Einführung in die Anwendungsorientierte Informatik (Köthe)

Robin Heinemann

December 18, 2016

Contents

1	Was	ist Informatik?	3
	1.1	Teilgebiete	3
		1.1.1 theoretische Informatik (ITH)	3
		1.1.2 technische Informatik (ITE)	3
		1.1.3 praktische Informatik	3
		1.1.4 angewandte Informatik	4
2	Wie	unterscheidet sich Informatik von anderen Disziplinen?	4
	2.1	Mathematik	4
3	Info	rmatik	4
	3.1	Algorithmus	5
	3.2	Daten	5
		3.2.1 Beispiele für Symbole	5
	3.3	Einfachster Computer	6
		3.3.1 TODO Graphische Darstellung	6
		3.3.2 TODO Darstellung durch Übergangstabellen	6
		3.3.3 Beispiel 2:	6
4	Subs	stitutionsmodell (funktionale Programmierung)	8
	4.1	Substitutionsmodell	8
	4.2	Bäume	9
			10
	4.3	•	10
	4.4		10
	4.5		$\frac{11}{11}$
	4.6	Berechnen des Werts mit Substitutionsmodell	

5	Mas		sprachen														11
	5.1	Umwa	ndlung in Ma	schinenspr	ache .							•	 •			•	. 12
6	Funl	ktionale	e Programmi	erung													12
	6.1	Beispie	el														. 12
	6.2	Vortei	le von Zwisch	energebnis	sen								 				. 13
	6.3	Funkti	ionale Program	mmierung	in c++												. 13
7	Proz	zedurale	e Programmi	erung													15
•	7.1		er Funktional	_	zedural	len P	rog	ran	nm	ier	เทย						
	7.2		eichen				_	•			_						
	• • •	7.2.1	Prozeduren														
		7.2.2	Steuerung de														
		7.2.3	Veränderung														
		7.2.4	Schleifen	-													
		7.2.4	prozedurale														
		7.2.6	for-Schleife			_											
		1.2.0	101-5cmene						•			•	 •		• •	•	. 15
8	Date	entyper	1														21
•	8.1		ypen										 			_	
	8.2	,	mengesetzte '														
	8.3		nketten-Strin	~ ~													
				50					•			•	 •	•		•	
9	Umg	gebungs	smodell														23
10	Refe	erenzen															25
11	Con	tainer-l	Datentypen														26
			ctor														. 28
		11.1.1	Effizienz von	push ba	ck								 				
10				1 —													
12	Itera	atoren															31
13	Inse	rtion S	ort														34
14	gene	erische	Programmie	rung													35
15	Fffi _z	ienz vo	n Algorithme	en und Da	tonstri	ıktıı	œn.										38
13			nmung der Ef														
	10.1		wall clock .														
			algorithmisc														
			_	_													
		10.1.3	Anwendung						•			•	 •	•		•	. 41
16			tellung im Co	-													41
	16.1		iche Zahlen .										•			•	
		16 1 1	Pitfalls														49

16.1.2 arithmetische Operationen 42 16.2 Ganze Zahlen 45 16.3 reelle Zahlen 46
17 Buchstabenzeichen 48 17.1 Geschichte
18 Eigene Datentypen 49
1 Was ist Informatik?
"Kunst" Aufgaben mit Computerprogrammen zu lösen.
1.1 Teilgebiete
1.1.1 theoretische Informatik (ITH)
· Berechenbarkeit: Welche Probleme kann man mit Informatik lösen und welche prinzipiell nicht?
· Komplexität: Welche Probleme kann man effizient lösen?
· Korrektheit: Wie beweist man, dass das Ergebnis richtig ist? Echtzeit: Dass das richtige Ergebnis rechtzeitig vorliegt.
\cdot verteilte Systeme: Wie sichert man, dass verteilte Systeme korrekt kommunizieren?
1.1.2 technische Informatik (ITE)
\cdot Auf welcher Hardware kann man Programme ausführen, wie baut man dies Hardware?
· CPU, GPU, RAM, HD, Display, Printer, Networks
1.1.3 praktische Informatik
· Wie entwickelt man Software?
\cdot Programmiersprachen und Compiler: Wie kommuniziert der Programmierer mit der Hardware? $$\operatorname{\bf IPI},\operatorname{\bf IPK}$$
\cdot Algorithmen und Datenstrukturen: Wie baut man komplexe Programme aus einfachen Grundbausteinen? $$ \mathbf{IAL}
· Softwaretechnik: Wie organisiert man sehr große Projekte? ISW
- Kernanwendung der Informatik: Betriebssysteme, Netzwerke, Parallelisierung ${\bf IBN}$

IDB1

 \cdot Datenbanksysteme

· Graphik, Graphische Benutzerschnittstellen

- · Bild- und Datenanalyse
- · maschinelles Lernen
- \cdot künstliche Intelligenz

1.1.4 angewandte Informatik

- · Wie löst man Probleme aus einem anderem Gebiet mit Programmen?
- \cdot Informationstechnik
 - · Buchhandlung, e-Kommerz, Logistik
- · Web Programmierung
- · scientific computing für Physik, Biologie
- · Medizininformatik
 - · bildgebende Verfahren
 - \cdot digitale Patientenakte
- · Computer Linguistik
 - · Sprachverstehen, automatische Übersetzung
- · Unterhaltung: Spiele, special effects im Film

2 Wie unterscheidet sich Informatik von anderen Disziplinen?

2.1 Mathematik

Am Beispiel der Definition $a \le b : \exists c \ge 0 : a + c = b$

Informatik:

Lösungsverfahren: $a-b \le 0$, das kann man leicht ausrechnen, wenn man subtrahieren und mit 0 vergleichen kann.

Quadratwurzel: $y = \sqrt{x} \iff y \ge 0 \land y^2 = x (\implies x > 0)$

Informatik: Algorithmus aus der Antike: $y = \frac{x}{y}$ iteratives Verfahren:

Initial Guess $y^{(0)}=1$ schrittweise Verbesserung $y^{(t+1)}=\frac{y^{(t)}+\frac{x}{y^{(t)}}}{2}$

3 Informatik

Lösungswege, genauer Algorithmen

3.1 Algorithmus

schematische Vorgehensweise mit der jedes Problem einer bestimmten Klasse mit endliche vielen elementaren Schritten / Operationen gelöst werden kann

- · schematisch: man kann den Algorithmus ausführen, ohne ihn zu verstehen (\Longrightarrow Computer)
- · alle Probleme einer Klasse: zum Beispiel: die Wurzel aus jeder beliebigen nichtnegativen Zahl, und nicht nur $\sqrt{11}$
- · endliche viele Schritte: man kommt nach endlicher Zeit zur Lösung
- · elementare Schritte / Operationen: führen die Lösung auf Operationen oder Teilprobleme zurück, die wir schon gelöst haben

3.2 Daten

Daten sind Symbole,

- · die Entitäten und Eigenschaften der realen Welt im Computer repräsentieren.
- \cdot die interne Zwischenergebnisse eines Algorithmus aufbewahren

 \implies Algorithmen transformieren nach bestimmten Regel
n die Eingangsdaten (gegebene Symbole) in Ausgangsdaten (Symbole für das Ergebnis). Die Bedeutung / Interpretation der Symbole ist dem Algorithmus egal $\stackrel{\wedge}{=}$ "schematisch"

3.2.1 Beispiele für Symbole

- · Zahlen
- · Buchstaben
- \cdot Icons
- · Verkehrszeichen

aber: heutige Computer verstehen nur Binärzahlen \implies alles andere muss man übersetzen Eingansdaten: "Ereignisse":

- · Symbol von Festplatte lesen oder per Netzwerk empfangen
- · Benutzerinteraktion (Taste, Maus, ...)
- · Sensor übermittelt Messergebnis, Stoppuhr läuft ab

Ausgangsdaten: "Aktionen":

· Symbole auf Festplatte schreiben, per Netzwerk senden

- · Benutzeranzeige (Display, Drucker, Ton)
- · Stoppuhr starten
- · Roboteraktion ausführen (zum Beispiel Bremsassistent)

Interne Daten:

- \cdot Symbole im Hauptspeicher oder auf Festplatte
- · Stoppuhr starten / Timeout

3.3 Einfachster Computer

endliche Automaten (endliche Zustandsautomaten)

- · befinden sich zu jedem Zeitpunkt in einem bestimmten Zustand aus einer vordefinierten endlichen Zustandsmenge
- · äußere Ereignisse können Zustandsänderungen bewirken und Aktionen auslösen

3.3.1 TODO Graphische Darstellung

graphische Darstellung: Zustände = Kreise, Zustandsübergänge: Pfeile

3.3.2 TODO Darstellung durch Übergangstabellen

Zeilen: Zustände, Spalten: Ereignisse, Felder: Aktion und Folgezustände

Zustände \ Ereignisse	Knopf drücken	Timeout
aus	\implies {halb}	
$\{4 \text{ LEDs an}\}$	%	$(\implies \{aus\},\{nichts\})$
halb	$(\implies \{\text{voll}\}, \{\text{8 LEDs an}\})$	%
voll	$(\implies \{\text{blinken an}\}, \{\text{Timer starten}\})$	%
blinken an	$(\implies \{aus\}, \{Alle LEDs aus, Timer stoppen\})$	$(\implies \{\text{blinken aus}\}, \{\text{alle LEDs}\}$
blinken aus	$(\implies \{aus\},\{Alle LEDs aus, Timer stoppen\})$	$(\implies \{\text{blinken an}\}, \{\text{alle LEDs}\}$

Variante: Timer läuft immer (Signal alle 0.3s) \implies Timout ignorieren im Zustand "aus", "halb", "voll"

3.3.3 Beispiel 2:

Implementation mit Endlichen Automaten Prinzipien:

- · wir lesen die Eingangsdaten von rechts nach links
- · Beide Zahlen gleich lang (sonst mit 0en auffüllen)
- · Ergebnis wird von rechts nach links ausgegeben

TODO Skizze der Automaten

Zustand	Ereignis	Ausgeben
start	(0,1)	"1"
start	(1,0)	"1"
start	(0,0)	"0"
start	(1,1)	"0"
carry = 1	(1,1)	"1"
carry = 1	(0,1)	"0"
carry = 1	(1.0)	"0"
carry = 1	Ø	"1"

Wichtig: In jedem Zustand muss für alle möglichen Ereignisse eine Aktion und Folgezustand definiert werden. Vergisst man ein Ereignis zeigt der Automat undefiniertes Verhalten, also einen "Bug". Falls keine sinnvolle Reaktion möglich ist: neuer Zustand: "Fehler" \implies Übergang nach "Fehler", Aktion: Ausgeben einer Fehlermeldung

TODO Skizze Fehlermeldung Ein endlicher Automat hat nur ein Speicherelement, das den aktuellen Zustand angibt. Folge:

- · Automat kann sich nicht merken, wie er in den aktuellen Zustand gekommen ist ("kein Gedächtnis")
- · Automat kann nicht beliebig weit zählen, sondern nur bis zu einer vorgegebenen Grenze

Insgesamt: Man kann mit endlichen Automaten nur relativ einfache Algorithmen implementieren. (nur reguläre Sprachen) Spendiert man zusätzlichen Speicher, geht mehr:

- · Automat mit Stack-Speicher (Stapel oder Keller) \implies Kellerautomat (Kontextfreie Sprachen)
- · Automat mit zwei Stacks oder äquivalent Turing-Maschine kann alles ausführen, was man intuitiv für berechenbar hält

Markov Modelle: endliche Automaten mit probabilistischen Übergangen. Bisher: Algorithmen für einen bestimmten Zweck (Problemklasse) Frage: Gibt es einen universellen Algorithmus für alle berechenbare Probleme? Betrachte formale Algorithmusbeschreibung als Teil der Eingabe des universellen Algorithmus.

