PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-048584

(43)Date of publication of application : 15.02.2002

(51)Int.CI.

G01C 21/00 G08G 1/0969 G09B 29/10 G10L 13/00

(21)Application number: 2000-236941

(71)Applicant: DENSO CORP

(22)Date of filing:

04.08.2000

(72)Inventor: NIIMI ATSUO

(54) CAR NAVIGATION DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To properly set a voice output timing by predicting the deceleration of a vehicle according to road state. SOLUTION: In step S4, a voice output starting distance Dt to a course change part is initially set. In step S5, a course change angle $\boldsymbol{\theta}$ that is the deceleration is calculated according to the road state of the course changing part. In step S6, it is judged whether the course changing angle θ is larger than a regulated value k or not, and when it is larger than the regulated value θk (it is predicted that the deceleration is large), the procedure is transferred to Step S7 to change and set the voice output starting distance Dt so as to be shortened. In step S8, the deceleration according to the road state on this side of the course changing part is predicted. Namely, the course changing angle θ a in the part on this side of the voice output starting distance Dt is calculated. When it is judged that the course change angle θa is larger than a regulated value θka in step S9, the procedure is transferred to step S10 to change and set the voice output starting distance Dt (voice output timing) so as to be further shortened.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

httn://www.idaindlanine

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-48584

(P2002 - 48584A)

(43)公開日 平成14年2月15日(2002.2.15)

4— • • • • • • • • • • • • • • • • • • •			
(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
G01C 2	1/00	G 0 1 C 21/00	
G08G	1 /0060		H 2C032
		G 0 8 G 1/0969	2F029
G09B 2		G 0 9 B 29/10	A 5D045
G10L 13	3/00	G10L 3/00	
		GIVL 3/00	Q 5H180 ·

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号

特願2000-236941(P2000-236941)

(22)出願日

平成12年8月4日(2000.8.4)

(71)出願人 000004260

株式会社デンソー

愛知県刈谷市昭和町1丁目1番地

(72)発明者 新美 淳夫

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内

(74)代理人 100071135

弁理士 佐藤 強

Fターム(参考) 20032 HC08 HC31 HD11

2F029 AA02 AB01 AB07 AB13 AC02

AC04 AC08 AC09 AC14 AC18

5D045 AB23 AB30

5H180 AA01 FF04 FF05 FF25 FF27

FF32

(54)【発明の名称】 カーナビゲーション装置

(57)【要約】

【課題】 道路状況による車両の減速度を予測して音声 出力タイミングを適正に設定できるようにする。

【解決手段】 ステップS4では、進路変更部に対する 音声出力開始距離Dtを初期的に設定する。ステップS 5 では、進路変更部の道路状況に応じて減速度たる進路 変更角度 θ を算出し、ステップ S 6 では、進路変更角度 hetaが規格値 heta k より大きいか否かを判断し、大きいとき には(減速度が大きいと予測されるときには)、ステッ プS7に移行して、音声出力開始距離Dtを短くする方 向に変更設定する。ステップS8では、進路変更部手前 の道路状況に応じた減速度を予測する。すなわち、前記 音声出力開始距離D t の手前部分での進路変更角度 θ a を算出する。ステップS9において進路変更角度θαが 規格値 θ k a より大きいと判断されると、ステップS 1 Oに移行して音声出力開始距離D t (音声出力タイミン グ)を、さらに短くする方向に変更設定する。

【特許請求の範囲】

【請求項1】 地図情報を記憶した地図データ記憶手段 と、

外部入力手段から目的地が入力されると目的地までのル ートを設定するルート設定手段と、

設定されたタイミングで案内音声を出力する音声出力手 段と、

前記設定されたルートにおける進路変更部に対して音声 出力の開始タイミングを設定する音声出力タイミング設 定手段とを備え、

前記音声タイミング設定手段は、前記ルートにおける進 路変更部の道路状況に応じて車両の減速度を予測し、そ の減速度に基づいて音声出力タイミングを設定すること を特徴とするカーナビゲーション装置。

