Please execute the code below and observe the output you get. Also, please learn

```
how to use each of these statements to get a similar task done.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
df =
pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wranglin
g/master/dat
a/chp3/data-text.csv')
df.head(2)
df1 =
pd.read_csv('https://raw.githubusercontent.com/kjam/data-wranglingpycon/m
aster/d
ata/berlin_weather_oldest.csv')
df1.head(2)
```

In [4]: #fetching data from online CSV files
 import pandas as pd
 df=pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wrangling/masted df.head(2)

α		- 1		
u	w	LΙ	4	
_	٠.	- 1	ц.	

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Col
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	

In [3]: df1=pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/maste
df1.head(2) #fetching 2 rows from df

\boldsymbol{C}	۱r	+ 1	12	11
·	'u	L	L ン	J

	STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDFG	ŀ
0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-9999	_
1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-9999	

2 rows × 21 columns

1. Get the Metadata from the above files.

```
In [5]:
        #fetching metadata from the 2 dataframes
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4656 entries, 0 to 4655
        Data columns (total 12 columns):
        Indicator
                                    4656 non-null object
        PUBLISH STATES
                                    4656 non-null object
                                    4656 non-null int64
        Year
        WHO region
                                    4656 non-null object
        World Bank income group
                                    4656 non-null object
                                    4656 non-null object
        Country
                                    4656 non-null object
        Sex
        Display Value
                                    4656 non-null int64
                                    4656 non-null float64
        Numeric
        Low
                                    0 non-null float64
        High
                                    0 non-null float64
                                    0 non-null float64
        Comments
        dtypes: float64(4), int64(2), object(6)
        memory usage: 436.6+ KB
In [6]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 117208 entries, 0 to 117207
        Data columns (total 21 columns):
        STATION
                         117208 non-null object
        STATION NAME
                         117208 non-null object
        DATE
                         117208 non-null int64
        PRCP
                         117208 non-null int64
        SNWD
                         117208 non-null int64
        SNOW
                         117208 non-null int64
        TMAX
                         117208 non-null int64
        TMIN
                         117208 non-null int64
                         117208 non-null int64
        WDFG
                         117208 non-null int64
        PGTM
                         117208 non-null int64
        WSFG
        WT09
                         117208 non-null int64
                         117208 non-null int64
        WT07
                         117208 non-null int64
        WT01
        WT06
                         117208 non-null int64
                         117208 non-null int64
        WT05
        WT04
                         117208 non-null int64
        WT16
                         117208 non-null int64
                         117208 non-null int64
        WT08
        WT18
                         117208 non-null int64
        WT03
                         117208 non-null int64
        dtypes: int64(19), object(2)
        memory usage: 18.8+ MB
```

2. Get the row names from the above files.

```
In [7]: #Getting the row names from the 2 dataframes
    df.index.values

Out[7]: array([ 0,  1,  2, ..., 4653, 4654, 4655], dtype=int64)

In [8]: df1.index.values

Out[8]: array([ 0,  1,  2, ..., 117205, 117206, 117207], dtype=int64)
```

3. Change the column name from any of the above file.

In [11]: # Renaming Indicator to indicator_id
df.rename(columns={'Indicator':'indicator_id'})

Out[11]:

	indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	C
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	
4												•

4. Change the column name from any of the above file and store the changes made permanently.

In [12]: # Renaming Indicator to indicator_id and making it permanent
 df.rename(columns={'Indicator':'indicator_id'},inplace=True)
 df.head(2)

Out[12]:

	indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	C
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	
4												•

5. Change the names of multiple columns.

Out[13]:

	indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN
◀ 📗											>

6. Arrange values of a particular column in ascending order

In [16]: # Arranging columns based on Year column
df.sort_values('Year').head()

Out[16]:

	indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	Hi
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	N
1270	Life expectancy at birth (years)	Published	1990	Europe	High- income	Germany	Male	72	72.0	NaN	N
3193	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	65	65.0	NaN	N
3194	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Both sexes	68	68.0	NaN	N
3197	Life expectancy at age 60 (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	15	15.0	NaN	N
4											•

7. Arrange multiple column values in ascending order.

In [25]: # Unable to get the same results because there is no combination avaliable to get
df.sort_values(['Publication Status','indicator_id','Country','Year'],ascending=[

Out[25]:

	Country	indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Nume
554	Afghanistan	Life expectancy at birth (years)	Published	1990	Eastern Mediterranean	Low- income	Both sexes	49	49
965	Afghanistan	Life expectancy at birth (years)	Published	1990	Eastern Mediterranean	Low- income	Male	49	49
1792	Afghanistan	Life expectancy at birth (years)	Published	1990	Eastern Mediterranean	Low- income	Female	50	50
146	Afghanistan	Life expectancy	Published	2000	Eastern	Low-	Both	55	55 •

8. Make countryas the first column of the dataframe.

```
In [22]: # Takeing the column into a list, and repositioning the column by making changes
    cols=df.columns.tolist()
    cols.remove("Country")
    cols = ["Country"] + cols
    df=df[cols]
    df.head(5)
```

Out[22]:

	Country	indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Low
0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High- income	Both sexes	77	77.0	NaN
1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High- income	Both sexes	80	80.0	NaN
2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	28	28.0	NaN
3	Andorra	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Both sexes	23	23.0	NaN
4	United Arab Emirates	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	Female	78	78.0	NaN
4										•

9. Get the column array using a variable

```
In [23]: #fetching column name into varaiable
    who_region=df["WHO Region"].as_matrix()
    who_region
```

C:\Users\manoj\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: FutureWarni
ng: Method .as_matrix will be removed in a future version. Use .values instead.
 """Entry point for launching an IPython kernel.

10. Get the subset rows 11, 24, 37

In [26]: df.iloc[[11,24,37]]

Out[26]:

	Country	indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Low
11	Austria	Life expectancy at birth (years)	Published	2012	Europe	High- income	Female	83	83.0	NaN
24	Brunei Darussalam	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High- income	Female	21	21.0	NaN
37	Cyprus	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	26	26.0	NaN
4										•

11. Get the subset rows excluding 5, 12, 23, and 56

Out[35]:

:[35]:		Country	indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numer	
	0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High- income	Both sexes	77	77	
	1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High- income	Both sexes	80	80	
	2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	28	28	
	3	Andorra	Life expectancy	Published	2000	Europe	High-	Both	23	23	•

Load datasets from CSV

users=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWranglin
g/master/Data/users.csv')
sessions=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangl
ing/master/Data/sessions.csv')
products=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangl
ing/master/Data/products.csv')
transactions=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/transactions.csv')
users.head()
sessions.head()
transactions.head()

In [80]: #fetching CSV files from URLs into dataframes and getting first 2 rows
 users=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/l
 sessions=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master
 products=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master
 transactions=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master
 users.head(2)

 Out[80]:
 UserID
 User
 Gender
 Registered
 Cancelled

 0
 1
 Charles
 male
 2012-12-21
 NaN

 1
 2
 Pedro
 male
 2010-08-01
 2010-08-08

In [37]: sessions.head(2)

Out[37]: SessionID SessionDate UserID 0 1 2010-01-05 2 1 2 2010-08-01 2

In [38]: products.head(2)

 Out[38]:
 ProductID
 Product
 Price

 0
 1
 A
 14.16

 1
 2
 B
 33.04

In [39]: transactions.head(2)

Out[39]:		TransactionID	TransactionDate	UserID	ProductID	Quantity
	0	1	2010-08-21	7.0	2	1
	1	2	2011-05-26	3.0	4	1

12. Join users to transactions, keeping all rows from transactions and only matching rows from users (left join)

In [42]: # Using merge with parameter left to get all rows from transactions and only match
transactions.merge(users, how='left', on='UserID')

Out[42]:		TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Canc
	0	1	2010-08-21	7.0	2	1	NaN	NaN	NaN	
	1	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	201
	2	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	201
	3	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
	4	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	201
	5	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	201
	6	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	201
	7	8	2014-04-24	NaN	2	3	NaN	NaN	NaN	
	8	9	2015-04-24	7.0	4	3	NaN	NaN	NaN	
	9	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	201
	4									•

13. Which transactions have a UserID not in users?

In [46]:	# same way	as questi	on 11,	using	~ and	isin	fucntion	to	exclude	the	rows	in	trans
<pre>In [46]: # same way as question 11, using ~ and isin fucntion to exclude transactions[~transactions['UserID'].isin(users['UserID'])]</pre>													

