Chapter 1

Lemmas and proof

This chapter presents the lemmas that are necessary to prove the main theorem. The problem of approximating a function g on some compact K of \mathbb{R}^n from Σ_n , can be divided into two parts. One part is the approximation of the form $\sum_i f_i(a^i \cdot x)$ where f_i are functions in $C(\mathbb{R})$. The other is the approximation of f_i on the appropriate set from Σ_1 . !!canviar

1.1 $\sigma * \varphi$ is not a polynomial.

Lemma 1. If we have that $\sigma * \varphi$ is a polynomial for all $\varphi \in \mathcal{C}_0^{\infty}$. Then the degree of the polynomial $\sigma * \varphi$ is finite, i.e. there exists an $m \in \mathbb{N}$ such that $deg(\sigma * \varphi) \leq m$ for all $\varphi \in \mathcal{C}_0^{\infty}$.

Proof. We first prove the claim in the case of $\varphi \in \mathcal{C}_0^{\infty}[a,b]$, where $\mathcal{C}_0^{\infty}[a,b]$ is the set of functions \mathcal{C}_0^{∞} with support in [a,b] for any a < b.

Let ρ be a metric on $C_0^{\infty}[a,b]$ defined by

$$\rho(\varphi_1, \varphi_2) = \sum_{n=0}^{\infty} 2^{-n} \frac{\|\varphi_1 - \varphi_2\|_n}{1 + \|\varphi_1 - \varphi_2\|_n}$$

where $\|\varphi\|_n = \sum_{j=0}^n \sup_{x \in [a,b]} |\varphi^{(j)}(x)|$. We can show that $(\mathcal{C}_0^{\infty}[a,b],\rho)$ is a complete metric space (Fréchet space). By assumption, we have that $\sigma * \varphi$ is a polynomial (for any $\varphi \in \mathcal{C}_0^{\infty}[a,b]$).

Consider the following set, which has the property that we want to show.

$$V_k = \{ \varphi \in \mathcal{C}_0^{\infty}[a, b] \mid deg(\sigma * \varphi) \le k \}$$

Clearly, if $\varphi \in V_k$, then $deg(\sigma * \varphi) \leq k$. We want to show that $C_0^{\infty}[a,b] \subseteq V_k$. This set fulfills the following properties, $V_k \subset V_{k+1}$, V_k is a closed subspace and $\bigcup_{k=0}^{\infty} V_k = C_0^{\infty}[a,b]$. As $C_0^{\infty}[a,b]$ is a complete metric space, for Blaire's Category Theorem then there exists an integer m such that $V_m = C_0^{\infty}[a,b]$.

For the general case where $\varphi \in \mathcal{C}_0^{\infty}$, we note that the number m does not deppend on the interval [a, b]. !! acabar

1.2. $\sigma * \varphi \in \overline{\Sigma_1}$

2

Lemma 2. If $\sigma * \varphi$ is a polynomial such that $deg(\sigma * \varphi) \leq m$ for all $\varphi \in \mathcal{C}_0^{\infty}$, then σ is a polynomial of degree at most m.

Proof. If $\sigma * \varphi$ is a polynomial of degree m. For all $\varphi \in \mathcal{C}_0^{\infty}$, we have that

$$(\sigma * \varphi)^{(m+1)}(x) = \int \sigma(x-y)\varphi^{(m+1)}(y) dy = 0$$

From standard results in Distribution Theory, σ is itself a polynomial of degree at most m (a.e.). !!ho he buscat i no he trobat res perquè implica que sigma polinomi que la integral sigui 0

Conclusion: If we have that $\sigma * \varphi$ is a polynomial then σ is a polynomial. This contradicts the hypothesis. Therefore, $\sigma * \varphi$ will not be a polynomial.

1.2
$$\sigma * \varphi \in \overline{\Sigma_1}$$

Lemma 3. For each $\varphi \in \mathcal{C}_0^{\infty}$, $\sigma * \varphi \in \overline{\Sigma_1}$.

