Mathematics II for Computer Science and Engineering stream (Subject code: BMATS201)

Module 4: Numerical solution of ODE's

Syllabus:

Introduction to various numerical techniques for handling Computer Science & Engineering applications.

Numerical Solution of Ordinary Differential Equations (ODE's):

Numerical solution of ordinary differential equations of first order and first degree – Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector formula (No derivations of formulae). Problems

4.1 Taylor's series method

Working rule:

- Consider the initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- Find $y'(x_0), y''(x_0), y'''(x_0), etc.$
- Substitute these values in Taylor's series $y(x) = y(x_0) + \frac{x x_0}{1!} y'(x_0) + \frac{(x x_0)^2}{2!} y''(x_0) + \cdots$ (At least three non-zero terms must appear in the series.)
- 1. Find by Taylor's series method the value of y at x = 0.1 and x = 0.2 to 5 places of decimals from $\frac{dy}{dx} = x^2y - 1$, y(0) = 1.

decimals from
$$\frac{dy}{dx} = x^2y - 1$$
, $y(0) = 1$. (July 2017)
By data, $x_0 = 0$, $y_0 = 1$ $y' = x^2y - 1$ $y'(0) = -1$ $y'' = 2xy + x^2y'$ $y''(0) = 0$
By Taylor's series, $y''' = 2y + 4xy' + x^2y''$ $y'''(0) = 2$

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 0$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 0$, $y'''(0) = 2$.

$$y(x) = 1 + \frac{x}{1!}(-1) + \frac{x^2}{2!}(0) + \frac{x^3}{3!}(2) + \cdots$$

Therefore,
$$y(x) = 1 - x + \frac{x^3}{3}$$

$$y(0.1) = 0.9003, \ y(0.2) = 0.8023.$$

2. Employ Taylor's series method to obtain approx. value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact (Jan 2018)

By data,
$$x_0 = 0$$
, $y_0 = 0$

$$y' = 2y + 3e^{x}$$
 $y'(0) = 3$
 $y'' = 2y' + 3e^{x}$ $y''(0) = 9$
 $y''' = 2y'' + 3e^{x}$ $y'''(0) = 21$

By Taylor's series,

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 0$$
, $y(0) = 0$, $y'(0) = 3$, $y''(0) = 9$, $y'''(0) = 21$.

$$y(x) = 0 + \frac{x}{1!}(3) + \frac{x^2}{2!}(9) + \frac{x^3}{3!}(21) + \cdots$$

Therefore,
$$y(x) = 3x + 4.5x^2 + 3.5x^3$$

$$y(0.2) = 0.8110.$$

3. Solve by Taylor's series method the equation $\frac{dy}{dx} = \log xy$ for y(1.1) and y(1.2) given y(1) = 2.

By data,
$$x_0 = 1$$
, $y_0 = 2$
$$y' = \log x + \log y$$
$$y'' = \frac{1}{x} + \frac{1}{y}y'$$
$$y''' = -\frac{1}{x^2} + \frac{1}{y}y'' + \left(-\frac{1}{y^2}\right)(y')^2$$
$$y'''(1) = 0.4667$$

By Taylor's series:

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 1$$
, $y(1) = 2$, $y'(1) = 0.6932$, $y''(1) = 1.3466$, $y'''(1) = 0.4667$.

$$y(x) = 2 + \frac{x - x_0}{1!} (0.6932) + \frac{(x - x_0)^2}{2!} (1.3466) + \frac{(x - x_0)^3}{3!} (0.4667) + \cdots$$

Therefore,
$$y(x) = 2 + (x - 1)0.6931 + (x - 1)^2 0.6733 + (x - 1)^3 (0.4667)$$

 $y(1.1) = 2.0807, y(1.2) = 2.1692.$

4. Find an approx. value of y when x = 0. 1 if $\frac{dy}{dx} = x - y^2$ and y = 1 at x = 0 using Taylor's series method.

By data,
$$x_0 = 0$$
, $y_0 = 1$

$$y' = x - y^{2}$$

$$y'' = 1 - 2yy'$$

$$y''' = -2yy'' - 2y'^{2}$$

$$y^{iv} = -2yy''' - 2y''y' - 4y'y''$$

$$y''(0) = -1$$

$$y''(0) = 3$$

$$y'''(0) = -8$$

$$y^{iv}(0) = 34$$

Taylor's series:

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 0$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 3$, $y'''(0) = -8$.

$$y(x) = 1 + \frac{x}{1!}(-1) + \frac{x^2}{2!}(3) + \frac{x^3}{3!}(-8) + \frac{x^4}{4!}(34) + \cdots$$

$$y(x) = 1 - x + \frac{3x^2}{2} - \frac{4}{3}x^3 + \frac{17}{6}x^4$$

$$y(0.1) = 0.9139$$

5. Solve y' = x + y given y(1) = 0. Find y(1, 1) and y(1, 2) by Taylor's method.

By data,
$$x_0 = 1$$
, $y_0 = 0$

$$y' = x + y$$
 $y'(1) = 1$
 $y'' = 1 + y'$ $y''(1) = 2$
 $y''' = y''$ $y'''(1) = 2$
 $y^{iv} = y'''$ $y^{iv}(1) = 2$

