

01.112 Machine Learning, Fall 2018 Homework 5

Due Friday 7 Dec 2018, 5pm

Sample Solutions

1 Question 1 (total 30 points)

Consider the Bayesian network below, where we have 11 variables.

Figure 1: The Bayesian network consists of 11 variables

1.1 (4 points) Assume all variables are taking values from $\{1, 2, 3\}$. What is the number of free parameters? What if we assume all variables are taking values from $\{1, 2, 3, 4\}$?

Answer:

Consider a node i with its parents pa_i , the number of *free parameters*, also called independent parameters, for the node i: $(r_i - 1) \prod_{j \in pa_i} rj$.

In case all variables are taking values from $\{1, 2, 3\}$. According to Fig. 1, we can calculate the number of free parameters as follows:

$$\sum_{i=1}^{11} (r_i - 1) \prod_{j \in pa_i} r_j = 2_{X_1} + 2_{X_2} \times 3_{pa_{X_2}} + 2_{X_3} \times 3_{pa_{X_3}} + 2_{X_4} \times 3_{pa_{X_4}} + 2_{X_5} \times 3_{pa_{X_5}} + 2_{X_6} + 2_{X_7} \times 3_{pa_{X_7}} + 2_{X_8} \times 3_{pa_{X_8}} + 2_{X_9} \times 3_{pa_{X_9}}^3 + 2_{X_{10}} \times 3_{pa_{X_{10}}} + 2_{X_{11}} \times 3_{pa_{X_{11}}} = 106.$$

$$(1)$$

In case all variables are taking values from $\{1, 2, 3, 4\}$. Similarly, we can calculate the number of free parameters as follows:

$$\sum_{i=1}^{11} (r_i - 1) \prod_{j \in pa_i} r_j = 3X_1 + 3X_2 \times 4_{pa_{X_2}} + 3X_3 \times 4_{pa_{X_3}} + 3X_4 \times 4_{pa_{X_4}} + 3X_5 \times 4_{pa_{X_5}} + 3X_6 + 3X_7 \times 4_{pa_{X_7}} + 3X_8 \times 4_{pa_{X_8}} + 3X_9 \times 4_{pa_{X_0}}^3 + 3X_{10} \times 4_{pa_{X_{10}}} + 3X_{11} \times 4_{pa_{X_{11}}} = 294.$$
(2)

1.2 (4 points) What is the Markov blanket for the variable X_1 in the Bayesian network? What is the Markov blanket for the variable X_7 ?

Answer:

The Markov blanket for the variable X_1 in the given Bayesian network is $m(X_1) = \{X_2\}$. The Markov blanket for the variable X_7 in the given Bayesian network is $m(X_7) = \{X_5, X_9, X_6, X_8\}$.

1.3 (6 points) Are X_1 and X_6 independent or dependent of each other if no other variable is given? Why? Are X_1 and X_6 independent or dependent of each other if both X_7 and X_{10} are given? Why?

Answer:

If no other variable is given, X_1 and X_6 are *independent* because there is no path from X_1 to X_6 (according to the Bayes' ball algorithm).

If both X_7 and X_{10} are given, X_1 and X_6 are *dependent*. This is because there exists a path from X_1 to X_6 according to the Bayes' ball algorithm with the boundary conditions. Specifically, the paths are: $X_1 - X_2 - X_3 - X_4 - X_5 - X_8 - X_9 - X_{10} - X_9 - X_6$ and $X_1 - X_2 - X_3 - X_4 - X_5 - X_7 - X_5 - X_8 - X_9 - X_{10} - X_9 - X_6$.

1.4 (8 points) Now, assume the probability tables for all nodes are shown below:

$\begin{array}{c c} & \mathbf{X}_1 \\ 1 & 2 \\ \hline 0.5 & 0.5 \\ \end{array}$			\mathbf{x}_1	1 X	$egin{array}{c c} \mathbf{X}_2 \\ 1 & 2 \end{array}$			X ₃	2	7	\mathbf{X}_3	1 X	ζ ₄	2	\mathbf{X}_4	1	\mathbf{X}_5	2		X	-
			1	0.2	0.8		- 1		0.7		1	0.1 0		- 11	1	0.5		0.5		0.6	0.4
2 0.3 0.7 2						2	0.3	0.7		2	$\frac{0.5}{\mathbf{X}_9}$	0.	.5	2	0.6	5 (0.4				
							\mathbf{X}_6	\mathbf{X}_7	X	8	1	2									
							1	1	1		0.8	0.2	2								
	\mathbf{X}_7				\mathbf{X}_8		1	1	2	,	0.1	0.9	9			\mathbf{X}_{10}				\mathbf{X}_{11}	
\mathbf{X}_5	1	2	\mathbf{X}_5	1	2		1	2	1		0.9	0.	1	\mathbf{X}_9	1		2	X	-10	1	2
1	0.2	0.8	1	0.	8 0.	2	1	2	2	,	0.7	0.3	3	1	0.8	3	0.2		1	0.7	0.3
2	0.3	0.7	2	0.	7 0.	3	2	1	1		0.3	0.	7	2	0.8	3	0.2		2	0.8	0.2
						_	2	1	2	,	0.2	0.8	8								
							2	2	1		0.2	0.8	8								
							2	2	2	,	0.9	0.	1								

