El templo de Artemisa Saga de las maravillas del mundo

Jesús González Abril Pedro Villa Navarro

Curso 2024-2025

Índice general

1.		iedades topológicas. Superficies	2
	1.1.	La topología cociente	2
	1.2.	Ejemplos de espacios cocientes	7
	1.3.	Espacios localmente euclídeos	LC
	1.4.	Variedades topológicas	LC
	1.5.	Ejemplos de superficies	1
	1.6.	Unión disjunta	3
	1.7.	Suma conexa	4
2.	Exa	mples 1	.5
	2.1.	Theorem System	Ę
	2.2.	Pictures	١7

Capítulo 1

Variedades topológicas. Superficies

1.1. La topología cociente

Definición 1.1.1: Topología final o imagen

Sea (X, \mathcal{T}) un espacio topológico, Y un conjunto y $p: X \to Y$ una aplicación. Definimos en Y la topología final o imagen de p como:

$$\mathcal{T}(p) := \{ O \subset Y \mid p^{-1}(O) \in \mathcal{T} \}.$$

Afirmación

 $\mathcal{T}(p)$ es una topología sobre Y

Demostraci'on

- (T1) $p^{-1}(\emptyset) = \emptyset \in \mathcal{T} \implies \emptyset \in \mathcal{T}(p). \ p^{-1}(Y) = X \in \mathcal{T} \implies Y \in \mathcal{T}(p).$
- (T2) Si $U_i \in \mathcal{T}(p) \ \forall i \in I$ entonces $p^{-1}(U_i) \in \mathcal{T} \ \forall i \in I$, por tanto $p^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} p^{-1}(U_i) \in \mathcal{T}$ lo que significa que $\bigcup_{i \in I} U_i \in \mathcal{T}(p)$.
- (T3) Si $U_i \in \mathcal{T}(p) \ \forall i \in \{1,\ldots,n\}$ entonces $p^{-1}(U_i) \in \mathcal{T} \ \forall i \in \{1,\ldots,n\}$, por tanto $p^{-1}(\bigcap_{i=1}^n U_i) = \bigcap_{i=1}^n p^{-1}(U_i) \in \mathcal{T}$ lo que significa que $\bigcup_{i \in I} U_i \in \mathcal{T}(p)$.

Proposición 1.1.2: Propiedades de la topología final

- 1. $\mathcal{T}(p)$ hace a p continua y es la topología más fina que lo hace.
- 2. Sea $g:(Y,\mathcal{T}(p))\to (Z,\mathcal{T}'')$ una aplicación. g es continua si y solo si $g\circ p$ es continua.
- 3. Los cerrados de $\mathcal{T}(p)$ son $\{C \subset Y \mid p^{-1}(C) \text{ es cerrado en } \mathcal{T}\}.$

Demostración

- 1. Que $\mathcal{T}(p)$ hace continua a p es inmediato por la propia definición de $\mathcal{T}(p)$. Además, si \mathcal{T}' es otra topología cualquiera que hace a p continua entonces $\forall U \in \mathcal{T}', p^{-1}(U) \in \mathcal{T} \implies U \in \mathcal{T}(p)$, por lo que $\mathcal{T}' \subset \mathcal{T}(p)$, luego la topología final es la más fina.
- 2. Claramente si g es continua entonces $g \circ p$ es continua, puesto que es composición de dos aplicaciones continuas (recordemos que p es continua como aplicación en $(Y, \mathcal{T}(p))$). Si por el contrario $g \circ p$ es continua, entonces dado $U \in \mathcal{T}''$ arbitrario, la preimagen $(g \circ p)^{-1}(U) = p^{-1}(g^{-1}(U)) \in \mathcal{T}$ es abierta por ser $g \circ p$ continua, pero entonces por la definición de $\mathcal{T}(p)$ debe cumplirse $g^{-1}(U) \in \mathcal{T}(p)$, por tanto g es continua.
- 3. C es cerrado en $\mathcal{T}(p) \iff Y \setminus C \in \mathcal{T}(p) \iff p^{-1}(Y \setminus C) \in \mathcal{T} \iff X \setminus p^{-1}(C) \in \mathcal{T} \iff p^{-1}(C)$ es cerrado en \mathcal{T} . El tercer \iff se cumple puesto que $p^{-1}(Y) = X$.

Definición 1.1.3: Identificación

Sean (X, \mathcal{T}) , (Y, \mathcal{T}') espacios topológicos, y $p: X \to Y$ una aplicación. Decimos que $p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es una identificación si p es sobreyectiva y $\mathcal{T}' = \mathcal{T}(p)$.

Nota

Si $f: X \to Y$ es una aplicación sobreyectiva entonces $f(f^{-1}(U)) = U$ para cualquier $U \subset X$.

Proposición 1.1.4: Propiedades de las identificaciones

- 1. $Id: (X, \mathcal{T}) \to (X, \mathcal{T}')$ es una identificación si y solo si $\mathcal{T} = \mathcal{T}'$.
- 2. Si $p:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una identificación y $f:(Y,\mathcal{T}')\to (Z,\mathcal{T}'')$ es una aplicación, entonces f es continua si y solo si $f\circ p$ es continua.
- 3. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua, abierta (o cerrada) y sobreyectiva, entonces f es una identificación.

Demostración

- 1. Claramente Id es sobreyectiva (de hecho es biyectiva con inversa $(Id)^{-1} = Id$), por lo que será identificación si y solo si $\mathcal{T}' = \mathcal{T}(Id)$. Ahora bien, $\mathcal{T}(Id) = \{O \subset Y \mid (Id)^{-1}(O) \in \mathcal{T}\} = \{O \subset Y \mid O \in \mathcal{T}\} = \mathcal{T}$, por tanto Id es identificación si y solo si $\mathcal{T}' = \mathcal{T}$.
- 2. Si f es continua entonces $f \circ p$ es continua por ser composición de aplicaciones continuas. Si por el contrario $f \circ p$ es continua, entonces dado $U \in \mathcal{T}''$ arbitrario, la preimagen $(f \circ p)^{-1}(U) = p^{-1}(f^{-1}(U)) \in \mathcal{T}$ es abierta por ser $f \circ p$ continua, pero entonces, como $\mathcal{T}' = \mathcal{T}(p)$ al ser p identificación, debe cumplirse $f^{-1}(U) \in \mathcal{T}'$, por tanto f es continua.
- 3. Como f es sobreyectiva solo necesitamos ver que si es continua y abierta (cerrada) entonces $\mathcal{T}' = \mathcal{T}(f)$. Supongamos que f es continua, en tal caso tenemos garantizado que $\mathcal{T}' \subset \mathcal{T}(f)$.

Si además es abierta entonces dado $U \in \mathcal{T}(f)$ arbitrario, $f^{-1}(U) \in \mathcal{T}$ por la definición de $\mathcal{T}(f)$, pero entonces $f(f^{-1}(U)) \in \mathcal{T}'$ al ser f abierta, y como es sobreyectiva $f(f^{-1}(U)) = U \in \mathcal{T}'$, por lo que $\mathcal{T}(f) \subset \mathcal{T}' \subset \mathcal{T}(f) \Longrightarrow \mathcal{T}(f) = \mathcal{T}'$, luego f es una identificación.

Si f es cerrada razonamos de manera similar pero con cerrados: dado $U \in \mathcal{T}(f)$, $C = Y \setminus U$ es cerrado en $\mathcal{T}(f)$, por lo que $f^{-1}(C)$ es cerrado en \mathcal{T}^a , por tanto $f(f^{-1}(C)) = C$ es cerrado en \mathcal{T} al ser f cerrada, pero entonces $U = Y \setminus (Y \setminus C) \in \mathcal{T}$, por tanto $\mathcal{T}(f) \subset \mathcal{T}' \subset \mathcal{T}(f) \implies \mathcal{T}(f) = \mathcal{T}'$, luego f es una identificación.

Definición 1.1.5: Topología cociente

Sea (X,\mathcal{T}) un espacio topológico, \sim una relación de equivalencia en X, y $p:X\to X^{-1}/\infty=\tilde{X}$ la proyección al cociente. La topología cociente sobre \tilde{X} es la topología final o imagen de p:

$$^{\mathcal{T}}/_{\sim} = \tilde{\mathcal{T}} := \mathcal{T}(p) = \{ V \subset \tilde{X} \mid p^{-1}(V) \in \mathcal{T} \}.$$

El espacio $(\tilde{X}, \tilde{\mathcal{T}}) = (X/_{\sim}, \mathcal{T}/_{\sim})$ se llama espacio cociente.

