

Grundlagen Datenbanken: Übung 07

Tanmay Deshpande

Gruppe 20 & 21

ge94vem@mytum.de

QR-Code für die Folien

Wiederholung

Woche 07

Relationale Entwurfstheorie

- Einige Faktoren machen ein relationales Datenbankschema ("Design") gut oder schlecht Bsp: Redundanz, Konsistenzbedingungen (Funktionale Abhängigkeiten)
- Wir brauchen Regeln, nach denen man die Qualität eines Datenbankentwurfs bewerten kann (Normalformen)
- Außerdem wollen wir schlechte Entwurfe erkennen und verbessern (Syntheseal- und Dekompositionsalgorithmus)
- Relationale Entwurfstheorie hilft uns, diese Ziele zu formalisieren

Funktionale Abhängigkeiten

- Manche Attribute k\u00f6nnen von anderen Attributen abgeleitet werden (d.h. sie hangen zusammen)
- Bsp: Wenn man die Hauptstadt weiß, kann man das Land eindeutig bestimmen
- Wir sagen, das Attribut "Land" ist funktional abhängig von dem Attribut Hauptstadt
- Formell: {Hauptstadt} → {Land}

Funktionale Abhängigkeiten

- Für die Tabelle, gelten die FDs: {Kind} → {Vater, Mutter} {Kind, Oma} → {Opa} {Kind, Opa} → {Oma}
- {Vater, Mutter} → {Kind} gilt **nicht**!

Stammbaum						
Kind	Vater	Mutter	Opa	Oma		
Sofie	Alfons	Sabine	Lothar	Linde		
Sofie	Alfons	Sabine	Hubert	Lisa		
Niklas	Alfons	Sabine	Lothar	Linde		
Niklas	Alfons	Sabine	Hubert	Lisa		
***	****		Lothar	Martha		
	···					

Allgemein, für eine Relation R mit dem Schema R= {A, B, C, D}
Seien, α ⊆ R und β ⊆ R
α → β gilt genau dann wenn
∀ r,s ∈ R mit r.α = r.β ⇒ r.β = s.β

Armstrong-Axiome

Regeln zur Herleitung funktionaler Abhängigkeiten, wobei $\alpha, \beta, \gamma, \delta \subseteq R$:

- Reflexivität: $\forall \beta \subseteq \alpha$ gilt $\alpha \to \beta$
- Verstärkung: Falls $\alpha \to \beta$ gilt, dann gilt auch $\alpha \gamma \to \beta \gamma$, wobei $\alpha \gamma$ für $\alpha \cup \gamma$ steht
- Transitivität: Falls $\alpha \to \beta$ und $\beta \to \gamma$ gelten, dann gilt auch $\alpha \to \gamma$

Zusätzliche Axiome:

- Vereinigungsregel: Falls $\alpha \to \beta$ und $\alpha \to \gamma$ gelten, dann gilt auch $\alpha \to \beta \gamma$
- Dekompositionsregel: Wenn $\alpha \to \beta \gamma$ gilt, dann gelten $\alpha \to \beta$ und $\alpha \to \gamma$
- Pseudotransitivitätsregel: Wenn $\alpha \to \beta$ und $\beta \gamma \to \delta$ gelten, dann gilt auch $\alpha \gamma \to \delta$

Schlüssel

- Für eine Relation R ist $\alpha \subseteq R$ ein **Superschlüssel**, falls gilt $\alpha \to R$
- Falls α nicht mehr verkleinert werden kann, also $\forall A \in \alpha, \alpha \{A\} \rightarrow R$ gilt nicht wird α **Kandidatenschlüssel** genannt
- Aus den Kandidatenschlüsseln wird ein Primärschlüssel für die Relation ausgewählt
- Wenn α minimal ist und $\alpha \to \beta$ gilt, ist β voll funktional abhängig von α . Schreibweise: $\alpha \to \beta$
- Kandidatenschlüssel von "Städte":

{Name, BLand} {Name, Vorwahl}

Städte						
Name	BLand	Vorwahl	EW			
Frankfurt	Hessen	069	650000			
Frankfurt	Brandenburg	0335	84000			
München	Bayern	089	1200000			
Passau	Bayern	0851	50000			

Schlüsselbestimmung

Wenn alle FDs bekannt sind, geht man so vor:

- 1. Alle Attribute, die auf der linken Seite von FDs vorkommen, müssen im Schlüssel erhalten sein
- 2. Attributhülle von Attributmenge bestimmen (alle Attribute, die durch die geltenden FDs aus den gegebenen Attributen in beliebig vielen Schritten hergeleitet werden können)
- 3. Falls die Attributhülle der gesamten Relation entspricht Schlüssel gefunden Sonst, ein Attribut hinzufügen und weiter mit 2.

