2021年度 日本留学試験(第1回)

試験問題

The Examination

2021年度 日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ 1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. 各科目の問題は、以下のページにあります。

科目	ページ		
物理	1	~	21
化学	23	~	37
生物	39	~	55

- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

Ⅲ 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 各問題には、その解答を記入する行の番号 **1 . 2 . 3** . …がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*	
名 前			

物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「物理」を解答する場合は、右のように、解答用紙にある「解答科目」の「物理」を○で囲み、その下のマーク欄をマークしてください。

<解答用紙記入例>
解答科目 Subject
物理 化 学 生 物 Physics Chemistry Biology
● ○ ○

科目が正しくマークされていないと、採点されません。

- 次の問い \mathbf{A} (問1), \mathbf{B} (問2), \mathbf{C} (問3), \mathbf{D} (問4), \mathbf{E} (問5), \mathbf{F} (問6) に答えなさ い。ただし、重力加速度の大きさを g とし、空気の抵抗は無視できるものとする。
 - なめらかな水平面上に質量 m_A の物体 A と質量 m_B の物体 B が接触して置かれてい る。次の図のように、Aに水平方向右向きに大きさ F_0 の力を加えたところ、AとBは一体となって等加速度運動を始めた。このとき、AがBから受ける水平方向の力の 大きさをFとする。

問1 $\frac{F}{F_0}$ はどのように表されるか。正しいものを、次の① \sim ④の中から一つ選びなさ 110 1

①
$$\frac{m_{\rm A}}{m_{\rm A} + m_{\rm B}}$$
 ② $\frac{m_{\rm B}}{m_{\rm A} + m_{\rm B}}$ ③ $\frac{m_{\rm A} + m_{\rm B}}{m_{\rm A}}$ ④ $\frac{m_{\rm A} + m_{\rm B}}{m_{\rm B}}$

B なめらかな水平面上に静止している質量mの小物体に、時刻t=0からt=Tの間、水平方向の力が作用した。力の向きは一定で、力の大きさFは時刻tとともに変化していた。次の図は、力の大きさFと時刻tの関係を示したグラフである。時刻t=Tにおける小物体の速さを v_T とする。

問2 v_T はどのように表されるか。正しいものを、次の① \sim ⑥の中から一つ選びなさい。

 ${f C}$ 次の図のように、水平面とのなす角が 30° のなめらかな斜面を上面に持つ台が水平な床の上に固定され、その斜面の両端には定滑車が付いている。斜面上に質量 2m の物体を置き手で固定し、物体の両端に糸を付け、糸が斜面と平行になるようにして、質量m のおもりを低い方の定滑車にかけてつるし、質量 3m のおもりを高い方の定滑車にかけてつるした。物体から静かに手をはなしたところ、物体は加速度の大きさa の等加速度運動を始めた。糸は軽くて伸び縮みをせず、定滑車は軽くてなめらかに回転するものとする。

問3 aはどのように表されるか。正しいものを、次の①~⑥の中から一つ選びなさい。

3

 $3 \frac{g}{4}$

 $\frac{g}{2}$

D 図1のように、なめらかで水平な床の同一直線上で、質量 $1.0 \, \mathrm{kg}$ の小物体 A が右向きに速さ $2.0 \, \mathrm{m/s}$ で運動し、質量 $1.0 \, \mathrm{kg}$ の小物体 B が右向きに速さ $1.0 \, \mathrm{m/s}$ で運動している。 A と B は衝突し、その後、図 2 のように、 A は右向きに速さ v_{A} で運動し、 B は右向きに速さ v_{B} で運動した。 A と B の間の反発係数を e とする。e の値が $0 \le e \le 1$ の範囲にあることから、 v_{A} もある最小値以上、ある最大値以下の範囲にあることがわかる。

問4 $v_{\rm A}$ の最小値は何 ${
m m/s}$ か。最も適当な値を、次の① ${\sim}$ ⑤の中から一つ選びなさい。 4 ${
m m/s}$

① 0 ② 0.50 ③ 1.0 ④ 1.5 ⑤ 2.0

 ${f E}$ 図1のように、なめらかな水平面上に、ばねと小物体が置かれている。ばねは自然長で、その一端は壁に固定され、他端には小物体が接している。図2のように、小物体を押し、ばねを自然長から長さLだけ縮ませ、静かに手をはなしたところ、小物体は水平面上を運動した。ばねが自然長から長さxだけ縮んでいるときの小物体の運動エネルギーをK(x)とする。

問5 K(x) と x の関係を表すグラフとして、最も適当なものを、次の① \sim ⑥の中から一つ選びなさい。 **5**

下 次の図のように、なめらかで水平な床から高さhの位置に長さ ℓ (> h) の伸び縮 みしない軽い糸の一端を固定し、他端に質量mの小物体を付けた。糸が張った状態で、小物体は水平な床の上を角速度 ω で等速円運動している。このときの糸の張力を Sとする。

問6 S はどのように表されるか。正しいものを、次の① \sim ⑥の中から一つ選びなさい。

- ① $mh\omega^2$
- ② $m\ell\omega^2$
- $(3) \quad m\sqrt{\ell^2 h^2}\,\omega^2$

理科-8

- II 次の問いA(問1), B(問2), C(問3) に答えなさい。
 - A 20°Cの水 120 g E 10°C の氷 40 g を入れたところ,じゅうぶん時間がたった後,0°C の水と氷になった。水の比熱を 4.2 J/(g·K),氷の比熱を 2.1 J/(g·K),氷の融解熱を 3.3×10^2 J/g とし,外部との熱の出入りはないものとする。

問1 残った氷は何gか。最も適当な値を、次の①~⑦の中から一つ選びなさい。

7 g

- 1 8.0
- ② 12
- ③ 16
- ④ 20

- (5) 24
- **6** 28
- (7) 32

- $oldsymbol{B}$ 一定量の理想気体が,圧力 p_0 ,体積 V_0 ,絶対温度 T_0 の状態から,圧力を一定に保ったまま絶対温度 T ($> T_0$) の状態に変化した。このとき理想気体が外部からされた仕事を W とする。
- 問2 W はどのように表されるか。正しいものを、次の①~④の中から一つ選びなさい。

一定量の理想気体の状態を、次のp-V図のように、状態 \mathbf{A} から状態 \mathbf{B} まで、3つ の異なる状態 I、II、III を通る 3 つの変化をさせた。状態 I を通る変化で気体が吸収し た熱量を Q_{I} 、状態 II を通る変化で気体が吸収した熱量を Q_{II} 、状態 III を通る変化で 気体が吸収した熱量を $Q_{\rm III}$ とする。

 $Q_{\rm I}$, $Q_{\rm III}$ の大小関係はどうなるか。正しいものを、次の①~⑤の中から一つ選 問3 びなさい。 9

- ① $Q_{\rm I} < Q_{\rm II} < Q_{\rm III}$
- ② $Q_{III} < Q_{II} < Q_{I}$ ③ $Q_{I} = Q_{III} < Q_{II}$
- (4) $Q_{\text{II}} < Q_{\text{I}} = Q_{\text{III}}$ (5) $Q_{\text{I}} = Q_{\text{II}} = Q_{\text{III}}$

- III 次の問いA(問1), B(問2), C(問3) に答えなさい。
 - x軸上を正の向きに進む振動数 $10\,\mathrm{Hz}$ の正弦波がある。次の図は、時刻 $t=0\,\mathrm{s}$ での媒 A 質の変位 y と位置 x の関係を示したグラフである。t=0 s 以降の時刻で,x=10.0 cm の位置での変位yの値が正で最大となる最初の時刻を t_1 とする。

- t_1 は何 ${f s}$ か。最も適当な値を、次の① ${f -}$ ④の中から一つ選びなさい。 **10** s 問 1
- (1) 2.5×10^{-2} (2) 5.0×10^{-2} (3) 7.5×10^{-2} (4) 1.0×10^{-1}

B 線密度の異なる2つの弦AとBが張られている。AとBの長さはともにaで等しい。それぞれの張力を調整し、2つの弦の基本振動数を一致させた。次に、Aの長さをaから変えずに張力をs倍に変え、Bの張力を変えずに長さをbに変えたところ、2つの弦の基本振動数が一致した。それぞれの弦の線密度は変化しないものとする。弦を伝わる波の速さは、弦の張力の $\frac{1}{2}$ 乗に比例し、弦の線密度の $-\frac{1}{2}$ 乗に比例するものとする。

問2 sはどのように表されるか。最も適当なものを,次の① \sim ⑥の中から一つ選びなさい。

① $\sqrt{\frac{b}{a}}$

 \bigcirc $\frac{b}{a}$

 $3 \frac{b^2}{a^2}$

 \bigcirc $\sqrt{\frac{a}{b}}$

 \bigcirc $\frac{a}{b}$

 $\bigcirc 6 \quad \frac{a^2}{b^2}$

絶対屈折率を1.0、ガラスAの絶対屈折率を1.7、ガラスBの絶対屈折率を1.5とする。 空気中からガラス A に入射角 60° で光を入射させたところ、光はガラス A からガラス Bへと屈折角 θ で進んだ。

問3 $\sin\theta$ の値はいくらか。最も適当な値を、次の① \sim ⑤の中から一つ選びなさい。 12

- ① 0.17 ② 0.29 ③ 0.33 ④ 0.58 ⑤ 0.88

IV 次の問いA(問1), B(問2), C(問3), D(問4), E(問5), F(問6) に答えなさい。

A 次の図のように、正方形 ABCD の頂点 A に電気量 q (> 0) の点電荷を、頂点 B に電気量 2q の点電荷を、頂点 D に電気量 2q の点電荷をそれぞれ固定した。さらに、頂点 C に電気量 Q の点電荷を固定したところ、頂点 A に固定した点電荷が受ける静電気力の大きさが 0 になった。

