Arijit Dasgupta

J +65-93663708

■ arijit.dasgupta@u.nus.edu in linkedin.com/in/arijitdasgupta97

Portfolio: arijitnoobstar.github.io

Research Interests: Embodied & Cognitive Artificial Intelligence, Robotics, Reinforcement Learning, Causal Reasoning, Machine Learning for Robotics, Computer & Machine Vision, Systems Integration, Mechanical Design & Systems, Developmental Psychology for Artificial Intelligence

EDUCATION

National University of Singapore

Singapore

Bachelor of Engineering - Honours in Mechanical Engineering Aug 2018 - May 2022

Minor in Computer Science; University Scholars Programme

GPA: 4.86/5 (Highest Distinction), 17 A+ from 34 Courses completed

Selected Courses: Deep Learning for Robotics, Data Structures & Algorithms, Writing & Critical Thinking, Discrete Structures, Probability & Statistics, Quantum Computing, Machine Vision, Programming Methodology, Feedback Control Systems, Mechanical Systems Design, Small Aircraft & Unmanned Aerial Systems

National Junior College

Singapore

Singapore-Cambridge GCE Advanced Level - 7 Distinctions

Jan 2014 - Dec 2015

RESEARCH EXPERIENCE

A*STAR, Institute for Infocomm Research

Singapore

Cognitive Artificial Intelligence & Robotics (under <u>Dr Cheston Tan</u>)

May 2021 - Present

- Developing a 3D vision only Synthetic Dataset that showcases impossible and possible scenes, which an artificial agent must discriminate using the Violation-of-Expectation (VOE) paradigm.
- The discrimination requires an understanding of a myriad of intuitive physical reasoning concepts. The scenes are heavily guided and inspired by infant physical reasoning experiments conducted by psychologists using the VOE paradigm.

National University of Singapore

Singapore

Drone Vision & Control (under Dr Sutthiphong Srigrarom)

Feb 2021 - May 2021

- Designed and investigated multiple drone path planning methodologies for projectile interception with a depth camera. All tests were conducted in a Gazebo simulation with the control and software architecture embedded into the Robot Operating System (ROS).
- Trajectory predicted paths were found to be effective at predicting the ball path and intercepting it using a straight-line shortest path planner.

National University of Singapore

Singapore

Deep Reinforcement Learning (under <u>Dr Guillaume Sartoretti</u>)

Aug 2020 - April 2021

- Collaborated with a peer to investigate different artificially intelligent approaches to playing the board game Onitama beyond human-level. Real time agents using Minimax and Monte-Carlo Tree Search were first developed as competing agents to train a Deep Reinforcement Learning agent using DDPG.
- Tested numerous neural network structures to learn valid moves and good moves simultaneously. A branched neural network was highly effective in learning valid board game moves.

DSO National Laboratories

Singapore

Machine Learning for Network Protocols (under Bugsy Teo)

June 2020 - Dec 2020

- Introduced a novel unsupervised deep learning approach to automated protocol reverse engineering. A variety of deep learning architectures were used to generate encoded semantic information of data packets for clustering into unknown protocols
- Developed enigma, a software framework API written in Python to simplify the usability and flexibility of testing and conducting automatic reverse-engineered protocol analysis using multiple machine learning techniques from various domains.
- Investigated multiple unsupervised machine learning techniques as baselines for comparison against the deep learning approach

Temasek Laboratories, Centre for Aerodynamics & Propulsion

Singapore

Physics-Informed Machine Learning (under <u>Dr Murali Damodaran</u>)

Dec 2019 - Apr 2020

- Investigated the use of Physics-Informed Neural Networks (PINNs) to predict fundamental fluid dynamics flow problems.
- Developed PINNs using Tensorflow that successfully predicted the viscous and incompressible flow around a 2D cylinder and the 2D cavity flow to a high degree of accuracy. It can predict the pressure and velocity fields for a given Reynolds number.

A*STAR, Institute of High Performance Computing

Singapore

Computational Fluid Dynamics (under Dr Harish Gopalan)

Feb 2018 - May 2018

- Investigated the Negative Magnus Effect on the flow past a rotating cylinder at different angular velocities using Reynold-averaged Navier Stokes (RANS) models in OpenFOAM.
- Studied the effect of varying the mesh motion methodologies, turbulence intensities and transitional RANS models in detecting the Negative Magnus Effect.
- o Solo-presented the work during AIAA Scitech 2020 at Orlando, Florida.

A*STAR, Institute for Infocomm Research

Singapore

- Information Retrieval & Speech Recognition (under Dr Lim Boon Pang) June 2014 Dec 2014
 - Developed & investigated an algorithm to improve song-title information retrieval via speech recognition in noisy conditions with different types of noises against text-based baselines.
 - This work successfully made it to the finals of the Singapore Science & Engineering Fair, with a Merit award.

PUBLICATIONS

- Dasgupta, A., Yan, Y., Ong, C., Teo, B. & Lim, A. (2021). Exploring Unsupervised Learning Methods for Automated Protocol Analysis. Submitted to the IEEE Symposium Series on Computational Intelligence 2021.
- Tan, J., Dasgupta, A., Agrawal, A., & Srigrarom, S. (2021). Trajectory Prediction & Path Planning for an Object Intercepting UAV with a Mounted Depth Camera. Submitted to the International Conference on Control, Automation and Systems 2021.
- Dasgupta, A., Gopalan, H., & Chandar, D. (2020). Investigation of Flow Past Rotating Cylinder using Transitional RANS models for different Mesh Motion Methodologies. In AIAA Scitech 2020 Forum (p. 1587).

Industrial Experience

A*STAR, Advanced Remanufacturing and Technology Centre

Singapore

Robotics Software Development

May 2018 - Aug 2018

- Developed an Autonomous Ground Vehicle (AGV) fleet controller using Robotic Operating System (ROS) C++, in the Gazebo simulation environment.
- The AGV fleet controller allows the control of single/multiple AGV(s) transport orders, similar to a virtual fleet manager for mobile industrial robots, through an easy-to-use User Interface (UI).

Singapore Armed Forces, 23rd Battalion Singapore Artillery

Singapore

 $Rocket\ System\ Operator$

Apr 2016 - Feb 2018

- Operationally trained in operating and driving the High Mobility Artillery Rocket System (HIMARS) manufactured by Lockheed Martin and eight other military vehicles.
- Involved in the maintenance, navigational and firing operations of the rocket system & contributed to Exercise Forging Sabre 2017 in Arizona, USA. Acquired a myriad of soft-skills including leadership, perseverance, effective communication, conflict resolution, critical observation and teamwork.

- Flapping-Wing Micro-Aerial Vehicle (Deep Reinforcement Learning & Flapping Wing Flight): Modified the design of a state-of-the-art Flapping-Wing Micro-Aerial Vehicle (FW-MAV). Contributed to the design, manufacturing and assembly process. Developed a setup to train the FW-MAV to learn to fly using deep reinforcement learning in a controlled environment with infrared cameras. The software was built in ROS with C++ & Python. (May '21)
- Teaching a simulated Spider Robot to Walk using AI (Deep Reinforcement Learning): Created a CAD model of a Spider Robot using SolidWorks and put it into a PyBullet simulation environment in collaboration with a peer as part of a course project. Successfully made the robot walk in a straight line using DDPG despite having a high number of configurable joints. Topped the entire cohort among graduate students as a third-year undergraduate. (Nov '20)
- University Rover Challenge 2020 (Mechanical Design & Electronics): Designed, manufactured and assembled a 6-wheel rocker-bogic rover as part of the NUS Mars Rover Team. Specially in charge of the mobility system of the rover in terms of Computer-Aided Design, team-strategy, welding liaison & manufacturing. Competition was cancelled in lieu of COVID-19. (Apr '20)
- AIAA Design Build Fly Competition 2019 (Aerospace Design): Designed, manufactured and assembled an Unmanned Aerial Vehicle (UAV) as part of the NUS UAV Team 2019. In charge of Computer-Aided Design, flight theoretical calculations, team strategy & management, manufacturing, electronics & soldering, assembling and logistics handling. Represented NUS for the competition in Arizona, USA. (Apr '19)

Honors and Awards

- A*STAR Undergraduate Scholarship 2018 to 2022
- University Scholars Programme Senior Honour Roll 2020
- Defence Science & Technology Agency Brainhack (AI) Finalist 2020
- NUS Faculty of Engineering Dean's List × 2 2019 & 2020
- University Scholars Programme Honour Roll 2019
- Young Defence Scientists Programme Academic Award (Physics) 2016
- Singapore Indian Development Association Excellence Award \times 2 2014 & 2016
- NTU-IEEE Science Symposium Overall Champion 2015
- Distinction for the NJC Science Research Programme 2015

TECHNICAL & SOFT SKILLS

- Languages: Python, C/C++, MATLAB, R, Bash, LaTeX
- Frameworks: ROS, Scikit, TensorFlow, Keras, PyTorch, GIT, SolidWorks (CSWA Accredited)
- Soft Skills: Science Research, Communication, Leadership, Resource Management, Team Player, Problem-solving, Conflict-Resolution

Volunteering Experience

Ministry of Health Office for Healthcare Transformation

Singapore

Bengali Translator for COVID-19 Patients

Apr 2020 - Nov 2020

- Provided emergency Bengali translation services to COVID-19 patients during Singapore's migrant worker COVID outbreak via an on-call service in shifts.
- Translated for over 15 patients & front-line doctors at the National Centre for Infectious Diseases

Healthserve - NGO for Migrant Workers

Singapore

Bengali Translator for Migrant Workers

Apr 2020 - June 2020

• Surveyed Bengali migrant workers on their emotional health & translated COVID-19 related information posters for Bengali migrant workers living in dormitories.