MA 101 (Mathematics I)

Multivariable Calculus: Tutorial Problem Set - 1

- 1. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Show that $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$ iff $\mathbf{y} = \mathbf{0}$ or $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \ge 0$.
- 2. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and r, s > 0. Show that $B_r[\mathbf{x}] \cap B_s[\mathbf{y}] \neq \emptyset$ iff $\|\mathbf{x} \mathbf{y}\| \leq r + s$.
- 3. Let (\mathbf{x}_n) be a sequence in \mathbb{R}^m . Show that (\mathbf{x}_n) converges in \mathbb{R}^m iff for each $\mathbf{x} \in \mathbb{R}^m$, the sequence $(\mathbf{x}_n \cdot \mathbf{x})$ converges in \mathbb{R} .
- 4. State TRUE or FALSE with justification for each of the following statements.
 - (a) If (\mathbf{x}_n) is a sequence in \mathbb{R}^m having no convergent subsequence, then it is necessary that $\lim_{n\to\infty} \|\mathbf{x}_n\| = \infty$.
 - (b) If $((x_n, y_n))$ is a bounded sequence in \mathbb{R}^2 such that every convergent subsequence of $((x_n, y_n))$ converges to (0, 1), then $((x_n, y_n))$ must converge to (0, 1).
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{xy}{x^2 y^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{if } x^2 = y^2. \end{cases}$ Determine all the points of \mathbb{R}^2 where f is continuous.
- 6. Let α , β be positive real numbers and let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Show that f is continuous iff $\alpha + \beta > 1$.
- 7. Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ and let $(x_0, y_0) \in S$. Let $A = \{x \in \mathbb{R} : (x, y_0) \in S\}$ and $B = \{y \in \mathbb{R} : (x_0, y) \in S\}$. Define $\varphi(x) = f(x, y_0)$ for all $x \in A$ and $\psi(y) = f(x_0, y)$ for all $y \in B$. If f is continuous at (x_0, y_0) , then show that $\varphi: A \to \mathbb{R}$ is continuous at x_0 and $\psi: B \to \mathbb{R}$ is continuous at y_0 . Is the converse true? Justify.
- 8. If $S = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 3\}$, then determine (with justification) S^0 .