Cleber Zanchettin Ricardo Prudêncio

Introdução

 Soluções para novos problemas podem ser definidas, adaptando soluções dadas a problemas similares

• É comum memorizarmos situações e recuperá-las quando necessário

Procedimento usado no dia-a-dia

- Problemas resolvidos no passado são representados como instâncias
 - E.g., exemplos de treinamento previamente etiquetados

 Instâncias são recuperadas e adaptadas para resolver novos problemas

- Generaliza informações com base em exemplos de treinamento:
 - Para inferir a classe de novas instâncias (ou instâncias de consulta)
 - Cada vez que uma instância é recebida, se computa uma função objetivo com base no conhecimento oferecido pela base de exemplos de treinamento
- Estima a classe da nova instância com base em comportamentos locais
- É uma técnica incremental

- Lazy learning ou aprendizado preguiçoso
 - Método de aprendizagem em que a generalização além dos dados de treinamento é adiada até que uma consulta seja feita ao sistema
- Diferente da aprendizagem ansiosa (eager learning)
 - Sistema tenta generalizar os dados de treinamento antes de receber uma consulta

- Classe de algoritmos de aprendizado que inclui, por exemplo:
 - K-Vizinhos Mais Próximos
 - Raciocínio Baseado em Casos

Algoritmo de K-Vizinhos Mais Próximos

K-Nearest Neighbors (k-NN)

- Todas as instâncias correspondem a pontos em um espaço n-dimensional
- Vizinhança definida por uma função de distância, ou por uma função de similaridade
 - Menor distância = maior similaridade

 Classe de um novo exemplo é definida a partir dos vizinhos mais próximos

- O atributo de saída é definido na forma:
 - Discreta (por exemplo, por maior número de votos)
 - Contínua (o atributo de saída é definido pela ponderação das saídas das K instâncias mais próximas)

$$\hat{f}(x_q) = \frac{\sum_{i=1}^{\kappa} f(x_i)}{k}$$

Definições:

- $-x_i$: instância descrita pelo vetor $\langle a_1(x_i),...,a_n(x_i)\rangle$
- $-f(x_i)$: classe de x_i

- Treinamento básico:
 - Armazenar exemplos de treinamento $\langle x_i, f(x_i) \rangle$

- Dado exemplo X_q a ser classificado,
 - Seja $x_1,...,x_k$ as k instâncias mais similares a x_q
 - Retorne classe *majoritária* das instâncias recuperadas

$$\hat{f}(x_q) \leftarrow \arg\max_{v \in V} \sum_{i=1}^k \delta(v, f(x_i))$$

onde

$$\delta(v, f(x_i)) = 1$$
 se $v == f(x_i)$ e $\delta(v, f(x_i)) = 0$, caso contrário

 Algoritmo k-NN usa comumente a Distância Euclidiana para definição de vizinhança

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

- Atributos de maior escala numérica podem dominar função de distância
 - Usualmente, os atributos são normalizados para intervalo entre 0 e 1

$$a_{NORM}(x) = \frac{a(x) - \min_{i}(a(x_i))}{\max_{i} a(x_i) - \min_{i}(a(x_i))}$$

$$a_{NORM}(x) = \frac{a(x) - mean_i(a(x_i))}{std_i(a(x_i))}$$

 Boa prática: incluir a normalização dos dados implicitamente no cálculo da distância

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} \frac{(a_r(x_i) - a_r(x_j))^2}{(\max_i a_r(x_i) - \min_i a_r(x_j))^2}}$$

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} \frac{(a_r(x_i) - a_r(x_j))^2}{(std_i(a_r(x_i)))^2}}$$

- Distância de Hamming para atributos categóricos:
 - Soma 1 para cada atributo cujo valor não coincide nas instâncias

$$d_{HAMMING}(x_i, x_j) = \sum_{r=1}^{n} dist(a_r(x_i), a_r(x_j))$$

$$dist(a_r(x_i), a_r(x_j)) = \begin{cases} 0, & se \quad a_r(x_i) == a_r(x_j) \\ 1, & caso \ contrário \end{cases}$$

- Função de distância considerando missing values (Witten, Frank (2000, p.115)):
 - Para atributos categóricos: distância é igual a 1 na presença de missing values
 - Para atributos numéricos:
 - Se os dois valores comparados são missing values então distância igual a 1
 - Se apenas um dos valores é missing value, então distância é o maior dentre os seguintes valores:
 - Tamanho normalizado do atributo presente
 - Um (1) menos o tamanho normalizado do atributo presente

- Outras funções de distância:
 - Distância L1 Normalizada

$$d(x_i, x_j) = \sum_{r=1}^{n} \frac{|a_r(x_i) - a_r(x_j)|}{\max_i a_r(x_i) - \min_i a_r(x_j)}$$

