

INTERNATIONAL COLLEGE OF PHARMACEUTICAL INNOVATION 国际创新药学院

Fundamentals of Medicinal and Pharmaceutical Chemistry

FUNCHEM.24 Molecularities of reactions, reaction mechanisms and reaction orders and the Arrhenius equation.

Professor Dan Wu

DATE: 6 December 2024

Learning Objectives

- In terms of reaction mechanisms, define 'reaction mechanism', 'elementary step', 'rate determining step' and 'molecularity'.
- Deduce the order of a reaction from a single step reaction.
- Deduce the order of a reaction from the rate determining step of a multi-step mechanism.
- Draw and explain an energy profile diagram for a single step and multi-step mechanism, clearly indicating activation energy and enthalpy change involved.
- Recall the Arrhenius equation, both in exponential and natural log form, clearly defining all parameters.
- Given a set of data of rate constants versus temperature, employ the Arrhenius equation in graphical form, to work out the activation energy and frequency factor.

Factors Affecting Reaction Rates

- 1. Concentration of reactants e.g. use of penicillin
 - Experimental Rate Equation
- 2. **Temperature** e.g. fever, open heart surgery, surface anaesthetic Arrhenius Equation
- 3. Catalysis e.g. biological enzymes
- 4. Surface area e.g. chewing, bile, crushed aspirin!

Reaction Mechanisms

In general:

Overall Balanced Chemical Equation

Overall:
$$2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$$

- does not tell you how the reaction takes place.
- represents the sum of a series of simple reactions - elementary steps

Reaction Mechanisms – An Example

Overall:
$$2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$$

Mechanism

Step 1
$$2NO_{(g)} \longrightarrow N_2O_{2(g)}$$

Step 2
$$N_2O_{2(g)} + O_{2(g)} \longrightarrow 2NO_2$$

Overall:
$$2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$$

(same as above)

Definitions

Reaction Mechanism

- tells you the sequence of elementary steps that leads to product formation.

Elementary Step

- each individual step in the overall reaction.

Molecularity

- tells you the number of molecules reacting in an elementary step.

Definitions

Unimolecular = 1 reactant

Bimolecular = 2 reactants

Termolecular = 3 reactants

Most reactions are <u>multi-step</u> i.e. made up of a sequence of elementary steps

- 1. The slowest elementary step is the RATE DETERMINING STEP (RDS)
- 2. The order of reaction is deduced from this step

Mechanism

Rate equations and reaction mechanisms

For a **single step** reaction mechanism, reaction order can be predicted directly from the stoichiometry.

Examples of single step mechanisms

1. A ----- P

Rate depends only on [A]

Rate = k[A] (1st order)

More examples of single step mechanisms

Rate =
$$k[A][B]$$
 (2nd order)

Rate =
$$k[A]^2$$
 (2nd order)

4.
$$2A + B \longrightarrow P$$

Rate =
$$k[A]^2[B]$$
 (3rd order)

Rate equations and reaction mechanisms

If given a multi-step reaction mechanism and if told which is the rate-determining step, you can deduce the rate law.

RDS	Molecularity	Rate Law
A	Unimolecular	Rate = k[A]
A + A X	Bimolecular	Rate = k[A] ²
2A + B → X	Termolecular	Rate = k[A] ² [B]

Reaction orders and mechanisms

If you know the rate equation, you can predict the mechanism.....

Example:

Overall Reaction : $A_2 + B_2 \longrightarrow 2AB$

Rate Equation : Rate $=k[A_2]^1$

 $A_2 + B_2 \longrightarrow 2AB$

Told: Rate = $k[A_2]^1$

Which mechanism is correct?

1.
$$A_2 + B_2 \longrightarrow 2AB$$
 SLOW

2.
$$B_2 \longrightarrow 2B$$
 SLOW
$$2B + A_2 \longrightarrow 2AB$$
 FAST

3.
$$A_2 \longrightarrow 2A$$
 SLOW $2A + B_2 \longrightarrow 2AB$ FAST

Answer: Work out rate equation for RDS for each

3. Rate =
$$k[A_2]^1$$

.. 3 is correct mechanism

Energy Profile Diagram What happens during a reaction?

- Reactant molecules collide.
 Bonds between atoms in molecules break.
 Energy required.
- Activated complex: cannot be isolated, (very short-lived). May form products or may revert to reactants.
- 3. Products forming. Bonds are being made. Energy released. Exothermic reaction.

