Numerical Optimization Graduate Course

Unconstrained Smooth Optimization

Part III: Conjugate gradient and inexact Newton methods

Wen Huang

School of Mathematical Sciences Xiamen University

Compiled on February 14, 2022

Conjugate Gradient Methods

Equivalence between optimization and solving a linear system

Equivalent to solving a linear system

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x - b^T x \iff \text{ find } x \text{ such that } A x = b$$

where $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix.

- If A is diagonal, directions?
- If A is not diagonal, directions?

Conjugate direction method

- Conjugate directions $\{p_0, p_1, \dots, p_{n-1}\}, p_i^T A p_i = 0$ for all $i \neq j$
- Conjugate direction method:
 - **1** Given initial x_0 ; conjugate direction $\{p_i\}_{i=0}^n$; and set k=0
 - **2** Repeat *n* steps: $x_{k+1} = x_k + \alpha_k p_k$, where $\alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k}$, $r_k = A x_k b$

Theorem 1

For any $x_0 \in \mathbb{R}^n$, the sequence $\{x_k\}$ generated by the conjugate direction algorithm converges to the solution x^* in at most n steps.

Conjugate gradient method

Conjugate gradient method is to choose conjugate directions by

- $r_0 = Ax_0 b$, $p_0 = -r_0$
- $p_k = -r_k + \beta_k p_{k-1}$ such that $p_k^T A p_{k-1} = 0$

Theorem 2

Suppose the k-th iterate generated by the conjugate gradient method is not the solution x^* . Then

$$span(r_0, r_1, ..., r_k) = span(r_0, Ar_0, ..., A^k r_0),$$
 $span(p_0, p_1, ..., p_k) = span(r_0, Ar_0, ..., A^k r_0),$
 $r_k^T p_i = 0, \text{ for all } i < k,$
 $p_k^T A p_i = 0, \text{ for all } i < k,$

and x_k is the minimizer of $\frac{1}{2}x^TAx - b^Tx$ over $x_0 + \operatorname{span}(p_0, \dots, p_{k-1})$.

Therefore, the conjugate gradient method finds x^* in at most n steps.

Conjugate gradient method

Linear conjugate gradient method

Input: Initial x_0 ;

Output: x_k ;

1, Set
$$r_0 \leftarrow Ax_0 - b$$
, $p_0 \leftarrow -r_0$, $k \leftarrow 0$;

while $r_k \neq 0$ do

2,
$$\alpha_k \leftarrow \frac{-r_k^T p_k}{p_k^T A p_k}$$
;

3,
$$x_{k+1} \leftarrow x_k + \alpha_k p_k$$
;

$$4, r_{k+1} \leftarrow Ax_{k+1} - b;$$

$$5, \beta_{k+1} \leftarrow \frac{r_{k+1}^T A p_k}{p_k^T A p_k};$$

6,
$$p_{k+1} \leftarrow -\hat{r}_{k+1} + \beta_{k+1}p_k$$
;

7,
$$k \leftarrow k + 1$$
;

end while

Conjugate gradient method

Linear conjugate gradient method (Practical form)

Input: Initial x_0 ;

Output: x_k ;

1, Set
$$r_0 \leftarrow Ax_0 - b$$
, $p_0 \leftarrow -r_0$, $k \leftarrow 0$;

while $r_k \neq 0$ do

2,
$$\alpha_k \leftarrow \frac{-r_k^T p_k}{p_k^T A p_k}$$
; $\iff \alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T A p_k}$; (by (6))

3,
$$x_{k+1} \leftarrow x_k + \alpha_k p_k$$
;

4,
$$r_{k+1} \leftarrow Ax_{k+1} - b$$
; $\iff r_{k+1} \leftarrow r_k + \alpha_k Ap_k$;

5,
$$\beta_{k+1} \leftarrow \frac{r_{k+1}^I A p_k}{p_k^T A p_k}$$
; $\iff \beta_{k+1} \leftarrow \frac{r_{k+1}^I r_{k+1}}{r_k^T r_k}$; (by (4) and (6))

6,
$$p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k$$
;

7,
$$k \leftarrow k + 1$$
;

end while

Computations of the practical form

- Ap_k , $p_k^T(Ap_k)$, and $r_k^T r_k$
- Main cost on Apk

Generalization from linear CG method

Linear conjugate gradient method (Attempt for nonlinear problems)

```
Input: Initial x_0:
Output: X_k:
    1, Set r_0 \leftarrow Ax_0 - b (r_0 = \nabla f(x_0)). p_0 \leftarrow -r_0. k \leftarrow 0:
    while r_k \neq 0 do
        2, \alpha_k \leftarrow \frac{r_k^T r_k}{p_*^T A p_k}; \rightsquigarrow exact step size;
         3. x_{k+1} \leftarrow x_k + \alpha_k p_k;
         4, r_{k+1} = r_k + \alpha_k A p_k; \rightsquigarrow r_{k+1} \leftarrow \nabla f(x_{k+1});
        5, \beta_{k+1} = \frac{r_{k+1}^{\prime} r_{k+1}}{r^{\intercal} r_k}; \rightsquigarrow Fletcher-Reeves \beta_{k+1} \leftarrow \frac{\nabla f(x_{k+1})^{\intercal} \nabla f(x_{k+1})}{\nabla f(x_k)^{\intercal} \nabla f(x_k)};
         6. p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k;
         7. k \leftarrow k + 1:
    end while
```

- exact step size is not practical
- inexact step size?

Nonlinear conjugate gradient with FR scheme

Search direction:

$$p_{k+1} \leftarrow -\nabla f(x_{k+1}) + \beta_{k+1}^{\text{FR}} p_k \text{ with } \beta_{k+1}^{\text{FR}} = \frac{\nabla f(x_{k+1})^T \nabla f(x_{k+1})}{\nabla f(x_k)^T \nabla f(x_k)}$$

- Relax the condition of exact step size
- \bullet The strong Wolfe (0 < c_1 < c_2 < 0.5) $\Longrightarrow p_{k+1}^T \nabla f(x_{k+1}) < 0$

Theorem 3

Let $\{x_k\}$ be the sequence generate by the nonlinear conjugate gradient method with FR scheme and strong Wolfe conditions with $0 < c_1 < c_2 < 0.5$. The the search directions p_k satisfy

$$-\frac{1}{1-c_2} \leq \frac{\nabla f(x_k)^T p_k}{\|\nabla f(x_k)\|^2} \leq \frac{2c_2-1}{1-c_2}, \forall k \geq 0.$$

Global convergence analysis

Theorem 4

Suppose $\mathcal{N}_{x_0} = \{x : f(x) \leq f(x_0)\}, f \in C^1 \text{ and the gradient } \nabla f \text{ is Lipschitz continuous in } \mathcal{N}_{x_0}, \text{ i.e., } \|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\| \text{ for all } x, y \in \mathcal{N}_0.$ Then the FR nonlinear conjugate gradient algorithm either terminates at a stationary point or converges in the sense that

$$\liminf_{k\to\infty}\|\nabla f(x_k)\|=0.$$

Nonlinear conjugate gradient with FR scheme

Search direction:

$$p_{k+1} \leftarrow -\nabla f(x_{k+1}) + \beta_{k+1}^{\mathrm{FR}} p_k \text{ with } \beta_{k+1}^{\mathrm{FR}} = \frac{\nabla f(x_{k+1})^T \nabla f(x_{k+1})}{\nabla f(x_k)^T \nabla f(x_k)}$$

- Global convergence: $\liminf_{k\to\infty} \|\nabla f(x_k)\| = 0$
 - Assumption: $\mathcal{N}_{x_0} = \{x : f(x) \le f(x_0)\}$ is bounded
 - Assumption: ∇f is Lipschitz in \mathcal{N}_{x_0}
- Difficulty: $cos(\theta_k) \approx 0 \Longrightarrow cos(\theta_{k+1}) \approx 0$

