MACHINE LEARNING

Probabilistic classification - discriminative models

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Generalized linear models

In the cases considered above, the posterior class distributions $p(C_k|\mathbf{x})$ are sigmoidal or softmax with argument given by a linear combination of features in \mathbf{x} , i.e., they are a instances of generalized linear models

A generalized linear model (GLM) is a function

$$y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$$

where *f* (usually called the *response function*) is in general a non linear function.

Each iso-surface of $y(\mathbf{x})$, such that by definition $y(\mathbf{x}) = c$ (for some constant c), is such that

$$f(\mathbf{w}^T\mathbf{x} + w_0) = c$$

and

$$\mathbf{w}^T\mathbf{x} + w_0 = f^{-1}(y) = c'$$

(c' constant).

Hence, iso-surfaces of a GLM are hyper-planes, thus implying that boundaries are hyperplanes themselves.

a.a. 2021-2022 2/36

Exponential families and GLM

Let us assume we wish to predict a random variable y as a function of a different set of random variables x. By definition, a prediction model for this task is a GLM if the following hypotheses hold:

1. the conditional distribution of y given \mathbf{x} , $p(y|\mathbf{x})$ belongs to the exponential family: that is, we may write it as

$$p(y|\mathbf{x}) = \frac{1}{s}g(\boldsymbol{\theta}(\mathbf{x}))f\left(\frac{y}{s}\right)e^{\frac{1}{s}\boldsymbol{\theta}(\mathbf{x})^T\mathbf{u}(y)}$$

for suitable g, θ, \mathbf{u}

- 2. for any **x**, we wish to predict the expected value of $\mathbf{u}(y)$ given **x**, that is $E[\mathbf{u}(y)|\mathbf{x}]$
- 3. $\theta(\mathbf{x})$ (the natural parameter) is a linear combination of the features, $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$

a.a. 2021-2022 3/36

GLM and normal distribution

1. $y \in \mathbb{R}$, and $p(y|\mathbf{x}) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-\mu(\mathbf{x}))^2}{2\sigma^2}}$ is a normal distribution with mean $\mu(\mathbf{x})$ and constant variance σ^2 : it is easy to verify that

$$\boldsymbol{\theta}(\mathbf{x}) = \begin{pmatrix} \theta_1(\mathbf{x}) \\ \theta_2 \end{pmatrix} = \begin{pmatrix} \mu(\mathbf{x})/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix}$$

and $\mathbf{u}(y) = y$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}]$, then

$$y(\mathbf{x}) = \mu(\mathbf{x}) = \sigma^2 \theta_1(\mathbf{x})$$

3. we assume there exists **w** such that $\theta_1(\mathbf{x}) = \mathbf{w}_1^T \overline{\mathbf{x}}$

Then, a linear regression results

$$y(\mathbf{x}) = \mathbf{w}_1^T \overline{\mathbf{x}}$$

4 / 36

GLM and Bernoulli distribution

1. $y \in \{0, 1\}$, and $p(y|\mathbf{x}) = \pi(\mathbf{x})^y (1 - \pi(\mathbf{x}))^{1-y}$ is a Bernoulli distribution with parameter $\pi(\mathbf{x})$: then, the natural parameter $\theta(\mathbf{x})$ is

$$\theta(\mathbf{x}) = \log \frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}$$

and $\mathbf{u}(v) = v$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}] = p(y=1|\mathbf{x})$, then

$$p(y = 1|\mathbf{x}) = \pi(\mathbf{x}) = \frac{1}{1 + e^{-\theta(\mathbf{x})}}$$

3. we assume there exists **w** such that $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$

Then, a logistic regression derives

$$y(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \overline{\mathbf{x}}}}$$

