(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顯公開番号

特開平6-81291

(43)公開日 平成6年(1994)3月22日

(51) Int.Cl.*

識別記号

庁内整理番号

FI

技術表示箇所

D21F 3/02

Z 7199-3B

審查請求 有 請求項の数12(全 7 頁)

(21)出腹番号

特願平5-34012

(22)出旗日

平成5年(1993)2月1日

(31)優先權主張番号 P4202731.4

(32)優先日

1992年1月31日

(33)優先權主張国

ドイツ (DE)

(71)出頭人 591012978

ヨット・エム・フォイト・ゲーエムペーハ

J. M. VOITH GESELLSCH AFT MIT BESCHRANKTE

R HAFTUNG

ドイツ国・デーー7920 ハイデンハイム・

ザンクトベルテナーシュトラーセ 43

(72)発明者 クリスチャン シール

ドイツ国 7920 ハイデンハイム アルブ

レヒト デューラー・シュトラーセ 90

(74)代理人 弁理士 竹沢 荘一

最終頁に続く

(54)【発明の名称】 シュー形プレス用圧搾ジャケット

(57) 【要約】

【目的】 圧搾ジャケットを、小さな厚さと高い曲げ柔 軟性とを維持しつつ、できるだけ少ない費用で製造する ことができ、かつ従来以上の潤滑剤を、圧搾間隙を通し て送ることができるようにする。

【榕成】 エラストマージャケット材料22と内外2層の 補強系23, 24とで構成し、内層を形成する長手補強系23 を、圧搾機の運転時圧搾ジャケット10の回転軸9aと平行 とし、外層を形成する周補強糸24を、螺旋状に巻いてあ り、圧搾機の運転時、ほぼ圧搾ジャケット10の走行方向 に向けてある。補強糸23、24の全面を、エラストマー材 料22が覆ってある。圧搾ジャケット10の内面は、長手糸 23と平行な長手溝26を有している。

(2)

【特許請求の範囲】

【請求項1】 圧搾シューを有し、特に材料ウェブ(例 えばペーパーウェブ(20) の脱水又は平滑化に役立つ圧 搾機用の圧搾ジャケット(10)であって、

1

- a) 圧搾ジャケット(10)が外面と圧搾シュー上を滑動す る内面とを有し、かつ1つのエラストマージャケット材 料(22)と、2層の補強糸(23)(24)、つまり内層及び外 層、とで構成され、
- b) 内層を形成する長手補強糸(23)が、圧搾機の運転時 ほぼ圧搾ジャケット(10)の回転軸(9a)と平行に延びてお 10
- c) 外層を形成する布又は周補強糸(24)が、螺旋状に巻 かれ、圧搾機の運転時、ほぼ圧搾ジャケット(10)の走行 方向に延びるようになっており、
- d) 補強糸(23)(24)の全面を覆うエラストマー材料(22) の層を、単一の注型品として製造してあることを特徴と するものにおいて、
- e) 圧搾ジャケット(10)の内面が、少なくとも長手補強 糸(23)の一部に各1個の、長手糸と平行に延びる浅い長 手溝(26)を有し、この溝の深さ(t)は、せいぜい0.25mm 20 a) 圧搾ジャケット(10)が、外面と圧搾シュー上を滑動 であり、内面が、 (横断面で見て) 波形輪郭を有するこ とを特徴とする圧搾ジャケット。

【請求項2】 深さ(t)が、0 01~0.2 mであることを 特徴とする請求項1記載の圧搾シャケット。

【請求項3】 相隣接した長手溝(26)間と、隣接する乗 手補強糸(23)間とに、同じ間隔(a) (a =約1~5㎜) を設けてあることを特徴とする請求項1又は2記載の圧 搾ジャケット。

【請求項4】 各長手溝(26)が、2本の長手補強糸(23) の間にあることを特徴とする請求項1万至3のいずれか 30 さ0.25mmの長手溝(26B)を有する波形輪郭となるように に記載の圧搾ジャケット。

