CS3350B Computer Organization Chapter 2: Synchronous Circuits Part 1: Gates, Switches, and Boolean Algebra

Igra Batool

Department of Computer Science University of Western Ontario, Canada

Monday January 29, 2024

Outline

- 1 Introduction
- 2 Logic Gates
- 3 Boolean Algebra

Layers of Abstraction

After looking at high-level CPU and Memory we will now go down to the lowest level (that we care about).

Circuit Design vs Digital (Logic) Design

□ Design of individual circuits vs Using circuits to implement some logic.

Circuit Design

Why do we care?

- Appreciate the limitations of hardware.
- Understand why some things are fast and some things are slow.
- Need circuit design to understand logic design.
- Need logic design to understand CPU Datapath.

If you are ever working with:

- Assembly, ISAs,
- Embedded Systems and circuits,
- Specialized computer/logic systems,

you will need circuit and logic design.

Digital Circuits

Everything is digital: represented by discrete, individual values.

ightharpoonup No gray areas or ambiguity.

Must convert an analog - continuously variable - signal to digital.

For us, the analog signal is electricity (voltage).

- \vdash "High" voltage $\Rightarrow 1$
- \rightarrow "Low" voltage \Rightarrow 0

Physicality of Circuits

In the end, everything is a switch.

$$"Input" \Rightarrow A \\ "Output" \Rightarrow Z$$

If A is 0/false then switch is open. If A is 1/true then switch is closed.

This circuit implements:

$$\boldsymbol{A} \; \equiv \; \boldsymbol{Z}$$

Transistors: Electrically Controlled Switches

MOS-FET: Metal-Oxide-Semiconductor Field-Effect Transistor

- Has a source (S), a drain (D), and a gate (G).
- Applying voltage to G allows current to flow between S and D.
- In reality, transistors, logic gates, SRAM, use CMOS (Complimentary-MOS). But we don't care about transistors really...

opens when voltage at G is low, closes when voltage at G is low, opens when voltage at G is high

Flipping a transistor is *much faster* than moving a physical switch.

Outline

- 1 Introduction
- 2 Logic Gates
- 3 Boolean Algebra

Logic as Circuits

Propositional Logic: A set of propositions (truth values) combined by some logical connectives.

- Truth values ≡ Binary digital signal
- Logical connectives ≡ Logic gates

Logic Gate: A circuit implementing some logical expression/function.

The basics: **AND** (\land), **OR** (\lor), **NOT** (\neg).

Arity of a function/gate is the number of inputs.

Gates as Switches

■ Both A and B must be true/1 to get the circuit to complete.

Either A or B can be true/1 to get the circuit to complete.

Logic Gates In Detail: AND

$$A \wedge B \equiv C$$

$$A \cdot B \equiv C$$

Truth Table for AND

Α	В	$A \wedge B \equiv C$
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates In Detail: OR

$$A \vee B \equiv C$$

$$A + B \equiv C$$

Truth Table for OR

Α	В	$A \vee B \equiv C$
0	0	0
0	1 0	1
1	0	1
1	1	1

Logic Gates In Detail: NOT

$$\neg A \equiv C$$
 $\overline{A} \equiv C$

Truth Table for NOT

$$\begin{array}{c|c}
A & \neg A \equiv C \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

More Interesting Logic Gates: NAND

$$\neg (A \land B) \equiv C$$

$$\overline{A \cdot B} \equiv C$$

$$A \mid B$$

Truth Table for NAND

Α	В	$A \cdot B \equiv C$
0	0	1
0	1	1
1 1	0	1
1	$\mid 1 \mid$	0

More Interesting Logic Gates: NOR

$$\neg (A \lor B) \equiv C$$

$$\overline{A + B} \equiv C$$

Truth Table for NOR

Α	В	$A + B \equiv C$		
0	0	1		
0	1 0	0		
1	0	0		
1	1	0		

More Interesting Logic Gates: XOR (Exclusive OR)

$$A \oplus B \equiv C$$

Truth Table for XOR

Α	В	$A \oplus B \equiv C$
0	0	0
0	1 0	1
1	0	1
1	1	0

Outline

- 1 Introduction
- 2 Logic Gates
- 3 Boolean Algebra

The Algebra of Logic Gates

Due to the equivalence of truth values and binary digital signals, **Boolean Algebra** is heavily used discussing circuitry.

Associativity:

$$(A+B)+C \equiv A+(B+C)$$
$$(A\cdot B)\cdot C \equiv A\cdot (B\cdot C)$$

Identity:

$$A + 0 \equiv A$$
$$A \cdot 1 \equiv A$$

Commutativity:

$$A + B \equiv B + A$$
$$A \cdot B \equiv B \cdot A$$

Annihilation:

$$A + 1 \equiv 1$$
$$A \cdot 0 \equiv 0$$

Distributivity:

$$A + (B \cdot C) \equiv (A + B) \cdot (A + C)$$
$$A \cdot (B + C) \equiv (A \cdot B) + (A \cdot C)$$

Idempotence:

$$A + A \equiv A$$
$$A \cdot A \equiv A$$

Boolean Algebra: More Interesting Laws

Absorption:

$$A \cdot (A + B) \equiv A$$
$$A + (A \cdot B) \equiv A$$

Double Negation

$$\overline{\overline{A}}\equiv A$$

Complementation:

$$A + \overline{A} \equiv 1$$
$$A \cdot \overline{A} \equiv 0$$

De Morgan's Laws:

$$\overline{A+B} \equiv \overline{A} \cdot \overline{B}$$
$$\overline{A \cdot B} \equiv \overline{A} + \overline{B}$$

Look familiar?

