```
In []:
        import pandas
        import seaborn
        import matplotlib.pyplot as plt
        import numpy
        from scipy import stats
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.feature_selection import RFE
        from sklearn.linear_model import LinearRegression
        import statsmodels.api as sm
        from statsmodels.stats.outliers_influence import variance_inflation_factor
        from sklearn.metrics import r2_score,mean_squared_error
        from decimal import *
        import warnings
        warnings.filterwarnings('ignore')
```

Data Read

Reading the Dataset

```
In [ ]: bike_raw_dataframe=pandas.read_csv("/Users/karanprinja/Downloads/day.csv")
   bike_raw_dataframe.shape
Out[ ]: (730, 16)
```

Printing the Columns

Printing the dataframe to get overview

```
In [ ]: bike_raw_dataframe.head().append(bike_raw_dataframe.tail())
```

Out[

[]:		instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	ter
	0	1	01-01- 2018	1	0	1	0	6	0	2	14.1108
	1	2	02-01- 2018	1	0	1	0	0	0	2	14.9025
	2	3	03-01- 2018	1	0	1	0	1	1	1	8.0509
	3	4	04-01- 2018	1	0	1	0	2	1	1	8.2000
	4	5	05-01- 2018	1	0	1	0	3	1	1	9.3052
	725	726	27-12- 2019	1	1	12	0	4	1	2	10.4208
	726	727	28-12- 2019	1	1	12	0	5	1	2	10.3866
	727	728	29-12- 2019	1	1	12	0	6	0	2	10.3866
	728	729	30-12- 2019	1	1	12	0	0	0	1	10.4891
	729	730	31-12- 2019	1	1	12	0	1	1	2	8.8491

Data Cleaning

Checking for columnwise Null Values

```
bike_raw_dataframe.isnull().sum()
        instant
Out[]:
        dteday
                       0
                       0
        season
        yr
                       0
        mnth
        holiday
                       0
        weekday
        workingday
                       0
        weathersit
        temp
        atemp
        hum
        windspeed
        casual
                       0
        registered
        cnt
        dtype: int64
```

Dropping all the rows having all Null Values

```
In [ ]: bike_raw_dataframe.dropna(axis=0,thresh=16,inplace=True)
```

Printing Dataframe shape

```
In [ ]: bike_raw_dataframe.shape
```

```
Out[]: (730, 16)
```

Finding columns having unique values

```
bike_raw_dataframe.nunique()
                       730
        instant
Out[]:
        dteday
                       730
        season
                        4
                         2
        yr
                       12
        mnth
        holiday
                        2
        weekday
                        7
        workingday
                         2
                        3
        weathersit
        temp
                       498
                       689
        atemp
        hum
                       594
                       649
        windspeed
        casual
                       605
        registered
                       678
                       695
        cnt
        dtype: int64
```

Dropping columns 'instant','dteday','casual','registered' as per the information from the above execution as well as the information

shared in data dictionary

```
In [ ]: bike_raw_dataframe.drop(['instant','dteday','casual','registered'],axis=1,in
```

Creating Labels of the columns as per Data Dictionary. We are only applying labels to non-binary columns. Columns such

as WorkingDay,Holiday,Year have been excluded

```
In [ ]:
        season_labels = {
            1 : 'spring',
             2 : 'summer',
             3 : 'fall',
             4 : 'winter'
        mnth_labels = {
            1 : 'january',
             2 : 'february',
             3 : 'march',
             4 : 'april',
             5 : 'may',
             6 : 'june',
             7 : 'july',
             8 : 'august',
             9 : 'september',
             10 : 'october',
             11 : 'november'
             12 : 'december'
         }
        weekday_labels = {
             0 : 'Sunday',
             1 : 'Monday',
```

```
2 : 'Tuesday',
3 : 'Wednesday',
4 : 'Thursday',
5 : 'Friday',
6 : 'Saturday'
}

weathersit_labels = {
1 : 'clear',
2 : 'cloudy',
3 : 'light snow_rain',
4 : 'Heavy snow_rain'
}
```

