EE113 Digital Signal Processing

Spring 2019

Homework 1

Due: Monday, April 8 at 12pm

Instructor: Prof. Christina Fragouli

TA: Dhaivat Joshi and Joris Kenanian

March 31, 2019

Problem 1. (30 points) For the signal x[n] = n(u[n+4] - u[n-5]), compute and sketch the following:

- (a) (5 points) $g_1[n] = x[n-3]$
- (b) (5 points) $g_2[n] = x[2n-3]$
- (c) (5 points) $g_3[n] = x[-n]$
- (d) (5 points) $g_4[n] = x[2-n]$
- (e) (5 points) $g_5[n] = \begin{cases} x[n/2], & \text{if } n/2 \text{ is integer} \\ 0, & \text{else} \end{cases}$
- (f) (5 points) $g_6[n] = x[n]\delta[n]$

Problem 2. (15 points) Consider the sequences

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & 0 \le n \le 3\\ 0, & otherwise \end{cases}$$

and

$$y[n] = \begin{cases} \left(\frac{1}{4}\right)^{n-1}, & 0 \le n \le 5\\ 0, & otherwise \end{cases}$$

- (a) (5 points) Plot the samples of x[n] and y[n].
- (b) (5 points) Plot the samples of the sequence z[n] = x[n]y[n], which are obtained from the point-wise product of the samples of x[n] and y[n].
- (c) (5 points) What is the energy of the sequences x[n] and z[n]?

Problem 3. (10 points) For each of the discrete-time signals listed below, determine if the signal is periodic or not. If the signal is periodic, determine the fundamental period.

- (a) (5 points) $x[n] = 3\cos(\frac{5}{17}n + \frac{\pi}{4})$
- (b) (5 points) $x[n] = 2 \cos(0.48\pi n) + 1.5 \sin(0.8\pi n + \pi/3)$

Problem 4. (15 points) Consider an arbitrary sequence x[n] with even and odd parts denoted by $x_e[n]$ and $x_o[n]$, respectively. Show that the DC level of x[n] coincides with the DC level of its even part.

The DC level of a sequence x[n] is defined as the average value of the sequence:

$$\bar{x} \triangleq \lim_{N \to \infty} \left(\frac{1}{2N+1} \cdot \sum_{n=-N}^{N} x[n] \right)$$

Problem 5. (15 points) Let $x[n] = x_1[n]x_2[n]$. Show that:

- (a) (5 points) If both $x_1[n]$ and $x_2[n]$ are even, then x[n] is even.
- (b) (5 points) If both $x_1[n]$ and $x_2[n]$ are odd, then x[n] is even.
- (c) (5 points) If $x_1[n]$ is even and $x_2[n]$ is odd, then x[n] is odd.

Problem 6. (15 points) Consider a discrete-time signal, x[n], defined over the interval $n \ge 0$. At each time n, let $\bar{x}[n]$ denote the average value of the samples x[n] from time k = 0 up to time k = n, i.e..

$$\bar{x}[n] = \frac{1}{n+1} \sum_{k=0}^{n} x[k]$$

This is an example of one processing algorithm; it acts on the data and generates $\bar{x}[n]$. We would like to motivate an alternative processing algorithm that operates on the data in a recursive manner to generate the same $\bar{x}[n]$. Show that $\bar{x}[n]$ satisfies the recursion:

$$\bar{x}[n] = \frac{n}{n+1}\bar{x}[n-1] + \frac{1}{n+1}x[n]$$

with initial condition $\bar{x}[0] = x[0]$. Note that the above algorithm is in terms of the previous value $\bar{x}[n-1]$ and the most recent term in the sequence, x[n]. In this way, the second procedure for evaluating the mean of the sequence does not need to save all prior data; the history of the prior data is incorporated into $\bar{x}(n-1)$ and only the most recent sample, x[n], is needed along with $\bar{x}[n-1]$ to evaluate $\bar{x}[n]$.