Top quark differential cross sections: how to simultaneously unfold 2016-18 data

TOP PAG meeting, May 14, 2019

Olaf Behnke (DESY)

Introduction

Measured already up to 3D tt cross sections with 2016 data alone:

TOP-18-004, 1904.05237

using TUnfold

- Discuss today three suitable variants for combined 2016-18 unfolding:
 - TUnfold after background subtraction
 - TUnfold after template fit of signal yields
 - Combine tool: direct Max. Lh. fit of $d\sigma/dx$

Analysis type

High stat. low background: tt, TOP-18-004, TOP-17-002,...

High background Single t, TOP-17-023

#unfolded bins not too high

Detector effects + background

Smeared space

• Unfolding means estimating λ from n, $\rightarrow \hat{\lambda}$

Detector effects + background

Smeared space

• Unfolding means estimating λ from n, $\rightarrow \hat{\lambda}$

Use '16' for '2016', etc.

- Note: Data combination can be always done
 - 1. at the very beginning, unfolding $n = n_{16} + n_{17} + n_{18}$
 - + increase directly statistics, stabilise results
 - not optimal if data quality varies a lot
 - 2. after unfolding, combining $\hat{\lambda}_{16}$, $\hat{\lambda}_{17}$, $\hat{\lambda}_{18}$
 - if BLUE χ^2 is used \rightarrow gaussian uncertainty approximations

Detector effects + background

II) Max. Likelihood: gaussian approximation

Same # of λ and y bins: $\lambda = K^{-1} y$

More y bins: minimize $\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \mathbf{V_y}^{-1} [\mathbf{y} - \mathbf{K}\lambda]$

Often instable high frequency components of unfolded $\lambda \rightarrow$ regularisation

TUnfold:

$$\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \mathbf{V_y}^{-1} [\mathbf{y} - \mathbf{K}\lambda] + \boldsymbol{\tau}^2 ||\mathbf{L}(\lambda - \lambda_0)||^2$$
Bias vector

Regularisation strength

Matrix: unity, 1st or 2nd derivatives

TUnfold programme www.desy.de/~sschmitt

$$\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \mathbf{V_y}^{-1} [\mathbf{y} - \mathbf{K}\lambda] + \boldsymbol{\tau}^2 ||\mathbf{L}(\lambda - \lambda_0)||^2$$

- Regularisation schemes: \rightarrow choice of τ value
 - L-curve (balance of the two χ^2 terms)
 - Minimum global correlation in covariance matrix of λ
- For multi-differential cross sections: automatic internal mapping of multi-D variables to 1D vectors \rightarrow TUnfold takes care of regularisation in the multi-D phasespace.
- Systematic uncertainties: Need to repeat TUnfolding with varied response matrices K

Simultaneous TUnfolding of 2016-18 data

Use background subtracted yield vectors y₁₆, y₁₇ and y₁₈, define

$$egin{aligned} oldsymbol{y} & = \left(egin{array}{c} oldsymbol{y_{16}} \ oldsymbol{y_{17}} \ oldsymbol{y_{18}} \end{array}
ight); \ egin{array}{c} oldsymbol{V_{y}} & = \left(egin{array}{c} V_{16,16} & V_{16,17} & V_{16,18} \ V_{16,17} & V_{17,18} & V_{17,18} \ V_{16,18} & V_{17,18} & V_{18,18} \end{array}
ight); \ egin{array}{c} oldsymbol{K} & = \left(egin{array}{c} K_{16} \ K_{17} \ K_{18} \end{array}
ight) \end{array}$$

- In most simple variant V is just diagonal matrix ∞ event counts
- use Tunfold as usual \rightarrow will min. following χ^2 to find estimator $\hat{\lambda}$

$$\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \mathbf{V_y}^{-1} [\mathbf{y} - \mathbf{K}\lambda] + \boldsymbol{\tau}^2 ||\mathbf{L}(\lambda - \lambda_0)||^2$$

If we would first unfold separately 2016, 2017 and 2018 and then combine, we would count the regularisation term 3 times!

