Statistics 212: Lecture 1 (January 27, 2025)

Preview of Topics and Radon-Nikodym Theorem

Instructor: Mark Sellke

Scribes: Kevin Liu, Haozhe (Stephen) Yang

1 Lecture 1

Today we're focusing on a preview of future topics and proof of Radon-Nikodym Theorem. Main topics for today:

- · Advanced martingales
- · Brownian motion
- · Ito (Stochastic) Calculus

See Instructor Website for more info. Also, sign ups for 5 minute meetings with Mark Sellke 1-2:30 Wed, Jan 29 or Mon Feb 3. Form to be sent out!

1.1 Preview of Brownian Motion and Ito Calculus

Definition 1.1 (Brownian Motion).

(a) Einstein's definition. Scaling limit of a simple random walk. An example of a simple random walk is

$$x_0 = 0$$

$$x_1 = \pm 1$$

$$x_2 = x_1 \pm 1$$

$$\vdots$$

where all the \pm are iid uniform. If we "scale out" the graph of the simple random walk, by the central limit theorem, we have $x_t \approx \mathcal{N}(0,t)$ where t is a very large number (say a googol). We have $B_s = \frac{x_t}{\sqrt{10^{100}}} \sim \mathcal{N}(0,s)$. Graphing out these B's, we obtain a graph that is a random fractal.

(b) Wiener's definition. Brownian motion on $t \in [0,1]$ is a random Fourier series. We have

$$B_t = g_0 t + \sum_{k \ge 1} g_k \sqrt{2} \frac{\sin(\pi k)}{\pi k},$$

where g_0, g_1, \ldots are IID standard Gaussian. (This is called a Karhunen–Loève decomposition.)

(c) Gaussian process. The value at every timestamp is a Gaussian. We have

$$E[B_s] = 0$$

 $Cov(B_{s_1}, B_{s_2}) = min(s_1, s_2).$

Explanation for covariance: If $s_1 < s_2$, then

$$E[B_{s_1}^2] = s_1$$

$$E[B_{s_1}(B_{s_2} - B_{s_1})] = 0,$$

so
$$E[B_{s_1}B_{s_2}] = s_1$$
.

Definition 1.2 (Ito Calculus). Can think about Ito Calculus as calculus for Brownian motion or processes that are similar to Brownian motion.

Examples:

- Stock prices. They are continuous, and we can think of it as a martingale. However, a stock price can
 have a time-changing volatility, which is not quite Brownian (Brownian motion has constant volatility
 over time, so it looks the same everywhere). Ito Calculus allows us to analyze these quasi-Brownian
 objects.
- $Z_t = B_t^2$. The process would clearly never go negative, and it oscillates more when at large values. Even though this isn't quite Brownian, we can still use Ito calculus on this process.
- Used for biology, optimal control, PDEs, complex analysis, diffusion sampling, quantum mechanics, etc.

1.2 Radon-Nikodym Theorem

Definition 1.3 (Absolute continuity of finite measures). $v \ll \mu$ indicates that: the finite measure v is absolutely continuous with respect to μ if for every measurable set S such that v(S) = 0 implies $\mu(S) = 0$. Equivalently, we have v(S) > 0 implies $\mu(S) > 0$. We say that v is absolutely continuous with respect to μ .

Theorem 1.4 (Radon-Nikodym Theorem). *Start off with finite measure* μ *on* (Ω, \mathcal{F}) . *Essentially, RN tells us what kind of measures we can produce starting with* μ .

(a) If $v \ll \mu$ (i.e., v is absolutely continuous with respect to μ), then there exists a non-negative integrable f such that

$$v(S) = \int_{S} f(\omega) d\mu(\omega) = \int_{S} f d\mu$$

for any measurable set $S \in \mathcal{F}$. We define $f = \frac{dv}{d\mu}$ as the Radon-Nikodym derivative.

(b) (More general) Without assuming absolute continuity, there exists a non-negative integrable f and finite measure Θ such that we can decompose

$$v(S) = \Theta(S) + \int_{S} f(\omega) d\mu(\omega).$$

Furthermore Θ , μ are disjointly supported, i.e. there exists an $S \in \mathcal{F}$ such that $\mu(S) = 0$ and $\Theta(\Omega \setminus S) = 0$. We call $\Theta(S)$ the "singular part" and the second term the "absolute continuous part" of ν .

(c) Assume $v \le \mu$, i.e. $v(S) \le \mu(S)$ for all $S \in \mathcal{F}$. Then there exists a measurable $f : \Omega \to [0,1]$ with $f = dv/d\mu$.

Remark. We can show $(b) \implies (a) \implies (c)$. Also note that if we're given (c), then for general finite measures (v,μ) , we have $v \le v + \mu$ so we can simply apply (c) to the pair $(v,v+\mu)$. On the first homework, we will show this recovers (a) and (b). Intuitively, all 3 statements have the same core difficulty, that one has to "conjure up" the function f out of thin air.