Nota

1. Toda relación de equivalencia \sim sobre X determina un espacio cociente dado por $\tilde{X}=X/\sim$. Recíprocamente, todo espacio final asociado a una aplicación p es el espacio cociente correspondiente a la relación de equivalencia \sim_p dada por

$$x \sim_p y \iff p(x) = p(y).$$

- 2. Al definir un cociente estamos identificando los puntos que están en una misma clase de equivalencia.
- 3. $\tilde{\mathcal{T}}$ es la topología más fina sobre \tilde{X} que hace continua a p.

 $[^]a\mathrm{Por}$ la tercera parte de la Proposición 1.1.2

Proposición 1.1.6: Propiedades del espacio cociente

- 1. V es un abierto de \tilde{X} si y solo si $\bigcup_{[x]\in V}[x]$ es abierto en X.
- 2. Si X es compacto, entonces \tilde{X} es compacto.
- 3. Si X es conexo (conexo por caminos), entonces \tilde{X} es conexo (conexo por caminos).
- 4. $p:(X,\mathcal{T})\to (\tilde{X},\tilde{\mathcal{T}})$ es una identificación.
- 5. $g: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ es continua si y solo si $g \circ p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es continua.

Demostración

- 1. $V \in \tilde{\mathcal{T}} \iff p^{-1}(V) \in \mathcal{T}$ por definición de la topología cociente, veamos que $p^{-1}(V) = \bigcup_{[x] \in V} [x]$. Si $y \in p^{-1}(V) \implies p(y) = [y] \in V$, por tanto $[y] \subset \bigcup_{[x] \in V} [x]$, luego $y \in [y] \subset \bigcup_{[x] \in V} [x]$, por lo que $p^{-1}(V) \subset \bigcup_{[x] \in V} [x]$.
 - Por otro lado si $x \in \bigcup_{[x] \in V} [x]$ entonces $[x] \in V$, por tanto $p(x) = [x] \in V \implies x \in p^{-1}(V)$, lo que prueba finalmente que $p^{-1}(V) = \bigcup_{[x] \in V} [x]$.
- 2. Supongamos que X es compacto y sea $\mathcal{A} = \{A_i\}_{i \in I}$, por el apartado 1 los conjuntos $B_i = \bigcup_{[x] \in A_i} [x]$ son abiertos, y además recubren X puesto que $\forall x \in X$, $[x] \in \tilde{X}$ por tanto $[x] \subset A_{i_0}$ para algún $i_0 \in I$, luego $x \in B_{i_0}$. Por tanto $\{B_i\}_{i \in I}$ es un recubrimiento por abiertos de X, del que podemos extraer un subrecubrimiento finito $\{B_{i_1}, \ldots, B_{i_n}\}$ por la compacidad de X. Veamos ahora que $\{A_{i_1}, \ldots, A_{i_n}\}$ es un subrecubrimiento de \tilde{X} , para ello notemos que dado $[x] \in \tilde{X}, x \in B_{i_m} = \bigcup_{[x] \in A_{i_m}} [x]$ para cierto $m \in \{1, \ldots, n\}$, por tanto $[x] \in A_{i_m}$, luego $\{A_{i_1}, \ldots, A_{i_n}\}$ es un subrecubrimiento finito y por tanto \tilde{X} es compacto.
- 3. Pendiente.
- 4. Es inmediato que $\tilde{\mathcal{T}} = \mathcal{T}(p)$, por otro lado dado $y \in \tilde{\mathcal{T}} \implies y = [x]$ para cierto $x \in X$, por tanto p(x) = y, luego p es sobreyectiva.
- 5. Por el apartado 4, p es una identificación, por tanto basta aplicar la parte 2 de la Proposición 1.1.4

Recordemos ahora que dada una aplicación $f: X \to Y$ cualquiera, podemos definir una relación de equivalencia sobre X a partir de ella. Denotaremos por R_f a la relación de equivalencia en X dada por:

$$xR_fx' \iff f(x) = f(x')$$

Ejercicio 1.1

Demostrar que R_f es una relación de equivalencia.

