King Saud University

College of Science

Department of Mathematics

151 Math Exercises

(4.1)

Relations and Their Operations

Malek Zein AL-Abidin

<u>1442</u> 2021

EXERCISES

1. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

$$m, n \in A$$
 , $m R n \Leftrightarrow n = m^2$

- List all ordered pairs of R? (i)
- Find the domain and the image of R? (ii)
- Represent R by the directed graph (diagraph)? (iii)

(ii) Domain
$$R = \{-2, -1, 0, 1, 2\} \subseteq A$$

2. Let R be a relation defined on the set $A = \{1,2,3,4,5\}$

$$x,y \in A$$
, $x R y \Leftrightarrow xy \leq 9$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Represent R with a matrix?

Solution:

$$(!) \mathcal{R} = \{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(5,1)\}$$

(ii)
$$D_{\text{omain}} R = \{1, 2, 3, 4, 5\} = A$$

Ronge R = {1,2,3,4,5} = A

(iii)

3. Let R be a relation defined on the set $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

$$x, y \in A$$
, $x R y \Leftrightarrow y = 2x$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of *R*? Solution:

4. Let R be a relation defined from the set $A = \{1,2,3,4\}$ to the set $B = \{2,3,4,5\}$ $aRb \Leftrightarrow a+b=5$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of R?
- (iii) Represent R with a matrix?

(ii) Represent R with a matrix?

(i)
$$R = \{(1,4),(2,3),(3,2)\}$$

(ii) Domain $R = \{1,2,3\} \subseteq A$

Range $R = \{2,3,4\} \subseteq B$

(iii) $R = \{1,2,3\} \subseteq A$

(iii) $R = \{2,3,4\} \subseteq B$

(iii) $R = \{1,2,3\} \subseteq A$

(iii) $R = \{2,3,4\} \subseteq B$

5. Let R be a relation defined on the set $A = \{0,1,2,3\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a + b = 4$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of R?

3

- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Represent R with a matrix?

Solution:

(i)
$$R = \{(1,3),(2,2),(3,1)\}$$

(iii)

0

6. Let R be a relation defined on the set $A = \{2,3,4,5,6\}$

$$a, b \in A$$
, $a R b \Leftrightarrow a, b < 10$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find M_R .

Solution: (i)
$$R = \{(2,2), (2,3), (2,4), (3,2)(3,3), (4,2)\}$$

(ii) Domain
$$R = \{2,3,4\} \subseteq A$$

Ramage $R = \{2,3,4\} \subseteq A$

(iii)

6,

7. Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

$$a,b \in A$$
, $a R b \Leftrightarrow a^2 = b^2$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?

- **8.** Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$
 - $a,b \in A$, $aRb \Leftrightarrow a.b < 0$
 - (i) List all ordered pairs of R?
 - (ii) Find the domain and the image of R?
 - (iii) Draw the directed graph (diagraph) that represents R?
 - (iv) Find R^2 .

9. Let R be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

$$a,b \in A$$
, $a R b \Leftrightarrow a.b \ge 2$

- List all ordered pairs of R? (i)
- Find the domain and the image of R? (ii)
- Draw the directed graph (diagraph) that represents R?
- (iv) Find R^2 .

Solution:

(i)
$$R = \{(-2, -2), (-2, -1), (-1, -2), (1, 2), (2, 1), (2, 2)\}$$

(ii) Domain $R = \{-2, -1, 1, 2\}$

Rouge R = {-2,-1,1,2}

(iii)

$$R^{2} = RoR = \left\{ (-2, -2), (-2, -1), (-1, -2), (-1, -1), (1, 1), (1, 2), (2, 2), (2, 1) \right\}.$$

$$\begin{array}{c|c}
-1 & R \\
-2 & R^2 \\
R^2 = R \cdot R
\end{array}$$

10. Let
$$S = \{(1,1), (1,2), (1,3), (2,2), (3,1), (3,3)\}$$
 be a relation on the set $B = \{1, 2, 3\}$

- (i) Draw the directed graph (diagraph) that represents S?
- Find S^2 , S^{-1} , \bar{S} , $So\bar{S}$, $\bar{S}oS$, $\bar{S}-S^{-1}$, SoS^{-1} , $S^{-1}oS$, S^3 , $S\cap S^{-1}$. (ii)

