CL254 Project

Group 7 Presentation: Flow pattern in a diverging channel under laminar conditions

200020098 Prashul Vaishnav

200020142 Sonawane Gauri Sanjay

200020016 Agrim Gupta

Problem Statement:

Flow pattern in a diverging channel under laminar conditions.

- For a given geometry, use a δ t that gives a stable flow i.e. velocity profile does not change and a mesh that is fine enough so that the flow is mesh independent.
- For a given geometry use different values of P_0 to obtain ΔP v/s flow rate curves for the flow.
- For a fixed value of P_o use different values of H_i to study how the flow rate varies. Use a large enough value of P_o so that R_e >> 1 but the flow is laminar.
- Obtain streamlines for the flow and check for boundary layer separation.

NOTE: p in the simulations is P/ρ

Solution:

Geometry provided:

a). Using icoFoam we get,

Velocity profile

Pressure profile

b). We plotted the velocity curve for different value of δ t and plotted all those curve on excel plot, to compare when the curves overlaps.

One of the plots is this,

$$\delta t = 0.001$$

b). For this again we plotted the velocity profile for different mesh refines and then plotted them on the same graph.

c). Delta P v/s Q curve

d). Q v/s Hi curve

Streamlines:

Note that here pressure does not get negative at any point in the flow. Therefore there is no formation of boundary layer.

