Number Theory

Instructor: Dušan Djukić

Problems – April 21

- 1. Define $a_n = 2^n + 3^n + 6^n 1$ for each positive integer n. Find all primes that do not divide any term of this sequence.
- 2. If a and b are any coprime positive integers, prove that there are infinitely many exponents n for which $a^n + b$ is composite.
- 3. Prove that there is an infinite set of pairwise coprime integers of the form $2^n 3$.
- 4. Define $a_1 = 2$ and $a_{n+1} = 2^{a_n} + 2$ for all n. Prove that a_m divides a_n whenever m < n.
- 5. If a is odd and $k \ge 3$, prove that $a^{2^{k-2}} \equiv 1 \pmod{2^k}$.
- Define $\lambda(p^k) = p^{k-1}(k-1)$ for any odd prime p and $k \ge 1$. Also define $\lambda(2^k) = 2^{k-2}$ for $k \ge 2$, with $\lambda(2) = 1$ and $\lambda(4) = 2$. Finally, define $\lambda(p_1^{\alpha_1} \cdots p_k^{\alpha_k}) = \operatorname{lcm}[\lambda(p_1^{\alpha_1}), \dots, \lambda(p_k^{\alpha_k})]$. Then $a^{\lambda(n)} \equiv 1 \pmod{n}$ whenever a is coprime to n. (Carmichael's theorem)
- Given coprime integers a, n with |a| > 1 and $n \neq 0$, the multiplicative order of a modulo n is the smallest r such that $a^r \equiv 1 \pmod{n}$. The order modulo n always divides $\varphi(n)$.
- 6. Find the order of 3 modulo 2021.
- 7. (a) If p is an odd prime divisor of $x^2 + 1$, prove that $p \equiv 1 \pmod{4}$.

Does this remain valid if p needn't be prime?

- (b) If a prime p divides $x^2 + y^2$ and $p \equiv 3 \pmod{4}$, prove that p divides both x and y.
- 8. Prove that $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$.
- 9. Let p > 2 be a prime. Prove that every divisor of $2^p 1$ is congruent to 1 modulo 2p.
- 10. Prove that there are infinitely many primes of the form 2px + 1. But don't use Dirichlet's theorem.
- 11. Let p be a prime and let n be coprime to p-1. Prove that th numbers $1^n, 2^n, \ldots, (p-1)^n$ are all distinct modulo p.