# Deep Learning, Neural Networks and Kernel Machines

#### Johan Suykens

KU Leuven, ESAT-STADIUS Kasteelpark Arenberg 10, B-3001 Leuven, Belgium Email: johan.suykens@esat.kuleuven.be http://www.esat.kuleuven.be/stadius/

Deeplearn 2019, Warsaw Poland, July 2019



#### Part III: Deep RKM and future perspectives

- RBM and Deep BM: "sandwich" interpretation
- From RKM to Deep RKM
- Deep RKM example: LS-SVM + KPCA + KPCA
   Connection with Deep BM
- Deep RKM example: KPCA + KPCA + LS-SVM
   Connection with stacked autoencoders
- Learning algorithms
- Numerical examples

### RBM and deep learning

### Restricted Boltzmann Machines (RBM)



- Markov random field, bipartite graph, stochastic binary units Layer of <u>visible units</u> v and layer of <u>hidden units</u> h **No hidden-to-hidden connections**
- Energy:

$$E(v, h; \theta) = -v^T W h - c^T v - a^T h \text{ with } \theta = \{W, c, a\}$$

Joint distribution:

$$P(v, h; \theta) = \frac{1}{Z(\theta)} \exp(-E(v, h; \theta))$$

with partition function  $Z(\theta) = \sum_v \sum_h \exp(-E(v,h;\theta))$  [Hinton, Osindero, Teh, Neural Computation 2006]

### Restricted Boltzmann Machines (RBM)





- Markov random field, bipartite graph, stochastic binary units Layer of <u>visible units</u> v and layer of <u>hidden units</u> h **No hidden-to-hidden connections**
- Energy:

$$E(v, h; \theta) = -v^{T}Wh - c^{T}v - a^{T}h \text{ with } \theta = \{W, c, a\}$$

Joint distribution:

$$P(v, h; \theta) = \frac{1}{Z(\theta)} \exp(-E(v, h; \theta))$$

with partition function  $Z(\theta) = \sum_v \sum_h \exp(-E(v,h;\theta))$  [Hinton, Osindero, Teh, Neural Computation 2006]

#### **RBM** and deep learning





#### **Deep Boltzmann Machine**



$$p(v, h^1, h^2, h^3, ...)$$

[Hinton et al., 2006; Salakhutdinov, 2015]

#### in other words ...

"sandwich"





"deep sandwich"



$$E = -v^T W^1 h^1 - h^{1T} W^2 h^2 - h^{2T} W^3 h^3$$











pretraining phase & finetuning phase [Bengio, 2009]

### Restricted kernel machine

#### Restricted Kernel Machines (RKM)

#### Main characteristics:

- Kernel machine interpretations in terms of visible and hidden units (similar to Restricted Boltzmann Machines (RBM))
- Restricted Kernel Machine (RKM) representations for
  - LS-SVM regression/classification
  - Kernel PCA
  - Matrix SVD
  - Parzen-type models
  - other
- Based on principle of conjugate feature duality (with hidden features corresponding to dual variables)

#### Model: living in two worlds ...

#### Original model:

$$\hat{y} = W^T \varphi(x) + b, \ e = y - \hat{y}$$

objective J = regularization term  $\text{Tr}(W^T W)$  +  $(\frac{1}{\lambda})$  error term  $\sum_i e_i^T e_i$ 

7

#### Model: living in two worlds ...

#### Original model:

$$\hat{y} = W^T \varphi(x) + b, \ e = y - \hat{y}$$

objective J

= regularization term  $Tr(W^TW)$ 

 $+ (\frac{1}{\lambda})$  error term  $\sum_i e_i^T e_i$ 

$$\downarrow \quad \frac{1}{2\lambda} e^T e \ge e^T h - \frac{\lambda}{2} h^T h$$

