

Diodes - 2

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: shadman9085@gmail.com

Topics Covered

- Diode Logic OR operation
- Diode Logic AND operation
- Diode Logic circuits and operation
- Exponential Converter
- Logarithmic Converter
- Multiplier
- Divider

Review: Ideal Diode Model

OFF State: Open circuit

$$i_D = 0$$

$$+ v_D -$$

$$(v_D < 0, i_D = 0)$$

ON State: Short circuit

Modeling the real diode

- 1. Ideal diode model
- 2. Constant voltage drop (CVD) model
- 3. CVD+R model

OFF State: Open circuit

$$\begin{array}{c}
i_D = 0 \\
+ v_D - \\
\end{array}$$

$$(v_D < V_{D0}, i_D = 0)$$

ON State: Voltage source

$$\begin{array}{c|c}
 & i_D + V_{D0} - \\
 & + v_D - \\
\end{array}$$

$$(i_D > 0, v_D = V_{D0})$$

Modeling the real diode

- 1. Ideal diode model
- 2. Constant voltage drop (CVD) model

3. CVD+R model

OFF State: Open circuit

$$\begin{array}{c}
i_D = 0 \\
+ v_D -
\end{array}$$

$$(v_D < V_{D0}, i_D = 0)$$

ON State: Voltage source

$$(i_D > 0, v_D = V_{D0} + i_D r_D)$$

Digital Representation

- Binary → Two states (0/False, 1/True)
- Binary variables in circuit, need to use two states of device/parameters

 Voltage
 Current
 State

 5∨ → 1
 0∨ → 0

Logic Truth Table

INPUTS		OUTPUT
Х	Υ	z
0	0	0
0	1	1
1	0	1
1	1	1

Voltage Truth Table

INPUTS		OUTPUT
×	Y	z
0 V	0 V	0 V
0 V	5 V	5 V
5 V	0 V	5 V
5 V	5 V	5 V

Low/False High/True

Logic Levels: 0

Corresponding voltage levels: 0V 5V

Voltage Truth Table

INPUTS	OUTPUT
X Y	z
0 V 0 V	0 V
0 V 5 V	5 V
5 V 0 V	5 V
5 V 5 V	5 V

PULL DOWN NETWORK

When all inputs are completely disconnected, v_0 is pulled down to GND

Degrades the HIGHEST output voltage

Ideal diode

$$Z = 5 V$$

CVD diode

Ideal diode

$$\begin{array}{c|c}
0 & V & \bigcirc & I & = 0 \\
0 & V & \bigcirc & I & = 0
\end{array}$$

$$Z = 0 V$$

CVD diode

Ideal diode

$$Z = 5 V$$

Degraded 5 V

CVD diode

CVD diode

What if the diodes have different V_{DO} ?

$$V_{D1} = 1 \text{ V}$$

$$V_{D2} = 0.7 \text{ V}$$

$$V_{D3} = 0.5 \text{ V}$$

CVD diode

$$V_{D1} = 1 \text{ V}$$

$$V_{D2} = 0.7 \text{ V}$$

$$V_{D3} = 0.5 \text{ V}$$

CVD diode

What if the input voltages are different?

$$V_{D1} = 1 \text{ V}$$

$$V_{D2} = 0.7 \text{ V}$$

$$V_{D3} = 0.5 \text{ V}$$

CVD diode

What if the input voltages are different?

Highest (possible – and consistent) voltage here!

$$V_{D1} = 1 \text{ V}$$

$$V_{D2} = 0.7 \text{ V}$$

$$V_{D3} = 0.5 \text{ V}$$

$$Z = 4.5 V$$

Logic Truth Table

INPUTS		OUTPUT
Х	Υ	Z
0	0	0
0	1	0
1	0	0
1	1	1

Logic Levels:

Voltage Truth Table

INF	PUTS	OUTPUT
X	Y	Z
0 V	0 V	0 V
0 V	5 V	0 V
5 V	0 V	0 V
5 V	5 V	5 V

Low/False

0

Corresponding voltage levels: 0V

High/True

1

5V

Logical Operations with Diode (AND) $V_{DD}=5~\mathrm{V}$ Voltage Truth Table **INPUTS** OUTPUT X Z XO $v_{ m O}$

When all inputs are completely disconnected, $oldsymbol{v_0}$ is <u>pulled up</u> to $oldsymbol{V_{DD}}$

PULL UP NETWORK

Degrades the **LOWEST** output voltage

Ideal diode

CVD diode

Ideal diode

Ideal diode

$$Z = 0 V$$

CVD diode

Both diodes have same V_{DO}

CVD diode

What if the diodes have different V_{DO} ?

$$V_{D1} = 1 \text{ V}$$

$$V_{D2} = 0.7 \text{ V}$$

$$V_{D3} = 0.5 \text{ V}$$

 $V_{DD}=5~
m V$

CVD diode

What if the diodes have different V_{DO} ?

$$V_{D1} = 1 \text{ V}$$

$$V_{D2} = 0.7 \text{ V}$$

$$V_{D3} = 0.5 \text{ V}$$

 $+ v_d -$

voltage here!

