Representación de conocimiento e inferencia

☐ Tema 3: Representación de conocimiento e inferei					
	3.1	: Introducción - Objetivos docentes			
		Introducción teórica a las técnicas de representación de conocimiento y a los mecanismos de razonamiento asociados			
		Analizar los distintos tipos de conocimiento existentes y las características relevantes de las técnicas de representación Criterios de idoneidad y eficiencia de una representación			
		Aspectos relacionados con la representación del conocimiento Representaciones declarativas y procedimentales La elección de la granularidad de la representación El problema del marco			
IAIC – Cı	urso 2006-07	Ingeniería del conocimiento: breve introducción			

Representación de conocimiento e inferencia

Tema 3: Representación de conocimiento e inferencia
☐ 3.1: Introducción - Índice de contenidos
Propiedades de una representación
☐ Tipos de conocimiento
 Conocimiento factual
□ Conocimiento procedimental
 Conocimiento de control (meta-conocimiento)
Propiedades del conocimiento
Hipótesis de mundo cerrado
Monotonía
☐ El problema del marco
 Desarrollo de sistemas basados en conocimiento
Ingeniería del Conocimiento

Representación de conocimiento e inferencia

	Aspectos fundamentales de la IA clásica simbólica			
Resolución de problemas mediante búsqueda				
	☐ Tema 2			
	☐ Representación de conocimiento e inferencia			
	☐ Tema 3			
	Aprendizaje			
	☐ Tema 5			

IAIC – Curso 2006-07

Representación de conocimiento e inferencia

D. Danisa a start for the same attacks
Representación de conocimiento:
algo más amplio y flexible que una heurística
Hemos visto heurísticas para guiar los algoritmos de búsqueda
Las heurísticas son un tipo de representación de conocimiento, demasiado simple y "escaso" para sistemas complejos
 Los dominios complejos requieren representaciones más generales y flexibles
El conocimiento que necesitamos en los sistemas inteligentes puede ser representado de múltiples maneras
 Elegir un formalismo que nos permita representar de forma adecuada unos ciertos hechos
Formalismo de representación de conocimiento
Mecanismos de razonamiento o inferencia asociados

 Diversos formalismos para construir bases de conocimiento 				
Representaciones basadas en relaciones				
■ Lógica				
☐ Redes semánticas				
Representaciones basadas en objetos				
■ Marcos				
Objeto-Atributo-Valor				
Representaciones basadas en acciones				
Sistemas de producción				
☐ Guiones				
Combinaciones y modificaciones de los anteriores				

IAIC – Curso 2006-07 Tema 3.1 - 5

Técnicas de representación y razonamiento

recincas de representación y razonamiento
 Para determinar si una técnica de representación es adecuada para un problema hay que considerar
Potencia expresiva para representar todo el conocimiento necesario
Potencia de los mecanismos de inferencia soportados por esa técnica
□ Representación en lenguaje natural
☐ Serio problema: la ambigüedad
Mismo significado, distinta representación
Distinto significado, misma representación

Técnicas de representación y razonamiento

La elección de la representación afecta a la dificultad/facilidad de resolución de un problema

- Influencia de la representación en la complejidad de la inferencia
 - □ Ejemplo del problema del tablero de damas mutilado: tablero 8*8 recortando dos esquinas opuestas

Representación 1: tablero en blanco e intentar recubrirlo probando todas las posibilidades

Tema 3.1 - 9

Técnicas de representación y razonamiento

- ☐ Influencia de la representación en la complejidad de la inferencia
 - □ Ejemplo del problema del tablero de damas mutilado: tablero 8*8 recortando dos esquinas opuestas

Representación 1: tablero en blanco e intentar recubrirlo probando todas las posibilidades

Representación 2: pintar casillas de blanco y negro e intentar recubrirlo

- Influencia de la representación en la complejidad de la inferencia
 - □ Ejemplo del problema del tablero de damas mutilado: tablero 8*8 recortando dos esquinas opuestas

Representación 1: tablero en blanco e intentar recubrirlo probando todas las posibilidades

Representación 2: pintar casillas de blanco y negro e intentar recubrirlo

Representación 3:

contar casillas blancas y negras ;30 distinto de 32!

