Lec1 -- Introduction to Information Theory

Lec2 -- Probability Theory

Random Variable: X Expectation: EX Variance: $E(X - EX)^2$

Probability Distribution: Fuction f: f(X) = P(X)

Lec3 -- Entropy

Shortest average encoding length -- Entropy

What

Encode n events with probability p_1, p_2, \dots, p_n into n different binary (0,1) strings.

Transfer messages for multiple times.

Goal: To minimize Message Length on average -- $E(l) = \sum p_i l_i$

Constraints: Decoded messages aren't ambiguous. -- sufficient condition(not necessary) - prefix-free codes

How

Kraft Inequality For prefix-free code $\Sigma 2^{-li} \leq 1$

Given r.v. (random variable) X,

pmf(probability math function) (p_1, p_2, \ldots, p_n) $p_i \geq 0, \Sigma p_i = 1$

 $min_{l_1,l_2,...,l_n}\Sigma p_i l_i$ s.t. $\Sigma 2^{-li} \leq 1$ (the same as to be equal)

regard q_i as 2^{-li}

 $min_{l_1,l_2,...,l_n}\Sigma p_ilograc{1}{q_i}$

 $\sum p_i log \frac{p_i}{q_i} \geq 0$

 $\Sigma p_i log rac{1}{q_i} \geq \Sigma p_i log rac{1}{p_i}$

Entropy

The lower bound of min code length on average: $\sum p_i log \frac{1}{p_i}$

Upper bound: Entropy(p) + 1

 $H(X) = \Sigma_i p_i log_2 \frac{1}{p_i} \leq log_2 n$ -- Jensen's Inequality (convex)

Add property

r.v.
$$X - (p_1, p_2, \dots, p_n)$$
 r.v. $Y - (q_1, q_2)$ r.v. $Z - (p_1, \dots, p_{n-1}, q_1, q_2)$

$$H(X) + p_n H(Y) = H(Z)$$

Optimal Code (Huffman Code)

- Assume $p_i \ge p_j$, then $|c_i| \le |c_j|$
- Kraft Inequality: $\Sigma_i 2^{-|c_i|} = 1$
- $|c_n| = |c_{n-1}|$
- c_1, \ldots, c_{n-1}' is also an optimal code of X

Lec4 -- Variations of Entropy

Joint Entropy

r.v.
$$X,Y$$
 $P(X=x_i,Y=y_i)$ $i\in[m],j\in[n]$

$$H(X,Y) := \sum_{i,j} p_{ij} log_2 \frac{1}{p_{ij}}$$

$$H(X) = \Sigma_i p_{x_i} log_2 rac{1}{p_{x_i}}$$

$$H(Y) = \Sigma_i p_{y_i} log_2 rac{1}{p_{y_i}}$$

$$H(X,Y) = H(X) + H(Y)$$
, if X, Y independent else \leq

Conditional Entropy

r.v.
$$X, Y P(X = x_i, Y = y_i)$$

Fix
$$x_i P(Y|X = x_i)$$

$$H(Y|X=x_i) = \Sigma_j P(Y=y_j|X=x_i) log_2 rac{1}{P(Y=y_j|X=x_i)}$$

$$H(Y|X) = \Sigma_i P(X = x_i) H(Y|X = x_i)$$

- H(Y|X) = H(Y), if X, Y independent
- H(Y|X) = 0, if X, Y fully dependent

H(Y|X) represents the information of Y given X.

$$H(X,Y) = H(Y|X) + H(X)$$

Mutual Entropy

Given Joint Entropy and Cond Entropy, there is:

$$H(Y) \ge H(Y|X)$$

Define:

$$I(X;Y) := H(Y) - H(Y|X)$$
 equals $H(X) - H(X|Y)$

$$I(X;Y) = \Sigma_{i,j} P(X=x_i,Y=y_j) log \frac{P(X=x_i,Y=y_j)}{P(X=x_i)P(Y=y_j)} \geq 0$$

r.v.
$$X_1, X_2, \dots, X_m; Y_1, Y_2, \dots, Y_n$$
 $H(X_1^m, Y_1^n) = \Sigma P(X_1^m, Y_1^n) log \frac{1}{P(X_1^m, Y_1^n)}$

r.v.
$$X_1, X_2, \dots, X_m; Y_1, Y_2, \dots, Y_n H(X|Y) = H(X,Y) - H(Y)$$

r.v.
$$X_1, X_2, \dots, X_m; Y_1, Y_2, \dots, Y_n$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y)$$

