Mixed effect probit regression Genotypic fungal resistance

Dr. Jarad Niemi

STAT 544 - Iowa State University

April 28, 2016

Outline

- Probit regression
- Bayesian probit regression
 - Data augmentation
- Bayesian mixed effect probit regression
- Extensions
 - Ordinal categorical data
 - Nominal categorical data
 - Bayesian logistic regression

Probit regression

Consider the model

$$Y_i \stackrel{ind}{\sim} Ber(\theta_i)$$

where, for the *i*th observation,

- Y_i is binary indicating success and
- θ_i is the probability of success.

A probit regression model assumes

$$\theta_i = \Phi(X_i^{\top}\beta)$$

where

- X_i are the explanatory variables for the *i*th observation,
- ullet Φ is the standard normal cumulative distribution function, and
- ullet eta is the vector of parameters to be estimated.

Low birth weight

low	age	lwt	race	smoke	ptl	ht
Min. :0.0000	Min. :14.00	Min. : 80.0	1:96	Min. :0.0000	Min. :0.0000	Min. :0.00000
1st Qu.:0.0000	1st Qu.:19.00	1st Qu.:110.0	2:26	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.00000
Median :0.0000	Median :23.00	Median :121.0	3:67	Median :0.0000	Median :0.0000	Median :0.00000
Mean :0.3122	Mean :23.24	Mean :129.8		Mean :0.3915	Mean :0.1958	Mean :0.06349
3rd Qu.:1.0000	3rd Qu.:26.00	3rd Qu.:140.0		3rd Qu.:1.0000	3rd Qu.:0.0000	3rd Qu.:0.00000
Max. :1.0000	Max. :45.00	Max. :250.0		Max. :1.0000	Max. :3.0000	Max. :1.00000
ui	ftv	bwt				
Min. :0.0000	Min. :0.0000	Min. : 709				
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:2414				
Median :0.0000	Median :0.0000	Median:2977				
Mean :0.1481	Mean :0.7937	Mean :2945				
3rd Qu.:0.0000	3rd Qu.:1.0000	3rd Qu.:3487				
Max. :1.0000	Max. :6.0000	Max. :4990				

```
m = glm(low~., family=binomial(link=probit), data=birthwt[,-10]); summary(m)
Call:
glm(formula = low ~ .. family = binomial(link = probit), data = birthwt[,
   -107)
Deviance Residuals:
   Min
           1Q
              Median 3Q
                                 Max
-1.8848 -0.8271 -0.5217 0.9903 2.2445
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
-0.09774 0.11482 -0.851 0.39466
age
      -0.27281 0.12217 -2.233 0.02555 *
lwt
race2 0.74961 0.31431 2.385 0.01708 *
race3 0.52183 0.25557 2.042 0.04117 *
smoke 0.56910 0.23469 2.425 0.01531 *
ptl 0.31968 0.20835 1.534 0.12495
       1.11161 0.41664
                           2.668 0.00763 **
ht.
111
       0.46517 0.27930 1.665 0.09581 .
         0.02832 0.10161 0.279 0.78050
ftv
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 201.03 on 179 degrees of freedom
ATC: 221.03
Number of Fisher Scoring iterations: 5
```

Bayesian probit regression

Consider the model

$$Y_i \stackrel{ind}{\sim} Ber(\theta_i)$$

 $\theta_i = \Phi(X_i^{\top}\beta)$

with prior

$$\beta \sim N(b, B)$$

The posterior distribution is

$$p(\beta|y) \propto p(y|\beta)p(\beta)$$

$$\propto \left[\prod_{i=1}^{n} \Phi(X_i'\beta)^{y_i} [1 - \Phi(X_i'\beta)]^{1-y_i}\right] e^{-(\beta-b)^{\top}B^{-1}(\beta-b)/2}$$

But neither $p(\beta|y)$ nor $p(\beta_p|y,\beta_{-p})$ are a known distribution.

Data augmentation

An alternative construction of the model is

$$Y_i = I(\zeta_i > 0)$$

 $\zeta_i \stackrel{ind}{\sim} N(X_i'\beta, 1)$

Note that

$$\begin{array}{l} \theta_i &= P(Y_i = 1) \\ &= P(\zeta_i > 0) \\ &= P(X_i'\beta + \epsilon > 0) \quad \epsilon \sim N(0,1) \\ &= P(\epsilon > -X_i'\beta) \\ &= P(\epsilon < X_i'\beta) \quad \text{symmetry of standard normal} \\ &= \Phi(X_i'\beta) \end{array}$$

Thus, this is equivalent to the probit regression model.

