Vector Similarity

Adam Meyers
New York University

Outline

- Vector-based Document Similarity
 - Vectors represent documents, blocks of text or phrases
 - Based on words contained in those textual units
 - Use words to classify documents and blocks of text
 - Information Retrieval, Question Answering
 - Retrieving documents that are "similar" to query
 - Document Classification, Sentiment Analysis
 - Using similarity to group "similar" documents
- Lexical Semantics
 - Word Senses and WordNet
 - Embeddings = Vectors representing words
 - Use documents to classify the words contained by the document
- Logistic Regression & Deep Learning for creating embeddings

Part I: Documents & Chunks of Text

Re-occurring Themes

- Document → Vector representing its parts
- What are its parts? Words, N-grams, Chunks?
- How do we measure each part's importance?
- Vector Similarity measures similarity between
 - 2 documents
 - A question and a document;
 - Documents within a genre
 - Documents with the same "sentiment"
- Evaluation Methodology

Ad Hoc Information Retrieval (IR)

- Given:
 - a collection of documents: a set of recipes
 - a query: "Chicken soup with noodles"
- Find documents that "best" match the query.
- Assumptions:
 - Each document is a "bag of terms"
 - Each query is a "bag of terms"
- Bag of terms = unordered set of words ("chicken") or word sequences ("ice cream", "frying pan")

Ad Hoc IR – More Details

- Model of document = unordered set (bag) of *terms* contained in that document
 - Term = word, bigram (2 consec words), trigram (3 consec words, noun group (sequence of adjectives & nouns), other units
- Query = user input, typically a set of terms
- Collection = set of documents
- Goal: find documents in collection "closest" to query
- Web search has IR component
 - IR component determines relevance of page to query
 - Other component (Google's PageRank) determines prominence on web (how many links to page)
 - Other components: question answering, etc.

Vector Representations

- Represent query and documents as vectors
 - each value represents a "score" or "weight" for a word.

Query: "Chicken Soup with Noodles"

bean	chicken	lemon	noodle	stew	onion	soup	rice	coconut	sugar
0	5.4	0	2.7	0	0	5.1	0	0	0

Recipe for chicken rice stew

bean	chicken	lemon	noodle	stew	onion	soup	rice	coconut	sugar
0	16.2	0	0	3.1	2.7	0	10.5	0	0

Recipe for chicken noodle soup with coconut

bean	chicken	lemon	noodle	stew	onion	soup	rice	coconut	sugar
0	10.8	0	27	1.1	2.7	10.2	0	14.1	5.1

Recipe for black bean soup with onion

bean	chicken	lemon	noodle	stew	onion	soup	rice	coconut	sugar
9.5	0	0	0	1.1	5.4	10.2	0	0	0

Intuitions About Previous Slide

- Query is "close" to chicken noodle soup with coconut recipe
 - Mostly the same positions with zero values
 - Smaller difference between non-zero values
 - More "important" positions tend to be similar
- How should we determine the scores?
- How should we measure similarity?

TFIDF = Common Weight for Vector

- Term Frequency number of times term *t* occurs in document (alternative: number of terms divided by length of document)
- Inverse Document Frequency: Reciprocal of portion of large document set that contain term *t*, normalized with log function:

$$\log \left(\frac{NumberOfDocuments}{NumberOfDocumentsContaining(t)} \right)$$

- TFIDF(t) = TF(t) \times IDF(t)
 - Scores terms highly that occur frequently in a document or query
 - Scores terms highly that are infrequent in collection
- **TFIDF(t)** is high if **t** is more frequent in document **d** than **t** is in most documents, i.e., if **t is characteristic of the document** d

TF-IDF Normalization

- TF and IDF are 2 factors
- IDF is "normalized" by taking the log
 - Log normalization changes the rate of growth
 - There are other ways of normalizing, e.g., we may normalize F linearly by dividing by number of words in document.
- Other measures on a logarithmic scale:
 - Photography: Shutter speeds double (1/250, 1/125, 1/60, etc.)
 - Photography: F-stops (1.4, 2, 2.8, 4, 5.6, …) double the area
 - Music: 1 octave doubles the frequency of sound waves
 - Richter Scale: 8.0 earthquakes are 10 X 7.0 earthquakes, etc.