5 / 36

GLM and categorical distribution

1. $y \in \{1, ..., K\}$, and $p(y|\mathbf{x}) = \prod_{i=1}^{K} \pi_i(\mathbf{x})^{y_i}$ (where $y_i = 1$ if y = i and y = 0 otherwise) is a categorical distribution with probabilities $\pi_1(\mathbf{x}), ..., \pi_K(\mathbf{x})$ (where $\sum_{i=1}^{K} \pi_i(\mathbf{x}) = 1$): the natural parameter is then $\boldsymbol{\theta}(\mathbf{x}) = (\theta_1(\mathbf{x}), ..., \theta_K(\mathbf{x}))^T$, with

$$\theta_i(\mathbf{x}) = \log \frac{\pi_i(\mathbf{x})}{\pi_K(\mathbf{x})} = \log \frac{\pi_i(\mathbf{x})}{1 - \sum_{j=1}^{K-1} \pi_j(\mathbf{x})}$$

and $\mathbf{u}(y) = (y_1, \dots, y_K)^T$ is the 1-to-K representation of y

2. we wish to predict the expectations $y_i(\mathbf{x}) = E[u_i(y)|\mathbf{x}] = p(y=i|\mathbf{x})$ as

$$p(y = i|\mathbf{x}) = E[u_i(y)|\mathbf{x}] = \pi_i(\mathbf{x}) = \pi_K(\mathbf{x})e^{\theta_i(\mathbf{x})}$$

Since $1 = \sum_{i=1}^K \pi_i(\mathbf{x}) = \pi_K(\mathbf{x}) \sum_{i=1}^K e^{\theta_i(\mathbf{x})}$, it derives

$$\pi_K(\mathbf{x}) = \frac{1}{\sum_{i=1}^K e^{\theta_i(\mathbf{x})}}$$
 and $\pi_i(\mathbf{x}) = \frac{e^{\theta_i(\mathbf{x})}}{\sum_{i=1}^K e^{\theta_i(\mathbf{x})}}$

3. we assume there exist $\mathbf{w}_1, \dots, \mathbf{w}_K$ such that $\theta_i(\mathbf{x}) = \mathbf{w}_i^T \overline{\mathbf{x}}$

a.a. 2021-2022 6//

GLM and categorical distribution

Then, a softmax regression results, with

$$y_i(\mathbf{x}) = \frac{e^{\mathbf{w}_i^T \overline{\mathbf{x}}}}{\sum_{j=1}^K e^{\mathbf{w}_j^T \overline{\mathbf{x}}}} \qquad \text{if } i \neq K$$
$$y_K(\mathbf{x}) = \frac{1}{\sum_{j=1}^K e^{\mathbf{w}_j^T \overline{\mathbf{x}}}}$$

a.a. 2021-2022 7/36

GLM and additional regressions

Other regression types can be defined by considering different models for $p(y|\mathbf{x})$. For example,

1. Assume $y \in \{0, ..., \}$ is a non negative integer (for example we are interested to count data), and $p(y|\mathbf{x}) = \frac{\lambda(\mathbf{x})^y}{y!} e^{-\lambda(\mathbf{x})}$ is a Poisson distribution with parameter $\lambda(\mathbf{x})$: then, the natural parameter $\theta(\mathbf{x})$ is

$$\theta(\mathbf{x}) = \log \lambda(\mathbf{x})$$

and $\mathbf{u}(y) = y$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}]$, then

$$y(\mathbf{x}) = \lambda(\mathbf{x}) = e^{\theta(\mathbf{x})}$$

3. we assume there exists **w** such that $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$

Then, a Poisson regression derives

$$y(\mathbf{x}) = e^{\mathbf{w}^T \overline{\mathbf{x}}}$$

a.a. 2021-2022 8/36

GLM and additional regressions

1. Assume $y \in [0, \infty)$ is a non negative real (for example we are interested to time intervals), and $p(y|\mathbf{x}) = \lambda(\mathbf{x})e^{-\lambda(\mathbf{x})y}$ is an exponential distribution with parameter $\lambda(\mathbf{x})$: then, the natural parameter $\theta(\mathbf{x})$ is

$$\theta(\mathbf{x}) = -\lambda(\mathbf{x})$$

and $\mathbf{u}(y) = y$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}]$, then

$$y(\mathbf{x}) = \frac{1}{\lambda(\mathbf{x})} = -\frac{1}{\theta(\mathbf{x})}$$

3. we assume there exists **w** such that $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$

Then, an exponential regression derives

$$y(\mathbf{x}) = -\frac{1}{\mathbf{w}^T \overline{\mathbf{x}}}$$

a.a. 2021-2022 9/3

Discriminative approach

We could directly assume that $p(C_k|\mathbf{x})$ is a GLM and derive its coefficients (for example through ML estimation).

