#### 武汉大学计算机学院

# 2021-2022 学年第二学期 2020 级弘毅班

### 《计算机系统基础 2》期末考试试卷(A卷)

| 姓名                                    | 学号 |
|---------------------------------------|----|
| · · · · · · · · · · · · · · · · · · · |    |

(注:①闭卷考试;②考试时间为120分钟;③所有解答必须写在答题纸上。)

| 学号 | 班级 | 姓名 | 成绩 |
|----|----|----|----|
|    |    |    |    |

注意: 所有答题内容必须写在答题纸上, 凡写在试题或草稿纸上的一律无效。

#### 本考试使用的 RISC-V 核心指令格式如下:

|                        | 31 27        | 26 25   | 24 20 | 19 15 | 14 12  | 11 4 7      | 6 0    |
|------------------------|--------------|---------|-------|-------|--------|-------------|--------|
| R                      | funct7       |         | rs2   | rs1   | funct3 | rd          | opcode |
| I                      | im           | m[11:0] |       | rs1   | funct3 | rd          | opcode |
| $\mathbf{S}$           | imm[11:      | 5]      | rs2   | rs1   | funct3 | imm[4:0]    | opcode |
| SB                     | imm[12 10    | ):5]    | rs2   | rs1   | funct3 | imm[4:1 11] | opcode |
| U                      | U imm[31:12] |         |       |       | rd     | opcode      |        |
| $\mathbf{U}\mathbf{J}$ |              |         |       |       |        | rd          | opcode |

#### 一、单项选择题(每小题2分,共20分)

- 1、汽车制造中的组装生产线与下列计算机领域中的重要思想()匹配。
  - A. 加速大概率事件

B. 采用并行提高性能

C. 采用流水线提高性能

- D. 采用预测提高性能
- 2、计算机体系结构中的 8 个伟大思想,除了"面向摩尔定律的设计"、"使用抽象简化设计"、"通过并行提高性能"、"通过流水线提高性能"、"通过预测提高性能"、"层次化的存储器设计",还包括:()
  - A. "通过接口提高可用性"、"加速大概率事件"
  - B. "通过冗余提高可靠性"、"加速大概率事件"
  - C. "通过接口提高可用性"、"指令集精简化"
  - D. "通过冗余提高可靠性"、"指令集精简化"
- 3、一个 C 语言程序在一台 32 位机器上运行。程序中定义了三个变量 xyz,其中 x 和 z 是 int 型,y 为 short 型。当 x=127,y=-9 时,执行赋值语句 z=x+y 后,xyz 的值分别 是( )。
  - A. X=0000007FH, y=FFF9H, z=00000076H
  - B. X=0000007FH, y=FFF9H, z=FFFF0076H
  - C. X=0000007FH, y=FFF7H, z=FFFF0076H

|    | D. X=0000007FH,                  | y=FFF7H, z=0000000   | 76H                   |                  |
|----|----------------------------------|----------------------|-----------------------|------------------|
| 4、 | 指令 beq 所在的地址:                    | 为 0x0000 0000 0008 0 | 024,转移目标地址为           | 0x0000 0000 0008 |
|    | 0010,则此指令中立                      | 即数的十六进制表示为           | 为()。                  |                  |
|    | A. 0xFE8                         | B. 0xFEC             | C. 0xFF6              | D. 0xFF3         |
| 5、 |                                  |                      | 乍为参数,无条件跳转            |                  |
|    |                                  |                      | 可以用一条()指令             |                  |
|    | A. beq                           | B. jalr              | C. jal                | D. j             |
| 6, | 考虑一个循环, 在程                       | 序中会被调用多次。每           | <b>每次执行时,循环结束</b>     | 时的分支指令会发         |
|    | 生9次跳转到循环开                        | 始,之后产生1次不路           | 兆转。采用1位预测机            | 制和采用 2 位预测机      |
|    | 制的准确率分别是(                        | )。                   |                       |                  |
|    | A. 88.89%和 100%                  | B. 80%和 90           | 0%                    |                  |
|    | C. 88.89%和 88.89%                | D. 80%和 10           | 00%                   |                  |
| 7、 | 有一个五级流水线的                        | 处理器设计,每一级的           | 内延迟分别为: 450ps,        | 650ps, 450ps,    |
|    |                                  |                      | Z 50ps。如果将第二级         | _                |
|    |                                  | 级流水线。那新处理特           | 3/1/2                 | (See SPE)        |
|    | A. 450ps                         |                      | C. 2. 22GHz D.        | 325ps            |
| 0  | _                                | X                    |                       |                  |
| 0, |                                  |                      | à检测的五阶段流水线□<br>□ T 小型 |                  |
|    |                                  | <b>评。如果您正确运行</b>     | 如下代码,至少需要插            | 八( )余 NOP 指      |
|    | <b>令</b> 。                       |                      |                       |                  |
|    | addi x11, x1, 5<br>ld x12, 0(x2) | 1                    |                       |                  |
|    | add x13, x11, x                  |                      |                       |                  |
|    | addi x14, x12,                   |                      |                       |                  |
|    | add x15, x13, x                  | В. 3                 | C. 4                  | D. 5             |
|    |                                  |                      |                       |                  |
| 9、 |                                  |                      | 平均寻道时间为 8ms,          |                  |
|    |                                  |                      | 12B 扇区的平均时间力          |                  |
|    | A. 12. 16ms                      | B. 12. 29ms          | C. 16. 32ms           | D. 16. 46ms      |
| 10 | 假定主存地址为32                        | 位,按字节编址,主符           | 字和 Cache 之间采用直        | 接映射方式,主存         |
| 块  | 大小为4个字,每字3                       | 32位,采用回写(write       | back)方式,则能存放          | 4K字数据的 Cache     |
| 的点 | 总容量的位数至少是                        | ( )。                 |                       |                  |
|    | <b>A.</b> 146K                   | B. 147K              | C. 148K               | D. 158K          |