#### Model: living in two worlds ...



#### Original model:

$$\hat{y} = W^T \varphi(x) + b, \ e = y - \hat{y}$$
 | = regularization term  $\text{Tr}(W^T W)$ 

objective J

 $+ \left(\frac{1}{\lambda}\right)$  error term  $\sum_{i} e_{i}^{T} e_{i}$ 

$$\downarrow \quad \frac{1}{2\lambda}e^Te \ge e^Th - \frac{\lambda}{2}h^Th$$

#### New representation:

$$\hat{y} = \sum_{j} h_j K(x_j, x) + b$$

obtain  $J \geq \underline{J}(h_i, W, b)$ solution from stationary points of J:  $\frac{\partial \underline{J}}{\partial h_i} = 0$ ,  $\frac{\partial \underline{J}}{\partial W} = 0$ ,  $\frac{\partial \underline{J}}{\partial b} = 0$ 

where 
$$\underline{J} = \sum_{i=1}^{N} (y_i^T - x_i^T W - b^T) h_i - \frac{\lambda}{2} \sum_{i=1}^{N} h_i^T h_i + \frac{\eta}{2} \text{Tr}(W^T W)$$

#### **RKM** regression problem

• Stationary points of  $\underline{J}(h_i, W, b)$  (nonlinear case, feature map  $\varphi(\cdot)$ )

$$\begin{cases} \frac{\partial \underline{J}}{\partial h_i} = 0 & \Rightarrow \quad y_i = W^T \varphi(x_i) + b + \lambda h_i, \ \forall i \\ \frac{\partial \underline{J}}{\partial W} = 0 & \Rightarrow \quad W = \frac{1}{\eta} \sum_i \varphi(x_i) h_i^T \\ \frac{\partial \underline{J}}{\partial b} = 0 & \Rightarrow \quad \sum_i h_i = 0. \end{cases}$$

• Solution in  $h_i$  and b with positive definite kernel  $K(x_i,x_j)=\varphi(x_i)^T\varphi(x_j)$ 

$$\begin{bmatrix} \frac{1}{\eta}K + \lambda I_N & 1_N \\ 1_N^T & 0 \end{bmatrix} \begin{bmatrix} H^T \\ b^T \end{bmatrix} = \begin{bmatrix} Y^T \\ 0 \end{bmatrix}$$

with  $K = [K(x_i, x_j)]$ ,  $H = [h_1...h_N]$ ,  $Y = [y_1...y_N]$ .

#### Simple example: line fitting

Given data:  $\{(x_i, y_i)\}_{i=1}^N$ ,  $x_i, y_i \in \mathbb{R}$ 



Linear model:

$$\hat{y} = wx + b, \ e = y - \hat{y}$$

RKM representation:

$$\hat{y} = \sum_{i} h_i x_i x + b$$

3 visible units: v = [x; 1; -y]

1 hidden unit:  $h \in \mathbb{R}$ 



### Deep Restricted Kernel Machines

### **Deep RKM: Example**



Deep RKM: LSSVM + KPCA + KPCA

Coupling of RKMs by taking sum of the objectives

$$J_{\text{deep}} = \underline{J}_1 + \overline{J}_2 + \overline{J}_3$$

Multiple levels and multiple layers per level.

#### in more detail ...



$$J_{\text{deep}} = \sum_{i=1}^{N} (y_i^T - \varphi_1(x_i)^T W_1 - b^T) h_i^{(1)} - \frac{\lambda_1}{2} \sum_{i=1}^{N} h_i^{(1)}^T h_i^{(1)} + \frac{\eta_1}{2} \text{Tr}(W_1^T W_1)$$

#### in more detail ...



$$J_{\text{deep}} = \sum_{i=1}^{N} (y_i^T - \varphi_1(x_i)^T W_1 - b^T) h_i^{(1)} - \frac{\lambda_1}{2} \sum_{i=1}^{N} h_i^{(1)}^T h_i^{(1)} + \frac{\eta_1}{2} \text{Tr}(W_1^T W_1)$$
$$- \sum_{i=1}^{N} \varphi_2(h_i^{(1)})^T W_2 h_i^{(2)} + \frac{\lambda_2}{2} \sum_{i=1}^{N} h_i^{(2)}^T h_i^{(2)} + \frac{\eta_2}{2} \text{Tr}(W_2^T W_2)$$

