

■ 큰수의 법칙 (law of large numbers, 대수의 법칙)

- \bullet $X_1, X_2, ..., X_n$ 평균 μ , 분산 σ^2 인 모집단에서 추출된 확률표본
 - \circ 표본평균: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - $E(\overline{X}) = \mu$, $Var(\overline{X}) = \sigma^2/n$
 - $\Rightarrow \overline{X} \leftarrow \mu$ 를 중심으로 분포되어 있음
 - \circ n을 계속 크게 만들면 $Var(\overline{X}) \to 0$
 - $\Rightarrow \overline{X}$ 는 μ 로 수렴(converge)함
 - \circ (WLLN): 모든 $\varepsilon>0$ 에 대해, $\lim_{n\to\infty}P(|\overline{X}-\mu|<\varepsilon)=1$

■ 중심극한정리 (Central limit thorem, CLT)

- $X_1, X_2, ..., X_n$ 평균 μ , 분산 σ^2 인 모집단에서 추출된 확률표본
- n이 커질수록 모집단의 형태와 관계없이 \overline{x} 의 분포(표집분포)는 정규분포에 근사

$$\overline{X} \simeq N(\mu, \sigma^2/n) \Rightarrow Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \simeq N(0, 1)$$

 \circ $Y=X_1+\cdots+X_n$ 라면

$$Z = \frac{Y - n\mu}{\sqrt{n} \sigma} \simeq N(0, 1) \implies Y \simeq N(n\mu, n\sigma^2)$$

• 많은 경우 평균에 관심을 가짐

o λ=1인 경우

◉ 평균 82, 표준편차 12인 모집단에서 확률표본 추출

- \circ 관심은 $P(80.8 \le X \le 83.2)$ 의 확률
- *n =64*인 경우
 - $P(Z \le -0.8) = 0.2119$
- *n =100* 인 경우
 - $P(Z \le -1) = 0.1587$
- 위 확률이 0.95가 되는 *n*은?

$$\frac{12 \times 1.96}{83.2 - 82} = 19.6$$
 $\Rightarrow n = 384.16 \Rightarrow 385$

- 정리
 - 큰 수의 법칙: 확률표본의 표본평균은 표본크기가 커지면 모평균으로 수렴함
 - 확률표본의 표본평균의 분포는 표본크기가 커지면 정규분포에 근사함