Corso di Laurea in Informatica a.a.2016-17 Esercizi di Probabilità, parte seconda Marco Isopi

Nota: i seguenti esercizi coprono lezioni 15-24 del corso. Molti altri esercizi si trovano nei testi indicati come riferimento.

Esercizio 1. Sia X una variabile aleatoria a valori in $\{1,2,\ldots,n\}$ con densità discreta

$$\mathbf{P}(X=k) = \frac{ck}{n(n+1)}$$

- **a)** Quanto deve valere *c*?
- **b)** Calcolare $\mathbf{E}(X)$.

Esercizio 2. Un test consiste di 10 domande a risposta multipla: ci sono 4 risposte possibili di cui 1 è quella giusta.

Per superare il test bisogna rispondere correttamente ad almeno 8 domande.

- a) Qual è la probabilità di superare il test rispondendo a caso?
- **b)** Qual è la media delle risposte esatte?

Esercizio 3. Supponiamo che la funzione di distribuzione della variabile aleatoria X sia data da

$$F(b) = \begin{cases} 0 & b < 0\\ \frac{b}{4} & 0 \le b < 1\\ \frac{1}{2} + \frac{b-1}{4} & 1 \le b < 2\\ \frac{11}{12} & 2 \le b < 3\\ 1 & 3 \le b \end{cases}$$

- **a)** Calcolare $P\{X = i\}, i = 1, 2, 3;$
- **b)** Calcolare $P\{1/2 < X < 3/2\}$.

Esercizio 4. Una compagnia di assicurazioni emette una polizza che pagherà una certa quantità A di euro se *un evento prefissato* E si verificherà entro un anno.

Se la compagnia stima che E si verificherà entro un anno con probabilità pari a p, quale dovrebbe essere il costo della polizza per il cliente in modo che il profitto atteso per la compagnia sia del 10 per cento di A?

Esercizio 5. Tizio possiede 2 biglietti di una lotteria ed 1 biglietto di una diversa lotteria.

Nella prima lotteria vengono distribuiti 20 premi da 800 Euro; nella seconda lotteria vengono distriuiti 5 premi da 2000 Euro e 12 premi da 1000 Euro. Il numero dei biglietti venduti è 1000 sia nella prima che nella seconda lotteria. Indichiamo con X la vincita complessiva di Tizio.

- a) Calcolare P(X > 0);
- **b)** Calcolare $\mathbf{E}(X)$.

Esercizio 6. Sia X una variabile aleatoria a valori nell'insieme $\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, 3\}$ con distribuzione di probabilità data dalle seguenti condizioni

$$\mathbf{P}(X=0) = 0.16, \qquad \mathbf{P}(X=1) = \mathbf{P}\{X=2\} = \mathbf{P}(X=3) = \alpha$$

$$\mathbf{P}(X=\frac{1}{2}) = \mathbf{P}(X=\frac{3}{2}) = \frac{1}{2}\mathbf{P}(X=1).$$

- **a)** Quanto vale α ?
- **b)** Quanto vale $P\{X \ge 2\}$?
- **c**) Quanto vale la probabilità che *X* sia al più uno?

Esercizio 7. A, B, e C sono tre eventi di probabilità $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$ rispettivamente.

- a) Indicando con Xil numero di quanti fra questi eventi saranno verificati, calcolare $\mathbf{E}(X)$
- **b)** Qual è la probabilità che se ne verifichi almeno uno $(X \ge 1)$ se i tre eventi sono a due a due incompatibili?
- **c**) Qual è la probabilità che se ne verifichi almeno uno $(X \ge 1)$ se i tre eventi sono completamente indipendenti?

Esercizio 8. Due amici Alberto e Bruno contemporaneamente sparano successivi colpi contro uno stesso bersaglio. Alberto colpisce il bersaglio il 70% delle volte, mentre Bruno lo colpisce il 90%.

