

Tamura Power Supply & Magnetic Technology

田村(中国)上海技术研发中心中国电源学会专家委员会委员

邵革良

'2014/6/21

小功率高频开关电源变压器的设计计算

田村(中国)企业管理有限公司 上海技术研发中心

小功率AC/DC开关电源的电路拓扑

反激电源典型主电路

通用原则

- 伏秒数相等原则(磁平衡)
- T1:耦合式储能电感

两种工作模式

- 固定频率: CCM~DCM
- 准谐振模式:CRM

工作模式选定法则

- 电气性能及功能
- 成本
- EMI
- 效率
- 尺寸最优化
- 设计习惯

CRM反激电源的变压器设计特点

伏秒数相等

$$V_{in} \bullet T_{on} = V_o \bullet T_{off}$$

$$V_{in} \bullet D = V_o(1 - D)$$

电感储能

$$\frac{P_o}{\eta} = \frac{1}{2} \bullet I_{ds}^2 \bullet L_p \bullet f$$

$$P_o = I_o \bullet V_o$$

$$\frac{\mathsf{Ids}^2}{\mathsf{Ids}^2} \bullet \mathsf{f} = \frac{2\mathsf{P}_0}{\mathsf{L}_\mathsf{p}} \mathsf{n}$$

原边电流

$$\frac{I_{ds}}{I_{p}} = \frac{V_{in}}{I_{p}} \bullet T_{on} = \frac{V_{in}}{I_{p}} \bullet \frac{D}{f}$$

副边电流

$$I_0 = \frac{1-D}{2} \bullet I_D$$

储能电感续流

$$N_p \bullet I_{DS} = N_S \bullet I_D$$

Io

Driver

Vds

Ids

Id

■ CRM反激电源的变压器设计特点

原副边变比

$$V_C = \frac{V_O \bullet N_P}{N_S}$$

$$V_{ds} = V_{in} + V_C + \alpha(spike)$$

$$N_P/N_S = f(V_{ds}, V_{in}, V_o, \alpha)$$

Example

$$V_{ds} = 600 \times 90\% = 540V$$

$$\alpha(spike) = 50V$$

$$V_0 = 24V$$

$$V_{inmax} = 264 \times \sqrt{2} = 373.3V$$

$$N_P/N_S = 4.8625$$

Np与磁芯选取

法拉第定理

$$E = N_{P} \bullet \stackrel{d\phi}{dt} = N_{P} \bullet A_{e} \bullet \stackrel{\Delta B}{\Delta t}$$

$$E = L_{P} \stackrel{dI(L_{P})}{dt} = L_{P} \stackrel{\Delta I_{DS}}{\Delta t}$$

$$\Delta B = B \max = \frac{L_{P} \bullet I_{DS}}{N_{P} \bullet A_{e}} \longrightarrow 360 \text{mT}$$

■ CRM反激电源的变压器设计特点

CCM反激电源的变压器设计特点

Io

电感储能

$$V_{\text{in}} \bullet T_{\text{on}} = V_{\text{o}} \bullet T_{\text{off}}$$

$$V_{\text{in}} \bullet D = V_{\text{o}}(1 - D)$$

$$= \frac{V_{\text{o}}}{V_{\text{in}} + V_{\text{o}}}$$

$$= \frac{I_{\text{p2}} + I_{\text{p1}}}{2} \bullet (I_{\text{p2}}^2 - I_{\text{p1}}^2) \bullet L_{\text{p}} \bullet f$$

$$= \frac{I_{\text{p2}} + I_{\text{p1}}}{2} \bullet \Delta I_{\text{p}} \bullet L_{\text{p}} \bullet f$$

$$= \frac{I_{\text{p2}} + I_{\text{p1}}}{2} \bullet \Delta I_{\text{p}} \bullet L_{\text{p}} \bullet f$$

$$= \frac{I_{\text{p2}} + I_{\text{p1}}}{2} \bullet \Delta I_{\text{p}} \bullet L_{\text{p}} \bullet f$$

$$P_{\text{o}} = I_{\text{o}} \bullet V_{\text{o}}$$

$$\Delta I_{\text{P}} = \frac{V_{\text{in}}}{I_{\text{P}}} \bullet T_{\text{on}} = \frac{D \bullet V_{\text{in}}}{f \bullet L_{\text{P}}}$$

$$(I_{\text{p1}} + I_{\text{p2}}) \Delta I_{\text{p}} \bullet f = \frac{2P_{\text{o}}}{I_{\text{p}} n}$$

