Optimal Plans

Problem 1	Problem 2	Problem 3
Load(C2, P2, JFK)	Load(C1, P1, SFO)	Load(C1, P1, SFO)
Load(C1, P1, SFO)	Fly(P1, SFO, JFK)	Fly(P1, SFO, ATL)
Fly(P2, JFK, SFO)	Unload(C1, P1, JFK)	Load(C3, P1, ATL)
Unload(C2, P2, SFO)	Load(C2, P2, JFK)	Fly(P1, ATL, JFK)
Fly(P1, SFO, JFK)	Fly(P2, JFK, SFO)	Unload(C3, P1, JFK)
Unload(C1, P1, JFK)	Unload(C2, P2, SFO)	Unload(C1, P1, JFK)
	Load(C3, P3, ATL)	Load(C2, P2, JFK)
	Fly(P3, ATL, SFO)	Fly(P2, JFK, ORD)
	Unload(C3, P3, SFO)	Load(C4, P2, ORD)
		Fly(P2, ORD, SFO)
		Unload(C4, P2, SFO)
		Unload(C2, P2, SFO)

Algorithms Stats

Metric/Algorithm	BF	BF(T)	DF(G)	DL	uc	RBF (h=1)	GBF (G, h=1)	A* (h=1)	A* (no precon)	A* (level sum)
Problem #1										
Expansions	43	1458	12	101	55	4229	7	55	41	11
Time	0.030	0.934	0.008	0.088	0.038	2.700	0.005	0.039	0.037	11.131
Goal Tests	56	1459	13	271	57	4230	9	57	43	13
New Nodes	180	5960	48	414	224	17029	28	224	170	50
Plan length	6	6	12	50	6	6	6	6	6	6
Problem #2										
Expansions	3343	#N/A	582	222719	4604	#N/A	455	4604	1310	74
Time	3.965	#N/A	0.741	1036.228	4.239	#N/A	0.814	4.314	3.448	7.581
Goal Tests	4609	#N/A	583	2053741	4606	#N/A	457	4606	1312	76
New Nodes	30509	#N/A	5211	2054119	41828	#N/A	4095	41828	11979	720
Plan length	9	#N/A	575	50	9	#N/A	16	9	9	9
Problem #3										
Expansions	14663	#N/A	627	#N/A	16963	#N/A	3998	16963	4444	229
Time	18.028	#N/A	0.775 N	# /A	14.928	#N/A	3.962	15.808	7.524	28.264
Goal Tests	18098	#N/A	628	#N/A	16965	#N/A	4000	16965	4446	231
New Nodes	129631	#N/A	5176	#N/A	149136	#N/A	35002	149136	39227	2081
Plan length	12	#N/A	596	#N/A	12	#N/A	30	12	12	13

Analysis

Observation 1)

Breadth-first tree search never returned for slightly more complex Problems 2 and 3. The reason is that tree search doesn't prevent algorithms from exploring loop paths forever. In this experiment, breadth-first tree search didn't return after running for 2 hours on a decent hardware.

Observation 2)

Depth-first Graph Search happened for find solution fast, but this solution is very suboptimal. In this case, however, DFS (graph) is complete algorithm because there is finite number of possible states. That's why it does find a solution in reasonable time even for a more complex Problem 3.

Observation 3)

Stats clearly show exponential complexity of BFS

Observation 4)

UCS and BFS are very comparable, because for these specific problems all actions have the same fixed cost. So, depth of path and cost of path are essentially the same. Slight difference in number of expanded nodes, goal tests etc. between these algorithms is determined by when they do Goal-Test. UCS does goal test at the time of Popping from frontier, while BFS does it at the time of Expansion. Therefore BFS has to examine less nodes. Generally this can cause BFS to return suboptimal plan, but in this case, when all actions have the same cost, it will always return optimal plan.

Observation 5)

DLS with limit 50 explores way too many nodes and therefore didn't return a solution for Problem 3.

Conclusion

BFS is the best non-informed search algorithm for these specific problems. It examines/expands least number of nodes and guarantees to return optimal solution.

Informed search

Observation 1)

 A^* with h(s) == constant is actually the same as Uniform Cost Search. Both, UCS and A^* belong to the "best-first" class of search. So when h(s) == constant evaluation functions for UCS and A^* become the same for the purposes of "best-first" algorithm, since they are different only by a constant.

Observation 2)

A* (no precond) is faster than A* (level sum), but it expands a lot more nodes. So, if node expansion is an expensive operation, A* (level sum) would actually run faster. Also, A* (level sum) returned suboptimal plan for Problem #3. It found plan of length 13, while the actual optimal plan is 12 steps. The reason is that "ignore preconditions" heuristic makes problem strictly more relaxed than the original problem, so this heuristic is admissible. Level sum heuristic may not be admissible, and therefore A* based on this heuristic might return suboptimal plan.

Observation 3)

It's clear that RBF is expanding and re-expanding way too many nodes and therefore it didn't return a solution in reasonable time for Problems 2 and 3. It would return a solution given enough time.

Observation 4)

GBF (G, h=1) and DF (G) stats are similar but different because DF is based on graph_search while GFS is using best_first_graph_search.

Conclusion

A* is best informed search algorithm. Two heuristic functions tested in this experiment, no preconditions and level sum, returned good plans in reasonable time.