

planetmath.org

Math for the people, by the people.

proof of topologically irreducible representations are algebraically irreducible for C^* -algebras

 $Canonical\ name \qquad Proof Of Topologically Irreducible Representations Are Algebraically Irreducible Foundations and the proof of the p$

Date of creation 2013-03-22 19:04:12 Last modified on 2013-03-22 19:04:12 Owner karstenb (16623) Last modified by karstenb (16623)

Numerical id 8

Author karstenb (16623)

Entry type Proof Classification msc 46L05

Denote by \mathcal{H} an arbitrary Hilbert space. To fix notation let $\mathcal{U} \subset \mathcal{L}(\mathcal{H})$ be a C^* subalgebra of $\mathcal{L}(\mathcal{H})$. We then define the *commutator* of \mathcal{U} by

$$\mathcal{U}' := \{ T \in \mathcal{L}(\mathcal{H}) : TU = UT \ \forall U \in \mathcal{U} \}$$

Note that \mathcal{U}' is closed with regard to the weak topology (see http://planetmath.org/Commutan entry). So \mathcal{U}' is always a von Neumann algebra.

As an immediate consequence of Schur's Lemma for group representations on a Hilbert space we obtain the following result.

Lemma. Let \mathcal{U} be a *-algebra and let π be a *-representation of \mathcal{U} on the Hilbert space \mathcal{H} . Then π is topologically irreducible iff $\pi(\mathcal{U})' = \mathbb{C}I$.

We can now prove the result.

Theorem. Let \mathcal{U} be a C^* algebra. Assume the *-representation π of \mathcal{U} on the Hilbert space \mathcal{H} is topologically irreducible. Then π is algebraically irreducible.

Proof. By the Lemma it follows that $\pi(\mathcal{U})' = \mathbb{C}I$. Hence $\pi(\mathcal{U})'' = \mathcal{L}(\mathcal{H})$. By the http://planetmath.org/VonNeumannDoubleCommutantTheoremdouble commutant theorem every operator in $\mathcal{L}(\mathcal{H})_1$ (the unit ball in the set of bounded operators $\mathcal{L}(\mathcal{H})$ belongs to the strong operator closure of $\pi(\mathcal{U})_1$ (the unit ball in $\pi(\mathcal{U})$).

To show the algebraical irreducibility of $\pi(\mathcal{U})$ it is enough to find for two given vectors $x, y \in \mathcal{H}, x \neq 0$ an element $T \in \mathcal{U}$ such that $\pi(T)x = y$ holds. Indeed, it is enough to consider the case ||x|| = ||y|| = 1.

Now construct the rank one approximation $\tilde{T}_1 := y \otimes x \iff \tilde{T}_1 z = y \otimes x$ $\langle x, z \rangle y, z \in \mathcal{H} \Rightarrow \tilde{T}_1 x = ||x||y = y)$ with a corresponding $T_1 \in \mathcal{U}, \pi(T_1) \in \pi(\mathcal{U})_1$, so that $||y - \pi(T_1)x|| = ||\tilde{T}_1 x - \pi(T_1)x|| \leq \frac{1}{2}$.

Approximate further $T_2 := (y - \pi(T_1)x) \otimes x \in \frac{1}{2}\mathcal{L}(\mathcal{H})_1$ and choose $\pi(T_2) \in \mathcal{L}(\mathcal{H})$

 $\frac{1}{2}\pi(\mathcal{U})_{1} \text{ with } \|y - \pi(T_{1})x - \pi(T_{2})x\| = \|\tilde{T}_{2}x - \pi(T_{2})x\| \leq \frac{1}{2^{2}}.$ Proceed by induction with $\tilde{T}_{n} := (y - \sum_{j=1}^{n-1} \pi(T_{j})x) \otimes x \in 2^{-j}\mathcal{L}(\mathcal{H})_{1}.$ Choose $\pi(T_n) \in 2^{-n}\pi(\mathcal{U})_1$ with $||y - \sum_{j=1}^n \pi(T_j)x|| = ||\tilde{T}_n x - \pi(T_n)x|| \le 2^{-n}$. Then we have $\pi(T) := \sum_{j=1}^n \pi(T_n)$ in \mathcal{U} and $\pi(T)x = y$ which completes the proof.