Stochastic Optimisation

Ishan Kapnadak

Spring Semester 2020-21

Updated on: 2022-02-07

Abstract

Lecture Notes for the course EE 736 : Stochastic Optimisation taught in Spring 2022 by Prof. Vivek Borkar.

Contents

1	Stochastic Approximation		
	1.1	The Robbins-Monro Algorithm	2
	1.2	Ordinary Differential Equations	5
	1.3	Convergence Analysis	12

Chapter 1

Stochastic Approximation

§1.1. The Robbins-Monro Algorithm

The basic problem we consider is to solve $h(\mathbf{x}) = 0$ given noisy measurements of h. That is, we are given access to a black box that, on input $\mathbf{x} \in \mathbb{R}^d$, gives as output $h(\mathbf{x})$ + noise. To this end, we have the *Robbins-Monro algorithm*.

Robbins-Monro Algorithm. Starting with $\mathbf{x}_0 \in \mathbb{R}^d$, do:

$$\mathbf{x}(n+1) := \mathbf{x}(n) + a(n) [h(\mathbf{x}(n)) + M(n+1)], \quad n > 0.$$

Here, the (non-negative) stepsize sequence (or learning parameter) $\{a(n)\}$ satisfies

$$\sum_{n} a(n) = \infty \quad \text{and} \quad \sum_{n} a(n)^{2} < \infty.$$

A typical example of such a stepsize sequence is $\frac{1}{n}$, $\frac{1}{n \log n}$, $\frac{1}{n^{2/3}}$, and so on. Further, we make the following assumptions.

1. $h: \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz, that is, $\exists L \geq 0$ such that

$$||h(\mathbf{x}) - h(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

2. $\{M(n)\}\$ is a square integrable martingale difference sequence. That is, for

$$\mathcal{F}_n := \sigma\left(\mathbf{x}_0, M_m, m \le n\right), n \ge 0$$

we have

$$\mathbb{E}\left[\left\|M(n)\right\|^2\right] < \infty$$

and in addition, we have that it is uncorrelated with the past. That is,

$$\mathbb{E}\left[M_i(n+1) \mid \mathcal{F}_n\right] = 0 \quad \forall i.$$

Furthermore, we assume that for some K > 0,

$$\mathbb{E}\left[\|M(n+1)\|^2 \mid \mathcal{F}_n\right] \le K(1+\|\mathbf{x}(n)\|^2) \quad \forall n \ge 0.$$

In particular, if

$$\sup_{n} \|\mathbf{x}(n)\| < \infty \quad \text{a.s.},$$

then.

$$\sup_{n} \mathbb{E}\left[\left\|M(n+1)\right\|^{2} \mid \mathcal{F}_{n}\right] < \infty \quad \text{a.s..}$$

This algorithm is actually more general than it appears. Suppose the algorithm is

$$\mathbf{x}(n+1) := \mathbf{x}(n) + a(n)f\left(\mathbf{x}(n), \xi(n+1)\right), \quad n \ge 0$$

where $\{\xi(n)\}$ are i.i.d. This is often how most recursive algorithms are stated. The above algorithm can be put into the form of Robbins-Monro algorithm by choosing

$$h(\mathbf{x}) := \mathbb{E} [f(\mathbf{x}, \xi(n))]$$

= $\mathbb{E} [f(\mathbf{x}(n), \xi(n+1)) \mid \mathbf{x}(n) = \mathbf{x}]$
= $\mathbb{E} [f(\mathbf{x}(n), \xi(n+1)) \mid \mathcal{F}_n]$

and

$$M(n+1) := f(\mathbf{x}(n), \xi(n+1)) - h(\mathbf{x}(n)).$$

A common example of Robbins-Monro algorithm is stochastic gradient descent, where we set $h = -\nabla f$. Robbins-Monro algorithm also finds uses in many reinforcement learning algorithms. Some advantages of the Robbins-Monro algorithm are listed as follows.

