Отчёт по теме 2

Грабовский А. С. группа 1191бНачало работы с SIMULINK

Simulink

Программа Simulink является приложением к пакету MATLAB.

Средства моделирования Simulink основываются на программных средствах MATLAB, но позволяют обойтись без использования в явном виде его языка и создавать модели из стандартных блоков в графическом виде. При необходимости дополнительные блоки могут быть написаны пользователем как на языке MATLAB, так и на других языках (C, VHDL и др.).

Сумматор

Блок Sum выполняет сложение или вычитание на его входных параметрах.

Этот блок может добавить или вычесть скаляр, вектор или матричные входные параметры.

Операции блока задаются параметром «List of signs» с помощью плюса (+) минуса (-), и spacer (|).

- Количество « + » и « » равняются количеству входных параметров. Например, « +-+ » требует трех входных параметров. Блок вычтет второй (средний) вход из первого (главного) входа, и затем добавит третий (нижний) вход.
- Символ « | » создает дополнительное пространство между портами на значке блока.
- При выполнении только сложения, можно использовать численное значение, равное количеству входных параметров.
- Если существует только один входной порт, один «+» или «-» произведёт соответствующую операцию по элементам во всех размерностях или в заданном измерении. [1] (Слегка перефразировал в некоторых моментах текст с docs.exponenta.ru, т.к. статья, представленная там − это, местами не понятный, автоматический переводом с английского)

Задание (вариант 1)

1. Построить сигнал:

$$A_k\sin(t)+B_k\sin(\omega_kt)$$
 $A_k=k$: 1 : $k+3$, $B_k=0$,05 k , $\omega_k=10k$, для k<10, иначе $B_k=0$,005 k , $\omega_k=k$

2. Отформатировать график: фон белый, линии графика: синяя и красная, сплошная, толщина 2

k – соответствует номеру варианта, следовательно A_{k} = 1:1:4, B_{k} = 0,05, ω_{k} = 10.

Синусоидальный сигнал генерируется блоком Sin Wave [2] по следующей формуле:

$$O(t) = Amp*Sin(Freq*t+Phase) + Bias$$

Следуя текущему заданию, первой синусоиде будут соответствовать следующие значения:

- $Amp = A_k$
- Freq = 1
- Phase = 0
- Bias = 0

Выставляем настройки:

Parameters	
Sine type: Time based	•
Time (t): Use simulation time	•
Amplitude:	
1:1:4	_]:
Bias:	
0	_[:
Frequency (rad/sec):	
1	:
Phase (rad):	
0	_]:
Sample time:	
0	_]:
✓ Interpret vector parameters as 1-D	

Второй синусоиде будут соответствовать следующие значения:

• $Amp = B_k$

- Freq = ω_k
- Phase = 0
- Bias = 0

Выставляем настройки:

Сигнал блоков «Sin Wave» суммируется блоком «Sum», после чего попадает в блок Gain [3] для усиления. Коэффициент усиления согласно заданию, выставлен на три. После чего сигнал визуализируется блоком осциллографа [4], получая следующий график:

Общий вид модели следующий:

Вывод: произведена графическая сборка модели из стандартных блоков, получен и отформатирован график синусоид.

Используема литература:

- 1. Добавление (exponenta.ru)
- 2. Sine wave (exponenta.ru)
- 3. Усиление (exponenta.ru)
- 4. Осциллограф (exponenta.ru)
- 5. Лабораторная работа: <u>Тема 2.pdf (ugrasu.ru)</u>