Построение усеченных D-оптимальных планов для тригонометрических моделей

Волканова Маргарита Дмитриевна, гр.14.Б02-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Шпилев П.В. Рецензент: д.ф.-м.н., профессор Мелас В.Б.

Санкт-Петербург 2018г.

Введение

Уравнение регрессии

$$y_j = \eta(t_j, \theta) + \epsilon_j, \quad j = 1, \dots, n.$$

- ullet y_1, \ldots, y_n результаты эксперимента;
- ullet $\eta(t, heta)= heta^{\mathrm{T}}f(t)$ функция регрессии:
 - $oldsymbol{eta} heta = (heta_1, \dots, heta_k)^{\mathrm{T}}$ параметры;
 - $f(t) = (f_1(t), \dots, f_k(t))^{\mathrm{T}}$, $f_i(t)$ заданные базисные функции;
 - t_1, \ldots, t_n условия планирования эксперимента;
- $\epsilon_1, \dots, \epsilon_n$ случайные ошибки независимые нормально распределенные случайные величины, $\mathbb{E}\epsilon_i = 0$, $\mathbb{E}\epsilon_i^2 = \sigma^2$.

Рассмотрим план эксперимента размерности n:

$$\xi = \begin{pmatrix} t_1 & \dots & t_n \\ w_1 & \dots & w_n \end{pmatrix}, \quad t_i \in \chi, \quad w_i > 0, \quad \sum_{i=1}^n w_i = 1.$$

Основные понятия

• Информационная матрица (ИМ) плана:

$$M(\xi) = \sum_{i=1}^{n} f(t_i) f^{\mathrm{T}}(t_i) w_i, \quad M(\xi) \in \mathbf{R}^{k \times k};$$

• Представим ИМ в блочном виде:

$$M(\xi) = egin{pmatrix} M_{11}(\xi) & M_{12}^{\mathrm{T}}(\xi) \\ M_{12}(\xi) & M_{22}(\xi) \end{pmatrix}, \quad \mathsf{гдe} \dim M_{22}(\xi) = s imes s, \quad s \leq k;$$

• Введем матрицу

$$M_s(\xi) = M_{22}(\xi) - X^{\mathrm{T}} M_{11}(\xi) X,$$

где $X(\xi)$ — произвольное решение системы

$$M_{11}(\xi)X(\xi) = M_{12}^{\mathrm{T}}(\xi);$$

Оптимальные планы

Определение 1

План называется D-оптимальным, если он максимизирует величину определителя $\mathcal{U}M$:

$$\det M(\xi) \longrightarrow \max_{\xi}.$$

Определение 2

План называется усеченным D-оптимальным (D_s -оптимальным), если он максимизирующий величину определителя $M_s(\xi)$:

$$\det M_s(\xi) \longrightarrow \max_{\xi}.$$

Теорема эквивалентности

Теорема 1 (Стадден В., 1976)

План ξ^* является усеченным D_s -оптимальным планом тогда и только тогда, когда существует матрица X, удовлетворяющая условиям:

- $M_{11}(\xi)X = M_{12}(\xi)^{\mathrm{T}};$
- ullet $\max_{x \in X} \psi(x)^{\mathrm{T}} (M_s(\xi))^{-1} \psi(x) = s$, где $M_s = M_{22} X^{\mathrm{T}} M_{11} X, \ \psi(t) = f_{(2)}(x) X^{\mathrm{T}} f_{(1)}(x).$

Тригонометрическая модель

Введем обозначения:

- *m* порядок модели;
- $m{egin{align*} \bullet \ heta = \mathrm{вектор} \ \mathrm{неизвестных} \ \mathrm{параметров:} \ heta = (heta_0, heta_1, \dots, heta_{2m})^\mathrm{T}; \end{aligned}}$
- f(t) вектор регрессионных функций: $f(t) = (1, \sin t, \cos t, \dots, \sin(mt), \cos(mt))^{\mathrm{T}}$, $t \in [0, 2\pi]$.

Тригонометрическая функция регрессии

$$\eta(t,\theta) = \theta^T f(t) = \theta_0 + \sum_{j=1}^m \theta_{2j-1} \sin(jt) + \sum_{j=1}^m \theta_{2j} \cos(jt).$$

Связь D_s -оптимальных планов с D-оптимальными

Теорема 2

Усеченным D_s -оптимальным планом для тригонометрической регрессионной модели является любой план

$$\xi^* = \begin{pmatrix} t_1^* & \dots & t_n^* \\ 1/n & \dots & 1/n \end{pmatrix}, \quad t_i^* = \frac{i-1}{n} 2\pi, \quad n \ge 2m+1,$$

для четного числа старших параметров ($s=2k,\ k\in\mathbb{Z}^+$), где $t_i^*\in[0,2\pi]$, $i=1,\dots,n,\ m$ — порядок регрессионной модели.

