Stochastik I

2. Übung

Aufgabe 5 (4,5 Punkte)

Beispiel 1.3.4. Beweisen Sie die folgenden Aussagen:

(i) Für einen Ring \mathcal{R} auf einer nicht-leeren Menge Ω und ein $\omega_0 \in \Omega$ definiert die folgende Vorschrift ein Prä-Maß δ_{ω_0} auf \mathcal{R} (genannt das Lebesgue'sche Prä-Maß mit Atom ω_0):

$$\delta_{\omega_0}(A) := \left\{ \begin{array}{ll} 1 & , & \omega_0 \in A \\ 0 & , & \mathrm{sonst} \end{array} \right., \qquad A \in \mathcal{R}.$$

(ii) Seien Ω eine abzählbar-unendliche Menge und $\mathcal{A} := \{A \subseteq \Omega : A \text{ oder } A^{\mathsf{c}} \text{ endlich} \}$ die Algebra auf Ω aus Aufgabe 4 (iii). (Als Algebra ist \mathcal{A} gemäß Proposition 1.1.13 insbesondere ein Ring auf Ω). Dann definiert die folgende Vorschrift einen Inhalt, aber kein Prä-Maß auf \mathcal{A} :

$$\mu(A) \, := \, \left\{ \begin{array}{ll} 1 & , & A^{\mathsf{c}} \text{ endlich} \\ 0 & , & A \text{ endlich} \end{array} \right. , \qquad A \in \mathcal{A}.$$

Aufgabe 6 (4,5 Punkte)

Seien Ω eine $abz\ddot{a}hlbare$, nicht-leere Menge und $\mathfrak{P}(\Omega)$ die Potenzmenge von Ω . Für jedes $\omega \in \Omega$ bezeichne δ_{ω} das in Beispiel 1.3.4 (i) eingeführte Dirac-Maß auf $\mathfrak{P}(\Omega)$ mit Atom ω . Ferner bezeichne #A die Kardinalität einer (abzählbaren) Menge $A \in \mathfrak{P}(\Omega)$: Im Falle einer endlichen Menge A spezifiziert #A die Anzahl der Elemente in A — insbesondere gilt $\#\emptyset = 0$, und im Falle einer abzählbar-unendlichen Menge A gilt $\#A = \infty$. Zudem verwende man die Konvention $\sum_{i \in I} \infty = \infty$ für jede abzählbare, nicht-leere Menge I. Beweisen Sie die folgenden Aussagen:

- (i) Durch die Vorschrift $\zeta(A) := \#A, A \in \mathfrak{P}(\Omega)$, ist ein Maß ζ auf $\mathfrak{P}(\Omega)$ definiert. Man nennt dieses das $Z\ddot{a}hlma$ ß auf $\mathfrak{P}(\Omega)$.
- (ii) Es gilt $\zeta(\cdot) = \sum_{\omega \in \Omega} \delta_{\omega}(\cdot)$.
- (iii) Jedes Maß μ auf $\mathfrak{P}(\Omega)$ ist von der Form $\mu(\cdot) = \sum_{\omega \in \Omega} p_{\omega} \delta_{\omega}(\cdot)$ mit $p_{\omega} := \mu(\{\omega\})$.

Aufgabe 7 (3 Punkte)

Proposition 1.3.6. Seien \mathcal{R} ein Ring auf einer nicht-leeren Menge Ω , μ ein Inhalt auf \mathcal{R} und $A, B, A_1, A_2, \ldots \in \mathcal{R}$. Beweisen Sie die folgenden Aussagen:

- (i) Es gilt $\mu(B \setminus A) = \mu(B) \mu(A)$, falls $A \subseteq B$ und $\mu(A) < \infty$.
- (ii) Es gilt $\mu(\bigcup_{i=1}^{\infty} A_i) \ge \sum_{i=1}^{\infty} \mu(A_i)$, falls A_1, A_2, \ldots paarweise disjunkt sind und $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$.

Aufgabe 8 (4 Punkte)

Proposition 1.3.8. Seien \mathcal{R} ein Ring auf einer nicht-leeren Menge Ω und μ ein Inhalt auf \mathcal{R} . Beweisen Sie für die folgenden Aussagen die Implikationen "(ii) \Rightarrow (i)" und "(iv) \Rightarrow (iii)":

- (i) μ ist ein Prä-Maß.
- (ii) μ ist stetig von unten.
- (iii) μ ist stetig von oben.
- (iv) μ ist \emptyset -stetig.