

Classification

Classification methods

- Geometrical:
 - Nearest Neighbor
 - Logistic regression
 - Support Vector Machine
- Symbolisme:
 - Decision Tree
- Connectionism:
 - Perceptron
 - Neural networks
- Bayesian:
 - Naive Bayes

Linear regression

We can use the Mean Squared Error criterion with a linear regressor to perform classification (although this is clearly suboptimal).

We compute a **linear discriminant function** G(W, X) = W'X and compare it to a threshold T. If G(W, X) is larger than T, we classify X in class 1, if it is smaller than T, we classify X n class 2.

 \blacksquare To compute W, we simply minimize the quadratic loss function

$$\mathcal{L}(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{2} (y^i - W'X^i)^2$$

where $y^i = +1$ if training sample X^i is of class 1 and $y^i = -1$ if training sample X^i is of class 2.

This is called the Adaline algorithm (Widrow-Hoff 1960).

Logistic regression

- Key idea: predict the probability of the classes.
 Binary case: y = +1 or -1.
- decision rule: y = F(W'X), with $F(a) = 1/(1 + \exp(-a))$ (sigmoid function).
- loss function: $L(W, y^i, X^i) = 2 \log(1 + \exp(-y^i W' X^i))$
- gradient of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(Y^i F(W'X)))X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i F(W(t)'X^i))X^i$

Linear vs. Logistic regression

Figure: Left: linear regression; Right: logistic regression

Multi-class classification

Multi-class classification

- 多分类学习的一条思路是"拆解法":
 - 将多个任务拆分为若干个二分类任务求解。
- 1对1: 将C个类别两两配对,从而产生C(C-1)/2个二分类任务。测试时,通过C(C-1)/2个分类结果投票。
- 1对其余:将每一个类的样例作为正例,所有其他的类作为反例来训练C个分类器。测试时,通常选择置信度最高的分类器的结果。
- 多对多(Many vs. Many):需要特殊设计若干类为正例,若干类为反例。

How to fit the model to the data?

Let $y_{ic} = 1$ if sample x_i belongs to class c

Let $y_{ic} = 0$ if sample x_i does not belong to class c

7	9	6	5	8	7	4	Ţ	1	Ø
0	7	3	3	۲	4	8	Ŧ	М	~
6	6	3	Z	9	2	S		7	6
1	3	7	/	_	6	5	2	4	y
[T	0	9	Q	7	5	8	9	٩	4
4	6	6	5	0	a	/	3	6	9
8	5	1	Ø	9	3	8	7	3	6
1	0	N	∞	2	5	0	৸	/	5
6	7	8	2	5	3	9	7	0	0
7	9	3	9	8	5		ノ	9	8

We fit the best w_c to maximize the log-likelihood.

The likelihood is:
$$\prod_{i=1}^{N} \prod_{c=1}^{C} p(y_i = c|x_i)^{y_{ic}}$$
.

The log-likelihood is:
$$\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log p(y_i = c|x_i).$$

How to define $\log p(y|x)$?

Softmax (vs. Max)

If z_i is the unique maximum among z_c for $1 \le c \le C$

$$\frac{e^{\beta z_j}}{\sum_{c=1}^C e^{\beta z_c}} \to 1 \qquad \text{as } \beta \to +\infty$$

Softmax

- 逻辑回归只能处理二分类问题, 现实应用中很多问题为多分类:
 - 将商品评论分为好评、中评和差评
 - 手写数字识别中,将手写数字分类为0、1、...、9
- 对于C分类问题(C>2), Softmax函数代替Logistic函数:

$$p(y_i|\boldsymbol{x}_i) = \frac{e^{\boldsymbol{w}_{y_i}^{\mathrm{T}}\boldsymbol{x}_i}}{\sum_{c=1}^{C} e^{\boldsymbol{w}_c^{\mathrm{T}}\boldsymbol{x}_i}}$$

• 其中 w_c 为第c类的参数向量

Softmax函数定义

$$\sigma(\boldsymbol{z})_j = \frac{e^{z_j}}{\sum_{c=1}^C e^{z_c}}$$

Class-imbalance

- 类别不平衡:分类任务中不同类别的训练样例数目差别很大。
- 一般方法: under-sampling, over-sampling, threshold-moving
- Read: p.66 机器学习,周志华.

