Riemannian geometry: a note for reviewing 2024 autumn

This is a re-arranged note for the course on Riemannian geometry given by professor Yang, which aims for a quick reviewing of the basic computations and the main results. The gist lies in the exercises. Some good references are [Pet06, Jos08, DCFF92, Wal09]. Many related topics are to be appended in the future.

1 E	Basic concepts and computations
1.1	Connections and curvatures
1.2	Hessian and scalar Laplacian
1.3	Pull-back operation
1.4	The 2nd fundamental form
1.5	Parallel transports, geodesics and exponential maps
1.6	Completeness
1.7	Normal coordinates
1.8	Hodge star operator and Hodge decomposition
1.9	Tensor calculus
1.10	Miscellany
2 T	The Bochner technique 20
2.1	Killing vector fields
2.2	Harmonic 1-forms
2.3	Smooth maps
3 J	acobi fields 22
3.1	Variation formulae and Jacobi fields
3.2	Conjugate loci and cut loci
4 (Curvature and topology 25
4.1	Spaces of non-positive sectional curvature
4.2	Spaces of negative sectional curvature
4.3	Spaces of non-negative curvature
4.4	Space forms
5 (Comparison theorems of curvatures 30
5.1	Rauch comparison
5.2	Hessian and Laplacian comparisons
5.3	Volume comparison

5.4	The splitting theorem	33
6	Gathering important results	35
A	Isometry and local isometry	36
В	Covering maps and transformations	37
С	Axes, rays and lines	37

1. Basic concepts and computations

1.1. Connections and curvatures

Definition 1 (connection). $\nabla : TM \times E \to E$, which is linear on TM, a derivation for E, where $E \to M$ is a bundle.

Definition 2 (Christoffel symbol). $\nabla_{\frac{\partial}{\partial x^i}} e_A = \Gamma_{iA}^B e_B$.

Definition 3 (curvature tensor). $R:TM\otimes TM\otimes E\otimes \to E$,

$$R(X,Y)e := \nabla_X \nabla_Y e - \nabla_Y \nabla_X e - \nabla_{[X,Y]} e$$

As for a Riemannian manifold (M, g), we consider usually Levi-Civita connection, and several special curvature tensors.

Definition 4 (Levi-Civita connection). $\nabla : TM \times TM \to TM$, a connection s.t.

(1)
$$X(Y,Z) = (X\nabla_Y, Z) + (Y, \nabla_X Z);$$

(2)
$$\nabla_X Y - \nabla_Y X = [X, Y].$$

Definition 5 (curvature tensors and operator).

- (1) $R(X, Y, Z, W) := (R(X, Y)Z, W), R = R_{ijkl} dx^i \otimes dx^j \otimes dx^k \otimes dx^l;$
- (2) sectional curvature: $K_{\sigma}(=\sec(X,Y)) = \frac{R(X,Y,Y,X)}{|X\wedge Y|^2}, \ \sigma = \operatorname{span}\{X,Y\};$
- (3) Ricci curvature: $Ric_{ij} = g^{kl}R_{iklj}$;
- (4) Scalar curvature: $S = g^{ij} \operatorname{Ric}_{ij}$.
- (5) curvature operator: $\mathfrak{R}: \wedge^2 TM \to \wedge^2 TM$, such that $g(\mathfrak{R}(X \wedge Y), Z \wedge W) = R(X, Y, Z, W)$.

List of properties:

- symmetry of R and first Bianchi;
- independence of basis for K_{σ} ;
- independence of planes for K_{σ} iff being flat;
- for 3-dim manifolds, CRC implies CSC.

Definition 6 (trace definition of Ricci). $Ric(v, w) = tr(x \mapsto R(x, v)w)$. Taking an ONB of TM,

(1)
$$\operatorname{Ric}(v) := \sum R(v, e_i)e_i$$
;

(2) $\operatorname{Ric}(v, w) = g(\operatorname{Ric}(v), w);$

(3) for
$$v = e_1$$
, $Ric(v, v) = \sum R(v, e_i, e_i, v) = \sum_{i=2}^n sec(v, e_i)$.

Exercise 7. (1) show the Koszul formula;

(2) calculate $\Gamma_{ij}^k, R_{ijkl};$

(3) show that $R_{ijkl} =$

$$\frac{1}{2} \left(\frac{\partial^2 g_{jl}}{\partial x^i \partial x^k} + \frac{\partial^2 g_{ik}}{\partial x^j \partial x^l} - \frac{\partial^2 g_{il}}{\partial x^j \partial x^k} - \frac{\partial^2 g_{jk}}{\partial x^i \partial x^l} \right) + g_{pq} (\Gamma^p_{ik} \Gamma^q_{jl} - \Gamma^q_{il} \Gamma^p_{kj}).$$

- (4) compute the curvatures of S^n, H^2 ;
- (5) compute the curvatures of

$$g_{ij} = \delta_{ij} + \frac{x^i x^j}{K^2 - \sum (x^i)^2}, K^2 - \sum (x^i)^2 > 0;$$

(6) compute the curvatures of $(\mathbb{R}^2, e^{a(x^2+y^2)}(dx \otimes dx + dy \otimes dy))$.

Exercise 8. (1) what's the relation of curvatures between g and $k \cdot g$;

- (2) prove the integral formulae for Ric and S:
 - (a) for unit vector v, and S_v^{\perp} the set of unit vectors orthogonal to v,

$$\operatorname{Ric}_p(v,v) = \frac{n-1}{\operatorname{Vol}(S^{n-2})} \int_{w \in S_v^{\perp}} \sec(v,w) \, dV_{\widehat{g}}.$$

(b) for $UT_pM \cong S^{n-1}$,

$$S_p = \frac{n}{\omega_{n-1}} \int_{S^{n-1}} \operatorname{Ric}_p(v, v) \, dS.$$

- (3) let (M^3, g) be Einstein, show that (M, g) is of CSC.
- (4) (hard, warped product) consider (N^{n-1}, g_N) , $\operatorname{Ric} = \frac{n-2}{n-1} \lambda g_N, \lambda < 0$, find a function $\rho : \mathbb{R} \to (0, \infty)$, such that $(M^n, g) = (\mathbb{R} \times N, \mathrm{d}r^2 + \rho^2 g_N)$ becomes an Einstein metric with $\operatorname{Ric} = \lambda g$.

1.2. Hessian and scalar Laplacian

Consider smooth function $f:(M,g)\to\mathbb{R}$.

Definition 9 (Hessian and saclar Laplacian).

(1) Hess $f := \nabla^2 f = \nabla df$, i.e. Hess $f(X, Y) = g(\nabla_X \nabla f, Y) = (\nabla_X df) = XYf - \nabla_X Yf$. the Hessian operator is given by Hess $f(X, Y) = (\mathcal{H}_f(X), Y)$.

(2) $\Delta_g f := \operatorname{tr} \operatorname{Hess} f = g^{ij} \operatorname{Hess} f_{ij}$.

Locally, Hess f_{ij} = Hess f_{ji} , thus Hess f is a symmetric 2-form.

Theorem 10 (volume expression of the Laplacian).

$$\Delta_g f = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{\det g} \frac{\partial f}{\partial x^j} \right)$$

Exercise 11. (1) for $d \operatorname{Vol}_g = \sqrt{\det g} dx^1 \wedge \cdots \wedge dx^n$, compute $\frac{\partial \det g}{\partial x^i}$, $\frac{\partial \log \det g}{\partial x^i}$ and $\frac{\partial \sqrt{\det g}}{\partial x^i}$, show

$$\frac{\partial}{\partial x^i} d \operatorname{Vol}_g = \frac{1}{2} \frac{\partial \log \det g}{\partial x^j} d \operatorname{Vol}_g.$$

- (2) prove Theorem 10.
- (3) show that

$$\operatorname{Hess} \varphi(f) = \varphi'' \, \mathrm{d} f^2 + \varphi' \operatorname{Hess} f.$$

1.3. Pull-back operation

 $f: M \to N \text{ induces } f_*: TM \to f^*TN, \text{ for immersion, } f^*TN \subset TN.$

$$TM \xrightarrow{f_*} f^*TN \xrightarrow{\xi} TN$$

$$\downarrow^{\widehat{\pi}} \qquad \downarrow^{\pi}$$

$$M \xrightarrow{f} (N, h)$$

Theorem 12 (definition of pull-back connection and metric). There exists compatible pull-back connection and metric defined by

$$(1) \ \widehat{\nabla}_{\frac{\partial}{\partial x^{i}}} \widehat{e}_{A} = f_{*} \left(\frac{\partial f^{\alpha}}{\partial x^{i}} \nabla_{\frac{\partial}{\partial y^{\alpha}}} e_{A} \right) = f_{*} \left(\frac{\partial f^{\alpha}}{\partial x^{i}} \Gamma^{B}_{\alpha A}(f) e_{B} \right);$$

(2)
$$\widehat{g} = f^*h$$
, i.e. $\widehat{g}(\widehat{e}_A, \widehat{e}_B) = h(e_A, e_B)$.

Locally, drop the hats,

$$\widehat{\nabla}_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial y^{j}} = \frac{\partial f^{\alpha}}{\partial x^{i}} \Gamma_{j\alpha}^{k}(f) \frac{\partial}{\partial y^{k}};$$

$$\widehat{g}_{ij} = h \left(f_{*} \frac{\partial}{\partial x^{i}}, f_{*} \frac{\partial}{\partial x^{j}} \right) = \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}} h_{\alpha\beta}.$$

Exercise 13. (1) show the well-defined-ness and compatibility.

(2) show that $\widehat{R}_{ij\gamma\delta} = \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}} R_{\alpha\beta\gamma\delta}$.

1.4. The 2nd fundamental form

The 2nd fundamental form, which generalize the Hessian, is defined to indicate the deviation under pull-back.

General Case

Definition 14 (2nd fundamental form). $B \in \Gamma(M, T^*M \otimes T^*M \otimes f^*TN)$, $B(X,Y) := \widehat{\nabla}_X f_* Y - f_* \nabla_X Y$.

Locally, $B_{ij}^{\alpha} = B_{ii}^{\alpha}$, thus B is a symmetric (2,1)-tensor, as a result,

$$\widehat{\nabla}_X f_* Y - \widehat{\nabla}_Y f_* X = f_* \nabla_X Y - f_* \nabla_Y X = f_* [X, Y].$$

Exercise 15. (1) compute the local expression of B.

(2) $f:(M,g) \to (N,h)$, and $\widetilde{\nabla}$ is the affine connection on $T^*M \otimes f^*TN$ induced by ∇^M, ∇^N , then $B = \widetilde{\nabla} df$, where df is regarded as a smooth section in $\Gamma(M, T^*M \otimes f^*TN)$.

THE CASE OF RIEMANNIAN IMMERSION

Given an immersion $f: M \to (\overline{M}, \overline{g}, \overline{\nabla}), f^*T\overline{M} \subset T\overline{M} = f^*T\overline{M} \oplus T^{\perp}M$. We write $(\widehat{g}, \widehat{\nabla}), (g, \nabla)$ for the induced structures on f^*TN, TM . List of properties:

- $g_{ij} = \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}} \overline{g}_{\alpha\beta};$
- $B \in \Gamma(M, T^*M \otimes T^*M \otimes T^{\perp}M)$, i.e. $\widehat{g}(B(X,Y), f_*Z) = 0$ for any $X, Y, Y \in \Gamma(M, TM)$. Equivalently (drop of push-forward),

$$\widehat{g}(\widehat{\nabla}_X f_* Y, f_* Z) = \widehat{g}(f_* \nabla_X Y, f_* Z) = g(\nabla_X Y, Z).$$

• (Gauss-Codazzi) for any $X, Y, Z, W \in \Gamma(M, TM)$, $R(X, Y, Z, W) - \overline{R}(X, Y, f_*Z, f_*W)$

$$=\widehat{g}(B(X,W),B(Y,Z))-\widehat{g}(B(X,Z),B(Y,W)).$$

Definition 16 (Weingarten map). $X, Y \in \Gamma(M, TM), \eta \in \Gamma(M, T^{\perp}M), g(W_{\eta}(X), Y) := B_{\eta}(X, Y) := g(B(X, Y), \eta).$

Remark 17. Take $(\widehat{M}, \widehat{g}) = (\mathbb{R}^N, g_{\mathbb{R}^N})$, we shall get Gauss' Theorema Egregium, especially for the immersion of a surface into \mathbb{R}^3 .

Exercise 18. (1) show the orthogonal relation with (out) the rank theorem.

(2) consider immersion of a surface into \mathbb{R}^3 , with unit normal vector n, write the expression of first and second fundamental form, B_n , and Gauss' Theorema Egregium:

$$K = \frac{\det II}{\det I} = \sec(X, Y) = \frac{R(X, Y, Y, X)}{g_D(X, X)g_D(Y, Y) - g_D(X, Y)^2}.$$

- (3) show that $\operatorname{Ric} g_D = Kg_D, S = 2K$.
- (4) consider $S^n \to \mathbb{R}^{n+1}$ and the local parametrization

$$\gamma: D \to U_{n+1}^+ \subset \mathbb{R}^{n+1}, \gamma(u) = \left(u^1, \cdots, u^n, \sqrt{1-|u|^2}\right)$$

where $D = \{u \mid |u| < 1\}.$

- (a) compute $g_D = \gamma^* g_{\text{can}}$;
- (b) compute the second fundamental form;
- (c) compute the mean curvature $H = \frac{1}{n} \operatorname{tr}_{g_D} B$.

Exercise 19. let (M,g) be a complete riemannian manifold. suppose $f: M \to \mathbb{R}$ is a smooth function with

$$|\nabla f| = 1$$
, Hess $f = 0$.

set $N = f^{-1}(0)$, $h = g|_N$, show that (N, h) is a totally geodesic submanifold of (M, g).

1.5. Parallel transports, geodesics and exponential maps

PARALLEL TRANSPORT

Let $\gamma: I \to (M, g)$ be a smooth curve.

Proposition 20 (definition of parallel transport). For any $v \in T_{\gamma(t_0)}M$, there exists a unique vector field $V \in \Gamma(I, \gamma^*TM)$ (along γ) with

(1)
$$V(t_0) = v;$$
 (2) $\hat{\nabla}V = 0.$

Define the parallel transport along γ by $P_{t_0,t,\gamma} = V(t)$, for any $t_0, t \in I$.

List of properties: the gist is a take a parallel frame.

•
$$P_{t_2,t_3,\gamma} \circ P_{t_1,t_2,\gamma} = P_{t_1,t_3,\gamma}, P_{t,t,\gamma} = id.$$

- $P_{s,t,\gamma}: T_{\gamma(s)}M \to T_{\gamma(t)}M$ is a linear isometry for any $s,t \in I$;
- $F(t,(s,v)) := (t, P_{s,t,\gamma}(v))$ is a smooth function;
- $\frac{\mathrm{d}}{\mathrm{d}t}P_{t,t_0,\gamma}(V(t)) = P_{t,t_0,\gamma}(\widehat{\nabla}V(t))$, for any vector field V along γ .

Exercise 21. prove the properties above.

GEODESIC AND EXPONENTIAL MAP

Proposition 22 (definition of geodesic). For any $p \in M, v \in T_pM, t_0 \in \mathbb{R}$, there is an open interval $I \ni t_0$ and a smooth curve $\gamma : I \to M$ with

(1)
$$\gamma(t_0) = p, \gamma'(t_0) := (\gamma_* \frac{\mathrm{d}}{\mathrm{d}t})|_{t_0} = v;$$

(2)
$$\widehat{\nabla} \gamma' = 0$$
 along I .

The curve satisfying (2), i.e.

$$\widehat{\nabla}\gamma' = \widehat{\nabla}\gamma_* \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}^2\gamma^i}{\mathrm{d}t^2} \frac{\partial}{\partial x^i} + \frac{\mathrm{d}\gamma^i}{\mathrm{d}t} \frac{\mathrm{d}\gamma^j}{\mathrm{d}t} \Gamma^k_{ij}(\gamma) \frac{\partial}{\partial x^k} = 0,$$

is called a geodesic along I. Up to a shift of position, we suppose $\gamma(0) = p, \gamma'(0) = v$ and write $I_{p,v}$ for the maximal existence interval of γ .

List of properties:

- $|\gamma'|$ is a constant for the geodesic γ ;
- $\gamma_{cv}(t) = \gamma_v(ct)$, i.e. invariant under rescaling.
- $P_{0,t,\gamma_v}(v) = \gamma_v'(t)$.

Definition 23 (exponential map). Write $\mathcal{E}_p = \{v \mid 1 \in I_{p,v}\}$, the exponential map $\exp_p : \mathcal{E}_p \to M$ is defined by

$$\exp_p(v) = \gamma_v(1),$$

where γ_v is the geodesic with $\gamma(0) = p, \gamma'(0) = v$.

List of properties:

- $\exp_p(tv) = \gamma_v(t)$, for $t \in I_{p,v}$;
- exp is smooth on $\mathcal{E} = \{(p, v) | v \in \mathcal{E}_p\};$
- exp is a local diffeomorphism, since the differential

$$\exp_{*,0}: T_0(T_pM) \to T_pM$$

is the identity map.

• set $B_r(p) = \{\exp_p(v) | |v| < r\}$, then $\exp_{B_r(p)}$ is a diffeomorphism. The injectivity radius of p is

$$\operatorname{inj}_p(M) := \sup\{r \mid \exp|_{B_r(p)} \text{ is diffeomorphic}\},\$$

and $inj(M) := inf_p inj_p(M)$.

Exercise 24. prove the following Gauss' lemma: fix $p \in M$, $r < \text{inj}_p(M)$ and I an open interval. suppose

- (1) $w(s): I \to T_pM$ satisfies |w(s)| = r and
- (2) $\alpha(t,s) := \exp_p(tw(s))$ for $(t,s) \in \mathbb{R} \times I$, $tw(s) \in \mathcal{E}_p$.

then

$$\left\langle \alpha_* \frac{\partial}{\partial s}, \alpha_* \frac{\partial}{\partial t} \right\rangle = 0.$$

Exercise 25. (1) let M be a smooth manifold and ∇ any connection on TM. We define the curvature endomorphism by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

then ∇ is said to be flat if $R(X,Y)Z \equiv 0$. show that the followings are engineent.

- (a) ∇ is flat;
- (b) for every point $p \in M$, there exists a parallel local frame defined on a neighborhood of p;
- (c) for all $p, q \in M$, parallel transport along an admissible curve segment from p to q depends only on the path-homotopy class.
- (d) parallel transport around any sufficiently small closed curve is the identity, i.e. for every $p \in M$, there exists a neighborhood U of p such that if $\gamma : [a,b] \to U$ is an admissible curve in U starting and ending at p, then $P_{ab} : T_pM \to T_pM$ is the identity map.
- (2) a vector field X is said to be parallel if $\nabla X \equiv 0$.
 - (a) let $p \in \mathbb{R}^n$, $v \in T_p\mathbb{R}^n$, show that there is a unique parallel vector field Y on \mathbb{R}^n such that $Y_p = v$.
 - (b) let $X(\varphi,\theta) = (\sin\varphi\cos\theta, \sin\varphi\sin\theta, \cos\varphi)$ be the spherical coordinate of an open subset $U \subset S^2$, let $X_{\varphi} = X_* \frac{\partial}{\partial \varphi}, X_{\theta} = X_* \frac{\partial}{\partial \theta}$. compute $\nabla_{X_{\theta}} X_{\varphi}, \nabla_{X_{\varphi}} X_{\varphi}$, and conclude that X_{φ} is parallel along the equator and along each meridian $\theta = \theta_0$.

- (c) let $p = (1, 0, 0) \in S^2$, show that there is no parallel vector field W on any neighborhood of p in S^2 such that $W_p = X_{\varphi}|_p$.
- (d) conclude that no neighborhood of p in (S^2, g) is isometric to an open subset of (\mathbb{R}^2, g_{can}) .

1.6. Completeness

COMPLETENESS OF MANIFOLDS AND VECTOR FIELDS

A riemannian manifold is naturally a metric space under

$$d_g(p,q) = \inf_{\gamma \in \mathcal{L}} \operatorname{length}(\gamma) = \inf_{\gamma \in \mathcal{L}} \int |\gamma'|$$

where \mathcal{L} is the collection of piecewise smooth curves joining p, q. Using Gauss' lemma (Exercise 24), one can show

Proposition 26. Fix $p \in M$, $r < \text{inj}_p(M)$, then for any v with |v| < r,

$$d_g(p, \exp_p(v)) = |v|.$$

Thus the shortest curve joining p, q must be a geodesic.

Definition 27 (completeness of a manifold). (M, g) is (geodesically) complete if $\exp_p(v)$ is well-defined for all $p \in M, v \in T_pM$. Or equivalently, all the geodesics are well-defined on \mathbb{R} .

Definition 28 (completeness of a vector field). X is complete if it has a global flow, i.e. the integral curve extends to \mathbb{R} .

Exercise 29. (1) let (M, g) be complete, V a smooth vector field with $|V| \leq C$, show that V is complete.

(2) let (M, g) be complete, show that every Killing vector field is complete.

HOPF-RINOW THEOREM

Theorem 30 (Hopf-Rinow). The followings are engineent

- (1) (M, g) is geodesically complete;
- (2) there exists some $p \in M$ such that \exp_p is well-defined on T_pM ;
- (3) every closed and bounded subset of M is compact.
- (4) (M, d_q) is metrically complete.

Exercise 31. (1) every compact manifold is complete;

- (2) if $(M, g_1), (M, g_2)$ satisfies $g_1 \ge g_2$ and (M, g_2) is complete, then (M, g_1) is also complete.
- (3) a riemannian manifold is said to be homogeneous if the isometry group acts transitively. show that the homogeneous manifolds are complete.
- (4) let $O \subset (M,g)$ be an open subset, show that if (O,g) is complete, then O = M.
- (5) let $(M,g) = (\mathbb{R} \times N, dr^2 + \rho^2 g_N)$ where $\rho : \mathbb{R} \to (0,\infty)$, (N,g_N) is complete. show that (M,g) is complete.
- (6) show that any riemannian manifold (M, g) admts a conformal change $(M, \lambda^2 g)$ that is complete.

1.7. Normal coordinates

Definition 32 (normal coordinates). Take an ONB of T_pM , and define $B: \mathbb{R}^n \to T_pM$, $r \mapsto r^i e_i$, which is an isometry. The (reversed) map

$$\varphi = B^{-1} \circ \exp_p^{-1} : U \to T_p M \to \mathbb{R}^n$$

gives $(x^i) = (r^i \circ \varphi)$, the normal coordinates centered at p.

List of properties:

- $\varphi_* \frac{\partial}{\partial x^i}|_p = \frac{\partial}{\partial r^i}$ and $\varphi_*(e_i) = B^{-1}e_i = \frac{\partial}{\partial r^i}$, so $\frac{\partial}{\partial x^i}|_p = e_i$;
- $g_{ij}(p) = \delta_{ij}$;
- for $v = v^i \frac{\partial}{\partial x^i}|_p, \gamma_v^i(t) = tv^i;$
- $\Gamma_{ij}^k|_p = 0$, thus $\frac{\partial}{\partial x^k} g_{ij}|_p = 0$.

