Άσκηση 1 [4μ]

Δείξτε γραφικά ποια θα είναι τα δυο πρώτα βήματα εύρεσης της ρίζας της συνάρτησης f(x) που φαίνεται στο παρακάτω γράφημα ξεκινώντας από τη τιμή x=-0.5 και χρησιμοποιώντας τη μέθοδο Newton-Raphson.

Άσκηση 2 [2μ]

Περιγράψτε τον αλγόριθμο που θα χρησιμοποιήσετε για να υπολογίσετε τον αντίστροφο ενός αριθμού χωρίς να χρησιμοποιήσετε κάποια συνάρτηση βιβλιοθήκης.

Απ.: Έστω w ο αριθμός που δίνεται. Ο αντίστροφός του θα είναι x. Ξέρουμε ότι το γινόμενο του αριθμού με τον αντίστροφό του δίνει: w * x = 1 . Επομένως χρειάζεται να βρούμε τη λύση της συνάρτησης f(x) = w * x - 1 και μπορούμε να το κάνουμε με τη μέθοδο Newton-Raphson.

Άσκηση 3 [2μ]

Χρησιμοποιείτε τη μέθοδο Newton για να βρείτε μια λύση της f(x) όπου $f(x)=x^2-1$. Αν η αρχική σας υπόθεση για λύση ήταν η $x_0=2.0$, ποια θα είναι η πρόβλεψη της μεθόδου Newton για την επόμενη προσεγγιστική λύση.

Απ.: Η λύση σύμφωνα με τη μέθοδο Newton-Raphson είναι: $x_{n+1} = x_n - \frac{f(x)}{f'(x)}$. Η συνάρτηση είναι $f(x) = x^2 - 1$ και η παράγωγός της f(x) = 2x. Για αρχική λύση $x_0 = 2.0$, θα έχουμε: $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.0 - \frac{2^2 - 1}{2 \cdot 2} = 1.25$

Άσκηση 4 [2μ]

Η εξίσωση της μορφής $x^2=0$, με λύση x=0 δεν μπορεί να λυθεί με τη χρήση της μεθόδου bisection γιατί:

- (α) Η συνάρτηση είναι πολυώνυμο
- (β) Υπάρχουν πολλαπλές λύσεις στο x = 0
- (γ)Η συνάρτηση είναι πάντοτε θετική
- (δ) Η κλίση της συνάρτησης στο x = 0 είναι 0

Άσκηση 5 [5μ]

Η απόλυτη τιμή του σχετικού σφάλματος της προσεγγιστικής λύσης μιας εξίσωσης f(x)=0 με τη μέθοδο της bisection δίνεται από την εξίσωση: $|\epsilon_a|=\left|\frac{x_m^n-x_m^o}{x_m^n}\right|$, όπου x_m^n είναι η νέα λύση στο μέσο του διαστήματος και x_m^o είναι η προηγούμενη λύση. Θεωρήστε ότι τα όρια του διαστήματος είναι x_u και x_l . Στο τέλος της διεργασίας εύρεσης της λύσης, το σχετικό

προσεγγιστικό σφάλμα στην εκτίμηση της τιμής της λύσης είναι ένα από τα παρακάτω. Δικαιολογήστε πλήρως την απάντησή σας.

(
$$\alpha$$
) $\left|\frac{x_u}{x_u+x_l}\right|$ (β) $\left|\frac{x_l}{x_u+x_l}\right|$ (γ) $\left|\frac{x_u-x_l}{x_u+x_l}\right|$ (δ) $\left|\frac{x_u+x_l}{x_u-x_l}\right|$

$$(\beta) \left| \frac{x_l}{x_u + x_l} \right|$$

$$(\gamma) \left| \frac{x_u - x_l}{x_u + x_l} \right|$$

$$(\delta) \left| \frac{x_u + x_l}{x_u - x_l} \right|$$

Απ.: Ξέρουμε ότι η απόλυτη τιμή του σχετικού σφάλματος μιας προσεγγιστικής λύσης είναι: $|\epsilon_a| = \left| \frac{x_m^m - x_m^o}{x_m^m} \right|$. Σύμφωνα με την μέθοδο bisection, η λύση βρίσκεται στο μέσο του διαστήματος: $x_m^n = \frac{x_u + x_l}{2}$, όπου x_u και x_l τα όρια του εκάστοτε διαστήματος που περιέχει τη λύση. Σε κάθε βήμα της διαδικασίας, η προηγούμενη προσεγγιστική λύση x_m^0 αποτελεί είτε το πάνω ή το κάτω όριο του διαστήματος για την επόμενη λύση.

Έστω
$$x_m^o = x_l$$
. Θα έχουμε: $|\epsilon_a| = \left|\frac{\frac{x_l + x_u}{2} - x_l}{\frac{x_l + x_u}{2}}\right| = \left|\frac{(x_l + x_u) - 2x_l}{(x_l + x_u)}\right| = \left|\frac{x_u - x_l}{x_l + x_u}\right|$ Έστω $x_m^o = x_u$. Θα έχουμε: $|\epsilon_a| = \left|\frac{\frac{x_l + x_u}{2} - x_u}{\frac{x_l + x_u}{2}}\right| = \left|\frac{(x_l + x_u) - 2x_u}{(x_l + x_u)}\right| = \left|\frac{x_l - x_u}{x_l + x_u}\right| = \left|\frac{x_u - x_l}{x_l + x_u}\right|$

Η απάντηση είναι η ίδια, ανεξάρτητα αν η προηγούμενη λύση αποτελεί το πάνω ή κάτω όριο για το επόμενο διάστημα γιατί η νέα λύση είναι πάντοτε στο μέσο του διαστήματος.