Klausurblatt AfSE WiSe 19/20 | Skript: M. Otto

Definitionen / Wissen

• Chomsky Hierarchie

Typ	Produktionen	Akzeptor
Typ 0 - Allgemein	• beliebige Produktionen	 (D)TM akzeptiert nur teilweise (D)TM entscheidet nur teilweise rekursiv aufzählbar teilweise entscheidbar
Typ 1 - Kontextsensitiv	• nur harmlose ϵ -Produktionen $\rightarrow X_0 \rightarrow \epsilon$ $\rightarrow X_0$ nur als Startsymbol $\rightarrow X_0$ also nie auf rechter Seite • Produktionen nicht verkürzend $\rightarrow \alpha \rightarrow \beta$ und $ \beta \geq \alpha $	 (D)TM akzeptiert (D)TM entscheidet rekursiv aufzählbar und entscheidbar
Typ 2 - Kontextfrei	 Linke Seite nur eine Variable X → v CNF möglich 	 PDA akzeptiert CYK entscheidet rekursiv aufzählbar und entscheidbar
Typ 3 - Regulär	 Alle Produktionen rechtslinear X → ε, X → a, X → aY falls Variable, dann ganz rechts 	 NFA akzeptiert DFA entscheidet rekursiv aufzählbar und entscheidbar

	abgeschlossen unter				
Тур	U	\cap	_	•	*
3	+	+	+	+	+
2	+	_	_	+	+
1	+	+	+	+	+
0	+	+	_	+	+
bel. Σ-Sprachen	+	+	+	+	+

• Sprachen im Niveau der Chomsky-Hierarchie

- Sprache $(L \subseteq \Sigma^*)$ vom selben Typ wie Grammatik G, falls es Grammatik G gibt mit L = L(G)
- $-L_{Typ3} \subsetneq L_{Typ2} \subsetneq L_{Typ1} \subsetneq L_{Typ0} \subsetneq \Sigma Sprachen$
- $-\subsetneq$ Echte Teilmenge

• Grammatik-Tricks:

- $-X_0$: Neuer Startpunkt | $X_{0,1}$: Startpunkt erste Grammatik
- Vereinigung: $X_0 \to X_{0,1}|X_{0,2}$
- Konkatenation: $X_0 \to X_{0,1} X_{0,2}$
- Stern-Bildung: $X_0 \to \epsilon | X_{0,1} X_0$

• Definitionen

- Grammatik $G = (\Sigma, V, P, S)$
 - \rightarrow Terminalalphabet Σ , Variablen V, Produktionen P, Startsymbol S
- **DFA/NFA** $A = (\Sigma, Q, q_0, \Delta/\delta, A)$
 - \rightarrow Eingabealphabet Σ , Zustandsmenge Q, Startzustand q_0
 - \rightarrow Übergangsrelation/-funktion Δ/δ , Akzeptierende Endzustände A
 - $\rightarrow \Delta = Q \times \Sigma \times Q$ (Von q mit x nach q')
- PDA $P = (\Sigma, \Gamma, Q, q_0, A, \Delta, \#)$
 - \rightarrow Eingabealphabet Σ , Kelleralphabet Γ , Zustandsmenge Q, Startzustand q_0
 - \rightarrow Akzeptierende Endzustände A, Übergangsrelation Δ , Anfangs-Kellersymbol #
 - $\rightarrow \Delta = Q \ x \ \Gamma \ x \ (\Sigma \cup \{\epsilon\}) \ x \ \Gamma^* \ x \ Q$
 - → (Von q, KellerPop, Lesenzeichen, KellerPush, nach q')
- Turingmaschine $M = (\Sigma, Q, q_0, \delta, q+, q-)$
 - \rightarrow Bandalphabet Σ , Zustandsmenge Q, Startzustand q_0
 - \rightarrow Übergangsrelation δ , akzeptierender Endzustand q+, verwerfender Endzustand q-
 - $\rightarrow \ \delta = Q \ x \ (\Sigma \cup \{\Box\}) \rightarrow (\Sigma \cup \{\Box\}) \ x \ \{<,o,>\} \ x \ Q$
 - \rightarrow Von q, Lese vom Band \rightarrow schreibe aufs Band, Bewege, nach q'

