

AD-A052 679 B-K DYNAMICS INC ROCKVILLE MD
QUARTERLY INTERIM TECHNICAL REPORT (3RD), CONTRACT DAHA01-75-C---ETC(U)
JUL 75 DAHA01-75-C-0194

F/G 9/2

NL

UNCLASSIFIED

BKD-TR-3-197

1 OF
AD A052679

AD A052679

NO.
DDC FILE COPY

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

DDC
REF ID: A655114
APR 14 1978
A

AD NO.
DDC FILE COPY

ADA 052679

①

14 BK - TR-3-1974

6 Quarterly Interim Technical Report (3rd)
Contract DAAH01-75-C-0194.

11 22 Jul 75 12 179 P.

⑮ DAAH01-75-C-0194

⑯ Rept. for 15 Apr - 15 Jul 75.

BOK
DYNAMICS, INC.

387 575 ✓

mt

TABLE OF CONTENTS

BOK
DYNAMICS, INC.

TABLE OF CONTENTS

	PAGE
1.0 INTRODUCTION	1.0
2.0 STINGER CONVERSION TO ASC EQUIPMENT	2.0
2.1 SOFTWARE CONVERSION OF REAL-TIME CODE	2.3
2.2 REAL TIME I/O CONSIDERATIONS	2.29
3.0 ADC CHECKOUT PROGRAM FOR AD-4 #2	3.1
3.1 PURPOSE	3.1
3.2 USAGE	3.1
3.3 HARDWARE USED	3.2
APPENDIX A CROSS REFERENCE OF REAL TIME CODE AND RELATED EQUATIONS	A.1
APPENDIX B AD-4 TRUNKLINE DISCRETE PATCHING	B.1
APPENDIX C COMPUTER CODE FOR PRODUCING NORMALIZED RANDOM NUMBERS	C.1
APPENDIX D STINGER SKELETON REAL TIME CHECKOUT PROGRAM	D.1
APPENDIX E MISCELLANEOUS CHECKOUT PROGRAMS	E.1
APPENDIX F COMPUTER LISTING OF PHASE 1 STINGER CONVERSION	F.1
APPENDIX G SUMMARY OF STINGER DIGITAL COMPUTER FUNCTIONS	G.1
APPENDIX H SIMPLIFIED TEST FUNCTIONS	H.1

ACCESSION NO.	
WTS	White Section <input checked="" type="checkbox"/>
OTS	Buff Section <input type="checkbox"/>
UNAMMENDED <input type="checkbox"/>	
ANTICIPATION <i>Per Term 50</i> <input type="checkbox"/>	
ON FILE <i>PP</i> <input type="checkbox"/>	
DISTRIBUTION AVAILABILITY <input type="checkbox"/>	
BIML	AVAIL. RDG. OR SPECIAL
A	123 E.S.

LIST OF FIGURES

	PAGE
FIGURE 2.1 PHASE 1 CONVERSION OF STINGER SIMULATION	2.2
FIGURE 2.2 FLOW CHART OF STINGER REAL TIME CODE	2.4
FIGURE 2.3 PHASE 1 REAL TIME I/O REQUIREMENTS	2.31
FIGURE 2.4 DAC SCALE FACTOR ADJUSTMENT	2.32
FIGURE 2.5 ADC SCALE FACTOR ADJUSTMENT	2.33
FIGURE 2.6 PHASE 1 TRUNKLINE REQUIREMENTS FOR STINGER SIMULATION	2.34
FIGURE 3.1 ADC CHECKOUT PROGRAM PRINTOUT	3.3
FIGURE 3.2 ADC CHECKOUT PROGRAM FLOW CHART	3.6
FIGURE A.1 TARGET FIXED COORDINATE SYSTEM	A.8
FIGURE A.2 RANGE-TO-GO CONTROL OF ADC DATA COLLECTION	A.9
FIGURE A.3 SEQUENCE OF VARIABLE SCALE FACTOR CALCULATION	A.10
FIGURE A.4 EARTH FIXED AND LAUNCH COORDINATE SYSTEMS	A.11
FIGURE A.5 VARIABLE ANALOG SCALE FACTOR	A.12
FIGURE B.1 AD-4 TRUNK LINE DISCRETES	B.1
FIGURE D.1 CHECKOUT CHASSIS FUNCTIONAL BLOCK DIAGRAM (DISCRETE HANDLING AND DISPLAY)	D.7
FIGURE D.2 CHECKOUT CHASSIS FUNCTIONAL BLOCK DIAGRAM (TEST FUNCTIONS)	D.8
FIGURE D.3 CHECKOUT CHASSIS FUNCTIONAL BLOCK DIAGRAM (ANALOG FUNCTIONS)	D.9

LIST OF TABLES

	PAGE
TABLE 2.1 DESCRIPTION OF PROGRAM SYMBOLS	2.19
TABLE 2.2 PHASE 1 CONTROL LINE ASSIGNMENT	2.35
TABLE 2.3 PHASE 1 SENSE LINE ASSIGNMENT	2.36
TABLE 2.4 PHASE 1 ADC ASSIGNMENT	2.37
TABLE 2.5 PHASE 1 DAC ASSIGNMENT	2.39
TABLE B.1 SUMMARY OF POSSIBLE DISCRETE TRUNK LINE CONNECTIONS	B.3
TABLE B.2 SUMMARY OF POSSIBLE ANALOG TRUNK LINE CONNECTIONS	B.4

1.0 INTRODUCTION

B-K Dynamics' activities during the third quarter (15 April 1975 - 15 July 1975) continued to focus on preparation of hardware for the interim STINGER simulation and conversion of the STINGER simulation to the ASC's hybrid computer system. This report describes the STINGER conversion activities and presents program flow charts and coding generated in this task.

2.0 STINGER CONVERSION TO ASC EQUIPMENT

Converting the STINGER real-time simulation from the interim system to the ASC equipment has required replacing IBM-7094 software functions with equivalent CDC-6600 functions, and IBM-DOS interface operations with equivalent DADIOS ADC, DAC and discrete word handling capabilities. In Figure 2.1 the new ASC equipment utilized in phase 1 conversion is shown in relation to the overall STINGER simulation. The items which represent new ASC equipment are enclosed in dotted lines.

The documentation given herein, of the STINGER simulation, reflects the rationale and realization of an attempt to duplicate interim STINGER functions on ASC equipment. This conversion took place within the constraints of available documentation, installation of new hardware, availability of new hardware, and an attempt to minimize the effect of phase 1 conversion on other modules of the simulation. The phase 1 STINGER conversion presented in the following sections represents a one-on-one conversion of software and hardware.

FIGURE 2.1 PHASE 1 CONVERSION OF STINGER SIMULATION

2.1 SOFTWARE CONVERSION OF REAL-TIME CODE

Previously, the portion of the interim STINGER simulation implemented on the IBM/7094 consisted of approximately 2000 lines of code in FORTRAN and 500 lines of code in MAP (IBM-7094 assembly language). Converting this software to the CDC-6600 required minor changes to the FORTRAN program^{*} and completely new code written in FORTRAN hybrid to replace the IBM-7094 assembly code.

This new code performs the identical functions of the interim simulation. These functions include pre-real-time data processing, real-time computations and post-real-time data analysis. A summary of the functions performed by each of these three major program segments is summarized in Appendix G.

In Figure 2.2, a flow chart of the real-time portion of the phase 1 STINGER program is presented. An explanation of the symbols used in Figure 2.2 are given in Table 2.1. Furthermore, a limited description of the computational equations are given in Appendix A. These equations represent a one-on-one cross reference between program symbols and mathematical notation.

The real-time software presented here has been tested in real-time using simplified test functions. The simplified test functions used are presented as part of a FORTRAN hybrid real-time subroutine in Appendix H. These simplified test functions have been used in the absence of real test data from the existing simulation.

*The modifications to the FORTRAN program were performed by MICOM personnel.

FIGURE 2.2 FLOW CHART OF STINGER REAL TIME CODE

{ Begin computation
of iris ratio no. 7

```
NX=17
NPX=2
CALL INTERP(E111, FCOS, HR7EF, NX, NPX, HR7E, NERR)
HC7FT=1209.675*HR7E*EXP(-2.341* ALOG(RFEET/22965.831))
P1IRSS=(2.0*ATAN(0.04884004884/RLB))
P2IRSS=230.34375*RLB/RFEET
AT7=((P2IRSS**2)*SIN(P1IRSS))/(2.0*(COS(P1IRSS/2.0))**2)
PJTU1=0.1*EXP(1.003258*ALOG(AT7))
FI7=HC7FT/PJTU1
NX=9
NPX=2
CALL INTERP(FI7, FI7T, FCI77, NX, NPX, FCI7, NERR)
RN=FCI7
```

Note: for MICOM hybrid applications RN is a random number. See Appendix C for appropriate code.

```
RC1= $\sqrt{F1^2 + F2^2}$ 
RC1=F2/RC1
RCB=ARCCOS(RC1)
RCX=-RC1
RCY=-SIN(RCB)
```

{ Begin computa-
tion of scaled
plume rotation
angle

TABLE 2.1
DESCRIPTION OF PROGRAM SYMBOLS

VARIABLE	PROGRAM SYMBOL*	DESCRIPTION
—	SPO	Scaled plume rotation angle
T _{RP}	TRP	Plume rotation angle (RAD.)
θ _L	THETAL	Initial elevation angle of target (DEG.)
t	TREAL	Real time (SEC.)
g	—	Gravitational constant
x _E	XE	Target aerodynamic acceleration table in earth fixed coordinates
y _E	YE	
z _E	ZE	
α	A1	Target angle of attack (RAD.)
t'	G	Time at approximately 1000 feet to go
C _{LA}	CLA	Aerodynamic lift coefficient due to angle of attack
̄v _{TI}	—	Target inertial velocity
l/B	RLB	Apparent plume length to breadth ratio
E	—	Subscript which denotes earth fixed coordinates

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
GN	—	Subscript which denotes generalized target coordinates
F	—	Subscript which denotes target fixed coordinates
G	—	Subscript which denotes guidance coordinates
L	—	Subscript which denotes launch coordinates
R_i, R	RI, RFEET	Initial range (FT.)
—	EDOT	Scaled γ/t'
—	GAM	
ρ	PHO	Air density (Slugs/FT. ³)
γ_{min}	GGG	Minima of the overload function
Scalet	SCALET	Scale Factor = 10.2375
K	SKK	Variable scale factor, $K = 1 + \frac{\gamma t}{t'}, \quad t \leq t'$ $1 + \gamma, \quad t > t'$
—	XX	Range table for data collection
—	XXS	Scaled range table (XX)

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
I_{r7}	RN	For MICOM Hybrid, a uniform random number, RN $\in (-1, 1)$ For IRSS, iris ratio number 7
$\cos(\epsilon)$	COSE	Cosine of angle between LOS and center line of target
$x_{ML} - x_{TL}$	DX	
$y_{ML} - y_{TL}$	DY	{ Scaled xxx, yyy, zzz
$z_{ML} - z_{TL}$	DZ	
t	DT	Real time
$x_{ML} - x_{TL}$	XXX	x-Missile minus x-target position (FT.)
$y_{ML} - y_{TL}$	YYY	y-Missile minus y-target position (FT.)
$z_{ML} - z_{TL}$	ZZZ	z-Missile minus z-target position (FT.)
$\dot{x}_{ML} - \dot{x}_{TL}$	XPOT	x-Missile minus x-target velocity (FT./SEC.)
$\dot{y}_{ML} - \dot{y}_{TL}$	YDOT	y-Missile minus y-target velocity (FT. / SEC.)
$\dot{z}_{ML} - \dot{z}_{TL}$	ZDOT	z-Missile minus z-target velocity (FT. / SEC.)

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
\dot{x}_{TL}	XDTGMS	{ Target manuvers and manuver time
\dot{y}_{TL}	YDTGMS	
\dot{z}_{TL}	ZDTGMS	
ℓ	—	Apparent plume length (FT.)
B	—	Apparent plume breadth (FT.)
β	—	$\cos^{-1} (L_y / \sqrt{L_x^2 + L_y^2})$
h	ZALT	Altitude above sea level
—	XCOMP	Interpolated value of XDTGMS
—	YCOMP	Interpolated value of YDTGMS
—	ZCOMP	Interpolated value of ZDTGMS
\dot{x}_{TE}	XC	Interpolated value of XDM
\dot{y}_{TE}	YC	Interpolated value of YDM
\dot{z}_{TE}	ZC	Interpolated value of ZDM

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
—	XDM	Target velocity table selected is stored in XDM, YDM, ZDM respectively
—	YDM	
—	ZDM	
—	TIME	
—	PPX	
—	PPY	Storage for missile position, velocity and time in the region of pre-specified range table entries
—	PPZ	
—	VMX	
—	VMY	
—	VMZ	
—	NPTS	Number of points in range table
—	MISSED	An array of values representing miss conditions
—	T111	Plume rotation angle
—	—	Time = 0 on target trajectory

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
x_G	—	x-Missile minus x-target (in launch coordinates)
y_G	—	y-Missile minus y-target (in launch coordinates)
z_G	—	z-Missile minus z-target (in launch coordinates)
VT	VTI	Target inertial velocity
—	XTA	Interpolated from XE at TREAL
—	YTA	Interpolated from YE at TREAL
—	ZTA	Interpolated from ZE at TREAL
\bar{C}_L	—	Longitudinal center line of target
C_{Lx}	—	Components of \bar{C}_L
C_{Ly}	—	
C_{Lz}	—	
\bar{L}_{os}	—	Line of sight vector

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
L_x	_____	
L_y	_____	
L_z	_____	
x_{ML}	_____	x-Missile position in launch coordinates
y_{ML}	_____	y-Missile position in launch coordinates
z_{ML}	_____	z-Missile position in launch coordinates
x_{TL}	_____	x-target position in launch coordinates
y_{TL}	_____	y-Target position in launch coordinates
z_{TL}	_____	z-Target position in launch coordinates
x_{TE}	_____	x-Position of target in inertial coordinates
y_{TE}	_____	y-Position of target in inertial coordinates
z_{TE}	_____	z-Position of target in inertial coordinates

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
—	XDTGO	Initial values of XDTGMS, YDTGMS, ZDTGMS
—	YDTGO	
—	ZDTGO	
H_{c7}	—	Commanded irradiance for plume
f	19.5	Focal length of projection lens (CM)
$H_{R=7000}$	HR7E	Irradiance at 7000 meters (W/CM ²)
P_1	P1IRSS	Vertex angle of plume
P_2	P2IRSS	Apparent altitude of plume (IN.)
A_{t7}	AT7	Area of plume transparency (IN. ²)
$J_{tu1, \text{plume}}$	PJTU1	Radiant intensity used as function of plume trans- parency area taken from calibration in IRSS
$T_{f, \text{plume}}$	0.3	Neutral density transmission factor for plume

VARIABLE	PROGRAM SYMBOL	DESCRIPTION
—	DXG	
—	DYG	
—	DZG	
—	XDO	
—	YDO	
—	ZDO	
—	LAUNCH	Array of DAC variables
—	ADIN	Array of ADC variables
—	IWRITE	Flag for writing comments if IWRITE = 1
—	LEVEL	Status of maneuver -7 implies not in real time 0 implies in real time +7 implies target traj table exceeded
—	WMAN	Flag, =1 implies collect data, =7 implies don't collect data
—	MAN	Array for storing target maneuver table
—	MAX	Maximum points collected

VARIABLES	PROGRAM SYMBOL	DESCRIPTION
_____	F1, F2, F3	Intermediate variables in the computation of COS (ϵ)
_____	G1, G2, G3	
_____	RRR	Range-to-go
_____	IND	Index of XCOMP, YCOMP and ZCOMP arrays
_____	INDEX	Index of range table entries
_____	KCK	Flag, =1 implies $t > t'$, = -1 implies $t \leq t'$
_____	ICR2	Counter, initial value = length of array TS minus one
_____	NPTS	Number of points in range table
_____	IDA3	Logical variable, = -1 implies not yet in 3-loop, =1 implies first pass in 3-loop mode
_____	XMISS	Array to save ADCS under miss condition (See MISSED)

* In some cases, program symbols are used for intermediate storage or may have scale factors other than those implied. For further information see Appendix A.

2.2 REAL TIME I/O CONSIDERATIONS

Phase 1 conversion of the STINGER real time program requires real time analog and discrete communication between the AD/4 analog computer and the CDC/6600 digital computer. This high speed communications link is provided by the DADIOS. Specific requirements include;

- 10-Analog to digital channels
- 11-Digital to analog channels
- 1-Discrete control line (2 bits required)
- 1-Discrete sense line (2 bits required)

In Figure 2.3 this arrangement of I/O is depicted graphically.

The actual assignment of these analog and digital signals is described in Tables 2.2 - 2.5. These tables provide a cross reference of trunkline assignment, variable name and scale factors.

Replacement of the IBM/DOS interface with new DADIOS equipment required scale factor modifications to both the ADC and DAC channels. This modification was implemented in the digital computer code as a constant scale factor of 1/1.02375 multiplied times each ADC channel and a constant scale factor of .102375 multiplied times each DAC channel. The rationale for this scale factor change is presented in Figures 2.4 and 2.5.

In Figure 2.6 the DADIOS patching required for the STINGER simulation is presented. This figure indicates that a total of 32 analog lines are available although fewer lines are actually used. Figure 2.6 similarly depicts a total of 32 discrete line available, where in fact only four lines are currently utilized.

Preliminary checkout of the DADIOS/CDC-6600/DDS/AD-4 system can be performed in an open loop test with the STINGER real time skeleton test program. This program provides a check on the operational status of all equipment involved in the phase 1 conversion task. A description of this program is given in Appendix D.

FIGURE 2.3
PHASE 1 REAL TIME I/O REQUIREMENTS

The DOS provided the following scaling

where $-10 \leq x \leq +10$

Now, the CDC-6600 must provide the following scaling

Therefore, digital output information should be premultiplied by .102375 before being presented to the DACs.

FIGURE 2.4 DAC SCALE FACTOR ADJUSTMENT

The DOS provided the following scaling

Now, the CDC-6600 must provide the following scaling

Therefore, each ADC should be premultiplied by (1/1.02375) before being used by the STINGER real time digital program

Figure 6. ADC scale factor adjustments

FIGURE 2.5 ADC SCALE FACTOR ADJUSTMENT

FIGURE 2.4
PHASE 1 TRUNKLINE REQUIREMENTS FOR STINGER SIMULATION

TABLE 2.2
PHASE 1 CONTROL LINE ASSIGNMENT
(CDC OUTPUT DISCRETES)

CDC-6600 VARIABLE	CDC-6600 BIT	AD/4 # 2 TRUNK LINE	PURPOSE/ACTION
CTRL0- CTRL3	0 - 3	TR57-TR54	Not in use
CTRL4	4	TR53	Is set high after ICs have been sent to analog. It is also the signal that starts the analog (SYS-OP) for MICOM hybrid
CTRL5, CTRL6	5, 6	TR52, TR51	Not in use
CTRL7	7	TR50	Is set high when the simulation is terminated and the analog should go into system hold. Termination can occur for "missed target" or "all data collected"
CTRL8- CTRL15	8 - 15	TR37-TR30	Not in use

TABLE 2.3
PHASE 1 SENSE LINE ASSIGNMENT
(CDC INPUT DISCRETES)

CDC-6600 VARIABLE	CDC-6600 BIT	AD/4 # 2 TRUNK LINE	PURPOSE/ACTION
SL0 - SL3	0 - 3	TR47-TR44	Not in use
SL4	4	TR43	Not in use
SL5 	5	TR42	Set high by the static check OK switch on AD/4. This bit must be high to send ICs to analog
SL6 	6	TR41	Set high by the static check OK switch on the AD/4 for MICOM Hybrid, or set high by the ramp up circuit for IRSS hybrid when initial IRSS conditions are attained
SL7-SL15	7 - 15	TR40 and TR27-TR20	Not in use

TABLE 2.4
PHASE 1 ADC ASSIGNMENT

ANALOG VARIABLE NAME	AD/4 ANLG. VOLTAGE -100 < V < +100	DIGITAL FRACTION -1 < N < +1	CDC /6600 ADC ASSIGNMENT	AD/4 TRUNK LLINE ASSIGNMENT
DX	$\frac{K(X_{ML} - X_{TL})}{20}$	$\frac{K(X_{ML} - X_{TL})}{(20)(102.375)}$	2	151
DY	$\frac{K(Y_{ML} - Y_{TL})}{20}$	$\frac{K(Y_{ML} - Y_{TL})}{(20)(102.375)}$	3	152
DZ	$\frac{K(Z_{ML} - Z_{TL})}{20}$	$\frac{K(Z_{ML} - Z_{TL})}{(20)(102.375)}$	4	153
DT	10t	$\frac{10t}{102.375}$	5	154
XDOT	$\frac{\dot{X}_{ML} - \dot{X}_{TL}}{200}$	$\frac{\dot{X}_{ML} - \dot{X}_{TL}}{(200)(102.375)}$	6	155
YDOT	$\frac{\dot{Y}_{ML} - \dot{Y}_{TL}}{200}$	$\frac{\dot{Y}_{ML} - \dot{Y}_{TL}}{(200)(102.375)}$	7	156
ZDOT	$\frac{\dot{Z}_{ML} - \dot{Z}_{TL}}{200}$	$\frac{\dot{Z}_{ML} - \dot{Z}_{TL}}{(200)(102.375)}$	8	157

ANALOG VARIABLE NAME	AD/4 ANALG. VOLTAGE -100<V<+100	DIGITAL FRACTION -1 < N < +1	CDC/6600 ADC ASSIGNMENT	AD/4 TRUNK LINE ASSIGNMENT
XXX	$\frac{K(X_{ML} - X_{TL})}{200}$	$K(X_{ML} - X_{TL})$ $(200)(102.375)$	9	170
YYY	$\frac{K(Y_{ML} - Y_{TL})}{200}$	$K(Y_{ML} - Y_{TL})$ $(200)(102.375)$	10	171
ZZZ	$\frac{K(Z_{ML} - Z_{TL})}{200}$	$K(Z_{ML} - Z_{TL})$ $(200)(102.375)$	12	173

TABLE 2.5
PHASE 1 DAC ASSIGNMENT

DIGITAL VARIABLE NAME	DIGITAL FRACTION $-1 \leq N \leq +1$	AD/4 ANALG. VOLTAGE $-10\text{V} \leq +10$	CDC/6600 DAC ASIGN.	AD/4 TRUNK LINE ASSIGNMENT
XDTGO, XCOMP	$\frac{\dot{X}_{TL}}{(200)(10.375)}$	$\frac{\dot{X}_{TL}}{200}$	1	250
YDTGO, YCOMP	$\frac{\dot{Y}_{TL}}{(200)(10.375)}$	$\frac{\dot{Y}_{TL}}{200}$	2	251
ZDTGO, ZCOMP	$\frac{\dot{Z}_{TL}}{(200)(10.375)}$	$\frac{\dot{Z}_{TL}}{200}$	3	252
R,LB	$\frac{(\varrho/B)}{10.2375}$	ϱ/B	4	253
COSE	$\frac{10\cos(\epsilon)}{10.375}$	$10 \cos(\epsilon)$	5	254
SPO	$\frac{T_{RP}}{10.2375}$	T_{RP}	6	255
RI	$\frac{R_i}{(2000)(10.375)}$	$\frac{R_i}{2000}$	7	256

DIGITAL VARIABLE NAME	DIGITAL FRACTION $-1 < N < +1$	AD/4 ANLG. VOLTAGE $-10\sqrt{K} + 10$	CDC/6600 DAC ASIGN.	AD/4 TRUNK LINE ASSIGNMENT
GAM	$\frac{t'}{10.2375}$	t'	8	257
EDOT	$\frac{(\gamma/t')}{(1.6)(10.2375)}$	$\frac{5(\gamma/t')}{3}$	9	270
THETAL	$\frac{\theta_L}{(10)(10.2375)}$	$\frac{\theta_L}{10}$	10	271
RN	$\frac{i_7}{10.2375}$	i_7	12	273
RN*	$\frac{R_n}{10.2375}$	R_n	12	273

* FOR MICOM HYBRID APPLICATIONS

3.0 ADC CHECKOUT PROGRAM FOR AD-4 #2

3.1 PURPOSE

The program reads 16 ADC channels (220-363) on AD-4 number 2 and compares the values read to either of two references: 1. stored references entered with the program or 2. references obtained by a single scan of the ADC channels. Selection of this option is under sense switch control. When a value read back is outside a tolerance specified by the user (default value for tolerance is 1 bit) the program will record an error, note its magnitude, and record the actual number read in a high or low failure buffer. The program prints out the accumulated error data every 30 seconds. A sample printout precedes the program listing.

3.2 USAGE

A. To load program into memory do the following:

1. Put Binary program deck behind universal loader.
2. Ready card reader and printer.
3. On the console, push Idle then Reset.
4. Clear register lights.
5. Hold down Clear and Clear Flags for 1 second.
6. Set Sense Switch 4.
7. Press Reset, Run, and Cards.

B. To execute the program which has been previously loaded do the following:

1. Press Idle, Reset.
2. With register display set to B, enter 00160200.
3. Clear AD-4 Interface.
4. Press Run.

- C. To select reference mode, set SS2. This will cause the program to compare values read to those stored in the buffer beginning at location 65240. Default values for these references are zero.
- D. To halt, set SS6. To continue, turn SS6 off and hit Run.
- E. To suppress print out, set SS1.
- F. To modify tolerance, load value desired in location 65561.
- G. To modify print period, load value in RCOUNT (e.g. 20,000₈ prints out every half hour) at location 65560.

3.3 HARDWARE USED

- SDS 9300 computer, printer and card reader
- AD-4/9300 Interface
- AD-4 number 2

00060040	00010001
00060041	01010001
00060042	00010001
00060043	00000000
00060044	01010001
00060045	00010001
00060046	00010001
00060047	00010001
00060050	00000000
00060051	00000000
00060052	00000100
00060053	00000000
00060054	00010001
00060055	00010001
00060056	00000000
00060057	00000000
00060060	00000000
00060061	00000100
00060062	00000000
00060063	00000000
00060064	00000000
00060065	00000000
00060066	00000000
00060067	00000000
00060068	00000000
00060069	00000001
00060040	00000205
00060041	00000551
00060042	00000111
00060043	00000000
00060044	00007661
00060045	00022543
00060046	00000050
00060047	000000105
00060050	00000000
00060051	00000000
00060052	00000000
00060053	00000000
00060054	00000011
00060055	00000016
00060056	00000000
00060057	00000000
00060060	00000000
00060061	00000000
00060062	00000000
00060063	00000000
00060064	00000000
00060065	00000000
00060066	00000000
00060067	00000000
00060068	00000000
00060069	00000002

FIGURE 3.1 ADC CHECK PROGRAM PRINTOUT

00060040	01000000
00060041	01000000
00060042	00000000
00060043	00000000
00060044	00000000
00060045	00000000
00060046	00000000
00060047	01000000
00060048	00000000
00060049	00000000
00060050	00000000
00060051	00000000
00060052	00000000
00060053	00000000
00060054	00000000
00060055	00000000
00060056	00000000
00060057	00000000
00060058	00000000
00060059	00000000
00060060	00000000
00060061	00000000
00060062	00000000
00060063	01000000
00060064	00000000
00060065	00000000
00060066	00000000
00060067	00000000
00060068	00000000
00060069	00000000
00060070	00000000
00060071	00000000
00060072	00000000
00060073	00000000
00060074	00000000
00060075	00000000
00060076	00000000
00060077	00000000
00060078	00000000
00060079	00000000
00060080	00000000
00060081	00000000
00060082	00000000
00060083	00000000
00060084	00000000
00060085	00000017
00060086	00000100
00060087	00000000
00060088	00000000
00060089	00000000
00060090	00000000
00060091	00000000
00060092	00000000
00060093	00000000
00060094	00000000
00060095	00000000
00060096	00000000
00060097	00000000
00060098	00000000
00060099	00000004

00060040	01000000
00060041	00000000
00060042	00000000
00060043	01000000
00060044	00000000
00060045	00000000
00060046	00000000
00060047	00000000
00060050	00000000
00060051	00000000
00060052	00000000
00060053	00000000
00060054	00177767
00060055	00000000
00060056	00000000
00060057	00000000
00060058	00000000
00060059	00000000
00060061	00000000
00060062	00000000
00060063	00000000
00060064	00000000
00060065	00000000
00060066	00000000
00060067	01000000
00060068	00000000
00060069	00000000

FIGURE 3.2 ADC CHECK PROGRAM FLOW CHART

APPENDIX A

CROSS REFERENCE OF REAL TIME CODE
AND RELATED EQUATIONS

BOK
DYNAMICS, INC.

