Exercises Galois Theory for Schemes

Oriol Velasco Falguera

December 18, 2020

1 Galois Theory for fields

Exercise 1.1. Let $K \subset L$ be a Galois extension of fields, and let I be a set of subfields $E \subset L$ with $K \subset E$ for which $[E : K] < \infty$ for every $E \in I$ and $\bigcup_{E \in I} E = L$. Prove that I, when partially ordered by inclusion, is directed.

Solution. Let $E', E \in I$. Then EE' is a finite extension of K, because its generated by a the union of generators of E and E', which is a finite set of algebraic elements. Moreover, EE' is separable (L is Galois \Rightarrow separable, and $EE' \subseteq L$ so all elements of EE' are separable). Then, by the primitive element theorem, $EE' = K(\alpha)$ for a certain element $\alpha \in L$. Then, as $\bigcup_{E \in I} E = L$, $\exists F \in I$ such that $\alpha \in F$. Then, $EE' \subseteq F$ and so $E, E' \subseteq F$. This proves that I is directed.

Exercise 1.2. Let $K \subset L$ be a Galois extension of fields, and I any directed set of subfields $E \subset L$ with $K \subset E$ Galois for which $\bigcup_{E \in I} E = L$. Prove that there is an isomorphism of profinite groups $\operatorname{Gal}(L/K) \cong \varprojlim_{E \in I} \operatorname{Gal}(E/K)$.

Solution. We will chech that the application $\phi: \operatorname{Gal}(L/K) \to \varprojlim_{E \in I} \operatorname{Gal}(E/K)$ defined by $\sigma \mapsto (\sigma|_E)_{E \in I}$ is the desired isomorphism of topological groups. First note that it is a well defined group morphism: As $K \subset E$ is Galois then $\sigma(E) = E$ for every $\sigma \in \operatorname{Gal}(L/K)$, so the restriction of σ to E is indeed an element of $\operatorname{Gal}(E/K)$. Moreover, if $F, E \in I$ with $F \subset E$, then $\phi(\sigma)_{E'} = \sigma|_{E'} = (\sigma|_E)|_{E'} = f_{EE'}(\phi(\sigma)_E)$.

Now let's prove the continuity. For that we need to know the topology of $\varprojlim_{E \in I} \operatorname{Gal}(E/K)$. The topology will be induced by the product topology. A basis of open sets for the topology of $\prod_{E \in I} \operatorname{Gal}(E/K)$ is then

$$\left\{ \prod_{E \notin J} \operatorname{Gal}(E/K) \times \prod_{E \in J} U_E \right\}$$

Where J denotes a finite subset of I, and U_E is an open set of $\operatorname{Gal}(E/K)$. Then, $U_E = \bigcup_{\sigma,F} U_{\sigma,F}$ for certain $\sigma \in \operatorname{Gal}(E/K)$, $K \subset F \subset E$, $[F:K] < \infty$. Therefore every basic open set of $\prod_{E \in I} \operatorname{Gal}(E/K)$ can be expressed as the union of sets $\prod_{E \notin J} \operatorname{Gal}(E/K) \times \prod_{E \in J} U_{\sigma^E,F^E}$, so those sets form a base of the topology of $\prod_{E \in I} \operatorname{Gal}(E/K)$. In conclusion, the following sets are a base of $\varprojlim_{E \in I} \operatorname{Gal}(E/K)$:

$$\mathcal{B} = \left\{ \varprojlim_{E \in I} \operatorname{Gal}(E/K) \cap \left(\prod_{E \notin J} \operatorname{Gal}(E/K) \times \prod_{E \in J} U_{\sigma^E, F^E} \right) \right\}$$

Note that given $\sigma: E \to E$ we can extend it to $\overline{\sigma}: \overline{L} \to \overline{L}$ and then restrict it to L to obtain $\sigma': L \to L$ such that $\sigma'|_E = \sigma$. Then, the antiimage by ϕ of an open set $U \in \mathcal{B}$ is the set

 $\tau \in \operatorname{Gal}(L/K)$ such that $\tau|_{F^E} = \sigma^E|_{F^E} \ \forall E \in J\} = \bigcap_{E \in J} U_{\sigma'^E, F^E}$, which is a finite intersection of open sets of $\operatorname{Gal}(L/K)$, and so it is open.

Now let's prove injectivity of ϕ : Let $\phi(\sigma) = \phi(\tau)$. It is enough to check that $\tau(\alpha) = \sigma(\alpha)$, $\forall \alpha \in L$. Indeed, let $\alpha \in L$. Then as $\bigcup_{E \in I} E = L$, $\alpha \in E$ for a certain $E \in I$, and $\sigma|_E = \tau|_E$, which means $\sigma(\alpha) = \tau(\alpha)$ as desired.

Let $(\sigma_E)_{E\in I} \in \varprojlim_{E\in I} \operatorname{Gal}(E/K)$. We will define $\sigma \in \operatorname{Gal}(L/K)$ as $\sigma(\alpha) = \sigma_E(\alpha)$ if $\alpha \in E$. It is clear that $\phi(\sigma) = (\sigma_E)_{E\in I}$, so we just have to check that σ is well defined, that is, if $\alpha \in E, E'$, with $E, E' \in I$, then $\sigma_E(\alpha) = \sigma'_E(\alpha)$. But as the set is directed, $\exists F \in I$ such that $F \supset E, E'$ and so clearly $\alpha \in F$. As $(\sigma_E) \in \varprojlim_{E\in I} \operatorname{Gal}(E/K)$, then $\sigma|_E = \sigma_F|_E$ and $\sigma|'_E = \sigma_F|'_E$, so $\sigma_E(\alpha) = \sigma_F(\alpha) = \sigma'_E(\alpha)$ as desired.

Finally note that $\operatorname{Gal}(L/K)$ is compact because it is profinite and $\varprojlim_{E\in I}\operatorname{Gal}(E/K)$ is Hausdorff, because each $\operatorname{Gal}(E/K)$ is Hausdorff and products and subspaces of Hausdorff are Hausdorff. Then ϕ is bijective and continuous group morphism, so it is an isomorphism of topological groups.

