

Foundations of Computing I

Pre-Lecture Problem

Do it! Do it now! What are you waiting for? ©

Use Logical Equivalences to show

$$p \land ((p \rightarrow q) \lor (p \rightarrow r)) \equiv (r \lor q) \land p$$

Identity

$$p \land \mathsf{T} \equiv p$$
$$p \lor \mathsf{F} \equiv p$$

Domination

$$p \lor \mathsf{T} \equiv \mathsf{T}$$
$$p \land \mathsf{F} \equiv \mathsf{F}$$

Idempotency

$$p \lor p \equiv p$$
$$p \land p \equiv p$$

Commutativity

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Associativity

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$(p \land q) \land r \equiv p \land (q \land r)$$

Distributivity

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

Negation

$$p \lor \neg p \equiv \mathsf{T}$$
$$p \land \neg p \equiv \mathsf{F}$$

DeMorgan's Laws

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Double Negation

$$\neg \neg p \equiv p$$

Law of Implication

$$p \to q \equiv \neg p \lor q$$

Contrapositive

$$p \to q \equiv \neg q \to \neg p$$

A Combinational Logic Example

Sessions of Class:

We would like to compute the number of lectures or quiz sections remaining at the start of a given day of the week.

- Inputs: Day of the Week, Lecture/Section flag
- Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2

Input: (Monday, Section) Output: 1

Implementation in Software

```
public int classesLeftInMorning(weekday, lecture flag) {
    switch (weekday) { asks like a series of if statements.
                          IF weekday == sunday: do this
         case SUNDAY:
                          EXCEPT as soon as switch is turned on, ALL cases activate
         case MONDAY: until method is broken (by break statement or return statement)
              return lecture_flag ? 3 : 1;
         case TUESDAY:
         case WEDNESDAY:
              return lecture_flag ? 2 : 1;
         case THURSDAY:
              return lecture_flag ? 1 : 1;
         case FRIDAY:
              return lecture_flag ? 1 : 0;
         case SATURDAY:
              return lecture_flag ? 0 : 0;
```

Implementation with Combinational Logic

Encoding:

- How many bits for each input/output?
- Binary number for weekday
- One bit for each possible output

Defining Our Inputs!

Weekday Input:

- Binary number for weekday
- Sunday = 0, Monday = 1, ...
- We care about these in binary:

Weekday	Number	Binary
Sunday	0	(000) ₂
Monday	1	$(001)_2$
Tuesday	2	(010) ₂
Wednesday	3	(011) ₂
Thursday	4	(100) ₂
Friday	5	(101) ₂
Saturday	6	(110) ₂

Converting to a Truth Table! 1 = lecture

0 = quiz

number of classes of

- = same for both that type (0,1,2,3)

case SUNDAY or MONDAY:	Wee	kday	Lecture?	c ₀	c_1 c_2 c_3
return lecture_flag ? 3 : 1;	SUN	000	0	0	100
case TUESDAY or WEDNESDAY:	SUN	000	1	0	001
<pre>return lecture_flag ? 2 : 1; case THURSDAY:</pre>	MON	001	0		
<pre>return lecture_flag ? 1 : 1;</pre>	MON	001	1		1
case FRIDAY:	TUE	010	0		
<pre>return lecture_flag ? 1 : 0; case SATURDAY:</pre>	TUE	010	1		1
<pre>return lecture_flag ? 0 : 0;</pre>	WED	011	0		
	WED	011	1		9
		100		2	100
	THU	100			<u> </u>
	FRI	101	0		
	FRI	101	1		
	SAT	110	-		
	-	111	-		
				1	

Converting to a Truth Table!

```
case SUNDAY or MONDAY:
    return lecture_flag ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return lecture_flag ? 2 : 1;
case THURSDAY:
    return lecture_flag ? 1 : 1;
case FRIDAY:
    return lecture_flag ? 1 : 0;
case SATURDAY:
    return lecture_flag ? 0 : 0;
```

			/\	\			
Wee	kday	Lecture?	do	c_1	$/c_2$	c ₃	\
SUN	000	0	e	1/	0	Vø	_/
SUN	000	1	0	0	0	1	\
MON	001	0	0	1	0	0	
MON	001	1	0	ø	9/	1	
TUE	010	0	0	1	0	ð	
TUE	010	1	0	a	4	ð	
WED	011	0	0	1	Ø	Ø	
WED	011	1	0	a	1	0	
THU	100	-	0	1		ø	
FRI	101	0	1	ø	0	þ	
FRI	101	1	0	1	0	Ø	
SAT	110	-	1	\	0	X ø	
-	111	-	1	\ \\ \\ \\ \ \\	0/	0	
						\ /	

	$d_2d_1d_0$	L	c ₀	$\mathbf{c_1}$	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

Let's begin by finding an expression for c_3 . To do this, we look at the rows where $c_3 = 1$ (true).

	$d_2d_1d_0$	L	c ₀	c ₁	c ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c _o	c_1	c ₂	C ₃	
SUN	000	0	0	1	0	0	
SUN	000	1	0	0	0	1	$d_2d_1d_0 == 000 \&\& L ==$
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	$d_2d_1d_0 == 001 \&\& L ==$
TUE	010	0	0	1	0	0	Substituting DAY for the
TUE	010	1	0	0	1	0	binary representation
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	C ₃	
SUN	000	0	0	1	0	0	
SUN	000	1	0	0	0	1	H
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	

 $d_2 == 0 \&\& d_1 == 0 \&\& d_0 == 1 \&\& L == 1$

Splitting up the bits of the day; so, we can write a formula.

SUN SUN MON	d ₂ d ₁ d ₀ 000	L 0	c ₀	c ₁	C ₂	C ₃
SUN			0	1		
	000	1		1	0	0
MON		1	0	0	0	1
	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	c ₃	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$
SUN	000	0	0	1	0	0	d2 * Now, we do c ₂ .
SUN	000	1	0	0	0	1	11011, 110 0.0 021
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	93.91.99.
WED	011	0	0	1	0	0	
WED	0 11	1	0	0	1	0	طي، حا، ٠ طي ٠ كـ
THU	100	-	0	1	0	0	
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	

	$d_2d_1d_0$	L	c ₀	C ₁	c ₂	C ₃	Now, we do $\mathbf{c_1}$:
SUN	000	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ ' • L'
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ • L'
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	d ₂ ' • d ₁ • d ₀ ' • L'
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	$d_2' \cdot d_1 \cdot d_0 \cdot L'$
WED	011	1	0	0	1	0	
THU	100	<u>O</u>	0	1	0	0	355 (5° · 5', 5°).
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	d ₂ • d ₁ ' • d ₀ • L
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$
							$c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	C ₃	Now, we do c₁:
SUN	000	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ ' • L'
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ • L'
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	$d_2' \cdot d_1 \cdot d_0' \cdot L'$
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	$d_2' \cdot d_1 \cdot d_0 \cdot L'$
WED	011	1	0	0	1	0	No matter what L is,
THU	100	-	0	1	0	0	d ₂ •d ₁ '•d ₀ ' we always say it's 1. So, we don't need L
FRI	101	0	1	0	0	0	in the expression.
FRI	101	1	0	1	0	0	d ₂ • d ₁ ' • d ₀ • L
SAT	110	-	1	0	0	0	$\mathbf{c}_3 = \mathbf{d}_2' \cdot \mathbf{d}_1' \cdot \mathbf{d}_0' \cdot \mathbf{L} + \mathbf{d}_2' \cdot \mathbf{d}_1' \cdot \mathbf{d}_0 \cdot \mathbf{L}$
-	111	-	1	0	0	0	$c_3 = d_2 \cdot d_1 \cdot d_0 \cdot L + d_2 \cdot d_1 \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$
c ₁ =	d ₂ '•d ₁ '•d	₀ '•L'+d ₂ '•	d ₁ ' • c	d _o •L'·	+ d ₂ ' •	d ₁ • d	$d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' + d_2 \cdot d_1' \cdot d_0 \cdot L$

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	C ₃	$c_1 = d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' +$
SUN	000	0	0	1	0	0	$d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L$
SUN	000	1	0	0	0	1	$\mathbf{c_2} = \mathbf{d_2'} \cdot \mathbf{d_1} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_2'} \cdot \mathbf{d_1} \cdot \mathbf{d_0} \cdot \mathbf{L}$
MON	001	0	0	1	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	Finally, we do c ₀ :
FRI	101	0	1	0	0	0	d ₂ • d ₁ ' • d ₀ • L'
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	d ₂ • d ₁ • d ₀ '
-	111	-	1	0	0	0	$d_2 \cdot d_1 \cdot d_0$

$$\begin{aligned} c_0 &= d_2 \cdot d_1' \cdot d_0 \cdot L' + d_2 \cdot d_1 \cdot d_0' + d_2 \cdot d_1 \cdot d_0 \\ c_1 &= d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' + d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' \cdot L \\ c_2 &= d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L \\ c_3 &= d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L \end{aligned}$$

Here's c₃ as a circuit:

CSE 311: Foundations of Computing

Lecture 4: Boolean Algebra, Circuits, Canonical Forms

Boolean Algebra

- Boolean algebra to circuit design
- Boolean algebra
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:

1. the set B contains at least two elements: 0, 1

For any a, b, c in B:

Axioms and Theorems of Boolean Algebra

identity:

1.
$$X + 0 = X$$

1D.
$$X \cdot 1 = X$$

null:

2.
$$X + 1 = 1$$

2D.
$$X \cdot 0 = 0$$

idempotency:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

involution:

4.
$$(X')' = X$$

complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

distributivity:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

Axioms and Theorems of Boolean Algebra

uniting:

9.
$$X \cdot Y + X \cdot Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

absorption:

10.
$$X + X \cdot Y = X$$

11. $(X + Y') \cdot Y = X \cdot Y$

10D.
$$X \cdot (X + Y) = X$$

11D. $(X \cdot Y') + Y = X + Y$

factoring:

12.
$$(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$$

12D.
$$X \cdot Y + X' \cdot Z = (X + Z) \cdot (X' + Y)$$

consensus:

13.
$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$$

de Morgan's:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$

14D.
$$(X \bullet Y \bullet ...)' = X' + Y' + ...$$

Proving Theorems (Rewriting)

Using the laws of Boolean Algebra:

prove the theorem:

prove the theorem:

$$X \bullet Y + X \bullet Y' = X$$

$$X \bullet Y + X \bullet Y' = X \bullet (YY')$$

$$= X \bullet (YY')$$

= ×

 $X + X \bullet Y = X$

 $X + X \bullet Y =$

Proving Theorems (Rewriting)

Using the laws of Boolean Algebra:

prove the theorem:

distributivity (8) complementarity (5) identity (1D)

$$X \bullet Y + X \bullet Y' = X$$

$$X \bullet Y + X \bullet Y' = X \bullet (Y + Y')$$

= $X \bullet (1)$
= X

prove the theorem:

identity (1D) distributivity (8) uniting (2) identity (1D)

$$X + X \bullet Y = X$$

$$X + X \cdot Y = X \cdot 1 + X \cdot Y$$

= $X \cdot (1 + Y)$
= $X \cdot (1)$
= X

Proving Theorems (Truth Table)

Using complete truth table:

For example, de Morgan's Law:

$$(X + Y)' = X' \bullet Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \bullet Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

Simplifying using Boolean Algebra

```
c3 = \left(d2' \cdot d1' \cdot d0' \cdot L\right) + \left(d2' \cdot d1' \cdot d0 \cdot L\right)
     = d2' \cdot d1' \cdot (d0' + d0) \cdot L
     = d2' • d1' • (1) • L
     = d2' • d1' • L
                                                                   AND
```

Let's make a circuit that adds three single bit inputs together into a single binary number

				\
Α	0	1	1	1
+ B	+ 0	+ 1	+ 0	+ 1
<u>+ C</u>	<u>+ 0</u>	<u>+ 0</u>	<u>+ 1</u>	<u>+ 1</u>
S _c S	6 6	6 1	19	11

Let's make a circuit that adds three single bit inputs together into a single binary number

	Α
+	В
<u>+</u>	C
S	S

Inputs: A, B, C

• Outputs: Two-bit Sum

Α	В	С	S _c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Larger Sum?