COMPUTATION OF IRIS RATIO NO. 7

$$RLB = (\ell / B) / \text{Scalet}$$

$$E111 = \cos(\epsilon)$$

$$RFEET = R_i$$

$$HR7E = H \left| \begin{array}{l} R=7000 \\ \epsilon \end{array} \right. \quad (\text{interpolated from table HR7EE})$$

$$HC7FT = \left[\frac{R_i}{22965.831} \right]^{-2.341} \left[H \left| \begin{array}{l} R=7000 \\ \epsilon \end{array} \right. \right] \left(\frac{f^2}{T_{f, \text{plume}}} \right) = \frac{H_{c7} f^2}{T_{f, \text{plume}}}$$

$$P1IRSS = P_1 = 2 \tan^{-1} \left(\frac{.5}{\ell/B} \right) = 2 \tan^{-1} \left(\frac{.04884004884}{(\ell/B) / \text{Scalet}} \right)$$

Note: .04884004884 = .5/10.2375 and B = 3.0

$$P2IRSS = P_2 = 22.5 (10.2375) ((\ell/B) / 10.2375) / R \text{ (inches)}$$

$$AT7 = \frac{P_2^2 \sin(P_1)}{2 \cos^2(P_1^2/2)} = A_{t7}$$

$$PJTU1 = 0.1 A_{t7}^{1.003258} = 0.1 e^{1.003258 \ln A_{t7}} = J_{tu1, \text{plume}}$$

$$FI7 = \frac{H_{c7} f^2}{T_{f, \text{plume}}}$$

$$RN = \left(\frac{H_{c7} f^2}{T_{f, \text{plume}}} \right) / J_{tu1, \text{plume}}$$

COMPUTATION OF SCALED PLUME ROTATION ANGLE

$$F1 = L_x$$

$$F2 = L_y$$

$$F3 = L_z$$

$$G1 = (\cos(\alpha) + \sin(\alpha) \dot{Z}_{TE}) / \sqrt{\dot{X}_{TE}^2 + \dot{Y}_{TE}^2} \dot{X}_{TE}$$

$$G2 = (\cos(\alpha) + \sin(\alpha) \dot{Z}_{TE}) / \sqrt{\dot{X}_{TE}^2 + \dot{Y}_{TE}^2} \dot{Y}_{TE}$$

$$G3 = \dot{Z}_{TE} \cos(\alpha) - \sin(\alpha) \sqrt{\dot{X}_{TE}^2 + \dot{Y}_{TE}^2}$$

$$VTI = V_T$$

$$RC1 = \sqrt{L_x^2 + L_y^2}$$

$$RC1 = L_y / \sqrt{L_x^2 + L_y^2} = \cos(\beta)$$

$$RCB = \cos^{-1}(\beta) = \beta$$

$$RCX = -\cos(\beta) = C_x$$

$$RCY = -\sin(\beta) = C_y$$

$$IF (L_x \geq 0), C_y = \sin(\beta)$$

$$F11 = (L_y (\dot{Z}_{TE} \cos(\alpha) - \sin(\alpha) \sqrt{\dot{X}_{TE}^2 + \dot{Y}_{TE}^2}))$$

$$-L_z (\dot{Y}_{TE} \cos(\alpha) + \sin(\alpha) \dot{Y}_{TE} \dot{Z}_{TE} / \sqrt{\dot{X}_{TE}^2 + \dot{Y}_{TE}^2}) / V_T$$

$$F_{22} = (L_z (\cos(\alpha) + \sin(\alpha) \dot{Z}_{TE}) / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) \dot{x}_{TE}$$

$$- L_x (\dot{Z}_{TE} \cos(\alpha) - \sin(\alpha) \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) / v_T$$

$$F_{33} = (L_x (\cos(\alpha) + \sin(\alpha) \dot{Z}_{TE}) / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) \dot{y}_{TE}$$

$$- L_y (\cos(\alpha) + \sin(\alpha) \dot{Z}_{TE} / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) \dot{x}_{TE} / v_T$$

$$\text{Note: } \bar{C}_L = i_E \dot{x}_{TE} (\cos(\alpha) + \dot{Z}_{TE} \sin(\alpha) / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) / v_T$$

$$+ j_E \dot{y}_{TE} (\cos(\alpha) + \dot{Z}_{TE} \sin(\alpha) / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) / v_T$$

$$+ k_E (\dot{Z}_{TE} \cos(\alpha) - \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2} \sin(\alpha)) / v_T$$

$$\text{Therefore: } F_{11} = (L_y C_{Lz} - L_z C_{Ly})$$

$$F_{22} = (L_z C_{Lx} - L_x C_{Lz})$$

$$F_{33} = (L_x C_{Ly} - L_y C_{Lx})$$

$$FCR = \sqrt{(L_y C_{Lz} - L_z C_{Ly})^2 + (L_z C_{Lx} - L_x C_{Lz})^2 + (L_x C_{Ly} - L_y C_{Lx})^2}$$

$$G_{11} = (L_y C_{Lz} - L_z C_{Ly}) C_x$$

$$G_{22} = (L_z C_{Lx} - L_x C_{Lz}) C_y$$

$$C_{111} = \frac{(L_y C_{Lz} - L_z C_{Ly}) C_x + (L_z C_{Lx} - L_x C_{Lz}) C_y}{\sqrt{(L_y C_{Lz} - L_z C_{Ly})^2 + (L_z C_{Lx} - L_x C_{Lz})^2 + (L_x C_{Ly} - L_y C_{Lx})^2}}$$

$$= \cos(\theta)$$

$$T_{111} = \cos^{-1}(\cos \theta) = \theta$$

$$\text{IF } (\bar{L}_{os} \times \bar{C}_L)_{ZE-COMP} \geq 0, T_{RP} = \pi/2 - \theta$$

$$\text{IF } (\bar{L}_{os} \times \bar{C}_L)_{ZE-COMP} < 0 \text{ and } \theta < \pi/2, T_{RP} = \theta + \pi/2$$

$$\text{IF } (\bar{L}_{os} \times \bar{C}_L)_{ZE-COMP} < 0 \text{ and } \theta \geq \pi/2, T_{RP} = \theta - 3\pi/2$$

$$SPO = T_{RP} / \text{Scale Factor}$$

COMPUTATION OF , COS (ε) AND R/ℓ

$$SKK = K$$

$$S2 = \cos \theta_L \cos \psi_L$$

$$SPL = \sin \psi_L$$

$$S3 = \sin \theta_L \cos \psi_L$$

$$S4 = \cos \theta_L \sin \psi_L$$

$$CPL = \cos \psi_L$$

$$S5 = \sin \theta_L \sin \psi_L$$

$$CTL = \cos \theta_L$$

$$VTI = VT$$

$$A1 = X_E^2 + Y_E^2 + Z_E^2$$

$$A1 = (.01745329) (4.637084242) \sqrt{A1} / (VT^2 C_{LA})$$

$$SA = \sin (\alpha)$$

$$CA = \cos (\alpha)$$

$$XC = \dot{X}_{TE} (200) (102.375) / K$$

$$Y_C = \dot{Y}_{TE} (200) (102.375) /K$$

$$Z_C = \dot{Z}_{TE} (200) (102.375) /K$$

$$X_{TA} = X_E$$

$$Y_{TA} = Y_E$$

$$Z_{TA} = Z_E$$

$$XXX = X_G$$

$$YYY = Y_G$$

$$ZZZ = Z_G$$

$$RRR = X_G^2 + Y_G^2 + Z_G^2$$

$$RRR = V_T \sqrt{X_G^2 + Y_G^2 + Z_G^2}$$

$$F1 = X_G \cos \theta_L \cos \psi_L - Y_G \sin \psi_L + Z_G \sin \theta_L \cos \psi_L$$

$$F2 = X_G \cos \theta_L \sin \psi_L + Y_G \cos \psi_L + Z_G \sin \theta_L \sin \psi_L$$

$$F3 = Z_G \cos \theta_L - X_G \sin \theta_L$$

$$SR = \sqrt{\dot{X}_{TE}^2 + \dot{Y}_{TE}^2}$$

$$S1 = \cos(\alpha) + \sin(\alpha) \dot{Z}_{TE} / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}$$

$$G1 = \dot{x}_{TE} \cos(\alpha) + \sin(\alpha) \dot{x}_{TE} \dot{Z}_{TE} / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}$$

$$G2 = \dot{y}_{TE} \cos(\alpha) + \sin(\alpha) \dot{y}_{TE} \dot{Z}_{TE} / \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}$$

$$G3 = \dot{Z}_{TE} \cos(\alpha) - \sin(\alpha) \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}$$

$$E111 = \left\{ (X_G \cos \theta_L \cos \psi_L - Y_G \sin \psi_L + Z_G \sin \theta_L \cos \psi_L) \right.$$

$$\frac{(X_{TE} \cos(\alpha) + \sin(\alpha) \dot{x}_{TE} \dot{Z}_{TE})}{\sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}}$$

$$+ (X_G \cos \theta_L \sin \psi_L + Y_G \cos \psi_L + Z_G \sin \theta_L \sin \psi_L)$$

$$\frac{(\dot{y}_{TE} \cos(\alpha) + \sin(\alpha) \dot{y}_{TE} \dot{Z}_{TE})}{\sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}}$$

$$+ (Z_G \cos \theta_L - X_G \sin \theta_L) (\dot{Z}_{TE} \cos(\alpha) - \sin(\alpha) \sqrt{\dot{x}_{TE}^2 + \dot{y}_{TE}^2}) \}$$

$$/ v_T (x_G^2 + y_G^2 + z_G^2) = \cos(\epsilon)$$

$$COSE = 1.0 - E111^2$$

$$RLB = 1.0 - E111^2$$

$$RLB = (\sqrt{1.0 - E111^2}) (RLBK) / \text{Scale Factor}$$

$$COSE = E111 / 1.02375$$

$$\bar{A}_{AERO} = \bar{i}_E \ddot{x}_{TE} + \bar{j}_E \ddot{y}_{TE} + \bar{k}_E (\ddot{z}_{TE} - g)$$

$$\bar{a}_I = \bar{i}_E \dot{x}_{TE} + \bar{j}_E \dot{y}_{TE} + \bar{k}_E \ddot{z}_{TE}$$

SUBSCRIPTS:

E — EARTH FIXED COORDINATES

GN — GENERALIZED TARGET COORDINATES

F — TARGET FIXED COORDINATES

L — LAUNCH COORDINATES.

FIGURE A.1
TARGET FIXED COORDINATE SYSTEM

FIGURE A.2
RANGE-TO-GO
CONTROL OF A/D DATA COLLECTION

FIGURE A.3
SEQUENCE OF VARIABLE SCALE FACTOR CALCULATION

FIGURE A.4
 EARTH FIXED AND LAUNCH COORDINATE SYSTEMS

FIGURE A.5
VARIABLE ANALOG SCALE FACTOR

A.12

APPENDIX B

AD/4 TRUNK LINE DISCRETE PATCHING

BOK
DYNAMICS, INC.

00	10	20	30	40	50	60	70
01	11	21	31	41	51	61	71
02	12	22	32	42	52	62	72
03	13	23	33	43	53	63	73
04	14	24	34	44	54	64	74
05	15	25	35	45	55	65	75
06	16	26	36	46	56	66	76
07	17	27	37	47	57	67	77

I

O

I

O

I

O

I

O

VARIABLE 1

VARIABLE 2

MSB

LSB

Input to
CDC-6600

40	41	42	43	44	45	46	47	60	61	62	63	64	65	66	67
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

FOR
VARIABLE
2

Output from
CDC-6600

50	51	52	53	54	55	56	57	70	71	72	73	74	75	76	77
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

MSB

LSB

FIGURE B.1 AD/4 TRUNK LINE DISCRETES
(FOR AD/4 # 1)

B.1

00	10	20	30	40	50	60	70
01	11	21	31	41	51	61	71
02	12	22	32	42	52	62	72
03	13	23	33	43	53	63	73
04	14	24	34	44	54	64	74
05	15	25	35	45	55	65	75
06	16	26	36	46	56	66	76
07	17	27	37	47	57	67	77

I O I O

VARIABLE 1

FIGURE B.1 AD/4 TRUNK LINE DISCRETES
(FOR AD/4 # 2)

TABLE B.1
SUMMARY OF POSSIBLE DISCRETE TRUNK LINE CONNECTIONS

CDC-6600 INPUT DISCRETES

W50 -- INPUT DISCRETE 1 -- COMMON /*IDIS2/IIN
W51 -- INPUT DISCRETE 2 -- COMMON /*IDIS2/2, IIN
W52 -- INPUT DISCRETE 3 -- COMMON /*IDIS2/3, IIN
W53 -- INPUT DISCRETE 4 -- COMMON /*IDIS2/4, IIN

POSSIBLE AD/4 CONNECTIONS

V50 -- AD/4 #1 LOGIC TRUNKS 00-07 AND 20-27
V52 -- AD/4 #1 LOGIC TRUNKS 40-47 AND 60-67
V60 -- AD/4 #2 LOGIC TRUNKS 20-27 AND 40-47

CDC-6600 OUTPUT DISCRETES

W60 -- OUTPUT DISCRETE 1 -- COMMON /*ODIS2/IOUT
W61 -- OUTPUT DISCRETE 2 -- COMMON /*ODIS2/2, IOUT
W62 -- OUTPUT DISCRETE 3 -- COMMON /*ODIS2/3, IOUT
W63 -- OUTPUT DISCRETE 4 -- COMMON /*ODIS2/4, IOUT

POSSIBLE AD/4 CONNECTIONS

V51 -- AD/4 #1 LOGIC TRUNKS 10-17 AND 30-37
V53 -- AD/4 #1 LOGIC TRUNKS 50-57 AND 70-77
V61 -- AD/4 #2 LOGIC TRUNKS 30-37 AND 50-57

TABLE B.2
SUMMARY OF POSSIBLE ANALOG TRUNK LINE CONNECTIONS

CDC-6600 ADCS

W00 -- ADC GROUP 1 -- COMMON /*ADC1/ADIN(16)
W01 -- ADC GROUP 2 -- COMMON /*ADC1/17, ADIN(16)
W02 -- ADC GROUP 3 -- COMMON /*ADC1/33, ADIN(16)
W03 -- ADC GROUP 4 -- COMMON /*ADC1/49, ADIN(16)

CDC-6600 DACS

W10 -- DAC GROUP 1 -- COMMON /*DAC1/DAOUT(16)
W11 -- DAC GROUP 2 -- COMMON /*DAC1/17, DAOUT(16)
W12 -- DAC GROUP 3 -- COMMON /*DAC1/33, DAOUT(16)
W13 -- DAC GROUP 4 -- COMMON /*DAC1/49, DAOUT(16)

AD/4 ANALOG CONNECTIONS (ADCS OR DACS)

V00 -- AD/4 #1 FIELD 0 ANALOG TRUNKS 10-17 AND 30-37
V01 -- AD/4 #1 FIELD 0 ANALOG TRUNKS 50-57 AND 70-77
V02 -- AD/4 #1 FIELD 1 ANALOG TRUNKS 10-17 AND 30-37
V03 -- AD/4 #1 FIELD 1 ANALOG TRUNKS 50-57 AND 70-77
V04 -- AD/4 #1 FIELD 2 ANALOG TRUNKS 10-17 AND 30-37
V05 -- AD/4 #1 FIELD 2 ANALOG TRUNKS 50-57 AND 70-77
V06 -- AD/4 #1 FIELD 3 ANALOG TRUNKS 10-17 AND 30-37
V07 -- AD/4 #1 FIELD 3 ANALOG TRUNKS 50-57 AND 70-77
U07 -- AD/4 #2 FIELD 1 ANALOG TRUNKS 50-57 AND 70-77
U06 -- AD/4 #2 FIELD 2 ANALOG TRUNKS 50-57 AND 70-77

APPENDIX C

**COMPUTER CODE FOR PRODUCING
NORMALIZED RANDOM NUMBERS**

BOK
DYNAMICS, INC.

SUBROUTINE NORMAL (RX,XL,XU,MU,SIGMA)

DESCRIPTION

THIS ROUTINE PRODUCES NORMALIZED RANDOM NUMBERS WITHIN
A RANGE SPECIFIED BY THE USER.

INPUT

1 XL LOWER LIMIT OF NORMAL CURVE
2 XU UPPER LIMIT OF NORMAL CURVE
3 MU MEAN OF NORMAL CURVE (TYPE REAL)
4 SIGMA STANDARD DEVIATION OF NORMAL CURVE

OUTPUT

1 RX THE NORMALIZED RANDOM NUMBER

REF: General Purpose Computer Subroutines
Report No. TR-WS-75-2
USAMC, Redstone Arsenal, Alabama
January 1975

```

SUBROUTINE NORMAL( RX, XL, XU, MU, SIGMA )
DIMENSION FZ(126)
REAL MU
DATA DT,DT1,NPT,NPT,SQ2PI/.01,.04,126.0,.398942283/
SUS = MU - 5.0 * SIGMA
SUS = MU + 5.0 * SIGMA
IF( XL .LT. SUS .AND. XU .GT. SL5 ) GO TO 10
PRINT 901, SL5, SUS, XL, XU, MU, SIGMA
901 FORMAT(*1LIMITS FOR NORMAL DISTRIBUTION SHOULD BE RETRIEVED*  

1      * AND#F10.2 * --- PROGRAM TERMINATED.*///* XL =#F10.2,5X  

2      * XU =# F10.2,5X* MU =#F10.2,5X* SIGMA =#F10.2)
STOP 123
10 IF(NPT.NE.0) GO TO 2
T2=DT1
FZ(1)=.5
FC=FZ(1)
T=0.
FP=SQ2PI*EXP(-.5*T*T)
DT2=DT*.5
NPT=1
1 T = T+DT
F = SQ2PI*EXP(-.5*T*T)
FC=FC + DT2*(F+FP)
FP=F
IF(ABS(T-T2).GT..0001) GO TO 1
NPT=NPT + 1
FZ(NPT)=FC
T2=T2+DT1
IF(NPT.LT.NPT) GO TO 1
2 CONTINUE
RN = RANF(R)
R=RN
IF(PN.LT..5) P=1.-RN
IF(P.GT.FZ(NPT)) GO TO 2
DO 3 I=1,NPT
IF(P.GT.FZ(I)) GO TO 3
IF(I.EQ.1) GO TO 4
X=I-1
X=X*DT1
X1=X-DT1
RX = X1 +(R-FZ(I-1))*DT1/(FZ(I)-FZ(I-1))
GO TO 5
3 CONTINUE
PRINT 100
100 FORMAT(13H0 ERROR DISRN)
STOP
4 CONTINUE
RX=0.
5 CONTINUE
IF(PN.LT..5) RX=-RX
RX= SIGMA*RX+MU
IF(RX.GT.XU) GO TO 2
IF(RX.LT.XL) GO TO 2
RETURN
END

```

APPENDIX D

**STINGER SKELETON REAL TIME
CHECKOUT PROGRAM**

BOK
DYNAMICS, INC.

SKELETON REAL TIME PROGRAM

EXECUTION PROCEDURE:

NOTE: The B-K microprocessor is to be programmed and connected to the appropriate trunks on the AD/4 logic board as specified in the section "MICROPROCESSOR REAL TIME SET-UP" to handle the discrete communication with the digital program. The symbol Δ means the "SEND" key on the DDS terminal.

1. Make sure all the input discretes from the microprocessor are low.
2. Catalog the SKELETON REAL TIME program by submitting the deck with the following cards in front:

XXXGS, T5, CM6000.
ACCT(PN=XXXXXXX, PBC=7364G13R00, CC=7300, OP=A3, JN=XXXX)
REQUEST, SAVE, *PF.
COPY, INPUT, SAVE.
CATALOG, SAVE, XXXGS, ID=G1XXXX.
EOR

(NOTE: X's represent characters to be supplied by the user.)

3. Sign on the DDS terminal as follows:

Screen says "ACTIVE AND NOT BUSY"

User types Δ

Screen says "TYPE USER NM, PASSWORD, PBC, CC, PRG NM, JOB NO"

User types XXXXXXXX, XXXXXXXX, 7364G13R00, 7300, XXXXXXXX, XXXX Δ

Screen says "SELECT A COMMAND CODE FROM THE LIST BELOW"

- O Operator Aid
- J Job Control
- S File Scan
- G File Generation and Updating
- U File Utilities
- P Permanent Files
- T Terminate

4. User types P Δ to get permanent file command set.
5. User types ATTACH(SKELRT, XXXGS, ID=G1XXXX) Δ
where the XXXGS and G1XXXX are the same as on the catalog card in Step 2.
Screen says "FUNCTION SUCCESSFUL", etc.
6. User types \$J Δ to get job control command set.
7. User types SKELRT, nn Δ where nn is the first listed free control point (01, 02, etc.).
8. Screen says "SELECT STEP MODE IF WANTED", etc.
User types Δ to select automatic mode. Program will compile, load, and begin execution.
9. Screen says "PAUSE 1" with "PAUSED" on right side. At this time, all output discretes should be high. This is detected by the microprocessor as event #1.
10. User types GO Δ (a second GO Δ may be necessary). This will clear PAUSE 1.
Screen says "PAUSE 2" with "PAUSED" on right side. At this time, all output discretes should be low--detected by the microprocessor as event #2.
11. Set input discrete 5 high using a switch on the microprocessor. User types GO Δ (a second GO Δ may be necessary). "PAUSE 2" will stay on screen but "PAUSED" on right side should disappear. Output discrete 4 should come high now--detected by microprocessor as event #3.

12. After a delay of approximately 15 seconds, the microprocessor will automatically set input discrete 6 high (event #4). This initiates the ADC-DAC conversion loop in the program.
13. When all conversions are complete, the program will set output discrete 7 high (microprocessor event #5) and terminate.
Screen says "NO MORE CONTROL CARDS".
14. User types \$U Δ to get file utility command set.
15. User types 1 Δ to terminate and save output file.
16. User types L, file name, XX, AU Δ in order to list the output file, where the file name is as listed on the bottom of the screen-- RA1GSXX.
17. User types \$T Δ and then Δ to sign off DDS.

MICROPROCESSOR REAL TIME SET-UP

The software checkout chassis's microprocessor is loaded with the program below using the front panel switches. The procedure is as follows:

- Select JAM and STEP mode (switches up)
- Load 000_8 into high and low address registers using LAH and LAL with 000_8 set on switch register
- Load program using DEPOSIT switch and switch register
- When program is loaded set 005_8 as switch register, select RUN and RUN on mode switches, hit INTERRUPT
- Program will now execute
- At completion of execution, hit INTERRUPT to re-execute

The AD/4 must be cabled to the processor as specified below:

AD/4 TR	20	line 8*	Checkout chassis DO	X**
	21	7		6
	22	6	Connect to switch on	CC
	23	5		X
	24	4		X
	25	3		X
	26	2		X
	27	1		X

AD/4 TR (SP)	0	line 16	Checkout chassis DI	7
	1			5
	2			1
	3			4
	4			8
	5			6
	6			3
	7			2

* This cable is installed between the AD/4 and software checkout chassis

** X Denotes "don't care"

MICROPROCESSOR REAL TIME PROGRAM

<u>LOCATION</u>	<u>OP CODE</u>	<u>OPERATOR</u>	<u>CONNECTS</u>
000	006	MVI A	
001	000	000	
002	121	A → P0	
003	123	A → P1	
004	101	0 → A	
005	074	CPI	
006	377	377	Check for all ones
007	110	JPZ	
010	004		
011	000		
012	006	MVI A	
013	001	01	Display event 1
014	121	A → P0	
015	101	0 → A	
016	074	CPI	
017	000	ZERO	
020	110	JNZ	
021	015		
022	000		
023	006	MVI A	
024	002	002	Display event 2
025	121	A → P0	
026	101	IPO A	
027	022	RAL	
030	022	RAL	
031	022	RAL	
032	022	RAL	
033	022	RAL	
034	100	JNC	
035	026		
036	000		
037	006	MVI A	
040	003	03	Display event 3
041	121	A → P0	
042	106	CALL	
043	100	DELAY	Delay 15 seconds
044	000		
045	006	MVI A	
046	040	040	Raise discrete 6
047	123	A → P01	
050	006	MVI A	
051	004	04	Display event 4
052	121	A → P0	
053	101	P0 → A	
054	022	RAL	
055	022	RAL	
056	100	JNC	
057	053		
060	000		
061	006	MVI A	
062	005	05	Display event 5
063	121	A → P0	
064	104	JPU	
065	064		
066	000		

DELAY SUBROUTINE

<u>LOCATION</u>	<u>OP CODE</u>	<u>OPERATION</u>
100	330	A D
101	016	LDB I
102	377	COUNT
103	046	LDEI
104	000	ZERO
105	006	MVI A
106	000	
107	004	ADI
110	001	
111	140	JPC
112	117	117
113	000	000
114	104	JPU
115	107	105
116	000	000
117	304	E A
120	004	ADI
121	001	
122	140	JPC
123	131	131
124	000	000
125	340	A E
126	104	JPU
127	105	105
130	000	000
131	011	DCR B
132	150	JPO
133	140	140
134	000	000
135	104	JPU
136	105	105
137	000	000
140	303	D A
141	007	RET

FIGURE D.1 CHECKOUT CHASSIS FUNCTIONAL BLOCK DIAGRAM
(DISCRETE HANDLING AND DISPLAY)

FIGURE D.2
CHECKOUT CHASSIS FUNCTIONAL BLOCK DIAGRAM
(TEST FUNCTIONS)

FIGURE D.3 CHECKOUT CHASSIS FUNCTIONAL BLOCK DIAGRAM
(ANALOG FUNCTIONS)

AD-A052 679 B-K DYNAMICS INC ROCKVILLE MD F/G 9/2
QUARTERLY INTERIM TECHNICAL REPORT (3RD), CONTRACT DAAH01-75-C---ETC(U)
JUL 75 DAAH01-75-C-0194 NL
UNCLASSIFIED BKD-TR-3-197

UNCLASSIFIED

BKD-TR-3-197

NL

2 OF 2
AD
AD52679

END
DATE
FILED
5-78
DDC

APPENDIX E

MISCELLANEOUS CHECKOUT PROGRAMS

BOK
DYNAMICS, INC.

PROGRAM TSUJN(DUTPUT,4FILE,TAPES=DUTPUT)

TRUNK SET-UP

TRUNKING	FORTRAN	AD/4
V-37 TO N-13	/*DAC1/49,DAC	TR50-TR57 AND TR70-TR77
V-35 TO N-03	/*ADD1/49,ADD	TR10-TR17 AND TR30-TR37

THE FIRST ADD IN EACH GROUP OF 16 CORRESPONDS TO AD/4 TR-10.
THE FIRST DAC IN EACH GROUP OF 16 CORRESPONDS TO AD/4 TR-50.

INTEGER PATIN(2),PATOUT(2)
COMMON/DUTIN/DUDA(402),ADDA(402),I

SET UP INTERRUPT AND DADDOS VARIABLES
INTERRUPT(I=1,R=20,T=100,P=1000)

COMMON/*DAC1/49,DAC

COMMON/*ADD1/49,ADD

SET UP ARRAY OF NUMBERS TO BE SENT

I=1

DUDA(1)=1.0

DO 10 J=1,193,2

DUDA(J+2)=DUDA(J)+.01

10 CONTINUE

DO 20 J=1,193,2

DUDA(J+1)=-DUDA(J)

20 CONTINUE

DO 30 J=1,201

DUDA(J+201)=DUDA(J)

30 CONTINUE

READ AND PRINT TRUNK SET-UP

PATIN(1)=3RV07

PATIN(2)=3RV06

LEN=2

CALL PATSTAT(PATIN,PATOUT,LEN)

WRITE(6,1000) PATIN(1),PATOUT(1),PATIN(2),PATOUT(2)

RESERVE HYBRID EQUIPMENT

CALL RESERVE(IERR)

WRITE(6,2000) IERR

IF(IERR.NE.0) STOP

ENTER REAL TIME AND HOLD BACKGROUND

CALL SIMRUN(ISTAT)

WRITE(6,3000) ISTAT

CALL BHOLD

PRINT TRANSMITTED AND RECEIVED NUMBERS AND DIFFERENCES

WRITE(6,4000)

LIVE=1

J=1

40 DIFF=ABS(DUDA(J)-ATDD(J))

WRITE(6,5000) DUDA(J),ATDD(J),DIFF

LIVE=LIVE+1

IF(LIVE.EQ.54) GO TO 50

LIVE=1

WRITE(6,4000)

50 CONTINUE

J=J+1

IF(J.LE.402) GO TO 40

STOP
C FORMAT STATEMENTS
1000 FORMAT(1H1,////,* TRUNK LINE PATCHING IS *,R3,* TO *,R3,* AND *,
1R3,* TO *,R3)
2000 FORMAT(//,* RESERVATION ERROR CODE = *,D20)
3000 FORMAT(//,* REAL TIME STATUS = *,D20)
4000 FORMAT(1H1,////,5X,*D TO A*,7X,*A TO D*,3X,*DIFF*,//)
5000 FORMAT(1X,F10.5,3X,F10.5,3X,F10.5)
END

SUBROUTINE CONVRT
COMMON/DUTIN/DTDA(402),ATDD(402),I
COMMON/WDAC1/49,340
COMMON/WADD1/49,400
C J TO A CONVERSION
JAC=DTDA(I)
C WAIT FOR NEXT INTERRUPT
CALL SIMWAIT
C A TO D CONVERSION
ATDD(I)=ADD
C SET JP FOR NEXT J TO A CONVERSION
I=I+1
IF(I.GT.402) CALL SIMSTOP
CALL SIMIDLE
END

RFREE TSTCON(0),CONVRT(1)
GLOBAL DUTIN
END

TRUNK LINE PATCHING IS V07 TO 413 AND V05 TO 403

RESERVATION ERROR CODE = 000000000000000000000000

REAL TIME STATUS = 00000000000000000000

D TO A	A TO D	DIFF
1.00000	.99975	.00024
-1.00000	-.99994	.00006
.99000	.98959	.00031
-.99000	-.99994	.00004
.98000	.97974	.00026
-.98000	-.99994	.01994
.97000	.96973	.00027
-.97000	-.99994	.02994
.96000	.95955	.00034
-.96000	-.99994	.03994
.95000	.94953	.00042
-.95000	-.99994	.04994
.94010	.93954	.00035
-.94000	-.99994	.05994
.93000	.92959	.00031
-.93000	-.99994	.06994
.92000	.91974	.00026
-.92000	-.99994	.07994
.91000	.90957	.00033
-.91000	-.99994	.08994
.90000	.89972	.00028
-.90000	-.99994	.09994
.89000	.88971	.00029
-.89000	-.99994	.10994
.88000	.87970	.00030
-.88000	-.99994	.11994
.87000	.86975	.00025
-.87000	-.99994	.12994
.86000	.85953	.00032
-.86000	-.99994	.13994
.85000	.84973	.00027
-.85000	-.99994	.14994
.84000	.83972	.00028
-.84000	-.99994	.15994
.83000	.82955	.00035
-.83000	-.99994	.16994
.82000	.81954	.00036
-.82000	-.99994	.17994
.81000	.80975	.00025
-.81000	-.99994	.18994
.80000	.79974	.00026
-.80000	-.99994	.19994
.79000	.78957	.00033
-.79000	-.99994	.20994
.78000	.77950	.00040
-.78000	-.99994	.21994
.77000	.76971	.00029
-.77000	-.99994	.22994
.76010	.75970	.00030
-.76000	-.99994	.23994
.75000	.74932	.00018
-.75000	-.99994	.24994

PROGRAM TRJAM(OUTPUT,HFILE,TAPE6=OLPUT)

C
C
C
C
C USE ONLY ONE INPUT DISCRETE AT A TIME TO AVOID ERRORS IN LOGIC

C
C
C
C
C NOTE, ALL OUTPUT DISCRETES SHOULD APPEAR ON DISPLAY LIGHTS.

