Curs Limbaje formale și compilatoare Minimizarea automatelor finite deterministe

Universitatea *Transilvania* din Brașov Facultatea de Matematică și Informatică

2021/2022

Definiția 1: Se numește *relație de echivalență* peste o mulțime S, o relație binară R cu următoarele proprietăți:

1 Reflexivitate: $xRx \ \forall x \in S$

2 Simetrie: $xRy \Rightarrow yRx$

3 Tranzitivitate: $xRy, yRz \Rightarrow xRz$

Definiția 1: Se numește *relație de echivalență* peste o mulțime S, o relație binară R cu următoarele proprietăți:

1 Reflexivitate: $xRx \ \forall x \in S$

2 Simetrie: $xRy \Rightarrow yRx$

3 Tranzitivitate: $xRy, yRz \Rightarrow xRz$

Exemple:

(1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$

Definiția 1: Se numește *relație de echivalență* peste o mulțime S, o relație binară R cu următoarele proprietăți:

- **1** Reflexivitate: $xRx \ \forall x \in S$
- ② Simetrie: $xRy \Rightarrow yRx$
- **3** Tranzitivitate: $xRy, yRz \Rightarrow xRz$

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol.

Definiția 1: Se numește *relație de echivalență* peste o mulțime S, o relație binară R cu următoarele proprietăți:

- **1** Reflexivitate: $xRx \ \forall x \in S$
- 2 Simetrie: $xRy \Rightarrow yRx$
- **3** Tranzitivitate: $xRy, yRz \Rightarrow xRz$

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol.
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$.

Definiția 1: Se numește *relație de echivalență* peste o mulțime S, o relație binară R cu următoarele proprietăți:

- **1** Reflexivitate: $xRx \ \forall x \in S$
- 2 Simetrie: $xRy \Rightarrow yRx$
- **3** Tranzitivitate: $xRy, yRz \Rightarrow xRz$

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol.
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$.
- (4) R_4 peste mulțimea numerelor întregi, $xR_4y \Leftrightarrow x \mod 5 = y \mod 5$

Definiția 2: O relație de echivalență R peste o mulțime S se numește de *indice finit* dacă numărul de clase de echivalență determinate de R în S este finit.

Definiția 2: O relație de echivalență R peste o mulțime S se numește de *indice finit* dacă numărul de clase de echivalență determinate de R în S este finit.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$.
- (4) R_4 peste mulțimea numerelor întregi, $xR_4y \Leftrightarrow x \mod 5 = y \mod 5$

Definiția 2: O relație de echivalență R peste o mulțime S se numește de *indice finit* dacă numărul de clase de echivalență determinate de R în S este finit.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ NU este de indice finit
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$.
- (4) R_4 peste mulțimea numerelor întregi, $xR_4y \Leftrightarrow x \mod 5 = y \mod 5$

Definiția 2: O relație de echivalență R peste o mulțime S se numește de *indice finit* dacă numărul de clase de echivalență determinate de R în S este finit.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ NU este de indice finit
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x,y$ încep cu același simbol este de indice finit (trei clase)
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$.
- (4) R_4 peste mulțimea numerelor întregi, $xR_4y \Leftrightarrow x \mod 5 = y \mod 5$

Definiția 2: O relație de echivalență R peste o mulțime S se numește de *indice finit* dacă numărul de clase de echivalență determinate de R în S este finit.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ NU este de indice finit
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x,y$ încep cu același simbol este de indice finit (trei clase)
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$. este evident de indice finit (2 clase)
- (4) R_4 peste mulțimea numerelor întregi, $xR_4y \Leftrightarrow x \mod 5 = y \mod 5$

Definiția 2: O relație de echivalență R peste o mulțime S se numește de *indice finit* dacă numărul de clase de echivalență determinate de R în S este finit.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ NU este de indice finit
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x,y$ încep cu același simbol este de indice finit (trei clase)
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$ este evident de indice finit (2 clase)
- (4) R_4 peste mulțimea numerelor întregi, $xR_4y \Leftrightarrow x \mod 5 = y \mod 5$ este de indice finit 5 clase

Definiția 3: Se consideră un vocabular Σ . O relație de echivalență R peste Σ^* se numește *invariantă la dreapta* dacă: $xRy \Rightarrow xzRyz \ \forall z \in S, \ x, y, z \in \Sigma^*$.

Definiția 3: Se consideră un vocabular Σ . O relație de echivalență R peste Σ^* se numește *invariantă la dreapta* dacă: $xRy \Rightarrow xzRyz \ \forall z \in S, \ x,y,z \in \Sigma^*$.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$

Definiția 3: Se consideră un vocabular Σ . O relație de echivalență R peste Σ^* se numește *invariantă la dreapta* dacă: $xRy \Rightarrow xzRyz \ \forall z \in S, \ x,y,z \in \Sigma^*$.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ este invariabilă la dreapta
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x, y$ încep cu același simbol
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$

Definiția 3: Se consideră un vocabular Σ . O relație de echivalență R peste Σ^* se numește *invariantă la dreapta* dacă: $xRy \Rightarrow xzRyz \ \forall z \in S, \ x,y,z \in \Sigma^*$.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ este invariabilă la dreapta
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x,y$ încep cu același simbol este invariabilă la dreapta
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$

Definiția 3: Se consideră un vocabular Σ . O relație de echivalență R peste Σ^* se numește *invariantă la dreapta* dacă: $xRy \Rightarrow xzRyz \ \forall z \in S, \ x,y,z \in \Sigma^*$.

- (1) R_1 peste Σ^* , unde $\Sigma = \{a, b, c\}$, $xR_1y \Leftrightarrow |x| = |y|$ este invariabilă la dreapta
- (2) R_2 peste Σ^* , $xR_2y \Leftrightarrow x,y$ încep cu același simbol este invariabilă la dreapta
- (3) R_3 peste Σ^* , dată prin două clase: $C_1 = \{x \in \Sigma * ||x| \text{ pătrat perfect}\}$, $C_2 = \{x \in \Sigma * ||x| \text{ nu epătrat perfect}\}$ NU este invariabilă la dreapta

Teorema Myhill-Nerode

Teoremă. Fie un limbaj L peste un alfabet Σ . Următoarele afirmații sunt echivalente:

- Limbajul L este acceptat de către un automat finit
- ② Există o relație de echivalență R peste Σ^* invariantă la dreapta de inidce finit astfel încât L este reuniunea unor clase de echivalență determinate de R.
- ③ Relația de echivalență R peste $Σ^*$ defintă de $xRy \Leftrightarrow (∀z ∈ Σ^*, xz ∈ L \Leftrightarrow yz ∈ L)$ este de indice finit.

Teorema Myhill-Nerode

Teoremă. Fie un limbaj L peste un alfabet Σ . Următoarele afirmații sunt echivalente:

- Limbajul L este acceptat de către un automat finit
- ② Există o relație de echivalență R peste Σ^* invariantă la dreapta de inidce finit astfel încât L este reuniunea unor clase de echivalență determinate de R.
- 3 Relația de echivalență R peste Σ^* defintă de $xRy \Leftrightarrow (\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L)$ este de indice finit.

Exemplu de relație de echivalență care satisface teorema: Pentru AFD-ul $M = (Q, \Sigma, \delta, q_0, F)$ cu L = T(M) se poate defini relația de echivalență R_M dată de:

$$xR_My \Leftrightarrow \delta(q_0,x) = \delta(q_0,y)$$

Teorema Myhill-Nerode poate fi utilizată pentru a demonstra faptul că, anumite limbaje nu sunt regulate.

Exemplu: fie limbajul $L = \{a^n b^n | n \ge 1\}$. Arătăm prin reducere la absurd, că nu este regulat.

• Presupunem că *L* este regulat

Teorema Myhill-Nerode poate fi utilizată pentru a demonstra faptul că, anumite limbaje nu sunt regulate.

Exemplu: fie limbajul $L = \{a^n b^n | n \ge 1\}$. Arătăm prin reducere la absurd, că nu este regulat.

- Presupunem că *L* este regulat
- Din Teorema Myhill-Nerode \Rightarrow relația de echivalență R peste Σ^* defintă de xRy \Leftrightarrow $(\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L)$ este de indice finit.

Teorema Myhill-Nerode poate fi utilizată pentru a demonstra faptul că, anumite limbaje nu sunt regulate.

Exemplu: fie limbajul $L = \{a^n b^n | n \ge 1\}$. Arătăm prin reducere la absurd, că nu este regulat.