Calculate the following conditional probability:

$$P(\mathbf{X}_3 = 2 | \mathbf{X}_4 = 1)$$

(Hint: find a short answer.)

Answer:

First, the conditional probability is given as follows:

$$P(\mathbf{X}_3 = 2 | \mathbf{X}_4 = 1) = \frac{P(\mathbf{X}_3 = 2, \mathbf{X}_4 = 1)}{P(\mathbf{X}_4 = 1)}$$
(3)

The numerator of the Eq. 3 is given as follows:

$$P(\mathbf{X}_3 = 2, \mathbf{X}_4 = 1) = \sum_{\mathbf{X}_1, \mathbf{X}_2} P(\mathbf{X}_1) P(\mathbf{X}_2 | \mathbf{X}_1) P(\mathbf{X}_3 | \mathbf{X}_2) P(\mathbf{X}_4 | \mathbf{X}_3).$$

And, note that X_3 takes only two values 1 or 2, the denominator of the Eq. 3 is calculated as follows:

$$P(\mathbf{X}_4 = 1) = P(\mathbf{X}_3 = 1, \mathbf{X}_4 = 1) + P(\mathbf{X}_3 = 2, \mathbf{X}_4 = 1).$$

According to the value of the Table, we can get:

$$\begin{split} P(\mathbf{X}_3 = 1, \mathbf{X}_4 = 1) = & P(\mathbf{X}_1 = 1) P(\mathbf{X}_2 = 1 | \mathbf{X}_1 = 1) P(\mathbf{X}_3 = 1 | \mathbf{X}_2 = 1) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 1) \\ & + P(\mathbf{X}_1 = 1) P(\mathbf{X}_2 = 2 | \mathbf{X}_1 = 1) P(\mathbf{X}_3 = 1 | \mathbf{X}_2 = 2) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 1) \\ & + P(\mathbf{X}_1 = 2) P(\mathbf{X}_2 = 1 | \mathbf{X}_1 = 2) P(\mathbf{X}_3 = 1 | \mathbf{X}_2 = 1) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 1) \\ & + P(\mathbf{X}_1 = 1) P(\mathbf{X}_2 = 2 | \mathbf{X}_1 = 2) P(\mathbf{X}_3 = 1 | \mathbf{X}_2 = 2) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 1) \\ & = 0.5 \times 0.2 \times 0.3 \times 0.1 \\ & + 0.5 \times 0.8 \times 0.3 \times 0.1 \\ & + 0.5 \times 0.3 \times 0.3 \times 0.1 \\ & + 0.5 \times 0.7 \times 0.3 \times 0.1 \\ & = 0.03. \end{split}$$

$$\begin{split} P(\mathbf{X}_3 = 2, \mathbf{X}_4 = 1) = & P(\mathbf{X}_1 = 1) P(\mathbf{X}_2 = 1 | \mathbf{X}_1 = 1) P(\mathbf{X}_3 = 2 | \mathbf{X}_2 = 1) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 2) \\ & + P(\mathbf{X}_1 = 1) P(\mathbf{X}_2 = 2 | \mathbf{X}_1 = 1) P(\mathbf{X}_3 = 2 | \mathbf{X}_2 = 2) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 2) \\ & + P(\mathbf{X}_1 = 2) P(\mathbf{X}_2 = 1 | \mathbf{X}_1 = 2) P(\mathbf{X}_3 = 2 | \mathbf{X}_2 = 1) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 2) \\ & + P(\mathbf{X}_1 = 1) P(\mathbf{X}_2 = 2 | \mathbf{X}_1 = 2) P(\mathbf{X}_3 = 2 | \mathbf{X}_2 = 2) P(\mathbf{X}_4 = 1 | \mathbf{X}_3 = 2) \\ & = 0.5 \times 0.2 \times 0.7 \times 0.5 \\ & + 0.5 \times 0.8 \times 0.7 \times 0.5 \\ & + 0.5 \times 0.3 \times 0.7 \times 0.5 \\ & + 0.5 \times 0.7 \times 0.7 \times 0.5 \\ & = 0.35. \end{split}$$

