Solución:

La sustitución hacia adelante es un método utilizado para resolver sistemas de ecuaciones lineales donde la matriz de coeficientes A es **triangular inferior**. Es decir, todos los elementos por encima de la diagonal principal son cero: $A_{ij} = 0$ para j > i.

Consideremos el sistema de ecuaciones lineales:

$$A\mathbf{x} = \mathbf{b}$$

Donde:

- A es una matriz triangular inferior de dimensión $n \times n$.
- x es el vector incógnita.
- b es el vector de términos independientes.

El objetivo es resolver para \mathbf{x} , es decir, encontrar los valores de x_i para $i=0,1,\ldots,n-1$.

Paso 1: Expresar el sistema de ecuaciones

La matriz A siendo triangular inferior tiene la forma:

$$A = egin{pmatrix} A_{00} & 0 & 0 & \dots & 0 \ A_{10} & A_{11} & 0 & \dots & 0 \ A_{20} & A_{21} & A_{22} & \dots & 0 \ dots & dots & dots & dots \ A_{n-1,0} & A_{n-1,1} & A_{n-1,2} & \dots & A_{n-1,n-1} \end{pmatrix}$$

El sistema de ecuaciones lineales se puede escribir como:

$$\begin{cases} A_{00}x_0 = b_0 \\ A_{10}x_0 + A_{11}x_1 = b_1 \\ A_{20}x_0 + A_{21}x_1 + A_{22}x_2 = b_2 \\ \vdots \\ A_{n-1,0}x_0 + A_{n-1,1}x_1 + \dots + A_{n-1,n-1}x_{n-1} = b_{n-1} \end{cases}$$

Paso 2: Resolver para x_0

La primera ecuación es:

$$A_{00}x_0=b_0$$

Si $A_{00} \neq 0$, entonces:

$$x_0=rac{b_0}{A_{00}}$$

Paso 3: Resolver para x_i cuando $i \ge 1$

Para $i=1,2,\ldots,n-1$, consideramos la ecuación i-ésima:

$$A_{i0}x_0 + A_{i1}x_1 + \cdots + A_{ii}x_i = b_i$$

Podemos separar el término correspondiente a x_i :

$$A_{ii}x_i=b_i-\sum_{j=0}^{i-1}A_{ij}x_j$$

Paso 4: Despejar x_i

Despejando x_i de la ecuación anterior, obtenemos:

$$x_i = rac{b_i - \sum_{j=0}^{i-1} A_{ij} x_j}{A_{ii}}$$

Esto corresponde a la fórmula de sustitución hacia adelante dada en (5.56):

$$x_i = rac{b_i - \sum_{j=0}^{i-1} A_{ij} x_j}{A_{ii}}$$

Paso 5: Verificación detallada

Para asegurar que la derivación es correcta, consideremos un ejemplo general para i=2:

• La ecuación correspondiente es:

$$A_{20}x_0 + A_{21}x_1 + A_{22}x_2 = b_2$$

• Ya habiendo calculado x_0 y x_1 , podemos calcular x_2 :

$$egin{aligned} A_{22}x_2 &= b_2 - (A_{20}x_0 + A_{21}x_1) \ x_2 &= rac{b_2 - (A_{20}x_0 + A_{21}x_1)}{A_{22}} \ x_2 &= rac{b_2 - \sum_{j=0}^1 A_{2j}x_j}{A_{22}} \end{aligned}$$