation aromatic series acyloin compound (U.S. Pat. No. 2722512 number description publication), a polykaryotic quinone compound (a U.S. Pat. No. 3046127 number -- said -- each description publication of No. 2951758) -- The combination of a thoria reel imidazole dimer and p-aminophenyl ketone (U.S. Pat. No. 3549367 number description publication), An acridine, a phenazine compound (JP,60-105667,A, U.S. Pat. No. 4239850 number description publication), and an oxadiazole compound (U.S. Pat. No. 4212970 number description publication) are contained. As for the amount of the photopolymerization initiator used, it is desirable that they are 0.01 of the solid content of coating liquid thru/or 20 % of the weight, and it is still more desirable that they are 0.5 thru/or 5 % of the weight. As for the optical exposure for the polymerization of a cylindrical liquid crystallinity molecule, it is desirable to use ultraviolet rays. exposure energy -- 20 mJ/cm2 Or 50 J/cm2 it is -- things -- desirable -- 100 thru/or 800 mJ/cm2 it is -- things are still more desirable. In order to promote a photopolymerization reaction, an optical exposure may be carried out under heating conditions. It is desirable that they are 0.1 thru/or 20 micrometers, as for the thickness of the 1st optical anisotropy layer, it is still more desirable that they are 0.5 thru/or 15 micrometers, and it is most desirable that they are 1 thru/or 10 micrometers.

[0028] The 2nd optical anisotropy layer of the [2nd optical anisotropy layer] is a layer whose include angle of the direction of the maximum refractive index and the field of a layer is 0 times [less than 5] or more and which has optically uniaxial [forward] optically. In addition, as for the direction which projected the direction of the maximum refractive index of the 1st optical anisotropy layer on the field of a layer, and the direction of the maximum refractive index of the 2nd optical anisotropy layer, it is desirable to make it intersect perpendicularly substantially in the same side. The 2nd optical anisotropy layer can be formed from the cylindrical liquid crystallinity molecule or the polymer film extended horizontally which carried out level orientation. It is desirable to form the 2nd optical anisotropy layer from a drawing polymer film, especially the polymer film which carried out uniaxial stretching. [0029] Generally as a polymer which forms the 2nd optical anisotropy layer, cellulose ester (an example, cellulose acetate) or a synthetic polymer (an example, a polycarbonate, polysulfone, polyether sulphone, polyacrylate, polymethacrylate, norbornene resin) is used. It is desirable to use a cellulose ester film, a polycarbonate film, or a norbornene resin film in the 2nd optical anisotropy layer, and especially the thing for which a cellulose ester film is used is desirable. In addition, generally the cellulose ester film is known as a polymer film with the high (a retardation is low) optical isotropy. However, the high cellulose ester film (optical anisotropy) of a retardation can be obtained by lowering of whenever [activity / of (1) retardation lifting agent indicated by the Europe JP,091165656,B A No. 2 description /, and acetylation / of (2) cellulose acetate], or manufacture of the film by (3) cooling solution process. As for a polymer film, forming by the solvent cast method is desirable. [0030] The formed polymer film acquires an optical anisotropy by generally extending. That is, by uniaxial-stretching processing, it has optically uniaxial [forward] optically and the direction of the maximum refractive index can obtain an parallel polymer film substantially with a stratification plane. As for uniaxial stretching, it is desirable to carry out to the lengthwise direction (the flow casting direction) of a film. Weak drawing processing (imbalance biaxial-stretching processing) may be carried out also to the direction (when the direction of uniaxial stretching is the flow casting direction of a film, it is the cross direction of a film) which intersects perpendicularly in the direction of uniaxial stretching. As for the thickness of the 2nd optical anisotropy layer which consists of a polymer film, it is desirable that they are 20 thru/or 500 micrometers, and it is still more desirable that they are 50 thru/or 200 micrometers. In order to improve adhesion with the 2nd optical anisotropy layer which consists of a polymer film, and the layer (a glue line, the orientation film, or the 1st optical anisotropy layer) prepared on it, surface treatment (an example, glow discharge processing, corona discharge treatment, ultravioletrays (UV) processing, flame treatment) may be carried out in the 2nd optical anisotropy layer. A glue line (under coat) may be prepared on the 2nd optical anisotropy layer.

desirable. When forming the 2nd optical anisotropy layer from a cylindrical liquid crystallinity molecule, the average tilt angle (average include angle of a cylindrical liquid crystallinity molecule and the field of a layer) of a cylindrical liquid crystallinity molecule is made into less than 5 times 0 times or more. About the detail of cylindrical liquid crystallinity molecules other than an average tilt angle, it is the same as that of the 1st optical anisotropy layer. It is desirable that they are 0.1 thru/or 20 micrometers, as for the thickness of the 2nd optical anisotropy layer formed from a cylindrical liquid crystallinity molecule, it is still more desirable that they are 0.5 thru/or 15 micrometers, and it is most desirable that they are 1 thru/or 10 micrometers.

[0032] Orientation of the cylindrical liquid crystallinity molecule used for the 1st optical anisotropy layer of the [orientation film] or the 2nd optical anisotropy layer is carried out using the orientation film. The orientation film is a means like accumulation of the organic compound (an example, omegatricosane acid, dioctadecyl methylanmmonium chloride, stearyl acid methyl) by rubbing processing of an organic compound (preferably polymer), the method vacuum evaporation of slanting of an inorganic compound, formation of the layer which has a micro groove, or the Langmuir-Blodgett's technique (LB film), and can be prepared. Furthermore, the orientation film which an orientation function produces is also known by grant of electric field, grant of a magnetic field, or optical exposure. Especially the orientation film formed by rubbing processing of a polymer is desirable. Rubbing processing is carried out by rubbing the front face of a polymer layer several times in the fixed direction with paper or cloth. It is desirable to use the polymer (the usual polymer for orientation film) to which surface energy of the orientation film is not reduced as a polymer which constitutes the orientation film. As for the thickness of the orientation film, it is desirable that they are 0.01 thru/or 5 micrometers, and it is still more desirable that they are 0.05 thru/or 1 micrometer. In addition, since orientation of the cylindrical liquid crystallinity molecule of the 1st optical anisotropy layer or the 2nd optical anisotropy layer is carried out using the orientation film, an optical anisotropy layer may be imprinted on the 2nd optical anisotropy layer or a transparence base material. Even if the cylindrical liquid crystallinity molecule fixed in the state of orientation does not have the orientation film, it can maintain an orientation condition. [0033] There are iodine system polarization film, and the color system polarization film and polyene system polarization film which use dichromatic dye as [polarization film] polarization film. Generally the iodine system polarization film and the color system polarization film are manufactured using a polyvinyl alcohol system film. The polarization shaft of the polarization film corresponds in the direction vertical to the drawing direction of a film.

[0034] A polymer film is used as a [transparence protective coat] transparence protective coat. It means that light transmittance is 80% or more as a protective coat is transparent. as a transparence protective coat -- general -- a cellulose ester film -- a triacetyl cellulose film is used preferably. As for a cellulose ester film, forming by the solvent cast method is desirable. As for the thickness of a transparence protective coat, it is desirable that they are 20 thru/or 500 micrometers, and it is still more desirable that they are 50 thru/or 200 micrometers.

[0035] [Liquid crystal display] this invention is applicable to the liquid crystal cell of various display modes. However, especially this invention is effective in the liquid crystal display in TN (Twisted Nematic) mode.

[0036]

[Example] [Example 1]

(Formation of the 2nd optical anisotropy layer) The cellulose acetate solution which consists of the following presentation was prepared, and the cellulose acetate film whose desiccation thickness is 105 micrometers was manufactured using the drum flow casting machine. [0037]

 [0038] The manufactured cellulose acetate film was extended at 60% of real scale factors, and the 2nd optical anisotropy layer was formed. When the retardation in the wavelength of 633nm was measured using the ellipsomter (M150, Jasco Corp. make), the retardation (Rth) of the thickness direction was [85nm and the retardation within a field (Re)] 100nm.

