ЗАДАЧА ОБНАРУЖЕНИЯ АНОМАЛИЙ

КЛАСТЕРИЗАЦИЯ

ПОНИЖЕНИЕ РАЗМЕРНОСТИ

Похож ли новый объект на остальных?

- Объект клиент банка в текущий момент времени
- Не выделяется ли его поведение?
- Не мошенник ли это?

- Объект показатели сложной компьютерной системы
- Загрузка процессоров, памяти, сети и т.д.
- Отличается ли текущее состояние системы от тех, которые мы наблюдали ранее?

- Задача: определение тональности отзыва на банк
- Можно ли к новому отзыву применять модель, обученную на прошлых данных?
- Не изменилось ли распределение признаков?

МЕТОДЫ ОБНАРУЖЕНИЯ АНОМАЛИЙ

- Методы, основанные на восстановлении плотности
- > Методы, основанные на классификации

РЕЗЮМЕ

 Поиск аномалий — обнаружение объектов, которые существенно отличаются от других

ПАРАМЕТРИЧЕСКОЕ ВОССТАНОВЛЕНИЕ ПЛОТНОСТИ

АНОМАЛИЯ

- Объект, который получен из другого распределения на пространстве объектов
- У Как восстановить распределение?

ВОССТАНОВЛЕНИЕ РАСПРЕДЕЛЕНИЙ

- Параметрические методы
- Непараметрические методы
- Восстановление смесей

ПАРАМЕТРИЧЕСКИЙ ПОДХОД

- $p(x) = \phi(x|\theta)$
- $m{ ilde{ heta}}$ параметры распределения

ПРИМЕР

$$\phi(x|\theta) = \mathcal{N}(\mu, \Sigma)$$

- Нормальное распределение
- $m{\rangle}$ Параметры: $m{\theta} = (\mu, \Sigma)$

ОБУЧЕНИЕ

- lacktriangle Нужно подобрать параметры распределения $m{ heta}$
- Вероятность у объектов из выборки должна быть как можно выше

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

$$\sum_{i=1}^{\ell} \log \phi(x_i|\theta) o \max_{\theta}$$

 Для некоторых распределений решается аналитически

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Для нормального распределения:

$$\mu = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i$$

$$\Sigma = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_i - \mu)(x_i - \mu)^T$$

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

ОБНАРУЖЕНИЕ АНОМАЛИЙ

- $oldsymbol{>}$ Новый объект $oldsymbol{x}$
- $oldsymbol{p}(x) < t$, то это аномалия
- **)** Порог **t**:
 - Из априорных соображений
 - По известным аномалиям

СМЕСИ РАСПРЕДЕЛЕНИЙ

СМЕСИ РАСПРЕДЕЛЕНИЙ

ЕМ-АЛГОРИТМ

$$p(x) = \sum_{j=1}^{K} \mathbf{w}_j p_j(x)$$
 $p_j(x) = \phi(x|\theta_j)$

) Е-шаг:

$$g_{ji} = p(j|x_i) = \frac{\mathbf{w}_j p_j(x_i)}{p(x_i)}$$

M-шаг:

$$\mathbf{w_j} = \frac{1}{N} \sum_{i=1}^{N} g_{ji}$$

$$\theta_j = \operatorname*{argmax}_{\theta} \sum_{i=1}^N g_{ji} \ln \varphi(\theta; x)$$

МФТИ_

РЕЗЮМЕ

- Аномалия объект из другого распределения
- Параметрические методы восстановления распределений

НЕПАРАМЕТРИЧЕСКОЕ ВОССТАНОВЛЕНИЕ ПЛОТНОСТИ

ПАРАМЕТРИЧЕСКОЕ ВОССТАНОВЛЕНИЕ

$$\phi(x|\theta) = \mathcal{N}(\mu, \Sigma)$$

- Нормальное распределение
- $m{}$ Параметры: $m{\theta} = (\mu, \Sigma)$

НЕПАРАМЕТРИЧЕСКОЕ ВОССТАНОВЛЕНИЕ

НЕПАРАМЕТРИЧЕСКОЕ ВОССТАНОВЛЕНИЕ

НЕПАРАМЕТРИЧЕСКОЕ ВОССТАНОВЛЕНИЕ

$$p_h(x) = rac{1}{\ell h} \sum_{i=1}^{\ell} K\left(rac{x - x_i}{h}
ight)$$

$$p_h(x) = rac{1}{\ell h} \sum_{i=1}^\ell K\Big(rac{x-x_i}{h}\Big)$$
 Ядро

$$p_h(x) = \frac{1}{\ell h} \sum_{i=1}^{\ell} K\left(\frac{x - x_i}{h}\right)$$

- K(r) ядро
- Уётная функция

$$\int K(r)dr=1$$

ЯДРО

- $E(r) = rac{3}{4}(1-r^2)[|r| \le 1]$ оптимальное
- $Q(r) = rac{15}{16}(1-r^2)^2[|r| \le 1]$ квартическое
- $T(r) = (1-|r|)[|r| \leq 1]$ —треугольное
- $G(r) = (2\pi)^{-rac{1}{2}} \exp{(-rac{1}{2}r^2)}$ —гауссовское
- $\Pi(r) = \frac{1}{2}[|r| \le 1]$ —прямое

<u>МФТИ</u>.

$$p_h(x) = \frac{1}{\ell h} \sum_{i=1}^{\ell} K\left(\frac{x - x_i}{h}\right)$$

) h — ширина окна

ШИРИНА ОКНА

МНОГОМЕРНЫЙ СЛУЧАЙ

$$p_h(x) = rac{1}{\ell V(h)} \sum_{i=1}^{\ell} Kigg(rac{
ho(x, x_i)}{h}igg)$$

$$\mathbf{V}(h) = \int Kigg(rac{
ho(x,x_i)}{h}igg)dx$$
 —

нормировочная константа

МНОГОМЕРНЫЙ СЛУЧАЙ

 Чем выше размерность, тем больше объектов нужно

МНОГОМЕРНЫЙ СЛУЧАЙ

 Число объектов, необходимых для качественного оценивания, растёт экспоненциально с ростом размерности

ОБНАРУЖЕНИЕ АНОМАЛИЙ

- lacktriangle Новый объект $oldsymbol{x}$
- $\mathbf{p}(x) < t$, то это аномалия
- ightharpoonup Порог t:
 - Из априорных соображений
 - По известным аномалиям

РЕЗЮМЕ

- Непараметрический подход для восстановления сложных плотностей
- Параметры: ядро и ширина окна
- В многомерно случае требуется большая выборка

ОДНОКЛАССОВЫЙ SVM

ВОССТАНОВЛЕНИЕ ПЛОТНОСТИ

КЛАССИФИКАЦИЯ

ОБНАРУЖЕНИЕ АНОМАЛИЙ

ОБНАРУЖЕНИЕ АНОМАЛИЙ

- Обучающая выборка нормальные объекты
- Начало координат аномалия
- Задача: отделить выборку гиперплоскостью от нуля
- Максимизация отступа

ОДНОКЛАССОВЫЙ SVM

$$egin{cases} rac{1}{2} \|\mathbf{w}\|^2 + rac{1}{v\ell} \sum\limits_{i=1}^{\ell} \xi_i -
ho
ightarrow \min_{\mathbf{w}, \xi,
ho} \ \langle \mathbf{w}, x_i
angle \geq
ho - \xi_i, \quad \xi_i \geq 0 \end{cases}$$

у — верхняя оценка на долю аномалий на выборке

ОДНОКЛАССОВЫЙ SVM

<u>МФТИ</u>.

ЯДРОВОЙ ПЕРЕХОД

- SVM позволяет строить нелинейные разделяющие поверхности
- Э Ядровой переход (kernel trick)
- Популярный выбор: RBF-ядро

$$K(x,z) = \exp\left(\frac{\|x-z\|^2}{\sigma^2}\right)$$

ЯДРОВОЙ ПЕРЕХОД

РЕЗЮМЕ

- Одноклассовый SVM отделяет выборку от начала координат
- У Имеет смысл при использовании ядер

