Department of Engineering Technology ET-426

Course Number and Name: ET 426, Analysis and Design of Machine Elements

Credits & Contact Hours

Credits	Lectures	Lab	Contact Hours
3.0	(2) 50 min lectures/ week	(1) 2.5 hour /week	50

Instructors Name: Manuel Gomez

Textbook title, *Machine Elements in Mechanical Design* (4th Ed)

author and year: Mott, Robert L., 2004

Specific Course Description:

a. Course Catalog Description - Analysis of machine elements including columns, springs, shafts, coupling mechanisms, gears, belts and chain drives, clutches, brakes, and bearings.

b. Prerequisites: ET 310 (Applied Strength of Materials) and Math 236 (Calculus II)

c. This course is required for MET degrees.

Course Goals & Objectives: To familiarize students with how the fundamentals of applied strength of materials are applied to analyzing machine components, and to introduce additional advanced topics such as fatigue, tolerance & fits, fasteners, and the sizing of shafts for power transmission. Further, to familiarize students with the characteristics of machine components.

Related ABET Objectives & Course Outcomes: An ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline, to include the following:

Student Outcomes of Instruction from MET (x.)	Student Outcomes /Criteria 3
(1.) Algebra, trigonometry, Boolean mathematics, calculus,	3.a, 3.b, 3.d, 3.f
statistics and probability, fundamental principles and concepts of	
science and engineering technology, good practice in problem	
solving, and methods of standard practice in the analysis and	
applied design of mechanical systems as applied to analysis and	
design of machine elements.	
(3.) Basic knowledge of manufacturing processes, engineering	3.a, 3.b, 3.c, 3.d, 3.e, 3.f, 3.g
materials and their selection, measuring tools, machine tools,	
quality systems and processes, process improvement methods,	
economic principles, cost analysis techniques, and project	
management relevant to mechanical technology areas	
(4.) Current software corresponding to good practice in the	3.a, 3.b, 3.c, 3.d, 3.f, 3.k
application of mechanical engineering technologies. Software	
application functions to include: word processing, spreadsheet	
calculations, graphing, presentation media, computer assisted	
drafting and manufacturing, manufacturing processes, statistics,	
data acquisition, project management, and the analysis and	
applied design of systems involving mechanisms, machines, or	
fluid thermal processes.	

Course Topics Class Hours

Course Topics Class Hours	
Machine Design Course Introduction	1
Mechanical Design/Materials in Machine Design	1
Lab: Introduction to MathCAD	2.5
Stress Analysis	2
Lab: Intro to Finite Element Analysis (FEA)/Solidworks	2.5
Combined Stresses and Mohr's Circle	1
Design for Different Types of Loading	1
Lab: FEA 1 and validate model using analytical solution	2.5
Columns, Test review	1
Lab: FEA 2 and validate model using analytical solution	2.5
Belt Drives and Chain Drives, Kinematics of Gears	2
Exam #1	2
Gear Design	1
Lab: Belt Drives and Chain Drives/ Amatrol Bench – design/build	2.5
belt drive system and analyze input/output speeds	
Keys, Couplings, and Seals	1
Lab: Gear Layout Analysis/ Solidworks	2.5
Shaft Design	1
Lab: Gear Analysis/ Amatrol Bench – design/build gear drive train	2.5
and analyze the input/output speeds	
Tolerance and Fits, Test Review	1
Lab: Shaft Design FEA with Solidworks	2.5
Bearings	1
Design Project Start (Design a Power Transmission Drive system to achieve	
the desired output speed. Use analytical analysis and solidworks to design	
all of the machine elements for the drive system. A technical report and	
powerpoint presentation are required. Work in teams of 3)	
Exam #2	2
Linear Motion Elements, Fasteners & Springs	1
Lab: Design Project continued	2.5
Machine Frames, Bolted Connections and Welded Joints	1
Lab: Design Project continued	1
Electric Motors	2.5
Lab: Electric Motor Familarization – Electric Motor Analysis Bench	2.5
Final Exam	2

Prepared by Manuel Gomez, 01/11/2011