### **MODULE 5**

# SOME SPECIAL ABSOLUTELY CONTINUOUS DISTRIBUTIONS

#### LECTURE 22

## **Topics**

#### 5.2 GAMMA AND RELATED DISTRIBUTIONS

#### **Definition 2.2**

An absolutely continuous type random variable X is said to follow a *gamma distribution* with shape parameter  $\alpha$  (> 0) and scale parameter  $\theta$ (> 0) (written as  $X \sim G(\alpha, \theta)$ ) if its probability density function is given by

$$f_X(x|\alpha,\theta) = \begin{cases} \frac{1}{\theta^{\alpha}\Gamma(\alpha)} e^{-\frac{x}{\theta}} x^{\alpha-1}, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}. \blacksquare$$

Note that, for  $\alpha > 0$  and  $\theta > 0$ ,  $f_X(x|\alpha, \theta) \ge 0$ ,  $\forall x \in \mathbb{R}$  and

$$\int_{-\infty}^{\infty} f_X(x|\alpha,\theta) dx = \frac{1}{\theta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} e^{-\frac{x}{\theta}} x^{\alpha-1} dx$$
$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-t} t^{\alpha-1} dt$$
$$= 1.$$

#### Theorem 2.1

Suppose that  $X \sim G(\alpha, \theta)$ , for some  $\alpha > 0$  and  $\theta > 0$ . Define the random variable  $Z = \frac{X}{\theta}$ . Then  $Z \sim G(\alpha, 1)$ , i. e, the p.d.f of Z is given by

$$f_Z(z) = \begin{cases} \frac{e^{-z}z^{\alpha-1}}{\Gamma(\alpha)}, & \text{if } z > 0\\ 0, & \text{otherwise} \end{cases}.$$

**Proof.** Clearly  $S_X = \{x \in \mathbb{R}: f_X(x|\alpha,\theta) > 0\} = (0,\infty)$  and the p.d.f. of *X* is

$$f_X(x|\alpha,\theta) = \begin{cases} \frac{1}{\theta^{\alpha}\Gamma(\alpha)} e^{-\frac{x}{\theta}} x^{\alpha-1}, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}.$$

We have  $Z = \frac{X}{\theta} = h(X)$ , say. The transformation  $h(x) = \frac{x}{\theta}$ ,  $x \in S_X$ , is strictly monotone on  $S_X$  with  $h'(x) = \frac{1}{\theta}$ ,  $x \in S_X$ . Also  $S_Z = h(S_X) = (0, \infty)$ , and  $h^{-1}(z) = \theta z$ ,  $z \in S_Z$ . Thus  $Z = h(X) = \frac{X}{\theta}$  has the p.d.f.

$$f_{Z}(z) = f_{X}(h^{-1}(z)) \left| \frac{d}{dz} h^{-1}(z) \right| I_{h(S_{X})}(z)$$

$$= f_{X}(\theta z) |\theta| I_{(0,\infty)}(z)$$

$$= \begin{cases} \frac{e^{-z} z^{\alpha - 1}}{\Gamma(\alpha)}, & \text{if } z > 0\\ 0, & \text{otherwise} \end{cases}. \blacksquare$$

Note that if  $Z \sim G(\alpha, 1)$ , for some  $\alpha > 0$ , then

$$E(Z^{r}) = \int_{-\infty}^{\infty} z^{r} f_{Z}(z) dz$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-z} z^{\alpha+r-1} dz$$

$$= \frac{\Gamma(\alpha+r)}{\Gamma(\alpha)}, \qquad r > -\alpha.$$

Thus

$$Z \sim G(\alpha, 1) \Longrightarrow E(Z^r) = \frac{\Gamma(\alpha + r)}{\Gamma(\alpha)}, \qquad r > -\alpha.$$
 (2.8)

Clearly, for  $r \in \mathbb{N}$ ,

$$E(Z^r) = \alpha(\alpha + 1) \cdots (\alpha + r - 1)$$
(2.9)

