BREAST CANCER WISCONSIN (DIAGNOSTIC) DATASET

Supervised Analysis for Malignancy Detection

Authors: Pablo Laso Mielgo, Helena Sofía Yaben

1. PRESENTATION OF THE PROBLEM

- Breast Cancer is the most common type of cancer among women across the world.
- Leading cause of death from cancer in women.

- Biopsy is essential to distinguish between malignant and benignant tissue but it requires
 expensive and bulky equipment, and highly trained professionals.
- Digitalization of pathology slides and application of AI can make diagnosis faster, cheaper, and provides a useful tool for phathologists.
- Inferential analysis can help statistically determine differences between malignant and benignant populations. It can also help determining important features for further AI modelling.

1. PRESENTATION OF THE PROBLEM

1.1 Source of the Database

UCI Machine Learning Repository

Creators:

- 1. Dr. William H. Wolberg, General Surgery Dept. University of Wisconsin, Clinical Sciences Center Madison, WI 53792 wolberg '@' eagle.surgery.wisc.edu
- 2. W. Nick Street, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 street '@' cs.wisc.edu 608-262-6619
- 3. Olvi L. Mangasarian, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 olvi '@' cs.wisc.edu

Donor:

Nick Street

Is there any difference between benignant and malignant populations for each feature?

In other words, which features could significantly help determining diagnosis of each sample?

2 MATERIALS

2.2 Dataset Information: acquisition of the data

1. Tissue sample from Breast Tumor by Fine-Needle Aspiration (FNA)

569 tissue samples

2. Hystopathological analysis of 10 characteristics for each nucleus:

- Radius (mean of distances from the center to points on the perimeter)
- **Texture** (std of gry-scale values)
- Perimeter
- Area
- **Smoothness** (local variation in radius lentghs)
- **Compactness** (perimeter²/area 1)
- Concavity (severity of concave portions of the contour)
- Concave points (number of concave portions of the contour)
- Simmetry
- Fractal Dimension ("coastline approximation"-1)

3. Mean, Ste and Worst Values of all nuclei characteristics in each sample

30 features

^{*} No units were provided

2 MATERIALS

2.2 Dataset Information: predictors and target variable

For each nucleus in each simple:

- **1. Radius** (mean of distances from the center to points on the perimeter)
- 2. Texture (std of gry-scale values)
- 3. Perimeter
- 4. Area
- **5. Smoothness** (local variation in radius lentghs)
- **6. Compactness** (perimeter²/area 1)
- **7. Concavity** (severity of concave portions of the contour)
- **8. Concave points** (number of concave portions of the contour)
- 9. Simmetry
- **10. Fractal Dimension** ("coastline approximation"-1)

Mean, Ste and Worst Values of nuclei characteristics in each sample

Diagnosis:

- 1. Benignant (B)
- 2. Malignant (M)

30 features

1Target Variable

3.1 Data Types

Empty Column

Numerical, 0

Drop Column

3.2 Descriptive statistics of the dataset

In order to summarize the main and most basic statistical characteristics of the dataset, we will use the method **describe:**

No abnormal values for max/min values were initially identified(e.g 0 values or max/min values highly above/below the mean).

By plotting count of samples for each class we find that:

Class imbalance (62.7 %(B, majority class)/ 37.3% (M, minority class): moderate

3.3 Univariate Analysis: Graphical

- 1. Mean values for radius, texture, perimeter, area, compactness, concavity and concave points seem to be larger in malignant tissue.
- 2. Features (distinguishing between malignant/benignant) follow, approximately, a **normal distribution.**

3.4 Multivariate Analysis: Correlation

- Strong positive relationship between target variable and mean and worst values for radius, area, perimeter, concavity and concave points (P. Correlation coefficient >0.7).
- 2. Strongest relationship with worst value for concave points.
- 3. Strong correlation between radius, perimeter and area.
- 4. Strong correlation between concave points, concavity and compactness.

3.5 Multivariate Analysis: Scatter Plots (Diagnosis vs each feature/ Feature vs Feature)

Only 1 feature suitable for Logistic Regression

Only 2 features suitable for models such as KNN

3.6 Test for Normality

Kolmogorov-Smirnov (KS) test for normality (n > 50) for each population (malignant/benignant), for each feature:

H_0: The sample data are not significantly different than a normal population.

