

CS 422: Data Mining

Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Association Analysis (Rules)

- One of the early examples of data mining.
- Interested in observing which objects occur together:
 - Grocery shopping (market-basket analysis)
 - Website visits
- Notice that we are not recommending similar items, just seeing which items co-occur.
 - Recommendation is for a later lecture.

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction. (Note: Implication means co-occurrence, not causality!)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$${Diaper} \rightarrow {Beer}$$

 ${Milk, Bread} \rightarrow {Eggs,Coke}$
 ${Beer, Bread} \rightarrow {Milk}$

Antecedent → Consequent

Binary representation of market basket data

Preliminaries

Let $\mathcal{I} = \{x_1, x_2, ..., x_m\}$ be a set of elements called *items*.

A set $X \subseteq \mathcal{I}$ is called an *itemset*.

An itemset of cardinality k is called a k-itemset.

 $\mathcal{I}^{(k)}$ is the set of all k-itemsets.

Let $\mathcal{T} = \{t_1, t_2, ..., t_n\}$ be another set of elements called transaction identifiers, or tids.

A set $T \subseteq \mathcal{T}$ is called an *tidset*.

A transaction is a tuple of the form (t, X) where $t \in T$ is a unique transaction identifier, and X is an itemset.

Preliminaries

Let $\mathcal{I} = \{x_1, x_2, ..., x_m\}$ be a set of elements called *items*.

A set $X \subseteq \mathcal{I}$ is called an *itemset*.

An itemset of cardinality k is called a k-itemset.

 $\mathcal{I}^{(k)}$ is the set of all k-itemsets.

Let $\mathcal{T} = \{t_1, t_2, ..., t_n\}$ be another set of elements called transaction identifiers, or tids.

A set $T \subseteq \mathcal{T}$ is called an *tidset*.

A transaction is a tuple of the form (t, X) where $t \in T$ is a unique transaction identifier, and X is an itemset.

Database Representation

A binary database **D** is a binary relation on the set of tids and items, that is, $\mathbf{D} \subseteq \mathcal{T} \times \mathcal{I}$. We say that tid $t \in \mathcal{T}$ contains item $x \in \mathcal{I}$ iff $(t, x) \in \mathbf{D}$. In other words, $(t, x) \in \mathbf{D}$ iff $x \in X$ in the tuple $\langle t, X \rangle$. We say that tid t contains itemset $X = \{x_1, x_2, \dots, x_k\}$ iff $(t, x_i) \in \mathbf{D}$ for all $i = 1, 2, \dots, k$.

For a set X, we denote by 2^X the powerset of X, that is, the set of all subsets of X. Let $\mathbf{i}: 2^T \to 2^T$ be a function, defined as follows:

$$\mathbf{i}(T) = \{x \mid \forall t \in T, \ t \text{ contains } x\}$$
(8.1)

where $T \subseteq \mathcal{T}$, and $\mathbf{i}(T)$ is the set of items that are common to *all* the transactions in the tidset T. In particular, $\mathbf{i}(t)$ is the set of items contained in tid $t \in \mathcal{T}$.

Preliminaries

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

x	A	В	С	D	Ε
	1	1	2	1	1
	3	2	4	3	2
t (x)	4	3	5	5	3
	5	4	6	6	4
		5			5
		6			

(a) Binary database

(b) Transaction database

(c) Vertical database

Figure 8.1. An example database.

Preliminaries

Support and Frequent Itemsets

The *support* of an itemset X in a dataset \mathbf{D} , denoted $sup(X, \mathbf{D})$, is the number of transactions in \mathbf{D} that contain X:

$$sup(X, \mathbf{D}) = |\{t \mid \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} \text{ and } X \subseteq \mathbf{i}(t)\}| = |\mathbf{t}(X)|$$

The *relative support* of *X* is the fraction of transactions that contain *X*:

$$rsup(X, \mathbf{D}) = \frac{sup(X, \mathbf{D})}{|\mathbf{D}|}$$

$$sup({A,B}) = 4$$
 $rsup({A,B}) = 4/6 = 0.67$
 $sup({B}) = 6$ $rsup({B}) = 6/6 = 1.00$

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	1 (t)
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(a) Binary database

(b) Transaction database

Preliminaries

Support and Frequent Itemsets

The *support* of an itemset X in a dataset \mathbf{D} , denoted $sup(X, \mathbf{D})$, is the number of transactions in \mathbf{D} that contain X:

$$sup(X, \mathbf{D}) = |\{t \mid \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} \text{ and } X \subseteq \mathbf{i}(t)\}| = |\mathbf{t}(X)|$$

The *relative support* of *X* is the fraction of transactions that contain *X*:

$$rsup(X, \mathbf{D}) = \frac{sup(X, \mathbf{D})}{|\mathbf{D}|}$$

$$sup({A,B}) = 4$$
 $rsup({A,B}) = 4/6 = 0.67$
 $sup({B}) = 6$ $rsup({B}) = 6/6 = 1.00$

We use \mathcal{F} to denote the set of all itemsets, and $\mathcal{F}^{(k)}$ to denote the set of k-itemsets.

Thus, in our transaction database shown above,

$$\mathcal{F}^{(3)} = \{\text{BCE, BCD}\}\$$

 $\mathcal{F}^{(4)} = \{\text{ABDE}\}\$

$$\mathcal{F}^{(5)} = \{ABCDE\}$$

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(a) Binary database

(b) Transaction database

Preliminaries

Frequent itemsets: An itemset X is frequent if $sup(X) \ge minsup$, where minsup is a user specified minimum support threshold. (If minsup is a fraction, then relative support is implied.)

D	A	B	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(a) Binary database

(b) Transaction database

Example: Let minsup = 3 (in relative support term, minsup = 0.5). The set of all 19 frequent itemsets grouped by their support value is:

Table 8.1. Frequent itemsets with minsup = 3

sup	itemsets
6	В
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Preliminaries

Association Rules

An association rule is an expression $X \xrightarrow{s,c} Y$, where X and Y are itemsets and they are disjoint, that is, $X, Y \subseteq \mathcal{I}$, and $X \cap Y = \emptyset$. Let the itemset $X \cup Y$ be denoted as XY. The support of the rule is the number of transactions in which both X and Y co-occur as subsets:

$$s = sup(X \longrightarrow Y) = |\mathbf{t}(XY)| = sup(XY)$$

The *relative support* of the rule is defined as the fraction of transactions where *X* and *Y* co-occur, and it provides an estimate of the joint probability of *X* and *Y*:

$$rsup(X \longrightarrow Y) = \frac{sup(XY)}{|\mathbf{D}|} = P(X \land Y)$$

The *confidence* of a rule is the conditional probability that a transaction contains Y given that it contains X:

$$c = conf(X \longrightarrow Y) = P(Y|X) = \frac{P(X \land Y)}{P(X)} = \frac{sup(XY)}{sup(X)}$$

A rule is frequent if the itemset XY is frequent, that is, $sup(XY) \ge minsup$ and a rule is strong if $conf \ge minconf$, where minconf is a user-specified minimum confidence threshold.

Preliminaries

Table 8.1. Frequent itemsets with minsup = 3

sup	itemsets
6	В
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Association Rules

An association rule is an expression $X \xrightarrow{s,c} Y$, where X and Y are itemsets and the disjoint, that is, $X, Y \subseteq \mathcal{I}$, and $X \cap Y = \emptyset$. Let the itemset $X \cup Y$ be denoted as XY. The support of the rule is the number of transactions in which both X and Y co-occur as subsets:

$$s = \sup(X \longrightarrow Y) = |\mathbf{t}(XY)| = \sup(XY)$$

The *relative support* of the rule is defined as the fraction of transactions where *X* and *Y* co-occur, and it provides an estimate of the joint probability of *X* and *Y*:

$$rsup(X \longrightarrow Y) = \frac{sup(XY)}{|\mathbf{D}|} = P(X \land Y)$$

The *confidence* of a rule is the conditional probability that a transaction contains Y given that it contains X:

$$c = conf(X \longrightarrow Y) = P(Y|X) = \frac{P(X \land Y)}{P(X)} = \frac{sup(XY)}{sup(X)}$$

A rule is frequent if the itemset XY is frequent, that is, $sup(XY) \ge minsup$ and a rule is strong if $conf \ge minconf$, where minconf is a user-specified minimum confidence threshold.

