Aula-1 Gravitação

Física Geral II - F 228 2º semestre, 2016

Olhando o céu...

- Desde a antiguidade (Grécia) dois problemas preocupavam a humanidade:
 - A queda dos corpos na Terra
 - O movimento dos astros celestes: planetas, Sol, Lua....

 Platão e Eudoxo (séc. IV e III a.C.): Esferas Celestes

Ptolomeu

- Claudius Ptolemaeus (2° séc. a.C., grego) propôs o sistema geocêntrico (centrado na Terra) para o movimento dos planetas do sistema solar.
- Usou o conceito dos epiciclos para explicar as órbitas que não eram circulares quando vistas da Terra.

Copérnico

- Nikolaus Kopernikus (1473-1543, polonês) viveu na época do Renascimento e da Reforma Religiosa; período de questionamento das ideias anteriormente aceitas;
- As navegações exigiam dados mais precisos que os do sistema de Ptolomeu;
- Trabalhando com dados astronômicos da antiguidade propôs o sistema heliocêntrico (centrado no Sol) para explicar o movimento dos planetas do sistema solar.

Ptolomeu X Copérnico

- Ptolomeu (2° séc. a.C., grego):
 Sistema geocêntrico; epiciclos e deferentes
- Copérnico (1473 1543, polonês): Sistema heliocêntrico
- A obra de Copérnico "De Revolutionibus Orbium Coelestium" (Sobre as Revoluções das Esferas Celestes, 1543) simplificou o entendimento do céu!!

Copérnico

 Copérnico deduziu a escala relativa de distâncias no sistema solar. A distância Sol-Terra (r_T) é hoje a unidade astronômica (U.A.).

Planeta	Raio médio da órbita em U.A. $(r_T = 1U.A.)$			
	Copérnico	Atual		
Mercúrio	0,3763	0,3871		
Vênus	0,7193	0,7233		
Marte	1,5198	1,5237		
Júpiter	5,2192	5,2028		
Saturno	9,1743	9,5388		

O eixo da Terra tem uma direção fixa no espaço (23,5° com a normal); é verão no hemisfério sul quando o Sol está mais próximo do Trópico de Capricórnio.

Tycho Brahe

- Tycho Brahe (1546 -1601, astrônomo dinamarquês), fez suas primeiras observações no século 16.
- Montou um grande observatório em *Uraniborg*, na ilha de Ven (entre a Dinamarca e Suécia) com o apoio do rei Frederico II.
- Observações eram feitas a olho nu, porém com instrumentos de grandes proporções e alta precisão.

Kepler

- Johannes Kepler (1571 1630, alemão) foi assistente de Tycho Brahe e seu sucessor no observatório.
- Tycho Brahe morreu um ano após o início da colaboração, deixando seu legado de observações.
- Após 4 anos de trabalhos, mostrou que se usasse o Sol como centro do sistema planetário obtinha melhor acordo com a experiência.
- Porém, o planeta Marte apresentava um problema....

Kepler

- Ao ajustar uma órbita circular para Marte ocorria um erro de 8 minutos de arco. Mas as medidas de *Tycho Brahe* eram precisas em pelo menos 4 minutos de arco.
- Este erro era muito pequeno, porém motivou Kepler a criar um novo modelo: "Construirei uma teoria do universo baseada na discrepância de 8 minutos de arco".
- Kepler trabalhou por dois anos e abandonou ideias pré concebidas, como as órbitas circulares do modelo platônico.
- O resultado foi que a órbita de Marte seria uma elipse com o Sol em um dos seus focos. Este mesmo resultado valeria para outros planetas.

As Leis de Kepler

- 1ª lei de Kepler (lei das órbitas):
 - "As órbitas descritas pelos planetas ao redor do Sol são elipses, com o Sol num dos seus focos".
- A razão e = c/a chama-se excentricidade. Se e = 0 temos uma órbita circular. (Para a figura acima: $e \approx 0.74$!)

