K5 Beta-spectroscopy and Fermi theory of beta

decay

Sönderfall en introduktion

Kalibreringen av utrustningen

Teori om beta sönderfall Bevarade storheter Skalmodellen Fermi teori

Genomförandet av labben

Rapporten

Vad avgör om ett sönderfall sker spontant?

▶ Q-Värde
$$Q = E_i - E_f = (m_i - m_f)c^2 > 0$$

Vad avgör om ett sönderfall sker spontant?

- Q-Värde $Q = E_i E_f = (m_i m_f)c^2 > 0$
- ightharpoonup Bevarade storheter t.ex. $ec{p}$ och $ec{J}$

Vad avgör om ett sönderfall sker spontant?

- Q-Värde $Q = E_i E_f = (m_i m_f)c^2 > 0$
- ightharpoonup Bevarade storheter t.ex. \vec{p} och \vec{J}
- ▶ fysisk mekanism så som
 - ightharpoonup Stark växelverkan: α -sönderfall
 - Svag växelverkan: β -sönderfall
 - ightharpoonup Elektromagnetisk växelverkan: γ -sönderfall

$$X \to Y + \beta^{\pm}$$

$$X \to Y + \beta^{\pm}$$

Laddning

$$q_eta=\pm e$$

$$X \to Y + \beta^{\pm}$$

Laddning

$$q_eta=\pm e$$

► Förväntat spektrum

$$X \to Y + \beta^{\pm}$$

Laddning

$$q_eta=\pm e$$

► Förväntat spektrum

► Faktiskt spektrum

 $_{Z}^{A}X_{N}$

 ${}_Z^A \mathbf{X}_N \overset{\beta^-}{
ightarrow}$

$$_{Z}^{A}\mathrm{X}_{N}\overset{\beta^{-}}{
ightarrow}_{Z+1}^{A}\mathrm{X}_{N-1}+e^{-}+ar{
u}_{e}$$

$${}^{A}_{Z}X_{N} \stackrel{\beta^{-}}{\to} {}^{A}_{Z+1}X_{N-1} + e^{-} + \bar{\nu}_{e}$$

$${}^{A}_{Z}X_{N} \stackrel{\beta^{+}}{\to}$$

$${}^{A}_{Z}X_{N} \stackrel{\beta^{-}}{\rightarrow} {}^{A}_{Z+1}X_{N-1} + e^{-} + \bar{\nu}_{e}$$
$${}^{A}_{Z}X_{N} \stackrel{\beta^{+}}{\rightarrow} {}^{A}_{Z-1}X_{N+1} + e^{+} + \nu_{e}$$

$${}^{A}_{Z}X_{N} \xrightarrow{\beta^{-}} {}^{A}_{Z+1}X_{N-1} + e^{-} + \bar{\nu}_{e}$$

$${}^{A}_{Z}X_{N} \xrightarrow{\beta^{+}} {}^{A}_{Z-1}X_{N+1} + e^{+} + \nu_{e}$$

$${}^{A}_{Z}X_{N} + e^{-} \xrightarrow{EC}$$

$${}^{A}_{Z}X_{N} \xrightarrow{\beta^{-}} {}^{A}_{Z+1}X_{N-1} + e^{-} + \bar{\nu}_{e}$$

$${}^{A}_{Z}X_{N} \xrightarrow{\beta^{+}} {}^{A}_{Z-1}X_{N+1} + e^{+} + \nu_{e}$$

$${}^{A}_{Z}X_{N} + e^{-} \xrightarrow{EC} {}^{A}_{Z-1}X_{N+1} + \nu_{e}$$

$${}^{A}_{Z}X_{N} \xrightarrow{\beta^{-}} {}^{A}_{Z+1}X_{N-1} + e^{-} + \bar{\nu}_{e}$$

$${}^{A}_{Z}X_{N} \xrightarrow{\beta^{+}} {}^{A}_{Z-1}X_{N+1} + e^{+} + \nu_{e}$$

$${}^{A}_{Z}X_{N} + e^{-} \xrightarrow{EC} {}^{A}_{Z-1}X_{N+1} + \nu_{e}$$

Av β^+ och EC, vilket är mest sannolik?