Example: noodle vs. tablespoon

noodle

- occurs ~ 3 times in chicken noodle soup with coconut recipe
 - Term frequency = 3
- occurs in 4 out of 10,000 documents in collection
- inverse document frequency = log(10000/4) = log(2500) = 7.82
- TFIDF = $3 \times 7.82 = 23.46$

tablespoon

- occurs 4 times in chicken and noodle soup with coconut recipe
 - Term frequency = 4
- occurs in 1200 out of 10,000 documents in corpus
- inverse document frequency = log(10000/1200) = log(8.33) = 2.12
- TFIDF = $4 \times 2.12 = 8.48$
- noodle is more highly weighted for recipes than tablespoon
- Note: Suitability of query term may depend on the nature of the collection
 - Is this a collection of recipes? *tablespoon* not good query term
 - Is collection diverse: instructions, news, \dots ? *tablespoon* may be good query term

IR and Related Applications

Cosine Similarity: Common Similarity Score

Similarity
$$(A, B) = \frac{\sum_{i} a_{i} \times b_{i}}{\sqrt{\sum_{i} a_{i}^{2} \times \sum_{i} b_{i}^{2}}}$$

- Cosine of the Angle Between the Vectors
- Numerator = Dot Product
- Denominator = Square root of product of squares
- If a query is A and a document is B
 - Cosine similarity high if values of a and b are similar
 - Maximum = 1, if a = b (i.e., numerator = denominator)

Cosine Similarity: Measures Closeness of Vectors

- Vectors are represented graphically as dimensions
 - -3 words $\rightarrow 3$ d space, 10 words $\rightarrow 10$ d space, ...
- 2 Vectors form an angle
- High Cosine if smaller angle (more similar)

Example

- Vector dimensions correspond to terms:
 - potato chip, chicken, sesame seed, coconut milk, ground beef
- 2 Queries
 - Q1 chicken, coconut milk: (0,5,0,5,0)
 - Q2 potato chip, ground beef: (4,0,0,0,7)
- 2 Documents
 - D1 Chicken and Coconut Soup Recipe: (0,7,0,9,0)
 - D2 Hamburger Recipe: (3,0,2,0,9)
- Cosine similarities

Similarity
$$(Q1,D1) = \frac{(0+35+0+45+0)}{\sqrt{(5^2+0^2+5^2+0^2)\times(0^2+7^2+0^2+9^2+0^2)}} = .992$$

	Q1	Q2
D1	.992	0
D2	0	.959

IR and Related Applications

Other Factors

- Many terms (possibly thousands) represented in each vector
- Other similarity measures and weight functions
- Lists of "stop words", e.g., *the, a, in, to, does*, ...
- Stemming procedures used to make equivalence classes
 - $[cat, cats] \rightarrow cat$
 - [analyze, analyzes, analyzed, analysis, analyse,...] \rightarrow analyze
- Identifying other similar words, e.g., synonyms
 - query expansion, term clustering, ...
- Systems identify word sequences as terms: N-grams or chunking
- Methods for removing dimensions, e.g., Latent Dirichlet Allocation
- Other methods for deriving vectors, e.g., Deep Learning

Jaccard Similarity an Alternative to Cosine Similarity

- Formula for Jaccard Similarity: $Jaccard(A,B) = \frac{|A \cap B|}{|A \cup B|}$
- Example:
 - Jaccard ("green eggs and ham", "blue eggs and chocolate")
 - Intersection = 2 words
 - Union = 8 words
 - Score = 2/8 or .25

Evaluation Metrics: Precision, Recall, F-measure

- System Output = answers from a system
- Answer Key = correct answers from humans
- Correct = length (System Output ∩ Answer Key)
- Precision = Correct ÷ length(System Output)
- Recall = Correct ÷ length(Answer Key)

• F-measure =
$$\frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

- Example:
 - System: 1, 2, 4, 5, 7
 - Answer Key 1, 2, 3, 4
 - Correct = 1, 2, 4
 - Precision = 3/5 = .6
 - Recall = $\frac{3}{4}$ = .75
 - F-measure = $2 \div (1.33 + 1.67) = .67$

Tasks can Favor Precision or Recall

- Voice Recognition of Helicoptor Commands
 - Precision is much more important than Recall
 - An error is a disaster, better to produce no output and let pilot keep the control
- Finding Lost Children
 - Recall is much more important than Precision
 - Missing a child is a disaster, better to question some children who are not lost

