

PROGRAMAÇÃO EM R

AULA 01 – A LINGUAGEM R: UMA INTRODUÇÃO E SEUS FUNDAMENTOS

AGENDA

- Apresentação do curso;
- Introdução;
- Fundamentos do R.

O CURSO PROGRAMAÇÃO EM R

- Apresentação do curso;
 - F
 - A Linguagem R: uma introdução e seus fundamentos;
 - Manipulação de dados no R: da carga ao processo de transformação;
 - A construção de gráficos com a linguagem R;
 - Criando um projeto completo no R.
- Objetivo: construir uma base inicial para aplicação da linguagem R em outras disciplinas;
- Bibliografia;
 - Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. "O'Reilly Media, Inc."
- Calendário e horário;
 - 4 aulas
 - 19:30-22:50 (20 min de intervalo)
- Avaliação
 - Média das listas de exercícios;
 - Grupos de 3-4 alunos, distribuídos de forma aleatória.

O que é a Linguagem R?

- A linguagem R nasceu durante a década de 90, inicialmente como um projeto de pesquisa de Ross Ihaka e Robert Gentleman.
- A linguagem R não é uma linguagem de programação completa. Ela apresenta algumas características de linguagem de programação:
 - Variáveis;
 - Estruturas de controle: condicionais e loops;
 - Funções.
- É a linguagem mais recomendada para análise estatística.

Rankings Linguagem de Programação

Nov 2023	Nov 2022	Change	Progra	mming Language	Ratings	Change
1	1		•	Python	14.16%	-3.02%
2	2		9	С	11.77%	-3.31%
3	4	^	9	C++	10.36%	-0.39%
4	3	•	4	Java	8.35%	-3.63%
5	5		0	C#	7.65%	+3.40%
6	7	^	JS	JavaScript	3.21%	+0.47%
7	10	^	php	PHP	2.30%	+0.61%
8	6	•	VB	Visual Basic	2.10%	-2.01%
9	9		501	SQL	1.88%	+0.07%
10	8	•	ASM	Assembly language	1.35%	-0.83%
11	17	*		Scratch	1.31%	+0.43%
12	24	*	®	Fortran	1.30%	+0.74%
13	11	*	-60	Go	1.19%	+0.05%
14	15	^	*	MATLAB	1.15%	+0.14%
15	28	*	•	Kotlin	1.15%	+0.68%
16	14	•	(3)	Delphi/Object Pascal	1.14%	+0.07%
17	18	^	3	Swift	1.04%	+0.17%
18	19	^	a	Ruby	0.99%	+0.14%
19	12	*	(R	R	0.93%	-0.20%
20	20		8	Rust	0.91%	+0.16%

Vantagens e Desvantagens do R

Gratuita

Open source

Grande comunidade

Grande variedade de pacotes disponíveis

Excelente para análise de dados

Flexível e personalizável

Rapidez

Não há interface gráfica

Limitações de desempenho com grandes datasets

Curva de aprendizado íngreme

A matéria prima para análise: o dado e sua progressão

Registro bruto

Tempestade perfeita: um cenário favorável para a área de ciência de dados

Crescimento exponencial do volume de dados

Preço baixo de armazenamento de dados

Aumento significativo da capacidade de processamento dos computadores

Data science e a evolução dos sistemas analíticos

O que ocorreu?

Análise

Descritiva

Por que ocorreu?

Análise Diagnóstica

Passado

O que ocorrerá?

Análise Preditiva

O que fazer?

Análise Prescritiva

Futuro

BI Tradicional

Data Science

12

Data Science: uma área multidisciplinar.

A ciência de dados é uma disciplina que se concentra na extração de insights significativos de dados. É uma área interdisciplinar que combina princípios e práticas de matemática, estatística, inteligência artificial e engenharia da computação. É "o processo de usar dados para entender o mundo ao nosso redor e tomar decisões informadas".

