Description

This software module calculates three phase voltages impressing to the 3-ph electric motor (i.e., induction or synchronous motor) by using the conventional voltage-source inverter. Three phase voltages can be reconstructed from the DC-bus voltage and three switching functions of the upper power switching devices in the inverter. In addition, this software module also includes the clarke transformation changing from three phase voltages into two stationary dq-axis phase voltages.

Availability

This IQ module is available in one interface format:

1) The C interface version

Module Properties

Type: Target Independent, Application Dependent

Target Devices: x281x or x280x

C Version File Names: volt_calc.c, volt_calc.h

IQmath library files for C: IQmathLib.h, IQmath.lib

Item	C version	Comments
Code Size [□]	144/144 words	
(x281x/x280x)		
Data RAM	0 words*	
xDAIS ready	No	
XDAIS component	No	IALG layer not implemented
Multiple instances	Yes	
Reentrancy	Yes	

Each pre-initialized "_iq" PHASEVOLTAGE structure consumes 22 words in the data memory

[□] Code size mentioned here is the size of the *calc()* function

C Interface

Object Definition

The structure of PHASEVOLTAGE object is defined by following structure definition

```
typedef struct { _iq DcBusVolt;
                                      // Input: DC-bus voltage
                _iq MfuncV1;
                                      // Input: Modulation voltage phase A
                                      // Input: Modulation voltage phase B
                iq MfuncV2;
                                      // Input: Modulation voltage phase C
                 iq MfuncV3;
                Uint32 OutOfPhase; // Parameter: Out of Phase adjustment (0 or 1)
                _iq VphaseA;
                                      // Output: Phase voltage phase A
                                      // Output: Phase voltage phase B
                _iq VphaseB;
                _iq VphaseB;
_iq VphaseC;
                                      // Output: Phase voltage phase C
                iq Valpha;
                                      // Output: Stationary d-axis phase voltage
                _iq Vbeta:
                                      // Output: Stationary q-axis phase voltage
                 void (*calc)();
                                      // Pointer to calculation function
               } PHASEVOLTAGE;
```

typedef PHASEVOLTAGE * PHASEVOLTAGE_handle;

Item	Name	Description	Format [*]	Range(Hex)
Inputs	DcBusVolt	DC-bus voltage	GLOBAL_Q	80000000-7FFFFFF
	MfuncV1	Switching function of upper switching device 1	GLOBAL_Q	80000000-7FFFFFF
	MfuncV2	Switching function of upper switching device 2	GLOBAL_Q	80000000-7FFFFFF
	MfuncV3	Switching function of upper switching device 3	GLOBAL_Q	80000000-7FFFFFF
Outputs	VphaseA	Line-neutral phase voltage A	GLOBAL_Q	80000000-7FFFFFF
	VphaseA	Line-neutral phase voltage A	GLOBAL_Q	80000000-7FFFFFF
	VphaseA	Line-neutral phase voltage A	GLOBAL_Q	80000000-7FFFFFF
	Valpha	Stationary d-axis phase voltage	GLOBAL_Q	80000000-7FFFFFF
	Vbeta	Stationary q-axis phase voltage	GLOBAL_Q	80000000-7FFFFFF

GLOBAL Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

PHASEVOLTAGE

The module definition is created as a data type. This makes it convenient to instance an interface to phase voltage reconstruction. To create multiple instances of the module simply declare variables of type PHASEVOLTAGE.

PHASEVOLTAGE handle

User defined Data type of pointer to PHASEVOLTAGE module

PHASEVOLTAGE DEFAULTS

Structure symbolic constant to initialize PHASEVOLTAGE module. This provides the initial values to the terminal variables as well as method pointers.

Methods

void phase_voltage_calc(PHASEVOLTAGE_handle);

This definition implements one method viz., the phase voltage reconstruction computation function. The input argument to this function is the module handle.

Module Usage

Instantiation

The following example instances two PHASEVOLTAGE objects PHASEVOLTAGE volt1, volt2;

Initialization

```
To Instance pre-initialized objects
PHASEVOLTAGE volt1 = PHASEVOLTAGE_DEFAULTS;
PHASEVOLTAGE volt2 = PHASEVOLTAGE_DEFAULTS;
```

Invoking the computation function

```
volt1.calc(&volt1);
volt2.calc(&volt2);
```

Example

The following pseudo code provides the information about the module usage.

```
main()
{
}
void interrupt periodic_interrupt_isr()
        volt1.DcBusVolt = dc volt1:
                                                // Pass inputs to volt1
        volt1.MfuncV1 = M1_1;
                                                // Pass inputs to volt1
        volt1.MfuncV2 = M2 1;
                                                // Pass inputs to volt1
        volt1.MfuncV3 = M3 1;
                                                // Pass inputs to volt1
        volt2.DcBusVolt = dc volt2;
                                                // Pass inputs to volt2
        volt2.MfuncV1 = M1_2;
                                                // Pass inputs to volt2
                                                // Pass inputs to volt2
        volt2.MfuncV2 = M2_2;
        volt2.MfuncV3 = M3 2;
                                                // Pass inputs to volt2
        volt1.calc(&volt1);
                                                 // Call compute function for volt1
                                                 // Call compute function for volt2
        volt2.calc(&volt2);
        Vd1 = volt1.Valpha;
                                                 // Access the outputs of volt1
        Vq1 = volt1.Vbeta;
                                                 // Access the outputs of volt1
        Vd2 = volt2.Valpha;
                                                 // Access the outputs of volt2
                                                 // Access the outputs of volt2
        Vq2 = volt2.Vbeta;
}
```

Technical Background

The phase voltage of a general 3-ph motor (V_{an} , V_{bn} , and V_{cn}) can be calculated from the DC-bus voltage (V_{dc}) and three upper switching functions of inverter (S_1 , S_2 , and S_3). The 3-ph windings of motor are connected as the Y connection without a neutral return path (or 3-ph, 3-wire system). The overall system can be shown in Figure 1.