Applying Labels to the Values present in Categorical Columns

```
In []: bike_raw_dataframe['season']=bike_raw_dataframe['season'].map(season_labels)
    bike_raw_dataframe['mnth']=bike_raw_dataframe['mnth'].map(mnth_labels)
    bike_raw_dataframe['weekday']=bike_raw_dataframe['weekday'].map(weekday_labe
    bike_raw_dataframe['weathersit']=bike_raw_dataframe['weathersit'].map(weathe

In []: cat_vars = ['season','yr','mnth','holiday','weekday', 'workingday','weathers
    numerical_vars=['temp','atemp','hum','windspeed','cnt']
```

Printing Values to confirm if labels have been applied

in []:	bi	.ke_raw_	dat	aframe.	head(5)						
out[]:		season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	
	0	spring	0	january	0	Saturday	0	cloudy	14.110847	18.18125	80
	1	spring	0	january	0	Sunday	0	cloudy	14.902598	17.68695	69
	2	spring	0	january	0	Monday	1	clear	8.050924	9.47025	4
	3	spring	0	january	0	Tuesday	1	clear	8.200000	10.60610	59
	4	spring	0	january	0	Wednesday	1	clear	9.305237	11.46350	4:

Exploratory Data Analysis

Plotting Graph between Season and Count. To observe relation between them

```
In [ ]: seaborn.barplot(x='yr',y='cnt',data=bike_raw_dataframe,hue='yr')
Out[ ]: <Axes: xlabel='yr', ylabel='cnt'>
```


Plotting Graph between Month and Count. To observe relation between them

Plotting Graph between Weekday and Count. To observe relation between them

```
In []: plt.figure(figsize=(20,10))
    seaborn.barplot(x='weekday',y='cnt',data=bike_raw_dataframe,hue='yr')
Out[]: <Axes: xlabel='weekday', ylabel='cnt'>
```


Plotting Graph between Season and Count. To observe relation between them

```
In [ ]: seaborn.barplot(x='season',y='cnt',data=bike_raw_dataframe,hue='yr')
Out[ ]: <Axes: xlabel='season', ylabel='cnt'>
```


Plotting Graph to observe behvior between different weather and demand for bike

```
In [ ]: seaborn.barplot(x='weathersit',y='cnt',data=bike_raw_dataframe,hue='yr')
Out[ ]: <Axes: xlabel='weathersit', ylabel='cnt'>
```


Plotting Graph between Numerical Variables and Count. To observe relation between them

```
In [ ]: seaborn.pairplot(data=bike_raw_dataframe,vars=numerical_vars)
Out[ ]: <seaborn.axisgrid.PairGrid at 0x12c4ba370>
```


Plotting a Graph between Categorical Variables and Count. To remove outliers

```
In [ ]: cat_vars = ['season','yr','mnth','holiday','weekday', 'workingday','weathers
        fig=plt.figure(figsize=(40,30))
        fig.add_subplot(3,3,1)
        seaborn.boxplot(x='season',y='cnt',data=bike_raw_dataframe)
        fig.add_subplot(3,3,2)
        seaborn.boxplot(x='holiday',y='cnt',data=bike_raw_dataframe)
        fig.add_subplot(3,3,3)
        seaborn.boxplot(x='mnth',y='cnt',data=bike_raw_dataframe)
        fig.add subplot(3,3,4)
        seaborn.boxplot(x='weekday',y='cnt',data=bike_raw_dataframe)
        fig.add subplot(3,3,5)
        seaborn.boxplot(x='workingday',y='cnt',data=bike_raw_dataframe)
        fig.add_subplot(3,3,6)
        seaborn.boxplot(x='weathersit',y='cnt',data=bike_raw_dataframe)
        <Axes: xlabel='weathersit', ylabel='cnt'>
Out[]:
```

12/06/2023, 20:45

bike_sharing

Removing the outlier we observed in Graph for Season

```
In [ ]: bike_raw_dataframe.drop(bike_raw_dataframe['season']=='s
```

