Restaurace (obnovení) obrazu při známé degradaci

Václav Hlaváč

České vysoké učení technické v Praze

Centrum strojového vnímání (přemosťuje skupiny z)

Český institut informatiky, robotiky a kybernetiky

Fakulta elektrotechnická, katedra kybernetiky

http://people.ciirc.cvut.cz/hlavac, hlavac@ciirc.cvut.cz

Poděkování: T. Svoboda, T. Werner, P. Kohout

Osnova přednášky:

- Lineární model porušení obrazu.
- Tři užitečné modely degradace.
- Inverzní filtrace.

- Pseudoinverzní filtrace.
- Wienerova filtrace.
- Příklady.

Myšlenky restaurace obrazu

- Restaurace obrazu je technika předzpracování snažící se využít apriorní znalosti matematického modelu porušení obrazu.
- Snaha o nalezení modelu poruchy a odhadu jeho parametrů pro konkrétní třídu obrázků vyplývající z konkrétní aplikace.
- Vede na řešení inverzní úlohy k úloze modelování poruchy.
- Obvykle se uvažuje lineární model poruchy (konvoluce přes celý obrázek).
- Dvě kategorie metod: deterministické a statistické.

3/17

Model poruchy – konvoluce

$$g(x,y) = \int \int_{(a,b)\in\mathcal{O}} f(a,b) h(a,b,x,y) da db + \nu(x,y),$$

kde f(x,y) je neporušený (ale nepozorovatelný) obrázek,

g(x,y) je degradovaný obrázek,

 $\nu(x,y)$ je aditivní šum a

h(x,y) je prostorově nezávislý konvoluční model degradace.

$$g(i,j) = (f * h) (i,j) + \nu(i,j).$$

$$G(u,v) = F(u,v) H(u,v) + N(u,v)$$
.

Tři dobře modelovatelné degradace

- 1. Rozostření objektivu.
- 2. Rozmazání pohybujícího se objektu ve scéně při dlouhých expozičních časech.
- 3. Turbulencí atmosféry při sledování scény přes vysokou vrstvu vzduchu, např. v dálkovém průzkumu Země nebo v astronomii.

Jednotlivé poruchy budeme vyjadřovat pomocí konvolučního jádra H(u,v) ve vztahu

$$G(u,v) = F(u,v) H(u,v) + N(u,v).$$

- lacktriangle Uvažujme pro ilustraci nejjednodušší zvláštní případ. Uvažujme konstantní rychlost objektu V ve směru osy x vzhledem ke kameře v době otevření závěrky po dobu T.
- Model poruchy je

$$H(u,v) = \frac{\sin(\pi V \ Tu)}{\pi V \ u}.$$

Rozostřený objektiv

 Rozmazání objektivu špatným zaostřením tenké čočky při malé hloubce ostrosti může být popsáno jako

$$H(u,v) = \frac{J_1(a r)}{a r},$$

kde J_1 je Besselova funkce prvního druhu,

$$r^2 = u^2 + v^2$$

a je posun v obraze.

lacktriangle Poslední parametr a ukazuje, že model není prostorově invariantní.

- Poruchy jsou způsobeny tepelnými nehomogenitami v atmosféře (tetelení vzduchu), které vedou k mírnému ohýbání procházejícího světla.
- Matematický model degradace byl stanoven pokusně

$$H(u,v) = e^{-c(u^2 + v^2)^{\frac{5}{6}}}.$$

kde c je konstanta daná typem turbulence.

lacktriangle Konstanta c se většinou určuje experimentem pro konkrétní třídu úloh.

Inverzní filtrace (1)

$$G(u,v) = F(u,v) H(u,v) + N(u,v) .$$

$$F(u,v) = G(u,v) H^{-1}(u,v) - N(u,v) H^{-1}(u,v) .$$

- Pracuje spolehlivě pro obrazy, které nejsou zatíženy šumem.
- Pokud šum není zanedbatelný, projeví se ve vztahu aditivní chyba, která se uplatňuje pro frekvence, kde má inverzní filtr malou amplitudu (analogie dělení nulou).
- To většinou nastává pro vysoké frekvence, a proto obraz obnovený inverzním filtrem má rozmazané původně ostré hrany.

Inverzní filtrace (2)

originál

rozmazáno

inverzně filtrováno

Inverzní filtrace (3)

$$F(u,v) = G(u,v) H^{-1}(u,v) - N(u,v) H^{-1}(u,v).$$

- Změny velikosti amplitudy šumu v obrazu se projeví negativně na výsledku.
- Velikost modulu komplexní funkce H(u,v) klesá s rostoucími frekvencemi rychleji než N(u,v), a proto artefakty způsobené šumem mohou převážit nad užitečnou informací v obraze.
- Lékem bývá použít inverzní filtraci v takovém okolí počátku roviny u,v, kde H(u,v) spolehlivě dominuje. Výsledek bývá obvykle použitelný.

Pseudoinverzní filtrace

The original Image

Blurred image with noise

Image restored with inverse filter

Image restored with psuedoinverse filter

Wienerova filtrace (1)

- Pracuje pro nezanedbatelný šum, který má odhadnutelné statistické vlastnosti. Předpokládá se nezávislost šumu na signálu a stacionarita v širším smyslu.
- Nechť f je správný (ale nepozorovatelný) obraz, g je pozorovaný degradovaný obraz a \hat{f} je odhad správného obrazu.
- Úloha se vyjádří jako optimalizace řešením přeurčené soustavy lineárních stochastických rovnic minimalizujících středněkvadratickou chybu

$$e^{2} = \mathcal{E}\left\{ (f(i,j) - \hat{f}(i,j))^{2} \right\},$$

kde ${\mathcal E}$ označuje operátor střední hodnoty.

Wienerova filtrace (2)

- Pokud nejsou na řešení rovnice kladeny další omezující podmínky, potom je odhad \hat{f} podmíněnou střední hodnotou ideálního obrazu f za podmínky pozorovaného obrazu g.
- Problémem je, že většinou není známa podmíněná pravděpodobnost správného obrazu f za podmínky, že je k dispozici pozorovaný obraz g.
- Optimální odhad \hat{f} je navíc obecně na obrazu g nelineárně závislý.

Wienerova filtrace (3)

- lacktriangle Hledá se filtr H_W , $\hat{F}(u,v)=H_W(u,v)$ G(u,v).
- Použije se princip ortogonality

$$\mathcal{E}\{[f(x,y) - g(x,y)] \ \nu(x',y')\} = 0.$$

lacktriangle Vyjádří se pomocí korelačních funkcí R

$$R_{\nu\nu}(k,l) = f(k,l) * R_{\nu\nu}(k,l)$$
.

Wienerova filtrace (4)

Vyjádří se ve Fourierově transformaci, aby byly použity výkonové spektrální hustoty

$$H_W(u,v) = \frac{S_{f\nu}(u,v)}{S_{\nu\nu}(u,v)} = \frac{H^*(u,v)}{|H(u,v)|^2 + \frac{S_{\nu\nu}(u,v)}{S_{ff}(u,v)}},$$

Příklad, rozmazání pohybem

Vlevo: Obraz rozmazaný pohybem o 5 pixelů ve směru osy x.

Vpravo: Výsledek restaurace Wienerovým filtrem.

Příklad, rozmazání rozostřením objektivu

Vlevo: Špatně zaostřenému objektivu.

Vpravo: Výsledek restaurace Wienerovým filtrem.