SELECTIVE INATTENTION TO INTEREST RATES

Pierfrancesco Mei Harvard → Goldman Sachs pierfrancescomei.com Tim de Silva Stanford GSB & SIEPR timdesilva.me

April 2025

(Draft Coming Soon!)

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
 - ⇒ Average expectation is slow-moving and under-reacts Coibion-Gorodnichenko 12, 15

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
- Introspection: macro expectations much more important for "big" decisions
 - These big decisions also tend to occur less frequently
 - Example: interest rates important when **buying a house**, but less so for groceries

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?
- If yes, how does this selection affect the transmission of shocks?
 - Belief heterogeneity ⇒ average may not be the relevant object Miller 77, Afrouzi et al. 24

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- 1 Use existing surveys to study how interest rate expectations differ based on DM
 - Benefit: high-quality data on expectations
 - Cost: imprecise identification of DM status + hard to isolate attention

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM
 - Benefit: better identify **DM status** + elicit information acquisition directly
 - Cost: hard to study accuracy in expectations given one cross-section

THIS PAPER

Is there selective inattention to interest rates based on durables purchases? \checkmark

How does selective inattention affect aggregate responses to interest rates?

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM

DM in model

- $oldsymbol{3}$ Develop a PE incomplete markets model with $oldsymbol{2}$ durables $oldsymbol{2}$ + dynamic IA about rates
 - Use patterns in IA from survey to discipline information cost parameter(s)
 - Compare model IRFs to level and volatility of rates with exogenous inattention

 $DM \perp beliefs \Rightarrow no selection$

Is there selective inattention to interest rates based on durables purchases?

- Interest rate expectations of decision-makers are more accurate
 - Absolute nowcast and forecast errors are 50% lower
 - Dispersion of beliefs is 70% lower and subjective uncertainty decreases
 - Improvement in accuracy is weaker/absent for inflation, GDP, and unemployment

Is there selective inattention to interest rates based on durables purchases?

- 1 Interest rate expectations of decision-makers are more accurate
 - Absolute nowcast and forecast errors are 50% lower
 - Dispersion of beliefs is 70% lower and subjective uncertainty decreases
 - Improvement in accuracy is weaker/absent for inflation, GDP, and unemployment
- Information acquisition is concentrated prior to purchases
 - Purchase in \leq 6 months \Rightarrow twice as likely to acquire information
 - Information acquisition focuses on current values of decision-relevant rates

How does selective inattention affect aggregate responses to interest rates?

- **3 Like** exogenous inattention, selective inattention generates:
 - Aggregate beliefs that are slow-moving and underreact
 - Sluggish responses of non-durable consumption responds to rate changes

How does selective inattention affect aggregate responses to interest rates?

- **3 Like** exogenous inattention, selective inattention generates:
 - Aggregate beliefs that are slow-moving and underreact
 - Sluggish responses of non-durable consumption responds to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Smaller increases in non-durable consumption
 - Larger + faster increases in durables that are closer to rational expectations
 - Accelerated increases in durables and non-durables for large cuts

How does selective inattention affect aggregate responses to interest rates?

- **3 Like** exogenous inattention, selective inattention generates:
 - Aggregate beliefs that are slow-moving and underreact
 - Sluggish responses of non-durable consumption responds to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Smaller increases in non-durable consumption
 - Larger + faster increases in durables that are closer to rational expectations
 - Accelerated increases in durables and non-durables for large cuts
- **6** Unlike exogenous inattention, selection implies that more volatility causes:

Beliefs to update more frequently

How does selective inattention affect aggregate responses to interest rates?

- **3 Like** exogenous inattention, selective inattention generates:
 - Aggregate beliefs that are slow-moving and underreact
 - Sluggish responses of non-durable consumption responds to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Smaller increases in non-durable consumption
 - Larger + faster increases in durables that are closer to rational expectations
 - Accelerated increases in durables and non-durables for large cuts
- **6** Unlike exogenous inattention, selection implies that more volatility causes:

Beliefs to update more frequently ⇒ total spending falls by less, closer to data

How does selective inattention affect aggregate responses to interest rates?

