

33

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(21) International Application Number: PCT/US97/05659 (22) International Filing Date: 7 April 1997 (07.04.97) (23) Priority Data: (60/015,330) (24) April 1996 (12.04.96) (25) November 1996 (25.11.96) (27) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): STACK, Douglas, R. [US/US]; 12228 Wesley Place, Fishers, IN 46038 (US). THOMPSON, Richard, C. [US/US]; 763 North County Road, 900 West, Frankfort, IN 46041 (US). (74) Agents: PAGE, Kathleen, R., S. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).	(51) International Patent Classification ⁶ : A61K 38/00, 38/12, 38/14, C07K 9/00	A1	 (11) International Publication Number: WO 97/38702 (43) International Publication Date: 23 October 1997 (23.10.97)
	(22) International Filing Date: 7 April 1997 (c) (30) Priority Data: 60/015,330 12 April 1996 (12.04.96) 60/031,736 25 November 1996 (25.11.9) (71) Applicant (for all designated States except US): EL AND COMPANY [US/US]; Lilly Corporate Cen anapolis, IN 46285 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): STACK, Don [US/US]; 12228 Wesley Place, Fishers, IN 460 THOMPSON, Richard, C. [US/US]; 763 North Road, 900 West, Frankfort, IN 46041 (US). (74) Agents: PAGE, Kathleen, R., S. et al.; Eli Lilly and C	07.04.9 li LiLi hter, Induglas, 138 (U.) h Cour	CA, CN, CU, CZ, EE, GE, GH, HU, IL, IS, JP, KE, KG KP, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO paten (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM AZ, BY, KG, KZ, MD, RU, TJ, TM), OAPI patent (BF, BJ CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(57) Abstract

The present invention is directed to certain glycopeptide dimers in which two glycopeptide units are covalently linked to one another through a modifiable amine on a saccharide. These dimers are useful as antibacterials, especially for the control of gram positive bacteria; the compounds are particularly useful for the control of resistant bacterial strains, such as vancomycin-resistant-enterococci ("VRE").

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	lceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KC	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Саттегооп		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SR	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 97. \$8702 PCT/US97/05659

-1-

COVALENTLY-LINKED GLYCOPEPTIDE DIMERS

The present invention is directed to glycopeptide dimers covalently linked to one another through an amine function of an amino sugar. The invention is further directed to antibacterial methods employing, and pharmaceutical formulations comprising, such glycopeptide dimers.

10

15

20

Glycopeptides are a class of antibiotics; see, e.g., "Glycopeptide Antibiotics", edited by Nagarajan (Marcel Dekker, Inc., 1994). Two of them, vancomycin and teicoplanin, are sold as antibacterial products for the control of gram positive bacterial infections. Vancomycin, the earlier-discovered of the two, was used for several decades with no bacterial resistance emerging. However, in the late 1980s, resistance was detected (Lancet I, 1988, 57-88). Such resistance has increased in the years since then; see "Nosocomial Enterococci resistant to Vancomycin -- United States, 1989-1993", MMWR Morbid Mortal Wkly. Rep. (Centers for Disease Control and Prevention). Resistance can be to either or both of these antibiotics, and/or also to methicillin. Resistant organisms have become common in nosocomial settings, presenting special risks for immunocompromised persons. Resistant bacteria present a formidable challenge to society.

The present invention provides a new tool in the armamentorium for controlling resistant bacteria.

The present invention is directed to glycopeptide dimers which are covalently linked through an amine function of an

-2-

amino sugar. The identity of the glycopeptide is not critical, except that it comprises a modifiable amine on a sugar. Preferred glycopeptides are those of the vancomycin type, also known as dalbaheptides (<u>J. Antibiotics</u>, Dec.,

5 1989, page 1892).

Representative glycopeptides include:

vancomycin,

A82846A.

A82846B,

10 A82846C,

PA-42867-A,

PA-42867-C.

PA-42867-D,

A83850A,

15 A83850B,

actinoidin,

avoparcin,

galacardin,

helevecardin, and

20 M47767.

25

The linking group which functions to covalently link the two glycopeptide units is similarly not critical. The present dimers are most conveniently prepared by the reaction of the glycopeptide and a bisaldehyde, followed by reduction. Therefore, the linking group is the chemical unit internal to the aldehyde groups of any bisaldehyde.

In one embodiment, the present invention is directed to specific dimer compounds defined by Formula I:

In the above formulae, each of G and G' is independently selected from the group consisting of deshydrovancomycin of the formula:

and deshydroA82846B of the formula:

HO CH₃ O CH₂OH

$$H_{3}$$
 C H_{3} C H_{4} O H_{4} H_{4} H_{5} $H_$

wherein Y 1 is OH or $^{-N} \stackrel{\searrow}{\stackrel{\searrow}{\stackrel{}}} ^2$ and Y 2 is defined as follows:

(1) each Y^2 independently represents

5 hydrogen,

alkyl of C_1-C_{10} ,

cycloalkyl of C5-C6.

cycloalkenyl of C5-C6,

naphthyl,

10 biphenylyl,

radical of the formula $-Y^3-(Y^4)_0$, 1, or 2, wherein Y^3 is loweralkyl of C_1 - C_6 optionally substituted by from one to three substituents, each of which is independently selected from the group consisting of halo, nitro, cyano, alkoxy,

15 haloalkyl, and haloalkoxy; and Y^4 is ${}^{-N} \stackrel{Y^5}{\searrow} Y^5$ wherein Y^5 is

-5-

independently hydrogen or loweralkyl of C_1 - C_4 , or Y^4 is phenyl or phenyl substituted with from one to three substituents, each of which is independently

halo,

5 nitro,

loweralkyl of C_1 - C_4 ,

cycloalkyl of C5-C6,

loweralkoxy of C1-C4,

haloloweralkyl of C_1 - C_4 , or

10 haloloweralkoxy of C₁-C₄; or

- (2) one Y^2 is hydrogen and the other Y^2 is (2-furanon-3-y1);
- (3) both Y²s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional hetero ring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C1-C2,
- 20 loweralkoxy of C₁-C₂, phenyl, benzyl, or C₁-C₆-alkanoyl; and L is a divalent linking radical of the formula A:

25 wherein A is:

-6-

alkylene of C1-C16.

(alkylene of C_1 - C_4 -X') $_q$ -alkylene of C_1 - C_4 , wherein q is 1-3,

alkylene of C_1 - C_8 -X'-alkylene of C_1 - C_8 ;

alkylene of C_1 - C_2 -X-C $\begin{array}{c} O \\ I \\ C \end{array}$ $\begin{array}{c} C \\ C \end{array}$

10 each R^1 is independently

CH2,

Ο,

s,

0 0 || || -X-C- or -C-X-,

 $-\xi - x' - \xi - x' -$

wherein each R independently represents halo, loweralkyl of C_1 - C_6 , loweralkoxy of C_1 - C_6 , phenyl, or phenyl substituted by from 1 to 2 substituents, each of which is independently halo, loweralkyl of C_1 - C_6 , or loweralkoxy of C_1 - C_6 ; each X is independently -O- or -N- wherein R^2 is H or loweralkyl of R^2

 $C_1\text{-}C_4;$ and each X' is independently -O-, -S-, or -N- wherein $\frac{1}{R^2}$

 ${\bf R}^2$ is as defined above; or L is a divalent linking radical of the formula B:

B. -alkylene of $C_1-C_8-R^3-X''-R^3$ -alkylene of C_1-C_8-

wherein X^* represents alkylene of $C_1\text{-}C_4$ or a phenylene of the formula

20

15

-8-

wherein R is as defined above; and each R^3 is independently CH_2 or O. Salts of the foregoing dimers can be used.