Teorema 1.1.7: Proposición 4.1

Dados (X, \mathcal{T}) y (Y, \mathcal{T}') espacios topológicos y $(\tilde{X}, \tilde{\mathcal{T}})$ el espacio cociente dado por R_f , existe una aplicación $\tilde{f}: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ que hace que el siguiente diagrama sea conmutativo^a

Además, $f:(X,\mathcal{T})\to (Y,\mathcal{T})$ es una identificación si y solo si $\tilde{f}:(\tilde{X},\tilde{\mathcal{T}})\to (Y,\mathcal{T}')$ es un homeomorfismo.

"Que el diagrama sea conmutativo quiere decir que "da igual que camino de flechitas sigamos", es decir, $\tilde{f}\circ p=f.$

Demostración. Si pretendemos que el diagrama sea conmutativo debe cumplirse

$$\tilde{f}(p(x)) = f(x) \iff \tilde{f}([x]) = f(x)$$

por tanto definimos \tilde{f} de la siguiente manera:

$$\tilde{f}: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}'), \quad \tilde{f}([x]) = f(x).$$

Ahora solo necesitamos ver que la aplicación está bien definida. En efecto si $x, y \in X$ son dos representantes de la misma clase de equivalencia [x] entonces xR_fy , por tanto se cumple f(x) = f(y), luego

$$\tilde{f}([x]) = f(x) = f(y) = \tilde{f}([y])$$

por lo que la aplicación está bien definida¹.

Para la segunda parte, si suponemos que \tilde{f} es un homeomorfismo entonces $f = \tilde{f} \circ p$ es continua por ser composición de funciones continuas, y es sobreyectiva por serlo \tilde{f} y p. Además, si $U \in \mathcal{T}(f)$ entonces $f^{-1}(U) = p^{-1}(\tilde{f}^{-1}(U)) \in \mathcal{T}$, por tanto $\tilde{f}^{-1}(U) \in \tilde{\mathcal{T}}$, y al ser \tilde{f} abierta y biyectiva $U = \tilde{f}(\tilde{f}^{-1}(U)) \in \mathcal{T}'$, lo que prueba que $\mathcal{T}(f) = \mathcal{T}'$ y por tanto f es una identificación.

Si por el contrario suponemos que f es una identificación entonces f es sobreyectiva y $\mathcal{T}' = \mathcal{T}(f)$, por tanto f es continua y al ser p identificación también lo es \tilde{f} (apartado 2 de la Proposición 1.1.4). Que \tilde{f} es inyectiva es inmediato por la propia definición de \tilde{f} . Para ver que es sobreyectiva, dado $g \in Y$ por ser f sobreyectiva existe $x \in X \mid f(x) = y$, por tanto $\exists z = [x] \in \tilde{X}$ tal que $\tilde{f}([x]) = f(x) = y$. Veamos que \tilde{f} es abierta: dado $U \in \tilde{\mathcal{T}}$ entonces $f^{-1}(\tilde{f}(U)) = p^{-1}(\tilde{f}^{-1}(\tilde{f}(U))) = p^{-1}(U) \in \mathcal{T}$ por ser p continua, por lo tanto $\tilde{f}(U) \in \mathcal{T}(f) = \mathcal{T}'$, luego \tilde{f} es un homeomorfismo.

¹Está bien definida ya que hemos visto que la imagen de una clase de equivalencia no depende del representante escogido.

1.2. Ejemplos de espacios cocientes

Veamos ahora algunos ejemplos de espacios cociente y su utilidad para encontrar homeomorfismos entre espacios topológicos. En estos primeros ejemplos haremos uso del Teorema 1.1.7 para encontrar un homeomorfismo.

Ejemplo

Para el intervalo I = [0, 1], consideramos la partición:

$$\tilde{I} = \{\{0,1\}\} \cup \{\{x\} : x \in (0,1)\}.$$

El espacio cociente $(\tilde{I}, \tilde{\mathcal{T}})$ es homeomorfo a la circunferencia unidad \mathbb{S}^1 .