Theorem 33 (local expansion of metric). Under any normal coordinates,

$$g_{ij} = \delta_{ij} - \frac{1}{3}R_{iklj}|_p x^k x^l + O(|x|^3), \quad g^{ij} = \delta_{ij} + \frac{1}{3}R_{iklj}|_p x^k x^l + O(|x|^3),$$
and also.

$$\det g = 1 - \frac{1}{3} \operatorname{Ric}_{ij} |_{p} x^{i} x^{j} + O(|x|^{3}), \quad \frac{\partial g_{ij}}{\partial x^{k} x^{l}} = \frac{1}{3} (R_{iklj}|_{p} + R_{ilkj}|_{p}).$$

Exercise 34. show for small r that

(1) Vol(
$$B(p,r)$$
) = $\omega_n r^n \left(1 - \frac{S_p}{6(n+2)}r^2 + O(r^3)\right)$;

(2) Area $(S(p,r)) = n\omega_n r^{n-1} \left(1 - \frac{S_p}{6n}r^2 + O(r^3)\right)$. Consider the distance function $r(q) := d_g(p,q)$ on $U = M \setminus \text{cut}(p)$. List of properties:

- r is continuous and is smooth on $U \setminus \{p\}$;
- $r(q) = |\exp_p^{-1}(q)|;$
- $\nabla r = g^{ij} \frac{\partial r}{\partial x^i} \frac{\partial}{\partial x^j}$ is a smooth vector field on $U \setminus \{p\}$.

In normal coordinates, recall that $\gamma_v^i(t) = x^i \circ \gamma_v(t) = tv^i$ for $v = v^i \frac{\partial}{\partial x^i}|_p$, so $r(q) = |\exp_p^{-1}(q)| = |\exp_p^{-1}(\exp_p(x^i(q)\frac{\partial}{\partial x^i}|_p))| = \sqrt{\sum (x^i(q))^2}$.

Definition 35 (radial vector field). $\partial_r := \frac{x^i}{r} \frac{\partial}{\partial x^i} = \sum_i \frac{\partial r}{\partial x^i} \frac{\partial}{\partial x^i}$.

Theorem 36. $On\ U \setminus \{p\}$

- (1) ∂_r is nowhere-vanishing and orthogonal to the level set of r;
- (2) (Gauss' lemma) $\nabla r = \partial_r, |\partial_r| = 1.$

List of properties: (as corollaries)

- $\mathcal{H}_r(\partial r) = \nabla_{\partial_r} \partial_r = 0.$
- $\sum_{j} g_{ij}x^{j} = x^{i}, g_{ij} = \delta_{ij} \sum_{k} \frac{\partial g_{ik}}{\partial r^{j}}x^{k};$
- $\sum_{j} \frac{\partial g_{ij}}{\partial x^{k}} x^{j} = \sum_{j} \frac{\partial g_{kj}}{\partial x^{i}} x^{j}$, $\sum_{i,j} \frac{\partial g_{ij}}{\partial x^{k}} x^{i} x^{j} = \sum_{i,j} \frac{\partial g_{jk}}{\partial x^{i}} x^{i} x^{j} = 0$
- $\sum_{i,j} \Gamma_{ij}^k x^i x^j = 0.$

Exercise 37. consider the normal coordinates around p, show that at p

$$\frac{\partial^2}{\partial x^l \partial x^k} g_{ji} + \frac{\partial^2}{\partial x^j \partial x^l} g_{ki} + \frac{\partial^2}{\partial x^k \partial x^j} g_{li} = 0.$$

Exercise 38. show that in a riemannian manifold,

$$d(\exp_p(v), \exp_p(w)) = |v - w| + O(r^2)$$

for $v, w \in T_pM, |v|, |w| \leqslant r$.

1.8. Hodge star operator and Hodge decomposition

INNER PRODUCT

Definition 39 (musical operators).

$$(1) X^{\flat} := g_{ij} X^{i} dx^{j}; \qquad (2) \omega^{\sharp} := g^{ij} \omega_{i} \frac{\partial}{\partial x^{j}}$$

A natural way to extend g is $g(dx^i, dx^j) (= g((dx^i)^{\sharp}, (dx^j)^{\sharp})) = g^{ij}$, or

$$g(\mathrm{d}x^I,\mathrm{d}x^J) = k! \det \begin{pmatrix} g^{i_1j_1} & \cdots & g^{i_1j_k} \\ \vdots & \ddots & \vdots \\ g^{i_kj_1} & \cdots & g^{i_kj_k} \end{pmatrix} =: k!g^{IJ}$$

for $\wedge^k T^*M$. For $\varphi = \sum f_{i_1 \cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k}$, we write

$$\varphi_{i_1\cdots i_k} = \sum_{\sigma \in S_k} (-1)^{|\sigma|} f_{i_{\sigma(1)}\cdots i_{\sigma(k)}}$$

where $\varphi_{i_1\cdots i_k}$ is skew-symmetric.

Definition 40 (inner product for k-forms). (1) $\langle \varphi, \psi \rangle := \frac{1}{k!} g(\varphi, \psi)$;

(2)
$$(\varphi, \psi) := \int \langle \varphi, \psi \rangle d \operatorname{Vol} = \frac{1}{k!} \int g(\varphi, \psi) d \operatorname{Vol}.$$

List of properties:

- $\varphi = \frac{1}{k!} \sum_{i_1,\dots,i_k} \varphi_{i_1\dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k} = \sum_{i_1,\dots,i_k} \varphi_{i_1\dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k};$
- $\langle \varphi, \psi \rangle = g^{IJ} \varphi_I \psi_J = \frac{1}{k!} \sum g^{i_1 j_1} \cdots g^{i_k j_k} \varphi_{i_1 \cdots i_k} \psi_{j_1 \cdots j_k};$
- $\langle d \text{ Vol}, d \text{ Vol} \rangle = 1.$

Exercise 41. prove the properties above.

HODGE STAR OPERATOR

Definition 42 (Hodge star operator). Take an ONB of T^*M , $\xi^1 \wedge \cdots \wedge \xi^n = d \operatorname{Vol}_g$. Define the linear operator $*: \Omega^k(M) \to \Omega^{n-k}(M)$ by

$$*(v_I \xi^I) = v_I \operatorname{sgn}(I, I^c) \xi^{I^c}$$

where $I = (i_1 \cdots i_k), I^c = (j_1 \cdots j_{n-k}), i_1 < \cdots < i_k, j_1 < \cdots < j_{n-k}.$

List of properties:

- $*1 = d\operatorname{Vol}_g, *d\operatorname{Vol}_g = 1$, and $**v = (-1)^{k(n-k)}v$, for $v \in \Omega^k(M)$;
- $*(u \wedge v) = \langle *u, v \rangle = (-1)^{k(n-k)} \langle u, *v \rangle$, for $u \in \Omega^k(M), v \in \Omega^{n-k}(M)$;
- $u \wedge *v = v \wedge *u = \langle u, v \rangle \operatorname{d} \operatorname{Vol}_g, \langle *u, *v \rangle = \langle u, v \rangle, \text{ for } u, v \in \Omega^k(M).$ Thus $(u, v) = \int u \wedge *v.$

Definition 43 (adjoint operator of d). $(d\varphi, \psi) =: (\varphi, d^*\psi)$.

Theorem 44 (expression of d^*). On $\Omega^k(M)$, $d^* = (-1)^{nk+n+1} * d^*$.

Proof. For $u \in \Omega^{k-1}(M), v \in \Omega^k(M)$,

$$\int \langle u, *d * v \rangle d \operatorname{Vol}_{g} = \int u \wedge **d * v$$

$$= (-1)^{(k-1)(n-k+1)} \int u \wedge d * v$$

$$\stackrel{*}{=} (-1) \cdot (-1)^{k-1} \cdot (-1)^{(k-1)(n-k+1)} \int du \wedge *v$$

$$= (-1)^{nk+n+1} \int \langle du, v \rangle d \operatorname{Vol}_{g}.$$

Here we use Stokes' formula for $\stackrel{*}{=}$.

Exercise 45. for $\omega \in \Omega^p(M)$, show that

$$(\mathrm{d}\omega)(X_0,\cdots,X_p)=\sum_{i}(-1)^i(\nabla_{X_i}\omega)(X_0,\cdots,\widehat{X_i},\cdots,X_p).$$

Exercise 46. for 1-form ω , show that

$$d^*\omega = -g^{ij} \left(\frac{\partial \omega_i}{\partial x^j} - \Gamma_{ij}^k \omega_k \right) =: -\nabla^i \omega_i.$$
DIVERGENCE

Definition 47 (divergence). The divergence of X is defined by

$$\operatorname{div} X \cdot \operatorname{d} \operatorname{Vol}_g = L_X \operatorname{d} \operatorname{Vol}_g.$$

List of properties:

- div $X = \frac{\partial X^i}{\partial x^i} + \Gamma^s_{is} X^i = \nabla_i X^i$ (regrad $\nabla_i X^j$ as coefficient of $\nabla_i X$);
- divergence theorem: if X is of compact support, then

$$\int \operatorname{div} X \operatorname{d} \operatorname{Vol}_g = 0.$$

• for 1-form ω with compact support, $d^*\omega = \operatorname{div} \omega^{\sharp}$, so

$$\int \mathrm{d}^* \omega \, \mathrm{d} \, \mathrm{Vol}_g = 0.$$

• for $f_0, f_1 \in C_0^{\infty}(M)$, div $f_1 \nabla f_2 = g(\nabla f_1, \nabla f_2) + f_1 \Delta f_2$, so

$$\int f_1 \Delta f_2 = -\int g(\nabla f_1, \nabla f_2) = \int f_2 \Delta f_1.$$

Exercise 48. (1) solve Exercise 46 with the divergence theorem;

(2) regard ∇X as ∇X^{\flat} , then $\operatorname{div} X = \operatorname{tr}_g(\nabla X)$, this is a more general definition of divergence. for any smooth k-tensor field, define

$$\operatorname{div} F = \operatorname{tr}_g(\nabla F),$$

where the trace is taken on the first two indices. For smooth covariant k-tensor field F and (k+1)-tensor field on a compact manifold (M,g) with boundary, show that

$$\int_{M} \left\langle \nabla F, G \right\rangle \mathrm{d} \operatorname{Vol}_{g} = \int_{\partial M} \left\langle F \otimes N^{\flat}, G \right\rangle \mathrm{d} \operatorname{Vol}_{\widehat{g}} - \int_{M} \left\langle F, \operatorname{div} G \right\rangle \mathrm{d} \operatorname{Vol}_{g}$$

where \hat{g} is the induce metric of ∂M .

(3) let (M,g) be a riemannian manifold and $f: M \to \mathbb{R}$ a lipschitz function. then for any $\varphi \in C_0^{\infty}(M,\mathbb{R})$,

$$-\int_{M} \langle \nabla \varphi, \nabla f \rangle \, \mathrm{d} \, \mathrm{Vol}_{g} = \int_{M} \Delta_{g} \varphi \cdot f \, \mathrm{d} \, \mathrm{Vol}_{g} \,.$$

HODGE DECOMPOSITION

Definition 49 (Beltrami-Laplace operator (a.k.a. Hodge laplacian)).

$$\Delta := dd^* + d^*d$$

A k-form u is called harmonic if $\Delta u = 0$, denote by $\mathcal{H}^k(M)$ the set of harmonic k-forms.

Theorem 50 (Hodge decomposition). There is an orthogonal decomposition

$$\Omega^k(M) = \mathcal{H}^k(M) \oplus d(\Omega^{k-1}(M)) \oplus d^*(\Omega^{k+1}(M)).$$

Moreover, $\dim_{\mathbb{R}} \mathcal{H}^k(M) < \infty$.

Theorem 51. $\mathcal{H}^k(M) \cong H^k_{dR}(M; \mathbb{R})$.

Exercise 52. (1) show that $\Delta u = 0$ iff $du = 0, d^*u = 0$;

- (2) prove Theorem 51;
- (3) show that $H^1_{dR}(\mathbb{R}^2\setminus\{0\};\mathbb{R})\neq 0$.
- (4) suppose that M is connected, show that $H_{dR}(M, \mathbb{R}) \cong \mathbb{R}$.