Tierney B. (2012)

Ciclo de vida de um projeto de ciência de dados: modelo KDD

Fonte: tradução adaptada de (FAYYAD et al. 1996a)

Ciclo de vida de um projeto de ciência de dados: modelo CRISP-DM

NOÇÕES BÁSICAS

- R é uma linguagem e um programa para interpretar os códigos em linguagem R;
- O RStudio é um ambiente de desenvolvimento integrado (IDE) para programação em R, funcionando como um facilitador;
- O RStudio não funciona sem o R, pois é o último que interpreta os códigos e devolve os resultados;
- É possível utilizar o RStudio instalado na máquina e na nuvem (POSIT);
- RStudio possui 4 blocos principais: Editor/Scripts, Console, Environment e Output.

NOÇÕES BÁSICAS

- Detalhando os blocos principais:
 - Editor : painel onde escrevemos o código;
 - Console: painel onde rodamos o código;
 - Environment: painel que apresenta todos os objetos criados;
 - History: painel com o histórico de comandos;

Output

- Files: mostra os arquivos do computador;
- Packages: evidencia os pacotes instalados e carregados;
- Plots: painel onde os gráficos são mostrados;
- Help: janela de documentação e ajuda
- Viewer: painel onde relatórios e dashboards serão apresentados.

FGV EESP ESCOLA DE ECONOMIA DE SÃO PAULO

NOÇÕES BÁSICAS

- Funcionalidades importantes:
 - Vassourinha dos quadrantes: limpeza;
 - Comentário: símbolo # antes;
 - Set Working Directory:
 - setwd(): mudar o diretório de trabalho;
 - getwd(): mostrar o diretório de trabalho;
 - dir(): listar o conteúdo do diretório de trabalho;

Pacotes:

- install.packages(): instalar pacote;
- library(): carregar pacote;

Observações relevantes:

- Case sensitive;
- Separador decimal: padrão é o ponto;
- Caracteres especiais: devem ser evitados.

NOÇÕES BÁSICAS

- Funcionalidades importantes:
 - Ajuda:
 - help(): colocar nome da função;
 - **?**
 - Pacote sos: função findFn();
 - help.search(): pesquisa quando não sabe o nome da função;
 - ??
 - Rsitesearch(): busca no site do R em toda sua documentação;
 - example(): apresenta um exemplo de uso da função;
 - Atribuição de objetos
 - <- ou =;
 - Mostrar objetos
 - Is() ou objects(): listar objetos;
 - rm(): remover objetos;
 - Símbolos especiais
 - NA. NAN, Inf, TRU, FALSE, NULL, pi;

TIPOS DE OPERADORES

Operadores Básicos

- Soma: +
- Subtração: -
- Multiplicação: *
- Divisão: /
- Potência: ∧
- Módulo (resto divisão): %%

Operadores Relacionais

- Atribuição de variáveis:= ou <-</p>
- Operadores: >,<,>=,<=,==, != (diferente)</p>

Operadores Lógicos

- **E**: &
- Ou: (símbolo pipe)
- Negação: !

VARIÁVEIS/ OBJETOS

- Variável é uma área em memória onde o computador armazena dados;
- Criar uma variável;
 - var1 = 10;
 - var2 = 2;
- Definir uma variável a partir de outra variável;
 - var1 = var2;
- Variável como uma lista de elementos;
 - var3 = c("a","e","i","o","u");
- Variável como uma função;
 - var4= function(x) {x+1};
- Informações sobre as variáveis:
 - class();
 - typeof().

FGV EESP ESCOLA DE ECONOMIA DE SÃO PAULO

TIPOS DE VARIÁVEIS

Fonte: https://analisemacro.com.br/econometria-e-machine-learning/variaveis-quantitativas-e-qualitativas-o-que-sao-e-como-analisar/

TIPO DE DADOS

Numérico (numeric)

- Por padrão o R cria uma variável como numérica e com o tipo double (decimal);
- as.integer(): converter uma variável para inteiro;

Caracter (character)

Pode ser um carácter ou um conjunto de caracteres;

Lógico (logical)

TRUE e FALSE.

TIPO DE ESTRUTURA DE DADOS

No R podemos armazenar nossos dados das seguintes formas:

- Vetor;
- Fator;
- Matriz;
- Array;
- Lista;
- Dataframe;
- TS (time series).