Decomposition of Joint Entropy

$$H(X_1,\ldots,X_n) = H(X_1) + H(X_2|X_1) + \ldots + H(X_n|X_{n-1},\ldots,X_1)$$

KL-divergence (Relative Entropy)

P, Q are prob distributions $P = (p_1, \ldots, p_n), Q = (q_1, \ldots, q_n)$

$$D(P||Q) := \Sigma_i p_i log rac{p_i}{q_i} = \Sigma_i p_i log rac{1}{q_i} - \Sigma_i p_i log rac{1}{p_i}$$

r.v. X, true P, estimated Q

$$I(X;Y) = \sum_{x,y} P(X=x,Y=y) log \frac{P(X=x,Y=y)}{P(X=x)P(Y=y)} = D(P(X,Y) || P(X)P(Y))$$

$$D(P||U_n) = log_2 n - H(P)$$

concav

$$P=(p_1,\ldots,p_n)$$

$$H(P) = H(p_1, \ldots, p_n)$$

$$H(\lambda P + (1 - \lambda)Q) \ge \lambda H(P) + (1 - \lambda)H(Q)$$

D(P||Q) given P, is D convex ? given Q, is D convex ? convexity of relative entropy

convex

Convex:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

 μ -Strongly Convex:(μ)

$$f(y) - f(x) \ge <\nabla f(x), y - x > +\frac{\mu}{2}||y - x||^2$$
 holds for any x, y

Thm (Pinsker's Ineq):

$$D(P||Q) \ge \frac{1}{2}||P - Q||_1^2$$

$$plograc{p}{q}+(1-p)lograc{1-p}{1-q}\geq 2(p-q)^2$$

Proof of Pinsker:

$$P = (p_1, \dots, p_n) \ Q = (q_1, \dots, q_n)$$

$$A := \{i : p_i \ge q_i\} \ B := \{i : p_i < q_i\}$$

reduce P, Q to Bernoulli distribution: P', Q'

$$||P' - Q'||_1 = ||P - Q||_1$$

$$\Sigma_{i \in \mathrm{A}} p_i log \tfrac{p_i}{q_i} + \Sigma_{i \in \mathrm{B}} p_i log \tfrac{p_i}{q_i} = D(P||Q) \geq D(P'||Q') = \Sigma_{i \in \mathrm{A}} p_i log \tfrac{\Sigma p_i}{\Sigma q_i} + \Sigma_{i \in \mathrm{B}} p_i log \tfrac{\Sigma p_i}{\Sigma q_i}$$

Thm: Negative entropy is 1-strongly convex w.r.t. 1-norm:

$$\sum p_i log p_i - \sum q_i log q_i \ge < \nabla_p(\sum_i p_i log p_i), P - Q > + \frac{1}{2}||P - Q||_1^2$$

Hw

- 1. Convexity of relative entropy
- 2. Pinsker's Ineq for Bernoulli distribution

Data Processing Inequality

No clever manipulation of the data can improve the inferences that can be made from the data.

 \blacksquare R.v. X, Y, Z, Markov chain $X \to Y \to Z$;

$$P(Z|X,Y) = P(Z|Y) \leftrightarrow P(Z,X|Y) = P(Z|Y)P(X|Y)$$

If
$$P(Z|X,Y) = P(Z|X)$$
, then $I(X;Y) \ge I(X;Z)$

$$I(U;V,W) - I(U;V) = \Sigma_{u,v,w} P(u,v,w) log \frac{P(u,v,w)}{P(u)P(v,w)} - \Sigma_{u,v} P(u,v) log \frac{P(u,v)}{P(u)P(v)} = \Sigma_{u,v,w} P(u,v,w) log \frac{P(u,w|v)}{P(u|v)P(w|v)} \geq 0$$

