-. 常系数线性差分方程

1. 常系数线性差分方程的一般形式 $a_0 y(n) + a_1 y(n-1) + \dots + a_{N-1} y(n-N+1) + a_N y(n-N)$ $= b_0 x(n) + b_1 x(n-1) + \dots + b_{M-1} x(n-M+1) + b_M x(n-M)$ $\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$

2. 求解方法

①迭代法(缺点:通常不能给出完整解析解;

优点:概念清楚比较简便)

- ②时域经典法(齐次解+特解)主要适用于 $n = -\infty \sim +\infty$ 都有x(n)加入
- ③零输入、零状态(适用于n≥0加入)
- ④变换域法 (Z变换)

3. 迭代法

例1:
$$y(n) - ay(n-1) = x(n)$$
 已知: $y(-1) = 0, x(n) = \delta(n)$
解: $y(0) = ay(-1) + x(0) = 1$ $y(-1) = 0$ $y(-1) = 0$ $y(-2) = 0$ $y(n) = a^n$ $y(-\infty) = 0$

故
$$y(n) = a^n u(n)$$

例2: y(n) - y(n-1) - y(n-2) = 0 己知: y(0) = 0, y(1) = 1 解:

$$y(n) = y(n-1) + y(n-2)$$

$$y(2) = y(1) + y(0) = 1$$

$$y(3) = y(2) + y(1) = 2$$

 $\{0,1,1,2,3,5,8,13,\cdots\}$

无法给出闭式解集

- 二. 时域经典法----齐次解+特解
 - 1. 齐次解----则自由响应

①齐次方程:
$$\sum_{k=0}^{\infty} a_k y(n-k) = 0$$

②特征根
$$y(n)-ay(n-1)=0 \Longrightarrow a=\frac{y(n)}{y(n-1)} \Longrightarrow y(n)=ca^n$$

$$\sum_{k=0}^{N} a_k c \alpha^{n-k} = 0$$
 消去 c , 除以 α^{n-N}

可得
$$a_0\alpha^N + a\alpha^{N-1} + \cdots + a_{N-1}\alpha + a_N = 0$$
 特征方程

有
$$N$$
个根 $\alpha_1, \alpha_2, \dots, \alpha_N$ 特征根

- ③齐次解一般形式
- i)特征根互不相同的实根

齐次解
$$y_h(n) = c_1 \alpha_1^n + c_2 \alpha_2^n + \dots + c_N \alpha_N^n$$

连续: $r_h(t) = c_1 e^{\alpha_1 t} + c_2 e^{\alpha_2 t} + \dots + c_N e^{\alpha_N t}$

ii)
$$\alpha_1$$
与 α_2 互为共轭 $\alpha_1 = A \cdot e^{jB}$, $\alpha_2 = A \cdot e^{-jB}$ α_1 与 α_2 对应的齐次解部分 = $A^n(C_1 \cos Bn + C_2 \sin Bn)$

(连续:
$$\alpha_1 = A + Bj$$
, $\alpha_2 = A - Bj$)
 $\alpha_1 \subseteq \alpha_2$ 对应的齐次解部分 = e^{At} ($C_1 \cos Bt + C_2 \sin Bt$)

iii) α₁为k重

$$\alpha_1$$
对应齐次解部分 = $\alpha_1^n (C_1 + C_2 n + C_3 n^2 + \dots + C_k n^{k-1})$
(连续: α_1 为 k 重,齐次解 = $e^{\alpha_1 t} (C_1 + C_2 t + C_3 t^2 + \dots + C_k t^{k-1})$

例3求
$$y(n) - y(n-1) - y(n-2) = 0$$
 , $y(1) = 1$, $y(2) = 1$
解: $\alpha^2 - \alpha - 1 = 0$ 得 $\alpha_1 = \frac{1 + \sqrt{5}}{2}$, $\alpha_2 = \frac{1 - \sqrt{5}}{2}$
所以 $y(n) = C_1 (\frac{1 + \sqrt{5}}{2})^n + C_2 (\frac{1 - \sqrt{5}}{2})^n$

$$\begin{cases}
1 = C_1 \frac{1 + \sqrt{5}}{2} + C_2 \frac{1 - \sqrt{5}}{2} \\
1 = C_1 (\frac{1 + \sqrt{5}}{2})^2 + C_2 (\frac{1 - \sqrt{5}}{2})^2
\end{cases}$$

$$\begin{cases}
C_1 = \frac{1}{\sqrt{5}} \\
C_2 = \frac{-1}{\sqrt{5}}
\end{cases}$$

$$y(n) = \frac{1}{\sqrt{5}} (\frac{1 + \sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1 - \sqrt{5}}{2})^n$$

