Tuborish 4

$$T(n) = 3T(n/2) + n^2$$

$$= a = 3, b = 2$$

$$n \log_3^{\alpha} = n \log_3^{\frac{3}{2}}$$

$$Comparing \quad n \log_2^{\frac{3}{2}} \quad and \quad n^2$$

$$n \log_2^{\frac{3}{2}} < n^2 \quad (ane 3)$$

$$- according to mustro Theorem
$$T(n) = uT(n/2) + n^2$$

$$a = uT(n/2) + n^2$$

$$a = uT(n/2) + 2n$$

$$a = uT($$$$

$$a=1$$
, $b=2$
 $n \log 2' = n^0 = 1$
 2^n (care 3)

According to mosters thrown $T(n) = 8(2^n)$

(3)

$$T(n) = 2^n T(n/2) + n^n$$

... Moster's theorem is not applicable as a is function

(5)
$$T(n) = 16T(n_4) + n$$
 $a = 16$, $b = 4$, $p(n) = n$
 $n = 16$, $b = 4$, $p(n) = n$
 $n = 16$, $n = 1$

(a)
$$T(n) = aT(n/2) + ndog n$$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $b = a$, $f(n) = ndog n$
 $a = a$, $a = a$, $a = a$, $a = a$
 $a = a$, $a = a$, $a = a$
 $a = a$, $a = a$
 $a = a$, $a = a$
 $a =$

II)
$$T(n) = 4T(n) + \log n$$
 $a = 4$, $b = 2$
 $n^2 > f(n)$

Actualized to marteria, $T(n) = \delta(n^2)$.

In) = $sqxt(n) + (n/2) + \log n$

That this Not applicable as a is not constant.

Is $T(n) = sqxt(n) + (n/2) + \log n$
 $sqxt(n) + \log$

16 T(n) =
$$3 + (n/4) + ndogn$$
 $a = 3$, $b = 4$, $f(n) = ndogn$
 $n dogs^{n} = ndogs^{3} = no.79$
 $n dogs^{n} = ndogs^{3} = no.79$
 $n dogs^{n} = ndogs^{3} = no.79$
 $T(n) = 9 + (n/3) + n/2$
 $a = 3, b = 3, f(n) = n$
 $n dogs^{n} = n dogs^{3} = n$
 $a = 3, b = 3, f(n) = n$
 $a = 0, h = 0(\frac{n}{2})$
 $According to most rish thrown $T(n) = 0$ ($n dogn$)

 $T(n) = 6 + (n/3) + n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b = 3, f(n) = n^{2} dogn$
 $a = 6, b =$$

T(n) = 64+ (n/8)-n2-logn

Master's thrown is not applicable as P(n) is not increasing fruition.

(E)

T(n) = 7T(n/3)+n2

a=7, b=3, $p(n)=n^2$

nlogsa = nlog37 = not7

n"7 < n2

... According to mouters, $T(n) = O(n^2)$

(22)

T(n) = T(n/2)+n(2-ain)

In Marties theorem is n't applicable since regularity condition is isockated in Care 3.