Posterior distribution

Now, the likelihood is

$$p(y|\zeta) \propto \prod_{i=1}^{n} [I(\zeta_i > 0)I(y_i = 1) + I(\zeta_i \le 0)I(y_i = 0)]$$

and

$$\zeta_i \stackrel{ind}{\sim} N(X_i'\beta,1) \qquad \beta \sim N(b,B)$$

Therefore the complete data likelihood is

$$p(y,\zeta|\beta) \propto \prod_{i=1}^{n} N(\zeta_i|X_i'\beta,1) \left[\mathrm{I}(\zeta_i>0) \mathrm{I}(y_i=1) + \mathrm{I}(\zeta_i\leq 0) \mathrm{I}(y_i=0) \right]$$

Thus the posterior distribution is

$$p(\beta, \zeta|y) \propto p(y|\zeta, \beta)p(\zeta, \beta) = p(y|\zeta)p(\zeta|\beta)p(\beta) = p(y, \zeta|\beta)p(\beta)$$

and we will derive the full conditionals for $p(\beta|\zeta,y)$ and $p(\zeta|\beta,y)$.

Full conditional for β

The full conditional for β is

$$p(\beta|\ldots) \propto p(y|\zeta)p(\zeta|\beta)p(\beta)$$

$$\propto p(\zeta|\beta)p(\beta)$$

$$= \left[\prod_{i=1}^{n} N(\zeta_{i}|X'_{i}\beta,1)\right]N(\beta|b,B)$$

$$= N(\zeta|X\beta,I)N(\beta|b,B)$$

and thus $eta|\ldots\sim \mathcal{N}(\hat{eta},\hat{\Sigma}_{eta})$ with

Full conditional for ζ

The full conditional for ζ is

$$p(\zeta|\ldots) \propto p(y|\zeta)p(\zeta|\beta)p(\beta)$$

$$\propto p(y|\zeta)p(\zeta|\beta)$$

$$= \prod_{i=1}^{n} N(\zeta_{i}|X'_{i}\beta,1) \left[I(\zeta_{i}>0)I(y_{i}=1) + I(\zeta_{i}\leq0)I(y_{i}=0)\right]$$

Thus the ζ_i are conditionally independent with distribution

$$p(\zeta_i|y_i,\beta) = \begin{cases} N(\zeta_i|X_i'\beta,1)I(\zeta_i > 0) & \text{if } y_i = 1\\ N(\zeta_i|X_i'\beta,1)I(\zeta_i \le 0) & \text{if } y_i = 0 \end{cases}$$

These can be drawn using the modified inverse cdf method.

```
mcmc = function(n_iter, y, X, beta0, Sigma_beta) {
  n = nrow(X)
  p = ncol(X)
  # Precalculate quantities
  y = (as.numeric(y)==1)
  n1 = sum(y)
  n0 = sum(!v)
  XX = t(X)%*%X
  Si = solve(Sigma_beta)
  Sib = Si%*%beta0
  # Savina structures
  beta_keep
                  = matrix(NA, n_iter, p)
  zeta_keep
                    = matrix(NA, n_iter, n)
  # Initial nalues
  m = glm(y~X-1, family=binomial(probit))
  beta = coef(m)
  zeta = rep(NA,n)
  for (i in 1:n_iter) {
    # Sample zeta
    Xb = X%*%beta
    cut = pnorm(0, Xb)
    zeta[v] = qnorm(runif(n1, cut[v], 1), Xb[v], 1)
    zeta[!y] = qnorm(runif(n0, 0, cut[!y]), Xb[!y], 1)
    # Sample beta
    S hat = solve(Si+XX)
    b hat = S hat %*% (Sib+t(X)%*%zeta)
    beta = mvrnorm(1, b_hat, S_hat)
    # Record values
    beta_keep[i,] = beta
```

Run the MCMC

```
X = model.matrix(m) # Constructs the design matrix
p = ncol(X)
n_iter = 10000
system.time(out <- mcmc(n_iter, birthwt$low, X, rep(0,p), 3*diag(p)))

user system elapsed
2.763 0.009 2.775</pre>
```


Credible intervals

```
Source: local data frame [10 x 4]
     variable
                      1b
                ess
       (fctr) (dbl) (dbl) (dbl)
   (Intercept) 2958 -1.75 -0.81
          age 2773 -0.33 0.12
          lwt 2516 -0.52 -0.05
        race2 4766 0.11 1.32
        race3 3389 -0.01 0.98
        smoke 3069 0.09 1.01
7
          ptl 5416 -0.07 0.72
              3692 0.26 1.87
           ui 4269 -0.08 0.98
10
          ftv 2910 -0.18 0.22
```

Probit regression with random effects

Consider the probit regression model

$$Y_i = I(\zeta_i > 0)$$

 $\zeta \sim N(\tilde{X}\tilde{\beta}, 1)$

where

$$\tilde{X} = [X \quad Zm] \qquad \tilde{\beta} = (\beta, \alpha)^{\top}$$

where X is the design matrix for fixed effects and Zm is the design matrix for the random effects. A common assumption is that the random effects are $\alpha \sim N(0, \sigma^2 I)$. Thus the distribution on $\tilde{\beta}$ is

$$\tilde{\beta} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix} \sim N \left(\begin{bmatrix} b \\ 0 \end{bmatrix}, \begin{bmatrix} B & 0 \\ 0 & \sigma^2 I \end{bmatrix} \right)$$

where the precision is

$$\begin{bmatrix} B & 0 \\ 0 & \sigma^2 I \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & \frac{1}{\sigma^2} I \end{bmatrix}$$

Full posterior

The full posterior is

$$p(\zeta, \beta, \alpha, \sigma^2 | y) \propto p(y|\zeta)p(\zeta|\tilde{\beta})p(\tilde{\beta}|\sigma^2)p(\sigma^2)$$

We have already derived the full conditionals

- $p(\tilde{\beta}|\ldots)$
- $p(\zeta|\ldots)$

but we need the full conditional for σ^2 to implement a Gibbs sampler.

Full conditional for σ^2

If we choose $\sigma \sim \textit{Unif}(0,10)$ and there are U random effects, then

$$p(\sigma^{2}|\ldots) \propto p(y|\zeta)p(\zeta|\tilde{\beta})p(\tilde{\beta}|\sigma^{2})p(\sigma^{2})$$

$$= p(\tilde{\beta}|\sigma^{2})p(\sigma^{2})$$

$$\propto p(\alpha|\sigma^{2})p(\sigma^{2})$$

$$\propto \prod_{i=1}^{U} N(\alpha_{i}|0,\sigma^{2})\frac{1}{\sigma}I(0<\sigma^{2}<100)$$

$$\propto (\sigma^{2})^{-U/2}e^{-\frac{1}{2\sigma^{2}}\alpha'\alpha}(\sigma^{2})^{-1/2}I(0<\sigma^{2}<100)$$

$$= (\sigma^{2})^{-\frac{U-1}{2}-1}e^{-\frac{\alpha'\alpha}{2\sigma^{2}}}I(0<\sigma^{2}<100)$$

Thus $\sigma^2 \sim IG([U-1]/2, \alpha'\alpha/2)$ truncated to be smaller than 100. This can be drawn using the modified inverse cdf method.

Genotypic resistance to corn fungus

	X	genotype	block	spore	hypha	prop	pot
1	1	X	1	82	25	0.3048780	X1
6	6	X	2	95	41	0.4315789	X2
11	11	X	3	102	59	0.5784314	ХЗ
16	16	Y	1	83	19	0.2289157	Y1
21	21	Y	2	99	38	0.3838384	Y2
26	26	Y	3	104	58	0.5576923	Y3
31	31	Z	1	102	30	0.2941176	Z1
36	36	Z	2	105	61	0.5809524	Z2
41	41	Z	3	103	37	0.3592233	Z3
46	46	wt	1	140	76	0.5428571	wt1
51	51	wt	2	143	89	0.6223776	wt2
56	56	wt	3	158	123	0.7784810	wt3

