RESUM DE GEOMETRIA LINEAL

Mario Vilar i Alex Cañas

17 de gener de 2022

1 Espais afins

1.1 Espai afí

Definició 1.1 (espai afí). Un espai afí sobre \mathbb{K} és un triple (\mathbb{A}, E, ϕ) , on \mathbb{A} és un conjunt, E és un \mathbb{K} -espai vectorial de dimensió finita i ϕ és una aplicació:

$$\phi: \quad \mathbb{A} \times E \quad \longrightarrow \quad \mathbb{A} \\
(p, \overrightarrow{u}) \quad \longmapsto \quad \phi(p, \overrightarrow{u}) := p + \overrightarrow{u}$$
(1.1)

amb les propietats següents:

- 1. $(p + \overrightarrow{u}) + \overrightarrow{v} = p + (\overrightarrow{u} + \overrightarrow{v}), \forall p \in \mathbb{A}, \forall u, v \in E;$
- 2. fixat $p \in \mathbb{A}$, l'aplicació $f : E \longrightarrow \mathbb{A}$ tal que $f(\overrightarrow{u}) = p + \overrightarrow{u}$ és bijectiva.

1.2 Varietats lineals

Definició 1.2 (Varietat lineal). Una varietat lineal en un espai afí (\mathbb{A}, E) sobre un cos \mathbb{K} és un subconjunt de la forma

$$\mathbb{L} = p + F := \{ p + u \mid u \in F \}, \tag{1.2}$$

on $p \in \mathbb{A}$ és un punt i $F \subset E$ és un subespai vectorial. Diem que F és el subespai director de \mathbb{L} i que $\dim \mathbb{L} = \dim F$. Així, els punts són varietats lineals de dimensió 0 i l'única varietat lineal de dimensió n és \mathbb{A} .

Proposició 1.3. Siguin $\mathbb{L} = p + F, \mathbb{M} = q + G$ varietats lineals. Aleshores,

$$\mathbb{L} \cap \mathbb{M} \neq \emptyset \iff \vec{pq} \in F + G. \tag{1.3}$$

Demostració.

Proposició 1.4. Es té la fórmula següent per la suma de dues varietats lineals $\mathbb{L} = p + F$ i $\mathbb{M} = q + G$:

$$\mathbb{L} + \mathbb{M} = p + \langle \vec{pq} \rangle + F + G. \tag{1.4}$$

1.4 Espais afins

Teorema 1.5 (Fórmules de Grassmann). Siguin $\mathbb{L} = p + F$ i $\mathbb{M} = q + G$ dues varietats lineals. Volem fer $\dim(\mathbb{L} + \mathbb{M}) = \dim(\langle \overrightarrow{p_1 p_2} \rangle + F + G)$. Es tenen les fórmules següents:

- 1. $\dim(\mathbb{L} + \mathbb{M}) = \dim \mathbb{L} + \dim \mathbb{M} \dim(\mathbb{L} \cap \mathbb{M}), \ si \ \mathbb{L} \cap \mathbb{M} \neq \emptyset;$
- 2. $\dim(\mathbb{L} + \mathbb{M}) = \dim \mathbb{L} + \dim \mathbb{M} + 1 \dim(F \cap G), \ si \ \mathbb{L} \cap \mathbb{M} = \emptyset.$

Demostració. Aplicant la fórmula de Grassmann per a subespais vectorials i 1.4:

- 1. $\dim(\mathbb{L} + \mathbb{M}) = \dim(\langle \vec{pq} \rangle + F + G) = \dim(F + G) = \dim F + \dim G \dim(F \cap G) = \dim \mathbb{L} + \dim \mathbb{M} \dim(\mathbb{L} \cap \mathbb{M})$, ja que $\vec{pq} \in F + G$ pel fet de suposar que $\mathbb{L} \cap \mathbb{M} \neq \emptyset$.
- 2. $\dim(\mathbb{L} + \mathbb{M}) = \dim(\langle \vec{pq} \rangle + F + G) = \dim(F + G) + 1 = \dim F + \dim G \dim(F \cap G) + 1 = \dim \mathbb{L} + \dim \mathbb{M} + 1 \dim(F \cap G)$, ja que $\vec{pq} \notin F + G$ pel fet de suposar que $\mathbb{L} \cap \mathbb{M} = \emptyset$.

1.3 Raons simples

Siguin a, b, c tres punts diferents en un espai afí sobre \mathbb{K} . Suposem que estan alineats. Recordem que això implica que $\vec{ac} = \lambda \vec{bc}, \lambda \in \mathbb{K}$.

Definició 1.6 (Raó simple). Aquest nombre $\lambda \in \mathbb{K}$ es diu raó simple dels punts a, b, c i es denota per $\lambda = (a, b, c)$ i depèn de l'ordre dels elements.

