HDD - princip magnetického média

Princip zápisové hlavy:

- médium s feromagnetickým povrchem rotuje
- hlavička nad médiem pevná-obsahuje:
 - =cívku (vyvolá magnetický tok)
 - =magnetický obvod s mg.mezerou kde protéká mg. tok na médium

Princip čtecí hlavy:

- Polovodičem prochází proud
- Magnetický tok z magnetické domény jej vytlačí ke kraji=zvedne elektrický odpor polovodiče

HDD - konstrukce

- elektonika v mechanice
 - =část řadiče EIDE-SATA
 - =řízení mechanických částí disku (registry pro řízení)
 - =šifrování a elektrická úprava datového signálu
 - =buffery na data
- motorek pro otáčení média
- motorek (lineární pohyb) pro posuv hlaviček
- pevná základna

- Celý prostor disku je velký
- Rychle se dostat k požadovaným datům adresace na povrchu disku
- Dělíme prostor na disku na sektory
- Sektor adresujeme (zapíšeme do něj adresu CHS)
- Řízení zajistí najetí hlaviček a načtení sektoru s adresou CHS

Adresování CHS:

- C cylindr
- · H hlava
- S sektor

Stopa = kruh

Kruh (stopa) dělen na sektory

Adresování CHS:

- C cylindr
- · H hlava
- S sektor

LBA (Logical Block Addressing) jednotlivé logické bloky s daty se číslují postupně od nuly pořád dál bez ohledu na fyzické uspořádání

základová deska

operační systém

Low format (fyzické formátování):

- Na disku bez dat je prostor dělen na sektory
- Každý sektor je popsán adresou CHS (na začátku každého sektoru)
- Po výrobě disku výrobce provede fyzické formátování (zápis CHS adres) do sektorů

HDD - parametry

- Teplotní kalibrace (TCAL) teplotní roztažnost
- Přístupová doba (access time) doba vystavení (pohyb hlav) + doba čekání (dotočení disku)
- Prokládání čtení disku (zpracování BIOSem+OS+aplik.soft.) trvá dlouho čteme několik sektorů za sebou - disk by se do příkazu ke čtení následujícího sektoru otočil za následující sektor. Proto sektory proložíme.

- Paměť CACHE: disk načte nejbližší okolí do paměti RAM i když nemá zatím příkaz předpokládá, že budeme číst dál. (zrychlení) (!!! Defragmentace !!!)
- Kapacita disku kolik se vejde na disk (dnes TByte)
- Při osazení disku musí disk znát BIOS

HDD - parametry

Typické parametry dnešních HDD

- Kapacita 0,5 až 16 TiB (= 1012, bilion byte)
- Přístupová doba několik ms (od 4 ms, obvykle 8 ms, lacinější přes 10 ms)
- Rychlost otáčení 5400, 7200, 10 až 15 tisíc ot/min (serverové)
- Přenosová rychlost desítky MB/s (náhodný přístup), přes 150 MB/s (sekvenční čtení) u M.2 disků až jednotky GB/s
- RAM cache 8 až 64 MB RAM

Poznámka

přístupová doba

- =doba vystavení hlaviček na cylindr
- =doba čekání než se kotouček média dotočí pod hlavičku správnou adresou

Bezpečnost

SMART-(Self Monitoring Analysis and Reporting Technology)

- umožní předvídat selhání disku
 - sleduje a zapisuje parametry jako
 - počet rozběhnutí disku
 - čas k roztočení
 - chybné čtení
 - chybné polohování hlaviček
 - přemapované vadné sektory do záložního prostoru
- nutné zapnout v operačním systému-pak lze vyčíst testovacím programem

Zásady práce s HDD

- chránit před otřesy
- = chránit před tepelnými šoky
- = vypínat standardním způsobem
- zálohování disku

flash buňka

opakování flash paměť

způsob ukládání-flash buňka způsob adresace je typu RAM (na rozdíl HDD-SAM) přepisováním dat stárne alespoň 20% volného prostoru (potřebuje k přeadresování buněk)

minimalizace zápisů:

- zakázat defragmentaci
- zakázat stránkovací soubor

M.2 rozhraní

Typické parametry dnešních SSD

běžně 256 GiB, 512 GiB a cca TiB

Standard připojení	Formát	Rychlost čtení (MB/s)	Rychlost zápisu (MB/s)
	2,5"		
SSD SATA III	M.2	450-540	320-540
SSD PCIe 3.0 NVMe	M.2	1550-3500	550-3300
SSD PCIe 4.0 NVMe	M.2	3900-7400	2500-6850
SSD PCle x4	PCle	2500-6500	2000-4100
SSD U.2	U.2	3000-6170	1000-2800

Minimalizování zápisu na SSD ve WIN

Postup, pro zakázání STRÁNKOVÁNÍ:

Ovládací panely -> Systém -> Upřesnit nastavení systému -> Upřesnit -> V okně "Výkon"-> Nastavení -> Upřesnit -> V okně "Virtuální paměť" -> Změnit -> (Zrušit zaškrtnutí:Automaticky spravovat) -> Zaškrtnout: Nepoužívat stránkovací soubor -> Nastavit-> Pokračovat -> ANO -> OK -> Změny se projeví až po restartu -> OK-> Použít -> OK -> OK -> Restartovat !!!

