Е. А. СИДОРОВА, А. В. ДОЛГОВА, С. П. ЖЕЛЕЗНЯК

ПРОГРАММИРОВАНИЕ ЦИКЛОВ НАКОПЛЕНИЯ И ИТЕРАЦИОННЫХ ЦИКЛОВ НА VBA

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Е. А. Сидорова, А. В. Долгова, С. П. Железняк

ПРОГРАММИРОВАНИЕ ЦИКЛОВ НАКОПЛЕНИЯ И ИТЕРАЦИОННЫХ ЦИКЛОВ НА VBA

Утверждено методическим советом университета в качестве учебно-методического пособия к выполнению самостоятельной и лабораторных работ

УДК 004.42 (075.8) ББК 32.973-018.2я73 С34

Программирование циклов накопления и итерационных циклов на VBA: Учебно-методическое пособие к выполнению самостоятельной и лабораторных работ / Е. А. Сидорова, А. В. Долгова, С. П. Железняк; Омский гос. ун-т путей сообщения. Омск, 2022. 36 с.

Учебно-методическое пособие разработано в соответствии с рабочими программами дисциплин информационного профиля с учетом требований ФГОС ВО последнего поколения.

Приведены краткие теоретические сведения по программированию циклов накопления сумм и произведений, итерационных циклов. Рассмотрены основные этапы выполнения заданий, приведены примеры графических схем алгоритмов и листинги программ решения поставленных задач. Представлены контрольные и тестовые вопросы.

Предназначено для выполнения самостоятельной и лабораторных работ студентами всех направлений подготовки (специальностей) очной и заочной форм обучения по дисциплинам, изучающим основы программирования.

Библиогр.: 3 назв. Табл. 11. Рис. 17.

Рецензенты: доктор техн. наук, профессор А. В. Бубнов; доктор техн. наук, профессор А. А. Кузнецов.

ОГЛАВЛЕНИЕ

Введение	5
1. Общие требования к выполнению заданий	6
2. Циклы накопления сумм и произведений	8
3. Итерационные циклы	16
4. Суммирование в итерационном цикле	21
5. Задания	24
6. Контрольные вопросы	34
7. Примеры тестовых вопросов	34
Библиографический список	35

ВВЕДЕНИЕ

В настоящее время программирование на языке Visual Basic for Applications (VBA) при работе с приложениями Microsoft Office широко применяется в различных областях человеческой деятельности. Редактор VBA представляет собой полноценную среду разработки приложений, интегрированную в Microsoft Office. Его отличительными особенностями является удобный интерфейс, наличие всех необходимых средств управления программным кодом, а также большое количество встроенных готовых объектов, к которым может обращаться разработчик проекта.

В пособии приведены краткие теоретические сведения по алгоритмизации и программированию циклов накопления сумм и произведений, итерационных циклов на VBA. Рассмотрены основные этапы выполнения заданий, приведены примеры графических схем алгоритмов и листинги программ решения поставленых задач. Представлены контрольные и тестовые вопросы, а также большое количество индивидуальных вариантов заданий.

Библиографический список, приведенный в конце пособия, содержит литературу для углубленного изучения материала по рассматриваемой тематике.

1. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ

В каждой лабораторной или самостоятельной работе необходимо выполнить следующие действия.

- 1. Создать рабочую книгу Excel. В свойствах файла в поле *Название* указать свои фамилию и группу, например, Иванов_40a. Сохранить рабочую книгу с поддержкой макросов с именем, указанным в табл. 1.1.
- 2. Создать в книге Excel в редакторе VBA стандартный модуль Module1 (переименовывать его не нужно). В разделе общих объявлений (в начале) модуля ввести оператор Option Explicit для запрета использования необъявленных переменных. Далее в этом модуле записывать программы всех заданий текущей работы.
 - 3. Каждое задание выполнить в следующем порядке.
 - 3.1. Записать в тетрадь условие задачи индивидуального варианта (ИВ).
- 3.2. Вручную изобразить в тетради графическую схему алгоритма (ГСА) решения задачи ИВ.
 - 3.3. В Excel-файле создать рабочий лист с именем, указанным в табл. 1.1.
- 3.4. Скопировать из соответствующей таблицы заданий строку с условием задачи ИВ и вставить ее в виде рисунка на лист Excel.
- 3.5. Составить и набрать в модуле Module1 программу решения задачи ИВ, оформив ее отдельной процедурой с именем, указанным в табл. 1.1. В программе:
 - а) выбрать рабочий лист, указанный в п. 3.3;
 - б) очистить содержимое необходимого диапазона ячеек;
- в) значения исходных данных, которые не изменяются в процессе работы программы, задать константами;
 - г) данные на листе Excel разместить, начиная со строки с номером ИВ + 10;
- д) исходные данные и полученные результаты вывести с соответствующими текстовыми пояснениями;
- е) числовые результаты вывести в формате контрольных значений, указанных в условии задачи ИВ;
- ж) при цветовом оформлении вывода данных на лист Excel оттенок заданного базового цвета в модели *RGB* установить равным 200 + ИВ;
- з) для каждого оператора предусмотреть комментарии, поясняющие выполняемые действия.
- 3.6. Запустить программу на исполнение, получить результаты и сверить их с заданными контрольными значениями. При необходимости доработать и отладить программу.
 - 3.7. Записать отлаженную программу в тетрадь.

Требования к именам объектов

	Объект	Структура имени	Пояснения	Примеры
	Файл (рабочая книга Excel)	Фамилия_NN_Вид работы N.xlsm	Фамилия – фамилия студента; NN – порядковый номер занятия в семестре; Вид работы – лабораторная работа (даб) или можето и семестре даботы.	Иванов_15_лаб 11.xlsm Иванов_16_КСР 5.xlsm
			(лаб) или контроль самостоятельной работы (КСР); N — номер занятия по виду работы	
. 1	Рабочий лист Excel	Фамилия_Тема_зN_вN	<i>Тема</i> – краткое обозначение темы задания;	Иванов_ЦИ_31_в5
7			3N — номер задания в работе; $6N$ — номер варианта выполняемого задания	
	Процедура	Фамилия_Тема_зN_вN	Аналогично рабочему листу Excel	Иванов_ЦИ_31_в5
		Фамилия_Тема_зN_вN_способN	Выполнение задания <i>способом N</i> (при наличии нескольких способов решения задачи)	Иванов_ЦИ_31_в5_способ1

 Π р и м е ч а н и е . Номера заданий (3N) должны строго соответствовать их порядковым номерам в перечне заданий на текущую работу.

