Principles of Communication Systems Lab (303 P)

Lab-7 (Angle Modulation and Demodulation)

(Due Date: 19-10-2021, Time: 1 pm)

Instructions:

- 1. NO PLAGIARISM. Your solution must be written in your words.
- 2. Please strictly follow the LaTex template for making lab reports. The template has been uploaded on LMS.
- 3. Please mention legends, axis labels, titles etc in your plot/subplot for better understanding and clarity.
- 4. For best quality, please add .eps format of simulation plot in the report. You can directly export .eps plot from MATLAB.
- 5. The report to be submitted must include MATLAB code and all observations pertaining to each plot below the same.
- 6. Kindly number your answers correctly.
- 7. Please feel free to ask any questions in class or via LMS..

Questions:

- 1. Consider an information signal $m(t) = A_{m_1} \cos(2\pi f_{m_1} t) + A_{m_2} \cos(2\pi f_{m_2} t)$ with $A_{m_1} = 1$ V, $A_{m_2} = 2$ V, $f_{m_1} = 25$ and $f_{m_2} = 50$ Hz, and a carrier signal $c(t) = A_c \cos(2\pi f_c t)$ with $A_c = 2$ V and $f_c = 250$ Hz.
 - (a) Plot m(t) for 3 complete cycles, and plot c(t) over the duration of m(t).
 - (b) Consider frequency sensitivity $k_f = 12.5$ Hz/Volt and plot the frequency modulated signal $\phi_{\rm FM}(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\alpha) d\alpha)$ and its spectrum. Also calculate the bandwidth of the modulated signal.
 - (c) Consider frequency sensitivity $k_f = 100$ Hz/Volt and plot the frequency modulated signal $\phi_{\rm FM}(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\alpha) d\alpha)$ and its spectrum. Also calculate the bandwidth of the modulated signal.
 - (d) Demodulate the frequency modulated signal and plot the demodulated signal (take $k_f = 125 \text{ Hz/Volt}$).

Note: Use inbuilt function 'fmmod' and 'fmdemod' for modulation and demodulation. Take a large no. of samples to get a smooth curve. Plot all the sub-parts in the same plot using subplot.

- 2. Consider an information signal $m(t) = A_{m_1} \cos(2\pi f_{m_1} t) + A_{m_2} \cos(2\pi f_{m_2} t)$ with $A_{m_1} = 1$ V, $A_{m_2} = 2$ V, $f_{m_1} = 25$ and $f_{m_2} = 50$ Hz, and a carrier signal $c(t) = A_c \cos(2\pi f_c t)$ with $A_c = 2$ V and $f_c = 250$ Hz.
 - (a) Plot m(t) for 3 complete cycles, and plot c(t) over the duration of m(t).
 - (b) Consider phase sensitivity $k_p = 0.25$ rad/Volt and plot the phase modulated signal $\phi_{\rm PM}(t) = A_c \cos(2\pi f_c t + k_p m(t))$ and its spectrum. Also calculate the bandwidth of the modulated signal.
 - (c) Consider phase sensitivity $k_p = 2 \text{ rad/Volt}$ and plot the phase modulated signal $\phi_{PM}(t) = A_c \cos(2\pi f_c t + k_p m(t))$ and its spectrum. Also calculate the bandwidth of the modulated signal.
 - (d) Demodulate the phase modulated signal and plot the demodulated signal (take $k_p = 2.5$ rad/Volt).

Note: Use inbuilt function 'pmmod' and 'pmdemod' for modulation and demodulation. Take a large no. of samples to get a smooth curve. Plot all the sub-parts in the same plot using subplot.