Contents

1 Problem Types		lem Types
2	2 Derivations 3 Concepts 4 Equations	
3		
4		
	4.1 I	Euler-Lagrange Eq.'s
		Invariance of the Lagrangian
	4.3 I	Parallel Axis Theorem
	4.4 I	Intermediate Axis Theorem
	4.5 \overline{I}	Hamilton's Eq.'s

Problem Types

Derivations

Concepts

Equations

4.1 Euler-Lagrange Eq.'s

Euler-Lagrange Equations For one coordinate q

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0$$

4.2 Invariance of the Lagrangian

For the two Lagrangians

$$\mathcal{L} = T - V$$

and

$$\mathcal{L}' = T - V + \frac{df(x,t)}{dt}$$

the dynamics are exactly the same for any function f(x,t).

- 4.3 Parallel Axis Theorem
- 4.4 Intermediate Axis Theorem
- 4.5 Hamilton's Eq.'s