2. ЦИКЛЫ НАКОПЛЕНИЯ СУММ И ПРОИЗВЕДЕНИЙ

В различных математических задачах часто приходится вычислять значения функций вида $S = \sum_{i=n}^k f_i$, т. е. накапливать сумму, или $P = \prod_{i=n}^k f_i$ — накапливать

произведение. Решение задачи накопления суммы заключается в циклическом вычислении промежуточных сумм S_i посредством определения очередного слагаемого f_i и добавления его к значению суммы предыдущих слагаемых S_{i-1} . Частным случаем накопления суммы является подсчет количества каких-либо элементов, при этом в качестве очередного слагаемого f_i принимают единицу. Накопление произведения осуществляется аналогично вычислению суммы за исключением того, что вместо слагаемых выступают сомножители. В задачах накопления в качестве параметра цикла принимают индекс i, нумерующий слагаемые или сомножители в соответствующих функциях S или P.

Общий порядок вычисления суммы $S = \sum_{i=n}^k f_i$ или произведения $P = \prod_{i=n}^k f_i$

заключается в следующем.

1) Перед циклом задать начальное значение накапливаемой переменной. Если не указано иначе, то в качестве него обычно принимают:

при накоплении суммы или количества – S=0; при накоплении произведения – P=1.

- 2) Организовать цикл с параметром i (For i = n To k).
- 3) В теле цикла записать закон изменения накапливаемой переменной (она обязательно должна быть и в левой, и в правой частях формулы):

при накоплении суммы $-S = S + f_i$; при накоплении количества -S = S + 1; при накоплении произведения $-P = P \cdot f_i$.

4) После цикла вывести итоговое значение накапливаемой переменной.

Пример 1. Составить ГСА и программу вычисления значения функции по заданию из табл. 2.1.

Задание для примера 1

Таблица 2.1

Зари- ант	Функция	Исходные данные	Результат
вN	$D = \sum_{i=1}^{8} \sin(3+a)$	a = 4,7	D = 7,91

ГСА решения примера 1 с описанием выполняемых действий приведена на рис. 2.1. Параметром цикла является переменная i, выполняющая порядковую нумерацию слагаемых в функции D. Заголовок цикла определяет перебор значений этой переменной в заданном диапазоне (от 1 до 8) с шагом 1.

Рис. 2.1. ГСА решения примера 1

В соответствии с ГСА составим программу расчета, в которой организуем вывод значений параметра i и соответствующих им промежуточных значений функции D в окно отладки Immediate в два столбца, результирующее значение D выведем в диалоговое окно MsgBox. Листинг программы решения примера 1 с подробными комментариями приведен на рис. 2.2, результат ее работы — на рис. 2.3. Сравнение полученного результата с указанным в задании контрольным значением позволяет сделать вывод о том, что задача решена верно.

```
Sub Фамилия_Цсумм1_зN_вN()
                                                     'Начало процедуры
  Dim i As Byte, D As Single
                                                     'Объявление переменных
  Const a As Single = 4.7
                                                     'Объявление константы а
  Worksheets("Фамилия Цсумм1 зN вN "). Select
                                                     'Выбор рабочего листа
  D = 0
                                                     'Начальное значение суммы D
  For i = 1 To 8
                                                     'Заголовок (начало) цикла
    D = D + Sin(3 + a)
                                                     'Накопление суммы D
    Debug.Print "При i = "; i, "D ="; Format(D, "0.00")
                                                     'Вывод текущих значений і и D
                                                     'в окно отладки Immediate
  Next i
                                                     'Возврат к началу цикла
  MsgBox "Результат расчета D = " & Format(D, "0.00")
                                                     'Вывод результата накопления суммы
                                                     'в диалоговое окно
End Sub
                                                     'Конец процедуры
```

Рис. 2.2. Листинг программы решения примера 1

Рис. 2.3. Результат решения примера 1

Пример 2. Составить ГСА и программу вычисления значения функции по заданию из табл. 2.2.

Таблица 2.2 Задание для примера 2

Вари-	Функция	Исходные данные	Результат
вN	$M = 30 d - \prod_{i=3}^{9} (d + \sin(6 + i))$	d = 2,1	M = -81,00

Обозначим $P = \prod_{i=3}^{9} (d + \sin(6+i))$, тогда функция M примет вид: M = 30 d - P

. Для расчета функции M необходимо сначала накопить произведение P.

ГСА решения примера 2 с описанием выполняемых действий приведена на рис. 2.4. Произведение P вычисляется в цикле с параметром i. Заголовок цикла определяет перебор значений этой переменной в заданном диапазоне (от 3 до 11) с шагом 1.

Рис. 2.4. ГСА решения примера 2

В соответствии с ГСА составим программу расчета, в которой организуем вывод значений параметра i и соответствующих им промежуточных значений произведения P в окно отладки Immediate в два столбца. Результирующее значение функции M выведем в окно отладки Immediate и в диалоговое окно MsgBox. Листинг программы решения примера 2 с подробными комментариями приведен на рис. 2.5, результат ее работы — на рис. 2.6. Сравнение полученного результата с указанным в задании контрольным значением позволяет сделать вывод о том, что задача решена верно.

```
Sub Фамилия_Цсумм2_зN_вN()
                                                    'Начало процедуры
  Dim i As Byte, M As Single, P As Single
                                                    'Объявление переменных
  Const d As Single = 2.1
                                                    'Объявление константы d
  Worksheets("Фамилия_Цсумм2_зN_вN "). Select
                                                    'Выбор рабочего листа
  P = 1
                                                    'Начальное значение произведения Р
  For i = 3 To 9
                                                    'Заголовок (начало) цикла
    P = P * (d + Sin(6 + i))
                                                    'Накопление произведения Р
    Debug.Print "При i = "; i, "P ="; Format(P, "0.00")
                                                    Вывод текущих значений і и Р в окно
                                                    'отладки Immediate
  Next i
                                                    'Возврат к началу цикла
  M = 30 * d - P
                                                    'Расчет значения М
  Debug.Print "Peзультат расчета M = " & Format(M, "0.00") Вывод значения М
                                                          'в окно отладки Immediate
  MsgBox "Результат расчета M = " & Format(M, "0.00")
                                                          'Вывод значения М
                                                          'в диалоговое окно
End Sub
                                                    'Конец процедуры
```

Рис. 2.5. Листинг программы решения примера 2

Рис. 2.6. Результат решения примера 2

Пример 3. Составить ГСА и программу вычисления значения функции по заданию из табл. 2.3.

