Departamento Acadêmico de Eletrônica - DAELN IFSC – Câmpus Florianópolis

Eletrônica Digital 1

Aritmética digital e circuitos aritméticos

Prof. Matheus Leitzke Pinto matheus.pinto@ifsc.edu.br

Sumário de aula

- Adição binária
- Circuitos somadores
- Subtração binária
- Circuitos subtratores

Adição binária

Aritmética digital e circuitos aritméticos

Adição binária

- A adição binária é realizada exatamente da mesma forma que a adição de números decimais.
- Exemplo:

Adição binária

- A adição binária é realizada exatamente da mesma forma que a adição de números decimais.
- Exemplo:

Aritmética digital e circuitos aritméticos

Meio somador

 A adição binária de dois bits Ai e Bi pode ser realizada pelo circuito meio somador:

Ai	Bi	Si	Ti+1
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Meio somador

 A adição binária de dois bits Ai e Bi pode ser realizada pelo circuito meio somador:

Ai	Bi	Si	Ti+1
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Somador completo

• A adição binária de dois bit Ai e Bi, mais o bit de transporte Ti da soma anterior pode ser realizada pelo circuito **somador completo**:

Ai	Bi	Ti	Si	Ti+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador completo

• A adição binária de dois bit Ai e Bi, mais o bit de transporte Ti da soma anterior pode ser realizada pelo circuito **somador completo**:

Ai	Bi	Ti	Si	Ti+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador de N bits

- A partir desses elementos básicos, podemos formar circuitos que somam números de diversos bits.
 - Exemplo: somador de 4 bits

Subtração binária

Aritmética digital e circuitos aritméticos

Subtração binária

- A **subtração binária** também é realizada exatamente da mesma forma que a subtração de números decimais:
- Exemplo:

Subtração binária

- A **subtração binária** também é realizada exatamente da mesma forma que a subtração de números decimais:
- Exemplo:

Aritmética digital e circuitos aritméticos

Meio subtrator

 A subtração binária de dois bits Ai e Bi pode ser realizada pelo circuito meio subtrator:

Ai	Bi	Si	Ti+1
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Meio subtrator

 A subtração binária de dois bits Ai e Bi pode ser realizada pelo circuito meio subtrator:

Ai	Bi	Si	Ti+1
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Subtrator completo

• A subtração binária de dois bit Ai e Bi, mais o bit de "empresta 1" Ti da subtração anterior, pode ser realizada pelo circuito **subtrator completo**:

Ai	Bi	Ti	Si	Ti+1
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Subtrator completo

• A subtração binária de dois bit Ai e Bi, mais o bit de "empresta 1" Ti da subtração anterior, pode ser realizada pelo circuito **subtrator completo**:

Ai	Bi	Ti	Si	Ti+1
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Podemos criar circuitos que mesclem soma/subtração.

• Também podemos ter circuitos dedicados à multiplicação, ou realizar multiplicação através de diversas somas.

• O mesmo vale para divisão.

• Um circuito que realiza diversas operações lógicas e aritméticas é denominado Unidade Lógica e Aritmética (ULA).