By Taylor's series,

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 1, y(1) = 0, y'(1) = 1, y''(1) = 2, y'''(1) = 2, y^{iv}(1) = 2$$

$$y(x) = 0 + \frac{x-1}{1!}(1) + \frac{(x-1)^2}{2!}(2) + \frac{(x-1)^3}{3!}(2) + \frac{(x-1)^4}{4!}(2) + \cdots$$

$$y(x) = 1 + (x - 1) + (x - 1)^{2} - \frac{1}{3}(x - 1)^{3} + \frac{1}{12}(x - 1)^{4}$$

$$y(1.1) = 1.1097, y(1.2) = 1.2375$$

6. Evaluate y(0.1) correct to 6 places of decimal by Taylor's series method if y(x) satisfies y' = xy + 1, y(0) = 1.

By data,
$$x_0 = 0$$
, $y_0 = 1$,

$$y' = xy + 1$$
 $y'(0) = 1$
 $y'' = xy' + y$ $y''(0) = 1$
 $y''' = xy'' + 2y'$ $y'''(0) = 2$

By Taylor's series,

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 0$$
, $y(0) = 1$, $y'(0) = 1$, $y''(0) = 1$, $y'''(0) = 2$

$$y(x) = 1 + \frac{x}{1!}(1) + \frac{x^2}{2!}(1) + \frac{x^3}{3!}(2) + \cdots$$

$$y(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3}$$
, $y(0.1) = 1.1053$.

7. Solve $y' = 3x + y^2$, y(0) = 1 using Taylor's series method and compute y(0.1)

By data, $x_0 = 0$, $y_0 = 1$

$$y' = 3x + y^{2} y'(0) = 1$$

$$y'' = 3 + 2yy' y''(0) = 5$$

$$y''' = 2yy'' + 2y'^{2} y'''(0) = 12$$

By Taylor's series,

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 0, y(0) = 1, y'(0) = 1, y''(0) = 5, y'''(0) = 12$$

$$y(x) = 1 + x + \frac{5x^2}{2} + 2x^3$$

$$y(0.1) = 1.1272.$$

8. Using Taylor's series method find y(0.1) to 3 decimal places given that $\frac{dy}{dx} = e^x - y^2$, y(0) = 1

By data, $x_0 = 0$, $y_0 = 1$,

$y' = e^x - y^2$	y'(0) = 0
$y'' = e^x - 2yy'$	y''(0) = 1
$y''' = e^x - 2y'^2 - 2yy''$	$y^{\prime\prime\prime}(0)=-1$

Taylor's series,

$$y(x) = y(x_0) + \frac{x - x_0}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(0) + \cdots$$

Put
$$x_0 = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 1$, $y'''(0) = -1$

$$y(x) = 1 + \frac{x^2}{2} - \frac{x^3}{6}$$
, $y(0.1) = 1.0048$.

4.2 Modified Euler's method

- Consider the initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- Find the value of y_1 using Euler's formula $y_1 = y_0 + hf(x_0, y_0)$
- \diamond Improve the value of y_1 using Modified Euler's formula

$$y_1^{(1)} = y_0 + \frac{h}{2}[f(x_0, y_0) + f(x_1, y_1)], y_1^{(2)} = y_0 + \frac{h}{2}[f(x_0, y_0) + f\left(x_1, y_1^{(1)}\right)]$$

Note 1:
$$y_1 = y_0 + p = y_0 + h \tan \theta = y_0 + h \left[\frac{dy}{dx} \right]_{(x_0, y_0)} = y_0 + h f(x_0, y_0)$$

(Accuracy can be improved by using Modified Euler's method. By default, carryout two modifications.)

1. Using Modified Euler's method, Find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0 by taking step length 0.1

By data,
$$f(x, y) = x + y$$
, $h = 0.1$

Step 1: Find y_1

$$x_0 = 0$$
 $x_1 = 0.1$ $y_0 = 1$ $y_1 = ?$

$$y_1 = y_0 + hf(x_0, y_0)$$

$$= 1 + 0.1f(0,1) = 1 + 0.1(0+1) = 1.1$$

By Modified Euler's formula,

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 1 + \frac{0.1}{2} [f(0, 1) + f(0.1, 1.1)]$$

$$= 1 + 0.05(0 + 1 + 0.1 + 1.1) = 1.115$$

$$y_1^{(2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(1)}) \right]$$
$$= 1 + \frac{0.1}{2} [f(0, 1) + f(0.1, 1.115)]$$

