

FM1120 Protocols V0.6

Contents

1.	-F	M1120 DATA PROTOCOL	2
	1.1	AVL data array	2
		DATA	
		AVL DATA	
	1.4	Priority	
	1.5	GPS ELEMENT	
	1.6	IO ELEMENT	
	1.7	Example	6
2.	SI	ENDING DATA OVER TCP/IP	8
	2.1	AVL DATA PACKET	8
		COMMUNICATION WITH SERVER	
3.	SI	ENDING DATA OVER UDP/IP	9
	3.1	UDP CHANNEL PROTOCOL	9
	3.2	SENDING AVL DATA USING UDP CHANNEL	
4.	SI	ENDING DATA USING SMS	.11
5.	24	POSITION SMS DATA PROTOCOL	
	5.1	Encoding	12
	5.2	STRUCTURE	12
	5.3	DECODING GPS POSITION	
6.	C	HANGE LOG	.14

1. FM1120 DATA PROTOCOL

1.1 AVL data array

Because the smallest information amount that can be written is one bit, there can be some bits left unused when result is byte array. Any unused bits should be left blank.

Codec ID	Number of Data	Data	Number of Data
1 Byte	1 Byte		1 Byte

Number of data – number of encoded data (number of records) In FM1120 codec ID is 08

1.2 Data

AVL Data AVL Data

AVL data – encoded data element

1.3 AVL Data

Timestamp	Priority	GPS Element	IO Element
8 Bytes	1 Byte	15 Bytes	

Timestamp – difference, in milliseconds, between the current time and midnight, January 1, 1970 UTC.

1.4 Priority

0	Low
1	High
2	Panic
3	Security

1.5 GPS Element

Longitude	Latitude	Altitude	Angle	Satellites	Speed
4 Bytes	4 Bytes	2 Bytes	2 Bytes	1 Byte	2 Bytes

X Longitude¹ Y Latitude¹

Altitude In meters above sea level¹

Angle In degrees, 0 is north, increasing clock-wise ¹

Satellites Number of visible satellites¹

Speed Speed in km/h. 0x0000 if GPS data is invalid¹

Longitude and latitude are integer values built from degrees, minutes, seconds and milliseconds by formula.

$$\left(d + \frac{m}{60} + \frac{s}{3600} + \frac{ms}{3600000}\right) * p$$

d Degrees
m Minutes
s Seconds
ms Milliseconds

p Precision (10000000)

If longitude is in west or latitude in south, multiply result by -1. To determine if the coordinate is negative, convert it to binary format and check the very first bit. If it is 0, coordinate is positive, if it is 1, coordinate is negative. Example:

Received value: 20 9c ca 80

Converted to BIN: 00100000 10011100 11001010 10000000 first bit is 0, which means coordinate is positive

Convered to DEC: 547146368

For more information see two's compliment arithmetics.

1.6 IO element

	N of Total IO
I Byte N1	of One Byte 10
I Byte	1'st IOID
I Byte	1'st IO Value
	÷
I Byte	N1'th IO ID
I Byte	N1'th IO Value
I Byte N2	2 of Two Bytes
I Byte	1'st IOID
2 Bytes	1'st IO Value
	:
I Byte	N2'th IO ID
2 Bytes N	N2'th IO Value
I Byte $N4$	N4 of Four Bytes
I Byte	1'st IOID
4 Bytes	1'st IO Value
	:
I Byte	N4'th IO ID
4 Bytes N	N4'th IO Value
I Byte N8	3 of Eight Bytes
I Byte	1'st IOID
8 Bytes	1'st IO Value
	•••
I Byte	N8'th IO ID
8 Bytes N	N8'th IO Value

Event IO ID – if data is acquired on event – this field defines which IO property has changed and generated an event. If data cause is not event – the value is 0.

¹ If record is without valid coordinates – (there were no GPS fix in the moment of data acquisition) – Longitude, Latitude and Altitude values are last valid fix, and Angle, Satellites and Speed are 0.

N total number of properties coming with record (N=N1+N2+N4+N8)

N1 number of properties, which length is 1 byte N2 number of properties, which length is 2 bytes N4 number of properties, which length is 4 bytes N8 number of properties, which length is 8 bytes

Permanent I/O elements					
D 4		(are aiv	vays sent to server if enabled)	T 1	
Property ID	Property Name	Bytes	Description	Type ¹	
1	Digital Input Status 1	1	Logic: 0 / 1 M		
2	Digital Input Status 2	1	Logic: 0 / 1		
3	Digital Input Status 3	1	Logic: 0 / 1	M	
9	Analog Input 1	2	Voltage: mV, 0 – 30 V	M	
21	GSM level	1	GSM signal level value in scale 1 – 5	M	
24	Speed	2	Value in km/h, 0 – xxx km/h	M	
66	External Power Voltage	2	Voltage: mV, 0 – 30 V	M	
67	Battery Voltage	2	Voltage: mV	M	
68	Battery Charging Current	2	Current: mA	M	
69	GPS Status	1	States: 0 – GPS module is turned off, 2 – working, but no fix, 3 – working with GPS fix, 4 – GPS module is in sleep state, 5 – antenna is short circuit	M	
72	Dallas Temperature	4	10 * Degrees (°C), -55 - +115, if 3000 – Dallas error		
78	iButton ID	8	iButton ID number M		
80	Data Mode	1	0 – home on stop, 1 – home on move, 2 – roaming on stop, 3 – roaming on move, 4 – unknown on stop, 5 – unknown on move		
179	Digital Output 1 state	1	Logic: 0 / 1	M	
180	Digital Output 2 state	1	Logic: 0 / 1	M	
181	PDOP	2	Probability * 10; 0-500	M	
182	HDOP	2	Probability * 10; 0-500	M	
199	Odometer Value (Virtual Odometer)	4	Distance between two records: m	M	
200	Deep Sleep	1	0 – not deep sleep mode, 1 – deep sleep mode	M	
205	Cell ID	2	GSM base station ID	M	
206	Area Code	2	Location Area code (LAC), it depends on GSM operator. It provides unique number which assigned to a set of base GSM stations. Max value: 65536		
239	Ignition	1	0 – ignition off, 1 – ignition on		
240	Movement Sensor	1	0 – not moving, 1 – moving	M	
241	GSM Operator Code	4	Currently used GSM Operator code	M	
-	Reserved IO 1	-	Reserved		
	1		I .	1	

Reserved IO 2

-	Reserved IO 3	-	Reserved			
LVCAN I/O elements						
(are sent to server if configured)						
Property ID	Property Name	Bytes	Description	Type		
81	LVCAN Speed	1	Value in km/h	M		
82	LVCAN Accelerator Pedal Position	1	Value in persentages, %	M		
83	LVCAN Total Fuel Used	4	Value in liters multiplied by 10, L*10	M		
84	LVCAN Fuel Level (liters)	2	Value in liters, L	M		
85	LVCAN Engine RPM	2	Value in rounds per minute, rpm	M		
87	LVCAN Vehicle Distance	4	Value in meters, m	M		
89	LVCAN Fuel Level (percentage)	1	Value in percentages, %	M		
100	LVCAN Program Number	4	Value: Min – 0, Max – 999	M		
]	Eventual I/O elements			
	(generate and sen	d record	to server only if appropriate conditions are met)			
Property ID	Property Name	Bytes	Description	Type		
155	Geofence zone 01	1	Event: 0 – target left zone, 1 – target entered zone	ME		
156	Geofence zone 02	1	Event: 0 – target left zone, 1 – target entered zone	ME		
157	Geofence zone 03	1	Event: 0 – target left zone, 1 – target entered zone	ME		
158	Geofence zone 04	1	Event: 0 – target left zone, 1 – target entered zone	ME		
159	Geofence zone 05	1	Event: 0 – target left zone, 1 – target entered zone	ME		
175	Auto Geofence	1	Event: 0 – target left zone, 1 – target entered zone	ME		
250	Trip	1	1 – trip start, 0 – trip stop	ME		
251	Immobilizer	1	1 – iButton connected	ME		
252	Authorized driving	1	1 – authorized iButton connected	ME		
253	Green driving type	1	1 – harsh acceleration, 2 – harsh braking, 3 – harsh cornering	ME		
254	Green driving value	1	Depending on green driving type: if harsh acceleration or braking – g*100 (value 123 -> 1.23g), if harsh cornering – degrees (value in radians)	ME		
	Over Speeding	1	At over speeding start km/h, at over speeding end	ME		

Reserved

M – mandatory (available on all hardware revisions), O – optional (hardware dependent), E – event only.

1.7 Example

Received data:

08040000113fc208dff000f14f650209cca80006f00d60400040004030101150316030001460000015d000000113fc17610b000f14ffe0209cc580006e00c00500010004030101150316010001460000015e0000000113fc284945000f150f00209cd20000950108040000004030101150016030001460000015d0000000113fc267c5b000f150a50209cccc000930068040000004030101150016030001460000015b0004

08 - Codec ID

04- Number of Data (4 records)

1'st record data

00000113fc208dff - Timestamp in milliseconds (1185345998335 → 1185345998,335 in Unix Timestamp = 25 Jul 2007 06:46:38 UTC)
00 - Priority

GPS Element

0f14f650 - Longitude 253032016 = 25,3032016° N **209cca80** - Latitude 547146368 = 54,7146368° E

