Présentation L'état de l'art Amélioration des nombres de Schur Template pour les nombres de Weak Schur Conclusion

Weak Schur numbers P05 - Formation à la recherche 1A

Romain Ageron, Paul Castéras, Thibaut Pellerin, Yann Portella Encadrants : Arpad Rimmel, Joanna Tomasik

3 juin 2021

En 1917, le russe **Issai Schur** pose le problème suivant :

En 1917, le russe **Issai Schur** pose le problème suivant :

- Pour $n \ge 1$ un entier
- Et k ≥ 1 un autre entier (= nombre de couleurs)

En 1917, le russe **Issai Schur** pose le problème suivant :

- Pour $n \ge 1$ un entier
- Et k ≥ 1 un autre entier (= nombre de couleurs)

Question

Peut-on colorier les entiers de 1 à *n* de sorte que si deux nombres ont la même couleur, leur somme n'est pas de cette couleur? Si oui, un tel coloriage est dit sans sommes.

Un problème de partiti Les nombres de Schur Weak Schur

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Sur l'exemple, on ne peut rajouter 14 : en fait, on S(3) = 13.

Un problème de partition Les nombres de Schur Weak Schur

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres <u>différents</u> de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième nombre de Schur faible.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres <u>différents</u> de même couleur, leur somme n'est pas de la même couleur. On définit avec cette propriété WS(k), le k-ième nombre de Schur faible.

$$S(2) = 4 \text{ mais } WS(2) = 8$$

On connaît exactement S(k) pour $k \leq 5$, et WS(k) pour $k \leq 4$.

On connaît exactement S(k) pour $k \leq 5$, et WS(k) pour $k \leq 4$.

- Pour montrer que S(k) = n, il faut :
 - Trouver un coloriage sans sommes de [1, n] à k couleurs
 - Montrer qu'on ne peut pas colorier [1, n+1].

On connaît exactement S(k) pour $k \leq 5$, et WS(k) pour $k \leq 4$.

- Pour montrer que S(k) = n, il faut :
 - Trouver un coloriage sans sommes de [1, n] à k couleurs
 - Montrer qu'on ne peut pas colorier [1, n+1].
- En pratique, on se contente de **minorer** S(k) :
 - Inégalités récursives
 - Recherche de coloriages par ordinateur

Les recherches récentes sur le sujet se focalisent sur les méthodes numériques.

- On fixe k et on essaye de colorier le plus loin possible
- Plusieurs façon d'encoder le problème :
 - Arbre → Monte-Carlo Tree Search sur un espace de recherche restreint
 - Formules booléennes → solveur SAT

Les recherches récentes sur le sujet se focalisent sur les méthodes numériques.

- On fixe k et on essaye de colorier le plus loin possible
- Plusieurs façon d'encoder le problème :
 - Arbre → Monte-Carlo Tree Search sur un espace de recherche restreint
 - Formules booléennes → solveur SAT
- Améliorations des bornes inférieures pour $k \ge 5$
- Temps de calcul : le calcul exact de S(5) via un solveur SAT a demandé 20 années de calcul machine!

La borne inférieure établie par I. Schur est :

$$S(n+1) \geqslant 3S(n)+1 \Longrightarrow S(n) \geqslant \frac{3^n-1}{2}$$

Une première piste pour améliorer cette borne est proposée par H. L. Abbott et D. Hanson en 1972. Ils prouvent :

$$S(n+m) \geqslant S(n)(2S(m)+1)+S(m)$$

Que font-ils concrètement?

Un exemple pour n = m = 2:

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40					

$$S(4) \geqslant S(2)(2S(2)+1)+S(2)=40$$

Un article fondateur : Abbott et Hanso Une extension : les SF-templates Nouvelles bornes

• F. Rowley améliore cette approche théorique en 2020.

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.
- **Notre contribution** : recherche de SF-templates intéressants

- F. Rowley améliore cette approche théorique en 2020.
- Extension verticale de structures plus générales : les SF-templates.
- Notre contribution : recherche de SF-templates intéressants
- Recette : SF-template = Partition sans somme + condition suivante :

$$\forall i \in \llbracket 1, n-1 \rrbracket, \forall (x,y) \in A_i^2, x+y > p \Longrightarrow x+y-p \notin A_i$$

En fait, l'exemple précédent faisait déjà apparaître un SF-template, en voici un autre :

Quelques résultats!

n	8	9	10	11
33 S(n-3) + 6	5 286	17 694	55 446	174 444
111 S(n-4) + 43	4927	17 803	59 539	186 523
380 S(n-5) + 148	5 088	16 868	60 948	203 828
1140 S(n-6) + 528	5 088	15 348	50 688	182 928

n	12	13	14	15
33 S(n-3) + 6	587 505	2 011 290	6726330	21 072 090
111 S(n-4) + 43	586 789	1 976 176	6 765 271	22 624 951
380 S(n-5) + 148	638 548	2 008 828	6 765 288	23 160 388
1140 S(n-6) + 528	611 568	1 915 728	6 026 568	20 295 948

• Premières inégalités obtenues par Rowley :

•
$$WS(n+1) \ge 4S(n) + 2$$

•
$$WS(n+2) \geqslant 13S(n) + 8$$

• Notre inégalité généralisée :

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

Inégalités entre les nombres de Schur et de Weak Schur Principe général du template Weak Schur Nouvelles valeurs obtenus

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

$$WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$$

• On cherche un template à n couleurs de cardinal $WS^+(n)$ tel que : $WS(n+k) \geqslant S(k)WS^+(n) + b$

• Or
$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

• Par conséquent, $WS^+(n) \geqslant WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$

n	8	9	10	11	
4S(n-1)+2	6722	21 146	71214	243794	
13 S(n-2) + 8	6976	21 848	68726	231 447	
42S(n-3)+24	6744	22536	70584	222036	
n	12	13	14	15	
4S(n-1)+2	815 314	2554194	8 045 162	27061154	
13 S(n-2) + 8	792332	2649772	8 301 132	26146778	
42 S(n-3) + 24	747750	2559840	8 560 800	25886224	

- Approche par template : répétition d'un motif
- Nouveaux templates pour les nombres de Schur
- Généralisation des templates aux nombres de Schur faibles

Comparaison des bornes inférieures pour les nombres de Schur

п	1	2	3	4	5	6	7	8	9	10	11	12
Avant Rowley	1*	4*	13*	44*	160*	536	1 680	5 041	15 124	51 120	172 216	575 664
Rowley								5 286	17 694	60 320	201 696	631 840
Nos résultats									17 803	60 948	203 828	638 548

^{*} désigne une valeur exacte

Comparaison des bornes inférieures pour les nombres de Schur faibles

п	1	2	3	4	5	6	7	8	9	10	11	12
Avant Rowley	2*	8*	23*	66*	196	582	1740	5 201	15 596	51 520	172 216	575 664
Rowley						642	2 146	6 976	21 848	70 778	241 282	806 786
Nos résultats									22 536	71 214	243 794	815 314

^{*} désigne une valeur exacte

Une nouvelle famille de partition De nouvelles bornes inférieures Suites pour l'an prochain

- Publication d'un article sur nos résultats
- Recherche de meilleurs templates
- Étude des bornes supérieures

Une nouvelle famille de partition De nouvelles bornes inférieures Suites pour l'an prochain

Merci pour votre attention