Teoria dos Grafos Conceitos Fundamentais

Paulo Henrique Ribeiro Gabriel

Faculdade de Computação Universidade Federal de Uberlândia

2019/1

Definição (Grafo)

G=(V,E) é um grafo se V é um conjunto de elementos (cada elemento é chamado vértice) e E é uma família de pares não-ordenados de vértices (cada par é chamado aresta)

- \bullet Se G é um grafo, denotamos o conjunto de vértices por V(G) e o de arestas por E(G)
- Um par (v,w) não-ordenado pode ser denotado por vw se isso não trouxer ambiguidades

Definição

Exemplos

- $G_1 = (V_1, E_1)$
 - $V_1 = \{a, b, c, d, e, f\}$
 - $E_1 = \{aa, ab, bc, bd, cd, dc, ee, ce, cf, de, df, fd, fe\}$
- $G_2 = (V_2, E_2)$
 - $V_2 = \mathbb{N}$
 - $E_2 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a = bk \lor b = ak, \text{ para algum } k \in \mathbb{N} \}$

Definição (Grafo Finito)

Um grafo é finito se V(G) e E(G) são conjuntos finitos.

Definição

Exemplo

- G_1 é finito
- G_2 é infinito

Representação Geométrica

Uma representação usual de grafos finitos é através de uma figura onde um vértice $v \in V(G)$ é representado por um círculo rotulado e uma aresta $vw \in E(G)$ por um segmento de linha com extremidades nas representações dos vértices v e w

Definição (Grafo Simples)

G=(V,E) é um grafo simples se não existem nem laços ($vv \in E(G)$), nem multiarestas ($vw,vw \in E(G)$)

Observação

Exceto se for dito o contrário, admitiremos que todo grafo é simples

Observação

Se G é um grafo finito, e nada contrário for dito, n representa o número de vértices do grafo e m o seu número de arestas (ou seja, n=|V(G)| e m=|E(G)|)

Exercício

Existe uma relação geral entre n e m para grafos simples?

Ordem e Tamanho

- A ordem de um grafo é o número de vértices que ele possui.
- O tamanho de um grafo é o número de arestas que ele possui.

Arestas e Vértices

Definição (Aresta Incidente)

 $vw \in E(G)$ é incidente a v e w (e somente a estes vértices)

Arestas e Vértices

Definição (Vértices Adjacentes)

 $v, w \in V(G)$ são adjacentes se $vw \in E(G)$

Definição (Vértices Vizinhos)

O conjunto N(v) de vizinhos de v é o conjunto

$$N(v) = \{ w \in V(G) \mid vw \in E(G) \}$$

Definição (Grau de um Vértice)

O grau de $v \in V(G)$, denotado por d(v), é o número de arestas incidentes sobre v.

Exercício

Quanto vale $\sum_{v \in V(G)} d(v)$?

Exercício

Lema do Aperto de Mão¹. Mostre que para qualquer grafo, o número de vértices de grau ímpar é par.

"Se os convidados de uma festa apertarem as mãos quando se encontrarem pela primeira vez, o número de convidados que apertam a mão um número ímpar de vezes é par."

¹Euler, L. Solutio problematis ad geometriam situs pertinentis. *Commentarii Academiae Scientiarum Imperialis Petropolitanae*, v. 8, p. 128–140, 1736.

Definição (Grau Máximo)

O grau máximo de um grafo G, denotado por $\Delta(G)$, é o grau do vértice de G que possui o maior valor, i.e., $\Delta(G) = \max\{d(v) \mid v \in V(G)\}$

Definição (Grau Mínimo)

O grau mínimo de um grafo G, denotado por $\delta(G)$, é o grau do vértice de G que possui o menor valor, i.e., $\delta(G)=\min\{d(v)\mid v\in V(G)\}$

• Por definição, $\delta(G) \leq \Delta(G)$

Definição (Grafo k-regular)

Um grafo G é k-regular se d(v) = k para todo $v \in V(G)$

Exercícios

- Quais são os grafos 0-regulares?
- 2 Quais são os grafos 1-regulares?
- **3** Quais são os grafos (n-1)-regulares?

Definição (Grafo Valorado)

Um grafo G=(V,E) é valorado quando um valor numérico (chamado peso) é associado a cada aresta de G.

