多元统计分析(3)

钟瑜 222018314210044

2020年11月22日

3-6 (均值向量的各分量间结构关系的检验)设总体

$$X \sim N_p(\mu, \Sigma)$$
 $(\Sigma > 0)$,

 $X_{(a)}(\alpha=1,\cdots,n)$ (n>p) 为来自 p 元正态总体 X 的样本,记 $\mu=(\mu_1,\cdots,\mu_p)'$. C 为 $k\times p$ 常数矩阵(k< p), rank(C)=k, r 为已知 k 维向量. 试给出检验 H_0 : $C\mu=r$ 的检验统计量及分布.

解. (1) 当 Σ 已知时:

因为 μ 的估计量为 \bar{X} , 故 $C\mu$ 的估计量为 $C\bar{X}$. 由于

$$\bar{X} \sim N_p(\mu, \frac{1}{n}\Sigma)$$

可推得

$$C\bar{X} \stackrel{H_0}{\sim} N_k(C\mu = r, \frac{1}{n}C\Sigma C')$$

而

$$\sqrt{n}\Sigma^{-\frac{1}{2}}(\bar{X}-\mu) \sim N_p(0,I_p)$$

故令

$$Y = (Y_1, ..., Y_k)' = \sqrt{n}(C\Sigma C')^{-\frac{1}{2}}(C\bar{X} - r) \sim N_k(0, I_k)$$

有

$$\sum_{i=1}^{k} Y_i^2 = Y'Y = n(C\bar{X} - r)'(C\Sigma C')^{-1}(C\bar{X} - r) \stackrel{H_0}{\sim} \chi^2(k)$$

(2) 当 ∑ 未知时:

$$T^2 = n(C\bar{X} - r)'(CSC')^{-1}(C\bar{X} - r) \stackrel{H_0}{\sim} T^2(k, n - 1)$$

或者

$$F = \frac{n-k}{(n-1)k}T^2 = \frac{n(n-k)}{k}(C\bar{X} - r)'(CAC')^{-1}(C\bar{X} - r) \stackrel{H_0}{\sim} F(k, n-k)$$

3-7 设总体 $X \sim N_p(\mu, \Sigma)$ ($\Sigma > 0$), $X_{(e)}(\alpha = 1, \dots, n)$ (n > p) 为来自 p 元正态总体 X 的样本,样本均值为 \overline{X} ,样本离差阵为 A. 记 $\mu = (\mu_1, \dots, \mu_p)'$. 为检验 $H_0: \mu_1 = \mu_2 = \dots = \mu_p$, $H_1: \mu_1, \mu_2, \dots, \mu_p$ 至 少有一对不相等,令

$$C = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{bmatrix}_{(p-1)\times p},$$

则上面的假设等价于

$$H_0$$
: $C\mu = 0_{p-1}$, H_1 : $C\mu \neq 0_{p-1}$,

養中 0 - 1 为 p-1 维零向量. 试求检验 H_0 的似然比统计量和分布.

解. 似然比统计量

$$\lambda = \frac{\max_{\theta \in \Theta_0} L(C\mu, C\Sigma C')}{\max_{\theta \in \Theta} L(C\mu, C\Sigma C')} = \frac{L(0, \frac{1}{n}CAC')}{L(C\bar{X}, \frac{1}{n}CAC')} \overset{H_0}{\sim} \chi^2(\frac{p(p+1)}{2})$$

是 3-8 假定人体尺寸有这样的一般规律:身高 (X_1) ,胸围 (X_2) 和上半臂围 (X_3) 的平均尺寸比例是 6:4:1.假设 $X_{(a)}(\alpha=1,\cdots,n)$ 为来自总体 $X=(X_1,X_2,X_3)'$ 的随机样本,并设 $X\sim N_3(\mu,\Sigma)$. 试利用表 3.4 中男婴这一组数据来检验其身高、胸围和上半臂围这三个尺寸(变量)是否符合这一规律(写出假设 H_0 ,并导出检验统计量).

性别	身高(X ₁)	胸围(X2)	上半臂围(X ₃)
男	78	60. 6	16.5
男	76	58. 1	12.5
男	92	63. 2	14.5
男	81	59. 0	14.0
男	81	60.8	15.5
男	84	59. 5	14.0
女	80	58. 4	14.0
女女	75	59. 2	15.0
女	78	60. 3	15.0
女	75	57. 4	13. 0
女	79	59. 5	14.0
女	78	58. 1	14.5
女	75	58. 0	12. 5
女	64	55. 5	11.0
女	80	59. 2	12. 5

表 3.4 某地区农村两周岁婴儿的体格测量数据

解. 令 $C = \begin{pmatrix} 4 & -6 & 0 \\ 1 & 0 & -6 \end{pmatrix}$, 则

$$H_0: C\mu = \mathbf{0} \leftrightarrow H_1: C\mu \neq \mathbf{0}$$

其中 $\mu=(\mu_1,\mu_2,\mu_3)'$. 由于 Σ 未知, 故用 $Hotelling\ T^2$ 检验. $C\mu\ \text{ 的估计量 } C\bar{X}\sim N_3(C\mu,C\Sigma C'),C\bar{X}\stackrel{H_0}{\sim}N_3(0,C\Sigma C').\ \text{ 构造检验统计量:}$ $T^2=n(C\bar{X}-0)'(CSC')^{-1}(C\bar{X}-0)=n(n-1)(C\bar{X})'(CAC')^{-1}(C\bar{X})\sim T^2(p,n-1)$ 或 $F=\frac{n-p}{(n-1)p}T^2\stackrel{H_0}{\sim}F(p,n-p)$

其中 p = 3, n = 6.

```
> tige<-read.csv("E:/4.多元统计分析/zuoye/3/1.csv",stringsAsFactors = TRUE)
  > print(tige)
     gender X1
                 X2
  1
          B 78 60.6 16.5
4
          B 76 58.1 12.5
          B 92 63.2 14.5
6
  13
          G 75 58.0 12.5
          G 64 55.5 11.0
  14
          G 80 59.2 12.5
10
  > X<-data.frame(tige[c(1:6),])</pre>
11
  > X<-data.frame(X[,-1])</pre>
12
  > a<-colMeans(X) #样本均值
13
  > a<-as.matrix(a,byrow=TRUE)</pre>
14
  > c<-matrix(data=c(4,-6,0,1,0,-6),byrow=FALSE,ncol=3)</pre>
                                                            #C矩阵
  > A<-5*cov(X)
                  #样本离差阵
16
  > ca<-c%*%a
17
  > ca2<-t(ca)
18
  > c2<-t(c) #C的转置
  > CAC<-c%*%A%*%c2
20
  > CAC3<-solve(CAC)
21
  > F<-6*ca2%*%CAC3%*%ca #F 检验统计量
  > F
23
            [,1]
24
  [1,] 290.0087
25
  > 1-pf(F,3,3)
                 #p 值
               [,1]
27
  [1,] 0.0003416187
                     #小于0.0005,故否定原假设,认为三个尺寸不符合这一规律。
```

3-11 表 3. 4 给出 15 名两周岁婴儿的身高 (X_1) ,胸围 (X_2) 和上半臂围 (X_3) 的测量数据. 假设男婴的测量数据 $X_{(a)}(\alpha=1,\cdots,6)$ 为来自总体 $N_3(\mu^{(1)},\Sigma)$ 的随机样本;女婴的测量数据 $Y_{(a)}(\alpha=1,\cdots,9)$ 为来自总体 $N_3(\mu^{(2)},\Sigma)$ 的随机样本. 试利用表 3. 4 中的数据检验 H_{01} $\mu^{(1)}=\mu^{(2)}(\alpha=0.05)$.

 $\mathbf{m} \cdot n_1 = 6, n_2 = 9$,同方差的两正态总体均值向量检验的检验统计量为

$$\frac{n_1 n_2}{n_1 + n_2} (\bar{X} - \bar{Y})' (\frac{A_1 + A_2}{n_1 + n_2 - 2})^{-1} (\bar{X} - \bar{Y}) \stackrel{H_0}{\sim} T^2(p, n_1 + n_2 - 2)$$

```
> Y<-data.frame(tige[c(7:15),-1])</pre>
  > a1<-colMeans(X)
  > a2<-colMeans(Y)</pre>
  > a1<-as.matrix(a1,byrow=TRUE) #X的均值向量
  > a2<-as.matrix(a2,byrow=TRUE) #Y的均值向量
  > A1<-5*cov(X) #X的样本离差阵
  > A2<-8*cov(Y) #Y的样本离差阵
  > a1.a2<-a1-a2
  > a1.a2 t<-t(a1.a2)
  > A1.A2<-solve((A1+A2)/13) #混合样本协方差阵的逆
  > T2<-(6*9/15)*a1.a2_t%*%A1.A2%*%a1.a2
11
  > T2
12
           [,1]
13
  [1,] 5.311726
  > F<-11/13/3*T2 #转换为F分布
15
  > F
16
           [,1]
17
  [1,] 1.498179
18
  > 1-pf(F,3,11)
19
            [,1]
20
  [1,] 0.2692616
                  #p值大于0.05,故接受H_0
```

- 3-13 对表 3.3 给出的三组观测数据分别检验是否来自 4 元正态分布.
 - (1) 对每个分量检验是否是一元正态?
- (2) 利用 χ^2 图检验法对三组观测数据分别检验是否来自 4 元正态分布.

例 3. 3. 2 为了研究某种疾病,对一批人同时测量了 4 个指标: β 脂蛋白 (X_1) ,甘油三酯 (X_2) , α 脂蛋白 (X_3) ,前 β 脂蛋白 (X_4) .按不同年龄、不同性别分为三组 $(20 至 35 岁的女性、20 至 25 岁的男性 和 35 至 50 岁的男性),数据见表 3. 3. 试问这三个组的 4 项指标间有无显著性差异 <math>(\alpha=0.01)$?

表 3.3	身体指标化验数据
-------	----------

X_1	X ₂	. X ₃	X4	组	X_1	X_2	X 3	X4	组	<i>X</i> ₁	X_2	<i>X</i> ₃	X4	组
260	75	40	18	1	310	122	30	21	2	320	64	39	17	3
200	72	34	17	1	310	60	35	18	2	260	59	37	11	3
240	87	45	18	1	190	40	27	15	2	36 0	88	28	26	3
170	65	39	17	1	225	65	34	16	2	295	100	36	12	3
270	110	39	24	1	170	65	37	16	2	270	6 5	32	21	3
205	130	34	23	1	210	82	31	17	2	380	114	36	21	3
190	69	27	15	1	280	67	37	18	2	240	55	42	10	3
200	46	45	15	1	210	38	36	17	2	260	55	34	20	3
250	117	21	20	1	280	65	30	23	2	260	110	29	20	3
200	107	28	20	1	200	76	40	17	2	295	73	33	21	3
225	130	36	11	1	200	76	39	20	2	240	114	38	18	3
210	125	26	17	1	280	94	26	11	2	310	103	32	18	3
170	64	31	14	1	190	60	33	17	2	330	112	21	11	3
270	76	33	13	1	295	55	30	16	2	345	127	24	20	3
190	60	34	16	1	270	125	24	21	2	250	62	22	16	3
280	81	20	18	1	280	120	32	18	2	260	59	21	19	3
310	119	25	15	1	240	62	32	20	2	225	100	34	30	3
270	57	31	8	1	280	69	29	20	2	345	120	36	18	3
250	67	31	14	1	370	70	30	20	2	360	107	25	23	3
260	135	39	29	1	280	40	37	17	2	250	117	36	16	3

解. (第一问):

1.1 直方图

由图观察,组1的第4特征和组2的第4特征接近一元正态.

1.2 QQ 图

由图观察,组1的第3特征和组2的第4特征接近一元正态.

1.3 偏度和峰度

由结果 (结果见附录), 组 1 的第 4 特征, 组 2 的第 4 特征, 组 3 的第 4 特征接近一元正态.

1.4 统计检验

(1)Shapiro-Wilks test

由检验结果 (见附录),组 1 的第 3 特征,组 1 的第 4 特征,组 2 的第 3 特征,组 3 的第 4 特征接近一元正态.

(2)Kolmogorov-Smirnov test

由检验结果 (见附录), 组 1 的第 3 特征, 组 2 的第 4 特征接近一元正态.

(3)Cramer-von Mises test

由检验结果 (见附录), 组 1 的第 3 特征, 组 2 的第 3 特征接近一元正态.

(4) Anderson-Darling test

由检验结果 (见附录), 组 1 的第 3 特征, 组 2 的第 3 特征接近一元正态.

(第二问):

1. 第一组

拒绝正态性假设.

2. 第二组

勉强接受正态性假设.

3. 第三组

拒绝正态性假设.

附录

A 3-13 1.1 直方图

```
> data<-read.csv("E:/4.多元统计分析/zuoye/3/2.csv",stringsAsFactors = TRUE)
  > A<-data.frame(data[c(1:20),-1])</pre>
                                          #将三个组分出来
  > B<-data.frame(data[c(21:40),-1])</pre>
3
  > C<-data.frame(data[c(41:60),-1])</pre>
4
  > par(mfrow=c(3,4))
5
  > hist(A$X1, main="Histogram for A$x1")
  > hist(A$X2,main="Histogram for A$x2")
  > hist(A$X3,main="Histogram for A$x3")
  > hist(A$X4,main="Histogram for A$x4")
  > hist(B$X1,main="Histogram for B$x1")
10
  > hist(B$X2,main="Histogram for B$x2")
11
  > hist(B$X3,main="Histogram for B$x3")
12
  > hist(B$X4,main="Histogram for B$x4")
13
  > hist(C$X1, main="Histogram for C$x1")
14
  > hist(C$X2,main="Histogram for C$x2")
15
  > hist(C$X3,main="Histogram for C$x3")
16
  > hist(C$X4,main="Histogram for C$x4")
```

B 3-13 1.2 QQ 图

```
par(mfrow=c(3,4))
  qqnorm(A$X1,main="Q-Q plot for A$x1"); qqline(A$X1)
2
  qqnorm(A$X2,main="Q-Q plot for A$x2"); qqline(A$X2)
  qqnorm(A$X3,main="Q-Q plot for A$x3"); qqline(A$X3)
  qqnorm(A$X4,main="Q-Q plot for A$x4"); qqline(A$X4)
  qqnorm(B$X1,main="Q-Q plot for B$x1"); qqline(B$X1)
  qqnorm(B$X2,main="Q-Q plot for B$x2"); qqline(B$X2)
  qqnorm(B$X3,main="Q-Q plot for B$x3"); qqline(B$X3)
  qqnorm(B$X4,main="Q-Q plot for B$x4"); qqline(B$X4)
9
  qqnorm(C$X1,main="Q-Q plot for C$x1"); qqline(C$X1)
10
  qqnorm(C$X2,main="Q-Q plot for C$x2"); qqline(C$X2)
11
  qqnorm(C$X3,main="Q-Q plot for C$x3"); qqline(C$X3)
12
  qqnorm(C$X4,main="Q-Q plot for C$x4"); qqline(C$X4)
13
```

C 3-13 1.3 偏度和峰度

```
> library(moments)
  > skewness(A$X1); kurtosis(A$X1)
  [1] 0.1204204
  [1] 1.933383
4
  > skewness(A$X2); kurtosis(A$X2)
  [1] 0.2773125
  [1] 1.587005
  > skewness(A$X3); kurtosis(A$X3)
  [1] -0.05769829
  [1] 2.307432
10
  > skewness(A$X4); kurtosis(A$X4)
11
  [1] 0.601332
12
  [1] 3.789564
13
  > skewness(B$X1); kurtosis(B$X1)
14
  [1] 0.2049252
15
  [1] 2.363692
  > skewness(B$X2); kurtosis(B$X2)
17
  [1] 0.8553859
18
  [1] 3.002884
19
  > skewness(B$X3); kurtosis(B$X3)
  [1] -0.04971583
21
  [1] 2.19002
22
  > skewness(B$X4); kurtosis(B$X4)
  [1] -0.4271917
24
  [1] 3.707689
25
  > skewness(C$X1); kurtosis(C$X1)
26
  [1] 0.3598219
  [1] 1.764333
28
  > skewness(C$X2); kurtosis(C$X2)
29
  [1] -0.1937781
  [1] 1.401273
31
  > skewness(C$X3); kurtosis(C$X3)
32
  [1] -0.4423124
33
  [1] 2.038037
  > skewness(C$X4); kurtosis(C$X4)
35
  [1] 0.2004094
36
  [1] 3.058989
37
```