Postup, pro zakázání DEFRAGMENTACE:

(Když se zakáže: "Defragmentace podle plánu", tak je automaticky aktivován systém TRIM.)

Tento počítač -> PRAVÝM tl. myši klikněte na disk SSD -> V rozbalené nabídce až dole klikněte na "Vlastnosti" -> Nástroje -> V okně Defragmentace, klikněte na "Defragmentovat" -> Konfigurovat plán-> Zrušit zaškrtnutí u "Spouštět podle plánu" -> OK -> Zavřít -> OK

(Nyní by jste měli mít aktivovaný systém TRIM.)

Příkaz TRIM-operační systém informuje SSD jednotku, které datové bloky jsou volné a nejsou dále využívány.

SSHD

SSHD (solid-state hybrid drive) pevný disk (HDD) + obsahuje paměť SSD disku

- = vidíte jako jeden disk
- = elektronika rozhoduje, zda data zapíše na HDD část, nebo SSD část

HDD SSD SSHD

HDD

- + nízká cena (Kč/B)
- pomalé čtení i zápis
- zranitelnost a spolehlivost

SSD

- + rychlost čtení a zápisu
- + mechanická odolnost a spolehlivost
- vyšší cena (Kč/B)
- stárne

SSHD

- + dobrá cena (Kč/B)
- + zrychlení načítání často používaných souborů
- pomalé čtení dat, která jsou uložena mimo SSD část
- zranitelnost a spolehlivost je na úrovni klasických HDD

HDD SSD

HDD - EIDE

Řadič EIDE

- Starší typ rozhraní
- Na základní desce většinou dva řadiče
- Pin 1 na kabelu značen-červený vodič
- U-ATA = využití DMA přenosů
- ATA (AT attaschment)-standard příkazů-novější ATAPI i pro CD
- Adresace od systému-LBA Logical Block Addressing) (místo CHS)

HDD - EIDE

- Dva <u>kanály</u> na základové desce-primární+sekundární
- Z každého kanálu jeden kabel
- Na každém kabelu dvě zařízení-MASTER+SLAVE
- Jumperem na zařízení určíme, které SLAVE případně MASTER

BERRESERRE

HDD - SATA

- Jeden disk-jeden kabel
- Slabší kabel-lepší větrání
- Rychlé rozhraní
- HOT-SWAP-výměna za chodu
- NCQ-řadič seřadí požadavky na čténí z disku podle toho, jak jsou data fyzicky/seřazeny
- SpinUp-při startu se disky roztáčí postupně (proudový náraz)

HDD - SCSI

- Různé standardy !!! (paralelní i sériové)
- Interní i externí kabel (připojení)
- Zařízení má přiřazeno ID
- Každé zařízení má řididlo, které komunikuje po přípojném kabelu speciálním jazykem

M.2-rozhraní pro SSD

M.2-rozhraní pro SSD

- M.2 NGFF-New Generation Form Factor
- implementace sběrnic PCI Express 3.0, Serial ATA 3.0 a USB 3.0. do jednoho konektoru
- M.2 jsou navrženy jako standard pro SSD paměťová média, WiFi, Bluetooth, GPS/GNSS, NFC a jiné moduly
- konektory vyrábějí s různým klíčováním "A"-"M"

	Key ID	Pin	Interface		
	Α	8-15	2x PCIe x1/USB 2.0/12C/DP x4		
	В	12-19	PCIe x2/SATA/USB 2.0/USB 3.0/HSIC/SSIC/Audio/UIM/I2C		
/	С	16-23	Reserved for Future Use		
	D	20-27	Reserved for Future Use		
	E	24-31	2x PCIe x1/USB 2.0/IC2/SDIO/UART/PCM		
	F	28-35	Future Memory Interface (FMI)		
	G	39-46	Generic (Not used for M.2)		
	Н	43-50	Reserved for Future Use		
	J	47-54	Reserved for Future Use		
	K	51-58	Reserved for Future Use		
1	L	55-62	Reserved for Future Use		
	М	59-66	PCIe x4/SATA		

Náhrada SATA

HDD - Alokační metoda

Řetězení bloků odkazem

Cluster

(též alokační blok, alokační jednotka)

- vzrůst objemu dat a velikosti médií sektor malý
- pro zvýšení rychlosti a efektivity přenosu dat

Ze sektorů vytvořeny skupinky (Cluster) s adresou celé skupiny

Nevýhoda:

Pokud nenaplním přesně prostor Clusteru - jeho zbytek bude prázdný.

