Übungen 5 am 30.11.2022

Komplexe Zahlen

Übungen 5 - Komplexe Zahlen

Aufgabe 1:

$$z_1 = 2e^{j\frac{\pi}{4}}$$

$$z_2 = 4e^{j\frac{\pi}{3}}$$

Wie sieht
$$\frac{z_1}{z_2}$$
 aus?

$$(A) \ \frac{1}{2} e^{j\frac{1}{12}}$$

(B)
$$\frac{1}{2}e^{j(\frac{-\pi}{12})}$$

(C)
$$(-2)e^{j(\frac{-\pi}{12})}$$

$$(D)\,\frac{1}{2}\,e^{j(\frac{23}{12}\pi)}$$

$$b) \quad z_1 = 2e^{j\frac{\pi}{4}}$$

$$z_2=4e^{j\frac{\pi}{3}}$$

Wie sieht
$$z_1 \cdot (-z_2)$$
 aus?

(A)
$$8e^{j\frac{\pi^2}{12}}$$

(B) $6e^{j\frac{7\pi}{12}}$

(B)
$$6e^{j\frac{7\pi}{12}}$$

(C)
$$8e^{j\frac{19\pi}{12}}$$

(D)
$$8e^{j(-\frac{\pi}{12})}$$

Aufgabe 2:

Sei z_2 die konjugiert komplexe Zahl zu z_1 Welche der folgenden Behauptungen ist **nicht** richtig?

- (A) $z_1 + z_2$ ist reell
- (B) $z_1 \cdot z_2$ ist reell
- (C) z_1 z_2 ist reell
- (D) z_1 z_2 ist konjugiert komplex zu z_2 z_1

3

Aufgabe 3:

http://www2.ohm-hochschule.de/aw/profs/stry/buch.htm#Folien

Welche Beziehung gilt zwischen $4i\,$ und $5i\,$?

- (A) \square 4i < 5i
- 2
- (B) \square 4i = 5i
- 2
- (C) \square 4i > 5i
- **%**
- (D) weder/noch

Der Betrag von $e^{i \frac{\pi}{3}}$ lautet

- (A) $e^{i\frac{\pi}{3}}$
- (B) $e^{\frac{\pi}{3}}$
- (C) 1
- (D) 0 **%**

Der Betrag von e^π lautet

- (A) \Box e^{π}
- (B) □ 1 **%**
- (C) □ π **%**
- (D) 🗆 0 😵

Die Quadratwurzel(n) aus - 2 ist / sind

(A) \square $i\sqrt{2}$

(B) \square $-\sqrt{2}$

(C) \Box $-i\sqrt{2}$

(D) \Box $e^{\sqrt{2}}$

Aufgabe 4:

http://mo.mathematik.uni-stuttgart.de/kurse/kurs7/kurs7_broschuere.pdf

7.8 Komplexer Widerstand in Wechselstromnetzwerken

Für die Analyse linearer Wechselstromnetzwerke ist die komplexe Schreibweise vorteilhaft. Schreibt man für die Spannung und Stromstärke

$$U(t) = U_0 e^{\mathbf{j}(\omega t + \varphi)}, \quad I(t) = I_0 e^{\mathbf{j}(\omega t + \psi)},$$

so ist der komplexe Widerstand

$$Z = U(t)/I(t)$$

zeitunabhängig. Für die Grundelemente

und ihre Kehrwerte bei Parallelschaltung:

$$\frac{1}{Z_{\rm gesamt}} = \frac{1}{Z_1} + \frac{1}{Z_2} \quad \Rightarrow \quad Z_{\rm gesamt} = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

Man bezeichnet ReZ als Wirkwiderstand, ImZ als Blindwiderstand und |Z| als Scheinwiderstand oder Impedanz.

Beispielsweise beträgt für den Schaltkreis

der Gesamtwiderstand

$$Z_{\text{gesamt}} = \mathrm{i}\omega L + \frac{R(\mathrm{i}\omega C)^{-1}}{R + (\mathrm{i}\omega C)^{-1}} :$$

$$H_{\text{invais:}} \left(\int_{0}^{\infty} \omega C \right)^{-1} = \frac{\Lambda}{J} \left(\omega C \right)^{-1}$$

Berechnen Sie den Gesamt-Widerstand mit den gegebenen Werten:

$$z_{ys} = j\omega L + \frac{R(j\omega C)^{-1}}{R+(j\omega C)^{-1}}$$
 Gregebour Wok: $\omega L = 100\Omega$
 $\omega C = 300\Omega$

Aufgabe 5:

Berechnen Sie die Linearfaktorzerlegung für das Polynom

Aufgabe 6:

- a) Zeigen Sie, dass $z_1=1+2j$ eine Nullstelle des Polynoms $P(z)=z^3+z+10$ ist. Spalten Sie dafür den entsprechenden Linearfaktor $(z-z_1)$ vom Polynom P(z) ab.
- b) Andere Aufgabenstellung/ andere Vorgensweise: Bestimmen Sie die Nullstellen und die Linearfaktorzerlegung für das gegebene Polynom $P(z)=z^3+z+10$. Eine Nullstelle ist $z_1=1+2j$.

Aufgabe 7:

a) Bestimmen Sie das quadratische Polynom, dessen eine Nullstelle $x_1 = 4 + j \cdot 3$ ist.

b)
$$p(x) = x^4 + 2x^3 + x^2 + 8x - 12$$

Hinweis: $x_1 = 2j$ ist eine Nullstelle des gegebenen Polynoms.

Berechnen Sie für die gegebenen Polynome die Linearfaktorzerlegung.

>> berits in der Vorlesung 3 behandelt

Aufgabe 8:

Bestimmen Sie die Lösungsmenge für die folgende Ungleichung:

$$1 \le |z - 4 - 3j| < 2$$

Aufgabe 9:

Berechnen Sie die Lösungen der Gleichung $z^3 + 1 = 0$.

Aufgabæ 10:
Geogdon ist die Domplexe Zahl
$$Z = \frac{a+2i}{1+i!}$$
.
Bestimmen Sie den Parameter a 50,
dass die Domplexe Zahl auf der Windelholbivenden
einer der 4 Anadranten der Dart. Koordinahnsephens liegt.