COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

计算机系统三

课程回顾

内容

- Ch1 概要
- Ch2 指令
- Ch3 运算
- Ch4 处理器
- Ch5 存储

• 八个伟大思想

面向摩尔定律的设计,使用抽象简化设计 加速大概率事件,通过并行提高性能,通过流水线提高性能,通过预测提高性能 存储器层次,通过冗余提高可靠性

- 性能→1/执行时间 指令平均时钟周期: Clock Cycle per Instruction, CPI
- Tcpu = Ncpu x 1/fclk
- Ncpu = Ni x CPIi Ncpu = $\sum_{i=1}^{n} (N_i \times CPI_i)$

• 寻址模式

4. PC-relative addressing

5. Pseudodirect addressing

• 指令

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
ор	rs	rt	constant or address		
6 bits	5 bits	5 bits	16 bits		
ор	constant or address				
6 bits	26 bits				

简单←→规整(Simplicity favors regularity)

regularity) 寄存器比内存要更快地存取数据 算术运算指令只使用寄存器操作 指令/数据都被表示为二进制(补码)

• 过程→函数调用

jal ProcedureLabel
jr \$ra

•程序执行

Name	Register number	Usage	Preserved on call?
\$zero	0	The constant value 0	n.a.
\$v0-\$v1	2–3	Values for results and expression evaluation	no
\$a0-\$a3	4–7	Arguments	no
\$t0-\$t7	8–15	Temporaries	no
\$s0 - \$s7	16–23	Saved	yes
\$t8-\$t9	24–25	More temporaries	no
\$gp	28	Global pointer	yes
\$sp	29	Stack pointer	yes
\$fp	30	Frame pointer	yes
\$ra	31	Return address	yes

G program 编译: 把程序翻译成机器语言 链接: 产生一个可执行的映像 加载: 程序从硬盘的镜像文件 读入内存

Linker

Object: Machine language module

Object: Library routine (machine language)

Executable: Machine language program

Loader

Memory

• 乘法器

• 除法器

• 浮点数

单精度single: 8 bits, 23 bits 双精度double: 11 bits, 52 bits

S 阶码(指数+偏移) 尾数

$$x = (-1)^{S} \times (1 + 尾数) \times 2^{(阶码-偏移)}$$

• 浮点加法器

• 单周期数据通路

	信号名	0的含义	1的含义			
	RegDst	写寄存器的目标号来源 于指令rt字段 (bits 20:16).	写寄存器的目标号来 源于指令rd字段(bits 15:11).			
 	RegWrite	无	寄存器堆写使能			
	ALUSrc	ALU第二个输入来源于 寄存器堆的第二个输出	ALU第二个输入来源 于指令的低16位(目 标地址的偏移量)			
	Branch (PCSrc)	顺序执行,取 PC + 4.	跳转,使用目标地址 替代PC+4			
ſ	MemRead	无	数据存储器读使能			
}	MemWrite	无	数据存储器写使能			
	MemtoReg	写入寄存器的值来源于 ALU.	写入寄存器的值来源 于数据存储器			
	ALUOP	ALU功能控制				

• 流水线

1. IF: 从内存中取指令

2. ID: 指令解码& 读寄存器

3. EX: 执行运算或计算地址

4. MEM: 访问内存操作

5. WB: 将结果写回寄存器

冒险

结构冒险: 部件忙

分离独立的指令和数据内存

数据冒险:需要前面指令的计算结果

前推/阻塞/指令调整

控制冒险 (控制相关)

类型和判断条件

• 流水线数据通路

非流水基础之上增加:

- 1) 流水线寄存器
- 2) 旁路电路
- 3)冒险电路
- 4) 分支预测及撤销
- 5) 异常处理

• Cache: 块

块地址=地址/块大小,索引(块号)=块地址 mod 块数相联:

N路组相联→组数=块数/N,组号=块地址 mod 组数 1路组相联→组数=块数→直接映射 全相联→只有1组

•虚拟存储器:页

页号= 虚拟地址/页大小 全相联 页表的缓存→TLB

命中/缺失 写直达 写回