Also if  $X \sim G(\alpha, \theta)$  (so that  $Z = \frac{X}{\theta} \sim G(\alpha, 1)$ ) then, for  $r > -\alpha$ ,

$$E(X^r) = E((\theta Z))^r = \theta^r E(Z^r).$$

Using (2.8) we get

$$E(X^r) = \frac{\Gamma(\alpha + r)}{\Gamma(\alpha)} \theta^r.$$

Therefore,

$$\mu_r' = E(X^r) = \alpha(\alpha + 1) \cdots (\alpha + r - 1)\theta^r, \quad r \in \mathbb{N}$$

$$\boxed{\text{Mean} = \mu_1' = E(X) = \alpha\theta,}$$

$$\mu_2' = E(X^2) = \alpha(\alpha + 1)\theta^2,$$

$$\boxed{\text{Variance} = \mu_2 = E(X^2) - \left(E(X)\right)^2 = \alpha\theta^2,}$$

$$\mu_3 = E\left(\left(X - \mu_1'\right)^3\right) = \mu_3' - 3\mu_1'\mu_2' + 2\left(\mu_1'\right)^3 = 2\alpha\theta^3,$$

$$\mu_4 = E\left(\left(X - \mu_1'\right)^4\right) = \mu_4' - 4\mu_1'\mu_3' + 6\left(\mu_1'\right)^2\mu_2' - 3\left(\mu_1'\right)^4 = 3\alpha(\alpha + 2)\theta^4,$$

$$\boxed{\text{Coefficient of skewness} = \beta_1 = \frac{\mu_3}{\mu_2^3} = \frac{2}{\sqrt{\alpha}}.}$$

and

Kurtosis = 
$$\gamma_1 = \frac{\mu_4}{\mu_2^2} = \frac{3(\alpha + 2)}{\alpha} = 3 + \frac{6}{\alpha}$$
.

Note that, as  $\alpha \to \infty$ ,  $\beta_1 \to 0$  and  $\gamma_1 \to 3$ . Also  $\beta_1 > 0$  and  $\gamma_1 > 3$ . Thus the gamma distribution is positively skewed and has sharper peaks than the normal distribution. For  $\alpha \approx 0$  the distribution is heavily (positively) skewed. For large  $\alpha$  ( $\alpha \to \infty$ ) the gamma distribution very much behaves like the normal distribution.



**Figure 2.1.** Plots of p.d.f.s of  $G(\alpha, 1)$  distribution

The m.g.f. of  $X \sim G(\alpha, \theta)$  is given by

$$M_X(t) = E(e^{tX}) = E(e^{t\theta Z}),$$

where  $Z = \frac{X}{\theta} \sim G(\alpha, 1)$  (see Theorem 2.1). Thus

$$M_X(t) = \frac{1}{\Gamma(\alpha)} \int_0^\infty e^{-(1-t\theta)z} z^{\alpha-1} dz$$

$$\Rightarrow M_X(t) = (1-t\theta)^{-\alpha}, \quad t < \frac{1}{\theta}.$$
(2.10)

The following theorem provides a relationship between gamma probabilities and Poisson probabilities.

#### Theorem 2.2

For a positive integer n and for real constants  $\theta > 0$  and t > 0, let  $X \sim G(n, \theta)$  and  $Y \sim P\left(\frac{t}{\theta}\right)$ . Then

$$P({X > t}) = P({Y \le n - 1})$$

i. e., 
$$\int_{t}^{\infty} \frac{e^{-\frac{x}{\theta}} x^{n-1}}{\Gamma(n)\theta^{n}} dx = \sum_{j=0}^{n-1} \frac{e^{-\frac{t}{\theta}} \left(\frac{t}{\theta}\right)^{j}}{j!}, t > 0, \theta > 0.$$

**Proof.** Let  $Z = \frac{X}{\theta}$ , so that, by Theorem 2.1,  $Z \sim G(n, 1)$ . Then, for t > 0,

$$P(\lbrace X > t \rbrace) = P\left(\left\lbrace Z > \frac{t}{\theta} \right\rbrace\right). \tag{2.11}$$

For x > 0, we have

$$P(\{Z > y\}) = \int_{y}^{\infty} \frac{e^{-x}x^{n-1}}{(n-1)!} dx = I_n(\text{say}), \ n \in \mathbb{N},$$

with the convention that 0! = 1.

On integrating by parts we get

$$I_{n} = \frac{1}{(n-1)!} \left\{ -e^{-x} x^{n-1} \right\}_{y}^{\infty} + (n-1) \int_{y}^{\infty} e^{-x} x^{n-1} dx \right\}$$

$$= \frac{e^{-y} y^{n-1}}{(n-1)!} + \frac{1}{(n-2)!} \int_{y}^{\infty} e^{-x} x^{n-2} dx$$

$$= \frac{e^{-y} y^{n-1}}{(n-1)!} + I_{n-1}, \quad n \ge 2$$

$$= \frac{e^{-y} y^{n-1}}{(n-1)!} + \frac{e^{-y} y^{n-2}}{(n-2)!} + I_{n-2}, \quad n \ge 3$$

$$\vdots$$

$$= \sum_{j=1}^{n-1} \frac{e^{-y} y^{j}}{j!} + I_{1}$$

$$= \sum_{j=1}^{n-1} \frac{e^{-y} y^{j}}{j!} + \int_{y}^{\infty} e^{-x} dx$$

$$= \sum_{j=0}^{n-1} \frac{e^{-y} y^{j}}{j!}.$$

Thus, for y > 0,

$$P(\{Z > y\}) = \sum_{j=0}^{n-1} \frac{e^{-y}y^j}{j!}$$

$$\Rightarrow P(\{X > t\}) = P\left(\left\{Z > \frac{t}{\theta}\right\}\right) = \sum_{j=0}^{n-1} \frac{e^{-\frac{t}{\theta}} \left(\frac{t}{\theta}\right)^j}{j!}, t > 0, \quad \left(\text{using}(2.11)\right).$$

#### Example 2.1

For a positive integer n and  $\theta > 0$ , let  $X \sim G(n, \theta)$ . Define the random variable

$$Y = \sum_{j=0}^{n-1} \frac{e^{-\frac{X}{\theta}} \left(\frac{X}{\theta}\right)^j}{j!}.$$

Find the probability distribution of random variable *Y*.

**Solution.** Note that  $P(\{X \ge 0\}) = 1$  and, by Theorem 2.2, the distribution function of  $X \sim G(n, \theta)$  is given by

$$F(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - \sum_{j=0}^{n-1} \frac{e^{-\frac{x}{\theta}} \left(\frac{x}{\theta}\right)^j}{j!}, & \text{if } x \ge 0 \end{cases}$$

Clearly  $P({Y = 1 - F(X)}) = P({X \ge 0}) = 1$ , and therefore  $Y \stackrel{d}{=} 1 - F(X)$ . By probability integral transformation (Theorem 1.3)  $U \stackrel{\text{def}}{=} F(X) \sim U(0,1)$ . Moreover  $U \stackrel{d}{=} 1 - U \sim U(0,1)$ . From the above discussion it follows that  $Y \stackrel{d}{=} 1 - U \sim U(0,1)$ .

#### **Definition 2.3**

For  $\theta > 0$ , a  $G(1,\theta)$  distribution is called an *exponential distribution* with scale parameter  $\theta$  (denoted by  $\text{Exp}(\theta)$ ).

