ΜΔΤ1100110

of course in base 2

Arash Gholami

Tutorial 4

Email: arash.gholami@mail.utoronto.ca LinkedIn

Example 1

- It's a good idea to always do multiplication table first since we might need it to fill in the addition table
- 1st 0 times every other element is 0.

•	0	1	X
0	0	0	0
1	0		
X	0		

- 2nd 1 times every element is that element since 1 is the multiplicative identity.
- X.1 = X
- 1.1 = 1

- 3rd use elimination process to see what u get for X.X
- If $X.X = 0 \rightarrow X = 0$ False
- If $X.X = X \rightarrow X = 1$ False
- If X.X = 1 True

•	0	1	X
0	0	0	0
1	0	1	X
X	0	X	1

- Now lets do the addition table.
- 1st since 0 is the additive identity every element plus 0 is it self.

•
$$0 + 0 = 0$$

$$\bullet 0 + 1 = 1$$

•
$$0 + X = X$$

- Consider the 2^{nd} column and use process of elimination to find 1 + X.
- If $1 + X = 1 \rightarrow X = 0$ *False*
- If $1 + X = X \to 1 = 0$ *False*
- If $1 + X = 0 \rightarrow True$

+	0	1	X
0	0	1	X
1	1		0
X	X	0	

- Consider the 2^{nd} column and use process of elimination to find 1+1.
- If $1 + 1 = 1 \rightarrow 1 = 0$ False
- If 1 + 1 = 0, we also know $1 + X = 0 \rightarrow 1 + 1 = 1 + X$ $\rightarrow \mathbf{1} = X \ false$
- By process of elimination:
- 1 + 1 = X

+	0	1	X
0	0	1	X
1	1	X	0
X	X	0	

- Consider the 3^{rd} column and use process of elimination to find X + X.
- If $X + X = X \rightarrow X = 0$ False
- If $X + X = 0 \land X + 1 = 0 \rightarrow X + X = X + 1 \rightarrow X = 1 \ false$
- If $X + X = 1 \rightarrow True$ by elimination process

+	0	1	X
0	0	1	X
1	1	X	0
X	X	0	1

Example 2

2.37. Given a real number x, let A be the statement " $\frac{1}{2} < x < \frac{5}{2}$ ", let B be the statement " $x \in \mathbb{Z}$ ", let C be the statement $x^2 = 1$, and let D be the statement "x = 2". Which statements below are true for all $x \in \mathbb{R}$?

a) $A \Rightarrow C$.

e) $C \Rightarrow (A \wedge B)$.

b) $B \Rightarrow C$.

f) $D \Rightarrow [A \wedge B \wedge (\neg C)].$

c) $(A \wedge B) \Rightarrow C$.

g) $(A \vee C) \Rightarrow B$.

- d) $(A \wedge B) \Rightarrow (C \vee D)$.
- a) $A \Rightarrow B$, means if A holds then B is true.
- For such an statement to be false, A needs to hold and B needs to not be satisfied
- i.e. the condition holds but the expected result doesn't appear
- Which results in the conditional statement to be false

2.37. Given a real number x, let A be the statement " $\frac{1}{2} < x < \frac{5}{2}$ ", let B be the statement " $x \in \mathbb{Z}$ ", let C be the statement $x^2 = 1$, and let D be the statement "x = 2". Which statements below are true for all $x \in \mathbb{R}$?

a) $A \Rightarrow C$.

e) $C \Rightarrow (A \wedge B)$.

b) $B \Rightarrow C$.

f) $D \Rightarrow [A \land B \land (\neg C)].$

c) $(A \wedge B) \Rightarrow C$.

g) $(A \vee C) \Rightarrow B$.

- d) $(A \wedge B) \Rightarrow (C \vee D)$.
- a) $A \Rightarrow C$, means if A holds then C is true.
- here it means: if $\frac{1}{2} < x < \frac{5}{2}$, then $x^2 = 1$
- This is false, since x is a real number, pick $x = \frac{3}{2}$
- Then by $C, x^2 = 1$, whilst $x^2 = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$
- So False

a)
$$A \Rightarrow C$$
.

e)
$$C \Rightarrow (A \wedge B)$$
.

b)
$$B \Rightarrow C$$
.

f)
$$D \Rightarrow [A \land B \land (\neg C)].$$

c)
$$(A \wedge B) \Rightarrow C$$
.

g)
$$(A \vee C) \Rightarrow B$$
.

d)
$$(A \wedge B) \Rightarrow (C \vee D)$$
.

