В этом листке мы будем часто использовать следующие обозначения:

 p_n-n -е простое число $(p_1=2,\,p_2=3,\,p_3=5,\,\dots);\,P$ — множество всех простых чисел $(P=\{p_1,p_2,p_3,\dots\});$ $\pi(x)$ — количество простых чисел, не превосходящих $x \in \mathbb{N}$; $\log x$ — двоичный логарифм x (т. е. $\log_2 x$).

История определения асимптотики функции $\pi(x)$ такова:

- 1. Евклид: $\pi(x) \to \infty$ при $x \to \infty$;
- 2. Эйлер: $\frac{\pi(x)}{x} \to 0$ при $x \to \infty$; 3. Чебышёв (1848 г.): Если предел $\frac{\pi(x)\ln(x)}{x}$ существует, то он равен 1;
- 4. Адамар и Валле-Пуссен (1896 г.): $\frac{\pi(x) \ln(x)}{r} \to 1$ при $x \to \infty$.

Задача 1. Докажите, что при $n \in \mathbb{N}$ **а)** $p_{n+1} \leqslant p_1 \cdot p_2 \cdot \dots \cdot p_n + 1;$ **б)** $p_n \leqslant 2^{2^{n-1}}$.

Задача 2. Докажите, что $\pi(x) \geqslant \log \log x$ при $x \geqslant 2$.

Определение 1. Пусть $n \in \mathbb{N}$. Определим функцию $F^n \colon \mathbb{N} \to \mathbb{N}$ следующим образом: F^n есть количество натуральных чисел, не превосходящих x, все простые делители которых принадлежат множеству $\{p_1,p_2,\ldots,p_n\}.$

Задача 3. а) Найдите $F^3(57)$; б) Найдите $F^n(x)$ при $x < p_{n+1}$.

Задача 4. Докажите, что $F^n(x) \leqslant 2^n \cdot \sqrt{x}$.

Задача 5. Докажите следующие утверждения:

а) простых чисел бесконечно много; б) $\pi(x) \geqslant 0.5 \cdot \log x$; в)* ряд $\frac{1}{n_1} + \frac{1}{n_2} + \dots$ расходится.

Задача 6. Докажите следующие утверждения:

a)
$$\prod_{\substack{n 6) $\prod_{\substack{n+1 B) $\prod_{\substack{p \leqslant x, \\ p \in P}} p < 2^{2x}.$$$$

Задача 7. Докажите следующие утверждения:

- a) $(\pi(x) \pi([\sqrt{x}])) \cdot \log \sqrt{x} < 2x;$
- **б)** существует такое $c_1 \in \mathbb{R}$, что $\pi(x) \leqslant c_1 \cdot \frac{x}{\log x}$ при $x \geqslant 2$.

Задача 8. Пусть $n \in \mathbb{N}, \, p$ — простое число. Докажите, что p входит в каноническое разложение числа n! в степени $\sum_{i=1}^{m} [n/p^i]$, где $m = [\log_p n]$.

Задача 9. Пусть p — простое число, α_p — степень, в которой p входит в каноническое разложение числа C_{2n}^n . Докажите, что $\alpha_p \leqslant [\log_p 2n]$.

Задача 10. Докажите следующие утверждения: а) $\frac{2^{2n}}{2n+1} \leqslant C_{2n}^n$; б) $C_{2n}^n \leqslant \prod_{p \leqslant 2n, n \in P} p^{\lceil \log_p 2n \rceil}$.

Задача 11. Докажите следующие утверждения:

- a) $2n \log(2n + 1) \le \pi(2n) \cdot \log 2n$;
- **б)** существует такое положительное $c_2 \in \mathbb{R}$, что $\pi(x) \geqslant c_2 \cdot \frac{x}{\log x}$ при $x \geqslant 2$.

Задача 12*. Докажите, что для всякого достаточно большого $x \in \mathbb{N}$ справедливы неравенства

$$0.9 \cdot \frac{x}{\log x} \leqslant \pi(x) \leqslant 4.1 \cdot \frac{x}{\log x}$$
.

Задача 13*. Докажите, что при всяком достаточно большом $n \in \mathbb{N}$ между n и 5n обязательно найдется простое число.

Задача 14. В обозначениях задачи 9 докажите следующие утверждения:

- а) $\alpha_p \leqslant 1$ при $p > \sqrt{2n}$; б) $\alpha_p = 0$ при 2n/3 .
- **Задача 15*.** (Постулат Бертрана) Докажите, что при всяком достаточно большом $n \in \mathbb{N}$ между n и 2nобязательно найдется простое число.

1 a	1 6	2	3 a	3	4	5 a	5 6	5 B	6 a	6 6	6 B	7 a	7 б	8	9	10 a	10 б	11 a	11 б	12	13	14 a	14 б	15