$$= 1 + 0.05[0 + 1 + 0.1 + 1.115] = 1.1105$$

$$y_1 = y(0.1) = 1.1105$$

Step 2: Find y_2

$x_1 = 0.1$	$x_2 = 0.2$	
$y_1 = 1.1105$	$y_2 = ?$	

By Euler's formula,

$$y_2 = y_1 + hf(x_1, y_1)$$
= 1.1105 + 0.1 f (0.1, 1.1105)
= 1.1105 + 0.1(0.1 + 1.1105) = 1.2316

$$y_2^{(1)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2)]$$

= 1.1105 + 0.05[0.1 + 1.1105 + 0.2 + 1.2316]
= 1.2426

$$y_2^{(2)} = y_1 + \frac{h}{2} \Big[f(x_1, y_1) + f(x_2, y_2^{(1)}) \Big]$$

= 1.1105 + 0.05[0.1 + 1.1105 + 0.2 + 1.2426]
= 1.2432

$$y_2 = y(0.2) = 1.2432$$

2. Using the modified Euler's method, Find y(0.1) given that $\frac{dy}{dx} = x^2 + y$ and y(0) = 1 take step h = 0.05 and perform two modifications in each stage.

By data,
$$f(x, y) = x^2 + y$$
, $h = 0.05$

Step 1: Find
$$y_1$$

By Euler's formula,

$$x_0 = 0$$
 $x_1 = 0.05$
 $y_0 = 1$ $y_1 = ?$

$$y_1 = y_0 + hf(x_0, y_0)$$

$$= 1 + 0.05 f(0,1) = 1 + 0.05(0+1) = 1.05$$

By Modified Euler's formula,

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 1 + \frac{0.05}{2} [f(0, 1) + f(0.05, 1.05)]$$

$$= 1 + 0.025(0^2 + 1 + 0.05^2 + 1.1) = 1.0513$$

$$y_1^{(2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(1)}) \right]$$

$$= 1 + \frac{0.05}{2} [f(0, 1) + f(0.1, 1.0513)]$$

$$= 1 + 0.05[0^2 + 1 + 0.05^2 + 1.0513] = 1.0514$$

$$y_1 = y(0.1) = 1.0514$$

Step 2: Find y_2

By Euler's formula,

$x_1 = 0.05$	$x_2 = 0.1$
$y_1 = 1.0514$	y ₂ =?

$$y_2 = y_1 + hf(x_1, y_1)$$

$$= 1.0514 + 0.05 f(0.05, 1.0514)$$

$$= 1.0514 + 0.05(0.05^2 + 1.0514) = 1.1041$$

$$y_2^{(1)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2)]$$

$$= 1.0514 + 0.025[0.05^2 + 1.0514 + 0.1^2 + 1.1041]$$

$$= 1.1056$$

$$y_2^{(2)} = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y_2^{(1)}) \right]$$

= 1.0514 + 0.025[0.05² + 1.0514 + 0.1² + 1.1056]
= 1.1056

$$y_2 = y(0.1) = 1.1056$$

3. Using Modified Euler's method find y(0.2) and y(0.4) given that $y' = y + e^x$, y(0) = 0.

By data,
$$f(x, y) = y + e^x$$
, $h = 0.2$

Step 1: Find y_1

By Euler's formula,

$$x_0 = 0$$
 $x_1 = 0.2$ $y_0 = 0$ $y_1 = ?$

$$y_1 = y_0 + hf(x_0, y_0)$$

$$= 0 + 0.2f(0,0) = 0 + 0.2(0+1) = 0.2$$

By Modified Euler's formula,

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 0 + \frac{0.2}{2} [f(0, 0) + f(0.2, 0.2)]$$

$$= 0 + 0.1(0 + 1 + 0.2 + 1.2214) = 0.2421$$

$$y_1^{(2)} = y_0 + \frac{h}{2} \Big[f(x_0, y_0) + f(x_1, y_1^{(1)}) \Big]$$

$$= 0 + \frac{0.2}{2} [f(0, 0) + f(0.2, 0.2421)]$$

$$= 0 + 0.1[0 + 1 + 0.2421 + 1.2214] = 0.2464$$

$$y_1 = y(0.2) = 0.2464$$

Step 2: Find y_2

By Euler's formula,

$x_1 = 0.2$	$x_2 = 0.4$
$y_1 = 0.2464$	$y_2 = ?$

$$y_2 = y_1 + hf(x_1, y_1)$$

$$= 0.2464 + 0.2f(0.2, 1.2464)$$

$$= 0.2464 + 0.2(0.2464 + 1.2214) = 0.5400$$

$$y_2^{(1)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2)]$$

= 0.2464 + 0.1[0.2464 + 1.2214 + 0.5400 + 1.4918]
= 0.5968

$$y_2^{(2)} = y_1 + \frac{h}{2} \Big[f(x_1, y_1) + f(x_2, y_2^{(1)}) \Big]$$

= 0.2464 + 0.1[0.2464 + 1.2214 + 0.5968 + 1.4918]
= 0.6025

$$y_2 = y(0.2) = 0.6025$$

4. Solve the following by Using Modified Euler's method, $y' = log_{10}(x + y)$, y(1) = 2 at x = 1, 2 and x = 1, 4

By data,
$$f(x, y) = \log_{10}(x + y)$$
, $h = 0.2$

Step 1: Find y_1

By Euler's formula,

$$x_0 = 1$$
 $x_1 = 1.2$ $y_0 = 2$ $y_1 = ?$

$$y_1 = y_0 + hf(x_0, y_0)$$

= 2 + 0.2 $f(1, 2)$ = 2.0954

By Modified Euler's formula,

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 2 + \frac{0.2}{2} [f(1, 2) + f(1.2, 2.0954)]$$

