nf-ncov-voc 1 of 98

Surveillance report

Surveillance generated by nf-ncov-voc for Delta variant

Date

This report is generated on 2023-03-04 using 459574 number of genomes collected between 2020-02-25 and 2023-02-16

Pango Lineages

Pango Lineages in this report ['AY.1', 'AY.10', 'AY.100', 'AY.101', 'AY.102', 'AY.103', 'AY.103.2', 'AY.104', 'AY.106', 'AY.106', 'AY.107', 'AY.108', 'AY.1109', 'AY.110', 'AY.111', 'AY.112', 'AY.112.2', 'AY.113', 'AY.114', 'AY.116', 'AY.1161', 'AY.1161', 'AY.117', 'AY.118', 'AY.118', 'AY.119', 'AY.119.1', 'AY.119.2', 'AY.120', 'AY.120.1', 'AY.121', 'AY.121', 'AY.1211', 'AY.1221', 'AY.122.4', 'AY.122.5', 'AY.122.6', 'AY.124', 'AY.124.1', 'AY.124.1.1', 'AY.125', 'AY.126', 'AY.127', 'AY.127', 'AY.128', 'AY.129', 'AY.131', 'AY.131', 'AY.133', 'AY.14', 'AY.15', 'AY.16', 'AY.18', 'AY.22', 'AY.20', 'AY.23', 'AY.24', 'AY.25', 'AY.25.1', 'AY.25.1.2', 'AY.25.3', 'AY.26', 'AY.26.1', 'AY.27', 'AY.281, 'AY.29', 'AY.29.2', 'AY.30', 'AY.31', 'AY.33', 'AY.30', 'AY.32', 'AY.33', 'AY.34', 'AY.34.1', 'AY.34.11', 'AY.35', 'AY.36', 'AY.36.1', 'AY.37', 'AY.38', 'AY.39', 'AY.39.1', 'AY.39.2', 'AY.39.3', 'AY.4', 'AY.4.12', 'AY.4.2', 'AY.4.2.1', 'AY.4.2.2', 'AY.4.2.3', 'AY.4.3', 'AY.4.4', 'AY.4.5', 'AY.4.6', 'AY.4.6', 'AY.4.8', 'AY.4.12', 'AY.4.2', 'AY.4.3', 'AY.43.3', 'AY.43.6', 'AY.43.6', 'AY.43.6', 'AY.43.6', 'AY.43.6', 'AY.45', 'AY.46.6', 'AY.46.1', 'AY.46.2', 'AY.46.4', 'AY.45', 'AY.46.6', 'AY.46.6', 'AY.47', 'AY.48', 'AY.49', 'AY.55', 'AY.53', 'AY.56', 'AY.56', 'AY.57', 'AY.58', 'AY.55', 'AY.56', 'AY.57', 'AY.58', 'AY.59', 'AY.60', 'AY.61', 'AY.62', 'AY.64', 'AY.65', 'AY.67', 'AY.68', 'AY.69', 'AY.57', 'AY.58', 'AY.58', 'AY.58', 'AY.58', 'AY.58', 'AY.58', 'AY.58', 'AY.58', 'AY.88', 'AY.88', 'AY.99', 'AY.99', 'AY.99', 'AY.99.2', 'AY.9

Indicator

This table contains key indicators identified

Indicator	Sub-categories from POKAY	Mutations
Transmissibility between hu-	transmissibility	D614G, E484Q, L452R, P681R
mans		
Infection Severity	ACE2 receptor binding affinity, viral load, outcome haz-	A701V, D138Y, D215G, D253G, D614G,
	ard ratio	D80A, E484K, E484Q, F490S, G446R,
		H655Y, K417N, L452R, L5F, N501T,
		P26S, P681H, S494P, T1027I, T716I,
		T95I, V367F, Y508H
Immunity after natural infection	convalescent plasma escape, reinfection, humoral response	A260T, A260V, A831V, D215G, D614G,
	durability	D80A, E484A, E484K, E484Q, F490L,
		F490S, G446D, G446R, G446V, K147N,
		K417N, K444N, K444R, K444T, K458N,
		L452R, P1162S, P499L, Q14H, S494P,
		T345S, W258R, W64R, Y145del, Y248H
Vaccines	vaccine neutralization efficacy	D614G, E484K, E484Q, K417N, L452R,
		P681H
Monoclonal antibodies	monoclonal antibody serial passage escape, pharmaceuti-	C15R, D253G, E484A, E484K, E484Q,
	cal effectiveness	F338L, F490L, F490S, G142D, G446D,
		G446V, K417N, K444R, L452R, L452W,
		N501T, P251L, S255F, S443F, S443Y,
		S494P, W258R, Y508H
Diagnostics	clinical indicators, antigenic test failure, symptom preva-	
	lence	

Mutation Significance

This table contains key functional impacts of mutations identified

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
G142D	anthropozoonotic	These variants dominate in	AY.131	Cai and Cai	3	G	A	1.0
	events	mink infections in North		(2021)				
		America, sometime supple-						
		mented with F486L. The						
		Y453F variant found in						
		other jurisdictions in mink						
		infections is notably absent						
		in North America.						

Contact Us CIDGOH ©

nf-ncov-voc 2 of 98

G142D monoclor body ser escape	nal anti- rial passage	Escape mutation against Spike N terminal domain antigenic supersite i mAbs S2M28, S2X28, S2X333	AY.41, AY.121.1, AY.131, AY.46.1, AY.92.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59,	McCallum et al. (2021)	Depth 101341	lele G	Allele A,ATGTTT	Frequency AO,95TT
			AY.34, AY.85, AY.5.6, AY.122.6, AY.122.6, AY.94, AY.33, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.7.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.7.1, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.25.1, AY.3.2, AY.6, AY.15, AY.30, AY.98, AY.25.1, AY.32, AY.61, AY.43, AY.28, AY.36.1, AY.43, AY.28, AY.100, AY.48, AY.100, AY.49.4, AY.31, AY.91, AY.90, AY.100, AY.9.2, AY.40, AY.39.2, AY.10, AY.11, AY.99.3, AY.67, AY.45, AY.111, AY.99.4, AY.46.2, AY.113, AY.91, AY.26.1, AY.46.6, AY.116.1, AY.3, AY.99.2, AY.46.6, AY.416.1, AY.43.7, AY.99.2, AY.40.7, AY.46.6, AY.416.1, AY.43.7, AY.99.2, AY.40.7, AY.99.2, AY.40.7, AY.99.2, AY.43.7, AY.29.2, AY.43.7, AY.29.2,					
		Co	AY.5.4, AY.38, AY.75.2, AY.103.2, antact 16s			(CIDGOH [©]	

nf-ncov-voc 3 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Mutations G142D	monoclonal antibody serial passage escape	Function Selected twice in passage with mAb COV2-2489.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.4.12, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.48, AY.34.1.1, AY.18, AY.93, AY.42, AY.43, AY.25, AY.70, AY.101, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.56, AY.12.6, AY.12.6, AY.13, AY.85, AY.12.1, AY.33, AY.43, AY.43, AY.43, AY.44, AY.43, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.106, AY.47, AY.106, AY.47, AY.48, AY.121, AY.124, AY.46, AY.111, AY.106, AY.47, AY.58, AY.30, AY.98, AY.31, AY.109, AY.25.3, AY.109, AY.25.3, AY.118, AY.42, AY.109, AY.25.3, AY.109, AY.25.3, AY.118, AY.43, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.45, AY.109, AY.25, AY.118, AY.43, AY.43, AY.43, AY.44, AY.31, AY.45, AY.100, AY.92, AY.103, AY.46.4, AY.31, AY.98, AY.39.2, AY.118, AY.47, AY.48, AY.39.2, AY.118, AY.49, AY.100, AY.9.2, AY.44, AY.39.3, AY.46.4, AY.31, AY.98, AY.39.2, AY.111, AY.46.2, AY.113, AY.91, AY.113, AY.91,	Suryadevara et al. (2021)				Frequency
		Co	AY.113,			(CIDGOH [©]	

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
T95I	outcome hazard ratio	B.1.526 (Iota) substantially increased IFR in older adults: by 46% (95% CI: 7.4 - 84%) among 45-64 year-olds, 82% (95% CI: 20 - 140%) among 65-74 year-olds, and 62% (95% CI: 45 - 80%) among 75+ during Nov 2020 - Apr 2021, compared to baseline IFR estimated for preexisting variants. [minimum clade defining mutations listed]	AY.112, AY.36	Yang et al. (2021)	347	С	T	0.99
T95I	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.33x decrease in binding (KD) relative to D614G.	AY.107	Gong et al. (2021)	50	CAC	CAT	0.98
T95I	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.107	Gong et al. (2021)	50	CAC	CAT	0.98
T95I	vaccinee plasma binding	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.02x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.107	Gong et al. (2021)	50	CAC	CAT	0.98
K417N	ACE2 receptor binding affinity	The K417N mutation decreased the affinity extasci- itilde4 fold, mainly by de- creasing the k(on) but also by increasing the k(off) as measured by surface plas- mon resonance.	AY.2, AY.1	Barton et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	This combination showed extasciitilde3x increase binding to ACE2 vs wild type, about half that of the B.1.1.7 lineage, suggesting that the K417N mutation is slightly detrimental to ACE2 binding, probably as a result of disrupting the salt bridge formed with ACE2 residue D30	AY.2, AY.1	Collier et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.5x decrease in binding (KD) relative to D614G.	AY.2, AY.1	Gong et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	RBD containing the N501Y mutation results in 9-fold stronger binding to the hACE2 receptor than wild type RBD. The E484K mutation does not significantly influence the affinity for the receptor, while K417N attenuates affinity. As a result, RBD from B.1.351 containing all three mutations binds 3-fold stronger to hACE2 than wild type RBD but 3-fold weaker than N501Y.	AY.2, AY.1	Laffeber et al. (2021)	20	G	Т	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
K417N	ACE2 receptor binding affinity	Studying the key covariants in lineage of concern 501Y-V2, observed about 2-fold increase in ACE2 binding vs wildtype, but greatly decreased mAb binding, suggesting evolutionary optimum tension between immune evasion and ACE2 binding affinity as the N501Y variant alone has 10x increase in affinity but no effect on tested mAb binding.	AY.2, AY.1	Liu et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	Using Mircoscale Thermopheresis, the B.1.351 variant harboring three mutations, binds ACE2 at nearly five-fold greater affinity than the original SARS-COV-2 RBD (Kd 87.6, vs 402.5 nM).	AY.2, AY.1	Ramanathan et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	Reported 3-fold decrease in affinity compared to wild- type RBD on the cell sur- face (Kd	AY.2, AY.1	Tian et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	Reported slight increase in affinity compared to wild- type RBD on the cell sur- face (Kd	AY.2, AY.1	Tian et al. (2021)	20	G	Т	1.0
K417N	ACE2 receptor binding affinity	The affinity of ACE2 for this mutation combination was twice as high as for wild type. Having in mind that the affinity of SARS-CoV-2 for ACE2 is only 4-fold higher compared to SARS-CoV-1, this factor of 2 is expected to be biologically significant.	AY.2, AY.1	Vogel et al. (2021)	20	G	Т	1.0
K417N	antibody epitope effects	>20% (ELISA significance threshold) drop in anti- body binding (ELISA) by this variant against IgG1 monoclonal antibody ab1.	AY.2, AY.1	Sun et al. (2021)	20	G	Т	1.0
K417N	antibody epitope effects	5 antibodies tested were less potent against K417N by ten-fold or more (class 1 mAbs)	AY.2, AY.1	Wang et al. (2021)	20	G	Т	1.0
K417N	antibody epitope effects	Pseudotyped virus model ablates binding by RBD-directed mAbs CB6 and 910-30 (targeting the inner side of the RBD). Pseudotyped virus model impairs binding by RBD-directed mAbs 4-20 and REGN10933.	AY.2, AY.1	Wang et al. (2021)	20	G	Т	1.0
K417N	convalescent plasma binding	2.16x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.2, AY.1	Gong et al. (2021)	20	G	Т	1.0
K417N	convalescent plasma escape	The 501Y.V2 to first wave IC50 ratio ranged from 6 to 200-fold. Averaging across all 7 participant convalescent sera highlighted the dramatic decrease in sensitivity to neutralization of authentic 501Y.V2 variants. PG: I'm purposefully ignoring D614G and A701V as contributors	AY.2, AY.1	Cele et al. (2021)	20	G	Т	1.0
K417N	convalescent plasma escape	In 19 convalescent hu- man sera extasciitilde1mo post infection, Two-tailed Wilcoxon matched-pairs signed-rank test shows mild resistence P	AY.2, AY.1	Chen et al. (2021)	20	G	Т	1.0

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
K417N	convalescent plasma escape	27% of 44 early pandemic exposure convalescent plasma/sera lose all activity against a RBD triple mutant pseudovirus (RBD mutatants of the 501Y.V2 "South African" lineage), while only 23% retained high titres	AY.2, AY.1	Wibmer et al. (2021)	20	G	Т	1.0
K417N	convalescent plasma escape	Nearly half (21 of 44, 48%) of early pandemic exposure convalescent plasma/sera failed to neutralize the 501Y.V2 ("South African") lineage pseudovirus construct Only 3 of 44 convascent sera (those with the highest titer, which correlated directly with initial infection severity) had high neutralization against this 501Y.V2 PG: note that lineage variant R246I was excluded from the text in reference to these sera assays, not sure if that was an oversight.	AY.2, AY.1	Wibmer et al. (2021)	20	G	Т	1.0
K417N	gene expression in- crease	Experimentally, Spike gene expression increased 0.1 fold	AY.2, AY.1	Starr et al. (2020)	20	G	Т	1.0
K417N	monoclonal anti- body serial passage escape	Escape mutation against monoclonal antibody LY- CoV016	AY.2, AY.1	Starr et al. (2021)	20	G	Т	1.0
K417N	monoclonal anti- body serial passage escape	In vitro selection against class 1 (Spike 'up' confor- mation) monoclonal anti- body C682, and to a lesser extent C614 and C660	AY.2, AY.1	Wang et al. (2021)	20	G	Т	1.0
K417N	pharmaceutical effectiveness	COR-101 lost extasci- itilde6x binding against this isolated mutation. Estesevimab lost extasci- itilde100x binding against this isolated mutation.	AY.2, AY.1	Engelhart et al. (2021)	20	G	Т	1.0
K417N	pharmaceutical effectiveness	Tixagevimab, Regdan- vimab and COR-101 display reduced binding affinity to virus pseu- dotyped as RBD from B.1.351.	AY.2, AY.1	Engelhart et al. (2021)	20	G	Т	1.0
K417N	pharmaceutical effectiveness	This mutated version of RBD completely abolishes the binding to a ther- apeutic antibody, Bam- lanivimab, in vitro.	AY.2, AY.1	Liu et al. (2021)	20	G	Т	1.0
K417N	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h	AY.2, AY.1	Kuzmina et al. (2021)	20	G	Т	1.0
K417N	trafficking	post-transduction. Lentiviral pseudotyped with this individual mutation from B.1.351 was tested on ACE2.293T cells. Luciferase activity was measured two days postinfection, showing mild decrease in infection rate amongst the cells, suggesting that this mutation does not contributing to cell entry fitness.	AY.2, AY.1	Tada et al. (2021)	20	G	T	1.0
K417N	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.2, AY.1	Kuzmina et al. (2021)	20	G	Т	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 7 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
K417N	vaccinee plasma binding	1.76x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.75x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.2, AY.1	Gong et al. (2021)	20	G	Т	1.0
K417N	virion structure	Estimated free energy change (ddG) for this variant is -0.86 kcal/mol (i.e. destabilizing relative to wild type)	AY.2, AY.1	Spratt et al. (2021)	20	G	Т	1.0
P499L	antibody epitope effects	Mutant screen in neutral- ization assay with a broad range of monoclonal an- tibodies shows high re- sistence to 3 antibodies.	AY.39.2	Liu et al. (2020)	2	С	Т	1.0
P499L	convalescent plasma escape	General increase in neutralization capability of all 4 convalescent sera tested.	AY.39.2	Liu et al. (2021)	2	С	Т	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 8 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to D614G.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.48, AY.57, AY.48, AY.33, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.101, AY.120, AY.23, AY.88, AY.56, AY.76, AY.83, AY.119.1, AY.77, AY.85, AY.19.1, AY.77, AY.85, AY.122.6, AY.94, AY.112.2, AY.33, AY.36, AY.127, AY.43, AY.43, AY.121, AY.121, AY.124, AY.43, AY.121, AY.121, AY.121, AY.124, AY.46, AY.111, AY.99.1, AY.51, AY.42.3, AY.64, AY.1121, AY.124, AY.46, AY.111, AY.99.1, AY.51, AY.42.3, AY.64, AY.111, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.106, AY.47, AY.88, AY.109, AY.88, AY.109, AY.88, AY.111, AY.99.1, AY.100, AY.92, AY.36, AY.15, AY.35, AY.109, AY.36, AY.15, AY.36, AY.111, AY.46, AY.111, AY.47, AY.49, AY	Gong et al. (2021)		lele T		

nf-ncov-voc 9 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
L452R	ACE2 receptor bind-	Using flow cytometry and	AY.126,	Gong et al.	5323	T	G	1.0
	ing affinity	ACE2 ectodomains-Fc por-	AY.127,	(2021)				
		tion IgG complex, this	AY.108,					
		variant combination (rep-	AY.65, AY.35,					
		resenting lineage B.1.617)	AY.112.2,					
		showed a 1.85x increase	AY.36,					
		in binding (KD) relative	B.1.617.2,					
		to D614G. [exact vari-	AY.26.1, AY.1,					
		ant list not provided in	AY.77, AY.5					
		manuscript, is inferred fro						
		common knowledge						