• Beweis-Tipps

- Mengenverhältnisse $(A \subseteq B)$
 - * Am Besten über einzelne Elemente der Menge zeigen $(x \in A)$
 - * Zeigen, von welcher Menge x Element ist
 - * Danach Schluss darauf, dass es auch von anderer Seite Element ist
- -L(G) = L
 - $* \supseteq$: Jedes w aus L ist in $G \to Induktion über die Wortlänge$
 - $*\subseteq:$ Jedes ableitbare Wort von G ist in L \to Induktion über die Anzahl an Ableitungsschritten
- Beweise der Art $L_1 \cup L_2 = L \setminus ...$
 - * Untersuchen, ob ϵ nur in einer Menge vorkommt (Widerlegbarkeit mit Gegenbeispiel)
- Gegenbeweis der Allaussage $\forall n \in \mathbb{N}A(n)$
 - * Zeige, durch Gegenbeispiel $\exists n \in \mathbb{N} \neg A(n)$
- Induktion über Wortlänge
 - \ast Induktionshypothese IH | Induktionsanfang IA | Induktionsschritt IS
 - * IH: Aussage gilt für Wörter der Länge n
 - * IA: Zeige für Länge n = 0, also ϵ
 - * IS: Wort der Länge n+ 1 auf Länge n $\,$ zurück führen
- Induktion über die Anzahl der Ableitungsschritte
 - * IH: Aussage über von einer Grammatik erzeugten Worte (A(w))
 - * IA: A(w) gilt für alle Worte, die in einem Schritt ableitbar sind (\rightarrow_G)
 - * IS: A(w) gilt für alle Worte über \rightarrow_G^* mit n+1 Ableitungsschritten
 - → Zurückführen auf ein Wort mit n Ableitungsschritten und Zeigen des letzten Schrittes
- Induktion über Erzeugungsprozess/Konkatenation
 - * IH: A(w): Aussage über alle Worte der Sprache
 - * IA: A(w) gilt für $w = \epsilon$
 - * IS: A(wa) nachweisen über A(w) und Konkatenation mit a $(\forall a \in \Sigma)$

• Pumping Lemma(regulär) - Anwendung

- Schema zur Widerlegung:
- WENN:
 - * $\forall n \in \mathbb{N}$ gilt:
 - * $\exists x \in Lmit|x| \geq n$:
 - * \forall Zerlegung x = uvw mit $v \neq \epsilon$ und $|uv| \leq n$
 - * $\exists m \in \mathbb{N}, \text{ sodass } uv^m w \notin L$
- DANN:
 - * L nicht kontextfrei

• Beispiel:

- $-L = \{a^p b^p : p > 0\}$
- Sei $n \in \mathbb{N}$ gegeben (All-Aussage)
- Setze $x = a^n b^n$ (Wort länger als vorgegebene Länge n)
- Sei Zerlegung mit x = uvw mit $v \neq \epsilon$ und $|uv| \leq n$ gegeben (All-Aussage)
- Setze m=0. Dann hat $uv^mw=uw$ weniger a als b. Damit folgt $uv^mw\notin L$
- Da v nur aus a besteht, enthält das Wort weniger a als b, wenn $v^0 = \epsilon$ nutzt

• Pumping Lemma(kontextfrei) - Anwendung

- Schema zur Widerlegung:
- WENN:
 - * $\forall n \in \mathbb{N}$ gilt:
 - $* \exists x \in Lmit|x| \geq n$:
 - * \forall Zerlegung x = yuvwz mit $uw \neq \epsilon$ und $|uvw| \leq n$
 - * $\exists m \in \mathbb{N}, \text{ sodass } yu^m vw^m z \notin L$
- DANN:
 - * L nicht erkennbar | L ist keine reguläre Sprache

