

REDES NEURAIS ARTIFICIAIS APLICADAS AO CONTROLE DE VANTS

Gabriel D. Silva, Renan S. Geronel, Douglas D. Bueno. Universidade Estadual "Paulista Júlio de Mesquita Filho", Câmpus de Ilha Solteira, Engenharia Mecânica, gd.silva@unesp.br, Bolsa de Iniciação Científica — CNPq

INTRODUÇÃO

- Modelo paramétrico caixa preta.
- Determinação das forças de controle a partir da posição inicial e trajetória.
- Utilização de redes neurais.

OBJETIVO

• Desenvolver uma rede neural para determinar as forças de controle de um VANT a partir de sua trajetória para auxiliar no controle do mesmo.

MATERIAIS E MÉTODOS

- A determinação das forças de controle será determinada a partir de uma rede neural.
- Rede neural é uma técnica de aprendizado de máquina para reconhecimento de padrões.²

Fonte: próprio autor.

- Algoritmo do modelo paramétrico de caixa branca.¹
- A rede neural fará o papel de uma função inversa a este algoritmo.
- As forças de controle são:

$$\tau = \left[U_1 \ U_2 \ U_3 \ U_4 \right]^{\mathsf{T}} \tag{1}$$

• O vetor de estado é:

$$\mathbf{x}_s = \begin{bmatrix} x \ y \ z \ \theta \ \phi \ \psi \ \dot{x} \ \dot{y} \ \dot{z} \ \dot{\theta} \ \dot{\phi} \ \dot{\psi} \end{bmatrix}^\mathsf{T} \tag{2}$$

• Uma rede neural do tipo *multi-layer perceptron* foi designada para realizar o treinamento nos dados.

RESULTADOS E DISCUSSÕES

- A Fig. 2 compara as forças de controle da rede neural em relação às trajetórias do algoritmo do modelo caixa branca.
- Para U_i (i = 1, 2, 3, 4), a rede neural conseguiu reconhecer os padrões e determinar as forças de controle como esperado.
- Apesar de U_1 parecer estar discrepante na diferença entre os valores reais e os previstos, a escala do gráfico fortalece essa percepção.

Figura 2: Comparação entre a previsão do modelo e o valor real

Fonte: próprio autor.

CONCLUSÃO

A rede neural conseguiu determinar as forças de controle normalizadas de forma satisfatória.

Tempo (s)

- Próximos passos:
 - Desenvolver um algoritmo para desnormalizar a matriz de saída da rede.
 - Simular as trajetórias com os valores normalizados e desnormalizados obtidos pela rede.
 - Sofisticar a rede neural conforme a necessidade.

AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), proc. no. 406328/2021-8.

- [1] Geronel, R. S., Botez, R. M., and Bueno, D. D. Dynamic responses due to the Dryden gust of an autonomous quadrotor UAV carrying a payload. *The Aeronautical Journal* 127, 1307 (Jan. 2023), 116–138.
- [2] HAYKIN, S. S. Neural Networks: A Comprehensive Foundation, 2nd ed ed. Prentice Hall, Upper Saddle River, N.J, 1999.