Limite d'une fonction

I. Limite finie et infinie d'une fonction en un point :

1. Limite finie d'une fonction en un point :

O Exemple introductif:

Dans la figure ci-contre OAB est un triangle de surface $8cm^2$ et M un point mobile d'abscisse x sur le segment [OB]. On considère f(x) la surface du triangle OAM.

• On remarque que f(x) prend des valeurs proches de plus en plus de 8 lorsque x prend des valeurs de plus en plus proches de 4. On dit que f(x) tend vers 8 lorsque x tend vers 4 et on écrit $\lim_{x \to a} f(x) = 8$.

• On remarque que que f(x) tend vers 0 lorsque x tend vers 0. Donc la limite de f en 0 est 0 et on écrit $\lim_{x\to 0} f(x) = 0$.

• On a
$$f(x) = 2x$$
, on trouve alors
$$\begin{cases} \lim_{x \to 4} f(x) = \lim_{x \to 4} 2x = 2 \times 4 = 8 \\ \lim_{x \to 0} f(x) = \lim_{x \to 0} 2x = 2 \times 0 = 0 \end{cases}$$

Définition :

Soit a et l deux nombres réels. Soit f une fonction numérique définie sur un intervalle de la forme $]a - x_0; a + x_0[$ ou sur un ensemble de la forme $]a - x_0; a + x_0[- \{a\}$ où $(a \in \mathbb{R}^{*+}).$

Si f(x) tend vers l quand x tend vers a, on écrit: $\lim_{x \to a} f(x) = l$ ou $\lim_{x \to a} f(x) = l$.

Propriété :

Soit f une fonction numérique, a et l deux nombres réels.

Si f admet une limite l en a alors cette limite est unique.

O_Remarques:

- On rencontre parfois lors de calcul de certaines limites en un point a la forme indéterminée suivante " $\frac{0}{0}$ ".
- Les formes indéterminées sont " $\frac{0}{0}$ ", " $\frac{\pm \infty}{\pm \infty}$ ", " $+\infty \infty$ " et " $0 \times \pm \infty$ ".

O Exemple D:

Calculons $\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3}$.

On ne peut pas calculer cette limite directement parce que on obtient la forme indéterminée " $\frac{0}{0}$ ".

On a
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} = \lim_{x \to 3} \frac{(\sqrt{x+1}-2)(\sqrt{x+1}+2)}{(x-3)(\sqrt{x+1}+2)}$$

$$= \lim_{x \to 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2)}$$

$$= \lim_{x \to 3} \frac{1}{\sqrt{x+1}+2}$$

$$= \frac{1}{\sqrt{4+1}+2} = \frac{1}{4}.$$

O Exemple 0:

Calculons $\lim_{x \to -1} \frac{2x^3 + 2x^2 + x + 1}{x^2 + 3x + 2}$.

On ne peut pas calculer cette limite directement parce que on obtient la forme indéterminée "0".

La division euclidienne de $2x^3 + 2x^2 + x + 1$ et $x^2 + 3x - 2$ par x + 1, donne : $2x^3 + 2x^2 + x + 1 = (x + 1)(2x^2 + 1)$ et $x^2 + 3x + 2 = (x + 1)(x + 2)$.

Donc
$$\lim_{x \to -1} \frac{2x^3 + 2x^2 + x + 1}{x^2 + 3x + 2} = \lim_{x \to -1} \frac{(x+1)(2x^2 + 1)}{(x+1)(x+2)}$$

= $\lim_{x \to -1} \frac{2x^2 + 1}{x + 2}$
= $\frac{2(-1)^2 + 1}{(-1)^2 + 1} = 3$.

Application **Q**:

Calculer les limites suivantes :

$$\lim_{x\to 1}\frac{x+4}{x+5}$$

2
$$\lim_{x\to 2} \frac{x-2}{x^2-4}$$

$$\lim_{x \to 0} \frac{x^2 + 3x}{x^2 - 4x}$$

4
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 3x + 2}$$

6
$$\lim_{x \to 1} \frac{3x^3 - 4x + 1}{x^2 - 4x + 3}$$

$$\lim_{x \to 1} \frac{3x^2 - 5x + 2}{\sqrt{x} - 1}$$

8
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{3-\sqrt{x+4}}$$

Exercice @ de la série.

