

A **triangle** is the polygon with three sides and three vertices.

The adjoining figure shows the triangle ABC which is denoted by \triangle ABC.

- AB, BC and AC are the sides of the triangle.
- \bot ABC, \bot BAC and \bot BCA denotes the interior angles of \triangle ABC. These are also known as interior angles of \triangle ABC.

• The sum of the measures of the interior angles of a triangle is always 180° . \triangle ABC + \triangle BAC + \triangle BCA = 180°

Important Note: The side facing to the bigger interior angle of any triangle is always bigger than other two sides. Consider the following triangle. In ΔABC,

LABC has maximum degree and side opposite this angle is AC whose length is bigger than AB and BC.

Types of Triangles

Triangles are of the following types.

Equilateral triangle

A triangle in which all sides have same length or all interior angle have equal measure, the triangle is said to be equilateral triangle.

Note: Measure of an interior angle of an equilateral triangle is always 60° .

Isosceles triangle

If a triangle has at least two sides of equal length or at least two interior angles of equal measure, then the triangle is said to be isosceles triangle.

Note: Every equilateral triangle is also an isosceles triangle. But every isosceles triangle need not be equilateral triangle.

Scalene triangle

In a triangle, if no two sides have equal length or no two interior angles have equal measure, then the triangle is said to be scalene triangle.

Note: Neither isosceles triangle nor an equilateral triangle can be a scalene triangle.

Right Triangle

Right angled triangle is a triangle in which one of the interior angle is a right angle.

- The side opposite to the right angle is known as **hypotenu**!
- Hypotenuse is largest side of the right angles triangle.
- The two interior angles other than right angle are **complementary angles.**

- Right angled triangle <u>cannot</u> be an equilateral triangle.
- But it <u>can be</u> either isosceles triangle or scalene triangle.

We shall consider two types of the right angle triangle.

(These triangles appear often in GRE questions. So understand their properties carefully. These will be useful for problem solving.)

45-45-90 right angled triangle	30-60-90 right angled triangle
The measure of the interior angles of this triangle are 45°, 45°, 90°. This is an isosceles triangle.	The measure of the interior angles of this triangle are 30°, 60°, 90°. This an scalene triangle
The ratio of the sides of this triangle is L45: L45: L90 = 1:1: $\sqrt{2}$ where L45, L45 and L90 are the length of the side opposite to the 45°, 45°, 90° angles respectively.	The ratio of the sides of this triangle is: L30: L60: L90 = 1: $\sqrt{3}$: 2. where L30, L60 and L90 are the length of the side opposite to the 30° , 60° , 90° angles respectively.
	Λ

Pythagorean theorem:

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides.

In $\triangle ABC$, interior angle BAC is a right angle. Let length of side AB be x units, length of AC be y units and length of BC be z units. By Pythagorean theorem, $z^2 = x^2 + y^2$.

Tutorials

Questions	Figures
In \triangle MNO, \triangle ABC = 41°, \triangle ACB = 59°. What is the measure of the \triangle BAC? 41+59=100 180-100=80 degrees	C B
In the figure, \triangle O LM is an isosceles triangle \square NLM = 48° and \square LMN = 68° . Find measure of \square LOM, \square MON and \square LNM. Angle LNM = $48+68=116$, $180-116=64$ degrees	C O N
Angle LOM = 48+48= 96, 180-96 = 84 degrees.	\ \ /
Angle MON= 180-84=96 degrees.	M M
 In the following figure O is the center of the circle a) What type of the triangle is Δ OAB? b) If the diameter of circle having center O is 2 cm, what is the length of the side OA? c) Find the measure ∠ OAB and ∠ AOB. a) Isosceles Triangle. b) Length of side OA is 1 cm. c) Angle OAB = 50 degrees, Angle AOB = 80 degrees. 	50° B
In the figure, ABCD is an rectangle, \bot AEC = 50°, \bot ACD = 30°, find \bot BCE. 130 degrees.	D A B

In the figure \square ABCD is the square, length of side AD is 1cm. Find the length of the diagonal.

= Square root of 2.

In the figure \square ABCD is the rectangle, AE is perpendicular to BD (that is $\triangle AED = 90^{\circ}$). \Box DAE = 30°. Find measures of \Box ADE $=60^{\circ}$, \bot BAE= 60° , \bot ABE= 30° . Moreover if length of DE = 1 unit, find the length of AD=2, AE=sqrt(3), $AB = \frac{2 \text{sqrt}(3)}{2 \text{sqrt}(3)}$ and BD = 4

Find the value of X in the right angled triangle:

a)

b)

5 and **13**

c)

 $2\sqrt{(3)}$, 4

d) find the length of BC and AC.

Triangles Part 2

Exterior Angles:

Consider the figure ABC is a triangle. \bot ACD is known as exterior angle of the \triangle ABC.

Important property of exterior angle is: Measure of the exterior is the sum of the two interior angles.

In the above figure,

 \bot ACD = \bot ABC + \bot BAC.

(this property is very useful in GRE problem solving)

Similar Triangles

Two triangle are said to be similar if

- 1) all the corresponding angles of both the triangles are same:
- 2) all the ratios of the corresponding sides are same.

In following figure there are two triangles namely \triangle ABC and \triangle XYZ.

We say $\triangle ABC$ is similar to $\triangle XYZ$ if

$$\square$$
 BAC = \square YXZ;
 \square ABC = \square XYZ;
 \square ACB = \square XZY;

Or the corresponding sides are in same proportion, that is

$$AB / XY = BC / YZ$$

$$BC/YZ = AC/XZ$$

$$AC/XZ = AB/XY$$

$$\Rightarrow$$
 AB / XY = BC / YZ = AC / XZ

Conditions for similar triangles:

- 1. Two triangles are similar if at least two corresponding angles are equal.
- 2. If two corresponding sides of two triangles are in proportion, and their included angles are equal, the triangles are similar.
- 3. If three sides of two triangles are in proportion, the triangles are similar.

Hence for checking two triangles are similar you can check one of these conditions

Let us consider some different examples of similar triangles. These are typical types in which they appear in GRE questions.

Example 1

In the figure given a triangle Δ ABC and also LM is parallel to the side BC (we denote it as LM \parallel

BC), which implies that

$$\bot$$
 ALM = \bot ABC and \bot AML = \bot ACB

Now consider two triangles $\,\Delta\,\text{ALM}$ and $\,\Delta\,\text{ABC}$

 \bot LAM = \bot BAC (They are same triangles)

 \bot ALM = \bot ABC (from above)

 \bot AML = \bot ACB (from above)

So first condition is satisfied.

Hence \triangle ALM is similar to \triangle ABC

First condition is also known as AA Test

Since \triangle ALM is similar to \triangle ABC we get

$$AL/LB = AM/MC = LM/BC$$
.

Consider the same figure, in which LM passes through the side AB and AC. Following information is

В

provided:

length of side AL = I(AL) = 1, I(LB) = 2,

I(AM) = 1.5 and I(MC) = 3.

(*Note, it is not given that LM is parallel to side BC*).

Now let check whether " Δ ALM is similar to Δ ABC" Consider two triangles Δ ALM and Δ ABC

 \bot LAM = \bot BAC (They are same angles)

AL/AB = 1/3.

AM / AC = 1.5 / 4.5 = 1 / 3.

hence AL / AB = AM / AC

This satisfies the second condition.

Hence \triangle ALM is similar to \triangle ABC.

This second condition is known as SAS test.

Example 3:

This is a little complex example.

Let us understand the figure.

Given Δ ABC is right angled triangle.

and BD is perpendicular to AC

which implies \bot BDA = 90° and also \bot BDC = 90°.

We have three right angled triangles

 Δ ABC, Δ ADB and Δ BDC

Now let us check similarities of \triangle ABC and \triangle ADB

BAD = BAC (common angles)

ABC = BDA (right angles)

Hence by AA test

 \triangle ABC is similar to \triangle ADB

Similarly Check the similarities between ABC and BDC

Note that ABC is similar to ADB and ABC is similar to BDC which implies that ADB is similar to BDC. (Write the proof).

Congruent Triangles:

If given two similar triangles , the ratio of two corresponding sides is 1, then the two triangles are known as congruent triangles.

In other words we say two triangles are congruent if the corresponding angles and the corresponding sides are equal.

$$\bot$$
BAC = \bot YXZ

$$\bot ABC = \bot XYZ$$

$$\bot$$
 ACB = \bot XZY

and

I(AB) = I(XY)

$$I(BC) = I(YZ)$$

$$I(AC) = I(XZ)$$

hence \triangle ABC is congruent to \triangle XYZ (we write \triangle ABC \equiv \triangle XYZ).

Conditions for congruent triangles:

- Two triangles are said to be congruent if all the three corresponding sides are equal.
- Two triangles are said to be congruent if two corresponding sides are equal and the corresponding angle in between the two sides are equal.
- Two triangles are said to be congruent if two corresponding angles are equal and the corresponding side in between the two angles are equal.
- If the given two triangles are right angled triangles and if corresponding side other than the hypotenuse are equal the triangles are congruent.

Exercise:

In the figure, \triangle ABC is the right angled triangle. Prove that \triangle ABL is similar to \triangle LMC Proof: Given: \triangle ABC is a right angled triangle. To prove: \triangle ABL and \triangle LMC are similar. \triangle A = \triangle L (corresponding angles)(Since AB and LM are perpendicular to BC, AB and LM are parallel.) \triangle L = \triangle M (Right angles) By AA similarity, (In two triangles, if any two corresponding angles are same, then those two triangles are similar.) So, \triangle ABL is similar to \triangle LMC.	A C
In the figure, \triangle ABC is the isosceles triangle. Find the measure of the angle \bot CAD. Proof: Since ABC is an isosceles triangle, \bot C = \bot B = 65° \bot A = 50° ==> \bot CAD = 130°	C es'
	D A B

Triangles Part 3

Let us consider some new definitions:

Altitude:

An **altitude** of a triangle is a straight line through a vertex and perpendicular to (i.e. forming a right angle with) the opposite side . In the figure AL, BM and CN are the altitudes of Δ ABC. In fact, AL gives height from the vertex A to the side BC. BM gives the height from the vertex B to the side AC and CN gives the height from the vertex C to the side AB.

MEDIAN

A median of a triangle is a line joining a vertex to the midpoint of the opposing side .

CENTROID

A centroid of a triangle is a point where all the three medians of the triangle meet.

Properties:

A centroid of the triangle divides the median in the ratio of 2:1.

In the above figure

AL, BM and CN are the medians of Δ ABC.

Hence BL = LC,

AM = MC and AN = NB.

O is the centroid of the triangle.

AO: OL = 2:1 BO: OM = 2:1 CO: ON = 2:1

Note:

1) If the given triangle is an equilateral triangle then the median and the altitude of the triangle are same.

2) Suppose \triangle ABC is an isosceles triangle, such that AC = AB and \bot ACB = \bot ABC. AL is the line passing from A to the base BC and L is the midpoint of the BC. Then AL is also an altitude(Try to prove. Hint: Prove \triangle ABL is congruent to \triangle ACL.)

Area of the Triangle:

There are many ways to calculate the area of the triangle.

The area of any triangle is given by the given by the formula: 1/2 X Base X Height

In the above figure h denotes the height of the triangle and b denotes the base of the triangle.

For a given triangle with the formula ½ X Base X Height.

We can calculate its area in 3 ways.

½ XAL XBC Area of **\Delta** ABC

½ XBM XAC

½ X CN X AB

Since AL, BM and CN are the altitudes of **\Delta** ABC with base

BC, AC and AB.

Area of Equilateral triangle:

Area of the equilateral triangle is given by

 $= \sqrt{3} \text{ (side)}^2/4$.

That is area of \triangle ABC = $\sqrt{3}$ X BC $^2/4$.

Note that AB = BC = AC

The height between two parallel lines at any points is always same. Hence the area of the triangle with same base between two parallel lines is always same. Hence in the figure the area of Δ ABC , Δ MBC and Δ NBC are equal.

Consider the figure, LO is the m L1-Area(\triangle LMO) = 1/2 X heigh = 1/2 X h X M similarly Area(\triangle LNO) = 1/2 X = 1/2 X h X N We see height of both the triang of both the triangles are equal h

Consider the figure. BM, AL and CN are medians of Δ ABC and O is the centroid of Δ ABC . Hence

$$A(\Delta ABC) =$$

are same.

$$=$$
 6 X \triangle NOB

$$=$$
 6 X \triangle BOL

Application of similar triangles.

Let us see some applications of similar triangle in finding the areas.

Consider the figure, suppose it is given that

 \triangle ABC and \triangle DEF are similar.

We know that

$$\bot$$
BAC = \bot EDF.

and

$$\bot$$
ACB = \bot DFE.

Also we have,

$$AB/DE = AC/DF = BC/EF = m(say) -----(2)$$

then we get,

AC = m DF

$$BC = m EF$$

let AM be altitude(height) of ΔABC and DN be altitude(height) of ΔDEF . Now,

consider ΔABM and ΔDEN

```
\bot ABM = \bot DEN from (1)

\bot AMB = \bot DNE = 90°.

Hence by AA test ΔABM is similar to ΔDEN

Hence by the properties of similar triangles we have AB/DE = BM/EN = AM/DN

But by (2) we have AB/DE = m thus AM/DN = m => AM = m DN------(**)

But AM and DN are heights of ΔABM and ΔDEN. Let us find area of ΔDEF and ΔABC

area(ΔDEF) = 1/2 X base X height = 1/2 X EF X DN

area(ΔABC) = 1/2 X base X height = 1/2 X BC X AM
```

= 1/2 X (m EF) X (m DN) (From (*) and (**))

Hence $\frac{\text{area}(\Delta DEF)}{\text{m}^2} \times \frac{\text{area}(\Delta DEF)}{\text{m}^2}$

 $= m^2 X 1/2 X EF X DN$

(solutions)

1) Suppose DE|| BC and AB = 4 AD Find the ratio of the area of \triangle ADE and area of \triangle DBC.

Questions

Figures

Ratio of the area of ΔADE

and area of $\triangle DBC = \frac{1}{12}$

- 2) Let AM be the median of the \triangle ABC. If the distance of A from BC is 4 cm and BC = 4 cm then, find a) area(\triangle ABC) =?
- b) area($\triangle ABM$) =?
- c) Compare area of \triangle ABM and area of \triangle AMC

a) area(
$$\triangle ABC$$
) = $\frac{1}{2} \times 4 \times 4 = 8 cm^2$
b) area($\triangle ABM$) = $\frac{1}{2} \times 2 \times 4 = 4 cm^2$

- c) area of $\triangle AMC = \frac{1}{2} \times 2 \times 4 = 4 cm^2$ area($\triangle ABM$) = area of $\triangle AMC$
- 3) In the figure, O is the centroid of Δ LMN and LP be the median of Δ LMN. If area of Δ LPN = 6, then find
- a) area of ΔLMN
- b)find the ratio of the area of Δ MOP and area of Δ LOM.
- a) area of \triangle LMN = 2 x area of \triangle LPN = 2 x 6 = 12 square units.
- b) area of \triangle MOP = 1 / 6 x area of \triangle LMN area of \triangle LOM = 1 / 3 x area of \triangle LMN ratio of the area of \triangle MOP

4) Consider a quadrilateral LMNP, suppose LM = MN = PN = LP = MP and let LM = 3 cm. Find the area of this quadrilateral.

(Hint: area of quadrilateral LMNP = $area(\Delta LMP) + area(\Delta MPN)$)

ΔLMP and ΔMPN are congruent

the area of quadrilateral = $2 \times area$ of ΔLMP

area of
$$\triangle LMP = \frac{\sqrt{3}}{4}3^2 = 9\frac{\sqrt{3}}{4}$$

area of quadrilateral =
$$\frac{2 \times 9\sqrt{3}}{4}$$
 = $\frac{9\sqrt{3}}{2}$ square unit.

5) In the figure, AM and BN are the altitudes of \triangle ABC. If AM = 4 , BC = 5 and AC = 5 Find area (\triangle ABC) and BN.

area (
$$\triangle$$
ABC) = $\frac{1}{2} \times 5 \times 4$ = 10 square unit.
By comparing the areas BN = 4.

6) In the figure, DE||BC and AM is altitude of Δ ABC. Suppose DE : BC = 1 : 3 then find AN : NM.

$$\frac{AM}{AN} = \frac{3}{1}$$

NM : AN = 2

$$AN: NM = \frac{1}{2}$$

7) Suppose DE || BC and AD = m AB. then the following ratios:

a) area(\triangle ADE) : area(\triangle ABC) b) area(\triangle DBC) : area(\triangle ABC)

c) area(\triangle ADE): (area \triangle BDC): area(\triangle ABC) Also compare the area of \triangle DBC and area of \triangle BEC.

a) area(\triangle ADE): area(\triangle ABC) = m²: 1

b) area(\triangle DBC) : area(\triangle ABC) = $\frac{1-m}{1}$

c) area(\triangle ADE): (area \triangle BDC): area(\triangle ABC) = m^2 : (1 - m): 1

Since DE || $\stackrel{\frown}{BC}$ and base and height are same for both $\stackrel{\frown}{\Delta}$ DBC and $\stackrel{\frown}{\Delta}$ BEC

area of \triangle DBC: area of \triangle BEC = 1:1

area of Δ BEC

