

Урок 22

Функциональные методы кодирования

Memory line

Кодирование

Кодирование

Многоуровневое кодирование

Base64

Функциональное кодирование

Функциональное кодирование

Задачи:

- Сужение/расширение алфавита
 - Гарантия доставки
 - Гарантия декодирования
 - Изменение количества используемых кодов/символов
- Сжатие кода
 - Уменьшение и оптимизация длины записи
- Защита кода от помех
 - Обнаружение и восстановление кода в случаях возникновения повреждений

Кодирование длин серий (RLE)

11000111 11111011 00100001

11 000 11111111 0 11 00 1 0000 1

11000111 11111011 00100001

11 000 11111111 0 11 00 1 0000 1

2:1 3:0 8:1 1:0 2:1 2:0 1:1 4:0 1:1

11000111 11111011 00100001

11 000 11111111 0 11 00 1 0000 1

2:1 3:0 8:1 1:0 2:1 2:0 1:1 4:0 1:1

2:13:08:11:02:12:01:14:01:1

2:1 3:0 8:1 1:0 2:1 2:0 1:1 4:0 1:1

2:1 3:0 8:1 1:0 2:1 2:0 1:1 4:0 1:1

1:238122141

2:1 3:0 8:1 1:0 2:1 2:0 1:1 4:0 1:1

1:238122141

1: 10 11 1000 1 10 10 1 100 1

Гамма-коды Эллиоса

Гамма-код

Число	Кодирование	Вероятность
1	1	1/2
2	0 10	1/8
3	0 11	1/8
4	00 100	1/32
5	00 101	1/32
6	00 110	1/32
7	00 111	1/32
8	000 1000	1/128
9	000 1001	1/128

Гамма-код Эллиоса

1: 10 11 1000 1 10 10 1 100 1

1: 010 011 0001000 1 010 010 1 00100 1

Гамма-код Эллиоса

1: 10 11 1000 1 10 10 1 100 1

1: 010 011 0001000 1 010 010 1 00100 1

10100110001000101001001001

Декодирование

1010 0110 0010 0010 1001 0100 1001

Выделение первого бита

1010 0110 0010 0010 1001 0100 1001

1: 010 0110 0010 0010 1001 0100 1001

Выделение ведущих нулей

1010 0110 0010 0010 1001 0100 1001

1: 010 0110 0010 0010 1001 0100 1001

1: 010 011 0001000 1 010 010 1 00100 1

Удаление ведущих нулей

1010 0110 0010 0010 1001 0100 1001

1: 010 0110 0010 0010 1001 0100 1001

1: 010 011 0001000 1 010 010 1 00100 1

1: 10 11 1000 1 10 10 1 100 1

Перевод в актуальную систему счисления

```
1010 0110 0010 0010 1001 0100 1001
```

1: 010 0110 0010 0010 1001 0100 1001

1: 010 011 0001000 1 010 010 1 00100 1

1: 10 11 1000 1 10 10 1 100 1

1:238122141

Декодирование RLE

```
1010 0110 0010 0010 1001 0100 1001
```

1: 010 0110 0010 0010 1001 0100 1001

1: 010 011 0001000 1 010 010 1 00100 1

1: 10 11 1000 1 10 10 1 100 1

1:238122141

11 000 11111111 0 11 00 1 0000 1

Группировка по 4 бита и перевод в А16

1100 0111 1111 1011 0010 0001 C7 FB 21

Перевод по ASCII1251

```
1010 0110 0010 0010 1001 0100 1001
  1: 010 0110 0010 0010 1001 0100 1001
1: 010 011 0001000 1 010 010 1 00100 1
    1: 10 11 1000 1 10 10 1 100 1
            1:238122141
     11 000 11111111 0 11 00 1 0000 1
     1100 0111 1111 1011 0010 0001
                C7 FB 21
                  3ы!
```

Декодирование

1010 0100 1110 1111 0101 0101 1101 01

•••

Практика

