

Simple Addictive Weighting

Sukma Evadini, S.T., M.Kom

Capaian Pembelajaran

- Mahasiswa mampu menjelaskan konsep dasar kecerdasan bisnis, dan ruang lingkup business intelligence
- Mahasiswa mampu menjelaskan Konsep Aset informasi dalam Perusahaan
- Mahasiswa mampu menjelaskan menerapkan Algoritma Sistem Pengambilan Keputusan
- Mahasiswa mampu menjelaskan dan memahami Data warehouse
- Mahasiswa mampu menjelaskan dan melakukan eksplorasi data
- Mahasiswa mampu menjabarkan dan menjelaskan konsep data mining (DM) dan beberapa metode data mining secara umum
- Mahasiswa mampu menjelaskan prinsip dasar OLAP
- Mahasiswa mampu menjelaskan pentingnya visualisasi data
- Mahasiswa mampu menjelaskan mengenai konsep Big Data

La Tantangan Industri Batam

Fakta Industri Batam

- 3000+ perusahaan manufaktur (elektronik, shipbuilding, logistik)
- Keputusan kompleks dengan multiple conflicting criteria
- Biaya keputusan salah: Rp 100-500 juta/tahun

X Masalah

- Keputusan subjektif
- Human bias
- Inconsistency

Solusi

- Sistem objektif
- Terukur & transparan
- Auditable

Multi-Criteria Decision Making

Proses evaluasi dan pemilihan alternatif terbaik berdasarkan multiple conflicting criteria

Trade-off Dilemma

Harga Murah ↔ Kualitas Tinggi

Meningkatkan satu aspek sering menurunkan aspek lain

Metode MCDM Populer:

SAW

Simple Additive

TOPSIS

Distance Based

AHP

Pairwise Compare

PROMETHEE

Outranking

ELECTRE

Elimination

VIKOR

Compromise

Simple Additive Weighting (SAW)

Prinsip Kerja SAW:

📊 Normalisasi → 🎄 Pembobotan → 🕂 Penjumlahan → 🦹 Ranking

$$V = \Sigma (W_j \times r_{ij})$$

Kelebihan

/ Simple & intuitive

Komputasi cepat

/ Transparan

© Cocok Untuk

/ Banyak alternatif

Data kuantitatif

/ Keputusan cepat

7 Langkah Algoritma SAW

LANGKAH 1: Tentukan Alternatif (A₁, A₂, ..., A_n)

LANGKAH 2: Tentukan Kriteria (C₁, C₂, ..., C_m)

→ Benefit (↑ lebih baik) atau Cost (↓ lebih baik)

LANGKAH 3: Berikan Bobot (W₁, W₂, ..., W_m)

 \rightarrow Total bobot = 1.0

LANGKAH 4: Buat Decision Matrix X

LANGKAH 5: Normalisasi Matrix X → R

LANGKAH 6: Hitung Preference Value (V_i)

LANGKAH 7: Ranking dari V tertinggi

Studi Kasus

PT Elektronika Batam

Contract manufacturer PCB untuk perusahaan multinasional

Business Need:

Memilih supplier komponen IC (Integrated Circuit)

• Volume: 100,000 unit/bulan

• Budget: Rp 2 miliar/bulan

• Target reject rate: < 0.5%

4 Kandidat Supplier:

Langkah 1-2: Alternatif & Kriteria

Alternatif (4):

 A_1 = Supplier A (Batam) | A_2 = Supplier B (Jakarta)

 A_3 = Supplier C (Singapore) | A_4 = Supplier D (China)

Kriteria (4):

Kode	Kriteria	Unit	Tipe
C ₁	Harga per unit	Rupiah	COST 1
C ₂	Quality Score	0-100	BENEFIT ↑
C₃	Delivery Time	Hari	COST 1
C ₄	Service Rating	1-10	BENEFIT ↑

Langkah 3: Pembobotan Kriteria

Kriteria	Bobot	%	Rasional
C ₁ (Harga)	0.35	35%	Paling penting - impact profitability
C₂ (Kualitas)	0.30	30%	Critical - customer satisfaction
C₃ (Delivery)	0.20	20%	Penting - production scheduling
C ₄ (Service)	0.15	15%	Supporting - long-term partnership
TOTAL		100%	✓ Valid

35% | 👚 30% | 🚀 20% | 🤛 15%

Harga + Kualitas = 65%

karena secara langsung memiliki impact terhadap keuntungan finansial akhir dan customer retention

Langkah 4: Decision Matrix

Data Aktual Supplier:

Supplier	C₁: Harga (Rp)	C ₂ : Kualitas	C₃: Delivery	C ₄ : Service
A (Batam)	18,500	85	3 hari	7
B (Jakarta)	17,000	90	5 hari	8
C (Singapore)	22,000	95	2 hari	9
D (China)	15,000	75	7 hari	6

Observasi:

- Supplier D termurah tapi kualitas terendah
- Supplier C termahal tapi excellent semua

? Masalah: Data dalam unit berbeda!

Solusi: NORMALISASI

Langkah 5: Konsep Normalisasi

Mengapa Normalisasi?

Transform semua data ke skala 0-1 agar dapat dibandingkan secara fair

Formula Normalisasi:

Hasil: Semua nilai dalam range [0 - 1] dimana 1.0 = performa terbaik

Langkah 5: Perhitungan Normalisasi


```
C<sub>1</sub> HARGA (COST): min = 15,000
r_{11} = 15,000/18,500 = 0.811 \mid r_{21} = 15,000/17,000 = 0.882
r_{31} = 15,000/22,000 = 0.682 \mid r_{41} = 15,000/15,000 = 1.000 \checkmark
r_{33} = 2/2 = 1.000 \checkmark \mid r_{43} = 2/7 = 0.286

C<sub>2</sub> KUALITAS (BENEFIT): max = 95
r_{12} = 85/95 = 0.895 \mid r_{22} = 90/95 = 0.947
r_{32} = 95/95 = 1.000 \checkmark \mid r_{42} = 75/95 = 0.789
r_{34} = 9/9 = 1.000 \checkmark \mid r_{44} = 6/9 = 0.667
```

Matrix R (Ternormalisasi):

Supplier	r₁ (Harga)	r₂ (Kualitas)	r₃ (Delivery)	r₄ (Service)
Α	0.811	0.895	0.667	0.778
В	0.882	0.947	0.400	0.889
С	0.682	1.000	1.000	1.000
D	1.000	0.789	0.286	0.667

Langkah 6: Preference Value


```
V_i = \Sigma (W_j \times r_{ij})
V₁ (Supplier A):
= (0.35 \times 0.811) + (0.30 \times 0.895) + (0.20 \times 0.667) + (0.15 \times 0.778)
= 0.284 + 0.269 + 0.133 + 0.117
= 0.803
V₂ (Supplier B):
= (0.35 \times 0.882) + (0.30 \times 0.947) + (0.20 \times 0.400) + (0.15 \times 0.889)
= 0.309 + 0.284 + 0.080 + 0.133
= 0.806
V₃ (Supplier C):
= (0.35 \times 0.682) + (0.30 \times 1.000) + (0.20 \times 1.000) + (0.15 \times 1.000)
= 0.239 + 0.300 + 0.200 + 0.150
= 0.889 🚆
V<sub>4</sub> (Supplier D):
= (0.35 \times 1.000) + (0.30 \times 0.789) + (0.20 \times 0.286) + (0.15 \times 0.667)
= 0.350 + 0.237 + 0.057 + 0.100
= 0.744
```


Langkah 7: Ranking & Rekomendasi

Supplier D China

REKOMENDASI: Pilih Supplier C sebagai Main Supplier

• Justifikasi: Meskipun harga tertinggi, Supplier C unggul di kualitas (95), delivery tercepat (2 hari), dan service terbaik (9/10).
Premium price justified by overall value!

Sensitivity Analysis

Tes bagaimana hasil bisa berubah dari perbedaan bobot

Robustness Conclusion

Supplier C menang di 2 dari 3 scenario → ROBUST CHOICE!

🎤 Best Practice: Selalu lakukan analisa sebelum keputusan akhir untuk mendapatkan hasil yang sesuai dengan kebutuhan organisasi

Aplikasi SAW di Industri

Procurement

- Supplier selection
- Vendor evaluation
- Material sourcing

Human Resources

- Employee recruitment
- Performance appraisal
- Promotion decisions

Project Management

- Project prioritization
- Resource allocation
- Contractor selection

Finance

- Investment portfolio
- Credit scoring
- Budget allocation

SAW vs Metode MCDM Lain

Aspek	SAW	TOPSIS	AHP
Kompleksitas	★ Simple	★ ★ Moderate	★ ★ Complex
Kecepatan	∳ Sangat Cepat	∳ Cepat	Lambat
Transparansi	Excellent	✓ Good	▲ Moderate
Software Need	X Excel OK	X Excel OK	☑ Perlu Software
Learning Curve	Easy	▲ Moderate	× Steep

Gunakan SAW Jika:

- Perlu keputusan cepat
- Stakeholder non-technical
- Transparansi penting
- Data quantitative

Pertimbangkan Lain Jika:

- Kriteria hierarchical → AHP
- Perlu distance-based → TOPSIS
- Rank reversal concern → PROMETHEE

Kesimpulan & Key Takeaways

- **©** Key Takeaways:
- SAW adalah metode DSS yang simple namun powerful
- 2 7 Langkah: Alternatif → Kriteria → Bobot → Data → Normalisasi → Weighted Sum → Ranking
- Formula kunci: Benefit (r_{ij} = x_{ij}/max) & Cost (r_{ij} = min/x_{ij})
- Always conduct sensitivity analysis
- 5 Aplikasi luas di procurement, HR, PM, finance

"Turn data into information, and information into insight"