- **Exercise 1.3.** a) Let $K \subset L$ be a Galois extension of fields, with Galois group G. View G as a subset of the set L^L of all functions $L \to L$. Let L be given the discrete topology and L^L the product topology. Prove that the topology of the profinite group G coincides with the relative topology inside L^L .
 - b) Conversely, let L be any field and $G \subset Aut(L)$ a subgroup that is compact when viewed as a subset of L^L (topologized as in (a)). Prove that $L^G \subset L$ is Galois with Galois group G.
 - c) Prove that any profinite group is isomorphic to the Galois group of a suitably chosen Galois extension of fields.
- **Solution.** a) A basic open set of L^L is of the form $U = \prod_{\alpha \in J} U_\alpha \times \prod_{\alpha \notin J, \alpha \in L} L$, where J is a finite set of elements of L and U_α is a subset of L which is not the total. Then, a basic open set of G (with topology induced by L^L) will be of the form $G \cap U = \{\sigma \in G \text{ such that } \sigma(\alpha) \in U_\alpha, \forall \alpha \in J\}$. As J is a finite subset of L, then K(J) is a finite extension. Let's note F the normal closure of K(J), which will also be a finite extension of K, which in addition is Galois. Let's consider the set $V = \{\sigma \in \operatorname{Gal}(F/K) \text{ such that } \sigma(\alpha) \in U_\alpha, \forall \alpha \in J\}$. Then

$$G \cap U = G \cap \left(V \times \prod_{L \supset E \neq F, E/K \text{ finite Galois}} \operatorname{Gal}(E/K)\right)$$

And the right hand side is an open set of G as a profinite group. This proves that the topology of G as a profinite group is finer that that of G as a subset of L^L .

Reciprocally, let's take a basic open set of G as a profinite group, $U = G \cap (\prod_{E \in J} \operatorname{Gal}(E/K) \times \prod_{E \notin J} U_E)$. Each $E \in J$ can be expressed as $K(\alpha_E)$, by the primitive element theorem, so the action of σ on E is totally determined by the image of the element α_E . Then, let $U_{\alpha_E} = \bigcup_{\sigma \in U_E} \sigma(\alpha)$, and the open set U can now be described as

$$G \cap \left(\prod_{E \in J} U_{\alpha_E} \times \prod_{\alpha \in L, \alpha \neq \alpha_E} L\right)$$

which is an open set of G as a subspace of L^L . This proves that the topology of G as a subset of L^L is finer than the topology of G as a profinite group. In conclusion both topologies of G are the same one.

b) First let's prove that $L^G \subset L$ is algebraic: Indeed, let $\alpha \in L$ and let's take the cover of G given by

$$\left\{ \{\beta\} \times \prod_{\alpha' \neq \alpha} L \right\}_{\beta \in L}$$

As G is compact as a subset of L^L we can extract a finite subcovering from that covering, and that means that the orbit of α under G is finite. Let $f(x) = \prod_{\beta \in G\alpha} (x - \beta)$. That polynomial is invariant under the action of G, so it has coefficients in L^G . Clearly α is a root of f, so α is algebraic. Then by definition $L^G \subset L$ is Galois, and we have that $G \subseteq \operatorname{Gal}(L/L^G)$, as every element of G fixes L^G . As G is compact and L^L is Hausdorff, G is closed in L^L , and then it is closed as a subgroup of $\operatorname{Gal}(L/L^G)$, by (a). Then, by the correspondence between closed subgroups of $\operatorname{Gal}(L/L^G)$ and field extensions, given by 2.3, we have that $\operatorname{Gal}(L/L^G) = G$.

c) Let K be any field and let X be the set of conjugacy classes τH , where H is an open normal subgroup of G. Let G act on X as follows: Given $\sigma \in G$, $\sigma(\tau H) = (\sigma \tau)H$. Let L = K(X). Then the action of G on X induces an automorphism of E for every element of E, so we have a natural map E E Aut(E). This map is injective: Indeed, an element E E acts trivially on E if and only if E E open normal subgroup. As E is profinite, then E is a result in Cassels, Algebraic Number Theory, Chapter V, Corollary 1), and so the only E is the identity. Then the only element acting trivially on E is the identity, and so E Aut(E) is injective and we can view E as a subset of Aut(E) (1).

Note that every element of L can be expressed as a quotient of polynomials with indeterminates as elements of X, so α has a finite orbit, because if \mathcal{H}_{α} is the set of groups with conjugacy classes appearing in the expression of α , then $|G\alpha| \leq \prod_{H \in \mathcal{H}_{\alpha}} [G:H]$. Then, given a basic open set of L^L , $U = \prod_{\alpha \in J} U_{\alpha} \times \prod_{\alpha \notin J} L$, with J a finite subset of L. For $\alpha \in J$, $H \in \mathcal{H}$, consider all the conjugacy classes of H that appear in the expression of a certain β , with $\beta \in U_{\alpha}$, and note it U_H . Then, the open set U can be expressed as an open set of G as a profinite group as follows:

$$U = \prod_{\alpha \in J} \prod_{H \in \mathcal{H}_{\alpha}} U_H \times \prod_{H \notin \mathcal{H}_{\alpha}, \, \forall \alpha} G/H$$

This shows that the topology of G as a profinite group is finer that its topology as a subspace of L^L (that is more general than the proof done in (a) of the same fact, because in (a) we knew that G was a Galois group). Then, given an open cover of G in L^L it is also an open cover of G as a profinite group, and as all profinite groups are compact, we can extract a finite covering. This proves that G is compact when viewed as a subset of L^L . (2)

Now G satisfies the two conditions of (b), so L/L^G is then a Galois with Galois group G.

Exercise 1.4.

Exercise 1.5. Let $K \subset L$ be a Galois extension of fields, $S \subset \operatorname{Gal}(L/K)$ any subset, and $E = \{x \in L : \forall \sigma \in S\sigma(x) = x\}$. Prove that $\operatorname{Gal}(L/E)$ is the closure of the subgroup of $\operatorname{Gal}(L/K)$ generated by S.

Solution. $\forall \sigma \in S, x \in E$, we have $\sigma(x) = x$, so E is fixed by S and so $\langle S \rangle \subset \operatorname{Gal}(L/E)$. To chech $\overline{\langle S \rangle} = \operatorname{Gal}(L/E)$, it is enough to check that $U_{\sigma,F} \cap \langle S \rangle \neq \emptyset$ for every $\sigma \in \operatorname{Gal}(L/E)$ and every F. We will proceed as in the proof of the main theorem: Given a finite extension

 $K \subset F$, let M be a finite Galois extension such that $F \subset M$. Let's restrict $\langle S \rangle$ to M to obtain H' a subgroup of $\operatorname{Gal}(M/K)$. We have that $M^{H'} = E \cap M$, as both sides of the equality are the elements of M fixed by S. We have $\sigma|_{M^{H'}} = Id$, so $\sigma|_M \in \operatorname{Gal}(M/M^{H'}) = H' = \langle S \rangle|_M$. Then, $\exists \tau \in \langle S \rangle$ such that $\tau|_M = \sigma_M$, and restricting further to F we have finally $U_{\sigma,F} \cap \langle S \rangle \neq \emptyset$.

