in commer the E 2x3 ce
$$\lambda \neq 1$$
, $Rk(\lambda) = 2$ si. $\lambda = 1$, $Rk(\lambda) \ge 3$ s. $\lambda = 1$

b) $A_{K} = B$

c) $\lambda = 0$

c) $\lambda = 0$

c) $\lambda = 0$

c) $\lambda = 1$

d) $\lambda = 1$

d) $\lambda = 1$

d) $\lambda = 1$

d) $\lambda = 1$

e) $\lambda = 1$

f) $\lambda = 1$

herefore $\lambda = 1$

Esercizio 4

Per "generare" R^N i vettori combinati linearmente fanno ottenere qualsiasi vettore in R^N . Gli N vettori in questione devono essere linearmente indipendenti.

• Indipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0 \rightarrow \alpha = \beta = 0$ oppure la matrice composta dai vettori ha rango N

 $v_3=\begin{pmatrix}x_3\\y_3\\z_3\end{pmatrix}$ è multiplo scalare di $v_1=\begin{pmatrix}x_1\\y_1\\z_1\end{pmatrix}$ se $\frac{x_3}{x_1}=\frac{y_3}{y_1}=\frac{z_3}{z_1}=\alpha$

Base ortogonale di $v,w: \begin{pmatrix} \det(R_2R_2) \\ \det(R_1R_2) \end{pmatrix}, R_i$ sono le righe dei vettori. v,w devono essere ortogonali det (R_1R_2) Dipendenza lineare: $\alpha v_1 + \beta v_2 + \ldots + k v_n = 0$ oppure la matrice composta dai vettori non ha rango N

. I vettori v_1,\dots,v_n sono base di \mathbb{R}^N se $\operatorname{rk}(M)=N$ con $M=(v_1\dots v_n)$ (M matrice composta dai vettori)

 $v_2 \notin \langle v_1 \rangle$ significa che v_2 non appartiene allo spazio generato da v_1 e quindi v_2 non deve essere multiplo scalare di v_1

Due vettori v_1 e v_2 sono ortogonali tra loro quando il loro prodotto scalare e' 0

b) ν_1,ν_2,ν_3 sono linearmente dipendenti, ma ν_3 non è multiplo scalare di ν_1 né di $\nu_2.$

$$\lambda_{1,1} + \lambda_{1,2} + \lambda_{1,3} = 0 \Rightarrow \text{ i.i. Direction}$$

