第七次习题课题目

习题 1. 练习 4.2.6

$$i+\cancel{1}$$

$$\begin{vmatrix}
1+x_1y_1 & 1+x_1y_2 & \cdots & 1+x_1y_n \\
1+x_2y_1 & 1+x_2y_2 & \cdots & 1+x_2y_n \\
\vdots & \vdots & & \vdots \\
1+x_ny_1 & 1+x_ny_2 & \cdots & 1+x_ny_n
\end{vmatrix}.$$

参考解答:

注意矩阵为两个秩不大于 1 的矩阵之和, 故其秩不大于 $2.n \ge 3$ 时行列式为 0.n = 1 时行列式为 $1+x_1y_1 \cdot n = 2$ 时行列式为 $(x_1-x_2)(y_1-y_2)$.

习题 2. 练习 4.2.8

1. 令 A_n 是从右上到左下对角线上的元素全为 1, 其余元素全为 0 的 n 阶方阵. 求 A_2,A_3,A_4,A_5 的行列式, 分析共规律, 推断出 A_n 的行列式.

参考解答:

归纳可得
$$(-1)^{\frac{n(n-1)}{2}}$$
.

2. 令
$$A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
, $A_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$, 以此类推 A_n . 求 A_2, A_3, A_4 的行列式, 分析共 $\mathbf F$

律, 推出 A_n 的行列式.

参考解答: 根据习题 1.7.1.2 进行 LU 分解, 答案为 1.

3. 设
$$A$$
 具在 QR 分解 $A = Q\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$, 求 $det(A)$ 的所有可能值.

参考解答:

 ± 24 . 这是由于正交矩阵Q 满足 $Q^TQ = I$, 求行列式知Q 的行列式为 ± 1 .

4. 定义 Hilbert 矩阵 $H_n = \left[\frac{1}{i+j-1}\right]_{n \times n}$. 计算 $\det(H_2)$, $\det(H_3)$. Hilbert 矩阵是一种常见的难于计算的矩阵, 常用来测试算法.

参考解答:

$$|H_2| = \frac{1}{12}, |H_3| = \frac{1}{2160}$$

习题 3. 练习 4.2.22 和 4.2.23

1. 设 A,B 分别是 $m \times n, n \times m$ 矩阵, 证明, $\det(I_m + AB) = \det(I_n + BA)$. 由此推出, $I_m + AB$ 可逆当且仅当 $I_n + BA$ 可逆.

参考解答:

考虑
$$\begin{bmatrix} I_n \\ -A & I_m \end{bmatrix} \begin{bmatrix} I_n & B \\ & I_m + AB \end{bmatrix} \begin{bmatrix} I_n & B \\ & I_m \end{bmatrix} = \begin{bmatrix} I_n & B \\ -A & I_m \end{bmatrix} = \begin{bmatrix} I_n & B \\ & I_m \end{bmatrix} \begin{bmatrix} I_n + BA \\ & I_m \end{bmatrix} \begin{bmatrix} I_n \\ -A & I_m \end{bmatrix}.$$

2. 计算
$$\begin{vmatrix} 1+a_1^2 & a_1a_2 & \dots & a_1a_n \\ a_2a_1 & 1+a_2^2 & \dots & a_2a_n \\ \vdots & \vdots & & \vdots \\ a_na_1 & a_na_2 & \dots & 1+a_n^2 \end{vmatrix}.$$

参考解答:

由上類,
$$\det \left(I_n + \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \right) = \det \left(I_1 + \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \right) = 1 + \sum_{i=1}^n a_i^2.$$

习题 4. 练习 4.2.24

参考解答:

设 A 是三阶矩阵, 已知 $det(A-I_3) = det(A-2I_3) = det(A-3I_3) = 0$.

1. 证明存在非零向量 v_1, v_2, v_3 , 满足 $Av_i = iv_i$.

这是因为 $A-iI_3$ 不可逆.

- 2. 设 $k_1v_1 + k_2v_2 + k_3v_3 = 0$, 证明 $k_1v_1 + 2k_2v_2 + 3k_3v_3 = 0$, $k_1v_1 + 4k_2v_2 + 9k_3v_3 = 0$. 两边同时用 A 作用.
- 3. 证明存在可逆 Vandermonde 矩阵 V, 使得 $\begin{bmatrix} k_1v_1 & k_2v_2 & k_3v_3 \end{bmatrix} V = 0$.

$$V = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array} \right]$$

- 4. 证明 v_1, v_2, v_3 构成 \mathbb{R}^3 的一组基, 因此矩阵 $B = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ 可逆. 由上, 我们有 v_1, v_2, v_3 线性无关.
- 5. 证明存在对角矩阵 D, 使得 AB = BD, 并计算 det(A).

$$D = diag(1,2,3). det(A) = det(D) = 6$$

习题 5. 练习 4.3.8

给定
$$A_n = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & \ddots & & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}, B_n = \begin{bmatrix} 1 & -1 & & \\ -1 & 2 & & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}.$$

1. 利用展开式得到 $det(B_n)$ 关于 n 的递推关系, 并计算 $det(B_n)$

参考解答: 将第一行加到第二行知 $\det(B_n) = \det(B_{n-1}) \cdot \det(B_n) = 1$.

2. 利用 $det(A_n)$ 与 $det(B_n)$ 的关系计算 $det(A_n)$.

参考解答: $\det(A_n) = \det(B_n) + \det(A_{n-1}) \cdot \det(A_n) = n+1$.