- b)B \Rightarrow C means, if $x \in \mathbb{Z}$, then $x^2 = 1$
- False just pick x to be some integer other than 1 and -1
- If x = 2, then $x^2 = 4$ not 1, a contradiction

2.37. Given a real number x, let A be the statement " $\frac{1}{2} < x < \frac{5}{2}$ ", let B be the statement " $x \in \mathbb{Z}$ ", let C be the statement $x^2 = 1$, and let D be the statement "x = 2". Which statements below are true for all $x \in \mathbb{R}$?

a)
$$A \Rightarrow C$$
.

e)
$$C \Rightarrow (A \wedge B)$$
.

b)
$$B \Rightarrow C$$
.

f)
$$D \Rightarrow [A \land B \land (\neg C)].$$

c)
$$(A \wedge B) \Rightarrow C$$
.

g)
$$(A \vee C) \Rightarrow B$$
.

d)
$$(A \wedge B) \Rightarrow (C \vee D)$$
.

•
$$c)(A \wedge B) \Rightarrow C$$
.

• The condition is $A \wedge B$, which means:

•
$$if \frac{1}{2} < x < \frac{5}{2} \land x \in \mathbb{Z}$$

- The expected result is C, i.e. $X^2 = 1$,
- To contradict it, condition must hold and the result doesn't.

•
$$if \frac{1}{2} < x < \frac{5}{2} \land x \in \mathbb{Z} implies x \in \{1, 2\}$$

• $pick \ x = 2$, then $x^2 \neq 1$, a contradiction

a)
$$A \Rightarrow C$$
.

e)
$$C \Rightarrow (A \wedge B)$$
.

b)
$$B \Rightarrow C$$
.

f)
$$D \Rightarrow [A \land B \land (\neg C)].$$

c)
$$(A \wedge B) \Rightarrow C$$
.

g)
$$(A \vee C) \Rightarrow B$$
.

d)
$$(A \wedge B) \Rightarrow (C \vee D)$$
.

•
$$d)(A \wedge B) \Rightarrow (C \vee D)$$
.

- The condition is $A \wedge B$, which means: if $\frac{1}{2} < x < \frac{5}{2} \wedge x \in \mathbb{Z}$
- The expected result is $(C \lor D)$. i.e. $X^2 = 1$ or x = 2.
- $if \frac{1}{2} < x < \frac{5}{2} \land x \in \mathbb{Z} implies x \in \{1, 2\},$
- Then the result holds, since if x = 1, then C holds.
- if x = 2, then D holds.
- Therefore this statement d is True

a)
$$A \Rightarrow C$$
.

e)
$$C \Rightarrow (A \wedge B)$$
.

b)
$$B \Rightarrow C$$
.

f)
$$D \Rightarrow [A \land B \land (\neg C)].$$

c)
$$(A \wedge B) \Rightarrow C$$
.

g)
$$(A \vee C) \Rightarrow B$$
.

d)
$$(A \wedge B) \Rightarrow (C \vee D)$$
.

•
$$d)C \Rightarrow (A \land B)$$

- The condition is C, which means: if $x^2 = 1$, which means $x \in \{-1, 1\}$.
- The expected result is $(A \land B)$. i. e. $\frac{1}{2} < x < \frac{5}{2} \land x \in \mathbb{Z}$.
- By the condition x is either -1 or 1.
- For the expected result to hold both A and B need to hold
- In other words x must be an integer and be in $(\frac{1}{2}, \frac{5}{2})$
- If x = -1, then it is an integer, so B holds, but it is not $in(\frac{1}{2}, \frac{5}{2})$, so A doesn't
- Therefore statement e is false.

a)
$$A \Rightarrow C$$
.

e)
$$C \Rightarrow (A \wedge B)$$
.

b)
$$B \Rightarrow C$$
.

f)
$$D \Rightarrow [A \land B \land (\neg C)].$$

c)
$$(A \wedge B) \Rightarrow C$$
.

g)
$$(A \vee C) \Rightarrow B$$
.

d)
$$(A \wedge B) \Rightarrow (C \vee D)$$
.

•
$$f)D \Rightarrow [A \land B \land (C^c)]$$

- The condition is D, which means: if x = 2.
- The expected result is $[A \land B \land (C^c)]$.
- Note C^c means $not(x^2 = 1)$, since $x^2 = 1$ means $x \in \{-1, 1\}$, $\rightarrow C^c$ means $x \neq -1$ and $x \neq 1$.

•
$$i.e.\frac{1}{2} < x < \frac{5}{2} \land x \in \mathbb{Z} \land (x \neq -1 \land x \neq 1).$$

- If D holds, means x = 2,
- $Then \frac{1}{2} < 2 = \frac{4}{2} < \frac{5}{2} \land 2 \in \mathbb{Z} \land (2 \neq -1 \land 2 \neq 1) \text{ is a true statement.}$
- So the whole statement is True

2.37. Given a real number x, let A be the statement " $\frac{1}{2} < x < \frac{5}{2}$ ", let B be the statement " $x \in \mathbb{Z}$ ", let C be the statement $x^2 = 1$, and let D be the statement "x = 2". Which statements below are true for all $x \in \mathbb{R}$?

a)
$$A \Rightarrow C$$
.

e)
$$C \Rightarrow (A \wedge B)$$
.

b)
$$B \Rightarrow C$$
.

f)
$$D \Rightarrow [A \wedge B \wedge (\neg C)].$$

c)
$$(A \wedge B) \Rightarrow C$$
.

g)
$$(A \vee C) \Rightarrow B$$
.

d)
$$(A \wedge B) \Rightarrow (C \vee D)$$
.