1.4 Teoremes clàssics

Teorema 1.7 (Teorema de Tales). Siguin r, s rectes que es tallen en un punt O. Suposem que tres rectes paral·leles ℓ_1, ℓ_2, ℓ_3 tallen r en P_1, P_2, P_3 i tallen s en Q_1, Q_2, Q_3 (tots differents d'O). Llavors:

$$(P_1, P_2, P_3) = (Q_1, Q_2, Q_3). (1.5)$$

Demostració. Escollim $\{O; \overrightarrow{OP_1}, \overrightarrow{OQ_1}\}$ com a referència. Aleshores:

$$O = (0,0)$$

$$P_{1} = (1,0) \quad Q_{1} = (0,1) \quad \overrightarrow{P_{1}Q_{1}} = (-1,1)$$

$$P_{2} = (a,0) \quad Q_{2} = (0,c) \quad \overrightarrow{P_{2}Q_{2}} = (-a,c)$$

$$P_{3} = (b,0) \quad Q_{3} = (0,d) \quad \overrightarrow{P_{3}Q_{3}} = (-b,c)$$

$$(P_{1}, P_{2}, P_{3}) = \frac{b-1}{b-a}, \quad (Q_{1}, Q_{2}, Q_{3}) = \frac{d-1}{d-c}.$$

$$a = c \\ b = d \implies (P_{1}, P_{2}, P_{3}) = (Q_{1}, Q_{2}, Q_{3}).$$

$$(1.6)$$

Teorema 1.8 (Ceva). Donat un triangle de vèrtex A_1 , A_2 , A_3 del pla afí anomenem a_i al costat oposat d' A_i . Sigui O un punt que no pertany a cap dels costats i tal que, per a tot i, la recta que passa per O i A_i talla a_i en un punt B_i . Aleshores,

$$(A_3, A_2, B_1)(A_1, A_3, B_2)(A_2, B_1, B_3) = -1. (1.7)$$

Equivalentment, sigui $A_1A_2A_3$ un triangle. Siguin r, s, t rectes que passen per A_1, A_2, A_3 respectivament i tallen els costats en punts $B_1 \in A_2A_3, B_2 \in A_1A_3$ i $B_3 \in A_1A_2$. Llavors, r, s, t són concurrents si i només si $(A_3, A_2, B_1)(A_1, A_3, B_2)(A_2, B_1, B_3) = -1$.

2

Corol·lari 1.9 (Postulat d'Euclides). Sigui (\mathbb{A}, E) un espai afí. Donats $p, q \in \mathbb{A}$ amb $p \neq q$ hi ha una i només una recta que conté p i q, que és $\mathbb{L} = p + \langle \overrightarrow{pq} \rangle$. En essència, per dos punts diferents passa una única recta.

Demostració. Prenem $\mathbb{L}=p+\langle \overrightarrow{pq}\rangle$, que és una recta perquè $p\neq q \implies \overrightarrow{pq}\neq \overrightarrow{0}$. Sigui \mathbb{L}' una recta que passa per p i per q; $\mathbb{L}'=p+F$. Aleshores, per a algun subespai F d'E de dimensió 1 podem dir:

$$\begin{cases}
p \in \mathbb{L}' \\
q \in \mathbb{L}'
\end{cases} \implies \overrightarrow{pq} \in F \implies F = \langle \overrightarrow{pq} \rangle \implies \mathbb{L}' = p + \langle \overrightarrow{pq} \rangle = L.$$
(1.8)

2 Afinitats

2.1 Propietats de les afinitats

Definició 2.1 (Aplicació afí). Donats dos espais afins (\mathbb{A}, E_1) , (\mathbb{A}_2, E_2) una aplicació afí és un parell d'aplicacions:

$$f: \mathbb{A}_1 \longrightarrow \mathbb{A}_2, \quad \tilde{f}: E_1 \longrightarrow E_2$$
 (2.1)

tals que:

- 1. \tilde{f} és lineal,
- 2. $\forall p \in \mathbb{A}_1, \forall \vec{u} \in E_1, \text{ tenim } f(q) = f(p + \vec{u}) = f(p) + \tilde{f}(\vec{u}).$

Equivalentment, si en la segona propietat posem q = p + u, tenim que $\overrightarrow{f(p)f(q)} = \tilde{f}(\vec{pq})$.

Definició 2.2 (Afinitat). Diem que una aplicació afí és una afinitat si és bijectiva. En altres paraules, una afinitat és una aplicació afí bijectiva d'un espai afí en ell mateix.

Observació 2.3.

- 1. Sovint es diu només que $f: \mathbb{A}_1 \longrightarrow \mathbb{A}_2$ és una aplicació afí i que \tilde{f} és l'aplicació lineal associada. En altres paraules, \tilde{f} està determinada per f: si f és una aplicació afí, llavors \tilde{f} és única.
- 2. Si $\tilde{f}(\vec{pq}) = \overrightarrow{f(p)f(q)}, \forall p, q \text{ aleshores } \forall p \in \mathbb{A}_1, \forall v \in E_1 \text{ tenim que}$

$$\widetilde{f}(v) = \widetilde{f}(\overline{p(p+v)}) = \overline{f(p)f(p+v)} \implies f(p+v) = f(p) + \widetilde{f}(v).$$
(2.2)

Propietat 2.4 (Propietats de les aplicacions afins). Siguin $f: \mathbb{A}_1 \longrightarrow \mathbb{A}_2, g: \mathbb{A}_2 \longrightarrow \mathbb{A}_3$ dues aplicacions afins. Aleshores:

- 1. La composició $g \circ f : \mathbb{A}_1 \longrightarrow \mathbb{A}_3$ és afí i $(g \circ f) = (\tilde{g} \circ \tilde{f})$.
- 2. f és injectiva si, i només si, \tilde{f} ho és.
- 3. f és exhaustiva si, i només si, \tilde{f} ho és.
- 4. f és bijectiva si, i només si, \tilde{f} ho és.
- 5. Una aplicació afí f envia una varietat lineal $\mathbb{L} = a + F$ a la varietat lineal $f(\mathbb{L}) = f(a) + \tilde{f}(F)$.
- 6. Sigui \mathbb{M} una varietat lineal tal que $f^{-1}(\mathbb{M}) \neq \emptyset$ i sigui $a \in f^{-1}(\mathbb{M})$. Aleshores, si $\mathbb{M} = f(a) + G$, tindrem que $f^{-1}(\mathbb{M}) = a + f^{-1}(G)$.

