# Chapitre 20

# Espace Vectoriels

| <b>20</b> | Espace Vectoriels                                          |
|-----------|------------------------------------------------------------|
|           | 20.2 Propriétés du 0, régularité                           |
|           | 20.10Espace vectoriel de référence                         |
|           | 20.11Transfert de structure                                |
|           | 20.16 Caractérisation des sous-espaces vectoriels          |
|           | 20.22Propostion 20.22                                      |
|           | 20.27Intersection de sous-espaces vectoriels               |
|           | 20.34Description de $Vect(X)$                              |
|           | 20.36 Opérations sur les sous-espaces vectoriels engendrés |

# 20.2 Propriétés du 0, régularité

### Propostion 20.2

Soit E un  $\mathbb{K} - ev$ . Pour tout  $x \in E$ :

- 1.  $0_{\mathbb{K}}.x = 0_E$
- 2. pour tout  $\lambda \in \mathbb{K}$ ,  $\lambda . 0_E = 0_E$
- 3. (-1).x = -x
- 4. si  $x \neq 0_E$ ,

$$\lambda . x = 0_E \Rightarrow \lambda = 0_K$$

5. si  $x \neq 0_{\mathbb{K}}$ ,

$$\lambda.x = 0_E \Rightarrow x = 0_E$$

- 1.  $0_{\mathbb{K}}.x = (0_{\mathbb{K}} + 0_{\mathbb{K}}).x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x$ . Donc  $0_E = 0_{\mathbb{K}}.x$ .
- 2. RAS.
- 3.  $x + (-1).x = (1-1).x = 0_{\mathbb{K}}.x = 0_E$ .
- 4. Par l'absurde, si  $\lambda \neq 0_{\mathbb{K}}$ , de  $\lambda x = 0_E$  on tire  $\lambda^{-1}\lambda x = \lambda^{-1}x0_E$ , soit  $x = 0_E$ . Absurde.
- 5. Idem.

# 20.10 Espace vectoriel de référence

#### Propostion 20.10

- 1.  $\mathbb{K}$  est un espace vectoriel sur lui-même.
- 2. Plus généralement, soit E un espace vectoriel sur  $\mathbb{K}$  et F un ensemble quelconque. Alors l'ensemble des fonctions  $E^F$  est un espace vectoriel sur  $\mathbb{K}$ .
- 1. RAF.
- 2. Soit E un  $\mathbb{K} ev$  et F un ensemble quelconque.  $E^F$  est un groupe abélien (cf. chap 10). Le produit externe est défini par :

$$\mathbb{K} \times E^F \longrightarrow E^F$$
$$(\lambda, f) \longmapsto (\lambda. f, x \mapsto \lambda. f(x))$$

Vérification facile.

## 20.11 Transfert de structure

#### Lemme 20.11

Soit E un espace vectoriel sur  $\mathbb{K}$ , G un ensemble quelconque et  $\varphi: E \to G$  une bijection. Alors en définissant sur G une loi interne et un loi externe par

$$\forall (x, y, \lambda) \in G \times G \times \mathbb{K}, x + y = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y)) \text{ et } \lambda.x = \varphi(\lambda \varphi^{-1}(x)),$$

on munit G d'une structure d'espace vectoriel.

Vérifions les axiomes.

— LCI :

$$(x+y)+=\varphi(\varphi^{-1}(x+y)+\varphi(z))$$
 
$$=\varphi(\underbrace{\varphi^{-1}(x)+\varphi^{-1}(y)+\varphi^{-1}(z)}_{\text{associativit\'e dans }E})$$
 
$$=x+(y+z)$$
 
$$x+\varphi(0)=\varphi(\varphi^{-1}(x)+0)=x\;(\varphi\;\text{neutre})$$
 
$$x+\varphi(-\varphi^{-1}(x))=\varphi(\varphi^{-1}(x)-\varphi^{-1}(x))=\varphi(0)$$
 
$$x+y=y+x$$

 $\lambda.(\mu.x) = \varphi(\lambda\varphi^{-1}(\mu x))$   $= \varphi(\lambda\mu\varphi^{-1}(x))$   $= (\lambda\mu).x$   $1.x = \varphi(1.\varphi^{-1}(x))$   $= \varphi \circ \varphi^{-1}(x)$  = x  $(\mu + \lambda).x = \varphi((\mu + \lambda).\varphi^{-1}(x))$   $= \varphi(\mu\varphi^{-1}(x) + \lambda\varphi^{-1}(x))$   $= \varphi(\mu\varphi^{-1}(x)) + \varphi(\lambda\varphi^{-1}(x))$   $= \mu.x + \lambda.x$ 

De même pour la dernière.

