Introduzione: misurazione, sistema delle unità di misura

FISICA

Corso di Laurea in Ingegneria e Scienze Informatiche

Luigi Guiducci Anno Accademico 2022/23

Misurazione

- · La misurazione è l'operazione necessaria per associare ad ogni grandezza fisica un numero.
 - Si tratta di un insieme di procedimenti tali che la misura della grandezza sia ottenuta in modo non ambiguo e riproducibile. In pratica ottengo il rapporto della grandezza da misurare e un'altra, omogenea ad essa, detta unità di misura.
 - Misura diretta; m. strumentale; m. indiretta
 - Il modo di misurare una grandezza fisica ne fissa la definizione. Ogni grandezza fisica è definita dall'insieme di tutte le possibili operazioni di misura che la riguardano. Operazioni diverse possono essere necessarie per ottenere misure su scale diverse.

- Le grandezze fisiche hanno una dimensione fisica. Una certa area non può essere definita "più grande" di una certa lunghezza o più piccolo di un certo volume.
 - Grandezze fondamentali e derivate; analisi dimensionale (discussione alla lavagna).

Sette unità di base: kg, m, s, cd, mol, K, A
 https://www.bipm.org/en/measurement-units/base-units.html

- A partire dal 2019, tutte le unità di base sono definite fissando a valori esatti 7 costanti fondamentali
- Per la meccanica ci occorrono 3 unità fondamentali: lunghezze (metro, m), tempo (secondo, s) e massa (chilogrammo, kg)

- 1 metro corrisponde alla distanza percorsa dalla luce nel vuoto in un tempo pari a 1/c, con c=299792458 m/s
- 1 kg è definito fissando la costante di Planck h=6.62607015×10

 J·s (J=kgm²s-²) e utilizzando tecniche di misura del peso (e dell'accelerazione di gravità) come la bilancia di Kibble

kg

O

Sette unità di base: kg, m, s, cd, mol, K, A
 https://www.bipm.org/en/measurement-units/base-units.html

Base quantity		Base unit	
Name	Typical symbol	Name	Symbol
time	t	second	S
length	<i>I, x, r,</i> etc.	metre	m
mass	m	kilogram	kg
electric current	I, i	ampere	Α
thermodynamic tempera	ture T	kelvin	K
amount of substance	n	mole	mol
luminous intensity	I_{V}	candela	cd

Sette unità di base: kg, m, s, cd, mol, K, A
 https://www.bipm.org/en/measurement-units/base-units.html

- A partire dal 2019, tutte le unità di base sono definite fissando a valori esatti 7 costanti fondamentali
- Per la meccanica ci occorrono 3 unità fondamentali: lunghezze (metro, m), tempo (secondo, s) e massa (chilogrammo, kg)

• 1 metro corrisponde alla distanza percorsa dalla luce nel vuoto in un tempo pari a 1/c, con c=299792458 m/s

kg

O

Sette unità di base: kg, m, s, cd, mol, K, A
 https://www.bipm.org/en/measurement-units/base-units.html

 A partire dal 2019, tutte le unità di base sono definite fissando a valori esatti 7 costanti fondamentali

Defining constant	Symbol	Numerical value	Unit
hyperfine transition frequency of Cs	Δv_{Cs}	9 192 631 770	Hz
speed of light in vacuum	С	299 792 458	${\rm m}~{\rm s}^{-1}$
Planck constant	h	$6.626\ 070\ 15\ x\ 10^{-34}$	Js
elementary charge	e	$1.602\ 176\ 634\ x\ 10^{-19}$	С
Boltzmann constant	k	1.380 649 x 10 ⁻²³	$\rm J~K^{-1}$
Avogadro constant	N_{A}	6.022 140 76 x 10 ²³	mol^{-1}
luminous efficacy	K_{cd}	683	Im W ^{−1}

kg h SI A A

Tempo - il secondo

- Il secondo, simbolo s, nel Sistema Internazionale è definito come:
 - la durata di 9,192,631,770 periodi della radiazione corrispondente alla transizione fra due livelli iperfini dello stato fondamentale dell'atomo di Cesio (isotopo 133Cs).
 - · In altre parole il secondo è definito fissando il valore numerico della frequenza di tale radiazione $\Delta \nu_{\rm Cs}=9192631770~{
 m Hz}$
 - Ove l'Hertz (simbolo Hz), unità di misura della frequenza, corrisponde a $\,\mathrm{s}^{-1}$

Tempo - UTC

- Il tempo universale coordinato (Universal Coordinated Time, UTC) si basa sull'International Atomic Time (TAI) misurato da orologi atomici
- Viene «aggiustato» di tanto in tanto per adattarsi al tempo «terrestre» (prossima slide)
- La differenza fra i due viene mantenuta entro 0.9 secondi inserendo un minuto di 61 s o 59 s, se necessario, il 30/06 o 31/12. Se ciò avviene, si dice che è stato introdotto un "leap second".
- Qui trovate diversi tempi standard e numerosi link interessanti: http://www.leapsecond.com/java/gpsclock.htm

Durata del giorno terrestre

La velocità di rotazione terrestre è influenzata da diversi fattori: maree, movimento del nucleo fluido della terra, eventi meteorologici, perdita di momento angolare verso la luna...

https://en.wikipedia.org/wiki/El_Niño

Eccezionale El Nino, 1983

Come funziona un orologio atomico?