Proof. Consider

$$h_m = \sum_{i=1}^m \varphi(y_i) \Delta y_i \sigma(x - y_i)$$

The sequence (h_m) satisfies $h_j \in \Sigma_1$ for j = 1, ..., m. $(w_i = 1, \theta_i = -y_i, \beta_i =$ $\varphi(y_i)\Delta y_i$).

Where $y_i = -\alpha + \frac{2i\alpha}{m}$, $\Delta y_i = \frac{2\alpha}{m}$ for i = 1, ..., m. Partition of the interval $[-\alpha, \alpha]$

We want to show that $h_m \rightrightarrows \sigma * \varphi$ in $[-\alpha, \alpha]$.

Given $\epsilon > 0$, we choose $\delta > 0$ such that $10\delta \|\sigma\|_{L^{\infty}\{-2\alpha,2\alpha\}} \|\varphi\|_{L^{\infty}} \leq \frac{\epsilon}{3}$. Note that ...

We know that $\sigma \in M$. Hence, for this given $\delta > 0$ and $[-\alpha, \alpha]$ interval, there exists $r(\delta)$ finite number of intervals the measure of whose union \mathcal{U} is δ such that σ is uniformly continuous on $[-2\alpha, 2\alpha]$. We now choose m_i sufficiently large so that

- 1. $m_1 \delta > \alpha r(\delta)$. We can do this by Archimedes' principle.
- 2. From the uniform continuity of φ .
- 3. From the previous, σ is uniformly continuous on $[-2\alpha, 2\alpha]$.

We choose m such that $m = max\{m_1, m_2, m_3\}$.

Now, fix $x \in [-\alpha, \alpha]$. Set $\Delta_i = [y_{i-1}, y_i]$ where $y_0 = \alpha$.. dibuix.

)raft - v

First, recall that,

$$\int \sigma(x-y)\varphi(y)dy = \sum_{i=1}^{m} \int_{\Delta_i} \sigma(x-y)\varphi(y)dy$$

Consider the following difference

$$\left| \int \sigma(x-y)\varphi(y)dy - \sum_{i=1}^{m} \int_{\Delta_{i}} \sigma(x-y_{i})\varphi(y)dy \right| =$$

$$= \left| \sum_{i=1}^{m} \int_{\Delta_{i}} \sigma(x-y)\varphi(y)dy - \sum_{i=1}^{m} \int_{\Delta_{i}} \sigma(x-y_{i})\varphi(y)dy \right|$$

$$= \left| \sum_{i=1}^{m} \int_{\Delta_{i}} \varphi(y) \Big(\sigma(x-y) - \sigma(x-y_{i}) \Big) dy \right|$$

$$\leq \sum_{i=1}^{m} \int_{\Delta_{i}} |\varphi(y)| |\sigma(x-y) - \sigma(x-y_{i})| dy$$

If $x - \Delta_i \cap U = \emptyset$. Since $x - y \notin U$, $x - y_i \notin U$ and $x - y_i \in [-2\alpha, 2\alpha]$, bc (2) we have

$$\sum_{i=1}^{m} \int_{\Delta_{i}} |\varphi(y)| |\sigma(x-y) - \sigma(x-y_{i})| dy \leq \frac{\epsilon}{\|\varphi\|_{L_{1}}} \sum_{i=1}^{m} \int_{\Delta_{i}} |\varphi(y)| =$$

$$= \frac{\epsilon}{3\|\varphi\|_{L_{1}}} \int |\varphi(y)| dy$$

$$= \frac{\epsilon}{3\|\varphi\|_{L_{1}}} |\varphi(y)|_{L_{1}} = \frac{\epsilon}{3}$$

