

FIZ1431 - Tarea Nro. 1

Instituto de Física Pontificia Universidad Católica de Chile Segundo Semestre 2018

Fecha de entrega: 13 de septiembre, 23:59 hrs. Número de integrantes por grupo: 2.

Recuerde comentar adecuadamente el codigo. Comentarios insuficientes o codigos muy dificiles de entender produciran un descuento en la nota final. La ejecución del programa debe resolver completamente el problema planteado.

El problema de Kepler

Resuelva numéricamente el problema de Kepler, es decir, resuelva las ecuaciones diferenciales:

$$\dot{\varphi} = \frac{|l|}{\mu \rho^2}$$

$$\dot{\rho} = \pm \sqrt{\frac{2}{\mu} \left(E - U(\rho) - \frac{|l|^2}{2\mu\rho^2} \right)}$$

Utilize métodos explícitos para resolver las ecuaciones diferenciales. Para encontrar los valores de E y l, recuerde que en el problema de Kepler estas cantidades se conservan. Su programa debe entregar un archivo de texto con los valores de ρ y φ para cada instante de tiempo t_n considerado en el problema.

Probablemente va a tener que escalar el problema (por ejemplo, en un sistema Tierra-Sol las distancias deberían estar expresadas en unidades astronómicas (A.U.) y el tiempo en años. Escale las constantes del problema consecuentemente y explicite estas transformaciones en su código.