$$\beta$$
-sönderfall av $^{137}_{55}\mathrm{Cs}_{82}$

 $^{137}_{55}\mathrm{Cs}_{82}$

$$\beta$$
-sönderfall av $^{137}_{55}\mathrm{Cs}_{82}$

$$^{137}_{55}\mathrm{Cs}_{82}\overset{\beta^-}{\rightarrow}$$

$$\beta$$
-sönderfall av $^{137}_{55}\mathrm{Cs}_{82}$

$$^{137}_{55}\mathrm{Cs}_{82}\overset{\beta^-}{ o} ^{137}_{56}\mathrm{Ba}_{81} + e^- + \bar{\nu}_e$$

$$\beta$$
-sönderfall av $^{137}_{55}\mathrm{Cs}_{82}$

$$^{137}_{55}\mathrm{Cs}_{82} \stackrel{\beta^-}{\to} ^{137}_{56}\mathrm{Ba}_{81} + e^- + \bar{\nu}_e$$

Vad blir Q värdet?

$$\beta$$
-sönderfall av $^{137}_{55}\mathrm{Cs}_{82}$

$$^{137}_{55}\mathrm{Cs}_{82} \overset{\beta^-}{ o} ^{137}_{56}\mathrm{Ba}_{81} + e^- + \bar{\nu}_e$$

Vad blir Q värdet?

$$Q=1.1728 {\rm MeV}$$

Uppställning

Uppställning

$$T_e = aI + b = An + B$$

Histogrammet

Histogrammet

$$T_e = aI + b = An + B$$

Histogrammet

$$T_e = aI + b = An + B$$

Hur kan vi ta reda på A och B?

Histogrammet

 $T_e = An + B = 0.442 \cdot n + 227$

Låt oss titta på utrustningen!!!

Genomför kalibreringen

- Använd antingen medtagen dator eller någon av lab datorerna
- Använd MATLAB
- Använd de Matlab filer som finns på Pingpong
- Hämta spectrumet från servern med hjälp av "getk5_n1024()"

Intermezzo

Hur bestäms övergångsreglerna?

Hur bestäms övergångsreglerna? Från bevarade storheter, i vårt fall rörelsemängdsmoment

$$ec{l}_{
m M} = ec{l}_{
m D} + ec{J}_{eta}$$

Hur bestäms övergångsreglerna? Från bevarade storheter

$$\vec{I}_{\mathrm{M}} = \vec{I}_{\mathrm{D}} + \vec{J}_{\beta}$$

$$ec{J_eta} = ec{\mathcal{L}_eta} + ec{\mathcal{S}_eta}$$

$$ec{\mathcal{S}}_eta = ec{\mathcal{S}}_{e^-} + ec{\mathcal{S}}_{ar{
u}}$$

$$\vec{J} = (J_x, J_y, J_z)$$

$$\vec{J} = (J_x, J_y, J_z)$$

$$J_i:\mathcal{H}\to\mathcal{H},\quad [J_x,J_y]=i\hbar J_z$$

$$\vec{J} = (J_x, J_y, J_z)$$

$$J_i: \mathcal{H} \to \mathcal{H}, \quad [J_x, J_y] = i\hbar J_z$$

Kan alla komponenterna av \vec{J} mätas samtidigt?

$$\vec{J} = (J_x, J_y, J_z)$$

$$J_i: \mathcal{H} \to \mathcal{H}, \quad [J_x, J_y] = i\hbar J_z$$

Kan alla komponenterna av \vec{J} mätas samtidigt? Nej! Bara en komponent och normen av \vec{J} kan mätas. Vi väljer m som kvanttal för komponent J_z och J för normen och det gäller att

