Outlet Sales Forecasting With Ensemble Modeling

Part 01	Exploratory Data Analysis
Part 02	Data Preprocessing & Feature Engineering
Part 03	Model Building & Validation
Part 04	Prediction & Future Improvements

What is the target variable?

And what are the features we have?

From the descriptive analysis we could find out the distribution of target variables is not normalized.

Item MRP

Increasing of sales number demonstrated a gradual pattern with the growth of Item MRP in different levels.

Data Preprocessing

Data imputation for the Item Weight feature would be conducted based on The findings that only outlet with ID 019 and 027 have missing values, we randomly chose item weights from those two kinds of outlet to fill in as the actual item weight to minimize the effects of preexisting missing values.

Item Weight After Imputation

Data Preprocessing

Missing values for the categorical variables would be imputed based on the specific outlet ids and its corresponding Outlet Size and Item sales.

For example, We find out that Out010 corresponds to grocery store therefore the missing values for Outlet Size should be small.

Outlet Size Scatterplot After Imputation.

Outlet level

Sales gap between Supermarket and Grocery Store was shown in this feature.

MRP Level

Gradual pattern in sales growth regarding MRP level were reflected in this feature.

Item Visibility

We decided to apply winsorization to the feature. Set a limit to the extreme values to reduce the effects of spurious outliers.

After Winsorization

The extreme values has successfully been transformed within the range and the feature looks fine.

Feature Engineering

Encoding

Option A(Target Encoding)

Replacing the categorical feature based on the target mean value of each category.

Option B (Label-Encoding)

Convert categorical features into numerical features based on the feature's ordinary sequence

Final Suggestion

Option C(One-Hot Encoding)

Encode each categorical feature by creating a new binary column.

Model Building Iteration

Optimal Model

```
lr = LinearRegression()
svr_lin = SVR(kernel='linear')
ridge = Ridge(random state=1)
lasso = Lasso(random_state=1)
reg = xgb.XGBRegressor()
svr rbf = SVR(kernel='rbf')
regressors = [svr_lin, lr, ridge, lasso, reg]
stregr = StackingRegressor(regressors=regressors,
                           meta regressor=svr rbf)
params = { 'lasso alpha': [0.1, 0.5, 1.0],
          'ridge alpha': [0.1, 0.5, 1.0],
          'svr C': [0.1, 0.5, 1.0],
          #'reg max_depth':[3,4,5],
          #'reg n estimators':[10,20,30],
          #'reg learning rate':[0.1,0.3,0.5],
           'meta-svr C': [0.1, 1.0, 5.0],
           'meta-svr gamma': [0.1, 1.0, 5.0]}
bestmodel4 = RandomizedSearchCV(estimator=stregr,
                               param distributions=params,
                               n iter=10,n jobs=-1,random state=1,scoring='r2')
bestmodel4.fit(train_x, train_y1)
```

Notebook Display

75.65 %

We used cross-validation to evaluate our model since test.csv did not provide the label. Our model finally achieved a **75.65% goodness of fit score**(R^2) with an RMSE of 1.76. Although it is not our ultimate performance since parameter tuning is not finished due to time limit and complexity, it still indicated that our model performed well.

Further Improvement:

- Impute the missing values for Item weight based on the relationship with other column values.
- Customized feature encoding for every categorical variable.
- Parameter tuning for the final ensemble model.