【請求項5】 各長手糸(23A)が、長手溝(26A) の中立 面上にあることを特徴とする請求項1乃至3のいずれか に記載の圧搾ジャケット。

【請求項6】 圧搾シューを有し、特に材料ウェブ(例 えばペーパーウェブ(20)の脱水又は平滑化に役立つ圧搾 機用の圧搾ジャケット(10)であって、

- a) 圧搾ジャケット(10)が、外面と圧搾シュー上を滑動 する内面とを有し、1つのエラストマー材料(22)と2層 の補強糸(23)(24)、つまり内層及び外層、とで構成さ
- b) 内層を形成する長手補強糸(23)が、圧搾機の運転時 ほぼ圧搾ジャケット(10)の回転軸(9a)と平行に延びてお
- c) 外層を形成する布又は周補強糸(24)が、螺旋状に巻 かれ、圧搾機の運転時、ほぼ圧搾ジャケット(10)の走行 方向に延びるようになっており、
- d) 補強糸(23)(24)の全面を覆うエラストマー材料(22) の層を、単一の注型品として製造してあることを特徴と するものにおいて、

- e) 長手補強糸(23) (又は少なくともその一部) が膨潤 性材料で形成されていて、液体を吸収可能であり、その 際直径が大きくなるようになっており、
- f) その結果、圧搾ジャケット(10)の本来平滑であった 内面が、(横断面で見て)深さ(t)がせいぜい0.25mmの 長手構(26)を有する波形輪郭となることを特徴とする圧 搾ジャケット。

【請求項7】 請求項6の前提部分(a)(d)に記載した 圧搾ジャケットにおいて、

- e) 長手糸(23A)を圧縮性材料で形成し、例えばホース 状に又は加撚してあり、
 - f) その結果、圧搾ジャケット(10)の本来実質的に平滑 であった内面が、(特に圧搾機の運転時)圧力の作用を 受けて、(横断面で見て)深さ(t)がせいせい0.25mmの 長手溝(26A)を有する波形輪郭となるようにしてあるこ とを特徴とする圧搾ジャケット。

【請求項8】 圧搾シューを有し、特に材料ウェブ(例 えばベーパーウェブ20)の脱水又は平滑化に役立つ圧搾 機用の圧搾ジャケット(10)であって、

- する内面とを有し、1つのエラストマー材料(22)と補強 糸(24)とで構成してあり、この糸が、外面の近傍に配置 されていて、好ましくは圧搾ジャケットの走行方向に延 びていることを特徴とするものにおいて、
- b) 内面の近傍で、エラストマー材料(22)内に通路(23 B) を設けてあり、この通路が、少なくとも近似的に圧搾 ジャケット(10)の走行方向を模切って延びており
- c) その結果、本来平滑であった内面は、圧力の作用を 受けて、(圧搾ジャケットの横断面で見て)せいぜい深 なっていることを特徴とする圧搾ジャケット。

【請求項9】 圧搾シューを有し、特に材料ウェブ(例 えばペーパーウェブ20)の脱水又は平滑化に役立つ圧搾 機用の圧搾ジャケットであって、

- a) 圧搾ジャケット(10') が、外面と圧搾シュー上を滑 動する内面とを有し、
- b) ジャケットが、1つのエラストマー材料(22)と、そ ・の中に埋封した補強糸(23)(24)とで構成されていること を特徴とするものにおいて、
- 40 c) 外面が、 (圧搾ジャケット(10°) の横断面で見て) 長手溝(25)を有し、
 - d) その結果、圧搾機の運転時圧力の作用を受けて、内 面は深さ最高0.25mmの長手溝を有する波形輪郭となるよ うになっていることを特徴とする圧搾ジャケット。

【請求項10】 圧搾シューを有し、特に材料ウェブ(例 えばペーパーウェブ20)の脱水又は平滑化に役立つ圧搾 機用の圧搾ジャケット(10)であって、

a) 圧搾ジャケット(10)が、外面と圧搾シュー上を滑動 する内面とを有し、1つのエラストマー材料(22)と、2 50 層の補強糸(23)(24)、つまり内層及び外層、とで構成し

(3)

3

てあり、

- b) 内層を形成する長手補強糸(23)が、圧搾機の運転 時、ほぼ圧搾ジャケット(10)の回転軸(9a)と平行に延び ており、
- c) 外層を形成する布又は周補強糸(24)が、螺旋状に巻 かれ、圧搾機の運転時、ほぼ圧搾ジャケット(10)の走行 方向に延びるようになっており、
- d) 補強糸(23)(24)の全面を覆うエラストマー材料(22) の署が、単一の注型品として製造されていることを特徴 とするものにおいて、
- e) エラストマー材料(22)が膨潤性であって、液体を吸 収可能であり;
- f) その結果、圧搾ジャケット(10)の本来平滑であった 内面が、(横断面で見て)せいぜい深さ0.25㎜の長手溝 を有する波形輪郭となるようになっていることを特徴と する圧搾ジャケット。

