Due: 04/07/2024 23:59

Foundations of Artificial Intelligence: Homework 2

Instructor: Shang-Tse Chen & Yun-Nung Chen

Problem 1 (10 points)

Consider the MAX-MIN game tree shown below where the numbers underneath the leaves of the tree are utility values from the first player's point of view (MAX).

- a) Draw a copy of the tree on paper and perform the minimax algorithm algorithm on it by hand. Write the resulting minimax values next to every node of MAX best 3: MIN best 3 in the control of the cont
- b) Do the same, but with <u>left-to-right alpha-beta</u> pruning. Write the <u>final values for α and β next to every node, and indicate which nodes are not examined due to pruning.</u>
- c) Do the same, but with <u>right-to-left alpha-beta</u> pruning. Write the <u>final values for α and β next to every node, and indicate which nodes are not examined due to pruning.</u>

Problem 2 (10 points)

P(C)P(F) P(I) P(J) · P(HII) P(PII) P(GII) P(EIJ) P(AIC, F, H, I,D) P(B| P,G,E, J) 7

(a) Write down the factored joint probability distribution according to the following Bayesian Network.

(b) Draw the Bayesian Network that corresponds to this conditional probability:

P(A|C,D,F,H)P(B|D,E,J)P(C|H)P(D|G,J)P(E)P(F|G,I)P(G|I,J)P(H)P(I)P(J)

(c) Below is the Bayesian network for the WetGrass problem.

P(C)	C	P(S)
.5	t	.1
	f	.5
	,	
	C	P(R)
	C	P(R) .8

S	R	P(W)
t	t	.99
t	f	.90
f	t	.90
\overline{f}	\overline{f}	.00

Write down an expression that will evaluate to 2 care porout.

$$P(\underline{C=f} \land \underline{R=f} \land \underline{S=t} \land \underline{W=t}).$$

You do not need to carry out the multiplication to produce a single number (probability).

Problem 3 (10 points)

According to the following Bayesian Network,

(a) List all the variables that are d-separated from F given E.

(b) List all the variables that are d-separated from F given E and K.

Draw a Bayes net with four states $\{A, B, C, D\}$, that follows all of the independence constraints below.

(c) $A \perp \!\!\!\perp D \mid C$

(d)
$$A \not\perp\!\!\!\perp C$$
 \ref{active}

(e) B A C € active

(g) $B \perp \!\!\!\perp D \mid A, C$

