```
In [1]: # import libraries
import seaborn as sns

sns.set(style = "whitegrid")

# load dataset
kashti = sns.load_dataset("titanic")

# draw lineplot
sns.boxplot(x = "class", y = "fare", data = kashti)
```

Out[1]: <Axes: xlabel='class', ylabel='fare'>


```
In [2]: # import libraries
import seaborn as sns

sns.set(style = "whitegrid")

# Load dataset
tip = sns.load_dataset("tips")
tip
```

Out[2]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
	•••							
	239	29.03	5.92	Male	No	Sat	Dinner	3
	240	27.18	2.00	Female	Yes	Sat	Dinner	2
	241	22.67	2.00	Male	Yes	Sat	Dinner	2
	242	17.82	1.75	Male	No	Sat	Dinner	2
	243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [3]: # import Libraries
import seaborn as sns
# from numpy import mean, median
import matplotlib as plt

sns.set(style = "whitegrid")

# Load dataset
tip = sns.load_dataset("tips")

# draw Lineplot
sns.boxplot(x = "tip", y = "day", data = tip, hue="smoker", palette = "pastel", sat
```

Out[3]: <Axes: xlabel='tip', ylabel='day'>


```
In [4]: # describe a data

# import Libraries
import seaborn as sns
import numpy as np
import pandas as pd

# Load dataset
tip = sns.load_dataset("tips")
tip.describe()
```

Out[4]:		total_bill	tip	size
	count	244.000000	244.000000	244.000000
	mean	19.785943	2.998279	2.569672
	std	8.902412	1.383638	0.951100
	min	3.070000	1.000000	1.000000
	25%	13.347500	2.000000	2.000000
	50%	17.795000	2.900000	2.000000
	75%	24.127500	3.562500	3.000000
	max	50.810000	10.000000	6.000000

```
In [5]: # import libraries
import seaborn as sns

sns.set(style = "whitegrid")

# load dataset
tip = sns.load_dataset("tips")

# draw lineplot
sns.boxplot(x = tip["total_bill"])
# sns.boxplot(x = tip["total_bill"], y = tip["size"])
```

Out[5]: <Axes: xlabel='total_bill'>


```
In [6]: # import Libraries
import seaborn as sns

sns.set(style = "whitegrid")

# Load dataset
tip = sns.load_dataset("tips")

# draw LinepLot
sns.boxplot(x = "day", y = "tip", data = tip, color = "#8CB522")
```

Out[6]: <Axes: xlabel='day', ylabel='tip'>


```
In [7]: # managing colors in hue

# import libraries
import seaborn as sns

sns.set(style = "darkgrid")

# load dataset
tip = sns.load_dataset("tips")

# draw lineplot
# sns.boxplot(x = "day", y = "tip", data = tip, palette = ["green", "blue"], hue = sns.boxplot(x = "day", y = "tip", data = tip, palette = {"Yes":"purple", "No":"pink
```

Out[7]: <Axes: xlabel='day', ylabel='tip'>


```
In [8]: #import libraries
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

kashti = sns.load_dataset("titanic")

# showing first 5 rows of data
kashti.head()
```

```
Out[8]:
            survived pclass
                               sex
                                    age sibsp parch
                                                          fare
                                                               embarked class
                                                                                   who adult_m
         0
                  0
                          3
                              male
                                   22.0
                                                    0
                                                        7.2500
                                                                       S Third
                                                                                               T
                                             1
                                                                                   man
         1
                          1 female 38.0
                                                      71.2833
                                                                           First woman
                                                                                               Fä
         2
                  1
                          3 female 26.0
                                             0
                                                        7.9250
                                                                       S Third woman
                                                                                               Fä
         3
                          1 female 35.0
                                                      53.1000
                                                                           First woman
                                                                                               Fa
         4
                  0
                          3
                              male 35.0
                                             0
                                                        8.0500
                                                                       S Third
                                                                                               Т
                                                                                   man
In [9]: sns.boxplot(x = "survived",
                     y = "age",
                     data = kashti,
                    palette = ["green", "red"],
                    hue = "sex")
```

Out[9]: <Axes: xlabel='survived', ylabel='age'>


```
In [12]: # facet wrap & facet grid
    import seaborn as sns
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt

tip = sns.load_dataset("tips")
    sns.FacetGrid(tip, col = "sex")
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x1c7ff170a10>

