WHAT IS CLAIMED IS:

1	A motor damper arranged in a passage in a reingerator
2	through which cold air flows, comprising:
3	a frame constituting a part of said passage;
4	a cold air gate formed at the center of said frame;
5	a baffle, rotatably secured on a rotation shaft formed on said frame, for
6	opening and closing said cold air gate;
7	a rotation mechanism for swinging said baffle between open and closed
8	positions of said cold air gate;
9	said baffle being arranged to enclose a neighboring region by said frame
0	at the position it closes said cold air gate;
1	said rotation mechanism including a motor arranged outside said frame
2	and in the vicinity of said rotation shaft of said baffle; and
3	an output shaft of said motor being rotatably secured to said rotation
4	shaft of said baffle.
1	2. A motor damper according to Claim 1, wherein said output shaft
2	of said motor is attached to said rotation shaft of said baffle via a decelerating gear.
1	3. A motor damper according to Claim 2, wherein said baffle is
2	rotatable to the position at which said cold air gate completely opens.
l	4. A motor damper according to Claim 3, wherein said baffle is
2	rotatable by about 90° from the closed position to the open position of said cold air
3	gate.

1 5. A motor damper according to Claim 1, wherein said motor is a 2 stepping motor. 1 A motor damper according to Claim 1, wherein a tip of said baffle 2 overlaps said frame when said baffle closes said cold air gate, and the tip of said baffle 3 is exposed outside said frame when said baffle opens said cold air gate. 7. A motor damper according to Claim 1, wherein said cold air gate 2 is arranged on said frame in such a way that the position which said baffle closes said 3 cold air gate is slanted with respect to said cold air flow. 1 8. A motor damper according to Claim 1, comprising two baffles arranged in about the center of said passage in said frame. 2 1 A motor damper according to Claim 1, wherein said rotation mechanism is comprised of a stepping motor, a pinion fit to an output shaft of said stepping motor, a fan-like gear engaged with said pinion, and a shaft for fitting one end to said fan-like gear and for engaging another end with said baffle. 1 A motor damper according to Claim 9, wherein one end of a 10. spring is attached to said baffle on the side of said cold air gate and another end of 2 3 said spring is attached to said frame. 1 11. A motor damper according to Claim 9, wherein said baffle is engaged with said shaft in a manner so as to provide a certain space therebetween. 2

1

12.

A motor damper according to Claim 9, wherein a magnet is

- adhered to one end of said fan-like gear, and in the vicinity of said magnet, a sensor for detecting an approach of said magnet is attached to said frame.
 - 13. A motor damper according to Claim 12, wherein said sensor is a
 Hall-effect integrated circuit.