Assignment 3

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

1) Given a space X, define a relation

 $a \sim b \Leftrightarrow a$ and b are in the same connected component.

- a) Check that \sim is an equivalence relation.
- b) Prove that the connected components of X are disjoint closed sets, whose union is X.
- c) Given an example where the connected components are not open.
- d) If X only has finitely many components, show that the quotient space $Y=X/_{\sim}$ is a discrete space.

$$3 + 3 + 2 + 2 = 10$$

- Suppose X and Y are homeomorphic. Show that there is an induced bijection between the connected components of X and Y.
 - b) Conclude that none of the following shapes (as subspaces of \mathbb{R}^2) are homeomorphic to each other.

Hint : If $f: X \to Y$ is a homeomorphism, then we have an induced homeomorphism $\tilde{f}: X \setminus \{x\} \to Y \setminus \{f(x)\}$ for any $x \in X$.

- c) Prove that \mathbb{R} is not homeomorphic to \mathbb{R}^n for any $n \geq 2$. Note: similar argument can be used to show that the circle \mathbb{S}^1 is not homeomorphic to the sphere \mathbb{S}^2 (or any other \mathbb{S}^n for $n \geq 2$).
- d) Why does this argument cannot be used to show that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 ? $5+3\times 3+4+2=20$
- 3) Suppose $\{A_{\alpha} \subset X\}_{\alpha \in I}$ is a collection of connected subsets of X. If $\cap A_{\alpha} \neq \emptyset$, then show that $\cup A_{\alpha}$ is a connected set. Given an example when A, B are connected but $A \cup B$ is not connected.

$$8 + 2 = 10$$

- 4) Prove that the following spaces are totally disconnected.
 - a) \mathbb{Q} with the subspace topology from \mathbb{R} .
 - b) $\left\{\frac{1}{n}\right\} \cup \{0\}$ as a subspace of \mathbb{R}
 - c) The Sorgenfrey line \mathbb{R}_l (i.e, \mathbb{R} with the lower limit topology).

$$5 \times 3 = 15$$

5) Recall the K-topology \mathbb{R}_K on \mathbb{R} given by the basis

$$\mathcal{B} := \{(a,b) \mid a,b \in \mathbb{R}\} \cup \{(a,b) \setminus K \mid a,b \in \mathbb{R}\},\$$

where $K = \left\{ \frac{1}{n} \mid n \ge 1 \right\}$.

- a) Show that the inclusions $(0,\infty) \hookrightarrow \mathbb{R}_K$, and $(-\infty,0) \hookrightarrow \mathbb{R}_K$ are homeomorphisms onto the image.
- b) Conclude that \mathbb{R}_K is connected.

$$5 + 5 = 10$$

6) For each $n \geq 1$, consider the line L_n joining (0,0) to $\left(1,\frac{1}{n}\right)$ in \mathbb{R}^2 . Finally, denote L_0 to be the line joining (0,0) to (0,1). The *broom space* is defined to be the union $\bigcup_{n\geq 0} L_n$ as a subspace of \mathbb{R}^2 .

Broom space. Removing $(0,1) \times \{0\}$, we get the deleted broom space.

The *deleted broom space* is defined by removing the open segment $(0,1) \times \{0\}$ from the broom space.

Prove that the deleted broom space is connected, but not path connected.

Hint : Use the gradient function $m(x,y)=\frac{y}{x}$, which is a well-defined continuous function away from the y-axis. Note that after removing the origin, m maps the broom space to the totally disconnected space $\{0\}\cup\left\{\frac{1}{n}\;\middle|\;n\geq1\right\}$.

10

7) Give examples of the following cases, with justification.

- a) \boldsymbol{X} is both connected and locally connected.
- b) \boldsymbol{X} is not connected, but locally connected.
- c) X is connected, but not locally connected. (Hint: Think of the broom space or the comb space)
- d) \boldsymbol{X} is neither connected nor locally connected.

$$2\frac{1}{2} \times 4 = 10$$