### ECE 417/598: Direct Linear Transform

Vikas Dhiman

March 23, 2022



## Examples of Homography





## Computing Homography



Find H such that  $\underline{\mathbf{u}}' = \lambda H \underline{\mathbf{u}}$  for any point on one image to another image, where  $\mathbf{u}', \mathbf{u} \in \mathbb{P}^2$ 

#### 2D homography

Given a set of points  $\underline{\mathbf{u}}_i \in \mathbb{P}^2$  and a corresponding set of points  $\underline{\mathbf{u}}_i' \in \mathbb{P}^2$ , compute the projective transformation that takes each  $\underline{\mathbf{u}}_i$  to  $\underline{\mathbf{u}}_i'$ . In a practical situation, the points  $\underline{\mathbf{u}}_i$  and  $\underline{\mathbf{u}}_i'$  are points in two images (or the same image), each image being considered as a projective plane  $\mathbb{P}^2$ .

$$\frac{ui = \lambda H ui}{P_{caspedtue}} = \frac{\lambda e IR}{\lambda e IR}$$

$$u = K \times \text{ in penspective shall}$$

$$u = \lambda K \times \frac{2}{3} = \frac{4}{12}$$

$$a b c \int \{y\}_{20}^{20} cx + by + c = 0$$

$$\frac{A \times b}{A \times b} = \frac{\lambda e IR}{\lambda e IR}$$

$$\frac{2}{3} = \frac{4}{12}$$



$$y = y + y = 0$$
 $y = y + y = 0$ 
 $y = =$ 

x hizi + > hz y + >hzt





$$\begin{bmatrix}
0 & -w_i & g_i \\
w_i & 0 & -\partial_{i} & Hu_i & = 0
\end{bmatrix}$$

$$\begin{bmatrix}
-y_i & \partial_{i} & 0
\end{bmatrix}$$

$$\begin{bmatrix}
-y_i & \partial_{i} & 0
\end{bmatrix}$$

$$\begin{bmatrix}
h_1 & h_2 & h_3
\end{bmatrix}$$



$$\begin{bmatrix}
0 & -w_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
u_{i} & h_{2} \\
u_{i} & h_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -w_{i} & y_{i} & y_{i} \\
-y_{i} & y_{i} & y_{i}
\end{bmatrix}$$



$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \qquad Nz \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$

$$M \otimes N = \begin{pmatrix} M_{11} & N & M_{12} & N \\ M_{12} & N & M_{12} & N \end{pmatrix}$$

$$M \otimes N = \begin{pmatrix} M_{11} & N & M_{12} & N \\ M_{21} & N & M_{22} & M_{22} \end{pmatrix} \qquad M_{22} \qquad M_{23} \qquad M_{24} \qquad M_{24}$$



H = 3x3=9 unknows J Brause S DOF from each fount 3 eyrs 2 linearly independent equations 8/2=4 points (pair of points)



# Solving for Homography



# Solving for Homography