Deriva genética, tamanho efetivo populacional e teoria neutra

Instituto de Biociências
USP
Diogo Meyer

Ridley, 6.5, 6.6, 6.7, 7.1, 7.2 7.3, 7.4 (não cubro quadro 7.1 e 7.2)

Conceitos sobre deriva genética

- Aumenta variância entre populações
- Diminui diversidade dentro de populações
- processos são mais rápidos em populações pequenas
- Isso é visível matematicamente

Probabilidade de fixação de um alelo

http://www.biology.arizona.edu/evolution/act/drift/frame.html

Probabilidade de fixação de um alelo

http://www.biology.arizona.edu/evolution/act/drift/frame.html

Probabilidade de fixação de cada alelo: 1/2N

Probabilidade de fixação de uma classe de alelos com i cópias: i/2N

A deriva é um processo bem documentado: Variação genética em humanos

A deriva é um processo bem documentado: Variação genética em humanos

Deriva aumenta variância entre populações

Aumento da variância entre populações humanas

Buri, 1956

- •107 populações (garrafas) de drosophila
- 16 indivíduos em cada
- •Alelo bw75 visível, início p = 0.5

Definição: Tamanho de uma população idealizada (Wright-Fisher) que perde variação na mesma taxa que a população sob estudo

Explicações:

- -períodos de tamanho pequeno
- variância na reprodução
- assimetria na razão sexual os sexos

1. Variação em tamanho populacional ao longo do tempo

$$\frac{1}{N_e} = \frac{1}{5} \left(\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3} + \frac{1}{N_4} + \frac{1}{N_5} \right)$$

Para uma população que tem

- 9 gerações com tamanho 1000
- 1 geração com tamanho 10

$$\frac{1}{N_e} = \frac{9}{10} \frac{1}{1000} + \frac{9}{10} \frac{1}{10}$$

$$N_e = \left(\frac{9}{10} \frac{1}{1000} + \frac{9}{10} \frac{1}{10}\right)^{-1} = 91.4$$

2. Variação na razão sexual

$$N_e = \frac{4N_m N_f}{N_f + N_m}$$

2. Variação na razão sexual

$$N_e = \frac{4N_m N_f}{N_f + N_m}$$

- Em elefantes marinhos, nas Ilhas Falkland, encontrou-se:
 550 fêmeas e 75 machos. O tamanho da população é de
 625 indivíduos.
- Usando marcadores genéticos Fabiani et al. (2004) viram que só 28% dos machos reproduziram ao longo de duas estações reprodutivas (21 machos reproduzem)

$$N_{\rm m} = 21, \ N_{\rm f} = 550$$

Teoria Neutra

- Deriva pode explicar evolução?

- Teoria neutra propõe que **sim**:

a grande maioria da variação dentro de espécies e a grande maioria das diferenças entre espécies

resultam de deriva genética

Formalizando o modelo neutro

Definições

 mutação neutra: não altera chances de reprodução e sobrevivência de seu portador

Motoo Kimiura 1924-1994

14

Teoria neutra e de seleção

Equilíbrio entre mutação e deriva.

Variação intrapopulacional sob neutralidade

$$H_{eq} = \frac{4N\mu}{4N\mu + 1}$$

H pode ser estimado a partir de dados

Podemos testar a hipótese neutra:

- N previsto faz sentido?

As diferenças entre espécies surgem da variação populacional

Tempo

- o alelo A
- alelo a

As diferenças entre espécies surgem da variação populacional

Tempo

- o alelo A
- alelo a

As diferenças entre espécies surgem da variação populacional

Tempo

Teste da teoria neutra

• k=µ

 previsão: o número de substituições entre duas linhagens vai ser propocinal ao tempo de divergência

-ex.

- $\mu = 10^{-6}$ mutações por ano (1 a cada 10^6 anos)
- Separação há 20 milhões de anos: 40 substituições
- Separação há 40 milhões de anos: 80 substituições

Taxa de substituição sob neutralidade

Humano vs Camundongo

- Ancestral comum: 80 milhoes da anos atrás
- Proteína com 100 amino-ácidos e 16 diferenças

(16/100)/160 milhões = 1 x 10⁻⁹ mudança/ aminoácido/ano

Teste da teoria neutra

O relógio molecular aplicado à hemoglobina

Conceitos chave sobre teoria neutra

- Teoria neutra: evolução por deriva genética
- Teoria neutra requer seleção negativa (ou purificadora)
- Previsões da teoria neutra:
 - Diversidade (H) propocional ao tamanho populacional
 - divergência entre espécies proporcional ao tempo de separação