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 10 of 98

				Depth	Reference Al- lele	Allele	Alternate Frequency
Mutations Sub-category L452R ACE2 receptor binding affinity	Function extasciitilde1.7-fold increase in binding affinity vs wild type.	Lineages AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.48, AY.57, AY.48, AY.33, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.101, AY.120, AY.23, AY.88, AY.56, AY.19.1, AY.77, AY.59, AY.33, AY.19.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.119.1, AY.77, AY.59, AY.112.2, AY.33, AY.119.1, AY.77, AY.59, AY.112.2, AY.33, AY.107, AY.85, AY.122.6, AY.13, AY.55, AY.110, AY.25.3, AY.43.8, AY.107, AY.82, AY.108, AY.121, AY.13, AY.25.3, AY.46.4, AY.39.2, AY.100, AY.98.1, AY.39.3, AY.46.4, AY.98.1, AY.46.4, AY.98.1, AY.46.4, AY.98.1, AY.46.4, AY.99.1, AY.39.3, AY.46.4, AY.103, AY.46.4, AY.99.1, AY.46.4, AY.99.1, AY.47.46, AY.110, AY.99.1, AY.48.4, AY.99.1, AY.49.40, AY.103, AY.46.4, AY.99.1, AY.40.2, AY.40.3, AY.40.4, AY.99.1, AY.40.3, AY.40.4, AY.99.1, AY.40.4, AY.99.1, AY.40.4, AY.40.4, AY.99.1, AY.40.4, AY.99.1, AY.40.4, AY.90.4, AY.40.4, AY	Motozono et al. (2021)	Sequence Depth 114564	Reference Allele T	Alternate Allele G,GGTT	Alternate Frequency 1.0

nf-ncov-voc 11 of 98

L14227 Tecl evension of L2428 derivative virus did not make ITS-gamma (AV212). Motossaso et al. 1604 at a void et al. (2021) a	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Contact. UsAY.38, CIDGOH ©	L452R		L452R derivative virus did not induce IFN-gamma expression even at the highest concentration tested (10 nM) in two different A*24:02 convalescent sera donor plasma (linear epitope NYNYLYRLF 448,456).	AY.41, AY.121.1, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.85, AY.19.1, AY.77, AY.59, AY.34, AY.85, AY.112.2, AY.13, AY.56, AY.122.6, AY.13, AY.55, AY.127.1, AY.43, AY.107, AY.82, AY.108, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.121, AY.124, AY.46, AY.17, AY.88, AY.30, AY.98, AY.25.1, AY.30, AY.98, AY.25.1, AY.30, AY.98, AY.25.3, AY.109, AY.47, AY.88, AY.72, AY.10, AY.43, AY.94, AY.103, AY.46.4, AY.100, AY.98, AY.25.3, AY.46.4, AY.100, AY.98, AY.30, AY.98, AY.31, AY.43, AY.99, AY.103, AY.46.4, AY.103, AY.46.4, AY.103, AY.46.4, AY.103, AY.47, AY.39.2, AY.103, AY.47, AY.39.3, AY.46.4, AY.113, AY.91, AY.46.4, AY.90, AY.90, AY.91, AY.47, AY.39, AY.47, AY.49, AY.413, AY.91, AY.40, AY.413, AY.91, AY.413, AY.91, AY.413, AY.91, AY.413, AY.91, AY.413, AY.91, AY.42, AY.43, AY.93, AY.46, AY.416, AY.47, AY.47, AY.47, AY.48, AY.49, AY.49, AY.40, AY.413, AY.91, AY.40, AY.413, AY.91, AY.40, AY.413, AY.91, AY.413, AY.91, AY.413, AY.91, AY.413, AY.91, AY.413, AY.91, AY.42, AY.43, AY.43, AY.43, AY.43, AY.44, AY.49, AY.49, AY.40, AY.413, AY.413, AY.411, AY.46.2, AY.413, AY.413, AY.411, AY.46.2, AY.413, AY.47, AY.49, AY.40, AY.413, AY.413, AY.411, AY.413, AY.411, AY.413, AY.423, AY.439, AY.440, AY.45, AY.46, AY.46, AY.47, AY.47, AY.48, A	Motozono et	Depth	lele T	Allele G,GGTT	Frequency

nf-ncov-voc 12 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Mutations L452R	Sub-category antibody epitope effects	Function Resistent to some neutralizing antibodies: mAbs X593 and P2B-2F6	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.4.3, AY.25, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56,	Citation Li et al. (2020)				
			AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.5.6, AY.122.6, AY.94, AY.112.2, AY.33, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.107,					
			AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.4.2.3, AY.64, AY.121, AY.124, AY.46, AY.7.1, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.25.1, AY.3.2, AY.6, AY.15, AY.35, AY.109, AY.28,					
			AY.36.1, AY.43, AY.25.3, AY.43.8, AY.7.2, AY.32, AY.118, AY.84, AY.9, AY.103, AY.46.4, AY.98.1, AY.100, AY.9.2, AY.24, AY.39.2, AY.10, AY.1, AY.39.3, AY.67, AY.4.5, AY.111, AY.46.2,					
		Ce	AY.46.2, AY.113, AY.91, AY.26.1, AY.62, AY.4.6, AY.4, AY.46.6, AY.116.1, AY.127, AY.3, AY.99.2, AY.43.7, AY.29.2, DIRAGE USAY.38, AY.75.2,			(CIDGOH [©]	

nf-ncov-voc 13 of 98

nf-ncov-voc 14 of 98

L452R
AY.98.1, AY.100, AY.9.2, AY.24, AY.39.2, AY.10, AY.1, AY.39.3, AY.67, AY.4.5, AY.111, AY.46.2, AY.113, AY.91, AY.26.1, AY.62, AY.4.6, AY.4, AY.46.6, AY.4, AY.46.6, AY.116.1, AY.127, AY.3, AY.99.2,

nf-ncov-voc 15 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Mutations L452R	antibody epitope effects	Extasciitilde20% (ELISA significance threshold) drop in antibody binding (ELISA) by this variant against monoclonal antibody VH ab6.	Lineages AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.4.23, AY.88, AY.56, AY.6.5, AY.92, AY.101, AY.120, AY.23, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.36, AY.112.2, AY.33, AY.36, AY.46.5, AY.92, AY.113, AY.55, AY.121, AY.71, AY.43.3, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.42.3, AY.64, AY.121, AY.43.3, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.42.3, AY.64, AY.121, AY.43.3, AY.64, AY.121, AY.43.3, AY.64, AY.121, AY.45, AY.106, AY.47, AY.88, AY.72, AY.13, AY.64, AY.121, AY.41, AY.46, AY.11, AY.41, AY.46, AY.11, AY.46, AY.118, AY.43, AY.44, AY.46, AY.113, AY.45, AY.100, AY.47, AY.39, AY.48, AY.39, AY.49, AY.103, AY.46, AY.110, AY.41, AY.46, AY.111, AY.47, AY.49, AY.103, AY.46, AY.114, AY.47, AY.49, AY.104, AY.49, AY.105, AY.106, AY.41, AY.49, AY.107, AY.39, AY.40, AY	Sun et al. (2021)				
	1	I	AY.29.2,	ĺ	1		1	1

nf-ncov-voc 16 of 98

L452R convalescent plasma binding 2.15x increase in Spike binding (relative to D614G alone) by 5 plasma collected 8 months postsymptom-onset. AY.41, Gong et al. (2021) AY.131, AY.131, AY.9.2.1, AY.9.2.1, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.128, AY.128, AY.128, AY.140, AY.1	Frequency 1.0
NY-412, NY-412, NY-412, NY-517, NY-68, NY-517, NY-68, NY-517, NY-68, NY-517, NY-68, NY-518, NY	

nf-ncov-voc 17 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
L452R	convalescent plasma	This variant combina-	AY.126,	Gong et al.	5323	T	G	1.0
	binding	tion (representing lineage	AY.127,	(2021)				
		B.1.617) showed a 1.22x	AY.108,					
		decrease in Spike bind-	AY.65, AY.35,					
		ing (relative to D614G	AY.112.2,					
		alone) by 5 plasma col-	AY.36,					
		lected 8 months post-	B.1.617.2,					
		symptom-onset. [exact	AY.26.1, AY.1,					
		variant list not provided in	AY.77, AY.5					
		manuscript, is inferred fro	·					
		common knowledge						

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 18 of 98

Mutations S		_	Citation	Depth	Reference Al- lele	Allele	Alternate Frequency
L452R c	b-category Function Observed extascit decrease on average health workers' concent sera.	n 16 AY.121.1,	Alenquer et al. (2021)	Sequence Depth 114564	Reference Allele T	Alternate Allele G,GGTT	Alternate Frequency 1.0

nf-ncov-voc 19 of 98

L452R convalescent plasma escape Ablation of neutralization capability of 3 of 4 convalescent sera tested, the other is significantly hindered. AY.121.1, AY.16.1, AY.46.1, AY.19.2, AY.70, AY.78, AY.19.2, AY.70, AY.78, AY.49, AY.41,	Mutations Sub-c	category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
AY,86, AY,76, AY,83, AY,119.1, AY,77, AY,59, AY,54, AY,94, AY,194, AY,112.2, AY,33, AY,36, AY,425, AY,121, AY,133, AY,107, AY,433, AY,107, AY,82, AY,121,1, AY,93, AY,421, AY,121, AY,122, AY,101, AY,111, AY,121, AY,	L452R conva	lescent plasma	Ablation of neutralization capability of 3 of 4 convalescent sera tested, the other is significantly hin-	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.25, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.6.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.56, AY.122.6, AY.94, AY.112.2, AY.33, AY.85, AY.56, AY.121.1, AY.43.3, AY.55, AY.127.1, AY.43.3, AY.51, AY.42.3, AY.106, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.11, AY.43, AY.98.1, AY.43, AY.25.3, AY.46.4, AY.118, AY.84, AY.9, AY.100, AY.92, AY.30, AY.45, AY.100, AY.92, AY.103, AY.46.4, AY.99.1, AY.30, AY.46.4, AY.99.1, AY.103, AY.46.4, AY.99.1, AY.103, AY.46.7, AY.113, AY.91, AY.103, AY.46.7, AY.113, AY.91, AY.113, AY.91, AY.113, AY.91, AY.113, AY.91, AY.113, AY.91,	Liu et al.	Depth	lele	Allele	Frequency

<u>nf-ncov-voc</u> 20 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	convalescent plasma	Pseudotyped viruses for	AY.126,	Tada et al.	5323	T	G	1.0
	escape	B.1.617 was 2.3-fold re-	AY.127,	(2021)				
		sistant to neutralization	AY.108,					
		by convalescent sera com-	AY.65, AY.35,					
		pared to wild type - a	AY.112.2,					
		finding that was similar to	AY.36,					
		that of the 3-fold resis-	B.1.617.2,					
		tance of the South Africa	AY.26.1, AY.1,					
		B.1.351 variant using the	AY.77, AY.5					
		same assay. The re-	,					
		sistance of B.1.617 was						
		caused by the L452R and						
		E484Q mutation, based on						
		results from viruses pseu-						
		dotyped for individual vari-						
		ants within B.1.617. [de-						
		tails on the convalescent						
		patient sera collection are						
		not abundantly clear in the						
		preprint]						

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 21 of 98

nf-ncov-voc 22 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	gene expression increase	Experimentally, Spike gene expression increased 0.32 fold	AY.41, AY.121.1, AY.131,	Starr et al. (2020)	114564	T	G,GGTT	1.0
		TOIG	AY.46.1,					
			AY.9.2.1, AY.119.2,					
			AY.70, AY.78, AY.16, AY.99,					
			AY.5.3, AY.128,					
			AY.49, AY.4.12,					
			AY.44,					
			AY.57, AY.68, AY.25.1.2,					
			AY.3.3, AY.37, AY.42, AY.48,					
			AY.34.1.1, AY.18, AY.93,					
			AY.4.3, AY.25, AY.72,					
			AY.101, AY.120,					
			AY.23, AY.88, AY.56,					
			AY.46.5,					
			AY.92, AY.133,					
			AY.86, AY.76, AY.83,					
			AY.119.1, AY.77, AY.59,					
			AY.34, AY.85, AY.5.6,					
			AY.122.6, AY.94,					
			AY.112.2,					
			AY.33, AY.36, AY.45,					
			B.1.617.2, AY.13, AY.55,					
			AY.127.1, AY.43.3,					
			AY.107, AY.82,					
			AY.108, AY.124.1.1,					
			AY.99.1,					
			AY.51, AY.4.2.3,					
			AY.64, AY.121,					
			AY.124, AY.46, AY.7.1,					
			AY.106, AY.4.7, AY.58,					
			AY.30, AY.98, AY.25.1,					
			AY.3.2, AY.6, AY.15, AY.35,					
			AY.109,					
			AY.28, AY.36.1,					
			AY.43, AY.25.3,					
			AY.43.8, AY.7.2, AY.32,					
			AY.118, AY.84, AY.9,					
			AY.103, AY.46.4,					
			AY.98.1, AY.100,					
			AY.9.2, AY.24,					
			AY.39.2, AY.10, AY.1,					
			AY.39.3, AY.67, AY.4.5,					
			AY.111, AY.46.2,					
			AY.113, AY.91,					
			AY.26.1, AY.62, AY.4.6,					
			AY.4, AY.46.6,					
			AY.116.1, AY.127, AY.3,					
			AY.99.2, AY.43.7,					
		Ca	AY.29.2, on#Act. UsAY.38,			(CIDGOH [©]	
			AY.75.2,			`	110011	

