DATA INTENSIVE COMPUTING

Simple EDA on New York Times Data

Problem 2A: Simple EDA on single day data

Step 1: Reading the data

The first step in the process of EDA is to read the data which in our case is stored in the csv file.

```
# Reading CSV File
data_nyt_day_1 = read.csv(url("http://stat.columbia.edu/~rachel/datasets/nyt1.csv"))
head(data_nyt_day_1)
```

The data looks something like this

	Age	Gender	Impressions	Clicks	Signed_In
1	36	0	3	0	1
2	73	1	3	0	1
3	30	0	3	0	1
4	49	1	3	0	1
5	47	1	11	0	1
6	47	0	11	1	1

Step 2: Cleaning the data

In this step we will perform some cleaning operation to make the data suitable for EDA

```
# Creating Age Groups
17 data_nyt_day_1$Age_Group = cut(data_nyt_day_1$Age, c(-Inf, 17, 24, 34, 44, 54, 64, Inf),
                                 c("<18", "18-24", "25-34", "35-44", "45-54", "55-64", "65+"))
18
19 head(data_nyt_day_1)
20
21 # Changing the labels for Gender from 1 and 0 to Male and Female to make them more intuitive
   data_nyt_day_1$Gender = factor(data_nyt_day_1$Gender, levels=c(0,1), labels = c("female", "male"))
22
23 head(data_nyt_day_1)
24
25 # Creating Summary of the data
26 summary(data_nvt_dav_1)
   # Changing the lables for impressions to make them more intuitive
36
    data_nyt_day_1$Has_Impressions <-cut(data_nyt_day_1$Impressions,c(-Inf,0,Inf), c("No", "Yes"))</pre>
    summaryBy(Clicks~Has_Impressions, data=data_nyt_day_1, FUN=siterange)
47
     # Changing the lables for User Segment to make them more intuitive
48
     data_nyt_day_1$User_Segment[data_nyt_day_1$Impressions==0] <- "No_Impressions"
     data_nyt_day_1$User_Segment[data_nyt_day_1$Impressions>0] <- "Impressions"
49
     data_nyt_day_1$User_Segment[data_nyt_day_1$Clicks>0] <- "Clicks"</pre>
```

After following very simple cleaning process as described above we are able to get a beautiful data

Grouping based on Age Groups

	Age	Gender	Impressions	Clicks	Signed_In	Age_Group
1	36	0	3	0	1	35-44
2	73	1	3	0	1	65+
3	30	0	3	0	1	25-34
4	49	1	3	0	1	45-54
5	47	1	11	0	1	45-54
6	47	0	11	1	1	45-54

Changing labels for Gender

	Age	Gender	Impressions	Clicks	Signed_In	Age_Group
1	36	female	3	0	1	35-44
2	73	male	3	0	1	65+
3	30	female	3	0	1	25-34
4	49	male	3	0	1	45-54
5	47	male	11	0	1	45-54
6	47	female	11	1	1	45-54

Summary Report

```
> summary(data_nyt_day_1)
     Age
                    Gender
                                 Impressions
                                                    Clicks
                                                                    Signed_In
                                                                                  Age_Group
Min. : 0.00
                 female:290176
                                Min. : 0.000
                                                                                  <18 :150934
                                                Min. :0.00000
                                                                  Min.
                                                                         :0.0000
1st Qu.: 0.00
                                1st Qu.: 3.000
                male :168265
                                                1st Qu.:0.00000
                                                                  1st Qu.:0.0000
                                                                                  18-24: 40694
                                Median : 5.000
                                                Median :0.00000
Median : 31.00
                                                                  Median :1.0000
                                                                                  25-34: 58174
                                                                         :0.7009
                                                                                  35-44: 70860
Mean : 29.48
                                Mean : 5.007
                                                Mean
                                                       :0.09259
                                                                  Mean
3rd Qu.: 48.00
                                3rd Qu.: 6.000
                                                                                  45-54: 64288
                                                3rd Qu.:0.00000
                                                                  3rd Qu.:1.0000
Max.
       :108.00
                                Max.
                                       :20.000
                                                Max. :4.00000
                                                                  Max.
                                                                         :1.0000
                                                                                  55-64: 44738
                                                                                  65+ : 28753
```

```
> summaryBy(Clicks~Has_Impressions, data=data_nyt_day_1, FUN=siterange)
  Has_Impressions Clicks.FUN1 Clicks.FUN2 Clicks.FUN3 Clicks.FUN4
1     No     3066     0 0.00000000     0
2     Yes     455375     0 0.09321768     4
```

Step 3: Generating Plots and capture meaningful information

In the next step we have to capture meaningful information from the data that we cleaned. Graphs are very intuitive way of depicting such information in a very elegant way.

Graph on Age Groups vs No. of Impressions

Graph on Click thru Rate

Graph on Click thru Rate

Problem 2B: Simple EDA on monthly data

Step 1:

Now to do analysis on monthly data we will do grouping of counts of clicks, Impressions, Males and Females based on Age Groups.