006f - Altitude 111 meters

00d6 - Angle 214°

04 - 4 Visible sattelites

0004 - 4 km/h speed

IO Element

 ${f 00}$ - IO element ID of Event generated (in this case when 00 - data generated not on event)

04 - 4 IO elements in record

03 - 3 IO elements, which length is 1 Byte

01 - IO element ID = 01

01 - 1'st IO element's value = 1

15 - IO element ID = 21

03 - 21'st IO element's value = 3

16 - IO element ID = 22

03 - 22'nd IO element's value = 3

00 - 0 IO elements, which value length is 2 Bytes

01 - 1 IO element, which value length is 4 Bytes

46 - IO element ID = 70

0000015d - 70'th IO element's value = 349

00 - 0 IO elements, which value length is 8 Bytes

2'nd record data

00000113fc17610b 00 0f14ffe0209cc580006e00c7050001 0004030101150316010001460000015e00

3'd record data

00000113fc284945 00 0f150f00209cd20000950108040000 0004030101150016030001460000015d00

4'th record data

00000113fc267c5b 00 0f150a50209cccc000930068040000 0004030101150016030001460000015b00

04 - Number of Data (4 records)

2. SENDING DATA OVER TCP/IP

2.1 AVL data packet

AVL packet is used to encapsulate AVL data and send it to server.

Four zeros	Data length	Data	Crc
------------	-------------	------	-----

Four zeros Four zero bytes (0x00)

Data length Number of bytes in data field (Integer)

Data Any AVL data array

CRC 16bit CRC value of data (Integer). Polynomial 0xA001.

2.2 Communication with server

First when module connects to server, module sends its IMEI. IMEI is sent the same way as encoding barcode. First comes short identifying number of bytes written and then goes IMEI as text (bytes).

For example IMEI 123456789012345 would be sent as 000F313233343536373839303132333435

After receiving IMEI, server should determine if it would accept data from this module. If yes server will reply to module 01 if not 00. Note that confirmation should be sent as binary packet.

Then module starts to send first AVL data packet. After server receives packet and parses it, server must report to module number of data received as integer (four bytes).

If sent data number and reported by server doesn't match module resends sent data.

Example:

Module connects to server and sends IMEI:

000F313233343536373839303132333435

Server accepts the module:

01

Module sends data packet:

AVL data packet header	AVL data array	CRC
Four zero bytes, 'AVL data array' length – 254	CodecId – 08, NumberOfData – 2. (Encoded using continuous bit stream. Last byte padded to align to byte boundary)	CRC of 'AVL data array'
0000000000000FE	0802(data elements)02	00008612

Server acknowledges data reception (2 data elements): 00000002

3. SENDING DATA OVER UDP/IP

3.1 UDP channel protocol

UDP channel is a transport layer protocol above UDP/IP to add reliability to plain UDP/IP using acknowledgment packets. The packet structure is as follows:

	UDP datagram						
UDP channel packet x N	Packet length	2 bytes	Packet length (excluding this field) in big endian byte order				
packet X 1 (Packet Id	2 bytes	Packet id unique for this channel				
	Packet Type	1 byte	Type of this packet				
	Packet payload	m bytes	Data payload				

	Packet Type
1	Data packet requiring acknowledgment

Acknowledgment packet should have the same *packet id* as acknowledged data packet and empty data payload. Acknowledgement should be sent in binary format.

Acknowledgment packet			
Packet length	2 bytes	0x0003	
Packet id	2 bytes	same as in acknowledged packet	
Packet type	1 byte	0x01	

3.2 Sending AVL data using UDP channel

AVL data are sent encapsulated in UDP channel packets (Data payload field).

AVL data encapsulated in UDP channel packet			
AVL packet id (1 byte) Module IMEI AVL data array			

AVL packet id (1 byte) – id identifying this AVL packet

Module IMEI – IMEI of a sending module encoded the same as with TCP

AVL data array – array of encoded AVL data

Server response to AVL data packet		
AVL packet id (1 byte)	Number of accepted AVL elements (1 byte)	

AVL packet id (1 byte) – id of received AVL data packet

Number of AVL data elements accepted (1 byte) – number of AVL data array entries from the beginning of array, which were accepted by the server.

Scenario:

Module sends UDP channel packet with encapsulated AVL data packet (*Packet* type=1).

Server sends UDP channel packet with encapsulated response (*Packet type*=1)

Module validates AVL packet id and Number of accepted AVL elements. If server response with valid AVL packet id is not received within configured timeout, module can retry sending.

