ECE 663: Machine Learning in Adversarial Settings

Neil Gong

Instructor

- Neil Gong
- neil.gong@duke.edu
- Research area
 - Al and security
- Office hour
 - Time: Thursday 9:00am 10:00am
 - Location: 413 Wilkinson Building
- Teaching assistant
 - Zhengyuan Jiang, <u>zhengyuan.jiang@duke.edu</u>
 - Yuepeng Hu, yuepeng.hu@duke.edu

Course overview

- Security and privacy for machine learning
 - Security and privacy issues of ML
 - Secure and privacy-preserving ML
 - Beyond accuracy and efficiency of ML
- Machine learning for security and privacy
 - ML to enhance security
 - Misuse of ML

Course webpage:

https://duke-ece663.github.io/Machine-Learning-in-Adversarial-Settings-Fall-2024/

Goal of this class

• State-of-the-art literature on adversarial machine learning

Get prepared to apply and research adversarial machine learning

Class format

- Read papers
 - Write comments and send to adversarialmlduke@gmail.com
 - Deadline: Sunday and Tuesday 11:59pm
 - Send your comments to all papers in a single email thread
 - Comment
 - One paragraph of summary of each assigned paper
 - Three or more strengths
 - Three or more weaknesses
- Lead a lecture
 - Forming a group of at most 4 students
 - A group sends three preferred dates to adversarialmlduke@gmail.com by 11:59pm, 09/13
- Participate in class
- One class project
 - Can be a group of at most 4 students
 - Your research project can be class project
 - 09/16: project proposal due
 - 10/21: milestone report due
 - 11/20, 11/25: project presentation
 - 12/06: final project report due

Lead a lecture

- Why lead a lecture
 - Understanding a topic better after teaching others about it
- Like how I give a lecture
- May read multiple papers on the selected topic
 - E.g., each group member leads discussion on one paper
- 75 mins for a lecture!
- Use whiteboard/blackboard if possible
- Be interactive

An example class project

- Problem: finding adversarial examples in the white-box setting
- Solution: optimization-based method
 - E.g., start from the Carlini and Wagner method (to be discussed in the next lecture) as a baseline
 - Design a new method, e.g., enhance the Carlini and Wagner method via exploring new loss functions or use a different method to solve the formulated optimization problem
- Proposal abstract: one paragraph to describe the problem and potential solution.

Another example class project

Problem: Detecting AI-generated images

- Solution: watermark
 - E.g., start from a watermarking method and optimize it to enhance its robustness, efficiency, and/or image quality

 Proposal abstract: one paragraph to describe the problem and potential solution.

Project report template

- Abstract
- Introduction
- Related work (can also be moved to be after empirical evaluation)
- Problem definition
- Method
- Theoretical evaluation (if any)
- Empirical evaluation
- Conclusion

Grading policy

• 50% project

• 25% reading assignment

• 10% class participation

• 15% class presentation

Machine Learning Pipeline

Security of Machine Learning

- Integrity
 - Training phase
 - Deployment phase

- Confidentiality
 - Training/testing data
 - Model parameters
 - Hyperparameters
 - Algorithms

Integrity of Machine Learning

Attack Goal: Misclassification

- Untargeted
 - Arbitrary misclassification
- Targeted
 - Attacker-chosen misclassification

Poisoning Attacks — Attack Training Phase

- Compromise training phase to poison the learnt model
- Poisoned model misclassifies testing inputs as attacker desires
- Data poisoning
 - Modify training data to poison the model
- Algorithm poisoning
 - Modify algorithm to poison the model
 - E.g., when ML library is from untrusted third party
- Model poisoning
 - Directly modify parameters of the model
 - E.g., model is from third party or model training is distributed (federated learning)

An Example of Data Poisoning Attack

$$(x_1, y_1)$$

 $(x_2, y_2) \longrightarrow f$
 (x_3, y_3)

No data poisoning

$$\begin{array}{c} (x_1, y_1) \\ (x_2, y_2) \\ (x_3, y_3) \end{array} \longrightarrow f' \qquad \qquad x \xrightarrow{f'} y' \\ (x_4, y_4)$$

Injecting carefully crafted training data

Evasion Attacks – Attack Deployment Phase

- Model is clean
- Attacker perturbs testing inputs to induce misclassification

Classification: Panda

Carefully crafted perturbation (physically realizable)

Classification: Monkey

Adversarial example

Defenses to Protect Integrity

- Empirically secure defenses
 - Secure against specific, known attacks
 - Vulnerable to advanced, adaptive attacks

- Provably secure defenses
 - Secure against arbitrary attacks satisfying certain constraints
 - Often sacrifice accuracy when no attacks
- Still open challenges

Defenses against Evasion Attacks

- Adversarial training (empirically secure defense)
 - Key idea: use adversarial examples with correct labels to augment training data

- Randomized smoothing (provably secure defense)
 - Key idea: add random noise to a testing input to overwhelm adversarial perturbation (if any) before classifying it
 - Predicted label is unaffected by arbitrary adversarial perturbation whose L_p norm is bounded

Confidentiality of Machine Learning

Attacks to Confidentiality of Machine Learning

- Model stealing
 - Reconstruct a model's exact parameters or learn a functionality-equivalent surrogate one via querying the model
- Hyperparameter stealing
 - Reconstruct hyperparameters used to train a model
- Membership inference
 - Infer whether a given input is in a given model's training data
- Training data reconstruction (also known as model inversion)
 - Reconstruct training data of a given model

Summary

Course overview