Álgebra Linear. 2024.S2

Avaliação Final VR.

Turma K1.

Prof. Bely R Morales

UFF

Problema 1: (4 Pontos) Analise a veracidade das seguintes afirmações e justifique:

- a) Para qualquer par de números reais $a,b\in\mathbb{R}$ não simultaneamente nulos a matriz $A_{a,b}=\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ é invertível.
- b) Para qualquer par de números complexos $z, w \in \mathbb{C}$ não simultaneamente nulos a matriz $A_{z,w} = \begin{pmatrix} z & -w \\ w & z \end{pmatrix}$ é invertível.
- c) O conjunto formado pelas matrizes de $n \times n$ com determinante zero é um subespaço das matrizes quadradas, i.e., $S = \{A \in M_n(\mathbb{K}) : \det(A) = 0\}$ é um subespaço de $M_n(\mathbb{K})$.
- d) A equação $x^2 + y^2 z^2 = 1$ determina um hiperboloide de duas folhas no espaço \mathbb{R}^3 .

Problema 2: (3 Pontos) Seja E um \mathbb{K} -espaço vetorial, V,W subespaços tais que $E=V\oplus W$. Definamos uma aplicação

$$p_V: E = V \oplus W \to E$$

$$x = x_v + x_w \mapsto p_V(x) = x_v,$$

i.e. a aplicação p_V fica com a parte x_v de cada vetor x que pertence ao subespaço V. A aplicação p_V é chamada de "projeção sobre o subespaço V".

- a) Prove que p_V é uma aplicação linear.
- **b)** Prove que $\ker p_V = W \in \mathbf{Im} \ p_V = V$.
- c) Prove que $p_V^2 = p_V \circ p_V = p_V$.

Problema 3: (3 Pontos) Determine si existe uma matriz $D \in M_4(\mathbb{R})$ diagonal e uma matriz invertível $P \in M_4(\mathbb{R})$ tais que $A = P^t DP$. Em caso afirmativo calcule as matrizes $D \in P$.

1

Ponto Extra (Opcional): Seja E um \mathbb{K} -espaço vetorial e $p \in \mathbf{End}(E)$ um endomorfismo tal que $p^2 = p \circ p = p$. Prove que existe um subespaço V de E tal que $p = p_V$, i.e., prove que p é a projeção sobre algum subespaço de E.

Dica: Prove que $E = \ker p \oplus \mathbf{Im} \ p$.

Problema 18

a) Verdadeiro
$$\forall a, b \in \mathbb{R}$$
 não simultaneamente nulos, a mateiz $A_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ e' invertive!

Aa,b e' invertive! \iff det $(A_{a,b}) \neq 0$ det $(A_{a,b}) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = a^2 + b^2 \neq 0$

Pa a,b e' invertive!

Não são simultaneamente nula

of Aq6 of inventivel

have simultaneous to whom

b) Falso

$$\forall z, w \in C$$

nate $z = w$

material $A_{z,w} = (z - w)$
 $w = z$
 $A_{z,i} = (z - w)$
 $A_{z,i}$

c) Falso 0 canjunto
$$S = \{A \in M_n(H): Jet(A) = 0\}$$
 e subespaço $J_n(H) = A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ $J_n(H) = J_n(H) = 0 \Rightarrow A, B \in S$

-
$$\chi^2 + \chi^2 - Z^2 = 1$$
 e da porma $\frac{\chi^2}{a^2} + \frac{\chi^2}{b^2} - \frac{Z^2}{c^2} = 1$ lego e um hiperboloide de uma $\frac{\chi^2}{b^2} + \frac{\chi^2}{b^2} - \frac{Z^2}{b^2} = 1$

Problema 28 F = VOW $P_{V}: E = V \oplus W \longrightarrow E$ $X = X_{V} + X_{W} \longmapsto P_{V}(X) = X_{V}$

a) Segam X, YEE, &BEK => X=Xy+Xw =>
$$dx+\beta Y= a(Xy+Xw)+\beta(Yy+Xw)=(aXy+\beta Yy)+(aXw+\beta Yw)$$

 $Y=Yy+Yw$

$$= (xy+y)+\beta(y)+\beta(y)+\beta(y)$$

$$= (xy+y)+\beta(y)+\beta(y)$$

$$= (xy+y)+\beta(y)+\beta(y)+\beta(y)$$

b) Se we Wentão w= 0 + w => p(w)=0 => wekerp : W = Kerp => Ker

Exidentemente VEImPr, Se yEImPr => Y=p(x)=xvEV => YEV ... ImPr=V

c) $P_V^2(X) = P_V(P_V(X)) = P_V(X_V) = X_V = P_V(X)$

Problema 3:

A e simétrica - A representa endomontiono autoalgunto de R4 na base canômica com o produto escalar usual

Pelo Teorema Espectral A e Liagonalizard em base artonormal.

