〈Simulation Scenario 구현 결과 기록〉

- 1월 4일 Version

(What TO DO)

: $\delta_0 \in \{-2,0,1\}$, δ_B , $\delta_C \in \{(0.01,0.01),(0.2,0.2),(0.6,0.6)\}$ 에 대해 가능한 모든 조합 고려해 분산 추정량의 Coverage probability, SD Ratio 확인해보기

⟨Result⟩

1) Exposure 변수를 생성하는 분포에 따른 Exposure prevalence, PS 범위 확인 (Positivity assumption 만족하는지 확인)

A ~ inv.logit(delta0 + deltaB*B + deltaC*C)	Exposure prevalence range	PS range
-2 + 0.01B + 0.01C	(0.09, 0.152)	(0.114, 0.125)
-2 + 0.6B + 0.6C	(0.139, 0.211)	(0.007, 0.807)
-2 + 0.2B + 0.2C	(0.099, 0.162)	(0.0495, 0.298)
0 + 0.01B + 0.01C	(0.44, 0.56)	(0.488, 0.514)
0 + 0.6B + 0.6C	(0.52, 0.62)	(0.054, 0.968)
0 + 0.2B + 0.2C	(0.47, 0.58)	(0.278, 0.758)
1 + 0.01B + 0.01C	(0.7, 0.78)	(0.724, 0.742)
1 + 0.6B + 0.6C	(0.72, 0.8)	(0.134, 0.988)
1 + 0.2B + 0.2C	(0.7, 0.8)	(0.511, 0.895)

: 각 Exposure 변수 생성하는 분포에 따른 Exposure ratio range 확인해본 결과, 최솟값이 모두 0.05보다 크므로 Positivity assumption에 문제가 없는 것으로 판단.

2) Coverage probability, SD Ratio 확인 결과

2)-①.
$$(\delta_B, \delta_C) = (0.01, 0.01)$$

$$\downarrow$$
 $\delta_0 = -2$

# Outcome_reg -0.002379192 0.009928812 0.941 0.9906055 NA NA NA NA # IPW -0.002150330 0.010115352 0.867 0.6172538 0.982 1.489921 # Dutcome_reg -0.002379192 0.009928812 0.938 0.9841385 0.982 1.489921 # DR -0.002304139 0.009961594 0.938 0.9841385 0.980 1.223564 # Drint(ATT_1_performance_2_0.01) # Bias	$\rightarrow 0_0 - 2$						
# Bias rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio # Outcome_reg -0.002379192 0.009928812 0.941 0.9960655 NA NA NA NA NA Outcome_reg -0.002304139 0.009961594 0.938 0.982 1.489921	print(ATE 1 pe	erformance 2 0	0.01)				
# IPW	#			Vaive var coverage N	laive var SD Ratio S	andwich robust var coverage S	andwich var SD Ratio
# DR	# Outcome reg	-0.002379192	0.009928812	0.941	0.9906055	NA NA	NA NA
print(ATT_1_performance_2_0.01) # Bias rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio # Outcome_reg -0.002379192 0.009928812 0.941 0.9996055 NA	# IPW	-0.002150330	0.010115352	0.867	0.6172538	0.982	1.489921
# Bias	# DR	-0.002304139	0.009961594	0.938	0.9841385	0.980	1.223564
# Outcome_reg -0.002379192 0.009928812 0.941 0.9906055 NA NA NA NA	print(ATT 1 pe	erformance 2 6	0.01)				
# IPW	#	Bias	rMSE	Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# DR	# Outcome_reg	-0.002379192	0.009928812	0.941	0.9906055	NA	NA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	# IPW	-0.002438935	0.009934539	0.870	0.6283862	0.995	2.001384
print(ATE_1_performance_0_0.01) #	# DR	-0.002399891	0.009940280	0.377	0.0638348	1.000	3.812503
print(ATE_1_performance_0_0.01) #							
# Bias	$\Rightarrow \delta_0 = 0$						
# Outcome_reg -0.002241823 0.003760756 0.965 1.0014697 NA NA # IPW -0.002248391 0.003761677 0.986 1.5195091 0.986 1.522118 # DR -0.002244212 0.003761608 0.965 0.9974757 0.972 1.051887 print(ATT_1_performance_0_0.01) # Bias rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio # Outcome_reg -0.002241823 0.003760756 0.965 1.0014697 NA NA	print(ATE_1_pe	erformance_0_0	0.01)				
# IPW	#					Sandwich_robust_var_coverage	Sandwich_var_SD_Ratio
# DR -0.002244212 0.003761608 0.965 0.9974757 0.972 1.051887 print(ATT_1_performance_0_0.01) # Bias rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio # Outcome_reg -0.002241823 0.003760756 0.965 1.0014697 NA NA							
<pre>print(ATT_1_performance_0_0.01) # Bias</pre>		0.0000					
# Bias rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio # Outcome_reg -0.002241823 0.003760756 0.965 1.0014697 NA NA	# DR	-0.002244212	0.003761608	0.965	0.9974757	0.972	1.051887
# Bias rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio # Outcome_reg -0.002241823 0.003760756 0.965 1.0014697 NA NA	print(ATT 1 p	erformance 0	0.01)				
# Outcome_reg -0.002241823 0.003760756 0.965 1.0014697 NA NA	#	7. Tr. (1994) (1981) (4. Particular de l'		Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
	# Outcome reg					[2018년 17] 전경 (1408년 1822년 - 1202년 - 1	
# IPW -0.002328212 0.003802594 0.988 1.5137374 0.997 2.037757	# IPW				1.5137374	0.997	2.037757
# DR -0.002253352 0.003789663 0.678 0.2550663 0.975 1.174636	# DR	-0.002253352	0.003789663	0.678	0.2550663	0.975	1.174636

```
\downarrow \delta_0 = 1
```