Exercise 1.6. Let $K \subset L$ be a Galois extension of fields, $S \subset \operatorname{Gal}(L/K)$ and $H' \subset H \subset \operatorname{Gal}(L/K)$ closed subgroups with $\operatorname{index}[H:H'] < \infty$. Prove that $L^H \subset L^{H'}$ is finite, and that $[L^{H'}:L^H] = \operatorname{index}[H:H']$. Which part of the conclusion is still true if H', H are not necessarily closed?

Solution. $L^H \subset L^{H'}$ is a Galois extension. Indeed, it is algebraic, because L is algebraic over K so every element of $L^{H'}$ is algebraic over K and therefore also over L^H . Moreover, H is a subgroup of $\operatorname{Aut}(L^{H'})$ so $L^H \subset L^{H'}$ is Galois.

As H' is closed in $\operatorname{Gal}(L/K)$, it is also closed in H, and $H = \operatorname{Gal}(L/L^H)$. As H' corresponds to a closed subgroup of finite index of H (by hypothesis), then it is an open subgroup of H. Now, using the fundamental theorem 2.3(a), we have that $L^H \subset L^{H'}$ is finite, and $[L^{H'}:L^H] = \operatorname{index}[H:H']$.

If H, H' are not necessarily closed, then every coset of H' induces a morphism $\tau: L^{H'} \to L$ such that L^H is invariant (that is, an L^H -immersion). The number of such immersions is the separablility index $[L^{H'}:L^H]$, which we knoe that divides the degree of the extension for finite extensions. Then, it still holds that $[L^{H'}:L^H] \geq \operatorname{index}[H:H']$.

Exercise 1.7. Let K, L, F be subfields of a field Ω , and suppose that $K \subset L$ is Galois and that $K \subset F$. Prove that $F \subset LF$ is Galois, and that $\operatorname{Gal}(LF/F) \cong \operatorname{Gal}(L/L F)$ (as topological groups).

Solution. Every element of L is normal algebraic and separable. As these properties are conserved by adjuntion, then LF = F(L) is also algebraic, separable and normal, so it is Galois. Now consider the application $\Phi : \operatorname{Gal}(LF/F) \to \operatorname{Gal}(L/L \cap F)$ defined by restriction $\Phi(\sigma) = \sigma|_{L}$.

The application is well defined, as L is normal, so $\sigma(L) = L$ and $\Phi(\sigma)(\alpha) = \sigma(\alpha) = \alpha$ for every element $\alpha \in L \cap F$. This proves that $\Phi(\sigma)$ is a indeed an element of $\operatorname{Gal}(L/L \cap F)$. Now let's check that we have an isomorphism of topological groups.

First we prove injectivity: Let $\sigma \in \operatorname{Gal}(LF/F)$ such that $\sigma|_L = Id$. Then, $\forall \alpha \in L, \sigma(\alpha) = \alpha$. As LF = F(L), then σ is completely determined by its image over the elements of L, so if $\sigma|_L = Id$, then $\sigma = Id$. A similar argument works to prove surjectivity: Given $\tau \in \operatorname{Gal}(L/L \cap F)$ we define $\sigma \in \operatorname{Gal}(LF/F)$ as $\sigma(\alpha) = \sigma(\sum_{i=1}^n a_i \alpha_i) = \sum_{i=1}^n a_i \sigma(\alpha_i)$, and we clearly have $\Phi(\sigma) = \tau$. Now let's prove continuity. Let $U_{\sigma,E}$ be an open set of $\operatorname{Gal}(L/L \cap F)$. $U_{\sigma,E} = \{\tau \in T\}$

Now let's prove continuity. Let $U_{\sigma,E}$ be an open set of $\operatorname{Gal}(L/L \cap F)$. $U_{\sigma,E} = \{\tau \in \operatorname{Gal}(L/L \cap F) \text{ such that } \tau|_E = \sigma|_E\}$, with $[E:L \cap F] < \infty$. We have $\Phi^{-1}(U_{\sigma,E}) = \{\tau \in \operatorname{Gal}(LF/F) \text{ such that } \tau|_E = \sigma|_E\}$. The image of τ on E is completely determined by the image of a certain element α , by the primitive element theorem. So let $E' = F(\alpha)$ and we have that $[E':F] < \infty$ and $\tau|_E' = \sigma'|_E'$, where σ' is the only element of $\operatorname{Gal}(LF/F)$ such that $\Phi(\sigma') = \sigma$. This proves that $\Phi^{-1}(U_{\sigma,E}) = U_{\sigma',E'}$ which is open, and this proves the continuity. So we have a continuous bijective map between profinite groups, and therefore it is an isomorphism of topological groups.

Exercise 1.8.

Exercise 1.9. Let K be a field. Prove that for every Galois extension $K \subset L$ the group $\operatorname{Gal}(L/K)$ is isomorphic to a quotient of the absolute Galois group of K.

Solution. Let $K \subset L$ be a Galois extension, and consider $\overline{L} = \overline{K}$ the algebraic closure. Then we have $K \subset L \subset K_s$ Galois extensions, and by the fundamental theorem (2.3 (d)) $\operatorname{Gal}(K_s/L)$ is a normal subgroup of $\operatorname{Gal}(K_s/K)$ and $\operatorname{Gal}(L/K) \cong \operatorname{Gal}(K_s/K)/\operatorname{Gal}(K_s/L)$.

Exercise 1.10. A Steinitz number or supernatural number is a formal expression $a = \prod_{p \ prime} p^{a(p)}$, where $a(p) \in \{0, 1, 2, ..., \infty\}$ for each number p. If $a = \prod_p p^{a(p)}$ is a Steinitz number, we denote by $a\hat{\mathbb{Z}}$ the subgroup of $\hat{\mathbb{Z}}$ corresponding to $\prod_p p^{a(p)} \mathbb{Z}_p$ (with $p^{\infty} \mathbb{Z}_p = \{0\}$) under the isomorphism $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$.

- a) Prove that the map $a \mapsto a\hat{\mathbb{Z}}$ from the set of Steinitz numbers to the set of closed subgroups of $\hat{\mathbb{Z}}$ is bijective. Prove also that $a\hat{Z}$ is open if and only if a is finite, i.e. $\sum_{n} a(p) < \infty$.
- b) Let \mathbb{F}_q be a finite field, with algebraic closure $\overline{\mathbb{F}_q}$. For a Steinitz number a, let \mathbb{F}_{q^a} be the set of all $x \in \mathbb{F}_q$ for which $[\mathbb{F}_q(x) : \mathbb{F}_q]$ divides a (in an obvious sense). Prove that the map $a \mapsto \mathbb{F}_{q^a}$ is a bijection from the set of Steinitz numbers to the set of intermediate fields of $\mathbb{F}_q \subset \overline{\mathbb{F}_q}$.

