Bank Credit Card Launch

Problem Statement

A new banking company wants to launch a credit card in the highly competitive Indian market. The company needed to identify the most promising target market segment and tailor its credit card offering to meet the specific needs and preferences of that segment. The objective is to make data-driven decisions regarding the target market segment and ensure the successful launch of the new credit card within that segment, enabling the banking company to gain a competitive edge in the Indian market.

Phase 1: Bank Credit Card Project

Objective: Analyze customers transactions and credit profiles to figure out a target group for the launch of bank credit card.

Data Import

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

```
In [3]:
```

```
df_cust = pd.read_csv('Datasets/customers.csv')
df_cs = pd.read_csv('Datasets/credit_profiles.csv')
df_trans = pd.read_csv('Datasets/transactions.csv')
```

Exploring Customers Table

```
In [6]:
```

```
df_cust.head()
```

Out[6]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
0	1	Manya Acharya	Female	2	City	Business Owner	358211.0	Married
1	2	Anjali Pandey	Female	47	City	Consultant	65172.0	Single
2	3	Aaryan Chauhan	Male	21	City	Freelancer	22378.0	Married
3	4	Rudra Bali	Male	24	Rural	Freelancer	33563.0	Married
4	5	Advait Malik	Male	48	City	Consultant	39406.0	Married

```
In [8]:
```

```
df_cust.describe()
```

Out[8]:

cust_id age annual_income

count	1000. cost000	1000.000 09	ann ysi Qj 00000 0
mean	500.500000	36.405000	139410.314737
std	288.819436	15.666155	112416.802007
min	1.000000	1.000000	2.000000
25%	250.750000	26.000000	47627.500000
50%	500.500000	32.000000	112218.500000
75%	750.250000	46.000000	193137.500000
max	1000.000000	135.000000	449346.000000

Handle Null Values

Now let us check if any of our dataframe columns contain null values

```
In [11]:
```

```
df_cust.isnull().sum() #50 null values in annual income.
Out[11]:
                  0
cust_id
name
gender
age
                  0
                 0
location
                 0
occupation
annual income
                 50
marital status
                 0
dtype: int64
```

1. Analyze Income Column

Handle Null Values: Annual income

```
In [15]:
```

```
df_cust[df_cust.annual_income.isnull()].head()
```

Out[15]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
14	15	Sanjana Malik	Female	25	Rural	Artist	NaN	Married
82	83	Reyansh Mukherjee	Male	27	City	Freelancer	NaN	Single
97	98	Virat Puri	Male	47	Suburb	Business Owner	NaN	Married
102	103	Aarav Shah	Male	32	City	Data Scientist	NaN	Married
155	156	Kiaan Saxena	Male	24	City	Fullstack Developer	NaN	Married

```
In [17]:
```

```
occupation_wise_sales_median = df_cust.groupby('occupation').annual_income.median()
occupation_wise_sales_median
```

Out[17]:

occupation	
Accountant	65265.0
Artist	45794.0
Business Owner	261191.5
Consultant	58017.0
Data Scientist	135759.0
Freelancer	46759.0

```
In [19]:
df cust ['annual income'] = df cust.apply(
    lambda row : occupation wise sales median[row['occupation']] if pd.isnull(row['annua
l income']) else row["annual income"],
    axis = 1)
In [21]:
```

76774.0

Fullstack Developer

Name: annual_income, dtype: float64

```
df cust.isnull().sum() # No null values
Out[21]:
cust_id
                   0
                   0
name
                   0
gender
                   0
age
                   0
location
occupation
                   0
annual_income
                   0
marital_status
dtype: int64
In [23]:
df cust.iloc[[14,82]]
```

Out[23]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status	
14	15	Sanjana Malik	Female	25	Rural	Artist	45794.0	Married	
82	83	Reyansh Mukherjee	Male	27	City	Freelancer	46759.0	Single	

Previously records at location 14 and 82 had null annual income. Now you have a median value per occupation.

In [26]:

```
plt.figure(figsize=(5, 5))
sns.histplot(df_cust['annual_income'], kde=True, color='blue', label='Data')
plt.title('Histogram of annual_income')
plt.show()
```



```
0 100000 200000 300000 400000
annual income
```

```
In [28]:
```

```
df cust.describe()
```

Out[28]:

	cust_id	age	annual_income
count	1000.000000	1000.000000	1000.000000
mean	500.500000	36.405000	138916.765500
std	288.819436	15.666155	110969.408643
min	1.000000	1.000000	2.000000
25%	250.750000	26.000000	48229.500000
50%	500.500000	32.000000	113416.000000
75%	750.250000	46.000000	192614.000000
max	1000.000000	135.000000	449346.000000

Age column has outliers. Annual income also seem to have outliers in terms of minimum value because business suggested that minimum income should be atleast 100.

```
In [31]:
```

```
df_cust[df_cust.annual_income<100]
```

Out[31]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
31	32	Veer Mistry	Male	50	City	Business Owner	50.0	Married
262	263	Vivaan Tandon	Male	53	Suburb	Business Owner	50.0	Married
316	317	Yuvraj Saxena	Male	47	City	Consultant	50.0	Married
333	334	Avani Khanna	Female	29	City	Data Scientist	50.0	Married
340	341	Priya Sinha	Female	33	Rural	Fullstack Developer	50.0	Married
543	544	Advait Batra	Male	54	City	Consultant	2.0	Married
592	593	Priya Gandhi	Female	32	City	Business Owner	50.0	Married
633	634	Rudra Mehtani	Male	26	City	Data Scientist	2.0	Married
686	687	Vihaan Jaiswal	Male	40	City	Business Owner	2.0	Married
696	697	Ishan Negi	Male	47	City	Consultant	20.0	Married

In [33]:

```
df cust[df cust.annual income<100].shape</pre>
```

Out[33]:

(10, 8)

Outlier Treatment: Annual income

Above records (with <100\$ income) are outliers. We have following options to treat them,

