Рентгеновская фотоэлектронная спектроскопия (РФЭС)

Схема рождения фотоэлектрона в РФЭС

Уравнение Эйнштейна для фотоэффекта

$$h\nu = BE(j) + KE,$$

где hv — энергия кванта рентгеновского излучения, BE(j) — энергия связи электрона в состоянии с квантовым числом j, KE — кинетическая энергия фотоэлектрона

Источники рентгеновского излучения

Возможные материалы анода для РФЭС			
Элемент	Линия	Энергия, эВ	Полная ширина на половине высоты, эВ
Υ	Мζ	132,3	0,47
Zr	Мζ	151,4	0,77
Mg	$K\alpha_{1,2}$	1253,6	0,7
Al	Κα _{1,2}	1486,6	0,9
Si	Κα	1739,6	1,0
Zr	Lα	2042,4	1,7
Ag	Lα	2984,4	2,6
Ті	Κα	4510,9	2,0
Cr	Κα	5417,0	2,1

Пример обзорного спектра

Возможность химического анализа

РФЭС с угловым разрешением (Angle resolved XPS)

Химический анализ (формирование переходных слоев), оценка толщины переходных слоев

РФЭС Si2p линии, полученные от n⁺Si (a) после травления в водном растворе HF (1%); (б) после роста слоя Hf_{0,5}Zr_{0,5}O_y толщиной ~ 2,5 нм; (в) после роста слоя Hf_{0.5}Zr_{0.5}O_y толщиной ~ 2,5 нм и последующего ACO TiN при температуре 400°C

Химический анализ (формирование переходных слоев), оценка толщины переходных слоев

$$I_{Si} = Q\lambda_{Si}C_{Si}\exp\left(-\frac{x_{SiO2}}{\lambda_{SiO2}\cos\theta}\right)\exp\left(-\frac{x_{HZO}}{\lambda_{HZO}\cos\theta}\right)$$

$$I_{SiO2} = Q\lambda_{SiO2}C_{SiO2}\left(1 - \exp\left(-\frac{x_{SiO2}}{\lambda_{SiO2}\cos\theta}\right)\right) \exp\left(-\frac{x_{HZO}}{\lambda_{HZO}\cos\theta}\right)$$

где , I_{Si} и I_{SiO2} — интенсивности РФЭС линий Si2p от Si и SiO $_2$, соответственно; Q — фактор элементной чувствительности Si; λ_{Si} , $\lambda @SiO2$, λ_{HZO} — длины свободного пробега фотоэлектронов в Si, SiO $_2$, и Hf $_{0,5}$ Zr $_{0,5}$ O $_y$, соответственно; C_{Si} , C_{SiO2} — атомные концентрации Si в Si и SiO $_2$, соответственно; x_{SiO2} — подлежащая определению толщина переходного слоя SiO $_2$; x_{HZO} — толщина слоя Hf $_{0,5}$ Zr $_{0,5}$ O $_y$; ϑ - угол наклона детектора фотоэлектронов к нормали к поверхности образца.

Длины свободного пробега фотоэлектронов в Si и SiO $_2$ при энергии падающего излучения 1486,6 эВ можно принять равными $\lambda_{Si} \approx 1$,6 нм и $\lambda_{SiO2} \approx 2$,6 нм Угол 45гр.

Химический анализ (формирование переходных слоев), оценка толщины переходных слоев

Предположения послойного расположения слоев, близости величин свободного пробега фотоэлектронов и атомных концентраций к стехиометричным TiO_2 и TiON. Длины свободного пробега фотоэлектронов Ti2p можно принять \approx 1,7 нм, \approx 1,5 нм для TiO2, TiON и TiN, соответственно

Взаимное расположение зон на границе электрод-диэлектрик Метод Краута*

$$VBO = \left(BE_{Ti2p3/2} - EF\right)_{TiN} - \left(BE_{TiN2p3/2} - BE_{Hf4f7/2}\right)_{HfO2/TiN} - \left(BE_{Hf4f7/2} - VBM\right)_{HfO2},$$

где $BE_{Hf4f7/2}$ и VBM (valence band maximum) — энергия связи линии $Hf4f_{7/2}$ и положение края валентной зоны в объемном материале на основе HfO_2 , $(BE_{Ti2p3/2}-EF)_{TiN}$ — разница положения линии $Ti2p_{3/2}$ и уровня Ферми в TiN, $(BE_{TiN2p3/2}-BE_{Hf4f7/2})_{HfO2/TiN}$ — разница положений линии $Ti2p_{3/2}$ и $Hf4f_{7/2}$, измеренных от границы раздела наноразмерных слоев TiN и материала на основе HfO_2 .

*Kraut E.A., Grant R.W., Waldrop J.R., et al. Precise determination of the valence-band edge in x-ray photoemission spectra: Application to measurement of semiconductor interface potentials // Phys. Rev. Lett., Vol. 44, 1980. P. 1620.

Взаимное расположение зон на границе электрод-диэлектрик Метод Краута

Ширину запрещенной зоны можно принять равной 5 эВ

$$VBO = \left(BE_{Ti2\,p3/2} - EF\right)_{TiN} - \left(BE_{TiN2\,p3/2} - BE_{Hf\,4\,f\,7/2}\right)_{HfO2/TiN} - \left(BE_{Hf\,4\,f\,7/2} - VBM\right)_{HfO2},$$

Взаимное расположение зон на границе электрод-диэлектрик Метод Краута

TiN (3 HM)

 $Hf_{0,5}Zr_{0,5}O_y$ (10 hm)

TiN bottom

РФЭС спектры Ti2p и Hf4f линий, полученные от верхней границы раздела $Hf_{0,5}Zr_{0,5}O_y/TiN$. Определяем члены 1 и 2 в уравнении Краута

Взаимное расположение зон на границе электрод-диэлектрик Метод Краута

РФЭС спектры Hf4f линии и валентной зоны (VB), полученные от свободной поверхности $Hf_{0.5}Zr_{0.5}O_v$. Определяем член 3 в уравнении Краута

Задания

Zadanie 1

Зафитировать спектр Si2p, полученный после роста на подложке кремния слоя $Hf_{0,5}Zr_{0,5}O_y$, определить толщину оксида (слайды 9,10)

Zadanie 2

Зафитировать спектр Si2p, полученный после роста на подложке кремния слоя $Hf_{0,5}Zr_{0,5}O_y$ и слоя TiN, определить толщину оксида (слайды 9,10)

Zadanie 3

Зафитировать спектр Ti2p, полученный от слоя TiN, окисленного в результате выноса на атмосферу, определить толщины оксида и оксинитрида (слайды 10,11)

Zadanie 4

Зафитировать спектр Ti2p, полученный после роста на TiN слоя $Hf_{0,5}Zr_{0,5}O_y$, определить толщины оксида и оксинитрида (слайды 10,11)

Zadanie 5

Определить барьеры VBO и CBO по методу Краута от верхней границы раздела $Hf_{0.5}Zr_{0.5}O_{v}/TiN$ (слайды 12-15)

Zadanie 6

Определить барьеры VBO и CBO по методу Краута от нижней границы раздела $TiN/Hf_{0.5}Zr_{0.5}O_v$ (слайды 12-15)