

Server Administration

SERVER & DATACENTER VIRTUALISATION

CONCEPT

Server virtualization

Hardware virtualization or platform virtualization refers to the creation of a virtual machine that

acts like a real computer

with an operating system.

Software executed on these virtual machines is separated from the underlying hardware resources.

Vergelijk met een fysische machine

	Fysisch	Virtueel
Opslag	Harde schijf	Virtuele harde schijf in bestand (.vmdk, .vhdx,)
Rekenkracht	Processor	Virtuele CPU
Netwerk	Netwerkkaart (NIC)	vNIC, vSwitch

Virtualisation eco-system

Public/private /hybrid laaS Cloud Datacenter virtualisation Server virtualisation

- Een virtueel datacenter kan gevormd worden door meerdere Virtuele machines te combineren
- Door meerdere Virtuele
 datacenters te verbinden kan
 een publieke/private/hybride
 cloud gevormd worden

Vormen van server virtualisatie

Type-2 server virtualisatie

Voorbeelden: vmware workstation, virtualbox, ...

Probleem:

Het host besturingssysteem gebruikt kernel mode om het OS te beschermen

- Systeemoproepen (privileged instructions) genereren interrupts om over te gaan naar kernel mode In kernel mode kunnen gevoelige/gevaarlijke instructies uitgevoerd worden door de kernel (I/O, MMU control, ...).
- VM werkt in user mode: er kan niet overgegaan worden naar kernel mode en deze gevoelige instructies kunnen hier dus niet uitgevoerd worden

Type-2 server virtualisatie

Oplossing:

- Zonder ondersteuning voor CPU virtualisatie (legacy)
 - Gevoelige instructies worden geëmuleerd
 - Met lagere performantie tot gevolg
- Op nieuwere CPU's kan CPU virtualisatie aangezet worden
 - Met nieuwe instructies kan ook de VM interrupts genereren
 - Ook de gevoelige instructies van de VM kunnen nu sneller verwerkt worden

Type-1 server virtualisatie

Voorbeelden: vmware ESXi, Hyper-V, KVM, Xen

- = "bare metal virtualization"
- = "server virtualization"
- = "full virtualization"

 beperkt hypervisor OS (ordegrootte van megabytes)

VM 2 VM 1 Toepassingen Toepassingen **Guest OS Guest OS** Type-1 Hypervisor Hardware

Hypervisor technieken

Full virtualization

- VM is unaware of its virtualized state
- Geen speciale drivers, ...

Emulation

- All instructions are translated
- low performance

Para-virtualization

- guest OS is aware of its virtualized drivers
- special drivers, ..

WAAROM VIRTUALISATIE?

Strategische voordelen van een gevirtualiseerd datacenter

- Management
 - 1 interface om alle VM's te beheren
 - snelle provisioning van nieuwe VM's
- Availability
 - betere SLA's mogelijk (=service level agreements)
 - Flexibelere herstelmogelijkheden
- Scalability
 - Hogere VM dichtheid mogelijk (gemakkelijk meerdere VM's op beperktere hardware)
 - Overbezetting van resources (meer toewijzen dan beschikbaar)
- Optimization of resources
 - (Volgende slide)

Technische voordelen van een gevirtualiseerd datacenter

- Geen afhankelijkheden van de hardware (virtuele hardware)
- Gemakkelijke ondersteuning voor verouderde software
- Optimaler gebruik van resources door deze te delen
 - Minder fysische servers nodig
 - Minder koeling nodig
- De eerste bouwsteen om ook andere lagen te virtualiseren:
 - laaS (Infrastructure as a service)
 - Hybride cloud opstellingen
 - ...

Datacenter evolutie

© 2011 Microsoft Corporation

5 fysieke servers

864 GB RAM

• En 27 TB iscsi opslag

1200 VM's

• Enkel mogelijk door een hoge VM dichtheid en gemiddeld zijn maar 15% van de VM's tegelijk actief

Who's who in the cloud

MARKTANALYSE

Marktspelers

(Waar de VM's van in het labo op draaien)

(Productieserver in ons datacecnter met *.ikdoeict.be, cPanel)

Trends

- Ook commerciele hypervisors zijn gratis tegenwoordig
- Management tools zijn dat echter niet
 - VMWARE vCenter
 - Microsoft SCVMM
 - ...
- Management tools maken verbindingen met de (publieke) cloud mogelijk

Requirements for a scalable virtual datacenter

SCALING HARDWARE

Hardware requirements for server-virtualisation

- CPU
 - Hardware assisted virt: AMD-V, Intel VT
- Shared storage
 - No local disks needed
 - NFS or SAN are required for advanced VM operations (vMotion, ...)
- Network
 - Intel VT-c (sr-iov, vmdq)
- Memory
 - Total RAM= \sum (RAM vm's) + RAM hypervisor)
 - Memory mgmt virt: AMD-VI, VT-D

NIC virtualization features

- Virtual Machine Device Queues (VMDq) improve traffic management within the server by offloading traffic sorting and routing from the hypervisor's virtual switch to the Intel® Ethernet Controller. Working in conjunction with VMware NetQueue* or Microsoft Virtual Machine Queues*, VMDQ enables traffic steering and balanced bandwidth allocation across the Intel Ethernet Controller's multiple hardware queues.

Geheugen (RAM) optimalisatie

- Dynamic memory (microsoft) / ballooning (VMWARE)
- Memory deduplication
- Swap to SSD
- Memory compression for least used pages

Gedeelde opslag (storage)

vCenter Server

- NFS
- SAN
 - iSCSI,
 - Fibre Channel,
 - FCoE,
- vSAN (vmware)

De hoeksteen van een geautomatiseerd datacenter

CENTRAL MANAGEMENT

Beheer van meerdere hypervisors

- Single pane of glass for management of hosts, vm's, hardware
- Monitoring
- Resource management
- Security
 (AV, firewall, IDS, ...)

Feature 1: HA (High availability)

Herstart Apps/VM's op andere servers

Feature 2: DPM

 Overtollige servers uitschakelen bij lage bezetting (om stroomverbruik te beperken)

Feature 3: (storage) vMotion

- Move virtual machines LIVE to other hosts or datastores
- Requirements
 - Shared storage
 - Fast (min 1GBit) ethernet
- Process:
 - Copy contents of RAM to destination host
 - Freeze config and continue

Feature 4: DRS

 Verspreiden van de VM's over de beschikbare hosts om de belasting gelijk te verdelen

Feature 5: resource management

Voorzorgsmaatregelen voor als resources overbelast raken: grenzen en reserveringen

- Disk IO
- Memory
- CPU
- Network BW

VIRTUAL NETWORKING

Virtual networking

- VM's zijn verbonden met virtuele switches
- De virtuele switches zijn verbonden met fysieke NIC's
- Ondersteuning voor Traffic shaping, security, teaming, vlans, trunking, cdp, ...

Distributed switches

A distributed virtual switch is an abstract representation of multiple hosts defining the same name, network policy and port

group

Voorbeeld: virtual networking