$$= 2.0995$$

$$y_1^{(2)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(1)}) \right]$$

= $2 + \frac{0.2}{2} [f(1, 2) + f(0.2, 2.0995)]$
= $2 + 0.1[0.3010 + 0.3551] = 2.0995$

$$y_1 = y(1.2) = 2.0995$$

Step 2: Find y₂

By Euler's formula,

$x_1 = 1.2$	$x_2 = 1.4$
$y_1 = 2.0995$	$y_2 = ?$

$$y_2 = y_1 + hf(x_1, y_1)$$

= 2.0995 + 0.2 f (0.2, 2.0995)
= 2.2032

$$y_2^{(1)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2)]$$

$$= 2.0995 + 0.1 [f(1.2, 2.0995) + f(1.4, 2.2032)]$$

$$= 2.2071$$

$$y_2^{(2)} = y_1 + \frac{h}{2} \left[f(x_1, y_1) + f(x_2, y_2^{(1)}) \right]$$

= 2.0995 + 0.1[f(1.2, 2.0995) + f(1.4, 2.2032)]
= 2.2071

$$y_2 = y(0.4) = 2.2071$$

5. Solve the following by Using Modified Euler's method, $\frac{dy}{dx} = log(x + y)$, y(1) = 2 at x = 1.2 and x = 1.4

By data,
$$f(x, y) = log(x + y)$$
, $h = 0.2$

Step 1: Find y_1

$$x_0 = 1$$
 $x_1 = 1.2$ $y_0 = 2$ $y_1 = ?$

By Euler's formula,

$$y_1 = y_0 + hf(x_0, y_0)$$

= 2 + 0.2 $f(1, 2)$ = 2 + 0.2 (1.0986) = 2.2197

By Modified Euler's formula,

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 2 + \frac{0.2}{2} [1.0986 + f(1.2, 2.2197)]$$

$$= 2 + 0.1(1.0986 + 1.2296) = 2.2328$$

$$y_1^{(2)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(1)})]$$

$$= 2 + \frac{0.2}{2} [f(1, 2) + f(0.2, 2.2328)]$$

$$= 2 + 0.1[1.0986 + 0.8890] = 2.1988$$

$$y_1 = y(1.2) = 2.1988$$

Step 2: Find y_2

By Euler's formula,

$$x_1 = 1.2$$
 $x_2 = 1.4$ $y_1 = 2.1988$ $y_2 = ?$

$$y_2 = y_1 + hf(x_1, y_1)$$

= 2.1988 + 0.2 f (0.2, 2.1988)

$$= 2.1988 + 0.2(0.8750) = 2.3738$$

$$y_2^{(1)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2)]$$

$$= 2.1988 + 0.1[0.8750 + 1.3280]$$

$$= 2.4191$$

$$y_2^{(2)} = y_1 + \frac{h}{2} \Big[f(x_1, y_1) + f(x_2, y_2^{(1)}) \Big]$$

= 2.1988 + 0.1[0.8750 + 1.34]
= 2.4195

$$y_2 = y(1.4) = 2.4195$$

6. Using Modified Euler's method find the solution of the differential equation $\frac{dy}{dx} = x + |\sqrt{y}|$ with initial conditions y = 1 at x = 0 for the range $0 \le x \le 0$. 4 in steps of 0.2

Solution:

By data,
$$f(x, y) = x + |\sqrt{y}|, h = 0.2$$

Step 1: Find y_1

$$x_0 = 0$$
 $x_1 = 0.2$ $y_0 = 1$ $y_1 = ?$

By Euler's formula,

$$y_1 = y_0 + hf(x_0, y_0)$$

= 1 + 0.2 $f(0, 1)$ = 1 + 0.2 (1) = 1.2

By Modified Euler's formula,

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 1 + \frac{0.2}{2} [1 + f(0.2, 1.2)]$$

$$= 1 + 0.1(1 + 1.2954) = 1.2295$$

$$y_1^{(2)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(1)})]$$

$$= 1 + \frac{0.2}{2} [1 + f(0.2, 1.2295)]$$

$$= 1 + 0.1[1 + 1.3088] = 1.2309$$

$$y_1 = y(0.2) = 1.2309$$

Step 2: Find y_2

$$x_1 = 0.2$$
 $x_2 = 0.4$ $y_1 = 1.2309$ $y_2 = ?$

By Euler's formula,

$$y_2 = y_1 + hf(x_1, y_1)$$
= 1.2309 + 0.2 f (0.2, 1.2309)
= 1.2309 + 0.2(1.3095) = 1.4928

