APPLYING NER IN MEDICINE RECORDS

GROUP 4

BI12-452 Tran The Trung BI12-059 Phan Thanh Binh BA11-093 Tran Minh Trung BI12-263 Chau Phan Phuong Mai

TABLE OF CONTENTS

01.

INTRODUCTION

02.

DATASET

03.

METHODS

04.

PERFORMANCE EVALUATION 05.

FUTURE WORKS

INTRODUCTION

Electronic Heath Records

- Primary source of information for clinicians tracking
- Bring significant advancement for the downstream task

EXAMPLES

- The reason for administering drugs
- Previous disorders of the patient
- The outcome of past treatments

MANUALLY ABSTRACTION

- Highly expensive
- Time-consuming
- Error prone process

OBJECTIVES

Implement a model which can automate extract the medical information from EHRs from two Name Entity Recognition approaches:

- Sequence labelling-based
- Span-based

Save effort, time & money

OBJECTIVES

transportation.

When Sebastian Thrun Person started at Google ORG in 2007 DATE, few people outside of the company took him seriously. "I can tell you very senior CEOs of major American NORP car companies would shake my hand and turn away because I wasn't worth talking to," said Thrun Person, now the co-founder and CEO of online higher education startup Udacity, in an interview with Recode ORG earlier this week DATE.

A little less than a decade later DATE, dozens of self-driving startups have cropped up while automakers

Example for the model's output

around the world clamor, wallet in hand, to secure their place in the fast-moving world of fully automated

MACCROBAT DATASETS

- Source: Huggingface
- 200 source documents
- Tag labels: 41 special terms

[In, March, 2009, ,, a, 21, -, year, -, old, man, was, admitted, to, another, institution, with, symptoms, of, intermittent, fever, ,, headache, ,, polyarthralgias, ,, skin, rash, over, the, trunk, ,, and, petechiae, in, the, fingers, and, palms, ., \n, The, patient, was, previously, healthy, ,, had, no, history, of, drug, abuse, ,, and, took, no, regular, medication, ., \n, He, also, had, no, pets, and, had, not, traveled, recently, ., \n, He, had, been, in, his, usual, state, of, health, until, one, month, before, admission, ,, when, intermittent, high, fever, developed, (, maximum, axillary, temperature, ,, >, 39, ...]

Example of the tokenized document

- Input: List of tokenized words
- Output: Label of words in BIO POS tagging
- Train set: 90%, Test set: 10%

Example of the POS tagging

MACCROBAT DATASETS

Histogram of entities in the dataset

MACCROBAT DATASETS

WordClouds of words in the dataset

DATA PREPROCESSING: Tokenize

Byte Pair Encoding (BPE)

- Operates on character or byte level
- Resolve the problem of Unknown tokens

Sentence: "It is raining."						
Sub-word level tokenization						
It is rain ing .						

Example of word tokenization

Name Entity Recognition Approachs

• • •

Sequence labelling-based

Bi-LSTM-CNN-CRF architecture

The architechture of Bi-LSTM-CNN-CRF

Input: A squence of words

Output: Tag lables for each words

Sequence labeling based:

- Assigns a label to each word or token indicating its entity type in BIO format
- Processes input sequentially

Convolution Neural Network

Char Representation process

Long Short-Term Memory

Gaining model context information of each word

Conditional Random Field

$$p(Y|X) = \frac{\exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)}{\sum_{Y' \in \mathscr{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)}$$

Jointly decode labels for the whole sentence

• • •

Span-based

BERT & its variants

BERT

Input: A squence of words

Output: Label Entity of whole span

Span-based:

- Predicts the start and end positions of each entity directly.
- All spans or sentences are executed in parallel

BERT architechture

BERT

14

DistilBERT

RoBERTa

- Changes some
 hyperparameters (peak
 learning rate, batch sizes,
 Adam epsilon, ...)
- Implements some other optimizations (dynamic masking, modification in NSP task, ...)

DeBERTa

- Introduces a disentangled selfattention mechanism
- Embeds the absolute position information
- Implements dynamic masking

04.

Performance Evaluation

Performance Evaluation of different models

	CNN-LSTM-CRF	BERT	DistilBERT	RoBERTa	DeBERTa
F1 score	0.865	0.818	0.782	0.82	0.84

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

F1 score formula

INFERENCE

Input_text:

"A 63-year-old woman with no known cardiac history presented with a sudden onset of dyspnea requiring intubation and ventilatory support out of the hospital. She denied preceding symptoms of chest discomfort, palpitations, syncope, or infection. The patient was afebrile and normotensive, with a sinus tachycardia of 140 beats/min."

```
Output_text:
[('63 year old', 'Age'),
('woman', 'Sex'),
('no known cardiac history', 'History'),
('presented', 'Clinical_event'),
('dyspnea', 'Sign_symptom'),
('intubation', 'Therapeutic_procedure'),
('ventilatory support', 'Therapeutic_procedure'),
('hospital', 'Nonbiological_location'),
('discomfort', 'Sign_symptom'),
('palpitations', 'Sign_symptom'),
('syncope', 'Sign_symptom'),
('infection', 'Sign_symptom'),
('afebrile', 'Sign_symptom'),
('normotensive', 'Sign_symptom'),
('tachycardia', 'Sign_symptom')]
```


05.

FUTURE WORKS

Find out different methods apart from 01 LLMs. 02 Spend more time on training models. Increase the number of detected entities by 03 training with others datasets. Focus more on in-depth data in the field of 04 medicine.

THANKS!

