

Unidad 7

Gestión de incidentes y Análisis Forense

¿Qué es la forensia informática?

La *forensia informática* se ocupa del estudio de la adquisición, preservación, análisis y presentación de evidencias electrónicas procesadas y conservadas en un medio informático determinado.

¿Qué es un incidente de seguridad?

Un *incidente de seguridad* es:

- A) Un evento adverso en un entorno informático, que puede comprometer o compromete la confidencialidad, integridad o disponibilidad de la información.
- B) Una violación o inminente amenaza de violación de una política de seguridad de la información, política aceptable de uso o mejores prácticas de seguridad.

Gestión de Incidentes

Consiste en la asignación oportuna de los recursos necesarios y su uso adecuado, con el objeto de prevenir, detectar y corregir incidentes que afectan la seguridad de la información.

- ✓ Prevención de incidentes
- Detección y reporte del incidente
- ✓ Clasificación del incidente
- Análisis del incidente
- Respuesta al incidente
- ✓ Registro de incidentes
- ✓ Aprendizaje a partir de la experiencia
- ✓ Concientización y capacitación

Algunos beneficios

☑ Responder a los incidentes en forma sistemática.

- ☑ Facilitar una recuperación rápida y eficiente de incidentes de seguridad, minimizando la pérdida de información e interrupción de servicios.
- Prevenir la ocurrencia reiterada de incidentes mediante el aprendizaje.
- ☑ Mejorar continuamente el marco de seguridad y el proceso de tratamiento de incidentes.
- ☑ Manejar correctamente los aspectos legales que pudieran surgir en el tratamiento de incidentes.

Gestión de incidentes de seguridad

Medidas de preparación

- Definir políticas, normas y procedimientos para la gestión de incidentes
- Definir criterios de clasificación y priorización de incidentes
- Preparar el CSIRT
- Entrenar al personal
- Documentar un mapa de la topología y arquitectura de la red
- Documentar la configuración del equipamiento
- Crear patrones de redes y sistemas
- Comprender el funcionamiento normal

Medidas de preparación

- Activar los logs en las diferentes plataformas y aplicaciones y en el equipamiento de comunicaciones
- Utilizar logging centralizado y crear una política de almacenamiento de logs
- Mantener los relojes de todos los equipos sincronizados
- Crear sumas de comprobación criptográficas (cryptographic checksums)
- Definir e implementar esquemas de resguardos de datos
- Contactos

Manejo de información con terceras partes

Considerar la necesidad de utilizar herramientas para:

- Detección de incidentes
- Monitoreo
- Análisis de incidentes análisis forense
- Documentación de incidentes
- Etc.

Prevención de incidentes

- ✓ Análisis periódicos de riesgos
- Mejores prácticas de seguridad
- Auditorías periódicas
- ✓ Administración de actualizaciones
- ✓ Fortalecimiento de la seguridad de los equipos
- Seguridad en la red
- ✓ Prevención de código malicioso
- ✓ Concientización y capacitación de usuarios

Detección y Notificación

Detección de incidentes

- ✓ IDS Sistemas de detección de intrusiones de red (NIDS) o de host (HIDS)
- Software antivirus
- ✓ Software de control de integridad de archivos
- ✓ Sistemas de monitoreo de red (NMS)
- ✓ Análisis de registros de auditoría (logs, SIEM)
- ✓ Información pública
- Usuarios de la organización
- ✓ Personas externas a la organización

Detección y Notificación

Notificación de incidentes

Análisis Preliminar

Recolección de información para analizar

- ✓ Alcance del incidente, es decir, qué redes, sistemas y aplicaciones afecta
- Qué originó el incidente
- ✓ Cómo ocurrió (o está ocurriendo) el incidente métodos, herramientas utilizadas, vulnerabilidades explotadas, etc..
- El impacto potencial en las actividades de la organización

Análisis Preliminar

Cómo determinar el alcance

- □ ¿Cuántos equipos fueron comprometidos?
- □ ¿Cuántas redes se vieron envueltas?
- □ ¿Cuán dentro de la red logró penetrar el atacante?
- ☐ ¿Qué nivel de privilegio logró el atacante?
- ☐ ¿Qué es lo que está en riesgo? ¿Cómo impacta en las actividades de la organización el compromiso de los equipos? ¿Se encuentran en riesgo aplicaciones críticas?
- ☐ ¿Quién sabe acerca del incidente y cómo puede afectar esto el impacto del mismo?
- ☐ ¿Cuán conocida es la vulnerabilidad explotada por el atacante? ¿Hay otros equipos con la misma vulnerabilidad?

