Introduction

Titanic Dataset Analysis

© Objective

Perform Exploratory Data Analysis (EDA) to understand factors influencing passenger survival on the Titanic.

Dataset Source

This dataset is from Kaggle - Titanic: Machine Learning from Disaster.

Step 1: Setup Environment:

In [1]: pip install pandas matplotlib seaborn

Requirement already satisfied: pandas in c:\users\lohit\anaconda4\lib\site-packag es (2.1.4)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: matplotlib in c:\users\lohit\anaconda4\lib\site-pa ckages (3.8.0)

Requirement already satisfied: seaborn in c:\users\lohit\anaconda4\lib\site-packa ges (0.12.2)

Requirement already satisfied: numpy<2,>=1.23.2 in c:\users\lohit\anaconda4\lib\s ite-packages (from pandas) (1.26.4)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\lohit\anaconda4 \lib\site-packages (from pandas) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\lohit\anaconda4\lib\sitepackages (from pandas) (2023.3.post1)

Requirement already satisfied: tzdata>=2022.1 in c:\users\lohit\anaconda4\lib\sit e-packages (from pandas) (2023.3)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\lohit\anaconda4\lib\s ite-packages (from matplotlib) (1.2.0)

Requirement already satisfied: cycler>=0.10 in c:\users\lohit\anaconda4\lib\sitepackages (from matplotlib) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\lohit\anaconda4\lib \site-packages (from matplotlib) (4.25.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\lohit\anaconda4\lib \site-packages (from matplotlib) (1.4.4)

Requirement already satisfied: packaging>=20.0 in c:\users\lohit\anaconda4\lib\si te-packages (from matplotlib) (23.1)

Requirement already satisfied: pillow>=6.2.0 in c:\users\lohit\anaconda4\lib\site -packages (from matplotlib) (10.2.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\lohit\anaconda4\lib\s ite-packages (from matplotlib) (3.0.9)

Requirement already satisfied: six>=1.5 in c:\users\lohit\anaconda4\lib\site-pack ages (from python-dateutil>=2.8.2->pandas) (1.16.0)

Step 2: Data Loading & Initial Exploration

```
In [2]: import pandas as pd

df = pd.read_csv("train.csv") # Use correct path
    df.head()
```

t[2]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	I
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0
	4		_	_	_	_		_			

Observation:

The dataset contains 891 entries with 12 features including 'Survived', 'Pclass', 'Sex', 'Age', etc.

Step 3: Data Summary

```
In [3]: df.info()  # Data types & non-null values
    df.describe()  # Summary statistics
    df.isnull().sum() # Missing Values
    df.nunique()  # Unique values per column
    df['Sex'].value_counts() # Example of categorical column check
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
```

#	Column	Non-Null Count	υτype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypes: float64(2), int64(5), object(5)						

memory usage: 83.7+ KB

Out[3]: Sex

male 577 female 314

Name: count, dtype: int64

Observation:

'Age' has missing values.

'Cabin' has many missing values, indicating it might not be useful for analysis.

Step 4: Visual Explorating using seaborn/Matplotlib

```
In [4]: import seaborn as sns
import matplotlib.pyplot as plt
```

Univariate Analysis

Histogram for age:

```
In [5]: sns.histplot(df['Age'], kde=True)
    plt.title("Age Distribution")

C:\Users\lohit\anaconda4\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarnin
    g: use_inf_as_na option is deprecated and will be removed in a future version. Co
    nvert inf values to NaN before operating instead.
    with pd.option_context('mode.use_inf_as_na', True):
```

Out[5]: Text(0.5, 1.0, 'Age Distribution')

- Most passengers were between 20 and 40 years old.
- The age distribution is slightly right-skewed.

Countplot for Survived:

```
In [15]: sns.countplot(x='Survived', data=df)
    plt.title("Survival Count")
    plt.show()
```


More passengers did not survive (0) compared to those who did (1).

Passenger class Distribution

```
In [16]: sns.countplot(x='Pclass', data=df)
    plt.title('Passenger Class Distribution')
    plt.show()
```


Most passengers were in the 3rd class.

Bivariate Analysis

Out[20]: <Axes: xlabel='Survived', ylabel='Age'>

Survival by sex

```
In [20]: sns.boxplot(x='Survived', y='Age', data=df)
```


Younger passengers with higher fares had better survival chances.

Barplot: Sex vs Survival

```
In [8]: sns.barplot(x='Sex', y='Survived', data=df)
Out[8]: <Axes: xlabel='Sex', ylabel='Survived'>
```


• Females had a significantly higher survival rate than males.

Multivariate Analysis

Pairplot

```
In [9]: sns.pairplot(df[['Survived', 'Age', 'Fare', 'Pclass']])
       C:\Users\lohit\anaconda4\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarnin
       g: use_inf_as_na option is deprecated and will be removed in a future version. Co
       nvert inf values to NaN before operating instead.
         with pd.option_context('mode.use_inf_as_na', True):
       C:\Users\lohit\anaconda4\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarnin
       g: use_inf_as_na option is deprecated and will be removed in a future version. Co
       nvert inf values to NaN before operating instead.
         with pd.option_context('mode.use_inf_as_na', True):
       C:\Users\lohit\anaconda4\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarnin
       g: use inf as na option is deprecated and will be removed in a future version. Co
       nvert inf values to NaN before operating instead.
         with pd.option_context('mode.use_inf_as_na', True):
       C:\Users\lohit\anaconda4\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarnin
       g: use_inf_as_na option is deprecated and will be removed in a future version. Co
       nvert inf values to NaN before operating instead.
         with pd.option context('mode.use inf as na', True):
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x1c69579f710>

- Higher fare and 1st class are linked with higher survival.
- Younger passengers also had better survival chances.
- Fare and Pclass show strong separation.

Heatmap (Correlation):

```
In [11]: df_numeric = df.select_dtypes(include=['number'])
    sns.heatmap(df_numeric.corr(), annot=True, cmap='coolwarm')
Out[11]: <Axes: >
```


- Fare has a positive correlation with Survival.
- Pclass has a negative correlation with Survival.
- SibSp and Parch show weak correlation with Survival.

Summary of Insights:

- Female passengers had a significantly higher survival rate than males.
- Passengers in 1st class had better survival chances than those in 2nd or 3rd class.
- Fare and survival rate are positively correlated people who paid more had better chances of survival.
- Young children had relatively higher survival rates.
- The dataset contains missing values in 'Age' and 'Cabin' columns.

© These insights can help understand what factors influenced survival in the Titanic disaster.