This summarization will help us do EDA on the monthly data

After aggregating required data, we will get something like this

	Age_Group	Clicks	Impressions	Num_of_Males	Num_of_Females	Day
1	<18	21545	754722	9470	141464	1
2	18-24	2167	203585	21721	18973	1
3	25-34	2937	290511	30958	27216	1
4	35-44	3662	355824	37676	33184	1
5	45-54	3232	322109	34007	30281	1
6	55-64	4556	224688	23988	20750	1

Step 2:

In the next step we will iterate over monthly data and perform the same steps as we performed previously and collect the data into the main collection

```
# Loop for capturing monthly data.
# This function will fetch data for each day, aggregate required fields and merge into the main collection
16 x <- 2
17 → repeat {
      print(paste("Collecting New York Times data for Day ", x, sep=""))
18
19
      data_nyt_day_n <- read.csv(url(paste("http://stat.columbia.edu/~rachel/datasets/nyt", x, ".csv", sep = "")))</pre>
      20
21
22
      \label{lem:data_nyt_day_n} $\texttt{Gender} = \texttt{factor}(\texttt{data_nyt\_day\_n} \\ \texttt{Gender}, \ \texttt{levels=c(0,1)}, \ \texttt{labels} = \texttt{c("female", "male"))} $$
23
      temp_collection <- aggregate(cbind(data_nyt_day_n$Clicks,data_nyt_day_n$Impressions,</pre>
24
                                          (data_nyt_day_n$Gender == "male"),
25
                                          (data_nyt_day_n$Gender == "female")
26
                                         )~Age_Group,data=data_nyt_day_n,sum,na.rm=TRUE)
27
      colnames(temp_collection) <- c("Age_Group", "Clicks", "Impressions", "Num_of_Males", "Num_of_Females")</pre>
28
      temp_collection$Day <- x
29
      main_collection <- rbind(main_collection, temp_collection)</pre>
30
      rm(data_nyt_day_n)
31
      x = x+1
      if (x == 32){
32 -
33
        break
34
```

Step 3:

Next we will group data based on different age groups to analyze them more deeply

```
37
    # Extracting data for different age grpups
    # This will help us deeply analyse data for different age groups
38
39
    Age_Group_1 <- main_collection[main_collection$Age_Group=="<18",]
    Age_Group_2 <- main_collection[main_collection$Age_Group=="18-24",]
40
41
    Age_Group_3 <- main_collection[main_collection$Age_Group=="25-34",]</pre>
    Age_Group_4 <- main_collection[main_collection$Age_Group=="35-44",]
42
    Age_Group_5 <- main_collection[main_collection$Age_Group=="45-54",]</pre>
43
    Age_Group_6 <- main_collection[main_collection$Age_Group=="55-64",]
44
45
    Age_Group_7 <- main_collection[main_collection$Age_Group=="65+",]
```

> A	ge_Group_4					
	Age_Group	Clicks	${\tt Impressions}$	Num_of_Males	Num_of_Females	Day
4	35-44	3662	355824	37676	33184	1
11	35-44	3519	343978	37610	31364	2
18	35-44	3408	336558	35704	31495	3
25	35-44	3453	339483	36465	31471	4
32	35-44	2808	282338	30267	26331	5
39	35-44	6014	591235	61066	57315	6
46	35-44	3468	345754	35353	33931	7
53	35-44	3582	356379	38146	33145	8
60	35-44	3592	352064	36697	33731	9
67	35-44	3513	346599	36591	32745	10
74	35-44	3642	368141	38729	35026	11
81	35-44	3008	303404	31880	28832	12
88	35-44	5942	605061	61580	59487	13
95	35-44	3436	338404	36621	31156	14
102	35-44	2553	264407	28051	24862	15
109	35-44	2807	272316	28320	26061	16
116	35-44	2684	269045	28907	24923	17
123	35-44	2748	275143	28591	26317	18
130	35-44	2574	255684	27315	23844	19
137	35-44	4403	448103	47842	41546	20
144	35-44	2685	276618	30303	25222	21
151	35-44	2620	266372	27605	25795	22
158	35-44	2546	260451	27709	24314	23
165	35-44	2830	273689	29148	25793	24
172	35-44	2444	258459	27293	24609	25
179	35-44	2144	219616	23928	19975	26
186	35-44	4545	451888	47503	42690	27
193	35-44	2746	269317	27888	25968	28
200	35-44	2841	279782	29506	26455	29
207	35-44	2723	274267	28360	26573	30
214	35-44	3439	338410	35297	32502	31

Step 4: Analyzing monthly data by plotting graphs

Next we will plot some beautiful graphs which will give us intuition about behavior change in different Age Groups.

For example, for the users falling under Age Group 35-44 we see that the maximum number of clicks were on Day 6^{th} and 13^{th}

