Question 7

(i) The product of two odd integers is odd.

$$\forall x \in R, \ \forall y \in R, \ \forall p \in R, \ xy = 2p+1 \Rightarrow (x = 2p+1 \land y = 2p+1)$$

Let $x = 3, \ y = 5$.

Then, xy = 2p+1 is true because (x = 2p+1 \wedge y = 2p+1) is true. Therefore, the statement is true.

(ii) The negation of the statement "There is integer that is not a rational number.".

"There is integer that is not a rational number." = $\exists x, \sim \mathbb{Q}$

Negation of the statement =
$$\sim$$
($\exists x, \sim \mathbb{Q}$)
= $\forall x, \mathbb{O}$

(iii) Some students do not need to take any mathematics subjects.

 \exists student S, \forall mathematics subjects M, S do not need to take M Whether this statement is true or false, it depends on the context.