【請求項2】 地図情報を記憶した地図データ記憶手段 と、

外部入力手段から目的地が入力されると目的地までのル ートを設定するルート設定手段と、

設定されたタイミングで案内音声を出力する音声出力手 段と、

前記設定されたルートにおける進路変更部に対して音声 出力の開始タイミングを設定する音声出力タイミング設 定手段とを備え、

前記音声タイミング設定手段は、前記ルートにおける進 路変更部の道路状況に応じて車両の減速度を予測すると 共に、この進路変更部手前の道路状況に応じて車両の減 速度を予測し、これら両予測結果に基づいて音声出力タ イミングを設定するようになっていることを特徴とする カーナビゲーション装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、案内音声の出力タ イミングの適正化を図ったカーナビゲーション装置に関 する。

[0002]

【発明が解決しようとする課題】従来より、カーナビゲ ーション装置においては、使用者が目的地を設定する と、地図情報を記憶した地図データ記憶手段から、現在 位置から目的地までのルートを読み出して設定する。そ のルートにおいて進路変更部(交差点や分岐部)の例え ば700m手前、300m手前、及びほぼ直前になると 音声出力器に走行案内を音声で出力するようにしてい る。例えば300m手前では「この先300m右で す」、またほぼ直前になると「まもなく右です」といっ た案内音声を出力する。

【0003】ところで、進路変更部のほぼ直前位置にお いて案内音声を出力する場合、案内音声終了時に交差点 を通り過ぎない様、進路変更部手前より音声を出力する

レーズの長さに応じた時間的長さとなる。

【0004】しかし、進路変更部の道路状況によって、 車両がその進路変更部に進入する速度が異なることがあ り、音声の出力タイミングが早すぎたり遅すぎたりする ことがある。つまり、進路変更部の道路形状としては、 通常、進路変更角度がほぼ90度(左あるいは右にほぼ 90度に曲がっている)であることが多いが、例えばイ ンターチェンジ入口のように進路変更角度が小さい場合 もある。逆に進路変更角度が90度以上に大きいことも ある。進路変更角度がほぼ90度である場合には、運転 者はある程度車両速度を減速して進路変更部に進入する ものであり、また進路変更角度が小さい場合にはさほど 減速しない。さらに進路変更角度が大きい場合には、車 両速度はかなり減速されるものである。

【0005】特に減速度が低い(あまり減速しない)場 合には、音声出力が開始されてから終了するまでの時間 内に車両が進路変更部に進入することとなって、相対的 に、音声出力タイミングとしては遅いといえる。逆に、 減速度が高い場合には、音声出力の終了地点が進路変更 部よりもかなり手前となってしまう。

【0006】本発明は上述の事情に鑑みてなされたもの であり、その目的は、道路状況による車両の減速度を予 測して音声出力タイミングを適正に設定できるカーナビ ゲーション装置を提供するにある。

[0007]

【課題を解決するための手段】請求項1の発明によれ ば、進路変更部付近の道路状況に応じて車両の減速度を 予測することで、音声出力タイミングを早くしたほうが 良いのか、遅くした方が良いのかを割り出すことが可能 となる。そして、上記減速度に基づいて音声出力タイミ ングが設定されるから、車両が進路変更部に至ったとき に音声出力がほぼ終了するようになる。この結果、音声 出力が音声出力を完了すべき地点を超えることもなけれて ば、かなり手前で終了したりすることもない。

【0008】請求項2の発明は、次の点に着目してい る。使用者が車両を減速させる要因としては進路変更部 そのものの道路状況の他にも、その進路変更部手前が、 クランク型カーブやS字カーブといった道路状況である 場合にも減速要因となる。この点に着目した請求項2の して、車両がそのルートに従って走行していく中で、そ 40 発明によると、進路変更部手前の道路状況にも応じて車 両の減速度を予測するから、さらに適正な音声出力タイ ミングを設定できる。

[0009]

【発明の実施の形態】カーナビゲーション装置1は、図 2に示すように、地図データ記憶手段としての地図デー タ記憶装置2と、現在位置検出手段および進行方向検出 手段としての位置検出装置3と、表示手段としての表示 装置4と、操作手段としてのスイッチ群5と、音声発生 手段としての音声発生器と6と、ルート設定手段および ようにしている。この場合、音声出力の時間的長さはフ 50 音声出力タイミング設定手段たる制御装置7とを備えて