【請求項11】 長手補強糸が、実質的に非膨潤性である ことを特徴とする請求項10記載の圧搾ジャケット。

【請求項12】 請求項10の前提部分(a)~(d)又は請求 項10又は11記載の圧搾ジャケットにおいて、圧搾ジャケ 20 ット(10)が、熱作用で膨張可能な材料(22)で形成され、 その結果、内面は、圧搾機の運転時昇温帯域が、(横断 面で見て)深さ最大0.25㎜の長手溝を有する波形輪郭と なることを特徴とする圧搾ジャケット。

【発明の詳細な説明】

[0001]

Ĺ

【産業上の利用分野】本発明は、圧搾シューを有する圧 搾機であるシュー形プレス用の圧搾ジャケットに関する ものである。圧搾機の運転時、周回する圧搾ジャケット は、圧搾シュー上を滑動し、その際、圧搾シューは圧搾 30 ジャケットを相手ロールに押圧する。圧搾シューの滑り 面は、普通凹面状に形成され、圧搾ジャケットと相手ロ ールとの間には、周方向を向く圧搾間隙が設けられてい

【0002】圧搾ジャケットはホース状であり、両端が 閉じている。しかし、以下の説明及び特許請求の範囲に おいて、用語「圧搾ジャケット」は、両側が開口したエ ンドレス圧搾ベルトも含み、このベルトは、やはり圧搾 シューと相手ロールとの間に延びる圧搾間隙を形成し、 圧搾間隙の外側で、好ましくは案内ロールを周回してい 40

[0003]

【従来の技術】本発明は、特願平3-202159号(ドイツ 国特許第 40 22 800号)により知られている請求項1の 前提部分に明示した特徴を有する圧搾ジャケットに関す

【0004】シュー形プレスでは、周回する圧搾ジャケ ット、又は圧搾ベルトと固定した圧搾シューとの間の潤 滑剤層 (油膜) 中に摩擦熱が発生し、この熱が、潤滑剤 の (そしてこれにより圧搾ジャケットの) 温度上昇を引 50 できるだけ少ない費用で製造することができ、かつ従来

き起こす。摩擦熟は、潤滑剤と一緒に圧搾帯域から排出 され、圧搾ジャケットが、再び圧搾帯域に進入するより も前に、この帯域から除去しなければならない。

【0005】潤滑剤送り量が少なければ少ないほど、潤 滑剤の温度が益々上昇し(圧搾ジャケットの寿命低下の 危険が増し)、更に、潤滑剤の磨厚が等しい大きさでな い場合、圧搾ジャケットの幅にわたって温度差が益々大 きくなる。

【0006】本発明は、圧控ジャケットと圧搾シューと 10 の間の間隙を通して、できるだけ多くの潤滑剤を送るよ うにするものである。これにより、圧搾ジャケットの寿 命が高まり、ジャケットの幅にわたって生じることのあ る温度差が減少するはずである。

【0007】米国特許第 4 482 430号明細書により知ら れている圧搾ベルトでは、その内面に、(潤滑剤の輸送 を目的にとする)凹部を、流し込み成形、又は機械的に 穿設してある。この凹部は、かなりの深さ(数㎜程度) を有する。ベルト材料は、弾性変形可能(圧縮性)であ り、運転時、凹部は圧力の作用で平らに押圧される。

【0008】この公知の解決策には、次の欠点がある。 *製造費が高い。

*圧搾ベルトがかなり厚く、従って、周方向でも長手方 向でも、曲げ剛性が高い。そのため、特にシュー末端で 立体的に湾曲した場合、圧搾ベルトが強く摩耗すること になる。

*四部がかなりの深さを有するため、潤滑剤層中に乱流 が生じて、摩擦を高める原因となる虞がある。その結 果、かかる圧搾機には、比較的高い駆動出力が必要であ り、又付加的摩擦熱が発生する。

*ベルト材料の圧縮性のために、強度が比較的小さく、 また弾性率は比較的低い。つまり、伸び抵抗が比較的小

*凹部のかなりの深さを有するため、各凹部の最も深い 箇所で、周方向応力が比較的高くなる。つまり、荷重が 過度に高くなって、亀製が生じることがある。

*公知のものは理論的に、低速時、つまり圧搾シューが 無限に長いときに有効に機能する。しかし、現実には、 圧搾シューは有限長であり、又圧搾シューの末端に、次 の問題が現れる点を考慮しなければならない。 すなわ ち、平行な深い溝が存在する場合、潤滑剤が横に流出し て潤滑剤層が破壊される。ポケット状態みが存在する場 合、ポケット間に存在する腹部が、圧搾シューの末端で 押し潰されて横に張り出し、既に比較的短期間のうち