Energy Profile Diagrams

A Multi-Step Reaction

Overall Reaction: CH₃CH=CH₂ + HBr → CH₃CHBrCH₃

Mechanism:

1.
$$CH_3CH=CH_2 + HBr \longrightarrow CH_3CH+CH_3 + Br^{-1}$$

2.
$$CH_3CH^+CH_3 + Br^- \longrightarrow CH_3CHBrCH_3$$

A Multi-Step Reaction

Mechanism:

1.
$$CH_3CH=CH_2 + HBr \longrightarrow CH_3CH+CH_3 + Br^{-1}$$

2.
$$CH_3CH^+CH_3 + Br^- \longrightarrow CH_3CHBrCH_3$$

Reaction Progress

Summary so far

1. Single-step reaction mechanism

$$A + 2B \rightarrow C$$

Look at balanced equation Deduce rate equation

Rate = $k[A][B]^2$

Summary so far

2. Multi-step reaction mechanism

Look at mechanism

Find the rate-determining (slow) step

Deduce rate equation from the slow step

Mechanism

$$A+B \rightarrow X+X$$
 (slow)
 $X+B \rightarrow Y$ (fast)
 $X+Y \rightarrow C$ (fast)
Rate = k[A][B]

Collision Theory and Arrhenius Equation

Rate of Reaction depends on:

- * Orientation of molecules
- * Number/frequency of collisions
- * Energy of collisions

Linked by Arrhenius equation

 $k = Ae^{-Ea/RT}$

Collision Theory and Arrhenius Equation

Arrhenius studied reaction rates as a function of temperature, and in 1889 he introduced the concept of activation energy as the critical energy that chemicals need to react.

Collision Theory and Arrhenius Equation

Activation Energy

Arrhenius: molecules must possess a minimum amount of energy to react.

Why?

In order to form products, bonds must be broken in the reactants.

Bond breakage requires energy.

Activation energy, E_a , is the minimum energy required to initiate a chemical reaction.

$k = Ae^{-Ea/RT}$

k = rate constant

A = frequency factor

e = exponential

E_a = experimental activation energy

R = gas constant

T = temperature

$$k = Ae^{-Ea/RT}$$

Since
$$k = Ae^{-Ea/RT}$$

$$\ln k = \ln A - \underline{Ea} \\
 RT$$

$$\ln k = -\underline{Ea} \cdot \underline{1} + \ln A \\
R \quad T$$

$$y = m x + c$$

$$k = Ae^{-Ea/RT}$$

If you measure rate constant at different temperatures, you can work out activation energy.

Example

$$\ln k = \ln A - \underline{Ea}$$
RT

Given how rate constant varies with temperature

T/Kelvin	500	520	540	560	580	600
k/10 ⁻⁸ s ⁻¹	1.29	8.20	45.3	231	977	3910

Find activation energy and frequency factor

1/T/K ⁻¹	2 x 10 ⁻³	1.9 x 10 ⁻³	1.85 x 10 ⁻³	1.78 x 10 ⁻³	1.72 x 10 ⁻³	1.66 x 10 ⁻³
Ink/10 ⁻⁸	-18.1	-16.3	-14.6	-12.9	-11.5	-10.1

Example: Answer

Using Arrhenius equation:

$$\ln k = -\frac{Ea}{R} \cdot \frac{1}{I} + \ln A \\
 R \quad T$$

$$y = m \quad x + c$$

In k

Intercept = In A

Slope =-
$$E_a$$

R

Summary of Kinetics So Far!

Reaction Rate Factors and Rate Equation

Reaction Order: Zero, First, Pseudo- First, Second

Determination of Reaction Order:

Initial Rates Method

Graphical method

Half Life Method

Collision Theory: Molecular Orientation

Frequency of Collisions

Energy of Collisions

Reaction mechanisms and energy profile diagrams

Arrhenius Equation: Work out activation energy

Learning Objectives

- In terms of reaction mechanisms, define 'reaction mechanism', 'elementary step', 'rate determining step' and 'molecularity'.
- Deduce the order of a reaction from a single step reaction.
- Deduce the order of a reaction from the rate determining step of a multi-step mechanism.
- Draw and explain an energy profile diagram for a single step and multi-step mechanism, clearly indicating activation energy and enthalpy change involved.
- Recall the Arrhenius equation, both in exponential and natural log form, clearly defining all parameters.
- Given a set of data of rate constants versus temperature, employ the Arrhenius equation in graphical form, to work out the activation energy and frequency factor.