SIMAG

SDN 25 SDN 30 SDN 35 SDN 45 SDN 65 SD 80 SD 125 SD 210

Automatic cubers Automatic Kegeleisbereiter

TABLE OF CONTENTS	PAGE	INHALTSVERZEICHNIS	SEITE
GENERAL INFORMATION AND INSTALLATION	1	ALLGEMEINES UND INSTALLATION	14
Introduction	1	Einführung	14
Unpacking and inspection	1	Auspacken und Inspektion	14
Location and levelling	1	Maschinenplatz und lotgerechte Austellung	14
Electrical connection	1	Elektrische Anschlüße	15
Water supply and drain connection	2	Wasserversorgung und Abflußleitungen	15
Final check list	3	Schlußkontrollen	15
Installation practice	3	Installation	16
OPERATING INSTRUCTION	4	BETRIEBSANLEITUNG	17
Starp up	4	Inbetriebnahme	17
Operational checks	4	Ueberprüfung im Betrieb	17
OPERATING PRINCIPLES	6	FUNKTIONSSYSTEME	19
Freezing Cycle	6	Gefrierprozess	19
Harvest Cycle	6	Abtauprozess	19
Control sequence	7	Steuersequenzen	20
Electrical sequence	7	Sequenz Elektrische Bestandteile	20
Components description	8	Komponentenbeschrieb	21
Service diagnosis	10	Fonktionsfehler	23
MAINTENANCE AND CLEANING INSTRUCTIONS	12	WARTUNG UND REINIGUNGSANLEITUNG	25
General	12	Woraussetzung	25
Icemaker	12	Reinigung des Eisbereiters	25
Clean - Replace of air condenser filter	12	Reinigung - Austausch des Luftkondensatorfilters	25
Cleaning instructions of water system	12	Wartungs und Reinigungsanleitungen	26

Ice making capacity - Eisproduktionskapazität

SDN 25

SDN 30

SDN 35

SDN 45

SDN 65

SD 80

SD 125

SD 210

- OCORD SET ELEK. KABEL
- 2 Ø 20 WATER OUTLET WASSERABFLUSS
- 3 G3/4" WATER INLET WASSEREINLAUF

	SDN 25 (mm)	SDN 30 (mm)	SDN 35 (mm)	SDN 45 (mm)	SDN 65 (mm)
Α	334	377	377	485	485
В	454	552	552	572	572
С	597	637	637	721	816

- OCORD SET ELEK. KABEL
- 2 Ø 20 WATER OUTLET WASSERABFLUSS
- 3 G3/4" WATER INLET WASSEREINLAUF
- 4 G3/4" WATER OUTLET WASSERABFLUSS*
- **⑤** G3/4" WATER INLET WASSEREINLAUF *
 - * Water cooled only Nur wassergekuhlt

	SD 80 (mm)	SD 125 (mm)	SD 210 (mm)
А	670	1045	1045
В	572	572	572
С	890	900	1050

TECHNICAL SPECIFICATIONS - TECHNISCHE ANGABEN

	SDN25 SDN	25W SDN30	SDN30W	SDN35	SDN35W	SDN45	SDN45W	SDN65	SDN65W	SD80	SD80W	SD125	SD125W	SD210	SD 210 W
Electric voltage Normale Netzspannung	230/50 -10 ÷ +1		30/50/1) ÷ +10%		30/50/1 ÷+10%		0/50/1 ÷ +10%		0/50/1 ÷ +10%		30/50/1) ÷ +10%		0/50/1 ÷ +10%		/50/1 +10%
Condensation Kühlung		ater Air sser Luft	Water Wasser	Air Luft	Water Wasser	Air Luft	Water Wasser	Air Luft	Water Wasser	Air Luft	Water Wasser	Air Luft	Water Wasser	Air Luft	Water Wasser
Bin Capacity (kg) Speiker Kapazität (kg)	6,5		12		12		17		20		30	!	50	{	30
Net weight (kg) Netto Gewicht (kg)	28		33		40		45		48		61	(94	1	31
Compressor power HP Kompressorleistung PS	1/5		1/5		1/5		1/4		3/8		1/2		1	1	.5
Running amps Ampere	2.2		2.2		2.2		2.2		3.2		3.8	Ę	5.3	5	i.5
Start amps Start Ampere	9		9		9		11		17		20	:	29	;	32
Power (Watts) Leistung (Watt)	340		340		350		380		530		650	1:	200	20	000
Power cons. in 24 hrs (K Stromverbrauch in 24 sto			7		7		7.5		10.5		13	:	24	3	35
Wire size (mm²) Kabelanzahl (mm²)	3 x 1		3 x 1	;	3 x 1	:	3 x 1	;	3 x 1		3 x 1	3)	¢ 1,5	3 x	1,5
Refrig. charge R 134a (gı Kühlmittel Füll. R 134a (g		190 190	190	260	240	280	240	300	270	450	300	-	_	-	-
Refrig. charge R 404a (gı Kühlmittel Füll. R 404a (g			-	-	-	-	-	-	-	_	=	630	500	660	500
Refrigerant metering device Kältemittel-Expansionssyste	, ,		illary tube pillarrohr		lary tube illarrohr		lary tube illarrohr		lary tube illarrohr		llary tube illarrohr		ary tube larrohr		ary tube larrohr

OPERATING PRESSURES - BETRIEBSDRÜCKE

	Discha	arge pressur	e - Hochdrud	ckbereich			
SDN 25	SDN 30	SDN 35	SDN 45	SDN 65	SD 80	SD 125	SD 210
8÷9 bar	8÷9 bar	8÷9,5 bar	8,5÷10 bar	8,5÷10 bar	8,5÷9,5 bar	15÷19,5 bar	16÷20 bar
8,5÷10 bar	8,5÷10 bar	8,5÷10 bar	8,5÷10 bar	8,5÷10 bar	9,5 bar	17 bar	17 bar
Suction pressure - Niederdrück Start / End of freezing cycle - Beginn / Ende der Gefrierfase							
SDN 25	SDN 30	SDN 35	SDN 45	SDN 65	SD 80	SD 125	SD 210
0,8÷0,1 bar	0,8÷0,1 bar	0,8÷0,1 bar	0,8÷0,1 bar	0,8÷0,1 bar	0,8÷0,1 bar	3,6÷1,5 bar	2,4÷1,3 bar
	8÷9 bar 8,5÷10 bar Star SDN 25	SDN 25 SDN 30 8÷9 bar 8÷9 bar 8,5÷10 bar 8,5÷10 bar Start / End of from SDN 25 SDN 30	SDN 25 SDN 30 SDN 35 8÷9 bar 8÷9 bar 8÷9,5 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar Suction pressured Start / End of freezing cycle SDN 25 SDN 30 SDN 35	SDN 25 SDN 30 SDN 35 SDN 45 8÷9 bar 8÷9 bar 8÷9,5 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar Suction pressure - Niedero Start / End of freezing cycle - Beginn / End SDN 25 SDN 30 SDN 35 SDN 45	8÷9 bar 8÷9 bar 8÷9,5 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar Suction pressure - Niederdrück Start / End of freezing cycle - Beginn / Ende der Gefri	SDN 25 SDN 30 SDN 35 SDN 45 SDN 65 SD 80 8÷9 bar 8÷9 bar 8÷9,5 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 9,5 bar Suction pressure - Niederdrück Start / End of freezing cycle - Beginn / Ende der Gefrierfase SDN 25 SDN 30 SDN 35 SDN 45 SDN 65 SD 80	SDN 25 SDN 30 SDN 35 SDN 45 SDN 65 SD 80 SD 125 8÷9 bar 8÷9 bar 8÷9,5 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 15÷19,5 bar 8,5÷10 bar 8,5÷10 bar 8,5÷10 bar 9,5 bar 17 bar Suction pressure - Niederdrück Start / End of freezing cycle - Beginn / Ende der Gefrierfase SDN 25 SDN 30 SDN 35 SDN 45 SDN 65 SD 80 SD 125

WIRING DIAGRAM - SCHALTUNGSSCHEMA 230/50/1 AIR & WATER COOLED - LUFT UND WASSERGEKÜHLT

SDN 25 - 30 - 35 - 45

WIRING DIAGRAM - SCHALTUNGSSCHEMA 230/50/1 AIR COOLED - LUFTGEKÜHLT

SDN 65

WIRING DIAGRAM - SCHALTUNGSSCHEMA 230/50/1 WATER COOLED - WASSERGEKÜHLT

SDN 65

WIRING DIAGRAM - SCHALTUNGSSCHEMA 230/50/1 AIR & WATER COOLED - LUFT UND WASSERGEKÜHLT

SD 80

I

WIRING DIAGRAM - SCHALTUNGSSCHEMA 230/50/1 AIR & WATER COOLED - LUFT UND WASSERGEKÜHLT

SD 125 - SD 210

FiG. 1

FREEZING CYCLE 3 $\langle \rangle$ 4 8 7 11 10(12 13((14((15(

FiG. 2

FREEZING CYCLE - TIMING PHASE

FiG. 3

FiG. 4

FiG. 5

FREEZING CYCLE - BIN FULL

FiG. 6

RINSING CYCLE

- MASTER SWITCH HAUPTSSCHALTER CONDENSER THERMOSTAT KONDENSATORTHERMOSTAT
- BIN THERMOSTAT SPEICHERTHERMOSTAT
- OUTER MICROSWITCH AUSSERER MIKROSCHALTER **EVAP. THERMOSTAT - VERDAMPFERTHERMOSTAT**
- INNER MICROSWITCH INNERER MIKROSCHALTER COMPRESSOR SWITCH - KOMPRESSOR SCHALTER
- PRESSURE CONTROL PRESSOSTAT (SDN 25 ÷ 65W) (SD 80 ÷ 210 A)
- SD 80 125 210 AIR COOLED ONLY NUR SD 80 - 125 - 210 WASSERGEKÜHLTE VERSION

- 9. OPERATING LIGHT -
- 10.
- 11.
- TIMER MOTOR TIMER MOTOR
 HOT GAS VALVE HEISSGASVENTIL
 WATER INLET VALVE WASSEREINLAUFVENTIL 12.
- WATER PUMP WASSERPUMPE 13.
- 14. COMPRESSOR KOMPRESSOR15. FAN MOTOR LUFTERMOTOR

GENERAL INFORMATION AND INSTALLATION

A. INTRODUCTION

This manual provides the specifications and the step-by-step procedures for the installation, start-up and operation, maintenance and cleaning for the **SIMAG SDN Series** Icemakers.

The **SIMAG SDN** cubers are quality designed, engineered and manufactured.

Their ice making systems are thoroughly tested providing the utmost in flexibility to fit the needs of a particular user.

NOTE. To retain the safety and performance built into this icemaker, it is important that installation and maintenance be conducted in the manner outlined in this manual.

B. UNPACKING AND INSPECTION

- 1. Call your authorized SIMAG Distributor or Dealer for proper installation.
- 2. Visually inspect the exterior of the packing and skid. Any severe damage noted should be reported to the delivering carrier and a concealed damage claim form filled in subjet to inspection of the contents with the carrier's representative present.
- 3. a) Cut and remove the plastic strip securing the carton box to the skid.
- b) Remove the packing nails securing the carton box to the skid.
- c) Cut open the top of the carton and remove the polystyre protection sheet.
- d) Pull out the polystyre posts from the corners and then remove the carton.
- 4. Remove the front and the rear panels of the unit and inspect for any concealed damage. Notify carrier of your claim for the concealed damage as stated in step 2 above.
- 5. Remove all internal support packing and masking tape.
- 6. Check that refrigerant lines do not rub against or touch other lines or surfaces, and that the fan blades move freely.
- 7. Check that the compressor fits snugly onto all its mounting pads.
- 8. See data plate on the rear side of the unit and check that local main voltage corresponds with the voltage specified on it.

CAUTION. Incorrect voltage supplied to the icemaker will void your parts replacement program. 9. Remove the manufacturer's registration card from the inside of the User Manual and fill-in all parts including: Model and Serial Number taken from the data plate.

Forward the completed self-addressed registration card to SIMAG factory.

C. LOCATION AND LEVELLING

WARNING. This Ice Maker is designed for indoor installation only. Extended periods of operation at temperature exceeding the following limitations will constitute misuse under the terms of the SIMAG Manufacturer's Limited Warranty resulting in LOSS of warranty coverage.

- 1. Position the machine bin in the selected permanent location and tighten the four legs (SDN 35 45 65 SD 80 125 210). Criteria for selection of location include:
- a) Minimum room temperature 10°C (50°F) and maximum room temperature 40°C (100°F).
- b) Water inlet temperatures: minimum 5°C (40°F) and maximum 40°C (100°F).
- c) Well ventilated location for air cooled models (clean the air cooled condenser at frequent intervals).
- d) Service access: adequate space must be left for all service connections through the rear of the ice maker. A minimum clearance of 15 cm (6") must be left at the sides of the unit for routing cooling air drawn into and exhausted out of the compartment to maintain proper condensing operation of air cooled models.