The p.d.f. of  $T \sim \text{Exp}(\theta)$  is given by

$$f_T(t) = \begin{cases} \frac{1}{\theta} e^{-\frac{t}{\theta}}, & \text{if } t > 0 \\ 0, & \text{otherwise} \end{cases}$$

Note that if  $T \sim \text{Exp}(\theta)$ , then

$$Mean = \mu_1' = E(T) = \theta,$$

Variance = 
$$\mu_2 = \theta^2$$
,

$$\mu'_r = E(T^r) = r! \theta^r, \qquad r \in \{1, 2, ...\},$$

Coefficient of skewness = 
$$\beta_1 = \frac{\mu_3}{\mu_2^{\frac{3}{2}}} = 2$$
,

and

$$\text{Kurtosis} = \gamma_1 = \frac{\mu_4}{\mu_2^2} = 9.$$

The m.g.f. of  $T \sim \text{Exp}(\theta)$  is given by

$$M_X(t) = (1-t\theta)^{-1}, \qquad t < \frac{1}{\theta},$$

and the d.f. of  $T \sim \text{Exp}(\theta)$  is given by

$$F_T(t) = \int_{-\infty}^t f_T(x) dx$$

i. e., 
$$F_T(t) = \begin{cases} 0, & \text{if } t < 0 \\ 1 - e^{-\frac{t}{\theta}}, & \text{if } t \ge 0 \end{cases}$$
.

Clearly, for every s > 0, and t > 0,

$$P(\{T > s + t | T > s\}) = \frac{P(\{T > s + t\})}{P(\{T > s\})} = e^{-\frac{t}{\theta}} = P(\{T > t\}), \tag{2.12}$$

i. e., 
$$P(T > s + t) = P(T > s)P(T > t), \quad \forall s > 0, \quad t > 0.$$
 (2.13)

Let  $T \sim \text{Exp}(\theta)$  denote the lifetime of a component. Then the property (2.12) (or equivalently the property (2.13)) about the lifetime T of the component has the following interesting interpretation. Given that the component has survived s units of time the probability that it will survive additional t units of time is the same as the probability that a fresh unit (of age 0) will survive t units of time. In other words the component is not aging with time (i.e., the used component is as good as the new one). This property of a

continuous type random variable is also known as the *lack of memory property* (at each stage the component forgets its age and behaves like a fresh component).

In the following theorem it is shown that the lack of memory property characterizes the exponential among all continuous distributions having mass concentrated on  $(0, \infty)$ .

#### Theorem 2.2

Let Y be a random variable of continuous type with  $F_Y(0) = 0$ , where  $F_Y(\cdot)$  is the distribution function of Y. Then Y has the lack of memory property if, and only if,  $Y \sim \text{Exp}(\theta)$ , for some  $\theta > 0$ .

**Proof.** We have seen that if  $Y \sim \text{Exp}(\theta)$ , for some  $\theta > 0$ , then

$$P({Y > s + t | Y > s}) = P({Y > t}), \forall s, t > 0,$$

i.e., Y has the lack of memory property.

Conversely suppose that Y has the lack of memory property, i.e.,

$$P({Y > s + t}) = P({Y > s})P({Y > t}), \forall s, t > 0.$$

Let  $\bar{F}_Y(t) = 1 - F_Y(t)$ ,  $t \in \mathbb{R}$ . Then we have

$$\bar{F}_V(s+t) = \bar{F}_V(s)\bar{F}_V(t), \forall s,t > 0$$

$$\Rightarrow \bar{F}_Y(s_1 + s_2 + \dots + s_m) = \bar{F}_Y(s_1)\bar{F}_Y(s_2)\cdots\bar{F}_Y(s_m), \quad \forall s_1, s_2, \dots, s_m > 0 \quad (2.14)$$

$$\Rightarrow \bar{F}_Y\left(\frac{m}{n}\right) = \bar{F}_Y\left(\underbrace{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}}_{m \text{ times}}\right)$$

$$= \left[\bar{F}_Y\left(\frac{1}{n}\right)\right]^m, \quad \forall m, n \in \mathbb{N}, \quad \text{(using (2.14))}$$

$$\Rightarrow \bar{F}_Y(1) = [\bar{F}_Y(\frac{1}{n})]^n, \quad \forall n \in \mathbb{N}.$$
 (2.16)

