Due Date: February 4th (11pm), 2020

Instructions

- For all questions, show your work!
- Use LaTeX and the template we provide when writing your answers. You may reuse most of the notation shorthands, equations and/or tables. See the assignment policy on the course website for more details.
- Submit your answers electronically via Gradescope.

Question 1 (4-4-4). Using the following definition of the derivative and the definition of the Heaviside step function:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1+e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.

Answer 1.

1. a) For the first case, if x > 0, when $|\epsilon| < x$, $g(x) = g(x + \epsilon) = x + \epsilon$ and g(x) = x, we get;

$$\lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \frac{x+\epsilon - x}{\epsilon} = \frac{\epsilon}{\epsilon} = 1$$

b) For the second case, if x = 0, since the rectified linear unit is only defined to the right or to the left of x = 0, we need to check if the left and right-hand limits are equal;

$$\lim_{\epsilon \to 0^{-}} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \frac{0-0}{\epsilon} = 0$$

$$\lim_{\epsilon \to 0^{+}} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \frac{\epsilon - 0}{\epsilon} = 1$$

Since the limits to the left and to the right of x = 0 are not equal, g'(0) is undefined and the function g is not differentiable at x = 0.

c) For the last case, if x < 0, when $|\epsilon| < -x$, $g(x) = g(x + \epsilon) = 0$, we get;

$$\lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \frac{0-0}{\epsilon} = 0$$

2. $g(x) = \max\{0, x\} = xH(x)$ and $\int_{-\infty}^{x} H(z)dz$

IFT6135-H2020 Student: Marc-Antoine Provost

The second alternative definition can be explained by the fact that the integral is the area under the curve, so the integral from $-\infty$ to any point less than 0 is 0 and on the right side of the y axis, the integral to a point x is the area of the rectangle of length x and height 1, which is x.

3. By taking the limit when $k \to \infty$, we get;

$$\lim_{k \to \infty} \sigma(x) = \frac{1}{1 + e^{-kx}} = \begin{cases} 1 & \text{if } x > 0 \text{ (because } e^{-\infty} = 0) \\ \frac{1}{2} & \text{if } x = 0 \text{ (because } e^{0} = 1) \\ 0 & \text{if } x < 0 \text{ (because } e^{\infty} = \infty) \end{cases}$$

Question 2 (3-3-3). Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_i e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: $S(\boldsymbol{x}+c) = S(\boldsymbol{x})$, where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimensional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimensional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 2.

1.

For $i \in \{1, ..., K\}$,

$$\operatorname{softmax}(x+c)_{i} = \frac{e^{x_{i}+c}}{\sum_{j=1}^{K} e^{x_{j}+c}}$$

$$= \frac{e^{x_{i}}e^{c}}{\sum_{j=1}^{K} e^{x_{j}}e^{c}}$$

$$= \frac{e^{x_{i}}e^{c}}{e^{c}\sum_{j=1}^{K} e^{x_{j}}}$$

$$= \frac{e^{x_{i}}}{\sum_{j=1}^{K} e^{x_{j}}}$$

$$= \operatorname{softmax}(\boldsymbol{x})_{i}$$

2. To prove that $S(\boldsymbol{x})$ is not invariant under scalar multiplication we need to provide an example where $S(c\boldsymbol{x}) \neq S(\boldsymbol{x})$, with $c \geq 0$.

Consider a 2-dimensional vector $\boldsymbol{x} = [0,1]^T$ and $\mathbf{c} = 2$. We get $S(c\boldsymbol{x}) = S([0,2]^T) = [\frac{1}{1+e^2}, \frac{e^2}{1+e^2}]^T$ and $S(\boldsymbol{x}) = S([0,1]^T) = [\frac{1}{1+e}, \frac{e}{1+e}]^T$. Therefore,

$$S(c\boldsymbol{x}) \neq S(\boldsymbol{x})$$

When c = 0, $e^{cx_i} = e^0 = 1$;

$$S(c\boldsymbol{x})_i = \frac{1}{\sum_{1}^{n} 1} = \frac{1}{n}$$

Meaning that if the element value of $S(c\mathbf{x})$ reflects the probability of several events, all events will have equal probability.

When c is arbitrarily large, $c \to \infty \Rightarrow S(c\boldsymbol{x})_i = \lim_{c \to \infty^+} \frac{(e^{x_i})^c}{\sum_j (e^{x_j})^c} = \lim_{c \to \infty^+} \frac{1}{\sum_j (\frac{e^{x_j}}{x_i})^c}$

If $\boldsymbol{x_i} = \boldsymbol{x_j}$, $\lim_{c \to \infty^+} \left(\frac{e^{x^j}}{e^{x_i}}\right)^c = 1$.