nf-ncov-voc 23 of 98

L452R monoclonal antibody serial passage escape RBD for highly neutraliz-Ranked effective mutant AY.41, AY.41, Greaney et al. (2020) AY.131, Greaney et al. (2020) AY.131,	lele	Allele	Frequency
	T	G,GGTT	1.0
ing COV2-2096 AY 40.1, AY 19.1, AY 11.2, AY 11.3, AY 11.3, AY 11.3, AY 11.3, AY 11.3, AY 12.3, AY 4.3, AY 4.4, AY 4.3, AY 4.3			

nf-ncov-voc 24 of 98

	Sub-category			Citation	Depth	lele	Allele	Frequency
Mutations L452R	monoclonal antibody serial passage escape	Escape mutation against monoclonal antibody LY-CoV555 (antibody that forms the basis for Eli Lilly's bamlanivimab)	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.43, AY.25, AY.70, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.66, AY.76, AY.83, AY.119.1, AY.77, AY.85, AY.19.2, AY.33, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.119.1, AY.120, AY.34, AY.119.1, AY.124, AY.110, AY.125, AY.110, AY.121, AY.127, AY.43, AY.107, AY.82, AY.108, AY.124, AY.41, AY.106, AY.47, AY.42, AY.43, AY.107, AY.82, AY.108, AY.124, AY.107, AY.82, AY.108, AY.124, AY.107, AY.82, AY.108, AY.124, AY.107, AY.82, AY.108, AY.109, AY.83, AY.109, AY.28, AY.36.1, AY.109, AY.28, AY.36.1, AY.43, AY.25.3, AY.43, AY.25.	Starr et al. (2021)	Sequence Depth 114564	T	Alternate Allele G,GGTT	Alternate Frequency 1.0

nf-ncov-voc 25 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Mutations L452R	Sub-category monoclonal antibody serial passage escape	Function Class 2/3 antibody C628 and class 2 antibody C643 selected for the emergence of the L452R mutation in vitro.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.34, AY.34.1.1, AY.18, AY.93, AY.42, AY.43, AY.25, AY.101, AY.120, AY.23, AY.88, AY.65, AY.92, AY.1133, AY.86, AY.77, AY.82, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.56, AY.122.6, AY.94, AY.112.2, AY.33, AY.56, AY.12.6, AY.94, AY.112.1, AY.77, AY.55, AY.12.1, AY.43.3, AY.107, AY.82, AY.108, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.446, AY.71, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.71, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.7.1,	Citation Wang et al. (2021)	Sequence Depth 114564	Reference Allele T	Alternate Allele G,GGTT	Alternate Frequency 1.0
			AY.13, AY.55, AY.127.1, AY.43.3, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.4.2.3, AY.64, AY.121, AY.124,					
		Co	AY.84, AY.9, AY.84, AY.9, AY.103, AY.46.4, AY.98.1, AY.100, AY.9.2, AY.24, AY.39.2, AY.10, AY.1, AY.39.3, AY.67, AY.4.5, AY.111, AY.46.2, AY.113, AY.91, AY.26.1, AY.62, AY.4.6, AY.4, AY.46.6, AY.116.1, AY.127, AY.3, AY.99.2, AY.43.7, AY.29.2, Dn&dcb.UsAY.38, AY.75.2,				CIDGOH [©]	

nf-ncov-voc 26 of 98

nf-ncov-voc 27 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	pharmaceutical effectiveness	Bamlanivimab (LY-CoV555) entirely lost its neutralizing activity due to the central location of L452R in the epitopes recognized by this mAb. Regdanvimab (CT-P59), and to a smaller extent etesevimab, showed a reduction in neutralization potency.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.4.23, AY.88, AY.56, AY.6.5, AY.92, AY.1133, AY.86, AY.77, AY.59, AY.34, AY.85, AY.56, AY.112.2, AY.33, AY.86, AY.77, AY.59, AY.34, AY.119.1, AY.77, AY.85, AY.119.1, AY.77, AY.85, AY.119.1, AY.77, AY.85, AY.119.1, AY.110, AY.110, AY.110, AY.111,	McCallum et al. (2021)	Depth 114564	lele T	CIDGOH ©	1.0

nf-ncov-voc 28 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	symptom prevalence	Gross examination of 3+3 hamster lung specimens showed pronounced congestion and hemorrhages on days 5 and 7 post-infection in the case of the B.1.617.1 as compared with the B.1 the lung lesions with the B.1 variant were minimal to mild whereas with B.1.617.1 they were moderate. For B.1 pneumonic changes were minimal to mild (inflammatory cell infiltration, focal consolidation and mild congestion). The pronounced changes (moderate to severe) with mononuclear infiltration in the alveolar interstitial space, interstitial septal thickening, consolidation and pneumocyte hyperplasia were observed with B.1.617.1 variant consistently.	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Yadav et al. (2021)	5323	Т	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 29 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	Trafficking Trafficking	Function We observed increased entry by pseudoviruses carrying the L452R mutation compared to D614G alone, with a 6.7 to 22.5-fold increase in 293T cells and a 5.8 to 14.7-fold increase in human airway organoids.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.41, AY.5.7, AY.68, AY.25.1.2, AY.33, AY.34.1.1, AY.18, AY.93, AY.42, AY.44, AY.95, AY.101, AY.120, AY.23, AY.88, AY.56, AY.65, AY.92, AY.133, AY.86, AY.76, AY.88, AY.76, AY.85, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.112.2, AY.33, AY.112.2, AY.33, AY.107, AY.22, AY.13, AY.55, AY.112.1, AY.43.3, AY.107, AY.42, AY.108, AY.108, AY.107, AY.82, AY.108, AY.107, AY.82, AY.108, AY.124, AY.40, AY.112, AY.13, AY.51, AY.42.3, AY.64, AY.107, AY.82, AY.108, AY.107, AY.82, AY.108, AY.107, AY.82, AY.108, AY.121, AY.106, AY.47, AY.51, AY.42.3, AY.64, AY.191, AY.46, AY.71, AY.106, AY.47, AY.58, AY.30, AY.98, AY.25.1, AY.46, AY.109, AY.48, AY.109, AY.48, AY.109, AY.48, AY.109, AY.48, AY.109, AY.49, AY.100, AY.98, AY.31, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.46, AY.111, AY.46, AY.113, AY.91, AY.46, AY.113, AY.91, AY.47, AY.47, AY.47, AY.48, AY.99, AY.103, AY.46, AY.111, AY.46, AY.113, AY.91, AY.47, AY.47, AY.48, AY.99, AY.103, AY.46, AY.111, AY.46, AY.111, AY.46, AY.111, AY.46, AY.111, AY.46, AY.111, AY.47, AY.49, AY.103, AY.47, AY.39, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.43, AY.44, AY.43, AY.44, AY.43, AY.44, AY.44, AY.44, AY.44, AY.44, AY.45, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.43, AY.44, AY.4	Citation Deng et al. (2021)	Sequence Depth 114564	lele T	Allele G,GGTT	Alternate Frequency 1.0
		Co	ntact.UsAY.38, AY.75.2,			(CIDGOH [©]	[

nf-ncov-voc 30 of 98

L452R	L452R t:						
AY.43.8, AY.72, AY.32, AY.118, AY.84, AY.9, AY.103, AY.46.4, AY.98.1, AY.100, AY.9.2, AY.24, AY.39.2, AY.10, AY.1, AY.39.3, AY.67, AY.4.5, AY.111, AY.62, AY.113, AY.91, AY.91, AY.91, AY.91, AY.926.1, AY.46.6, AY.116,1, AY.46.6, AY.116,1, AY.127, AY.3, AY.99.2, AY.99.2, AY.91,		rafficking	extasciitilde5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G. [listed as L454R in Figure, but L452R in text, also text suggests not statistucally significant, but error bars	AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.5.6, AY.112.2, AY.33, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.107, AY.82, AY.108, AY.121, AY.43, AY.107, AY.82, AY.108, AY.121, AY.124, AY.43, AY.121, AY.43, AY.43, AY.44, AY.45, AY.106, AY.47, AY.58, AY.30, AY.98, AY.25.3, AY.44, AY.100, AY.47, AY.88, AY.72, AY.18, AY.109, AY.28, AY.109, AY.28, AY.109, AY.28, AY.118, AY.41, AY.40, AY.100, AY.47, AY.48, AY.72, AY.39, AY.418, AY.40, AY.100, AY.47, AY.39, AY.410, AY.411, AY.411, AY.412, AY.413, AY.42, AY.43, AY.44, AY.43, AY.44, AY.45, AY.100, AY.47, AY.48, AY.49, AY.100, AY.47, AY.48, AY.49, AY.100, AY.47, AY.49, AY.100, AY.47, AY.49, AY.101, AY.41, A			1.0

nf-ncov-voc 31 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	trafficking	This variant combination shows a extasciitilde4-5x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, same as L452R alone.	AY.109	Ferriera et al (2021)	57	Т	G	1.0
L452R	trafficking	This variant combination shows a extasciitide3x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, significantly less of a decrease than any B.1.617 lineage variants alone, suggesting a synergistic effect on cell entry while maintaining known immunity esacpe mutants.	AY.109	Ferriera et al (2021)	57	T	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 32 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	Sub-category trafficking	Function Increased stability of RBD expression in yeast, suggesting increased Spike protein stability.	Lineages AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.76, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.101, AY.120, AY.23, AY.88, AY.65, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.56, AY.12.6, AY.11.2, AY.33, AY.43, AY.57, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.107, AY.82, AY.108, AY.112.1, AY.106, AY.47, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.121, AY.43, AY.64, AY.121, AY.124, AY.46, AY.113, AY.64, AY.121, AY.106, AY.47, AY.58, AY.30, AY.98, AY.36.1, AY.42, AY.118, AY.43, AY.44, AY.46, AY.111, AY.46, AY.113, AY.47, AY.48, AY.99, AY.103, AY.46, AY.113, AY.47, AY.48, AY.99, AY.104, AY.107, AY.49, AY.108, AY.40, AY.109, AY.40, AY.4	Motozono et al. (2021)				
			AY.29.2, n A AC 5 . U SAY.38,				CIDGOH [©]	1

nf-ncov-voc 33 of 98

L452R transmissibility Increased infectivity of AY.41, Tada et al. 114564 T G,GGTT the B.1.617 spike was at- AY.121.1, (2021)	
tributed to Listift, which is a 5-fold at My 16.1, increase in infectivity in the control of the	Frequency

nf-ncov-voc 34 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	transmissibility	The combination caused a 3-fold increase in infectivity relative to D614G wild type. [compare to 3.5x for L452R alone]	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Tada et al. (2021)	5323	Т	G	1.0
L452R	transmissibility	Normalized for particle number, on ACE2.293T cells showed that the B.1.617 spike protein was >2-fold increase in infectivity relative to D614G wild type.	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Tada et al. (2021)	5323	Т	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 35 of 98

Discrete Price BY17616 series Avis Avis	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
AY.43.7, AY.29.2, Contact. Usay.38,	L452R		Pfizer BNT162b2 vaccinees were tested against a range of spike mutation bearing PV. L452R conferred about a two-fold reduction in neutralisation by vaccine sera, but was not statistically significant	AY.121.1, AY.131, AY.46.1, AY.946.1, AY.92.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.37, AY.42, AY.44, AY.38, AY.93, AY.25, AY.72, AY.101, AY.120, AY.23, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.16, AY.16, AY.17, AY.85, AY.112.2, AY.33, AY.86, AY.16, AY.112.2, AY.33, AY.85, AY.108, AY.124.1.1, AY.94.33, AY.107, AY.43.3, AY.107, AY.43.3, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.106, AY.47, AY.48, AY.108, AY.124, AY.46, AY.17, AY.48, AY.109, AY.48, AY.109, AY.49, AY.109, AY.28, AY.36, AY.15, AY.36, AY.15, AY.36, AY.111, AY.43, AY.43, AY.43, AY.43, AY.44, AY.98, AY.30, AY.98, AY.103, AY.46, AY.104, AY.98, AY.103, AY.46, AY.111, AY.47, AY.47, AY.48, AY.98, AY.48, AY.79, AY.49, AY.49, AY.103, AY.46, AY.111, AY.411, AY.4			lele T	Allele G,GGTT	

nf-ncov-voc 36 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	vaccine neutralization efficacy	Nine stored sera from Pfizer BNT162b2 vaccinees were tested against a range of spike mutation bearing PV. E484Q had a extasciitilde5x drop in neutralization (vs extasciitilde10x for E484K). When E484Q and L452R were combined, the fold change was significant, but similar to that of L452R alone (extasciitilde2x), suggesting no evidence for an additive effect [perhaps even E484Q effect dilution].	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Ferreira et al. (2021)	5323	T	G	1.0
L452R	vaccine neutraliza- tion efficacy	1.4x reduction in neutralization (ID50) in sera 3 weeks after one dose of Pfizer/BioNTech BNT162b2 (up to 5 naive and post infection vaccinees)	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Gong et al. (2021)	5323	Т	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 37 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	vaccine neutralization efficacy	The presence of this variant in 189 post-mRNA-vaccination COVID-19 cases was proportionally in line with lineage prevalence in Northen California during the study period, suggesting no effect of these variants on immune escape.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.44, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.72, AY.101, AY.120, AY.23, AY.86, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.66, AY.122.6, AY.94, AY.112.2, AY.33, AY.36, AY.45, B.1.617.2, AY.33, AY.36, AY.45, B.1.617.2, AY.33, AY.36, AY.45, B.1.617.2, AY.33, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.42.3, AY.64, AY.121, AY.42.3, AY.64, AY.121, AY.42.3, AY.64, AY.121, AY.124, AY.46, AY.71, AY.43, AY.45, AY.109, AY.47, AY.58, AY.30, AY.98, AY.31, AY.43, AY.43, AY.43, AY.43, AY.45, AY.109, AY.47, AY.48, AY.40, AY.103, AY.46, AY.111, AY.49, AY.103, AY.46, AY.113, AY.43, AY.25.3, AY.46, AY.111, AY.49, AY.103, AY.46, AY.113, AY.91, AY.39.2, AY.10, AY.47, AY.39, AY.46, AY.113, AY.91, AY.47, AY.46, AY.113, AY.91, AY.47, AY.46, AY.113, AY.91, AY.47, AY.47, AY.47, AY.48, AY.49, AY.103, AY.46, AY.113, AY.91, AY.47, AY.47, AY.47, AY.48, AY.49, AY.103, AY.46, AY.111, AY.47, AY.47, AY.48, AY.49, AY.103, AY.46, AY.113, AY.91, AY.47, AY.47, AY.47, AY.48, AY.49, AY.49, AY.49, AY.49, AY.49, AY.49, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.44, AY.46, AY.47, AY	Jacobson et al. (2021)		lele T	Allele G,GGTT	
		Co	ntact.UsAY.38, AY.75.2,			(CIDGOH [©]	

nf-ncov-voc 38 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
L452R	vaccine neutraliza-	Pseudotyped viruses for	AY.126,	Tada et al.	5323	T	G	1.0
	tion efficacy	B.1.617 was 4-fold resis-	AY.127,	(2021)				
		tant to neutralization by	AY.108,	` ′				
		6 BNT162b2 vaccine sera	AY.65, AY.35,					
		28 days post-booster com-	AY.112.2,					
		pared to wild type - a	AY.36,					
		finding that was similar to	B.1.617.2,					
		that of the 3.4-fold resis-	AY.26.1, AY.1,					
		tance of the South Africa	AY.77, AY.5					
			A1.77, A1.5					
		B.1.351 variant using the						
		same assay. Neutralization						
		by 3 Moderna vaccine sera						
		28 days post-booster was						
		5-fold resistant (vs. 2.2-						
		fold for B.1.351). The						
		resistance of B.1.617 was						
		caused by the L452R and						
		E484Q mutation, based on						
		results from viruses pseu-						
		dotyped for individual vari-						
		ants within B.1.617.						