C
C
C PROGRAM FOR NON REAL TIME COMMUNICATION OF DADOS VARIABLES

C
C
C PROGRAM VARIABLES

IERR	ERROR CODE FOR RESERVATION 0=NOERROR, GT.0=RESERVATION ERROR
ISTAT	REAL TIME MODE 0=IN REAL TIME, ISTAT.GT.0 NOT IN REAL TIME
LEN	NUMBER OF TRUNKING STATION CONNECTOR FAIRS USED
PIN(I)	I-TH TRUNKING STATION CONNECTOR INPUT
POUT(I)	I-TH TRUNKING STATION CONNECTOR OUTPUT
LARA	AN ARRAY OF LOGICAL INTERRUPT NUMBERS
N	THE NUMBER OF LOGICAL INTERRUPTS IN LARA
IODIS	DADOS OUTPUT WORD
IICIS	CADICS INPUT DISCRETE WORD IF LINE 1 HIGH VARY IOUT IN BATCH TR27 OR TR67 IF LINE 2 HIGH GO INTO REAL TIME TR26 CR TR66 IF LINE 3 HIGH RETURN TO BKGRND TR25 CR TR65 IF LINE 4 HIGH STOP TR24 CR TR64
LCOP	NUMBER OF LOOPS IN BACKGROUND

C
C
C DADOS PATCHING REQUIREMENTS (ONE IODIS AND ONE IODIS)

TRUNKING	FORTRAN	AD/4 PATCH
V-50 TO W-50	FOR /IODIS2/1,IODIS	TR00-TR07 AND TR20-TR27
V-52 TO W-50	FOR /IODIS2/1,IODIS	TR40-TR47 AND TR60-TR67
V-50 TO W-51	FOR /IODIS2/2,IODIS	TR00-TR07 AND TR20-TR27
V-52 TO W-51	FOR /IODIS2/2,IODIS	TR40-TR47 AND TR60-TR67
V-51 TO W-60	FOR /CCIS2/1,IODIS	TR10-TR17 AND TR30-TR37
V-53 TO W-60	FOR /CDIS2/1,IODIS	TR50-TR57 AND TR70-TR77
V-51 TO W-61	FOR /ODIS2/2,IODIS	TR10-TR17 AND TR30-TR37
V-53 TO W-61	FOR /ODIS2/2,IODIS	TR50-TR57 AND TR70-TR77

C
C THE HIGH ORDER CDC-6600 BIT CORRESPONDS TO TR0X, WHERE X=0,2,4,6

INTEGER PIN(8),POUT(8)
DIMENSION LARA(8)
COMMON/INTCM/ICNT1
INTERRUPT(I=1,R=20,T=100000)
COMMON/*IDIS2/1,IODIS
JAM,CN
COMMON/*ODIS2/1,IODIS
JAM,OFF

C
C
C INITIALIZATION

LCOP=0
LARA(1)=1
N=1

```

LEN=4
PIN(1)=3RV50
PIN(2)=3RV51
PIN(3)=3RV52
PIN(4)=3RV53
ICOUNT=0
ICNT1=0
C
    CALL RESERVE(IERR)
    WRITE(6,1000)IERR
    IF(IERR.NE.0)CALL REMARK(18H RESERVATION ERROR)
    IF(IERR.EQ.0)CALL REMARK(18H RESERVATION OK )
C
C     CHECK PATCHING STATUS
C
    CALL FATSTAT(PIN,POUT,LEN)
    DO 10 I=1,LEN
10   WRITE(6,8000)PIN(I),POUT(I)
C
C     JAM A DISCRETE WORD OUT ONTO AD-4 TRUNK LINE IN BATCH MODE
C
20   IOUT=2**ICOUNT
    ICOUNT=ICOUNT+1
    IF(ICOUNT.EQ.16)ICOUNT=0
C
    IIDIS=IOUT
C
C     READ BACK A DISCRETE WORD FROM AD-4 TRUNK LINE IN BATCH MODE
C
30   CALL INTCNVT(LARA,N)
    IN=IIDIS
    PAUSE AND WAIT FOR APPROPRIATE INPUT DISCRETE TO BE SET
C
    PAUSE
C
    TEST LINE 1 OF IIDIS
    IF(IN.EQ.1E)GO TO 20
C
    TEST LINE 2 OF IIDIS
    IF(IN.EQ.2B)GO TO 40
C
    TEST LINE 4 OF IIDIS
    IF(IN.EQ.10B)GO TO 50
C
    COUNT NUMBER OF LOOPS IN BACKGROUND MODE
    LOOP=LOOP+1
    GO TO 30
C
C     RESERVE EQUIPMENT AND ENTER REAL TIME
C
40   CALL SIMRLN(ISTAT)
    WRITE(6,2000)ISTAT
    CALL REMARK(17H JOB IN REAL TIME)
C
C     HOLD BACKGROUND UNTIL SIMHOLE OR SIMSTOP IS ENCOUNTERED, ON RETURN
C     TO BATCH TURN ALL OUTPUT DISCRETES OFF

```

C
CALL BHOLD
IODIS=0
GO TO 30
C
50 CONTINUE
WRITE(6,5000)LOOP
WRITE(6,4000)
STOP
C
1000 FORMAT(24H RESERVATION ERRCR CCDE=,020)
2000 FORMAT(18H REAL TIME STATUS=,020)
3000 FORMAT(4H IN,,020,2X,5HICUT=,020)
4000 FORMAT(* PROGRAM TERMINATED NORMALLY WITH LINE 4 HIGH*)
5000 FORM T(* TCTAL LCOPS IN BACKGRUND=*,I20)
8000 FORMAT(/*0TRUNK LINE PATCHING IS *,R3,* TO *,R3)
END

```
C SUBROUTINE SUB1
C
C REAL TIME SUBROUTINE
C
C COMMON/INTCOM/ICNT1
C CMMCN/*ICIS2/1,IIDIS
C CMMCN/*ODIS2/1,IODIS
C
C IN=IIDIS
C
C IF IN REAL TIME TURN ALL OUTPUT DISCRETES ON
C
C IODIS=2**16-1
C
C TEST LINE 3 OF IIDIS
C IF(IN.EQ.4B)CALL SIMSTCP
C
C TEST LINE 4 OF IIDIS
C IF(IN.EQ.10B)CALL SIMSTOP
C
C CALL SIMIOLE
C END
```

```
RTREE TRJAM(0),SUB1(1)
GLOBAL INTCOM
END
```

RESERVATION ERROR CODE=000000000000000000000000

TRUNK LINE PATCHING IS V50 TO W50

TRUNK LINE PATCHING IS V51 TO W60

TRUNK LINE PATCHING IS V52 TO W51

TRUNK LINE PATCHING IS V53 TO W5F
REAL TIME STATUS=000000000000000000000000
TOTAL LCOPS IN BACKGROUND= 3
PROGRAM TERMINATED NORMALLY WITH LINE 4 HIGH

PROGRAM TRDISIDC(OUTPUT,FILE,TAPE6=OUTPUT)

PROGRAM VARIABLES

IERR	ERROR CODE FOR RESERVATION 0=NERROR, ST.0=RESERVATION ERROR
ISTAT	REAL TIME MODE 0=IN REAL TIME, ISTAT.GT.0 NOT IN REAL TIME
IIDIS	CCC-6600 SENSE LINE DISCRETE(15 BIT) IIDIS=IBACK
ICDIS	CCC-6600 CONTROL LINE DISCRETE(16 BIT) ICDIS=IOJT
MAX	DEC. EQUIVALENT OF 16 BITS ALL EQUAL ONE
LOOP	NUMBER OF INTERRUPTS BEFORE EQUALITY OF BITS
LIVE	NUMBER OF LINES OF PRINTOUT IN EXECUTION
INRITE	=0, WRITE ONLY IF ERRORS OCCUR =1, WRITE ON EVERY ITERATION
MAXLINE	MAX NUMBER LINES OF OUTPUT
LEN	NUMBER OF TRUNKING STATION CONNECTOR PAIRS USED
PIN(I)	I-TH TRUNKING STATION CONNECTOR INPUT
POUT(I)	I-TH TRUNKING STATION CONNECTOR OUTPUT

DADICS PATCHING REQUIREMENTS (ONE IIDIS AND ONE ICDIS)

TRUNKING	FORTRAN	AD/4 PATCH
V-50 TO W-50	FOR /IDIS2/1,IIDIS	TR00-TR07 AND TR20-TR27
V-52 TO W-50	FOR /IDIS2/1,IIDIS	TR40-TR47 AND TR60-TR67
V-50 TO W-51	FOR /IDIS2/2,IIDIS	TR00-TR07 AND TR20-TR27
V-52 TO W-51	FOR /IDIS2/2,IIDIS	TR40-TR47 AND TR60-TR67
V-51 TO W-60	FOR /DDIS2/1,ICDIS	TR10-TR17 AND TR30-TR37
V-53 TO W-50	FOR /DDIS2/1,ICDIS	TR50-TR57 AND TR70-TR77
V-51 TO W-51	FOR /DDIS2/2,ICDIS	TR10-TR17 AND TR30-TR37
V-53 TO W-51	FOR /DDIS2/2,ICDIS	TR50-TR57 AND TR70-TR77

INTEGER PIN(8),POUT(8)
COMMON/INTCOM/IOJT,LOOP,MAX,IBACK,INRITE
INTERRUPT(I=1,R=10,T=500)
COMMON/*IDIS2/1,IIDIS
COMMON/*DDIS2/1,ICDIS

INITIALIZATION

```
MAX=2**15-1
IOJT=0
LOOP=0
LIVE=0
INRITE=1
MAX-LIVE=400
LEN=4
PIN(1)=3RV50
PIN(2)=3RV51
PIN(3)=3RV52
PIN(4)=3RV53
```

```
CALL RESERVE(IERR)
WRITE(6,1000)IERR
IF(IERR.NE.0)STOP
```

```

3 CHECK PATCHING STATUS
3
3 CALL PATSTAT(PIN,POUT,LEN)
3 DO 10 I=1,LEN
10 WRITE(6,3000)PIN(I),POUT(I)
3
3 REAL TIME
3
3 CALL SIMRUN(ISTAT)
3 WRITE(6,2000)ISTAT
3 CALL REMARK(174 JOB IN REAL TIME)
3 WRITE(6,5000)
3 WRITE(6,5000)
3
3
3 25 CONTINUE
3 CALL BHOLD
3 LINE=LINE+1
3 IF(LINE.GT.MAXLINE)GO TO 20
3 WRITE(6,4000)IOJT,IOJT,IBACK,IBACK,LOOP
3 CALL SIM MOVE
3 CALL SIMSD
3 GO TO 25
3 20 WRITE(6,3000)
3 CALL REMARK(154 RETURN TO MAIN)
3 STOP
3
3
3 1000 FORMAT(24H1RESERVATION ERROR CODE=,020)
3 2000 FORMAT(134 REAL TIME STATUS=,020)
3 3000 FORMAT(140,*PROGRAM TERMINATED NORMALLY*)
3 4000 FORMAT(10K,010,I15,5X,010,I15,I15)
3 5000 FORMAT(5X,* IOJT(OCTAL) IOJT(DECIMAL) IBACK(OCTAL) IBACK(DECI
3 14A_) DDP(DECIMAL_*)*/
3 6000 FORMAT(//,35X,*ERRORS DETECTED*/)
3 8000 FORMAT(*STRJNK LINE PATCHING IS *,R3,* TO *,R3)
3 END

```

SUBROUTINE SJ31

REAL TIME INTERRUPT SUBROUTINE

COMMON/INFCOM/IOUT, _LOOP, MAX, IBACK, INRITE

COMMON/*DIS2/1, IIBIS

COMMON/*DDIS2/1, IDDIS

IDDIS=IOUT

IBACK=IIDIS

IF(IOUT.EQ.IBACK.AND.INRITE.EQ.1)CALL SIMAD_D

IF(IOUT.NE.IBACK) GO TO 10

IOUT=IOUT+1

IF(IOUT.EQ.MAX) IOUT=1

_LOOP=1

10 _LOOP=_LOOP+1

IF(_LOOP.EQ.10)CALL SIMAD_D

CALL SIMIDLE

END

RELEASE TRJISIO(0), SJ31(1)

GLOBAL INFCOM

END

RESERVATION ERROR CODE=0000000000000000

TRUNK LINE PATCHING IS V50 TO A50

TRUNK LINE PATCHING IS V51 TO A50

TRUNK LINE PATCHING IS V52 TO A51

TRUNK LINE PATCHING IS V53 TO A57
REAL TIME STATUS=00000000000000000002

ERRORS DETECTED

IOUT(OCTAL)	IOUT(DECIMAL)	IBACK(OCTAL)	IBACK(DECIMAL)	LOOP(DECIMAL)
0000000000	0	0000000000	0	0
0000000001	1	0000000001	1	3
0000000002	2	0000000002	2	3
0000000003	3	0000000003	3	3
0000000004	4	0000000004	4	3
0000000005	5	0000000005	5	3
0000000006	6	0000000006	6	3
0000000007	7	0000000007	7	3
0000000008	8	0000000008	8	3
0000000009	9	0000000009	9	3
0000000010	10	0000000010	10	3
0000000011	11	0000000011	11	3
0000000012	12	0000000012	12	3
0000000013	13	0000000013	13	3
0000000014	14	0000000014	14	3
0000000015	15	0000000015	15	3
0000000016	16	0000000016	16	3
0000000017	17	0000000017	17	3
0000000018	18	0000000018	18	3
0000000019	19	0000000019	19	3
0000000020	20	0000000020	20	3
0000000021	21	0000000021	21	3
0000000022	22	0000000022	22	3
0000000023	23	0000000023	23	3
0000000024	24	0000000024	24	3
0000000025	25	0000000025	25	3
0000000026	26	0000000026	26	3

0000000373	251	0000000373	251	3
0000000374	252	0000000374	252	3
0000000375	253	0000000375	253	3
0000000376	254	0000000376	254	3
0000000377	255	0000000377	255	3
0000000400	255	0000000400	0	10

PROGRAM TRALRIO(OUTPUT,NFILE,TAPE6=OUTPUT)

C
C PROGRAM TO TEST ANALOG SIGNALS BETWEEN AD/4 AND CDC/6600. THIS TASK
C IS ACCOMPLISHED BY TURNING THE ANALOG SIGNAL AROUND AT THE AD/4 AND
C COMPARING DIFFERENCE UPON RETURN TO THE CDC/6600. THE PROGRAM TEST
C FOR ERRORS GREATER THAN FIVE PERCENT.

C
C NOTE ADCS AND DACS ARE IN GROUPS OF 16, 1-16, 17-32, 33-48, 49-64.
C FLOATING POINT ANALOG SIGNALS ARE SCALED GE -1.0 AND LE +1.0.
C INTEGER ANALOG SIGNALS ARE SCALED GE -32767 AND LE +32767(14 BIT).

C
C PROGRAM VARIABLES

IERR	ERROR CODE FOR RESERVATION 0=NOERROR, GT.0=RESERVATION ERROR
ISTAT	REAL TIME MODE =IN REAL TIME, ISTAT.GT.0 NOT IN REAL TIME
OUT	THE DAC VARIABLE
BACK	THE ADC VARIABLE
BIGDIFF	MAXIMUM ALLOWABLE DIFFERENCE IN ADC AND DAC
DIFF	ACTUAL COMPUTED DIFFERENCE IN ADC AND DAC
LINE	NUMBER OF LINES OF PRINTOUT IN EXECUTION
MAXLINE	MAXIMUM NUMBER OF LINES PRINTED
TIMELEFT	REMAINING RCT TIME
STATUS	THE HRTM STATUS WORD
LOOP	NUMBER OF ATTEMPTS TO EQUATE ADC AND DAC
J	A MASKING WORD USED IN CONJUNCTION WITH THE STAT FUNCTION

C
C DADOS PATCHING REQUIREMENTS (AD/4 FIELD 3, 4TH GROUP ADC AND DAC)

TRUNKING	FORTRAN	AD/4 PATCH
H-03 TO V-06	FOR /*ADC1/49,ADC	TR10-TR17 AND TR30-TR37
H-13 TO V-07	FOR /*DAC1/49,DAC	TR50-TR57 AND TR70-TR77

C
C THE FIRST ADC IN EACH GROUP OF 16 CORRESPONDS TO AD/4 TR-10.
C THE FIRST DAC IN EACH GROUP OF 16 CORRESPONDS TO AD/4 TR-50.

C
COMMON/INFCOM/OUT,LOOP,BACK,BIGDIFF,DIFF,STATUS,J
INTERRUPT(I=1,R=100,T=10000)
COMMON/*ADC1/49,ADC
COMMON/*DAC1/49,DAC

C
C INITIALIZATION

BIGDIFF=.01
OUT=-1.5
LOOP=0
LINE=0
MAXLINE=400
TIMELEFT=0
J=77777777777777777777
CALL RESERVE(IERR)
WRITC(S,1000)IERR
IF(IERR.NE.0)STOP

C
C REAL TIME

6 CALL SIMRUN(ISTAT)
7 WRITE(5,2000)ISTAT
8 CALL REMARK(17H JOB IN REAL TIME)
9 WRITE(6,3000)
10 25 CONTINUE
11 CALL SHOLD
12 LINE=LINE+1
13 IF(LINE.GT.MAXLINE)GO TO 50
14 TIMELEFT=STATUS.A.37777773
15 WRITE(6,4000)OUT,BACK,DIFF,LOOP,TIMELEFT,STATUS
16 OUT=OUT+0.01
17 IF(OUT.GT.1.50)OUT=0.0
18 LOOP=0
19 CALL SIMGO
20 GO TO 25
21 50 WRITE(6,5000)
22 STOP
23 1000 FORMAT(24H1RFSERVATION ERROR CODE=,020)
24 2000 FORMAT(1SH REAL TIME STATUS=,020)
25 3000 FORMAT(1H0,*PROGRAM TERMINATED ON MAX LINE*)
26 4000 FORMAT(5X,3F10.6,I10,I10,5X,020)
27 5000 FORMAT(//12X,*OUT*,6X,*BACK*,4X,* DIFF *,5X,*LOOP*,3X,*TIMELEFT*,
28 18X,*STATUS(OCTAL)*/)
29 END

SUBROUTINE SUB1

REAL TIME INTERRUPT SUBROUTINE

COMMON/INTCOM/OUT,LOOP,BACK,BIGDIFF,DIFF,STATUS,J

COMMON/*ADC1/49,ADC

COMMON/*DAC1/49,DAC

DAC=OUT

BACK=ADC

COMPUTE DIFFERENCE IN ADC AND DAC VALUES

DIFF=ABS(ADC)-ABS(BACK);

STATUS=STAT(J)

IF(DIFF.LT.BIGDIFF)CALL SIMHOLD

LOOP=LOOP+1

STATUS=STAT(J)

IF(LOOP.EQ.10)CALL SIMHOLD

CALL SIMIRCLE

END

RTREF IRALGIC(0),SUB1(1)

GLOBAL INTCOM

END

RESERVATION ERROR CODE=101000-99610000000000
 REAL TIME STATUS=000000000000000000000000

CUT	BACK	DIFF	LOOP	TIME_LT	STATUS(OCTAL)
-1.50000	- .99994	.50000	10	98	3074000000000000000142
-1.49000	- .99994	.49000	10	98	3074000000000000000142
-1.48000	- .99994	.48000	10	98	3074000000000000000142
-1.47000	- .99994	.47000	10	98	3074000000000000000142
-1.46000	- .99994	.46000	10	98	3074000000000000000142
-1.45000	- .99994	.45000	10	98	3074000000000000000142
-1.44000	- .99994	.44000	10	98	3074000000000000000142
-1.43000	- .99994	.43000	10	98	3074000000000000000142
-1.42000	- .99994	.42000	10	98	3074000000000000000142
-1.41000	- .99994	.41000	10	98	3074000000000000000143
-1.40000	- .99994	.40000	10	98	3074000000000000000142
-1.39000	- .99994	.39000	10	98	3074000000000000000142
-1.38000	- .99994	.38000	10	99	3074000000000000000143
-1.37000	- .99994	.37000	10	98	3074000000000000000142
-1.36000	- .99994	.36000	10	98	3074000000000000000142
-1.35000	- .99994	.35000	10	98	3074000000000000000142
-1.34000	- .99994	.34000	10	98	3074000000000000000142
-1.33000	- .99994	.33000	10	98	3074000000000000000142
-1.32000	- .99994	.32000	10	98	3074000000000000000142
-1.31000	- .99994	.31000	10	98	3074000000000000000142
-1.30000	- .99994	.30000	10	98	3074000000000000000142
-1.29000	- .99994	.29000	10	98	3074000000000000000142
-1.28000	- .99994	.28000	10	98	3074000000000000000142
-1.27000	- .99994	.27000	10	98	3074000000000000000142
-1.26000	- .99994	.26000	10	98	3074000000000000000142
-1.25000	- .99994	.25000	10	98	3074000000000000000142
-1.24000	- .99994	.24000	10	98	3074000000000000000142
-1.23000	- .99994	.23000	10	98	3074000000000000000142
-1.22000	- .99994	.22000	10	98	3074000000000000000142
-1.21000	- .99994	.21000	10	98	3074000000000000000142
-1.20000	- .99994	.20000	10	98	3074000000000000000142
-1.19000	- .99994	.19000	10	98	3074000000000000000142
-1.18000	- .99994	.18000	10	98	3074000000000000000142
-1.17000	- .99994	.17000	10	98	3074000000000000000142
-1.16000	- .99994	.16000	10	98	3074000000000000000142
-1.15000	- .99994	.15000	10	98	3074000000000000000142
-1.14000	- .99994	.14000	10	98	3074000000000000000142
-1.13000	- .99994	.13000	10	98	3074000000000000000142
-1.12000	- .99994	.12000	10	98	3074000000000000000142
-1.11000	- .99994	.11000	10	98	3074000000000000000142
-1.10000	- .99994	.10000	10	98	3074000000000000000142
-1.09000	- .99994	.09000	10	98	3074000000000000000142
-1.08000	- .99994	.08000	10	98	3074000000000000000142
-1.07000	- .99994	.07000	10	98	3074000000000000000142
-1.06000	- .99994	.06000	10	98	3074000000000000000142
-1.05000	- .99994	.05000	10	98	3074000000000000000142
-1.04000	- .99994	.04000	10	98	3074000000000000000142
-1.03000	- .99994	.03000	10	98	3074000000000000000142
-1.02000	- .99994	.02000	10	98	3074000000000000000142
-1.01000	- .99994	.01000	10	98	3074000000000000000142
-1.00000	- .99994	.00000	0	99	1074000000000000000143
- .99100	- .99994	.00004	1	99	1074000000000000000143
- .98100	- .98010	.00010	3	99	0074000000000000000143
- .97000	- .97003	.00003	3	99	0074000000000000000143
- .96000	- .96037	.00007	2	99	0074000000000000000143
- .95000	- .95007	.00007	3	99	0074000000000000000143
			7	99	0074000000000000000143

- .93700	- .93700	.00100	3	99	00740000000000000000143
- .92800	- .92800	.00100	3	99	00740000000000000000143
- .91900	- .91900	.00100	3	99	00740000000000000000143
- .90000	- .90000	.00000	3	99	00740000000000000000143
- .89100	- .89100	.00000	3	99	00740000000000000000143
- .88200	- .88200	.00000	3	99	00740000000000000000143
- .87300	- .87300	.00000	3	99	00740000000000000000143
- .86400	- .86400	.00000	3	99	00740000000000000000143
- .85500	- .85500	.00000	3	99	00740000000000000000143
- .84600	- .84600	.00000	3	99	00740000000000000000143
- .83700	- .83700	.00000	3	99	00740000000000000000143
- .82800	- .82800	.00001	3	99	00740000000000000000143
- .81900	- .81900	.00005	2	99	00740000000000000000143
- .81000	- .81000	.01000	1	99	00740000000000000000143
- .79900	- .79900	.00000	2	99	00740000000000000000143
- .78900	- .78900	.00000	2	99	00740000000000000000143
- .77900	- .77900	.00000	1	99	00740000000000000000143
- .76900	- .76900	.00000	2	99	00740000000000000000143
- .75900	- .75900	.00000	1	99	00740000000000000000143
- .74900	- .74900	.00000	3	99	00740000000000000000143
- .73900	- .73900	.00010	3	99	00740000000000000000143
- .72900	- .72900	.00000	3	99	00740000000000000000143
- .71900	- .71900	.00000	2	99	00740000000000000000143
- .70900	- .70900	.00001	3	99	00740000000000000000143
- .69900	- .69900	.00005	2	99	00740000000000000000143
- .68900	- .68900	.00013	3	99	00740000000000000000143
- .67900	- .67900	.00004	3	99	00740000000000000000143
- .66900	- .66900	.00010	3	99	00740000000000000000143
- .65900	- .65900	.00010	3	99	00740000000000000000143
- .64900	- .64900	.00001	3	99	00740000000000000000143
- .63900	- .63900	.00005	1	99	00740000000000000000143
- .62900	- .62900	.00000	2	99	00740000000000000000143
- .61900	- .61900	.00000	3	99	00740000000000000000143
- .60900	- .60900	.00004	3	99	00740000000000000000143
- .59900	- .59900	.00003	3	99	00740000000000000000143
- .58900	- .58900	.00000	3	99	00740000000000000000143
- .57900	- .57900	.00000	3	99	00740000000000000000143
- .56900	- .56900	.00000	3	99	00740000000000000000143
- .55900	- .55900	.01000	1	99	00740000000000000000143
- .54900	- .54900	.00000	2	99	00740000000000000000143
- .53900	- .53900	.00003	3	99	00740000000000000000143
- .52900	- .52900	.00000	2	99	00740000000000000000143
- .51900	- .51900	.00005	3	99	00740000000000000000143
- .50900	- .50900	.00005	1	99	00740000000000000000143
- .49900	- .49900	.00017	3	99	00740000000000000000143
- .48900	- .48900	.00015	3	99	00740000000000000000143
- .47900	- .47900	.00000	3	99	00740000000000000000143
- .46900	- .46900	.00002	3	99	00740000000000000000143
- .45900	- .45900	.00000	2	99	00740000000000000000143
- .44900	- .44900	.00000	3	99	00740000000000000000143
- .43900	- .43900	.00011	3	99	00740000000000000000143
- .42900	- .42900	.00017	3	99	00740000000000000000143
- .41900	- .41900	.00016	3	99	00740000000000000000143
- .40900	- .40900	.00002	3	99	00740000000000000000143
- .39900	- .39900	.00001	3	99	00740000000000000000143
- .38900	- .38900	.00007	3	99	00740000000000000000143
- .37900	- .37900	.00013	3	99	00740000000000000000143
- .36900	- .36900	.00005	3	99	00740000000000000000143
- .35900	- .35900	.00016	3	99	00740000000000000000143
- .34900	- .34900	.00015	3	99	00740000000000000000143
- .33900	- .33900	.00008	3	99	00740000000000000000143
- .32900	- .32900	.00001	3	99	00740000000000000000143
- .31900	- .31900	.00010	3	99	00740000000000000000143
- .30900	- .30900	.00011	3	99	00740000000000000000143
- .29900	- .29900	.00004	3	99	00740000000000000000143
- .28900	- .28900	.00015	3	99	00740000000000000000143