Análisis Preliminar

Detectar posibles cambios no

autorizados

Métodos de recolección de información

Revisión de la topología de red y listas

de acceso

Indagación a los administradores de sistemas Personal de la organización Revisión de reportes de herramientas de detección de intrusiones Revisión de logs de comunicaciones, plataformas y sistemas Residual A B O S Obtener datos sobre sucesos anormales en las actividades cotidianas Conocer detalles del incidente Detectar actividades anormales

Contención, erradicación y recupero

CONTENCIÓN

ERRADICACIÓN

Eliminar la causa del incidente y todo rastro de los daños.

RECUPERO

Incidente: infección con gusano

Contención: Desconexión del equipo afectado de la red.

Erradicación: detectar el código malicioso y eliminarlo del equipo. Instalar parches. Actualizar el software antivirus.

Recupero: Corrección de efectos producidos.

Restauración del backup.

Investigación

Recolección de datos

INFORMACIÓN BASADA EN HOST

✓ Recolección en vivo

Ej.: Fecha y hora del sistema, aplicaciones corriendo en el sistema, conexiones de red establecidas, puertos abiertos, aplicaciones escuchando en dichos puertos, estado de la placa de red.

✓ Duplicación Forense

Ej.: duplicación de discos rígidos, medios removibles, etc.

INFORMACIÓN BASADA EN LA RED

Ej.: Logs de NIDSs, logs de monitoreo, información recolectada mediante sniffers, logs de routers, logs de firewalls, información de servidores de autenticación

OTRA INFORMACIÓN Ej.: Testimonio de personal

Investigación

Recolección de evidencia

AUTENTICIDAD

Quien haya recolectado la evidencia debe poder probar que es auténtica

CADENA DE CUSTODIA

Registro detallado del tratamiento de la evidencia, incluyendo quienes, cómo y cuando la transportaron, almacenaron y analizaron, a fin de evitar alteraciones o modificaciones que comprometan la misma.

VALIDACION

Garantizar que la evidencia recolectada es la misma que la presentada ante las autoridades.

Cadena de Custodia

Registro detallado de los movimientos de la evidencia durante su procesamiento judicial o extrajudicial.

Chain of Custody				
From	Date	Reason	То	
Location			Location	
From	Date	Reason	To	
Location			Location	
From	Date	Reason	To	
Location			Location	
From	Date	Reason	To	
Location			Location	
From	Date	Reason	То	
Location			Location	
From	Date	Reason	To	
Location			Location	
Final Disposition of Evidence		Date		

Recolección de información digital

Características:

- Volatilidad
- Posibilidad de crear copias idénticas
- Copias no autorizadas sin dejar rastros

Recolección de información digital

Puede estar almacenada en una gran cantidad de dispositivos:

- •RAM, discos rígidos, Pendrives
- Cámaras fotográficas digitales
- •Reproductores de MP3
- smartphone
- Impresoras

Orden de volatilidad

2002: RFC 3227
Guidelines for Evidence Collection and Archiving

2004: Forensic Discovery

Dan Farmer y Wietse Venema

2006: NIST Special Publication 800-86
Guide to Integrating Forensic Techniques into Incident Response

Principio de Incertidumbre de Heisenberg

Orden de volatilidad

RFC 3227

- •Registers, cache
- Network status
- Process information
- •Main memory
- Temporary file systems
- •Disk
- •Remote logging and monitoring data that is relevant to the system in question
- Physical configuration, network topology
- Archival media

Forensic Discovery

- •Registers, peripheral memory, caches, etc.
- Main memory
- Network status
- Process information
- •Disk
- •Floppies, backup media, etc.
- CD-ROMs, printouts, etc.

NIST SP 800-86

- Network status
- Login sessions
- Main memory
- Process information
- Open files
- Network configuration
- Operating system time

- No apagar el equipo hasta que se realizaron las tareas de recolección en vivo, ni desloguearse del usuario. Utilizar runAs.
- No confiar en las herramientas del equipo. Utilizar herramientas de recolección desde medios protegidos (ej:cd-rom) y preferentemente linkeadas estáticamente.
- No utilizar programas que modifiquen los MAC times de los archivos (tar, winzip)
- Igualmente, la información recolectada puede ser falsa o se pueden estar ocultando cosas.

Recolección en vivo

UNIX

WINDOWS

Hostname

df

date

Last

who

ifconfig

ps

Isof

Netstat

Arp

Nc

dd

TCT grave-robber

Date

Psloggedon

Loggonsessions

Openfiles

Netstat

Nbstat

Pslist

Listdlls

Fport

Ipconfig

Pclip

autoruns

Herramienta automatizada para windows

Windows Forensic Toolchest (WFT)

Modificación de la RAM

Action	% RAM unchanged		
	256 MB RAM	512 MB RAM	
Start	100.0	100.0	
Idle for 1 hour	90.4	96.7	
Idle for 2 hours	79.7	96.1	
run dd from Helix CD	76.9	89.8	
Idle for 15 hours	74.8	85.6	
run WFT from Helix	67.2	69.4	

Fuente: http://www.komoku.com/forensics/basic/bh-fed-07-walters-paper.pdf

Duplicación de discos - Formatos

Formato DD: Copia bit a bit

Formatos comerciales: Incluyen metadata del caso, hashes, pueden marcar sectores defectuosos, partir la imagen en pedazos y comprimir, etc.Ej: Expert Witness Format

AFF (Advanced Forensic Format): Formato libre que brinda las funcionalidades de los formatos propietarios.

