## ÉCOLE D'ACTUARIAT UNIVERSITÉ LAVAL

# Travail pratique 1

Guillaume MICHEL Nathanaël PELCHAT Mikael ROBERTSON Olivier TURCOTTE

AUTOMNE 2018

1 Sommaire exécutif

# Table des matières

| 1            | Sommaire exécutif                         |    |  |  |  |  |
|--------------|-------------------------------------------|----|--|--|--|--|
| <b>2</b>     | Analyse des données                       |    |  |  |  |  |
| 3            | Modèle proposé                            | 6  |  |  |  |  |
|              | 3.1 Équation                              | 6  |  |  |  |  |
|              | 3.2 Traitement des variables qualitatives | 6  |  |  |  |  |
|              | 3.3 Interactions                          | 6  |  |  |  |  |
|              | 3.4 Interprétation                        | 6  |  |  |  |  |
|              | 3.5 Statistiques                          | 6  |  |  |  |  |
| 4            | Analyse des résidus                       | 8  |  |  |  |  |
|              | 4.1 Linéarité                             | 8  |  |  |  |  |
|              | 4.2 Homogénéité                           | 9  |  |  |  |  |
|              | 4.3 Indépendance                          | 9  |  |  |  |  |
|              | 4.4 Normalité                             | 10 |  |  |  |  |
| 5            | Prévisions                                | 11 |  |  |  |  |
| 6            | Recommendations                           |    |  |  |  |  |
| Aı           | nnexes                                    | 11 |  |  |  |  |
| A            | Erreurs de données                        | 11 |  |  |  |  |
| В            | 3 Transformation                          |    |  |  |  |  |
| $\mathbf{C}$ | Sélection des variables                   |    |  |  |  |  |

# 2 Analyse des données

Voici les variables disponibles afin d'effectuer un modèle prédictif de la perte économique :

Tableau 1 – Description des variables

| Variables | Type                 | Description                               |  |  |  |
|-----------|----------------------|-------------------------------------------|--|--|--|
| Casenum   | Valeur entière       | Numéro d'identification de la             |  |  |  |
|           |                      | réclamation                               |  |  |  |
| ATTORNEY  | Variable indicatrice | Indique si le réclamant est représenté    |  |  |  |
|           |                      | par un avocat                             |  |  |  |
| CLMSEX    | Variable indicatrice | Indique le sexe du réclamant              |  |  |  |
| Marital   | Variable polytomique | Indique le statut marital du réclamant    |  |  |  |
| CLMINSUR  | Variable polytomique | Indique si le réclamant est assuré        |  |  |  |
| Seatbelt  | Variable polytomique | Indique si le réclamant portait une cein- |  |  |  |
|           |                      | ture de sécurité                          |  |  |  |
| CLMAGE    | Valeur entière       | Âge du réclamant                          |  |  |  |
| Loss      | Valeur continue      | Perte économique totale du réclamant      |  |  |  |
|           |                      | en milliers de dollars                    |  |  |  |

Ces variables sont en majorité qualitative. Une analyse de fréquences de celles-ci permet d'avoir un meilleur ressenti quant à leurs interaction avec la variable exogène Loss :



```
##
           : 0.0
                              0.005
                   Min.
##
    1st Qu.:21.0
                   1st Qu.:
                              0.640
   Median :33.0
##
                   Median :
                              2.331
##
   Mean
           :32.6
                   Mean
                              5.965
##
    3rd Qu.:41.0
                   3rd Qu.:
                              3.998
##
   Max. :95.0
                   Max. :1067.697
```

## 3 Modèle proposé

### 3.1 Équation

Le modèle choisit est donné par l'équation suivante

```
\ln Y = \beta_0 + \beta_1 x_{i,CLMAGE} + \beta_2 x_{i,ATTORNEY} + \beta_{3,1} x_{i,MARITAL,2} + \beta_{3,2} x_{i,MARITAL,3} + \beta_{3,3} x_{i,MARITAL,4} + \beta_4 x_{i,SEATBELT} + \beta_5 x_{i,CLMAGE} * x_{i,ATTORNEY}
```

### 3.2 Traitement des variables qualitatives

Les variables qualitatives du modèle, soit ATTORNEY, SEATBELT et MARITAL, ont chacune été converti en factor car c'est le type de données usuelle de R afin d'effectuer des régression linéaire comportant des variables qualitatives.

#### 3.3 Interactions

Suite à la selection des variables, il nous a été possible de déterminer qu'il n'y avait qu'une seule interaction non-redondante (qui ne cause pas de multico-linéarité) et significative au modèle. Il s'agit de l'interaction entre les variables CLMAGE et ATTORNEY qui représentent respectivement l'âge du réclamant ou de la réclamante et la présence d'un avocat pour la réclamation. Cette interaction est logique car en effet, l'âge d'un réclamant peut influencer la décision de prendre un avocat.