So
$$I(X; Y, Z) - I(X; Y) = 0$$

$$I(X;Y,Z) \geq I(X;Y)$$

$$\rightarrow I(X;Y) \geq I(X;Z)$$

Lec5 -- Entropy Rate

Regard Random Source $X_1, X_2, \dots, X_t, \dots$ as Stochastic Process $(X_t)_{t \geq 1}$

$$E(l(X_1^T)) \in [H(X1,\ldots,X_T),H+1)$$

■ **Def 1**: The Entropy rate for a random source $X = (X_t)_{t \ge 1}$

$$H(X) = lim_{T o \inf} rac{1}{T} H(X_1, \dots, X_T)$$

■ **Def 2**: $H(X) = lim_{T \to \inf} H(X_T | X_1^{T-1})$

according to Entropy Decomposition

Lec6 -- Differential Entropy

■ **Def** : Differential Entropy

Assume we have a conditional r.v. X with density function f(x)

$$h(X) = -\int f(x)log(f(x))dx$$

X discretization $\Delta o discreter. v. <math>S_\Delta$

$$h(X) = H(X_{\Delta}) - log \frac{1}{\Lambda}$$

Discrete r.v. X, a > 0, b

$$H(X+b) = H(X) = H(aX)$$

Continuous r.v.

$$h(X+b) = h(X) \neq h(aX)$$
 Hw1.

■ **Def** : Relative Entropy(KL-divergence)

$$D(f||g) := \int f(x) log rac{f(x)}{g(x)} dx$$
 where f,g is density function

$$D(f||g) = lim_{\Delta o 0} D(P_\Delta ||Q_\Delta)$$

Hw2. Is Entropy finite?

Lec7 -- Kolmogorov Complexity

Kolmogorov Complexity

Entropy: minimum description length for random variables

What about deterministic object?

■ **Def:** Kolmogrov Complexity

The K-complexity for string s w.r.t. Turing Machine U is

$$K_U(s) := min_{U(p)=s}|p|$$

■ Thm: For any universal TM u, u' and any $s \in \{0, 1\}^*$

$$K_U(s) \leq K_{U'}(s) + c$$

Hw. Turing Machine, Universal TM, Computable, Halting Problem

■ **Thm**: K-complexity is not computable

Proof: Assume \exists algorithm that computes K-complexity, so $\exists p$ finds the first string s^* whose K-c $\geq 10^{10}$. Algorithm p can be used to describe s^* .

Maximum Entropy Principle

Estimate probability distribution of a r.v. $X - EX = \mu$, $VarX = \sigma^2$

Hw. MaxEnt Distribution -- $N(0, \sigma^2)$

After Lec10:

uniform distribution u

$$0 \leq D(f||u) = \int f \cdot ln rac{f}{u} = -h(f) - \int flnu = -h(f) - \int ulnu = -h(f) + h(u)$$

Thm: For random vector X, density function EX = 0, $Cov(X) = E[XX^T] = \Sigma$, $N(0, \Sigma)$ is the MaxEnt distribution.

Prove:

$$0 \leq D(f||g) = \int f \cdot \ln \frac{f}{g} = -h(f) - \int f \ln g = -h(f) - \int g \ln g = -h(g) + h(u)$$

$$\int f lng = \int f(x) [ln(rac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}) - rac{1}{2}x^T\Sigma^{-1}x] dx$$

where $\int g(x)x_ix_jdx = \int f(x)x_ix_jdx$

Thm: For random nonnegative integer X, $X = \mu$

$$max_p\Sigma_{i\geq 0}p_ilograc{1}{p_i}$$
 s.t. $\Sigma_{i\geq 0}ip_i=\mu$ $\Sigma_{i\geq 0}p_i=1$

Lagrange: $p_k \propto e^{-ck}$

Hw. Exp distribution is MaxEnt.

Thm: Concave

 $log \ det(\Sigma)$ is a concave function.

Prove: fix Σ_0 , $g(t) = log|\Sigma_0 + t\Sigma|$

if g(t) is concave for $t \in [0, 1]$, then log det is concave.

