Hausaufgabe 4

Aufgabe 1

Die maximale Anzahl der Schleifendurchläufe lässt sich durch die Rekursionsgleichung

$$S(n) = \begin{cases} 1 & n = 1\\ 1 + S(\lceil \frac{n}{3} \rceil) & \text{sonst} \end{cases}$$

beschreiben. Im Sinne der Folien aus der Vorlesung lassen wir im folgenden das Aufrunden weg. Wir führen Induktion über n mit der Hypothese, dass für $n \in \mathbb{N}, n \geq 3$ gilt, dass $S(n) \in \mathcal{O}(\log_3 n)$.

Sei also n = 3. Dann ist

$$S(n) = 1 + S(1) = 2 < 2 = 2 \cdot \log_3 3$$

Also existiert ein c = 2 > 0 sodass $S(n) \le c \cdot \log_3 n$ ist. Es folgt $S(n) \in \mathcal{O}(\log_3 n)$ für n = 3.

Sei nun $n \in \mathbb{N}$ mit $n \geq 3$ beliebig aber fest, sodass die Hypothese für $\frac{n}{3}$ gilt (IV). Es folgt

$$S(n) = 1 + S\left(\frac{n}{3}\right)^{\text{IV}} \le 1 + \log_3 \frac{n}{3} = 1 + \log_3 n - \log_3 3 = \log_3 n$$

Also existiert wieder ein c = 1 > 0 sodass $S(n) \le c \cdot \log_3 n$ gilt, also $S(n) \in \mathcal{O}(\log_3 n)$ ist.

Nach dem Prinzip der vollständigen Induktion ist die Aussage bewiesen.

Aufgabe 2

- a) Der Worst-case tritt ein, wenn das gesuchte Element K entweder sofort am Anfang oder am Ende des Arrays liegt. In diesem Fall muss der jeweils rechte oder linke "Index-pointer" genau n-1 mal verschoben werden, wobei genau n mal die Schleifenbedingung überprüft wird. Es ist also $W(n) = n \in \mathcal{O}(n)$.
- b) Der Best-case tritt ein, wenn das gesuchte Element K genau in der Mitte des arrays liegt, also bei $\lfloor \frac{n}{2} \rfloor$. In diesem Fall werden beide "Index-pointer" genau $\lfloor \frac{n}{2} \rfloor$ mal bewegt, wobei die Schleifenbedingung dann $\lfloor \frac{n}{2} \rfloor + 1$ mal überprüft wird. Es ist also $B(n) = \lfloor \frac{n}{2} \rfloor + 1 \in \mathcal{O}(n)$
- c) Wir nehmen an n gerade. Die Wkeit dass das gesuchte Element in Index i vorkommt ist $\frac{1}{n}$. Die benötigten Vergleiche für K bei Index $0 \le i \le n$ sind symmetrisch mit globalem Minimum um $i = \frac{n}{2}$ aufgebaut, wodurch die doppelte Summe des Intervalls der Indexe $[\frac{n}{2}, n-1]$ genügt:

$$A(n) = \frac{1}{n} \sum_{i=0}^{n-1} \left(\frac{n}{2} + \left| \frac{n}{2} - i \right| \right) = \frac{2}{n} \sum_{i=\frac{n}{2}}^{n-1} i = \frac{2}{n} \cdot \frac{n(3n-2)}{8} = \frac{3n-2}{4} \in \mathcal{O}(n)$$

Aufgabe 3

a)

b)

Seien $t,t'\in\mathbb{T}$ mit $t\preceq t'$ gegeben. Es folgt für n=0

$$(\Phi(t))(0) = 1 \le 1 = (\Phi(t'))(0)$$

sowie für $n\in\mathbb{N}$

$$\forall n \in \mathbb{N} : (\Phi(t))(n) = 2t \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \stackrel{t \leq t'}{\leq} 2t' \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n = (\Phi(t'))(n)$$

Also gilt

$$\forall n \in \mathbb{N}_0 : (\Phi(t))(n) \le (\Phi(t'))(n)$$

Es folgt $\Phi(t) \leq \Phi(t')$. Damit ist Φ nach Definition monoton bzgl. \leq .

Aufgabe 4

a)

In allen Brüchen wird implizit abgerundet. Im Sinne der Lesbarkeit kennzeichnen wir dies im folgenden nicht explizit.

Der Baum hat $\log_{16} n$ Ebenen und entsprechend $4^{\log_{16} n} = n^{\log_{16} 4} = \sqrt{n}$ Blätter. Es folgt

$$T(n) = \sum_{i=0}^{\sqrt{n}} \left(\frac{4}{16}\right)^i n + \sqrt{n} \approx \frac{4}{3}n + \sqrt{n} \in \mathcal{O}(n)$$

b)

Wir benutzen das Mastertheorem. Es ist $b=4\geq 1,\ c=16>1$ und f(n)=n. Weiter ist dann $E:=\log_c b=\log_{16} 4=0.5$, also $n^E=\sqrt{n}$. Der 3. Fall des Mastertheorems trifft hier zu, denn wir haben für $\varepsilon=0.5>0$, dass

$$f(n) = n \in \Omega(n^{E+\varepsilon}) = \Omega(n)$$

Weiter gilt

$$b \cdot f\left(\frac{n}{c}\right) = 4 \cdot f\left(\frac{n}{16}\right) = \frac{n}{4} \le \frac{n}{2} = \frac{1}{2} \cdot f(n)$$

Also existiert ein $d = \frac{1}{2} < 1$ sodass $b \cdot f(\frac{n}{c}) \le d \cdot f(n)$ sogar für alle $n \in \mathbb{N}$ gilt. Nach dem Mastertheorem folgt nun, dass

$$T(n) \in \Theta(f(n)) = \Theta(n)$$

Unsere Vermutung aus a) stimmt also und wurde sogar noch von unten eingegrenzt.