Università degli studi di Bergamo

Anno Accademico 2023/2024

MODELLI E ALGORITMI DI OTTIMIZZAZIONE

Modelli con Variabili

Binarie – Esercizi 1, 2 e 3 (E2)

Giovanni Micheli

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - 3. Gestire il soddisfacimento di vincoli alternativi
 - 4. Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - 1. Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - 3. Gestire il soddisfacimento di vincoli alternativi
 - 4. Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

Insiemi

✓ *I* : insieme dei bancali

$$I = \{1, 2, ..., 12\}$$

 $\checkmark J$: insieme delle stive

$$J = \{1,2,3,4,5,6\}$$

- Dati Vettori
 - p_i Peso [ton] del bancale i
 - C_i Capacità [ton] della stiva j

- Dati Scalari
 - N Numero massimo di bancali 4 imbarcabili in una stiva

Variabili Decisionali

• x_{ij} Binaria: 1 se il bancale i è imbarcato nella stiva j – 0 altrimenti

• y_j Binaria: 1 se la stiva j è utilizzata — 0 altrimenti

Z Variabile obiettivo : numero totale di stive utilizzate

Funzione obiettivo

$$\min z = \sum_{j} y_{j}$$

Vincoli

✓ Assegnamento bancali

Ogni bancale deve essere assegnato ad un'unica stiva

Vincoli

✓ Assegnamento bancali

$$\sum_{j} x_{ij} = 1 \quad \forall i$$

Vincoli

✓ Assegnamento bancali

$$\sum_{j} x_{ij} = 1 \quad \forall i$$

✓ Numero bancali

Ogni stiva non può ospitare più di 4 bancali

Vincoli

✓ Assegnamento bancali

$$\sum_{j} x_{ij} = 1 \quad \forall i$$

✓ Numero bancali

$$\sum_{i} x_{ij} \le N \quad \forall j$$

Vincoli

✓ Capacità stive

Per **ogni** stiva, il peso complessivo imbarcato non può eccedere la capacità

Vincoli

✓ Capacità stive

$$\sum_{i} p_i x_{ij} \le C_j \quad \forall j$$

Vincoli

✓ Capacità stive

$$\sum_{i} p_i x_{ij} \le C_j \quad \forall j$$

✓ Coerenza

Va sempre imposto un collegamento tra variabili decisionali del problema (e.g., vincolo di bilancio nella pianificazione della produzione, vincolo di produzione nella miscelazione). In questo caso: l'assegnamento di ciascun bancale a ciascuna stiva può avvenire solo se la stiva è utilizzata.

Vincoli

✓ Capacità stive

$$\sum_{i} p_i x_{ij} \le C_j \quad \forall j$$

✓ Coerenza

$$x_{ij} \le y_j \quad \forall i, j$$

- In assenza della coerenza (i.e., il collegamento tra variabili del problema)
 la modellazione risulta completamente errata.
- La coerenza può essere imposta tramite un vincolo dedicato (come nel precedente caso) o riformulando i vincoli del problema in modo da imporre la corrispondenza logica tra variabili (approccio preferibile).
- Nell'esercizio in questione, la coerenza può essere imposta direttamente nei vincoli:
 - ✓ Numero bancali
 - ✓ Capacità stive

Come imporre la coerenza nei vincoli (approccio 1)

✓ Numero bancali

Per ogni stiva, il numero di bancali imbarcati è

- Nullo se la stiva non è utilizzata
- Limitato da 4 se la stiva è utilizzata

- Come imporre la coerenza nei vincoli (approccio 1)
 - ✓ Numero bancali

$$\sum_{i} x_{ij} \le N y_j \quad \forall j$$

- Come imporre la coerenza nei vincoli (approccio 1)
 - ✓ Numero bancali

$$\sum_{i} x_{ij} \le N y_{j} \quad \forall j$$

$$Se \ y_{j} = 0$$

$$\downarrow$$

$$x_{ij} = 0 \quad \forall i$$

- Come imporre la coerenza nei vincoli (approccio 1)
 - ✓ Numero bancali

Come imporre la coerenza nei vincoli (approccio 2)