$$I_{O} = \frac{N_{P}}{N_{S}} \bullet (I_{P1} + I_{P2})(1 - D)$$

CCM反激电源的变压器设计特点

原副边变比

$$V_C = \frac{V_O \bullet N_P}{N_S}$$

$$V_{ds} = V_{in} + V_C + \alpha(spike)$$

Np与磁芯选取

<mark>。</mark> 电感量定义

$$=\mu_0\bullet\mu_e\bullet A_e/_{l_e}\bullet N_P{}^2$$

 $= AL \bullet N_P^2$

Example

$$V_{ds} = 600 \times 90\% = 540V$$

$$\alpha(spike) = 50V$$

$$V_0 = 24V$$

$$V_{inmax} = 264 \times \sqrt{2} = 373.3V$$

$$N_P/N_S = 4.8625$$

法拉第定理

Ns

$$E = N_P \bullet d\phi / dt = N_P \bullet A_e \bullet \Delta B / \Delta t$$

$$E = L_P \frac{dI(L_P)}{dt} = L_P \frac{\Delta I_P}{\Delta t}$$

$$\Delta B = \frac{L_P \bullet I_P}{N_P \bullet A_e}$$

$$\Delta B/B1 = \Delta I_{P1}$$

$$\Delta B_{B2} = \Delta B_{B_{max}} = \Delta I_{P}/I_{P}$$

 B_{max}

All rights are reserved by Tamura Corporation of China

CCM反激电源的变压器设计特点

DCM反激电源的变压器设计特点

MOS耐压

DCM反激电源的变压器设计特点

任何状态下

- 1)不能饱和 2)损耗(温升)OK

Np与磁芯选取

法拉第定理

Tamura Power Supply & Magnetic Technology

影响电压/电流应力的分布参数

实例:24V/35W 反激电源主电路

实例: 24V/35W 70KHz固定频率设计

基本要求

输入电压:85~264Vac

输出电压: 24V±15% 35Wmax

工作频率:70KHz MOS耐压:600V 整流管耐压:150V

电源效率:88%@100~240Vac

铁氧体磁芯: EER28 PC40

安规距离:5.5mm

0.55	0-0 3.4
ø9.9±0.25	21.2-0
9.65±0.25 14.0±0.2	11.4±0.25 5

C ₁	mm ⁻¹	0.78
Qе	mm	64.0
Ae	mm ²	82.1
Ve	mm ³	5250
Acp	mm ²	77.0
Acp min.	mm ²	73.1
Acw	mm ²	114
	g	28

Tamura Power Supply & Magnetic Technology

实例: 24V/35W 70KHz固定频率设计

现场计算演示

计算软件 21dianyuan.com提供免费下载

Frequency	Output Powe	er	Rectify Diod	е		Core Infoma	tion		Winding Turns				
(KH ₂)	Vo	Ю	VF	VF VR		Material	Size	Ae(mm²)	Ve(mm³)	Rth(*C/W)	Np	Ns	Lр
70	24.0V	1.46A	0.65V	150.0V	20%	PC40	EER28	82.1	5250	22.9	39T	9T	500uH

Input Volat	Input Volatge Range					iting Ratio	Tranformer Turns Trying Info.							
CL.Point	Minimum	Rating	Max.Rating	Maximum	FET(600V)	Diode	Turn Ratio	Np	15T	16T	17T	18T	19T	
HoldupTime	e 85Vac	100Vac	240Vac	264Vac	92%	85%	Np:Ns	Ns	4T	4T	4T	4T	4T	
50V	100V	120V	339V	373V	552.2V	127.5V	4.333:1	Err.Range	13%	8%	2%	4%	10%	

DC Input	Donto	т	T Diada	Working Conditions in Core				Bobbin	FER28	-PB20	Others			
DC Input	Duty T_on	T_Diode_on	Bmax		ΔΒ	Ploss_Core	MarginTape	Pin Side	5.5mm	Period	Ls	AL (nH/N²)	Gap (mm)	
50V	68.12%	9.73us	4.55us		0.241T	0.152T	0.11W	Margiri Lape	Wing Side	3.0mm	14.29us	26.63uH	329	0.62
100V	50.16%	7.17us	6.71us		0.224T	0.224T	0.30W	Wind Space	8.0 mm					
120V	41.80%	5.97us	6.71us		0.224T	0.224T	0.30W	Windings	Total Lays	Wire Para.	Occupation	Мах. Ф		WirePick
339V	14.78%	2.11us	6.71us		0.224T	0.224T	0.30W	P_Wire	6 Layers	1 para.	1.0 Np	φ 0.200	\rightarrow	0.16U-2
373V	13.44%	1.92us	6.71us		0.224T	0.224T	0.30W	S_Wire	2 Layers	1 para.	1.0 Np	φ 0.800	\rightarrow	0.65U-2

DC Input	Working Cor	idition On Pr	imary Coil					Working Condition On Secondary Coil						
	I 1	I2	ΔI	Ide	Iac	Irms	Cur.Density	I1	I2	VΙ	Iac(Ripple)	Irms	Cur.Density	
50V	0.57A	1.54A	0.97A	0.72A	0.54A	0.90A	7.47A/mm2	6.68A	2.47A	4.22A	2.24A	2.67A	4.03A/mm2	
100V	0.00A	1.43A	1.43A	0.36A	0.46A	0.59A	4.86A/mm2	6.21A	0.00A	6.21A	1.98A	2.46A	3.70A/mm2	
120V	0.00A	1.43A	1.43A	0.30A	0.44A	0.54A	4.43A/mm2	6.21A	0.00A	6.21A	1.98A	2.46A	3.70A/mm2	
339V	0.00A	1.43A	1.43A	0.11A	0.30A	0.32A	2.64A/mm2	6.21A	0.00A	6.21A	1.98A	2.46A	3.70A/mm2	
373V	0.00A	1.43A	1.43A	0.10A	0.29A	0.30A	2.51A/mm2	6.21A	0.00A	6.21A	1.98A	2.46A	3.70A/mm2	

声明:本计算软件可供学习者免费使用,版权为著者邵革良所有,禁止任何形式商业传播

田村(中国)企业管理有限公司 上海技术研发中心

All rights are reserved by Tamura Corporation of China

实例: 24V/35W 70KHz固定频率设计

变压器绕制

实例: 24V/35W 70KHz固定频率设计

实际工作波形

85Vac 24V/35W满载

264Vac 24V/35W满载

Change the World (Q&A)

Thank you!