Lineáris függvényillesztés

2019. február 11.

Elméleti modell

Az elméleti modell bizonyos x_i változók és a paraméterek függvényében becslést ad a mérhető fizikai mennyiségek értékeire.

A modell sokféle lehet:

▶ tisztán matematikai: függvényillesztés ilyenkor az x_i értékeket adottak, és az a paramétereket kell variálni úgy, hogy a modell által adott $y(x_i|a)$ becslések jól illeszkedjenek az y_i mért értékekre.

$$y(x_i|a) = f(x_i,a)$$

szimulációs: numerikus algoritmus, stb. (ld. később)

Kérdések:

- mennyire jó egy modell?
- a mérések alapján melyik a legjobb modell?
- hogyan találjuk meg a legjobb modellt?

Melyik a legjobban illeszkedő modell?

Ha a modell szerint a mérési eredmények egymástól *függetlenek*, és kizárólag az x_i értékektől és az ismeretlen a paraméterektől függenek, akkor használhatjuk a *legnagyobb valószínűség*¹ módszerét.

A mért y_i értékek sosem pontosak. Konkrét mérés esetében egy adott mért érték mindig csak valamilyen $P(y_i)$ valószínűséggel fordul elő.

- ▶ a hibáról magáról is felteszünk valamit, ez is a modell része
- a P(y_i) valószínűség eloszlása megismételt mérésekkel elvileg megbecsülhető
- ightharpoonup standard hiba esetében ez normális eloszlás a mérési hibának megfelelő σ szórással

¹angolul: maximum likelihood

A likelihood-függvény

Kérdés: Mi annak a valószínűsége, hogy a modell egy adott a paraméterezése mellett a méréssorozat pont a mért y_i értékeket adja?

Legyen $p(y_i|x_i, a)$ annak a valószínűségnek az eloszlása, hogy egy konkrét paraméterezés esetén az i. mérés éppen y_i értéket ad.

Ha a méréssorozat N független mérés egymásutánjából áll össze, akkor a méréssorozat megvalósulásának teljes valószínűségi eloszlása adott a paraméterek esetén:

$$L(a) = \prod_{i}^{N} p(y_i|x_i, a)$$

Ez az ún. *likelihood-függvény*, aminek a maximumát keressük az *a* paraméterek variálása mellett.

A likelihood-függvény normális eloszlású hiba esetén

Tegyük fel, hogy $p(y_i|x_i, a)$ a Gauss-eloszlás, azaz a mért érték normális eloszlású a modell által becsült érték körül σ_i szórással:

$$p(y_i|x_i, a) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{y_i - y(x_i|a)}{\sigma_i} \right)^2 \right]$$

Ezzel pedig a likelihood-függvény:

$$L(a) = \prod_{i} \left\{ \frac{1}{\sigma_{i} \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{y_{i} - y(x_{i}|a)}{\sigma_{i}} \right)^{2} \right] \right\}$$

Keressük a likelihood-függvény maximumát, azaz:

$$\underset{a}{\operatorname{arg max}} L(a) = ?$$

A likelihood-függvény logaritmusa

L(a) kifejezésében a produktum hasában csak pozitív számok állnak. Vegyük az egész kifejezés logaritmusát. Mivel a logaritmus monoton, $\ln L$ maximuma ugyanott lesz, ahol L maximuma.

$$\ln L(a) = \sum_{i} \left[-\frac{1}{2} \left(\frac{y_i - y(x_i|a)}{\sigma_i} \right)^2 \right] + C,$$

ahol a ${\cal C}$ konstans tartalmaz minden olyan tagot, ami nem függ az a paraméterektől.

Definiáljuk a következő mennyiséget:

$$\chi^2 = \sum_i \frac{[y_i - y(x_i|a)]^2}{\sigma_i^2}$$

Ez az ún. khi-négyzet, amiről látszik, hogy a minimuma pontosan olyan a paramétereknél van, ahol L(a) maximális.