As Σ_0 is positive definite, we can decompose $\Sigma_0 = QQ^T$

reduce to g(t) = log|I + tV|, decompose $V = PAP^T$ where P is orthonormal matrix, elements in A are eigenvalue.

reduce to g(t) = log|I + tA|

Prove:

$$\Sigma_1, \Sigma_2$$
 p.d. $\lambda \in [0,1]$

$$logdet(\lambda \Sigma_1 + (1 - \lambda)\Sigma_2) \ge \lambda logdet(\Sigma_1) + (1 - \lambda)logdet(\Sigma_2)$$

Constuct X_1, X_2 r.v., $X_1 \sim N(0, \Sigma_1), X_2 \sim N(0, \Sigma_2)$

r.v.
$$K, P(K = 1) = \lambda, P(K = 0) = 1 - \lambda$$

$$Z = X_1 \ if \ K = 1 \ else \ X_2$$

So:
$$Cov(Z) = \lambda \Sigma_1 + (1 - \lambda)\Sigma_2$$

$$h(Z) \leq \frac{1}{2}log[(2\pi e)^n | \lambda \Sigma_1 + (1-\lambda)\Sigma_2|]$$
 (MaxEnt of Gaussian Distribution)

$$h(Z) \ge h(Z|K) = \lambda h(Z|K = 1) + (1 - \lambda)h(Z|K = 0) = \lambda h(X_1) + (1 - \lambda)h(X_2)$$

Q.E.D.

 $X \sim N(0,\Sigma)$

 $h(X) = \frac{1}{2}log((2\pi e)^n|\Sigma|)$ bits Compute trick: tr(AB) = tr(BA)

Lec8 -- Channel Coding: Algorithms

Map string $\{0,1\}^m$ to $\{0,1\}^n$ with maximum Hamming Distance

$$\{0,1\}^m \to \{0,1\}^n$$

$$N=2^n, M=2^m, V_B=\Sigma_{k=0}^{r/2}\binom{n}{k}$$

■ Thm : Chernoff Bound

iid. Bernoulli r.v.
$$X, X_1, \ldots, X_n, EX = p$$

$$P(\frac{1}{n}\Sigma_i X_i \geq p+\delta) \leq 2^{-nD_B(p+\delta||p)} \quad where \quad D_B(p+\delta||p) = (p+\delta)log_2 \frac{p+\delta}{p} + (1-p-\delta)log_2 \frac{1-p-\delta}{1-p}$$

Proof:

1) Chernoff Ineq : r.v.
$$Y P(Y \ge k) = P(e^{tY} \ge e^{tk})$$

Markov Ineq:
$$\leq inf_{t>0}Ee^{tY}e^{-tk}$$

2)
$$P(\frac{1}{n}\Sigma X_i \geq p+\delta) = P(\Sigma X_i \geq n(p+\delta)) \leq inf_{t>0}Ee^{t\Sigma X_i}e^{-nt(p+\delta)}$$

$$X_i \; iid
ightarrow Ee^{t\Sigma X_i} = (Ee^{tX})^n = [pe^t + 1 - p]^n$$

Hw. Chernoff Bound

■ Thm: Gilert-Vashamov Bound

If
$$n \geq \frac{2m}{1-H(\delta)}$$
 where $H(\delta) = -(\delta log \delta + (1-\delta)log (1-\delta)) \ \delta \in (0, \frac{1}{2})$

then there exists $c_1, c_2, \ldots, c_{2^m} \in \{0, 1\}^n$

such that $d_H(c_i, c_i) \geq \delta n$

Proof: Probabilistic Method

Uniformly random chooses two strings $\in \{0,1\}^n, S, S'$

$$P(d_H(S, S') \le \delta n) \le 2^{-n(1-H(\delta))}$$
 // Chernoff Bound

Uniformly random chooses 2^m strings $\in \{0,1\}^n$

$$P(\exists_{i
eq j} i, j \in [2^m], d_H(c_i, c_j) \le \delta n) \le 2^{2m} 2^{-n[1 - H(\delta)]}$$

When
$$n \geq \frac{2m}{1-H(\delta)}$$
, $P < 1$ Q.E.D.

Decoding: find the nearest neighbor of encoded message.

Codes should share some special structure to design efficient decode algorithm.

