

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BSCAIDS301/BSCAIML 301/BSCAIML301/BSCICB301 Linear Algebra UPID: 003902

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin Indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

			Group-A (Very Short Answer Type Question)			
1. Ans	swer	any te	en of the following:	[1 x 10 = 10]		
	(1)		mplete inner product space is known asspace.			
			is an orthogonal matrix then the rows of A are linearly			
		If T:V	V→W be a mapping then Nullity T + Rank T will be equal to			
	(IV)	If (a,l	b) and (1/v2, -1/v2) in R ² are orthonormal vectors then the value of a+b is			
	(V) In Schur's decomposition of a matrix A If A=PUP-1 then the matrix U is					
	(VI) If $T:R^2 \rightarrow R^2$ be a mapping defined by $T(x,y)=(x+y,x)$ then the nullity of T is					
	(VII) If T:V→V be a singular linear mapping with eigenvalues 1,2 and 3 and dim(V)=4 then find the trace of matrix of 1					
	Let α , β be two vectors in an inner product space. If $ \alpha+\beta = \alpha-\beta $ then the value of $<\alpha,\beta>$ is					
	(X)		2) and (2,-k) are orthogonal vectors in R ² then what is the value of k?			
	(XI)		$T_2: \mathbb{R}^2 \to \mathbb{R}^2$ be two linear mappings such that $T_1 T_2 + T_1^2 = 1$ then find Rank of T_1 .	,		
	If T be a linear mapping on a finite dimensional vector space V such that $T^2 = I$ then the nullity of T is					
			Group-B (Short Answer Type Question)			
			Answer any three of the following:	$[5 \times 3 = 15]$		
			natrix of T for the mapping T: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x,y,z)=(y+z,x+z,x+y) \ \forall \ (x,y,z) \ \mathbb{R}^3$ with responses $\{(0,1,1),(1,0,1),(1,1,0)\}$ and $\{(1,0,0),(0,1,0),(0,0,1)\}$.	ect [5]		
	[6]					
4.	If S is a subspace of R ⁴ generated by the vectors (1,2,-1,0) and (1,-1,0,1). Determine the orthogonal complement of S.					
5.	If A b	If A be a symmetric matrix of order m and P be an mXn matrix, prove that P ^t AP is a symmetric matrix. [5]				
	$\begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}$	1 3 2 1	$ \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 3 & 1 \\ 2 & 1 \end{pmatrix} $			
			Group-C (Long Answer Type Question)			
			Answer any three of the following:	[15 x 3 = 45]		
			that for all α , β in a Euclidean space $V < \alpha + \beta$, $\alpha - \beta >= 0$ if and only if $ \alpha = \beta $.	[5]		
	(b) Prove that the set of vectors {(1,0,0,1), (-1;0,2,1),(1,3,1,-1), (1,-1,1,-1)} is an orthogonal basis of the Euclidean space R ⁴ with standard inner product.					
			e projections of the vector (1,2,3,1) along the basis vectors given above.	[5]		
	(a) Determine the linear mapping T: $R^3 \rightarrow R^2$ which maps the basis vectors (1,0,0), (0,1,0), (0,0,1) to the vectors (1,1), (2,3), (3,2) respectively. Find T(6,0,-1) and T(1,1,0).					
			er T and Im T.	[5]		
(c) Pi	ove th	that T is not one-one but onto.	[5]		

(a)	(a) Find all possible linearly independent eigenvectors of the given matrix.	[6]			
:	$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$				
(b	(b) Diagonalize the above matrix if possible.	[4]			
(c	(c) Prove that eigenvalues of a symmetric matrix are all real.	[5]			
10. (a	(a) $T:R^3 \rightarrow R^3$ is a linear transformation defined by	[5]			
	T(x,y,z)=(x-y,x+2y,y+3z) \forall x,y,z R Find nullity T and Rank T. Hence check whether T is bijective.				
(b	(b) Find T ⁻¹ if it exists.	[5]			
(c	(c) Find matrix of T ⁻¹ with respect to the standard basis if T ⁻¹ exists.	[5]			
11. (a	•	is the set of all real			
(t	(b) Determine nullity and rank of T.	[5]			
(c	(c) Check whether T is diagonalizable.	[5]			

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेजे और 10 रुपये पायें, Paytm or Google Pay से