Classification methods

- Geometrical:
 - Nearest Neighbor
 - Logistic regression
 - Support Vector Machine
- Symbolism:
 - Decision Tree
- Connectionism:
 - Perceptron
 - Neural networks
- Bayesian:
 - Naive Bayes

Maximal Margin hyperplane

Maximum Margin Classifiers

间隔最大化

SVM: maximal margin hyperplane

• SVM: the separating hyperplane such that the minimum distance of any training point to the hyperplane is the largest.

• 根据支持向量机模型设定

$$\begin{cases}
f(\mathbf{x}_i) > 0 \leftrightarrow y_i = +1 \\
f(\mathbf{x}_i) < 0 \leftrightarrow y_i = -1
\end{cases} \to y_i f(\mathbf{x}_i) > 0$$

• 样本点到超平面距离:

$$\frac{y_i f(\boldsymbol{x}_i)}{||\boldsymbol{w}||} = \frac{y_i (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b)}{||\boldsymbol{w}||}$$

Support Vector Machine

- 间隔:样本点到决策超平面的最小距离
- 目标函数(间隔最大化):
- $\arg\max_{\boldsymbol{w},b} \left\{ \frac{1}{\|\boldsymbol{w}\|} \min_{i} \left[y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + b) \right] \right\}$

Linearly separable case

- 目标函数: $\underset{\boldsymbol{w},b}{\operatorname{arg max}} \{ \frac{1}{\|\boldsymbol{w}\|} \min_{i} [y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b)] \}$
- 假设: $\min_{i}[y_i(\mathbf{w}^T\mathbf{x}_i+b)]=1$ (w和b同比例缩放不影响结果)
- 则最优化问题为:

$$\max_{\mathbf{w}, b} \frac{1}{||\mathbf{w}||} \quad s.t. \ y_i(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., n$$

等价于:

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 \qquad s. t. \quad y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., n$$

Linearly non-separable case

• 如果数据线性不可分,则增加松弛变量(Slack Variables) $\xi_i \geq 0$,使得间 隔函数加上松弛变量大于等于1。此时,约束条件变成:

$$y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1 - \xi_i$$

目标函数:

$$\min_{\xi_i} \min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, 2, ..., n; \xi_i \ge 0, i = 1, 2, ..., n$$

or use the hard constraint $\sum_{i=1}^{n} \xi_i \leq c$

Understanding the slack variable

Appendix: Primal-Dual support vector classifiers

Figure: Separating hyperplane with margin

Understanding the slack variable

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, 2, ..., n; \xi_i \ge 0, i = 1, 2, ..., n$$

 $\xi_i = 0$: the i-th observation is on the correct side of the margin

 $\xi_i > 0$: the i-th observation is on the wrong side of the margin

 $\xi_i > 1$: the i-th observation is on the wrong side of the hyperplane thus mis-classified!

Understanding the objective

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, 2, ..., n; \xi_i \ge 0, i = 1, 2, ..., n$$

Because any point that is misclassified has $\xi_i > 1$,

 $\sum_{i} \xi_{i}$ is an upper bound on the number of misclassified data.

- A larger C assigns larger penalty to training errors.
- A smaller C gives more penalty to the model complexity.

Equivalent to hinge loss

$$\min_{\xi_i} \min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, 2, ..., n; \xi_i \ge 0, i = 1, 2, ..., n$$

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i(w^T x_i + b))$$

Hinge Loss

Solve Linearly separable case

- 目标函数: $\arg\max_{w,b} \{\frac{1}{\|w\|} \min_{i} [y_i(w^T x_i + b)]\}$
- 假设: $\min_{i}[y_i(\mathbf{w}^T\mathbf{x}_i+b)]=1$ (w和b同比例缩放不影响结果)
- 则最优化问题为:

$$\max_{\mathbf{w},b} \frac{1}{||\mathbf{w}||} \quad s.t. \ y_i(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., n$$

等价于:

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 \qquad s. t. \quad y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, i = 1, 2, ..., n$$

Solve Linearly separable case

Lagrange multiplier method

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \{ y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \}$$

ullet 原问题:极小极大问题,假设解为 \hat{p}

$$\min_{\boldsymbol{w},b} \max_{\boldsymbol{\alpha}} L(\boldsymbol{w},b,\boldsymbol{\alpha})$$

• 对偶问题:极大极小问题,假设解为 \hat{a}

$$\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha)$$

 $\hat{p} \geq \hat{d}$,满足强对偶性时, $\hat{p} = \hat{d}$,原问题和对偶问题等价

Slater条件:duality gap = 0

Slater's theorem provides a sufficient condition for strong duality to hold. Namely, if

