Projeto 2 - Forças centrais: o sistema solar.

Anderson Araújo de Oliveira 11371311

1 Parte 1

Para encontrar a velocidade usaremos as leis de newton, para o sistema de unidade que implementaremos nesse projeto que será em unidade astronômica(posição) e anos(tempo), assim teremos que $GM=4\pi^2$

$$\frac{GMm}{r^2} = \frac{mv^2}{r} \tag{1}$$

para r=1(AU)

$$v = \frac{2\pi}{\sqrt{r}} = 2\pi \tag{2}$$

Figura 1: Órbita do planeta Terra, $\Delta t = 0,0001 anos$

2 parte 2

Nessa parte 2 do projeto verificaremos a terceira lei de Kepler onde $\frac{(periodo(anos))^2}{(raio(AU))^3}=1$, Na tabela abaixo tem as condições iniciais, tanto período, e a terceira lei de Kepler, todos os valores bem próximo a $1 \approx \frac{(periodo)^2}{(raio)^3}$, foi realizado uma variação $\Delta t = 0,0001 anos$ em todas as simulações.

Planeta	$V_x(AU/anos)$	$V_y(AU/anos)$	$\mathbf{x}_0(AU)$	$y_0(AU)$	Período(anos)	$3^{\circ} \text{ Lei}(\text{anos}^2/AU^3)$
Terra	0	6,285	1,00	0	0,997	0,998
Marte	0	5,096	1,52	0	1,873	0,999
Jupiter	0	2,757	5,20	0	11,880	1,003
Saturno	0	2,034	9,54	0	29,455	0,999
Vênus	0	7,410	0,72	0	0,612	1,004

Tabela 1: Tabela de condições iniciais e resultados.

3 Parte 3

Colocando as condições iniciais para o afélio na tabela abaixo, temos que o período = 247,764 e a terceira lei de Kepler 1,000, afélio representa a velocidade mínima e o periélio a máxima, verificaremos agora se os dados são condizentes, usando conservação de energia e do momento angular nos pontos do afélio e do periélio para obter a velocidade em função da distância.

$$-\frac{GMm}{r_1} + \frac{mv_1^2}{2} = -\frac{GMm}{r_2} + \frac{mv_2^2}{2} \tag{3}$$

$$r_1 v_1 = r_2 v_2 \tag{4}$$

Conseguimos chegar na seguinte equação, onde $r_{afelio} + r_{perielio} = 2a$ onde a é o semieixomaior, nosso semieixo maior é equivalente a a = 39,481AU.

$$v = \sqrt{GM(\frac{2}{r} - \frac{1}{a})}\tag{5}$$

Temos que para a velocidade do afélio usando a equação acima é.

$$v_1 = 0,7755 \tag{6}$$

a velocidade do periélio.

$$v_2 = 1,2916 \tag{7}$$

		velocidade(AU/anos)	raio(AU)
Entrada	Afélio	0,775	49,305
Saida	Periélio	1,291	29,592

Tabela 2: Entrada e saída de dados

Figura 2: Órbita de Plutão em volta do Sol, variação temporal de $\Delta t = 0.0001$

4 Parte 4

No código quando inserido o valor do α realizará uma simulação em um intervalo $[\alpha,10\alpha]$ para cada α , intervalo que trabalhamos foi $5.10^{-5}(AU^2)$ até $50.10^{-5}(AU^2)$ variando em $5.10^{-5}(AU^2)$.

Figura 3: Angulo dos pontos mais distantes, com uma variação $\Delta t = 0,0001$

Usando o método dos mínimos quadrados nos dados que podemos obter $\frac{d\theta}{dt}$, colocamos os alphas $[1,0.10^{-4},3,5.10^{-4}]$ na tabela abaixo.

$\alpha(AU)^2$	$\frac{d\theta}{dt} \frac{radiano}{anos}$
$1,0.10^{-4}$	0,0179
$1,5.10^{-4}$	0,0274
$2,0.10^{-4}$	0,0371
$2,5.10^{-4}$	0,0455
$3,0.10^{-4}$	0,0549
$3,5.10^{-4}$	0,0641

Tabela 3: Dados tirados dos mínimos quadrados de cada anguloxtempo

Conduzimo novamente o método dos mínimos quadrados com os dados acima.

Figura 4

Assim obtivemos 184±1 $\frac{radiano}{ano} \frac{1}{\alpha}$, assim podemos encontrar valor de precessão de mercúrio, substituindo o valor de α que temos 1,1.10⁻⁸, será então 2,0282.10⁻⁶ ± 1,1.10⁻⁸ $\frac{radiano}{ano}$ efetuando uma conversão 41,8"±0,2" por seculo quase com o valor real que é 43,1"±0,4" por seculo.