(iii) Find M_s

$$Solution:$$
(iii) Find M_s

$$Solution:$$

$$S = RxB - S = \{(2,1), (2,3), (3,2)\}$$

$$S^{1} = \{(1,1), (2,1), (3,1), (2,2), (4,3), (3,3)\}$$

$$S^{2} = S \circ S = \{(1,1), (4,2), (4,3), (2,2), (3,1), (3,2), (3,3)\}$$

$$S^{3} = S^{2} \circ S = \{(1,1), (4,2), (4,3), (2,2), (3,1), (3,2), (3,3)\} = S^{2}$$

$$S \circ \overline{S} = \{(2,1), (2,2), (2,3), (3,2)\}$$

$$\overline{S} \circ S = \{(4,1), (4,3), (4,2), (2,4), (2,3), (3,2)\}$$

$$\overline{S} \circ S = \{(4,4), (2,2), (4,3), (3,4), (3,3)\}$$

$$\overline{S} \circ S = \{(4,4), (2,2), (4,3), (3,4), (3,3)\}$$

$$\overline{S} \circ S = \{(4,4), (2,2), (4,3), (3,4), (3,3)\}$$

$$\overline{S} \circ S = \{(4,4), (2,2), (4,3), (3,4), (3,3)\}$$

$$\overline{S} \circ S = \{(4,4), (2,2), (4,3), (3,4), (3,3)\}$$

* 11. Let $S = \{(a, c), (b, a), (c, b)\}$ be a relation on the set $B = \{a, b, c\}$.

- (i) Find M_S?
- (ii)
- Find $\overline{S} S^{-1}$ Find S^2 , S^3 (iii)

- 12. Let $S = \{(a,b), (b,c), (c,d), (d,a)\}$ be a relation on the set $B = \{a,b,c,d\}$.
 - (i) Find M_S ?
 - (ii) Find S^2
 - (iii) Find $S^{-1} \circ S$

13. Let
$$S = \{(1, v), (1, w), (2, u), (2, v), (3, w)\}$$
 and $T = \{(1, u), (1, w), (2, v), (2, w), (3, u), (3, v)\}$ are relations from the set $A = \{1,2,3\}$ to the set $B = \{u, v, w\}$.

- Find \bar{S} , $\bar{S} \cap T$, $T \bar{S}$ (i)
- Find $T^{-1} \circ S$ (ii)
- (iii) Find $S^{-1} \circ T$

(iii) Find
$$S^{-1} \circ T$$

Solution: (i) $\overline{S} = A \times B - S = \{(1, W), (2, W), (3, W), (3, W)\}$.

$$M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

14. Let
$$R = \{(a,c), (a,b), (b,b)\}$$
 and $S = \{(a,a), (a,c), (b,c), (c,a)\}$ are relations on the set $A = \{a,b,c\}$

$$\sqrt{(i)}$$
 Find $(R \circ S) \cap R^{-1}$

$$\sqrt{(ii)}$$
 Find $S^{-1} \circ R$

(iii) Find M_R , M_S , M_{RUS} , M_{ROS} , M_{ROS}

$$\frac{\text{dion:}}{M} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_{RUS} = M_{S} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$M = M \odot M = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$Ros S S R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$M = [M]^{2} = M_{0}M_{0} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_{R^{-1}} = M_{R}^{T} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} , M_{R} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Let $T = \{(1,2), (1,3), (2,2), (2,3)\}$ and $S = \{(1,1), (1,3), (2,1), (3,2)\}$ are relations on the set $E = \{1, 2, 3\}$

- (i) Find $T \circ S$, $\overline{T} \cap S$, $\overline{T} \circ \overline{S}$, $T^2 \circ S^{-1}$
- (ii) Find \mathbf{M}_T , \mathbf{M}_S , $\mathbf{M}_{T \cup S}$, $\mathbf{M}_{T \cap S}$, $\mathbf{M}_{T \circ S}$

