Announcements

- Office hours
 - Tue March 5, 4-5pm in room 3234
 - Thu March 7:
 - online, 5.30-7pm:
 - write me an email for appointment: gquer@ucsd.edu
- Thu March 7: NO LECTURE
- Readings: 09_ABtesting/readings.md due on Friday 3/8 at 6PM

A/B test: binary outcomes

- Email 1: $n_1 = 605$, clicks: $c_1 = 351$
- Email 2: $n_2 = 585$, clicks: $c_2 = 123$
- Click per email: p₁ = 0.58 , p₂ = 0.21

- Numbers are large (>100) so we can approximate with a Gaussian
- The null hypothesis is $p_1 = p_2$, we can calculate
- $p = (c_1 + c_2) / (n_1 + n_2)$: the mean click rate in the null hypothesis
- $\sigma^2 = p(1-p)$: the variance of the outcome

 If t>1.96, they are actually different (with 95% confidence)

$$t=rac{\hat{p}_1-\hat{p}_2}{\sqrt{\sigma^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}$$

Common Pitfalls of A/B Tests

- 1. Optimizing for the wrong metric
- 2. Failing to correctly randomize
- 3. Stopping early
- 4. Unethical testing
- 5. Non-stationary problem

Multi-Armed Bandits

Perfect Knowledge

Exploring causes regret

Not exploring enough causes more regret

Explore then greedy

Hypothesis testing approach:

- 1. Run each experiment *N* times.
- 2. Choose a winner, and use that forever.

How to determine *N*?

What might go wrong with this approach?

- N too small and you might choose the wrong winner
- N too large and you spend too long experimenting

Upper Confidence Bound

j=1,...,K possible actions

Each action has a stationary random reward between 0 and 1

Choose the action that maximizes:

$$m_j + \sqrt{\frac{2 \ln N}{N_j}}$$

- m_i = the current average reward of arm j
- N = the number of pulls, and
- N_i = the number of pulls on lever j

Other Approaches

- Epsilon Greedy
- Softmax Exploration
- Decayed Epsilon Greedy
- Thompson Sampling