例4: 求 y(n) + 6y(n-1) + 12y(n-2) + 8y(n-3) = 0的齐次解形式

解:
$$\alpha^3 + 6\alpha^2 + 12\alpha + 8 = 0$$

得
$$(\alpha+2)^3=0$$
 $\alpha=-2(三重)$

得:
$$y_h(n) = (C_1 n^2 + C_2 n + C_3) \cdot (-2)^n$$

十例5:
$$y(n) - 2y(n-1) + 2y(n-2) - 2y(n-3) + y(n-4) = 0$$

边界条件为: $y(1) = 1$, $y(2) = 0$, $y(3) = 1$, $y(5) = 1$
解: $\alpha^4 - 2\alpha^3 + 2\alpha^2 - 2\alpha + 1 = 0$ 即: $(\alpha - 1)^2(\alpha^2 + 1) = 0$
得: $\alpha_1 = \alpha_2 = 1$, $\alpha_3 = j = e^{j\frac{\pi}{2}}$, $\alpha_4 = -j = e^{-j\frac{\pi}{2}}$
所以 $y(n) = (C_1n + C_2) \cdot 1^n + 1^n \cdot (P\cos\frac{n\pi}{2} + Q\sin\frac{n\pi}{2})$
 $1 = C_1 + C_2 + Q$
 $0 = 2C_1 + C_2 - P$
 $1 = 3C_1 + C_2 - Q$
 $1 = 5C_1 + C_2 + Q$
 $0 = 2C_1 + C_2 + Q$
 $0 = 2C_1 + C_2 - Q$
 $1 = 5C_1 + C_2 + Q$

2. 特解-----强迫响应 将x(n)代入右端化简得自由项,由自由项形式和特征根情况 决定特解

自由项形式	特征根情况	特解形式 D(n)
常数	1不是特征根	A
	1是k重根	An^k
n的p次多项式	1不是特征根	n的p次多项式
	1是k重根	$n^k(n$ 的 p 次多项式)
α^{n}	α 不是特征根	$C\alpha^n$
	α 是 k 重根	$Cn^k\alpha^n$

4

自由项形式	特征根情况	特解形式 D(n)
α^n (n 的 p 次多项式)	α 不是特征根	α^n (n 的 p 次多项式)
	α 是 k 重根	$n^k \alpha^n$ (n的p次多项式)
$\alpha^n A_1 \sin bn$ 或	$\alpha e^{\pm jb}$ 不是特征根	$\alpha^n[C_1\cos bn + C_2\sin bn]$
$\alpha^n A_2 \cos bn$	$\alpha e^{\pm jb}$ 是 k 重根	$\alpha^n n^k [C_1 \cos bn + C_2 \sin bn]$

例6: ①自由项=n, 1不是特征根 $D(n) = A_1 n + A_2$

②自由项 =
$$\cos \frac{n\pi}{2}$$
, j 为特征根
$$D(n) = n[A_1 \cos \frac{n\pi}{2} + A_2 \sin \frac{n\pi}{2}]$$
 ③自由项= $(n^2 + 2n + 3) \cdot 2^n$, 2为2重根
$$D(n) = n^2(A_1n^2 + A_2n + A_3)2^n$$

3. 完全解
$$y(n) = y_h(n) + D(n) = C_1 \alpha_1^n + C_2 \alpha_2^n + \cdots + C_N \alpha_N^n + D(n)$$
 边界条件: $y(0), y(1), \dots, y(N-1)$ $y(0) = C_1 + C_2 + \cdots + C_N + D(0)$ $y(1) = C_1 \alpha_1 + C_2 \alpha_2 + \cdots + C_N \alpha_N + D(1)$
$$\vdots$$

$$y(N-1) = C_1 \alpha_1^{N-1} + C_2 \alpha_2^{N-1} + \cdots + C_N \alpha_N^{N-1} + D(N-1)$$

$$\begin{pmatrix} y(0) - D(0) \\ y(1) - D(1) \\ \vdots \\ y(N-1) - D(N-1) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_N \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{N-1} & \alpha_2^{N-1} & \cdots & \alpha_N^{N-1} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_N \end{pmatrix}$$

得: Y(k) - D(k) = VC $C = V^{-1}[Y(k) - D(k)]$

①例子

例7: 第一类型(方程右端无
$$x(n)$$
项,即齐次方程) $y(n)-3y(n-1)+2y(n-2)=0$, $y(0)=1$, $y(2)=2$ 解特点: 无特解项 $y(n)$ 的 n 取值从 $-\infty \sim \infty$ $\alpha^2-3\alpha+2=0$ 得 $\alpha_1=1$, $\alpha_2=2$ 即: $y(n)=C_1+C_2 \bullet 2^n$ { $1=C_1+C_2 \atop 2=C_1+2C_2$ 得: $C_1=0$ } $C_2=1$ 即 $y(n)=2^n$