- The primal problem is convex;
- It is strictly feasible, that is, there exists $x_0 \in \mathbf{R}^n$ such that

$$Ax_0 = b, f_i(x_0) < 0, i = 1, \dots, m,$$

then, strong duality holds: $\hat{p} = \hat{d}$, and the dual problem is attained. (Proof)

- $Ax_0 = b$,优化问题的等式约束; $f_i(x_0) \le 0$,优化问题的不等式约束
- 支持向量机的原问题满足Slater条件,因此可以通过对偶问题来求原问题

一般优化问题	支持向量机
$Ax_0 = b$	无
$f_i(\boldsymbol{x}_0) \leq 0$	$1 - y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b) \le 0$

除了支持向量,大部分样本点均满足 $1-y_i(w^Tx_i+b)<0$

Lagrange multiplier method

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \{ y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \}$$

- 对偶问题: $\max_{\alpha} \min_{w,b} L(w,b,\alpha)$
- 先求解内部的最小化问题
- 拉格朗日函数 $L(w,b,\alpha)$ 分别对参数 w 和 b 求偏导并令其等于0可得:

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow 0 = \sum_{i=1}^{n} \alpha_i y_i$$

Lagrange multiplier method

• 将上述结果代入 $L(w,b,\alpha)$ 中 , 可得 :

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i [y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1]$$

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} - \boldsymbol{w}^{\mathrm{T}} \sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i} - b \sum_{i=1}^{n} \alpha_{i} y_{i} + \sum_{i=1}^{n} \alpha_{i}$$

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$

Dual Problem

$$\min_{\alpha} \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j - \sum_{i=1}^{n} \alpha_i$$

$$s.t. \ \alpha_i \geq 0, i = 1, 2, ..., n$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- 二次凸规划问题 , 一般的数值计算方法可求解。
- 更高效的求解算法: SMO算法 when sample size n is large.

SVM example

- 给定 3 个数据点:正例点 $x_1 = (3,3)^T$, $x_2 = (4,3)^T$, 负例点 $x_3 = (1,1)^T$, 求 线性可分支持向量机
- 目标函数:

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \mathbf{x}_{j}) - \sum_{i=1}^{n} \alpha_{i}$$

$$= \frac{1}{2} (18\alpha_{1}^{2} + 25\alpha_{2}^{2} + 2\alpha_{3}^{2} + 42\alpha_{1}\alpha_{2} - 12\alpha_{1}\alpha_{3} - 14\alpha_{2}\alpha_{3}) - \alpha_{1} - \alpha_{2} - \alpha_{3}$$
s.t. $\alpha_{1} + \alpha_{2} - \alpha_{3} = 0$; $\alpha_{i} \ge 0$, $i = 1, 2, 3$

SVM example

- 将 $\alpha_1 + \alpha_2 = \alpha_3$ 代入目标函数 , 得到关于 α_1 和 α_2 的函数 : $s(\alpha_1, \alpha_2) = 4\alpha_1^2 + 7.5\alpha_2^2 + 10\alpha_1\alpha_2 2\alpha_1 2\alpha_2$
- 对 α_1 和 α_2 求偏导并令其等于零 , 易知 $s(\alpha_1,\alpha_2)$ 在点 (1.5, -1) 处取得极值。 而该点不满足条件 $\alpha_2 \ge 0$, 所以最小值在边界处达到。
- 当 $\alpha_1 = 0$ 时,最小值 $s\left(0, \frac{2}{13}\right) = -\frac{2}{13} = -0.1538$
- 当 $\alpha_2 = 0$ 时,最小值 $s\left(\frac{1}{4},0\right) = -\frac{1}{4} = -0.25$
- 即 $s(\alpha_1,\alpha_2)$ 在 $\alpha_1=0.25,\alpha_2=0$ 时达到最小,此时 $\alpha_3=\alpha_1+\alpha_2=0.25$

SVM example

- $\alpha_1 = \alpha_3 = 1/4$, 对应的点 x_1 和 x_3 是支持向量
- 代入公式可得:

$$w_1 = w_3 = 0.5, b = -2$$

- 分离超平面为: $\frac{1}{2}x_1 + \frac{1}{2}x_3 2 = 0$
- 决策函数为:

$$f(x) = \text{sign}(\frac{1}{2}x_1 + \frac{1}{2}x_3 - 2)$$

Solve Linearly non-separable case

• 如果数据线性不可分,则增加松弛变量(Slack Variables) $\xi_i \geq 0$,使得间隔函数加上松弛变量大于等于1。此时,约束条件变成:

$$y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1 - \xi_i$$

目标函数:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, 2, ..., n; \xi_i \ge 0, i = 1, 2, ..., n$$