#### in more detail ...



$$J_{\text{deep}} = \sum_{i=1}^{N} (y_i^T - \varphi_1(x_i)^T W_1 - b^T) h_i^{(1)} - \frac{\lambda_1}{2} \sum_{i=1}^{N} h_i^{(1)^T} h_i^{(1)} + \frac{\eta_1}{2} \text{Tr}(W_1^T W_1)$$

$$- \sum_{i=1}^{N} \varphi_2(h_i^{(1)})^T W_2 h_i^{(2)} + \frac{\lambda_2}{2} \sum_{i=1}^{N} h_i^{(2)^T} h_i^{(2)} + \frac{\eta_2}{2} \text{Tr}(W_2^T W_2)$$

$$- \sum_{i=1}^{N} \varphi_3(h_i^{(2)})^T W_3 h_i^{(3)} + \frac{\lambda_3}{2} \sum_{i=1}^{N} h_i^{(3)^T} h_i^{(3)} + \frac{\eta_3}{2} \text{Tr}(W_3^T W_3)$$

#### **Stationary points**

Stationary points of  $J_{\text{deep}}(h_i^{(1)}, W_1, b, h_i^{(2)}, W_2, h_i^{(3)}, W_3)$  are given by

$$\begin{cases} \frac{\partial J_{\text{deep}}}{\partial h_i^{(1)}} = 0 & \Rightarrow \quad y_i - W_1^T \varphi_1(x_i) - b = \lambda_1 h_i^{(1)} + \frac{\partial}{\partial h_i^{(1)}} [\varphi_2(h_i^{(1)})^T W_2 h_i^{(2)}], \ \forall i \\ \frac{\partial J_{\text{deep}}}{\partial W_1} = 0 & \Rightarrow \quad W_1 = \frac{1}{\eta_1} \sum_i \varphi_1(x_i) h_i^{(1)T} \\ \frac{\partial J_{\text{deep}}}{\partial b} = 0 & \Rightarrow \quad \sum_i h_i^{(1)} = 0 \\ \frac{\partial J_{\text{deep}}}{\partial h_i^{(2)}} = 0 & \Rightarrow \quad W_2^T \varphi_2(h_i^{(1)}) = \lambda_2 h_i^{(2)} - \frac{\partial}{\partial h_i^{(2)}} [\varphi_3(h_i^{(2)})^T W_3 h_i^{(3)}], \ \forall i \\ \frac{\partial J_{\text{deep}}}{\partial W_2} = 0 & \Rightarrow \quad W_2 = \frac{1}{\eta_2} \sum_i \varphi_2(h_i^{(1)}) h_i^{(2)T} \\ \frac{\partial J_{\text{deep}}}{\partial h_i^{(3)}} = 0 & \Rightarrow \quad W_3^T \varphi_3(h_i^{(2)}) = \lambda_3 h_i^{(3)}, \ \forall i \\ \frac{\partial J_{\text{deep}}}{\partial W_3} = 0 & \Rightarrow \quad W_3 = \frac{1}{\eta_3} \sum_i \varphi_3(h_i^{(2)}) h_i^{(3)T} \end{cases}$$

#### Kernel trick

Elimination of  $W_1, W_2, W_3$  and application kernel trick to each level 1,2,3  $\rightarrow$  set of nonlinear equations:

$$\begin{cases} y_{i} = \frac{1}{\eta_{1}} \sum_{j} h_{j}^{(1)} K_{1}(x_{j}, x_{i}) + b + \lambda_{1} h_{i}^{(1)} + \frac{1}{\eta_{2}} \sum_{j} \frac{\partial K_{2}(h_{i}^{(1)}, h_{j}^{(1)})}{\partial h_{i}^{(1)}} h_{j}^{(2)^{T}} h_{i}^{(2)}, \ \forall i \\ \sum_{i} h_{i}^{(1)} = 0 \\ \frac{1}{\eta_{2}} \sum_{j} h_{j}^{(2)} K_{2}(h_{j}^{(1)}, h_{i}^{(1)}) = \lambda_{2} h_{i}^{(2)} - \frac{1}{\eta_{3}} \sum_{j} \frac{\partial K_{3}(h_{i}^{(2)}, h_{j}^{(2)})}{\partial h_{i}^{(2)}} h_{j}^{(3)^{T}} h_{i}^{(3)}, \ \forall i \\ \frac{1}{\eta_{3}} \sum_{j} h_{j}^{(3)} K_{3}(h_{j}^{(2)}, h_{i}^{(2)}) = \lambda_{3} h_{i}^{(3)}, \ \forall i \end{cases}$$

