1. Gegeben sind die Datenpaare (x/y)

- a) Bestimme die untenstehenden Summen anhand einer Arbeitstabelle.
- b) Gib die Datenpaare in den Taschenrechner ein und berechne durch Ablesen der Summenregister die Summen $\sum x_i = \sum x_i^2$ $\sum y_i \qquad \sum y_i^2$

2. Varianzberechnung

Für die quadrierte Summe wird auch das Symbol Sxx verwendet:

$$S_{xx} = \sum_{j=1}^{n} (x_j - \overline{x})^2$$

Es gilt $s_x^2 = \frac{S_{xx}}{n-1}$ (= Stichprobenvarianz) resp $S_{xx} = (n-1) \cdot s_x^2$

Ist nur eine Variable im Spiel, so schreibt man auch bloss s^2 .

- a) Verifiziere die Gleichheit der Formeln $S_{xx} = \sum_{j=1}^{n} (x_{j} \overline{x})^{2} = \sum_{j=1}^{n} x_{j}^{2} n \cdot \overline{x}^{2}$ mit den Zahlen 16, 18, 27, 35, 24 und beweise die Umformung allgemein.
- b) Berechne Sxx in Aufg 1) durch Eingabe in den TR und Verwendung der Σ -Register, verwende die Umformung aus a).
- Berechne wie in b) sinngemäss Syy.

3. Kovarianz

- a) Schreibe Sxy als Formel analog zur Formel aus 2) und rechne mit den Daten von Aufg.1).
- $s_{xy} = \frac{S_{xy}}{r_{xy}}$ ist die **Kovarianz** (gemeinsame Varianz von x und y), Berechne s_{xy} . b)
 - Bedeutung der Kovarianz: Die Summe Sxy summiert die Abweichungsrechtecke von den Mittelwerten. Die Kovarianz ist ein Mass des Zusammengehens der x- und y – Werte. Beachte, dass die Kovarianz ein Vorzeichen hat. Näheres dazu siehe Kapitel lineare Regression
- 4. Berechne die Summen

a)
$$\sum_{j=1}^{n} \left(x_{j} - \overline{x} \right)$$

a)
$$\sum_{j=1}^{n} \left(x_{j} - \overline{x} \right)$$
 b)
$$\frac{1}{n} \sum_{j=1}^{n} \left[\left(x_{j} - \overline{x} \right)^{2} - x_{j}^{2} \right]$$

5. Gegeben sind die n = 4 Daten xi: 3, 7, 11, 4

Bestimme eine mittlere Grösse c so, dass die Summe $S = \sum_{i=1}^{n} (x_i - c)^2$ kleinstmöglich wird.

Wie lautet das Resultat allgemein für n Daten?

Was bedeutet dies für die Varianz?

6. Standardisierung: gegeben seien die Daten $x_1,...x_n$ Die Zahlen gebildet durch die

Transformation
$$z_i = \frac{x_{i-}\bar{x}}{s}$$
 heissen Standardisierung. Es gilt $\bar{z} = 0$ $s_z = 1$

Bestimme die Standardisierung der Zahlen aus Aufg 5.

Wenn n Daten xi i = 1, ..., n standardisiert sind, wie gross ist dann $\sum_{i=1}^{n} x_i^2$?

- 7. eine Variable y ist zusammengesetzt : $y_i = 8-5x_i$ i=1,...,n mit Mittelwert $\overline{x}=7$ und Standardabweichung $s_x = 4$ und n=51
 - a) berechne \overline{y} und s_y $\,$ b) berechne $\sum_{i=1}^n y_i^2$

Resultate:

- 1) a) 49 351 174 44001209
- 2) a) 230 b) Sxx = 50.875 c) Syy = 615.5

3) a) Sxy =
$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y} = 143.25$$
 b) 20.46

- 4) a) 0 b) $-\bar{x}^2$
- 5) $c = \overline{x}$
- 6) a) -0.9043 0.2087 1.3217 -0.6260 b) n-1
- 7) $\bar{y} = -27 \ s_y = 20 \ \sum y_j^2 = 57179$