- Presupunem că L este regulat
- Din Teorema Myhill-Nerode \Rightarrow relația de echivalență R peste Σ^* defintă de xRy \Leftrightarrow $(\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L)$ este de indice finit.
- a^m și $a^n \in \Sigma^*$, dar, deoarece R este de indice finit rezultă că $\exists m, n$ pentru care $a^m R a^n$

Teorema Myhill-Nerode poate fi utilizată pentru a demonstra faptul că, anumite limbaje nu sunt regulate.

Exemplu: fie limbajul $L = \{a^n b^n | n \ge 1\}$. Arătăm prin reducere la absurd, că nu este regulat.

- Presupunem că L este regulat
- Din Teorema Myhill-Nerode \Rightarrow relația de echivalență R peste Σ^* defintă de xRy \Leftrightarrow $(\forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L)$ este de indice finit.
- a^m și $a^n \in \Sigma^*$, dar, deoarece R este de indice finit rezultă că $\exists m, n$ pentru care $a^m R a^n$
- Fie $z = b^m$. Cuvântul $a^m b^m \in L \Rightarrow a^n b^m \in L \Rightarrow$ contradicție,

Definiția 4: Considerăm un automat $M = (Q, \Sigma, \delta, q_0, F)$. Spunem că un cuvânt $x \in \Sigma^*$ distinge q_1 de q_2 dacă:

$$\left\{\begin{array}{l} (q_1,x) \stackrel{*}{\vdash} (q_3,\lambda) \\ (q_2,x) \stackrel{*}{\vdash} (q_4,\lambda) \end{array}\right.$$

și una și numai una dintre stările q_3 și q_4 este stare finală.

Definiția 5: Spunem că stările q_1 și q_2 sunt **k-nedistinctibile** $(q_1 \stackrel{k}{=} q_2)$ dacă și numai dacă nu există x, $|x| \le k$ astfel încât x distinge q_1 de q_2 .

Definiția 6: Două stări q_1 și q_2 se numesc **nedistinctibile** sau **echivalente** $(q_1 \equiv q_2)$ dacă sunt k-nedistinctibile pentru $\forall k \geq 0$.

Observație: Pentru $q_1, q_2 \in Q$ avem:

$$\begin{cases} (1) & q_1 \stackrel{0}{=} q_2 \Leftrightarrow (q_1, q_2 \in F \lor q_1, q_2 \notin F) \\ (2) & q_1 \stackrel{k}{=} q_2 \Leftrightarrow \left(q_1 \stackrel{k-1}{=} q_2 \land \forall a \in \Sigma, \delta(q_1, a) \stackrel{k-1}{=} \delta(q_2, a)\right) \end{cases}$$

Definiția 7: O stare q se numește **inaccesibilă** dacă nu există nici un cuvânt x astfel încât $(q_0, x) \vdash (q, \lambda)$

Definiția 8: Un automat M se numește **automat redus** dacă nici o stare nu este inaccesibilă și nu există două stări echivalente.

Minimizare prin construcția claselor de echivalență

Pas 1. Se elimină toate stările inaccesibile.

Minimizare prin construcția claselor de echivalență

- Pas 1. Se elimină toate stările inaccesibile.
- Pas 2. Se construiesc clasele de echivalență pentru $\stackrel{0}{=},\stackrel{1}{=},\dots$ până când clasele pentru $\stackrel{k}{=}$ și $\stackrel{k+1}{=}$ sunt aceleași. Alegem relația de echivalență $\equiv=\stackrel{k}{\equiv}$.

Minimizare prin construcția claselor de echivalență

- Pas 1. Se elimină toate stările inaccesibile.
- Pas 2. Se construiesc clasele de echivalență pentru $\stackrel{0}{=},\stackrel{1}{=},\dots$ până când clasele pentru $\stackrel{k}{=}$ și $\stackrel{k+1}{=}$ sunt aceleași. Alegem relația de echivalență $\equiv=\stackrel{k}{\equiv}$.
- **Pas 3**. Se construiește $M=(Q',\Sigma,\delta',q'_0,F')$ unde Q' este mulțimea claselor de echivalență ale lui Q, astfel:

$$\delta'([q], a) = [p] \operatorname{dacă} \delta(q, a) = p$$
 $q'_0 = [q_0]$
 $F' = \{[q] | q \in F\}.$

Pas 1 Se elimină toate stările inaccesibile.