4 Substitutionsmodell (funktionale Programmierung)

- \cdot einfaches Modell für arithmetische Berechnung "Taschenrechner"
- · Eingaben und Ausgaben sind Zahlen (ganze oder reelle Zahlen). Zahlenkonstanten heißen "Literale"
- · elementare Funktionen: haben eine oder mehrere Zahlen als Argumente (Parameter) und liefern eine Zahl als Ergebnis (wie Mathematik):
 - \cdot add $(1,2) \rightarrow 3$, mul $(2,3) \rightarrow 6$, analog sub(), div(), mod()
- · Funktionsaufrufe können verschachtelt werden, das heißt Argumente kann Ergebnis einer anderen Funktion sein
 - $\cdot \operatorname{mul}(\operatorname{add}(1,2),\operatorname{sub}(5,3)) \to 6$

4.1 Substitutionsmodell

Man kann einen Funktionsaufruf, dessen Argument bekannt ist (das heißt Zahlen sind) durch den Wert des Ergebnisses ersetzen ("substituieren"). Geschachtelte Ausdrücke lassen sich so von innen nach außen auswerten.

$$mul(add(1,2), sub(5,3))$$
 $mul(3, sub(5,3))$
 $mul(3,2)$
 6

- · Die arithmetischen Operationen add(), sub(), mul(), div(), mod() werden normalerweise von der Hardware implementiert.
- · Die meisten Programmiersprachen bieten außerdem algebraische Funktionen wie: sqrt(), sin(), cos(), log()
 - · sind meist nicht in Hardware, aber vorgefertigte Algorithmen, werden mit Programmiersprachen geliefert, "Standardbibliothek"

- · in C++: mathematisches Modul des Standardbibliothek: "cmath"
- · Für Arithmetik gebräuchlicher ist "Infix-Notation" mit Operator-Symbolen "+", "-", "*", "/", "%"
- $\cdot \text{ mul}(\text{add}(1,2),\text{sub}(5,3)) \iff ((1+2)^*(5-3))$
 - · oft besser, unter anderem weil man Klammer weglassen darf
 - 1. "Punkt vor Strichrechnung" $3+4*5 \iff 3+(4*5)$, mul, div, mod binden stärker als add, sub
 - 2. Operatoren gleicher Präzedenz werden von links nach rechts ausgeführt (links-assoziativ)

$$1+2+3-4+5 \iff ((((1+2)+3)-4)+5)$$

- 3. äußere Klammer kann man weglassen $(1+2) \iff 1+2$
- · Computer wandeln Infix zuerst in Präfix Notation um
 - 1. weggelassene Klammer wieder einfügen
 - 2. Operatorensymbol durch Funktionsnamen ersetzen und an Präfix-Position verschieben

$$1 + 2 + 3 * 4/(1 + 5) - 2$$

$$(((1 + 2) + ((3 * 4)/(1 + 5))) - 2)$$

$$sub(add(add(1, 2), div(mul(3, 4), add(1, 5))), 2)$$

$$sub(add(3, div(12, 6)), 2)$$

$$sub(add(3, 2), 2)$$

$$sub(5, 2)$$

$$2$$

4.2 Bäume

- · bestehen aus Knoten und Kanten (Kreise und Pfeile)
- · Kanten verbinden Knoten mit ihren Kind-knoten
- · jeder Konten (außer der Wurzel) hat genau ein Elternteil ("parent node")
- · Knoten ohne Kinder heißen Blätter ("leaves / leaf node")
- · Teilbaum
 - · wähle beliebigen Knoten
 - · entferne temporär dessen Elternkante, dadurch wird der Knoten temporär zu einer Wurzel, dieser Knoten mit allen Nachkommen bildet wieder einen Baum (Teilbaum des Originalbaumes)

- · trivialer Teilbaum hat nur einen Knoten
- · Tiefe: Abstand eines Knotens von der Wurzel (Anzahl der Kanten zwischen Knoten und Wurzel)
 - · Tiefe des Baums: maximale Tiefe eines Knoten

4.2.1 Beispiel

$$1 + 2 + 3 * 4/(1 + 5) - 2$$

 $sub(add(add(1, 2), div(mul(3, 4), add(1, 5))), 2)$

4.3 Rekursion

Rekursiv $\stackrel{\wedge}{=}$ Algorithmus für Teilproblem von vorn.

4.4 Präfixnotation aus dem Baum rekonstruieren

- 1. Wenn die Wurzel ein Blatt ist: Drucke die Zahl
- 2. sonst:
 - · Drucke Funktionsnamen
 - · Drucke "("
 - \cdot Wiederhole den Algorithmus ab 1 für das linke Kind (Teilbaum mit Wurzel=linkes Kind)
 - · Drucke ","
 - · Wiederhole den Algorithmus ab 1 für das rechte Kind (Teilbaum mit Wurzel = rechtes Kind)
 - · Drucke ")"

 \Longrightarrow

$$sub(add(add(1,2), div(mul(3,4), add(1,5))), 2)$$

4.5 Präfixnotation aus dem Baum rekonstruieren

- 1. Wenn die Wurzel ein Blatt ist: Drucke die Zahl
- 2. sonst:
 - · Drucke Funktionsnamen
 - · Drucke "("
 - · Wiederhole den Algorithmus ab 1 für das linke Kind (Teilbaum mit Wurzel = linkes Kind)
 - · Drucke Operatorsymbol
 - · Wiederhole den Algorithmus ab 1 für das rechte Kind (Teilbaum mit Wurzel = rechtes Kind)
 - · Drucke ")"

 \Longrightarrow

sub(add(add(1,2), div(mul(3,4), add(1,5))), 2)

 \implies inorder

4.6 Berechnen des Werts mit Substitutionsmodell

- 1. Wenn Wurzel dein Blatt gib Zahl zurück
- 2. sonst:
 - · Wiederhole den Algorithmus ab 1 für das linkes Kind (Teilbaum mit Wurzel = rechtes Kind), speichere Ergebnis als "lhs"
 - · Wiederhole den Algorithmus ab 1 für das rechte Kind (Teilbaum mit Wurzel = rechtes Kind), speichere Ergebnis als "rhs"
 - · berechne funktionsname(lhs,rhs) und gebe das Ergebnis zurück
- \implies post-order

5 Maschinensprachen

- \cdot optimiert für die Hardware
- \cdot Gegensatz: höhere Programmiersprachen (c++)
 - · optimiert für Programmierer
- · Compiler oder Interpreter übersetzen Hoch- in Maschinensprache

5.1 Umwandlung in Maschinensprache

- 1. Eingaben und (Zwischen)-Ergebnisse werden in Speicherzellen abgespeichert \implies jeder Knoten im Baum bekommt eine Speicherzelle
- 2. Speicherzellen für Eingaben initialisieren
 - · Notation: $SpZ \leftarrow Wert$
- 3. Rechenoperationen in Reihenfolge des Substitutionsmodell ausführen und in der jeweiligen Speicherzelle speichern
 - · Notation: SpZ-Ergebnis \leftarrow fname SpZArg1 SpZArg2
- 4. alles in Zahlencode umwandeln
 - · Funktionsnamen:

Opcode	Wert
init	1
add	2
sub	3
mul	4
div	5

6 Funktionale Programmierung

- · bei Maschinensprache werden Zwischenergebnisse in Speicherzellen abgelegt
- \cdot das ist auch in der funktionalen Programmierung eine gute Idee
- · Speicherzellen werden durch Namen (vom Programmierer vergeben) unterschieden

6.1 Beispiel

Lösen einer quadratischen Gleichung:

$$ax^{2} + bx + c = 0$$

$$x^{2} - 2px + q = 0, p = -\frac{b}{2a}, q = \frac{c}{d}$$

$$x_{2} = p + \sqrt{p^{2} - q}, x_{2} = p - \sqrt{p^{2} - q}$$

ohne Zwischenergebnisse:

$$x_1 \leftarrow add(div(div(b,a),-2), sqrt(sub(mul(div(b,a),-2), div(div(b,a)-1)), div(c,a)))$$

mit Zwischenergebnis und Infix Notation

$$p \leftarrow b/c/-2$$
 oder $p \leftarrow -0.5*b/a$

$$a \leftarrow c/a$$

$$d \leftarrow sqrt(p * p - q)$$

$$x_1 \leftarrow p + d$$

$$x_2 \leftarrow p - d$$

6.2 Vorteile von Zwischenergebnissen

- 1. lesbarer
- 2. redundante Berechnung vermieden. Beachte: In der funktionalen Programmierung können die Speicherzellen nach der Initialisierung nicht mehr verändert werden
- 3. Speicherzellen und Namen sind nützlich um Argumente an Funktionen zu übergeben ⇒ Definition eigener Funktionen

```
function sq(x) {
        return x * x
}
\implies d \leftarrow sqrt(sq(p) - q) Speicherzelle mit Namen "x" für das Argument von sq
```

6.3 Funktionale Programmierung in c++

- · in c++ hat jede Speicherzelle einen Typ (legt Größe und Bedeutung der Speicherzelle fest)
 - · wichtige Typen

int: 12, -3

std::string: "text"

```
ganze Zahlen
                          int
                          double
                                       reelle Zahlen
                                       Text
                          std::string
double: -1.02, 1.2e - 4 = 1.2 * 10^{-4}
```

· Initialisierung wird geschrieben als "typename spzname = Wert;"

```
double a = \ldots;
double b = \ldots;
double c = \ldots;
double p = -0.5 b / a;
double q = c / a;
double d = std::sqrt(p*p - q);
double x1 = p + d;
double x2 = p - d;
std::cout << "x1: " << x1 << ", x2: " << x2 << std::endl;
```

