Part III Algebraic Topology - Michelmas 2014

Based on lectures by Dr. Jacob Rasmussen Notes by Alex J. Best

October 30, 2014

Contents

1	Introduction	1
2	Homotopy	2

1 Introduction

These are lecture notes for the 2014 Part III Algebraic Topology course taught by Dr. Jacob Rasmussen.

The recommended books are:

- Algebraic Topology Allen Hatcher,
- Homology Theory James W. Vick,
- Differential Forms in Algebraic Topology Raoul Bott and Loring W. Tu.

2 Homotopy

Lecture 1

Definition. Maps $f_0, f_1: X \to Y$ are said to be *homotopic* if there is a continuous map $F: X \times I \to Y$ such that

$$F(x,0) = f_0(x) \text{ and } F(x,1) = f_1(x) \ \forall x \in X.$$

We let $\operatorname{Map}(X,Y) = \{f : X \to Y \text{ continuous}\}$. Then letting $f_t(x) = F(x,t)$ in the above definition we see that f_t is a path from f_0 to f_1 in $\operatorname{Map}(X,Y)$.

Examples. 1. $X = Y = \mathbf{R}^n$, $f_0(\overline{x}) = \overline{0}$ and $f_1(\overline{x}) = \overline{x}$ are homotopic via $f_t(\overline{x}) = t\overline{x}$.

2.
$$S^1 = \{z \in \mathbf{C} : |z| = 1\}$$
 then

3.
$$S^n = {\overline{x} \in \mathbf{R}^n : |\overline{x}| = 1}$$

Lemma. Homotopy is an equivalence relation on Map(X, Y).

Definition.

$$[X,Y] = \operatorname{Map}(X,Y)/\sim = \text{set of homotopy classes of maps } X \to Y.$$

Lemma. If $f_0 \sim f_1 \colon X \to Y$ and $g_0 \sim g_1 \colon Y \to Z$ then $g_0 \circ f_0 \sim g_1 \circ f_1$.

Corollary. For any space X the set $[X, \mathbf{R}^n]$ has one element.

Proof. Def
$$\Box$$

Definition. X is contractible if 1_X is homotopic to a constant map.

Proposition. Y is contractible \iff [X,Y] has one element for any space X.

Proof. Define
$$0_X: X \to \mathbf{R}^n$$
 by $0_X(x) = 0 \in \mathbf{R}^n$ for any $x \in X$.