Skewness Check and Skewness Removal in Numerical Columns

Checking Skewness in the Numerical Columns Temprature

```
In []: numerical_vars=['temp','atemp','hum','windspeed','cnt']
    seaborn.distplot(bike_raw_dataframe['temp'],kde=True)
    bike_raw_dataframe['temp'].skew()
Out[]: -0.055082380076152626
```


Checking Skewness in the Numerical Columns Windspeed

```
In []: seaborn.distplot(bike_raw_dataframe['windspeed'],kde=True)
    bike_raw_dataframe['windspeed'].skew()
```

Out[]: 0.6726952901705223

Checking Skewness in the Numerical Columns ATemp

```
In []:
        seaborn.distplot(bike_raw_dataframe['atemp'],kde=True)
        bike_raw_dataframe['atemp'].skew()
        -0.1310820446584857
```

Out[]:

Checking Skewness in the Numerical Columns Humidity

```
seaborn.distplot(bike_raw_dataframe['hum'],kde=True)
In []:
        bike_raw_dataframe['hum'].skew()
```

-0.06754397155614854Out[]:

Since we observed skewness in the Windspeed Column.We will apply BoxCox Transformation to make it normally distributed

```
In []: bike_raw_dataframe['windspeed']=stats.boxcox(bike_raw_dataframe['windspeed']
bike_raw_dataframe['windspeed'].skew()
seaborn.distplot(bike_raw_dataframe['windspeed'],kde=True)
```

Out[]: <Axes: xlabel='windspeed', ylabel='Density'>

Correlation Graph between Variable

Plotting a heatmap between the variable to observed correlation

Dummy Variable Creation

holiday workingday

Creating Dummy Variables for the Categorical Variables

temp

```
In []: seasons = pandas.get_dummies(bike_raw_dataframe['season'],drop_first=True)
    weather= pandas.get_dummies(bike_raw_dataframe['weathersit'],drop_first=True
    month= pandas.get_dummies(bike_raw_dataframe['mnth'],drop_first=True)
    week day= pandas.get_dummies(bike_raw_dataframe['weekday'],drop_first=True)
```

atemp

hum

windspeed

cnt

yr

```
In [ ]: bike_dataframe=pandas.concat([bike_raw_dataframe,seasons,weather,month,week_
```

We will drop the Categorical Columns since we have the dummy variables present

```
In []: bike_dataframe.drop(['season','weathersit','mnth','weekday','atemp'],axis=1,
In []: bike_dataframe.shape
Out[]: (728, 29)
```

Model Creation and Feature Selection

Parameters and Assumption

Multicollinearity < 5 and P-value <.05

Error values should be normally distributed

Mean of Error should be zero

Getting the Target Column in variable Y

```
In [ ]: Y=bike_dataframe.pop('cnt')
```

Splitting the Data in Test and Train

```
In [ ]: X_train, X_test, Y_train, Y_test=train_test_split(bike_dataframe, Y, test_size=0.
```

Applying Min-Max scaling on the variables

Applying RFE on the Training Dataset

```
In []: lm = LinearRegression()
    rfe = RFE(lm, n_features_to_select=15)
    rfe = rfe.fit(X_train, Y_train)
```

Below are the Columns which RFE support

Columns which RE does not support

Creating Dataset from the RFE selected Columns

Creating a Model from the features that were selected and printing out the summary

```
In [ ]: model_1=get_sm_model(dependent_var=Y_train,independent_var=X_Train_RFE)
    model_1.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.866
Model:	OLS	Adj. R-squared:	0.856
Method:	Least Squares	F-statistic:	87.31
Date:	Mon, 12 Jun 2023	Prob (F-statistic):	1.50e-79
Time:	20:35:35	Log-Likelihood:	-1735.5
No. Observations:	218	AIC:	3503.
Df Residuals:	202	BIC:	3557.
Df Model:	15		
Covariance Type:	nonrobust		

	coef	std err	1	t P> t	[0.025	0.975]
const	4775.6491	512.376	9.32	1 0.000	3765.357	5785.941
yr	2111.5691	101.743	20.754	0.000	1910.954	2312.184
holiday	-728.9450	310.577	-2.347	7 0.020	-1341.334	-116.556
temp	3493.8739	427.231	8.178	3 0.000	2651.470	4336.278
hum	-731.6111	360.423	-2.030	0.044	-1442.285	-20.937
windspeed	-1275.0245	315.248	-4.045	0.000	-1896.624	-653.425
spring	-2910.6179	384.441	-7.57′	1 0.000	-3668.650	-2152.586
summer	-1687.8063	388.908	-4.340	0.000	-2454.646	-920.967
cloudy	-558.9580	132.298	-4.225	0.000	-819.821	-298.095
light snow_rain	-2009.9359	328.895	-6.11	1 0.000	-2658.444	-1361.428
august	-1693.6275	426.828	-3.968	0.000	-2535.238	-852.017
december	-1336.6564	356.820	-3.746	0.000	-2040.226	-633.087
july	-2012.7142	425.978	-4.725	0.000	-2852.648	-1172.780
november	-1399.0601	422.949	-3.308	3 0.001	-2233.021	-565.100
october	-798.1561	414.833	-1.924	0.056	-1616.114	19.802
september	-944.4353	426.524	-2.214	0.028	-1785.446	-103.424
Omnibus:	24.200	Durbin-Wa	itson:	2.224		
Prob(Omnibus):	0.000 Ja	rque-Bera	(JB):	33.229		
Skew:	-0.706	Prob	o(JB):	6.09e-08		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

37.5

Cond. No.

Determining Multicollinerity in the columns

4.290

```
In [ ]: VIF_dataframe=pandas.DataFrame()
    X_VIF=sm.add_constant(X_Train_RFE)
```

Kurtosis:

```
VIF_dataframe['features']=X_VIF.columns
VIF_dataframe['VIF'] = [variance_inflation_factor(X_VIF.values, i) for i in
print(VIF_dataframe)
```

```
features
                           VIF
0
             const 110.181615
1
                yr
                     1.076985
2
           holiday
                     1.083539
3
                     4.063570
              temp
4
               hum
                      2.162444
5
         windspeed
                     1.230500
6
            spring 10.650445
7
            summer 12.662510
8
                     1.774625
            cloudy
9
   light snow_rain
                     1.410956
10
            august
                     6.083185
11
          december
                     3.634025
12
                     7.461142
              july
13
          november
                     5.398066
14
           october
                      6.018103
15
                      5.489726
         september
```

Dropping Summer Column because of High P Value and High Collinearity

```
In []: X_Train_RFE_2=X_Train_RFE.drop(['summer'],axis=1)
    model_2=get_sm_model(dependent_var=Y_train,independent_var=X_Train_RFE_2)
    model_2.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.854
Model:	OLS	Adj. R-squared:	0.844
Method:	Least Squares	F-statistic:	84.75
Date:	Mon, 12 Jun 2023	Prob (F-statistic):	1.18e-76
Time:	20:35:35	Log-Likelihood:	-1745.2
No. Observations:	218	AIC:	3520.
Df Residuals:	203	BIC:	3571.
Df Model:	14		
Covariance Type:	nonrobust		

Covariance Type:	nonrobust
------------------	-----------

	coef	std err	t	P> t	[0.025	0.975]
const	3285.2920	396.613	8.283	0.000	2503.283	4067.301
yr	2117.0803	106.110	19.952	0.000	1907.861	2326.299
holiday	-903.4235	321.207	-2.813	0.005	-1536.754	-270.093
temp	3370.6990	444.618	7.581	0.000	2494.037	4247.361
hum	-817.6447	375.353	-2.178	0.031	-1557.736	-77.554
windspeed	-1229.2596	328.621	-3.741	0.000	-1877.207	-581.312
spring	-1451.6957	194.531	-7.463	0.000	-1835.256	-1068.136
cloudy	-582.9032	137.867	-4.228	0.000	-854.739	-311.067
light snow_rain	-1967.9679	342.890	-5.739	0.000	-2644.051	-1291.885
august	-75.5706	216.723	-0.349	0.728	-502.887	351.746
december	-119.2805	230.016	-0.519	0.605	-572.807	334.246
july	-391.2732	213.417	-1.833	0.068	-812.071	29.525
november	170.8723	228.569	0.748	0.456	-279.801	621.546
october	800.4983	198.974	4.023	0.000	408.177	1192.819
september	678.1486	214.101	3.167	0.002	256.001	1100.296