1.9. Tensor calculus

COVRAIANT DERIVATIVES

A seemingly natural way to extend ∇ is using musical operators, i.e.

$$\nabla_{\frac{\partial}{\partial x^i}} \mathrm{d} x^j = \left(\nabla_{\frac{\partial}{\partial x^i}} (\mathrm{d} x^j)^{\sharp}\right)^{\flat} = \left(\nabla_{\frac{\partial}{\partial x^i}} g^{jk} \frac{\partial}{\partial x^k}\right)^{\flat} = -\Gamma_{ik}^j \mathrm{d} x^k.$$

But Leibniz rule simplifies the calculations greatly:

$$\left(\nabla_{\frac{\partial}{\partial x^i}} \mathrm{d}x^j\right) \frac{\partial}{\partial x^k} = \frac{\partial}{\partial x^i} \left\langle \mathrm{d}x^j, \frac{\partial}{\partial x^k} \right\rangle - \left\langle \mathrm{d}x^j, \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} \right\rangle = -\Gamma_{ik}^s \delta_{js} = -\Gamma_{ik}^j.$$

Definition 53 (covraiant derivative). For $T \in \Gamma(M, \otimes^r T^*M \otimes \otimes^s TM)$, the covariant derivative $\nabla T \in \Gamma(M, \otimes^{r+1} T^*M \otimes \otimes^s TM)$ is defined by

$$(\nabla T)(X, X_1, \cdots, \omega_s) = (\nabla_X T)(X_1, \cdots, \omega_s).$$

For
$$T = T_{i_1 \cdots i_r}^{j_1 \cdots j_s} dx^{i_1} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_s}}, \ \nabla T = W_{ii_1 \cdots i_r}^{j_1 \cdots j_s} dx^i \otimes dx^{i_1} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_s}} =$$

$$\left(\frac{\partial}{\partial x^i}T^{j_1\cdots j_s}_{i_1\cdots i_r} - \sum_{l=1}^r \Gamma^p_{ii_l}T^{j_1\cdots j_s}_{i_1\cdots p\cdots i_r} + \sum_{m=1}^s \Gamma^{j_m}_{iq}T^{j_1\cdots q\cdots j_s}_{i_1\cdots i_r}\right) dx^i \otimes dx^{i_1} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_s}}.$$

We usually write $T_{i_1\cdots i_r}^{j_1\cdots j_s}$, i.e. the coefficient, instead of the whole tensor.

Definition 54 (2nd covariant derivative). $\nabla^2 T := \nabla(\nabla T)$, or locally

$$\nabla_k \nabla_i T_{i_1 \cdots i_r}^{j_1 \cdots j_s} = \nabla_k (W_{ii_1 \cdots i_r}^{j_1 \cdots j_s}).$$

Remark 55. Caution! $(\nabla_k(\nabla_i T))_{i_1\cdots i_r}^{j_1\cdots j_s} \neq \nabla_k \nabla_i T_{i_1\cdots i_r}^{j_1\cdots j_s}$, in fact, the first one is not a tensor.

Lemma 56. $\nabla_{X,Y}^2 T = \nabla_X \nabla_Y T - \nabla_{\nabla_X Y} T$, or locally

$$\nabla_k \nabla_i T_{i_1 \cdots i_r}^{j_1 \cdots j_s} = (\nabla_k (\nabla_i T))_{i_1 \cdots i_r}^{j_1 \cdots j_s} - (\Gamma_{ki}^j \nabla_j T)_{i_1 \cdots i_r}^{j_1 \cdots j_s}.$$

Proof.

$$\nabla_{k}(W_{ii_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}}) = \frac{\partial}{\partial x^{k}}W_{ii_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}} + \sum_{m} \Gamma_{kq}^{j_{m}}W_{ii_{1}\cdots i_{r}}^{j_{1}\cdots q\cdots j_{s}} - \sum_{l} \Gamma_{ki_{l}}^{p}W_{ii_{1}\cdots p\cdots i_{r}}^{j_{1}\cdots j_{s}}$$

$$- \Gamma_{ki}^{j}W_{ji_{1}\cdots p\cdots i_{r}}^{j_{1}\cdots j_{s}}$$

$$= \frac{\partial}{\partial x^{k}}(\nabla_{i}T)_{i_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}} + \sum_{m} \Gamma_{kq}^{j_{m}}(\nabla_{i}T)_{i_{1}\cdots i_{r}}^{j_{1}\cdots q\cdots j_{s}}$$

$$- \sum_{l} \Gamma_{ki_{l}}^{p}(\nabla_{i}T)_{i_{1}\cdots p\cdots i_{r}}^{j_{1}\cdots j_{s}} - \Gamma_{ki}^{j}W_{ji_{1}\cdots p\cdots i_{r}}^{j_{1}\cdots j_{s}}$$

$$= (\nabla_{k}(\nabla_{i}T))_{i_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}} - (\Gamma_{ki}^{j}\nabla_{i}T)_{i_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}}.$$

RICCI IDENTITY

From the definition of curvature tensor,

$$R(X,Y)T = \nabla_{X}\nabla_{Y}T - \nabla_{\nabla_{X}Y}T - \nabla_{Y}\nabla_{X}T + \nabla_{\nabla_{Y}X}T$$

$$= \nabla_{X,Y}^{2}T - \nabla_{Y,X}^{2}T.$$

$$\nabla_{k}\nabla_{l}T_{i_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}} - \nabla_{l}\nabla_{k}T_{i_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}} = \left(R\left(\frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{l}}\right)T\right)\left(\frac{\partial}{\partial x^{i_{1}}}, \cdots, dx^{j_{s}}\right)$$

$$= \left(R\left(\frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{l}}\right)T\right)T_{i_{1}\cdots i_{r}}^{j_{1}\cdots j_{s}}$$

$$+ \sum_{m} R_{klq}^{j_{m}}T_{i_{1}\cdots i_{r}}^{j_{1}\cdots q\cdots j_{s}} - \sum_{l} R_{kli_{l}}^{p}T_{i_{1}\cdots p\cdots i_{r}}^{j_{1}\cdots j_{s}}$$

Since $R\left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l}\right) f = 0$ for smooth function f, we obtain the following: **Theorem 57** (Ricci identity).

$$\nabla_k \nabla_l T_{i_1 \cdots i_r}^{j_1 \cdots j_s} - \nabla_l \nabla_k T_{i_1 \cdots i_r}^{j_1 \cdots j_s} = \sum_m R_{klq}^{j_m} T_{i_1 \cdots i_r}^{j_1 \cdots q_s} - \sum_t R_{kli_t}^p T_{i_1 \cdots p \cdots i_r}^{j_1 \cdots j_s}.$$

In particular, for vector fields and 1-forms,

$$\nabla_k \nabla_l X^i - \nabla_l \nabla_k X^i = R^i_{klq} X^q,$$
$$\nabla_k \nabla_l \omega_j - \nabla_l \nabla_k \omega_j = -R^p_{klj} \omega_p.$$

Exercise 58. prove the ricci identity in (normal) local coordinates.

CONTRACTION AND 2ND BIANCHI IDENTITY

Using Leibniz rule for 2-tensor T,

$$Xg(g,T) = g(\nabla_X g,T) + g(g,\nabla_X T) = g(g,\nabla_X T),$$

this works similarly for 4-tensor S,

$$Xg(g \otimes g, S) = g(\nabla_X g \otimes g, S) + g(g \otimes g, \nabla_X T) = g(g \otimes g, \nabla_X T).$$

Proposition 59 (magic formulae for 2- and 4-tensors).

$$\nabla_k g^{ij} T_{ij} = g^{ij} \nabla_k T_{ij},$$
$$\nabla_s g^{ij} g^{kl} S_{ijkl} = g^{ij} g^{kl} \nabla_s S_{ijkl}.$$

Theorem 60 (2nd Bianchi identity).

$$\nabla_i R_{jkpq} + \nabla_j R_{kipq} + \nabla_k R_{ijpq} = 0.$$

As a corollary,

$$0 = g^{jp}g^{kq} \left(\nabla_i R_{jkpq} + \nabla_j R_{kipq} + \nabla_k R_{ijpq}\right)$$

= $-\nabla_i g^{jp}g^{kq}R_{kjpq} + g^{jp}\nabla_j g^{kq}R_{ikqp} + g^{kq}\nabla_k g^{jp}R_{ijpq}$
= $-\nabla_i S + g^{jp}\nabla_j \operatorname{Ric}_{ip} + g^{kq}\nabla_k \operatorname{Ric}_{iq},$

i.e. $\nabla_i S = 2g^{jk} \nabla_i \operatorname{Ric}_{ik}$, this is the contracted Bianchi identity.

Theorem 61 (Schur's lemma). Let (M,g) be a connected Riemannian manifold with dim $M \ge 3$. If $f \in C^{\infty}(M)$, and one of the followings hold

(1)
$$K = f$$
, i.e. $R(X, Y, Y, X) = |X \wedge Y|^2 f$ for $X, Y \in TM$;

(2)
$$Ric = (n-1)fg$$

then f is a constant.

Proof. Assuming (2), $S = g^{ij} \operatorname{Ric}_{ij} = n(n-1)f$.

$$\nabla_k S = 2g^{ij} \nabla_i \operatorname{Ric}_{kj} = 2(n-1)g^{ij} \nabla_i f g_{kj} = 2(n-1) \nabla_k f.$$

Thus $n(n-1)\nabla_k f = 2(n-1)\nabla_k f$, which implies that f is constant. \square

Exercise 62. prove the 2nd Bianchi identity in local coordinates.

1.10. Miscellany

RIEMANNIAN SUBMERSIONS

Exercise 63. let $\pi: (\overline{M}, \overline{g}) \to (M, g)$ be a riemannian submersion.

- (1) let $H \subset T\overline{M}$ be the subbundle such that $H_p \perp \ker \pi_{*,p}$,
 - (a) for each $X \in \Gamma(M, TM)$, there exists a unique $\overline{X} \in \Gamma(\overline{M}, H)$ such that $\pi_* \overline{X} = X$;
 - (b) let $\sigma:[a,b] \to \overline{M}$ be a smooth curve, then for each $p \in \pi^{-1}(\sigma(a))$, there exists $\varepsilon > 0$ and a unique smooth curve $\overline{\sigma}:[a,a+\varepsilon] \to \overline{M}$ such that

$$\overline{\sigma}(a) = p, \pi \circ \overline{\sigma} = \sigma, \overline{\sigma}'(t) \in H_{\overline{\sigma}(t)}.$$

(2) for $X, Y \in \Gamma(M, TM)$, we have

$$\nabla^g_{\overline{X}}\overline{Y} = \overline{\nabla^h_X Y} + \frac{1}{2}[\overline{X}, \overline{Y}]^v$$

where Z^v is the orthogonal projection of Z to ker π_* .

(3) for $X, Y \in \Gamma(M, TM)$, we have

$$R(X,Y,Y,X) = \overline{R}(\overline{X},\overline{Y},\overline{Y},\overline{X}) + \frac{3}{4} \left| [\overline{X},\overline{Y}]^v \right|^2.$$

- (4) show that $\pi \circ \exp_p(v) = \exp_{\pi(p)}(d\pi_p(v))$. in particular, if $\widetilde{\gamma}$ is a geodesic, then $\pi \circ \widetilde{\gamma}$ is a geodesic.
- (5) show that
 - (a) (M,g) is complete if $(\overline{M}, \overline{g})$ is complete;
 - (b) π is a fibration if $(\overline{M}, \overline{g})$ is complete.
 - (c) give a counterexample when $(\overline{M}, \overline{g})$ is not complete.

LIE GROUPS

A Riemannian metric h on a Lie group G is said to be left-invariant if $L_q^*h = h$, and bi-invariant if both left- and right-invariant.

Exercise 64. let G be a lie group with \mathfrak{g} the lie algebra.