Corn fungus data set


```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial (probit)
Formula: cbind(hypha, spore - hypha) ~ block + genotype + (1 | pot)
  Data: d
Control: glmerControl(optimizer = "bobyga")
    AIC
            BIC logLik deviance df.resid
   95.3 98.7 -40.6 81.3
Scaled residuals:
    Min
             1Q Median
                              3Q
                                      Max
-1.45760 -0.35765 0.05486 0.36506 1.32376
Random effects:
Groups Name Variance Std.Dev.
pot (Intercept) 0.01773 0.1331
Number of obs: 12, groups: pot, 12
Fixed effects:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.05126 0.12429 0.412 0.680040
block2 0.42497 0.13027 3.262 0.001106 **
block3 0.60818 0.13006 4.676 2.92e-06 ***
genotypeX -0.55654 0.14700 -3.786 0.000153 ***
genotypeY -0.68630 0.14725 -4.661 3.15e-06 ***
genotypeZ -0.62691 0.14500 -4.324 1.53e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
         (Intr) block2 block3 gntypX gntypY
block2 -0.530
block3 -0.526 0.522
genotypeX -0.520 -0.019 -0.027
genotypeY -0.514 -0.027 -0.035 0.454
```

```
mcmc = function(n_iter, y, X, Zm, beta0, Sigma_beta) {
  require(Matrix)
  n = nrow(X)
  p = ncol(X)
  q = ncol(Zm)
  # Tnitial values
  m = glm(y~0+X, family=binomial(probit))
  beta = c(coef(m),rnorm(q))
  zeta = rep(NA,n)
  # Precalculate quantities
  v = (as.numeric(v)==1)
  n1 = sum(y)
  n0 = sum(!y)
  X = cbind(X, Zm)
  XX = t(X)%*%X
  Si = solve(Sigma_beta)
  Sib = Si%*%beta0
  a = (q-1)/2
  # Saving structures
  beta_keep = matrix(NA, n_iter, p)
  alpha_keep = matrix(NA, n_iter, q)
  sigma_keep = rep(NA, n_iter)
  for (i in 1:n_iter) {
    # Sample zeta
    Xb = X%*%beta
    cut = pnorm(0,as.numeric(Xb))
    zeta[ y] = qnorm(runif(n1, cut[ y], 1), Xb[ y], 1)
    zeta[!y] = qnorm(runif(n0, 0, cut[!y]), Xb[!y], 1)
    # Sample sigma
    alpha = beta[p+1:q]
```

```
# Turn into binary data
dd = ddply(d, .(genotype,block,pot), function(x) {
    data.frame(y=c(rep(1,x$hypha),rep(0,x$spore-x$hypha)))
})

m = glmer(y~genotype+block+(1|pot), family=binomial(probit), dd)

X = model.matrix(m)

Z = as.matrix(getME(m,"Z"))
p = ncol(X)
n_iter = 10000
system.time(out <- mcmc(n_iter, dd$y, X, Z, rep(0,p), 10*diag(p)))

user system elapsed
95.382 0.011 95.514</pre>
```


Credible intervals

Contrasts to compare other genotypes

t priors

Suppose we want $\beta_j \stackrel{ind}{\sim} t_{v_j}(b_j, B_j)$. We can write this prior hierarchically via

$$\beta_j | \tau_j^2 \stackrel{ind}{\sim} N(b_j, \tau_j^2), \qquad \tau_j^2 \sim \text{Inv} - \chi^2(v_j, B_j).$$

Now the MCMC can proceed exactly as before, but with the additional full conditional for $(\tau_1^2, \ldots, \tau_J^2)$ which will be independent inverse χ^2 distributions.

Binary response

Ordinal response with 3 categories

Unordered categorical response

Suppose Y_i is random variable with support $1, \ldots, K$ and

$$Pr(Y_i = k) = \theta_{ik}$$

where θ_{ik} may depend on explanatory variables for both i and k. For example, an individual is shopping for fruit then perhaps the age of the individual and the price of the fruits will affect the shopper's choice.

We can model this using data augmentation by introducing a latent utility ζ_{ik} for each shopper-fruit combination. Then the response is

$$Y_i = \operatorname{argmax}_k \zeta_{ik}$$

and there is great flexibility in how the ζ_{ik} are modeled.

Bayesian logistic regression

$$Y_i = I(\zeta_i > 0)$$

 $\zeta_i \stackrel{ind}{\sim} Logistic(X_i'\beta, 1)$

```
Warning: data was combined!
N: 183, P: 10
Burn-in complete: 0.06 sec. for 500 iterations.
Expect approx. 0.12 sec. for 1000 samples.
Sampling complete: 0.13 sec. for 1000 iterations.
           X1 1b
                    11b
   (Intercept) -3.26 -1.43
       age -0.57 0.24
         lwt -0.98 -0.14
        race2 0.27 2.42
        race3 0.05 1.82
        smoke 0.24 1.84
        ptl -0.13 1.25
         ht. 0.68 3.46
         ui -0.19 1.75
10
         ftv -0.32 0.41
```