Solution.

Injectivity of the application is clear. To show surjectivity, it is enough to prove that every closed subgroup of $\hat{\mathbb{Z}}$ is of the form $a\hat{\mathbb{Z}}$. Indeed, if G is a closed subgroup of $\hat{\mathbb{Z}}$, then $G = \hat{\mathbb{Z}} \cap \prod G_n$, where G_n is a subgroup of $\mathbb{Z}/n\mathbb{Z}$ for each n. When $n = p^m$, the only possibilities are $G_{p^m} = p^{k_m}\mathbb{Z}/p^m\mathbb{Z}$. Moreover, if $k_m \neq m$ for a certain m we will have $G_{p^{m'}} = p^{k_m}\mathbb{Z}/p^{m'}\mathbb{Z}$. Let's define a(p) as this value of k_m . Then, under the isomorphism $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ the closed subgroup G corresponds to $\prod_p p^{a(p)}\mathbb{Z}_p$, which is by definition $a\hat{\mathbb{Z}}$.

It is clear that if a is finite, then $a\hat{\mathbb{Z}}$ has finite index and so it is open. Reciprocally, using again problem 1.11, we know that $a\hat{\mathbb{Z}}$ is open if and only if $\exists n$ such that $\ker f_n : \hat{\mathbb{Z}} \to \mathbb{Z}/n\mathbb{Z}$ is a subgroup of $a\hat{\mathbb{Z}}$. Then, if $n = \prod p_i^{k_i}$, $\ker f_n = \prod_{p_i|n} p_i^{k_i}\mathbb{Z}_{p_i} \times \prod p \nmid n\mathbb{Z}_p$. $\ker f_n \subset a\hat{\mathbb{Z}} \iff a(p) = 0$ for all $p \nmid n$ and $a(p_i) \leq k_i$ for all $p_i|n$. Then $\sum_p a(p) \leq \sum_{i=1}^m k_i \leq \infty$, and so a is finite.

By (a) we have a correspondence between Steinitz numbers and the set of closed subgroups of $\hat{\mathbb{Z}}$. As $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) \cong \hat{\mathbb{Z}}$, then theorem 2.3 gives a correspondence between Steinitz numbers and intermediate extensions $\mathbb{F}_q \subset E \subset \overline{\mathbb{F}_q}$ given by $a \mapsto \overline{\mathbb{F}_q}^{a\hat{\mathbb{Z}}}$. So we only need to check that $\overline{\mathbb{F}_q}^{a\hat{\mathbb{Z}}} = \mathbb{F}_{q^a}$.

Let $x \in \mathbb{F}_{q^a}$. Then $[\mathbb{F}_q(x) : \mathbb{F}_q] = n$, and n|a so $\operatorname{Gal}(\mathbb{F}_q(x)/\mathbb{F}_q) = \mathbb{Z}/n\mathbb{Z}$, and so $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q(x)) = n\hat{\mathbb{Z}}$. Then as n|a it is clear that $a\hat{\mathbb{Z}} \subset n\hat{\mathbb{Z}}$, and so $x \in \mathbb{F}_q^{a\hat{\mathbb{Z}}}$.

Reciprocally, given $x \in \mathbb{F}_q^{a\hat{\mathbb{Z}}}$ let's consider the extension $\mathbb{F}_q \subset \mathbb{F}_q(x)$, which is finite and of degree a certain n. Then, $\mathbb{F}_q(x) \subset \mathbb{F}_q^{a\hat{\mathbb{Z}}}$, and so $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q^{a\hat{\mathbb{Z}}}) \subset \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q(x))$, and $a\hat{\mathbb{Z}} \subset n\hat{\mathbb{Z}}$, which implies that n|a and so $x \in \mathbb{F}_{q^a}$.

Exercise 1.11.

Exercise 1.12. Let K be a field, K_s its separable closure, m a positive integer not divisible by char(K), and ω the number of m-th roots of unity in K.

- a) Let for $\tau \in \operatorname{Gal}(K_s/K)$ the integer $c(\tau)$ be such that $\tau(\varsigma_m) = \varsigma_m^{c(\tau)}$, where ς_m denotes a primitive m-th root of unity. Prove that ω is the greatest common divisor of m and all numbers $c(\tau) 1$, $\tau \in \operatorname{Gal}(K_s/K)$.
- b) **Schienzel's Theorem**. Let $a \in K$. Prove that the splitting field of $X^m a$ over K is abelian over K if and only if $a^{\omega} = b^m$ for some $b \in K$. [Hint for the only if part: if $\alpha^m = a$, prove that $\alpha^{c(\tau)}/\tau(\alpha) \in K^*$ for all τ .]

- **Solution.** a) Let d be the least exponent such that $\varsigma_m^d \in K$. Then, the subgroup of the m-th roots of unity generated by ς_m^d has order ω , and so $\omega d = m$. Then it is clear that $\omega|m$. Moreover, let $\tau \in \operatorname{Gal}(K_s/K)$ and as $\varsigma_m^d \in K$ we will have that $\tau(\varsigma_m^d) = \varsigma_m^{dc(\tau)} = \varsigma_m^d$. This means that $c(\tau)d \equiv d \pmod{m} \Rightarrow c(\tau)d \equiv d \pmod{d\omega} \Rightarrow c(\tau) \equiv 1 \pmod{\omega} \Rightarrow \omega|c(\tau)-1$. This proves that ω is a common divisor of m and $c(\tau)-1$, for all $\tau \in \operatorname{Gal}(K_s/K)$. Now suppose that the greatest common divisor is not ω , that is, that exists k > 1 such that $k\omega|m$ and $k\omega|c(\tau)-1$, $\forall \tau$. Then let $k\omega d' = m$, where d'k = d. Note that $\forall \tau$ we will have $\tau(\varsigma_m^{d'}) = \varsigma_m^{c(\tau)d'}$. And as $c(\tau)-1 \equiv 0 \pmod{k\omega}$, then $d'c(\tau) \equiv d' \pmod{m}$ so $\varsigma_m^{d'} \in K$, which is a contradiction as d' < d.
 - b) Let L be the splitting field of $X^m a$. The roots of this polynomial are $\varsigma_m^k \alpha$, for a certain α such that $\alpha^m = a$. Then $L = K(\alpha, \varsigma_m)$, and every element $\tau \in \operatorname{Gal}(L/K)$ is totally determined by $\tau(\varsigma_m) = \varsigma_m^{c(\tau)}$ and $\tau(\alpha) = \varsigma_m^s \alpha$ for a certain s. Given an element $g \in \operatorname{Gal}(L/K)$ defined by s, c(g), we have $g(\varsigma_m^k \alpha) = g(\varsigma_m^k)g(\alpha) = \varsigma_m^{kc(g)}\varsigma_m^s \alpha$. Then every element of $\operatorname{Gal}(L/K)$ can be expressed as $g = \sigma \tau$, with $\sigma \in \operatorname{Gal}(L/K(\varsigma_m))$ and $\tau \in \operatorname{Gal}(L/K(\alpha))$. These subgroups are abelian: The first one is a cyclic group of order a divisor of m, and the second one is a sugbroup of the multiplicative group $\mathbb{Z}/m\mathbb{Z}$. Note that then $\operatorname{Gal}(L/K)$ is abelian if and only if arbitrary σ, τ belonging to these subgroups commute.