Demostración. Probemos que la relación \sim dada por la partición \tilde{I} coincide con la relación dada por la aplicación $f: I \to \mathbb{S}^1, f(t) = (\cos(2\pi t), \sin(2\pi t))$. Para ello, dados $x, y \in I$

$$xR_f y \iff f(x) = f(y) \iff \begin{cases} \cos(2\pi x) = \cos(2\pi y) \\ \sin(2\pi x) = \sin(2\pi y) \end{cases}$$

Para que se den estas igualdades entre cosenos y senos hay varias opciones: si $x, y \in (0, 1)$ entonces debe cumplirse x = y; si $x, y \in \{0, 1\}$ entonces o bien x = y, o bien x = 0, y = 1, o bien x = 1, y = 0. En resumen:

$$xR_f y \iff x = y \circ x = 1, y = 0 \circ x = 0, y = 1 \iff x \sim y$$

Por tanto ambas son la misma relación. Ahora veamos que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{I} y \mathbb{S}^1 .

En primer lugar, f es continua por ser restricción de una aplicación continua (basta considerarla como aplicación de I a \mathbb{R}^2), además es cerrada puesto que I es compacto y \mathbb{S}^2 es Hausdorff (Ver Ejercicio 1.2). Por último dado $(x,y) \in \mathbb{S}^1$, si (x,y) = (0,1) entonces $f(\frac{1}{4}) = (0,1) = (x,y)$, si (x,y) = (0,-1) entonces $f(\frac{3}{4}) = (0,-1) = (x,y)$, si por el contrario $x \neq 0$ entonces $\alpha = \frac{\arctan(\frac{y}{x})}{2\pi}$ verifica $f(\alpha) = (x,y)$. Por tanto f es sobreyectiva, lo que según la Proposición 1.1.4 apartado 3 garantiza que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{I} y \mathbb{S}^1

Ejercicio 1.2

Probar que si X es compacto, Y es Hausdorff y $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua entonces f es cerrada.

Ejemplo

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 - x_2 \in \mathbb{Z}$ e $y_1 = y_2$.

El espacio cociente es homeomorfo a un cilindro.

Ejemplo

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $(x_1, y_1) = (x_2, y_2)$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2].$

El espacio cociente es homeomorfo a una banda de Möbius.

Ejemplo

Sea $X = [0,1] \times [0,1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 - x_2 \in \mathbb{Z}$ e $y_1 - y_2 \in \mathbb{Z}$.

El espacio cociente es homeomorfo a un toro.

Ejemplo

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $[x_1 = x_2 \text{ e } y_1 - y_2 \in \mathbb{Z}]$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2]$.

El espacio cociente es homeomorfo a una botella de Klein.

Ejemplo

Sea $X = \mathbb{S}^1 \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $y_1 = y_2 = 0$ o $(x_1, y_1) = (x_2, y_2)$.

El espacio cociente es homeomorfo a un cono.

Ejemplo

Sea $X=\mathbb{S}^2$ con la relación de equivalencia:

$$p \sim q \iff p = \pm q.$$

El espacio cociente es homeomorfo al plano proyectivo \mathbb{RP}^2 .

Ejemplo

En el disco cerrado D(0,1) de \mathbb{R}^2 , consideramos la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 = \pm x_2$ e $y_1 = y_2$.

El espacio cociente $D^{(0,1)}/_{\sim}$ es homeomorfo a la esfera \mathbb{S}^2 .

Ejercicio 1.3

Dado (X, \mathcal{T}) un espacio topológico y $K \subset X$, definimos la relación

$$x \sim y \iff \begin{cases} x, y \in K \\ x = y \end{cases}$$

y llamemos al espacio cociente $(X/K, T/K) := (X/\sim, T/\sim)$.

- a) Demostrar que $p|_{X\backslash K}:X\to {}^X/_K$ restringida a $p(X\backslash K)$ es una biyección.
- b) Demostrar que $p|_{X\backslash K}$ es un homeomorfismo si K es abierto o cerrado.