Planeta	e
Mercúrio	0,206
Vênus	0,007
Terra	0,017
Marte	0,093
Júpiter	0,048
Saturno	0,056

As Leis de Kepler

- <u>2a Lei de Kepler</u> (lei das áreas): $\Delta t_1 = \Delta t_2 \leftrightarrow A_1 = A_2$
 - O raio vetor que liga um planeta ao Sol descreve áreas iguais em tempos iguais.
- Órbita maior no Periélio (perto do Sol) que no Afélio;
- As duas primeiras leis foram publicadas no livro "Astronomia Nova" (1609).

As Leis de Kepler

- 3ª Lei de Kepler (lei dos períodos):
 - ➤Os quadrados dos períodos de revolução de dois planetas estão entre si como os cubos de suas distâncias ao Sol.
 - Sejam T_1 e T_2 os períodos e R_1 e R_2 os raios, então:

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{R_1}{R_2}\right)^3 \rightarrow \frac{T_1^2}{R_1^3} = \frac{T_2^2}{R_2^3} = \frac{T^2}{R^3}$$

Órbitas em torno do Sol. T^2/R^3 em ano $^2/(U.A.)^3$

DI .	Valores de Copérnico			Valores atuais		
Planeta	T (anos)	R (U.A.)	T^2/R^3	T (anos)	R (U.A.)	T^2/R^3
Mercúrio	0,241	0,38	1,06	0,241	0,387	1,00
Vênus	0,614	0,72	1,01	0,615	0,723	1,00
Marte	1,881	1,52	1,01	1,881	1,524	1,00
Júpiter	11,8	5,2	0,99	11,862	5,203	1,00
Saturno	29,5	9,2	1,12	29,457	9,539	1,00

1 U.A. =
$$R_{TS} \approx 1.5 \times 10^{11} \text{ m}$$

Galileu

- Galileu Galilei (1564 1642) construiu em 1609 um telescópio que ampliava de um fator 1000 o poder de observação;
- Observando Júpiter descobriu que o planeta tinha quatro luas;
- Notou que Júpiter apresentava fases, como a lua, concluindo que não tinha luz própria;
- Publicou estas descobertas em "Sidereus Nuncius" (O Mensageiro das Estrelas", em 1610);
- Em 1632 publicou "Diálogo sobre os Dois Principais Sistemas do Mundo, o Ptolomaico e o Copernicano", onde defendia o ponto de vista de Copérnico;
- Em 1633 Galileu foi julgado pelo Santo Ofício e obrigado a renegar seus "erros e heresias". Foi condenado à prisão domiciliar. Neste período, de 9 anos, até sua morte, escreveu secretamente "Diálogos sobre Duas Novas Ciências". Em 1992 a igreja católica reconhece publicamente seu erro no julgamento de Galileu.

Newton

Isaac Newton (1642 - 1727) se formou no Trinity College, Cambridge, em 1665. Neste ano a peste se alastrou por Londres matando cerca de 70.000 pessoas. Isto provocou, em 1666, o fechamento do Trinity College e Newton retornou para a fazenda da família em Woolthorpe.

 Nos dois anos que se seguiram, Newton realizou quatro das suas principais descobertas: O teorema binomial; O cálculo; A lei da gravitação; A natureza das cores (prisma).

Lei da Gravitação de Newton

Motivado pelas Leis de Kepler e pela queda de corpos na superfície da Terra (ex: maçã!), Isaac Newton propôs (1686) que dois corpos exerceriam, um no outro, uma força de atração diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado de sua distância de separação. A Lei pode então ser expressa usando uma constante

de proporcionalidade G (constante de gravitação universal):

$$F = G \frac{m_1 m_2}{r^2}$$

Medida de G: Experimento de Cavendish

· A força é fraca e difícil de medir. Cavendish chamou sua

experiência de "pesagem da Terra".

Experimento (H. Cavendish): 1798

$$G = 6.74 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$$

$$G = 6,6743 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$$
 (atual)

O ângulo é medido pela deflexão do feixe de luz incidente num espelho.