$$y_2^{(1)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2)]$$

$$= 1.2309 + 0.1[1.3095 + 1.6218]$$

$$= 1.5240$$

$$y_2^{(2)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2^{(1)})]$$

$$= 1.2309 + 0.1[1.3095 + 1.6345]$$

$$= 1.5253$$

$$y_2 = y(0.4) = 1.5253$$

7. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with boundary conditions y = 1 when x = 0. Find approximately y for x = 0. 1 by Modified Euler's method. Carryout three modifications.

By data,
$$f(x, y) = \frac{y-x}{y+x} h = 0.1$$

Step 1: Find y_1

$$x_0 = 0$$
 $x_1 = 0.1$ $y_0 = 1$ $y_1 = ?$

$$y_1 = y_0 + hf(x_0, y_0)$$

= 1 + 0.1 $f(0, 1) = 1 + 0.1(1) = 1.1$

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1)]$$

$$= 1 + \frac{0.1}{2} [1 + f(0.1, 1.1)]$$

$$= 1 + 0.1 \left(1 + \frac{1.1 - 0.1}{1.1 + 0.1}\right) = 1.0916$$

$$y_1^{(2)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(1)})]$$

$$= 1 + \frac{0.1}{2} [1 + f(0.1, 1.0916)]$$

$$= 1 + 0.1 \left[1 + \frac{1.0916 - 0.1}{1.0916 + 0.1} \right] = 1.0916$$

$$y_1^{(3)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(2)}) \right]$$

= $1 + \frac{0.1}{2} \left[1 + f(0.1, 1.0916) \right]$
= $1 + 0.1 \left[1 + \frac{1.0916 - 0.1}{1.0916 + 0.1} \right] = 1.0916$

$$y_1 = y(0.1) = 1.0916$$

Home work

- 8. Find an approximate value of y when x=0.1 using Modified Euler's method, given that $y'=3x+\frac{y}{2}$ with y(0)=1, h=0.1
- 9. Find y(20.2) and y(20.4) using Modified Euler's method, given that $\frac{dy}{dx} = \log_{10} \left(\frac{x}{y}\right)$, y(20) = 5, taking h = 0.2
- 10. Using modified Euler's formula, compute y(1.1) correct to five decimal places given that $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and y = 1 at x = 1. [Taking h = 0.1] [Aug 21]
- 11. Solve $y'(x) = 3x + \frac{y}{2}$, y(0) = 1 then find y(0.2) with h = 0.2 using modified Euler's method. [Sep 20]]
- 12. Given $\frac{dy}{dx} = x + \sin y$, y(0) = 1. Compute y(0.4) with h = 0.2 using Euler's modified method. [Jan 20]
- 13. Using modified Euler's method to compute y(0.2), given $\frac{dy}{dx} xy^2 = 0$ under the initial condition y(0) = 2. Perform three iteration at each step, taking h = 0.1. [MQP 1, 18MAT]
- 14. Solve the differential equation $\frac{dy}{dx} = x\sqrt{y}$ under the initial condition y(1) = 1, by using modified Euler's method at the point x = 1. 4. Perform three iterations at each step, taking h=0.2. [MQP 2, 18MAT]

4.3 Runge - Kutta method of fourth order

Working Rule:

- Consider the initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- $y_1 = y_0 + k = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ Where $k_1 = hf(x_0, y_0)$ $k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$ $k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$

 $k_4 = hf(x_0 + h, y_0 + k_3)$

1. Apply Runge - Kutta method of fourth order to find an approximate value of y when x=0.2 given that $\frac{dy}{dx}=x+y$ and y=1 when x=0.

By data,
$$f(x_0, y_0) = x_0 + y_0 = 1, h = 0.2$$

 $k_1 = hf(x_0, y_0)$
 $= 0.2(1) = 0.2$
 $k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$
 $= 0.2 f(0.1, 1.1)$
 $= 0.2(0.1 + 1.1) = 0.24$
 $k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$
 $= 0.2f(0.1, 1.12)$
 $= 0.2(0.1 + 1.12) = 0.244$
 $k_4 = hf(x_0 + h, y_0 + k_3)$
 $= 0.2f(0.2, 1.244)$
 $= 0.2(0.2 + 1.244) = 0.2888$
 $y_1 = y_0 + k$
 $= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 $= 1 + \frac{1}{6}(0.2 + 0.48 + 0.488 + 0.2888)$
 $= 1.2428$

