

第三章 集合与矩阵

课程QQ号: 819392514

金耀 软件工程系

fool1025@163.com

13857104418

谓词逻辑推理方法

❖ 谓词是命题的扩张,首先运用谓词公式中的量词消去规则,使之转化为命题公式,然后用命题公式的推理规则进行推理,最后再将量词添加上去。

谓词逻辑特有的推理规则

- ❖全称实例 (Universal Instantiation, UI) $\forall x P(x) \Rightarrow P(c)$
- ❖全称推广(Universal Generalization, UG) $P(c), 任意c \Rightarrow \forall x P(x)$

- ❖ 存在实例 (Existential Instantiation, EI) $\exists x P(x) \Rightarrow P(c)$, 对某个元素c
- Arr本権广(Existential Generalization, EG) P(c), 対某个元素 $c \Rightarrow \exists x P(x)$

注意要点

❖不能在量词的作用域内使用等价式和蕴含式

错例
$$(\forall x)(\mathbf{P}(x) \to \mathbf{Q}(x)) \Leftrightarrow (\forall x)(\neg \mathbf{P}(x) \vee \mathbf{Q}(x))$$

◆在同一证明中, 若既要使用存在实例, 又要使用全 称实例, 则先用存在实例, 后用全称实例。

例: 论域: 我们班学生

A(x): x是大学生, B(x):x是女生

 $(\forall x) A(x) (\exists x) B(x)$

第三章 集合与矩阵

- 3.1 集合
- 3.2 矩阵

§1集合

本讲主要内容

- ■基本概念
- ■集合间关系
- ■集合运算
- ■集合证明

集合定义与表示

集合 没有精确的数学定义.

理解:一些离散个体组成的全体.

组成集合的个体称为它的元素或成员集合的表示.

定义:有限个元素构成的集合为有限集合。其中集合包含元素的个数称为集合的基,记作|A|。无限个元素构成的集合为无限集合。

集合定义与表示

集合表示法:

- ❖列拳法 $A=\{a,b,c,d\}$
- ◆描述法 B={ x / P(x) }

B 由使得 P(x) 为真的 x 构成

- ◇定义:集合的基为零时,该集合称为空集合,记为∅.
- \Leftrightarrow 定义: 考虑的所有对象构成的集合称为全集。记为E.

常用数集

N, Z(Zahlen), Q(Quotient), R, C 分别表示自然数、整数、有理数、实数和复数集合,注意 0 是自然数.

集合与元素

元素与集合的关系: 隶属关系

属于∈,不属于 ∉

实例

 $A = \{ x \mid x \in \mathbb{R} \land x^2 - 1 = 0 \}, A = \{-1, 1\}$

 $1 \in A, 2 \notin A$

注意:对于任何集合A和元素x(可以是集合),

 $x \in A$ 和 $x \notin A$ 两者成立其一,且仅成立其一。

隶属关系的层次结构

例 3.1

$$A = \{ a, \{b,c\}, d, \{\{d\}\} \}$$

 $b \not\in A$

$$\{\{d\}\}\in A$$

 $\{d\} \not\in A$

 $d \in A$

集合之间的关系

包含 (子集)
$$A \subseteq B \Leftrightarrow \forall x (x \in A \to x \in B)$$

不包含
$$A \nsubseteq B \Leftrightarrow \exists x (x \in A \land x \notin B)$$

相等
$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

不相等
$$A \neq B$$

其包含
$$A \subset B \Leftrightarrow A \subseteq B \land A \neq B$$

不真包含
$$A \not\subset B$$

思考: ≠和⊄的定义

注意∈和□是不同层次的问题

空集与全集

定理 空集是任何集合的子集.

$$\varnothing \subseteq A \Leftrightarrow \forall x \ (x \in \varnothing \to x \in A) \Leftrightarrow T$$

推论 空集是唯一的.