¡Resuelto directamente! No tiene solución

No existe una representación óptima para todos los problemas

IAIC - Curso 2006-07

Tema 3.1 - 11

Propiedades de una representación

- □ Para un determinado dominio de trabajo hay que valorar (+ o -) las siguientes propiedades de una técnica de representación
- Idoneidad representativa: capacidad de representación de todos los tipos de conocimiento necesarios en ese dominio
 - □ Idoneidad inferencial: capacidad de manipular los símbolos del formalismo de representación e inferir nuevo conocimiento
 - ☐ Eficiencia inferencial: capacidad de incorporar meta-conocimiento que permita mejorar los procesos de razonamiento
 - □ Eficiencia adquisitiva: capacidad de adquirir fácilmente nuevo conocimiento del exterior, idealmente bajo control del propio sistema (o, simplemente, añadiéndolo una persona) manteniendo la consistencia con el conocimiento existente
- □ Ninguna técnica de representación optimiza todas estas propiedades para todos los dominios y tipos de conocimiento
 - Multitud de técnicas. Muchos sistemas basados en más de una

Tipos de conocimiento

Base de conocimiento (BC)

Todo el cuerpo de conocimiento utilizable por el sistema, representado en algún formalismo dado, junto con los mecanismos de gestión de ese conocimiento (incorporación, supresión, modificación, consulta exacta, consulta aproximada, inferencia, control de consistencia, etc.)

☐ Ti	pos	de	conoc	im	iento
	P -		001100		

- 1. Factual o declarativo (representación de hechos)
 - Explícito: se introduce directamente
 - ☐ Implícito: se infiere a partir del conocimiento explícito
- Procedimental
 - Indica cómo actuar en diversas situaciones
- Meta-conocimiento o conocimiento de control
 - Conocimiento a un nivel superior: conocimiento sobre el propio conocimiento, que permite gestionarlo

IAIC – Curso 2006-07 Tema 3.1 - 13

1. Conocimiento factual - I

Conocimiento factual - II : explícito

Dualidad para decidir la representación conceptual				
Como clase o como individuo				
Dependiendo de cómo lo vayamos a manejar y/o del nivel de granularidad de la representación				
 Rioja como subclase o como ejemplar de VinoTinto 				
Una clase se puede representar				
Por comprensión				
A través de las propiedades que caracterizan a sus instancias				
Por extensión				
Enumerando una a una sus instancias				

IAIC – Curso 2006-07 Tema 3.1 - 15

Conocimiento factual - III : explícito

■ Las relaciones de clasificación permiten				
Relacionar las instancias con la clase a la que pertenecen (ejemplar)				
Relacionar las subclases y superclases (subclase)				
Usar la herencia como mecanismo de inferencia				
 Reduce el tamaño de la BC y ayuda a prevenir inconsistencias (al añadir nuevas clases o instancias) 				
☐ Hay varios tipos de propiedades				
Esenciales: las que definen a una clase				
Compartidas por todos sus ejemplares				
Estereotípicas: generales, pero puede haber excepciones				
Su uso requiere algún mecanismo de gestión de excepciones en el formalismo de representación para deshabilitar la herencia de este tipo de propiedades				
Individuales: no tienen por qué ser compartidas a nivel de clase				

Conocimiento factual - IV: implícito

□ Conocimiento factual implícito: se infiere a partir del conocimiento factual explícito	
☐ A partir de las reglas de inferencia (modus ponens, resoluc	ción, etc.
 Forma general de obtener conocimiento implícito en un forma de representación 	alismo
Por ejemplo, la herencia puede expresarse mediante regla inferencia	s de
Todos los ejemplares de una clase, o todas las subclases de clase, heredan automáticamente las propiedades esenciales clase	
 Reduce el tamaño de la BC y ayuda a prevenir inconsistencia (al añadir nuevas clases o instancias) 	as

