실험계획 - 4주차 강의

5장: 랜덤화블록설계, 라틴정방설계

시립대학교 통계학과 2021년 3월 25일 예제: 비료와 농지

라틴정방설계

예제: 비료와 농지

예제: 비료와 농지

- 예제: 비료의 종류에 따른 콩의 수확량 차이?
- 실험단위는 농지, 재배단위(plot)

- 농지 1, 2, 3: 보통
- 농지 4, 5, 6: 진흙
- 농지 7, 8, 9 모래

완전 랜덤화 계획?

■ 실험단위는 농지, 재배단위(plot)

< 표 5.1 > 완전 랜덤화 계획의 예

비료				
I	II III			
농지 8	농지 9	농지 5		
농지 2	농지 1	농지 7		
농지 3	농지 4	농지 6		

- 차이가 난 원인이 비료 차이 혹은 토질 차이?
- 완전 랜덤화로 실험하면 처리의 효과를 파악하는데 어려움
 발생

예제: 비료와 농지

- 실험단위는 농지, 재배단위(plot)
- 유사한 농지들을 **블럭(block)**으로 묶는다.
- 블럭 안에서 처리를 랜덤 배정

블록화(blocking)

<표 5.2 > 랜덤화 완전블록 계획의 예

	비료			
토질	I	II	III	
보통	농지 2	농지 3	농지 1	
진흙	농지 4	농지 6	농지 5	
모래	농지 9	농지 8	농지 7	

- 동질적인 실험단위들을 모아서 블록으로.
- 각 블록 내에서 처리 수준을 랜덤하게 배치.
- 토질마다 비료 종류를 골고루 랜덤하게 배치
- 차이가 난 원인이 비료 차이임을 파악할 수 있다!
- 오차항으로부터 블록효과의 분리 추정이 가능하여 실험의 정밀성 향상.

랜덤화 블록설계 자료 구조

랜덤화 블록설계의 모형

$$x_{ij} = \mu + \tau_i + \rho_j + e_{ij}$$

- µ : 전체 평균
- τ_i: 처리효과 (고정 효과)
- ρ_j: 블럭 효과 (고정 효과)
- 일원배치법의 구조모형과 차이점?
 - 일원배치법의 오차항에서 블록효과가 분리.
 - 랜덤화 블록설계의 오차항의 변동 크기가 작으리라 기대
- 블럭 효과를 임의 효과(random effect)로 가정할 수도 있다.
 - 이 경우 반복이 없는 이원배치법의 혼합모형(mixed model)과 동일

■ 주효과 A 가 유의한가?

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$
 vs. $H_1:$ not H_0

- 블럭 효과는 블럭의 변동을 설명하는 기능을 가진다. 가설 검정이 필요하지 않다.
- 제곱합
 - 총 제곱합 : $SS_T = \sum_{i=1}^a \sum_{j=1}^b (x_{ij} \bar{\bar{x}})^2$
 - 처리 제곱합 : $SS_A = \sum_{i=1}^a \sum_{j=1}^b (\bar{x}_{i.} \bar{\bar{x}})^2$
 - 블럭 제곱합 : $SS_{Block} = \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{x}_{.j} \bar{\bar{x}})^2$
 - 잔차 제곱합 : $SS_E = \sum_{i=1}^a \sum_{j=1}^b (x_{ij} \bar{x}_{.j} \bar{x}_{.j} + \bar{\bar{x}})^2$

요인	제곱합	자유도	평균제곱합	F_0
요인 <i>A</i>	SS_A	a – 1	MS_A	MS_A/MS_E
블럭요인	SS_{Block}	b-1	MS_{Block}	
잔차 <i>E</i>	SS_E	(a-1)(b-1)	MS_E	
총합	SS_T	abr-1		

- 주효과 A 의 유의성에 대한 p-값 = $P(F(\phi_A, \phi_E) > F_0)$
- 블록효과에 대한 p-값 ≥ 0.25 이면 블록효과를 오차항에 풀링 (일원배치법과 동일)

요인이 2개인 랜덤화 블록계획법

- 요인 A의 수준 수가 a, 요인 B의 수준 수가 b
- 처리의 개수가 ab인 랜덤화 블록계획법
- 각 블럭에서 ab개의 처리를 랜덤화 배정

블록의 개수가 3인 2 × 2 랜덤화 블록계획법의 실험의 배치 Block 1 Block2 Block3 A_2B_1 A,B, A_1B_1 A_1B_2 A_1B_1 A_2B_2 A₂B₂ A_1B_2 A_1B_2 A_1B_1 A,B, A_2B_1