Conclusion: $y_1 = y(0.2) = 1.2428$

2. Using Runge-Kutta method of fourth order solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2

By data,
$$f(x_0, y_0) = f(0, 1) = \frac{1-0}{1+0} = 1, h = 0.2$$

$$k_1 = hf(x_0, y_0)$$

= 0.2(1) = 0.2

$$\begin{array}{c|cc} x_0 = 0 & x_1 = 0.2 \\ y_0 = 1 & y_1 = ? \end{array}$$

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

$$= 0.2 f(0.1, 1.1)$$

$$=0.2\left(\frac{1.1^2-0.1^2}{1.1^2+0.1^2}\right)=0.1967$$

$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

$$= 0.2 f(0.1, 1.0984)$$

$$= 0.2 \left(\frac{1.0984^2 - 0.1^2}{1.0984^2 + 0.1^2} \right) = 0.1967$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

$$= 0.2 f(0.2, 1.1967)$$

$$=0.2\left(\frac{1.1967^2-0.2^2}{1.1967^2+0.2^2}\right)=0.1891$$

$$y_1 = y_0 + k$$

$$= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 1 + \frac{1}{6}(0.2 + 0.3934 + 0.3934 + 0.1891)$$

$$= 1.1960$$

Conclusion:
$$y_1 = y(0.2) = 1.1960$$

3. Apply Runge-Kutta method of fourth order to find an approximate value of y for steps of 0.1 if $\frac{dy}{dx} = x + y^2$ given that y = 1, where x = 0 at x = 0.1

By data,
$$f(x_0, y_0) = f(0, 1) = 0 + 1^2 = 1, h = 0.1$$

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$
$$= 0.1 f(0.05, 1.05)$$
$$= 0.1(0.05 + 1.05^2) = 0.1153$$

$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

= 0.1 $f(0.05, 1.0576)$

$$= 0.1 (0.05 + 1.0576^2) = 0.1168$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

= 0.1 $f(0.1, 1.1168)$
= 0.1 $(0.1 + 1.0576^2) = 0.1347$

$$y_1 = y_0 + k$$

$$= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 1 + \frac{1}{6}(0.1 + 0.2306 + 0.2332 + 0.1347)$$

$$= 1.1164$$

Conclusion: $y_1 = y(0.1) = 1.1164$

4. Using Runge-Kutta method of fourth order find y(0.1) given that $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1, taking h = 0.1

Solution: By data,
$$f(x_0, y_0) = f(0, 1) = 3(0) + \frac{1}{2} = 0.5, h = 0.1$$

$$k_1 = hf(x_0, y_0)$$

= 0.1(0.5) = 0.05

$$\begin{array}{|c|c|c|c|c|c|} \hline x_0 = 0 & x_1 = 0.1 \\ \hline y_0 = 1 & y_1 = ? \\ \hline \end{array}$$

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

$$= 0.1 f(0.05, 1.025)$$

$$= 0.1(0.15 + 0.5125) = 0.0663$$

$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

$$= 0.1 f(0.05, 1.0332)$$

$$= 0.1 (0.15 + 0.5166) = 0.0667$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

$$= 0.1 f(0.1, 1.0667)$$

$$= 0.1 (0.3 + 0.5334) = 0.0833$$

$$y_1 = y_0 + k$$

$$= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 1 + \frac{1}{6} \{0.05 + 2(0.0663) + 2(0.0667) + 0.0833\}$$

$$= 1.0666$$

Conclusion:
$$y_1 = y(0.1) = 1.0666$$

5. Using Runge-Kutta method of fourth order find y(0.1) given that $\frac{dy}{dx} = 3e^x + 2y$, y(0) = 0, taking h = 0.1

By data,
$$f(x_0, y_0) = f(0, 0) = 3(1) + 0 = 3, h = 0.1$$

$$k_1 = hf(x_0, y_0)$$

= 0.1(3) = 0.3

$$= 0.1(3) = 0.3$$

$$\begin{array}{c|cc} x_0 = 0 & x_1 = 0.1 \\ y_0 = 0 & y_1 = ? \end{array}$$

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

$$= 0.1 f(0.05, 0.15)$$

$$= 0.1(3e^{0.05} + 2(0.15)) = 0.3454$$

$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

$$= 0.1 f(0.05, 0.1727)$$

$$= 0.1 (3e^{0.05} + 2(0.1727)) = 0.3499$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

$$= 0.1 f(0.1, 0.3499)$$

$$= 0.1 \left(e^{0.1} + 2(0.3499) \right) = 0.4015$$

$$y_1 = y_0 + k$$

$$= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$=1+\frac{1}{6}\{0.3+2(0.3454)+2(0.3499)+0.4015\}$$

$$= 1.3487$$

Conclusion: $y_1 = y(0.1) = 1.3487$

6. Using Runge-Kutta method of fourth order find y(0.2) given that $\frac{dy}{dx} = \frac{y-x}{y+y}$ y(0.1) = 1.0912, taking h = 0.1

