北京邮电大学

本科毕业设计(论文)任务书

学院	人工智能学院		专业	智能科学与技术			
学生姓名	罗彬慈	学号	2020212053	班级 202021910			
指导教师姓名	李佩佩	所在单位	人工智能学院	职称 副教授			
设计(论文)题目	(中文)基于 LLM 的交互式多模态图像编辑系统的设计与搭建						
	(英文) Design and Construction of Interactive Multimodal Image Editing System Based						
	on LLM						
题目类型	工程实践类□ 研究设	公 计类 ✓ ∃	理论分析类□ 文献	忧综述类□ 其他□			
题目来源	题目是否来源于科研项目 是✔ 否□						
	科研项目名称:						
	科研项目负责人:						
主要内容:							
一: 熟悉图像编辑技术和生成模型的相关知识;							
支撑指标点:	$1.6 \Box 2.1 \Box 2.3 \Box$	3.1 □3.2	✓ 4.1 □5.3 □	10.1 🗆 11.2			
二:分析传统图像编辑模型的限制和挑战;							
支撑指标点:□	1.6 2 2.1 2 2.3	3.1 □3.2	□4.1 □5.3 ☑	10.1 🗆 11.2			
三:设计和构建交互式图像编辑系统;							
支撑指标点:□	1.6 □2.1 □2.3 ✓	3.1 3.2	$\square 4.1 \square 5.3 \square$	10. 1 11. 2			
四:评估系统性能并进行质量控制;							
支撑指标点:□	1.6 2.1 2.3	3.1 □3.2	□4.1 ≤ 5.3 □	10. 1 □11. 2			
主要(技术)要求:							
 由家一、勤釆团侮绰想其子和生式措到的相关知识							

内容一:熟悉图像编辑技术和生成模型的相关知识;

- 1.6 掌握图像生成与语言大模型基础知识及原理,能够将其和计算机知识与原理、数学与工程方法以及计算求解能力用于分析和解决复杂工程问题,并能够对解决方案进行比较和综合。
- 4.1 能够采用科学方法,通过文献研究和应用案例分析等方法,调研和分析领域图像生成与语言大模复杂工程问题的解决方案。

内容二:分析传统图像编辑模型的限制和挑战;

- 2.1 针对交互式图像编辑领域的复杂工程问题进行问题识别,分析其功能需求与非功能需求,识别其面临的各种制约条件,对任务目标给出需求描述。
- 2.3 针对已建立的交互式图像编辑领域的复杂工程问题的抽象模型,论证模型的合理性;并通过文献研究,针对改进的可能性进行分析,确定解决方案,获得有效结论。
- 10.1 能够以撰写报告、设计文稿、口头陈述等方式,针对交互式图像编辑领域复杂工程问题,与业界同行及社会公众进行有效的沟通和交流。

内容三:设计和构建交互式图像编辑系统:

- 3.1 了解交互式图像编辑系统开发的一般流程,掌握交互式图像编辑系统开发及工程化的基本方法和技术。
- 3.2 能够针对特定需求,对交互式图像编辑问题进行分解和细化,具有设计/开发功能模块及智能系统的能力。
- 11.2 能够在多学科环境下,在设计开发交互式图像编辑系统解决方案的过程中,运用工程项目管理与经济决策方法。

内容四:评估系统性能并进行质量控制;

5.3 能够针对交互式图像编辑系统中的具体问题,开发满足特定需求的现代工具,进行仿真和测试,并能够分析其局限性。

主要参考文献:

- [1] ACHIAM, Josh, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- [2] FLORIDI, Luciano; CHIRIATTI, Massimo. GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 2020, 30: 681-694.
- [3] ROMBACH, Robin, et al. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 10684-10695.
- [4] HU, Edward J., et al. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
- [5] ZHANG, Lvmin; RAO, Anyi; AGRAWALA, Maneesh. Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. p. 3836-3847.
- [6] VAN HUYNH, Nguyen, et al. DeepFake: Deep dueling-based deception strategy to defeat reactive jammers. IEEE Transactions on Wireless Communications, 2021, 20.10: 6898-6914.

讲度安排:

第1阶段(2023.11.20 - 2024.12.03):

开始调研基于深度神经网络的图像生成模型,包括对抗生成模型(GANs)、扩散模型等,以了解它们的基本原理和应用领域。

准备开题报告,明确研究目标和方法。

第2阶段(2023.12.04 - 2023.12.17):

深入研究复现的图像生成模型,理解其优点和限制,探索其在图像编辑任务中的潜在应用。

第3阶段(2023.12.18 - 2023.12.31):

针对图像编辑任务,提出创新性的问题,明确解决思路。

第4阶段(2024.01.01 - 2024.01.14):

进行图像编辑模型的实验,收集和分析实验结果,识别性能瓶颈和问题。

研究已有文献和代码,选择合适的图像生成模型进行复现,确保对模型的理解和实现代码能力。

根据图像编辑任务的需求,设计和实施性能提升的方案,可能包括模型改进、数据增强等。

同时开始调研语言大模型,了解其发展现状和应用领域,确保掌握如何使用语言大模型。

第5阶段(2024.02.26 - 2024.03.10):

结合语言大模型的研究,探讨如何将语言大模型与图像编辑模型相结合,构建交互式图像编辑系统。

第6阶段(2024.03.11 - 2024.03.24):

进行实验,评估交互式图像编辑系统的性能,进行调整和改进。

第7阶段(2024.03.25 - 2024.04.07):

文献更新和总结,更新文献调研,将最新研究成果与自己的工作相结合,确保研究与学术前沿保持同步,准备中期报告。

第8阶段(2024.04.08 - 2024.04.19):

完善研究和论文撰写,完善能量模块的功能,并开始论文撰写,完成研究项目,准备最终论文 和答辩

指导教师签字	李佩佩	日期	2023年 11月 15日
--------	-----	----	---------------