Faster Stochastic Alternating
Direction Method of Multipliers for
Nonconvex Optimization

By Anik Saha, Brian Wu, Kevin Kim, Gary Wang

Information about Paper

- Published in ICML 2019
- Authors:
 - **Feihu Huang:** Postdoctoral Researcher at University of Pittsburgh
 - **Songcan Chen**: Professor, College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics, China.
 - Heng Huang: John A. Jurenko Endowed Professor in Computer Engineering at the University of Pittsburgh.

Main Results of Paper

- Proposes a faster stochastic alternating direction method of multipliers (ADMM) for nonconvex optimization by using a new <u>stochastic path-integrated differential estimator</u> (SPIDER), called as SPIDER-ADMM.
- SPIDER-ADMM is proved to achieve record-breaking IFO complexity of:

$$O(n + n^{\frac{1}{2}}n\epsilon^{-1})$$

 Provides a new theoretical analysis framework for nonconvex stochastic ADMM methods with providing the unsolved optimal <u>incremental first-order oracle</u> (IFO) complexity for complexity SVRG-ADMM and SAGA-ADMM methods

The Method of Lagrange Multipliers

• The method of lagrange multipliers is utilized to find local maxima/minima of constrained optimization problem of the form:

$$\min_{x} f(x)$$

$$s.t.g(x) = 0$$

• We construct the lagrangian function and find the stationary points to find the optimality point:

$$L(x,\lambda) = f(x) - \lambda g(x)$$

What is ADMM?

 The alternating direction method of multipliers (ADMM) is an algorithm used to solve optimization problems of the form:

minimize
$$f(x) + g(y)$$

subject to $Ax + By = c$

Here f and g both are convex functions.

And the augmented Lagrangian function

$$\left|\mathcal{L}_{
ho}(x,y,z)
ight.=\left.f(x)\,+\,g(y)\,-\,\left\langle z^{T},Ax+By-c
ight
angle \,+\,
ho/2\left|\left|\,Ax+By-c\,
ight|
ight|^{2}$$

ADMM iterations consist of these 3 steps

$$egin{aligned} x^{k+1} &= \mathop{
m argmin}_x \mathcal{L}_
hoig(x,\,y^k,\,z^kig) \ y^{k+1} &= \mathop{
m argmin}_y \mathcal{L}_
hoig(x^{k+1},\,y,\,z^kig) \ z^{k+1} &= z^k -
hoig(Ax^{k+1} + By^{k+1} - cig) \end{aligned}$$

SPIDER-ADMM

• Solves the following nonconvex nonsmooth problem

$$f(x) \,=\, rac{1}{n}\,\sum_{i=1}^n f_i(x) \,+\, \sum_{j=1}^m g_j(y_j)$$
 subject to $Ax\,+\,\sum_{j=1}^m B_j y_j \,=\, c$

where f is a nonconvex and smooth function and g_j is a convex and possibly nonsmooth function for all $j \in [m]$

SPIDER-ADMM

 The SPIDER-ADMM utilizes the the Augmented Lagrangian Method which adds a penalty term to the lagrangian

$$egin{align} \mathcal{L}_
ho(x,y_{[m]},z) &= f(x) + \sum_{j=1}^m g_j(y_j) - \langle z,Ax + \sum_{j=1}^m B_j y_j - c
angle \ &+ rac{
ho}{2} ||Ax + \sum_{j=1}^m B_j y_j - c||^2 \end{split}$$

• In addition, the authors linearize this function over x

$$\hat{\mathcal{L}}_{\rho}(x, y_{[m]}^{k+1}, z_k, v_k) = f(x_k) + v_k^T(x - x_k) + \frac{1}{2\eta} ||x - x_k||_G^2 + \sum_{j=1}^m g_j(y_j^{k+1})$$
$$-z_k^T(Ax + \sum_{j=1}^m B_j y_j^{k+1} - c) + \frac{\rho}{2} ||Ax + \sum_{j=1}^m B_j y_j^{k+1} - c||^2$$

Describe the result or algorithm and motivate it intuitively.

- SPIDER-ADMM constructs an unbiased estimate of the gradient over a minibatch at every iteration; every q iterations, the full gradient is used.
- This estimate of the gradient is utilized for solving the optimization problem outlined in lines 9, 10, 11.

Algorithm 1 SPIDER-ADMM Algorithm

- 1: **Input:** $b, q, K, \eta > 0$ and $\rho > 0$;
- 2: Initialize: $x_0 \in \mathbb{R}^d$, $y_i^0 \in \mathbb{R}^p$, $j \in [m]$ and $z_0 \in \mathbb{R}^l$;
- 3: **for** $k = 0, 1, \dots, K 1$ **do**
- if mod(k, q) = 0 then
- Compute $v_k = \nabla f(x_k)$;
- 6: else
- Uniformly randomly pick a mini-batch \mathcal{I}_k (with replacement) from $\{1, 2, \dots, n\}$ with $|\mathcal{I}_k| = b$, and compute

$$v_k = \nabla f_{\mathcal{I}_k}(x_k) - \nabla f_{\mathcal{I}_k}(x_{k-1}) + v_{k-1};$$

- end if
- $y_j^{k+1} = \arg\min_{y_j} \left\{ \mathcal{L}_{\rho}(x_k, y_{[j-1]}^{k+1}, y_j, y_{[j+1:m]}^k, z_k) + \right\}$ $\frac{1}{2}||y_j - y_i^k||_{H_i}^2$ for all $j \in [m]$;
- $x_{k+1} = \arg\min_{x} \hat{\mathcal{L}}_{\rho}(x, y_{[m]}^{k+1}, z_k, v_k);$
- $z_{k+1} = z_k \rho(Ax_{k+1} + \sum_{i=1}^m B_i y_i^{k+1} c);$
- 12: end for
- 13: Output: $\{x, y_{[m]}, z\}$ chosen uniformly random from $\{x_k, y_{[m]}^k, z_k\}_{k=1}^K$.

