Μοντέλα Μαθηματικού Προγραμματισμού

Ιωάννης Τσαντήλας, 03120883

Contents

Θεμα 1 : Μεικτος Ακεραίος Προγραμματισμός	. т
Θέμα 2: Το πρόβλημα του εφημεριδοπώλη	. 3
Θέμα 3: Στοχαστικός υδροθερμικός προγραμματισμός πολλαπλών σταδίων	. 5

Θέμα 1: Μεικτός Ακέραιος Προγραμματισμός

Το πρόβλημα μπορεί να περιγραφεί ως μεικτό ακέραιο γραμμικό πρόγραμμα, με παραμέτρους το βάρος, τον όγκο και την αξία κάθε προϊόντος και μεταβλητή απόφασης το πλήθος πακέτων που θα επιλέξουμε από κάθε προϊόν. Πιο συγκεκριμένα:

Μεταβλητή απόφασης

• **q**_i (quantity): η ποσότητα που παίρνουμε από το προϊόν i (σε μονάδες).

Παράμετροι

- **w**_i (weight): το βάρος ενός τεμαχίου από το προϊόν i (σε τόνους).
- **v**_i (volume): ο όγκος ενός τεμαχίου από το προϊόν i (σε κυβικά μέτρα).
- p_i (profit): η αξία ενός τεμαχίου από το προϊόν i (σε εκατοντάδες ευρώ).

Οι τιμές των παραμέτρων δίνονται στον παρακάτω πίνακα:

Product	Weight w _i (t)	Volume v _i (m³)	Profit p _i (x100€)
1	5	1	4
2	8	8	7
3	3	6	6
4	2	5	5
5	7	4	4

Περιορισμοί

Το συνολικό βάρος να μην υπερβαίνει τους 210 τόνους, ο συνολικός όγκος να μην υπερβαίνει τα 198 κυβικά μέτρα και η ποσότητα να είναι θετική δηλαδή:

$$\sum_{i=1}^{5} q_i \cdot w_i \le 210, \qquad \sum_{i=1}^{5} q_i \cdot v_i \le 198, \qquad q_i \ge 0$$

Στόχος

Η μεγιστοποίηση του συνολικού κέρδους, δηλαδή:

$$Total\ Profit = \max\{\sum_{i=1}^{5} q_i \cdot r_i\}$$

Λύση (Εχ1.py)

Παραθέτουμε τον πίνακα με το πλήθος κάθε προϊόντος που επιλέγουμε, όπως επίσης το βάρος, τον όγκο και την αξία του:

Product	Units	Weight w _i (t)	Volume v_i (m^3)	Profit p _i (x100€)
1	28	140	28	112
2	0	0	0	0
3	0	0	0	0
4	34	68	170	170
5	0	0	0	0
Total	62	208	198	282

Αποτελέσματα – Screenshots Εκτέλεσης

Θέμα 2: Το πρόβλημα του εφημεριδοπώλη

Το πρόβλημα χαρακτηρίζεται από το στοχαστικό στοιχείο της ζήτησης. Πρέπει να αποφασίσουμε πόσες εφημερίδες θα αγοράσουμε κάθε μήνα (μεταβλητής απόφασης). Πιο συγκεκριμένα:

Μεταβλητή απόφασης

• **q** (quantity): το πλήθος των εφημερίδων που θα παραγγείλει ο εφημεριδοπώλης.

Παράμετροι

- **bp** (buying price): η τιμή αγοράς μίας εφημερίδας, bp = 2.
- **sp** (selling price): η τιμή πώλησης μίας εφημερίδας, sp = 3.

Στοχαστικό στοιχείο

• **d** (demand): η ζήτηση των εφημερίδων, η οποία είναι ομοιόμορφα κατανεμημένη από 100 έως 1000, σε διαστήματα των 100.