If $x - \Delta_i \cap U \neq \emptyset$

$$\sum_{i} |\widetilde{\Delta_{i}}| = \sum_{i} |(x - \Delta_{i} \cap U)| \le |U| + 2|\Delta_{i}|r(\delta) \le \delta + 2 \cdot \frac{2\alpha}{m} r(\delta) \le \delta + 4\delta = 5\delta$$

True by our choice of m, satisfies $m\delta > \alpha r(\delta) \iff \delta > \frac{\alpha \cdot r(\delta)}{m}$

$$\sum_{i=1}^{m} \int_{\widetilde{\Delta}_{i}} |\varphi(y)| |\sigma(x-y) - \sigma(x-y_{i})| dy \leq$$

$$\leq \sum_{i=1}^{m} \int_{\widetilde{\Delta}_{i}} ||\varphi||_{L^{\infty}} 2||\sigma||_{L^{\infty}[-2\alpha,2\alpha]}$$

$$= ||\varphi||_{L^{\infty}} 2||\sigma||_{L^{\infty}[-2\alpha,2\alpha]} \sum_{i} |\widetilde{\Delta}_{i}|$$

$$\leq ||\varphi||_{L^{\infty}} 2||\sigma||_{L^{\infty}[-2\alpha,2\alpha]} 5\delta \leq \epsilon/3$$

$$\left| \sum_{i=1}^{m} \int_{\Delta_{i}} \sigma(x - y_{i}) \varphi(y) dy - \sum_{i=1}^{m} \sigma(x - y_{i}) \varphi(y_{i}) \Delta y_{i} \right| =$$

$$= \left| \sum_{i=1}^{m} \int_{\Delta_{i}} \sigma(x - y_{i}) [\varphi(y) - \varphi(y_{i})] dy \right|$$

$$\leq \sum_{i=1}^{m} \int_{\Delta_{i}} |\sigma(x - y_{i})| |\varphi(y) - \varphi(y_{i})| dy$$

$$\leq \sum_{i=1}^{m} \int_{\Delta_{i}} |\sigma(x - y_{i})| dy \left[\frac{\epsilon/3}{2\alpha ||\sigma||_{L^{\infty}[-2\alpha,2\alpha]}} \right] \leq \frac{\epsilon}{3}$$

Finally, we have the result $h_m \rightrightarrows \sigma * \varphi$ because

$$\left| \int \sigma(x-y)\varphi(y)dy - \sum_{i=1}^{m} \sigma(x-y_i)\varphi(y_i)\Delta y_i \right| \le \epsilon$$

!! Falta acabar

1.3 Σ_1 dense in $\mathcal{C}(\mathbb{R})$

Lemma 4. If $\sigma \in \mathcal{C}^{\infty}$, then Σ_1 is dense in $\mathcal{C}(\mathbb{R})$.

Proof. We recall that set $\Sigma_1 = span\{\sigma(w \cdot x + \theta) : w \in \mathbb{R}, \theta \in \mathbb{R}\}$. We can write any function $h \in \Sigma_1$ as $h = \sum_i \beta_i \sigma_i(w_i x + \theta_i) = \beta_1 \sigma_1(w_1 x + \theta_1) + \dots$

We can see that $\frac{\sigma([w+h]x+\theta)-\sigma(wx+\theta)}{h} \in \Sigma_1$ because is a linear combination, where $\beta_1 = \frac{1}{h}, \beta_2 = \frac{-1}{h}$.

By hypothesis, we have $\sigma \in \mathcal{C}^{\infty}$. By definition of derivative we have

$$\frac{d}{dw}\sigma(wx+\theta) = \lim_{h\to 0} \frac{\sigma([w+h]x+\theta) - \sigma(wx+\theta)}{h} \in \overline{\Sigma_1}^*$$

Because the limit of a set belongs to the closure of the set.

By the same argument, $\frac{d^k}{dw^k}\sigma(wx+\theta)\in\overline{\Sigma_1}$ for all $k\in\mathbb{N}, w,\theta\in\mathbb{R}$.