Interannotator Agreement

- •Example: the word *to* has 2 uses:
 - •A preposition I walked to the store
 - •An **auxilliary** verb-like element *I want to fly*
- 2 Annotators tagged 100 cases for these 2 categories
- Annotator1 tagged 70 prepositions and 30 auxilliaries
- Annotator 2 tagged 60 prepositions and 40 auxilliaries
- •They agreed on 50 out of the 100 cases.
- Use these numbers to calculate Kappa

$$Kappa = \frac{Observed_Agreement - Chance_Agreement}{1 - Chance_Agreement}$$

Example

- Observed Agreement = 50/100 = 50%
- Chance Agreement = (.7 * .6) + (.3 * .4) = 54%
- Kappa = (.5-.54)/.46 = -.09 (not so good)
- A better result would be 80% agreement
 - Kappa = (.8 .54) / .46 = .57
- And so on

Precision/Recall Curve: Parameters may trade precision for recall

Evaluating Top N Documents in Ranking

- Output of IR = A Ranked List of Documents
 - Ranking makes relevant/irrelevant distinction subtle
 - Error in high-ranked documents "worse" than error in low-ranked
- Precision/Recall tradeoff curves based on number of docs considered
 - Precision goes down and recall goes up for more documents
 - Measure using area under curve: higher area → better system
- Too Expensive to Create Gold Standard Manually
 - Collections can be millions or billions of documents
 - Precision can be approximated by taking samples of the text or evaluating the top N ranked terms manually.
 - Recall can also be approximated by some sort of sampling, e.g., only manually evaluating a subset of the collection

Mean Average Precision is used to Score IR output

- Problem: How do we score a ranked list?
- MAP = compute precision at several intervals and average.
 - If high ranked items in list tend to be better, the score is higher
- Example
 - Answer Key: 20 correct answers
 - Different precision assuming progressively higher recall
 - 2/first 5 correct (2/5 precision at 10% recall)
 - 2/next 10 correct (4/15 precision at 20% recall)
 - 2/next 7 correct (6/22 precision at 30% recall)
 - ...
 - 20 correct/top 200 (20/200 precision at 100% recall)
 - MAP = average of these 10 intervals
 - $.195 \approx (2/5 + 4/15 + 6/22 + 8/40 + 10/55 + 12/85 + 14/105 + 16/120 + 18/150 + 20/200)/10$

Homework 4

- http://cs.nyu.edu/courses/fall23/CSCI-UA.0480-057/homework4.html
- Information Retrieval Task
- Due date: Evening of Class 6 (Graduate) or 11 (Under Graduate)

Question Answering Task can be Similar to IR

- Given a query and set of documents
- Find the paragraph (not a document) that is closest to the query.
- This assumes the answer to the question will be found in the paragraph
- Essentially same problem as IR, but looking for most similar paragraph, instead of most similar document

(Supervised) Document Classification

• Given:

- N sets (categories, genres, topics, etc) of seed documents
- A set of unclassified documents

Goal

Automatically assign new documents to "closest" category

Is Doc 11 a Recipe or a Sports Document?

Recipes

Doc	bean	chick	lime	salt	ball	stick	helmet	score
1	4.3	5.1	0	1.2	0	0	0	1
2	7.8	10.2	2.4	0.6	2.5	0	0	0
3	0	5.1	4.5	1.5	0	4.3	0	0
4	4.3	5.1	2.4	1.2	0	0	0	0
5	9.6	0	4	.6	0	4.3	0	0
Ave	5.2	5.1	2.7	2.1	0.5	1.7	0	.2

Sports

Doc	bean	chick	lime	salt	ball	stick	helmet	score
6	0	1.1	0	1.2	9.2	0	7.8	5.8
7	1.5	1.1	0	0	10.2	5.1	4.3	6.1
8	0	0	0	0	5.4	4.3	5.7	8.1
9	0	0	1	1.1	0	5.4	4.5	5.1
10	0	0	0	0	7.2	9.0	4,5	0
Ave	0.3	0.44	0.2	0.26	6.4	4.8	5.4	6.8

• Doc 11

(Unclassified)