Si supponga che gli eventi $A_k = \{Alberto\ colpisce\ il\ bersaglio\ al\ k-esimo\ colpo\}$ e $B_k = \{Bruno\ colpisce\ il\ bersaglio\ al\ k-esimo\ colpo\},\ k=1,2,...$ siano completamente indipendenti.

a) Calcolare la probabilità degli eventi

 $E = \{entrambi\ colpiscono\ il\ bersaglio\ al\ primo\ colpo\}$

 $F = \{ solo \ 1 \ tra \ Alberto \ e \ Bruno \ colpisce \ il \ bersaglio \ al \ primo \ colpo \}$

 $G = \{nessuno\ colpisce\ il\ bersaglio\ al\ primo\ colpo\}$

- **b**) Sapendo che, al primo colpo, il bersaglio è stato colpito da un solo giocatore, calcolare la probabilità che il bersaglio sia stato colpito da Alberto.
- c) Si considerino i primi 10 colpi e si indichi con Z il numero dei colpi, fra questi, in cui il bersaglio è stato colpito da entrambi i giocatori; scrivere la distribuzione di probabilità di Z.

Esercizio 9. Trovare il valore atteso del numero di semi in una mano di poker.

Esercizio 10. Un libro delle scommesse suggerisce la seguente "strategia vincente" per il gioco della roulette. Raccomanda che si scommetta un euro sul rosso. Se esce il rosso (che ha probabilità pari a 18/37 di uscire), allora il giocatore deve prendere la sua vincita di un euro e andarsene. Se invece perde la prima giocata (evento di probabilità pari a 19/37), deve fare una ulteriore giocata di 1 euro per i successivi due giri della roulette e quindi lasciare il gioco. Denotiamo con X la variabile aleatoria che indica la vincita del giocatore quando lascia il tavolo.

- a) Si determini P(X > 0);
- b) Siete d'accordo che questa sia effettivamente una strategia vincente?
- c) Si determini E(X).

Esercizio 11. Un'urna contiene 112 dadi di cui 56 sono equilibrati, mentre gli altri sono stati manipolati in modo che la probabilità di ottenere 1 sia $\frac{1}{2}$, mentre quella di ottenere gli altri 5 valori sia $\frac{1}{10}$. Un dado viene estratto a caso e lanciato. Indichiamo con X il risultato del lancio.

- a) Quanto vale P(X=3)?
- **b)** Quanto vale E(X)?

Esercizio 12. X ed Y sono variabili aleatorie a valori, rispettivamente, negli insiemi

$$\{-2,0,2\}, \qquad \{-3,1,\frac{3}{2},2\}.$$

La loro distribuzione di probabilità congiunta è indicata nella seguente tabella, essendo ρ una costante positiva assegnata:

$Y \setminus X$	-2	0	2
-3	0.1	0	ρ
1	0	0.1	0.15
3/2	0.15	0.05	0.05
2	0.2	0.05	0.1

- **a)** Determinare il valore di ρ .
- **b**) Determinare la distribuzione di probabilità marginale delle variabili X e Y.
- c) Ricavare la distribuzione di probabilità condizionata di Y, dato $\{X=0\}$.
- **d**) Le variabili aleatorie X ed Y sono indipendenti?
- e) Calcolare P(Y < X).

Esercizio 13. Tre urne U_1 , U_2 ed U_3 contengono ciascuna 5 palline, numerate da 1 a 5. Da ciascuna urna si estrae una pallina in modo casuale. Si indichino con N_1 , N_2 , N_3 i tre numeri ottenuti e si ponga

$$X = \max(N_1, N_2)$$
 $Y = \max(N_1, N_3).$

- **a)** Calcolare la distribuzione di probabilità di X.
- **b)** Costruire la tabella della distribuzione di probabilità congiunta di X ed Y.
- **c**) Calcolare la distribuzione di probabilità condizionata di Y, dato $\{X=4\}$.
- **d**) Le variabili aleatorie X ed Y sono indipendenti?

Esercizio 14. Da un mazzo di 40 carte se ne estraggono 4. Sia *X* il numero di assi e *Y* il numero di re che si trovano fra le carte estratte.

- a) Calcolare E(X) e Var(X)
- **b)** Calcolare $\mathbf{E}(\frac{X}{X+Y}|X+Y>0)$
- c) Calcolare E(X|Y=k) al variare di k.
- **d)** Calcolare Cov(X, Y), per esempio utilizzando il risultato del punto **c)**.

Esercizio 15. Marco gioca al seguente gioco del lotto semplificato: da un'urna che contiene 10 palline numerate da 1 a 10, si estraggono senza reinserimento 4 palline. Marco punta sulla coppia di numeri $\{5,10\}$. Sia X la variabile aleatoria che conta quanti numeri indovina Marco, ossia quanti fra i numeri $\{5,10\}$ vengono estratti.

a) Individuare il tipo di distribuzione di X, e calcolarne il valore atteso e la varianza.