A legkisebb négyzetek módszere

Konstans, normális eloszlású hiba esetén σ kiemelhető a χ^2 kifejezéséből, így – végső soron – a maximum likelihood módszer átmegy a *legkisebb négyzetek módszerébe*:

$$\arg\min_{a} \sum_{i} [y_i - y(x_i|a)]^2 = ?$$

A számolás során x_i -ket végig ismertnek vettük.

Általános esetben ezeknek is lehet hibájuk.

Eddig a modellről nem tettünk fel semmit:

- ▶ lehet matematikai formula
- lehet algoritmus a bemenő paraméterekkel

A χ^2 minimalizálása

Általános esetben a χ^2 bonyolult kifejezés.

- ha ismert is zárt alakban, analitikusan nehéz kezelni
- ha a modell csak algoritmikusan adott, akkor a minimum is csak algoritmikusan kezelhető

Függvények minimumának keresésére majd nézünk módszereket.

Pár érdekes eset:

- a függvény kvadratikus
- ha a függvénynek lokális minimumai vannak
- ha nagyon sok lokális minimum van

Kvadratikus kifejezés minimuma

Mivel ez egy négyzetes kifejezés, jó eséllyel lézezik minimumhelye-Ebben a pontban az a szerinti parciális deriváltak értéke 0. A konkrét esetben

$$\arg\min_{a} \sum_{i} \frac{[y_i - y(x_i|a)]^2}{\sigma_i^2} = ?$$

a következőre vezet:

$$0 = -2\sum_{i} \frac{[y_i - y(x_i|a)]}{\sigma_i^2} \frac{\partial y(x_i|...a_k...)}{\partial a_k}$$

minden k-ra, ahol k a paraméterek számáig futó index.

Kérdés persze, hogy a parciális deriváltakat mennyire könnyű kiszámolni.

Az illesztett paraméterek hibája

Eddig arról volt szó, hogy a mért értékeknek van valamilyen hibájuk.

Most: elvégeztünk egy optimalizációs eljárást, ami a mérési adatok alapján megadott bizonyos a modellparamétereket. Kérdés, hogy ezek a paraméterértékek mennyire tekinthetők pontosnak.

Két különböző dolgot vizsgálhatunk:

- hibaterjedés:

 a mérési hibából következően mekkora az illesztett
 paraméterek bizonytalansága
- konfidencia intervallumok: mennyire lehetünk biztosak abban, hogy a mérés alapján a "valódi" paramétereket sikerült megilleszteni? szemléletesen: mennyire romlik el az illesztés, ha a legjobban illeszkedő paramétereket egy kicsit megvariáljuk

Illesztett paraméterek hibája

Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk.

- a hibaterjedés végigszámolása bonyolult esetben nem lehetséges
- ▶ főleg, ha a modell nem analitikus
- a kovarianciákat nehéz megbecsülni

Mégis hogyan lehet jellemezni az illesztett paraméterek megbízhatóságát?

Két lehetőség adódik:

- az illesztett modellparamétereket kicsit megváltoztatva mennyire rontjuk el az illesztést
- a mérést az illesztett paraméterekkel "újraszimulálva", majd "újraillesztve" mennyire szórnak az illesztett értékek

Az illesztés jósága: redukált χ^2

A χ^2 definíció szerint:

$$\chi^2 = \sum_i \frac{[y_i - y(x_i|a)]^2}{\sigma_i^2}$$

Ez függ a mérési pontok számától, ezért két méréssorozat illesztésének jóságát nem fogjuk tudni összehasonlítani vele.

Kérdés: miként kell normálni?

 ${\it N}$ a mérési pontok száma, és ${\it M}$ az illesztett paraméterek száma

ightharpoonup definiáljuk a szabadsági fokok számát: $\nu = N - M$

Redukált χ^2

- ▶ ha az illesztett modell az a paraméterekben lineáris, akkor belátható, hogy χ^2 eloszlása a minimum körül azonos az ún. ν szabadsági fokú χ^2 eloszlással
- ightharpoonup ez u egymástól független normális eloszlású véletlen változó összegének eloszlása, aminek a várható értéke is u
- normáljunk tehát a szabadsági fokok számával!

