Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Performance Evaluation of Websocket Protocol for Implementation of Full-Duplex Web Streams

Oleg Bilovus

Università degli Studi di Salerno

1st Scalability Research Forum

Outline

Websocket

Oleg Bilovus

Motiva

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Motivation

The Basic Problem That We Studied

Motivation 2

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Definition

A prime number is a number that has exactly two divisors.

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Definition

A prime number is a number that has exactly two divisors.

Example

▶ 2 is prime (two divisors: 1 and 2).

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Definition

A prime number is a number that has exactly two divisors.

Example

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Definition

A prime number is a number that has exactly two divisors.

Example

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

Websocket

The Basic Problem That We Studied 2

Theorem

There is no largest prime number.

Proof.

1. Suppose *p* were the largest prime number.

4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

What's Still To Do

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

Answered Questions
How many primes are there?

Open Questions

Is every even number the sum of two primes?

Outline

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation

The Basic Problem That We Studied 2

Motivation

The Basic Problem That We Studied

Motivation 2

An Algorithm For Finding Primes Numbers.

return 0;

```
int main (void)
{
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)</pre>
```

```
Websocket
```

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

An Algorithm For Finding Primes Numbers.

```
int main (void)
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)
   if (is_prime[i])
   }
 return 0;
```

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

An Algorithm For Finding Primes Numbers.

```
int main (void)
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)
   if (is_prime[i])
     std::cout << i << " ":
     for (int j = i; j < 100;)
       is_prime[j] = false, j+=i);
   }
 return 0;
```

Websocket

Oleg Bilovus

Motivation

The Basic Problem That We Studied

Motivation 2

The Basic Problem That We Studied 2

```
int main (void)
  std::vector<bool> is_prime (100, true);
  for (int i = 2; i < 100; i++)
   if (is_prime[i])
     std::cout << i << " ":
     for (int j = i; j < 100;)
       is_prime[j] = false, j+=i);
   }
 return 0;
```

Note the use of std::.