Def Let  $X \in \mathbb{R}$  .  $c \in \mathbb{R}$  so a limit point of Xif for any E > 0, the nbhd (C - E, C + E) contains same point of  $X - \{c\}$ 

Note: We could have c∈X or c≠X

Ex: Identify the limit points of  $A = [0,2) \cup (3,5) \cup \{10\} \cup \{12\}$ 

 $\frac{\text{Def }2}{\text{C} \in X}$  is an isolated point of X if its not a limit point

Goal: Understand  $\lim_{x \to c} f(x) = L$ "If we can make f(x) arbitrary close to L by taking X arbitrary close to C"

Def 1 Let  $f: X \to \mathbb{R}$  and let c be a limit point of XWe say  $\lim_{x\to c} f(x) = L$  if , for any  $\varepsilon > 0$ , there is a  $\delta > 0$  s.t.

We noter if  $0 < |x-c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ take  $\kappa > c$ if  $\chi \in (c-\delta, c+\delta) - \{c\} \Rightarrow f(x) \in (L-\varepsilon, L+\varepsilon)$ 



 $\lim_{x\to 0} f(x) = S$ 7 This value might not be defined

Note: 10 The value fic) doesn't affect lim fix)

② In general, taking a small  $\epsilon>0$  implies taking a smaller  $\delta>0$ .

(3)  $\lim_{x\to c} f(x)$  only depends on the behavior of f(x) near the point c (flamework)

Exercise: Consider  $f: \mathbb{R} \to \mathbb{R}$ 

Suppose  $\lim_{x\to c} f(x) = L$  and L>M

 $Hint: Chaose an \epsilon>0 s.t. M<L-\epsilon$ 

Proof: Take  $\mathcal{E}=L-M>0$   $(L-\mathcal{E}, L+\mathcal{E})=(M,2L-M)$ Since  $\lim_{x\to c} f(x)=L$ , we can find a 8>0 s.t.  $f(x)\in (M,2L-M)$  whenever  $x\in (c-8,c+8)-\{c\}$ In particular, f(x)>M for all  $x\in (c-8,c+8)-\{c\}$ 

Thm 1: Let  $f: X \to TR$  and let  $c \in TR$  be a limit point of X  $\lim_{X \to C} f(x) = L \iff \text{For any sequence } (X_n) \text{ in } X \text{ with } (X_n) \to C \text{ and } X_n \neq C \text{ for all } n \in IN,$ we have  $f(X_n) \to L$  (\*)

<u>Proof:</u> ( $\Rightarrow$ ) Fix a sequence (Xn) in X s.t. (Xn)  $\rightarrow$  c and  $X_n \neq c$  for all  $n \in IN$ .

Now pick  $\epsilon > 0$ . Show that  $f(X_n)$  is eventually in  $(1-\epsilon, 1+\epsilon)$ O Since  $\lim_{x \to c} f(x)$ , we can find a 8 > 0 s.t.  $X \in (c-8, c+8) - \{c\}$