Ask anything

yo chat give me a list of laptops with these specifications

bro no something within a reasonable price range

ok but which ones better in terms of what i want

We'Ve cot abetter solution than chatelot

ANOVERVIEW

Ever wish you had a genie who could instantly tell you the price of your dream laptop and show you the best match in the market?

We deliver three core ML functions:

- Descriptive: K-Means Clustering to segment computers based on price, RAM, and other specs. PCA is a way of showing the clusters of the K-Means
- Predictive: LightGBM Regression to estimate prices from user inputs
- Prescriptive: K-Nearest Neighbors (KNN) to recommend similar listings with ranked similarity

COLLECTIO

- CSV file: 8,064
 marketplace listings
 (rows) x 135 raw Spanish-language columns
- Encoded in UTF-8-SIG
 with mixed metrics,
 units, and labels; .CSV file
 with 135 columns.
- No scraping or APIs; data ingested directly via pandas.read_csv.

RAW DATA

CLEANED DATA

1. Dropped Duplicates →

df.duplicated().sum()

- 2. <u>Standardized Column Names</u> with custom slugify function
 - → removed accents, lowercase, dropped stopwords (e.g., Pantalla_Tamaño → pantalla_tamano)
- 3. <u>Dropped Unnamed Columns:</u>
 - df.drop(columns=['unnamed_0'])
 - Full null or >70% null columns

4. Price Normalization

- Parsed "Precio_Rango" (e.g., "1.026,53 €
 2.287,17 €") into:
- precio_min, precio_max, and precio_mean
- <u>Dropped original string after parsing</u>

5. Numerical Extraction

- Created functions to extract float from strings (e.g., RAM, CPU speed)
- Remove thousands separators.
- Apply apply_cleaning_to_column()
 across many dirty fields

6. Standardized Screen Resolution

 Used regex to convert inconsistent resolution strings to "WIDTHXHEIGHT"

E.g., "4K (3.840 x 2.160)" → "3840x2160"

7. Offers Cleaning

 Convert strings like "200 ofertas" to 200.0 (float) for numeric ops.

HANDLIN(MISSING ' DATA

Aware of Missing-Not-At-Random (MNAR) issues (e.g., screens missing in desktops). To solve, we handled it by isolating category-specific structures and then:

Used df.isnull().sum() and missingno

heatmaps

STRATEGY?

70% missing: <u>dropped</u>

- 30–70%: conditional imputation or dropped
- <30%: imputed by product category using mean/mode

FEATURE ENGINEERING & SELECTION

MEAN PRICE: Extracted from raw price range string

def process_price_range(price_str)

Volume (cm³)= height x width x depth

Category Mapping: Mapped devices to English Classes (Ultrabook, Tower, All-in-One)

FEATURE ENGINEERING

HALL OF FAME

FEATURE ENGINEERING & SELECTION

٦

ONE-HOT ENCODING

for low-cardinality categorical fields.

2

ORDINAL ENCODING

for ordered features like processor generation

CATEGORICAL HANDLING

3

PCA &
CORRELATION
ANALYSIS

PCA to retain
features explaining
90%+ variance
+ Removed highly
correlated
variables
(Pearsons).

4

FINAL MATRIX

Final feature matrix optimized for model performance & interpretability.

MODEL TRAINING & VALIDATION

TECHNICAL APPROACH FOR SOLVING FUNCTIONALITIES

DESCRIPTIVE

K-MEANS CLUSTERING

- We used K-Means to segment the marketplace into natural product clusters
- Input features included normalized price, RAM, storage, and GPU type
- We validated cluster count using PCA + visual separation

PREDICTIVE

LIGHTGBM REGRESSION

- Chosen for speed, accuracy, and native handling of missing values
- Input: Engineered features like RAM, CPU model, GPU, brand, etc.
- Target: precio_mean (average of price range)
- Applied log-transform to the target for numerical stability
- RMSE \approx 162 EUR, R² \approx 0.89
- Outputs price prediction + feature importance chart

PRESCRIPTIVE

K-NEAREST NEIGHBORS

- Recommend similar realworld laptop listings
- Scaled user input and listing data using StandardScaler
- Used cosine similarity to match user config to closest products
- Returned top-k results sorted by similarity, and included:
- Predicted price
- Real listing price
- Side-by-side specs comparison

APP ARCHITECTURE & DEPLOYMENT

ARCHITECTURE

FRONTEND STACK

REACT-BASED UI

BACKEND APIS

PYTHON: SCIKIT-LEARN PANDAS, MATPLOTLIB

FOR THE EDA & TRAINING

API HOSTING: DEPLOYED VIA GIT HUB -> GOOGLE CLOUD RUN FUNCTIONS

ML MODELS: LIGHTGBM, KMEANS, KNN IN PYTHON (JOBLIB SERIALIZED)

MODEL STORAGE: GOOGLE CLOUD STORAGE

CI/CD AUTOMATION: GITHUB ACTIONS - TRIGGERED ON PUSH TO MAIN FOR THE MODELS

Computer Analytics **Price Prediction** Estimate computer prices based on specifications. Overview Segmentation **Computer Specifications** Enter the specifications to predict the price. ∠ Prediction **Device Type** III Similar Offers Laptop RAM (GB) Storage (GB) CPU Apple M3 Clock Speed (GHz) Cores Ram Type DDR4 Ram Frequency (MHz) 2666 MHz

V

16 GB

512 GB

V

2.8 GHz

4

V

Computer Analytics

(Overview

■ Segmentation

∠ Prediction

Lil Similar Offers

Computer Market Analysis

Explore laptop offers, specifications, and market trends.

Make your wish...

IMPROVEMENTS 8 NEXT STEPS

GENIE'S NEXT EVOLUTION

- Live data integration via APIs to keep listings up to date
- Prediction confidence intervals to show uncertainty
- User-based personalization using historical preferences
- Model retraining via feedback log ingestion
- Multilingual toggle to support Spanish/English Uls
- Domain expansion to peripherals, monitors, GPUs
- Feature Feedback to allow for constant improvements
 of model & the display of processed data.

THANK YOU