→ HOUSE PRICE PREDICTION

Context: If you are like me, you might get overwhelmed when having to make big decisions such as buying a house. In such cases, I always like to go for a data driven approach, that will help me find an optimum solution. This involves two steps. First, we need to gather as much data as we can. Second, we need to define a metric for success.

Gathering housing prices requires some effort. A caveat is that the asking prices are not the prices to which the houses were actually sold. Defining a metric for success is somewhat subjective. I consider a house to be a good option if the house price is cheap compared to other listings in the area.

Content: The housing prices have been obtained from Pararius.nl as a snapshot in August 2021. The original data provided features such as price, floor area and the number of rooms. The data has been further enhanced by utilising the Mapbox API to obtain the coordinates of each listing.

Project Description: Building a simple machine learning model to predict house prices based on various features such as square footage, number of bedrooms, neighborhood, and more. This project will introduce you to regression analysis, which is a fundamental concept in data science

Importing the libraries

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Load the dataset

 $\label{eq:df} $$ df=pd.read_csv('/content/HousingPrices-Amsterdam-August-2021.csv') $$ df$

	Unnamed:	Address	Zip	Price	Area	Room	Lon	Lat	
0	1	Blasiusstraat 8 2, Amsterdam	1091 CR	685000.0	64	3	4.907736	52.356157	11.
1	2	Kromme Leimuidenstraat 13 H, Amsterdam	1059 EL	475000.0	60	3	4.850476	52.348586	
2	3	Zaaiersweg 11 A, Amsterdam	1097 SM	850000.0	109	4	4.944774	52.343782	
3	4	Tenerifestraat 40, Amsterdam	1060 TH	580000.0	128	6	4.789928	52.343712	

Data Exploration

df.head()

	Unnamed:	Address	Zip	Price	Area	Room	Lon	Lat	
0	1	Blasiusstraat 8 2, Amsterdam	1091 CR	685000.0	64	3	4.907736	52.356157	115
1	2	Kromme Leimuidenstraat 13 H, Amsterdam	1059 EL	475000.0	60	3	4.850476	52.348586	
2	3	Zaaiersweg 11 A, Amsterdam	1097 SM	850000.0	109	4	4.944774	52.343782	

df.tail()

	Unnamed:	Address	Zip	Price	Area	Room	Lon	Lat	
919	920	Ringdijk, Amsterdam	1097 AE	750000.0	117	1	4.927757	52.354173	11.
920	921	Kleine Beerstraat 31, Amsterdam	1033 CP	350000.0	72	3	4.890612	52.414587	
921	922	Stuyvesantstraat 33 II, Amsterdam	1058 AK	350000.0	51	3	4.856935	52.363256	

df.dropna()

	Unnamed:	Address	Zip	Price	Area	Room	Lon	Lat	
0	1	Blasiusstraat 8 2, Amsterdam	1091 CR	685000.0	64	3	4.907736	52.356157	11.
1	2	Kromme Leimuidenstraat 13 H, Amsterdam	1059 EL	475000.0	60	3	4.850476	52.348586	
2	3	Zaaiersweg 11 A, Amsterdam	1097 SM	850000.0	109	4	4.944774	52.343782	
3	4	Tenerifestraat 40, Amsterdam	1060 TH	580000.0	128	6	4.789928	52.343712	
4	5	Winterjanpad 21, Amsterdam	1036 KN	720000.0	138	5	4.902503	52.410538	
919	920	Ringdijk, Amsterdam	1097 AE	750000.0	117	1	4.927757	52.354173	
920	921	Kleine Beerstraat	1033	350000.0	72	3	4.890612	52.414587	
hana									

df.shape

(924, 8)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 924 entries, 0 to 923
Data columns (total 8 columns):
Column Non-Null Count Dtype

0 Unnamed: 0 924 non-null int64

```
Address
1
                924 non-null
                                object
                924 non-null
2
    Zip
                                object
                                float64
                920 non-null
3
    Price
4
    Area
                924 non-null
                                int64
5
    Room
                924 non-null
                                int64
    Lon
                924 non-null
                                float64
                924 non-null
                                float64
dtypes: float64(3), int64(3), object(2)
```

memory usage: 57.9+ KB

df.describe()