2. Limite infinie d'une fonction en un point :

🎤 Propriété :

Soit f une fonction numérique, a et l deux nombres réels.

- Si f(x) tend vers $+\infty$ quand x tend vers a, on écrit: $\lim_{x \to a} f(x) = +\infty$ ou $\lim_{a} f(x) = +\infty$.
- Si f(x) tend vers $-\infty$ quand x tend vers a, on écrit: $\lim_{x \to a} f(x) = -\infty$ ou $\lim_{x \to a} f(x) = -\infty$.

Limite à droite et à gauche d'une fonction en un point :

PP Définition :

Soient f une fonction numérique et a un nombre réel.

- La limite de f à droite en a, notée $\lim_{x \to a} f(x)$ ou $\lim_{x \to a^+} f(x)$, est la limite de f lorsque xprend des valeurs de plus en plus proches et supérieures de a.
- La limite de f à gauche en a, notée $\lim_{x \to a} f(x)$ ou $\lim_{x \to a^{-}} f(x)$, est la limite de f lorsque x

prend des valeurs de plus en plus proches et inférieures de a.

🎤 🎤 Propriété :

On admet les limites suivantes :

- $\bullet \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \bullet \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty \quad \bullet \lim_{\substack{x \to 0 \\ x > 0}} \sqrt{x} = 0 \quad \bullet \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{\sqrt{x}} = +\infty \quad \bullet (\forall n \in \mathbb{N}^*) \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^n} = +\infty$

- Si *n* est pair, alors $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^n} = +\infty$.
- Si *n* est impair, alors $\lim_{x\to 0} \frac{1}{x^n} = -\infty$.

O Exemple:

Calculons $\lim_{x \to 3^+} \frac{x+2}{3x-x^2}$ et $\lim_{x \to 3^-} \frac{x+2}{3x-x^2}$. Le tableau de signe de $3x - x^2$ est

Et on a $\lim_{x \to 3^+} x + 2 = 5$ et $\lim_{x \to 3^+} 3x - x^2 = 0^-$. Donc $\lim_{x \to 3^+} \frac{x+2}{x^2 - 3x} = -\infty$.

Et on a $\lim_{x \to 3^{-}} 3x - x^2 = 0^+$. Donc $\lim_{x \to 3^{+}} \frac{x+2}{x^2 - 3x} = +\infty$.

Application 2:

Calculer les limites suivantes :

- $\lim_{x \to 2^{+}} \frac{x+3}{x-2}$ $\lim_{x \to -1^{+}} \frac{3x-2x^{2}}{x-x^{3}}$ **6** $\lim_{x \to 1^{-}} \frac{2x+3}{1-x^{2}}$

Exercice 3 de la série.

Théorème:

Soit *f* une fonction numérique. On a :

$$\lim_{x \to a^{-}} f(x) = l \text{ et } \lim_{x \to a^{+}} f(x) = l \Leftrightarrow \lim_{x \to a} f(x) = l.$$

O_Remarques:

- Le théorème reste valable si l est un réel ou $+\infty$ ou $-\infty$.
- Si $\lim_{x \to a} f(x) = l$ et $\lim_{x \to a} f(x) = l'$ tel que $l \neq l'$ on dit que f n'a pas de limite en a.

Exemple:

Soit f la fonction définie par $\begin{cases} f(x) = -x + 1; & x \ge 3 \\ f(x) = x^2 - 4x + 1; & x < 3 \end{cases}$ On $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} -x + 1 = -2$ et $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} x^2 - 4x + 1 = -2$. Puisque $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^-} f(x) = -2$, alors f a une limite en a et on a : $\lim_{x \to 3} f(x) = -2$.

Application 3:

 $\begin{cases} f(x) = \frac{x^2 - 3x + 2}{x - 1}; & x < 1 \\ f(x) = \frac{\sqrt{x} - 1}{x - 1}; & x > 1 \end{cases}$ 1. On considère la fonction f définie par

Calculer $\lim_{x\to 1^-} f(x)$ et $\lim_{x\to 1^+} f(x)$. Conclure.

2. On considère la fonction g définie par : $\begin{cases} g(x) = \frac{x^2 + 1}{-x + 3} & \text{if } x \leq 2 \\ g(x) = 1 - ax^2 & \text{if } x > 2 \end{cases}$

Déterminer une valeur de a pour laquelle g admet une limite en 2.

Limite finie et infinie d'une fonction en $+\infty$ ou en $-\infty$ II.

Activité D:

La figure ci-contre représente la courbe de la fonction $f: x \mapsto$ x^3 dans un plan muni d'un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$.

- **1.** Que peut-on remarquer pour les valeurs de f(x) quand xprend des valeurs de plus en plus grandes?
- **2.** Que peut-on remarquer pour les valeurs de f(x) quand xprend des valeurs de plus en plus petites?
- **3.** Exprimez vos remarques dans les questions 1. et 2. en utilisant les symbole *lim*.

🎤 Propriété :

Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{R}^*$, On admet les limites suivantes :

$$\blacksquare \lim_{x \to +\infty} x^n = +\infty$$

$$\blacksquare \lim_{x \to -\infty} x^n = \begin{cases} +\infty ; & n \text{ pair} \\ -\infty ; & n \text{ impair} \end{cases}$$

$$\blacksquare \lim_{x \to -\infty} kx^n = \begin{cases} +\infty & \text{; } k > 0 \text{ et } n \text{ pair} \\ -\infty & \text{; } k < 0 \text{ et } n \text{ pair} \\ -\infty & \text{; } k > 0 \text{ et } n \text{ impair} \\ +\infty & \text{; } k < 0 \text{ et } n \text{ impair} \end{cases}$$

Activité 2:

La figure ci-contre représente la courbe de la fonction $f: x \mapsto \frac{1}{x^2}$ dans un plan muni d'un repère orthonormé $(0; \vec{\imath}; \vec{\imath})$.

- 1. Que peut-on remarquer pour les valeurs de f(x) quand x prend des valeurs de plus en plus grandes?
- 2. Que peut-on remarquer pour les valeurs de f(x) quand x prend des valeurs de plus en plus
- **3.** Exprimez vos remarques dans les questions 1. et 2. en utilisant les symbole *lim* .

🎤 🎤 Propriété :

Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{R}^*$, On admet les limites suivantes : $\lim_{x \to \infty} \frac{k}{x^n} = 0$ et $\lim_{x \to \infty} \frac{k}{x^n} = 0$

O Exemples:

Calculons les limites suivantes $\lim_{x \to +\infty} \frac{2x^2+5}{4x^2}$ et $\lim_{x \to -\infty} \frac{-3x^3+x}{x^3}$.

Propriété :

Si ax^n et bx^m sont respectivement les termes du plus haut degré des polynômes P et Q,

 $\lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^n; \lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^n; \lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{ax^n}{bx^m}; \lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{ax^n}{bx^m}$

Application @: Exercice @ de la série

Calculer les limites suivantes :

$$\bullet \lim_{x \to +\infty} 1 + 5x^2 + 8x$$

•
$$\lim_{x \to -\infty} -5x^3 + 1$$

•
$$\lim_{x \to -\infty} x + (1 - \sqrt{2})x^2 + 4$$

•
$$\lim_{x \to +\infty} \frac{4 + 2x^3}{3x^3 + 5x^2 + 1}$$

•
$$\lim_{x \to +\infty} 1 + 5x^2 + 8x$$
• $\lim_{x \to +\infty} -5x^3 + 1$
• $\lim_{x \to -\infty} x + (1 - \sqrt{2})x^2 + 4$
• $\lim_{x \to -\infty} \frac{4 + 2x^3}{3x^3 + 5x^2 + 1}$
• $\lim_{x \to -\infty} \frac{(2 - \sqrt{3})x^3 - x^2}{2x^2 - 3}$
• $\lim_{x \to -\infty} \frac{|x| - 3x}{|x + 5|}$

•
$$\lim_{|x| \to +\infty} \frac{|x| - 3x}{|x + 5|}$$

O Exercice O de la série.