Solución:

Para simplificar la notación llamemos $f:=p|_{X\backslash K}$, y notemos que $\forall x\in X\backslash K, f(x)=[x]$, pero por la manera en la que está definida la relación de equivalencia, es inmediato ver que $[x]=\{x\}$, ya que el único elemento relacionado con x es el propio x (recordemos que $x\notin K$). Por tanto la inversa de f es $f^{-1}([x])=x$, ya que $f(f^{-1}([x]))=f(x)=[x], f^{-1}(f(x))=f^{-1}([x])=x$ lo que prueba que f es una biyección.

¿El apartado b) no es inmediato?

1.3. Espacios localmente euclídeos

Definición 1.3.1: Espacio localmente euclídeo

Un espacio topológico (X, \mathcal{T}) se dice que es localmente euclídeo de dimensión n si todo punto p de X tiene un entorno U homeomorfo a una bola abierta B de \mathbb{R}^n . Si $\varphi: U \subset X \to B \subset \mathbb{R}^n$ es tal homeomorfismo, (U, φ) se llama carta en X alrededor de $p \in U$.

Nota

- 1. Por ser X localmente euclídeo, este hereda las propiedades locales de \mathbb{R}^n .
- 2. Podemos sustituir la bola abierta en la definición anterior por un entorno abierto de \mathbb{R}^n .

Definición 1.3.2: Bola euclídea

Diremos que $B' \subset X$ es una bola euclídea si B' es homeomorfo a una bola abierta B(0,r) de \mathbb{R}^n .

Definición 1.3.3: Bola regular euclídea

Diremos que $B\subset X$ es una bola regular euclídea si:

- Existe una bola euclídea B' tal que $\overline{B} \subset B'$.
- Existe r > 0 y una carta $\varphi : B' \to B^n(0,2r)$ tal que $\varphi(\overline{B}) = B^n(0,r)$.

1.4. Variedades topológicas

Definición 1.4.1: Variedad topológica

Una variedad topológica M es un espacio topológico T_2 y $2A\mathbb{N}$ que es localmente euclídeo. La dimensión de M es el número natural n. También se denomina n-variedad (topológica).

Definición 1.4.2: Superficie topológica

Una superficie topológica Ses una variedad topológica de dimensión dos o 2-variedad.

Definición 1.4.3: Variedad con borde

Si en la definición de variedad cambiamos el espacio modelo \mathbb{R}^n por el semiespacio superior $\mathbb{H}^n = \{x \in \mathbb{R}^n : x_i \geq 0\}$, obtenemos el concepto de variedad con borde.

Proposición 1.4.4: Observaciones sobre variedades topológicas

- Toda variedad topológica es localmente conexa por caminos (y localmente conexa).
- 2. Las componentes conexas y las componentes conexas por caminos coinciden en una variedad.
- 3. Una variedad es conexa si y solo si es conexa por caminos.
- 4. Toda variedad es localmente compacta.
- 5. Si una variedad no es compacta, siempre podremos compactificarla añadiendo un solo punto.

Demostraci'on

Sea M es una n-variedad. Notemos en primer lugar que dado $x \in M, V \in \mathcal{E}(x)$, como M es una variedad existe un entorno $U \in \mathcal{E}(x)$ homeomorfo a una bola $B(0,r) = \varphi(U)$ de \mathbb{R}^n (además, podemos suponer que $\varphi(x) = 0$), y de hecho siempre podemos elegir $U \subset V$ puesto que si $U \not\subset V$, entonces basta tomar $B'(0,r') \subset B(0,r)$ lo suficientemente pequeña para que $U' = \varphi^{-1}(B'(0,r')) \subset U \cap V$ y claramente U' también es homeomorfo a una bola de \mathbb{R}^n .