- 1. It typically requires a small amount of computation and memory per iterate.
- 2. It is incremental in nature, that is, it makes only a small change in the current iterate at each step.
- 3. The slowly decreasing stepsize $\{a(n)\}$ captures the exploration-exploitation trade-off.
- 4. It averages out the noise, which can be thought of as a generalisation of the Strong Law of Large Numbers.

Another common approach to solving the same problem is the ODE (Ordinary Differential Equation) approach, which treats the iterate as a noisy discretisation of the ODE

$$\dot{\mathbf{x}}(t) = h(\mathbf{x}(t)).$$

Recall the Euler scheme for solving this ODE:

$$\mathbf{x}(n+1) := \mathbf{x}(n) + ah(\mathbf{x}(n)), \quad n \ge 0,$$

where a > 0 is a small discrete time step. Thus the Robbins-Monro algorithm can be viewed as a Euler scheme to approximate the ODE with slowly decreasing time steps $\{a(n)\}$ and measurement noise. With this in mind, we have the following interpretation of the Robbins-Monro conditions on the step size $\{a(n)\}$.

- 1. $\sum_{n} a(n) = \infty$ ensures that the entire time axis is covered. This is essential because we want to track the asymptotic behaviour of the ODE.
- 2. $\sum_n a(n)^2 < \infty$ ensures that the approximation of the ODE gets better with time. In particular, $a(n) \to 0$ ensures that errors due to discretisation are asymptotically zero, and $\sum_n a(n)^2 < \infty$ ensures that errors due to the martingale difference noise are asymptotically zero almost surely, since multiplication by a(n) reduces the conditional variance of the noise.

As an example, consider an initially empty urn to which one ball, either red or blue, is added at each time step. Let

$$\xi(n) := \mathbb{I}\{n^{\text{th}} \text{ ball is red}\} = \begin{cases} 1 & \text{if the } n^{\text{th}} \text{ ball is red, and} \\ 0 & \text{otherwise.} \end{cases}$$

Let $S(n) := \sum_{m=1}^{n} \xi(m)$ be the total number of red balls at time n, and let $x(n) := \frac{S(n)}{n}$ be the fraction of red balls at time n. Then, we have

$$x(n+1) = \frac{1}{n+1} \sum_{m=1}^{n+1} \xi(m)$$

$$= \frac{1}{n+1} \sum_{m=1}^{n} \xi(m) + \frac{\xi(n+1)}{n+1}$$

$$= \left(\frac{n}{n+1}\right) \frac{\sum_{m=1}^{n} \xi(m)}{n} + \frac{\xi(n+1)}{n+1}$$

$$= \left(1 - \frac{1}{n+1}\right) x(n) + \frac{\xi(n+1)}{n+1}$$

$$= x(n) + a(n)(\xi(n+1) - x(n))$$

for $a(n) := \frac{1}{n+1}$ which satisfies the Robbins-Monro conditions. Now, suppose that

$$\mathbb{P}\left(\xi(n+1) = 1 \mid \xi(m), m \le n\right) = p(x(n))$$

for some continuously differentiable function $p:[0,1] \to [0,1]$. Then, we have

$$x(n+1) = x(n) + a(n)(\xi(n+1) - x(n))$$

= $x(n) + a(n) [(p(x(n)) - x(n)) + (\xi(n+1) - p(x(n)))]$
= $x(n) + a(n) [h(x(n)) + M(n+1)]$

for h(x) := p(x) - x, and $M(n+1) := \xi(n+1) - p(x(n))$. Since $\mathbb{E}\left[\xi(n+1) \mid \xi(m), m \leq n\right] = p(x(n))$ for all n, we have that $\{M(n)\}$ is a martingale difference sequence. Since $|M(n)| \leq 2$, the bound on conditional second moment is free. The limiting ODE is