$$(P)_{\text{DeepRKM}}: \hat{y} = W_1^T \varphi_1(x) + b$$
 $\mathcal{M}$ 

$$(D)_{\text{DeepRKM}}: \hat{y} = \frac{1}{\eta_1} \sum_j h_j^{(1)} K_1(x_j, x) + b$$

#### **Data fusion interpretation**

Special case of linear kernel PCA levels

$$\begin{cases}
\text{Level 1}: & \left[ \frac{\frac{1}{\eta_{1}} [K_{1}(x_{j}, x_{i})] + \frac{1}{\eta_{2}} [K_{\text{lin}}(h_{j}^{(2)}, h_{i}^{(2)})] + \lambda_{1} I_{N} \middle| 1_{N} \middle| 1$$

with 
$$H_l = [h_1^{(l)}...h_N^{(l)}]$$
,  $l = 1, 2, 3$ .

- Data fusion:
  - Level 1: between  $K_1$  and  $K_{\mathrm{lin}}$
  - Level 2: between  $K_{2,\mathrm{lin}}$  and  $K_{\mathrm{lin}}$

#### **Heuristic algorithm**

#### Forward phase (level $1 \rightarrow \text{level } 3$ )

 $H_2, H_3$  initialization

Level 1:  $H_1 := f_1(X, Y, H_2)$ 

Level 2:  $H_2 := f_2(H_1, H_3)$ 

Level 3:  $H_3 := f_3(H_2)$ 

#### **Backward phase** (level $3 \rightarrow \text{level } 1$ )

Level 2:  $H_2 := f_2(H_1, H_3)$ 

Level 1:  $H_1 := f_1(X, Y, H_2)$ 

#### Deep RKM - Example USPS data







USPS (10 classes): Deep RKM: LSSVM  $(K_{
m rbf})$  + KPCA  $(K_{
m lin})$  + KPCA  $(K_{
m lin})$ 

Training algorithm: forward & backward phases, kernel fusion between levels

N = 2000: test error 3.26% (basic) - 3.18% (deep)  $(N_{\text{test}} = 5000)$ 

N = 4000: test error 2.14% (basic) - 2.12% (deep) ( $N_{\rm test} = 5000$ )

#### **Deep RKM - Example MNIST data**

d=784 (images of size 28x28 for each of the 10 classes), N=50000 partitioned into non-overlapping subsets of size 50 (i.e. 5 data points/class)

Deep RKMs on subsets: LSSVM  $(K_{\rm rbf})$  + KPCA  $(K_{\rm lin})$  + KPCA  $(K_{\rm lin})$  forward-backward phases extra 50000 noise corrupted training data linearly combined submodels  $(\tanh \text{ applied to their outputs})$ 

Test error: 1.28%

Deep belief networks (1.2%)

Deep Boltzmann machines (0.95, 1.01%)

SVM with Gaussian kernel (1.4%)

#### **Deep RKM - Example nonlinear regression**



$$f(x) = \sin(0.3x) + \cos(0.5x) + \sin(2x)$$

with zero mean Gaussian noise with standard deviation 0.1, 0.5, 1, 2

| noise | LS-SVM                    | deep (1+1)                | deep (7+2)                |
|-------|---------------------------|---------------------------|---------------------------|
| 0.1   | $0.0019 \pm 4.3  10^{-4}$ | $0.0018 \pm 4.2  10^{-4}$ | $0.0019 \pm 4.4  10^{-4}$ |
| 0.5   | $0.0403 \pm 0.0098$       | $0.0374 \pm 0.0403$       | $0.0397 \pm 0.0089$       |
| 1     | $0.1037 \pm 0.0289$       | $0.0934 \pm 0.0269$       | $0.0994 \pm 0.0301$       |
| 2     | $0.3368 \pm 0.0992$       | $0.2902 \pm 0.0875$       | $0.3080 \pm 0.0954$       |