Let $\sigma \in \operatorname{Gal}(L/K(\varsigma_m))$ such that $\sigma(\alpha) = \varsigma_m^s \alpha$ and $\tau \in \operatorname{Gal}(L/K(\alpha))$. Then, $\sigma\tau(\varsigma_m^k \alpha) = \varsigma_m^{kc(\tau)+s} \alpha$ and $\tau\sigma(\varsigma_m^k \alpha) = \varsigma_m^{c(\tau)(k+s)} \alpha$. Then the group is abelian if and only if $c(\tau)s \equiv s \pmod{m}$ for all the possible values of s and $c(\tau)$.

Now, if $a^{\omega} = b^m$, the cyclic group $\operatorname{Gal}(L/K(\varsigma_m))$ has order a divisor of ω , as the order is the least divisor of m such that $\alpha^k \in K$, and so $k|\omega$. Then, we have $\sigma^{\omega} = Id$ and so $s\omega \equiv 0 \pmod{m}$, which means that d|s. Then, we have $c(\tau) = 1 + a\omega$ and multiplying by s = s'd we get $c(\tau)s = s + s'm$ so we have indeed that $c(\tau)s \equiv s \pmod{m}$ and so the group is abelian.

Reciprocally, let's follow the indication of the hint. Consider $\frac{\alpha^{c(\tau)}}{\tau(\alpha)}$ and apply $\sigma \in \operatorname{Gal}(L/K)$ to this number. Let $\sigma(\alpha) = \varsigma_m^t \alpha$ and so we have that

$$\sigma\left(\frac{\alpha^{c(\tau)}}{\tau(\alpha)}\right) = \frac{\sigma(\alpha)^{c(\tau)}}{\tau(\sigma(\alpha))} = \frac{(\varsigma_m^t \alpha)^{c(\tau)}}{\varsigma_m^{tc(\tau)} \tau(\alpha)} = \frac{\alpha^{c(\tau)}}{\tau(\alpha)}$$

So it is invariant by action of $\operatorname{Gal}(L/K)$ and therefore it is an element of K. Now let's choose an element τ such that $\tau \in \operatorname{Gal}(L/K(\alpha))$ and so we will have $\alpha^{c(\tau)-1} \in K$. Obviously we have alse $\alpha^m \in K$ so this leads $\alpha^w \in K$.

Exercise 1.13. a) Prove that $Q \cap M^{*m} = Q^{m/gcd(m,2)}$.

b) Let $L_m = M(\alpha \in \overline{\mathbb{Q}} : \alpha^m \in \mathbb{Q})$, for $m \in \mathbb{Z}_{>0}$. Prove that $M \subset L_m$ is Galois, and that there is an isomorphism of topological groups

$$\operatorname{Gal}(L_m/M) \to \operatorname{Hom}(Q, E_m^{gcd(m,2)})$$

mapping σ to $\sigma(\alpha^{1/m})/\alpha^{1/m}$.

c) Define $E_m \to E_n$ by $\varsigma \mapsto \varsigma^{m/n}$ for n dividing m, and let $\hat{E} = \varprojlim E_n$ with respect to these maps. Prove that $\hat{E} \cong \mathbb{Z}$ as topological groups.

d) Prove that $M \subset L$ is Galois and that the isomorphisms in (b) combine to yield an isomorphism of topological groups

$$\operatorname{Gal}(L/M) \to \operatorname{Hom}(Q, \hat{E}^2)$$

here $\operatorname{Hom}(Q, \hat{E}^2)$ has the relative topology in $(\hat{E}^2)^Q$. Prove also that this Galois group is isomorphic to the product of a countably infinite collection of copies of \hat{Z} .

Exercise 1.14. a) Let A be a local ring and $x \in A$ such that $x^2 = x$. Prove that x = 0 or x = 1.

- b) Prove that any ring isomorphism $\prod_{i=1}^s A_i \to \prod -j = 1^t B_j$, where the A_i and B_j are local rings and $t, s < \infty$, is induced by a bijection $\sigma : \{1, 2, ..., s\} \to \{1, 2, ..., t\}$ and isomorphisms $A_i \to B_{\sigma(i)}$.
- **Solution.** a) If A is a local ring then $\forall x \in A$, either x is a unit or x is an element of the Jacobson radical. Then, if $x = x^2 \Rightarrow x(1-x) = 0$ we have two options: If x is a unit, then $x^{-1}x(1-x) = 0 \Rightarrow (1-x) = 0 \Rightarrow x = 1$. If x is not a unit then as an element of the Jacobson radical we have 1-xy is a unit $\forall y \in A$. In particular, taking y = 1 we have that 1-x is a unit, and so $x(1-x)(1-x)^{-1} = 0 \Rightarrow x = 0$.
 - b) Let's denote $e_i \in \prod_{i=1}^s A_i$ the element that has zeros at all positions except at position i, where it has a 1. Let $\phi : \prod_{i=1}^s A_i \to \prod_{j=1}^t B_j$ denote the isomorphism of the statement. Then, $\phi(e_i)^2 = \phi(e_i^2) = \phi(e_i)$, so we must have for each coordinate j that $\phi(e_i)_j$ equals either 0 or 1, by part (a) of this problem (note that B_j is a local ring.

