Лабораторная работа № 4.3.6 Саморепродукция

Илья Прамский

Апрель 2024

Введение

Цель работы: Изучение явления саморепродукции и применение его к измерению параметров периодических структур.

В работе используются: лазер, кассета с сетками, мира, короткофокусная линза с микрометрическим винтом, экран, линейка.

1 Теоретическая часть

При дифракции на предмете с периодической структурой наблюдается интересное явление: на некотором расстоянии от предмета вдоль направления распространения волны появляется изображение, которое потом периодически повторяется — репродуцируется

Этот эффект имеет простое физическое объяснение. Если на пути распространения плоской волны в плоскости z=0 расположить транспарант (например, изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания, отличной от константы, то на выходе из него в плоскости z=0+ волна уже перестанет быть плоской. Если при этом функция пропускания транспаранта — периодическая функция координат, периодической функцией будет и комплексная амплитуда волны на выходе из транспаранта, т. е. в плоскости z=0+. Периодическому распределению комплексной амплитуды в плоскости z=0+ будет соответствовать дискретный набор плоских волн с кратными пространственными частотами. При этом оказывается, что существуют плоскости (при z>0), где все плоские волны имеют те же самые фазовые соотношения, что и в плоскости z=0+.

Легко видеть, что в плоскости наблюдения $z_0 = \frac{2d_2}{\lambda}$ разность фазовых набегов оказывается кратной 2π для любых гармоник, 5 входящих в состав суперпозиции, т. е. совпадают фазовые соотношения между колебаниями, которые создаются всеми плоскими волнами, входящими в состав суперпозиции (4) в предметной плоскости z = 0+ и в плоскости изображения $z_1 = \frac{2d_2}{\lambda}$. Поэтому в результате интерференции этих волн мы получаем изображение, тождественное исходному периодическому объекту. Описанное явление называется эффектом саморепродукции. Световая волна сама (без каких-либо линз или зеркал) создает изображение исходного объекта. Все сказанное справедливо и для любого расстояния z_N , кратного z_1 :

$$z_N = \frac{2 \cdot d^2}{\lambda} \cdot N \tag{1}$$

На опыте, вследствие ограниченности поперечного сечения светового пучка лазера, наблюдаются только несколько репродуцированных изображений решетки. Поясним этот эффект с помощью рис. 1.

На нем изображены только три продифрагировавших луча соответственно нулевого (n=0) и \pm первого порядка $(n=\pm 1)$. Там, где эти лучи перекрываются, образуется интерференционная картина с периодом, как раз равным периоду решетки d. Спроектировав картину с помощью линзы на экран, мы увидим изображения синусоидальной решетки с плавным переходом от максимумов к минимумам. Для того чтобы наблюдать более тонкие детали, необходимо, чтобы в плоскости наблюдения перекрывались лучи более высоких дифракционных порядков. На

краях, где перекрываются только два луча (n=0 и n=+1 или n=0 и n=-1), также образуется интерференционная картина с периодом d, но менее контрастная.

Рис. 1 — Принципиальная схема дифракции на сетке. Между сеткой 0 и плоскостью Π_1 наблюдаются репродуцированные изображения сетки

2 Экспериментальная установка

Хорошим приближением к плоской волне в нашем эксперименте является излучение лазера. Луч лазера падает перпендикулярно на периодический объект O, установленный в плоскости P_0 (рис. 2).

За плоскостью P_0 (в плоскостях P_1 – P_N) периодически по z возникают изображения объекта, которые с помощью линзы Л можно поочерёдно проецировать на экран, установленный в плоскости Э. Если убрать линзу, то на экране наблюдается картина дифракции луча лазера на периодическом объекте.

Рис. 2 — Схема установки: ОКГ - гелий-неоновый лазер, 0 - двумерная решётка, P_N - плоскости, где наблюдаются репродуцированные изображения, Π - короткофокусная линза, Θ - экран для наблюдения изображения объекта

Экран устанавливается достаточно далеко от объекта, так что продифрагировавшие лучи, соответствующие различным порядкам дифракции $(\sin \varphi_n = \frac{n\lambda}{d})$, разделяются.

Измерив расстояние между дифракционными максимумами и расстояние от объекта до экрана, мы определим $\sin \varphi_n$ и d.

В нашей работе в качестве периодических объектов применяется мира — набор различным образом ориентированных одномерных решеток разного периода (рис. 4), а также двумерная

решетка-сетка. Сетку можно рассматривать как две взаимно перпендикулярные решетки. Узкий пучок монохроматического света, пройдя через первую решетку с вертикальными штрихами, должен дать совокупность максимумов, расположенных вдоль горизонтальной линии.

Световой пучок, соответствующий каждому максимуму, проходя через вторую решетку, распадается на новую совокупность пучков, дающих максимумы вдоль вертикальной линии. В результате главные максимумы возникают тогда, когда одновременно выполняются условия

$$d\sin\varphi_x = n_x \lambda, d\sin\varphi_y = n_y \lambda \tag{2}$$

где n_x и n_y — два целых числа, характеризующих порядки дифракционных максимумов, φ_x и φ_y — направления на главные дифракционные максимумы в горизонтальной и вертикальной плоскостях соответственно (рис. 3). Максимумы показаны кружками, размеры которых характеризуют интенсивность.