If we differentiate this expression k times, we obtain

$$\frac{d^k}{dw^k}\sigma(wx+\theta) = \sigma^{(k)}(wx+\theta) \cdot x^k$$

We will see by reduction to absurdity that if σ is not a polynomial (by hypothesis) then there exists a $\theta_k \in \mathbb{R}$ such that $\sigma^{(k)}(\theta_k) \neq 0$.

If σ is not a polynomial and $\sigma \in \mathcal{C}^{\infty}$, lets assume that $\nexists \theta_k \in \mathbb{R}$ such that $\sigma^{(k)}(\theta_k) \neq 0$. This means that the k-th derivative at every point is 0,

$$\sigma^{(k)}(\theta) = 0 \quad \forall \theta \in \mathbb{R}$$

^{*} $\overline{\Sigma_1}$ denotes the clausure of the set Σ_1

5

Draft - v(

If we integrate k times this expression,

$$\int \sigma^{(k)} = \int 0 \Rightarrow \sigma^{(k-1)} = C$$

,

$$\int \sigma^{(k-1)} = \int C \Rightarrow \sigma^{(k-2)} = Cw$$

, then we end up σ is a polynomial. Contradiction. Therefore, there always exists a point where the derivative does not vanish.

Thus, we evaluate at the point where the derivative does not vanish, we call it θ_k .

$$\sigma^{(k)}(\theta_k) \cdot x^k = \frac{d^k}{dw^k} \sigma(wx + \theta) \Big|_{w=0, \theta=\theta_k} \in \overline{\Sigma_1}$$

This implies that $\overline{\Sigma_1}$ contains all polynomials, because the expression $\sigma^{(k)}(\theta_k)x^k$ generates all polynomials. By the Weierstrass theorem, we know that the polynomials are dense in $\mathcal{C}(\mathbb{R})$. This concludes that the set $\overline{\Sigma_1}$ contains a set which is dense in $\mathcal{C}(\mathbb{R})$, therefore Σ_1 is dense in $\mathcal{C}(\mathbb{R})$.

Lemma 5. If for some $\varphi \in \mathcal{C}_0^{\infty}$ we have that $\sigma * \varphi$ is not a polynomial, then Σ_1 is dense in $\mathcal{C}(\mathbb{R})$.

Proof. From Lemma 3, $\sigma * \varphi \in \overline{\Sigma_1}$. Clearly, $\sigma * \varphi(wx + \theta) \in \overline{\Sigma_1}$, for each $\theta \in \mathbb{R}$. For σ and $\varphi \in \mathcal{C}_0^{\infty}$ we have that $\sigma * \varphi \in \mathcal{C}^{\infty}$. (ho hem de veure!!!). From Lemma 4, if $\sigma * \varphi \in \mathcal{C}^{\infty}$, then Σ_1 dense in $\mathcal{C}(\mathbb{R}^n)$. ???? (nose si apliquem el lemma 4 amb sigma = sigma conv varphi o si sigma conv varphi de c infinit implica sigma de c infinit aleshores apliquem el lemma 4 ??)

1.4 Σ_1 is dense in $\mathcal{C}(\mathbb{R})$, then Σ_n is dense in $\mathcal{C}(\mathbb{R}^n)$

We will proof that approximating a $\mathcal{C}(\mathbb{R})$ function with one from the set Σ_1 implies approximating a function $\mathcal{C}(\mathbb{R}^n)$ from the set Σ_n . Therefore, it is only necessary to approximate a continuous function. We can see this from the density characterization:

Lemma 6. If Σ_1 is dense in $\mathcal{C}(\mathbb{R})$, then Σ_n is dense in $\mathcal{C}(\mathbb{R}^n)$.

