CS342 Assignment 2

Online game: AirMech

1) List of protocols used by the application at different layers as detected from the traces.

TRANSPORT LAYER:

TCP (Transmission Control Protocol):

```
▶ Ethernet II, Src: HonHaiPr_30:c5:61 (70:77:81:30:c5:61), Dst: 1a:19:d6:21:ab:d8 (1a:19:d6:21:ab:d8)
Internet Protocol Version 4, Src: 192.168.43.20, Dst: 192.168.0.83

Transmission Control Protocol, Src Port: 60867, Dst Port: 4000, Seq: 0, Len: 0
     Source Port: 60867
    Destination Port: 4000
     [Stream index: 1]
     [TCP Segment Len: 0]
     Sequence number: 0
                             (relative sequence number)
     [Next sequence number: 0
                                   (relative sequence number)]
    Acknowledgment number: 0
  1000 .... = Header Length: 32 bytes (8)
▶ Flags: 0x002 (SYN)
     Window size value: 17520
     [Calculated window size: 17520]
     Checksum: 0x67c7 [unverified]
    [Checksum Status: Unverified]
     Urgent pointer: 0
    Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation (NOP), No-Operation (NOP), SACK per
  ▶ [Timestamps]
```

Fields of the packets belonging to TCP protocol:

- > Source Port: The source port is the next available client number assigned to the user machine, for the router to know which user to send back responses to.
- > **Destination Port**: This number identifies the port of the receiving application
- > Sequence Number: The sequence number is the byte number of the first byte of data in the TCP packet sent (also called a TCP segment).
- > Ack Number: The sequence number of the next byte the receiver expects to receive
- ➤ **Header Length**: Specifies the size of the TCP header in 32-bit words.
- > Flags: Flags are used to indicate a particular state of connection or to provide some additional useful information like troubleshooting purposes or to handle a control of a particular connection. Most commonly used flags are "SYN", "ACK" and "FIN".
- > Window Size: Denotes how much data (in bytes) the receiving device is willing to receive at any point in time.
- > Checksum: The value that represents the number of bits in a transmission message and is used to detect high-level errors within data transmissions.
- > Urgent Pointer: The urgent pointer is a 16 bit value in the TCP header located after the checksum that is set when the TCP urgent flag is 1.
- UDP(User Datagram Protocol): The UDP header has a fixed length of 8 bytes

```
192.168.43.20
                                                                UDP
                                                                          158 61462 → 27017 Len=116
       7 1.816167
                                           103.10.124.162
                      192.168.43.20
                                           103.10.124.162
                                                                UDP
                                                                           174 61462 → 27017 Len=132
       8 1.816537
                                                                           78 27017 → 61462 Len=36
      9 2.057681
                      103.10.124.162
                                          192.168.43.20
                                                                UDP
     10 2.467019
                    103.10.124.162
                                        192.168.43.20
                                                                          158 27017 → 61462 Len=116
Frame 5: 174 bytes on wire (1392 bits), 174 bytes captured (1392 bits) on interface 0
▶ Ethernet II, Src: HonHaiPr_30:c5:61 (70:77:81:30:c5:61), Dst: 1a:19:d6:21:ab:d8 (1a:19:d6:21:ab:d8)
▶ Internet Protocol Version 4, Src: 192.168.43.20, Dst: 103.10.124.162
▼ User Datagram Protocol, Src Port: 61462, Dst Port: 27017
    Source Port: 61462
    Destination Port: 27017
    Length: 140
    Checksum: 0xefc0 [unverified]
    [Checksum Status: Unverified]
    [Stream index: 0]
Data (132 bytes)
```

- > Source Port: The port of the device sending the data. This field can be set to zero if the destination computer doesn't need to reply to the sender.
- > Destination Port: The port of the device receiving the data
- > Length: Length is the length in octets of this user datagram including this header and data
- > Checksum: checksums are often used to verify data integrity but are not relied upon to verify data authenticity. Although unlike in TCP, UDP does not provide any guarantee of package delivery.
- > Timestamp: It ensures that the endpoints keep the current value of RTT between them

APPLICATION LAYER

DNS (Domain Name system):

```
▼ Domain Name System (response)
   Transaction ID: 0x1313
   ►Flags: 0x8180 Standard query response, No error Questions: 1
   Answer RRs: 1
   Authority RRs: 0
   Additional RRs: 0
   ▶ Queries
   ►Answers
```