H_1: The sample data are significantly different than a normal population.

In general, normally/non-normally distribution between malignant and benignant populations for one feature.

Non-parametric methods should be used for hypothesis testing.

	Normally distributed B	Normally distributed M		Normally distributed B	Normally distributed M
radius_mean	Yes	Yes	smoothness_se	No	No
texture_mean	No	Yes	compactness_se	No	No
			concavity_se	No	No
perimeter_mean	Yes	Yes	concave points_se	No	Yes
area_mean	Yes	Yes	symmetry_se	No	No
smoothness_mean	Yes	Yes	fractal_dimension_se	No	No
compactness_mean	No	No	radius_worst	Yes	Yes
concavity_mean	No	No	texture_worst	Yes	Yes
concave points_mean	No	No	perimeter_worst	Yes	Yes
symmetry_mean	Yes	Yes	area_worst	Yes	Yes
fractal dimension mean	No	No	smoothness_worst	Yes	Yes
			compactness_worst	No	No
radius_se	No	No	concavity_worst	No	No
texture_se	No	No	concave points_worst	Yes	Yes
perimeter_se	No	No	symmetry_worst	Yes	No
area_se	No	No	fractal_dimension_worst	No	Yes

4. PRE- PROCESSING OF THE DATASET

4.1 Missing Values

- **1. No missing values**, neither explicit (NaN values) nor implicit (e.g. repeated 0 values for an instance for different features).
- Samples with 0 values show the same behavior, all associated with diagnosis=B and same zero features, which may imply that these values are indeed correct.

	diagnosis	concavity_mean	concave points_mean
101	0.0	0.0	0.0
140	0.0	0.0	0.0
174	0.0	0.0	0.0
175	0.0	0.0	0.0
192	0.0	0.0	0.0

#	columns (total 31 column Column	s): Non-Null Count	Dtype
0	diagnosis	569 non-null	float64
	radius_mean	569 non-null	float64
1 2 3 4	texture_mean	569 non-null	float64
3	perimeter_mean	569 non-null	float64
7	area_mean	569 non-null	float64
5	smoothness mean	569 non-null	float64
5	compactness_mean	569 non-null	float64
7	concavity_mean	569 non-null	float64
8	concave points_mean	569 non-null	float64
9	symmetry_mean	569 non-null	float64
10	fractal_dimension_mean	569 non-null	float64
11	radius_se	569 non-null	float64
12	texture_se	569 non-null	float64
13	perimeter_se	569 non-null	float64
14	area_se	569 non-null	float64
15	smoothness se	569 non-null	float64
16	compactness se	569 non-null	float64
17	concavity_se	569 non-null	float64
18	concave points_se	569 non-null	float64
19	symmetry_se	569 non-null	float64
20	fractal_dimension_se	569 non-null	float64
21	radius worst	569 non-null	float64
22	texture_worst	569 non-null	float64
23	perimeter_worst	569 non-null	float64
24	area_worst	569 non-null	float64
25	smoothness_worst	569 non-null	float64
26	compactness_worst	569 non-null	float64
27	concavity_worst	569 non-null	float64
28	concave points_worst	569 non-null	float64
29	symmetry_worst	569 non-null	float64
30	fractal dimension worst	569 non-null	float64

4. PRE- PROCESSING OF THE DATASET

4.2 Outliers

- 1. Outlier detection independently for Benignant/Malignant samples, as they showed different distributions.
- 2. For detection, considered as outliers those values with abs(z-score) >= 2.5.
- 3. Very low percentage of outliers per feature (0.3-2%).
- 4. 20.5% (117 instances) of rows with, at least, one outlier. **We shouldn't consider dropping this quantity of data.**
- 5. Since variables are highly correlated, random/mean/median imputation methods can introduce bias in the analysis
 → Tailored Imputation Method → Computationally expensive
- 6. From previous work with AI methods: Performance metrics after dropping outliers are not improved. They are similar → Outliers may not be deleted incorrect values, just values far from the population.
- 7. We decide to maintain these values.

