VERMES MIKLÓS Fizikaverseny

Kolozsvár, JZsUK, 2024. április 13.

JAVÍTÓKULCS

Országos döntő

IX. osztály

1. feladat (össszesen 9 pont)

A feladatot Faluvégi Ervin Zoltán állította össze.

a) összesen 3 pont

$$x = v_0 \cdot t \cdot \cos \alpha \implies t = \frac{x}{v_0 \cdot \cos \alpha}$$

$$y = v_0 \cdot t \cdot \sin \alpha - \frac{g}{2}t^2 \implies y = -\frac{g}{2v_0^2 \cdot \cos^2 \alpha}x^2 + tg\alpha \cdot x$$
1 p

$$y = v_0 \cdot t \cdot \sin \alpha - \frac{g}{2}t^2$$
 \Rightarrow $y = -\frac{g}{2v_0^2 \cdot \cos^2 \alpha}x^2 + tg\alpha \cdot x$ 1 p

$$y = 0 \Rightarrow x = b = \frac{2v_0^2}{g} sin\alpha \cdot cos\alpha = \frac{v_0^2}{g} sin2\alpha$$
 1 p

$$\sin 2\alpha = \frac{bg}{v_0^2} = 0.0055555555 = 2\alpha(rad) \Rightarrow 2\alpha = 0.31831^0 \Rightarrow$$

$$\alpha = 0.159155^{\circ}$$
, vagy $\alpha = 0.002777 \, rad$ 0,5 p

b) összesen 3 pont

$$x = \frac{b}{2} = \frac{v_0^2}{2a} \sin 2\alpha \tag{0.5 p}$$

$$v_y = v_{0y} - gt_{em} \Rightarrow t_{em} = \frac{v_0 \sin \alpha}{g} \Rightarrow y = \frac{v_0^2}{2g} \sin^2 \alpha = 3.472 cm$$
 1,5 p

fekvő lövészetben NEM TALÁLJA EL mert az y nagyobb, mint a sugár (2,25 cm)

0,5 p

álló lövészetben ELTALÁLJA mert az y kisebb, mint a sugár (5,75 cm)

0,5 p

c) összesen 3 pont

$$F - G_t - F_f = 0 ag{0.5 p}$$

$$F + G_t - F_f = ma 0.5 p$$

$$a = 2gsin\beta$$
 0,5 p

$$v^2 = v_0^2 + 2al = v_0^2 + 4glsin\beta$$

$$v = \sqrt{v_0^2 + 4glsin\beta}$$
 1 p

$$v = 15 \frac{m}{s} = 54 \frac{km}{h}$$
 0,5 p

2. feladat (össszesen 9 pont)

A feladatot, a Szaveljev–Zámcsa példatár ötlete alapján, Máthé Márta állította össze.

a) összesen 2 pont

A megcsúszásig a testek együtt mozognak

$$a = \frac{F}{m_1 + m_2} = \frac{At}{m_1 + m_2}$$
 0,5 p

A deszka megcsúszik a testhez képest ha:

$$F_i = F_{S1}$$

$$m_1 a = \mu m_2 g \qquad \qquad 0.5 \text{ p}$$

$$a = \frac{\mu m_2 g}{m_1}$$

$$\frac{At_0}{m_1 + m_2} = \frac{\mu m_2 g}{m_1}$$

$$t_0 = \frac{\mu m_2 \cdot (m_1 + m_2)g}{Am_1}$$

$$t_0 = 10 \, S$$

0,5 p

b) összesen 1 pont

$$a_0 = \frac{At_0}{m_1 + m_2}$$

$$a = 0.5 \frac{m}{S^2}$$

0,5 p

c) összesen 4 pont

A megcsúszás után a deszka gyorsulása nem változik, nem tud növekedni

0,5 p

$$a_1 = 0.5 \frac{m}{S^2}$$

0,5 p

A síkfelülethez kötött vonatkoztatási rendszerben alkalmazzuk a dinamika alaptörvényét a 2. testre

$$m_2 a_2 = F - F_{S_2}$$

1 p

$$a_2 = \frac{At - \mu m_2 g}{m_2}$$

0,5 p

 $a(\frac{m}{s^2})$

2,5

0,5

10

a gyorsulási időben növekedik

t 10 18 (s)

$$a_2$$
 0,5 2,5 $\frac{m}{S^2}$

a₁₂ ábrázolása

0,5 p

a₁ ábrázolása

0,5 p

a₂ ábrázolása

0,5 p

d) összesen 2 pont

0,5 p

$$\Delta v_1 = v_1 - v_{12}$$

$$v_{12} = \frac{a_0 t_0}{2} = 2,5 \frac{m}{s}$$

$$\Delta v_1 = v_1 - v_{12}$$

$$a_1 \Delta t = 4 \frac{m}{s} \quad v_1 = 6,5 \frac{m}{s}$$

0.5 p

$$\Delta v_2 = v_2 - v_{12}$$

$$\Delta v_2 = v_2 - v_{12}$$
 $\Delta v_2 = a_{k_2} \cdot \Delta t$
 $v_2 = 14.5 \frac{m}{s}$

$$v_2 = 14,5 \frac{m}{}$$

$$a_{k_2} = 1.5 \frac{m}{s^2}$$

0,5 p

3. feladat (össszesen 9 pont)

A feladatot, a Szaveljev-Zámcsa példatár ötlete alapján, Máthé Márta állította össze.

a) összesen 2,5 pont

A felülettől való elválás pillanatában

$F_{r_N} = G$ $l = l_0 + \Delta l$ $sin \propto = \frac{l_0}{l}$ $k. \Delta l. sin \propto = mg$ $\Delta l = \frac{l_0}{4}$	0,5 p 0,2 p 0,5 p 0,5 p 0,5 p
$\Delta l = 0.125m$	0,3 p

b) összesen 3,5 pont

A mozgás energia változásának tételét használjuk a két testből álló rendszerre:

$\Delta E_m = L_g + L_r$	1 p
$L_g = mgx$	0,5p
$x = \sqrt{l^2 - l_0^2} = \frac{3}{4} l_0$	0,3 p
$L_r = -\frac{k\Delta l^2}{2} = -\frac{5mgl_0}{32}$	0,5 p
$2 \cdot \frac{m \cdot v^2}{2} = \frac{3}{4} mg l_0 - \frac{5mg l_0}{32}$	0,3 p
$v = \sqrt{\frac{19gl_0}{32}} = 1,72 \frac{m}{s}$	0,5 p
$v=1,72~\frac{m}{s}$	0,4 p

Az energia megmaradás elvét használó megoldást is hasonlóan értékeljük.

c) összesen 1,5 pont

$$\Delta E'_{m} = L_{g} + L_{r} + L_{s}$$

$$\Delta E_{m} = L_{g} + L_{r}$$
 $\Delta E'_{m} - \Delta E_{m} = L_{s}$

$$2 \cdot \frac{m v'^{2}}{2} - 2 \frac{m v^{2}}{2} = L_{s}$$
 $L_{s} = -0.71J$
0,5 p
0,3 p
0,4 p

d) összesen 1,5 pont

Ha a merőleges nyomóerő végig N_0 =mg=10N lenne akkor $\mu_{\circ} = -\frac{L_S}{N} = 0,189$ lenne 0,5 p Mivel itt a merőleges nyomóerő – noha változik – kisebb mint N_0 =mg $N = N_O - F_{r_N} < N_O$ 0,5 p ahhoz, hogy a súrlódási erő ugyanazt a munkát végezze $\mu > \mu_{\circ}$ 0,5 p

Hivatalból: (3 pont)

Megjegyzés:

Jelen javítókulcs esetében – a pontozás egységesítése érdekében – a végső pontszámot 3-al osztjuk!