Doc	bean	chick	lime	salt	ball	stick	helmet	score
11	0	0	2.0	0	5.1	0	10.1	4.3

IR and Related Applications

Document Classification

- Each document → vector of TF-IDFs of list of terms
- Each category → average of category doc vectors
 - Each dimension d = average of scores for d
 - Average is an example alternative combo functions (like max)
- Starting points
 - Supervised: Some documents classified already
 - Unsupervised: Each document starts out as its own category
- Steps:
 - Supervised: Category of New doc → "similar" category
 - Unsupervised: Iteratively merge similar categories
- Similarity scores may be ranked by best to worst fit
 - Allow each doc to be part of multiple categories?
 - Unsupervised needs a stopping point
 - e.g., minimum number of categories or cut-off similarity score

Examples of Document Classification

- Supervised classification of science papers by grade
 - CS /Education Major now getting her Masters at UPenn
 - Paper at 2017 School Science and Mathematics Association Conference
- Supervised classification of supreme court opinions by topic
 - Visiting CS student from Case applying for grad schools
 - Presenting CS paper at Fed CSIS 2018
- Other Examples:
 - Classify documents (tweets, news, etc.) by political persuasion (undergrad NLP students did this)
 - Classify newspaper articles by genre: sports, business, politics, etc.
 - Classify medical articles by subject matter: cancer, genetics, etc. (colleague did this)
 - Cluster home insurance claims by sources of damage (flood, fire, etc.)

Evaluating Document Clustering

- Set aside some test documents
 - already assigned classes by human beings
 - not seed documents
- Accuracy = correct ÷ number of documents
 - Precision and Recall are only used if the system can produce a different number of results
- Example: 50 correct out of 100 = 50% accuracy
- It is customary to set aside 2 sets of testing documents
 - dev set: use to design your system
 - test set: use to report final results

Unsupervised Document Clustering

- Goal: Partition set of unclassified documents
- Given:
 - Set of unclassified documents and their vectors
 - Each document is its own cluster
- Repeat until some "stopping point"
 - Merge the 2 most similar clusters
 - The vector for the new cluster is the average of the document vectors for the cluster
- Stopping points:
 - There are only N remaining clusters (e.g., N = 10)
 - The closest clusters have a similarity of less than X (e.g., X = .5)

More on Unsupervised Document Clustering

- Clusters are not guaranteed to be natural classes of documents (possible criterion for scoring results)
- Topic Modeling = A popular clustering technique
 - Methods to reduce the dimensions of the vectors
 - e.g., Latent Dirichlet allocation
 - Dimensions may not refer to particular words, but vectors represent topics (which are sets of words)
 - Topic is hierarchical and documents can be members of more than one cluster
 - Words representing documents are used to provide user with an idea of what each topic is "about"

Examples

- Automatically Group all final papers into 5 categories
 - Professor can grade similar papers together and have basis of comparison
- Divide 1000 news articles automatically into 10 topics
 - Based on sets of words associated with each topic, try to manually assign categories

Sentiment Analysis

- Document Classification
 - Classes based on opinions or sentiments
- Examples:
 - Positive vs Negative vs Neutral views about
 - Companies or their stock prices
 - Political Candidates
 - Products
 - Star Ratings or Scales from 1 to 5
 - Reviews of movies, products, etc.
 - Happy vs Sad vs Angry vs ... Really difficult
- Sentiment Task Available: predict stars from reviews:
 - https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
- Warning: Students sometimes choose sentiment analysis for a new domain without really thinking through the evaluation process. Pre-defined tasks makes the evaluation much easier and allows you to focus on the system.

Sentiment: Special Considerations

- Negation: not, no, never, doesn't,
 - Bag of words model problematic
 - "I don't like Senator Smith"
 - Negative sentiment in spite of "like"
- Same terms linked to positive/negative in different contexts
 - low, high, small, large, thin, thick, visible, loud, soft, ...
 - high/low quality, high/low interest, high/low resolution

Final Projects on Document Classification

- Always cite related work
- Separate training, development, test documents
- Evaluation plan should be clear
- New vs Old task
 - If you use a pre-created task, you can concentrate on the methodology
 - If you make your own task, most of your work will be setting up your task – only a small part will be making your system to do the task

Part II: Lexical Semantics

Outline

- Basics of Lexical Semantics
- Word Senses and WordNet
- Word Similarity using Word Embeddings
- Logistic Regression and Deep Learning

Lemmas and Wordforms

- Lemma: basic word form (paired with POS) used in lexicon
 - base form representing a set of inflected forms
 - Singular nouns: $book \rightarrow book$, books
 - Bare infinitive verbs: $be \rightarrow be$, being, been, am, is, are, were, was
 - Base adjective: *angry* → *angry*, *angrier*, *angriest*
- Word form: word how it actually occurs
 - a single wordform can be related to multiple lemmas:
 - **bases** is the plural of **basis** and **base**
 - *leaves* is the plural of *leaf* and *leave* (as in *leaves of absense*)
 - also present-tense 3rd Pers Sing form (VBZ) of the verb *leave*
 - A word form can be defined phonologically (different homophones)
 - /tu/ has 3 lemmas corresponding to two, to and too
 - A word form can be defined orthographically (different homographs)
 - Thus *does* corresponds to 2 lemmas with different pronunciations: (1) present 3rd person singular of the verb *do* and (2) plural of the noun *doe*

Senses

- Conventional Dictionaries and Thesauri map lemmas to sets of different meanings called senses
- Granularity of senses: a standard problem in lexicography
 - merge 2 senses together or split one sense into 2?
- Lets lookup *bank* in WordNet (Version 3), a thesaurus/dictionary that we will be featuring
 - Compare definitions 1 and 2
 - Compare definitions 2 and 9
 - Is it possible that these definitions should be merged together?
 - All organization names can stand in for buildings that house them
 - Thus 9 is predictable from 2 (by metonymy)
 - A single instance can have both "senses" at once:
 - The bank on the corner hired 3 security guards

IR and Related Applications

WordNet Senses

- Conventional Dictionaries
 - Senses are defined informally as text
 - The relations between senses is not represented
- WordNet
 - a sense is defined by a *Synset*, the set of words that share that meaning.
 Intuition = define properties by extensions
 - Formal semantic definitions are often extensional
 - Both Frege and Russel's set-theoretic definitions of natural numbers
 - a number N is defined as the set of sets with cardinality N
 - Many other definitions of meaning used in (computational) linguistics
 - Senses are hierarchical (connected by graph, edges represent IS-A)
 - Senses have hyponyms (sub-senses) and hypernyms (super-senses)
 - _ furniture ⊃ seat ⊃ chair ⊃ recliner
 - The full graph allows multiple inheritance
 - and even cycles such as: restrain ⊃ inhibit ⊃ restrain ⊃ inhibit ...

IR and Related Applications

The Super Classes of shrimp

Applications of WordNet

- Sense disambiguation (multi-sense words only):
 - Given some text tagged with WN senses
 - Train a classifier that can automatically tag raw data
 - Issue: fine-grained senses are difficult to tag (manually or automatically)
 - Most approaches collapse several WordNet senses together
- Calculating Semantic Similarity
 - Some models of similarity of meaning are based on distance in the sense hierarchy
 - Issue: same length paths do not reflect same similarity
 - distinctions are based on available information, not calculated similarities
 - Alternatives: cruder relative path distances; path distances combined with other similarity scores (e.g., vector-based cosine similarity)

Distributional Methods for Sense Disambiguation and Word Similarity

- ML with features based on N-grams (sequences of neighboring tokens), dependencies (relations with words in parse trees), etc.
- Word Embeddings
 - Represent each word by a large vector representing the words that occur in any of the same sentences in some corpus.
 - Similarity calculated using similarity between vectors
 - e.g., cosine similarity
 - similarity between other words measures word similarity
 - similarity between instance and automatically or manually annotated synset instance can indicate sense
 - Subject of most of the remaining slides

Word Embeddings using TF-IDF

 Information Retrieval – Classifies documents (columns) based on the TF-IDFs of words in those documents

	Doc 1	Doc 2	Doc 3	Doc 4
Chicken	23.46	0	7.82	0
Sugar	2.4	4.8	0	9.6
Noodle	12.4	0	4.1	0
Table Spoon	.5	1	.5	1.5

- Doc 1 & Doc 3 are similar; Doc 2 and Doc 4 are similar
- Word Embeddings can classify words based on the documents they occur in (rows, rather than the columns)
 - "Chicken" & "Noodle" are similar but what does that mean?

What does word similarity mean?

- (Approximate) Synonymy
 - *coat* ≈ *jacket* For fashion experts, coats are longer than jackets
- Sample types of related meanings
 - Hypernym: *chair* **☐** *furniture*
 - Hyponym: *furniture* **⊆** *chair*
 - Related by common Hypernym: *chair*, *table*
 - both hyponyms of furniture
 - Same semantic field: check, stalemate, pawn
 - all chess terms
- Embeddings are NOT designed to differentiate among types of similarity
 - Example:
 - *oval* and *ellipse* are synonyms
 - But the embeddings for *oval* & *rectangle* may be more similar than *oval* & *ellipse* because *oval* occurs in fewer math texts
- Famous example: King Male + Female = Queen (by vector arithmetic)
 - Attributed to "Efficient Estimation of Word Representations in Vector Space"
 (Mikolov et al., 2013) IR and Related Applications

Context for Word Embeddings

- Information Retrieval Example:
 - Context = Document
- Usually Smaller Context for Word Similarity
 - -Same Document
 - Same Paragraph
 - Same Sentence
 - Within a window of +/-N words
 - Example if N = 2
 - Word_{n-2} Word_{n-1} Word_n Word_{n+1} Word_{n+2}

Word Word Matrix Using Pointwise Mutual Information

- Word Word Matrix (aka word embedding)
 - Rows represent word_R
 - Columns (aka *dimensions*) represent words co-occurring with word
 - Can be generalized to multi-words (n-grams, phrases, ...)
 - multi-word to multi-word
 - Context can be defined other ways, e.g., proximity in syntactic tree
- Approximate meaning: "A word is defined by the company it keeps" (Firth)
- Scores in Matrix
 - How related is word_R to word_C represented by column C
 - Pointwise Mutual Information:

$$PMI = \log\left(\frac{prob(word_C|word_R)}{prob(word_R) \times prob(word_C)}\right)$$

- Positive PMI often used: PPMI = max(PMI(w,r),0) negative PMI is unreliable
- LaPlace smoothing add constant (e.g., 1) to all counts to adjust for low frequencies IR and Related Applications

Sample Word Embedding 1

- Assume a "bag of words" approach
 - Order of words don't matter
 - Other embeddings (e.g., skip grams) model word order as well
 - Assume that words are stemmed
- Use words in a window of K words before and K words after word_R
- Let's assume K = 5 (for this example)
- Eliminate stop words and high frequency (low IDF) words
- Use numeric scores in vectors
 - We are using integers for example
 - Actual scores usually between 0 and 1

Sample Word Embedding 2 From Hypothetical Recipe Corpus

- Rows = words being classified
- Columns = words in context
- Higher number indicates more likely to be in window of +/- 5 from word labeling row

	cup	ounce	taste	chicken	stir	bake	chocolate
beef	1	4	1	0	4	5	0
cabbage	3	0	0	0	0	5	0
lemon	3	3	4	2	2	0	1
parsley	2	1	4	2	1	2	0
pepper	0	4	4	3	0	5	0
salt	1	3	4	4	0	5	1
sugar	5	1	4	0	1	2	5

Cosine similarity for Word Vectors from Previous Slide

	beef	cabbage	lemon	parsley	pepper	salt	sugar
beef	1	.63	.54	.57	.72	.66	.41
cabbage	.63	1	.25	.51	.53	.58	.51
lemon	.54	.25	1	.86	.64	.68	.74
parsley	.57	.51	.86	1	.81	.86	.69
pepper	.72	.53	.64	.81	1	.97	.44
salt	.66	.58	.68	.86	.97	1	.56
sugar	.41	.51	.74	.69	.44	.56	1

"The Curse of Dimensionality"

- To account for all word word co-occurances, we may need 100s of thousands of dimensions
- Millions if we include n-grams
- These vectors are "sparse", i.e., lots of zeros
- As a result, some problems will not scale well
- Solutions involve smaller, denser vectors

Latent Semantic Analysis: Reducing Dimensions

Repeatedly remove dimensions as follows:

Logistic Regression

- Start with a function from input to output with randomly assigned weights
- Apply function to random subsets of input for which the output is known
- If the function makes the correct prediction, increase the weights
- If the function makes the incorrect prediction, decrease the weights
- Repeat this process until some stopping point.