· eigene Funktionen in C++

```
// Kommentar (auch /* */)
type_ergebnis fname(type_arg1 name1, ...) {
    // Signatur / Funktionskopf / Deklaration
    return ergebnis;
    /* Funktionskörper / Definition / Implementation */
}
   \cdotganze Zahl quadrieren:
     int sq(int x) {
         return x*x;
   · reelle Zahl quadrieren:
     double sq(double x) {
         return x*x;
   \cdot beide Varianten dürfen in c++ gleichzeitig definiert sein \implies "function
    overloading" \implies c++ wählt automatisch die richtig Variable anhand des
     Argumenttyps ("overload resolution")
     int x = 2;
    double y = 1.1
     int x2 = sq(x) // int Variante
    double y2 = sq(y) // double Variante
   · jedes c++-Programm muss genau eine Funktion namens "main" haben. Dort
    beginnt die Programmausführung.
     int main() {
         Code;
         return 0;
    }
       · return aus der "main" Funktion ist optional
   · Regel von c++ für erlaubte Name
       · erstes Zeichen: Klein- oder Großbuchstaben des englischen Alphabets,
         oder " "
       · optional: weitere Zeichen oder, "_" oder Ziffer 0-9
   · vordefinierte Funktionen:
       · eingebaute \stackrel{\wedge}{=} immer vorhanden
           · Infix-Operatoren +, -, *, /, \%
           · Präfix-Operatoren operator+, operator-, \dots
       · Funktion der Standardbibliothek \stackrel{\wedge}{=} müssen "angefordert" werden
           · Namen beginnen mit "std::", "std::sin,..."
```

- · sind in Module geordnet, zum Beispiel
 - \cdot cmath \Longrightarrow algebraische Funktion
 - \cdot complex \Longrightarrow komplexe Zahlen
 - · string \implies Zeichenkettenverarbeitung
- \cdot um ein Modul zu benutzen muss man zuerst (am Anfang des Programms) sein Inhaltsverzeichnis importieren (Header inkludieren) \to include <name>

```
#include <iostream>
#include <string>
int main() {
    std::cout << "Hello, world!" << std::endl;
    std::string out = "mein erstes Programm\n";
    std::cout << out;
    return 0;
}</pre>
```

- · overloading der arithmetischen Operationen
 - \cdot overloading genau wie bei sq
 - $\cdot 3 * 4 \implies \text{int Variante}$
 - \cdot 3.0 * 4.0 \Longrightarrow double Variante
 - \cdot 3 * 4.0 \implies automatische Umwandlung in höheren Typ, hier "double" \implies wird als 3.0 * 4.0 ausgeführt
- · ⇒ Division unterscheidet sich
 - · Integer-Division: 12 / 5 = 2 (wird abgerundet)
 - · Double-Division: 12.0 / 5.0 = 2.4
 - \cdot -12 / 5 = 2 (\Longrightarrow truncated Division)
 - \cdot 12.0 / 5.0 = 2.4
 - · Gegensatz (zum Beispiel in Python)
 - · floor division \implies wird immer abgerundet \implies -12 / 4 = -2

7 Prozedurale Programmierung

7.1 Von der Funktionalen zur prozeduralen Programmierung

- · Eigenschaften der Funktionalen Programmierung:
 - · alle Berechnungen durch Funktionsaufruf, Ergebnis ist Rückgabe
 - · Ergebnis hängt nur von den Werten der Funktionsargumente ab, nicht von externen Faktoren "referentielle Integrität"

- · Speicherzellen für Zwischenergebnisse und Argumente können nach Initialisierung nicht geändert werden "write once"
- · Möglichkeit rekursiver Funktionsaufrufe (jeder Aufruf bekommt eigene Speicherzellen)
 - · Vorteile
 - · natürliche Ausdrucksweise für arithmetische und algebraische Funktionalität ("Taschenrechner")
 - \cdot einfache Auswertung durch Substitutionsmodell \rightarrow Auswertungsreihenfolge nach Post-Order
 - \cdot mathematisch gut formalisierbar \implies Korrektheitsbeweise, besonders bei Parallelverarbeitung
 - · Rekursion ist mächtig und natürliche für bestimmte Probleme (Fakultät, Baum-Traversierung)
 - · Nachteile
 - · viele Probleme lassen sich anders natürlicher ausdrücken (z.B. Rekursion vs. Iteration)
 - \cdot setzt unendlich viel Speicher voraus (\Longrightarrow Memory Management notwendig \Longrightarrow später)
 - · Entitäten, die sich zeitlich verändern sind schwer zu modellieren
 - · Korollar: kann keine externen Ressourcen (z.B. Konsole, Drucker, ..., Bildschirm) ansprechen "keine Seiteneffekte"
 - · \Longrightarrow Multi-Paradigmen-Sprachen, zum Beispiel Kombination von Funktionaler Programmierung und prozeduraler Programmierung

7.2 Kennzeichen

7.2.1 Prozeduren

- · Prozeduren: Funktionen, die nichts zurückgeben, haben nur Seiteneffekte
 - · Beispiel

```
std::cout << "Hello\n"; // Infix
operator<<(std::cout, "Hello\n"; // Präfix</pre>
```

- · Prozeduren in c++
 - 1. Funktion die "void" zurück gibt (Pseudotyp für "nichts")

```
void foo(int x) {
    return;
}
```

2. Returnwert ignorieren

7.2.2 Steuerung des Programmablaufs

```
· Anweisungen zur Steuerung des Programmablaufs
 if(), else, while(), for()
    · Funktional
      int abs(int x) {
          return (x \ge 0) ? x : -x;
    · Prozedural
      int abs(int x) {
          if(x >= 0) {
              return x;
          } else {
              return -x;
          }
          // oder
          if(x \ge 0) return x;
          return -x;
      }
```

7.2.3 Veränderung von Speicherzellen

· Zuweisung: Speicherzellen können nachträglich verändert werden ("read-write")

· prozedural:

```
int foo(int x) {      // x = 3
      int y = 2;
      int z1 = x * y;      // z1 = 6
      y = 5;
      int z2 = z * y;      // z2 = 15
      return z1 + z2;      // 21
   }
   funktional:
```

```
int foo(int x) {      // x = 3
    int y1 = 2;
    int z1 = x * y1;      // z1 = 6
    int y2 = 5;
    int z2 = z1 * y2;      // z2 = 15
    return z1 + z2;      // 21
}
```

· Syntax

- $\cdot \implies$ Folgen: mächtiger, aber ermöglicht völlig neue Bugs \implies erhöhte Aufmerksamkeit beim Programmieren
 - \cdot die Reihenfolge der Ausführung ist viel kritischer als beim Substitutionsmodell
 - · Programmierer muss immer ein mentales Bild des aktuellen Systemzustands haben

7.2.4 Schleifen

Der gleiche Code soll oft wiederholt werden

```
while(Bedingung) {
    // Code, wird ausgeführt solange Bedingung "true"
}
int counter = 0;
while(counter < 3) {
    std::cout << counter << std::endl;
    counter++; // Kurzform für counter = counter + 1
}</pre>
```

counter	Bedingung	Ausgabe
0	true	0
1	true	1
2	true	2
3	false	Ø

- · in c++ beginnt Zählung meist mit 0 ("zero based")
- \cdot vergisst man Inkrementieren \implies Bedingung immer "true" \implies Endlosschleife \implies Bug
- · drei äquivalente Schreibweisen für Inkrementieren:
 - · counter = counter + 1; // assignment $\stackrel{\wedge}{=}$ Zuweisung
 - · counter += 1; // add-assignment $\stackrel{\wedge}{=}$ Abkürzung
 - \cdot ++counter; // pre-increment

7.2.5 prozedurale Wurzelberechnung

Ziel

```
double sqrt(double y);
```

Methode iterative Verbesserung mittels Newtonverfahren initial_guess $x^{(0)}$ ("geraten"), t=0 while not_good_enough($x^{(t)}$): update $x^{(t+1)}$ from $x^{(t)}$ (zum Beispiel $x^{(t+1)}=x^{(x)}+\Delta^{(t)}$ additives update, $x^{(t+1)}=x^{(t)}\Delta^{(t)}$ multiplikatives update) t=t+1

Newtonverfahren Finde Nullstellen einer gegebenen Funktion f(x), das heißt suche x^* sodass $f(x^*) = 0$ oder $|f(x^*)| < \varepsilon$ Taylorreihe von f(x):, $f(x + \Delta) \approx f(x) + f'(x)\Delta +$ setze $x^* = x + \Delta$

$$0 \stackrel{!}{=} f(x^*) \approx f(x) + f'(x)\Delta = 0 \implies \Delta = -\frac{f(x)}{f'(x)}$$

Iterationsvorschrift:

$$x^{(t+1)} = x^{(t)} - \frac{f(x^{(*)})}{f'(x^{(*)})}$$

Anwendung auf Wurzel: setze $f(x) = x^2 - y \implies \text{mit } f(x^*) = 0 \text{ gilt}$

$$(x^*)^2 - y = 0$$
 $(x^*)^2 = y$ $x^* = \sqrt{y}$ $f'(x) = 2x$

Iterationsvorschrift:

$$x^{(t+1)} = x^{(t)} - \frac{(x^{(t)^2}) - y}{2x^{(t)}} = \frac{x^{(t)^2} + y}{2x^{(t)}}$$

```
double sqrt(double y) {
   if(y < 0.0) {
      std::cout << "Wurzel aus negativer Zahl\n";
      return -1.0;
   }
   if(y == 0.0) return 0.0;

   double x = y; // inital guess
   double epsilon = 1e-15 * y;

   while(abs(x * x - y) > epsilon) {
      x = 0.5*(x + y / x);
   }
}
```

7.2.6 for-Schleife

```
int c = 0;
while(c < 3) {
    // unser Code</pre>
```

```
c++; // vergisst man leicht
}
  Bei der while Schleife kann man leicht vergessen c zu inkrementieren, die for Schleife
ist idiotensicher
Äquivalent zu der while Schleife oben ist:
for(int c = 0; c < 3; c++) {
    // unser Code
}
  Allgemeine Form:
for(init; Bedingung; Inkrement) {
    // unser Code
}
   · Befehle, um Schleifen vorzeitig abzubrechen
        · continue: Bricht aktuelle Iteration ab und springt zum Schleifenkörper
        · break: bricht die ganze Schleife ab und springt hinter das Schleifenende
        · return: beendet Funktion und auch die Schleife
Beispiel: nur gerade Zahlen ausgeben
for(int i = 0; i < 10; i++) if(c % 2 == 0) std::cout << c << std::endl;</pre>
Variante mit continue:
for(int i = 0; i < 10; i++) {
    if(c \% 2 != 0) continue;
    std::cout << c << std::endl;</pre>
}
for(int i = 0; i < 10; i += 2) {
    std::cout << c << std::endl;</pre>
}
double sqrt(double y) {
    while(true) {
        x = (x + y / 2) / 2.0;
         if(abs(x * x - y) < epsilon) {
```

return x;