- Beispiel:

- $* L = \{a^n b^n c^n : n \in \mathbb{N}\}$
- * Sei $n \in \mathbb{N}$ beliebig:
- * Wähle $x = a^n b^n c^n$:
- * Zerlegung ...
- * Fall 1: uvw hat kein c. m=2: yu^mvw^mz hat mehr a/b als c $\Rightarrow yu^mvw^mz \notin L$
- * Fall 2: uvw hat kein a. m = 2: yu^mvw^mz hat mehr b/c als $a \Rightarrow yu^mvw^mz \notin L$
- * (Aufgrund von $|uvw| \le n$ kann es, sobald es ein c hat, kein a mehr haben)
- \Rightarrow L ist nicht kontextfrei

• Myhill-Nerode - Anwendung

- Satz von Myhill-Nerode:
 - * $L \in \Sigma^*$ ist erkennbar $\Leftrightarrow \sim_L$ hat endlichen Index
- Wortäquivalenz \sim_L
 - * $w \sim_L w' \Leftrightarrow \forall x \in \Sigma^* : (wx \in L \Leftrightarrow w'x \in L)$
 - * Für \sim_L gelten folgende Eigenschaften:
 - 1. \sim_L ist rechts invariant: $w \sim_L w' \Rightarrow \forall u \in \Sigma^*(wu \sim_L w'u)$
 - 2. L ist abgeschlossen unter \sim_L : $(w \in L \land w \sim_L w') \Rightarrow w' \in L$
 - 3. L ist die Vereinigung aller Äquivalenzklassen von \sim_L
- Zustandsäquivalenz \sim_A
 - * $w \sim_A w' \Leftrightarrow \hat{\delta}(q_0, w) = \hat{\delta}(q_0, w')$
 - * Für \sim_A gelten folgende Eigenschaften:
 - 1. \sim_A hat endlichen Index, nämlich $index(\sim_A) \geq |Q|$
 - 2. \sim_A ist rechts-invariant: $w \sim_A w' \Rightarrow \forall u \in \Sigma^* wu \sim_A w'u$
 - 3. \sim_A verfeinert \sim_L : $w \sim_A w' \Rightarrow w \sim_L w'$

- Anwendung

- * Aufzeigen unendlich vieler Äquivalenzklassen
- * Beispiel: $L = \{w \in \{a, b\}^* | w \text{ hat mehr b als } a\}$
- * k < n
- $*b^na^k \in L$ (Aufstellen von b^k und b^n und Anhängen des selben Wortes)
- * $b^n a^k \notin L$ (Eins liegt in L, das andere nicht)
- * Dementsprechend gilt \sim_L nicht
- $\Rightarrow k$ und nhier beliebig gewählt, dementsprechend beliebig viele Äquivalenzklassen
- $\Rightarrow \mid \sim_L \mid = \infty$
- ⇒ Sprache nicht regulär

Algorithmen / Rechenmuster

ullet Produktautomat Durchschnitt \cap und Schnitt \cup

- 1. Beide Startzustände zu 1p zusammenfassen
- 2. Von dort aus neue Zustände bilden, die man z.B. mit a erreicht
- Bsp: $1 \to^a 2$ und $p \to^a q \Rightarrow 2q$
- 3. Fortfahren bis alle Zustände abgedeckt sind

- Akzeptierende Zustände

- * Bei ∪: Alle Zustände, die zu mindestens einem Teil aus altem akzeptierenden Zustand bestehen
- * Bei ∩: Alle Zustände, die zu beiden Teilen aus alten akzeptierenden Zuständen bestehen

