Linear Regression with Multiple Variables Graded Quiz • 30 min

The Congratulations You passed ar Regression with Multiple Variables

Multivariate Linear Regression Grade received 100% To pass 80% of higher

Computing Parameters

Analytically

Submit your assignment

Your computer's timezone does not seem to match your Coursela account stimezone setting of America/Los_Angeles. Change your Coursera timezone setting

Try again

Submittin Regression v	with Multi	iple Variab	les	
Assignments	Due	Sep 26, 11:59 PM PD	Attempts	3 every 8 hours

Lateost _w Su	bmission Grade 100%						
20 mir	ng: Lecture Slides	Receive g		nidterm evam and a final evam. Vou have collected a d	lataset of their scores on the two evens	Your grade which is as follows: View	/ Feedback 1/1 point
_	9	To Pass 80% o	iass riau a r or higher	nidterm exam and a final exam. You have collected a d	lataset of their scores on the two exams	We keep w	1 / 1 point our highest score
Multip midte	le Variables erm exam tions			(midterm exam)^2	final exam	We keep yo	our mignest score
	atlab Tutorial			7921	96		-
72 Review	atian futorial	0	<u> </u>	5184 Report an issue	74		
Review 94		<u></u> Like (Dislike	Report an issue	87		-
69				4761	78		-
$ heta_1 x_1 + $ normaliz	$ heta_2 x_2$, where x_1 is the midterm sozation.	ore and x_2 is (r	midterm sc	nal exam score from their midterm exam score. Concre ore)^2. Further, you plan to use both feature scaling (d s training example 4.) Please round off your answer to	lividing by the "max-min", or range, of a	feature) and mean	
⊘ Co	orrect						
2. You rui	n gradient descent for 15 iteration	ıs					1 / 1 point
with	n $lpha=0.3$ and compute						
J(heta	after each iteration. You find th	at the					
valu	ue of $J(heta)$ decreases quickly ther	ı levels					
off.	Based on this, which of the follow	wing conclusion	s seems				
mos	st plausible?						
⊘ Cc	orrect						
				res (excluding the additional all-ones feature for the in ensions of $ heta$, and y in this equation?	tercept term, which you should add). Th	e normal equation is $ heta=$	1 / 1 point
⊘ Cc	orrect						
	pose you have a dataset with $m = \sqrt{2}$			n=200000 features for each example. You want to เ	use multivariate linear regression to fit t	ne parameters $ heta$ to our data.	1 / 1 point
⊘ Co	orrect						
5. Whi	ich of the following are reasons fo	or using feature	scaling?				1 / 1 point
⊘ Co	orrect						