

Transformer architecture

Encoder block

План занятия

- Идея архитектуры Transformer для машинного перевода
- Устройство Transformer Encoder
- Устройство Transformer Decoder
- QKV Attention

В этом видео

- Идея архитектуры Transformer
- Устройство Transformer Encoder
- Устройство Transformer Decoder
- QKV Attention

Недостатки RNN

Encoder на основе RNN очень медленный:

- Forward pass работает медленно, так как обрабатывает входящие токены последовательно;
- Backward pass работает медленно, так как происходит распространение градиентов сквозь время;

У RNN возникают проблемы во время обучения:

- Затухание/взрыв градиентов;
- Плохая утилизация GPU

Недостатки RNN

Нужны ли нам все еще RNN?

Мы использовать RNN для решения задачи машинного перевода, потому что их структура позволяет собирать информацию из входной последовательности и передавать ее декодеру.

Но сейчас у нас есть механизм Attention, который позволяет декодеру в любой момент времени "смотреть" на любую часть исходного предложения.

Идея Transformer

Transformer — архитектура, основа которой — механизм Attention.

У Transformer нет RNN-слоев.

Идея Transformer

Transformer впервые предложили в 2017 году в статье от Google "Attention is all you need"

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

Идея Transformer

У Transformer архитектура тоже имеет тип Encoder-Decoder

Transformer Encoder

Encoder обрабатывает токены входящей последовательности параллельно

Source embeddings

Source input

Слой self-attention вычисляет дополнительную информацию для эмбеддинга каждого токена на основе его контекста (т.е. эмбеддингов всех других токенов)

"Sport is good, it helps a lot"

$$a_1^e = \sum_{i=1}^4 w_{1i} x_i^e$$

Агрегация 0.4 0.55 0.1 0.05

SoftMax

Self-attention $w_{1i} = s(x_1^e, x_i^e)$

Source embeddings

 $x_1^e = x_2^e x_3^e x_4^e$

Source input Guten Morgen

$$a_{2}^{e} = \sum_{i=1}^{4} w_{2i} x_{i}^{e}$$

$$0.25 \quad 0.45 \quad 0.25 \quad 0.05$$

$$w_{11} \quad w_{12} \quad w_{13} \quad w_{14}$$

$$x_{1}^{e} \quad x_{2}^{e} \quad x_{3}^{e} \quad x_{4}^{e}$$

<BOS> Guten Morgen <EOS>

Агрегация

SoftMax

Self-attention

 $w_{2i} = s(x_2^e, x_i^e)$

embeddings

Source

Source

input

$$a_3^e = \sum_{i=1}^4 w_{3i} x_i^e$$
 $A^e_1 = A^e_2 = A^e_3$

Агрегация 0.4 0.5 0.05 0.05

SoftMax

Self-attention $w_{3i} = s(x_2^e, x_i^e)$

Source embeddings

 $x_1^e = x_2^e = x_3^e$

Source embeddings

 $x_1^e = x_2^e = x_3^e$
 $x_2^e = x_3^e = x_4^e$

Source embeddings

Source embeddings

$$a_4^e = \sum_{i=1}^4 w_{4i} x_i^e$$
 $a_2^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_1^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_2^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_1^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_2^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_1^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_2^e = \sum_{i=1}^4 w_{4i} x_i^e$ $a_1^e = \sum_{i=1}^4 w_{4i} x_i^e$

Self-Attention применяется ко всем эмбеддингам параллельно

Слой self-attention вычисляет дополнительную информацию для эмбеддинга каждого токена на основе его контекста

"Sport is good, it helps a lot"

Визуализация весов слоя self-attention

The	The
animal	animal
didn't	didn't
cross	cross
the	the
street	street
because	because
it	it
was	was
too	too
tired	tired

Визуализация весов слоя self-attention

The	The	The	The
animal	animal	animal	animal
didn't	didn't	didn't	didn't
cross	cross	cross	cross
the	the	the	the
street	street	street	street
because	because	because	because
it	it	it	it
was	was	was	was
too	too	too	too
tired	tired	wide	wide

LayerNorm делает так, что выходы слоя всегда будут иметь одинаковые mean и variance.

Это делает обучение сети более стабильным

Layer Norm

Считаем среднее и стандартное отклонение по всем координатам каждого эмбеддинга x^e_i :

$$\mu_i = \frac{1}{emb_size} \sum_{j=1}^{emb_size} x_j^e \qquad \qquad \sigma_i = \sqrt{\frac{1}{emb_size} \sum_{j=1}^{emb_size} (x_j^e - \mu_i)}$$

$$1 \le i \le seq_len$$

Layer Norm

После этого обновляем элементы каждого эмбеддинга x^e_i следующим образом:

$$x_i^e = \frac{x_i^e - \mu_i}{\sigma_i + \epsilon} \cdot \gamma + \beta$$

$$1 \le i \le seq_len$$

Здесь ү и β — обучаемые параметры

Layer Norm

LayerNorm можно лучше понять, если сравнить его с BatchNorm:

Transformer Encoder

- Результат работы блока Encoder обновленные эмбеддинги токенов.
- Каждый слой обрабатывает эмбеддинги параллельно
- Каждый слой, кроме слоя self-attention, обрабатывает эмбеддинги независимо
- Transformer Encoder может обрабатывать последовательности разной длины
- Слои в энкодере можно менять местами

Transformer Encoder

Мы почти собрали Encoder.