$$\dot{x}(t) = p(x(t)) - x(t).$$

Under our hypothesis of continuous differentiability of p, this has a unique solution for any initial condition. Set $x(0) = x_0 \in [0,1]$. We have $p(0) - 0 \ge 0$, and $p(1) - 1 \le 0$. Since $x(t) \in [0,1]$ for all $t \ge 0$, x(t) must converge to a point in [0,1]. If at x_0 , we have that $p(x_0) = x_0$, then we are already at equilibrium. If not, suppose that $p(x_0) > x_0$, then x(t) is increasing but bounded by 1, so it must converge. A similar argument works for $p(x_0) < x_0$. But does an equilibrium exist? The answer is yes. Since $p(0) - 0 \ge 0$, and $p(1) - 1 \le 0$, we have by continuity that there exists $x \in [0,1]$ such that p(x) = x. In fact, there can be more than one equilibria. An equilibrium x^* satisfies $p(x^*) = x^*$ and is stable if $p'(x^*) < 1$ and unstable if $p'(x^*) > 1$. Under some additional technicalities, we can show that x(t) converges to one of the stable equilibria almost surely, and the probability of convergence to any stable equilibrium is strictly positive.

§1.2. Ordinary Differential Equations

We consider the ODE in \mathbb{R}^d , $d \geq 1$, given by

$$\dot{\mathbf{x}}(t) = h(\mathbf{x}(t)), \quad \mathbf{x}(0) = \mathbf{x}_0.$$

A problem is said to be well-posed if

- 1. it has a solution,
- 2. the solution is unique, and
- 3. the solution depends continuously on problem parameters.

For ODEs, this translates to the ODE having a unique solution for all time that depends continuously on the initial condition.

We say that $h: \mathbb{R}^d \to \mathbb{R}^d$ satisfies a (global) Lipschitz condition if for some L > 0, we have

$$||h(\mathbf{x}) - h(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

h is locally Lipschitz if for all R > 0, there exists an $L_R > 0$ such that

$$||h(\mathbf{x}) - h(\mathbf{y})|| \le L_R ||\mathbf{x} - \mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{B}_R := \{\mathbf{z} \in \mathbb{R}^d \mid ||\mathbf{z}|| \le R\}$$

Lemma 1.2.1: Gronwall's Inequality Suppose
$$0 \le y \colon [0,T] \colon \mathbb{R}$$
 is differentiable and satisfies
$$y(t) \le C + K \int_0^t y(s) \, \mathrm{d}s, \quad t \in [0,T]$$
 for some $C,K>0$. Then,
$$y(t) \le Ce^{Kt}, \quad t \in [0,T].$$

$$y(t) \le Ce^{Kt}, \quad t \in [0, T].$$

Proof. Let $z(t) := \int_0^t y(s) \, \mathrm{d}s, \ t \ge 0$. Then,

$$\dot{z}(t) = y(t) \le C + Kz(t)$$

$$\Longrightarrow e^{-Kt}(\dot{z}(t) - Kz(t)) \le Ce^{-Kt}$$

$$\Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-Kt} z(t) \right) \le Ce^{-Kt}, \ z(0) = 0.$$

Integrating both sides from 0 to t, we get

$$e^{-Kt}z(t) \le \frac{C}{K}(1 - e^{-Kt})$$

$$\Longrightarrow z(t) \le \frac{C}{K}(e^{Kt} - 1)$$

Now, we have

$$y(t) \le C + Kz(t) \le C + C(e^{Kt} - 1)$$

 $\implies y(t) \le Ce^{Kt}.$

Theorem 1.2.2

If h is Lipschitz, then the ODE $\{\dot{\mathbf{x}}(t) = h(\mathbf{x}(t)), \mathbf{x}(0) = \hat{\mathbf{x}}\}$ is well-posed.

Proof. We first show existence. Fix $T \in (0, 1/L)$ and a continuous function $\mathbf{x}_0 \colon [0, T] \to \mathbb{R}^d$ with $\mathbf{x}_0(0) = \hat{\mathbf{x}}$. Recursively define

$$\mathbf{x}_{n+1}(t) := \hat{\mathbf{x}} + \int_0^t h(\mathbf{x}_n(s)) \, \mathrm{d}s, \quad t \in [0, T]. \tag{\dagger}$$

These are called *Picard iterations*. Then for $n \geq 1$, we have

$$\|\mathbf{x}_{n+1}(t) - \mathbf{x}_n(t)\| = \left\| \int_0^t \left(h(\mathbf{x}_n(s)) - h(\mathbf{x}_{n-1}(s)) \right) ds \right\|$$

$$\leq \int_0^t \|h(\mathbf{x}_n(s)) - h(\mathbf{x}_{n-1}(s))\| ds$$

$$\leq L \int_0^t \|\mathbf{x}_n(s) - \mathbf{x}_{n-1}(s)\| ds$$

$$\leq LT \max_{s \in [0,T]} \|\mathbf{x}_n(s) - \mathbf{x}_{n-1}(s)\|$$

Thus,

$$\max_{t \in [0,T]} \|\mathbf{x}_{n+1}(t) - \mathbf{x}_n(t)\| \le LT \max_{t \in [0,T]} \|\mathbf{x}_n(t) - \mathbf{x}_{n-1}(t)\|$$

Applying this repeatedly, we get

$$\max_{t \in [0,T]} \|\mathbf{x}_{n+1}(t) - \mathbf{x}_n(t)\| \le (LT)^n \max_{t \in [0,T]} \|\mathbf{x}_1(t) - \mathbf{x}_0(t)\| \text{ for } n \ge 0$$

$$\implies \sum_{n=0}^{\infty} \max_{t \in [0,T]} \|\mathbf{x}_{n+1}(t) - \mathbf{x}_n(t)\| < \infty.$$

Thus, $\mathbf{x}_n(t) = \mathbf{x}_0(t) + \sum_{m=0}^{n-1} (\mathbf{x}_{m+1}(t) - \mathbf{x}_m(t))$ converges to some $\mathbf{x}(t)$ uniformly in $t \in [0, T]$. Passing to the limit as $n \uparrow \infty$ in (\dagger) , we have

$$\mathbf{x}(t) := \hat{\mathbf{x}} + \int_0^t h(\mathbf{x}(s)) \, \mathrm{d}s, \quad t \in [0, T]$$

Thus, **x** satisfies the ODE with $\mathbf{x}(0) = \hat{\mathbf{x}}$. We repeat the above procedure for [T, 2T], [2T, 3T], and so on.

We now prove uniqueness. Consider $\dot{\mathbf{x}}(t) = h(\mathbf{x}(t)), \ \dot{\mathbf{y}}(t) = h(\mathbf{y}(t)), \ t \geq 0$ with $\mathbf{x}(0) = \mathbf{y}(0)$. Then,

$$\|\mathbf{x}(t) - \mathbf{y}(t)\| \le L \int_0^t \|\mathbf{x}(s) - \mathbf{y}(s)\| \, \mathrm{d}s \implies \|\mathbf{x}(t) - \mathbf{y}(t)\| = 0 \quad \forall t \ge 0,$$

where the last implication follows from Gronwall's inequality. This concludes uniqueness. In general, for $\mathbf{x}(0) = \hat{\mathbf{x}}$ and $\mathbf{y}(0) = \hat{\mathbf{y}}$, we have

$$\|\mathbf{x}(t) - \mathbf{y}(t)\| \le \|\hat{\mathbf{x}} - \hat{\mathbf{y}}\| + L \int_0^t \|\mathbf{x}(s) - \mathbf{y}(s)\| \, \mathrm{d}s$$

$$\implies \|\mathbf{x}(t) - \mathbf{y}(t)\| \le e^{Lt} \|\hat{\mathbf{x}} - \hat{\mathbf{y}}\|,$$

by the Gronwall's inequality implying continuous dependence on the initial condition. Hence, the ODE is well-posed.

A few remarks:

1. Picard iteration is not a good computational scheme. In practice, Euler scheme is the most basic choice. Suppose h is bounded and let $a := \frac{T}{N}$ where $N \gg 1$. Now, let

$$\mathbf{X}_N((n+1)a) := \mathbf{X}_N(na) + ah(\mathbf{X}_N(na)), \quad 0 \le n < N.$$

We interpolate linearly to get

$$\mathbf{X}_N(t) := \mathbf{X}_N(na) + (t - na)h(\mathbf{X}_N(na)), \quad t \in [na, (n+1)a].$$

Then, as $N \uparrow \infty$, $\mathbf{X}_N(t), t \in [0, T]$ converges to a solution of the ODE uniformly on [0, T]. This too proves the existence of a solution and needs only the continuity of h. However, uniqueness may fail. In numerical analysis, more sophisticated discretisations are available.