HDD - FAT

Start systému

Od stopy 0, 0-tého sektoru nahrán soubor MBR (Master Boot Record)

- zde krátký program k rozskoku na více systémů (volím, který sytém)

dělení oblastí disku pomocí programu-fdisk

- Obnovitelnost-(bezpečnost) práce rozdělena na <u>transakce</u>
 - = např. příkaz uložení souboru se rozdělí na transakce: vyhledání místa+uložení informace o místě+přesun dat (transakce jsou provedeny tak, že je nelze nedokončit)
- Mapa Clusterů je v základní tabulce (MTF) = rychlost
- Přípojné body ke svazku-snadné připojení prostoru na disku

Velikost Clusteru - až 64kB Základem je 16 metasouborů (soubory začínají \$)

\$MTF (Master File Table)

- záznamy o souboru o pevné délce
- prvních 16 záznamů je o metasouborech
- dále záznamy o všech souborech
 - ⇒ hlavička záznamu
 - ⇒ atributy
 - · rezidentní-jméno, velikost, .atributy
 - nerezidentní-číslo clusteru s daty o souboru
- nestačí-li jedna věta-více vět pro jeden soubor
- může tam být i doplňující informace (data stream)

Příklady metasouborů:

- \$MFTMIRP-záloha \$MFT
- \$COGFILE-transakční logovací soubor
- \$VOLUME-sériové číslo svazku
- \$RTTRDEF-definice atributů
- \$BITMAP-mapa volných clusterů
- •

Prostor disku 12%volného prostoru pro \$MFT Prostor disku prostor pro soubory Uprostřed kopie \$MFT

Svazky NTFS

HDD - NTFS

Základní disk:

- Vytvoří se při první instalaci
- Možné rozdělit na 4 nezávislé oddíly
- Rozšířené oddíly je možné dělit na segmenty s logickým jménem
- Vhodné pro provoz více systémů

Svazky NTFS

HDD - NTFS

Dynamický disk:

- Lze vytvářet neomezený počet svazků
- Odolnost proti chybám (princip RAID)

Dynamický disk-jednoduchý svazek:

- Je tvořen místem na jednom disku
- Stvořený ze vzájemně propojených oblastí
- Můžeme rozšiřovat o další oblasti
- Můžeme přetvořit na rozložený svazek

Dynamický disk-rozložený svazek:

- Obsahuje prostor z více fyzických disků
- Jedno logické jméno-obsah na více fyzických discích
- Začnu mít málo prostoru na disku-snadno v průběhu života systém přidám prostor z nového disku

HDD

- NTFS pro pevné disky-jen WIN-tam nutnost pro systém (Mac OS X umí z NTFS číst, LINUX možná)
- FAT32 žádný operační systém s ním nemá problém
- exFAT pro externí média (SDXC karty, flash disk)
- exFAT má podporu-Max OSX i většiny Linuxových distribucí

	Souborový systém	Maximální velikost souboru	Maximální velikost disko- vého oddílu
Problém	FAT16	2GiB	2GiB
Troblem	FAT32	→ 4GiB	8TiB
	exFAT	16EiB	128EiB
	NTFS	16EiB	16EiB

NTFS

- umožňuje efektivnější využití místa na disku.
- poskytuje vysoký výkon při práci s velkými soubory.
- poskytuje vysokou spolehlivost systému.

FAT32

- podporuje práci se soubory až do velikosti 4 GiB.
- nevyžaduje velké množství paměti RAM.
- je rychlejší.

HDD - Údržba

Průzkumník-Pravé tlačítko na disk-Vlastnosti-Lišty:Obecné/Nástroje

Proč?

- Zpomalení běhu počítače
- Prevence havárie systému

Chraň počítač antivirem Archivuj data

1. smazání nepotřebných souborů

- 2. kontrola disku
 - 3. defragmentace a opti-
- / malizace

Případně

- 5. komprimuje soubory (zmenší obsazené místo ale pomalejší)
- 4. urychlí hledání

RAID

HDD - RAID

Zabezpečení dat:

- Parita-nadbytečný bit určuje, zda součet skupiny ukládaných bitů je sudý, nebo lichý
- Pokud bude hodně paritních bitů vzhledem k množství dat-lze chyby dopočítat z paritních bitů

Použité metody:

- Dělení dat na více disků (striping)
- Současný zápis toho samého obsahu na dva disky (mirroring)
- Použití samoopravných kódů (např. parita, CRC) (redundance)

Typy RAID:

- 0 striping
- 1 mirroring
- 5 striping s redundancí
- 10 striping s mirroringem

RAID

HDD - RAID

Podmínky pro vytvoření RAID pole v počítači:

- Nejlépe stejné disky SATA
- RAID musí podporovat základová deska (řadič)

odkazy

https://cs.natapa.org/FAT32-vs-NTFS-349

https://beasthackerz.ru/cs/programmy/failovaya-sistema-fat-i-fat32-otlichiya-sravnenie-fat32-ntfs-exfat-na-fleshkah.html

https://www.chip.cz/casopis-chip/earchiv/vydani/r-2008/chip-06-2008/souborovy-system-budoucnosti-exfat/

http://labe.felk.cvut.cz/vyuka/A3B33OSD/Tema-07-Soubory-OSD-4.pdf

https://www.howtogeek.com/320421/what-is-the-m.2-expansion-slot/