- **3 Like** exogenous inattention, selective inattention generates:
 - Aggregate beliefs that are slow-moving and underreact
 - Sluggish responses of non-durable consumption responds to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Smaller increases in non-durable consumption
 - Larger + faster increases in durables that are closer to rational expectations
 - Accelerated increases in durables and non-durables for large cuts
- **6** Unlike exogenous inattention, selection implies that more volatility causes:
 - Beliefs to update more frequently ⇒ total spending falls by less, closer to data
 - Consumption to become more (not less) sensitive to rates

 $\bullet \ \ \mbox{Household expectation formation} \rightarrow \mbox{aggregate inattention masks } \mbox{\textbf{selection}}$

Coibion & Gorodnichenko (2012, 2015), Bordalo et al. (2020), D'Acunto et al. (2023), ...

- Household expectation formation → aggregate inattention masks selection
- ullet Models of durable adjustments ullet endogenize info. acquisition + inattention

Caballero (1990), Barsky et al. (2007), Berger & Vavra (2015), McKay and Wieland (2021), Gavazza & Lanteri (2021), Beraja & Wolf (2022), Beraja & Zorzi (2024)

- Household expectation formation → aggregate inattention masks selection
- Models of durable adjustments \rightarrow *endogenize* info. acquisition + inattention
- Rational inattention → add to a non-quadratic decision problem with 2 actions
 Sims (2003), Mackowiak & Wiederholt (2009, 2015), Zhong (2022), Hebert & Woodford
 (2023), Mackowiak et al. (2023), Afrouzi et al. (2024), Ahn et al. (2024), ...

- Household expectation formation → aggregate inattention masks selection
- Models of durable adjustments \rightarrow *endogenize info. acquisition* + *inattention*
- ullet Rational inattention o add to a **non-quadratic** decision problem with 2 actions
- Exogenous inattention as a source of macro sluggishness → selective inattention generates decision-specific dampening generates

Lucas (1972), Gabaix & Laibson (2001), Mankiw & Reis (2002), Angeletos & Lian (2016), Carroll et al. (2020), Auclert et al. (2020), McKay & Wieland (2021), Beraja & Wolf (2022), Cochrane (2025), ...

- Household expectation formation → aggregate inattention masks selection
- ullet Models of durable adjustments o *endogenize info. acquisition* + *inattention*
- Rational inattention → add to a non-quadratic decision problem with 2 actions
- Exogenous inattention as a source of macro sluggishness → selective inattention generates decision-specific dampening
- Macro models with endogenous household inattention → inattention determined by type of decision that households make

Alvarez et al. (2011, 2013), Broer et al. (2022), Guerreiro (2023)

- Household expectation formation → aggregate inattention masks selection
- Models of durable adjustments → endogenize info. acquisition + inattention
- ullet Rational inattention o add to a **non-quadratic** decision problem with 2 actions
- Exogenous inattention as a source of macro sluggishness → selective inattention generates decision-specific dampening
- Macro models with endogenous household inattention → inattention determined by type of decision that households make
- Effects of (interest rate) uncertainty → depends on endogeneity of inattention
 Sandmo (1970), Bloom (2014), Bloom et al. (2020), Cremers et al. (2021), Ilut et al. (2024)

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- 2 New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 6 Conclusion

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

SURVEY 1/2: NY FED SURVEY OF CONSUMER EXPECTATIONS

- Sample: repeated cross-section of \sim 8K respondents in 2014-2022
- Variables of interest:
 - 1 Nowcasts of current average 30-year fixed mortgage rate
 - 2 Forecasts of one-year ahead mortgage rate and inflation
 - 3 DM status based on distance from past or (intended) future home purchase
- Construct errors using 30-year fixed rate in Freddie Mac PMMS and CPI
- Run the following regression:

$$\log |\mathsf{Error}_{it}| = \sum_{s} \pmb{\beta_{s}} \cdot \mathbf{1} \left(\mathsf{DM} \ \mathsf{Status}_{it} = s \right) + \mathsf{Controls}_{it} + \delta_{t} + \epsilon_{it}$$

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Errors of prospective buyers \approx 50% lower than those with no purchase plan

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Over half of forecasting gain comes from nowcasting improvement

SMALLER DIFFERENCE IN INFLATION FORECAST ACCURACY

Reduction in inflation forecast errors \approx 50% lower than mortgage rates

LESS DISPERSION AMONG DECISION-MAKERS' BELIEFS

Disagreement of prospective buyers \approx 70% lower than those with no purchase plan