- 2. A local Lipschitz condition on h gives local well-posedness for a small time interval, but the solution may not exist for all time.
- 3. The linear growth condition shown below suffices for a solution to exist for all time:

$$||h(\mathbf{x})|| \le K(1+||\mathbf{x}||)$$

for some K > 0. Then, we have

$$\|\mathbf{x}(t)\| \le \|\mathbf{x}(0)\| + \left\| \int_0^t h(\mathbf{x}(s) \, \mathrm{d}s \right\| \le \|\mathbf{x}(0)\| + \int_0^t K(1 + \|\mathbf{x}(s)\|) \, \mathrm{d}s$$

$$\implies \|\mathbf{x}(t)\| \le (\|\mathbf{x}(0)\| + KT)e^{Kt}, \quad t \in [0, T],$$

by Gronwall's inequality. We further note that the Lipschitz condition implies linear growth. A proof of this is left as an exercise for the reader.

- 4. A symmetric well-posedness theory can be developed for $t \leq 0$. Thus, for Lipschitz h, there is a unique solution for all $t \in \mathbb{R}$.
- 5. We also have a discrete Gronwall's inequality, which is proved similarly. Let $x_n \geq 0, a_n \geq 0, n \geq 0$, and C, K > 0 such that

$$x_{n+1} \le C + K \sum_{m=0}^{n} a_m x_m \quad \forall n \ge 0.$$

Then, $x_{n+1} \leq Ce^{K\sum_{m=0}^{n} a_m}$ for all $n \geq 0$.

We now take a more qualitative look at ODEs. Assume well-posedness. There are two broad ways of thinking about ODEs.

- 1. We can think of the ODE as the graph of $t \mapsto \mathbf{x}(t) \in \mathbb{R}^d$, that is, we think of $\mathbf{x}(t)$ as a function of time. The component-wise time derivative at t is $h(\mathbf{x}(t))$.
- 2. We can think of the ODE as a trajectory, or a curve $\mathbf{x}(\cdot)$ in \mathbb{R}^d with t as a running parameter. This is also called a phase portrait. The tangent at point \mathbf{x} on the curve is $h(\mathbf{x})$. One often flips this picture around and imagines a vector $h(\mathbf{x})$ at each point \mathbf{x} (a vector field) and think of trajectories as curves drawn that are tangent to the vector field at all points (integral curves).

Definition 1.2.3: Limit Sets

The ω -limit set of a trajectory $\mathbf{x}(\cdot)$ is the set of all points \mathbf{x} such that $\exists t_n \ uparrow\infty$ such that $\mathbf{x}(t_n) \to \mathbf{x}$, that is, the set of limit points of $\mathbf{x}(t)$ as $t \uparrow \infty$. One can show that this set is closed but can be empty. The α -limit set is defined similarly for $t_n \downarrow -\infty$.

Definition 1.2.4: Invariance

A set $A \subseteq \mathbb{R}^d$ is said to be *positively invariant* if $\mathbf{x}(0) \in A \implies \mathbf{x}(t) \in A \quad \forall t \ge 0$. Negative invariance is defined similarly. A set that is both positively and negatively invariant is said to be *invariant*.

Proposition 1.2.5

The ω - and α -limit sets are invariant.

Definition 1.2.6: Liapunov Stable

An equilibrium \mathbf{x}^* is said to be $Liapunov\ stable$ if given $\epsilon>0$, there exists a $\delta>0$ such that

$$\|\mathbf{x}(0) - \mathbf{x}^*\| < \delta \implies \|\mathbf{x}(t) - \mathbf{x}^*\| < \delta \quad \forall t \ge 0.$$

Definition 1.2.7: Asymptotically Stable

An equilibrium \mathbf{x}^* is said to be asymptotically stable if it is Liapunov stable and there exists an open neighbourhood $\mathcal O$ of $\mathbf x^*$ such that

$$\mathbf{x}(0) \in \mathcal{O} \implies \mathbf{x}(t) \to \mathbf{x}^*.$$

Definition 1.2.8: Domain of Attraction

The largest positively invariant open set \mathcal{D} such that

$$\mathbf{x}(0) \in \mathcal{D} \implies \mathbf{x}(t) \to \mathbf{x}^*$$

 $\mathbf{x}(0) \in \mathcal{D} \implies \mathbf{x}(t) \to \mathbf{x}^*$ is called the domain of attraction of \mathbf{x}^* .