Woche 07

- Bestimmen Sie die geltenden FDs
- Bestimmen Sie die Kandidatenschlüssel

Betrachten Sie das Relationenschema

Fahrplan: {[Linie, Verband, von, nach, von GPS, nach GPS, Preis, #Fahrzeuge, Modus]} mit der folgenden beispielhaften Ausprägung:

Linie	Verbund	von	nach	von GPS	nach GPS	Preis	#Fahrzeuge	Modus
U6	MVV	GF	G	on ow	1S 0W	1€	20	U-Bahn
U6	MVV	G	GH	1S 0W	2S 0W	1€	20	U-Bahn
U6	MVV	GH	FR	2S 0W	5S 0W	3€	20	U-Bahn
U3	MVV	MF	GI	8S 0W	9S 0W	1€	16	U-Bahn
690	MVV	GF	DI	0N 0W	1N OW	1€	5	Bus
690	MVV	DI	NF	1N 0W	3N 1W	2€	5	Bus
690	MVV	NF	$\mathbf{E}\mathbf{H}$	3N 1W	5N 2W	2€	5	Bus
S1	MVV	NF	$\mathbf{E}\mathbf{H}$	3N 1W	5N 2W	3€	8	S-Bahn

a) Geltende FDs:

- $\{Linie\} \rightarrow \{\#Fahrzeuge, Modus\}$
- $\{von\} \rightarrow \{von GPS\}$
- $\{nach\} \rightarrow \{nach GPS\}$
- $\{\text{von GPS}\} \rightarrow \{\text{von}\}$
- $\{nach GPS\} \rightarrow \{nach\}$
- {Linie, von, nach} \rightarrow {Preis}
- $\emptyset \to \{\text{Verbund}\}$

b) Kandidatenschlüssel:

- {Linie, von, nach}
- {Linie, von GPS, nach}
- {Linie, von, nach GPS}
- {Linie, von GPS, nach GPS}

- Welche FDs könnten für R gelten?
- Welche FDs müssen für R gelten?
- Welches sind die möglichen Primärschlüssel für R?

\mathbf{R}					
A	B	C	D		
a_4	b_2	c_4	d_3		
a_1	b_1	c_1	d_1		
a_1	b_1	c_1	d_2		
a_2	b_2	c_3	d_2		
a_3	b_2	c_4	d_3		

- a) Folgende könnten z.B. gelten:
 - $\{A\} \to \{B\}$ (2 Tupel mit gleichem A Wert, beide haben gleichen B Wert)
 - $\{A\} \rightarrow \{C\}$
 - $\{C\} \rightarrow \{B\}$
- b) Keine FD muss gelten (könnte "Zufall" sein)
- c) Je nach geltenden funktionalen Abhängigkeiten. Z.B. $\{A, D\}$, falls alle bei a) genannten FDs gelten.

- Gegeben sei eine Relation R : {[A : integer, B : integer, C : integer, D : integer, E : integer]}, die schon sehr viele Daten enthält (Millionen Tupel). Sie "vermuten", dass folgendes gilt:
 - a) AB ist ein Superschlüssel der Relation 2
 - b) $DE \rightarrow B$

Formulieren Sie SQL-Anfragen, die Ihre Vermutungen bestätigen oder widerlegen.


```
a)
    select A, B
    from R
    group by A, B
    having count(*) > 1;
Falls das Ergebnis leer ist , AB ist Superschlüssel, sonst nicht
```

b) select D, E from R group by D, E having count(distinct B) > 1;

Falls das Ergebnis leer ist, gilt die FD sonst nicht

• Welche Studenten haben alle Vorlesungen, die sie haben prüfen lassen, auch tatsächlich vorher gehört? Formulieren Sie eine SQL-Anfrage, welche diese Studenten ausgibt.

select s.* from Studenten s
where not exists
(select * from pruefen p where s.MatrNr = p.MatrNr and
not exists (select * from hoeren h where h.MatrNr = s.MatrNr and h.VorlNr = p.VorlNr));