に、圧搾ジャケットの内面が、圧搾シュー末端の範囲で 破壊される虞がある。

[0009]

【発明が解決しようとする課題】本発明は、ドイツ国特 許明細書第 40 22 800号により知られている圧搾ジャケ ットを、小さな厚さと高い曲げ柔軟性とを維持しつつ、

(4)

以上の潤滑剤を、圧搾間隙を通して送ることができるよ う改良したものである。また、圧搾ジャケットが付加的 機械的負荷を受けることなく、圧搾シュー両端部でも、 このことが可能となる必要がある。

5

[0010]

【課題を解決するための手段】この課題の幾つか異なる 解決策を、請求項1、6、7、8、9、10、12に明示し てある。

【0011】全ての解決策に共通する点として、少なく トの内面に、走行方向を横切る細くて浅い長手溝を設け てある。換雪すると、ジャケットの内面は、細かい彼形 構造である。波の山と波の谷との間の高低差は、予想さ れる潤滑剤の最低層の厚さ程度、又はそれ以下となるよ う設計される。他方、ピッチ(山の谷と山の谷との間 (隔)は、潤滑剤最低層厚の数倍である。

【0012】潤滑剤の平均層厚は、静液圧潤滑式圧搾シ ューの場合にも、又動液圧潤滑式圧搾シューの場合に も、0.01~0.2 ㎜程度(稀に0.25㎜以下)である。従っ 大高低差) は、0.01~0.2mmである。他方、好ましいピ ッチ (谷と谷との距離) は、1~5mmである。つまりピ ッチは、長手溝の深さの約20倍~100倍である。

【0013】すなわち、米国特許第 4 482 430号の対象 物と比較して、次のことが明らかである。本発明によれ ば、長手溝の深さは、1/10~1/100である。また、長手 溝(又は「彼の谷」)は、本質的に偏平である。これに より、圧搾ジャケットが延長圧搾帯域を通過するとき、 潤滑剤層は積層状態に留まることとなる。 換言すると、 長手僕内に循環流が発生したり、又は乱流の生じるの が、確実に防止される。これにより、付加的摩擦熱の発 生は確実に防止される。その結果、圧搾ジャケットの寿 命が高まり、又圧搾機用に必要な駆動力は、比較的低い レベルですむようになる。

【0014】この好ましい結果に寄与するのは、特に、 圧搾ジャケットのエラストマー材料が、米国特許第 4 4 82 430号とは異なり、実質的に非圧縮性であるという事 実による。このことから、比較的浅い長手溝は、圧搾帯 城を通過するとき、平ちに押圧されないこととなる。そ に流出することは実質的にない。従って、この帯域で、 圧搾ジャケットが早期に摩耗することも考えられない。 【0015】本発明の別の利点は、圧搾ジャケットの幅 にわたって、従来観察された温度差が消失するか、又は 少なくとも従来より本質的に減少していることにある。 これは、圧搾帯域を通して送られる潤滑剤量が、本質的 に多いことによるものである。

【0016】第1実施例では、圧搾ジャケットの内面の 細かな波形構造が、最初から存在している。つまり、圧 搾ジャケット(又は圧搾ベルト)をシュー形プレスに取 50 ある。圧搾間隙の外側で、圧搾ジャケット10は実質的に

り付ける前に、既に認めることができる。つまり、この 構造は、圧搾ジャケットの製造時又は製造直後に、直接 に成立する。

. 6

【0017】本発明の第2実施例では、圧搾ジャケット の内面の細かな波形構造は、その製造後、ある程度の時 間が経過したのちに、はじめて成立する。幾つかの事例 では、シュー形プレスの運転時にはじめて成立する。

【0018】細かな波形構造は、請求項6に従って、長 手糸が液体を吸収して膨潤することにより、請求項7に とも圧搾機(シュー形プレス)の運転中、圧搾ジャケッ 10 従って、中空の、又は加機した長手糸の圧縮により、請 水項 8 に従って、長手糸を引き出すことで生じた「長手 通路」を圧縮することにより、請求項9に従って、外部 波形を内面に転写することにより、請求項10に従って、 ジャケット材料が液体を吸収して膨潤することにより、 又は請求項11に従って、ジャケット材料が少なくとも鳥 所的に熱膨張することにより、形成しうる。