[0039] (Formation of the 1st optical anisotropy layer) The gelatin layer was prepared in one side of the 2nd optical anisotropy layer. On the gelatin layer, the coating liquid which consists of the following presentation was applied, and the orientation film with a thickness of 0.5 micrometers was formed.

------ orientation film coating liquid presentation ---------------

The following denaturation polyvinyl alcohol Two mass sections Glutaraldehyde The 0.1 mass section Water 98 mass sections ------ [0040]

[Formula 15]

変性ポリピニルアルコール

[0041] Rubbing processing of the orientation film front face was carried out. On the orientation film, the coating liquid which consists of the following presentation was applied, and the 1st optical anisotropy layer with a thickness of 1.5 micrometers was formed. [0042]

------ The 1st optical anisotropy layer coating liquid presentation ----------- The following cylindrical liquid crystallinity molecule 30 mass sections Methylene

chloride 70 mass sections ----- [0043]

[Formula 16] 棒状液晶性分子

[0044] When the retardation value in the wavelength of 633nm was measured using the ellipsomter (M150, Jasco Corp. make), the retardation (Rth) of the thickness direction was 100nm. Moreover, the include angle of the direction and stratification plane from which a refractive index serves as min was 50

[0045] (Production of a elliptically-polarized-light plate) Iodine was made to stick to the extended polyvinyl alcohol film, and the polarization film was produced. One side of the polarization film and the 2nd optical anisotropy stratification plane of the produced optical compensation sheet were stuck using polyvinyl alcohol system adhesives. The direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film have been arranged so that it may intersect perpendicularly. It was stuck on the field of the opposite hand of the polarization film using polyvinyl alcohol system adhesives, having used the triacetyl cellulose film (FUJITAKKU, Fuji Photo Film Co., Ltd. make) with a thickness of 100 micrometers as the transparence protective coat. Thus, the elliptically-polarized-light plate was produced.

[0046] (Production of a liquid crystal display) The polyimide orientation film was prepared on the glass substrate with which the ITO transparent electrode was prepared, and rubbing processing was performed. Through the 4.5-micrometer spacer, two substrates were piled up so that the orientation film might face each other. Two substrates have been arranged so that the direction of rubbing of the orientation film may intersect perpendicularly. The cylindrical liquid crystallinity molecule (ZLI-4792, Merck Co. make) was poured into the gap of a substrate, and the cylindrical liquid crystal layer was

formed in it. The produced elliptically-polarized-light plate was stuck on the both sides of TN liquid crystal cell produced as mentioned above so that two sheets and an optical anisotropy layer might meet a substrate, and the liquid crystal display was produced. The direction of rubbing of the orientation film and the direction of rubbing of the orientation film of the liquid crystal cell which adjoins it have been arranged so that it may become anti-parallel. When the produced TN liquid crystal display was investigated, contrast was good and the good image without reversal of gradation was displayed. [0047] [Example 2]

(Formation of the 2nd optical anisotropy layer) The norbornene resin solution which consists of the following presentation was prepared, and the norbornene resin whose desiccation thickness is 100 micrometers was manufactured using the band casting machine.

[0048]

norbornene resin (ARTON, product made from JSR) 30 mass sections Methylene chloride 70 mass sections ------- [0049] The manufactured norbornene resin film was extended at 30% of real scale factors to the longitudinal direction, it extended at 15% of real scale factors crosswise further, and the 2nd optical anisotropy layer was formed. When the retardation value in the wavelength of 633nm was measured using the ellipsomter (M150, Jasco Corp. make), the retardation (Rth) of the thickness direction was [85nm and the retardation within a field (Re)] 100nm.

[0050] (Formation of the 1st optical anisotropy layer) Corona discharge treatment of one side of the 2nd optical anisotropy layer was carried out, and the orientation film and the 1st optical anisotropy layer were formed like the example 1 on it. Optical property is shown in the 1st table.

[0051] (Production of a elliptically-polarized-light plate) Iodine was made to stick to the extended polyvinyl alcohol film, and the polarization film was produced. One side of the polarization film and the 2nd optical anisotropy stratification plane of the produced optical compensation sheet were stuck using polyvinyl alcohol system adhesives. The direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film have been arranged so that it may intersect perpendicularly. It was stuck on the field of the opposite hand of the polarization film using polyvinyl alcohol system adhesives, having used the triacetyl cellulose film (FUJITAKKU, Fuji Photo Film Co., Ltd. make) with a thickness of 100 micrometers as the transparence protective coat. Thus, the elliptically-polarized-light plate was produced.

[0052] (Production of a liquid crystal display) The polyimide orientation film was prepared on the glass substrate with which the ITO transparent electrode was prepared, and rubbing processing was performed. Through the 4.5-micrometer spacer, two substrates were piled up so that the orientation film might face each other. Two substrates have been arranged so that the direction of rubbing of the orientation film may intersect perpendicularly. The cylindrical liquid crystallinity molecule (ZLI-4792, Merck Co. make) was poured into the gap of a substrate, and the cylindrical liquid crystal layer was formed in it. The produced elliptically-polarized-light plate was stuck on the both sides of TN liquid crystal cell produced as mentioned above so that two sheets and an optical anisotropy layer might meet a substrate, and the liquid crystal display was produced. The direction of rubbing of the orientation film and the direction of rubbing of the orientation film of the liquid crystal cell which adjoins it have been arranged so that it may become anti-parallel. When the produced TN liquid crystal display was investigated, contrast was good and the good image without reversal of gradation was displayed.

[0053] [Example 3]

(Formation of the 2nd optical anisotropy layer) The commercial polycarbonate film (Teijin, Ltd. make) was extended at 30% of real scale factors to the longitudinal direction, and the 2nd optical anisotropy layer was formed. When the retardation value in the wavelength of 633nm was measured using the ellipsomter (M150, Jasco Corp. make), the retardation (Rth) of the thickness direction was [100nm and the retardation within a field (Re)] 150nm.

[0054] (Formation of the 1st optical anisotropy layer) Corona discharge treatment of one side of the 2nd optical anisotropy layer was carried out, and the orientation film and the 1st optical anisotropy layer were formed like the example 1 on it. Optical property is shown in the 1st table.

[0055] (Production of a elliptically-polarized-light plate) Iodine was made to stick to the extended polyvinyl alcohol film, and the polarization film was produced. One side of the polarization film and the 2nd optical anisotropy stratification plane of the produced optical compensation sheet were stuck using polyvinyl alcohol system adhesives. The direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film have been arranged so that it may intersect perpendicularly. It was stuck on the field of the opposite hand of the polarization film using polyvinyl alcohol system adhesives, having used the triacetyl cellulose film (FUJITAKKU, Fuji Photo Film Co., Ltd. make) with a thickness of 100 micrometers as the transparence protective coat. Thus, the elliptically-polarized-light plate was produced.

[0056] (Production of a liquid crystal display) The polyimide orientation film was prepared on the glass substrate with which the ITO transparent electrode was prepared, and rubbing processing was performed. Through the 4.5-micrometer spacer, two substrates were piled up so that the orientation film might face each other. Two substrates have been arranged so that the direction of rubbing of the orientation film may intersect perpendicularly. The cylindrical liquid crystallinity molecule (ZLI-4792, Merck Co. make) was poured into the gap of a substrate, and the cylindrical liquid crystal layer was formed in it. The produced elliptically-polarized-light plate was stuck on the both sides of TN liquid crystal cell produced as mentioned above so that two sheets and an optical anisotropy layer might meet a substrate, and the liquid crystal display was produced. The direction of rubbing of the orientation film and the direction of rubbing of the orientation film of the liquid crystal cell which adjoins it have been arranged so that it may become anti-parallel. When the produced TN liquid crystal display was investigated, contrast was good and the good image without reversal of gradation was displayed. [0057] [Example 4]

(Formation of the 1st optical anisotropy layer) The coating liquid which becomes one side of the 2nd optical anisotropy layer produced in the example 1 from the photopolymerization nature oligomer (UN900PEP, product made from Neagari Industry) 1 mass section, the tetrahydrofuran 19 mass section, and a small amount of benzophenone was applied, and it dried for 30 minutes at 60 degrees C. while impressing at the include angle which moreover applied the cylindrical pneumatic liquid crystal nature child (ZL 14788-100, Merck Japan make), and leaned [of the spreading side] the magnetic field of 5kG 70 degrees in the direction vertical to the drawing direction of the 2nd optical anisotropy layer from the normal -- an ultraviolet ray lamp -- ultraviolet rays -- irradiating -- a cylindrical pneumatic liquid crystal nature child -- orientation -- and it fixed. Optical property is shown in the 1st table.

[0058] (Production of a elliptically-polarized-light plate) Iodine was made to stick to the extended polyvinyl alcohol film, and the polarization film was produced. One side of the polarization film and the 2nd optical anisotropy stratification plane of the produced optical compensation sheet were stuck using polyvinyl alcohol system adhesives. The direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film have been arranged so that it may intersect perpendicularly. It was stuck on the field of the opposite hand of the polarization film using polyvinyl alcohol system adhesives, having used the triacetyl cellulose film (FUJITAKKU, Fuji Photo Film Co., Ltd. make) with a thickness of 100 micrometers as the transparence protective coat. Thus, the elliptically-polarized-light plate was produced.

[0059] (Production of a liquid crystal display) The polyimide orientation film was prepared on the glass substrate with which the ITO transparent electrode was prepared, and rubbing processing was performed. Through the 4.5-micrometer spacer, two substrates were piled up so that the orientation film might face each other. Two substrates have been arranged so that the direction of rubbing of the orientation film may intersect perpendicularly. The cylindrical liquid crystallinity molecule (ZLI-4792, Merck Co. make) was poured into the gap of a substrate, and the cylindrical liquid crystal layer was formed in it. The produced elliptically-polarized-light plate was stuck on the both sides of TN liquid crystal cell produced as mentioned above so that two sheets and an optical anisotropy layer might meet a substrate, and the liquid crystal display was produced. The direction of rubbing of the orientation film and the direction of rubbing of the orientation film of the liquid crystal cell which adjoins it have been arranged so that it may become anti-parallel. When the produced TN liquid crystal display was

(Formation of the 2nd optical anisotropy layer) It stirred having fed the following constituent into the mixing tank and heating it, and the cellulose acetate solution which becomes since each component is dissolved was prepared.

[0069]

----- cellulose acetate solution presentation -----

[0071]

[0072] In the cellulose acetate solution 474 mass section, the retardation lifting agent solution 56 mass section was mixed, it fully stirred in it, and the dope was prepared in it. The obtained dope was cast using the band casting machine. The horizontal drawing of the film whose amount of residual solvents is 15 % of the weight was carried out by 35% of draw magnification using the tenter on 30-degree C conditions, and the cellulose acetate film was manufactured. When the retardation value in the wavelength of 550nm was measured using the ellipsomter (M150, Jasco Corp. make) about the 2nd optical anisotropy layer which consists of a manufactured cellulose acetate film, the retardation (Rth) of the thickness direction was [130nm and the retardation within a field (Re)] 105nm. After being immersed in the 1.5-N potassium-hydroxide water solution for 5 minutes at 40 degrees C, the sulfuric acid neutralized the 2nd optical anisotropy layer, and it rinsed with pure water, and dried. It was 68 mN/m when asked for the surface energy of the 2nd optical anisotropy layer by the contact angle method.

[0073] (Formation of the 1st optical anisotropy layer) The wire bar coating machine of #16 is used for the coating liquid which becomes one side of the 2nd optical anisotropy layer from the following presentation, and it is 28 ml/m2. It applied. It dried for 150 seconds by 90 more-degree C warm air for 60 seconds by 60-degree C warm air.

[0074]

 1.5 micrometers was formed. When the retardation in the wavelength of 633nm was measured using the ellipsomter (M150, Jasco Corp. make), the retardation (Rth) of the thickness direction was 100nm. Moreover, the include angle of the direction and stratification plane from which a refractive index serves as min was 50 degrees.

[0076] (Production of a elliptically-polarized-light plate) Iodine was made to stick to the extended polyvinyl alcohol film, and the polarization film was produced. One side of the polarization film and the 2nd optical anisotropy stratification plane of the produced optical compensation sheet were stuck using polyvinyl alcohol system adhesives. The direction of the maximum refractive index of the 2nd optical anisotropy layer and the transparency shaft of the polarization film have been arranged so that it may be parallel. It was stuck on the field of the opposite hand of the polarization film using polyvinyl alcohol system adhesives, having used the triacetyl cellulose film (FUJITAKKU, Fuji Photo Film Co., Ltd. make) with a thickness of 100 micrometers as the transparence protective coat. Thus, the elliptically-polarized-light plate was produced.

[0077] (Production of a liquid crystal display) The polyimide orientation film was prepared on the glass substrate with which the ITO transparent electrode was prepared, and rubbing processing was performed. Through the 4.5-micrometer spacer, two substrates were piled up so that the orientation film might face each other. Two substrates have been arranged so that the direction of rubbing of the orientation film may intersect perpendicularly. The cylindrical liquid crystallinity molecule (ZLI-4792, Merck Co. make) was poured into the gap of a substrate, and the cylindrical liquid crystal layer was formed in it. The produced elliptically-polarized-light plate was stuck on the both sides of TN liquid crystal cell produced as mentioned above so that two sheets and an optical anisotropy layer might meet a substrate, and the liquid crystal display was produced. The direction of rubbing of the orientation film and the direction of rubbing of the orientation film of the liquid crystal cell which adjoins it have been arranged so that it may become anti-parallel. When the produced TN liquid crystal display was investigated, contrast was good and the good image without reversal of gradation was displayed. [0075]

[Effect of the Invention] If the elliptically-polarized-light plate of this invention is used, contrast is good and can display a good image with little tone reversal.

[Translation done.]

(19) 日本国特許庁 (J P) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-166145 (P2001-166145A)

(43)公開日 平成13年6月22日(2001.6.22)

(51) Int.Cl.7		識別記号	FΙ		テーマコード(参考)
G 0 2 B	5/30		G 0 2 B	5/30	
G02F	1/1335	5 1 0	G 0 2 F	1/1335	5 1 0
	1/13363			1/13363	

審査請求 未請求 請求項の数10 OL (全 16 頁)

(21)出願番号	特願2000-287402(P2000-287402)	(71)出顧人	
(22)出顧日	平成12年9月21日(2000.9.21)		富士写真フイルム株式会社 神奈川県南足柄市中沼210番地
	,	(72)発明者	伊藤 洋士
(31)優先権主張番号	特願平11-280705		神奈川県南足柄市中沼210番地 富士写真
(32)優先日	平成11年9月30日(1999.9.30)		フイルム株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	100074675
			弁理士 柳川 泰男

(54) 【発明の名称】 楕円偏光板および液晶表示装置

(57)【要約】

【課題】 TN型液晶セルに適した楕円偏光板を得る。 【解決手段】 第1光学異方性層、第2光学異方性層、 偏光膜および透明保護膜を有する楕円偏光板において、 第1光学異方性層を、最大屈折率の方向と層の面との角 度が5度以上85度未満である層として形成し、第2光 学異方性層を、最大屈折率の方向と層の面との角度が0 度以上5度未満である光学的に正の一軸性を有する層と して形成する。

【特許請求の範囲】

【請求項1】 第1光学異方性層、第2光学異方性層、 偏光膜および透明保護膜を有する楕円偏光板であって、 第1光学異方性層が、最大屈折率の方向と層の面との角 度が5度以上85度未満であり、第2光学異方性層が、 最大屈折率の方向と層の面との角度が0度以上5度未満 である光学的に正の一軸性を有する層であることを特徴 とする楕円偏光板。

