Towards Regression

Review LS 7 Comparing Means Hypothesis Tests

- Perform hypothesis testing and estimation to generalize
- Important to know and sample from target popl'n
 - Often the available popl'n ≠target popl'n
- Null hypotheses are crisp assertion, e.g.
 - Null hypothesis; H(0): θ =a (a is a real constant) vs
 - Select apriori alternative one of H(a): $\theta \neq a$ or H(a): $\theta < a$ or H(a): $\theta > a$
 - Use P_value determined from computed value of Z* or t* and compared against distribution of transformed sampling distribution under H(0)

Other concerns

- Data types: metric or ordinal
- Test types: unpaired (two groups), paired (diff)
- Variance: pooled vs not pooled
- Assumption: normality, iid, skewness, metric → parametric test, otherwise non-parametric

Preview of LS 8 Regression

- Start the last of the course's major topics
- Set up the approach and machinery for creating a formal structure to model a functional relationship between elements or variables
- Starting out focusing on simple linear regression (SLR) → one predictor, one response variable and move on to >1 predictor and one response variable multiple linear regression
- Use an estimation method called Ordinary Least Squares (OLS) which is built upon assumptions of MOM estimators RP
- Recall for the the following result $E[(Y-g(X))^2|X]$ called mean square error was the minimized when g(x) = E[Y|X=x]
- In the world of statistics we want BLP = $\sum (Y-E[Y|X])^2 = \sum (\epsilon^2)$ which under the assumptions $\sum (\epsilon)=0$, $cov(\epsilon,X)=0$ and Y (and ϵ) \sim IID \longrightarrow $E[Y|X])=\beta(0)+\beta(1)*X(i)$
- The model correct on average; error term is unpredictable by the X's, referred to as exogeneity, otherwise OLS attributes (incorrectly) some of the variance the error explains to the predictors.

Moment Conditions

- Moment Condition Assumptions $\Sigma(\epsilon)=0$, $cov(\epsilon,X)=0$
- Let $Y(i) = \beta(0) + \beta(1)*X(i) + \epsilon(i)$ Ybar = $1/n * \sum (\beta(0) + \beta(1)*X(i) + \epsilon(i))$ = $\beta(0) + \beta(1)*\sum (X(i))/n + \sum (\epsilon(i))$
- $Cov(X,Y) = Cov(X, \beta(0) + \beta(1)*X + \varepsilon)$ = $Cov(X, \beta(0)) + Cov(X, \beta(1)*X) + Cov(X, \varepsilon)$ $Cov(X,Y) = \beta(1) * Var(X)$

OLS Normal Equations

- $y(i) = \beta(0) + \beta(1)*x(i) + \epsilon(i)$ or $\epsilon(i) = y(i) \beta(0) + \beta(1)*x(i)$
- Let Q = $\sum \epsilon(i)^2$; want to $\beta(0)$, $\beta(1)$ which minimize Q or min $\sum (y(i) \beta(0) \beta(1) * x(i))^2$
- For $\beta(0)$: $\partial Q/\partial \beta(0) = 2*\sum (y(i) \beta(0) \beta(1)*x(i))(-1)$
- = $-2n*(ybar-\beta(0) \beta(1)*xbar)$
- Min: $0=ybar-\beta hat(0) \beta hat(1)*xbar \rightarrow \beta hat(0) = ybar \beta hat(1)*xbar (note hat)$
- For $\beta(1)$: $\partial Q/\partial \beta(1) = -2*\chi(y(i) \beta(0) \beta(1)*\chi(i))(\chi(i))$
- Min: $0 = -2\sum x(i)(y(i) \beta hat(0) \beta hat(1)*x(i))$
- $\stackrel{?}{\bullet} = \sum x(i)y(i) \beta hat(0) \sum x(i) \beta hat(1)*\sum x(i)^2 \rightarrow$
- $\sum x(i)y(i) \beta hat(1)*\sum x(i)^2 (ybar \beta hat(1)*xbar)* \sum x(i)$
- Then substituting in β hat(0) & rearranging (left as exercise for you)
- \rightarrow β hat(1) = $(\sum (x(i)-xbar)(y(i)-ybar))/\sum (x(i)-xbar)^2$

••	
,	
•	