Raccolta domande di algoritmi

2024 v1.1

1. Bucket sort è applicabile se
V I dati sono distribuiti uniformemente in un rettangolo di lato 10.
$\underline{\hspace{0.5cm}}$ I dati sono distribuiti uniformemente tra i naturali dell'intervallo $[1,100]$.
I dati sono distribuiti uniformemente nel cerchio goniometrico.
I dati sono distribuiti nel piano cartesiano secondo una gaussiana.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
2. La soluzione all'equazione di ricorrenza $T(n)=4T(\frac{n}{2})+\frac{n}{2}$ è
$O(\log n)$ $O(n)$ $O(n \log n)$ $O(n^2)$ $O(5n^2)$
3. Il problema della selezione del mediano di un array appartiene a
$O(\log n)$ $\Omega(n)$ $\Theta(n \log n)$ $O(n^2)$ $\Omega(\frac{n^2}{\log n})$
4. Indicare la veridicità di ognuna delle seguenti affermazioni. V Un albero di cammini minimi è un albero di copertura.
La complessità dell'algoritmo di Floyd–Warshall è in $\Omega(V^2)$. $\qquad \qquad \qquad$
_ F Il problema dei cammini minimi ammette soluzione solo se non esistono cicli con un arco
di costo negativo
La complessità della visita in ampiezza in un grafo completo è $\Theta(V^2)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
quadrato del numero di nodi nel sotto albero radicato n x.
5. Indicare la veridicità di ognuna delle seguenti affermazioni.
_ F _ Quick sort è stabile.
F Bucket sort ordina in loco.
_ ✓ Radix sort è stabile.
Heap sort ordina in loco.
Merge sort è stabile ma non ordina in loco.
6. La soluzione all'equazione di ricorrenza $T(n)=8T(\frac{n}{2})+\frac{n^2}{2}$ è
$O(\log n)$ $O(n \log^2 n)$ $O(n^2 \log n)$ $O(n^3)$ $O(5n^3)$
7. Il problema della selezione dell'i–esimo elemento di un array appartiene a
$O(\log n)$ $\Omega(n)$ $\Theta(n \log n)$ $O(n^2)$ $\Omega(\frac{n^2}{\log n})$
8. Indicare la veridicità di ognuna delle seguenti affermazioni.
Le matrici di adiacenza sono particolarmente indicate per rappresentare grafi sparsi.
$\underline{\hspace{0.5cm}}$ É possibile verificare se un grafo orientato è aciclico in $\Theta(V^2)$.
V É possibile verificare se un grafo non orientato è bipartito in $\Theta(V+E)$.

2)
$$T(n) = a + (\frac{1}{2}) \cdot \frac{n}{2}$$
 $Moster Thm$
 $a = 4 \quad b = 2$
 $F(n) = \frac{n^2}{2}$
 $\frac{h}{2} \in O(n^{2-2})$
 $\frac{h}{2} \in O(n) \rightarrow T(n) \in \Theta(n^{\log 4}) \in \Theta(n^2)$
 $\frac{h}{2} \in O(n) \rightarrow T(n) \in \Theta(n^{\log 4}) \in \Theta(n^2)$
 $\frac{h}{2} \in O(n) \rightarrow T(n) \in \Theta(n^{\log 4}) \in \Theta(n^2)$
 $\frac{h}{2} \in O(n) \rightarrow T(n) \in \Theta(n^{\log 4}) \in \Theta(n^2)$
 $\frac{h}{2} \in O(n) \rightarrow T(n) \in \Theta(n^{\log 4}) \in \Theta(n^2)$
 $\frac{h}{2} \in O(n) \rightarrow T(n) \in \Theta(n^2)$
 $\frac{h}{2} \in O(n^2) = \frac{n^2}{2}$
 $\frac{h}{2} \in O(n^2) = \frac{n^2}{2}$