• Konkatenations-Automat ·

- Konkatenation durch Aneinanderhängen zweier Automaten
- Für jede Transition des ersten Automaten in dessen Endzustand:
 - ⇒ Einbauen einer Transition in den Anfangszustand des anderen Automaten
 - ⇒ Dies gilt insbesondere auch für Schleifen, die die vom akzep. Zustand auf sich selbst zeigen
- Akzeptierende Zustände: nur die des zweiten Automaten
- **Achtung:** Falls erster Automat ϵ akzeptiert:
 - ⇒ Einführen eines extra Startzustands, der alle Transitionen beider Startzustände besitzt
 - \Rightarrow Falls beide Automaten ϵ akzeptieren \rightarrow neuer Startzustand akzeptierend

• Sternautomat * (NFA)

- Stern-Sprache der aktuellen Sprache

- 1. Einbauen eines neuen akzeptierenden Startzustands
- 2. Neuer Startzustand enthält alle Transitionen des alten Starts
- 3. Lenkung aller Transitionen, die auf akzep. Zustand zeigen auf den alten Start (oder neuer Start)
- (auch Selbstschleifen)

• Komplementbildung eines Automaten \bar{L}

- Wechsel der akzeptierenden und nicht akzeptierenden Zustände

• Potenzmengenautomat (NFA \rightarrow DFA)

- Jede Zustandsmenge simuliert in welchen Zuständen sich der NFA befinden könnte
- 1. Erstellen einer Tabelle und Start bei Anfangszustand {0}
- 2. Notieren aller Zustände, die der Startzustand mithilfe einer Transition erreicht
- 3. Erstellen eines neuen Zeileneintrags mit dieser Menge an Zuständen
- 4. Durchführung bis alle Zustände abgedeckt sind
- Akzeptierende Zustände: Akzeptiert, falls einer der Zustände in der Menge akzeptierend ist

δ	а	b
{1}	{2, p}	{3}
$\{2, p\}$	$\{2,p,q\}$	{3, p}
{3}	{1}	{3}
$\{2, p, q\}$	$\{2, p, q\}$	${3, p, q}$
${3,p}$	$\{1,q\}$	${3,p}$
${3, p, q}$	$\{1,p,q\}$	${3, p, q}$
$\{1, q\}$	$\{2, p\}$	${3,q}$
$\{1, p, q\}$	$\{2,p,q\}$	$\{3,p,q\}$
${3,q}$	$\{1, p\}$	${3,q}$
$\{1,p\}$	$\{2,p,q\}$	$\{3,p\}$

- Hier: Links: NFA Rechts: Tabelle zu DFA
- Beispiel hier: Startzustand führt mit a zu 2 und p deswegen neuer Zustand mit $\{2,p\}$
- Tipp: Vielleicht hilfreich Transitionstabelle für Quellautomaten zu machen (Ablesefehler)

ullet Satz von Kleene (Automat o regulärer Ausdruck)

- Durchführen von k Iterationschritten zum Erhalten des regulären Ausdrucks
- k = Anzahl der Zustände
- Rekursionsformel: $a_{l,m}^{k+1}=a_{l,m}^k+a_{l,k+1}^k(a_{k+1,k+1}^k)^*a_{k+1,m}^k$

- Durchführung

* 1. Aufstellen von $a_{l,m}^0$ mithilfe der Formel:

$$\alpha_{\ell,m}^0 = \begin{cases} a_1 + \dots + a_r & \text{falls } \ell \neq m \text{ und } \delta(\ell, a_i) = m \text{ für } i = 1, \dots, r \\ \epsilon + a_1 + \dots + a_r & \text{falls } \ell = m \text{ und } \delta(\ell, a_i) = m \text{ für } i = 1, \dots, r \end{cases}$$

