

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

ULA (Unidade Lógica e Aritmética)

Arquitetura de John von Neumann

 Os computadores possuem blocos e sistemas funcionais básicos interligados, permitindo a troca de dados sob o controle da CPU

Um sinal de clock determina a frequência de operação da CPU que busca uma instrução da memória, a decodifica, executa a operação correspondente, e então passa para a próxima instrução

Nesta material focaremos na ULA (Unidade Lógica e Aritmética) um componente da CPU (Unidade Central de Processamento)

ULA (Unidade Lógica e Aritmética)

- A ULA é um componente interno da CPU, responsável por realizar operações matemáticas e lógicas básicas, como adição, subtração, AND, OR, NOT, comparação, etc.
- É projetada para executar instruções muito específicas, geralmente envolvendo cálculos simples ou manipulação de bits.
- Não possui controle de fluxo ou capacidade de gerenciar outros componentes.
 - Para compreender melhor o funcionamento da ULA vamos estudar alguns circuitos aritméticos.

Relembrando a soma aritmética nos números decimais

- Para realizar a operação soma, fazemos cada "casa" por vez, primeiro das unidades, depois dezenas, depois centenas, ...
- Como no sistema decimal temos 10 símbolos (de 0 a 9), se ao somar uma casa o valor for maior do que 9, então dizemos que "vai 1" para a casa da esquerda

A soma aritmética nos números binários

 Segue a mesma lógica dos decimais, porém temos apenas 2 símbolos (0 e 1), ou seja, se ao somar uma casa o valor for maior do que 1, então dizemos que "vai 1" para a casa da esquerda

Resultado final:
$$9 + 5 = 14$$

Circuitos Aritméticos: Meio somador

 Considerando um somador de um bit, sabemos que:

$$0 + 0 = 00$$

$$0 + 1 = 01$$

$$\circ$$
 1 + 0 = 01

1 + 1 = 10, ou seja, 0 e vai 1

Considerando esta tabela verdade, podemos obter a expressão de S e Ts:

$$S = A \oplus B$$

$$Ts = AB$$

A	В	S	Ts
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Circuitos Aritméticos: Somador completo

- O meio somador não considera um bit que tenha sobrado (transporte de outra soma).
- Para isso é necessário haver uma terceira entrada, a Te (transporte de entrada)
 - Considerando esta tabela verdade, podemos obter a expressão de S e Ts:

$$S = A \oplus B \oplus T_E$$

$$T_S = BT_E + AT_E + AB$$

A	В	TE	s	Ts
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Circuitos Aritméticos: Somador de 4 bits

- Um somador de 4 bits pode ser construído associando 1 meio somador e 4 somadores completos.
 - Observe que as entradas A e B agora são de 4 bits e a saída é de 4 bits e mais o bit de transporte (Carry / vai um)

Circuitos Aritméticos: Somador de 4 bits - exercícios

15+15=30

1111 + 1110 =

Relembrando a subtração aritmética nos decimais

- Para realizar a operação subtração, fazemos cada "casa" por vez, primeiro das unidades, depois dezenas, depois centenas, ...
- Ao subtrair uma casa se o valor da casa do minuendo é maior do que do subtraendo, então dizemos que "pega 1" (emprestado) da casa da esquerda

A subtração aritmética nos números binários

 Segue a mesma lógica dos decimais, porém temos apenas 2 símbolos (0 e 1), ou seja, "pega 1" para a casa da esquerda se o valor da casa do minuendo for menor do que do subtraendo

9 - 5 = 4

Circuitos Aritméticos: Meio subtrator

 Considerando um subtrator de um bit, sabemos que:

$$0 - 0 = 0$$

Considerando esta tabela verdade, podemos obter a expressão de S e Ts:

$$S = A \oplus B$$

$$Ts = \overline{A}B$$

Α	В	S	Ts
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Circuitos Aritméticos: Subtrator completo

- Novamente, o meio subtrator não considera o bit de transporte de outra operação
 É necessário considerar se
 - E necessário considerar se emprestou um para que esse bit seja subtraído
 - Para entender a lógica, vamos calcular 12 3 = 9, em binário

	1	1	0	0	
_	0	0	$\overline{1}$	1]
6.700		1	1 .	♦	
	1	0	0	1	
	$\downarrow \downarrow$	\downarrow	\downarrow	\downarrow	
	Ts=0	Ts=0	Ts=1	Ts=1	
			Ĺ	L	

Col. 4 Col. 3 Col. 2 Col. 1

Α	В	TE	S	T _s
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Circuitos Aritméticos: sistema de complemento de 2

- Primeiro, obtenha o complemento de 1 de um numaral invertendo cada
 - Todo '1' vira '0' e todo '0' vira '1'
 - Exemplo:

```
1 0 1 1 0 1 número binário original

↓ ↓ ↓ ↓ ↓ ↓

0 1 0 0 1 0 complementa-se cada bit para obter o complemento de 1
```

Depois some 1 a este numeral

Exemplo:

```
1 0 1 1 0 1 número binário de 45
0 1 0 0 1 0 complementa-se cada bit para obter o complemento de 1
adiciona-se 1 para obter o complemento de 2
0 1 0 0 1 1 complemento de 2 do número binário original
```


Resultados negativos na subtração

- Quando o minuendo é menor que o subtraendo é necessário trocar estes numerais de posição e determinar que o resultado será negativo.
- Exemplo: 45 98. O 45 é menor que 98, então faremos 98 45.

Resultado final: 98 - 45 = -53

Representamos o resultado negativo com o símbolo - (menos) antes do numeral. Como representar o negativo em sistemas digitais?

Representação de numerais negativos nos sistemas digitais

- Como nos sistemas digitais tudo se resume a 0's e 1's, mesmo o sinal, que representa o número negativo, precisa ser representado com 0's e 1's.
- A forma mais utilizada para representar números negativos é através da notação de complemento de 2, mas antes de ver esta, vamos estudar a representação sinal-magnitude.
 - Nesta o numeral negativo é idêntico ao positivo, variando apenas o algarismo mais a esquerda que representa o sinal, quando for 0 (zero) o numeral é positivo e quando for 1 (um) é negativo.
- Exemplo de um numeral de 8 bits:
 - \circ 00000011₂ = 3
 - \circ 10000011₂ = -3
 - Essa representação é muitas vezes mais intuitiva, porém traz o problema de que existem 2 zeros, um positivo (+0 = 00000002) e outro negativo (-0 = 10000002). Outra questão é que operações matemáticas entre numerais representados assim são mais complexas.

Circuitos Aritméticos: sistema de complemento de 2

- O complemento de 2 é muito utilizado para representação de numerais com sinal
 - Quando um numeral é positivo, o bit mais a esquerda é 0 (zero)
 - Quando um numeral é negativo, o bit mais a esquerda é 1 (um)

Exemplo de cálculo e representação:

Circuitos Aritméticos: sistema de complemento de 2

alor decimal	Binário com sinal usando complemento de
$+7 = 2^3 - 1$	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
0	0000
-1	1111
- 2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
$-8 = -2^3$	1000