01 - Análise Exploratória de Dados (EDA)

Nesse Notebook vamos fazer uma analise exploratoria dos dados para responder o topico um do desafio! "Faça uma análise exploratória dos dados (EDA), demonstrando as principais características entre as variáveis e apresentando algumas hipóteses relacionadas. Seja criativo"

1. Importação de bibliotecas e dataset

Nesse Pimeiro momento vamos realizar o carregamento dos dados e das bibliotecas:

Import das bibliotecas usadas:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import re
from matplotlib.ticker import FuncFormatter

sns.set_theme(style="whitegrid")
# Formatador para mostrar valores em milhões quando fizer sentido
fmt_milhoes = FuncFormatter(lambda x, _: f"{x/le6:.1f}M")
fmt_bilhoes = FuncFormatter(lambda x, _: f"{x/le9:.1f}B")
```

Carregamento dos dados em um DataFrame Pandas, também nessa mesma celula realizei o tratamento removendo uma coluna de index a mais que surgiu no carregamento.

```
In [223... #carreagando os dados e o salvando em df

df = pd.read_csv('../data/raw/desafio_indicium_imdb.csv')
# dropar a coluna de índice redundante

if "Unnamed: 0" in df.columns:
    df = df.drop(columns=["Unnamed: 0"])
```

Testando se os dados foram carregado corretamente:

```
In [224... df.head()
```

Out[224	Series Title	Released Year	Certificate	Runtime	Genre	IMDB Rating	Overview	Meta score

	Series_Title	Keleaseu_feal	Certificate	Kulltille	Genre	IIVIDB_Katilig	Overview	wieta_score	
0	The Godfather	1972	А	175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch t	100.0	(
1	The Dark Knight	2008	UA	152 min	Action, Crime, Drama	9.0	When the menace known as the Joker wreaks havo	84.0	Chri
2	The Godfather: Part II	1974	А	202 min	Crime, Drama	9.0	The early life and career of Vito Corleone in	90.0	(
3	12 Angry Men	1957	U	96 min	Crime, Drama	9.0	A jury holdout attempts to prevent a miscarria	96.0	
4	The Lord of the Rings: The Return of the King	2003	U	201 min	Action, Adventure, Drama	8.9	Gandalf and Aragorn lead the World of Men agai	94.0	
4									•

C

2. Entendimento da base

2.1 Analise inicial da estrutura do dados:

Analisando os 5 primeiros elementos.

In [225...

#analisando os 5 primeiros elementos do dataframe
df.head()

046[223		Series_Title	Released_fear	Certificate	Kuntime	Genre	IIVIDB_Kating	Overview	weta_score	L
	0	The Godfather	1972	А	175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch t	100.0	(
	1	The Dark Knight	2008	UA	152 min	Action, Crime, Drama	9.0	When the menace known as the Joker wreaks havo	84.0	Chri
	2	The Godfather: Part II	1974	А	202 min	Crime, Drama	9.0	The early life and career of Vito Corleone in	90.0	(
	3	12 Angry Men	1957	U	96 min	Crime, Drama	9.0	A jury holdout attempts to prevent a miscarria	96.0	
	4	The Lord of the Rings: The Return of the King	2003	U	201 min	Action, Adventure, Drama	8.9	Gandalf and Aragorn lead the World of Men agai	94.0	
	4									•
	Formato do DataFrame, linhas e colunas.									
In [227	<pre>#analisando o número de linhas e colunas no df print("Formato: ", df.shape) print(f"Total de linhas: {df.shape[0]}") print(f"Total de colunas: {df.shape[1]}")</pre>									
		nato: (999, al de linhas								
		al de coluna								
	Со	lunas present	tes no DataFram	e.						
In [228	pr	int("Colunas	s presentes no	DF: ")						

Genre IMDB_Rating Overview Meta_score

C

Out[225...

Series_Title Released_Year Certificate Runtime

df.columns

Colunas presentes no DF:

Verificando a existencia de nulos por coluna:

```
# Verificando a existencia de dados nulos no df
In [229...
          print("Nulos por coluna:")
          print(df.isna().sum())
          #verificamos que de fato existem dados nulos, mais para frente iremos tratar eles durante o proce
        Nulos por coluna:
         Series_Title
         Released_Year
                           0
        Certificate
                         101
        Runtime
                           0
        Genre
                           0
         IMDB_Rating
        Overview
                           0
                        157
        Meta_score
        Director
                           0
        Star1
                           0
        Star2
                           0
        Star3
                           0
         Star4
        No_of_Votes
                           0
        Gross
                         169
         dtype: int64
```

Resumo das colunas: Tipo, quantidade de nulos, % de nulos, valores unicos.

```
In [230... print("Resumo informações colunas:")
summary = pd.DataFrame({
    "dtype": df.dtypes.astype(str),
    "n_nulos": df.isna().sum(),
    "pct_nulos": (df.isna().sum()/len(df)*100).round(2),
    "n_unicos": df.nunique(dropna=True)
}).sort_values(["pct_nulos","n_unicos"], ascending=[False, True])
summary
```

Resumo informações colunas:

	dtype	n_nulos	pct_nulos	n_unicos
Gross	object	169	16.92	822
Meta_score	float64	157	15.72	63
Certificate	object	101	10.11	16
IMDB_Rating	float64	0	0.00	16
Released_Year	object	0	0.00	100
Runtime	object	0	0.00	140
Genre	object	0	0.00	202
Director	object	0	0.00	548
Star1	object	0	0.00	659
Star2	object	0	0.00	840
Star3	object	0	0.00	890
Star4	object	0	0.00	938
Series_Title	object	0	0.00	998
No_of_Votes	int64	0	0.00	998
Overview	object	0	0.00	999

Verificando quantidade valores não nulos por coluna

In [231... #verficando de forma geral os valores por linha(tipo do dado e quantidade de não nulos) print(df.info())

<class 'pandas.core.frame.DataFrame'> RangeIndex: 999 entries, 0 to 998 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Series_Title	999 non-null	object
1	Released_Year	999 non-null	object
2	Certificate	898 non-null	object
3	Runtime	999 non-null	object
4	Genre	999 non-null	object
5	<pre>IMDB_Rating</pre>	999 non-null	float64
6	Overview	999 non-null	object
7	Meta_score	842 non-null	float64
8	Director	999 non-null	object
9	Star1	999 non-null	object
10	Star2	999 non-null	object
11	Star3	999 non-null	object
12	Star4	999 non-null	object
13	No_of_Votes	999 non-null	int64
14	Gross	830 non-null	object
dtyp	es: float64(2),	int64(1), objec	t(12)

memory usage: 117.2+ KB

None

Verificando a existência de linhas duplicadas.