SURVEY 2/2: ECB SURVEY OF CONSUMER EXPECTATIONS

- Sample: panel of ∼ 130K individuals in 2020-2024 from six largest countries
 - Restriction: only include individuals who rented at some point in survey
 - Note: quarterly frequency ⇒ short panel
- Variables of interest:
 - 1 Forecasts of one-year ahead mortgage rates, inflation, GDP, and unemployment
 - 2 DM status based on distance from mortgage application
- Construct errors based on country-specific realizations
- Run the following regression:

$$\log |\mathsf{Error}_{it}| = \sum_{s} \beta_{s} \cdot \mathbf{1} \left(\mathsf{DM} \; \mathsf{Status}_{it} = s \right) + \mathsf{Controls}_{it} + \mathbf{Tenure}_{it} + \delta_{t} + \lambda_{i} + \epsilon_{it}$$

LESS DISPERSION AMONG DMS' BELIEFS: BOTH SURVEYS

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- 2 New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

SURVEY DESCRIPTION

We design and conduct a cross-sectional survey of U.S. households via Prolific

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

Home decision-making: distance from primary home purchase

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions: distance from car purchase + other major financial decisions

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions
- 3 Information acquisition: time since last search + type/source of info searched

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions
- 3 Information acquisition
- Macro expectations: beliefs about mortgage rates, T-Bill rates, and inflation

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions
- Information acquisition
- 4 Macro expectations
- 6 Background & financial situation: info on household's balance-sheet using SCF format, demographics, job relocations

▶ Questions

Information Acquisition is Concentrated Pre-Decision

Tim de Silva, Stanford

14

Information Acquisition is Concentrated Pre-Decision

Tim de Silva, Stanford

15

IA IS CONCENTRATED ON DECISION-RELEVANT VARIABLES

Info. Acquisition_i = $\sum_{d} \beta_{d} \cdot \mathbf{1}$ (Home Distance_i = d) + Controls_i + Other Distances_i + ϵ_{i}

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

DMs' Beliefs Are (Weakly) More Informed and Less Dispersed

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- Solution: IV = anticipated moves due to job relocations

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- Solution: IV = anticipated moves due to job relocations

Dependent Variable: Information Acquisition

Variable	OLS	First Stage	IV	OLS	First Stage	IV
Home Decision-Maker	0.33*** (0.07)		0.83*** (0.29)	0.32*** (0.07)		0.88***
Job Relocation	, ,	0.28*** (0.08)	, ,	, ,	0.28*** (0.08)	
N Controls	749	749	749	749 ✓	749 ✓	749 ✓
F-stat		12.14			4.43	

As households get closer to durable choices

As households get closer to durable choices

Information is acquired more frequently...

As households get closer to durable choices

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

As households get closer to durable choices

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

Interest rate beliefs become more accurate and less dispersed

As households get closer to durable choices

 \downarrow

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

 $\downarrow \downarrow$

Interest rate beliefs become more accurate and less dispersed

 \Downarrow

?

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

Bewley-Huggett-Aiyagari

Partial equilibrium incomplete markets model +durables + dynamic info. acquisition

household block of McKay-Wieland 2021

rational inattention

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

11

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r*

- Cost of signals = $\omega \times$ mutual info.
- Benefit of signals = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r*

- Cost of signals = $\omega \times$ mutual info.
- Benefit of signals = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Endogenous beliefs about *r* that come from dynamic information acquisition

• Define belief errors about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

Define belief errors about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

• Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

Define belief errors about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

• Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \operatorname*{arg\ max}_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E} V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E}V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'),$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E} V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \underset{c,d'}{\arg\max} \ U(c, m(d')) + \beta \cdot \mathbf{E} V \left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'} \right)$$

$$c + b' + d' = y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0} \right] b + (1 - \delta) d - \mathbf{A}(\mathbf{d}, \mathbf{d}'), \quad b' \ge -\lambda d'$$