D 3-13 1.4.1 Shapiro-Wilks test

```
shapiro.test(A$X1)
  Shapiro-Wilk normality test
3
4
  data: A$X1
  W = 0.94438, p-value = 0.2898
   > shapiro.test(A$X2)
  Shapiro-Wilk normality test
10
11
  data: A$X2
12
  W = 0.90348, p-value = 0.04795
13
14
   > shapiro.test(A$X3)
15
  Shapiro-Wilk normality test
17
18
  data: A$X3
19
  W = 0.97035, p-value = 0.7622
21
   > shapiro.test(A$X4)
22
  Shapiro-Wilk normality test
24
25
  data:
         A$X4
26
  W = 0.9573, p-value = 0.4914
27
28
  > shapiro.test(B$X1)
29
  Shapiro-Wilk normality test
31
32
  data:
         B$X1
33
  W = 0.93141, p-value = 0.1644
35
  > shapiro.test(B$X2)
36
  Shapiro-Wilk normality test
38
39
  data:
          B$X2
40
  W = 0.87954, p-value = 0.01736
```

```
42
   > shapiro.test(B$X3)
43
44
  Shapiro-Wilk normality test
45
   data:
          B$X3
47
  W = 0.97246, p-value = 0.8057
48
49
   > shapiro.test(B$X4)
50
51
  Shapiro-Wilk normality test
52
  data:
          B$X4
54
  W = 0.94251, p-value = 0.2674
55
56
   > shapiro.test(C$X1)
57
58
   Shapiro-Wilk normality test
59
60
   data: C$X1
61
  W = 0.92007, p-value = 0.09939
62
63
   > shapiro.test(C$X2)
65
   Shapiro-Wilk normality test
66
  data: C$X2
68
  W = 0.87082, p-value = 0.01215
69
70
   > shapiro.test(C$X3)
71
72
   Shapiro-Wilk normality test
73
74
   data: C$X3
75
  W = 0.92527, p-value = 0.1252
76
77
   > shapiro.test(C$X4)
78
79
   Shapiro-Wilk normality test
80
81
  data:
          C$X4
```

