Title Page

February 5, 2022 3:00 PM

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

MAT A22: Linear Algebra 1 for Mathematical Sciences (Winter 2022)

Welcome to Week 5 of the course.

Questions? Thoughts? Comments?

Readings:

- ▶ 3.1 The Cofactor Expansion
- 3.2 Determinants and Matrix Inverses
- ▶ 3.3 Diagonalization and Eigenvalues
- Extra: 3.6 Proof of the Cofactor Expansion Theorem

News and Reminders:

- ▶ Parker is holding office hours Monday 15:15-16:15. See the Zoom Links page for details about how to connect.
- ▶ Assignment 3 is due next week Thursday February 17th at 13:00.

A Matrix Multiplication

Question

Compute AB where:

$$A = \begin{bmatrix} -1 & 0 & 3 \\ 2 & -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 4 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A\vec{b}_1 = \begin{bmatrix} -1 & 0 & 3 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, A\vec{b}_2 = \begin{bmatrix} -1 & 0 & 3 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix},$$
 and
$$A\vec{b}_3 = \begin{bmatrix} -1 & 0 & 3 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$$
 Thus,
$$AB = \begin{bmatrix} 4 & -1 & -2 \\ -1 & 4 & 0 \end{bmatrix}.$$

Find the (i,j)-entry of a Product

Question

Find the (2,3)-entry of the product

$$\left[\begin{array}{ccc} -1 & 0 & 3 \\ 2 & -1 & 1 \end{array}\right] \left[\begin{array}{cccc} -1 & 1 & 2 \\ 0 & -2 & 4 \\ 1 & 0 & 0 \end{array}\right]$$

The (2,3)-entry is computed by the dot product of the second row of the first matrix and the third column of the second matrix:

$$2 \times 2 + (-1) \times 4 + 1 \times 0 = 4 - 4 + 0 = 0.$$

Commutivity of Matrix Multiplication

Question

Let

$$A = \begin{bmatrix} 1 & 2 \\ -3 & 0 \\ 1 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 3 & -2 & 1 & -3 \end{bmatrix}$$

- 1. Does AB exist? If so, compute it.
- 2. Does BA exist? If so, compute it.

$$AB = \begin{bmatrix} 7 & -5 & 4 & -6 \\ -3 & 3 & -6 & 0 \\ -11 & 7 & -2 & 12 \end{bmatrix}$$

BA does not exist

Proof Practice

Question

Let A, B, and C be $n \times n$ matrices.

Prove that if A and B commute with C, then A + B commutes with C.

Let
$$A, B, C \in M_{h\times h}$$

Given: $A \subset = CA$ and $B \subset = CB$
WTS: $(A+B)C = C(A+B)$
LHS= $(A+B)C = AC+BC \leftarrow (Matrix product distributive property)$
RHS= $C(A+B) = CA + CB = AC+BC$
· $C(A+B) = CA + CB = AC+BC$

Proof Practice

Question

Let A, B and C be $n \times n$ matrices, and suppose that both A and B commute with C, i.e., AC = CA and BC = CB. Show that AB commutes with C.

Find an Inverse

Question

Find, if possible, the inverse of
$$\begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
.

$$\begin{bmatrix}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{bmatrix}$$

From this, we see that A has no inverse.

True or False: Is it Invertible?

Question

True or false? Justify your answer.

If $A^3 = 4I$, then A is invertible.

If $A^3 = 4I$, then

 $\frac{1}{4}A^3=I$

SO

$$\left(\frac{1}{4}A^2\right)A = I$$
 and $A\left(\frac{1}{4}A^2\right) = I$

Therefore A is invertible, and $A^{-1} = \frac{1}{4}A^2$.

Linear Transformations

Definition

Let V and W be vector spaces, and $T: V \to W$ a function.

T is called a linear transformation if it satisfies the following two properties.

1. T preserves addition.

For all $\vec{v}_1, \vec{v}_2 \in V$, we have: $T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2)$.