	Unnamed: 0	Price	Area	Room	Lon	Lat	
count	924.000000	9.200000e+02	924.000000	924.000000	924.000000	924.000000	ıl.
mean	462.500000	6.220654e+05	95.952381	3.571429	4.888605	52.363326	
std	266.880123	5.389942e+05	57.447436	1.592332	0.053140	0.024028	
min	1.000000	1.750000e+05	21.000000	1.000000	4.644819	52.291519	
25%	231.750000	3.500000e+05	60.750000	3.000000	4.855834	52.352077	
50%	462.500000	4.670000e+05	83.000000	3.000000	4.886818	52.364631	
75%	693.250000	7.000000e+05	113.000000	4.000000	4.922337	52.377598	
max	924.000000	5.950000e+06	623.000000	14.000000	5.029122	52.423805	

df.dtypes

Unnamed: 0 int64 Address object object float64 Zip Price Area int64 Room int64 float64 Lon Lat float64

dtype: object

df.isnull().sum()

Unnamed: 0 0 Address 0 Zip 0 Price 4 Area 0 Room 0 Lon 0 Lat 0 dtype: int64

Data Visualization

df.drop(['Unnamed: 0','Zip','Address'],axis=1,inplace=True) df

		Price	Area	Room	Lon	Lat	=
0)	685000.0	64	3	4.907736	52.356157	ılı
1	l	475000.0	60	3	4.850476	52.348586	
2	2	850000.0	109	4	4.944774	52.343782	
3	3	580000.0	128	6	4.789928	52.343712	
4	ŀ	720000.0	138	5	4.902503	52.410538	
91	9	750000.0	117	1	4.927757	52.354173	
92	20	350000.0	72	3	4.890612	52.414587	
92	21	350000.0	51	3	4.856935	52.363256	
92	22	599000.0	113	4	4.965731	52.375268	
92	23	300000.0	79	4	4.810678	52.355493	
02/	1 ro	we v 5 colu	mne				

924 rows × 5 columns

sns.boxplot(df['Price'])

sns.regplot(x=df['Area'],y=df['Price'],color='r')

<Axes: xlabel='Area', ylabel='Price'>

sns.regplot(x=df['Room'],y=df['Price'],color='g')

<Axes: xlabel='Room', ylabel='Price'>

sns.regplot(x=df['Lon'],y=df['Price'],color='y')

<Axes: xlabel='Lon', ylabel='Price'>

sns.regplot(x=df['Lat'],y=df['Price'],color='m')

<Axes: xlabel='Lat', ylabel='Price'>

sns.countplot(x='Area',hue='Room',data=df)

<Axes: xlabel='Area', ylabel='count'>
sns.pairplot(df)

sns.distplot(df['Price'])

<ipython-input-19-87e11caeb2c4>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Price'])
<Axes: xlabel='Price', ylabel='Density'>

sns.heatmap(df.corr(),annot=True)

Data Preprocessing

plt.hist(df['Price'])

```
3.,
                                                2.,
                                  7.,
     (array([729., 136., 36.,
                                                      2.,
                                                             2.,
      array([ 175000., 752500., 1330000., 1907500., 2485000., 3062500., 3640000 4217500 4795000 5372500 5950000 1)
df['Price'].fillna(df['Price'].median(),inplace=True)
           1
df.isnull().sum()
     Price
               a
     Area
               0
     Room
               0
     Lon
               a
     Lat
               a
     dtype: int64
x=df.drop(['Price'],axis=1)
y=df['Price']
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x test=scaler.transform(x test)
```

