Languages and Computation (COMP 2049) Lab 06 Proving Non-Regularity

(1) Consider the alphabet $\Sigma = \{a, b\}$ and the following language over Σ :

$$L_1 := \{a^n b^k \mid n, k \in \mathbb{N} \land n > k\}.$$

- (a) Using the pumping lemma for regular languages, prove that L_1 is not regular.
- (b) Demonstrate that L_1 is context-free by presenting the productions of a grammar G for which $L_1 = L(G)$.

Solution

- (a) Assume that L_1 is regular. Then, it must satisfy the pumping property. Let n be the integer in the pumping lemma, and consider the string $x = a^{n+1}b^n \in L_1$. As $|x| = 2n + 1 \ge n$, there are strings uvw such that x = uvw, and:
 - (1) $|uv| \le n$
 - (2) |v| > 0
 - $(3) \ \forall i \in \mathbb{N} : uv^i w \in L_1$

From the first two properties, we infer that v is of the form a^k , for some $k \ge 1$, which implies that $n+1-k \le n$. If we take i=0 in (3), we must have $a^{n+1-k}b^n \in L_1$, which is a contradiction. Hence, L_1 is not regular.

(b) The following grammar generates L_1 :

$$S \to aT$$
$$T \to aT \mid aTb \mid \lambda$$

(2) Using the pumping lemma for regular languages, prove that the following language is not regular:

$$L_2 := \{xx \mid x \in \{a, b\}^*\}.$$

Remark: The language L_2 is sometimes referred to as the copy language, denoted as XX or WW. Not only is this language not regular, it is not even context-free.

Solution

Assume that L_2 is regular. Then, it must satisfy the pumping property. Let n be the integer in the pumping lemma, and consider the string $x = a^n b^n a^n b^n \in L_2$. As $|x| = 4n \ge n$, there are strings uvw such that x = uvw, and:

- $(1) |uv| \leq n$
- (2) |v| > 0
- (3) $\forall i \in \mathbb{N} : uv^i w \in L_2$

From the first two properties, we infer that v is of the form a^k , for some $k \ge 1$. If we take i = 0 in (3), we must have $a^{n-k}b^na^nb^n \in L_2$, which is a contradiction. Hence, L_2 is not regular.

(3) Consider the alphabet $\Sigma = \{a, b, c\}$ and the following language over Σ :

$$L_3 := \{a^j b^k c^k \mid j \ge 1 \land k \ge 0\} \cup \{b^j c^k \mid j \ge 0 \land k \ge 0\}.$$

In simple terms, for every string $x \in L_3$

- If there is at least one a in the string x, then the number of b's and c's must be the same.
- If there is no a in the string x, then the number of b's and c's can be anything.
- (a) Prove that the language L_3 satisfies the conclusions of the pumping lemma for regular languages.
- (b) Using the pigeonhole principle, prove that the language L_3 is not regular.

Remark: This exercise demonstrates the following points:

- Although every regular language must have the pumping property, the converse is not true, i. e., there are languages that do have the pumping property, but are not regular.
- The pigeonhole principle is stronger than the pumping lemma.

Solution

- (a) The languages L_3 indeed satisfies the pumping property. Take n = 1, and for every string $x \in L_3$ with $|x| \ge 1$, partition x as x = uvw in which:
 - (a) $u = \lambda$
 - (b) |v| = 1, i. e., v consists of only the first symbol in x;
 - (c) w is the tail of the string x.

There are three cases to consider:

- If the string x begins with an 'a', then it must be of the form $x = a^j b^k c^k$, with $j \ge 1$ and $k \ge 0$. From (a) and (b) we infer that v = a. Thus, for any $i \ge 0$, the string $x' = uv^i w$ is of the form $x' = a^{j-1+i}b^kc^k$ which is in L_3 .
- If the string x begins with a 'b', then it must be of the form $x = b^j c^k$, with $j \ge 1$ and $k \ge 0$. From (a) and (b) we infer that v = b. Thus, for any $i \ge 0$, the string $x' = uv^i w$ is of the form $x' = b^{j-1+i}c^k$ which is in L_3 .
- If the string x begins with a 'c', then it must be of the form $x = c^k$, with $k \ge 1$. From (a) and (b) we infer that v = c. Thus, for any $i \ge 0$, the string $x' = uv^i w$ is of the form $x' = c^{k-1+i}$ which is in L_3 .
- (b) As the language L_3 satisfies the pumping property, we cannot use the pumping lemma to prove that it is not regular. Instead, we directly use the pigeonhole principle.

Assume that L_3 is regular. By definition, there must be a deterministic finite automaton (DFA) $M = (Q, \Sigma, \delta, q_0, F)$ such that $L_3 = L(M)$. Let us assume that $Q = \{q_0, q_1, \dots, q_{n-1}\}$, i. e., the automaton M has n states. Consider the following n + 1 strings in L_3 :

$$\begin{cases} x_1 = ab \\ x_2 = ab^2 \\ \vdots \\ x_{n+1} = ab^{n+1} \end{cases}$$

For each $i \in \{1, ..., n+1\}$, we must have $\delta^*(q_0, x_i) \in Q$. As there are only n states in Q, by the pigeonhole principle, for some $j \neq k$ we must have:

$$\delta^*(q_0, x_i) = \delta^*(q_o, x_k). \tag{1}$$

We know that $ab^jc^j \in L_3$. Thus, $\delta^*(\delta^*(q_0, x_j), c^j) \in F$. By (1), this implies that $\delta^*(\delta^*(q_0, x_k), c^j) \in F$, i. e., $ab^kc^j \in L_3$, which is a contradiction as $j \neq k$. Therefore, L_3 cannot be regular.