#### **Deep RKM: Other example**



Deep RKM: KPCA + KPCA + LSSVM

Coupling of RKMs by taking sum of the objectives

$$J_{\text{deep}} = \overline{J}_1 + \overline{J}_2 + \underline{J}_3$$

#### Primal and dual model representations

$$\hat{e}^{(1)} = W_1^T \varphi_1(x)$$

$$(P)_{\text{DeepRKM}}: \quad \hat{e}^{(2)} = W_2^T \varphi_2(\Lambda_1^{-1} \hat{e}^{(1)})$$

$$\hat{y} = W_3^T \varphi_3(\Lambda_2^{-1} \hat{e}^{(2)}) + b$$

$$\mathcal{M}$$

$$\hat{e}^{(1)} = \frac{1}{\eta_1} \sum_j h_j^{(1)} K_1(x_j, x)$$

$$(D)_{\text{DeepRKM}}: \quad \hat{e}^{(2)} = \frac{1}{\eta_2} \sum_j h_j^{(2)} K_2(h_j^{(1)}, \Lambda_1^{-1} \hat{e}^{(1)})$$

$$\hat{y} = \frac{1}{\eta_3} \sum_j h_j^{(3)} K_3(h_j^{(2)}, \Lambda_2^{-1} \hat{e}^{(2)}) + b$$

#### Deep reduced set kernel-based models (1)

Subset of training set  $\{\tilde{x}_j\}_{j=1}^M \subset \{x_i\}_{i=1}^N$  with  $M \ll N$ :

$$W_{1} = \frac{1}{\eta_{1}} \sum_{i=1}^{N} \varphi_{1}(x_{i}) h_{i}^{(1)^{T}} \simeq \tilde{W}_{1} = \frac{1}{\eta_{1}} \sum_{j=1}^{M} \varphi_{1}(\tilde{x}_{j}) \tilde{h}_{j}^{(1)T}$$

$$\tilde{W}_{2} = \frac{1}{\eta_{2}} \sum_{j=1}^{M} \varphi_{2}(\tilde{h}_{j}^{(1)}) \tilde{h}_{j}^{(2)T}$$

$$\tilde{W}_{3} = \frac{1}{\eta_{3}} \sum_{j=1}^{M} \varphi_{2}(\tilde{h}_{j}^{(2)}) \tilde{h}_{j}^{(3)T}$$

Predictive model:

$$\hat{e}^{(1)} = \frac{1}{\eta_1} \sum_{j=1}^{M} \tilde{h}_j^{(1)} K_1(\tilde{x}_j, x) 
\hat{e}^{(2)} = \frac{1}{\eta_2} \sum_{j=1}^{M} \tilde{h}_j^{(2)} K_2(\tilde{h}_j^{(1)}, \Lambda_1^{-1} \hat{e}^{(1)}) 
\hat{y} = \frac{1}{\eta_3} \sum_{j=1}^{M} \tilde{h}_j^{(3)} K_3(\tilde{h}_j^{(2)}, \Lambda_2^{-1} \hat{e}^{(2)}) + b$$

#### Deep reduced set kernel-based models (2)

Training in primal:

$$\begin{split} \min_{\tilde{h}_{j}^{(1)}, \tilde{h}_{j}^{(2)}, \tilde{h}_{j}^{(3)}, b, \Lambda_{1}, \Lambda_{2}} J_{\text{deep}, P_{\text{stab}}} = & -\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(1)^{T}} \Lambda_{1}^{-1} e_{j}^{(1)} + \frac{\eta_{1}}{2} \text{Tr}(\tilde{W}_{1}^{T} \tilde{W}_{1}) \\ & -\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(2)^{T}} \Lambda_{2}^{-1} e_{j}^{(2)} + \frac{\eta_{2}}{2} \text{Tr}(\tilde{W}_{2}^{T} \tilde{W}_{2}) \\ & + \frac{1}{2\lambda_{3}} \sum_{j=1}^{M} e_{j}^{(3)^{T}} e_{j}^{(3)} + \frac{\eta_{3}}{2} \text{Tr}(\tilde{W}_{3}^{T} \tilde{W}_{3}) \\ & + \frac{1}{2} \mathbf{c}_{\text{stab}} (-\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(1)^{T}} \Lambda_{1}^{-1} e_{j}^{(1)} + \frac{\eta_{1}}{2} \text{Tr}(\tilde{W}_{1}^{T} \tilde{W}_{1}))^{2} \\ & + \frac{1}{2} \mathbf{c}_{\text{stab}} (-\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(2)^{T}} \Lambda_{2}^{-1} e_{j}^{(2)} + \frac{\eta_{2}}{2} \text{Tr}(\tilde{W}_{2}^{T} \tilde{W}_{2}))^{2} \end{split}$$