}

}

}

8 Datentypen

8.1 Basistypen

Bestandteil der Sprachsyntax und normalerweise direkt von der Hardware unterstützt (CPU)

· int, double, bool (\Longrightarrow später mehr)

8.2 zusammengesetzte Typen

mit Hilfe von "struct" oder "class" aus einfachen Typen zusammengesetzt

- \cdot wie das geht \implies später
- · Standardtypen: in der C++ Standardbibliothek definiert, aktivieren durch $\#include < module_n ame >$
 - · std::string, std::complex, etc.
- · externe Typen: aus anderer Bibliothek, die man zuvor herunterladen und installieren muss
- · eigene Typen: vom Programmierer selbst implementiert \implies später

Durch "objekt-orientierte Programmierung" (\Longrightarrow später) erreicht man, dass zusammengesetzte Typen genauso einfach und bequem und effizient sind wie Basistypen (nur c++, nicht c)

- · "Kapselung": die interne Struktur und Implementation ist für Benutzer unsichtbar
- · Benutzer manipuliert Speicher über Funktionen ("member functions") $\stackrel{\triangle}{=}$ Schnittstelle des Typs, "Interface", API
- \implies Punktsyntax: type name t = init; t.foo(a1, a2); $\stackrel{\wedge}{=} foo(t, a1, a2)$;

8.3 Zeichenketten-Strings:

zwei Datentypen in c++

- · klassischer c-string: char[] ("Charakter Array") \implies nicht gekapselt, umständlich
- · c++ string: std::string gekapselt und bequem (nur dieser in der Vorlesung)
- · string Literale: "Zeichenkette", einzelnes Zeichen: 'z' ("z" = Kette der Länge 1) Vorsicht: die String-Literale sind c-strings (gibt keine c++ string-Literale), müssen erst in c++ strings umgewandelt werden, das passiert meist automatisch
 - · #include <string>
 - · Initialisierung:

```
std::string s = "abcde";
 std::string s2 = s1;
 std::string leer = "";
 std::string leer(); // Abkürzung, default Konstruktor
· Länge
 s.size();
 assert(s.size() == 5);
 assert(leer.size() == 0);
 s.empty() // Abkürzung für s.size() == 0
· Zuweisung
 s = "xy";
 s2 = leer;
· Addition Aneinanderkettung von String ("concatenate")
 std::string s3 = s + "ijh"; // "xyijh"
 s3 = "ghi" + s; // "ghixy"
 s3 = s + s; // "xyxy"
 // aber nicht!!
 s3 = "abc" + "def"; // Bug Literale unterstützen + mit ganz anderer Bedeutung
 s3 = std::string("abc") + "def"; // Ok
· Add-Assignment: Abkürzung für Addition gefolgt von Zuweisung
 s += "nmk"; // s = s + "nmk" => "xynmk"
· die Zeichen werden intern in einem C-Array gespeichert (Array = "Feld")
 Array: zusammenhängende Folge von Speicherzellen des gleichen Typs, hier
 'char' (für einzelne Zeichen), Die Länge wird (bei std::string) automatisch
 angepasst, die einzelnen Speicherzellen sind durchnummeriert in c++: von 0
 beginnend \stackrel{\wedge}{=} Index
   · Indexoperator:
     s[index]; // gibt das Zeichen an Position "index" zurück
     Anwendung: jedes Zeichen einzeln ausgeben
     std::string s = "abcde";
     for(int i = 0; i < s.size(); i++) {</pre>
         std::cout << s[i] << std::endl;</pre>
     }
     String umkehren
     int i = 0; // Anfang des Strings
     int k = s.size() - 1; // Ende des String
     while(i < k) {</pre>
         char tmp = s[i];
```

```
s[i] = s[k];
s[k] = tmp;
i++; k--;
}
Variante 2: neuen String erzeugen
std::string s = "abcde";
std::string r = "";
for(int i = s.size() - 1; i >= 0; i--) {
    r += s[i];
}
```

9 Umgebungsmodell

Gegenstück zum Substitutionsmodell (in der funktionalen Programmierung) für die prozedurale Programmierung

- · Regeln für Auswertung von Ausdrücken
- \cdot Regeln für automatische Speicherverwaltung
 - · Freigeben nicht mehr benötigter Speicherzellen, \implies bessere Approximation von "unendlich viel Speicher"
- · Umgebung beginnt normalerweise bei "{" und endet bei "}" Ausnahmen:
 - \cdot for: Umgebung beginnt schon bei "for" \implies Laufvariable ist Teil der Umgebung
 - \cdot Funktionsdefinitionen: Umgebung beginnt beim Funktionskopf \implies Speicherzellen für Argumente und Ergebnis gehören zur Umgebung
 - · globale Umgebung außerhalb aller "{ }" Klammern
- \cdot automatische Speicherverwaltung
 - · Speicherzellen, die in einer Umgebung angelegt werde (initialisiert, deklariert) werde, am Ende der Umgebung in umgekehrter Reihenfolge freigegeben
 - · Computer fügt vor "}" automatisch die Notwendigen Befehle ein
 - · Speicherzellen in der globalen Umgebung werden am Programmende freigegeben

```
- int global = 1;
int main() {
   int l = 2;
   {
      int m = 3
   } // <- m wird freigegeben</pre>
```

- \cdot Umgebungen können beliebig geschachtelt werden \implies alle Umgebungen bilden einen Baum, mit der globalen Umgebung als Wurzel
- · Funktionen sind in der globalen Umgebung definiert
 - · Umgebung jeder Funktion sind Kindknoten der globalen Umgebung (Ausnahme: Namensräume \implies siehe unten)
 - \implies Funktions Umgebung ist **nicht** in der Umgebung, wo die Funktion aufgerufen wird
- · Jede Umgebung besitzt eine **Zuordnungstabelle** für alle Speicherzellen, die in der Umgebung definiert wurden

$$\begin{array}{c|cc} Name & Typ & aktueller Wert \\ \hline 1 & int & 2 \\ \end{array}$$

- · jeder Name kann pro Umgebung nur einmal vorkommen
- · Ausnahme Funktionsnamen können mehrmals vorkommen bei function overloading (nur c++)
- · Alle Befehle werden relativ zur aktuellen Umgebung ausgeführt
 - \cdot aktuell: Zuordnungstabelle der gleichen Umgebung und aktueller Wert zum Zeitpunkt des Aufrufs

Beispiel: c = a * b;

Regeln:

- · wird der Name (nur a, b, c) in der aktuellen Zuordnungstabelle gefunden
 - 1. Typprüfung \implies Fehlermeldung, wenn Typ und Operation nicht zusammenpassen
 - 2. andernfalls, setze aktuellen Wert aus Tabelle in Ausdruck ein (ähnlich Substitutionsmodell)
- · wird Name nicht gefunden: suche in der Elternumgebung weiter
- \cdot wird der Name bis zur Wurzel (globale Umgebung) nicht gefunden \implies Fehlermeldung
- $\cdot \implies$ ist der Name in mehreren Umgebungen vorhanden gilt der zuerst gefundene (Typ, Wert)
- $\cdot \implies$ Programmierer muss selbst darauf achten, dass
 - 1. bei der Suche die gewünschte Speicherzelle gefunden wird \implies benutze "sprechende Namen"
 - 2. der aktuelle Wert der richtig ist \implies beachte Reihenfolge der Befehle!

- Namensraum: spezielle Umgebungen in der globalen Umgebung (auch geschachtelt) mit einem Namen
 Ziele:
 - · Gruppieren von Funktionalität in Module (zusätzlich zu Headern)
 - · Verhinderung von Namenskollisionen

Beispiel: c++ Standardbibliothek:

```
namespace std {
double sqrt(double x);
namespace chrono {
class system_clock;
}
}
// Benutzung mit Namespace-Präfix:
std::sqrt(80);
std::chrono::system_clock clock;
Besonderheit: mehrere Blöcke mit selbem Namensraum werden verschmolzen
Beispiel
int p = 2;
int q = 3;
int foo(int p) {
    return p * q;
}
int main() {
    int k = p * q; // beides global => 6 = 2 * 3
    int p = 4; // lokales p verdeckt globales p
    int r = p * q; // p lokal, q global => 12 = 4 * 3
    int s = foo(p); // lokale p von main() wird zum lokalen p von foo() 12 = 4 * 3
    int t = foo(q); // globales q wird zum lokalen p von foo() 9 = 3 * 3
    int q = 5;
    int n = foo(g); // lokales q wird zum lokalen p von foo() 15 = 5 * 3
}
```

10 Referenzen

sind neue (zusätzliche) Namen für vorhandene Speicherzellen

```
int x = 3; // neue Variable x mit neuer Speicherzelle int & y = x; // Referenz: y ist neuer Name für x, beide haben die selbe Speicherzelle y = 4; // Zuweisung an y, aber x ändert sich auch, das heißt x == 4
```

```
x = 5; // jetzt y == 5 int const & z = x; // read-only Referenz, das heißt z = 6 ist verboten x = 6; // jetzt auch z == 6
```

Hauptanwendung:

- · die Umgebung, in der eine Funktion aufgerufen wird und die Umgebung der Implementation sind unabhängig, das heißt Variablen der einen Umgebung sind in der anderen nicht sichtbar
- \cdot häufig möchte man Speicherzellen in beiden Umgebungen teilen \implies verwende Referenzen
- · häufig will man vermeiden, dass eine Variable kopiert wird (pass-by-value)
 - · Durch pass-by-reference braucht man keine Kopie \implies typisch "const &", also read-only, keine Seiteneffekte

```
int foo(int x) { // pass-by-value
    x += 3;
    return x;
}
int bar(int & y) { // pass-by-reference
    y += 3; // Seiteneffekt der Funktion
    return y;
}
void baz(int & z) { // pass-by-reference
    z += 3;
}
int main() {
    int a = 3;
    std::cout << foo(a) << std::endl; // 5
    std::cout << a << std::endl; // 3
    std::cout << bar(a) << std::endl; // 5
    std::cout << a << std::endl; // 5
    baz(a);
    std::cout << a << std::endl; // 8
}
```

in der funktionalen Programmierung sind Seiteneffekte grundsätzlich verboten, mit Ausnahmen, zum Beispiel für Ein-/Ausgabe