例8: 第二类型(方程右端只有x(n)项, x(n)定义在 $-\infty$ ~+∞上) y(n)-3y(n-1)+2y(n-2)=x(n) y(0)=1, y(1)=2, x(n)=n

解特点: y(n)含义从 $-\infty \sim +\infty$

设特解为 $D(n) = (An + B) \bullet n$, 把D(n) 代入方程左边 $(An + B) \bullet n - 3[A(n-1) + B] \bullet (n-1) + 2[A(n-2) + B] \bullet (n-2) = n$ 得: $A = -\frac{1}{2}, B = -\frac{5}{2}$

完全解形式 $y(n) = \overline{C}_1 \bullet 1^n + C_2 \bullet 2^n + D(n)$

$$\begin{cases} 1 = C_1 + C_2 \\ 2 = C_1 + 2C_2 - \frac{1}{2} - \frac{5}{2} \end{cases} = \begin{cases} C_1 = -3 \\ C_2 = 4 \end{cases}$$

所以 $y(n) = -3 \cdot 1^n + 4 \cdot 2^n + (-\frac{1}{2}n - \frac{5}{2})n$

例9: 第三类型 (方程右端只有x(n)项,x(n)在n = 0处加入) $y(n) - 3y(n-1) + 2y(n-2) = x(n), y(0) = 1, y(1) = 2, x(n) = 2^n u(n)$

解特点:
$$y(n): n = 0 \sim \infty$$
 $p_h(n): n = 0 \sim \infty$ $p_h(n): n = 0 \sim \infty \sim -1$ $p_h(n): n = 0 \sim \infty$ $p_h(n): n = 0 \sim \infty$

解:当
$$n \ge 0$$
时 $y(n) = C_1 \bullet 1^n + C_2 \bullet 2^n + D(n)$ 其中 $D(n) = A_1 \bullet n \bullet 2^n$ 把 $D(n)$ 代入方程左端得: $2 \bullet A_1 \bullet 2^n = 2^n$ 解得: $A_1 = 0.5$ 故: $y(n) = C_1 \bullet 1^n + C_2 \bullet 2^n + \frac{1}{2}n \bullet 2^n$
$$\begin{cases} 1 = C_1 + C_2 & \\ 2 = C_1 + 2C_2 + 2 & \\ C_2 = -1 \end{cases}$$
 当 $n \le -1$ 时 $y(n) = C_1 \bullet 1^n + C_2 \bullet 2^n$, $y(-1) = \frac{1}{2}$, $y(-2) = \frac{1}{4}$,
$$\begin{cases} \frac{1}{2} = C_1 + C_2 \bullet 2^{-1} & \\ \frac{1}{4} = C_1 + 2^{-2} \bullet C_2 & \\ \end{bmatrix} \begin{cases} C_1 = 0 & \text{the } y(n) = 2^n \\ C_2 = 1 & \\ \end{bmatrix}$$
 所以 $y(n) = 2^n u(-n-1) + [2-2^n + \frac{1}{2} \bullet n \bullet 2^n] u(n)$

例10:第四类型(方程右端含有x(n),x(n-k)系统,x(n)在 $-\infty \sim \infty$) $y(n)-3y(n-1)+2y(n-2)=x(n)-x(n-1),x(n)=3^n,y(0)=1,y(1)=2$

自由项 =
$$3^{n} - 3^{n-1} = \frac{2}{3} \cdot 3^{n}$$
, $D(n) = C_{3} \cdot 3^{n}$
 $(C_{3} - C_{3} + \frac{2}{9}C_{3}) \cdot 3^{n} = \frac{2}{3} \cdot 3^{n}$ 得 $C_{3} = 3$
 $y(n) = C_{1} \cdot 1^{n} + C_{2} \cdot 2^{n} + D(n) = C_{1} \cdot 1^{n} + C_{2} \cdot 2^{n} + 3^{n+1}$

$$\begin{cases} 1 = C_{1} + C_{2} + 3 \\ 2 = C_{1} + 2C_{2} + 27 \end{cases}$$
 得 $C_{1} = 21$
 $C_{2} = -23$

所以
$$y(n) = 21 - 23 \cdot 2^n + 3^{n+1}$$

例11: 第五类型(方程右端含有x(n), x(n-k)系统, x(n)在n=0处加入) y(n)-3y(n-1)+2y(n-2)=x(n)-x(n-5)

