Scars of the Gestapo: Remembrance and Privacy Concerns

Sebastián D. Bauer Florencia M. Hnilo

Discussion by Gabriel Ahlfeldt, Humboldt University UEA, Montreal

Summary

- ► **Research question:** Do reminders of Germany's authoritarian past (*Stolpersteine*) heighten contemporary privacy concerns?
 - Salience of historical data misuse → higher propensity to blur homes on Street View.

▶ Highlights

- ► Novel use of data: blurring andmemorial locations
- ► Identification leverages quasi-random commuting exposure
- ► Great hyper-micro-geographic GIS job!

► Improvements

- ► Clarify **remaining endogeneity** channels and strengthen causal interpretation
- ► Refine **station**-*entrance* **modeling** for commuting exposure
- ► Discuss policy relevance beyond "trust-building"

Identification: Own-Parcel Effect

- ► Exposure of residents to plaques as good as random
 - ► Key identifying assumptions
- ► No selection
 - ► Controls: concentric bins of victim counts + small-area fixed effects.
 - ▶ Balance tests: little correlation with block covariates within neighborhoods
 - ► Permutation tests using (potential sites)

Identification: Own-Parcel Effect

- **Exposure** of residents to plaques as good as **random**
 - ► Key identifying assumptions
- ► No selection
 - ► Controls: concentric bins of victim counts + small-area fixed effects.
 - ▶ Balance tests: little correlation with block covariates within neighborhoods
 - ► Permutation tests using (potential sites)
- ► No reverse causality—plausible?
 - ► Residents valuing privacy may push for plaques (history-conscious types)
 - ► Naturally **start research at own nuilding**, or next one
- ▶ Need an **IV** to break link between local residents and plaques
 - ► Explore relatives' **veto/consent** as an IV for plaque placement—observable?
 - ► Else, put commuting exposure center-stage

Functional form

- ► Use Figure 5 to guide the parametric model
 - ► Shows action mainly within 100m
 - ▶ 100m or linear distance specs add little, Table 2 could be dropped
- ► Skip Table 2
 - ▶ Build parametric model consistent with Figure 5

	(1) Dummy Blur	(2) Dummy Blur	(3) Dummy Blur	(4) Dummy Blur
Distance to Closest	-0.428***		-0.428***	
Stolperstein, in 100m	(0.104)		(0.0870)	
# of Stolpersteine	, ,	0.253***	, ,	0.253***
within 100m.		(0.0422)		(0.0636)
Observations	200,755	200,755	200,755	200,755
R-squared	0.122	0.122	0.122	0.122
Errors	Cluster Nbhd.	Cluster Nbhd.	Cluster LOR	Cluster LOR
Fixed Effects	Block	Block	Block	Block

Functional form

- ▶ First, show functional form of distance decay: Go directly to Figure 5
 - ► Shows action mainly within 100m
 - ▶ 100m or linear distance specs add little, Table 2 could be dropped
- ▶ Then, informed by Figure 5, parameterize the functional form to gain precision
 - ▶ **Option 1**: Effect within 100m

$$Outcome = \alpha + \beta_1 D_{100} + \beta_2 D_{100} \times DIST$$

- \blacktriangleright β_1 : effect at the premise, β_2 : decay within 100m
- ► Effect at 100m: $\beta_1 100 \times \beta_2$
- ▶ **Option 2**: Effect up to 1000m with kink at 100m

$$Outcome = \alpha + \beta_1 D_{1000} + \beta_2 D_{1000} \times DIST + \beta_3 D_{1000} \cdot 1(DIST > 100)(DIST - 100)$$

 \blacktriangleright β_1 and β_2 like before, $\beta_2 + \beta_3$ is slope between 100 and 1000m

Commuting Exposure

- ▶ Great GIS idea: shortest path from home to station entrance via plaques
 - ► Mitigates the reverse-causality concern
 - ► History-conscious types research at their doorstep
 - Others get exposed on their way to transit stations
 - ► Identification conditional on station fixed effects very smart!
 - ► Would put these models centre-stage
- ► BUT: Current shapefile gets **U-Bahn entrances wrong!**
 - ► U-Bahn has **multiple entrances**, just like S-Bahn
- ► Recommendation:
 - ► Try to get entrance **shapefile from BVG** (public transit provider)
 - ► Redo analysis with entrances/entrance FE
 - ► Want to know if smaller ATT due to avoided **reverse causality or attenuation bias** (measurement error)

Commuting exposure

Minor points

- ► Tenure: Are requesters mainly renters? Clarify eligibility.
- ► Figure 2: Prefer density normalization; consider interpolation.
- ► Standard errors: Report Conley with explicit spatial ranges.
- ► Pitch/relevance
 - ► Key variables original, but also context-specific (blurring and plaques)
 - ► Can we further develop relevance in broader economics contexts?
 - ► Should we link to behavioural economics literatuer on salience?
 - ▶ Policy implication unclear, should we do something about Germans' privacy concerns?

Download from www.ahlfeldt.com \rightarrow presentations \rightarrow Slides: Discussion