$$J \ge |m|$$

Addition av rörelsemängdsmoment

Om vi har

$$\vec{J} = \vec{J_1} + \vec{J_2}$$

då gäller triangelolikheten för normkvanttalet

$$|J1-J2| \le J \le J1+J2$$

och

$$m = m_1 + m_2$$

$$|I_{D} - J_{\beta}| \le I_{M} \le I_{D} + J_{\beta}$$
$$|L_{\beta} - S_{\beta}| \le J_{\beta} \le L_{\beta} + S_{\beta}$$
$$|S_{e^{-}} - S_{\bar{\nu}}| \le S_{\beta} \le S_{e^{-}} + S_{\bar{\nu}}$$

$$ec{I}_{
m M} = ec{I}_{
m D} + ec{J}_{eta} \qquad \qquad |I_{
m D} - J_{eta}| \leq I_{
m M} \leq I_{
m D} + J_{eta} \ |I_{
m D} - J_{eta}| \leq I_{
m M} \leq I_{
m D} + J_{eta} \ |I_{
m D} - S_{eta}| \leq I_{
m M} \leq I_{
m D} + I_{
m D} \ |I_{
m B} - S_{
m B}| \leq I_{
m M} \leq I_{
m D} + I_{
m D} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m D}| \leq I_{
m B}$$
 $\Delta I = |I_{
m M} - I_{
m D}| \leq I_{
m B}$

$$ec{I}_{
m M} = ec{I}_{
m D} + ec{J}_{eta} \hspace{1cm} |I_{
m D} - J_{eta}| \leq I_{
m M} \leq I_{
m D} + J_{eta} \ |I_{
m D} - J_{eta}| \leq I_{
m M} \leq I_{
m D} + J_{eta} \ |I_{
m D} - S_{eta}| \leq I_{
m M} \leq I_{
m D} + I_{
m D} \ |I_{
m B} - S_{
m B}| \leq I_{
m M} \leq I_{
m D} + I_{
m D} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m D}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B} + I_{
m B} \ |I_{
m B} - I_{
m B}| \leq I_{
m B} + I_{
m B}$$

$$ec{I}_{
m M} = ec{I}_{
m D} + ec{J}_{eta} \hspace{1cm} |I_{
m D} - J_{eta}| \leq I_{
m M} \leq I_{
m D} + J_{eta} \ ec{J}_{eta} = ec{L}_{eta} + ec{S}_{eta} \hspace{1cm} |L_{eta} - S_{eta}| \leq J_{eta} \leq L_{eta} + S_{eta} \ |S_{e^-} - S_{ar{
u}}| \leq S_{eta} \leq S_{e^-} + S_{ar{
u}} \ \Delta I = |I_{
m M} - I_{
m D}| \leq J_{eta} \hspace{1cm} S_{eta} \in \{0, 1\}$$

Paritet

$$ec{x}
ightarrow - ec{x} \quad \Rightarrow \Psi_{\mathrm{M}}(ec{x})
ightarrow \pi_{\mathrm{M}} \Psi_{\mathrm{M}}(ec{x}), \quad \pi_{\mathrm{M}} \in \{-1, 1\}$$
 $\pi_{\mathrm{M}} = \pi_{eta} \cdot \pi_{\mathrm{D}}, \quad \pi_{eta} = (-1)^{L_{eta}}$

- Centralpotential
- Diskreta energinivåer, likt elektronskalen
- ► Enpartikel kvanttal så *n*, *l*, *s*, *j*, *m* (eventuellt fler så som isospinn)
- ► Beror av parametrar som måste bestämmas experimentellt

 $1s - - - 1s_{1/2} 2 \boxed{2}$

By Bakken at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15039395

Fermis gyllene regel

$$\lambda_{fi} = \frac{2\pi}{\hbar} |\langle f| \hat{H}_{\beta} |i\rangle|^2 \rho(E_f)$$

- $ightharpoonup \lambda_{\it fi}$ övergångshastigheten från initial tillståndet till sluttillstånden
- $ightharpoonup \langle f | H_{\beta} | i \rangle$ Sönderfalls matriselementet för β -sönderfall
- $ightharpoonup
 ho(E_f)$ Sluttillståndstätheten

$$\hat{\mathcal{H}}_{\!eta} = \mathcal{G}_{\!eta}\hat{ au}^\pm\delta(\mathbf{x}'-\mathbf{x})$$

$$\hat{H}_{eta} = rac{ extsf{G}_{eta}\hat{ au}^{\pm}\delta(extsf{x}'- extsf{x})$$

 $ightharpoonup G_{\beta}$ Interaktionskonstant

$$\hat{H}_{\beta} = G_{\beta} \hat{\tau}^{\pm} \delta(\mathbf{x}' - \mathbf{x})$$

- $ightharpoonup G_{\beta}$ Interaktionskonstant
- $lackbox{}\hat{ au}^\pm$ en operator som byter en neutron (proton) mot en proton (neutron)

$$\hat{H}_{eta} = G_{eta}\hat{ au}^{\pm} \delta(\mathbf{x}' - \mathbf{x})$$

- $ightharpoonup G_{\beta}$ Interaktionskonstant
- $lackbox{}\hat{ au}^\pm$ en operator som byter en neutron (proton) mot en proton (neutron)
- $lackbox{\delta}(\mathbf{x}'-\mathbf{x})$ interaktionen sker i en punkt i rummet

$$\hat{H}_{eta} = G_{eta}\hat{ au}^{\pm}\delta(\mathbf{x}'-\mathbf{x})$$

- $ightharpoonup G_{\beta}$ Interaktionskonstant
- $m{\hat{ au}}^\pm$ en operator som byter en neutron (proton) mot en proton (neutron)
- $\delta(\mathbf{x}' \mathbf{x})$ interaktionen sker i en punkt i rummet

$$\langle \vec{x}|i
angle = \Psi_{\mathrm{M}}(\vec{x})$$
 $\langle \vec{x}|f
angle = \phi_{e^{-}}(\vec{x})\phi_{\bar{\nu}}(\vec{x})\Psi_{\mathrm{D}}(\vec{x})$

$$\langle \vec{x}|i\rangle = \Psi_{\rm M}(\vec{x})$$

 $\langle \vec{x}|f\rangle = \phi_{e^-}(\vec{x})\phi_{\bar{\nu}}(\vec{x})\Psi_{\rm D}(\vec{x})$

$$\langle \vec{x}|i \rangle = \Psi_{\rm M}(\vec{x})$$

 $\langle \vec{x}|f \rangle = \phi_{e^-}(\vec{x})\phi_{\bar{\nu}}(\vec{x})\Psi_{\rm D}(\vec{x})$

$$egin{aligned} \langle ec{x}|i
angle &= \Psi_{
m M}(ec{x}) \ \ \langle ec{x}|f
angle &= \phi_{e^-}(ec{x})\phi_{ar{
u}}(ec{x})\Psi_{
m D}(ec{x}) \end{aligned}$$

$$\langle \vec{x}|i
angle = \Psi_{\mathrm{M}}(\vec{x})$$
 $\langle \vec{x}|f
angle = \phi_{e^{-}}(\vec{x})\phi_{\bar{\nu}}(\vec{x})\Psi_{\mathrm{D}}(\vec{x})$

$$\langle \vec{x}|i
angle = \Psi_{\mathrm{M}}(\vec{x})$$
 $\langle \vec{x}|f
angle = \phi_{e^-}(\vec{x})\phi_{\bar{\nu}}(\vec{x})\Psi_{\mathrm{D}}(\vec{x})$

Planvågsapproximationen

$$\phi_{e^{-}}(\vec{x}) = \frac{1}{\sqrt{V}} e^{i\vec{k}_{e^{-}} \cdot \vec{x}}$$

$$\phi_{\bar{\nu}}(\vec{x}) = \frac{1}{\sqrt{V}} e^{i\vec{k}_{\bar{\nu}} \cdot \vec{x}}$$

$$\phi_{e^{-}}(\vec{x})\phi_{\bar{\nu}}(\vec{x}) = \frac{1}{V} e^{i(\vec{k}_{e^{-}} + \vec{k}_{\bar{\nu}}) \cdot \vec{x}}$$

$$\phi_{e^{-}}(\vec{x})\phi_{\bar{\nu}}(\vec{x}) = \frac{1}{V}e^{i(\vec{k}_{e^{-}} + \vec{k}_{\bar{\nu}})\cdot\vec{x}}$$