Example: BC
$$\rightarrow$$
 E.
 $sup(BC \rightarrow E) = sup(BCE) = 3$
 $conf(BC \rightarrow E) = sup(BCE)$

- Goal of Association Rule Mining: Given a set of transactions, T, find all rules having:
 - support >= minsup
 - confidence >= minconf
- How do we get there?
- Two steps:
 - Frequent itemset generation: find all items that satisfy *minsup* threshold (frequent itemsets). (Is computationally expensive!!)
 - Rule generation: extract all high-confidence rules from the frequent itemsets (strong rules).

Frequent Itemset Generation: Brute Force Method

Itemset lattice for $\mathcal{I} = \{A, B, C, D, E\}$. There are $2^{|\mathcal{I}|} = 32$ possible itemsets. The brute force method explores the entire itemset search space, regardless of minsup. If minsup = 3,

then the brute-force search method would output the set of frequent itemsets shown below.

Table 8.1. Frequent itemsets with minsup = 3

sup	itemsets
6	В
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Frequent Itemset Generation: Brute Force Method

ALGORITHM 8.1. Algorithm BRUTEFORCE

```
BRUTEFORCE (D, \mathcal{I}, minsup):

1 \mathcal{F} \leftarrow \emptyset // set of frequent itemsets

2 foreach X \subseteq \mathcal{I} do

3 |sup(X) \leftarrow \text{COMPUTESUPPORT}(X, \mathbf{D})|

4 |ifsup(X) \geq minsup \text{ then}

5 |\mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}|

6 return \mathcal{F}

COMPUTESUPPORT (X, \mathbf{D}):

7 sup(X) \leftarrow 0

8 foreach \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} do

9 |if X \subseteq \mathbf{i}(t) \text{ then}|

10 |sup(X) \leftarrow sup(X) + 1

11 return sup(X)
```

Frequent Itemset Generation: Brute Force Method

- Can we do better?
- Yes; thanks to the monotone property.

Let X and Y be two itemsets $\in \mathcal{I}$ such that $X \subseteq Y$. If so, then $\sup(X) \ge \sup(Y)$

E.g. X=ABCD, Y=ABCDE, then sup(ABCD) >= sup(ABCDE).

- The *Apriori* principle:
 - If an itemset is frequent, then all of its subsets must be frequent as well.

• The *Apriori* principle:

- Conversely, if an itemset is

infrequent, then all of its supersets must be infrequent as well.

Figure 8.3. Apriori: prefix search tree and effect of pruning. Shaded nodes indicate infrequent itemsets, whereas dashed nodes and lines indicate all of the pruned nodes and branches. Solid lines indicate frequent itemsets.

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

Approach

minsui

ALGORITHM 8.2. Algorithm APRIORI

23 return $C^{(k)}$

```
APRIORI (D, \mathcal{I}, minsup):
1 \mathcal{F} \leftarrow \emptyset
2 \mathcal{C}^{(1)} \leftarrow \{\emptyset\} // Initial prefix tree with single items
3 foreach i \in \mathcal{I} do Add i as child of \emptyset in \mathcal{C}^{(1)} with sup(i) \leftarrow 0
4 k \leftarrow 1 // k denotes the level
5 while C^{(k)} \neq \emptyset do
        COMPUTESUPPORT (C^{(k)}, \mathbf{D})
        foreach leaf X \in C^{(k)} do
             if sup(X) \ge minsup then \mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}
             else remove X from C^{(k)}
        C^{(k+1)} \leftarrow \text{EXTENDPREFIXTREE} (C^{(k)})
        k \leftarrow k + 1
12 return \mathcal{F}^{(k)}
    COMPUTESUPPORT (C^{(k)}, \mathbf{D}):
13 foreach \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} do
         foreach k-subset X \subseteq \mathbf{i}(t) do
             if X \in \mathcal{C}^{(k)} then sup(X) \leftarrow sup(X) + 1
    EXTENDPREFIXTREE (C^{(k)}):
16 foreach leaf X_a \in \mathcal{C}^{(k)} do
        foreach leaf X_b \in SIBLING(X_a), such that b > a do
             X_{ab} \leftarrow X_a \cup X_b
             // prune candidate if there are any infrequent subsets
             if X_i \in \mathcal{C}^{(k)}, for all X_i \subset X_{ab}, such that |X_i| = |X_{ab}| - 1 then
               Add X_{ab} as child of X_a with sup(X_{ab}) \leftarrow 0
        if no extensions from X_a then
             remove X_a, and all ancestors of X_a with no extensions, from \mathcal{C}^{(k)}
```

acii	1	1	1	0	1	1
	2	0	1	1	0	1
	3	1	1	0	1	1
p = 3	4	1	1	1	0	1
	5	1	1	1	1	1
	6	0	1	1	1	0

t	I (<i>t</i>)
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(a) Binary database