(1) if h is a bi-invariant metric on a Lie group G, show that for left-invariant vector fields X, Y, Z

$$h([X, Y], Z) = h(X, [Y, Z]).$$

(2) let $\langle \bullet, \bullet \rangle_e$ be an inner product on \mathfrak{g} , define

$$\langle X_g, Y_g \rangle = \langle (L_{g^{-1}})_* X_g, (L_{g^{-1}})_* Y_g \rangle_e$$
.

show that

- (a) $\langle \bullet, \bullet \rangle$ is a left-invariant Riemannian metric on G.
- (b) there is a bijection

$$\{Inner\ products\ on\ \mathfrak{g}\}\longleftrightarrow \left\{ egin{aligned} left-invariant \\ metrics\ on\ G \end{aligned}
ight\}.$$

- (c) under the above bijection, Ad(G)-invariant inner products on \mathfrak{g} correspond to bi-invariant riemannian metrics on G.
- (3) let h be a bi-invariant riemannian metric with connection ∇ , then

$$\nabla_X Y = \frac{1}{2} [X, Y],$$

 $for\ left-invariant\ vector\ fields\ X,Y.\ Moreover,$

$$R(X, Y, Z, W) = -\frac{1}{4}([X, Y], [Z, W]),$$

for left-invariant vector fields X, Y, Z, W.

- (4) let h be a bi-invariant riemannian metric. show that
 - (a) the geodesics on G are precisely the integral curves of the left-invariant vector fields.
 - (b) the exponential map for the lie group coincides with the exponential map of the levi-civita connection.

Exercise 65. the heisenberg group with its lie algebra is

$$G = \left\{ \left(\begin{array}{cc} 1 & a & c \\ & 1 & b \\ & & 1 \end{array} \right) \middle| a, b, c \in \mathbb{R} \right\}, \quad \mathfrak{g} = \left\{ \left(\begin{array}{cc} x & z \\ & y \end{array} \right) \middle| x, y, z \in \mathbb{R} \right\}.$$

a basis for the lie algebra is

$$X = \begin{pmatrix} 1 \\ \end{pmatrix}, Y = \begin{pmatrix} 1 \\ \end{pmatrix}, Z = \begin{pmatrix} 1 \\ \end{pmatrix}.$$

- (1) show that the only non-zero brackets are [X, Y] = -[Y, X] = Z.
- (2) consider a left-invariant metric with $\{X, Y, Z\}$ an onb. show that the ricci tensor has both negative and positive eigenvalues.
- (3) show that the scalar curvature is constant.
- (4) show that the ricci tensor is not parallel.

2. The Bochner technique

2.1. Killing vector fields

BOCHNER FORMULA FOR SMOOTH FUNCTIONS

Proposition 66. Let $f: M \to \mathbb{R}$ be a smooth function over (M, g), then

$$\frac{1}{2}\Delta_g |\nabla f|^2 = |\operatorname{Hess} f|^2 + \operatorname{Ric}(\nabla f, \nabla f) + g(\nabla \Delta_g f, \nabla f).$$

CURVATURE AND KILLING VECTOR FIELDS

Definition 67 (Killing vector field). $L_X g = 0$ (the flow is isometric).

Using Koszul formula, we can show

$$q((L_X\nabla)_Y Z, W) = 0$$
, i.e. $L_X\nabla = 0$.

which gives a useful relation

$$R(X,Y)Z + \nabla_{Y,Z}^2 X = 0.$$

It can also be stated and proven in terms of coefficients.

$$g_{il}\nabla_j\nabla_k X^i + R_{ijkl}X^i = 0.$$

Theorem 68. Let X be a Killing vector field, $f = \frac{1}{2}|X|^2$,

- (1) $\nabla f = -\nabla_X X$;
- (2) For any vector field V,

$$\operatorname{Hess} f(V, V) = g(\nabla_V X, \nabla_V X) - R(V, X, X, V).$$

In particular,

$$\Delta_g f = |\nabla X|^2 - \text{Ric}(X, X).$$

Theorem 69. Let (M, g) be a compact Riemannian manifold

- (1) if Ric < 0, then M has no non-trivial Killing vector field.
- (2) (Bochner) if $Ric \leq 0$, then a vector field is parallel iff it is Killing.

The following theorem is proven using "linear algebra".

Theorem 70. Let (M, g) be a compact Riemannian manifold with positive sectional curvature. If M is of even dimension, then every Killing field has a zero.

Remark 71. There are examples of non-vanishing Killing vector fields if M is odd, e.g. $V_x = (x_2, -x_1, \dots, x_{2n}, -x_{2n-1})$ on S^{2n-1} .

Exercise 72 (conformal killing vector field). a vector field X is a conformal killing vector field if $L_X g = fg$ for some smooth function $f: M \to \mathbb{R}$.

- (1) show that $f = 2 \operatorname{div} X$.
- (2) show that

$$\frac{1}{2}\Delta_g|X|^2 = |\nabla X|^2 - \operatorname{Ric}(X,X) - \left(1 - \frac{2}{n}\right) \langle \nabla \operatorname{div} X, X \rangle.$$

(3) let (M,g) be a closed Riemannian manifold with Ric < 0, show that there are no non-zero conformal killing fields.

2.2. Harmonic 1-forms

BOCHNER FORMULA FOR HARMONIC 1-FORMS

Proposition 73. Let (M,g) be a compact Riemannian manifold, $\alpha \in \Omega^1(M)$ be a harmonic form, then

$$\frac{1}{2}\Delta_g|\alpha|^2 = |\nabla\alpha|^2 + \mathrm{Ric}(\alpha^{\sharp}, \alpha^{\sharp}).$$

For general 1-form α , the Bochner formula is

$$\frac{1}{2}\Delta_g|\alpha|^2 = -g(\Delta\alpha, \alpha) + |\nabla\alpha|^2 + \mathrm{Ric}(\alpha^{\sharp}, \alpha^{\sharp}).$$

where Δ is the Hodge laplacian.

Theorem 74. Suppose (M,g) is a compact Riemannian manifold of non-negative Ricci curvature.

- (1) Every harmonic 1-form is parallel. Hence $b_1(M) \leq \dim M$.
- (2) If Ric > 0, then $b_1(M) = 0$.

2.3. Smooth maps

Proposition 75. Let $f:(M,g)\to (N,h)$ be a smooth map, then

$$\frac{1}{2}\nabla_g |\mathrm{d}f|^2 = (\widehat{\nabla}\Delta f, \mathrm{d}f) + |\widetilde{\nabla}\mathrm{d}f|^2 + g^{ik}g^{jl}h_{\alpha\beta}\operatorname{Ric}_{ij}f_k^{\alpha}f_l^{\beta} - g^{ij}g^{kl}R_{\alpha\beta\gamma\delta}f_i^{\alpha}f_j^{\delta}f_k^{\beta}f_l^{\gamma}.$$

- 3. Jacobi fields
- 3.1. Variation formulae and Jacobi fields

VARIATIONS

Fix $p, q \in (M, g), a < b \in \mathbb{R}$, let \mathcal{L} be the space of smooth curves $\gamma : [a, b] \to M$ with $\gamma(a) = p, \gamma(b) = q$.

Definition 76 (energy). For $\gamma \in \mathcal{L}$, $E(\gamma) := \int_a^b \left| \gamma_* \frac{\mathrm{d}}{\mathrm{d}t} \right|^2 \mathrm{d}t$.

Definition 77 (proper variation). A proper variation of γ is a smooth map $\alpha : [a,b] \times (-\varepsilon,\varepsilon) \to M$ with $\alpha(\cdot,s) \in \mathcal{L}, \alpha(\cdot,0) = \gamma$.

22

Proposition 78 (definition of variational field). Let $X \in \Gamma([a, b], \gamma^*TM)$ with $X_a = X_b = 0$, then there exists a proper variation α of γ with

$$\alpha_* \frac{\partial}{\partial s} \Big|_{s=0} = X.$$

X is called the variational vector field of α .

Theorem 79 (1st variation formula). Let α be a proper variation of γ with V the variational vector field, then

$$\frac{\mathrm{d}}{\mathrm{d}s}\bigg|_{s=0} E(\alpha(\cdot,s)) = \int_a^b \left\langle \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} V, \gamma' \right\rangle \mathrm{d}t = -\int_a^b \left\langle V, \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} \gamma' \right\rangle \mathrm{d}t.$$

We can similarly consider the 2nd variation: $\alpha(t, s_1, s_2) : [a, b] \times (-\varepsilon_1, \varepsilon_1) \times (-\varepsilon_2, \varepsilon_2) \to M, \alpha(t, 0, 0) = \gamma(t)$ with variational fields

$$\alpha_* \frac{\partial}{\partial s_1} \Big|_{s_1 = s_2 = 0} = V, \, \alpha_* \frac{\partial}{\partial s_2} \Big|_{s_1 = s_2 = 0} = W.$$

Theorem 80 (2nd variation formula). Let α be a proper 2nd variation with V, W the variational vector fields.

$$\frac{\partial^{2}}{\partial s_{1}\partial s_{2}}\Big|_{s_{1}=s_{2}=0} E(\alpha(\cdot, s_{1}, s_{2})) = \int_{a}^{b} \left\langle \widehat{\nabla}_{\frac{d}{dt}} V, \widehat{\nabla}_{\frac{d}{dt}} W \right\rangle dt
- \int_{a}^{b} R(V, \gamma', \gamma', W) dt
- \int_{a}^{b} \left\langle \left(\overline{\nabla}_{\frac{\partial}{\partial s_{1}}} \alpha_{*} \frac{\partial}{\partial s_{2}} \right) \Big|_{s_{1}=s_{2}=0}, \widehat{\nabla}_{\frac{d}{dt}} \gamma' \right\rangle dt.$$

Remark 81. An important case is when s_1, s_2 coincide, which occurs in the proof of Synge and Weinstein-Synge theorems.

Jacobi Fields

Definition 82 (Jacobi field). Let $\gamma : [a, b] \to (M, g)$ be a geodesic. A vector field J along γ is called a Jacobi field if

$$\widehat{\nabla}\widehat{\nabla}J + R(J, \gamma')\gamma' = 0.$$

Proposition 83 (local expansion of the length). Let $f(t) = |J|^2$, where J is a Jacobi field along a geodesic γ , then

$$f(t) = t^2 - \frac{1}{3}R(J', \gamma', \gamma', J')|_{0}t^4 + O(t^6).$$

Acturally, Proposition 83 implies Theorem 33.

Theorem 84 (characterization of a Jacobi field). Every Jacobi field is given by some variation along some geodesic. Let (M, g) be a Riemannian manifold, $\gamma : [0, 1] \to M$ be a geodesic, then the Jacobi field along γ with J(0) = 0 and J'(0) = v is given by

$$J = \alpha_* \frac{\partial}{\partial s} \Big|_{s=0}$$
, $\alpha = \exp_{\gamma(0)}(t(\gamma'(0) + sv))$

for s small enough. In particular,

$$J(t) = (\exp_{\gamma(0)})_{*,t\gamma'(0)}(tv).$$

The following result can be proved using normal coordinates.

Proposition 85. Let (M,g) be a complete Riemannian manifold, $p \in M, \gamma : [0,b] \to M \setminus \text{cut}(p)$ a unit-speed geodesic with $\gamma(0) = p$, and r the distance from p. If J is a normal Jacobi field along γ with J(0) = 0, then

$$\mathcal{H}_r(J(t)) = J'(t), \quad \mathcal{H}(\gamma'(t)) = 0.$$

In particular,

$$\operatorname{Hess} r(J, W)|_{s} = \int_{0}^{s} \langle J', W' \rangle - R(J, \gamma', \gamma', W) dt,$$

for any vector field W along γ with W(0) = 0.

Exercise 86. let $\sigma: (-\varepsilon, \varepsilon) \to (M, g)$ be a smooth curve and $V(s) \in \Gamma((-\varepsilon, \varepsilon), \sigma^*TM)$. consider

$$\alpha(t,s) = \exp_{\sigma(s)}(tV(s)).$$

compute the variational vector field $W(t) = \alpha_* \frac{\partial}{\partial s} \big|_{s=0}$ and point out $W(0), \widehat{\nabla} \frac{\mathrm{d}}{\mathrm{d}t} W(0)$.