Versions

Search direction in nonlinear conjugate gradient method:

$$p_{k+1} \leftarrow -\nabla f(x_{k+1}) + \beta_{k+1} p_k$$

Remedies for Fletcher-Reeves scheme:

- Polak-Ribiére [PR69]: $\beta_{k+1}^{\mathrm{PR}} = \frac{\nabla f(\mathbf{x}_{k+1})^T (\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))}{\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_k)}$
- Hestenes-Stiefel [HS52]: $\beta_{k+1}^{\mathrm{HS}} = \frac{\nabla f(\mathbf{x}_{k+1})^T (\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))}{(\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))^T p_k}$

Search direction in nonlinear conjugate gradient method:

$$p_{k+1} \leftarrow -\nabla f(x_{k+1}) + \beta_{k+1} p_k$$

Remedies for Fletcher-Reeves scheme:

- Polak-Ribiére [PR69]: $\beta_{k+1}^{\mathrm{PR}} = \frac{\nabla f(\mathbf{x}_{k+1})^T (\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))}{\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_k)}$
- Hestenes-Stiefel [HS52]: $\beta_{k+1}^{\mathrm{HS}} = \frac{\nabla f(\mathbf{x}_{k+1})^T (\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))}{(\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))^T p_k}$

Note that

Versions

Exact line search \Longrightarrow (Polak-Ribiére \Leftrightarrow Hestenes-Stiefel)

Search direction in nonlinear conjugate gradient method:

$$p_{k+1} \leftarrow -\nabla f(x_{k+1}) + \beta_{k+1} p_k$$

Remedies for Fletcher-Reeves scheme:

- Polak-Ribiére [PR69]: $\beta_{k+1}^{\mathrm{PR}} = \frac{\nabla f(\mathbf{x}_{k+1})^T (\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))}{\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_k)}$
- Hestenes-Stiefel [HS52]: $\beta_{k+1}^{\mathrm{HS}} = \frac{\nabla f(\mathbf{x}_{k+1})^T (\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))}{(\nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k))^T p_k}$

Note that

Exact line search ⇒ (Polak-Ribiére ⇔ Hestenes-Stiefel)

CG with either PR or HS does not even converge globally! [Pow86]

Search direction in nonlinear conjugate gradient method:

$$p_{k+1} \leftarrow -\nabla f(x_{k+1}) + \beta_{k+1} p_k$$

Options for β_{k+1} :

- Many modifications of PR and HS have been proposed
- New schemes with global convergence, see e.g., [HZ06, DLHY15] for a review
- Dai-Yuan [DY99]: $\beta_{k+1}^{\mathrm{DY}} = \frac{\nabla f(x_{k+1})^T \nabla f(x_{k+1})}{(\nabla f(x_{k+1}) \nabla f(x_k))^T \rho_k}$

Local convergence rate analysis

- Assume to use exact step sizes for step size selection
- Even for quadratic convex problem, local convergence can be linear if initial direction is not the negative gradient [Pow76]
- Restarting every n steps $\implies n$ -step quadratic convergence in PR and FR nonlinear conjugate gradient methods [Coh72]

Linear conjugate gradient

$$\hat{x} = Cx: \quad \min_{x} \ \frac{1}{2} x^{T} A x - b^{T} x \Longrightarrow \min_{\hat{x}} \ \frac{1}{2} \hat{x}^{T} C^{-T} A C^{-1} \hat{x} - (C^{-T} b)^{T} \hat{x}$$

Linear conjugate gradient method for $\frac{1}{2}\hat{x}^T\hat{A}\hat{x} - \hat{b}^T\hat{x}$