2. T preserves scalar multiplication.

For all $\vec{v} \in V$ and $r \in \mathbb{R}$, we have: $T(r\vec{v}) = rT(\vec{v})$.

Note that the sum $\vec{v}_1 + \vec{v}_2$ is in V, while the sum $T(\vec{v}_1) + T(\vec{v}_2)$ is in W.

Similarly, $r\vec{v}$ is scalar multiplication in V, while $rT(\vec{v})$ is scalar multiplication in W.

Computing with Linearity

Question

Let V be a vector space, T a linear operator on V, and $\vec{v}, \vec{w} \in V$. Suppose that

$$T(\vec{v} + \vec{w}) = \vec{v} - 2\vec{w}$$
 and $T(2\vec{v} - \vec{w}) = 2\vec{v}$.

Find $T(\vec{v})$ and $T(\vec{w})$.

We get:
$$T(\vec{v}) = \vec{v} - \frac{2}{3}\vec{w}$$
 and $T(\vec{w}) = -\frac{4}{3}\vec{w}$.

By def of Inear 1+y:

$$T(\vec{v}+\vec{u}) = T(\vec{v}) + T(\vec{u}) = \vec{v}-2\vec{u}$$
 $T(2\vec{v}-\vec{u}) = 2T(\vec{v}) - T(\vec{u}) = 2\vec{v}$

Now 2 variables and 2 equations!

Augmented Matrix

 $T(2\vec{v}-2\vec{v}) = 2\vec{v}$
 $T(2\vec{v}) = 2\vec{v}$
 $T(2\vec{v}) = 2\vec{v}$
 $T(2\vec{v}) = 2\vec{v}$
 $T(2\vec{v}) = 2\vec{v}$

Proof Practice: Examples of Linear Transformations

Question

Prove that the following transformations $T_i : \mathbb{R}^n \to \mathbb{R}^n$ are linear:

- 1. $T_0(\vec{v}) = \vec{0}$
- 2. $T_1(\vec{v}) = \vec{v}$
- 3. $T_{\lambda}(\vec{v}) = \lambda \vec{v} \leftarrow \lambda$ is the Greek letter "lambda". It will come up a lot in this course!

$$T_{\lambda}(c\vec{x}) = c\vec{x} = c\vec{x}$$

$$T_{\lambda}(c\vec{x}) = \lambda (\vec{x} + \vec{y}) = \lambda \vec{x} + \lambda \vec{y} = T_{\lambda}(\vec{x}) + T_{\lambda}(\vec{y})$$

$$T_{\lambda}(c\vec{x}) = \lambda c\vec{x} = c \lambda \vec{x} = cT_{\lambda}(\vec{x})$$

Proof Practice: Examples of Linear Transformations

Question

Let $M_{n\times n}(\mathbb{R})$ denote the vector space of $n\times n$ matrices with real entries. Prove that the following transformations are linear:

1.
$$T_1(M) = M^T$$
 where $T_1 : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$

2.
$$T_2([a_{ij}]) = \operatorname{trace}([a_{ij}]) = \sum_{i=1}^n a_{ii} \text{ where } T_2 : M_{n \times n}(\mathbb{R}) \to \mathbb{R}.$$

Let
$$A, B \in M_{n \times n}(R)$$
 Let $c \in R$
 1 $T, (A+B) = (A+B)^T = A^T + B^T = T, (A) + T, (B)$
 $T, (cA) = (cA)^T = cA^T = cT, (A)$

$$2 \quad T_{2}(A+B) = +r(A+B) = +r(A) + +r(B) = \sum_{i=1}^{2} a_{i,i} + \sum_{i=1}^{2} b_{i,i} = T_{2}(A) + T_{2}(B)$$

$$T_{2}(A+B) = +r(A) = c + r(A) = c \sum_{i=1}^{2} a_{i,i} = c + T_{2}(A)$$