- 16. Let $R = \{(a,c), (b,a), (b,b)\}$ and $S = \{(a,b), (b,b), (c,a)\}$ are relations on the set $A = \{a,b,c\}$
 - (i) Find $R^{-1} \circ S^{-1}$, $\overline{R} \cap S$, $R^2 \circ S$
 - (ii) Find \mathbf{M}_R , \mathbf{M}_S , $\mathbf{M}_{R \cup S}$, $\mathbf{M}_{R \cap S}$, $\mathbf{M}_{R \circ S}$

17. Let R be the relation represented by the matrix

$$\mathbf{M}_R = \begin{bmatrix} \mathbf{0} & 1 & 1 \\ 1 & 1 & \mathbf{0} \\ 1 & \mathbf{0} & 1 \end{bmatrix}$$

Find the matrix representing:

a)
$$R^{-1}$$

b)
$$\bar{R}$$

a)
$$R^{-1}$$
 b) \bar{R} c) R^2 d) R^3

a)
$$M_{R^{-1}} = M_{R}^{T} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

b)
$$M_{\overline{R}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

e)
$$M_{R^2} = M_0 M_2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

d)
$$M = M \odot M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

18. Let R_1 and R_2 are relations on a set A represented by the matrices

$$\mathbf{M}_{R_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Find the matrices representing

- a) $R_1 \cup R_2$ b) $R_1 \cap R_2$ c) $R_1 \circ R_2$ d) $R_2 \circ R_1$

6. Let R be a relation defined on the set $A = \{2,3,4,5,6\}$

$$a,b \in A$$
, $a R b \Leftrightarrow a,b < 10$

- (i) List all ordered pairs of R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find M_R .

Solution: (1)
$$R = \{(2,2),(2,3),(2,4),(3,2),(3,3),(4,2)\}$$

(ii) Domain
$$R = \{2,3,4\} \subseteq A$$

Range $R = \{2,3,4\} \subseteq A$

(iii)

 $\mathcal{R}^2 = \mathcal{R} \circ \mathcal{R} = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)\}$

$$\begin{array}{c}
(Q, 2) \\
(1) R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)\} \\
(ii) Domain R = \{1,2,3,4,5\} = A \\
Range R = \{1,2,3,4,5\} = A$$
(III)
$$A = \{1,2,3,4,5\} = A$$
(III)

(i)
$$R = \{(1,41), (2,3), (3,2)\}$$
.
(ii) Domain $R = \{1,2,3\} \subseteq A$
 $Range R = \{2,3,4\} \subseteq B$.
(iii) $B = \{1,2,3\} \subseteq A$
 $A = \{2,3,4\} \subseteq B$.
 $A = \{1,2,3\} \subseteq A$
 $A = \{2,3,4\} \subseteq B$.

#Mol

$$S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $S = \frac{1}{3} \begin{bmatrix} 1 & 1$

- 13. Let $S = \{(1,v), (1,w), (2,u), (2,v), (3,w)\}$ and $T = \{(1,u), (1,w), (2,v), (2,w), (3,u), (3,v)\}$ are relations from the set $A = \{1,2,3\}$ to the set $B = \{u,v,w\}$.
 - (i) Find \bar{S} , $\bar{S} \cap T$, $T \bar{S}$
 - (ii) Find $T^{-1} \circ S$
 - (iii) Find $S^{-1} \circ T$

Solution: (i)
$$\overline{S} = A \times B - S = \{(1, W), (2, W), (3, W), (3, W)\}$$

$$M_{s} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Q(14) $R^{-1} = \{(c,a), (b,a), (b,b)\}, s^{-1} = \{(a,a), (c,a), (c,b), (a,c)\}$ $Ros = \{(a,c), (a,b), (c,c), (c,b)\}$ $(Ras) NR^{-1} = \{\} = \emptyset$ $\{(a,a), (a,b), (a,b),$