Word Embeddings Using Logistic Regression

- Randomly fill numbers into a vector with some fixed number of dimensions, e.g., 100
- Start with an "objective" function that predicts the occurance of words. The function uses the vector's values as weights.
- Repeat until some stopping point:
 - Randomly select sample from large input text
 - For each word_R in sample, determine if context predicts that the word is likely (context = words in ±k window)
 - Increase or decrease the dimension values accordingly
 - Combine individual probabilities of words in context (e.g., k = 2):
 - $P(Word_n \mid Word_{n-2})$, $P(Word_n \mid Word_{n-1})$, $P(Word_n \mid Word_{n+1})$, $P(Word_n \mid Word_{n+2})$

"Deep Learning"

- Logistic Regression Methods for manipulating vectors
- Vectors are weights for some objective function
- Methods described in this talk have a single "hidden layer"
 - The word embeddings that are learned
- Other Deep Learning Methods may have multiple hidden layers
- Deep Learning, aka, Neural Networks, are inspired by models of the human brain by psychologists
- Successful models unlikely to be models of human thinking
 - Cynical view: allusion to human brain is just marketing

Deep Learning Network

- Red = Input, Green = Output, Grey = "hidden" layers
- When acquiring word embeddings, **there is typically only one hidden layer**, containing numbers between 0 and 1. This hidden layer is the word embedding itself.

Edges between layers often called "neurons"

Word2Vec SkipGram with Negative Sampling

- For each word t in a sample
 - P(+|t,c) = probability that context word c occurs near t (within some window, e.g., 2 word before/after)
 - P(-|t,c) = probability that c is not near t = 1 P(+t,c)
- Assumption:
 - probability is based on idea that embeddings of nearby words should be "similar"
 - Given the vectors (embeddings) we are assuming:
 - Probability predictable from distribution of similarity scores between embeddings of context words (words close to target word)
 - Sigmoid functions (below) model a set of similarities among embeddings as probability scores (between 0 and 1) [Sigmoid is an example of a "softmax" function"]
 - In equations below: t & c are embeddings for target and context words

$$P(+|t,c) = \sigma(+|t,c) = \frac{1}{1+e^{-Sim(t,c)}}$$

$$P(-|t,c) = \sigma(-|t,c) = 1 - \frac{1}{1-e^{-Sim(t,c)}} = \frac{e^{-Sim(t,c)}}{1+e^{-Sim(t,c)}}$$

Sigmoid Function: between 0 & 1

$$S(x) = \frac{1}{1 + e^{-x}}$$

IR and Related Applications

Word2Vec: Probability of multiple context words

• Product of prob of k context words,
$$w_1$$
, ..., w_k :
$$P(+|t,c^{1:k}) = \prod_{1}^{k} \frac{1}{1+e^{-\operatorname{Sim}(t,c^i)}}$$

- For window of ± 2 , k = 4
- P (Probability) modelled as σ (sigmoid function)
- Multiplication implies that probabilities of context words are independent of each other
- Logarithm version Addition instead of Multiplication:

$$\log P(+|t,c^{1:k}) = \sum_{1}^{k} \frac{1}{1+e^{-\operatorname{Sim}(t,c^{i})}}$$

Negative Probability of noise words $\log P(-|(t, n^{1:k})) = \sum_{i=1}^{k} \log \frac{1}{1 + e^{\operatorname{Sim}(n^i, t)}}$

Train Word2Vec embeddings from text samples

- Objective Function: function to maximize/minimize, e.g., by adjusting parameters (layers or embeddings)
- Goal: Identify an "Objective" function that given a target word t in context c, will:
 - Maximize P(+|t,c): similarity to context (nearby words)
 - Minimize P(-|t,n) similarity to noise (random words)
- Objective function for each word/context pair (t,c) with k noise words n_{1-k}

•
$$OBJ(\theta) = \sum_{(t,c) \in +} \log \frac{1}{1 + e^{-Sim(t,c^i)}} + \sum_{i=1}^{k} \log \frac{1}{1 + e^{Sim(n^i,t)}}$$

- 1st term = combo of similarity of t to context
- 2nd term = combo of negative similarity to noise

Training Word2Vec: Apply Gradient Descent

- Each word has 2 embeddings: word embedding and target embedding (combo of targets)
- All embeddings initially have random values, but are tuned by logistic regression
 - − For each word **W** in each sample:
 - Calculate (cosine) similarity between word embedding & context embedding
 - Calculate similarity between word embedding & noise embedding
 - Modify all embeddings so similarity increases for context and decreases for noise
- Keep sampling text and recalculating word vectors until stopping point
 - e.g., when similarity score between word & context is already very high and/or the similarity between word & noise is already very low