□ Definitions of NOR and NAND.

Proving De Morgan's Laws

Proof by Exhaustion:

☐ The easiest way to prove something is to write out each expression's truth table.

$$\overline{A+B}\equiv \overline{A}\cdot \overline{B}$$

Α	В	A + B	$\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Α	В	\overline{A}	\overline{B}	$\overline{A} \cdot \overline{B}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Simplifying Expressions with Boolean Algebra (1/2)

$$\overline{xyz} + \overline{xy}z$$

$$\overline{xyz} + \overline{xy}z \equiv \overline{xy}(\overline{z} + z)$$
$$\equiv \overline{xy}(1)$$
$$\equiv \overline{xy}$$

Factor
$$\overline{xy}$$

Complementation of zIdentity with \overline{xy}

\boldsymbol{x}	y	z	\overline{xyz}	$\overline{xy}z$	$\overline{xyz} + \overline{xy}z$
0	0	0	1	0	1
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	$\mid 1 \mid$	0	0	0

Note: $\overline{AB} \Longrightarrow \overline{A} \cdot \overline{B}$; otherwise use $\overline{A \cdot B}$ or $\overline{(AB)}$ for $A \mid B$.

Simplifying Expressions with Boolean Algebra (2/2)

Sometimes a truth table is too challenging...

 \vdash For v variables a truth table has 2^v rows.

$$\overline{(\overline{x}+\overline{z})}(abcd+xz) \implies$$
 6 variables, 64 rows

Instead we can simplify using the laws of Boolean algebra:

$$\overline{(\overline{x}+\overline{z})} \, (abcd+xz) \equiv \overline{x}\overline{z} \, (abcd+xz) \qquad \qquad \text{De Morgan's Law}$$

$$\equiv xz \, (abcd+xz) \qquad \text{Double negation of } x \text{ and } z$$

$$\equiv xz \qquad \qquad \text{Absorption}$$

Simplifying Expressions for Simplified Circuits

$$y = ((ab) + a) + c$$

$$y \equiv (ab + a) + c$$

 $\equiv a(b+1) + c$ Factor a
 $\equiv a(1) + c$ Annihilaltion
 $\equiv a + c$ Identity

Canonical Forms

Different standard or canonical forms.

- Conjunctive Normal Form (CNF) ⇒ AND of ORs "Product-of-sums"
- **Disjunctive Normal Form** (DNF) ⇒ ORs of ANDs

CNF
$$(a+b)\cdot(\overline{a}+b)\cdot(\overline{a}+\overline{b})$$
DNF $ab+\overline{a}b+\overline{a}\overline{b}$

- Every variable should appear in every sub-expression.
 - □ Products for DNF. Sums for CNF.

DNF

- → Some authors call this "Full DNF" or "Full CNF".
- Every boolean expression can be converted to a canonical form.
- DNF more useful and practical \Rightarrow truth tables.

Truth Tables and Disjunctive Normal Forms

We can get a DNF expression directly from a truth table.

- \blacksquare a, b, c are inputs, f is output.
- Create one product term for every entry in the table with $f \equiv 1$.
- lacksquare Put \overline{x} in product if x is false in that row.
- lacksquare Put x in product if x is true in that row.
- OR all products together.

a	b	$\mid c \mid$	\int		
0	0	0	1		
0	0	1	0		
0	1	0	1		
0	1	1	0		
1	0	0	1	\Longrightarrow	$\overline{abc} + \overline{a}\overline{b}\overline{c} + a\overline{b}\overline{c} + abc$
1	0	1	0		
1	1	0	0		
1	1	1	1		

Functional Completeness

Functional Completeness - A set of functions (operators) which can adequately describe every operation and outcome in an algebra.

- For Boolean algebra the classical set of operators: $\{+,\cdot,\neg\}$ is functionally complete but not **minimal**.
- Thanks to De Morgan's Law we only need one of AND or OR.
- The sets $\{+,\neg\}$ and $\{\cdot,\neg\}$ are both functionally complete and minimal.
 - minimal removing any one of the operators would make the set functionally *incomplete*.
- NAND alone is functionally complete; so is NOR alone.

NAND is Functionally Complete

NAND alone is functionally complete.

- NAND ≡
- To prove functional completeness simply show that the operators of the set can mimic the functionality of the set {+,·,¬}.

$$\neg X \equiv X \mid X$$

$$X \cdot Y \equiv \overline{X|Y} \equiv (X|Y) \mid (X|Y)$$

$$X+Y\equiv\overline{\overline{X+Y}}\equiv\overline{\overline{X}\cdot\overline{Y}}\equiv \left(X|X\right)\mid \left(Y|Y\right)$$

X	\overline{X}	$X \cdot X$	$\overline{X \cdot X}$
0	1	0	1
1	0	1	0

Χ	Y	$A \equiv X Y$	A A
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Χ	Y	\overline{X}	\overline{Y}	$ \overline{X} \overline{Y}$
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Summary

Boolean algebra can simplify circuits.

- Remove variables that the output does not depend on.
- Simplifies expression, removing needless gates.
- Space and time complexity improved!

Truth tables, canonical forms, functional completeness.

Help generating truth tables:

```
https:
//web.stanford.edu/class/cs103/tools/truth-table-tool/
```