Lei da Gravitação

- Algumas órbitas de planetas e satélites são elipses com excentricidades pequenas, podendo ser aproximadas por órbitas circulares.
- Podemos considerar a força de atração gravitacional como uma força centrípeta!

$$\vec{F}_c = m\vec{a}_c \; ; \quad \vec{a}_c = -\frac{v^2}{r}\hat{r}$$

$$\vec{F} = -\frac{GMm}{r^2}\hat{r}$$

$$\left| \vec{F} \right| = \left| \vec{F}_c \right| \quad \rightarrow \quad a_c = \frac{GM}{r^2}$$

 $g=a_c$: Aceleração da gravidade

Inverso do Quadrado da Distância

• Em órbita circular a 2ª Lei de Kepler (das áreas) implica em um movimento circular uniforme. Neste caso a aceleração é centrípeta e fica:

$$\vec{a}_c = -\frac{v^2}{R}\hat{r} = -\omega^2 R\hat{r} = -4\pi^2 \frac{R}{T^2}\hat{r}$$

• Sendo m a massa do planeta, a 2^a lei de Newton nos dá a força atrativa: $\vec{F}_m = m\vec{a}_c = -4\pi^2 m \frac{R}{T^2} \hat{r} \times \frac{R^2}{D^2}$

• Da 3ª lei de Kepler:
$$\frac{R^3}{T^2} = C = cte$$

$$\Rightarrow \vec{F}_m = -4\pi^2 C \frac{m}{R^2} \hat{r} \qquad \text{Ação & Reação} \qquad F_m = F_M = G \frac{mM}{R^2}$$

$$G = \frac{4\pi^2 C}{M} \approx 6.6 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2} \implies \text{Constante universal}$$

A Lua e a maçã

Voltaire conta no livro Éléments de la philosophie de Newton (1738): "Um dia em 1666, Newton, então em sua fazenda, vendo uma fruta cair de uma árvore começou a meditar profundamente sobre a causa que atrai todos os corpos em direção ao centro da Terra".

A Lua, como a maçã, está caindo em direção à Terra.

A Lua e a maçã

Os módulos das forças ficam:

$$\left| \vec{F}_{TM} \right| = G \frac{m_M M_T}{R_T^2} \quad ; \quad \left| \vec{F}_{TL} \right| = G \frac{m_L M_T}{R_{TL}^2} \; ; \quad \left| \vec{F}_{LM} \right| = G \frac{m_L m_M}{R_L^2}$$

Em termos das acelerações: F = ma

$$a_{TM} = g = \frac{GM_T}{R_T^2}$$
 ; $a_{TL} = \frac{GM_T}{R_{TL}^2}$; $a_{LM} = \frac{Gm_L}{R_L^2}$

Daí:
$$\frac{g}{a_{TL}} = \left(\frac{R_{TL}}{R_T}\right)^2$$
 ; $\frac{g}{a_{LM}} = \frac{M_T}{m_L} \left(\frac{R_L}{R_T}\right)^2$

A Lua e a maçã

A razão entre as acelerações, com dados de hoje:

$$R_T = 6.37 \times 10^6 \,\mathrm{m}$$
; $R_L = 1.74 \times 10^6 \,\mathrm{m}$; $R_{TL} \approx 3.82 \times 10^8 \,\mathrm{m}$
 $M_T = 5.98 \times 10^{24} \,\mathrm{kg}$; $m_L = 7.36 \times 10^{22} \,\mathrm{kg}$

$$\frac{g}{a_{TL}} = \left(\frac{R_{TL}}{R_T}\right)^2 = \left(\frac{3.82 \times 10^8}{6.37 \times 10^6}\right)^2 \approx 3596 \; ; \quad g \approx 3600 \times a_{TL}$$

$$\frac{g}{a_{LM}} = \frac{M_T}{m_L} \left(\frac{R_L}{R_T}\right)^2 = \frac{5,98 \times 10^{24}}{7,36 \times 10^{22}} \left(\frac{1,74 \times 10^6}{6,37 \times 10^6}\right)^2 \approx 6,06$$

;
$$g \approx 6 \times a_{LM}$$

A partir das Leis de Newton:

Qual é a massa da Terra?

