Devoir à la maison n°06

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – E3A MP 2013

L'objet du problème est l'étude des deux suites récurrentes doubles définies par :

$$u_0 = a, u_1 = b, \forall n \ge 0, u_{n+2} = \frac{2}{u_{n+1} + u_n} \quad \text{et} \quad v_0 = a, v_1 = b, \forall n \ge 0, v_{n+2} = \frac{1}{\sqrt{v_{n+1}v_n}}$$

où a et b sont deux réels strictement positifs.

Partie I – Etude de la suite (v_n)

Soit $v_0 > 0$ et $v_1 > 0$. On considère la suite définie pour $n \ge 0$ par : $v_{n+2} = \frac{1}{\sqrt{v_{n+1}v_n}}$.

- **I.1** Quelles sont les limites possibles, finies ou infinies, de la suite (v_n) ? (On justifiera précisément la réponse.)
- **I.2** On pose : $w_n = \ln(v_n)$.
 - **I.2.a** Déterminer une relation de récurrence vérifiée par la suite (w_n) . On note F l'espace vectoriel complexe des suites complexes vérifiant cette relation de récurrence.
 - I.2.b Déterminer une base de F.
 - **I.2.c** Si $(x_n) \in \mathbb{F}$, que peut-on dire de la convergence de (x_n) ?
- **I.3** Que peut-on en déduire concernant le comportement de la suite (v_n) ? sur le comportement de la série $\sum_{n\geq 0} v_n$? de la série $\sum_{n\geq 0} (v_n-1)$?

Partie II – Norme subordonnée

Soit $\| \|$ une norme sur $\mathcal{M}_{n,1}(\mathbb{C})$. On appelle *norme subordonnée* à la norme $\| \| \|$ l'application $\| \| \| \|$ définie sur $\mathcal{M}_n(\mathbb{C})$ définie par

$$|||A||| = \sup_{X \in \mathbb{C}^n, ||X|| \le 1} ||AX||$$

- **II.1** Vérifier que $\| \| \|$ définit bien une norme sur $\mathcal{M}_n(\mathbb{C})$.
- II.2 Montrer que || || est une norme d'algèbre, c'est-à-dire que

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2, |||AB||| \le |||A||| |||B|||$$

Partie III - Etude de normes matricielles

Soit $n \in \mathbb{N}^*$. Dans la suite, on note $\| \|_{\infty}$ la norme usuelle sur \mathbb{C}^n définie pour $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ par :

$$||(z_1, z_2, \dots, z_n)||_{\infty} = \max(|z_1|, |z_2|, \dots, |z_n|)$$

et on identifie le n-uplet $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ au vecteur colonne $\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}). \text{ Pour } \mathbf{A} \in \mathcal{M}_n(\mathbb{C}), \text{ on note }$

 $\|\|\mathbf{A}\|\|_{\infty}$ la norme de A pour la norme subordonnée à la norme $\|\|\|_{\infty}$. Enfin, pour $\mathbf{Z} \in \mathbb{C}^n$ et $\mathbf{P} \in \mathcal{M}_n(\mathbb{C})$, on pose : $\mathbf{N}_{\mathbf{P}}(\mathbf{Z}) = \|\mathbf{P}\mathbf{Z}\|_{\infty}$.

III.1 Soit $D \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonale :

$$D = \begin{pmatrix} m_{1,1} & 0 & \dots & \dots & 0 \\ 0 & m_{2,2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & m_{n,n} \end{pmatrix}$$

On pose $m = \max_{1 \le i \le n} |m_{i,i}|$.

III.1.a Soit $Z \in \mathbb{C}^n$. Montrer que $\|DZ\|_{\infty} \le m\|Z\|_{\infty}$.

III.1.b Déterminer $||D||_{\infty}$.

- III.2 a Soit $P \in \mathcal{M}_n(\mathbb{C})$. Montrer que N_P est une norme sur \mathbb{C}^n ssi P est une matrice inversible. Lorsque P est inversible, on notera dorénavant $\| \|_P$ pour N_P et la norme subordonnée à la norme $\| \|_P$ sur $\mathcal{M}_n(\mathbb{C})$ sera notée $\| \| \|_P$.
 - **III.2.b** On se donne une matrice $P \in GL_n(\mathbb{C})$. Pour $A \in \mathcal{M}_n(\mathbb{C})$, montrer que :

