一 选择题 (共36分) 1. (本题 3分)(2734) (A) 2. (本题 3分)(2595) (D) 3. (本题 3分)(2657) (A) 4. (本题 3分)(2404) (B) 5. (本题 3分)(5137) (D) 6. (本题 3分)(1932) (C) 7. (本题 3分)(2417) (C) 8. (本题 3分)(2752) (C) 9. (本题 3分)(2421) (D) 10. (本题 3分)(2417) (C) 11. (本题 3分)(5675) (B) 12. (本题 3分)(2415) (B) 二填空题 (共86分) 13. (本题 3分)(5303) 0.5 T y轴正方向 参考解:

2分

1分

 $\vec{M} = \vec{p}_m \times \vec{B}$, 由 \vec{p}_m 平行y轴时M = 0可知 \vec{B} 必与y轴平行,

 \bar{p}_m 沿 z 轴时 M 最大,故有 $B = \frac{M}{p_m} = 0.5$ T

由 $\vec{M} = \vec{p}_m \times \vec{B}$ 定出 \vec{B} 沿y轴正方向.

14. (本题 5分)(2066)

匀速直线1分匀速率圆周2分等距螺旋线2分

15. (本题 4分)(0361)	
0	2分
0	2分
16. (本题 5分)(2070)	
负	2分
IB / (nS)	3分
17. (本题 5分)(2580)	
$2\pi m \upsilon \cos \theta / (eB)$	3分
$mv\sin\theta/(eB)$	2分
18. (本题 3分)(2387)	
$B_0 B a^3 / (\sqrt{\pi} \mu_0)$	3 分
19. (本题 3分)(2096)	
4	3分
20. (本题 5分)(2603)	
3×10^{-6} N/cm	2分
0	2分
3×10^{-6} N/c m	1分
21. (本题 3分)(2703)	
$q\omega l^2/24$	3 分
22. (本题 3分)(2616)	- 41
$3.14 \times 10^{-6} \text{ C}$	3 分
23. (本题 3分)(2615)	2.4
$-\mu_0 n I_m \pi a^2 \omega \cos \omega t$	3 分
24. (本题 5分)(2702)	
$l^2\omega B/8$	3分
0	2分
25. (本题 3分)(2692)	- ()
0	3分
26. (本题 3分)(2525)	
0.400 H	3 分
27. (本题 4分)(2619)	
	2分
细导线均匀密绕	2分
28. (本题 3分)(2624)	- "
$22.6 \mathbf{J} \cdot \mathbf{m}^{-3}$	3 分
29. (本题 3分)(5678)	2 /\
$\mu_0 I^2 / (8\pi^2 a^2)$	3 分

30. (本题 4分)(5149)

$$\mu nI$$
 2分 $\mu n^2 I^2 / 2$ 2分

31. (本题 5分)(2425)

32. (本题 4分)(2180)

$$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho dV$$
1分

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0$$
1 \oint_{S}

$$\oint_{L} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S}$$
1 \mathcal{T}

33. (本题 3分)(2198)

电磁波能流密度矢量
$$2 分$$
 $\vec{S} = \vec{E} \times \vec{H}$ $1 分$

34. (本题 3分)(2339)

35. (本题 4分)(5160)

$$\iint_{S} \frac{\partial}{\partial t} \vec{D} \cdot d\vec{S} \quad \vec{\boxtimes} \quad d\Phi_{D} / dt$$
 2 \mathcal{D}

三 计算题 (共46分)

36. (本题10分)(2737)

解: (1) 载流为I的无限长直导线在与其相距为r处产生的磁感强度为:

$$B = \mu_0 I / (2\pi r)$$
 2 \mathcal{D}

以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通

量为:

$$\Phi_1 = \int_{2d}^{3d} d \cdot \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I d}{2\pi} \ln \frac{3}{2}$$

与线圈相距较近的导线对线圈的磁通量为:

$$\Phi_2 = \int_{d}^{2d} -d \cdot \frac{\mu_0 I}{2\pi r} dr = -\frac{\mu_0 I d}{2\pi} \ln 2$$

总磁通量

$$\Phi = \Phi_1 + \Phi_2 = -\frac{\mu_0 Id}{2\pi} \ln \frac{4}{3}$$

感应电动势为:

$$\mathcal{E} = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t} = \frac{\mu_0 d}{2\pi} \left(\ln\frac{4}{3}\right) \frac{\mathrm{d}\,I}{\mathrm{d}\,t} = \frac{\mu_0 d}{2\pi} \alpha \ln\frac{4}{3}$$
 2 \(\frac{\psi}{3}\)

由 $\varepsilon>0$ 和回路正方向为顺时针,所以 ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.