 $\frac{h^2}{5} \in O(n^{3-\epsilon}) \rightarrow T(h) \in \mathcal{O}(h^3)$

	E L'algoritmo di Dijkstra per i cammini minimi è applicabile solo se non esistono cicli negativi.
	L'algoritmo di Johnson per i cammini minimi fra tutte le coppie produce risposte corrette solo se applicato a grafi sparsi.
9.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	F Non esistono algoritmi deterministici lineari per il problema della selezione.
	Se bucket sort è applicabile, allora anche radix sort è applicabile.
	$\underline{\hspace{0.5cm}}$ Il problema della moltiplicazione di due matrici appartiene ad $O(n^5)$.
	Quick sort funziona in tempo pessimo quadratico.
	É possibile unire due heap binomiali in tempo logaritmico.
10.	La soluzione dell'equazione di ricorrenza $T(n) = 8T(\frac{n}{2}) + \frac{n^3}{2}$ è
	Indicare la veridicità di ognuna delle seguenti affermazioni.
	Un grafo è rappresentabile con liste di adiacenza solo se è connesso.
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	L'algoritmo del simplesso viene usato per risolvere problemi di programmazione lineare.
12.	É possibile ordinare un array di n numeri compresi tra 1 ed n^2 in
	$O(\log n)$ $O(n)$ $O(n \log n)$ $O(n^2)$ $O(n^2)$
13.	La soluzione all'equazione di ricorrenza $T(n)=2T(\frac{n}{2})+\frac{n}{2}$ è $\frac{n}{2}$ \in $O(n)$ $$ $O(n)$
	$O(\log n)$ $O(n)$ $O(n \log n)$ $O(n^2)$ $O(\frac{n^2}{\log n})$
14.	Il problema dell'ordinamento appartiene a
	$O(\log n)$ $\Omega(n)$ $\Theta(n \log n)$ $O(n^2)$ $\Omega(\frac{n^2}{\log n})$
15.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	F Bucket sort è applicabile solo quando i dati sono distribuiti uniformemente.
	Se radix sort è applicabile, allora è applicabile anche counting sort.
	F Il problema dei cammini minimi ammette soluzione solo se non esistono cicli con un arco
	di costo negativo.
	L'algoritmo di Ford–Fulkerson funziona solo se non vi sono archi con capacità ().
	F In un RB–albero è possibile mantenere in tempo logaritmico un campo che indica il numero di nodi dell'intero albero con chiave minore della chiave del nodo corrente.

16.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	É possibile ordinare un array di numeri razionali in tempo cubico.
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	limitato.
	Bucket sort non è stabile
	V Heap sort ordina in loco.
	É possibile trovare il mediano di un array non ordinato in tempo logaritmico.
17.	La soluzione all'equazione di ricorrenza $T(n) = 27T(\frac{n}{3}) + \frac{n^2 \log n}{2}$ è
	$O(\log n)$ $\Omega(n \log^2 n)$ $O(n^2 \log n)$ $O(n^3)$ $O(5n^3)$
18.	Il problema di verificare se un grafo è bipartito appartiene a
	$O(V^2)$ $\Omega(VE)$ $O(V \log E)$ $\Omega(E^2)$
19.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	Le matrici di adiacenza non possono essere usate per rappresentare grafi sparsi.
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
	F Il problema del flusso massimo non può essere espresso come problema di programma-
	zione lineare.
20.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	In un grafo aciclico esiste al più un nodo che può raggiungere tutti gli altri nodi.
	La chiusura transitiva di un grafo aciclico è un grafo aciclico.
	Se un grafo è orientato, allora la sua matrice di adiacenza è simmetrica.
	In una rete di flusso un flusso è massimo se e solo se non esistono tagli non saturi.
	F Se un algoritmo funziona sui grafi orientati allora funziona anche sui grafi non orientati.
21.	La soluzione all'equazione di ricorrenza $T(n)=10T(\frac{n}{2})+\frac{n^3}{2}$ è
	$O(\log n)$ $\Omega(n \log^2 n)$ $O(n^2 \log n)$ $O(n^3)$ $\Theta(5n^3)$
22.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	\square Quick sort ordina in tempo pessimo $n \log n$.
	F Bucket sort si applica solo su dati distribuiti uniformemente.
	Radix sort è stabile ma non ordina in loco.