【請求項2】 第1光学異方性層が、棒状液晶性分子か ら形成された層である請求項1に記載の楕円偏光板。

【請求項3】 棒状液晶性分子の傾斜角が、棒状液晶性 分子と第2光学異方性層面との距離に伴って変化してい る請求項2に記載の楕円偏光板。

【請求項4】 第2光学異方性層が、一軸延伸したポリ マーフイルムである請求項1に記載の楕円偏光板。

【請求項5】 第2光学異方性層が、一軸延伸したセル ロースエステルフイルムである請求項1に記載の楕円偏 光板。

【請求項6】 第1光学異方性層の最大屈折率の方向を 層の面に投影した方向と、第2光学異方性層の最大屈折 20 率の方向との同一面内で実質的に直交している請求項1 に記載の楕円偏光板。

【請求項7】 第1光学異方性層、第2光学異方性層、 偏光膜、そして透明保護膜が、この順序で積層されてい る請求項1に記載の楕円偏光板。

【請求項8】 第2光学異方性層の最大屈折率の方向 と、偏光膜の透過軸とが同一面内で実質的に直交してい る請求項1に記載の楕円偏光板。

【請求項9】 第2光学異方性層の最大屈折率の方向 と、偏光膜の透過軸とが同一面内で実質的に平行である 30 請求項1に記載の楕円偏光板。

【請求項10】 TN型液晶セルおよびその両側に配置 された二枚の偏光板からなる液晶表示装置であって、偏 光板の少なくとも一方が、第1光学異方性層、第2光学 異方性層、偏光膜および透明保護膜を有し、第1光学異 方性層が、最大屈折率の方向と層の面との角度が5度以 上85度未満であり、第2光学異方性層が、最大屈折率 の方向と層の面との角度が0度以上5度未満である光学 的に正の一軸性を有する層である楕円偏光板であること を特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、楕円偏光板および 液晶表示装置に関する。

[0002]

【従来の技術】TN(Twisted Nematic)型液晶表示装 置は、TFT(Thin Film Transistor)やMIM(Meta 1 Insulator Metal) のような能動素子と組み合わせ て、最も広く用いられている液晶表示装置である。TN 型液晶表示装置は、TN型液晶セルおよび二枚の偏光素 50 (6)第1光学異方性層の最大屈折率の方向を層の面に

子からなる。液晶セルは、棒状液晶性分子、それを封入 するための二枚の基板および棒状液晶性分子に電圧を加 えるための電極層からなる。TN型液晶セルでは、90 のわじれ角で棒状液晶性分子を配向させるための配向 膜が、二枚の基板に設けられる。TN型液晶表示装置の 視野角を改善するため、一般に液晶セルと偏光素子との 間に光学補償シート(位相差板)が設けられる。偏光素 子(偏光膜)と光学補償シートとの積層体は、楕円偏光 板として機能する。光学補償シートとしては、延伸複屈 10 折フイルムが従来から使用されている。

【0003】延伸複屈折フイルムからなる光学補償シー トに代えて、透明支持体上に液晶性分子を含む光学異方 性層を有する光学補償シートを使用することが提案され ている。光学異方性層は、液晶性分子を配向させ、その 配向状態を固定することにより形成する。液晶性分子 は、一般に大きな複屈折率を有する。液晶性分子を用い ることで、従来の延伸複屈折フイルムでは得ることがで きない光学的性質を有する光学補償シートを製造するこ とが可能になる。ディスコティック液晶性分子を用いた TN型液晶セル用の光学補償シートについては、特開平 6-214116号公報、米国特許5583679号、 同5646703号、ドイツ特許3911620A1号 の各明細書に記載がある。また、棒状液晶性分子を用い たTN型液晶セル用の光学補償シートについては、特開 平7-35924号公報に記載がある。

[0004]

【発明が解決しようとする課題】本発明の目的は、TN 型液晶表示装置に適した楕円偏光板を提供することであ る。

【0005】

【課題を解決するための手段】本発明の目的は、下記 (1)~(7)の楕円偏光板および下記(10)の液晶 表示装置により達成された。

- (1)第1光学異方性層、第2光学異方性層、偏光膜お よび透明保護膜を有する楕円偏光板であって、第1光学 異方性層が、最大屈折率の方向と層の面との角度が5度 以上85度未満であり、第2光学異方性層が、最大屈折 率の方向と層の面との角度が0度以上5度未満である光 学的に正の一軸性を有する層であることを特徴とする楕 円偏光板。
- (2) 第1光学異方性層が、棒状液晶性分子から形成さ れた層である(1)に記載の楕円偏光板。
- (3)棒状液晶性分子の傾斜角が、棒状液晶性分子と第 2光学異方性層面との距離に伴って変化している(2) に記載の楕円偏光板。
- (4)第2光学異方性層が、一軸延伸したポリマーフイ ルムである(1)に記載の楕円偏光板。
- (5)第2光学異方性層が、一軸延伸したセルロースエ ステルフイルムである(1)に記載の楕円偏光板。

投影した方向と、第2光学異方性層の最大屈折率の方向 との同一面内で実質的に直交している(1)に記載の精 円偏光板。

- (7)第1光学異方性層、第2光学異方性層、偏光膜、 そして透明保護膜が、この順序で積層されている(1) に記載の楕円偏光板。
- (8)第2光学異方性層の最大屈折率の方向と、偏光膜 の透過軸とが同一面内で実質的に直交している(1)に 記載の楕円偏光板。
- (9)第2光学異方性層の最大屈折率の方向と、偏光膜 10 の透過軸とが同一面内で実質的に平行である(1)に記 載の楕円偏光板。

(10) TN型液晶セルおよびその両側に配置された二 枚の偏光板からなる液晶表示装置であって、偏光板の少 なくとも一方が、第1光学異方性層、第2光学異方性 層、偏光膜および透明保護膜を有し、第1光学異方性層 が、最大屈折率の方向と層の面との角度が5度以上85 度未満であり、第2光学異方性層が、最大屈折率の方向 と層の面との角度が0度以上5度未満である光学的に正 の一軸性を有する層である楕円偏光板であることを特徴 20 とする液晶表示装置。なお、実質的に直交または平行と は、厳密な直交または平行の状態との角度差が±20° 未満であることを意味する。角度差は、±16°未満で あることが好ましく、±12°未満であることがより好 ましく、±8°未満であることがさらに好ましく、±4 * 未満であることが最も好ましい。

[0006]

【発明の実施の形態】図1は、TN型液晶表示装置の基 本的な構成を示す模式図である。図1に示すTN型液晶 表示装置は、バックライト(BL)側から順に、透明保 30 護膜(1a)、偏光膜(2a)、第2光学異方性層(3 a)、第1光学異方性層(4a)、液晶セルの下基板 (5a)、棒状液晶性分子(6)、液晶セルの上基板 (5b)、第1光学異方性層(4b)、第2光学異方性 層(3b)、偏光膜(2b)、そして透明保護膜(1 b) からなる。液晶セルの下基板、棒状液晶性分子およ び液晶セルの上基板(5a~5b)がTN型液晶セルを 構成する。第1光学異方性層および第2光学異方性層 (3a~4aおよび4b~3b)が光学補償シートを構 成する。透明保護膜、偏光膜、第1光学異方性層および 40 第2光学異方性層(1 a~4 aおよび4 b~1 b)が楕 円偏光板を構成する。

【0007】図2は、TN型液晶表示装置の別の基本的 な構成を示す模式図である。図2に示すTN型液晶表示 装置は、バックライト(BL)側から順に、透明保護膜 (1a)、偏光膜(2a)、第2光学異方性層(3 a)、第1光学異方性層(4a)、液晶セルの下基板 (5a)、棒状液晶性分子(6)、液晶セルの上基板 (5b)、透明保護膜(1b)、偏光膜(2b)、そし て透明保護膜(1c)からなる。液晶セルの下基板、棒 50 ンドブック日本学術振興会第142委員会編の第3章に

状液晶性分子および液晶セルの上基板 (5a~5b)が TN型液晶セルを構成する。第1光学異方性層および第 2光学異方性層(3a~4a)が光学補償シートを構成 する。透明保護膜、偏光膜、第1光学異方性層および第 2光学異方性層(1a~4a)が楕円偏光板を構成す