with stabilization terms.

#### Deep feedforward neural networks in the primal

Model

$$\hat{e}^{(1)} = W_1^T \sigma(U_1 x + \beta_1) 
\hat{e}^{(2)} = W_2^T \sigma(U_2 \Lambda_1^{-1} \hat{e}^{(1)} + \beta_2) 
\hat{y} = W_3^T \sigma(U_3 \Lambda_2^{-1} \hat{e}^{(2)} + \beta_3) + b$$

Training objective:

$$\begin{split} \min_{W_{1,2,3},U_{1,2,3},\beta_{1,2,3},b,\Lambda_{1},\Lambda_{2}} J_{\text{deep},P_{\text{stab}}} = & -\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(1)^{T}} \Lambda_{1}^{-1} e_{j}^{(1)} + \frac{\eta_{1}}{2} \text{Tr}(W_{1}^{T}W_{1}) \\ & -\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(2)^{T}} \Lambda_{2}^{-1} e_{j}^{(2)} + \frac{\eta_{2}}{2} \text{Tr}(W_{2}^{T}W_{2}) \\ & + \frac{1}{2\lambda_{3}} \sum_{j=1}^{M} e_{j}^{(3)^{T}} e_{j}^{(3)} + \frac{\eta_{3}}{2} \text{Tr}(W_{3}^{T}W_{3}) \\ & + \frac{1}{2} \mathbf{c}_{\text{stab}} \left( -\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(1)^{T}} \Lambda_{1}^{-1} e_{j}^{(1)} + \frac{\eta_{1}}{2} \text{Tr}(W_{1}^{T}W_{1}) \right)^{2} \\ & + \frac{1}{2} \mathbf{c}_{\text{stab}} \left( -\frac{1}{2} \sum_{j=1}^{M} e_{j}^{(2)^{T}} \Lambda_{2}^{-1} e_{j}^{(2)} + \frac{\eta_{2}}{2} \text{Tr}(W_{2}^{T}W_{2}) \right)^{2} \end{split}$$

#### **Toeplitz matrices (convolutional)**

Taking matrices  $U \in \mathbb{R}^{n_1 \times n_2}$  as Toeplitz matrices:

 $\rightarrow$  reduces to  $n_1 + n_2 - 1$  instead of  $n_1 n_2$  unknowns

#### **Experimental results**

|                       | pid                        | bld                        | ion                   | adu                  |
|-----------------------|----------------------------|----------------------------|-----------------------|----------------------|
| $\mathcal{M}_{1,a}$   | 19.53 [20.02(1.53)]        | 26.09 [30.96(3.34)]        | <b>0</b> [0.68(1.60)] | 16.99 [17.46(0.65)]  |
| $\mathcal{M}_{1,b}$   | <b>18.75</b> [19.39(0.89)] | <b>25.22</b> [31.48(4.11)] | <b>0</b> [5.38(12.0)] | 17.08 [17.48(0.56)]  |
| $\mathcal{M}_{1,c}$   | 21.88 [24.73(5.91)]        | 28.69 [32.39(3.48)]        | <b>0</b> [8.21(6.07)] | 17.83 [21.21(4.78)]  |
| $\mathcal{M}_{2,a}$   | 21.09 [20.20(1.51)]        | 27.83 [28.86(2.83)]        | 1.71 [5.68(2.22)]     | 15.07 [15.15(0.15)]  |
| $\mathcal{M}_{2,b}$   | <b>18.75</b> [20.33(2.75)] | 28.69 [28.38(2.80)]        | 10.23 [6.92(3.69)]    | 14.91 [15.08 (0.15)] |
| $\mathcal{M}_{2,b,T}$ | 19.03 [19.16(1.10)]        | 26.08 [27.74(9.40)]        | 6.83 [6.50(8.31)]     | 15.71 [15.97(0.07)]  |
| $\mathcal{M}_{2,c}$   | 24.61 [22.34(1.95)]        | 32.17 [27.61(3.69)]        | 3.42 [9.66(6.74)]     | 15.21 [15.19(0.08)]  |
| bestbmark             | 22.7(2.2)                  | 29.6(3.7)                  | 4.0(2.1)              | 14.4(0.3)            |