17.
$$T(n) = 27 T(\frac{h}{3}) + \frac{n^{2} \log n}{2}$$

$$0 = 27$$

$$b = 3$$

$$|n|_{0} = (n^{3} - \epsilon) (\epsilon = 1)$$

$$\frac{n^{2} \log n}{2} \in O(n^{3} - \epsilon) (\epsilon = 1)$$

$$T(h) \in \Theta(n^3)$$

$$T(h) = toT\left(\frac{n}{2}\right) + \frac{n^3}{2}$$

$$0.=10$$
 $log_2 10 \approx 3.3$ $b=2$

$$\frac{n^3}{2} \in O(n^{3.3-\epsilon}) \rightarrow T(n) \in (n^{3.3})$$

	Heap sort non è stabile
	V É possibile ordinare in $O(n \log(\log n))$ un array di numeri tra -100 e 1000 .
23.	La soluzione all'equazione di ricorrenza $T(n) = 3T(\frac{n}{3}) + \frac{n^2}{2}$ è $2 \in \Omega(N^{1+\epsilon}) \rightarrow T(N) \in \Theta(N^2)$ $O(\log n) \qquad O(n \log^2 n) \qquad O(n^2 \log n) \qquad O(2n^3) \qquad \Theta(3n^3)$
24.	Il problema della costruzione dell'albero dei cammini minimi di un grafo, dove il costo di un cammino è dato dal doppio del numero dei suoi archi, appartiene a
	$O(V^2)$ $\Omega(VE)$ $\Theta(V+E)$ $O(V\log E)$ $\Omega(E^2)$
25.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	Le matrici di adiacenza possono essere usate solo per rappresentare grafi completi.
	$\underline{\hspace{0.5cm} \bigvee}$ É possibile verificare se un grafo orientato è aciclico in $O(V^{2.5})$.
	Tutti i grafi bipartiti contengono un numero pari di nodi.
	In una rete di flusso un flusso è massimo se e solo se non esistono cammini aumentanti.
	L'algoritmo di Johnson per i cammini minimi fra tutti le coppie appartiene a $O(V(V+E))$
26.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	F Se in un grafo tutti gli archi hanno lo stesso peso, positivo o negativo, allora l'albero dei
	cammini minimi può essere calcolato dall'algoritmo di visita in ampiezza.
	$\underline{\hspace{0.5cm}}$ É possibile trovare un ciclo in un grafo sparso, se esiste, in $\Theta(V+E)$.
	F Il problema dei cammini di lunghezza massima tra tutti i nodi di un grafo ha soluzione solo su grafi senza pesi positivi.
	Se in una rete di flusso troviamo più di un taglio non saturo allora esiste un cammino
	aumentante.
	In un grafo non orientato le componenti fortemente connesse non sono più numero delle componenti connesse.
27.	La soluzione all'equazione di ricorrenza $T(n) = 8T(\frac{n}{2}) + 8\log(\frac{n^3}{2})$ è
	$O(\log n)$ $\underline{\Omega(n \log^2 n)}$ $O(n^2 \log n)$ $\underline{O(n^3)}$ $\underline{\Theta(5n^3)}$
28.	Il problema della selezione del mediano di un array ordinato appartiene a
	$\underbrace{O(\log n)}$ $\Omega(\frac{n}{\log n})$ $\Theta(n \log n)$ $\underbrace{O(n^2)}$ $\Omega(\frac{n^2}{\log n})$
29.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	In un grafo connesso un albero dei cammini minimi è anche un albero di copertura,
	sebbene non necessariamente di costo minimo.
	$\underline{\hspace{0.5cm}}$ É possibile verificare se un grafo orientato è aciclico in $\Theta(V+V^2)$.
	$\underline{\hspace{0.5cm}}$ É possibile verificare se un grafo non orientato è bipartito in $\Theta(V+E)$.

$$T(n)=8T(\frac{n}{2})+3\log(\frac{n^3}{2})$$
 $0=9$
 $10929=3$
 $6=2$
 $8109\frac{n^3}{2}=8109u^3-1092=24109u-1092$
 $109u \in O(n^{3-\epsilon}) \rightarrow T(u) \in \Theta(u^3)$

	L'algoritmo di Dijkstra per i cammini minimi è applicabile solo se non esistono cicli negativi.
	L'algoritmo di Johnson per i cammini minimi fra tutte le coppie non produce risposte corrette quando applicato a grafi completi.
30.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	Il problema dello zaino è risolvibile con programmazione dinamica solo se per ogni sostanza si impone di usare tutto o niente.
	F É possibile calcolare efficientemente sotto sequenze massimali comuni di due sequenze mediante tecnica Greedy.
	$\sqrt{}$ Il problema della moltiplicazione di due matrici quadrate appartiene a $O(n^4)$.
	É possibile unire due RB–alberi in tempo logaritmico.
	L'algoritmo merge sort è una applicazione della tecnica del divide et impera.
31.	É possibile ordinare in tempo asintoticamente lineare
	V Un array di interi nell'intervallo $[-7,2]$.
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	$\sqrt{}$ Un array di razionali dell'intervallo $[0,0.5]$ con numeratore limitato.
	F Un array di razionali con denominatore limitato.
	Un array di byte. $ \begin{array}{c} $
32.	La soluzione all'equazione di ricorrenza $T(n) = 4T(\frac{n}{2}) + 4n^{1.5}\sqrt{n}$ è n^2 $n^2 = n^2 = 0$
	Un array di byte. La soluzione all'equazione di ricorrenza $T(n) = 4T(\frac{n}{2}) + 4n^{1.5}\sqrt{n}$ è $n^{\frac{3}{2}} \cdot n^{\frac{1}{2}} = n^{\frac{3}{2}} = n^{2}$ $\in \Theta(n^{2} \log n)$ $O(\log n)$ $O(\log n)$ $O(\log n)$ $O(n^{2} \log n)$ $O(n^{3})$ $O(n^{3} \log n)$ $O(n^{3} \log n)$
	Il problema del matching massimale su grafo bipartito appartiene a
	$O(V+E)$ $\underline{O(V(V+E))}$ $\Theta(V^2+E)$ $O(VE(V+E))$
34.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	Il problema dei cammini di lunghezza minima con sorgente singola è esprimibile come problema di cammini di costo minimo in cui tutti gli archi hanno costo 0.
	$\underline{\hspace{0.5cm} V}$ É possibile verificare se un grafo non orientato è connesso in $\Theta(V+E)$.
	In un grafo completo i cammini di lunghezza minima tra ogni coppia di nodi distinti hanno lunghezza 1.
	$\underline{\hspace{0.1cm}}$ É possibile unire due RB–alberi in $O(n\log n)$.
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
35.	É possibile ordinare in tempo asintoticamente lineare
	$\begin{tabular}{c} {\sf F} \\ {\sf Un} \ {\sf array} \ {\sf di} \ {\sf reali} \ {\sf nell'intervallo} \ [0,1]. \end{tabular}$
	\vdash Un array di razionali dell'intervallo $[0, 100]$ con numeratore limitato.