■ Hamming Codes(7,4): 1) $d_H(c_i, c_j) \ge 3bits$; 2) Coding/Decoding Computationally efficient GF(2)

The kernel space (null space) of $H \ dim(ker(H)) = 7 - 3 = 4$

$$|ker(H)| = 2^4 = 16 \ c, c' \in ker(H) \ d_H(c,c') = |c_i + c_j|_1 \geq 3 \ c_i + c_j \in ker(H) - \{0^7\}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$
 (H)

- Encoding: $\{0,1\}^4 \to \{0,1\}^7 \ \{0,1\}^4 \to ker(H)$
- Decoding: $\{0,1\}^7 \to ker(H)$

$$HS = H(c + e_i) = He_i$$

■ Encoding: $\{0,1\}^4 \to ker(H) H = [P_{3*4} \ I_{3*3}] G = [I_{4*4} \ -P^T]$

$$HG^T = 0 \ c = mG \in ker(H)$$

Lec9 -- Communication Complexity

Deterministic Algorithm

Setting: Alice and Bob compute $f(x, y), x, y \in \{0, 1\}^n$

 $x \in Alice y \in Bob$

Communication: # of bits communicated

- 1) protocol design (UB)
- 2) hardness (LB)

$$f(x,y)=1\ if\ x=y\ else\ 0\ CC(f_{Eq})\geq \Omega(n)$$
 --Deterministic protocol

matrix $2^n * 2^n x(f)$: minimum number of chronomic rectangles

- Thm1: $CC(f) \ge log_2\chi(f)$
- 1) Lower bound $\Omega(log_2\chi(f))$
- 2) Upper bound in terms of $\chi(f)$?
- Thm2: $log_2\chi(f) \le CC(f) \le O(log_2^2\chi(f))$

Proof: Represent each rectangle w/ $log_2\chi(f)$ bits

Define:

- For a rectangle R, define $K_x(R) = \#$ of rectangles have overlap w/ R in rows.
- For a rectangle R, define $K_y(R) = \#$ of rectangles have overlap w/ R in columns.

Protocol: For $t = 1, 2, \dots$

- 1. Alice choose a rectangle R such that $x \in R$, and $K_x(R)$ is the smallest among all rectangles still active. Remove all rectangle not overlap w/ R in rows (M_1) .
- 2. Bob choose a rectangle R' such that $y \in R'$, and $K_y(R')$ is the smallest among all rectangles still active. Remove all rectangle not overlap W' in columns (M_2) .

$$M_1 = N - K_x(R) M_2 = N - K_y(R')$$

$$K_x(R) + K_y(R) < N \ K_x(R) \le K_x(R')$$

so.
$$max(M_1,M_2) \geq \frac{N}{2}$$

 $Rank(M) \le \chi(f)$ Matrix decomposition -- $Rank(A+B) \le Rank(A) + Rank(B)$

Log rank Conjecture

$$CC(f) \leq polylog(Rank(M_f))$$

■ Best Upper Bound

$$CC(f) \leq rac{Rank(M_f)}{log(Rank(M_f))}$$

$$CC(f) \leq \sqrt{Rank(M_f)}$$

Hw:

1)

$$f(x,y) = \langle x,y \rangle = \bigoplus x_i y_i$$

 $g(x,y) = (-1)^{f(x,y)}$ matrix g is orthogonal.

Walsh-Hadamad matrix

2)

Graph
$$G = \langle V, E \rangle$$

Alice has a clique $C \subseteq G$, Bob has an independent set $I \subseteq V$

Goal: Decide if C interset $I = \emptyset$

Design a protocol: as small number of bits as possible in terms of n = |V|.

Randomized Algorithm

Consider $f(x, y) = 1_{x==y}$

 $P \in [n^2, n^3]$ Polynomial on Z_P

Protocol:

1) Alice uniformly randomly select a $t \in \{0, 1, \dots, p-1\}$ and construct polynomial

$$u = x_{n-1}t^{n-1} + x_{n-2}t^{n-2} + \ldots + x_0 \pmod{p}$$
, send u, t to Bob.

2) Bob calculate v and check if u == v.

 $Rootnumber \le n-1, ErrorProb \le \frac{n-1}{p}$

Extention

Multi-agent communication: one send message to everyone else.

$$f(x,y,z) = MajorityFunction \ x,y,z \in \{0,1\}^n \ f \in \{0,1\}$$

$$f_{MJ}(x,y,z) = \bigoplus_{i=1}^{n} Majorityvote(x_i,y_i,z_i)$$

Hw1. Majorityvote CC(f)

Hw2. Number on your forehead setting

Lec10 -- Fisher Information

Fisher Information and Cramer-Rao Inequality

■ Sample $X = (X_1, \dots, X_n)$ (typically X_1, \dots, X_n iid)

$$f(x;\theta) = \prod_{i=1}^n f(x_i;\theta)$$
 -- probability density function

Estimator: $\Phi: X \to \theta$

- unbiased: $E[\Phi(X)] = \theta$
- the lower bound of variance: $Var(\Phi(X))$
- **Def:** (Score function) For a sample $X = (X_1, \dots, X_n)$, let $f(x; \theta)$ be the density function of the sample. The score function is defined as:

$$S(X; \theta) = \frac{\partial}{\partial \theta} ln(f(X; \theta))$$

$$E(S(X;\theta)) = \int S(X;\theta) f(X;\theta) dx = \int \frac{\partial}{\partial \theta} f(X;\theta) dx = \frac{\partial}{\partial \theta} \int f(X;\theta) dx = 0$$

- **Def:** (Fisher Information) The Fisher Information of θ w.r.t. sample X is defined as $I(\theta) := E[S(X;\theta)^2] = \int (\frac{\partial}{\partial \theta} ln f(X;\theta))^2 dx$
- Proposition: $I(\theta) = -E[\frac{\partial^2}{\partial \theta^2}lnf(X;\theta)]$

$$\text{Proof: } E[\frac{\partial^2}{\partial \theta^2}lnf(X;\theta)] = \int \frac{\partial^2}{\partial \theta^2}lnf(X;\theta)f(X;\theta)dx = \int [\frac{-(\frac{\partial}{\partial \theta}f(X;\theta))^2}{f^2(X;\theta)} + \frac{\frac{\partial^2}{\partial \theta^2}f(X;\theta)}{f(X;\theta)}]f(X;\theta)dx = -E(S(X;\theta)^2)$$

■ Thm(Cramer-Rao Inequality)

For any unbiased estimator
$$\Phi: X \to R, Var(\Phi(X)) \geq \frac{1}{I(\theta)}$$

Proof:
$$I(\theta) = Var(S(X; \theta)) = E[S^2(X; \theta)]$$

Cauchy Inequality: $Var(\Phi(X))Var(S(X;\theta)) \geq E[(\Phi(X) - E\Phi(X))(S(X;\theta) - ES(X;\theta))]^2 = E[\Phi(X)S(X;\theta)]^2$ $E[\Phi(X)S(X;\theta)] = \int \Phi(X)\frac{\partial}{\partial \theta}lnf(X;\theta)f(X;\theta)dx = \frac{\partial}{\partial \theta}E(\Phi(X)) = 1$

Fisher Information for Multiple Parameters

Sample vector X

$$\hat{\theta} = \phi(X) \ \hat{\theta} \in \mathbb{R}^k$$
 Estimate $Cov(\phi(X))$

$$I(\theta) = E[\nabla_{\theta} ln(f(X; \theta) \nabla_{\theta} lnf(X; \theta)^T] = Cov(S(X; \theta))$$

■ Thm(Cramer-Rao Inequality)

Every unbiased esitimator ϕ satisfies:

 $Cov(\phi(X)) \succeq I(\theta)^{-1}$ $A \succeq B$ means A - B is a positive definite matrix.

• A simplified version: Estimate $q(\theta_1, \dots, \theta_k), q: R^k \to R$, if ϕ is an unbiased estimator or $q(\theta)$, then:

$$Var(\phi(X)) \ge \nabla_{\theta} q(\theta)^T I(\theta)^{-1} \nabla_{\theta} q(\theta)$$

$$E[\phi(X)] = q(\theta)$$

$$abla_{ heta}q(heta) =
abla_{ heta}\int\phi(X)f(X; heta)dx = \int\phi(X)rac{
abla_{ heta}f(X; heta)}{f(X; heta)}f(X; heta)dx = E[\phi(X)S(X; heta)] = E[(\phi(X)-E[\phi(X)])S(X; heta)]$$

Then we have:

$$\nabla_{\theta} q(\theta)^T I(\theta)^{-1} \nabla_{\theta} q(\theta) = \nabla_{\theta} q(\theta)^T I(\theta)^{-1} S(X; \theta) E[\phi(X) - E[\phi(X)]]$$