习题 6. 练习 4.2.20

设 A 为可逆方阵, D 为方阵, 证明:

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |A||D - CA^{-1}B|.$$

参考解答:

$$\det\left(\left[\begin{array}{cc}A & B\\ C & D\end{array}\right]\right) = \det\left(\left[\begin{array}{cc}A & B\\ D - CA^{-1}B\end{array}\right]\right) = \det(A)\det\left(D - CA^{-1}B\right)$$

习题 7. 练习 4.3.10

求下列推广的 Vandermonde 行列式

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-2} & x_1^n \\ 1 & x_2 & \dots & x_2^{n-2} & x_2^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & \dots & x_n^{n-2} & x_n^n \end{vmatrix}.$$

参考解答: 这是
$$n+1$$
 阶 Vandermonde 行列式
$$\begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-2} & x_1^{n-1} & x_1^n \\ 1 & x_2 & \cdots & x_2^{n-2} & x_2^{n-1} & x_2^n \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-2} & x_n^{n-1} & x_n^n \\ 1 & x_{n+1} & \cdots & x_{n+1}^{n-2} & x_{n+1}^{n-1} & x_{n+1}^n \end{vmatrix}$$

处的 n 阶余子式.

将n+1 阶 Vandermonde 行列式沿最后一行展开,知这个余子式的值是, $-\prod_{1 \leq i < j \leq n+1} (x_j - x_j)$ x_i)作为 x_{n+1} 的多项式的 n-1 次项的系数.

$$-\prod_{1 \leq i < j \leq n+1} (x_j - x_i) = -\prod_{1 \leq i < j \leq n} (x_j - x_i) \cdot \prod_{1 \leq i \leq n} (x_{n+1} - x_i) = -\prod_{1 \leq i < j \leq n} (x_j - x_i) \cdot (x_{n+1}^n - \sum_{1 \leq i \leq n} x_i \cdot x_{n+1}^{n-1} + \dots + (-1)^n \prod_{1 \leq i \leq n} x_i)$$
 所以这个行列式的值为 $\prod_{1 \leq i < j < n} (x_j - x_i) \cdot \sum_{1 \leq i < n} x_i$.

习题 8. 练习 4.3.12

设 Q 是 n 阶正交矩阵, 即 $Q^TQ = QQ^T = I_n$ 。

(1) 若 |Q| < 0, 求证: $|Q + I_n| = 0$, 因此存在非零向量 $\mathbf{v} \in \mathbb{R}^n$, 使得 $Q\mathbf{v} = -\mathbf{v}$.

参考解答:

$$|I_n + Q| = \left| (I_n + Q)^T \right| = \left| I_n + Q^T \right| = \left| I_n + Q^{-1} \right| = \left| Q^{-1} \right| |I_n + Q| = -|I_n + Q|.$$

(2) 设 |Q| > 0. 证明当 n 是奇数时等式 $|Q - I_n| = 0$ 总成立. 当 n 是偶数时, 判断等式 $|Q-I_n|=0$ 是否成立. 若成立, 请给出证明; 若不成立, 请举出反例.

多考解答:
$$|I_n - Q| = \left| (I_n - Q)^T \right| = |I_n - Q^T| = \left| I_n - Q^{-1} \right| = \left| -Q^{-1} \right| |I_n - Q| = -|I_n - Q|.$$
不成立,如
$$\begin{bmatrix} \sin a & -\cos a \\ \cos a & \sin a \end{bmatrix}, a = \frac{\pi}{6}$$

习题 9. 设

$$D = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ -2 & 2 & -2 & -3 \\ -1 & 2 & -2 & -3 \end{vmatrix}$$

不直接计算 C_{ij} , 求解以下各题:

- $(1) -2C_{11} + 2C_{21} + 3C_{31} + 4C_{41};$
- (2) $C_{13} + C_{23} + C_{33} + C_{43}$.

参考解答:

(1) 将 D 的第一列换成 (-2,2,3,4) 再求行列式, 等于 1;

$$\begin{vmatrix} -2 & -1 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ 3 & 2 & -2 & -3 \\ 4 & 2 & -2 & -3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 & 2 \\ 0 & 0 & 0 & -1 \\ -3 & -1 & -2 & -3 \\ -2 & -1 & -2 & -3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \\ -3 & -1 & -2 \\ -2 & -1 & -2 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 1 \\ -3 & -1 & -2 \\ 1 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} 1 & 1 \\ -1 & -2 \end{vmatrix} = 1$$

(2) 将 D 的第三列换成 (1,1,1,1) 再求行列式, 等于 -1;

$$\begin{vmatrix} 1 & -1 & 1 & 2 \\ -2 & 1 & 1 & -1 \\ -2 & 2 & 1 & -3 \\ -1 & 2 & 1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 0 & -1 & 3 & 3 \\ 0 & 0 & 3 & 1 \\ 0 & 1 & 2 & -1 \end{vmatrix} = \begin{vmatrix} -1 & 3 & 3 \\ 0 & 3 & 1 \\ 1 & 2 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} -1 & 3 & 3 \\ 0 & 3 & 1 \\ 0 & 5 & 2 \end{vmatrix} = -1$$

习题 10. 设

$$D = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 3 & 6 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ -1 & 2 & -2 & -3 \end{vmatrix}$$

参考解答: 注意到 $S_1 + 2S_2 = 0$, 具体计算过程如下: