Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 7. Матричные игры

Лекция 15

Решение матричных игр [2х2]

Решите матричную игру:
$$B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$$

Проверка наличия седловой точки

$$\frac{v}{\overline{v}} = 2$$

$$\frac{v}{\overline{v}} = 3$$

$$\frac{v}{\overline{v}} \neq \overline{v} \Rightarrow$$

Седловая точка в матричной игре НЕ существует

$$2 \le v \le 3$$

Решение матричных игр |2х2|

$$B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$$

$$\underline{v} = 2$$
 $\overline{v} = 3$

 $B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$ $\underline{v} = 2$ $\underline{v} \neq \overline{v} \Longrightarrow$ Седловой точки нет

Игрок 1:
$$x = (\xi_1, \xi_2) = (\xi, 1 - \xi)$$

$$\begin{array}{c|cc}
1 & 2 \\
\xi & 4 & 0 \\
1 - \xi & 2 & 3
\end{array}$$

$$K(x,1) = 4 \cdot \xi + 2 \cdot (1 - \xi)$$

$$K(x,2) = 0 \cdot \xi + 3 \cdot (1 - \xi)$$

$$\xi \begin{pmatrix} 4 & 0 \\ 1 - \xi \begin{pmatrix} 2 & 3 \end{pmatrix} \qquad 4 \cdot \xi + 2 \cdot (1 - \xi) = 0 \cdot \xi + 3 \cdot (1 - \xi) \qquad \xi^* = \frac{1}{5}$$

$$x^* = \left(\frac{1}{5}, \frac{4}{5}\right)$$

Решение матричных игр |2х2|

$$B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$$

$$B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$$
 $\underline{v} = 2$ $\underline{v} \neq \overline{v} \Longrightarrow$ Седловой точки нет

$$\begin{array}{c|cc}
\eta & 1-\eta \\
1 & 4 & 0 \\
2 & 2
\end{array}$$

Игрок 2:
$$y = (\eta, 1 - \eta)$$

$$K(1, y) = 4 \cdot \eta + 0 \cdot (1 - \eta)$$

$$K(2, y) = 2 \cdot \eta + 3 \cdot (1 - \eta)$$

$$4 \cdot \eta + 0 \cdot (1 - \eta) = 2 \cdot \eta + 3 \cdot (1 - \eta)$$
 $\eta^* = \frac{3}{5}$

$$y^* = \left(\frac{3}{5}, \frac{2}{5}\right)$$

Решение игры

$$B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$$

$$x^* = \left(\frac{1}{5}, \frac{4}{5}\right)$$

$$B = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix} \quad x^* = \begin{pmatrix} \frac{1}{5}, \frac{4}{5} \end{pmatrix} \quad y^* = \begin{pmatrix} \frac{3}{5}, \frac{2}{5} \end{pmatrix} \qquad \frac{\frac{1}{5}}{4} \quad \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$$

$$\begin{array}{ccc} \frac{3}{5} & \frac{2}{5} \\ \frac{1}{5} & \left(4 & 0 \right) \\ \frac{4}{5} & \left(2 & 3 \right) \end{array}$$

$$K(x^*, y^*) = 4 \cdot \frac{1}{5} \cdot \frac{3}{5} + 0 \cdot \frac{1}{5} \cdot \frac{2}{5} + 2 \cdot \frac{4}{5} \cdot \frac{3}{5} + 3 \cdot \frac{4}{5} \cdot \frac{2}{5} = \frac{60}{25} = \frac{12}{5}$$

Ответ:

Значение игры:

Оптимальные стратегии игроков:

 $x^* = \left(\frac{1}{5}, \frac{4}{5}\right); \quad y^* = \left(\frac{3}{5}, \frac{2}{5}\right)$

$$K(x^*, y^*) = \frac{12}{5}$$

Домашнее задание 6

Решить матричную игру.

Не забудьте проверить игру на наличие седловой точки и выписать <u>ответ!</u>

Решение – на листочке или по почте.

CPOK: 22.12.2021

Решение игры [mxn]. Сведение матричной игры к 3ЛП

• Матричная игра $\Gamma = \langle M, N, A \rangle$:

 $A = \{a_{ij}\}: a_{ij} > 0,$ i = 1,..., m,j = 1,..., n.

