DORAM: What is? Why Care? What Did we Do?

Maliciously-secure DORAM with the best-known semi-honest asymptotics. Fastest DORAM for large (proj: $> 2^{21}$)

Brett Falk¹, Daniel Noble¹, Rafail Ostrovsky², **Matan Shtepel²**, **Jacob Zhang²³**

¹University of Pennsylvania

²University of California, Los Angeles

³Jane Street

January 12, 2023

Overview

- 1. Preliminaries
- 2. DORAM Uses
- 3. Our Contributions
- 4. Future Work

Prelemenaries: What is Secure Multi-Party Computation (MPC)?

Prelemenaries: Semi-Honest vs Malicious Security in MPC

Semi-Honest security: if everyone sollows the protocol precisely, security is gureateed.

Malicous Security: no mutter what amone does, Security is gurenteed.

Prelemenaries: What is ORAM?

Prelemenaries: Bottlenecks of ORAM

- · O(logN) Interactive sequencial rds Per r/w query
- . Each ORAM serves a Single chent
- · Complex client
- · Amortized (bad phases)

(we simplify here, there have been works attacking this, largely stall) issue

Prelemenaries: What is **D**ORAM?

Distributed Oblivious RAM is a Relaxation of the problem.

Add: trust a Ssumption, multiple Sarvers. Some are honest.

ASIL: Can we do better?

DORAM Uses: ORAM-replacement supporting many extremely-lightweight clients

DORAM Uses: MPC in the random access model RAM-MPC

circuits are a pain! Why care? + circuits are less efficient

DORAM enubles RAM-MPC (write pythont instead of circon)

Our Contributions: Theoretical Contributions

Let N be the number of elements stored in the DORAM, D be the payload size, κ be the computational security parameter.

Theorem (DORAM, informal)

There exists a (3,1)-MPC maliciously secure MPC scheme on bits or fields with O(|C|) communication and computation complexity which achieves $O((\kappa + D) \log N)$ amortized communication complexity and amortized computation complexity per random access.

only semi-honest was known.

Theorem (RAM-MPC, Informal)

There exists a (3,1)-DORAM scheme which achieves $3(\log N + D)$ client query communication complexity, $O((\kappa + D)\log N)$ amortized {communication,computation} complexity between the servers per query, and **non-amortized** 1 round of interaction per query for client.

only semi-honest was known.

Our Contributions: Practical Comparison with Existing DORAM

Takeaway (mostly projected): for practical databse sizes and good networks, we improve on previous and concurrent semi-honest works by a factor of 10x-100x. ¹ Expect benchmarks on Saturday, but roughly, at $N=2^{20}$ we able to get while state of the art can do 600 queries (semi-honest) while state of the art can do 1 query per second (semi-honest)

¹our tests are not precise (yet)!

Our Contributions: Open Source EMP-Toolkit code

EMP Toolkit (158 GitHub stars) – we're workin on it!

Thanks Everyone!

```
Demo! (with DORAM chant)
goto
https://matanshtepel.com/DORAM/
HackLodge_demo.html
```