NAME: CAR	KEYA	DAPHME	index noΩ.8.7
SIGNATIDE:	AHILL	1	

545/2 CHEMISTRY PAPER 2 2023 2 HOURS

ERETA EDUCATION CONSULTS

JOINT MOCK EXAMINATIONS 2023

Uganda Certificate of Education

CHEMISTRY
PAPER 2
2 HOURS

Instructions to candidates;

Section A consists of 10 structured questions. Attempt all questions in this section.

Answers to these questions **must** be written in the spaces provided.

Section **B** consists of **4** semi-structured questions. Attempt any <u>two</u> questions from this section. Answers to the section must be written in the answer booklets provided. In both sections, all working must be shown clearly.

FOR EXAMINER'S USE ONLY														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION A

1. a) Define the term rusting.	(1mark)
b) State one word, which means;	
i) a method of preventing rusting by covering iron with zinc	. (1mark)
ii) iron sheet coated with tin.	(1mark)
a) Iron about coated with gine is more grantier to the one of	
c) Iron sheet coated with zinc is more superior to the one coareason.	(1mark)
	•
d) State one reason why it is important to prevent rusting.	(1mark)
2. Diamond and graphite are crystalline allotropes of carbo	on.
a) State;	
i) What is meant by the term "allotrope."	(1mark)
· · · · · · · · · · · · · · · · · · ·	
ii) one difference between diamond and graphite.	(1mark)
iii) one use of diamond	(1mark)
iv) one use of graphite	(1mark)
1-1 2) NI	
b) i) Name one amorphous allotrope of carbon.	(½ mark)
ii) State and see of agreem voi	
ii) State one use of the amorphous allotrope of carbon you	(½ mark)

3. a) Name;	er "Smart of a d
i) the fundamental particle of an atom which is;	
* positively charged	(½ mark)
* negatively charged	(½ mark)
* not charged	(½ mark)
ii) The particle, which is involved when an atom reacts w	with another atom.
	(½ mark)
iii) The particle(s) which determine(s) the mass of an ato	om. (1mark)
b) State what a charged atom is called, when it bears;	
i) a negative charge	(1mark)

ii) a positive charge	(1mark)
4. a) State the condition(s) under which sodium can rea	ct with oxygen to form
sodium peroxide.	(1mark)

b) Write equation for the reaction;	
i) leading to the formation of sodium peroxide under the	condition(s) which you
have stated in (a)	½ marks)
	,
ii) between sodium peroxide and water.	
	(1 ½ marks)
c) State the practical application of the reaction in b(ii)	(1mark)

and a mixture of iron	and 🔻
5. a) State one difference between iron(II) sulphide and a mixture of iron sulphur other than their reactions with acids. (1mark)	
of dilute sulphuric acid with;	
b) Write equation to show the reaction (1½ marks)	
i) a mixture of iron and sulphur. (1½ marks)	
(1½ marks)	
ii) iron(II) sulphide	
c) i) Indicate which one of the reactions in (b) should NOT be carried or (½ mark)	it in the
open.	
ii) Suggest one reason why the reaction you have indicated in c(i) show (1/2 mark)	ald not
ii) Suggest one reason why the reaction y)
be carried in the open.	
6. a) In the laboratory preparation of figures	olution
was added to the reaction mixture. (1mark)	
i) Identify the components of the reaction was added to the reaction	
ii) State why copper (II) sulphate solution was added to the reaction	mixture.

b) i) Write equation for the combustion of hydrogen. (1mar	
b) i) Write equation for the combustion of Thy by	b(i) can be
ii) State one way by which purity of the product of the reaction in	nark)
ascertained.	
a) Dry hydrogen was passed over strong. (1½	mark)
	mark
i) State what was observed.	
i) State what was observed. ii) Write equation for the reaction that took place. (1	

7. a) Chlorine was bubbled into aqueous iron(II) chloride.	(1mark)		
n State what was observed.			
ii) Write equation for the reaction that took place.	(1 ½ marks)		
b) i) Name one reagent that can be used to distinguish iro			
the product of the reaction in a(ii)	mark)		
ii) State what would be observed, if iron(II) chloride and the			
reaction in a(ii) were treated separately with the reagent	which you have		
named in b(i).	(2marks)		
8. a) Both copper and lead(II) bromide are good conductor			
the particles by means of which electricity is conducted			
i) lead(II) bromide.	(½ mark)		
	2 4		
ii) a copper strip	(½ mark)		
· · · · · · · · · · · · · · · · · · ·			
b) i) State the condition(s) under which lead(II) bromide			
	½ mark)		

	i outy X.		

ii) Briefly explain your answer in b(i)	,
c) Lead(II) bromide was electrolyzed between two carb	on rods. Write equati
for the reaction that took place at the anode.	(1mark)

9. a) Ethanol C_2H_5OH , undergoes dehydration forming	g a gas G
i) Name one common laboratory reagent that can cau ethanol.	se dehydration of
	(½ mark)
ii) Write equation to all	
ii) Write equation to show the formation of G.	(1mark)
b) A liquid I was and to the	
b) A liquid, L was produced when bromine solution in was added to G.	tetrachloromethane
i) Name L	(1
	(1mark)
ii) State the appearance of L.	(1mark)
	,
c) Write equation for the complete combustion of G.	(1½ marks)
	•
10. When magnesium sulphate solution was added to	
salt, X, no apparent change took place in the cold; but	1
	on neating the
resultant mixture, a white precipitate appeared.	on neating the
	(1mark)
resultant mixture, a white precipitate appeared.	