$$\lambda_{1,1} + \lambda_{1,2} + \lambda_{1,3} = 0$$

$$\lambda_{1,1} + \lambda_{1,2} + \lambda_{1,3} = 0$$

$$\lambda_{1,1} + \lambda_{1,2} + \lambda_{1,2} = 0$$

$$\lambda_{1,1} + \lambda_{1,1} + \lambda_{1,2} = 0$$

$$\lambda_{1,1} + \lambda_{1,1} + \lambda_{1,2} = 0$$

$$\lambda_{1,1} + \lambda_{1,1} + \lambda_{1,1} + \lambda_{1,2} = 0$$

$$\lambda_{1,1} + \lambda_{1,1} + \lambda_$$

Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2 × 2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3 × 3, le λ in comune alle 3 × 3 sono quelle che $rk(A)=2$, tutte le altre $rk(A)=3$;
	• Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che $A^n=0$) allora det $A=0 o$ Nilpotente non invertibile allora det $A=0$
	• Se A è una matrice simmetrica, allora A^2 è simmetrica $\rightarrow M$ simmetrica se $M = M^T \cdot M^T \cdot M^T = (M \cdot M)^T \Rightarrow M = M^T$, sostituisci M con A^2
	$B \ t.c \ rk(A B) = 3 \ allora \ il \ sistema \ e \ impossibile (non ammette soluzioni) per Rouché-Capelli (\infty^{2-3})$
	• $A^3 - A = I_2 \rightarrow A(A^2 - I) = I \Rightarrow (A^2 - I) = A^{-1}$ quindi $AA^{-1} = I$ (A è invertibile)
	• $A^3 - A = 0 \rightarrow A(A^2 - I) = 0 \Rightarrow A = 0, A^2 - I = 0 \Rightarrow A = 0, A^2 = I$ quindi A è invertibile se $A^2 = I$ altrimenti se $A = 0$ non è invertibile
	$\bullet A^3-A=\begin{pmatrix}1&1\\2&3\end{pmatrix} \rightarrow A(A^2-I)=\begin{pmatrix}1&1\\2&3\end{pmatrix} \Rightarrow A=\begin{pmatrix}1&1\\2&3\end{pmatrix}, A^2-I=\begin{pmatrix}1&1\\2&3\end{pmatrix} \Rightarrow A^2=\begin{pmatrix}1&1\\2&3\end{pmatrix}+I=\begin{pmatrix}2&1\\2&4\end{pmatrix} \Rightarrow A=\begin{pmatrix}\sqrt{2}&1\\\sqrt{2}&2\end{pmatrix} \text{ poi calcolo il } A=\begin{pmatrix}1&1&1\\2&3\end{pmatrix}+A=\begin{pmatrix}1&1&1\\2&4\end{pmatrix} \Rightarrow A=\begin{pmatrix}1&1&1\\2&4\end{pmatrix}$
c	determinante delle due A e uso il teorema di Binét: $\det \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = 1$, $\det \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix} = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
Esercizio o	• A δ invertible, allora $\det(A) > 0 \to \operatorname{Falso}$, per Binét A δ invertible se $\det A \neq 0$ (quindi può essere anche negativo).
	• Se $A \grave{\circ} B$ sono invertibili, $AB \grave{\circ}$ invertibile $\to Vero$, $AB \grave{\circ}$ invertibile se $\det(AB) \not= 0$ e per Binét $\det(AB) = \det A \cdot \det B \not= 0$
	• Se $A^{13} = B \in B$ è invertibile, allora A è invertibile \rightarrow Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
	• I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango n (massimo) e quindi è invertibile
	• Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\mathrm{rk}(A) < 3 \to \mathrm{vero}$, sappiamo che esistono solo due sottomatrici 3×3 quindi se entrambe hanno determinante nullo allora $\mathrm{rk}(A) < 3$
	• Tre vettori qualsiasi di \mathbb{R}^2 sono linearmente dipendenti \rightarrow Usiamo la regola per essere base di R^N che dice che sono linearmente indipendenti se il rango della matrice composta dai vettori è N , quindi basta trovare un vettore per cui il rango non è 2 per avere i vettori linearmente dipendenti

• Norma vettore $ v = \sqrt{v_1^2 + v_2^2}$, per "allungare" un vettore a una lunghezza L si usa la formula $v' = L \cdot \frac{1}{ v } \cdot v$
(** v = /
• Gauss: $R_i = R_i + \left(\frac{-tJ}{ajj}\right) \cdot R_j$
• Rouché-Capelli: $\infty \#incognite - rk(A)$
• A invertibile se det $A \neq 0$, $\det(A^{-1}) = \frac{1}{\det A}$
• A non invertibile se $A^N = 0$
• Il prodotto di due matrici diagonali è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica
$ullet$ Teorema di Binét: $\det(AB) = \det A \cdot \det B$
• Calcolo matrice inversa: scriviamo $(M I)$, eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo $(I M^{-1})$
• Prodotto scalare: $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = x_1 x_2 + y_1 y_2 + z_1 z_2$
• $AX = B$ ammette soluzioni se $\operatorname{rk}(A B) = \operatorname{rk}(A)$

 $\frac{\sqrt{25} = 5}{\sqrt{100} = 10}$ $\frac{\sqrt{225} = 15}{\sqrt{400} = 20}$ $\frac{\sqrt{625} = 25}{\sqrt{900} = 30}$

 $\sqrt{9} = 3$ $\sqrt{64} = 8$ $\sqrt{169} = 13$ $\sqrt{324} = 18$ $\sqrt{529} = 23$ $\sqrt{784} = 28$

 $\sqrt{4} = 2$ $\sqrt{49} = 7$ $\sqrt{144} = 12$ $\sqrt{289} = 17$ $\sqrt{484} = 22$ $\sqrt{729} = 27$

 $\sqrt{1} = 1$ $\sqrt{36} = 6$ $\sqrt{121} = 11$ $\sqrt{256} = 16$ $\sqrt{441} = 21$ $\sqrt{676} = 26$