Contact Us CIDGOH [©]

nf-ncov-voc 39 of 98

Marche M
AY.127, AY.3, AY.99.2, AY.43.7,

nf-ncov-voc 40 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	vaccinee binding plasma	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.4.23, AY.86, AY.65, AY.92, AY.101, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.85, AY.56, AY.122.6, AY.94, AY.112.2, AY.33, AY.85, AY.56, AY.121.6, AY.94, AY.112.1, AY.13, AY.55, AY.127.1, AY.43.3, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.107, AY.82, AY.108, AY.124.1.1, AY.99.1, AY.51, AY.42.3, AY.104, AY.106, AY.47, AY.58, AY.107, AY.82, AY.108, AY.124, AY.106, AY.47, AY.58, AY.30, AY.98, AY.25.1, AY.42, AY.106, AY.47, AY.58, AY.107, AY.82, AY.108, AY.110, AY.109, AY.28, AY.30, AY.43, AY.44, AY.98, AY.39, AY.45, AY.103, AY.46, AY.110, AY.92, AY.43, AY.43, AY.44, AY.98, AY.39, AY.45, AY.103, AY.46, AY.110, AY.47, AY.48, AY.49, AY.103, AY.46, AY.110, AY.49, A	Gong et al. (2021)	Depth 114564	T	Allele G,GGTT	1.0

nf-ncov-voc 41 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	vaccinee plasm binding	This variant combination (representing lineage B.1.617) showed a 1.30x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.18x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Gong et al. (2021)	5323	Т	G	1.0
L452R	viral load	In 9 infected hamsters each for B.1 and B.1.617.1, no significant change in viral load or subgenomic RNA levels were detected.	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77, AY.5	Yadav et al. (2021)	5323	Т	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 42 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452R	virion structure	Estimated free energy change (ddG) for this	AY.41, AY.121.1,	Spratt et al. (2021)	114564	Т	G,GGTT	1.0
		variant is -0.67 kcal/mol (i.e. destabilizing relative	AY.131, AY.46.1,					
		to wild type)	AY.9.2.1, AY.119.2,					
			AY.70, AY.78, AY.16, AY.99,					
			AY.5.3, AY.128,					
			AY.49, AY.4.12,					
			AY.44, AY.57, AY.68,					
			AY.25.1.2, AY.3.3, AY.37,					
			AY.42, AY.48, AY.34.1.1,					
			AY.18, AY.93, AY.4.3,					
			AY.25, AY.72, AY.101,					
			AY.120, AY.23,					
			AY.88, AY.56, AY.46.5,					
			AY.92, AY.133,					
			AY.86, AY.76, AY.83,					
			AY.119.1, AY.77, AY.59,					
			AY.34, AY.85, AY.5.6,					
			AY.122.6, AY.94,					
			AY.112.2, AY.33,					
			AY.36, AY.45, B.1.617.2,					
			AY.13, AY.55, AY.127.1,					
			AY.43.3, AY.107,					
			AY.82, AY.108,					
			AY.124.1.1, AY.99.1,					
			AY.51, AY.4.2.3,					
			AY.64, AY.121,					
			AY.124, AY.46, AY.7.1,					
			AY.106, AY.4.7, AY.58,					
			AY.30, AY.98, AY.25.1,					
			AY.3.2, AY.6, AY.15, AY.35,					
			AY.109, AY.28,					
			AY.36.1, AY.43,					
			AY.25.3, AY.43.8,					
			AY.7.2, AY.32, AY.118, AY.84, AY.9,					
			AY.103,					
			AY.46.4, AY.98.1,					
			AY.100, AY.9.2, AY.24,					
			AY.39.2, AY.10, AY.1,					
			AY.39.3, AY.67, AY.4.5, AY.111,					
			AY.46.2, AY.113,					
			AY.113, AY.91, AY.26.1,					
			AY.62, AY.4.6, AY.4, AY.46.6,					
			AY.116.1, AY.127, AY.3,					
			AY.99.2, AY.43.7,					
			AY.29.2, ontact. UsAY.38,			,	CIDGOH [©]	
			AY.75.2,			•	UIDGUH	

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
L452W	monoclonal anti- body serial passage escape	Ranked effective mutant against this position in the RBD for highly neutraliz- ing COV2-2096	AY.3.1	Greaney et al. (2020)	34	CT	CG	0.97
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to D614G.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Gong et al. (2021)	26193	GGA	TGG,TGGT	GOT 618
D614G	ACE2 receptor binding affinity	In four cell lines (including 293T-hACE2 cells), this mutation combination increases infectivity vs D614G alone	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Li et al. (2020)	26193	GGA	TGG,TGGT	GOT 618
D614G	convalescent plasma binding	2.15x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Gong et al. (2021)	26193	GGA	TGG,TGGT	GOT 618
D614G	convalescent plasma escape	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by convalescent plasma [no cohort details provided]	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Wilhelm et al. (2021)	26193	GGA	TGG,TGGT	GOT 618
D614G	humoral response durability	27yo female nurse reinfected in December 2020 (B.1.177) after initial infection in March 2020 (B.3), i.e. with a 9 month interval. Both cases were mild. No significant differences in the neutralizing capacity of the two linages were observed in 4 sera taken (1 pre-reinfection, three post-reinfection). Neutralizing antibody titres (IC50) before and immediately after re-infection were <300 against both strains, and jumped >7x upon re-infection. Viral titres were also higher in the second case also includes N:p.A220V	AY.3, AY.26, AY.27	Brehm et al. (2021)	22501	GGA	TGG	0.77
D614G	immunosuppression variant emergence	Studying 94 COVID-19 extended infection cases with genomics April 1 to October 17, 2020, one case developed 23 mutations in a 19 day period, including this combination in Spike.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Landis et al. (2021)	26193	GGA	TGG,TGGT	Caras
D614G	reinfection	27yo female nurse reinfected in December 2020 (B.1.177) after initial infection in March 2020 (B.3). Both cases were mild. Second case also includes N:p.A220V	AY.3, AY.26, AY.27	Brehm et al. (2021)	22501	GGA	TGG	0.77
D614G	syncytium formation	Slight increase in Vero cell- cell membrane fusion assay under infection with VSV pseudotyped virus.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Kim et al. (2021)	26193	GGA	TGG,TGGT	
D614G	syncytium formation	Slight increase in Vero cell- cell membrane fusion assay under infection with VSV pseudotyped virus relative to wild type, no change rel- ative to D614G.	AY.33	Kim et al. (2021)	395	GGA	TGG	0.9

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	syncytium forma- tion	Slight increase in Vero cell- cell membrane fusion assay under infection with VSV pseudotyped virus relative to wild type, no change rel- ative to D614G.	AY.33	Kim et al. (2021)	395	GGA	TGG	0.9
D614G	tissue specific neutralization	The nasal mucosa of Pfizer vaccinees with time course collection was evaluated against VSV pseudotypes: results (only one nasal swab from different previously infected vacinee neutralizing at weeks 3 and 6 against B.1.1.7 and D614G) suggest that vaccinees probably do not elicit an early humoral response detectable at mucosal surfaces even though sera neutralization was observed. They strengthen the hypothesis that some vaccines may not protect against viral acquisition and infection of the oral-nasal region, but may prevent severe disease associated with viral dissemination in the lower respiratory tract.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Planas et al. (2021)	26193	GGA	TGG,TGGT	
D614G	trafficking	Circulating variant shown in vitro to not have major defects or enhancement of cell surface protein traffick- ing (i.e. Spike cleavage or fusion required for cell en- try)	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Barrett et al. (2021)	26193	GGA	TGG,TGGT	
D614G	trafficking	The increased transduction with Spike D614G ranged from 1.3- to 2.4-fold in Caco-2 and Calu-3 cells expressing endogenous ACE2 and from 1.5- to 7.7-fold in A549ACE2 and Huh7.5ACE2 overexpressing ACE2. Although there is minimal difference in ACE2 receptor binding between the D614 and G614 Spike variants, the G614 variant is more resistant to proteolytic cleavage, suggesting a possible mechanism for the increased transduction.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Daniloski et al. (2021)	26193	GGA	TGG,TGGT	Garas
D614G	trafficking	No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Kim et al. (2021)	26193	GGA	TGG,TGGT	
D614G	trafficking	extasciitilde4x more efficient S2 domain cleavage compared to wild type in Caco-2 cells, mid-range of three cell line tested (Vero and Calu-3).	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Kim et al. (2021)	26193	GGA	TGG,TGGT	GOTAS
D614G	trafficking	No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.33	Kim et al. (2021)	395	GGA	TGG	0.9
D614G	trafficking	extasciitilde4x more efficient S2 domain cleavage compared to wild type, no change relative to D614G alone in Caco-2 cells, midrange of three cell line tested (Vero and Calu-3).	AY.33	Kim et al. (2021)	395	GGA	TGG	0.9

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	trafficking	No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.33	Kim et al. (2021)	395	GGA	TGG	0.9
D614G	trafficking	extasciitilde4x more efficient S2 domain cleavage compared to wild type, no change relative to D614G alone in Caco-2 cells, midrange of three cell line tested (Vero and Calu-3).	AY.33	Kim et al. (2021)	395	GGA	TGG	0.9
D614G	trafficking	Among S variants tested, the D614G mutant shows the highest cell entry (ex- tasciitilde3.5x wild type), as supported by structural and binding analyses.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Ozono et al. (2020)	26193	GGA	TGG,TGGT	Garas
D614G	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Tada et al. (2021)	26193	GGA	TGG,TGGT	GCC-018
D614G	trafficking	We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than wild type (extasciitilde9-fold). This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Zhang et 1. (2020)	26193	GGA	TGG,TGGT	
D614G	transmissibility	Increased infectivity of the B.1.617 spike was at- tributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Tada et al. (2021)	26193	GGA	TGG,TGGT	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
D614G	vaccine neutraliza- tion efficacy	Pseudotyped D614G virus has reduced neutralization activity vs wild type: 1.2x (37 sera Pfizer median 9 days post 2nd dose, 37 sera Moderna median 18 days post 2nd dose). This was NOT significant by ANOVA.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Garcia- Beltran et al. (2021)	26193	GGA	TGG,TGGT	Caras

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccine neutralization efficacy	Using a lentivirus virus pseudotyped with D614G Spike, sera from vaccinated individuals who received the second dose (9–11 days post-second dose of Pfizer) exhibited a robust neutralizing potential, with a mean NT50 value of 99,000. This was an average of a 2-fold increase, relative to sera drawn from the individuals who received one dose of vaccination—mean NT50 dilution of 51,300. Importantly, a 6-fold increase in mean NT50 dilution was obtained when sera from the first vaccination dose was compared to convalescent sera from cohort with severe disease (NT50 51,000 vs 8,700) 21 to 63 days post-onset.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Kuzmina et al. (2021)	26193	GGA	TGG,TGGT	COT 08
D614G	vaccine neutralization efficacy	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by 18 vaccinee sera (BNT162b2 and mRNA1273).	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Wilhelm et al. (2021)	26193	GGA	TGG,TGGT	
D614G	vaccinee plasma binding	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Gong et al. (2021)	26193	GGA	TGG,TGGT	GOT 48
D614G	viral load	Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Plante et al. (2020)	26193	GGA	TGG,TGGT	GCC 48
D614G	virion structure	Estimated free energy change (ddG) for this variant is 2.5 kcal/mol (i.e. stabilizing relative to wild type)	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Spratt et al. (2021)	26193	GGA	TGG,TGGT	
D614G	virion structure	Negative stain EM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Weissman et al. (2020)	26193	GGA	TGG,TGGT	
D614G	virion structure	CryoEM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Yurkovetskiy et al. (2020)	26193	GGA	TGG,TGGT	CO. AS

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	virion structure	Based on pseudotyped virus experiments, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.16, AY.20, AY.3, AY.124.1.1, AY.26, AY.33, AY.27, AY.5, AY.25, AY.107, AY.46, AY.122	Zhang et al. (2020)	26193	GGA	TGG,TGGT	
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed essentially no change in binding (KD) relative to D614G.	AY.120, AY.3.1	Gong et al. (2021)	79	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.32x increase in binding (KD) relative to D614G.	AY.103.2	Gong et al. (2021)	568	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.19x increase in binding (KD) relative to D614G.	AY.88	Gong et al. (2021)	15	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.08x decrease in binding (KD) relative to D614G.	AY.112, AY.36	Gong et al. (2021)	503	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant combination showed no change relative to D614G.	AY.86	Gong et al. (2021)	889	A	G	1.0
D614G	ACE2 receptor binding affinity	This variant appears twice in the experiments, with slightly different affinities (both extasciitilde1.2x decrease in binding relative to D614G) using flow cytometry and ACE2 ectodomains-Fc portion IgG complex.	AY.109	Gong et al. (2021)	57	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.21x increase in binding (KD) relative to D614G.	AY.103	Gong et al. (2021)	5240	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.5x decrease in binding (KD) relative to D614G.	AY.2, AY.1	Gong et al. (2021)	20	A	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 48 of 98

	Frequenc 1.0
AY.38, AY.56, AY.38, AY.56, AY.36, AY.37, AY.38, AY.38, AY.38, AY.38, AY.39, AY.34, AY.55, AY.122, AY.36, AY.42, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.11, AY.10, AY.43, AY.43, AY.44, AY.11, AY.10, AY.43, AY.43, AY.44, AY.11, AY.45, AY.45, AY.45, AY.47, AY.58, AY.47, AY.48, AY.48, AY.49, AY.49, AY.49, AY.41, AY.41, AY.41, AY.43, AY.43, AY.44, AY.44, AY.44, AY.45, AY.45, AY.45, AY.46, AY.47, AY.48, AY.48, AY.49, AY.49, AY.49, AY.49, AY.41, AY.41, AY.41, AY.43, AY.44, AY.44, AY.44, AY.45, AY.44, AY.45, AY.44, AY.46, AY.47, AY.48, AY.48, AY.48, AY.49, AY.49, AY.49, AY.40, AY.40, AY.40, AY.40, AY.40, AY.41, A	

nf-ncov-voc 49 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant combination (representing lineage B.1.617) showed a 1.85x increase in binding (KD) relative to D614G. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77	Gong et al. (2021)	5287	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.1x decrease in binding (KD) relative to D614G.	AY.46.1, AY.65, AY.4.4, AY.119.2, B.1.617.2, AY.129, AY.9, AY.34.1, AY.103, AY.46.4, AY.119, AY.100, AY.126, AY.43.6, AY.108, AY.44, AY.25.1.2, AY.37, AY.25.1.2, AY.37, AY.25.1, AY.93, AY.6, AY.122.1, AY.35, AY.4, AY.43, AY.47, AY.112, AY.127, AY.127, AY.53, AY.86, AY.77	Gong et al. (2021)	73313	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.58x increase in binding (KD) relative to D614G.	AY.9.2, AY.4.3	Gong et al. (2021)	156	A	G	1.0
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.12x decrease in binding (KD) relative to D614G.	AY.43	Gong et al. (2021)	498	A	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 50 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.33x decrease in binding (KD) relative to D614G.	AY.116, AY.29, AY.118, AY.114, AY.121.1, AY.131, AY.39.1, AY.4.2, AY.119.2, AY.112.2, AY.36, AY.129, AY.4.4, AY.34.1, AY.9, AY.120.1, AY.120.1, AY.120.1, AY.128, AY.100, AY.128, AY.104, AY.121, AY.120.1, AY.120.1, AY.120.1, AY.139, AY.100, AY.128, AY.104, AY.128, AY.104, AY.108, AY.4.12, AY.111, AY.4.2.1, AY.124, AY.4.2, AY.110, AY.106, AY.4.5, AY.111, AY.4.7, AY.25.1, AY.4.8, AY.109, AY.36.1, AY.4.8, AY.109, AY.36.1, AY.4.8, AY.101, AY.120, AY.112, AY.1120, AY.1120, AY.1120, AY.1121, AY.120, AY.113, AY.120, AY.114.1, AY.120, AY.119.1, AY.120, AY.133, AY.119.1, AY.101, AY.120, AY.34, AY.117	Gong et al. (2021)	60732	A	G,GTT	1.0