Στόχος

Η μεγιστοποίηση του κέρδους του εφημεριδοπώλη. Το κέρδος μίας ημέρας εξαρτάται από το πλήθος των εφημερίδων που πούλησε, το οποίο με τη σειρά του εξαρτάται από τη ζήτηση. Εάν ο εφημεριδοπώλης αγοράσει λιγότερες εφημερίδες από την ζήτηση, τότε θα τις πουλήσει όλες. Εάν αγοράσει παραπάνω από τη ζήτηση, τότε θα αναγκαστεί να πετάξει το υπόλοιπο. Συνολικά:

$$Total\ Profit = \max \left\{ \sum_{i=1}^{12} \min(q_i, d_i) \cdot sp - q_i \cdot bp \right\}$$

Επιπλέον, καλούμαστε να βρούμε:

- 1. Βέλτιστη ποσότητα παραγγελίας εφημερίδων, δηλαδή το «q» στη λύση του στοχαστικού προβλήματος,
- 2. Αξία της στοχαστικής λύσης, δηλαδή διαφορά μεταξύ τη λύση του στοχαστικού προβλήματος και τη λύση αναμενόμενης τιμής (να αγοράσουμε κάθε φορά τόσες εφημερίδες όσες η μέση ζήτηση, 550):

$$VSS = SP - WSS$$

3. Αναμενόμενη αξία της τέλειας πληροφορίας: διαφορά μεταξύ του ντετερμινιστικού κέρδους (εάν έχουμε «κρυστάλλινη μπάλα» και ξέρουμε επ' ακριβώς τη ζήτηση, επομένως αγοράζουμε την ακριβή ποσότητα) και της λύσης του στοχαστικού προβλήματος:

$$EVPI = WS - SP$$

Λύση (Εχ2.py)

Για να υπολογίσουμε το μέσο κέρδος για κάθε πιθανή ποσότητα παραγγελίας, υπολογίσαμε το κέρδος για κάθε ποσότητα παραγγελίας. Ο πλήρης πίνακας φαίνεται στην επόμενη ενότητα. Παραθέτουμε το μέσο κέρδος ανάλογα την ποσότητα παραγγελίας:

Order Quantity	100	200	200	400	500	600	700	800	900	1000
Expected Profit	100	170	210	220	200	150	70	-40	-180	-350

Επομένως:

- Optimal Order Quantity: 400 newspapers
- Expected Profit (SP): €220.00
- Expected demand: 550.00
- Expected Demand Profit (WSS): €175.00
- Value of Stochastic Solution (VSS = SP WSS): €45.00
- Perfect Information Expected Profit (WS):
 €550.0
- Expected Value of Perfect Information (EVPI = WS SP): €330.00

Αποτελέσματα – Screenshots Εκτέλεσης

Profit for each possible Demand and Order Quantity:												
Demand	100	200	300	400	500	600	700	800	900	1000		
Profit for ordering: 100	100	100	100	100	100	100	100	100	100	100		
Profit for ordering: 200	-100	200	200	200	200	200	200	200	200	200		
Profit for ordering: 300	-300	0	300	300	300	300	300	300	300	300		
Profit for ordering: 400	-500	-200	100	400	400	400	400	400	400	400		
Profit for ordering: 500	-700	-400	-100	200	500	500	500	500	500	500		
Profit for ordering: 600	-900	-600	-300	0	300	600	600	600	600	600		
Profit for ordering: 700	-1100	-800	-500	-200	100	400	700	700	700	700		
Profit for ordering: 800	-1300	-1000	-700	-400	-100	200	500	800	800	800		
Profit for ordering: 900	-1500	-1200	-900	-600	-300	0	300	600	900	900		
Profit for ordering: 1000	-1700	-1400	-1100	-800	-500	-200	100	400	700	1000		

Evnocted	Dnofite	non Ondon	Ouantity:
LADELLEU	LIGITES	ner order	ODGIILLTLY.