LiveCDs para recolección y análisis

CAINE (http://www.caine-live.net)

SIFT (https://digital-forensics.sans.org/community/downloads)

TSURUGI (https://tsurugi-linux.org/)

Bloqueo de escritura de disco

Fuente:

Incident Response And Computer Forensics, 2nd edition, Mandia, Prosise, Pepe.

Análisis

Esto no es una pipa!

"Forensic Discovery", Dan Farmer & Wietse Venema

http://www.porcupine.org/forensics/forensic-discovery/

SEGURIDAD DE LA INFORMACION

Test de turing para análisis forense

Se analiza información de los sistemas comprometidos.

¿Cómo sabemos que la información es confiable? ¿Estamos viendo pistas de lo que realmente ocurrió, o estamos viendo pistas falsas puestas por el atacante?

Busqueda de consistencia


```
May 25 10:12:46 spike telnetd[13626]: connect from hades
  wietse ttyp1 hades Thu May 25 10:12 - 10:13 (00:00)
     hostname wietse ttyp1 0.00 secs Thu May 25 10:12
     sed wietse ttyp1 0.00 secs Thu May 25 10:12
     stty wietse ttyp1 0.00 secs Thu May 25 10:12
     mesg wietse ttyp1 0.00 secs Thu May 25 10:12
     Is wietse ttyp1 0.00 secs Thu May 25 10:13
     w wietse ttyp1 0.00 secs Thu May 25 10:13
     csh wietse ttyp1 0.03 secs Thu May 25 10:12
     telnetd root 0.00 secs Thu May 25 10:12
  wietse ttyp1 hades Thu May 25 10:12 - 10:13 (00:00)
```

Tiempos Mac

Atime refiere a la última vez que un archivo o directorio fue accedido.

Mtime indica la fecha de modificación del contenido del archivo.

El atributo **Ctime** indica cuando se modifica el contenido o la información relacionada con permisos, dueño, grupo, etc.

Se pueden hacer líneas de tiempo para ver que archivos se accedieron, modificaron, etc.

Actividad de acceso a archivos

	www.things.org	www.fish.com	news.earthlink.net
Over a year:	76.6 %	75.9 %	10.9 %
6 months- year:	7.6 %	18.6 %	7.2 %
1-6 months:	9.3 %	0.7 %	72.2 %
Day-month:	3.6 %	3.1 %	7.4 %
Within 24 hrs:	2.9 %	1.7 %	2.3 %

Porcentaje de archivos leídos o ejecutados recientemente por algunos servidores de internet.

Fuente: Forensic discovery

20 de Agosto de 2001:

- En Barney equipo Linux se encuentra un demonio SSH ejecutandose en un puerto inusual.
- El administrador crea un backup de todo el sistema.

23 de Agosto de 2001:

- El equipo de seguridad pone a Barney en cuarentena.
- Usa el Coroner's toolkit en el disco rígido

- Herramienta mactime (TCT) revela tiempos MAC
- Alternativamente se puede invocar la llamada a sistema lstat():

Historia de Barney: Salida MAC


```
Jul 19 2001
time
          size MAC permissions owner file name
16:47:47 655360 m., -rw-r--r--
                                root
/usr/man/.s/sshdlinux.tar
16:48:13 655360 ..c -rw-r--r--
                                root
/usr/man/.s/sshdlinux.tar
16:48:16 395 ..c -rwxrw-r--
                               2002
                                       /usr/man/.s/ssh.sh
           880 ..c -rw-r--r-- 2002
                                      /usr/man/.s/ssh config
           537 ..c -rw----- 2002
                                      /usr/man/.s/ssh host key
           341 ..c -rw-r--r- 2002
/usr/man/.s/ssh_host_key.pub 16:48:20
                                       1024 m.c drwxr-xr-x
       /usr/man/.s
root
          1024 m c drwxr-xr-x
16:51:31
                                root
                                        /home
          1422 m.c -rw-r--r--
                                      /home/sue/.Xdefaults
                               sue
           24 m.c -rw-r--r--
                                      /home/sue/.bash logout
                            sue
                                      /home/sue/.bash profile
          230 m.c -rw-r--r--
                            sue
          124 m.c -rw-r--r--
                                      /home/sue/.bashrc
                           sue
16:57:57 1024 m.c drwx-----
                                       /home/sue
                               sue
             9 m.c -rw-----
                                      /home/sue/.bash history
                              sue
```


19 de Julio de 2001:

- Usuario con privilegios de root crea y desempaqueta un archivo tar.
- Los nombre de archivos indicarían que es un reemplazo del SSH.
- El archivo es ubicado en un directorio con un nombre sospechoso: ".s"
- El usuario Sue se desloguea.