E 3-13 1.4.2 One-sample Kolmogorov-Smirnov test

```
library(nortest) # package for normality tests
  > ks.test(A$X1,"pnorm",mean(A$X1),sqrt(var(A$X1)))
  One-sample Kolmogorov-Smirnov test
  data: A$X1
  D = 0.14982, p-value = 0.7604
  alternative hypothesis: two-sided
  Warning message:
10
  In ks.test(A$X1, "pnorm", mean(A$X1), sqrt(var(A$X1))) :
  Kolmogorov - Smirnov检验里不应该有连结
  > ks.test(A$X2,"pnorm",mean(A$X2),sqrt(var(A$X2)))
13
14
  One-sample Kolmogorov-Smirnov test
15
16
  data: A$X2
17
  D = 0.18174, p-value = 0.5235
  alternative hypothesis: two-sided
19
20
  Warning message:
21
  In ks.test(A$X2, "pnorm", mean(A$X2), sqrt(var(A$X2))) :
  Kolmogorov - Smirnov 检验里不应该有连结
23
  > ks.test(A$X3,"pnorm",mean(A$X3),sqrt(var(A$X3)))
24
25
  One-sample Kolmogorov-Smirnov test
27
  data: A$X3
28
  D = 0.10512, p-value = 0.9799
  alternative hypothesis: two-sided
30
31
  Warning message:
32
  In ks.test(A$X3, "pnorm", mean(A$X3), sqrt(var(A$X3))) :
  Kolmogorov - Smirnov 检验里不应该有连结
34
  > ks.test(A$X4,"pnorm",mean(A$X4),sqrt(var(A$X4)))
35
36
  One-sample Kolmogorov-Smirnov test
```

```
38
  data: A$X4
39
  D = 0.17354, p-value = 0.5835
40
  alternative hypothesis: two-sided
41
  Warning message:
43
  In ks.test(A$X4, "pnorm", mean(A$X4), sqrt(var(A$X4))):
44
  Kolmogorov - Smirnov 检验里不应该有连结
45
  > ks.test(B$X1,"pnorm",mean(B$X1),sqrt(var(B$X1)))
46
47
  One-sample Kolmogorov-Smirnov test
48
  data:
          B$X1
50
  D = 0.19427, p-value = 0.4372
51
  alternative hypothesis: two-sided
52
53
  Warning message:
54
  In ks.test(B$X1, "pnorm", mean(B$X1), sqrt(var(B$X1))) :
55
  Kolmogorov - Smirnov检验里不应该有连结
  > ks.test(B$X2,"pnorm",mean(B$X2),sqrt(var(B$X2)))
57
58
  One-sample Kolmogorov-Smirnov test
59
  data:
         B$X2
61
  D = 0.19605, p-value = 0.4256
62
  alternative hypothesis: two-sided
63
64
  Warning message:
65
  In ks.test(B$X2, "pnorm", mean(B$X2), sqrt(var(B$X2))) :
66
  Kolmogorov - Smirnov 检验里不应该有连结
  > ks.test(B$X3,"pnorm",mean(B$X3),sqrt(var(B$X3)))
68
69
  One-sample Kolmogorov-Smirnov test
70
71
  data: B$X3
72
  D = 0.11193, p-value = 0.9636
73
  alternative hypothesis: two-sided
74
75
  Warning message:
76
  In ks.test(B$X3, "pnorm", mean(B$X3), sqrt(var(B$X3))) :
77
  Kolmogorov - Smirnov检验里不应该有连结
```

```
> ks.test(B$X4,"pnorm",mean(B$X4),sqrt(var(B$X4)))
80
   One-sample Kolmogorov-Smirnov test
81
82
   data:
         B$X4
   D = 0.137, p-value = 0.8471
84
   alternative hypothesis: two-sided
85
86
   Warning message:
87
   In ks.test(B$X4, "pnorm", mean(B$X4), sqrt(var(B$X4))) :
88
   Kolmogorov - Smirnov 检验里不应该有连结
89
   > ks.test(C$X1,"pnorm",mean(C$X1),sqrt(var(C$X1)))
91
   One-sample Kolmogorov-Smirnov test
92
93
   data: C$X1
   D = 0.20397, p-value = 0.3761
95
   alternative hypothesis: two-sided
96
97
   Warning message:
98
   In ks.test(C$X1, "pnorm", mean(C$X1), sqrt(var(C$X1))) :
99
   Kolmogorov - Smirnov 检验里不应该有连结
100
   > ks.test(C$X2,"pnorm",mean(C$X2),sqrt(var(C$X2)))
102
   One-sample Kolmogorov-Smirnov test
103
104
   data: C$X2
105
   D = 0.19913, p-value = 0.4059
106
   alternative hypothesis: two-sided
107
   Warning message:
109
   In ks.test(C$X2, "pnorm", mean(C$X2), sqrt(var(C$X2))) :
110
   Kolmogorov - Smirnov 检验里不应该有连结
111
   > ks.test(C$X3,"pnorm",mean(C$X3),sqrt(var(C$X3)))
112
113
   One-sample Kolmogorov-Smirnov test
114
   data: C$X3
116
   D = 0.16575, p-value = 0.6419
117
   alternative hypothesis: two-sided
118
119
```

```
Warning message:
120
   In ks.test(C$X3, "pnorm", mean(C$X3), sqrt(var(C$X3))) :
   Kolmogorov - Smirnov 检验里不应该有连结
122
   > ks.test(C$X4,"pnorm",mean(C$X4),sqrt(var(C$X4)))
123
   One-sample Kolmogorov-Smirnov test
125
126
   data: C$X4
127
   D = 0.15187, p-value = 0.7455
   alternative hypothesis: two-sided
129
130
   Warning message:
131
   In ks.test(C$X4, "pnorm", mean(C$X4), sqrt(var(C$X4))) :
132
   Kolmogorov - Smirnov检验里不应该有连结
133
```

