第十一章 一元线性回归

第十一章 一元线性回归

11.1 变量间的关系

11.1.2 相关关系的描述与测度

11.3 相关关系的显著性检验

11.2 一元线性回归

11.2.1 回归方程

11.2.2 参数的最小二乘估计

11.2.3 回归直线的拟合优度

11.2.4 显著性检验

11.2.5 回归分析结果的评价

11.3 利用回归方程进行预测

11.3.2 区间估计

11.4 残差分析

11.4.1 残差与残差图

11.4.2 标准化残差

11.1 变量间的关系

详见 p234

• 函数关系: ——对应, y 随 x 的变化而变化;

• 相关关系:一个变量不由另一变量确定,不确定性关系。

11.1.2 相关关系的描述与测度

两个假定: ①线性关系, ②都是随机变量。

1. 散点图:正(负)线性相关,完全正(负)线性相关,非线性相关,不相关。

2. 相关系数:根据样本数据计算的度量两个变量之间线性关系强度。下面的公式表示线性相关系数(Pearson 相关系数)。

$$r = rac{n\sum xy - \sum x\sum y}{\sqrt{n\sum x^2 - (\sum x)^2}\cdot \sqrt{n\sum y^2 - (\sum y)^2}}$$

- 。 $r\in [-1,1]$, 越小越负相关,越大越正相关,-1 和 1 表示完全负相关和完全正相 关。
- \circ r 绝对值越小,线性相关性越弱
- \circ r 具有对称性, $r_{xy}=r_{yx}$
- \circ r 和 x, y 的尺度无关
- 。 r 仅用于描述线性关系,不一定代表因果关系
- 。 $|r| \geq 0.8$ 高度相关, $0.5 \leq |r| < 0.8$ 中度相关,|r| < 0.5 低度相关。

11.3 相关关系的显著性检验

将样本相关系数 r 作为整体相关系数 ρ 的估计值,因为 r 具有随机性需要检验。(使用 t 检验)

- 1. 假设 $H_0: \rho = 0; H_1: \rho \neq 0;$
- 2. 计算检验的统计量

$$t=|r|\sqrt{rac{n-2}{1-r^2}}\sim t(n-2)$$

3. 比较 $t 与 t_{\alpha/2}$,双侧检验。

11.2 一元线性回归

描述因变量 (y) 如何依赖于自变量 (x) 和误差项 ε 而变化的方程被称为回归模型。

$$y = \beta_0 + \beta_1 x + \varepsilon$$

几个假定:

- 1. y与x具有线性关系;
- 2. 重复抽样中x的取值是固定的,与随机误差项线性无关;
- 3. $\varepsilon \sim \mathcal{N}(0, \sigma^2) E(\varepsilon) = 0$;
- 4. 对于所有的 x 值, σ_{ε}^2 相同;

11.2.1 回归方程

$$E(y)=eta_0+eta_1x$$
 线性回归方程 $\hat{y}=\hat{eta}_0+\hat{eta}_1x$ 估计的线性回归方程

11.2.2 参数的最小二乘估计

求解过程看P245,易知回归直线一定经过点 (\bar{x},\bar{y}) 。

$$egin{cases} \hat{eta}_1 = rac{n\sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} \ \hat{eta}_2 = ar{y} - \hat{eta}_1 ar{x} \end{cases}$$

11.2.3 回归直线的拟合优度

变差: 因变量取值的波动。

几个残差项

- 总平方和: n 次观察的总变差 $SST = \sum (y_i \bar{y})^2$;
- 回归平方和: 由回归直线来解释的变差部分 $SSR = \sum (\hat{y}_i \bar{y})^2$;
- 残差平方和/残差平方: 除了 x 对 y 的线性影响之外其他因素引起的 y 的变化部分 $SSE = \sum (y_i \hat{y}_i)^2$

$$SST = SSR + SSE$$

1. 判定系数 用于度量估计的回归方程的拟合优度, $R^2 \in [0,1]$,越大表示回归直线与观测点越接近。

$$R^2 = rac{SSR}{SST} = rac{\sum (\hat{y}_i - \bar{y})^2}{(y_i - \bar{y})^2} = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

