Principio di doppia inclusione $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$ De Morgan $C(A \cup B) = CA \cap CB \quad e \quad C(A \cap B) = CA \cup CB$ Stringhe finite su A Seguenza finita di simboli di A. insieme di tutte le stringhe finite su A: $A^{<\mathbb{N}}$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) e$ Proprietà distributiva lh(s) lunghezza della stringa s $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ stringa vuota = ε Sottoinsieme di $A_0 \times A_1 \times \cdots \times A_{n-1}$. Sia $R \subseteq A \times B$: Relazione n-aria Insieme delle stringhe di lunghezza n (finito): A^n $dom(R) = \{a \in A \mid (a, b) \in R \text{ per qualche } b \in B\}$ **Stringhe infinite su A** Sequenza infinita di simboli di A. $rng(R) = \{b \in B \mid (a, b) \in R \text{ per qualche } a \in A\}$ insieme di tutte le stringhe infinite su A: $A^{\mathbb{N}}$ (successione) $R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$ riflessiva: $aRa \forall a \in A$ Proprietà per relazioni irriflessiva: $\neg(aRa) \forall a \in A$ binarie simmetrica: $aRb \rightarrow bRa$ antisimmetrica: $aRb \wedge bRa \rightarrow a = b$ (non è l'opposto di simmetria) transitiva: $aRb \land bRc \rightarrow aRc$ **Cardinalità** Due insiemi X e Y hanno la stessa cardinalità $(X \approx Y \text{ o } |X| = |Y|)$ se Relazione di equivalenza R riflessiva, simmetrica e transitiva esiste biezione $f: X \to Y$. Relazione d'ordine R riflessiva, antisimmetrica e transitiva X si inietta in Y (X $\stackrel{<}{\sim}$ Y o |X| \leq |Y|) se esiste iniezione f: X \rightarrow Y. Ordine stretto R irriflessiva, antisimmetrica e transitiva $X \lesssim Y$ sse c'è una suriezione g: $Y \rightarrow X$. Pre-ordine R riflessiva e transitiva **N.B.** Unica R sia simmetrica che antisimmetrica: uguaglianza. **Teorema di Cantor-Schröder-Bernstein** Se $X \stackrel{<}{\sim} Y$ e $Y \stackrel{<}{\sim} X$ allora $X \approx Y$. **Funzione** Relazione $f: A \rightarrow B$ tale che $\forall a \in A \ \exists b \in B \ t. \ c. \ (a, b) \in f \ \ e \ \ b_1 = b_2 \ \forall (a, b_1), (a, b_2) \in f$ Insieme **finito** sse in biezione con $\{0, ..., n-1\}$ per qualche $n \in \mathbb{N}$. Si scrive $|X| = \mathbb{N}$. A = dom(f)B codominio X infinito sse $\mathbb{N} \stackrel{<}{\sim} X$ ovvero $|\mathbb{N}| \leq |X|$. b = f(a) immagina di a mediante f X infinito sse esiste $Y \subset X$ tale che $X \approx Y$. $rng(f) = \{f(a) \mid a \in A\}$ range o immagine di f X **numerabile** se in biezione con \mathbb{N} . $f^{-1}[\{b\}] = \{a \in A \mid f(a) = b\}$ X **più che numerabile** se in biezione con \mathbb{R} . preimmagine o controimmagine di $b \in B$ Se X numerabile, anche $X^n \operatorname{con} n \in \mathbb{N}$ lo è. Composizione di funzioni $f: A \to B \ e \ g: B \to C$ $X^{<\mathbb{N}}$ è infinito (sempre). Se X numerabile, anche $X^{<\mathbb{N}}$ lo è. $g \circ f : A \to C \quad a \mapsto g(f(a))$ $X^{\mathbb{N}}$ e P(X) sono infiniti più che numerabili. iniettiva: $a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$ oppure Proprietà delle funzioni Teorema di Cantor |X| < |P(X)| $f(a_1) = f(a_2) \rightarrow a_1 = a_2$ suriettiva: $\forall b \in B \ b = f(a)$ per qualche $a \in A$ oppure rng(f) = BCriterio di priorità dei connettivi: $\neg \forall \exists$ biettiva se sia iniettiva che suriettiva Λ٧

 $f^{-1}: rng(f) \to A \quad b \mapsto f^{-1}[\{b\}]$

Inversa

Linguaggio del prim'ordine $L = Const \cup Func \cup Rel$

Arietà: dice quanti argomenti contiene la funzione o relazione

L-Termini $Term = (\{(,)\} \cup Const \cup Func)$

Formula atomica $\left(R(t_1, ..., t_n)\right)$ oppure $(t_1 = t_2)$

L-Formule $Fml = (L \cup Vbl \cup \{(,), \neg, \land, \lor, \rightarrow, \leftrightarrow)\}$

si indicano con lettere greche minuscole (es. φ)

Variabili (*Vbl*) **vincolate:** Sotto il raggio d'azione di un quantificatore.

Altrimenti **libere** ($FV(\varphi)$)

L-enunciato φ è enunciato se non contiene variabili libere.

L-struttura $\mathcal{A} = \langle A, R^{\mathcal{A}}, ..., f^{\mathcal{A}}, ..., c^{\mathcal{A}}, ... \rangle$

Assegnazione in \mathcal{A} per Associo ad ogni x_i il valore di $a_i \in A$

 $\{x_1, \dots, x_n\}$: si scrive: $x_1/a_1, \dots, x_n/a_n$

Interpretazione di un L-termine

t in \mathcal{A} mediante l'assegnazione: $t^{\mathcal{A}}[x_1/a_1,...,x_n/a_n]$

Una L-formula $\varphi(x_1,...,x_n)$ è vera in una L-struttura \mathcal{A} mediante un'assegnazione:

$$\mathcal{A} \vDash \varphi[x_1/a_1, ..., x_n/a_n]$$

Sia ϕ un L-enunciato.

- Se φ è **vero** in \mathcal{A} si scrive $\mathcal{A} \vDash \varphi$ (φ **soddisfa** \mathcal{A} / \mathcal{A} **modello** di φ)
- φ soddisfacibile/coerente se esiste almeno una L-struttura \mathcal{A} t.c. $\mathcal{A} \models \varphi$
- φ insoddisfacibile/incoerente/contraddizione se non esiste alcun modello φ
- φ logicamente valido/vero ($\vDash \varphi$) se $\forall \mathcal{A}$ si ha che $\mathcal{A} \vDash \varphi$

Sia Γ un insieme di L-enunciati e φ un L-enunciato.

 φ conseguenza logica di Γ ($\Gamma \models \varphi$) quando per ogni L-struttura \mathcal{A} , se $\mathcal{A} \models \Gamma$ allora $\mathcal{A} \models \varphi$

Teorema 1. φ valido sse $\neg \varphi$ è contraddizione

 $2. \, \varphi$ soddisfacibile sse $\neg \varphi$ non è valido

3. $\Gamma \vDash \varphi$ sse $\Gamma \cup \{\neg \varphi\}$ è insoddisfacibile

Equivalenza logica Due L-enunciati φ e ψ sono logicamente equivalenti ($\varphi \equiv \psi$) se, per ogni L-struttura

A, si ha che $\mathcal{A} \vDash \varphi \leftrightarrow \mathcal{A} \vDash$

Valgono le seguenti equivalenze:

• $\varphi \equiv \psi$ se e solo se $\models (\varphi \leftrightarrow \psi)$

• $\varphi \equiv \psi$ se e solo se $\varphi \models \psi$ e $\psi \models \varphi$

Formalizzazione:

$$>$$
 "ogni x t.c. ... è ..." $\forall x[... \rightarrow ...]$

$$>$$
 "esiste $x \dots t.c.\dots$ " $\exists x[\dots \land \dots]$

> Esprimere "sufficientemente grande":

come dire "esiste un numero x tale che ogni numero più grande di x è ..."

$$\exists x \forall y [x < y \rightarrow \dots]$$

> Esprimere "arbitrariamente grande":

Come dire "per ogni numero x ne esiste uno più grande tale che x è ..."

 $\forall x \exists y [x < y \land ...]$ (esemplo "esistono infiniti numeri primi")

> Se nel testo vengono esplicitati (ad esempio) x e y

$$\forall x \exists y \forall z \exists w \dots [x \dots y \dots z \dots w \dots]$$