- 1. Sean $x \in M, V \in \mathcal{E}(x)$, como M es una variedad existe un entorno $U \in \mathcal{E}(x), U \subset V$ homeomorfo a una bola de \mathbb{R}^n , y por tanto localmente conexo por caminos. Como U es localmente conexo por caminos $\exists U' \subset U$ un entorno de x conexo por caminos. Por último notemos que $U' \subset V$ es un entorno de x conexo por caminos contenido en V, lo que prueba que M es localmente conexa por caminos. Que es localmente conexa es inmediato puesto que localmente conexo por caminos implica localmente conexo.
- 2. Se sigue de las propiedades generales de un espacio localmente conexo por caminos.
- 3. Se sigue de las propiedades generales de un espacio localmente conexo por caminos.
- 4. Sean $x \in M, V \in \mathcal{E}(x)$, como M es una variedad existe un entorno $U \in \mathcal{E}(x), U \subset V$ homeomorfo a una bola de \mathbb{R}^n , y por tanto localmente compacto. Como U es localmente compacto existen C compacto y $U' \in \mathcal{E}(x)$ tales que $C \subset U' \subset U \subset V$, lo que prueba que M es localmente compacta.
- 5. Como cualquier variedad es T_2 y locamente compacta el Teorema de Alexandroff nos asegura que podemos compactificarla por un punto.

1.5. Ejemplos de superficies

En todos los ejemplos siguientes consideramos subespacios de algún \mathbb{R}^m , por tanto todos los espacios son T_2 y $2A\mathbb{N}$ (recordemos que estas propiedades se heredan al considerar las topologías relativas). Solo necesitamos probar que cada uno de estos espacios son localmente euclídeos.

Ejemplo

La esfera \mathbb{S}^2 es una superficie topológica.

Solución:

Sea $p=(x,y,z)\in\mathbb{S}^2$ y supongamos que z>0, en tal caso el entorno $U=\mathbb{S}^2\cap\{z>0\}$ es homeomorfo a la bola $B^2((0,0),1)$ mediante el homeomorfismo

$$\varphi: B^2((0,0),1) \to U, \quad \varphi(x,y) = (x,y,\sqrt{x^2+y^2}).$$

En efecto es una homeomorfismo pues es abierta, continua y biyectiva, con inversa

$$\varphi^{-1}(x, y, z) = (x, y).$$

Para el resto de puntos sabemos que alguna de las tres componentes x, y, z debe ser no nula, por lo que podemos hacer un procedimiento similar, tarea que encomendamos al lector.

Ejemplo

El toro $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ es una superficie topológica.

Ejemplo

El cilindro $\mathbb{S}^1 \times \mathbb{R}$ es una superficie topológica.

Ejemplo

El hiperboloide de una hoja $x^2 + y^2 - z^2 = 1$ es una superficie topológica.

Ejemplo

El hiperboloide de dos hojas $x^2 + y^2 - z^2 = -1$ es una superficie topológica.

Ejemplo

El paraboloide de revolución $x^2 + y^2 - z = 0$ es una superficie topológica.

Proposición 1.5.1: Espacio proyectivo real

El espacio proyectivo real \mathbb{RP}^n es una variedad topológica de dimensión n.

Demostraci'on

Pendiente.

Teorema 1.5.2: Proposición 4.2 - Homogeneidad

Sea X una variedad topológica conexa de dimensión n y $p, q \in X$. Entonces existe un homeomorfismo $f: X \to X$ tal que f(p) = q.

Demostración. Pendiente.

1.6. Unión disjunta

Definición 1.6.1: Unión disjunta

Sea $\{(X_{\alpha}, T_{\alpha})\}_{\alpha \in J}$ una familia indexada de espacios topológicos. Definimos su unión disjunta como:

$$\bigsqcup_{\alpha \in J} X_{\alpha} = \{(x, \alpha) : x \in X_{\alpha}, \alpha \in J\}.$$

Consideramos las inyecciones canónicas $\iota_{\alpha}: X_{\alpha} \to \bigsqcup_{\alpha \in J} X_{\alpha}$, dadas por $\iota_{\alpha}(x) = (x, \alpha)$.

Proposición 1.6.2: Topología unión disjunta

La familia de subconjuntos $B = \{\iota_{\alpha}(U) : U \in T_{\alpha}, \alpha \in J\}$ es una base para una topología T sobre $\bigsqcup_{\alpha \in J} X_{\alpha}$ que recibe el nombre de topología unión disjunta.

