Worksheet 0: Some Probability

Name:

Due: August 30, 2023 in class

For the following questions, you will be working with probability measure $\mathbb{P}_{\mathcal{X} \times \mathcal{Y}}$ on $\mathcal{X} \times \mathcal{Y} = \mathbb{R} \times \mathbb{R}$ defined by density function $f_{\mathcal{X} \times \mathcal{Y}}$:

$$f(x,y) := x \cdot y^{-1/2} \mathbb{1}_{x \ge 0, y > 0, x + y \le 1},$$

where $\mathbb{1}_{cond(t)} \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } cond(t) \\ 0 & \text{else} \end{array} \right.$ denotes the *indicator* function for condition cond(t).* Please try to fit all answers on this page.

- 1. Does $f_{X \times Y}$ define a valid pdf? If so, articulate why, else explain why not, and if not, modify f to make it a pdf. Also sketch (shading the appropriate region in \mathbb{R}^2) the *support* of f, i.e. the points (x, y) for which $f(x, y) \neq 0$.
- 2. Define the marginal density $f_{\mathcal{Y}}(y)$, express as a function of y, sketch a plot, and compute the marginal probability $\mathbb{P}_{\mathcal{Y}}(y=0)$. Also report $\lim_{y_0 \to 0^+} f_{\mathcal{Y}}(y_0)$ and $\lim_{y_0 \to 0^+} \mathbb{P}_{\mathcal{Y}}(y=y_0)$.
- 3. Components x, y define random variables $\mathbb{R}^2 \xrightarrow{\pi} \mathbb{R}$ by projection, $\pi_x : (x,y) \mapsto x$ and $\pi_y(x,y) \mapsto y$. Are these random variables independent? Justify your answer.
- 4. Consider dataset on $\mathcal{X} \times \mathcal{Y} = \{0,1\}^2$ in the table below. The right most column denotes the output of *model* $\overline{y} : \mathcal{X} \to \mathcal{Y}$. Formally define the covariance Cov(x,y) as an expectation and estimate this value from the table. Also estimate accuracy $\mathbb{P}_{\mathcal{X} \times \mathcal{Y}}(\overline{y} = y)$ and true positive rate $\mathbb{P}_{\mathcal{X} \mid \mathcal{Y}}(\overline{y} = 1 \mid y = 1)$.

χ	y	<u>y</u> 0
0	1	0
1	0	1
1	1	1
0	0	0
0	0	0
1	1	1
1	0	1

5. Consider, now, probability space $\mathcal{X}:=\prod_{j=1}^n\mathcal{X}_j$ with joint measure $\mathbb{P}_{\mathcal{X}}$, and suppose that for any proper subset (projection) $\{i_1,\ldots,i_k\}\subsetneq\{1,\ldots,n\}$ setting $\mathcal{X}':=\prod_{j=1}^k\mathcal{X}_{i_j}$, we have equality measures $\mathbb{P}_{\mathcal{X}'}=\prod_{j=1}^k\mathbb{P}_{\mathcal{X}_{i_j}}$. Are projections π_1,\ldots,π_n then independent? Why or why not? (Rationale for your answer may take the form of proof, example/counterexample, "just the definition," picture, or something else.)

^{*}While $\mathcal{X} = \mathcal{Y} = \mathbb{R}$, we distinguish components with notation to e.g. distinguish the marginals $f_{\mathcal{X}}$ and $f_{\mathcal{Y}}$.