Pas 2 Se construiesc clasele de echivalență $\stackrel{\cup}{=}$ -adică se separă stările finale de cele nefinale:

$$\{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Se consideră fiecare clasă de echivalență $\stackrel{0}{\equiv}$ și se verifică dacă se separă stări:

$$\left(egin{array}{l} (q_0,q_1) \stackrel{ extstyle a}{
ightarrow} (q_1,q_4), q_1 \stackrel{ extstyle 0}{\equiv} q_4 \ (q_0,q_1) \stackrel{ extstyle b}{
ightarrow} (q_3,q_2), q_3 \stackrel{ extstyle 0}{\equiv} q_2 \end{array}
ight\} \Rightarrow q_0 \stackrel{ extstyle 1}{\equiv} q_1$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Se consideră fiecare clasă de echivalență $\stackrel{0}{\equiv}$ și se verifică dacă se separă stări:

$$\left(q_0,q_1\right)\stackrel{a}{ o} \left(q_1,q_4\right), q_1\stackrel{0}{ o} q_4 \ \left(q_0,q_1\right)\stackrel{b}{ o} \left(q_3,q_2\right), q_3\stackrel{0}{ o} q_2 \ \right) \Rightarrow q_0\stackrel{1}{ o} q_1 \ \left(q_0,q_2\right)\stackrel{a}{ o} \left(q_1,q_6\right), q_1\stackrel{0}{
eq} q_6 \Rightarrow q_0\stackrel{1}{
eq} q_2$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Se consideră fiecare clasă de echivalență $\stackrel{0}{\equiv}$ și se verifică dacă se separă stări:

$$\left(q_{0},q_{1}
ight)\stackrel{a}{ o}\left(q_{1},q_{4}
ight),q_{1}\stackrel{0}{ o}q_{4}\ \left(q_{0},q_{1}
ight)\stackrel{b}{ o}\left(q_{3},q_{2}
ight),q_{3}\stackrel{0}{ o}q_{2}
ight\} \Rightarrow q_{0}\stackrel{1}{ o}q_{1}\ \left(q_{0},q_{2}
ight)\stackrel{b}{ o}\left(q_{1},q_{6}
ight),q_{1}\stackrel{0}{ o}q_{6}\Rightarrow q_{0}\stackrel{1}{ o}q_{2}\ \left(q_{0},q_{3}
ight)\stackrel{a}{ o}\left(q_{1},q_{3}
ight)q_{1}\stackrel{0}{ o}q_{3}\ \left(q_{0},q_{3}
ight)\stackrel{b}{ o}\left(q_{3},q_{5}
ight),q_{3}\not\equiv q_{5}
ight\} \Rightarrow q_{0}\not\equiv q_{3}$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Se consideră fiecare clasă de echivalență $\stackrel{0}{\equiv}$ și se verifică dacă se separă stări:

$$\begin{array}{c} (q_{0},q_{1}) \stackrel{a}{\to} (q_{1},q_{4}), q_{1} \stackrel{0}{\equiv} q_{4} \\ (q_{0},q_{1}) \stackrel{b}{\to} (q_{3},q_{2}), q_{3} \stackrel{0}{\equiv} q_{2} \end{array} \right\} \Rightarrow q_{0} \stackrel{1}{\equiv} q_{1} \\ (q_{0},q_{2}) \stackrel{a}{\to} (q_{1},q_{6}), q_{1} \stackrel{0}{\equiv} q_{6} \Rightarrow q_{0} \stackrel{1}{\equiv} q_{2} \\ (q_{0},q_{3}) \stackrel{a}{\to} (q_{1},q_{3})q_{1} \stackrel{0}{\equiv} q_{3} \\ (q_{0},q_{3}) \stackrel{b}{\to} (q_{3},q_{5}), q_{3} \stackrel{q}{\equiv} q_{5} \end{array} \right\} \Rightarrow q_{0} \stackrel{1}{\equiv} q_{3} \\ (q_{0},q_{4}) \stackrel{a}{\to} (q_{1},q_{3})q_{1} \stackrel{0}{\equiv} q_{3} \\ (q_{0},q_{4}) \stackrel{b}{\to} (q_{3},q_{6}), q_{3} \stackrel{q}{\equiv} q_{6} \end{array} \right\} \Rightarrow q_{0} \stackrel{1}{\equiv} q_{4}$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Pâna acum $q_0 \not\equiv$ cu q_2, q_3, q_3 și $q_1 \stackrel{1}{\equiv} q_1$. $(q_2, q_3) \stackrel{a}{\rightarrow} (q_6, q_3), q_3 \not\equiv q_6 \Rightarrow q_2 \not\equiv q_3$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$.Pâna acum $q_0 \not\equiv$ cu q_2, q_3, q_3 și $q_1 \stackrel{1}{\equiv} q_1$.

