Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais

O bloco conversor A/D converte o sinal de tempo contínuo x(t) em uma sequência x[n]. O filtro digital processa a sequência x[n], resultando em outra sequência y[n], que representa o sinal filtrado na forma digital. Este sinal y[n] é então convertido para um sinal de tempo contínuo por um conversor D/A e reconstruído através de um filtro passa-baixas, cuja saída é o sinal y(t), que representará a versão filtrada do sinal x(t).

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais

Os filtros digitais são caracterizados em duas classes, dependendo da duração da sequência y[n] quando aplicado em sua entrada um sinal do tipo impulso.

1. Filtros Digitais cuja resposta ao impulso apresenta duração finita (FIR – Finite Impulse Response)

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais - FIR

Estes filtros apresentam a seguinte função de transferência discreta:

$$\frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} a_k z^{(M-k)}}{z^M}$$

que pode ser reescrito como uma função polinomial com potências negativas de z.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais - FIR

Os filtros do tipo *FIR* apresentam ainda as seguintes características:

- ✓ memória finita, portanto qualquer transitório tem duração limitada;
- ✓ são sempre BIBO estáveis;
- ✓ podem implementar uma resposta em módulo desejada com resposta em fase linear.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais - FIR

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais - IIR

2. Filtros Digitais cuja resposta ao impulso apresenta duração infinita (*IIR – Infinite Impulse Response*)

$$\frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} a_k z^{(M-k)}}{\sum_{j=0}^{N} b_j z^{(N-j)}}$$

que também pode ser reescrito como uma função racional com potências negativas de z.

Filtros Digitais

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Filtros Digitais - IIR

No filtro *IIR* as características de entrada e saída são regidas por equações lineares de diferenças com coeficientes constantes de natureza recursiva, conforme pode se observar na figura a seguir.

Observa-se que no diagrama de blocos do filtro *IIR*, os termos a_k^* , k=0,1,...,M, e os termos b_j^* , j=1,...,N, são os termos da função de transferência Y(z)/X(z), normalizados pelo termo b_0 .

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

Uma vez que os filtros FIR apresentam resposta em frequência com fase linear, o projeto deste filtros resume-se a aproximar a resposta em módulo desejada. Admitindo h[n] como sendo a resposta ao impulso de um filtro FIR, sendo $H(e^{j\Omega})$ a transformada discreta de Fourier de h[n]. Uma vez definida a ordem do filtro, por exemplo M, deve-se então determinar os a_k , k=0,1,...,M, coeficientes do filtro.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

O objetivo na determinação dos coeficientes é que $H(e^{j\Omega})$ forneça uma boa aproximação de $H_d(e^{j\Omega})$, que é a função resposta em frequência desejada ao longo do intervalo de frequências $-\pi < \Omega \leq \pi$. Uma forma de avaliar a qualidade desta aproximação é através do erro médio quadrático entre $h_d[n]$ e h[n], ou seja:

$$E = \sum_{n=-\infty}^{\infty} |h_d[n] - h[n]|^2$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

Os únicos parâmetros ajustáveis na equação anterior são os coeficientes do filtro $H(e^{j\Omega})$, a_k , k=0,1,...,M, sendo a medida do erro minimizada fazendo

$$h[n] = \begin{cases} h_d[n], 0 \le n \le M \\ 0, caso \ contrário \end{cases}$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

A relação apresentada anteriormente equivale ao uso de uma janela retangular definida por

$$w[n] = \begin{cases} 1, 0 \le n \le M \\ 0, caso contrário \end{cases}$$

portanto

$$h[n] = w[n]h_d[n]$$

que conhecido como o método da janela.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

$$W(e^{j\Omega}) = \frac{sen\left(\Omega\left(\frac{M+1}{2}\right)\right)}{sen\left(\frac{\Omega}{2}\right)} e^{-j(\Omega(M+1)/2)}, -\pi < \Omega \le \pi$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

A convolução de $W(e^{j\Omega})$ com $H_d(e^{j\Omega})$ resulta em uma aproximação oscilatória da função resposta em frequência desejada por $H(e^{j\Omega})$ do filtro FIR. Tais oscilações podem ser reduzidas modificando-se a janela a ser utilizada.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Resposta em frequência da janela retangular.