Comparison wrt the generative approach:

- \odot Less information derived (we do not know $p(\mathbf{x}|C_k)$, thus we are not able to generate new data)
- Simpler method, usually a smaller set of parameters to be derived
- Better predictions, if the assumptions done with respect to $p(\mathbf{x}|C_k)$ are poor.

a.a. 2021-2022 10/36

Logistic regression

$$p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T\overline{\mathbf{x}}}}$$

where base functions could also be applied.

The model is equivalent, for the binary classification case, to linear regression for the regression case.

a.a. 2021-2022 11/36

Degrees of freedom

- \odot In the case of d features, logistic regression requires d+1 coefficients w_0, \dots, w_d to be derived from a training set
- A generative approach with gaussian distributions requires:
 - 2d coefficients for the means μ_1, μ_2 ,
 - · for each covariance matrix

$$\sum_{i=1}^{d} i = d(d+1)/2$$
 coefficients

- one prior cla probability $p(C_1)$
- ⊚ As a total, it results into d(d+1) + 2d + 1 = d(d+3) + 1 coefficients (if a unique covariance matrix is assumed d(d+1)/2 + 2d + 1 = d(d+5)/2 + 1 coefficients)

a.a. 2021-2022 12/36

Let us assume that targets of elements of the training set can be conditionally (with respect to model coefficients) modeled through a Bernoulli distribution. That is, assume

$$p(t_i|\mathbf{x}_i,\mathbf{w}) = p_i^{t_i}(1-p_i)^{1-t_i}$$

where $p_i = p(C_1|\mathbf{x}_i) = \sigma(\mathbf{w}^T\mathbf{x}_i)$.

Then, the likelihood of the training set targets **t** given **X** is

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = L(\mathbf{w}|\mathbf{X}, \mathbf{t}) = \prod_{i=1}^{n} p(t_i|\mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{n} p_i^{t_i} (1 - p_i)^{1 - t_i}$$

and the log-likelihood is

$$l(\mathbf{w}|\mathbf{X}, \mathbf{t}) = \log L(\mathbf{w}|\mathbf{X}, \mathbf{t}) = \sum_{i=1}^{n} (t_i \log p_i + (1 - t_i) \log(1 - p_i))$$

a.a. 2021-2022 13/36

It results

$$\frac{\partial l(\mathbf{w}|\mathbf{X},\mathbf{t})}{\partial \mathbf{w}} = \sum_{i=1}^{n} (t_i - p_i) \overline{\mathbf{x}}_i = \sum_{i=1}^{n} (t_i - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_i)) \overline{\mathbf{x}}_i$$

To maximize the likelihood, we could apply a gradient ascent algorithm, where at each iteration the following update of the currently estimated \mathbf{w} is performed

$$\mathbf{w}^{(j+1)} = \mathbf{w}^{(j)} + \alpha \frac{\partial l(\mathbf{w}|\mathbf{X}, \mathbf{t})}{\partial \mathbf{w}}|_{\mathbf{w}^{(j)}}$$
$$= \mathbf{w}^{(j)} + \alpha \sum_{i=1}^{n} (t_i - \sigma((\mathbf{w}^{(j)})^T \overline{\mathbf{x}}_i)) \overline{\mathbf{x}}_i$$
$$= \mathbf{w}^{(j)} + \alpha \sum_{i=1}^{n} (t_i - y(\mathbf{x}_i)) \overline{\mathbf{x}}_i$$

a.a. 2021-2022 15/36

As a possible alternative, at each iteration only one coefficient in ${\bf w}$ is updated

$$w_k^{(j+1)} = w_k^{(j)} + \alpha \frac{\partial l(\mathbf{w}|\mathbf{X}, \mathbf{t})}{\partial w_k} \Big|_{\mathbf{w}^{(j)}}$$

$$= w_k^{(j+1)} + \alpha \sum_{i=1}^n (t_i - \sigma((\mathbf{w}^{(j)})^T \overline{\mathbf{x}}_i)) x_{ik}$$

