Index

Author Index

Adleman, L., 479, 587 Awerbuch, B., 757

Barak, B., 481, 775, 781 Beaver, D., 757 Ben-Or, M., 757 Blum, M., 479, 480, 757

Canetti, R., 753, 757 Chaum, D., 757 Chor, B., 757 Crépeau, C., 757

Damgård, I., 757 Diffie, W., 475, 478, 587 Dolev, D., 480 Dwork, C., 480, 778, 779

Even, S., 757

Feige, U., 782 Feldman, P., 480

Goldreich, O., 479, 756, 757, 780 Goldwasser, S., 379, 382, 479, 480, 587, 588, 589, 757

Hellman, M. E., 475, 478, 479, 587

Impagliazzo, R., 481

Kilian, J., 778 Krawczyk, H., 780 Lapidot, D., 782 Lempel, A., 757 Lipton, R., 480

Merkle, R. C., 479 Micali, S., 379, 382, 479, 480, 587, 588, 589, 756, 757

Naor, M., 480, 588, 778, 779

Pfitzmann, B., 589

Rabin, M., 587, 757 Richardson, R., 778 Rivest, R. L., 478, 587, 588, 589 Rogaway, P., 757 Rompel, J., 588 Rudich, S., 481

Sahai, A., 480, 778, 779 Shamir, A., 478, 587, 782 Shannon, C. E., 378, 476, 478

Wigderson, A., 756, 757

Yao, A. C., 479, 587, 756, 757 Yung, M., 480, 588

Subject Index

Averaging Argument. See Techniques

Byzantine Agreement, 711 Authenticated, 711–714, 717, 758

INDEX

Chinese Reminder Theorem, 421 The malicious model, 600, 603, 608, Claw-free pairs. See One-way permutations 610-611 626, 634, 650-693, Collision-free hashing. See Hashing 697-700, 708-741, 746-747 Collision-resistent hashing. See Hashing The semi-honest model, 600, 603, 608, Commitment schemes 610-615, 619 626, 634-650, 696, non-oblivious, 771 697, 700–708, 743–746 perfectly binding, 465–469 Two-party, 599, 600, 606-607, 608, Computational indistinguishability, 382, 611-613, 615-693, 755 395-402, 446, 447-449, 457, 465, Universally Composable, 753 467-468, 479, 618, 770 Verifiable Secret Sharing. See Secret by circuits, 382–393, 412, 417, 419, 431, Sharing 454, 618 Discrete Logarithm Problem. See DLP Cryptographic protocols, 599-764 active adversary, 603 function adaptive adversary, 603, 748-751 DLP function, 584 Authenticated Computation, 664-668, 671-674, 717-722 Encryption schemes, 373–496 Coin-tossing, 659–664, 674–677, 722–725 active attacks, 422-425, 431-474 Communication models, 602–603 asymmetric, 376 Computational limitations, 603 Basic Setting, 374–377 Concurrent executions, 752–755 Block-Ciphers, 408–418, 420 Definitional approach, 601-607 chosen ciphertext attacks, 423, 438-469, Definitions, 615–634, 694–700, 742–743, 472-474 749, 752-754 chosen plaintext attacks, 423, 431-438 Environmentally-secure, 753-755 Definitions, 378-403 indistinguishability of encryptions, 378, Fairness, 604, 747–748 382-383, 403, 412, 415, 417, 419, functionality, 599 General circuit evaluation, 645-648, 424, 432, 459, 461, 479 705-707 multiple messages, 378, 389-393, honest-but-curious adversary, 603 394–402, 429, 437–438, 443–449, Image Transmission, 668-671, 672, 489 718 - 721non-malleability, 422, 470-474 Input-Commitment, 677-680, 725-726 passive attacks, 422, 425-431 Multi-party, 599, 600, 604-606, 607-609, perfect privacy, 378, 476-477 610-611, 613-615, 693-747, 755 perfect security, 476-477 non-adaptive adversary, 603 Private-Key, 375-376, 377, 380, 381, number of dishonest parties, 604 404-408, 410-413 Oblivious Transfer, 612, 614, 635, Probabilistic Encryption, 404, 410-422 640-645 Public-Key, 376, 377, 380, 381, Oracle-aided, 636, 639, 644, 646, 652, 413-422 672, 674, 678, 681, 701, 704, 715, Randomized RSA, 416-417, 478 718, 721, 722, 726, 729, 737 Semantic Security, 378, 379–382, 478 Overview, 599-615 Stream-Ciphers, 404–408 passive adversary, 603 symmetric, 375 Privacy reductions, 635-640, 643, 644, The Blum-Goldwasser, 420-422, 478 647, 648, 701–703, 704 the mechanism, 376–377 Private Channels, 741–747 uniform-complexity treatment, 393-403 Pure oracle-aided, 721–722 Reactive, 609, 751–752 Factoring integers, 421, 584 Secret Broadcast, 716-717, 718, 722 Security reductions, 652-657, 673, 675, Hard-core predicates. See One-way 677, 678, 714–716, 719, 721, 723 permutations Setup assumptions, 602, 608, 755 Hash and Sign. See Techniques