Model Creation using Linear Regression

```
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
```

```
418999.83901778, 433729.3365759,
                                    92322.49716398,
1056791.91177767, 217662.22451742, 1037749.9423757,
336701.87791902, 1092701.91916406, 1024349.20605896,
 531266.70180507.
                  768437.14618923, 367343.29826624,
1135639.04512495, 1655542.54657242, 806076.79601244,
 720155.0044908 \ , \quad 721185.39793928 , \quad 309740.94210572 ,
 556985.56570351, 1085021.24924702, 365863.32206416,
 252239.02913629, 393586.05706971, 335750.22341682,
1272135.06630752, 462288.09139105, 400332.20466805,
 417554.22636245, 433983.49033683, 526761.67350884,
 856435.85149899, 992480.3826116 ,
                                     550944.35849641,
 352183.39472115, 441318.4194798 , 856323.83701208,
 459035.51953363, 429387.52592299, 330693.13213096,
1410008.41337104, 338538.15036367, 507597.32048498,
1146863.00773898, 608446.99050516, 534005.58117469,
 567106.33615369, 631259.4310401 ,
                                     620620.47083643,
                                    765653.71490697,
 508122.71812145, 1147592.6619758 ,
 696557.41950745, 352965.05721431, 1478845.566259
 348481.69325476, 525626.80935878, 460201.77294935,
1771756.87158417, 258989.45084816, 633474.99086347,
 786842.96490485, 210616.44330539, 261247.05863206,
 588578.38671764, 636611.06439448, 1533201.78847212,
 710704.95852672, \quad 156141.91742531, \quad 157951.67503939,
 924451.93799586,
                   549225.76237149, 962685.47623512,
 914361.11431845, 665638.79878457, 304801.92003789,
 894704.89176944, 329852.58093301, 445855.59475204,
 510900.15400457, 303998.45073847, 614857.5235804 ,
270588.81307479,
                   507701.2302193 , 148516.07098119,
 316807.27903403,
                   588525.55234003, 744393.63937814,
 687740.97327401, 570572.4820381 , 428156.1027189 ,
 951513.67053915,
                   656053.8177622 , 454169.41810156,
1229580.11465593, 403802.04260728, 1108387.92495231,
 602892.48101901, 269685.59971123, 925842.60203085,
 305035.57228267, 489291.94725163, 405799.52082079,
 725658.38042041, 270406.65788875, 301464.68817434,
 413003.41115469, 531831.97274425, 784540.0367422,
889286.32604338, 457095.70589811, 386321.45386654, 287027.87636036, 748001.39681837, 4519751.19257104,
 870631.60205292, 440284.28610974, 1218709.15011781,
1488746.47601056, 771288.13771025, 605324.4027997,
 609165.08570592, 1371749.56943239, 287730.12492489,
 588972.19485336, 1119983.68887885, 1745603.50643764,
 386450.09637594, 769014.0577339 , 282746.40286645,
 594625.83322407, 373817.8961457, 615466.91496409,
```

```
8/4532.223101b2, 444407.b35b2cb39, 28b4428.47579987, 244896.43938609, 667048.06641301, 2300472.98268151, 1969572.06603795, 327963.12478113, 593352.70645819, 568400.62979847, 258097.77219236, 382836.94823732, 511591.52341752, 750543.2005787, 4441481.499956, 355810.78069627, 378146.72078774, 1018275.97544878, 411314.65039329, 808335.64879981, 219126.41707932, 878224.46635309, 511059.7760042, 359544.38209601, 484231.46417276, 194404.93236226, 348009.80395552, 409611.07685771, 397569.681604761
```

Model Evaluation

df1=pd.DataFrame({'actualvalue':y_test,'predicted_value':y_pred,'error':y_test-y_pred})
df1

	actualvalue	<pre>predicted_value</pre>	error
323	450000.0	6.950501e+05	-2.450501e+05
861	475000.0	3.752984e+05	9.970160e+04
30	800000.0	6.537566e+05	1.462434e+05
837	5850000.0	3.255480e+06	2.594520e+06
294	700000.0	4.659076e+05	2.340924e+05
	•••		
54	385000.0	4.842315e+05	-9.923146e+04
827	375000.0	1.944049e+05	1.805951e+05
490	500000.0	3.480098e+05	1.519902e+05
753	475000.0	4.096111e+05	6.538892e+04
843	225000.0	3.975697e+05	-1.725697e+05
405	0!		

185 rows × 3 columns

 $\verb|sns.scatterplot(x=y_test,y=y_pred)|\\$

<Axes: xlabel='Price'>

from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
print("Mean Absolute Error is",mean_absolute_error(y_test,y_pred))

Mean Absolute Error is 188764.28934550055

mse=mean_squared_error(y_test,y_pred)
print("Mean Squared Error is",mse)

Mean Squared Error is 103467772655.20413

rmse=np.sqrt(mse)
print("Root Mean Squared Error",rmse)

Root Mean Squared Error 321664.068020045

print("r2_score is",r2_score(y_test,y_pred))

r2_score is 0.7941224508887771