Normáljuk χ^2 -et $\nu=N-M$ -mel, a szabadsági fokok számával. Ekkor az "egész jó" illesztés feltétele:

$$\frac{\chi^2}{\nu} \approx 1$$

Aszimptotikus hiba

Egyszerű módszer a paraméterek bizonytalanságának becslésére, ha a modell analitikus alakja ismert.

Tekintsük χ^2 viselkedését a minimum körül:

 $ightharpoonup \chi^2(\mathbf{a})$ az \mathbf{a}_0 minimum körül Taylor-sorba fejthető

$$\chi^{2}(\mathbf{a}) = \chi_{0}^{2} + \frac{\partial \chi^{2}}{\partial a_{k}} \Big|_{\mathbf{a}_{0}} (\mathbf{a} - \mathbf{a}_{0}) + (\mathbf{a} - \mathbf{a}_{0})^{\mathsf{T}} \left. \frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{I}} \right|_{\mathbf{a}_{0}} (\mathbf{a} - \mathbf{a}_{0}) + \dots$$

- a minimumhelyen az első derivált definíció szerint 0
- a második derivált pozitív definit, az irányonkénti nagysága jellemzi, hogy "mennyire stabil" a minimum
- bízunk benne, hogy a magasabb rendű tagok kicsik

M változó esetén parciális második deriváltakat kell nézni:

Hesse-mátrix

Pozitív definit kvadratikus kifejezés

A Hesse-mátrix inverze

Egy többváltozós függvény "görbületét" jellemzi. Írjuk fel a χ^2 -re:

$$2 \cdot \alpha_{kl} = \frac{\partial^2 \chi^2}{\partial a_k \partial a_l}$$

Állítás:

- ightharpoonup az $lpha_{kl}$ mátrix *inverze* jellemzi az illesztett paraméter standard hibáját
- ightharpoonup az átlós elemekben σ_k^2 jelenik meg
- ▶ a nem diagonális elemekben a k. és l. paraméterek kovarianciája

Normál eloszlású mérési hibák és lineáris illesztés esetén ez egzaktul belátható, nem lineáris függvényillesztés esetén csak (jó) közelítés.

A paraméterek hibájának becslése más módon

A Hesse-mátrix csak analitikus modell esetében használható. Más modellek esetében próbálkozhatunk numerikus deriválással.

Egy jellegében más módszer: nézzük az illesztett paraméterek stabilitását úgy, hogy variáljuk a pontokat, amikre illesztünk

erre a nagy ágyú módszer a Monte Carlo, de az bonyolult

Két egyszerűbb módszer:

- Jackknife módszer
- Bootstrapping

Jackknife² módszer

Tekintsük a mérési pontokat, de minden lépésben hagyjunk ki egyet az illesztésből

- hagyjuk ki az i. pontot
- ▶ illesszük a modellt N-1 pontra
- ightharpoonup legyen az illesztett paraméterek vektora $heta_i$

Minden egyes mérési pontra megismételve összesen N különböző paramétervektort kapunk

ezek átlaga lesz a becsült paramétervektor

$$\theta_{\mathsf{jack}} = \frac{1}{N} \sum_{i} \theta_{i}$$

ezek szórása az illesztett paraméterek standard hibája

$$\sigma_{\mathsf{jack}}^2 = \frac{N-1}{N} \sum_{i} (\theta_i - \theta_{\mathsf{jack}})^2$$

²jackknife = bicska

Bootstrapping

Most válasszunk ki véletlenszerűen valamennyit az eredeti mérési pontokból, és illesszünk csak azokra

lacktriangle ez elvileg $inom{n}{k}$ módon megtehető, de nem kell ennyit végignézni

Az eljárás ugyanaz, mint az előző

- ightharpoonup meghatározzuk a θ_i paramétervektorokat
- kiszámítjuk az átlagot és a szórást minden paraméterre

Mindkét módszer esetében számolhatjuk a paraméterek kovarianciáját is.