11 Container-Datentypen

Dienen dazu, andere Daten aufzubewahren

- · Art der Elemente:
 - · homogene Container: alle Elemente haben gleichen Type (typisch für c++)
 - · heterogene Container: Elemente könne verschiedene Typen haben (z.B. Python)
- · nach Größen
 - · statische Container: feste Größe, zur Compilezeit bekannt
 - · dynamische Container: Größe zur Laufzeit veränderbar
- · Arrays sind die wichtigsten Container, weil effizient auf Hardware abgebildet und einfach zu benutzen
 - klassisch: Arrays sind statisch, zum Beispiel C-Arrays (hat c++ geerbt)
 int a[20];
 - · modern: dynamische Arrays
 - · Entdeckung einer effizienten Implementation
 - · Kapselung durch objekt-orientierte Programmierung (sonst zu kompliziert)
- · wir kennen bereits ein dynamisches Array: std::string ist Abbildung int (Index) \rightarrow char (Zeichen), mit $0 \le \text{index} < \text{s.size}()$
 - · wichtigste Funktion: s.size() (weil Größe dynamisch), s
[4] Indexzugriff, s+="mehr" Zeichen anhängen
- · wir wollen dasselbe Verhalten für beliebige Elementtypen:

```
#include <vector>

// Elementtyp Größe Initialwert der Elemente
std::vector<double > v(20 , 0.0 );

// analog
std::vector<int>;
std::vector<std::string>;
```

- · weitere Verallgemeinerung: Indextyp beliebig (man sagt dann "Schlüssel-Typ") "assoziatives Array"
 - · typische Fälle:
 - · Index ist nicht im Bereich (0,size], zum Beispiel Matrikelnummern
 - \cdot Index ist string, zum Beispiel Name eines Studenten

```
#include <map>
#include <unordered_map>
// Binärer Suchbaum
```

```
std::map;

// Hashtabelle, siehe Algorithmen und Datenstrukturen
std::unordered_map;

// Schlüsseltyp Elementtyp
std::map<int , double> noten; noten[3121101] = 10;
std::map<std::string, double> noten; noten["krause"] = 10;
· Indexoperationen wie beim Array
```

- · Elemente werden beim 1. Zugriff automatisch erzeugt (dynamisch)
- \cdot alle dynamischen und assoziativen Arrays unterstützen a.
size() zum Abfragen der Größe

11.1 std::vector

```
· Erzeugen:
 std::vector<double> v(20, 1.0);
 std::vector<double> v; // leeres Array
 std::vector < double > v = {1.0, -3.0, 2.2}; // "initializer list": Element für Anfangs
· Größe:
 v.size();
 v.empty(); // => v.size() == 0
· Größe ändern
 v.resize(neue_groesse, initialwert);
 // Fall 1: neue_groesse < size(): Element ab Index "neue_groesse" gelöscht die ander
 // Fall 2: neue_groesse > size(): neue Elemente mit Initialwert am Ende anhängen, di
 // Fall 3: neue_groesse == size(): nichts passiert
 v.push_back(neues_element); // ein neues Element am Ende anhängen (ähnlich string +=
 v.insert(v.begin() + index, neues_element); // neues element an Position "index" ein
 // Falls index == size(): am Ende anhängen, sonst: alte Elemente ab Index werden ein
 v.pop_back(); // letztes Element löschen (effizient)
 v.erase(v.begin() + index); // Element an Position index löschen, alles dahinter ein
 v.clear(); // alles löschen
· Zugriff
 v[k]; // Element bei Index k
 v.at(k); // wie v[k], aber Fehlermeldung, wenn nicht 0 <= k < size() (zum Debuggen)
```

· Funktionen für Container benutzen in c++ immer Iteratoren, damit sie für verschiedene Container funktionieren

```
Iterator-Range
// erstes Element
v.begin()

// hinter letztem Element
v.end()

im Header <algorithm>

alle Elemente kopieren

std::vector<double> source = {1.0, 2, 3, 4, 5};

std::vector<double> target(source.size(), 0.0);

std::copy(source.begin(), source.end(), target.begin());

std::copy(source.begin() + 2, source.end() - 1, target.begin());
// mur index 2

Elemente sortieren

std::sort(v.begin(), v.end()); // "in-place" sortieren

Elemente mischen:
std::random_shuffle(v.begin(), v.end()); // "in-place" mischen
```

11.1.1 Effizienz von push_back

Warum ist push back() effizient? (bei std::vector)

- · veraltete Lehrmeinung: Arrays sind nur effizient wenn statisch (das heißt Größe zur Compilezeit, oder spätestens bei Initialisierung, bekannt)
 - \cdot sonst: andere Datenstruktur verwenden, zum Beispiel verkettete Liste (std::list)
- · modern: bei vielen Anwendungen genügt, wenn Array (meist) nur am Ende vergrößert wird (zum Beispiel push_back())
 - · dies kann sehr effizient unterstützt werden \implies dynamisches Array
- · std::vector verwaltet intern ein statisches Array der Größe "capacity", v.capacity() >= c.size()
 - \cdot wird das interne Array zu klein \implies wird automatisch auf ein doppelt so großes umgeschaltet
 - · ist das interne Array zu groß, bleiben unbenutzte Speicherzellen als Reserve
- · Verhalten bei push back():
 - 1. noch Reserve vorhanden: lege neues Element im eine unbenutzte Speicherzelle \implies billig

2. keine Reserve

- a) alloziere neues statisches Array mit doppelt Kapazität
- b) kopiere die Daten aus dem altem in das neue Array
- c) gebe das alte Array frei
- d) gehe zum Anfang des Algorithmus, jetzt ist wieder Reserve vorhanden
- · das Umkopieren ist nicht zu teuer, weil es nur selten notwendig ist
- · Beispiel:

```
std::vector<int> v;
for(int i = 0; i < 32; i++) v.push_back(k);</pre>
```

k	capacity vor push_back()	capacity nach push_back()	size()	Reserve	# Umkopieren
0	0	1	1	0	0
1	1	2	2	0	1
2	2	4	3	1	2
3	4	4	4	0	2
4	4	8	5	3	4
5-7	8	8	8	0	0
8	8	16	9	7	8
9-15	16	16	16	0	0
16	16	32	17	15	16
17 - 31	32	32	32	0	0

- · was kostet das:
 - · 32 Elemente einfügen = 32 Kopien extern \implies intern
 - · aus allem Array ins neu kopieren (1+2+4+8+16)=31 kopieren intern \implies intern
 - $\cdot \implies$ im Durchschnitt sind pro Einfügung 2 Kopien nötig
 - $\cdot \implies$ dynamisches Array ist doppelt so teuer sie das statische \implies immer noch sehr effizient
- · relevante Funktionen von std::vector

```
v.size() // aktuelle Zahl der Elemente
v.capacity() // aktuelle Zahl Speicherzellen
assert(v.capacity() - v.size() >= 0) // Reserve
v.resize(new_size) // ändert immer v.size(), aber v.capacity() nur wenn < new_size
v.reserve(new_capacity) // ändert v.size() nicht, aber v.capacity() falls new_capacity.
v.shrink_to_fit() // == v.reserve/v.size()) Reserve ist danach 0, wenn Endgröße erre</pre>
```

 \cdot wenn Reserve > size: capacity kann auch halbiert werden

- · wichtige Container der c++ Standardbibliothek
- · wir hatten dynamische Arrays std::string, std::vector, assoziative Arrays std::map, std::unordered_map
- \cdot std::
set, std::unordered_set: Menge, jedes Element ist höchstens einmal enthalten zum Beispiel Duplikate
- · std::stack (Stapel, Keller): unterstützt push und pop() mit Last in- First out Semantik (LIFO) äquivalent zu push_back() und pop_back() bei std::vector
- \cdot std::queue (Warteschlange) push
() und pop() mit First in-first out Semantik (FIFO)
- · std::deque ("double-ended queue") gleichzeitig stack und queue, push, pop_front(), pop_back()
- · std::priority_queue, push() und pop() Element mit höchster niedrigster Priorität (user defined)

12 Iteratoren

· für Arrays lautet die kanonische Schleife

```
for(int i = 0; i != v.size(); i++) {
   int current = v[i]; // lesen
   v[i] = new_value; // schreiben
}
```

- · wir wollen eine so einfache Schleife für beliebige Container
 - · der Index-Zugriff v[] ist bei den meisten Container nicht effizient
 - \cdot Iteratoren sind immer effizient \implies es gibt sie in allen modernen Programmiersprachen, aber Details sehr unterschiedlich
 - · Analogie: Zeiger einer Uhr, Cursor in Textverarbeitung
 - $\cdot \implies$ ein Iterator zeigt immer auf ein Element des Containers, oder auf Spezialwert "ungültiges Element"
 - · in c++ unterstützt jeder Iterator 5 Grundoperationen
 - 1. Iterator auf erstes Element erzeugen: auto iter = v.begin();
 - 2. Iterator auf "ungültiges Element" erzeugen: auto end = v.end();
 - 3. Vergleich iter1 == iter2 (Zeigen auf gleiches Element), iter! = end:

iter zeigt nicht auf ungültiges Element

1. zum nächsten weitergehen: ++iter. Ergebnis ist v.end(), wenn man vorher beim letzten Element war

2. auf Daten zugreifen: *iter ("Dereferenzierung") analog v[k] kanonische Schleife:

```
for(auto iter = v.begin(); iter != v.end(); ++iter) {
  int current = *iter; // lesen
  *iter = new_value; // schreiben
}
// Abkürzung: range-based for loop
for(auto & element : v) {
  int current = element; // lesen
  element = new_value; // schreiben
}
```

- · Iteratoren mit den 5 Grundoperationen heißen "forward iterator" (wegen ++iter)
- · "bidirectional iterators": unterstützen auch --iter, zum vorigen Element ((fast) alle Iteratoren in std)
- · "random access iterators": beliebige Sprünge "iter += 5; iter -= 3;"
- · Besonderheit für assoziative Arrays (std::map, std::unordered_map) Schlüssel und Werte können beliebig gewählt werden
 - $\cdot \implies$ das aktuelle Element ist ein Schlüssel / Wert -Paar, das heißt Iterator gibt Schlüssel und Wert zurück

```
(*iter).first; // Schlüssel
(*iter).second; // Wert
// Abkürzung
iter->first;
iter->second;
```