Седловой точки нет

Обозначим через

$$x = (\xi_1, ..., \xi_m)$$
— смешанную стратегию игрока 1

$$y = (\eta_1, ..., \eta_n)$$
 – смешанную стратегию игрока 2

 $oldsymbol{v}$ — искомая цена игры

Пусть *игрок* 1 применяет смешанную стратегию *х* против чистой стратегии *ј игрока* 2:

Чистые стратегии <i>игрока 2</i> :		1	2	•••	n
	ξ_1	$\left(a_{11}\right)$	$a_{_{12}}$		
Смешанная стратегия	ξ_2	a_{21}	a_{22}	• • •	a_{2n}
игрока 1:	•		•••		
	ξ_{m}	a_{m1}	a_{m2}	•••	$a_{_{mn}}$

Выигрыш игрока 1 должен быть не меньше, чем v.

Имеем систему неравенств:

$$\begin{cases} a_{11}\xi_{1} + a_{21}\xi_{2} + \dots + a_{m1}\xi_{m} \geq v \\ a_{12}\xi_{1} + a_{22}\xi_{2} + \dots + a_{m2}\xi_{m} \geq v \\ \vdots \\ a_{1n}\xi_{1} + a_{2n}\xi_{2} + \dots + a_{mn}\xi_{m} \geq v \end{cases}$$

Разделим обе части на v>0

и введем обозначение:

$$p_{i} = \frac{\xi_{i}}{v}$$

(Система ограничений ЗЛП)

$$\begin{cases} a_{11}p_1 + a_{21}p_2 + \dots + a_{m1}p_m \ge 1 \\ a_{12}p_1 + a_{22}p_2 + \dots + a_{m2}p_m \ge 1 \\ \vdots \\ a_{1n}p_1 + a_{2n}p_2 + \dots + a_{mn}p_m \ge 1 \end{cases}$$

(Переменные ЗЛП)

$$p_{i} = \frac{\xi_{i}}{v}, i = 1, ..., m, \Rightarrow$$

$$\Rightarrow \xi_{i} = v \cdot p_{i}, i = 1, ..., m.$$

По свойству вероятностей:

$$\sum_{i=1}^{m} \xi_i = 1 \iff \sum_{i=1}^{m} v \cdot p_i = 1 \iff \sum_{i=1}^{m} p_i = \frac{1}{v}$$

Игрок 1 максимизирует свой выигрыш ⇒

стремиться максимизировать цену игры, т.е.

$$v \to \max \Rightarrow \frac{1}{v} \to \min$$

<mark>Целевая функция:</mark>

$$\frac{1}{v} = \sum_{i=1}^{m} p_i \longrightarrow \min$$

Задача линейного программирования

Переменные решения:

$$p_{i} = \frac{\xi_{i}}{v}, i = 1,...,m,$$

<u> Целевая функция:</u>

$$L = \sum_{i=1}^{m} p_i \rightarrow \min$$

<mark>Ограничения:</mark>

$$\begin{cases} a_{11}p_1 + a_{21}p_2 + \dots + a_{m1}p_m \ge 1 \\ a_{12}p_1 + a_{22}p_2 + \dots + a_{m2}p_m \ge 1 \\ \vdots \\ a_{1n}p_1 + a_{2n}p_2 + \dots + a_{mn}p_m \ge 1 \end{cases}$$

Условие неотрицательности

$$p_{i} \ge 0,$$

 $i = 1,..., m.$

Пусть *игрок 2* применяет смешанную стратегию *у* против чистой стратегии *і игрока 1:*

Смешанная стратегия игрока 2:
$$\eta_1 \quad \eta_2 \quad ... \quad \eta_n$$
 Чистые стратегии игрока 1:
$$2 \quad \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ m \quad a_{m1} \quad a_{m2} \quad ... \quad a_{mn} \end{vmatrix}$$

Проигрыш игрока 2 должен быть не больше, чем v.