- 1. Remove them: After discussion with business, we decided not to remove them as these are valid customers and we want to include them in our analysis
- 2. Replace them with mean or median: Mean is sensitive to outliers. It is better to use median for income

values

3. Replace them with occupation wise median: Income level may vary based on occupation. For example median income for data scientist can be different from a median income of a business owner. It is better to use occupation wise median income for replacement

```
In [36]:
```

```
for index, row in df_cust.iterrows():
    if row["annual_income"] < 100:
        df_cust.at[index , 'annual_income'] = occupation_wise_sales_median[row['occupation']]</pre>
```

In [38]:

```
df_cust[df_cust.annual_income<100] # No outliers
Out[38]:</pre>
```

cust_id name gender age location occupation annual_income marital_status

```
In [40]:
```

```
df_cust.loc[[31,262]]
```

Out[40]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
31	32	Veer Mistry	Male	50	City	Business Owner	261191.5	Married
262	263	Vivaan Tandon	Male	53	Suburb	Business Owner	261191.5	Married

Record at 31,262 location had annual income of < 100\$. Now you can see it is replaced by a median income per occupation.

Data Visualization: Annual Income

In [44]:

```
# List of categorical columns
cat cols = ['gender', 'location', 'occupation', 'marital status']
num rows = 2
# Subplots
fig, axes = plt.subplots(num rows, 2, figsize=(12, 4 * num rows))
axes = axes.flatten()
# Create subplots for each categorical column
for i, cat col in enumerate(cat cols):
    # Calculate the average annual income for each category
    avg income by category = df cust.groupby(cat col)['annual income'].mean().reset inde
X()
    # Sort the data in descending order by 'annual income' before plotting
    sorted_data = avg_income_by_category.sort values(by='annual income', ascending=False
    sns.barplot(x=cat col, y='annual income', data=sorted data, ci=None, ax=axes[i], pal
ette='tab10')
   axes[i].set title(f'Average Annual Income by {cat col}')
    axes[i].set xlabel(cat col)
   axes[i].set ylabel('Average Annual Income')
    axes[i].set xticklabels(axes[i].get xticklabels(), rotation=45)
for i in range(len(cat cols), len(axes)):
```

fig.delaxes(axes[i])
plt.tight_layout()
plt.show()

2. Analyze Age Column

```
In [47]:
```

```
df_cust.age.isnull().sum()
```

Out[47]:

0

No null values

In [50]:

```
df_cust.describe()
```

Out[50]:

	cust_id	age	annual_income	
count	1000.000000	1000.000000	1000.000000	
mean	500.500000	36.405000	140483.548500	
std	288.819436	15.666155	110463.002934	
min	1.000000	1.000000	5175.000000	
25%	250.750000	26.000000	49620.500000	
50%	500.500000	32.000000	115328.000000	
75%	750.250000	46.000000	195514.250000	
max	1000.000000	135.000000	449346.000000	

Outlier Treatment: Age

Above we see that min age is 1 and max age is 135. These seem to be outliers.

```
In [53]:
```

```
outliers = df_cust[(df_cust.age< 15) | (df_cust.age> 80)]
outliers
```

Out[53]:

cust_id		name	gender	age	location	occupation	annual_income	marital_status
0	1	Manya Acharya	Female	2	City	Business Owner	358211.0	Married
41	42	Aaryan Shah	Male	110	City	Artist	7621.0	Married
165	166	Sia Dutta	Female	1	City	Freelancer	39721.0	Single
174	175	Rohan Sharma	Male	110	City	Freelancer	23723.0	Married
222	223	Arjun Batra	Male	110	Suburb	Freelancer	210987.0	Married
277	278	Aarav Tandon	Male	110	City	Consultant	96522.0	Single
295	296	Ayush Pandey	Male	1	Rural	Accountant	55254.0	Married
325	326	Virat Goel	Male	110	City	Accountant	61021.0	Single
610	611	Rehan Verma	Male	135	Rural	Business Owner	444776.0	Married
692	693	Dhruv Jha	Male	1	City	Business Owner	83045.0	Married
703	704	Aanya Sharma	Female	110	City	Freelancer	43404.0	Single
709	710	Anika Verma	Female	110	City	Data Scientist	98417.0	Married
728	729	Rehan Yadav	Male	135	City	Business Owner	382836.0	Married
832	833	Ridhi Raj	Female	110	City	Fullstack Developer	95379.0	Single
845	846	Rohan Jaiswal	Male	1	City	Consultant	20838.0	Married
855	856	Aanya Taneja	Female	2	City	Fullstack Developer	30689.0	Married
895	896	Krishna Goswami	Male	1	City	Freelancer	31533.0	Married
923	924	Kunal Patel	Male	110	City	Freelancer	51629.0	Married
951	952	Virat Shetty	Male	135	City	Data Scientist	49677.0	Married
991	992	Arya Dube	Male	135	City	Fullstack Developer	93267.0	Single

```
In [55]:
```

```
outliers.shape
```

Out[55]:

(20, 8)

We cannot remove 20 rows as they are important. So to treat these outliers we will use median age for each of the occupation

```
In [58]:
```

```
median_age_per_occupation = df_cust.groupby('occupation').age.median()
median_age_per_occupation
```

Out[58]:

```
occupation
Accountant 31.5
Artist 26.0
Business Owner 51.0
Consultant 46.0
Data Scientist 32.0
Freelancer 24.0
Fullstack Developer 27.5
```

```
Name: age, dtype: float64
In [60]:
for index , row in outliers.iterrows():
    df_cust.at[index , 'age'] = median_age_per_occupation[row['occupation']]
In [62]:
df cust[(df cust.age< 15) | (df cust.age> 80)]
Out[62]:
 cust_id name gender age location occupation annual_income marital_status
In [64]:
df cust.age.describe()
Out[64]:
        1000.000000
count
        35.541500
mean
          12.276634
std
min
          18.000000
25%
          26.000000
50%
          32.000000
75%
          44.250000
          64.000000
max
Name: age, dtype: float64
```