Anche Luca e Andrea giocano insieme a Marco. Luca punta sulla terna di numeri $\{1,5,10\}$, e sia Y la variabile aleatoria che conta i numeri indovinati da Luca. Invece Andrea lancia una moneta ben equilibrata: se esce testa punta sulla coppia $\{5,10\}$, mentre se esce croce punta sulla terna di numeri $\{1,5,10\}$. Sia Z la variabile aleatora che conta quanti sono i numeri individuati da Andrea.

b) Scrivere in termini degli eventi $T = \{\text{esce testa}\}\ e\ C = \{\text{esce croce}\}\ e$ delle variabili aleatorie, i seguenti eventi E, F, G, ed A, e calcolarne le probabilità:

 $E = \{$ Marco non indovina neanche un numero $\}$

 $F = \{$ Luca non indovina neanche un numero $\}$

 $G = \{$ Andrea non indovina neanche un numero $\}$

 $A = \{ \text{Sia Marco che Andrea non indovinano neanche un numero} \}.$

c) Sapendo che Andrea non ha indovinato neanche un numero, calcolare la probabilità che sia uscita testa e che sia uscita croce. **Esercizio 16.** Due dadi equilibrati vengono lanciati separatamente più volte. Indichiamo con X il numero di lanci necessario a a ottenere 1 con il primo dado e con Y il numero di lanci necessario a a ottenere 5 o 6 con il secondo.

- a) Qual è la distribuzione di X?
- **b**) Qual è la distribuzione di *Y*?
- **c)** Quanto valgono E(X) e E(Y)?
- **d)** Calcolare la densità di $Z = \max(X, Y)$.
- **e)** Quanto vale $\mathbf{E}(Z)$?
- **f)** Calcolare $P(X \ge Y)$.

Esercizio 17. Calcolare valore atteso e varianza

- a) di una variabile di Poisson
- b) di una variabile geometrica
- c) di una variabile binomiale negativa

Esercizio 18. Siano X e Y variabili aleatorie di Poisson di parametro λ e μ rispettivamente. Calcolare

$$\mathbf{P}(X = k \mid X + Y = n)$$

Di quale distribuzione si tratta?

Esercizio 19. Sia X una variabile aleatoria con funzione di densità data da

$$p_X(n) = c * \frac{1}{n!}$$
n = 0, 1, 2, ...

 $p_X(n) = 0$ altrimenti

- 1. Calcolare c. (Suggerimento: utilizzare il fatto che $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$);
- 2. Calcolare la probabilità che X sia pari;
- 3. Calcolare il valore atteso di X.

Esercizio 20. Marco gioca al seguente gioco del lotto semplificato: da un'urna che contiene 10 palline numerate da 1 a 10, si estraggono senza reinserimento 4 palline. Marco punta sulla coppia di numeri $\{5,10\}$. Sia X la variabile aleatoria che conta quanti numeri indovina Marco, ossia quanti fra i numeri $\{5,10\}$ vengono estratti.

a) Individuare il tipo di distribuzione di *X*, e calcolarne il valore atteso e la varianza.

Anche Luca e Andrea giocano insieme a Marco. Luca punta sulla terna di numeri $\{1,5,10\}$, e sia Y la variabile aleatoria che conta i numeri indovinati da Luca. Invece Andrea lancia una moneta ben equilibrata: se esce testa punta sulla coppia $\{5,10\}$, mentre se esce croce punta sulla terna di numeri $\{1,5,10\}$. Sia Z la variabile aleatora che conta quanti sono i numeri individuati da Andrea.

b) Scrivere in termini degli eventi $T = \{\text{esce testa}\}\ e\ C = \{\text{esce croce}\}\ e$ delle variabili aleatorie, i seguenti eventi E, F, G, ed A, e calcolarne le probabilità:

```
E = \{ \mbox{Marco non indovina neanche un numero} \} F = \{ \mbox{Luca non indovina neanche un numero} \} G = \{ \mbox{Andrea non indovina neanche un numero} \} A = \{ \mbox{Sia Marco che Andrea non indovinano neanche un numero} \}.
```

c) Sapendo che Andrea non ha indovinato neanche un numero, calcolare la probabilità che sia uscita testa e che sia uscita croce.

Esercizio 21. Due giocatori lanciano una moneta perfetta 4 volte ciascuno ed il vincitore è quello fra i due che realizza il maggior numero di risultati testa.