Colculando autoraloxes

$$P_{A}(N=\det(A-\lambda I)) = \begin{vmatrix} 1-\lambda & 1 & 0 & 0 \\ 1 & 1-\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & 0 & -\lambda \end{vmatrix} = \lambda^{2} \begin{bmatrix} 1-\lambda & 1 \\ 1 & 1-\lambda \end{bmatrix} = \lambda^{2} \begin{bmatrix} \lambda^{2} - 2\lambda \\ 1 & 1-\lambda \end{bmatrix}$$

$$P_A(\lambda) = \lambda^2 [\lambda^2 - 2\lambda] = \lambda^3 (\lambda - 2) \Longrightarrow \lambda = 2$$
 multiplicidade I

$$\begin{vmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{vmatrix}
\begin{pmatrix}
X_1 + X_2 &= 0 \\
0 & 0 & 0
\end{pmatrix}
= \begin{cases}
X_2 + X_2 &= 0 \\
X_3 \\
X_4
\end{pmatrix}
= \begin{cases}
0 \\
0 \\
0
\end{cases}
= \begin{cases}
X_2 + X_2 &= 0 \\
0 \\
0
\end{cases}
= \begin{cases}
X_1 + X_2 &= 0
\end{cases}
\qquad
\begin{cases}
V_0 = \left\{ (X_2, -X_2, X_3, X_4) : X_1, X_3, X_4 \in \mathbb{R}^3 \right\}
\end{cases}$$

$$X_2 = -X_1 \qquad V_0 = \left\{ (X_2, -X_2, X_3, X_4) : X_1, X_2, X_4 \in \mathbb{R}^3 \right\}$$

$$X_2 = -X_1 \qquad V_0 = \left\{ (X_2, -X_2, X_3, X_4) : X_1, X_2, X_4 \in \mathbb{R}^3 \right\}$$

 $V_0 = \langle \{(1,-1,0,0), (0,0,1,0), (0,0,0,1) \} \rangle$ $\therefore 0, \text{ vetores } a_1 = (1,-1,0,0), a_2 = (0,0,1,0), a_3 = (0,0,0,1) \text{ e uma base de } V_0$

E' evidente que a, laz, a, laz, az laz => {a, az, az} e bese ortogonal

 $||a_1|| = \sqrt{2}$, $||a_2|| = 1$, $||a_3|| = 1$

$$v_0 = (\frac{1}{2}, \frac{1}{2}, 0, 0), v_2 = (0, 0, 1, 0), v_3 = (0, 0, 0)\} e' bose ontonound
 $v_2 = Ken (A - 2I)$$$

$$\begin{vmatrix}
-1 & 1 & 0 & 0 & | X_1 & | & 0 & | & -X_1 + X_2 & = 0 & | & X_1 + X_2 & = 0 & | & X_2 + X_2 & | & X_2 + X_2 & | & X_3 + X_4 & = 0 & | & X_3 = X_4 = 0 & | & X_4 + X_2 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & & X_4 + X_4 & = 0 & | & & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 & = 0 & | & X_4 + X_4 &$$

Ponto Extra: E K-espaço vetorial, pcEnd_x(E) $p^2=p$ Prove que $P=P_V$ para algúm subespaço V.

Peovai

Dado
$$x \in E$$
 escreva $X = (X - p(x)) + p(x)$, $p(x-p(x)) = p(x) - p^2(x) = p(x) - p(x) = 0$

$$E = Kenp + Imp$$

$$F = Kenp + Imp$$

Se $x \in Imp \cap Kenp \Rightarrow x = p(x) = p^2(y) = p(p(y)) = p(k) = 0 \Rightarrow x = 0$ if $Imp \cap Kenp = 0 \Rightarrow E = Kenp \oplus Imp$

Busta pegar V = Im P, $W = Ken P \Rightarrow P = P_V$ $X = X_V + X_W \Rightarrow P(X) = P(X_V) + P(X_W) = X_V = P_V(X)$ $EImp \in Kenp$