- * 2. Anwendung der Rekursionsformel zur Erstellung von $a_{l,m}^k$
- * 3. Durchführung bis $a_{l,m}^{k-1}$
- $\ast\,$ 4. Danach Durchführung für die "akzeptierende Zelle" um regulären Ausdruck zu erhalten
- Tipps: (in k-ter Tabelle)
 - * $a_{l,m}^k$: entspricht Werten in vorheriger Tabelle an selber Stelle
 - * $a_{l,k+1}^k$: entspricht jeweils den Werten der k-ten Spalte in vorheriger Tabelle
 - * $(a_{k+1,k+1}^{k})^*$: ist für die ganze Tabelle der selbe Wert (k-te Zeile, k-te Spalte)
 - $* a_{k+1,m}^{k}$: entspricht jeweils den Werten der k-ten Zeile in vorheriger Tabelle
- Beispiel im Anhang

• Minimierung eines Automaten

- -1. Start bei \sim_0 : Einteilung der Zustände in Akzeptierend und Nicht-Akzeptierend
- -2. Eintragen in Tabelle mit Klassen \rightarrow Transitionen enden in Klassen
- 3. Aufteilung einer Klasse in Unterklasse, falls Elemente unterschiedliche Transitionen haben
- 4. Durchführung für \sim_{i+1} , bis jedes Element in jeder Klasse die selbe Transition hat
- 5. Aufzeichnen des neuen Automaten mit Klassen als Zustände
- Akzeptierende Klasse/Zustände: Klasse, die akzeptierende Zustände enthält

	\sim_0	а	b
	1	p_1	p_1
$p_{1}^{(0)}$	2	p_2	p_1
p_1	4	p_1	p_1
	5	p_1	p_1
	6	p_2	p_1
	3	p_2	p_2
$p_{2}^{(0)}$	7	p_2	p_2
-	8	p_2	p_2

	\sim_1	а	b
	1	p_1	p_1
$p_{1}^{(1)}$	4 5	p_2	p_1
	5	p_2	p_1
$p_2^{(1)}$	2	p_3	p_1
P_2	6	p_3	p_1
	3	p_3	p_3
$p_3^{(1)}$	7	p_3	p_3
	8	p_3	p_3

	\sim_2	a	b
$p_1^{(2)}$	1	p_1	p_2
$p_2^{(2)}$	4	p_3	p_2
P_2	5	p_3	p_2
$p_3^{(2)}$	2	p_4	p_2
P_3	6	p_4	p_2
(-)	3	p_4	p_4
$p_4^{(2)}$	7	p_4	p_4
	8	p_4	p_4

• Umformung kontextfreier Grammatik in Chomsky-Normalform

- **Bedingung:** Alle Produktionen in Form: $X \to YZ$ oder $A \to a$

- Durchführung

- * 1. Eliminiere ϵ -Produktionen
 - · 1.1 Aufstellen einer Nicht-Terminal-Menge, die zu ϵ -Produktionen führt
 - \cdot 1.2 Ersetzen durch alle möglichen Kombinationen ohne ϵ an Stellen aus Menge

- * 2. Variablen für Terminale einfügen $(A \to a, B \to B)$
- * 3. Kettenproduktionen eliminieren $(X \to Y)$
- * 4. Eliminiere $X \to X_0, ..., X_k$ mit $k \ge 3$ (Mehr als 2 Variablen aufteilen)
- * Aus $A \to ABC$ wird $A \to AD$ und $D \to BC$
- Beispiel im Anhang

• CYK Algorithmus

- Bestimmung des Wortproblems für kontextfreie Grammatiken in CNF

- Durchführung

- * 1. Aufstellen einer Tabelle (Größe nxn (n = Wortlänge)
- * 2. Eintragen der Integranden für einzelne Buchstaben in oberste Zeile
- * 3. Ausfüllen der Tabelle (guckt euch 'n Video an)
- * 4. Falls das Startsymbol in der letzten Zeile entsteht \rightarrow Wort wird durch Grammatik erkannt
- Ableitungsbaum ausgehend von S erstellen, falls benötigt