print(ATE 1 p	erformance 1 (0.01)				
#	Bias	rMSE	Naive_var_coverage	Naive_var_SD_Ratio	Sandwich_robust_var_coverage	Sandwich_var_SD_Ratio
# Outcome_reg	0.0004502813	0.005469130	0.935	0.9994199	NA	NA
# IPW	0.0002465322	0.005456610	0.947	1.1838910	0.976	1.519467
# DR	0.0003177392	0.005460426	0.936	0.9955787	0.939	1.010190
print(ATT_1_p	erformance_1_0	0.01)				
#	Bias	rMSE	Naive_var_coverage	Naive_var_SD_Ratio	Sandwich_robust_var_coverage	Sandwich_var_SD_Ratio
# Outcome_reg	0.0004502813	0.005469130	0.935	0.9994199	NA	NA
# IPW	0.0001459426	0.005467401	0.948	1.1773203	0.991	2.037184
# DR	0.0002460947	0.005464088	0.667	0.2475306	0.939	1.052139

2)-②. (δ_B, δ_B)	$\mathfrak{S}_{\mathcal{C}}) = (0.6, 0.6)$				
$\downarrow \delta_0 = -2$					
print(ATE_1_pe	erformance_2_0.6)		W 1 28 8 17	2 73 3 3 5	
# Outsome neg	Bias rMSE -0.001359273 0.007306984	Naive_var_coverage 0.953	Naive_var_SD_Katio 0.9910826	Sandwich_robust_var_coverage NA	Sandwich_var_SU_Katio
	-0.001065766 0.011507225	0.840	0.5380857	0.968	1.365758
	-0.003097177 0.008945412	0.949	0.9952240	0.981	1.268540
print(ATT_1_pe	erformance_2_0.6)				
#	Bias rMSE	Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# Outcome reg	-0.0013592730 0.007306984		0.99108256	NA	NA NA
	-0.0009557775 0.007682229		0.74769924	0.992	1.946291
# DR	-0.0005144325 0.007538381	0.450	0.09304479	1.000	2.782268
$b = \frac{\delta_0 = 0}{\text{print}(ATE_1 - permit)}$	erformance_0_0.6) Bias rMSE N	laive var coverage N	laive var SD Ratio S	Gandwich robust var coverage S	Sandwich var SD Ratio
# Outcome reg	-0.002941931 0.004282521	0.962	0.9971873	NA	NA NA
# IPW	-0.003451570 0.004709817	0.974	1.2522184	0.983	1.577980
# DR	-0.003431347 0.004399258	0.957	0.9953517	0.961	1.054439
print(ATT_1_pe	erformance_0_0.6)				
#	Bias rMSE	Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# Outcome reg	-0.002941931 0.004282521	0.962	0.9971873	NA NA	NA NA
# IPW	-0.005151964 0.006159374	0.936	0.9573452	0.991	1.773160
# DR	-0.004043887 0.004997942	0.656	0.2137094	0.976	1.169281

