Lab 2

2347139

November 15, 2023

Implement linked list and its operations Consider each node as structure representation of data for your domain. Perform all operations and implement different types of linked list

```
#include <stdio.h>
       // #include <comio.h>
2
      #include <stdlib.h>
3
      #include "11.h"
      struct ll *head = NULL;
6
      int main()
           if (head != NULL)
           {
11
               loop();
12
           }
13
           else
14
           {
               head = newll();
16
               loop();
17
18
19
      void loop()
20
21
           int choice, pos;
           char c = 'n';
           while (1)
24
25
               system("cls");
26
               printf("\n The List:\n");
27
               display(head);
28
               printf("\n -----");
29
               printf("\n \n 1. Insert In Beginning");
               printf("\n 2. Insert at End");
               printf("\n 3. Insert In Between");
```

```
printf("\n 4. Delete");
33
               printf("\n \n Enter your choice:");
34
               scanf("%d", &choice);
35
               switch (choice)
36
37
               case 1:
38
39
40
                    inbegin(head);
41
                    break;
               }
42
               case 2:
43
               {
44
                    inend(head);
45
                    break;
46
               }
47
               case 3:
48
49
50
                    if (count(head) <= 1)</pre>
51
52
                        printf("\n There is only one element in the list and can
                            't insert inbetween");
                        break;
53
                    }
54
                    printf("\n Enter the position:(2-%d)", count(head));
55
                    scanf("%d", &pos);
56
                    inbetween(head, pos);
57
                    break;
58
               }
59
               case 4:
60
               {
61
                    del(head);
62
                    break;
63
               }
64
               default:
65
               {
66
                    printf("Invalid Input");
67
                    break;
68
               }
69
               }
70
               printf("\n\n----\n
71
                   Do you want to continue?(y/n)");
               scanf(" %c", &c);
72
               if (c == 'y' || c == 'Y')
73
               {
74
                    system("cls");
75
               }
76
               else
77
               {
78
                    break;
79
               }
80
           }
81
       }
82
```

```
83
       struct 11 *new11()
84
85
            printf("\n The List is Empty!!!!!");
86
            printf("\n A new List is being created---");
87
            struct ll *newnode = (struct ll *)malloc(sizeof(struct ll));
88
            printf("\n Enter the HoneypotId:");
89
            fflush(stdin);
90
            scanf("%d", &newnode->data);
91
            printf("\n Enter the Honeypot Name:");
92
            fflush(stdin);
            scanf("%[^{n}*c", newnode->name);
94
            newnode->link = NULL;
95
            printf("\n New List created successfully");
96
            return newnode;
97
       }
98
       void inbegin(struct ll *temp)
99
100
            struct ll *newnode = (struct ll *)malloc(sizeof(struct ll));
101
            printf("\n Enter the HoneypotId:");
103
            fflush(stdin);
            scanf("%d", &newnode->data);
104
            printf("\n Enter the Honeypot Name:");
            fflush(stdin);
106
            scanf("%[^{n}*c", newnode->name);
107
            newnode->link = temp;
108
            head = newnode;
109
            printf("\n Insertion at beginning is Successfull");
111
112
       void display(struct ll *ptr)
113
114
            while (ptr != NULL)
                printf("%d. %s --->
                                        ", ptr->data, ptr->name);
117
                ptr = ptr->link;
118
119
            printf("NULL\n");
120
121
122
       int count(struct ll *temp)
124
            int count = 0;
125
            while (temp != NULL)
126
127
                count++;
128
                temp = temp->link;
129
130
            return count;
132
       void inend(struct ll *temp)
```

```
{
135
            struct ll *newnode = (struct ll *)malloc(sizeof(struct ll));
136
            printf("\n Enter the HoneypotId:");
137
            fflush(stdin);
138
            scanf("%d", &newnode->data);
139
            printf("\n Enter the Honeypot Name:");
140
            fflush(stdin);
141
            scanf("%[^\n]*c", newnode->name);
            newnode->link = NULL;
            while (temp->link != NULL)
144
145
                temp = temp->link;
146
            }
147
            temp->link = newnode;
148
            printf("\n Insertion at End is Successfull");
149
        void inbetween(struct ll *temp, int pos)
152
153
            if (1 < pos <= (count(head)))</pre>
154
155
            {
156
                int i;
                struct ll *newnode = (struct ll *)malloc(sizeof(struct ll));
157
                printf("\n Enter the HoneypotId:");
158
                fflush(stdin);
                scanf("%d", &newnode->data);
160
                printf("\n Enter the Honeypot Name:");
161
                fflush(stdin);
162
                scanf("%[^\n]*c", newnode->name);
163
                for (i = 2; i < pos - 1; i++)</pre>
164
165
                     temp = temp->link;
                }
167
                newnode->link = temp->link;
168
                temp->link = newnode;
169
                printf("\n Insertion inbetween Completed");
            }
            else
            {
173
                printf("\n Invalid Position");
174
            }
       }
176
177
       void del(struct ll *temp)
178
179
            printf("\n\n Enter the Emp-ID which you wish to delete:");
180
            int id;
181
            fflush(stdin);
182
            scanf("%d", &id);
183
            int pos = searchid(id);
184
            printf("\n The position of the node is: %d", pos);
            if (pos <= 0)
```

```
{
187
                 printf("\n Emp-ID doesn't exist to delete");
188
189
             else if (pos == 1)
190
191
                 head = head->link;
192
                 printf("\n\n Successfully removed the first node");
193
194
             else if (pos == count(head))
             {
196
                 delend(head);
197
                 printf("\n Successfully removed the last node");
198
             }
199
             else
200
             {
201
                 delbetween(head, pos);
202
                 printf("\n Successufully removed the node");
203
             }
204
        }
205
        int searchid(int id)
207
        {
208
             int pos = 0;
209
             struct 11 *temp;
210
             temp = head;
211
             if (id == temp->data)
212
213
                 pos = pos + 1;
214
                 return pos;
215
             }
216
             else
217
             {
218
                 pos++;
219
                 while (temp != NULL)
220
221
                      temp = temp->link;
222
                      pos++;
223
                      if (id == temp->data)
224
                      {
225
                           return pos;
226
                      }
                 }
228
            }
229
        }
230
231
        struct ll *delbegin(struct ll *temp)
232
233
             struct ll *head = NULL;
234
             head = temp->link;
235
             return head;
236
        }
238
```

```
void delend(struct ll *t1)
239
240
             struct 11 *t2;
241
             t2 = t1->link;
242
             while (t2->link != NULL)
243
244
                  t1 = t1->link;
245
                 t2 = t2->link;
246
247
             t1->link = NULL;
248
             free(t2);
249
        }
250
251
        void delbetween(struct ll *t1, int pos)
252
253
             struct 11 *t2;
254
             t2 = t1 -> link;
255
256
             int count = 1;
257
             while (count < pos - 1)</pre>
                 t1 = t1->link;
259
                 t2 = t2->link;
260
                  count++;
261
             }
262
             t1 \rightarrow link = t2 \rightarrow link;
263
             free(t2);
264
265
        }
```

Output

lab2.c - 02lab - Visual Studio Code

1. Insert In Beginning 2. Insert at End 3. Insert In Between 4. Delete

Enter the Honeypot Name: Insertion at End is Successfull

Do you want to continue?(y/n)y sh: line 1: cls: command not found sh: line 1: cls: command not found

1. Insert In Beginning 2. Insert at End 3. Insert In Between 4. Delete

Enter your choice:3

Enter the position:(2-3)1

Enter the HoneypotId:989

Enter the Honeypot Name: Insertion inbetween Completed