Indichiamo con X il punteggio del vincitore e con Y il punteggio del perdente.

- a) Trovare E(X + Y);
- **b)** Trovare $\mathbf{E}(X-Y)$;
- **c)** Trovare $\mathbf{E}(X-Y)$ nel caso in cui i due giocatori lancino la moneta un numero generico n di volte ciascuno.

Esercizio 22. In un ospedale ci sono 20 parti al giorno. Ogni parto con probabilità $\frac{1}{10}$ necessita di una speciale apparecchiatura di monitoraggio. Trovare il valore atteso del numero di giorni in un anno nei quali sono necessarie almeno due apparecchiature.

Esercizio 23. Una coppia di dadi perfetti a sei facce viene lanciata n volte ed indichiamo con S_n il numero dei lanci in cui il maggiore fra i due punteggi risulta maggiore o uguale a 5.

Calcolare il minimo valore di n per il quale, in base alla disuguaglianza di Chebishev, si possa scrivere

$$\mathbf{P}\left(\left|\frac{S_n}{n} - \frac{5}{9}\right| > \frac{1}{30}\right) \le \frac{1}{10}$$

Esercizio 24. Una moneta dà testa con probabilità p. La moneta viene tirata n volte e si osserva la percentuale \bar{Y}_n di teste uscite su n lanci. Quanto deve essere grande n affinché con probabilità maggiore di 0.99 l'errore commesso (cioè la differenza tra p e \bar{Y}_n) sia al più 0.1?

Esercizio 25. Siano X_1, \ldots, X_{100} variabili aleatorie indipendenti, ciascuna con la seguente distribuzione di probabilità

$$\mathbf{P}(X_j = 0) = 0.45 - p$$
 $\mathbf{P}(X_j = 1) = 0.25$ $\mathbf{P}(X_j = 0.5) = 0.3$ $\mathbf{P}(X_j = 2) = p$

dove 0 è un parametro.

- **a)** Trovare il valore di p per cui risulta $\mathbf{E}(X_i) = 1$.
- **b)** In corrispondenza al valore di p trovato nel precedente punto, calcolare la varianza di X_j .
- **c)** Ancora in corrispondenza allo stesso valore di *p*, posto

$$Y = \frac{\sum_{j=1}^{100} X_j}{100}$$

trovare la minorazione per la probabilità $\mathbf{P}\left(|Y-1| \leq \frac{1}{5}\sqrt{\frac{21}{40}}\right)$ che si ottiene utilizzando la diseguaglianza di Chebyshev.

Esercizio 26.

Un quiz televisivo prevede due partecipanti (A, B), avversari fra loro.

Il presentatore propone sequenzialmente 4 domande.

Viene scelto a caso il giocatore cui viene rivolta la prima domanda. Se questi risponde, gli viene presentata la seconda domanda, e così via finchè non sbaglia una risposta.

Soltanto quando questi sbaglia, il gioco passa all'altro giocatore, cui viene rivolta la stessa domanda.

Se nessuno dei due risponde a una domanda si passa alla successiva; ed il gioco continua così di seguito fino all'esaurimento delle 4 domande.

Ciascun giocatore ha una probabilità $\frac{1}{2}$ di dare risposta esatta a qualunque domanda gli venga rivolta.

Sia X_A il numero delle risposte esatte date da A, X_B il numero delle risposte esatte date da B e X_C il numero delle domande cui non è stata data risposta esatta (nè da A, nè da B).

- a) Trovare la probabilità che una specifica domanda non riceva risposta esatta
- **b)** Qual è la distribuzione di probabilità di X_C ?

Supponiamo che questo tipo di quiz venga ripetuto per 100 serate consecutive ed indichiamo con Y_{100} il numero delle serate in cui si osserva il risultato $\{X_C=2\}$.

- **c**) Calcolare il valore atteso e la varianza di $\frac{Y_{100}}{100}$.
- **d)** Usare la disuguaglianza di Chebyshev per maggiorare $\mathbf{P}\left(\left|Y_{100}-\frac{675}{32}\right|>12\right)$.
- e) In una singola serata, qual è la probabilità dell'evento $\{X_A=1,X_B=1\}$?

Esercizio 27.

Sia X_n una variabile di Poisson di parametro n. Mostrare che

$$\lim_{n \to \infty} \mathbf{P}\left(\frac{X_n}{n} > 1 + \varepsilon\right) = 0$$