 O raio da Terra é conhecido desde as medidas do grego Eratóstenes (276 a.C. - 197 a.C.):

$$R_T = 6.37 \times 10^6 m$$

• Outro resultado de medida: $g = 9.81 \, ms^{-2}$

$$F_m = G \frac{mM_T}{R_T^2} = mg$$

$$g = \frac{G M_T}{R_T^2}$$

$$g = \frac{GM_T}{R_T^2}$$

$$M_T = g \frac{R_T^2}{G} = 9.81 \frac{(6.37 \times 10^6)^2}{6.67 \times 10^{-11}} \approx 5.97 \times 10^{24} kg$$

A partir das Leis de Newton:

Quanto dura o ano terrestre?

$$F_{ST} = G \frac{M_S m_T}{r^2} = m_T \frac{v^2}{r} = m_T \left(\frac{2\pi r}{T}\right)^2 \times \frac{1}{r}$$

$$T = \frac{2\pi r^{2}}{\sqrt{GM_S}}$$

$$G = 6.67 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$$

$$T = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM_S}} \qquad ; \quad M_{Sol} = 1.989 \times 10^{30} kg$$

$$r_{Sol-Terra} = 1,496 \times 10^{11} m$$
 (raio médio da órbita da Terra)

$$T = 3.16 \times 10^7 \,\mathrm{s} \approx 365.7 \,\mathrm{dias}$$

→ 3^a lei de Kepler:

Resultado anterior para o ano terrestre:

$$T = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM_S}}$$

Reescrevendo:

$$\frac{T^2}{r^3} = \frac{4\pi^2}{GM_S} = cte!$$

→ 2ª Lei de Kepler

(Lei das áreas)

• Força gravitacional entre dois corpos, p. ex., Sol e Terra:

$$\vec{F}(\vec{r}) = -\frac{GMm}{r^2}\hat{r}$$

• Como a força gravitacional é central o momento angular da Terra se conserva (Supondo: Sol estático, centro de atração gravitacional para a Terra). Daí:

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$$

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$$
 ; $\vec{\tau} = \frac{d\vec{L}}{dt} = 0 \rightarrow \vec{L} = \mathbf{Cte.}$

→ 2^a Lei de Kepler

(Lei das áreas)

Área do triângulo colorido:

$$d\vec{A} = \frac{1}{2} (\vec{r} \times d\vec{r})$$

$$\frac{d\vec{A}}{dt} = \frac{1}{2m}\vec{r} \times m\frac{d\vec{r}}{dt} = \frac{\vec{L}}{2m} \implies \left|\frac{d\vec{A}}{dt}\right| = \frac{L}{2m} = Cte$$

" O raio vetor que liga um planeta ao Sol descreve áreas iguais em tempos iguais".

Gravitação e Princípio da Superposição

$$\vec{F} = -G \frac{mM}{R^2} \hat{r}$$
 ; $G = 6,6743 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$

$$\mathbf{F}_1 = \mathbf{F}_{12} + \mathbf{F}_{13} + \mathbf{F}_{14} + \mathbf{F}_{15} + \cdot \cdot \cdot + \mathbf{F}_{1n}$$

Para uma distribuição contínua de massa:

$$\vec{F}_1 = \int d\vec{F}$$

Lei da Gravitação - Exemplo

 Encontrar a força gravitacional resultante sobre a partícula 1, situada na origem.

$$m_1 = 8 \text{ kg}$$
 $m_2 = m_3 = m_4 = m_5 = 2 \text{ kg}$ $F_{R1} = ?$ $\theta = 30^{\circ}$ $a = 20 \text{ cm}$

$$F_{12} = F_{14} = \frac{Gm_1m_2}{(2a)^2}$$
 (se cancelam!)

$$F = G \frac{mM}{R^2}$$

$$F_{13} = F_{15} = \frac{Gm_1m_3}{a^2}$$

$$F_{13x}$$
 e F_{15x} se cancelam!