Konfidenciatartományok

Kilógó pontok

Egy mérés során becsúszhatnak rossz mérések

- ezeken nem jellemzi a mérési hiba
- valami miatt nem a mérési előírás szerint mérünk
- valamilyen ritka, nem várt esemény hatására

A modellillesztés során a kilógó pontoktól érdemes valamilyen módon megszabadulni.

Példa:

 egy távcső CCD detektorát a fotometriai mérés során egy nagy energiájú kozmikus részecske éri el, és nagy számú extra elektront gerjeszt

Kilógó pontok

Kilógó pontok

Kilógó pontok kezelése

Léteznek szofisztikált robusztus becslő módszerek, ezek bonyolultak.

 ezek a mérések hibáját nem normális eloszlásúnak, hanem hosszú farkúnak tételezik fel

Helyette nézzünk egy gyakori iteratív módszert

- llesszük a modellt a mérési pontokra
- számoljuk ki a mérési pontoktól vett eltérések szórását
- lacktriangle dobjuk ki azokat a pontokat, amik 3σ -n kívül esnek
- ismételjük meg az illesztést

A módszer kevés kilógó ponttal elbánik

lacktriangle arra számítunk, hogy egy idő után nem lesz 3σ -n kívüli pont

Egyenes illesztése

Ismert:

- x₁, x₂, ..., x_i mérési pontok, ezeknek nincs hibájuk
- \triangleright $y_1, y_2, ..., y_i$ mért értékek
- $ightharpoonup \sigma_1, \sigma_2, ..., \sigma_i$ becsült hibák

Feladat: illesszünk a pontokra egyenest χ^2 módszerrel.

ightharpoonup modell: y(x) = y(x|a,b) = a + bx

Az optimalizálandó költségfüggvény:

$$\chi^2 = \sum_i \left(\frac{y_i - y(x_i|a,b)}{\sigma_i} \right)^2 = \sum_i \left(\frac{y_i - a - bx_i}{\sigma_i} \right)^2$$

Milyen a és b mellett lesz χ^2 minimális?

A minimum megkeresése

A költségfüggvény:

$$\chi^2(a,b) = \sum_i \left(\frac{y_i - a - bx_i}{\sigma_i}\right)^2$$

A minimumhelyen a parciális deriváltak eltűnnek:

$$0 = \frac{\partial \chi^2}{\partial a} = -2 \sum_{i} \frac{y_i - a - bx_i}{\sigma_i^2}$$
$$0 = \frac{\partial \chi^2}{\partial b} = -2 \sum_{i} \frac{x_i (y_i - a - bx_i)}{\sigma_i^2}$$

Tudnivalók:

- Ez egy lineáris egyenletrendszer *a*-ra és *b*-re, csak ki kell bogarászni az együtthatókat.
- ightharpoonup Biztos, hogy minimumhelyet találunk, mert χ^2 kifejezése pozitív kvadratikus.

Új jelölések

Jelölések:

$$S = \sum_{i} \frac{1}{\sigma_{i}^{2}} \qquad S_{x} = \sum_{i} \frac{x_{i}}{\sigma_{i}^{2}} \qquad S_{y} = \sum_{i} \frac{y_{i}}{\sigma_{i}^{2}}$$
$$S_{xx} = \sum_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \qquad S_{xy} = \sum_{i} \frac{x_{i}y_{i}}{\sigma_{i}^{2}}$$

Lineáris egyenletrendszer a-ra és b-re

Az új jelölésekkel az egyenletrendszer a-ra és b-re:

$$Sa + S_x b = S_y$$

$$S_x a + S_{xx} b = S_{xy}$$

Az egyenletrendszer determinánsa:

$$\Delta = S \cdot S_{xx} - S_x^2$$

Az egyenletrendszer megoldása:

$$a = \frac{S_{xx} \cdot S_y - S_x \cdot S_{xy}}{\Delta}$$
$$b = \frac{S \cdot S_{xy} - S_x \cdot S_y}{\Delta}$$

A megoldás hibájának meghatározása

Itt most azt nézzük, hogy az y_i mért értékek hibája mennyire befolyásolja a kapott a és b paraméterek bizonytalanságát.

