Правила оформления домашних заданий

- 1. Домашние задания выполняются либо в отдельных (тонких, не более 18-ти листов) тетрадках, либо на отдельных листах (например, формата А4), которые обязательно должны быть либо упакованы в файл, либо скреплены степлером или канцелярской скрепкой. Разрозненные листы, а также листы, скрепленные путем загибания уголка, не принимаются;
- 2. каждая работа должна иметь титульный лист, на котором указаны фамилия автора, индекс его группы и номер выполненного варианта.

ДОМАШНЕЕ ЗАЛАНИЕ № 1

Линейное программирование

- 1. Составить двойственную задачу¹ и решить ее графически;
- 2. решить исходную задачу с использованием симплекс-таблиц:
- 3. решить двойственную задачу с использованием симплекс-таблиц;
- 4. сравнить найденные решения.

1.
$$\begin{cases} 4x_1 - 10x_2 - 12.5x_3 - 6.5x_4 \rightarrow \max, \\ x_2 + 0.5x_3 - 1.5x_4 \geqslant 2, \\ -x_1 - 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1}: 4. \end{cases}$$
2.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \rightarrow \max, \\ -x_1 + 2x_2 + x_3 \leqslant 1, \\ x_1 - x_2 + x_3 \geqslant 2, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{3}. \end{cases}$$
3.
$$\begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \rightarrow \min, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ -x_1 - 4x_2 + 3x_3 + 4x_4 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
4.
$$\begin{cases} 6x_1 + 9x_2 + 8x_3 \rightarrow \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{3}. \end{cases}$$
6.
$$\begin{cases} 6x_1 + 9x_2 + 8x_3 \rightarrow \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
7.
$$\begin{cases} -x_1 + 4x_2 + 16x_3 - 6x_4 \rightarrow \min, \\ -x_1 + 4x_3 - 1.5x_4 \geqslant 1, \\ x_2 + 2x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
8.
$$\begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \rightarrow \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_1 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
10.
$$\begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \rightarrow \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_1 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
11.
$$\begin{cases} 25x_1 - 20x_2 - 8x_3 + 13x_4 \rightarrow \min, \\ x_1 + 2x_2 - 3x_4 \geqslant 4, \\ 3x_2 + x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
12.
$$\begin{cases} 3x_1 + 7x_2 + 2.5x_3 + 1.5x_4 \rightarrow \min, \\ -2x_1 + x_2 + 2x_3 + x_4 \geqslant 3, \\ x_1 \geqslant 0, \quad i = \overline{1}: \overline{4}. \end{cases}$$
13.
$$\begin{cases} x_1 - 15x_2 - 10x_3 + 6x_4 \rightarrow \max, \\ 5x_1 - 4x_2 + 2x_3 - 3x_4 \leqslant -6, \\ -x_1 - x_2 - 3x_3 + 5x_4 \leqslant 1, \\ -x_1 - x_2 - 3x_3 + 5x_4 \leqslant 1, \\ -x_1 - x_2 - x_3 \Rightarrow x_1 \Rightarrow x_2 + x_3 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow$$

$$\textbf{15.} \begin{cases} -6x_1 + 4x_2 + 16x_3 - 4x_4 \to \min, \\ 3x_1 - 8x_3 + 2x_4 \leqslant -2, \\ -3x_1 + x_2 + 2x_3 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases} \\ \textbf{16.} \begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \to \min, \\ x_1 + 4x_2 - 3x_3 - 4x_4 \leqslant -1, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\mathbf{19.} \begin{cases} 3x_1 + 14x_2 + 5x_3 + 6x_4 \to \min, \\ x_1 + x_2 + 2x_3 - 2x_4 \geqslant 3, \\ 2x_1 - x_2 + 2x_3 - x_4 \leqslant -2, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases} \qquad \mathbf{20.} \begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \to \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_2 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases}$$

21.
$$\begin{cases} 3x_1 + 2.5x_2 + 7x_3 + 1.5x_4 \to \min, \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ 2x_1 - 2x_2 - x_3 - x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
22.
$$\begin{cases} -x_1 + 4x_2 + 16x_3 \to \min, \\ x_1 - 4x_3 \leqslant -2, \\ -x_2 - 2x_3 \leqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$

23.
$$\begin{cases} 8x_1 + 9x_2 + 6x_3 \to \min, \\ 4x_1 + 2x_2 - 3x_3 \ge 4, \\ -3x_1 + x_2 + 5x_3 \ge 1, \\ x_i \ge 0, \quad i = \overline{1:3}. \end{cases}$$

25.
$$\begin{cases} 8x_1 + x_2 + 2x_3 + x_4 \to \min, \\ -4x_1 - 3x_2 + 4x_3 + x_4 \leqslant -1, \\ -2x_1 - x_2 + 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases}$$

27.
$$\begin{cases} 7x_1 + 1.5x_2 + 3x_3 + 2.5x_4 \to \min \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ -x_1 - x_2 + 2x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases}$$

16.
$$\begin{cases} x_1 + 4x_2 - 3x_3 - 4x_4 \leqslant -2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\begin{cases} 3x_1 - 2x_2 + x_3 \to \min, \end{cases}$$

18.
$$\begin{cases} 3x_1 - 2x_2 + x_3 \to \min \\ -x_1 + x_2 - x_3 \leqslant -2, \\ -x_1 + 2x_2 + x_3 \leqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$

20.
$$\begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \to \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_2 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \qquad i = \overline{1} : \overline{4}. \end{cases}$$

22.
$$\begin{cases} -x_1 + 4x_2 + 16x_3 \to \min, \\ x_1 - 4x_3 \leqslant -2, \\ -x_2 - 2x_3 \leqslant 1, \\ x_i \geqslant 0, \qquad i = \overline{1:3}. \end{cases}$$

23.
$$\begin{cases} 8x_1 + 9x_2 + 6x_3 \to \min, \\ 4x_1 + 2x_2 - 3x_3 \geqslant 4, \\ -3x_1 + x_2 + 5x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$
24.
$$\begin{cases} 3x_1 + 4.5x_2 + 4x_3 - 3x_4 \to \min, \\ -5x_1 - x_2 + 3x_3 + 3x_4 \leqslant -5, \\ 3x_1 - 2x_2 - 4x_3 + 3x_4 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

¹В случае, когда исходная задача является задачей минимизации, ее лучше привести к стандартной форме двойственной задачи, а двойственную задачу записать в стандартной форме прямой.

Правила оформления и защиты лабораторных работ

- 1. Все алгоритмы должны быть реализованы с использованием системы MatLAB;
- Реализованные алгоритмы должны работать для любого набора допустимых входных данных, в том числе и для матриц различного порядка;
- 3. приступая к защите лабораторной работы, студент должен иметь при себе готовый отчет, содержание которого определяется заданием на конкретную лабораторную работу.

ЛАБОРАТОРНАЯ РАБОТА№ 1

Венгерский метод решения задачи о назначениях

Цель работы: изучение венгерского метода решения задачи о назначениях.

Содержание работы

- 1. реализовать венгерский метод решения задачи о назначениях в виде программы на ЭВМ²;
- провести решение задачи с матрицей стоимостей, заданной в индивидуальном варианте, рассмотрев два случая:
 - а) задача о назначениях является задачей минимизации,
 - б) задача о назначениях является задачей максимизации.

Содержание отчета

- содержательная и математическая постановки задачи о назаначениях, а также исходные данные конкретного варианта;
- 2. краткое описание венгерского метода (можно в "псевдокодах");
- 3. текст программы;
- 4. результаты расчетов для задач из индивидуального варианта.

Индвидуальные варианты матрицы стоимостей

1.
$$\begin{bmatrix} 4 & 2 & 1 & 3 & 7 \\ 1 & 5 & 4 & 6 & 3 \\ 5 & 4 & 8 & 7 & 2 \\ 9 & 9 & 3 & 2 & 5 \\ 3 & 4 & 7 & 8 & 2 \end{bmatrix}$$
2.
$$\begin{bmatrix} 4 & 10 & 10 & 3 & 6 \\ 5 & 6 & 2 & 7 & 4 \\ 9 & 5 & 6 & 8 & 3 \\ 2 & 3 & 5 & 4 & 8 \\ 8 & 5 & 4 & 9 & 3 \end{bmatrix}$$
3.
$$\begin{bmatrix} 1 & 4 & 7 & 9 & 4 \\ 9 & 3 & 8 & 7 & 4 \\ 3 & 4 & 6 & 8 & 2 \\ 8 & 2 & 4 & 6 & 7 \\ 7 & 6 & 9 & 8 & 5 \end{bmatrix}$$
4.
$$\begin{bmatrix} 3 & 5 & 2 & 4 & 8 \\ 10 & 10 & 4 & 3 & 6 \\ 5 & 6 & 9 & 8 & 3 \\ 6 & 2 & 5 & 8 & 4 \\ 5 & 4 & 8 & 9 & 3 \end{bmatrix}$$
5.
$$\begin{bmatrix} 9 & 11 & 3 & 6 & 6 \\ 10 & 9 & 11 & 5 & 6 \\ 8 & 10 & 5 & 6 & 4 \\ 6 & 8 & 10 & 4 & 9 \\ 11 & 10 & 9 & 8 & 7 \end{bmatrix}$$
6.
$$\begin{bmatrix} 10 & 8 & 6 & 4 & 9 \\ 11 & 9 & 10 & 5 & 6 \\ 5 & 10 & 8 & 6 & 4 \\ 3 & 11 & 9 & 6 & 6 \\ 8 & 10 & 11 & 8 & 7 \end{bmatrix}$$
7.
$$\begin{bmatrix} 11 & 4 & 11 & 6 & 11 \\ 7 & 5 & 6 & 7 & 12 \\ 9 & 7 & 8 & 10 & 10 \\ 9 & 11 & 6 & 10 & 9 \\ 7 & 10 & 4 & 8 & 8 \end{bmatrix}$$
8.
$$\begin{bmatrix} 7 & 4 & 3 & 8 & 2 \\ 4 & 5 & 1 & 6 & 3 \\ 8 & 4 & 5 & 7 & 2 \\ 1 & 2 & 4 & 7 & 2 \\ 3 & 9 & 9 & 2 & 5 \end{bmatrix}$$
9.
$$\begin{bmatrix} 4 & 7 & 1 & 5 & 5 \\ 6 & 8 & 3 & 7 & 6 \\ 6 & 4 & 5 & 7 & 7 \\ 4 & 2 & 3 & 4 & 9 \\ 8 & 1 & 8 & 3 & 8 \end{bmatrix}$$
10.
$$\begin{bmatrix} 7 & 7 & 4 & 6 & 5 \\ 3 & 8 & 1 & 8 & 8 \\ 5 & 5 & 7 & 4 & 1 \\ 7 & 6 & 8 & 6 & 3 \\ 4 & 9 & 2 & 4 & 3 \end{bmatrix}$$

ЛАБОРАТОРНАЯ РАБОТА№ 2

Задача коммивояжера

Цель работы: изучение метода ветвей и границ на примере задачи коммивояжера.

Содержание работы

- 1. реализовать метод ветвей и границ в виде программы на ЭВМ³;
- 2. провести решение задачи коммивояжера с матрицей, заданной в индивидуальном варианте.

Содержание отчета

- содержательная и математическая постановки задачи коммивояжера, а также входные данные индивидуального варианта;
- 2. краткое описание метода ветвей и границ для решения задачи коммивояжера;
- 3. текст программы;
- 4. результаты расчетов для задачи из индивидуального варианта.

Индвидуальные варианты матрицы стоимостей

ЛАБОРАТОРНАЯ РАБОТА№ 3

Транспортная задача

Цель работы: изучение метода потенциалов на примере решения транспортной задачи и задачи о назначениях.

Содержание работы

1. реализовать метод потенциалов в виде программы на ЭВМ;

²В программе необходимо предусмотреть два режима работы: "итоговый", когда программа печатает только матрицу назначений, и "отладочный", когда на каждой итерации на экран выводится текущая матрица эквивалентной задачи с отмеченной (например, цветом или шрифтом) системой независимых нулей.

³В программе необходимо предусмотреть "итоговый" и "отладочный" режимы работы. Во втором случае на каждой итерации необходимо выводить на экран информацию о числе задач в списке, печатать матрицу и решение текущей задачи, а также информацию о принимаемом решении (добавление новых задач, обновление оптимального маршрута и т.д.).

2. для сбалансированной транспортной задачи

$$\begin{cases} z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min, \\ \sum_{j=1}^{n} x_{ij} = S_i, & i = \overline{1, m}, \\ \sum_{i=1}^{m} x_{ij} = D_j, & j = \overline{1, n}, \\ x_{ij} \geqslant 0, & i = \overline{1, m}, \ j = \overline{1, n}, \end{cases}$$

- а) найти начальное базисное допустимое решение методом северо-западного угла;
- б) найти решение методом потенциалов⁴.
- Решить методом потенциалов задачу о назначениях, взяв индивидуальные данные своего варианта из задания к лабораторной работе №1.

Содержание отчета

- 1. постановки решаемых задач и исходные данные;
- 2. краткое описание метода потенциалов;
- 3. текст программы;
- 4. результаты расчетов задач из индивидуального варианта.

Индвидуальные варианты входных данных (m = 3, n = 4)

Bap.	S_1	S_2	S_3	D_1	D_2	D_3	D_4	C_{11}	C_{12}	C_{13}	C_{14}	C_{21}	C_{22}	C_{23}	C_{24}	C_{31}	C_{32}	C_{33}	C_{34}
1.	140	100	60	80	80	60	80	5	4	3	4	3	2	5	5	1	6	3	2
2.	80	100	70	80	50	50	70	4	2	3	1	6	3	5	6	3	2	6	3
3.	135	45	170	45	45	100	160	6	7	3	2	5	1	4	3	3	2	6	2
4.	100	150	50	75	80	60	85	6	7	3	5	1	2	5	6	8	10	20	1
5.	110	190	90	80	60	170	80	5	8	1	9	7	4	6	2	12	3	8	9
6.	170	125	95	180	110	60	40	9	7	5	3	1	2	4	6	8	10	12	1
7.	31	48	38	22	34	41	20	10	7	6	8	5	6	5	4	8	7	6	7
8.	70	50	30	40	40	30	40	6	5	4	5	4	3	6	6	2	7	4	3
9.	40	50	35	40	25	25	35	5	3	4	2	7	4	6	7	4	3	7	4
10.	270	90	340	90	90	200	320	7	8	4	3	6	2	5	4	4	3	7	3

⁴В программе для каждой итерации необходимо выводить текущую транспортную таблицу и указывать цикл (можно печатать индексы элементов, образующих цикл).