Рис. 3 — Спектр решётки

3 Ход работы

Определение периода решёток по их пространственному спектру

Для начала установим вблизи лазера кассету с двумерными решётками(сетками). Затем для каждой из сеток (в нашем случае их было 5), измерим расстояние x между двумя соседними дифракционными максимумами на экране. Также измерим расстояние L от кассеты до экрана. Оно получилось равным 1345 ± 1 мм. Длина волны зелёного лазера $\lambda=530$ нм. Зная x и L, вычислим период решётки по формуле (2), считая $\sin\varphi\approx\varphi\approx\frac{x}{L}.X$ - расстояние между максимумами $\sigma_X=1$ мм, m - количество промежутков между этими максимумами.

№ сетки	Х, мм	m	X, MM	$d_{\rm ch}$, mkm	σ_d , MKM
1	184	5	36,8	19,4	0,1
2	196	8	24,1	29,1	0,2
3	202	17	11,9	60,0	0,3
4	110	18	6,1	117	1
5	120	26	4,6	154	1

Определение периода решёток по изображению, увеличенному с помощью линзы

Теперь установим короткофокусную линзу на небольшом расстоянии от лазера, между ней и лазером установим кассету с сетками, настроим систему так, чтобы было видно резкое изобрадение проволочки(т.е. непериодического объекта). Определим размеры D клеток на экране для всех сеток, для которых это возможно. Также измерим расстояния от линзы до сетки (a) и до экрана (b). $a=44\pm1$ мм, $b=1310\pm1$ мм. По этим измерениям по формуле $d_{\pi}=\frac{Da}{b}$ рассчитаем периоды сеток.

№ сетки	D, мм	σ_D , MM	$d_{\scriptscriptstyle m J},{ m MKM}$	$\sigma_{d_{\pi}}$, MKM
3	1,67	0,08	56	3
4	3,29	0,14	110	5
5	4,33	0,17	146	7

Исследование эффекта саморепродукции с помощью сеток

Далее получим на экране геометрическое изображение сетки. Затем, перемещая линзу с помощью микровинта, определим по нониусной шкале координаты z_N плоскостей саморепродукции, соотвтетствующих чёткому изображению сетки на экране. По полученным данным построим графики зависимости $z_N = f(N)$, при помощи которых по наклону прямых рассчитаем периоды сеток d_{pen} по формуле (1).

№ сетки	$d_{ m pen}$, мкм	$\sigma_{d_{ m pen}}$, MKM
3	49	3
4	93	2
5	119	1

Далее приведём полную таблицу получившихся разными способами периодов решётки.

№ сетки	$d_{\rm ch}$, mkm	$\sigma_{d_{ m cn}},{ m MKM}$	$d_{\scriptscriptstyle m J}$, mkm	$\sigma_{d_{\pi}}$, MKM	$d_{ m pen}$, мкм	$\sigma_{d_{ m pen}},{ m MKM}$
1	19,4	0,1			-	
2	29,1	0,2			-	
3	60,0	0,3	56	3	49	3
4	117	1	110	5	93	2
5	154	1	146	7	119	1

Из таблицы видно, что первые 2 способа наиболее приближены друг к другу по значению, результат 3 способа при этом тоже находится достаточно близко к первым двум. Самым точным получился 1 способ(т.к. помимо того, что вышла маленькая погрешность, он также позволил определить период у первых двух сеток).

Исследование решёток миры

Теперь установим миру на место кассеты. Вычисления будут произведены для элементов миры под номером 20 и 25.

Измерим период миры теми же способами, что использовались до этого. Расстояние от линзы до миры $a=87\pm1$ мм. Расстояние от линзы до экрана $b=1260\pm1$ мм. Соответственно расстояние от миры до экрана равно $L=1347\pm1$ мм.

Определим по нониусной шкале координату плоскости, соответствующей изображению миры на экране по законам геометрической оптики(нет рассеяния, чёткая картина). $z_{25}=-10,4\pm0,1$ мм, $z_{20}=-14,0\pm0,1$ мм, $z_{20}=-14,0\pm0,1$ мм. На этих координатах, вычислив значение D, получим значение d_{π} .

Также построим график зависимости $z_N = f(N)$, где z_N - координаты на нониусной шкале плоскостей саморепродукции.

И в конце, убрав линзу и вычислив расстояние между максимумами, определим $d_{\rm cn}$.

Полученные результаты приведены в таблице.

№ элемента миры	$d_{\rm ch}$, mkm	$\sigma_{d_{ m cn}},{ m MKM}$	$d_{\scriptscriptstyle m J}, { m MKM}$	$\sigma_{d_{\pi}}$, MKM	$d_{ m pen}$, мкм	$\sigma_{d_{ m pen}},{ m MKM}$
25	38,76	0,18	40,1	0,2	29,9	0,8
20	51,7	0,2	53,5	0,3	37,2	0,4

4 Вывод

В ходе данной работы было изучено явления саморепродукции. Также данное явление было использовано для измерения параметров периодических структур. Так, в процессе работы был измерен период решётки тремя различными способами, одним из которых и было применение саморепродукции. В результате этих измерений было получено, что значения, измеренные разными способами, находятся достаточно близко друг к другу(результаты были приведены в таблице), что говорит о работе данного метода по измерению параметров периодических структур. Это также было продемонстрировано на работе с решётками миры.