Имеем систему неравенств:

$$\begin{cases} a_{11}\eta_{1} + a_{12}\eta_{2} + \dots + a_{1n}\eta_{n} \leq v \\ a_{21}\eta_{1} + a_{22}\eta_{2} + \dots + a_{2n}\eta_{n} \leq v \\ \vdots \\ a_{m1}\eta_{1} + a_{m2}\eta_{2} + \dots + a_{mn}\eta_{n} \leq v \end{cases}$$

Pазделим обе части на v > 0

и введем обозначение:

$$q_j = \frac{\eta_j}{v}$$

⇒ Система примет вид:

(Система ограничений ЗЛП)

$$\begin{cases} a_{11}q_1 + a_{12}q_2 + \dots + a_{1n}q_n \le 1 \\ a_{21}q_1 + a_{22}q_2 + \dots + a_{2n}q_n \le 1 \\ \vdots \\ a_{m1}q_1 + a_{m2}q_2 + \dots + a_{mn}q_n \le 1 \end{cases}$$

(Переменные ЗЛП)

$$q_j = \frac{\eta_j}{v}, j = 1,...,n, \Rightarrow$$

 $\Rightarrow \eta_j = v \cdot q_j, j = 1,...,n.$

По свойству вероятностей:

$$\sum_{j=1}^{n} \eta_{j} = 1 \Leftrightarrow \sum_{j=1}^{n} v \cdot q_{j} = 1 \Leftrightarrow \sum_{j=1}^{n} q_{j} = \frac{1}{v}$$

Игрок 2 минимизирует свой проигрыш ⇒

стремиться минимизировать цену игры, т.е.

$$v \to \min \Rightarrow \frac{1}{v} \to \max$$

<mark>Целевая функция:</mark>

$$\frac{1}{v} = \sum_{j=1}^{n} q_j \to \max$$

Задача линейного программирования

<mark>Переменные решения:</mark>

<mark>Ограничения:</mark>

$$q_{j} = \frac{\eta_{j}}{v}, j = 1,...,n$$

$$W = \sum_{j=1}^{n} q_j \to \max,$$

$$\begin{cases} a_{11}q_1 + a_{12}q_2 + \dots + a_{1n}q_n \le 1 \\ a_{21}q_1 + a_{22}q_2 + \dots + a_{2n}q_n \le 1 \\ \vdots \\ a_{m1}q_1 + a_{m2}q_2 + \dots + a_{mn}q_n \le 1 \end{cases}$$

Условие неотрицательности

$$q_{j} \ge 0,$$
 $j = 1, ..., n.$

Пара двойственных ЗЛП

$$L = \sum_{i=1}^{m} p_i \rightarrow \min$$

$$\sum_{i=1}^{m} a_{ij} p_{i} \ge 1, \quad j = 1, ..., n,$$

$$p_{i} \ge 0, i = 1,...,m.$$

где
$$p_{i}=rac{\xi_{i}}{v},$$

$$a v = \frac{1}{L_{\min}} \left(= \frac{1}{W_{\max}} \right)$$

$$W = \sum_{j=1}^{n} q_j \rightarrow \max$$

$$\sum_{j=1}^{n} a_{ij} q_{j} \leq 1, \quad i = 1, ..., m,$$

$$q_{j} \ge 0, \ j = 1,...,n.$$

где
$$q_j = \frac{\eta_j}{v}$$

$$u = \frac{1}{W_{\text{max}}} \left(= \frac{1}{L_{\text{min}}} \right)$$

Решение матричных игр с помощью ЛП

- 1. Проверка на наличие *седловой точки*. (Если есть игра решается в чистых стратегиях.)
- 2. Если **не все** элементы платежной матрицы *положительны,* прибавим ко всем элементам константу:

$$M > \max_{i,j} \left| a_{ij} \right|$$

(при этом *v тоже возрастет* на *M*)

3. Решение пары двойственных ЗЛП:

$$L=\sum_{i=1}^m p_i o \min,$$
 $\sum_{i=1}^m a_{ij}p_i\geq 1,\quad j=1,...,n,$ $p_i\geq 0,\ i=1,...,m.$ где $p_i=rac{\xi_i}{V},$ $v=rac{1}{L_{\min}}igg(=rac{1}{W_{\max}}igg)$

$$W=\sum_{j=1}^n q_j o \max,$$
 $\sum_{j=1}^n a_{ij}q_j\le 1,\quad i=1,...,m,$ $q_j\ge 0,\quad j=1,...,n.$ где $q_j=rac{\eta_j}{v}$ a $v=rac{1}{W_{\max}}igg(=rac{1}{L_{\min}}igg)$

