CLASSIFICATION ASSIGNMENT

PROJECT NAME: CHRONIC KIDNEY DISEASE

1.PROBLEM STATEMENT

MACHINE LEARNING - SUPERVISED LEARNING -CLASSIFICATION

2.DATASET

NUMER OF ROWS: 25

NUMBER OF COLUMNS:400

3.PREPROCESSING METHOD

THE CATEGORICAL VALUE IS CONVERTED BY NUMERICAL VALUE BY USING NOMINAL DATA. THEN USING get dummies IN PANDAS LIBRARY. INPUT/OUTPUT SPLITATION PROCESS

TEST/TRAINING SET CREATED.

4.MODEL

RANDOM FOREST CLASSIFICATION

```
print(cm)
[[50 1]
[ 1 81]]
from sklearn.metrics import classification report
clf report=classification report(Y test,y pred)
print(clf report)
                           recall f1-score
              precision
                                               support
           0
                   0.98
                             0.98
                                        0.98
                                                    51
           1
                   0.99
                             0.99
                                        0.99
                                                    82
                                        0.98
                                                   133
    accuracy
   macro avg
                   0.98
                             0.98
                                        0.98
                                                   133
weighted avg
                   0.98
                             0.98
                                        0.98
                                                   133
```

SVM CLASSIFICATION

print(cm)

[[51 0] [1 81]]

from sklearn.metrics import classification_report
clf_report=classification_report(Y_test,y_pred)

<pre>print(clf_report)</pre>	print	(clf	report)
------------------------------	-------	------	---------

	precision	on recall f1-scor		support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

DECISION TREE CLASSIFICATION

print(cm) interrupt the kernel

[[49 2] [8 74]]

from sklearn.metrics import classification_report
clf_report=classification_report(Y_test,y_pred)

print(clf_report)

	precision	recall	f1-score	support
0	0.86	0.96	0.91	51
1	0.97	0.90	0.94	82
accuracy			0.92	133
macro avg	0.92	0.93	0.92	133
weighted avg	0.93	0.92	0.93	133

LOGISTIC TREE CLASSIFICATION

print(cm)

[[51 0] [2 80]]

from sklearn.metrics import classification_report
clf_report=classification_report(Y_test,y_pred)
print(clf_report)

	precision	recall	f1-score	support	
0 1	0.96 1.00	1.00 0.98	0.98 0.99	51 82	
accuracy macro avg weighted avg	0.98 0.99	0.99 0.98	0.98 0.98 0.99	133 133 133	

SUPPORT VECTOR MACHINE CLASSIFICATION GIVES BETTER MODEL: 0.99