Volatility Clustering & Cross Correlation, which one is more informative?

--- An evidence from return of SP500 & Crude Oil

Jiang Jun, Wu Jiwei, Yang Wanwei, Yi Yixin, Zhang Xinran

Nov. 3rd, 2019

. retrettiliteti

- ² ARMA/GARCH
- Vector Autoregressive Model
- 4 Out-of-Sample Performance
- 5 Conclusion

Vector Autoregressive Model

4 Out-of-Sample Performance

5 Conclusion

Introduction

Data source : Bloomberg

Sample:

Price of oil and S&P 500 from 2 Jan 2018 to 4 Oct 2019

Return computation:

$$r_t = 100*\ln(p_t/P_{t-1})$$

SP500 & Crude Oil

Introduction

Descriptive statistics

	Oil price	S&P 500
Mean	-0.0323	0.0190
Median	0.1532	0.0780
Min	-7.1974	-4.7165
Max	9.4633	3.3039
Standard deviation	1.8387	0.9252

- Vector Autoregressive Model
- 4 Out-of-Sample Performance
- 5 Conclusion

Crude Oil

Crude Oil: ARMA(0,0)/GARCH(1,1)

```
Coefficient(s):
mu omega alpha1 beta1
0.039074 0.154823 0.067359 0.890560
```

$$r_t$$
=0.039074+ ε_t
$$\varepsilon_t = \sqrt{h_t} z_t$$
 $h_t = 0.1548 + 0.0674 \varepsilon_{t-1}^2 + 0.8906 h_{t-1}$

Crude Oil: ARMA(0,0)/GARCH(1,1)

SP500: ARMA(0,0)/GARCH(1,1)

$$r_t$$
=0.0916+ $arepsilon_t$
$$arepsilon_t = \sqrt{h_t} z_t$$
 $h_t = 0.0470 + 0.2434 arepsilon_{t-1}^2 + 0.7297 h_{t-1}$

SP500: ARMA(0,0)/GARCH(1,1)

- Vector Autoregressive Model
- 4 Out-of-Sample Performance
- 5 Conclusion

Cross-correlation Matrix

Cross-correlation Matrix

La	g 1	Lag 2		Lag 3		Lag 4		Lag 5	
	+	•	•	•	+	•	•	•	
+	•	•	•	•	•	•	-	•	•

Choose order 3 for VAR

```
selected order: aic = 5
selected order: bic = 0
selected order: hq = 1
Summary table:
           AIC
                  BIC
                         HQ
                              M(p) p-value
 [1,] 0 1.0542 1.0542 1.0542 0.0000 0.0000
 [2,] 1 1.0220 1.0591 1.0366 21.3799 0.0003
 [3,] 2 1.0257 1.0997 1.0549 6.1223
                                    0.1902
 [4,] (3 0.9966 1.1077 1.0404 19.8817
                                     0.0005
 [5,] 4 0.9971 1.1452 1.0555 7.4039
                                     0.1160
 [6,] 5 0.9904 1.1755 1.0634 10.3508
                                    0.0349
 [7,] 6 1.0017 1.2239 1.0893 2.8030 0.5913
 [8,] 7 1.0147 1.2739 1.1169 2.1309
                                     0.7117
 [9,] 8 1.0272 1.3234 1.1441 2.2824
                                     0.6840
[10,] 9 1.0329 1.3662 1.1644 5.0755
                                     0.2796
[11,] 10 1.0473 1.4175 1.1933 1.5369 0.8201
[12,] 11 1.0613 1.4685 1.2219 1.6591 0.7981
[13,] 12 1.0701 1.5144 1.2453 3.7396
                                     0.4424
[14,] 13 1.0774 1.5587 1.2672 4.3495 0.3608
```

Fitted Model

The unconstrained fitted VAR(3)

$$y_t = \begin{bmatrix} -0.06 \\ 0.01 \end{bmatrix} + \begin{bmatrix} -0.01 & 0.41 \\ 0.05 & -0.00 \end{bmatrix} y_{t-1} - \begin{bmatrix} -0.14 & 0 \\ -0.04 & -0.01 \end{bmatrix} y_{t-2} + \begin{bmatrix} -0.02 & 0.37 \\ -0.04 & 0.13 \end{bmatrix} y_{t-3}$$

The simplified VAR(3)

$$y_t = \begin{bmatrix} 0.00 & 0.41 \\ 0.06 & 0.00 \end{bmatrix} y_{t-1} - \begin{bmatrix} -0.14 & 0 \\ 0 & 0 \end{bmatrix} y_{t-2} + \begin{bmatrix} 0 & 0.37 \\ 0 & 0.10 \end{bmatrix} y_{t-3}$$

Fitted Model

$$Oil_t = 0.41 * SP500_{t-1} - 0.14 * Oil_{t-2} + 0.37 * SP500_{t-3}$$

$$SP500_t = 0.06 * Oil_{t-1} + 0.10 * SP500_{t-3}$$

- Vector Autoregressive Model
- 4 Out-of-Sample Performance
- 5 Conclusion

Out-of-Sample Performance: Crude Oil

Period	1	2	3	4	5	6	7	8	RMSE
Real Value	0.570	0.773	-0.773	0.034	2.535	1.930	-2.317	-0.677	
ARMA Prediction	1.835	1.835	1.835	1.835	1.835	1.835	1.835	1.835	2.1454
ARMA/GARCH Prediction	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	1.4726
VAR Prediction	-0.173	0.298	0.382	-0.036	-0.013	0.043	0.010	-0.002	1.5017

Out-of-Sample Performance: SP500

Period	1	2	3	4	5	6	7	8	RMSE
Real Value	0.876	-0.813	-0.319	0.256	1.514	0.092	0.263	0.539	
ARMA Prediction	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.9108
ARMA/GARCH Prediction	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.6965
VAR Prediction	-0.095	0.097	0.098	0.012	0.007	0.008	0.004	0.001	0.7615

Vector Autoregressive Model

4 Out-of-Sample Performance

Conclusion

Conclusion

- In our case, volatility clustering is more informative than cross correlation
- There is no theoretical guarantee for our findings
- Volatility clustering and cross correlation do NOT conflict with each other

Can we combine VAR & GARCH effect together?

Thank you!