

PROBLEM STATEMENT

- Create a model in such a way that the customers with high lead score have higher conversion chance and low leads score have lower conversion chance. The ballpark of the target lead conversion rate is around 80%
- Also, the model should be able to adjust if the company's requirement changes in near future.

Approach of the analysis

- by reading and understanding the data. Finding the numerical and categorical variables and also looking at the number of null values in each of them.
- Then we went on with data cleaning in which we dropped the columns having null percentage greater than 50%.

EDA: EXPLORATORY DATA ANALYSIS

Outlier Treatment

 There are lot of outliers in TotalVisits and Page Views per Visit.

Univariate and Bivariate Analysis

Observations:

- 1. Lead Add Form has the highest conversion rate at 92%
- 2. Quick Add Form has 100% conversion rate but it has only one entry, so not a reliable factor
- 3. API has the least amount of conversions.
- Most student found X education via Google Search. But most leads were not converted to actual students.
- 5. Reference had the highest number of conversions at 92%
- 6. No conversions were made through Youtube channel, blog, press releases.

Bar Plots

Continuous Variable Bar Plots

For Total Visit

Total Visits vs Conversion based on Total Visits

Checking Corelation b/w Variables

Data Preparation

- Creating dummy variables.
- O Performing Train-Test Split
- Scaling

Modelling

- Creating a Logistic Regression Model.
- Feature Selection using RFE
- Assessing the model with StatsModels api
- O Recalibrating the model again and again till we reach a point where all the variables are significant and the VIF values are less than 5 to reduce multi-colliearity.

Final Model Visualization with VIF

Dep. Variable:	Converted	No. Observations:	6468
Model:	GLM	Df Residuals:	6455
Model Family:	Binomial	Df Model:	12
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-2799.5
Date:	Sun, 07 Feb 2021	Deviance:	5599.0
Time:	13:58:35	Pearson chi2:	9.11e+03
No. Iterations:	7		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]	
const	1.3837	0.179	7.726	0.000	1.033	1.735	
Total Time Spent on Website	1.0659	0.038	27.980	0.000	0.991	1.141	
Lead Source_Olark chat	1.1280	0.100	11.322	0.000	0.933	1.323	
Lead Source_Reference	3.5984	0.201	17.914	0.000	3.205	3.992	
Lead Source_Welingak website	5.4963	0.727	7.556	0.000	4.071	6.922	
Last Activity_Converted to Lead	-1.2127	0.217	-5.585	0.000	-1.638	-0.787	
Last Activity_Email Bounced	-1.7984	0.282	-6.383	0.000	-2.351	-1.246	
Last Activity_Had a Phone Conversation	2.1604	0.652	3.314	0.001	0.883	3.438	
Last Activity_Olark Chat Conversation	-1.4009	0.162	-8.624	0.000	-1.719	-1.083	
Last Activity_SMS Sent	1.1884	0.072	16.449	0.000	1.047	1.330	
What is your current occupation_Other	-2.8435	0.819	-3.471	0.001	-4.449	-1.238	
What is your current occupation_Student	-2.3752	0.286	-8.313	0.000	-2.935	-1.815	
What is your current occupation_Unemployed	-2.7984	0.180	-15.540	0.000	-3.151	-2.445	

	reatures	VIF
11	What is your current occupation_Unemployed	2.01
1	Lead Source_Olark chat	1.73
8	Last Activity_SMS Sent	1.50
7	Last Activity_Olark Chat Conversation	1.43
0	Total Time Spent on Website	1.21
2	Lead Source_Reference	1.09
4	Last Activity_Converted to Lead	1.09
5	Last Activity_Email Bounced	1.07
3	Lead Source_Welingak website	1.04
10	What is your current occupation_Student	1.03
6	Last Activity_Had a Phone Conversation	1.01
9	What is your current occupation_Other	1.00

Plotting the ROC curve

Observation:
From the ROC curve we can say that the model will be able to provide us with a good result overall.

Finding Optimal Cut off point

Observation:

From the curve we can see that the optimal cut off is at 0.33. This is the point where all the parameters are equally b alnaced.

Precision and Recall Curve

- ► From the scores we note that our model has a good overall relevancy, defined by Precision at 70% and a great return of relevant results, defined by Recall at 80%.
- ► The precision vs recall tradeoff value from the graph is at 0.4
- Comparing it with the F1 score we can say that our model us fairly accurate.

Final Model Reporting and Equation

▶ log odds = 1.3837 +(1.0659 Total Time Spent on Website) + (1.1280 Lead Source_Olark chat) + (3.5984 Lead Source_Reference) + (5.4963 Lead Source_Welingak website) + (-1.2127 Last Activity_Converted to Lead) + (-1.7984 Last Activity_Email Bounced) + (2.1604 Last Activity_Had a Phone Conversation) + (-1.4009 Last Activity_Olark Chat Conversation) + (1.1884 Last Activity_SMS Sent)+(-2.8435 What is your current occupation_Other)+(-2.3752 What is your current occupation_Student)+(-2.7984 * What is your current occupation_Unemployed)

Insights

- ▶ Hot Leads are identified as Customers having lead score of 33 or above.
- Sales Team of the company should first focus on the "Hot Leads".
- Higher the Lead score, higher the chances of conversion of "Hot Leads" into "Paying Customers"
- ► The "Cold Leads should be focused after the Sales Team is done with the "Hot Leads".