Out[46]:		TransactionID	TransactionDate	UserID	ProductID	Quantity
	0	1	2010-08-21	7.0	2	1
	7	8	2014-04-24	NaN	2	3
	8	9	2015-04-24	7.0	4	3

14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join)

In [47]: # Using merge with parameter inner to get only matching rows from both the datafr
transactions.merge(users, how='inner', on='UserID')

Out[[47]
------	------

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Canc
0	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	201
1	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	201
2	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	201
3	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	201
4	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
5	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	201
6	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	201
4									•

15. Join users to transactions, displaying all matching rows AND all non-matching rows (full outer join)

In [48]: # Using merge with parameter outer to get all rows from transactions and users
transactions.merge(users, how='outer', on='UserID')

Ca	Registered	Gender	User	Quantity	ProductID	UserID	TransactionDate	TransactionID	48]:
	NaN	NaN	NaN	1.0	2.0	7.0	2010-08-21	1.0	0
	NaN	NaN	NaN	3.0	4.0	7.0	2015-04-24	9.0	1
2	2012-10-23	female	Caroline	1.0	4.0	3.0	2011-05-26	2.0	2
2	2012-10-23	female	Caroline	1.0	3.0	3.0	2011-06-16	3.0	3
2	2012-10-23	female	Caroline	1.0	4.0	3.0	2013-12-30	7.0	4
2	2012-10-23	female	Caroline	4.0	4.0	3.0	2016-05-08	10.0	5
	2012-12-21	male	Charles	3.0	2.0	1.0	2012-08-26	4.0	6
2	2010-08-01	male	Pedro	1.0	4.0	2.0	2013-06-06	5.0	7
2	2010-08-01	male	Pedro	6.0	5.0	2.0	2013-12-23	6.0	8
	NaN	NaN	NaN	3.0	2.0	NaN	2014-04-24	8.0	9
	2013-07-17	female	Brielle	NaN	NaN	4.0	NaN	NaN	10
	2010-11-25	male	Benjamin	NaN	NaN	5.0	NaN	NaN	11
•									4

16. Determine which sessions occurred on the same day each user registered

```
# Using merge with parameter innter to get all rows from transactions and users w
In [49]:
          pd.merge(left=users, right=sessions, how='inner', left_on=['UserID', 'Registered'
Out[49]:
              UserID
                      User Gender Registered
                                              Cancelled SessionID SessionDate
           0
                    Pedro
                                                               2
                                                                    2010-08-01
                  2
                              male
                                   2010-08-01
                                             2010-08-08
           1
                    Brielle
                            female
                                   2013-07-17
                                                   NaN
                                                               9
                                                                    2013-07-17
```

17. Build a dataset with every possible (UserID, ProductID) pair (cross join)

```
In [83]: # Fetching the required columns into 2 dataframes
    df_users=pd.DataFrame(users['UserID'],columns=['UserID'])
    df_products=pd.DataFrame(products['ProductID'],columns=["ProductID"])

# adding a row called key with value as 1
    df_users['key']=1
    df_products['key']=1

# Using the merge with default how parameter to get the required output
    df_U_P = pd.merge(df_users,df_products,on='key')[["UserID","ProductID"]]
    df_U_P
```

		J_'	
Out[83]:		UserID	ProductID
	0	1	1
	1	1	2
	2	1	3
	3	1	4
	4	1	5
	5	2	1
	6	2	2
	7	2	3
	8	2	4
	9	2	5
	10	3	1
	11	3	2
	12	3	3
	13	3	4
	14	3	5
	15	4	1
	16	4	2
	17	4	3
	18	4	4
	19	4	5
	20	5	1
	21	5	2
	22	5	3
	23	5	4
	24	5	5

18. Determine how much quantity of each product was purchased by each user

```
# Using merge, groupby and sum to get the quantity of each product was purchased
In [88]:
          pd.merge(df_U_P,transactions,how='left').groupby(["UserID","ProductID"])["Quantit
Out[88]: UserID ProductID
          1
                                0.0
                  1
                  2
                                3.0
                  3
                                0.0
                  4
                                0.0
                  5
                                0.0
          2
                  1
                                0.0
                  2
                                0.0
                  3
                                0.0
                  4
                                1.0
                  5
                                6.0
          3
                  1
                                0.0
                  2
                                0.0
                  3
                                1.0
                  4
                                6.0
                  5
                                0.0
                  1
                                0.0
          4
                  2
                                0.0
                  3
                                0.0
                  4
                                0.0
                  5
                                0.0
          5
                  1
                                0.0
                  2
                                0.0
                  3
                                0.0
                  4
                                0.0
```