【0008】図3は、TN型液晶表示装置のさらに別の 基本的な構成を示す模式図である。図3に示すTN型液 晶表示装置は、バックライト(BL)側から順に、透明 保護膜(1a)、偏光膜(2a)、透明保護膜(1 b)、液晶セルの下基板(5a)、棒状液晶性分子 (6)、液晶セルの上基板(5b)、第1光学異方性層 (4b)、第2光学異方性層(3b)、偏光膜(2 b)、そして透明保護膜(1c)からなる。液晶セルの 下基板、棒状液晶性分子および液晶セルの上基板(5a ~5 b) がTN型液晶セルを構成する。第1光学異方性 層および第2光学異方性層(46~36)が光学補償シ ートを構成する。透明保護膜、偏光膜、第1光学異方性 層および第2光学異方性層(4b~1c)が楕円偏光板 を構成する。図1~3に示すように、楕円偏光板は、第 1 光学異方性層、第2 光学異方性層、偏光膜、そして透 明保護膜が、この順序で積層されていることが好まし い。楕円偏光板は、第2光学異方性層、第1光学異方性 層、偏光膜、そして透明保護膜が、この順序で積層され ていてもよい。

【0009】[第1光学異方性層]第1光学異方性層 は、最大屈折率の方向と層の面との角度が5度以上85 度未満である。第1光学異方性層は、斜め配向させた液 晶性分子または斜め延伸したポリマーフイルムから形成 でき、特に本発明では、棒状液晶性分子から、第1光学 異方性層を形成することが好ましい。棒状液晶性分子が 均一に配向している場合、分子の長軸方向が最大屈折率 の方向に相当する。従って、棒状液晶性分子から第1光 学異方性層を形成する場合、棒状液晶性分子の平均傾斜 角(棒状液晶性分子と層の面との平均角度)を5度以上 85度未満にする。棒状液晶性分子の傾斜角は、棒状液 晶性分子と第2光学異方性層面との距離に伴って変化し ていることが好ましい。

【0010】棒状液晶性分子としては、アゾメチン類、 アゾキシ類、シアノビフェニル類、シアノフェニルエス テル類、安息香酸エステル類、シクロヘキサンカルボン 酸フェニルエステル類、シアノフェニルシクロヘキサン 類、シアノ置換フェニルピリミジン類、アルコキシ置換 フェニルピリミジン類、フェニルジオキサン類、トラン 類およびアルケニルシクロヘキシルベンゾニトリル類が 好ましく用いられる。なお、棒状液晶性分子には、金属 錯体も含まれる。棒状液晶性分子については、季刊化学 総説第22巻液晶の化学(1994年)日本化学会編の 第4章、第7章および第11章、および液晶デバイスハ

記載がある。棒状液晶性分子の複屈折率は、0.001 * を以下に示す。 乃至0.7であることが好ましい。棒状液晶性分子は、 [0011] 重合性基を有することが好ましい。重合性基(Q)の例* 【化1】

(Q1) (Q2) (Q3) (Q4)

(4)

--CH=CH₂ --CH=CH-CH₃ --CH=CH-C₂H₅ --CH=CH-n-C₃H₇

(Q11) (Q12) (Q13) (Q14) (Q15) (Q16) (Q-17) -CHO -OH -CO2H -N=C=O -NH2 -SO3H -N=C=S

【0012】重合性基(Q)は、不飽和重合性基(Q1 ~Q7)、エポキシ基(Q8)またはアジリジニル基 (Q9)であることが好ましく、不飽和重合性基である ことがさらに好ましく、エチレン性不飽和重合性基(Q※ ※1~Q6)であることが最も好ましい。以下に、重合性 棒状液晶性分子の例を示す。

[0013]

【化2】

[0014]

★【化3】 (N6) CH₂ (N7) (N8) CH_{2} (N9) CH_{2} (N10) ÇH₂ ÇΗ ĈН ÇΗ ÇΟ ÇO ĊΟ

. [0015]

☆ ☆【化4】

[0016]

[001.7]

【0018】 【化7】

【0020】 * * 【化9】

[0021]

[0022]

※【化11】

【0024】 * * 【化13】

[0025]

【0026】二種類以上の棒状液晶性分子を併用しても よい。例えば、重合性棒状液晶性分子と非重合性棒状液 晶性分子とを併用することができる。第1光学異方性層 は、棒状液晶性分子あるいは下記の重合性開始剤や任意 の添加剤 (例、可塑剤、モノマー、界面活性剤、セルロ ースエステル)を含む液晶組成物(塗布液)を、配向膜※50 (例、ベンゼン、ヘキサン)、アルキルハライド(例、

※の上に塗布することで形成する。液晶組成物の調製に使 用する溶媒としては、有機溶媒が好ましく用いられる。 有機溶媒の例には、アミド(例、N, N-ジメチルホル ムアミド)、スルホキシド(例、ジメチルスルホキシ ド)、ヘテロ環化合物(例、ピリジン)、炭化水素

クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2ージメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。液晶組成物の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。

17

【0027】棒状液晶性分子は、実質的に均一に配向し ていることが好ましく、実質的に均一に配向している状 態で固定されていることがさらに好ましく、重合反応に より液晶性分子が固定されていることが最も好ましい。 重合反応には、熱重合開始剤を用いる熱重合反応と光重 合開始剤を用いる光重合反応とが含まれる。光重合反応 が好ましい。光重合開始剤の例には、α-カルボニル化 合物 (米国特許2367661号、同2367670号 ・ の各明細書記載)、アシロインエーテル(米国特許24 48828号明細書記載)、α-炭化水素置換芳香族ア 20 シロイン化合物(米国特許2722512号明細書記 載)、多核キノン化合物(米国特許3046127号、 同2951758号の各明細書記載)、トリアリールイ ミダゾールダイマーとpーアミノフェニルケトンとの組 み合わせ(米国特許3549367号明細書記載)、ア クリジンおよびフェナジン化合物(特開昭60-105 667号公報、米国特許4239850号明細書記載) およびオキサジアゾール化合物(米国特許421297 0号明細書記載)が含まれる。光重合開始剤の使用量 は、塗布液の固形分の0.01乃至20重量%であるこ とが好ましく、0.5乃至5重量%であることがさらに 好ましい。棒状液晶性分子の重合のための光照射は、紫 外線を用いることが好ましい。照射エネルギーは、20 mJ/cm² 乃至50J/cm² であることが好まし く、100乃至800mJ/cm2 であることがさらに 好ましい。光重合反応を促進するため、加熱条件下で光 照射を実施してもよい。第1光学異方性層の厚さは、 0.1乃至20µmであることが好ましく、0.5乃至 15μmであることがさらに好ましく、1乃至10μm であることが最も好ましい。

【0028】[第2光学異方性層]第2光学異方性層は、最大屈折率の方向と層の面との角度が0度以上5度未満である光学的に正の一軸性を有する層である。なお、第1光学異方性層の最大屈折率の方向を層の面に投影した方向と、第2光学異方性層の最大屈折率の方向とは、同一面内で実質的に直交させることが好ましい。第2光学異方性層は、水平配向させた棒状液晶性分子または水平に延伸したポリマーフイルムから形成できる。延伸ポリマーフイルム、特に一軸延伸したポリマーフイルム、特に一軸延伸したポリマーフイルムから、第2光学異方性層を形成することが好ましい。50 ことが最も好ましい。

