5. 학교 구성원별 학교 미세먼지 대응 방법

• 학생의 대응방법

개인 건강상태 점검을 우선순위로 하여 교실 내 위생 및 환기, 온·습도 유지상태 점검 등 미세먼지에 직접적으로 대응할 수 있는 전략이 필요합니다.

- ① 외부 공기의 미세먼지 농도가 좋을 경우, **창문을 수시로 개방**하여 환기합니다.
- ② 기계식 환기설비가 있는 경우, 항상 가동하는 것을 원칙으로 하고 외부 공기의 미세먼지 농도가 좋을 때는 자연 환기를 실시합니다.
- ③ 기계식 환기설비가 없는 경우, 외부 공기의 미세먼지 농도가 나빠도 환기는 필요합니다. **환기 후 공기청정기를** 가동하여 교실의 미세먼지 농도를 관리합니다.
- ① 외기 농도가 '보통' 이하인 경우, 수업시간 약 20분 전부터 공기청정기를 가동하며 교실에 있는 동안 계속 사용합니다.
- ⑤ 공기정화장치의 효율을 유지하기 위해 필터 등 소모품류의 주기적인 교체 및 내·외부 청소 등을 합니다.
- ⑤ 밖에서 안으로 들어갈 때는 옷을 털고, 실내화를 착용합니다.
- ③ 기저 질환이 있거나 건강에 이상이 있다고 생각되면 즉시 선생님에게 알립니다.

• 교직원의 대응방법

학생 건강상태 점검을 우선순위로 하여 교실 내 위생 및 환기, 온·습도 유지상태 점검, 교육 보조장비 및 자료, 특수목적 교실 관리 등 보다 확대된 관리 체계를 구축할 수 있는 전략이 필요합니다.

- 1 교실 내 환기가 잘 이루어질 수 있도록 학생들을 지도합니다.
- ② 기계식 환기설비가 없는 경우, 미세먼지가 '매우 나쁨'인 경우를 제외하고 자연환기를 실시합니다.
- ③ 외부 공기의 미세먼지 농도가 좋은 경우 **창문을 수시로 개방**하여 환기할 수 있도록 합니다. 양쪽 창문을 모두 열어 맞바람이 칠 수 있도록 합니다. 교실 내 환기가 잘 이루어질 수 있도록 학생들을 지도합니다.
- ① 기저 질환이 있는 학생들을 파악하고, 건강 상태에 이상이 있는 학생이 있다면 학부모에게 알리고 병원에 방문해 진료를 받도록 합니다.
- ⑤ 본인의 건강 상태도 수시로 확인하고 몸이 좋지 않은 경우, 병원에 방문해 진료를 받도록 합니다
- ⑤ PM25는 교실 내 오염원은 없으나, 외부로부터 들어온 먼지가 재부유할 수 있으므로 바닥, 창문틀, 천장, 벽면 등에 대한 주기적인 물청소를 실시합니다.
- 공기청정기 효과를 위해 필터 교체 주기를 확인하여 유지관리를 철저히 합니다. 1개월마다 프리 필터를 청소하고, 일반교실은 3개월, 특수교실(하루 4시간 미만 사용)은 3~6개월마다 미디움 필터를 교체합니다.
- ③ 공기청정기는 되도록 교실 중앙에 설치하거나 출입문 앞쪽에 설치합니다. 또한 **벽이나 물건에서 최소 50cm** 이상 거리를 둡니다.
- 화경 교육을 통해 정확한 오염 원인과 영향을 이해하고 지나친 걱정보다는 대비를 할 수 있도록 지도합니다.
- ① 실내 공기 관리에 대한 중요성을 인식하여, 야외 활동 후 외투 털기, 신발 털기 및 실내화 착용 등을 생활화할 수 있도록 지도합니다.

[표 27] 학교 미세먼지 문제에 따른 대응방법 요약

	문제점	해결 방안
교실 관리	출입문의 잦은 여닫음으로 미세먼지 유입	에어컨과 공기청정기에 설치된 필터 연 1회 이상 점검 및 교체
	노후로 인한 창호 실리콘 부식	실리콘 보수하여 외기 유입 방지
	부족한 청소량으로 인한 먼지 적층	주기적인 청소 실시 (최소 1일 1회 이상)
체육관, 강당 관리	실내 활동량이 많아 미세먼지 부유	외기 미세먼지 농도에 따른 자연환기 또는 공기청정기 가동
	실제 면적에 비해 작은 용량의 공기청정기 사용	바닥 면적의 1.5배 용량을 가진 기기 설치 또는 공기청정기 추가 배치
특수 목적 교실 관리	부족한 청소량으로 인한 먼지 적층	주기적인 청소 실시 (최소 1주 1회 이상)
	조리 실습시 미세먼지 발생	취사 기구 가동 전후 후드 가동 및 정지 후에도 10분 이상 환기
	컴퓨터실, 도서실 등 비치 물품 위 미세먼지 적층	후드 정기점검, 필터 청소 및 교체
실내환기 (자연환기)	실외 미세먼지 농도 '보통' 이하 상태에서 창문이 열려있음	대기오염도가 높은 도로변 외의 다른 창문 사용
	창틀 청소 필요	주기적인 창틀 청소 (최소 1주 1회 이상)
실내환기 (기계환기)	실외 미세먼지 농도 '좋음' 이상 상태에서 기계환기장치 가동	에너지 절약을 위해 자연환기로 전환
	필터 노후화로 인해 외부 미세먼지 유입	주기적인 필터 청소 및 교체
공기청정기 가동	잘못된 공기청정기 위치 선정	1대가 있는 경우, 중앙이나 출입구에 위치
	필터 노후화로 인한 미세먼지 저감효과 감소	주기적인 필터 청소 및 교체
	실제 면적에 비해 작은 용량의 공기청정기 사용	바닥 면적의 1.5배 용량을 가진 기기 설치 또는 공기청정기 추가 배치

• 연구단에서 개발한 신축학교 미세먼지 저감방안

학교 미세먼지 연구단에서 '통합관리' 부분을 맡은 한국건설기술연구원에서 새로 지어지는 학교에 적용할 수 있는 실내공기질을 개선 방안을 연구했습니다. 연구팀에서는 실제 학교와 똑같은 환경을 구성하기 위하여 교실과 똑같은 환경을 가진 실험실을 제작하였습니다.

<그림 53>교실 환경을 재현한 실험실 구조

신재생에너지 연계 중앙공조시스템을 사용합니다. 본 시스템은 태양광-에너지저장장치(ESS) 및 지열냉난방장치로 이루어진 신재생에너지 시스템과 교실 공조를 위한 중앙공조장치, 교실 내 기류 최적화를 위한 급기환기기 시스템으로 이루어져 있습니다. 이는 사람이 직접 제어하는 것이 아닌 온습도 및 실내공기질에 따라 자동으로 풍량 및 온습도를 조절하도록 설계되어 있습니다.

교실 내 기류 최적화를 위한 급기환기 시스템을 통하여 실내공기환경을 최적의 상태로 유지할 수 있습니다. 하지만 급기환기관을 실험 환경처럼 실제 교실에 설치하는 것은 현실적으로 쉽지 않습니다. 학생들의 이동에 방해가 될 수 있고, 사람의 영향으로 인해 실제 공기질과 다르게 측정될 가능성이 있기 때문입니다.

한편, 개별분산유닛의 경우 에너지 절약을 위하여 교실의 공기질 농도가 변하는 패턴을 학습한 뒤, 딥러닝³⁴⁾을 기반으로 실내공기질을 예측하여 환기 설비를 운영할 수 있도록 설계되었습니다. 또한 저정압 필터를 개발하여 소음과소비전력을 개선하였습니다.

<u>기류측정 센서(PM, Hot-wire Anemometer, Temp.) 및 PM 측정</u>

<그림 54> 실내 기류 최적화 실험 환경

환기 설비는 외부의 신선한 공기를 필터링하여 넣어주는 급기 디퓨저와 실내의 오염된 공기를 밖으로 빼주는 환기 디퓨저 두 개가 존재합니다. 기계환기 설비의 급기와 환기 디퓨저 대부분은 천장에 위치하고 있으나, 연구단에서는 교실 내 기류 최적화를 위하여 하부덕트환기 및 하부환기 방식을 도입하였습니다.

학교 미세먼지 나쁨 기준인 $75\mu g/m^3$ 에서 좋음인 $15\mu g/m^3$ 까지 낮추는 시간을 확인한 결과, 환기 디퓨저가 천장에 있을 때보다 바닥에 있을 때 더욱 짧은 시간이 소요되어 높은 효율을 나타냈습니다.

<그림 55> 배기구 위치에 따른 미세먼지 제거시간

<그림 56> 환기구 위치에 따른 기류의 이동방향

환기 디퓨저를 바닥에 두는 경우, 사람들의 호흡기를 지나는 수평(─)기류보다 바닥으로 떨어지는 수직(│)기류가 더 많아지므로 감염병을 예방하는 효과도 있습니다.

환기설비 외에도 교실 공기를 친환경적으로 정화하기 위해 식생토양필터를 개발했습니다. 피트모스, 적옥토, 동생사, 녹소토, 에스라이트를 적절한 비율로 섞어 그 위로 오염된 공기가 지나가도록 합니다. 오염물질을 토양 사이에 포집 하여 공기 중의 초미세먼지를 약 57% 제거할 수 있었습니다. 또한 토양식생필터는 토양에 물을 뿌려 사용하는 방식이므로, 가습기를 사용하는 것보다 친환경적이고 안전하게 실내 습도를 조절할 수 있다는 장점이 있습니다.