MACS - Quantification des incertitudes pour la simulation

TD 9 - Année 2022-2023

1 Indices de Sobol de la fonction Ishigami

On considère le modèle suivant :

$$y(\mathbf{X}) = \sin(X_1) + 7\sin(X_2)^2 + 0.1X_3^4\sin(X_1), \quad \mathbf{X} = (X_1, X_2, X_3, X_4) \sim \bigcap ([-\pi, \pi]^4).$$

- 1. Rappeler l'expression des indices de Sobol d'ordre 1, $S_1^{(i)}$, et totaux, $S_T^{(i)}$, caractérisant l'influence des entrées X_i sur la variance de y.
 - 2. Donner la PDF de X, f_X .
 - 3. Calculer $\mathbb{E}[\sin(X_i)]$, $\mathbb{E}[\sin^2(X_i)]$, $\mathbb{E}[\sin^4(X_i)]$, $\mathbb{E}[X_i^4]$ et $\mathbb{E}[X_i^8]$.
 - 4. Calculer la moyenne de y.
 - 5. Calculer la variance de y.
 - 6. Calculer les indices $S_1^{(i)}$ et $S_T^{(i)}$.
 - 7. Commenter les résultats précédents.
- 8. Sans refaire tous les calculs, commenter l'influence d'un augmentation du domaine de définition de X à $[0, 2\pi]^4$.

2 Indices de Sobol pour variables corrélées

On considère la fonction :

$$y: \begin{cases} \mathbb{R}^3 \to \mathbb{R} \\ \boldsymbol{x} = (x_1, x_2, x_3) \mapsto y(\boldsymbol{x}) = \sqrt{2}x_1 + x_2 + \frac{x_3}{\sqrt{2}}. \end{cases}$$

On suppose que x est un vecteur gaussien **centré** et de matrice de covariance :

$$m{R} := \left[egin{array}{ccc} 1 & 0 &
ho \\ 0 & 1 & 0 \\
ho & 0 & 1 \end{array}
ight], \quad -1 \le
ho \le 1.$$

1. Rappeler la densité f_x de x en fonction de R. Peut-on dire que les variables x_1, x_2, x_3 sont indépendantes statistiquement?

2. Calculer la moyenne et la variance de y(x).

On rappelle que si $y \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_y)$ et $z \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_z)$ sont deux vecteurs gaussiens centrés corrélés, tels que $\text{Cov}(y, z) = \mathbf{R}_{yz}$, alors :

$$\mathbb{E}\left[\boldsymbol{y}|\boldsymbol{z}\right] = \boldsymbol{R}_{yz}\boldsymbol{R}_{z}^{-1}\boldsymbol{z}.$$

- 3. Calculer $\mathbb{E}[y(\boldsymbol{x})|x_1]$, $\mathbb{E}[y(\boldsymbol{x})|x_2]$, $\mathbb{E}[y(\boldsymbol{x})|x_3]$.
- 4. En déduire les indices de Sobol d'ordre 1 associés à x_1, x_2, x_3 , respectivement notés S_1, S_2, S_3 .
- 5. Tracer sur un même graphique l'évolution de ces indices en fonction de $\rho \in [-1, 1]$. Commenter le résultat (en particulier les cas $\rho \in \{-1, 0, 1\}$).
- 6. Calculer la somme des indices d'ordre 1. Que constatez vous comme différence (surprenante) avec le cas des variables indépendantes (on pourra à nouveau se concentrer sur les valeurs $\rho \in \{-1,0,1\}$)? Comment l'expliquez vous?

3 Approches spectrales et indices de Sobol

On s'intéresse à l'influence des entrées $\mathbf{X} = (X_1, \dots, X_d)$, que l'on suppose indépendantes statistiquement et de même loi (après renormalisation par exemple), sur la variance de $y(\mathbf{X})$. On propose alors de passer par une approche spectrale. Pour cela, à partir d'un nombre limité d'évaluations de y, on suppose avoir identifié une approximation de y sous la forme :

$$y(\mathbf{X}) \approx \sum_{\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathcal{A}} c_{\boldsymbol{\alpha}} \psi_{\alpha_1}(X_1) \times \dots \times \psi_{\alpha_d}(X_d),$$

où $\{\psi_0, \psi_1, \psi_2, \ldots\}$ est une base orthonormée par rapport à la loi des X_i , telle que :

$$\psi_0(X_i) = 1$$
, $\mathbb{E}\left[\psi_m(X_i)\psi_n(X_i)\right] = \delta_{nm}$, $n, m \ge 0$, $1 \le i \le d$,

et où \mathcal{A} est un sous ensemble fini de \mathbb{N}^d .

- 1. Calculer la moyenne de y.
- 2. Calculer la variance de y.
- 3. Calculer $\mathbb{E}[y(\boldsymbol{X})|X_i]$.
- 4. En déduire $S_1^{(i)} = \text{Var}(\mathbb{E}[y(\boldsymbol{X})|X_i])/\text{Var}(y(\boldsymbol{X}))$.
- 5. Expliquer alors comment calculer $S_2^{(i,j)}, \dots, S_d^{(1,\dots,d)}$ et $S_T^{(i)}$