【0029】第2光学異方性層を形成するポリマーとし ては、セルロースエステル (例、セルロースアセテー ト) または合成ポリマー(例、ポリカーボネート、ポリ スルホン、ポリエーテルスルホン、ポリアクリレート、 ポリメタクリレート、ノルボルネン樹脂)が一般に用い られる。第2光学異方性層では、セルロースエステルフ イルム、ポリカーボネートフイルムまたはノルボルネン 樹脂フイルムを用いることが好ましく、セルロースエス テルフイルムを用いることが特に好ましい。なお、セル 10 ロースエステルフイルムは、一般には、光学等方性が高 い(レターデーションが低い)ポリマーフイルムとして 知られている。しかし、欧州特許091165656A 2号明細書に記載されている(1)レターデーション上 昇剤の使用、(2)セルロースアセテートの酢化度の低 下、あるいは(3)冷却溶解法によるフイルムの製造に より、レターデーションの高い(光学異方性の)セルロ ースエステルフイルムを得ることができる。ポリマーフ イルムは、ソルベントキャスト法により形成することが 好ましい。

18

【0030】形成したポリマーフイルムは、一般に延伸 することによって、光学異方性を得る。すなわち、一軸 延伸処理により、光学的に正の一軸性を有し、最大屈折 率の方向が層面と実質的に平行であるポリマーフイルム を得ることができる。一軸延伸は、フイルムの縦方向 (流延方向) に対して実施することが好ましい。一軸延 伸方向に直交する方向(一軸延伸方向がフイルムの流延 方向の場合は、フイルムの巾方向)に対しても弱い延伸 処理(アンバランス二軸延伸処理)を実施してもよい。 ポリマーフイルムからなる第2光学異方性層の厚さは、 20乃至500µmであることが好ましく、50乃至2 00µmであることがさらに好ましい。ポリマーフイル ムからなる第2光学異方性層とその上に設けられる層 (接着層、配向膜あるいは第1光学異方性層)との接着 を改善するため、第2光学異方性層に表面処理(例、グ ロー放電処理、コロナ放電処理、紫外線(UV)処理、 火炎処理)を実施してもよい。第2光学異方性層の上 に、接着層(下塗り層)を設けてもよい。

【0031】棒状液晶性分子から第2光学異方性層を形成する場合、透明支持体を用いてその上(またはその上 に設けられる配向膜の上に)第2光学異方性層を設けることが好ましい。透明支持体としては、セルロースエステルフイルムが好ましい。棒状液晶性分子から第2光学異方性層を形成する場合、棒状液晶性分子の平均傾斜角(棒状液晶性分子と層の面との平均角度)を0度以上5度未満にする。平均傾斜角以外の棒状液晶性分子の詳細については、第1光学異方性層と同様である。棒状液晶性分子から形成する第2光学異方性層の厚さは、0.1 乃至20μmであることが好ましく、0.5乃至15μ mであることがさらに好ましく、1乃至10μmである

【0032】[配向膜]第1光学異方性層または第2光 学異方性層に用いる棒状液晶性分子は、配向膜を用いて 配向させる。配向膜は、有機化合物(好ましくはポリマ ー)のラビング処理、無機化合物の斜方蒸着、マイクロ グルーブを有する層の形成、あるいはラングミュア・ブ ロジェット法 (LB膜)による有機化合物 (例、ωート リコサン酸、ジオクタデシルメチルアンモニウムクロラ イド、ステアリル酸メチル)の累積のような手段で、設 けることができる。さらに、電場の付与、磁場の付与あ るいは光照射により、配向機能が生じる配向膜も知られ 10 ている。ポリマーのラビング処理により形成する配向膜 が特に好ましい。ラビング処理は、ポリマー層の表面 を、紙や布で一定方向に、数回こすることにより実施す る。配向膜を構成するポリマーとしては、配向膜の表面 エネルギーを低下させないポリマー(通常の配向膜用ポ リマー)を用いることが好ましい。配向膜の厚さは、 0.01乃至5µmであることが好ましく、0.05乃 至1μmであることがさらに好ましい。なお、配向膜を 用いて、第1光学異方性層または第2光学異方性層の棒 状液晶性分子を配向させてから、光学異方性層を第2光 20 学異方性層または透明支持体の上に転写してもよい。配 向状態で固定された棒状液晶性分子は、配向膜がなくて も配向状態を維持することができる。

【0033】[偏光膜]偏光膜には、ヨウ素系偏光膜、 二色性染料を用いる染料系偏光膜やポリエン系偏光膜が* *ある。ヨウ素系偏光膜および染料系偏光膜は、一般にポ リビニルアルコール系フイルムを用いて製造する。偏光 膜の偏光軸は、フイルムの延伸方向に垂直な方向に相当

20

【0034】[透明保護膜]透明保護膜としては、ポリ マーフイルムが用いられる。保護膜が透明であるとは、 光透過率が80%以上であることを意味する。透明保護 膜としては、一般にセルロースエステルフイルム、好ま しくはトリアセチルセルロースフイルムが用いられる。

セルロースエステルフイルムは、ソルベントキャスト法 により形成することが好ましい。透明保護膜の厚さは、 20乃至500μmであることが好ましく、50乃至2 O O μ m であることがさらに好ましい。

【0035】 [液晶表示装置] 本発明は、様々な表示モ ードの液晶セルに適用できる。ただし、本発明は、TN (Twisted Nematic) モードの液晶表示装置において特 に効果がある。

[0036]

【実施例】[実施例1]

(第2光学異方性層の形成)下記の組成からなるセルロ ースアセテート溶液を調製し、ドラム流延機を用いて乾 燥膜厚が105μmであるセルロースアセテートフイル ムを製造した。

[0037]

セルロースアセテート溶液組成

平均酢酸化度60.9%のセルロースアセテート	45質量部
スミソルブTM165(住友化学(株)製)	2.35質量部
リン酸トリフェニル	2.75質量部
リン酸ビフェニルジフェニル	2.20質量部
塩化メチレン	232.75質量部
塩化ステレン メタノール n ーブタノール	· 42.57質量部 8.50質量部

【0038】製造したセルロースアセテートフイルムを 実質倍率60%で延伸して第2光学異方性層を形成し た。エリプソメーター(M150、日本分光(株)製) 測定したところ、厚み方向のレターデーション(Rth) が85 nm、面内レターデーション(Re)が100 n%

※mであった。

【0039】(第1光学異方性層の形成)第2光学異方 性層の片側にゼラチン層を設けた。ゼラチン層の上に、 を用いて、波長633 n m におけるレターデーションを 40 下記の組成からなる塗布液を塗布し、厚さ0.5μmの 配向膜を形成した。

配向膜塗布液組成	
下記の変性ポリビニルアルコール	2質量部
グルタルアルデヒド	0.1質量部
7k	9.8質量部

[0040]

★50★【化15】

2.1

変性ポリピニルアルコール

【0041】配向膜表面をラビング処理した。配向膜の 10* μmの第1光学異方性層を形成した。 上に、下記の組成からなる塗布液を塗布し、厚さ1.5* [0042]

O-C8H18-O-CO-CH=CH2 CH2=CH-CO-O-C7H1

【0044】エリプソメーター(M150、日本分光 (株) 製)を用いて、波長633nmにおけるレターデ ーション値を測定したところ、厚み方向のレターデーシ ョン(Rth)が100nmであった。また、屈折率が最 小となる方向と層面との角度は、50°であった。

棒状液晶性分子

【0045】(楕円偏光板の作製)延伸したポリビニル アルコールフイルムにヨウ素を吸着させて、偏光膜を作 製した。偏光膜の片面と、作製した光学補償シートの第一 2光学異方性層面とを、ポリビニルアルコール系接着剤 30 を用いて貼り付けた。第2光学異方性層の最大屈折率の 方向と偏光膜の透過軸とは、直交するように配置した。 偏光膜の反対側の面に、厚さ100μmのトリアセチル セルロースフイルム (フジタック、富士写真フイルム (株)製)を透明保護膜として、ポリビニルアルコール 系接着剤を用いて貼り付けた。このようにして、楕円偏 光板を作製した。

