Propositional Logic

Entailment and Inference

Computational Inference

- computers cannot reason informally ("common sense")
 - they don't know the interpretation of the sentences
 - they usually don't have access to the state of the real world to check the correspondence between sentences and facts
- computers can be used to check the validity of sentences
 - "if the sentences in a knowledge base are true, then the sentence under consideration must be true, regardless of its possible interpretations"
 - can be applied to rather complex sentences

Computational Approaches to Inference

- model checking based on truth tables
 - generate all possible models and check them for validity or satisfiability
 - exponential complexity,
 - all combinations of truth values need to be considered

search

- use inference rules as successor functions for a search algorithm
- also exponential, but only worst-case
 - in practice, many problems have shorter proofs
 - only relevant propositions need to be considered

Propositional Logic

- a relatively simple framework for reasoning
- can be extended for more expressiveness at the cost of computational overhead
- important aspects
 - syntax
 - semantics
 - validity and inference
 - models
 - inference rules
 - complexity

Propositional Logic

```
Propositional logic is the simplest logic—illustrates basic ideas
           The proposition symbols P_1, P_2 etc are sentences
          If S is a sentence, \neg S is a sentence (negation)
          If S_1 and S_2 are sentences, S_1 \wedge S_2 is a sentence (conjunction)
          If S_1 and S_2 are sentences, S_1 \vee S_2 is a sentence (disjunction)
          If S_1 and S_2 are sentences, S_1 \Rightarrow S_2 is a sentence (implication)
          If S_1 and S_2 are sentences, S_1 \Leftrightarrow S_2 is a sentence (biconditional)
Order of Precedence
                                                                If S1 then S2
                                            If and Only If
```

Propositional Logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true$ $true$ $false$

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

```
egthinspace{-1mm} \neg S is true iff S is false S_1 \wedge S_2 is true iff S_1 is true \operatorname{and} S_2 is true S_1 \vee S_2 is true iff S_1 is true \operatorname{or} S_2 is true S_1 \Rightarrow S_2 is true iff S_1 is false \operatorname{or} S_2 is true iff S_1 is false \operatorname{or} S_2 is false S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true \operatorname{and} S_2 \Rightarrow S_1 is true S_1 \Leftrightarrow S_2 \Rightarrow S_2 \Rightarrow S_1 is true
```

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$$

Models

- To make things precise, we use the term model in place of "possible world."
- Logicians typically think in terms of models, which are formally structured worlds
 - With respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
 - or sometimes m satisfies α .
- $M(\alpha)$: Set of all models of α

Entailment

- Entailment: a sentence *follows logically* from another sentence
- Entailment means that one thing follows from another:

$$\alpha \models \beta$$

- Knowledge base KB entails sentence α if and only if α is true β is also true
 - E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Entailment

- Entailment is when a sentence follows from another $\alpha \models \beta$
 - $\alpha \models \beta$ iff in every model where α is true, β is also true.
 - $\alpha \models \beta$ iff $M(\alpha) \subseteq M(\beta)$

- Examples:
 - $(x = 0) \models (xy = 0)$
 - $(p = TRUE) \models (p \lor q)$
 - $(p \land q) \vDash (p \lor q)$
 - $((q \Longrightarrow p) \lor r) \vDash (q \Longrightarrow p)$

Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for ?s, assuming only pits
- 3 Boolean choices, i.e.,
 - $2^3 = 8$ possible models

Possible Wumpus Models

Valid Wumpus Models

KB = wumpus-world rules + observations

Entailment

KB = wumpus-world rules + observations

 α_1 = "[1,2] is safe", $KB \vdash \alpha_1$, proved by model checking

Entailment

KB = wumpus-world rules + observations

 α_2 = "[2,2] is safe", $KB \not\equiv \alpha_2$, proved by model checking

Wumpus Models

	1,1	2,1	3,1	1,2	2,2
1	Empty	Breeze	Pit	Empty	Pit
2	Empty	Breeze	Pit	Pit	Pit
3	Empty	Breeze	Empty	Pit	Pit
4	Empty	Breeze	Empty	Empty	Pit
5	Empty	Breeze	Empty	Empty	Empty
6	Empty	Breeze	Pit	Pit	Empty
7	Empty	Breeze	Pit	Empty	Empty
8	Empty	Breeze	Empty	Pit	Empty

A simple entailment procedure

KB = Wumpus World Rules
+
Observations

	i	i			1 2	3
	[1,1]	[2,1]	[3,1]	[1,2]	[2,2]	_
1	Empty	Breeze	Pit	Empty	Pit	
2	Empty	Breeze	Pit	Pit	Pit	
3	Empty	Breeze	Empty	Pit	Pit	
4	Empty	Breeze	Empty	Empty	Pit	;
5	Empty	Breeze	Empty	Empty	Empty	
6	Empty	Breeze	Pit	Pit	Empty	
7	Empty	Breeze	Pit	Empty	Empty	
8	Empty	Breeze	Empty	Pit	Empty	

A simple entailment procedure/

KB = Wumpus World Rules

Observations

 α_1 = "No pit in (1,2)"

$$KB \models \alpha_1$$

	[1,1]	[2,1]	[3,1]	[1,2]	[2,2]	
1	Empty	Breeze	Pit	Empty	Pit	α_1
2	Empty	Breeze	Pit	Pit	Pit	
3	Empty	Breeze	Empty	Pit	Pit	
4	Empty	Breeze	Empty	Empty	Pit	✓ KB
5	Empty	Breeze	Empty	Empty	Empty	
6	Empty	Breeze	Pit	Pit	Empty	
7	Empty	Breeze	Pit	Empty	Empty	
8	Empty	Breeze	Empty	Pit	Empty	

A simple entailment procedure

KB = Wumpus World Rules
+
Observations

					1 2	3
	[1,1]	[2,1]	[3,1]	[1,2]	[2,2]	_
1	Empty	Breeze	Pit	Empty	Pit	
2	Empty	Breeze	Pit	Pit	Pit	
3	Empty	Breeze	Empty	Pit	Pit	
4	Empty	Breeze	Empty	Empty	Pit	→ KB
5	Empty	Breeze	Empty	Empty	Empty	
6	Empty	Breeze	Pit	Pit	Empty	
7	Empty	Breeze	Pit	Empty	Empty	
8	Empty	Breeze	Empty	Pit	Empty	_

	[1,1]	[2,1]	[3,1]	[1,2]	[2,2]	_
1	Empty	Breeze	Pit	Empty	Pit	α_2
2	Empty	Breeze	Pit	Pit	Pit	
3	Empty	Breeze	Empty	Pit	Pit	
4	Empty	Breeze	Empty	Empty	Pit	\\\\ → KB
5	Empty	Breeze	Empty	Empty	Empty	
6	Empty	Breeze	Pit	Pit	Empty	
7	Empty	Breeze	Pit	Empty	Empty	
8	Empty	Breeze	Empty	Pit	Empty	/

Logical inference problem

- Logical inference problem:
 - Given: a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$
 - In other words: In all interpretations in which sentences in the KB are true, is also α true?
- Question: Is there a procedure (program) that can decide this problem in a finite number of steps?
- Answer: Yes. Logical inference problem for the propositional logic is decidable.

Solving logical inference problem

• In the following: How to design the procedure that answers: $KB \models \alpha$

- Three approaches:
 - Truth-table approach
 - Inference rules