$$\int \sqrt{x^2 + 1} \, dx$$

Substitution ($u = a \tan \theta$ with a = 1, u = x): $x = \tan \theta$, $dx = \sec^2 \theta \, d\theta$, $\sqrt{x^2 + 1} = \sqrt{\tan^2 \theta + 1} = \sec \theta$.

$$\int \sqrt{x^2 + 1} \, dx = \int \sec \theta \cdot \sec^2 \theta \, d\theta = \int \sec^3 \theta \, d\theta$$

Let $I = \int \sec^3 \theta \, d\theta$. Integration by parts: $I = \int \sec \theta \cdot \sec^2 \theta \, d\theta$, take $f = \sec \theta$, $g' = \sec^2 \theta \Rightarrow f' = \sec \theta \tan \theta$, $g = \tan \theta$.

$$I = \sec \theta \tan \theta - \int (\sec \theta \tan \theta) \tan \theta \, d\theta$$

Identity: $\tan^2 \theta = \sec^2 \theta - 1$.

 $I = \sec \theta \tan \theta - \int \sec \theta (\sec^2 \theta - 1) d\theta = \sec \theta \tan \theta - \int \sec^3 \theta d\theta + \int \sec \theta d\theta$

$$2I = \sec\theta \tan\theta + \int \sec\theta \, d\theta$$

Formula: $\int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C.$

$$I = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln|\sec \theta + \tan \theta| + C$$

Back-substitution: $\sec \theta = \sqrt{1 + x^2}$, $\tan \theta = x$.

$$\int \sqrt{x^2 + 1} \, dx = \frac{1}{2} x \sqrt{x^2 + 1} + \frac{1}{2} \ln \left| x + \sqrt{x^2 + 1} \right| + C$$