3.2. Conjugate loci and cut loci

Definition 87 (conjugate locus). Let $\gamma: I \to (M, g)$ be a geodesic with $p = \gamma(a), q = \gamma(b)$. We say p, q are conjugate along γ if there is a nontrivial Jacobi field along γ with J(a) = J(b) = 0. Write the cut locus $\operatorname{conj}(p)$ for the set of all conjugate points of p along some geodesic.

Theorem 88. Let $v \in \mathcal{E}_p$, $\gamma_v(t) = \exp_p(tv)$, $q = \gamma_v(1)$, then v is a critical point of $\exp_p : \mathcal{E}_p \to M$ iff q is conjugate to p along γ_v .

Definition 89 (cut time, cut locus). Define the cut time of (p, v) by $t_{\text{cut}}(p, v) = \sup\{b \mid \gamma_v|_{[0,b]} \text{ is a minimal geodesic}\},$

and the cut point along γ_v by $\gamma_v(t_{\text{cut}}(p,v))$. Define the cut locus cut(p) by the set of all cut points of p.

Theorem 90. Let (M,g) be a complete Riemannian manifold, $p \in M, v \in T_pM$ with |v| = 1, and $c = t_{\text{cut}}(p, v)$.

- (1) If 0 < b < c, then $\gamma_v|_{[0,b]}$ has no conjugate points and is the unique minimal unit-speed geodesic between p and $\gamma_v(b)$.
- (2) if $c < \infty$, then $\gamma_v|_{[0,c]}$ is minimal. One or both of the followings hold:
 - (a) $\gamma_v(c)$ is conjugate to p along γ_v ;
 - (b) there are two or more unit-speed geodesics between p and $\gamma_v(c)$.

Example 91. (1) For $p \in S^n$, $conj(p) = cut(p) = \{-p\}$.

- (2) For $p \in \mathbb{RP}^n$, $\operatorname{conj}(p) = \{p\}$, $\operatorname{cut}(p) \simeq S^{n-1}$.
- (3) For $p = (x, y) \in S^1 \times \mathbb{R}$, $\operatorname{conj}(p) = \emptyset$, $\operatorname{cut}(p) = \{-x\} \times \mathbb{R}$.
- (4) For $p \in \mathbb{T}^n$, $\operatorname{cut}(p) \simeq \partial([0,1]^n)$.

Exercise 92. let (M, g) be a complete Riemannian manifold, $p \in M$. suppose there exists some $q \in \text{cut}(p)$ with d(p, q) = d(p, cut(p)).

- (1) show that either q is conjugate to p, or there are exactly two unitspeed minimal geodesics $\gamma_1, \gamma_2 : [0, b] \to M$ between p and q with $\gamma'_1(b) = -\gamma'_2(b)$, where b = d(p, q).
- (2) if $\operatorname{inj}_p(M) = \operatorname{inj}(M)$, and q is not conjugate to p along any minimal geodesic, show that there is a closed unit-speed geodesic $\gamma : [0, 2b] \to M$ such $\gamma(0) = \gamma(2b) = p$ and $\gamma(b) = q$, where b = d(p, q).

There are many related topics like Morse index theorem, skeleton and cellular structure given by Morse theory, etc. To be added someday.

4. Curvature and topology

4.1. Spaces of non-positive sectional curvature

Theorem 93 (Cartan-Hadamard). Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature. For any $p \in M$, $\exp_p : T_pM \to M$ is a covering map. The universal covering $\widetilde{M} \cong \mathbb{R}^n$.

Corollary 94. Suppose M, N are compact smooth manifolds. If one of them is simply-connected, then $M \times N$ does not admit a Riemannian metric with non-positive sectional curvature.

Theorem 95 (characterization of CH manifolds). Let (M, g) be a simply-connected complete manifold. The followings are enqivalent.

- (1) M has non-positive sectional curvature;
- (2) The differential of exponential map is length increasing, i.e.

$$|(\exp_p)_{*,v}(\widetilde{v})| \geqslant |\widetilde{v}|$$

for all $p \in M, v, \widetilde{v} \in T_pM$.

(3) The exponential map is distance increasing, i.e.

$$d_g(\exp_p(v), \exp_p(\widetilde{v})) \geqslant |v - \widetilde{v}|$$

for all $p \in M, v, \widetilde{v} \in T_pM$.

Moreover, if the conditions are satisfied, then the exponential map is diffeomorphic.

Exercise 96. let (M,g) be a ch manifold, $p \in M$.

(1) fix $v, \widetilde{v} \in T_pM$, show that for $0 < t \leq T$,

$$|v - \widetilde{v}| \leqslant \frac{d(\exp_p(tv), \exp_p(t\widetilde{v}))}{t} \leqslant \frac{d(\exp_p(Tv), \exp_p(T\widetilde{v}))}{T}.$$

(2) let $f(x) = \frac{1}{2}d(x,p)^2$, show that f is strictly geodesically convex, i.e. for any non-trivial geodesic $\gamma: [0,1] \to M$,

$$f(\gamma(t)) < (1-t)f(\gamma(0)) + tf(\gamma(1)).$$

Theorem 97 (Cartan). Let (M,g) be a CH manifold, G a compact Lie group acting smoothly and isometrically on M, then G has a fixed point.

Theorem 98 (Cartan). Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature, then $\pi_1(M)$ is torsion free.

4.2. Spaces of negative sectional curvature

Proposition 99. Let (M,g) be a complete Riemannian manifold with non-positive sectional curvature and $\pi: \widetilde{M} \to M$ the universal covering. If $\widetilde{\gamma}: \mathbb{R} \to \widetilde{M}$ is a common axis for all elements of $\operatorname{Aut}_{\pi}(\widetilde{M})$, then M is not compact.

Exercise 100. let (M,g) be a closed riemannian manifold of dimension ≥ 2 with negative sectional curvature. let \widetilde{M} be its universal, $\Gamma = \pi_1(M)$ can be identified as a subgroup of $\operatorname{Isom}(\widetilde{M})$ by deck transformations.

- (1) show that there are $\gamma_1, \gamma_2 \in \pi_1(M)$ with different axes.
- (2) show that the centralizer of $\Gamma \subset \text{Isom}(\widetilde{M})$ is trivial.

Theorem 101 (Preissmann). Let (M, g) be a compact Riemannian manifold with negative sectional curvature.

- (1) Any non-trivial abelian subgroup of $\pi_1(M)$ is isomorphic to Z.
- (2) $\pi_1(M)$ is not abelian.

Corollary 102. Suppose M, N are compact cmooth manifolds. Then $M \times N$ does not admit a Riemannian metric of negative sectional curvature.

Theorem 103. Let (M, g) be a compact Riemannian manifold with negative sectional curvature.

- (1) (Byers) Any non-trivial solvable subgroups of $\pi_1(M)$ is isometric to \mathbb{Z} . In particular, $\pi_1(M)$ is not solvable.
- (2) Any subgroup of $\pi_1(M)$ which contains a non-trivial abelian normal subgroup is isomorphic to \mathbb{Z} .

There are many further topics like Milnor's exponential-growth of fundamental group, $CAT(\leq 0)$ geometry, etc. To be added someday.

4.3. Spaces of non-negative curvature

Theorem 104 (Myers). Let (M^n, g) be a complete manifold. If

$$\operatorname{Ric} \geqslant \frac{(n-1)g}{R^2}$$

then diam $(M, g) \leq \pi R$. In particular, M is compact and $\pi_1(M)$ is finite. (Cheng) If diam $(M, g) = \pi R$, then M is isometric to (S^n, g_{can}) .

Exercise 105. for $(\mathbb{R}^2, g_a = e^{a(x^2+y^2)}(\mathrm{d}x \otimes \mathrm{d}x + \mathrm{d}y \otimes \mathrm{d}y)),$

- (1) compute the curvatures, conclude that it is Einstein;
- (2) show that if $a \ge 0$, then it is complete;
- (3) show that if a < 0, then it is not complete.

Theorem 106 (Synge). Let (M, g) be a compact Riemannian manifold with positive sectional curvature.

- (1) If $\dim M$ is even and M is orientable, then M is simply connected;
- (2) If $\dim M$ is odd, then M is orientable.

Corollary 107. Let (M, g) be a compact Riemannian manifold with positive sectional curvature. If dim M is even and M is not orientable, then $\pi_1(M) = \mathbb{Z}/2\mathbb{Z}$.

For example, $\mathbb{RP}^2 \times \mathbb{RP}^2$, U(2), U(2)/O(2) do not admit a Riemannian metric with positive sectional curvature, in each case, the obstruction is the fundamental group.

Theorem 108 (Weinstein-Synge). Let (M^n, g) be a compact Riemannian manifold with positive sectional curvature. Given an isometry $F: M \to M$ such that F preserve the orientation if n is even, changes the orientation if n is odd. Then F has a fixed point.

Exercise 109. show that there is no compact manifold that admits both a metric of positive definite ricci curvature and a metric of non-positive sectional curvature.

4.4. Space forms

Theorem 110 (Riemann-Hopf-Killing). Let (M, g) be a complete manifold with constant sectional curvature, then it is isometric to a Riemannian quotient of the form \widetilde{M}/Γ , where \widetilde{M} is one of the models spaces

$$(1) \mathbb{R}^n, \qquad (2) S^n(r), \qquad (3) \mathbb{H}^n(r)$$

and $\Gamma \subset \text{Isom}(\widetilde{M})$ is discrete and acts freely.

Here is a corollary of the Cartan-Ambrose-Hicks theorem.

Theorem 111. Let (M, g_M) be connected, φ, ψ be two local isometries from M to (N, g_N) . If there exists some point $p \in M$ with $\varphi(p) = \psi(p)$ and $\varphi_{*,p} = \psi_{*,p}$, then $\varphi = \psi$.

Corollary 112. Let (M,g) be a connected simply-connected complete Riemannian manifold. The followings are equivalent.

(1) (M,g) is of constant sectional curvature.

(2) For every pair of points $p, q \in M$ and linear isometry $\Pi : T_pM \to T_pM$, there exists an isometry $\varphi : M \to M$ with $\varphi(p) = q, \varphi_{*,p} = \Phi$.

Corollary 113. Let (M,g) be a complete and of constant sectional curvature 1. If dim M=2m, then (M,g) is isometric to S^{2m} or \mathbb{RP}^{2m} .

For convenience, we write \mathbb{S}^n_k for the *n*-dimensional space form with constant sectional curvature k, and

$$\operatorname{sn}_k(t) = \begin{cases} t & , \text{ if } k=0\\ \frac{1}{\sqrt{k}} \sin \sqrt{kt} & , \text{ if } k>0\\ \frac{1}{\sqrt{-k}} \sinh \sqrt{-kt} & , \text{ if } k<0 \end{cases}.$$

Theorem 114 (Jacobi fields in space forms). Let (M, g) be a Riemannian manifold with constant sectional curvature k, and γ a unit-speed geodesic. Then a normal Jacobi field J with J(0) = 0 is of the form

$$J(t) = a \operatorname{sn}_k(t) E(t),$$

where a is constant, E(t) is any unit parallel vector field with $\langle E, \gamma' \rangle = 0$.

Theorem 115. Let U be a geodesic ball around $p \in \mathbb{S}_k^n$, r the distance from p. Then on $U \setminus \{p\}$ under the normal coordinates,

$$g = \mathrm{d}r^2 + \mathrm{sn}_k^2(r)\widehat{g},$$

where \widehat{g} is the induced form on $U\setminus\{p\}$ by local trivialization.