In compounds of Formula I, the glycopeptide units, G and G', may be identical or different. Any "alkylene" of C_2 or higher can be straight chain or branched.

Certain compounds are preferred. Symmetrical compounds (G=G') and/or both R^1 are identical), are preferred for their more efficient synthesis.

Antibacterial activity is enhanced by employing

10 preferred "L" groups. Preferences include the following,
individually and in any combination:

L = a linking radical of formula A

L = a linking radical of formula B wherein the carbon attached to -CH₂-G or to -CH₂-G' is branched

 $R^1 = O$

A = alkylene of C_1 - C_{16} , especially straight-chain and especially C_6 - C_{12} ;

A = (alkylene of C_1 - C_4 -X') $_q$ -alkylene of C_1 - C_4 , especially wherein X'=0; the alkylene is -(CH_2) $_2$ -;

20 and q=2;

R = phenyl and substituted phenyl, especially
chlorophenyl; and especially when R has this value
on a phenyl ring within "A".

Other preferences will be apparent from the further teachings herein.

Representative dimers of Formula I are set forth in following TABLE 1.

TABLE 1	
•	

ſ								
	1,2-ethanediyl-bis-{(oxy-4,1-phenylene)nethylene}-bis-(vancomycin)	1,4-butanediyl-bis-[(oxy-2,1-phenylene)-methylene]-bis	1,5-pentanediyl-bis- [(oxy-4,1-phenylene)- methylene]-bis-	vancomycin 1,5-pentanediyl-bis- (oxy-3,1-phenylene) - methylene -bis-	lyancomycin] 1,6-hexanediyl-bis-{oxy-4,1-phenylene}- methylene}-bis-	[Vancomycin] [3-methyl-1,5- pentanediyl-bis[(oxy-4,1- phenylene)-methylene]-	D1S-[Vancomycin] 1,7-heptanediyl-bis-[oxy-4,1-phenylene]- methylene[-bis-	<pre>lvancomycin 1,8-octanediyl-bis-[(oxy- 4,1-phenylene)- methylene]-bis- [vancomycin]</pre>
	-{	-{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-}{\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	-{ - (CH ₂) ₆ -0-(CH ₂) ₇ -	-{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-{{ CH ₂ , CH ₂	-{{\\ \ \o-(\circ\lambda_1)_1\-\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-{
,ò	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco
O	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco
Ex. #	-	2	3	4	S	vo	7	ω

Nаme	1,9-nonanediyl-bis-[(oxy-4,1-phenylene). methylene -bis-[vancomycin]	1,2-ethanediyl-bis-[oxy- 1,2 ethyleneoxy-4,1- phenylene] methylene bis-[vancomycin]	1,4-phenylene-bis- [(carbonyloxy-1,2- ethylene-oxy-2,1- phenylene)]-methylene]- bis-[vancomycin]	1,3-phenylene-bis-[(oxy-1,3-n-propyleneoxy-4,1-phenylene)]-methylene]-bis-[vancomycin]	1,8-octanediyl-bis-[(oxy-4,1-phenylene). methylene - [vancomycin [A82846B]	1,3-propanediyl-bis- [foxy-4,1-phenylene]- methylene]-bis-[A82846B]	1,4-butanediyl-bis-{(oxy-2,1-phenylene)- methylene}-bis-{A82846B}	1,5-pentanediyl-bis- [(oxy-4,1-phenylene)- methylene]-bis-[A82846B]
7	-}{_\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	$ \{ $	$\begin{cases} $	-}	$- \left\{ \left\langle -\right\rangle - 0 - \left\langle -\right\rangle + 0 - \left\langle -\right\rangle \right\}.$	-}{\\\c-\(\cup_1\(\alpha\)\\-\\-\\\-\\\\-\\\\\\\\\\\\\\\\\\\\\	} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-}
,s	Vanco	Vanco	Vanco	Vanco	Vanco	A82846B	A82846B	A82846B
ອ	Vanco	Vanco	Vanco	Vanco	A82846B	A82846B	A82846B	A82846B
Ex.#	6	10	11	12	13	14	15	16

Ex. #	G A82846B	, G' A82846B	J	Name 1,5-pentanediyl-bis-
8	A82846B	A82846B		[(oxy-3,1-phenylene]- methylene]-bis-[A82846B]
			-}{\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	1,6-hexahediyl-bis-[(oxy-4,1-phenylene) methylenel-bis-[ABZRJAH
19	A82846B	A82846B	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	{3-methyl-1,5- pentanediyl}-Lisf(ox; 4,1-phenylene)-
20	A82846B	A82846B	} -0-(CH ₂),-0-{}	methylene -bis-(A82846B)
21	A82846B	A82846B	-{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,8-octanediyl-bis-[(oxy-4,1-phenylene)-methylene-bis A87846R1
22	A82846B	A82846B	. HCl salt	(Z)
		A0.2840B	-{	1,8-octanediyl-bis-[(oxy-3,1-phenylene). methylene]-bis-[A82846B]
24	A82846B	A82846B	-} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,8-octanediyl-bis-[loxy3-n-pentyloxy-4,1-phenylene]methylene]bis[A82846B]
25	A82846B	A82846B	1.pentyl n-pentyl s.p0-(CH ₂) ₉ -0-(CH ₂	1,9-nonanediyl-bis-[(oxy-4,1-phenylene]-methylene)-

Name	1,10-decanediyl-bis- [(oxy-4,1-phenylene). methylene -bis-[A82846B]	1, 12-dodecanediyl-bis- (oxy-4, 1-phenylene)- methylene -bis-(A82846B)	1, 16-hexadecanediyl-bis- [(oxy-4,1-phenylene)- methylene]-bis-[A82846b]	1,2-ethanediyl-bis-[(oxy- 1,2-ethyleneoxy-4,1- phenylene)methylene] bis(A82846B]	1,3-phenylene-bis-{(oxy- 1,3-n-propyleneoxy-4,1- phenylene)methylene} bis[A82846B]	1,4-phenylene-bis- { (carbonyloxy-1,2- ethyleneoxy-2,1- phenylene)methylene}- bis[A82846B]	1,3-{5-biphenylyl-bis- (oxy-1,3-n-propyleneoxy- 4,1-phenylenelmethylene}- bis{AB2846B}
1	-} < \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-{{\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\left\{ \left\{ - \left(- \left(- \left(- \left(- \left(- \left(- \left($	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		.} -> (CII ₂) ₃ -0-(CII ₂) ₃ -(CII ₂) ₃
ò	A82846B	A82846B	A82846B	А82846В	A82846B	A82846B	АВ2846В
o	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B	А82846В
Ex.	26	27	28	29	30	31	32

