楕円型正則性

みつば (@mittlear1)

2021年3月13日

目次

1	微分作用素	3
1.1	微分作用素の定義	3
1.2	主表象	3
1.3	形式的随伴作用素	3
2	Sobolev 空間	4
2.1	Euclid 空間上の Sobolev 空間	4
2.2	コンパクト多様体上の Sobolev 空間	5
3	擬微分作用素	6
3.1	擬微分作用素の定義	6
3.2	表象の漸近展開・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3.3	楕円性	6
4	楕円型正則性	7
4.1	局所正則性	7
4.2	大域正則性	7
5	Hodge 分解	8

記法

№:0以上の整数全体.

 $C^\infty(M,N)$: M から N への C^∞ 級写像全体.

 $C_c^\infty(M)$: コンパクト台を持つ M 上の C^∞ 級関数全体.

 $\mathcal{S}(\mathbb{R}^n,C^m)$: \mathbb{R}^n 上の \mathbb{C}^m 値の Schwartz の急減少関数全体.

- 1 微分作用素
- 1.1 微分作用素の定義
- 1.2 主表象
- 1.3 形式的随伴作用素

2 Sobolev 空間

2.1 Euclid 空間上の Sobolev 空間

 (\cdot,\cdot) を \mathbb{C}^m 上の標準的な Hermite 計量とする.

定義 2.1 $f,g \in \mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)$ および $s \in \mathbb{R}$ に対して

$$\langle f, g \rangle_s = \int_{\mathbb{R}}^n (\hat{f}(\xi), \hat{g}(\xi)) (1 + |\xi|)^{2s} d\xi$$

で内積 $\langle \cdot, \cdot \rangle_s$ を定め,ここからできるノルム $\|\cdot\|$ による $\mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ の完備化を $L^2_s(\mathbb{R}^n, \mathbb{C}^m)$ と書き,s 次の Sobolev 空間という.

補題 2.2 f に対して $\hat{f}(\xi)(1+|\xi|)^s$ を対応させることでできる $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)$ から $L^2(\mathbb{R}^n,\mathbb{C}^m)$ への線型写像は $L^2_s(\mathbb{R}^n,\mathbb{C}^m)$ から $L^2(\mathbb{R}^n,\mathbb{C}^m)$ への Hilbert 空間としての同型写像に一意的に延長される.

命題 2.3 $C_c^{\infty}(\mathbb{R}^n,\mathbb{C}^m)$ は $L_s^2(\mathbb{R}^n,\mathbb{C}^m)$ の中で稠密である.

命題 **2.4** $s > t \in \mathbb{R}$ とする. $\mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ からそれ自身への恒等写像は有界線型写像

$$\iota_{st} \colon L^2_s(\mathbb{R}^n, \mathbb{C}^m) \to L^2_t(\mathbb{R}^n, \mathbb{C}^m)$$

を誘導し、 ι_{st} は単射である.

定義 2.5 位相線形空間 $L^2_{\infty}(\mathbb{R}^n,\mathbb{C}^m)$ を

$$L^2_{\infty}(\mathbb{R}^n,\mathbb{C}^m) = \varprojlim_{s \in \mathbb{R}} L^2_s(\mathbb{R}^n,\mathbb{C}^m)$$

で定める. 命題 2.4 より、自然な写像 $\iota_s\colon L^2_\infty(\mathbb{R}^n,\mathbb{C}^m)\to L^2_s(\mathbb{R}^n,\mathbb{C}^m)$ は単射である.

定義 2.6 $s \in \mathbb{N}$ のとき、 $f \in \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ に対して $||f||_{W^{s,2}}$ を

$$||f||_{W^{s,2}}^2 = \sum_{|\alpha| \le s} ||\partial^{\alpha} f||_{L^2}^2$$

で定める. これは $S(\mathbb{R}^n,\mathbb{C}^m)$ 上のノルムである.

命題 2.7 $s \in \mathbb{N}$ のとき、 $S(\mathbb{R}^n, \mathbb{C}^m)$ 上のノルムとして $\|\cdot\|_s$ と $\|\cdot\|_{W^{s,2}}$ は同値である.