By data,
$$f(x_0, y_0) = f(0.1, 1.0912) = \frac{1.0912 - 0.1}{1.0912 + 0.1} = 0.8321, h = 0.1$$

$$k_1 = hf(x_0, y_0)$$

= 0.1 (0.8321) = 0.0832

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

$$= 0.1 f(0.15, 1.1328)$$

$$=0.1\left(\frac{1.1328-0.15}{1.1328+0.15}\right)=0.0766$$

$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

$$= 0.1 f(0.15, 1.1295)$$

$$= 0.1 \left(\frac{1.1295 - 0.15}{1.1295 + 0.15} \right) = 0.0766$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

$$= 0.1 f(0.2, 1.1678)$$

$$= 0.1 \left(\frac{1.1678 - 0.2}{1.1678 + 0.2} \right) = 0.0708$$

$$y_1 = y_0 + k$$

$$= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 1.0912 + \frac{1}{6} \{0,0832 + 2(0.0766) + 2(0.0766) + 0.0708\}$$

$$= 1.1679$$

Conclusion: $y_1 = y(0.2) = 1.1679$

Home work:

- 7. Using Runge-Kutta method of fourth order find y(1.1) given that y = 1.2 when x = 1 and $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + y^2.$
- 8. Using Runge-Kutta method of fourth order find y(1.2) from $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 taking h = 0.1

4.4 Milne's predictor - corrector method

Working Rule:

- Consider the ordinary differential equation $\frac{dy}{dx} = f(x, y)$ with
- $y(x_0) = y_0, y(x_1) = y_1, y(x_2) = y_2 \text{ and } y(x_3) = y_3.$

• Find $y_4 = y(x_4)$ using Milne's predictor-corrector formula

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3), \ \ y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

Note:

- In Predictor corrector methods, four prior values are required to find y_4 .
- Predictor formula is to predict the value of y_4 .
- \diamond Corrector formula is to improve the value of y_4 .
- ❖ Apply corrector formula twice to improve accuracy.

Problems:

1. Given that $\frac{dy}{dx} = x - y^2$ and the data y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762 compute y at x = 0.8 by applying Milne's method. By data,

x	у	$f = x - y^2$
$x_0 = 0$	$y_0 = 0$	$f_0 = 0$
	$y_1 = 0.02$	$f_1 = 0.1996$
$x_2 = 0.4$	$y_2 = 0.0795$	$f_2 = 0.3937$
$x_3 = 0.6$	$y_3 = 0.1762$	$f_3 = 0.5689$

By Milne's predictor formula,

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3) = 0 + \frac{4(0.2)}{3}(2(0.1996) - 0.3932 + 2(0.5689)) = 0.3049$$

 $f_4 = x_4 - y_4^2 = 0.8 - 0.3049^2 = 0.7070$

By Milne's corrector formula,

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4) = 0.0795 + \frac{0.2}{3}(0.3937 + 4(0.5689) + 0.7070) = 0.3046$$

$$f_4 = x_4 - y_4^2 = 0.8 - 0.3046^2 = 0.7072$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4) = 0.0795 + \frac{0.2}{3}(0.3937 + 4(0.5689) + 0.7072) = 0.3046$$

Conclusion: $y_4 = y(0.4) = 0.3046$

2. Given $\frac{dy}{dx} = xy + y^2$, y(0) = 1, y(0.1) = 1.1169, y(0.2) = 1.2773, y(0.3) = 1.5049 compute y(0.4) using Milne's method.

By data,

x	у	$f = xy + y^2$
$x_0 = 0$		$f_0 = 1$
$x_1 = 0.1$	$y_1 = 1.1169$	$f_1 = 1.3591$
	$y_2 = 1.2773$	$f_2 = 1.8869$
$x_3 = 0.3$	$y_3 = 1.5049$	$f_3 = 2.7162$

By Milne's predictor formula,

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3)$$

$$= 1 + \frac{4(0.1)}{3}(2(1.3591) - 1.8869 + 2(2.7162))$$

$$= 1.8352$$

$$f_4 = x_4y_4 + y_4^2$$

$$= (0.4)(1.8352) + 1.8352^2$$

$$= 4.1020$$

By Milne's corrector formula,

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

$$= 1.2773 + \frac{0.1}{3}(1.8869 + 4(2.7162) + 4.1020)$$

$$= 1.8391$$

$$f_4 = x_4 y_4 + y_4^2$$

$$= (0.4)(1.8352) + 1.8352^2$$

$$= 4.1179$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

$$= 1.2773 + \frac{0.1}{3}(1.8869 + 4(2.7162) + 4.1179)$$

$$= 1.8397$$

Conclusion: $y_4 = y(0.4) = 1.8397$

3. From the data given below find y at x = 0.4 using Milne's method. $\frac{dy}{dx} = x^2 + \frac{y}{2}$

x	1	1.1	1.2	1.3
у	2	2.2156	2.4549	2.7514

By data,

x	У	$f = x^2 + \frac{y}{2}$
$x_0 = 1$	$y_0 = 2$	$f_0 = 2$
$x_1 = 1.1$	$y_1 = 2.2156$	$f_1 = 2.3178$
$x_2 = 1.2$	$y_2 = 2.4549$	$f_2 = 2.6675$
$x_3 = 1.3$	$y_3 = 2.7514$	$f_3 = 3.0657$