One sufficient condition for the above is that there exist a continuously differentiable $V: \mathcal{D} \to [0, \infty)$ such that

$$\lim_{\mathbf{x} \to \partial \mathcal{D}} V(\mathbf{x}) = \infty, \text{ and }$$

$$\langle \nabla V(\mathbf{x}), h(\mathbf{x}) \rangle < 0 \quad \forall \mathbf{x} \in \mathcal{D}, \mathbf{x} \neq \mathbf{x}^*.$$

Thus, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}V(\mathbf{x}(t)) = \langle \nabla V(\mathbf{x}(t)), h(\mathbf{x}(t)) \rangle < 0 \quad \text{when } \mathbf{x}(t) \neq \mathbf{x}^*,$$

that is, V decreases along the trajectory. Since $V \geq 0$, $\mathbf{x}(t) \to \mathbf{x}^*$. Further, if we consider $\mathcal{B}_c(\mathbf{x}^*) := {\mathbf{x} \mid V(\mathbf{x}) \leq c} \subseteq \mathcal{D}$ for a suitable $c > V(\mathbf{x}^*, \text{ then})$

$$\mathbf{x}(0) \in \mathcal{B}_c(\mathbf{x}^*) \implies \mathbf{x}(t) \in \mathcal{B}_c(\mathbf{x}^*) \quad \forall t \ge 0.$$

Note that $\mathbf{x}^* \in \mathcal{B}_c(\mathbf{x}^*)$ and $\mathcal{B}_c(\mathbf{x}^*)$ shrinks to $\{\mathbf{x}^*\}$ as $c \downarrow 0$. In particular, any ϵ -neighbourhood of \mathbf{x}^* contains $\mathcal{B}_c(\mathbf{x}^*)$ for sufficiently small c. Thus, \mathbf{x}^* is Liapunov stable and hence asymptotically stable. In this case, V is called a Liapunovfunction. Conversely, if \mathbf{x}^* is asymptotically stable, then such a V exists and can be taken to satisfy $V(\mathbf{x}) \to \infty$ as $\mathbf{x} \to \partial \mathcal{D}$.

More generally, we have the LaSalle Invariance Prinsciple which states that $\mathbf{x}(t)$ converges to the largest invariant set contained in $\mathcal{A} := {\mathbf{x} \mid \langle V(\mathbf{x}, h(\mathbf{x})) \rangle = 0}$.

If there exists some continuously differentiable $V: \mathcal{D} \to [0, \infty)$ such that

$$\lim_{\mathbf{x} \to \partial \mathcal{D}} V(\mathbf{x}) = \infty, \text{ and }$$

$$\langle \nabla V(\mathbf{x}), h(\mathbf{x}) \rangle < 0 \quad \forall \mathbf{x} \notin \mathcal{C}$$

for some bounded set \mathcal{C} , then

$$\frac{\mathrm{d}}{\mathrm{d}t}V(\mathbf{x}(t)) = \langle \nabla V(\mathbf{x}(t)), h(\mathbf{x}(t)) \rangle < 0 \quad \text{when } \mathbf{x}(t) \notin \mathcal{C},$$

$$\implies \mathbf{x}(t) \to \mathcal{C}.$$

In particular, the trajectories remain bounded.