- > Transaction ID: Enables easy tracking of queries and query responses
- Queries: This denotes the list of query structures
- > Flags: Entails information like whether the packet is recursive or not, whether it is query or response etc.
- > Questions:
- ➤ Answer RR's:
- Authority RR's: are type NS records pointing to name servers closer to the target name in the naming hierarchy.
- > Additional RR's
- TLSv1.2 (Transport Layer Security)
- > Content Type: Type of the content being carried by TLS
- ➤ Application Data Protocol: The protocol containing the application data
- ➤ Version: Version of TLS being used(1.2)
- > Encrypted Application: Data associated with the encrypted application
- Length: Length of the data being transferred
- **STUN(Session Traversal Utilities for NAT):**

```
▼ Session Traversal Utilities for NAT

[Duplicated original message in: 289]

[Response In: 302]

▶ Message Type: 0x0001 (Binding Request)

Message Length: 8

Message Cookie: 2112a442

Message Transaction ID: 9daa49102e64afd0d7a8890b

▶ Attributes
```

- ➤ Message Type: STUN messages are TLV (type-length-value) encoded using big endian (network ordered) binary. All STUN messages start with a STUN header, followed by a STUN payload.
- ➤ Length: Indicates the total length of the STUN payload in bytes but does not include the 20 bytes header.
- > Cookie:

> Transaction ID: Is used to correlate requests and responses.

LINK LAYER

ARP(Address Resolution Protocol):

```
→ Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: reply (2)

Sender MAC address: HonHaiPr_30:c5:61 (70:77:81:30:c5:61)

Sender IP address: 192.168.225.159

Target MAC address: fe:3b:44:95:09:0c (fe:3b:44:95:09:0c)

Target IP address: 192.168.225.1
```

ARP finds the hardware address, also known as Media Access Control (MAC) address, of a host from its known IP address.

- ➤ Hardware Type : specifies the type of hardware used for the network transmitting the Address Resolution Protocol (ARP) message. Ethernet is the common Hardware Type and the value for Ethernet is 1.
- > Protocol Type: The address resolution protocol (arp) is a protocol used by the Internet Protocol (IP) [RFC826], specifically IPv4, to map IP network addresses to the hardware addresses used by a data link protocol.
- Hardware Size: Refers to the amount of bytes in MAC address(6 bytes)
- > Protocol Size: Refers to the amount of bytes in an IPV4 address(4 bytes)
- > OpCode: Specifies the nature of the message. 1 for ARP request and 2 for ARP reply
- > Sender MAC/IP address: MAC and IP addresses of the sender of the ARP request
- > Target MAC/IP address: MAC and IP addresses of the receiver of the request.

INTERNET LAYER

❖ ICMPv6:

- > Payload Length: The IPv6 packet payload is the combination of the IPv6 extension headers and the upper layer PDU.
- > Next Header: Next Header indicates type of extension header(if present) immediately following the IPv6 header. Whereas In some cases it indicates the protocols contained within upper-layer packet, such as TCP, UDP
- ➤ Hop Limit: Indicates the maximum number of links over which the IPv6 packet can travel before being discarded. The size of this field is 8 bits.
- > Source: Source Address is 128-bit IPv6 address of the original source of the packet.
- ➤ **Destination**:Destination Address (128-bits) : Destination Address field indicates the IPv6 address of the final destination

2) The important functionalities associated with the game are:

Start Game	DNS, TLSv1.2, TCP
Game Play(Data flow, maintaining state)	TCP,UDP, Ethernet II
End Game	TCP

a) DNS (Domain Name System):

- Most modern online games employ a client-server model.
- Our Device, the DNS client, i.e our system issues a DNS request to the game server, providing the hostname, which in our case, is api.steampowered.com. The request is received by a DNS resolver, which is responsible for finding the correct IP address for that hostname.
- The DNS resolver looks for a DNS name server that holds the IP address for the hostname
 in the DNS request. When the resolver reaches the authoritative DNS name server for
 "example.com", it receives the IP address and other relevant details, and returns it to the
 DNS client. The DNS request is now resolved. The DNS client device can connect to the
 server directly using the correct IP address.

b)TLSv1.2(Transport Layer Security):

- The TLS record protocol provides connection security, and the TLS handshake protocol
 enables the client and server to authenticate each other and to negotiate security keys
 before any data is transmitted.
- The TLS handshake is a multi-step process. A basic TLS handshake involves the client and server sending "hello" messages, and the exchange of keys, cipher message and a finish message. The multi-step process is what makes TLS flexible enough to use in different applications because the format and order of exchange can be modified.

c)TCP(Transmission Control Protocol):

- TCP is a connection oriented protocol that ensures that a connection is established and maintained until application programs from both client and server ends have finished exchanging messages.(By sending [SYN] and [FIN] messages.
- It determines how to break application data into packets that networks can deliver, sends packets to and accepts packets from the network layer, manages flow control and -- because it is meant to provide error-free data transmission -- handles retransmission of dropped or garbled packets and acknowledges all packets that arrive.