	$\underline{\hspace{0.1cm} \bigvee\hspace{0.1cm}}$ Un array di interi nell'intervallo $[-100,100].$
	Un array di colori rappresentati a 32 bit.
	$_$ Un array di bit. $∞_2 4=2$
36.	La soluzione all'equazione di ricorrenza $T(n) = 4T(\frac{n}{2}) + 4n^2$ è $n^2 \in \Theta(n^2)$ $O(\log n) \qquad \underbrace{O(n \log^2 n)} \qquad O(\frac{n^3}{\log n}) \qquad \underbrace{O(n^3)} \qquad \underbrace{O(5n^3)} \qquad \underbrace{O(5n^3)} \qquad \underbrace{O(n^2 \log n)}$
	$O(\log n)$ $\underline{\Omega(n \log^2 n)}$ $\underline{O(\frac{n^3}{\log n})}$ $\underline{O(n^3)}$ $\underline{\Theta(5n^3)}$ $\underline{T} \in \Theta(n^2 \log n)$
37.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	Non è possibile trovare una parentesizzazione ottimale per il prodotto di matrici usando
	una tecnica di programmazione dinamica.
	$\underline{\hspace{0.1in}}$ Il calcolo delle componenti fortemente connesse di un grafo appartiene a $\Theta(V+E)$.
	F In un grafo completo i cammini di lunghezza minima tra ogni coppia di nodi distinti hanno lunghezza superiore a 1.
	$\underline{\hspace{0.1cm} V}$ È possibile unire due RB–alberi in $\Theta(n \log n)$.
	$\underline{\hspace{0.5cm}\bigvee\hspace{0.5cm}}$ È possibile rimuovere tutte le radici di uno heap binomiale in tempo $O(\log^2 n)$.
38.	É possibile ordinare in tempo asintoticamente lineare
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	$\underline{\hspace{0.5cm}}$ Un array di razionali dell'intervallo $[1,100]$ con numeratore limitato.
	$\underline{\hspace{0.5cm}}$ Un array di interi nell'intervallo $[0, 100]$.
	Un array di n interi con valori compresi tra $-n$ e $2n$.
	Un array di colori rappresentati a 32 bit. $l \circ 9_4 l = \frac{3}{2}$
39.	La soluzione all'equazione di ricorrenza $T(n) = 8T(\frac{n}{4}) + 4n^2 \log n$ è
	Un array di colori rappresentati a 32 bit. $\log_4 8 = \frac{3}{2}$ La soluzione all'equazione di ricorrenza $T(n) = 8T(\frac{n}{4}) + 4n^2 \log n$ è $4n^2 \log n \in \mathcal{Q}\left(N^{\frac{3}{2}+\varepsilon}\right)$ $\frac{O(n^3 \log n) - \Omega(n \log^2 n)}{\Gamma \in \Theta(n^2 \log n)} = O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})$
40.	Stabilire se un grafo è bipartito appartiene a
	$O(V+E)$ $O(V+E)\log V$ $O(V+E)\log V$ $O(VE(V+E))$
41.	Indicare la veridicità di ognuna delle seguenti affermazioni.
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	In un grafo completo di un solo nodo non esistono archi.
	É possibile unire due RB–alberi in tempo logaritmico nel numero dei loro nodi.

 $\underline{\hspace{0.5cm} \bigvee \hspace{0.5cm}}$ É possibile unire due heap binomiali in O(n)