Filtros Digitais

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

Uma janela comumente utilizada é a janela de Hamming, definida por

$$w[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right), \ 0 \le n \le M \\ 0, \ caso \ contrário \end{cases}$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Característica da janela de Hamming

Filtros Digitais

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Resposta de frequência das duas janelas

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros FIR

Pelo apresentado nas curvas de resposta em frequência das duas janelas conclui-se:

- ✓ o lóbulo principal da janela retangular tem aproximadamente a metade da largura do lóbulo principal da janela de Hamming;
- ✓ a magnitude dos lóbulos laterais da janela de Hamming são bem mais reduzidos se comparados com o da janela retangular.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Exemplo 8.5:

Considere a resposta em frequência desejada

$$H_{d}(e^{j\Omega}) = \begin{cases} e^{-jM\Omega/2}, |\Omega| \leq \Omega_{c} \\ 0, \Omega_{c} < |\Omega| \leq \pi \end{cases}$$

que representa a função resposta em frequência de um filtro passa baixas ideal, com fase linear. Avaliar a resposta em frequência para M=12, $\Omega_c=0.2\pi$, sendo:

(a) janela retangular e (b) janela de Hamming.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Exemplo 8.15 - Resposta

Coeficientes normalizados para $|H(z)|_{z=1} = 1$

	h[n]	
n	Janela Retangular	Janela de Hamming
0	-0.0281	-0.0027
1	0.0000	0.0000
2	0.0421	0.0158
3	0.0909	0.0594
4	0.1364	0.1271
5	0.1686	0.1914
6	0.1802	0.2180
7	0.1686	0.1914
8	0.1364	0.1271
9	0.0909	0.0594
10	0.0421	0.0158
11	0.0000	0.0000
12	-0.0281	-0.0027

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Uma das formas de projetos de filtros digitais do tipo *IIR* é através da aproximação entre funções de transferências contínuas por funções de transferências discretas equivalentes. Desta forma, considera-se a seguinte aproximação em tempo discreto da função integração.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

$$y(KT) = y[KT - T] + \frac{T}{2}(f(KT) + f(KT - T))$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Aplicando na equação anterior o operador z, obtém-se

$$Y(z)(z-1) = \frac{T}{2}(z+1)F(z) \Rightarrow \frac{Y(z)}{F(z)} = \frac{T}{2}\left(\frac{z+1}{z-1}\right)$$

implicando na seguinte aproximação

$$\frac{Y(z)}{F(z)} \cong \frac{1}{s} \Rightarrow s \cong \frac{2}{T} \left(\frac{z-1}{z+1} \right)$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

De forma semelhante pode-se representar z em função de s, ou seja

$$s = \frac{2}{T} \frac{z - 1}{z + 1} \implies z = \frac{2 + sT}{2 - sT}$$

Admitindo $s=\sigma+j\omega$ pode-se definir regiões do Plano s e suas regiões equivalentes no Plano z.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Ou seja:

$$z = \frac{2 + \sigma T + j\omega T}{2 - \sigma T - j\omega T} \iff re^{j\Omega}$$

$$r = |z| = \left(\frac{(2 + \sigma T)^2 + (\omega T)^2}{(2 - \sigma T)^2 + (\omega T)^2}\right)^{1/2}$$

$$\Omega = arg\{z\} = atan\left(\frac{\omega T}{2 + \sigma T}\right) + atan\left(\frac{\omega T}{2 - \sigma T}\right)$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Portanto, tem-se:

$$T > 0, \sigma < 0 \implies r < 1$$

$$T > 0$$
, $\sigma = 0 \implies r = 1$

$$T > 0, \sigma > 0 \implies r > 1$$

$$\Omega = 2 t g^{-1} \left(\frac{\omega T}{2} \right) se \ \sigma = 0$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Resultando nas seguintes propriedades para este tipo de aproximação:

- 1. O semiplano esquerdo do Plano s é mapeado no interior do círculo de raio unitário no Plano z;
- 2. O eixo $j\omega$ é inteiramente mapeado sobre o circulo de raio unitário do Plano z;
- 3. O semiplano direito do Plano *s* é mapeado no exterior do círculo de raio unitário no Plano *z*.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Uma implicação imediata da propriedade 1 é que se o filtro analógico representado pela função de transferência $H_a(s)$ for estável e causal, o filtro digital dele derivado através da transformação bilinear será garantidamente estável e causal.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Para $\sigma = 0$, tem-se $\Omega = 2 tg^{-1}(\omega T/2)$, concluindo-se que a faixa de frequência $-\infty < \omega < \infty$, é comprimida em uma faixa finita de frequências contida no intervalo $-\pi < \Omega < \pi$ de um filtro digital. Esta forma de distorção não linear é conhecida como *warping*.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Tal distorção de fase pode ser compensada no projeto do filtro analógico através de um procedimento denominado *pré-warping*. Especificamente, para as frequências críticas (frequências de corte para a faixa de passagem e de rejeição), o procedimento de *pré-warping* é realizado de acordo com a relação

$$\omega = \frac{2}{T} tg \left(\frac{\Omega}{2} \right)$$

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR

Exemplo 8.7: Usando um filtro analógico com uma função de transferência de Butterworth de ordem 3, projetar um filtro *IIR* passa baixas com frequência de corte $\Omega_c = 0.2\pi$.

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR – Curva de Magnitude

Filtros Digitais

Universidade Federal do Rio Grande do Sul

Departamento de Engenharia Elétrica

Projetos de Filtros IIR – Resposta ao Impulso

Filtros Digitais