Введение: О-символика

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

Время работы

Функция FIBARRAY(n)

```
создать массив F[0...n] F[0] \leftarrow 0 F[1] \leftarrow 1 для i от 2 до n: F[i] \leftarrow F[i-1] + F[i-2] вернуть F[n]
```

Время работы

Функция FIBARRAY(n)

```
создать массив F[0...n] F[0] \leftarrow 0 F[1] \leftarrow 1 для i от 2 до n: F[i] \leftarrow F[i-1] + F[i-2] вернуть F[n]
```

Функция выполняет 2n+2 строк кода $(4+2\cdot(n-1))$, но действительно ли это отражает время работы алгоритма?

- $F[0] \leftarrow 0$
 - присваивание

- $F[0] \leftarrow 0$
 - присваивание
- для *i* от 2 до *n*
 - инкрементирование i (сложение и присваивание)
 - проверка условия

- $F[0] \leftarrow 0$
 - присваивание
- для *i* от 2 до *n*
 - инкрементирование i (сложение и присваивание)
 - проверка условия
- \blacksquare создание массива F[0...n]
 - выделение памяти

- $F[0] \leftarrow 0$
 - присваивание
- для *i* от 2 до *n*
 - инкрементирование i (сложение и присваивание)
 - проверка условия
- lacktriangle создание массива $F[0 \dots n]$
 - выделение памяти
- $F[i] \leftarrow F[i-1] + F[i-2]$
 - доступ к элементу
 - сложение (возможно, длинных чисел)
 - присваивание

Точное время работы

Точное время работы зависит от многих факторов:

- тактовая частота процессора
- архитектура
- компилятор
- устройство иерархии памяти

Точное время работы

Точное время работы зависит от многих факторов:

- тактовая частота процессора
- архитектура
- компилятор
- устройство иерархии памяти

Необходим способ измерения времени работы, не зависящий от данных факторов.

О-символика

Определение

Пусть $f,g:\mathbb{N}\to\mathbb{R}_{>0}$. Говорим, что f растёт не быстрее g и пишем f(n)=O(g(n)) или $f\preceq g$, если существует такая константа c>0, что $f(n)\leq c\cdot g(n)$ для всех $n\in\mathbb{N}$.

О-символика

Определение

Пусть $f,g:\mathbb{N}\to\mathbb{R}_{>0}$. Говорим, что f растёт не быстрее g и пишем f(n)=O(g(n)) или $f\preceq g$, если существует такая константа c>0, что $f(n)\leq c\cdot g(n)$ для всех $n\in\mathbb{N}$.

Пример

$$3n^2+5n+2=O(n^2)$$
, поскольку при $n\geq 1$ выполнено $3n^2+5n+2\leq 3n^2+5n^2+2n^2=10n^2$.

Скорость роста

 $3n^2 + 5n + 2$ имеет ту же скорость роста, что и n^2 .

Использования *О*-символики

Мы будем использовать O-символику для оценки времени работы алгоритмов.

Использования О-символики

Мы будем использовать O-символику для оценки времени работы алгоритмов. Преимущества:

- характеризует зависимость времени работы от размера входных данных
- более простые оценки $(O(n^2)$ вместо $3n^2 + 5n + 2)$
- упрощённый анализ (не думаем, сколько в действительности занимает каждая отдельная операция)
- не зависит от машины, на которой запускается алгоритм

Использования О-символики

Мы будем использовать O-символику для оценки времени работы алгоритмов. Преимущества:

- характеризует зависимость времени работы от размера входных данных
- более простые оценки $(O(n^2)$ вместо $3n^2 + 5n + 2)$
- упрощённый анализ (не думаем, сколько в действительности занимает каждая отдельная операция)
- не зависит от машины, на которой запускается алгоритм

Недостатки:

- О-символика скрывает константные множители, которые на практике могут оказаться очень важными
- *О*-символика говорит только про скорость роста

Связанные определения

Определение

Пусть $f, g: \mathbb{N} \to \mathbb{R}_{>0}$.

- $f(n) = \Omega(g(n))$ и $f \succeq g$, если существует положительная константа c, для которой $f(n) \ge c \cdot g(n)$ (f растёт не медленнее g)
- $f(n) = \Theta(g(n))$ и $f \asymp g$, если f = O(g) и $f = \Omega(g)$ (f и g имеют одинаковую скорость роста)
- lacktriangledown f(n) = o(g(n)) и $f \prec g$, если f(n)/g(n)
 ightarrow 0 при $n
 ightarrow \infty$ (f растёт медленнее g).

Постоянные множители можно опускать:

$$7n^3 = \Theta(n^3), \frac{n^2}{3} = \Theta(n^2)$$

Постоянные множители можно опускать:

$$7n^3 = \Theta(n^3), \frac{n^2}{3} = \Theta(n^2)$$

Многочлен более высокой степени растёт быстрее:

$$n^a \prec n^b$$
 при $a < b$ $n = O(n^2), \; n^2 = O(n^4), \; \sqrt{n} = O(n)$

Постоянные множители можно опускать:

$$7n^3 = \Theta(n^3), \frac{n^2}{3} = \Theta(n^2)$$

Многочлен более высокой степени растёт быстрее:

$$n^a \prec n^b$$
 при $a < b$
 $n = O(n^2), \; n^2 = O(n^4), \; \sqrt{n} = O(n)$

Экспонента растёт быстрее многочлена:

$$n^a \prec b^n \ (a > 0, b > 1)$$
:
 $n^5 = O(\sqrt{2}^n), \ n^2 = O(3^n), \ n^{100} = O(1.1^n)$

Постоянные множители можно опускать:

$$7n^3 = \Theta(n^3), \frac{n^2}{3} = \Theta(n^2)$$

Многочлен более высокой степени растёт быстрее:

$$n^a \prec n^b$$
 при $a < b$
 $n = O(n^2), \; n^2 = O(n^4), \; \sqrt{n} = O(n)$

Экспонента растёт быстрее многочлена:

$$n^a \prec b^n \ (a > 0, b > 1)$$
:
 $n^5 = O(\sqrt{2}^n), \ n^2 = O(3^n), \ n^{100} = O(1.1^n)$

Многочлен растёт быстрее логарифма:

$$(\log n)^a < n^b \ (a, b > 0)$$
:
 $(\log n)^3 = O(\sqrt{n}), \ n \log n = O(n^2)$

Постоянные множители можно опускать:

$$7n^3 = \Theta(n^3), \frac{n^2}{3} = \Theta(n^2)$$

Многочлен более высокой степени растёт быстрее:

$$n^a \prec n^b$$
 при $a < b$ $n = O(n^2), \; n^2 = O(n^4), \; \sqrt{n} = O(n)$

Экспонента растёт быстрее многочлена:

$$n^a \prec b^n \ (a > 0, b > 1)$$
:
 $n^5 = O(\sqrt{2}^n), \ n^2 = O(3^n), \ n^{100} = O(1.1^n)$

Многочлен растёт быстрее логарифма:

$$(\log n)^a < n^b (a, b > 0)$$
:
 $(\log n)^3 = O(\sqrt{n}), \ n \log n = O(n^2)$

Медленнее растущие слагаемые можно опускать :

$$(f + g = O(\max(f, g)))$$

 $n^2 + n = O(n^2), 2^n + n^9 = O(2^n)$

Часто используемые функции

 $\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

Часто используемые функции

$$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$$

Часто используемые функции

 $\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

Время в зависимости от размера входа

При скорости 10^9 операций в секунду

	n	n log n	n^2	2 ⁿ
n=20	1 сек	1 сек	1 сек	1 сек
n = 50	1 сек	1 сек	1 сек	13 дней
$n = 10^2$	1 сек	1 сек	1 сек	$4\cdot 10^{13}$ лет
$n = 10^6$	1 сек	1 сек	17 мин	
$n = 10^9$	1 сек	30 сек	30 лет	
макс <i>п</i> для 1 сек	10 ⁹	10 ⁷	10 ^{4,5}	30

Операция

Время работы

Операция создать массив F[0...n]

Время работы $\Theta(n)$

Операция	Время работы
создать массив $F[0 \dots n]$	$\Theta(n)$
$F[0] \leftarrow 0$	$\Theta(1)$

Операция	Время работы
создать массив $F[0n]$	$\Theta(n)$
$F[0] \leftarrow 0$	$\Theta(1)$
$F[1] \leftarrow 1$	$\Theta(1)$

Операция	Время работы
создать массив $F[0n]$	$\Theta(n)$
$F[0] \leftarrow 0$	$\Theta(1)$
$F[1] \leftarrow 1$	$\Theta(1)$
для <i>i</i> от 2 до <i>n</i> :	цикл, $\Theta(n)$ итераций

Операция	Время работы
создать массив <i>F</i> [0 <i>n</i>]	$\Theta(n)$
$F[0] \leftarrow 0$	$\Theta(1)$
$F[1] \leftarrow 1$	$\Theta(1)$
для <i>і</i> от 2 до <i>п</i> :	цикл, $\Theta(n)$ итераций
$F[i] \leftarrow F[i-1] + F[i-2]$	$\Theta(n)$

Операция	Время работы
создать массив <i>F</i> [0 <i>n</i>]	$\Theta(n)$
$F[0] \leftarrow 0$	$\Theta(1)$
$F[1] \leftarrow 1$	$\Theta(1)$
для <i>і</i> от 2 до <i>п</i> :	цикл, $\Theta(n)$ итераций
$F[i] \leftarrow F[i-1] + F[i-2]$	$\Theta(n)$
вернуть $F[n]$	$\Theta(1)$

Операция	Время работы
создать массив $F[0 \dots n]$	$\Theta(n)$
$F[0] \leftarrow 0$	$\Theta(1)$
$F[1] \leftarrow 1$	$\Theta(1)$
для <i>і</i> от 2 до <i>п</i> :	цикл, $\Theta(n)$ итераций
$F[i] \leftarrow F[i-1] + F[i-2]$	$\Theta(n)$
вернуть $F[n]$	$\Theta(1)$

Итого:

$$\Theta(n) + \Theta(1) + \Theta(1) + \Theta(n) \cdot \Theta(n) + \Theta(1) = \Theta(n^2).$$

Заключение

С одной стороны, *О*-символика позволяет оценить ситуацию в первом приближении, игнорируя ненужные детали. С другой — *О*-символика заодно игнорирует и некоторые детали, которые на практике оказываются очень важными.