요인이 2개인 랜덤화 블록계획법

$$x_{ij}\mu + \tau_{ij} + \rho_k + e_{ijk}$$

= $\mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \rho_k + e_{ijk}$

 이원배치법의 분산분석에서 잔차변동이 블록간 변동과 잔차변동으로 분할

라틴정방설계- 예제

- 5가지 비료(A, B, C, D, E)가 감자 생산량에 미치는 효과 판정
- 토지의 비옥도와 습윤도에 따라서 영향을 받음

		열				
		1	2	3	4	5
행	I	A	В	C	D	E
	II	C	D	E	A	В
	III	E	A	В	C	D
	IV	В	C	D	E	A
	V	D	E	A	В	C

< 그림 5.2 > 5 × 5 라틴정방설계

라틴정방설계- 예제

- 4가지 휘발유 첨가제(A, B, C, D)가 의 성능 차이를 평가.
- 자동차(열블록)와 운전기사(행블록)도 가스연비에 영향.

		자동차			
		1	2	3	4
운 전 기 사	I	A	В	D	С
	II	D	C	A	В
	III	В	D	С	A
	IV	С	A	В	D

라틴정방설계

- 라틴정방설계 또는 라틴방격법(Latin Square Design)
- 실험 단위의 동질성을 분류할 수 있는 블록 요인이 2개 있는 경우.
- 2개의 블록요인을 행블록과 열블록에 각각 배치.
- 행블록, 열블록이 만나는 칸에 처리를 배치.
- 실험의 크기= 처리 개수의 제곱 = p^2
- 랜덤화 블록설계의 개념이 확장된 실험계획.
- 각각의 행블록과 열블록에 처리를 골고루 랜덤하게 배치.
- 제약조건: 처리의 수 = 행블록의 크기 = 열블록의 크기

라틴정방설계 모형

$$x_{ijk} = \mu + \rho_i + \gamma_j + \tau_k + e_{ijk}, \quad i, j, k = 1, 2, \dots, p$$

- µ : 전체 평균
- ρ_i: 행블럭 효과 R (고정 효과)
- γ_j : 열블럭 효과 R (고정 효과)
- *⊤_k*: 처리효과 (고정 효과)

■ 주효과가 유의한가?

$$H_0: \tau_1 = \tau_2 = \cdots = \tau_p = 0$$
 vs. $H_1:$ not H_0

- 블럭 효과는 블럭의 변동을 설명하는 기능을 가진다. 가설 검정이 필요하지 않다.
- 제곱합
 - 총 제곱합 : $SS_T = \sum_{i=1}^p \sum_{j=1}^p \sum_{k=1}^p (x_{ijk} \bar{\bar{x}})^2$
 - 행블럭 제곱합 : $SS_R = \sum_{i=1}^p \sum_{j=1}^p \sum_{k=1}^p (\bar{x}_{i..} \bar{\bar{x}})^2$
 - 열블럭 제곱합 : $SS_C = \sum_{i=1}^p \sum_{j=1}^p \sum_{k=1}^p (\bar{x}_{.j.} \bar{\bar{x}})^2$
 - 처리 제곱합 : $SS_{Trt} = \sum_{i=1}^p \sum_{j=1}^{p^i} \sum_{k=1}^p (\bar{x}_{...k} \bar{\bar{x}})^2$
 - 잔차 제곱합 : $SS_E = SS_T SS_R SS_C SS_{Trt}$

요인	제곱합	자유도	평균제곱합	F_0
행블럭 <i>R</i>	SS_R	<i>p</i> – 1	MS_R	
열블럭 <i>C</i>	SS_C	p-1	MS_C	
처리 <i>Trt</i>	SS_{Trt}	p-1	MS_{Trt}	MS_{Trt}/MS_{E}
잔차 <i>E</i>	SS_E	(p-2)(p-1)	MS_E	
<u>총</u> 합	SS_T	$p^{2}-1$		

• 주효과 A 의 유의성에 대한 p-값 = $P(F(p-1,(p-2)(p-1)>F_0)$

라틴정방의 구축

- 단계 1. 기본형 설계 구축: 처리 수준 수 3인 경우, A, B, C로 표시한 구슬 목걸이의 구슬을 한 칸씩 밀기를 2회 시행.
- 단계 2. 기본형 설계에서 먼저 행들의 순서를 랜덤 배열하고, 다시 열들 의 순서를 랜덤 배열.
- 마지막으로 관심 요인의 처리 수준들을 영문 알파벳들에 랜덤 배정

$$A \ B \ C \ B \ C \ A \ B \$$

처리 수준 수 $3 \le p \le 6$ 인 경우 기본형 라틴정방 설계가 124쪽에 소개.