Vv255 Applied Calculus III

Recitation VI

LIU Xieyang

Teaching Assistant

University of Michigan - Shanghai Jiaotong University
Joint Institute

Summer Term 2015

Contents

Lecture 12: Differential

Lecture 13: Extreme values and saddle points

Lecture 14: Lagrange Multipliers

Linearization & Differential

Linearization:

The linearization of a function f(x, y) at a point (x_0, y_0) , where f is differentiable,

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$$

Differential: If we move from (x_0, y_0) to a point $(x_0 + dx, y_0 + dy)$ nearby, the resulting change

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$$

in the linearization of f is called the total differential of f.

Linearization & Differential (cont.)

- ▶ The plane z = L(x, y) is tangent to the surface z = f(x, y) at the point (x_0, y_0) .
- ► The linearization of a function of two variables is a tangent-plane approximation in the same way that the linearization of a function of a single variable is a tangent line approximation.

Contents

Lecture 12: Differential

Lecture 13: Extreme values and saddle points

Lecture 14: Lagrange Multipliers

Extreme Values for function of several variables

Let (a, b) be a point in the domain D of a function f(x, y), then f(a, b) is

- Relative maximum value of f if

$$f(a,b) \ge f(x,y)$$
 for some disk with center (a,b) .

- Relative minimum value of f if

$$f(a,b) \le f(x,y)$$
 for some disk with center (a,b) .

- Absolute maximum value of f for an interval I if

$$f(a,b) > f(x,y)$$
 for all points (x,y) in R .

- Absolute minimum value of f for an interval I if

$$f(a,b) \le f(x,y)$$
 for all points (x,y) in R .

Finding Local Extrema

Procedures for finding local/relative extrema:

Step 1: Gradient Test: Finding Critical Points

Figure: Saddle point: In general, we will say that a function has a saddle point P if there are two distinct vertical planes through P such that P in one of the planes is a local maximum and P in the other is a local minimum.

Finding Local Extrema (cont.)

Step 2: Second derivative Test: Hessian Matrix

$$\mathbf{H} = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix}$$

Suppose f is differentiable and $\nabla f = 0$ at a point P_0 , and if

all the eigenvalues of \mathbf{H} at P_0 are positive \Longrightarrow local minimum all the eigenvalues of \mathbf{H} at P_0 are negative \Longrightarrow local maximum \mathbf{H} at P_0 has both positive and negative eigenvalues \Longrightarrow saddle point One of the eigenvalues of \mathbf{H} is zero \Longrightarrow inconclusive

Finding Global Extrema

Procedures for finding global/Absolute extrema:

- 1. Find the local extreme values of f in the domain D.
- 2. Find the local extreme values of f on boundary of the domain D.
 - Direct examination:
 - Lagrange multiplier (will be talked about later)
- 3. Compare values in step 1. and step 2., the largest of them is the global maximum, the smallest is the global minimum.

Summer 2015

Contents

Lecture 12: Differentia

Lecture 13: Extreme values and saddle points

Lecture 14: Lagrange Multipliers

Geometry Basis of Lagrange Multipliers

Figure: Maximum of f is 400; minimum of f is 200

To motivate the method of Lagrange multipliers, suppose that we are trying to maximize a function f(x, y) subject to the constraint g(x, y) = 0. Geometrically, this means that we are looking for a point (x_0, y_0) on the graph of the constraint curve at which f(x, y) is as large as possible.

Summer 2015

Geometry Basis of Lagrange Multipliers (cont.)

Figure: Maximum of f is 400; minimum of f is 200

To help locate such a point, let us construct a contour plot of f(x,y) in the same coordinate system as the graph of g(x,y)=0. For example, the graph on the left shows some typical level curves of f(x,y)=c, which we have labeled c=100,200,300,400,500 for purpose of illustration. In this figure, each point of intersection of g(x,y)=0 with a level curve is a candidate for a solution, since these points lie on the constraint curve. Among the seven such intersections shown in the figure, the maximum value of f(x,y) occurs at the intersection (x_0,y_0) where f(x,y) has a value of 400.

Geometry Basis of Lagrange Multipliers (cont.)

Figure: Maximum of f is 400; minimum of f is 200

Note that at (x_0, y_0) the constraint curve and the level curve just touch and thus have a common tangent line at this point.

Since $\nabla f(x_0, y_0)$ is normal to the level curve f(x, y) = 400 at (x_0, y_0) , and since $\nabla g(x_0, y_0)$ is normal to the constraint curve g(x, y) = 0 at (x_0, y_0) , we conclude that the vectors $\nabla f(x_0, y_0)$ and $\nabla g(x_0, y_0)$ must be parallel. That is

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$
 for some scalar λ

Lagrange Multipliers

Ultimate Goal:

Minimize/Maximize f subject to the constraint(s) $g_1=k_1, g_2=k_2, \cdots, g_n=k_n$, where f and g_1, \cdots, g_n are functions of several variables.

Method:

Step 1: Solve the simultaneous equations:

$$\nabla f = \frac{\lambda}{\lambda} \nabla g_1 + \frac{\mu}{\mu} \nabla g_2 + \cdots$$

$$g_1 = k_1$$

$$g_2 = k_2$$

Step 2:

Evaluate f at all the points (x, y, z, \cdots) that result from step 1. The largest of these values is the maximum value of f; the smallest is the minimum value of f.