FMFP - Lecture Notes Week 2

Ruben Schenk, ruben.schenk@inf.ethz.ch ${\it March~16,~2022}$

0.1 First-Order Logic

0.1.1 Syntax

In first-order logic we have two syntactic categories: terms and formulae.

A signature consists of a set of function symbols \mathcal{F} and a set of predicate symbols \mathcal{P} . We write f^k (or p^k) to indicate function symbol f (or predicate symbol p) has arity $k \in \mathcal{N}$. Constants are 0-ary function symbols.

Now, let \mathcal{V} be a set of variables. Then:

Definition: Term, the terms of first-order logic, is the smallest set where:

- 1. $x \in Term \text{ if } x \in V$, and
- 2. $f^n(t_1, ..., t_n) \in Term \text{ if } f^n \in \mathcal{F} \text{ and } t_i \in Term, \text{ for all } 1 \leq i \leq n.$

Definition: Form, the formulae of first-order logic, is the smallest set where:

- 1. $\perp \in Form$,
- 2. $p^n(t_1,...,t_n) \in Form \text{ if } p^n \in \mathcal{P} \text{ and } t_i \in Term, \text{ for all } 1 \leq j \leq n,$
- 4. $Qx.A \in Form \text{ if } A \in Form, x \in \mathcal{V}, \text{ and } Q \in \{\forall, \exists\}.$

Each occurrence of each variable in a formula is either **bound** or **free.** A variable occurrence x in a formula A is **bound** if x occurs within a subformula B of A of the form $\exists x.B$ or $\forall x.B$.

0.1.2 Binding and α -conversion

Names of bound variables are irrelevant, they just encode the binding structure. We can rename *bound* variables, this process is called α -conversion.

It is important to note that the renaming must preserve the binding structure!

Some notes on bindings and parentheses:

- \wedge binds stronger than \vee , and \vee binds stronger than \rightarrow .
- \rightarrow associates to the right, land and lor to the left.
- Negation binds stronger than binary operators.
- Quantifiers extend to the right as far as possible: to the end of the line or ')'

$$\frac{\left(p \lor \left(q \land \left(\underline{\neg r}\right)\right)\right) \to \left(p \lor q\right)}{p \to \left(\left(q \lor p\right) \to r\right)}$$

$$\frac{p \to \left((q \lor p) \to r\right)}{p \land \left(\forall x. \left(q(x) \lor r\right)\right)}$$

$$\neg \left(\forall x. \left(p(x) \land \left(\forall x. \left(q(x) \land r(x)\right) \land s\right)\right)\right)$$

0.1.3 Semantics

A structure is a pair $S = \langle U_S, I_S \rangle$ where U_S is a nonempty set, the universe, and I_S is a mapping where:

- 1. $I_{\mathcal{S}}(p^n)$ is an *n*-ary relation on $U_{\mathcal{S}}$, for $p^n\mathcal{P}$, and
- 2. $I_{\mathcal{S}}(f^n)$ is an n-ary (total) function on $U_{\mathcal{S}}$, for $f^n \in \mathcal{F}$

As a shorthand, we write $p^{\mathcal{S}}$ for $I_{\mathcal{S}}(p)$ and $f^{\mathcal{S}}$ for $I_{\mathcal{S}}(f)$.

An **interpretation** is a pair $\mathcal{I} = \langle \mathcal{S}, v \rangle$, where $\mathcal{S} = \langle U_{\mathcal{S}}, I_{\mathcal{S}}$ is a structure and $v : \mathcal{V} \to U_{\mathcal{S}}$ is a valuation. The **value** of a term t under the interpretation $\mathcal{I} = \langle \mathcal{S}, v \rangle$ is written as $\mathcal{I}(t)$ and defined by:

- 1. $\mathcal{I}(x) = v(x)$, for $x \in \mathcal{V}$, and
- 2. $\mathcal{I}(f(t_1, ..., t_n)) = f^{\mathcal{S}}(\mathcal{I}(t_1), ..., \mathcal{I}(t_n)).$

Satisfiability is the smallest relation $\models \subseteq Interpretations \times Form$ satisfying:

- $\langle \mathcal{S}, v \rangle \vDash p(t_1, ..., t_n)$ if $(\mathcal{I}(t_1), ..., \mathcal{I}(t_n)) \in p^{\mathcal{S}}$, where $\mathcal{I} = \langle \mathcal{S}, v.$
- $\langle \mathcal{S}, v \rangle \vDash \forall x. A \text{ if } \langle \mathcal{S}, v[x \to a] \rangle \vDash A, \text{ for all } a \in U_{\mathcal{S}}.$
- $\langle \mathcal{S}, v \rangle \vDash \exists x. A \text{ if } \langle \mathcal{S}, v[x \to a] \rangle \vDash A, \text{ for some } a \in U_{\mathcal{S}}.$

Here, $v[x \to a]$ is the valuation v' identical to v, except that v'(x) = a.