Logistic Regresson Embeddings Frameworks

- Popular Frameworks:
 - Word2Vec, FastText, GLOVE, BERT, ELMo
- Pretrained Embeddings Available
 - Enormous amount of training data
 - Often work better than small individual efforts
- Tune to special domains, e.g., Twitter, Legal, Games, Recipes
 - More effective to combine with large pre-trained embeddings than to simply retrain
 - Example:
 - Train on in-domain data, but ...
 - initialize as pre-trained embeddings instead of random

Application: Find similar words

• Demo: http://demo.patrickpantel.com/demos/lexsem/thesaurus.htm

Application: Word Sense Disambiguation

- Demo of A word sense disambiguator demo
 - http://ltbev.informatik.uni-hamburg.de/wsd/single-word
 - (May not be working)
- Shared tasks include Semcor
 - http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
- Using Word Vectors for Word Sense Disambiguation
 - Vectors represent word senses rather than words
 - Need sense annotated corpus
 - Create vectors for words in new text
 - Compute similarity of words in new text with sense vectors and choose most similar sense

IR and Related Applications

Paraphrase and Entailment

- SemEval Text Similarity Task:
 - 2016 (Task 1)
 - http://alt.qcri.org/semeval2014/task1/ (webpage)
 - https://aclweb.org/anthology/S/S16/S16-1081.pdf (write-up)
- Input pairs of text "snippets"
 - English/English (like previous year tasks)
 - Spanish/English pairs (innovation for 2016)
 - previous snippets, with one member of pair translated
- System produces score from 0 to 5 indicating similarity
- Manually tagged data (test, dev, training sets)
- Data collection of snippets based on heuristics and manually annotate
 - One heuristic is based on word embedding similarity embedding of sentence = sum of the embeddings of words

Summary

- WordNet: human created ontology and sense annotation
- Vector characterization of words (word embeddings)
 - Dimensions represent words in context within a window
 - Related words/word-senses/translations/etc. have similar embeddings
- Dimensions can be derived
 - using transparent metrics like TF-IDF or PMI
 - Using logistic regression based methods that, among other advantages, require fewer dimensions
- Dimensions can be reduced by methods like LDA
- Similarity is calculated with Cosine Similarity, Jaccard similarity, ...
- "Deep Learning" methods
 - Use logistic regression with several "hidden layers"
 - Are less transparent, but typically higher scoring than previously discussed Machine Learning Methods
 IR and Related Applications

Readings on WordNet and Word Similarity

- J & M: Chapter 19.1, 19.2 and 19.3
- WordNet
 - Read the first 2 papers found here:
 - http://wordnetcode.princeton.edu/5papers.pdf
 - Read NLTK section 2.5 and try the NLTK WordNet module

Word Embeddings References

- Jurafsky and Martin 3rd Edition: https://web.stanford.edu/~jurafsky/slp3/
 - Chapter 6 Good Overview
- Pretrained Embeddings: https://www.aclweb.org/anthology/L18-1008.pdf
- Word2Vec
 - https://www.tensorflow.org/versions/r0.12/tutorials/word2vec/index.html
 - https://deeplearning4j.org/word2vec
 - https://github.com/dav/word2vec
- BERT
 - https://arxiv.org/pdf/1810.04805.pdf
- Domain Adapation using pre-trained embeddings:
 - https://www.aclweb.org/anthology/D19-1433.pdf

Deep Learning Documentation (Reading Optional) and Code

- Intro to Deep Learning that I found helpful:
 - Taylor M. (2017). Neural Networks Math: A Visual Introduction for Beginners. Blue Mills Media

Deep Learning at NYU

- Machine Translation
 - Prof. Kyunghyun Cho (http://www.kyunghyuncho.me/)
- Natural Language Semantics
 - Prof. Sam Bowman (https://www.nyu.edu/projects/bowman/)
- My research group:
 - Undavia etl al. (2018) Document classification
 - Ortega et. al. (2018) Machine Translation
 - Nguyen et. a. (2016) ACE event extaction
- And Others

Embeddings and N-grams

- During a future lecture, I will be discussing various ways of representing word sequences including:
 - Phrase structure rules, e.g.,

```
• [S [NP They]

[VP [VBD laughed]

[PP [IN about]

[NP [NN stuff]]]]]
```

- N-Grams probability based analysis in terms of frequencies that words occur next to each other
- Then we will talk about some ML approaches that combine phrase structure and probability
- At the end of that unit, we will re-introduce embeddings as a possible replacement for n-grams, in connection with the noun predicate argument structure task.