• Reguläre Grammatiken \Leftrightarrow Automaten

- Ziemlich selbstverständlich anhand Beispielen

$$\begin{array}{rcl} X_0 & \rightarrow & aX_1 \\ X_1 & \rightarrow & aX_3 \mid bX_2 \\ X_2 & \rightarrow & aX_3 \mid bX_3 \\ X_3 & \rightarrow & aX_3 \mid bX_3 \mid \varepsilon \end{array}$$

$$G = (\{a, b\}, \{X_1, X_2, X_3, X_4\}, P, X_1)$$
 mit

$$P: X_1 \rightarrow aX_3 \mid bX_2$$

$$X_2 \rightarrow aX_4 \mid bX_2 \mid \varepsilon$$

$$X_3 \rightarrow aX_1 \mid bX_4$$

$$X_4 \rightarrow aX_2 \mid bX_4.$$

Automatenbeispiele

- L: Wörter, in denen 100 als Teilwort vorkommt
 - $a = (0+1)^*100(0+1)^*$

- L: Wörter mit gerader Anzahl von 1
 - -a = (0+10*1)*

- L: Wörter mit gerader Anzahl von 1 und genau zweimal 0
 - Mit $\alpha = 1(11)^* und\beta = (11)^*$
 - $-a = \alpha 0\alpha 0\beta + \alpha 0\beta 0\alpha + \beta 0\alpha 0\alpha + \beta 0\beta 0\beta$

• L: Wörter von ungerader Länge mit genau zwei 1

• L: Wörter, die 01 und 10 als (nicht notwendigerweise disjunkte) Teilwörter enthalten

9

ullet L: Wörter, in denen alle 1-Blöcke eine Länge der Form 2n+3 haben

 $\bullet \ \mathbf{L} = L(((a+b)(c+d))^*)$

$Sprachen \Rightarrow Grammatik$

• $L((bc+a)^*aba(ac+b)^*)$

Eine Grammatik, die diese Sprache erzeugt, ist z.B. $G = (\{a, b, c\}, \{S, X, Y\}, P, S)$ mit

 $\begin{array}{cccc} P: & S & \rightarrow & aba \, | \, XabaY \, | \, Xaba \, | \, abaY \\ & X & \rightarrow & bc \, | \, bcX \, | \, a \, | \, aX \\ & Y & \rightarrow & ac \, | \, acY \, | \, b \, | \, bY \, \, . \end{array}$

• $L = \{ucw \in \{a, b, c\}^* | u, w \in a, b, c^*, |u_b| = |w_b| \}$

Eine Grammatik, die diese Sprache erzeugt, ist z.B. $G = (\{a, b, c\}, \{S\}, P, S)$ mit

$$P: S \rightarrow bSb|aS|Sa|cS|Sc|c$$
.

Aufgabe H6.1 (Kontextfreie Grammatiken)

Geben Sie kontextfreie Grammatiken an, die folgende Sprachen über dem Alphabet $\Sigma = \{a, b, c\}$ erzeugen:

- (a) $L_1 := \{a^n b^m \mid m \le n \le 2m\}.$
- (b) $L_2 := \{ucv \mid u, v \in \{a, b\}^*, |u| = |v|\}.$
- (c) $L_3 := \{a^i b^j c^k \mid i+j=k\}$
- (d) $L_4 := \{a^i b^j c^k \mid j = i + k\}$
- (e) $L_5 := \{a^i b^j c^k \mid i = j \text{ oder } i = k\}$
- (f) $L_6 := \emptyset$

Lösung: Je 2 P.:

(a) $G_1 = (\Sigma, \{S\}, P, S)$ mit

$$P: S \rightarrow aSb | aaSb | \varepsilon$$

(b) $G_2 = (\Sigma, \{S\}, P, S)$ mit

$$P: S \rightarrow aSa | aSb | bSa | bSb | c$$

(c) $G_3 = (\Sigma, \{S, X\}, P, S)$ mit

$$P: S \to aSc \mid X$$

$$X \to bXc \mid \varepsilon$$

(d) $G_4 = (\Sigma, \{S, X, Y\}, P, S)$ mit

$$\begin{array}{ccc} P: & S & \to & aXbY \,|\, XbYc \,|\, \varepsilon \\ & X & \to & aXb \,|\, \varepsilon \\ & Y & \to & bYc \,|\, \varepsilon \end{array}$$

