Homework 6

Problem 1 (11.3.3). Let S be any subset of V^* for some finite dimensional space V. Define $Ann(S) = \{v \in Ann(S) \mid v \in Ann(S) \mid v \in Ann(S) \}$ $V \mid f(v) = 0$ for all $f \in S$. (Ann(S) is called the annihilator of S in V).

- (a) Prove that Ann(S) is a subspace of V.
- (b) Let W_1 and W_2 be subspaces of V^* . Prove that $Ann(W_1 + W_2) = Ann(W_1) \cap Ann(W_2)$ and $Ann(W_1 \cap Ann(W_2)) = Ann(W_1) \cap Ann(W_2)$ $W_2) = \operatorname{Ann}(W_1) + \operatorname{Ann}(W_2).$
- (c) Let W_1 and W_2 be subspaces of V^* . Prove that $W_1 = W_2$ if and only if $Ann(W_1) = Ann(W_2)$.
- *Proof.* (a) Note that $0 \in \text{Ann}(S)$ so $\text{Ann}(S) \neq \emptyset$. Let $v, u \in \text{Ann}(S)$ and let $r \in F$. Let $f \in V^*$. Then f(rv+u)=rf(v)+f(u)=0 because f is linear. Thus $rv+u\in Ann(S)$ as well and Ann(S) is a subspace of V.
- (b) Let $v \in \text{Ann}(W_1 + W_2)$. Then for each $f \in W_1$ and $g \in W_2$ we have 0 = (f + g)(v) = f(v) + g(v). In particular, if g is the zero function, then f(v) = 0 necessarily. The same is true for g and so f(v) = g(v) = 0. Thus $v \in \text{Ann}(W_1) \cap \text{Ann}(W_2)$. Conversely, suppose $v \in \text{Ann}(W_1) \cap \text{Ann}(W_2)$. Then for each $f \in W_1$ and $g \in W_2$ we have f(v) = g(v) = 0. But then f(v) + g(v) = (f + g)(v) = 0 and $v \in Ann(W_1 + W_2)$. Now note that

$$\operatorname{Ann}(W_1 \cap W_2) = \{ v \in V \mid f(v) = 0 \text{ for all } f \in W_1 \cap W_2 \}
= \{ v \in V \mid (f+g)(v) = 0 \text{ for all } f \in W_1 \text{ and } g \in W_2 \}
= \{ v + u \in V \mid f(v) = 0 \text{ for all } f \in W_1 \text{ and } g(u) = 0 \text{ for all } g \in W_2 \}
= \operatorname{Ann}(W_1) + \operatorname{Ann}(W_2).$$

(c) Suppose $W_1 = W_2$. Let $v \in \text{Ann}(W_1)$ and let $f \in W_2$. Since $W_1 = W_2$, $f \in W_1$ as well, so f(v) = 0. Since f was arbitrary, $v \in \text{Ann}(W_2)$. The second inclusion holds similarly. Conversely, suppose $\operatorname{Ann}(W_1) = \operatorname{Ann}(W_2)$. Let $f \in W_1$. Since W_1 and W_2 are subspace of V^* and f agrees with every function of W_2 on the vectors in $Ann(W_1)$, it follows that $f \in W_2$ as well. The second inclusion follows similarly. \square

Problem 2. (a) Prove that the elementary row operations have the following effect on determinants:

- (i) Interchanging two rows changes the sign of the determinant.
- (ii) Add a multiple of a row to another does not alter the determinant.
- (iii) Multiplying any row by a nonzero element u from F multiplies the determinant by u.
- (b) Prove that det A is nonzero if and only if A is row equivalent to the $n \times n$ identity matrix. Suppose A can be row reduced to the identity matrix using a total of s row interchanges as in (i) and by multiplying rows by the nonzero elements u_1, u_2, \ldots, u_t as in (iii). Prove that $\det A = (-1)^s (u_1 u_2 \ldots u_t)^{-1}$.
- *Proof.* (a) These all follow from the fact that det is alternating and multilinear and that $\det(A) = \det(A^t)$. In particular, if A is a matrix with columns $A_1, \ldots A_n$, then we know

$$\det(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n) = -\det(A_1,\ldots,A_j,\ldots,A_i,\ldots,A_n).$$

Also,

$$\det(A_1, \dots, A_i + kA_j, \dots, A_n) = \det(A_1, \dots, A_i, \dots, A_n) + k \det(A_1, \dots, A_j, \dots, A_j, \dots, A_n) = \det(A_1, \dots, A_n) = \det(A_1, \dots, A_n) + k \det(A_1, \dots, A_n) = \det(A_1, \dots, A_n) + k \det(A_1, \dots, A_n) = \det(A_1, \dots, A_n) + k \det(A_1, \dots, A_n) + k \det(A_1, \dots, A_n) = \det(A_1, \dots, A_n) + k \det(A$$

Finally, note

$$\det(A_1,\ldots,kA_i,\ldots,A_n) = k \det(A_1,\ldots,A_i,\ldots,A_n).$$

Looking at A^t instead of A will translate all of these statements about columns to rows.

(b) Suppose A is row equivalent to the identity. Then a finite number of the operations (i), (ii) and (iii) will result in the identity matrix. Part (a) states that the determinant of A will then be a finite number of constants multiplied together with a possible sign change. Conversely, if $\det A$ is nonzero then the rows A_1, \ldots, A_n must be linearly independent. This means we can perform row operations on them until we end up with the identity matrix. In particular, if A is reduced to the identity in s row interchanges, then part (a) tells us that det(A) will change by $(-1)^s$ from det(I). If A is reduced by multiplying by the elements u_1, \ldots, u_t , then part (a) tells us $\det(A)$ will change by $u_1 \ldots u_t$ from $\det(I)$. Thus, in total $\det(A) = (-1)^s (u_1 \dots u_t)^{-1} \det(I) = (-1)^s (u_1 \dots u_t)^{-1}.$

Homework 6

Problem 3. Compute the determinants of the following matrices using row reduction.

Proof. First we consider A. Interchange the first and third rows and add the second row to the first.

$$\left(\begin{array}{ccc}
1 & 4 & 0 \\
-2 & 0 & 2 \\
5 & 4 & -6
\end{array}\right)$$

Add twice the first row to the second row and -5 times the first row to the third row.

$$\left(\begin{array}{cccc}
1 & 4 & 0 \\
0 & 8 & 2 \\
0 & -16 & -6
\end{array}\right)$$

Add twice the second row to the third row. Multiply the third row by -1/2. Add -2 times the third row to the second row.

$$\left(\begin{array}{ccc}
1 & 4 & 0 \\
0 & 8 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Multiply the second row by 1/8 and add -4 times this row to the first row.

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

In all, we've interchanged rows once ance multiplied by -1/2 and 1/8. Thus, det(A) = 16. Now consider B. Interchange the first and third rows. Add -2 times the first row to the second row and -1 times the first row to the third row.

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & -2 \\
0 & -1 & 2 & -4 \\
0 & 2 & -5 & 6 \\
0 & 1 & -2 & 3
\end{array}\right)$$

Add the second row to the fourth row and two times the second row to the third row. Multiply the second row by -1.

$$\left(\begin{array}{cccc}
1 & 0 & 1 & -2 \\
0 & 1 & -2 & 4 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right)$$

Multiply the last row by -1, add twice this to the third row. Multiply the third row by -1. Add twice this to the second row and -4 times the last row to the second row. Add -1 times the third row and two times the fourth row to the first row.

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

In all, we've interchanged rows once and multiplied by -1 three times. Thus, det(B) = 1.