•
$$f)(A \lor C) \Rightarrow B$$
.

• The condition is $(A \lor C)$, which means:

•
$$if \frac{1}{2} < x < \frac{5}{2} \lor x^2 = 1$$
. $i.e. x \in \left(\frac{1}{2}, \frac{5}{2}\right) \cup \{-1, 1\}$

•
$$x \in \left(\frac{1}{2}, \frac{5}{2}\right) \cup \{-1\}$$

• The expected result is $B.i.e.x \in \mathbb{Z}$.

• If we pick $x = \frac{3}{2}$ the condition holds.

- However $\frac{3}{2} \notin \mathbb{Z}$, so the result is false.
- So the whole statement is false.

Example 3

- **2.47.** Let P(x) be the assertion "x is odd", and let Q(x) be the assertion " $x^2 1$ is divisible by 8". Determine whether the following statements are true:
 - a) $(\forall x \in \mathbb{Z})[P(x) \Rightarrow Q(x)].$
 - b) $(\forall x \in \mathbb{Z})[Q(x) \Rightarrow P(x)].$
- (a) This statement is TRUE. To prove that, we show that for any $x \in \mathbb{Z}$, if P(x) is true, then Q(x) is true.
- For a given integer x, if x is an odd number, then it has the form x = 2k + 1 for some integer k.
- Therefore we get that $x^2 1 = (2k + 1)^2 1$
- $\bullet = 4k^2 + 4k + 1 1 = 4k(k + 1)$
- One of the numbers k, k+1 must be even, which means that k(k+1) is an even number.
- When we multiply by 4 we conclude that $x^2 1 = 4k(k + 1)$ must be divisible by 8, as needed.

- **2.47.** Let P(x) be the assertion "x is odd", and let Q(x) be the assertion " $x^2 1$ is divisible by 8". Determine whether the following statements are true:
 - a) $(\forall x \in \mathbb{Z})[P(x) \Rightarrow Q(x)].$
 - b) $(\forall x \in \mathbb{Z})[Q(x) \Rightarrow P(x)].$
- This statement is TRUE. To prove that:
- we show that for any $x \in \mathbb{Z}$, if Q(x) is true, then P(x) is true.
- For any integer x, if x^2-1 is divisible by 8, then in particular x^2-1 is even,
- Which implies that x^2 is odd.
- But an integer is odd if and only if its square is odd, and hence x must be an odd number, as needed.

Example 4

- We need to always do multiplication table first since we need it to fill in the addition table
- 1st 0 times every other element is 0.

•	0	1	a	b
0	0	0	0	0
1	0			
а	0			
b	0			

Let $F = \{0, 1, a, b\}$ be a field with four elements. Show that $b^3 = 1$.

• 2nd every element times 1 is itself, since 1 is the multiplicative identity.

•	0	1	a	b
0	0	0	0	0
1	0	1	а	b
a	0	а		
b	0	b		

- 3rd
- Consider the 3^{rd} column and use process of elimination to find ab.
- If $a, b = 0 \to a = 0$ or b = 0
- False
- If $a.b = a \to b = 1$
- False
- If $a, b = b \to a = 1$
- False
- So by process of elimination:
- a, b = 1 = b, a

•	0	1	а	b
0	0	0	0	0
1	0	1	а	b
а	0	а		1
b	0	b	1	

- 4th
- Consider the 3^{rd} column and use process of elimination to find a. a.
- If $a. a = 0 \to a = 0$
- False
- If $a. a = a \to a = 1$
- False
- If a.a = 1 since $ab = 1 \rightarrow a = b$
- False
- So by process of elimination:
- a.a = b

•	0	1	a	b
0	0	0	0	0
1	0	1	а	b
а	0	а	b	1
b	0	b	1	

- 5th
- Consider the 4^{th} column and use process of elimination to find \boldsymbol{b} . \boldsymbol{b} .
- If $b.b = 0 \rightarrow b = 0$
- False
- If $b.b = b \to b = 1$
- False
- If b.b = 1 since $ab = 1 \rightarrow a = b$
- False
- So by process of elimination:
- b.b = a

•	0	1	a	b
0	0	0	0	0
1	0	1	а	b
а	0	а	b	1
b	0	b	1	a

- Now lets calculate b^3 .
- $b^3 = b.b.b$
- $\bullet = (b.b).b \quad b.b = a$
- $\bullet = a.b$
- = 1

•	0	1	a	b
0	0	0	0	0
1	0	1	а	b
а	0	а	b	1
b	0	b	1	а

Citations:

Book

Mathematical Thinking: Problem-solving and Proofs

D'Angelo, J.P.

West, D.B.

9780130144126

https://books.google.ca/books?id=fL6nQgAACAAJ

2000

Prentice Hall