## 7. Fundamental Transistor Amplifier Configurations

Lecture notes: Sec. 5

Sedra & Smith (6<sup>th</sup> Ed): Sec. 5.4, 5.6 & 6.3-6.4

Sedra & Smith (5<sup>th</sup> Ed): Sec. 4.4, 4.6 & 5.3-5.4

### Issues in developing a transistor amplifier:

- 1. Find the iv characteristics of the elements for the signal (which can be different than their characteristics equation for bias).
  - This will lead to different circuit configurations for bias versus signal
- 2. Compute circuit response to the signal
  - Focus on fundamental transistor amplifier configurations
- **3.** How to establish a Bias point (bias is the state of the system when there is no signal).
  - $\circ$  Stable and robust bias point should be resilient to variations in  $\mu_n C_{ox}$  (W/L),  $V_t$  (or  $\beta$  for BJT) due to temperature and/or manufacturing variability.
  - Bias point details impact small signal response (e.g., gain of the amplifier).

## What are amplifier parameters?

Voltage Gain of the Circuit:  $A = \frac{v_o}{v_{sig}}$ 

Voltage Gain of the Amplifier:  $A_v = \frac{v_o}{v_i}$ 

Open-loop Gain:  $A_{vo} = \frac{v_o}{v_i}\Big|_{R_L \to \infty}$ 

Input Resistance:  $R_i = \frac{v_i}{i_i}$ 

Output Resistance of Amplifier :  $R_o = -\frac{v_o}{i_o}\Big|_{v_{sig} \to 0}$ 

resistance between the output terminals!





ightharpoonup In general  $R_i$  depends on  $R_L$  and  $R_o$  depends on  $R_{sig}$ 

### Observations on the amplifier parameters

#### Overall Gain:

$$A = \frac{v_o}{v_{sig}} = \frac{v_i}{v_{sig}} \times \frac{v_o}{v_i} = \frac{R_i}{R_i + R_{sig}} A_v$$



$$\frac{v_i}{v_{sig}} = \frac{R_i}{R_i + R_{sig}}$$

- $\blacktriangleright$  Value of  $R_i$  is important.
  - o For  $R_i >> R_i$  ,  $v_i \approx v_{sig}$
  - o For  $R_i$  =  $R_{sig}$  ,  $v_i$  =  $0.5 \ v_{sig}$
  - o For  $R_i \!<\!\!< R_{sig}$  ,  $v_i \!pprox \!0$
- $\triangleright$  Prefer "large"  $R_i$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{R_{L}}{R_{L} + R_{o}} A_{vo}$$

- $ightharpoonup A_{vo}$  is the maximum possible gain of the amplifier.
- $\blacktriangleright$  Value of  $R_o$  is important.
  - o For  $R_o << R_L$  ,  $A_v pprox A_{vo}$
  - o For  $R_o$  =  $R_L$  ,  $A_v$  =  $0.5\,A_{vo}$
  - o For  $R_o>>R_L$  ,  $A_v\approx 0$
- ightharpoonup Prefer "small"  $R_o$

# Some observation on single-transistor amplifiers

- 1. As we will discuss, there are many ways to bias a transistor. Thus, there are many practical single-transistor amplifier circuits.
  - Fortunately, signal circuits always reduce to one of four fundamental configuration .
- 2. We compute the voltage gain and input resistance of these four fundamental configurations in the presence of an arbitrary load  $R_L$ . Then: Overall Gain: Open-loop Gain:

$$A = \frac{v_o}{v_{sig}} = \frac{v_i}{v_{sig}} \times \frac{v_o}{v_i} = \frac{R_i}{R_i + R_{sig}} A_v$$

$$A_{vo} = A_v \mid_{R_L \to \infty}$$

3.  $R_o$  is calculated in a real circuit (with  $R_{sig}$  &  $v_{sig}$ ) once load is clearly identified.

## Fundamental Transistor Amplifier Configurations

We are considering only signal circuit here!

## Possible BJT amplifier configurations



**Common-Emitter** 



Common-Emitter with R<sub>E</sub>



**Common-Base** 



Same as Common Base (v<sub>i</sub> does not change)



**Common-Collector** 



**Not Useful** 

## PNP configurations are the same as those of NPN (because of similar small-signal model)







**Common-Base** 



**Common-Collector** 



**Common-Emitter** 



**Common-Base** 



**Common-Collector** 

### MOS fundamental configurations are analogous to BJTs



**Common-Emitter** 



**Common-Base** 



**Common-Collector** 



**Common-Source** 



**Common-Gate** 



**Common-Drain** 

### **Common Emitter Configuration**

#### **Signal Circuit:**











- $\circ \;\; r_o$  and  $R'_L$  are in parallel
- $\circ v_{\pi} = v_i$

## Common Emitter Configuration ( $A_v \& R_i$ )



### **Common Source Configuration**

#### **Signal Circuit:**









- $\circ \ \ r_o$  and  $R'_L$  are in parallel
- $o v_{gs} = v_i$

## Common Source Configuration ( $A_v \& R_i$ )



# Common Source & Common Emitter Configurations are "similar"



Note that  $A_v$  &  $R_i$  are independent of  $v_{sig}$  &  $R_{sig}$ 

## Common Emitter Configuration with $R_{\scriptstyle E}$

#### **Signal Circuit:**



#### **Signal Circuit with BJT SSM:**



## Common Emitter Configuration with $R_E$ ( $A_v$ & $R_i$ )



#### Node voltage method:

$$v_{\pi} = v_{i} - v_{e}$$
Node  $v_{e}$  
$$\frac{v_{e}}{R_{E}} + \frac{v_{e} - v_{i}}{r_{\pi}} + \frac{v_{e} - v_{o}}{r_{o}} - g_{m}(v_{i} - v_{e}) = 0$$

Node 
$$v_o = \frac{v_o}{R'_L} + \frac{v_o - v_e}{r_o} + g_m(v_i - v_e) = 0$$

- 1. Add the two node equations to get  $v_e$  in terms of  $v_o$  and  $v_i$
- 2. Substitute for  $v_e$  in Node  $v_o$  equation to find  $v_o$  and gain
- 3. Compute  $i_i$  in terms of node voltages. Then  $R_i = v_i/i_i$
- 4. Lengthy calculations (See Notes).

$$A_{v} = \frac{v_{o}}{v_{i}} \approx -\frac{g_{m}R'_{L}}{1 + g_{m}R_{E} + (R'_{L}/r_{o})(1 + R_{E}/r_{\pi})} \qquad R_{i} \approx r_{\pi} + \frac{g_{m}r_{\pi}R_{E}}{1 + (R'_{L}/r_{o})(1 + R_{E}/r_{\pi})}$$

## Common Source Configuration with $R_S$ ( $A_v \& R_i$ )



Signal Circuit



$$A_{v} = \frac{v_{o}}{v_{i}} \approx -\frac{g_{m}R'_{L}}{1 + g_{m}R_{E} + (R'_{L}/r_{o})(1 + R_{E}/r_{\pi})}$$

$$R_{i} \approx r_{\pi} + \frac{g_{m}r_{\pi}R_{E}}{1 + (R'_{L}/r_{o})(1 + R_{E}/r_{\pi})}$$

$$A_{v} = \frac{v_{o}}{v_{i}} \approx -\frac{g_{m}R'_{L}}{1 + g_{m}R_{S} + (R'_{L}/r_{o})}$$

$$R_{i} = \infty$$

Let  $r_{\pi} \rightarrow \infty$   $R_E \rightarrow R_S$ 

## **Common Base Configuration (Gain)**



#### **Signal Circuit with BJT SSM:**



Node voltage method:

$$\begin{aligned} v_{\pi} &= -v_i \\ \text{Node } v_o & \frac{v_o}{R_L'} + \frac{v_o - v_i}{r_o} + g_m(-v_i) = 0 \\ & \frac{v_o}{r_o \mid\mid R_L'} = \frac{1 + g_m r_o}{r_o} v_i \end{aligned}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{1 + g_{m} r_{o}}{r_{o}} (r_{o} \parallel R'_{L})$$

$$A_{v} \approx g_{m} (r_{o} \parallel R'_{L})$$

## Common Base Configuration ( $R_i$ )



Define 
$$R_x=rac{v_i}{i_x}$$

KCL:  $i_i=rac{v_i}{r_\pi}+i_x=rac{v_i}{r_\pi}+rac{v_i}{R_x}=rac{v_i}{r_\pi\parallel R_x}$ 
 $R_i=rac{v_i}{i_i}=r_\pi\parallel R_x$ 

KVL: 
$$v_{i} = (i_{x} + g_{m}v_{\pi})r_{o} + i_{x}R'_{L}$$

$$v_{\pi} = -v_{i}$$

$$v_{i}(1 + g_{m}r_{o}) = i_{x}(r_{o} + R'_{L})$$

$$R_{x} = \frac{v_{i}}{i_{x}} = \frac{r_{o} + R'}{1 + g_{m}r_{o}}$$

$$R_{i} = r_{\pi} || R_{x} = r_{\pi} || \frac{r_{o} + R'_{L}}{1 + g_{m} r_{o}}$$

## Common Gate Configuration ( $A_v \& R_i$ )



$$A_{v} = \frac{v_{o}}{v_{i}} \approx g_{m}(r_{o} \parallel R'_{L})$$

$$R_{i} = r_{\pi} \parallel \frac{r_{o} + R'_{L}}{1 + g_{m}r_{o}}$$

Let 
$$r_{\pi} \to \infty$$

$$A_{v} = \frac{v_{o}}{v_{i}} \approx g_{m}(r_{o} \parallel R'_{L})$$

$$R_{i} = \frac{r_{o} + R'_{L}}{1 + g_{m}r_{o}}$$

# Common Collector Configuration (Emitter Follower)

#### **Signal Circuit:**



Node voltage method:

$$\begin{aligned} v_{\pi} &= v_{i} - v_{o} \\ \text{Node } v_{o} & \frac{v_{o}}{R'_{L}} + \frac{v_{o} - v_{i}}{r_{\pi}} + \frac{v_{o}}{r_{o}} - g_{m}(v_{i} - v_{o}) = 0 \\ & \frac{v_{o}}{r_{o} \parallel R'_{L}} + \left(1 + \frac{1}{g_{m}r_{\pi}}\right) v_{o} = g_{m} \left(1 + \frac{1}{g_{m}r_{\pi}}\right) v_{i} \approx g_{m}v_{i} \\ & g_{m}r_{\pi} = \beta >> 1 \end{aligned}$$