Lagrange multiplier method

• 拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \mu_i \xi_i$$

• 对应的KKT条件:

$$\begin{cases} \alpha_{i} \geq 0 \\ y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i} \geq 0 \\ \alpha_{i}(y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i}) = 0 \\ \mu_{i} \geq 0 \\ \xi_{i} \geq 0 \\ \mu_{i} \xi_{i} = 0 \end{cases}$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow 0 = \sum_{i=1}^{n} \alpha_i y_i$$

$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0$$

Dual problem

代入函数 L 中 , 得到

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} L(\boldsymbol{w},b,\boldsymbol{\xi},\boldsymbol{\alpha},\boldsymbol{\mu}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}) + \sum_{i=1}^{n} \alpha_{i}$$

• 对上式求关于 α 的极大值,得到:

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}) + \sum_{i=1}^{n} \alpha_{i}$$
s. t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0;$$

$$\alpha_{i} \geq 0;$$

$$0 \leq \alpha_{i} \leq C$$

Non-linear (Kernel) SVM

- 如果分类边界是非线性的,该怎么处理呢?
 - 可以将原始数据映射到更高维的空间中(核函数!)

Non-linear (Kernel) SVM

Kernel K is a function: $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$

Linear SVM classifier: $f(x) = sign(\sum_{i=1}^{n} \alpha_i y_i x_i^T x + b)$

Non-Linear SVM:
$$f(x) = sign(\sum_{i=1}^{n} \alpha_i y_i K(x_i, x) + b)$$

- 支持向量机模型可以通过核方法来处理线性不可分的数据。
- 核方法的基本原理是把原坐标系里线性不可分的数据使用核函数(Kernel) 投影到另一个空间,尽量使得数据在新的空间里线性可分。
- 要在支持向量机中使用核函数,只需要将对偶问题中目标函数中的内积项替 换成核函数。

Property of Kernel

Kernel K is a function: $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$

- 核函数(核矩阵)满足对称和半正定性质
- 如果K₁和K₂是合法核函数:
- K₁ + K₂也是合法核函数
- cK_1 也是合法核函数 , c > 0
- $aK_1 + bK_2$ 也是合法核函数,a > 0, b > 0

Some Examples of Kernel

Kernel K is a function: $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$

- 多项式核函数: $(x_1^Tx_2+1)^d$,d为整数
- 高斯核函数(RBF核函数): $\exp(-\frac{\|x_1-x_2\|^2}{2\delta^2}), \delta > 0$
- Fisher 核函数(Sigmoid核函数): $tanh(\beta x_1^T x_2 + \theta)$, $\beta > 0$, $\theta < 0$
- 拉普拉斯核函数: $\exp\left(-\frac{\|x_1-x_2\|}{\delta}\right)$, $\delta>0$

Non-Linear SVM:
$$f(x) = sign(\sum_{i=1}^{n} \alpha_i y_i K(x_i, x) + b)$$

Software for SVM

- LIBSVM 是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包
- 该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用 这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能
- 该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一 算法的多类模式识别问题

Classification methods

Geometrical:

- Nearest Neighbor
- Logistic regression
- Support Vector Machine
- Symbolism:
 - Decision Tree
- Connectionism:
 - Perceptron
 - Neural networks
- Bayesian:
 - Naive Bayes

Neural Networks - Brief history

感知机

- 在1960年左右, Frank Rosenblatt 发明了第一代神经网络
- 第一代神经网络,感知机,能够识别一些简单的图形,如三角形、正方形。人们意识到一种可以像人类一样感知,学习,记忆的人工智能或许可以被创造出来。
- 但是, Marvin Minsky (1969)指出,单层结构限制了感知机能够学习到的函数,例如一个异或函数就已经超出了它的学习能力

Neural Networks - Brief history

第二代 神经网络

- 1985年Geoffrey Hinton 在感知机的基础上用一些隐藏层代替原始的单一结构,开创了第二代神经网络
 - 通过后向传播算法(Back-Propagation,即BP)进行训练
- 在1989, Yann LeCun 等人构建了一个深度神经网络来完成手写体识别的任务
 - LeCun的算法取得了巨大的成功,但网络的训练时间却将近3天

Neural Networks - Brief history

第二代 神经网络

缺陷:

- 不能训练未标注的数据,但现实中大多数数据都是未标注的。
- 修正信号在通过多个隐藏层传输时被减弱
- 当包含的隐藏层过多时,学习速度太慢
- 会陷于局部最优解