(e) $G_5 = (\Sigma, \{S, X, Y, U, V\}, P, S)$ mit

$$P: S \rightarrow XY \mid U$$

$$X \rightarrow aXb \mid \varepsilon$$

$$Y \rightarrow cY \mid \varepsilon$$

$$U \rightarrow aUc \mid V$$

$$V \rightarrow bV \mid \varepsilon$$

(f) $G_6 = (\Sigma, \{S\}, P, S)$ mit

$$P: S \rightarrow S$$

Satz von Kleene - Beispiel

Lösung: Für k=0 bekommen wir folgende Ausdrücke $\alpha_{\ell,m}^0$: (2 Punkte)

Mit der Rekursionsformel

$$\alpha_{\ell,m}^{k+1} = \alpha_{\ell,m}^k + \alpha_{\ell,k+1}^k (\alpha_{k+1,k+1}^k)^* \alpha_{k+1,m}^k$$

ergibt sich im nächsten Schritt folgende Tabelle mit Ausdrücken $\alpha_{\ell,m}^1$, die wir zu der Tabelle auf der rechten Seite vereinfachen können: (4 Punkte)

Man beachte den systematischen Aufbau der Terme! Für k=2 erhalten wir (4 Punkte)

$$\begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 \\\hline 1 & \epsilon+a(\epsilon+ba)^*b & a+a(\epsilon+ba)^*(\epsilon+ba) & b+a(\epsilon+ba)^*(a+bb) \\ 2 & b+(\epsilon+ba)(\epsilon+ba)^*b & \epsilon+ba+(\epsilon+ba)(\epsilon+ba)^*(\epsilon+ba) & a+bb+(\epsilon+ba)(\epsilon+ba)^*(a+bb) \\ 3 & b+(a+ba)(\epsilon+ba)^*b & a+ba+(a+ba)(\epsilon+ba)^*(\epsilon+ba) & \epsilon+bb+(a+ba)(\epsilon+ba)^*(a+bb) \\ \end{array}$$

was wie folgt vereinfacht werden kann:

Schließlich können wir den Ausdruck $\alpha_{1,3}^3$ wie folgt bestimmen: (2 Punkte)

$$\begin{split} \alpha_{1,3}^3 &= \alpha_{1,3}^2 + \alpha_{1,3}^2 (\alpha_{3,3}^2)^* \alpha_{3,3}^2 \\ &= b + a(ba)^* (a+bb) + \\ & (b + a(ba)^* (a+bb)) (\epsilon + bb + (a+ba)(ba)^* (a+bb))^* (\epsilon + bb + (a+ba)(ba)^* (a+bb)), \end{split}$$

was wir wiederum zu

$$(b+a(ba)^*(a+bb))(bb+(a+ba)(ba^*)(a+bb))^*$$

vereinfachen können.

Chomsky-Normalform - Beispiel

Betrachten Sie die kontextfreie Grammatik $G = (\{a, b\}, \{X_0, X, Y\}, P, X_0)$ mit

$$\begin{array}{ccc} P: & X_0 & \to & aXY \mid bXb \mid a \\ & X & \to & aXa \mid bY \mid \varepsilon \\ & Y & \to & bX_0a \mid aX_0 \end{array}$$

Konstruieren Sie eine zu G äquivalente Grammatik in Chomsky-Normalform.

