Homework 8

Walker Bagley

April 4, 2022

1. Proof.
$$\sum_{i=1}^{n} (i+1)2^{i} = n2^{n+1}$$
 for all $n \in \mathbb{N} \setminus \{0\}$

Base case:
$$\sum_{i=1}^{1} (i+1)2^{i} = (1+1)2^{1} = (2)2 = 4$$

$$1 * 2^{1+1} = 2^2 = 4$$

Inductive Step: let $k \in \mathbb{N} \setminus \{0\}$ and assume $\sum_{i=1}^{k} (i+1)2^i = k2^{k+1}$

Observe
$$\sum_{i=1}^{k+1} (i+1)2^i = \left(\sum_{i=1}^k (i+1)2^i\right) + (k+2)2^{k+1}$$

So, substituting the IH, $\sum_{i=1}^{k+1} (i+1)2^i = k2^{k+1} + (k+2)2^{k+1}$

$$= k2^{k+1} + k2^{k+1} + 2 * 2^{k+1}$$

$$= 2k2^{k+1} + 2^{k+2}$$

$$= k2^{k+2} + 2^{k+2}$$

$$= (k+1)2^{k+2}$$

Therefore,
$$\sum_{i=1}^{k+1} (i+1)2^i = (k+1)2^{k+2}$$

2. Proof. $(\forall n \in \mathbb{N})(n \text{ is transitive})$

Let
$$a \in \mathbb{N}$$

Recall that by def,
$$a = \{a - 1, a - 2, a - 3, \dots \varnothing\}$$

Let $b \in a$

So then
$$(\exists k \in \mathbb{N} \backslash \{0\}) (b=a-k=\{a-k-1, a-k-2, ...\varnothing\})$$

Then by def, $(\forall x \in b)(x \in a)$

So by def,
$$b \subseteq a$$

Then $(\forall a \in \mathbb{N})(a \text{ is transitive})$

3. Proof.
$$\mathscr{F}(n) = \frac{1}{\sqrt{5}}(\varphi_1^n - \varphi_2^n)$$
 for all $n \in \mathbb{N}$, where $\varphi_1 := \frac{1+\sqrt{5}}{2}$ and $\varphi_2 := \frac{1-\sqrt{5}}{2}$

Base Case 1:
$$\mathscr{F}(0) = 0 = \frac{1}{\sqrt{5}}(\varphi_1^0 - \varphi_2^0) = \frac{1}{\sqrt{5}}(1-1) = 0$$

Base Case 2: $\mathscr{F}(1) = 1 = \frac{1}{\sqrt{5}}(\varphi_1^1 - \varphi_2^1) = \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right)$

$$= \frac{1}{2\sqrt{5}}(1+\sqrt{5}-1+\sqrt{5})$$

$$= \frac{1}{2\sqrt{5}}(2\sqrt{5}) = 1$$

Inductive Case: Assume
$$k \in \mathbb{N}$$
 and $(\forall l \in \mathbb{N}) \left(l < k+2 \to \mathscr{F}(l) = \frac{1}{\sqrt{5}} (\varphi_1^l - \varphi_2^l) \right)$

$$\mathscr{F}(k+2) = \mathscr{F}(k) + \mathscr{F}(k+1)$$

Then, using the I.H.,
$$\mathscr{F}(k+2) = \frac{1}{\sqrt{5}}(\varphi_1^k - \varphi_2^k) + \frac{1}{\sqrt{5}}(\varphi_1^{k+1} - \varphi_2^{k+1})$$

$$= \frac{1}{\sqrt{5}}(\varphi_1^k - \varphi_2^k + \varphi_1^{k+1} - \varphi_2^{k+1})$$

$$= \frac{1}{\sqrt{5}}(\varphi_1^k + \varphi_1\varphi_1^k - (\varphi_2^k + \varphi_2\varphi_2^k))$$

$$= \frac{1}{\sqrt{5}}(\varphi_1^k(1+\varphi_1) - (\varphi_2^k(1+\varphi_2)))$$

Using the hint,
$$=\frac{1}{\sqrt{5}}(\varphi_1^k(\varphi_1^2) - (\varphi_2^k(\varphi_2^2)))$$