#### 二、性能计算(每小题 5 分, 共 10 分)

假设对某应用程序中的四类操作进行改进,比较改进前后的性能,获得如下数据:

| 操作类 | 程序中的数量(百万 | 改进前执行时间(周期 | 改进后执行时间 |
|-----|-----------|------------|---------|
| 型   | 条指令)      | 数)         | (周期数)   |
| A   | 10        | 2          | 1       |
| В   | 30        | 20         | 15      |
| С   | 35        | 10         | 3       |
| D   | 15        | 4          | 1       |

- (1) 各类操作单独改进后,程序获得的加速比分别是多少?由此可得出什么结论?
- (2) 全部操作都改进后,程序获得的加速比是多少?

## 三、指令系统(共15分)

有如下 C 语言程序,假设 leaf 的函数声明是 int leaf (int a , int b)。函数 function 的代码如下:

int function ( int a, int b, int c, int d )
return leaf( leaf(a, b), c+d );

(1)(每空1分,共8分)下面的代码是其对应的 RISC\_V 汇编语言程序, x2 是栈指针寄存器,将其中的空填写完整。提示: 栈指针必须保持 16 位对齐。

#### function:

```
addi x2, x2, -16

sd x1, 0(x2)

add x5, ( ), x13

sd x5, ( )

jal x1, ( )

ld x11, ( )

jal x1, ( )

ld x1, ( )

addi x2, x2, ( )

( ) x0, x1
```

(2) (7分)对上述代码中的每个函数调用,写出函数调用后栈的内容。假设栈指针最初位于地址 0x7fffffc。

# 四、运算器(10分)

假设有一个虚构的 8 位浮点数标准,称为"minifloat"(如:S E EEMMMM,其中符号字段 1 位,指数字段 3 位,尾数字段 4 位),其它属性和 IEEE754 标准一样(如:偏阶,非规格化数值, $\infty$ , NaNs,等等)。

- (1) 请问偏阶是多少?在[1,4)范围内有多少个 minifloat? (4分)
- (2) 请写出大于 1 的最小 minifloat 数, 用十进制数表示。(3 分)
- (3)用一条 RISC\_V 整数运算指令实现 times2,假设 f(上面粗体显示)最左边的"E"位为 0。(3 分)

| minifloat times2 ( minifloat f ) { return f * 2.0; } |         |                       |  |  |  |
|------------------------------------------------------|---------|-----------------------|--|--|--|
| times2:                                              | a0, a0, | _ ##假设 f存在寄存器 a0 最低字节 |  |  |  |
| jalr x0,                                             | 0 (x1)  |                       |  |  |  |

# 五、CPU (25分)

1、(共15分)单周期 CPU 数据通路如下图所示。

指令: ld x9, 8(x22)

(1)对上述指令而言,图中的控制信号值分别是什么? (ALUOp 给出 ALU 要做的运算即可)(7分)

| RegWrite | ALUSrc | ALUOp | PCSrc | MemWrite | MemRead | MemtoReg |
|----------|--------|-------|-------|----------|---------|----------|
|          |        |       |       | ,        |         |          |

(2) 对上述指令而言,下述数据线上的值为多少? ld 指令的 opcode 为 0x03, funct3 为 0x3。(6分)(注意: 所有结果均以 16 进制形式给出。)

| 寄存器 1 号读地址输入    |  |
|-----------------|--|
| 寄存器 2 号读地址输入    |  |
| 寄存器写地址输入        |  |
| 寄存器写数据输入        |  |
| ImmGen 的输入      |  |
| ALU control 的输入 |  |

(3)哪个(些)功能单元会产生输出,但不会被实际用到?(2分)



2、(共10分)在RISC\_V五级流水线上,不增加任何旁路,单纯通过阻塞消除数据冒险时,阻塞单元可以安排在 ID 级,用于检测当前指令与上条指令以及当前指令与上上条



指令之间的数据冒险并根据需要阻塞流水线。

阻塞单元的输入信号包括 IF/ID.Rs1、IF/ID.Rs2、ID/EX.RegWrite、ID/EX.Rd、

EX/MEM.RegWrite、EX/MEM.Rd,输出信号包括 IF/IDWrite、PCWrite、ID/EXFlush。

在增加了阻塞单元的流水线上执行如下指令序列:

nop lw x10, 0(x10) addi x10, x11, -4 add x12, x12, x10

从取第一条指令开始计时,请在下面的表格中填写各时钟周期阻塞单元的输入输出信号 状态值:(注意:寄存器写寄存器号,控制信号写状态值)

| 时钟周期            | Clk4 | Clk5                | Clk6 | Clk7       | Clk8 |
|-----------------|------|---------------------|------|------------|------|
| IF/ID.Rs1       |      |                     |      |            |      |
| IF/ID.Rs2       |      |                     |      |            |      |
| ID/EX.RegWrite  |      |                     |      |            |      |
| ID/EX.Rd        |      |                     | 7_   | <b>K</b> / |      |
| EX/MEM.RegWrite |      |                     |      |            |      |
| EX/MEM.Rd       |      |                     |      |            |      |
| IF/IDWrite      |      | 7 <                 |      |            |      |
| PCWrite         |      |                     |      |            |      |
| ID/EXFlush      |      | $\langle X \rangle$ |      |            |      |

# 六、存储系统(20分)

- 1、(10分)假定主存地址为32位,按字节编址,指令Cache 和数据Cache 与主存之间均采用8路组相联映射方式,直写(Write Through)写策略和LRU替换算法,主存块大小为64B,数据区容量各为32KB。开始时Cache均为空。请回答下列问题。
- (1) Cache 每一行中标记(Tag)、LRU 位各占几位?是否有修改位?(3分)
- (2) 有如下 C语言程序段:

for 
$$(k=0; k<1024; k++)$$
  
s  $[k]=2*s [k];$ 

若数组 s 及其变量 k 均为 int 型,int 型数据占 4B,变量 k 分配在寄存器中,数组 s 在主存中的起始地址为 0080 00C0H,则该程序段执行过程中,访问数组 s 的数据 Cache 缺失次数为多少?(4 分)

(3) 若 CPU 最先开始的访问操作是读取主存单元 0001 0003H 中的指令,简要说明从 Cache 中访问该指令的过程,包括 Cache 缺失处理过程。(3分)

- 2、(10分)假设计算机 M 的主存地址为 24位,按字节编址;采用分页存储管理方式,虚拟地址为 32位,页大小为 4KB; TLB 采用 2路组相联方式和 LRU 替换策略,共 8组。请回答下列问题。
- (1) 假设 TLB 初始时为空,访问虚页号依次为 10、12、16、7、26、4、12 和 20,在此过程中,哪一个虚页号对应的 TLB 表项被替换?说明理由。(4分)
- (2) 在该机器上运行一道程序,采用单级页表,部分页表如下表,请将下列虚拟地址转换成物理地址,写出计算过程,所有数字均为十进制,每项的起始编号是 0。(6分)虚拟地址: 0793,9048,12862。

| 有效位 | 虚拟页号 | 物理页号 |     |  |
|-----|------|------|-----|--|
| 1   | 0    | 1    |     |  |
| 1   | 1    | 3    |     |  |
| 0   | 2    |      |     |  |
| 1   | 3    | 0    | ••• |  |
| 1   | 4    | 2    | ••• |  |
| 0   | 5    |      | ••• |  |