d) UDP (User Datagram Protocol):

- UDP (User Datagram Protocol) is a communications protocol that is primarily used for establishing low-latency and loss-tolerating connections between applications on the internet. It has lower reliability in comparison to TCP
- Majorly used as part of application data flow, an example of how udp is used in the gaming arena is sending position information.the position of a character is sent several times a

second and it doesn't matter whether a packet is lost as another one will be sent again shortly.

e) Ethernet II (Link Layer Protocol):

- The Ethernet is a local area network (LAN) set of protocols which serves the physical and data link layers.
- 3) The message sequences as observed during START and END functionalities are as follows:

Starting Game:

1)A **DNS request** is made by the client(our PC) for resolving the hostname of the DNS server to an IP address.

No.	Time	Source	Destination	Protocol	Length Info
	65 10.246897	192.168.43.20	23.55.108.59	TCP	54 60870 → 443 [ACK] Seq=224 Ack=2551 Win=17408 Len=0
	66 11.479486	192.168.43.20	23.55.108.59	TLSv1.2	180 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	67 11.529220	192.168.43.20	192.168.43.1	DNS	80 Standard query 0xa620 A api.steampowered.com
	68 11.623194	192.168.43.20	192.168.43.1	DNS	80 Standard query 0xa620 A api.steampowered.com
	69 11.631278	23.55.108.59	192.168.43.20	TLSv1.2	312 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message

2)TCP handshaking

A three way TCP handshake follows:

- A SYN frame containing request is sent to the destination server from the client
- The server sends an ACK packet for acknowledging the request. It also sends a SYN packet in order to synchronize the sequence number.
- An ACK frame is sent to the server from the client acknowledging the above packet.

No.	Time	Source	Destination	Protocol	Length Info
	27 3.851233	103.10.124.162	192.168.43.20	UDP	174 27017 → 61462 Len=132
	28 4.144398	192.168.43.20	103.10.124.162	UDP	78 61462 → 27017 Len=36
	29 4.642635	192.168.43.20	96.126.99.14	TCP	66 60869 → 443 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=8 SACK_PERM=1
	30 4.958997	96.126.99.14	192.168.43.20	TCP	66 443 → 60869 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 SACK_PERM=1 WS=128
	31 4.959475	192.168.43.20	96.126.99.14	TCP	54 60869 → 443 [ACK] Seq=1 Ack=1 Win=262144 Len=0
	32 4.975185	192.168.43.20	96.126.99.14	TLSv1.2	438 Client Hello
	33 5.278682	96.126.99.14	192.168.43.20	TLSv1.2	1514 Server Hello
	34 5.280374	96.126.99.14	192.168.43.20	TLSv1.2	1219 Certificate, Server Key Exchange, Server Hello Done
	35 5.280672	192.168.43.20	96.126.99.14	TCP	54 60869 → 443 [ACK] Seg=385 Ack=2626 Win=262144 Len=0
	36 5.485841	192.168.43.20	96.126.99.14	TLSv1.2	129 Client Key Exchange
	37 5.521763	192.168.43.20	96.126.99.14	TLSv1.2	60 Change Cipher Spec
	38 5.522996	192.168.43.20	96.126.99.14	TLSv1.2	99 Encrypted Handshake Message

3)TLSv1.2:

The client(192.168.225.159) and the game server(96.12.782355) exchange hellos. This is accompanied by the corresponding ack messages. The client requests the server to change encryption via a Change Cipher Spec request, to change the encryption during handshaking. A connection is finally established when the server responds to this request

No.	Time	Source	Destination	Protocol	Length Info
	85 12.495989	184.85.220.86	192.168.225.159	TLSv1.2	1424 Server Hello
	86 12.495989	184.85.220.86	192.168.225.159	TLSv1.2	
	87 12.496477	192.168.225.159	184.85.220.86	TCP	54 51648 → 443 [ACK] Seq=224 Ack=2549 Win=17408 Len=0
1	88 12.531042	fe80::fc3b:44ff:fe9	fe80::c847:7292:e40	DNS	116 Standard query response 0xfd8f A api.steampowered.com A 104.112.108.183
1	89 12.537695	192.168.225.159	104.112.108.183	TCP	66 51649 → 443 [SYN] Seq=0 Win=17520 Len=0 MSS=1460 WS=256 SACK_PERM=1
	90 12.572433	192.168.225.159	184.85.220.86	TLSv1.2	180 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	91 12.609813	104.112.108.183	192.168.225.159	TCP	66 443 - 51649 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1370 SACK_PERM=1 WS=128
	92 12.610467	192.168.225.159	104.112.108.183	TCP	54 51649 → 443 [ACK] Seq=1 Ack=1 Win=17408 Len=0
	93 12.619281	192.168.225.159	104.112.108.183	TLSv1.2	571 Client Hello
	94 12.696601	184.85.220.86	192.168.225.159	TLSv1.2	312 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
	95 12.702355	96.126.99.14	192.168.225.159	TLSv1.2	1424 Server Hello
	96 12.705788	96.126.99.14	192.168.225.159	TLSv1.2	1306 Certificate, Server Key Exchange, Server Hello Done
1	97 12.706285	192.168.225.159	96.126.99.14	TCP	54 51647 → 443 [ACK] Seq=385 Ack=2623 Win=262144 Len=0
	98 12 714854	fe8A::fc3h:44ff:fe9	ff02:-1:ffc2:58f8	TCMPv6	86 Neighbor Solicitation for fe80::5e99:60ff:fec2:58f8 from fe:3b:44:95:09:0c