$$\mathbf{A}(\mathbf{d}, \mathbf{d}') = \begin{cases} \underbrace{\nu \cdot d}_{\text{op. costs}} & \text{if } d' = \underbrace{(1 - \delta)d}_{\text{depreciation}} + \underbrace{\delta \cdot \chi \cdot d}_{\text{maint. costs}} \\ \underbrace{\nu \cdot d}_{\text{op. costs}} + \underbrace{f \cdot (1 - \delta)d}_{\text{fixed adi. cost}} & \text{else} \end{cases}$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\begin{aligned} \mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) &= \operatorname*{max}_{c,d'} U(c, \mathbf{m}(d')) + \beta \cdot \mathbf{E} V \left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathrm{beliefs'} \right) \\ &c + b' + d' = y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0} \right] b + (1 - \delta) d - A(d, d'), \quad b' \geq -\lambda d' \\ &\mathbf{m}(d') = d' \times \max \left\{ \xi, \mathbf{1}_{d' \neq (1 - \delta + \delta \cdot \chi) d} \right\}, \quad \xi \sim \mathrm{Bern}(\overline{\xi}) = \mathrm{match-quality\ shock} \end{aligned}$$

 $\xi = 0 \Rightarrow$ have to adjust for **exogenous** reasons (e.g. job relocation)

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E} V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- log y follows AR1 + observed by households
- r follows an AR1 + HHs know DGP, but do not observe current rate

Information Acquisition Problem to Determine Beliefs

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
 - \Rightarrow Prior beliefs in each period can be summarized by: $r \sim N(\mu, \Sigma)$

Information Acquisition Problem to Determine Beliefs

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$V(\mathbf{x}) = \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V(\mathbf{x}') \Big]$$

Information Acquisition Problem to Determine Beliefs

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$egin{aligned} V(\mathbf{x}) &= \max_{\Sigma_{e}} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + eta V\left(\mathbf{x}'
ight) \Big] + rac{\omega}{\kappa} \cdot \exp\left(\kappa \cdot \underbrace{\log\left(1 - G
ight)}_{ ext{mutual info.}}
ight) \\ G &= rac{\Sigma}{\Sigma + \Sigma_{e}} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G(r + e) \,, \quad e \sim N(0, \Sigma_{e}) \end{aligned}$$

Information Acquisition Problem to Determine Beliefs

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_{\theta}} \mathbf{E} \Big[U(\mathbf{c}, \textit{m}(\mathbf{d}')) + \beta \textit{V} \left(\mathbf{x}' \right) \Big] + \frac{\omega}{\kappa} \cdot \exp \left(\kappa \cdot \underbrace{\log \left(1 - \textit{G} \right)}_{\text{mutual info.}} \right) \\ G &= \frac{\Sigma}{\Sigma + \Sigma_{\theta}} \\ \widehat{\mathbf{E}}(r) &= (1 - \textit{G})\mu + \textit{G}(r + \textit{e}) \,, \quad \textit{e} \sim \textit{N}(0, \Sigma_{\theta}) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma (1 - \textit{G}) + \sigma^2 \end{split}$$

INFORMATION ACQUISITION PROBLEM TO DETERMINE BELIEFS

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_{\theta}} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{x}'\right) \, \Big] + \frac{\omega}{\kappa} \cdot \exp\left(\kappa \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}}\right) \\ G &= \frac{\Sigma}{\Sigma + \Sigma_{\theta}} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G(r + \theta) \,, \quad e \sim N(0, \Sigma_{\theta}) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma(1 - G) + \sigma^2 \end{split}$$

- c, d' maximize objective with belief errors
 - Lower $\Sigma_e \Rightarrow \widehat{\mathbf{E}}(r) \longrightarrow r \Rightarrow \mathbf{errors} \longrightarrow 0 \Rightarrow \mathbf{smaller}$ utility loss from \mathbf{c}, \mathbf{d}'

CALIBRATED PARAMETERS

Parameter	Description	Value	Source	
Internally-Calibrated				
β	Discount factor	0.9829	Asset-to-GDP ratio	
ψ	Non-durables exponent	0.627	Durable-to-nondurable consumption ratio	
f	Fixed cost	0.11	Adjustment probability	
$1-\overline{\xi}$	Match-quality shock probability	0.034	Share of adjustments from MQ shocks	
ω	Marginal information cost	$10^{-3.627}$	Concentration in information acquisition	
κ	Information cost curvature	0	Pre-adjustment increase in IA (in progress!)	
Externally-Calibrated				
γ	RRA (and inverse EIS)	2	Choukhmane and de Silva (2025)	
ε	Durables elasticity of substitution	0.5	McKay and Wieland (2021)	
$1 - \lambda$	Required downpayment	0.2	McKay and Wieland (2021)	
δ	Depreciation rate	0.017	McKay and Wieland (2021)	
χ	Maintenance share	0.35	McKay and Wieland (2021)	
ν	Operating cost	0.012	McKay and Wieland (2021)	
ρ_{y}	Income persistence	0.977	Flodén and Lindé (2001)	
σ_{ϵ}	Income shock std. dev.	0.058	Flodén and Lindé (2001)	
\overline{r}	Real rate mean	0.0143	10-Year Treasury Rate: 1961-2024	
ρ	Real rate persistence	0.979	10-Year Treasury Rate: 1961-2024	
σ	Real rate shock std. dev.	0.0014	10-Year Treasury Rate: 1961-2024	
$ au_b$	Borrowing spread	0.4156%	30-Year Fixed Mortgage Rate: 1971-2024	