证:假设存在 \emptyset_1 和 \emptyset_2 ,则 \emptyset_1 \subseteq \emptyset_2 且 \emptyset_2 \subseteq \emptyset_1 ,因此 \emptyset_1 = \emptyset_2

全 E

相对性

在给定问题中,全集包含任何集合,即 $\forall A \ (A \subseteq E)$

幂集

定义
$$P(A) = \{x \mid x \subseteq A\}$$

实例

$$P(\emptyset) = \{\emptyset\}$$
 $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\}$
 $P(\{1, \{2,3\}\}) = \{\emptyset, \{1\}, \{\{2,3\}\}, \{1, \{2,3\}\}\}\}$

计数

如果
$$|A|=n$$
,则 $|P(A)|=2^n$

集合的基本运算

❖集合基本运算的定义

- ◆ 文氏图 (John Venn)
- ❖例题
- ◇ 集合运算的算律
- ❖集合包含或恒等式的证明

集合基本运算的定义

$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

相对补
$$A-B = \{x \mid x \in A \land x \notin B \}$$

对称差
$$A \oplus B = (A-B) \cup (B-A)$$

$$= (A \cup B) - (A \cap B)$$

$$\sim A = E - A$$

文氏图表示

关于运算的说明

- ◇运算顺序: ~和幂集优先. 其他由括号确定
- ◆并和交运算可以推广到有穷个集合上。即

$$A_1 \cup A_2 \cup \dots A_n = \{x \mid x \in A_1 \lor x \in A_2 \lor \dots \lor x \in A_n\}$$

$$A_1 \cap A_2 \cap \dots A_n = \{x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n\}$$

❖某些重要结果

$$\emptyset \subseteq A - B \subseteq A$$

$$A \subseteq B \Leftrightarrow A - B = \emptyset$$
(后面证明)

$$A \cap B = \emptyset \Leftrightarrow A - B = A$$

关于运算的说明

- ❖运算顺序: ~和幂集优先, 其他由括号确定
- ♦并和交运算可以推广到有穷个集合上。即

$$A_1 \cup A_2 \cup ... A_n = \{x \mid x \in A_1 \lor x \in A_2 \lor ... \lor x \in A_n\}$$

$$A_1 \cap A_2 \cap \dots A_n = \{x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n\}$$

◆某些重要结果

$$\emptyset \subseteq A - B \subseteq A$$

$$A\subseteq B \Leftrightarrow A-B=\emptyset$$
(后面证明)

$$A \cap B = \emptyset \Leftrightarrow A - B = A$$

例

设
$$A_i = [0,1/i)$$
, $B_i = (0,i)$, $i=1,2,\ldots$,则

$$\bigcup_{i=1}^{n} A_i = [0,1) \qquad \qquad \bigcup_{i=1}^{\infty} A_i = [0,1)$$

$$\bigcap_{i=1}^{n} A_i = [0,1/n) \qquad \qquad \bigcap_{i=1}^{\infty} A_i = \{0\}$$

$$\bigcup_{i=1}^{n} B_i = (0,n) \qquad \qquad \bigcup_{i=1}^{\infty} B_i = (0,+\infty)$$

$$\bigcap_{i=1}^{n} B_i = (0,1) \qquad \qquad \bigcap_{i=1}^{\infty} B_i = (0,1)$$

例1

F: -年级大学生的集合 S: -年级大学生的集合

R: 计算机系学生的集合 M: 数学系学生的集合

T: 选修离散数学的学生的集合

L: 爱好文学学生的集合 P: 爱好体育运动学生的集合

所有计算机系二年级学生都选修离散数学

数学系一年级的学生都没有选修离散数学

数学系学生或爱好文学或爱好体育运动

只有一、二年级的学生才爱好体育运动

除去数学和计算机系二年级学生外都不 选修离散数学 $T\subseteq (M\cup R)\cap S$

 $R {\cap} S \subseteq \!\! T$

 $(M \cap F) \cap T = \emptyset$

 $M \subseteq L \cup P$

 $P \subseteq F \cup S$

 $S-(M\cup R)\subseteq P$

例2

分别对条件(1)到(5),确定X集合与下述那些集合相等。

$$S_1 = \{ 1, 2, ..., 8, 9 \}, S_2 = \{ 2, 4, 6, 8 \}, S_3 = \{ 1, 3, 5, 7, 9 \},$$

 $S_4 = \{ 3, 4, 5 \}, S_5 = \{ 3, 5 \}$

- (1) 若 $X \cap S_3 = \emptyset$,则 $X = S_2$
- (2) 若 $X\subseteq S_4$, $X\cap S_2=\emptyset$, 则 $X=S_5$
- (3) 若 $X\subseteq S_1$, $X \subsetneq S_3$, 则 $X = S_1$, S_2 , S_4
- (4) 若 $X-S_3=\emptyset$,则 $X=S_3$, S_5
- (5) 若 $X\subseteq S_3$, $X \nsubseteq S_1$, 则 $X 与 S_1, ..., S_5$ 都不等