Distância Cosseno Normalizada

$$d(x_i, x_j) = \frac{\sum_{r=1}^{n} a_r(x_i) * a_r(x_j)}{\sum_{r=1}^{n} a_r(x_i)^2 * \sum_{r=1}^{n} a_r(x_j)^2}$$

Algoritmo k-NN - Exemplo

Espaço de instâncias

- Exemplos da classe negativa
- Exemplos da classe positiva
- Exemplos a ser classificado

Com k = 1, exemplo xq
 recebe classe positiva

Algoritmo k-NN - Exemplo

Espaço de instâncias

- Exemplos da classe negativa
- Exemplos da classe positiva
- Exemplos a ser classificado

Com k = 3, exemplo xq
 recebe classe positiva

Algoritmo k-NN - Exemplo

Espaço de instâncias

- Exemplos da classe negativa
- Exemplos da classe positiva
- Exemplos a ser classificado

Com k = 5, exemplo xq
 recebe classe negativa

- O dilema da escolha do parâmetro k
 - O algoritmo se torna mais flexível
 - Valores muito baixos podem aumentar a contribuição de exemplos ruidosos
 - Menor gasto computacional

- O dilema da escolha do parâmetro k
 - Valores muito altos podem aumentar a contribuição de exemplos pouco similares, e assim, menos relevantes
 - Mais robusto a ruído
 - Menor flexibilidade

- O que fazer em caso de empate entre duas ou mais classes?
 - Considerar apenas os k-1 vizinhos mais próximos
 - Em caso de novo empate, repetir esse processo
 - Esse processo para quando uma classe for unânime

- O valor do parâmetro k é escolhido comumente através de tentativa-e-erro
 - Avaliação empírica com diferentes valores de k
 - Validação cruzada

Algoritmo k-NN com Ponderação pela Distância

 A contribuição de cada vizinho pode ser ponderada pela distância com a instância a ser classificada

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{arg\,max}} \sum_{i=1}^k w_i * \delta(v, f(x_i))$$

$$w_i = \frac{1}{d(x_q, x_i)^2}$$
 $w_i = \frac{1}{d(x_q, x_i)}$ $w_i = 1 - d(x_q, x_i)$

Algoritmo k-NN com Ponderação pela Distância

- Com ponderação, a escolha adequada de k se tornaria menos importante?
 - Note que instâncias muitos distantes teriam pouca contribuição na predição
- "There is no harm in allowing all training examples to have an influence on the classification..." – T. Mitchell (1997, p. 234)
- Método de Shepard: k-NN ponderado usando todos os exemplos de treinamento como vizinhos

Algoritmo k-NN - Discussão

- Se somente os k mais próximos forem considerados:
 - Algoritmo é denominado local
- Se todas as instâncias de treinamento forem consideradas:
 - Algoritmo é denominado global

Algoritmo k-NN - Discussão

- Computam a saída em função dos atributos de entrada
- Se os atributos de entrada não forem bem definidos o resultado pode ser ruim:
 - Por exemplo, instâncias são representadas por 10 atributos de entrada e 1 de saída
 - Porém, somente 2 atributos de entrada são relevantes
 - Os 8 outros podem influenciar a saída, mas nem deveriam existir na base de aprendizado!
- Uma abordagem para resolver esse problema é dar um peso para cada atributo:
 - Assim os mais relevantes serão mais considerados!
- Outra é remover os atributos menos significativos

Algoritmo k-NN para Regressão

 Algoritmo pode ser usado para estimar valores de funções contínuas

$$\int_{1}^{k} f(x_{i}) + \sum_{i=1}^{k} f(x_{i})$$

 Predição é a média simples dos valores alvo armazenados nas instâncias recuperadas

Algoritmo k-NN para Regressão

Regressão com Ponderação pela Distância

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

 Predição é a média ponderada dos valores alvo armazenados nas instâncias recuperadas

Algoritmo k-NN - Discussão

Vantagens

- Fácil de implementar
- Não requer uma etapa de treinamento
- Ideal para conjuntos de dados pequenos ou médios
 - Algoritmos, como árvores de decisão, precisam de mais dados para gerar um bom modelo
- Usa informação local, podendo ser implementado com comportamentos adaptativos
- Pode ser paralelizado

Algoritmo k-NN - Discussão

Desvantagens

- É muito sensível a presença de atributos irrelevantes e/ou redundantes
 - Curse of Dimensionality
- Custo computacional e armazenamento em alguns contextos é impraticável
 - Reduzir o número de exemplos de treinamento pode amenizar esse problema
 - Algoritmos baseados em protótipos também podem ajudar

Exemplo

Qual a classe da amostra abaixo, dado o conjunto de treinamento ao lado?

Altura	Peso	Sexo
1,75	52,0	?

Altura	Peso	Sexo
1,87	76,1	0
1,65	75,2	1
1,80	60,0	1
1,81	55,9	0
1,90	93,3	1
1,74	65,2	1
1,49	45,1	0
1,56	53,2	0
1,73	55,1	0
1,76	63,1	1

Primeiro passo

- Normalizar os valores
 - z-score

Média	Média
Altura	Peso
1,73	64,22

Desvio	Desvio
Altura	Peso
0,13	14,01

$$z = \frac{x - \mu}{\sigma}$$

Altura	Peso	Sexo
1,87	76,1	0
1,65	75,2	1
1,80	60,0	1
1,81	55,9	0
1,90	93,3	1
1,74	65,2	1
1,49	45,1	0
1,56	53,2	0
1,73	55,1	0
1,76	63,1	1

Primeiro passo

- Normalizar os valores
 - z-score

Altura	Peso	Sexo
0,12	-0,87	?

Altura	Peso	Sexo
1,04	0,84	0
-0,63	0,78	1
0,51	-0,30	1
0,58	-0,59	0
1,27	2,07	1
0,20	0,06	1
-1,85	-1,36	0
-1,32	-0,78	0
-0,02	-0,65	0
0,20	-0,07	1

Sem ajuste de escala

-20

-10

90 85 80 75 70 65 60 55 -

20

30

10

zscore

Segundo passo

 Calcular as distâncias da amostra desconhecida para as conhecidas

Altura	Peso	Sexo
0,12	-0,87	?

Altura	Peso	Sexo	D
1,04	0,84	0	2,64
-0,63	0,78	1	0,90
0,51	-0,30	1	0,96
0,58	-0,59	0	0,74
1,27	2,07	1	4,10
0,20	0,06	1	1,03
-1,85	-1,36	0	2,47
-1,32	-0,78	0	1,36
-0,02	-0,65	0	0,08
0,20	-0,07	1	0,88

Terceiro passo

□ Classificação: k = 3

Altura	Peso	Sexo
0,12	-0,87	? = 0

Altura	Peso	Sexo	D
1,04	0,84	0	2,64
-0,63	0,78	1	0,90
0,51	-0,30	1	0,96
0,58	-0,59	0	0,74
1,27	2,07	1	4,10
0,20	0,06	1	1,03
-1,85	-1,36	0	2,47
-1,32	-0,78	0	1,36
-0,02	-0,65	0	0,08
0,20	-0,07	1	0,88

Terceiro passo

□ Classificação: k = 5

Altura	Peso	Sexo
0,12	-0,87	? = 1

Altura	Peso	Sexo	D
1,04	0,84	0	2,64
-0,63	0,78	1	0,90
0,51	-0,30	1	0,96
0,58	-0,59	0	0,74
1,27	2,07	1	4,10
0,20	0,06	1	1,03
-1,85	-1,36	0	2,47
-1,32	-0,78	0	1,36
-0,02	-0,65	0	0,08
0,20	-0,07	1	0,88

Diagrama de Voronoi

Exemplo: problema de 2 classes (x,o) e 2 atributos representados nos eixos x e y

Prof. José Baranauskas

Diagrama de Voronoi, K=3

Diagrama de Voronoi, K=7

KNN: Regressão, K=1

KNN: Regressão, K=3

KNN: Regressão, K=5

Fronteiras

Fronteiras

Fronteiras

Fronteiras

Fronteiras (Árvore de Decisão)

Algoritmo k-NN no WEKA

Algoritmo k-NN no WEKA

Vantagens

- São algoritmos de aprendizado supervisionado nos quais instâncias são usada (incrementalmente) para classificar objetos
- Custo de atualização das instâncias é baixo
- Custo ou velocidade do aprendizado é (treinamento) é baixo
- É possível adaptar os algoritmos para obter descrição dos conceitos

Desvantagens

- São computacionalmente custosos, desde que considerem todas as instâncias
- Não tratam bem atributos ruidosos
- Não são robustos a atributos irelevantes
- A performance depende muito da escolha da função de similaridade para computer as distâncias
- Não existe forma simples de tartar atributos nominais e faltantes
- Não fornecem uma boa descrição da estrutura dos dados

Exemplo

Applet

http://techlab.bu.edu/classer/artmap_applet

Referências

- T. Mitchell, 1997. Machine Learning.
- I. Witten, E. Frank, 2000. Data Mining Practical Machine Learning Tools and Techniques with Java Implementations.
- D. Aha, D. Kibler, M. Albert, ,1991. Instance-based learning algorithms. *Machine Learning*, 6:37--66.