模拟电子技术基础期中综合练习

08. 4. 14

题 号	 =	=	四	五	总 分
得 分					

- 一、(26分)单管放大电路的分析,填空:
- 1. 已知图中a、b、c三个电路所用MOS管的参数相同,静态电流 I_{DQ} 也相同。比较这三个电路的性能,用a、b、c填空。
 - (1) 静态工作点稳定性最差的电路是:
 - (2)输入电阻最大的电路是_____;
 - (3) 电压放大倍数数值最小的电路是

2. 电路如图所示,已知晶体管的电流放大倍数均为 β , b-e间动态电阻均为 r_{be} , 所有电容对交流信号均可视为短路。

电路	(a)	的输入电阻 R_i =	
电路	(a)	的输出电阻R。=	;
电路	(b)	的输入电阻R _i =	;
电路	(b)	的输出电阻R。=	;
电路	(c)	的输入电阻R;=	:

电路(d)的输入电阻Ri=_____

3. 当图示放大电路分别输入正弦波电压和方波电压时,输出电压波形分别如图 (a) 和图 (b) 所示,说明电路产生的是非线性失真(即截止失真或饱和失真)还是频率失真,并说明通过增大或减小电路中某元件参数可减小或消除失真。

填空:

- 4. 场效应管分压电路和所用管子的漏极特性曲线如图所示。假设在 $u_1 = 0 \sim 2V$ 范围

二、(20分)多级放大电路的分析

1. 在图示各电路中,已知所有三极管的 $\beta=100$, $r_{be}=1k\Omega$;电阻阻值选择合理;各电路 V_{CC} 数值均相等,各级的静态工作点均合适。

输入电阻最小的电路是,	输入电阻最大的电路是;输出电	阻最小的电路
是,输出电阻最大的电路是_	; 低频特性最好的电路是;	电压放大倍数
的数值 À, 最大的电路是	_;设除电源电压外其余参数均可调整,	输出最大不失
真电压 U_{om} 最大的电路是;	输出电压与输入电压相位相同的是	0

2. 已知某阻容耦合放大电路的电压放大倍数的表达式为

$$\dot{A}_{u} = \frac{20f^{2}}{(1+j\frac{f}{5})(1+j\frac{f}{100})(1+j\frac{f}{10^{6}})^{3}}$$
 (式中 f 的 单位是 Hz。)

说明其中频电压放大倍数 À_{un} =_____, 上限频率f₁≈_____, 下限频率f₁≈_____。

三、(20分)故障分析:

200

1. 由理想运放A组成的反馈放大电路如图所示,对交流信号电容 C_1 、 C_2 的容抗可忽略不计。当以下几种故障分别出现时,电路不能放大输入信号的有:

文 u_1 0.1 μ F A R_1 A R_2 $S1k\Omega$ R_3 $1k\Omega$ C_2 100μ F

9 +15V

- A. R₁短路
- B. R₁开路
- C. R₂短路
- D. R₂开路
- E. R₃短路
- F. R₃开路
- G. C₂短路
- H. C₂开路

2. 由理想运放 A_1 、 A_2 等元器件组成的反馈放大电路如图所示,已知 A_1 、 A_2 均为理想运放,输出电压的最大幅值为 $\pm 14V$,输入电压 u_1 为 1V。

四、(8分)负反馈放大电路的分析

电路如图所示,说明该电路引入了哪种组态的交流负反馈,并估算深度负反馈条件下的 电压放大倍数。

五、(26分)多级放大电路的参数估算

1. 电路如图所示,已知各级电路的静态工作点合适,所有晶体管的电流放大系数均为 β , T_1 和 T_2 的b-e间动态电阻均为 r_{be} 。试求解:

- (1) 差模输入电阻R_i=?
- (2) 电路的电流放大倍数 $|A_i| = \left| \frac{\Delta i_0}{\Delta i_1} \right| \approx ?$

(3) 电压放大倍数
$$\left| A_u \right| = \left| \frac{\Delta u_0}{\Delta (u_{\text{II}} - u_{\text{I2}})} \right| \approx ?$$

- 2. 多级放大电路如图所示。设晶体管 $T_1 \sim T_3$ 特性完全相同,并具有理想的输出 特性,且 β =100, $r_{be} \approx 3k\Omega$, U_{BEQ} =0.7V;电源电压 V_{CC} =12V, V_{EE} =6V, V_{BB} =0.8V;电阻 R_s =10k Ω , R_{c1} =8.3k Ω , R_{e2} =3k Ω , R_{e3} =3k Ω , R_{b31} =3.7k Ω , R_{b32} =2.3k Ω 。
 - 试估算下列各值:
- (1) 静态工作点: I_{CQ1} 、 U_{CEQ1} 、 I_{CQ2} 、 U_{CEQ2} 及输出端直流电位 U_{OQ} ;
- (2)电压放大倍数 $\dot{A}_{us}=\dot{U}_{o}/\dot{U}_{s}$,输出电阻 R_{o} 。

