Face Mask Detection Using Yolo

Gavin Jin (jj2915@nyu.edu)

Bernice Feng (<u>bf1318@nyu.edu</u>)

Introduction

Problem:

We would like to run an object detection algorithm to detect whether a person is wearing a mask or not. It is especially interesting to detect if a person is wearing mask correctly, since many people tend to wear incorrectly.

Importance:

As the COVID is still around us, mask is becoming a must in some situations. Such a detection algorithm may be helpful for some facilities to ensure a mask-requirement.

Dataset

Data link:

https://www.kaggle.com/datasets/andrewmvd/face-mask-detection

Consist of: 853 images with xml annotations belonging to 3 classes

- With mask
- Without mask
- Mask worn incorrectly

Train set: 767 images (~90%) Test set: 86 images (~10%)


```
<annotation>
   <folder>images</folder>
   <filename>maksssksksss0.png</filename>
   <size>
       <width>512</width>
       <height>366</height>
       <depth>3</depth>
   </size>
   <segmented>0</segmented>
   <object>
       <name>without mask</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <occluded>0</occluded>
       <difficult>0</difficult>
       <hndhox>
           < xmin > 79 < / xmin >
            <ymin>105
            <xmax>109</xmax>
            <ymax>142</ymax>
       </bndbox>
   </object>
   <object>
       <name>with mask</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <occluded>0</occluded>
       <difficult>0</difficult>
       <br/>bndbox>
            < xmin > 185 < / xmin >
           <ymin>100
            <xmax>226</xmax>
            <ymax>144
       </hndhox>
   </object>
   <object>
       <name>without mask</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <occluded>0</occluded>
       <difficult>0</difficult>
       <hndbox>
           <xmin>325
           <ymin>90
            <xmax>360</xmax>
           <ymax>141</ymax>
       </bndbox>
   </object>
</annotation>
```

Network

input& ground truth=

output:

Pc $\neg \leftarrow$ confidence prediction represents IOU

bx $\leftarrow x$ -axis of center of box

by $\leftarrow y$ -axis of center of box

bw \leftarrow width of box

bh \leftarrow height of box

C1 \leftarrow Pr(class with masks) \in 10,1)

C2 \leftarrow Pr(class without masks) \in 10,1)

C3 \leftarrow Pr(class wearing mask incorrectly) \in 10,1)

Loss Function

$$\begin{split} \lambda \, \text{coord} & \stackrel{S^2}{\underset{i=0}{\overset{B}{>}}} \stackrel{B}{\underset{j=0}{\overset{Obj}{>}}} (\, b_{x_i} - b_{x_i}^{\circ})^2 + (\, b_{y_i} - b_{y_i}^{\circ})^2 \quad \text{localization loss} \\ & + \lambda \, \text{coord} \quad \stackrel{S^2}{\underset{i=0}{\overset{B}{>}}} \stackrel{B}{\underset{j=0}{\overset{Obj}{>}}} 1 \, \stackrel{\text{obj}}{\underset{i,j}{\overset{Obj}{>}}} (\, \sqrt{\, b_{w_i}} - \sqrt{\, b_{w_i}^{\circ}})^2 + (\sqrt{\, b_{h_i}} - \sqrt{\, b_{h_i}^{\circ}})^2 \\ & + \quad \sum_{i=0}^{\overset{S^2}{>}} \stackrel{B}{\underset{j=0}{\overset{Obj}{>}}} 1 \, \stackrel{\text{obj}}{\underset{i,j}{\overset{Obj}{>}}} (\, C_i - \hat{C_i}\,)^2 + \lambda \, \text{noobj} \, \sum_{i=0}^{\overset{S^2}{>}} \stackrel{B}{\underset{j=0}{\overset{Obj}{>}}} 1 \, \stackrel{\text{obj}}{\underset{i,j}{\overset{Obj}{>}}} (\, C_i - \hat{C_i}\,)^2 \\ & + \quad \sum_{i=0}^{\overset{S^2}{>}} 1 \, \stackrel{\text{obj}}{\underset{i,j}{\overset{Obj}{>}}} \sum (\, P_i(k) - \, \hat{P_i}(k)) \quad \text{classification loss} \end{split}$$

notation:
$$1^{obj} = \{1, object appears in celli \ 0, otherwise$$

$$1^{obj} = \{1, jth boundary box in celli for detection \ 0, otherwise \}$$

A coord: increase weight for loss in boundary box

Anoobj: weights down the loss when detecting b.g.

 $\hat{C_i}$: box confidence score of box \hat{j} in call i

Non-max Suppression (NMS)

o make sure the algorithm detects only once

0.9

the one in the center the other mis-identified ones

- O select the one with highest confidence score
- @ get rid of the rest with high IOU

confidence score

= Pr(class*) * IOU pred

Intersection over Union (IOU)

$$IOU = \frac{\text{Size of intersection}}{\text{Size of union}}$$

$$= \frac{\text{Size of } \square}{\text{Size of } \square}$$

Anchor Box

to solve one grid cell wants to detect multiple objects

Future Extensions

- Our model does not perform well on our dataset, since it is does not have a relative even distribution on each class. We could do data augmentation and better split the dataset to make our train/test set less biased.
- 2. Yolo has several upgraded version, each incorporating new techniques to the original model. We could try it out see how the add-ons increase the performance of our network,

Reference

- https://arxiv.org/pdf/1506.02640.pdf
- 2. https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b
 1b93e2088