NOTE. With the unit in "built-in" conditions, the ice production is gradually reduced in respect to the levels shown in the graph, up to a maximum of 10% at room temperatures higher than 32°C.

The daily ice-making capacity is directly related to the condenser air inlet temperature, water temperature and age of the machine.

To keep your **SIMAG CUBER** at peak performance levels, periodic maintenance checks must be carried out as indicated on this manual.

2. Level the Icemaker in both the left to right and front to rear directions by means of the adjustable legs.

D. ELECTRICAL CONNECTIONS

See data plate for current requirements to determine wire size to be used for electrical connections. All SIMAG icemakers require a solid earth wire.

All SIMAG ice machines are supplied from the factory completely pre-wired and require only electrical power connections to the wire cord provided at the rear of the unit.

Make sure that the ice machine is connected to its own circuit and individually fused (see data plate for fuse size).

The maximum allowable voltage variation should not exceed -10% and +10% of the data plate rating. Low voltage can cause faulty functioning and may be responsible for serious damage to the overload switch and motor windings.

NOTE. All external wiring should conform to national, state and local standards and regulations.

Check voltage on the line and the ice maker's data plate before connecting the unit.

E. WATER SUPPLY AND DRAIN CONNECTIONS

GENERAL

When choosing the water supply for the cuber consideration should be given to:

- a) Length of run
- b) Water clarity and purity
- c) Adequate water supply pressure

Since water is the most important single ingredient in producing ice you cannot emphasize too much the three items listed above.

Low water pressure, below 1 bar may cause malfunction of the ice maker unit.

Water containing excessive minerals will tend to produce cloudy colored ice cubes, plus scale build-up on the interior parts of the water system.

WATER SUPPLY

Connect the 3/4" GAS male of the water inlet fitting, using the food grade flexible tubing supplied with the machine, to the cold water supply line with regular plumbing fitting and a shut-off valve

installed in an accessible position between the water supply line and the unit.

If water contains a high level of impurities, it is advisable to consider the installation of an appropriate water filter or conditioner.

WATER SUPPLY - WATER COOLED MODELS (SD 80-125-210)

The water cooled versions of SIMAG Ice Makers require two separate inlet water supplies, one for the water making the ice and the other for the water cooled condenser.

Connect the 3/4" GAS male fitting of the water inlet, using the flexible tubing supplied with the unit, to the cold water supply line with regular plumbing fitting and a shut-off valve installed in an accessible position between the water supply line and the unit.

WATER DRAIN

Connect the drain fitting with a plastic tube to an open trapped and vented drain. When the drain is a long run, allow 3 cm pitch per meter (1/4" pitch per foot).

On water cooled versions, the water drain line from the condenser is internally connected with the drain fitting of the unit.

It is strongly recommended therefore to install a vertical open vent on unit drain line high point to ensure good draining and to direct the drain line to a trapped and vented floor drain receptacle.

NOTE. The water supply and the water drain must be installed to conform with the local code. In some case a licensed plumber and/ or a plumbing permit is required.

F. FINAL CHECK LIST

- 1. Is the unit in a room where ambient temperatures are within a minimum of 10°C (50°F) even in winter months?
- 2. Is there at least a 15 cm (6") clearance around the unit for proper air circulation?
- 3. Is the unit level? (IMPORTANT)
- 4. Have all the electrical and plumbing connections been made, and is the water supply shut-off valve open?
- 5. Has the voltage been tested and checked against the data plate rating?
- 6. Has the water supply pressure been checked to ensure a water pressure of at least 1 bar (14 psi)? Open the shut-off valve and verify the absence of water losses from the connections.

- 7. Have the bolts holding the compressor down been checked to ensure that the compressor is snugly fitted onto the mounting pads?
- 8. Check all refrigerant lines and conduit lines to guard against vibrations and possible failure.
- 9. Have the bin liner and cabinet been wiped clean?
- 10. Has the owner/user been given the User Manual and been instructed on the importance of periodic maintenance checks?
- 11. Has the Manufacturer's registration card been filled in properly? Check for correct model and serial number against the serial plate and mail the registration card to the factory.
- 12. Has the owner been given the name and the phone number of the authorized SIMAG Service Agency serving him?

G. INSTALLATION PRACTICE

- 1. Hand shut-off valve
- 2. Water filter
- 3. Water supply line (flexible hose)
- 4. 3/4" GAS male fitting
- 5. Vented drain
- 6. Open trapped vented drain
- 7. Drain fitting
- 8. Main switch
- 9. Power line

WARNING. This icemaker is not designed for outdoor installation and will not function in ambient temperatures below 10°C (50°F) or above 40°C (100°F).

This icemaker will malfunction with water temperatures below 5°C (40°F) or above 40°C (100°F).

OPERATING INSTRUCTIONS

START UP

After having correctly installed the ice maker and completed the plumbing and electrical connections, perform the following "Start-up" procedure.

A. Put the icemaker in operation by moving the unit master switch, located on the cabinet front, to the ON position.

NOTE. The icemaker control is factory set with the timer microswitches actuators dropped off into the initial point of the cam slot. This setting position allows a proper water filling.

The unit starts operating in the "defrost cycle" with the following components being activated:

THE WATER INLET SOLENOID VALVE
THE HOT GAS SOLENOID VALVE
THE CONTACTOR COIL (SD 80-125-210)
THE FAN MOTOR (only SDN 25÷45) air cooled
THE COMPRESSOR
THE TIMER MOTOR

B. During the water filling operation, check to see that the incoming water dribblers, through the evaporator platen dribbler holes, down into the sump reservoir to fill it up and also that the incoming surplus of water flows out through the overflow pipe into the drain line.

NOTE. If, in the defrost cycle length, the machine sump reservoir does not get filled with water up to the rim of the overflow pipe, remove the front panel and rotate the shaft of the timer so to cause the dropping of the two microswitches actuators into the beginning of the cam slot and check for:

- 1. The water pressure of the water supply line, it must be at least 1 bar (14 psig) Minimum (Max 5 bar-70 psig).
- 2. The filtering device installed in the water line that may reduce the water pressure below the Minimum value of 1 bar (14 psig).
- 3. Any clogging situation in the water circuit like the inlet water strainer and/or the flow control.

OPERATIONAL CHECKS

C. At completion of the water filling phase the unit initiate automatically the first freezing cycle with the start up of (Fig.1):

COMPRESSOR

CONTACTOR COIL (SD 80-125-210) WATER PUMP

FAN MOTOR (in air cooled version)

- **D.** Check to see through the ice discharge opening that the spray system is correctly seated and that the water jets uniformely reach the interior of the inverted mold cups or the exterior of the evaporator tips; also make sure that the plastic curtain is hanging freely and there is not excessive water spilling through it.
- **E.** The ice making process takes place thereby, with the water sprayed into the molds or onto the tips that gets gradually refrigerated by the heat exchange with the refrigerant flowing into the evaporator serpentine.

During the first portion of the freezing cycle, the timer assy is standing-by with its microswitches actuators resting on the raised cam profile (position that correspond to the end of the defrost cycle).

F. Then, as the cube size control cut-in point is reached by the evaporator temperature the control of the cycle is passed to the timer assy. Whose raised cam slowly rotates to continue the freezing cycle (2nd phase) up to its completition.

The components in operation during this 2nd phase of the cycle are (Fig.2):

COMPRESSOR
CONTACTOR COIL (SD 80-125-210)
WATER PUMP
FAN MOTOR (in air cooled version)
TIMER MOTOR

G. After about 18÷20 minutes from the beginning of the freezing cycle, in an hypothetic ambient temperature of 21°C, the defrost cycle takes place with the hot gas and the water inlet valves being simoultaneously activated.

The electrical components in operation are (Fig.3):

COMPRESSOR
CONTACTOR COIL (SD 80-125-210)
WATER INLET SOLENOID VALVE
HOT GAS VALVE
TIMER MOTOR
FAN MOTOR (only SDN 25÷45) air cooled

- **H.** Check, during the defrost cycle, that the incoming water flows correctly into the sump reservoir in order to refill it and that the surplus overflows through the overflow drain tube.
- I. Check the texture of ice cubes just released. They have to be of the right size with a thickness of about 7÷8 mm.

If the ice cubes have not the correct size, wait for a second harvest before attempting any adjustment by setting the cube size control. By rotating the control setting screw clockwise the ice cube thickness can be increased; on the contrary the thickness can be reduced by turning the setting screw counterclockwise.

If the ice cubes are shallow and cloudy, it is possible that the ice maker runs short of water during the freezing cycle second phase or, the quality of the supplied water requires the use of an appropriate water filter or conditioner.

J. With the icemaker in the harvest cycle, hold ice against the bin thermostat control bulb to test its shut off (Fig.4). This should cause the ice maker to shut OFF after 30 seconds, 1 minute at the most, namely when the control bulb temperature drops to reach +1°C.

NOTE. In case this test is performed during the freezing cycle, the unit will shut OFF only at the end of the freezing cycle and exactly when the timer switch actuators drop-off into the cam slot (Fig.5).

Within minutes after the ice is removed from the sensing bulb, the bulb will warm up to reach +4°C and consequently will cause the icemaker to restart from the harvest (defrost) cycle.

K. Instruct the owner/user on the general operation of the ice machine and about the cleaning and care it requires.

PRINCIPLE OF OPERATION

In the **SIMAG** cube ice makers the water used to make the ice is kept constantly in circulation by an electric water pump which primes it to the spray system nozzles from where it is diverted into the molds of the evaporator.

A small quantity of the sprayed water freezes into ice; the rest of it cascades by gravity into the sump assembly below for recirculation.

FREEZING CYCLE

The hot gas refrigerant discharged out from the compressor reaches the condenser where, being cooled down, condenses into liquid. Flowing into the liquid line it passes through the drier filter, then it goes all the way through the capillary tube where, due to the heat exchanging action, it looses some of its heat content so that its pressure and temperature are lowered as well.

Next the refrigerant enters into the evaporator serpentine (which has a larger I.D. then the capillary) and starts to boil off; this reaction is emphasized by the heat transferred by the sprayed water.

The refrigerant then increases in volume and changes entirely into vapor.

The vapor refrigerant then passes through the suction accumulator (used to prevent that any small amount of liquid refrigerant may reach the compressor) and through the suction line. In both the accumulator and the suction line it exchanges heat with the refrigerant flowing into the capillary tube (warmer), before to be sucked in the compressor and to be recirculated as hot compressed refrigerant gas.

The freezing cycle is controlled by the evaporator thermostat (which has its bulb in contact with the evaporator serpentine) that determines the length of its first portion of the cycle.

When the temperature of the evaporator thermostat bulb drops to a pre-set value, the evaporator thermostat changes its contacts (from 3-4 to 3-2) suppling power to the finishing timer that takes the control of the second timed portion of the freezing cycle up to its completion.

The length of this second timed portion of the freezing cycle is pre-fixed and related to the setting of the upper part of the timer cam.

The electrical components in operation during the freezing cycle are:

COMPRESSOR

CONTACTOR COIL (SD 80-125-210)

FAN MOTOR (in air cooled version)

WATER PUMP

and during the second phase of freezing cycle (Time mode) they are joined by the

TIMER

On the SDN 65, SD 80, SD 125 and SD 210 air cooled the refrigerant head pressure, in the course of the freezing cycle, ranges between 8÷10 bars SDN 65, 8÷9,5 bars SD 80 and 15,5÷20 bars SD 125-210 being controlled by the hi-pressure control.

When the discharge pressure rises up to a pre set value, the pressure control closes its electrical contacts suppling power to the **FAN MOTOR**. As soon as the discharged refrigerant pressure drops, the pressure control opens its contacts to temporarely de-energize the fan motor. On others air cooled models (SDN 25÷45) the fan motor is

constantly activated and retain the head pressure between 8+10 bars (110+140 psig).

On the models from SDN 25÷65 water cooled version the same hi-pressure control is used to intermittently energize a water solenoid valve located on the water supply line to the condenser. On the other models SD 80-125-210, in water cooled version, the discharge pressure is kept constant by the water regulating valve that meters the water flow to the condenser.

NOTE. In case of shortage/insufficient cooling water or air condenser dirty, the operation of the **safety device by hand reset** will stop the machine as soon as the temperature reach 70/75 °C (160/170 °F) or the corresponding pressure. After eliminated the cause of the stop, **put the machine in operation by pushing the reset button of the safety thermostat or pressure switch** across the holes in the down/right side of the front panel or removing it.