F 3-13 1.4.3 Cramer-von Mises normality test

```
> cvm.test(A$X1)
  Cramer-von Mises normality test
3
  data: A$X1
  W = 0.086853, p-value = 0.1584
6
  > cvm.test(A$X2)
8
  Cramer-von Mises normality test
10
11
  data: A$X2
12
  W = 0.14504, p-value = 0.02482
13
14
  > cvm.test(A$X3)
15
  Cramer-von Mises normality test
17
18
  data: A$X3
19
  W = 0.029414, p-value = 0.8454
21
  > cvm.test(A$X4)
22
23
  Cramer-von Mises normality test
```

```
25
   data: A$X4
26
  W = 0.074724, p-value = 0.2295
27
28
   > cvm.test(B$X1)
30
   Cramer-von Mises normality test
31
32
  data: B$X1
  W = 0.12397, p-value = 0.04817
34
35
   > cvm.test(B$X2)
37
   Cramer-von Mises normality test
38
39
   data: B$X2
  W = 0.16261, p-value = 0.01441
41
42
   > cvm.test(B$X3)
43
44
   Cramer-von Mises normality test
45
46
  data: B$X3
  W = 0.041269, p-value = 0.6392
48
49
   > cvm.test(B$X4)
50
51
   Cramer-von Mises normality test
52
53
   data: B$X4
  W = 0.085822, p-value = 0.1635
55
56
   > cvm.test(C$X1)
57
58
   Cramer-von Mises normality test
59
60
  data: C$X1
  W = 0.11306, p-value = 0.06823
62
63
   > cvm.test(C$X2)
64
```

```
Cramer-von Mises normality test
67
  data: C$X2
68
  W = 0.17689, p-value = 0.00932
69
  > cvm.test(C$X3)
71
  Cramer-von Mises normality test
  data: C$X3
75
  W = 0.10375, p-value = 0.09207
76
  > cvm.test(C$X4)
78
79
  Cramer-von Mises normality test
80
81
  data: C$X4
82
  W = 0.0695, p-value = 0.2695
```

G 3-13 1.4.4 Anderson-Darling normality test

```
ad.test(A$X1)
  Anderson-Darling normality test
4
  data: A$X1
  A = 0.48879, p-value = 0.1974
6
  > ad.test(A$X2)
  Anderson-Darling normality test
10
11
  data: A$X2
  A = 0.80834, p-value = 0.02999
13
14
  > ad.test(A$X3)
15
16
  Anderson-Darling normality test
17
18
  data: A$X3
19
  A = 0.20767, p-value = 0.8443
```

```
^{21}
   > ad.test(A$X4)
22
23
   Anderson-Darling normality test
24
   data: A$X4
26
  A = 0.42246, p-value = 0.2906
27
28
   > ad.test(B$X1)
29
30
   Anderson-Darling normality test
31
  data:
          B$X1
33
  A = 0.67108, p-value = 0.06764
34
35
   > ad.test(B$X2)
36
37
   Anderson-Darling normality test
38
39
          B$X2
   data:
40
  A = 0.97028, p-value = 0.0115
41
42
   > ad.test(B$X3)
44
   Anderson-Darling normality test
45
          B$X3
   data:
47
  A = 0.2485, p-value = 0.7141
48
49
   > ad.test(B$X4)
51
   Anderson-Darling normality test
52
53
         B$X4
   data:
54
  A = 0.52176, p-value = 0.162
55
56
   > ad.test(C$X1)
57
58
   Anderson-Darling normality test
59
60
  data:
          C$X1
```

```
A = 0.65859, p-value = 0.07283
63
   > ad.test(C$X2)
64
65
  Anderson-Darling normality test
67
  data: C$X2
68
  A = 1.0481, p-value = 0.007258
69
70
   > ad.test(C$X3)
71
72
  Anderson-Darling normality test
73
74
  data: C$X3
75
  A = 0.61015, p-value = 0.09707
76
77
   > ad.test(C$X4)
78
79
  Anderson-Darling normality test
81
  data: C$X4
82
  A = 0.43689, p-value = 0.2674
83
```