Чего не хватает:

- <u>Multi-head</u> attention
- Positional Encoding

Между словами в предложении могут быть зависимости разного типа

У всех голов attention различные веса

k — количество голов Attention:

$$w_{ij}^k = s^k(x_i^e, x_j^e)$$

$$w_{ij}^{k} = s^{k}(x_{i}^{e}, x_{j}^{e})$$
 $a_{ki}^{e} = \sum_{i=1}^{4} w_{ij}^{k} x_{j}^{e}$

Multi-head Self-attention

Source embeddings

Source input

$$a_i^e = \sigma(W[a_{1i}^e, a_{2i}^e, a_{3i}^e] + b)$$

Transformer Encoder

Pазные головы self-attention "обращают внимание" на разные токены и разную информацию в них

Pазные головы self-attention "обращают внимание" на разные токены и разную информацию в них

Transformer Encoder

Мы почти собрали Encoder.

Чего не хватает:

- Positional Encoding

Transformer Encoder

Наша сеть не получает информацию о порядке следования токенов в предложении

Но эта информация важна для понимания смысла эмбеддингов и обновления информации о них:

- cat runs horse
- horse runs cat

Positional Encoding

Positional Encoding

$$x_{t}^{e} = \frac{1}{p_{t}^{e}} = \frac{p_{t1}^{e}}{p_{t2}^{e}}$$
 p_{t3}^{e}
 p_{t4}^{e}
 p_{t5}^{e}

$$p_{ti}^{e} = \begin{cases} sin\left(\frac{t}{10000\frac{2k}{emb_dim}}\right), & if i = 2k \\ cos\left(\frac{t}{10000\frac{2k}{emb_dim}}\right), & if i = 2k + 1 \end{cases}$$

Positional Encoding

Figure 2 - The 128-dimensional positional encoding for a sentence with the maximum length of 50. Each row represents the embedding vector $\overrightarrow{p_t}$

Positional Encoding

Почему функция positional encoding именно такая:

In this work, we use sine and cosine functions of different frequencies:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

where pos is the position and i is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to $10000 \cdot 2\pi$. We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PE_{pos+k} can be represented as a linear function of PE_{pos} .

Transformer Encoder

Ура, мы собрали Encoder!

Transformer Encoder

У Encoder могут быть несколько последовательно соединенных блоков

Transformer

Итоги видео

В этом видео мы:

- Обсудили идею устройства архитектуры Transformer;
- Детально разобрали устройство encoder блока Transformer;
- Познакомились с такими вещами, как:
 - Self-attention;
 - Multi-head Attention;
 - Positional Encodings

Transformer architecture

Decoder block

В этом видео

- Идея архитектуры Transformer
- Устройство Transformer Encoder
- Устройство Transformer Decoder
- QKV Attention

Transformer

Выходы decoder block (обновленные эмбеддинги)

Decoder block inputs

Во время инференса decoder генерирует выходную последовательности **авторерессивно**

Во время инференса decoder генерирует выходную последовательности **авторерессивно**

Во время инференса decoder генерирует выходную последовательности **авторерессивно**

Transformer

Masked Self-Attention

Что было в Encoder блоке:

Encoder

Masked Self-Attention

Во время обучения эмбеддинги x^e_i не могут брать информацию из "будущих" токенов

Masked Self-Attention

Transformer

Cross-Attention

Каждый эмбеддинг декодера соберет информацию из эмбеддингов энкодера

Финальные выходы энкодера

Выходы слоя декодера

$$a_{1}^{ed} = \sum_{i=1}^{4} w_{1i} x_{1}^{d}$$

$$0.4 \quad 0.55 \quad 0.1 \quad 0.05$$

$$w_{1i} \quad w_{12} \quad w_{13} \quad w_{14}$$

$$x_{1}^{e} \quad x_{2}^{e} \quad x_{3}^{e} \quad x_{4}^{e}$$

$$x_{1}^{e} \quad x_{2}^{e} \quad x_{3}^{e}$$

$$a_{2}^{ed} = \sum_{i=1}^{4} w_{2i} x_{2}^{d}$$

$$a^{ed} \quad a^{ed}$$

$$0.1 \quad 0.15 \quad 0.5 \quad 0.25$$

$$w_{11} \quad w_{12} \quad w_{13} \quad w_{14}$$

$$x_{1}^{e} \quad x_{2}^{e} \quad x_{3}^{e} \quad x_{4}^{e}$$

$$x_{1}^{e} \quad x_{2}^{e} \quad x_{3}^{e} \quad x_{4}^{e}$$

$$a_{3}^{ed} = \sum_{i=1}^{4} w_{3i} x_{3}^{d}$$

$$a^{ed} \quad a^{ed} \quad a^{ed}$$

$$0.11 \quad 0.11 \quad 0.2 \quad 0.56$$

$$w_{11} \quad w_{12} \quad w_{13} \quad w_{14}$$

$$x_{1}^{e} \quad x_{2}^{e} \quad x_{3}^{e}$$

$$x_{4}^{e} \quad x_{4}^{d} \quad x_{2}^{d} \quad x_{3}^{d}$$

Векторы cross-attention

Финальные выходы энкодера

Выходы слоя декодера

Decoder block

Transformer Decoc

QKV Attention

QKV Attention

QKV Attention

- Q_{dxm} (query)
- K_{dxm} (key)
- $V_{dxm}(value)$

Здесь:

- D длина эмбеддингов;
- М можно выбирать любым

QKV Attention в векторной форме:

Transformer

Итоги видео

В этом видео мы:

- Детально разобрали устройство decoder блока Transformer;
- Собрали полную архитектуру Transformer;
- Узнали, как работает QKV Attention.

Итоги видео

- Устройство
- Transformer blocks structures:
 - LayerNorm;
 - Self-Attention
 - Masked Self-Attention
 - Cross-Attention
 - QKV Attention