# 20.16 Caractérisation des sous-espaces vectoriels

### Théorème 20.16

Soit E un  $\mathbb{K}$ -espace vectoriel. Un ensemble F est un sous-espace vectoriel de E si et seulement si

- 1.  $F \subset E$ ;
- 2.  $0 \in F$ ;
- 3.~F est stable par combinaisons linéaire, ce qui équivaut à

$$\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F.$$

 $\Rightarrow$ 

- 1. Oui.
- 2. F est un sous-groupe de E donc  $0_E \in F$ .
- 3. Pour tout  $(x,y) \in F^2$ ,  $\lambda \in \mathbb{K}$ ,  $\lambda . x \in F$  et  $y \in F$ . Donc  $\lambda x + y \in F$ .

 $\Leftarrow$ 

D'après (3) avec :

- $y = 0 : \times \text{ est LCE}$ .
- $\lambda = 1 : + \text{ est LCI}.$

 $0 \in F$  et  $\lambda = -1$ , F est un sous-groupe, donc un groupe abélien. RAF pour les 4 dernières propriétés.

# 20.22 Propostion 20.22

Propostion 20.22

Soit E un K-espace vectoriel,  $D_1$  et  $D_2$  deux droites vectorielles. Alors soit  $D_1 \cap D_2 = \{0_E\}$ , soit  $D_1 = D_2$ .

Par définition,  $0_E \in D_1 \cap D_2$ .

Supposons  $D_1 \cap D_2 \neq \{0_E\}$  et fixons  $x \in D_1 \cap D_2$  avec  $x \neq 0_E$ .

Soit  $v \in D_1$ . Par définition, on écrit  $D_1 = \mathbb{K}x_1$  et  $D_2 = \mathbb{K}x_2$ . On a donc  $v = \alpha x_1$ ,  $x = \lambda_1 x_1 = \lambda_2 x_2$  avec  $\lambda_1 \neq 0, \lambda_2 \neq 0$ . Ainsi:

$$v = \alpha \lambda_1^{-1} \lambda_1 x_1 = \alpha \lambda_1^{-1} x = \alpha \lambda_1^{-1} \lambda_2 x_2 \in D_2$$

Donc  $D_1 \subset D_2$  et par symétrie,  $D_1 = D_2$ 

#### 20.27Intersection de sous-espaces vectoriels

Soit E une espace vectoriel et  $(E_i)_{i\in I}$  une famille de sous-espaces vectoriels de E. Alors  $\bigcap_{i\in I} E_i$  est un sous-espace vectoriel de E.

- $$\begin{split} & \bigcap_{i \in I} E_i \subset E. \\ & \forall i \in I, 0 \in E_i \text{ donc } 0 \in \bigcap_{i \in I} E_i. \end{split}$$
- Soit  $(x,y) \in \left[\bigcap_{i \in I} E_i\right]^2, \lambda \in \mathbb{K}$ :

$$\forall x \in I, \lambda x + y \in E_i$$

Donc 
$$\lambda x + y \in \bigcap_{i \in I} E_i$$
.

#### Description de Vect(X)20.34

Soit E un  $\mathbb{K}$ -ev et X un sous-ensemble de E. Alors Vect(X) est l'ensemble des combinaisons linéaires d'éléments de X.

On note F l'ensemble des combinaisons linéaires de vecteurs de X.

F est un sous-espace vectoriel de E qui contient X.

Par définition,  $Vect(X) \subset F$ .

Or Vect(X) est un sous-espace vectoriel qui contient X. Il doit donc contenir les combinaisons linéaiers de X soit F

Donc F = Vect(X)

#### 20.36Opérations sur les sous-espaces vectoriels engendrés

Soit A et B deux ensembles. On a

- 1.  $A \subset Vect(A)$
- 2. Si  $A \subset B$  alors  $Vect(A) \subset Vect(B)$ .
- 3. A = Vect(A) si et seulement si A est un espace vectoriel.
- 4. Vect(Vect(A)) = Vect(A).
- 5.  $Vect(A \cup \{x\}) = Vect(A)$  si et seulement si  $x \in Vect(A)$ .
- 1. RAF
- 2. RAF (20.24)
- 3. Si A =, alors A est un sous-espace vectoriel.

Si A est un espace vectoriel, par minimalité, A = Vect(A).

- 4. RAF (20.36.3)
- 5. On a toujours  $Vect(A \cup \{x\}) \supset Vect(A)(2\ 0.36.2)$  si  $Vect(A \cup \{x\}) \subset Vect(A)$ . Or  $x \in Vect(A \cup \{x\})$ .

Donc  $x \in Vect(A)$ .

Réciproquement, si  $x \in Vect(A)$ , d'après (20.34) :

$$Vect(A \cup \{x\}) \subset Vect(A)$$

Si  $u \in Vect(A \cup \{x\})$ , alors :

$$u = \lambda_1 a_1 + \ldots + \lambda_n a_n + \lambda_{n+1} x$$
  
=  $\lambda_1 a_1 + \ldots + \lambda_n a_n + \lambda_{n+1} (\mu_1 a'_1 + \ldots + \mu_p a'_p)$   
 $\in Vect(A)$