As you can see above, now we don't have any outliers left. min age is 18 and max is 64

Data Visualization: Age Column

```
In [68]:
bin_edges = [17, 25, 48, 65]
bin_labels = ['18-25', '26-48', '49-65']

df_cust['age_group'] = pd.cut(df_cust['age'], bins=bin_edges, labels=bin_labels)
df_cust.head()
```

Out[68]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status	age_group
0	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	49-65
1	2	Anjali Pandey	Female	47.0	City	Consultant	65172.0	Single	26-48
2	3	Aaryan Chauhan	Male	21.0	City	Freelancer	22378.0	Married	18-25
3	4	Rudra Bali	Male	24.0	Rural	Freelancer	33563.0	Married	18-25
4	5	Advait Malik	Male	48.0	City	Consultant	39406.0	Married	26-48

```
In [70]:
```

```
age_group_counts = df_cust.age_group.value_counts(normalize = True)*100 # normalize for
converting in into %
age_group_counts
```

```
Out[70]:
```

```
age_group
26-48 56.7
18-25 24.6
49-65 18.7
Name: proportion, dtype: float64
```

In [72]:

```
plt.figure(figsize=(4, 4))
plt.pie(
    age_group_counts, labels=age_group_counts.index, explode=(0.1,0,0), autopct='%1.1f%%
', shadow=True, startangle=90
)
plt.axis('equal')
plt.title('Distribution of Age Groups')
plt.show()
```

Distribution of Age Groups

More than 50% of customer base are in in age group of 26 - 48 and ~25% are of age group 18 - 25

3. Analyze Gender and Location Distribution

```
In [76]:
df cust.location.value counts()
Out[76]:
location
        683
City
       232
Suburb
Rural
         85
Name: count, dtype: int64
In [78]:
df cust.gender.value counts()
Out[78]:
gender
        674
Male
Female
         326
Name: count, dtype: int64
```

customer location gender = df cust.groupby('location').gender.value counts().unstack()

Out[80]:

In [80]:

gender Female Male

customer location gender

location

```
        gender City
        Female 226
        Male 457

        location Rural
        26
        59

        Suburb
        74
        158
```

In [82]:

```
customer_location_gender.plot(kind='bar', stacked=True, figsize=(5, 4))
plt.xlabel('Location')
plt.ylabel('Count')
plt.title('Customer Distribution by Location and Gender')

plt.legend(title='Gender', bbox_to_anchor=(1, 1))
plt.xticks(rotation=45)
plt.show()
```


Explore Credit Score Table

In [85]:

```
df_cs.head()
```

Out[85]:

	cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months	credit_limit
0	1	749	0.585171	19571.0	0.0	40000.0
1	2	587	0.107928	161644.0	2.0	1250.0
2	3	544	0.854807	513.0	4.0	1000.0
3	4	504	0.336938	224.0	2.0	1000.0
4	5	708	0.586151	18090.0	2.0	40000.0

In [87]:

```
df_cs.shape
```

```
Out[87]:
(1004, 6)
Credit score table should have same records as customers table. There might be invalid or duplicate data.
In [90]:
df cs.cust id.nunique() # some records have duplicates
Out[90]:
1000
In [92]:
df cs[df cs.cust id.duplicated(keep = False)]
Out[92]:
     cust_id credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months credit_limit
516
        517
                   308
                                 NaN
                                                NaN
                                                                          NaN
                                                                                     NaN
                              0.113860
                                                                                    500.0
517
        517
                   308
                                                 33.0
                                                                           3.0
569
        569
                   344
                                 NaN
                                                NaN
                                                                           NaN
                                                                                     NaN
570
        569
                   344
                              0.112599
                                                 37.0
                                                                           0.0
                                                                                    500.0
607
        606
                   734
                                 NaN
                                                                                     NaN
                                                NaN
                                                                           NaN
608
        606
                   734
                              0.193418
                                               4392.0
                                                                            1.0
                                                                                  40000.0
        662
                   442
664
                                 NaN
                                                NaN
                                                                           NaN
                                                                                     NaN
665
        662
                   442
                              0.856039
                                                266.0
                                                                            2.0
                                                                                    500.0
In [94]:
df cs clean 1 = df cs.drop duplicates(subset='cust id' , keep='last')
df cs clean 1.shape
Out[94]:
(1000, 6)
In [96]:
df cs clean 1[df cs clean 1.cust id.duplicated(keep = False)]
Out[96]:
  cust_id credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months credit_limit
df_cs_clean_1 looks clean now after cleaning duplicates.
Data Cleaning Step 2: Handle Null Values
In [100]:
df cs clean 1.isnull().sum() # 65 null values in credit limit.
Out[100]:
                                         0
cust id
credit score
                                         0
credit utilisation
                                         0
outstanding debt
                                         0
credit_inquiries_last_6_months
                                         0
```

6.5

credit limit

dtune. int 64

~~1P~ -110~1

```
In [102]:
```

```
df_cs_clean_1[df_cs_clean_1.credit_limit.isnull()].head()
```

Out[102]:

	cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months	credit_limit
10	11	679	0.557450	9187.0	2.0	NaN
35	36	790	0.112535	4261.0	1.0	NaN
37	38	514	0.296971	238.0	2.0	NaN
45	46	761	0.596041	24234.0	2.0	NaN
64	65	734	0.473715	13631.0	0.0	NaN

In [104]:

```
plt.figure(figsize=(20, 5))
sns.scatterplot(x=df_cs_clean_1.credit_limit, y=df_cs.credit_score)
plt.xlabel('Credit Limit')
plt.ylabel('Credit Score')
plt.grid(True)
plt.show()
```


Here we can see clear relationship between credit score and credit limit. Where there are levels for example, upto 650 score is getting a very minor credit limit (<1000\$) where as a score between 650 to 700 is getting around 20000. Score between 700 to 750 is getting around 40K etc.