Input: Initial
$$\hat{x}_0$$
; $\Rightarrow x_0 = C^{-1}\hat{x}_0$
Output: \hat{x}_k ; $\Rightarrow x_k = C^{-1}\hat{x}_k$
1, Set $\hat{r}_0 \leftarrow \hat{A}\hat{x}_0 - \hat{b}$; $\Rightarrow r_0 = Ax_0 - b = C^T\hat{r}_0$
2, $\hat{p}_0 \leftarrow -\hat{r}_0$; $\Rightarrow p_0 = C^{-1}\hat{p}_0 = -C^{-1}C^{-T}r_0 = -(C^TC)^{-1}r_0$
3, $k \leftarrow 0$; while $\hat{r}_k \neq 0$ do
4, $\alpha_k \leftarrow \frac{\hat{r}_k^T\hat{r}_k}{\hat{r}_k}$; $\Rightarrow \alpha_k = \frac{r_k^T(C^TC)^{-1}r_k}{p_k^TAp_k}$
5, $\hat{x}_{k+1} \leftarrow \hat{x}_k + \alpha_k\hat{p}_k$; $\Rightarrow x_{k+1} = C^{-1}\hat{x}_{k+1} = x_k + \alpha_kp_k$
6, $\hat{r}_{k+1} \leftarrow \hat{r}_k + \alpha_k\hat{A}\hat{p}_k$; $\Rightarrow r_{k+1} = C^T\hat{r}_{k+1} = r_k + \alpha_kAp_k$
7, $\beta_{k+1} \leftarrow \frac{\hat{r}_{k+1}^T\hat{r}_{k+1}}{\hat{r}_k^T\hat{r}_k}$; $\Rightarrow \beta_{k+1} = \frac{r_k^T(C^TC)^{-1}r_{k+1}}{\hat{r}_k^T(C^TC)^{-1}r_k}$
8, $\hat{p}_{k+1} \leftarrow -\hat{r}_{k+1} + \beta_{k+1}\hat{p}_k$; $\Rightarrow p_{k+1} = C^{-1}\hat{p}_{k+1} = -(C^TC)^{-1}r_{k+1} + \beta_{k+1}p_k$

end while

 $M = C^T C$

 $9 k \leftarrow k + 1$

• Linear system Mu = v need be solved inexpensively

Preconditioned linear conjugate gradient

Preconditioned linear conjugate gradient method

Input: Initial x_0 ; **Output:** x_k ;

- 1. Set $r_0 \leftarrow Ax_0 b$:
- 2, Solve $My_0 = r_0$ for y_0 ;
- 3, $p_0 = -y_0$;
- 4, $k \leftarrow 0$;

while $r_k \neq 0$ do

5,
$$\alpha_k \leftarrow \frac{r_k^T y_k}{p_k^T A p_k}$$
;

- 6, $x_{k+1} \leftarrow x_k + \alpha_k p_k$;
- 7, $r_{k+1} \leftarrow r_k + \alpha_k A p_k$;
- 8, Solve $My_{k+1} = r_{k+1}$ for y_{k+1} ;
- 9, $\beta_{k+1} \leftarrow \frac{r_{k+1}^T y_{k+1}}{r_k^T y_k}$;
- 10, $p_{k+1} \leftarrow -y_{k+1} + \beta_{k+1}p_k$;
- 11, $k \leftarrow k + 1$;

end while

Linear conjugate gradient to nonlinear conjugate gradient

- 1, Set $r_0 \leftarrow Ax_0 b$; 2, Solve $My_0 = r_0$ for y_0 ; 3, $p_0 = -y_0$, $k \leftarrow 0$:
- while $r_k \neq 0$ do

4,
$$\alpha_k \leftarrow \frac{r_k^T y_k}{p_k^T A p_k}$$
;

- 5, $x_{k+1} \leftarrow x_k + \alpha_k p_k$;
- 6. $r_{k+1} \leftarrow r_k + \alpha_k A p_k$;
- 7, Solve $My_{k+1} = r_{k+1}$ for y_{k+1} ;
- 8, $\beta_{k+1} \leftarrow \frac{r_{k+1}^T y_{k+1}}{r^T y_k}$;
- 9, $p_{k+1} \leftarrow -y_{k+1} + \beta_{k+1} p_k$;
- 10. $k \leftarrow k + 1$:

end while

- $y_k = M^{-1}r_k \Longrightarrow y_k = M^{-1}\nabla f(x_k)$
- Nonlinear CG direction: $p_{k+1} = -M(x_{k+1})^{-1}\nabla f(x_{k+1}) + \beta_{k+1}p_k$
- *M* is an approximation of the Hessian and easy to invert.