$$(q_2, q_3) \stackrel{a}{ o} (q_6, q_3), q_3 \not\equiv q_6 \Rightarrow q_2 \not\equiv q_3 \ (q_2, q_4) \stackrel{a}{ o} (q_6, q_3), q_3 \not\equiv q_6 \Rightarrow q_2 \not\equiv q_4$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Pâna acum $q_0 \not\equiv$ cu q_2, q_3, q_3 și $q_1 \stackrel{1}{\equiv} q_1$.

$$egin{aligned} (q_2,q_3) & \stackrel{a}{ o} (q_6,q_3), q_3 \stackrel{0}{
eq} q_6 \Rightarrow q_2 \stackrel{1}{
eq} q_3 \ (q_2,q_4) & \stackrel{a}{ o} (q_6,q_3), q_3 \stackrel{0}{
eq} q_6 \Rightarrow q_2 \stackrel{1}{
eq} q_4 \ (q_3,q_4) & \stackrel{a}{ o} (q_3,q_3) \ (q_3,q_4) & \stackrel{b}{ o} (q_5,q_6), q_5 \stackrel{0}{
eq} q_6 \end{aligned}
ight\} \Rightarrow q_3 \stackrel{1}{
eq} q_4$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$. Pâna acum $q_0 \stackrel{1}{\not\equiv}$ cu q_2, q_3, q_3 și $q_1 \stackrel{1}{\equiv} q_1$.

$$(q_{2},q_{3})\stackrel{a}{ o}(q_{6},q_{3}), q_{3}\stackrel{0}{\not\equiv}q_{6}\Rightarrow q_{2}\stackrel{1}{\not\equiv}q_{3} \ (q_{2},q_{4})\stackrel{a}{ o}(q_{6},q_{3}), q_{3}\stackrel{0}{\not\equiv}q_{6}\Rightarrow q_{2}\stackrel{1}{\not\equiv}q_{4} \ (q_{3},q_{4})\stackrel{a}{ o}(q_{3},q_{3}) \ (q_{3},q_{4})\stackrel{b}{ o}(q_{5},q_{6}), q_{5}\stackrel{0}{\equiv}q_{6} \ \end{pmatrix} \Rightarrow q_{3}\stackrel{1}{\equiv}q_{4} \ (q_{5},q_{6})\stackrel{a}{ o}(q_{6},q_{6}) \ (q_{5},q_{6})\stackrel{b}{ o}(q_{6},q_{5}), q_{5}\stackrel{0}{\equiv}q_{6} \ \end{pmatrix} \Rightarrow q_{5}\stackrel{1}{\equiv}q_{6}$$

$$\stackrel{0}{\equiv}: \{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{1}{\equiv}$.Pâna acum $q_0 \not\equiv$ cu q_2, q_3, q_3 și $q_1 \stackrel{1}{\equiv} q_1$.

$$\begin{array}{c} (q_{2},q_{3}) \stackrel{a}{\to} (q_{6},q_{3}), q_{3} \stackrel{0}{\neq} q_{6} \Rightarrow q_{2} \stackrel{1}{\neq} q_{3} \\ (q_{2},q_{4}) \stackrel{a}{\to} (q_{6},q_{3}), q_{3} \stackrel{0}{\neq} q_{6} \Rightarrow q_{2} \stackrel{1}{\neq} q_{4} \\ (q_{3},q_{4}) \stackrel{a}{\to} (q_{3},q_{3}) \\ (q_{3},q_{4}) \stackrel{b}{\to} (q_{5},q_{6}), q_{5} \stackrel{0}{\equiv} q_{6} \end{array} \right\} \Rightarrow q_{3} \stackrel{1}{\equiv} q_{4} \\ (q_{5},q_{6}) \stackrel{a}{\to} (q_{6},q_{6}) \\ (q_{5},q_{6}) \stackrel{b}{\to} (q_{6},q_{5}), q_{5} \stackrel{0}{\equiv} q_{6} \end{array} \right\} \Rightarrow q_{5} \stackrel{1}{\equiv} q_{6}$$