-27190	-27092	.00012	3	99	00740000000000000143
-26490	-26091	.00001	3	99	00740000000000000143
-25190	-25001	.00000	3	99	00740000000000000143
-24090	-24011	.00011	2	99	00740000000000000143
-23090	-23010	.00010	3	99	00740000000000000143
-22090	-22003	.00013	3	99	00740000000000000143
-21090	-21002	.00012	3	99	00740000000000000143
-20090	-20013	.00013	3	99	00740000000000000143
-19090	-19006	.00016	3	99	00740000000000000143
-18090	-18018	.00018	3	99	00740000000000000143
-17090	-17010	.00010	3	99	00740000000000000143
-16090	-16010	.00010	3	99	00740000000000000143
-15090	-15002	.00002	2	99	00740000000000000143
-14090	-14001	.00001	3	99	00740000000000000143
-13090	-13007	.00007	3	99	00740000000000000143
-12090	-12006	.00006	3	99	00740000000000000143
-11090	-11011	.00011	3	99	00740000000000000143
-10090	-10018	.00018	3	99	00740000000000000143
-09090	-09003	.00003	3	99	00740000000000000143
-08090	-08014	.00014	3	99	00740000000000000143
-07090	-07001	.00001	3	99	00740000000000000143
-06090	-06012	.00012	3	99	00740000000000000143
-05090	-05000	.01000	1	99	00740000000000000143
-04090	-04010	.00010	3	99	00740000000000000143
-03090	-03003	.00003	3	99	00740000000000000143
-02090	-02008	.00008	3	99	00740000000000000143
-01090	-01001	.00001	3	99	00740000000000000143
00090	-0.00000	.00000	3	99	00740000000000000143
01090	.00003	.00017	3	99	00740000000000000143
02090	.01984	.00016	3	99	00740000000000000143
03090	.02979	.00021	3	99	00740000000000000143
04090	.03992	.00008	3	99	00740000000000000143
05090	.04993	.00007	3	99	00740000000000000143
06090	.05983	.00012	3	99	00740000000000000143
07090	.06982	.00013	3	99	00740000000000000143
08090	.07990	.00010	3	99	00740000000000000143
09090	.08994	.00016	3	99	00740000000000000143
10090	.09985	.00015	3	99	00740000000000000143
11090	.10980	.00020	3	99	00740000000000000143
12090	.11993	.00007	3	99	00740000000000000143
13090	.12982	.00018	3	99	00740000000000000143
14090	.13983	.00017	3	99	00740000000000000143
15090	.14984	.00013	3	99	00740000000000000143
16090	.15991	.00009	3	99	00740000000000000143
17090	.16992	.00008	3	99	00740000000000000143
18090	.17999	.00001	3	99	00740000000000000143
19090	.18994	.00006	3	99	00740000000000000143
20090	.19995	.00005	3	99	00740000000000000143
21090	.20990	.00010	3	99	00740000000000000143
22090	.21979	.00021	3	99	00740000000000000143
23090	.22992	.00003	3	99	00740000000000000143
24090	.23987	.00013	3	99	00740000000000000143
25090	.24994	.00006	3	99	00740000100000000143
26090	.25983	.00017	3	99	00740000000000000143
27090	.26984	.00016	3	99	00740000000000000143
28090	.27985	.00015	3	99	00740000000000000143
29090	.28986	.00014	3	99	00740000000000000143
30090	.29993	.00007	3	99	00740000000000000143
31090	.30988	.00012	3	99	00740000000000000143
32090	.31982	.00018	3	99	00740000000000000143
33090	.32983	.00017	3	99	00740000000000000143
34090	.33984	.00015	3	99	00740000000000000143
35090	.34991	.00009	3	99	00740000000000000143
36090	.35993	.00001	3	100	00740000000000000144
37090	.37000	.00010	3	99	00740000000000000143

• 11070	• 11070	• 00011	3	99	007401000000000000143
• 22000	• 21997	• 00013	3	99	007400000000000000143
• 23000	• 22000	• 00014	3	99	007400000000000000143
• 24000	• 23996	• 00017	3	99	007400000000000000143
• 25000	• 24004	• 00005	3	99	007400000000000000143
• 26000	• 25989	• 00011	3	99	007400000000000000143
• 27000	• 26134	• 00016	3	99	007400000000000000143
• 28000	• 27985	• 00015	3	99	007400000000000000143
• 29000	• 28973	• 00021	3	99	007400000000000000143
• 30000	• 29993	• 00037	3	99	007400000000000000143
• 31000	• 30994	• 00006	3	99	007400000000000000143
• 32000	• 31989	• 00011	3	99	007400000000000000143
• 33000	• 32983	• 00017	3	99	007400000000000000143
• 34000	• 33984	• 00016	3	99	007400000000000000143
• 35000	• 34991	• 00003	3	99	007400000000000000143
• 36000	• 35985	• 00014	3	99	007400000000000000143
• 37000	• 37000	• 00000	3	99	007401000000000000143
• 38000	• 37988	• 00012	3	99	007400000000000000143
• 39000	• 38989	• 00011	3	99	007400000000000000143
• 40000	• 39984	• 00015	3	99	007400000000000000143
• 41000	• 40987	• 00003	3	99	007400000000000000143
• 42000	• 41982	• 00008	3	99	007400000000000000143
• 43000	• 42983	• 00007	3	99	007400000000000000143
• 44000	• 43975	• 00024	3	99	007400000000000000143
• 45000	• 44989	• 00011	3	99	007400000000000000143
• 46000	• 45990	• 00018	3	99	007400000000000000143
• 47000	• 46981	• 00009	3	99	007400000000000000143
• 48000	• 47803	• 00007	1	99	007400000000000000143
• 49000	• 48933	• 00007	3	99	007400000000000000143
• 50000	• 49905	• 00995	2	99	007400000000000000143
• 51000	• 50989	• 00011	3	99	007400000000000000143
• 52000	• 51984	• 00016	3	99	007400000000000000143
• 53000	• 52985	• 00015	3	99	007400000000000000143
• 54000	• 53982	• 00008	3	99	007400000000000000143
• 55000	• 54987	• 00013	3	99	007400000000000000143
• 56000	• 55981	• 00019	3	99	007400000000000000143
• 57000	• 56982	• 00018	3	99	007400000000000000143
• 58000	• 57977	• 00023	3	99	007400000000000000143
• 59000	• 58984	• 00016	3	99	007400000000000000143
• 60000	• 59973	• 00027	3	99	007400000000000000143
• 61000	• 60992	• 00003	3	99	007400000000000000143
• 62000	• 61987	• 00013	3	99	007400000000000000143
• 63000	• 62982	• 00018	3	99	007400000000000000143
• 64000	• 63983	• 00017	3	99	007400000000000000143
• 65000	• 64984	• 00016	3	99	007400000000000000143
• 66000	• 65991	• 00009	3	99	007400000000000000143
• 67000	• 66982	• 00008	3	99	007400000000000000143
• 68000	• 67995	• 00007	3	99	007400000000000000143
• 69000	• 68988	• 00012	3	99	007400000000000000143
• 70000	• 69983	• 00017	3	99	007400000000000000143
• 71000	• 70984	• 00016	3	99	007400000000000000143
• 72000	• 71985	• 00015	3	99	007400000000000000143
• 73000	• 72992	• 00008	3	99	007400000000000000143
• 74000	• 73993	• 00007	3	99	007400000000000000143
• 75000	• 74988	• 00012	3	99	007400000000000000143
• 76000	• 75977	• 00023	3	99	007400000000000000143
• 77000	• 76984	• 00016	3	99	007400000000000000143
• 78000	• 77985	• 00016	3	99	007400000000000000143
• 79000	• 78986	• 00014	3	99	007400000000000000143
• 80000	• 79987	• 00013	3	99	007400000000000000143
• 81000	• 80988	• 00112	3	99	007400000000000000143
• 82000	• 81975	• 00024	3	99	007400000000000000143
• 83000	• 82983	• 00017	3	99	007400000000000000143
• 84000	• 83984	• 00016	3	99	007400000000000000143
• 85000	• 84985	• 00015	3	99	007400000000000000143
• 86000	• 85986	• 00016	3	99	007400000000000000143

PROGRAM TERMINATED ON MAX LINE

APPENDIX F

COMPUTER LISTING OF
PHASE 1 STINGER CONVERSION

BOK
DYNAMICS, INC.

MAIN 74/74 OPT=1

FTNH 4.2+75075

07/16/75

PROGRAM MAIN(INPUT,OUTPUT,HFILE,TAPE6=OUTPUT,TAPE5=INPUT,TAPE8)

COMMENT. *****

COMMENT. HYBRID SIMULATION CONTROL

COMMENT. *****

C***

C***

C NRUNS IS THE NUMBER OF RUNS PER FLIGHT CONDITION. MAXIMUM OF 20
C XTERM IS THE VALUE OF DELTA X AT WHICH SIMULATION IS TERMINATED
C DX IS THE DELTA RANGE BETWEEN COLLECTED DATA POINTS
C NPTS IS THE NUMBER OF DATA POINTS COLLECTED

C***

COMMON/COMA/LEVEL,IPTS,XXS(50),XDTG0,YDTG0,ZDTG0,RLB,COSE,SPO,RI,
*SAM,EDOT,THETAL,RN,
* PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
*,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
*,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
*,XDO,YDO,ZDO,DGX,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
*RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
*CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
*PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
*,SA,CA,VMX(50),VMY(50),VMZ(50)
*,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)

COMMON /COMB/XD,YD,ZD,XDTG,YDTG,ZDTG,XDEF,YDEF,ZDEF,ZZZ

*,XDD,EYDD,ZDD

COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
* XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,
* ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ

COMMON/GTARG/FXA,FYA,FZA,FXB,FYB,FZB,FXC,FYC,FZC,AT,VT

COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,

*Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,

*S2P2,S1P2,A2P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,

*S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6

COMMON/EXTRA/NPTS,DX,XTERM,KKK,AS,SEO,SC,ASEO,R,SCALEL,VVVV,C1,

*XLOS,YLOS,ZLOS,C0,CX,CY,CLY,CLZ,TRP,XX(50),THE

COMMON /ANG/ SINS0,COSS0,SINSCO,COSSCO

COMMON/PK/XDH(22),YDH(22),ZDH(22),BDHX(22),BDHY(22),BDHZ(22)

*,KILL(22),P(4),SPK,SPHG,SPHS,SPM

COMMON/MISD/XM(3),YM(3),ZM(3),RM(3),NOPT,ICN

COMMON/DELT/PPXS(50),PPYS(50),PPZS(50),VMXS(50),VMYS(50),VMZS(50)

COMMON/COMD/COSA,COSB,COSG,YA,ZA

C***

REAL NR

DIMENSION ZTE0(62),TM(30)

DIMENSION AXM(20),AYM(20),AZM(20),ARM(20),

*,AXB(20),AYB(20),AZB(20),ARB(20),

*,AXC(20),AYC(20),AZC(20),ARC(20)

DIMENSION ASC(62),RR(62),XMT(3),YMT(3),ZMT(3),RMT(3)

DIMENSION AXMT(20),AYMT(20),AZMT(20),ARMT(20),AXBT(20),AYBT(20),

*AZBT(20),ARBT(20),AXCT(20),AYCT(20),AZCT(20),ARCT(20)

INTERRUPT(I=1,R=50,T=80,P=100)

COMMON/*DAC1/LAUNCH(11)

COMMON/*ADC1/ADIN(10)

COMMON/*IDIS2/IIN

JAM,ON

COMMON/*ODIS2/IOUT

JAM,OFF

C*** NEXT CARD IS TAPE SPECIFIC FOR LAUNCH AT WSMR
DATA ZABOVE/-3989./
DATA RTD,DTR/57.2957795,0.01745329/
DATA(TM(I),I=1,27)/0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,
* 13.,14.,15.,16.,17.,18.,19.,20.,21.,22.,23.,24.,25.,26./
SCALE = 102.375
SCALET = 102.375 / 10.
SCALEL = 200. * 102.375
SCALEV=20.*102.375
SCALE2=6.*1.02375
SCALED=20.*102.375
KASE=0
RLBK=3.3333

10 CONTINUE
READ (8,2000) IS1,NSAM,ICON,INL
WRITE (8,800)
WRITE (8,2002) IS1,NSAM,ICON,INL
PRINT 800
DO 11 I=1,10
READ (5,620) CLMS(I),CLS1(I),CLS2(I)
PRINT 2005, CLMS(I),CLS1(I),CLS2(I)

11 CONTINUE
READ (5,621) Q1,Q2,Q3,Q4,Q5,Q6
PRINT 800
PRINT 2006, Q1,Q2,Q3,Q4,Q5,Q6
READ (5,621) W1,W2,W3,W4,W5,W6
PRINT 800
PRINT 2007, W1,W2,W3,W4,W5,W6
CALL QCLIM
READ (5,902) NRUNS
PRINT 800
PRINT 2010, NRUNS
NR=NRUNS
IF (NRUNS.LE.20) GO TO 15
PRINT 802, NRUNS
NRUNS = 20

15 CONTINUE
READ (5,903) NPTS,DX,XTERM
PRINT 800
PRINT 2008, NPTS,DX,XTERM

C*** READ IN LAUNCH CONDITIONS. NL IS NUMBER OF LAUNCH SETS.
READ (5,902) NL
PRINT 800
PRINT 2011, NL
IF(NL.LE.61) GO TO 30 **FOR NL IS 700 LINES**

30 CONTINUE
PRINT 800
IF(IS1.NE.1) PRINT 833

C*** READ AND PRINT LOADED LAUNCH CONDITION SETS.
NLL=NL+1
PRINT 800

```
DO 40 I=1,NLL
READ (5,904) ZTE0(I),ASC(I),RR(I)
ZTE = -ZTE0(I)
IF (IS1.NE.1) PRINT 835, I,ZTE,ASC(I),RR(I)
40 CONTINUE
3 CONTINUE
PRINT 800
NT=27
IQCI=0
GO TO 42
C*** AUTOMATIC SELECTION OF LAUNCH CONDITIONS.
41 INL=INL+1
IFT=0
C INDEX FOR AUTO TEST CASE CHECK
63 I99=0
U77=FLOAT(INL)
U78=(U77-1.)/5.
I77=IFIX(U78)
U79=FLCAT(I77)
U80=U78-U79
C TEST FOR EVERY FIFTH LAUNCH SET
IF (U80.LT.0.01) I99=1
C TEST FOR FIRST LAUNCH SET
IF (INL.EQ.1) I99=1
IF (INL.EQ.1) IQCI=1
C INDEX FOR OTHER RUNS
I88=0
C TEST FOR LAST TEST CASE CHECK
IF (INL.GT.NL) I88=1
C TEST CASE CHECK REQUIRED AFTER LAST LAUNCH SET
IF (INL.GT.NL) I99=1
IF (I99.EQ.1) GO TO 62
628 KASE = INL
KA=KASE
PRINT 918, KA
ITT=ITRAJ(INL)
PRINT 916, ITT
IT1=ITAU(INL)
PRINT 917, IT1
TAU=FLOAT(IT1)
GO TO 51
42 READ (8,2000) III,IRSS,KA,ITT,NOGO
WRITE (8,800)
WRITE (8,2003) III,IRSS,KA,ITT,NOGO
READ (8,2001) TAU
WRITE (8,800)
WRITE (8,2004) TAU
IF (III.EQ.1) GO TO 41
50 CONTINUE
5 PRINT 800
23 CONTINUE
C*** LAUNCH CONDITIONS HAVE BEEN SELECTED.
GO TO 51
62 CONTINUE
PRINT 625
TAU=3.0
C INDEX FOR TEST CASE DATA CARD OF LAUNCH CONDITIONS
```

JRAM MAIN

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
KA=NL+1
C INDEX FOR TEST CASE TARGET MANEUVER
C*** NEXT CARD IS TAPE SPECIFIC FOR ITT=39 FOR TEST CASE MANEUVER
      ITT=39
C*** ADJUST FOR TAU AND SCALE TARGET VELOCITY-TIME MANEUVER TABLE.
51 NTAU = INT(TAU) + 1
DO 25 I = NTAU,NT
K = I - NTAU + 1
TMA(K)=TM(I)-TAU
TMAS(K)=TMA(K)/SCALET
XDM(K)=XDEM(I,ITT)
YDM(K)=YDEM(I,ITT)
ZDM(K)=ZDEM(I,ITT)
25 CONTINUE
KK=NT-INT(TAU)+1
DO 26 K=KK,NT
TMA(K)=FLOAT(K)-1.
XDM(K)=XDEM(NT,ITT)
YDM(K)=YDEM(NT,ITT)
ZDM(K)=ZDEM(NT,ITT)
26 CONTINUE
C*** GENERATE TARGET AERODYNAMIC ACCELERATION TABLE
XE(1)=XDM(2)-XDM(1)
YE(1)=YDM(2)-YDM(1)
ZE(1)=ZDM(2)-ZDM(1)-32.174
DO 31 I=2,NT
IV=I-1
XE(I)=XDM(I)-XDM(IV)
YE(I)=YDM(I)-YDM(IV)
ZE(I)=ZDM(I)-ZDM(IV)-32.174
31 CONTINUE
KASE=KA
Z=ZTE0(KASE)
ZZZ=Z+Z ABOVE
ZALT=ZZZ
AS=ASC(KASE)
R=RR(KASE)
XD=XDM(1)
YD=YDM(1)
ZD=ZDM(1)
C CHECK FOR HELICOPTER
VVVV=SQRT(XD*XD+YD*YD+ZD*ZD)
IF(VVVV.LT.338.0) PRINT 199
C***
KKK=0
IF(XD.NE.0.0.AND.YD.NE.0.0) GO TO 55
IF(XD.EQ.0.0.AND.YD.GT.0.0) GO TO 53
IF(XD.EQ.0.0.AND.YD.LT.0.0) GO TO 54
KKK=1
SCO=0.0
ASCO=0.0
IF(ZD.EQ.0.0) GO TO 52
IF(ZD.GT.0.0) SEO=90.*DTR
IF(ZD.LT.0.0) SEO=-90.*DTR
PRINT 913
GO TO 60
52 PRINT 914
```

MAIN

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
      SEO=0.0
      GO TO 60
 53  BETA=90.
      GO TO 56
 54  BETA=270.
      GO TO 56
 55  BETA=ATAN2(YD,XD)*RTD
 56  ASCO=AS+BETA-180.
      IF(ASCO.GT.0.0) GO TO 60
      ASCO=360.+ASCO
 60  CONTINUE
      SCO=ASCO*DTR
      ARG=-Z/R
      SO=ASIN(ARG)
      THETAL=SO*RTD/SCALE
      ASO=SO*RTD
      X=R*COS(SO)*COS(SCO)
      Y=R*COS(SO)*SIN(SCO)
      PRINT 805, ASCO,ASO,R
      PRINT 912,X,Y,Z
*** CALCULATE CONSTANTS FOR CORDINATE TRANSFORMATION
      SINSO=SIN(SO)
      COSSO=COS(SO)
      SINSO=SIN(SCO)
      COSSCO=COS(SCO)
      S2=COSSO*COSSCO
      S3=SINSO*COSSCO
      S4=COSSO*SINSO
      S5=SINSO*SINSO
      SPL=SINSO
      CTL=COSSO
      STL=SINSO
      CPL=COSSCO
*** MAKE EARTH TO GUIDANCE TRANSFORMATION
      CALL GUI0
      XDTG0 = XDTG
      YDTG0 = YDTG
      ZDTG0 = ZDTG
*** CALCULATE SCALE FACTOR EQUATION
      RI=R
      CALL KSCALE,RETURNS(50)
      EDOT=(GGG/G)/SCALE2
*** READY TO MAKE FLIGHTS AND COLLECT POSITION POINTS
      SPK=0.
      SPHG=0.
      SPHS=0.
      SPM=0.
      N111=NRUNS
      IF(IRSS.EQ.1) NRUNS=IRSS
      IF(IRSS.EQ.1) NR=IRSS
      IF(IRSS.EQ.1) I99=0
      IF(I99.EQ.1) NRUNS=NSAM+1
      IF(I99.EQ.1) NR=NRUNS
      DO 150 I=1,NRUNS
      CALL INIT
      IF(IS1.NE.1) PRINT 77,RN
      ICRN = I
```

XMISS(7) = -77
C*** ZERO STORAGES AREA
DO 85 J=1,50
DO 85 K=1,4
XMAN(K,J) = 0.
85 CONTINUE
DO 90 J=1,50
PPX(J) = 0.0
PPY(J) = 0.0
PPZ(J) = 0.0
TIME(J) = 0.0
VMX(J) = 0.0
VMY(J) = 0.0
VMZ(J) = 0.0
90 CONTINUE
IPTS=NADJ
CALL FLIGHT
IF(IS1.EQ.1) GO TO 91
PRINT 999,RI,GAM,EDOT,XDTGO,YDTGO,ZDTGO,RN,RLB,SPD
PRINT 999,XCOMP,YCOMP,ZCOMP,G,GGG,XDO,YDO,ZDO,DGX,DYG
PRINT 999,DZG,S2,S3,S4,S5,RLBK,SCALEP,COSE,F1,F2
PRINT 999,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR
PRINT 999,SPL,CTL,STL,CPL,A1,VTI,ZALT,CLA,PHO,ARG
PRINT 999,AAA,SCALET,TREAL,XTA,YTA,ZTA,SCALEV,QM,SA,CA
PRINT 998,LEVEL,IPTS,NT,NERR,NPX,NX
PRINT 999,TRP,XLOS,YLOS,ZLOS,CO,CX,CY,CLY,CLZ,VVVV
PRINT 999,C1,AS,SEO,SC,ASEO,R,SCALEL,THETAL,THE
91 CONTINUE
NOPT = NADJ
C*** SCALE AND WRITE THE POSITION POINTS
IF(IS1.NE.1) PRINT 800
IF(XMISS(7).GE.0.) PRINT 909, XMISS
IF(IS1.EQ.1) PRINT 809,ICN *ICN flight number*
IF(IS1.NE.1) PRINT 810,ICN
95 IF(IPTS.EQ.0) GO TO 150
DO 110 J=1,NADJ
PPXS(J)=PPX(J)*SCALEP
PPYS(J)=PPY(J)*SCALEP
PPZS(J)=PPZ(J)*SCALEP
TIMES(J)=TIME(J)*SCALET
VMXS(J)=VMX(J)*SCALEL
VMYS(J)=VMY(J)*SCALEL
VMZS(J)=VMZ(J)*SCALEL
IF(IS1.EQ.1) GO TO 110
PRINT 811, PPXS(J),PPYS(J),PPZS(J),TIMES(J)
110 CONTINUE
C CHECK DIGITAL TIME CRITICAL DATA COLLECTION
NOK=NADJ-1
DO 330 M=1,NOK
XCOMM=-XX(M)
XCOLL=PPXS(M)
XCODX=-XX(M+1)
IF(XCOMM.LT.XCOLL.AND.XCOLL.LT.XCODX) GO TO 330
GO TO 329
330 CONTINUE
XCOMM=-XX(NADJ)
XCOLL=PPXS(NADJ)

.M MAIN

74/74 OPT=1

FTNH 4.2+75075

07/16/7

XCODX=-XX(NADJ)+DX
IF(XCOMM.LT.XCOLL.AND.XCOLL.LT.XCODX) GO TO 83

329 DO 331 M=1,20

331 PRINT 332

83 CONTINUE

IF (LEVEL.LT.0) GO TO 116

C*** SCALE AND WRITE THE MANEUVER DATA

IF(IS1.EQ.1) GO TO 111

PRINT 907

111 CONTINUE

DO 114 J=1,NADJ

XMAN(1,J) = XMAN(1,J) * SCALET

DO 112 K=2,4

XMAN(K,J) = XMAN(K,J) * SCALEV

112 CONTINUE

IF(IS1.EQ.1) GO TO 114

PRINT 908, (XMAN(K,J),K=1,4)

114 CONTINUE

IF(IS1.NE.1) PRINT 919,XD0,YD0,ZD0

116 CONTINUE

C*** NEXT CARD IS TAPE SPECIFIC FOR ITT=1 FOR STATIONARY TARGET

IF(ITT.NE.1.AND.LEVEL.EQ.0.AND.VVVV.GE.338.0) CALL PRIME

IF(LEVEL.NE.0) GO TO 150

C*** CALCULATE THE MISS-DISTANCE

CALL MISCOM

PRINT 815

PRINT 813

DO 120 K=1,3

PRINT 814, XM(K),YM(K),ZM(K),RM(K)

120 CONTINUE

REFERENCED TO TRILPIPE

C*** SAVE THE MISS-DISTANCE DATA

AXM(ICN) = XM(1)

XM YM ZM RM

AYM(ICN) = YM(1)

XM(1) YM(1) ZM(1) RM(1)

AZM(ICN) = ZM(1)

XM(1) YM(1) ZM(1) RM(1)

ARM(ICN) = RM(1)

AXB(ICN) = XM(2)

XM(2) YM(2) ZM(2) RM(2)

AYB(ICN) = YM(2)

XM(2) YM(2) ZM(2) RM(2)

AZB(ICN) = ZM(2)

XM(2) YM(2) ZM(2) RM(2)

ARB(ICN) = RM(2)

AXC(ICN) = XM(3)

XM(3) YM(3) ZM(3) RM(3)

AYC(ICN) = YM(3)

XM(3) YM(3) ZM(3) RM(3)

AZC(ICN) = ZM(3)

ARC(ICN) = RM(3)

IF(VVVV.LT.338.0) GO TO 150

XMT(1)=XM(1)

228^{1/2} CG

YMT(1)=YM(1)+19.5*YA

ZMT(1)=ZM(1)+19.5*ZA

XMT(2)=XM(2)-19.5

YMT(2)=YM(2)

ZMT(2)=ZM(2)

XMT(3)=XM(3)-19.5

YMT(3)=YM(3)

ZMT(3)=ZM(3)

AXMT(ICN)=XMT(1)

AYMT(ICN)=YMT(1)

AZMT(ICN)=ZMT(1)

AXB(ICN)=XMT(2)

ROGRAM MAIN

74/74 OPT=1

FTNH 4.2+75075

07/16/71

AYBT(ICN)=YMT(2)

AZBT(ICN)=ZMT(2)

AXCT(ICN)=XMT(3)

AYCT(ICN)=YMT(3)

AZCT(ICN)=ZMT(3)

DO 121 K=1,3

121 RMT(K)=SQRT(XMT(K)**2+YMT(K)**2+ZMT(K)**2)

PRINT 800

ARMT(ICN)=RMT(1)

ARBT(ICN)=RMT(2)

ARCT(ICN)=RMT(3)

PRINT 816

PRINT 813

DO 122 K=1,3

PRINT 814, XMT(K), YMT(K), ZMT(K), RMT(K)

122 CONTINUE

CALL LETH

C*** GO BACK FOR THE NEXT FLIGHT

150 CONTINUE

C*** AFTER FLIGHTS HAVE BEEN COMPLETED, CALCULATE MEAN AND STD DEV

PRINT 815

PRINT 830

IPLANE=0

CALL MEAN (AXM, AYM, AZM, ARM, NRUNS, XM(1), YM(1), ZM(1), RM(1))

PRINT 831

CALL MEAN (AXB, AYB, AZB, ARB, NRUNS, XM(2), YM(2), ZM(2), RM(2))

PRINT 832

CALL MEAN (AXC, AYC, AZC, ARC, NRUNS, XM(3), YM(3), ZM(3), RM(3))

C*** GO BACK FOR THE NEXT SET OF FLIGHT CONDITIONS

IF(VVVV.LT.338.0) GO TO 197

PRINT 800

PRINT 816

PRINT 830

IF(I99.EQ.1) IPLANE = 1

CALL MEAN (AXMT, AYMT, AZMT, ARMT, NRUNS, XMT(1), YMT(1), ZMT(1), RMT(1))

PRINT 831

IF(I99.EQ.1) IPLANE = -2

CALL MEAN (AYBT, AZBT, ARBT, NRUNS, XMT(2), YMT(2), ZMT(2), RMT(2))

PRINT 832

IF(I99.EQ.1) IPLANE = 3

CALL MEAN (AXCT, AYCT, AZCT, ARCT, NRUNS, XMT(3), YMT(3), ZMT(3), RMT(3))