【0019】本発明による圧搾ジャケットの製造は、従 来どおり国際公開第W088/08897号、ドイツ国特許第 40 22 800号に従って行うことができる。特に、流し込み成 て、長手溝の好ましい深さ(波の山と波の谷との間の最 20 形用シリンダ上に長手糸を固定する装置、ジャケット材 料の流し込み、そして周糸の開発については、詳しく記 載されている。それ故、これらの説明は省くことにす る。圧搾ジャケットの製造費は、従来どおり、比較的低 い。また、圧搾ジャケットの従来からの僅かな厚さ、従 って高い曲げ柔軟性が維持される。

[0020]

【実施例】本発明の実施例を、以下図面を基に説明す る。図1に示す、おおむね公知の圧搾機又は「シュー形 プレス」の本質的要素は、固定式支持体II(そのうちー 30 部だけを見ることができる)と、圧搾平面Eと平行に摺 動可能な多部分からなる圧搾シュー13と、相手ロール15 である。

【0021】圧搾シュー13は、下部14と上部16とに分か れる。下部14は、ピストンとして圧力室12内に配置され ている支持体11の凹部として形成され、密封縁板支持体 18、19内に静置した密封縁板により限定されている。上 部16は、主として凹面状の、相手ロール15の形状に適合 した滑り面を有し、この面を、圧搾ジャケット10が滑動 する。圧搾シューの上部16は、相手ロール15と一緒に、 の結果、圧搾シュー両端部では、潤滑剤が長手溝から横 40 いわゆる「延長」圧搾間隙を形成し、該間隙は、矢印P で示す走行方向に、長さbを有している。

【0022】圧擦ジャケット10の他、圧搾間隙をフェル トベルト (又は圧搾スクリーンベルト) 21が走行する。 この両者間を走行するペーパーウェブ20を破線で示して ある。必要なら、ペーパーウェブ20と圧搾ジャケット10 との間の圧搾間隙に、第2フェルトベルト(図示省略) が通される。

【0023】図1に示した構成は、両端をジャケット支 持円板により閉じたホース状圧搾ジャケット用に設けて (6)

円形周回軌道上を走行する。符号9aは、この軌道の中心、符号Rは、その半径である。圧搾ジャケット10の回転軸9aは固定式支持体11の中心軸7aに対してずらして配置してある。

【0024】圧搾間隙の入口で、圧搾シュー上部16が延長部17を有し、該延長部は、円形周回軌道から滑り面の 凹面部分へと丸みのある移行部を形成している。類似の 丸みのある移行部が、圧搾間隙の出口に設けられてい る。圧力室12内の圧力によって、圧搾シュー13は相手ロ ール15の方向に加圧される。

【0025】圧搾ジャケット10の厚さdは、約3~6m(程度)である。圧搾ジャケットの外径、つまり半径Rと厚さdの和の2倍は、例えば1.5 m程度である。特別な場合、それは1.0 m未満であってもよい。

【0026】図1には図示を省略したが、既に指摘したジャケット支持円板に、圧搾ジャケット10の両端を固着してある。この円板は、回転軸9aを中心に回転可能に支承してある。圧搾ジャケットを、側面の開口したエンドレス圧搾ベルトとして構成すると、ジャケット支持円板に代えて、案内ロールを設けておくことができる。

【0027】図2は、圧搾ジャケット10の一部を著しく 拡大して示している(図1の細部A)。エラストマー材 料22 (例えばポリウレタン)と、その中に完全に埋封さ れた補強糸23、24が認められる。これは、回転軸9aと平 行に延びる長手補強糸23と、常に外側糸層を形成する属 補強糸24、つまり、内側の長手補強糸23に巻き位けた周 糸である。周補強糸24の直径fは、圧搾ジャケット10の 外径Dの約1/4000~1/1000にすぎず、前記特別な場合1/ 500以下である。D=2 (R+d) である。

【0028】図3から分るように周補強糸24の本数は、 単位面積を基準に長手糸23の本数よりかなり多い。例え ば周補強糸24の本数は、長手補強糸23の本数の3倍とす ることができる。後者は、図2の実施態様の場合、膨潤 性材料からなっている。即ち、その直径 e は、本来、す なわち、圧搾ジャケットの製造中は、図2に示したもの より小さい。

