DIRECT Capstone Progress

April 19th

UNIVERSITY of WASHINGTON

Curve Fitting

> Curve fitting using least square with trust region reflective optimization to rate dependency of electrode specific capacity for 3D lithium-ion batteries

$$\frac{Q}{M} = Q_M [1 - (R\tau)^n (1 - e^{-(R\tau)^{-n}})]$$

Inputs:

- Specific capacity $\frac{Q}{M}$
- C-rates R

Outputs:

- Characteristic time τ ,
- Rate-limiting exponent *n*,
- Theoretical maximum capacity Q_M

Compared to Tian et al.

n has a wider spread, suggesting a different limiting mechanism

Progress Updates

- > Curve fitting is going well, with a few issues:
 - Covariance/uncertainties of the fitting parameters cannot be determined
 - One case cannot be fitted well
- > We are now moving on to visualizing relationship between found fitting parameters and geometric/material parameters following Tian's procedure

Title and Space for Pictures

insert images

Divider Slide 1

Divider Slide 2

UNIVERSITY of WASHINGTON

Thank you

UNIVERSITY of WASHINGTON

