

Direcciones de red IPv4 Conversión entre notación binaria y decimal

Direcciones IPv4

- Constan de una cadena de 32 bits, divididos en cuatro secciones denominadas octetos.
- Cada octeto contiene 8 bits (o 1 byte) separados por un punto.
- Conversión entre los sistemas binario y decimal
 - Utilizar el cuadro para facilitar la conversión.

Valor de posición	128	64	32	16	8	4	2	1
Número binario								
Cálculo	x 128	x 64	x 32	x 16	x 8	x 4	x 2	x 1
Súmelos								
Resultado								

Direcciones de red IPv₄ Estructura de una dirección IPv₄

- Porciones de red y de host
- La máscara de subred
- AND lógico
 - ¿Cuál es la dirección de red correspondiente a los gráficos?
- Longitud de prefijo
 - ¿Cuál es la longitud de prefijo correspondiente a los gráficos?
- Direcciones de red, de host y de difusión
 - ¿Dirección de red?
 - ¿Rango de hosts válidos?
 - ¿Dirección de difusión?

Direcciones de red IPv4 Unidifusión, difusión y multidifusión IPv4

- Asignación de direcciones IPv4 a un host
 - Estática: se ingresa manualmente
 - Dinámica: Protocolo dinámico de configuración de hosts (DHCP)
- Comunicación IPv4
 - Unidifusión: enviar paquetes de un host a un host individual
 - Difusión: enviar paquetes de un host a todos los hosts presentes en la red
 - Multidifusión: enviar un paquete de un host a un grupo seleccionado de hosts en la misma red o en una red diferente
 - ¿Qué tipos de comunicación representan los gráficos de la derecha?

Direcciones de red IPv4 Tipos de direcciones IPv4

- Direcciones IPv4 públicas y privadas
 - Las direcciones privadas no se pueden enrutar a través de Internet
 - Direcciones privadas:
 - o 10.0.0.0/8 o 10.0.0.0 a 10.255.255.255
 - o 172.16.0.0/12 o 172.16.0.0 a 172.31.255.255
 - o 192.168.0.0/16 o 192.168.0.0 a 192.168.255.255
- Direcciones IPv4 de usuarios especiales
 - Direcciones de loopback
 - o 127.0.0.0 /8 o 127.0.0.1 a 127.255.255.254
 - Direcciones link-local o direcciones con asignación de direcciones IP privadas automática (APIPA)
 - o 169.254.0.0 /16 o 169.254.0.1 a 169.254.255.254
 - Direcciones TEST-NET
 - o 192.0.2.0/24 o 192.0.2.0 a 192.0.2.255
- Asignación de direcciones sin clase
 - CIDR
 - Direcciones IPv4 asignadas según la longitud de prefijo

Verificación de conectividad ICMP

- ICMPv4
 - Confirmación de host
 - Destino o servicio inaccesible
 - Tiempo superado
 - Redireccionamiento del router

Verificación de conectividad Pruebas y verificación

- Ping
 - Probar la pila local
 - o 127.0.0.1 (IPv4)
 - o Probar la conectividad a la LAN local
 - Probar la conectividad a una red remota
- Traceroute
 - Probar la ruta
 - o Tiempo de ida y vuelta (RTT)
 - o TTL de IPv4

División de una red IPv4 en subredes Segmentación de la red

• Dominios de difusión

- Cada interfaz del router conecta un dominio de difusión.
- Las difusiones solo se propagan dentro de su dominio de difusión.

• Problemas con los dominios de difusión grandes

- Operaciones de red lentas como resultado de una gran cantidad de tráfico de difusión.
- Operaciones de dispositivos lentas debido a que un dispositivo debe aceptar y procesar cada paquete de difusión.

Motivos para dividir en subredes

- Solución: reducir el tamaño de la red para crear dominios de difusión más pequeños.
- Dado que cada dominio de difusión se conecta a una interfaz de router diferente, cada dominio necesita propio espacio de direcciones de red.
- El proceso de dividir un rango de direcciones en espacios de direcciones más pequeños se denomina división en subredes.
- Los administradores de redes pueden agrupar dispositivos en subredes que se definen según la ubicación, la unidad organizativa o el tipo de dispositivo.

División de una red IPv4 en subredes División de una red IPv4 en subredes

- Límites del octeto
 - Las subredes pueden crearse en función de los límites del octeto. (/8, /16 o /24)
- División en subredes en el límite del octeto
 - También se conoce como Clases de IPv4.
 - Utiliza los límites del octeto para separar redes de hosts.
- División en subredes sin clase
 - Utiliza bits de direcciones para separar redes de hosts.
 - Permite mucha más flexibilidad.
- Ejemplo de división en subredes sin clase

Longitud	Máscara de subred	Máscara de subred en sistema binario	Cantidad de	Cantidad
de prefijo		(n = red, h = host)	subredes	de hosts
/25	255.255.255.128	nnnnnnn.nnnnnnn.nnnnnnn.nhhhhhh 1111111.11111111.11111111.10000000	2	126

División de una red IPv4 en subredes División de una red IPv4 en subredes (cont.)