いる。

【0010】位置検出装置3は、GPS受信機8と、ジャイロ9と、車速センサ10などから構成されていて、車両の現在位置、進行方向及び車速を検出できるようになっている。制御装置7は、マイクロコンピュータからなるもので、入出力部(I/O)11、中央演算処理装置(以下、MPU)12、メモリ13から構成されている。そして、I/O11に、前述の地図データ記憶装置2の再生装置、表示装置4、スイッチ群5、音声発生器6、GPS受信機8、ジャイロ9、車速センサ10などが接続されている。

3

【0011】メモリ13は、ROM、RAMからなり、ROMにはナビゲーションのプログラムなどが格納されている。また、RAMは、ワークメモリとして使用されると共に、各種データの一時記憶のために使用される。そして、制御装置7のMPU12は、制御装置7に与えられる各種の入力信号およびプログラムに基づいて各種処理を実行する。

【0012】このMPU12の各種処理のうち、音声出力に関するものを説明する。使用者が操作スイッチ群5により制御装置7に目的地を設定すると、MPU12は地図データ記憶装置2から、現在位置から目的地までのルートを読み出して設定する。そして、実際に車両がそのルートに従って走行していく中で、そのルートにおいて進路を変更すべき交差点や分岐部の例えば700m手前、300m手前、及びほぼ直前になると音声出力器に走行案内を音声で出力するようにしている。例えば300m手前では「この先300m右です」、またほぼ直前になると例えば「まもなく右です」といった案内音声を出力する。

【0013】この進路変更部直前の案内音声出力タイミングの制御を、図1のフローチャートに示している。ステップS1においては、出力すべき案内音声のフレーズ長Tp(時間的長さ [sec])を算出する。ちなみに案内音声にフレーズは、案内内容によって変わるものであり、例えば、上記「まもなく右です」とか「まもなくって変わるもなくとのある交差点を右方向です」とかいうようにフレーズ長が異なる。次に、ステップS2では、地図データ記憶装置2から進路変更部の道路形状を読取り、そしてステップS3では車速を検出する。この後、ステップS4では、音声出力タイミングに相当する音声出力開始距離Dtを設定する。

【0014】すなわち、図3及び図4に示すように、進路変更部の入口Aに対して、規定距離Dk[m]手前の位置を音声出力完了地点Kaとし、この規定距離Dkに、案内音声の出力開始から終了までの案内音声所要距離Dv[m]を加える。この案内音声所要距離Dvは、ステップS1で求めた案内音声フレーズ長Tpに予測される車速S[m/sec]を乗じて求められる(下記式参照)。これによって、進路変更部入口に対する音声出力

開始距離Dtが求められる。

音声出力開始距離D t =規定距離Dk+Dv

 $Dv = Tp \times S$

なお、このステップS4で求めた音声出力開始距離Dtは、後述より明らかとなるが、進路変更部での進路変更角度 θ が規格値 θ k(例えば45度)以下のときに好適するものである。

【0015】次のステップS5では、進路変更部の道路 状況に応じて減速度たる進路変更角度 θ を算出する。な お、この進路変更角度 θ は、地図上の絶対方位の角度 0 度に対しての進入角度と、同じく地図上の絶対方位の角 度 0 度に対しての退出角度との差の絶対値によって求め ると良い。

θ = | 進入角度 - 退出角度 |

【0016】次のステップS6では、進路変更部の道路 状況における減速度を予測する。すなわち、上述の進路 変更角度 θ が規格値 θ kより大きいか否かを判断する。 進路変更角度 θ が規格値 θ kより大きい場合には、車両 の減速度が大きいと見なすことができ、進路変更角度 θ が規格値 θ k以下の場合には、車両の減速度が小さいと 見なすことができる。

【0017】このステップS6において進路変更角度 θ が規格値 θ kより大きいと(減速度が大きいことが予測されると)、ステップS7に示すように、音声出力開始距離Dt(音声出力タイミング)を、下記式に基づいて変更設定する。

音声出力開始距離D t =音声出力開始距離D t - 補正値 ×(車速-想定速度)