SVM 延缓了深度学习的发展

当人们努力去改进Hinton的神经网络时,1993-1995 Vladimir N. Vapnik,等人在原始的感知机的基础上发明了支持向量机(Support Vector Machine)

Neural Networks

Feed-Forward NN,前向传递网络构架:

Neural Networks

Classification methods

- Geometrical:
 - Nearest Neighbor
 - Logistic regression
 - Support Vector Machine
- Symbolisme:
 - Decision Tree
- Connectionism:
 - Perceptron
 - Neural networks
- Bayesian:
 - Naive Bayes

Naive Bayes

- 基于贝叶斯定理和特征条件独立性假设的分类方法
- 典型应用场景
 - •新闻分类
 - 疾病分类
 - 情感分类
 - 垃圾邮件分类

Bayes Formula

- 假设X,Y是一对随机变量,它们的联合概率p(X=x,Y=y)是指X取值x且Y取值y的概率,条件概率 $p(Y=y\mid X=x)$ 是指变量在X取值x的情况下,变量Y取值y的概率
- 联合概率和条件概率满足

$$p(X,Y) = p(Y|X) \cdot p(X) = p(X|Y) \cdot p(Y)$$

• 进而得到贝叶斯定理

后验概率 似然函数 先验概率
$$p(Y|X) = \frac{p(X|Y) \cdot p(Y)}{p(X)}$$
证据

Bayes Formula

- p(X,Y)是X和Y的联合概率分布
- 贝叶斯算法通过学习联合概率分布,利用贝叶斯公式,计算后验概率分布
- 先验概率分布为

$$p(Y = k), k = 1, 2, ..., c$$

• 条件概率分布

$$p(X|Y = k) = p(X_1, ... X_d | Y = k), k = 1, 2, ..., c$$

Bayes Formula

Maximum A-posteriori Inference(MAP)

• 利用贝叶斯定理进行预测

$$p(Y=k \mid X) = \frac{p(X \mid Y=k)p(Y=k)}{p(X)}$$

• 对于某一个样本X , p(X) 取值固定 , 上述预测等价于

$$\max_{k} p(X \mid Y = k) \cdot p(Y = k)$$

Naive Bayes Assumption

- 如何简化p(X | Y = k)的计算(X = k)的计算(X = k)
- 条件独立性假设

$$p(X \mid Y = k) = p(X_1, X_2, ..., X_d \mid Y = k)$$

$$= p(X_1 \mid Y = k) \ p(X_2 \mid Y = k) \cdots p(X_d \mid Y = k)$$

Example: conditional independent Dice:

given Y=1, $\{X1 = 1,2,3\}$ _||_ $\{X2 = 1,2,3\}$; given Y=-1, $\{X1 = 4,5,6\}$ _||_ $\{X2 = 4,5,6\}$. But $\{X1 = 1,2,3,4,5,6\}$ _||_ $\{X2 = 1,2,3,4,5,6\}$ is wrong!

Parameter estimation

• 即估计先验概率分布p(Y = k)和条件概率分布 $p(X_m \mid Y = k)$,通常使用极大似然估计,先验概率p(Y = k)的极大似然估计是

$$p(Y=k)=\frac{\sum_{i=1}^{n}I(y_i=k)}{n}, k=1,2,...,c$$

- 其中I(·)是指示函数,参数为真时取值1,反之取值0估计条件概率分布时,考虑随机向量X的特征为离散或连续情况
- 特征为离散型时,设 $X_n \in \{1,2,...,s\}$,条件概率 $p(X_n = s \mid Y = k)$ 的极大似然估计为

$$p(X_m = s | Y = k) = \frac{\sum_{i=1}^n I(x_{im} = s, y_j = k)}{\sum_{i=1}^n I(y_i = k)}$$

Parameter estimation

- 当特征为连续型时,有两种处理方法
 - 可以将连续变量离散化,人为设定离散区间,当连续特征离散化后,可利用上述方法 估计条件概率分布
 - 2. 假定连续变量服从某种分布,然后用数据集训练此分布参数
 - 高斯分布(正态分布)通常用来表示连续变量的概率分布;设分布的均值和方差分别为 μ 和 σ^2 ;对于某类Y=k,特征 X_m 的条件概率分布为

$$p(X_n = x_{im}|Y = k) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x_{im} - \mu)^2}{2\sigma^2}}$$

• 利用极大似然估计,可知样本均值和方差可作为 μ 和 σ^2 的估计