© timeanddate.com

https://www.timeanddate.com/time/how-do-atomic-clocks-work.html

Alcuni intervalli di tempo

Intervallo di tempo	secondi	
Vita di un protone	3·10 ⁴⁰	~10 ³³ anni
Età dell'universo	4·10 ¹⁷	~14 miliardi di anni
Età della piramide di Cheope	1·10 ¹¹	~4600 anni
Durata media della vita umana	2·10 ⁹	79 anni
Un anno	3·10 ⁷	
Un giorno	9.104	
Un battito cardiaco	8·10 ⁻¹	
Periodo del LA centrale	2·10-3	440 Hz
Transizioni tra livelli atomici	1.10-8	10 ns
Commutazione di un transistor	1.10-9	1 ns = 1 GHz
Vita media del bosone di Higgs	2.10-22	
Tempo di Planck	1.10-43	

Lunghezza - il metro

L'unità di misura della lunghezza nel SI è il metro
 (simbolo m), definito fissando il valore numerico della velocità della luce nel vuoto al valore di:

$$c = 299792458 \text{ ms}^{-1}$$

In altre parole il metro è la lunghezza percorsa dalla luce nel vuoto in un intervallo di tempo pari a $1/299792458~{\rm s.}$ Ricordiamo che il tempo è definito mediante $\Delta\nu_{\rm Cs}$.

Alcune misure di lunghezza

Lunghezza	metri	
Raggio dell'universo	10 ²⁶	
Raggio della galassia	10 ²¹	
Un anno-luce	9·10 ¹⁵	
Raggio del sole	7·10 ⁸	700'000 km
Raggio della terra	6.4·10 ⁶	6400 km
Il prof. di fisica	2.100	190 cm
Spessore di un foglio	10-4	0.1 mm
Lunghezza d'onda luce verde	5.5·10 ⁻⁷	550 nm
Dimensioni di un virus	1-10·10 ⁻⁸	10-100 nm
Raggio di un atomo	10-10	1 Å
Raggio di un nucleo atomico	10 -15	1 fm
Raggio di un elettrone	<10 ⁻¹⁶	puntiforme?

Massa - il chilogrammo

• L'unità di misura della massa nel SI è il kilogrammo (simbolo kg), definito fissando il valore numerico della costante di Planck a:

$$h = 6.62607015 \times 10^{-34} \text{ kgm}^2 \text{s}^{-1}$$

- Insieme alla definizione del secondo e del metro, questo porta alla definizione dell'unità di massa in termini della costante di Planck h.
- Fino a Maggio 2019 il campione di massa era ancora definito utilizzando il chilogrammo campione, un cilindro di platino-iridio conservato presso il Bureau International des Poids et Mesures a Parigi, e duplicato in varie copie sparse nel mondo (in Italia l'Istituto Nazionale di Ricerca Metrologica di Torino)

Approfondimenti

- Il chilogrammo campione al NIST negli USA https://www.youtube.com/watch?v=SmSJXC6_qQ8
- L'oggetto più sferico del mondo: <u>https://www.youtube.com/watch?v=ZMByl4s-D-Y</u>
- La bilancia di Watt: <u>https://www.youtube.com/watch?v=Oo0jm1PPRuo</u>

Alcune misure di massa

Massa	kg	
Universo	10 ⁵³	
Galassia	1042	
Sole	2·10 ³⁰	
Terra	6.1024	
Un transatlantico	108	100'000 T
Il prof. di fisica	0.9·10²	90 kg
Un chicco d'uva	3.10-3	3 g
Un granello di polvere	7·10 ⁻¹⁰	100 ng
Un virus	10-16	100 fg
Una molecola di penicillina	5·10 ⁻¹⁷	50 fg
Un atomo di uranio	4·10 ⁻²⁵	238 u
Un protone	2·10- ²⁷	0.9 GeV/c ²
Un elettrone	9·10 ⁻³¹	511 keV/c ²

Multipli e sottomultipli

Prefisso	Fattore	Simbolo
exa-	10 ¹⁸	E
peta-	10 ¹⁵	P
tera-	1012	T
giga-	109	G
mega-	106	M
kilo-	10 ³	k
etto-	102	h
deca-	10 ¹	da
deci-	10-1	d
centi-	10-2	С
milli-	10-3	m
micro-	10-6	μ
nano-	10-9	n
pico-	10-12	р
femto-	10 ⁻¹⁵	f
atto-	10-18	a

Analisi dimensionale / 1

- Ha senso confrontare una lunghezza con un'area?
- Per indicare le dimensioni di una grandezza fisica utilizziamo una notazione che permetta di indicare quali grandezze fondamentali sono coinvolte: Lunghezza [L], Tempo [T], Massa [M]. Ad esempio, detta S una superficie, V un volume, v una velocità, avremo:

$$[S] = [L^2]$$
; $[V] = [L^3]$; $[V] = [L^1T^{-1}]$

e così via.

 Notiamo che un angolo, essendo definito come il rapporto tra la lunghezza dell'arco di circonferenza che l'angolo sottende e il raggio di tale circonferenza, è una quantià adimensionale!

$$\alpha = \frac{s}{R} \implies [\alpha] = [L^0 M^0 T^0]$$

Analisi dimensionale / 2

 In una legge fisica le dimensioni dei due termini dell'equazione devono essere le stesse. Ad esempio, ipotizziamo di avere una relazione tra distanza e accelerazione e tempo del tipo

$$x = \frac{1}{2}at$$

- · Non può essere corretta! A sinistra si ha [L], a destra si ha $[LT^{-1}]$ (verificarlo!)
- È invece corretta dal punto di vista dimensionale la più familiare relazione valida per il moto ad accelerazione costante

$$x = \frac{1}{2}at^2$$

• Altro esempio: se scrivo $s = \sin(t)$, dove s è una lunghezza e t un tempo, ho fatto DUE errori. Quali?

Ci fermiamo qua. Torneremo sulle altre unità del Sistema Internazionale dopo aver completato lo studio della meccanica Newtoniana. Per ora ci bastano lunghezza, tempo e massa!