### 3.4 Interprétation

### 3.5 Statistiques

Voici les intervalles de confiances à 95% pour chacun des paramètres du modèle :

Tableau 2 – Intervalles de confiances des paramètres du modèle

|               | 2.5%        | 97.5%        |
|---------------|-------------|--------------|
| $\beta_0$     | 0.28583388  | 1.262939359  |
| $\beta_1$     | 0.01334127  | 0.026414523  |
| $\beta_2$     | -1.32630903 | -0.708680308 |
| $\beta_{3,1}$ | -0.51501270 | 0.340256198  |
| $\beta_{3,2}$ | -0.72345837 | 0.148361570  |
| $\beta_{3,3}$ | -1.69700396 | -0.155725880 |
| $\beta_4$     | 0.46855029  | 1.528929789  |
| $\beta_5$     | -0.02025211 | -0.003201663 |

De plus, voici le  $R_a^2$ : 0.2754. Ainsi, une grande variabilité de la variable endogène n'est pas expliqué par le modèle. Ceci est en parti dû au grand nombre

de variables qualitives dans le modèle qui n'ont pas assez de valeurs possibles afin de réfléter l'étendue des valeurs possible de la perte économique.

Voici la table anova du modèle :

Tableau 3 – Table anova du modèle

| Source | Dl   | $\mathbf{SS}$ | MS       | ${f F}$ |  |
|--------|------|---------------|----------|---------|--|
| SSR    | 7    | 809.4939      | 115.642  | 73.48   |  |
| SSE    | 1328 | 2089.85386    | 1.573685 |         |  |
| SST    | 1335 | 2899.348      | 2.171796 |         |  |

Selon la statistique F du tableau 3, on peut effectuer un test de validité globale de la régression linéaire. Ce faisant, nous obtenons une p-value inférieur à  $2.2*10^{-16}$  et donc nous concluons que la régression est tout à fait valide.

## 4 Analyse des résidus

## 4.1 Linéarité



FIGURE 1 – Résidus studentisé en fonction de CLMAGE

## 4.2 Homogénéité



FIGURE 2 – Résidus studentisé en fonction de Y

## 4.3 Indépendance

```
##
## Durbin-Watson test
##
## data: modele
## DW = 1.9557, p-value = 0.2091
## alternative hypothesis: true autocorrelation is greater than 0
```

## 4.4 Normalité

## Normal Q-Q Plot



Figure 3 – Quantile théorique versus quantile pratique

### 5 Prévisions

Pour répondre à la question du directeur, un individu répondant aux caractéristiques suivantes : CLMAGE=45, SEATBELT=1, ATTORNEY=1, MARITAL="single" et CLMINSUR = 1, aura selon le modèle actuel une perte économique de :  $Y \in [0.3378229, 46.89545]$  à un niveau de 95%.

Avec les même caractéristiques, on obtient :  $E[Y] \in [3.369781, 4.701301]$ . Ainsi, on constate la grande variabilité de la perte économique en comparant les différentes bornes des deux prévisions.

Tableau 4 – Intervalles de confiances des moyennes de la perte économique totale prévues

| CLMAGE | ${\bf MARITAL}$ | CLMSEX       | SEATBELT | CLMINSUR | ATTORNEY | 2.5% | 97.5% |
|--------|-----------------|--------------|----------|----------|----------|------|-------|
| 70     | single          | M            | 1        | 1        | 1        | 4.83 | 8.86  |
| 45     | married         | ${ m M}$     | 1        | 1        | 1        | 4.26 | 5.54  |
| 45     | divorced        | ${f M}$      | 1        | 1        | 1        | 3.47 | 8.10  |
| 45     | widowed         | ${f M}$      | 1        | 1        | 1        | 1.09 | 4.05  |
| 45     | $_{ m single}$  | $\mathbf{F}$ | 1        | 1        | 1        | 3.37 | 4.70  |
| 45     | $_{ m single}$  | ${f M}$      | 2        | 1        | 1        | 6.26 | 18.65 |
| 45     | $_{ m single}$  | ${f M}$      | 1        | 2        | 1        | 3.37 | 4.70  |
| 45     | $_{ m single}$  | ${f M}$      | 1        | 1        | 2        | 0.72 | 1.00  |
| 22     | $_{ m single}$  | $\mathbf{F}$ | 2        | 1        | 2        | 1.11 | 3.28  |

### 6 Recommendations

## Annexes

### A Erreurs de données

La base de données originelles utilisé dans la création du modèle a dû subir quelques modifications afin d'être utilisable. Voici les quelques erreurs répertoriés ainsi que les techniques utilisés pour les rectifier :

#### 1. Fautes d'ortographe

#### (a) MARITAL

Cette colonne contient à l'origine plusieurs faute de frappes des états maritaux. Afin d'unifier le tout, il a fallut substituer les états dans ces quatres variables distinctes : divorced, widowed, married, single.

### (b) CLMSEX

Cette colonne supposé contenir les états  ${\bf F}$  ou  ${\bf M}$  contient à l'origine quelques états male. Afin d'unifier le tout, ces états ont été substituer en  ${\bf M}$ .

### 2. Données aberrantes

### (a) LOSS

Cette colonne contient une valeur très extrême de 1067.697. En analysant la figure 4, on voit bien que la valeur est très énorme à comparer au reste. Néanmoins, comme il s'agit de perte économique aux États-Unis suite à une blessure corporelle, cette valeur est possible donc nous ne l'avons pas retiré de l'étude.



FIGURE 4 – Boxplot de LOSS

## (b) CLMAGE

Cette colonne contient une valeur de 610, valeur impossible selon la description de la variable, soit l'âge du réclamant. Afin de ne pas fausser les résultat, cette valeur a été modifié pour 61.

## **B** Transformation





C Sélection des variables