If $\boldsymbol{x_i} > \boldsymbol{x_j}$, $\lim_{c \to \infty^+} \left(\frac{e^{x^j}}{e^{x_i}}\right)^c = 0$.

If $x_i < x_j$, $\lim_{c \to \infty^+} (\frac{e^{x^j}}{e^{x_i}})^c = \infty^+$.

To resume, if $\boldsymbol{x_i}$ is the maximum of all $\boldsymbol{x_j}$ s, $\lim_{c \to \infty^+} \frac{1}{\sum_{j} (\frac{e^{x^j}}{e^{x_i}})^c} = \frac{1}{0+\ldots+1+\ldots+0} = 1$.

For any other x_i , $\lim_{c\to\infty^+} \frac{1}{\sum_i (\frac{e^{x^j}}{c^{x_i}})^c} = \frac{1}{\infty + \infty + \dots + 1 + \dots + \infty} = 0$.

3. With the sigmoid function, $\sigma(z) = \frac{1}{(1+e^{-z})}$ and the general from of the k-class softmax; $\frac{e^{x_i}}{\sum_{i=1}^k e^{x_i}}$, we can split up the softmax is a two-class case.

softmax(x) =
$$\left(\frac{e^{x_1}}{e^{x_1} + e^{x_2}} + \frac{e^{x_2}}{e^{x_1} + e^{x_2}}\right)$$

For the x_1 case;

softmax
$$(x_1) = \frac{e^{x_1}}{e^{x_1} + e^{x_2}} = \frac{1}{1 + e^{x_2 - x_1}} = \frac{1}{1 + e^{-(x_1 - x_2)}} = \frac{1}{(1 + e^{-z})}$$

Thus, if $z = x_1 - x_2$, $\sigma(z) = \operatorname{softmax}(x_1)$. We can compute a similar equality for $\operatorname{softmax}(x_2)$;

$$softmax(x_2) = \frac{e^{x_2}}{e^{x_1} + e^{x_2}}$$

$$= \frac{1}{e^{x_1 - x_2} + 1}$$

$$= \frac{1 + e^{x_1 - x_2} - e^{x_1 - x_2}}{e^{x_1 - x_2} + 1}$$

$$= 1 - \frac{e^{x_1 - x_2}}{e^{x_1 - x_2} + 1}$$

$$= 1 - \frac{1}{1 + e^{-(x_1 - x_2)}}$$

$$= 1 - \frac{1}{1 + e^{-z}}$$

Therefore, $1 - \sigma(z) = \operatorname{softmax}(x_2)$ and $(\sigma(z), 1 - \sigma(z)) = (\operatorname{softmax}(x_1), \operatorname{softmax}(x_2))$

4. For i $\{1, ..., K-1\}$, let constant $c = -x_1$, and $y_i = x_{i+1} - x_1$

As we showed earlier, $S(\mathbf{x})$ is translation invariant, i.e, $S(\mathbf{x}+c)=S(x)$. Thus, we have;

$$S(x) = S(x + c)$$

$$= S(x - x_1)$$

$$= S(x_1 - x_1, x_2 - x_1, x_3 - x_1, ..., x_k - x_1]^T)$$

$$= S([0, y_1, ..., y_k]^T)$$

Question 3 (16). Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 3.

Recall that $\sigma(x) = \frac{1}{1+e^{-x}}$ and that $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Let's begin by showing that $\sigma(x)$ is a function of $\tanh(x)$;

$$\begin{split} \sigma(x) &= \frac{1}{1 + e^{-x}} \\ &= \frac{1}{1 + e^{\frac{-1}{2}x - \frac{1}{2}x}} \\ &= \frac{1}{1 + \frac{e^{\frac{-1}{2}x}}{e^{\frac{1}{2}x}}} \\ &= \frac{e^{\frac{1}{2}x}}{e^{\frac{1}{2}x}} \\ &= \frac{e^{\frac{1}{2}x}}{e^{\frac{1}{2}x} + e^{\frac{-1}{2}x}} \\ &= \frac{1}{2} (\frac{2e^{\frac{1}{2}x}}{e^{\frac{1}{2}x} + e^{\frac{-1}{2}x}}) \\ &= \frac{1}{2} (\frac{e^{\frac{1}{2}x} - e^{\frac{-1}{2}x}}{e^{\frac{1}{2}x} + e^{\frac{-1}{2}x}}) \\ &= \frac{1}{2} (\frac{e^{\frac{1}{2}x} - e^{\frac{-1}{2}x}}{e^{\frac{1}{2}x} + e^{\frac{-1}{2}x}} + 1) \\ &= \frac{1}{2} (\tanh(\frac{1}{2}x) + 1) \end{split}$$