【0018】ここで、上記「想定速度」は予め固定的に定められた減速度幅、「車速」は予測される車両速度である。また、「補正値」は、係数であり、これは固定値としても良いし、個人によってカーブを曲がる速度が異なるから、個々によって予め設定していても良く、また学習機能によって順次変更しても良い。また、進路変更角度 θ により変更しても良い。このステップS7によって、音声出力開始距離Dtが短くなる方向に変更設定される。

【0019】次にステップS8に移行し、進路変更部手前の道路状況に応じた減速度を予測する。すなわち、前記音声出力開始距離Dtの部分での進路変更角度 θ aを算出する。案内対象交差点への進入角度(絶対方位の角度)と、上記Dtへの進入角度(絶対方位の角度)との差の絶対値を算出し、これを進路変更角度 θ aとする。 θ a=|進路変更部への進入角度—Dt地点への進入角度|

【0020】次のステップS9では、この進路変更角度 θ a が規格値 θ k a より大きいか否かを判断する。進路 変更角度 θ a が規格値 θ k a より大きい場合には、車両の減速度が大きいと見なすことができ、進路変更角度 θ a が規格値 θ k a 以下の場合には、車両の減速度が小さ

5

いと見なすことができる。

【0021】このステップS9において、進路変更角度 θ aが規格値 θ k より大きいと(減速度が大きいことが 予測されると)、ステップS10に示すように、音声出力開始距離Dt(音声出力タイミング)を、下記式に基づいて短くなる方向に変更設定する。

【OO22】音声出力開始距離Dt=音声出力開始距離 Dt-補正値 \times (車速-想定速度)

ここで、上記「想定速度」、「車速」、「補正値」は、 前述と同様である。このステップS10によって、音声 10 出力開始距離Dtがさらに短くなる方向に変更設定され る。

【0023】なお、前記ステップS6において、進路変更角度 θ が規格値 θ kより小さい(減速度が小さいことが予測されると)、ステップS7での音声出力開始距離Dtの変更設定は行なわずにステップS8に移行する。また、ステップS9においても進路変更角度 θ aが規格値 θ kaより小さい(減速度が小さいことが予測されると)、ステップS10での音声出力開始距離Dtの変更設定は行なわずにこの制御を終了する。

【0024】この音声出力開始距離Dtの設定がなされた後は、位置検出装置3により車両位置が前記音声出力開始距離Dtの地点に到達するまでこの設定を繰り返し、その後の車速の変化に対応する。車両位置が最終の前記音声出力開始距離Dtに到達したところで、音声発生器6に案内音声を出力させる。

【0025】ここで、図3には進路変更部手前に減速要因(クランクやS字カーブ)がない場合の道路状況を示しており、この場合、ステップS6にて「YES」となってステップS9にて「NO」となるから、ステップS7で変更設定された音声出力開始距離Dtにて音声が出

6

力されるようになる。また、図4には進路変更部の手前に減速要因がある場合の道路状況を示しており、この場合、ステップS6及びステップS9のいずれにおいても「YES」となるから、結局、ステップS10で変更設定された音声出力開始距離Dtにて音声が出力されるようになる。また、図5には進路変更部の進路変更角度のが規格値 θ kより小さい場合の道路状況を示しており、この場合には、ステップS6及びステップS9のいずれにおいても「NO」となるから、ステップS4で設定された音声出力開始距離Dtにて音声が出力されるようになる。

【0026】このように本実施例によれば、上記音声出力開始距離Dtが道路状況に応じた減速度を考慮して設定されているから、音声出力が音声出力完了目標地点を超えてしまったりかなり手前で終了したりすることがない。特に、進路変更部そのものの道路状況による減速度の他に、その進路変更部手前の道路状況による減速度も予測して音声出力開始距離Dtを設定するから、さらに適正タイミングで案内音声を出力できる。

マ 【図面の簡単な説明】

【図1】本発明の一実施例を示す案内音声出力タイミング制御のフローチャート

【図2】電気的構成のブロック図

【図3】道路状況の一例を示す図

【図4】異なる道路状況を示す図

【図5】さらに異なる道路状況を示す図

【符号の説明】

2 は地図データ記憶装置(地図データ記憶手段)、6 は 音声発生器(音声発生手段)、7 は制御装置(ルート設 30 定手段、音声出力タイミング設定手段)を示す。

BLANK PAGE