```
In [232... # checar duplicados
print("\nDuplicados:", df.duplicated().sum())
#não existem Linhas duplicadas dentro do df!
```

Duplicados: 0

2.2 Tratando algumas colunas, para opereções futuras.

Com os resultados que obtive anteriormente, percebi que existem alguns tratamentos que são necessários fazer para não só analises futuras como também para o restante das etapas do desafio.

Ao observar a coluna Genre, percebi que há uma grande quantidade de valores únicos.

Isso acontece porque cada filme pode ter mais de um gênero associado, o que gera combinações diferentes como "Crime, Drama", "Action, Crime, Drama", etc.

Ou seja, Genre é uma variável multi-rótulo, e não uma simples categórica.

Para tratá-la de forma adequada, precisaremos transformar essa coluna em um formato mais estruturado.

In [233...

#percebendo a quantidade alta de valores unicos em genero resolvi explorar para ver o motivo
df[['Genre']]

Out[233...

	Genre
0	Crime, Drama
1	Action, Crime, Drama
2	Crime, Drama
3	Crime, Drama
4	Action, Adventure, Drama
•••	
994	Comedy, Drama, Romance
995	Drama, Western
996	Drama, Romance, War
997	Drama, War
998	Crime, Mystery, Thriller

999 rows × 1 columns

Como a coluna Genne contém listas de gêneros separados por vírgula, o primeiro passo foi percorrer todos os filmes e extrair os gêneros únicos presentes na base.

Isso nos permite saber **quantas categorias diferentes** existem e preparar o terreno para a criação de colunas binárias.

Resultado: identificamos 21 gêneros distintos no dataset.

In [234...

#como podemos ver na celular os valores estão em lista, vamos percorrer e quabrar a as listas, as # Lista para armazenar os gêneros únicos

```
lista_generos = []

# Percorre cada valor da coluna 'Genre'
for generos in df['Genre']:
    # Divide a string em gêneros individuais
    for g in generos.split(','):
        g = g.strip() # remove espaços extras
        if g not in lista_generos:
            lista_generos.append(g)

print('total de generos distintos: ', len(lista_generos))
print(lista_generos)

# em termos de analise para nos é muito mais vantajoso criar colunas binarias para classificar os # porém isso vai aumentar drasticamente a quantidade de colunas do nosso df.
```

```
total de generos distintos: 21 ['Crime', 'Drama', 'Action', 'Adventure', 'Biography', 'History', 'Sci-Fi', 'Romance', 'Western', 'Fantasy', 'Comedy', 'Thriller', 'Animation', 'Family', 'War', 'Mystery', 'Music', 'Horror', 'Musical', 'Film-Noir', 'Sport']
```

Criei uma nova coluna chamada | Genres_list |, que transforma a string original em uma lista limpa de gêneros:

- Divide pelo separador vírgula.
- Remove espaços extras.
- Descarta valores vazios.

Esse formato estruturado é mais fácil de manipular e garante consistência nos próximos passos.

```
In [235... # Genres_list: lista de gêneros por filme, sem espaços extras e sem vazios

df["Genres_list"] = (
    df["Genre"].fillna("")
        .apply(lambda s: [g.strip() for g in s.split(",") if g.strip() != ""])
)
```

Para tornar a análise mais eficiente, transformei os gêneros em variáveis binárias (dummies):

- Explosão (explode): cada filme passa a ter uma linha para cada gênero.
 Exemplo: "Action, Drama" → duas linhas (Action e Drama).
- 2. **Construção da tabela binária (crosstab)**: cada coluna corresponde a um gênero, com valores 1 (filme pertence ao gênero) ou 0 (não pertence).
- 3. Junção com o dataset original (merge): adicionamos as colunas de gêneros dummies ao df.

Esse processo nos permite, por exemplo:

- Contar a frequência de cada gênero.
- Fazer análises comparativas entre filmes de diferentes gêneros.
- Usar os gêneros como variáveis em modelos preditivos.

```
In [236... # Explode: uma linha por (filme, gênero)
tmp = df[["Series_Title", "Genres_list"]].explode("Genres_list")

# Tabela binária (filme x gênero)
genre_dummies = pd.crosstab(tmp["Series_Title"], tmp["Genres_list"]).astype(int)
genre_dummies.columns.name = None # só estética
```

```
# Anexar ao df (sem risco de duplicar nomes)
df = df.merge(genre_dummies, left_on="Series_Title", right_index=True, how="left")
```

Em seguida vamos fazer a verificação de como ficou de fato o DataFrame depois das modificações

In [239... # pronto agora temos colunas binarias para cada genero com uns e zeros,
 # se tal filme pertence a um genero x ela vai possuir um na coluna desse genero x
 df.head(4)

Out[239...

	Series_Title	Released_Year	Certificate	Runtime	Genre	IMDB_Rating	Overview	Meta_score	Direc
0	The Godfather	1972	А	175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch t	100.0	Fra F Copr
1	The Dark Knight	2008	UA	152 min	Action, Crime, Drama	9.0	When the menace known as the Joker wreaks havo	84.0	Christop No
2	The Godfather: Part II	1974	А	202 min	Crime, Drama	9.0	The early life and career of Vito Corleone in	90.0	Fra F Copr
3	12 Angry Men	1957	U	96 min	Crime, Drama	9.0	A jury holdout attempts to prevent a miscarria	96.0	Sid Lu

4 rows × 37 columns

'Western'], dtype='object')

- Foram identificados **21 gêneros distintos** no dataset.
- Cada filme pode ter múltiplos gêneros; por isso, optamos por um tratamento multi-rótulo.
- Agora é possível analisar os gêneros de forma estruturada e utilizá-los em análises estatísticas ou modelos.

A coluna **Runtime** veio como texto no formato "XXX min", o que impede cálculos estatísticos (média, correlação, gráficos, etc.).

Para padronizar, criei a função parse_runtime_min que:

- trata valores nulos com segurança;
- usa uma expressão regular para extrair o primeiro número presente no texto
 (ex.: "142 min" → 142);
- retorna o valor como numérico (float).

Em seguida, aplicamos essa função à coluna Runtime para gerar a nova variável Runtime_min , que será utilizada nas análises e visualizações a seguir.