$$|||A|||_{P} = |||PAP^{-1}||_{\infty}.$$

- III.3 Soit $A \in \mathcal{M}_n(\mathbb{C})$. Pour $M \in \mathcal{M}_n(\mathbb{C})$, on note sp(M) l'ensemble des valeurs propres de M et on définit $\rho(M)$ par : $\rho(M) = \max\{|\mu|, \mu \in sp(M)\}$.
 - **III.3.a** Montrer que, pour toute matrice $P \in GL_n(\mathbb{C})$, on a : $\rho(A) = \rho(PAP^{-1})$.
 - **III.3.b** Soit $P \in GL_n(\mathbb{C})$. Montrer que $\rho(A) \leq |||A|||_p$.
 - III.3.c On suppose A diagonalisable. Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que $\rho(A) = |||A|||_p$.
 - III.3.d Un exemple. Soit $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Déterminer $\rho(A)$. Déterminer l'inverse P^{-1} d'une matrice $P \in GL_3(\mathbb{C})$ telle que $\rho(A) = \|\|A\|\|_P$.
 - **III.3.e** Un exemple. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ définie par : $\forall i, j \in [[1, n]], a_{i,j} = j$. Déterminer l'inverse P^{-1} d'une matrice $P \in GL_n(\mathbb{C})$ telle que $\rho(A) = ||A||_P$.
- **III.4** Dans cette question, on suppose que n=2. Soit donc $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$.
 - **III.4.a** On pose $m = \max(|a| + |b|, |c| + |d|)$. Montrer que, pour tout $Z \in \mathbb{C}^2$, on a : $\|AZ\|_{\infty} \le m\|Z\|_{\infty}$. Déterminer $\|A\|_{\infty}$.

III.4.b On suppose la matrice non diagonalisable et on note f l'endomorphisme de \mathbb{C}^2 canoniquement associé à A.

III.4.b.i Démontrer que sp(A) ne contient qu'un seul élément. On le note α .

III.4.b.ii Démontrer l'existence d'une base e de \mathbb{C}^2 telle que : $Mat_e(f) = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$.

III.4.b.iii Soit $\varepsilon > 0$. Démontrer l'existence d'une base e' de \mathbb{C}^2 telle que :

$$\mathrm{Mat}_{e'}(f) = \left(\begin{array}{cc} \alpha & \beta' \\ 0 & \alpha \end{array} \right) \mathrm{où} \ |\beta'| \leq \varepsilon.$$

III.4.b.iv En déduire l'existence d'une matrice $P \in GL_2(\mathbb{C})$ telle que : $|||A|||_P \le \rho(A) + \epsilon$.

- **III.4.c** Déterminer $\inf_{P \in GL_2(\mathbb{C})} |||A|||_P$.
- **III.4.d** Un exemple. Soit $A = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$. Calculer $|||A|||_{\infty}$ et montrer qu'il existe $P \in GL_2(\mathbb{C})$ telle que $|||A|||_P \le 2$.
- **III.4.e** On suppose que $\rho(A) < 1$. Justifier l'existence d'une matrice $P \in GL_2(\mathbb{C})$ telle que : $|||A|||_P < 1$.

Que peut-on en déduire concernant la suite $(A^n)_{n \in \mathbb{N}}$?

Partie IV – Etude de la suite (u_n)

Soit $u_0 > 0$ et $u_1 > 0$. On considère la suite définie pour $n \ge 0$ par : $u_{n+2} = \frac{2}{u_{n+1} + u_n}$. On considère la fonction :

$$f: \begin{array}{ccc} (\mathbb{R}_+^*)^2 & \to & (\mathbb{R}_+^*)^2 \\ (x,y) & \mapsto & \left(y, \frac{2}{x+y}\right) \end{array}.$$

On a alors : $f(u_n, u_{n+1}) = (u_{n+1}, u_{n+2})$ pour tout $n \in \mathbb{N}$.

IV.1 Justifier que f est de classe \mathcal{C}^1 .

Dans la suite, on note $df_{(x_0,y_0)}$ et $J_{(x_0,y_0)}$ la différentielle et la jacobienne de f au point $(x_0,y_0) \in (\mathbb{R}_+^*)^2$.

- **IV.2** Déterminer les points fixes de f dans $(\mathbb{R}_+^*)^2$.
- **IV.3** Déterminer la matrice $J_{(1,1)}$.
- **IV.4** Démontrer l'existence d'une matrice $P \in GL_2(\mathbb{C})$ telle que $\|J_{(1,1)}\|_P = \frac{\sqrt{2}}{2}$.
- **IV.5** On fixe un réel α vérifiant $\frac{\sqrt{2}}{2} < \alpha < 1$.
 - **IV.5.a** Justifier l'existence d'un réel $\eta > 0$ tel que :

$$\forall (x_0, y_0) \in (\mathbb{R}_+^*)^2, \|(1, 1) - (x_0, y_0)\|_{\mathbf{P}} \le \eta \implies \left\| \|\mathbf{J}_{(x_0, y_0)} \| \|_{\mathbf{P}} \le \alpha.$$

Dans la suite, on note D le disque fermé de centre (1,1) et de rayon η pour la norme $\|\| \|_{p}$ et on suppose qu'il existe un entier n_0 tel que $(u_{n_0},u_{n_0+1})\in D$.