To get a sum of numbers with more bits, we can **combine** two of our original circuit together!

Larger Sum?

Larger Sum?

To support this idea, we rename our inputs/outputs.

Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

Α	В	C _{IN}	C _{OUT}	S	Derive an expression for S	
0	0	0	0	0	Donvo an expression of	
0	0	1	0	1	A' • B' • C _{IN}	
0	1	0	0	1	A' • B • C _{IN} A' • B • C _{IN} '	
0	1	1	1	0	$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' +$	
1	0	0	0	1	$A \cdot B' \cdot C_{IN}'$ $A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$	
1	0	1	1	0	A B GIN A A B GIN	
1	1	0	1	0		
1	1	1	1	1	A • B • C _{IN}	

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

Α	В	C _{IN}	C _{OUT}	S		
0	0	0	0	0		
0	0	1	0	1	Derive an ex	pression for C _{out}
0	1	0	0	1		
0	1	1	1	0	A' • B • C _{IN}	
1	0	0	0	1		$C_{OUT} = A' \cdot B \cdot C_{IN} + A \cdot B' \cdot C_{IN} +$
1	0	1	1	0	A • B' • C _{IN}	$A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}$
1	1	0	1	0	A • B • C _{IN} '	
1	1	1	1	1	A · B · C _{IN}	

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

Inputs: A, B, Carry-in

Outputs: Sum, Carry-out

$C_OUT C_IN$							
\checkmark	\mathcal{M}	$\int \oint$	$\int $	\mathcal{M}	$\overline{\mathcal{T}}$		
	A	Α	Α	Α	Α		
	В	В	В	В	В		
	S	S	S	S	S		

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

$$C_{OUT} = A' \cdot B \cdot C_{IN} + A \cdot B' \cdot C_{IN} + A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}'$$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

e.g., full adder's carry-out function

```
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                  adding extra terms
        = B Cin + A Cin + A B
                                                 creates new factoring
                                                     opportunities
```

A 2-bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Given a truth table:

- 1. Write the Boolean expression
- 2. Minimize the Boolean expression
- 3. Draw as gates
- 4. Map to available gates

_	Α	В	C	_
•	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$F = A'BC'+A'BC+AB'C+ABC$$

$$= A'B(C'+C)+AC(B'+B)$$

$$= A'B+AC$$

Canonical Forms

- Truth table is the unique signature of a Boolean Function
- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification
- Canonical forms
 - Standard forms for a Boolean expression
 - We all come up with the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

$$F = A'B'C + A'BC + AB'C + ABC' + ABC$$

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	minterms	– Fin cononical	form
0	0	0	A'B'C'	F in canonical	
0	0	1	A'B'C	F(A, B, C)	= A'B'C + A'BC + AB'C + ABC' + ABC
0	1	0	A'BC'		a maintineal forms
0	1	1	A'BC	canonical forn	n ≠ minimal form
U	Т	Т	ADC	F(A, B, C)	= A'B'C + A'BC + AB'C + ABC + ABC'
1	0	0	AB'C'	i (A, D, C)	- ADC TADC TADC TADC TADC
_	•				= (A'B' + A'B + AB' + AB)C + ABC'
1	0	1	AB'C		,
1	1	0	ABC'		= ((A' + A)(B' + B))C + ABC'
1		U	_	_	= C + ABC'
1	1	1	ABC [$I \mathcal{T}$ (
_	_	_	' · · · · · · · · · · · · · · · · · · ·	7 1 -	= ABC' + C
			•		AD . C
					= AB + C
				(\mathcal{H} (\\)\\\