命題 2.8 $\phi \in \mathcal{S}(\mathbb{R}^n, \mathbb{C})$ に対して $M_{\phi} \colon \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m) \to \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ を

$$M_{\phi}f = \phi f$$

で定めると、これは $L^2(\mathbb{R}^n,\mathbb{C}^m)$ からそれ自身への有界線型写像に延長される.

命題 2.9 $(\cdot,\cdot)_{L^2}$: $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m) \times \mathcal{S}(\mathbb{R}^n,\mathbb{C}^m) \to \mathbb{C}$ を

$$(f,g)_{L^2} = \int_{\mathbb{R}^n} (f(x), g(x)) dx$$

で定めると, $(\cdot,\cdot)_{L^2}$ は任意の $s\in\mathbb{R}$ で連続な sesqui-linear form

$$(\cdot,\cdot)_{L^2}^s\colon L^2_s(\mathbb{R}^n,\mathbb{C}^m)\times L^2_s(\mathbb{R}^n,\mathbb{C}^m)\to\mathbb{C}$$

を定める. また, 任意の $f \in L^2_s(\mathbb{R}^n, \mathbb{C}^m)$ について

$$||f||_s = \sup_{g \in \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m) \setminus 0} \frac{|(f, g)_{L^2}^s|}{||g||_{-s}}$$

が成立する.

定義 2.10 (1) $k\in\mathbb{N}$ に対して $C^k_0(\mathbb{R}^n,\mathbb{C}^m)$ を、 C^k 級関数 $f\colon\mathbb{R}^n\to\mathbb{C}^m$ であって

$$|\alpha| \le k \Rightarrow \lim_{|x| \to \infty} |\partial^{\alpha} f| = 0$$

をみたすもの全体のなすベクトル空間とする. また, $C_0^k(\mathbb{R}^n,\mathbb{C}^m)$ 上のノルム $\|\cdot\|_{C_0^k}$ を

$$||f||_{C_0^k} = \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} f|$$

で定める.

(2) $C_0^{\infty}(\mathbb{R}^n, \mathbb{C}^m)$ \mathcal{E}

$$C_0^\infty(\mathbb{R}^n,\mathbb{C}^m) = \bigcap_{k \in \mathbb{N}} C_0^k(\mathbb{R}^n,\mathbb{C}^m)$$

で定め,すべての $k\in\mathbb{N}$ で $C_0^\infty(\mathbb{R}^n,\mathbb{C}^m)\to C_0^k(\mathbb{R}^n,\mathbb{C}^m)$ が連続となる最弱の位相を入れる.

命題 2.11 $C_0^k(\mathbb{R}^n,\mathbb{C}^m)$ は $\|\cdot\|_{C_0^k}$ によって Banach 空間になる.

定理 2.12(Sobolev の埋め込み定理) $k\in\mathbb{N},\ s>k+n/2$ のとき,自然な包含 $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)\to C_0^k(\mathbb{R}^n,\mathbb{C}^m)$ は単射有界線型写像

$$\eta_{sk} \colon L^2_s(\mathbb{R}^n, \mathbb{C}^m) \to C^k_0(\mathbb{R}^n, \mathbb{C}^m)$$

へと一意的に延長される.

系 2.13 $L^2_\infty(\mathbb{R}^n,\mathbb{C}^m)$ から $C^\infty_0(\mathbb{R}^n,\mathbb{C}^m)$ への単射連続線型写像 η であって, η_{sk} と整合的なものがただ一つ存在する.

2.2 コンパクト多様体上の Sobolev 空間

- 3 擬微分作用素
- 3.1 擬微分作用素の定義
- 3.2 表象の漸近展開
- 3.3 楕円性

- 4 楕円型正則性
- 4.1 局所正則性
- 4.2 大域正則性

5 Hodge 分解

参考文献

- [1] M. Audin and M. Damian, Morse theory and Floer homology, Springer, 2014.
- [2] R. Bott and L. W. Tu, Differential forms in Algebraic Topology, Springer, 1982.
- [3] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- [4] J. M. Lee, Introduction to Smooth Manifolds, Springer, 2000.
- [5] J. Milnor, Morse theory, Princeton University Press, 1963.
- [6] 今野宏,『微分幾何学』, 東京大学出版会, 2013.