【0046】(液晶表示装置の作製)ITO透明電極が 設けられたガラス基板の上に、ポリイミド配向膜を設 ★ ★け、ラビング処理を行った。4.5μmのスペーサーを 介して、二枚の基板を配向膜が向き合うように重ねた。 二枚の基板は、配向膜のラビング方向が直交するように 配置した。基板の間隙に、棒状液晶性分子(ZLI-4 792、メルク社製)を注入し、棒状液晶層を形成し た。以上のように作製したTN液晶セルの両側に、作製 した楕円偏光板を二枚、光学異方性層が基板と対面する ように貼り付けて、液晶表示装置を作製した。配向膜の ラビング方向と、それに隣接する液晶セルの配向膜のラ ビング方向とは、反平行になるように配置した。作製し たTN型液晶表示装置を調べたところ、コントラストが 良好で、階調の反転がない良好画像が表示された。

【0047】[実施例2]

(第2光学異方性層の形成)下記の組成からなるノルボ ルネン樹脂溶液を調製し、バンド流延機を用いて乾燥膜 厚が100μmであるノルボルネン樹脂を製造した。

[0048]

ノルボルネン樹脂溶液組成	
ノルボルネン樹脂(アートン、JSR (株) 製)	30質量部
塩化メチレン	70質量部

【0049】製造したノルボルネン樹脂フイルムを長手 方向に実質倍率30%で延伸し、さらに幅方向に実質倍 率15%で延伸して、第2光学異方性層を形成した。エ リプソメーター (M150、日本分光(株)製)を用い て、波長633nmにおけるレターデーション値を測定☆50

☆したところ、厚み方向のレターデーション(Rth)が8 5 nm、面内レターデーション(Re)が100 nmで

【0050】 (第1光学異方性層の形成) 第2光学異方 性層の片側をコロナ放電処理し、その上に、実施例1と

同様に、配向膜および第1光学異方性層を形成した。光 学的性質については、第1表に示す。

23

【0051】(楕円偏光板の作製)延伸したポリビニル アルコールフイルムにヨウ素を吸着させて、偏光膜を作 製した。偏光膜の片面と、作製した光学補償シートの第 2光学異方性層面とを、ポリビニルアルコール系接着剤 を用いて貼り付けた。第2光学異方性層の最大屈折率の 方向と偏光膜の透過軸とは、直交するように配置した。 偏光膜の反対側の面に、厚さ100μmのトリアセチル セルロースフイルム(フジタック、富士写真フイルム (株) 製)を透明保護膜として、ポリビニルアルコール 系接着剤を用いて貼り付けた。このようにして、楕円偏 光板を作製した。

【0052】(液晶表示装置の作製)ITO透明電極が 設けられたガラス基板の上に、ポリイミド配向膜を設 け、ラビング処理を行った。4.5μmのスペーサーを 介して、二枚の基板を配向膜が向き合うように重ねた。 二枚の基板は、配向膜のラビング方向が直交するように 配置した。基板の間隙に、棒状液晶性分子(ZLI-4 792、メルク社製)を注入し、棒状液晶層を形成し た。以上のように作製したTN液晶セルの両側に、作製 した楕円偏光板を二枚、光学異方性層が基板と対面する ように貼り付けて、液晶表示装置を作製した。配向膜の ラビング方向と、それに隣接する液晶セルの配向膜のラ ビング方向とは、反平行になるように配置した。作製し たTN型液晶表示装置を調べたところ、コントラストが 良好で、階調の反転がない良好画像が表示された。

【0053】[実施例3]

(第2光学異方性層の形成) 市販のポリカーボネートフ イルム (帝人(株)製)を長手方向に実質倍率30%で 30 延伸して、第2光学異方性層を形成した。エリプソメー ター (M150、日本分光(株)製)を用いて、波長6 33 n mにおけるレターデーション値を測定したとこ ろ、厚み方向のレターデーション (Rth) が100 n m、面内レターデーション(Re)が150nmであっ た。

【0054】(第1光学異方性層の形成)第2光学異方 性層の片側をコロナ放電処理し、その上に、実施例1と 同様に、配向膜および第1光学異方性層を形成した。光 学的性質については、第1表に示す。

【0055】(楕円偏光板の作製)延伸したポリビニル アルコールフイルムにヨウ素を吸着させて、偏光膜を作 製した。偏光膜の片面と、作製した光学補償シートの第 2光学異方性層面とを、ポリビニルアルコール系接着剤 を用いて貼り付けた。第2光学異方性層の最大屈折率の 方向と偏光膜の透過軸とは、直交するように配置した。 偏光膜の反対側の面に、厚さ100μmのトリアセチル セルロースフイルム(フジタック、富士写真フイルム (株)製)を透明保護膜として、ポリビニルアルコール 光板を作製した。

【0056】(液晶表示装置の作製)ITO透明電極が 設けられたガラス基板の上に、ポリイミド配向膜を設 け、ラビング処理を行った。4.5μmのスペーサーを 介して、二枚の基板を配向膜が向き合うように重ねた。 二枚の基板は、配向膜のラビング方向が直交するように 配置した。基板の間隙に、棒状液晶性分子(ZLI-4 792、メルク社製)を注入し、棒状液晶層を形成し た。以上のように作製したTN液晶セルの両側に、作製 した楕円偏光板を二枚、光学異方性層が基板と対面する 10 ように貼り付けて、液晶表示装置を作製した。配向膜の ラビング方向と、それに隣接する液晶セルの配向膜のラ ビング方向とは、反平行になるように配置した。作製し たTN型液晶表示装置を調べたところ、コントラストが 良好で、階調の反転がない良好画像が表示された。

【0057】[実施例4]

(第1光学異方性層の形成)実施例1で作製した第2光 学異方性層の片側に、光重合性オリゴマー(UN900 PEP、根上工業(株)製)1質量部、テトラヒドロフ ラン19質量部および少量のベンゾフェノンからなる塗 布液を塗布し、60℃で30分間乾燥した。その上に、 棒状ネマティック液晶性分子(ZL14788-10 O、メルクジャパン(株)製)を塗布し、5kGの磁場 を塗布面の法線方向から、第2光学異方性層の延伸方向 と垂直な方向へ70度傾けた角度で印加しながら紫外線 ランプで紫外線を照射して、棒状ネマティック液晶性分 子を配向および固定した。光学的性質については、第1 表に示す。

【0058】(楕円偏光板の作製)延伸したポリビニル アルコールフィルムにヨウ素を吸着させて、偏光膜を作 製した。偏光膜の片面と、作製した光学補償シートの第 2光学異方性層面とを、ポリビニルアルコール系接着剤 を用いて貼り付けた。第2光学異方性層の最大屈折率の 方向と偏光膜の透過軸とは、直交するように配置した。 偏光膜の反対側の面に、厚さ100μmのトリアセチル セルロースフイルム(フジタック、富士写真フイルム (株)製)を透明保護膜として、ポリビニルアルコール 系接着剤を用いて貼り付けた。このようにして、楕円偏 光板を作製した。

【0059】(液晶表示装置の作製)ITO透明電極が 設けられたガラス基板の上に、ポリイミド配向膜を設 け、ラビング処理を行った。4.5μmのスペーサーを 介して、二枚の基板を配向膜が向き合うように重ねた。 二枚の基板は、配向膜のラビング方向が直交するように 配置した。基板の間隙に、棒状液晶性分子(ZLI-4 792、メルク社製)を注入し、棒状液晶層を形成し た。以上のように作製したTN液晶セルの両側に、作製 した楕円偏光板を二枚、光学異方性層が基板と対面する ように貼り付けて、液晶表示装置を作製した。配向膜の 系接着剤を用いて貼り付けた。このようにして、楕円偏 50 ラビング方向と、それに隣接する液晶セルの配向膜のラ

2.5

ビング方向とは、反平行になるように配置した。作製したTN型液晶表示装置を調べたところ、コントラストが良好で、階調の反転がない良好画像が表示された。

【0060】[実施例5]

(第2光学異方性層の形成)トリアセチルセルロースフ*

*イルム(フジタック、富士写真フイルム(株)製)を透明支持体として用いた。透明支持体の片側にゼラチン層を設けた。ゼラチン層の上に、下記の組成からなる塗布液を塗布し、厚さ0.5μmの配向膜を形成した。

西	m	膜塗	杰	灰皂	胡比
BL	ľ	灰尘	1 3{	12.7	エンス

変性ポリビニルアルコール (MP203、クラレ (株) 製)2質量部グルタルアルデヒド0.1質量部水98質量部

【0061】配向膜表面をラビング処理した。配向膜の上に、下記の組成からなる塗布液を塗布し、厚さ1.5%

※μmの第2光学異方性層を形成した。 【0062】

第2光学異方性層塗布液組成

実施例1の第1光学異方性層で用いた棒状液晶性分子 30質量部 塩化メチレン 70質量部

【0063】エリプソメーター(M150、日本分光 (株)製)を用いて、波長633nmにおけるレターデーションを測定したところ、厚み方向のレターデーション(Rth)が100nm、面内レターデーション(Re)が150nmであった。

【0064】(第1光学異方性層の形成)透明支持体の 反対側の面に、実施例1と同様に、ゼラチン層、配向膜 および第1光学異方性層を形成した。光学的性質につい ては、第1表に示す。

【0065】(楕円偏光板の作製)延伸したポリビニル 30 アルコールフイルムにヨウ素を吸着させて、偏光膜を作製した。偏光膜の片面と、作製した光学補償シートの第 2光学異方性層面とを、ポリビニルアルコール系接着剤を用いて貼り付けた。第2光学異方性層の最大屈折率の方向と偏光膜の透過軸とは、直交するように配置した。 偏光膜の反対側の面に、厚さ100μmのトリアセチルセルロースフイルム (フジタック、富士写真フイルム

(株) 製)を透明保護膜として、ポリビニルアルコール★

★系接着剤を用いて貼り付けた。このようにして、楕円偏 米板を作製した。

【0066】(液晶表示装置の作製)ITO透明電極が設けられたガラス基板の上に、ポリイミド配向膜を設け、ラビング処理を行った。4.5μmのスペーサーを介して、二枚の基板を配向膜が向き合うように重ねた。二枚の基板は、配向膜のラビング方向が直交するように配置した。基板の間隙に、棒状液晶性分子(ZLI-4792、メルク社製)を注入し、棒状液晶層を形成し

)た。以上のように作製したTN液晶セルの両側に、作製した楕円偏光板を二枚、光学異方性層が基板と対面するように貼り付けて、液晶表示装置を作製した。配向膜のラビング方向と、それに隣接する液晶セルの配向膜のラビング方向とは、反平行になるように配置した。作製したTN型液晶表示装置を調べたところ、コントラストが良好で、階調の反転がない良好画像が表示された。

[0067]

【表1】

第1表

楕円偏光板	第1光学異方性層の 屈折率最大方向角度	第2光学異方性層の 屈折率最大方向角度	第1+第2積層体の 屈折率最小方向角度
 実施例 1	45°	0.	5 0°
実施例2	45°	0°	50° .
実施例3	35°	0.	6 O°
実施例4	55°	0°	40°
実施例5	25°	O°	70°

【0068】[実施例6]

☆50☆ (第2光学異方性層の形成)下記の組成物をミキシング

タンクに投入し、加熱しながら攪拌して、各成分を溶解 *【0069】 し、からなるセルロースアセテート溶液を調製した。 *

27

セルロースアセテート溶液組成

酢化度60.0%のセルロースアセテート100質量部トリフェニルホスフェート(可塑剤)7.8質量部ビフェニルジフェニルホスフェート(可塑剤)3.9質量部メチレンクロライド(第1溶媒)300質量部メタノール(第2溶媒)54質量部1-ブタノール(第3溶媒)11質量部

【0070】別のミキシングタンクに、下記のレターデーション上昇剤16質量部、メチレンクロライド80質量部およびメタノール20質量部を投入し、加熱しながら撹拌して、レターデーション上昇剤溶液を調製した。【0071】

【化17】

レターデーション上昇剤

【0072】セルロースアセテート溶液474質量部に、レターデーション上昇剤溶液56質量部を混合し、充分に攪拌してドープを調製した。得られたドープを、 3バンド流延機を用いて流延した。残留溶媒量が15重量※

※%のフイルムを、30℃の条件でテンターを用いて35%の延伸倍率で横延伸して、セルロースアセテートフイルムを製造した。製造したセルロースアセテートフイルムからなる第2光学異方性層について、エリプソメーター(M150、日本分光(株)製)を用いて、波長550nmにおけるレターデーション値を測定したところ、厚み方向のレターデーション(Rth)が130nm、面のレターデーション(Re)が105nmであった。第2光学異方性層を、1.5Nの水酸化カリウム水溶液に、40℃で5分間浸漬した後、硫酸で中和し、純水で水洗し、乾燥した。第2光学異方性層の表面エネルギーを接触角法により求めたところ、68mN/mであった。

【0073】(第1光学異方性層の形成)第2光学異方性層の片側に、下記の組成からなる塗布液を#16のワイヤーバーコーターを用いて、28ml/m²塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。

[0074]

配向膜塗布液組成

 実施例1で用いた変性ポリビニルアルコール
 10質量部

 水
 371質量部

 メタノール
 119質量部

 グルタルアルデヒド(架橋剤)
 0.5質量部

【0075】第2光学異方性層の遅相軸(波長632.8nmで測定)と直交する方向に、配向膜表面をラビング処理した。配向膜の上に、実施例1で用いた第1光学異方性層塗布液を塗布し、厚さ1.5μmの第1光学異方性層を形成した。エリプソメーター(M150、日本分光(株)製)を用いて、波長633nmにおけるレターデーションを測定したところ、厚み方向のレターデーション(Rth)が100nmであった。また、屈折率が最小となる方向と層面との角度は、50°であった。

【0076】(楕円偏光板の作製)延伸したポリビニルアルコールフイルムにヨウ素を吸着させて、偏光膜を作★50

40★製した。偏光膜の片面と、作製した光学補償シートの第 2光学異方性層面とを、ポリビニルアルコール系接着剤 を用いて貼り付けた。第2光学異方性層の最大屈折率の 方向と偏光膜の透過軸とは、平行になるように配置し た。偏光膜の反対側の面に、厚さ100μmのトリアセ チルセルロースフイルム(フジタック、富士写真フイル ム(株)製)を透明保護膜として、ポリビニルアルコー ル系接着剤を用いて貼り付けた。このようにして、楕円 偏光板を作製した。

【0077】(液晶表示装置の作製) ITO透明電極が 設けられたガラス基板の上に、ポリイミド配向膜を設

8/20/2007. EAST Version: 2.1.0.14

け、ラビング処理を行った。4.5μmのスペーサーを 介して、二枚の基板を配向膜が向き合うように重ねた。 二枚の基板は、配向膜のラビング方向が直交するように 配置した。基板の間隙に、棒状液晶性分子(ZLI-4 792、メルク社製)を注入し、棒状液晶層を形成し た。以上のように作製したTN液晶セルの両側に、作製 した楕円偏光板を二枚、光学異方性層が基板と対面する ように貼り付けて、液晶表示装置を作製した。配向膜の ラビング方向と、それに隣接する液晶セルの配向膜のラ ビング方向とは、反平行になるように配置した。作製し 10 1 a、1 b、1 c 透明保護膜 たTN型液晶表示装置を調べたところ、コントラストが 良好で、階調の反転がない良好画像が表示された。

[0075]

【発明の効果】本発明の楕円偏光板を用いると、コント ラストが良好で、階調反転が少ない良好な画像を表示す ることができる。

【図面の簡単な説明】

【図1】TN型液晶表示装置の基本的な構成を示す模式 図である。

【図2】TN型液晶表示装置の別の基本的な構成を示す 模式図である。

【図3】TN型液晶表示装置のさらに別の基本的な構成 を示す模式図である。

【符号の説明】

BL バックライト

2a、2b 偏光膜

3a、3b 第2光学異方性層

4 a、4 b 第1光学異方性層

5a 液晶セルの下基板

5b 液晶セルの上基板

6 棒状液晶性分子

【図1】

【図2】

【図3】