2.1 Afinitats

7. Siguin $a, b, c \in \mathbb{A}_1$ tres punts alineats amb $b \neq c$, aleshores $f(a), f(b), f(c) \in \mathbb{A}_2$ també estan alineats o són el mateix punt. Si $f(b) \neq f(c)$, aleshores (a, b, c) = (f(a), f(b), f(c)), és a dir, la raó simple es manté per aplicacions afins.

Proposició 2.5 (Propietats de les afinitats). Sigui $f : \mathbb{A} \longrightarrow \mathbb{A}$ una aplicació afí d'endomorfisme associat $\tilde{f} : E \longrightarrow E$. Aleshores:

- 1. f és la identitat o una translació si, i només si, $\tilde{f} = Id$ (que és una aplicació afí).
- 2. f és una homotècia si, i només si, \tilde{f} és una homotècia de ra $\phi \neq 0, 1$.
- 3. f és una simetria si, i només si, $f^2 = Id$ i $f \neq Id$.

Teorema 2.6. Siguin (A_1, E_1) , (A_2, E_2) dos espais afins. Fixem punts $p_1 \in A_1$, $p_2 \in A_2$ i suposem donada una aplicació lineal $\varphi : E_1 \longrightarrow E_2$. Aleshores, existeix una única aplicació afí $(f, f) : (A_1, E_1) \longrightarrow (A_2, E_2)$ tal que $f(p_1) = p_2$ i $\tilde{f} = \varphi$. En altres paraules, una aplicació afí queda totalment determinada per l'aplicació lineal associada i la imatge d'un punt.

Demostració. Comencem veient la unicitat. Si existeix tal aplicació afí (f, \tilde{f}) i suposem que $g: \mathbb{A}_1 \longrightarrow \mathbb{A}_2$ també satisfà $\tilde{g} = \varphi$ i g(p) = q, aleshores

$$g(x) = g(p_1 + \overrightarrow{p_1 x}) = g(p_1) + \widetilde{g} \overrightarrow{p_1 x} = p_2 + \varphi(\overrightarrow{p_1 x}) = f(x); \tag{2.3}$$

per tant, p_1, p_2 i h la determinen completament. Això també ens diu com hem de definir f per provar l'existència. Posem $f(x) = p_2 + \varphi(\overrightarrow{p_1 x})$ i $f(y) = p_2 + \varphi(\overrightarrow{p_1 y})$. Per tant,

$$\overrightarrow{f(x)f(y)} = \overrightarrow{f(x)p_2} + \overrightarrow{p_2f(y)} = -\varphi(\overrightarrow{p_1x}) + \varphi(\overrightarrow{p_1y}) = \varphi(\overrightarrow{p_1y} - \overrightarrow{p_1x}) = \varphi(\overrightarrow{xy}). \tag{2.4}$$

Per tant, f és una aplicació afí i, a més, $\tilde{f}=\varphi$. A més, $f(p)=q+\varphi(\vec{pp})=q+0=q$.

Proposició 2.7 (Les afinitats conserven les varietats lineals). Sigui $f : \mathbb{A}_1 \longrightarrow \mathbb{A}_2$ una aplicació afí. Sigui $\mathbb{L} = a + F$ una varietat lineal $a \mathbb{A}_1$. Aleshores: $f(\mathbb{L}) = f(a) + \tilde{f}(F)$.

Demostració. Si $p \in \mathbb{L}$, llavors p = a + v amb $v \in F$.

$$f(p) = f(a+v) = f(a) + \tilde{f}(v) \in f(a) + \tilde{f}(F)$$
(2.5)

El recíproc és el següent: sigui $q \in f(a) + \tilde{f}(F)$. Llavors, $q = f(a) + \tilde{f}(w)$ amb $w \in F$. Per tant, $q = f(a) + \tilde{f}(w) = f(a+w)$, on $a + w \in \mathbb{L} \implies q \in f(\mathbb{L})$.

Proposició 2.8. Les afinitats conserven el paral·lelisme.

Demostració. És suficient suposar que f és una aplicació afí.

$$\mathbb{L}_{1} = a_{1} + F_{1} \\
\mathbb{L}_{2} = a_{2} + F_{2}$$

$$f(\mathbb{L}_{1}) = f(a_{1}) + \tilde{F}_{1} \\
f(\mathbb{L}_{2}) = f(a_{2}) + \tilde{f}(F_{2})$$

$$\implies f(\mathbb{L}_{1}) \parallel f(\mathbb{L}_{2}). \tag{2.6}$$

Suposant que $F_1 \subseteq F_2$, aleshores $\tilde{f}(F_1) \subseteq \tilde{f}(F_2)$.

Proposició 2.9 (Les afinitats conserven la raó simple). Sigui $f: \mathbb{A}_1 \longrightarrow \mathbb{A}_2$ una aplicació afí injectiva. Siguin $a, b, c \in \mathbb{A}_1$ punts alineats i diferents. Sigui \mathbb{L} la recta que passa per a, b, c. Llavors, $f(\mathbb{L})$ és una recta que conté f(a), f(b), f(c).