集合运算的算律

	J	\cap	⊕
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \oplus B) \oplus C = A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	

	し与へ	○与⊕
分配	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
吸收	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	

吸收律的前提: 〇、〇可交换

集合运算的算律(续)

	_	~
D.M 律	$A - (B \cup C) = (A - B) \cap (A - C)$	$\sim (B \cup C) = \sim B \cap \sim C$
	$A - (B \cap C) = (A - B) \cup (A - C)$	$\sim (B \cap C) = \sim B \cup \sim C$
双重否定		~~A=A

	Ø	$oldsymbol{E}$
补元律	$A \cap \sim A = \varnothing$	$A \cup \sim A = E$
零律	$A \cap \varnothing = \varnothing$	$A \cup E = E$
同一律	$A \cup \varnothing = A$	$A \cap E = A$
否定	~Ø=E	~E=Ø

集合包含或相等的证明方法

- **◇ 证明** $X \subseteq Y$
 - ■命题演算法
 - ■包含传递法
 - 反证法
 - ■并交运算法

- ❖ 证明 X=Y
 - ■命题演算法
 - ■等式代入法
 - 反证法

以上的 X, Y 代表集合公式

第一种方法: 命题演算法证 $X \subseteq Y$

任取
$$x$$
, $x \in X \Rightarrow ... \Rightarrow x \in Y$

例3 证明 $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$

任取 x

$$x \in P(A) \Rightarrow x \subseteq A \Rightarrow x \subseteq B \Rightarrow x \in P(B)$$
任取 x

$$x \in A \Rightarrow \{x\} \subseteq A \Rightarrow \{x\} \in P(A) \Rightarrow \{x\} \in P(B)$$

$$\Rightarrow \{x\} \subseteq B \Rightarrow x \in B$$

第二种方法:包含传递法证 X⊆Y

找到集合T 满足 $X \subseteq T$ 且 $T \subseteq Y$,从而有: $X \subseteq Y$

例
$$A-B \subseteq A \cup B$$

证 $A-B \subseteq A$
 $A \subseteq A \cup B$
所以 $A-B \subseteq A \cup B$

第三种方法: 反证法证 $X \subseteq Y$

欲证 $X \subseteq Y$,假设命题不成立,必存在x 使得 $x \in X$ 且 $x \notin Y$. 然后推出矛盾.

例6 证明 $A \subseteq \mathbb{C} \land B \subseteq \mathbb{C} \Rightarrow A \cup B \subseteq \mathbb{C}$

证 假设 $A \cup B \subseteq C$ 不成立,

则 $\exists x \ (x \in A \cup B \land x \notin C)$

因此 $x \in A$ 或 $x \in B$, 且 $x \notin C$

若 $x \in A$, 则与 $A \subseteq C$ 矛盾;

若 $x \in B$, 则与 $B \subseteq C$ 矛盾.

第四种方法:利用已知包含式并交运算

由已知包含式通过运算产生新的包含式

$$X \subseteq Y \Rightarrow X \cap Z \subseteq Y \cap Z, X \cup Z \subseteq Y \cup Z$$

例7 证明 $A \cap C \subseteq B \cap C \land A - C \subseteq B - C \Rightarrow A \subseteq B$ 证 $A \cap C \subseteq B \cap C$, $A - C \subseteq B - C$

上式两边求并, 得:

$$(A \cap C) \cup (A - C) \subseteq (B \cap C) \cup (B - C)$$

- $\Rightarrow (A \cap C) \cup (A \cap {\sim}C) \subseteq (B \cap C) \cup (B \cap {\sim}C)$
- $\Rightarrow A \cap (C \cup \sim C) \subseteq B \cap (C \cup \sim C)$
- $\Rightarrow A \cap E \subseteq B \cap E$
- $\Rightarrow A \subseteq B$

第一种方法: 命题演算法证明X=Y

任取
$$x$$
, $x \in X \Rightarrow ... \Rightarrow x \in Y$ $x \in Y \Rightarrow ... \Rightarrow x \in X$ 或者 $x \in X \Leftrightarrow ... \Leftrightarrow x \in Y$

例
$$8$$
 证明 $A \cup (A \cap B) = A$ (吸收律)

证 任取x,

$$x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor x \in A \cap B$$

$$\Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A$$

第二种方法: 等式代入证明X=Y

不断利用集合等值式进行代入化简, 最终得到两边相等.

例9 证明 $A \cup (A \cap B) = A$ (吸收律)

证 (假设交换律、分配律、同一律、零律成立)

$$A \cup (A \cap B)$$

$$=(A \cap E) \cup (A \cap B)$$
 同一律

$$=A\cap (E\cup B)$$
 分配律

$$=A\cap (B\cup E)$$
 交換律

第三种方法: 反证法证明X=Y

假设 X=Y 不成立,则存在 x 使得 $x \in X$ 且 $x \notin Y$,或者存在 x 使得 $x \in Y$ 且 $x \notin X$,然后推出矛盾。

例10 证明以下等价条件

$$A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$$

(1)

(2)

(3)

(4)

证明顺序:

$$(1) \Rightarrow (2), (2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (1)$$

第三种方法: 反证法证明X=Y

$$(1) \Rightarrow (2) \quad A \subseteq B \Leftrightarrow A \cup B = B$$

显然 $B \subseteq A \cup B$,下面证明 $A \cup B \subseteq B$.

任取X,

$$x \in A \cup B \Leftrightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Leftrightarrow x \in B$$

因此有 $A \cup B \subseteq B$. 综合上述 (2) 得证.

$$(2) \Rightarrow (3)$$
 $A \cup B = B \Leftrightarrow A \cap B = A$

$$A = A \cap (A \cup B) \Rightarrow A = A \cap B$$

 $(将A \cup B 用 B 代入)$

第三种方法: 反证法证明X=Y

$$(3) \Rightarrow (4) \quad A \cap B = A \Leftrightarrow A - B = \emptyset$$

假设 $A-B\neq\emptyset$,即 $\exists x\in A-B$,那么 $x\in A$ 且 $x\notin B$. 而

$$x \notin B \Rightarrow x \notin A \cap B$$
.

从而与 $A \cap B = A$ 矛盾。

$$(4) \Rightarrow (1) \quad A - B = \emptyset \Rightarrow A \subseteq B$$

假设 $A\subseteq B$ 不成立,那么

$$\exists x (x \in A \land x \notin B) \Rightarrow x \in A - B \Rightarrow A - B \neq \emptyset$$

与条件(4)矛盾。

习题(证明)

$$(A \cup B) \oplus (A \cup C) = (B \oplus C) - A$$

$$(A \oplus B) = A \cup B - A \cap B$$

三次数学危机

 \Rightarrow 第一次: $\sqrt{2}$ 不能表示为两个整数比

❖ 第二次: 贝克莱悖论

❖第三次: 罗素的集合悖论

第一次数学危机(无理数)

- ❖古希腊的欧多克索斯用几何方法部分解决该危机
- ❖19世纪实数理论的建立才彻底解决了该危机

第二次数学危机(牛顿的无穷小量)

◇ 瞬時速度:
$$\frac{\Delta S}{\Delta t} = gt_0 + \frac{1}{2}g(\Delta t)$$

■ $\Delta S = S(t_1) - S(t_0) = \frac{1}{2}gt_1^2 - \frac{1}{2}gt_0^2$

$$= \frac{1}{2}g[(t_0 + \Delta t)^2 - t_0^2] = \frac{1}{2}g[2t_0\Delta t + (\Delta t)^2]$$

贝克莱大主教: "无穷小"作为一个量。究竟是不是()?

如果是0,上式左端当 Δt 成无穷小后分母为0,就没有意义了。如果不是0,上式右端的 $\frac{1}{2}g(\Delta t)$ 就不能任意去掉。

第二次数学危机的解决

- ◆ 第二次数学危机的核心是微积分的基础不稳固。
- ❖ 柯西:将微积分建立在极限论的基础上。
- ❖魏尔斯特拉斯:逻辑地构造了实数系,建立严格的实数理论,使之成为 极限理论的基础。
- ❖ 建立数学分析(或者说微积分)基础的逻辑顺序与历史顺序正好相反。

实数理论 一极限理论 一微积分

第三次数学危机(集合论)

❖罗素悖论(理发师悖论):某村的一个理发师宣称,他给且只给村里自己不给自己刮脸的人刮脸。问:理发师是否给自己刮脸?

如果他给自己刮脸,他就属于自己给自己刮脸的人,按宣称的原则,理发师不应该给他自己刮脸,这与假设矛盾。如果他不给自己刮脸,他就属于自己不给自己刮脸的,按宣称的原则,理发师应该给他自己刮脸。这又与假设矛盾。

集合论——数学的基础

- ❖19世纪, 数学从各方面走向成熟, 人们开始思考: 整个数学的基础 在哪里?
- ❖19世纪末,集合论出现,被人们认定为数学的基础
 - 算术: 整数、分数组成的集合
 - 微积分: 函数组成的集合
 - ■几何:点、线、面组成的集合

朴素 (康托)集合论

- ❖满足某条性质的个体放在一起组成"集合"。
- ⇔定义了基数,可数集合等概念
- ❖若一个集合能够和它的子集构成——对应,则 它是无穷的。
- ❖连续统假说

康托(1845.3.3-1918.1.6) 德国数学家

用集合论建立算术基础

- ◇老子日: 道生一、一生二、二生三, 三生万物。
- ❖ 弗雷格从空集出发,用集合及集合等价的概念, 定义了全部非负整数:用空集定义0,用0定义1, 用0,1定义2,...

全部数学都归结为算术

弗雷格(1848-1925) 德国数学家、哲学家、逻辑学家

罗素的集合悖论

- ◇设集合R是一切不属于自身的集合 (即不含自身作 为元素的集合) 所组成, R是否包含于R?
- ❖弗雷格:一个科学家最大的悲哀莫过于,当他的工作完成时,基础崩塌了。当这本书即将印刷时,罗索先生的一封信就使我陷入这样的尴尬境地。

伯特兰·罗素(1872-1970) 英国哲学家、数学家、逻辑学家

第三次数学危机的消除(公理集合论)

- ❖1908年,策梅洛提出了由7条公理组成的集合论体系, 称为Z-系统。
- ❖1922年, 弗兰克又加进一条公理, 还把公理用符号逻辑表示出来, 形成了集合论的ZF-系统。再后来, 还有改进的ZFC-系统。

策梅洛(1871~1953) 德国数学家

§2矩阵

本讲主要内容

- ■基本概念
- ■矩阵运算

§ 2 矩阵

定义:矩阵是一个方形数表. 具有m行和n列的数表称为 $m \times n$ 矩阵.

- ❖具有相同行数和列数的矩阵是方阵.
- ◇两个矩阵相等当且仅当它们矩阵尺寸相同且对应元素相等.

 $3 \times 2 \text{ matrix}$ $\begin{bmatrix}
1 & 1 \\
0 & 2 \\
1 & 3
\end{bmatrix}$

§2矩阵

$$m{x}$$
加知時
 $m{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \ddots & & \ddots & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$

❖矩阵A的第i行是 $1 \times n$ 矩阵 $[a_{i1}, a_{i2}, ..., a_{in}]$. 第j列是一个 $m \times 1$ 矩阵: $\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{n-1} \end{bmatrix}$

第(i,j)元素表示为 a_{ii} 我们可以用 $A=[a_{ii}]$ 简记矩阵A。

矩阵加法

定义: 矩阵 $A=[a_{ij}]$ 和 $B=[b_{ij}]$ 是 $m \times n$. 矩阵A和B的和,记为A+B,是

一个 $m \times n$ 矩阵,且第(i,j)元素值为 $a_{ij} + b_{ij}$ 。即 $,A + B = [a_{ij} + b_{ij}]$ 。

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}$$

注意: 尺寸相同的矩阵才可做加法运算。

矩阵乘法

定义: A 是 $n \times k$ 矩阵 , B 是 $k \times n$ 矩阵. A 与B的乘积 , 记为 $A \times B$, 是一个 $m \times n$ 矩阵且第(i,j)元素为A矩阵第i行和B矩阵第j对应元素乘积和.

$$\begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 4 \\ 8 & 9 \\ 7 & 13 \\ 8 & 2 \end{bmatrix}$$

注意: A矩阵的列数和B矩阵的行数相等, 两矩阵才能相乘.

矩阵及其乘法运

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & a_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} b_{11} & a_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix}$$

$$\mathbf{AB} = egin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \ c_{21} & c_{22} & \dots & c_{2n} \ & \ddots & & \ddots & & \ddots \ & \ddots & & c_{ij} & \ddots & & \ddots \ & \ddots & & \ddots & & \ddots \ & c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

矩阵乘法不满足交换律

读
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$
 和 $\mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, 求 $AB = BA$?

解:

$$\mathbf{AB} = \begin{bmatrix} 2 & 2 \\ 5 & 3 \end{bmatrix} \qquad \mathbf{BA} = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$$

$$\mathbf{B}\mathbf{A} = \left[egin{array}{ccc} 4 & 3 \ 3 & 2 \end{array}
ight]$$

所以: $AB \neq BA$

单位矩阵及其幂运算

定义: 单位矩阵是一个 $m\times n$ 矩阵,记为 $I_n=[\delta_{ij}]$,这里 $\delta_{ij}=1$ 当 i=j 且 $\delta_{ij}=0$ 当 $i\neq j$.

$$\mathbf{I_n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

如果A是 $m \times n$ 矩阵.

$$AI_n = I_m A = A$$

当A 是 $n \times n$ 方阵,则:

$$A^0 = I_n$$
 $A^r = AAA \cdots A$

矩阵的转置

定义: 如果 $A = [a_{ij}]$ 是 $m \times n$ 矩阵. A的转置, 记为 A^t ,是 $n \times m$ 矩阵且需要矩阵 A的行列互换.

当 $A^t = [b_{ij}]$,那么 $b_{ij} = a_{ji}$ 对于所有行i = 1, 2, ..., n和列j = 1, 2, ..., m.

0-1矩阵

定义: 当矩阵的所有元素值为()或1, 则该矩阵为()-1矩阵。

布尔算术运算:

$$b_1 \wedge b_2 = \begin{cases} 1 & \text{if } b_1 = b_2 = 1\\ 0 & \text{otherwise} \end{cases}$$

$$b_1 \lor b_2 = \begin{cases} 1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise} \end{cases}$$

关系矩阵的乘法

$$+ \rightarrow \vee$$

$$** \rightarrow \land$$

0-1矩阵

定义: $A=[a_{ij}]$ 和 $B=[b_{ij}]$ 是 $m\times n$ 的0-1矩阵:

- A和B的并为对应位置元素的布尔并运算,
 - 即 $a_{ij} \vee b_{ij}$. A和B的并,记为 $A \vee B$.
- $\blacksquare A \rightarrow B$ 的交为对应元素的布尔交运算,
 - 即 $a_{ij} \wedge b_{ij}$. A 和 B 的交,记为 $A \wedge B$.

0-1矩阵的交与并

$$\mathbf{A} = \left[egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight], \qquad \mathbf{B} = \left[egin{array}{ccc} 0 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight].$$

A和B的并:

$$\mathbf{A} \vee \mathbf{B} = \left[\begin{array}{ccc} 1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\ 0 \vee 1 & 1 \vee 1 & 0 \vee 0 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

A和B的交:

$$\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

0-1矩阵的布尔积运算

定义: $A=[a_{ij}]$ 是 $m\times k$ 的0-1矩阵, $B=[b_{ij}]$ 是 $k\times n$ 的 0-1。A和B的亦尔积,记为 $A\odot B$,是一个 $m\times n$ 的0-1矩阵且(i,j)为:

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \ldots \vee (a_{ik} \wedge b_{kj}).$$

计算A 和 B的 布尔积:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

0-1矩阵的布尔积运算

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\ (0 \land 1) \lor (1 \land 0) & (0 \land 1) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \\ (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \\ 0 \lor 0 & 0 \lor 1 & 0 \lor 1 \\ 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

0-1矩阵的布尔幂运算

定义: A 是0-1的布尔方阵. A的r次幂,记为 $A^{[r]}$.

$$\mathbf{A}^{[r]} = \underbrace{\mathbf{A} \odot \mathbf{A} \odot ... \odot \mathbf{A}}_{r \text{ times}}.$$

0-1矩阵的布尔幂运算

设A=
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix},$$
 计算 A^n .

