Chapitre 9

Séries entières

1. <u>Définitions</u>

- 1.1. Définition : série entière
 - Série entière complexe, réelle.
- 1.2. Lemme d'Abel

Démonstration

- 1.3. <u>Définitions</u>
 - <u>Définition 1</u> : une première définition du rayon de convergence
 - <u>Définition 2</u> : disque de convergence et cercle d'incertitude
 - Pour $\mathbb{K} = \mathbb{R}$: intervalle ouvert de convergence

2. Le théorème fondamental

2.1. Le théorème fondamental

Démonstration

- 2.2. Bilan
- 3. Méthodes pratiques
 - 3.1. Détermination du rayon de convergence
 - <u>Définition 1-bis</u> : diverses définitions du rayon de convergence
 - 3.2. Exemples
 - 3.3. Bilan : les arguments les plus souvent utilisés
 - 3.4. Utilisation de la règle de D'Alembert.
 - On peut dans certaines situations utiliser la règle de D'Alembert vues pour les séries.
 - Règle de D'Alembert pour les séries entières (ne pas en abuser).
 - Attention aux séries "à trou" ou "lacunaires"

4. Comparaison et propriétés algébriques

4.1. Comparaison

Démonstration

4.2. Somme et produit de Cauchy

Démonstration

4.3. Série "dérivée"

Démonstration

5. Cas des séries entières réelles

- 5.1. Intégration terme à terme
- 5.2. Primitivation terme à terme
- 5.3. Dérivation terme à terme
- 5.4. Coefficients d'une série entière réelle
 - a) Valeur des coefficients

Démonstration

b) Corollaire : unicité des développements en série entière

6. Fonctions développables en séries entières

- 6.1. <u>Définition</u>
- 6.2. Propriétés
- 6.3. Exemple de D.S.E. complexes

•
$$\exp(z)$$
, $\frac{1}{1-z}$

- 6.4. Exemple de D.S.E. réels
 - \cos, \sin, \cosh, \sinh
 - $\frac{1}{1+t}$, $-\ln 1-t$, $\ln 1+t$, Arctan t
 - $1+t^{\alpha}$
 - ils sont à connaître impérativement, avec leur rayon de convergence