When $\langle \mathcal{S}, v \rangle \vDash A$, we say that A is satisfied with respect to $\langle \mathcal{S}, v \rangle$ or $langle \mathcal{S}, v \rangle$ is a **model** of A. Note that if A does not have free variables, satisfaction does not depend on the valuation v. We write $\mathcal{S} \vDash A$. When every interpretation is a model, we write $\vDash A$ and say that A is **valid**.

A is satisfiable if there is at least one model for A (and said to be contradictory otherwise).

Example: Consider the following examples:

- $\forall x. \exists y. y * 2 = x \text{ satisfied w.r.t. rationals.}$
- $\forall x. \forall y. x < y \rightarrow \exists z. x < z \land z < y$ satisfied w.r.t. any dense order.
- $\exists x.x \neq 0$ satisfied w.r.t. structures S with ≥ 2 elements in U_S .
- $(\forall x.p(x, x)) \rightarrow p(a, a)$ is valid.

0.1.4 Substitution

Substitution describes the process of replacing in A all occurrences of a free variable x with some term t. We write $A[x \to t]$ to indicate the substitution.

Example:

$$A \equiv \exists y.y * x = x * z$$

$$A[x \to 2 - 1] \equiv \exists y.y * (2 - 1) = (2 - 1) * z$$

$$A[x \to z] \equiv \exists y.y * z = z * z$$

All free variables of t must still be free in $A[x \to t]$. Avoid capture! If necessary, α -convert A before substitution.

0.1.5 Universal Quantification

The rules are as follows:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x. A} \forall -I^* \qquad \frac{\Gamma \vdash \forall x. A}{\Gamma \vdash A[x \mapsto t]} \forall -E$$

The side condition * is: x must not be free in any assumption in Γ .

0.1.6 Existential Quantification

The rules are as follows:

$$\frac{\Gamma \vdash A[x \mapsto t]}{\Gamma \vdash \exists x. A} \exists -I \qquad \frac{\Gamma \vdash \exists x. A \qquad \Gamma, A \vdash B}{\Gamma \vdash B} \exists -E *$$

The side condition * is: x is neither free in B nor free in Γ .

0.2 Equality

Equality is a logical symbol with associated proof rules. One speaks of *first-order logic with equality* rather than equality just being another predicate:

- Extended language: $t_1 = t_2 \in Form \text{ if } t_1, t_2 \in Term$
- extended definition of semantic entailment \vDash : $\mathcal{I} \vDash t_1 = t_2$ if $\mathcal{I}(t_1) = \mathcal{I}(t_2)$

Equality is an equivalence relation with the following rules:

$$\frac{\Gamma \vdash t = s}{\Gamma \vdash t = t} \textit{ ref } \qquad \frac{\Gamma \vdash t = s}{\Gamma \vdash s = t} \textit{ sym} \qquad \frac{\Gamma \vdash t = s}{\Gamma \vdash t = r} \textit{ trans}$$

And equality is also a *congruence* on terms and all definable relations:

$$\frac{\Gamma \vdash t_1 = s_1 \quad \cdots \quad \Gamma \vdash t_n = s_n}{\Gamma \vdash f(t_1, \dots, t_n) = f(s_1, \dots, s_n)} \, \textit{cong}_1$$

$$\frac{\Gamma \vdash t_1 = s_1 \quad \cdots \quad \Gamma \vdash t_n = s_n \quad \Gamma \vdash p(t_1, \dots, t_n)}{\Gamma \vdash p(s_1, \dots, s_n)} \, \textit{cong}_2$$

0.3 Correctness

Correctness is important! But what does correctness mean? What properties should hold?

- Termination: Important for many, but not all, programs.
- Functional behavior: Function should return "correct" value.

0.3.1 Termination

If f is defined in terms of functions $g_1, ..., g_k$ ($g_i \neq f$), and each g_i terminates, then so does f. The problem we encounter here is recursion, i.e. when some $g_i = f$.

A sufficient condition for termination is that arguments must be smaller along a well-founded order on function's domain:

• An order > on a set S is **well-founded** iff. there is no infinite decreasing chain $x_1 > x_2 > x_3 > \dots$ for $x_i \in S$.