At the start of the freezing cycle the refrigerant suction or lo-pressure lowers rapidly to **0,8 bars (11 psig)** SDN 25÷SD80, **3,6 bars (50 psig)** SD 125 and **2,4 bars (34 psig)** SD 210 then it declines gradually - in relation with the growing of the ice thickness - to reach, at the end of the cycle, approx. **0,1 bars (1,4 psig)** SDN 25÷SD80, **1,5 bars (21 psig)** SD 125, and **1,3 bars (18 psig)** SD 210 with the cubes fully formed in the cup molds.

The total length of the freezing cycle ranges from 18 to 20 minutes.

DEFROST OR HARVEST CYCLE

As the electric timer has carried the system throughout the second phase of freezing cycle, the defrost cycle starts.

NOTE. The length of the defrost cycle is predetermined by the setting of the lower portion of the timer cam.

In case it is possible to modify the defrost cycle length through its setting screw.

ATTENTION. The defrost period is the most critical for the icemaker main components expecially the compressor. To avoid to abuse of them it is strongly recommended to limit the harvest cycle extension to 4 minutes at the most.

The electrical components in operation during this phase are:

COMPRESSOR

CONTACTOR COIL (SD 80-125-210) FAN MOTOR (only SDN 25÷45) air cooled WATER INLET SOLENOID VALVE HOT GAS SOLENOID VALVE TIMER MOTOR

The incoming water, passing through the water inlet valve and in its incorporated flow control (outlet), runs over the evaporator platen and then flows by gravity through the dribbler holes down into the sump/reservoir.

The water filling the sump/reservoir forces part of the left-over water from the previous batch to run out to the waste through the overflow pipe. This overflow limits the level of the sump water which will be used to produce the next batch of ice cubes.

Meanwhile, the refrigerant as hot gas, discharged from the compressor, flows through the hot gas valve directly into the evaporator serpentine bypassing the condenser.

The hot gas circulating into the serpentine of the evaporator warms up the copper molds or the tips causing the defrost of the ice cubes. The ice cubes, released from the molds, drop by gravity onto a slanted grid chute, then through a curtained opening they fall into the storage bin.

At the end of the defrost cycle, both the hot gas and the water inlet valves close and the machine starts again a new freezing cycle.

OPERATION - CONTROL SEQUENCE

the cam high profile.

At the start of freezing cycle, the evaporator **thermostat** controls the length of the first part of the freezing cycle. As its bulb senses a predetermined temperature, it closes its contacts to supply power to the **timer motor** which, in turn, takes over the control of the freezing cycle. This second part of the cycle has a pre-fixed time duration which is relied to the setting extension of

NOTE. The evaporator thermostat is factory set to the number 4 of its setting dial.

In case it is required the setting of the evaporator thermostat can be made by turning its adjusting screw located on front side.

With a clockwise rotation of the setting screw the thermostat cut IN temperature will be lowered (longer freezing cycle - thicker ice cube) while, with a counterclockwise rotation of the screw, the Cut IN temperature rises (shorter freezing cycle - thiner ice cube).

Once completed the freezing cycle 2nd phase the system switches automatically into the defrost cycle which has a pre-fixed length as well. At completion of the defrost period the unit starts again a new freezing cycle.

OPERATION - ELECTRICAL SEQUENCE

The following charts illustrate which switches and which components are ON or OFF during a particular phase of the icemaking cycle. Refer to the wiring diagram for a reference.

NOTE. The wiring diagram shows the unit as it is in the Evaporator Thermostat mode of the Freezing Cycle.

BEGINNING FREEZE

Electrical components (Loads) Compressor	ON	OFF
Fan motor	•	
Hot gas valve		•
Water inlet valve		•
Water pump	•	
Contactor coil	•	
Timer motor		•
Electric Controls	ON	OFF
Conctats 3-4 evaporator thermostat	•	
Conctats 3-2 evaporator thermostat		•
Bin thermostat	•	
Conctats COM-NO timer microswitch	•	
Conctats COM-NC timer microswitch		•
Pressure control (SDN25÷65W) (SDN65÷SD210A)	•	
TIMED FREEZE		
Flectrical components (Loads)	ON	OFF

Electrical components (Loads) Compressor	ON •	OFF
Fan motor	•	•
Hot gas valve		•
Water inlet valve		•
Water pump	•	
Contactor coil	•	
Timer motor	•	
Electric Controls	ON	OFF
Conctats 3-4 evaporator thermostat		•
Conctats 3-2 evaporator thermostat	•	
Bin thermostat	•	
	_	
Conctats COM-NO timer microswitch	•	
Conctats COM-NO timer microswitch Conctats COM-NC timer microswitch	•	•

I° PORTION HARVEST CYCLE

Conctats COM-NC timer microswitch

Pressure control (SDN25÷65W) (SDN65÷SD210A)

Electrical components (Loads)	ON	OFF
Fan motor (SDN 25÷45 ON)		•
Hot gas valve	•	
Water inlet valve	•	
Water pump		•
Contactor coil	•	
Timer motor		•
Electric Controls	ON	OFF
Conctats 3-4 evaporator thermostat		•
Conctats 3-2 evaporator thermostat	•	
Bin thermostat	•	
Conctats COM-NO timer microswitch		•

II° PORTION HARVEST CYCLE

Electrical components (Loads) Compressor	ON •	OFF
Fan motor (SDN25÷45 ON)		•
Hot gas valve	•	
Water inlet valve	•	
Water pump		•
Contactor coil	•	
Timer motor	•	
Electric Controls	ON	OFF
Conctats 3-4 evaporator thermostat	•	
Conctats 3-2 evaporator thermostat		•
Bin thermostat	•	
Bin thermostat Conctats COM-NO timer microswitch	•	•
	•	•
Conctats COM-NO timer microswitch	•	•

OPERATING CHARACTERISTICS

On air cooled models during the freezing cycle the discharge pressure is kept between 8+10 bars (110+140 psig) SDN25+SD80, 15,5+20 bars (215+280 psig) SD 125-210.

At the same time the suction pressure will gradually decline, reaching its lowest point just before harvest. Compressor amps experience a similar drop.

COMPONENTS DESCRIPTION

A. MASTER SWITCH

Fitted on the front side of the unit cabinet the master switch has to be used to start-up and to stop the ice maker operation.

In connection with it there is the green monitor light.

B. EVAPORATOR THERMOSTAT

The evaporator thermostat with its sensing bulb intimately in contact with the refrigerant outlet tube from the evaporator, senses the evaporating refrigerant temperature (which declines in the course of the freezing cycle) and when this one reaches the pre-set value, it switches its contacts from 3-4 to 3-2 to activate the finishing cycle (2nd phase) which has a pre-set extension determined by the large diameter lobe of the timer cam.

C. BIN THERMOSTAT

The bin thermostat, which has its sensing bulb downward into the storage bin, shuts-OFF automatically the icemaker when the ice storage bin is filled and ice contacts its bulb. Being it connected in series with the front microswitch of the timer, it causes the unit shut-off only at the end of the freezing cycle, when the ice cubes are completed.

After ice is removed from the bin and its bulb warm-up it allows the unit to restart from the beginning of the harvest cycle which, in the circumstance, is more likely a water filling cycle.

D. TIMER

Equipped with two microswitches which plungers ride one timer cam, the timer is located inside the control box.

The function of the timer begins when activated by the cube size control (evap. thermostat).

The large diameter lobe of its cam determines the 2nd freezing cycle portion length, while the cam small diameter lobe, determines the time cycle for the harvest sequence.

The timer cam can be adjusted to vary the defrost time as required.

WARNING. Never set the defrost time for longer than 4 minutes as this will jeopardize the compressor motor windings.

It goes without saying that an extension of the defrost period will directly reduce the timed portion of the freezing cycle and viceversa.

Consequently any variation made at the timer cam setting requires a compensation adjustment, very fine and very accurate, of the evaporator thermostat.

E. COMPRESSOR SWITCH

The compressor switch is located on the edge of the control box and it can be switched in two different positions which are:

Operation Supply power directly to the compressor motor or, on models SD 80, SD 125 and SD 210, directly

to the contactor coil.

Cleaning Shuts-off the compressor so that only the water pump and the water inlet valve will remain in operation.

When positioned on "**0 - OFF**" the water pump primes the cleaning or the bactericide solution allover the unit water system to generate a good cleaning and sanitizing action of the ice maker.

NOTE. It is recommended to avoid the rinsing, after the sanitation of the unit water system, as any bactericide coating, which is beneficial to limit the bacteria growth, left-over in the system may be removed.

F. HI PRESSURE CONTROL

Used either on air (SDN65-SD80-125-210A) and water (SDN25+65W) cooled ice makers it functions to maintain the head pressure within the preset values of 8+10 bars (110+140 psig) SDN25+SD80, and 15,5+20 bars (215+280 psig) SD 125-210, by intermittently activating the fan motor (in the air cooled models) and the water inlet valve to the condenser (in the water cooled models SDN25-30-35-45-65).

G. SAFETYTHERMOSTAT/PRESSURESWITCH (BY HAND RESET)

Fastened directly onto the refrigerant liquid line and electrically connected upstream all other controls, this safety device shut-off the icemakers when senses that the temperature at the liquid line has rised to the limit of 75°C (170°F) or corresponding pressure.

H. WATER SPRAY SYSTEM

It consists of one spray bar with several spray nozzles on its extension.

The water pumped, is sprayed through its nozzles in each individual mold or onto each evaporator tip to be frozen into ice.

I. WATER PUMP

The water pump operates continually throughout the freezing cycle.

The pump primes the water from the sump to the spray system and through the spray nozzles sprays it to the copper molds or onto the evaporator tips to be frozen into crystal clear ice cubes. It is recommended that the pump motor bearings be checked at least every six months.

J. WATER INLET SOLENOID VALVE - 3/4 MALE FITTING

The water inlet solenoid valve is activated by the timer microswitch only during the defrost cycle. When energized it allows a metered amount of incoming water to flow over the evaporator cavity to assist the hot gas in defrosting the ice cubes. The water running over the evaporator cavity drops by gravity, through the dribbler holes of the platen, into the sump reservoir where it will be sucked by the water pump and primed to the spray system.

K. HOT GAS SOLENOID VALVE

The hot gas solenoid valve consists basically in two parts: the valve body and the valve coil. Located on the hot gas line, this valve is energized through the timer microswitch conctats COM-NC during the defrost cycle.

During the defrost cycle the hot gas valve coil is activated so to attract the hot gas valve piston in order to give way to the hot gas discharged from compressor to flow directly into the evaporator serpentine to defrost the formed ice cubes.

L. FAN MOTOR (Air cooled version)

The fan motor, in the SDN60-SD-80-125-210 models is electrically connected in series with the pressure control operates during the freezing cycle to draw cooling air through the condenser fins so to keep the condensing pressure between the two preset values 8+10 bars (110+140 psig) SD 80 and 15,5+20 bars (215+280 psig) SD 125-210.

In the other models SDN 25-30-35-45 the fan motor works continuously in order to maintain the condensing pressure between 8÷10 bars (110÷140 psig).

M. WATER INLET SOLENOID VALVE -3/4 MALE FITTING (SDN 25 ÷ 65 water cooled version)

A second water inlet solenoid valve, operating through an automatic hi-pressure control, is used on water cooled versions to supply water to the condenser.

When activated it supplies a metered amount of water to the condenser in order to limit its temperature and the refrigerant operating high pressure.

N. WATER REGULATING VALVE (Water cooled version SD 80 ÷ 210)

This valve controls the head pressure in the refrigerant system by regulating the flow of water going to the condenser.

As pressure increases, the water regulating valve opens to increase the flow of cooling water.

O. COMPRESSOR

The hermetic compressor is the heart of the refrigerant system and it is used to circulate and retrieve the refrigerant throughout the entire system. It compresses the low pressure refrigerant vapor causing its temperature to rise and become high pressure hot vapor which is then released through the discharge valve.

P. CONTACTOR (SD 80-125-210 only)

Placed inside the control box it operates in order to close or open the electrical circuit to the compressor.

SERVICE DIAGNOSIS

SYMPTOM	POSSIBLE CAUSE	SUGGESTED CORRECTION
Unit will not run	Main switch in OFF position	Turn switch to ON position
	Safety device intervention (thermostat - pressure switch)	Eliminate the stop motivation and push the reset button or replace.
	Loose electrical connections	Check wiring
	Inoperative bin thermostat	Replace thermostat
Compressor cycles intermittently	Low voltage	Check circuit for overloading Check voltage at the supply to the building. If low, contact the power company
	Contactor with burnt contacts	Clean or replace
	Non-condensable gas in system	Purge the system
	Compressor starting device with loose wires	Check for loose wires in starting device
	To high room temperature	Move the unit in a more suitable place
Cubes too small	Freezing cycle too short	Review setting of DIP SWITCH keys
	Capillary tube partially restricted	Blow charge, add new gas & drier, after evacuating system with vacuum pump
	Moisture in the system	Same as above
	Shortage of water	See remedies for shortage of water
	Shortage of refrigerant	Check for leaks & recharge
	Inoperative evaporator thermostst	Replace thermostst
Cloudy cubes	Shortage of water	See remedies for shortage of water
	Dirty water supply	Use water softner or water filter
	Accumulated impurities cleaner	Use SCOTSMAN Ice Machine
	Water pump loosing disch. pressure	Check bearings. Replace.
Shortage of water	Water spilling out through curtain	Check or replace curtain
	Water solenoid valve not opening	Replace valve
	Water leak in sump area	Locate and repair
	Water flow control plugged	Remove and clean

SERVICE DIAGNOSIS

SYMPTOM	POSSIBLE CAUSE	SUGGESTED CORRECTION
Irregular cubes	Some jets plugged	Remove jet cover and clean
size & some cloudy	Shortage of water	See shortage of water
	Unit not level	Level as required
Cubes too large	Freezing cycle too long	Adjust evap. thermostat
	Inoperative evaporator thermostat	Replace thermostat
Decreased ice capacity	Inefficient compressor	Replace
	Leaky water valve	Repair or replace
	Non-condensable gas in system	Purge the system
	Poor air circulation or excessive hot location (Red-alarm LED glows)	Relocate the unit or provide for more ventilation
	Overcharge of refrigerant	Correct the charge. Purge off slowly
	Capillary tube partially restricted	Blow charge, add new gas & drier, after evacuating system with vacuu pump
	Hot gas solenoid valve leaking	Replace valve
	Undercharge of refrigerant	Charge to data plate indication
	Discharge head pressure too high	See incorrect discharge pressure
Poor harvest	Restriction in incoming water line	Check water valve strainer and flow control. If necessary enlarge the flow control orifice
	Water inlet valve not opening	Valve coil with open winding Replace valve
	Hot gas valve orifice restricted	Replace hot gas valve assy
	Discharge head pressure too low	See incorrect discharge pressure
Incorrect discharge pressure	Inoperative fan pressure control	Replace pressostat
	Inoperative fan motor	Replace
	Water regulating valve misadjusted	Adjust its setting stem
Excessive water in unit base	Water tubing leaking	Check. Tighten or replace

MAINTENANCE AND CLEANING INSTRUCTIONS

A. GENERAL

The periods and the procedures for maintenance and cleaning are given as guides and are not to be construed as absolute or invariable. Cleaning, especially, will vary depending upon local water and ambient conditions and the ice volume produced; and, each icemaker must be maintened individually, in accordance with its particular location requirements.

B. ICEMAKER

The following maintenance should be scheduled at least two times per year on these icemakers, by using the SIMAG technical service.

- 1. Check and clean the water line strainer.
- 2. Check that the icemaker is levelled in side to side and in front to rear directions.
- 3. Clean the water system, evaporator, bin and spray jets using a solution of Ice Machine Cleaner.

Refer to procedure C cleaning instructions and after cleaning will indicate frequency and procedure to be followed in local areas.

NOTE. Cleaning requirements vary according to the local water conditions and individual user operation. Continuous check of the clarity of ice cubes and visual inspection of the water spraying parts before and after cleaning will indicate frequency and procedure to be followed in local areas.

- 4. With the ice machine and fan motor OFF on air cooled models, clean condenser using vacuum cleaner, whisk broom or non metallic brush taking care to do not damage both the condenser and ambient temperature sensors.
- 5. Check for water leaks and tighten drain line connections. Pour water down bin drain line to be sure that drain line is open and clear.
- 6. Check size, condition and texture of ice cubes. Perform adjustment of the evaporator thermostat or cube size control by turning its adjusting screw clockwise for a thicker ice cube and counterclockwise for a thiner one.
- 7. Check the bin thermostat to test shut-off. Put a handfull of ice cubes in contact with its bulb. This should cause the ice maker to shut off within 20÷30", but only at the end of the freezing cycle!

NOTE. Perform the above check only at the beginning of the harvest cycle as, during the freezing cycle the bin thermostat contacts are bypassed by the front microswitch of the timer

When remove the ice cubes from its sensing bulb the unit will restart after few seconds from the defrost cycle assuring the filling up of the water tank.

NOTE. It is possible to adjust the setting temperature of the bin thermostat by slightly turning its adjusting screw.

8. Check for refrigerant leaks.

C. CLEAN - REPLACE OF AIR CONDENSER FILTER

1. Withdraw the air filter from the front through the opening of the front panel.

- Blow pressurised air on the opposite direction of the condenser air flow so to remove the dust accumulated.
- If pressurised air is not available, use tap water always in the counter flow air direction. Once cleaned shake it so to remove most of the accumulated water, then dry it using an hair dryer.

NOTE. In case the air filter strainer is damaged replace it with a new one.

4. Install it again by pushing it through the front panel opening.

D. CLEANING INSTRUCTIONS OF WATER SYSTEM

1. Remove the front and the top panels to gain access either to the control box and to the evaporator.

- 2. Wait till the end of defrost cycle then, shut the unit OFF by means of its master switch.
- 3. Scoop out all the ice cubes stored into the bin in order to prevent them from being contaminated with the cleaning solution then flush out the water from the sump reservoir by removing the overflow stand-pipe.
- 4. Remove the plastic cup located on the bottom of sump/freezing chamber to drain out all water and scale deposits.

5. Prepare the cleaning solution by diluting in a plastic container two or three liters of warm water (45°÷50°C) with a 0,2÷0,3 liters of Ice Machine Cleaner PIN 00100901.

WARNING. The Ice Machine Cleaner contains Phosphoric and Hydroxyacetic acids. These compounds are corrosive and may cause burns if swallowed, DO NOT induce vomiting. Give large amounts of water or milk. Call Physician immediately. In case of external contact flush with water. KEEP OUT OF THE REACH OF CHILDREN

- 6. Remove the evaporator cover then slowly pour onto the evaporator platen the cleaning solution. With the help of a brush dissolve the most resistant and remote scale deposits in the platen.
- 7. Set the compressor switch on "0 OFF" position and give power to the unit by the master switch (Fig.6).

NOTE. With the system in **CLEANING** mode the water pump is the only component in operation to circulate the cleaning solution in the entire water system.

- 8. Let the unit to remain in the **CLEANING** mode for about 20 minutes then switch OFF the machine.
- 9. Flush out the cleaning solution from the sump reservoir then pour onto the evaporator cavity one or two liters of clean potable water with the antibacteria solution P/N 26400002 to rinse and sanitize the molds and the spray system. If necessary remove the spary bar and nozzles to clean them separately then refit them.
- 10. Set back the master switch to ON. The water pump is again in operation to circulate the water and the antibacterial solution in order to rinse the entire water system.

Switch OFF the unit after approx. 10 minutes and flush out the rinsing water from the sump reservoir.

11. To rotate the timer so that the microswitches reach the beginning of the defrost cycle (low part of the cam) give power to the unit by the master switch.

By doing so are energized the water pump and the water inlet valve. In this way the incaming water flow away to fill up the water tank.

- 12. When the water tank is filled up (water flowing out from the drain) put the compressor switch on **I ON** position to restart the machine in the automatic mode.
- 13. Re-fit the evaporator cover and the unit service panels.
- 14. At completion of the freezing and harvest cycle make sure of proper texture and clearness of the ice cubes and that, they do not have any acid taste.

ATTENTION. In case the ice cubes are cloudy, white and have an acid taste, melt them immediately by pouring on them some warm water.

This to prevent somebody from using them.

15. Wipe clean and rinse the inner surfaces of the storage bin.

REMEMBER. To prevent the accumulation of undesirable bacteria it is necessary to **sanitize the interior of the storage bin** with an anti-algae disinfectant solution **every week**.

ALLGEMEINES UND INSTALLATION

A. EINFÜHRUNG

Diese Bedienungsanleitung beschreibt alle technischen Angaben, sowie die Reihenfolge für die Installation, Inbetriebnahme und Betrieb, Wartung und Reinigung der SIMAG EISBEREITER der Serie SD - SDN.

Die SIMAG Eiswürfelbereiter sind für eine hohe Qualität geplant und produziert. Sie werden bei uns für mehrere Stunden getestet und können daher eine maximale Leistung für jede Verwendung und Situation garantieren.

ANMERKUNG. Um die Qualitäts- und Sicherheitseigenschaften des Gerätes nicht zu vermindern oder zu gefährden, bitten wir Sie, sich während der Installation und Wartung genau an die Anweisungen in diesem Handbuch zu halten.

B. AUSPACKEN UND INSPEKTION

- 1. Führen Sie eine Sichtkontrolle der Kartonverpackung und der Holzbasis, welche für den Versand benutzt wurden, durch. Jeder Schaden an der Verpackung muß an den Transporteur weitergeleitet werden; in diesem Fall setzt man die Kontrolle im Beisein des Vertreters des Transporteurs fort.
- 2. a) Entfernen Sie das Plastikband, das die Kartonverpackung mit der Palette verbindet
- b) Öffnen Sie den oberen Teil der Verpackung und entfernen Sie die Polystirolblätter und die Schutzwinkel
- c) Heben Sie den ganzen Karton an und ziehen Sie ihn vom Gerät ab
- 3. Nehmen Sie jetzt den vorderen und hinteren Schutz vom Gerät ab und untersuchen Sie das Gerät auf eventuelle Schäden.

Teilen Sie dem Transporteur sofort eventuelle Schäden mit und gehen Sie wie bei Punkt 1 vor.

- 4. Nehmen Sie alle internen Stützen für den Transport und die Klebebänder ab
- 5. Kontrollieren Sie, daß die Leitungen des Kühlkreislaufes nicht mit anderen Leitungen oder Oberflächen in Berührung kommen und daß der Ventilator sich frei drehen kann.
- 6. Kontrollieren Sie, daß der Kompressor auf seinen Dämpfstützen frei schwingen kann.
- 7. Mit einem sauberen feuchten Tuch säubert man die Innenwände des Eisbehälters und die äußeren Oberflächen des Gerätes.
- 8. Kontrollieren Sie die Daten auf dem Schild an der Rückseite des Rahmens und kontrollieren Sie, ob die elektrische Versorgung mit der

übereinstimmt, die auf demselben Schild angegeben ist.

ACHTUNG. Bei falscher elektrischer Versorgung erlischt automatisch Ihr Anrecht auf Garantie.

9. Die Garantiekarte im Innern des Handbuches ausfüllen und versenden, indem Sie sowohl das Modell, als auch die Seriennummer des Gerätes angeben, die Sie dem Schild auf dem Rahmen entnehmen können

C. POSITIONIERUNG UND AUSGLEICHUNG

ACHTUNG. Dieser Eiswürfelbereiter wurde dazu entwickelt, um in Innenräumen aufgestellt zu werden, in denen eine Raumtemperatur herrscht, die nie unter 10°C sinkt oder über 40°C steigt.

Längere Funktionszeiträume bei Temperaturen außerhalb der oben stehenden Grenzwerte stellen nach den Garantiebedingungen eine falsche Nutzung dar, wodurch der Anspruch auf Garantie erlischt.

1. Stellen Sie das Gerät am endgültigen Standpunkt auf und schrauben Sie die vier Füße in die Basis des Gerätes ein (SDN35-45-65-SD80-125-210)

Die Kriterien für die Wahl der Position sind:

- a) Raumtemperatur mindestens 10°C und höchstens 40°C
- b) Temperatur der Wasserversorgung: mindestens 5°C und höchstens 40°C
- c) Gut belüfteter Ort und angemessener Platz für die Anschlüsse, die auf der Rückseite des Gerätes angeordnet sind. Man läßt mindestens 15 cm Raum um das Gerät, damit eine korrekte und wirksame Luftzirkulation möglich ist; besonders bei Ausführungen, die mit Luft gekühlt werden.

ANMERKUNG. Bei eingebautem Gerät reduziert sich die Eisproduktion bis zu maximal 10% bei Raumtemperaturen von mehr als 32°C.

Die tägliche Produktionskapazität ändert sich mit der Raumtemperatur, der Wasserversorgung und dem Freiraum um das Gerät. Um die Produktion Ihres **Eiswürfelbereiters SIMAG** zu maximieren, ist es notwendig, die regelmäßige Wartung gemäß dem entsprechenden Kapitel dieses Handbuches auszuführen.

2. Richten Sie das Gerät durch die Füße, von vorne nach hinten und von links nach rechts in beiden Richtungen aus.

D. ELEKTRISCHE ANSCHLÜSSE

Beachten Sie das Schild des Gerätes, um dann den Querschnitt und das Kabel entsprechend der angegeben Spannung zu wählen.

Alle Geräte SIMAG besitzen ein elektrisches Kabel für die Stromversorgung, das an ein Stromnetz mit einem Erdungskabel angeschlossen werden muß, welches mit einem eigenen Schalter oder Thermo-magnetschalter oder entsprechender Sicherung versehen ist, wie aus vom Schild jedes einzelnen Gerätes abzulesen ist.

Die maximale Spannungsdifferenz darf maximal 10% des auf dem Schild angegebenen Wertes über- oder unterschreiten. Ein zu niedriger Spannungswert kann abnormale Funktionen und schwere Schäden der Schutzvorrichtungen und elektrischen Spulen hervorrufen.

ANMERKUNG. Alle externen Anschlüsse müssen nach allen Regeln der Kunst und nach den örtlichen Gesetzen und Bestimmungen von qualifiziertem Personal ausgeführt werden.

Bevor man den Eiswürfelbereiter an das Stromnetz anschließt, prüft man nochmals, daß der gemessene Spannungswert der Spannung entspricht, die auf dem Schild angegeben ist.

E. WASSSERVERSORGUNG UND ABFLUSS

Voraussetzung

Bei der Wahl der hydraulischen Versorgung des Eiswürfelbereiters muß folgendes beachtet werden:

- a) Länge der Leitungen
- b) Sauberkeit und Reinheit des Wassers
- c) Angemessener Wasserversorgungsdruck

Ein niedriger Wasserversorgungsdruck, unter 1 bar, kann Störungen der Funktion des Gerätes hervorrufen. Der Einsatz von Wasser mit zu hohem Mineralanteil verursacht die Produktion von trüben Würfeln und hat Ablagerungen in den internen Teile der Wasserleitung zur Folge.

Wasserversorgung

Den Gewindezapfen-Anschluß zu + Zoll des Solenoidventils für den Wassereingang an die Wasserversorgungsleitung mit dem mitgelieferten Plastikschlauch Typ Lebensmittelungiftig anschließen.

Die Wasserversorgungsleitung muß mit einem Wasserhahn versehen sein, der sich in der Nähe des Gerätes befindet und gut zugänglich ist.

Wasserversorgung – Wassergekühlte Versionen SD 80-125-210

Die Wassergekühlten Versionen benötigen zwei getrennte Wasserzuleitungen; eine für die Pumpenschale und eine, die durch das mechanische Regulierungsventil zum Kühlkondensator verläuft.

Man benutzt auch für den Wasseranschluß des Kondensators den flexiblen Schlauch aus verstärktem Plastik, welcher mit dem Gerät geliefert wird und der an ein getrenntes Sperrventil angeschlossen wird.

Wasserabfluß

Es wird ein Plastikschlauch mit einem Innendurchmesser von 18 mm als Abflußleitung empfohlen. Der Wasserabfluß erfolgt durch Schwerkraft. Um einen ausgeglichenen Abfluß zu garantieren, ist es notwendig, daß die Abflußleitung in einen offenen Siphon abgeht.

Der Abfluß des Kondensators ist bei den wassergekühlten Versionen im Innern am Abfluß des Gerätes angeschlossen.

Beachten Sie, daß der Abfluß des Gerätes korrekt am offenen Siphon angeschlossen wird, da das vom Kondensator abgeleitete Wasser, wenn der Abfluß nicht korrekt angeschlossen ist (ungeeigneter Abflußwinkel, usw.), wieder in den Wasserbehälter für die Eisbereitung oder für die Pumpe fließen könnte.

ANMERKUNG. Alle hydraulischen Anschlüsse müssen nach alle Regeln der Kunst und in Übereinstimmung mit den örtlichen Gesetzen und Bestimmungen ausgeführt werden. In einigen Fällen ist der Eingriff eines Installateurs erforderlich.

F. ENDKONTROLLE

- 1. Wurde das Gerät in einem Raum aufgestellt, in dem die Mindesttemperatur von 10°C auch in den Wintermonaten nicht unterschritten wird?
- 2. Befinden sich mindestens 15 cm Freiraum hinter dem Gerät und an den Seiten, damit eine gute Ventilation des Kondensators gewährleistet ist?
- 3. Ist das Gerät gut ausgeglichen? (SEHR WICHTIG)
- 4. Wurde das Gerät an das Stromnetz angeschlossen? Wurde der Anschluß an die Wasserleitungen und die Abflußleitungen ausgeführt? Wurde das Ventil auf der Wasserversorgungsleitung geöffnet?
- 5. Wurden die Spannungswerte der Stromversorgung geprüft? Entspricht die Spannung den Angaben auf dem Schild des Gerätes?
- 6. Wurde der Wasserdruck kontrolliert, damit dem Gerät ein Eingangsdruck von mindestens 1 bar zur Verfügung steht? Den Wasserhahn öffnen und auf Wasserverlust an den Verbindungsstellen prüfen.
- 7. Alle Leitungen des Kühlkreislaufes und des Wasserkreislaufes müssen auf Vibrationen oder Reibung kontrolliert werden. Ebenfalls muß kontrolliert werden, daß die Schlauchschellen gut angezogen und die elektrischen Kabel fest angeschlossen sind.

- 8. Wurden die Muttern, die den Kompressor verankern, kontrolliert? Erlauben diese eine Schwingung auf den eigenen Halterungen?
- 9. Wurden die Innenwände des Eisbehälters und die Außenwände des Gerätes gesäubert?
- 10. Wurde das Handbuch mit den Anweisungen abgeliefert und wurden dem Besitzer die notwendigen Instruktionen für die Funktion und
- die periodische Wartung des Gerätes gegeben?
- 11. Wurde die Garantiekarte ausgefüllt? Seriennummer und das Modell auf dem Schild des Gerätes kontrollieren und dann an den Hersteller senden.
- 12. Wurden dem Besitzer der Name und die Telefonnummer des Kundendienstes seines Bereiches übergeben?

G. INSTALLATIONSSCHEMA

ACHTUNG. Dieser Eisbereiter wurde nicht für die Installation im Freien oder für den Betrieb bei Raumtemperaturen unter 10° C oder über 40° C entwickelt. Dasselbe gilt für die Wassertemperatur, die nicht unter 5° C oder über 40° C liegen darf.

BEDIENUNGSANLEITUNG

INBETRIEBNAHME

Wenn das Gerät richtig installiert und an das Strom- und Wassernetz angeschlossen ist, folgendermaßen vorgehen:

A. Das Gerät durch den Hauptschalter an der Vorderseite in Betrieb setzen.

Anmerkung. Das Gerät wird werkseitig mit dem Microschalter des Timers, am Anfang der Unterseite der Nocken eingestellt; Diese Position entspricht der Wasserzuleitungsphase

Das Gerät beginnt mit der Abtauphase, wobei folgende Komponenten in Funktion sind:

EINGANGS-SOLENOIDVENTIL WASSER WARMGAS-SOLENOIDVENTIL

SPULE DES SCHALTSCHÜTZ (SD80-125-210) KOMPRESSOR

TIMER MOTOR

VENTILATOR MOTOR (nur SDN 25 ÷ 45A)

B. Während der Phase der Wasserzuleitung/ Abtauens kontrollieren, daß das Wasser aus den Öffnungen des Verdampfers in das darunterliegende Becken fließt.

Ebenfalls muß kontrolliert werden, daß der Wasserüberstand durch den senkrechten Überlaufschlauch in den Abflusskanal des Gerätes fließt.

ANMERKUNG. Wenn nach der Füll-/ Abtauphase der Wasserbehälter nicht bis zum Überlauf gefüllt ist, dreht man, nachdem die Frontwand abgenommen wurde, den Timerschaft, bis der Microschalterkopf wieder in die Nockenvertiefung tritt. Danach kontrolliert man folgendes:

- 1. Der Wasserdruck muß mindestens 1 bar betragen (Maximal 5 bar)
- 2. Eventuelle montierte Filtervorrichtungen reduzieren den Wasserdruck nicht unter den oben genannten Wert
- 3. Die Leitungen des Wasserkreislaufes dürfen nicht verstopft sein (Netzfilter im Innern des Wasserzuführungsventils. Flußkontrolle usw.)

Das Gerät ist jetzt für den normalen automatischen Betrieb bereit

PRÜFUNGEN WÄHREND DES BETRIEBES

C. Nach der Abtauphase beginnt das Gerät automatisch den ersten Gefrierzyklus, wobei folgende Komponenten in Funktion sind (Fig. 1):

KOMPRESSOR

SPULE DES SCHALTSCHÜTZ (SD80-125-210) PUMPENMOTOR

VENTILATORMOTOR wenn das Gerät Luftgekühlt wird

D. Durch die Öffnung der Würfelabgabe kontrollieren, daß der Spritzbalken richtig positioniert ist und daß das Wasser gleichmäßig auf die umgedrehten Formen des Verdampfers gespritzt wird.

gespritzt wird. Kontrollieren, daß der kleine Plastikvorhang korrekt positioniert wurde und den Wasserauslauf durch seine Lamellen verhindert

- E. Der Prozeß der Eisproduktion beginnt mit dem Wasser, das ständig auf die umgedrehten Formen gespritzt wird und mit der ständig abnehmenden Temperatur des Verdampfers. Während der ersten Phase des Gefrierzyklus bleibt der Timer mit seinem Mikroschalter in seiner Position am Anfang des oberen Teiles der Nocken (Ende des Gefrierzyklus)
- **F.** Wenn die Temperatur des Verdampfers einen zuvor eingestellten Wert erreicht, wird der Motor des Timers aktiviert, der dann wieder zu drehen beginnt und den Gefrierzyklus (zweite Phase) bis zu seiner Beendung fortführt. Während dieser zweiten Phase des Gefrierzyklus sind folgende Komponenten in Funktion (Fig. 2)

KOMPRESSOR

SPULE DES SCHALTSCHÜTZ (SD80-125-210) **PUMPENMOTOR**

VENTILATORMOTOR wenn das Gerät Luftgekühlt wird

TIMERMOTOR

G. Nach etwa 18/20 Minuten ab Beginn des Gefrierzyklus, bei einer Raumtemperatur von etwa 21°C, beginnt der Abtauzyklus.

Folgende Komponenten sind während dieser neuen Phase in Funktion (Fig. 3):

KOMPRESSOR

SPULE DES SCHALTSCHÜTZ (SD80-125-210) SOLENOIDVENTIL FÜR WASSERZUFUHR SOLENOIDVENTIL FÜ HEISSGAS VENTILATORMOTOR (nur SDN 25 ÷45A) TIMERMOTOR

- H. Kontrollieren, daß während der Abtauphase das Versorgungswasser, das vorher für die Herstellung benutzt wurde, aufgefüllt wird und daß der Überschuß in den Überschußschlauch und dann in den Abfluß des Gerätes geleitet wird.
- **I.** Die produzierten Eiswürfel kontrollieren. Diese müssen die richtige Abmessung mit einer Dicke von etwa 7/8mm besitzen.

Ist dies nicht der Fall, nach dem zweiten Gefrierzyklus der Eisproduktion, ändert man die Einstellung des Thermostats des Verdampfers, indem man seine Einstellungsschraube verdreht. Diese muß im Uhrzeigersinn für dickere und im Gegenuhrzeigersinn für dünnere Eiswürfel gedreht werden.

Das Aussehen der produzierten Eiswürfel prüfen: Würfel, die die richtige Abmessung haben, aber besonders matt erscheinen, weisen auf Wassermangel während der Endphase des Gefrierzyklus hin, oder darauf, daß das Wasser, das für die Produktion benutzt wurde, von schlechter Qualität ist und angemessene Filter zur Reinigung oder ein Wasserkonditionierer einzusetzen sind.

J. Während des Abtauzyklus bedeckt man die empfindliche Thermostatkugel mit einigen Eiswürfeln und kontrolliert die korrekte Arbeitsweise des Speicherthermostats (Fig. 4) Nach etwa 30 Sekunden, maximal 1 Minute, wenn die Thermostatkugel die eingestellte Temperatur erreicht hat (+1°C), öffnet diese die Kontakte und löst so das Abschalten des Gerätes aus.

ANMERKUNG. Wenn dies Kontrolle während des Gefrierzyklus ausgeführt wird, arbeitet das Gerät bis zum Ende des Zyklus weiter, bis der Mikroschalter des Timers in den unteren Teil der Nocken ein tritt (Beginn Abtauzyklus) (Fig. 5)

Abtauzyklus) (Fig. 5)
Wenn der Fühler vom Eis freigelegt wird,
beginnt die Maschine wieder mit ihren
normalen Funktionen, wenn die Temperatur
des Thermostats wieder +4°C erreicht hat.
Der Eiswürfelbereiter beginnt mit dem
Abtauzyklus.

K. Den Besitzer über die Funktion des Eisbereiters und die Art der Säuberung und Sterilisierung des Geräts informieren.

FUNKTIONSPRINZIP

In den Eiswürfelbereitern SIMAG wird das zur Produktion benutzte Wasser ständig von einer elektrischen Pumpe in Bewegung gehalten, die durch ein Spritzsystem das Wasser bei niedrigem Druck zu den Formen des Verdampfers bringt. In den Formen gefriert ein Teil des Wassers sofort; das restliche Wasser fällt in die darunter angebrachte Rückgewinnungswanne und kann wieder in den Kreislauf eintreten.

GEFRIERZYKLUS

Das gasförmige Kühlmittel wird vom Kompressor bei hoher Temperatur gepumpt und durch den Kondensator in flüssiges Kühlmittel verwandelt. Die Leitung der Flüssigkeit erlaubt dem Kühlmittel, vom Kondensator zum Kapillarrohr durch den Entfeuchterfilter zu fließen. Während des Durchflusses durch das Kapillarrohr verliert das flüssige Kühlmittel teilweise seinen Druck und dadurch auch teilweise seine Temperatur. Danach erreicht es die Serpentinen des Verdampfers.

Das auf die Formen des Verdampfers gespritzte Wasser gibt Wärme an das zirkulierende Kühlmittel im Innern der Serpentinen ab, verursacht somit die Verdampfung und den Übergang vom flüssigen in den gasförmigen Zustand. Das Kühlmittel im Dampfzustand wird wieder vom Kompressor durch die Ansaugleitung angesaugt.

Der Gefrierzyklus wird von einer Temperaturkontrolle (Thermostat Verdampfer) reguliert, die die Dauer des ersten Zyklus bestimmt. Diese Dauer variiert in Bezug auf die Raum- und Wassertemperatur. Wenn die Temperatur des Sensors auf einen Bestimmten Wert absinkt, stellt dieser die Kontakte um (von 3-4 auf 3-2) und schließt den elektrischen Anschluß zum Timer: dieser kontrolliert die zweite Phase des Gefrierzyklus.

Die Dauer dieser zweiten Phase des Gefrierzyklus ist festgelegt und hängt von der Länge (einstellbar) des oberen Teils der Timernocken ab.

Die Komponenten, die während des Gefrierzyklus funktionieren, sind:

KOMPRESSOR

SPULE DES SCHALTSCHÜTZ (SD80-125-210) **VENTILATORMOTOR** (bei Luftventilierten Versionen)

PUMPENMOTOR

denen in der zweiten Gefrierphase der

TIMER zukommt

Bei den Ausführungen SDN 65, SD80, SD125 und SD 210, die mit Luft gekühlt werden, wird der Druck durch einen Druckwächter für Hochdruck mit automatischer Kontrolle zwischen vorgegebenen Werten gehalten (8÷10 bar SDN 65, 8÷9,5 bar SD80, 15,5÷20 bar SD 125-210) Wenn der Druck des Kühlmittels einen gewissen Wert überschreitet, schließt der Druckwächter seine Kontakte und versorgt den Motor des Ventilators mit Elektrizität.

Fällt der Druck im Kondensator ab, öffnet der Druckwächter seine elektrischen Kontakte und hält dadurch den Ventilator an. Bei Versionen, die mit Luft gekühlt werden (SDN 25 \div 45), funktioniert der Ventilator ständig und hält den Druck zwischen $8\div$ 10 bar.

Bei den Versionen von SDN 25 bis SDN 65, die mit Wasser gekühlt werden, ist der Druckwächter eingesetzt, um ein Solenoidventil an der Wasserleitung für die Versorgung des Verdampfers mit Elektrizität zu versorgen.

Bei den anderen Versionen, die mit Wasser gekühlt werden (SD 80 – 125 – 210), ist der Versorgungsdruck durch ein Druckventil, das den Fluß des Wassers zum Kondensator kontrolliert, konstant gehalten

ANMERKUNG. Sollte Kühlwasser fehlen, oder nicht genügend vorhanden sein, oder wenn der Kondensator nicht sauber gehalten ist (bei Versionen, die Luftgekühlt werden), stellt eine Sicherheitsvorrichtung für hohe Temperatur oder Druck, die manuell aktiviert wird, die ganze Funktion des Eisbereiters ab, sobald 70/75° C (oder entsprechender Druck) überschritten werden.

Bei Beginn des Gefrierzyklus sinkt der Ansaugdruck, oder niedrige Druck schnell auf 0,8 bar für SDN 25 ÷ SD 80, und auf 3,6 bar für SD 125 und 2,4 bar für SD 210, d.h., wenn sich der Eiswürfel bildet, fällt der Druck auf etwa 1 bar für SDN 25 ÷ SD 80, 1,5 bar für SD 125 und 1,3 bar für SD 210, bis der Eiswürfel voll ausgebildet ist; diese Phase dauert etwa 18 ÷ 20 Minuten.

ABTAUZYKLUS ODER ABTAUUNG

Sobald der Timer den zweiten Gefrierzyklus abschaltet, beginnt das Gerät mit dem Abtauzyklus.

ANMERKUNG. Die Dauer des Abtauzyklus ist von der einstellbaren Länge des unteren Teils der Timernocken abhängig.

Sollte es notwendig sein, ist es möglich, die Dauer des Abtauzyklus zu verändern, indem man auf die Regulierungsschraube der Nocken einwirkt, um den Schlitz zu vergrößern, oder zu vermindern.

ACHTUNG. Die Abtauphase ist am kritischsten, was die Funktion der elektrischen Bauteile der Kühlanlage und speziell den Kompressor betrifft.

Um diese Art von Problemen auf ein Minimum einzuschränken, darf der Abtauzyklus 4 Minuten nicht überschreiten.

Folgende elektrische Bauteile sind während dieses Zyklus in Funktion:

KOMPRESSOR

VENTILATOR MOTOR (nur SDN 25 ÷ 45 A) SPULE DES SCHALTSCHÜTZ (SD80-125-210) WASSEREINGANGSVENTIL

HEISSGASVENTIL TIMERMOTOR

Das Wasser am Eintritt geht durch das Solenoid-Eingangsventil und die Flußkontrolle, die sich im Innern desselben befindet, erreicht den oberen Teil des Verdampfers, wo es durch die Ablaufschlitze in die darunter liegende Sammelwanne der Pumpe fließt.

Der Maximalstand des Wassers im Tank wird von einem Überstandsschlauch begrenzt, welcher die Aufgabe hat, das überflüssige Wasser in den Abfluß zu leiten.

Das Kühlmittel in Gaszustand, das vom Kompressorgepumptwird, wird nun vom offenen Warmgasventil direkt zur Serpentine des Verdampfers geleitet und nicht durch den Kondensator.

Das warme Gas, das im Innern der Serpentine des Verdampfers zirkuliert, erhöht nun die Temperatur der Formen, wodurch sich die Eiswürfel ablösen.

Die gelösten Eiswürfel fallen auf ein schräges Gitter, rutschen von dort durch eine Öffnung mit einem Lamellenvorhang und fallen in den Eisbehälter.

Am Ende des Abtauzyklus werden das Warmgasventil und das Wassereingangsventil deaktiviert und das Gerät beginnt automatisch den neuen Gefrierzyklus

SEQUENZ DER VERSCHIEDENEN BEFEHLE

Bei Beginn des Gefrierzyklus reguliert das Verdampferthermostat die Dauer der ersten Phase des Zyklus. Sobald dieses die eingestellte Temperatur erreicht hat, schließt es seine elektrischen Kontakte und aktiviert den Timer, der die Überwachung des Zyklus übernimmt, bis dieser beendet ist (zweite Phase).

Die Dauer dieser zweiten Phase wird von der Einstellung der Nocken bestimmt (hohes Profil)

ANMERKUNG. Das Verdampferthermostat wird in der Fabrik auf die n° 4 seiner Tabelle eingestellt.

Sollte es notwendig sein, kann die Temperatur des Thermostats verändert werden, indem man auf die Regulierungsschraube auf seiner Vorderseite einwirkt. Im Uhrzeigersinn wird die Temperatur reduziert (Gefrierzyklus länger – Eiswürfel dicker), während im Gegenuhrzeigersinn die Temperatur erhöht wird (Gefrierzyklus kürzer – Eiswürfel dünner)

Wenn die zweite Gefrierphase, mit eingestellter Dauer, beendet ist, geht das Gerät direkt in die Abtauphase über. Nachdem die Abtauphase beendet ist, beginnt die Maschine automatisch mit einem neuen kompletten Zyklus.

SEQUENZ DER ELEKTRISCHEN BAUTEILE

Die nachstehende Tabelle zeigt, welche Kontakte und welche Bauteile während der verschiedenen Phasen des Eiswürfel-Herstellungszyklus versorgt werden oder nicht. Für jede nützlichen Bezug bitte das elektrische Schaltschema einsehen.

ANMERKUNG. Das elektrische Schaltbild zeigt das Gerät bei Gefrierzyklus mit Kontrolle durch das Verdampferthermostat.

1° PHASE GEFRIERZYKLUS

Versorgte elektrische Bauteile Kompressor	ON	OFF
Ventilatormotor	•	
Heissgasventil		•
Wassereingangsventil		•
Pumpe	•	
Spule Schaltschütz	•	
Timermotor		•
Elektrische Kontrollen	ON	OFF
Elektrische Kontrollen Kontakte 3-4 Verdampfertherm	ON •	OFF
	ON •	OFF
Kontakte 3-4 Verdampfertherm	ON •	OFF •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm	ON .	OFF •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm Thermostat Behälter Kontakte COM-NO Mikrotimer Kontakte COM-NC Mikrotimer	ON .	• •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm Thermostat Behälter Kontakte COM-NO Mikrotimer	ON	OFF •

2° PHASE GEFRIERZYKLUS (Zeitbeschränkt)

Versorgte elektrische Bauteile Kompressor Ventilatormotor Heissgasventil Wassereingangsventil Pumpe Spule Schaltschütz Timermotor	ON :	off
Elektrische Kontrollen	ON	OFF •

I° PHASE ABTAUZYKLUS

Versorgte elektrische Bauteile	ON	OFF
Kompressor	•	
Ventilatormotor (SDN25÷65 ON)		•
Heissgasventil	•	
Wassereingangsventil	•	
Pumpe		•
Spule Schaltschütz	•	
Timermotor		•
1111011110101		
Elektrische Kontrollen	ON	OFF
	ON	OFF •
Kontakte 3-4 Verdampfertherm	ON •	OFF •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm	ON	OFF •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm Thermostat Behälter	ON	OFF •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm Thermostat Behälter Kontakte COM-NO Mikrotimer	ON :	OFF •
Kontakte 3-4 Verdampfertherm Kontakte 3-2 Verdampfertherm Thermostat Behälter	ON	OFF •

II° PHASE ABTAUZYLUS (Zeitbeschränkt)

Versorgte elektrische Bauteile	ON	OFF
Kompressor Ventilatormotor (SDN 25÷45 ON) .	•	•
Heissgasventil	•	
Wassereingangsventil	•	
Pumpe		•
Spule Schaltschütz	•	
Timermotor	•	
Elektrische Kontrollen	ON	OFF
Kontakte 3-4 Verdampfertherm	•	
Kontakte 3-2 Verdampfertherm		•
Thermostat Behälter	•	
Kontakte COM-NO Mikrotimer		•
Kontakte COM-NC Mikrotimer	•	
Druckwächter (SDN25÷65W) (SDN65÷SD210A)		•

FUNKTIONSEIGENSCHAFTEN

Bei Luft- und bei Wassergekühlten Versionen wird der Druck zwischen zwei eingestellten Werten gehalten (8 ÷ 10 bar für SDN 25 ÷ SD 80 und 15,5 ÷ 20 bar für SD 125 ÷ 210). Sobald sich das Eis in den Formen des Verdampfers bildet, vermindert sich der Ansaugdruck bis er seinen niedrigsten Wert, genau vor Beginn des Abtauzyklus, erreicht. Auch die elektrische Aufnahme des Kompressors hat eine ähnliche Sequenz.

BESCHREIBUNG DER BAUTEILE

A. HAUPTSCHALTER

Dieser befindet sich auf der Vorderseite des Gerätes und schaltet den Eisbereiter aus und ein; wenn der Eisbereiter angeschaltet ist erleuchtet das grüne LED.

B. VERDAMPFERTHERMOSTAT

Das Verdampferthermostat, dessen Sensor sich in der Ausgangsleitung des Kühlmittels des Verdampfers befindet, mißt die Temperatur im Innern der Serpentine des Verdampfers (veränderbar während des Gefrierzyklus) und schaltet seine elektrischen Kontakte von 3-4 auf 3-2, sobald diese Temperatur unter den eingestellten Wert sinkt (kann mit der Schraube auf seiner Vorderseite verändert werden).

Beim Schließen des Kontaktes 3-2 wird der Timer für die Beendigung des zweiten Gefrierzyklus aktiviert (Zeitbeschränkt), dessen Dauer in Bezug auf die Länge der Timernocken festliegt und nicht verändert werden kann.

C. THERMOSTAT BEHÄLTER

Das Thermostat Behälter, dessen Sensor sich im Innern des Behälters für die Eissammlung befindet, stellt die Funktion des Gerätes ab, wenn ihn die Eiswürfel erreichen.

Da dieses Thermostat mit dem Timerschalter in Serie geschaltet ist, wird das Gerät erst abgeschaltet, wenn das Ende des Gefrierzyklus erreicht ist. Auf diese Weise wird sicher gestellt, daß in der Zelle voll geformte Eiswürfel vorhanden sind und daß bei Wiedereinschalten des Gerätes Wasser zugeführt wird.

D. TIMER

Der Timer kontrolliert die Dauer der zweiten Phase des Gefrierzyklus (obere Teil der Nocken) und die Dauer des Abtauzyklus (unterer Teil der Nocken) und besitzt zwei Mikroschalter, die von einer Nocke aktiviert werden und die sich im Innern der elektrischen Schalttafel befinden. Die Dauer des Abtauzyklus kann verändert werden, indem man auf die Verankerungsschraube der beiden Nocken einwirkt und so die Nocken verlängert oder verkürzt, so wie man es benötigt.

ACTUNG. Um Schäden am Kompressor zu vermeiden, darf der Abtauzyklus auf keinen Fall eine Maximaldauer von 4 Minuten überschreiten.

Natürlich entspricht die Einstellung der Nocke des Timers, die eine Verlängerung oder Verkürzung des Abtauzyklus hervorruft, einer Verlängerung oder Verkürzung des zeitgebundenen Gefrierzyklus und kann unvollständige oder zu große Eiswürfel zur Folge haben.

Um dies zu vermeiden ist es notwendig, die Regulierunsschraube des Verdampferthermostats im Uhrzeigersinn zu drehen, um "vollere Eiswürfel" und im Gegenuhrzeigersinn, um "leerere Eiswürfel" zu erhalten.

E. KOMPRESSOR SCHALTER

Dieser Schalter befindet sich auf der elektrischen Schalttafel und besitzt zwei Positionen:

Funktion. Bei den Versionen SD80, SD125 und SD 210 versorgt er direkt den Kompressor und die Spule des Schaltschütz.

Reinigung. Erlaubt, die Funktion des Kompressors einzustellen und nur die Wasserpumpe und das Wassereingangsventil arbeiten zu lassen.

Wenn sich dieser Schalter auf der Position "0 - OFF" befindet, erlaubt er der Pumpe, das Enthärtungsmittel oder das Bakterienmittel in den Wasserkreislauf einzugeben und so die Enthärtung oder Bakterienentfernung vorzunehmen.

ANMERKUNG. Niemals nach der Bakterienentfernung vom Wasserkreislauf Nachspülen, da man sonst die Chlorrückstände entfernen könnte, die die schnelle Neuformung von Bakterien vermeidet (Gelatine)

F. HOCHDRUCKWÄCHTER

Dieser wird sowohl für die Luftgekühlten (SDN65 ÷210A), als auch für die Wassergekühlten

(SDN 25÷65W) Versionen benutzt und hält den Eingangsdruck des Kühlkreislaufes zwischen den beiden eingestellten Werten (8 ÷10 Bar für SDN 25 ÷ SD 80 und 15,5 bar für SD125 ÷ 210); Der Druckwächter versorgt den Ventilatormotor (Luftgekühlte Versionen) oder die Spule des Solenoidventils für den Wassereingang zum Kondensator (SDN 25 - 30 - 35 - 45 - 65W)

G. SICHERHEITSTHERMOSTAT / DRUCKWÄCHTER (Manuelle Aktivierung)

Dieser ist direkt mit der Leitung des Kühlmittels verbunden/verankert, das aus dem Kondensator herauskommt und elektrisch mit allen anderen Kontrollen verbunden ist. Dieses Thermostat/Druckwächter schaltet das Gerät ab, wenn die Temperatur des Kühlmittels 75°C oder den entsprechenden Druck erreicht hat.

H. SPRÜHBALKEN

Der Sprühbalken wird benutzt, um das Wasser, das von der Pumpe zu den Formen gefördert wird, auf die Formen des Verdampfers zu leiten.

I. PUMPE

Die Pumpe funktioniert ständig während des Gefrierzyklus und führt das Wasser zum Sprühbalken. Durch die Düsen des Sprühbalkens wird das Wasser auf die Formen gespritzt und erfährt während dieses Vorganges eine bestimmte Belüftung, die so die Herstellung von kristallklaren und festen Eiswürfeln erlaubt. Es wird geraten, den Zustand der Lager der Rotorwelle der Pumpe alle 6 Monate zu kontrollieren.

J. WASSEREINGANGS-SOLENOIDVENTIL

Das Solenoidventil am Wassereingang wird nur während des Abtauzyklus versorgt. Wenn das Ventil versorgt wird, erlaubt es einer bestimmten Wassermenge in den Tank zu fließen, wo das Wasser dann von der Pumpe angesaugt und direkt zum Sprühbalken geleitet wird.

K. HEISSGAS-SOLENOIDVENTIL

Das Solenoidventil für Heißgas besteht grundsätzlich aus zwei Teilen; Der Körper und die Spule. Es befindet sich an der Eingangsleitung des Kompressors und wird durch die Kontakte COM-NC des Timers während des Abtauzyklus (und Ladezyklus) aktiviert. Das Ventil öffnet dem

Heißgas, das vom Kompressor direkt durch die Serpentine des Verdampfers fließt, um die Eiswürfel von den Formen zu lösen, den Weg.

L. VENTILATORMOTOR (Luftgekühlte Versionen)

Der Ventilatormotor, der bei den Versionen SDN 25 ÷ 45 A und den Versionen SDN 65 ÷ SD 210A) ständig funktioniert, ist elektrisch mit dem Hochdruckwächter verbunden und arbeitet während des Gefrierzyklus. Der Ventilatormotor läßt die Luft durch den Kondensator kreisen und garantiert so die Einhaltung des Kondensierungsdruckes innerhalb der eingestellten Werte (8÷10 bar und 15,5 ÷20 bar SD 125÷210).

M. WASSEREINGANGS-SOLENOIDVENTIL (SDN 25 ÷ 65W Wasserkühlung)

Bei den mit Wasser gekühlten Versionen ist ein zweites Solenoidventil für den Wassereingang des Kondensators vorgesehen, das von einem automatischen Hochdruckwächter überwacht wird. Wenn diese versorgt wird, erlaubt sie einem ausgeglichenen Wasserfluß in die Kühlserpentine des Kondensators zu gelangen, damit die Temperatur und der Druck des, sich im Kreislauf befindlichen, Kühlmittels erniedrigt wird.

N. DRUCKWÄCHTERVENTIL (Wassergekühlte Versionen SD 80÷210W)

Das Druckwächterventil hält den Hochdruck des Kühlkreislaufes konstant, indem es den Kühlwasserfluß des Kondensators anpaßt. Wenn der Druck ansteigt öffnet sich das Ventil weiter, um des Kühlwasserfluß zum Kondensator zu erhöhen.

O. KOMPRESSOR

Der hermetische Kompressor ist das Herz des Systems und erhält den Kreislauf des Kühlmittels aufrecht. Er saugt das gasförmige Kühlmittel bei niedrigem Druck und Temperatur an drückt es zusammen und erhöht so Druck und Temperatur, und verändert es so in Dampf mit Hochdruck und Temperatur. Danach wird das Heißgas durch das Ablaßventil in den Kreislauf eingegeben.

P. SCHALTSCHÜTZ (nur SD 80-125-210)

Das Schaltschütz befindet sich auf der elektrischen Schalttafel und schließt und öffnet den elektrischen Kreislauf zum Kompressor je nach der Position des Hauptschalters.

FEHLERSUCHE

Problem	Möglicher Fehler	Lösung
Das Gerät funktioniert nicht	Hauptschalter aus	Hauptschalter anschalten
	Sicherheitsvorrichtung aktiviert	Grund suchen und eliminieren oder ersetzen
	Elektrische Leitungen nicht angeschlossen	Leitungen kontrollieren
	Kontakte Thermostat Behälter offen	Thermostat ersetzen
Der Kompressor führt die Zyklen intermittierend aus	Niedrige Spannung	Stromkreis auf Überlastung kontrollieren Versorgungsspannung kontrollieren Wenn diese zu niedrig ist, muß man das Elektrizitätswerk informieren
	Das Gas kann im System nicht kondensiert werden	System entleeren und neu füllen.
	Die Kabel des Kompressors sind zum Teil nicht angeschlossen	Die verschiedenen Endanschlüsse kontrollieren
	Zu hohe Raumtemperatur	Standort wechseln
Zu kleine Eiswürfel	Zu kurzer Gefrierzyklus	Verdampferthermostat im Uhrzeigersinn drehen
	Kapillarrohr teilweise verstopft	Entleeren und Feuchtigkeitsfilter erneuern und wieder auffüllen.
	Feuchtigkeit im System	Wie oben
	Wassermangel	Siehe Wassermangel
	Zu wenig Kühlmittel	Undichte Stellen suchen und nachfüllen.
	Verdampferthermostat funktioniert nicht	Thermostat ersetzen
Matte Eiswürfel	Wassermangel	Siehe Wassermangel
	Unsauberes Wasser	Wasserfilter oder -enthärter benutzen
	Gesammelte Ablagerungen	Enthärter wie nach Anleitung einsetzen
	Pumpe mit geringer Leistung	Lager kontrollieren und eventuell ersetzen
Wassermangel	Das Wasser spritzt durch den Vorhang	Vorhang kontrollieren und ersetzen
	Wassereingangsventil öffnet nicht	Ventil ersetzen
	Filter des Wassereingangsventils verstopft	Filter herausnehmen und säubern
	Durchflußkontrolle verstopft	Herausnehmen und säubern

FEHLERSUCHE

Problem	Möglicher Fehler	Lösung
Unregelmäßige und matte Eiswürfel	Spritzdüsen zum Teil verstopft	Die Deckel abnehmen und säubern
	Wassermangel	Siehe Wassermangel
	Maschine nicht gut ausgeglichen	Maschine gut ausgleichen
Zu große Eiswürfel	Gefrierzyklus zu lang	Das Thermostat des Verdampfers im Gegenuhrzeigersinn drehen
	Das Thermostat des Verdampfers funktioniert nicht	Thermostat ersetzen
Verminderung der Produktion	Kompressor nicht ausreichend	Ersetzen
	Undichtigkeit des Wassereingangs-ventils	In Stand setzen oder ersetzen
	Gas kann vom System nicht kondensiert werden	Leeren, und neu füllen
	Zu wenig Luftzirkulation oder Raumtemperatur zu hoch	Aufstellungsort wechseln
	Zu viel Kühlmittel	Durch langsames Ablassen berichtigen
	Kapillarrohr teilweise verstopft	Entleeren, Feuchtigkeitsfilter ersetzen und füllen
	Undichtigkeit des Heißgasventils	Ersetzen
	Zu wenig Kühlmittel	Wie nach dem Schild nachfüllen
	Zulaufdruck zu hoch	Kondensator schmutzig, Säubern. Ventilatormotor verbrannt. Ersetzen
Ungenügender Abtauzyklus	Wassereingangsleitung verstopft	Filter und Fluß kontrollieren.
	Wassereingangsventil öffnet nicht	Ersetzen
	Heißgasventil öffnet nicht	Ersetzen
	Zuleitungsdruck zu niedrig	Zuleitungsdruck kontrollieren

ANWEISUNGEN FÜR DIE WARTUNG UND REINIGUNG

A. VORAUSSETZUNG

Die Zeiten und Vorgänge für die Wartung und Reinigung sind als Indikativ zu betrachten und müssen nicht als unveränderlich betrachtet werden. Speziell die Reinigung ist eng mit den Raumbedingungen, der Wasserqualität und der Menge der produzierten Eiswürfel verbunden. Jedes Gerät muß in Bezug auf seinen Standort und die Benutzungsart gewartet werden.

B. REINIGUNG DES EISWÜRFELBEREITERS

Die folgenden Wartungsarbeiten müssen mindestens zwei Mal im Jahr von einer lokalen SIMAG-Niederlassung ausgeführt werden:

- 1. Das Filternetz im Innern des Wassereingangsventils kontrollieren und säubern.
- 2. Kontrollieren, daß das Gerät in beide Richtungen gut ausgerichtet ist. Im gegensätzlichen Fall mit den regulierbaren Füßen ausgleichen.
- 3. Die Wasserleitungen, den Verdampfer, den Eisbehälter und die Spritzbalken mit einem dazu vorgesehenen Enthärter säubern.

Halten Sie sich an die Anweisungen in Punkt C für die Reinigung der Wasserleitungen; nach Beendigung der Reinigung kann man die Frequenz für die zukünftigen Reinigungen je nach Standort des Gerätes bestimmen.

ANMERKUNG. Die Reinigung der Wasserleitungen hängt von der Wasserqualität und von jedem einzelnen Gerät ab. Nachdem man die Reinheit der Eiswürfel und die Wasserspritzer kontrolliert, und nachdem man die Reinigung durchgeführt hat, kann man eine Idee über die Notwendigkeit der folgenden Reinigung je nach Standort abschätzen.

- 4. Bei ausgeschaltetem Eisbereiter, bei den Luftgekühlten Geräten, reinigt man den Kondensator mit Hilfe eines Staubsaugers oder einer Bürste (nicht Metall)
- 5. Die Wasserleitungen auf Undichtigkeiten kontrollieren. Wasser in den Eisbehälter füllen, um zu kontrollieren, daß der Abfluß frei ist.
- 6. Die Masse und den Aspekt der Eiswürfel kontrollieren. Wenn notwendig, dreht man die Regulierungsschraube des Thermostats im Uhrzeigersinn, um die Masse zu vergrößern und im Gegenuhrzeigersinn im gegensätzlichen Fall.
- 7. Die Funktion des Thermostats des Behälters kontrollieren, indem man den Sensor mit einer Hand Eiswürfel bedeckt.

Das Gerät muß sich nach etwa 20÷30" nach Beendigung des Gefrierzyklus abschalten.

ANMERKUNG. Die oben beschriebene Kontrolle nur ausführen, wenn der Gefrierzyklus beendet ist, da während dieses Zyklus dieses Thermostat von den Kontakten des Timerschalters überbrückt sind.

Nach einigen Augenblicken, nachdem das Eis vom Sensor genommen wurde, beginnt das Gerät mit dem Abtauzyklus und füllt wieder Wasser in den Tank.

ANMERKUNG. Das Thermostat des Behälters kann durch seine Regulierschraube eingestellt werden. Im Uhrzeigersinn erhöht man das Niveau des Wassers und im Gegenuhrzeigersinn vermindert man es.

8. Kontrollieren, daß nirgends Kühlmittelverlust vorliegt

C. REINIGUNG - AUSTAUSCH DES LUFTKONDENSATORFILTERS

1. Den Luftfilter vorne aus der Öffnung der Frontplatte herausziehen.

- 2. Druckluft in der umgekehrten Richtung des Luftstroms des Kondensators durchblasen, um den entstandenen Staub zu entfernen.
- 3.Falls keine Druckluft zur Verfügung steht, benutzen Sie Leitungswasser, immer gegen die Richtung des Luftstroms. Nach erfolgter Reinigung schütteln Sie Filter, um angesammeltes Wasser zu entfernen und trocknen Sie ihn mit einem Haartrockner.
- 4. SetzenSie ihn wieder in die Öffnung der Frontplatte ein.

D. ANWEISUNGEN FÜR DIE REINIGUNG DES WASSERKREISLAUFES

- 1. Die vordere und obere Wandtafel abnehmen, um Zugriff zum Schaltkasten und zum Verdampfer zu haben.
- 2. Das Ende des Abtauzyklus abwarten und das Gerät dann durch den Hauptschalter abschalten.
- 3. Das ganze Eis aus dem Behälter nehmen, damit es nicht mit der Entkalkungslösung in Kontakt kommt. Das Wasser aus Wassertank des Gerätes ablassen, indem man den Überlaufschlauch wegnimmt. Den Schlauch danach wieder anbringen.
- 4. Entfernen Sie den am Boden des Sumpfs / der Gefrierkammer befindlichen Kunststoffbecher, um alles Wasser und Ablagerungen ablaufen zu lassen.

5. In einem sauberen Eimer die Lösung für die Entkalkung vorbereiten, indem man 2 - 3 Liter warmes Wasser (45-50°C) mit 0,2 – 0,3 Liter Entkalkungsmittel vermischt PIN 00 1009 01.

ACHTUNG. Entkalkungsmittel für Eisbereiter enthalten eine Lösung aus Phosphorsäure und essigsaurem Hydroxid. Diese Lösung ist ätzend und kann, wenn eingenommen, Magenbeschwerden hervorrufen. In diesem Fall muß eine große Menge Wasser oder Milch getrunken und sofort ein Arzt gerufen werden. Bei Hautkontakt ist es ausreichend, mit viel Wasser zu spülen. VOR KINDERN FERN HALTEN.

- 6. Den Deckel des Verdampfers abnehmen und langsam die Entkalkungslösung zwischen die Kupferformen laufen lassen. Einen Pinsel benutzen, um die Verkalkung in den unzugänglicheren Ecken zu entfernen.
- 7. Den Kompressor schalter auf **"0 OFF"** stellen, das Gerät mit dem Hauptschalter anstellen.

ANMERKUNG. Während des Reinigungsvorganges, arbeitet nur die Pumpe, damit das Enthärtungsmittel in die Wasserleitungen gepumpt werden kann

- 8. Das Gerät etwa 20 Minuten laufen lassen und dann durch den Hauptschalter abschalten
- 9. Das Gerät abschalten, die Entkalkungslösung ablassen und in den oberen Teil des Verdampfers 2 oder 3 Liter Trinkwasser, das mit einem Bakterienmittel (cod. 26400002) gemischt wurde, schütten, um sowohl die Formen, als auch die Plastikplatte zu spülen. Wenn notwendig, baut man den Sprühbalken aus und reinigt jede Düse einzeln. Danach wieder montieren.
- 10. Das Gerät anschalten. Die Pumpe beginnt zu arbeiten, um das Wasser neu zirkulieren zu lassen und das Innere der hydraulischen Anlage zu spülen. Das Gerät nach etwa 10 Minuten abstellen und das Wasser im Tank leeren.
- 11. Das gerät einschalten.

Die Zeituhr (timer) drehen damit die Mikroschalter den Beginn der Abtauphase erreichen (untere Seite des nocken).

Auf diese Weise fließt das Wasser durch das Wassereingangsventil zur Pumpe bis der richtige Wasserstand im Tank erreicht wurde.

- 12. Wenn der richtige Wasserstand erreicht wurde (das Wasser fließt durch den Abfluß ab) stellt man den Schalter auf FUNKTION "I ON", damit das Gerät wieder automatisch arbeiten kann.
- 13. Den Deckel des Verdampfers und die Wandtafeln montieren.
- 14. Kontrollieren, daß die Eiswürfel nach dem ersten Gefrierzyklus durchsichtig sind und keinen Säuregeschmack haben.

ACHTUNG. Keine matten – weißen Würfel mit Säuregeschmack benutzen, die nach der Desinfektion und Entkalkung des hydraulischen Systems produziert werden könnten.

Auf jeden Fall ist es am besten, wenn man lauwarmes Wasser in den Behälter schüttet, um die ersten produzierten Eiswürfel aufzulösen.

15. Die Innenwände des Eisbehälters abspülen

ANMERKUNG. Es wird daran erinnert, daß die Innenwände des Behälters zur Vermeidung von Bakterienbildungen jede Woche mit einer Mischung aus Wasser und Desinfektionsmittel desinfiziert werden sollten.

www.simag.it

SIMAG

via Risorgimento, 4

20017 Mazzo di Rho (MI) - Italy

Tel. +39 02 93900215 (Commerciale - Sales Dept.) Tel. +39 02 93960357 (Assistenza - Service Dept.) Fax +39 02 93900226 (Commerciale - Sales Dept.) Fax +39 02 93960366 (Assistenza - Service Dept.)

e-mail: sales@simag.it e-mail: service@simag.it Singapore Office SIMAG FAR EAST 627A Aljunied Road 04-04 Biztech Centre Singapore 389842 Tel. ++65 6738 5393 Fax ++65 6738 1959

e-mail: scotsice@singnet.com.sg

SD SERIES AUTOMATIC CUBERS

CLEANING AND SANITIZING PROCEDURES

TOOLS REQUIRED

- 1 Medium Phillips Screwdriver
- 1 Medium Flat Screwdriver
- 1 Pair of Protective Gloves
- 1 Bucket/Container
- 1 Different types of brush
- 1 Clean Cloth
- 1 Ice Machine Cleaner
- Antialgae Cleaner

WARNING. When using any chemical, protection of hands and eyes should be worn.

FREQUENCE

Cleaning: Every six monthsSanitizing: Every month

NOTE. THE FOLLOWING PROCEDURE CAN BE USED FOR EITHER SANITIZING OR DE-SCALING THE ICE MACHINE.

NEVER MIX THE SANITIZING SOLUTION WITH THE DE -SCALING SOLUTION.

IN CASE THE MACHINE NEEDS TO BE SANITISED AND DE-SCALED, CLEAN THE MACHINE THOROUGHLY, THEN FIRST DE-SCALE, AND AFTER PROPER WASHING AND RINSING, DO THE SANITATION.

NOTE. De-scaling is recommended every 6 months in average water hardness conditions, while sanitizing should take place once a month. Under extreme water hardness conditions we recommend to de-scale every two – three months, and to sanitize every two weeks Sanitizing regularly will reduce bacteria growth, which is natural in all water circulation systems as ice machines.

NOTE. Always follow approved Sanitizer / De-scaler manufacturers instructions when preparing the Sanitizer /De Scaler solutions.

PROCEDURE

1. Remove the Front Panel and....

2.Top Panel to again access either to the control box and the evaporator.

3. Remove also the Bin Door.

4. Wait until the end of defrost cycle then Switch OFF the machine at unit master switch.

5. Scoop out all the ice cubes stored into the bin in order to prevent them from being contaminated with the cleaning solution.

6. Flush out the water from the sump reservoir by removing the over flow stand pipe.

7. Preparing the cleaning solution by diluting in a plastic container 2 or 3 liters of warm water (45°-60° C) with a 0,2-0,3 liters of Ice Machine Cleaner Part Number 00100901.

WARNING. The Ice Machine Cleaner contains Phosphoric and Hydroxyacetic acids. These compounds are corrosive and may cause burns if swallowed, DO NOT induce vomiting. Give large amounts of water or milk. Call Physician immediately. In case of external contact flush with water. KEEP OUT OF THE REACH OF CHILDREN.

8. Remove the evaporator cover and....

9.slowly pour onto the evaporator platen the cleaning solution.

10. With help of a brush dissolve the most resistant and remote scale deposits in the platen.

11. Set the compressor switch on "O - OFF" position and

12.give power to the unit by master switch.(item 4)

NOTA - With the system in CLEANING MODE the water pump is the only component in operation to circulate the cleaning solution in the entire water system

13. Let the unit to remain in the CLEANING MODE for about 20 minutes and switch OFF the machine.

14. Flush out the cleaning solution from the sump reservoir then....

15.pour onto the evaporator cavity one or two liters of clean potable water with **cc 2 antibacteria solution** (part number 264000 02) to rinse and sanitize the molds and the spray system.

16. If necessary remove the spray bar and nozzles to clean them separately then refit them.

17. Set back the master switch to **ON.** The water pump is again in operation to circulate the water and the antibacterial solution in order to rinse the entire water system .

18. After approx 10 minutes Switch **OFF** the unit and

19.fush out the rising water from the sump reservoir.

20. Rotate the Timer so that the microswitches reach the beginning of the defrost cycle (low part of the cam) then give power to the unit at master switch.

By doing so the water inlet valve is in this way the incaming water fill up the water tank.

21. When the water tank is filled up (water flowing out from the drain) put the compressor switch on I ON position to restart the machine in the automatic mode.

- 22. Re-fit the evaporator cover and the unit service panels.
- 23. At completion of the freezing and harvest cycle make sure of proper texture and clearness of the ice cubes as well as that, they do not have any acid taste.

ATTENTION. In case the ice cubes are cloudy, white and have acid taste, melt them immediately by pouring on them some warm water.

This to prevent somebody from using them

24. Wipe clean and rinse the inner surfaces of the storage bin.

REMEMBER. To prevent the accumulation of undesirable bacteria it is necessary to SANITIZE THE INTERIOR OF THE STORAGE BIN with an antialgae disinfectant solution EVERY WEEK