Proof. Simplest proof that Mark was able to find, by Anton Schep (2003). We prove the RN Theorem in the form (*c*). The idea is to find the largest f such that $f \le dv/d\mu$ and show equality holds. Define

$$H = \left\{ f : \Omega \to [0,1]; \forall S \in \mathcal{F}, \int_{S} f d\mu \le v(S) \right\}. \tag{1}$$

We want to find the maximum of H. For intuition, one can consider what happens **assuming** a Radon-Nikodym derivative $f_* = \frac{dv}{d\mu}$ exists. Then for arbitrary measurable f_1 , we have $f_1 \in H$ if and only if $f_1 \le f_*$ holds almost everywhere.

Our first claim that H is closed under maximum, i.e. if $f_1, f_2 \in H$ then $\max(f_1, f_2) \in H$. Assuming a Radon-Nikodym derivative exists, this is just because if $f_1, f_2 \leq f_*$ almost everywhere, then $\max(f_1, f_2) \leq f_*$. However we can prove it just from the given condition. Let $A = \{\omega \in \Omega : f_1 \geq f_2\}$ and $B = \{\omega \in \Omega : f_1 < f_2\}$ (the complement of A). We have

$$\int_{S} \max(f_1, f_2) d\mu = \int_{S \cap A} f_1 d\mu + \int_{S \cap B} f_2 d\mu$$

$$\leq \nu(S \cap A) + \nu(S \cap B)$$

$$= \nu(S).$$

Thus, $\max(f_1, f_2) \in H$ as well.

Following this observation, we will aim to demonstrate $f_* \in H$ by taking repeated maximums. We attempt to define $f_*(\omega) = \max_{f \in H} f(\omega)$. But this is a faulty definition. Suppose that $\mu(\{\omega\}) = 0 \forall \omega \in \Omega$, i.e. μ has no atoms. Then $f_*(\omega) = 1$ for all ω because $f_{\omega}(x) = \mathbb{I}_{x=\omega} \in H$.

Instead, we have to take the max of finitely or countably many functions. For k = 1, 2, ..., define $g_k : \Omega \to [0, 1]$. as follows. Let

$$M = \sup_{f \in H} \int_{\Omega} f \, d\mu.$$

We require $g_k \in H$ with $\int_{\Omega} g_k d\mu \ge M - \frac{1}{k}$. We can repeatedly take maximums as so:

$$f_1 = g_1 \in H$$

$$f_2 = \max(g_1, g_2) \in H$$

$$f_3 = \max(g_1, g_2, g_3) = \max(f_2, g_3) \in H.$$
:

Note that $0 \le f_1 \le f_2 \le \cdots \le 1$. By the monotone convergence theorem, there exists an $f_* = \lim_{k \to \infty} f_k$. We want to show that f_* is the RN-derivative.

We can see $f_*: \Omega \to [0,1]$. Less obvious but crucial is that

$$\int_{\Omega} f_* d\mu = M. \tag{2}$$

As

$$\int_{\Omega} f_* d\mu \ge \int_{\Omega} g_k d\mu \ge M - \frac{1}{k}$$

for all $k \in \mathbb{N}$, we see $\int_{\Omega} f_* d\mu \ge M$. By Fatou's Lemma, we see $\int_{\Omega} f_* d\mu \le M$ as $f_k \in H$ for all k. We also see that $f_* \in H$ as by Fatou's Lemma, we have $\int_{S} f_* d\mu \le \liminf_{k \to \infty} \int_{S} f_k d\mu \le \nu(S)$.

To show that $\int_S f_* d\mu = v(S)$ for all S, we can proceed with proof by contradiction. Assume that there exists some S such that $\int_S f_* d\mu < v(S)$, so intuitively there is a "deficit" in S that we have not yet exhausted. We will try to increase f_* while remaining in H, which contradicts maximality of M (due to (2)).

Define $E_1 = \{\omega : f_*(\omega) = 1\}$. We first show that the "deficit" does not come from the part of S in E_1 . Recall the initial assumption that $v \ge \mu$. But we also have

$$\mu(S \cap E_1) = \int_{S \cap E_1} f_* d\mu \le \nu(S \cap E_1)$$

as $f_* \in H$. Then

$$\mu(S \cap E_1) = \int_{S \cap E_1} f_* d\mu = \nu(S \cap E_1).$$

Therefore we can replace *S* by $S \setminus E_1 = S \cap E_0$, where $E_0 = \Omega \setminus E_1$ is the complement of E_1 .

Next we want a positive amount of space to increase f_* , so we "exhaust" E_0 . For each $n \ge 1$, define

$$F_n = \{\omega : f_*(\omega) \le 1 - \frac{1}{n}\}.$$

These F_n exhaust E_0 in that $F_1 \subseteq F_2 \subseteq \cdots$, and

$$\bigcup_{n=1}^{\infty} F_n = E_0.$$

Then $\int_{S \cap E_0} f_* d\mu < v(S \cap E_0)$, which implies $\int_{S \cap F_n} f_* d\mu < v(S \cap F_n)$ for large n. Define $\bar{S} = S \cap F_n$. For $\epsilon > 0$ sufficiently small, we have

$$\int_{\bar{S}} (f_* + \epsilon \chi_{\bar{S}}) d\mu < \nu(\bar{S}). \tag{3}$$

We want to show $f_* + \epsilon \chi_{\bar{S}} \in H$ to contradict the maximality of f_* . Although (3) appears like the condition to be within H, it is only for a specific set \bar{S} , while H is a condition on all measurable sets. So a bit more is still needed.