Cauchy Inequality:

$$\leq Var(\phi(X))^{1/2} \{ \nabla_{\theta} q(\theta)^T I(\theta)^{-1} S(X;\theta) S(X;\theta)^T I(\theta)^{-1} \nabla_{\theta} q(\theta)) \}^{1/2} = Var(\phi(X))^{1/2} \{ \nabla_{\theta} q(\theta)^T I(\theta)^{-1} \nabla_{\theta} q(\theta) \}^{1/2}$$

Thm: (Fano's Inequality)

Send message X, receive message Y.

$$P_e \geq rac{H(X|Y)-1}{log|H|}~H$$
 is the support

Proof:

$$H(X|Y, X = g(Y)) = 0$$

$$H(X|Y, X \neq g(Y)) \leq log|H|$$

Define r.v. E as E = 0 if X = g(Y) else 1

$$H(X, E|Y) = H(X|Y) + H(E|X, Y) = H(X|Y)$$

$$H(X, E|Y) = H(E|Y) + H(X|E, Y) \le 1 + P(E=0)H(X|E=0, Y) + P(E=1)H(X|E=1, Y) \le 1 + P_e log|H|$$
 Q.E.D.

Lec11 -- Channel Capacity

1. Implementation (algorithm)

Encoding/Decoding constraint: $err \rightarrow 0$, efficiency

2. Conceptual

• **Def**: (Channel Capacity) := $max_{P(X)}I(X;Y)$

AEP: Asymptotic Equipartition property

The Law of Large Number:

$$P(|\frac{1}{n}\sum_{i=1}^{n}X_i - EX| \ge \epsilon) \to 0$$

if g(X) subject to some property(e.g. like random variable):

$$P(|\frac{1}{n}\sum_{i=1}^n g(X_i) - Eg(X)| \ge \epsilon) \to 0$$

$$g(X) = -log p(X)$$

$$P(2^{-n(H(x)+\epsilon)} \le P(X_1, X_2, \dots, X_n) \le 2^{-n(H(x)-\epsilon)}) o 1$$

$$P(X_1,\ldots,X_n)\approx 2^{-nH(X)}$$
 with high probability

Typical Sequence & Set:

 X_1,\ldots,X_n is a typical sequence if $P(X_1,\ldots,X_n)\in 2^{-n[H(X)\pm\epsilon]}$

Typical set = {typical sequence}

$$P(X_1,\ldots,X_n)\approx 2^{-nH(X)}$$

So
$$|typical\ set| \approx 2^{nH(X)}$$

So we can assume that all sequences are uniformly distributed in typical set.

Jointly Typical Sequence & Set

$$(X,Y),(X_1,Y_1),\ldots,(X_n,Y_n)$$

$$//P(|\frac{1}{n}\sum_{i=1}^n -logP(X_i,Y_i) - H(X,Y)| \geq \epsilon) \rightarrow 0$$

$$|-rac{1}{n}\Sigma_i log P(X_1,\ldots,X_n;Y_1,\ldots,Y_n) - H(X;Y)| \leq \epsilon$$

$$|-rac{1}{n}\Sigma_i log P(X_1,\ldots,X_n) - H(X)| \leq \epsilon$$

$$\left| -\frac{1}{n} \sum_{i} log P(Y_1, \dots, Y_n) - H(Y) \right| \leq \epsilon$$

Jointly Typical Sequence.

1)
$$P(X_1, Y_1, ..., X_n, Y_n) \approx 2^{-nH(X,Y)}$$

2)
$$P(X_1,...,X_n) \approx 2^{-nH(X)}$$

3)
$$P(Y_1, ..., Y_n) \approx 2^{-nH(Y)}$$

Random draw of jointly typical sequence

1)
$$(x_i, y_i) \sim P(X, Y)$$

2)
$$x_i \sim P(X), y_i \sim P(Y|X_i)$$

Q: On average, for each typical sequence (X_i, \ldots, X_n) , # of $(X_i, Y_i, \ldots, X_n, Y_n)$ with sequence X is $2^{nH(Y|X)}$.

Random draw

$$X_1,\ldots,X_n\sim P(X)\;Y_1,\ldots,Y_n\sim P(Y)$$

Q: On average, the probability that $(X_1, Y_1, \dots, X_n, Y_n)$ is a jointly typical sequence is $2^{-nI(X,Y)}$.