Demostració. Posem $(a, b, c) = \lambda$. Com que estan alineats, $\vec{ac} = \lambda \vec{bc}$. Posem $\tilde{f}(\vec{ac}) = \tilde{f}(\lambda \vec{bc}) =$ $\lambda \tilde{f}(\vec{bc})$. Si substituïm $\tilde{f}(\vec{ac}) = \overline{f(a)f(c)}$ i $\lambda \overline{f(b)f(c)}$, tenim que la raó simple $(f(a), f(b), f(c)) = \lambda$ es compleix.

Propietat 2.10 (Propietats del conjunt de punts fixos).

- 1. El conjunt de punts fixos és una varietat lineal.
- 2. Si p_1, \ldots, p_k són fixos, aleshores tots els punts de la varietat lineal $\{p_1\} + \cdots + \{p_k\}$ són fixos.
- 3. Si 1 no és VAP de l'endomorfisme \tilde{f} , aleshores l'afinitat té un únic punt fix.

Demostració. Fixem un sistema de referència. Suposem que les equacions de f són

$$\begin{pmatrix} x_1^* \\ \vdots \\ x_n^* \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}. \tag{2.7}$$

Els punts fixos no són sinó varietats lineals de dimensió 0 que es transformen en ells mateixos. En notació ampliada, tenim que compleixen $x^* = Ax + b \iff x = Ax + b \iff (A - \mathbb{I})x = -b$. Per tant, es poden trobar mitjançant el sistema

$$(A - \mathbb{I}) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = - \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, (A - \mathbb{I})x = -b$$
 (2.8)

Això demostra el primer apartat i el segon n'és una conseqüència. Notem finalment que si 1 no és VAP, aleshores $\det(A - \mathbb{I}) \neq 0$ i el sistema de punts fixos és compatible determinat.

2.2Varietats lineals invariants

Definició 2.11 (Varietat lineal invariant). Diem que una varietat lineal $\mathbb{L} = a + F$ és invariant si es dona que $f(\mathbb{L}) = \mathbb{L}$. Com que $f(a+F) = f(a) + \tilde{f}(F)$, la varietat a+F és invariant si, i només si,

- 1. $\widetilde{f}(F) \subset F$ i 2. $qf(q) \in F$.

Definició 2.12 (Recta invariant). Si una recta $r = a + \langle v \rangle$ és invariant, aleshores $\tilde{f}(\langle v \rangle) = \langle v \rangle$. És a dir, el vector director de r és propi.

Proposició 2.13. Si p és un punt fix de f i v és un vector propi de \tilde{f} , llavors $\mathbb{L} = p + \langle v \rangle$ és una recta invariant de f.

Demostració. Suposem que $\tilde{f}(v) = \alpha v$. Llavors,

$$f(p + \lambda v) = f(p) + \lambda \tilde{f}(v) = f(p) + \lambda \alpha v = p + \lambda \alpha v \in \mathbb{L}, \forall \lambda \implies f(\mathbb{L}) \subset \mathbb{L}$$
 (2.9)

Proposició 2.14. Sigui $f: \mathbb{A} \longrightarrow \mathbb{A}$ una afinitat que en certa referència té matriu M. Un hiperplà d'equació $A_1x_1 + \cdots + A_nx_n + B = 0$ és invariant per f si, i només si, (A_1, \dots, A_n, B) és un VEP de M^T i almenys un dels coeficients A_i és no nul.

Definició 2.15 (Homologia). Una homologia és una afinitat amb un hiperplà de punts fixos. Dins de la homologia distingim:

- la raó de la homologia: el valor propi r tal que $\tilde{h} = rId$;
- l'eix de la homologia: correspon al vector de la recta de punts fixos, és a dir, al VEP de VAP 1;
- la direcció de la homologia: correspon al VEP de VAP r.

Teorema 2.16. Una varietat lineal $\mathbb{L} = a + F$ és invariant per una afinitat f si, i només si:

- 1. F és un subespai invariant de \tilde{f} ,
- 2. $\overrightarrow{af(a)} \in F$.

Demostració.

⇒ Suposem que es compleixen les dues condicions. Aleshores:

$$\frac{\tilde{f}(F) \subseteq F}{af(a) \in F} \implies f(a+v) = f(a) + \tilde{f}(v) = a + u + w, \ \forall v \in F, \ w \in F.$$
 (2.10)

Per tant, $f(a+v) \in a+F$, $\forall v \in F$ i això implica que $f(\mathbb{L}) \subseteq \mathbb{L}$.

 \iff Ara suposem que $f(\mathbb{L}) = \mathbb{L}$. Sabem que

$$\mathbb{L} = a + F \implies f(\mathbb{L}) = f(a)\tilde{f}(F). \tag{2.11}$$

Si $f(\mathbb{L}) = \mathbb{L}$, llavors $\tilde{f}(F) = F$ i això vol dir que F és invariant per \tilde{f} . A més,

$$a \in \mathbb{L}, \ f(a) \in \mathbb{L} \implies \overrightarrow{af(a)} \in F.$$
 (2.12)

3 Espais vectorials euclidians

3.1 Normes i angles

Definició 3.1 (Norma). Sigui E un espai vectorial sobre \mathbb{R} o \mathbb{C} . Una norma a E és una aplicació

$$\parallel \quad \parallel : \quad E \quad \longrightarrow \quad \mathbb{R} \quad (sempre \ a \ \mathbb{R}!)$$

$$v \quad \longmapsto \quad \parallel v \parallel$$

$$(3.1)$$

que compleix

- 1. $||v|| = 0 \iff v = \overrightarrow{0}$,
- 2. $||kv|| = |k| \cdot ||v||$,
- 3. $||u+v|| \le ||u|| + ||v||$ (designal tat triangular).

|k| indica el valor absolut si $k \in \mathbb{R}$ o bé indica el mòdul si $k \in \mathbb{C}$.