Contact Us ${\bf CIDGOH}^{\, \odot}$

nf-ncov-voc 51 of 98

Dillion and ming offinity by Dillion (Section 1997) and Dillion (Section 19	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Contact Usay.54, CIDGOH®	Mutations D614G	ACE2 receptor bind-	In four cell lines (including 293T-hACE2 cells), this mutation combination increases infectivity vs	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.56, AY.12.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.11, AY.124, AY.7.1, AY.106, AY.4.7, AY.58, AY.30, AY.98.1, AY.41, AY.100, AY.92, AY.108, AY.25.1, AY.32, AY.18, AY.43, AY.44, AY.31, AY.45, AY.100, AY.92, AY.104, AY.39.3, AY.46.4, AY.31, AY.47, AY.49.2, AY.116, AY.416, AY.116, AY.116, AY.117, AY.416, AY.116, AY.117, AY.42, AY.43, AY.43, AY.44, AY.31, AY.45, AY.416, AY.116, AY.116, AY.116, AY.117, AY.42, AY.43, AY.43, AY.44, AY.39, AY.43, AY.43, AY.44, AY.31, AY.45, AY.416, AY.116, AY.116, AY.117, AY.42, AY.43, AY.43, AY.43, AY.44, AY.39, AY.44, AY.39, AY.45, AY.416, AY.116, AY.116, AY.116, AY.116, AY.116, AY.127, AY.42, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.31, AY.45, AY.416,	Li et al.	Depth	lele	Allele	Frequency

nf-ncov-voc 52 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	convalescent plasma binding	1.11x decrease in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.120, AY.3.1	Gong et al. (2021)	79	A	G	1.0
D614G	convalescent plasma binding	1.56x decrease in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.103.2	Gong et al. (2021)	568	A	G	1.0
D614G	convalescent plasma binding	2.29x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.88	Gong et al. (2021)	15	A	G	1.0
D614G	convalescent plasma binding	1.19x decrease in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.112, AY.36	Gong et al. (2021)	503	A	G	1.0
D614G	convalescent plasma binding	2.11x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.86	Gong et al. (2021)	889	A	G	1.0
D614G	convalescent plasma binding	1.42x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.109	Gong et al. (2021)	57	A	G	1.0
D614G	convalescent plasma binding	1.48x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.103	Gong et al. (2021)	5240	A	G	1.0
D614G	convalescent plasma binding	2.16x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.2, AY.1	Gong et al. (2021)	20	A	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 53 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G D614G	Sub-category convalescent plasma binding	Function 2.15x increase in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptom-onset.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.78, AY.99, AY.49, AY.412, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.42, AY.43, AY.43, AY.43, AY.43, AY.70, AY.43, AY.43, AY.71, AY.101, AY.120, AY.23, AY.88, AY.56, AY.66, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.36, AY.122.6, AY.94, AY.112.2, AY.36, AY.45, B1.617.2, AY.43, AY.43, AY.55, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.112, AY.106, AY.47, AY.107, AY.108, AY.30, AY.48, AY.31, AY.98, AY.31, AY.98, AY.32, AY.118, AY.43, AY.25.3, AY.43, AY.44, AY.31, AY.98.1, AY.103, AY.46.4, AY.31, AY.99.1, AY.40, AY.113, AY.91, AY.40, AY.101, AY.40, AY.101, AY.40, AY.103, AY.416, AY.417, AY.40, AY.103, AY.40, AY.103, AY.40, AY.103, AY.40, AY.103, AY.40, AY.103, AY.40, AY.103, AY.416, AY.417, AY.416, AY.417, AY.416, AY.416, AY.416, AY.416, AY.416, AY.417, AY.416,	Gong et al. (2021)				
		Co	AY.116, on t act9UsAY.54,			(CIDGOH [©]	

nf-ncov-voc 54 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	convalescent plasma binding	This variant combination (representing lineage B.1.617) showed a 1.22x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 8 months postsymptom-onset. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77	Gong et al. (2021)	5287	A	G	1.0
D614G	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.46.1, AY.65, AY.4.4, AY.119.2, B.1.617.2, AY.129, AY.9, AY.34.1, AY.103, AY.46.4, AY.119, AY.106, AY.126, AY.43.6, AY.108, AY.44, AY.25.1.2, AY.37, AY.25.1, AY.93, AY.6, AY.122.1, AY.35, AY.4, AY.43, AY.47, AY.112, AY.112, AY.112, AY.25.3, AY.53, AY.86, AY.77	Gong et al. (2021)	73313	A	G	1.0
D614G	convalescent plasma binding	1.08x decrease in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.9.2, AY.4.3	Gong et al. (2021)	156	A	G	1.0
D614G	convalescent plasma binding	1.58x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.43	Gong et al. (2021)	498	A	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptomonset.	AY.116, AY.29, AY.118, AY.114, AY.121.1, AY.131, AY.39.1, AY.4.2, AY.119.2, AY.112.2, AY.112.2, AY.36, AY.129, AY.4.4, AY.34.1, AY.9, AY.78, B.1.617.2, AY.120.1, AY.120.1, AY.120.1, AY.120.1, AY.120, AY.126, AY.4.2.2, AY.39.2, AY.104, AY.108, AY.4.12, AY.104, AY.108, AY.4.12, AY.121, AY.121, AY.121, AY.124, AY.4.2.1, AY.124, AY.4.2.1, AY.124, AY.4.2.1, AY.124, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.2.1, AY.4.3, AY.111, AY.4.5, AY.111, AY.4.7, AY.4.8, AY.109, AY.36.1, AY.4.92, AY.112, AY.112, AY.112, AY.112, AY.112, AY.112, AY.120, AY.112, AY.113, AY.4.3, AY.101, AY.4.3, AY.101, AY.4.3, AY.101, AY.4.3, AY.102, AY.112, AY.112, AY.112, AY.112, AY.113, AY.4.3, AY.113, AY.4.3, AY.114, AY.4.3, AY.115, AY.4.4, AY.116, AY.112, AY.116, AY.112, AY.116, AY.112, AY.112, AY.112, AY.112, AY.112, AY.113, AY.4.3, AY.113, AY.4.3, AY.114, AY.127, AY.120, AY.112, AY.116, AY.127, AY.124, AY.127, AY.124, AY.127, AY.124, AY.127, AY.124, AY.127, AY.124, AY.127, AY.128, AY.119, AY.129, AY.134, AY.134, AY.141, AY.127, AY.120, AY.134, AY.	Gong et al. (2021)	60732	A	G,GTT	1.0
D614G	convalescent plasma escape	Pseudotyped viruses for B.1.618 was 2.5-fold resistant to neutralization by convalescent sera compared to wild type - a finding that was similar to that of the 3-fold resistance of the South Africa B.1.351 variant using the same assay. The resistance of B.1.618 was caused by the E484K mutation, based on results from viruses pseudotyped for individual variants within B.1.618. [details on the convalescent patient sera collection are not abundantly clear in the preprint]	AY.109	Tada et al. (2021)	57	A	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 56 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
D614G	convalescent plasma	Pseudotyped viruses for	AY.126,	Tada et al.	5287	A	G	1.0
	escape	B.1.617 was 2.3-fold re-	AY.127,	(2021)				
		sistant to neutralization	AY.108,					
		by convalescent sera com-	AY.65, AY.35,					
		pared to wild type - a	AY.112.2,					
		finding that was similar to	AY.36,					
		that of the 3-fold resis-	B.1.617.2,					
		tance of the South Africa	AY.26.1, AY.1,					
		B.1.351 variant using the	AY.77					
		same assay. The re-						
		sistance of B.1.617 was						
		caused by the L452R and						
		E484Q mutation, based on						
		results from viruses pseu-						
		dotyped for individual vari-						
		ants within B.1.617. [de-						
		tails on the convalescent						
		patient sera collection are						
		not abundantly clear in the						
		preprint]						

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 57 of 98

	ub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G co	ub-category onvalescent plasma scape	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by convalescent plasma [no cohort details provided]	Lineages AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.79, AY.99, AY.5.3, AY.128, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.42, AY.43, AY.43, AY.43, AY.43, AY.43, AY.101, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.84, AY.119.1, AY.77, AY.59, AY.34, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.36, AY.112.2, AY.36, AY.12.6, AY.94, AY.112.2, AY.36, AY.45, AY.12.4, AY.121, AY.43.3, AY.82, AY.106, AY.47, AY.59, AY.51, AY.42.3, AY.64, AY.121, AY.106, AY.4.7, AY.58, AY.58, AY.109, AY.88, AY.71, AY.106, AY.4.7, AY.88, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.51, AY.42.3, AY.64, AY.118, AY.84, AY.71, AY.106, AY.47, AY.85, AY.109, AY.88, AY.72, AY.18, AY.48, AY.72, AY.18, AY.49, AY.103, AY.46, AY.104, AY.107, AY.46, AY.107, AY.46, AY.107, AY.46, AY.108, AY.47, AY.48, AY.49, AY.109, AY.48, AY.49, AY.109, AY.49, AY.101, AY.40, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, A	Citation Wilhelm et al. (2021)				

nf-ncov-voc 58 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
Datio	,	07 6 1	137.0.0.1	D 1 . 1	Depth	lele	Allele	Frequency
D614G	humoral response	27yo female nurse rein-	AY.9.2.1,	Brehm et al.	21317	A	G	1.0
	durability	fected in December 2020	AY.65, AY.4.2,	(2021)				
		(B.1.177) after initial infec-	AY.70, AY.9,					
		tion in March 2020 (B.3),	B.1.617.2,					
		i.e. with a 9 month inter-	AY.55, AY.69,					
		val. Both cases were mild.	AY.9.2, AY.24,					
		No significant differences	AY.4.2.2,					
		in the neutralizing capac-	AY.10, AY.44,					
		ity of the two linages were	AY.57, AY.68,					
		observed in 4 sera taken	AY.4.2.3,					
		(1 pre-reinfection, three	AY.64, AY.37,					
		post-reinfection). Neu-	AY.4.2.1,					
		tralizing antibody titres	AY.67,					
		(IC50) before and imme-	AY.106,					
		diately after re-infection	AY.58, AY.75,					
		were <300 against both	AY.93, AY.61,					
		strains, and jumped >7x	AY.26.1,					
		upon re-infection. Viral	AY.28,					
		titres were also higher in	AY.62, AY.2,					
		the second case. Sec-	AY.74, AY.72,					
		ond case also includes	AY.73, AY.47,					
		N:p.A220V	AY.60, AY.56,					
			AY.133,					
			AY.38,					
			AY.119.1,					
			AY.75.2,					
			AY.59					

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 59 of 98

Did G						
AY.103.2, AY.116, Contact 9 UsAY.54, CIDGOH ©		tended infection cases with genomics April 1 to October 17, 2020, one case developed 23 mutations in a 19 day period, including this combination in Spike.	AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.401, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.34, AY.112.2, AY.34, AY.112.2, AY.36, AY.122.6, AY.94, AY.112.1, AY.124, AY.71, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.133, AY.46.4, AY.31, AY.98.1, AY.99.1, AY.46.4, AY.31, AY.98.1, AY.99.2, AY.10, AY.46.6, AY.416.1, AY.127, AY.43, AY.43, AY.44.6, AY.416.1, AY.127, AY.43, AY.43, AY.43, AY.44.6, AY.44.6, AY.41.6, AY		A	

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	outcome hazard ratio	B.1.526 (Iota) substantially increased IFR in older adults: by 46% (95% CI: 7.4 - 84%) among 45-64 year-olds, 82% (95% CI: 20 - 140%) among 65-74 year-olds, and 62% (95% CI: 45 - 80%) among 75+ during Nov 2020 - Apr 2021, compared to baseline IFR estimated for preexisting variants. [minimum clade defining mutations listed]	AY.112, AY.36	Yang et al. (2021)	503	A	G	1.0
D614G	reinfection	27yo female nurse reinfected in December 2020 (B.1.177) after initial infection in March 2020 (B.3). Both cases were mild. Second case also includes N:p.A220V	AY.9.2.1, AY.65, AY.4.2, AY.70, AY.9, B.1.617.2, AY.55, AY.69, AY.9.2, AY.24, AY.4.2.2, AY.10, AY.44, AY.57, AY.68, AY.4.2.3, AY.64, AY.37, AY.4.2.1, AY.67, AY.106, AY.58, AY.75, AY.93, AY.61, AY.26.1, AY.26.1, AY.26, AY.74, AY.72, AY.73, AY.47, AY.73, AY.47, AY.60, AY.56, AY.133, AY.38, AY.119.1, AY.75.2, AY.59	Brehm et al. (2021)	21317	A	G	1.0
D614G	reinfection	A 42yo Iranian male was reinfected with B.1.36 lineage virus 128 days after infection with genetically distinct B.1.36 virus, with negative PCR tests in between. In the first instance patient presented with cough, headache, severe diarrhea. In the second instance symptoms were more severe: body pain, shortness of breath, headache and anosmia. Anti-SARS-CoV-2 IgG and IgM tests were negative after both episodes. [Non-seroconversion may be associated with elevated risk of re-infection] [I210del is a homoplasy that has appeared in several disparate parts of the global phylogenetic tree, including A and B lineages, primarily in LMICs]	AY.98	Salehi- Vaziri et al. (2021)	13	A	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 61 of 98

nf-ncov-voc 62 of 98

Mutations	Sub-category	у	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	syncytium tion	forma-	Slight increase in Vero cell- cell membrane fusion assay under infection with VSV pseudotyped virus relative to wild type, no change rel- ative to D614G.	AY.113	Kim et al. (2021)	155	A	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 63 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	tissue specific neutralization	The nasal mucosa of Pfizer vaccinees with time course collection was evaluated against VSV pseudotypes: results (only one nasal swab from different previously infected vacinee neutralizing at weeks 3 and 6 against B.1.1.7 and D614G) suggest that vaccinees probably do not elicit an early humoral response detectable at mucosal surfaces even though sera neutralization was observed. They strengthen the hypothesis that some vaccines may not protect against viral acquisition and infection of the oral-nasal region, but may prevent severe disease associated with viral dissemination in the lower respiratory tract.	AY.41, AY.121.1, AY.131, AY.46.1, AY.92.1, AY.19.2, AY.70, AY.78, AY.99, AY.53, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.34, AY.34.1.1, AY.18, AY.93, AY.423, AY.40, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.65, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.51, AY.71, AY.12.2, AY.36, AY.12.6, AY.94, AY.112.2, AY.36, AY.12.1, AY.71, AY.106, AY.43, AY.51, AY.42, AY.108, AY.99.1, AY.106, AY.47, AY.98, AY.30, AY.98, AY.31, AY.109, AY.25, AY.109, AY.25, AY.118, AY.43, AY.25, AY.118, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.31, AY.45, AY.109, AY.47, AY.48, AY.30, AY.48, AY.31, AY.49, AY.103, AY.46, AY.113, AY.47, AY.48, AY.49, AY.103, AY.48, AY.49, AY.103, AY.46, AY.111, AY.46, AY.113, AY.46, AY.113, AY.98, AY.39, AY.410, AY.47, AY.98, AY.39, AY.411, AY.46, AY.111, AY.46, AY.41, AY.99, AY.40, AY.41, AY.99, AY.40, AY.41, AY.99, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41,	Planas et al. (2021)		A A		

nf-ncov-voc 64 of 98

D614G trafficking Circulating variant shown in vitro to not have major defects or enhancement of cell surface protein trafficking (i.e. Spike cleavage or fusion required for cell enforcements of culture for cell enforcements of the control of the	Frequency 1.0
477) A 7.78, A 7.8, A 7.98, A 7.99, A 7.93, A 7.94, A 7.95, A	

nf-ncov-voc 65 of 98

trafficking The increased transduction with Spike D614G ranged from 1.3- to 2.4- fold in Caco-2 and Calu-3 cells expressing endogenous ACE2 and from 1.5- to 7.7-fold in A549ACE2 and Huhr.5ACE2 overexpressing ACE2. Although there is minimal difference in ACE2 receptor binding between the D614 and G614 Spike variants, the G614 variant is more resistant to proteolytic cleavage, suggesting a possible mechanism for the increased transduction. 4.7.19.1. 4.7.10. 4.7.11. 4.7.11. 4.7.12. 4.7.13. 4.7.19.	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Allele	Alternate Frequency
AY.34, AY.85, AY.122,6, AY.122,6, AY.94, AY.112,1 AY.36, AY.45, BY.12,1 AY.55, AY.127,1, AY.43,3, AY.82, AY.108, AY.99,1, AY.51, AY.42,3, AY.04, AY.121, AY.41, AY.10, AY.41, AY.42, AY.43, AY.44, AY.44, AY.45, AY.47, AY.35, AY.36, AY.30, AY.98, AY.36, AY.30, AY.48, AY.48, AY.49, AY.118, AY.41, AY.42, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY.42, AY.43, AY.43, AY.41, AY.43, AY.44, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.41, AY.42, AY.41, AY	Mutations D614G	Sub-category trafficking	tion with Spike D614G ranged from 1.3- to 2.4-fold in Caco-2 and Calu-3 cells expressing endogenous ACE2 and from 1.5-to 7.7-fold in A549ACE2 and Huh7.5ACE2 overexpressing ACE2. Although there is minimal difference in ACE2 receptor binding between the D614 and G614 Spike variants, the G614 variant is more resistant to proteolytic cleavage, suggesting a possible mechanism for the in-	AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.4.20, AY.23, AY.88, AY.56, AY.6.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.57, AY.122.6, AY.94, AY.112.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.71, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.25.1, AY.32, AY.64, AY.111, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.25.1, AY.32, AY.64, AY.111, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.25.1, AY.32, AY.18, AY.43, AY.25.3, AY.43, AY.25.1, AY.32, AY.111, AY.106, AY.47, AY.58, AY.30, AY.98, AY.25.1, AY.32, AY.111, AY.106, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.1, AY.39, AY.46.4, AY.111, AY.104, AY.107, AY.108, AY.109, AY.91, AY.101, AY.					

nf-ncov-voc 66 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Mutations D614G	Sub-category trafficking	Function No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	Lineages AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.34.1.1, AY.18, AY.93, AY.43, AY.40, AY.120, AY.23, AY.88, AY.56, AY.46.5, AY.92, AY.133, AY.86, AY.77, AY.85, AY.19.1, AY.12.2, AY.36, AY.45, AY.19.1, AY.12.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.12.1, AY.12.3, AY.42.3, AY.43.3, AY.42.3, AY.43.3, AY.85, AY.56, AY.121, AY.112, AY.13, AY.51, AY.42.3, AY.64, AY.1121, AY.121, AY.124, AY.71, AY.106, AY.47, AY.58, AY.30, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.121, AY.124, AY.71, AY.106, AY.47, AY.39.3, AY.64, AY.15, AY.35, AY.109, AY.28, AY.10, AY.43, AY.25.3, AY.46.4, AY.111, AY.43, AY.25.3, AY.46.4, AY.113, AY.98.1, AY.98.1, AY.98.1, AY.100, AY.9.2, AY.10, AY.113, AY.98.1, AY.99.1, AY.46.2, AY.113, AY.98.1, AY.98.1, AY.99.1, AY.46.4, AY.31, AY.98.1, AY.99.1, AY.46.2, AY.113, AY.91, AY.46.2, AY.113, AY.91, AY.46.3, AY.47.46.6, AY.113, AY.91, AY.46.4, AY.39.3, AY.67, AY.48.4, AY.99, AY.10, AY.113, AY.91, AY.99.1, AY.46.2, AY.113, AY.91, AY.46.2, AY.113, AY.91, AY.99.1, AY.46.2, AY.113, AY.91, AY.46.3, AY.47.46.6, AY.113, AY.91, AY.47.46.6, AY.113, AY.91, AY.48.3, AY.75.3, AY.46.4, AY.113, AY.91, AY.49.7, AY.39.3, AY.67, AY.49.30, AY.47.40, AY.103, AY.46.40, AY.113, AY.91, AY.92, AY.103, AY.46.40, AY.113, AY.91, AY.93.3, AY.67, AY.48.8, AY.7.2, AY.39.3, AY.67, AY.49.30, AY.48.8, AY.7.30, AY.88.8, AY.7.20, AY.101, AY.48.8, AY.49, AY.101, AY.49, AY.101, AY.	Kim et al. (2021)	Sequence Depth 88446	Reference Allele A	Alternate Allele G,GTT	Alternate Frequency 1.0
		Co	AY.116, ont Xct 9UsAY.54, AY.114,			(CIDGOH [©]	

nf-ncov-voc 67 of 98

19814G contesticing contestici	Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
CONTROPORTE I WILLIAM I	D614G		extasciitilde4x more efficient S2 domain cleavage compared to wild type in Caco-2 cells, mid-range of three cell line tested (Vero and Calu-3).	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.4.3, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.56, AY.112.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.1121, AY.124, AY.71, AY.106, AY.4.7, AY.58, AY.30, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.71, AY.106, AY.4.7, AY.58, AY.30, AY.98.1, AY.31, AY.84, AY.31, AY.85, AY.109, AY.25.3, AY.46.4, AY.113, AY.98.1, AY.100, AY.98.1, AY.100, AY.99.1, AY.101, AY.40.2, AY.113, AY.98.1, AY.100, AY.98.1, AY.101, AY.40.2, AY.113, AY.101, AY.40.2, AY.113, AY.101, AY.40.2, AY.113, AY.101, AY.40.3, AY.40.3, AY.40.4, AY.31, AY.98.1, AY.100, AY.99.1, AY.101, AY.40.2, AY.113, AY.101, AY.40.3, AY.40.4, AY.113, AY.101, AY.40.3, AY.40.4, AY.40.4, AY.41, AY.41, AY.40.4, AY.41, AY.40.4, AY.41, AY.40.4, AY.41, AY.40.4, AY.41, A	Kim et al.	Depth	lele A	Allele G,GTT	Frequency

nf-ncov-voc 68 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	trafficking	No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.108, AY.113	Kim et al. (2021)	155	A	G	1.0
D614G	trafficking	extasciitilde4x more efficient S2 domain cleavage compared to wild type, no change relative to D614G alone in Caco-2 cells, midrange of three cell line tested (Vero and Calu-3).	AY.108, AY.113	Kim et al. (2021)	155	A	G	1.0
D614G	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h post-transduction.	AY.109	Kuzmina et al. (2021)	57	A	G	1.0
D614G	trafficking	extasciitilde2x more infectivity than D614G alone in HEK293T-ACE2 cells 48h post-transduction.	AY.2, AY.1	Kuzmina et al. (2021)	20	A	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 69 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G		Among S variants tested, the D614G mutant shows the highest cell entry (ex- tasciitilde3.5x wild type), as supported by structural	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.79, AY.99, AY.49, AY.412, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.48, AY.41, AY.57, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.65, AY.92, AY.133, AY.86, AY.76, AY.84, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.36, AY.112.2, AY.36, AY.122.6, AY.94, AY.112.2, AY.36, AY.45, B1.617.2, AY.13, AY.88, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.11, AY.106, AY.4.7, AY.107, AY.108, AY.99.1, AY.118, AY.99.1, AY.118, AY.99.1, AY.118, AY.94, AY.118, AY.94, AY.118, AY.95, AY.109, AY.28, AY.109, AY.29, AY.118, AY.40, AY.118, AY.41, AY.100, AY.9.2, AY.118, AY.40, AY.118, AY.41, AY.100, AY.9.2, AY.118, AY.41, AY.101, AY.41,	Ozono et al.	Depth	lele A	Allele G,GTT	Frequency

nf-ncov-voc 70 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.5.6, AY.94, AY.112.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.112, AY.106, AY.47, AY.58, AY.108, AY.99.1, AY.108, AY.99.1, AY.108, AY.99.1, AY.109, AY.28, AY.30, AY.98, AY.25.1, AY.109, AY.47, AY.58, AY.30, AY.98, AY.25.1, AY.109, AY.47, AY.58, AY.109, AY.47, AY.58, AY.109, AY.47, AY.38, AY.40, AY.118, AY.43, AY.44, AY.118, AY.45, AY.109, AY.47, AY.109, AY.48, AY.103, AY.46.4, AY.118, AY.49, AY.103, AY.46.4, AY.31, AY.99.1, AY.103, AY.46.4, AY.31, AY.99.2, AY.14, AY.103, AY.46.6, AY.116.1, AY.99.2, AY.103, AY.46.4, AY.31, AY.99.1, AY.103, AY.46.6, AY.116.1, AY.99.2, AY.103, AY.46.6, AY.47, AY.103, AY.46.6, AY.116.1, AY.99.2, AY.103, AY.46.6, AY.116.1, AY.99.2, AY.103, AY.46.6, AY.116.1, AY.99.2, AY.103, AY.46.6, AY.116.1, AY.99.2, AY.103, AY.104.6, AY.116.1, AY.99.2, AY.104.6, AY.47.9, AY.105, AY.116.1, AY.99.2, AY.105, AY.116.1, AY.99.2, AY.106, AY.47.3, AY.106, AY.47.3, AY.106, AY.14.5, AY.116.1, AY.14.5, AY.116.1, AY.197.2, AY.106, AY.47.3, AY.106, AY.47.4, AY.106, AY.14.5, AY.116.1, AY.197.2, AY.106, AY.14.5, AY.116.1, AY.199.2, AY.104.6, AY.116.1, AY.199.2, AY.104.6, AY.116.1, AY.199.2, AY.104.6, AY.116.1, AY.199.2, AY.104.6, AY.116.1, AY.199.2, AY.104.6, AY.116.1, AY.199.2, AY.105, AY.106, AY.14.5, AY.106, AY.14.5, AY.106, AY.14.5, AY.106, AY.14.5, AY.106, AY.14.5, AY.106, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.14.6, AY.1	Tada et al. (2021)	Depth 88444	A	CIDGOH ©	1.0

nf-ncov-voc 71 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	trafficking	We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than wild type (extasciitilde9-fold). This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.72, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.86, AY.65, AY.92, AY.133, AY.86, AY.77, AY.59, AY.34, AY.85, AY.77, AY.59, AY.34, AY.85, AY.119.1, AY.77, AY.59, AY.36, AY.45, B.1617.2, AY.36, AY.45, B.1617.2, AY.33, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.124, AY.124, AY.124, AY.71, AY.106, AY.47, AY.58, AY.30, AY.98, AY.51, AY.42.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.43, AY.25.3, AY.44, AY.100, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.99.2, AY.10, AY.113, AY.91, AY.410, AY.410, AY.99.2, AY.10, AY.45, AY.113, AY.99.1, AY.40.2, AY.113, AY.99.2, AY.104, AY.410, AY.410, AY.410, AY.43, AY.45, AY.45, AY.47, AY.98.1, AY.98.1, AY.99.2, AY.10, AY.113, AY.91, AY.91, AY.91, AY.92, AY.103, AY.410, AY.410, AY.410, AY.410, AY.410, AY.411, AY.40, AY.113, AY.99.2, AY.104, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.410, AY.411, AY.40, AY.411, AY.40, AY.411, AY.40, AY.411, AY.40, AY.411, AY.40, AY.411, AY.40, AY.411, AY.40, AY.411, AY.410, AY.411, AY.410, AY.411, AY.410, AY.410, AY.411, AY.410, AY.	Zhang et 1. (2020)	Depth 88446	A	Allele G,GTT	1.0

nf-ncov-voc 72 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	transmissibility	Increased infectivity of the B.1.617 spike was attributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.412, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.72, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.65, AY.92, AY.133, AY.86, AY.76, AY.85, AY.92, AY.119.1, AY.77, AY.59, AY.36, AY.45, B.1.617.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.125, AY.30, AY.98, AY.25.3, AY.43.8, AY.25.3, AY.43.8, AY.25.3, AY.43.8, AY.25.3, AY.43.8, AY.25.3, AY.43.8, AY.25.3, AY.44.8, AY.39.2, AY.100, AY.99.2, AY.10, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.98.1, AY.99.2, AY.10, AY.113, AY.99.2, AY.10, AY.114, AY.99.2, AY.10, AY.45, AY.115, AY.40, AY.116, AY.416, AY.117, AY.99.2, AY.108, AY.44.6, AY.117, AY.99.2, AY.108, AY.44.6, AY.118, AY.45, AY.119, AY.109, AY.109, AY.118, AY.40, AY.119, AY.101, AY.40, AY.114, AY.99.2, AY.105, AY.416	Tada et al. (2021)	Depth 88446	lele A	Allele G,GTT	1.0

nf-ncov-voc 73 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
D614G	transmissibility	The combination caused a 3-fold increase in infectivity relative to D614G wild type. [compare to 3.5x for L452R alone]	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77	Tada et al. (2021)	5287	A	G	1.0
D614G	transmissibility	Normalized for particle number, on ACE2.293T cells showed that the B.1.617 spike protein was >2-fold increase in infectivity relative to D614G wild type.	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77	Tada et al. (2021)	5287	A	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 74 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccine neutralization efficacy	Pseudotyped D614G virus has reduced neutralization activity vs wild type: 1.2x (37 sera Pfizer median 9 days post 2nd dose, 37 sera Moderna median 18 days post 2nd dose). This was NOT significant by ANOVA.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.42, AY.44, AY.57, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.65, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.56, AY.112.2, AY.36, AY.45, B1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.111, AY.106, AY.4.7, AY.106, AY.4.7, AY.106, AY.4.7, AY.106, AY.4.7, AY.107, AY.108, AY.99.1, AY.109, AY.109, AY.28, AY.109, AY.25.3, AY.46.4, AY.11, AY.106, AY.47, AY.109, AY.28, AY.30, AY.98, AY.25.3, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.11, AY.100, AY.92, AY.103, AY.46, AY.113, AY.46, AY.113, AY.98.1, AY.100, AY.99.2, AY.103, AY.46, AY.113, AY.99.1, AY.46, AY.113, AY.91, AY.47, AY.48, AY.49, AY.103, AY.46, AY.113, AY.92, AY.103, AY.46, AY.113, AY.92, AY.104, AY.107, AY.99.2, AY.107, AY.45, AY.113, AY.92, AY.47, AY.48, AY.49,	Garcia-Beltran et al. (2021)				
			AY.103.2, AY.116,					

nf-ncov-voc 75 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al-	Alternate	Alternate
					Depth	lele	Allele	Frequency
D614G	vaccine neutraliza-	1.4x reduction in neu-	AY.126,	Gong et al.	5287	A	G	1.0
	tion efficacy	tralization (ID50) in	AY.127,	(2021)				
		sera 3 weeks after one	AY.108,					
		dose of Pfizer/BioNTech	AY.65, AY.35,					
		BNT162b2 (up to 5 naive	AY.112.2,					
		and post infection vacci-	AY.36,					
		nees)	B.1.617.2,					
			AY.26.1, AY.1,					
			AY.77					

