CSC236 Week 07: Autoamata and Languages

Hisbaan Noorani

October 21 – October 27, 2021

Contents

1 Example — an odd machine

2 More odd/even: intersection 3

1

1 Example — an odd machine

A machine that accepts strings over $\{0,1\}$ with an odd number of 0s. We will formally prove that this description can be represented by:

$$\delta^*(E,s) = \begin{cases} E & \text{only if } s \text{ has even number of 0s} \\ O & \text{only if } s \text{ has odd number of 0s} \end{cases}$$

Define Σ^* as the smallest set of strings over Σ such that:

- $\bullet \ \varepsilon \in \Sigma^*$
- $\bullet \ \ s \in \Sigma^* \implies s0, s0 \in \Sigma^*$

Define P(s) as $\delta^*(E, s)$ correctly defines the machine.

Proof: We will show that $\forall s \in \Sigma^*, P(s)$.

• Base Case: The following implications hold vacuously:

$$\delta^*(E,\varepsilon) = E \implies \varepsilon$$
 has an even number of 0s

$$\delta^*(E,\varepsilon) = O \implies \varepsilon$$
 has an odd number of 0s

And thus for all members of the basis, P(s).

• Inductive step: Let $s \in \Sigma^*$ and assume P(s). We want to show that P(s0) and P(s1) hold.

$$P(s0)$$
: If $\delta^*(E,s) = E$

$$\delta^*(E, s0) = \delta(\delta^*(E, s), 0)$$

$$= \delta(E, 0)$$
 (by the current case)
$$= O$$

So s0 has an odd number of 0s and P(s0) follows in this case.

If $\delta^*(E,s) = O$

$$\delta^*(E,s0) = \delta(\delta^*(E,s),0)$$
 = $\delta(O,0)$ (by the current case)
= E

So s0 has an even number of 0s and P(s0) follows in this case.

So P(s0) holds.

$$P(s1)$$
: If $\delta^*(E,s) = E$

$$\delta^*(E,s1) = \delta(\delta^*(E,s),1)$$

$$= \delta(E,1)$$
 (by the current case)
$$= E$$

So s1 has an even number of 0s and P(s1) follows in this case.

If
$$\delta^*(E,s) = O$$

$$\delta^*(E,s1) = \delta(\delta^*(E,s),1)$$

$$= \delta(O,1)$$
 (by the current case)
$$= O$$

So s1 has an odd number of 0s and P(s1 follows in this case.

So P(s1) holds.

Since P(s0) and P(s1) both hold, we have shown that $s \in \Sigma^* \wedge P(s) \implies P(s0) \wedge P(s1)$.

So $\forall s \in \Sigma^*, P(s)$, as needed.

2 More odd/even: intersection

L is the langauge of binary strings with an odd number of 0s, and at least one 0. We will devise a machine for L using product construction.