the preconditioned FR type nonlinear conjugate gradient method

One preconditioned CG:

(A preconditioner can be added to other nonlinear CG similarly)

The FR type nonlinear conjugate gradient method

Input: Initial x_0 ; Parameters $0 < c_1 < c_2 < 1$ for the weak Wolfe condition; **Output:** x_k :

- 1, $y_0 = M(x_0)^{-1} \nabla f(x_0)$, initial search direction $p_0 = -y_0$; while $r_k \neq 0$ do
 - 2, Find step size α_k satisfying the weak Wolfe conditions;
 - 3, $x_{k+1} \leftarrow x_k + \alpha_k p_k$;
 - 4, $y_{k+1} = M(x_{k+1})^{-1} \nabla f(x_{k+1});$
 - 4, $\beta_{k+1}^{\text{FR}} \leftarrow \frac{\nabla f(x_{k+1})^T y_{k+1}}{\nabla f(x_k)^T y_k}$;
 - 5, $p_{k+1} \leftarrow -y_{k+1} + \beta_{k+1}^{FR} p_k$;
 - 6. $k \leftarrow k + 1$:

end while

Newton's Method

Newton's method

• Newton's method for root finding $\nabla f(x) = 0$:

$$\nabla f(x+p) \approx \nabla f(x) + \nabla^2 f(x)p.$$

• Find p such that $\nabla f(x+p) \approx 0$:

$$p = -\left(\nabla^2 f(x)\right)^{-1} \nabla f(x)$$

and therefore

$$x_+ = x - \left(\nabla^2 f(x)\right)^{-1} \nabla f(x).$$

Newton's method

```
Input: Initial iterate x_0;

Set k \leftarrow 0;

for k = 0, 1, ... do

x_{k+1} \leftarrow x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k);

k \leftarrow k+1;

end for
```

- ullet Inspiring from solving system \Longrightarrow only converge to a stationary point
- $-p^T \nabla f(x) = \nabla f(x)^T \nabla^2 f(x) \nabla f(x) \ge 0$
- Global convergence is not guaranteed

For example:

$$f(x) = \frac{1}{4}x^4 - x^2 + 2x$$
$$f'(x) = x^3 - 2x + 2$$
$$f''(x) = 3x^2 - 2$$

Choose $x_0 = 0$ or 1.

Newton's Method

Local convergence analysis

- Inspiring from root finding problems ⇒ only converge to a stationary point
- Global convergence is not guaranteed
- Fast local convergence

Theorem 5

Let x^* be a minimizer of f. Suppose $f \in C^2$, $\nabla f(x^*) = 0$, $\nabla^2 f(x)$ is positive definite, and the Hessian $\nabla^2 f(x)$ is Lipschitz continuous in a neighborhood Ω_{x^*} of a solution x^* , i.e., $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|$ for $x, y \in \Omega_{x^*}$. Then

- if x_0 is sufficiently close to x^* , then $\{x_k\}$ by Newton's method converges to x^* ; and
- 2 the rate of convergence of $\{x_k\}$ is quadratic.

Newton direction: $\nabla^2 f(x)p = -\nabla f(x)$

- Such direction p may not exist
- Even it exists, the direction p may not be descent
- Hessian modifications are needed
 - $\nabla^2 f(x)$ positive definite \Longrightarrow accurate enough $p \approx -\nabla^2 f(x)^{-1} \nabla f(x)$
 - $\nabla^2 f(x)$ indefinite \Longrightarrow a descent direction p