37. (本题10分)(2409)

解: 大环中相当于有电流 $I = \omega(t) \cdot \lambda r_2$

2分

这电流在 0 点处产生的磁感应强度大小

$$B = \mu_0 I / (2r_2) = \frac{1}{2} \mu_0 \omega(t) \lambda$$
 2 \(\frac{\gamma}{2}\)

以逆时针方向为小环回路的正方向,

$$\Phi \approx \frac{1}{2} \mu_0 \omega(t) \lambda \pi r_1^2$$
 2 \(\frac{1}{2}\)

:.

$$\mathcal{E}_i = -\frac{\mathrm{d}\, \boldsymbol{\varPhi}}{\mathrm{d}\, t} = -\frac{1}{2} \pi \mu_0 \lambda r_1^2 \, \frac{\mathrm{d}\, \omega(t)}{\mathrm{d}\, t}$$

$$i = \frac{\mathcal{E}_i}{R} = -\frac{\pi \mu_0 \lambda r_1^2}{2R} \cdot \frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$$

方向: $d\omega(t)/dt > 0$ 时, i 为负值, 即 i 为顺时针方向.

$$d\omega(t)/dt < 0$$
 时, i 为正值, 即 i 为逆时针方向.

38. (本题10分)(2410)

解:带电平面圆环的旋转相当于圆环中通有电流 I. 在 R_1 与 R_2 之间取半径为 R、 宽度为 dR 的环带,环带内有电流

$$dI = \sigma R \omega(t) dR \qquad 2 \, \text{ }$$

dI 在圆心 O 点处产生的磁场

$$dB = \frac{1}{2} \mu_0 dI./R = \frac{1}{2} \mu_0 \sigma \omega(t) dR$$
2 $\dot{\mathcal{D}}$

由于整个带电环面旋转, 在中心产生的磁感应强度的大小为

$$B = \frac{1}{2}\mu_0 \sigma\omega(t)(R_2 - R_1)$$
1 \(\frac{1}{2}\)

选逆时针方向为小环回路的正方向,则小环中

$$\Phi \approx \frac{1}{2} \mu_0 \sigma \omega(t) (R_2 - R_1) \pi r^2$$
1 \(\frac{1}{2}\)

$$\mathcal{E}_{i} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\frac{\mu_{0}}{2}\pi r^{2}(R_{2} - R_{1})\sigma\frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$$

$$i = \frac{\mathcal{E}_i}{R'} = -\frac{\mu_0 \pi r^2 (R_2 - R_1) \sigma}{2R'} \cdot \frac{\mathrm{d} \omega(t)}{\mathrm{d} t}$$
 2 \(\frac{\partial}{2}\)

方向: 当 $d\omega(t)/dt > 0$ 时, i 与选定的正方向相反. 1分

当 d
$$\omega(t)$$
 /d $t < 0$ 时, i 与选定的正方向相同. 1 分

39. (本题 8分)(2138)

解: 在距 O 点为 l 处的 dl 线元中的动生电动势为

解: 在距
$$O$$
 点为 l 处的 dl 线元中的动生电动势为 $d\mathcal{E} = (\bar{v} \times \bar{B}) \cdot d\bar{l}$ 2 分 $d\mathcal{E} = (\bar{v} \times \bar{B}) \cdot d\bar{l}$ 2 分 $d\bar{l}$ $d\mathcal{E} = (\bar{v} \times \bar{B}) \cdot d\bar{l}$ $d\bar{l}$ $d\bar$

 ε 的方向沿着杆指向上端.

40. (本题 8分)(2681)

解:取顺时针方向回路正向.设动生电动势和感生电动势分别用S,和S,表示,则 总电动势 ε

$$\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2$$

$$\mathcal{E}_1 = vB_1 l - vB_2 l = vl(\frac{\mu_0 I}{2\pi a} - \frac{\mu_0 I}{2\pi (a+b)}) = \frac{\mu_0 I b v l}{2\pi a (a+b)}$$
4 \(\frac{\frac{1}{2}}{2}\)

$$\mathcal{E}_2 = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} = -bl \frac{\partial B}{\partial t}$$
 3 \mathcal{T}

1分

$$\mathcal{E} = \left[\frac{\mu_0 I v}{2\pi a(a+b)} - \frac{\partial B}{\partial t}\right] b l$$
 1 分