

Dénombrement

Exercice 1

Pour A, B deux ensembles de E on note $A\Delta B = (A \cup B) \setminus (A \cap B)$. Pour E un ensemble fini, montrer :

$$\operatorname{Card} A\Delta B = \operatorname{Card} A + \operatorname{Card} B - 2\operatorname{Card} A \cap B$$
.

Indication ▼ Correction ▼ Vidéo ■ [000236]

Exercice 2

En utilisant la fonction $x \mapsto (1+x)^n$, calculer :

$$\sum_{k=0}^{n} C_n^k \quad ; \quad \sum_{k=0}^{n} (-1)^k C_n^k \quad ; \quad \sum_{k=1}^{n} k C_n^k \quad ; \quad \sum_{k=0}^{n} \frac{1}{k+1} C_n^k.$$

Indication ▼ Correction ▼ Vidéo ■ [000220]

Exercice 3

En utilisant la formule du binôme, démontrer que :

- 1. $2^n + 1$ est divisible par 3 si et seulement si n est impair;
- 2. $3^{2n+1} + 2^{4n+2}$ est divisible par 7.

Indication ▼ Correction ▼ Vidéo ■ [000222]

Exercice 4 **I

On part du point de coordonnées (0,0) pour rejoindre le point de coordonnées (p,q) (p et q entiers naturels donnés) en se déplaçant à chaque étape d'une unité vers la droite ou vers le haut. Combien y a-t-il de chemins possibles?

Indication ▼ Correction ▼ Vidéo ■ [005284]

Exercice 5

On considère les mains de 5 cartes que l'on peut extraire d'un jeu de 52 cartes.

- 1. Combien y a-t-il de mains différentes?
- 2. Combien y a-t-il de mains comprenant exactement un as?
- 3. Combien y a-t-il de mains comprenant au moins un valet?
- 4. Combien y a-t-il de mains comprenant (à la fois) au moins un roi et au moins une dame ?

Indication ▼ Correction ▼ Vidéo ■ [000239]

Exercice 6 Permutations

Combien y a-t-il de bijections f de $\{1, ..., 12\}$ dans lui-même possédant :

- 1. la propriété : n est pair $\Rightarrow f(n)$ est pair ?
- 2. la propriété : n est divisible par $3 \Rightarrow f(n)$ est divisible par 3?

- 3. ces deux propriétés à la fois?
- 4. Reprendre les questions précédentes en remplaçant bijection par application.

Correction ▼ Vidéo ■ [002912]

Exercice 7

Soit E un ensemble à n éléments, et $A \subset E$ un sous-ensemble à p éléments. Quel est le nombre de parties de E qui contiennent un et un seul élément de A?

Indication ▼ Correction ▼ Vidéo ■ [000237]

Indication pour l'exercice 1 ▲

Tout d'abord faire un dessin (avec des patates!).

Pour A et B deux ensembles finis quelconques, commencer par (re)démontrer la formule : Card $A \cup B = \text{Card } A + \text{Card } B - \text{Card } A \cap B$.

Indication pour l'exercice 2 ▲

Évaluer $(1+x)^n$ en x=1, d'une part directement et ensuite avec la formule du binôme de Newton. Pour la deuxième égalité commencer par dériver $x \mapsto (1+x)^n$.

Indication pour l'exercice 3 ▲

Commencer par $2^n = (3-1)^n$.

Indication pour l'exercice 4 A

Coder un chemin par un mot : D pour droite, H pour haut.

Indication pour l'exercice 5 ▲

Petits rappels: dans un jeu de 52 cartes il y a 4 "couleurs" (pique, cœur, carreau, trèfle) et 13 "valeurs" (1 = As, 2, 3, ..., 10, Valet, Dame, Roi). Une "main" c'est juste choisir 5 cartes parmi les 52, l'ordre du choix n'important pas.

Indication pour l'exercice 7 ▲

Combien y-a-t'il de choix pour l'élément de A? Combien y-a-t'il de choix pour le sous-ensemble de $E \setminus A$?

Correction de l'exercice 1 A

Tout d'abord si deux ensembles finis A et B sont disjoints alors $Card A \cup B = Card A + Card B$.

Si maintenant A et B sont deux ensembles finis quelconques : nous décomposons $A \cup B$ en trois ensembles :

$$A \cup B = (A \setminus (A \cap B)) \cup (B \setminus (A \cap B)) \cup (A \cap B).$$

Ces trois ensembles sont disjoints deux à deux donc : $\operatorname{Card} A \cup B = \operatorname{Card} A \setminus (A \cap B) + \operatorname{Card} B \setminus (A \cap B) + \operatorname{Card} A \cap B$.

Mais pour $R \subset S$ nous avons $\operatorname{Card} S \setminus R = \operatorname{Card} S - \operatorname{Card} R$.

Donc Card $A \cup B = \text{Card } A - \text{Card } A \cap B + \text{Card } B - \text{Card } A \cap B + \text{Card } A \cap B$.

Donc Card $A \cup B = \text{Card } A + \text{Card } B - \text{Card } A \cap B$.

Appliquons ceci à $A\Delta B = (A \cup B) \setminus (A \cap B)$:

 $\operatorname{Card} A \Delta B = \operatorname{Card} A \cup B - \operatorname{Card} A \cap B = \operatorname{Card} A + \operatorname{Card} B - 2\operatorname{Card} A \cap B$.

Correction de l'exercice 2 A

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction $f(x) = (1+x)^n$. Par la formule du binôme de Newton nous savons que

$$f(x) = (1+x)^n = \sum_{k=0}^n C_n^k x^k.$$

- 1. En calculant f(1) nous avons $2^n = \sum_{k=0}^n C_n^k$.
- 2. En calculant f(-1) nous avons $0 = \sum_{k=0}^{n} (-1)^k C_n^k$.
- 3. Maintenant calculons $f'(x) = n(1+x)^{n-1} = \sum_{k=1}^{n} kC_n^k x^{k-1}$. Évaluons $f'(1) = n2^{n-1} = \sum_{k=1}^{n} kC_n^k$.
- 4. Il s'agit ici de calculer la primitive F de f qui correspond à la somme : $F(x) = \frac{1}{n+1}(1+x)^{n+1} \frac{1}{n+1} = \sum_{k=0}^{n} \frac{1}{k+1} C_n^k x^{k+1}$. En $F(1) = \frac{1}{n+1} (2^{n+1} 1) = \sum_{k=0}^{n} \frac{1}{k+1} C_n^k$.

Correction de l'exercice 3

L'astuce consiste à écrire 2 = 3 - 1 (!)

$$2^n = (3-1)^n = 3 \times p + (-1)^n$$

Où $3 \times p$ $(p \in \mathbb{Z})$ représente les n premiers termes de $\sum_{k=0}^{n} C_n^k 3^k (-1)^{n-k}$ et $(-1)^n$ est le dernier terme. Donc $2^n - (-1)^n = 3p$. Si n est impair l'égalité s'écrit $2^n + 1 = 3p$ et donc $2^n + 1$ est divisible par 3. Si n est pair $2^n - 1 = 3p$ donc $2^n + 1 = 3p + 2$ qui n'est pas divisible par 3.

Pour l'autre assertion regarder 3 = 7 - 4.

Correction de l'exercice 4 A

On pose H = "vers le haut" et D = "vers la droite". Un exemple de chemin de (0,0) à (p,q) est le mot DD...DHH...H où D est écrit p fois et H est écrit q fois. Le nombre de chemins cherché est clairement le nombre d'anagrammes du mot précédent.

Le nombre de choix de l'emplacement du H est C_{p+q}^q . Une fois que les lettres H sont placées il n'y a plus de choix pour les lettres D. Il y a donc C_{p+q}^q chemins possibles.

Remarque : si on place d'abord les lettres D alors on a C_{p+q}^p choix possibles. Mais on trouve bien sûr le même nombre de chemins car $C_{p+q}^p = C_{p+q}^{(p+q)-p} = C_{p+q}^q$.

Correction de l'exercice 5

1. Il s'agit donc de choisir 5 cartes parmi 52 : il y a donc C_{52}^5 mains différentes. Ceci peut être calculé : $C_{52}^5 = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5!} = 2598960$.

- 2. Il y a 4 choix pour l'as (l'as de pique ou l'as de cœur ou ...), puis il faut choisir les 4 cartes restantes parmi 48 cartes (on ne peut pas rechoisir un as). Bilan $4 \times C_{48}^4$ mains comprenant exactement un as.
- 3. Il est beaucoup plus facile de compter d'abord les mains qui ne contiennent aucun valet : il faut choisir 5 cartes parmi 48 (on exclut les valets) ; il y a donc C_{48}^5 mains ne contenant aucun valet. Les autres mains sont les mains qui contiennent au moins un valet : il y en a donc $C_{52}^5 C_{48}^5$.
- 4. Nous allons d'abord compter le nombre de mains que ne contiennent pas de roi ou pas de dame. Le nombre de mains qui ne contiennent pas de roi est C_{48}^5 (comme la question 3.). Le nombre de mains qui ne contiennent pas de dame est aussi C_{48}^5 . Le nombre de mains ne contenant pas de roi ou pas de dame n'est pas $C_{48}^5 + C_{48}^5$, car on aurait compté deux fois les mains ne contenant ni roi, ni dame (il y a C_{44}^5 telles mains). Le nombre de mains ne contenant pas de roi ou pas de dame est donc : $2C_{48}^5 C_{44}^5$ (on retire une fois les mains comptées deux fois !). Ce que nous cherchons ce sont toutes les autres mains : celles qui contiennent au moins un roi et au moins une dame. Leur nombre est donc : $C_{52}^5 2C_{48}^5 + C_{44}^5$.

Correction de l'exercice 6

- 1. $(6!)^2$
- 2. $4! \times 8!$
- 3. 2!2!4!4!
- 4. $6^6 \times 12^6$, $4^4 \times 12^8$, $2^2 \times 4^2 \times 6^4 \times 12^4$.

Correction de l'exercice 7 ▲

Fixons un élément de A; dans $E \setminus A$ (de cardinal n-p), nous pouvons choisir C_{n-p}^k ensembles à k éléments $(k=0,1,\ldots,n)$. Le nombre d'ensembles dans le complémentaire de A est donc

$$\sum_{k=0}^{n-p} C_{n-p}^k = 2^{n-p}.$$

Pour le choix d'un élément de *A* nous avons *p* choix, donc le nombre total d'ensembles qui vérifie la condition est :

$$p2^{n-p}$$
.