 $\mathcal{M}_1$ : Deep reduced set kernel-based models (with RBF kernel)

 $\mathcal{M}_{1,a}$ : additional term  $-c_0(\operatorname{Tr}(\Lambda_1)+\operatorname{Tr}(\Lambda_2))$  and  $\operatorname{Tr}(\tilde{H}^{(l)}\tilde{\tilde{H}}^{(l)T})$  regularization

 $\mathcal{M}_{1,b}$ : without term  $-c_0(\operatorname{Tr}(\Lambda_1)+\operatorname{Tr}(\Lambda_2))$ 

 $\mathcal{M}_{1,c}$ : with objective function  $\frac{1}{2\lambda_3} \sum_{j=1}^{M} e_j^{(3)T} e_j^{(3)} + \frac{\eta_3}{2} \mathrm{Tr}(W_3^T W_3)$ 

 $\mathcal{M}_2$ : Deep feedforward neural networks

 $\mathcal{M}_{2,b,T}$ : with Toeplitz matrices for U matrices

#### **Training process**



Evolution of the objective function (logarithmic scale) during training on the ion data set. Shown are training curves for the model  $\mathcal{M}_{2,a}$  for different choices of  $c_{\mathrm{stab}}$  (equal to 1, 10, 100 in blue, red, magenta color, respectively) in comparison with  $\mathcal{M}_{2,c}$  (level 3 objective only, in black color), for the same initialization, with quasi-Newton method.

#### **Future challenges**

- efficient algorithms and implementations for large data
- extension to other loss functions and regularization schemes
- multimodal data, tensor models, coupling schemes
- models for deep clustering and semi-supervised learning
- combination with convolutional layers
- choice kernel functions, invariances
- deep generative models
- optimal transport

#### Towards a unifying picture



[Suykens 2017]

#### **Conclusions**

- From RBM to deep BM
- From RKM to deep RKM
- RKM and RBM representation: visible and hidden units
- Deep RKM: new framework for deep kernel machines and deep feedforward neural networks
- Primal and dual models representations for deep learning

#### **Acknowledgements (1)**

- Current and former co-workers at ESAT-STADIUS:
  - C. Alzate, Y. Chen, J. De Brabanter, K. De Brabanter, L. De Lathauwer, H. De Meulemeester, B. De Moor, H. De Plaen, Ph. Dreesen, M. Espinoza, T. Falck, M. Fanuel, Y. Feng, B. Gauthier, X. Huang, L. Houthuys, V. Jumutc, Z. Karevan, R. Langone, R. Mall, S. Mehrkanoon, G. Nisol, M. Orchel, A. Pandey, K. Pelckmans, S. RoyChowdhury, S. Salzo, J. Schreurs, M. Signoretto, Q. Tao, J. Vandewalle, T. Van Gestel, S. Van Huffel, C. Varon, Y. Yang, and others
- Many other people for joint work, discussions, invitations, organizations
- Support from ERC AdG E-DUALITY, ERC AdG A-DATADRIVE-B, KU Leuven, OPTEC, IUAP DYSCO, FWO projects, IWT, iMinds, BIL, COST

### **Acknowledgements (2)**













### Acknowledgements (3)



NEW: ERC Advanced Grant E-DUALITY Exploring duality for future data-driven modelling

## Thank you