 $=\frac{1}{\sqrt{5}}(\varphi_1^{k+2} - \varphi_2^{k+2})$

Therefore,
$$(\forall n \in \mathbb{N}) \left(\mathscr{F}(n) = \frac{1}{\sqrt{5}} (\varphi_1^n - \varphi_2^n) \right)$$

4.
$$R := \{(x, y) \in \mathbb{R} \times \mathbb{R} | x^2 + y^2 = 1 \}$$

(a) Proof. Not Reflexive

Let
$$x = 2$$

Since $x = y$, $x^2 + x^2 = 1$, but $(2)^2 + (2)^2 = 8 \neq 1$
So, $(x, x) \notin R$

(b) Proof. Not Irreflexive

Let
$$x = \frac{1}{\sqrt{2}}$$

Towards a contradiction, assume $\boldsymbol{x} = \boldsymbol{y}$

So,
$$x^2 + x^2 = 1$$
, and $\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$
So, $(x, x) \in R$

(c) Proof. Symmetric

Let
$$a, b \in \mathbb{R}$$

Assume $(a, b) \in R$
By def, $a^2 + b^2 = 1$
 $a^2 + b^2 = 1 = b^2 + a^2$
So, $(b, a) \in R$

(d) Proof. Not Antisymmetric

Let
$$a = 1$$
 and $b = 0$
 $(1)^2 + (0)^2 = 1$, so $(a, b) \in R$
But also, $(0)^2 + (1)^2 = 1$, so $(b, a) \in R$
However, $a \neq b$

(e) Proof. Not Transitive

Consider
$$a = 0$$
, $b = 1$, $c = 0$
 $(0)^2 + (1)^2 = 1$ and $(1)^2 + (0)^2 = 1$ so $(a, b) \in R \land (b, c) \in R$
However, $(0)^2 + (0)^2 \neq 1$, so $(a, c) \notin R$

- 5. $R := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x | (y+1) \}$
 - (a) Proof. Not Reflexive

$$\text{Let } a=5\in\mathbb{Z}$$
 Observe, $5\nmid (5+1)$ because $5*\frac{6}{5}=6$ and $\frac{6}{5}\not\in\mathbb{Z}$ So, $(a,a)\not\in R$

(b) Proof. Not Irreflexive

$$\mbox{Let } a=1\in \mathbb{Z}$$
 Observe, $1|(1+1)$ because $1*2=2$ and $2\in \mathbb{Z}$ So, $(a,a)\in R$

(c) Proof. Not Symmetric

Let
$$a=5\in\mathbb{Z}$$
 and $b=9\in\mathbb{Z}$
Observe, $5|(9+1)$ because $5*2=10$ and $2\in\mathbb{Z}$
So, $(a,b)\in R$
However, $9\nmid (5+1)$ because $9*\frac{2}{3}=6$ and $\frac{2}{3}\not\in\mathbb{Z}$
So, $(b,a)\not\in R$

(d) *Proof.* Not Antisymmetric

$$\label{eq:left} \text{Let } a=0\in\mathbb{Z} \text{ and } b=-1\in\mathbb{Z}$$

$$0|(-1+1) \text{ because } (\forall k\in\mathbb{Z})(0*k=0), \text{ so } (a,b)\in R$$
 But also, $-1|(0+1) \text{ because } (-1)*(-1)=1 \text{ and } -1\in\mathbb{Z}, \text{ so } (b,a)\in R$

(e) Proof. Not Transitive

$$\begin{array}{c} \text{Let } a=2\in\mathbb{Z},\,b=5\in\mathbb{Z},\,c=14\in\mathbb{Z}\\ \text{Observe } 2|(5+1)\text{ because } 2*3=6\text{ and } 3\in\mathbb{Z}\\ \text{So, } (a,b)\in R\\ \text{Also observe } 5|(14+1)\text{ because } 5*3=15\text{ and } 3\in\mathbb{Z}\\ \text{So, } (b,c)\in R\\ \text{However, consider } 2|(14+1)\\ 2*\frac{15}{2}=15\wedge15\not\in\mathbb{Z}\\ \text{So, } (a,c)\not\in R \end{array}$$