Examen No. 1 - Paralelo A

NOMBRE:	CALIFICACIÓN:	
TOTAL CONTROL		_

Asignatura: Leyes Físicas III - Fecha: 4 de mayo de 2018 - Créditos: 10 puntos a ponderarse.

La evaluación consiste en resolver los siguientes ejercicios y problemas de aplicación relacionados a los conceptos revisados en las Unidades 1, 2, y 3 del curso. Exprese las respuestas numéricas en unidades del Sistema Internacional (SI).

1. **(2 puntos)**

Deduzca una expresión para la ventaja mecánica del polipasto de la figura a continuación.

2. **(2 puntos)**

- (a) Calcule la cantidad de movimiento lineal de una bicicleta de $10\,\mathrm{kg}$ de masa, que se mueve horizontalmente con una velocidad de $9\,\mathrm{\vec{l}}\,\mathrm{km}\,\mathrm{h}^{-1}$.
- (b) ¿Por cuánto tiempo se debe aplicar una fuerza constante $\vec{F} = -8\,\vec{i}\,N$ sobre la bicicleta del literal (a), para que su cantidad de movimiento disminuya a $\vec{p} = -15\,\vec{i}\,\text{kg}\,\text{m}\,\text{s}^{-1}$?

3. **(2 puntos)**

Sobre una partícula que se mueve del punto $x_0 = 0$ m al punto $x_f = 2$ m, a lo largo del eje X, actúa una fuerza asociada a la función de energía potencial $U(x) = x^3 - 3x^2$ [J].

- (a) Deduzca una expresión para la fuerza $\vec{F}(x)$ aplicada sobre la partícula, y esboce un gráfico de F(x) versus x para el intervalo $x \in [0; 2]$ m.
- (b) ¿Qué trabajo neto realiza la fuerza \vec{F} sobre la partícula, cuando ésta se mueve del punto $x_A=0.5\,\mathrm{m}$ al punto $x_B=1.8\,\mathrm{m}$?

NOMBRE:
NCJ VIIDIN.14

4. (2 puntos)

Un bloque de 4 kg de masa parte desde el reposo y desliza a lo largo de un plano que tiene 30° de inclinación con respecto a la horizontal (ver la figura). Sobre el plano inclinado y de forma paralela al mismo se ha colocado un resorte de constante recuperadora $k = 500 \,\mathrm{N}\,\mathrm{m}^{-1}$ cuya misión es parar el bloque.

- (a) Determinar la máxima deformación del resorte si el coeficiente de rozamiento entre el bloque y el plano es $\mu_k = 0.2$.
- (b) ¿Cuál sería la máxima deformación del resorte si no existiese rozamiento?

5. **(2 puntos)**

Un pequeño bloque de masa m se suelta desde el punto A sobre la pista lisa de la figura. Determinar en función del radio R:

- (a) El valor de la altura H para que el bloque se separe de la pista en el punto E.
- (b) La fuerza de reacción de la pista sobre el bloque en el punto D.

