FE 530 - Homework I

Makenzie Snodgrass

2025-10-14

Table of contents

1	A S	imple Market Model	2
	1.1	Conditional Expectation and Conditional Variance	2
	1.2	Estimate (π, u, d)	
	1.3	Estimate (r_f) on SHY between 2021 and 2022	4
	1.4	Is The No-Arbitrage Condition Satisfied?	4
	1.5	Minimize Portfolio Variance on \$100	5
	1.6	Allocation for \$102 target	6
	1.7	Option Pricing (two methods)	6
		1.7.1 Option Replicating Approach	6
		1.7.2 DCF Method	8
2	Risk	c-Free Assets	8
	2.1	Closed form solution for x as a function of α, r, g, n, τ	8
	2.2	Discrete Contribution Rate	
	2.3	Continuous-Time Contribution Rate	9
	2.4	Sensitivity of x to r and g	10
3	Port	tfolio Management	11
4	Forv	ward Contracts	12

All tables and plots should be generated by the attached Python scripts and referenced here.

1 A Simple Market Model

1.1 Conditional Expectation and Conditional Variance

We model the one-period return as

$$S_{t+1} = \begin{cases} S_t(1+u) & \text{with prob } \pi, \\ S_t(1+d) & \text{with prob } 1-\pi, \end{cases} V_t = xS_t + yB_t.$$

Assuming that x + y = 1 and because $S_t = B_t = 100$, then $V_t = xS_t + yB_t = 100$. I start by deriving the conditional expectation equations for the risky and risk free assets.

$$\mathbb{E}[S_{t+1} \mid S_t] = \pi S_t (1+u) + (1-\pi) S_t (1+d)$$

$$\mathbb{E}[S_{t+1} \mid S_t] = S_t(1 + \pi u + (1 - \pi)d)$$

And simply

$$\mathbb{E}[B_{t+1}] = B_t(1+r_f).$$

Given that $V_{t+1} = xS_{t+1} + yB_{t+1} = xS_t(1 + \pi u + (1 - \pi)d) + yB_t(1 + r_f),$

$$\mathbb{E}[V_{t+1}\mid V_t] = x\mathbb{E}[S_{t+1}\:] + y\mathbb{E}[B_{t+1}\:].$$

I finally substitute the conditional expectations and V_t for S_t and B_t to get

$$\mathbb{E}[V_{t+1} \mid V_t] = V_t[x \ (1 + \pi u + (1 - \pi)d) + y \ (1 + r_f)]$$

For the conditional variance, we first assume the variance of the risk-free position is zero and

$$Var(V_{t+1} \mid V_t) = Var(S_{t+1} \mid S_t)$$

Then, we start with

$$\operatorname{Var}(S_{t+1} \mid S_t) = \mathbb{E}[S_{t+1}^2] - \mathbb{E}[S_{t+1}]^2$$

Where

$$\mathbb{E}[S_{t+1}^2] = S_t(\pi u^2 + (1-\pi)d^2)$$

And given above

$$\mathbb{E}[S_{t+1}] = S_t(1 + \pi u + (1 - \pi)d)$$

We then substitute and conclude

$$\mathrm{Var}(S_{t+1} \mid S_t) = S_t(\pi u^2 + (1-\pi)d^2) - (S_t(1+\pi u + (1-\pi)d))^2.$$

1.2 Estimate (π, u, d)

The pi estimate is calculated as (# of up months)/(total # of months observed). The u estimate is calculated as the average return of up months. The d estimate is calculated as the average return of down months. All of these estimates are based on the SPY 2012-2022.

Table 1: Estimated binomial parameters (π, u, d) from SPY monthly returns (2012–2022).

	Unnamed: 0	pi	u	d
0	0	0.70229	0.031553	-0.038643

Figure 1: SPY monthly returns histogram (2012–2022).

1.3 Estimate (r_f) on SHY between 2021 and 2022

The (r_f) estimate below is calculated by averaging the monthly returns of the SHY over 2021-2022.

Table 2: Estimated monthly risk-free rate from SHY (2021–2022).

	rf
0	-0.002029

1.4 Is The No-Arbitrage Condition Satisfied?

Yes, The no arbitrage condition is satisfied as shown below.

Table 3: No-arbitrage test: check $d < r_f < u. \label{eq:rf}$

	d	rf	u	no_arbitrage
0	-0.038643	-0.002029	0.031553	True

1.5 Minimize Portfolio Variance on \$100

Given that we have no return target and the variance assiciated with risk-free assets y is considered to be 0, palcing all \$100 in the risk-free asset y would result in 0 portfolio variance.

Figure 2: One-month portfolio variance as a function of risky weight w (0–1).

1.6 Allocation for \$102 target

Given the budget of $V_t = 100$ and the target of $E[V_{t+1}] = 102$, the weight is calculated

$$x = V_t \frac{\frac{V_{t+1}}{V_t} - (1 + r_f)}{\mu - r_f}, \quad \mu = \pi u + (1 - \pi)d$$

Table 4: Allocation (x, y) targeting $E[V_{t+1}] = 102$ with $V_t = 100$.

	pi	u	d	mu	rf	W	X	У	regime
0	0.7023	0.0316	-0.0386	0.0107	-0.002	1.7368	173.682	-73.682	levered long risky

From a trading perspective, this means that we need to borrow \$73.682 at the risk-free rate (or short the risk-free asset) and invest \$173.682 in the risky asset.

1.7 Option Pricing (two methods)

Both methods assume that current prices are $S_0 = B_0 = 100$, with the same π, u, d from above.

1.7.1 Option Replicating Approach

To price the call option using the option replicating approach, first we define

$$S_{t+1} = \begin{cases} S_t(1+u) & \text{with prob } \pi, \\ \\ S_t(1+d) & \text{with prob } 1-\pi \end{cases}$$

and

$$C_{t+1} = \begin{cases} C_u = \max(S_t(1+u) - K, 0) & \text{with prob } \pi, \\ C_d = \max(S_t(1+d) - K, 0) & \text{with prob } 1 - \pi \end{cases}$$

and

$$xS_{t+1} + yB_{t+1} = \begin{cases} xS_t(1+u) + yB_t(1+r_f) & \text{with prob } \pi, \\ xS_t(1+d) + yB_t(1+r_f) & \text{with prob } 1-\pi \end{cases}$$

solving for x we get

$$\begin{split} xS_t(1+u) + yB_t(1+r_f) - C_u &= xS_t(1+d) + yB_t(1+r_f) - C_d,\\ x(S_t(1+u) - S_t(1+d)) &= C_u - C_d,\\ x &= \frac{C_u - C_d}{S_t(u-d)} \end{split}$$

and plug our x in to solve for y

$$\frac{C_u-C_d}{S_t(u-d)}S_t(1+u)+yB_t(1+r_f)=C_u,$$

$$y = \frac{C_u - C_d - \frac{C_u}{S_t(u-d)}S_t(1+u)}{B_t(1+r_f)} \label{eq:y}$$

then we place our vlaues for x and y into our value formula

$$C_t = xS_t + yB_t$$

and to check our work we also define

$$V_t = xS_t + yB_t - C_t$$

which implies

$$V_u = xS_t(1+u) + yB_t(1+r_f) - C_u \label{eq:Vu}$$

and

$$V_d = xS_t(1+d) + yB_t(1+r_f) - C_d$$

where want $V_u = V_d$

Table 5: One-step call via replicating portfolio (Delta and B0).

	K	Cu	Cd	x_rep	y_rep	C0_rep	Vu	Vd	Vu=Vd
0	101	2.1553	0.0	0.307	-0.2958	1.1265	129.3144	129.3144	True

1.7.2 DCF Method

The risk-neutral probability is calculates as

$$\pi^* = \frac{r_f - d}{u - d}$$

And the value of the call option at t = 0 is defined as

$$C_0 = \frac{\pi^* C_u + (1 - \pi^*) C_d}{1 + r_f}$$

Table 6: One-step call via risk-neutral expectation (DCF).

	pi_star	C0_dcf	C0_rep	C0_rep=C0_dcf
0	0.5216	1.1265	1.1265	True

2 Risk-Free Assets

2.1 Closed form solution for x as a function of α, r, g, n, τ

Let

$$\theta = \frac{1+g}{1+r}$$

Present values at t=0

$$\begin{split} \text{PV}_{\text{save}} &= \sum_{t=1}^{n} \frac{x \, (1+g)^{\,t-1}}{(1+r)^{\,t}} = \frac{x}{(1+r)} \sum_{t=1}^{n} \theta^{\,t-1} = \frac{x}{(1+r)} \, \frac{1-\theta^{\,n}}{1-\theta}, \\ \text{PV}_{\text{ret}} &= \sum_{k=1}^{\tau} \frac{\alpha \, (1+g)^{\,n+k-1}}{(1+r)^{\,n+k}} = \alpha \, \frac{(1+g)^{\,n-1}}{(1+r)^{\,n}} \sum_{k=1}^{\tau} \theta^{\,k} = \alpha \, \frac{(1+g)^{\,n-1}}{(1+r)^{\,n}} \, \frac{\theta \, (1-\theta^{\,\tau})}{1-\theta}. \end{split}$$

Equate and solve for x

$$\begin{aligned} \text{PV}_{\text{save}} &= \text{PV}_{\text{ret}} \quad \Longrightarrow \quad \frac{x}{(1+r)} \, \frac{1-\theta^n}{1-\theta} = \alpha \, \frac{(1+g)^{\,n-1}}{(1+r)^{\,n}} \, \frac{\theta \, (1-\theta^{\,\tau})}{1-\theta} \\ \\ &\Longrightarrow \quad x \, (1-\theta^{\,n}) = \alpha \, \frac{(1+g)^{\,n-1}}{(1+r)^{\,n-1}} \, \theta \, (1-\theta^{\,\tau}) \\ \\ &\Longrightarrow \quad x = \alpha \, \frac{(1+g)^{\,n-1}}{(1+r)^{\,n-1}} \, \frac{\theta \, (1-\theta^{\,\tau})}{1-\theta^{\,n}} = \alpha \theta^{\,n} \, \frac{1-\theta^{\,\tau}}{1-\theta^{\,n}}. \end{aligned}$$

To get our final equation

$$x_{\rm disc}(\alpha,r,g,n,\tau) = \alpha \, \theta^{\,n} \, \frac{1-\theta^{\,\tau}}{1-\theta^{\,n}}, \quad \theta = \frac{1+g}{1+r}, \quad r \neq g,$$

Special case, if $r=g\ (\theta \to 1)$

$$x_{\rm disc} = \alpha \lim_{\theta \to 1} \theta^n \frac{1 - \theta^{\tau}}{1 - \theta^n} = \alpha \frac{\tau}{n}.$$

2.2 Discrete Contribution Rate

Using our equation derrived above, we compute

$$x_{\rm disc}(\alpha=0.5,r=0.04,g=0.01,n=40,\tau=20) = (0.5)\theta^{(40)}\frac{1-\theta^{(20)}}{1-\theta^{(40)}}, \quad \theta=\frac{1+0.01}{1+0.04},$$

Table 7: Discrete contribution rate and inputs.

	alpha	r	g	n	tau	x_discrete
0	0.5	0.04	0.01	40	20	0.099595

2.3 Continuous-Time Contribution Rate

$$x_{\rm disc}(\alpha,r,g,n,\tau) = \alpha\,\theta^{\,n}\,\frac{1-\theta^{\,\tau}}{1-\theta^{\,n}}, \quad \theta = \frac{1+g/m}{1+r/m}, \quad r \neq g,$$

Define θ_m and the m-times-per-year version

$$\theta_m = \frac{1+g/m}{1+r/m}, \qquad x_{\rm disc}^{(m)} = \alpha \, \theta_m^{\,mn} \, \frac{1-\theta_m^{\,m\tau}}{1-\theta_m^{\,mn}} \quad (r \neq g). \label{eq:thetam}$$

Key limit: $\theta_m^m \to e^{g-r}$

$$\ln \theta_m = \ln \Bigl(1 + \frac{g}{m}\Bigr) - \ln \Bigl(1 + \frac{r}{m}\Bigr) = \frac{g-r}{m} + O\Bigl(\frac{1}{m^2}\Bigr) \,, \qquad \Rightarrow \quad \lim_{m \to \infty} \theta_m^{\,m} = \exp\Bigl(\lim_{m \to \infty} m \ln \theta_m\Bigr) = e^{\,g-r}.$$

Therefore powers scale cleanly

$$\lim_{m \to \infty} \theta_m^{\,mn} = e^{(g-r)n}, \qquad \lim_{m \to \infty} \theta_m^{\,m\tau} = e^{(g-r)\tau}.$$

Continuous-time limit

$$\lim_{m \to \infty} x_{\mathrm{disc}}^{(m)} = \alpha \, e^{(g-r)n} \, \frac{1 - e^{(g-r)\tau}}{1 - e^{(g-r)n}}$$

Table 8: Continuous contribution rate and inputs.

	alpha	r	g	n	tau	x_continuous
0	0.5	0.04	0.01	40	20	0.097234

Table 9: Discrete vs continuous: percent difference.

	x_discrete	x_continuous	pct_diff	discrete_<_cont
0	0.099595	0.097234	-2.370414	True

2.4 Sensitivity of x to r and g

We evaluate x_{cont} on a grid of salary growth g and interest rate r to visualize how funding needs change. As expected, higher r reduces the required contribution rate, while higher g increases it.

Figure 3: Contribution rate x (continuous) across r and g.

3 Portfolio Management

Show GMV & tangency portfolios and efficient frontier plot.

3.1

3.2

3.3

3.4

3.5

3.5.1

3.5.2

4 Forward Contracts

Prove pricing relation, payoff table, and arbitrage cases.

4.1

4.2

4.3

4.4

4.4.1

4.4.2

4.4.3