Bevarande av rörelsemängd ger:

$$ec{P}_{\mathrm{D}} + \hbar (ec{k}_{\mathsf{e}^{\scriptscriptstyle{-}}} + ec{k}_{ar{
u}}) = ec{P}_{\mathrm{M}}$$

$$\phi_{e^{-}}(\vec{x})\phi_{\bar{\nu}}(\vec{x}) = \frac{1}{V}e^{i(\vec{k}_{e^{-}} + \vec{k}_{\bar{\nu}})\cdot\vec{x}}$$

Bevarande av rörelsemängd ger:

$$ec{P}_{
m D} + \hbar (ec{k}_{
m e^{\scriptscriptstyle -}} + ec{k}_{ar{
u}}) = ec{P}_{
m M}$$

vi har att

$$M_{
m M} pprox M_{
m D} \gg m_{e^-} \gg m_{ar
u}$$

vilket ger

$$ec{P}_{
m M}pproxec{P}_{
m D}$$
 $ec{k}_{
m e^-}+ec{k}_{ar{
u}}pprox0$

$$\phi_{\mathsf{e}^-}(ec{x})\phi_{ar{
u}}(ec{x}) = rac{1}{V} \mathsf{e}^{i(ec{k}_{\mathsf{e}^-} + ec{k}_{ar{
u}}) \cdot ec{x}}$$
 $ec{k}_{\mathsf{e}^-} + ec{k}_{ar{
u}} pprox 0$

$$\phi_{\mathbf{e}^-}(ec{x})\phi_{ec{
u}}(ec{x})=rac{1}{V}$$
 $ec{k}_{\mathbf{e}^-}+ec{k}_{ec{
u}}pprox 0$

Matriselementet

$$\langle f | \hat{H}_{\beta} | i \rangle = \int \phi_{e^-}^*(\vec{x}) \phi_{\bar{\nu}}^*(\vec{x}) \Psi_{\mathrm{D}}^*(\vec{x}) G_{\beta} \tau^+ \Psi_{\mathrm{M}}(\vec{x}) d^3 x$$

Matriselementet

$$\langle f | \, \hat{H}_{\beta} \, | i
angle = rac{G_{\beta}}{V} \int \Psi_{\mathrm{D}}^{*}(\vec{x}) au^{+} \Psi_{\mathrm{M}}(\vec{x}) d^{3}x$$

Matriselementet

$$raket{f|\hat{H}_{eta}|i} = rac{G_{eta}}{V} \int \Psi_{\mathrm{D}}^{*}(ec{x}) au^{+} \Psi_{\mathrm{M}}(ec{x}) d^{3}x$$
 $M_{\mathrm{f}i} = \int \Psi_{\mathrm{D}}^{*}(ec{x}) au^{+} \Psi_{\mathrm{M}}(ec{x}) d^{3}x$