Задание для примера 3

Таблица 2.3

Вари- ант	Функция	Исходные данные	Результат
вN	$Y = 66 + \cos 2x + \cos 6x + \cos 10x + \dots + \cos 22x$	x = 2,1	Y = 65,92

В заданной функции фигурирует сумма однотипных слагаемых. Обозначим ее как $S = \cos 2x + \cos 6x + \cos 10x + \ldots + \cos 22x$ и приведем к виду: $S = \sum_{i=2}^{22} \cos(i \cdot x)$, где параметр i изменяется с шагом $\Delta i = 4$. Тогда заданная функция примет вид: Y = 66 + S. В результате таких преобразований суть примера 3 стала аналогичной примеру 2.

ГСА решения примера 3 с изображением цикла в полной форме с описанием выполняемых действий приведена на рис. 2.7. Параметром цикла накопления суммы S является переменная i. Заголовок цикла определяет перебор значений этой переменной в заданном диапазоне (от 2 до 22) с шагом 4.

Рис. 2.7. ГСА решения примера 3

В соответствии с ГСА составим программу расчета, в которой организуем вывод значений параметра i и соответствующих им промежуточных значений

суммы S на лист Excel в два столбца. Вывод результирующего значения функции Y также осуществим на лист Excel через одну строку после промежуточных результатов. Листинг программы решения примера 3 с подробными комментариями приведен на рис. 2.8, результат ее работы — на рис. 2.9. Сравнение полученного результата с указанным в задании контрольным значением позволяет сделать вывод о том, что задача решена верно.

Sub Фамилия_Цсумм3_зN_вN()	'Начало процедуры
Dim i As Byte, Y As Single, S As Single Dim nstr As Byte	'Объявление переменных
Const x As Single = 2.1	'Объявление константы х
Worksheets("Фамилия_Цсумм3_зN_вN").Select Range("A:B").Clear	'Выбор рабочего листа 'Очистка столбцов А и В
nstr = 10 Cells(nstr, 1) = "i" Cells(nstr, 2) = "S"	'Начальная строка вывода 'Вывод заголовков столбцов
Range("A10:B10").HorizontalAlignment = xlCenter	'Выравнивание заголовков 'по центру ячейки
S = 0	'Начальное значение суммы S
For i = 2 To 22 Step 4	'Заголовок (начало) цикла
S = S + (Cos(i * x))	'Накопление суммы S
nstr = nstr + 1 Cells(nstr, 1) = i Cells(nstr, 2) = S	'Наращивание номера строки 'Вывод значений і и S на лист Excel
Cells(nstr, 1).NumberFormat = "0.00" Cells(nstr, 2).NumberFormat = "0.00"	'Установка числового формата в ячейке
Next i	'Возврат к началу цикла
Y = 66 + S	'Расчет значения Ү
Cells(nstr + 2, 1) = "Результат расчета Y = " Cells(nstr + 2, 2) = Y	'Вывод Y на лист Excel
Cells(nstr + 2, 2).NumberFormat = "0.00" Cells(nstr + 2, 2).Interior.Color = RGB(0, 200, 0)	'Установка числового формата в ячейке 'Зеленая заливка ячейки
End Sub	'Конец процедуры

Рис. 2.8. Листинг программы решения примера 3

7	вN	Y = 66 +	$\cos 2x + \cos 6x +$	$-\cos 10x + \dots$. + cos 22r	x = 2,1	65,92
9			S				
1		2,00	-0,49				
12		6,00	0,51				
13		10,00	-0,04				
14		14,00	-0,47				
15		18,00	0,53				
16		22,00	-0,08				
17		W.					
CHOLL	езультат р	асчета Y =	65,92				
19	н фамилия	_Цсунм3_зN_вN	P3		14		

Рис. 2.9. Результат решения примера 3

3. ИТЕРАЦИОННЫЕ ЦИКЛЫ

Если число повторений цикла заранее не известно и решение о его завершении принимается на основе анализа выполнения заданного условия, то такой повторяющийся вычислительный процесс называется *итерационным циклом*. Условие повторения циклического процесса может проверяться в начале цикла (цикл с предусловием) либо в конце его (цикл с постусловием).

Пример 4. Составить ГСА и программу вычисления искомого натурального числа с помощью итерационного цикла с предусловием по заданию из табл. 3.1.

Таблица 3.1 Задание для примера 4

Вари-	Искомое натуральное число	Результат
вИ	Наименьшее целое трехзначное число, кратное 37	111

Решение подобных задач основано на последовательном переборе чисел и проверке для них выполнения заданного условия. Поскольку в примере 4 речь идет о поиске *наименьшего* искомого значения среди трехзначных чисел, то в качестве начального значения целесообразно принять число 100, а следующие значения получать, каждый раз прибавляя единицу.

Если бы поставленная задача предусматривала определение *наибольшего* трехзначного числа, удовлетворяющего условию, то в качестве начального значения следовало принять число 999, а очередные значения получать, каждый раз вычитая единицу.

Сначала решим пример 4 обычными средствами Excel (без программирования). В столбце A с помощью автозаполнения ячеек введем последовательно не менее 20 чисел, начиная с X = 100 (судя по условию задачи, количество чисел не будет превышать 37). По условию задачи требуется найти число, кратное 37. С этой целью в столбце B для каждого числа определим остаток от деления его на 37 с помощью встроенной функции Excel OCTAT (рис. 3.1). Искомым будет такое число, при котором остаток равен нулю (X = 111, все расположенные ниже него числа можно удалить). Сравнение полученного результата с указанным в задании контрольным значением позволяет сделать вывод о том, что задача этим способом решена верно.

4	Α	В	С	D	Е	F	G	Н
7 8 9	вN	Наимены	пее цело	е трехзі	начное ч	исло, кр	атное 37	111
10	Средст	вами Excel						
11	X	OCTAT(X;37)						
12	100	26						
13	101	27						
14	102	28						
15	103	29						
16	104	30						
17	105	31						
18	106	32						
19	107	33						
20	108	34						
21	109	35						
22	110							
23	111	0						
24 4 4	№ Н Фам	илия_ЦИ_зN_в	N 🐫			14	IIII	

Рис. 3.1. Результат решения примера 4 средствами Excel

ГСА решения примера 4 с описанием выполняемых действий приведена на рис. 3.2.

Рис. 3.2. ГСА решения примера 4

В соответствии с ГСА составим программу расчета двумя разными способами. В первом из них итерационный цикл организуем при помощи операторов If и GoTo. При этом имя метки в операторе GoTo сформируем по правилу fioN — первые буквы фамилии, имени, отчества латиницей и номер варианта, например, для Белова Петра Сергеевича, выполняющего вариант 0, имя метки будет bpsO.