$$\mathbf{A} = \left[egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}
ight].$$

$$\mathbf{A}^{[2]} = \mathbf{A} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad \mathbf{A}^{[3]} = \mathbf{A}^{[2]} \odot \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{A}^{[4]} = \mathbf{A}^{[3]} \odot \mathbf{A} = \left[egin{array}{ccc} 1 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{array}
ight]$$

$$\mathbf{A}^{[5]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \mathbf{A}^{[\mathbf{n}]} = \mathbf{A}^{\mathbf{5}} \quad \text{for all positive integers } n \text{ with } n \ge 5.$$

集合的基数与有穷集合(*)

集合A 的基数: 集合A中的元素数, 记作 cardA 有穷集A: cardA=|A|=n, n为自然数.

有穷集的实例:

$$A = \{ a, b, c \}, \text{ card} A = |A| = 3;$$

 $B = \{ x \mid x^2 + 1 = 0, x \in R \}, \text{ card} B = |B| = 0$

无穷集的实例:

N, Z, Q, R, C 等

集合的基数

$$A = \{0,1,2,3,...,10\}$$

$$B = \{0,2,4,6,8,10\}$$

$$A$$
, $|B| \leq |A|$

$$N=\{0,1,2,3,...\}$$

集合的对等

伽利略的问题:

全体自然数多,还是完全平方数多?

康托尔的回答:

失定义什么是"一样多"?

如果两个集合A、B的元素间能建立一个一对一的对应关系,就说A和B的元素一样多,或者说A和B有相同的势,也说A和B对等。

集合对等

定义

设A, B是两个集合,若存在一个A到B的双射,则称集合A和B对等,记为 $A\sim B$ 。

例:自然数集合N与其中的所有偶数组成的集合E对等。

例: (0,1) ~ R

 $f:(0,1) \to R, f(x) = \tan(x-1/2)\pi$

希尔伯特无限旅馆

- ❖1. 客满后又来了1位客人
- ❖2. 客满后又来了一个旅游团,旅游团中有无穷个人
- ❖3. 客满后又来了一万个旅游团,每个团中都有无穷个客人
- ❖4. 客满后又来了无穷个旅游团,每个团中都有无穷个客人

无限与有限的区别和联系

- ❖在无限集中, 部分可以等于全体, 而在有限集中, 部分总是小于全体。
- ◆有限时成立的许多命题,对无限不再成立(实数的加法结合律)。
- ❖用"数学归纳法"和"极限"方法可建立两者之间的联系。

例: 证明 N~N×N

证明:按如下方式建立一个N与 $N \times N$ 的一一对应:

$$(0,0)$$
 $(0,1)$ $(0,2)$ $(0,3)$... $(1,0)$ $(1,1)$ $(1,2)$ $(1,3)$... $(2,0)$ $(2,1)$ $(2,2)$ $(2,3)$... $(3,0)$ $(3,1)$ $(3,2)$ $(3,3)$...

习题

- *****课后: 3.2, 3.5, 3.9, 3.12
- ❖答题派:如右图

一、简答题

- 1.3.9 $S_1 = \emptyset, S_2 = \{\emptyset\}, S_3 = P(\{\emptyset\}), S_4 = P(\emptyset),$ 判断以下命题的真假。
- (1) $S_2 \in S_4$.
- (2) $S_1 \subseteq S_3$.
- (3) $S_4 \subseteq S_2$.
- (4) $S_4 \in S_3$.
- (5) $S_2 = S_1$.
- 2.3.15 请用文氏图表示以下集合。
- (1) $\sim A \cup (B \cap C)$.
- (2) $(A \oplus B) C$.
- (3) $(A \cap \sim B) \cup (C B)$.
- (4) $A \cup (C \cap \sim B)$.
- 3. 证明:
- $1. (A \cup B) \oplus (A \cup C) = (B \oplus C) A$
- $2. A \oplus B = (A \cup B) (A \cap B)$
- 4.3.16设A、B、C代表任意集合,判断以下等式是否恒真,如果不是,请举一反例。
- (1) $(A \cup B) C = (A C) \cup (B C)$.
- (2) $A (B C) = (A B) \cup (A \cap C)$.
- (3) $A (B \cup C) = (A B) C$.
- (4) $(A \cup B \cup C) (A \cup B) = C$.
- (5) $(A \cup B) (B \cup C) = A C$.
- (6) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$.