Detector effects + background

Smeared space

Alternative variant

- For background dominated analyses:
 - → first estimate bin-wise signal yields y_j in template fit to discriminator distribution, then feed to TUnfold
 - → strategy developed for t-channel single top production TOP-17-023

Discriminator i-bins

For each bin j of spectrum to unfold, fit signal yield y_j to the counts in the i-bins of the discriminator

$p_T(t)$ j-bins – control plot

 $L \sim \prod_{j-bins} \prod_{i-bins} exp[-(y_j s_{ij} + b_{ij})] \cdot (y_j s_{ij} + b_{ij})^{n_{ij}} \cdot \prod \text{Constraints}$

s_{ij}: fraction of signal y_i expected in bin i

b_{ij}: total expected background in bin ij n_{ij}: observed event count

- b_{ii} depend on tt and other bgr. normalisations, fitted for each bin j
- s_{ii} and b_{ii} depend on other nuisance pars that are also fitted
- All y_i fitted simultaneously, \rightarrow then feed to TUnfold

Discriminator i-bins

For each bin j of spectrum to unfold, fit signal yield y_j to the counts in the i-bins of the discriminator

$p_T(t)$ j-bins – control plot

$$L \sim \prod_{j-bins} \prod_{i-bins} exp[-(y_j s_{ij} + b_{ij})] \cdot (y_j s_{ij} + b_{ij})^{n_{ij}} \cdot \prod$$
 Constraints

Final step: TUnfold total signals $y_i \rightarrow \hat{\lambda}$

Discriminator i-bins

i-bins i-bins

For each bin j of spectrum to unfold, fit signal yield y_j to the counts in the i-bins of the discriminator

$p_T(t)$ j-bins – control plot

$$L \sim \prod \exp[-(y_j s_{ij} + b_{ij})] \cdot (y_j s_{ij} + b_{ij})^{n_{ij}} \cdot \prod \text{Constraints}$$

Simultaneous 2016-18 analysis:

$$L = L_{16} \cdot L_{17} \cdot L_{18} \rightarrow \text{fit } y_{16}, y_{17} \text{ and } y_{18}, \text{ feed to TUnfold, as on p.8}$$

Detector effects + background

Smeared space

Unfolding with combine tool

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part3/regularisation

$$L \sim \prod_{j-bins} exp \left[-\left(\sum_{m-bins} K_{jm} \lambda_m + b_j \right) \right] \cdot \left(\sum_{m-bins} K_{jm} \lambda_m + b_j \right)^{n_j} \cdot \prod \text{Constraints}$$

- Rigorous Max. Likelihood fit of λ ; 2016-18 analysis: L = L₁₆·L₁₇·L₁₈
- Extendable to template fit vs discriminator bins i

Example: HIG-17-025

All CMS Higgs dσ/dx measurements based on combine tool approach

New: now also available with Tikhonov regularisation, docu see

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part3/regularisation

Unfolding with combine tool

$$L \sim \prod_{j-bins} exp \left[-\left(\sum_{m-bins} K_{jm} \lambda_m + b_j \right) \right] \cdot \left(\sum_{m-bins} K_{jm} \lambda_m + b_j \right)^{n_j} \cdot \prod \text{Constraints}$$

- Rigorous Max. Likelihood fit of λ ; 2016-18 analysis: L = L₁₆·L₁₇·L₁₈
- K_{jm} and b_j can depend on nuisance parameters \rightarrow use all related tools in combine (template morphing, log-normal constraints, ...)
- Extendable to template fit vs discriminator bins i

Summary

- Presented 3 ways to simultaneously unfold separate 2016, 2017 and 2018 detector level data, to obtain best $\hat{\lambda} = d\sigma/dx$ from RUN II.
- Adapt strategies to your problem:

High stat. low background: Examples: tt, TOP-18-004, TOP-17-002

→ TUnfold after backgr. subtraction

High background:

Examples: t, TOP-17-023

→ TUnfold after template fit of detector level signal yields y_i

#unfolded bins not too high

 \rightarrow Combine tool direct Maximum Likelihood Fit $\rightarrow \hat{\lambda}$

- 2016-18 combination based on building total χ^2 or likelihood
- Note: assessment of correlated uncertainties between the periods is one of the major tasks/challenges! (beyond scope of talk)

Backup slides