

ESTATÍSTICA E PROBABILIDADE_7930-30_43701_R_E1_20221 QUESTIONÁRIO UNIDADE II

PERGUNTA 1

No teste de hipóteses se compara uma hipótese de referência, a hipótese nula, indicada por Ho, com uma hipótese alternativa
indicada por Ha. Como ambas as hipóteses são conjecturas, se pode cometer erros quando se rejeita Ho e quando se aceita Ho
Analise as afirmações;

I. Erro tipo I: rejeitar Ho quando ela é verdadeira. II. Erro tipo II: rejeitar Ho quando ela é falsa. III. Não há erro: não rejeitar Ho quando ela é verdadeira.
Está correto o que se afirma em:
PERGUNTA 2
Considere as afirmações a seguir sobre o coeficiente de correlação, que é indicado por R e quantifica o grau de associação entre duas variáveis: $I1 \le R \le 1$. II. $R = -1$, o gráfico de dispersão são pontos de uma reta decrescente. III. $R = 0$, as variáveis apresentam associação linear.
Está correto o que se afirma em:
○ a. l e ll, apenas. ○ b. l e lll, apenas.
O c. II e III, apenas.
○ d. I, apenas.
○ e. II, apenas.
PERGUNTA 3
Analise as afirmativas:
I. Um parâmetro é a quantidade da característica da população que se estuda. II. Um estimador é uma variável aleatória que independe dos componentes da amostra. III. Uma estimativa é um valor "específico" de um estimador ao se usar valores específicos de determinada amostra.
Está correto o que se afirma em:
O a. I e II, apenas.
○ b. l e lll, apenas. ○ c. ll e lll, apenas.
O d. I, apenas.
○ e. II, apenas.
PERGUNTA 4
Analise as asserções sobre testes de independência:
I. Obietivam verificar se há independência entre duas variáveis.

Analise as asserções sobre testes de aderência:
I. Objetivam verificar se modelo probabilístico é adequado a determinado conjunto de dados. II. Se a hipótese Ho é verdadeira, a variável aleatória Q² segue aproximadamente uma distribuição ½² com q graus de liberdade.
III. Se $P \leq a$ (nível de significância), se aceita a hipótese Ho.
Está correto o que se afirma em: O a. l, apenas.
○ b. II e III, apenas.
○ c. l e III, apenas.
○ d. l e II apenas.
○ e. l, ll e III.
PERGUNTA 6
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ^2 igual a 2. Uma amostra aleatória de tamanho 25 forneceu média amostral igual a 51,3. Para essa situação, com coeficiente de confiança de 95%, o valor de $\Box_{\pi/2} = 1,96$ é encontrado dentro da tabela normal reduzida, utilizando o valor:
○ a. 0,9750.
O b. 0,9500.
○ c. 0,4875.
O d. 0,4750.
○ e. 0,2500.
PERGUNTA 7
PERGUNTA 7 A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C/2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de:
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de:
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: ○ a. [994;1.034]
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: ○ a. [994;1.034] ○ b. [1.012;1.016]
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: o a. [994;1.034] b. [1.012;1.016] c. [1.003;1.025]
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: ○ a. [994;1.034] ○ b. [1.012;1.016] ○ c. [1.003;1.025] ○ d. [1.008;1.020]
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: ○ a. [994;1.034] ○ b. [1.012;1.016] ○ c. [1.003;1.025] ○ d. [1.008;1.020]
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: α. [994;1.034] b. [1.012;1.016] c. [1.003;1.025] d. [1.008;1.020] e. [919;1.109]
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z σ2 é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: α. [994;1.034] b. [1.012;1.016] c. [1.003;1.025] d. [1.008;1.020] e. [919;1.109] PERGUNTA 8 Com coeficiente de confiança de 99,5% o intervalo de confiança para a média populacional μ é de [1,5;4,5], para uma distribuição
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{CZ} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: a. [994;1.034] b. [1.012;1.016] c. [1.003;1.025] d. [1.008;1.020] e. [919;1.109] PERGUNTA 8 Com coeficiente de confiança de 99,5% o intervalo de confiança para a média populacional μ é de [1,5;4,5], para uma distribuição de um determinado parâmetro que obedece a um modelo normal. Dado que Z _{C/2} =2,81
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z σ2 é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: α. [994;1.034] b. [1.012;1.016] c. [1.003;1.025] d. [1.008;1.020] e. [919;1.109] PERGUNTA 8 Com coeficiente de confiança de 99,5% o intervalo de confiança para a média populacional μ é de [1,5;4,5], para uma distribuição
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{C2} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de: a. [994;1.034] b. [1.012;1.016] c. [1.003;1.025] d. [1.008;1.020] e. [919;1.109] PERGUNTA 8 Com coeficiente de confiança de 99,5% o intervalo de confiança para a média populacional μ é de [1,5;4,5], para uma distribuição de um determinado parâmetro que obedece a um modelo normal. Dado que Z _{C/2} = 2,81 e a variância populacional é de 23, nessas condições o tamanho da amostra deve ser, aproximadamente, de:
A distribuição de um determinado parâmetro obedece a um modelo normal com média μ desconhecida e com variância σ² igual a 25. Uma amostra aleatória de tamanho 20 forneceu média amostral igual a 1.014. Com coeficiente de confiança de 95%, o valor de Z _{CZ} é igual a 1,96. Para essa situação, o intervalo de confiança para a média populacional μ é de:

PERGUNTA 5

○ e. 22.

PERGUNTA 9

Estão sendo estudados dois processos para conservar alimentos, cuja principal variável de interesse é o tempo de duração destes. No processo A, o tempo X de duração segue a distribuição N(μ _a, 100), e no processo B o tempo Y obedece à distribuição

 $N(\mu_B, 100)$. Sorteiam-se duas amostras independentes: a de A, com 16 latas, apresentou tempo médio de duração igual a 50, e a de B, com 25 latas, duração média igual a 60. Com base nestes dados, o Intervalo de Confiança para μ_Δ é de

 $IC(\mu_B, 0.95) = [56.08; 63.92]$ e para μ_B é de $IC(\mu_A - \mu_B, 0.95) = [-16.27; -3.72]$. Para verificar se os dois processos podem ter o mesmo desempenho, decidiu-se construir um IC para a diferença μ_A - μ_B , $IC(\mu_A - \mu_B, 0.95) = [-16.27; -3.72]$. Analise as afirmações sobre os dois processos:

- I. Como os intervalos para μ_A e para μ_B não se interceptam, temos evidência para dizer que as durações médias serão diferentes, a 95% de confianca.
- II. Como 0 (zero) não está contido no intervalo $IC(\mu_A \mu_B)$, rejeitamos a hipótese, a 95% de confiança, das médias μ_A e μ_B serem iguais.
- III. Os processos apresentam o mesmo valor de desvio-padrão.

Está correto o que se afirma em:
○ a. l, apenas.
○ b. II e III, apenas.
○ c. l e III, apenas.
○ d. l e ll apenas.
○ e. l, ll e lll.

PERGUNTA 10

O número de embalagens vendidas de um determinado medicamento genérico (y) depende do seu preço (x), os valores destas variáveis durante 12 semanas são mostrados na tabela a seguir:

y	892	1012	1060	987	680	739	809	1275	946	874	720	1096
x	1.23	1,15	1.1	1.2	1.35	1.25	1.28	0.99	1.22	1.25	1.3	1.05

Pelo método dos mínimos quadrados, se obteve a reta y = -1.578x + 2.813, com coeficiente de correlação R = -0.96. Com base nessas informações, analise as seguintes afirmações:

- I. Existe relação linear negativa forte entre o preço das embalagens e número de embalagens vendidas.
- II. Para um preço elevado da embalagem espera-se um número baixo de embalagens vendidas.
- III. O coeficiente de determinação é igual a 0,92, aproximadamente.

Está correto o que se afirma em:

○ a. _{I, apenas} .
○ b. _{II} e III, apenas.
○ c. _{I e III} , apenas.
○ d. _{I e II} apenas.
○ e. _{I, II e III.}