В теле цикла выполним вывод значений переменной X и результатов расчета выражения $X \mod 37$ на лист Excel в столбцы D и E, начиная со строки 10, выделим их шрифтом красного цвета RGB(200 + ИВ, 0, 0), итоговые значения — заливкой зеленым цветом RGB(0, 200 + ИВ, 0). Листинг программы решения примера 4 рассмотренным способом с подробными комментариями приведен на рис. 3.3. Результаты ее работы в столбцах D и E на листе Excel аналогичны результатам на рис. 3.1.

```
Sub Фамилия_ЦИ_зN_вN_способ1()
                                                    'Начало процедуры
  Dim X As Integer, nstr As Byte
                                                    'Объявление переменных
  Worksheets("Фамилия_ЦИ_зN_вN"). Select
                                                    'Выбор рабочего листа
  Range("C:E").Clear
                                                    'Очистка столбцов с С по Е
  X = 100
                                                    'Начальное значение Х
  nstr = 10
                                                    'Начальное значение строки вывода
  Cells(nstr, 4) = "Цикл If-GoTo"
                                                    'Вывод заголовка
  nstr = nstr + 1
                                                    'Наращивание номера строки
  Cells(nstr, 4) = "X"
                                                    'Вывод заголовков
  Cells(nstr, 5) = "X mod 37"
  fioN:
                                                    'Метка
  If X Mod 37 <> 0 Then
                                                    'Начало цикла
    nstr = nstr + 1
                                                    'Наращивание номера строки
    Cells(nstr, 4) = X
                                                    'Вывод Х
    Cells(nstr, 5) = X Mod 37
                                                    'Вывод остатка от деления X на 37
    X = X + 1
                                                    'Наращивание Х
    GoTo fioN
                                                    'Переход к метке fioN (возврат к началу
                                                     цикла)
  Fnd If
                                                    'Конец цикла
  Cells(nstr + 1, 4) = X
                                                    'Вывод результирующего значения X
  Cells(nstr + 1, 5) = X Mod 37
                                                    'Вывод остатка от деления X на 37
  Cells(nstr + 1, 4).Interior.Color = RGB(0, 200, 0)
                                                    'Заливка ячейки зеленым цветом
  Cells(nstr + 1, 5).Interior.Color = RGB(0, 200, 0)
  Range("D:E").Font.Color = RGB(200, 0, 0)
                                                    'Красный цвет шрифта в столбцах
End Sub
                                                    'Конец процедуры
```

Рис. 3.3. Листинг программы решения примера 4 с помощью операторов If и GoTo

Решим пример 4 другим программным способом — с использованием оператора итерационного цикла While...Wend. Выведем полученные результаты на лист Excel в столбцы G и H, для наглядного представления и контроля выделим их шрифтом синего цвета RGB(0, 0, 200 + ИВ), итоговые значения — заливкой зеленым цветом RGB(0, 200 + ИВ, 0). Листинг программы решения примера 4 этим способом с подробными комментариями приведен на рис. 3.4.

```
Sub Фамилия_ЦИ_зN_вN_способ2()
                                                    'Начало процедуры
  Dim X As Integer, nstr As Byte
                                                    'Объявление переменных
  Worksheets("Фамилия ЦИ зN вN"). Select
                                                    'Выбор рабочего листа
  Range("F:H").Clear
                                                    'Очистка столбцов с F по Н
  X = 100
                                                    'Начальное значение X
  nstr = 10
                                                    'Начальное значение строки вывода
  Cells(nstr, 7) = "Цикл While-Wend"
                                                    'Вывод заголовка
  nstr = nstr + 1
                                                    'Наращивание номера строки
  Cells(nstr. 7) = "X"
                                                    'Вывод заголовков
  Cells(nstr, 8) = "X mod 37"
  While X Mod 37 <> 0
                                                    'Начало цикла
    nstr = nstr + 1
                                                    'Наращивание номера строки
    Cells(nstr, 7) = X
                                                    'Вывод X
    Cells(nstr, 8) = X Mod 37
                                                    'Вывод остатка от деления X на 37
    X = X + 1
                                                    'Наращивание Х
  Wend
                                                    'Конец цикла
  Cells(nstr + 1, 7) = X
                                                    'Вывод результирующего значения X
  Cells(nstr + 1, 8) = X Mod 37
                                                    'Вывод остатка от деления X на 37
  Cells(nstr + 1, 7).Interior.Color = RGB(0, 200, 0)
                                                    'Заливка ячейки зеленым цветом
  Cells(nstr + 1, 8).Interior.Color = RGB(0, 200, 0)
  Range("G:H").Font.Color = RGB(0, 0, 200)
                                                    'Синий цвет шрифта в столбцах
End Sub
                                                    'Конец процедуры
```

Рис. 3.4. Листинг программы решения примера 4 с помощью оператора While...Wend

Результат решения примера 4 всеми рассмотренными способами представлен на рис. 3.5. Сравнение полученных искомых чисел с указанным в задании контрольным значением позволяет сделать вывод о том, что задача решена верно.

1	А	В	С	D	Е	F	G	Н	
7 8	вN	Наимены	пее пело	е трехзн	ачное ч	исло, кр	атное 37	111	\neg
9				1			1		
10	Средст	вами Excel		Цикл If-Go	оТо		Цикл Wh	ile-Wend	
11	X	OCTAT(X;37)		X	X mod 37		X	X mod 37	
12	100	26		100	26		100	26	
13	101	27		101	27		101	27	
14	102	28		102	28		102	28	
15	103	29		103	29		103	29	
16	104	30		104	30		104	30	
17	105	31		105	31		105	31	
18	106	32		106	32		106	32	
19	107	33		107	33		107	33	
20	108	34		108	34		108	34	
21	109	35		109	35		109	35	
22	110	36		110	36		110	36	
23	111	0		111	0		111	0	
24 4 -4	► H • Φan	иилия_ЦИ_зN_в	N 💝			I 4			

Рис. 3.5. Результат решения примера 4

4. СУММИРОВАНИЕ В ИТЕРАЦИОННОМ ЦИКЛЕ

В тех случаях, когда при накоплении суммы или произведения количество повторений цикла заранее не известно, применяют итерационный цикл.

Пример 5. Составить ГСА и программу вычисления искомого значения с помощью итерационного цикла с предусловием по заданию из табл. 4.1.