問1 $\frac{Q}{q}$ はいくらか。正しい値を、次の① \sim ⑥の中から一つ選びなさい。

 \bigcirc $\sqrt{2}$

- ② $2\sqrt{2}$
- $3 4\sqrt{2}$

- ⑤ $-2\sqrt{2}$
- $6 -4\sqrt{2}$

B 次の図のように、抵抗 R と電気容量 C のコンデンサー、電気容量 2C のコンデンサー、スイッチ S を接続した。最初、S は開いていて、電気容量 C のコンデンサーには電気量 Q の電荷が蓄えられていて、電気容量 2C のコンデンサーには電荷が蓄えられていなかった。次に、S を閉じたところ R に電流が流れ始めた。じゅうぶん時間がたった後、R に電流が流れなくなった。

問2 Sを閉じてからRに電流が流れなくなるまでの間に、Rで発生するジュール熱はどのように表されるか。最も適当なものを、次の① \sim ④の中から一つ選びなさい。

 \mathbb{C} 抵抗値の等しい3つの抵抗と電池を、図1のように接続したところ、3つの抵抗の 消費電力の合計は P_1 であった。次に、同じ3つの抵抗と電池を、図2のように接続 したところ、3つの抵抗の消費電力の合計は P_2 であった。電池の内部抵抗は無視でき るものとする。

問3 $\frac{P_1}{P_2}$ はいくらか。正しい値を、次の① \sim ⑤の中から一つ選びなさい。

- 15
- ① $\frac{4}{9}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{3}{2}$ ⑤ $\frac{9}{4}$

次の図のように、じゅうぶんに長い2本の直線導線が紙面内のx軸上の点 \mathbf{A} (x=-a)D と点 \mathbf{B} (x=a) を紙面に垂直に通っている (a>0)。 \mathbf{A} を通る導線に紙面の裏から 表に向かう向きに大きさIの電流を流し、Bを通る導線に紙面の裏から表に向かう向 きに大きさ2Iの電流を流したところ、x軸上のx = dの位置で磁場の大きさが0に なった。

問4 $\frac{d}{a}$ はいくらか。正しい値を、次の① \sim ⑧の中から一つ選びなさい。 16

- ① -3 ② -2 ③ $-\frac{1}{2}$ ④ $-\frac{1}{3}$ ⑤ $\frac{1}{3}$ ⑥ $\frac{1}{2}$ ⑦ 2 ⑧ 3

E 次の図のように、質量m, 長さ ℓ の導体棒QRの両端QとRに、質量の無視できる等しい長さの2本の導線の一端をそれぞれつないだ。Qにつないだ導線の他端を端子Pにつなぎ、Rにつないだ導線の他端を端子Sにつなぎ、QRが水平になるようにつるした。PとSは、水平方向に距離 ℓ 離れた位置に固定されている。鉛直上向きの一様な磁場の中で、導線と導体棒にP→Q→R \to S の向きに大きさI の電流を流したところ、導線は直線を保ち、導線が鉛直下向きと角度 θ をなす位置で導体棒が静止した。重力加速度の大きさをgとする。

問5 磁場の磁束密度の大きさはどのように表されるか。正しいものを、次の①~⑥の中から一つ選びなさい。 **17**

- ① $\frac{mg\sin\theta}{I\ell}$
- $2 \frac{mg\cos\theta}{I\ell}$
- $\Im \frac{mg \tan \theta}{I\ell}$

- $\frac{mg}{I\ell\cos\theta}$

「次の図のように、水平な床の上方に、棒磁石をN極が鉛直下向きになるように固定した。磁石の真下の床上の点をOとする。床上にOを原点とするx軸をとる。正方形のコイルを、2辺がx軸に平行になり、中心Cがx軸上にくるように床上に置き、x軸の正の向きに一定の速さxで動かす。図のように、CがOの近くでOから離れていくとき、コイルにある向きに誘導電流Iが流れ、コイルは棒磁石の作る磁場からある向きに力 \overrightarrow{F} を受けた。

問6 I の向きは、図に示した時計回りか、反時計回りか。また、 \overrightarrow{F} の向きはどうなるか。正しい組み合わせを、次の①~④の中から一つ選びなさい。

		1)	2	3	4
	Iの向き	時計回り	時計回り	反時計回り	反時計回り
	\overrightarrow{F} の向き	x 軸の正の向き	x 軸の負の向き	x 軸の正の向き	x 軸の負の向き

理科-20

次の問いA(問1)に答えなさい。

A 原子核 $^{235}_{92}$ U が 1 個の中性子を吸収し、 $^{140}_{54}$ Xe と $^{94}_{38}$ Sr に核分裂した。

問1 この核分裂反応で放出される中性子の数はいくつか。正しい値を、次の①~⑤の中 から一つ選びなさい。 19

1 0

② 1 ③ 2 ④ 3 ⑤ 4

物理の問題はこれで終わりです。解答欄の 20 ~ 75 はマークしないでください。 解答用紙の科目欄に「物理」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。