$$F_{13} = F_{15} = \frac{Gm_1m_3}{a^2}$$

$$F_{R1} = 2F_{13y} = 2F_{13}\cos\theta = 2\frac{Gm_1m_3}{a^2}\cos\theta$$

$$F_{13x} = F_{15x}$$
se cancelam!
$$F_{R1} = 2\frac{(6.67 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2})(8.0 \text{ kg})(2.0 \text{ kg})}{(0.20 \text{ m})^2}\cos 30^{\circ}$$

$$F_{R1} = 4.6 \times 10^{-8} \text{ N}$$

Energia Potencial Gravitacional

(Supondo um sistema conservativo: $\Delta E_{max} = 0$)

$$\vec{F} = -\frac{GMm}{r^2}\hat{r}$$
 ; $\Delta U = -W$ (A variação da energia potencial é igual ao negativo do trabalho)

$$dU = -\vec{F} \cdot d\vec{s} = -F_r dr = -\left(-\frac{GMm}{r^2}\right) dr$$

Integrando:

$$U = \int G \frac{Mm}{r^2} dr = -G \frac{Mm}{r} + C$$

$$U(\infty) \equiv 0 \rightarrow C = 0$$

Daí:
$$U(r) = -\frac{GMm}{r}$$

Energia Potencial Gravitacional

Força Conservativa $\rightarrow \Delta U$ independe da trajetória

$$\Delta U_{\underset{r_1 \to r_2}{gravit.}} = -\int_{r_1}^{r_2} \vec{F} \cdot d\vec{s} = \int_{r_1}^{r_2} \frac{GMm}{r^2} \hat{r} \cdot d\vec{s} = \int_{r_1}^{r_2} \frac{GMm}{r^2} dr$$

$$\Delta U_{\underset{r_{1} \to r_{2}}{gravit.}} = U_{r_{2}} - U_{r_{1}} = GMm \left(\frac{1}{r_{1}} - \frac{1}{r_{2}} \right)$$

$$U(r) = -\frac{GMm}{r}$$

• Consideramos uma distribuição uniforme de massa em camadas esféricas, como se fosse uma cebola:

$$dU_{anel} = -G\frac{m}{s}dM$$

Sendo *M* a massa da camada esférica:

$$\frac{dM}{M} = \frac{\text{área do anel}}{4\pi a^2}$$

O raio do anel é: $\rho = a sen \theta$ e sua largura é: $a d\theta$

Então: área do anel = $(2\pi\rho)(ad\theta) = 2\pi a^2 sen \theta d\theta$

$$\frac{dM}{M} = \frac{2\pi a^2 \operatorname{sen}\theta d\theta}{4\pi a^2} = \frac{\operatorname{sen}\theta d\theta}{2} \quad \to \quad dM = \frac{M \operatorname{sen}\theta d\theta}{2}$$

 Portanto, a energia potencial do anel fica:

$$dU_{anel} = -G\frac{m}{s}\frac{M sen \theta}{2}d\theta$$

$$dU_{anel} = -G\frac{m}{S}dM$$

$$dM = \frac{M \operatorname{sen} \theta \, d\theta}{2}$$

• A energia potencial total de uma casca esférica é obtida pela soma sobre todos os anéis, o que equivale a integrar sobre θ , de 0 até π :

$$U = -G\frac{Mm}{2}\int_{0}^{\pi} \frac{sen\theta}{s} d\theta$$

Mas, s varia com θ . Usando a lei dos cosenos temos:

$$(s) \quad s^2 = a^2 + r^2 - 2ar\cos\theta$$

Derivando em
$$\theta$$
: $ar \frac{sen \theta}{s} d\theta = ds \rightarrow \frac{sen \theta}{s} d\theta = \frac{ds}{ar}$

Mudando a variável para s, fica:

$$U = -G\frac{Mm}{2}\int_{0}^{\pi} \frac{sen\,\theta}{s}\,d\theta$$

$$U = -G \frac{Mm}{2ar} \int_{s_{\min}}^{s_{\max}} ds = -G \frac{Mm}{2ar} (s_{\max} - s_{\min})$$

onde:
$$\begin{cases} \theta = 0 \rightarrow s^2 = s_{\min}^2 = (r - a)^2 & \rightarrow s_{\min} = r - a \\ \theta = \pi \rightarrow s^2 = s_{\max}^2 = (r + a)^2 & \rightarrow s_{\max} = r + a \end{cases}$$

Análise da energia potencial

$$U = -G \frac{Mm}{2ar} \int_{s_{\min}}^{s_{\max}} ds = -G \frac{Mm}{2ar} (s_{\max} - s_{\min})$$

• Como $s \ge 0$ • Temos sempre: $s_{\text{max}} = r + a$ (distância) : • Se $r > a \rightarrow s_{\text{min}} = r - a$; Se $r < a \rightarrow s_{\text{min}} = a - r$