b) Write ionic equation for the reaction that took place; if an	y, when			
i) magnesiumsulphate solution was added to cold solution of X.				
	(1½ marks)			
ii) the resultant mixture in b(i) was heated.	(1 ½ marks)			
	······			
c) State;				
i) one practical application of the procedures described in b	(i) and (ii).			
	(½ mark)			
ii) the industrial application of the reaction in b(ii)	(½ mark)			
SECTION B				
Answer any two questions only in this Section. Extra ques	tions answered will			
NOT be marked.				
2				
11. A pure dry sample of hydrogen chloride was prepared in	n the laboratory by			
adding concentrated sulphuric acid onto a crystalline solid,				
then warming the mixture. The gas evolved was passed thro				
before it was collected;				
i) Identify Q	(½ mark)			
ii) Name one suitable piece of apparatus by means of which	concentrated			
sulphuric acid was added onto Q.	(½ mark)			
iii) Name Z, and state its role.	(1mark)			
, and state its luie.	*			

- iv) Give a reason why Z was preferred for its role, which you have stated in (ii) (1 mark)
- v) State the method by which hydrogen chloride was collected; and give a reason. (1mark)
- vi) Write equation for the reaction, which led to the formation of hydrogen chloride.

 (1½ marks)
- b) State;
- i) What an aqueous hydrogen chloride is called. (½ mark)
- ii) A suitable procedure for preparing a sample of aqueous hydrogen chloride in the laboratory.

 (1 ½ marks)
- c) Two equal masses of magnesium powder were added separately to solutions of hydrogen chloride in water and methylbenzene, respectively. State what was observed in each case; and give a reason for each observation that you have stated.

 (4marks)
- d) Dry hydrogen chloride was bubbled into silver nitrate solution that was acidified with nitric acid. Write ionic equation for the reaction that took place.

(1 ½ marks)

- e) A mixture of manganese(IV) oxide and a concentrated hydrogen chloride solution as heated.
- i) Write equation for the reaction that took place.

(1 ½ marks)

ii) State the practical application of the reaction in e(i).

(½ mark)

- 12. a) A crystalline carbonate of sodium, formula, Na₂CO₃.nH₂O, decomposed into a white Powderly residue, Y, when it was heated to constant mass. Write the name and formula of Y. (1mark)
- b) When 6.7g of a sample of the crystalline sodium carbonate in (a) was heated to constant mass, 2.7g of Y was collected.
- i) Calculate the value of n in the formula Na₂CO₃.nH₂O.

(5marks)

(H=1, C=12, O=16, Na=23)

- ii) Write the correct name of the crystalline sodium carbonate. (1mark)
 c) i) Name **two** substances, which when reacted together would be most suitable for preparing a non-basic zinc carbonate. (1mark)
 ii) Write equation for the reaction that would lead to formation of the zinc carbonate in c(i).
- d) State what would be observed, and write equation for the reaction that would take place, if zinc carbonate was heated strongly; then allowed to cool down afterwards.

 (3marks)
- e) i) Name one reagent that can be used to differentiate between zinc ions and lead(ii) ions in solution.

 (½ mark)
- ii) state what would be observed in each case, if zinc ion and lead(II) ion were treated separately with the reagent you have named in e(i) (2marks)
- 13. a) During a laboratory preparation of ammonia, ammonium chloride was treated with a Powderly solid R. Write;
- i) the name of R. (½ mark)
- ii) equation for the reaction that led to the formation of ammonia and state the condition(s) for the reaction. (2marks)
- b) Concentrated sulphuric acid, fused calcium chloride and calcium oxide are compounds commonly used as drying agents in the laboratory.
- i) State which one of the compounds is used as a drying agent for ammonia.

 (½ mark)
- ii) Explain why the other two compounds are **not** suitable for drying ammonia.

 (4 ½ marks)
- c) Give a reason why ammonia cannot be collected over water, and write equation to illustrate. (2marks)
- d) Write an ionic equation to show the reaction that would take place if few bubbles of ammonia were passed into copper(II) sulphate solution.

(1½ marks)

- e) A lot more bubbles of ammonia were passed into the resultant mixture in
- (1.1/2 marks)
- ii) Briefly explain your observation(s) in e(i). (No equation is required). (2marks) (½ mark)
- f) State one industrial use of ammonia.
- 14. a) conversion of sulphur dioxide into sulphur trioxide by contact process is a reversible reaction, which takes place in the presence of a finely divided catalyst; under low temperature and high pressure conditions.
- i) State what is meant by the term "reversible reaction", and write equation to the formation of sulphur trioxide by the contact process. (2 ½ marks)

- ii) Name the catalyst used in the contact process and suggest why it has to be finely divided.
- iii) In each case, give a reason as to why formation of sulphur trioxide by contact process is favoured by low temperature and high pressure. (2marks)

y = "

- b) Explain how sulphuric acid is obtained from the sulphur trioxide formed by contact process. (No equation(s) is/are required)
- c) 50.0cm³ of a 4Msulphuric acid was measured out into a volumetric flask. Distilled water was then added to the acid until the total volume of the dilute (2marks)
- i) the concentration of the dilute sulphuric acid solution in moldm⁻³

- ii) the volume of a sodium hydroxide solution, concentration of which is 1moldm⁻³, that would be required to react completely with 12.5cm³ of the (2 ½ marks) dilute sulphuric acid solution.
- d) State what would be observed and write ionic equation for the reaction that would take place, if dilute sulphuric acid was added to barium chloride solution.

END