

Computational Study on Bidentate Hypervalent Iodine-Based Catalysis

James O'Brien

Outline

Introduction: Halogen Bonding

Hydrogen bond:

Halogen bond (XB):

Chlorine

Bromine

σ-Hole Size

T. Clark, M. Hennemann, J. S. Murray, P. Politzer, *J. Mol. Model.* **2007**, *13*, 291–296.

Introduction: Catalyst Rationale

Monovalent

Monodentate

Bidentat

F. Heinen, E. Engelage, A. Dreger, R. Weiss, S. M. Huber, *Angew. Chem. Int. Ed.* **2018**, *57*, 3830–3833. J. Melnyk, M. R. Garcia, C. Truiillo, *ACS Catal.* **2023**, 15505–15515.

Introduction: Reaction (Michael Addition)

Outline

Results: Binding-Mode Investigation

ωb97xd/def2svp // ωb97xd/def2tzvp

Results: Binding-Mode Investigation

Results: Functionalisation

Results: General Trends (-ΔG[‡])

Results: Non-Covalent Interactions

ωb97xd/def2svp // ωb97xd/def2tzvp

Outline

Scaffold

Conclusions

Thank You for listening

& Thanks to:

People

Dr. Cristina Trujillo

Dr. Michael James

Dr. Iñigo Iribarren

Nika Melnyk

Rico Shing Lee

Tim Renningholtz

Diana Bura

Marina Díaz

Maxime Ferrer

Mauno Lius

Ethan Lim

Prof. Alberto Cruz

Organisations

University of Manchester Computational Shared Facility IT Services