Então:

$$U = -G\frac{Mm}{r} \qquad (r > a)$$

$$U = -G\frac{Mm}{a} \qquad (r < a)$$

• A partícula *m*, num ponto externo à casca, comporta-se como se toda a massa da casca estivesse no seu centro!

$$U = -G\frac{Mm}{r} \qquad (r > a)$$

$$\vec{F}(r) = -\frac{dU}{dr}\hat{r} = -G\frac{Mm}{r^2}\hat{r} ; \quad (r > a)$$

Num ponto interno à casca o potencial é constante e independente do ponto:

$$U = -G\frac{Mm}{a} \qquad (r < a)$$

$$\vec{F}(r) = -\frac{dU}{dr}\hat{r} = 0$$
; $(r < a)$

• Para uma distribuição de massa esfericamente simétrica a densidade só depende do raio r:

$$\rho = \rho(r)$$

 Para uma esfera maciça de raio R, se o ponto é externo à esfera, o resultado anterior (casca esférica) pode ser usado.
 Considerando a esfera como um conjunto de cascas, cada uma podendo ser substituída pela sua massa no centro, obtém-se:

$$U(r) = -G \frac{M_{esf} m}{r} \qquad (r > R)$$

$$\vec{F}(r) = -\frac{dU}{dr}\hat{r} = -G\frac{M_{esf}m}{r^2}\hat{r} \qquad (r > R)$$

Esfera maciça (Newton - 1687)

• Massa m num ponto interno à esfera (r < R):

Neste caso as camadas de massa com raio maior que r não exercem força sobre m. A força é dada por:

$$\vec{F}(r) = -Gm \frac{M'(r)}{r^2} \hat{r} \qquad (r < R)$$

onde M' está contida na esfera de raio r. Supondo que a densidade é constante, $\rho(r) = \rho_0$, teremos:

$$M'(r) = \frac{4}{3}\pi r^3 \rho_0 = \left(\frac{4}{3}\pi R^3 \rho_0\right) \frac{r^3}{R^3} = M\frac{r^3}{R^3}$$

Então:

$$\vec{F}(r) = -\left(G\frac{mM}{R^3}r\right)\hat{r}$$
; $(r < R)$; $\rho = \rho_0$

ou:
$$\vec{F}(r) = -K\vec{r}$$
; onde: $K = \frac{GmM}{R^3}$

Esfera maciça (Newton - 1687)

Portanto, o módulo da força gravitacional será:

$$ightharpoonup r > R: \quad F(r) = G \frac{M m}{r^2}$$

$$r < R : \int F(r) = G \frac{mM}{R^3} r$$

$$F(r) = Kr ; K = \frac{GmM}{R^3}$$

Como:
$$\vec{F}(r) = -K\vec{r}$$

Um corpo no túnel que passa pelo centro do planeta ficará oscilando!

Dentro do planeta

Exemplo: Velocidade de escape

(Supondo um sistema conservativo: $E_T = K + U = Cte.$)

É a velocidade mínima tal que, no infinito:

$$E_T = K + U = 0$$

Mas, na superfície :
$$K + U = \frac{1}{2}mv_{esc}^2 + \left(-\frac{GMm}{R}\right) = 0$$

Daí:
$$v_{esc}^2 = 2 \frac{GM}{R}$$

Exemplo: Velocidade de escape

(Supondo um sistema conservativo: $E_T = K + U = Cte.$)

É a velocidade mínima tal que, no infinito:

$$E_T = K + U = 0$$

Mas, na superfície :
$$K + U = \frac{1}{2}mv_{esc}^2 + \left(-\frac{GMm}{R}\right) = 0$$

Daí:
$$v_{esc}^2 = 2\frac{GM}{R} \times \frac{R}{R} = 2gR \rightarrow v_{esc} = \sqrt{2gR}$$
 $g = \frac{GM}{R^2}$

Então:
$$v_{esc} = \sqrt{2gR} \approx \sqrt{2 \times 9,83 \times 6,37 \times 10^6} \approx 11,2 \frac{\text{km}}{3}$$

S

Exemplo: Na vizinhança da Terra...

