Mini Project 2 - Estimation of obesity levels based on eating habits and physical condition

- This dataset includes data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition.
- The data contains 17 attributes and 2111 records
- The records are labelled with the class variable 'Nobesity' (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III.
- 77% of the data was generated synthetically using the Weka tool and the SMOTE filter
- 23% of the data was collected directly from users through a web platform.

Mini Project 2 - Estimation of obesity levels based on eating habits and physical condition

The attributes related with eating habits are:

- Frequent consumption of high caloric food (FAVC)
- Frequency of consumption of vegetables (FCVC)
- Number of main meals (NCP)
- Consumption of food between meals (CAEC)
- Consumption of water daily (CH20)
- Consumption of alcohol (CALC)

The attributes related with the physical condition are:

- Calories consumption monitoring (SCC)
- Physical activity frequency (FAF)
- Time using technology devices (TUE)
- Transportation used (MTRANS)

Other variables obtained were:

- o Gender
- Age
- Height
- Weight

Age distribution of the surveyed population is narrow, with most aged 18-30

Physical acitivity frequency by classification

Highest levels of obesity tend to be associated with lower levels of physical activity

Time using technology devices by obesity classification

But there is no obvious association between level of obesity and time spent using 'devices'

Weight distributions by mode of transport

Greater weight tends to be associated with travel by car or public transport, but this is not likely to be a predictive feature

Water intake by obesity classification

High levels of obesity appeared to be associated with higher daily water intake...

Water intake by obesity classification

... but this was not the case when corrected for body weight

Feature Creation – 'CH2O_adj'

= CH2O (I) / weight (kg)

Mean weight
increases with
'body type'
classification, but
there is significant
overlap between
the weight
distributions for
each class

BMI = weight (kg) / (height (m))2

BMI increases with 'body type' classification, with much less overlap between BMI distributions for each class

Feature Creation - BMI

BMI = weight (kg) / (height (m))2

Relationship between Weight, Height and BMI

There is a slight tendency for obesity level to increase with age...

... and a slight tendency for BMI to increase with age, but with such a narrow age distribution this is BMI (kg/m²) not a strong correlation Age (years)

Relationship between Age and BMI

Business Question 1:

Can we predict obesity class based on lifestyle habits and/or physical condition?

Problem type:

Classification

Models

Logistic Regression

Support Vector Machine (SVC)

Gaussian Naïve Bayes

Feature selection

Best 10 features (by correlation coefficient)

BMI only

All features

Workflow:

Test-Train Split Data (20:80) Standardised continuous data (StandardScaler())

GridSearchCV() to determine optimal hyperparameters for each model

Pearson correlation coefficient

BMI	0.977826
Weight	0.913251
family_history_with_overweight	0.505148
CAEC_Sometimes	0.453188
Age	0.282913
FAVC	0.247793
FCVC	0.227759
CALC_Sometimes	0.214067
CAEC_Frequently	-0.418948
CH2O_adj	-0.609571

Learning Curves
Three models
All features

confusion matrix

	predicted_underweight	predicted_normal	predicted_overweight_l	predicted_overweight_II	predicted_obese_I	predicted_obese_II	predicted_obese_III
_underweight	61	0	0	0	0	0	0
is_normal	0	45	0	0	0	0	0
_overweight_I	0	0	61	0	0	0	0
_overweight_II	0	0	0	60	0	0	0
is_obese_I	0	0	0	0	79	0	0
is_obese_II	0	0	0	0	0	54	0
is_obese_III	0	0	0	0	0	1	62

classification report	precision	recall	f1-score	support
is_underweight	1.00	1.00	1.00	61
is_normal	1.00	1.00	1.00	45
is_overweight_I	1.00	1.00	1.00	61
is_overweight_II	1.00	1.00	1.00	60
is_obese_I	1.00	1.00	1.00	79
is_obese_II	0.98	1.00	0.99	54
is_obese_III	1.00	0.98	0.99	63
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	423 423 423

Business Question 2:

HOW ACCURATELY CAN WE PREDICT OBESITY WITHOUT THE BMI AND WEIGHT VARIABLES?

Models

Logistic Regression

Support Vector Machine (SVC)

Gaussian Naïve Bayes

Feature selection

All features except 'Weight' and 'BMI'

Workflow:

Categorical data: replaced strings with binary integers; get_dummies()

Test-Train Split Data (20:80) Standardised continuous data (StandardScaler())

GridSearchCV() to determine optimal hyperparameters for each model

Learning Curves
Three models
All features
except 'Weight'
and 'BMI'

confusion matrix

	predicted_underweight	predicted_normal	predicted_overweight_l	predicted_overweight_II	predicted_obese_I	predicted_obese_II	predicted_obese_III
_underweight	57	4	0	0	0	0	0
is_normal	5	32	6	2	0	0	0
_overweight_I	0	6	50	5	0	0	0
_overweight_II	0	0	4	55	1	0	0
is_obese_I	0	0	0	10	66	3	0
is_obese_II	0	0	0	0	0	54	0
is_obese_III	0	0	0	0	1	1	61

classification report

precision	recall	f1-score	support	
0.92	0.93	0.93	61	
0.76	0.71	0.74	45	
0.83	0.82	0.83	61	
0.76	0.92	0.83	60	
0.97	0.84	0.90	79	
0.93	1.00	0.96	54	
1.00	0.97	0.98	63	
		0.89	423	
0.88	0.88	0.88	423	
0.89	0.89	0.89	423	
	0.92 0.76 0.83 0.76 0.97 0.93 1.00	0.92 0.93 0.76 0.71 0.83 0.82 0.76 0.92 0.97 0.84 0.93 1.00 1.00 0.97	0.92 0.93 0.93 0.76 0.71 0.74 0.83 0.82 0.83 0.76 0.92 0.83 0.97 0.84 0.90 0.93 1.00 0.96 1.00 0.97 0.98 0.89 0.88 0.88 0.88	0.92 0.93 0.93 61 0.76 0.71 0.74 45 0.83 0.82 0.83 61 0.76 0.92 0.83 60 0.97 0.84 0.90 79 0.93 1.00 0.96 54 1.00 0.97 0.98 63 0.89 423 0.88 0.88 0.88 423

Can the model be good enough with fewer features?

CH2O_adj

CH2O

Height

Gender

Age

Business Question 3:

HOW ACCURATELY CAN WE PREDICT OBESITY WITHOUT THE BMI, WEIGHT & CH2O_adj VARIABLES?

Models

Logistic Regression

Support Vector Machine (SVC)

Gaussian Naïve Bayes

Feature selection

All features except 'Weight', 'BMI' & 'CH2O adj'

Workflow:

Test-Train Split Data (20:80) Standardised continuous data (StandardScaler())

GridSearchCV() to determine optimal hyperparameters for each model

family_history_with_overweight	0.505148
CAEC_Sometimes	0.453188
Age	0.282913
FAVC	0.247793
FCVC	0.227759
CALC_Sometimes	0.214067
CAEC_Frequently	-0.418948

Jupyter Notebook problems have prevented me from completing this!

Top 5 Features (score (SVC) = 0.466)

Freq of vegetable consumption (FCVC)

Age

Family history

Freq of alcohol consumption (sometimes)

Eating between meals (sometimes)

Score (SVC) – All features except 'BMI', 'Weight', 'Height' and 'CH2O_adj'

0.5195