So that, we can get the result as follows:

$$P(\mathbf{X}_3 = 2 | \mathbf{X}_4 = 1) = \frac{P(\mathbf{X}_3 = 2, \mathbf{X}_4 = 1)}{P(\mathbf{X}_4 = 1)}$$
$$= \frac{0.35}{0.03 + 0.35} \approx 0.92105$$

1.5 (8 points) Calculate the following conditional probability based on the above probability tables.

$$P(\mathbf{X}_5 = 2 | \mathbf{X}_3 = 1, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 1)$$

(Hint: find a short answer. The values in some of the probability tables may reveal some useful information.)

Answer

First, we have following observations based on the probability tables:

- Probability of X_3 does not change regarding X_2 . In other words, X_3 and X_2 are independent.
- Probability of X_{10} does not change regarding X_9 . In other words, X_{10} and X_9 are independent.

 X_5 and X_1 are independent, and X_5 and X_{11} are independent as well (i.e., no path). Based on the given graph of the Bayesian network, we can get the following formula:

$$P(\mathbf{X}_{5} = 2|\mathbf{X}_{3} = 1, \mathbf{X}_{11} = 2, \mathbf{X}_{1} = 1)$$

$$= P(\mathbf{X}_{5} = 2|\mathbf{X}_{3} = 1)$$

$$= \frac{P(\mathbf{X}_{5} = 2, \mathbf{X}_{3} = 1)}{P(\mathbf{X}_{3} = 1)}$$

$$= \frac{\sum_{x_{4}} P(\mathbf{X}_{3} = 1)P(\mathbf{X}_{4} = x_{4}|\mathbf{X}_{3} = 1)P(\mathbf{X}_{5} = 2|\mathbf{X}_{4} = x_{4})}{P(\mathbf{X}_{3} = 1)}$$

$$= \sum_{x_{4}} P(\mathbf{X}_{4} = x_{4}|\mathbf{X}_{3} = 1)P(\mathbf{X}_{5} = 2|\mathbf{X}_{4} = x_{4}).$$

Replacing $x_4 \in \{1, 2\}$ and replace the probabilities based on the values from the tables.

$$P(\mathbf{X}_5 = 2|\mathbf{X}_3 = 1, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 1)$$

= $P(\mathbf{X}_4 = 1|\mathbf{X}_3 = 1)P(\mathbf{X}_5 = 2|\mathbf{X}_4 = 1) + P(\mathbf{X}_4 = 2|\mathbf{X}_3 = 1)P(\mathbf{X}_5 = 2|\mathbf{X}_4 = 2)$
= $0.1 \times 0.5 + 0.9 \times 0.4$
= 0.41

2 Question 2 (total 10 points)

Now consider the following two Bayesian network structures, where all variables are binary. In other words, they are taking values from $\{1, 2\}$.

Figure 3: G_2

Now, you would like to use BIC as the criterion for selecting a better structure of the Bayesian network between G_1 and G_2 based on a large collection of samples. Construct a case (i.e., provide a collection of samples, where each sample is of the form " $X_1 = 1, X_2 = 2, \dots, X_8 = 2$ ", for example) where the final BIC of the first structure G_1 would be strictly higher than G_2 . If you believe no such case exists, clearly explain why.

Answer:

The BIC scores for the graphs G_1 and G_2 are defined as follows:

$$BIC(D;\theta;G_1) = l(D;\theta;G_1) - \frac{dim(G_1)}{2}\log(m), \tag{4}$$

$$BIC(D; \theta; G_2) = l(D; \theta; G_2) - \frac{dim(G_2)}{2} \log(m), \tag{5}$$

where $l(D; \theta; G_1)$ and $l(D; \theta; G_2)$ are the log-likelihood of the two structures, $dim(G_1)$ and $dim(G_2)$ are the number of free parameters of the two structures, and m is the number of data points in the collection of samples.

