GATE 2022 IN Q52

EE23BTECH11009 - AROSHISH PRADHAN*

Question: In the circuit shown, the load is driven : Power Factor: by a sinusoidal A.C. voltage source $V_1 = 100 \angle 0^{\circ} V$ at 50Hz. Given $R_1 = 20\Omega$, $C_1 = \left(\frac{1000}{\pi}\right) \mu F$, $L_1 = \frac{1000}{\pi}$ $\left(\frac{20}{\pi}\right)mH$ and $R_2=4\Omega$, the power factor is _____ (round off to one decimal place) (GATE 2022 IN Q52)

Solution:

Symbol	Value	Description
V_1	100∠0°V	Input Voltage
f	50 <i>Hz</i>	Frequency
ω	$2\pi f$	Angular Frequency
R_1	20Ω	Resistance
R_2	4Ω	Resistance
C_1	$\left(\frac{1000}{\pi}\right)\mu F$	Capacitance
L_1	$\left(\frac{20}{\pi}\right)mH$	Inductance
$Z_{ m eff}$		Impedance
$\cos(\phi)$	$\frac{\operatorname{Re}(Z_{\operatorname{eff}})}{ Z_{\operatorname{eff}} }$	Power Factor

TABLE I: Given Parameters

$$Z_{\text{eff}} = R_2 + j\omega L_1 + \frac{\frac{R_1}{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}}$$

$$= 4 + 2j + \frac{-200j}{20 - 10j}$$
(2)

$$=4+2j+\frac{-200j}{20-10j}$$
 (2)

$$=8-6j\tag{3}$$

$$cos(\phi) = \frac{Re(Z_{eff})}{|Z_{eff}|}$$

$$= \frac{8}{\sqrt{8^2 + 6^2}}$$
(5)

$$=\frac{8}{\sqrt{8^2+6^2}}\tag{5}$$

$$= 0.8$$
 (6)

Fig. 2: Plot of $Z_{\rm eff}$ vs ω