【0029】圧搾ジャケットの作製後、内面の再処理を行うことができる。この処理時液体(例えば油又は水)は、ジャケット材料中を拡散して、長手補強糸23に浸透する。これにより、その直径 e が拡大し、内面は波形輪 40 郭となる。つまり、いまや波の谷又は「長手溝」26が、そしてその間に、波の山27が存在する。

【0030】図2に誇張して示した高低差 t 、即ち長手 構26の深さは、一般に0.01~0.2㎜である。図2におい では、各長手構26は、2本の長手楠強糸23間にある。

(応潤長手糸23は波の山27を形成している)。 長手補強 糸23間の間隔(a)は、長手溝26の中立面間の間隔と同じ 大きさである。 但し、前述の再処理は、必ずしも全ての 場合に必要であるのではない。

【0031】圧搾ジャケット10は、さしあたりなお平滑 50

なままの内面で、シュー形プレス(例えば図1)に組み 込むこともできる。この場合、長手補強糸23の膨潤と、 長手構26の形成は運転開始段階の間に、潤滑剤の液体成 分を利用して行われ、潤滑剤は、周知の仕方で、圧搾ジャケット10の内面に連続的に供給される。

・【0032】図4では、膨潤性長手補強糸に代えて、ホース状長手補強糸23Aが、図5では、長手補強糸を引き出すことで生じた長手通路23Bが設けられている。

【0033】図6と図7では、圧搾ジャケット10'は外10 面に長手撑25を有している。この場合、既に先に触れたように、圧搾ジャケット10'とペーパーウェブとの間に、フェルトベルト(又は圧搾スクリーンベルト)を設けてある。図7では、布24aを、周補強糸24の代わりに設けてある。

【0034】これら全ての場合、圧搾ジャケットの内面は、殆んど平滑であるが、運転中、圧搾間隙内の圧力を受けて、徐々に波形輪郭となる(図8参照)。例えばホース状又は加鐵した長手補強糸23A、又は長手通路23度は平らに押圧される。

20 【0035】図8に示す構成では、各長手補強糸23A は、長手溝26Aの中立面上にある。この構成は、通常の 非膨潤性(つまり実質的に形状の安定した)長手補強糸 と、膨潤性ジャケット材料、又は熱供給時膨張するエラ ストマー材料22とを用いることによって形成することも できる。

【0036】圧縮性長手補強糸23Aに代え、圧搾帯域内 で圧力を加えることで、接断面積が縮小する加燃長手補 強糸を使用することができる(例えば緩いマルチフィラ メント)。

1 【0037】周補強糸24に代え、微細な布を設けることができる。いずれの図でも、圧搾ジャケットの走行方向 ちは、矢印とで示してある。

【0038】圧搾ジャケット10の表面の波形は、完全に、又は殆んど圧搾シュー16と対向する側に集中しており、ペーパーウェブ20と対向する別の側で集中しているのではない。

【図面の簡単な説明】

【図1】本発明による圧搾ジャケットを備えた長手間隙 形圧搾機の部分斯面図である。

【図2】図1の細部A、つまり波形内面を有する圧搾ジャケットの一部の拡大図である

【図3】圧搾ジャケットの一部と、そのなかにある補強 糸の概要図である。

【図4】内面が平滑である圧搾ジャケットの一部を示す 縦断面図である。

【図5】内面が平滑である圧搾ジャケットの一部を示す 縦断面図である。

【図 6 】内面が平滑である圧搾ジャケットの一部を示す 縦断面図である。

【図7】内面が平滑である圧搾ジャケットの一部を示す

(6)

特開平6-81291

٤

縦断面図である。

【図8】図4又は図5に示す圧搾ジャケットの内面が、 運転時どのように波形構造となるかを示す縦断面図である。

【符号の説明】

- (7a) 中心軸
- (9a)回転軸
- (10)(10')圧搾ジャケット
- (11)固定式支持体
- (12)圧力室
- (13)圧搾シュー

(14)下部

- (16)圧搾シュー上部
- (18)(19)密封縁板支持体
- (21) フェルトベルト
- (23) (23A) 長手補強糸
- (24)周補強糸
- (25)(26)(26A)長手溝

10

- (15)相手ロール
- (17)延長部
- (20)ペーパーウェブ
- (22)エラストマー材料
- (23B) 長手通路
- (242)布
- (27)波の山

[図1]

[图2]

[図5]

【図7】

[図3]

[図4]

[図6]

(7)

特開平6-81291

[图8]

フロントページの統含

((72) 発明者 ハラルド アウフレヒト ドイツ国 7080 アアレン ヴァイラーシュトラーセ 77