Lema 3.2 (Designaltat de Cauchy-Schwarz). Es compleix que

$$|uv|^2 \le (u \cdot u)(v \cdot v), \forall u, v \in E \tag{3.2}$$

Demostració. Si $v = \overrightarrow{0}$, aleshores la designal tat és certa. Suposem $v \neq \overrightarrow{0}$ i considerem $k = \frac{uv}{v \cdot v}$. Aleshores:

$$0 \leq (u - kv)(u - kv) = u \cdot u - k(vu) - k(uv) + k\overline{k}(v \cdot v)$$

$$= u \cdot u - \frac{(uv)(vu)}{v \cdot v} - \frac{\overline{(uv)}(uv)}{v \cdot v} + \frac{(uv)\overline{(uv)}}{v \cdot v}$$

$$= u \cdot u - \frac{(uv)\overline{(uv)}}{v \cdot v} = u \cdot u - \frac{|uv|^2}{v \cdot v},$$

$$(3.3)$$

d'on $|uv|^2 \le (u \cdot u)(v \cdot v), \forall u, v \in E$.

Teorema 3.3 (Teorema de Pitàgores). Si $u \cdot v = 0$, aleshores $||u + v||^2 = ||u||^2 + ||v||^2$.

Demostració.

$$||u+v||^2 = (u+v)(u+v) = ||u||^2 + ||v||^2 + 2(u \cdot v)$$
(3.4)

3.2 Subespais ortogonals

Proposició 3.4. Sigui S un subconjunt de E, on (E, \cdot) és un espai vectorial Euclidià. Tenim que

- 1. S^{\perp} és subespai vectorial d'E.
- 2. $S^{\perp} = \langle S \rangle^{\perp}$.
- 3. Si $T \subseteq S$, aleshores $S^{\perp} \subseteq T^{\perp}$.

Demostració. Siguin $x,y\in S^{\perp}$, o sigui $x\cdot u=y\cdot u=0$, per a tot $u\in S$. Aleshores, $(x+y)\cdot u=x\cdot u+y\cdot u=0$. Per tant, $x+y\in S^{\perp}$. Anàlogament, si $\lambda\in\mathbb{R}$, aleshores $\lambda x\in S^{\perp}$. Pel que fa al tercer apartat, suposem que $F\subseteq G$ i que $x\in G^{\perp}$. Aleshores, x és ortogonal a tots els vectors de G, en particular ho és als d'F. Per tant, $x\in F^{\perp}$.

Proposició 3.5. Sigui (E, \cdot) un espai vectorial Euclidià. Si F és un subespai vectorial d'E, aleshores:

- 1. $E = F \oplus F^{\perp}$.
- 2. $\dim F^{\perp} = \dim E \dim F$.
- 3. $(F^{\perp})^{\perp} = F$.

Demostració. És immediat veure que $F \cap F^{\perp} = \{0\}$. Prenem una base ortonormal $\{v_1, \ldots, v_k\}$ de F i la completem a una base de E tal que $\{v_1, \ldots, v_k e_{k+1}, \ldots, e_n\}$. Apliquem ara el mètode de Gram-Schmidt per convertir aquesta base en una base ortonormal $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$. Observem que $u_j \in F^{\perp}$ quan $j \in \{k+1, \ldots, n\}$. Per tant, qualsevol $v \in E$ es pot escriure de forma única com

$$v = (a_1u_1 + \dots + a_ku_k) + (a_{k+1}u_{k+1} + \dots + a_nu_n)$$
(3.5)

on el primer parèntesi pertany a F i el segon a F^{\perp} . Això prova que $E = F \oplus F^{\perp}$. La fórmula de les dimensions se segueix de la suma directa. És fàcil verificar que $F \subseteq (F^{\perp})^{\perp}$. Per dimensions obtenim la igualtat d'espais vectorials.

3.3 Orientacions

Proposició 3.6. Un endomorfisme f és ortogonal si, i només si, per a tota base ortonormal e_1, \ldots, e_n tenim que $v_i := f(e_i)$ és també una base ortonormal. A més, la base v_i té la mateixa orientació que la base e_i si, i només si, $f \in SO(n)$.

Demostració. Suposem que f és ortogonal i que la base e_i és ortonormal. Aleshores,

$$v_i \cdot v_j = f(e_i) \cdot f(e_j) = e_i \cdot e_j. \tag{3.6}$$

En direcció contrària, sigui e_i una base ortonormal. La matriu de canvi de base P de la base v_i en funció de e_i és, per construcció, la matriu de f. Com la matriu de Gram $\mathcal{G}_{\mathfrak{B}}(\varphi) = \mathbb{I}$ i P és una matriu ortogonal, trobem que f és ortogonal. La afirmació sobre la preservació de la orientació és conseqüència de la relació:

$$\det f = \det_{e_i}(f(e_1), \dots, f(e_n)) = \det_{e_i}(v_1, \dots, v_n).$$
(3.7)

3.4 Producte vectorial

Definició 3.7 (Producte vectorial). El producte vectorial d'u i v és una operació bilineal que retorna el vector $u \wedge v$, el qual té les següents propietats:

- 1. $(u_1 + u_2) \wedge v = u_1 \wedge v + u_2 \wedge v$;
- 2. $(\lambda u) \wedge v = \lambda(u \wedge v), \ \forall \lambda \in \mathbb{R};$
- 3. $u \wedge (v_1 + v_2) = u \wedge v_1 + u \wedge v_2$;
- 4. $u \wedge (\lambda v) = \lambda(u \wedge v), \ \forall \lambda \in \mathbb{R}$.

