It is known that radially sheared zonal flows plays a significant role in nonlinear stabilization in tokamak plasmas. $^{1-3}$. Through advection on the sheared zonal flows the turbulent structure in plasma gets deformed and tilted that causes an $E \times B$ nonlinearty. 2,4,5 Zonal flows mediate spectral energy transfer to larger radial wave vectors. $^{6-8}$ The strength of the shearing process is the $E \times B$ shearing rate $\omega_{E \times B}$ which is the radial derivative of the advecting zonal flow velocity. 4,9 The shearing rate $\omega_{E \times B}$ is defined as

$$\omega_{\rm E\times B} = \frac{1}{2} \frac{\partial^2 \langle \Phi \rangle}{\partial \psi^2} \tag{1}$$

where $\langle \Phi \rangle$ is the zonal electrostatic potential and ψ the radial coordinate that labels the flux surfaces. $^{10-12}$ It was shown that the nonlinear threshold for turbulence is directly related to shear stabilization. Often the shear stabilization is expressed in the empirical Waltz rule $\omega_{\rm E\times B} \sim \gamma$, 9,13 where γ is defined as the maximum linear growth rate in the unstable mode. In the discovered zonal flows, also known as $E\times B$ staircase 14 , exhibit amplitudes in terms of the $E\times B$ shearing rate satisfying the stabilization criteria. 10,15

FIG. 1: Test

FIG. 2: Test

FIG. 4: Test

FIG. 3: Test

FIG. 5: Test

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

	Counter		Words	
	1 Col	2 Col	1 Col	2 Col
Words			269	
Figure	3	4	200	400
Table	0	0	13	26
Table Row	0	0	5	13
Eq Row	0	0	7	13
Pages			3	
Total			2469	
Remain			1031	

¹W. A. Cooper, Plasma Physics and Controlled Fusion **30**, 1805 (1988).

- ⁴T. S. Hahm and K. H. Burrell, "Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma," Phys. Plasmas **2**, 1648–1651 (1995).
- ⁵K. H. Burrell, Phys. Plasmas **4**, 1499–1518 (1997).
- ⁶R. E. Waltz and C. Holland, Phys. Plasmas **15**, 122503 (2008).
- ⁷M. Nakata, T.-H. Watanabe, and H. Sugama, Phys. Plasmas **19**, 022303 (2012)
- ⁸G. G. Whelan, M. J. Pueschel, and P. W. Terry, Phys. Rev. Lett. **120**, 175002 (2018).
- ⁹R. E. Waltz, R. L. Dewar, and X. Garbet, Phys. Plasmas **5**, 1784–1792 (1998).
- ¹⁰F. Rath, A. G. Peeters, R. Buchholz, S. R. Grosshauser, P. Migliano, A. Weikl, and D. Strintzi, "Comparison of gradient and flux driven gyrokinetic turbulent transport," Phys. Plasmas 23, 052309 (2016).
- ¹¹A. Weikl, A. G. Peeters, F. Rath, F. Seiferling, R. Buchholz, S. R. Grosshauser, and D. Strintzi, Phys. of Plasmas 25, 072305 (2018).
- ¹²M. J. Pueschel, M. Kammerer, and F. Jenko, Physics of Plasmas 15, 102310 (2008).
- R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994).
 Olif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, P. Ghendrih, A. Strugarek, S. Ku, and C. S. Chang, Phys. Rev. E 82, 025401 (2010).
- ¹⁵A. G. Peeters, F. Rath, R. Buchholz, Y. Camenen, J. Candy, F. J. Casson, S. R. Grosshauser, W. A. Hornsby, D. Strintzi, and A. Weikl, "Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold," Phys. Plasmas 23, 082517 (2016).

²H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B: Plasma Physics **2**, 1–4 (1990).

³A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J. Weiland, "Comparisons and physics basis of tokamak transport models and turbulence simulations," Phys. of Plasmas 7, 969–983 (2000).