KANPUR STANBURTH

VeNoM: Approximate Subgraph Matching with Enhanced Neighbourhood Structural Information

Shubhangi Agarwal[†]

Sourav Dutta^{††}

Arnab Bhattacharya[†]

sagarwal@cse.iitk.ac.in sourav.dutta2@huawei.com

arnabb@cse.iitk.ac.in

[†]Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, **India**

††Huawei Research Centre, Dublin, Ireland

Objectives

- 1. Approximate Subgraph Matching (ASM)
- 2. Study effects of neighborhood size on subgraph similarity computation

Motivation

Factors affecting ASM performance:

- Number of nodes
- Density of graph
- Label distribution

Parametrization - VeNoM-(k, h)

Unit

- Ordered collection of neighbor labels of a vertex
- Forms a path of length h

Group:

- Set of **k** units of a vertex along with its label
- Units correspond to different neighbors

VeNoM-(1,1) VeNoM-(2,1) $q_5(D)$ $q_5(D)$ h=1h=1k = 1k = 2**VeNoM-(3,1) VeNoM-(2,2)** $q_5(D)$ $q_{5}(D)$ h=1h=2k = 3k = 2

Stages of VeNoM

Statistical Significance

- Capture deviation of observed behavior from expected
- Pearson χ^2 statistic: $\chi^2 = \sum_i \frac{[O(s_i) E(s_i)]^2}{E(s_i)}$
- Random match → Low similarity; Higher deviation ⇒ Exceptional similarity

Similarity Computation - VeNoM-(2,2)

Candidate vertex groups: $\langle A, \langle B, C \rangle, \langle D, B \rangle \rangle$, $\langle A, \langle B, C \rangle, \langle C, B \rangle \rangle$, $\langle A, \langle B, C \rangle, \langle C, D \rangle \rangle$, $\langle A, \langle D, B \rangle, \langle C, B \rangle \rangle$, $\langle A, \langle D, B \rangle, \langle C, D \rangle \rangle$

Query group: $\langle A, \langle B, C \rangle, \langle B, B \rangle \rangle$

Match Categories:

$$s_0$$
: $\langle A, \langle \times, \times \rangle, \langle \times, \times \rangle \rangle$ - $(u_0 \wedge u_0)$
 s_1 : $\langle A, \langle B, \times \rangle, \langle \times, \times \rangle \rangle$ - $(u_0 \wedge u_1)$
 s_2 : $\langle A, \langle B, \times \rangle, \langle \times, B \rangle \rangle$
- $(u_0 \wedge u_2) \vee (u_1 \wedge u_1)$
 s_3 : $\langle A, \langle B, C \rangle, \langle \times, B \rangle \rangle$ - $(u_1 \wedge u_2)$

 s_4 : $\langle A, \langle B, C \rangle, \langle B, B \rangle \rangle - (u_2 \wedge u_2)$

Example Query Graph

Query groups = Length of match symbol vector = 3 $O = \{s_3, s_2, s_2\} \implies \{s_0 : 0, s_1 : 0, s_2 : 2, s_3 : 1, s_4 : 0\}$

Expected behavior:

Dependent on degrees of query node and its 1-hop neighbors of and number of labels.

 p_q = Probability of mismatch of 1-hop label

 β_q = Probability of mismatch of 2-hop label

 δ_q = Probability of mismatch of 2-hop label given 1-hop label mismatched

$$P_q(u_0) = p_q \cdot \beta_q; \qquad P_q(u_1) = (\bar{p}_q \cdot \delta_q) + (p_q \cdot \bar{\beta}_q); \qquad P_q(u_2) = \bar{p}_q \cdot \bar{\delta}_q$$

$$P_q(s_3) = 2 \cdot \left(P_q(u_1) \cdot P_q(u_2) \right) = 2 \cdot \left((\bar{p}_q \cdot \delta_q) + (p_q \cdot \bar{\beta}_q) \right) \cdot (\bar{p}_q \cdot \bar{\delta}_q)$$

Results - Real-world Graphs

Characteristics of Graphs

Dataset	#Vertices	#Edges	#Labels
Human	4.6K	86.2K	44
HPRD	9.4K	37K	307
Flickr	80.5K	5.9M	195
PPI	12K	10.74M	2.4K

Performance on HPRD VeNoM-(2,2) VeNoM-(2,1)

Results - Synthetic Barabási-Albert Graphs

Default Barabási-Albert graph parameters: |V| = 100K, m = 50, l = 150

- VeNoM-(2,2) more robust than counterparts due to structural look-ahead ability
- Ratio of label set size and node degree crucial

Key Observations

- Increase in depth of neighborhood \implies trade-off between time and accuracy
- Increase in breadth with depth may increase runtime efficiency (larger group size may lead to lower number of groups)

References

[1] VerSaChI: Agarwal et al, CIKM 2021;

[2] VELSET: Dutta et al, WWW 2017

###