IAIC – Curso 2006-07 Tema 3.1 - 17

■ Necesarios mecanismos para indicar qué propiedades son heredables

Tipos de conocimiento

Base de conocimiento (BC)

Todo el cuerpo de conocimiento utilizable por el sistema, representado en algún formalismo dado, junto con los mecanismos de gestión de ese conocimiento (incorporación, supresión, modificación, consulta exacta, consulta aproximada, inferencia, control de consistencia, etc.)

Tipos	de	cono	cimi	ient	O
11000	uc	COLIC	CITTI		·

- Explícito: se introduce directamente
- ☐ Implícito: se infiere a partir del conocimiento explícito

2. Procedimental

- Indica cómo actuar en diversas situaciones
- 3. Meta-conocimiento o conocimiento de control
 - Conocimiento a un nivel superior: conocimiento sobre el propio conocimiento, que permite gestionarlo

2. Conocimiento procedimental (u operativo)

Conocimiento procedimenta
□ Se refiere a cómo actuar er

Se refiere a cómo actuar en ciertas situaciones

Por ejemplo, edad calculada a partir de la fecha de nacimiento y la actual

Expresable en forma de programa, reglas de producción, reglas de inferencia...

☐ Si se representa como reglas de inferencia, a nivel de representación no existirá diferencia entre este tipo de conocimiento y el conocimiento factual implícito

IAIC – Curso 2006-07 Tema 3.1 - 19

Tipos de conocimiento

Base de conocimiento (BC)

Todo el cuerpo de conocimiento utilizable por el sistema, representado en algún formalismo dado, junto con los mecanismos de gestión de ese conocimiento (incorporación, supresión, modificación, consulta exacta, consulta aproximada, inferencia, control de consistencia, etc.)

□ Tipos de conocimiento

1. Factual o declarativo (representación de hechos)

■ Explícito: se introduce directamente

☐ Implícito: se infiere a partir del conocimiento explícito

2. Procedimental

Indica cómo actuar en diversas situaciones

3. Meta-conocimiento o conocimiento de control

Conocimiento a un nivel superior: conocimiento sobre el propio conocimiento, que permite gestionarlo

IAIC – Curso 2006-07 Tema 3.1 - 20

3. Meta-conocimiento (conocimiento de control)

■ Meta-conocimiento o conocimiento de control
Permite garantizar la consistencia de la base de conocimiento
□ Por ejemplo, fecha de nacimiento < fecha actual
☐ Y mejorar la eficiencia
☐ Dirigiendo búsquedas
 BCs enormes: búsquedas dirigidas con conocimiento acerca del dominio
Conocimiento de control de la búsqueda
Estados mejores que otros
 Reglas preferibles a otras en una cierta situación
 Orden de consecución de subobjetivos
 Secuencias útiles de reglas para aplicar en una cierta situación
□
Es conocimiento sobre el conocimiento, es decir, meta-conocimiento
También puede representarse de diversas formas
Muy rudimentario en Prolog: corte y orden (cláusulas y subobjetivos)
 Otros sistemas ofrecen más posibilidades
IAIC – Curso 2006-07

Propiedades del conocimiento

☐ Conocimiento incomplet	to (vs. datos completos en programas				
Se produce porque falta conocimiento en la BC o porque el mecanismo de inferencia es insuficiente					
En general, suele ser	imposible representar todo el conocimiento				
 Los sistemas más simples asumen la hipótesis del mundo cerrado "Los asertos verdaderos sobre el dominio están incluidos en la BC o pueden ser derivados de ella, todo lo que no está es falso" 					
Juan es rubio Luis es moreno Álvaro es pelirrojo	NO Porque Juan es rubio y sólo se tiene el pelo de un color				
Cada uno tiene el pelo de un solo color	¿Ana es rubia? NO				
	Por la hipótesis del mundo cerrado Habría que decir NO SÉ2 "mundo abjerto				

- Propiedades del conocimiento - I

☐ Conocimiento por omisión (by default)
Conocimiento que se asume implícitamente mientras no se niegue explícitamente
Las excepciones se establecen a posteriori
Con los mecanismos de herencia con excepciones, ¿hay que borrar las inferencias ya hechas?
☐ Sistemas monótonos
 Lo verdadero no puede dejar de serlo, no puedo retractarme de algo ya inferido
 Son más fáciles de implementar pero más limitados
☐ Sistemas no monótonos
 Las conclusiones establecidas en un cierto momento pueden dejar de ser ciertas si llega nueva información
 Requieren garantizar la consistencia
 TMS (True Maintenance Systems): sistemas de mantenimiento de la verdad

Tema 3.1 - 23

Propiedades del conocimiento - II			
☐ Conocimiento inseguro (incierto, dudoso)			
El conocimiento añadido al sistema se acompaña de un factor de certeza que se usa en las inferencias			
☐ if P then Q (0.7)			
 Si P es verdadero entonces con un factor de certeza de 0.7 Q también será verdadero 			
□ Si la premisa P tiene un factor de certeza de 0.8 entonces Q será añadido a la memoria de trabajo con un factor de certeza de 0.7 * 0.8 = 0.56			
☐ Técnicas bayesianas			
□ Conocimiento impreciso			
Uso de lógica difusa, cuantificadores especiales, etc.			
"Muchos suecos son altos"			
No es conocimiento inseguro: el factor de certeza es 1			
□ El problema está en la imprecisión			
□ ¿Cuántos son muchos?			

□ ¿Qué quiere decir ser alto? ¿A partir de qué altura se es alto?

- El problema del marco (frame problem)

Descripción de un estado: un gran número de hechos
Al aplicar un operador, sólo algunos de estos hechos van a verse afectados mientras que el resto se mantiene inalterado
Si guardamos todos los hechos en cada estado, gastaremos mucho espacio y consumiremos la mayor parte del tiempo copiando hechos que no han cambiado. ¿Qué podemos hacer?
Centrarse sólo en lo que varía
Mecanismos más habituales para resolver el problema:
Tener una única representación del estado inicial y en cada nodo guardar sólo los cambios introducidos
Facilita el backtracking pero requiere más tiempo cuando se quiere conocer el estado actual
Mantener una única descripción del estado actual que se va modificando al aplicar operadores
 Dificulta el backtracking pero permite conocer instantáneamente el estado actual
No hay una opción buena en todas las situaciones. Dependerá

- Otros aspectos de la representación

 □ Granularidad de la representación (relacionado con dualidad) □ Nivel de detalle en la representación del mundo
☐ Influye en el número de hechos que constituyen un estado
Dependerá del problema
Suele usarse redundancia: distintas representaciones con distintos niveles de detalle
☐ Representación declarativa (fase prototipado)
Se especifica el conocimiento pero no cómo debe ser usado
Ventajas: modularidad (cambios) y flexibilidad (consultas)
Desventajas: necesario añadir especificación de uso del conocimiento
☐ Representación procedimental (fase eficiencia)
La propia representación incluye información de control sobre cómo va a ser usado el conocimiento (fija forma de uso)
Ventajas: eficiencia (al adaptarse al problema concreto)
Desventajas: escasa modularidad y flexibilidad