Name	1,6-hexanediylbis[oxy- [4,4'-biphenylene]- methylene]bis (A82846B)	1,3-phenylenebis[oxy-1,5-n-pentyleneoxy [4,1-phenylene]methylene] bis (A82846B)	1,8-octanediylbis{oxy-4- phenyl-{3,1-biphenylene}- methylene}bis (A82846B)	1,8-octanediylbis-[(oxy- [3,1-phenylene)- methylene]- bis[vancomycin]	1.6-hexanediylbis[oxy- [4.4'-biphenylene]- methylene -bis- [vancomycin]	1,8-octanediylbis-[(oxy-4-iodo-3,1-phenylene)methylene)bis-[vancomycin]
1	-{{	\$__\-_\-_\\\\\\\\\\\\\\\\\\\\\\\\\\	-} 	$-\frac{1}{2} -0 - (CH_2)_8 - 0 - \left\{ -\frac{1}{2} - \frac{1}{2} - \frac$	-}{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-{ -{ -{ -{ -{ -{ -{ -{ -{ {
9	A82846B	A82846B	A82846B	Vanco	Vanco	Vanco
9	A82846B	A82846B	A82846B	Vanco	Vanco	Vanco
Ex. #	33	34	35	36	37	93 8

Vanco
Vanco CH ₃ -{-(CH ₂),0-CH ₃ CH ₃
Vanco CH_3 $-\begin{cases} -CH_2 & -CH_$
Vanco -{
Vanco
Vanco

Name	1,8-octanediylbis-{(oxy-4-iodo-3,1-phenylene)methylene bis-	[A82846B]	1,3-phenylene-bis-f-oxy- {5-methyl-5,1-hexylene}- bis{A82846B}		1,3-phenylene-bis-[(oxy-1,7-n-heptyleneoxy-4,1-	phenylene)methylenej-bis- [A82846B]	1,4-butanediylbis-[oxy-5- methyl-5,1-hexylene]-bis-	[A82846B]	1,3-phenylene-bis(oxy-	phenylenelmethylenel- bis[A82846B]	1,3-phenylenebis(oxy-1,3-	phenylene)methylene) A82846B/A82846B, (3-	dimethylaminopropyl)amide
		-\{__\0-\(\chi_0\)-\	H.	-{-!;(cH ₂),0(cH ₂), :-{{cH ₃ }, :-{cH ₃ },		.} \\ -0-(CH ₂),-0-(CH ₂),-0-(CH ₂),-0-\\ \}	CH, CH,	$-\frac{1-C-(CH_2)}{1-C-CH_2}$ $-\frac{1-C-C-CH_2}{1-C-C-CH_3}$ $-\frac{1-C-C-CH_3}{1-C-C-CH_3}$		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
.	A82846B		A82846B		A82846B		A82846B		A82846B		A82846B		
	AB2846B		A82846B		A82846B		A82846B		A82846B			dimethyla mino	propy1)-
7	45		46		47		48		49		05		

Name	1,3-phenylenebis(oxy-1,3-n-propylene-oxy-4,1-phenylene)methylene bis-dimethylene bis-dimethylaminopropyl)-amide	1,3-phenylene-bis-[(oxy-1,3-n°propyleneoxy-4,1-phenylene)methylene]bis[desleucylA82846B]
<u> </u>	.} \\ _O - (CH ₂) ₃ - O \\ _O \\ _O - (CH ₂) ₃ - O \\ _O	.} _O-(CH ₂) ₃ -O-(CH ₂) ₃ -
,5		AB2846B, desleucyl
5	A82846B, (3- dimethyla mino propyl)- amide	-
Ex.		52

-17-

The dimers of the present invention are prepared by reacting a glycopeptide with a bisaldehyde to form an intermediate Schiff base, which is subsequently reduced to obtain the dimers.

Many bisaldehydes are known compounds. They can be prepared by techniques known to those skilled in the art, per various references;

J. Ora. Chem., 26, 474, (1961)

J. Het. Chem., 27, 1007 (1990)

10 J.A.C.S., 73, 1872 (1951)

J.A.C.S., 109, 2260 (1987)

J. Chem. Soc. Perkin I, 189 (1983)

Syn. Comm., 18(12), 1379 (1988)

Chem. Letters, 587 (1995)

15 <u>Macromolecules</u>, 6045 (1992);

J. Chem. Soc. Chem. Comm. 1463 (1991)

J. Polym. Sci. Part A. Polymer Chem. 31(12) 2899 (1993)

J. Chem. Res. Synop. (8), 296 (1994)

Farmco Ed. Sci. 15, 468 (1960)

20 <u>Makromol. Chem.</u> 191 (4) 815 (1990)

J. Polym. Sci. Part A. Polymer Chem. 29(3) 361 (1991)

Makromol. Chem. 65, 54 (1963)

The reaction of bisaldehyde with glycopeptide is carried out in accordance with prior art condensations of amine and aldehyde to form Schiff bases, and their subsequent reduction.

-18-

Thus, the present condensation is typically conducted in a polar solvent, such as dimethylformamide or methanol, or a mixture of polar solvents. The reaction goes forward over a range of temperatures, such as from 25°C to 100°C, but is preferably conducted at temperatures of about 60°C to 70°C. The reaction is preferably conducted under an inert atmosphere, such as nitrogen or argon. The reaction requires two molecular proportions of glycopeptide and one molecular proportion of bisaldehyde.

The reaction yields a Schiff base of the formula G=CH-L-CH=G'.

5

The Schiff base is subsequently reduced. Preferably, the reduction is conducted in the same reaction mixture in a polar solvent, and employing a chemical reducing agent.

Metal borohydrides, such as sodium borohydride and sodium cyanoborohydride are preferred. The reaction goes forward over a range of temperatures, such as from about 25°C to about 100°C; preferably, the reaction is conducted at about 60°C to 70°C.

The product, or mixture of products, can be isolated and purified if desired in a conventional manner, such as by HPLC. Characterization of products is best accomplished by Fast Atom Bombardment Mass Spectroscopy (FAB·MS).

In addition to the foregoing synthetic route, compounds
of the present invention can be prepared in an alternate
route. In this alternate route, a dimer is prepared by the
foregoing synthetic route, and further changes to the
structure of the glycopeptide are made subsequently. This

approach to synthesizing the present dimers is illustrated by Preparations 6-8 below. In Preparations 6-7, a dimer of the present invention is reacted with an amine to convert the acid of the glycopeptide to an amide $(Y^1 = {}^{-N} < Y^2)$. In Preparation 8, a dimer of the present invention is subjected to Edman degradation to obtain the corresponding desleucyl dimer. Other modifications of the glycopeptide portion of a dimer can likewise be made. Techniques for such modifications are known to those skilled in the art; see Glycopeptide Antibiotics, supra, and references cited therein. This volume is incorporated herein by reference.

When it is desired to employ a salt, a compound of Formula I can be reacted with a mineral or organic acid or an inorganic base, in techniques well known to those skilled in the art. Pharmaceutically-acceptable salts are preferred.

The following examples report preparations of illustrative dimers.

15

The HPLC procedures reported in these examples were as follows:

Analytical ("Conditions A"): Reactions were monitored by analytical HPLC using a Waters μBondapak C₁₈ column (3.9x300 mm) and UV detection at 280 nm. Elution was accomplished with a linear gradient of 5% CH₃CN - 95% buffer to 80% CH₃CN - 20% buffer over 30 minutes. The buffer used was 0.5% triethylamine in water, adjusted to pH 3 with H₃PO₄.

Preparative ("Conditions B"): Crude reaction mixtures were purified by preparative HPLC using a Waters C_{18} Nova-Pak

-20-

column (40x300 mm) and UV detection at 280 nm. Elution was accomplished with a linear gradient of 5% CH₃CN - 95% buffer to 80% CH₃CN - 20% buffer over 30 minutes. The buffer used was 0.5% triethylamine in water, adjusted to pH 3 with H₃PO₄.