In [107]:

```
bin_ranges = [300, 450, 500, 550, 600, 650, 700, 750, 800]
bin_labels = [f'{start}-{end-1}' for start, end in zip(bin_ranges, bin_ranges[1:])]
df_cs_clean_1['credit_score_range'] = pd.cut(df_cs_clean_1['credit_score'], bins=bin_ranges, labels=bin_labels, include_lowest=True, right=False)
```

In [109]:

```
df_cs_clean_1.head()
```

Out[109]:

	cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months	credit_limit	credit_score_range
0	1	749	0.585171	19571.0	0.0	40000.0	700-749
1	2	587	0.107928	161644.0	2.0	1250.0	550-599
2	3	544	0.854807	513.0	4.0	1000.0	500-549
3	4	504	0.336938	224.0	2.0	1000.0	500-549
4	5	708	0.586151	18090.0	2.0	40000.0	700-749

```
In [111]:

mode_df = df_cs_clean_1.groupby('credit_score_range')["credit_limit"].agg(lambda x : x.m
ode().iloc[0]).reset_index()
mode_df

Out[111]:
```

credit_score_range credit_limit 0 300-449 500.0 1 450-499 750.0 2 500-549 1000.0 3 550-599 1250.0 600-649 1500.0 5 650-699 20000.0 700-749 40000.0 6 7 750-799 60000.0

In [113]:

```
df_cs_clean_2 =pd.merge(df_cs_clean_1 , mode_df , on = 'credit_score_range' , suffixes=
   ("","_mode"))
df_cs_clean_2.sample(3)
```

Out[113]:

	cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months	credit_limit	credit_score_range
985	986	425	0.178470	56.0	4.0	500.0	300-449
646	647	498	0.658087	128818.0	3.0	750.0	450-499
735	736	483	0.693349	385.0	0.0	750.0	450-499
4							<u> </u>

```
In [115]:
```

```
df_cs_clean_2[df_cs_clean_2.credit_limit.isnull()].sample(3)
```

Out[115]:

	cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months	credit_limit	credit_score_range
662	663	478	0.154754	84.0	0.0	NaN	450-499
805	806	617	0.421308	416.0	1.0	NaN	600-649
167	168	737	0.489797	12421.0	2.0	NaN	700-749
4							<u> </u>

Above we can simple replace NaN value in credit_limit column with credit_limit_mode value. This value indicates most frequently occuring credit limit for a given credit_score_range. Hence it can be used as a replacement value.

We will create a new copy of the dataframe so that we have reproducibility and access of the older dataframe in this notebook

```
In [118]:
```

```
df_cs_clean_3 = df_cs_clean_2.copy()
df_cs_clean_3['credit_limit'].fillna(df_cs_clean_3['credit_limit_mode'], inplace=True)
df_cs_clean_3.shape
```

Out[118]:

(1000, 8)

In [120]: df cs clean 3.isnull().sum() Out[120]: 0 cust id credit_score 0 credit_utilisation 0 outstanding_debt 0 0 credit_inquiries_last_6_months credit limit 0 0 credit score range 0 credit limit mode dtype: int64 In [122]: df_cs_clean_3[df_cs_clean_3.cust_id==211] Out[122]: cust_id credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months credit_limit credit_score_range 210 211 405 0.633233 500.0 160.0 2.0 300-449

Previously customer id 211 had null value in credit_limit. Now it has a valid value.

Data Cleaning Step 3: Handle Outliers

```
In [126]:

df_cs_clean_3.describe()
```

Out[126]:

	cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months	credit_limit	credit_limit_ı
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	1000.00
mean	500.500000	589.182000	0.498950	9683.597000	1.955000	19733.75000	19912.50
std	288.819436	152.284929	0.233139	25255.893671	1.414559	24717.43818	24840.9 ⁻
min	1.000000	300.000000	0.103761	33.000000	0.000000	500.00000	500.00
25%	250.750000	460.000000	0.293917	221.000000	1.000000	750.00000	750.00
50%	500.500000	601.500000	0.487422	550.000000	2.000000	1500.00000	1500.00
75%	750.250000	738.000000	0.697829	11819.500000	3.000000	40000.00000	40000.00
max	1000.000000	799.000000	0.899648	209901.000000	4.000000	60000.00000	60000.00
4)

Outliers are there in outstanding_debt as max outstanding debt is more than credit limit which is not possible

```
In [129]:

# Through box plot we can see the circles which are outliers as they are not in the range
plt.figure(figsize=(5, 5))
sns.boxplot(x=df_cs_clean_3['outstanding_debt'])
plt.title('Box plot for outstanding debt')
plt.show()
```

Box plot for outstanding debt

Instead of using any statistical approach (such as standard deviation or IQR), here we will use business knowledge. We will mark any outstanding debt that is greater than credit limit as an outlier.

df_cs_clean_3[df_cs_clean_3.outstanding_debt>df_cs_clean_3.credit_limit]

We will replace these outliers with credit_limit. We can assume that there was some data processing error due to we got these high numbers and it is ok to replace them with a credit_limit

```
In [134]:
```

```
df_cs_clean_3.loc[df_cs_clean_3.outstanding_debt>df_cs_clean_3.credit_limit , 'outstandin
g_debt'] = df_cs_clean_3.credit_limit
```

```
In [136]:
```

```
df_cs_clean_3[df_cs_clean_3.outstanding_debt>df_cs_clean_3.credit_limit]
Out[136]:
```

cust_id credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months credit_limit credit_score_range credit_inquiries_last_6_months

1

All outliers in column outstanding_debt are now GONE.