2.220	Durbin-Watson:	28.045	Omnibus:
38.792	Jarque-Bera (JB):	0.000	Prob(Omnibus):
3.77e-09	Prob(JB):	-0.800	Skew:
18.9	Cond. No.	4.308	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dropping August Column because of High P Value

```
X_Train_RFE_3=X_Train_RFE_2.drop(['august'],axis=1)
model_3=get_sm_model(dependent_var=Y_train,independent_var=X_Train_RFE_3)
model_3.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.854
Model:	OLS	Adj. R-squared:	0.845
Method:	Least Squares	F-statistic:	91.66
Date:	Mon, 12 Jun 2023	Prob (F-statistic):	1.28e-77
Time:	20:35:36	Log-Likelihood:	-1745.3
No. Observations:	218	AIC:	3519.
Df Residuals:	204	BIC:	3566.
Df Model:	13		
Covariance Type:	nonrohust		

Covariance Type:	nonrobust
Covariance Type.	11011100051

	coef	std err	t	P> t	[0.025	0.975]
const	3299.3459	393.709	8.380	0.000	2523.085	4075.607
yr	2120.2891	105.482	20.101	0.000	1912.314	2328.265
holiday	-897.5365	320.072	-2.804	0.006	-1528.610	-266.463
temp	3306.8844	404.334	8.179	0.000	2509.675	4104.094
hum	-803.9438	372.486	-2.158	0.032	-1538.361	-69.527
windspeed	-1224.6518	327.647	-3.738	0.000	-1870.661	-578.643
spring	-1457.4743	193.406	-7.536	0.000	-1838.805	-1076.144
cloudy	-587.3265	136.987	-4.287	0.000	-857.418	-317.235
light snow_rain	-1972.5821	341.896	-5.770	0.000	-2646.686	-1298.479
december	-120.9535	229.470	-0.527	0.599	-573.391	331.484
july	-360.7445	194.213	-1.857	0.065	-743.666	22.177
november	170.8990	228.076	0.749	0.455	-278.790	620.588
october	811.0830	196.221	4.134	0.000	424.202	1197.965
september	699.3206	204.869	3.414	0.001	295.389	1103.252
0	07.404	December 144		0.047	_	

2.216	Durbin-Watson:	27.424	Omnibus:
37.657	Jarque-Bera (JB):	0.000	Prob(Omnibus):
6.65e-09	Prob(JB):	-0.788	Skew:
18.3	Cond. No.	4.289	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dropping November Column because of High P Value

```
X_Train_RFE_4=X_Train_RFE_3.drop(['november'],axis=1)
\verb|model_4=get_sm_model(dependent_var=Y_train, independent_var=X_Train_RFE\_4)|
model_4.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.853
Model:	OLS	Adj. R-squared:	0.845
Method:	Least Squares	F-statistic:	99.46
Date:	Mon, 12 Jun 2023	Prob (F-statistic):	1.66e-78
Time:	20:35:36	Log-Likelihood:	-1745.6
No. Observations:	218	AIC:	3517.
Df Residuals:	205	BIC:	3561.
Df Model:	12		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	3402.0218	368.699	9.227	0.000	2675.093	4128.950
yr	2129.4581	104.658	20.347	0.000	1923.114	2335.802

const	3402.0218	368.699	9.227	0.000	2675.093	4128.950
yr	2129.4581	104.658	20.347	0.000	1923.114	2335.802
holiday	-870.6646	317.716	-2.740	0.007	-1497.075	-244.254
temp	3164.5019	356.520	8.876	0.000	2461.586	3867.418
hum	-767.4999	368.902	-2.080	0.039	-1494.829	-40.171
windspeed	-1236.9938	326.883	-3.784	0.000	-1881.477	-592.511
spring	-1528.0336	168.753	-9.055	0.000	-1860.747	-1195.320
cloudy	-597.7581	136.132	-4.391	0.000	-866.156	-329.360
light snow_rain	-1986.6595	341.014	-5.826	0.000	-2659.005	-1314.314
december	-175.6057	217.337	-0.808	0.420	-604.109	252.897
july	-355.7933	193.892	-1.835	0.068	-738.072	26.486
october	770.4909	188.393	4.090	0.000	399.055	1141.927
september	682.8554	203.469	3.356	0.001	281.695	1084.016

Omnibus: 25.682 **Durbin-Watson:** 2.230 **Prob(Omnibus):** 0.000 Jarque-Bera (JB): 33.708 Skew: **Prob(JB):** 4.79e-08 -0.770 **Kurtosis:** 4.156 Cond. No. 17.1

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dropping December Column because of High P Value

```
In [ ]:
        X_Train_RFE_5=X_Train_RFE_4.drop(['december'],axis=1)
        model_5=get_sm_model(dependent_var=Y_train,independent_var=X_Train_RFE_5)
        model_5.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.853
Model:	OLS	Adj. R-squared:	0.845
Method:	Least Squares	F-statistic:	108.6
Date:	Mon, 12 Jun 2023	Prob (F-statistic):	2.14e-79
Time:	20:35:36	Log-Likelihood:	-1745.9
No. Observations:	218	AIC:	3516.
Df Residuals:	206	BIC:	3556.
Df Model:	11		
–			

Covariance Type: nonrobust

	coef	std err	1	t P> t	[0.025	0.975]
const	3315.9214	352.667	9.402	0.000	2620.623	4011.220
yr	2126.2619	104.495	20.348	0.000	1920.245	2332.279
holiday	-888.5086	316.681	-2.806	0.006	-1512.859	-264.158
temp	3264.9023	333.883	9.779	0.000	2606.637	3923.168
hum	-808.7193	365.050	-2.215	0.028	-1528.432	-89.007
windspeed	-1187.3129	320.777	-3.701	0.000	-1819.740	-554.886
spring	-1494.9144	163.561	-9.140	0.000	-1817.382	-1172.446
cloudy	-592.1041	135.837	-4.359	0.000	-859.913	-324.295
light snow_rain	-1979.5740	340.614	-5.812	0.000	-2651.111	-1308.037
july	-360.2882	193.649	-1.861	0.064	-742.077	21.500
october	798.8776	184.932	4.320	0.000	434.275	1163.480
september	695.9577	202.651	3.434	0.001	296.422	1095.493
Omnibus:	27.068	Durbin-Wa	atson:	2.232		
Prob(Omnibus):	0.000 J a	arque-Bera	(JB):	35.923		
Skew:	-0.800	Prol	b(JB):	1.58e-08		

Cond. No.

Notes:

Kurtosis:

4.181

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

16.9

Dropping July Column because of High P Value

```
In []: X_Train_RFE_6=X_Train_RFE_5.drop(['july'],axis=1)
    model_6=get_sm_model(dependent_var=Y_train,independent_var=X_Train_RFE_6)
    model_6.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.850
Model:	OLS	Adj. R-squared:	0.843
Method:	Least Squares	F-statistic:	117.7
Date:	Mon, 12 Jun 2023	Prob (F-statistic):	1.06e-79
Time:	20:35:36	Log-Likelihood:	-1747.8
No. Observations:	218	AIC:	3518.
Df Residuals:	207	BIC:	3555.
Df Model:	10		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	3381.3714	352.988	9.579	0.000	2685.459	4077.284
yr	2125.3490	105.113	20.220	0.000	1918.119	2332.579
holiday	-856.1107	318.076	-2.692	0.008	-1483.194	-229.027
temp	2974.8916	297.013	10.016	0.000	2389.332	3560.451
hum	-773.5959	366.723	-2.109	0.036	-1496.586	-50.606
windspeed	-1129.1992	321.145	-3.516	0.001	-1762.334	-496.064
spring	-1533.7395	163.186	-9.399	0.000	-1855.459	-1212.020
cloudy	-589.1455	136.633	-4.312	0.000	-858.516	-319.775
light snow_rain	-2025.8591	341.718	-5.928	0.000	-2699.553	-1352.165
october	844.0274	184.420	4.577	0.000	480.445	1207.609
september	782.4000	198.422	3.943	0.000	391.213	1173.587