Creación de dos subredes

• Al aplicar una máscara de subred /25 a 192.168.10.0, se crean dos subredes iguales, cada una con 126 hosts.

Fórmulas de división en subredes

- Use 2ⁿ para calcular la cantidad de subredes.
- Use 2^h-2 para calcular la cantidad de hosts.
- *n* es la cifra asignada a la porción de red de la dirección.
- h es la cifra asignada a la porción de host de la dirección.

• Creación de cuatro subredes

- Al aplicar una máscara de subred /26 a 192.168.10.0, se crean cuatro subredes iguales, cada una con 62 hosts.
- n = 2, luego, $2^2 = 4$.
- h = 6, luego, $2^6 2 = 62$.

División de una red IPv4 en subredes División en subredes con prefijos /16 y /8

• Creación de subredes con un prefijo /16

- Al aplicar una máscara de subred /16 a 172.16.32.0, se crea una red con 65 534 hosts.
- Al aplicar una máscara de subred /18 a 172.16.32.0, se crean 4 redes con 16 382 hosts en cada red.
- Al aplicar una máscara de subred /22 a 172.16.32.0, se crean 64 redes con 1022 hosts en cada red.

Creación de 100 subredes con un prefijo /16

• Al aplicar una máscara de subred /23 a 172.16.32.0, se crean 128 redes con 510 hosts en cada red.

• Cálculo de hosts

- Use 2^h-2 para calcular la cantidad de hosts.
- h es la cifra asignada a la porción de host de la dirección.
- Creación de 1000 subredes con un prefijo /8
 - Al aplicar una máscara de subred /18 a 20.0.0.0, se crean 1024 redes con 16382 hosts en cada red.

División de una red IPv4 en subredes División en subredes para cumplir con los requisitos

- División en subredes basada en necesidad de hosts
 - Existen dos factores que se deben tener en cuenta al planificar las subredes:
 - El número de direcciones de host que se requieren para cada red
 - El número de subredes individuales necesarias
- División en subredes basada en necesidad de redes
 - Es posible que se solicite a los administradores que dividan un rango IP en subredes para dar lugar a una cantidad de redes específica.
 - Piense en una empresa con 7 departamentos donde cada departamento debe tener su propia subred.
 - Aunque es un factor secundario, la cantidad de hosts por subred también es importante.
- Ejemplo basado en requisitos de la red
 - Suponga que se le entregó el rango 200.42.98.0/24 al administrador.
 - Hay que crear 7 subredes.
 - Cada departamento no tendrá más de 29 hosts.
 - Al aplicar una máscara de subred /27 a 200.42.98.0/24, se crean 8 redes con 30 hosts en cada red.

División de una red IPv4 en subredes

Beneficios de una máscara de red de longitud variable

- Desperdicio de direcciones en la división en subredes tradicional
 - La división en subredes basada en clases no es muy flexible.
 - Genera desperdicio de direcciones.
- Máscaras de subred de longitud variable
 - Con una máscara variable, el administrador tiene más control.
 - Se desperdician menos direcciones.
- VLSM básica
 - Al aplicar una máscara de subred /30 a 200.42.98.0, se crea una red con 2 hosts en cada red.
 - La red 200.42.98.0/30 sería ideal para un enlace en serie.
- VLSM en la práctica
 - Piense en dos routers conectados por un enlace en serie:
 - RouterA sería 200.42.98.1/30 y RouterB sería 200.42.98.2/30.
 - 200.42.98.0/30 es la dirección de red y 200.42.98.3/30 es su dirección de difusión.

Esquemas de asignación de direcciones Diseño estructurado

Planificación de direcciones de red

- La planificación requiere tomar decisiones sobre cada subred en lo que respecta al tamaño, a la cantidad de hosts por subred y a la forma de asignar direcciones de host.
- Planificación de la asignación de direcciones de la red
 - Las principales consideraciones de planificación son:
 - Evitar la duplicación de direcciones
 - Supervisar la seguridad y el rendimiento
 - Proporcionar y controlar el acceso
- Asignación de direcciones a dispositivos
 - Las necesidades de distintos dispositivos también pueden afectar el esquema de asignación de direcciones.
 - Algunos dispositivos comunes son:
 - Dispositivos de usuarios finales, servidores, impresoras, dispositivos de red y gateways

