Zadanie 4 – Przeliczenia między układami oraz elementarna skala długości i zniekształcenia

Prezentacja wyników – z przubliżeniami.

	1. zestawienie współrzędnych						
	Xgk	Ygk	X2000	Y2000	X1992	Y1992	
1	5570120.597	124812.228	5568256.030	7482170.562	266221.512	624724.859	
2	5542315.026	125464.201	5540450.350	7482077.452	238435.405	625376.376	
3	5571077.960	160469.907	5568256.030	7517829.438	267178.206	660357.578	
4	5543273.892	161308.283	5540450.350	7517922.548	239393.600	661195.368	
5	5556666.777	143014.239	5554323.110	7500000.000	252777.111	642914.129	
6	5556698.104	143059.987	5554353.190	7500046.555	252808.416	642959.845	

2. zestawienie pól powierzchni (km^2)					
P elipsoidalne	P gk	P gk P 20000			
994.265196	994.760761	994.108282	993.368584		

	3. elementarna skala długości i znekrztałcenia na 1km						
	mgk	Kgk(1km)	m2000	K2000(1km)	m1992	K1992(1km)	
1	1.000193	0.19	0.999927	-0,07	0.999493	-0,51	
2	1.000195	0.19	0.999927	-0,07	0.999494	-0,51	
3	1.000319	0.32	0.999927	-0,07	0.999618	-0,38	
4	1.000322	0.33	0.999927	-0,07	0.999621	-0,38	
5	1.000253	0.25	0.999923	-0,08	0.999553	-0,45	
6	1.000253	0.26	0.999923	-0,08	0.999554	-0,45	

	4. elementarna skala długości i znekrztałcenia na 1ha							
	mgk^2	Kgk^2(1ha)	m2000^2	K2000^2(1ha)	m1992^2	K1992^2(1ha)		
1	1.000386	3,86	0.999854	-1,46	0.998986	-10,14		
2	1.000389	3,89	0.999854	-1,46	0.998989	-10,11		
3	1.000637	6,37	0.999854	-1,46	0.999236	-7,63		
4	1.000643	6,43	0.999854	-1,46	0.999243	-7,57		
5	1.000506	5,06	0.999846	-1,54	0.999105	-8,94		
6	1.000506	5,06	0.999846	-1,54	0.999106	-8,94		

Dane:

Współrzędne punktów pochodzą z wyników poprzedniego zadania i zostały zapisane w tablicy. Współrzędne punktu środkowego nie zostały przybliżone, aby otrzymać większą dokładność wynków

```
punktyfi = [50.25, 50.0, 50.25_50.0_50.125, 50.125270449027546]  #punkty wejściowe
punktylm = [20.75, 20.75, 21.25, 21.25_21.0, 21.00065108883011]
p2000 = []  #tablice wyników xy, xy itd
p1992 = []
pgk2 = []
pgk0 = []
mk = []
m2k2 = []
```

Utworzyłam również tablice do zapisywania wyników

Dodatkowo jako zmienne globalne zapisałam sobie parametry elipsoidy GRS80

```
a = 6378137 #metry
e2 = 0.00669438002290
```

Biblioteki:

Do uzyskania zamierzonego efektu wykorzystałam dwie biblioteki. Numpy posłużyła mi do przeliczeń matematycznych, a shapely do określenia pola w układzie 92.

```
import numpy as np
import shapely.geometry as shp
```

Poszczególnie funkcje znajdujące się w programie:

Funkcje pomocnicze zwracające M, N i elementarną skalę długości.

```
def Np(f, a, e2):
    N = a / np.sqrt(1 - e2 * (np.sin(f) ** 2))
    return N

def Mp(f, a, e2):
    M = (a * (1 - e2)) / ((np.sqrt(1 - e2 * np.sin(f) ** 2)) ** 3)
    return M

def m(y, r):
    mp = 1 + (y**2)/(2*(r**2)) + (y**4)/(24*(r**4))
    return mp
```

Kolejna funkcja pomocnicza zwracająca południk osiowy dla danego lambda w układzie 2000 (trzy - stopniowym):

```
if lm >22.5 and lm < 25.5:
    lm0 = 24
elif lm >19.5 and lm < 22.5:
    lm0 = 21
elif lm < 19.5 and lm > 16.5:
    lm0 = 18
elif lm < 13.5 and lm < 16.5:
    lm0 = 15
return lm0</pre>
```

Funkcja zwracająca ze współrzędnych geodezyjnych współrzędne xy w odwzorowaniu Gaussa – Krügera:

Funkcje przeliczające współrzędne GK na poszczególne układu i na odwrót.

```
def gk2u92 (xk, yk):
                                        def u922gk (x, y):
   m = 0.9993
                                            m = 0.9993
   x = xk*m - 5300000
                                            xk = (x + 5300000)/m
   y = yk*m + 500000
                                            yk = (y - 500000)/m
                                         📱 return xk, yk
def gk2u00 (xk, yk, lm):
                                        def u002gk (x, y,lm0):
   m = 0.999923
                                            m = 0.999923
   lm0 = l(lm)
                                            c = lm0/3
   c = lm0/3
                                            xk = x/m
   x = m*xk
                                            yk = (y - c*1000000 - 500000)/m
   y = m*yk + 500000 + c*1000000
                                            return xk, yk
```

Funkcja przeliczając współrzędne GK na elipsoidalne.

Funkcja licząca elementarną skalę długości, pól, zniekształcenia na km i ha

```
def mkappa (x, y, a, e2, u, lmm, fi):
    if u == '92':
       m0 = 0.9993
       gk = u922gk(x, y)
       yk = gk[1]
       N = Np(fi, a, e2)
       M = Mp(fi, a, e2)
       R = np.sqrt(M*N)
       m1 = m(yk, R) * m0
       m2 = (m(yk, R)**2)*(m0**2)
       k = (m1 - 1)*1000
       k2 = (m2 - 1)*10000
   elif u == '00':
       m0 = 0.999923
       gk = u002gk(x, y, 21)
       yk = gk[1]
       N = Np(fi, a, e2)
       M = Mp(fi, a, e2)
       R = np.sqrt(M*N)
       m1 = m(yk, R) * m0
       m2 = (m(yk, R)**2)*(m0**2)
       k = (m1 - 1)*1000
       k2 = (m2 - 1)*10000
   elif u == 'None':
       N = Np(fi, a, e2)
       M = Mp(fi, a, e2)
       R = np.sqrt(M*N)
       m1 = m(y, R)
       m2 = m1**2
       k = (m1 - 1)*1000
       k2 = (m2 - 1) * 10000
   return m1, k, m2, k2
```

W programie znajduje się również funkcja z zadania 3 liczaca pole elipsoidalne

Najważniejsza część funkcji wywoływanie() odpwoeidzailnej za wywoływanie innych funkcji przedstawia się tak:

Wynik działania programu (efekt funkcji):

Wnioski:

- Największe zniekształcenia są gdy punkt znajduje się najdalej od południka osiowego.
- Na podstawie wielkości współrzędnych można oszacować w jakim układzie mamy dany punkt