

GPU Teaching Kit

Accelerated Computing

Module 9 - Parallel Computation Patterns (Reduction)

Lecture 9.3 - A Better Reduction Kernel

Objective

- To learn to write a better reduction kernel
 - Improved resource efficiency
 - Improved thread to data mapping
 - Reduced control divergence

Some Observations on the naïve reduction kernel

- In each iteration, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition still consume execution resources
- Half or fewer of threads will be executing after the first step
 - All odd-index threads are disabled after first step
 - After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence
 - This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024),
 where each active warp only has one productive thread until all warps in a block retire

Thread Index Usage Matters

- In some algorithms, one can shift the index usage to improve the divergence behavior
 - Commutative and associative operators
- Always compact the partial sums into the front locations in the partialSum[] array
- Keep the active threads consecutive

An Example of 4 threads

Thread 0 Thread 1 Thread 2 Thread 3

o de la companya del companya de la companya de la companya del companya de la co

A Better Reduction Kernel

```
for (unsigned int stride = blockDim.x;
    stride > 0; stride /= 2)
 syncthreads();
if (t < stride)</pre>
    partialSum[t] += partialSum[t+stride];
```

A Quick Analysis

- For a 1024 thread block
 - No divergence in the first 5 steps
 - 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
 - All threads in each warp either all active or all inactive
 - The final 5 steps will still have divergence

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>