解:①当
$$n \le -1$$
时 $y(n) = C_1 \bullet 1^n + C_2 \bullet 2^n$ 用 $y(-1), y(-2)$

②
$$\pm 0 \le n \le 4$$
 $x(n) = 3^n$ $\#$ $y(0), y(1)$

 $x(n) = 3^n u(n), y(0) = 1, y(1) = 2$

$$y(n) = C_1 \bullet 1^n + C_2 \bullet 2^n + D(n)$$
 $D(n) = C_3 \bullet 3^n$

③当
$$n \ge 5$$
时, $x(n) = 3^n - \frac{3^n}{3^5}$ 用 $y(5), y(6)$

$$y(n) = C_1 \bullet 1^n + C_2 \bullet 2^n + D(n) \quad D(n) = C_3 \bullet 3^n$$

三. 零输入响应、零状态响应(适用于求解x(n), n = 0时刻加入) 1. 零输入响应

$$y_{Zi}(n) = C_{Zi1} \bullet \alpha_1^n + C_{Zi2} \bullet \alpha_2^n + \cdots + C_{ZiN} \bullet \alpha_N^n$$
作用范围 $n = -\infty_+ + \infty$

2.零状态响应

作用范围
$$n=0 \sim +\infty$$

3.例子:

例12 第一类型(不含
$$x(n)$$
项,只含零输入响应=齐次解)
例13 第二类型(只含 $x(n)$ 项, $x(n)$ 在 $n=0$ 时刻加入)
 $y(n)-0.9y(n-1)=0.05u(n), y(-1)=1$

解: 零输入
$$y_{zi}(n) = C_{zi} \cdot 0.9^n$$

由 $y(-1) = 1$ 得 $C_{zi} = 0.9$,所以 $y_{zi}(n) = 0.9^{n+1}$
零状态 $y_{zs}(n) = C_{zs} \cdot 0.9^n + D(n)$
 $D(n) = A$,由 $A - 0.9A = 0.05$ 得 $A = 0.5$
故 $y_{zs}(n) = C_{zs} \cdot 0.9^n + 0.5$
由 $y(-1) = 0$ 推出 $C_{zs} \cdot \frac{1}{0.9} = -0.5$, $C_{zs} = -0.45$
所以 $y(n) = 0.9^{n+1} + (-0.45 \bullet 0.9^n + 0.5)u(n)$

例14: 第五类型(方程右端含有x(n), x(n-k)系统, x(n)在n=0处加入) $y(n)-5y(n-1)+6y(n-2)=x(n)-3x(n-2), x(n)=u(n), y(-1)=\frac{5}{6}, y(-2)=\frac{13}{36}$ 解: 零输入 $y_{zi}(n)=C_1 \bullet 2^n+C_2 \bullet 3^n$

$$\begin{cases} \frac{5}{6} = C_1 \bullet \frac{1}{2} + C_2 \bullet \frac{1}{3}_n & \text{## } C_1 = 1, C_2 = 1 \\ \frac{13}{36} = C_1 \bullet \frac{1}{4} + C_2 \bullet \frac{1}{9} \end{cases}$$

单独对右边x(n)项求零状态 然后单独对右边-3x(n-2)项 求零状态 $-3y_{zs1}(n-2)$

$$y_{zs1}(n)$$
 求零状态 $-3y_{zs1}(n-2)$
$$y_{zs1}(n) = C_1 \cdot 2^n + C_2 \cdot 3^n + D(n)$$
 $D(n) = \frac{1}{2}$
$$y_{zs1}(n) = C_1 \cdot 2^n + C_2 \cdot 3^n + \frac{1}{2}$$
 由已知条件可得:

最后得: $y(n) = y_{zi}(n) + y_{zs1}(n)u(n) - 3y_{zs1}(n-2)u(n-2)$

总结:

- 1.第一类型(齐次方程) [齐次解+特解项(只含齐次解) 初始条件任意给定 [零输入零状态(只含零输入响应)
- 2.第二类型(右端只含x(n)一项, $n = -\infty +\infty$) 第四类型(右端含有x(n), x(n-k)项, $n = -\infty +\infty$) 只能用齐次解+特解项法求解, 初始条件任意给定

3.第三类型(右端只含x(n)一项, n=0时刻加入)

予次解+特解项(需分n<0和n≥0两种情况
$$y(n) = y_{h1}(n)u(-n-1)$$
, 在n<0 $y(n) = [y_{h2}(n) + D(n)]u(n)$,在n≥0) 零输入+零状态(推荐使用)