(b) Transaction database

Approach

ALGORITHM 8.2. Algorithm APRIORI

23 return $C^{(k)}$

```
APRIORI (D, \mathcal{I}, minsup):
1 \mathcal{F} \leftarrow \emptyset
2 \mathcal{C}^{(1)} \leftarrow \{\emptyset\} // Initial prefix tree with single items
3 foreach i \in \mathcal{I} do Add i as child of \emptyset in \mathcal{C}^{(1)} with sup(i) \leftarrow 0
4 k \leftarrow 1 \ / / \ k denotes the level
5 while C^{(k)} \neq \emptyset do
        COMPUTESUPPORT (C^{(k)}, \mathbf{D})
        foreach leaf X \in \mathcal{C}^{(k)} do
             if sup(X) \ge minsup then \mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}
             else remove X from C^{(k)}
        C^{(k+1)} \leftarrow \text{EXTENDPREFIXTREE} (C^{(k)})
       k \leftarrow k+1
12 return \mathcal{F}^{(k)}
   COMPUTESUPPORT (C^{(k)}, \mathbf{D}):
13 foreach \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} do
        foreach k-subset X \subseteq \mathbf{i}(t) do
             if X \in \mathcal{C}^{(k)} then sup(X) \leftarrow sup(X) + 1
    EXTENDPREFIXTREE (C^{(k)}):
16 foreach leaf X_a \in \mathcal{C}^{(k)} do
        foreach leaf X_b \in SIBLING(X_a), such that b > a do
             X_{ab} \leftarrow X_a \cup X_b
             // prune candidate if there are any infrequent subsets
             if X_i \in \mathcal{C}^{(k)}, for all X_i \subset X_{ab}, such that |X_i| = |X_{ab}| - 1 then
               Add X_{ab} as child of X_a with sup(X_{ab}) \leftarrow 0
        if no extensions from X_a then
             remove X_a, and all ancestors of X_a with no extensions, from \mathcal{C}^{(k)}
```

minsup = 3

D	A	B	C	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(a) Binary database

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

We now extend the prefix tree from Level k to Level k+1: given two frequent k-itemsets (X_a and X_b), with common k-1 length prefix (i.e., two siblings with common parent), we generate (k+1) length candidates $X_{ab} = X_a \cup X_b$.

- X_{ab} retained only if it has no infrequent subset.

Approach

ALGORITHM 8.2. Algorithm APRIORI

```
APRIORI (D, \mathcal{I}, minsup):

1 \mathcal{F} \leftarrow \emptyset

2 \mathcal{C}^{(1)} \leftarrow \{\emptyset\} // Initial prefix tree with single items

3 foreach i \in \mathcal{I} do Add i as child of \emptyset in \mathcal{C}^{(1)} with sup(i) \leftarrow 0

4 k \leftarrow 1 // k denotes the level

5 while \mathcal{C}^{(k)} \neq \emptyset do

6 | COMPUTESUPPORT (\mathcal{C}^{(k)}, D)

7 | foreach leaf X \in \mathcal{C}^{(k)} do

8 | if sup(X) \geq minsup then \mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}

9 | else remove X from \mathcal{C}^{(k)}

10 | \mathcal{C}^{(k+1)} \leftarrow \text{EXTENDPREFIXTREE} (\mathcal{C}^{(k)})

11 | k \leftarrow k+1

12 return \mathcal{F}^{(k)}
```

minsup = 3

A	B	C	D	E
1	1	0	1	1
0	1	1	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1
0	1	1	1	0
	1 0 1 1	1 1 0 1 1 1 1 1 1 1 1 1	1 1 0 0 1 1 1 1 0 1 1 1 1 1 1	1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1

(a) Binary database

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

EXTENDPREFIXTREE ($C^{(k)}$):

if no extensions from X_a then

remove X_a , and all ancestors of X_a with no extensions, from $\mathcal{C}^{(k)}$

23 return $C^{(k)}$

Approach

D	A	B	C	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(b) Transaction database

