### Curso Inteligência Artificial: do Zero ao Infinito

Modelo MobileNet

Universidade Federal de Mato Grosso

### Agenda

Introdução

2 Spatial Separable Convolution

Introdução

- **R-CNN**: Selective Search + AlexNet + SVM.
- Fast R-CNN: Selective Search + VGG16 + FC.
- Faster R-CNN: RPN + VGG16 + FC

Introdução

|                                    | RCNN          | Fast RCNN | Faster RCNN |
|------------------------------------|---------------|-----------|-------------|
| Test time per image with Proposals | 50<br>seconds | 2 seconds | 0.2 seconds |
| (Speedup)                          | 1x            | 25x       | 250x        |
| mAP (PASCAL VOC 07)                | 66.0          | 66.9      | 66.9        |

Fonte: Understanding Fast R-CNN and Faster R-CNN for Object Detection

### Detecção de Objetos MobileNet

- MobileNet é um modelo desenvolvido para ser usado em aplicações mobile.
- A convoluções foram substituídas por Depthwise Separable Convolutions.
- Reduziu o número de parâmetros em comparação com as convoluções regulares, pois requer um número menor de mútiplicações e adições.

Fonte: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications



Fonte: Image Classification With MobileNet

#### MobileNet



MACs (Multiply-Accumulates) é o número de operações de Multiplicação e Adição fundidas.

Fonte: Image Classification With MobileNet

### Agenda

Introdução

Spatial Separable Convolution

### Spatial Separable Convolution

- A spatial separable convolution é assim chamada porque manipula as dimensões espaciais de uma imagem e do kernel: a largura e a altura.
- Divide um kernel em dois kernels menores.
- Como exemplo, considere o filtro de Sobel:

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times [-1 & 0 & 1]$$

### Spatial Separable Convolution

#### Simple Convolution



#### Spatial Separable Convolution



Fonte: A Basic Introduction to Separable Convolutions

#### Spatial Separable Convolution

- Ao invés de fazer 1 convolução com 9 multiplicações, são feitas 2 convoluções com 3 multiplicações (6 no total) cada, que alcançam o mesmo efeito.
- Com menos multiplicações, a complexidade computacional diminui e a rede executa mais rapidamente.
- O principal problema é que com *spatial separable convolutions* nem todos os kernels podem ser "separados" em dois kernels menores.

### Agenda

Introdução

2 Spatial Separable Convolution

- Depthwise separable convolutions funcionam com kernels que n\u00e3o podem ser "fatorados" em dois kernels menores.
- Divide um kernel em 2 kernels separados que executam duas convoluções:
  - ▶ uma depthwise convolution e
  - uma pointwise convolution.

### Depthwise and Pointwise Convolutions



#### MobileNetV1



Fonte: Image Classification With MobileNet

#### Detecção de Objetos MobileNetV1

Table 1. MobileNet Body Architecture

| Type / Stride   | Filter Shape                         | Input Size                 |
|-----------------|--------------------------------------|----------------------------|
| Conv / s2       | $3 \times 3 \times 3 \times 32$      | 224 	imes 224 	imes 3      |
| Conv dw / s1    | $3 \times 3 \times 32 \text{ dw}$    | $112 \times 112 \times 32$ |
| Conv / s1       | $1 \times 1 \times 32 \times 64$     | $112 \times 112 \times 32$ |
| Conv dw / s2    | $3 \times 3 \times 64$ dw            | $112 \times 112 \times 64$ |
| Conv / s1       | $1 \times 1 \times 64 \times 128$    | $56 \times 56 \times 64$   |
| Conv dw / s1    | $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$  |
| Conv / s1       | $1 \times 1 \times 128 \times 128$   | $56 \times 56 \times 128$  |
| Conv dw / s2    | $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$  |
| Conv / s1       | $1 \times 1 \times 128 \times 256$   | $28 \times 28 \times 128$  |
| Conv dw / s1    | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |
| Conv / s1       | $1\times1\times256\times256$         | $28 \times 28 \times 256$  |
| Conv dw / s2    | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |
| Conv / s1       | $1 \times 1 \times 256 \times 512$   | $14 \times 14 \times 256$  |
| 5× Conv dw / s1 | $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$  |
| Conv / s1       | $1 \times 1 \times 512 \times 512$   | $14 \times 14 \times 512$  |
| Conv dw / s2    | $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$  |
| Conv / s1       | $1 \times 1 \times 512 \times 1024$  | $7 \times 7 \times 512$    |
| Conv dw / s2    | $3 \times 3 \times 1024 \text{ dw}$  | $7 \times 7 \times 1024$   |
| Conv / s1       | $1 \times 1 \times 1024 \times 1024$ | $7 \times 7 \times 1024$   |
| Avg Pool / s1   | Pool 7 × 7                           | $7 \times 7 \times 1024$   |
| FC / s1         | $1024 \times 1000$                   | $1 \times 1 \times 1024$   |
| Softmax / s1    | Classifier                           | $1 \times 1 \times 1000$   |

#### **MobileNet**

#### Versões

- MobileNet V2: mudanças significativas foram feitas na arquitetura MobileNetV1 que resultaram em um aumento considerável na precisão do modelo.
- MobileNet V3 Small: é 6,6% mais precisa na classificação do que MobileNetV2 e tem latência semelhante.
- MobileNet V3 Large: é 3,2% mais precisa na classificação e reduz a latência em 20% quando comparado ao MobileNetV2.

Fonte: MobileNet V1 Architecture

#### Referências

- MobileNet Architecture Explained
  - https://prabinnepal.com/mobilenet-architecture-explained/
- Review: MobileNetV1 Depthwise Separable Convolution (Light Weight Model)
  - https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69
- MobileNet V1 Architecture
  - https://iq.opengenus.org/mobilenet-v1-architecture/

### Curso Inteligência Artificial: do Zero ao Infinito

Modelo MobileNet

Universidade Federal de Mato Grosso