学籍番号: 公衆衛生学

疫学演習 (2019) 回答用紙

氏名: 締め切り: 2019年6月28日(金)

1 問題1:両群間計量データの平均値を比較する(20%)

1. 帰無仮説を「遺伝子変異ありと変異なし両群の間で、COGの平均値は等しい」とする. 上記のデータ及び適切な方法を使って検定し、検定の結果を分かりやすく説明せよ. なお、分散が等しいと仮定できる場合、以下の式で両群の共通標準偏差が計算できる:(6%)

$$S = \sqrt{\frac{(n_A - 1)S_A^2 + (n_B - 1)S_B^2}{n_A + n_B - 2}} \tag{1}$$

・ S_A : A群の標準偏差;

n_A: A群の人数;

・ S_B : B群の標準偏差;

· n_B: B群の人数;

・ S: A群及びB群の共通標準偏差;

・ $n_A + n_B - 2$: 分散が等しい時の自由度.

2. 遺伝子変異ありとなしの群の間の脳萎縮度 (atrophy) を比較する場合, 1. と同じ 検定方法を用いてよいか? それを判断するにはどの検定方法を使えばよいかを説明し,実際にこの検定方法を実施せよ. (6%)

3. 2.の結果を踏まえて、帰無仮説「両群の脳萎縮度の平均値が等しい」を検定せよ. なお、両群の分散が等しいという前提が満たされていない時に、自由度(df) の計算式は以下となる: (8%)

$$\mathbf{df} = \frac{(S_A^2/n_A + S_B^2/n_B)^2}{(S_A^2/n_A)^2/(n_A - 1) + (S_B^2/n_B)^2/(n_B - 1)}$$
(2)

2 問題2:線形回帰モデル(30%)

2.3 年齢,体重それぞれの平均値,分散を求めよ;また,年齢と体重の共分散を算出せよ. なお,EZRで計量データの平均値を計算するには,コマンド mean(変数名) を使う;共分散を計算したい時には,コマンド cov(変数1, 変数2) を利用する.

以下のコードをRスクリプトに入力して,実行をクリックしてください. (結果を下の余白に記入すること)(5%)

#年齢の平均値

mean(Dataset\$age)

#年齢の分散

var(Dataset\$age)

体重の平均値

mean(Dataset\$wt)

体重の分散

var(Dataset\$wt)

体重と年齢の共分散 covariance

cov(Dataset\$wt, Dataset\$age)

2.4 年齢を説明変数,体重を目的変数とする場合,年齢の傾き(回帰係数),と切片を求めよ.なお,分散と共分散の定義は以下とする, \bar{X} はXの平均値を示す:

· 分散 variance:

$$\mathbf{Var}(X) = \frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2}{n - 1}$$
$$= \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n - 1}$$

· 共分散 covariance:

$$\mathbf{Cov}(X,Y) = \frac{(X_1 - \bar{X})(Y_1 - \bar{Y}) + (X_2 - \bar{X})(Y_2 - \bar{Y}) + \dots + (X_n - \bar{X})(Y_n - \bar{Y})}{n - 1}$$
$$= \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 1}$$

以下のコードをRスクリプトに入力して,実行をクリックしてください. (結果を下の余白に記入すること) (2%)

傾き (slope)

beta <- cov(Dataset\$wt, Dataset\$age) / var(Dataset\$age)

beta

#切片 (intercept)

alpha <- mean(Dataset\$wt) - mean(Dataset\$age)*beta alpha

2.6 今まで計算した傾きと切片の数字を用いて、年齢と体重の関係を線形と考える場合の計算式を記入せよ、傾きと切片の計算結果の意味をそれぞれ記述せよ、(4%)

2.8 重回帰線形モデルの計算結果を用いて、体重の平均値を年齢と性別の線形モデルで表示せよ.各回帰係数の意味を説明せよ.(14%)

2.9 上記の重回帰線形モデルを用いて、年齢が34ヶ月の女の子の体重の予測値を計算せよ. (5%)

3 問題 $3:\chi^2$ 検定,オッズ比,ロジスティック回帰モデル (40%)

3.1 もし、視覚障害と対象者の死亡リスクに関連がない場合、下の表(各セルの期待値の人数)を答えよ:(4%)

死亡	視力正常	視覚障害	合計
0			4161 (96.81%)
1			137 (3.19%)
合計	3971 (100%)	327 (100%)	4298 (100%)

3.1.2 上記の 2 つの表の数字を使って χ^2 統計量を計算せよ (4%)

3.1.4 2 × 2 の分割表では、自由度は _____(2%)

3.1.5 視覚障害と死亡の関係を示すテーブルのデータをもとに、下表を完成せよ:(6%)

	視力正常	視覚障害	合計
リスク (risk)			0.0319
オッズ (odds)			0.0329
対数オッズ (log-odds)			-3.414

視覚障害と死亡の関連を示すオッズ比を算出せよ:(2%)

OR =

このオッズ比の対数を取った値 log(OR) は:(2%)

$$\log(OR) =$$

3.2 年齢の影響を考慮する

	視覚障害 (0 = no, 1 = yes)									
死亡	0	1	0	1	0	1	0	1	0	1
1 = yes	29	2	38	10	15	11	15	17	97	40
0 = no	2301	22	1271	124	212	69	90	72	3874	287
n										
年齢	15-3	34	35-	54	55-	64	65	+	Tot	al

上記のデータをよく見ると、視覚障害のオッズは年齢と共に上昇している (年齢が15-34歳群の(2+22)/(29+2301)=0.010から年齢が65歳以上群の(17+72)/(15+90)=0.848に上がっている). しかし、年齢の上昇と共に、死亡のオッズも上がる. 年齢はここで、交絡因子 (confounder) と定義される.

3.2.1 以上のデータと解説をよく理解した上で、下表を完成せよ:(8%)

	オッズ		
年齢	視力正常	視覚障害	オッズ比
15-34	29/2301 = 0.01260		
35-54	0.02990		
55-64	0.07075		
65+	0.16667		

各年齢層では視覚障害と死亡との関連はどう変化しているか?(2%)

3.2.2.3 単変量ロジスティック回帰モデルで評価した粗オッズ比 (crude odds ratio) と比べ、年齢調整オッズ比はどう変わったかを説明せよ. (10%)

- 4 問題4:生存分析 (10%)
 - ・単変量ハザード比,及び信頼区間の意味を説明せよ. (5%)

・年齢調整ハザード比,及び信頼区間の意味を説明せよ.(5%)