Using (2.15) and (2.16), we get

$$\bar{F}_Y\left(\frac{m}{n}\right) = \left[\bar{F}_Y\left(\frac{1}{n}\right)\right]^m \\
= \left[\bar{F}_Y(1)\right]^{\frac{m}{n}}, \quad \forall m, n \in \mathbb{N}.$$
(2.17)

Let  $\lambda = \overline{F}_Y(1)$ , so that  $0 \le \lambda \le 1$ . Clearly, if  $\lambda = 0$ , then by (2.16)

$$\bar{F}_Y\left(\frac{1}{n}\right) = 0, \quad \forall n \in \mathbb{N}$$

$$\Rightarrow F_Y\left(\frac{1}{n}\right) = 1, \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \lim_{n \to \infty} F_Y\left(\frac{1}{n}\right) = 1,$$

$$\Rightarrow F_Y(0) = 1, \quad \text{(since } F_Y(\cdot) \text{ is continuous),}$$

which is not true as  $F_Y(0) = 0$ .

Therefore,  $\lambda = \bar{F}_Y(1) > 0$ . Similarly, if  $\lambda = \bar{F}_Y(1) = 1$ , then using (2.14)

$$egin{aligned} ar{F}_Y(n) &=& ar{F}_Yigg(\underbrace{1+1+\cdots+1}_{n ext{times}}igg) \ &=& [ar{F}_Y(1)]^n \ &=& 1, & \forall n \in \mathbb{N} \ &\Rightarrow& F_Y(n) = 0 \,, & \forall n \in \mathbb{N} \ &\Rightarrow& \lim_{n o \infty} F_Y(n) = 0, \end{aligned}$$

which is not true as  $\lim_{n\to\infty} F_Y(n) = 1$ .

Thus we have  $\bar{F}_Y(1) = \lambda \in (0,1)$ . Then  $\lambda = \bar{F}_Y(1) = e^{-\frac{1}{\theta}}$ , for some  $\theta > 0$ .  $(\theta^{-1} = -\ln \lambda)$ . Using (2.17) we have

$$\bar{F}_V(r) = e^{-\frac{r}{\theta}}, \quad \forall r \in \mathbb{Q} \cap (0, \infty),$$

where  $\mathbb{Q}$  denotes the set of rational numbers. Now let  $x \in \mathbb{Q}^c \cap (0, \infty)$ . Then there exists a sequence  $\{r_n : n = 1, 2, ...\}$  of rational numbers in  $\mathbb{Q} \cap (0, \infty)$  such that  $\lim_{n \to \infty} r_n = x$ . Therefore

$$\bar{F}_Y(x) = \bar{F}_Y \left( \lim_{n \to \infty} r_n \right)$$

$$= \lim_{n \to \infty} \bar{F}_Y(r_n) \qquad \text{(since } \bar{F}_Y(x) = 1 - F_Y(x), \text{ is continuous on } \mathbb{R} \text{)}$$

$$= \lim_{n \to \infty} e^{-\frac{r_n}{\theta}}$$

$$= e^{-\frac{x}{\theta}}.$$

Also  $F_Y(0) = 0$  implies that  $F_Y(x) = 0$  for every  $x \le 0$ , i.e.,  $\overline{F}_Y(x) = 1$ ,  $\forall x \le 0$ . Therefore

$$\bar{F}_Y(x) = \begin{cases} 1, & \text{if } x \le 0 \\ e^{-\frac{x}{\theta}}, & \text{if } x > 0 \end{cases}$$

$$\Rightarrow F_Y(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\frac{x}{\theta}}, & \text{if } x \ge 0 \end{cases}$$

$$\Rightarrow Y \sim \text{Exp}(\theta). \quad \blacksquare$$

#### Example 2.2

The waiting time for occurrence of an event E (say repair time of a machine) is exponentially distributed with mean of 30 minutes. Find the conditional probability that the waiting time for occurrence of event E is at least 5 hours given that it has not occurred in the first 3 hours.