Ending Game:

TCP:

In a very similar fashion to sending [SYN], [SYN, ACK] and [ACK] frames while starting the game, TCP also ensures a smooth finishing to the message exchange between the client and the server. The client sends a request to the server containing a [FIN,ACK] frame in order to terminate the present connection

The server acknowledges the request and sends back a [FIN,ACK] containing packet

The client sends an ACK frame packet acknowledging the termination and the connection closes.

No.	Time	Source	Destination	Protocol	Length Info
	670 42.150313	192.168.43.20	23.55.108.59	TCP	54 60870 → 443 [FIN, ACK] Seq=656 Ack=5260 Win=17408 Len=0
	671 42.231175	23.55.108.59	192.168.43.20	TLSv1.2	85 Encrypted Alert
	672 42.231175	23.55.108.59	192.168.43.20	TCP	54 443 → 60870 [FIN, ACK] Seq=5291 Ack=657 Win=31360 Len=0
	673 42.231551	192.168.43.20	23.55.108.59	TCP	54 60870 → 443 [RST, ACK] Seq=657 Ack=5291 Win=0 Len=0
	674 42.231852	192.168.43.20	23.55.108.59	TCP	54 60870 → 443 [RST] Seq=657 Win=0 Len=0
	675 42.334739	50.116.9.242	192.168.43.20	TCP	54 443 → 60874 [ACK] Seq=348704 Ack=6612 Win=64128 Len=0
	676 42.357311	192.168.43.20	192.168.0.83	TCP	66 60876 → 4000 [SYN] Seq=0 Win=17520 Len=0 MSS=1460 WS=256 SACK_PERM=1
	677 45.359091	192.168.43.20	192.168.0.83		66 [TCP Retransmission] 60876 → 4000 [SYN] Seq=0 Win=17520 Len=0 MSS=1460 WS=256 SACK_PERM=1
	678 48.293674	192.168.43.20	103.10.124.162	UDP	126 61462 → 27017 Len=84
	679 51.359412	192.168.43.20	192.168.0.83	TCP	66 [TCP Retransmission] 60876 → 4000 [SYN] Seq=0 Win=17520 Len=0 MSS=1460 WS=256 SACK_PERM=1
	680 51.722447	50.116.9.242	192.168.43.20	TLSv1.2	88 Application Data
	681 51.762409	192.168.43.20	50.116.9.242	TCP	54 60874 → 443 [ACK] Seq=6612 Ack=348738 Win=261960 Len=0
	682 53.284601	HonHaiPr_30:c5:61	1a:19:d6:21:ab:d8	ARP	42 Who has 192.168.43.1? Tell 192.168.43.20
	683 53.290462	1a:19:d6:21:ab:d8	HonHaiPr_30:c5:61	ARP	42 192.168.43.1 is at 1a:19:d6:21:ab:d8
	684 54.131371	192.168.43.20	172.253.121.127	STUN	70 Binding Request

4)

G: .:	Time					
Statistics	14:30	19:00	22:40			
Throughput(Bytes/sec)	3523	1463	1480			
RTT(ms)	263	527	429			
Packet Size(B)	463	277	400			
Number of Packets Lost	0	0	0			
UDP packets	250	251	169			
TCP packets	1616	1767	169			
Response Ratio	0.17	0.42	10.57			

5)Yes there indeed exist multiple source/destination IP addresses. They are listed below

Source	Destination
192.168.225.159	50.116.9.242
50.116.9.242	103.10.124.164
50.116.14.9	172.253.121.127
50.116.25.154	192.168.225.159
50.116.57.237	

Having multiple IP addresses on the same physical network is advantageous as:

- > It will prevent traffic from being exchanged via the gateway
- > Speeds things up and reduces the load.
- ➤ In order to use different public IP addresses to avoid firewalls or to avoid being blacklisted in SPAM filters.
- > And also if one network fails, there won't be an interruption.