# Robot Cars, What Are They Good For? Absolutely Everything!

By Emily Devlin, Noah Page, Drew Seidel, and Stephen Weeks

## Overall System Hierarchy



# Overall System Hierarchy



## Android App (Overview)



## Android App: Live Data View Model

How to safely declare LiveData variables:

```
private val _motor1_speed = MutableLiveData<Float>()
val motor1_speed: LiveData<Float> = _motor1_speed
```

How to update a LiveData variable in the View Model:

```
fun updateSpeed(RPM: Float, motorNumber: Int) {
    when (motorNumber) {
        1 -> _motor1_speed.value = RPM
        2 -> _motor2_speed.value = RPM
    }
}
```

Shared View Model setup in the Fragment:

```
private var binding: FragmentMainControlsBinding? = null
private val sharedViewModel: MotorDataViewModel by activityViewModels()
```

Accessing the variable from the Fragment:

```
sharedViewModel.motor1_speed.observe(viewLifecycleOwner){
   newSpeed -> binding?.speedView?.speedTo(newSpeed)
}
```

## Android App (Welcome Fragment/MQTT)

MQTT usage is similar to Project 2, but handled by the View Model and MQTTClient.kt

```
// Connect to MQTT using the data view model
sharedViewModel.mgttClientID = MgttClient.generateClientId()
sharedViewModel.<u>mgttClient</u> = MQTTClient(context, sharedViewModel.mgttNetwork.<u>vglue</u>!!, sharedViewModel.<u>mgttClientID</u>)
sharedViewModel.connectToMOTT()
                                                                                  Publishes motor
                                               MQTT
                                                                                  status
                       Publishes
                                               Broker
                       commands
                                                                       Subscribes to
         Android
                                     Subscribes to
                                                                       commands
                                                                                                Raspberry
                                     motor status
                                                                                                Pi
```

## Android App: Main Controls Fragment

We customized gauges from a library:

https://github.com/anastr/SpeedView



```
binding?.speedView?.apply{ this: SpeedView
    unit = " RPM"
    minSpeed = -50.0F
    maxSpeed = 50.0F
    withTremble = false
    makeSections( numberOfSections: 2, Color.CYAN, Style.BUTT)
    sections[0].color = Color.LTGRAY
    sections[1].color = Color.GREEN
}
```

Android App: Main Controls Fragment



## Android App (Video Feed Fragment)

Raspberry Pi runs "sudo libcamerify motion" which sends mjpeg to http://192.168.137.56:8081

Video Feed Fragment uses MjpegView plugin from https://github.com/perthcpe23/android-mjpeg-view



Android App: Video Feed Fragment



## FPGA FSM



#### FPGA FSM Method and Run State

```
/*********************************
task_t run_state_t = idle;
void (*task_scheduler[4])() = {idle_state, processing_state, run_state, end_state};
```

#### Function pointers for each FSM state

```
while(1)
{
    task_scheduler[run_state_t]();
}
```

#### Main infinite forever loop

```
typedef enum
{
   idle,
   processing,
   run,
   end,
} task_t;
```

Enum for indexing into the task scheduler with descriptive names



#### Communication

Five major intercommunication systems were designed for this system:

- MQTT Topic RobotCar/Move
  - Android App publisher, Raspberry Pi subscriber (single JSON object)
  - Used to control the motors
  - JSON object example message: {"UP":1, "DOWN":0, "RIGHT":0, "LEFT":0}
- MQTT Topic RobotCar/Motors
  - Raspberry Pi publisher, Android App subscriber (single JSON object)
  - Used to display RPM information from the motors to the Android App display
  - JSON object example message: {"Left\_Motor", "-43", "Right\_Motor", "+43"}
- UART Bus Between FPGA and Raspberry Pi
  - Raspberry Pi Tx to FPGA Rx decodes received RobotCar/Motors message and translates that to single byte direction command
  - FPGA Tx to Raspberry Pi Rx sends 5 byte buffer with RPM and direction information for each motor.
     This is translated into the single JSON object to be published to RobotCar/Motors by the Pi
- UART Bus Between FPGA and Raspberry Ultrasonic sensor
  - FPGA Tx to Sensor Tx single byte (0x55) is sent to receive two-byte millimeters value
  - Sensor Rx to FPGA Tx two byte buffer is received and 16-bit value for millimeter evaluated