Demostraci'on

Pendiente

Proposición 1.6.3: Propiedades de la unión disjunta

- 1. Cada inclusión ι_{α} es un embebimiento, por lo que podemos identificar $X_{\alpha} \equiv \iota_{\alpha}(X_{\alpha}) \subset \bigsqcup_{\alpha \in J} X_{\alpha}$.
- 2. Un subconjunto es abierto en $\bigsqcup_{\alpha \in J} X_{\alpha}$ si y solo si su intersección con cada X_{α} es un abierto en X_{α} .
- 3. Una aplicación $f: \bigsqcup_{\alpha \in J} X_{\alpha} \to Y$ es continua si y solo si $f|_{X_{\alpha}}$ es continua, para todo $\alpha \in J$.
- 4. Si todos los espacios X_{α} son T_2 (resp. $1A\mathbb{N}$), la unión disjunta también es T_2 (resp. $1A\mathbb{N}$).
- 5. Si todos los espacios X_{α} son $2A\mathbb{N}$ y J es numerable, entonces la unión disjunta también es $2A\mathbb{N}$.
- 6. La unión disjunta de una cantidad numerable de n-variedades es una n-variedad.

Demostración

Pendiente.

1.7. Suma conexa

Definición 1.7.1: Suma conexa

Sean S_1 y S_2 dos superficies conexas y sean D_1 y D_2 discos regulares euclídeos. Sea $\varphi: \partial D_1 \to D_2$ un homeomorfismo y denotemos por $S_i' := S_i \setminus D_i$, i = 1, 2. Definimos en $S_1' \sqcup S_2'$ la menor relación de equivalencia que contiene a $x \sim \varphi(x)$ para todo $x \in \partial D_1$. Entonces el cociente $S_1' \sqcup S_2' /_{\sim}$ es un espacio topológico.

Teorema 1.7.2: Proposición 4.3

Si S_1 y S_2 son dos superficies topológicas conexas, entonces, salvo homeomorfismo, el espacio $S_1' \sqcup S_2' /_{\sim}$ no depende de los discos regulares euclídeos ni del homeomorfismo φ .

Demostración. Paso 3) Consideramos $\varphi, \sigma : \partial S_1 \to \partial S_2$ y veamos que

$$S_1' \sqcup S_2' /_{R\varphi} \cong S_1' \sqcup S_2' /_{R\sigma}$$

Definición 1.7.3: Suma conexa de superficies

Al espacio topológico cociente $S_1' \cup S_2'$, lo denotaremos $S_1 \# S_2$ y lo llamaremos suma conexa de S_1 y S_2 .

Teorema 1.7.4: Proposición 4.4

 $S_1 \# S_2$ es una superficie, además:

- Si S_1 y S_2 son superficies conexas, entonces $S_1 \# S_2$ es una superficie conexa.
- Si S_1 y S_2 son superficies compactas, entonces $S_1 \# S_2$ es una superficie compacta.

Demostración. - T_2 y $2A\mathbb{N}$ se hereda de las propiedades de S_1 y S_2 . - Localmente euclídeo de dimensión 2.

Capítulo 2

Examples

2.1. Theorem System

Definición	9 1 1.	Definition	Name
- Dennicion	Z	I /e:::::::::::::::	vanie

A definition.

Teorema 2.1.2: Theorem Name

A theorem.

Lema 2.1.3: Lemma Name

A lemma.

Fact 2.1.4

A fact.

Corolario 2.1.5

A corollary.

Proposición 2.1.6

A proposition.

Ejercicio 2.1

Exercise example.

Afirmación

A claim.

Demostraci'on

A reference to Theorem 2.1.2

Demostración. Veniam velit incididunt deserunt est proident consectetur non velit ipsum voluptate nulla quis. Ea ullamco consequat non ad amet cupidatat cupidatat aliquip tempor sint ea nisi elit dolore dolore.

Laboris labore magna dolore eiusmod ea ex et eiusmod laboris. Et aliquip cupidatat reprehenderit id officia pariatur. $\hfill\Box$

Ejemplo

Nostrud esse occaecat Lorem dolore laborum exercitation adipisicing eu sint sunt et. Excepteur voluptate consectetur qui ex amet esse sunt ut nostrud qui proident non. Ipsum nostrud ut elit dolor. Incididunt voluptate esse et est labore cillum proident duis.

Some remark.

Nota

Some more remark.

2.2. Pictures

Figura 2.1: Waterloo, ON