When Do We Need Emergency Services?

Analysing Vic Roads crash data

August 2023

Andre Medina

Why?

How many emergency services do we need?

Should we reallocate the current distribution?

Where should we send Ambulances & Police in the moment?

How?

The crash data!

- Find key metrics
- Group the crashes
- Number of times 000 arrived
- Create a statical model

Major steps

Investigating data structure

General data wrangling

Viewing initial trends

Further data cleaning

Final statistical model

Initial Data Structure

Pre-Crash data

- ► Time of accident
- Atmospheric condition
- Road condition
- ► Local Government Area (LGA)
- ► Light Condition

Post-Crash data

- Severity
- Number of people involved
- Accident Type
- Police Needed
- Ambulance Needed

Simplifying Data

Pre-Crash data

- Day of the week
- Part of the day
- Atmospheric condition
- Road condition
- ► LGA / Region

Post-Crash data

- Police Needed
- Ambulance Needed

Ambulance Needed

- Only one ambulance per crash
- Each person of a crash had their injury severity recorded
- If someone was taken to the hospital, it was recorded

Emergency Callouts Over Time (Fortnightly)

Crashes by Road and Sky Conditions

Correlation of Conditions

Emergency Callouts by Sky Conditions

Emergency Callouts by Part of Day

Emergency Callouts Over Time

Crashes by Day

Target Format

- ► For each combination of
 - Sky condition
 - Region
 - Day of the week
 - Part of the day
- ► Calculate average number of emergency services

Potential Issues

- Regional areas have smaller number of samples
- Data is already split up into rainy days and clear days
 - ► Infrequent rainy days will skew data
 - ▶ Use probability of a rainy day to compensate
- Data is both summated and averaged over time

Cleaned Data Averaged Over Days

Part of Day

Distribution of Features

Interaction of Features

Model of choice: Gamma General Linear Model (GLM)

- Statistical model allows for prediction and understanding inner workings
- Good for continuous data
- Good for data between 0 and infinity

Oh oh! outliers!

Model Formula

Gamma GLM

- Region
- Day of the Week
- Part of Day
- Sky condition
- ▶ 2-way interaction between
 - ▶ Day of the Week
 - Part of Day
 - ► Sky condition

Model Diagnostic Plots

Predicting Police Demand

Predicting Ambulance Demand

Statistical results

- Metropolitan areas greatly increase the chance of need an ambulance
- Evenings and nights decreases risk
 - Except Saturday and Sunday night
- Mornings increased risk
- Weather being not clear in the evening increased risk quite a bit
 - ▶ Whereas raining in the morning decreased risk
- Raining itself wasn't significant