Proof. Let

$$V := span\{f(ax) : a \in \mathbb{R}^n, f \in \mathcal{C}(\mathbb{R})\}\$$

We shall see that V is dense in $\mathcal{C}(\mathbb{R}^n)$. If we show that V contains the polynomials (which are dense in $C(\mathbb{R}^n)$ for Weierstrass Theorem) that would be enough.

!!mirar Let L(a) denote the span of the n rows of a for each $a \in \mathbb{R}^n$. Set $L(\mathbb{R}^n) = \bigcup L(a)$. Let

$$H_k^n = \{ \sum c_m s^m \}$$

denote the set of homogeneous polynomials of n variables of total degree k, and

$$H^n = \cup_{k=0}^{\infty} H_k^n$$

Oraft -

the set of all homogeneous polynomials of n variables.

Assume that for a given $k \in \mathbb{N}$ no non-trivial $p \in H_k^n \subseteq V$ for all $k \in \mathbb{Z}$, then V contains all polynomials. For that we have V dense in $\mathcal{C}(\mathbb{R}^n)$. Now, we only need to show that $H_k^n \subseteq V$. SOS

Let $g \in \mathcal{C}(\mathbb{R})$, for any compact subset $K \subset \mathbb{R}^n$, V dense in $\mathcal{C}(K)$. That is, given $\epsilon > 0$, there exist $f_i \in \mathcal{C}(\mathbb{R})$ and $a_i \in \mathbb{R}^n$ i = 1, ..., k such that

$$\left|g(x) - \sum_{i=1}^{k} f_i(a^i \cdot x)\right| < \frac{\epsilon}{2}$$

for all $x \in K$. We now consider the set of all the points in the compact K multiplied by the vector a^i . That is $\{a^i \cdot x | x \in K\} \subseteq [\alpha_i, \beta_i]$ for some finite interval $[\alpha_i, \beta_i]$, i = 1, ..., k. By hipothesis Σ_1 dense in $\mathcal{C}(\mathbb{R})$, specifically Σ_1 is dense in $[\alpha_i, \beta_i]$ i = 1, ..., k. Hence there exist constants c_{ij}, w_{ij} and $\theta_{ij}, j = 1, ..., m_i, i = 1, ..., k$ such that

$$\left| f_i(y) - \sum_{j=1}^m c_{ij}\sigma(w_{ij}y + \theta_{ij}) \right| < \frac{\epsilon}{2k}$$

for all $x \in K$.

Therefore,

$$\left| g(x) - \sum_{i=1}^{k} \sum_{j=1}^{m} c_{ij} \sigma(w_{ij}(a^{i} \cdot x) + \theta_{ij}) \right| < \epsilon$$

We showed that to approximate a $\mathcal{C}(\mathbb{R}^n)$ function we only need to approximate a $\mathcal{C}(\mathbb{R})$ function with the set Σ_1 .

1.5 Proof of the theorem

Proof.

- \Rightarrow To prove the implication, we will use proof by contrapositive. We will see the following. If σ is a polynomial then Σ_n is not dense in $\mathcal{C}(\mathbb{R}^n)$. Let σ be a polynomial of degree k, then $\sigma(wx+\theta)$ is a polynomial of degree k for every w, θ . We have $\Sigma_n = span\{\sigma(w \cdot x + \theta) : w \in \mathbb{R}^n, \theta \in \mathbb{R}\}$ that is the set of algebraic polynomials of degree at most k. Σ_n is not dens in $\mathcal{C}(\mathbb{R}^n)$ if for a function $f(x) \in \mathcal{C}(\mathbb{R}^n)$ we can find $\epsilon > 0$ and K such that $||p f|| > \epsilon$ for all p polynomial of degree k. For example, let f(x) = cos(x), and let $p(x) = \sigma(wx + \theta)$ that has degree at most k. This implies has maximum k roots. We can find a interval where cos(x) has k+1 roots. Therefore, Σ_n is not dense in $\mathcal{C}(\mathbb{R}^n)$.
- ← Recapitulem el que hem vist als lemes ...

?

raft - v0