```
In [240... #observando os valores da coluna runtime, podemos transforma ele em números para facilitar as nos

def parse_runtime_min(s):
    if pd.isna(s):
        return np.nan
        # captura o primeiro número que aparecer (ex: "142 min" -> 142)
    m = re.search(r'(\d+)', str(s))
    return float(m.group(1)) if m else np.nan

df["Runtime_min"] = df["Runtime"].apply(parse_runtime_min)
```

Para garantir que a conversão foi feita corretamente:

- 1. Comparei os **três primeiros valores** de Runtime (texto) com os respectivos valores em Runtime min (numérico).
- 2. Exibi o resumo estatístico de Runtime_min (count , mean , std , quartis e máximo).

```
In [241...
          #verificação rapida, para ver se foi tudo feito corretamente
          print(df["Runtime"].head(3).tolist(), "→", df["Runtime_min"].head(3).tolist())
          df["Runtime_min"].describe()
         ['175 min', '152 min', '202 min'] → [175.0, 152.0, 202.0]
Out[241...
          count
                   999.000000
          mean
                   122.871872
          std
                    28.101227
          min
                    45.000000
          25%
                   103.000000
           50%
                  119.000000
           75%
                   137.000000
                   321.000000
          Name: Runtime_min, dtype: float64
```

A coluna **Gross** representa o faturamento do filme, mas está no formato de texto, contendo **vírgulas e símbolos** (ex.: "134,966,411").

Esse formato impede que possamos calcular médias, correlações ou usar a variável em modelos preditivos.

```
#outra coluna que podemos tratar é gross do df, veja:
In [242...
           df['Gross']
Out[242...
           0
                   134,966,411
           1
                   534,858,444
           2
                   57,300,000
           3
                    4,360,000
           4
                   377,845,905
           994
                           NaN
           995
                           NaN
           996
                    30,500,000
           997
                           NaN
           998
                           NaN
           Name: Gross, Length: 999, dtype: object
           Criei a função parse_gross que:

    trata valores nulos ( NaN );

    remove qualquer caractere que n\u00e3o seja d\u00edgito;

    converte o resultado em float .

           O resultado foi salvo em uma nova coluna chamada Gross_float, que representa o faturamento já em
           formato numérico.
           # remove tudo que não é dígito (",","." e símbolos)
In [243...
           def parse_gross(s):
               if pd.isna(s):
                   return np.nan
               digits = re.sub(r"[^\d]", "", str(s))
               return float(digits) if digits else np.nan
           df["Gross_float"] = df["Gross"].apply(parse_gross)
In [244...
           print(df["Gross"].head(3).tolist(), "→", df["Gross_float"].head(3).tolist())
           df["Gross_float"].describe()
         ['134,966,411', '534,858,444', '57,300,000'] \rightarrow [134966411.0, 534858444.0, 57300000.0]
Out[244...
           count
                     8.300000e+02
                     6.808257e+07
           mean
           std
                     1.098076e+08
           min
                     1.305000e+03
           25%
                     3.245338e+06
           50%
                     2.345744e+07
           75%
                     8.087634e+07
                     9.366622e+08
           max
           Name: Gross_float, dtype: float64
```

A coluna Released_Year representa o ano de lançamento do filme.

No entanto, ela está armazenada como **object (texto)**, o que dificulta análises estatísticas e operações numéricas.

```
In [245... #outra coluna que podemos tratar é a referente ao ano, veja: (atualmente sendo do tipo object, o df['Released_Year']
```

```
2008
                   1974
           3
                   1957
           4
                   2003
                   . . .
           994
                   1961
           995
                   1956
           996
                   1953
           997
                   1944
           998
                   1935
           Name: Released_Year, Length: 999, dtype: object
           Converti a coluna Released_Year para formato numérico (float64), utilizando pd.to_numeric com
           o parâmetro errors="coerce".
           Esse parâmetro garante que valores inválidos (como classificações equivocadas ou strings que não
           representam anos) sejam convertidos para NaN, evitando erros de processamento.
In [246...
           #agora os anos são do tipo numerico, o que nos possibilita fazer alguamas analises como:
           df["Released_Year"] = pd.to_numeric(df["Released_Year"], errors="coerce")
           df["Released_Year"].describe()
Out[246...
           count
                      998.000000
           mean
                     1991.214429
                       23.308539
           std
           min
                     1920.000000
           25%
                     1976.000000
           50%
                     1999.000000
           75%
                     2009.000000
                     2020,000000
           max
           Name: Released_Year, dtype: float64
  In [ ]:
In [247...
           # Tabela resumo só das colunas numéricas
           num_cols = ["IMDB_Rating", "Meta_score", "No_of_Votes", "Runtime_min", "Gross_float", "Released_Year"
           display(df[num_cols].describe().T.assign(n_nulos=df[num_cols].isna().sum()))
                                                       std
                                                               min
                                                                          25%
                                                                                      50%
                                                                                                   75%
                        count
                                       mean
                                                                                                                max
          IMDB Rating
                         999.0 7.947948e+00
                                             2.722895e-01
                                                                7.6
                                                                           7.7
                                                                                       7.9
                                                                                                   8.10
                                                                                                                 9.2
                         842.0 7.796912e+01 1.238326e+01
                                                               28.0
                                                                          70.0
                                                                                      79.0
                                                                                                  87.00
                                                                                                               100.0
            Meta score
           No of Votes
                         999.0 2.716214e+05 3.209126e+05 25088.0
                                                                       55471.5
                                                                                  138356.0
                                                                                              373167.50
                                                                                                           2303232.0
          Runtime min
                               1.228719e+02 2.810123e+01
                                                               45.0
                                                                         103.0
                                                                                     119.0
                         999.0
                                                                                                 137.00
                                                                                                               321.0
            Gross float
                         830.0
                               6.808257e+07
                                             1.098076e+08
                                                             1305.0
                                                                     3245338.5
                                                                                23457439.5
                                                                                            80876340.25
                                                                                                         936662225.0
         Released Year
                         998.0
                               1.991214e+03
                                             2.330854e+01
                                                             1920.0
                                                                        1976.0
                                                                                    1999.0
                                                                                                2009.00
                                                                                                              2020.0
```

Out[245...

0

1972

3. Outliers identificação e diagnóstico + Analise descritiva basica:

Objetivo: detectar valores extremos que podem distorcer estatísticas, gráficos e modelos — e **documentar** o que encontramos.

Decisão: nesta EDA **não vamos remover nem imputar**; apenas **medir e visualizar**. O tratamento fica para a fase de **modelagem**.

Métodos usados

• IQR (Tukey), Z-score (|z|>3) e Z-score robusto (MAD, |z|>3.5).

```
Variáveis numéricas analisadas: as numéricas de df (incluindo, se existirem: IMDB_Rating, No_of_Votes, Gross_float, Meta_score, Runtime_min, Released_Year).
```

3.1 Funções de detecção (IQR, Z, MAD) — sem imports (usa pandas/numpy já carregados)

```
In [248... # ---- 1) Whitelist de variáveis contínuas relevantes ----
          cont_cols = [c for c in ['Released_Year','IMDB_Rating','Meta_score','No_of_Votes','Runtime_min',
          print("Variáveis contínuas utilizadas:", cont_cols)
         Variáveis contínuas utilizadas: ['Released_Year', 'IMDB_Rating', 'Meta_score', 'No_of_Votes', 'Ru
         ntime_min', 'Gross_float']
In [249...
         def _finite(s):
              return s[np.isfinite(s)]
          def iqr_limits(s, k=1.5):
              s = _finite(s.dropna())
              if len(s) == 0:
                  return np.nan, np.nan
              q1, q3 = s.quantile(0.25), s.quantile(0.75)
              iqr = q3 - q1
              return q1 - k*iqr, q3 + k*iqr
          def iqr_flags(s, k=1.5):
              low, high = iqr_limits(s, k=k)
              if pd.isna(low) or pd.isna(high):
                  return pd.Series(False, index=s.index)
              return (s < low) | (s > high)
          def zscore_flags(s, thr=3.0):
              mu = s.mean(skipna=True)
              sd = s.std(skipna=True, ddof=0)
              if not np.isfinite(sd) or sd == 0:
                  return pd.Series(False, index=s.index)
              z = (s - mu) / sd
              return z.abs() > thr
          def mad_flags(s, thr=3.5):
              med = s.median(skipna=True)
              mad = (s - med).abs().median(skipna=True)
              if not np.isfinite(mad) or mad == 0:
                  return pd.Series(False, index=s.index)
              zrob = 0.6745 * (s - med) / mad
              return zrob.abs() > thr
```

```
In [250... rows, flag_cols = [], {}
for col in cont_cols:
    s = df[col]
```

```
low, high = iqr_limits(s)
   f_iqr = iqr_flags(s).reindex(df.index, fill_value=False)
   f_z = zscore_flags(s).reindex(df.index, fill_value=False)
   f_mad = mad_flags(s).reindex(df.index, fill_value=False)
   flag_cols[f'out_IQR__{col}'] = f_iqr
   flag_cols[f'out_Z__{col}'] = f_z
   flag_cols[f'out_MAD__{col}'] = f_mad
    rows.append({
        'variable': col,
        'n': int(s.notna().sum()),
        'missing_%': float((s.isna().mean()*100).round(2)),
        'min': float(s.min(skipna=True)) if s.notna().any() else np.nan,
        'p25': float(s.quantile(0.25)) if s.notna().any() else np.nan,
        'median': float(s.median(skipna=True)) if s.notna().any() else np.nan,
        'mean': float(s.mean(skipna=True)) if s.notna().any() else np.nan,
        'p75': float(s.quantile(0.75)) if s.notna().any() else np.nan,
        'max': float(s.max(skipna=True)) if s.notna().any() else np.nan,
        'iqr_low': float(low) if np.isfinite(low) else np.nan,
        'iqr_high': float(high) if np.isfinite(high) else np.nan,
        'outliers_IQR': int(f_iqr.sum()),
        'outliers_Z3': int(f_z.sum()),
        'outliers_MAD3_5': int(f_mad.sum()),
   })
summary_outliers = pd.DataFrame(rows).sort_values('variable').reset_index(drop=True)
flags_df = pd.DataFrame(flag_cols)
flags_df['is_outlier_any'] = flags_df.any(axis=1)
display(summary_outliers)
```

	variable	n	missing_%	min	p25	median	mean	p75	max
0	Gross_float	830	16.92	1305.0	3245338.5	23457439.5	6.808257e+07	80876340.25	936662225.0
1	IMDB_Rating	999	0.00	7.6	7.7	7.9	7.947948e+00	8.10	9.2
2	Meta_score	842	15.72	28.0	70.0	79.0	7.796912e+01	87.00	100.0
3	No_of_Votes	999	0.00	25088.0	55471.5	138356.0	2.716214e+05	373167.50	2303232.0
4	Released_Year	998	0.10	1920.0	1976.0	1999.0	1.991214e+03	2009.00	2020.0
5	Runtime_min	999	0.00	45.0	103.0	119.0	1.228719e+02	137.00	321.0

3.2 Análise descritiva(plotagem gráficas e calculos!)

```
In [251...
for col in cont_cols:
    s = df[col].dropna()
    if s.empty:
        continue

# Boxplot
    plt.figure(figsize=(7, 2.2))
    plt.boxplot(s, vert=False, whis=1.5, showfliers=True)
    plt.title(f'Boxplot - {col}')
    plt.xlabel(col)
    plt.tight_layout()
    plt.show()
```

```
# Histograma (log1p quando há cauda longa positiva)
use_log = (s.gt(0).all()) and (s.max() / max(s.min(), 1) > 200)
plt.figure(figsize=(7, 2.8))
plt.hist(np.log1p(s) if use_log else s, bins=30)
plt.title(f'Hist - {col}' + (' (log1p)' if use_log else ''))
plt.xlabel('log1p('+col+')' if use_log else col)
plt.ylabel('Frequência')
plt.tight_layout()
plt.show()
```

Boxplot — Released_Year

Boxplot — IMDB_Rating

In [252...

Estatísticas básicas das variáveis numéricas contínuas df[['Released_Year','IMDB_Rating','Meta_score','No_of_Votes','Runtime_min','Gross_float']].descr

Out[252...

		count	mean	std	min	25%	50%	75%	m
Rel	leased_Year	998.0	1.991214e+03	2.330854e+01	1920.0	1976.0	1999.0	2009.00	2021
IIV	IDB_Rating	999.0	7.947948e+00	2.722895e-01	7.6	7.7	7.9	8.10	!
	Meta_score	842.0	7.796912e+01	1.238326e+01	28.0	70.0	79.0	87.00	100
N	lo_of_Votes	999.0	2.716214e+05	3.209126e+05	25088.0	55471.5	138356.0	373167.50	230323
Ru	untime_min	999.0	1.228719e+02	2.810123e+01	45.0	103.0	119.0	137.00	32
	Gross_float	830.0	6.808257e+07	1.098076e+08	1305.0	3245338.5	23457439.5	80876340.25	93666222

```
In [253...
```

```
for col in ['Certificate','Director']:
    print(f"Moda de {col}: {df[col].mode()[0]}")
```

Moda de Certificate: U

Moda de Director: Alfred Hitchcock

Como cada gênero foi transformado em uma coluna binária (0/1), a "moda" não é calculada como em variáveis categóricas normais.

Aqui, somamos cada coluna binária para identificar quais gêneros são mais comuns entre os filmes.

```
# Selecionar apenas as colunas binárias de gênero
In [254...
          genre_cols = ['Action','Adventure','Animation','Biography','Comedy','Crime',
                         'Drama', 'Family', 'Fantasy', 'Film-Noir', 'History', 'Horror', 'Music',
                         'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Sport', 'Thriller', 'War', 'Western']
          # Contagem de quantos filmes têm cada gênero
          genre_counts = df[genre_cols].sum().sort_values(ascending=False)
          print("Top gêneros mais frequentes:")
          print(genre_counts.head(10))
          # Visualização
          genre_counts.plot(kind='bar', figsize=(12,4), title="Frequência dos gêneros nos filmes")
```

Тор	gêneros	mais	frequentes:
Dran	na	725	
Come	edy	233	
Crin	ne	211	
Adve	enture	196	
Acti	ion	189	
Thri	iller	138	
Roma	ance	125	
Biog	graphy	109	
Myst	ery	100	
Anin	nation	82	
dtvr	oe: int64	4	

Out[254... <Axes: title={'center': 'Frequência dos gêneros nos filmes'}>

3.3 Interpretação e conclusão dos outliers

-INTERPRETAÇÃO:

- **Released_Year:** a maioria dos filmes está entre 1970 e 2020. Alguns registros mais antigos são raros, mas plausíveis.
- IMDB_Rating: concentrado entre 7.5 e 8.5. Valores acima de 8.6 são raros e aparecem como outliers.
- Meta_score: distribuição razoável, mas com alguns outliers em valores baixos (<40).
- No_of_Votes: altamente assimétrica (cauda longa). Poucos filmes ultrapassam 1 milhão de votos → blockbusters.
- **Runtime_min:** maioria entre 90–150 min. Filmes acima de 240 min ou muito curtos (<60 min) aparecem como outliers.
- Gross_float: distribuição também assimétrica. Filmes com bilheteria superior a 500M aparecem como outliers.

-CONCLUSÃO:

- Parte dos outliers corresponde a **sucessos legítimos** (ex.: bilheterias e votos muito altos).
- Em outras variáveis (ex.: Runtime_min , Meta_score), valores muito baixos ou altos podem ser ruído ou casos excepcionais.
- Nesta fase de EDA: apenas identificamos e documentamos. Tratamentos serão realizados nas proximas etapas do desafio que correspondem a modelagem.

4. Analises Graficas da Base de Dados:

Nesta etapa realizo uma exploração visual das variáveis do dataset.

A análise está dividida em categorias temáticas para facilitar a interpretação: distribuições gerais, correlações, evolução temporal, influência de gêneros/classificação e aspectos de popularidade e bilheteria.

Observação importante: alguns gráficos (como boxplots e histogramas) já apareceram na etapa de **outliers** (Seção 3).

A diferença é que, aqui, o objetivo não é apenas diagnóstico, mas sim **entender a distribuição geral e buscar padrões mais amplos**.

Ou seja, o contexto é diferente: antes eu olhava para detecção de valores extremos, agora busco **compreender tendências globais**.

Ao final desta seção apresento algumas **hipóteses exploratórias** que podem ser testadas em etapas futuras de modelagem.

4.1 Distribuições Gerais

Nesta parte busco entender como variáveis-chave do dataset se distribuem individualmente. Incluo:

- Notas do IMDB
- Meta_score
- Duração dos filmes
- Bilheteria (Gross)

```
In [255... plt.figure(figsize=(10,5))
    sns.histplot(df['IMDB_Rating'], bins=20, kde=True, color="skyblue")
    plt.title("Distribuição das Notas dos Filmes (IMDB Rating)", fontsize=14)
    plt.xlabel("Nota IMDB")
    plt.ylabel("Quantidade de Filmes")
    plt.show()
```



```
In [256...
    plt.figure(figsize=(10,5))
    sns.histplot(df[df['Runtime_min'] < 300]['Runtime_min'], bins=30, kde=True, color="orange")
    plt.title("Distribuição da Duração dos Filmes (<300 min)", fontsize=14)
    plt.xlabel("Minutos de Duração")
    plt.ylabel("Quantidade de Filmes")
    plt.show()
    plt.figure(figsize=(8,4))
    sns.boxplot(x=df[df['Runtime_min'] < 300]['Runtime_min'], color="lightblue")
    plt.title("Boxplot da Duração dos Filmes (<300 min)", fontsize=14)
    plt.xlabel("Minutos de Duração")
    plt.show()</pre>
```


Boxplot da Duração dos Filmes (<300 min)


```
In [257... plt.figure(figsize=(10,5))
    sns.histplot(df["Meta_score"].dropna(), bins=20, color="purple", kde=True)
    plt.title("Distribuição do Meta_score")
    plt.xlabel("Meta_score")
    plt.ylabel("Quantidade de Filmes")
    plt.show()
```


4.2 Correlação e Relações:

Aqui exploro como as variáveis numéricas se relacionam entre si. Uso:

- Heatmap de correlação
- Pairplot para múltiplas combinações
- Scatterplots direcionados (ex.: Meta_score × IMDB, Votos × Bilheteria, Receita × Nota)

O objetivo é entender dependências e identificar potenciais relações de associação.

In [260... sns.pairplot(df[['IMDB_Rating','Meta_score','No_of_Votes','Gross_float','Runtime_min', 'Released]

Out[260... <seaborn.axisgrid.PairGrid at 0x1dc4e6f5cd0>


```
In [261... sns.scatterplot(data=df, x="Meta_score", y="IMDB_Rating")
   plt.title("Meta_score x IMDB Rating")
   plt.show()

sns.scatterplot(data=df, x="No_of_Votes", y="Gross_float")
   plt.xscale("log"); plt.yscale("log")
   plt.title("No. de votos x Bilheteria (log-log)")
   plt.show()
```


Receita vs Nota IMDB


```
In [263...
plt.figure(figsize=(10,6))
sns.regplot(
    data=df,
    x="No_of_Votes",
    y="IMDB_Rating",
    scatter_kws={'alpha':0.4, 's':40}, # transparência e tamanho dos pontos
    line_kws={'color':'red'} # linha de tendência
)

plt.xscale("log") # escala log para lidar com cauda longa
plt.title("Relação entre Número de Votos e Nota IMDB", fontsize=14, weight="bold")
plt.xlabel("Número de Votos (escala log)")
plt.ylabel("Nota IMDB")
plt.ylim(0, 10)
plt.show()
```


4.3 Análises Temporais:

Nesta subseção avalio a evolução dos filmes ao longo do tempo:

- Volume de lançamentos por ano/década
- Evolução da média das notas IMDB por década
- Evolução da média do Meta_score por década
- Anos com maior concentração de lançamentos

Essas análises ajudam a observar tendências históricas e mudanças no padrão de produção e avaliação.

```
# Scatter
plt.figure(figsize=(8,5))
sns.scatterplot(data=df, x="Released_Year", y="Meta_score", alpha=0.6)
plt.title("Meta_score ao longo dos anos")
plt.show()

# Média por ano
plt.figure(figsize=(10,5))
sns.lineplot(data=df, x="Released_Year", y="Meta_score", estimator='mean')
plt.title("Média do Meta_score por ano de lançamento")
plt.show()
```



```
sns.barplot(x=filmes_por_decada.index, y=filmes_por_decada.values, color="purple")
plt.title("Número de Filmes Lançados por Década", fontsize=14)
plt.xlabel("Década")
plt.ylabel("Quantidade de Filmes")
plt.show()
```

Número de Filmes Lançados por Década


```
In [266...

df_imdb_decadas = (
    df.dropna(subset=['Released_Year'])
        .astype({'Released_Year': int})
        .groupby(df['Released_Year'] // 10 * 10)['IMDB_Rating']
        .mean()
)

plt.figure(figsize=(10,6))
plt.plot(df_imdb_decadas.index, df_imdb_decadas.values, marker='o', color="skyblue")
plt.title("Evolução do IMDB Rating Médio por Década", fontsize=14)
plt.xlabel("Década")
plt.ylabel("IMDB Rating Médio")
plt.grid(True, linestyle="--", alpha=0.6)
plt.show()
```

Evolução do IMDB Rating Médio por Década

Evolução do Meta Score Médio por Década

4.4 Gêneros e Classificação:

Aqui segmento os filmes por **gêneros** e **certificação indicativa**. Incluo:

- Top 10 gêneros mais frequentes
- Médias de IMDB por gênero
- Distribuição das notas por gênero (boxplots)
- Distribuição da bilheteria por gênero
- Médias de IMDB por classificação indicativa (Certificate)

O objetivo é entender diferenças qualitativas e comerciais entre categorias de filmes.

```
ax.text(i, v + 0.05, f"{v:.2f}", ha='center', va='bottom', fontsize=10, weight='bold')

plt.title("Top 15 Gêneros com Maior Média de Nota IMDB", fontsize=14, weight="bold")
plt.xlabel("Gênero")
plt.ylabel("Média IMDB Rating")
plt.ylim(7, 9)
plt.xticks(rotation=25, ha="right")
plt.show()
```

C:\Users\guima\AppData\Local\Temp\ipykernel_8300\81065828.py:14: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th e `x` variable to `hue` and set `legend=False` for the same effect.

ax = sns.barplot(x=top15_genres.index, y=top15_genres.values, palette="crest")


```
genre_counts = df[genre_cols].sum().sort_values(ascending=False).head(10).index
In [269...
          # Transformar o dataframe no formato longo (gênero, bilheteria)
          df_gross = df.melt(
              id_vars=["Gross_float"],
              value_vars=genre_counts,
              var_name="Gênero",
              value_name="Presença"
          ).query("Presença == 1 & Gross_float.notna()")
          # Boxplot da bilheteria por gênero
          plt.figure(figsize=(12,6))
          sns.boxplot(x="Gênero", y="Gross_float", data=df_gross, palette="Set3")
          plt.yscale("log") # escala log para melhor visualização
          plt.title("Distribuição da Bilheteria (Gross) por Gênero (Top 10 mais frequentes)", fontsize=14,
          plt.xlabel("Gênero")
          plt.ylabel("Bilheteria (Gross, escala log)")
```

```
plt.xticks(rotation=45, ha="right")
plt.show()
```

C:\Users\guima\AppData\Local\Temp\ipykernel_8300\2883230998.py:13: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th e `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x="Gênero", y="Gross_float", data=df_gross, palette="Set3")


```
In [270...
          # Selecionar os 10 gêneros mais frequentes (com mais filmes marcados como 1)
          genero_counts = df[genre_cols].sum().sort_values(ascending=False).head(10).index
          # Criar DataFrame no formato Longo: (Gênero, Nota IMDB)
          df_generos = (
              df.melt(id_vars=["IMDB_Rating"], value_vars=genero_counts,
                      var_name="Gênero", value_name="Presença")
              .query("Presença == 1")
          )
          # Boxplot
          plt.figure(figsize=(12,6))
          sns.boxplot(x="Gênero", y="IMDB_Rating", data=df_generos, palette="Set2")
          plt.title("Distribuição do IMDB Rating por Gênero (Top 10 mais frequentes)", fontsize=14, weight
          plt.xlabel("Gênero")
          plt.ylabel("IMDB Rating")
          plt.ylim(6,10)
          plt.xticks(rotation=25, ha="right")
          plt.show()
         C:\Users\guima\AppData\Local\Temp\ipykernel_8300\3166432416.py:13: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th e `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x="Gênero", y="IMDB_Rating", data=df_generos, palette="Set2")


```
sns.set_theme(style="whitegrid")
In [271...
          # Contagem por gênero usando as dummies (0/1)
          counts = df[genre_cols].sum().sort_values(ascending=False).head(10)
          plot_df = counts.reset_index()
          plot_df.columns = ["Gênero", "Quantidade"]
          plt.figure(figsize=(10,5))
          ax = sns.barplot(data=plot_df, x="Quantidade", y="Gênero", palette="crest")
          ax.set_title("Top 10 Gêneros por Quantidade de Filmes", weight="bold")
          ax.set_xlabel("Quantidade de Filmes")
          ax.set_ylabel("Gênero")
          # Rótulos no fim de cada barra
          for p in ax.patches:
              ax.text(p.get_width() + 5, p.get_y() + p.get_height()/2,
                      int(p.get_width()), va="center", ha="left", fontsize=10)
          plt.tight_layout()
          plt.show()
```

```
C:\Users\guima\AppData\Local\Temp\ipykernel_8300\1845464064.py:10: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

ax = sns.barplot(data=plot_df, x="Quantidade", y="Gênero", palette="crest")
```

Top 10 Gêneros por Quantidade de Filmes

In [272... df.groupby("Certificate")["IMDB_Rating"].mean().plot(kind="bar")
 plt.title("Média do rating por classificação indicativa")
 plt.show()

4.5 Popularidade & bilheteria & Diretor:

Nesta parte analiso indicadores de **sucesso** e os **principais realizadores**:

- Filmes mais votados (popularidade)
- Notas e Metascores dos mais votados
- Filmes com major bilheteria
- Receita dos filmes mais bem avaliados
- Diretores mais recorrentes
- Médias de IMDB por diretor

Com isso, consigo conectar **qualidade percebida (notas)**, **engajamento do público (votos)** e **resultado comercial (bilheteria)**, além de destacar os diretores mais relevantes do dataset.


```
In [274... top_directors_count = df['Director'].value_counts().head(10)

plt.figure(figsize=(10,5))
    sns.barplot(x=top_directors_count.index, y=top_directors_count.values, palette="crest")
    plt.xticks(rotation=45, ha='right')
    plt.title("Top 10 Directores com Mais Filmes no Dataset", fontsize=14, weight="bold")
    plt.xlabel("Director")
    plt.ylabel("Quantidade de Filmes")
    plt.show()
```

C:\Users\guima\AppData\Local\Temp\ipykernel_8300\2181370877.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th e `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=top_directors_count.index, y=top_directors_count.values, palette="crest")


```
In [275...
          top_voted = (
               df.sort_values("No_of_Votes", ascending=False)
                 .head(7)
                 .copy()
          )
          plt.figure(figsize=(14,5))
          ax = sns.barplot(
              x="Series_Title",
              y="No_of_Votes",
              data=top_voted
          ax.set_title("Filmes Mais Votados", weight="bold")
          ax.set_xlabel("")
          ax.set_ylabel("Número de Votos")
          ax.yaxis.set_major_formatter(fmt_milhoes)
          plt.xticks(rotation=25, ha="right")
          plt.tight_layout()
          plt.show()
```



```
In [276...
    plt.figure(figsize=(14,5))
    ax = sns.barplot(
        x="Series_Title",
        y="IMDB_Rating",
        data=top_voted
)
    ax.set_title("Notas IMDB dos Filmes Mais Votados", weight="bold")
    ax.set_xlabel("")
    ax.set_ylabel("Nota IMDB")
    plt.ylim(0, 10)
    plt.xticks(rotation=25, ha="right")
    plt.tight_layout()
    plt.show()
```



```
In [277...
top_voted_meta = top_voted.dropna(subset=["Meta_score"]).copy()

plt.figure(figsize=(14,5))
ax = sns.barplot(
    x="Series_Title",
    y="Meta_score",
    data=top_voted_meta
)

ax.set_title("Metascore dos Filmes Mais Votados", weight="bold")
ax.set_xlabel("")
ax.set_ylabel("Metascore")
plt.xticks(rotation=25, ha="right")
plt.tight_layout()
plt.show()
```



```
In [278...
          min_votos = 50000 # filtro para evitar filmes com poucos votos
          top_rated = (
              df[df["No_of_Votes"] >= min_votos]
                 .sort_values(["IMDB_Rating", "No_of_Votes"], ascending=[False, False])
                 .head(7)
                 .dropna(subset=["Gross_float"])
                 .copy()
          )
          plt.figure(figsize=(14,5))
          ax = sns.barplot(
              x="Series_Title",
              y="Gross_float",
              data=top_rated
          ax.set_title("Receita (Gross) dos Filmes Mais Bem Avaliados", weight="bold")
          ax.set_xlabel("")
          ax.set_ylabel("Receita (US$)")
          ax.yaxis.set_major_formatter(fmt_bilhoes if top_rated["Gross_float"].max() >= 1e9 else fmt_milhoe
          plt.xticks(rotation=25, ha="right")
          plt.tight_layout()
          plt.show()
```



```
ax = sns.barplot(
    x="Series_Title",
    y="Gross_float",
    data=highest_earning
)
ax.set_title("Filmes com Maior Bilheteria", weight="bold")
ax.set_xlabel("")
ax.set_xlabel("")
ax.set_ylabel("Receita (US$)")
ax.yaxis.set_major_formatter(fmt_bilhoes if highest_earning["Gross_float"].max() >= 1e9 else fmt_plt.xticks(rotation=25, ha="right")
plt.tight_layout()
plt.show()
```



```
In [280...
          anos\_top = (
              df["Released_Year"]
                 .dropna()
                 .astype(int)
                 .value_counts()
                 .sort_values(ascending=False)
                 .head(10)
                                 # opcional: ordenar cronologicamente
                 .sort_index()
          )
          plt.figure(figsize=(16,5))
          ax = sns.barplot(x=anos_top.index, y=anos_top.values)
          ax.set_title("Anos com Mais Lançamentos (Top 10)", weight="bold")
          ax.set_xlabel("Ano")
          ax.set_ylabel("Número de Filmes")
          plt.tight_layout()
          plt.show()
```


5. Hipoteses:

Hipótese 1

Filmes de ação e aventura tendem a gerar mais bilheteria do que filmes de crime ou comédia, mesmo que as notas médias de avaliação (IMDB) — atribuídas pelo público — sejam muito próximas entre os gêneros.

Evidências nos dados:

• Bilheteria por gênero (Boxplot)

O boxplot mostra que os gêneros **Ação, Aventura e Animação** apresentam medianas de bilheteria mais altas e maior presença de outliers extremamente lucrativos (blockbusters).