The desired fractions were subsequently desalted with a Waters C_{18} Sep-Pak (35 cc) followed by lyophilization. Alternatively, a buffer containing 0.1% TFA in H_2O can be used, in which case the TFA salt is obtained directly after lyophilization.

10 Compounds were desalted as follows. A Waters Sep-Pak cartridge was pre-wet with methanol (2-3 column volumes) then conditioned with water (2-3 column volumes). The sample, dissolved in a minimum volume of water, was loaded onto the Sep-Pak column which was then washed with water (2-3 column volumes) to remove the unwanted salts. The product was then eluted with an appropriate solvent system, typically 1:1 CH₃CN/H₂O, CH₃CN, and/or methanol. The organic solvent component was removed *in vacuo* and the resulting aqueous solution lyophilized to give the final product.

5

PCT/US97/05659 WO 97/38702

-21-

Preparation 1:

Synthesis of Example 5, 1.6-hexanediylbis((oxy-4,1-

phenylene)methylenelbis(vancomycinl

(one-pot synthesis of vancomycin dimer)

5

20

A dry 100 mL round bottom flask was charged with vancomycin • HCl (250 mg, 0.168 mmol.), and 1,6-bis(4'formylphenoxy)-n-hexane (101 mg, 0.310 mmol.). Anhydrous 10 DMF (6 mL) was added to the flask and the resulting mixture was stirred under N_2 and heated to 70°C. After 3.5 hours, sodium cyanoborohydride (80 mg, 1.3 mmol.) was added in one portion, and the reaction mixture was maintained at 70°C for one additional hour. The reaction mixture was cooled, and 15 stored at 0°C overnight.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 H₂0:CH₃CN (5 mL) and HOAc (0.5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to $\sim 1.5~\text{mL}$, and desalted. After lyophilization, 1,6-hexanediylbis[(oxy-4,1phenylene)methylene]bis(vancomycin) was obtained (24.3 mg, 0.008 mmol., 10.0 % yield) as a white powder.

25

-22-

HPLC (conditions A) retention time: 13.6 min. FABMS shows peak of (M+6H) at 3195.

Preparation 2:

5 Synthesis of Example 25. 1.9-nonanediylbis[(oxy-4.1-phenylene)methylene]bis[A82846B]

(one-pot synthesis of A82846 dimer)

10

A dry 100 mL round bottom flask was charged with A82846B·tri-acetate salt (278 mg, 0.157 mmol.), and 1,9-bis-(4'-formylphenoxy)-n-nonane (103.7 mg, 0.282 mmol.).

Anhydrous DMF (15 mL) and anhydrous MeOH (15 mL) were added to the flask and the resulting mixture was stirred under N₂ and heated to 70°C. After 3.5 hours, sodium cyanoborohydride (68 mg, 1.08 mmol.) was added in one portion, and the reaction mixture was maintained at 70°C for one additional hour.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 H₂0:CH₃CN (5 mL) and HOAc (0.5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After

-23-

lyophilization, 1,9-nonanediylbis[(oxy-4,1-phenylene)methylene]bis[epivancomycin] was obtained (25.7 mg, 0.007 mmol., 9.3 % yield) as a white powder.

HPLC (conditions A) retention time: 14.9 min.

5 FABMS shows peak of (M+5H) at 3522.

Preparation 3:

Synthesis of Example 13. 1.8-octanedivlbis[(oxy-4.1-phenylene)methylene][vancomycin][A82846B]

10 (synthesis of hybrid dimer)

A dry round bottom flask was charged with vancomycin·HCl (75 mg, 0.052 mmol.), and N4-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B (50 mg, 0.026 mmol.) (see Preparation 4). Anhydrous DMF (6 mL) was added to the flask and the resulting mixture was stirred under N2 and heated to 70°C. After 5 hours, sodium cyanoborohydride (59 mg, 0.93 mmol.) was added in one portion, and the reaction mixture was maintained at 70°C for one additional hour. The reaction mixture was cooled, and stored at 0°C overnight.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 $\rm H_2O:CH_3CN$ (5 mL) and HOAc (0.5 mL). The resulting solution was purified by

25

-24-

preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After lyophilization, 1.8-octanediylbis[(oxy-4.1-

mg, 0.002 mmol., 7.6 % yield) as a white powder.

HPLC (conditions A) retention time: 14.5 min. FABMS shows peak of (M+6H) at 3364.

10 Preparations 4 & 5:

Synthesis of Example 47, N4-(4-(8-(p-formylphenoxy)-n-octvloxy)benzyl)A82846B, and Example 21, 1,8-octanedivlbis(oxy-4,1-phenylene)methylenelbis(A82846B) (two-step synthesis of A82846 dimer)

15

A dry flask was charged with A82846B tri-acetate salt (5.0 g, 0.003 mol.), and 1.8-bis(4'-formylphenoxy)-n-octane (1.93 g, 0.006 mol.). Anhydrous DMF (300 mL) and anhydrous MeOH (300 mL) were added to the flask and the resulting mixture was stirred under N_2 and heated to 70° C. After 3.75 hours, sodium cyanoborohydride (0.76 g, 0.012 mol.) was added in one portion, and the reaction mixture was maintained at

-25-

70°C for one additional hour. The reaction was cooled and stored at 0°C overnight.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 $\rm H_2O:CH_3CN$ (200 mL) and HOAc (5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After lyophilization, N^4 -(4-(8-(p-formylphenoxy)-n-

octyloxy)benzyl)A82846B was obtained (387.4 mg, 0.2 mmol., 6.6 % yield) as a white powder.

HPLC (conditions A) retention time: 19.9 min. FABMS shows peak of (M+3H)at 1932.

- A dry flask was charged with N^4 -(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B (20.0 mg, 0.01 mmol), and A82846B (32.9 mg, 0.021 mmol). Anhydrous DMF (3 mL) and anhydrous MeOH (3 mL) were added to the flask and the resulting mixture was stirred under N_2 and heated to 70° C. After 2 hours,
- 20 sodium cyanoborohydride (5.0 mg, 0.079 mmol) was added in one portion, and the reaction mixture stirred an additional 0.25 hours.

The reaction mixture was then concentrated in vacuo to give a residue which was redissolved in $1:1~{\rm H}_2{\rm O}:{\rm CH}_3{\rm CN}$ (5 mL).

25 The resulting solution was purified by preparatory HPLC (conditions D). The desired fraction, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~1.5 mL, and desalted. After lyophilization, 1,8-

-26-

octanediylbis((oxy-4,1-phenylene)methylene)bis[A82846B] was obtained (3.0 mg, 0.001 mmol, 8.6 % yield) as a white powder.

HPLC (conditions A) retention time: 13.6 min.

FABMS shows peak of (M+5H) at 3508.

5

Preparations 6 & 7:

Synthesis of Example 50, 1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene)methylenelA82846B/A82846B.

(3-dimethylaminopropyl)amide.

and Example 51, 1,3-phenylenebis(oxy-1,3-n-propylene-oxy-4,1-phenylene)methylenelbis(A82846B.

(3-dimethylaminopropyl)amidel

A dry round bottom flask was charged with 1,3-phenylenebis-[(oxy-1,3-n-propyleneoxy-4,1-phenylene)methylene]-bis[A82846B] (50.0 mg, 0.014 mmol) and 1 mL DMSO. PyBOP 15 (14.5 mg, 0.028 mmol) and 3-dimethylaminopropylamine (2.8 mg, 0.028 mmol) were added and the reaction was stirred at room temperature under nitrogen for one hour. The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 H₂O:CH₃CN (5 mL). The resulting 20 solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A) were concentrated in vacuo to ~ 1.5 mL, and desalted as in previous examples. After lyopholization 1,3phenylenebis(oxy-1,3-n-propylene-oxy-4,1-25 phenylene) methylene] bis[A82846B, (3-dimethylaminopropyl)amide] (6.9 mg, 13.1% yield) and 1,3phenylenebis(oxy-1,3-n-propylene-oxy-4,1-phenylene)-

-27-

methylene]A82846B/A82846B, (3-dimethylaminopropyl)amide (6.6 mg, 12.8% yield) were obtained as white powders.

1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene)methylene]bis[A82846B,(3-dimethylaminopropyl)-amide]

HPLC (conditions A) retention time: 13.2 min. FABMS shows peak of (M+9H) at 3761.

5

1,3-phenylenebis(oxy-1,3-n-propylene-oxy-4,1-phenylene)methylene)A82846B/A82846B, (3-dimethylaminopropyl)amide
HPLC (conditions A) retention time: 13.7 min.
FABMS shows peak of (M+6H) at 3674.

Preparation 8:

Synthesis of Example 52, 1,3-phenylene-bis-[(oxy-1,3-n-propyleneoxy-4,1-phenylene)methylenel-bis[desleucyla82846B]

1.3-phenylene-bis-[(oxy-1.3-n-propyleneoxy-4.120 phenylene)methylene]-bis[A82846B] (165.8 mg, 0.0462 mmol) was dissolved in 15 mL H₂O - pyridine (1:1 v/v) and treated with phenyl isothiocyanate (30 μl, 0.25 mmol). The resulting mixture was stirred at room temperature for 1.5 hours at which time HPLC analysis (conditions A) indicated complete consumption of the starting material. The reaction mixture was concentrated *in vacuo* to give the crude bisthiourea derivative as a white powder.

-28-

The crude thiourea intermediate was suspended in 15 mL CH₂Cl₂, cooled to 0°C, then treated with trifluoroacetic acid (0.20 mL). After 1 hour the reaction mixture was warmed to room temperature and stirred an additional 1 hour. An

5 additional 0.20 mL trifluoroacetic acid was added and the mixture was stirred at room temperature for 3 hours. The solvent was removed in vacuo and the crude product was purified by preparative HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A)

10 were concentrated in vacuo to ~ 1.5 mL, and desalted as in previous examples to give 10.2 mg. (7% yield) of 1,3-phenylene-bis-[(oxy-1,3-n-propyleneoxy-4,1-

FAB-MS: obtained 3333 (M+4)

15 HPLC retention time (conditions A): 15.1 min.

Details concerning the synthesis of all of the compounds of TABLE 1, as well as identifying characteristics, are presented in TABLE 2.

-29-

TABLE 2

					
Ex. #		HPLC *	. %	FAB • MS	M+x
	Aldehyde	Retention	yield	M/Z	н
		Minutes			
1	1,2-bis(4-	11.5	1.86	3136	3
	formylphenoxy)-				
	n-ethane				<u> </u>
2	1,4-bis(2-	11.8	0.79	3165	4
	formylphenoxy)-	į.			
	n-butane				1
3	1,5-bis(4-	12.9	5.42	3178	4
	formylphenoxy)-				1
	n-pentane				
4	1,5-bis(3-	13.0	4.08	3179	4
	formylphenoxy) -				
	n-pentane				i
5	1,6-bis(4-	13.6	9.05	3195	6
	formylphenoxy)-	[2.00		
	n-hexane			_	1
6	3-methyl-1,5-	13.5	4.54	3193	4
Ů	bis(4-	15.5	9.34	3133	"
	formylphenoxy)-				}
İ '	n-pentane				İ
7	1,7-bis(4=	14.7	5.00	3207	5
<i>'</i>	formylphenoxy)-	14.7	3.00	3201	,
	n-heptane			•	1
8		15.5	3.91	3310	1 -
°	1,8-bis(4-	15.5	3.91	3219	2
	formylphenoxy)-				1
9	n-octane	16.4	4 43	3225	+
,	1,9-bis(4-	16.4	4.41	3235	4
	formylphenoxy)-	l			
10	n-nonane		1 22		+
10	1,2-bis(2-(4-	12.3	1.89	3226	4
	formylphenoxy)-	j			1
	ethoxy)ethane				
11	1,4-bis(2-(p-	13.0	10.50	3331	6
}	formylphenoxy)-			}	ļ
	ethoxy)carbonyl-				1
	benzene				
12	1,3-bis(3-(p-	15.5	3.10	3300	4
1	formylphenoxy)-		ł	ĺ	1
	n-propyloxy)-	i	j		1
	benzene				
13	1,8-bis(4-	14.5	5.95	3364	4
-	formylphenoxy)-		Į.	i	1
	n-octane	<u> </u>		<u> </u>	
14	1,3-bis(4-	9.4	14.29	3436	4
	formylphenoxy)~		ĺ	1	1
	propane	L		1	
15	1,4-bis(2-	10.2	5.91	3452	5
1	formylphenoxy)-	1	I	1	1
	n-butane		1	ľ	

Ex. #		UPL C A			
EX. #	81-3-b3-	HPLC *	8	FAB • MS	M+x
	Aldehyde	Retention	yield	M/Z	Н
1.6		Minutes			
16	1,5-bis(4-	10.4	3.86	3466	5
	formylphenoxy)-				1
	n-pentane				L
17	1,5-bis(3-	11.3	22.41	3465	4
	formylphenoxy) -				! .
	n-pentane				
18	1,6-bis(4-	11.3	5.46	3478	4
	formylphenoxy)-				
	n-hexane				1
19	3-methyl-1,5-	11.3	8.14	3479	4
	bis(4-				-
	formylphenoxy)-				
	n-pentane				i i
20	1,7-bis(4-	12.5	5.73	3494	5
	formylphenoxy)-			~ 4/ 4	
	n-heptane				
21	1,8-bis(4-	14.0	13.31	3508	5
	formylphenoxy)-		13.31	3300	1 1
	n-octane				1 1
23	1,8-bis(3-	14.4	21.23	3508	5
	formylphenoxy)-	19.4	21.23	3508	"
	n-octane				1 1
24	1,8-bis(4-	20.8	16.91	3680	
	formy1-2-n-	20.8	10.91	3680	5
	pentyloxy-				1 1
	phenoxy)-n-				1 1
	octane				1 1
25	1,9-bis(4-	14.0	9.31	2522	
	formylphenoxy)-	14.9	9.31	3522	5
	n-nonane				
26	1,10-bis(4-	15.0		2525	 _
20		15.9	8.87	3535	5
j	formylphenoxy)-				1 1
27					
21	1,12-bis(4-	17.7	1.32	3565	6
	formylphenoxy)-			_	
28	n-dodecane				
28	1,16-bis(4-	20.4	4.05	3625	9
	formylphenoxy)-				
	n-hexadecane				
29	1,2-bis(2-(4-	10.2	6.28	3511	4
	formylphenoxy)-				
 	ethoxy)ethane				
3-0	1,3-bis(3-(p-	15.2	22.96	3589	5
	formylphenoxy)-				1 1
	n-propyloxy)-				1
	benzene				JI
31	1,4-bis(2-(p-	11.7	24.94	3615	5
1	formylphenoxy)-	İ			(
ł	ethoxy)carbonyl-				
<u> </u>	benzene			L	

