1

Feuille d'exercices nº 1 - Suites numériques et récurrence

Les questions ou exercices précédés d'une étoîle (*) sont optionnels. Vous ne les traiterez qu'avec l'accord de votre enseignant(e) de TD.

Exercice 1: Soit les suites données par leur terme général ci-dessous. Pour chacune d'elles calculer u_0 (le cas échéant), u_1 , u_2 , u_3 et u_4 et, pour (a), (b), (f) et (h) seulement, représenter ces termes en repère orthonormé.

1.

(a)
$$u_n = \frac{1}{2}n + 1$$

(b) $u_n = \frac{1}{4}n^2 + \frac{1}{2}$
(c) $u_n = 2^{-n}$
(d) $u_n = (-2)^n$
(e) $(*) u_n = (\frac{1}{3})^n$
(f) $(*) u_n = \frac{2n+1}{2n-1}$
(g) $(*) u_n = \frac{n+1}{2n+1}$
(h) $(*) u_n = (-1)^n$

2. Pour chacune des suites ci-dessus, écrire u_{n+1} .

Exercice 2:

- 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 3 \text{ pour tout } n \in \mathbb{N} \end{cases}$. Calculer u_1, u_2, u_3 et u_4 .
- 2. Même question avec la suite définie par : $\begin{cases} u_0 &= 1 \\ u_{n+1} &= \frac{u_n+1}{u_n+2} \quad \text{pour tout } n \in \mathbb{N} \end{cases}.$

Exercice 3: Pour chacune des suites données ci-dessous par leur terme général, calculer les premiers termes jusqu'au rang 5 et déterminer le sens de variation de chacune de ces suites.

1.
$$u_n = \sum_{i=0}^n i$$
 La suite $(u_n)_{n \in \mathbb{N}}$ est appelée série de terme général i .

2.
$$v_n = \sum_{i=1}^n \frac{1}{i}$$
 La suite $(v_n)_{n \in \mathbb{N}^*}$ est appelée série de terme général $\frac{1}{i}$.

3. (*)
$$w_n = \sum_{i=1}^n \frac{n}{n+i}$$

Exercice 4: Étudier le sens de variation des suites ci-dessous, données par leur terme général :

1.
$$u_n = -3n + 4$$

2. $u_n = \frac{1}{n+1}$
3. $u_n = 3^n$
4. $u_n = (-2)^n$
5. $u_n = \frac{1}{4}n^2 + \frac{1}{2}$

Exercice 5: Soit
$$f$$
 la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{3}x + 2$, et $(u_n)_{n \in \mathbb{N}}$ la suite définie par
$$\begin{cases} u_0 &= 0 \\ u_{n+1} &= f(u_n) = \frac{1}{3}u_n + 2 \quad \text{pour tout } n \in \mathbb{N} \end{cases}.$$

- 1. Dans un repère orthonormé, tracer les droites d et d' d'équations respectives y = x et $y = \frac{1}{3}x + 2.$
- 2. Placer u₀ sur l'axe des ordonnées, puis le reporter sur l'axe des abscisses à l'aide de la droite d, qui n'est autre que la première bissectrice. En vous aidant alors de la droite d', placer u_1 sur l'axe des ordonnées (utiliser le fait que $u_1 = f(u_0)$). À l'aide de d, reporter u_1 sur l'axe des abscisses, puis u_2 sur l'axe des ordonnées à l'aide de d' et ainsi de suite, jusqu'à u_3 . Prendre comme unité 2 cm et prévoir 8 cm au moins sur l'axe des ordonnées.
- 3. Quel semble être le comportement de la suite $(u_n)_{n\in\mathbb{N}}$? Calculer u_0, u_1, u_2 et u_3 .

Exercice 6: Procéder comme dans l'exercice précédent pour conjecturer le comportement des suites ci-dessous:

- 1. $\begin{cases} u_0 = 1 \\ u_{n+1} = -\frac{1}{2}u_n + 6 \quad \text{pour tout } n \in \mathbb{N} \end{cases}$. Prendre comme unité 2 cm et prévoir 11 cm au moins sur l'axe des ordonnées.
- $2. \ (*) \left\{ \begin{array}{ll} u_0 &= 2 \\ u_{n+1} &= \frac{1}{3}u_n^2 + \frac{1}{2} \quad \text{pour tout } n \in \mathbb{N} \end{array} \right. \text{. Tracer la droite } d: y = x \text{ et la parabole } \mathcal{P} \\ \text{d'équation } y &= \frac{1}{3}x^2 + \frac{1}{2} \text{ et de sommet le point } Q\left(0, \frac{1}{2}\right) \text{. Prendre comme unité 4 cm et}$ prévoir 10 cm au moins sur l'axe des ordonnées.

Exercice 7: Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\left\{ \begin{array}{ll} u_0 &= \frac{2}{3} \\ u_{n+1} &= 3u_n-1 \quad \text{pour tout } n\in\mathbb{N} \end{array} \right. .$

- 1. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \geqslant \frac{1}{2}$.
- 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n = \frac{3^{n-1}+1}{2}$.
- 4. En déduire que $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 8: Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{3}u_n + 2 \text{ pour tout } n \in \mathbb{N} \end{cases}.$

- 1. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \leqslant$
- 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3. Conclure qu'elle est convergente et calculer sa limite.
- 4. Reprendre les questions ci-dessus pour la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence comme cidessus mais avec $u_0 = 4$. On montrera successivement que, pour tout $n \in \mathbb{N}$, $u_n \geqslant 3$, puis que $(u_n)_{n\in\mathbb{N}}$ est décroissante pour conclure que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite à déterminer.

Exercice 9: Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = -\frac{1}{2}u_n + 6 \text{ pour tout } n\in\mathbb{N} \end{cases}.$

- 1. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n = 4 3 \cdot \left(-\frac{1}{2}\right)^n$.
- 2. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 10: (*) On rappelle que pour tout $n \in \mathbb{N}^*$, $\sum_{i=1}^n i = \frac{n(n+1)}{2}$.

- 1. Montrer par récurrence que : $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$, $\forall n \in \mathbb{N}^*$.
- 2. En déduire l'égalité $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2, \forall n \in \mathbb{N}^*.$
- 3. Montrer par récurrence que : $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$, $\forall n \in \mathbb{N}^*$.

Exercice 11:

- 1. Soit g la fonction définie par $g(x)=\frac{3x}{1+2x}$. Déterminer l'ensemble de définition de g puis étudier ses variations sur l'intervalle $]-\frac{1}{2},+\infty[$.
- $\text{2. Soit } (u_n)_{n\in\mathbb{N}} \text{ la suite définie par } \left\{ \begin{array}{ll} u_0 &= \frac{1}{2} \\ u_{n+1} &= \frac{3u_n}{1+2u_n}, \quad \forall \, n\in\mathbb{N} \end{array} \right.$
 - (a) Montrer par récurrence que, pour tout entier naturel $n, 0 \le u_n \le 1$. On pourra utiliser le tableau de variations de la fonction g.
 - (b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite.

Exercice 12: (*) Déterminer, s'il existe, le sens de variation des suites suivantes, définies par leur terme général :

1.
$$u_n = n^2 + 3n - 2$$
.

4.
$$u_n = \sqrt{3n+1}$$
.

2.
$$u_n = \frac{2n-1}{n+2}$$
.

5.
$$u_n = \frac{n^2 - 3n}{n+1}$$
.

3.
$$u_n = \frac{4n+1}{n}, \ n \ge 1.$$

$$6. \ u_n = \cos(\frac{1}{n}).$$

Exercice 13: (*) Montrer par récurrence que, pour tout entier $n \ge 1$, $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$.