- Desarrollo de SBC - I

☐ El problema mayor en el desarrollo de sistemas basados en el conocimiento (SBC) es la adquisición de conocimiento Requiere un contacto continuo entre el programador y el experto El programador ha de poseer una cierta intuición y facilidad para entenderse con otras personas (no necesario para otro tipo de sistemas) ☐ El "programador" de un SBC (KBS) se llama ingeniero del conocimiento Se encarga del proceso general de construcción de una base de conocimiento Investigar un dominio concreto □ Aprender qué conceptos son los importantes en ese dominio □ Crear una representación formal de los objetos y relaciones del dominio ■ Nivel de conocimiento → nivel de implementación ☐ El proceso de desarrollo de un SBC se ha llamado Ingeniería del Conocimiento

Tema 3.1 - 27

Desarrollo de SBC - II

Adecuación de una aproximación basada en el conocimiento
Cuando no haya una solución algorítmica
Cuando la tarea del dominio (comprensión total para saber qu conceptos son importantes) la tengan que realizar expertos y simples aficionados
Cuando el problema no requiera demasiado "sentido común"

Ingeniería del Conocimiento

Los SBC surgen en los anos 70, con los sistemas expertos
Extracción del conocimiento especializado (a partir de expertos humanos, libros, etc.) y representación en bases de conocimiento
"Adquisición de conocimiento sobre un dominio, a partir de una o más fuentes no electrónicas, y su conversión a un formato que pueda ser utilizado por un ordenador para resolver problemas que sólo pueden ser resueltos por personas con amplio conocimiento del dominio"
☐ La IC nace a finales de los 80 (crisis de los SBC)
Misión del IC: no sólo transformar el conocimiento disponible para que sea aplicable por una máquina ("manufacturar" conocimiento)
Utilizar herramientas existentes y disponibles para resolver el problema, o ser capaz de desarrollar una adecuada si no la hubiera
 Reconocer qué conocimiento concreto se utiliza para resolver un problema
Saber clasificar ese conocimiento
Determinar cuál es la mejor manera de representarlo

Tema 3.1 - 29

Actividades del ingeniero del conocimiento

Tareas de procesamiento del conocimiento	Actividades ingenieriles	Productos
Extracción	Adquisición del conocimiento	Conceptos y reglas
Modelado	Diseño del sistema	Arquitectura del sistema y elección representación
Ensamblado	Programación del conocimiento	Base de conocimiento (incluyendo motor de inferencia)
Refinamiento	Refinamiento del conocimiento	Conceptos y reglas revisados

Desarrollo de SBC - III

Modelo en cascada (1º intento de metodología) Fases del ciclo:

- Modelo de ciclo de vida propuesto por Buchanan (1983)
 - □ Cuello de botella en el desarrollo de un SBC: adquisición de conocimiento (por la falta de conocimiento que el IC tiene sobre el dominio de la aplicación)
 - ☐ Abarca desde la concepción del sistema hasta su madurez

IAIC – Curso 2006-07

Desarrollo de SBC - IV: evolución

- ☐ Evolución de desarrollo, nuevos modelos:
 - ☐ Prototipado (Kahn, 1994)
 - ☐ Ciclo de vida en espiral (Boehm, 1988).
- (90's) Perspectiva del modelado (mejorar Adquisición del C)
 - Conceptualización: se establece un modelo del dominio.
 - Formalización: se elige el sistema de representación.
 - ☐ Implementación: se elige el lenguaje y herramientas

Numerosas alternativas para modelizar la realidad

□ Distinción entre un formalismo de representación y el medio para implementarlo

Bibliografía

Rich, E. y Knight, K.

Artificial Intelligence.

McGraw-Hill, 1991, 2ª edición

☐ Giarratano, J. y Riley, G.

Sistemas Expertos: Principios y Programación International Thomson Editores, 2001

☐ Gonzalez, A. J. y Dankel, D. D.

The Engineering of Knowledge Based Systems:

Theory and Practice

Prentice Hall, 1993

☐ Alonso, Guijarro, Lozano, Palma y Taboada

Ingeniería del Conocimiento: Aspectos Metodológicos

Prentice Hall, 2004