Complexity Comparison with non-convex ADMM Methods

Table 1. IFO complexity comparison of the non-convex ADMM methods for finding an ϵ -approximate solution of the problem (1), i.e., $\mathbb{E}\|\nabla\mathcal{L}(x,y_{[m]},z)\|^2 \leq \epsilon$. n denotes the sample size.

Problem	Algorithm	Reference	IFO
Finite-sum	ADMM	Jiang et al. (2019)	$\mathcal{O}(n\epsilon^{-1})$
	SVRG-ADMM	Huang et al. (2016); Zheng & Kwok (2016b)	$\mathcal{O}(n+n^{\frac{2}{3}}\epsilon^{-1})$
	SAGA-ADMM	Huang et al. (2016)	$\mathcal{O}(n+n^{\frac{2}{3}}\epsilon^{-1})$
	SPIDER-ADMM	Ours	$\mathcal{O}(n + n^{\frac{1}{2}}\epsilon^{-1})$

• Incremental first-order oracle (IFO) complexity measures the number of calls made to the stochastic gradient oracle function

$$\nabla f_i(x)$$

Empirical Evaluations

We were primarily interested analyzing SPIDER-ADMM against other baselines:

- How does SPIDER-ADMM compare to other existing non-convex ADMM methods?
 - Baselines: SVRG-ADMM and SAGA-ADMM
- How does the selection of the penalty parameter ρ affect convergence?
 - \circ Baselines: fixed ρ and varying ρ

Convergence Experiment Description

• Binary Classification task with nonconvex sigmoid loss

$$\min_{\mathbf{x} \in \mathbb{R}^d} rac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) + \lambda ||\mathbf{A}\mathbf{x}||_1$$

where
$$f_i(x) = rac{1}{1+\exp(b_i a_i^T \mathbf{x})}$$

- ullet The graph guided fused lasso is used as the nonsmooth regularizer with A obtained by the sparse inverse covariance estimation method
- Here the auxiliary variable is y = AxThis is the constraint for our problem

Convergence Experiment Setup

- First we obtain an expression for the gradient of f using the gradient of the sigmoid function
- The update equations for x and y requires minimizing the augmented Lagrangian of the loss function and its linear approximation

$$egin{aligned} y_{k+1} &= \operatorname{argmin}_y \ \left\{ \mathcal{L}_p(x_k, y, z_k) + ||y - y_k||_H^2
ight\} \ x_{k+1} &= \operatorname{argmin}_x \ \left\{ \hat{\mathcal{L}}_p(x, y_{k+1}, z_k, v_k)
ight\} \end{aligned}$$

• As both of these minimization problems are convex, we obtain an expression for x_{k+1} and y_{k+1} by solving these equations

Convergence Experiment Setup

- We use the regularization parameter $\lambda=10^{-5}$ following the paper
- The batch size b is set to 32 and update interval q is 10
- \bullet $\,$ We tuned the learning rate $\,\eta$ by looking at the convergence of a small subset of the training set
- Similarly we set the value of penalty parameter ρ
- Here is a list of the tuned hyperparameters

lambda	b	q	eta	rho
1e-5	32	10	0.05	0.5

• We implemented S-ADMM, SAGA-ADMM and SVRG-ADMM as our baseline comparisons.

Convergence Comparison Plots

<u>a9a</u> <u>ijcnn1</u> <u>covtype.libsvm.binary</u>

Rho Selection Experiments

- We compare choosing a fixed ρ with a varying ρ selection technique:
 - Handpicking fixed ρ =0.5
 - Residual Balancing: Update ρ every iteration in an attempt to improve convergence use the recommended hyperparameters settings: $\mu = 10$, τ incr = 2, τ decr = 2
 - Vary starting ρ
 - This reduces the reliance on picking a good starting ρ , and instead updates ρ to the optimal value

Residual Balancing Explained

• One standard extension to the classic ADMM algorithm is to vary the penalty parameters at each iteration. Here we applied it to the SPIDER-ADMM algorithm.

$$\rho^{k+1} := \begin{cases} \tau^{incr} \rho^k & \text{if } ||r^k||_2 > \mu ||s^k||_2 \\ \rho^k / \tau^{decr} & \text{if } ||s^k||_2 > \mu ||r^k||_2 \\ \rho^k & \text{otherwise,} \end{cases}$$

- We then have to choose three hyperparameters: $\mu, \tau^{incr}, \tau^{decr}$.
 - Although we now have more hyperparameters, these three matter less when compared to the starting value of Q.
 - o Makes sure that the primal and dual residual are within a factor of μ , by increasing or decreasing by au^{incr} or au^{decr} respectively

Performance Plots for This Experiment

<u>a9a</u> <u>ijcnn1</u> <u>covtype.libsvm.binary</u>

Questions?

Resources

- https://arxiv.org/pdf/2008.01296.pdf
- https://arxiv.org/pdf/1610.02758.pdf
- https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf