#### IEEE Conference on Decision and Control 2018



Gaussian Processes with Monotonicity Constraints for Preference Learning from Pairwise Comparisons

Robert Chin<sup>1,2</sup>, Chris Manzie<sup>1</sup>, Alex Ira<sup>1</sup>, Dragan Nešić<sup>1</sup>, Iman Shames<sup>1</sup>

<sup>1</sup>School of Engineering, The University of Melbourne <sup>2</sup>School of Computer Science, University of Birmingham

#### Outline



- Overview
- ► Motivation
- Review of pairwise preference learning
- ► Definitions and setup
- ► Main results
  - Empirical Bayes for prior modelling
  - ► Monotonicity guarantees
  - Learning algorithm
- Simulation case study
- Summary and future work



#### Problem Statement

From pairwise comparison data, learn a utility function with monotonicity constraints in desired dimensions.

Chu/Ghahramani (2005), Gaussian process regression from pairwise comparisons:



- ightharpoonup Our approach: introduce two latent utility estimates  $f_{\mathrm{MAP}}, \ f_{\mathrm{lin}}.$
- ► Find a convex combination between these which satisfies monotonicity constraints.



- ► Why preference learning?
  - ► Difficult-to-obtain utility or cost functions (requires domain knowledge or expertise).
- ► Why pairwise comparisons?
  - ▶ Numeric ratings susceptible to a 'drift effect'.
- ► Why monotonicity?
  - Model features that are desirable.
  - Prior regularisation and for reducing data requirements.

# Learning from Pairwise Comparisons



- ► Psychometrics (1920s)
- ▶ Discrete choice theory in economics (1970s).
- ► Learning-to-rank algorithms (1990s), eg. Google PageRank.
- Chu/Ghahramani (2005)
- ► Riihimäki/Vehtari (2010)
- ► Akrour et. al. (2012) & DeepMind/OpenAl (2017)

## Problem Setup



#### Definition (Ordinal utility functions)

- ▶ Ordinal utility function  $h: \mathcal{X} \to \mathbb{R}$ .
- ▶ Represents underlying preferences such that  $x_A \leq x_B \Leftrightarrow h(x_A) \leq h(x_B)$ .
- Infinitely many ordinal utility functions for the same preferences.

#### Definition (Monotonic preferences)

Strict monotonicity at x in dimension j:

$$\frac{\partial h(x)}{\partial x_i} > 0$$

Weak monotonicity is defined analogously.

lacksquare Focus on case where  $\mathcal X$  is compact subset of  $\mathbb R^d_{\geq 0}.$ 

# Rating Model



▶ 'Library' of *n* distinct items  $\mathbb{X} \in \mathcal{X}^n$ .

#### Assumption

(Rating model) The user generates comparisons between  $x_A, x_B \in \mathbb{X}$  using the data generating process

$$v(\mathbf{x}_A) := g(\mathbf{x}_A) + \varepsilon_A$$
  
 $v(\mathbf{x}_B) := g(\mathbf{x}_B) + \varepsilon_B$ 

- ▶ User rates  $\mathbf{x}_B$  preferred over  $\mathbf{x}_A$  when  $v(\mathbf{x}_B) > v(\mathbf{x}_A)$ .
- $ightharpoonup g(\cdot)$  is the underlying utility function.
- ightharpoonup  $arepsilon_A, arepsilon_B \sim \mathcal{N}\left(0, \sigma_{ ext{noise}}^2
  ight)$  are i.i.d. rating noise.
- ▶ Noise models inaccuracy in judgement or multiple users.

#### Maximum Likelihood Estimate of Utilities



- ▶ Linear model of the utility function  $g(x) = \beta^{\top} x$ .
- ► Can treat x as being lifted from an original feature space through strictly monotonic transformations.
- ► Constrained maximum likelihood from *M* pairwise comparisons:

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left\{ -\sum_{i=1}^{M} \log \Phi \left( \frac{\boldsymbol{\beta}^{\top} \mathbf{x}_{Bi} - \boldsymbol{\beta}^{\top} \mathbf{x}_{Ai}}{\sqrt{2} \sigma_{\mathtt{noise}}} \right) \right\}$$
s.t.  $\boldsymbol{\beta}_{j} > 0, \forall j \in \mathcal{J}$ 

- $\mathcal{J} \subseteq \{1, \dots, d\}$ : dimensions desired with monotonicity.
- Convex problem.
- $ightharpoonup \sigma_{
  m noise}$  can be absorbed into eta.
- ▶ This gives what we want, but can we do better?

# Empirical Bayes and Gaussian Process Regression M MELBOURNE



- ▶ Use  $\widehat{\beta}^{\top} x$  as a prior mean in Gaussian process regression.
- Based on the Laplace approximation of posterior, the utility estimate  $\bar{f}_*(x_*)$  at test point  $x_*$  takes the form:

$$ar{f}_{*}\left(x_{*}
ight)=\widehat{oldsymbol{eta}}^{ op}x_{*}+\mathbf{k}_{*}^{ op}\mathbf{K}^{-1}\left(\mathbf{y}-\mathbf{f}_{\mathrm{lin}}
ight)$$

- ▶  $X \in \mathbb{R}^{n \times d}$ : matrix containing distinct items from  $\mathbb{X}$ .
- $\mathbf{f}_{1:n} := X\widehat{\beta}$
- ▶  $y \in \mathbb{R}^n$ : latent vector of utilities for points in  $\mathbb{X}$ .
- ightharpoonup  $\mathbf{k}_*$ ,  $\mathbf{K}$ : Gram matrices from Gaussian process kernel  $k(\cdot, \cdot)$ .
- ▶ One choice of y is the maximum a posteriori estimate:

$$f_{\text{MAP}} = \mathsf{argmin}_{f} \left\{ -\log \mathcal{L}\left(f\right) + \frac{1}{2} \left\| f - f_{\text{lin}} \right\|_{K^{-1}}^{2} \right\}$$

▶ However, this does not guarantee monotonicity of  $\bar{f}_*$  ( $x_*$ ).

# Monotonicity Conditions



Consider squared exponential kernel:

$$k(x, x') = \sigma^2 \exp \left[ -\frac{1}{2} (x - x')^\top \Lambda^{-1} (x - x') \right]$$

- $\triangleright$   $\sigma$ ,  $\Lambda$  are hyperparameters.
- Produces smooth sample paths of the Gaussian process.
- ▶ Condition for strict monotonicity of  $\bar{f}_*(x_*)$  in dimension j:

$$\widehat{eta}_{j} + \left[ rac{\partial \mathbf{k} \left( X, x 
ight)^{\top}}{\partial x} \right]_{j} \mathbf{K}^{-1} \left( \mathbf{y} - \mathbf{f}_{\mathrm{lin}} 
ight) > 0, \forall x \in \mathcal{X}$$

lacksquare Derivative tends to  $\widehat{eta}_j>0$  as  $\mathbf{y} o\mathbf{f}_{\mathrm{lin}}$ .



#### **Theorem**

There exists an interval  $(\alpha^*, 1]$  with

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta^* &= \max_{j \in \mathcal{J}} \left\{ \dfrac{\widehat{eta}_j}{-\widehat{eta}_j + \gamma_j} 
ight\} + 1 \ \gamma_j &:= \min \left\{ 0, \inf_{x \in \mathcal{X}} \left\{ \left[ \dfrac{\partial \mathbf{k} \left( X, x 
ight)^ op}{\partial x} 
ight]_j \mathbf{K}^{-1} \left( \mathbf{f}_{MAP} - \mathbf{f}_{\mathrm{lin}} 
ight) 
ight\} + \widehat{eta}_j 
ight\} \end{aligned}$$

where for all  $\alpha \in (\alpha^*, 1]$ , choosing  $\mathbf{y} = \alpha \mathbf{f}_{lin} + (1 - \alpha) \mathbf{f}_{MAP}$  satisfies monotonicity constraints over the feature space.

 $\blacktriangleright$  How should  $\alpha$  be chosen?

#### Choice of $\alpha$



#### Theorem

Suppose  $f_{MAP} \neq f_{lin}$ . Then the negative log likelihoods satisfy for any  $\alpha \in (0,1)$ :

$$-\log\mathcal{L}\left(f_{\text{MAP}}\right)<-\log\mathcal{L}\left(\alpha f_{\text{lin}}+\left(1-\alpha\right)f_{\text{MAP}}\right)<-\log\mathcal{L}\left(f_{\text{lin}}\right)$$

### Corollary

For all  $\alpha' < \alpha$ :

$$-\log\mathcal{L}\left(\alpha'f_{\mathrm{lin}}+\left(1-\alpha'\right)f_{\mathrm{MAP}}\right)<-\log\mathcal{L}\left(\alpha f_{\mathrm{lin}}+\left(1-\alpha\right)f_{\mathrm{MAP}}\right)$$

Should choose α as low as possible whilst satisfying monotonicity constraints.

## Learning Algorithm



**Require:** Data set  $\mathcal{D}$ , distinct items matrix X, monotonicity constraint index set  $\mathcal{J}$ 

- 1: Obtain estimate  $\widehat{\beta}$  via MLE
- 2:  $\mathbf{f}_{\text{lin}} \leftarrow X \widehat{\boldsymbol{\beta}}$
- 3: Choose hyperparameters  $\sigma$ ,  $\Lambda$
- 4: Obtain  $\mathbf{f}_{\mathrm{MAP}}$  via MAP using prior mean  $\widehat{\boldsymbol{\beta}}^{\top} x$
- 5:  $\tilde{\alpha} \leftarrow \min \{ \alpha^* + \epsilon, 1 \}$  with small  $\epsilon > 0$
- 6:  $\mathbf{y} \leftarrow \tilde{\alpha} \mathbf{f}_{\text{lin}} + (1 \tilde{\alpha}) \, \mathbf{f}_{\text{MAP}}$
- 7: Estimate utility function with  $ar{f}_*\left(x_*
  ight) = \widehat{oldsymbol{eta}}^ op x_* + \mathbf{k}_*^ op \mathbf{K}^{-1}\left(\mathbf{y} \mathbf{f}_{\mathrm{lin}}
  ight)$

# Case Study



- ▶ 2 dimensional example with features  $x_1$ ,  $x_2$  over  $[0, 1] \times [0, 1]$ .
- ▶  $\mathcal{J} = \{1, 2\}$
- ▶ Randomly generate 90 comparisons from the grid.



Figure: Contour plot of underlying utility.

# Non-Monotonic Utility Function



► Using f<sub>MAP</sub> as the latent utility vector, the utility estimate does not satisfy monotonicity constraints.



Figure: Thick line: utility estimate.

# Monotonic Utility Function



▶ Using  $\mathbf{y}_{\tilde{\alpha}} := \tilde{\alpha}\mathbf{f}_{\text{lin}} + (1 - \tilde{\alpha})\mathbf{f}_{\text{MAP}}$  as the latent utility vector, the utility estimate does satisfy monotonicity constraints.



Figure: Thick line: utility estimate.



- ▶ 1000 Monte-Carlo simulations.
- ► Validation on seen and unseen pairs.

Table: Average prediction accuracy

|                     | $f_{\mathrm{MAP}}$ | <b>y</b> ã | $f_{ m lin}$ |
|---------------------|--------------------|------------|--------------|
| Dominated pairs     | 98.43%             | 100%       | 100%         |
| Non-dominated pairs | 89.32%             | 85.93%     | 76.76%       |
| Overall             | 94.79%             | 94.37%     | 90.70%       |

► Same hierarchy as log likelihoods.

## Summary and Future Work



- ▶ Contributions
  - Selection of monotonic prior
  - Monotonicity guarantees
  - Learning algorithm
- ► Future work
  - Hyperparameter selection
  - Confidence estimates
  - Scalability
  - Generalisation error
  - ► Application in control

Code available at https://github.com/rzch/gp\_monotonicity