**Solution.** Let X be the waiting time (in hours) for the occurrence of event E. Then  $X \sim \text{Exp}(\frac{1}{2})$ . By the lack of memory property of exponential distribution, the required probability is

$$P({X > 5}|{X > 3}) = P({X > 2}) = e^{-4}$$
.

#### **Definition 2.4**

For a positive integer n, a  $G(\frac{n}{2}, 2)$  distribution is called the *chi-squared* distribution with n degrees of freedom (d.f.) (denoted by  $\chi_n^2$ ).

The p.d.f. of  $Y \sim \chi_n^2$  is given by

$$f_{Y}(y) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} e^{-\frac{y}{2}} y^{\frac{n}{2} - 1}, & \text{if } y > 0\\ 0, & \text{otherwise} \end{cases}$$

Note that if  $Y \sim \chi_n^2$  then

$$Mean = \mu'_1 = E(Y) = n,$$

Variance = 
$$\mu_2 = 2n$$
,

Coefficient of skewness = 
$$\beta_1 = \frac{\mu_3}{\mu_2^{\frac{3}{2}}} = 2\sqrt{\frac{2}{n}}$$
,

and

Kurtosis = 
$$\gamma_1 = \frac{\mu_4}{\mu_2^2} = 3 + \frac{12}{n}$$
.

Moreover the m.g.f. of  $Y \sim \chi_n^2$  is given by

$$M_Y(t) = E(e^{tY}) = (1-2t)^{-\frac{n}{2}}, \ t < \frac{1}{2}.$$



**Figure 2.2.** Plots of p.d.f.s of  $\chi_n^2$  distribution

Recall that  $\chi^2_{n,1-lpha}$ , the (1-lpha) - th quantile of  $Y\sim\chi^2_n$  , is given by

$$P(Y \le \chi_{n,1-\alpha}^2) = 1 - \alpha$$

$$\Leftrightarrow \int_0^{\chi_{n,1-\alpha}^2} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} e^{-\frac{y}{2}} y^{\frac{n}{2}-1} dy = 1 - \alpha.$$



**Figure 2.3.**  $(1 - \alpha)$ -th quantile of  $Y \sim \chi_n^2$ 

**Table 2.1.**  $(1 - \alpha)$ -th quantile of  $Y \sim \chi_n^2 \left( P\left(Y \le \chi_{n,1-\alpha}^2\right) = 1 - \alpha \right)$ 

