Nombre v	/ Apellic	o C	:	26/08/18

Lenguajes Formales

Se desea especificar un lenguaje para definir listas de números de diversas maneras. Los numerales pueden escribirse de las siguientes formas:

- Enteros:1 -123 +1400 1.400
- Punto flotante: 1,2 +1, -,2 1.000,5
- Enteros en hexadecimal: 0xCafE -0xC4f3 0x0
- Notación científica: 1e2 -1,1e+3 +0,5e-71
- Complejos en notación binomial: 1+i1 -1,1+i2,2 0-i2,
- Valores especiales: Infinity -Infinity NaN

Las listas se denotan entre paréntesis rectos y sus elementos van separados por punto y coma. Las listas se pueden anidar, siendo elementos de otras listas. Las listas pueden estar vacías. Por ejemplo, las siguientes cadenas serían válidas en el lenguaje:

```
[1 ; 2 ; 3]
[[1 ; 2] ; [1] ; []]
[1,0 ; [1,1 ; [1,2 ; []]]]
[1 ; 1,0 ; 1e0 ; 1+i0]
[NaN ; NaN ; -0.000,0+i0,0]
[[[]]]
```

Por el contrario, las siguientes son ejemplos de cadenas que no serían válidas en el lenguaje:

```
1
[[,]; [;]]
[][]
[[][]]
[OXcafe ; xCAFE]
[+i ; 0-I1 ; 1+i]
[+e ; e- ; 1E2]
[1 2]
```

Dar una gramática para el lenguaje planteado. Se debe indicar el símbolo inicial, y las precedencias y asociatividades si aplican. (4p)

Se desea especificar un lenguaje para definir listas de números de diversas maneras. Los numerales pueden escribirse de las siguientes formas:

```
• Enteros:1 -123 +1400 1.400
```

[•] Punto flotante: 1,2 +1, -,2 1.000,5

- Enteros en hexadecimal: 0xCafE -0xC4f3 0x0
- Notación científica: 1e2 -1,1e+3 +0,5e-71
- Complejos en notación binomial: 1+i1 -1,1+i2,2 0-i2,
- Valores especiales: Infinity -Infinity NaN

Las listas se denotan entre paréntesis rectos y sus elementos van separados por punto y coma. Las listas se pueden anidar, siendo elementos de otras listas. Las listas pueden estar vacías. Por ejemplo, las siguientes cadenas serían válidas en el lenguaje:

```
[1 ; 2 ; 3]
[[1 ; 2] ; [1] ; []]
[1,0 ; [1,1 ; [1,2 ; []]]]
[1 ; 1,0 ; 1e0 ; 1+i0]
[NaN ; NaN ; -0.000,0+i0,0]
[[[]]]
```

Por el contrario, las siguientes son ejemplos de cadenas que no serían válidas en el lenguaje:

```
1
[[,]; [;]]
[][]
[[][]]
[OXcafe ; xCAFE]
[+i ; 0-I1 ; 1+i]
[+e ; e- ; 1E2]
[1 2]
```

Dar las definiciones léxicas del lenguaje planteado, detallando para cada lexema: nombre, expresión regular y opcionalmente una acción semántica. (4p)

¿La siguiente gramática incontextual es ambigua? (1p)

$$(\{S\},\,\{a;\,b\},\,\{\;S\rightarrow SbS\;;\,S\rightarrow a\;\},\,S)$$

Sí, la cadena "ababa" tiene dos posibles árboles de derivación.	
No, no es ambigua.	
Sí, la cadena "aba" tiene dos posibles árboles de derivación.	
Sí, la cadena "abababa" tiene dos posibles árboles de derivación.	

Notas: La aceptación es por estado final.

{ a ⁿ b ^m	/ n	= 2m)
 าฉบ	/ 11	- 4111	•

{
$$a^nb^m / n \ge 2m$$
 }

$$a^{n}b^{m} / n \ge 2m, n > 0, m > 0$$

$$a^{n}b^{m}/n = 2m, n > 0, m > 0$$

¿Cuántos estados tiene el AFNe que se obtiene al aplicar las construcciones de Thompson en la siguiente expresión regular? (1p)

☐ Once.

Doce.

Diez.

Ninguna de las cantidades propuestas.

¿Cuántos estados debe tener como mínimo el autómata que reconozca {aa}*? (1p) _ 1

 \square 2

□ 4

3

El siguiente autómata es no determinista:

¿Cuál de las siguientes cadenas tiene más de un camino de aceptación en este autómata? (1p)

La cadena abaa.

Ninguna de las cadenas dadas.

□ La cadena abba.

La cadena abbaa.

¿Cuál de las siguientes expresiones regulares es equivalente a la expresión regular dada? (1p)

((a|ab)*)

((a+b)*)

((a|b)*)

	((a*b)*) ((ab?)*)							
¿C	¿Cuál de las siguientes gramática incontextuales genera el siguiente lenguaje? (1p)							
	$\{ a^{x}b^{y}a^{y}b^{x} / x > 0, y > 0 \}$							
ζC	¿Cuál es la gramática LL(1) equivalente a la siguiente gramática? (1p)							
	$(\{S\}, \{a; b\}, \{ S \rightarrow aSb \; ; S \rightarrow bSa \; ; S \rightarrow ab \; ; S \rightarrow ba \}, S)$							
Qj	¿Qué tipos de conflicto LR tiene la siguiente gramática? (1p)							
	$(\{S\},\{a,b\},\{\;S\rightarrow SS\;;\;S\rightarrow a\;;\;S\rightarrow ab\;\},S)$							
	La gramática no tiene conflictos. Conflictos shift/reduce y reduce/reduce. Conflictos reduce/reduce únicamente. Conflictos shift/reduce únicamente.							