🎤 Propriété :

Soit f une fonction numérique définie sur un intervalle de la forme $[a; +\infty]$ où $(a \in \mathbb{R})$ telle que $(\forall x \in [\alpha; +\infty[): f(x) \ge 0.$

• Si
$$\lim_{x \to +\infty} f(x) = l$$
 et $l \ge 0$, alors : $\lim_{x \to +\infty} \sqrt{f(x)} = \sqrt{l}$.

• Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
, alors : $\lim_{x \to +\infty} \sqrt{f(x)} = +\infty$.

O_Remarque:

• Cette propriété reste valable aussi quand x tend vers $-\infty$ ou vers un réel a ou à droite en a ou à gauche en a.

Application 5:

Calculer les limites suivantes :

$$\mathbf{0} \quad \lim_{x \to +\infty} \sqrt{x^2 + 2x + 5}$$

$$\lim_{x \to -\infty} \sqrt{3x^2 - 5x + 1} \qquad \qquad \mathbf{0} \quad \lim_{x \to +\infty} \mathbf{0}$$

$$\lim_{x \to +\infty} \sqrt{\frac{x+1}{x-4}}$$

III. Opérations sur les limites :

Dans tous ce qui suit, a est un nombre reel ou $+\infty$ ou $-\infty$, t et t' sont des nombres réels. Ces résultats restent valables pour les limites à droite et à gauche en a.

$\lim_{x\to a} f(x)$	$\lim_{x\to a}g(x)$	$\lim_{x \to a} (f + g)(x)$	$\lim_{x \to a} (fg)(x)$	$\lim_{x \to a} {f \choose g}(x)$
l	l' ≠ 0	l + l'	ll'	l/l'
l > 0	$-\infty$	$-\infty$	$-\infty$	0
l < 0	$+\infty$	+∞	$-\infty$	0
$+\infty$	$+\infty$	+8	+∞	F.I
$-\infty$	$-\infty$	8	+∞	F.I
$+\infty$	$-\infty$	F.I	-8	F.I
0	$\pm \infty$	$\pm \infty$	F.I	0
$+\infty$	0	+8	F.I	$\pm \infty$
0	0	0	0	F.I
$l \neq 0$	0	l	0	$\pm \infty$

Application ©:

Calculer les limites suivantes :

1
$$\lim_{x \to 0^+} 3x + 7 + \frac{1}{\sqrt{x}}$$

$$\lim_{x \to -\infty} \left(-3 + \frac{1}{x} \right) \left(1 + \frac{2}{x} \right)$$

3
$$\lim_{x \to -\infty} \frac{1 + \frac{4}{x^3}}{2 - x^5}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 5x - 3}}{x}$$

$$\lim_{x \to 0^{+}} 3x + 7 + \frac{1}{\sqrt{x}} \quad \textbf{2} \quad \lim_{x \to -\infty} \left(-3 + \frac{1}{x} \right) \left(1 + \frac{2}{x} \right) \qquad \textbf{3} \quad \lim_{x \to -\infty} \frac{1 + \frac{4}{x^{3}}}{2 - x^{5}}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x^{2} + 5x - 3}}{x} \qquad \textbf{5} \quad \lim_{x \to +\infty} \sqrt{4x^{2} - x + 3} - 2x + 1 \qquad \textbf{6} \quad \lim_{x \to -\infty} \sqrt{x^{2} + x} + x$$

$$\mathbf{6} \quad \lim_{x \to -\infty} \sqrt{x^2 + x} + x$$

IV. Limite de fonctions trigonométriques :

Propriété :

•
$$\lim_{x \to a} \cos(x) = \cos(a)$$
 • $\lim_{x \to a} \sin(x) = \sin(a)$

• $\lim \tan(x) = \tan(a)$ si $x \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$.