D_s -оптимальные планы с опорными точками D-оптимальных планов

Таблица: Планы первого типа

	Вид плана	m	s
	$\begin{pmatrix} 0 & \frac{\pi}{3} & \frac{2\pi}{3} & \pi & \frac{4\pi}{3} & \frac{5\pi}{3} \\ z & \frac{1}{3} - z & z & \frac{1}{3} - z & z & \frac{1}{3} - z \end{pmatrix}$	2	2;4
$\frac{0}{z}$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2;3;4;6
$ \begin{array}{c c} \hline 0 & \frac{\pi}{5} \\ z & \frac{1}{5} - z \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2;4;6;8

Симметричные D_s -оптимальные планы общего вида

Таблица: Планы второго типа

Вид плана	m	s
$\begin{pmatrix} 0 & p & \pi - p & \pi & \pi + p & 2\pi - p \\ z & \frac{1}{4} - \frac{z}{2} & \frac{1}{4} - \frac{z}{2} & z & \frac{1}{4} - \frac{z}{2} & \frac{1}{4} - \frac{z}{2} \end{pmatrix}$	2	2;3;4
$egin{pmatrix} 0 & p & \pi-p & \pi & \pi+p & 2\pi-p \ z & z_1 & rac{1}{2}-z-z_1 & z & z_1 & rac{1}{2}-z-z_1 \end{pmatrix}$	2	2;3;4
	3	2;3;4;5;6
	3	2;3;4;5;6

Построение D_s -оптимального плана для случая s=1

Рассматривается тригонометрическая модель второго порядка и план второго типа:

$$\xi^* = \begin{pmatrix} 0 & p & \pi - p & \pi & \pi + p & 2\pi - p \\ z & \frac{1}{4} - \frac{z}{2} & \frac{1}{4} - \frac{z}{2} & z & \frac{1}{4} - \frac{z}{2} & \frac{1}{4} - \frac{z}{2} \end{pmatrix}$$

$$z^* = \begin{pmatrix} 0 & \frac{\pi}{2} & \frac{\pi}{2} & \pi & \frac{3\pi}{2} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \end{pmatrix}$$

• Экстремальный многочлен:

$$\psi(x) = \cos(2x)^2.$$

Рис.: График $\psi(x)$ при N=6, m=2. s=1.

Алгоритм построения усеченных D-оптимальных планов

Для построения усеченных D-оптимальных планов разработан алгоритм:

- Задание порядка модели;
- Выбор типа плана (первый или второй);
- Нахождение плана;
- Проверка численного плана по теореме эквивалентности;
- Анализ плана с помощью графика.

T-критерий для задачи дискриминации

Критерий T-оптимальности можно записать в следующем виде:

$$T(\xi, \tilde{q}) = \min_{q} \int_{0}^{2\pi} (\eta_{2}(x, \tilde{q}) - \eta_{1}(x, q))^{2} \xi(dx).$$

Тогда T-оптимальный план максимизирует $T(\xi, \tilde{q})$:

$$\xi^* = \operatorname*{argmax}_{\xi} T(\xi, \tilde{q}).$$

Эффективность

• Эффективность D_s -оптимального плана ξ относительно T-оптимального плана ξ^* при фиксированном \tilde{q} :

$$\frac{T(\xi,\tilde{q})}{T(\xi^*,\tilde{q})},$$

• Эффективность D_s -оптимального плана ξ_1 относительно D-оптимального ξ_2 :

$$\frac{\sqrt[n]{detM(\xi_1)}}{\sqrt[n]{detM(\xi_2)}}$$

Графики эффективности T-критерия

Эффективность относительно соответствующих планов:

$$\begin{split} \xi_D &= \begin{pmatrix} 0 & \frac{\pi}{4} & \frac{\pi}{2} & \frac{3\pi}{4} & \pi & \frac{5\pi}{4} & \frac{3\pi}{2} & \frac{7\pi}{4} \\ \frac{1}{8} & \frac{1}{8} \end{pmatrix}, \\ \xi_{D_3} &= \begin{pmatrix} 0 & \frac{\pi}{4} & \frac{\pi}{2} & \frac{3\pi}{4} & \pi & \frac{5\pi}{4} & \frac{3\pi}{2} & \frac{7\pi}{4} \\ \frac{3}{20} & \frac{1}{10} & \frac{3}{20} & \frac{1}{10} & \frac{3}{20} & \frac{1}{10} & \frac{3}{20} & \frac{1}{10} \end{pmatrix}. \end{split}$$

Рис.: Графики T-эффективности для D-оптимального (a) и D_3 -оптимального плана (б) для модели, где m = 3; \tilde{q}_{2m} = 0, 0.5, 1, 2, 3, 5; $\tilde{q}_{2m-1} \in$ [0, 5]; $\tilde{q}_{2m-2} = 1$.

Таблица эффективности D-критерия

Таблица: Эффективность D-оптимального плана относительно D_s -оптимальных для тригонометрической модели порядка m.

планы	m=2	m=3
D_2 относительно D	1	1
D_3 относительно D	0.976	0.983
D_4 относительно D	1	1
D_5 относительно D	_	0.977
D_6 относительно D	_	1

Заключение

- Разработан алгоритм построения усеченных D-оптимальных планов;
- Рассмотрены планы двух типов и проверены на D_s -оптимальность;
- Найдена связь D_s -оптимальных планов с D-оптимальными;
- Проведенно численное сравнение эффективности $D,\,D_s$ и T-оптимальных планов для дискриминационной задачи;