

Sistemas Digitais

Relatório

Docente: Pedro Salgueiro

Trabalho Realizado por:

Fábio Talhinhas nº 55298 João Cortes nº 55404

Índice

Introdução	3
Decisões para o trabalho	4
Moedeiro	5
Entradas do circuito:	5
Saídas do circuito:	5
Estados do circuito:	5
Modelo ASM	6
Tabela de transições de estados:	7
Mapas de Karnaugh do Flip-Flop D e da saída L (dinheiro suficiente)	7
Tabela de verdade do display de 7 segmentos	8
Mapas de Karnaugh do display de 7 segmentos	8
Logigrama:	9
Módulo para servir o café	10
Entradas do circuito:	10
Saídas do circuito:	10
Estados do circuito:	10
Modelo ASM do modulo para servir o café	11
Tabela de transições de estados do módulo de servir o café	12
Mapas de Karnaugh dos Flip-flops D	12
Mapas de Karnaugh das saídas (Doseador de café, bombas de água, Dos de água);	
Logigrama	13
Logigrama da máquina de café (moedeiro + modulo para servir café)	14
Conclusão	15

Introdução

Este trabalho foi proposto no âmbito de termos uma componente prática para avaliação na cadeira de Sistemas Digitais, lecionada pelo professor Pedro Salgueiro.

O principal objetivo deste trabalho é construir um sistema de controlo para uma máquina de café com os componentes adequados ao seu funcionamento, de modo a consolidar variados conceitos abordados, durante o semestre, nas aulas. Para descrevermos o seu modo de funcionamento, foram criados dois modelos ASM, cada um destes mostra o que cada módulo faz (Moedeiro, Módulo para servir o café). De seguida interpretando os mesmos modelos ASM foram construídas as respetivas tabelas de verdade e consequentemente os seus mapas de Karnaugh com a finalidade de conseguirmos as suas funções simplificadas e assim através das equações obtidas nestes mapas, construir o circuito usando o Logisim.

O moedeiro é a componente da máquina que tem como função aceitar as moedas do cliente e fazer a contagem das mesmas de modo a garantir que a quantia introduzida é suficiente para comprar o café. Este modulo é composto por um mecanismo (M), com dois sensores, (M1) que é ativado para moedas de 0,10€ e (M2) que ativa para moedas de 0,20€ sendo que o café tem um custo de 0,30€ e a máquina não dá troco. Para que o cliente possa consultar o valor que já introduziu no display, este mostrará 1 se for introduzida uma moeda de 0,10€, 2 se for introduzida uma moeda de 0,20€ e 3 se o valor introduzido for igual ou superior a 0,30€.

O módulo para servir o café é responsável por tirar o café e é composto por um botão para dar início ao processo de servir o café, um doseador de café, um doseador de açúcar, uma bomba de água e uma lâmpada que indica quando o café está pronto.

O módulo para servir café está ligado ao moedeiro e só é tirado quando a quantia inserida é suficiente. Após o cliente inserir a quantia necessária terá de premir o botão para servir o café. De seguida, a máquina prepara o café acionando o doseador de café, quando acabada a tarefa anterior a máquina aciona a bomba de água por duas vezes e por fim aciona o doseador de açúcar. Estando todos estes passos citados anteriormente o café está pronto e a máquina faz reset.

Decisões para o trabalho

Começamos por interpretar bem o enunciado do trabalho, para que pudéssemos organizar um plano bem estruturado, identificando logo quais as entradas, saídas e os elementos necessários para o bom funcionamento do circuito. O nosso plano consistiu em realizar todo o projeto em papel, para que fosse mais fácil detetar e corrigir os erros que iam surgindo, separando o projeto em duas fases (a fase do moedeiro e a fase do modulo parara servir o café).

Verificamos que o facto de optar pelo projeto em papel poupou-nos bastante tempo na correção de alguns erros cometidos na realização do mesmo.

Em primeiro lugar, na fase do moedeiro, decidimos desenhar o modelo ASM do mesmo, o que inicialmente para nós revelou alguns problemas. Seguidamente, construímos as tabelas de outputs, de código de estados e de excitação dos flipflops utilizados. Foram usados flip-flops D no decorrer do trabalho, pois pensámos que seriam os que facilitariam mais, garantindo uma menor probabilidade de erro. Terminadas as tabelas foram construídos os mapas de Karnaugh necessários e a partir destes, as formas simplificadas as expressões das saídas e dos flip-flops. Prosseguimos por montar o circuito do display com o mesmo processo (tabela de verdade, mapas de Karnaugh e expressões simplificadas). Concluídas estas etapas, projetamos o circuito do moedeiro no Logisim com as expressões anteriores.

Na segunda etapa utilizamos o mesmo método (interpretação do enunciado > identificação das entradas, saídas e estados > modelo ASM > decisão dos flip-flops a usar > tabelas de estados, outputs e transições de estados > mapas de Karnaugh > expressões simplificadas > projeção no Logisim).

Finalmente, com os dois módulos representados no Logisim, por dois circuitos a funcionar corretamente, faltava apenas a ligação entre eles, para que a máquina fizesse reset quando o café fosse retirado da maquina. Decidimos fazer esta parte por logica uma vez que achamos que seria simples.