(a) Binary database

(b) Transaction database

AB(4)

ABD(3)

ABDE(3)

(d) C⁽⁴⁾

CS 422-04 vgurbani@iit.edu

Approach

ALGORITHM 8.2. Algorithm APRIORI

```
APRIORI (D, \mathcal{I}, minsup):
1 \mathcal{F} \leftarrow \emptyset
2 \mathcal{C}^{(1)} \leftarrow \{\emptyset\} // Initial prefix tree with single items
3 foreach i \in \mathcal{I} do Add i as child of \emptyset in \mathcal{C}^{(1)} with sup(i) \leftarrow 0
4 k \leftarrow 1 // k denotes the level
5 while C^{(k)} \neq \emptyset do
         COMPUTESUPPORT (C^{(k)}, \mathbf{D})
        foreach leaf X \in C^{(k)} do
              if sup(X) \ge minsup then \mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}
              else remove X from C^{(k)}
        C^{(k+1)} \leftarrow \text{EXTENDPREFIXTREE} (C^{(k)})
        k \leftarrow k + 1
12 return \mathcal{F}^{(k)}
    COMPUTESUPPORT (C^{(k)}, \mathbf{D}):
```

```
13 foreach \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} do
          foreach k-subset X \subseteq \mathbf{i}(t) do
                 if X \in \mathcal{C}^{(k)} then sup(X) \leftarrow sup(X) + 1
```

EXTENDPREFIXTREE ($C^{(k)}$):

23 return $C^{(k)}$

```
16 foreach leaf X_a \in \mathcal{C}^{(k)} do
       foreach leaf X_b \in SIBLING(X_a), such that b > a do
           X_{ab} \leftarrow X_a \cup X_b
           // prune candidate if there are any infrequent subsets
           if X_i \in \mathcal{C}^{(k)}, for all X_i \subset X_{ab}, such that |X_i| = |X_{ab}| - 1 then
             Add X_{ab} as child of X_a with sup(X_{ab}) \leftarrow 0
       if no extensions from X_a then
           remove X_a, and all ancestors of X_a with no extensions, from \mathcal{C}^{(k)}
```

D	A	В	С	D	E		
1	1	1	0	1	1		
2	0	1	1	0	1		
3	1	1	0	1	1		
4	1	1	1	0	1		
5	1	1	1	1	1		
6	0	1	1	1	0		
() = (

(a) Binary database

 $\mathbf{i}(t)$ ABDEBCEABDEABCEABCDEBCD

(b) Transaction database

Worst case complexity:

Complexity of Apriori: $\mathcal{O}(|\mathcal{I}|*D*2^{|\mathcal{I}|})$ as all itemsets may be frequent. In practice, much lower due to pruning.

I/O costs are much lower, to the tune of $\mathcal{O}(|\mathcal{I}|)$ database scans as opposed to $\mathcal{O}(2^{|\mathcal{I}|})$ scans for brute-force. In practice, the algorithm only requires l database scans, where l is the length of the longest frequent itemset.

Frequent Itemset Generation: FP-Growth Algorithm

- A more optimized tree-based approach to discovering frequent itemsets.
 - Radically different than Apriori.
 - Maps each transaction to a path in a compact data structure called a FP-tree.
 - Extracts frequent itemsets directly from the tree
 - No candidate itemset generation and pruning
 - No multiple database lookups
 - The more paths overlap, the more the tree compresses, saving space.

Frequent Itemset Generation: FP-Growth

A	gc	rit	hn	7

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	$\mathbf{i}(t)$		
1	ABDE		
2	BCE		
3	ABDE		
4	ABCE		
5	ABCDE		
6	BCD		

(a) Binary database

(b) Transaction database

No slides yet; follow on board.

Frequent Itemset Generation

How many itemsets?

k items generate up to 2^k-1 frequent itemsets.

Number of itemsets for k items =
$$\binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k} = 2^k - 1$$

For a 3-itemset {a,b,c} the candidate rules will be: $ab \rightarrow c$, $ac \rightarrow b$, $a \rightarrow bc$, $b \rightarrow ac$, ..., $abc \rightarrow 0$ and $0 \rightarrow abc$

How many rules?

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
 d = No. of items
For d = 3, R = 12
For d = 6, R = 602

$$d = No. of items$$

For $d = 3$, $R = 12$
For $d = 6$, $R = 602$