Original dataset

Train Accuracy Validation Accuracy Test Accuracy Logistic Regression 0.971847 0.985915 0.979021 KNN Classifier 0.974178 0.967141 0.965035 **Decision Tree Classifier** 1.000000 0.925007 0.923077 Neural Network Classifier 0.978906 0.986014 0.995305 **Random Forest Classifier** 1.000000 0.962435 0.944056

Dataset without outliers (deletion)

	Train Accuracy	Validation Accuracy	Test Accuracy
Logistic Regression	0.988201	0.973442	0.982301
KNN Classifier	0.979351	0.967559	0.973451
Decision Tree Classifier	1.000000	0.967603	0.893805
Neural Network Classifier	0.994100	0.976383	0.973451
Random Forest Classifier	1.000000	0.967515	0.973451

5. HYPOTHESIS TESTING

Two populations for each feature: malignant and benignant.

H_0: Mean values for malignant and benignant populations are the same.

H_1: Mean values for malignant are higher than those for benignant.

Two independent samples, two-sided hypothesis testing problem.

Non-parametric methods preferred.

Both **parametric and non-parametric (Mann-Whitney-Wilcoxon)** methods will be compared for learning purposes

5. HYPOTHESIS TESTING

E.g.: Non-parametric vs Parametric (just some features)

	P-value	H_0	H_1
radius_mean	1.346471e-68	reject	accept
texture_mean	1.714313e-28	reject	accept
perimeter_mean	1.776935e-71	reject	accept
area_mean	7.698902e-69	reject	accept
smoothness_mean	3.896503e-19	reject	accept
compactness_mean	4.475996e-48	reject	accept
concavity_mean	1.082274e-68	reject	accept
concave points_mean	5.031619e-77	reject	accept
symmetry_mean	1.134025e-15	reject	accept
fractal_dimension_mean	2.685928e-01	accept	reject
radius_se	3.108570e-49	reject	accept
texture_se	3.218464e-01	accept	reject
perimeter_se	2.549719e-51	reject	accept
area_se	2.883912e-65	reject	accept
smoothness_se	1.068158e-01	accept	reject
compactness_se	5.840307e-20	reject	accept

	Statistic	P-value	H_0	H_1
radius_mean	22.208798	1.684459e-64	reject	accept
texture_mean	11.022087	3.019055e-25	reject	accept
perimeter_mean	22.935314	1.023141e-66	reject	accept
area_mean	19.640990	3.284366e-52	reject	accept
smoothness_mean	9.297355	5.573331e-19	reject	accept
compactness_mean	15.818246	9.607863e-42	reject	accept
concavity_mean	20.332425	3.742121e-58	reject	accept
concave points_mean	24.844810	3.127316e-71	reject	accept
symmetry_mean	8.112198	5.957651e-15	reject	accept
fractal_dimension_mean	-0.296866	7.667216e-01	accept	reject
radius_se	13.300706	1.491133e-30	reject	accept
texture_se	-0.207865	8.354171e-01	accept	reject
perimeter_se	12.832763	6.868553e-29	reject	accept
area_se	12.155556	2.983568e-26	reject	accept
smoothness_se	-1.622869	1.052970e-01	accept	reject
compactness_se	7.082641	6.341807e-12	reject	accept

Taking into account results from non-parametric method, mean values are different between benignant and beningant samples for every feature but for "fractal_dimension_mean", "texture_se", and "smoothness_se".

6. CONCLUSION

Dataset with excellent quality for its purpose:

1. Simple data visualization allows to get a great insight into data distribution.

We saw behavior of malignant nuclei just by scatter plotting B vs M for each feature. Malignant samples tend to have greater values than benignant. It was statistically determined that malignant mean values were different from those of benignant samples.

Statistically concluded that nuclei characteristics vary depending on malignancy/benignancy of the sample. Along with AI models, inferential analysis can help determining decision boundaries and translate them to clinical practice.

- 2. Exhaustive and complicated pre-processing is not needed to perform inferential analysis and draw relevant conclusions.
- 3. Results show that some features are more relevant than others when determining the diagnosis, which is relevant for feature selection → discard "fractal_dimension_mean", "texture_se", and "smoothness_se".
- 4. Feature selection can improve the efficiency of the histopathological analysis by discarding non-relevant features.