# **Method - Open Loop Planning**

# **Open Loop Planning**

We are considering for a real-life system, which we model using an ordinary differential equation

$$\dot{x} = f(x, u)$$

with state  $x \in \mathbb{R}^{n_x}$ , and control  $u \in \mathbb{R}^{n_u}$ . We want to find a find a control strategy u(t) such that the trajectory x(t) that the system (hopefully) follows in the future, is optimal in the sense of some cost function.

#### **Discrete Dynamics**

For simplicity, we assume in the following that we approximate the continuous state trajectory x(t) on grid points  $t_0, t_1, \ldots, t_k, t_{k+1}, \ldots$  as  $x(t_k) \approx x_k$ . Also, for simplicity, we assume that over each interval the control is constant:  $u(t) = u_k, \forall t \in [t_k, t_{k+1}]$ , and that the intervals have the same constant duration,  $h = t_{k+1} - t_k$ .

Then we can find discrete dynamics:

$$x_{k+1} = F(x_k,u_k)$$

which can be obtained from a continuous-time ODE using a single (or multiple) steps of a one-step integration method. A commonly used integration method is the Runge-Kutta method of order 4:

$$x_{k+1} = ...$$

We already implemented such a function in the code, a single step:

```
F = model.discreteDynamics(h)
x_1 = F(x_0, u_0)
```

#### **Discrete Optimal Control Problem**



Given the system model and constraints, a quite generic discrete time optimal control problem can be formulated as the following constrained NLP:

$$egin{aligned} \min_{x_0,u_0,x_1,u_1} \sum_{k=0}^{N-1} l(x_k,u_k) + E(x_N) \ ext{s.t.} \quad & 0 = x_0 - ar{x}_0 \ & 0 = x_{k+1} - F(x_k,u_k), & k = 0,\dots,N-1 \ & 0 \leq h(x_k,u_k), & k = 0,\dots,N-1 \end{aligned}$$

• The decision variables of the problem contain the *discrete* state and control trajectories on the time grid. We have N+1 variables

$$x_0, x_1, \ldots, x_N$$

for the state trajectory each of which is of a vector of  $n_x$  variables, and N variables for the control trajectory:

$$u_0, u_1, \ldots, u_{N-1}$$

each of which is a vector of size  $n_u$ .

• The trajectory should satisfy some constraints, for example simple bounds, this is expressed in the inequality for each state and control pair

$$h(x_k,u_k)$$

• Most importantly, the trajectory that we plan, should satisfy the discrete dynamics of the system, and should start at some initial point  $\bar{x}_0 \in \mathbb{R}^{n_x}$ , given by the equality constraints:

$$egin{aligned} 0 &= x_0 - ar{x}_0 \ 0 &= x_{k+1} - F(x_k, u_k), \end{aligned} \qquad k = 0, \ldots, N-1$$

• The cost function is divided into a *stage cost*  $l(x_k, u_k)$  for each interval and a terminal cost  $E(x_N)$  for the terminal node. A very common example is a *tracking cost* 

$$\sum (x_k-ar{x}_k)^ op Q(x_k-ar{x}_k) + (u_k-ar{u}_k)^ op R(u_k-ar{u}_k)$$

when we want to find a control which makes the system follow a given reference of states  $\bar{x}_0, \bar{x}_1, \ldots$ , and controls  $\bar{u}_0, \bar{u}_1, \ldots$ . Here Q and R are (typically diagonal) weighting matrices, to emphasise the importance of either control or state tracking.

## **Practical Solution of the Nonlinear Programm**

The nonlinear program above is of the general form

$$egin{array}{ll} \min_w & f(w) \ \mathrm{s.t.} & 0 = g(w) \ & 0 \leq h(w) \end{array}$$

with variables w, objective function f, equality constraints g and inequality constraints h. Such an NLP can be formulated and solved using a number of tools:

- The Python/Matlab framework <u>CasAdi</u> which, when installed for Python using pip install casadi comes natively with the very robust solver <u>IPOPT</u> which is called using the <u>nlpsol</u> function.
- The Python library scipy, provides the function scipy.optimize.minimize.
- Matlabs optim toolbox provides the function <u>fmincon</u>.

## **Extended Reading:**

• Moritz Diehl and Sébastien Gros, Numerical Optimal Control.

Available online: http://www.syscop.de/numericaloptimalcontrol.