O Exemples:

$$\lim_{x \to \frac{\pi}{6}} \sin x = \frac{1}{2} \; ; \qquad \lim_{x \to -\frac{\pi}{4}} \cos x = \frac{\sqrt{2}}{2} \; ; \quad \lim_{x \to \pi} \tan x = 0 \; ; \qquad \lim_{x \to \frac{\pi}{3}} \tan x = \sqrt{3}$$

O_Remarques :

Les fonctions $x \mapsto \sin(x)$, $x \mapsto \cos(x)$ et $x \mapsto \tan(x)$ n'ont pas de limite en $\pm \infty$.

 $\lim_{x \to \infty} \tan x = +\infty$ et $\lim_{x \to \infty} \tan x = -\infty$.

Propriété :

Soit a un réel non nul, on a :

$$\lim_{x\to 0}\frac{\sin(ax)}{ax}=1\;; \lim_{x\to 0}\frac{1-\cos(ax)}{(ax^2)}=\frac{1}{2}\;; \lim_{x\to 0}\frac{1-\cos(ax)}{(ax^2)}=\frac{1}{2}.$$

O Exemple:

Calculons $\lim_{x\to 0} \frac{\sin 5x}{x}$.

Application **2**:

Calculer les limites suivantes :

$$\mathbf{0} \lim_{x \to 0} \frac{\sin 4x}{\tan 5x}$$

$$2 \lim_{x \to 0} \frac{\tan 2x}{x}$$

•
$$\lim_{x\to 0} \frac{\sin 3x}{4x}$$

$$\begin{array}{ccc}
\mathbf{4} & \lim_{x \to 2} \frac{\sin(x-2)}{x-2} \\
& \lim_{x \to 2} \frac{\cos x}{\cos x}
\end{array}$$

$$\lim_{x \to 0^+} \frac{1 - \cos \sqrt{x}}{x}$$

$$\mathbf{6} \lim_{x \to 1} \frac{\tan \pi x}{x - 1}$$

$$\mathbf{O} \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$$

$$\mathbf{8} \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

Limites et ordre :

Propriété:

Soit a et l deux réels et $I = [a; +\infty[$.Soit f,g et h des fonctions numériques définies sur I.

 $\begin{cases} (\forall x \in I) \ g(x) \le f(x) \\ \lim_{x \to +\infty} g(x) = +\infty \end{cases}, \text{ alors } \lim_{x \to +\infty} f(x) = +\infty.$

 $\begin{cases} (\forall x \in I) \ g(x) \ge f(x) \\ \lim_{x \to +\infty} g(x) = -\infty \end{cases}, \text{ alors } \lim_{x \to +\infty} f(x) = -\infty$

 $\begin{cases} (\forall x \in I); |f(x) - l| \le g(x) \\ \lim_{x \to +\infty} g(x) = 0 \end{cases}, \text{ alors } \lim_{x \to +\infty} f(x) = l.$

 $\begin{cases} (\forall x \in I); g(x) \le f(x) \le h(x) \\ \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = l \end{cases}, \text{ alors } \lim_{x \to +\infty} f(x) = l.$

O_Remarque :

Ces propriétés restent valables aussi quand x tend vers $-\infty$ ou vers un réel a ou à droite en a ou à gauche en a.

Application 8:

1. a. Montrer que : $(\forall x \in \mathbb{R})$ $\frac{1}{3} \le \frac{1}{2 - \cos x} \le 1$.

b. Calculer les limites suivantes : $\lim_{x \to +\infty} \frac{x}{2-\cos x}$; $\lim_{x \to -\infty} \frac{x^3}{2-\cos x}$

2. On considère la fonction f définie sur \mathbb{R}^* par : $f(x) = x \sin(\frac{1}{x}) + 2$.

Vérifier que : $(\forall x \in \mathbb{R}^*) |f(x) - 2| \le |x|$ puis déduire $\lim_{x \to \infty} f(x)$.