Листок №21 02.09.2019

Комплексная арифметика

Определение. Компле́ксными* числами будем называть формальные записи z = a + bi, где $a,b \in \mathbb{R}$. Множество таких чисел будем обозначать \mathbb{C} . Символ i называется мнимой $eduhuue\check{u}$, число $a - de\check{u}cmeumenьно\check{u}$ частью комплексного числа z и обозначается $\operatorname{Re} z$, число b — мнимой частью комплексного числа z и обозначается $\operatorname{Im} z$. Комплексные числа складываются, вычитаются и перемножаются по тем же законам, по которым производятся операции с многочленами, при этом полагается, что $i^2 = -1$.

Определение. Сопряжённым к комплексному числу z называют комплексное число $\bar{z} =$

Везде далее под числом будем понимать комплексное число, если не оговорено иное.

Задача 21.1. Даны числа $z_1=1+i,\,z_2=4-3i.$ Найдите

(a) Re z_2 ; (b) $z_1 + z_2$; (c) $z_1 z_2$; (d) $z_1 z_2$; (e) $z_1 z_2$; (e) $z_1 z_2$; (f) $z_1 z_2$; (g) $z_1 z_2$; (g) $z_1 z_2$; (g) $z_1 z_2$; (e) $z_1 z_2$; (e) $z_1 z_2$; (e) $z_1 z_2$; (e) $z_1 z_2$; (f) $z_1 z_2$; (f) $z_1 z_2$; (g) $z_1 z_2$; (g)

Задача 21.2. Найдите два комплексных числа, сумма которых равна 4, а произведение 5.

Задача 21.3. (a) Найдите какое-нибудь число z, такое, что $\operatorname{Im} z \neq 0$, $\operatorname{Im} z^3 = 0$. (б) Найдите все корни уравнения $z^3 = 1$.

Задача 21.4. Докажите, что

(a) $\overline{\overline{z}}=z;$ (B) $\overline{\lim}(\overline{z}z)=0;$ ($\overline{\mu}$) $\overline{z}\overline{w}=\overline{z}\overline{w};$ (6) $\overline{\lim}(\overline{z}+z)=0;$ ($\overline{\mu}$) $\overline{z}\overline{w}=\overline{z}\overline{w};$ (e) $\overline{z}/\overline{w}=\overline{z}/\overline{w}.$

Задача 21.5. Для числа z = a + bi напишите формулы, по которым можно найти противоположное -z и обратное z^{-1} ему числа.

Задача 21.6. Найдите общую формулу для частного $(a + bi)/(c + di)^{\dagger}$.

Задача 21.7. Докажите, что два числа с отличной от нуля мнимой частью являются сопряженными тогда и только тогда, когда их сумма и произведение являются действительными числами.

Определение. Modynem комплексного числа z называют неотрицательное действительное число $|z| = \sqrt{\left(\operatorname{Re} z\right)^2 + \left(\operatorname{Im} z\right)^2}.$

Задача 21.8. Верно ли, что в случае действительного числа введенное выше определение модуля не отличается от известного ранее?

Задача 21.9. Докажите, что

(a) $|\bar{z}| = |z|$; (b) $\bar{z}z = |z|^2$;

(B) |zw| = |z||w|; (Д) |z/w| = |z|/|w|; (P) $|z^{-1}| = 1/|z|;$ (P) $|z^{-1}| = \bar{z}/|z|^2.$

Определение. Комплексное число z = a + bi можно рассматривать как точку координатной плоскости (a;b). В этом случае ось абсцисс называется действительной осью, поскольку на ней оказываются действительные числа. Множество всех комплексных чисел с нулевой действительной частью (такие числа называются чисто мнимыми) оказывается лежащим на оси ординат, которая называется мнимой осью. Также любому комплексному числу z = a + biможно поставить в соответствие вектор (a; b) на координатной плоскости. В случае, если на координатной плоскости отмечаются комплексные числа, ее обычно называют комплексной плоскостью.

^{*}В отличие от обеда, который комплексный.

[†]Для получения формулы удобно воспользоваться сопряженными числами.

Листок №21 02.09.2019

Задача 21.10. (a) Отметьте на комплексной плоскости число z=2-3i. Где тогда находится число \bar{z} , как его можно получить для произвольного числа z? (б) Что с геометрической точки зрения представляет собой |z|? (в) На комплексной плоскости отмечены числа z и w. Как отметить на ней числа $-\frac{3}{2}z, z+w, z-2w$?

Задача 21.11. Верно ли утверждение: «Операции, совершаемые над комплексными числами, эквивалентны таким же операциям, совершаемым над соответствующими векторами»?

Задача 21.12. Докажите с помощью комплексной плоскости следующие неравенства:

(a)
$$|z_1 + z_2| \le |z_1| + |z_2|$$
; (6) $|z_1 - z_2| \ge |z_1| - |z_2|$.

Определение. Аргументом комплексного числа z называется угол на комплексной плоскости, отсчитанный против часовой стрелки от положительного направления оси абсцисс до вектора, соответствующего числу z и обозначается $\arg z$.

Задача 21.13. (а) Найдите число z, если |z|=2, $\arg z=\frac{2\pi}{3}$. (б) Найдите модуль и аргумент числа z=2-3i.

Задача 21.14 (Тригонометрическая форма записи комплексного числа). Докажите, что любое комплексное число z может быть записано в виде

$$z = r(\cos\varphi + i\sin\varphi),$$

где $r = |z|, \varphi = \arg z.$

Задача 21.15. (а) Как выражаются модуль и аргумент произведения двух комплексных чисел через их модули и аргументы? (б) Тот же вопрос для частного.

Задача 21.16 (Формула Муавра). Пусть $r = |z|, \ \varphi = \arg z$. Докажите, что тогда

$$z^n = r^n(\cos n\varphi + i\sin n\varphi).$$

Задача 21.17. Вычислите $\left(\frac{3}{2} - i\frac{\sqrt{27}}{2}\right)^{33}$.

Задача 21.18. (а) Выведите с помощью формулы Муавра формулы для синуса и косинуса тройного и четверного угла. (б) Выразите $\sin nx$ и $\cos nx$ в виде многочленов от $\sin x$ и $\cos x$. Задача 21.19. Вычислите суммы $\cos \alpha + \cos 2\alpha + \ldots + \cos n\alpha$ и $\sin \alpha + \sin 2\alpha + \ldots + \sin n\alpha$.