#### **Signal Circuit with BJT SSM:**



$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{g_{m}(r_{o} \parallel R'_{L})}{1 + g_{m}(r_{o} \parallel R'_{L})}$$

$$i_i = \frac{v_i - v_o}{r_{\pi}} = \frac{v_i}{r_{\pi}} \times (1 - A_{v})$$

$$R_i = \frac{v_i}{i_i} = \frac{r_\pi}{1 - A_{ii}}$$

$$R_{i} = r_{\pi} + g_{m} r_{\pi}(r_{o} \parallel R'_{L}) = r_{\pi} + \beta(r_{o} \parallel R'_{L})$$

### **Common Drain Configuration (Source Follower)**



$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{g_{m}(r_{o} \parallel R'_{L})}{1 + g_{m}(r_{o} \parallel R'_{L})}$$

$$R_{i} = g_{m}r_{\pi}(r_{o} \parallel R'_{L}) = \beta(r_{o} \parallel R'_{L})$$



$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{g_{m}(r_{o} \parallel R'_{L})}{1 + g_{m}(r_{o} \parallel R'_{L})}$$

$$R_{i} = \infty$$

## BJT Basic Amplifier Configurations (PNP circuits are identical)

## **Common Emitter**



$$A_{v} = -g_{m}(r_{o} \parallel R_{L}'), \quad R_{i} = r_{\pi}$$

### **Common Emitter with R<sub>F</sub>**



$$A_{\nu} \approx -\frac{g_{m} r_{L}}{1 + g_{m} R_{E} + (R_{L}^{\prime} / r_{o})(1 + R_{E} / r_{\pi})}$$

$$R_i \approx r_{\pi} + \frac{g_m r_{\pi} R_E}{1 + (R'_L / r_o)(1 + R_E / r_{\pi})}$$

#### **Common Base**



$$A_{v} = g_{m}(r_{o} || R'_{L}), R_{i} = r_{\pi} || \frac{r_{o} + R'_{L}}{1 + g_{m}r_{o}}$$

### Common Collector/ Emitter Follower

$$A_{v} = \frac{g_{m}(r_{o} || R'_{L})}{1 + g_{m}(r_{o} || R'_{L})}$$

$$R_i = r_{\pi} + \beta(r_o \parallel R_L')$$



## MOS Basic Amplifier Configurations (PMOS circuits are identical)









## **Observations of Transistor Amplifiers (1)**

- ightharpoonup Common-Emitter has a high gain of  $A_v = -g_m(r_o \parallel R_L')$  and a "medium"  $R_i = r_\pi$  (several k).
  - Minus sign in the gain reflects a 180° phase shift in the output.
- ightharpoonup Common-Base also has a high gain of  $A_v \approx g_m(r_o \parallel R_L')$  but a "low"  $R_i$  (several hundred  $\Omega$ ) which significantly affects the overall circuit gain.
- ightharpoonup Common-Source has a high gain of  $A_v = -g_m(r_o \parallel R_L')$  (but lower than the BJT analog, CE amplifier). It has an infinite  $R_i$ .
- ightharpoonup Common-Gate also has a high gain of  $A_{\nu} \approx g_{m}(r_{o} \parallel R_{L}')$  but a "low"  $R_{i}$  (several hundred  $\Omega$ ).

CE and CS configurations are the main gain cells in ICs. CB and CG configurations have superior high-frequency response (discussed in ECE102).

## **Observations of Transistor Amplifiers (2)**

- ightharpoonup Common-Emitter with  $R_E$  has a much lower gain compared to a CE amplifier (i.e., no  $R_E$  ) but has a much larger  $R_i$  .
  - O Amplifier gain is also much less sensitive to BJT parameters (i.e.,  $\beta$ ).
  - It is used primarily in discrete circuits because it does not need a by-pass capacitor (will be discussed later).
- $\blacktriangleright$  Common-Source with  $R_S$  has a much lower gain compared to a CS amplifier (i.e., no  $R_S$ ). It has an infinite  $R_i$  .
- ightharpoonup Common-Collector (emitter follower) and Common-Drain (source follower) configurations have a gain  $\leq 1$ . They have a large  $R_i$  (infinite for CD) and a low  $R_o$  (as we will see later). They are usually configured to get a gain close to 1 and used either as a "buffer" or as a "current amplifier" to drive a load.

<sup>\*</sup>Buffers are discussed later in the context of multi-stage amplifiers