- · bei std::map liefern die Iteratoren die Elemente in aufsteigender Reihenfolge der Schlüssel
- · Die Funktion std::transform()

```
wir hatten: std::copy()
std::vector<double> source = {1, 2, 3, 4};
std::vector<double> target(source.size());
std::copy(source.begin(), source.end(), target.begin());

std::transform:
// nach Kleinbuchstaben konvertieren
std::string source = "aAbCdE";
std::string target = source;
std::transform(source.begin(), source.end(), target.begin(), std::tolower); // // die Daten quadrieren
double sq(double x) { return x * x; }
```

```
std::transform(source.begin(), source.end(), target.begin(), sq); // target == 
// das ist eine Abkürzung für eine Schleife
auto src_begin = source.begin();
auto src_end = source.end();
auto tgt_begin = target.begin();

for(; src_begin != src_end; src_begin++, tgt_begin++) {
    *tgt_begin = sq(*src_begin);
}
```

- Der Argumenttyp der Funktion muss mit dem source Elementtyp kompatibel sein. Der Returntyp der Funktion muss mit dem Target-Elementtyp kompatibel sein.
- · Das letzte Argument von std::transform() muss ein Funktor sein (verhält sich wie eine Funktion), drei Varianten:
 - 1. normale Funktion, z.B. sq. Aber: wenn Funktion für mehrere Argumenttypen überladen ist (overloading) (zum Beispiel, wenn es sq(double) und sq(int) gibt), muss der Programmierer dem Compiler sagen, welche Version gemeint ist \implies für Fortgeschrittene ("functionpointer cast")
 - 2. Funktionsobjekt \implies objekt-orientierte Programmierung
 - 3. Definiere eine namenlose Funktion \implies "Lambda-Funktion λ "
 - · statt λ verwenden wir den Universalnamen []

```
std::transform(source.begin(), source.end(), target.begin(), [](double
// Returntyp setzt Computer automatisch ein, wenn es nur einen return-E
```

- \cdot Lambda-Funktionen können noch viel mehr \implies für Fortgeschrittene
- · std::transform() kann in-place arbeiten (das heißt source-Container überschreiben), wenn source und target gleich

```
std::transform(source.begin(), source.end(), source.begin(), sq);
```

· Die Funktion std::sort() zum in-place sortieren eines Arrays

```
std::vector<double> v = {4, 2, 3, 5, 1};
std::sort(v.begin(), v.end()); // v == {1, 2, 3, 4, 5}
```

- \cdot std::sort ruft intern den <-Operator des Elementtyps auf, um Reihenfolge zu bestimmen
- · die <-Operation muss eine totale Ordnung der Elemente definieren:
 - $\cdot a < b$ muss für beliebige a, b ausführbar sein
 - · transitiv: $(a < b) \land (b < c) \implies (a < c)$
 - · anti-symmetrisch: $\neg (a < b) \land \neg (b < a) \implies a == b$

13 Insertion Sort

schnellster Sortieralgorithmus für kleine Arrays ($n \leq 30$) hängt von Compiler und CPU ab

- · Idee von Insertion Sort:
 - \cdot wie beim Aufnehmen und Ordnen eines Kartenblatts
 - \cdot gegeben: bereits sortierte Teilmenge bis Position k-1 Karten bereits in Fächer
 - \cdot Einfügen des k-ten Elements an richtiger Stelle \to Erzeuge Lücke an richtiger Position durch verschieben von Elementen nach rechts
 - Wiederholung für $k=1,\dots,N$
 - · Beispiel:

4	2	3	5	1
4	_	3	5	1
_	4	3	5	1
2	4	3	5	1
2	4		5	1
2	_	4	5	1
2	3	4	5	1
2	3	4		1
2	3	4	5	1
2	3	4	5	
	2	3	4	5
1	2	3	4	5

· andere Sortierung: definiere Funktor cmp(a, b), der das gewünschte kleiner realisiert (gibt genau dann "true" zurück, wenn a "kleiner" b nach neuer Sortierung)

· neue Sortierung am besten per Lambda-Funktion an std::sort übergeben

```
std::sort(v.begin(), v.end()); // Standartsort mit "<"
std::sort(v.begin(), v.end(), [](double a, double b) { return a < b; }); // Standartsort(v.begin(), v.end(), [](double a, double b) { return b < a; }); // absort(v.begin(), v.end(), [](double a, double b) { return std::abs(a) < std std::sort(v.begin(), v.end(), [](std::string a, std::string b) {
    std::transform(a.begin(), a.end(), a.begin(), std::tolower);
    std::transform(b.begin(), b.end(), b.begin(), std::tolower);
    return a < b;
});</pre>
```

14 generische Programmierung

insertion_sort soll für beliebige Elementtypen funktionieren

```
template<typename T>
void insertion_sort(std::vector<T> & v) {
    for(int i = 0; i < v.size(); i++) {
        T current = v[i];
        int j = i; // Anfangsposition der Lücke
        while(j > 0) {
            if(v[j - 1] < current) { // -> if(cmp(a, b))
                break; // j ist richtige Position der Lücke
        }
        v[j] = v[j - 1];
        j--;
    }
    v[j] = current;
}
```

- \cdot Ziel: benutze template-Mechanismus, damit **eine** Implementation für viele verschiedene Typen verwendbar ist
 - · erweitert funktionale und prozedurale und objekt-orientiere Programmierung
- · zwei Arten von Templates ("Schablone"):
 - 1. Klassen-templates für Datenstrukturen, zum Beispiel Container sollen beliebige Elementtypen unterstützen
 - \cdot Implementation \Longrightarrow später
 - · Benutzung: Datenstrukturname gefolgt vom Elementtyp in spitzen Klammern (std::vector<double>), oder mehrere Typen, zum Beispiel Schlüssel und Wert bei std::map<std::string, double>

2. Funktionen-Templates: es gab schon function overloading

```
int sq(int x) {
    return x * x;
}

double sq(double x) {
    return x * x;
}

// und so weiter für komplexe und rationale Zahlen...
```

- · Nachteil
 - \cdot wenn die Implementationen gleich sind \rightarrow nutzlose Arbeit
 - · Redundanz ist gefährlich: korrigiert man einen Bug wir leicht eine Variante vergessen
- · mit templates reicht eine Implementation

```
template<typename T> // T: Platzhalter für beliebigen Typ, wird später durch
T sq(T x) {
    return x * x; // implizierte Anforderung an den Typ T, er muss Multiplik
}
```

- · wie bei Substituieren von Variablen mit Werten, aber jetzt mit Typen
- · Benutzung:
 - · Typen für die Platzhalter hinter dem Funktionsnamen in spitzen klammern

```
sq<int>(2) == 4;
sq<double>(3.0) == 9.0,
```

· meist kann man die Typenangabe <type> weglassen, weil der Computer sie anhand des Argumenttyps automatisch einsetzt:

```
sq(2); // == sq<int>(2) == 4
sq(3.0); // == sq<double>(3.0) == 9
```

- · kombiniert man templates mit Overloading, wird die ausprogrammierte Variante vom Compiler bevorzugt. Komplizierte Fälle (Argument teilweise Template, teilweise hard_coded) \implies für Fortgeschrittene
- · Beispiel 2: Funktion, die ein Array auf Konsole ausgibt, für beliebige Elementtypen

```
template<typename ElementType>
void print_vector(std::vector<ElementType> const & v) {
   std::cout << "{";
   if(v.size() > 0) {
```

```
std::cout << " " << v[0];
          for(int i = 1; i < v.size(); i++) {</pre>
              std::cout << ", " << v[i];
     }
     std::cout << " }";
 }
· Verallgemeinerung für beliebige Container mittels Iteratoren:
 std::list<int> 1 = {1, 2, 3};
 print_container(1.begin(), 1.end()); // "{1,2,3}"
· es genügen forward_itertators
 Iterator iter2 = iter1; // Kopie erzeugen
 iter1++; // zum nächsten Element
 iter1 == iter2; // Zeigen sie auf das selbe Element?
 iter1 != end;
 *iter1; // Zugriff auf aktuelles Element
 template<typename Iterator>
 void print_container(Iterator begin, Iterator end) {
     std::cout << "{}";
      if(begin != end) { // Container nicht leer?
          std::cout << " " << *begin++;
          for(;begin != end; begin++) {
              std::cout << ", " << *begin;
     std::cout << "}";
· Beispiel 3: überprüfen, ob Container sortiert ist
 template<typename E, typename CMP>
 bool check_sorted(std::vector<E> const & v, CMP less_than) {
     for(int i = 1; i < v.size(); i++) {</pre>
          if(less\_than(v[k],\ v[k\ -\ 1]))\ \{\ //\ statt\ v[k]\ <\ v[k\ -\ 1],\ ausnutz
              return false;
          }
     return true;
 }
 // Aufruf:
 std::vector<double> v = \{1.0, 2.0, 3.0\};
 check_sorted(v, [](double a, double b) { return a < b; } ); // == true</pre>
```

```
check_sorted(v, [](double a, double b) { return a > b; } ); // == false

// Implementation für Iteratoren
template<typename Iterator, typename CMP>
bool check_sorted(Iterator begin, Iterator end, CMP less_than) {
   if(begin == end) {
      return true;
   }
   Iterator next = begin;
   ++next;
   for(; next != end; ++begin, ++next) {
      if(less_than(*next, *begin)) {
        return false;
      }
   }
   return true;
}

// == std::is_sorted
Remerkung: Compiler Feblormeldungen bei Template Code sind oft
```

- · Bemerkung: Compiler-Fehlermeldungen bei Template-Code sind oft schwer zu interpretieren, \implies Erfahrung nötig aber: Compiler werden darin immer besser, besonders clang-Compiler
- · mit Templates kann man noch viel raffinierter Dinge machen, zum Beispiel Traits-Klassen, intelligent libraries template meta programming \implies nur für Fortgeschrittene

15 Effizienz von Algorithmen und Datenstrukturen

15.1 Bestimmung der Effizienz

- 2 Möglichkeiten:
 - 1. Messe die "wall clock time" wie lange muss man auf das Ergebnis warten
 - 2. unabhängig von Hardware benutzt man das Konzept der algorithmischen Komplexität

15.1.1 wall clock

wall clock time misst man zum Beispiel mit dem Modul <chrono>

```
#include <chrono>
#include <iostream>
int main() {
    // alles zur Zeitmessung vorbereiten
```

```
auto start = std::chrono::high_resolution_clock::now(); // Startzeit
// code der gemessen werden soll
auto stop = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = stop - start; // Zeitdifferenz
std::cout << "Zeitdauer: " << diff.count() << " Sekunden\n" << std::endl; // ausgeben</pre>
```

Pitfalls:

- · moderne Compiler optimieren oft zu gut, das heißt komplexe Berechnungen werden zur Compilezeit ausgeführt und ersetzt \implies gemessene Zeit ist viel zu kurz. Abhilfen:
 - · Daten nicht "hard-wired", sondern zum Beispiel von Platte lesen
 - \cdot "volatile" Schlüsselwort "volatile int k = 3;"
- \cdot der Algorithmus ist schneller als die clock \implies rufe den Algorithmus mehrmals in einer Schleife auf
- · die Ausführung ihres Programms kann vom Betriebssystem jederzeit für etwas wichtigeres unterbrochen werden (zum Beispiel Mail checken) \implies gemessene Zeit zu lang \implies messe mehrmals und nimm die kürzeste Zeit (meist reicht 3 bis 10 fach)
- · Faustregel: Messung zwischen 0.02 s und 3 s

Nachteil: Zeit hängt von der Qualität der Implementation, den Daten (insbesondere der Menge) und der Hardware ab

15.1.2 algorithmische Komplexität

Algorithmische Komplexität ist davon unabhängig, ist eine Art theoretisches Effizienzmaß. Sie beschreibt, wie sich die Laufzeit verlängert, wenn man mehr Daten hat.