Data Exploration: Visualizing Correlation in Credit Score Table

```
In [140]:
```

```
df_merged = df_cust.merge(df_cs_clean_3, on='cust_id', how='inner')
df_merged.head(2)
```

Out[140]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status	age_group	credit_score	credit_utilisa
0	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	49-65	749	0.585
1	2	Anjali Pandey	Female	47.0	City	Consultant	65172.0	Single	26-48	587	0.107

In [142]:

```
df merged[['credit limit' , 'credit score']].corr() # Strong correlation
```

Out[142]:

credit_limit credit_score

credit_limit	1.000000	0.847952
credit score	0.847952	1.000000

In [144]:

```
numerical_cols = ['credit_score', 'credit_utilisation', 'outstanding_debt', 'credit_limit
', 'annual_income', 'age']

correlation_matrix = df_merged[numerical_cols].corr()
correlation_matrix
```

Out[144]:

	credit_score	credit_utilisation	outstanding_debt	credit_limit	annual_income	age
credit_score	1.000000	-0.070445	0.680654	0.847952	0.575751	0.444917
credit_utilisation	-0.070445	1.000000	0.192838	-0.080493	-0.086368	-0.027713
outstanding_debt	0.680654	0.192838	1.000000	0.810581	0.555661	0.444301
credit_limit	0.847952	-0.080493	0.810581	1.000000	0.684775	0.510993
annual_income	0.575751	-0.086368	0.555661	0.684775	1.000000	0.619037
age	0.444917	-0.027713	0.444301	0.510993	0.619037	1.000000

In [146]:

```
# Create a heatmap of the correlation matrix
plt.figure(figsize=(6, 5))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', linewidths=0.8)
plt.title('Correlation Plot')
plt.show()
```


You can see a high correlation between credit limit and credit score (~0.85)

Also credit limit and annual income has a high correlation.

This correlation table can be used for further analysis. It shows if one variable has relationship with the other variable

Transactions Table

```
In [150]:
df_trans.head()
```

Out[150]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
0	1	705	2023-01-01	63	Flipkart	Electronics	Phonepe
1	2	385	2023-01-01	99	Alibaba	Fashion & Apparel	Credit Card
2	3	924	2023-01-01	471	Shopify	Sports	Phonepe
3	4	797	2023-01-01	33	Shopify	Fashion & Apparel	Gpay
4	5	482	2023-01-01	68	Amazon	Fashion & Apparel	Net Banking

Data Cleaning Step 1: Handle NULL Values

In [153]:

```
df trans.isnull().sum()
Out[153]:
```

0 tran id cust id 0 tran date 0 tran amount platform 4941 product category 0 payment_type 0 dtype: int64

platform has a lot of null values.

```
In [156]:
```

```
df_trans[df_trans.platform.isnull()]
```

Out[156]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
355	356	58	2023-01-01	237	NaN	Electronics	Net Banking
418	419	383	2023-01-01	338	NaN	Electronics	Credit Card
607	608	421	2023-01-01	700	NaN	Electronics	Phonepe
844	845	945	2023-01-01	493	NaN	Sports	Credit Card
912	913	384	2023-01-01	85	NaN	Fashion & Apparel	Phonepe

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
499579	499580	924	2023-09-05	31	NaN	Fashion & Apparel	Gpay
499646	499647	944	2023-09-05	58445	NaN	Fashion & Apparel	Phonepe
499725	499726	620	2023-09-05	15	NaN	Sports	Net Banking
499833	499834	616	2023-09-05	97	NaN	Fashion & Apparel	Credit Card
499997	499998	57	2023-09-05	224	NaN	Garden & Outdoor	Phonepe

4941 rows × 7 columns

In [158]:

```
df_trans.platform.value_counts()
```

Out[158]:

platform Amazon 151443 Flipkart 122660 73584 Alibaba 73271 Meesho Shopify 39416 Cred 24741 Ebay 9944 Name: count, dtype: int64

As you can see Amazon is the platform that users use the most but we will see for each category with the help of countplot

In [161]:

```
sns.countplot(y='product_category', hue='platform', data=df_trans)
plt.show()
```


In the above chart, you can see that in all product categories Amazon is the platform that is used the most for making purchases. For handling null values in platform may be we can just replace them using "Amazon" as a product platform just because it is used most frequently

In [163]:

```
at trans.platform.llllina(af trans.platform.mode()[U] , inplace= True)
In [164]:
df trans[df trans.platform.isnull()]
Out[164]:
  tran_id cust_id tran_date tran_amount platform product_category payment_type
Data Cleaning Step 2: Treat Outliers
In [169]:
df trans.describe()
Out[169]:
            tran_id
                         cust_id
                                 tran_amount
count 500000.000000 500000.000000 500000.00000
mean 250000.500000
                      501.400428
                                  3225.20733
  std 144337.711634
                      288.641924
                                 13098.74276
  min
           1.000000
                        1.000000
                                     0.00000
 25% 125000.750000
                      252.000000
                                    64.00000
 50% 250000.500000
                      502.000000
                                   141.00000
 75% 375000.250000
                      752.000000
                                   397.00000
 max 500000.000000
                     1000.000000
                                 69999,00000
We can see transactions with 0 amount in tran_amount column
In [172]:
df trans zero = df trans[df trans.tran amount == 0]
df trans zero.head()
Out[172]:
```

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
120	121	440	2023-01-01	0	Amazon	Electronics	Credit Card
141	142	839	2023-01-01	0	Amazon	Electronics	Credit Card
517	518	147	2023-01-01	0	Amazon	Electronics	Credit Card
533	534	891	2023-01-01	0	Amazon	Electronics	Credit Card
586	587	108	2023-01-01	0	Amazon	Electronics	Credit Card

```
In [174]:

df_trans_zero.shape

Out[174]:
  (4734, 7)

In [176]:

df_trans_zero[['platform' ,'product_category' , 'payment_type' ]].value_counts()

Out[176]:

platform product_category payment_type
Amazon Electronics Credit Card 4734
Name: count, dtvpe: int64
```

It appears that when platform=Amazon, product_category=Eletronics and payment_type=Credit Card, at that time we get all these zero transactions. We need to find other transactions in this group and find its median to replace these zero values. We are not using mean because we can see some outliers as well in this column

```
In [179]:
df trans 1 = df trans[(df trans.platform=='Amazon')&(df trans.product category=="Electron
ics") & (df trans.payment type=="Credit Card") ]
df_trans_1.shape
Out[179]:
(15637, 7)
In [181]:
df trans 1[df trans 1.tran amount>0]
Out[181]:
                       tran_date tran_amount platform product_category payment_type
        tran_id cust_id
   109
           110
                  887 2023-01-01
                                        635 Amazon
                                                          Electronics
                                                                       Credit Card
   173
           174
                  676 2023-01-01
                                      60439 Amazon
                                                          Electronics
                                                                       Credit Card
                                                          Electronics
           191
                  763 2023-01-01
                                                                       Credit Card
   190
                                        697 Amazon
                  528 2023-01-01
                                                                       Credit Card
          264
                                                          Electronics
   263
                                        421 Amazon
   311
          312
                  936 2023-01-01
                                        537 Amazon
                                                          Electronics
                                                                       Credit Card
                   ...
499766 499767
                  723 2023-09-05
                                        909 Amazon
                                                                       Credit Card
                                                          Electronics
499793 499794
                  586 2023-09-05
                                        304 Amazon
                                                          Electronics
                                                                       Credit Card
                  688 2023-09-05
499812 499813
                                        425 Amazon
                                                          Electronics
                                                                       Credit Card
499860 499861
                  373 2023-09-05
                                                                       Credit Card
                                        480 Amazon
                                                          Electronics
499885 499886
                  520 2023-09-05
                                                                       Credit Card
                                        643 Amazon
                                                          Electronics
10903 rows × 7 columns
In [183]:
median to replace = df trans 1[df trans 1.tran amount>0].tran amount.median()
median to replace
Out[183]:
554.0
In [185]:
df_trans['tran_amount'].replace(0,median_to_replace, inplace=True)
```

tran_id cust_id tran_date tran_amount platform product_category payment_type

No zero values are left in tran_amount column

df trans[df trans.tran amount==0]

```
df trans.tran amount.describe()
```

In [187]:

Out[187]:

In [190]:

```
Out[190]:
```

```
500000.000000
count
          3230.452602
mean
         13097.561071
std
min
              2.000000
25%
             66.000000
50%
           146.000000
75%
           413.000000
         69999.000000
max
```

Name: tran_amount, dtype: float64

In [192]:

```
sns.histplot(df_trans.tran_amount,bins =30) #rightly skewed
plt.show()
```


In [193]:

```
Q1, Q3 = df_trans['tran_amount'].quantile([0.25, 0.75])
IQR = Q3 - Q1
lower = Q1 - 2 * IQR # Instead of 1.5 for IQR we used 2 to be more flexible
upper = Q3 + 2 * IQR
lower, upper
```

Out[193]:

(-628.0, 1107.0)

In [196]:

```
#25000 outliers so we have to handle the outliers
df_trans_outliers = df_trans[df_trans.tran_amount>=upper]
df_trans_outliers
```

Out[196]:

		tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
	26	27	380	2023-01-01	61963	Shopify	Beauty & Personal Care	Credit Card
	49	50	287	2023-01-01	57869	Amazon	Toys & Games	Gpay
	94	95	770	2023-01-01	52881	Ebay	Kitchen Appliances	Credit Card

104	tran_id	cust_id	2023-01-01 tran_date	tran_amount	Flipkart platform	Fashion & Apparel product category	payment_type
113	114	790	2023-01-01	51669	Shopify	Kitchen Appliances	Credit Card
				•••			
499742	499743	868	2023-09-05	55131	Meesho	Fashion & Apparel	Gpay
499888	499889	614	2023-09-05	59679	Meesho	Fashion & Apparel	Net Banking
499900	499901	811	2023-09-05	60184	Flipkart	Sports	Debit Card
499966	499967	662	2023-09-05	54678	Meesho	Sports	Gpay
499996	499997	569	2023-09-05	53022	Meesho	Fashion & Apparel	Net Banking

25000 rows × 7 columns

In [198]:

```
df_trans_normal = df_trans[df_trans.tran_amount<upper]
df_trans_normal</pre>
```

Out[198]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type	
0	0 1 705 202		2023-01-01	63	Flipkart	Electronics	Phonepe	
1	2	385	2023-01-01	99	Alibaba	Fashion & Apparel	Credit Card	
2	3	924	2023-01-01	471	Shopify	Sports	Phonepe	
3	5 482 202 		2023-01-01	33	Shopify	Fashion & Apparel	Gpay	
4			2023-01-01	68	Amazon	Fashion & Apparel	Net Banking	
				 59 43				
499994			2023-09-05		Ebay	Beauty & Personal Care	Gpay	
499995	499996	499996 791 2023-09-05			Amazon	Books	Phonepe	
499997	499998	57	2023-09-05	224	Amazon	Garden & Outdoor	Phonepe	
499998	499999	629	2023-09-05	538	Flipkart	Home Decor	Gpay	
499999	500000	392	2023-09-05	346	Amazon	Kitchen Appliances	Net Banking	

475000 rows × 7 columns

In [200]:

```
tran_mean_per_category = df_trans_normal.groupby("product_category")["tran_amount"].mean()
tran_mean_per_category
```

Out[200]:

```
product category
Beauty & Personal Care 92.167205
Books
                         29.553515
Electronics
                       510.172685
                        64.553463
Fashion & Apparel
                        125.630277
Garden & Outdoor
Home Decor
                        302.487561
                       176.773288
Kitchen Appliances
                       269.181631
Sports
                        50.333298
Toys & Games
Name: tran_amount, dtype: float64
```

In [202]:

```
df_trans.loc[df_trans_outliers.index , 'tran_amount'] = df_trans_outliers['product_catego
ry'].map(tran_mean_per_category)
```

In [204]:

```
df_trans.loc[[26 , 49]]
```

Out[204]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
26	27	380	2023-01-01	92.167205	Shopify	Beauty & Personal Care	Credit Card
49	50	287	2023-01-01	50.333298	Amazon	Toys & Games	Gpay

