Билет 12

Кислоты. Классификация. Получение кислот.

<u>Кислоты</u> — сложные вещества, состоящие из атомов H и кислотного остатка.

<u>Кислоты</u> — электролиты, при диссоциации которых образуются катионы H и анионы кислотного остатка.

Графические (Структурные) формулы кислот

Классификация кислот

- І. По наличию кислорода в кислотном остатке
 - \triangleright Кислородосодержащие H_2SO_4 , HNO_3 , H_2CO_3
 - \triangleright Бескислородные HCl, HI, H_2S
- II. По основности
 - ▶ Одноосновные HCl
 - \triangleright Двухосновные H_2SO_4
 - \triangleright Трехосновные H_3PO_4
 - **>** ...

Многоосновные

III. По силе

- \triangleright Сильные HCl, HI, HBr, H_2SO_4 , HNO_3
- \triangleright Средние H_3PO_4 , HF...
- \triangleright Слабые органические, H_2SO_3 , H_2SiO_3 , H_2S

IV. По устойчивости

- \triangleright Устойчивые H_2SO_4 , H_3PO_4 , HCl
- \triangleright Неустойчивые H_2CO_3 , H_2SiO_3 , H_2SO_3

V. По растворимости в воде

- \triangleright Нерастворимые $H_2 Si O_3$
- Растворимые остальные

VI. По агрегатному состоянию

- \triangleright Твердые $H_2 Si O_3$, $H_3 PO_4$
- ightharpoonup Γ азы H_2S , HCl, HI, HBr без H_2O
- Жидкие остальные

Получение кислот

1. Кислотный оксид + вода

$$SiO_2$$
не реагирует с водой SO_3 + $H_2O \rightarrow H_2SO_4$ N_2O_5 + $H_2O \rightarrow 2$ HNO $_3$ N_2O_3 + $H_2O \rightarrow 2$ HNO $_2$ Mg $_2O_7$ + $H_2O \rightarrow HMgO_4$

$$!!!N^{+4}O_2 + H_2O \rightarrow HN^{+5}O_3 + HN^{+3}O_2$$

+ 4 не характерный (характерные + 1, + 3, + 5)

2. $HeMe + H_2$

$$H_2 + Cl_2 \rightarrow 2 HCl$$

 $H_2 + S \rightarrow H_2 S$

3. <u>Соль + кислота</u>

Реакция обмена идет до конца, если образуется более слабый электролит (осадок, газ или вода) — предпочтительнее газ

(если соль не растворима в воде, то при газе +)

Максимальной вытеснительной силой обладает H_2SO_4

$$\frac{\stackrel{\downarrow}{Na_2SiO_3} + \stackrel{\downarrow}{2HCl} \rightarrow H_2SiO_3 + \stackrel{\downarrow}{2NaCl}}{SiO_3^{2^-} + 2H^+ \rightarrow H_2SiO_3} \stackrel{\downarrow}{\blacktriangleright}$$

По этой реакции легко получаются все неустойчивые кислоты $\stackrel{\downarrow}{\downarrow}$

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 \uparrow H_2O$$

$$CaCO_3 + 2H^+ \rightarrow Ca^{2-} + CO_2 \uparrow H_2O$$