- Nesse caso, cada elemento de E é definido por uma tripla (v,w,p), sendo $v,w\in V$ e $p\in\mathbb{R}$
- Alguns autores chamam grafos valorados de redes

Definição (Grafo Completo)

Um grafo simples G é completo se $vw \in E(G)$ para todo $v, w \in V(G)$

ullet Um grafo completo com n vértices é denotado por K_n

Definição (Grafo Vazio)

G é um grafo vazio se $E(G)=\varnothing$

Definição (Grafo Bipartido)

G é um grafo bipartido se $V(G)=X\cup Y$, com $X\cap Y=\varnothing$, tal que $vw\notin E(G)$ para todo $v,w\in X$ e $vw\notin E(G)$ para todo $v,w\in Y$

Grafo Bipartido: Aplicação

Problema da Designação

- Ana esperava as amigas Brenda, Clotilde, Daiane e Edite para um lanche em sua casa. Enquanto esperava, preparou os seguintes lanches: Bauru, Misto quente, Misto frio e X-salada
 - Brenda gosta de Misto frio e de X-salada
 - Clotilde de Bauru e X-salada
 - Daiane gosta de Misto quente e Misto frio
 - Edite gosta de de Bauru e Misto quente
- Descreva o grafo que modela essa situação, mostre um diagrama desse grafo e use-o para descobrir se é possível que cada amiga de Ana tenha o lanche que gosta
- Se possível, determine o número de soluções.

Definição (Grafo Bipartido Completo)

G é um grafo bipartido completo $(K_{p,q})$ se G é bipartido, com partição $V(G)=X\cup Y$, tal que |X|=p e |Y|=q, e para todo $x\in X,y\in Y$, vale que $xy\in E(G)$

ullet Em outras palavras existem todas as possíveis arestas entre X e Y

Exercício

- $|V(K_{p,q})| = ?$
- $|E(K_{p,q})| = ?$

Definição (Subgrafo)

- H é um subgrafo de G se $V(H) \subseteq V(G)$ e $E(H) \subseteq E(G)$
- H é subgrafo próprio de G se $V(H) \subset V(G)$ ou $E(H) \subset E(G)$
- Se H é um subgrafo de G, então G é um supergrafo de H

Definição (Subgrafo Gerador)

H é um subgrafo gerador de G se é um subgrafo de G tal que $V(H) = V(G)\,$

• Usualmente, é também chamado de subgrafo spanning

Definição (Subgrafo Induzido por Vértices)

Definição O subgrafo induzido de G por V, $V\subseteq V(G)$, denotado por G[V], é o subgrafo H de G tal que V(H)=V e para todo $v,w\in V$, $vw\in E(H)$ se, e somente se, $vw\in E(G)$

Definição (Subgrafo Induzido por Arestas)

O subgrafo induzido de G por E, $E\subseteq E(G)$, denotado por G[E], é o subgrafo H de G tal que E(H)=E e não existe vértice sem aresta incidente em H

Definição (Clique)

 $C \subseteq V(G)$ é uma clique de um grafo G se G[C] é completo

Definição (Grafos Disjuntos em Arestas)

G e H são disjuntos em arestas se $E(G) \cap E(H) = \emptyset$

Definição (Grafos Disjuntos em Vértices)

G e H são disjuntos em vértices se $V(G) \cap V(H) = \emptyset$

Definição (União de Grafos)

A união $G \cup H$ de dois grafos é o grafo J tal que $V(J) = V(G) \cup V(H)$ e $E(J) = E(G) \cup E(H)$

Definição (Complemento de um Grafo)

O complemento de um grafo G, denotado por \bar{G} , é tal que $V(\bar{G})=V(G)$ e $E(\bar{G})=\{vw:v,w\in V(G)\ |\ v\neq w,vw\notin E(G)\}$

Definição (Diferença de Grafo por Vértices)

A diferença de um grafo G por V, $V\subseteq V(G)$, e denotada por G-V, é o grafo G[V(G)-V]

Definição (Diferença de Grafo por Arestas)

A diferença de um grafo G por E, $E\subseteq E(G)$, e denotada por G-E, é o grafo H, onde V(H)=V(G) e E(H)=E(G)-E

Grafos Iguais e Isomorfos

Definição (Grafos Idênticos)

Dois grafos G e H são idênticos $\big(G=H\big)$ se V(G)=V(H) e E(G)=E(H)

Grafos Iguais e Isomorfos

Definição (Grafos Isomorfos)

Dois grafos G e H são isomorfos $(G\cong H)$ se existir uma bijeção $\theta:V(G)\to V(H)$ tal que

$$vw \in E(G) \iff \theta(v)\theta(w) \in E(H)$$

• Bijeção de um conjunto A para um conjunto B é uma correspondência **biunívoca** entre A e B, isto é, a cada elemento de A corresponde sempre um único elemento de B e reciprocamente²

²Amaral, V., Lopes, A., Ralha, E., Sousa, I., Taveira, C. (2014), Revista de Ciência Elementar, 2(1):0047

Isomorfismo

Condições necessárias para isomorfismo

- $oldsymbol{0}$ G e H devem possuir o mesmo número de vértices
- $oldsymbol{Q}$ G e H devem possuir o mesmo número de arestas

Créditos

Parte deste material foi baseada nas notas de aula do Prof. Fabiano Oliveira.