✓ Capacità stive

Per ogni stiva, il peso complessivo imbarcato è

- Nullo se la stiva non è utilizzata
- Limitato dalla capacità se la stiva è utilizzata

- Come imporre la coerenza nei vincoli (approccio 2)
 - ✓ Capacità stive

$$\sum_{i} p_{i}x_{ij} \leq C_{j}y_{j} \quad \forall j$$

$$\text{Se } y_{j} = 0 \qquad \text{Se } y_{j} = 1$$

$$x_{i,j} = 0 \quad \forall i \qquad \sum_{i} p_{i}x_{ij} \leq C_{j}$$

Riassumendo, tre formulazioni possibili

min
$$z = \sum_{j} y_{j}$$

s.t. $\sum_{j} x_{ij} = 1 \quad \forall i$
 $\sum_{i} x_{ij} \leq N \quad \forall j$
 $\sum_{i} p_{i}x_{ij} \leq C_{j} \quad \forall j$
 $x_{ij} \leq y_{j} \quad \forall i, j$
 $x_{ij} \in \{0; 1\} \quad \forall i, j$

min
$$z = \sum_{j} y_{j}$$

s.t. $\sum_{j} x_{ij} = 1 \quad \forall i$
 $\sum_{i} x_{ij} \leq Ny_{j} \quad \forall j$
 $\sum_{i} p_{i}x_{ij} \leq C_{j} \quad \forall j$
 $x_{ij} \in \{0; 1\} \quad \forall i, j$
 $y_{j} \in \{0; 1\} \quad \forall j$

min
$$z = \sum_{j} y_{j}$$

s.t. $\sum_{j} x_{ij} = 1 \quad \forall i$
 $\sum_{i} x_{ij} \leq N \quad \forall j$
 $\sum_{i} p_{i}x_{ij} \leq C_{j}y_{j} \quad \forall j$
 $x_{ij} \in \{0; 1\} \quad \forall i, j$
 $y_{j} \in \{0; 1\} \quad \forall j$

Preferibili

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - 1. Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - 3. Gestire il soddisfacimento di vincoli alternativi
 - 4. Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

• Nella produzione del bene j, in caso di presenza, oltre al costo variabile c_j , di un costo fisso F_i (indipendente dalla quantità prodotta), la funzione di costo diventa

$$z_j(x_j) = \begin{cases} F_j + c_j x_j & \text{se } x_j > 0 \\ 0 & \text{altrimenti} \end{cases}$$

• Nella produzione del bene j, in caso di presenza, oltre al costo variabile c_j , di un costo fisso F_i (indipendente dalla quantità prodotta), la funzione di costo diventa

$$z_{j}(x_{j}) = \begin{cases} F_{j} + c_{j}x_{j} & \text{se } x_{j} > 0\\ 0 & \text{altrimenti} \end{cases}$$

- Utilizzando le sole variabili x_j non è possibile risolvere la non linearità nell'origine indotta dalla presenza di costi fissi.
- Si introduce una variabile binaria y_i , a cui attribuire il seguente significato:

$$y_j = \begin{cases} 1 & \text{se } x_j > 0 \\ 0 & \text{altrimenti} \end{cases}$$

• La funzione di costo può quindi essere riscritta in forma lineare:

$$z_j(x_j, y_j) = F_j y_j + c_j x_j$$

- Perché la modellazione sia corretta, le variabili del problema devono essere collegate, garantendo il soddisfacimento della condizione logica:
 - $x_j > 0$ se e solo se $y_j = 1$ (i.e., si possono avere unità di bene prodotte solo se la corrispondente produzione è attivata).
- Tale condizione logica è garantita introducendo un maggiorante M_j e imponendo il seguente vincolo di coerenza:

$$x_j \le M_j y_j \quad \forall j$$

- Perché la modellazione sia corretta, le variabili del problema devono essere collegate, garantendo il soddisfacimento della condizione logica:
 - $x_j > 0$ se e solo se $y_j = 1$ (i.e., si possono avere unità di bene prodotte solo se la corrispondente produzione è attivata).
- Tale condizione logica è garantita introducendo un maggiorante M_j e imponendo il seguente vincolo di coerenza:

- Perché la modellazione sia corretta, le variabili del problema devono essere collegate, garantendo il soddisfacimento della condizione logica:
 - $x_j > 0$ se e solo se $y_j = 1$ (i.e., si possono avere unità di bene prodotte solo se la corrispondente produzione è attivata).
- Tale condizione logica è garantita introducendo un maggiorante M_j e imponendo il seguente vincolo di coerenza:

Insiemi

 $\checkmark J$: insieme delle compagnie telefoniche

$$J = \{A, B, C\}$$

Dati - Vettori

• F_j Canone mensile fisso [\$] offerto dalla compagnia telefonica j

• c_j Costo variabile [\$/minuto] offerto dalla compagnia telefonica j

Dati - Scalari

D Domanda mensile [minuti]250

Variabili Decisionali

• x_j Utilizzo [minuti] della compagnia j

- y_j Binaria: 1 se la compagnia j è utilizzata 0 altrimenti
- Z Variabile obiettivo : costi telefonici totali [\$]

Funzione obiettivo

$$\min z = \sum_{j} (F_j y_j + c_j x_j)$$

Vincoli

✓ Utilizzo mensile

L'utilizzo complessivo delle compagnie telefoniche deve eguagliare la domanda mensile

Vincoli

✓ Utilizzo mensile

$$\sum_{j} x_{j} = D$$

Vincoli

✓ Utilizzo mensile

$$\sum_{j} x_{j} = D$$

✓ Coerenza

Creazione della corrispondenza logica tra variabili binarie e continue → le binarie sono attive quando le rispettive variabili continue sono positive

Vincoli

✓ Utilizzo mensile

$$\sum_{j} x_{j} = D$$

✓ Coerenza

$$x_j \leq Dy_j \quad \forall j$$

Maggiorante più stretto

Vincoli sulle variabili decisionali

•
$$x_j \ge 0 \quad \forall j$$

→ MIP

•
$$y_j \in \{0; 1\} \quad \forall j$$

Controllo del gap di ottimalità

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - 1. Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - Gestire il soddisfacimento di vincoli alternativi
 - 4. Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

• Consideriamo la presenza di due vincoli alternativi v1 e v2 (i.e., due vincoli di cui è richiesto il soddisfacimento di uno solo).

$$v1: \sum_{j=1}^{n} a_{1,j} x_{j} \le b_{1}$$

$$v2: \sum_{j=1}^{n} a_{2,j} x_{j} \le b_{2}$$

• Introduciamo due variabili binarie y_1 e y_2 e un numero reale positivo M sufficientemente grande da rendere ridondanti i vincoli se sommato ai termini noti b_1 e b_2 .

Costruiamo i seguenti vincoli:

$$\begin{cases} \sum_{j=1}^{n} a_{1,j} x_{j} \le b_{1} + My_{1} \\ \sum_{j=1}^{n} a_{2,j} x_{j} \le b_{2} + My_{2} \\ y_{1} + y_{2} = 1 \end{cases}$$

Costruiamo i seguenti vincoli:

$$\begin{cases} \sum_{j=1}^{n} a_{1,j} x_{j} \le b_{1} + My_{1} \\ \sum_{j=1}^{n} a_{2,j} x_{j} \le b_{2} + My_{2} \\ y_{1} + y_{2} = 1 \end{cases}$$

• Caso 1: $y_1 = 1$, $y_2 = 0$

Il primo vincolo è ridondante, mentre il secondo è applicato.

Costruiamo i seguenti vincoli:

$$\begin{cases} \sum_{j=1}^{n} a_{1,j} x_{j} \le b_{1} + My_{1} \\ \sum_{j=1}^{n} a_{2,j} x_{j} \le b_{2} + My_{2} \\ y_{1} + y_{2} = 1 \end{cases}$$

• Caso 2: $y_1 = 0$, $y_2 = 1$

Il primo vincolo è applicato, mentre il secondo è ridondante.

• Considerando che $y_1 + y_2 = 1$ (e quindi $y_2 = 1 - y_1$) l'imposizione dei due vincoli alternativi può essere effettuata introducendo una sola variabile binaria y:

$$\begin{cases} \sum_{j=1}^{n} a_{1,j} x_{j} \leq b_{1} + My \\ \sum_{j=1}^{n} a_{2,j} x_{j} \leq b_{2} + M(1-y) \end{cases}$$

$$\begin{cases} y \in \{0; 1\} \end{cases}$$

Insiemi

 $\checkmark J$: insieme degli ordini di produzione

$$J = \{1,2,3\}$$

Dati - Vettori

- tl_j Tempo di lavorazione [giorni] dell'ordine j
- D_i Data di consegna [giorno] dell'ordine j

• P_j Penalità per ritardi [\$/giorno] dell'ordine j

Variabili Decisionali

- x_j Giorno di inizio della lavorazione di j
- S_i^+ Giorni di ritardo per l'ordine j
- S_j^- Giorni di anticipo per l'ordine j
- y_{ij} Binaria: 1 se l'ordine i precede l'ordine j 0 altrimenti
- z Variabile obiettivo : penalità totali [\$]

Funzione obiettivo

$$\min z = \sum_{j} P_{j} S_{j}^{+}$$

Vincoli

✓ Bilancio dei tempi

Collegamento tra variabili, definendo gli anticipi e i ritardi di ciascun ordine in funzione della fine delle lavorazioni e delle date di consegna

Vincoli

✓ Bilancio dei tempi

$$x_j + tl_j + S_j^- = D_j + S_j^+ \quad \forall j$$

Vincoli

✓ Bilancio dei tempi

$$x_{j} + tl_{j} + S_{j}^{-} = D_{j} + S_{j}^{+} \quad \forall j$$

$$\operatorname{Se} x_{j} + tl_{j} < D_{j} \rightarrow S_{j}^{-} > 0$$

Anticipo nella lavorazione

- Vincoli
 - ✓ Bilancio dei tempi

Anticipo nella lavorazione

$$x_{j} + tl_{j} + S_{j}^{-} = D_{j} + S_{j}^{+} \quad \forall j$$

$$\operatorname{Se} x_{j} + tl_{j} < D_{j} \rightarrow S_{j}^{-} > 0 \qquad \qquad \operatorname{Se} x_{j} + tl_{j} > D_{j} \rightarrow S_{j}^{+} > 0$$

Ritardo nella lavorazione

- Vincoli
 - ✓ Non sovrapposizione dei lavori

Due lavorazioni non possono essere svolte simultaneamente:

- − *j* precede *i*
- *i* precede *j*

Vincoli

✓ Non sovrapposizione dei lavori

$$\begin{cases} x_j + tl_j \le x_i + My_{ij} \\ x_i + tl_i \le x_j + M(1 - y_{ij}) & \forall i, j: j > i \\ y_{ij} \in \{0; 1\} \end{cases}$$

Vincoli sulle variabili decisionali

$$x_j, S_j^+, S_j^- \ge 0 \quad \forall j$$

MIP

•
$$y_j \in \{0; 1\} \quad \forall j$$

Controllo del gap di ottimalità

Takeaway

1. Utilizzo delle variabili binarie

2. Regole di modellazione

Takeaway

- 1. Utilizzo delle variabili binarie per determinate finalità
 - Modellare decisioni dicotomiche
 - Risolvere le discontinuità legate alla presenza di costi fissi
 - Imporre vincoli alternativi
 - Modellare minimi tecnici
 - Esprimere condizioni logiche

Takeaway

2. Regole di modellazione

 Tutte le variabili decisionali introdotte devono essere collegate tra di loro. In presenza di binarie, il collegamento avviene tramite il vincolo di coerenza:

$$\triangleright x_j \leq M_j y_j$$

- Tutti i modelli formulati devono essere lineari.
 - Scrivere $x_j y_j$ in sostituzione del vincolo di coerenza è semanticamente corretto, ma non accettabile in un modello di programmazione lineare.

