Modélisation statistique

#2.b Invariance aux transformations linéaires des variables explicatives

Dr. Léo Belzile HEC Montréal

Transformations linéaires des variables explicatives

Considérez le log du nombre quotidien de locations de Bixi en fonction de la température en degrés Celcius et Farenheit.

Supposez que l'effet de la température sur le log du nombre de locations est

$$lognutilisateur = \alpha_0 + \alpha_1 celcius + \varepsilon.$$

lacktriangle Interprétation de $lpha_1$: l'augmentation moyenne du log du nombre de locations par jour quand la température aucmente de $1^{\circ}C$.

Le modèle en Farenheit est

$$lognutilisateur = \gamma_0 + \gamma_1 farenheit + \varepsilon.$$

Sortie SAS

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	8.844327052	0.02819099	313.73	<.0001
celcius	0.048566261	0.00135205	35.92	<.0001
•		Erreur		
Paramètre	Estimation		Valeur du test t	Pr > t
	Estimation 7.980926861	type	Valeur du test t	Pr > t <.0001

Les deux unités de mesures sont reliées par la transformation linéaire

1.8celcius +32 = farenheit.

et on trouve que $lpha_0=\gamma_0+32\gamma_1$ et $lpha_1=1.8\gamma_1$.

Unicité de la solution

Les paramètres du modèle postulé avec les deux prédicteurs,

lognutilisateur =
$$\beta_0 + \beta_c$$
celcius + β_f farenheit + ε ,

ne sont pas **identifiables**, puisque toute combinaison linéaire des deux solutions donne les même valeurs ajustées.

Pour
$$k\in\mathbb{R}$$
, $\beta_0=k\alpha_0+(1-k)\gamma_0$, $\beta_1=k\alpha_1$ et $\beta_2=(1-k)\gamma_1$ sont équivalents.

Le rang de \mathbf{X} est 2, mais la matrice de plan d'expérience a 3 colonnes.

- $+ \mathbf{X}^{\top} \mathbf{X}$ n'est pas inversible.
- + la solution de l'équation normale n'est donc pas unique.

Colinéarité

Paramètre	Estimation		Erreur type	Valeur du test t	Pr > t
Constante	8.844327052	В	0.02819099	313.73	<.0001
celcius	0.048566261	В	0.00135205	35.92	<.0001
farenheit	0.000000000	В			

SAS inclut un avertissement si les données sont exactement colinéaires.

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.