Thesis notes

23rd March

Detecting controversial content

Detecting controversial content

Detecting controversial content

- ► Controversial content usually receives many more replies
- ► Another possibility for detecting it (needs to be verified)
 - 1. select content C with high standard deviation (of the fraction of negative edges $\eta(C)$), which may be associated with an higher number of interactions
 - 2. keep content C whose $\eta(C) > \alpha$

The echo chamber problem - notation

- $ightharpoonup G = (V, E^+, E^-)$ interaction graph
- \triangleright \mathcal{C} set of contents
- ▶ $C \in C$ content, \mathcal{T}_C set of threads associated with C. A thread $T \in \mathcal{T}_C$ is a subgraph of G
- ▶ $U \subseteq V$ subset of users, T[U] subgraph of T induced by U. |T(U)| is the number of edges of this subgraph

The echo chamber problem - notation

- ▶ $\eta(C)$ fraction of negative edges associated with C (analogous definition for a thread T). Content (or thread) controversial if $\eta \in [\alpha, 1]$
- $ightharpoonup \hat{\mathcal{C}} \subseteq \mathcal{C}$ set of *controversial* contents
- \triangleright $S_C(U)$ set of *non controversial* threads induced by U, for *controversial* contents, i.e.

$$\mathcal{S}_{C}(U) = \{T[U] \text{ s.t. } T[U] \text{ non controversial}, T \in \mathcal{T}_{C}, C \in \hat{\mathcal{C}}, U \subseteq V\}$$

$$\tag{1}$$

The echo chamber problem

Goal: given an interaction graph G, find $U \subseteq V$ maximing

$$\xi(U) = \sum_{C \in \hat{\mathcal{C}}} \sum_{T[U] \in S_C(U)} |T[U]| \tag{2}$$

The set of users maximing the expression is denoted as \hat{U} and the corresponding score is $\xi(G)$

The datasets - negative edge fractions for contents

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Echo chamber scores of connected components

Table: Echo chamber scores, by components

Source	V	E	ξ(G)	$ \hat{U} $	$ \xi(G)/ \hat{U} $
@emanews	1226	1842	0	0	-
@bbcscience	447	388	4	2	0.5
@bbctech	793	719	26	12	2.17
@bbcsports	1645	2457	0	0	-

An initial implementation

Algorithm 1: Greedy approach

 $U = \{ \text{ random node } \};$

while $\xi(U)$ can be increased by adding a node do

With probability β add to U the node increasing more the score $\xi(U)$ (taking into account variations in $S_C(U)$);

With probability $(1 - \beta)$ remove from U the node increasing less the score $\xi(U)$. This node will be ignored in the next iteration;

end

- Process is repeated for many nodes and maximum score is selected
- Final score is divided by the number of nodes of the graph.
- Set of users is compacted by the random node removal
- ightharpoonup eta regulates *density* of the user group

An initial implementation - results

Process was repeated \sqrt{n} times for a graph with n nodes

Table: Echo chamber scores, greedy approach

Source	V	E	β	ξ(G)	$ \hat{U} $	$ \xi(G)/ \hat{U} $
@emanews	1226	1842	0.6	0	0	-
			0.7	0	0	_
			0.8	0	0	-
			0.9	0	0	-
			1	0	0	-

An initial implementation - results

Table: Echo chamber scores, greedy approach

Source	V	E	β	$\xi(G)$	$ \hat{U} $	$\xi(G)/ \hat{U} $
@bbcscience	447	388	0.6	2	2	1
			0.7	0	0	-
			0.8	6	3	2
			0.9	3	2	1.5
			1	2	3	0.67
@bbctech	793	719	0.6	28	9	3.11
			0.7	28	9	3.11
			0.8	28	9	3.11
			0.9	34	14	2.42
			1	28	9	3.11

An initial implementation - results

Table: Echo chamber scores, greedy approach

Source	V	E	β	ξ(G)	$ \hat{U} $	$ \xi(G)/ \hat{U} $
			0.6	173	16	10.8
@bbcsports	1645	2457	0.7	159	12	13.25
			0.8	220	32	6.87
			0.9	224	36	6.22
			1	228	40	5.7

Note: algorithm was stopped at the 30th iteration.

Another possible greedy approach

Inspired to the greedy algorithm proposed in [Cha00]

```
Algorithm 2: Greedy approach
```

```
U = \{ \text{ all nodes } \};
S = \xi(U);
while U is not empty do
    remove from U the node contributing less to the score \xi(U);
    update S if the current score is higher;
```

end

$$\max_{ij \in E(\hat{\mathcal{C}})} x_{ij} \tag{3}$$

$$x_{ij} \le y_i \quad \forall ij \in E(\hat{\mathcal{C}})$$
 (4)

$$x_{ij} \le y_j \quad \forall ij \in E(\hat{\mathcal{C}})$$
 (5)

$$\sum_{ij\in E^{-}(T_{k})} x_{ij} - \alpha \sum_{ij\in E(T_{k})} x_{ij} \leq M_{k}(1-z_{k}) \quad \forall T_{k} \in \mathcal{T}_{C}, C \in \mathcal{C} \quad (6)$$

$$\sum_{ij\in E(T_k)} x_{ij} \le N_k z_k \tag{7}$$

$$x_{ij} \in \{0,1\} \quad \forall ij \in E(\hat{\mathcal{C}})$$
 (8)

$$y_i \in \{0,1\} \quad \forall i \in V \tag{9}$$

$$z_k \in \{0,1\} \quad \forall T_k \in \mathcal{T}_C, C \in \mathcal{C}$$
 (10)

A thread T_k is non controversial if $\eta(T) \leq \alpha$, i.e.

$$\frac{\sum_{ij\in e^{-}(t_k)} x_{ij}}{\sum_{ij\in e^{(t_k)}} x_{ij}} \le \alpha \tag{11}$$

which can be written as

$$\sum_{ij\in e^{-}(t_k)} x_{ij} - \alpha \sum_{ij\in e^{(t_k)}} x_{ij} \le 0$$
(12)

So, for controversial content

$$\sum_{ij\in e^{-}(t_k)} x_{ij} - \alpha \sum_{ij\in e^{(t_k)}} x_{ij} > 0$$
(13)

and, for the constraint

$$\sum_{ij\in E^{-}(T_{k})} x_{ij} - \alpha \sum_{ij\in E(T_{k})} x_{ij} \leq M_{k}(1-z_{k}) \quad \forall T_{k} \in \mathcal{T}_{C}, C \in \mathcal{C}$$
 (14)

it will be $z_k = 0$. So controversial $T_k \implies z_k = 0$.

$$\sum_{ij\in E(T_k)} x_{ij} \le N_k z_k \tag{15}$$

will set to 0 edges associated to controversial threads T_k . So controversial $T_k \implies z_k = 0 \implies x_{ij} = 0 \quad \forall ij \in E(T_k)$.

 N_k and M_k can be simply m, the number of edges in the graph.

Bibliography

[Cha00] Moses Charikar. "Greedy Approximation Algorithms for Finding Dense Components in a Graph". In: Approximation Algorithms for Combinatorial Optimization. Ed. by Klaus Jansen and Samir Khuller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 84–95. ISBN: 978-3-540-44436-7.