EFFECT OF INFORMATION COST ON INFORMATION ACQUISITION

Durables regustment reazura

25

SELECTIVE INATTENTION AT THE MICRO-LEVEL

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

Households acquire information in all periods...

► Durables Share

► Information Acquisition sS

26

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

... but this information acquisition is concentrated around durables adjustments

► Durables Share ► Information Acquisition sS

26

Intensive Margin of Info. Acquisition in Event-Time

Increase in information acquisition is even larger on intensive margin

► Durables Share ► Information Acquisition sS

27

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

Information acquisition increases in anticipation of **state-dependent** adjustments...

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

... but is concentrated around the choice for time-dependent adjustments Afrouzi et al. 24

Nowcast Errors in Event-Time

Forecast errors remain lower post-choice because beliefs are a "stock" not "flow"

IMPLICATIONS FOR AGGREGATE BELIEFS

AGGREGATE BELIEFS ARE SLUGGISH, LIKE IN THE DATA...

Direct evidence of information-rigidity = CG (2015) regression

$$\underbrace{r_{t+3} - \overline{F}_t r_{t+3}}_{\text{forecast error}} = \alpha + \beta_{CG} \underbrace{\left(\overline{F}_t r_{t+3} - \overline{F}_{t-1} r_{t+3}\right)}_{\text{forecast revision}} + \epsilon_t$$

- Common finding: $\beta_{CG} > 0 \Rightarrow$ aggregate expectations are **sluggish**
- In a sticky-information model (constant probability of updating expectations),

Implied Update Frequency =
$$3(1 + \beta_{CG})$$
 Months

⇒ Common target for calibrating sticky information models (e.g. McKay-Wieland 2021)

AGGREGATE BELIEFS ARE SLUGGISH, LIKE IN THE DATA...

Implied Update Frequency = $3(1 + \beta_{CG})$ Months

... But This Masks Substantial Selection into Attention!

Implied Update Frequency = $3(1 + \beta_{CG})$ Months

Welfare Loss from Inattention

- Natural question: how large are welfare losses from selective inattention?
- Compute two welfare metrics in basis points of lifetime consumption
 - **1** Static: loss from not having full-information in current period, ignoring info. cost
 - 2 Dynamic: loss from not having full-information in all periods, ignoring info. cost

Welfare Loss from Inattention

- Natural question: how large are welfare losses from selective inattention?
- Compute two welfare metrics in **basis points** of lifetime consumption
 - **1** Static: loss from not having full-information in current period, ignoring info. cost
 - 2 Dynamic: loss from not having full-information in all periods, ignoring info. cost
- Losses are small, but still have aggregate effects (next)!

Akerlof-Yellen 85

Maćkowiak-Wiederholt 15

	Static	Dynamic
Mean	0.04	1.94
Median	0.03	1.56

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

RESPONSES TO INTEREST RATE CUTS

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Rational Expectations: $\omega = 0 \Rightarrow \widehat{\mathbf{E}}(r) = r$

► Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Exogenous Inattention: constant *G* set to match CG 15 coefficient in baseline model

Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Selective Inattention: baseline model with endogenous information acquisition

► Decomposition

► Aggregate Expenditure

► Incorporating GE Effects

▶ Non-Linearity

33

► Aggregate Expenditure

► Incorporating GE Effects

► Non-Linearity

33

Non-durable response is smaller relative to exogenous inattention...