Clasele de echivalență $\stackrel{1}{\equiv}$ sunt: $\{q_0, q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$

$$\stackrel{1}{=}: \{q_0, q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{2}{\equiv}$. $(q_0, q_1) \stackrel{a}{\rightarrow} (q_1, q_4), q_1 \stackrel{1}{\not\equiv} q_4 \Rightarrow q_0 \stackrel{2}{\not\equiv} q_1$

$$\stackrel{1}{\equiv}: \{q_0, q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{2}{\equiv}$.

$$egin{aligned} (q_0,q_1) & \stackrel{a}{
ightarrow} (q_1,q_4), q_1 \stackrel{1}{
eq} q_4 \Rightarrow q_0 \stackrel{2}{
eq} q_1 \ (q_3,q_4) & \stackrel{a}{
ightarrow} (q_3,q_3) \ (q_3,q_4) & \stackrel{b}{
ightarrow} (q_5,q_6), q_5 \stackrel{1}{
eq} q_6 \end{aligned}
ight\} \Rightarrow q_3 \stackrel{2}{
eq} q_4$$

$$\stackrel{1}{\equiv}: \{q_0, q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{2}{\equiv}$.

$$egin{aligned} (q_0,q_1) & \stackrel{a}{
ightarrow} (q_1,q_4), q_1 \stackrel{1}{
eq} q_4 \Rightarrow q_0 \stackrel{2}{
eq} q_1 \ & (q_3,q_4) \stackrel{a}{
ightarrow} (q_3,q_3) \ & (q_3,q_4) \stackrel{b}{
ightarrow} (q_5,q_6), q_5 \stackrel{1}{\equiv} q_6 \end{aligned}
ight\} \Rightarrow q_3 \stackrel{2}{\equiv} q_4 \ & (q_5,q_6) \stackrel{a}{
ightarrow} (q_6,q_6) \ & (q_5,q_6) \stackrel{b}{
ightarrow} (q_6,q_5), q_5 \stackrel{1}{\equiv} q_6 \end{aligned}
ight\} \Rightarrow q_5 \stackrel{2}{\equiv} q_6 \ & \Rightarrow$$

$$\stackrel{1}{\equiv}: \{q_0, q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{2}{\equiv}$.

$$egin{aligned} (q_0,q_1) & \stackrel{a}{
ightarrow} (q_1,q_4), q_1 \stackrel{1}{
eq} q_4 \Rightarrow q_0 \stackrel{2}{
eq} q_1 \ (q_3,q_4) & \stackrel{a}{
ightarrow} (q_3,q_3) \ (q_3,q_4) & \stackrel{b}{
ightarrow} (q_5,q_6), q_5 \stackrel{1}{
eq} q_6 \end{aligned}
ight.
ight.$$

Clasele de echivalență $\stackrel{2}{=}$ sunt:

$$\{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

$$\stackrel{2}{\equiv}: \{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{3}{\equiv}$.

$$\begin{array}{c} (q_3,q_4) \stackrel{\textbf{a}}{\rightarrow} (q_3,q_3) \\ (q_3,q_4) \stackrel{\textbf{b}}{\rightarrow} (q_5,q_6), q_5 \stackrel{2}{\equiv} q_6 \end{array} \right\} \Rightarrow q_3 \stackrel{3}{\equiv} q_4$$

$$\stackrel{2}{\equiv}: \{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{3}{\equiv}$.