Setting

Channel P(Y|X)

Input X_1, X_2, \ldots, X_n iid discrete

Input Y_1, Y_2, \ldots, Y_n iid discrete

$$W = \{1, 2, \dots, n\}$$
 message (uniform)

Coding: $W \to \mathcal{X}^n \log m/n$ bits per trans

Decoding: $g: Y^{(n)} \to W$

Error rate: $Pr[g(Y^n) \neq w | X_n = X_n(w)]$

 $M=2^{nR}$ keeps efficiency R.

If $lim_{n o\infty}\lambda_{max}=0,\,\lambda_{max}=max_{i\in[2^{nR}]}\lambda_i$

Thm (Channel Coding Thm)

$$C = max_{P(X)}I(X;Y)$$

If R < C, then, \exists a sequence of $(2^{nR}, n)$ codes, such that $\lim_{n \to \infty} \lambda_{max}^{(n)} = 0$.

If R > C, then there is no coding method such that $\lim_{n\to\infty} \lambda_{max}^{(n)} = 0$.

P(X) is set to achieve C.

1) Random endoding

 $c_{ij} \sim P(X)$ iid for all i, j

2) Decoding

On receiving Y_1, \ldots, Y_n , if there exists a unique codeword c_{i1}, \ldots, c_{in} , such that $(c_{i1}, \ldots, c_{in}; Y_1, \ldots, Y_n)$ is a jointly typical sequence, then decode $g(Y_1, \ldots, Y_n)$ as i, else report a failure.

Error probability

- Y is not a typical sequence. -- low
- X,Y is not a jointly typical sequence. -- low
- $\exists X's.t.(X',Y)$ is jointly typical sequence. -- $2^{-nI(X;Y)}$
- 3) From average err. to max err.

Proof

■ Part I

$$R < C, P(X) = argmax_{P(X)}I(X;Y)$$

Average err over all codebooks and messages:

$$P(Err) = \Sigma_{CB} P(CB) rac{1}{2^{nR}} \Sigma_{i=1}^{nR} P_e^{CB}(w_i) = rac{1}{2^{nR}} \Sigma_{i=1}^{nR} \Sigma_{CB} P(CB) P_e^{CB}(w_i)$$

$$P(Err) = \Sigma_{CB} P(CB) P_e^{CB}(w_i) \le \epsilon + \epsilon + 2^{-nI(X;Y)} * 2^{nR} = \epsilon' + 2^{-n(C-R)}$$

Therefore, there exists a CodeBook such that error prob over all messages is small.

For any message, consider the best half CodeBooks 2^{nR-1} , there is $\max_{i \in [2^{nR-1}]} \lambda_i \leq 2\epsilon$.

$$(2^{n(R-\frac{1}{n})},n)$$

■ Part II

Fano's Inequality

$$P_e \geq rac{H(X|Y)-1}{log|\mathcal{H}|}$$

$$R>C$$
, r.v. $W\in_R 1,2,\ldots,2^{nR}|X->Y$

$$nR = H(W) = H(W|Y_1,\ldots,Y_n) + I(W;Y_1,\ldots,Y_n)$$

$$nR \leq P_e^{(n)}nR + 1 + I(X_1^n;Y_1^n) = P_e^{(n)}nR + 1 + nC$$

 $P_e^{(n)}$ cann't goes to 0.

Lec12 -- Rate Distortion Theory

Quantification:

$$X \sim U\{a,b,c\}\ H(X) = log_23bits$$

$$d(x,x') = I[x \neq x']$$

$$D = \Sigma_x p(x) d(x, \phi(x)) = 1/3$$

$$\phi^{(n)}:=\{a,b,c\}^n->\{a,b,c\}^n\;|\phi^{(n)}|=2^n$$

Def: $\phi^{(n)}$ is a mapping: $\phi^{(n)} := X^n - > X^n$. Say $\phi^{(n)}$ is a $(2^{nR}, n)$ rate distribution code if $|\phi^{(n)}| \le 2^{nR}$.

Def:
$$D := E[d(X^n, \phi(X^n))]$$

Given D, find the best encoding method to minimize R.

Thm:
$$R^{(I)}(D) = min_{P(X'|X)}I(X;X') E[d(X;X')] \leq D$$