Задание для примера 5

Таблица 4.1

Вари-	Условие задачи	Контрольные
ант	э словис задачи	значения
вN	Вы приобрели акции крупного банка на сумму S рублей. В первый месяц их стоимость возросла на 2% , а затем стала постоянно расти на 3% в месяц. Через сколько месяцев (k) Ваш капитал увеличится на 40% по сравнению с первоначальным?	При S – 100

Обозначим число месяцев -k, величину изменения стоимости акций в первый и последующий месяцы -izm.

ГСА решения примера 5 с описанием выполняемых действий приведена на рис. 4.1.

Рис. 4.1. ГСА решения примера 5

В соответствии с ГСА составим программу расчета, в которой организуем итерационный цикл при помощи оператора While...Wend. Для наглядного представления и контроля полученных результатов выделим результирующие значения заливкой зеленым цветом RGB(0, 200 + UB, 0). Листинг программы решения примера 5 с подробными комментариями приведен на рис. 4.2, результат

ее работы — на рис. 4.3. Сравнение полученных результатов с указанными в задании контрольными значениями позволяет сделать вывод о том, что задача решена верно.

Sub Фамилия_ЦИС_зN_вN ()	'Начало процедуры
Dim S As Single, Sk As Single, izm As Single Dim k As Byte, nstr As Byte	'Объявление переменных 'k – счетчик месяцев
Worksheets("Фамилия_ЦИС_зN_вN"). Select Range("A:C"). Clear	'Выбор рабочего листа 'Очистка столбцов с А по С
nstr = 10 Cells(nstr, 1) = "Месяц" Cells(nstr, 2) = "Изменение стоимости" Cells(nstr, 3) = "Стоимость акций"	'Начальное значение строки вывода 'Вывод заголовков столбцов
Range("A10:C10"). Horizontal Alignment = xlCenter	'Выравнивание по центру ячейки
S = Val(InputBox("Введите значение s")) Sk = 1.4 * S	'Начальное значение S 'Конечное значение S
k = 1 izm = 0.02 * S S = S + izm	'Начальное значение k 'Изменение стоимости при k = 1 'Значение S при k = 1
While S < Sk	'Начало цикла
nstr = nstr + 1 Cells(nstr, 1) = k Cells(nstr, 2) = izm Cells(nstr, 3) = S	'Наращивание номера строки 'Вывод k 'Вывод изменения стоимости 'Вывод S
k = k + 1 izm = 0.03 * S S = S + izm	'Наращивание k 'Изменение стоимости 'Наращивание S на izm
Wend	'Конец цикла
nstr = nstr + 1 Cells(nstr, 1) = k Cells(nstr, 2) = izm Cells(nstr, 3) = S	'Наращивание номера строки 'Вывод значений на лист Excel
Range("B:C").NumberFormat = "0.00"	'Установка числового формата 'в столбцах В и С
Cells(nstr, 1).Interior.Color = RGB(0, 200, 0)	'Заливка ячейки зеленым цветом
End Sub	'Конец процедуры

Рис. 4.2. Листинг программы решения примера 5

		1152	1000	TO A STATE	10.00		
4					131		
5		Вы приобрели акции кру	Mark the factor of the second	THE STATE OF THE S			
6	37	В первый месяц их стои	Contract of the Contract of th		111111	S = 100	
7	вN	стала постоянно расти и месяцев (k) Ваш капитал			KO 1-1		
8		нию с первоначальным?	увеличится на 40	70 по сраві	16-		
9		тине с первена назвиван.				14	
10	Месяц	Изменение стоимости	Стоимость акций				
11	1	2,00	102,00				
12	2	3,06	105,06				
13	9	3,15	108,21				
14	4	3,25	111,46				
15	5	3,34	114,80				
16	6	3,44	118,25				
17	7	3,55	121,79				
18	8	3,65	125,45				
19	G	3,76	129,21				
20	10	3,88	133,09	•			
21	11	3,99	137,08				
22	12	4,11	141,19				
4 4 4	н фами	ия_ЦИС_зN_вN	J.	1111		- 1	

В

Рис. 4.3. Результат решения примера 5

5. ЗАДАНИЯ

Задание 1. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 5.1) составить ГСА и программу вычисления значения функции. Работу выполнить и оформить по образцу примера 1. Краткое обозначение темы задания 1 в именах объектов — Цсумм1.

Таблица 5.1 Индивидуальные варианты задания 1

Вари- ант	Функция	Исходные данные	Результат
1	2	3	4
0	$C = \prod_{i=1}^{10} \frac{\sin(2+i) \cdot i}{a}$	a = 2,2	C = 3,06

Продолжение табл. 5.1

1	2	3	4
1	$F = \sum_{i=4}^{20} \frac{\sin(2i+2)}{\cos(2b)}$	b = 7,1	F = 13,88
2	$T = \prod_{i=1}^{15} \frac{2 \operatorname{tg}(5/i)}{\cos(i) - 3x}$	x = 0,57	T = 11,49
3	$Z = \sum_{k=5}^{20} \frac{\lg(kx)^3}{\sqrt{1 + \ln k}}$	<i>x</i> = 9	Z = 1,75
4	$S = \sum_{j=3}^{10} \sqrt[3]{\frac{j + \cos b}{\sqrt{b}}}$	<i>b</i> = 9	S = 9,63
5	$M = \prod_{f=3}^{10} \frac{\sin(7-n^2)}{\cos(f^2 - 5)}$	n = 2,5	M = 93
6	$F = \prod_{d=3}^{11} \frac{d^2 + \cos(i)}{i^4}$	i = -2,3	F = 30,69
7	$Y = \sum_{i=1}^{20} \frac{x^2 + \sin(ix)}{x}$	x = 2	<i>Y</i> = 40,45
8	$M = \prod_{v=3}^{15} \frac{10 - 2x^{-2}}{v + \cos x}$	<i>x</i> = 7	M = 4.01
9	$G = \sum_{k=6}^{14} \sqrt[5]{\frac{k}{x} + \ln k }$	<i>x</i> = 8,7	G = 11,48
10	$U = \prod_{k=1}^{13} \frac{\ln(k+2)}{n}$	n = 1,57	U = 27,89
11	$A = \sum_{i=1}^{14} \sqrt{\cos x^2 + 22i}$	x = -4	A = 171,02
12	$Q = \sum_{i=1}^{18} \sqrt[3]{\lg(i+49b)}$	<i>b</i> = 3	Q = 23,39
13	$K = \prod_{p=3}^{9} \operatorname{tg}(p^{2+x})e^2$	<i>x</i> = 7	K = -301,14
14	$M = \prod_{r=7}^{13} \ln \left(\frac{t}{r} \cdot e^{\cos(r)} \right)$	t = 2	M = -7,02
15	$P = \sum_{i=0}^{15} \frac{1 + t \cdot \sin(i)}{t}$	<i>t</i> = 3	P = 7,27

