

WHAT IS CLAIMED IS:

1 1. A method for operating an engine control module having a
2 volatile memory and a first non-volatile memory, the engine control module
3 operable for copying data between the memories, such as calibration data used to
4 control operation of the engine, the method comprising:

5 partitioning the volatile memory and the first non-volatile memory
6 into user-changeable and non-user-changeable portions, the portions including
7 calibration data for use by the engine control module to control an engine; and

8 copying only the user-changeable portion of the volatile memory to
9 the first non-volatile memory for storage in response to changing of the calibration
10 data stored at the volatile memory.

1 2. The method of claim 1 further comprising backing up the
2 user-changeable portion of the first non-volatile memory prior to receiving the
3 changed calibration data, the backing up comprising copying only the user-
4 changeable portion of the first non-volatile memory to a second non-volatile memory
5 for storage.

1 3. The method of claim 2 wherein the backing up comprises
2 compressing the user-changeable portion of the first non-volatile memory prior to
3 copying to the second non-volatile memory, the second-volatile memory
4 correspondingly storing a compressed version of the user-changeable portion of the
5 first non-volatile memory.

1 4. The method of claim 2 further comprising verifying the
2 calibration instruction copied to the first non-volatile memory prior to backing up
3 the calibration data to the second non-volatile memory.

1 5. The method of claim 4 further comprising copying to the
2 volatile memory in response to rebooting of the engine control module one of (i) the
3 user-changeable and non-user-changeable portions of the first non-volatile memory

4 or (ii) the entire second non-volatile memory and the non-user-changeable portion
5 of the first non-volatile memory.

1 6. The method of claim 5 wherein the user-changeable and
2 non-user-changeable portions of the first non-volatile memory is copied to the
3 volatile memory if the first non-volatile memory is without defects.

1 7. The method of claim 5 wherein the entire second non-volatile
2 memory and the non-user-changeable portion of the first non-volatile memory are
3 copied to the volatile memory if the first non-volatile memory is defective.

1 8. The method of claim 5 further comprising uncompressing the
2 entire second non-volatile memory if copied to the volatile memory.

1 9. The method of claim 1 wherein partitioning the memory
2 comprises predefining which portions of the memory includes data which may be
3 changed based on the engine operation controlled by the data.

1 10. A method for limiting memory failure of a engine control
2 module, the method comprising:

3 partitioning a volatile memory and a first non-volatile memory of the
4 engine control module into user-changeable and non-user-changeable portions, the
5 portions including calibration data for use by the engine control module to control
6 an engine; and

7 copying only the user-changeable portion of the volatile memory to
8 the user-changeable portion of the first non-volatile memory in response to changing
9 of the calibration data stored at the volatile memory to limit memory failure due to
10 repeatedly copying the calibration data to the first non-volatile memory.

1 11. The method of claim 10 further comprising backing up the
2 user-changeable portion of the first non-volatile memory prior to receiving the
3 changed calibration data, the backing up comprising copying only the user-

4 changeable portion of the first non-volatile memory to a second non-volatile memory
5 for storage.

1 12. The method of claim 11 wherein the backing up comprises
2 compressing the user-changeable portion of the first non-volatile memory prior to
3 copied to the second non-volatile memory, the second-volatile memory
4 correspondingly storing a compressed version of the user-changeable portion of the
5 first non-volatile memory.

1 13. The method of claim 11 further comprising verifying the
2 calibration instruction copied to the first non-volatile memory prior to backing up
3 the calibration data to the second non-volatile memory.

1 14. The method of claim 13 further comprising copying to the
2 volatile memory in response to rebooting of the engine control module one of (i) the
3 user-changeable and non-user-changeable portions of the first non-volatile memory
4 or (ii) the entire second non-volatile memory and the non-user-changeable portion
5 of the first non-volatile memory.

1 15. The method of claim 14 wherein the user-changeable and
2 non-user-changeable portions of the first non-volatile memory is copied to the
3 volatile memory if the first non-volatile memory is without defects.

1 16. The method of claim 14 wherein the entire second non-volatile
2 memory and the non-user-changeable portion of the first non-volatile memory are
3 copied to the volatile memory if the first non-volatile memory is defective.

1 17. The method of claim 14 further comprising uncompressing the
2 entire second non-volatile memory if copied to the volatile memory.

1 18. The method of claim 10 wherein partitioning the memory
2 comprises predefining which portions of the memory include data which may be
3 changed based on the engine operation controlled by the data.

1 19. An engine control module for controlling an internal
2 combustion engine, the engine control module comprising:

3 a processor for executing instruction to control the engine;
4 a first non-volatile memory having first and second partitions, the
5 first partition storing engine calibration data classified as user-changeable, the
6 second partition storing engine calibration data classified a non-user-changeable;

7 a volatile memory that is loaded with the contents of both the first and
8 second non-volatile memory partitions at reset of the engine control module such
9 that the engine control module operates using the volatile memory wherein the
10 processor executes data to control the engine in accordance with the user-changeable
11 and non-user-changeable parameters;

12 wherein, in response to the changing of the user-changeable engine
13 calibration data in the volatile memory, the engine controller is configured to copy
14 only the user-changeable engine calibration data from the volatile memory to the
15 first partition of the first non-volatile memory.

1 20. The engine control module of claim 19 further comprising a
2 second non-volatile memory, the engine control module configured to verify the
3 changes to the changed first-partition and to copy the changed first partition of the
4 non-volatile memory to the second non-volatile memory if the changes are verified.