Corollary 116 (an integral formula). Let U be a geodesic ball of radius b around $p \in \mathbb{S}_k^n$. If $f: U \to \mathbb{R}$ is a bounded integrable function, then

$$\int_{U} f \, dV_g = \int_{S^{n-1}} \int_{0}^{b} f \circ \Phi(\rho, \omega) \operatorname{sn}_{k}(\rho)^{n-1} \, d\rho \, d \operatorname{Vol}_{S^{n-1}},$$

where $\Phi: \mathbb{R}^+ \times S^{n-1} \to U \setminus \{p\}, (\rho, \omega) \mapsto \rho \omega$.

Remark 117. A more general integral formula applies to the Heintze-Karcher type inequality for embedded hypersurfaces in space forms.

Proposition 118. Let U be a geodesic ball of radius b around $p \in \mathbb{S}_k^n$, rethe distance from p. Then

$$\mathcal{H}_r = \frac{\operatorname{sn}_k'(r)}{\operatorname{sn}_k(r)} \pi_r,$$

where π_r is the projection to the orthogonal complement of $\partial_r|_q$. Hence

$$\operatorname{Hess} r = \operatorname{sn}'_k(r)\operatorname{sn}_k(r)\widehat{g},$$

and

$$\Delta_g r = (n-1) \frac{\operatorname{sn}'_k(r)}{\operatorname{sn}_k(r)}, \quad \Delta_g r^2 = 2 + 2(n-1)r \cdot \frac{\operatorname{sn}'_k(r)}{\operatorname{sn}_k(r)}.$$

5. Comparison theorems of curvatures

5.1. Rauch comparison

RAUCH COMPARISON AND COROLLARIES

Theorem 119 (Rauch comparison). Let $(M,g), (\widetilde{M}, \widetilde{g})$ be two Riemannian manifolds with dim $M \leq \dim \widetilde{M}$. Suppose that $\gamma, \widetilde{\gamma} : [0,l] \to M, \widetilde{M}$ are unit-speed geodesics, and

(1) for any t and any planes $\Sigma, \widetilde{\Sigma} \subseteq T_{\gamma(t)}M, T_{\widetilde{\gamma}(t)}\widetilde{M}$ with $\gamma'(t), \widetilde{\gamma}'(t) \in \Sigma, \widetilde{\Sigma}$, the sectional curvatures satisfy

$$K_{\Sigma}(\gamma(t)) \leqslant \widetilde{K}_{\widetilde{\Sigma}}(\widetilde{\gamma}(t)),$$

(2) $\widetilde{\gamma}(0)$ has no conjugate points along $\widetilde{\gamma}|_{(0,l]}$.

Then for any Jacobi fields J, \widetilde{J} along $\gamma, \widetilde{\gamma}$ with initial conditions $J(0) = c\gamma'(0), \widetilde{J}(0) = c\widetilde{\gamma}'(0), |J'(0)| = |\widetilde{J}'(0)|, g(J'(0), \gamma'(0)) = \widetilde{g}(\widetilde{J}'(0), \widetilde{\gamma}'(0)), we$ have $|\widetilde{J}| \leq |J(t)|$ for all $t \in [0, l]$.

A useful case is when $(\widetilde{M}, \widetilde{g})$ is the space form.

Corollary 120 (Jacobi field comparison). Let (M, g) be a complete Riemannian manifold, $p \in M, U = M \setminus \text{cut}(p).$ Let $\gamma : [0, b] \to U$ be a unit-speed geodesic with $\gamma(0) = p$ and J be any normal Jacobi field along γ with J(0) = 0. Then

(1) if the sectional curvature $K_M \leq k$, then

$$|J(t)| \geqslant \operatorname{sn}_k(t)|J'(0)|$$

(2) if the sectional curvature $K_M \geqslant k$, then

$$|J(t)| \leqslant \operatorname{sn}_k(t)|J'(0)|$$

for all
$$t \in [0, b_1]$$
, where $b_1 = \begin{cases} b & \text{, if } k \leq 0 \\ \min\{b, \pi R\} & \text{, if } k = \frac{1}{B^2} > 0 \end{cases}$.

Corollary 121 (conjugate comparison). Let (M, g) be a complete Riemannian manifold with sectional curvature $K_M \leq k$.

- (1) If $k \leq 0$, then M has no conjugate points along any geodesic.
- (2) If $k = \frac{1}{R^2} > 0$, then there is no conjugate point along any geodesic shorter that πR .

Corollary 122. Let (M, g) be a complete Riemannian manifold. Suppose $0 < C_1 \le K_M \le C_2$, let γ be any geodesic in M and l be the distance along γ between two consecutive conjugate points on γ , then

$$\frac{\pi}{\sqrt{C_2}} \leqslant l \leqslant \frac{\pi}{\sqrt{C_1}}.$$

In particular, \exp_p has no critical points on $B\left(0, \frac{\pi}{\sqrt{C_2}}\right)$.

INJECTIVITY RADIUS

The following result can be proved using Corollary 122, Exercise 92.

Theorem 123 (Klingenberg's injectivity radius estimate). Let (M, g) be a compact Riemannian manifold with $K_M \leq C$ where C > 0, set

$$l(M,g) = \int \{L(\gamma) \mid \gamma \text{ is a smooth closed geodesic}\}.$$

Then either $\operatorname{inj}(M) \geqslant \frac{\pi}{\sqrt{C}}$ or $\operatorname{inj}(M) = \frac{l(M,g)}{2}$.

5.2. Hessian and Laplacian comparisons

Theorem 124 (Hessian comparison). Let $(M,g), (\widetilde{M},\widetilde{g})$ be two Riemannian manifolds with the same dimension, $p \in M, \widetilde{p} \in \widetilde{M}, U = M \setminus \operatorname{cut}(p), \widetilde{U} = \widetilde{M} \setminus \operatorname{cut}(\widetilde{p}), r, \widetilde{r}$ the distance from p, \widetilde{p} . Suppose $\gamma, \widetilde{\gamma} : [0,b] \to U, \widetilde{U}$ are two unit-speed geodesics with $\gamma(0) = p, \gamma(b) = q, \widetilde{\gamma}(0) = \widetilde{p}, \widetilde{\gamma}(b) = \widetilde{q}$. If for any t and any planes $\Sigma, \widetilde{\Sigma}$, the sectional curvatures satisfy

$$K_{\Sigma}(\gamma(t)) \geqslant \widetilde{K}_{\Sigma}(\widetilde{\gamma}(t)),$$

then for any vectors $X \in T_qM$, $\widetilde{X} \in T_{\widetilde{q}}\widetilde{M}$ with $|X| = |\widetilde{X}| = 1$ and $X \perp \gamma'(b)$, $\widetilde{X} \perp \widetilde{\gamma}'(b)$,

$$\operatorname{Hess} r(X, X) \leqslant \operatorname{Hess} \widetilde{r}(\widetilde{X}, \widetilde{X}).$$

In particular,

$$\Delta_g r|_{\gamma(t)} \leqslant \Delta_{\widetilde{g}} \widetilde{r}|_{\widetilde{g}(t)}.$$

Moreover, if the identity holds for all t, then $K_{\Sigma}(\gamma(t)) = \widetilde{K}_{\widetilde{\Sigma}}(\widetilde{\gamma}(t))$.

Theorem 125 (Laplacian comparison). Let (M, g) be a complete Riemannian manifold, $p \in M, U = M \setminus \text{cut}(p), r$ the distance from p. If

$$\operatorname{Ric} \geqslant (n-1)kg$$

for some constant k, then

$$\Delta_g r \leqslant (n-1) \frac{\operatorname{sn}_k'(r)}{\operatorname{sn}_k(r)}$$

on $U\setminus\{p\}$. Moreover, if the identity holds on $U\setminus\{p\}$, then (M,g) has constant sectional curvature k.

5.3. Volume comparison

VOLUME COMPARISON

Write $B(p, \delta)$ for the metric ball centered at p, g_k the metric with constant sectional curvature k on $B(p, \delta) \setminus \{p\}$.

Theorem 126 (Bishop-Gromov). Let (M, g) be a complete Riemannian manifold with

$$Ric \geqslant (n-1)kg$$
,

for some constant k. Then the volume ratio

$$\frac{\operatorname{Vol}_g(B(p,\delta))}{\operatorname{Vol}_{g_k}(B(p,\delta))}$$

is non-increasing for $\delta \in \mathbb{R}^+$, and

$$\lim_{\delta \to 0} \frac{\operatorname{Vol}_g(B(p,\delta))}{\operatorname{Vol}_{q_k}(B(p,\delta))} = 1.$$

Moreover, if there exists $0 < \delta_1 < \delta_2 \leqslant \delta$ with

$$\frac{\operatorname{Vol}_g(B(p,\delta_1))}{\operatorname{Vol}_{g_k}(B(p,\delta_1))} = \frac{\operatorname{Vol}_g(B(p,\delta_2))}{\operatorname{Vol}_{g_k}(B(p,\delta_2))}$$

then $\operatorname{Vol}_g(B(p,\delta)) = \operatorname{Vol}_{g_k}(B(p,\delta))$ for $\delta \in [0,\delta_2]$ and g is of constant sectional curvature on $B(p,\delta_2)$.

Theorem 127 (Zhu). Let (M,g) be a complete Riemannian manifold with

$$Ric \geqslant (n-1)kg$$
,

for some constant k. Then for $0 \leq \delta_1 < \min\{\delta_2, \delta_3\} \leq \max\{\delta_2, \delta_3\} < \delta_4$,

$$\frac{\operatorname{Vol}_g(B(p,r_4)) - \operatorname{Vol}_g(B(p,r_3))}{\operatorname{Vol}_{g_k}(B(p,r_4)) - \operatorname{Vol}_{g_k}(B(p,r_3))} \leqslant \frac{\operatorname{Vol}_g(B(p,r_2)) - \operatorname{Vol}_g(B(p,r_1))}{\operatorname{Vol}_{g_k}(B(p,r_2)) - \operatorname{Vol}_{g_k}(B(p,r_1))}.$$

Proposition 128 (Gromov). Let (M, g) be a complete Riemannian manifold of dimension n with $Ric \ge (n-1)kg$ for some constant k > 0. Then

$$\operatorname{Vol}_g(M) \leqslant \operatorname{Vol}_{g_k} \left(S^n(\frac{1}{\sqrt{k}}) \right).$$

If the equality holds, then (M,g) is isometric to $S^n\left(\frac{1}{\sqrt{k}}\right)$.

Proposition 129 (Cheng). Let (M,g) be a complete Riemannian manifold of dimension n with $Ric \ge (n-1)kg$ for some constant k > 0. If $diam M = \frac{\pi}{\sqrt{k}}$, then (M,g) is isometric to $S^n\left(\frac{1}{\sqrt{k}}\right)$.

Combining the divergence theorem, Theorem 66, Proposition 129, we can show the following results.

Theorem 130. Let (M, g) be a compact orientable Riemannian manifold of dimension $n \ge 2$. Suppose $Ric \ge \lambda g > 0$.

(1) (Lichnerowicz) The first non-zero eigenvalue λ_1 of the Hodge laplacian $\Delta = dd^* + d^*d$ satisfies

$$\lambda_1 \geqslant \frac{n}{n-1}\lambda.$$

(2) (Obata) If $\lambda_1 = \frac{n}{n-1}\lambda$, then (M,g) is isometric to the round sphere $\left(S^n\left(\sqrt{\frac{n-1}{\lambda}}\right), g_{\operatorname{can}}\right)$.

Theorem 131 (Bishop-Yau). Let (M, g) be a complete non-compact Riemannian manifold of dimension n with $Ric \ge 0$. Then

$$c_n \operatorname{Vol}_g(B(p,1))r \leqslant \operatorname{Vol}_g(B(p,r)) \leqslant \operatorname{Vol}_{g_1}(B(p,r)) = \frac{\operatorname{Vol}(S^{n-1})}{n}r^n,$$

for some positive constant c_n depending only on n and large r.

5.4. The splitting theorem

Theorem 132 (Cheeger-Gromoll). Let (M, g) be a complete Riemannian manifold of dimension n with Ric $g \ge 0$. If there is a geodesic line in M, then (M, g) is isometric to $\mathbb{R} \times N$, $g_{\mathbb{R}} \oplus g_{N}$, where Ric $g_{N} \ge 0$.

Corollary 133. Let (M,g) be a complete Riemannian manifold with $Ric \ge 0$.

(1) (M,g) is isometric to $(\mathbb{R}^k \times N, g_{\mathbb{R}^k} \oplus g_N)$, where N does not contain a geodesic line and $\operatorname{Ric} g_N \geqslant 0$.

(2) The isometry group splits

$$\operatorname{Isom}(M,g) \cong \operatorname{Isom}(\mathbb{R}^k, g_{\mathbb{R}^k}) \times \operatorname{Isom}(N, g_N).$$

Definition 134 (Bieberbach group). A subgroup B_n of $\text{Isom}(\mathbb{R}^n, g_{\text{can}}) = O(n) \rtimes \mathbb{R}^n$ is a Bieberbach group if it acts freely on \mathbb{R}^n and \mathbb{R}^n/B_n is a compact manifold.

Theorem 135 (structure of manifolds with Ric ≥ 0). Let (M,g) be a compact Riemannian manifold with Ric ≥ 0 , and $\pi: (\widetilde{M}, \widetilde{g}) \to (M,g)$ its universal covering with pull-back metric.

- (1) There exists some integer $k \ge 0$ and a compact Riemannian manifold (N, g_N) with $\operatorname{Ric} g_N \ge 0$ such that $(\widetilde{M}, \widetilde{g})$ is isometric to $(\mathbb{R}^k \times N, g_{\mathbb{R}^k} \oplus g_N)$.
- (2) The isometry group splits

$$\operatorname{Isom}(M,g) \cong \operatorname{Isom}(\mathbb{R}^k, g_{\mathbb{R}^k}) \times \operatorname{Isom}(N, g_N).$$

(3) There exists a finite normal subgroup G of Isom(N, h), a Bieberbach group B_k and an exact sequence

$$0 \to G \to \pi_1(M) \to B_k \to 0.$$

Corollary 136. Let (M,g) be a compact Riemannian manifold with $\text{Ric} \geq 0$, and $\pi: (\widetilde{M}, \widetilde{g}) \to (M,g)$ its universal covering with pull-back metric.

- (1) If \widetilde{M} is contractible, then $(\widetilde{M}, \widetilde{g})$ is isometric to $(\mathbb{R}^n, g_{\mathbb{R}^n})$ and (M, g) is flat.
- (2) If $(\widetilde{M}, \widetilde{g})$ does not contain a line, then $\pi_1(M)$ is finite and $b_1(M) = 0$.
- (3) If $\pi_1(M)$ is finite, then \widetilde{M} is compact and $b_1(M) = 0$.

Corollary 137. Let (M, g) be a compact Riemannian manifold with $\text{Ric} \ge 0$. If there exists some point $p \in M$ such that $\text{Ric}_p > 0$, then $\pi_1(M)$ is finite and $b_1(M) = 0$.

Corollary 138. Let (M,g) be a compact Riemannian manifold with $\text{Ric} \geq 0$, and $\dim M = n$. Then $b_1(M) \leq n$. Moreover, $b_1(M) = n$ iff (M,g) is flat.

Corollary 139. $S^3 \times S^1$ can not admit Ricci flat metrics.

Exercise 140. suppose (M^n, g) is compact with $b_1 = k$. if $Ric \ge 0$, show that the universal covering splits:

$$(\widetilde{M},g) = (N,h) \times (\mathbb{R}^k, g_{\mathbb{R}^n}).$$

give an example where $b_1 < n$ and $(\widetilde{M}, g) = (\mathbb{R}^n, g_{\mathbb{R}^n})$.

6. Gathering important results

- (1) Koszul formula
- (2) for 3-dim manifolds, Einstein implies CSC.
- (3) volume expression of the Laplacian {see 10}
- (4) symmetry and orthogonality of the 2nd fundamental form
- (5) Gauss' lemma {see 24}
- (6) Hopf-Rinow theorem {see 30}
- (7) local expansion of metric {see 33}
- (8) properties of the radial vector field and corollaries {see 36}
- (9) expression of d^* {see 44}
- (10) divergence theorem {see 1.8}
- (11) Ricci identity {see 57}
- (12) 2nd Bianchi identity {see 60}
- (13) Schur's lemma {see 61}
- (14) Bochner formula for smooth functions {see 66}
- (15) Bochner formula for Killing vector fields{see 68}
- (16) Bochner formula for harmonic 1-forms {see 73}
- (17) *Bochner formula for smooth maps {see 75}
- (18) 1st and 2nd variation of the energy
- (19) characterization of the Jacobi field {see 84}
- (20) index theorem and topology
- (21) Cartan-Hadamard theorem {see 93}

- (22) characterization of CH manifolds {see 95}
- (23) Cartan's fixed point and torsion free theorem {see 97, 98}
- (24) Preissmann theorem {see 101}
- (25) Byers theorem {see 103}
- (26) no product manifold admits a metric of negative sectional curvature
- (27) Myers theorem {see 104}
- (28) Synge theorem {see 106}
- (29) Weinstein-Synge theorem {see 108}
- (30) Riemann-Hopf-Killing theorem {see 110}
- (31) properties of space of CSC
- (32) Rauch comparison and corollaries
- (33) Hessian and Laplacian comparisons
- (34) volume comparison
- (35) proof of Cheng's rigidity theorem
- (36) Lichnerowicz-Obata eigenvalue inequality and rigidity
- (37) Cheeger-Gromoll splitting theorem and corollaries
- (38) structure of manifolds with Ric ≥ 0 .

A. Isometry and local isometry

Definition 141 ((local) isometry). Let $\varphi : (M, g_M) \to (N, g_N)$ be smooth.

- (1) φ is called a local isometry if $\varphi_{*,p}: T_pM \to T_{\varphi(p)}M$ is a linear isometry for every $p \in M$, or equivalently, $g_M = \varphi^*g_N$.
- (2) φ is called an isometry if φ is surjective and preserve the distance.

List of properties:

- if φ is a local isometry, then φ is totally geodesic;
- for smooth curve $\gamma:[a,b]\to M$ and $\widetilde{\gamma}=\varphi\circ\gamma,\,\gamma$ is a geodesic iff $\widetilde{\gamma}$ is a geodesic.

Theorem 142. Let $\varphi:(M,g_M)\to (N,g_N)$ be smooth and bijective. The followings are equivalent

- (1) φ is an isometry.
- (2) φ is a diffeomorphism and a local isometry.
- (3) φ is a diffeomorphism and for every smooth curve $\gamma:[a,b]\to M$, length $(\varphi\circ\gamma)=\operatorname{length}(\gamma)$.

Exercise 143. prove the theorem above.

B. Covering maps and transformations

RIEMANNIAN COVERING MAPS

Definition 144 (Riemannian covering map). A smooth covering map π : $(\widetilde{M}, \widetilde{g}) \to (M, g)$ is a Riemannian covering map if it is a local isometry. **Theorem 145.** Suppose $\pi : (\widetilde{M}, \widetilde{g}) \to (M, g)$ is a local isometry.

- (1) If $(\widetilde{M}, \widetilde{g})$ is complete, then π is a Riemannian covering map and (M, g) is complete.
- (2) If π is a covering map, then (M,g) is complete iff $(\widetilde{M},\widetilde{g})$ is complete.

DECK TRANSFORMATIONS

Definition 146 (deck transformation). Let $\pi : \widetilde{M} \to M$ be the universal covering of M. A deck transformation $F : \widetilde{M} \to \widetilde{M}$ is a homeomorphism such that $\pi \circ F = F$, enote by $\operatorname{Aut}_{\pi}(\widetilde{M})$ the set of deck transformations **Theorem 147.** (1) $\pi_1(M) \cong \operatorname{Aut}_{\pi}(\widetilde{M})$;

- (2) $\operatorname{Aut}_{\pi}(\widetilde{M})$ acts smoothly freely and properly on \widetilde{M} ;
- (3) $\operatorname{Aut}_{\pi}(\widetilde{M})$ acts transitively on each fiber of π .

C. Axes, rays and lines

FREE HOMOTOPY CLASS

Definition 148. Two loops $\gamma_0, \gamma_1; [0,1] \to M$ are said to be freely homotopic if they are homotopic through closed paths, i.e. there exists a homotopy $H(s,t): [0,1] \times [0,1] \to M$ such that

$$H(0,t) = \gamma_0(t), H(1,t) = \gamma_1(t) \text{ and } H(s,0) = h\mathcal{H}(s,1).$$

AXES

Definition 149 (axis of an isometry). Let (M, g) be complete, $F: M \to M$ be an isometry. A geodesic $\mathbb{R} \to M$ is called an axis of F if $F \circ \gamma$ is a non-trivial translation of γ , i.e.

$$F(\gamma(t)) = \gamma(t+c)$$

for some constant $c \neq 0$. F is axial if it has an axis.

Lemma 150. Let (M,g) be complete, F be an isometry. If $\delta_F(p) = d(p, F(p))$ has a positive minimum, then F has an axis.

Theorem 151. Let (M,g) be a compact Riemannian manifold, $F:\widetilde{M}\to \widetilde{M}$ be a non-trivial deck transformation of $\pi:\widetilde{M}\to M$.

- (1) δ_F has a positive minumum and $\delta_F \geq 2 \operatorname{inj}(M)$, thus F is axial.
- (2) The axis corresponding to this minimum is mapped under π to a closed geodesic, whose length is minimal in its free homotopy class.

Exercise 152. suppose (M, g) is a compact connected riemannian manifold. every non-trivial free homotopy class in M is represented by a closed geodesic that has minimum length among all admissible loops in the given free homotopy class.

Geodesic rays

Definition 153 (geodesic ray). A geodesic ray is a unit-speed geodesic $\gamma: [0, \infty) \to M$ such that $d(\gamma(s), \gamma(t)) = |s - t|$ for any $s, t \ge 0$.

Lemma 154. Let (M, g) be a complete Riemannian manifold. The followings are equivalent.

- (1) M is non-compact.
- (2) For any $p \in M$, there is a geodesic ray starting from p.

Proposition 155 (definition of Busemann function). Let (M, g) be a complete Riemannian manifold, $\gamma : [0, \infty) \to M$ be a geodesic ray starting from a point p. Define

$$b_{\gamma}^{t}(x) = d(x, \gamma(t)) - t = d(x, \gamma(t)) - d(\gamma(0), \gamma(t))$$

then $b_{\gamma}^{t}(x)$ is non-increasing for t. Define the Busemann function by

$$b_{\gamma}(x) = \lim_{t \to \infty} b_{\gamma}^{t}(x).$$

List of properties:

- $|b_{\gamma}^t(x)| \leqslant d(x,\gamma(0));$
- $|b_{\gamma}^t(x) b_{\gamma}^t(y)| \leqslant d(x, y)$.

Exercise 156. compute the busemann functions on the upper half plane \mathbb{H}^2 with canonical metric of constant sectional curvature -1.

Geodesic lines

Definition 157 (geodesic line). A geodesic line is a unit-speed geodesic $\gamma: \mathbb{R} \to M$ such that $d(\gamma(s), \gamma(t)) = |s - t|$ for any $s, t \in \mathbb{R}$.

Lemma 158. Let (M, g) be a connected complete non-compact manifold. If M contains a compact subset K such that $M \setminus K$ has at least two un-bounded components, then there is a geodesic passing through K.

References

- [DCFF92] Manfredo Perdigao Do Carmo and J Flaherty Francis. *Riemannian geometry*, volume 2. Springer, 1992.
- [Jos08] Jürgen Jost. Riemannian geometry and geometric analysis, volume 42005. Springer, 2008.
- [Pet06] P Petersen. Riemannian geometry. Graduate Texts in Mathematics/Springer-Verlarg, 2006.
- [Wal09] Thomas Walpuski. Riemannian geometry ii (lecture notes), 2009.