Modifications

Inexact Newton direction:
$$(\nabla^2 f(x) + E_i)p = -\nabla f(x)$$

Inexact Newton's method

```
Set k \leftarrow 0;

for k = 0, 1, \dots do

p_k \leftarrow -(\nabla^2 f(x_k) + E_k)^{-1} \nabla f(x_k), where E_k = 0 if \nabla^2 f(x_k) is positive definite; Otherwise, \nabla^2 f(x_k) + E_k is positive definite; x_{k+1} \leftarrow x_k + \alpha_k p_k with \alpha_k by the Byrd Nocedal condition; k \leftarrow k + 1;

end for
```

Modifications:

- Eigenvalue modification
- Adding a multiple of the identity
- Modified Cholesky factorization
- Truncated conjugate gradient

Eigenvalue modifications

$$\nabla^2 f(x) = Q \Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T.$$

Modify the eigenvalues, e.g.,

- $\min_B \|B \nabla^2 f(x)\|_F$, s.t. B is $SPSD \Rightarrow B = \sum_{i=1}^n \max(\lambda_i, 0) q_i q_i^T$ But $Bp_k = -\nabla f(x_k)$ may not have solution
- $\min_H \|H \nabla^2 f(x)^{-1}\|_F$, s.t. H is SPSD $\Rightarrow H = \sum_{i=1}^n \max(\frac{1}{\lambda_i}, 0) q_i q_i^T$ and $p_k = -H \nabla f(x_k)$
- Or other norms
- Eigenvalue decomposition is too expensive
- Any computationally efficient modifications

Adding a multiple of the identity

$$\nabla^2 f(x) = Q \Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T.$$

- Choose $\tau > 0$ such that $\nabla^2 f(x) + \tau I$ is sufficient SPSD
- ullet au sufficiently larger than $-\lambda_{\min}$
- λ_{\min} ?

Modified Cholesky factorization

If $\nabla^2 f(x)$ is SPD, then $\nabla^2 f(x) = LDL^T$ unique decomposition

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

Cholesky Factorization, LDL^T form

$$\begin{aligned} & \text{for } j=1,2,\ldots,n \text{ do} \\ & c_{jj} \leftarrow a_{jj} - \sum_{s=1}^{j-1} d_s l_{js}^2; \\ & d_j \leftarrow c_{jj}; \\ & \text{for } i=j+1,\ldots,n \text{ do} \\ & c_{ij} \leftarrow a_{ij} - \sum_{s=1}^{j-1} d_s l_{is} l_{js}; \\ & l_{ij} \leftarrow c_{ij}/d_j; \\ & \text{end for} \end{aligned}$$

• If $\nabla^2 f(x)$ is not SPD, then modify d_i if necessary.

Modified Cholesky factorization

Cholesky Factorization, LDL^T form

```
\begin{aligned} &\text{for } j=1,2,\ldots,n \text{ do} \\ &c_{ij} \leftarrow a_{ji} - \sum_{s=1}^{j-1} d_s l_{js}^2; \\ &d_j \leftarrow c_{jj}; \\ &\text{for } i=j+1,\ldots,n \text{ do} \\ &c_{ij} \leftarrow a_{ij} - \sum_{s=1}^{j-1} d_s l_{is} l_{js}; \\ &l_{ij} \leftarrow c_{ij}/d_j; \\ &\text{end for} \end{aligned}
```

$$\begin{split} \text{Given } \delta > 0 \text{ and } \beta > 0, \\ \bullet \text{ set } d_j &= \max \left(|c_{jj}|, \left(\frac{\max_{j < i \le n} (|c_{ij}|)}{\beta} \right)^2, \delta \right); \end{split}$$

- $d_j \geq \delta$ and $|I_{ij}\sqrt{d_j}| \leq \beta$;
- Conditioner number and norm: bounded from above [GMH81]
- Global convergence and local quadratic convergence rate (appropriate δ and β)

Modified Cholesky factorization

- Permutation can be used to $\nabla^2 f$: i.e., $P\nabla^2 f(x)P^T + E$
- Preserve sparsity if $\nabla^2 f$ is sparse
- Computations $O(n^3/3)$
- Storage $O(n^2)$

Truncated conjugate gradient

Use CG to solve the linear system $\nabla^2 f(x)p = -\nabla f(x)$

- $\nabla^2 f$ is SPD \Leftrightarrow CG finds accurate solution
- $\nabla^2 f$ is not SPD \Leftrightarrow CG stops early and guarantee p descent direction
- n-steps CG: computations $2n^3$ on dense $\nabla^2 f \gg$ that of Cholesky decomposition
- Matrix-free method: only need matrix-vector product
- Much smaller than *n*-steps in early iterations

Truncated conjugate gradient for the Newton subproblem

```
Truncated conjugate gradient (tCG) for Bp = -g Initializations:

Set p_0 = 0, r_0 = g, d_0 = -r_0,

Then repeat the following loop on j:

Check for negative curvature

if d_j^T B d_j \leq 0

if j = 0

return p^* \leftarrow -g;

else

return p^* \leftarrow p_j;

(Continue on the next page)
```

Truncated conjugate gradient for the Newton subproblem

Generate next inner iterate

Set
$$\alpha_j \leftarrow r_j^T r_j / d_j^T B d_j$$
;
Set $p_{i+1} \leftarrow p_i + \alpha_i d_i$;

Update residual and search direction

Set
$$r_{j+1} \leftarrow r_j + \alpha_j B d_j$$
;
Set $\beta_{j+1} \leftarrow r_{j+1}^T r_{j+1} / r_j^T r_j$;
Set $d_{j+1} \leftarrow -r_{j+1} + \beta_{j+1} d_j$;
 $i \leftarrow j + 1$;

Check residual

```
if ||r_j|| \le ||r_0|| \min(||r_0||^{\theta}, \kappa) for some prescribed \theta and \kappa return p^* \leftarrow p_j;
```

Newton-CG algorithm

A Newotn-CG algorithm

```
Input: Initial iterate x_0;
```

Set $k \leftarrow 0$:

while not accurate enough do

Compute the search direction p_k by the truncated CG algorithm;

 $x_{k+1} \leftarrow x_k + \alpha_k p_k$ with α_k by the Byrd Nocedal condition; Note that 1 is used if it is acceptable;

 $k \leftarrow k + 1$:

end while

Local convergence rate

Theorem 6

Let $\{x_k\}$ denote the sequence generated by the Newton-CG method with $\kappa \in (0,1)$ and $\theta > 0$. Suppose that $\nabla^2 f(x)$ exists and is continuous in a neighborhood of a minimizer x^* , with $\nabla^2 f(x^*)$ is positive definite, and that $\{x_k\}$ converges to x^* . Then the convergence rate is superlinear. In addition, if $\nabla^2 f(x)$ is Lipschitz continuous for x near x^* , then the convergence rate is $\min(1+\theta,2)$.

References I

Arthur I. Cohen.

Rate of convergence of several conjugate gradient algorithms. SIAM Journal on Numerical Analysis, 9(2):248–259, 1972.

Xiao Liang Dong, Hong Wei Liu, Yu Bo He, and Xi Mei Yang.

A modified Hestenes-Stiefel conjugate gradient method with sufficient descent condition and conjugacy condition.

Journal of Computational and Applied Mathematics, 281:239 – 249, 2015.

Y. H. Dai and Y. Yuan.

A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1):177–182, 1999.

P. E. Gill, W. Murray, and Wright M. H.

Practical Optimization.
Academic Press, 1981.

M. R. Hestenes and E. Stiefel.

Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

William W. Hager and Hongchao Zhang.

A survey of nonlinear conjugate gradient methods.

Pac. J. Optim., 2:35-58, 2006.

M. J. D. Powell.

Some convergence properties of the conjugate gradient method.

Mathematical Programming, (11):42-49, 1976.

M J. D. Powell.

Convergence properties of algorithms for nonlinear optimization.

SIAM Review, 28(4):487-500, 1986.

References II

E. Polak and G. Ribi'ere.

Note sur la convergence de méthodes de directions conjuguées.

Revue Francaise d'Informatique et de Recherche Operationnelle, 16(16):35-43, 1969.