M.I.T. LAB Assignment - 01 U19CS012

(1) Store the data byte 25H into memory location 3000H

```
Notepad Code:
```

```
; Q-(1) - Store the data byte 25H into memory location 3000H
2
3
    ; Add 25h [37 in Decimal] to Accumulator [Initially Empty]
4
   ADI 25h
5
6
7
    : Store the Result of Accumuator at Location 3000h
    STA 3000h
8
9
10
    ; Result : We will Find 37 [25h] At Location 3000h
11
12
    ;Interrupt
13
    hlt
```

Registers			
А	25		
BC	00	00	
DE	00	00	
HL	00	00	
PSW	00	00	
PC	42	06	
SP	FF	FF	
Int-Reg	C	00	

(2) Write a program to add two 8-bit numbers. Store the result at one memory location.

Notepad Code:

; Direct Method

; Intiatilize the Register B with 8-bit [Number 1]

MVI B, O1h

; Intiatilize the Register D with 8-bit [Number 2]

MVI D, 01h

; Add B to Accumulator

ADC B

; Add D to Accumulator

ADC D

: Store Result from Accumulator at Location 3004h

STA 3004h

Registers	02		
ВС	01	00	
DE	01	00	
HL	00	00	
PSW	00	00	
PC	42	0A	
SP	FF	FF	
Int-Reg	0	00	

Notepad Code:

```
; Method (2): Data from Register at Address 3000h & 3002h
 6
 7
    MVI A,00
    ; Intiatilize the Register B with 8-bit [Number 1] at Location 3000h
 9
    LDA 3000h
10 MOV B, A
    ; Intiatilize the Register D with 8-bit [Number 2] at Location 3002h
11
12
    LDA 3002h
13 MOV D, A
14 ; Reset the Accumulator
    MVI A,00
15
16; Add B to Accumulator
17
    ADC B
18 : Add D to Accumulator
19
    ADC D
20 : Store Result from Accumulator at Location 3004h
    STA 3004h
21
22
23
    hlt
```

Let's Input B = $10 [(OA)h] & D = 5 [(O5)h] \rightarrow Output : 15 [(OF)h]$

Start 30	00h			ОК
Address	(Hex) Address	Dat	a	
3000	12288	10		
3001	12289	0		
3002	12290	5		
3003	12291	0		
3004	12292	15		
3005	12293	0		
3006	12294	0		
3007	12295	0		
3008	12296	0		
3009	12297	0		
300A	12298	0		
300B	12299	0		
300C	12300	0		
300D	12301	0		
Line No	Assembler Messa	age		

(3) Write a program to subtract two 8-bit numbers. Store the result at one memory location.

Notepad Code:

```
; Data from Register at Address 3000h & 3002h
 4
5
    MVI A,00
 6; Intiatilize the Register B with 8-bit [Number 1] at Location 3000h
7 LDA 3000h
8 MOV B, A
9; Intiatilize the Register D with 8-bit [Number 2] at Location 3002h
10 LDA 3002h
11 MOV D. A
12 : Reset the Accumulator
13
    MVI A,00
14 ; Add B to Accumulator
15
    ADD B
16 ; Sub D to Accumulator
17
    SUB D
18; Store Result [B-D] from Accumulator at Location 3004h
19
    STA 3004h
20
21
    hlt
```

Let's Input B = $10 [(0A)h] & D = 5 [(05)h] \rightarrow Output : 5 [(05)h]$

Let's Input B = 5 [(05)h] & D = 10 [(0A)h] -> Output : 5-10 = -5 = -5+256 = 251 [(FB)h]

(4) Exchange the contents of memory locations 2000H and 4000H

- 3 ; Intialize Accumulator to 00
- 4 MVI A,00
- 5 ; Store the Contents at Location 2000H in B register [Temporary Var]
- 6 LDA 2000h
- 7 MOV B, A
- 8; Store the Contents at Location 4000H at Location 2000H
- 9 LDA 4000h
- 10 STA 2000h
- 11 ; Store the Contents from B Register [Temp] to Location 4000H
- 12 MVI A, 00
- 13 **ADD B**
- 14 STA 4000h
- 15
- 16 hlt