Lösung: 1. Schritt (eliminiere ε -Produktionen) 4 P :

$$\begin{array}{ccc} X_0 & \rightarrow & aXY \mid bXb \mid a \mid aY \mid bb \\ X & \rightarrow & aXa \mid bY \mid aa \\ Y & \rightarrow & bX_0a \mid aX_0 \end{array}$$

2. Schritt (Variablen vor Buchstaben) 4 P. :

$$\begin{array}{cccc} X_0 & \rightarrow & Z_a XY \,|\, Z_b XZ_b \,|\, Z_a \,|\, Z_a Y \,|\, Z_b Z_b \\ X & \rightarrow & Z_a XZ_a \,|\, Z_b Y \,|\, Z_a Z_a \\ Y & \rightarrow & Z_b X_0 Z_a \,|\, Z_a X_0 \\ Z_a & \rightarrow & a \\ Z_b & \rightarrow & b \end{array}$$

3. Schritt (eliminiere $X \to Y$ und $X \to X_0 \dots X_k$ mit $k \ge 3$) 4 P:

Quizfragen

(a) Es gibt kontextfreie Sprachen, die regulär sind.

Lösung: Richtig. Jede reguläre Sprache ist auch kontextfrei.

(b) Jede kontextfreie Sprache ist kontextsenstiv.

Lösung: Richtig. Zwar ist nicht jede kontextfreie Grammatik auch kontextsensitiv, aber es gibt zu jeder kontextfreien Grammatik eine kontextsensitive, die die gleiche Sprache beschreibt.

(c) Für zwei kontextfreie Sprachen L_1, L_2 ist auch $L_1 \cup L_2$ kontextfrei.

Lösung: Richtig.

(d) Der Schnitt einer kontextfreien mit einer regulären Sprache ist regulär.

Lösung: Falsch. $\{a^nb^n:n\geq 0\}$ ist kontextfrei aber nicht regulär. Für $\{a^nb^n:n\geq 0\}\cap \Sigma^*$ gilt das auch.

(e) Es gibt eine kontextfreie Sprache L, für die \sim_L unendlichen Index hat.

Lösung: *Richtig*, denn sonst wären alle kontextfreien Sprachen regulär. Ein Beispiel für eine solche Sprache ist $\{a^nb^n:n\geq 0\}$.

(f) Ist L_1 kontextfrei und $L_2 \subseteq L_1$, so ist auch L_2 kontextfrei.

Lösung: Falsch. Sei $L_1 = \Sigma^*$ und L_2 eine nicht-kontextfreie Sprache.

Erstellung Kellerautomat aus Grammatik

Aufgabe G8.1 (Kellerautomaten)

Konstruieren Sie einen Kellerautomaten, der die folgende kontextfreie Sprache erkennt:

$$L = \{a^i b^j c^k : i = j + k\}.$$

Lösung: Sei $\mathcal{P}=(\Sigma,Q,q_a,\Delta,A,\Gamma,\#)$ der Kellerautomat mit Eingabealphabet $\Sigma=\{a,b,c\}$, Zustandsmenge $Q=\{q_a,q_b,q_c\}$, q_a als Anfangszustand, $A=\{q_a,q_b,q_c\}$ als Menge der akzeptierenden Zustände, Kelleralphabet $\Gamma=\{\#,\|\}$ und Übergangsrelation Δ gegeben durch

$$\{ (q_a, \#, \varepsilon, \varepsilon, q_a) \\ (q_a, \#, a, |, q_a) \\ (q_a, |, a, ||, q_a) \\ (q_a, |, b, \varepsilon, q_b) \\ (q_a, |, c, \varepsilon, q_c) \\ (q_b, |, b, \varepsilon, q_b) \\ (q_c, |, c, \varepsilon, q_c) \\ (q_c, |, c, \varepsilon, q_c) \}.$$

Dann erkennt \mathcal{P} die Sprache L.

Idee: pro Buchstabe wird ein Zustand benötigt, im Stack wird der a-Zähler mit | erhöht beim Lesen von a und beim Lesen von b und c jeweils um eins verringert. Wenn der Stack leer ist, gilt i = j + k und damit ist der jeweilige Zustand akzeptierend. Die Zustandsübergänge sind derart, dass nach dem Einlesen von b nur b,c und nach Lesen von c nur weitere c akzeptiert werden.