PCT/US97/05659

ъ. "		UDI C +	, 1	END MO	24
Ex. #	3146	HPLC *	*	FAB•MS	M+x
	Aldehyde	Retention	yield	M/Z	н
		Minutes			
32	5-phenyl-1,3-	16.8	12.88	3664	5
	bis(3-(p-				
	formylphenoxy)-				
	n-propyloxy)-				
	benzene				
33	1,6-bis(4-(4-	16.2	11.58	3633	5
	formylphenyl)-				
	phenoxy) hexane				
34	1,3-bis(5-(4-	17.04	9.31	3645	6
	formylphenoxy)-				
	n-pentyloxy)-				
	benzene				
35	1,8-bis(2-	18.3	10.83	3662	6
	phenyl-5-				
	formylphenoxy)-				!
	octane				
36	1,8-bis(3-	15.3	2.1	3221	4
	formylphenoxy)-				
	n-hexane				
37	1,6-bis(4-(4'-	18.2	6.1	3347	6
	formylphenoxy)-				
	phenoxy)-n-				
	hexane				
38	1,8-bis(3-	22.9	2.2	3471	3
	formyl-2-				
	iodophenoxy)-n-			Ì	
	hexane				
39	1,8-bis(2-	19.3	2.8	3374	4
l	phenyl-5-	1			
	formylphenoxy)-	1			
	n-octane				
40	1,3-bis(6-(2-	15.5	8.2	3229	4
1	dimethyl)-1-				
1	hexanaloxy)-				
	benzene				
41	1,4-bis(6-(2-	13.5	6.1	3209	4
1	dimethyl)-1-				
	hexanaloxy)-		[i	
	butane				
42	1,12-bis(4-	21.6	6.8	3278	5
	formylphenoxy)-		""	1 32.3	
i	n-dodecane]			l .
43	1,3-bis(3-(p-	HCL SALT			
1	formylphenoxy-n-		1	Ī	l
1	propyloxy)-			ł	l
	propyroxy	1		1	ı
44	1,3-bis(3-(p-	36.6	12.7	3660	8
1 **	formy lphenoxy-n-	30.6	12.7	3000	· •
	propyloxy)-5-n-			1	l
	pentylbenzene			l	
45	1,8-bis(3-	17.1	5.4	3762	6
]]	formy1-2-	1/.1	3.4] 3/82	۱ °
	iodophenoxy)-n-	1	1		
l	octane	Į.	1	ĺ	f
L	Jecane		<u> </u>	L	<u> </u>

Ex. #	Aldehyde	HPLC * Retention Minutes	% yield	FAB·MS M/Z	M+x H
46	1,3-bis(6-(2- dimethy1)-1- hexanaloxy)- benzene	13.3	15.5	3516	5
47	1,3-bis(3-(p- formylphenoxy-n- heptyloxy)- benzene	19.3	1.4	3701	6
48	1,4-bis(6-(2- dimethyl)-1- hexanaloxy)- butane	13.5	24.8	3495	4
49	1,3-bis(3-(p- formylphenoxy-n- propyloxy)- benzene	HCL SALT			
50	1,3-bis(3-(p- formylphenoxy)- n-propyloxy)- benzene	13.7	12.8	3674	6
51	1,3-bis(3-(p- formylphenoxy)- n-propyloxy)- benzene	13.2	13.1	3761	9
52	1,3-bis(3-(p- formylphenoxy)- n-propyloxy)- benzene	15.1	7.0	3333	4

^{*} Conditions A

The present glycopeptide dimers are useful for the treatment of bacterial infections. Therefore, in another embodiment, the present invention is directed to a method for controlling a bacterial infection in a host animal, typically a warm-blooded animal, which comprises administering to the host animal an effective, antibacterial amount of a glycopeptide dimer in which two glycopeptide units are covalently linked to one another through an amine function of an amino sugar. In this embodiment, the dimers can be used to control and treat infections due to various bacteria, but especially gram-positive bacteria. In a preferred

-33-

embodiment, the dimers are used to control and treat infections due to bacteria resistant to existing antibacterials. For example, certain bacteria are resistant to methicillin, and yet others are resistant to vancomycin and/or teicoplanin. The present dimers provide a technique for controlling and treating infections due to such resistant bacterial species.

In carrying out this embodiment of the invention, the dimers can be administered by any of the conventional techniques, including the oral route and parenteral routes such as intravenous and intramuscular. The amount of compound to be employed is not critical and will vary depending on the particular compound employed, the route of administration, the severity of the infection, the interval between dosings, and other factors known to those skilled in 15 the art. In general, a dose of from about 0.5 to about 100 mg/kg will be effective; and in many situations, lesser doses of from about 0.5 to about 50 mg/kg will be effective. A compound of the present invention can be administered in a 20 single dose, but in the known manner of antibacterial therapy, a compound of the present invention is typically administered repeatedly over a period of time, such as a matter of days or weeks, to ensure control of the bacterial infection.

10

25 Also in accordance with known antibacterial therapy, a dimer of the present invention is typically formulated for convenient delivery of the requisite dose. Therefore, in another embodiment, the present invention is directed to a

-34-

pharmaceutical formulation comprising a dimer of Formula I, in combination with a pharmaceutically-acceptable carrier. Such carriers are well known for both oral and parenteral routes of delivery. In general, a formulation will comprise a dimer in a concentration of from about 0.1 to about 90% by weight, and often from about 1.0 to about 3%.

The antibacterial efficacy of the present dimers is illustrated by following TABLES 3 and 4. The minimal inhibitory concentrations (MICs) were determined using a standard broth micro-dilution assay. TABLE 4 presents a comparison of the activity of illustrative compounds against representative vancomycin-resistant and vancomycin-sensitive enterococci (Enterococcus faecium and Enterococcus faecalis, mean geometric MIC (mcg/mL), as determined by the standard broth micro-dilution assay.

10

15

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

Organism	Vancomycin A82846B	A82846B	1	7	~	4	5	9	7
Staphylococons aureus 446	د. ت	0.25	Þ	16	Œ	8	v	4	2
Standy lococens anrens 489	0.125	≥0.06	0.5	0.5	0.5	2	0.5	0.25	0.5
Staphylococcus aureus 447	0.5	0.25	16	>64	3.2	32	16	8	œ
Staphylococcus aureus X400	0.5	0.125	1	1	2	2	-	Ī	
Staphylococcus aureus X778	6.5	0.125	1	4	2	Þ	1	-	-
Staphylococcus aurens 491	1	0.25	0.5	0.5	0.25	2	0.25	0.5	0.5
Staphylococcus aureus S13E	0.5	0.125	2	2	2	Þ	1	2	0.5
Staphylococcus aureus SA1199	0.5	0.125	4	4	32	4	2	4	-
Staphylococcus aureus SA1199A	0.125	≥0.06	0.5	0.125	0.5	1	0.25	0.5	0.25
Staphylococcus aureus SA1199B	0.5	0.125	4	4	16	Þ	2	Þ	7
Staphylococcus haemolyticus 109	16	1	8	4	80	8	4	æ	2
Staphylococcus haemolyticus 419	8	4	16	>64	16	91	æ	80	80
Staphylococcus epidermidis 270	16	0.25	8	>64	16	16	Ą	\$	4
Enterococcus faecium 180	>64	8	0.25	1	S0.08	S0.06	S0.06	50.06	\$0.06
Enterococcus faecium 180-1	0.5	0.125	0.5	1	0.5	1	0.25	≥0.06	\$0.06
Enterococcus faecalis 2041	2	0.25	S0.06	≥0.06	≥0.05	90.0≥	≥0.06	\$0.05	0.5
Enterococcus faecalis 276	1	0.125	0.25	0.25	0.5	0.25	0.5	5.0	
Enterococcus gallinarum 245	Þ	0.25	0.06	0.06	0.06	90.0	90.0	90.0	0.06
Haemophilus influenzae RD	>64	>64		>64		>64			
Escherichia coli EC14	>64	>64	>64	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	0.5		0.06	90.0	0.06	90.0	0.06	n.06	0.06
Streptococcus pneumoniae Pl	0.25		0.06	0.06	0.06	90.0	0.06	0.06	90.0

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

8
4
32
4
4
2
8
16
2
8
8
8
8
0.125
0.5
0.25
2
0.25
>64
>64
В
4

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

25	4	4	64	7	2	2	4	4	0.5	4	2	16	16	0.25	7	1	7	0.25	>64	>64	0.25	0.125
24	2	7	91	7	2	1	2	2	1	7	2	Þ	Þ	1	0.5	1	7	0.5	59 <	>64	0.25	0.06
23	2	1	8	1	0.25	1	4	2	0.5	1	4	4	4	0.125		0.5	1	0.125		>64	0.06	0.06
22	4	4	32	9	1	2	2	2	0.5	4	4	16	8	0.25	0.5	0.5	1	90.0	>64	>64	90.0	0.06
21	8	2	64	2	1	2	1	1	0.25	1	16	8	8	0.125	0.5	0.5	1	90.0	>64	>64	0.06	0.06
20	4	2	64	2	1	1	2	4	0.25	2	2	32	16	50.05	1	50.05	0.25	0.06	>64	>64	90.0	0.06
19	4	0.25	32	0.5	0.5	0.25	1	1	0.125	2	8	32	16	0.125	1	0.25	1	0.06		>64	0.06	0.06
18	80	4	64	2	2	0.25	2	2	0.25	1	0.5	16	16	50.06	0.25	0.25	0.125	90.0	>64	>64	0.06	0.06
17	4	1	>64	1	2	0.5	1	1	0.125	1	0.5	8	64	0.125	0.125	0.125	0.125	90.0	>64	>64	90.0	90.0
Organism	Staphylococcus aureus 446	Staphylococcus aureus 489	Staphylococcus aureus 447	Staphylococcus aureus X400	Staphylococcus aureus X778	Staphylococcus aureus 491	Staphylococcus aureus S13E	Staphylococcus aureus SA1199	Staphylococcus aureus SA1199A	Staphylococcus aureus SA1199B	Staphylococcus haemolyticus 109	Staphylococcus haemolyticus 419	Staphylococcus epidermidis 270	Enterococcus faecium 180	Enterococcus faecium 180-1	Enterococcus faecalis 2041	Enterococcus faecalis 276	Enterococcus gallinarum 245	Haemophilus influenzae RD	Escherichia coli EC14	Streptococcus pyogenes C203	Streptococcus pneumoniae P1

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

Г	Г	Г			Γ-	Т	-36	Π	_			Г	_	Т	Г	_		$\overline{}$	$\overline{}$	_	Τ-	T-
34	2	2	2	_		0.5	-	2	0.5	2	0.5	2	-	0.5	0.25	0.125	0.5	0.25	704	>61	\$0.08	0.125
33	16	ħ	,64	æ	4	4	8	æ	4	16	2	80	8	-	2	2	~	0.5		>64	2	2
32	16	4	>64	4	2	2	8	8	2	8	4	8	16	-	2	2	2	1	>64	>64	0.5	0.125
3.1	1	1	8	0.5	0.25	≥0.05	0.25	0.5	S0.06	0.5	0.25	16	2	1	≥0.05	≥0.05	0.125	0.06	>64	>64	0.06	90.0
3.0	1	1	4	1	0.5	0.25	0.5	1	≥0.0€	1	0.25	4	1	0.125	0.125	0.25	0.5	0.125		>64	0.06	90.0
29	16	1	64	1	2	≥0.06	7	2	0.5	4	0.25	>64	32	0.25	0.5	0.125	0.25	0.06		>64	90.0	90.0
28	>64	64	>64	32	32	16	64	64	16	64	32	64	64	8	8	8	8	4	>64	>64	64	64
72	16	80	>64	16	8	8	8	80	7	æ	32	64	32	1	-	4	4	2	>64	>64	0.5	
26	4	2	>64	1	2	2	2	2	1	2	4	16	8	0.5			2		>64	>64	4	2
	446	489	447	X400	X778	491	S13E	SA1199	SA1199A	SA1199B	yticus 109	yticus 419	midis 270	180	180-1	2041	276	m 245	RD		C203	ae P1
Organism		aureus	haemol	haemol	epider	faecium	faecium	faecalis	faecalis	allinaru	fluenzae	11 EC14	pyogenes	pneumoni								
0r.	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus aureus	Staphylococcus haemolyticus 109	Staphylococcus haemolyticus	Staphylococcus epiderm	Enterococcus faecium 18	Enterococcus faecium 18	Enterococcus faecalis	Enterococcus faecalis 2	Enterococcus gallinarum	Haemophilus influenzae R	Escherichia coli EC14	Streptococcus pyogenes C	Streptococcus pneumoniae

-38-

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

Organism	35	36	37	38	39	40
Staphylococcus aureus 446	16	8	8	8	>64	8
Staphylococcus aureus 489	8	2	2	2	>64	2
Staphy lococcus aureus 447	>6.4	16	16	32	>64	32
Staphylococcus aureus X400	4	4	2	þ	>64	4
Staphylococcus aureus X778	4	4	2	4	>64	4
Staphylococcus aureus 491	2	1	1	2	>64	1
Staphylococcus aureus S13E	8	4	Þ	4	>64	8
Staphylococcus aureus SA1199	32	8	þ	4	>64	4
Staphylococcus aureus SA1199A	8	1	2	2	>64	1
Staphylococcus aureus SA1199B	8	16	2	Ą	>64	4
Staphylococcus haemolyticus 109	2	2	8	2	>64	2
Staphylococcus haemolyticus 419	16	8	16	16	>64	32
Staphylococcus epidermidis 270	60	Ą	8	8	>64	8
Enterococcus faecium 180	2	<.06	1	2	8	0.25
Enterococcus faecium 180-1	1	0.25	1	1	8	0.5
Enterococcus faecalis 2041	2	0.5	2	2	16	> .06
Enterococcus faecalis 276	7	0.25	1	Þ	32	0.5
Enterococcus gallinarum 245	-	0.06	1	4	8	0.06
Haemophilus influenzae RD		>64	>64	4	>64	
Escherichia coli EC14	>64	>64	>64	>64	>64	.64
Streptococcus pyogenes C203	-	0.06	1	16	8	v. 06
Streptococcus pneumoniae Pl	1	0.06	1	8	16	90.0