print(ATE_1_pe			41 -	N	* 1.11 L. 1	5 1 1 1 50 D 11
#	Bias	S CUSE	Naive_var_coverage	Naive_var_SU_katio	Sandwich_robust_var_coverage	Sandwich_var_SU_Katio
# Outcome_reg	0.0003874388	0.006238101	0.945	0.9899499	NA	NA
# IPW	-0.0010898597	0.008635468	0.898	0.7380445	0.973	1.427612
# DR	-0.0011992856	0.007116551	0.935	0.9898167	0.936	1.001990
print(ATT 1 pe	erformance 1 0	.6)				
#	Bias		Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# Outcome reg	0.0003874388	0.006238101	0.945	0.9899499	NA	NA
# IPW	-0.0017570411	0.010623404	0.850	0.5898777	0.982	1.641531
# DR	-0.0015704926	0.007993020	0.570	0.1654181	0.978	1.712062

2)-3. $(\delta_B, \delta_C) = (0.2, 0.2)$

print(ATE_1_performance_2_0.2)

$\downarrow \delta_0 = -2$

# Outcome reg	Bias -0 001817516		Naive_var_coverage 0.955	Naive_var_SD_Ratio 0.9927099	Sandwich_robust_var_coverage NA	Sandwich_var_SD_Ratio
	-0.001943531				0.987	
	-0.001549970				0.982	1.239156
			0.333	0.3073031	0.302	1.239130
print(ATT_1_pe	10.00		were the second of the second		and any or an arrangement of the contract of	
#	Bias				Sandwich_robust_var_coverage	
# Outcome_reg			0.955	0.99270988	NA NA	NA
	-0.001722056		E 2000		0.995	
# DR	-0.001581589	0.008754451	0.385	0.07198237	1.000	3.357375
$\Rightarrow \overline{9^0 = 0}$						
print(ATE 1 pe	rformance 0 6	3.2)				
#	Bias		Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# Outcome reg						
	-0.002457571			1,4949810	0.991	1.534238
	-0.002527949	0.003873439				
print(ATT 1 p	erformance 0	0.2)				
# \'	Bias		Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# Outcome reg						NA NA
# IPW	-0.003028923			1.4418739	0.996	2.008142
# DR	-0.002589178	0.003943840	0.689	0.2570541	0.971	1.145508

$\rightarrow \delta_0 = 1$

print(ATE_1	_performance_1	0.2)				
#	Bias	rMSE	Naive var coverage	Naive var SD Ratio	Sandwich robust var coverage	Sandwich var SD Ratio
# Outcome r	eg 0.002063519	0.005596075	0.941	0.9986546	NA	NA
# IPW	0.001374973	0.005771056	0.951	1.0969043	0.974	1.512286
# DR	0.001334201	0.005653815	0.942	0.9928079	0.944	1.006816
print(ATT 1	performance 1	0.2)				
#	Bias	rMSE	Naive_var_coverage	Naive var SD Ratio	Sandwich_robust_var_coverage	Sandwich_var_SD Ratio
# Outcome r	eg 0.0020635187					NA
# IPW	0.0011014683	0.005981215	0.946	1.0540567	0.991	1.978902
# DR	0.0009793262	0.005744209	0.653	0.2331804	0.954	1.098095

: DR Sandwich robust variance estimator의 Coverage가 0.95가 되는 parameter 조합이 (1, 0.2, 0.2)임을 확인.

