Suppose users share a 100 Mbps link. Also suppose each user requires 10 Mbps when transmitting, but each user transmits only 25% of the time.

- (a) When circuit switching is used, how many users can be supported?
- (b) For the remainder of the problem, suppose packet switching is used. Find the probability that a given user is transmitting.
- (c) Suppose there are 100 users. Find the probability that at any given time, exactly n users are transmitting simultaneously. (Hint: Use the binomial distribution)
- (d) Find the probability that there are 21 or more users transmitting simultaneously.

Write your solution to Problem 1 in this box
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

\sim	•	1 1
()11	euing	delan
ω	Cume	uciav.

(a)	Suppose N packets arrive simultaneously to a link at which no packets are currently being transmitted
	or queued. Each packet is of length L and the link has transmission rate R . What is the average
	queuing delay for the N packets?

(b)	Now suppose that	t N such	packets	arrive	to the	link e	every	$\frac{LN}{R}$ second	ls. What	is the	average	queuing
	delay of a packet?	?						10				

Write your solution to Problem 2 in this box	
	Write your solution to Problem 2 in this box

Review the car-caravan analogy in lecture #1 slides (for Chapter 1). Assume a propagation speed of 100 km/h.

- (a) Suppose the caravan (10 cars) travels 100 km, beginning in front of one tollbooth, passing through a second tollbooth, and finishing just after a third tollbooth. The distance between two tollbooths is 50 km. Each car takes 12 sec to serve. What is the end-to-end delay?
- (b) Repeat (a), now assuming that there are 8 cars in the caravan instead of 10.

W'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Write your solution to Problem 3 in this box

In this problem, we consider sending real-time voice from Host A to Host B over a packet-switched network (VoIP). Host A converts analog voice to a digital 64 Kbps bit stream on the fly. Host A then groups the bits into 56-byte packets. There is one link between Hosts A and B; its transmission rate is 2 Mbps and its propagation delay is 10 msec. As soon as Host A gathers a packet, it sends it to Host B. As soon as Host B receives an entire packet, it converts the packet's bits to an analog signal. How much time elapses from the time a bit is created (from the original analog signal at Host A) until the bit is decoded (as part of the analog signal at Host B)?

Write your solution to Problem 4 in this box

Suppose you would like to urgently deliver 50 terabytes data from Boston to Los Angeles. You have available

Problem 5

Ex overnight deliver	y instead? Explain yo	our choice.	to transmit the dat	a via this link or to u		
			Write your so	Write your solution to Problem 5 in this be		