Student: Marc-Antoine Provost

Which, for the neural network, gives us;

$$y(x, \Theta, \sigma)_{k} = \sum_{j=1}^{M} \omega_{kj}^{(2)} \frac{1}{2} \left(\tanh\left(\frac{1}{2} \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)}\right) \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} \left(\tanh\left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)}}{2} x_{i} + \frac{\omega_{j0}^{(1)}}{2} \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} \tanh\left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)}}{2} x_{i} + \frac{\omega_{j0}^{(1)}}{2} \right) + \sum_{j=1}^{M} + \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \omega_{kj}^{(2)} \tanh\left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

$$= y(x, \Theta', \tanh)_{k}$$

Thus, there exists an equivalent network such that $y = (x, \Theta, \tanh) = y(x, \Theta', \sigma)$ for all $x \in \mathbb{R}^D$. $\Theta' = (\tilde{\omega}^{(1)}, (\tilde{\omega_{k0}}^{(2)}, \tilde{\omega_{k1}}^{(2)}, ..., \tilde{\omega_{kM}}^{(2)})) = (\frac{\tilde{\omega}^{(1)}}{2}, (\sum_{j=1}^{M} \frac{\tilde{\omega_{kj}}^{(2)}}{2} + \tilde{\omega_{k0}}^{(2)}, \frac{\tilde{\omega_{k1}}}{2}, ..., \frac{\tilde{\omega_{kM}}}{2}))$

Question 4 (5-5). Fundamentally, back-propagation is just a special case of reverse-mode Automatic Differentiation (AD), applied to a neural network. Based on the "three-part" notation shown in Table and, represent the evaluation trace and derivative (adjoint) trace of the following examples. In the last columns of your solution, numerically evaluate the value up to 4 decimal places.

- 1. Forward AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.
- 2. Reverse AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ can be computed together.

Answer 4. Reuse the tables to prepare your answer.

Table 1 – Forward AD example, with $y = f(x_1, x_2) = \frac{1}{(x_1 + x_2)} + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.

	Forward evaluation trace								
					Forward derivative trace				
↓	v_{-1}	$=x_1$	=3	. ↓					
	v_0	$=x_2$	=6 $=3+6$		$=\dot{v}_{-1}$	\dot{x}_1	=1		
					— <i>i</i> ;	$\dot{\hat{\sigma}}$	=0		
	$v_1 = v_{-1} +$	$= v_{-1} + v_0$			$=\dot{v}_0$	\dot{x}_2			
	01	1	a a		\dot{v}_1	$=\dot{v}_{-1}+_{0}$	=1		
	v_2	$= \frac{1}{v_1} $ $= v_0^2$	=0.1111+36		_	- ~	$= \frac{-1}{9^2}$ $= 2 \times 6 \times 0$ $= -\sin(3) \times 1$		
	v_3				\dot{v}_2	$=-v_1^{-2}$			
					\dot{v}_3	$=2v_0x_0$			
	v_4	$=\cos(v_{-1})$			9				
	04	(-/			\dot{v}_4	$= -\sin(v_{-1})x_{-1}$			
	v_5	$= v_2 + v_3$					=-0.0123		
	aı — aı l	— aı aı			\dot{v}_5	$=\dot{v}_2 + \dot{v}_3$			
	v_6	$= v_5 + v_4$			\dot{v}_6	$=\dot{v}_5 + \dot{v}_4$	= -0.0123 - 0.1411		
						05 04			
			05 1011		$=\dot{y}$	\dot{v}_6	= -0.1534		
	y	$=v_6 = 35.1211$							

Multilayer Perceptrons and Convolutional Neural networks

Table 2 – Reverse AD example, with $y = f(x_1, x_2) = \frac{1}{(x_1 + x_2)} + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ are computed in one reverse sweep.