A hibaterjedés törvénye szerint egy függvény értékének hibája:

$$\sigma_f^2 = \sum_{i} \sigma_i^2 \left(\frac{\partial f}{\partial y_i} \right)^2$$

Nekünk most az a és b paraméterek hibáját kell tekintenünk az y_i mért értékek függvényében, tehát:

$$\frac{\partial a}{\partial y_i} = \frac{S_{xx} - S_x x_i}{\sigma_i^2 \Delta} \qquad \frac{\partial b}{\partial y_i} = \frac{S x_i - S_x}{\sigma_i^2 \Delta}$$

Behelyettesítve:

$$\sigma_a^2 = \frac{S_{xx}}{\Delta}$$
 $\sigma_b^2 = \frac{S}{\Delta}$

Kiszámolható a kovariancia is: $cov_{ab} = -S_x/\Delta$

A Hesse-mátrix inverzével

A χ^2 parciális deriváltjait a és b szerint már kiszámoltuk a minimum keresésekor:

$$\frac{\partial \chi^2}{\partial a} = -2\sum_i \frac{y_i - a - bx_i}{\sigma_i^2} \qquad \qquad \frac{\partial \chi^2}{\partial b} = -2\sum_i \frac{x_i(y_i - a - bx_i)}{\sigma_i^2}$$

A második parciális deriváltakból alkotott Hesse-mátrix a korábbi jelölésekkel:

$$2 \cdot \alpha = \begin{pmatrix} \frac{\partial^2 \chi^2}{\partial a^2} & \frac{\partial^2 \chi^2}{\partial a \partial b} \\ \frac{\partial^2 \chi^2}{\partial b \partial a} & \frac{\partial^2 \chi^2}{\partial b^2} \end{pmatrix} = 2 \cdot \begin{pmatrix} S & S_X \\ S_X & S_{XX} \end{pmatrix}$$

Az α mátrixot invertálva kapjuk a hibákat és a kovarianciákat:

$$\alpha^{-1} = \begin{pmatrix} \sigma_a^2 & \cos_{ab} \\ \cos_{ab} & \sigma_b^2 \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} S_{xx} & -S_x \\ -S_x & S \end{pmatrix}$$

Általános lineáris függvényillesztés

Nem csak az egyenesillesztés lineáris probléma. Keressük a modellt az általános $f(x|a_j)$ alakban.

- x lehet vektor is, de most nem írunk neki indexet
- ▶ ha x indexet kap, az a mérési pontokra vonatkozik majd
- ▶ a az M darab illesztendő paraméter
- ekkor $\chi^2 = \chi^2(a)$ is függeni fog a paraméterektől
- és persze y_i -ktől és σ_i -ktől is

Tekintsük a χ^2 parciális deriváltjaira a minimumban teljesülő feltételeket.

$$\frac{\partial \chi^2}{\partial a_i} = 0$$

Elvégezve a parciális deriválást

 χ^2 korábbi definíciója alapján a deriváltakra adódó feltétel:

$$\frac{\partial \chi^2}{\partial a_j} = 2 \cdot \sum_{i=1}^{N} \left[\frac{f(x_i|a) - y_i}{\sigma_i^2} \cdot \frac{\partial f(x|a)}{\partial a_j} \bigg|_{x = x_i} \right] = 0$$

Eddig a pontig nem tettünk fel semmit f(x|a) konkrét alakjáról

- nem is tudunk egyszerű megoldást adni
- ▶ a $\frac{\partial f(x|a)}{\partial a_i}$ derivált lehet nagyon bonyolult

Ötlet: korlátozzuk a problémát olyan esetekre, amikor a parciális derivált nem függ az a_j paraméterektől.