We can construct new well-founded relations from existing ones:

Let R_1 and R_2 be binary relations on a set S. The composition of R_1 and R_2 is defined as:

$$R_2 \circ R_1 \equiv \{(a, c) \in S \times S \mid \exists b \in S.a R_1 b \land b R_2 c\}$$

Note: For binary relation R, we write a R b for $(a, b) \in R$.

Let $R \subseteq S \times S$. Define:

$$R^{1} \equiv R$$

$$R^{n+1} \equiv R \circ R^{n}, \text{ for } n \ge 1$$

$$R^{+} \equiv \bigcup_{n \ge 1} R^{n}$$

So $a R^+ b$ iff. $a R^i b$ for some $i \ge 1$.

Lemma: Let $R \subseteq S \times S$. Let $s_0, s_i \in S$ and $i \ge 1$. Then $s_0 R^i s_i$ iff. there are $s_1, ..., s_{i-1} \in S$ such that $s_0 R s_1 R ... R s_{i-1} R s_i$.

Theorem: If > is a well-founded order on set S, then >⁺ is also well-founded on S.

Example: Consider the following function:

```
fac 0 = 1
fac n = n * fac (n - 1)
```

fac n has only fac (n - 1) as a recursive call, and n > n - 1. Here, > is the standard ordering over the natural numbers. Therefore, the function terminates.

0.3.2 Proofs

Consider the following program:

Can we prove that maxi $n m \ge n$? We to a reasoning by cases:

We have $n \ge m \lor \neg (n \ge m)$. Now we show that maxi n m >= n for both cases:

• Case 1: $n \ge m$, then max n m = n and $n \ge n$.

• Case 2: $\neg (n \ge m)$, then maxi n m = m. But m > n, so maxi n m >= n.

But how do we prove a formula P (with free variable n), for all $n \in \mathcal{N}$? For example, how do we prove the following equality:

$$\forall n \in \mathcal{N}.0 + 1 + 2 + ... + n = n \cdot (n+1)/2$$

We can do a **proof by induction:**

- Base case: Prove $P[n \to 0]$
- Step case: For an arbitrary m not free in P, prove $P[n \to m+1]$ under the assumption $P[n \to m]$.

Example: We have the following conjecture: $\forall n \in \mathcal{N}.(\text{sumPowers } n) + 1 = \text{power2 } (n+1) \text{ with the following code:}$

```
power2 :: Int -> Int
power2 0 = 1
power2 r = 2 * power2 (r - 1)

sumPowers :: Int -> Int
sumPowers 0 = 1
sumPowers r = sumPowers (r - 1) + power2 r
```

We want to proof: Let $P \equiv (\text{sumPowers } n) + 1 = \text{power2 } (n+1)$. We show $\forall m \in \mathcal{N}.P$ by induction on n.

Base case: Show $P[n \to 0]$:

(sumPowers 0) + 1 = 1 + 1 = 2
power2
$$(0+1) = 2 \cdot \text{power2 } 0 = 2 \cdot 1 = 2$$

Step case: Assume $P[n \to m]$ for an arbitrary m (not in P), i.e.

$$(\text{sumPowers } m) + 1 = \text{power2 } (m+1)$$

and prove $P[n \to m+1]$, i.e.

$$(\text{sumPowers } (m+1)) + 1 = \text{power2 } ((m+1) + 1).$$

Proof:

```
 (\text{sumPowers } (m+1)) + 1 = \text{sumPowers } ((m+1)-1) + \text{power2 } (m+1) + 1 \quad (\text{def.})   = \text{sumPowers } (m) + 1 + \text{power2 } (m+1) \quad (\text{arithmetic})   = \text{power2 } (m+1) + \text{power2 } (m+1) \quad (\text{ind- hypothesis})   = 2 \cdot \text{power2 } (m+1) \quad (\text{arithmetic})   = \text{power2 } (m+2) \quad (\text{def.})
```

We have proven (sumPowers n) + 1 = power2 (n + 1).

The general schema for **well-founded induction** is given as:

- To prove: $\forall n \in \mathcal{N}.P$
- Fix: An arbitrary m not free in P
- Assume: $\forall l \in \mathcal{N}.l < m \rightarrow P[n \rightarrow l] \ (induction \ hypothesis)$
- Prove: $P[n \rightarrow m]$

1 More on Haskell

1.1 List and Abstraction

1.1.1 List Type

We introduce a new type constructor: **List types,** i.e. if T is a type, then [T] is a type. The elements of [T] are:

- *Empty list:* [] :: [T]
- Non-empty list: (x : xs) :: [T] m if x :: T and xs :: [T]

Syntactic sugar: We can write 1: (2: (3: [])) as [1, 2, 3].