Example:

Module sends the data:

UDP channel header	AVL packet header	AVL data array
Len – 253, Id – 0xCAFE, Packet type – 01		CodecId – 08, NumberOfData – 2. (Encoded using continuous bit stream)
00FDCAFE01	DD000F3133343536373839303132333435	0802(data elements)02

Server must respond with acknowledgment:

UDP channel header	AVL packet acknowledgment
Len – 5, Id – 0xCAFE, Packet type – 01	AVL packet id – 0xDD, NumberOfAcceptedData – 2
0005CAFE01	DD02

4. SENDING DATA USING SMS

AVL data or events can be sent encapsulated in binary SMS. TP-DCS field of these SMS should indicate that message contains 8-bit data (for example: TP-DCS can be 0x04).

SM data	(TP-UD)
AVL data array	IMEI: 8 bytes

AVL data array - array of encoded AVL data

IMEI – IMEI of sending module encoded as a big endian 8-byte long number.

5. 24 POSITION SMS DATA PROTOCOL

24-hour SMS is usually sent once every day and contains GPS data of last 24 hours. TP-DCS field of this SMS should indicate that message contains 8-bit data (i.e. TP-DCS can be 0x04).

Note, that 24 position data protocol is used only with subscribed SMS. Event SMS use standard AVL data protocol.

5.1 Encoding

To be able to compress 24 GPS data entries into one SMS (140 octets), the data is encoded extensively using bit fields. Data packet can be interpreted as a bit stream, where all bits are numbered as follows:

Byte 1	Byte 2	Byte 3	Bytes 4
Bits 0-7	Bits 8-15	Bits 16-24	Bits 25

Bits in a byte are numbered starting from least significant bit. A field of 25 bits would consist of bits 0 to 24 where 0 is the least significant bit and bit 24 – most significant bit.

5.2 Structure

SMS Data Structure			
	Size (bits)	Field	Description
	8	CodecId	CodecId = 4
	35	Timestamp	Time corresponding to the first (oldest) GPS data element, represented in seconds elapsed from 2000.01.01 00:00 EET.
	5	ElementCount	Number of GPS data elements.
ElementCount *		GPSDataElement	GPS data elements.
		Byte-aling padding	Padding bits to align to 8-bits boundary
	64	IMEI	IMEI of sending device as 8-byte long integer

The time of only the first GPS data element is specified in Timestamp field. Time corresponding to each further element can be computed as elementTime = Timestamp + (1 hour * elementNumber).

GPSDataElement			
	Size (bits)	Field	Description
	1	ValidElement	ValidElement=1 – there is a valid GpdDataElement following, ValidElement=0 – no element at this position.

			GPS	SDataElement
		1	DifferentialCoords	Format of following data.
ValidElement == 1	DifferentialCoords == 1	14	LongitudeDiff	Difference from previous element's longitude. LongitudeDiff = prevLongitude – Longitude + 2 ¹³ – 1
	Coords	14	LatitudeDiff	Difference from previous element's latitude LatitudeDiff = prevLatitude – Latitude + 2 ¹³ – 1
	Differer rds ==	21	Longitude	Longitude= $\{(\text{LongDegMult} + 18 * 10^8) * (2^{21} - 1)\} \text{ over } \{36*10^8\}$
	DifferentialCoo rds == 0	20	Latitude	Latitude=(LatDegMult + $9*10^8$) * ($2^{20} - 1$) over { $18*10^8$ }
		8	Speed	Speed in km/h.

Longitude	longitude field value of GPSDataElement
Latitude	latitude field value of GPSDataElement
LongDegMult	longitude in degrees multiplied by 10 ⁷ (integer part)
LatDegMult	latitude in degrees multiplied by 10 ⁷ (integer part)
prevLongitude	longitude field value of previous GPSDataElemen
prevLatitude	latitude field value of previous GPSDataElement

5.3 Decoding GPS position

When decoding GPS data with Differential Coords=1, Latitude and Longitude values can be computed as follows: $Longitude=prevLongitude=LongitudeDiff+2^{13}-1$, $Latitude=prevLatitude=LatitudeDiff+2^{13}-1$.

If there were no previous non-differential positions, differential coordinates should be computed assuming prevLongitude=prevLatitude=0.

When Longitude and Latitude values are known, longitude and latitude representation in degrees can be computed as follows:

$$LongDeg = \frac{Longitude*360}{2^{21}-1} - 180$$
 $LatDeg = \frac{Latitude*180}{2^{20}-1} - 90$

6. CHANGE LOG

		New	
Nr.	Date	version	Comments
		number	
1	140613	0.1	File created
2	150409	0.2	Acknowledges data reception's correction
3.	150608	0.3	Table of I/O Elements updated to correspond 01.11.xx
			branch
4.	150610	0.4	Minor changes; UDP protocol description correction
5.	160209	0.5	LV-CAN200 parameters data structure description update
6.	160620	0.6	IO ID 69 description update, IO element was changed from
			'GPS power' to 'GPS status' since base firmware
			v.01.17.15.Rev.03