

Baltic Way 2016

5 November 2016, Oulu, Finland

Version: Russian

Длительность олимпиады: $4\frac{1}{2}$ часа.

Вопросы по условиям: в первые 30 минут олимпиады.

Разрешается использовать только письменные принадлежности.

1. Найдите все пары простых чисел (p,q), для которых $p^3 - q^5 = (p+q)^2$.

2. Верны ли следующие два утверждения?

а) Для любого $k \geqslant 2$ среди любых k подряд идущих натуральных чисел найдется число, все простые делители которого не меньше k.

б) Для любого $k \geqslant 2$ среди любых k подряд идущих натуральных чисел найдется число, взаимно простое с остальными.

3. При каких $n=1,\ldots,6$ уравнение $a^n+b^n=c^n+n$ имеет решение в целых числах?

4. Даны натуральное число n и целые числа a, b, c, d, для которых a+b+c+d кратно n и $a^2+b^2+c^2+d^2$ кратно n. Докажите, что $a^4+b^4+c^4+d^4+4abcd$ кратно n.

5. Пусть p>3 — простое число, $p\equiv 3\pmod 4$). Для натурального числа a_0 определим последовательность $a_0,\,a_1,\,a_2,\,\dots$ по формуле $a_n=a_{n-1}^{2^n}$ при $n=1,2,\dots$ Докажите, что можно выбрать число a_0 так, что последовательность a_n ни с какого номера N не становится постоянной по модулю p.

6. Множество $\{1,2,\ldots,10\}$ разбито на три подмножества A,B,C. Для каждого из них подсчитано три числа: сумма элементов, произведение элементов, и общая сумма цифр всех его элементов. Могло ли случиться так, что из этих трех подмножеств A имеет строго наибольшую сумму, B имеет строго наибольшее произведение, а C — строго наибольшую сумму цифр?

7. Для каких натуральных n неравенство $3x^n + n(x+2) - 3 \ge nx^2$ выполнено при всех $x \in \mathbb{R}$?

8. Найдите все вещественные a, для которых существует непостоянная функция $f \colon \mathbb{R} \to \mathbb{R}$, при всех x удовлетворяющая одновременно двум условиям:

$$i) f(ax) = a^2 f(x)$$

ii)
$$f(f(x)) = af(x)$$
.

9. Найдите все четверки (a,b,c,d) вещественных чисел, которые удовлетворяют системе уравнений

$$\begin{cases} a^3 + c^3 = 2 \\ a^2b + c^2d = 0 \\ b^3 + d^3 = 1 \\ ab^2 + cd^2 = -6. \end{cases}$$

10. Пусть $a_{0,1},\,a_{0,2},\,\dots,\,a_{0,2016}$ — положительные числа. При $n\geqslant 0$ определим

$$a_{n+1,k} = a_{n,k} + \frac{1}{2a_{n,k+1}}$$
 при $1 \leqslant k < 2016$ и $a_{n+1,2016} = a_{n,2016} + \frac{1}{2a_{n,1}}$.

Докажите, что $\max_{1\leqslant k\leqslant 2016}a_{2016,k}>44.$

- **11.** Множество A состоит из 2016 натуральных чисел, все простые делители которых меньше 30. Докажите, что найдутся такие 4 различных числа $a, b, c, d \in A$, что abcd точный квадрат.
- **12.** Существует ли (не обязательно выпуклый) шестиугольник со сторонами 1, 2, 3, 4, 5, 6 (не обязательно в таком порядке), который можно разрезать а) на 31; б) на 32 правильных треугольника со стороной 1?
- **13.** На доске написано n единиц. За один ход можно заменить два числа на два экземпляра их суммы. Через h ходов все n чисел на доске стали равны m. Докажите, что $h \leqslant \frac{1}{2} n \log_2 m$.
- **14.** Куб $4 \times 4 \times 4$ составлен из 4^3 единичных кубиков, в каждом из которых записано целое число. За один ход можно выбрать единичный кубик и увеличить на 1 числа, стоящие во всех кубиках, соседних с ним по грани. Верно ли, что при любой начальной расстановке можно сделать все числа кратными трем?
- 15. На берегу Балтийского моря расположено 2016 портов. Между некоторыми из них действуют прямые двусторонние паромные рейсы. Известно, что невозможно найти последовательность прямых рейсов $C_1 C_2 \ldots C_{1062}$, в которой все порты C_1, \ldots, C_{1062} различны. Докажите, что можно выбрать два непересекащихся множества A и B по 477 портов в каждом так, чтобы ни один из портов A не был связан прямым рейсом ни с одним из портов B.
- **16.** В треугольнике ABC проведены биссектрисы CD и BE. Точки F и G выбраны на продолжениях сторон AB и AC за точки B и C соответственно так, что BF = CG = BC. Докажите, что $FG\|DE$.
- **17.** Дан выпуклый четырехугольник ABCD, в котором AB = AD. На диагонали AC выбрана точка T так, что $\angle ABT + \angle ADT = \angle BCD$. Докажите, что $AT + AC \geqslant AB + AD$.
- **18.** Дан параллелограмм ABCD, в котором $\angle BAD = 60^{\circ}$. Точки K и L середины отрезков BC и CD соответственно. Известно, что ABKL вписанный четырехугольник. Найдите $\angle ABD$.
- 19. На координатной плоскости рассматриваются треугольники, вершины которых имеют целые координаты. Разрешается передвинуть любую вершину треугольника параллельно противоположной стороне в другую точку с целыми координатами. Докажите, что если два треугольника с целыми вершинами имеют равные площади, то такими преобразованиями можно перевести один треугольник в другой. (Треугольник на координатной плоскости задается неупорядоченной тройкой вершин.)
- **20.** Дан вписанный четырехугольник ABCD с непараллельными сторонами AB и CD. Точка M середина стороны CD. Пусть P точка внутри ABCD, для которой PA = PB = CM. Докажите, что прямые AB, CD и серединный перпендикуляр к MP пересекаются в одной точке.