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 76 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccine neutralization efficacy	Using a lentivirus virus pseudotyped with D614G Spike, sera from vaccinated individuals who received the second dose (9–11 days post-second dose of Pfizer) exhibited a robust neutralizing potential, with a mean NT50 value of 99,000. This was an average of a 2-fold increase, relative to sera drawn from the individuals who received one dose of vaccination—mean NT50 dilution was obtained when sera from the first vaccination dose was compared to convalescent sera from cohort with severe disease (NT50 51,000 vs 8,700) 21 to 63 days post-onset.	AY.41, AY.121.1, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.48, AY.25.1.2, AY.33, AY.34, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.86, AY.76, AY.86, AY.76, AY.86, AY.76, AY.85, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.33, AY.85, AY.112.2, AY.36, AY.17, AY.43, AY.122.6, AY.94, AY.112.2, AY.13, AY.55, AY.127.1, AY.43, AY.51, AY.42, AY.13, AY.51, AY.42, AY.106, AY.47, AY.58, AY.108, AY.99.1, AY.51, AY.42, AY.124, AY.71, AY.106, AY.47, AY.88, AY.99.1, AY.51, AY.42, AY.71, AY.106, AY.47, AY.58, AY.30, AY.98, AY.25.1, AY.124, AY.71, AY.106, AY.47, AY.88, AY.30, AY.98, AY.25.1, AY.43, AY.44, AY.71, AY.106, AY.47, AY.88, AY.72, AY.35, AY.109, AY.25, AY.109, AY.47, AY.99.2, AY.10, AY.41, AY.99.2, AY.45, AY.111, AY.46.2, AY.113, AY.91, AY.91, AY.46.3, AY.114, AY.99.2, AY.45, AY.115, AY.45, AY.116, AY.45, AY.116, AY.47, AY.99.2, AY.47, AY.45, AY.116, AY.416, AY.416	Kuzmina et al. (2021)		A A		

<u>nf-ncov-voc</u> 77 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.109	Kuzmina et al. (2021)	57	A	G	1.0
D614G	vaccine neutraliza- tion efficacy	This variant showed only minor in Pfizer sera (one or two dose) neutralization efficiency vs D614G (using lentivirus pseudotype).	AY.2, AY.1	Kuzmina et al. (2021)	20	A	G	1.0
D614G	vaccine neutralization efficacy	Pseudotyped viruses for B.1.618 was 2.7-fold resistant to neutralization by 6 BNT162b2 vaccine sera 28 days post-booster compared to wild type - a finding that was similar to that of the 3.4-fold resistance of the South Africa B.1.351 variant using the same assay. Neutralization by 3 Moderna vaccine sera 28 days post-booster was 3-fold resistant (vs. 2.2-fold for B.1.351). The resistance of B.1.618 was caused by the E484K mutation, based on results from viruses pseudotyped for individual variants within B.1.618.	AY.109	Tada et al. (2021)	57	A	G	1.0
D614G	vaccine neutralization efficacy	Pseudotyped viruses for B.1.617 was 4-fold resistant to neutralization by 6 BNT162b2 vaccine sera 28 days post-booster compared to wild type - a finding that was similar to that of the 3.4-fold resistance of the South Africa B.1.351 variant using the same assay. Neutralization by 3 Moderna vaccine sera 28 days post-booster was 5-fold resistant (vs. 2.2-fold for B.1.351). The resistance of B.1.617 was caused by the L452R and E484Q mutation, based on results from viruses pseudotyped for individual variants within B.1.617.	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77	Tada et al. (2021)	5287	A	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 78 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccine neutralization efficacy	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by 18 vaccinee sera (BNT162b2 and mRNA1273).	AY.41, AY.121.1, AY.131, AY.46.1, AY.92.1, AY.19.2, AY.70, AY.78, AY.99, AY.53, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.33, AY.34, AY.34.1.1, AY.18, AY.93, AY.423, AY.40, AY.401, AY.120, AY.23, AY.88, AY.56, AY.65, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.112.2, AY.34, AY.112.2, AY.34, AY.112.2, AY.36, AY.122.6, AY.94, AY.112.2, AY.36, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.121, AY.124, AY.71, AY.106, AY.47, AY.88, AY.71, AY.106, AY.47, AY.98, AY.51, AY.42.3, AY.64, AY.1121, AY.124, AY.71, AY.106, AY.47, AY.98, AY.51, AY.40, AY.118, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.41, AY.42, AY.43, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.41, AY.44, AY.41, AY.45, AY.410, AY.47, AY.48, AY.49, AY.103, AY.46, AY.410, AY.47, AY.48, AY.49, AY.103, AY.46, AY.111, AY.46.2, AY.111, AY.46.3, AY.49.2, AY.10, AY.49.2, AY.40,	Wilhelm et al. (2021)		A A		

Mutations	Sub-categor	у	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccinee binding	plasma	1.19x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.1x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.120, AY.3.1	Gong et al. (2021)	79	A	G	1.0
D614G	vaccinee binding	plasma	1.37x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.56x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.103.2	Gong et al. (2021)	568	A	G	1.0
D614G	vaccinee binding	plasma	1.79x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.3x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.88	Gong et al. (2021)	15	A	G	1.0
D614G	vaccinee binding	plasma	No significant change in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.19x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.112, AY.36	Gong et al. (2021)	503	A	G	1.0
D614G	vaccinee binding	plasma	lifetton vaccinees. 1.64x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.35x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.86	Gong et al. (2021)	889	A	G	1.0
D614G	vaccinee binding	plasma	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.06x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.109	Gong et al. (2021)	57	A	G	1.0

<u>nf-ncov-voc</u> 80 of 98

Mutations	Sub-catego	ry	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccinee binding	plasma	1.04x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.09x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.103	Gong et al. (2021)	5240	A	G	1.0
D614G	vaccinee binding	plasma	1.76x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.75x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.2, AY.1	Gong et al. (2021)	20	A	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 81 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccinee binding plasma	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.37, AY.42, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.5.66, AY.12.6, AY.94, AY.112.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.11, AY.124, AY.7.1, AY.106, AY.4.7, AY.58, AY.30, AY.98, AY.25.1, AY.32, AY.64, AY.118, AY.43, AY.44, AY.11, AY.46, AY.118, AY.43, AY.418, AY.410, AY.418, AY.43, AY.100, AY.92, AY.103, AY.46.4, AY.118, AY.43, AY.104, AY.104, AY.107, AY.43, AY.108, AY.41, AY.42, AY.11, AY.43, AY.43, AY.43, AY.43, AY.44,	Gong et al. (2021)	Depth 88446	A	CIDGOH ©	Frequency 1.0

Mutations	Sub-categor	у	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccinee binding	plasma	This variant combination (representing lineage B.1.617) showed a 1.30x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.18x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees. [exact variant list not provided in manuscript, is inferred fro common knowledge]	AY.126, AY.127, AY.108, AY.65, AY.35, AY.112.2, AY.36, B.1.617.2, AY.26.1, AY.1, AY.77	Gong et al. (2021)	5287	A	G	1.0
D614G	vaccinee binding	plasma	1.23x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.1x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.46.1, AY.65, AY.4.4, AY.119.2, B.1.617.2, AY.129, AY.9, AY.34.1, AY.103, AY.46.4, AY.119, AY.100, AY.126, AY.43.6, AY.43.6, AY.44, AY.25.1.2, AY.37, AY.25.1, AY.93, AY.6, AY.122.1, AY.35, AY.4, AY.43, AY.47, AY.127, AY.127, AY.127, AY.53, AY.86, AY.77	Gong et al. (2021)	73313	A	G	1.0
D614G	vaccinee binding	plasma	1.23x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.37x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.9.2, AY.4.3	Gong et al. (2021)	156	A	G	1.0
D614G	vaccinee binding	plasma	1.02x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.47x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.43	Gong et al. (2021)	498	A	G	1.0

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 83 of 98

Mutations	Sub-category		Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccinee binding	plasma	1.16x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.02x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.116, AY.29, AY.118, AY.114, AY.121.1, AY.131, AY.39.1, AY.4.2, AY.119.2, AY.112.2, AY.36, AY.129, AY.4.4, AY.34.1, AY.9, AY.127.1, AY.119, AY.120.1, AY.120.1, AY.126, AY.4.2.2, AY.39.2, AY.104, AY.128, AY.104, AY.124, AY.4.2.1, AY.4.3, AY.101, AY.4.3, AY.102, AY.4.3, AY.101, AY.120, AY.112, AY.1120, AY.1120, AY.1121, AY.121, AY.120, AY.1121, AY.120, AY.1121, AY.120, AY.1121, AY.120, AY.1121, AY.121, AY.120, AY.121, AY.1	Gong et al. (2021)	60732	A	G,GTT	1.0

Contact Us $\qquad \qquad$ CIDGOH $^{\odot}$

nf-ncov-voc 84 of 98

nf-ncov-voc 85 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
Mutations D614G	Sub-category virion structure	Estimated free energy change (ddG) for this variant is 2.5 kcal/mol (i.e. stabilizing relative to wild type)	Lineages AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.19.2, AY.70, AY.99, AY.5.3, AY.128, AY.49, AY.41, AY.57, AY.68, AY.25.1.2, AY.33, AY.42, AY.44, AY.57, AY.48, AY.34.1.1, AY.18, AY.93, AY.43, AY.72, AY.101, AY.120, AY.23, AY.88, AY.56, AY.65, AY.92, AY.133, AY.86, AY.76, AY.83, AY.119.1, AY.77, AY.59, AY.34, AY.55, AY.112.2, AY.36, AY.45, B.1.617.2, AY.33, AY.85, AY.56, AY.122.6, AY.94, AY.112.2, AY.36, AY.45, B.1.617.2, AY.13, AY.55, AY.127.1, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.64, AY.111, AY.106, AY.4.7, AY.107, AY.108, AY.111, AY.118, AY.84, AY.31, AY.98, AY.31, AY.98, AY.31, AY.98, AY.31, AY.98, AY.31, AY.99, AY.113, AY.91, AY.46.2, AY.103, AY.46.4, AY.3.1, AY.91, AY.46.2, AY.113, AY.91, AY.46.2, AY.113, AY.91, AY.46.2, AY.103, AY.46.4, AY.3.1, AY.91, AY.46.2, AY.113, AY.91, AY.46.2, AY.113, AY.91, AY.46.2, AY.103, AY.46.4, AY.3.1, AY.91, AY.46.2, AY.113, AY.91, AY.46.2, AY.103, AY.46.4, AY.3.1, AY.91, AY.46.2, AY.103, AY.46.4, AY.3.1, AY.91, AY.46.2, AY.103, AY.46.4, AY.4.4, AY.	Spratt et al. (2021)	Sequence Depth 88446	Reference Allele A	Alternate Allele G,GTT	Alternate Frequency 1.0
		Co	AY.116, ntact9UsAY.54, AY.114,			(CIDGOH [©]	

nf-ncov-voc 86 of 98

Negative stim EM shows marked of Spike proteins on the surface of winds, and the presumed to be more likely to find ACE2. A7.53, A7.53, A7.53, A7.54, A7.54, A7.54, A7.54, A7.55, A
AY.5.4, AY.38,
AY.75.2, AY.103.2, AY.116, Contage Usay.54,

nf-ncov-voc 87 of 98

D614G	Frequency 1.0
AY-31.1.1 AV-18. AY-35. AV-10. AV-120. AY-120. AY-23. AY-36. AY-36. AY-36. AY-36. AY-36. AY-38. AY-36. AY-38. AY-36. AY-38. AY-3	

nf-ncov-voc 88 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	virion structure	Based on pseudotyped virus experiments, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.41, AY.121.1, AY.131, AY.46.1, AY.92.1, AY.19.2, AY.70, AY.78, AY.99, AY.5.3, AY.128, AY.49, AY.4.12, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.128, AY.49, AY.4.11, AY.18, AY.93, AY.42, AY.401, AY.120, AY.23, AY.88, AY.56, AY.6.5, AY.92, AY.133, AY.86, AY.76, AY.85, AY.19.1, AY.77, AY.59, AY.34, AY.112.2, AY.34, AY.112.2, AY.34, AY.112.2, AY.36, AY.112.1, AY.77, AY.55, AY.12.6, AY.12, AY.13, AY.55, AY.127, AY.13, AY.55, AY.127, AY.43.3, AY.82, AY.108, AY.99.1, AY.51, AY.42.3, AY.124, AY.71, AY.106, AY.47, AY.88, AY.99.1, AY.124, AY.71, AY.106, AY.47, AY.98, AY.25.3, AY.48, AY.30, AY.98, AY.25.1, AY.42, AY.118, AY.42, AY.118, AY.43, AY.51, AY.43, AY.43, AY.51, AY.43, AY.43, AY.51, AY.43, AY.43, AY.43, AY.51, AY.43, AY.43, AY.43, AY.43, AY.43, AY.43, AY.44, AY.31, AY.46, AY.110, AY.47, AY.98, AY.48, AY.49, AY.103, AY.46, AY.111, AY.46.2, AY.113, AY.46.4, AY.31, AY.98.1, AY.47, AY.99.2, AY.10, AY.48, AY.49, AY.103, AY.46.4, AY.31, AY.46.2, AY.111, AY.46.2, AY.113, AY.46.2, AY.113, AY.46.3, AY.47, AY.49.2, AY.10, AY.49.2, AY.49.2, AY.10, AY.49.2, AY.49.2, AY.10, AY.49.2, AY.49.2, AY.10, AY.49.2, AY.4	Zhang et al. (2020)	Sequence Depth 88446	lele A	CIDGOH ©	1.0

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 2.66x increase in binding (KD) relative to D614G.	AY.25	Gong et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	ACE2 receptor binding affinity	Using flow cytometry and ACE2 ectodomains-Fc portion IgG complex, this variant showed a 1.1x decrease in binding (KD) relative to D614G.	AY.25	Gong et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	ACE2 receptor binding affinity	In four cell lines (including 293T-hACE2 cells), this mutation combination increases infectivity vs D614G alone	AY.25	Li et al. (2020)	717	GGATGTT	GGGTGTT	0.98
D614G	convalescent plasma binding	2.15x increase in Spike binding (relative to D614G alone) by 5 plasma col- lected 8 months post- symptom-onset.	AY.25	Gong et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	convalescent plasma binding	No change in Spike binding (relative to D614G alone) by 5 plasma collected 8 months post-symptom- onset.	AY.25	Gong et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	convalescent plasma escape	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x-2.35x decrease in neutralization efficiency by convalescent plasma [no cohort details provided]	AY.25	Wilhelm et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	immunosuppression variant emergence	Studying 94 COVID-19 extended infection cases with genomics April 1 to October 17, 2020, one case developed 23 mutations in a 19 day period, including this combination in Spike.	AY.25	Landis et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	syncytium forma- tion	Slight increase in Vero cell- cell membrane fusion assay under infection with VSV pseudotyped virus.	AY.25	Kim et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	tissue specific neutralization	The nasal mucosa of Pfizer vaccinees with time course collection was evaluated against VSV pseudotypes: results (only one nasal swab from different previously infected vacinee neutralizing at weeks 3 and 6 against B.1.1.7 and D614G) suggest that vaccinees probably do not elicit an early humoral response detectable at mucosal surfaces even though sera neutralization was observed. They strengthen the hypothesis that some vaccines may not protect against viral acquisition and infection of the oral-nasal region, but may prevent severe disease associated with viral dissemination in the lower respiratory tract.	AY.25	Planas et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	trafficking	Circulating variant shown in vitro to not have major defects or enhancement of cell surface protein traffick- ing (i.e. Spike cleavage or fusion required for cell en- try)	AY.25	Barrett et al. (2021)	717	GGATGTT	GGGTGTT	0.98