Пример «Камень, ножницы, бумага»

$$L = p_1 + p_2 + p_3 \rightarrow \min$$

$$2p_1 + p_2 + 3p_3 \ge 1$$

$$3p_1 + 2p_2 + p_3 \ge 1$$

$$p_1 + 3p_2 + 2p_3 \ge 1$$

$$p_i \ge 0, \quad i = 1, 2, 3$$

$$W = q_1 + q_2 + q_3 \rightarrow \max$$

$$2q_1 + 3q_2 + q_3 \le 1$$

$$q_1 + 2q_2 + 3q_3 \le 1$$

$$3q_1 + q_2 + 2q_3 \le 1$$

$$q_i \ge 0, \quad i = 1, 2, 3$$

Пример «Камень, ножницы, бумага»

$$L = p_1 + p_2 + p_3 \rightarrow \min$$

$$2p_1 + p_2 + 3p_3 \ge 1$$

$$3p_1 + 2p_2 + p_3 \ge 1$$

$$p_1 + 3p_2 + 2p_3 \ge 1$$

$$p_i \ge 0, \quad i = 1, 2, 3$$

$$p_{i} = \frac{\xi_{i}}{v} \Longrightarrow \xi_{i} = p_{i}v$$

$$v = \frac{1}{L_{\min}}$$

Решение в ЕхсеІ

			План						
		p1	0,166667						
		p2	0,166667						
		p3	0,166667						
							Итого		Правая часть
Левая час	сть огра	ничений		2	3	1	1	>=	1
				1	2	3	1	>=	1
				3	1	2	1	>=	1
Целевая (функция		0,5						
				11 —	1 _				
Обратна.	я величи	на	2	v = -					
(цена игр	ы)				L_{\min}				
	Смеша	нная ст	ратегия:	0,33333		<u> </u>			
				0,33333		$\xi_i = p$	$_{i}\mathcal{V}$		
				0,33333			ι		

Отчёт по устойчивости

Microsoft Excel 14.0 Отчет об устойчивости Лист: [Камень_ножницы_бумага.xlsx]Лист1

Отчет создан: 17.09.2019 11:37:27

Ячейки переменных

			Окончательное	Приведенн.	Целевая функция	Допустимое	Допустимое
Ячейка	1	Имя	Значение	Стоимость	Коэффициент	Увеличение	Уменьшение
\$D\$3	р1 План		0,166666667	0	1	0,6	0,428571429
\$D\$4	р2 План		0,166666667	0	1	0,6	0,428571429
\$D\$5	р3 План		0,166666667	0	1	0,6	0,428571429

Ограничения

		Окончательное	Тень	Ограничение	Допустимое	Допустимое
Ячейка	Имя	Значение	Цена	Правая сторона	Увеличение	Уменьшение
\$I\$7	Левая часть ограничений Итого	1	0,166666667	1	0,6	0,428571429
\$1\$8	Итого	1	0,166666667	1	0,6	0,428571429
\$1\$9	Итого	1	0,166666667	1	0,6	0,428571429

Решение для второго игрока

		План							
р	1	0,166667							
	2	0,166667							
р	3	0,166667							
						Итого		Правая ча	СТЬ
Певая часть огран	ичений		2	3	1	1	>=	1	
			1	2	3	1	>=	1	
			3	1	2	1	>=	1	
Јелевая функция		0,5							
Обратная величина		2				Для вто	рого игрока		
							Тень		$q_j = \eta_j \iota$
							Цена		
Смешанная страте	егия:		0,333333			решение	0,166667		0,333333
			0,333333				0,166667		0,333333
			0,333333				0,166667		0,333333

«Камень, ножницы, бумага». Решение.

$$x^* = \left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$$
$$y^* = \left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$$
$$v = 2 - 2 = 0$$

Защита курсовой работы (ОЧНО!)

- 4931 23.12.2021 3 пара (по расписанию)
- 4933, 4936 24.12.2021 (по расписанию)
- 4232 23.12.2021 4 пара (окно!)

Тест № 1

(для тех, кто не писал!)

В пятницу, 17.12.2021:

- 4931, 4932, 4933 на 2 паре (в 11:10)
- 4936 на 4 паре.

На кафедре (возможно, 23-16)

СООБЩИТЬ О СВОЁМ ЖЕЛАНИИ ЗАРАНЕЕ!!!