You can now see that we got rid of outliers from tran_amount column.

```
In [207]:
```

```
sns.histplot(df_trans.tran_amount,bins =30 , kde = True)
plt.show()
```


Above shows the histogram of transactions after the removal of outliers. You can see that distribution is right skewed. Transaction amount now is less than 1000

Data Visualization: Payment Type Distribution

```
In [211]:
```

```
df_trans.head()
```

Out[211]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
0	1	705	2023-01-01	63.0	Flipkart	Electronics	Phonepe
1	2	385	2023-01-01	99.0	Alibaba	Fashion & Apparel	Credit Card
2	3	924	2023-01-01	471.0	Shopify	Sports	Phonepe
3	4	797	2023-01-01	33.0	Shopify	Fashion & Apparel	Gpay
4	5	482	2023-01-01	68.0	Amazon	Fashion & Apparel	Net Banking

```
In [213]:
```

```
df_merged_2 = df_merged.merge(df_trans, on='cust_id', how='inner')
```

```
df_merged_2.head(3)
```

Out[213]:

	cust_i	d	name	gender	age	location	occupation	annual_income	marital_status	age_group	credit_score	 credit_inc
()	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	49-65	749	
1	ı	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	49-65	749	
2	2	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	49-65	749	

3 rows × 22 columns

1

In [214]:

```
plt.figure(figsize=(5, 4))
sns.countplot(x='age_group', hue='payment_type', data=df_merged_2)
plt.title('Distribution of Payment types across Age groups')
plt.xlabel('Age Group')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.legend(title='Payment Type', loc='upper right')

plt.show()
```


From above analysis, we can see that age group 18-25 has less exposure to credit cards compared to other groups

```
In [217]:
```

```
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(12,5))
sns.countplot(x='age_group', hue="product_category", data=df_merged_2, ax=ax1)
ax1.set_title("Product Category Count By Age Group")
ax1.set_xlabel("Age Group")
ax1.set_ylabel("Count")
ax1.legend(title="Product Category", loc='upper right')
sns.countplot(x='age_group', hue="platform", data=df_merged_2, ax=ax2)
ax2.set_title("Platform Count By Age Group")
ax2.set_xlabel("Age Group")
ax2.set_ylabel("Count")
```


Observations:

- 1. Top 3 purchasing categories of customers in age group (18 -25) : Electronics, Fashion & Apparel, Beauty & personal care
- 2. Top platforms: Amazon, Flipkart, Alibaba

Data Visualization: Average Transaction Amount

```
In [221]:
```

```
# List of categorical columns
cat cols = ['payment type', 'platform', 'product category', 'marital status', 'age group'
num rows = 3
# Create subplots
fig, axes = plt.subplots(num rows, 2, figsize=(12, 4 * num rows))
axes = axes.flatten()
# Create subplots for each categorical column
for i, cat col in enumerate(cat cols):
    # Calculate the average annual income for each category
    avg tran amount by category = df merged 2.groupby(cat col)['tran amount'].mean().res
et index()
    # Sort the data in descending order by 'annual income' before plotting
    sorted data = avg tran amount by category.sort values(by='tran amount', ascending=Fa
1se)
    sns.barplot(x=cat col, y='tran amount', data=sorted data, ci=None, ax=axes[i], palet
te='tab10')
    axes[i].set title(f'Average transaction amount by {cat col}')
    axes[i].set xlabel(cat col)
   axes[i].set ylabel('Average transaction amount')
    axes[i].set xticklabels(axes[i].get xticklabels(), rotation=45)
for i in range(len(cat cols), len(axes)):
    fig.delaxes(axes[i])
plt.tight layout()
plt.show()
```


Further Analysis On Age Group

Let us do further analysis on age group to figure out their average income, credit limit, credit score etc

```
In [223]:
```

```
age_group_metrics = df_merged.groupby('age_group')[['annual_income', 'credit_limit', 'credit_score']].mean().reset_index()
age_group_metrics
```

Out[223]:

	age_group	annual_income	credit_limit	credit_score
0	18-25	37091.235772	1130.081301	484.451220
1	26-48	145869.623457	20560.846561	597.569665
2	49-65	260165.925134	41699.197861	701.524064

In [227]:

```
# Create subplots
```

```
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))
# Plot 1: Average annual income by age group
sns.barplot(x='age group', y='annual income', data=age group metrics, palette='tab10', a
x=ax1)
ax1.set title('Average Annual Income by Age Group')
ax1.set xlabel('Age Group')
ax1.set ylabel('Average Annual Income')
ax1.tick params(axis='x', rotation=0)
# Plot 2: Average Max Credit Limit by Age Group
sns.barplot(x='age group', y='credit limit', data=age group metrics, palette='hls', ax=a
ax2.set title('Average Credit Limit by Age Group')
ax2.set_xlabel('Age Group')
ax2.set ylabel('Average Credit Limit')
ax2.tick params(axis='x', rotation=0)
# Plot 3: Average Credit Score by Age Group
sns.barplot(x='age group', y='credit score', data=age group metrics, palette='viridis',
ax3.set title('Average Credit Score by Age Group')
ax3.set xlabel('Age Group')
ax3.set ylabel('Average Credit Score')
ax3.tick params(axis='x', rotation=0)
plt.tight layout()
plt.show()
```


<h2 align="center", style="color:purple">Finalize Target Market For a Trial Credit Card Launch

Targeting Untapped market

- 1. People with age group of 18 -25 accounts to ~25% of customer base in the data
- 2. Avg annual income of this group is less than 50k
- 3. They don't have much credit history which is getting reflected in their credit score and credit limit
- 4. Usage of credit cards as payment type is relatively low compared to other groups
- 5. Top 3 most shopping products categories: Electronics, Fashion & Apparel, Beauty & Personal care

Phase 2: Bank Credit Card Project

Business Analysis and launch of AB testing: Targeting Untapped Market (18 - 25 age group)

1. Pre-Campaign

We want to do a trial run for our new credit card. For this we need to figure out (1) How many customers do we

tto mant to ac a analtan for our non-croate ourall of ano no noon to figure out (1/110m man) encionere ac no

need for our A/B testing. We will form a control and test group. For both of these groups we can figure out number of customers we need based on the statistical power and effect size that we agree upon after discussing with business.

```
In [234]:
```

```
import statsmodels.stats.api as sms
import statsmodels.api as sm
import pandas as pd
import numpy as np
from scipy import stats as st
from matplotlib import pyplot as plt
import seaborn as sns
```

```
In [235]:
```

```
alpha = 0.05 # 5% significance
power = 0.8 #statistical power
effect_size=0.2

sms.tt_ind_solve_power(
    effect_size=0.2,
    alpha=alpha,
    power=power,
    ratio=1,
    alternative='two-sided'
)
```

Out[235]:

393.4056989990335

For effect size 2 we need 393 customers. We have to keep in mind budgeting restrictions while running this campaign hence let us run this for different effect sizes and discuss with business to find out which sample size would be optimal

```
In [239]:
```

```
effect_sizes = [0.1, 0.2, 0.3, 0.4, 0.5,1]

for effect_size in effect_sizes:
    sample_size = sms.tt_ind_solve_power(effect_size=effect_size, alpha=alpha, power=pow
er, ratio=1, alternative='two-sided')
    print(f"Effect Size: {effect_size}, Required Sample Size: {int(sample_size)} customer
s")

Effect Size: 0.1, Required Sample Size: 1570 customers
Effect Size: 0.2, Required Sample Size: 393 customers
Effect Size: 0.3, Required Sample Size: 175 customers
```

Based on business requirements, the test should be capable of detecting a minimum 0.4 standard deviation difference between the control and test groups. For the effect size 0.4, we need 100 customers and when we discussed with business, 100 customers is ok in terms of their budgeting constraints for this trail run

Forming control and test groups

Effect Size: 0.4, Required Sample Size: 99 customers Effect Size: 0.5, Required Sample Size: 63 customers Effect Size: 1, Required Sample Size: 16 customers

- 1.We have identified approximately 246 customers within the age group of 18 to 25. From this pool, we will select 100 customers for the initial campaign launch.
- 2. The campaign is launched for 100 customers, as determined by the effective size calculation and by considering budgeting costs, and will run campaign for a duration of 2 months
- 3.Got a conversion rate of ~40% (implies 40 out of 100 customers in test group started using credit card)
- 1 To maintain a cimilar cample cize a control aroun concicting of 10 customers will be created. Importantly this

control group will be completely exclusive of initial 100 customers used as test group.

5.So now we have 40 customers in each of control and test groups

At the end of the 2-month campaign period (from 09-10-23 to 11-10-23), we obtained daily data showing the average transaction amounts made by the entire group of 40 customers in both the control and test groups using existing and newly launched credit cards respectively

The key performance indicator (KPI) for this AB test aims to enhance average transaction amounts facilitated by the new card

2. Post-Campaign

Two Sample Z Test for Our Hypothesis Testing

```
In [246]:

df = pd.read_csv('Datasets/avg_transactions_after_campaign.csv')
df.head()
```

Out[246]:

	campaign_date	control_group_avg_tran	test_group_avg_tran
0	2023-09-10	259.83	277.32
1	2023-09-11	191.27	248.68
2	2023-09-12	212.41	286.61
3	2023-09-13	214.92	214.85
4	2023-09-14	158.55	344.08

```
In [248]:
```

```
df.shape
```

Out[248]:

(62, 3)

In [250]:

```
plt.figure(figsize=(5, 4))
sns.histplot(df.control_group_avg_tran ,kde=True)
plt.show()
```


In [252]:

```
plt.figure(figsize=(5, 4))
sns.histplot(df.test_group_avg_tran ,kde=True , color='green')
plt.show()
```


Defining hypothesis:

- 1. Null Hypothesis: Old credit card has more transactions and performing well (mean of control_group > mean of test_group).
- 2. Alternate hypothesis: New credit card has more transactions and performing well (mean of test_group > mean of control_group).

```
In [255]:
```

```
control_mean = df["control_group_avg_tran"].mean()
control_std = df["control_group_avg_tran"].std()
control_mean, control_std
```

Out[255]:

(221.1751612903226, 21.359192112027014)

In [257]:

```
test_mean = df["test_group_avg_tran"].mean()
test_std = df["test_group_avg_tran"].std()
test_mean, test_std
```

Out[257]:

(235.9835483870968, 36.65808210918637)

In [259]:

```
sample_size = df.shape[0]
sample_size
```

Out[259]:

62

Test Using Rejection Region (i.e. Critical Z Value)

```
In [262]:
control variance = control std ** 2 / sample size
test_variance = test_std ** 2 / sample_size
z_score = (test_mean - control_mean) / np.sqrt(control_variance + test_variance)
z score
Out[262]:
2.7482973745691135
In [264]:
# For a significance level of 5% (0.05) in a right-tailed test, the critical Z-value is a
pproximately 1.645
z_critical = st.norm.ppf(1 - alpha) # Right-tailed test at 5% significance level
z critical
Out[264]:
1.6448536269514722
In [266]:
z score > z critical
Out[266]:
True
```

Since Z score is higher than critical Z value, we can reject the null hypothesis.

Test Using p-Value

True

```
In [270]:

p_value = 1 - st.norm.cdf(z_score)
p_value

Out[270]:
0.0029952824622024865

In [272]:

p_value < alpha # p value is less than significance level of 5% (or 0.05 for absolute value)

Out[272]:</pre>
```

Since p value is less than significance level (i.e. alpha), we can reject the null hypothesis.

After conducting two tests comparing the new and old credit card, the analysis validated the new credit card performs better and can now be confidently introduced to the market.