19. For each user, get each possible pair of pair transactions (TransactionID1,TransacationID2)

0.0

Name: Quantity, dtype: float64

In [89]: # Using the merge on transactions twice based on "UserID" to get possible pair of
pd.merge(transactions, transactions, on='UserID')

t[89]:	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	Transact
0	1	2010-08-21	7.0	2	1	1	2
1	1	2010-08-21	7.0	2	1	9	2
2	9	2015-04-24	7.0	4	3	1	2
3	9	2015-04-24	7.0	4	3	9	2
4	2	2011-05-26	3.0	4	1	2	2
5	2	2011-05-26	3.0	4	1	3	2
6	2	2011-05-26	3.0	4	1	7	2
7	2	2011-05-26	3.0	4	1	10	2
8	3	2011-06-16	3.0	3	1	2	2
9	3	2011-06-16	3.0	3	1	3	2
10	3	2011-06-16	3.0	3	1	7	2
11	3	2011-06-16	3.0	3	1	10	2
12	7	2013-12-30	3.0	4	1	2	2
13	7	2013-12-30	3.0	4	1	3	2
14	7	2013-12-30	3.0	4	1	7	2
15	7	2013-12-30	3.0	4	1	10	2
16	10	2016-05-08	3.0	4	4	2	2
17	10	2016-05-08	3.0	4	4	3	2
18	10	2016-05-08	3.0	4	4	7	2
19	10	2016-05-08	3.0	4	4	10	2
20	4	2012-08-26	1.0	2	3	4	2
21	5	2013-06-06	2.0	4	1	5	2
22	5	2013-06-06	2.0	4	1	6	2
23	6	2013-12-23	2.0	5	6	5	2
24	6	2013-12-23	2.0	5	6	6	2
25	8	2014-04-24	NaN	2	3	8	2
4							>

20. Join each user to his/her first occuring transaction in the transactions table

Out[91]:

In [91]: # Using merge, left and first method to get each user to his/her first occuring to
pd.merge(users, transactions.groupby('UserID').first(), how='left', on='UserID')

:		UserID	User	Gender	Registered	Cancelled	TransactionID	TransactionDate	ProductID	Qι
-	0	1	Charles	male	2012-12-21	NaN	4.0	2012-08-26	2.0	
	1	2	Pedro	male	2010-08-01	2010-08- 08	5.0	2013-06-06	4.0	
	2	3	Caroline	female	2012-10-23	2016-06- 07	2.0	2011-05-26	4.0	
	3	4	Brielle	female	2013-07-17	NaN	NaN	NaN	NaN	
	4	5	Benjamin	ma l e	2010-11-25	NaN	NaN	NaN	NaN	
4										•

This is for the bonus points

```
In [111]:
             def removeYears(item):
                  if type(item) == str:
                       if '(years)' in item:
                            return item.replace("(years)","")
                       else:
                            return item
                  else:
                       return item
                     df.applymap(removeYears)
             df1 =
             df1
                                        Life
                    Antigua and
                                                                                High-
                                               Published 1990
                                                                                         Male
                                                                                                    17
                                                                    Americas
                                                                                                            17
                                  expectancy
                       Barbuda
                                                                               income
                                   at age 60
                    Antigua and
                                                                                High-
                                                                                          Both
                                               Published 2012
                                                                                                    22
                                                                                                            22
                                  expectancy
                                                                    Americas
                       Barbuda
                                                                               income
                                                                                         sexes
                                   at age 60
                                        Life
                                                                     Western
                                                                                High-
                                               Published 2012
                 8
                       Australia
                                  expectancy
                                                                                         Male
                                                                                                    81
                                                                                                            81
                                                                       Pacific
                                                                               income
                                     at birth
                                        Life
                                                                     Western
                                                                                High-
                                                                                          Both
                 9
                       Australia
                                               Published 2000
                                                                                                    80
                                  expectancy
                                                                                                            80
                                                                       Pacific
                                                                               income
                                                                                         sexes
                                     at birth
```

```
In [ ]:
```