Moedeiro

Entradas do circuito:

- Para moedas de 10 cêntimos (M1);
- Para moedas de 20 cêntimos (M2);

Saídas do circuito:

• Lâmpada (Dinheiro suficiente);

Estados do circuito:

 Zero - O estado indica que o moedeiro está desligado, ou seja, que não foi inserida nenhuma moeda (o display apresenta o valor de zero);

 10c - O estado indica que no moedeiro foi inserido uma moeda de 10 cêntimos (o display apresenta o valor um);

 20c – O estado indica que no moedeiro foi inserido uma moeda de 20 cêntimos (o display apresenta o valor dois);

 30c – O estado indica que foi inserido o montante suficiente, para que o café seja tirado (o display apresenta o valor três e a lâmpada acende);

Código de estados									
Estado	Código								
00	zero								
01	10c								
10	20c								
11	30c								

Tabela de Outputs							
Estado	L						
00	0						
01	0						
10	0						
11	1						

Tabela de Excitação								
Q*	Q	D						
0	0	0						
0	1	1						
1	0	0						
1	1	1						

Modelo ASM

Tabela de transições de estados:

				Esta						
Entra	adas			C) *	Q		FF D		Saída
M1	M2	actual	seguinte	x1	x0	x1	х0	D1	D0	L
0	0	zero	zero	0	0	0	0	0	0	0
0	0	10 c	10c	0	1	0	1	0	1	0
0	0	20c	20c	1	0	1	0	1	0	0
0	0	-	-	-	-	-	-	-	-	-
0	1	zero	20c	0	0	1	0	1	0	0
0	1	10 c	30c	0	1	1	1	1	1	1
0	1	20c	30c	1	0	1	1	1	1	1
0	1	-	-	-	-	-	-	-	-	-
1	0	zero	10c	0	0	0	1	0	1	0
1	0	10 c	20c	0	1	1	0	1	0	0
1	0	20c	30c	1	0	1	1	1	1	1
1	0	-	-	-	-	1	-	1	-	-
1	1	zero	10c	0	0	0	1	0	1	0
1	1	1 0c	20c	0	1	1	0	1	0	0
1	1	20c	30c	1	0	1	1	1	1	1
1	1	-	-	-	-	-	-	-	-	-

Mapas de Karnaugh do Flip-Flop D e da saída L (dinheiro suficiente)

D1 = x1 + x0M1 +
$$\overline{M1}$$
M2
D0 = $\overline{M1}$ x0 + M2x1 + M1 $\overline{x0}$
L = x1x0

10

Tabela de verdade do display de 7 segmentos

	Display de 7 segmentos									
x1	х0	а	b	С	d	е	f	go		
0	0	1	1	1	1	1	1	0		
1	0	0	1	1	0	0	0	0		
0	1	1	1	0	1	1	0	1		
1	1	1	1	1	1	0	0	1		

Mapas de Karnaugh do display de 7 segmentos

$$b = 1$$

$$c = \overline{x1} + x2$$

$$d = x1 + \overline{x2}$$

$$e = \overline{x2}$$

$$f = \overline{x1} \ \overline{x2}$$

$$g = x1$$

 $a = x1 + \overline{x2}$

Logigrama:

Módulo para servir o café

Entradas do circuito:

- Botão para dar início ao processo de servir o café;
- Lâmpada (Dinheiro suficiente): indica que foi inserida a quantidade suficiente de dinheiro;

Saídas do circuito:

Lâmpada (Pronto a retirar);

Estados do circuito:

 Lâmpada (dinheiro suficiente) – A lâmpada acende e o estado indica que foi inserido o montante suficiente, para que o café seja tirado;

 Doseador de café - Este estado indica que o botão está ativado logo, o processo de tirar o café foi iniciado;

 Bomba de água - Este estado indica que o doseador de café já inseriu a dose de café e vai introduzir a água em dois passos;

Doseador de açúcar – Neste estado será introduzido o açúcar;

 Lâmpada (Pronto a retirar) – A lâmpada acende e o estado indica que o café está pronto a ser retirado e consumido;

Código de estados							
Estado	Código						
000	Lâmpada(dinheiro suficiente)						
001	Doseador de café						
010	Bomba de água						
011	Bomba de água						
100	Doseador de açúcar						
101	Lâmpada(Pronto a retirar)						

Tabela de Outputs								
Estado	L							
000	0							
001	0							
010	0							
011	0							
100	0							
101	1							

Tabela de Excitação									
Q* Q D									
0	1	0							
0	10	1							
1	11	0							
1	100	1							

Modelo ASM do modulo para servir o café

Tabela de transições de estados do módulo de servir o café

	Q*				Q			FF-D					
x2	x1	х0	Botão	x2	x1	х0	D2	D1	D0	DC	BA	DA	L
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	1	1	0	0	0
0	0	1	1	0	1	0	0	1	0	0	1	0	0
0	1	0	1	0	1	1	0	1	1	0	1	0	0
0	1	1	1	1	0	0	1	0	0	0	0	1	0
1	0	0	1	1	0	1	1	0	1	0	0	0	1
1	0	1	1	0	0	0	0	0	0	0	0	0	0

Mapas de Karnaugh dos Flip-flops D

$$D2 = x1x0 + x2\overline{x0}$$

$$D1 = \overline{x2} \times 0 \overline{x1} + \times 1 \overline{x0}$$

$$D0 = x1x0 + x2\overline{x0}$$

Mapas de Karnaugh das saídas (Doseador de café, bombas de água, Doseador de água);

Logigrama

Logigrama da máquina de café (moedeiro + modulo para servir café)

Conclusão

Com a realização deste trabalho conseguimos perceber melhor o programa Logisim, as tabelas de transições, mapas de Karnaugh e o modelo ASM, com o objetivo de construir o circuito do funcionamento de uma máquina de café.

Através deste trabalho, verificámos que todos estes conceitos podem ser aplicados nas mais variadas situações do nosso dia a dia.

Os conceitos lecionados nas aulas, permitiram-nos resolver o enunciado consolidando conhecimentos e utilizando-os numa situação real.

Este trabalho requereu, da nossa parte, empenho, dedicação, tempo e trabalho de equipa.

