Fonctions continues

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 24, 2024

Fonctions continues

1. Continuité en un point:

Définitions:

1. Soit f une fonction définie sur $I \subset \mathbb{R}$. On dit que f est continue en $x_0 \in I$ si

$$\lim_{x\to x_0}f(x)=f(x_0).$$

2. On dit que la fonction f est continue à droite en x_0 si

$$\lim_{\substack{x \to x_0}} f(x) = f(x_0).$$

3. De même, on dira que la fonction f est continue à gauche en x_0 si

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = f(x_0).$$

4. f est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0 .

C'est à dire

$$\lim_{\substack{x > x \to x_0}} f(x) = \lim_{\substack{x < x \to x_0}} f(x) = f(x_0).$$

5. f est cotinue en

$$x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \forall (x_n) \subset I/x_n \underset{n \to +\infty}{\to} x_0 \Rightarrow f(x_n) \underset{n \to +\infty}{\to} f(x_0).$$

Continuité sur un intervalle:

On dit que *f* est continue sur un intervalle *l* si elle est continue en tout point de *l*.

Notation: On note l'ensemble des fonctions continues par C(I).

Théorèmes fondamentales sur les fonctions continues:

Théorème 1. Toute fonction f continue sur un intervalle fermé borné [a, b] est une fonction bornée sur [a, b].

Théorème 2. Toute fonction f continue sur un intervalle fermé borné [a,b] atteint au moins une fois ses bornes, autrement dit $\exists x_1, x_2 \in [a,b]/f(x_1) = \sup_{x \in [a,b]} f(x), f(x_2) = \inf_{x \in [a,b]} f(x)$.

Théorème 3: (théorème des valeurs intermédiaires)

$$\begin{cases} f \text{ continue sur } [a, b] \\ f(a).f(b) < 0 \end{cases} \Rightarrow \exists c \in [a, b] \text{ telque } f(c) = 0.$$

Prolongement par continuité:

Soit f une fonction définie sur un intervalle I sauf peut être en $x_0 \in I$. Supposons que f ait une limite finie I au point x_0 , la fonction f définie par

$$\widetilde{f}(x) = \begin{cases} f(x), & \text{si } x \in I \setminus \{x_0\} \\ I, & \text{si } x = x_0 \end{cases}.$$

coïncide avec f sur $I \setminus \{x_0\}$ et continue en x_0 . On dira que \widetilde{f} est un prolongement par continuité de f au point x_0 .

Contnuité uniformed'une fonction sur un intervalle

Définition: Une fonction *f* définie sur un intervalle *l* est dite uniformement continue sur *l* si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x', x'' \in I(|x' - x''| < \eta \Rightarrow |f(x') - f(x'')| < \varepsilon).$$

 η ne dépend que de ε seulement.

Remarque:

- 1. Toute fonction uniformement continue sur *I* est une fonction continue sur *I*. L'inverse est faux.
- 2. La continuité uniforme est la continuité sur tout l'intervalle, alors que la continuité sur l'intervalle I est la continuité en tout point de l'intervalle (η dépend de ε et x_0).

Théorème de Heine:

Soit f une fonction définie sur un intervalle fermé bornée [a, b] alors

f est continue sur $[a, b] \Leftrightarrow f$ est uniformement continue sur [a, b].

Fonctions Lipschitzienne:

Définition 1: Soit $f: I \to \mathbb{R}$ est dite Lipschitzienne, si

$$\exists k \geq 0, \forall x', x'' \in I; \left| f\left(x'\right) - f\left(x''\right) \right| \leq k \left| x' - x'' \right|.$$

Définition 2: Soit $f: I \to \mathbb{R}$ est dite contractante si elle est Lipschitzienne avec $0 \le k < 1$.

Théorème: Toute fonction Lipschitzienne est uniformement continue.

Théorème du point fixe:

Soit f une fonction continue sur [a,b] et prend ses valeurs dans [a,b] $(f:[a,b] \to [a,b])$, alors il existe au moins un point $x_0 \in [a,b]$ tel que $\in f(x_0) = x_0$.

c'est à dire la droite y = x rencontre le graphe de f.

Théorème 1: Soit $f : [a, b] \rightarrow [a, b]$ une fonction contractante, alors f admet un point fixe et un seule.

Fonctions inverses des fonctions continues monotones sur /

Théorème des fonctions inverses:

Si la fonction f est continue et strictement monotone sue I alors l'application $f: I \to f(i)$ est bijective et $f^{-1}: f(I) \to I$ est continue et monotone sur f(I) (la même monotonie que f)

Fonctions trigonométriques inverses:

1. Fonction $X \mapsto \arcsin X$:

Soit

$$f: \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \rightarrow \begin{bmatrix} -1, 1 \end{bmatrix}$$

 $X \mapsto f(X) = \sin X$

f est continue sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ donc elle admet un inverse défini par

$$\begin{array}{cccc} f^{-1} & [-1,1] & \to & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ y & \mapsto & f^{-1}\left(y\right) = \arcsin y \end{array}$$

D'où on a

$$\begin{pmatrix} y = \sin x \\ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{pmatrix} \Leftrightarrow \begin{pmatrix} x = \arcsin y \\ y \in [-1, 1] \end{pmatrix}$$

On a $\arcsin 0 = 0$, $\arcsin 1 = \frac{\pi}{2}$, $\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{3}$, $\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.