Demostració. Donat $w \in E$ qualsevol, tenim per que

$$((u_1 + u_2) \wedge v) \cdot w = \det(u_1 + u_2, v, w).$$

$$(u_1 \wedge v + u_2 \wedge v) \cdot w = (u_1 \wedge v) \cdot w + (u_2 \wedge v) \cdot w \xrightarrow{\det(u_1, v, w) + \det(u_2, v, w)} \det(u_1 + u_2, v, w).$$
(3.8)

Per tant, $(u_1 + u_2) \wedge v = u_1 \wedge v + u_2 \wedge v$. Les altres igualtats es demostren per analogia.

Propietat 3.8 (Altres propietats del producte vectorial).

- 1. $v \wedge u = -(u \wedge v), \ \forall u, v \in E$.
- 2. $u \wedge v$ és ortogonal a u i a v.
- 3. $u \wedge u = 0, \forall u \in E$.
- 4. $u \wedge v = 0 \iff u, v \text{ s\'on linealment dependents.}$
- 5. Si $u \wedge v \neq 0$, aleshores $\langle u \wedge v \rangle = \langle u, v \rangle^{\perp}$.
- 6. $e_1 \wedge e_2 = e_3, e_2 \wedge e_3 = e_1, e_3 \wedge e_1 = e_2.$
- 7. Donats $u = x_1e_1 + x_2e_2 + x_3e_3$ i $v = y_1e_1 + y_2e_2 + y_3e_3$ tenim que

$$u \wedge v = \begin{vmatrix} x_1 & y_1 & e_1 \\ x_2 & y_2 & e_2 \\ x_3 & y_3 & e_3 \end{vmatrix}. \tag{3.9}$$

8. $(u \wedge v) \wedge w = (u \cdot w)v - (v \cdot w)u$.

Producte vectorial 3.4

- 9. $(u \wedge v) \wedge w + (v \wedge w) \wedge u + (w \wedge u) \wedge v = 0$ (identitat de Jacobi).
- 10. $(u_1 \wedge u_2) \cdot (v_1 \wedge v_2) = (u_1 \cdot v_1)(u_2 \cdot v_2) (u_1 \cdot v_2)(u_2 \cdot v_1).$

11. Donats u, v no nuls, $\exists \theta \in \mathbb{R}, \ 0 \leq \theta \leq \pi$ tal que

$$||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sin(\theta)$$

$$u \cdot v = ||u|| \cdot ||v|| \cdot \cos(\theta)$$
(3.10)

Demostració. Ho dividirem en 11 demostracions diferents, una per cada apartat.

1. Donat $w \in E$ qualsevol, aplicant les propietats dels determinants:

$$-(u \wedge v) \cdot w = -\det(u, v, w) = \det(v, u, w). \tag{3.11}$$

2. És directe donat que el determinant d'una matriu amb dues columnes iguals és 0:

$$(u \wedge v) \cdot u = \det(u, v, u) = 0,$$

$$(u \wedge v) \cdot v = \det(u, v, v) = 0.$$
(3.12)

- 3. Com que $v \wedge u = -(u \wedge v), u \wedge u = -(u \wedge u) \iff 2(u \wedge u) = 0 \iff u \wedge u = 0.$
- 4. Si $v = \lambda u$, aleshores $u \wedge v = u \wedge (\lambda u) = \lambda(u \wedge u) = 0$. Recíprocament, si $u \wedge v = 0$ llavors $\det(u, v, w) = 0$, $\forall w \in E$ i això implica que u, v són linealment dependents. En cas contrari, podríem escollir w tal que u, v, w fos una base de E i, per tant, $\det(u, v, w) \neq 0$.
- 5. Com que $(u \wedge v) \cdot u = 0$ i $(u \wedge v) \cdot v = 0$, tenim que $\langle u \wedge v \rangle \subseteq \langle u, v \rangle^{\perp}$. Ara bé, si $u \wedge v \neq 0$, u, v són linealment independents i $\dim \langle u, v \rangle = 2$. Així doncs, $\dim \langle u, v \rangle = \dim \langle u, v \rangle^{\perp}$ i, per tant, la inclusió ha de ser igualtat.
- 6. $e_1 \wedge e_2 \in \langle e_1, e_2 \rangle^{\perp} = \langle e_3 \rangle$, ja que la base e_1, e_2, e_3 és ortonormal per hipòtesi. Per tant, $e_1 \wedge e_2 = \lambda e_3$ per a algun $\lambda \in \mathbb{R}$. A més,

$$\lambda = (\lambda e_3) \cdot e_3 = (e_1 \wedge e_2) \cdot e_3 = \det_{e_i}(e_1, e_2, e_3) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1.$$
 (3.13)