Moreover, by injectivity of the application ϕ , it is impossible that all the coordinates equal 0, because we would have that $\phi(e_i) = \phi(0) \Rightarrow e_i = 0$, which is a contradiction. Then, there is at least one coordinate such that $\phi(e_i)_j = 1$. Let's fix that j. By surjectivity of ϕ , we have now that

2 Galois categories

Exercise 2.1. A directed graph D consists of a set $V = V_D$ of vertices, a set $E = E_D$ of edges, a source map $s = s_D : E \to V$ and a target map $t = t_D : E \to V$; each $e \in E$ is to be thought as an arrow from s(e) to t(e). Let D be a directed graph and C a category. A D-diagram in C is a map that assigns to each $v \in V$ an object X_v of C and to each $e \in E$ a morphism f_e from $X_{s(e)}$ to $X_{t(e)}$ in C. A morphism from a D-diagram $((X_v)_{v \in V}, (f_e)_{e \in E})$ to a D-diagram $((Y_v)_{v \in V}, (g_e)_{e \in E})$ is a collection of morphisms $(h_v : X_v \to Y_v)_{v \in V}$ in C such that $h_{t(e)}f_e = g_e h_{s(e)}$ for all $e \in E$.

- a) Show that the D-diagrams in C form a category. We denote this category by C^D .
- b) Show that there exists a functor $\Gamma: \mathbf{C} \to \mathbf{C}^D$ mapping an object X to the constant D-diagram with $X_v = X$ for all $v \in V$ and $f_e = id_X$ for all $e \in E$, and mapping a morphism $h: X \to Y$ to the morphism $(h_v)_{v \in V}$ with all $h_v = h$.
- c) A left limit of a D-diagram A in C is an object lim A of C such that

$$\operatorname{Hom}_{\boldsymbol{C}}(-, \underrightarrow{\lim} A) \cong \operatorname{Hom}_{\boldsymbol{C}^D}(\Gamma(-), A)$$

as functors on C. Prove that $\varprojlim A$ is unique up to isomorphism if it exists, and that the notion of left limit generalizes that of a projective limit.

d) Show that C admits left limits of all D-diagrams in C is and only if the functor $\Gamma: C \to C^D$ has a right adjoint $\lim : C^D \to C$, i.e.

$$\operatorname{Hom}_{\boldsymbol{C}}(-,\varprojlim -) \cong \operatorname{Hom}_{\boldsymbol{C}^D}(\Gamma(-),-)$$

If this right adjoint exists, we say that C admits left limits over D.

e) A right limit of a D-diagram A in C is an object lim A of C such that

$$\operatorname{Hom}_{\boldsymbol{C}}(\varinjlim A,-) \cong \operatorname{Hom}_{\boldsymbol{C}^D}(A,\Gamma(-))$$

Formulate and prove the analogues of the assertions in (c) and (d). If Γ has a left adjoint $\lim : \mathbb{C}^D \to \mathbb{C}$ we say that \mathbb{C} admits right limits over D.

Solution. a) Note that the statement of the problem already defines a set of objects of \mathbb{C}^D and a set of morphisms $\operatorname{Hom}_{\mathbb{C}^D}((X_v), (f_e), ((Y_v), g_e))$. Given $(\phi_v) \in \operatorname{Hom}_{\mathbb{C}^D}((X_v), (f_e), ((Y_v), g_e))$ and $(\psi_v) \in \operatorname{Hom}_{\mathbb{C}^D}((Y_v), (g_e), ((Z_v), h_e))$ we have a composition $(\psi_v \circ \phi_v)$ defined by the composition of \mathbb{C} at each $v \in V$. We just have to check that it is indeed an element of $\operatorname{Hom}_{\mathbb{C}^D}((X_v), (f_e), ((Z_v), h_e))$. Indeed, we have

$$(\psi \circ \phi)_{t(e)} f_e = \psi_{t(e)} \phi_{t(e)} f_e = \psi_{t(e)} g_e \phi_{s(e)} = h_e \psi_{s(e)} \phi_{s(e)} = h_e (\psi \circ \phi)_{s(e)}$$

It is clear that for every D-diagram $((X_v), (f_e))$, the set of morphisms $\operatorname{Hom}_{\mathbf{C}^D}((X_v), (f_e), ((X_v), f_e))$ has an identity map $\operatorname{id}_{((X_v), (f_e))}$ which is the morphism (h_v) defined by $(h_v = \operatorname{id}_{X_v})$. The composition of morphisms of \mathbf{C}^D is associative because the composition of morphisms of \mathbf{C} is. So \mathbf{C}^D satisfies the definition of a category.

b) The statement already defines how the functor acts on objects and morphisms. We only have to check that the 2 properties of functors are satisfied: The identity must be mapped to the identity and the composition to the composition. But this is straightforward because $\Gamma(\mathrm{id}_X) = (\mathrm{id}_v)$ which is the identity over $\Gamma(X)$, and given morphisms $g: X \to Y$, $h: Y \to Z$, $\Gamma(h \circ g) = ((h \circ g)_v) = (h_v \circ g_v) = (h_v) \circ (g_v) = \Gamma(h) \circ \Gamma(g)$.

c) Suppose that we have $\varprojlim_1 A$ and $\varprojlim_2 A$ objects of C that satisfy this property. Let θ^1 be the isomorphism of functors $\operatorname{Hom}_{C}(-, \varinjlim_1 A) \cong \operatorname{Hom}_{C^D}(\Gamma(-), A)$ and θ^2 be the isomorphism of functors $\operatorname{Hom}_{C}(-, \varinjlim_2 A) \cong \operatorname{Hom}_{C^D}(\Gamma(-), A)$.

The isomorphism of functors means that for every elements $X, Y \in \mathbb{C}$ and every morphism $f: X \to Y$ we have isomorphisms θ_X^1 , θ_Y^1 that make the following diagram commutative:

$$\begin{array}{ccc} \operatorname{Hom}_{\boldsymbol{C}}(X, \varprojlim_{1} A) & \stackrel{\theta^{1}_{X}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(X), A) \\ \operatorname{Hom}_{\boldsymbol{C}}(f) & \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(f)) \\ \operatorname{Hom}_{\boldsymbol{C}}(Y, \varprojlim_{1} A) & \stackrel{\theta^{1}_{Y}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(Y), A) \end{array}$$

And the same holds for θ^2 . So in fact we have the following commutative diagram:

Now take $X = \varprojlim_1 A$ and $Y = \varprojlim_2 A$. Consider the morphism $f := ((\theta^2_{\varprojlim_1 A})^{-1} \circ \theta^1_{\varprojlim_2 A})(\operatorname{id}_{\varprojlim_1 A}) \in \operatorname{Hom}_{\mathbf{C}}(\varprojlim_1 A, \varprojlim_2 A)$. We will show that this is in fact an isomorphism. For this morphism f, we have the diagram

$$\begin{split} \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim_{1}A,\varprojlim_{1}A) &\overset{\theta_{\lim_{1}A}^{1}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(\varprojlim_{1}A),A) &\overset{\theta_{\lim_{1}A}^{2}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim_{1}A,\varprojlim_{1}A) \\ &\overset{\operatorname{Hom}_{\boldsymbol{C}}(f)}{\longleftrightarrow} \uparrow \qquad \overset{\operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(f))}{\longleftrightarrow} \uparrow \qquad \overset{\operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(f))}{\longleftrightarrow} \uparrow \qquad \overset{\operatorname{Hom}_{\boldsymbol{C}}(f)}{\longleftrightarrow} \uparrow \\ \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim_{2}A,\varprojlim_{1}A) &\overset{\theta_{\lim_{1}A}^{1}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(Y),A) &\overset{\theta_{\lim_{1}A}^{2}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim_{2}A,\varprojlim_{2}A) \end{split}$$

Now let's follow the two paths that can follow the morphism $\mathrm{id}_{\varprojlim_2} A \in \mathrm{Hom}_{\mathbf{C}}(\varprojlim_2 A, \varprojlim_2 A)$ to $\mathrm{Hom}(\varprojlim_1 A, \varprojlim_1 A)$. Going first up an then left, we have the identity on $\varprojlim_1 A$ (because of the definition of f). If we go first left and then up, we have $((\theta^1_{\varprojlim_1 A})^{-1} \circ \theta^2_{\varprojlim_1 A})(\mathrm{id}_{\varprojlim_2 A}) \circ f$, the two paths must agree as the diagram commutes, so we have proven that $g \circ f = \mathrm{id}_{\varprojlim_1 A}$, for g being defined as $g := ((\theta^1_{\varprojlim_1 A})^{-1} \circ \theta^2_{\varprojlim_2 A})(\mathrm{id}_{\varprojlim_2 A}) \in \mathrm{Hom}_{\mathbf{C}}(\varprojlim_2 A, \varprojlim_1 A)$. The symmetric calculation exchanging the roles of f and g proves that $f \circ g$ is also the identity. On conclusion, f is an invertible morphism and so $\varprojlim_1 A \cong \varprojlim_2 A$ as we wanted.

Now we want to prove that the notion of left limit generalizes that of projective limit. To do that, we will use the characterization of projective limit of exercise 1.8: $\forall T$ and morphisms $g_j: T \to S_j$ such that $f_{ij}g_i = g_j$, $\exists !g: T \to \varprojlim S_i$ with $g_j = f_jg$. If we turn the partially ordered set into a directed graph by putting V = I and $E = \{(i,j), \text{ such that } i,j \in I, i \geq j\}, \ s: E \to V, \ e = (i,j) \mapsto i \text{ and } t: E \to V, \ e = (i,j) \mapsto J$. Then we build a D-diagram A by $V \ni i \mapsto S_i$ and $E \ni (i,j) \mapsto f_{ij}$. In that language the above characterization of projective limits implies that $\forall T$ there is a bijective correspondence between $\operatorname{Hom}(\Gamma(T), A)$ and $\operatorname{Hom}(T, \varprojlim S_i)$, which means that $\varprojlim S_i$ is in fact the left limit of the D-diagram A.

d) It is clear that, if Γ has a right adjoint $\varprojlim -$, then for every D-diagram A, $\varprojlim A$ satisfies $\operatorname{Hom}_{\mathbf{C}}(-, \varprojlim A) \cong \operatorname{Hom}_{\mathbf{C}^D}(\Gamma(-), A)$, so it is a left limit of A, and in consequence, every D-diagram admits left limit.

Reciprocally, we have to show that the assignation $A \mapsto \varprojlim A$ is functorial. For that we have to define, for each A, B D-diagrams, and every morphism of D diagrams $f: A \to B$ a map $\varprojlim f: \varprojlim A \to \varprojlim B$ that preserves identities and composition. Let's define $\varprojlim f:=(\theta^B_{\varprojlim A})^{-1}(f\circ\theta^A_{\varprojlim A}(\operatorname{id}_{\varprojlim A}))$. (here θ^A denotes the isomorphism of functors of C for the D-diagram C). Note that if C C and C if C C is C definition of the functor C C in C is C and C in C in

$$\theta_{\underset{\text{lim}}{\underline{\text{lim}}} A}^{B}(\underset{\text{lim}}{\underline{\text{lim}}} f) = f \circ \theta_{\underset{\text{lim}}{\underline{\text{lim}}} A}^{A}(\operatorname{id}_{\underset{\text{lim}}{\underline{\text{lim}}} A})$$

$$\theta_{\underset{\text{lim}}{\underline{\text{lim}}} B}^{C}(\underset{\text{lim}}{\underline{\text{lim}}} g) = g \circ \theta_{\underset{\text{lim}}{\underline{\text{lim}}} A}^{B}(\operatorname{id}_{\underset{\text{lim}}{\underline{\text{lim}}} A})$$

$$\theta_{\underset{\text{lim}}{\underline{\text{lim}}} A}^{C}(\underset{\text{lim}}{\underline{\text{lim}}} h) = g \circ f \circ \theta_{\underset{\text{lim}}{\underline{\text{lim}}} A}^{A}(\operatorname{id}_{\underset{\text{lim}}{\underline{\text{lim}}} A})$$

We have the following commutative diagrams due to the isomorphisms between the functors f(c).

$$\operatorname{Hom}_{\boldsymbol{C}}(\varprojlim B, \varprojlim B) \overset{\theta_{\lim B}^{B}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(\varprojlim B), B)$$

$$\downarrow^{-\circ \varprojlim f} \qquad \qquad \downarrow^{-\circ \Gamma(\varprojlim f)}$$

$$\operatorname{Hom}_{\boldsymbol{C}}(\varprojlim A, \varprojlim B) \overset{\theta_{\lim A}^{B}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(\varprojlim A), B)$$

$$\overset{\theta_{\lim A}^{C}}{\longleftrightarrow} \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(\varprojlim B), C)$$

$$\begin{array}{ccc} \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim B,\varprojlim C) & \stackrel{\theta^{C}_{\varprojlim B}}{\longleftrightarrow} & \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(\varprojlim B),C) \\ & & \downarrow^{-\circ \varprojlim f} & & \downarrow^{-\circ \Gamma}(\varprojlim f) \\ \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim A,\varprojlim C) & \stackrel{\theta^{C}_{\varprojlim B}}{\longleftrightarrow} & \operatorname{Hom}_{\boldsymbol{C}^{D}}(\Gamma(\varprojlim A),C) \end{array}$$