Seja U' a energia potencial, tal que: U'=0, quando r=R:

$$U(r) \qquad U'(r) = U(r) - U(R) = -\frac{GMm}{r} + \frac{GMm}{R} = \frac{GMm}{rR} (r - R)$$

$$U'(h) = \frac{GM}{R^2} R mh = mg \frac{R}{r} h \quad ; \qquad h = r - R$$

$$R \approx r \qquad \rightarrow \begin{cases} g = \frac{GM}{R^2} = 9,83 \text{ ms}^{-2} \\ U'(h) \approx mgh \end{cases}$$

Exemplo: g na vizinhança da Terra

		ALTITUDE (km)	$a_{\rm g}({\rm m/s}^2)$	ALTITUDE EXAMPLE
g'(r)		$g \rightarrow 0$	9.83	Mean Earth surface
g(r)		8.8	9.80	Mt. Everest
		36.6	9.71	Highest manned balloon
		400	8.70	Space shuttle orbit
		35,700	0.225	Communications satellite
$R r$ $h \qquad F_{Mm}(r) = \frac{GMm}{r^2} = mg' \Rightarrow g'(r) = \frac{GM}{r^2}$				
		g'(h) =	$=\frac{GM}{r^2} = \left(\frac{GM}{R^2}\right)$	$\left(\frac{R}{r}\right)^2 = g\left(\frac{R}{R+h}\right)^2 < g!$
		$\frac{M}{R^2}$ Ex.: $g'($	(400 km) = 9.83	$\left(\frac{6,37\times10^6}{6,77\times10^6}\right)^2 \approx 8,70 \text{ m/s}^2$

Fatores que podem afetar g

1) A Terra não é uniforme!

- 2) A Terra não é exatamente uma esfera o raio Equatorial é 21 Km maior do que nos polos. Portanto, g é maior nos polos!
- 3) Movimento de rotação da Terra

Fatores que podem afetar g

3) Movimento de rotação da Terra

$$\vec{N} + \vec{P} = m\vec{a}_c = -m\omega^2 R \,\hat{r}$$

$$\vec{N} = (ma_g - m\omega^2 R)\hat{r} = -\vec{P}'$$

Supondo:
$$N = P' = mg'$$

$$mg' = ma_g - m\omega^2 R$$

$$g' = a_g - \omega^2 R$$

• Usando $R=6,37 \times 10^6$ m; e $\omega=2\pi/T$, onde T=24 h, teremos que g é menor que a_g por apenas cerca de 0,034 m/s²

Relatividade Geral

- Movimento Retilíneo Uniforme em um referencial inercial parece acelerado, se visto de um referencial não-inercial.
- Einstein encarou a força gravitacional como uma força de inércia: É impossível distinguir a física num campo gravitacional constante daquela num referencial uniformemente acelerado!

"O elevador de Einstein"

Relatividade Geral

- Só precisamos de geometria para descrever trajetórias dos corpos;
- Einstein encarou a força gravitacional como uma força de inércia curvatura do espaço-tempo!

Buracos negros

- Supernova: explosão de uma estrela de grande massa (M_{Super} > 10 M_{Sol}):
 - ➤ M < 1,4 M_{Sol} ⇒ esfria e vira anã branca
 - > M > 1,4 M_{Sol} \Longrightarrow contrai e vira uma estrela de nêutrons (r ~ 10 km; densidade ~ 10^{15} g/cm³)
- Buraco Negro: surge quando M > 3 M_{Sol};
- Nada escapa de um Buraco Negro (radiação de Hawking?)...
- O raio de Schwarzschild R_s, onde a velocidade de escape é c (luz), é chamado 'horizonte de eventos', o limite em que algo pode se aproximar do buraco negro e ainda tem a possibilidade de escapar.

Os limites da Lei da Gravitação de Newton

- A lei de Newton vale para planetas, para a queda de corpos e para distâncias interatômicas...
- Até onde ela ainda fica válida?
- Tentativas de verificar correções à lei de Newton já foram feitas...
- Mas, a lei de Newton continua válida!

$$\vec{F} = -\frac{GMm}{r^2}\hat{r}$$