Eric Pitman Summer Workshop in Computational Science

Cytotoxicity Classification Project Background

Separate elements in a data set into two groups, based on some property.

From: cheapsales@buystufffromme.com

To: ang@cs.stanford.edu

Subject: Buy now!

Deal of the week! Buy now! Rolex w4tchs - \$100 Medlcine (any kind) - \$50 Also low cost M0rgages

available.

Class 1

Span

From: Alfred Ng
To: ang@cs.stanford.edu
Subject: Christmas dates?

Hey Andrew,
Was talking to Mom about plans
for Xmas. When do you get off
work. Meet Dec 22?
Alf

Class 2

Toxicity Information

1	Oxide nanoparticle	Toxicity	is.toxic
2	TiO2	1.74	FALSE
3	SnO2	2.01	FALSE
4	ZrO2	2.15	FALSE
5	SiO2	2.2	FALSE
6	Fe2O3	2.29	TRUE
7	Al2O3	2.49	TRUE
8	Cr2O3	2.51	FALSE

Toxicity Information

 Cytotoxicity – found from experimental concentration of particles required to kill a certain number of cells

 True value (is.toxic) – whether a material is lethal or not in a worst-case scenario, from known health effects

 Goal: automatically determine if a material is toxic or not, based on some cytotoxicity threshold.

1	Oxide nanoparticle	Toxicity	is.toxic
2	TiO2	1.74	FALSE
3	SnO2	2.01	FALSE
4	ZrO2	2.15	FALSE Nonto
5	SiO2	2.2	FALSE
6	Fe2O3	2.29	TRUE
7	AI2O3	2.49	TOXIC
8	Cr2O3	2.51	FALSE

The best threshold value is unknown.

- We have a set of metal oxides known to be toxic or not, and their cytotoxicity values.
- We must use these data to find a threshold value that best classifies elements as toxic or non-toxic.

To perform classification, choose a cytotoxicity threshold.

- Every value above the threshold is a positive result (toxic classification).
- Every value below the threshold is a negative result (non-toxic classification).

Classifier Performance

Four possible outcomes:

- True and false positive (classified as toxic)
- True and false negative (classified as non-toxic)

Sensitivity and Specificity

 Sensitivity (true positive rate): The ability to correctly identify toxic substances

 Specificity (true negative rate): The ability to correctly identify non-toxic substances

ROC Plot

- "Receiver Operating Characteristic" plot
- Used to evaluate binary classifier performance
- Compares true positive rate to false positive rate at a number of different thresholds