Now following the first diagram from top-left to bottom-right, starting with the application $id_{\lim B}$ we get the following identity:

$$\theta^B_{\varprojlim}{}_A(\varprojlim f) = \theta^B_{\varprojlim}{}_B(\operatorname{id}_{\varprojlim}{}_B) \circ \Gamma(\varprojlim f)$$

Now composing with g on both sides we get

$$g \circ \theta_{\underset{\longrightarrow}{\lim}}^{B} A(\underset{\longleftarrow}{\lim} f) = g \circ \theta_{\underset{\longrightarrow}{\lim}}^{B} (\operatorname{id}_{\underset{\longrightarrow}{\lim}} B) \circ \Gamma(\underset{\longleftarrow}{\lim} f)$$

Now using the definitions, we have that $g \circ \theta_{\varprojlim}^B A(\varprojlim f) = \theta_{\varprojlim}^C A(\varprojlim h)$ and $\theta_{\varprojlim}^C B(\varprojlim g) = g \circ \theta_{\varprojlim}^B B(\operatorname{id}_{\varprojlim}A)$. Substituting into our equation, we have

$$\theta^{C}_{\varliminf A}(\varprojlim h) = \theta^{C}_{\varliminf B}(\varprojlim g) \circ \Gamma(\varprojlim f)$$

Now let's follow the second diagram from the top-left to the bottom right starting with the morphism $\varprojlim g \in \operatorname{Hom}_{\mathbf{C}}(\varprojlim B, \varprojlim C)$. We obtain that $\theta^{C}_{\varprojlim_{A}}(\varprojlim g \circ \varprojlim f) = \theta^{C}_{\varprojlim_{B}}(\varprojlim g) \circ$

 $\Gamma(\varprojlim f)$. So substituting this into our previous equation we finally have $\theta_{\varprojlim A}^C(\varprojlim h) = \theta_{\varprojlim A}^C(\varprojlim g \circ \varprojlim f)$ and so

$$\underline{\lim}\, h = \underline{\lim}\, g \circ \underline{\lim}\, f$$

And so we have defined a functor \lim – that is right adjoint to Γ .

e) A symmetric argument holds and allows us to prove that right limits are unique if they exist, and that C admits right limits over every D-diagram if and only if $\Gamma(-)$ has a left adjoint $\underline{\lim}$ –.

Exercise 2.2. Let C be a category.

- a) Prove that C admits left limits over the empty directed graph (with $V = E = \emptyset$) if and only if C has a terminal object.
- b) Prove that C admits left limits over the directed graph () if and only if the fibred product of any two objects over a third one exists in C.
- **Solution.** a) There is only one possible D-diagram over the empty directed graph, which is the empty D-diagram \varnothing . Then, if C admits left limits over the empty directed graph, then for every $X \in C$ there is only one possible morphism of D-diagrams $\varnothing : \Gamma(X) \to \varnothing$, which by the isomorphism of Hom functors implies that there is only one morphism $X \to \varprojlim \varnothing$. Then, the object $\varprojlim \varnothing$ satisfies the definition of terminal object in C. Reciprocally, if C has a terminal object, 0, that means that for every $X \in C\exists!$ element in $\operatorname{Hom}_{C}(X,0)$. Then, we have a bijective map $\operatorname{Hom}_{C}(X,0) \cong \operatorname{Hom}_{C^{D}}(\Gamma(X),\varnothing)$ that maps the only element in $\operatorname{Hom}_{C}(X,0)$ to the empty morphism (the only element in $\operatorname{Hom}_{C^{D}}(\Gamma(X),\varnothing)$), so $0 = \varprojlim \varnothing$ and so the category admits left limits over the empty directed graph.
 - b) If C admits left limits over that directed graph, it means that for every D-diagram A, composed by $X, Y, S \in C$ and $a: X \to S$, $b: Y \to S$ morphisms, \exists an object $\varprojlim A$ such that $\operatorname{Hom}_{\mathbf{C}}(Z, \varprojlim A) \cong \operatorname{Hom}_{\mathbf{C}^D}(\Gamma(Z), A)$, for every $Z \in \mathbf{C}$.

In particular, let $(h)_A \in \operatorname{Hom}_{\mathbf{C}^D}(\Gamma(Z), A)$, which means that $(h)_A$ is has the following elements: Morphisms $h_X : Z \to X$, $h_Y : Z \to Y$ and $h_S : Z \to S$ satisfying $h_S = ah_X = bh_Y$. Let $h = \theta_Z((h)_A)$, where θ is the isomorphism of functors. As usual, we have the following commutative diagram:

$$\begin{array}{ccc} \operatorname{Hom}_{\boldsymbol{C}}(\varprojlim A,\varprojlim A) & \stackrel{\theta_{\varprojlim}A}{\longleftrightarrow} & \operatorname{Hom}_{\boldsymbol{C}^D}(\Gamma(\varprojlim A),A) \\ & & & \downarrow^{-\circ h} & & \downarrow^{-\circ \Gamma(h)} \\ \operatorname{Hom}_{\boldsymbol{C}}(Z,\varprojlim A) & \stackrel{\theta_{\lim}A}{\longleftrightarrow} & \operatorname{Hom}_{\boldsymbol{C}^D}(\Gamma(Z),A) \end{array}$$

Taking the identity on the top-left and following the diagram in both directions, we have the following equality: $\theta_{\lim A}(\mathrm{id}_{\lim A} \circ \Gamma(h) = \theta_Z(h) = (h)_A$. That means that $\exists p_X, p_Y = \theta_{\lim A}(\mathrm{id}_{\lim A})_{X,Y}$ such that $h_{X,Y} = p_{X,Y} \circ h$, for h a uniquely determined morphism such. This is exactly the definition of fibred product of X and Y over S.

Reciprocally, if C admits a fibred product, given a D-diagram A (defined by X, Y, S, a, b with the same notation we have been using), an object Z and a morphism of D-diagrams $\Gamma(Z) \to A$, that is, applications $h_X : Z \to X$, $h_Y : Z \to Y$ satisfying $ah_X = bh_y : Z \to S$, consider the fibred product $X \times_S Y$. That object satisfies that there is a unique morphism $h: Z \to X \times_S Y$ such that the morphisms $h_{X,Y}$ factor through h. In particular, the

existence and uniqueness of this h allows us to define for every Z a bijection $\operatorname{Hom}_{\boldsymbol{C}}(Z,X\times_SY)\cong \operatorname{Hom}_{\operatorname{Cat}^D}(\Gamma(Z),A)$, so $X\times_SY$ is in fact the left limit of the D-diagram A. On conclusion, \boldsymbol{C} admits left limits over D.