Bestiario de Teoría de Números

Enrique Pérez Herrero

2023 - 10 - 15

Table of contents

Preámbulo

1 INTRODUCCION

2 SERIES CONVERGENTES

En esta parte del libro https://archive.siam.org/journals/problems/downloadfiles/07-003s.pdf

2.1 Series que incluyen las funciones de parte entera.

Tabla 2.1: Fracciones enteras de n^2

k	Secuen dió rmula	Descripción	Términos
1	$A000290\frac{n^2}{1}$	The squares: $a(n) = n^2$.	$\{1,4,9,16,25,36,49,64,81,100,\}$
2	$A00759 \left[\frac{\overline{n^2}}{2} \right]$	$a(n) = floor(n^2/2).$	$\{0,\!2,\!4,\!8,\!12,\!18,\!24,\!32,\!40,\!50,\!\ldots\}$
3	$A000212\frac{n^2}{3}$	$a(n) = floor(n^2/3).$	$\{0,1,3,5,8,12,16,21,27,33,\}$
4	$A002620\frac{n^2}{4}$	Quarter-squares: $a(n) =$	$\{0,1,2,4,6,9,12,16,20,25,\}$
		floor $(n/2)$ *ceiling $(n/2)$. Equivalently, $a(n) = floor(n^2/4)$.	
5	A11801 $5\frac{n^2}{5}$	$a(n) = floor(n^2/5).$	$\{0,\!0,\!1,\!3,\!5,\!7,\!9,\!12,\!16,\!20,\!\ldots\}$
6	$A056827\frac{n^2}{6}$	$a(n) = floor(n^2/6).$	$\{0,0,1,2,4,6,8,10,13,16,\}$
7	$A056834\frac{n^2}{7}$	$a(n) = floor(n^2/7).$	$\{0,0,1,2,3,5,7,9,11,14,\}$
8	$\mathbf{A}13051\left[\frac{\dot{n}^2}{8}\right]$	$a(n) = Sum_\{k=0n\} \ floor(k/4).$	$\{0,\!0,\!1,\!2,\!3,\!4,\!6,\!8,\!10,\!12,\!\ldots\}$
		(Partial sums of A002265.)	
9	$A056838\frac{n^2}{9}$	$a(n) = floor(n^2/9).$	$\{0,0,1,1,2,4,5,7,9,11,\}$
10	$A05686\left[\frac{n^2}{10}\right]$	$a(n) = floor(n^2/10).$	$\{0,0,0,1,2,3,4,6,8,10,\}$

2.1.1 Función techo de n^2 medios, A000982

$$A000982 = \{0, 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, \dots\}$$
 (2.1)

$$A000982(n) = \left\lceil \frac{n^2}{2} \right\rceil \tag{2.2}$$

• Problema - Sumar la serie: