CheggSolutions - Thegdp

Chemistry: Estimation of Henry's Law Constant

Given Data and Introduction:

Mole fractions (\(x\)) and partial pressures (\(P\)) of methyl chloride at \(298 \, \text{K}\) are given in the table below to estimate Henry's law constant:

- \(x = 0.0005 \, \Rightarrow \, P = 0.27 \, \text{bar}\)
- \(x = 0.0009 \, \Rightarrow \, P = 0.48 \, \text{bar}\)
- \(x = 0.0019 \, \Rightarrow \, P = 0.99 \, \text{bar}\)
- \(x = 0.0024 \, \Rightarrow \, P = 1.24 \, \text{bar}\)

Explanation:

The relationship between the partial pressure of a gas and its mole fraction in a solution is given by Henry's law:

Henry's law: $\(P = k_H \cdot cdot x)$

where:

- \(P\) = Partial pressure of the gas (in bar)
- \(k_H\) = Henry's law constant (in bar)
- \(x\) = Mole fraction of the gas

Step-by-Step Calculations:

Step 1: Compute Henry's Law Constant for each given pair:

• For \(x = 0.0005\) and \(P = 0.27 \, \text{bar}\):

```
[k_H = \frac{P}{x} = \frac{0.27}{0.0005} = 540 \, \text{text{bar} \]}
```

Explanation: Dividing the partial pressure by the mole fraction to find (k_H) .

• For (x = 0.0009) and $(P = 0.48 \, \text{bar})$:

```
[k_H = \frac{P}{x} = \frac{0.48}{0.0009} = 533.33 \, \text{bar} ]
```

Explanation: Repeating the calculation to find \(k_H\) for the next data point.

• For (x = 0.0019) and $(P = 0.99 \, \text{bar})$:

```
[k_H = \frac{P}{x} = \frac{0.99}{0.0019} = 521.05 , \text{bar} ]
```

Explanation: Applying the same formula for the next pair.

• For \(x = 0.0024\) and \(P = 1.24 \, \text{bar}\):

```
[k_H = \frac{P}{x} = \frac{1.24}{0.0024} = 516.67 , \text{bar} ]
```

Explanation: Applying the same formula for the last pair.

Step 2: Calculate the average Henry's Law Constant:

• \[\text{Average} k_H = \frac{540 + 533.33 + 521.05 + 516.67}{4} = 527.76 \, \text{bar} \] Explanation: Summing up all individual \(k_H\) values and dividing by 4 (number of data points).

Final Solution:

The estimated Henry's law constant of methyl chloride at $(298 \ \text{K})$ is approximately $(527.76 \ \text{bar})$.