# Values of $\chi_{n,1-\alpha}^2$

| $n/\alpha$ | .995   | .990   | .975   | .950   | .900   | .100    | .050    | .025    | .010    | .005    |
|------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| 1          | 0.000  | 0.000  | 0.001  | 0.004  | 0.016  | 2.706   | 3.841   | 5.024   | 6.635   | 7.879   |
| 2          | 0.010  | 0.020  | 0.051  | 0.103  | 0.211  | 4.605   | 5.991   | 7.378   | 9.210   | 10.597  |
| 3          | 0.072  | 0.115  | 0.216  | 0.352  | 0.584  | 6.251   | 7.815   | 9.348   | 11.345  | 12.838  |
| 4          | 0.207  | 0.297  | 0.484  | 0.711  | 1.064  | 7.779   | 9.488   | 11.143  | 13.277  | 14.860  |
| 5          | 0.412  | 0.554  | 0.831  | 1.145  | 1.610  | 9.236   | 11.070  | 12.833  | 15.086  | 16.750  |
| 6          | 0.676  | 0.872  | 1.237  | 1.635  | 2.204  | 10.645  | 12.592  | 14.449  | 16.812  | 18.548  |
| 7          | 0.989  | 1.239  | 1.690  | 2.167  | 2.833  | 12.017  | 14.067  | 16.013  | 18.475  | 20.278  |
| 8          | 1.344  | 1.646  | 2.180  | 2.733  | 3.490  | 13.362  | 15.507  | 17.535  | 20.090  | 21.955  |
| 9          | 1.735  | 2.088  | 2.700  | 3.325  | 4.168  | 14.684  | 16.919  | 19.023  | 21.666  | 23.589  |
| 10         | 2.156  | 2.558  | 3.247  | 3.940  | 4.865  | 15.987  | 18.307  | 20.483  | 23.209  | 25.188  |
| 11         | 2.603  | 3.053  | 3.816  | 4.575  | 5.578  | 17.275  | 19.675  | 21.920  | 24.725  | 26.757  |
| 12         | 3.074  | 3.571  | 4.404  | 5.226  | 6.304  | 18.549  | 21.026  | 23.337  | 26.217  | 28.300  |
| 13         | 3.565  | 4.107  | 5.009  | 5.892  | 7.042  | 19.812  | 22.362  | 24.736  | 27.688  | 29.819  |
| 14         | 4.075  | 4.660  | 5.629  | 6.571  | 7.790  | 21.064  | 23.685  | 26.119  | 29.141  | 31.319  |
| 15         | 4.601  | 5.229  | 6.262  | 7.261  | 8.547  | 22.307  | 24.996  | 27.488  | 30.578  | 32.801  |
| 16         | 5.142  | 5.812  | 6.908  | 7.962  | 9.312  | 23.542  | 26.296  | 28.845  | 32.000  | 34.267  |
| 17         | 5.697  | 6.408  | 7.564  | 8.672  | 10.085 | 24.769  | 27.587  | 30.191  | 33.409  | 35.718  |
| 18         | 6.265  | 7.015  | 8.231  | 9.390  | 10.865 | 25.989  | 28.869  | 31.526  | 34.805  | 37.156  |
| 19         | 6.844  | 7.633  | 8.907  | 10.117 | 11.651 | 27.204  | 31.144  | 32.852  | 36.191  | 38.582  |
| 20         | 7.434  | 8.260  | 9.591  | 10.851 | 12.443 | 28.412  | 31.410  | 34.170  | 37.566  | 39.997  |
| 21         | 8.034  | 8.897  | 10.283 | 11.591 | 13.240 | 29.615  | 32.671  | 35.479  | 38.932  | 41.401  |
| 22         | 8.643  | 9.542  | 10.982 | 12.338 | 14.041 | 30.813  | 33.924  | 36.781  | 40.289  | 42.796  |
| 23         | 9.260  | 10.196 | 11.689 | 13.091 | 14.848 | 32.007  | 35.172  | 38.076  | 41.638  | 44.181  |
| 24         | 9.886  | 10.856 | 12.401 | 13.848 | 15.659 | 33.196  | 36.415  | 39.364  | 42.980  | 45.559  |
| 25         | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382  | 37.652  | 40.646  | 44.314  | 46.928  |
| 26         | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563  | 38.885  | 41.923  | 45.642  | 48.290  |
| 27         | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 36.741  | 40.113  | 43.195  | 46.963  | 49.645  |
| 28         | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916  | 41.337  | 44.461  | 48.278  | 50.993  |
| 29         | 13.121 | 14.256 | 16.047 | 17.708 | 19.768 | 39.087  | 42.557  | 45.722  | 49.588  | 52.336  |
| 30         | 13.787 | 14.953 | 16.791 | 18.493 | 20.599 | 40.256  | 43.773  | 46.979  | 50.892  | 53.672  |
| 40         | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51.805  | 55.758  | 59.342  | 63.691  | 66.766  |
| 50         | 27.991 | 29.707 | 32.357 | 34.764 | 37.689 | 63.167  | 67.505  | 71.420  | 76.154  | 79.490  |
| 60         | 35.534 | 37.485 | 40.482 | 43.188 | 46.459 | 74.397  | 79.082  | 83.298  | 88.379  | 91.952  |
| 70         | 43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 85.527  | 90.531  | 95.023  | 100.425 | 104.215 |
| 80         | 51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 96.578  | 101.879 | 106.629 | 112.329 | 116.321 |
| 90         | 59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 |
| 100        | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 |