To finish the proof, we need one more exhaustion argument. First, the condition for $f_* + \epsilon \chi_{\bar{S}}$ to be in H holds on any set disjoint from \bar{S} , since the extra $\epsilon \chi_{\bar{S}}$ term doesn't matter. So it remains to handle subsets $\tilde{S} \subseteq \bar{S}$ (since in general we can decompose \tilde{S} into $\tilde{S} \cap \bar{S}$ and $\tilde{S} \setminus \bar{S}$). It will be convenient to define the " ϵ -deficit"

$$\operatorname{Def}_{\epsilon}(A) = \nu(A) - \int_{A} f_{*} d\mu - \epsilon \mu(A).$$

Note that this function is additive. Further, $\operatorname{Def}_{\varepsilon}(\bar{S}) > 0$ by (3). The idea is that if $S_1 \subseteq \bar{S}$ violates the H-condition, i.e.

$$\int_{S_1} (f_* + \epsilon \chi_{\bar{S}}) d\mu = \int_{S_1} (f_* + \epsilon \chi_{S_1}) d\mu > \nu(S_1),$$

this means $\operatorname{Def}_{\epsilon}(S_1) < 0$ is negative. Then we can simply remove S_1 and use additivity of this functional to find that

$$\operatorname{Def}_{\mathcal{E}}(\bar{S}\backslash S_1) = \operatorname{Def}_{\mathcal{E}}(\bar{S}) - \operatorname{Def}_{\mathcal{E}}(S_1) \ge \operatorname{Def}_{\mathcal{E}}(\bar{S}) > 0. \tag{4}$$

Thus intuitively, removing a violating set S_1 (with negative deficit) only widens the deficit. So by removing "all possible violating sets", there will be no more room for violations. To be precise, we construct a sequence of disjoint sets $S_1, S_2, \dots \subseteq \bar{S}$, each of which attains an "almost maximal violation" (subject to the restriction of disjointness with previous sets). Namely define

$$a_k = \inf_{S_k} \operatorname{Def}_{\epsilon}(S_k)$$

with the infimum being over $S_k \subseteq \bar{S}$ disjoint with $S_1, S_2, ..., S_{k-1}$. We have $a_k \le 0$ since the empty set is always an option. We'll choose S_k to approximately optimize this infimum up to margin 1/k, i.e.:

$$\operatorname{Def}_{\varepsilon}(S_k) \le a_k + \frac{1}{k}.\tag{5}$$

Then we can define

$$\hat{S} = \bar{S} \setminus (\bigcup_{k \ge 1} S_k)$$

to be " \bar{S} with all the deficit removed". Now let's verify that $\hat{f} = f + \epsilon \chi_{\hat{S}} \in H$, and that this contradicts maximality of M to finish the proof:

• First, similarly to (4), it follows that

$$\int_{\hat{S}} \hat{f} d\mu - \nu(\hat{S}) = \int_{\bar{S}} (f_* + \epsilon \chi_{\bar{S}}) d\mu - \nu(\bar{S}) < 0.$$

In particular, this means that $v(\bar{S}) > 0$ so \bar{S} is non-empty. Additionally, $v(\bar{S}) \le \mu(S)$. Therefore **if** we can verify that $\hat{f} \in H$ **then** we will contradict maximality of M.

- As argued before, the condition (1) holds for $f + \epsilon \chi_{\hat{S}}$ automatically on sets disjoint from \hat{S} , since $f \in H$. By additivity, it suffices to check (1) for any remaining subset $S_0 \subseteq \hat{S}$. (I.e. for a general set E, we can check for both $E \cap \hat{S}$ and $E \setminus \hat{S}$ and add as before.)
- So, suppose for contradiction that $S_0 \subseteq \hat{S}$ violates (1), i.e.

$$\int_{S_0} \hat{f} d\mu > v(S_0) + \delta$$

for some positive δ , or equivalently $\operatorname{Def}_{\epsilon}(S_0) < -\delta$. Then for $k > 1/\delta$, we see that S_k was chosen wrong: we could have used $S_k \cup S_0$ instead, and since they are disjoint we have

$$\mathrm{Def}_{\epsilon}(S_k \cup S_0) = \mathrm{Def}_{\epsilon}(S_k) + \mathrm{Def}_{\epsilon}(S_0) \leq \mathrm{Def}_{\epsilon}(S_k) - \delta \leq \mathrm{Def}_{\epsilon}(S_k) - 1/k.$$

This shows that S_k does not obey the approximate-optimality condition (5). This gives the desired contradiction and concludes the proof.