2. Fonction $x \mapsto \arccos x$: Soit

$$f: [0,\pi] \rightarrow [-1,1]$$

 $x \mapsto f(x) = \cos x$

f est continue sur $[0,\pi]$ et strictement décroissante sur $]0,\pi[$ donc elle admet un inverse défini par

$$f^{-1}$$
 $\begin{bmatrix} -1,1 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 0,\pi \end{bmatrix}$
 y \mapsto $f^{-1}(y) = \operatorname{arccos} y$

D'où on a

$$\begin{pmatrix} y = \cos x \\ x \in [0, \pi] \end{pmatrix} \Leftrightarrow \begin{pmatrix} x = \arccos y \\ y \in [-1, 1] \end{pmatrix}$$

On a $\arccos 0 = \frac{\pi}{2}$, $\arccos 1 = 0$, $\arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}$, $\arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.

3. Fonction $x \mapsto arctgx$:

Soit

$$f:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$$

 $x \mapsto f(x) = \cos x$

f est continue sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ et strictement croissante sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ donc elle admet un inverse défini par

$$f^{-1}$$
 \mathbb{R} \rightarrow $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$
 $y \mapsto f^{-1}(y) = arctgy$

D'où on a

$$\begin{pmatrix} y = tgx \\ x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow \begin{pmatrix} x = arctgy \\ y \in \mathbb{R} \end{pmatrix}$$

On a arctg0 = 0, $arctg1 = \frac{\pi}{4}$, $arctg(+\infty) = \frac{\pi}{2}$, $= arctg(-\infty) = -\frac{\pi}{2}$.

Fonctions hyperboliques et leur inverses:

1. Fonction sh et ch:

Définition: On appelle sinus hyperbolique (resp. cosinus hyperbolique) la fonction notée

$$shx = \frac{e^x + e^{-x}}{2}$$
 (resp. $chx = \frac{e^x - e^{-x}}{2}$).

Variation:

ch étant paire et *sh* étant impaire, on peut se borner à les étudier dans l'intervalle $[0, +\infty[$.

La fonction *ch* est toujours positive.

La fonction *sh* est positive si x > 0 car $shx = \frac{e^x}{2} (1 - e^{-2x}) > 0$ si x > 0.

(chx)' = shx et (shx)' = chx.

La fonction *chx* est strictement croissante sur $]0, +\infty[$ et la fonction *shx* est strictement croissante sur $[0, +\infty[$.

2. Fonction tangente hyperbolique:

On appelle fonction tangente hyperbolique (resp. cotangente hyperbolique) la fonction définie et notée par

$$thx = \frac{shx}{chx}, x \in \mathbb{R}(\text{ resp. } cothx = \frac{chx}{shx}, x \in \mathbb{R}^*).$$

Variation:

$$(thx)' = \frac{1}{(chx)^2} > 0, (\coth x)' = \frac{1}{(shx)^2} > 0.$$

 $\lim_{x \to +\infty} thx = 1 \text{ et } \lim_{x \to +\infty} \cot hx = 1.$

Fonctions hyperboliques inverses:

1. Fonction arg chx:

La fonction chx est continue et strictement croissante sur $]0, +\infty[$ donc elle admet une fonction inverse continue et strictement croissante appelée argument cosinus hyperbolique notée $arg\ chx$.

On a
$$x = chy \Leftrightarrow y = \arg chx, y \geq 0$$
.

Expression au moyen de logarithme

$$y = \arg chx \Leftrightarrow x = chy \text{ et } shy = \sqrt{ch^2x - 1} = \sqrt{x^2 - 1},$$
 or $chy + shy = e^y$ i.e. $x + \sqrt{x^2 - 1} = e^y \Leftrightarrow y = \ln\left(x + \sqrt{x^2 - 1}\right).$ d'où

$$\arg chx = \ln\left(x + \sqrt{x^2 - 1}\right).$$

2. Fonction arg shx:

La fonction shx est continue et strictement croissante sur $[0, +\infty]$ donc elle admet une fonction inverse continue et strictement croissante appelée argument sinus hyperbolique notée $arg\ shx$. On a $x = shy \Leftrightarrow y = arg\ shx$, y > 0.

Expression au moyen de logarithme

$$y = \arg shx \Leftrightarrow x = shy \text{ et } chy = \sqrt{sh^2x + 1} = \sqrt{x^2 + 1},$$
 or $chy + shy = e^y \text{ i.e. } \sqrt{x^2 + 1} + x = e^y \Leftrightarrow y = \ln\left(x + \sqrt{x^2 + 1}\right).$ d'où

$$\arg shx = \ln \left(x + \sqrt{x^2 + 1} \right).$$

3. Fonction arg thx:

La fonction *thx* est continue et strictement croissante sur \mathbb{R} donc elle admet une fonction inverse continue et strictement croissante sur]-1,1[appelée argument tangente hyperbolique notée $\arg thx$. On a $x=thy\Leftrightarrow y=\arg thx, x\in]-1,1[$.

Expression au moyen de logarithme

$$y = \arg thx \Leftrightarrow x = thy \ y = \arg thx \Leftrightarrow x = thy = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}} \Leftrightarrow x = \frac{1 - e^{-2y}}{1 + e^{-2y}} \Leftrightarrow x \left(1 + e^{-2y}\right) = 1 - e^{-2y}$$

$$\Leftrightarrow (x+1) e^{-2y} = 1 - x \Leftrightarrow e^{-2y} = \frac{1 - x}{1 + x} \Leftrightarrow e^{2y} = \frac{1 + x}{1 - x}$$

$$\Leftrightarrow 2y = \ln\left(\frac{1 + x}{1 - x}\right) \Leftrightarrow y = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right), |x| < 1.$$

ďoù

$$\arg thx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), |x| < 1.$$

