Module:3 Transistors 5 hours

Bipolar Junction Transistor (BJT) - Device structure and physical operation, Concept of CB, CE and CC Configuration, Transistor as a Switch, - Metal-Oxide Field Effect Transistor (MOSFET) - Device Structure, Mode of operation and Characteristics, MOSFET configurations (CS, CD and CG).

https://www.youtube.com/watch?v=-VwPSDQmdjM

Base - Very Thin

Different Regions of Operation

Active Region

Cut-off Region

Saturation Region

Different Regions of Operation

Active Region

Different Regions of Operation

VENVB

VC>VB

Cut-off Region

Different Regions of Operation

VB>VE

VB>VC

Saturation Region

Different Regions of Operation

VE>VB

VB>VL

Active Region

VEZUB>VC

Different Regions of Operation

Active Region Amplification

Cut-off Region

Switching

Saturation Region

BJT Configuration

Common Emitter

Common Collector

Common Base

Current in BJT

Current in BJT

Current in BJT

BJT Common Emitter Configuration

Input Characteristics

VBE, IB

Output Characteristics

VCE, Ic

Input Characteristics

Moderate Current Gain

Moderate Voltage Gain

High Power Gain

Moderate Input Impedance

Moderate Output Impedance

BJT

Common Collector Configuration

Input Characteristics

VCB, IB

Output Characteristics

VCE, IE

Output Characteristics

Input Characteristics

BJT Common Base Configuration

NPN Transistor

NPN Transistor

Forward Bias

PNP Transistor

Forward Bias

Forward Bias

NPN Transistor

Input Characteristics

te, VBE

Forward Bias

Reverse Bias

Output Characteristics

Input Characteristics

Input Characteristics

NPN Transistor

Input Characteristics

Output Characteristics

Forward Bias

Output Characteristics

Output Characteristics

NPN Transistor

NPN Transistor

NPN Transistor

Voltage Amplification

Transfer + Resistor = Transistor

A common base transistor amplifier has an input resistance of 20 Ω and output resistance of 100 k Ω . The collector load is 1 k Ω . If a signal of 500 mV is applied between emitter and base, find the voltage amplification

https://electronicspost.com/solved-problemson-transistor/ A common base transistor amplifier has an input resistance of 20 Ω and output resistance of 100 k Ω . The collector load is 1 k Ω . If a signal of 500 mV is applied between emitter and base, find the voltage amplification

Input current,
$$I_E = \frac{\text{Signal}}{R_{in}} = \frac{500 \text{ mV}}{20 \Omega} = 25 \text{ mA}$$
. Since α_{ac} is nearly 1, output current, $I_C = I_E = 25 \text{ mA}$.

Output voltage,
$$V_{out} = I_C R_C = 25 \text{ mA} \times 1 \text{ k}\Omega = 25 \text{ V}$$

Voltage amplification, $A_v = \frac{V_{out}}{\text{signal}} = \frac{25 \text{ V}}{500 \text{ mV}} = 50$

In a common base connection, current amplification factor is 0.9. If the emitter current is 1mA, determine the value of base current.

In a common base connection, current amplification factor is 0.9. If the emitter current is 1mA, determine the value of base current.

Now
$$\alpha = \frac{I_C}{I_E}$$

$$\sigma = \alpha I_E = 0.9 \times 1 = 0.9 \text{ mA}$$

$$I_C = \alpha I_E = 0.9 \times 1 = 0.9 \text{ mA}$$

$$I_E = I_B + I_C$$

$$\therefore \text{Base current, } I_B = I_E - I_C = 1 - 0.9 = 0.1 \text{ mA}$$

In a common base connection, α = 0.95. The voltage drop across 2 k Ω resistance

which is connected in the collector is 2V. Find the base current.

$$I_C = 2 \text{ V}/2 \text{ k}\Omega = 1 \text{ mA}$$
Now
$$\alpha = I_C/I_E$$

$$I_E = \frac{I_C}{\alpha} = \frac{1}{0.95} = 1.05 \text{ mA}$$
Using the relation, $I_E = I_B + I_C$

$$I_B = I_E - I_C = 1.05 - 1$$

$$= 0.05 \text{ mA}$$