How WPA2 got KRACKed using Key Reinstallation Attacks

Mathy Vanhoef — @vanhoefm

ITF Belgium, 24 May 2018

Overview

Key reinstalls in 4-way handshake

Practical impact

Misconceptions

Lessons learned

Overview

Key reinstalls in 4-way handshake

Practical impact

Misconceptions

Lessons learned

The 4-way handshake

Used to connect to any protected Wi-Fi network

- > Provides mutual authentication
- Negotiates fresh PTK: pairwise transient key

Appeared to be secure:

- No attacks in over a decade (apart from password guessing)
- > Proven that negotiated key (PTK) is secret¹
- And encryption protocol proven secure⁷

Frame encryption (simplified)

→ Nonce reuse implies keystream reuse (in all WPA2 ciphers)

Channel 1

Channel 6

 $\langle ----- optional\ 802.1x\ authentication\ ----->$

<	
Msg1(r, ANonce)	Msg1(r, ANonce)
Msg2(r, SNonce)	Msg2(r, SNonce)
Msg3(r+1; GTK)	Msg3(r+1; GTK)

Msg3(r+2; GTK)

Reinstall PTK & GTK

Msg3(r+2; GTK)


```
Msg4(r+1)
Install PTK & GTK
             Msg3(r+2; GTK)
                                                                         Msg3(r+2; GTK)
          \operatorname{Enc}_{\operatorname{ptk}}^{1}\{\operatorname{Msg4}(r+2)\}
Reinstall PTK & GTK
           \operatorname{Enc}_{\operatorname{ptk}}^{1}\{\operatorname{Data}(\dots)\}
                                                                       \operatorname{Enc}^1_{\operatorname{ptk}}\{\operatorname{Data}(\dots)\}
```


$$Msg4(r+1)$$

Install PTK & GTK

 $\operatorname{Enc}_{\operatorname{ptk}}^{1}\{\operatorname{Msg4}(r+2)\}$

Reinstall PTK & GTK

 $\operatorname{Enc}^1_{\operatorname{ptk}}\{\operatorname{Data}(\dots)\}$

Same nonce is used!

Enc_{ptk}{ Data(...) }

Overview

Key reinstalls in 4-way handshake

Practical impact

Misconceptions

Lessons learned

General impact

Transmit nonce reset

Decrypt frames sent by victim

Receive replay counter reset

Replay frames towards victim

Cipher suite specific

AES-CCMP: No practical frame forging attacks

WPA-TKIP:

- Can recover authentication key
- Forge/inject frames sent by the device under attack

GCMP (WiGig):

- Can recover authentication key
- Forge/inject frames in both directions

Overview

Key reinstalls in 4-way handshake

Practical impact

Misconceptions

Lessons learned

Misconceptions

Updating only the client or AP is sufficient

> Both vulnerable clients & vulnerable APs must apply patches

Need to be close to network and victim

Can use special antenna from afar

Corporate networks (802.1x) aren't affected

> Also use 4-way handshake & are affected

Overview

Key reinstalls in 4-way handshake

Practical impact

Misconceptions

Limitations of formal proofs

- > 4-way handshake proven secure
- Encryption protocol proven secure

The combination was not proven secure!

Conclusion

- > Flaw is in WPA2 standard
- > Proven correct but is insecure!
- Attack has practical impact
- > Update all clients & check APs

Thank you!

Questions?

krackattacks.com