A lineáris probléma

Keressük f(x|a)-t a következő alakban:

$$f(x|a) = \sum_{i=1}^{M} a_i f_i(x),$$

ahol $f_j(x)$ tetszőleges ún. *bázisfüggvény*, ami már nem függ az a_i -ktől.

- A probléma lineáris, mert a teljes f(x|a) a különböző $f_j(x)$ -ek lineárkombinációja.
- Az $f_i(x)$ -ek konkrét alakja tetszőleges.

Így már el tudjuk végezni a parciális deriválást:

$$\frac{\partial f(x|a)}{\partial a_k} = f_k(x),$$

hiszen

$$\frac{\partial(a_jf_j(x))}{\partial a_k}=\delta_{jk}f_j(x)$$

A megoldandó lineáris egyenletrendszer

Behelyettesítve az f tetszőleges függvények lineárkombinációjából álló alakját a következő adódik:

$$\frac{\partial \chi^2(a_j)}{\partial a_j} = 2 \cdot \sum_{i=1}^N \left[\frac{1}{\sigma_i^2} \cdot \left(\sum_{k=1}^M a_k f_k(x_i) - y_i \right) \cdot f_j(x_i) \right] = 0$$

A szögletes zárójelen belüli szorzat harmadik tagjában azért nincsen már \sum , mert a Kronecker- δ elvitte a többi tagot.

Vegyük észre, hogy ez már lineáris egyenletrendszer az a_k együtthatókra.

A tervmátrix³

A probléma innentől már csak egy lineáris egyenletrendszer megoldása. Az átláthatóság kedvéért vezessük be a következőket:

$$X_{ij} = \frac{f_j(x_i)}{\sigma_i} \qquad b_i = \frac{y_i}{\sigma_i}$$

 X_{ij} az úgynevezett *tervmátrix*:

- az M oszlopa a bázisfüggvényeknek felel meg
- ▶ az N sora a mérési pontoknak
- ightharpoonup a mátrixelemek a j. bázisfüggvény x_i helyeken vett értékei

³design matrix

A tervmátrix és a b_i vektor felépítése

$$X_{ij} = \begin{pmatrix} \frac{f_1(x_1)}{\sigma_1} & \frac{f_2(x_1)}{\sigma_1} & \dots & \frac{f_M(x_1)}{\sigma_1} \\ \frac{f_1(x_2)}{\sigma_2} & \frac{f_2(x_2)}{\sigma_2} & \dots & \frac{f_M(x_2)}{\sigma_2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \frac{f_1(x_N)}{\sigma_N} & \frac{f_2(x_N)}{\sigma_N} & \dots & \frac{f_M(x_N)}{\sigma_N} \end{pmatrix} \qquad b_i = \begin{pmatrix} \frac{y_1}{\sigma_1} \\ \frac{y_2}{\sigma_2} \\ \vdots \\ \vdots \\ \frac{y_N}{\sigma_N} \end{pmatrix}$$

A lineáris illesztés normálegyenletei

A parciális deriváltakra felírt egyenletek ezzel:

$$\sum_{i=1}^{N} \left[\left(\sum_{k=1}^{M} a_k X_{ik} - b_i \right) \cdot X_{ij} \right] = 0,$$

ami indexes írásmóddal:

$$X_{ik}a_kX_{ij}=X_{ij}b_i$$

Kibogozva az indexet a következő mátrixegyenletet kapjuk:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{a} = \mathbf{X}^{\mathsf{T}}\mathbf{b},$$

ahol \mathbf{X} egy $N \times M$ -es mátrix, tehát végső soron M darab M ismeretlenes egyenletet kell megoldani, például Gauss-eliminációval.