					Reverse adjoint trace				
-		Forward evaluation trace			\bar{x}_1	$= \bar{v}_{-1}$	=-0.1534		
- ↓ ↓	v_{-1}	$=x_1$	= 3	1	\bar{x}_2	$=\bar{v}_0$	=-0.0123		
	v_0	$=x_2$	=6		\bar{v}_0	$= \bar{v}_0 + \bar{v}_1 \frac{\partial v_1}{\partial v_0}$	$=\frac{-1}{9^2}$		
	$\frac{v_0}{v_1}$	$=v_{-1}+v_0$	= 3 + 6				\bar{v}_{-1}	$= \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_0}{\partial v_{-1}}$	$=-\sin(3)-\frac{1}{9^2}$
	v_2	$\begin{array}{c} - c_{-1} + c_0 \\ = \frac{1}{} \end{array}$	$=2\frac{1}{9}$		\bar{v}_1	$=\bar{v}_2 \frac{\partial v_2}{\partial v_1}$	$=\frac{-1}{9^2}$		
	_	$=\stackrel{v_1}{v_2}$	-2_{9} $=6^{2}$		\bar{v}_0	$= \bar{v}_3 \frac{\partial v_1}{\partial v_0}$	$=1\times2\times6\times0$		
	v_3	$= c_0$ $= cos(v_{-1})$	$=\cos(3)$				\bar{v}_{-1}	$= \bar{v}_4 \frac{\partial v_0}{\partial v_4}$	$= 1 \times -\sin(3) \times 1$
	v_4	,	= 0.1111 + 36						()
	v_5				\bar{v}_2	$=\bar{v}_5 \frac{\partial v_5}{\partial v_2}$	=1		
	v_6	$= v_5 + v_4$	= 36.1111 - 0.9900		\bar{v}_3	$=\bar{v}_5\frac{\partial v_5}{\partial v_3}$	=1		
		$= v_6$	=35.1211		\bar{v}_4	$=\bar{v}_6 \frac{\partial v_6}{\partial v_4}$	=1		
	y				\bar{v}_5	$=\bar{v}_6\frac{\partial v_6}{\partial v_5}$	=1		
					\bar{v}_6	$=\bar{y}$	= 1		

Question 5 (6). Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 5. Full : [,]; Valid : [,]; Same : [,].

Full convolution: padding the matrix with zeros in such a way that on convoluting with the kernel, the elements of the original matrix get visited k times (k being the size of the kernel)

X being the input, X = [0, 0, 1, 2, 3, 4, 0, 0]. Thus, [1, 2, 3, 4] * [1, 0, 2] = [1, 2, 5, 8, 6, 8]

Valid convolution : convolution of the matrix with the kernel without any padding. [1, 2, 3, 4] * [1, 0, 2] = [5, 8]

Same convolution: zero padding the matrix such that the result of the convolution with the given kernel results in a matrix of the same shape as the input. X being the input, X = [0, 1, 2, 3, 4, 0] Thus, [1, 2, 3, 4] * [1, 0, 2] = [2, 5, 8, 6]

Question 6 (5-5). Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 6.

1. We can calculate the output shape of a convolutional layer with this specific formula;

$$o = \frac{(W - F + 2P)}{S} + 1$$

IFT6135-H2020 Student: Marc-Antoine Provost

where W, F, P, and S are the input size, kernel size, padding size, and stride size. After the first convolutional layer, the output size is 64x125x125 ($\frac{256-8}{2}+1$), then the second layer downsamples the output to 64x25x25 and finally the output size is 128x24x24 (25-4+2+1).

2. For the last layer, there are 128x64x4x4 = 131072 needed parameters.

Question 7 (4-4-6). Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide a correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape (o) of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 2, p = 2.
 - (c) Assume p = 1, d = 1.

Answer 7. Fill up the following table,

		i	p	d	k	s	0
1.	(a)	64	3	1	8	2	32
	(b)	64	3	7	2	2	32
2.	(a)	32	0	1	4	4	8
	(b)	32	0	1	8	4	7
3.	(a)	8	0	1	2	2	4
	(b)	8	2	2	3	2	4
	(c)	8	1	1	4	2	4

For this question, the table above was completed using the following equations;

$$o = \frac{i + 2p - k'}{s} + 1$$
$$k' = k + (k - 1)(d - 1)$$

Where o (output size), i (input size), k' (effective kernel size), k (kernel size), s (stride), d (dilatation) $\epsilon = \mathbb{N}$, and p (zero-padding) $\epsilon = \mathbb{Z}^{\geq 0}$.

Since all the subquestions were solved with the same approach, I will only demonstrate the procedure for the first subquestion a);

Multilayer Perceptrons and Convolutional Neural networks

$$k' = 8 + (8 - 1)(1 - 1) = 8$$
$$32 = \left[\frac{64 + 2p - 8}{s}\right] + 1$$
$$\left[\frac{56 + 2p}{s}\right] = 31$$

Thus, one possible solution for s could be 2 and 3 for p.