2.194	Durbin-Watson:	27.484	Omnibus:
36.450	Jarque-Bera (JB):	0.000	Prob(Omnibus):
1.22e-08	Prob(JB):	-0.812	Skew:
16.8	Cond. No.	4.173	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Checking Collinearity among remaining Columns

```
In []: VIF_dataframe=pandas.DataFrame()
    X_VIF=sm.add_constant(X_Train_RFE_6)
    VIF_dataframe['features']=X_VIF.columns
    VIF_dataframe['VIF'] = [variance_inflation_factor(X_VIF.values, i) for i in print(VIF_dataframe)
```

```
features
                            VIF
0
              const 47.894160
1
                      1.052807
                 yr
2
            holiday
                       1.040876
3
                       1.798736
                temp
4
                       2.050344
5
          windspeed
                       1.169530
6
             spring
                       1.757541
7
             cloudy
                       1.733568
8
    light snow_rain
                       1.394977
9
            october
                       1.089332
10
          september
                       1.088116
```

Getting the predicted Values for the Training Dataset and performing Residual Analysis

```
In [ ]: X_Train_RFE_const=sm.add_constant(X_Train_RFE_6)
```

Plotting Graph between Errors and we observe that they are normally distributed along 0

```
In []: Y_train_predict=model_6.predict(X_Train_RFE_const)
    seaborn.distplot(Y_train_Y_train_predict,kde=True,bins=10)
```

Out[]: <Axes: ylabel='Density'>

Mean of the error is also zero

```
In []: int((Y_train-Y_train_predict).mean())
Out[]: 0
```

Applying Model on Test Dataset

Scaling the Test Data based on min-max scaling

```
In []: X_test['temp']=minmaxscaler.fit_transform(X_test['temp'].values.reshape(-1,1
X_test['hum']=minmaxscaler.fit_transform(X_test['hum'].values.reshape(-1,1))
X_test['windspeed']=minmaxscaler.fit_transform(X_test['windspeed'].values.re
```

Predicting values for the test dataset

```
In [ ]: X_test_RFE=X_test[X_Train_RFE_6.columns]
    X_test_const=sm.add_constant(X_test_RFE)
    Y_predict=model_6.predict(X_test_const)
```

Performing Residual Analysis on the Test values

```
In [ ]: seaborn.distplot(Y_test-Y_predict,kde=True,bins=10)
Out[ ]: <Axes: ylabel='Density'>
```



```
In []:
In []: plt.scatter(Y_test,Y_predict)
Out[]: <matplotlib.collections.PathCollection at 0x12d55b190>
```


In []: plt.figure(figsize=(15,8))
 seaborn.regplot(x=Y_test, y=Y_predict, ci=68, fit_reg=True,scatter_kws={"col"}

Out[]: <Axes: xlabel='cnt'>

Feature Coffecients

In []: model_1.params

```
const
                          4775.649051
Out[]:
                          2111.569089
        yr
        holiday
                          -728.945049
        temp
                         3493.873913
        hum
                          -731.611131
        windspeed
                         -1275.024515
                         -2910.617891
        spring
        summer
                        -1687.806323
        cloudy
                         -558.958026
        light snow_rain -2009.935903
        august
                         -1693.627482
        december
                         -1336.656385
        july
                         -2012.714243
                         -1399.060094
        november
        october
                         -798.156137
        september
                          -944.435306
        dtype: float64
```

Model Evaluation Parameters

```
In []: r2_score(Y_test,Y_predict)
    mean_squared_error(Y_test,Y_predict)
    rmse=numpy.sqrt(mean_squared_error(Y_test,Y_predict))
    print("R2 Score of the model on the Train Dataset {}".format(r2_score(Y_train print("R2 Score of the model on the Test Dataset {}".format(r2_score(Y_test, R2 Score of the model on the Train Dataset 0.8504799608453713)
    R2 Score of the model on the Test Dataset 0.819033897236972
```