Az Hesse-mátrix

$$(\mathbf{X}\mathbf{a} - \mathbf{y})_{i} = \sum_{j} x_{i}^{(j-1)} a_{j} - y_{i}$$

$$\chi^{2} = \sum_{i} \left[\sum_{j} \left(x_{i}^{(j-1)} a_{j} \right) - y_{i} \right]^{2}$$

$$\frac{\partial \chi^{2}}{\partial a_{k}} = 2 \cdot \sum_{i} \left[\sum_{j} x_{i}^{(k-1)} x_{i}^{(j-1)} a_{j} - x_{i}^{(k-1)} y_{i} \right]$$

$$\frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{l}} = 2 \cdot \sum_{i} \left[x_{i}^{(k-1)} x_{i}^{(l-1)} \right]$$

Az illesztett paraméterek hibája

A második parciális deriváltakból álló Hesse-mátrix valójában egyszerűen

$$\alpha = \mathbf{X}^\mathsf{T}\mathbf{X}$$

Ennek az inverze adja a kovarianciamátrixot:

$$C = \alpha^{-1}$$

- ightharpoonup az átlós elemek a varianciákat tartalmazzák: $\sigma_k^2 = C_{kk}$
- ightharpoonup a többi a kovarianciákat: $cov_{kl} = C_{kl}$

Az illesztés aszimptotikus hibájának általában a redukált χ^2 -tel szorzott varianciát vesszük.

Többváltozós polinomillesztés

Ha az x_i mérési pontok maguk is $x_i^{(k)}$ K-dimenziós vektorok, akkor a többdimenziós polinomillesztés modellje a következő:

$$f_j^{(k)}(x) = \sum_{p=1}^{M \cdot K} a_p x^{j-1},$$

- lacktriangle a probléma immár összesen $M\cdot K$ ismeretlent fog tartalmazni
- de ebben még nincsenek vegyes tagok
- a p index a j és k indexekből képzett rendezett párok halmazán (Descartes-szorzat) fut
- a probléma ugyanúgy oldható meg, mint az előző
- ightharpoonup a végén $M \cdot K \times M \cdot K$ méretű mátrixot kell invertálni

Példa: parabola illesztése 5 pontra

Mivel öt megadott pont esetében a parabolaillesztés túlhatározott, a legkisebb négyzetek módszerét használjuk. Legyenek a mérési adatok a következők (valójában oszlopvektorok):

$$\mathbf{x} = \{ -2, -1, 0, 1, 2 \}$$

 $\mathbf{y} = \{ 5.1, 1.9, 1.1, 2.1, 4.9 \}$

A modell három ismeretlenes: $f(x) = a_0 + a_1x + a_2x^2$, azaz $f_1(x) = 1$, $f_2(x) = x$ és $f_3(x) = x^2$. Ezzel:

$$\mathbf{X} = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \qquad \mathbf{X}^{\mathsf{T}} \mathbf{X} = \begin{bmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{bmatrix} \qquad \mathbf{X}^{\mathsf{T}} \mathbf{y} = \begin{bmatrix} 15.1 \\ -0.2 \\ 44.0 \end{bmatrix}$$

A függvényillesztés eredménye

Az $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{a} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ egyenletet **a**-ra megoldva:

$$\mathbf{a} = \left[\begin{array}{c} 1.049 \\ -0.020 \\ 0.986 \end{array} \right]$$

Az illesztés jósága:

$$\chi^2 = (\mathbf{X}\mathbf{a} - \mathbf{y})^2$$
$$= 0.0411$$

$$\frac{\chi^2}{\text{NDF}} = \frac{0.0411}{5-3} = 0.0206$$

A konkrét példában

Az illesztett modell:

$$f(x) = 1.049 - 0.020x + 0.986x^2$$

A kovarianciamátrix:

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \begin{bmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{bmatrix}^{-1} = \begin{bmatrix} 0.49 & 0 & -0.14 \\ 0 & 0.10 & 0 \\ -0.14 & 0 & 0.07 \end{bmatrix}$$

Vagyis az egyes paraméterek szórása és kovarianciája:

$$\chi^2/\text{NDF-fel szorozva az}$$
 aszimptotikus hibák:

$$\sigma_0 = 0.70$$
 $\sigma_1 = 0.32$
 $\sigma_2 = 0.27$
 $\sigma_1 = 0.0454$
 $\sigma_2 = 0.0384$