► Aggregate Expenditure ► Incorporating GE Effects ► Non-Linearity

33

... but **durable** response is larger, closer to **rational expectations!**

► Aggregate Expenditure ► Incorporating GE Effects ► Non-Linearity

33

EFFECTS OF CHANGES IN INTEREST RATE VOLATILITY

MOTIVATION: RECENT RISE IN RATE VOLATILITY

EFFECTS OF INCREASE IN VOLATILITY ON BELIEFS

Increase in volatility ⇒ more information acquisition ⇒ **less** belief rigidity

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

Increase in volatility ⇒ spending falls due to precautionary motives... Sandmo 70

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

... which is stronger with exogenous inattention because of additional uncertainty

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

Selective inattention undoes over 50% of this fall due to ↑ info. acquisition!

RESPONSE OF AGGREGATE SPENDING IS CLOSER TO THE DATA

▶ State-Dependence of Rate Cuts

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs
- But unlike exogenous inattention, selective inattention implies:
 - 1 Smaller non-durables and larger durables responses to rate cuts
 - 2 Smaller spending responses to volatility that are closer to data

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs
- But unlike exogenous inattention, selective inattention implies:
 - 1 Smaller non-durables and larger durables responses to rate cuts
 - 2 Smaller spending responses to volatility that are closer to data

Takeaway: Aggregate inattention hides substantial selection into attention that can be measured, modeled, and has different implications!

THANK YOU!

tdesilva@stanford.edu

www.timdesilva.me

Main Survey Questions

Eliciting our main measure of information acquisition

Step 1: In the last 3 years, did you actively search for information about any of the following economic variables in the U.S.?

By "active search" we mean a deliberate effort to find information which could include searching online, reading news articles or reports, talking to a financial advisor or broker, or any other intentional effort to gather information.

Step 2: How many months ago did you last actively search for information about mortgage rates?

Eliciting households' distance from the primary home purchase

Owners: How many months ago did you finalize the purchase of your current primary residence?

Renters: How many months from now do you expect the closing on your primary residence purchase?

By "closing", we mean signing the final documents to officialize the purchase.

■ Back

Sources of Information Acquisition

Back
 Back
 Back
 Back
 Back
 Back

HETEROGENEITY IN INFORMATION ACQUISITION

Back
 Back
 Back
 Back
 Back
 Back

HETEROGENEITY IN INFORMATION ACQUISITION OF OWNERS

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

Back
 Bac

STEADY-STATE SUMMARY STATISTICS

	Mean	SD	P10	P50	P90
Assets/Income: <i>b/y</i>	3.51	4.93	-0.91	1.90	10.25
Durable/Non-Durables: d'/c	2.55	0.40	1.99	2.58	3.01
Durables Gap	0.14	0.17	-0.05	0.11	0.38
Acquired Information	0.20	0.40	0.00	0.00	1.00
Kalman Gain: <i>G</i>	0.09	0.20	0.00	0.00	0.40
Kalman Gain Conditional on IA	0.44	0.20	0.30	0.40	0.80
Normalized Nowcast Error: $ \hat{\mathbb{E}}(r) - r / r $	0.30	7.84	0.02	0.10	0.34
Normalized Prior Variance: Σ/σ_r^2	0.36	0.19	0.15	0.34	0.64

◆ Back

ADJUSTMENT PROBABILITY AS A FUNCTION OF DURABLES GAP

CONCENTRATION IN INFO. ACQUISITION \(\square\) DURABLES SHARE

Baseline: $\psi = 0.63$

Low Durables Share: $\psi = 0.99$

◆ Back

DURABLES ADJUSTMENT SHIFT SS BANDS OF INFO. ACQUSITION

◆ Back

DECOMPOSITION OF AGGREGATE BELIEF RESPONSE

◆ Back

IRFs to Romer-Romer Shock with Agg. Y and P Response

Back
 Bac

IRFs to Romer-Romer Shock with Agg. Y and P Response

◆ Back

IMPULSE RESPONSE OF AGG. SPENDING TO RATE CUT

Non-Linear Impact of Rate Cuts: On Impact

◆ Back

Non-Linear Impact of Rate Cuts: After 8 Quarters

◆ Back

STATE-DEPENDENCE ON VOLATILITY: ON IMPACT

Increase in volatility ⇒ consumption is less responsive to interest rates

STATE-DEPENDENCE ON VOLATILITY: ON IMPACT

... but not with **selective inattention** because of increased info. acquisition!

◆ Back

STATE-DEPENDENCE ON VOLATILITY: AFTER 8 QUARTERS

◆ Back