Fermis gyllene regel igen

$$\lambda_{fi} = rac{2\pi}{\hbar} |raket{f} \hat{H}_eta |i
angle |^2
ho(E_f)$$

Fermis gyllene regel igen

$$\lambda_{fi} = rac{2\pi G_{eta}^2}{\hbar V^2} |M_{fi}|^2
ho(E_f)$$

Fermis gyllene regel igen

$$\lambda_{fi} = \frac{2\pi G_{\beta}^2}{\hbar V^2} |M_{fi}|^2 \rho(E_f)$$

► Heisenbergs osäkerhetsprincip ger

$$\Delta p \Delta x \geq h = 2\pi \hbar$$

► Heisenbergs osäkerhetsprincip ger

$$\Delta p \Delta x > h = 2\pi \hbar$$

► Antalet tillstånd blir alltså

$$\mathcal{N}(
ho)=rac{
ho x}{2\pi\hbar}$$

► Heisenbergs osäkerhetsprincip ger

$$\Delta p \Delta x > h = 2\pi \hbar$$

Antalet tillstånd blir alltså

$$\mathcal{N}(p)=rac{px}{2\pi\hbar}$$

$$\rho(E) = \frac{dN(p)}{dE} = \frac{dN(p)}{dp} \frac{dp}{dE}$$

$$p = \sqrt{2mE} \quad \frac{dp}{dE} = \frac{m}{\sqrt{2mE}}$$

$$\rho(E) = \frac{xm}{2\pi\hbar\sqrt{2mE}}$$

Moderkärnans masscentrum som referenssystem ger

$$ec{p}_{\mathrm{D}} + ec{p}_{\mathrm{e}^{-}} + ec{p}_{ar{
u}} = ec{p}_{\mathrm{M}} = 0 \implies ec{p}_{\mathrm{D}} = -ec{p}_{\mathrm{e}^{-}} - ec{p}_{ar{
u}}$$

Då $M_{
m D}\gg m_{e^-}\gg m_{ar
u}pprox 0$ kommer $Qpprox T_{e^-}+T_{ar
u}$

$$T_{e^{-}} = \frac{p_{e^{-}}^{2}}{2m_{e^{-}}}$$

$$T_{\bar{\nu}}=cp_{\bar{\nu}}$$

Minsta volymen i fasrummet är $(2\pi\hbar)^6$

$$T_{e^-} = rac{p_{e^-}^2}{2m_{e^-}} \quad T_{ar
u} = c p_{ar
u}$$
 $N(p_{e^-}) = rac{1}{(2\pi\hbar)^6} \int\limits_V d^3ec x_{e^-} \int\limits_V d^3ec x_{ar
u} \int\limits_{B(0,p_{e^-})} d^3ec p_{e^-} \int\limits_{\mathbb{R}^3} d^3ec p_{ar
u} \delta(T_{e^-} + T_{ar
u} - Q)$

$$T_{e^-} = rac{p_{e^-}^2}{2m_{e^-}} \quad T_{ar{
u}} = c p_{ar{
u}}$$

$$N(p_{e^-}) = rac{(4\pi)^2 V^2}{(2\pi\hbar)^6} \int\limits_{
ho}^{
ho_{e^-}} ar{p}_{e^-}^2 dar{p}_{e^-} \int\limits_{
ho}^{\infty} p_{ar{
u}}^2 dp_{ar{
u}} \delta\left(rac{ar{p}_{e^-}^2}{2m_{e^-}} + cp_{ar{
u}} - Q
ight)$$

$$T_{e^{-}} = rac{p_{e^{-}}^{2}}{2m_{e^{-}}} \quad T_{ar{
u}} = cp_{ar{
u}}$$
 $N(p_{e^{-}}) = rac{(4\pi)^{2}V^{2}}{(2\pi\hbar)^{6}} \int_{0}^{p_{e^{-}}} ar{p}_{e^{-}}^{2} dar{p}_{e^{-}} c^{3} \left(rac{ar{p}_{e^{-}}^{2}}{2m_{e^{-}}} - Q
ight)^{2}$

$$T_{e^-} = rac{p_{e^-}^2}{2m_{e^-}} \quad T_{ar{
u}} = cp_{ar{
u}}$$
 $N(p_{e^-}) = rac{(4\pi)^2 V^2}{(2\pi\hbar)^6} \int\limits_0^{p_{e^-}} ar{p}_{e^-}^2 dar{p}_{e^-} c^3 \left(rac{ar{p}_{e^-}^2}{2m_{e^-}} - Q
ight)^2$ $ho(T_{e^-})dT_{e^-} = rac{dN(p_{e^-})}{dT_{e^-}}dT_{e^-} = rac{dN(p_{e^-})}{dT_{e^-}}dT_{e^-}$

$$T_{e^-} = rac{p_{e^-}^2}{2m_{e^-}} \quad T_{ar
u} = c p_{ar
u}$$

$$ho(T_{e^-})dT_{e^-}=rac{m_{e^-}\sqrt{m_{e^-}}V^2c^3}{2\sqrt{2}\pi^4\hbar^6}(T_{e^-}-Q)^2\sqrt{T_{e^-}}dT_{e^-}$$