-40-

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

Organism	41	42	43	44	45	46
Staphylococcus aureus 446	32	64	80	8	æ	4
Staphylococcus aureus 489	1	3.2	1	4	2	1
Staphylococcus aureus 447	>64	>64	æ	16	32	64
Staphylococcus aureus X400	4	3.2	2	8	2	1
Staphylococcus aureus X778	8	16	2	4	2	1
Staphylococcus aureus 491	1	80	-1	2	2	0.5
Staphylococcus aureus S13E	8	>64	2	16	4	1
Staphylococcus aureus SA1199	16	32	2	8	2	1
Staphylococcus aureus SA1199A	8	16	0.5	1	1	0.125
Staphylococcus aureus SA1199B	8	32	2	16	2	1
Staphylococcus haemolyticus 109	2	16	8	1	Þ	1
Staphylococcus haemolyticus 419	>64	64	æ	8	4	32
Staphylococcus epidermidis 270	32	32	5	4	2	1
Enterococcus faecium 180	2	2	0.125	1	1	0.5
Enterococcus faecium 180-1	1	\$	1	0.5	1	< .06
Enterococcus faecalis 2041	0.25	4	0.25	2	1	<.03
Enterococcus faecalis 276	0.5	80	0.25	2	1	0.5
Enterococcus gallinarum 245	1	-	0.06	1	1	90.0
Haemophilus influenzae RD	>64		>64		2	>64
Escherichia coli EC14	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	0.06	1	0.06	1	8	0.00
Streptococcus pneumoniae Pl	0.06	2	0.06	2	4	0.06

-41-

TABLE 3
In Vitro Antimicrobial Activity
MIC (mcg/ml)/Compound

Organism	47	48	49	50	51	52
Staphylococcus aureus 446	16	8	5.0	2	4	æ
Staphylococcus aureus 489	8	0.5	0.25	5.0	2	4
Staphylococcus aureus 447	>64	32	1	2	Þ	16
Staphylococcus aureus X400	16	1	0.5	ı	•	80
Staphylococcus aureus X778	8	1	5.0	ι	2	4
Staphylococcus aureus 491	80	0.5	< . 06	5.0	2	2
Staphylococcus aureus S13E	32	Ą	1	1	2	16
Staphylococcus aureus SA1199	16	4	1	1	Þ	8
Staphylococcus aureus SA1199A	Þ	0.5	0.5	0.25	2	1
Staphylococcus aureus SA1199B	16	2	1	1	2	16
Staphylococcus haemolyticus 105	8	4	1	5.0	2	7
Staphylococcus haemolyticus 415	8	32	2	1	2	æ
Staphylococcus epidermidis 270	æ	4	0.5	1	I	7
Enterococcus faecium 180	2	1	0.25	1	2	1
Enterococcus faecium 180-1	0.5	0.25	90.>	0.25	0.5	0.5
Enterococcus faecalis 2041	2	0.25	> 0.6	9.0	0.5	2
Enterococcus faecalis 276	2	0.125	0.25	5.0	1	2
Enterococcus gallinarum 245	2	90.0	90.0	5.0	5.0	-
Haemophilus influenzae RD	>64	>64				
Escherichia coli EC14	>64	>64	>64	>64	59 <	>64
Streptococcus pyogenes C203	2	0.06	90.0	0.125	5.0	1
Streptococcus pneumoniae Pl	1	0.06	0.06	0.06	0.5	2

-42-TABLE 4

	TABLE 4	
In	Vitro Activity Against	Ent rococci
	Vancomycin Resistant	Vancomycin Sensitiv
Cpd. Number	Strains	Strains
Vancomycin	282	
A82846B	29	0.22
1		1.3
2 -	27	
3	27	
4 .	19	
5 .	11	
6 · · · · · · · · · · · · · · · · · · ·	32	
8 ,	9.5	
9	9.5	
10	>90	
11	38	
12	4.0	
13	9.5	
14	>64	
15	23	
16	38	1.5
17 .	4.8	0.57
18	19	1.0
19	19	
20	131	
21	2.8	
22 !	6.7	0.76
23 1	1.7	0.5
24 1	4.8	1.2
25	6.7	1.2
26 i	3.4	1.5
28 :	3.4 9.5	
29	38	
30	1.7	
31	27	
32	2.8	
33	2.0	
34 .	1.7	
35 !	3.4	
36 !	5.7	
37	4.8	2.3
	4.8	2.3
39 !	8 1	5.3
40 1	11.3	0.76
41	64	1
42	2.4	1.2
43	2.4	1.3
44	2	
45	3.4	
- 40		
47	6.7	4

-43-TABLE 4

	In	Vitro Activity A	gainst	Enterococci
Cpd. Num		Vancomycin Resis		Vancomycin Sensitiv Strains
48		22	ļ.	0.57
49		2		0.38
50		3.4	ı	0.38
51		2.4	ı	0.38
52		128	i	4.6

- 44 -

WE CLAIM

- 1. A method of treating a bacterial infection in a host comprising the step of administering to the host an effective amount of glycopeptide dimer in which two glycopeptide units are covalently linked to one another through an amine function of an amino sugar.
 - 2. The method of Claim 1 in which both glycopeptide units are A82846B.
- The method of Claim 1 in which both glycopeptide units are vancomycin.
 - 4. A method of Claim 1 wherein the bacterial infection is attributable to a vancomycin-resistant-enteroccus.
- 5. A glycopeptide dimer in which two glycopeptide units are covalently linked to one another through an amine function of an amino sugar, for use in antibacterial therapy.
 - 6. A glycopeptide dimer in which two glycopeptide units are covalently linked to one another through an amine function of an amino sugar, for use in antibacterial therapy against
- 20 vancomycin-resistant-enterococcus.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/05659

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 38/00, 38/12, 38/14; C07K 9/00			
US CL :514/2, 8, 9; 530/317, 322, 323			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED Minimum documentation scarched (classification system followed by classification symbols)			
U.S. : 514/2, 8, 9; 530/317, 322, 323			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
APS, CAS ONLINE (WORD AND STRUCTURE SEARCH), EMBASE, BIOSIS, MEDLINE, WPIDS. SEARCH TERMS: GLYCOPEPTIDE?, VANCOMYCIN?, A82846?, DIMER?, SCHIFF BASE?			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
×	GERHARD et al., The Role	5-6	
	Substituents in The Dimerization of Vancomycin Antibiotics.		
Y .	J. Am. Chem. Soc., January 199 232-237, see entire article.	1-6	
х	GROVES et al, The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics. Structure, August 1994, Vol. 2, pages 747-754, see entire article.		5-6
Y			1-6
A	BEAUREGARD et al, Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrobial Agents and Chemotherapy, March 1995, Vol. 39, No. 3, pages 781-785.		1-6
Furth	er documents are listed in the continuation of Box C	See patent family annex.	
Special categories of cited documents:			
"A" document defining the general state of the art which is not considered to be of particular relevance and not in conflict with the application but cited to understand the principle or theory underlying the invention			
"E" carrier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step	
cite	d to establish the publication date of another citation or other cial reason (as specified)	"Y" document of particular relevance; the	: Claimed invention current be
O, que	nument referring to an oral disclosure, use, exhibition or other	considered to involve an investive combined with one or more other such being obvious to a person skilled in th	step when the document is documents, such combination
"P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed			
Date of the actual completion of the international search O4 JUNE 1997 Date of mailing of the international search report 2 0 1997			rch r ep ort
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230		Authorized of ficer BENT NEAT CHUSA (196) Telephone No. (703) 308-0196	
Form PCT/IS	A/210 (second sheet)(July 1992)*	1 /	11