Vertiefungskurs Mathematik

Folgen

Definition Folge: Eine (reelle) Folge ist eine Abbildung $a: \mathbb{N} \to \mathbb{R}$, also eine Vorschrift, die jeder natürlichen Zahl n das n-te Folgenglied $a(n) \in \mathbb{R}$ zuordnet.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Wir können eine Folge auch ansehen als eine Funktion $f : \mathbb{N} \to \mathbb{R}$ mit $f(n) = a_n$.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Wir können eine Folge auch ansehen als eine Funktion $f: \mathbb{N} \to \mathbb{R}$ mit $f(n) = a_n$.

Wir können uns eine Folge vorstellen als eine Folge von Punkten auf der Zahlengeraden.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Wir können eine Folge auch ansehen als eine Funktion $f : \mathbb{N} \to \mathbb{R}$ mit $f(n) = a_n$.

Wir können uns eine Folge vorstellen als eine Folge von Punkten auf der Zahlengeraden.

Manchmal lässt man eine Folge auch beim Index 0 beginnen.

 $a_n = n^2 + 1$ beschreibt eine Folge mit den Folgengliedern

 $a_n = n^2 + 1$ beschreibt eine Folge mit den Folgengliedern $a_1 = 2, a_2 = 5, a_3 = 10...$

$$a_n = n^2 + 1$$
 beschreibt eine Folge mit den Folgengliedern $a_1 = 2, a_2 = 5, a_3 = 10...$

Manchmal ist es schwierig, eine Formel für das n-te Folgenglied zu finden. Eine Folge kann auch rekursiv beschrieben werden:

$$a_n = n^2 + 1$$
 beschreibt eine Folge mit den Folgengliedern $a_1 = 2, a_2 = 5, a_3 = 10...$

Manchmal ist es schwierig, eine Formel für das n-te Folgenglied zu finden. Eine Folge kann auch rekursiv beschrieben werden:

$$a_n = \begin{cases} 1, & n = 1, n = 2 \\ a_{n-1} + a_{n-2} & n > 2 \end{cases}$$

Der Wert eines Folgenglieds wird durch Rückgriff auf frühere Folgenglieder festgelegt.

$$a_n = 2^n$$
 für $n \ge 0$

$$a_n = 2^n$$
 für $n \ge 0$

$$b_n = \begin{cases} 1, & n = 0 \\ 2 \cdot b_{n-1} & n > 0 \end{cases}$$

$$a_n=2^n$$
 für $n\geq 0$

$$b_n = \begin{cases} 1, & n = 0 \\ 2 \cdot b_{n-1} & n > 0 \end{cases}$$

Die Folgen (a_n) und (b_n) sind gleich.

Wir nutzen die Tribonacci Folge (a_n) , um daraus eine neue Folge (b_n) zu bauen.

Wir nutzen die Tribonacci Folge (a_n) , um daraus eine neue Folge (b_n) zu bauen.

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2\\ 2 \cdot a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

Wir nutzen die Tribonacci Folge (a_n) , um daraus eine neue Folge (b_n) zu bauen.

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2 \\ 2 \cdot a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

$$(a_n) = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, \dots$$

$$b_n = \frac{a_{n+1}}{a_n}$$

$$(b_n) = 1, 1, 3, \frac{5}{3}, \frac{9}{5}, \frac{17}{9}, \frac{31}{17}, \frac{57}{31}, \frac{105}{57}...$$

Die Folge (b_n) mit Dezimalzahlen:

1.84210526315789 1.83809523809524

1.83937823834197 1.83943661971831

1.83920367534456

Die Folgenglieder b_n scheinen sich einem Grenzwert b anzunähern.

Wir schreiben
$$b = \lim_{n \to \infty} b_n$$

Es kann schwierig sein, den genauen Grenzwert zu berechnen. Für b_n ist es die Zahl:

$$\tfrac{1}{3}\sqrt[3]{19+3\sqrt{33}} - \tfrac{1}{3}\sqrt[3]{19-3\sqrt{33}} + \tfrac{1}{3}$$

$$\approx 1,8392867552$$

1.83930058284763 1.83929379809869 1.83928131922225 1.83928810384049 1.83928701345944 1.83928642063210 1.83928686638422 Eine **arithmetische Folge** ist ein Folge mit einer konstanten Differenz zwischen den Folgengliedern.

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einen konstanten Quotienten zwischen den Folgengliedern.

$$3, 6, 12, 24, 48, 96..$$
 $a_n = 3 \cdot 2^n.$

Allgemeine Form einer geometrischen Folge: $a_n = a_0 \cdot q^n$.

Jedes Folgenglied ist das geometrische Mittel seiner Nachbarn.

Das geometrische Mittel zweier Zahlen a, b ist definiert als $\sqrt{a \cdot b}$.

Wir untersuchen die Folge
$$a_n = \frac{6n+2}{3n+3}$$

 $a_1 = \frac{8}{6} = \frac{4}{3}$
 $a_{1000} = \frac{6002}{3003} \approx 1.99866799866800$
 $a_{1000000} = \frac{6000002}{3000003} \approx 1.99999866666800$

Die Folge nähert sich der 2, wir schreiben: $\lim_{n\to\infty} a_n = 2$.

Damit drücken wir aus: Wir können mit a_n beliebig nahe an die 2 kommen, wenn wir n nur groß genug wählen.

Für jedes $\epsilon > 0$ gibt es ein n_0 , so dass a_n nicht mehr als ϵ von 2 entfernt ist, wenn nur $n > n_0$ ist.

Definition Grenzwert: Eine Zahl $a \in \mathbb{R}$ heißt Grenzwert der Folge (a_n) wenn gilt:

$$\forall \epsilon > 0 \,\exists n_0 \in \mathbb{N} \,\forall n > n_0 : |a_n - a| < \epsilon$$

Besitzt eine Folge (a_n) eine Grenzwert a - auch Limes genannt - so sagt man, die Folge konvergiert gegen a und schreibt dafür $\lim_{n\to\infty}a_n=a$ oder $(a_n)\to a$ für $a\to\infty$.

Andere Formulierung: a heißt Grenzwert der Folge (a_n) , wenn in jeder (noch so kleinen) ϵ -Umgebung von a fast alle Elemente der Folge liegen.

Beispiel: $a_n = \frac{n+1}{n+2}$. Behauptung: $\lim_{n \to \infty} a_n = 1$.

Beweis: Sei $\epsilon > 0$.

Wir müssen ein n_0 finden, so dass $|a_n - 1| < \epsilon$ für $n > n_0$.

$$|a_n - 1| < \epsilon \Leftrightarrow 1 - \frac{n+1}{n+2} < \epsilon \Leftrightarrow (n+2) - (n+1) < \epsilon(n+2)$$

$$\Leftrightarrow \frac{1}{\epsilon} < n+2 \Leftrightarrow \frac{1}{\epsilon} - 2 < n.$$
Wähle als no sine 7ahl mit $n \ge 1$

Wähle als n_0 eine Zahl mit $n_0 \ge \frac{1}{2} - 2$.

Beispiel: für $\epsilon = \frac{1}{100}$ wählen wir $n_0 = 98$. Alle Folgenglieder nach a_{98} haben den Abstand kleiner als $\frac{1}{100}$ zum Grenzwert 1.