Order Quantity	100	200	300	400	500	600	700	 800	900	1000
Expected Profit	100	170	210	220	200	150	70	-40	-180	-350

Optimal Order Quantity: 400 newspapers

Expected Profit (SP): €220.00

Expected demand: 550.00

Expected Demand Profit (WSS): €175.00

Value of Stochastic Solution (VSS = SP - WSS): €45.00

Perfect Information Expected Profit (WS): €550.0

Expected Value of Perfect Information (EVPI = WS - SP): €330.00

Θέμα 3: Στοχαστικός υδροθερμικός προγραμματισμός πολλαπλών σταδίων

Έχουμε το εξής δέντρο τεσσάρων σταδίων, με τις βροχοπτώσεις να εμφανίζονται στους κύκλους. Πρέπει να αποδείξουμε πως *μία* βέλτιστη λύση είναι στην εικόνα δεξιά:

Μεταβλητές απόφασης

- **d**: πλήθος MWh της ζήτησης **D** που δεν εξυπηρετήθηκαν, και άρα θα υποστούμε πρόστιμο **V**.
- **p**_{1,2}: παραγωγή (σε MWh) της κάθε γεννήτριας.
- **e**: πλήθος MWh που είναι αποθηκευμένες στην υδροθερμική μονάδα.
- **pH**: πλήθος MWh που στέλνονται από την υδροθερμική μονάδα στο φορτίο (στην πραγματικότητα, επειδή υπάρχουν αποσβέσεις, στέλνονται pH/η).
- **dH**: πλήθος MWh που στέλνονται από τις γεννήτριες στην υδροθερμική μονάδα.

Παράμετροι

- **V**: πρόστιμο (σε €) για κάθε MWh της ζήτησης που δεν ικανοποιήσαμε.
- MC_{1,2}: κόστος παραγωγής μίας MWh (σε €) για κάθε γεννήτρια.
- $P_{1,2}$: ικανότητα παραγωγής κάθε γεννήτριας.
- **D**: ζήτηση (σε MWh) κάθε περιόδου.
- η: απόδοση της υδροθερμικής μονάδας.
- Ε: ικανότητα αποθήκευσης της υδροθερμικής μονάδας.
- Η: πλήθος καταστάσεων κάθε περιόδου.
- **prob**: η πιθανότητα να φτάσουμε σε μία συγκεκριμένη κατάσταση.
- **R**: η ποσότητα βροχής σε κάθε βροχόπτωση.

Περιορισμοί

Για
$$g \in [1,2]$$
, $t \in [1,4]$, $n \in [1,8]$.

$$p_{gt}(n) \le P_g$$

$$d_t(n) \le D_t$$

$$e_t(n) \le E$$

$$d_t(n) + dH_t(n) - \sum_{g \in [1,2]} p_{gt}(n) - pH_t(n) = 0$$

$$e_t(n) = R_t(n) + dH_t(n) - \frac{pH_t(n)}{\eta} + e_{j-1}(n)$$

$$p, d, pH, dH, e \ge 0$$

Στόχος

Μεγιστοποίηση του συνολικού κέρδους:

$$\max_{p,d,pH,dH} \sum_{t=1}^{H} \sum_{n \in \Omega_t} P(n) \cdot (V \cdot d_t(n) - \sum_{g \in G} MC_{gt} \cdot p_{gt}(n))$$

Λύση (Εχ3.py)

Η βέλτιστη τιμή της αντικειμενικής συνάρτησης είναι 437959.5 €. Μία από τις βέλτιστες λύσεις έχει τα εξής αποτελέσματα:

Period	d_1	d_2	d₃	d4	\mathbf{d}_{5}	d_6	\mathbf{d}_{7}	d_8
1	50							
2	100	100						
3	120	120	120	120				
4	180	180	180	180	180	180	180	180

Period	pH_1	pH_2	pН₃	pH4	pH_5	pH_6	pH_7	pH_8
1	0							
2	0	0						
3	0	0	0	0				
4	48	40	32	24	28	20	24	20

Period	e_1	e_2	e_3	e 4	e 5	e_6	e ₇	e ₈
1	15							
2	25	15						
3	40	30	25	25				
4	0	0	0	0	0	0	0	0