Окончание табл. 5.1

1	2	3	4
16	$C = \prod_{i=1}^{15} \frac{a}{i \cdot \sin(a-i)}$	a = 3,75	C = 25,74
17	$F = \sum_{i=0}^{13} \operatorname{tg}\left(2b + e^{i}\right)$	<i>b</i> = 5	F = -229,4
18	$Y = \sum_{i=1}^{20} \frac{d^2}{\cos(d) + 5i}$	d = 8,17	<i>Y</i> = 49,42

Задание 2. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 5.2) составить ГСА и программу вычисления значения функции. Работу выполнить и оформить по образцу примера 2. Краткое обозначение темы задания 2 в именах объектов — Цсумм2.

Таблица 5.2 Индивидуальные варианты задания 2

Вари-	Функция	Исходные данные	Результат
1	2	3	4
0	$V = \frac{40x + \sum_{j=0}^{5} \sqrt{j^2 + \cos(6j)}}{a^2 + 5}$	x = 9 $a = 12$	V = 2,53
1	$R = 4x^{2} + \prod_{L=3}^{15} \left[\frac{\ln(xL)}{10000} + \frac{1}{tgx} \right]$	x = 10	R = 680,54
2	$J = 5x - \sum_{i=1}^{30} \frac{x \sin(2i+7)}{2i-1}$	x = 2	J = 9,64
3	$L = h^2 + \prod_{i=1}^9 \left \sin(i) \right $	h = -4	L = 16,01
4	$N = \frac{x}{e^{-1}} + \prod_{j=2}^{7} \sqrt[3]{x + \sqrt{ \sin(j+5) }}$	<i>x</i> = 6	N = 62,8
5	$W = \frac{\cos q}{\sin^2 q} - \sum_{p=5}^{15} \left(\frac{p-5}{25}\right)^4$	q = 9	W = -5,43
6	$L = \operatorname{tg} k^{3} + \sum_{j=1}^{7} \frac{\sin(25 - k)}{j^{2}}$	k = -2	L = 8,25

Окончание табл. 5.2

1	2	3	4
7	$R = 20x + \prod_{k=1}^{18} \frac{\left(k^2x + k \ x^2 + 40\right)}{100}$	x = 0.99	R = 158,58
8	$C = 2x - \sum_{j=6}^{17} \ln j+6 $	x = 4,89	C = -24,32
9	$D = u + \ln 1 - u + \prod_{i=1}^{9} \frac{5}{\sqrt{i+8}}$	<i>u</i> = 45	D = 69,58
10	$R = 25x + \sum_{f=1}^{9} \left(f^2 - \sqrt[3]{x} \right)$	<i>x</i> = 27	R = 933
11	$W = 41x - \prod_{p=1}^{16} e^{\cos(p)}$	<i>x</i> = 5	W = 204,71
12	$L = h + \sum_{j=5}^{17} \sqrt{ \cos(j \ h)^3 }$	h = 13	L = 24,04
13	$T = y + \sum_{r=6}^{18} 5e^{\sin(r)}$	<i>y</i> = 5	T = 85,77
14	$D = h - \sum_{i=1}^{6} \frac{e^{\sqrt{4+hi}}}{10}$	h = 6	D = -122,46
15	$E = \sqrt{4x + 21} + \prod_{k=3}^{7} \frac{x^2 + k^2}{2k + 7}$	x = 0,1	E = 9,44
16	$R = 17x^2 - \sum_{f=0}^{5} e^{f + \sqrt[3]{x}}$	<i>x</i> = 11	R = -108
17	$D = \ln 1 - x + \sum_{i=1}^{9} \sqrt[3]{i + 5}$	<i>x</i> = 15	D = 21,88
18	$L = \operatorname{tg}^{3} k + \prod_{j=1}^{7} j \cdot \sin\left(\frac{5k}{j}\right)$	k = 4	L = 37,9

Задание 3. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 5.3) составить ГСА и программу накопления суммы (произведения) с использованием оператора арифметического цикла. Работу выполнить и оформить по образцу примера 3. Краткое обозначение темы задания 3 в именах объектов – Цсумм3.

Таблица 5.3 Индивидуальные варианты задания 3

Вари-	Функция	Исходные данные	Результат
1	2	3	4
0	$Y = 110 + \cos 3x + \cos 5x + \cos 7x + \dots + \cos 21x$	x = 1,62	<i>Y</i> = 109,61
1	$A = 12 + \frac{x^2}{2} + \frac{x^2}{4} + \frac{x^2}{6} + \dots + \frac{x^2}{18}$	x = 0.34	A = 12,16
2	$B = 2x \cdot 4x \cdot 6x \cdot \dots \cdot 22x$	x = 0.092	B = 0.33
3	$C = 45 + \sin x + \sin 2x + \sin 3x + \dots + \sin 15x$	x = 2,76	<i>C</i> = 44,91
4	$D = 18 + 3x^2 + 3x^3 + 3x^4 + \dots + 3x^{12}$	x = 0.85	D = 30,03
5	$F = 34 - \frac{1}{2x} - \frac{1}{4x} - \frac{1}{6x} - \dots - \frac{1}{24x}$	x = 0.26	F = 28,03
6	$G = -54 + 2 \operatorname{tg} x^2 + 4 \operatorname{tg} x^2 + 6 \operatorname{tg} x^2 + \dots 26 \operatorname{tg} x^2$	x = 2,45	G = -106,47
7	$H = 134 + 3x^3 + 4x^4 + 5x^5 + \dots + 11x^{11}$	x = 0.85	<i>H</i> = 152,73
8	$K = -98 + \frac{2}{x^2} + \frac{4}{x^4} + \frac{6}{x^6} + \dots + \frac{16}{x^{16}}$	x = 0.98	K = -7,19
9	$L = 236 + \sin x + 2\sin x + 3\sin x + \dots + 16\sin x$	x = 1,01	L = 351,17
10	$M = x \cdot x^2 \cdot x^3 \cdot x^4 \cdot \dots \cdot x^{12}$	x = 1,02	M = 4,69
11	$P = -21 - 3x^3 - 6x^6 - 9x^9 - \dots - 33x^{33}$	x = 0,56	P = -21,78
12	$S = 33 + \frac{1}{2x} \cdot \frac{1}{4x} \cdot \frac{1}{6x} \cdot \dots \cdot \frac{1}{22x}$	x = 0.07	S = 94,86
13	$T = 43 - 2x - 3x - 4x - \dots - 18x$	x = 2,315	T = -350,55