AARUNS=SPK/NR

AASUM=SPHG/NR

ABSUM=SPHS/NR

ABRUNS=SPM/NR

PRINT 102, ABRUNS, ABSUM, AASUM, AARUNS

197 CONTINUE

NRUNS = N111

NR = N111

IF(IFT.NE.1) GO TO 602

DO 630 I=1,10

630 PRINT 601

IFT=0

IF(ICON.EQ.1) GO TO 635

609 PAUSE

IF(IQC1.EQ.1) GO TO 62

IF(I88.EQ.1) GO TO 240

OGRAM MAIN

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
INL=INL-4
GO TO 62
240 INNCL=NL
241 INNCL=INNCL-5
IF(INNCL.GT.5) GO TO 241
I88=0
INL=INL-INNCL
GO TO 62
602 IF(I99.NE.1) GO TO 627
IF(IQC1.EQ.1) GO TO 626
IF(I88.EQ.1) GO TO 50
GO TO 633
626 IQC1=0
GO TO 633
627 IF(IRSS.NE.1) GO TO 50
GO TO 41
635 IQC1=0
IF(I88.EQ.1) GO TO 50
633 I99=0
GO TO 628
198 GO TO 50
200 CONTINUE
IF (NOGO.EQ.0) GO TO 300
GO TO 3
201 PRINT 840
77 FORMAT(1H0,10X,17H RANDOM NUMBER IS,F10.4)
102 FORMAT(1H0,8H      =,F6.4,3X,8H      =,F6.4,3X,8H      =,F6.4,
*3X,8H      =,F6.4)
199 FORMAT(10X,37H TARGET IS ASSUMED TO BE A HELICOPTER)
332 FORMAT(39H TIME CRITICAL DATA COLLECTION FAILURE.)
600 FORMAT(10X,51H IF AUTOMATIC MODE SELECTION IS PLANNED, SELECT THE
*          46H DESIRED STARTING LAUNCH SET NUMBER WITH SENSE
*          10H SWITCHES./
*          10X,52H IF MANUAL MODE SELECTION IS PLANNED, SENSE SWITCHES
*          31H WILL BE IGNORED AT THIS POINT./
*          10X,12H PUSH START.)
601 FORMAT(24H TEST CASE OUT OF LIMITS //)
605 FORMAT(10X,49H IF COMPLETE PRINTOUT IS DESIRED, SELECT 1 WITH
*          16H SENSE SWITCHES./
*          10X,51H IF ONLY ESSENTIAL PRINTOUT IS DESIRED, SELECT 0
*          20H WITH SENSE SWITCHES./
*          10X,12H PUSH START.)
620 FORMAT(3F6.3)
621 FORMAT(6F10.4)
622 FORMAT(10X,49H SELECT THE QUALITY CONTROL TEST CASE SAMPLE SIZE
*          21H WITH SENSE SWITCHES./
*          10X,43H SAMPLE SIZE MUST BE IN RANGE 2 THROUGH 11.)
623 FORMAT(10X,50H IF AUTOMATIC MODE SELECTION IS PLANNED, AND IT IS
*          49H DESIRED TO CONTINUE IF A QUALITY CONTROL FAILURE
*          8H OCCURS./
*          10X,48H THEN SELECT 1 WITH SENSE SWITCHES. OTHERWISE,
*          13H SELECT 2 .)
625 FORMAT(//10X,16H TEST CASE ....//)
640 FORMAT(10X,43H IF THIS IS A MICOM HYBRID/IRSS RUN, SELECT
*          23H 1 WITH SENSE SWITCHES./
*          10X,44H IF IT IS NOT, SELECT 2 WITH SENSE SWITCHES./
*          10X,12H PUSH START.)
```

OGRAM MAIN

74/74 OPT=1

FTNH 4.2+75075

07/16/77

710 FORMAT(10X,46H SELECT TARGET TRAJECTORY WITH SENSE SWITCHES./
* 10X,18H THEN PRESS START.)
715 FORMAT(10X,20H TARGET TRAJECTORY ,I2,15H WAS SELECTED./
* 10X,32H IF THIS IS CORRECT, PUSH START./
* 10X,36H IF THIS IS WRONG, TURN SWITCHES OFF
* 16H AND PUSH START.)
720 FORMAT(10X,49H SELECT POINT TAU ON TARGET TRAJECTORY AT TIME OF
* 16H MISSILE LAUNCH./10X,20H USE SENSE SWITCHES.)
725 FORMAT(10X,6H TAU = ,I2,39H WAS SELECTED. TO CONTINUE, SELECT 1
* 41H WITH SENSE SWITCH IF TAU=0 WAS SELECTED./
* 10X,52H IF TAU=0 WAS NOT SELECTED, LEAVE SENSE SWITCHES AS
* 9H THEY ARE./
* 10X,12H PUSH START.)
800 FORMAT (1H0)
801 FORMAT(10X 50H SELECT THE LAUNCH CONDITIONS WITH SENSE SWITCHES./
* 10X 18H THEN PRESS START./
* 10X 50H TO END RUN, TURN ALL SWITCHES ON AND PRESS START)
802 FORMAT (10X I5, 39H IS TOO MANY RUNS. IT IS CHANGED TO 20)
803 FORMAT(10X,18H LAUNCH CONDITIONS,I5,4X,10H WERE SET./
* 10X 32H IF THIS IS CORRECT, PUSH START. /
* 10X 36H IF THIS IS WRONG, TURN SWITCHES OFF
* 16H AND PUSH START.)
805 FORMAT(10X,13H PSI LAUNCH =F7.2,4H DEG,5X,15H THETA LAUNCH =F6.2,
*4H DEG,5X,16H INITIAL RANGE =F9.2,3H FT)
809 FORMAT(10X,11H FLIGHT NO. I5)
810 FORMAT (5X 11H FLIGHT NO. I5,20X 1HX 19X 1HY 19X 1HZ 18X 5H TIME)
811 FORMAT(26X 4(5X F15.4))
813 FORMAT (10X 14H 8X 3H XM 12X 3H YM 12X 3H ZM
* 12X 3H RM)
814 FORMAT (24X 3(5X F10.2),E15.8)
815 FORMAT(10X,23H REFERENCED TO TAILPIPE)
816 FORMAT(10X,17H REFERENCED TO CG)
823 FORMAT (5X I5,5X 20H FOR NL IS TOO LARGE)
830 FORMAT (1H0 10X 20H Y-Z PLANE - - - -)
831 FORMAT (1H0 10X 20H X-Y PLANE - - - -)
832 FORMAT (1H0 10X 20H X-Z PLANE - - - -)
833 FORMAT (10X 27H TABLE OF LAUNCH CONDITIONS //)
835 FORMAT(10X,5H SET I2,5X,11H ALTITUDE =F9.2,2X,3H FT,2X,
*17H CROSSING ANGLE =F7.2,2X,4H DEG,2X,15H INITIAL RANGE =F10.2,
*2X,3H FT)
840 FORMAT (10X 26H END OF RUN. SIGNING OFF.)
902 FORMAT(I5)
903 FORMAT(I10,2F10.0)
904 FORMAT(3F10.2)
907 FORMAT (1H0 4X 35H TIME XD MANEJVER YD MANEUVER
* 15H ZD MANEUVER)
908 FORMAT(1X F10.4, 3(3X F8.2,4X))
909 FORMAT (5H X = F7.4,2X 5H Y = F7.4,2X 5H Z = F7.4,2X 8H XDOT =
* F7.4,2X 8H YDOT = F7.4,2X 8H ZDOT = F7.4,8H MISS= E10.3)
912 FORMAT(10X,7H XTE0 =F10.2,3H FT,5X,7H YTE0 =F10.2,3H FT,5X,
*7H ZTE0 =F10.2,3H FT)
913 FORMAT(10X,62H VERTICAL TARGET TRAJECTORY. CROSSING ANGLE IS NOT A
*PPLICABLE.)
914 FORMAT(10X,53H STATIONARY TARGET. CROSSING ANGLE IS NOT APPLICABLE
*.)
915 FORMAT(10X,94H PUSH ALL SENSE SWITCHES ON FOR AUTOMATIC OPERATION
*OR ELSE MANUAL OPERATION WILL BE SELECTED./10X,12H PUSH START.)

```
916 FORMAT(10X,19H TARGET TRAJECTORY ,I2)
917 FORMAT(10X,7H TAU = ,I2)
918 FORMAT(//10X,5H SET ,I2)
919 FORMAT(10X,5HXDO =,F10.4,5X,5HYDO =,F10.4,5X,5HZDO =,F10.4)
996 FORMAT(6I5)
999 FORMAT(10(1X,E11.4))
2000 FORMAT(8I5)
2001 FORMAT(F10.0)
2002 FORMAT (5X,6HIS1 = ,I5,5X,7HNSAM = ,I5,5X,7HICON = ,I5,5X,6HINL =
1,I5)
2003 FORMAT (5X,6HIII = ,I5,5X,7HIRSS = ,I5,5X,5HKA = ,I5,5X,6HITT = ,I
15,5X,7HN0GO = ,I5)
2004 FORMAT (5X,6HTAU = ,F10.5)
2005 FORMAT (5X,7HCLMS = ,F10.5,5X,7HCLS1 = ,F10.5,5X,7HCLS2 = ,F10.5)
2006 FORMAT (5X,5HQ1 = ,F10.5,5X,5HQ2 = ,F10.5,5X,5HQ3 = ,F10.5,5X,5HQ4
1 = ,F10.5,5X,5HQ5 = ,F10.5,5X,5HQ6 = ,F10.5)
2007 FORMAT (5X,5HW1 = ,F10.5,5X,5HW2 = ,F10.5,5X,5HW3 = ,F10.5,5X,5HW4
1 = ,F10.5,5X,5HW5 = ,F10.5,5X,5HW6 = ,F10.5)
2008 FORMAT (5X,7HNPTS = ,I5,5X,5HDX = ,F10.5,5X,8HXTERM = ,F10.5)
2009 FORMAT (5X,7HZTE0 = ,F10.5,5X,6HASC = ,F10.5,5X,5HRR = ,F10.5)
2010 FORMAT (5X,8HNRUNS = ,I5)
2011 FORMAT (5X,5HNL = ,I5)
300 STOP
END
```

ITA ONE

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```

BLOCK DATA ONE
COMMON/MANEUV/ITI,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
*           XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,
*           ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ
DATA(ITRAJ(I),I=1,59)/3*4,5,3*6,7,8,9,10,11,12,2*13,14,2*15,16,   SERIES
*17,2*18,12,19,20,21,22,23,24,25,21,26,27,28,29,30,31,21,32,33,34,   SERIES
*35,36,37,38,39,40,41,39,42,38,43,34,44,5*45/   SERIES
DATA(ITAU(I),I=1,59)/59*0/   SERIES
DATA(XDEM(I,1),I=1,27)/27*0.0/   II
DATA(YDEM(I,1),I=1,27)/27*0.0/
DATA(ZDEM(I,1),I=1,27)/27*0.0/
DATA(XDEM(I,2),I=1,27)/27*0.0/   JJ
DATA(YDEM(I,2),I=1,27)/27*168.9/
DATA(ZDEM(I,2),I=1,27)/27*0.0/
DATA(XDEM(I,3),I=1,27)/27*0.0/   KK
DATA(YDEM(I,3),I=1,27)/27*337.8/
DATA(ZDEM(I,3),I=1,27)/27*0.0/
DATA(XDEM(I,4),I=1,27)/27*0.0/   LL
DATA(YDEM(I,4),I=1,27)/27*506.7/
DATA(ZDEM(I,4),I=1,27)/27*0.0/
DATA(XDEM(I,5),I=1,27)/0.,127.9,251.2,365.4,466.4,550.5,614.7,   A
*656.6,674.8,668.6,638.2,584.7,510.,416.9,308.7,189.4,63.2,-65.3,
*-191.5,-310.7,-418.7,-511.5,-585.8,-638.9,-668.9,-674.7,-656.1/
DATA(YDEM(I,5),I=1,27)/675.6,663.4,627.1,568.2,488.8,391.6,280.3,
*158.8,31.6,-96.7,-221.6,-338.4,-443.,-531.6,-600.9,-648.5,-672.6,
*-672.4,-647.9,-599.9,-530.2,-441.3,-336.5,-219.5,-94.6,33.8,161./
DATA(ZDEM(I,5),I=1,27)/27*0.0/   MM
DATA(XDEM(I,6),I=1,27)/27*0.0/
DATA(YDEM(I,6),I=1,27)/27*675.6/
DATA(ZDEM(I,6),I=1,27)/27*0.0/
DATA(XDEM(I,7),I=1,27)/0.,-221.1,-417.8,-568.5,-656.6,-672.5,   B
*-614.2,-488.4,-308.7,-95.1,129.,338.9,511.5,627.7,674.9,647.7,
*549.2,390.3,188.3,-34.4,-253.2,-444.3,-586.3,-663.9,-668.3,-599.1,
*-464./
DATA(YDEM(I,7),I=1,27)/634.8,599.9,498.9,342.9,149.2,-60.9,-264.3,
*-438.6,-564.7,-628.5,-623.2,-549.2,-414.7,-234.6,-28.7,180.4,
*369.7,518.2,609.7,634.,588.5,478.3,315.3,117.7,-92.9,-293.3,
*-461.4/
DATA(ZDEM(I,7),I=1,27)/231.1,218.3,181.6,124.8,54.3,-22.2,-96.2,
*-159.7,-205.4,-228.8,-226.8,-199.9,-151.,-85.4,-10.4,65.7,134.5,
*188.6,221.9,230.8,214.2,174.1,114.8,42.8,-33.8,-106.8,-167.9/
DATA(XDEM(I,8),I=1,27)/0.,-127.9,-251.2,-365.4,-466.4,-550.5,   C
*-614.7,-656.6,-674.8,-668.6,-638.2,-584.7,-510.,-416.9,-308.7,
*-189.4,-63.2,65.3,191.5,310.7,418.7,511.5,585.8,638.9,668.9,674.7,
*656.1/
DATA(YDEM(I,8),I=1,27)/675.6,663.4,627.1,568.2,488.8,391.6,280.3,
*158.8,31.6,-96.7,-221.6,-338.4,-443.,-531.6,-600.9,-648.5,-672.6,
*-672.4,-647.9,-599.9,-530.2,-441.3,-336.5,-219.5,-94.6,33.8,161./
DATA(ZDEM(I,8),I=1,27)/27*0.0/   NN
DATA(XDEM(I,9),I=1,27)/27*0.0/
DATA(YDEM(I,9),I=1,27)/27*634.8/
DATA(ZDEM(I,9),I=1,27)/27*231.1/   OO
DATA(XDEM(I,10),I=1,27)/27*0.0/
DATA(YDEM(I,10),I=1,27)/27*714.2/
DATA(ZDEM(I,10),I=1,27)/27*259.9/
DATA(XDEM(I,11),I=1,27)/27*0.0/
DATA(YDEM(I,11),I=1,27)/844.5,822.5,757.7,653.5,515.4,350.4,167.1,   D

```

DATA ONE

74/74 OPT=1

FTNH 4.2+75075

07/16/7

*-24.8,-215.4,-394.9,-553.8,-683.8,-778.3,-832.3,-843.,-809.8,
*-734.5,-621.,-475.2,-304.6,-118.2,74.4,263.,438.,590.3,711.8,
*796.2/
DATA(ZDEM(I,11),I=1,27)/0.,-191.4,-372.8,-534.8,-669.,-768.4,
*-827.8,-844.1,-816.5,-746.4,-637.6,-495.5,-327.6,-142.7,49.6,
*239.4,416.6,572.3,698.1,787.6,836.2,841.2,802.4,722.,603.9,454.4,
*281.3/
DATA(XDEM(I,12),I=1,27)/27*0.0/
DATA(YDEM(I,12),I=1,27)/815.7,844.,828.4,769.7,670.9,537.3,375.7,
*194.5,3.2,-188.2,-369.9,-532.3,-667.,-767.,-827.1,-844.2,-817.3,
*-748.,-639.7,-498.1,-330.6,-145.9,46.4,236.3,413.8,569.9,696.3/
DATA(ZDEM(I,12),I=1,27)/218.6,28.,-164.,-347.4,-512.8,-651.5,
*-756.3,-821.8,-844.5,-823.2,-759.2,-655.6,-517.9,-353.3,-170.3,
*21.6,212.3,392.,551.3,681.9,777.1,831.8,843.2,810.7,736.1,623.2,
*477.8/
DATA(XDEM(I,13),I=1,27)/0.,159.9,314.,456.8,583.,688.1,768.4,
*820.8,843.5,835.8,797.8,730.9,637.6,521.2,385.9,236.7,78.9,-81.7,
*-239.4,-388.4,-523.3,-639.4,-732.2,-798.6,-836.2,-843.4,-820.2/
DATA(YDEM(I,13),I=1,27)/844.5,829.2,783.9,710.3,610.9,489.5,350.4,
*198.5,39.5,-120.9,-277.,-423.,-553.8,-664.5,-751.1,-810.6,-840.8,
*-840.5,-809.8,-749.9,-662.8,-551.7,-420.6,-274.4,-118.2,42.3,
*201.2/
DATA(ZDEM(I,13),I=1,27)/27*0.0/
DATA(XDEM(I,14),I=1,27)/0.,-64.3,-128.2,-191.4,-253.4,-314.,
*-372.8,-429.4,-483.5,-534.8,-583.,-627.8,-669.,-706.3,-739.5,
*-768.4,-792.8,-812.6,-827.8,-838.1,-843.5,-844.1,-839.8,-830.6,
*-816.5,-797.8,-774.4/
DATA(YDEM(I,14),I=1,27)/793.5,791.2,784.3,772.9,757.,736.6,712.,
*683.3,650.6,614.1,574.1,530.7,484.3,435.,383.2,329.2,273.3,215.8,
*157.,97.4,37.1,-23.3,-83.6,-143.5,-202.5,-260.3,-316.6/
DATA(ZDEM(I,14),I=1,27)/288.8,288.,285.5,281.3,275.5,268.1,259.2,
*248.7,236.8,223.5,209.,193.2,176.3,158.3,139.5,119.8,99.5,78.5,
*57.2,35.4,13.5,-8.5,-30.4,-52.2,-73.7,-94.7,-115.2/
DATA(XDEM(I,15),I=1,27)/27*0.0/
DATA(YDEM(I,15),I=1,27)/844.5,814.6,727.2,588.3,407.8,198.5,-24.8,
*-246.4,-450.6,-622.9,-751.1,-826.3,-843.0,-800.1,-700.7,-551.7,
*-363.7,-150.,74.4,293.4,491.7,655.3,772.5,835.1,838.6,782.9,671.8/
DATA(ZDEM(I,15),I=1,27)/0.,-222.6,-429.4,-605.8,-739.5,-820.8,
*-844.1,-807.7,-714.2,-570.2,-385.9,-174.3,49.6,270.,471.4,639.4,
*762.1,831.,841.2,791.9,686.5,532.7,341.1,125.5,-99.,-316.6,-511.7/
DATA(XDEM(I,16),I=1,27)/0.,64.3,128.2,191.4,253.4,314.,372.8,
*429.4,483.5,534.8,583.,627.8,669.,706.3,739.5,768.4,792.8,812.6,
*827.8,838.1,843.5,844.1,839.8,830.6,816.5,797.8,774.4/
DATA(YDEM(I,16),I=1,27)/793.5,791.2,784.3,772.9,757.,736.6,712.,
*683.3,650.6,614.1,574.1,530.7,484.3,435.,383.2,329.2,273.3,215.8,
*157.,97.4,37.1,-23.3,-83.6,-143.5,-202.5,-260.3,-316.6/
DATA(ZDEM(I,16),I=1,27)/288.8,288.,285.5,281.3,275.5,268.1,259.2,
*248.7,236.8,223.5,209.,193.2,176.3,158.3,139.5,119.8,99.5,78.5,
*57.2,35.4,13.5,-8.5,-30.4,-52.2,-73.7,-94.7,-115.5/
DATA(XDEM(I,17),I=1,27)/27*0.0/
DATA(YDEM(I,17),I=1,27)/844.5,839.,822.5,795.3,757.7,710.3,653.5,
*588.3,515.4,435.7,350.4,260.4,167.1,71.6,-24.8,-120.9,-215.5,
*-307.2,-394.9,-477.4,-553.8,-622.9,-683.8,-735.9,-778.3,-810.6,
*-832.3/
DATA(ZDEM(I,17),I=1,27)/0.,-96.3,-191.4,-283.9,-372.8,-456.8,
*-534.8,-605.8,-669.,-723.4,-768.4,-803.3,-827.8,-841.4,-844.1,
*-835.8,-816.5,-786.5,-746.5,-696.5,-637.6,-570.2,-495.5,-414.3,

DATA ONE

74/74 OPT=1

FTNH 4.2+75075

07/16/7

*-327.6,-236.7,-142.7/
DATA(XDEM(I,18),I=1,27)/0.,-159.9,-314.,-456.8,-583.,-688.1,
*-768.4,-820.8,-843.5,-835.8,-797.8,-730.9,-637.6,-521.2,-385.9,
*-236.7,-78.9,81.7,239.4,388.4,523.3,639.4,732.2,798.6,836.2,843.4,
*820.2/
DATA(YDEM(I,18),I=1,27)/844.5,829.2,783.9,710.3,610.9,489.5,350.4,
*198.5,39.5,-120.9,-277.,-423.,-553.8,-664.5,-751.1,-810.6,-840.8,
*-840.5,-809.8,-749.9,-662.8,-551.7,-420.6,-274.4,-118.2,42.3,
*201.2/
DATA(ZDEM(I,18),I=1,27)/27*0.0/
DATA(XDEM(I,19),I=1,27)/0.,128.3,254.1,375.1,488.8,593.2,686.3,
*766.2,831.3,880.6,913.,927.9,925.,904.4,866.4,811.9,741.8,657.5,
*560.5,452.9,336.5,213.7,86.8,-41.7,-169.5,-294.,-412.9/
DATA(YDEM(I,19),I=1,27)/872.9,864.5,839.6,798.6,742.3,671.7,588.3,
*493.6,389.4,277.8,160.9,40.8,-80.,-199.2,-314.7,-424.1,-525.4,
*-616.6,-696.1,-762.1,-813.6,-849.5,-869.1,-372.,-858.2,-828.,
*-781.9/
DATA(ZDEM(I,19),I=1,27)/317.7,314.7,305.6,290.7,270.2,244.5,214.1,
*179.7,141.7,101.1,58.6,14.9,-29.1,-72.5,-114.5,-154.4,-191.2,
*-224.4,-253.3,-277.4,-295.1,-309.2,-316.3,-317.4,-312.4,-301.4,
*-284.6/
DATA(XDEM(I,20),I=1,27)/0.,-96.3,-191.6,-284.9,-375.1,-461.2,
*-542.3,-617.5,-686.3,-747.5,-800.7,-845.2,-880.6,-906.5,-922.7,
*-928.8,-925.,-911.2,-887.6,-854.3,-811.9,-760.7,-701.3,-634.3,
*-560.5,-480.7,-395.6/
DATA(YDEM(I,20),I=1,27)/928.9,923.9,908.9,884.1,849.8,806.3,754.2,
*693.8,626.,551.5,471.,385.4,295.6,202.7,107.6,11.3,-85.1,-180.6,
*-274.1,-364.7,-451.3,-533.1,-609.1,-678.6,-740.7,-794.9,-840.4/
DATA(ZDEM(I,20),I=1,27)/27*0.0/
END

DATA TWO

74/74 OPT=1

FTNH 4.2+75075

07/16/

BLOCK DATA TWO

COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
* XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,

* ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ

DATA(XDEM(I,21),I=1,27)/27*0.0/ S

DATA(YDEM(I,21),I=1,27)/928.9,901.7,821.8,693.8,525.3,326.,107.6,

*-117.1,-334.9,-533.1,-700.2,-826.2,-904.,-928.9,-899.4,-817.3,

*-687.5,-517.4,-317.,-98.1,126.5,343.8,540.9,706.4,830.6,906.1,

*928.7/

DATA(ZDEM(I,21),I=1,27)/0.,-223.,-433.,-617.6,-766.2,-869.8,

*-922.7,-921.5,-866.4,-760.7,-610.5,-424.5,-213.7,9.6,232.3,441.4,

*624.7,771.5,873.2,923.7,920.3,863.,755.2,603.2,416.,204.4,-19.1/ T

DATA(XDEM(I,22),I=1,27)/0.,160.1,315.3,461.2,593.2,707.5,800.7,

*869.8,913.,928.8,916.9,877.5,811.9,722.,610.5,480.7,336.5,182.3,

*22.6,-137.7,-294.,-441.4,-575.6,-692.7,-789.,-861.6,-908.6/

DATA(YDEM(I,22),I=1,27)/928.9,915.,873.8,806.3,714.8,601.9,471.,

*326.,171.2,11.3,-148.9,-304.7,-451.3,-584.5,-700.2,-794.9,-865.8,

*-910.8,-928.6,-918.6,-881.2,-817.3,-729.,-618.9,-490.3,-347.,

*-193.4/

DATA(ZDEM(I,22),I=1,27)/27*0.0/

DATA(XDEM(I,23),I=1,27)/0.,-96.3,-191.7,-284.9,-375.1,-461.2, U

*-542.3,-617.6,-686.3,-747.5,-800.7,-845.2,-880.6,-906.5,-922.7,

*-928.8,-925.,-911.2,-887.6,-854.3,-811.9,-760.7,-701.3,-634.3,

*-560.5,-480.7,-395.6/

DATA(YDEM(I,23),I=1,27)/804.5,800.1,787.2,765.7,736.,698.3,653.1,

*600.9,542.2,477.6,407.9,333.8,256.,175.6,93.2,9.8,-73.7,-156.4,

*-237.4,-315.8,-390.9,-461.7,-527.5,-587.7,-641.5,-688.4,-727.8/

DATA(ZDEM(I,23),I=1,27)/464.5,462.,454.5,442.1,424.9,403.2,377.1,

*346.9,313.,275.7,235.5,192.7,147.8,101.4,53.8,5.7,-42.5,-90.3,

*-137.1,-182.3,-225.7,-266.6,-304.6,-339.3,-370.4,-397.4,-420.2/

DATA(XDEM(I,24),I=1,27)/0.,-223.,-433.,-617.6,-766.2,-869.8, V

*-922.7,-921.5,-866.4,-760.7,-610.5,-424.5,-213.7,9.6,232.3,441.4,

*624.7,771.5,873.2,923.7,920.2,863.,755.2,603.2,416.,204.4,-19.1/

DATA(YDEM(I,24),I=1,27)/928.9,901.7,821.8,693.8,525.3,326.,107.6,

*-117.1,-334.9,-533.1,-700.2,-826.2,-904.,-928.9,-899.4,-817.3,

*-687.4,-517.4,-317.,-98.1,126.5,343.8,540.9,706.4,830.6,906.1,

*928.7/

DATA(ZDEM(I,24),I=1,27)/27*0.0/

DATA(XDEM(I,25),I=1,27)/0.,-191.6,-375.1,-542.3,-686.3,-800.7, L

*-880.6,-922.7,-925.,-887.6,-811.9,-701.3,-560.5,-395.6,-213.7,

*-22.6,169.5,354.3,523.8,670.8,789.,873.2,919.8,926.8,894.,822.6,

*715.9/

DATA(YDEM(I,25),I=1,27)/928.9,908.9,849.8,754.2,626.,471.,295.6,

*107.6,-85.1,-274.1,-451.3,-609.1,-740.7,-840.4,-904.,-928.6,

*-913.3,-858.7,-767.1,-642.6,-490.3,-315.,-130.,62.5,252.4,431.4,

*591.9/

DATA(ZDEM(I,25),I=1,27)/27*0.0/

DATA(XDEM(I,26),I=1,27)/0.,223.,433.,617.6,766.2,869.8,922.7, M

*921.5,866.4,760.7,610.5,424.5,213.7,-9.6,-232.3,-441.4,-624.7,

*-771.5,-873.2,-923.7,-920.2,-863.,-755.2,-603.2,-416.,-204.4,19.1/

DATA(YDEM(I,26),I=1,27)/928.9,901.7,821.8,693.8,525.3,326.,107.6,

*-117.1,-334.9,-533.1,-700.2,-826.2,-904.,-928.9,-899.4,-817.3,

*-687.4,-517.4,-317.,-98.1,126.5,343.8,540.9,706.4,830.6,906.1,

*928.7/

DATA(ZDEM(I,26),I=1,27)/27*0.0/

DATA(XDEM(I,27),I=1,27)/0.,191.6,375.1,542.3,686.3,800.7,880.6, N

*922.7,925.,887.6,811.9,701.3,560.5,395.6,213.7,22.6,-169.5,-354.3,

DATA TWO

74/74 OPT=1

FTNH 4.2+75075

07/16/71

*-523.8,-670.8,-789.,-873.2,-919.8,-926.8,-894.,-822.6,-715.9/
 DATA(YDEM(I,27),I=1,27)/928.9,908.9,849.8,754.2,626.,471.,295.6,
 *107.6,-85.1,-274.1,-451.3,-609.1,-740.7,-840.4,-904.,-928.6,
 *-913.3,-858.7,-767.1,-642.6,-490.3,-317.,-130.,62.5,252.4,
 *431.4,591.9/
 DATA(ZDEM(I,27),I=1,27)/27*0.0/
 DATA(XDEM(I,28),I=1,27)/27*0.0/
 DATA(YDEM(I,28),I=1,27)/27*928.9/
 DATA(ZDEM(I,28),I=1,27)/27*0.0/
 DATA(XDEM(I,29),I=1,27)/27*0.0/
 DATA(YDEM(I,29),I=1,27)/928.9,908.9,849.8,754.2,626.,471.,295.6,
 *107.6,-85.1,-274.1,-451.3,-609.1,-740.7,-840.4,-904.,-928.6,
 *-913.3,-858.7,-767.1,-642.6,-490.3,-317.,-130.,62.5,252.4,431.4,
 *591.9/
 DATA(ZDEM(I,29),I=1,27)/0.,-191.7,-375.1,-542.3,-686.3,-800.7,
 *-880.6,-922.7,-925.,-887.6,-811.9,-701.3,-560.5,-395.6,-213.7,
 *-22.6,169.5,354.3,523.8,670.8,789.,873.2,919.8,926.8,894.,822.6,
 *715.9/
 DATA(XDEM(I,30),I=1,27)/0.,96.3,191.7,284.9,375.1,461.2,542.3,
 *617.6,686.3,747.5,800.7,845.2,880.6,906.5,922.7,928.8,925.,911.2,
 *887.6,854.3,811.9,766.7,701.3,634.3,560.5,480.7,395.6/
 DATA(YDEM(I,30),I=1,27)/804.5,800.1,787.2,765.7,736.,698.3,653.1,
 *600.9,542.2,477.6,407.9,333.8,256.,175.6,93.2,9.8,-73.7,-156.4,
 *-237.4,-315.8,-390.9,-461.7,-527.5,-587.7,-641.5,-688.4,-727.8/
 DATA(ZDEM(I,30),I=1,27)/464.5,462.,454.5,442.1,424.9,403.2,377.1,
 *346.9,313.,275.7,235.5,192.7,147.8,101.4,53.8,5.7,-42.5,-90.3,
 *-137.1,-182.3,-225.7,-266.6,-304.6,-339.3,-370.4,-397.4,-420.2/
 DATA(XDEM(I,31),I=1,27)/0.,-160.1,-315.3,-461.2,-593.2,-707.5,
 *-800.7,-869.8,-913.,-928.8,-916.9,-877.5,-811.9,-722.,-610.5,
 *-480.7,-336.5,-182.3,-22.6,137.7,294.,441.4,575.6,692.7,789.,
 *861.6,908.6/
 DATA(YDEM(I,31),I=1,27)/928.9,915.,873.8,805.3,714.8,601.9,471.,
 *326.,171.2,11.3,-148.9,-304.7,-451.3,-534.5,-700.2,-794.9,-865.8,
 *-910.8,-928.6,-918.5,-881.2,-817.3,-729.,-618.9,-490.3,-347.,
 *-193.4/
 DATA(ZDEM(I,31),I=1,27)/27*0.0/
 DATA(XDEM(I,32),I=1,27)/0.,-128.3,-254.1,-375.1,-488.8,-593.2,
 *-686.3,-766.2,-831.3,-880.6,-913.,-927.9,-925.,-904.4,-866.4,
 *-811.9,-741.8,-657.5,-560.5,-452.9,-336.5,-213.7,-86.8,41.7,169.5,
 *294.,412.9/
 DATA(YDEM(I,32),I=1,27)/872.9,864.5,839.6,798.6,742.3,671.7,588.3,
 *493.6,389.4,277.8,160.9,40.8,-80.,-199.2,-314.7,-424.1,-525.4,
 *616.6,-696.1,-762.1,-813.6,-849.5,-869.1,-872.,-858.2,828.,-781.9/
 DATA(ZDEM(I,32),I=1,27)/317.7,314.7,305.6,290.7,270.2,244.5,214.1,
 *179.7,141.7,101.1,58.6,14.9,-29.1,-72.5,-114.5,-154.4,-191.2,
 *-224.4,-253.3,-277.4,-296.1,-309.2,-316.3,-317.4,-312.4,-301.4,
 *-284.6/
 DATA(XDEM(I,33),I=1,27)/27*0.0/
 DATA(YDEM(I,33),I=1,27)/1013.4,1011.3,1005.2,995.,980.9,962.7,
 *940.7,914.9,885.4,852.3,815.8,776.,733.1,687.3,638.6,587.4,533.8,
 *478.1,420.4,361.1,300.3,239.2,175.2,111.6,47.4,-16.9,-81.2/
 DATA(ZDEM(I,33),I=1,27)/0.,-64.3,-128.4,-191.9,-254.9,-316.4,
 *-376.8,-435.7,-492.9,-548.1,-601.1,-651.7,-699.6,-744.7,-786.8,
 *-825.8,-861.4,-893.5,-922.,-946.9,-967.9,-985.,-998.1,-1007.2,
 *-1012.3,-1013.2,-1010.1/
 DATA(XDEM(I,34),I=1,27)/27*0.0/
 DATA(YDEM(I,34),I=1,27)/27*978.8/

W

PP

0

X

Y

P

QQ

DATA TWO

74/74 OPT=1

FTNH 4.2+75075

07/16/7

DATA(ZDEM(I,34),I=1,27)/27*262.3/
 DATA(XDEM(I,35),I=1,27)/27*0.0/
 DATA(YDEM(I,35),I=1,27)/1013.4,988.4,914.9,796.3,638.6,449.5,
 *238.2,15.3,-208.5,-421.9,-614.6,-777.1,-901.4,-981.3,-1012.9,
 *-994.7,-927.6,-814.9,-652.0,-476.6,-267.8,-45.8,178.5,394.,590.1,
 *757.2,887./

Z

DATA(ZDEM(I,35),I=1,27)/0.0,-223.4,-435.7,-626.7,-786.8,-908.2,
 *-985.0,-1013.2,-991.7,-921.4,-805.7,-650.4,-463.1,-253.0,-30.5,
 *193.5,408.6,602.4,767.2,894.3,977.3,1012.3,997.5,933.6,823.8,
 *673.5,490./

AA

DATA(XDEM(I,36),I=1,27)/27*0.0/
 DATA(YDEM(I,36),I=1,27)/1013.4,1008.8,995.0,972.3,940.7,900.6,
 *852.3,796.3,733.1,663.3,587.4,506.2,420.4,330.8,238.2,143.5,
 *47.4,-49.1,-145.1,-239.8,-332.4,-421.9,-507.6,-588.7,-664.5,
 *-734.3,-797.4/

DATA(ZDEM(I,36),I=1,27)/0.0,-96.4,-191.9,-285.6,-376.8,-464.6,
 *-548.1,-626.7,-699.6,-766.1,-825.8,-877.9,-922.0,-957.8,-985.0,
 *-1003.2,-1012.3,-1012.2,-1002.9,-934.6,-957.3,-921.4,-877.0,-824.8,
 *-765.1,-698.4,-625.4/

BB

DATA(XDEM(I,37),I=1,27)/0.0,128.4,254.6,376.8,492.9,601.1,699.6,
 *786.8,861.4,922.0,967.9,998.1,1012.2,1010.1,991.7,957.3,907.5,
 *843.1,765.1,574.7,573.5,463.1,345.2,221.8,94.7,-33.8,-161.8/
 DATA(YDEM(I,37),I=1,27)/1013.4,1005.2,980.8,940.7,885.4,815.8,
 *733.1,638.6,533.8,420.4,300.2,175.2,47.4,-81.2,-208.4,-332.4,
 *-451.0,-562.3,-664.5,-756.1,-835.4,-901.4,-952.8,-988.8,-1008.9,
 *-1012.8,-1000.4/

DATA(ZDEM(I,37),I=1,27)/27*0.0/
 DATA(XDEM(I,38),I=1,27)/27*0.0/

CC

DATA(YDEM(I,38),I=1,27)/1013.4,995.0,940.7,852.3,733.1,587.4,420.4,
 *238.2,47.4,-145.1,-332.4,-507.6,-664.5,-797.4,-901.4,-972.7,
 *-1008.9,-1008.6,-971.8,-899.8,-795.3,-662.0,-504.8,-329.3,-141.8,
 *50.7,241.4/

DATA(ZDEM(I,38),I=1,27)/0.0,-191.9,-376.8,-548.1,-699.6,-825.8,
 *-922.0,-985.0,-1012.3,-1002.9,-957.3,-877.0,-765.1,-625.4,-463.1,
 *-284.1,-94.7,98.0,287.2,466.0,628.0,767.2,878.7,958.4,1003.4,1012.1,
 *984.2/

RR

DATA(XDEM(I,39),I=1,27)/27*0.0/
 DATA(YDEM(I,39),I=1,27)/27*1013.4/
 DATA(ZDEM(I,39),I=1,27)/27*0.0/

DD

DATA(XDEM(I,40),I=1,27)/0.0,-64.3,-128.4,-191.9,-254.6,-316.4,
 *-376.8,-435.7,-492.9,-548.1,-601.1,-651.7,-699.6,-744.7,-786.8,
 *-825.8,-861.4,-893.5,-922.0,-946.9,-967.9,-985.0,-998.1,-1007.2,
 *-1012.3,-1013.2,-1010.1/

DATA(YDEM(I,40),I=1,27)/377.6,875.8,870.5,861.7,849.4,833.7,814.7,
 *792.3,766.8,738.1,706.5,672.1,643.9,595.2,553.1,508.7,462.3,414.0,
 *364.1,312.7,260.0,205.3,151.8,96.6,41.1,-14.6,-70.3/

DATA(ZDEM(I,40),I=1,27)/506.7,505.7,502.6,497.5,490.4,481.4,470.4,
 *457.4,442.7,426.2,407.9,388.0,366.6,343.6,319.3,293.7,266.9,239.0,
 *210.2,180.5,150.1,119.1,87.6,55.8,23.7,-8.5,-40.6/

EE

DATA(XDEM(I,41),I=1,27)/0.0,64.3,128.4,191.9,254.6,316.4,376.8,
 *435.7,492.9,548.1,601.1,651.7,699.6,744.7,786.8,825.8,861.4,893.5,
 *922.0,946.9,967.9,985.0,998.1,1007.2,1012.3,1013.2,1010.1/

DATA(YDEM(I,41),I=1,27)/877.6,875.8,870.5,861.7,849.4,833.7,814.7,
 *792.3,766.8,738.1,706.5,672.1,634.9,595.2,553.1,508.7,462.3,414.0,
 *364.1,312.7,260.0,205.3,151.8,96.6,41.1,-14.6,-70.3/

DATA(ZDEM(I,41),I=1,27)/506.7,505.7,502.6,497.5,490.4,481.4,470.4,
 *457.4,442.7,426.2,407.9,388.0,366.6,343.6,319.3,293.7,266.9,239.0,

DATA TWO

74/74 OPT=1

FTNH 4.2+75075

07/16/75

*210.2,180.5,150.1,119.1,87.6,55.8,23.7,-8.5,-40.6/
END

DATA THREE

74/74 OPT=1

FTNH 4.2+75075

07/16/71

BLOCK DATA THREE

COMMON/COMA/LEVEL,IPTS,XXS(50),XDTGO,YDTGO,ZDTGO,RLB,COSE,SPO,RI,

*,GAM,EDOT,THETAL,RN,

*,PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)

*,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT

*,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG

*,XDO,YDO,ZDO,DXG,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),

*,RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,

*,CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),

*,PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM

*,SA,CA,VMX(50),VMY(50),VMZ(50)

*,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)

COMMON/PK/XDH(22),YDH(22),ZDH(22),BDHX(22),BDHY(22),BDHZ(22)

*,KILL(22),P(4),SPK,SPHG,SPHS,SPM

COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),

*,XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,

*,ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ

DATA(XDEM(I,42),I=1,27)/0.,-160.2,-316.4,-464.6,-601.1,-722.5, FF

*-825.8,-908.2,-967.9,-1003.2,-1013.2,-997.8,-957.3,-892.7,-805.7,

*-698.4,-573.5,-434.2,-284.0,-126.7,33.8,193.5,348.3,494.4,628.,

*745.8,844.9/

DATA(YDEM(I,42),I=1,27)/1013.4,1000.6,962.7,900.6,815.8,710.6,

*587.4,449.5,300.2,143.5,-16.9,-176.9,-332.4,-479.5,-614.6,-734.3,

*-835.4,-915.6,972.7,-1005.4,-1012.8,-994.7,-951.6,-884.6,-795.3,

*-686.,-559.5/

DATA(ZDEM(I,42),I=1,27)/27*0.0/

DATA(XDEM(I,43),I=1,27)/0.,191.9,376.8,548.1,699.6,825.8,922.,985. GG

*,1012.3,1002.9,957.3,877.,765.1,625.4,463.1,284.1,94.7,-98.,-287.2

*, -466.,-628.,-767.2,-878.7,-958.4,-1003.4,-1012.1,-984.2/

DATA(YDEM(I,43),I=1,27)/978.8,961.1,908.6,823.3,708.1,567.4,406.1,

*,230.1,45.8,-140.2,-321.1,-490.3,-641.9,-770.2,-870.6,-939.6,-974.5

*, -974.2,-938.7,-869.2,-768.2,-639.5,-487.6,-318.,-137.,49.,233.2/

DATA(ZDEM(I,43),I=1,27)/262.3,257.5,243.5,220.6,189.7,152.,108.8,

*,61.7,12.3,-37.6,-86.,-131.4,-172.,-206.4,-233.3,-251.8,-261.1,

*-251.,-251.5,-232.9,-205.8,-171.3,-130.5,-85.2,-36.7,13.1,62.5/ HH

DATA(XDEM(I,44),I=1,27)/27*0.0/

DATA(YDEM(I,44),I=1,27)/952.3,1005.2,1008.8,962.7,869.2,733.,

*,560.7,360.9,143.3,-81.4,-302.,-507.8,-688.6,-835.5,-941.4,-1000.9,

*-1011.2,-971.8,-884.5,-753.7,-585.9,-389.2,-173.4,50.9,272.7.,

*481.2,665.9/

DATA(ZDEM(I,44),I=1,27)/346.6,128.2,-96.6,-316.5,-520.9,-699.7,

*-844.1,-946.9,-1003.2,-1010.1,-967.3,-877.,-743.5,-573.4,-375.1,

*-158.4,66.1,287.4,494.5,677.3,826.8,935.6,998.4,1012.1,976.,891.9,

*763.9/ SS

DATA(XDEM(I,45),I=1,27)/27*0.0/

DATA(YDEM(I,45),I=1,27)/27*1124.8/

DATA(ZDEM(I,45),I=1,27)/27*0.0/

DATA(CLAA(I),I=1,8)/0.043,0.0435,0.0455,0.0485,0.0515,0.059,

*, -0.0477,0.033/

DATA(QMM(I),I=1,8)/0.0,0.3,0.6,0.8,0.9,1.05,1.5,2.2/

DATA(TAMA(I),I=1,28)/0.,.25,1.,1.7,2.,2.5,3.,4.,4.5,5.,6.,7.,

*, 7.5,8.,9.,9.5,10.,11.,11.5,12.,13.,14.,15.,16.,17.,18.,19.,

*, 20./

DATA(DELTAR(I),I=1,28)/0.,31.2,445.6,1418.6,1978.1,2958.1,3945.6,

*, 5870.6,6805.6,7728.1,9558.1,11368.1,12263.,13115.,14580.,

*, 15188.,15738.,15753.,17218.,17660.,18505.,19295.,20038.,

*, 20745.,21420.,22060.,22665.,23240./

DATA THREE

74/74 OPT=1

FTNH 4.2+75075

07/16/75

```
DATA(VM(I),I=1,28)/125.,125.,980.,1800.,1930.,1990.,1960.,1890.,
* 1850.,1840.,1820.,1800.,1780.,1630.,1300.,1130.,1070.,960.,
* 900.,870.,820.,760.,725.,690.,660.,620.,590.,560./
DATA (XOH(I),I=1,22)/13.5,0.,9.,-11.3,-16.8,-13.2,-1.5,-4.2,-16.3,
*-18.2,-20.3,-6.8,-19.4,-19.4,-19.8,3.4,-1.6,-5.6,-1.6,-16.7,-12.2,
*-16.3/
DATA (YOH(I),I=1,22)/12*0.,-4.,4.,0.,0.,-9,0.,-.9,3*0./
DATA (ZOH(I),I=1,22)/.1,.2,.6,0.,3.8,2.8,-.3,-.3,.3,.4,5.7,-.3,.3,
*.3,0.,-1.6,-1.6,-1.6,-1.6,-.2,-1.9,-.1/
DATA (BDHX(I),I=1,22)/6.5,12.5,6.,6.5,2.7,2.8,6.8,3.,1.8,1.5,2.5,
*2.6,2.2,2.2,.2,1.3,1.3,1.3,1.3,3.1,3.6,2./
DATA (BDHY(I),I=1,22)/1.7,2.,1.9,2.,.3,.4,7.5,9.5,3.2,.3,.1,11.9,
*2.2,2.2,1.,1.6,.6,1.6,.6,1.9,.3,2.1/
DATA (BDHZ(I),I=1,22)/2.,2.5,2.8,2.3,2.7,1.6,.3,.3,.2,2.3,2.3,.2,
*.1,.1,1.,.9,.6,.9,.6,1.9,1.4,2.1/
DATA (KILL(I),I=1,22)/4*1,0,1,0,0,1,5*0,1,5*0,1,1,
DATA (ECOS(I),I=1,17)/-1.,-.9848,-.9397,-.866,-.7071,-.5,-.342,
*-.1736,0.0,.1736,.5,.7071,.866,.9397,.9848,.9962,1./
DATA (HR7EE(I),I=1,17)/5.3568E-10,6.4385E-10,5.7864E-10,3.7351E-10
*,1.7936E-10,6.8327E-11,4.0449E-11,2.8362E-11,2.0376E-11,2.027E-11,
*1.8443E-11,1.568E-11,1.184E-11,8.7428E-12,5.2709E-12,3.4869E-12,1.
*8586E-12/
DATA(FIT(I),I=1,9)/.18,.332,.612,.737,.833,.92,.97,.99999,1.0000/
DATA (FCI77(I),I=1,9)/0.0,.10491819,.31475458,.41967277,.52459096,
*.62950916,.73442735,.78689133,.97680098/
END
```

INE INIT

74/74 OPT=1

FTNH 4.2+75075

07/16/75

SUBROUTINE INIT

COMMON/EXTRA/NPTS,DX,XTERM,KKK,AS,SEO,SC,ASEO,R,SCALEL,VVVV,C1,
*XLOS,YLOS,ZLOS,CO,CX,CY,CLY,CLZ,TRP,XX(50),THE
COMMON/COMA/LEVEL,IPTS,XXS(50),XDTGO,YDTGO,ZDTGO,RLB,COSE,SPO,RI,
*GAM,EDOT,THETAL,RN,
* PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
*,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
*,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
*,XDO,YDO,ZDO,DXG,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
*RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
*CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
*PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
*,SA,CA,VMX(50),VMY(50),VMZ(50)
*,ECOS(17),HR7EE(17),FI7T(9),FCI7T(9)
COMMON /COMB/XD,YD,ZD,XDTG,YDTG,ZDTG,XDEF,YDEF,ZDEF,ZZZ
*,XDD,E,YDD,E,ZDD,E
COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
*Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
*S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
*S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6
COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
* XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,
* ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ
COMMON/GTARG/FXA,FYA,FZA,FXB,FYB,FZB,FXC,FYC,FZC,AT,VT
DATA RTD,DTR/57.2957795,0.01745323/

C*** GENERATE THE DISTANCE TABLE FOR COLLECTING DATA POINTS

SCALEP=20.* (102.375)/(1.+GGG)

STPN=NPTS

DIF=(XTERM+(STPN-1.)*DX)-((20.*102.375)/(1.+GGG))

IF(DIF.GE.0.) GO TO 47

NADJ=NPTS

GO TO 48

47 ARG=DIF/DX

NADJ=NPTS-IFIX(ARG)-1

48 CONTINUE

DO 20 I=1,NADJ

INDEX=NADJ-I+1

XI = I - 1

XX(INDEX) = XTERM + (XI*DX)

XXS(INDEX)= -XX(INDEX)/SCALEP

20 CONTINUE

C*** WRITE OUT RANGE TABLE

IF(IS1.NE.1) PRINT 820,NPTS,DX,XTERM

IF(IS1.EQ.1) GO TO 21

PRINT 800

PRINT 700

PRINT 800

PRINT 705

PRINT 800

PRINT 822, (XX(I),XXS(I),I=1,NADJ)

PRINT 800

21 CONTINUE

XD=XDM(1)

YD=YDM(1)

ZD=ZDM(1)

XDX=XD

YDY=YD

ITINE INIT

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
ZDZ=ZD
CALL GUID
XDTGO=XDTG
YDTGO=YDTG
ZDTGO=ZDTG
PRINT 806,XD,YD,ZD,XDTG,YDTG,ZDTG
ARG = SQRT (XD**2 + YD**2)
IF (KKK.EQ.1) GO TO 65
SEO = ATAN2 (ZD,ARG)
65 SC=AS*DTR
ASEO = SEO * RTD
IF (ITT.NE.1) PRINT 807,AS,ASEO
C*** SCALE INITIAL LAUNCH CONDITIONS
RFEET = RI
RI=R/SCALEL
GAM=G/SCALET
XDTGO=XUTGO/SCALEV
YDTGO=YDTGO/SCALEV
ZDTGO=ZDTGO/SCALEV
C*** TRANSFORM MANEUVER VECTORS TO LAUNCH COORDINATES AND SCALE THEM
IF (IS1.EQ.1) GO TO 66
PRINT 800
PRINT 910
PRINT 800
PRINT 907
66 CONTINUE
DO 70 I = 1,NT
XD=XDM(I)
YD=YDM(I)
ZD=ZDM(I)
CALL GUID
XDTGM(I) = XDTG
YDTGM(I) = YDTG
ZDTGM(I) = ZDTG
XDTGMS(I) = XDTGM(I) / SCALEV
YDTGMS(I) = YDTGM(I) / SCALEV
ZDTGMS(I) = ZDTGM(I) / SCALEV
IF (IS1.NE.1) PRINT 908, TMA(I),XDM(I),YDM(I),ZDM(I)
70 CONTINUE
XD=XDX
YD=YDY
ZD=ZDZ
IF (IS1.EQ.1) GO TO 76
PRINT 911
PRINT 800
PRINT 907
PRINT 800
DO 75 I=1,NT
PRINT 908, TMA(I),XDTGM(I),YDTGM(I),ZDTGM(I)
75 CONTINUE
76 CONTINUE
C CALCULATE INITIAL TARGET ANGLE OF ATTACK
AAA=1116.89+0.003894*ZZZ
ARG=0.00003*ZZZ
PHO=0.00237692*EXP(ARG)
QM=VVVV/AAA
NPX=2
```

ROUTINE INIT

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
NX=8
CALL INTERP (QM,QMM,CLAA,NX,NPX,CLA,NERR)
WT=18500.0
ST=248.0
XEU=XE(1)
YEU=YE(1)
ZEU=ZE(1)
AT=2.*WT*SQRT(XEU**2+YEU**2+ZEU**2)/(PH0*(VVVV**2)*ST*CLA*32.174)
AT=AT*DTR
C CALCULATE INITIAL COSE
C1=COS(AT)
S1=SIN(AT)
S9=SQRT(XD*XD+YD*YD)
COSE=(STL*(ZD*C1-S9*S1)-(C1+(ZD*S1/S9))*(XD*S2+YD*S4))/VVVV
E111 = COSE
CO=COSE**2
COSE=COSE/1.02375
C CALCULATE INITIAL APPARENT PLUME LENGTH-TO-BREADTH RATIO
RLB=RLBK*SQRT(1.-CO)
RLB=RLB/SCALET
C CALCULATE INITIAL LOS
XLOS=-R*S2
YLOS=-R*S4
ZLOS=R*STL
C CALCULATE HORIZON REFERENCE VECTOR
ARG=YLOS/SQRT(XLOS**2+YLOS**2)
BET=ACOS(ARG)
IF(XLOS.LT.0.0) CY=SIN(BET)
IF(XLOS.GE.0.0) CY=-SIN(BET)
CX=-COS(BET)
C CALCULATE INITIAL TARGET CENTERLINE UNIT VECTOR
CLY=YD*C1/VVVV
CLZ=-SQRT(YD**2*S1/VVVV
C CALCULATE INITIAL PLUME ROTATION ANGLE
ARG1=(YLOS*CLZ-ZLOS*CLY)*CX+(ZLOS*CLX-XLOS*CLZ)*CY
ARG2=SQRT((YLOS*CLZ-ZLOS*CLY)**2+(ZLOS*CLX-XLOS*CLZ)**2
*+(XLOS*CLY-YLOS*CLX)**2)
ARG=ARG1/ARG2
THE=ACOS(ARG)
ARG=XLOS*CLY-YLOS*CLX
IF(ARG.LT.0.0) GO TO 80
IF(THE.LE.1.570796326) GO TO 85
TRP=THE-4.71238898
GO TO 90
80 TRP=1.570796326-THE
GO TO 90
85 TRP=1.570796326+THE
90 SPO=TRP/SCALET
NX=17
NPX=2
CALL INTERP(E111,ECOS,HR7EE,NX,NPX,HR7E,NERR)
HC7FT=1209.675*HR7E*EXP(-2.341 ALOG(RFEET/22965.831))
P1IRSS=(2.0*ATAN(0.04884004884/RLB))
P2IRSS=230.34375*RLB/RFEET
AT7=((P2IRSS**2)*SIN(P1IRSS))/(2.0*(COS(P1IRSS/2.0))**2)
PJTU1=0.1*EXP(1.003258*ALOG(AT7))
FI7=HC7FT/PJTU1
```

JTINE INIT

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
NX=9
NPX=2
CALL INTERP (FI7,FI7T,FCI77,NX,NPX,FCI7,NERR)
RN=FCI7
700 FORMAT(10X,38H RANGE-TO-GO TABLE FOR DATA COLLECTION)
705 FORMAT(22X,9H RANGE,FT,5X,13H SCALED RANGE)
800 FORMAT(1H0)
806 FORMAT(10X,8H XDTEO =F10.2,7H FT/SEC,5X,8H YDTEO =F10.2,7H FT/SEC,
*5X,8H ZDTEO =F10.2,7H FT/SEC,/10X,8H XDTLO =F10.2,7H FT/SEC,5X,
*8H YDTLO =F10.2,7H FT/SEC,5X,8H ZDTLO =F10.2,7H FT/SEC)
807 FORMAT(10X,17H CROSSING ANGLE =F7.2,4H DEG,5X,13H DIVE ANGLE =
*F7.2,4H DEG)
820 FORMAT(10X,7H NPTS =I3,4X,5H DX =F6.2,3H FT,4X,8H XTERM =F7.2,
*3H FT)
822 FORMAT(20X F10.2,5X E15.8)
907 FORMAT(1H0 4X 35H TIME   XD MANEUVER   YD MANEUVER
*          15H   ZD MANEUVER)
908 FORMAT(1X F10.4, 3(3X F8.2,4X))
910 FORMAT(10X,24H EARTH FIXED COORDINATES)
911 FORMAT(10X,19H LAUNCH COORDINATES)
RETURN
END
```

JTINE LETH

74/74 OPT=1

FTNH 4.2+75075

07/16/71

```

SUBROUTINE LETH
COMMON/PK/XDH(22),YDH(22),ZDH(22),BDHX(22),BDHY(22),BDHZ(22)
*,KILL(22),P(4),SPK,SPHG,SPHS,SPM
COMMON/MISD/XM(3),YM(3),ZM(3),RM(3),NOPT,ICN
COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
* XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,
* ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ
COMMON/DELT/PPXS(50),PPYS(50),PPZS(50),VMXS(50),VMYS(50),VMZS(50)
COMMON/GTARG/FXA,FYA,FZA,FXB,FYB,FZB,FXC,FYC,FZC,AT,VT
COMMON/COND/COSA,COSB,COSG,YA,ZA
COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
*Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
*S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
*S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6
COSA=(1./ZA)/SQRT((1./ZA)**2+(YA/ZA)**2+1.)
COSB=(YA/ZA)/SQRT((1./ZA)**2+(YA/ZA)**2+1.)
COSG=1./SQRT((1./ZA)**2+(YA/ZA)**2+1.)
SSX=0.0
SSY=0.0
SSZ=0.0
DO 4 J=1,NADJ
SSX=SSX+VMXS(J)
SSY=SSY+VMYS(J)
SSZ=SSZ+VMZS(J)

```

4 CONTINUE

ADJ=FLOAT(NADJ)

C*** AVERAGE LAUNCH COORDINATES OF RELATIVE VELOCITY VECTORS OVER DATA

C COLLECTION RANGE

COOL5=(SSX/ADJ)

COOL6=(SSY/ADJ)

COOL7=(SSZ/ADJ)

C*** GENERALIZED TARGET COORDINATES OF AVERAGE RELATIVE VELOCITY VECTOR

C REFERENCED TO ORIGIN AT TAILPIPE

CUUL5=FXA*COOL5+FYA*COOL6+FZA*COOL7

CUUL6=FXB*COOL5+FYB*COOL6+FZB*COOL7

CUUL7=FXC*COOL5+FYC*COOL6+FZC*COOL7

C1=COS(AT)

S1=SIN(AT)

C*** TARGET FIXED COORDINATES OF AVERAGE RELATIVE VELOCITY VECTOR

C REFERENCED TO ORIGIN AT TAILPIPE

CARL5=CUUL7*C1+CUUL5*S1

CARL6=-CUUL6

CARL7=CUUL5*C1-CUUL7*S1

C*** TARGET FIXED COORDINATES OF AVERAGE INERTIAL MISSILE VELOCITY

C VECTOR

C REFERENCED TO ORIGIN AT TAILPIPE

VM1=(CUUL7+VT)*C1+CUUL5*S1

VM2=-CUUL6

VM3=CUUL5*C1-(CUUL7+VT)*S1

C*** GENERALIZED TARGET COORDINATES OF POSITION VECTOR OF LAST DATA

C POINT

C REFERENCED TO ORIGIN AT TAILPIPE

XAI=FXA*PPXS(NADJ)+FYA*PPYS(NADJ)+FZA*PPZS(NADJ)

ZAI=FXC*PPXS(NADJ)+FYC*PPYS(NADJ)+FZC*PPZS(NADJ)

YAI=FXB*PPXS(NADJ)+FYB*PPYS(NADJ)+FZB*PPZS(NADJ)

C*** TARGET FIXED COORDINATES OF POSITION VECTOR OF LAST DATA POINT

C REFERENCED TO ORIGIN AT TAILPIPE

FINE LETH

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
XAIMD=ZAI*C1+XAI*S1
YAIMD=-YAI
ZAIMD=XAI*C1-ZAI*S1
C*** DISTANCE BETWEEN LAST DATA POINT AND XF-YF PLANE PIERCING POINT
C REFERENCED TO ORIGIN AT TAILPIPE
D1=SQRT((XAIMD+ZM(1)/ZA)**2+(YAIMD-YM(1)+(YA/ZA)*ZM(1))**2
*+ZAIMD**2)
C*** COMPONENTS OF UNIT VECTOR IN DIRECTION FROM XF-YF PLANE PIERCING
C POINT TO POSITION OF LAST DATA POINT
C REFERENCED TO ORIGIN AT TAILPIPE
AA=(XAIMD+ZM(1)/ZA)/D1
BB=(YAIMD-YM(1)+(YA/ZA)*ZM(1))/D1
CC=ZAIMD/D1
IF(COSA/ABS(COSA).NE.AA/ABS(AA)) COSA=-COSA
IF(COSB/ABS(COSB).NE.BB/ABS(BB)) COSB=-COSB
IF(COSG/ABS(COSG).NE.CC/ABS(CC)) COSG=-COSG
C*** COSINE OF THETA
COST=AA*COSA+BB*COSB+CC*COSG
C*** DISTANCE BETWEEN PK MODEL AIM POINT AND XF-YF PLANE PIERCING POINT
C REFERENCED TO ORIGIN AT TAILPIPE
D2=D1*COST
C*** TARGET FIXED COORDINATES OF PK MODEL AIM POINT
C REFERENCED TO ORIGIN AT CG
XAIM=D2*COSA-ZM(1)/ZA-19.5
YAIM=D2*COSB+YM(1)-(YA/ZA)*ZM(1)
ZAIM=D2*COSG
IF(IS1.EQ.1) GO TO 300
PRINT 999,XAIMD,YAIMD,ZAIMD,D1,AA,BB,CC,COST,D2
PRINT 999,COSA,COSB,COSG
300 CONTINUE
NELIPS=22
VSHELL=SQRT(VM1**2+VM2**2+VM3**2)
BUX=VM1/VSHELL
BUY=VM2/VSHELL
BUZ=VM3/VSHELL
IF(IS1.EQ.1) GO TO 301
PRINT 999,COOL5,COOL6,COOL7,COUL5,COUL6,COUL7,C1,S1
PRINT 999,CARL5,CARL6,CARL7,VM1,VM2,VM3,XAI,YAI,ZAI
PRINT 999,XAIM,YAIM,ZAIM,VSHELL,BUX,BUY,BUZ
301 CONTINUE
TSTAB=100.
MPEN=0
DO 444 M=1,NELIPS
CAY1=(XAIM-XDH(M))/BDHX(M)
CAY3=(YAIM-YDH(M))/BDHY(M)
CAY5=(ZAIM-ZDH(M))/BDHZ(M)
CAY2=CARL5/BDHX(M)
CAY4=CARL6/BDHY(M)
CAY6=CARL7/BDHZ(M)
CAY7=CAY2**2+CAY4**2+CAY6**2
CAY8=2.* (CAY1*CAY2+CAY3*CAY4+CAY5*CAY6)
CAY9=CAY1**2+CAY3**2+CAY5**2-1.
TEMP1=(CAY8*0.5)/CAY7
TEMP2=CAY9/CAY7
DISCRI=TEMP1**2-TEMP2
IF(DISCRI)444,445,445
445 TTRIAL=-TEMP1-SQRT(DISCRI)
```

UIINE LETH

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
IF(TTRIAL-TSTAB)446,444,444
446 TSTAB=TTRIAL
MPEN=M
444 CONTINUE
DO 460 M=1,4
460 P(M)=0.
IF(MPEN)461,461,462
461 P(1)=1.
GO TO 500
462 IF(KILL(MPEN))471,471,472
471 P(2)=1.
GO TO 500
472 TTT=TSTAB
M=MPEN
XS=XAIM+CARL5*TTT
YS=YAIM+CARL6*TTT
ZS=ZAIM+CARL7*TTT
AN=2.*{XS-XDH(M)}/{BDHX(M)**2}
BN=2.*{YS-YDH(M)}/{BDHY(M)**2}
CN=2.*{ZS-ZDH(M)}/{BDHZ(M)**2}
CSANG=(-AN*BUX-BN*BUY-CN*BUZ)/SQRT{AN**2+BN**2+CN**2}
IF(CSANG-.174)481,481,482
481 P(3)=1.
GO TO 500
482 P(4)=1.
500 CONTINUE
PRINT 101,P(1),P(2),P(3),P(4)
SPK=SPK+P(4)
SPHG=SPHG+P(3)
SPHS=SPHS+P(2)
SPM=SPM+P(1)
101 FORMAT(1H0,7H      =,F6.4,3X,13H      =,F6.4,3X,16H
*      =,F6.4,3X,7H      =,F6.4)
999 FORMAT(10(1X,E11.4))
RETURN
END
```

TINE QCLIM

74/74 OPT=1

FTNH 4.2+75075

07/16/7

SUBROUTINE QCLIM

COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
*Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
*S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
*S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6

C CALCULATE CONTROL LIMITS

S2P1=W1*CLS2(NSAM)
S1P1=W1*CLS1(NSAM)
A2P1=Q1+W1*CLMS(NSAM)
A1P1=Q1-W1*CLMS(NSAM)
S2P2=W2*CLS2(NSAM)
S1P2=W2*CLS1(NSAM)
A2P2=Q2+W2*CLMS(NSAM)
A1P2=Q2-W2*CLMS(NSAM)
S2P3=W3*CLS2(NSAM)
S1P3=W3*CLS1(NSAM)
A2P3=Q3+W3*CLMS(NSAM)
A1P3=Q3-W3*CLMS(NSAM)
S2P4=W4*CLS2(NSAM)
S1P4=W4*CLS1(NSAM)
A2P4=Q4+W4*CLMS(NSAM)
A1P4=Q4-W4*CLMS(NSAM)
S2P5=W5*CLS2(NSAM)
S1P5=W5*CLS1(NSAM)
A2P5=Q5+W5*CLMS(NSAM)
A1P5=Q5-W5*CLMS(NSAM)
S2P6=W6*CLS2(NSAM)
S1P6=W6*CLS1(NSAM)
A2P6=Q6+W6*CLMS(NSAM)
A1P6=Q6-W6*CLMS(NSAM)

RETURN

END

TINE GUIO

74/74 OPT=1

FTNH 4.2+75075

07/16/7

SUBROUTINE GUIO

C** THIS SUBROUTINE TRANSFORMS EARTH FIXED TO LAUNCH COORDINATES.

COMMON /ANG/SINSO,COSSO,SINSCO,COSSCO

COMMON /COMB/XD,YD,ZD,XDTG,YDTG,ZDTG,XDEF,YDEF,ZDEF,ZZZ

*,XODE,YODE,ZODE

C***

XDTG = XD * COSSO * COSSCO + YD * COSSO * SINSCO - ZD * SINSO

YDTG = -XD * SINSO + YD * COSSCO

ZDTG = XD * SINSO * COSSCO + YD * SINSO * SINSCO + ZD * COSSCO

C***

RETURN

END

UTINE KSCALE

74/74 OPT=1

FTNH 4.2+75075

07/16/7

SUBROUTINE KSCALE, RETURNS(Z1)

C*** THIS ROUTINE GIVES THE ESTIMATED TIME AT 1000 FT-TO-GO (T-PRIME)
 C*** AND THE VALUE OF GAMMA THAT WILL NOT ALLOW ANALOG OVERLOAD (GAMA).
 C*** THEY DETERMINE THE VARIABLE SCALE FACTOR EQUATION. THE RETURNED
 C*** VALUES ARE G FOR T-PRIME AND GGG FOR GAMA.

COMMON/COMA/LEVEL,IPTS,XXS(50),XDTGO,YDTGO,ZDTGO,RLB,COSE,SPO,RI,
 *GAM,EDOT,THETAL,RN,
 *PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
 *,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
 *,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
 *,XDO,YDO,ZDO,DGX,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
 *RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
 *CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
 *PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
 *,SA,CA,VMX(50),VMY(50),VMZ(50)
 *,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)
 COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
 *Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
 *S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
 *S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6

C

C

C*** BEGIN CONVERGING SEARCH FOR T-PRIME AT 1000 FT-TO-GO.

C

R=RI

DG=1.

AN=0.

G=0.

10 G=G+DG

ARG1=G*SQRT(YDTGO**2+ZDTGO**2)

ARG2=R+G*XDTGO-1000.

THETA2=ATAN2(ARG1,ARG2)

NPX=2

IF (G.GT.20.) GO TO 20

NB=28

CALL INTERP(G,TAMA,DELTAR,NB,NPX,DR,NERR)

VALUE=R-DR*COS(THETA2)+G*XDTGO-1000.

A=ABS(VALUE)

IF (A.LT.20.) GO TO 40

IF (VALUE.GT.0.) GO TO 10

AN=AN+1.

G=G-DG

DG=.1/AN

GO TO 10

20 PRINT 30

30 FORMAT(10X,35H T-PRIME IS GREATER THAN 20 SECONDS)

RETURN Z1

40 CONTINUE

IF (IS1.NE.1) PRINT 50,G,UR

50 FORMAT(10X,10H T-PRIME =F10.4,4H SEC,5X,26H DELTAR AT 1000 FT TO G

*0 =F10.2,3H FT)

C

C

C*** BEGIN CONVERGING SEARCH FOR GAMA.

C

DG=1.

AN=0.

DUTINE KSCALE

74/74 OPT=1

FTNH 4.2+75075

07/16/71

```
GG=0.  
60 GG=GG+DG  
A=-XDTGO*XDTGO  
CALL INTERP(GG,TAMA,DELTAR,NB,NPX,DR,NERR)  
CALL INTERP(GG,TAMA,VM,NB,NPX,V,NERR)  
B=2.*XDTGO*(20000.-R+DR*COS(THETA2))-20000.*V*COS(THETA2)  
C=(R-DR*COS(THETA2))*(20000.-R+DR*COS(THETA2))  
VALUE=A*GG+GG+B*GG+C  
AA=ABS(VALUE)  
IF (AA.LT.10000.) GO TO 70  
IF (VALUE.GT.0.) GO TO 60  
AN=AN+1.  
GG=GG-DG  
DG=.1/AN  
GO TO 60  
70 CONTINUE  
IF (IS1.NE.1) PRINT 80,GG  
80 FORMAT(10X,25H T AT GAMA MIN OVERLOAD =F10.4,4H SEC)  
IF (IS1.NE.1) PRINT 90,DR  
90 FORMAT(10X,30H DELTAR AT GAMA MIN OVERLOAD =F10.1,3H FT)  
IF (IS1.NE.1) PRINT 95,V  
95 FORMAT(10X,26H VM AT GAMA MIN OVERLOAD =F10.1,7H FT/SEC)  
A1=20000./(DR*COS(THETA2)-R-XDTGO*GG)  
GGG=-(1.+A1)*G/GG  
IF (IS1.NE.1) PRINT 96,GGG  
96 FORMAT(10X,8H GAMA = F10.4)  
A2=0.48/(1.+GGG)  
PRINT 97,A2  
97 FORMAT(10X,31H SMALLEST BIT A/D RESOLUTION = F10.4,2X,3H FT)  
RETURN  
END
```

JU.INE PRIME

74/74 OPT=1

FTNH 4.2+75075

07/16/71

```

SUBROUTINE PRIME
COMMON/COMA/LEVEL,IPTS,XXS(50),XDTG0,YDTG0,ZDTG0,RLB,COSE,SPO,RI,
*SAM,EDOT,THETAL,RN,
*          PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
*          ,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
*          ,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
*,XDO,YDO,ZDO,DXG,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
*RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
*CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
*PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
*,SA,CA,VMX(50),VMY(50),VMZ(50)
*,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)
COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
*          XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,
*          ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ
COMMON /ANG/ SINSO,COSSO,SINSCO,COSSCO
COMMON/DELT/PPXS(50),PPYS(50),PPZS(50),VMXS(50),VMYS(50),VMZS(50)
COMMON /COMB/XD,YD,ZD,XDTG,YDTG,ZDTG,XDEF,YDEF,ZDEF,ZZZ
*,XDDE,YDDE,ZDDE
COMMON /MU/ COSMU1,SINMU1,COSMU2,SINMU2,COSMU3,SINMU3
COMMON/MISD/XM(3),YM(3),ZM(3),RM(3),NOPT,ICN
COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
*Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
*S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
*S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6
REAL MU1,MU2,MU3
DATA RTD,DTR/57.2957795,0.01745329/
50 CONTINUE
TLAST = TIMES(NADJ)
TFIRST = TIMES(1)
TSPAN = TLAST - TFIRST
THALF = TFIRST + TSPAN / 2.
C*** INTERP RETURNS THESE VALUES FROM TAU ADJUSTED TARGET VELOCITY-TIME
C*** MANEUVER TABLE IN EARTH FIXED COORDINATES.
CALL INTERP (TLAST,TMA,XDM,NT,NPX,XDEL,NERR)
CALL INTERP (TFIRST,TMA,XDM,NT,NPX,XDEF,NERR)
XODE = (XDEL - XDEF) / TSPAN
CALL INTERP (TLAST,TMA,YDM,NT,NPX,YDEL,NERR)
CALL INTERP (TFIRST,TMA,YDM,NT,NPX,YDEF,NERR)
YODE = (YDEL - YDEF) / TSPAN
CALL INTERP (TLAST,TMA,ZDM,NT,NPX,ZDEL,NERR)
CALL INTERP (TFIRST,TMA,ZDM,NT,NPX,ZDEF,NERR)
ZODE=(ZDEL-ZDEF)/TSPAN-32.174
C*** COMPONENTS OF AERODYNAMIC ACCELERATION IN EARTH FIXED COORDINATES
XD = XODE
YD = YODE
ZD = ZODE
C*** TRANSFORM THESE TO LAUNCH COORDINATES
CALL GUID
C*** COMPONENTS OF AERODYNAMIC ACCELERATION IN LAUNCH COORDINATES
XDTG = XDTG
YDTG = YDTG
ZDTG = ZDTG
C*** DEFINE X- Y- AND ZDTG
CALL INTERP (THALF,TMA,XDTGM,NT,NPX,XDTG5,NERR)
C*** INTERP RETURNS THESE VALUES FROM TAU ADJUSTED TARGET VELOCITY-TIME
C*** MANEUVER TABLE IN LAUNCH COORDINATES.

```

NE PRIME 74/74 OPT=1

FTNH 4.2+75075

07/16/75

```
CALL INTERP (THALF,TMA,YDTGM,NT,NPX,YDTG5,NERR)
CALL INTERP (THALF,TMA,ZDTGM,NT,NPX,ZDTG5,NERR)
*** CALCULATE THE ANGLES USED FOR THE T-MATRIX
51 IF(ZDTG5.NE.0.0) MU1=ATAN2(YDTG5,ZDTG5)
IF(ZDTG5.EQ.0.0.AND.YDTG5.EQ.0.0) MU1=0.0
IF(ZDTG5.EQ.0.0.AND.YDTG5.GT.0.0) MU1=90.*DTR
IF(ZDTG5.EQ.0.0.AND.YDTG5.LT.0.0) MU1=270.*DTR
52 IF(XDTG5.GT.0.0) GO TO 53
IF(XDTG5.LT.0.0) GO TO 54
MU2=0.0
GO TO 55
53 IF(YDTG5.EQ.0.0.AND.ZDTG5.EQ.0.0) MU2=270.*DTR
ARG=SQRT(YDTG5**2+ZDTG5**2)
IF(YDTG5.NE.0.0.OR.ZDTG5.NE.0.0) MU2=360.*DTR-ATAN2(XDTG5,ARG)
GO TO 55
54 IF(YDTG5.EQ.0.0.AND.ZDTG5.EQ.0.0) MU2=90.*DTR
ARG=SQRT(YDTG5**2+ZDTG5**2)
IF(YDTG5.NE.0.0.OR.ZDTG5.NE.0.0) MU2=-ATAN2(XDTG5,ARG)
55 CONTINUE
*** DEFINE THE VALUES USED IN THE T-MATRIX
COSMU1 = COS(MU1)
SINMU1 = SIN(MU1)
COSMU2 = COS(MU2)
SINMU2 = SIN(MU2)
ARG1=ZDDTG*SINMU1-YDDTG*COSMU1
ARG2=XDDTG*COSMU2+YDDTG*SINMU1*SINMU2+ZDDTG*COSMU1*SINMU2
MU3=ATAN2(ARG1,ARG2)
COSMU3 = COS(MU3)
SINMU3 = SIN(MU3)
IF(ICN.NE.1.AND.III.EQ.1) GO TO 70
IF(IS1.EQ.1) GO TO 70
PRINT 862,LEVEL,XDDTG,YDDTG,ZDDTG,XDTG5,YDTG5,ZDTG5
70 CONTINUE
*** CHANGE RADIANS TO DEGREES FOR PRINT OUT
MU1 = MU1 * RTD
MU2 = MU2 * RTD
MU3 = MU3 * RTD
IF(IS1.EQ.1) GO TO 90
IF(ICN.EQ.1.OR.III.NE.1) PRINT 901,MU1,MU2,MU3
90 CONTINUE
862 FORMAT(10X,53H MANEUVER WAS IN PROGRESS AT TIME OF DATA COLLECTION
*./10X,8H LEVEL =,I5,5X,8H XDDTG =,F10.4,5X,8H YDDTG =,F10.4,5X,
*8H ZDDTG =,F10.4/10X,8H XDTG5 =,F10.4,5X,8H YDTG5 =,F10.4,5X,
*8H ZDTG5 =,F10.4)
901 FORMAT(1H0,10X,6H MU1 = F8.2,5X,6H MU2 = F8.2,5X,6H MU3 = F8.2)
RETURN
END
```

OU.INE MISCOM 74/74 OPT=1

FTNH 4.2+75075

07/16/71

SUBROUTINE MISCOM

```

C THIS SUBROUTINE CALCULATES THE MISS DISTANCES IN THE TARGET
C COORDINATE SYSTEM
C
COMMON/MISD  I(3),YM(3),ZM(3),RM(3),N,ICN
COMMON/DEL   X(50),Y(50) Z(50),VMXS(50),VMYS(50),VMZS(50)
COMMON /MU    OSMU1,SIM1,COSMU2,SINMU2,COSMU3,SINMU3
COMMON /CO    XD,YD,ZD TG,YDTG,ZDTG,XDEF,YDEF,ZDEF,ZZZ
*,XDD,EYDE,DE
COMMON/MANEUV/ITT,XDEM(30,45),YDEM(30,45),ZDEM(30,45),
*,      XDTGM(30),YDTGM(30),ZDTGM(30),XPRIME,YPRIME,
*,      ZPRIME,TIMES(50),ITRAJ(60),ITAU(60),III,NADJ
COMMON/COMA/LEVEL,IPTS,XXS(50),XDTG0,YDTG0,ZDTG0,RLB,COSE,SPO,RI,
*,GAM,EDOT,THETAL,RN,
*,      PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
*,      YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
*,      XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
*,XDO,YDO,ZDO,DGX,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
*,RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
*,CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
*,PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
*,SA,CA,VMX(50),VMY(50),VMZ(50)
*,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)
COMMON/GTARG/FXA,FYA,FZA,FXB,FYB,FZB,FXC,FYC,FZC,AT,VT
COMMON/COMD/COSA,COSB,COSG,YA,ZA
COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
*,Q4,Q5,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
*,S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
*,S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6
COMMON/EXTRA/NPTS,DX,XTERM,KKK,AS,SEO,SC,ASEO,R,SCALEL,VVVV,C1,
*,XLOS,YLOS,ZLOS,CO,CX,CY,CLZ,TRP,XX(50),THE
DIMENSION T(50),XT(50),YT(50),ZT(50)
DTR=0.01745329
DDX=DX
II=0
XN=FLOAT(N)
SMX=0.
SMX2=0.

```

```

C
C*** NEXT CARD IS TAPE SPECIFIC FOR ITT=1 FOR STATIONARY TARGET
IF(ITT.EQ.1) GO TO 19
FX = COSMU2 * COSMU3
FY = SINMU1 * SINMU2 * COSMU3 - COSMU1 * SINMU3
FZ = SINMU1 * SINMU3 + COSMU1 * SINMU2 * COSMU3
FXA = FX
FYA = FY
FZA = FZ
FX=COSMU2*SINMU3
FY=COSMU1*COSMU3+SINMU1*SINMU2*SINMU3
FZ=COSMU1*SINMU2*SINMU3-SINMU1*COSMU3
FXB = FX
FYB = FY
FZB = FZ
FX=-SINMU2
FY=SINMU1*COSMU2
FZ = COSMU1 * COSMU2

```

DU INE MISCOM 74/74 OPT=1

FTNH 4.2+75075

07/16/71

FXC = FX

FYC = FY

FZC = FZ

19 CONTINUE

IF((ITT.EQ.1.OR.VVVV.LT.338.0).AND.IS1.NE.1) PRINT 67

IF((ITT.NE.1.OR.VVVV.GE.338.0).AND.IS1.NE.1) PRINT 66

DO 1 I=1,N

DX = X(I)

DY = Y(I)

DZ = Z(I)

C*** NEXT CARD IS TAPE SPECIFIC FOR ITT=1 FOR STATIONARY TARGET

IF(ITT.EQ.1) GO TO 30

IF(VVVV.LT.338.0) GO TO 30

C TRANSFORM (MISSILE MINUS TARGET) LAUNCH COORDINATES TO GENERALIZED

C TARGET COORDINATES

C REFERENCED TO ORIGIN AT TAILPIPE

XT(I) = FXA*DX + FYA*DY + FZA*DZ

YT(I) = FXB*DX + FYB*DY + FZB*DZ

ZT(I) = FXC*DX + FYC*DY + FZC*DZ

C CALCULATE TARGET ANGLE OF ATTACK

AAA=1116.89+0.003894*ZZZ

VT=SQRT(XDEF**2+YDEF**2+ZDEF**2)

ARG=0.00003*ZZZ

PHO=0.00237692*EXP(ARG)

QM=VT/AAA

NPX=2

NX=8

CALL INTERP (QM,QMM,CLAA,NX,NPX,CLA,NERR)

WT=18500.0

ST=248.0

AT=2.*WT*SQRT(XDDE**2+YDDE**2+ZDDE**2)/(PHO*VT*VT*ST*CLA*32.174)

IF(IS1.EQ.1) GO TO 5

IF(ICN.EQ.1.AND.I.EQ.1) PRINT 25,AT

5 CONTINUE

AT=AT*DTR

XS=XT(I)

YS=YT(I)

ZS=ZT(I)

C TRANSFORM GENERALIZED TARGET COORDINATES TO TARGET FIXED COORDINATES

C REFERENCED TO ORIGIN AT TAILPIPE

XT(I)=ZS*COS(AT)+XS*SIN(AT)

YT(I)=-YS

ZT(I)=XS*COS(AT)-ZS*SIN(AT)

GO TO 4

C TRANSFORM MISSILE LAUNCH COORDINATES TO TARGET EARTH FIXED

C COORDINATES. TARGET IS STATIONARY OR MOVING AT LESS THAN 338 FT/SEC

30 XT(I)=DX*S2-DY*SPL+DZ*S3

YT(I)=DX*S4+DY*CPL+DZ*S5

ZT(I)=-DX*STL+DZ*CTL

4 CONTINUE

IF(IS1.NE.1) PRINT 15,XT(I),YT(I),ZT(I)

15 FORMAT(3(3X,E11.4))

SMX=SMX+XT(I)

1 SMX2=SMX2+XT(I)*XT(I)

C

DO 20 I=1,N

I(I) = YT(I)

OUTLINE MISCOM

74/74 OPT=1

FTNH 4.2+75075

07/16/71

20 CONTINUE

C CALCULATE COEFFICIENTS FOR MISSILE PATH PROJECTIONS IN TARGET FIXED

C COORDINATES

C REFERENCED TO ORIGIN AT TAILPIPE

21 SMT=0.0

SMXT=0.

DO 2 I=1,N

SMT=SMT+T(I)

2 SMXT=SMXT+XT(I)*T(I)

D=XN*SMX2-SMX*SMX

B=(SMT*SMX2-SMX*SMXT)/D

A=(XN*SMXT-SMT*SMX)/D

C

II= II + 1

C

99 GO TO(10,11),II

C YF-AXIS INTERCEPT AND SLOPE OF PATH PROJECTION IN XF-YF PLANE

C REFERENCED TO ORIGIN AT TAILPIPE

10 YM(1)= B

YA=A

C

102 DO 3 I=1,N

T(I) = ZT(I)

3 CONTINUE

GO TO 21

C ZF-AXIS INTERCEPT AND SLOPE OF PATH PROJECTION IN XF-ZF PLANE

C REFERENCED TO ORIGIN AT TAILPIPE

11 ZM(1)= B

ZA=A

C

C XF-AXIS COORDINATE OF PATH PIERCING POINT IN XF-YF PLANE

C REFERENCED TO ORIGIN AT TAILPIPE

XM(2)= -ZM(1)/ZA

μ C YF-AXIS COORDINATE OF PATH PIERCING POINT IN XF-YF PLANE

C REFERENCED TO ORIGIN AT TAILPIPE

YM(2)= YM(1) + YA*XM(2)

C

C XF-AXIS COORDINATE OF PATH PIERCING POINT IN XF-ZF PLANE

C REFERENCED TO ORIGIN AT TAILPIPE

XM(3)= -YM(1)/YA

C ZF-AXIS COORDINATE OF PATH PIERCING POINT IN XF-ZF PLANE

C REFERENCED TO ORIGIN AT TAILPIPE

ZM(3)= ZM(1) + ZA*XM(3)

C

XM(1)= 0.

ZM(2)= 0.

YM(3)= 0.

C CALCULATE NEAREST APPROACH TO ORIGIN IN YF-ZF,XF-YF,AND XF-ZF PLANES

C REFERENCED TO ORIGIN AT TAILPIPE

DO 155 I=1,3

155 RM(I)= SQRT(XM(I)*XM(I) + YM(I)*YM(I) + ZM(I)*ZM(I))

DX=DOX

C

25 FORMAT(10X,26H TARGET ANGLE OF ATTACK = ,F5.2,3X,4H DEG)

66 FORMAT(//10X,50H TARGET-FIXED-COORDINATES-OF-MISSILE-REFERENCED-TO

* 10H TAILPIPE.//)

67 FORMAT(//10X,43H TARGET-EARTH-FIXED-COORDINATES-OF-MISSILE.//)

SUBROUTINE MISCOM

74/74 OPT=1

FTNH 4.2+75 071

RETURN
END

TIME MEAN

74/74 OPT=1

FTNH 4.2+75075

07/16/7

SUBROUTINE MEAN(AXM,AYM,AZM,ARM,NR,SX,SY,SZ,SS)

C
C THIS SUBROUTINE CALCULATES THE MEAN AND STANDARD DEVIATION
C OF THE MISS DISTANCES
C

COMMON/COMP/IS1,I99,I88,CLMS(10),CLS1(10),CLS2(10),NSAM,Q1,Q2,Q3,
*Q4,Q5,Q6,W1,W2,W3,W4,W5,W6,IFT,IPLANE,ICON,S2P1,S1P1,A2P1,A1P1,
*S2P2,S1P2,A2P2,A1P2,S2P3,S1P3,A2P3,A1P3,S2P4,S1P4,A2P4,A1P4,S2P5,
*S1P5,A2P5,A1P5,S2P6,S1P6,A2P6,A1P6
DIMENSION AXM(20),AYM(20),AZM(20),ARM(20)
XNR=FLOAT(NR)
XNN= SQRT(XNR/(XNR-1.))
J=0

C
9 SS=0.
SVS=0.
J=J+1
DO 18 I=1,NR
GO TO (11,12,13,14),J
11 DUM= AXM(I)
GO TO 15
12 DUM= AYM(I)
GO TO 15
13 DUM= AZM(I)
GO TO 15
14 DUM= ARM(I)
15 SS= SS+DUM
18 SVS= SVS + DUM*DUM

C
C MEAN
C

SS= SS/XNR
SVS= SVS/XNR

C
C STANDARD DEVIATION
C

DOD=SVS-SS*SS
DODO=ABS(DOD)
SVS=SQRT(DODO)*XNN
GO TO (21,22,23,24),J
21 SX= SS
SVX= SVS
GO TO 9
22 SY= SS
SVY= SVS
GO TO 9
23 SZ= SS
SVZ= SVS
GO TO 9

C
24 PRINT 34
PRINT 35, SX,SY,SZ,SS
PRINT 36, SVX,SVY,SVZ,SVS
IF(I99.NE.1) GO TO 45
IF(IPLANE.EQ.0) GO TO 45
IF(IPLANE.EQ.1) GO TO 40
IF(IPLANE.EQ.2) GO TO 41

OUTINE MEAN

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
----- IF(IPLANE.EQ.3) GO TO 42
 40 IF(SVY.GT.S2P1.OR.SVY.LT.S1P1) IFT=1
    IF(SVZ.GT.S2P2.OR.SVZ.LT.S1P2) IFT=1
    IF(SY.GT.A2P1.OR.SY.LT.A1P1) IFT=1
    IF(SZ.GT.A2P2.OR.SZ.LT.A1P2) IFT=1
    GO TO 45
 41 IF(SVX.GT.S2P3.OR.SVX.LT.S1P3) IFT=1
    IF(SVY.GT.S2P4.OR.SVY.LT.S1P4) IFT=1
    IF(SX.GT.A2P3.OR.SX.LT.A1P3) IFT=1
    IF(SY.GT.A2P4.OR.SY.LT.A1P4) IFT=1
    GO TO 45
 42 IF(SVX.GT.S2P5.OR.SVX.LT.S1P5) IFT=1
    IF(SVZ.GT.S2P6.OR.SVZ.LT.S1P6) IFT=1
    IF(SX.GT.A2P5.OR.SX.LT.A1P5) IFT=1
    IF(SZ.GT.A2P6.OR.SZ.LT.A1P6) IFT=1
 45 CONTINUE
      RETURN
C
 34 FORMAT(15X2HXT8X2HYT8X2HZT8X2HRM)
 35 FORMAT(15X4HMEAN4F10.3)
 36 FORMAT(3X6HST DEV4F10.4)
      END
```

SUBROUTINE INTERP(X,XT,YT,NX,NPX,Y,NERR)

C DESCRIPTION

C THIS ROUTINE USES THE LAGRANGE INTERPOLATION FORMULA TO
C CALCULATE THE VALUE Y=F(X) FROM THE FUNCTION TABLE (YT(I)=
C F(XT(I))). THE TABLE OF INDEPENDENT VARIABLES MUST BE IN
C INCREASING ORDER BUT DO NOT HAVE TO BE EVENLY SPACED. IF THE
C DESIRED ARGUMENT X IS NOT IN THE INDEPENDENT VARIABLE TABLE,
C THE ROUTINE WILL EXTRAPOLATE USING THE NEAREST POINTS TO THE
C UNKNOWN VALUE. THE DEGREE OF THE INTERPOLATION FORMULA IS A
C VARIABLE AND MAY BE SELECTED BY THE USER.

C INPUT

C 1 X THE INDEPENDENT VARIABLE X.
C 2 XT TABLE OF INDEPENDENT X VALUES. MUST BE IN
C INCREASING ORDER.
C 3 YT TABLE OF DEPENDENT Y VALUES. YT(I)=F(XT(I))
C 4 NX NUMBER OF POINTS IN XT.
C 5 NPX NUMBER OF POINTS USED IN THE INTERPOLATING FORMULA
C WITH XT AS THE INDEPENDENT VARIABLE TABLE. (NPX-1)
C IS THE DEGREE OF THE INTERPOLATION FORMULA USED.

C OUTPUT

C 1 Y THE INTERPOLATED DEPENDENT VALUE. Y=F(X)
C 2 NERR NERR=0 IF XT(1) .LE. X .LE. XT(NX)
C NERR = 1 IF X .LT. XT(1)
C NERR = 2 IF X .GT. XT(NX)

DIMENSION XT(1),YT(1)

NERR = 0

NP=NPX

IF(NX .LT. NP) NP = NX

NS = (NX+169)/26

IH = NP/2

I = 1

IF(XT(I) - X)30,20,10

10 IH = 0

12 NERR = 1

GO TO 70

13 NERR = 2

GO TO 70

20 Y = YT(I)

GO TO 999

30 I = NX

IF(XT(I) - X)13,20,50

50 L = IH + 1

IS = NS+L

IF(NX-IS)58,58,52

52 DO 54 I=IS,NX,NS

IF(XT(I) - X)54,20,56

54 L = I

GO TO 58

56 L = I - NS

58 DO 60 I=L,NX

IF(XT(I) - X)60,20,70

60 CONTINUE

70 K = I - IH

N = K + NP - 1

Y = 0.0

IF (N - NX)90,90,80

ROUTINE INTERP 74/74 OPT=1

FTNH 4.2+75075

07/16/71

```
80 N = NX
K = NX-NP+1
90 DO 120 J=K,N
P = 1.0
DO 110 I=K,N
IF (I-J)100,110,100
100 P = P * (X - XT(I)) / (XT(J) - XT(I))
110 CONTINUE
120 Y = Y + YT(J)*P
999 RETURN
END
```

IN FLIGHT

74/74 OPT=1

FTNH 4.2+75075

07/16/7

SUBROUTINE FLIGHT

C

ANALOG INPUTS(ADCS)

C

DX,DY,DZ SCALED XXX,YYY,ZZZ

C

DT TIME

C

XDOT X-MISSLE MINUS X-TARGET VELOCITY(FT/SEC)

C

YDOT Y-MISSLE MINUS Y-TARGET VELOCITY(FT/SEC)

C

ZDOT Z-MISSLE MINUS Z-TARGET VELOCITY(FT/SEC)

C

XXX X-MISSLE MINUS X-TARGET POSITION(FT)

C

YYY Y-MISSLE MINUS Y-TARGET POSITION(FT)

C

ZZZ Z-MISSLE MINUS Z-TARGET POSITION(FT)

C

NOTE, DX,DY,DZ OVERLOAD UNTILL 1000 FT TO GO, HOWEVER, XXX-YYY-ZZZ
SHOULD NEVER OVERLOAD

C

ANALOG OUTPUTS(DACS)

C

XDTGO,XCOMP TARGET VELOCITY X-COMPONENT(LAUNCH COORD.)

C

YDTGO,YCOMP TARGET VELOCITY Y-COMPONENT(LAUNCH COORD.)

C

ZDTGO,ZCOMP TARGET VELOCITY Z-COMPONENT(LAUNCH COORD.)

C

RLB APPARENT PLUME LENGTH/BREADTH RATIO

C

COS OF ANGLE BETWEEN LOS AND CENTER LINE OF TAR.

C

SPO SCALED PLUME ROTATION ANGLE

C

RI INITIAL RANGE

C

GAM SCALED T-PRIME AT 1000 FT TO GO

C

EDOT SCALED GAMA/T-PRIME

C

THETAL INITIAL ELEVATION ANGLE OF TARGET(SCALED)

C

RN FOR MICOM HYBRID - A RANDOM NUMBER

C

FOR IRSS APPLICATION -IRSS IRIS RATIO NO. 7

C

DISCRETE INPUTS

C

IIN CDC-6600 INPUT SENSE LINES

C

SENSE LINE 0 = 0000000000000001 = 1

C

SENSE LINE 1 = 0000000000000010 = 2

C

SENSE LINE 2 = 00000000000000100 = 4

C

SENSE LINE 3 = 0000000000001000 = 8

C

SENSE LINE 4 = 000000000010000 = 16

C

SENSE LINE 5 = 000000000100000 = 32

TR-22

C

SENSE LINE 6 = 000000001000000 = 64

TR-21

C

SENSE LINE 7 = 000000010000000 = 128

C

SENSE LINE 8 = 000000010000000 = 256

C

DISCRETE OUTPUTS (NOTE BITS ARE NUMBERED 1-16 FROM RIGHT TO LEFT)

C

IOUT CDC-6600 OUTPUT CONTROL LINES

C

CNTRL LINE 4 = 000000000010000 = 16

TR-33

C

CNTRL LINE 7 = 000000001000000 = 128

TR-30

C

OTHER PROGRAM VARIABLES

C

NPATH NPATH=1, WAITING FOR SENSE LINE 6 HIGH

C

NPATH=2, IN REAL TIME LOOP

C

IWRITE IF IWRITE = 1, WRITE COMMENTS

C

LEVEL STATUS OF MANEUVER

C

=-7 IMPLIES NOT IN REAL TIME

C

=0 IMPLIES IN REAL TIME

C

+7 IMPLIES TARGET TRAJ TABLE EXCEEDED

C

=0 IMPLIES COLLECT DATA, =7 DONT COLLECT

C

WMAN ARRAY FOR STORING INTERPOLATED VALUES

C

MAN MAXIMUM POINTS COLLECTED

UTINE FLIGHT

74/74 OPT=1

FTNH 4.2+75075

07/16/71

C IPTS MAXIMUM NUMBER OF DATA POINTS THAT CAN BE
C ACTUALLY COLLECTED (SEE NADJ IN SUBROUTINE INIT)
C IND INDEX FOR ASSIGNING STORAGE TO XCOMP, YCOMP, ZCOMP
C INDEX INDEX OF RANGE TABLE ENTRIES
C KCK =-1, TIME.LE.TPRIME. =1, TIME.GT.TPRIME
C ICR2 COUNTER, INITIALLY LENGTH OF ARRAY TS MINUS ONE
C NPTS NUMBER OF POINTS IN RANGE TABLE
C IDA3 LOGICAL VARIABLE, =-1 IMPLIES NOT YET IN 3-LOOP,
C =1 IMPLIES FIRST PASS IN 3-LOOP MADE.
C LEN NUMBER OF TRUNKING STATION CONNECTOR PAIRS USED
C SL5 REAL TIME SIGNAL, STATIC CHECK OK
C SL4 REAL TIME SIGNAL, ICS RECEIVED
C SL6 REAL TIME SIGNAL, RAMP UP READY
C SL7 REAL TIME SIGNAL, TERMINATION OF REAL TIME

C DADOS PATCHING REQUIREMENTS (ONE IIDIS AND ONE IODIS)

TRUNKING	FORTAN	AD/4 PATCH
V-50 TO W-50	FOR /IDIS2/1,IIDIS	TR00-TR07 AND TR20-TR27
V-52 TO W-50	FOR /IDIS2/1,IIDIS	TR40-TR47 AND TR60-TR67
V-50 TO W-51	FOR /IDIS2/2,IIDIS	TR00-TR07 AND TR20-TR27
V-52 TO W-51	FOR /IDIS2/2,IIDIS	TR40-TR47 AND TR60-TR67
V-51 TO W-60	FOR /ODIS2/1,IODIS	TR10-TR17 AND TR30-TR37
V-53 TO W-60	FOR /ODIS2/1,IODIS	TR50-TR57 AND TR70-TR77
V-51 TO W-61	FOR /ODIS2/2,IODIS	TR10-TR17 AND TR30-TR37
V-53 TO W-61	FOR /ODIS2/2,IODIS	TR50-TR57 AND TR70-TR77

C THE HIGH ORDER CDC-6600 BIT CORRESPONDS TO TR0X, WHERE X=0,2,4,6

C DADOS ANALOG PATCHING REQUIREMENTS

W-03 TO V-06	FOR /*ADC1/49,ADC	TR310-317 AND TR330-337
W-00 TO V-00	FOR /*ADC1/ADC	TR010-017 AND TR030-037
W-13 TO V-07	FOR /*DAC1/49,DAC	TR350-357 AND TR370-377
W-10 TO V-01	FOR /*DAC1/DAC	TR050-057 AND TR070-077
W-11 TO V-03	FOR /*DAC1/17,DAC	TR150-157 AND TR170-177

C THE FIRST ADC IN EACH GROUP OF 16 CORRESPONDS TO AD/4 TR-10.

C THE FIRST DAC IN EACH GROUP OF 16 CORRESPONDS TO AD/4 TR-50.

```

C INTEGER PIN(8),POUT(8)
C REAL MAN(200),MISS(7),MISS,LAUNCH
C INTEGER WMAN
C DIMENSION TS(30)
C EQUIVALENCE (TS(1), TMAS(1)),(MAN(1),XMAN(1)),(MISS(1),XMISS(1))
C COMMON/EEEEEE/IT1,KCK,ICR2,IDA3,IND,INDEX,MAX,IWRITE,NPATH,STATUS
C COMMON/COMA/LEVEL,IPTS,XXS(50),XDTGO,YDTGO,ZDTGO,RLB,COSE,SPO,RI,
*GAM,EDOT,THETAL,RN,
*      PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
*      ,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
*      ,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
*,XDO,YDO,ZDO,DXG,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
*RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
```

ROUTINE FLIGHT 74/74 OPT=1

FTNH 4.2+75075

07/16/7

*CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
*PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
*,SA,CA,VMX(50),VMY(50),VMZ(50)
*,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)

C

COMMON/*ADC1/ADIN(10)
COMMON/*DAC1/LAUNCH(11)
COMMON/*IDIS2/IIN
JAM,ON
COMMON/*ODIS2/IOUT
JAM,OFF

JAM,ON

COMMON/*DAC1/17,ADINTST(10)

JAM,OFF

NAMELIST/TEST/LEVEL,IPTS,XXS ,XDTGO,YDTGO,ZDTGO,RLB,COSE,SPO,RI,
*SAM,EDOT,THETAL,RN,

* PPX,PPY,PPZ,TIME,TMAS,XDTGMS

* ,YDTGMS,ZDTGMS,XMAN,XMISS,NT

* ,XCOMP,YCOMP,ZCOMP,TAMA ,DELTAR ,VM ,G,GGG

* ,XDO,YDO,ZDO,DGX,DYG,DZG,S2,S3,S4,S5,XDM ,YDM ,ZDM ,

*RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,

*CPL,A1,VTI,XE ,YE ,ZE ,ZALT,NERR,CLA,NPX,NX,CLAA ,

*PHO,ARG,AAA,SCALET,TREAL,TMA ,XTA,YTA,ZTA,SCALEV,QMM ,QM

*,SA,CA,VMX ,VMY ,VMZ

* ,ECOS ,HR7EE ,FI7T ,FCI77 ,MAN,MISSED,LAUNCH,TS

* ,IT1,KCK,ICR2,IDA3,IND,INDEX,MAX

C

C

C INITIALIZATION OF FLAGS AND COUNTERS

C

LEVEL=-7

IT1=1

KCK=-1

ICR2=29

IDA3=-1

IND=0

INDEX=0

IOUT=0

IWRITE = 1

MAX=50

NPATH=1

C

C CHECK PATCHING STATUS

C

LEN=6

PIN(1)=3RV50

PIN(2)=3RV51

PIN(3)=3RV52

PIN(4)=3RV53

PIN(5)=3RV07

PIN(6)=3RV06

CALL PATSTAT(PIN,POUT,LEN)

DO 10 I=1,LEN

10 WRITE(6,8000)PIN(I),POUT(I)

C

C RESERVE HYBRID EQUIPMENT

C

INITIAL FLIGHT

74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
CALL RESERVE(IERR)
WRITE(6,1000)IERR
IF(IERR.NE.0)STOP
C
C JAM ALL CONTROL LINES HIGH FOR CHECK
C
IOUT=2**16-1
C
C JAM OUT PRE-REAL-TIME TEST FUNCTIONS
C
ADINTST(1)=-1.0 TEST
ADINTST(2)=0.0 TEST
ADINTST(3)=0.0 TEST
ADINTST(4)=-1.0 TEST
ADINTST(5)=0.0 TEST
ADINTST(6)=0.0 TEST
ADINTST(7)=0.0 TEST
ADINTST(8)=-1.0 TEST
ADINTST(9)=0.0 TEST
ADINTST(10)=0.0 TEST
PAUSE 1
C
C JAM ALL CONTROL LINES LOW IN PREPARATION FOR REAL TIME
C
IOUT=0
C
C WAIT FOR STATIC CHECK COMPLETE(SENSE LINE 5 = BIT 6)
C
LARA=1
40 CALL INTCNVT(LARA,1)
SL5=IIN.AND.32
IF(SL5.NE.0)GO TO 50
PAUSE 2
GO TO 40
50 CONTINUE
WRITE(6,3000)
C
C PRINT CONTENTS OF COMMON BLOCK COMA
C
WRITE(6,TEST)
C
C ENTER REAL TIME
C
CALL SIMRUN(ISTAT)
WRITE(6,2000)ISTAT
CALL REMARK(17H JOB IN REAL TIME)
CALL BHOLD
C
C PRINT REMAINING RCT AND REAL TIME ERRORS
C
TIMELEFT=STATUS.A.37777778
RCTOVER=STATUS.A.400000000000000000B
ADCOVER=STATUS.A.100000000000000000B
DACOVER=STATUS.A.200000000000000000B
ADCOVER=STATUS.A.400000000000000000B
WRITE(6,9001)STATUS
9001 FORMAT(*UNITS OF RCT REMAINING = *,F5.0)
```

JTINE FLIGHT 74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
IF(RCTOVER.GT.0.0)WRITE(6,9002)
9002 FORMAT(* RCT OVERUN*)
IF(ADCOVER.GT.0.0)WRITE(6,9003)
9003 FORMAT(* OVER VOLTAGE ON ADCS*)
IF(DACOVER.GT.0.0) WRITE(6,9004)
9004 FORMAT(* OVER VOLTAGE ON DACS*)
IF(ADDOVER.GT.0.0)WRITE(6,9005)
9005 FORMAT(* ADDRESS OUT OF RANGE IN REAL TIME*)
WRITE(6,TEST)
RETURN
1000 FORMAT(*1 RESERVATION ERROR CODE=* ,2X,020)
2000 FORMAT(18H REAL TIME STATUS=,020)
8000 FORMAT(/ *0TRUNK LINE PATCHING IS *,R3,* TO *,R3)
3000 FORMAT(22H STATIC CHECK COMPLETE)
END
```

INE REALT 74/74 OPT=1

FTNH 4.2+75075

07/16/7

```
SUBROUTINE REALT
REAL MAN(200),MISSD(7),MISS,LAUNCH
INTEGER WMAN
DIMENSION TS(30)
EQUIVALENCE (TS(1), TMAS(1)),(MAN(1),XMAN(1)),(MISSD(1),XMISS(1))
COMMON/EFFFFE/IT1,KCK,ICR2,IDA3,IND,INDEX,MAX,IWRITE,NPATH,STATUS
COMMON/COMA/LEVEL,IPTS,XXS(50),XDTGO,YDTGO,ZDTGO,RLB,COSE,SPO,RI,
*GAM,EDOT,THETAL,RN,
*PPX(50),PPY(50),PPZ(50),TIME(50),TMAS(30),XDTGMS(30)
*,YDTGMS(30),ZDTGMS(30),XMAN(4,50),XMISS(7),NT
*,XCOMP,YCOMP,ZCOMP,TAMA(30),DELTAR(30),VM(30),G,GGG
*,XDO,YDO,ZDO,DXG,DYG,DZG,S2,S3,S4,S5,XDM(30),YDM(30),ZDM(30),
*RLBK,SCALEP,F1,F2,F3,G1,G2,G3,XC,YC,ZC,S1,RRR,SR,SPL,CTL,STL,
*CPL,A1,VTI,XE(30),YE(30),ZE(30),ZALT,NERR,CLA,NPX,NX,CLAA(10),
*PHO,ARG,AAA,SCALET,TREAL,TMA(30),XTA,YTA,ZTA,SCALEV,QMM(10),QM
*,SA,CA,VMX(50),VMY(50),VMZ(50)
*,ECOS(17),HR7EE(17),FI7T(9),FCI77(9)
COMMON/*ADC1/ADIN(10)
COMMON/*DAC1/LAUNCH(11)
COMMON/*IDIS2/IIN
JAM,ON
COMMON/*ODIS2/IOUT
JAM,OFF
```

C

```
GO TO(1,2),NPATH
```

C

```
TRANSFER ICS TO AD4
```

C

```
1 CONTINUE
```

```
LAUNCH(1)=XDTGO *.102375
LAUNCH(2)=YDTGO *.102375
LAUNCH(3)=ZDTGO *.102375
LAUNCH(4)=RLB *.102375
LAUNCH(5)=COSE *.102375
LAUNCH(6)=SPO *.102375
LAUNCH(7)=RI *.102375
LAUNCH(8)=GAM *.102375
LAUNCH(9)=EDOT *.102375
LAUNCH(10)=THETAL*.102375
LAUNCH(11)=RN *.102375
```

C

```
SEND STATUS BIT TO AD/4 INDICATING ICS SENT(SENSE LINE 4 = BIT 5)
```

C

```
IOUT=16
```

C

```
WAIT FOR RAMP UP SIGNAL FROM AD/4(SENSE LINE 6 = BIT 7)
```

C

```
SL6=IIN.AND.64
```

```
IF(SL6.NE.0)NPATH=2
```

```
CALL SIMIDLE
```

```
2 CONTINUE
```

C

```
READ
```

C

```
WMAN=0
```

C

```
READ AND SCALE ADCS
```

UTINE REALT

74/74 OPT=1

FTNH 4.2+75075

07/16/77

C
DX=ADIN(1) /1.02375
DY=ADIN(2) /1.02375
DZ=ADIN(3) /1.02375
DT=ADIN(4) /1.02375
XDOT=ADIN(5) /1.02375
YDOT=ADIN(6) /1.02375
ZDOT=ADIN(7) /1.02375
XXX=ADIN(8) /1.02375
YYY=ADIN(9) /1.02375
ZZZ=ADIN(10) /1.02375

C
C STORE DX,DY,DZ,XDOT,YDOT,AND ZDOT FOR DIAGNOSTIC PURPOSES
C

DXG=DX*SCALEP
DYG=DY*SCALEP
DZG=DZ*SCALEP
XDO=XDOT
YDO=YDOT
ZDO=ZDOT

C
C COMPARE ACTUAL RANGE WITH RANGE TABLE ENTRY
C

IF(XXS(INDEX+1).GT.DX)GO TO 5

C
PPX (INDEX+1)=DX
PPY (INDEX+1)=DY
PPZ (INDEX+1)=DZ
TIME(INDEX+1)=DT
VMX (INDEX+1)=XDOT
VMY (INDEX+1)=YDOT
VMZ (INDEX+1)=ZDOT

C
WMAN=7
IDA3=1

C
C TPRIME
C

5 CONTINUE

C
TREAL=DT*SCALET

C
IF(TREAL.LE.G)GO TO 10

C
CCKMISS
C

KCK=1
SKK=GGG+1.0
MISS=DX*XdOT+DY*YdOT+DZ*ZdOT
IF(MISS.LE.0.0)GO TO 10
MISSD(1)=DX
MISSD(2)=DY
MISSD(3)=DZ
MISSD(4)=XdOT
MISSD(5)=YdOT
MISSD(6)=ZdOT
MISSD(7)=MISS

UTINE REALT

74/74 OPT=1

F1.H 4.2+75075

07/16/7

3000 CONTINUE

C
C SYSTEM HOLD(SENSE LINE 7 = BIT 8)
IOUT=128

C
C CHECK REAL TIME STATUS WORD

C
C STATUS=STAT(777777777777777777777777)

C
C RETURN TO BATCH JOB

C
C CALL SIMSTOP

C
C CKTIME

10 CONTINUE

IF (LEVEL.GT.0) GO TO 1000
IF (DT.LT.TS(1)) GO TO 1000
LEVEL=0

C
C LOAD

C
C 20 CONTINUE

IF (DT.LE.TS(31-ICR2)) GO TO 30

C
C INC

C

IT1=IT1+1
IF (IT1.EQ.NT) GO TO 25
IF (ICR2.LE.1) GO TO 25

ICR2=ICR2-1

GO TO 20

25 CONTINUE

LEVEL=7

GO TO 1000

C

C
C INT - INTERPOLATE XCOMP,YCOMP,ZCOMP,XC,YC,ZC

C

30 CONTINUE

IT2=IT1+1

IF (WMAN.EQ.0) GO TO 100

IND=IND+1

IF (MAX.LT.IND) GO TO 100

MAN(4*IND-3)=DT

100 CONTINUE

C

C
C CALC - INTERPOLATE XCOMP,YCOMP,ZCOMP,XC,YC,ZC

C

DIV=TS(IT2)-TS(IT1)

RATIO=(DT-TS(IT1))/DIV

XCOMP=XDTGMS(IT1)+RATIO*(XDTGMS(IT2)-XDTGMS(IT1))

XC=XDM(IT1)+RATIO*(XDM(IT2)-XDM(IT1))

YCOMP=YDTGMS(IT1)+RATIO*(YDTGMS(IT2)-YDTGMS(IT1))

YC=YDM(IT1)+RATIO*(YDM(IT2)-YDM(IT1))

ZCOMP=ZDTGMS(IT1)+RATIO*(ZDTGMS(IT2)-ZDTGMS(IT1))

ZC=ZDM(IT1)+RATIO*(ZDM(IT2)-ZDM(IT1))

IF (KCK.LT.0) SKK=1.0+GGG*TREAL/G

DUTINE REALT

74/74 OPT=1

FTNH 4.2+75075

07/16/7

C
C CAT
C

IF(IDA3.GT.0)GO TO 200
AAA=0.003894*ZALT+1116.89
VTI=SQRT(XC*XC+YC*YC+ZC*ZC)
IF(VTI.LT.338.0)GO TO 200
ARG=0.00003*ZALT
PHO=0.00237692*EXP(ARG)
QM=VTI/AAA

C
C INTERPOLATE FOR -----
C

NPX=2
NX=8
CALL INTERP(QM,QMM,CLAA,NX,NPX,CLA,NERR)
CALL INTERP(TREAL,TMA,XE,NT,NPX,XTA,NERR)
CALL INTERP(TREAL,TMA,YE,NT,NPX,YTA,NERR)
CALL INTERP(TREAL,TMA,ZE,NT,NPX,ZTA,NERR)

C
C CALCULATE COSE,RLB,A1
C

A1=XTA*XTA+YTA*YTA+ZTA*ZTA
A1=0.01745329*4.637084242*SQRT(A1)/(PHO*VTI*VTI*CLA)
SA=SIN(A1)
CA=COS(A1)
XXX=XXX*20475.0/SKK
YYY=YYY*20475.0/SKK
ZZZ=ZZZ*20475.0/SKK
RRR=XXX*XXX+YYY*YYY+ZZZ*ZZZ
RFEET=RRR
RRR=VTI*SQRT(RRR)
F1=S2*XXX-YYY*SPL+S3*ZZZ
F2=XXX*S4+YYY*CPL+ZZZ*S5
F3=CTL*ZZZ-STL*XXX
SR=SQRT(XC*XC+YC*YC)
S1=CA+(SA/SR)*ZC
G1=S1*XC
G2=S1*YC
G3=ZC*CA-SA*SR
E111=(F1*G1+F2*G2+F3*G3)/RRR
COSE=1.0-E111*E111
RLB=SQRT(COSE)
RLB=RLB*RLBK/SCALET
COSE=E111/1.02375

C
C COMPUTE IRSS IRIS RATIO NO. 7 (PART OF PLUME IRRADIANCE COMP.)
C

NX=17
NPX=2
CALL INTERP(E111,ECOS,HR7EE,NX,NPX,HR7E,NERR)
HC7FT=1209.675*HR7E*EXP(-2.341 ALOG(RFEET/22965.831))
P1IRSS=12.0*ATAN(0.04884004884/RLB)
P2IRSS=230.34375*RLB/RFEET
AT7 =((P2IRSS**2)*SIN(P1IRSS))/(2.0*(COS(P1IRSS/2.0))**2)
PJTU1=0.1*EXP(1.003258*ALOG(AT7))
F17=HC7FT/PJTU1

JTINE REALT

74/74 OPT=1

FTNH 4.2+75075

07/16/71

NX=9
NPX=2
CALL INTERP (FI7,FI7T,FCI77,NX,NPX,FCI7,NERR)
RN=FCI7
C WRITE(6,CHECK3)

SOFT-

C COMPUTE SPO, THE SCALED PLUME ROTATION ANGLE
C

RC1=SQRT(F1*F1+F2*F2)
RC1=F2/RC1
RCB=ACOS(RC1)
RCX=-RC1
RCY=-SIN(RCB)
IF (F1.GE.0.0) RCY=-RCY
F11=(F2*G3-F3*G2)/VTI
F22=(G1*F3-G3*F1)/VTI
F33=(G2*F1-G1*F2)/VTI
FCR=SQRT(F11*F11+F22*F22+F33*F33)
G11=F11*RCX
G22=F22*RCY
C111=(G11+G22)/FCR
T111=ACOS(C111)
IF (F33.GE.0.0) GO TO 155
IF (T111.LE.1.570796326) GO TO 156
TRP=T111-4.71238898

GO TO 159

155 TRP=1.570796326-T111

GO TO 159

156 TRP=1.570796326+T111

159 SPO=TRP/SCALET

200 CONTINUE

C

C HERE

C

IF (WMAN.EQ.0) GO TO 2000
IF (MAX.LE.IND) GO TO 2000
MAN(4*IND-2)=XCOMP
MAN(4*IND-1)=YCOMP
MAN(4*IND)=ZCOMP
INDEX=INDEX+1
IF (INDEX.GT.IPTS) GO TO 3000
2000 CONTINUE

C

C BYPASS - UPDATE THE DACS

C

LAUNCH(1)=XCOMP *.102375
LAUNCH(2)=YCOMP *.102375
LAUNCH(3)=ZCOMP *.102375
LAUNCH(4)=RLB *.102375
LAUNCH(5)=COSE *.102375
LAUNCH(6)=SPO *.102375
LAUNCH(7)=RI *.102375
LAUNCH(8)=GAM *.102375
LAUNCH(9)=EDOT *.102375
LAUNCH(10)=THETAL *.102375
LAUNCH(11)=RN *.102375

C

JTINE REALT

74/74 OPT=1

FTNH 4.2+75075

07/16/71

1000 CALL SIMOLE
END

APPENDIX G

SUMMARY OF STINGER DIGITAL COMPUTER FUNCTIONS

BOK
DYNAMICS, INC.

PRE-REAL TIME PART

1. Manual Mode Operation

- Select target crossing angle, altitude, and range from stored table.
- Select target maneuver from stored table
- Select target maneuver point at missile launch
- Adjust maneuver table for selected point at launch
- Scale maneuver table for analog compatibility
- Determine type of target from maneuver table
- Calculate initial target elevation, azimuth, and position
- Calculate euler angles for earth fixed-to-launch coordinate transformation
- Transform initial target velocity into launch coordinate system
- Calculate parameters for the analog variable scale factor equation
- Generate table of missile range-to-go relative to target for use in controlling the A/D data collection from the analog computer
- Scale initial launch conditions for analog compatibility
- Transform target maneuver table into launch coordinates and scale
- Clear storage area where data is to be accumulated

2. Automatic Mode Operation Has Same Sequence As Manual Mode Except:

- Target crossing angle, altitude, range, maneuver, and maneuver point are selected from a stored simulation plan
- There are no manual time delays associated with selection or with problem setup and execution of subsequent simulations stored in the simulation plan

REAL TIME PART

- Convert initial conditions into form compatible with D/A converter
- Wait for AD/4 analog computer to signal readiness to receive initial conditions
- Send initial conditions D/A to the AD/4 computer and start analog real time simulation
- Read A/D relative position, velocity, and time from analog
- Convert A/D information into digital computer notation
- Compare A/D relative position information (range-to-go) with previously generated table
- A/D information is collected and stored as data whenever the above range-to-go comparison is close
- Real time interpolated target maneuver is stored at same time as A/D data collection above
- If A/D information indicates missile has passed the target, the real time part is terminated and control is given to the post-real time part
- Calculate target angle of attack in real time
- Calculate target jet plume apparent length-to-breadth ratio in real time
- Send target velocity components and length-to-breadth ratio D/A to the analog computer
- Collection of last desired A/D data terminates the real time part and gives control to the post real time part

POST-REAL TIME PART

- Scale collected A/D data for digital compatibility
- If nonstationary target, calculate Euler angles for transformation from launch-to-target fixed coordinates
- Calculate the least squares missile approach trajectory from collected A/D data and project miss distance information
- If the target is a high speed jet, perform a lethality test with the probability-of-kill model
- Repeat the simulated flight 20 times and obtain average PK, mean, and standard deviation of miss distance information
- Give control to pre-real time part for next simulation

APPENDIX H

SIMPLIFIED TEST FUNCTIONS

BOK
DYNAMICS, INC.

UTINE DACS

74/74 OPT=1

FTNH 4.2+75075

07

```
SUBROUTINE DACS
DIMENSION ADIN(10)
JAM,ON
COMMON/*DAC1/17,ADINTST(10)
JAM,OFF
COMMON/EEEEEE/IT1,KCK,ICR2,IDA3,IND,INDEX,MAX,IWRITE,NPATH
IF(NPATH.NE.2) TIM=0.0
IF(NPATH.EQ.2) TIM=TIM+.001
C
C COMPUTE SIMPLIFIED ADCS
C
ADIN(1)=-100.0/100.0
IF(TIM.GE.4.0)ADIN(1)=100.0*(TIM-5.0)/100.0
ADIN(2)=0.0
ADIN(3)=0.0
C NOTE TIME HAS AN ADDED FACTOR OF 10.0
ADIN(4)=TIM /10.0
ADIN(5)=(11.0*TIM-5.0)/100.0
ADIN(6)=(50.0-10.0*TIM)/100.0
ADIN(7)=(50.0-10.0*TIM)/100.0
ADIN(8)=(10.0*TIM-50.0)/100.0
ADIN(9)=0.0
ADIN(10)=0.0
DO 10 I=1,10
10 ADINTST(I)=ADIN(I)
IF(TIM.GT.15.0) CALL SIMSTOP
CALL SIMIDLE
END
```

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**