 $Beispiel\ 1.$ Algorithmus braucht für n Elemente x Sekunden, wie lange dauert es für 2n, 10n für große n

Bei effiziente Algorithmen steigt der Aufwand mit n nur langsam (oder bestenfalls gar nicht)

Grundidee:

- 1. berechne, wie viele elementare Schritte der Algorithmus in Abhängigkeit von n benötigt \implies komplizierte Formel f(n)
- 2. vereinfache f(n) in eine einfache Formel g(n), die dasselbe wesentliche Verhalten hat. Die Vereinfachung erfolgt mittels O-Notation und ihren Verwandten Gegeben: f(n) und g(n)

- a) g(n) ist eine asymptotische (für große n) obere Schranke für f(n) ("f(n) \leq g(n)"), $f(n) \in O(g(n))$ "f(n) ist in der Komplexitätsklasse g(n)", wenn es ein n_0 (Mindestgröße) gibt und C (Konstante) gibt, sodass $\forall n > n_0 : f(n) \leq Cg(n) \iff f(n) \in O(g(n))$
- b) g(n) ist asymptotische untere Schranke für f(n) $(f(n) \ge g(n))$

$$f(n) \in \Omega(g(n)) \iff \exists n_0, C : \forall n > n_0 f(n) \ge Cg(n)$$

c) g(n) ist asymptotisch scharfe Schranke für f(n)(f(n) = g(n))

$$f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \land f(n) \in \Omega(g(n))$$

Regeln:

- 1. $f(n) \in \Theta(f(n)) \implies f(n) \in O(f(n)), f(n) \in \Omega(f(n))$
- 2. $c'f(n) \in \Theta(f(n))$
- 3. $O(f(n)) \cdot O(g(n)) \in O(f(n)g(n))$

Multiplikationsregel

- 4. $O(f(n)) + O(g(n)) \in O(\text{"max"}(f(n), g(n)))$ Additions formal: wenn $f(n) \in O(g(n)) \Longrightarrow O(f(n)) + O(g(n)) \in O(g(n))$ $g(n) \in O(f(n)) \Longrightarrow O(f(n)) + O(g(n)) \in O(f(n))$
- 5. $n^p \in O(n^q)$ wenn $p \leq q$

Beliebte Wahl für g(n)

- · O(1) "konstante Komplexität" elementare Operation "+, -, *, /", Array-Zugriff v[k] (v: std::vector)
- · $O(\log(n))$ "logarithmische Komplexität" zum Beispiel: auf Element von std::map zugreifen m[k] (m: std::map)
- O(n) "lineare Komplexität" zum Beispiel std::transform() (n = Anzahl der transformierten Elemente)
- · $O(n \log(n))$ "n log n", "log linear" "linearithmisch" Beispiel: std::sort
- $O(n^2)$ "quadratische Komplexität"
- $\cdot O(n^p)$ "polynomielle Komplexität"
- $O(2^n)$ "exponentielle Komplexität"

Beispiel 2.

$$f(n) = 1 + 15n + 4n^2 + 7n^3 \in O(n^3)$$

15.1.3 Anwendung

1. Fibonacci-Zahlen: $f_k = f_{k-2} + f_{k-1}$ int fib1(int k) { $if(k < 2) { // 0(1)}$ return k; // 0(1) } // 0(1) int f1 = 0; // letzten beiden Fibonacci Zahlen, anfangs die ersten beiden int f2 = 1; for(int i = 2; i <= k; i++) { // f(k) = k - 1 e O(k)int f = f1 + f2; // O(1)f1 = f2; // O(1)f2 = f; // O(1)} // gesamte Schleife: O(1)*O(k) = O(k)return f2; } // gesamte Funktion: teuerstes gewinnt: O(k) // rekursive Variante: int fib2(int k) { $if(k < 2) { // 0(1)}$ return k; // 0(1) return fib2(k - 2) + fib2(k - 1); }

 \cdot sehr ineffizient, weil alle Fibonacci-Zahlen < k mehrmals berechnet werden

Sei f(k) die Anzahl der Schritte, f'(k) die Schritte oberhalb, Annahme: jeder Knoten ist $O(1) \implies f(k) \in O(\text{Anzahl Knoten})$. Oberhalb ist der Baum vollständig (jeder nnere Knoten hat zwei Kinder), Anzahl der Knoten im vollständigen Baum der Tielfe l:

$$1+2+4+\ldots+2^{l}=2^{l+1}-1$$

16 Zahlendarstellung im Computer

Problem: es gibt ∞ viele Zahlen, aber der Computer ist endlich.

16.1 Natürliche Zahlen

Natürliche Zahlen $\implies x \ge 0$. c++ bietet Typen verschiederne Größe.

klassisch	mit Größe	Anzahl Bits	Bereich	Literale
unsigned char	uint8_t	(≥) 8	0 - 255	
unsigned short	$uint16_t$	$(\geq) 16$	0 - 65535	
unsigned int	$uint32_t$	$(\geq) \ 32$	$0 - 4 \times 10^9$	
unsigned long		32 oder 64		
unsigned long long	$uint64_t$	64	$0 - 0 - 2 \times 10^{19}$	L

was passiert bei zu großen Zahlen?

· alle Operationen werden Modula 2^m ausgeführt, wenn der Typ m Bits hat

```
uint8_t x = 250, y = 100;
uint8_t s = x + y; // 350 % 256 = 94
uint8_t p = x * y; // 25000 % 256 = 168
```

16.1.1 Pitfalls

```
std::vector<uint8_t> v = { ... };
uint8_t sum = 0; // FALSCH, da es zu overflow kommen kann
// verwende uint32_t, uint64_t, verhndern overflow mit hoher Wahrscheinlichkeit
for(int k = 0; k < v.size(); k++) {
    sum += v[k];
}

// Endlosschleife, da i nie < 0, da unsigned
// Abhilfe: int verwenden
for(uint8_t i = v.size(); i >= 0; i++) {
    // auf v[k] zugreifen
}
```

16.1.2 arithmetische Operationen

· Addition in Kapitel Automaten

Subtraktion Subtraktion kann auf Addition zurückgeführt werden Erinnerung: Restklassenarithmetik: (Modulo)

alle Zahlen mit dem gleichen Rest modulo k bilden "Äquivalenzklasse", zum Beispiel

[&]quot;integer overflow": einfach Bits oberhalb von m wegwerfen

k = 4

$$0 \mod 4 = 0 \equiv 4 \mod 4 \equiv 8 \mod 4 \equiv 12 \mod 4 \dots$$

$$1 \mod 4 = 1 \equiv 5 \mod 4 \equiv 9 \mod 4 \equiv 13 \mod 4 \dots$$

$$2 \mod 4 = 2 \equiv 6 \mod 4 \equiv 10 \mod 4 \equiv 14 \mod 4 \dots$$

$$3 \mod 4 = 3 \equiv 7 \mod 4 \equiv 11 \mod 4 \equiv 15 \mod 4 \dots$$

Ein Mitglied jeder Äquivalentzklasse wird Represäntant.

Hier: kleinste Repreäsentanten $0, \ldots, (k-1)$, mit $k=2^m$ sind das gerade die uint-Werte Eigenschaft: man kann Vielfache nk addieren, ohne Äquivalenzklase zu ändern:

$$(a-b) \mod 2^m = (a+2^m-b) \mod 2^m = (a+z) \mod 2^m$$

z: Zweierkomplement

 $z=(2^m-b) \mod 2^m$ lässt sich billig berechnen als $(\sim b+1) \mod 2^m$ Dabei ist \sim bitweise Negation (dreht alle Bits um)

$$m = 4, \sim (1001) = 0110$$

Satz 1.

$$(2^m - b) \mod 2^m = (\sim b + 1) \mod 2^m$$

Beweis.

$$b + \sim b = 1111 \dots 1 = 2^m - 1$$

 $\sim b + 1 = 2^m - b$

Fall 1: b > 0

$$\implies \sim b < 2^m - 1 \implies \sim b + 1 < 2^m \implies (\sim b + 1) \mod 2^m = \sim b + 1$$
$$\implies (\sim b + 1) \mod 2^m = (2^m - b) \mod 2^m$$

Fall 2: b = 0

$$\Longrightarrow \sim b = 2^m - 1$$

$$\sim b + 1 = 2^m$$

$$(\sim b + 1) \mod 2^m = 0$$

$$2^m - b = 2^m z = (2^m - b) \mod 2^m = (\sim b + 1) \mod 2^m = 0$$

Multiplikation Neue Operationen: \ll und \gg (left und right shift). Verschiebt die Bits um k Positionen nach links oder rechts. Die herausgeschobenen Bits werden vergessen und auf der anderen Seite durch 0-bits ersetzt.

```
// m = 8
assert(11011101b << 3 == 11101000b)
assert(11011101b >> 3 == 00011011b)
```

Satz 2.

$$x \ll k \equiv (x \cdot 2^k) \mod 2^m$$

$$x >> k \equiv (\frac{x}{2^k})$$

Operation & und |: bitw4eise und beziehungsweise oder-Verknüpfung (nicht verwechseln mit && und || füür logische Operationen) m = 8: \$10110011 & 1 = \$

(testet, ob in linker Zahl Bit 0 gesetzt ist) 10110011 | 1 =

kombiniere & mit \ll :

$$x\&(1 \ll k)$$

testet, ob in x Bit k gesetzt ist.

```
uint8_t mul(uint8_t x, uint8_t y) {
    uint8_t res = 0;
    for(int i = 0; i < 8; i++) {
        if(y & (1 << i)) {
            res += x;
        }
        x = x << 1; // x * 2
    }
}</pre>
```