Effect of input Voltage Variation in Logic Gates (AND)

Example 5: Find the value of Vo

$$V_{01} = V_1 \text{ OR } V_2 = V_1 | V_2$$

$$V_{02} = (V_{01} \text{ OR } \mathbf{0}) = V_{01} = V_1 | V_2$$

** In CVD diode models, we are assuming that all diodes have equal drop.

Suppose: $V_1 = 3 \text{ V}, V_2 = 2 \text{ V}.$

For Ideal diodes assumption:

 $V_{O1} = V_1 \text{ OR } V_2 \rightarrow \text{Largest Value of the inputs}$

$$V_{01} = 3 \text{ V}$$

$$V_{O2} = (V_{O1} \text{ OR } 0) = V_{O1} = 3 \text{ V}$$

For CVD diodes assumption:

 $V_{O1} = V_1 \text{ OR } V_2 \rightarrow \text{Largest Value of the inputs - } V_{D0}$

$$\therefore V_{O1} = (3 - V_{DO}) V$$

$$V_{O2} = (V_{O1} \text{ OR } 0) = V_{O1} - V_{DO} = (3 - 2 V_{DO}) V$$

$$V_{01} = V_1 \; \text{AND} \; V_2 = V_1 \cdot \; V_2$$
 $V_{02} = (V_{01} \; \text{AND} \; \mathbf{5}) = V_{01} = V_1 \cdot \; V_2$

Suppose: $V_1 = 3 \text{ V}$, $V_2 = 1.5 \text{ V}$.

For Ideal diodes assumption:

 $V_{O1} = V_1 \text{ AND } V_2 \rightarrow \text{Smallest Value of the inputs}$

$$V_{01} = 1.5 \text{ V}$$

$$V_{02} = (V_{01} \text{ AND 5}) = V_{01} = 1.5 \text{ V}$$

For CVD diodes assumption:

 $V_{O1} = V_1 \text{ AND } V_2 \rightarrow \text{Smallest Value of the inputs } + V_{D0}$

$$V_{O1} = (1.5 + V_{DO}) \text{ V}$$

$$V_{02} = (V_{O1} \text{ AND 5}) = V_{O1} + V_{DO} = (1.5 + 2 V_{D0}) \text{ V}$$

^{**} In CVD diode models, we are assuming that all diodes have equal drop.

Express V_0 as a Boolean expression of V_1, V_2, V_3 and V_4

$$V_O = (V_1 \cdot V_2) | (V_3 \cdot V_4)$$

$$V_O = (V_1 \text{AND } V_2) \text{ OR } (V_3 \text{ AND } V_4)$$

Real diode

I-V characteristics of a real diode

Relation between diode current and diode voltage:

$$i_D = I_S \left(e^{\frac{v_D}{\eta V_T}} - 1 \right)$$

Anode
$$(v_A)$$
 Cathode (v_C)

$$\downarrow i_D + v_D -$$

 η is called the ideality factor (try to recall, you measured this in the lab!)

Exponential (Anti-log) Converter

$$I_f = I_S \exp\left(\frac{V_i - 0}{V_T}\right)$$

$$\frac{0 - V_O}{R_f} = I_S \exp(\frac{V_i}{V_T})$$

$$V_{O} = I_{s}R_{f} \cdot \exp(\frac{V_{i}}{V_{T}})$$

Logarithmic Amplifier

$$I_f = I_S \exp\left(-\frac{V_O}{V_T}\right)$$

$$\frac{V_i}{R_1} = I_S \exp(-\frac{V_O}{V_T})$$

$$\frac{V_i}{I_S R_1} = \exp(-\frac{V_O}{V_T})$$

$$V_{O} = -V_{T} \cdot \ln \left(\frac{V_{i}}{I_{S}R_{1}} \right)$$

APPLICATIONS:

$$\begin{cases}
R_f = 0.025 \text{ V} \\
R_f = \frac{1}{I_s} \text{ k}
\end{cases}$$

Implementing operational functions

$$f = -\frac{1}{3} \int x \cdot dt + 2 \ln y + 4z = -\left(\frac{1}{3} \int x dt - 2 \ln(y) - 4z\right)$$

APPLICATIONS:

Implementing operational functions

$$f = -3\frac{dx}{dt} + 2\exp(y) + 4z$$

Multiplier

$$f = xy$$

$$\ln(f) = \ln(xy) = \ln(x) + \ln(y)$$

$$f = \exp(\ln(x) + \ln(y))$$

$$1 \cdot R_f = 1$$

So, $f = \exp(z)$ where $z = \ln(x) + \ln(y)$

Divider

$$f = xy/z$$

$$\ln(f) = \ln(xy/z) = \ln(x) + \ln(y) - \ln(z)$$

$$f = \exp(\ln(x) + \ln(y) - \ln(z))$$

So,

$$f = \exp(z)$$
 where $z = \ln(x) + \ln(y) - \ln(z)$