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

Mutations	Sub-category	Function	Lineages	Citation	Sequence	Reference Al- lele	Allele	Alternate
D614G	trafficking	The increased transduction with Spike D614G ranged from 1.3- to 2.4-	AY.25	Daniloski et al. (2021)	Depth 717	GGATGTT	Allele GGGTGTT	Frequency 0.98
		fold in Caco-2 and Calu- 3 cells expressing endoge- nous ACE2 and from 1.5-						
		to 7.7-fold in A549ACE2 and Huh7.5ACE2 overex- pressing ACE2. Although						
		there is minimal difference in ACE2 receptor bind- ing between the D614 and						
		G614 Spike variants, the G614 variant is more re- sistant to proteolytic cleav-						
		age, suggesting a possi- ble mechanism for the in- creased transduction.						
D614G	trafficking	No change in infectivity (24h) relative to D614G alone in Caco-2 cells, Vero or Calu-3.	AY.25	Kim et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	trafficking	extasciitilde4x more effi- cient S2 domain cleavage compared to wild type in Caco-2 cells, mid-range of	AY.25	Kim et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	trafficking	three cell line tested (Vero and Calu-3). Among S variants tested,	AY.25	Ozono et al.	717	GGATGTT	GGGTGTT	0.98
	g	the D614G mutant shows the highest cell entry (ex- tasciitilde3.5x wild type), as supported by structural		(2020)				
D614G	trafficking	and binding analyses. Quantification of the band	AY.25	Tada et al.	717	GGATGTT	GGGTGTT	0.98
		intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.		(2021)				
D614G	trafficking	We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than wild type (extasciitilde9-fold). This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.	AY.25	Zhang et 1. (2020)	717	GGATGTT	GGGTGTT	0.98
D614G	transmissibility	Increased infectivity of the B.1.617 spike was at- tributed to L452R, which itself caused a 3.5-fold increase in infectivity relative to D614G wild type. [In combination with E484Q caused a lower 3-fold increase]	AY.25	Tada et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	vaccine neutraliza- tion efficacy	Pseudotyped D614G virus has reduced neutralization activity vs wild type: 1.2x (37 sera Pfizer median 9 days post 2nd dose, 37 sera Moderna median 18 days post 2nd dose). This was NOT significant by ANOVA.	AY.25	Garcia- Beltran et al. (2021)	717	GGATGTT	GGGTGTT	0.98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	vaccine neutralization efficacy	Using a lentivirus virus pseudotyped with D614G Spike, sera from vaccinated individuals who received the second dose (9-11 days post-second dose of Pfizer) exhibited a robust neutralizing potential, with a mean NT50 value of 99,000. This was an average of a 2-fold increase, relative to sera drawn from the individuals who received one dose of vaccination—mean NT50 dilution of 51,300. Importantly, a 6-fold increase in mean NT50 dilution was obtained when sera from the first vaccination dose was compared to convalescent sera from cohort with severe disease (NT50 51,000 vs 8,700) 21 to 63 days post-onset.	AY.25	Kuzmina et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	vaccine neutraliza- tion efficacy	Relative to B.1, Epsilon (B.1.417/429) shows 1.74x- 2.35x decrease in neutral- ization efficiency by 18 vac- cinee sera (BNT162b2 and mRNA1273).	AY.25	Wilhelm et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	vaccinee plasma binding	1.05x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.16x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.25	Gong et al. (2021)	717	GGATGTT	GGGTGTT	
D614G	vaccinee plasma binding	1.23x increase in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in previously non-seroconverted subjects. 1.1x decrease in Spike binding (relative to D614G alone) by 5 plasma collected 3 weeks after one dose of Pfizer/BioNtech BNT162b2 vaccine in post-infection vaccinees.	AY.25	Gong et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	viral load	Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission.	AY.25	Plante et al. (2020)	717	GGATGTT	GGGTGTT	0.98
D614G	virion structure	Estimated free energy change (ddG) for this variant is 2.5 kcal/mol (i.e. stabilizing relative to wild type)	AY.25	Spratt et al. (2021)	717	GGATGTT	GGGTGTT	0.98
D614G	virion structure	Negative stain EM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.25	Weissman et al. (2020)	717	GGATGTT	GGGTGTT	0.98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
D614G	virion structure	CryoEM shows increased proportion of "one-up" trimer conformation of Spike proteins on the surface of virions, where the up conformation is presumed to be more likely to bind ACE2.	AY.25	Yurkovetskiy et al. (2020)	717	GGATGTT	GGGTGTT	0.98
D614G	virion structure	Based on pseudotyped virus experiments, D614G may increase infectivity by assembling more func- tional S protein into the virion.	AY.25	Zhang et al. (2020)	717	GGATGTT	GGGTGTT	0.98
K458N	convalescent plasma escape	Resistant to a pool of 10 convalescent sera (but less than 4x, a typical threshold for definition of escape)	AY.46.1	Li et al. (2020)	17	A	С	1.0
N501T	ACE2 receptor binding affinity	Experimentally, ACE2 binding affinity increased 0.1 fold	AY.131	Starr et al. (2020)	3	A	С	1.0
N501T	anthropozoonotic events	These variants dominate in mink infections in North America, sometime supplemented with F486L. The Y453F variant found in other jurisdictions in mink infections is notably absent in North America.	AY.131	Cai and Cai (2021)	3	A	С	1.0
N501T	anthropozoonotic events	Observed in second of two Netherlands mink cohorts, potential adaptation.	AY.131	Oreshkova et al. (2020)	3	A	С	1.0
N501T	anthropozoonotic events	Observed in 4 separate mink farms in Denmark, but not humans, poten- tial adaptation (diff set of farms than F486L).	AY.131	Oude Munnink et al. (2020)	3	A	С	1.0
N501T	anthropozoonotic events	Emergent variants observed in tandem in ferrets post-serial infection.	AY.131	Richard et al. (2020)	3	A	С	1.0
N501T	monoclonal anti- body serial passage escape	Mild in vitro selection against class 3 monoclonal antibody C670.	AY.131	Wang et al. (2021)	3	A	С	1.0
N501T	pharmaceutical effectiveness	Estesevimab lost extasci- itilde12x binding against this isolated mutation.	AY.131	Engelhart et al. (2021)	3	A	С	1.0
Y145del	convalescent plasma escape	Resistant to a pool of 10 convalescent sera (but less than 4x, a typical threshold for definition of escape)	AY.119.2	Li et al. (2020)	299	GTGTTTATT	AØTGTTAT	T A 9 5
Y145del	convalescent plasma escape	Virus evolution data in 9 immunocomprised patients with long active COVID-19 infections was gathered, showing sequence deletion hotspots. This variant was present in 1 patient.	AY.119.2	McCarthy et al. (2021)	299	GTGTTTATT.	A&TGTTTAT	`T 'A 9 5
P681R	trafficking	This variant combination shows a extasciitilde3x decrease in cell entry efficiency (RLU measurement in 293T cells) compared to D614G, significantly less of a decrease than any B.1.617 lineage variants alone, suggesting a synergistic effect on cell entry while maintaining known immunity esacpe mutants.	AY.109	Ferriera et al (2021)	57	С	G	1.0

Contact Us CIDGOH $^{\odot}$

nf-ncov-voc 93 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
P681R	trafficking	This mutation in the first base of the furin clevage site maintains the RXXR recognition motif, and is presumed to enhance cleavage based on the removal of a proline-directed phosphotase recognition site at S680. In a homologuous site in Infectious Bronchitis Virus (IBV, Gammacoronaviruses), abolition of S680 phosphorylation improves furin cleavage (and presumably cell entry). [Inference from similar positively charged substitution P681H actually described in the work]	AY.41, AY.121.1, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.42, AY.43, AY.25, AY.101, AY.120, AY.23, AY.43, AY.25, AY.101, AY.120, AY.23, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.85, AY.119.1, AY.77, AY.59, AY.34, AY.85, AY.112.2, AY.33, AY.46.5, AY.122.6, AY.94, AY.112.2, AY.33, AY.36, AY.45, B.1.617.2, AY.33, AY.40, AY.41, AY.41, AY.41, AY.43, AY.42, AY.43, AY.44, AY.44, AY.43, AY.45, AY.41, AY.46, AY.41, AY.49, AY.41, AY.49, AY.41, AY.40, AY.41, AY.41, AY.40, AY.41, AY.4	Maaroufi (2021)	Depth 101928	lele C	Allele G,GTCGT,	Frequency

nf-ncov-voc 94 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
P681R	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.41, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.16, AY.99, AY.5.3, AY.128, AY.49, AY.46.4, AY.57, AY.48, AY.25.1.2, AY.33, AY.42, AY.49, AY.43, AY.25.1.2, AY.34.1.1, AY.18, AY.93, AY.43, AY.25, AY.101, AY.120, AY.23, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.84, AY.112.2, AY.34, AY.85, AY.19.1, AY.77, AY.85, AY.19.1, AY.12.6, AY.112.2, AY.33, AY.36, AY.107, AY.82, AY.108, AY.108, AY.121, AY.106, AY.4.3, AY.121, AY.124, AY.46, AY.1121, AY.124, AY.46, AY.111, AY.99.1, AY.51, AY.42.3, AY.64, AY.111, AY.99.1, AY.51, AY.42.3, AY.64, AY.111, AY.106, AY.47, AY.88, AY.72, AY.109, AY.25.3, AY.43, AY.45, AY.109, AY.25.3, AY.43, AY.45, AY.109, AY.25.3, AY.40, AY.111, AY.46.4, AY.31, AY.47, AY.48, AY.49, AY.100, AY.47, AY.48, AY.49, AY.101, AY.49, AY.101, AY.40, AY.41, AY.40, AY.41, AY.40, AY.41, AY.42, AY.43, AY.	Tada et al. (2021)		lele C		Frequency

nf-ncov-voc 95 of 98

Mutations Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
P681R virion structure	The Ratio of S2 (processed Spike) to full length Spike is higher for this mutation, due to a drop in the full length Spike measured, suggesting that this mutation compensates for decreased Spike production by improved proteolytic processing. [PG: Inferred by conservative AA substitution of described P681H]	AY.41, AY.121.1, AY.121.1, AY.131, AY.46.1, AY.9.2.1, AY.119.2, AY.70, AY.78, AY.128, AY.128, AY.49, AY.49, AY.44, AY.57, AY.68, AY.25.1.2, AY.3.3, AY.34, AY.42, AY.43, AY.43, AY.25, AY.101, AY.120, AY.23, AY.46.5, AY.92, AY.133, AY.86, AY.76, AY.85, AY.19.1, AY.77, AY.59, AY.34, AY.85, AY.19.1, AY.77, AY.59, AY.34, AY.85, AY.107, AY.82, AY.108, AY.112.2, AY.33, AY.43, AY.107, AY.82, AY.108, AY.124, AY.106, AY.47, AY.51, AY.42, AY.64, AY.121, AY.124, AY.64, AY.121, AY.124, AY.65, AY.124, AY.66, AY.71, AY.67, AY.88, AY.30, AY.99, AY.88, AY.32, AY.106, AY.47, AY.58, AY.30, AY.98, AY.25.3, AY.108, AY.15, AY.35, AY.109, AY.88, AY.36, AY.15, AY.35, AY.109, AY.88, AY.36, AY.15, AY.39, AY.43, AY.43, AY.43, AY.43, AY.44, AY.46, AY.11, AY.98, AY.36, AY.11, AY.98, AY.36, AY.10, AY.47, AY.48, AY.49, AY.103, AY.46, AY.113, AY.98, AY.39, AY.46, AY.114, AY.46, AY.117, AY.46, AY.116, AY.47, AY.46, AY.117, AY.46, AY.117, AY.46, AY.118, AY.99, AY.47, AY.47, AY.48, AY.49, AY.49, AY.49, AY.103, AY.41, AY.40, AY.41, AY.41	Tada et al. (2021)	Depth 101928	lele C	Allele G,GTCGT,	Frequency

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
P681R	trafficking	This mutation in the first base of the furin clevage site maintains the RXXR recognition motif, and is presumed to enhance cleavage based on the removal of a proline-directed phosphotase recognition site at \$680. In a homologuous site in Infectious Bronchitis Virus (IBV, Gammacoronaviruses), abolition of \$680 phosphorylation improves furin cleavage (and presumably cell entry). [Inference from similar positively charged substitution P681H actually described in the work]	AY.3	Maaroufi (2021)	832	CT	GT	0.99
P681R	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.3	Tada et al. (2021)	832	CT	GT	0.99
P681R	virion structure	The Ratio of S2 (processed Spike) to full length Spike is higher for this mutation, due to a drop in the full length Spike measured, suggesting that this mutation compensates for decreased Spike production by improved proteolytic processing. [PG: Inferred by conservative AA substitution of described P681H]	AY.3	Tada et al. (2021)	832	CT	GT	0.99
P681R	symptom prevalence	Gross examination of 3+3 hamster lung specimens showed pronounced congestion and hemorrhages on days 5 and 7 post-infection in the case of the B.1.617.1 as compared with the B.1. The lung lesions with the B.1 variant were minimal to mild whereas with B.1.617.1 they were moderate. For B.1 pneumonic changes were minimal to mild (inflammatory cell infiltration, focal consolidation and mild congestion). The pronounced changes (moderate to severe) with mononuclear infiltration in the alveolar interstitial space, interstitial septal thickening, consolidation and pneumocyte hyperplasia were observed with B.1.617.1 variant consistently.	AY.5, B.1.617.2	Yadav et al. (2021)	4074	CTCGG	GTCGG	0.99
P681R	trafficking	This mutation in the first base of the furin clevage site maintains the RXXR recognition motif, and is presumed to enhance cleavage based on the removal of a proline-directed phosphotase recognition site at S680. In a homologuous site in Infectious Bronchitis Virus (IBV, Gammacoronaviruses), abolition of S680 phosphorylation improves furin cleavage (and presumably cell entry). [Inference from similar positively charged substitution P681H actually described in the work]	AY.118, AY.99.2, AY.119.2, B.1.617.2, AY.127.1, AY.5	Maaroufi (2021)	5149	CTCGG	GTCGG,GT	C(G49)

nf-ncov-voc 97 of 98

Mutations	Sub-category	Function	Lineages	Citation	Sequence Depth	Reference Al- lele	Alternate Allele	Alternate Frequency
P681R	trafficking	Quantification of the band intensities showed that the P681R mutation, which lies near the proteolytic processing site, caused a small increase in proteolytic processing as measured by a 2-fold decrease in the ratio of S/S2.	AY.118, AY.99.2, AY.119.2, B.1.617.2, AY.127.1, AY.5	Tada et al. (2021)	5149	CTCGG	GTCGG,GT	CG99
P681R	transmissibility	Normalized for particle number, on ACE2.293T cells showed that the B.1.617 spike protein was >2-fold increase in infectiv- ity relative to D614G wild type.	AY.5, B.1.617.2	Tada et al. (2021)	4074	CTCGG	GTCGG	0.99
P681R	viral load	In 9 infected hamsters each for B.1 and B.1.617.1, no significant change in viral load or subgenomic RNA levels were detected.	AY.5, B.1.617.2	Yadav et al. (2021)	4074	CTCGG	GTCGG	0.99
P681R	virion structure	The Ratio of S2 (processed Spike) to full length Spike is higher for this mutation, due to a drop in the full length Spike measured, suggesting that this mutation compensates for decreased Spike production by improved proteolytic processing. [PG: Inferred by conservative AA substitution of described P681H]	AY.118, AY.99.2, AY.119.2, B.1.617.2, AY.127.1, AY.5	Tada et al. (2021)	5149	CTCGG	GTCGG,GT	CG99

Contact Us $\qquad \qquad \qquad \text{CIDGOH}^{\, \odot}$

nf-ncov-voc 98 of 98

The results here are in whole or part based upon data hosted at the Canadian VirusSeq Data Portal: https://virusseq-dataportal.ca/.We wish to acknowledge the following organisations/laboratories for contributing data to the Portal: Canadian Public Health Laboratory Network (CPHLN), CanCOGGeN VirusSeq and the list of labs available at https://virusseq-dataportal.ca/acknowledgements)