INDEX

Hashing	Proofs-of-Knowledge, 453, 669–671
collision-free, 512-523, 542-543, 558,	for NP in zero-knowledge, 659, 669,
560–561, 562, 575	718–720
based on claw-free permutations,	Protocols. See Cryptographic protocols
516–519	Pseudorandom functions, 410, 423, 424, 438,
via block-chaining, 519–521	450–452, 523–532, 556–558, 768
via tree-hashing, 521–523	generalized notion, 556, 768
collision-resistent. See collision-free, 513	non-uniform hardness, 411-412
Universal. See Hashing functions	Verifiable, 590
Universal One-Way, 513, 543, 560-575,	Pseudorandom generators, 404
588	Computational indistinguishability. See
Hashing functions, 527–537, 563–565, 596	Computational indistinguishability
AXU, 535–537, 589	non-uniform hardness, 392
collision probability, 528–531, 535	on-line, 407–408, 534–537
generalized, 530–531, 589	
Hybrid Argument. See Techniques	Quantum cryptography, 477
Interactive Proofs	Rabin function, 766
perfect completeness, 658	hard-core, 422
Zero-Knowledge. See Zero-Knowledge	Random Oracle Methodology, 478, 586–587
c c	Random Oracle Model. See Random Oracle
Message authentication, 423, 497–537	Methodology
attacks and security, 502–507	Reducibility Argument. See Techniques
basic mechanism, 501–502	
	RSA function, 766
length-restricted, 507–516	hard-core function, 416
state-based, 531-537, 548, 585	
	Secret Sharing, 489, 730–731
NIZK. See Zero-Knowledge	Verifiable, 729–735, 737–740, 752
Non-Interactive Zero-Knowledge. See	Signature schemes, 497–523, 537–598
Zero-Knowledge	attacks and security, 502–507
Non-uniform complexity, 378–393, 402,	authentication-trees, 537, 545–560
618–619, 620, 622	basic mechanism, 501–502, 538
010-019, 020, 022	Fail-stop, 583–584
Oblivious Transfer. See Cryptographic	incremental signing, 581–583
protocols	length-restricted, 507–516
One-way functions, 423, 525, 538, 539–542, 560–575	memory-dependent, 546–556, 559–560, 588
non-uniform hardness, 403, 411	off-line/on-line signing, 580–581
One-way permutations, 562, 563–565,	one-time, 465–469, 538–575
• •	
570–571	super-security, 465–469, 576–580
claw-free collections, 516–519, 542,	The refreshing paradigm, 537, 543–560
588	unique signature, 575–576
collection of, 765–768	Signatures. See Signature schemes
hard-core, 414–422, 431, 640–643	Simulation paradigm. See Techniques
modular squaring, 419–421	Synchronous communication, 603, 695, 777
RSA, 416, 766	·
with trapdoor, 403, 413–422, 423,	Techniques
640–643, 648, 650, 765–768	Averaging Argument, 386
010 013, 010, 030, 703 700	Hash and Sign, 513–516, 526–537,
Drobabilistic anarymtian and Engrantian	<u> </u>
Probabilistic encryption. see Encryption	542–543, 571–575, 576
schemes	Hybrid Argument, 391, 402, 429, 448–449,
Probability ensembles, 379	457, 459–461, 467–468, 479, 593,
efficiently constructible, 394-403	637–638, 703, 754

INDEX

Techniques (cont.)

Reducibility Argument, 385, 387, 402,
410, 510, 514, 518, 525, 540, 551,
564, 567, 569
the simulation paradigm, 379, 479, 601,
620
Trapdoor permutations. See One-way
permutations

Universal One-Way Hash Functions. *See* Hashing

Verifiable Secret Sharing. See Secret Sharing

Witness Indistinguishability, 782–783 Non-Interactive, 464–469 Strong, 768–772

Zero-Knowledge, 775–783 Composition of protocols, 775–780 Concurrent composition, 777–780 for NP, 658, 664–671