We now consider the linear system $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ for some $\mathbf{A} \in \mathbb{R}^{d \times d}$. Then the origin, $\mathbf{0}$, is an equilibrium. If \mathbf{A} is non-singular, it is the only equilibrium. It is asymptotically stable if all eigenvalues of \mathbf{A} are in the left half plane. If not, suppose there are no eigenvalues on the imaginary axis. Suppose there are m < d eigenvalues in the left half plane. We can write $\mathbb{R}^d = \mathcal{S} \oplus \mathcal{U}$ where \mathcal{S} is the m-dimensional stable subspace corresponding to the eigenvectors of eigenvalues in the left half plane, and \mathcal{U} is the (d-m)-dimensional stable subspace corresponding to the eigenvectors of eigenvalues in the right half plane. Then, $\mathbf{x}(0) \in \mathcal{S} \implies \mathbf{x}(t) \to \mathbf{0}$ and $\mathbf{x}(0) \in \mathcal{U}$ implies that $\mathbf{x}(t)$ moves away from $\mathbf{0}$. More importantly, if $\mathbf{x}(0) \notin \mathcal{S}$, $\mathbf{x}(t)$ eventually moves away from $\mathbf{0}$. That is,

$$\mathbf{x}(t) \to \mathbf{0} \iff \mathbf{x}(0) \in \mathcal{S}.$$

However, S has zero volume in \mathbb{R}^d , and thus, for a typical initial condition, $\mathbf{x}(t)$ eventually moves away from $\mathbf{0}$. The above arguments extend to any point $\mathbf{x}^* \in \mathbb{R}^d$ if we replace the linear ODE by the following affine ODE:

$$\dot{\mathbf{x}}(t) = \mathbf{A} \left(\mathbf{x}(t) - \mathbf{x}^* \right).$$

We now extend these ideas to the non-linear case. Suppose h is continuously differentiable and let $Dh(\mathbf{x})$ denote its Jacobian matrix at \mathbf{x} , that is, the (i,j) entry of of $Dh(\mathbf{x})$ is $\frac{\partial h_i}{\partial x_j}(\mathbf{x})$. By Taylor formula, for $\mathbf{x} \approx \mathbf{x}^*$, we have

$$h(\mathbf{x}) \approx h(\mathbf{x}^*) + Dh(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) = Dh(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*).$$

We now consider the affine ODE

$$\dot{\mathbf{z}}(t) = Dh(\mathbf{x}^*) \left(\mathbf{z}(t) - \mathbf{x}^* \right)$$

which is called the *linearisation* of the original ODE at \mathbf{x}^* .

Theorem 1.2.9: Hartman-Großman Theorem

Let \mathbf{x}^* be a *hyperbolic* equilibrium, that is, $Dh(\mathbf{x}^*)$ has no eigenvalues on the imaginary axis. Then, there exist open neighbourhoods $\mathcal{O}_1, \mathcal{O}_2$ of \mathbf{x}^* such that the phase portrait of the original ODE in \mathcal{O}_1 and its linearisation in \mathcal{O}_2 can be mapped to each other by a continuous and continuously invertible transformation.

Thus, 'stable subspaces' morph into 'stable manifolds' and 'unstable subspaces' morph into 'unstable manifolds'.

§1.3. Convergence Analysis

Recall that our iteration is

$$\mathbf{x}(n+1) := \mathbf{x}(n) + a(n) [h(\mathbf{x}(n)) + M(n+1)], \quad n \ge 0.$$

Since we view a(n) as a discrete time step, we define the algorithmic time scale as

$$t_0 := 0, \quad t_n := \sum_{m=0}^{n-1} a(m), \quad n \ge 0.$$

Now, we define $\overline{\mathbf{x}}(t)$, $t \in [0, \infty)$ as follows.

$$\overline{\mathbf{x}}(t_n) := \mathbf{x}(n) \quad \forall n \ge 0 \text{ and}$$

$$\overline{\mathbf{x}}(t) := \overline{\mathbf{x}}(t_n) + \left(\frac{t - t_n}{t_{n+1} - t_n}\right) \left(\overline{\mathbf{x}}(t_{n+1}) - \overline{\mathbf{x}}(t_n)\right) \quad \text{for } t \in [t_n, t_{n+1}].$$

That is, we linearly interpolate on $[t_n, t_{n+1}]$. Then, $\overline{\mathbf{x}}$ is continuous and piecewise linear.