Figure 1: Voltage-source inverter with a 3-ph electric motor

Each phase of the motor is simply modeled as a series impedance of resistance and inductance (r, L) and back emf (e_a , e_b , e_c). Thus, three phase voltages can be computed as

$$V_{an} = V_a - V_n = i_a r + L \frac{di_a}{dt} + e_a$$
 (1)

$$V_{bn} = V_b - V_n = i_b r + L \frac{di_b}{dt} + e_b$$
 (2)

$$V_{cn} = V_{c} - V_{n} = i_{c}r + L\frac{di_{c}}{dt} + e_{c}$$
 (3)

Summing these three phase voltages, yields

$$V_{a} + V_{b} + V_{c} - 3V_{n} = (i_{a} + i_{b} + i_{c})r + L\frac{d(i_{a} + i_{b} + i_{c})}{dt} + e_{a} + e_{b} + e_{c}$$
 (4)

Without a neutral return path, according to KCL, i.e., $i_a+i_b+i_c=0$, and the back emfs are balanced and symmetrical due to the 3-ph winding structures, i.e., $e_a+e_b+e_c=0$, so (4) becomes

$$V_{an} + V_{bn} + V_{cn} = 0 (5)$$

Furthermore, the neutral voltage can be simply derived from (4)-(5) as

$$V_{n} = \frac{1}{3} (V_{a} + V_{b} + V_{c})$$
 (6)

Now three phase voltages can be calculated as

$$V_{an} = V_{a} - \frac{1}{3} (V_{a} + V_{b} + V_{c}) = \frac{2}{3} V_{a} - \frac{1}{3} V_{b} - \frac{1}{3} V_{c}$$
 (7)

$$V_{bn} = V_b - \frac{1}{3} (V_a + V_b + V_c) = \frac{2}{3} V_b - \frac{1}{3} V_a - \frac{1}{3} V_c$$
 (8)

$$V_{cn} = V_{c} - \frac{1}{3} (V_{a} + V_{b} + V_{c}) = \frac{2}{3} V_{c} - \frac{1}{3} V_{a} - \frac{1}{3} V_{b}$$
 (9)

Three voltages V_a , V_b , V_c are related to the DC-bus voltage (V_{dc}) and three upper switching functions (S_1 , S_2 , S_3) as the following relation.

$$V_{a} = S_{1}V_{dc} \tag{10}$$

$$V_{b} = S_{2}V_{dc} \tag{11}$$

$$V_c = S_3 V_{dc} \tag{12}$$

where
$$S_1$$
, S_2 , S_3 = either 0 or 1, and S_4 = 1- S_1 , S_5 = 1- S_2 , and S_6 = 1- S_3 . (13)

As a result, three phase voltages in (7)-(9) can also be expressed in terms of DC-bus voltage and three upper switching functions as follows:

$$V_{an} = V_{dc} \left(\frac{2}{3} S_1 - \frac{1}{3} S_2 - \frac{1}{3} S_3 \right)$$
 (14)

$$V_{bn} = V_{dc} \left(\frac{2}{3} S_2 - \frac{1}{3} S_1 - \frac{1}{3} S_3 \right)$$
 (15)

$$V_{cn} = V_{dc} \left(\frac{2}{3} S_3 - \frac{1}{3} S_1 - \frac{1}{3} S_2 \right)$$
 (16)

It is emphasized that the S_1 , S_2 , and S_3 are defined as the upper switching functions. If the lower switching functions are available instead, then the out-of-phase correction of switching functions is required in order to get the upper switching functions as easily computed from equation (13).

Next the clarke transformation changing from three phase voltages (V_{an} , V_{bn} , and V_{cn}) to the stationary dq-axis phase voltages (V_{ds}^{s} , and V_{qs}^{s}) are applied by using the following relationship. Because of the balanced system (5), V_{cn} is not used in clarke transformation.

$$V_{ds}^{s} = V_{an} \tag{17}$$

$$V_{qs}^{s} = \frac{1}{\sqrt{3}} (V_{an} + 2V_{bn})$$
 (18)

Figure 2 depicts the abc-axis and stationary dq-axis components for the stator voltages of motor. Notice that the notation of the stationary dq-axis is sometimes used as the stationary $\alpha\beta$ -axis, accordingly.

Figure 2: The abc-axis and stationary dq-axis components of the stator phase voltages

Next, Table 1 shows the correspondence of notations between variables used here and variables used in the program (i.e., volt_calc.c, volt_calc.h). The software module requires that both input and output variables are in per unit values.

	Equation Variables	Program Variables	
Inputs	S ₁	MfuncV1	
	S_2	MfuncV2	
	S_3	MfuncV3	
	V_{dc}	DcBusVolt	
Outputs	V_{an}	VphaseA	
	V_{bn}	VphaseB	
	V_{cn}	VphaseC	
	$V_{ m ds}^{ m s}$	Valpha	
	V_{qs}^{s}	Vbeta	

Table 1: Correspondence of notations