Em contraste, gêneros como **Crime e Comédia** concentram bilheteiras menores e distribuições menos dispersas.

• Notas médias por gênero (Barplot)

O gráfico de médias de IMDB por gênero revela que **as notas são praticamente iguais entre os gêneros**, ficando todas na faixa de **7.9 a 8.0**.

Isso indica que o público avalia de forma semelhante filmes de diferentes gêneros, não havendo diferença relevante na percepção de qualidade.

Conclusão parcial:

A análise sugere que o sucesso comercial está mais associado ao gênero do filme do que à avaliação média do público.

Enquanto Ação e Aventura concentram as maiores receitas, os gêneros não se diferenciam de maneira significativa nas notas de avaliação.

Hipótese 2

Filmes com maior número de votos também tendem a ter maior bilheteria, sugerindo que popularidade (engajamento do público) está relacionada com sucesso comercial.

Evidências nos dados:

• Heatmap de correlação

A matriz de correlação mostra uma relação positiva entre **No_of_Votes** e **Gross_float** com coeficiente de **0.59**, o mais forte entre as variáveis analisadas.

Isso indica que, quanto mais votos um filme recebe, maior tende a ser sua bilheteria.

Scatterplot (No. de Votos × Bilheteria, escala log–log)

O gráfico de dispersão mostra uma **tendência ascendente clara**: filmes que acumulam mais votos geralmente registram bilheteiras mais altas.

A escala logarítmica deixa evidente que, mesmo em diferentes ordens de grandeza, o padrão de crescimento se mantém.

Conclusão parcial:

Essas evidências reforçam que popularidade e engajamento do público (número de votos no IMDB) estão diretamente associados ao sucesso financeiro de um filme.

Hipótese 3

Notas do público (IMDB Rating) e notas da crítica especializada (Meta_score) estão correlacionadas, mas não de forma muito forte. Isso indica que alguns filmes são bem avaliados pelo público, mas não pela crítica, e vice-versa.

Evidências nos dados:

• Heatmap de correlação

A matriz de correlação mostra uma associação positiva entre **IMDB_Rating** e **Meta_score**, com coeficiente de aproximadamente **0.27**.

Apesar de positiva, essa correlação é **moderada**, o que sugere que nem sempre público e crítica concordam em suas avaliações.

Scatterplot (Meta_score × IMDB Rating)

O gráfico de dispersão confirma essa leitura:

- Existe uma tendência ascendente geral (quanto maior o Meta_score, maior tende a ser o IMDB Rating).
- Porém, há grande dispersão de pontos, indicando que muitos filmes fogem desse padrão alguns bem avaliados pelo público, mas não pela crítica, e o contrário também.

Conclusão parcial:

A análise mostra que há **alguma convergência entre público e crítica**, mas ela não é forte. Isso abre espaço para investigar casos específicos em que há **grande divergência de percepção** entre espectadores e especialistas.

Hipótese 4

A crítica especializada (Meta_score) se tornou mais rigorosa ao longo do tempo, resultando em notas médias mais baixas para filmes lançados em décadas recentes.

Evidências nos dados:

• Heatmap de correlação

A matriz de correlação mostra uma relação **negativa moderada (-0.34)** entre Released_Year e Meta score .

Isso indica que, conforme os anos avançam, os filmes tendem a receber notas mais baixas da crítica especializada.

• Gráficos temporais de Meta_score

A evolução do **Meta_score médio por ano/década** evidencia uma **queda consistente ao longo das décadas**, com destaque para uma redução acentuada a partir de 1960.

Apenas nos anos mais recentes há uma leve recuperação, mas ainda em patamar inferior ao do início do século XX.

Conclusão parcial:

Os dados sugerem que a **crítica se tornou mais rigorosa ou menos generosa em suas avaliações ao longo do tempo**, ao contrário do público (IMDB Rating), cujas notas se mantêm relativamente estáveis.

Hipótese 5

Filmes com maior número de votos tendem a receber notas médias ligeiramente mais altas no IMDB, sugerindo que a popularidade pode estar associada a avaliações mais positivas do público.

Evidências nos dados:

• Heatmap de correlação

O mapa de correlação mostra uma associação positiva entre **No_of_Votes** e **IMDB_Rating**, com coeficiente de **0.48**.

Esse valor indica uma correlação **moderada**, ou seja, filmes com mais votos tendem a apresentar notas um pouco mais altas.

• Dispersão (No. de Votos × IMDB Rating)

O gráfico de dispersão com escala log no eixo X evidencia que filmes com maior número de votos se concentram em notas elevadas no IMDB.

A linha de regressão (vermelha) mostra uma tendência ascendente, ainda que suave, reforçando a ideia de que maior popularidade está ligada a avaliações médias mais altas.

Conclusão parcial:

A análise sugere que a popularidade de um filme (quantidade de votos) pode ter influência sobre sua avaliação média no IMDB.

Embora a correlação não seja forte, os dados indicam que filmes muito votados tendem a consolidar **notas mais altas** do público.

6. Integração com Outra Base de Dados

Além da análise feita com a base original de **999 filmes (IMDB Top 1000)**, salvei os dados tratados para um **futuro processo de integração** com uma segunda base, composta por **5000 filmes adicionais do IMDB**.

Esse processo de junção já foi desenvolvido em um **01_2_extra_data.ipynb**, com o objetivo de:

- Aumentar o número de registros disponíveis para análise.
- Enriquecer o conjunto de dados com novas variáveis e filmes não contemplados na base inicial.
- Permitir comparações mais amplas sobre padrões de gênero, bilheteria, popularidade e avaliações ao longo do tempo.

Observação: nesta análise atual permaneço apenas com a base original (999 filmes), mas mantenho documentado que existe uma versão expandida do dataset já preparada para as proximas etapas do desafio!!.

Salvando o Dataset atual na pasta de dados processados, para usar futuramente.

```
In [281... df.to_csv("..\data\processed\df_eda01.csv", index=False)

<>:1: SyntaxWarning: invalid escape sequence '\d'
  <>:1: SyntaxWarning: invalid escape sequence '\d'
  C:\Users\guima\AppData\Local\Temp\ipykernel_8300\2351804487.py:1: SyntaxWarning: invalid escape sequence '\d'
```

df.to_csv("...\data\processed\df_eda01.csv", index=False)