Relational Abstraction in HybridSAL

Ashish Tiwari

SRI International

Menlo Park

CA 94025

Relational Abstraction: Concept

Consider a dynamical system (X, \rightarrow) where

X:variables defining state space of the system

→:binary relation over state space defining system dynamics

We do not care if

- the system is discrete- or continuous- or hybrid-time, or
- the system has a discrete, continuous, or hybrid state space

For discrete-time systems, \rightarrow is the one-step transition relation For continuous-time systems, $\rightarrow = \cup_{t \geq 0} \xrightarrow{t}$ where \xrightarrow{t} is the transition relation corresponding to an elapse of t time units

Relational Abstraction: Concept

Relational abstraction of a dynamical system (X, \rightarrow) is another dynamical system (X, \rightarrow) such that

TransitiveClosure $(\rightarrow) \subseteq \rightarrow$

Relational Abstraction: An over-approximation of the transitive closure of the transition relation

Benefit:

Eliminates need for iterative fixpoint computation Useful for proving safety properties, and establishing conservative safety bounds

Relational Abstraction: Examples

continuous-time continuous-space	continuous-space discrete-time
concrete system	relational abstraction
$\dot{x}=1,\dot{y}=1$	$x' - x = y' - y \land y' \ge y$
$\dot{x} = 2, \dot{y} = 3$	$(x'-x)/2 = (y'-y)/3 \land y' \ge y$
$\frac{dx}{dt} = -x$	$x \ge x' > 0 \lor x \le x' < 0 \lor x = x' = 0$
$\frac{dx}{dt} = -x + y$	$\max(x , y) \geq \max(x' , y') \ \land$
$\frac{dy}{dt} = -x - y$	$x^2 + y^2 \ge x'^2 + y'^2$
$\frac{d\vec{x}}{dt} = A\vec{x}$	$c^T \vec{x} \ge c^T \vec{x'} > 0 \lor$
	$c^T \vec{x} \le c^T \vec{x'} < 0 \lor$
	$c^T \vec{x} = c^T \vec{x'} = 0) \wedge \dots$

Relational Abstraction: Example

For the continuous-time continuous-space dynamical system:

$$\frac{dx}{dt} = -x + y$$

$$\frac{dy}{dt} = -x - y$$

we have the following continuous-space discrete-time relational abstraction:

$$(x,y) \to (x',y') := \max(|x|,|y|) \ge \max(|x'|,|y'|)$$

If initially $x \in [0,3], y \in [-2,2]$, then in any future time, x,y will remain in the range [-3,3]

Relational Abstraction: Challenge

Is it possible to compute relational abstractions?

We do not want to abstract discrete-time transition relations, because model checkers (and static analyzers) can handle them (compute fixpoint)

Is it possible to compute relational abstractions of continuous-time dynamics?

Computing Relational Abstractions

We have an algorithm for computing relational abstractions of linear systems: Lots of linear algebra

More generally, there is a standard way to generate relational abstractions using constraint solving

The relation \rightarrow is a relabs. of \rightarrow if

$$\begin{array}{cccc} {\tt Init}(\vec{x}) & \Rightarrow & \vec{x} {\rightarrow} \vec{x} \\ \vec{x} {\rightarrow} \vec{x'} \; \wedge \; \vec{x'} {\rightarrow} \vec{y} & \Rightarrow & \vec{x} {\rightarrow} \vec{y} \end{array}$$

We can search for \rightarrow that satisfies the above two formulas.

We can do so by fixing a form/template for \rightarrow

Then, we will get a $\exists \forall$ constraint, whose solution will give us a relational invariant

Note for Linear Systems

The algorithm for creating relational abstractions can be viewed as a special case of the generic method described above, where the $\exists \forall$ problems are being solved using linear algebra tricks.

HybridSAL Implementation of RelAbs

Old HybridSAL:

$$HybridSAL \stackrel{\texttt{QualitativeAbstraction}}{\Longrightarrow} SAL$$

Resulting SAL was finite-state model, could be model checked

Now we can also create relational abstractions from HybridSAL:

$$HybridSAL \stackrel{\texttt{RelationalAbstraction}}{\Longrightarrow} SAL$$

Resulting SAL is infinite-state model, can be infinite bounded model checked

RelAbs: Q&A

- How to verify the abstract system?
 - k-induction and infinite BMC
 - scalability?
- How to verify time-triggered systems?
 - timed relational abstraction
 - Reducing sampling rate leads to instability
- How to relationally abstract nonlinear systems?
 - Use quantifier elimination (qepcad+redlog+slfq)
- Can we get nonlinear relational abstractions?
 - Yes, they will be more precise
 - o But, current SMT solvers can't analyze those abstractions