

A Schlumberger Company

FDH600/FDLL600 FDH666/FDLL666

Ultra Fast Diodes

• C...2.5 pF (MAX) FDH600, 3.5 pF (MAX) FDH666

• VF...1.0 V (MAX) @ 100 mA (FDH666) ...1.0 V (MAX) @ 200 mA (FDH600)

• trr. . . 4.0 ns (MAX) @ If = Ir = 10 mA

PACKAGES

FDH600 DO-35 FDH666 DO-35 LL-34 FDLL600

FDLL666 LL-34

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature Range **Maximum Junction Operating Temperature Lead Temperature**

-65°C to +200°C +175°C +260°C

If you need this device in the SOT package, an electical equivalent is available. See FDSO1200 family.

Power Dissipation (Note 2)

Maximum Total Dissipation at 25°C Ambient Linear Derating Factor (from 25°C)

Pulse Width = $1.0 \mu s$

500 mW 3.33 mW/°C

Maximum Voltage and Currents
WIV Working Inverse Voltage **FDH 600 FDH 666** 50 V 25 V ю Average Rectified Current 200 mA 200 mA ١Ē Continuous Forward Current 500 mA 500 mA Recurrent Peak Forward Current 600 mA 600 mA if(surge) **Peak Forward Surge Current** Pulse Width = 1.0 s

1.0 A 1.0 A 4.0 A 4.0 A

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	FDH600		FDH666			7507 001171710110
		MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
VF	Forward Voltage		1.0			V	IF = 200 mA
			0.92		1.0	l v	IF = 100 mA
			0.86		0.86	V	IF = 50 mA
			0.79		0.79	V	IF = 10 mA
		1	0.65		0.65	V	IF = 1.0 mA
IR	Reverse Current		0.1			μΑ	V _R = 50 V
					0.1	μΑ	V _R = 25 V
			100		-	μA	VR = 50 V, TA = 150°C
					100	μΑ	V _R = 25 V, T _A = 150°C
BV	Breakdown Voltage	75		40	-	V	I _R = 5.0 μA
trr	Reverse Recovery Time (Note 3)		4.0		4.0	ns	If = Ir = 10 mA, RL = 100 Ω
			6.0		6.0	กร	If = Ir = 200 mA, RL = 100 S
С	Capacitance		2,5		3.5	pF	V _R = 0, f = 1.0 MHz

NOTES:

1. The maximum ratings are limiting values above which life or satisfactory performance may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty-cycle operation.

3. Recovery to 0.1 ip.

4. For product family characteristic curves, refer to Chapter 4, D4.