〈추가 확인사항〉

 (δ_B,δ_C) 가 (0.15, 0.15), (0.1, 0.1)일 때 DR Sandwich robust variance estimator의 Coverage가 어떻게 되는지 파악.

1) $(\delta_B, \delta_C) = (0.15, 0.15)$

$$\rightarrow \delta_0 = 1$$

```
print(ATE_1_performance_1_0.15)
rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
                                                                           1.0001338
                                                          0.939
                                                          0.948
                                                                           1.1268023
                                                                                                                0.979
                                                          0.940
                                                                           0.9947404
                                                                                                                0.940
print(ATT_1_performance_1_0.15)
                                     rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
529874 0.939 1.0001338 NA NA
811606 0.949 1.0984808 0.991 2.00515
                       Bias
# Outcome_reg 0.0013880355 0.005629874
               0.0008427491 0.005811606
0.0006495854 0.005687560
                                                         0.664
```

```
\downarrow \delta_0 = -2
print(ATE_1_performance_2_0.15)
# Bias cMSE /
# Outcome_reg -0.001417042 0.009156878
                                    rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
                                                        0.952
                                                                         0.9900948
                                                                                                                                 1.482102
               -0.001115622 0.009661244
-0.001773683 0.009424915
                                                                                                            0 981
# IPW
                                                        0.885
                                                                        0.6358976
# DR
                                                        9.947
                                                                         0.9841285
                                                                                                            0.979
                                                                                                                                 1 233120
print(ATT_1_performance_2_0.15)
# Bias rMSE N
# Outcome_reg -0.001417042 0.009156878
                                   rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
                                                        0.952
                                                                        0.99009475
                                                                                                                 NΔ
                                                                                                             0.993
                                                                                                                                  2.006792
# IPW
               -0.001424640 0.009174354
                                                        0.894
                                                                        0.66546779
# DR
               -0.001282738 0.009153650
                                                         0.375
                                                                        0.06951088
                                                                                                             1.000
                                                                                                                                  3.465330
2) (\delta_B, \delta_C) = (0.1, 0.1)
\downarrow \delta_0 = -2
print(ATE_1_performance_2_0.1)
                                     rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
                        Bias
# Outcome_reg -0.001677387 0.009088494
                                                         0.951
                                                                         0.9881315
               -0.001361512 0.009426090
                                                         0.886
                                                                          0.6326320
                                                                                                              0.983
                                                                                                                                  1.486378
               -0.001842740 0.009259559
                                                                         0.9825853
                                                                                                                                  1.226561
# DR
                                                         0.953
                                                                                                             0.983
print(ATT_1_performance_2_0.1)
                                     rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
# Outcome_reg -0.001677387 0.009088494
                                                         0.951
                                                                        0.98813147
                                                                                                                                  2.002483
# IPW
               -0.001717224 0.009096289
                                                         0.893
                                                                        0.65131283
                                                                                                             0.993
               -0.001611515 0.009085696
                                                         0.384
                                                                        0.06727376
                                                                                                             1.000
                                                                                                                                  3.552003
\rightarrow \delta_0 = 1
print(ATE_1_performance_1_0.1)
                                    rMSE Naive var coverage Naive var SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio
```

0.9997228

1.1512652

0.9951671

1.1347822

0.2429480

rMSE Naive_var_coverage Naive_var_SD_Ratio Sandwich_robust_var_coverage Sandwich_var_SD_Ratio

NA

1.518563

1.009306

2.023850

1.066706

0.975

0.946

0.991

0.955

0.935

0.952

0.940

0.954

0.665

Outcome_reg 0.0008694784 0.005514316

Outcome_reg 0.0008694784 0.005514316

print(ATT_1_performance_1_0.1)

0.0005978085 0.005514707

0.0005677368 0.005507375

0.0004861319 0.005559121

0.0004101940 0.005525991

Bias

IPW

IPW

DR

#