

Tópicos de Ciências Exatas

ÁREA DO CONHECIMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS

2024/2

Retomando a atividade prática: Movimento de Queda Livre

Análise de dados obtidos

Encontrar a lei matemática que representa os dados obtidos:

(cada grupo desenvolve o exercício a partir dos dados registrados)

Encontrar a lei matemática que representa os dados obtidos:

$$y = an^{2} + bn + c$$

$$y = at^{2} + bt + c$$

$$y = at^{2} + bt + c$$

$$y = at^{2} + bt + c$$

- (2) $3,836 = 0.05^{2} + b.05 + 4,645$ 0,25a+0,5.b=-0,809
- 3) $0.516 = a.1^2 + b.1 + 4.645$ a+b=-4,129 entous: $\begin{cases} 0,25 \text{ at } 0,56 = -0,809 \\ \text{at } b = -4,129 \end{cases}$

$$\int -0.5a - 1b = 1.618$$

+ $\left(-0.5a - 1b = -4.129 \right)$

$$0.50 = -2.511$$
 $0 = -5.022$

$$a = -37020$$

$$a + b = -4,129 \Rightarrow -5,022+b = -4,129$$

$$|b = 0,893|$$

$$a = -5,022$$
 $b = 0,893$
 $c = 4,645$

$$e = 4,645$$

$$logo,$$
 $y = -5,022t + P,093t + 4,645$

Aplicações dos modelos quadráticos

em Ciências Exatas

Cinética Química

Relação entre a velocidade de reação e a concentração de reagente(s), em uma reação de 2ª ordem.

$$v = k [A]^2$$

Projeto de reatores

Determinação da conversão em reações de 2ª ordem.

Equilíbrio Químico

Composição no equilíbrio para a dissociação

$$CH_3COOH_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3COO^-_{(aq)} + H_3O^+_{(aq)}$$

	$\left[CH_3COOH_{(aq)} \right]$	$\left[CH_3COO^{-}_{(aq)}\right]$	$\left[H_3O^+_{(aq)}\right]$
Início	0,23	0	0
Equilíbrio	0,23 - x	X	x

$$K_{a} = \frac{\left[H_{3}O^{+}_{(aq)}\right]\left[CH_{3}COO^{-}_{(aq)}\right]}{\left[CH_{3}COOH_{(aq)}\right]}$$

Com K_a = 1,3.10⁻⁸
$$x^{2} + 1,3.10^{-8}x - 2,99.10^{-9} = 0$$

$$x = 5,46.10^{-5} \frac{mol}{L}$$

$$pH = 4,26$$

Modelos quadráticos também são muito comuns no estudo do movimento.

Movimento Retilíneo Uniformemente Variado (MRUV)

A aceleração é constante e a posição (x) é função quadrática do tempo (t).

$$x(t) = x_0 + v_0.t + \frac{1}{2}.a.t^2$$

Função horária da posição

Modelos quadráticos também são muito comuns no estudo do movimento.

Movimento de Queda Livre (MQL)

A aceleração é constante e igual a aceleração da gravidade (queda livre) e a posição/altura (y) é função quadrática do tempo (t).

$$y(t) = y_0 + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$$

Modelos quadráticos também são muito comuns no estudo do movimento.

Movimento Bidimensional

O movimento do eixo y possui aceleração gravitacional constante e a altura (y) é função

quadrática do tempo (t).

$$y(t) = y_0 + v_0.sen(\theta).t - \frac{1}{2}.g.t^2$$

Escoamentos

Perfil de velocidades em escoamentos internos no regime laminar

Escoamento laminar

$$u(r) = u_{m\acute{a}x} \left(1 - \frac{r^2}{R^2} \right)$$

$$u(r) = -\frac{u_{m\acute{a}x}}{R^2} r^2 + u_{m\acute{a}x}$$

onde:

 $u_{máx} \rightarrow velocidade máxima da corrente (m/s);$ $<math>R \rightarrow raio do tubo (m).$

Revisitando os Exercícios do TDE 2 (Parte II)

Exercício 01 – TDE 2

Parte II - Exercícios

Resolva as questões abaixo e assinale a alternativa correta:

1) Considere f(x) uma função do 2° grau tal que f(0) = 5 f(1) = 3 f(-1) = 9. Então f(2) é:

- a) 0
- b) 2
- c) 3
- d) -3
- e) -5

$$f(x) = \alpha x^2 + 6x + C$$

: cotroop ebrish itealus (*)

$$\begin{cases} a+b+5=3\\ a-b+5=9\\ a+b=-2\\ a-b=4 \end{cases}$$

$$f(0) = \alpha.0^{2} + 4.0 + c$$

$$|5 = C|$$

$$P(1) = \alpha.1^{2} + 6.1 + 5$$

$$|3 = \alpha + 4 + 5|$$

$$f(-1) = \alpha.(-1)^{2} + 6(-1) + C$$

$$|9 = \alpha - 6 + 5|$$

ou sija, temos $f(x) = 1x^2 - 3x + 5$ colculando f(2) teremos:

$$f(2) = 2^{2} - 3 \cdot 2 + 5$$

$$f(2) = 4 - 6 + 5$$

$$f(2) = \frac{3}{2}$$
Letta C

Respostas do TDE2 – Parte II

\cap	1	1	
U	ı)	

02) B

03) E

04) A

05) D

06) E

07) D

08) C

09) B

10) A

11) E

12) C

13) E

14) A

15) C

16) -2

17) -3

18) 5

19) 27

20) 67

21) -35

22) Duas raízes

23) Zero raízes (nenhuma)

24) Uma raiz

25) Uma vez; P(-2,0)

26) Duas vezes; $P_1(-6.0)$ e $P_2(0.0)$

27) Nenhum

28) Dois pontos; $P_1(1,0)$ e $P_2(-3,0)$

Atividades da Aula 07

<u> Aula 06:</u>

- Exercícios das Notas de Aula (p. 09) E.01 ao E.07
- TDE 2 Estudo da função quadrática

Aula 07:

No livro de Pré-Cálculo, resolva os exercícios 5.15, 5.17,
 5.18, 5.19, 5.23, 5.24, 5.25 e 5.26 da p. 98 – Capítulo 5.

Combinações para AP1

- Aula 08 24/04 ⇒ Avaliação Parcial 1
 - Além do material necessário para escrever, trazer régua, calculadora científica comum e seu mapa mental (produção individual)
 - <u>Critérios para elaboração do mapa mental:</u> somente frente (folha A4), manuscrito, identificado, não pode ser xerox, nem digitalização. Pode conter fórmulas e esquemas, não pode conter resolução de exemplos, nem exercícios.
 - Peso: 8,0 pontos