IV.5.b Soit $(x_0, y_0) \in D \cap (\mathbb{R}_+^*)^2$. On définit, pour $t \in [0, 1]$:

$$\varphi(t) = f((1,1) + t[(x_0, y_0) - (1,1)]).$$

Justifier que φ est de classe \mathcal{C}^1 et obtenir une expression de $\varphi'(t)$ faisant intervenir la différentielle de f. En déduire :

$$\|(1,1) - f(x_0, y_0)\|_{\mathbf{P}} \le \alpha \|(1,1) - (x_0, y_0)\|_{\mathbf{P}}.$$

- **IV.5.c** Démontrer que, pour tout $n \ge n_0$, $(u_n, u_{n+1}) \in D$.
- **IV.5.d** Démontrer que, pour tout $n \ge n_0$, on a l'inégalité :

$$\|(1,1)-(u_n,u_{n+1})\|_{\mathbf{P}} \le \alpha^{n-n_0}\|(1,1)-(u_{n_0},u_{n_0+1})\|_{\mathbf{P}}.$$

- **IV.5.e** Obtenir que : $u_n = 1 + O(\alpha^n)$.
- **IV.5.f** Que peut-on en déduire concernant le comportement de la suite (u_n) ? sur le comportement de la série $\sum_{n\geq 0} u_n$? de la série $\sum_{n\geq 0} (u_n-1)$?

Partie V - Suite de l'étude

On considère une suite réelle $(x_n)_{n\in\mathbb{N}}$. On rappelle qu'une valeur d'adhérence de (x_n) est un réel λ pour lequel il existe une suite $(x_{\varphi(n)})$ extraite de (x_n) qui converge vers λ . On rappelle que toute suite bornée admet une valeur d'adhérence et on admet que tout suite bornée admet une plus petite et une plus grande valeur d'adhérence.

- **V.1.a** Soit (x_n) une suite bornée non convergente admettant λ pour valeur d'adhérence. Justifier l'existence d'un réel r>0 tel que, pour tout $N\in\mathbb{N}$, il existe $n\geq N$ vérifiant $|x_n-\lambda|>r$. En déduire que (x_n) admet une valeur d'adhérence $\lambda'\neq\lambda$.
 - V.1.b Montrer que toute suite bornée ayant une unique valeur d'adhérence est convergente.
 - **V.1.c** Soit (x_n) une suite bornée. On note ℓ_- sa plus petite valeur d'adhérence et ℓ_+ sa plus grande. Montrer l'équivalence : (x_n) est convergente si et seulement si $\ell_- = \ell_+$.
- **V.2** Dans cette question, (u_n) désigne la suite étudiée dans la partie 4.

On pose
$$\alpha = \min \left\{ u_0, u_1, \frac{1}{u_0}, \frac{1}{u_1} \right\}.$$

- **V.2.a** Montrer que, pour tout $n \in \mathbb{N}$, $\alpha \le u_n \le \frac{1}{\alpha}$. On note ℓ_- et ℓ_+ les plus petite et plus grande valeurs d'adhérences de (u_n) .
- **V.2.b** Justifier l'existence d'une suite extraite $(u_{\varphi(n)})$ de (u_n) telle que $(u_{\varphi(n)})$ et $(u_{\varphi(n)+1})$ convergent et $u_{\varphi(n)+2} \xrightarrow[n \to +\infty]{} \ell_-$. En déduire l'inégalité $\ell_-\ell_+ \ge 1$.
- **V.2.c** Montrer que l'on a : $\ell_-\ell_+ = 1$.
- **V.2.d** En considérant une suite extraite $(u_{\varphi(n)})$ de (u_n) telle que $(u_{\varphi(n)})$, $(u_{\varphi(n)+1})$ et $(u_{\varphi(n)+2})$ convergent et $(u_{\varphi(n)+3}) \xrightarrow[n \to +\infty]{} \ell_-$, obtenir l'égalité $\ell_- = \ell_+$ et conclure.
- **V.2.e** Que peut-on dire de l'hypothèse d'existence d'un entier n_0 tel que $(u_{n_0}, u_{n_0+1}) \in D$ dans la question **IV.5.a**?