Окончание табл. 5.3

1	2	3	4
14	$V = \ln x + \ln^2 x + \ln^3 x + + \ln^8 x$	x = 2	V = 2,14
15	$W = 77 + 5x^5 + 10x^5 + 15x^5 + \dots 65x^5$	x = 0.95	W = 429,07
16	$Z = 87 + \cos x^2 + \cos x^4 + \cos x^6 + \dots + \cos x^{20}$	x = 1,82	Z = 83,79
17	$Y = -63 + 2x^2 + 5x^5 + 8x^8 + \dots + 29x^{29}$	x = 0,77	Y = -58,08
18	$N = 36 - \lg 3x - \lg 6x - \lg 9x - \dots - \lg 27x$	x = 0.14	N = 42,11

Задание 4. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 5.4) составить ГСА и вычислить искомое натуральное число тремя способами. Работу выполнить и оформить по образцу примера 4. Краткое обозначение темы задания 4 в именах объектов – ЦИ.

Таблица 5.4 Индивидуальные варианты задания 4

Вари-	Искомое натуральное число	Результат
1	2	3
0	Наименьшее целое четырехзначное число, кратное 172	1032
1	Наибольшее целое трехзначное число, кратное 43	989
2	Наименьшее целое число N , при котором значение выражения $175-6N$ становится отрицательным	30
3	Наименьшее целое число, квадрат которого представляет собой четырехзначное число	32
4	Наименьшее целое число, куб которого превышает его квадрат не менее чем на 438	8
5	Наибольшее целое трехзначное число, кратное 22	990

Окончание табл. 5.4

1	2	3
6	Наименьшее целое число, натуральный логарифм которого превышает 3,2	25
7	Наименьшее целое число, квадратный корень из которого превышает кубический корень не менее чем в 1,5 раза	12
8	Наибольшее целое четырехзначное число, кратное 23	9982
9	Наименьшее целое число, квадрат которого превышает 1367	37
10	Наименьшее целое число N , при котором значение выражения $283 - N^2$ становится отрицательным	17
11	Наибольшее целое четырехзначное число, квадрат которого кратен 15	9990
12	Наименьшее целое трехзначное число, кратное 32	128
13	Наибольшее целое четырехзначное число, квадрат которого кратен 58	9976
14	Наибольшее целое четырехзначное число, кратное 31	9982
15	Наименьшее целое число N , при котором значение выражения $N^3 - 371$ становится положительным	8
16	Наименьшее целое трехзначное число, куб которого кратен 19	114
17	Наименьшее целое четырехзначное число, квадрат которого кратен 51	1020
18	Наименьшее целое трехзначное число, кратное 29	116

Задание 5. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 5.5) составить ГСА и программу расчета искомого значения с помощью цикла с предусловием. Работу выполнить и оформить по образцу примера 5. Краткое обозначение темы задания 5 в именах объектов — ЦИС.

Таблица 5.5 Индивидуальные варианты задания 5

Вари-	Условие задачи	Контрольные значения
1	2	3
0	Вы приобрели акции крупного банка на сумму S рублей. В первый месяц их стоимость упала на 8% , а затем стала постоянно расти на $4,5\%$ в месяц. Через сколько месяцев (k) Ваш капитал увеличится на 40% по сравнению с первоначальным?	При $S = 100$ $k = 11$
1	В первый день сбора урожая полевая бригада собрала N кг картофеля. Через сколько дней (k) первоначальный результат увеличится в два раза, если в каждый последующий день бригада собирает на $2,3$ % картофеля больше, чем в предыдущий?	При $N = 100$ $k = 32$
2	По итогам семестра Ваш рейтинг по информатике составил R баллов, что не позволяет Вам получить «автоматом» оценку, на которую Вы рассчитывали ($R_{\text{ожид}}$). Преподаватель разрешил пересдать несколько тестов на повышенную оценку. При этом каждый тест увеличивает предыдущее значение рейтинга на 3,7 %. Сколько тестов (k) Вам необходимо пересдать, чтобы выйти на ожидаемый балл?	При $R = 60$, $R_{\text{ожид}} = 76$ $k = 7$
3	Вы получили наследство в размере F рублей и решили потратить его на благотворительность. Через сколько месяцев (k) у Вас останется менее 1 рубля, если Вы ежемесячно жертвуете организациям средства в размере 50 % от текущего остатка суммы?	При $F = 50000$ $k = 16$
4	Вы заложили в ломбард любимую вещь. Ломбард оценил ее в Z рублей и определил, что каждый день залоговая стоимость этой вещи увеличивается на 0.8 %. Через сколько дней (k) Вы выкупите вещь вдвое дороже?	При $Z = 120$ k = 87
5	Вас пригласили на банкет, где организован шведский стол. Вы пробуете разные блюда, но боитесь набрать лишний вес. Каждый «подход» к шведскому столу увеличивает Ваш вес (V кг) на 0,7%. Сколько «подходов» (k) Вы совершите к тому моменту, когда Ваш вес увеличится на 6% относительно первоначального?	При <i>V</i> = 64 <i>k</i> = 9

Продолжение табл. 5.5

1	2	3
6	Вы открыли мастерскую по ремонту бытовой техники, для чего арендовали небольшое помещение. В первый месяц арендная плата A составила 5 % от полученной за этот месяц прибыли P рублей. Однако с ростом инфляции стоимость аренды стала расти на 12 % в месяц, а ежемесячные доходы не увеличились. Через сколько месяцев (k) арендная плата «перекроет» полученную за месяц прибыль и Вам придется закрыть мастерскую?	При $P = 10000$ $k = 28$
7	Вы решили потратить в месяц не более 250 кВт·ч электроэнергии. Зафиксировав расход в первый день месяца (<i>W</i> кВт·ч), Вы вдруг стали замечать, что с каждым днем расходуете на 0,5 кВт·ч больше, чем в предыдущий день. Через сколько дней (<i>k</i>) Вы израсходуете запланированное количество электроэнергии?	При $W = 25$ $k = 10$
8	От американского дядюшки Вы получили наследство в размере N долларов и захотели красиво пожить. Потратив в первый месяц седьмую часть суммы, Вы собираетесь расходовать в дальнейшем каждый месяц на 5 % больше, чем в предыдущий. На сколько месяцев (k) Вам хватит наследства?	При $N = 10000$ $k = 7$
9	Для ремонта квартиры Вы купили <i>R</i> рулонов обоев. Не имея опыта работы, в первый день Вы наклеили только десятую часть всех обоев. Приобретя соответствующий навык, в каждый последующий день Вы стали наклеивать на два рулона обоев больше, чем в предыдущий день. За сколько дней (<i>k</i>) Вы наклеите все обои?	При $R = 10$ $k = 4$
10	Вы выиграли денежный приз в размере S рублей. После того, как на радостях в первый месяц Вы незаметно для себя потратили половину суммы, Вы взялись за ум и решили дальше тратить деньги более разумно. Теперь каждый месяц Вы расходуете 51 % от суммы, потраченной в предыдущем месяце. Через сколько месяцев (k) у Вас останется менее 1 рубля?	При $S = 10000$ $k = 6$