First, we look at the log-likelihood of the two structures. Instead of the log-likelihood, we calculate the likelihood $P(X_1 = x_1, X_2 = x_2, \dots, X_8 = x_8)$ for the first structure G1 as follows.

$$P(X_1 = x_1, X_2 = x_2, \cdots, X_8 = x_8) \tag{6}$$

$$=P(X_1 = x_1) \prod_{i=2}^{8} P(X_i = x_i | X_{i-1} = x_{i-1})$$
(7)

$$= \frac{\text{Count}(X_1 = x_1)}{\text{#All-samples}} \prod_{i=2}^{8} \frac{\text{Count}(X_i = x_i; X_{i-1} = x_{i-1})}{\text{Count}(X_{i-1} = x_{i-1})}$$
(8)

$$= \frac{\text{Count}(X_1 = x_1)}{\#\text{All-samples}} \frac{\prod_{i=2}^{8} \text{Count}(X_i = x_i; X_{i-1} = x_{i-1})}{\prod_{i=1}^{7} \text{Count}(X_i = x_i)}$$
(9)

$$= \frac{1}{\text{#All-samples}} \frac{\prod_{i=2}^{8} \text{Count}(X_i = x_i; X_{i-1} = x_{i-1})}{\prod_{i=2}^{7} \text{Count}(X_i = x_i)}.$$
 (10)

Similarly, we can calculate the likelihood for the second structure G_2 as follows.

$$P(X_1 = x_1, X_2 = x_2, \cdots, X_8 = x_8) \tag{11}$$

$$=P(X_8 = x_8) \prod_{i=2}^{8} P(X_{i-1} = x_{i-1} | X_i = x_i)$$
(12)

$$= \frac{\operatorname{Count}(X_8 = x_8)}{\#\operatorname{All-samples}} \prod_{i=2}^{8} \frac{\operatorname{Count}(X_{i-1} = x_{i-1}; X_i = x_i)}{\operatorname{Count}(X_i = x_i)}$$
(13)

$$= \frac{\text{Count}(X_8 = x_8)}{\text{#All-samples}} \frac{\prod_{i=2}^{8} \text{Count}(X_{i-1} = x_{i-1}; X_i = x_i)}{\prod_{i=2}^{8} \text{Count}(X_i = x_i)}$$
(14)

$$= \frac{1}{\text{#All-samples}} \frac{\prod_{i=2}^{8} \text{Count}(X_i = x_i; X_{i-1} = x_{i-1})}{\prod_{i=2}^{7} \text{Count}(X_i = x_i)}.$$
 (15)

As we can see, the last two Eq. 10, and Eq. 15 are the same. Therefore, the likelihood and the log-likelihood of the two structures are the same for any collection of samples, i.e., $l(D; \theta; G_1) = l(D; \theta; G_2)$.

Second, we look at the number of free parameters of the two structures, i.e., $dim(G_1)$ and $dim(G_2)$. Suppose that each variable X_i can take r_i values, i.e., $X_i \in \{1, 2, \dots, r_i\}$. The free parameters of the two structures are given as follows:

$$dim(G_1) = (r_1 - 1) + \sum_{i=2}^{8} (r_i - 1)r_{i-1}$$
(16)

$$= (r_1 - 1) + \sum_{i=2}^{8} (r_i r_{i-1} - r_{i-1})$$
(17)

$$= r_1 - 1 + \sum_{i=2}^{8} r_i r_{i-1} - \sum_{i=2}^{8} r_{i-1}$$
(18)

$$= r_1 - 1 + \sum_{i=1}^{7} r_{i+1} r_i - \sum_{i=1}^{7} r_i$$
 (19)

$$=\sum_{i=1}^{7} r_i r_{i+1} - \sum_{i=2}^{7} r_i - 1.$$
 (20)

Similarly,

$$dim(G_2) = (r_8 - 1) + \sum_{i=2}^{8} (r_{i-1} - 1)r_i$$
(21)

$$= (r_8 - 1) + \sum_{i=2}^{8} (r_{i-1}r_i - r_i)$$
(22)

$$= r_8 - 1 + \sum_{i=2}^{8} r_i r_{i-1} - \sum_{i=2}^{8} r_i$$
 (23)

$$= -1 + \sum_{i=1}^{7} r_{i+1} r_i - \sum_{i=2}^{7} r_i$$
 (24)

$$=\sum_{i=1}^{7} r_i r_{i+1} - \sum_{i=2}^{7} r_i - 1.$$
 (25)

As we can see that the last two Eq. 20, and Eq. 25 are the same. Hence, $dim(G_1) = dim(G_2)$.

With these results, from the two Eq. 4, and Eq. 5, we can conclude that the BIC scores of the two structures G_1 and G_2 for any given collection of samples are the same.