Period	dH_1	dH_2	dH ₃	dH4	dH_5	dH_6	dH_7	dH_8
1	10							
2	0	0						
3	0	0	5	10				
4	0	0	0	0	0	0	0	0

Period	p_1	$\mathbf{p_2}$	\mathbf{p}_3	p_4	\mathbf{p}_{5}	\mathbf{p}_{6}	\mathbf{p}_7	$\mathbf{p_8}$
1	60, 0							
2	60, 40	60, 40						
3	60, 60	60, 60	60, 65	60,70				
4	60,72	60, 80	60, 88	60, 96	60, 92	60, 100	60, 96	60, 100

Η οποία ωστόσο δεν ταυτίζεται με τα αποτελέσματα που θέλουμε να αποδείξουμε, αλλά είναι ισοδύναμη. Fix-άρουμε τις τιμές e[2][0] = 20, e[2][1] = 20 και e[3][0] = 25, ώστε να βγάλουμε την επιθυμητή λύση και σημειώνουμε με κόκκινο ποιες τιμές άλλαξαν:

Period	$\mathbf{d_1}$	$\mathbf{d_2}$	d₃	d4	\mathbf{d}_{5}	\mathbf{d}_{6}	\mathbf{d}_{7}	d ₈
1	50							
2	100	100						
3	120	120	120	120				
4	180	180	180	180	180	180	180	180

Period	pH_1	pH_2	pH ₃	pH ₄	pH_5	pH_6	pH_7	pH_8
1	0							
2	4	0						
3	8	0	0	0				
4	36	28	28	20	28	20	24	20

Period	e_1	e_2	e ₃	e 4	e 5	\mathbf{e}_{6}	e ₇	e ₈
1	15							
2	20	20						
3	25	25	25	25				
4	0	0	0	0	0	0	0	0

Period	dH_1	dH_2	dH₃	dH4	dH ₅	dH ₆	dH ₇	dH ₈
1	10							
2	0	5						
3	0	0	0	5				
4	0	0	0	0	0	0	0	0

Period	p_1	$\mathbf{p_2}$	p_3	p 4	\mathbf{p}_{5}	\mathbf{p}_{6}	\mathbf{p}_7	p_8
1	60, 0							
2	60, <mark>36</mark>	60, <mark>45</mark>						
3	60, <mark>52</mark>	60,60	60, <mark>60</mark>	60, <mark>65</mark>				
4	60, <mark>84</mark>	60, <mark>92</mark>	60, <mark>92</mark>	60, 100	60, 92	60, 100	60, 96	60, 100

Φυσικά, η αντικειμενική συνάρτηση έχει πάλι τιμή 437959.5 €.

Αποτελέσματα – Screenshots Εκτέλεσης

d_1	d_2	2 d_;	3	d_4	d_5	d_6	d_	7	d_8			
50							 					
100	100	j 										
120	120	9 120) -	120								
180	180	9 180)	180	180	180	 18 	0	180			
,												
p_1		p_2		p_3		p_4		p_5		 p_6 	p_7	p_8
60.0, 6	0.0									 	 	
60.0, 3	36.0	60.0, 4	0.0									
60.0, 5	52.0	60.0, 6	0.0	60.0,	65.0	60.0, 7	0.0					
60.0, 8	34.0	60.0, 9	2.0	60.0,	92.0	60.0, 1	00.0	60.0	, 92.0	60.0, 100.0	60.0, 96.0	60.0, 100.0

										-		=
e_1	e_2	e_3		e_4	 	e_5	 e ₋	_6	e_7	7	e_8	
15												
20	15]
25	25	25		25]
0	0	0		0		0		0	(9	0	
pH_1	pH_2	2 pH	_3	pł	1_4	ŀ	oH_5		pH_6		pH_7	pH_8
0												
4	[
8			0		0							
36	28	3 2	28		20		28		20		24	20

dH_1	dH_2	dH_3	dH_4	dH_5	dH_6	dH_7	 dH_8
10					 		
0	0						
0	0	5	10				
0	0	0	0	0	 0	0	 0