By Milne's predictor formula,

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3)$$

$$= 2 + \frac{4(0.1)}{3}(2(2.3178) - 2.6675 + 2(3.0657))$$

$$= 3.0799$$

$$f_4 = x_4^2 + \frac{y_4}{2}$$

$$= 1.4^2 + \frac{3.0799}{2}$$

$$= 3.5$$

By Milne's corrector formula,

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

$$= 2.4549 + \frac{0.1}{3}(2.6675 + 4(3.0657) + 3.5)$$

$$= 3.0692$$

$$f_4 = x_4^2 + \frac{y_4}{2}$$

$$= 1.4^2 + \frac{3.0692}{2}$$

$$= 3.4946$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

$$= 2.4549 + \frac{0.1}{3}(2.6675 + 4(3.0657) + 3.4946)$$

$$= 3.0690$$

Conclusion: $y_4 = y(1.4) = 3.0690$

4. If
$$\frac{dy}{dx} = 2e^x - y$$
, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.04$, $y(0.3) = 2.09$ find $y(0.4)$ using Milne's method.

By data,

x	у	$f = 2e^x - y$
$x_0 = 0$	$y_0 = 2$	$f_0 = 0$
$x_1 = 0.1$	$y_1 = 2.010$	$f_1 = 0.2003$
$x_2 = 0.2$	$y_2 = 2.04$	$f_2 = 0.4028$
$x_3 = 0.3$	$y_3 = 2.09$	$f_3 = 0.6097$

By Milne's predictor formula,

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3)$$

$$= 2 + \frac{0.4}{3}(2(0.2003) - 0.4028 + 2(0.6097))$$

$$= 2.1623$$

$$f_4 = 2e^{x_4} - y_4$$

$$= 2e^{0.4} - 2.1623$$

$$= 0.8213$$

By Milne's corrector formula,

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

$$= 2.04 + \frac{0.1}{3}(0.4028 + 4(0.6097) + 0.8213)$$

$$= 2.1621$$

$$f_4 = 2e^{x_4} - y_4$$

$$= 2e^{0.4} - 2.1621$$

$$= 0.8215$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$$

$$= 2.04 + \frac{0.1}{3}(0.4028 + 4(0.6097) + 0.8213)$$

$$= 2.1621$$

Conclusion: $y_4 = y(0.4) = 2.1621$

5. Find y if $2\frac{dy}{dx} = (1 + x^2)y^2$ at x = 0.4 and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21 by Milne's predictor-corrector method.

By data,

x	у	$f = (1 + x^2)y^2$
$x_0 = 0$	$y_0 = 1$	$f_0 = 0.5$
$x_1 = 0.1$	$y_1 = 1.06$	$f_1 = 0.5674$
$x_2 = 0.2$	$y_2 = 1.12$	$f_2 = 0.6523$
$x_3 = 0.3$	$y_3 = 1.21$	$f_3 = 0.7979$

By Milne's predictor formula,

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3) = 1.2807$$

$$f_4 = x_4 - y_4^2 = 0.9513$$

By Milne's corrector formula,

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4) = 1.2798$$

$$f_4 = x_4 - y_4^2 = 0.95$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4) = 1.2798$$

$$y(1.4) = 1.2798$$

6. Use Milne's predictor-corrector method to find y(0.4) from $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1, y(0.1) = 1.1113, y(0.2) = 1.2507, y(0.3) = 1.426. Apply the corrector formula twice. 1.6876

Solution: By data,

$$x_0 = 0$$
 $y_0 = 1$ $y_0' = x_0^2 + y_0^2 = 1$
 $x_1 = 0.1$ $y_1 = 1.1113$ $y_1' = x_1^2 + y_1^2 = 1.2450$
 $x_2 = 0.2$ $y_2 = 1.2507$ $y_2' = x_2^2 + y_2^2 = 1.6043$
 $x_3 = 0.3$ $y_3 = 1.426$ $y_3' = x_3^2 + y_3^2 = 2.1235$

$$y_4^{(p)} = y_0 + \frac{4h}{3}(2y_1' - y_2' + 2y_3') = 1 + \frac{2}{15}(5.1327) = 1.6844$$

$$y_4' = x_4^2 + y_4^2 = 2.9972$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(y_2' + 4y_3' + y_4') = 1.2507 + \frac{1}{30}(13.0955) = 1.6872$$

$$y_4' = x_4^2 + y_4^2 = 3.0066$$

$$y_4^{(c)} = y_2 + \frac{h}{3}(y_2' + 4y_3' + y_4') = 1.2507 + \frac{1}{30}(13.1049) = 1.6875$$

Therefore, y(1.4) = 1.6875