Gyllene regeln åter igen

$$d\lambda_{fi} = rac{G_{eta}^2 m_{e^-} \sqrt{m_{e^-}} c^3}{\sqrt{2} \pi^3 \hbar^7} |M_{fi}|^2 (T_{e^-} - Q)^2 \sqrt{T_{e^-}} dT_{e^-}$$

Antalet uppmätta elektroner

$$N_{e^-}(T_{e^-}) = \frac{d\lambda_{fi}}{dT_{e^-}}$$

Antalet uppmätta elektroner

$$N_{e^{-}}(T_{e^{-}}) = \frac{G_{eta}^2 m_{e^{-}} \sqrt{m_{e^{-}}} c^3}{\sqrt{2} \pi^3 \hbar^7} |M_{fi}|^2 (T_{e^{-}} - Q)^2 \sqrt{T_{e^{-}}}$$

Dotterkärnan har en positiv laddning

- ► Dotterkärnan har en positiv laddning
- och attraherar (repellerar) elektronen (positronen)

- Dotterkärnan har en positiv laddning
- och attraherar (repellerar) elektronen (positronen)
- Alltså stämmer inte planvågsapproximationen

ightharpoonup Lösning är Fermi funktionen $F(Z, T_{e^-})$

$$N_{e^-}(T_{e^-}) = rac{G_{eta}^2 m_{e^-} \sqrt{m_{e^-}} c^3}{\sqrt{2} \pi^3 \hbar^7} |M_{fi}|^2 F(Z, T_{e^-}) (T_{e^-} - Q)^2 \sqrt{T_{e^-}}$$

Kurie plottar

$$N_{e^{-}}(T_{e^{-}}) = rac{G_{eta}^{2} m_{e^{-}} \sqrt{m_{e^{-}}} c^{3}}{\sqrt{2} \pi^{3} \hbar^{7}} |M_{fi}|^{2} F(Z, T_{e^{-}}) (T_{e^{-}} - Q)^{2} \sqrt{T_{e^{-}}} \sqrt{rac{N_{e^{-}}(T_{e^{-}})}{F(Z, T_{e^{-}}) \sqrt{T_{e^{-}}}}} \propto (T_{e^{-}} - Q)$$

Genomför labben med Cs

Rapporten

Allmänt, max 15 (12 poäng + 3 överpoäng).

Max 6 sidor försättsblad+5 sidor rapport (obs mycket viktigt). Rapporten skall vara en rapport och inte bara en lista av svar.

Obligatoriskt innehåll

- Svar på alla frågor i del 3 i lab-pm
- Svar på alla förberedelseuppgifter utom kalibreringsuppgiften
- Kalibreringen från lab-tillfället måste vara med
- Diskusion om möjliga felkällor men feluppskattning inte nödvändigt
- figurer över spektrumet och Kuri-plottar
- Ert framtagna övergångsschema, väl motiverat
- Enheter på axlar och dimensionsfulla storheter
- Förklara med egna ord de olika teoretiska verktygen (t.ex. vad är en Kuri-plot)
- Nödvändig teori, förutom Fermis teori för β -sönderfall Tänk på språket, förstår jag inte vad ni menar så kan ni inte få poäng för det

Exempel på vad som kan ge överpoäng

- Felanalys med feluppskattning på alla uppmätta värden, väl motiverat
- Sätta labben i vetenskapshistorisk kontext
- Djupare teoretisk diskusion än vad som minimalt krävs
- och mycket mer...

Virtuella fotoner

$$E^{2} - c^{2}P^{2} = m^{2}c^{4}, \quad m_{\gamma} = 0 \implies E_{\gamma}^{2} - c^{2}P_{\gamma}^{2} = 0$$

$$\Delta E \Delta t \ge \frac{\hbar}{2}$$

$$(2)$$

$$\Delta t \approx 0 \implies E_{\gamma}^2 - c^2 P_{\gamma}^2 > 0 \tag{3}$$