### Communication



## Bill of Materials: Retail Cost (not including shipping)

| Component                                      | Vendor            | Retail Cost | Notes                                                                                       |  |  |  |
|------------------------------------------------|-------------------|-------------|---------------------------------------------------------------------------------------------|--|--|--|
| Nexys A7 FPGA                                  | Digilent          | \$349       | https://digilent.com/shop/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/       |  |  |  |
| Raspberry Pi 4 Model B 4GB                     | Cytron            | \$75        | https://thepihut.com/products/raspberry-pi-4-model-b?variant=20064052740158&src=raspberrypi |  |  |  |
| Pi Camera Module 2                             | Cytron            | \$31.25     | https://www.cytron.io/p-raspberry-pi-8mp-camera-module-v2                                   |  |  |  |
| Metal DC Geared Motor w/Encoder 6V 100RPM (x2) | DFROBOT           | \$39.80     | https://www.dfrobot.com/product-1618.html                                                   |  |  |  |
| 2-Way 18650 Battery Holder (x2)                | DFROBOT           | \$19.80     | https://www.dfrobot.com/product-2578.html                                                   |  |  |  |
| 25D mm Metal Gearmotor Bracket Pair            | Pololu            | \$7.95      | https://www.pololu.com/product/2676                                                         |  |  |  |
| Multihub Wheel Pair 80x10mm                    | Pololu            | \$9.95      | https://www.pololu.com/product/3691                                                         |  |  |  |
| Tamiya 70144 Ball Caster Kit                   | Pololu            | \$7.00      | https://www.pololu.com/product/66                                                           |  |  |  |
| US-100 Ultrasonic Distance Sensor 3.3V         | Adafruit          | \$6.95      | https://www.adafruit.com/product/4019                                                       |  |  |  |
| Epoch 30P 18650 Battery (x4)                   | 18650batterystore | \$23.96     | https://www.18650batterystore.com/products/epoch-30p-18650                                  |  |  |  |
| Pmod HB3 (x2)                                  | Digilent          | \$19.98     | https://digilent.com/shop/pmod-hb3-h-bridge-driver-with-feedback-inputs/                    |  |  |  |
| 0.25" Acrylic Sheet                            | EPL               | \$15.00     |                                                                                             |  |  |  |
| M2.5 Spacer/Standoff Assorted Kit              | Amazon            | \$11.99     | https://www.amazon.com/HanTof-Raspberry-Installation-Standoff-Accessories/dp/B07KM5B3PT/    |  |  |  |
| M2.5 Nuts/Bolts Assorted Kit                   | Amazon            | \$12.99     | https://www.amazon.com/dp/B082XPZV1V?psc=1&ref=ppx_yo2ov_dt_b_product_details               |  |  |  |
| Various wires and Capacitors                   | -                 | -           |                                                                                             |  |  |  |
|                                                | Total Cost        | \$631       |                                                                                             |  |  |  |

## Robot Design

The components picked were largely based on what we already had for ECE 544 Project 2

After the components arrived, prototype shapes for the chassis were made and once finalized an SVG file was created so that it could be laser cut

The 3rd iteration seen here has mounting holes for all the components and larger gaps for the pass through of wires



## Robot Design

Our goal was to limit wire lengths and reliance on breadboards

Tidying up the wires and some of the more difficult solders







## Committed Goals

| Goal                                                     | Project Area | Goal Type | Success? |
|----------------------------------------------------------|--------------|-----------|----------|
| Two-way UART communication between FPGA and Raspberry Pi | FPGA         | Committed | Yes      |
| Two-way MQTT communication between RPi and Android       | Android      | Committed | Yes      |
| Fragment Navigation                                      | Android      | Committed | Yes      |
| 4 arrow buttons to move robot                            | Android      | Committed | Yes      |
| Ultrasonic sensor hardware in FPGA to avoid crashes      | FPGA         | Stretch   | Yes      |
| Raspberry Pi camera live streaming video                 | RPi/Android  | Stretch   | Yes      |
| Display screen with info about motors                    | Android      | Stretch   | Yes      |