19-3-2021

BILKENT UNIVERSITY

Department of Electrical and Electronics Engineering

EEE313 Electronic Circuit Design

MidTerm Exam #1

Name and Surname:
Student ID no:
Section:
Signature:

Exam Duration: 120 minutes. Solve all 5 questions.

PART-2, 2 questions, 75 minutes

Question#	Your score	Out of
Q1		15
Q2		15
Q3		10
Q4		30
Q5		30
Total:		100

Instructions:

- 1. Calculators without extensive memory are allowed
- 2. Clearly explain all your answers in order to receive credit
- 3. Put a box around your final answer
- 4. Cheat sheets are not allowed
- 5. Indicate the units for your final answers
- 6. Write your student ID on the bottom of every page

Q4. (30 points)

For the circuit shown on the left, $V_{DD}=10V,\,V_{SS}=-10V,\,V_{TN}=1.5V,\,K_n=0.5mA/V^2,\,\,R_D=15k\Omega,\,R_L=15k\Omega,\,R_G=4.7M\Omega,\,R_s=50\Omega,\,\text{and}\,\,I=0.5\,\,\text{mA}.$

- a) Assuming $\lambda = 0$, derive and find small signal ac $A_v = v_{out}/v_s$, R_{in} , R_{out} . Note: Verify your assumptions.
- **b)** Assuming $\lambda = 1/75 \text{ V}^{-1}$ and that the Q-point values are the same as above, find small signal ac R_{in} and $A_v = v_{out}/v_s$.

Q5. (30 points)

For the cascode circuit shown on the left, the transistor parameters are $V_{TN1}=V_{TN2}=1~V,$ $K_{n1}=K_{n2}=2~mA/V^2,$ and $\lambda_1=\lambda_2=0.$

- a) Let R_s = 1.2 k Ω and R_1 + R_2 + R_3 = 500 k Ω . Design the circuit such that I_{DQ} = 3 mA and V_{DSQ1} = V_{DSQ2} = 2.5 V.
- b) Draw the small signal ac circuit. Derive and determine the small signal ac voltage gain $A_{\rm vl}$ = $v_{\rm ol}/v_{\rm s}$.
- c) Also derive and determine the small signal ac R_{eq} (shown on the figure), and voltage gain $A_{v2} = v_{o2}/v_s$.