相关系数 $r=\sqrt{R}\geq R$ (仅在 |R| 取值为 0 或 ± 1 时取等号) ,慎重考虑使用。

2. 估计标准误差 s_e 度量各实际观测点在直线周围散布情况,时均方残差(MSE)的平方根。

$$s_e = \sqrt{rac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{rac{SSE}{n-2}} = \sqrt{MSE}$$

11.2.4 显著性检验

1. 线性关系的检验

提出假设: $H_0: \beta_1=0; H_1: \beta_1\neq 0$, 即两个变量之间的线性关系不显著。计算检验统计量 $F\sim \mathcal{F}(1.n-2)$

$$F \sim rac{SSR/1}{SSE(n-2)} = rac{MSR}{MSE} \sim F(1,n-2)$$

进行单侧检验,大于 F_{α} 就拒绝 H_{0} 。

2. 回归系数的检验

提出假设: $H_0: \beta_1 = 0; H_1: \beta_1 \neq 0$

用因为 $\hat{eta}_1 \sim \mathcal{N}(eta_1, \sigma_{\hat{eta_i}})$,其中

$$egin{aligned} \sigma_{\hat{eta_1}} &= rac{\sigma}{\sqrt{\sum x_i^2 - rac{1}{n}(\sum x_i)^2}} pprox rac{s_e}{\sqrt{\sum x_i^2 - rac{1}{n}(\sum x_i)^2}} \ s_e &= \sqrt{rac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{rac{SSE}{n-2}} = \sqrt{MSE} \end{aligned}$$

得到方差计算 t 统计检验量

$$t=rac{\hat{eta}_1-eta_1}{s_{\hat{eta}_1}}=rac{\hat{eta}_1}{s_{\hat{eta}_1}}\sim t(n-2)$$

做出决策,使用双侧检验。

在一元线性回归中 F 检验和 t 检验是等价的,多元回归中有不同的含义。

如果有用到 Excel 进行回归分析,看书 P254 (出这种题的讨论一下有母性吧)

11.2.5 回归分析结果的评价

- 1. 回归系数 $\hat{\beta}_1$ 的符号(正负性)是否与预期结果一致;
- 2. y = x 的关系 (正、负,是否显著) 在回归方程和理论上是否一致;
- 3. 回归模型在多大程度上解释了额因变量取得的差异(R^2),超过 2/3 就算效果还不错;

4. 误差项 ε 的正态性假设是否成立。(残差直方图或正态概率图,但这玩意应该不会手画吧?)

11.3 利用回归方程进行预测

对因变量进行合理的预测。

点估计 包括平均值点估计和个别值点估计,都是给你一个值然后往回归方程里代就好了。

平均值的点估计实际上是对总体参数的估计,个别值的点估计是对因变量的某个具体取值的估 计。

11.3.2 区间估计

区间估计包括置信区间估计和预测区间估计,分别是根据一个给定值 x_0 计算 y 的平均值的估计区间和根据一个给定值 x_0 求出 y 的个别值的估计区间。

1. 平均值的置信区间估计

先求标准差

$$egin{split} s_{\hat{y}_0} &= s_e \sqrt{rac{1}{n} + rac{(x-x_0)^2}{\sum_{i=1}^n (x_i - ar{x})^2}} \ s_e &= \sqrt{rac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{rac{SSE}{n-2}} = \sqrt{MSE} \end{split}$$

然后用 $t_{lpha/2}$ 得到置信区间上下限为

$$\hat{y}_0 \pm t_{lpha/2} s_{\hat{y}_0}$$

2. 个别值的预测区间估计

先求标准差,和置信区间的表达式相比,根号下加上一个1。

$$s_{ind} = s_e \sqrt{1 + rac{1}{n} + rac{(x - x_0)^2}{\sum_{i=1}^n (x_i - ar{x})^2}}$$

预测区间比置信区间要宽一点。

11.4 残差分析

11.4.1 残差与残差图

残差是观测值 y_i 与回归方程求出的预测值 \hat{y}_i 之差,即 $e_i = y_i - \hat{y}_i$ 。

11.4.2 标准化残差

$$z_{e_i} = rac{e_i}{s_e} = rac{y_i - \hat{y}_i}{s_e}$$

如果误差项 ε 服从正态分布,那么标准化残差的分布也服从正态分布,在标准化残差的图中,大约 95% 的标准化残差在 [-2,2]。