INPUT: 2000h = 15 & 4000h = 45

OUTPUT: 2000h = 45 & 4000h = 15

(5) Write a program to add two 16 bit numbers. Numbers are stored in four consecutive memory location as 8-bit numbers. (Use instruction ADC)

```
MVI A,00
            ; Intiatilize the Register B with 16-bit [Number 1](Isb) at Location 3000h
          LDA 3000h
        6
           MOV B, A
            ; Intiatilize the Register C with 16-bit [Number 1](msb) at Location 3001h
        7
        8
            LDA 3001h
        9
            MOV C, A
       10
            ; Intiatilize the Register D with 16-bit [Number 2](lsb) at Location 3002h
       11
            LDA 3002h
       12
            MOV D, A
            ; Intiatilize the Register E with 16-bit [Number 2](msb) at Location 3003h
       13
       14
            LDA 3003h
       15
            MOV E, A
       16
           ; Reset Accumulator
       17
            MVI A,00
       18
            ; Add (Isb) of Two Numbers
       19
            ADC B
       20
            ADC D
       21
            ; Store the LSB Result at location 3005h
       22
            STA 3005h
       23
       24 ; Reset Accumulator
       25
            MVI A,00
       26; Add (msb) of Two Numbers
       27
            ADC C
       28
            ADC E
       29 ; Store the MSB Result at location 3005h
       30 STA 3006h
       31
       32
            hlt
Let's Suppose
Number 1 = (msb) 10 10 (lsb) [4112 in Decimal]
Input 1: Addr(3000h) = 10h = \frac{16}{6} & Addr(3001h) = 10h = \frac{16}{6}
Number 2 = (msb) 01 10 (lsb) [272 in Decimal]
Input 2: Addr(3002h) = 10h = \frac{16}{6} & Addr(3003h) = 01h = \frac{1}{6}
Expected Output = 4112 + 272 = 4384 = (msb) 11 20 (lsb) [Hexadecimal]
```

Expected Output:

(LSB)Addr(3005h) = 20h = 32

(MSB)Addr(3006h) = 11h = 17

INPUT:

Line No Assembler Message

OUTPUT:

Registers		
А	1	.1
BC	10	10
DE	10	01
HL	00	00
PSW	00	00
PC	42	21
SP	FF	FF
Int-Reg	0	0

Start 3000h		OK
Address (Hex)	Address	Data
3000	12288	16
3001	12289	16
3002	12290	16
3003	12291	1
3004	12292	0
3005	12293	32
3006	12294	17
3007	12295	0
3008	12296	0
3009	12297	0
300A	12298	0
300B	12299	0
300C	12300	0
300D	12301	0
Line No Assem	Assembler Message	
0 Program	Program assembled successfully	

(6) Write a program to subtract two 16 bit numbers. Numbers are stored in four consecutive memory location as 8-bit numbers. (Use instruction SBB)

```
;Q-(6) Write a program to subtract two 16 bit numbers.
     ; Numbers are stored in four consecutive memory location as 8-bit numbers. (Use instruction SBB)
 2
 3
     MVI A,00
 4
    ; Intiatilize the Register B with 16-bit [Number 1](Isb) at Location 3000h
    LDA 3000h
 6 MOV B, A
 7
     ; Intiatilize the Register C with 16-bit [Number 1](msb) at Location 3001h
 8
    LDA 3001h
 9 MOV C, A
10
     ; Intiatilize the Register D with 16-bit [Number 2](Isb) at Location 3002h
 11
     LDA 3002h
12
     MOV D, A
     ; Intiatilize the Register E with 16-bit [Number 2](msb) at Location 3003h
13
14
     LDA 3003h
15
    MOV E, A
16
    ; Subtract (Isb) of Two Numbers
17
18 MOV A,B; A <- B
19
    SBB D : A <- A-D
20 ; Store the LSB Result at location 3005h
21
     STA 3005h
22
23
     MVI A, 00
24 ; Subtract (msb) of Two Numbers
25 MOV A,C; A <- B
26 SBB E : Subtract with Borrow
27
     ; Store the MSB Result at location 3005h
28 STA 3006h
29 hlt
Let's Suppose
Number 1 = (msb) 10 10 (lsb) [4112 in Decimal]
Input 1: Addr(3000h) = 10h = \frac{16}{6} & Addr(3001h) = 10h = \frac{16}{6}
Number 2 = (msb) 01 10 (lsb) [272 in Decimal]
Input 2: Addr(3002h) = 10h = \frac{16}{6} & Addr(3003h) = 01h = \frac{1}{6}
```

Expected Output = 4112 - 272 = **3840** = (msb) **OF** 00 (lsb) [Hexadecimal]

Expected Output:

(LSB)Addr(3005h) = 00h = 0

(MSB)Addr(3006h) =**OFh**=**15**

OUTPUT:

Let's Suppose

Number 1 = (msb) 10 10 (lsb) [4112 in Decimal]

Input 1: Addr(3000h) = 10h = 16 && Addr(3001h) = 10h = 16

Number 2 = (msb) 01 11 (lsb) [273 in Decimal]

Input 2: $Addr(3002h) = 10h = \frac{1}{4} & Addr(3003h) = 01h = \frac{17}{4}$

Expected Output = 4112 - 273 = 3839 = (msb) OE FF (lsb) [Hexadecimal]

Expected Output:

(LSB)Addr(3005h) = 0Eh = 14

(MSB)Addr(3006h) = **FFh** = 255

Start	3000h		OK
Addr	ess (Hex)	Address	Data
300	0	12288	16
300	1	12289	16
300	2	12290	1
300	3	12291	17
300	4	12292	0
300	15	12293	14
300	16	12294	255
300	17	12295	0
300	8	12296	0
300	9	12297	0
300	Α	12298	0
300	В	12299	0
300	C	12300	0
300	D	12301	0
Line No Assembler Message			
Program assembled successfully			

Submitted By:

BHAGYA VINOD RANA

U19C5012