Les altres dues igualtats es demostren de la mateixa manera, tenint en compte que

$$\det_{e_i}(e_2, e_3, e_1) = \det_{e_i}(e_3, e_1, e_2) = 1. \tag{3.14}$$

7. Per bilinealitat, tenim:

$$u \wedge v = (x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3}) \wedge (y_{1}e_{1} + y_{2}e_{2} + y_{3}e_{3}) = x_{1}y_{1}e_{1} \wedge e_{1} + x_{1}y_{2}e_{1} \wedge e_{2} + x_{1}y_{3}e_{1} \wedge e_{3}$$

$$+ x_{2}y_{1}e_{2} \wedge e_{1} + x_{2}y_{2}e_{2} \wedge e_{2} + x_{2}y_{3}e_{2} \wedge e_{3} + x_{3}y_{1}e_{3} \wedge e_{1} + x_{3}y_{2}e_{3} \wedge e_{2} + x_{3}y_{3}e_{3} \wedge e_{3}$$

$$= (x_{1}y_{2} - x_{2}y_{1})e_{3} - (x_{1}y_{3} - x_{3}y_{1})e_{2} + (x_{2}y_{3} - x_{3}y_{2})e_{1} = \begin{vmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \end{vmatrix} e_{3} - \begin{vmatrix} x_{1} & y_{1} & e_{1} \\ x_{3} & y_{3} \end{vmatrix} e_{2} + \begin{vmatrix} x_{2} & y_{2} \\ x_{3} & y_{3} \end{vmatrix} e_{1}$$

$$= \begin{vmatrix} x_{1} & y_{1} & e_{1} \\ x_{2} & y_{2} & e_{2} \\ x_{3} & y_{3} & e_{3} \end{vmatrix}. \quad (3.15)$$

8. Si $u \wedge v = 0$, llavors u, v són linealment dependents. Si $v = \lambda u$, llavors:

$$(u \cdot w)(\lambda u) - ((\lambda u) \cdot w)u = \lambda(u \cdot w)u - \lambda(u \cdot w)u = 0.$$
(3.16)

Si $u \wedge v \neq 0$, aleshores $(u \wedge v) \wedge w \in \langle u \wedge v \rangle^{\perp} = \langle u, v \rangle$. Per tant, $(u \wedge v) \wedge w = \alpha u + \beta v$, $\alpha, \beta \in \mathbb{R}$. Per determinar-los, fem el següent:

$$\begin{aligned}
u &= (x_1, x_2, x_3), \\
v &= (y_1, y_2, y_3), \\
w &= (z_1, z_2, z_3)
\end{aligned} \qquad u \land v = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1). \\
(u \land v) \land e_1 &= (0, x_1y_2 - x_2y_1, -x_3y_1 + x_1y_3) = -y_1(x_1, x_2, x_3) + x_1(y_1, y_2, y_3), \\
(u \land v) \land e_2 &= (-x_1y_2 + x_2y_1, 0, x_2y_3 - x_3y_2) = -y_2(x_1, x_2, x_3) + x_2(y_1, y_2, y_3), \\
(u \land v) \land e_3 &= (x_3y_1 - x_1y_3, -x_2y_3 + x_3y_2, 0) = -y_3(x_1, x_2, x_3) + x_3(y_1, y_2, y_3).
\end{aligned} \qquad (3.17)$$

En tots tres casos es compleix que $(u \wedge v) \wedge w = -(v \cdot w)u + (u \cdot w)v$. Com que tots dos membres de la igualtat depenen linealment de w, és suficient haver comprovat la igualtat en una base.

9. Aplicant que $(u \wedge v) \wedge w = (u \cdot w)v - (v \cdot w)u$, tenim:

$$\begin{array}{l} (u \wedge v) \wedge w = (u \cdot w)v - (v \cdot w)u \\ (v \wedge w) \wedge u = (v \cdot u)w - (w \cdot u)v \\ (w \wedge u) \wedge v = (w \cdot v)u - (u \cdot v)w \end{array} \} (u \wedge v) \wedge w + (v \wedge w) \wedge u + (w \wedge u) \wedge v = 0. \quad (3.18)$$

10. Primerament, $(u_1 \wedge u_2) \cdot (v_1 \wedge v_2) = \det(u_1, u_2, v_1 \wedge v_2)$. Ara operem:

$$\det(v_1 \wedge v_2, u_1, u_2) = ((v_1 \wedge v_2) \wedge u_1) \cdot u_2 = ((v_1 \cdot u_1)v_2 - (v_2 \cdot u_1)v_1) \cdot u_2$$

$$= (u_1 \cdot v_1)(u_2 \cdot v_2) - (u_1 \cdot v_2)(u_2 \cdot v_1).$$
(3.19)

11. Apliquem la fórmula anterior:

$$||u \wedge v||^2 = (u \wedge v) \cdot (u \wedge v) = (u \cdot u)(v \cdot v) - (u \cdot v)(v \cdot u) = ||u||^2 ||v||^2 - (u \cdot v)^2.$$
 (3.20)

Si definim $a = \frac{\|u \wedge v\|}{\|u\| \cdot \|v\|}$ i $b = \frac{u \cdot v}{\|u\| \cdot \|v\|}$, aleshores,

$$a^{2} + b^{2} = \frac{\|u \wedge v\|^{2} + (u \cdot v)^{2}}{\|u\|^{2} \|v\|^{2}} = 1.$$
(3.21)

Per tant, $a = \sin(\theta)$, $b = \cos(\theta)$ per a algun θ . A més, $a \ge 0 \implies 0 \le \theta \le \pi$.