TIPO DE ESTRUTURA DE DADOS

Vetor

- 1 dimensão e 1 tipo de dado;
- Armazenamento de um ou mais elementos;
- Funções:
 - **c():**criar;
 - length(): comprimento;
 - **names():** nomear cada elemento;

Fator

- Fatores são uma classe de objetos no R criada para representar e armazenar as variáveis categóricas numericamente, garantindo maior performance de processamento;
- Cada categoria única é armazenada somente 1x e os dados são armazenados como um vetor de inteiros;
- As categorias podem ou não serem ordenadas;
- 1 dimensão e 1 tipo de dado;
- Funções:
 - factor: criar um vetor como fator;
 - levels(): apresenta as categorias;
 - nlevels(): número de categorias.

TIPO DE ESTRUTURA DE DADOS

Matriz

- 2 dimensões (linhas e colunas) e 1 tipo de dado;
- Funções:
 - matrix(): criar;
 - dim(), nrow(),ncol(): tamanho da matriz, número de linhas e colunas respectivamente;
 - rownames() e colnames: nomear linhas e colunas;

Array

- 2 ou mais dimensões e 1 tipo de dado;
- Funções:
 - array(): criar;

TIPO DE ESTRUTURA DE DADOS

■ Tabela de dados – Data frames

- Matriz com diferentes tipos de dados;
- Funções:
 - data.frame():criar;
 - **str():** resumo sobre a tabela;
 - **dim(), nrow(),ncol():** tamanho do dataframe, número de linhas e colunas respectivamente;
 - head(): apresenta n primeiras linhas;
 - **tail():** apresenta n últimas linhas;
 - rownames() e colnames: nomear linhas e colunas;

Lista - list

- Coleção de diferentes tipos de objetos podendo ter diferente tipos de dados;
- Funções:
 - **str():** resumo da estrutura da lista;
 - length(): comprimento da lista;
 - names(): atribuir nomes a lista.

FGV EESP ESCOLA DE ECONOMIA DE SÃO PAULO

OPERAÇÕES COM VETORES

- Indexação[]: índice dos elementos dentro do vetor;
- **Combinação de vetores:** c();
- Operações matemáticas com vetores;
- Operações com vetores com diferentes elementos;
- Nomear vetores: names().

FGV EESP ESCOLA DE ECONOMIA DE SÃO PAULO

OPERAÇÕES COM MATRIZES

- Criar matrizes a partir de número de linhas ou colunas;
- Indexação[,]: com 2 elementos;
- Matriz transposta: t();
- Matriz inversa: solve();
- Nomear matrizes: dinnames();
- Combinar matrizes: rbind() e cbind().

OPERAÇÕES COM LISTAS

- Indexação[] [];
- Nomear listas: names();
- Ao nomear a lista pode chamar os elemento com \$: lista\$caracteres;
- Unir objetos diferentes: list().

OPERAÇÕES COM DATAFRAMES

- Criando dataframe a partir de vários vetores;
- Indexação[,]: várias maneiras;
- Filtro a partir de uma regra;
 - O filtro não altera o dataframe, é somente uma seleção;
- **Summary():** resumo estatístico de cada variável
- Combinar dataframes: merge().

ATALHOS

- Temos aqui alguns atalhos importantes utilizados no R:
 - CTRL+ENTER: roda a(s) linha(s) selecionada(s) no script. O atalho mais utilizado;
 - ALT+-: cria no script um sinal de atribuição (<-). Você o usará o tempo todo;
 - CTRL+SHIFT+M: (%>%) operador pipe;
 - CTRL+1: altera cursor para o script;
 - CTRL+2: altera cursor para o console;
 - ALT+SHIFT+K: janela com todos os atalhos disponíveis.

REFERÊNCIAS E LINKS

FGV EESP

ESCOLA DE

ECONOMIA DE

- Cientistas de Dados no Github:
 - https://github.com/prakhar1989
 - https://github.com/wesm
 - https://github.com/jakevdp
 - https://github.com/mblondel
 - https://github.com/mnielsen
 - https://github.com/jtleek
 - https://github.com/allisonhorst
 - https://github.com/jbrownlee

Sites

- http://www.datasciencecentral.com
- http://www.kdnuggets.com
- http://www.predictiveanalyticstoday.com
- http://www.cienciaedados.com
- http://www.r-bloggers.com
- https://rpubs.com
- https://machinelearningmastery.com/blog/
- https://stackoverflow.com/
- https://medium.com/
- https://towardsdatascience.com/
- https://www.datacamp.com/