Продолжение табл. 5.5

1	2	3
11	Вы положили деньги в сумме S рублей в банк, а затем через банкомат каждый месяц получаете 40% от оставшейся на счете суммы. За услуги банк взимает комиссию в размере 3% от выдаваемой суммы. Через сколько месяцев (k) на Вашем счете останется менее 1 рубля?	При $S = 50000$ $k = 21$
12	Во вновь открывшемся гипермаркете бытовой техники первому покупателю начислили Z бонусов в размере 20% от стоимости покупки S . При каждой следующей покупке (независимо от ее стоимости) количество бонусов увеличивается на $2,5\%$ от текущего остатка. Сколько покупок (k) необходимо совершить, чтобы удвоить количество бонусов на счете?	При $S = 1200$ $k = 30$
13	Взяв беспроцентный кредит на сумму L рублей, Вы организовали свой бизнес. В первый месяц Вы получили неплохую прибыль в размере P рублей, 25 % которой потратили на погашение кредита. Определив перспективы на будущее, Вы планируете ежемесячно увеличивать Вашу прибыль на $0,15$ % от предыдущей и, соответственно, половину прибыли отдавать на погашение кредита. Через сколько месяцев (k) Вы полностью погасите кредит?	При $L = 500000$, $P = 100000$ $k = 11$
14	Базовая стоимость обучения на курсах повышения квалификации установлена в размере P рублей. Через сколько лет (k) плата за обучение вырастет в 1,5 раза, если каждый последующий год вследствие инфляции она увеличивается на 10 %?	При $P = 10000$ $k = 5$
15	Для привлечения молодых кадров предприятие организовало фонд поощрения перспективных сотрудников. Средства на его поддержку решено выделять ежемесячно из получаемой прибыли (<i>P</i> рублей). В первый месяц было выделено 15 % от полученной прибыли, а каждый следующий месяц — по 5 %. Через сколько месяцев (<i>k</i>) размер фонда вырастет до 1,5 млн рублей при условии, что прибыль ежемесячно увеличивается на 3,5 %, а средства фонда не расходуются?	При $P = 100000$ $k = 13$

1	2	3
16	Вы решили испытать судьбу и поиграть в азартные игры. В первый раз Вы поставили 15 % от имеющихся у Вас S рублей и проиграли. Затем каждый раз Вы увеличиваете ставку на 10 % относительно предыдущей, но Вам все время не везет. Вы проигрываете, но не можете остановиться. Через сколько ставок (k) Вы потратите все имеющиеся у Вас средства?	При $S = 1000$ $k = 6$
17	Вы приобрели акции вновь построенного предприятия на сумму A рублей. В первый месяц стоимость акций возросла на 10% , а каждый последующий месяц она будет увеличиваться на 6% относительно предыдущей суммы. Через сколько месяцев (k) Ваш капитал удвоится?	*
18	На первую покупку стоимостью S рублей в магазине Вам начислили Z бонусов в размере 10% от суммы покупки. При каждой следующей покупке количество бонусов увеличивается на $3,5\%$ от текущего остатка. Сколько покупок (k) Вам нужно совершить, чтобы количество бонусов увеличилось на 30% относительно первоначальной суммы?	При $S = 1000$ $k = 9$

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1) В каких случаях применяются циклы накопления сумм и произведений?
- 2) Опишите порядок накопления суммы и произведения.
- 3) Какой цикл называется итерационным?
- 4) Чем итерационный цикл отличается от арифметического?
- 5) Чем итерационный цикл с постусловием отличается от итерационного цикла с предусловием?

7. ПРИМЕРЫ ТЕСТОВЫХ ВОПРОСОВ

Вопрос № 1 (один верный ответ)

Количество повторений итерационного цикла ...

Варианты ответов:

- 1) заранее не известно и определяется условием задачи;
- 2) имеет конкретное значение, определяемое шагом изменения параметра;

- 3) является неопределяемой величиной;
- 4) бесконечно.

Вопрос № 2 (один верный ответ)

Цикл с предусловием отличается от цикла с постусловием тем, что ... *Варианты ответов*:

- 1) выполнение тела цикла зависит от результата проверки условия;
- 2) тело цикла с предусловием обязательно выполняется хотя бы один раз;
- 3) нет отличий;
- 4) условие выполнения цикла меняется на противоположное.

Вопрос № 3 (один верный ответ)

Сколько раз выполнится цикл в представленном фрагменте программы?

```
x = 0
Do While x < 0
x = x + 1
Loop
```

Варианты ответов:

- 1) один раз;
- 2) ни одного раза;
- 3) бесконечно много раз (программа зациклится);
- 4) два раза.

Библиографический список

- 1. Лебедев, В. М. Программирование на VBA в MS Excel: учебное пособие / В. М. Лебедев. Москва: Юрайт, 2020. 306 с. Текст: непосредственный.
- 2. Казанский, А. А. Прикладное программирование на Excel 2019: учебное пособие / А. А. Казанский. Москва: Юрайт, 2020. 171 с. Текст: непосредственный.
- 3. Сидорова, Е. А. Основы программирования на языке VBA: учебное пособие / Е. А. Сидорова, С. П. Железняк. Омск: Омский государственный университет путей сообщения, 2021. 118 с. Текст: непосредственный.

Учебное издание

СИДОРОВА Елена Анатольевна, ДОЛГОВА Анна Владимировна, ЖЕЛЕЗНЯК Светлана Петровна

ПРОГРАММИРОВАНИЕ ЦИКЛОВ НАКОПЛЕНИЯ И ИТЕРАЦИОННЫХ ЦИКЛОВ НА VBA

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 10.02.2022. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 2,3. Уч.-изд. л. 2,5. Тираж 100 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35