•	2	<pre>executing a first basic input/output system</pre>
	3	module; \and
	4	dynamically linking to a second basic
	5	input/output system module.
	1	2. The method of claim 1 further comprising:
	2	storing said first module of a basic input/output
	3	system for a processor-based system on a first storage
	4	device prior to execution;
s1 65 .	5	storing said second module of the basic
8 11 11 11 11 11 11 11 11 11 11 11 11 11	6	input/output system on a second storage device prior to
= fm	. 7	execution; and \backslash
	8	enabling said second module to be executed
that that we were	9	conditionally depending on a state of said processor-based
	10	system.
# -		
	1	3. The method of claim 2 wherein storing said second
7.4 1	2	module includes storing said second module in a storage
Hayl Hadl akin. Be Akin. Be	3	associated with a network server accessible to said
	4	processor-based system over a network.

A method comprising:

1

1

2

said system state during the boot sequence.

The method of claim 1 further including detecting

2

1

2

1 2

4

1	$\sqrt{5}$. The method of claim 4 including detecting whether
2	or not the system is connected to a network during the boot
3	operation.

- 1 6. The method of claim 1 including dynamically
 2 linking to one of a plurality of modules, and exporting an
 3 offset to an entry point in one module to another module.
- 7. The method of claim 6 including storing a secondary entry point in a module to locate a function within the module.
 - 8. The method of claim 7 including developing a segment address for said second module at run time.
 - 9. The method of claim 8 including providing a descriptor table which indicates a segment address for said second module.
 - 10. An article comprising a medium for storing instructions that cause a processor-based system to:

 execute a first basic input/output system module; and dynamically link to a second basic input/output system module.

- The article of claim 10 further storing 1 2 instructions that cause a processor-based system to: access said first module of a basic input/output 3 4 system on a first storage device; access said second module of the basic 5 6 input/output system on a second storage device; and execute said second module conditionally 7 depending on the state of said processor-based system. 8
- 1 12. The article of claim 11 further storing
 2 instructions that cause a processor-based system to access
 3 said second module in a storage associated with a network
 4 server accessible to said processor-based system over a
 5 network.
- 1 13. The article of claim 11 further storing
 2 instructions that cause a processor-based system to execute
 3 said second module conditionally depending on whether or
 4 not the processor-based system is coupled to a network.
- 1 14. The article of claim 11 further storing
 2 instructions that cause a processor-based system to
 3 selectively access either a first module setting forth a
 4 first authentication protocol in a first storage device or
 5 a second module setting forth a second authentication
 6 protocol in a second storage device.

2

3

4

1

2

3

- 1 15. The article of claim 11 further storing 2 instructions that cause a processor-based system to 3 dynamically link said first and second modules.
- 1 16. The article of claim 11 further storing
 2 instructions that cause a processor-based system to detect
 3 said system state during the boot sequence.
- 1 17. The article of claim 16 further storing
 2 instructions that cause a processor-based system to detect
 3 whether the system is connected to a network during the
 4 boot operation.
 - 18. The article of claim 11 further storing instructions that cause a processor-based system to dynamically link to one of a plurality of modules using offsets to entry points in said modules.
 - 19. The article of claim 18 further storing instructions that cause a processor-based system to store a secondary entry point in a module to locate a function within the module.

L	\20.	The arti	cle of o	claim 19	further	storing	
2	instruction	ons that	cause a	processo	or-based	system to	develop
	a combat	address	for gaid	brones F	module =	at run time	_

- 1 21. The article of claim 20 further storing 2 instructions that cause a processor-based system to provide 3 a descriptor table which identifies the segment address for 4 said second module.
- 1 22. A processor-based system comprising:
- a processor;
 - a first basic input/output system module executable by said processor; and
 - a second basic input/output system module executable by said processor, said second module being dynamically linked to said first module.
- 1 23. The system of claim 22 including a detector that 2 detects a system state to determine whether said processor 3 executes said second module.
- 1 24. The system of claim 22 including a first storage 2 for said first module and a second storage for said second 3 module, said second storage being coupled to said 4 processor-based system over a network.

- 1 25. The system of claim 24 wherein said detector detects information about network access.
 - 26. The system of claim 25 wherein said first and second modules include different authentication protocols.
 - 27. The system of claim 26 wherein said processor executes said basic input/output system module on said second storage to implement a network authentication protocol.
 - 28. The system of claim 22 wherein said first module dynamically links to said second module, using an offset exported from said second module.
 - 29. The system of claim 28 wherein said first module uses a secondary entry point to locate a function in said second module.
 - 30. The system of claim 22 wherein said processor provides a descriptor table which includes a segment address for said second module.