$$\begin{pmatrix}
(q_3, q_4) \xrightarrow{a} (q_3, q_3) \\
(q_3, q_4) \xrightarrow{b} (q_5, q_6), q_5 \stackrel{2}{\equiv} q_6
\end{pmatrix} \Rightarrow q_3 \stackrel{3}{\equiv} q_4$$

$$\begin{pmatrix}
(q_5, q_6) \xrightarrow{a} (q_6, q_6) \\
(q_5, q_6) \xrightarrow{b} (q_6, q_5), q_5 \stackrel{2}{\equiv} q_6
\end{pmatrix} \Rightarrow q_5 \stackrel{3}{\equiv} q_6$$

$$\stackrel{2}{\equiv}: \{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{3}{\equiv}$.

$$\begin{array}{c} (q_{3}, q_{4}) \stackrel{a}{\to} (q_{3}, q_{3}) \\ (q_{3}, q_{4}) \stackrel{b}{\to} (q_{5}, q_{6}), q_{5} \stackrel{?}{\equiv} q_{6} \end{array} \right\} \Rightarrow q_{3} \stackrel{?}{\equiv} q_{4} \\ (q_{5}, q_{6}) \stackrel{a}{\to} (q_{6}, q_{6}) \\ (q_{5}, q_{6}) \stackrel{b}{\to} (q_{6}, q_{5}), q_{5} \stackrel{?}{\equiv} q_{6} \end{array} \right\} \Rightarrow q_{5} \stackrel{?}{\equiv} q_{6}$$

Clasele de echivalență $\stackrel{3}{\equiv}$ sunt:

$$\{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

$$\stackrel{2}{\equiv}: \{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

Pas 2 Se construiesc clasele de echivalență $\stackrel{3}{\equiv}$.

$$\begin{pmatrix}
(q_3, q_4) \xrightarrow{a} (q_3, q_3) \\
(q_3, q_4) \xrightarrow{b} (q_5, q_6), q_5 \stackrel{?}{\equiv} q_6
\end{pmatrix} \Rightarrow q_3 \stackrel{?}{\equiv} q_4$$

$$\begin{pmatrix}
(q_5, q_6) \xrightarrow{a} (q_6, q_6) \\
(q_5, q_6) \xrightarrow{b} (q_6, q_5), q_5 \stackrel{?}{\equiv} q_6
\end{pmatrix} \Rightarrow q_5 \stackrel{?}{\equiv} q_6$$

Clasele de echivalență $\stackrel{3}{\equiv}$ sunt:

$$\{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$$

$$\stackrel{2}{\equiv} = \stackrel{3}{\equiv} \Rightarrow \mathsf{GATA}$$

Pas 3 Se construiește $M = (Q', \Sigma, \delta', q'_0, F')$ unde Q' este mulțimea claselor de echivalență ale lui Q, astfel:

$$\delta'([q], a) = [p] \operatorname{dacă} \delta(q, a) = p$$

 $q'_0 = [q_0]$
 $F' = \{[q] | q \in F\}.$

Clasele de echivalență sunt: $\{q_0\}, \{q_1\}, \{q_2\}, \{q_3, q_4\}, \{q_5, q_6\}$

Minimizare prin construcția unui tabel de echivalență

Fie $M = (Q, \Sigma, \delta, q_0, F)$. Algoritmul va marca perechile de stări (p, q) echivalente. Se construiește automatul redus M' parcurgând următorii pași:

- Pas 1. Se elimină stările inaccesibile.
- Pas 2. Se scrie tabelul tuturor perechilor (p, q) inițial nemarcate.
- **Pas 3**. Se marchează toate perechile (p,q) pentru care $p \in F$ și $q \notin F$ sau invers.
- Pas 4. Dacă $\exists (p,q)$ nemarcată și $\exists a \in \Sigma$, astfel încât $(\delta(p,a),\delta(q,a))$ marcată, atunci perechea (p,q) se marchează. Se repetă pasul 4 până când nu mai au loc modificări în tabel.
- Pas 5. Perechile nemarcate sunt cele echivalente.

Pas 1 Tabelul inițial este cu toate perechile nemarcate.

Pas 2 Marchează perechile: (stare finală, stare nefinală)

$$q_0$$
 q_1
 q_2
 q_3
 q_4
 X_0
 X_0

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$q_0$$
- q_1
- q_2
- - q_3
- - - q_4
 X_0 X_0 X_0 X_0 X_0 q_5
 X_0 X_0 X_0 X_0 X_0 X_0 - q_6

 $(q_0,q_1)\stackrel{ extbf{a}}{ o} (q_1,q_4)$ - pereche nemarcată $(q_0,q_1)\stackrel{ extbf{b}}{ o} (q_3,q_2)$ - pereche nemarcată \Rightarrow nu se marchează (q_0,q_1)

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

 $(q_0,q_2)\stackrel{ extbf{a}}{
ightarrow}(q_1,q_6)$ - marcată, \Rightarrow se marchează (q_0,q_2) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$(q_0,q_3)\stackrel{ extbf{a}}{ o}(q_1,q_3)$$
 - nemarcată $(q_0,q_3)\stackrel{ extbf{b}}{ o}(q_3,q_5)$ - marcată \Rightarrow se marchează (q_0,q_3) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$(q_0,q_4)\stackrel{ extbf{a}}{ o}(q_1,q_3)$$
 - nemarcată $(q_0,q_4)\stackrel{ extbf{b}}{ o}(q_3,q_6)$ - marcată \Rightarrow se marchează (q_0,q_4) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

 $(q_1,q_2)\stackrel{ extbf{a}}{
ightarrow}(q_4,q_6)$ - marcată \Rightarrow se marchează (q_1,q_2) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$(q_1,q_3)\stackrel{ extstyle a}{ o} (q_4,q_3)$$
 - nemarcată $(q_1,q_3)\stackrel{ extstyle b}{ o} (q_2,q_5)$ - marcată \Rightarrow se marchează (q_1,q_3) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$(q_1,q_4)\stackrel{ extbf{a}}{ o} (q_4,q_3)$$
 - nemarcată $(q_1,q_4)\stackrel{ extbf{b}}{ o} (q_2,q_6)$ - marcată \Rightarrow se marchează (q_1,q_4) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

 $(q_2,q_3)\stackrel{ extbf{a}}{
ightarrow}(q_6,q_3)$ - marcată \Rightarrow se marchează (q_2,q_3) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

 $(q_2,q_4)\stackrel{a}{
ightarrow}(q_6,q_3)$ - marcată \Rightarrow se marchează (q_2,q_4) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$(q_3, q_4) \stackrel{\mathsf{a}}{ o} (q_3, q_3)$$

 $(q_3, q_4) \stackrel{b}{ o} (q_5, q_6)$ - nemarcată
 $\Rightarrow \mathsf{NU}$ se marchează (q_2, q_4) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 1:

$$(q_5, q_6) \stackrel{a}{\rightarrow} (q_6, q_6)$$

 $(q_5, q_6) \stackrel{b}{\rightarrow} (q_6, q_5)$ - nemarcată
 \Rightarrow NU se marchează (q_5, q_6) .

S-a terminat prima iterație. S-a modificat tabelul \Rightarrow se reia algoritmul.

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 2:

$$(q_0,q_1)\stackrel{ extbf{a}}{
ightarrow}(q_1,q_4)$$
 - marcată \Rightarrow se marchează (q_0,q_1)

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 2:

$$(q_3, q_4) \stackrel{a}{\rightarrow} (q_3, q_3)$$

 $(q_3, q_4) \stackrel{b}{\rightarrow} (q_5, q_6)$ - nemarcată
 \Rightarrow NU se marchează (q_2, q_4) .

Pas 4 Se ia fiecare pereche nemarcată (p, q) și se verifică dacă se marchează. Iterația 2:

$$(q_5, q_6) \stackrel{a}{\rightarrow} (q_6, q_6)$$

 $(q_5, q_6) \stackrel{b}{\rightarrow} (q_6, q_5)$ - nemarcată
 \Rightarrow NU se marchează (q_5, q_6) .

S-a terminat a doua iterație. S-a modificat tabelul ⇒ se reia algoritmul.

Pas 4 Se ia fiecare pereche nemarcată (p,q) și se verifică dacă se marchează. Iterația 3:

$$X_1$$
 X_1 q_2
 X_1 X_1 X_1 q_3
 X_1 X_1 X_1 q_3
 X_0 X_0 X_0 X_0 X_0 q_5
 X_0 X_0 X_0 X_0 X_0 q_5
 X_0 X_0 X_0 X_0 X_0 q_5
 X_0 X_0 X_0 X_0 X_0 Q_0 Q_0
 Q_0 Q_0

Pas 5 Se construiește automatul redus. Perechile nemarcate sunt perechi de stări echivalente.