- Se ordena la salida de mactime según la fecha de acceso.
- Los a-times se perdieron porque el backup que hizo el administrador cambió los valores al momento del backup.
- Hacer el backup fue una práctica forense pobre y destruyó evidencia.

- Audit Record Generation and Utilization System (ARGUS) estaba corriendo.
- Se analizaron los logs de ARGUS
 - Buscando conexiones al demonio SSH de Barney
 - TCP 33332
 - Mecanismo de transporte de archivo TAR

Historia de Barney: log de ARGUS

Historia de Barney: log de ARGUS

Jul 19 2001

16:28:34-16:29:36 tcp 192.168.0.1.1466 10.0.1.1.21

sSEfC

16:29:30-16:29:36 tcp 10.0.1.1.20 192.168.0.1.1467

sSEfC

16:30:47-16:47:16 tcp 10.0.0.1.1023 192.168.0.1.33332

sSEfC

Observaciones:

- La diferencia horaria entre Barney y los logs de ARGUS era de aprox. 17 minutos.
- La dirección IP 10.0.1.1 es sospechosa
 - Buscar más entradas de esta dirección

Historia de Barney: log de ARGUS

- Notar el uso de puertos inusuales
- La conexión no fue terminada correctamente.
- Buscar ese número de puerto

Historia de Barney: log de ARGUS

Aug 21-22 2000		
23:59:55-00:29:48 sSEfR	tcp 10.0.3.1.1882	192.168.0.1.53
Aug 22 2000		
00:08:32-00:09:04 sSEfC	tcp 192.168.0.1.1027	10.0.2.1.21
00:08:42-00:09:04 sSEfC	tcp 10.0.2.1.20	192.168.0.1.1028
00:11:08-00:13:26 sSEfC	tcp 192.168.0.1.1029	10.0.2.1.21
00:12:07-00:12:13 sSEfC	tcp 10.0.2.1.20	192.168.0.1.1030
00:13:38-00:13:35 sSEfR	tcp 10.0.2.1.44445	192.168.0.1.21

- Aparentemente, el servidor de DNS de Barney fue atacado exitosamente desde 10.0.3.1
- El intruso uso ftp para instalar herramientas desde 10.0.2.1
- El intruso prueba un backdoor usando TCP/444445

- Revisando nuevamente los tiempos MAC en Barney, este escenario fue confirmado.
 - Aparentemente, Barney fue atacado exitosamente el 21 de agosto de 2000.
 - El atacante instaló un backdoor simple.
 - En Julio de 2001, se instaló un demonio SSH
 - El SSH es levantado en Agosto de 2001

Herramientas de análisis Forense

- Visualización de contenido de archivos, imágenes, emails, registro de windows, etc
- Búsqueda de cadenas
- OCR
- Historial de navegación
- Recuperación archivos borrados y File Carving
- Líneas de tiempo
- Identificación de archivos conocidos (http://www.nsrl.nist.gov)

Herramientas de análisis

TCT (The Coroner's Toolkit, historico)
Sleuthkit & Autopsy
EnCase Forensics
FTK
Magnet Axiom

Resumen

Data Collection

Network-Based Evidence

- Obtain IDS Logs
- Obtain Existing Router Logs
- Obtain Relevant Firewall Logs
- Obtain Remote Logs from a Centralized Host (SYSLOG)
- · Perform Network Monitoring
- Obtain Backups

Host-Based Evidence

- Obtain the Volatile Data during a Live Response
- · Obtain the System Time
- Obtain the Time/Date Stamps for Every File on the Victim System
- Obtain all Relevant Files that Confirm or Dispel Allegation
- Obtain Backups

Other Evidence

Obtain Oral Testimony from Witnesses

Analysis

- 1. Review the Volatile Data.
 - ·Review the Network Connections.
 - -Identify Any Rogue Processes (Backdoors, Sniffers).
- Analyze the Relevant Time/Date Stamps.
 - Identify Files Uploaded to the System by an Attacker.
 - Identify Files Downloaded or Taken from the System.
- 3. Review the Log Files.
- Identify Unauthorized User Accounts.
- Look for Unusual or Hidden Files.
- Examine Jobs Run by the Scheduler Service.
- 7. Review the Registry.
- Perform Keyword Searches.

Bibliografía