4 Espais afins euclidians

4.1 Distància

Definició 4.1 (Distància). Una distància entre dos punts $p,q \in \mathbb{A}$ com $d(p,q) := \|\overrightarrow{pq}\|$, és a dir, la distància és una aplicació

$$\begin{array}{cccc} d: & A \times A & \longrightarrow & \mathbb{R} \\ & (p,q) & \longmapsto & d(p,q) := \|\overrightarrow{pq}\|, \end{array} \tag{4.1}$$

on es compleix:

- 1. $d(p,q) \ge 0$,
- 2. $d(p,q) = 0 \iff p = q$,
- 3. $d(p,r) \le d(p,q) + d(q,r)$ (designaltat triangular).

Teorema espectral 5.1

4.2 Distància entre varietats

Proposició 4.2. Es compleix que la distància d'un punt a un hiperplà és:

$$d(p, \mathbb{L}) = \frac{|A_1 p_1 + \dots + A_n p_n + B|}{\sqrt{(A_1)^2 + \dots + (A_n)^2}}.$$
(4.2)

Proposició 4.3. Es compleix que la distància d'un punt a un hiperplà és:

$$d(p, \mathbb{L}) = \frac{|A_1 p_1 + \dots + A_n p_n + B|}{\sqrt{(A_1)^2 + \dots + (A_n)^2}}.$$
(4.3)

5 Endomorfismes ortogonals

Proposició 5.1 (Propietats de les matrius ortogonals). Donada una matriu $M \in \mathcal{M}_{n \times n}(\mathbb{R})$, les afirmacions següents són equivalents:

- 1. M és una matriu ortogonal,
- 2. $M^TM = \mathbb{I}$,
- 3. M és la matriu d'un endomorfisme ortogonal en una base ortonormal.

Demostració. Escollim una base e_1, \ldots, e_n a E i diem $\mathcal{G}_{\mathfrak{B}}(\varphi)$ a la matriu de Gram d'aquesta base. Sigui $f: E \longrightarrow E$ un endomorfisme i sigui M la matriu de f en la base e_1, \ldots, e_n . Llavors, f és ortogonal si, i només si,

$$f(x) \cdot f(y) = x \cdot y, \ \forall x, y \in E;$$

$$(MX)^{T} \mathcal{G}_{\mathfrak{B}}(\varphi) MY = X^{T} \mathcal{G}_{\mathfrak{B}}(\varphi) Y, \ \forall X, Y \in \mathbb{R}^{n};$$

$$X^{T} M^{T} \mathcal{G}_{\mathfrak{B}}(\varphi) MY = X^{T} \mathcal{G}_{\mathfrak{B}}(\varphi) Y, \ \forall X, Y \in \mathbb{R}^{n};$$

$$M^{T} \mathcal{G}_{\mathfrak{B}}(\varphi) M = \mathcal{G}_{\mathfrak{B}}(\varphi).$$

$$(5.1)$$

En el cas particular que la base e_1, \ldots, e_n sigui ortonormal, tenim que $\mathcal{G}_{\mathfrak{B}}(\varphi) = \mathbb{I}$ i ens queda la condició $M^T M = \mathbb{I}$.

5.1 Teorema espectral

Teorema 5.2 (Teorema espectral). Si un endomorfisme $f: E \longrightarrow E$ és ortogonal, hi ha alguna base ortonormal e_1, \ldots, e_n on f té la matriu següent:

i

$$A_i = \begin{pmatrix} \cos(\alpha_i) & -\sin(\alpha_i) \\ \sin(\alpha_i) & \cos(\alpha_i) \end{pmatrix}, \quad 0 < \alpha_i < \pi, \ \forall i.$$
 (5.3)

Demostració. Sigui $f: E \longrightarrow E$, f ortogonal. Considerem els subespais propis:

$$E^{+} = \{ v \in E \mid f(v) = v \}, \ E^{-} = \{ v \in E \mid f(v) = -v \}.$$
 (5.4)

Llavors E^+ i E^- són ortogonals (perquè VEPs de VAPs diferents són ortogonals). Sigui $F = E^+ \oplus E^-$. El subespai F és invariant per f. Aleshores, F^\perp també és invariant per f. Podem escriure $E = E^+ \oplus E^- \oplus F^\perp$. Considerem la restricció de f a F^\perp i sigui p(x) el polinomi mínim de la restricció: p(x) no té arrels reals, ja que $b_i > 0$, $\forall i$, i

$$p(x) = (x^2 + a_1 x + b_1) \cdots (x^2 + a_k x + b_k). \tag{5.5}$$

D'aquesta manera, el determinant de la restricció d'f a F^{\perp} és igual a 1. Posem $p(x) = (x^2 + a_1x + b_1) \cdot r(x)$ i escollim $u \in F^{\perp}$ tal que $v_1 = r(f)(u) \neq 0$. Sabent que ens surt p(f)(u) = 0:

$$p(f)(u) = 0 \implies (f^2 + a_1 f + b_1 \mathbb{I})(r(f)(u)) \implies (f^2 + a_1 f + b_1 \mathbb{I})(v_1) = 0$$
$$\implies f(f(v_1)) = -a_1 f(v_1) - b_1 v_1.$$
(5.6)

Aleshores, $\langle v_1, f(v_1) \rangle$ és invariant per f. Així, $E = E^+ \oplus E^- \oplus \langle v_1, f(v_1) \rangle \oplus \langle v_1, f(v_1) \rangle^{\perp}$. Repetint el mateix raonament iterativament, ens queda:

$$E = E^{+} \oplus E^{-} \oplus \langle v_1, f(v_1) \rangle \oplus \cdots \oplus \langle v_k, f(v_k) \rangle. \tag{5.7}$$

12