ADBMS Assignment-I Answers

1. Disk File Problem:

Given:

Number of records = 28,000

Block size = 256 bytes

Record size = 111 bytes

(a) No. of blocks needed to store the file:

Blocking Factor (bfr) = Block size Record size = 256 111 ≈ 2 records per block

Total Blocks needed = Number of records 16 fr = 28,000 A = 14,000 blocks

(b) No. of sorted Runs and Passes (External sorting):

Memory Buffers Available (M) = 11 blocks

Initial runs = 14,000 11 ≈ 1273 runs

Number of passes = 1 + log(M-1)(Number of runs) ≈ 4 passes

(c) No. of Disk Block Accesses:

Each pass = 2 p 14,000 = 28,000 accesses

For 4 passes: Total Accesses = 4 1 28,000 = 112,000 block accesses

2. Heuristic Query Optimization:

Query 1 optimization:

Apply selections early: $\sigma(P.department_name = "computer science")$ (P) and $\sigma(s.semester = "7all99")$ (S)

Foin S and D

Project Section_id

Query 2 Optimization:

Apply Selection: $\sigma(PLOCATION = 'Stafford')$ (PROFECT)

Foin PROFECT and DEPARTMENT on DNUM = DNUMBER

Foin with EMPLOYEE on MGRSSN = SSN

Project required fields

- 3. Fine-grain vs Coarse-grain Parallel Machines:
 Fine-grain Parallelism Coarse-grain Parallelism

 Very small tasks Larger tasks

 High communication overhead Less communication overhead

 Suitable for SIMD systems Suitable for MIMD systems
- 4. Performance of a Parallel Machine:

 Measured using Speedup, Efficiency, Execution time, Throughput, Scaleup.

 5. Speedup and Scaleup:

 Speedup (S) = Time (one processor) time (multiple processors)

 Scaleup = Handling bigger problems with more processors at the same time.
- 6. Blocking Factor (New Problem):
 Given:

 Records = 15,000

 Block size = 512 bytes

Record size = 110 bytes

Calculations:

Blocking Factor = 512 110 \approx 4

Blocks needed = 15,000 A = 3750 blocks

Indep File Calculation:

Attribute size = 7 bytes

Pointer size = 9 bytes

Total per indep entry = 16 bytes

Blocking Factor of indep = 512 16 = 32 entries per block

Number of indep blocks = 3750 $82 \approx 118$ blocks

7. Relational Algebra Expression:

SQL Query.

SELECT item_name

FROM ITEM A, SALES B, LOCATION C

WHERE A. Itemno=B. Itemno AND B.loc_id=C.loc_id AND

LocationName="Delhi" AND A. Itemprice>10000;

Relational Algebra:

 σ (LocationName="Delhi" AND Itemprice>10000) ((ITEM № A.Itemno=B.Itemno SALES) № B.loc_id=c.loc_id LOCATION) Then project π (item_name).

8. SQL Statements:

(a) Booknames never borrowed:

SELECT BNAME FROM BOOK WHERE ACCORD NOT IN (SELECT ACCORD FROM Transaction);

(b) Acono, Bookname, and number of copies:

SELECT Acono, BName, COUNT(+) AS Noofcopies FROM Book GROUP By Acono, BName;

(c) Borrower with Booktoppe 'Fournal':

SELECT DISTINCT Borrower. BorrName FROM Borrower, Transaction,

Book where Borrower. Borrowerno = Transaction. Borrowrno AND

Transaction. Acono = Book. Acono AND Book. Type = 'Fournal';

(d) Borrowers keeping book more than 30 days:

SELECT DISTINCT BorrName FROM Borrower, Transaction where

Borrower. Borrowerno = Transaction. Borrowrno AND

DATEDIFF(CURDATE(), issuedate) > 30;

(e) Borrowers who never borrowed:

SELECT BORNAME FROM BORROWER WHERE BORROWERNO NOT IN (SELECT DISTINCT BORROWERNO FROM TRANSACTION);

9. Armstrong's Inference Rules:

reflexivity. If y ⊆ P, then P -> y

Augmentation: If $P \rightarrow y$, then $Pl \rightarrow yl$

Transitivity: If $P \rightarrow y$ and $y \rightarrow l$, then $P \rightarrow l$

Proof Sketch:

Reflexivity. A set implies its subset.

Augmentation: Adding same attributes preserves dependency.

Transitivity: If P implies y and y implies U, then P implies U.

10. Primary vs Secondary Indep:
Primary Indep Secondary Indep
Built on primary key Built on non-primary key
One per table Multiple possible
Records physically sorted Records not necessarily sorted