$$= w_k^{(j+1)} + \alpha \sum_{i=1}^n (t_i - y(\mathbf{x}_i)) x_{ik}$$

a.a. 2021-2022 16/36

Newton-Raphson method

- Maximization of $l(\mathbf{w}|\mathbf{X},\mathbf{t})$ through the well-known Newton-Raphson algorithm to compute the roots of a given function
- Given $f: \mathbb{R} \to \mathbb{R}$, the algorithm finds $z \in \mathbb{R}$ such that f(z) = 0 through a sequence of iterations, starting from an initial value z_0 and performing the following update

$$z_{i+1} = z_i - \frac{f(z_i)}{f'(z_i)}$$

At each iteration, the algorithm approximates f by a line tangent to f in $(z_i, f(z_i))$, and defines z_{i+1} as the value where the line intersects the x axis

17 / 36

Logistic regression and GDA

- © Observe that assuming $p(\mathbf{x}|C_1)$ are $p(\mathbf{x}|C_2)$ as multivariate normal distributions with same covariance matrix Σ results into a logistic $p(C_1|\mathbf{x})$.
- The opposite, however, is not true in general: in fact, GDA relies on stronger assumptions than logistic regression.
- The more the normality hypothesis of class conditional distributions with same covariance is verified, the more GDA will tend to provide the best models for $p(C_1|\mathbf{x})$

a.a. 2021-2022 18/36

Logistic regression and GDA

- Logistic regression relies on weaker assumptions than GDA: it is then less sensible from a limited correctness of such assumptions, thus resulting in a more robust technique
- © Since $p(C_i|\mathbf{x})$ is logistic under a wide set of hypotheses about $p(\mathbf{x}|C_i)$, it will usually provide better solutions (models) in all such cases, while GDA will provide poorer models as far as the normality hypotheses is less verified.

a.a. 2021-2022 19/36

Softmax regression

- \odot In order to extend the logistic regression approach to the case K > 2, let us consider the matrix $\mathbf{W} = (\mathbf{w}_1, \dots, \mathbf{w}_K)$ of model coefficients, of size $(d+1) \times K$, where \mathbf{w}_i is the d+1-dimensional vector of coefficients for class C_i .
- In this case, the likelihood is defined as

$$p(\mathbf{T}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} \prod_{k=1}^{K} p(C_k|\mathbf{x}_i)^{t_{ik}} = \prod_{i=1}^{n} \prod_{k=1}^{K} \left(\frac{e^{\mathbf{W}_k^T \overline{\mathbf{x}}_i}}{\sum_{r=1}^{K} e^{\mathbf{W}_r^T \overline{\mathbf{x}}_i}} \right)^{t_{ik}}$$

where **X** is the usual matrix of features and **T** is the $n \times K$ matrix where row i is the 1-to-K coding of t_i . That is, if $\mathbf{x}_i \in C_k$ then $t_{ik} = 1$ and $t_{ir} = 0$ for $r \neq k$.

ML and softmax regression

The log-likelihood is then defined as

$$l(\mathbf{W}) = \sum_{i=1}^{n} \sum_{k=1}^{K} t_{ik} \log \left(\frac{e^{\mathbf{W}_{k}^{T} \overline{\mathbf{x}}_{i}}}{\sum_{r=1}^{K} e^{\mathbf{W}_{r}^{T} \overline{\mathbf{x}}_{i}}} \right)$$

And the gradient is defined as

$$\frac{\partial l(\mathbf{W})}{\partial \mathbf{W}} = \left(\frac{\partial l(\mathbf{W})}{\partial \mathbf{w}_1}, \dots, \frac{\partial l(\mathbf{W})}{\partial \mathbf{w}_K}\right)$$

a.a. 2021-2022 21/

ML and softmax regression

It is possible to show that

$$\frac{\partial l(\mathbf{W})}{\partial \mathbf{w}_j} = \sum_{i=1}^n (t_{ij} - y_{ij}) \overline{\mathbf{x}}_i$$

 Observe that the gradient has the same structure than in the case of linear regression and logistic regression

a.a. 2021-2022 22/36