16.2 Ganze Zahlen

klassisch	mit Größe	Anzahl Bits	Bereich
signed char	int8_t	8	-128127
signed short	$int16_t$	16	-2^152^15 - 1
signed int	$int32_t$	32	-2^312^31 - 2
signed long		32 oder 64	
signed long long	int64 t	64	-2^632^63 - 1

Wird der erlaubte Bereich überschritte, ist Verhalten Compiler abhängig. In der Praxis: auch Modulo 2^m , aber mit anderen Repräsentanten.

für Restklassen:

statt $0 \dots 2^m$ bei unsigned jetzt $-2^{m-1} \dots 2^{m-2} - 1$ das heißt:

- $x < 2^{m-1}$: Repräsentant bleibt
- · $x \ge 2^{m-1}$: neuer Represenant $x-2^m$ ist gleiche Restklasse

Vorteil: x, -, * kann von unsigned übernommen werden

a,b signed: a OP $b\to c$ signed (interpretiere Bitmuster von a und b als unsigned und Interpretiere das Ergebnis dann als signed) Konsequenzen:

- · bei negativer Zahl ist höchstes Bit 1, weil $x \to x 2^m$ falls $x \ge 2^{m-1}$
- \cdot unäre Negation -x duch Zweierkomplement

$$-x = (\sim x + 1) \mod 2^{m}$$

$$-0 = (\sim 00000000 + 1) \mod 2^{8}$$

$$= (11111111 + 1) \mod 2^{8}$$

$$= (100000000) \mod 2^{8} = 0 - 1 \qquad = (\sim 00000001 + 1) \mod 2^{8}$$

$$= (11111111) \mod 2^{8}$$

$$= (11111111) \mod 2^{8}$$

$$= (11111111) \mod 2^{8}$$

$$= 11111111$$

Ausnahmeregel für \gg bei negativen Zahlen: Compilerabhängig, meist wird links ein 1-Bit reingeschoben, damit Zahl negativ bleibt \implies es gilt immer noch $x \gg k = (x/2^k)$ Reichen 64 Bit nicht aus (zum Beispiel bei moderner Verschlüsselung) verwende BigInt: Datentyp variabler Größe. Zum Beispiel GNU Multi-Precision Library

16.3 reelle Zahlen

c++ bietet Typen

Name	Größe	Bereich	kleinste Zahl	Literale
float	32bit	$-1 \times 10^{38} - 1 \times 10^{38}$	10e - 38	4.0f
double	64bit	$-1 \times 10^{308} - 1 \times 10^{308}$	1×10^{-308}	4.0, 1e-2
long double	platformabhängig, ≥ 64 bit			

Der c++ Standard legt die Größe nicht fest, aber praktisch alle gängigen CPUs benutzen Standard IEEE 754, c++ übernimmt HW-Implementation. Ziele der Definition von reellwertigen Typen:

- · hohe Genauigkeit (viele gültige Nachommastellen)
- · Zahlen sehr unterschiedlicher Größenskalen (zum Beispiel Durchmesser eines Proton = 2×10^{-15} m vs. Durchmesser des sichtbaren Universum 1×10^{27} m) mit natürlichen Zahlen bräuchte man \$> 150\$bit

elegante Lösung: halb-logarithmische Darstellung ("floating point"). Datentyp ist aus 3 natürlichen Zahlen zusammengesetz (aber alles von der CPU gekapselt)

- · S (1-bit): Vorzeichen, 0 = "+", 1 = "-"
- \cdot M (m-bit): Mantisse: Nachkommastellen
- \cdot E: (e-bit, Bias b): Exponent: Größenordung

die eigentliche Zahl wird durch

$$x = (-1)^s \cdot (1 + M \cdot 2^{-m}) \cdot 2^{E-b}$$

- $M \in [0, 2^m 1]$
- $M \cdot 2^{-m} \in [0, \frac{2^m 1}{2^m}) \in [0, 1)$
- $\cdot 1 + M \cdot 2^{-m} \in [1, 2)$

Beispiel: natürliche Zahlen

\boldsymbol{x}	$M \cdot 2^{-m}$	E-b	effektive Darstellung
1	0	0	$1\cdot 2^0$
2	0	1	$1 \cdot 2^1$
3	0.5	1	$1.5 \cdot 2^1$
4	0	2	$1 \cdot 2^2$
5	0.25	2	$1.25 \cdot 2^2$

Konsequenz: alle ganzen Zahlen zwischen $-2^m, \dots, 2^m$ könne exakt dargestellt werden und haben exakte Arithmetik. (IEEE 754) Werte für m, e, b

- · float
 - $\cdot m = 23$
 - $\cdot e = 8$
 - b = 127
 - $\cdot 2^{E-b} \in [2^{-126}, 2^{127}] \approx [10^{-38}, 10^{38}]$
- \cdot double
 - $\cdot m = 52$
 - e = 11
 - b = 1024

$$2^{E-b} \in [2^{-1022}, 2^{1023}] \approx [10^{-308}, 10^{308}]$$

Anzahl der Nachkommastellen: $\varepsilon = 2^{-m}$ (machine epsilon, unit last place (ULP))

- float $2^{-23} \approx 1 \times 10^{-7}$
- · float $2^{-52} \approx 1 \times 10^{-16}$

 ε ist die kleinste Zahl, sodass

$$(1.0 + \varepsilon) \neq 1.0$$

weil Nachkommastellen außerhalb der Mantisse (rechts von 2^{-m}) ignoriert werden. \Longrightarrow Problem der Auslöschung von signifikanten Stellen. Wenn man zwei fast gleich große Zahlen subtrahiert, löschen sich fast alle Bits der Mantisse \Longrightarrow nur wenige gültige Nachkommastellen überleben. Zum Beispiel:

$$0.1234567 - 0.1234566 = 0.000001$$
 (nur eine gültige Nachkommastelle!)
$$1.0 - \cos x, x \to 0, x \approx 0 \implies \cos x \approx 1 \implies \text{Auslösung}$$

x Anzahl der gültigen Stellen Additionstheoriem
$$1 - \cos(x) = 2(\sin(x/2))^2$$

 0.001 9 15
 1×10^{-8} 0 $(\cos(1 \times 10^{-8}))$ 15

Quadratische Gleichung:

$$ax^{2} + bx + c = 0, b > 0$$

 $x_{1} = \frac{1}{2a}(-b + sqrtb^{2} - 4ac)$

falls $a \cdot c \wedge b^2 \gg 4ac \implies \sqrt{b^2 - 4ac} \approx b \implies x_1 \approx -b + b + (\varepsilon') \approx 0 \implies$ Auslöschung, wenig gültige Stellen. Also umstellen:

$$x_1 = \frac{1}{2a} \frac{b^2 - (b^2 - 4ac)}{-b - sqrtb^2 - 4ac}$$
$$= \underbrace{\frac{2c}{-b - \underbrace{\sqrt{b^2 - 4ac}}_{\approx b}}}_{\approx -2b}$$

⇒ keine Auslösung

Dies tritt auch bei Aufgabe 8.3 der Übungszettel auf

Ausnahmeregeln (spezielle Werte)

· normal:
$$E \in [1, 2^e - 2]$$

$$\cdot \ E=2^e-1 \ (\text{größtmöglicher Wert}) \colon \begin{cases} x=-\infty & M=0 \land S=1 \\ x=\infty & M=0 \land S=0 \\ x=\text{ NaN} & M=0 \end{cases}$$

$$\begin{array}{l} \cdot \ \pm \infty : \frac{1.0}{0.0}, \frac{-1.0}{0.0}, \dots \\ \cdot \ \text{NaN: } \frac{0.0}{0.0}, \sqrt{-1.0}, \infty \cdot 0 \end{array}$$

· NaN:
$$\frac{0.0}{0.0}$$
, $\sqrt{-1.0}$, $\infty \cdot 0$

$$E = 0 \text{ (kleinstmöglicher Wert): } \begin{cases} -0 & M = 0 \land S = 1 \\ 0 & M = 0 \land S = 0 \\ \text{denormalisierte Zahlen (für sehr kleine Werte)} & M > 0 \end{cases}$$

17 Buchstabenzeichen

Buchstabenzeichen: "glyphs" müssen durch Zahlen repräsentiert werden "Zeichencode"

17.1 Geschichte

1963 **ASCII** 7-bit Zeichen der englischen Schreibmaschiene (kei 8-bit Codes $1964 \dots 2000$ mit Umlauten, Akzenten, kyrillische Zeichen, 1991 ... heute anfangs 16-bit, jetzt \approx 21-bit alles (chinesisch, Hyroglyphen, Emojis, ...) Unicode

- 3 Codierungen für Unicode:
 - · UTF-8: variable length code: pro glyph 1...4 uint8
 - · UTF-16: variable length code: pro glyph 1...2 uint16
 - · UTF-32: fixed length code: pro glyph 1 uint32 pro glyph

In c++:

- · char: 8-bit Codes
- · wchar_t: 16-bit (Windows), 32-bit (Linux)
- · u16char_t, u32char_t:

leider sehr Plattformabhängig

Symbol	DOS	ANSI	UTF-8
ö	148	246	195 182
€	221	128	$226\ 130\ 172$

```
\implies ICU Library.
```

hat man ale Zeichen korrekt, ist Problem noch nicht gelöst: alphabetische Sortierung:

- · kontext abhängig
- · sprach abhängig

٠:

- · deutschen Wörterbuch: wie a
- · deutsches Telefonbuch: wie ae
- · schwedisch: hinter Zeichen $\overset{\circ}{a}$

```
#include <locale>
#include <codecvt
std::sort(v.begin(), v.end(), std::locale("se_SE.UTF-8")); // für schwedisch (falls se_SE.UTF-8")</pre>
```

18 Eigene Datentypen

- 3 Möglichkeiten
 - \cdot enum: Aufzählungstypen \implies Selbststudium
 - · struct: strukturierte Daten, zusammengesetzte Typen
 - · class: wie struct, auf objekt-orientiert

struct und enum schon in C, struct und class fast gleich

```
struct TypeName { // Neuer Typ
    type_name1 var_name1; // existierende Typen
    type_name2 var_name2;
    // ...
}; // semikolon WICHTIG, falls vergessen: Fehlermeldung

// Beispiel:
struct Date {
    // Datenmember, Membervariables
    int day;
    int month;
    int year;
```

```
};
Date easter(int year) {
   // Datum ausrechnen
    // Datum zurückgeben
    Date d;
    d.day = day; // Punktsyntax kennen wir schon
    d.month = month;
    d.year = year;
   return d;
}
struct Character {
wchar_t clear;
wchar_t encrypted;
int count;
};
Character c;
c.count = 0;
c.count += 1;
```