CrInGeCrInGe Production. Super cringe introduction here:

 $Timasok^{3.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right)$

 $Timasok^{3.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right)$ BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!! IN THE POINT (Timasok = 3.000,

Vlados = 1.000)IT'S VALUE = 6.351 !!! 1 step: finding a derivation of function:

Vlados

2 step: finding a derivation of function:

1.000

Timasok

3 step: finding a derivation of function:

1.000

1.000

4 step: finding a derivation of function:

1.000

 $\overline{Timasok}$

6

0.000

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right)$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

Timasok

1.000

8 step: finding a derivation of function:

1

 $Timasok^{3.000}$

is: $3.000 \cdot Timasok^{2.000}$

 $Timasok^{3.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right)$

- $3.000 \cdot Timasok^{2.000} \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} + (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot Timasok^{2.000} + (-1.000) \cdot Timasok^{2.00$

- $3.000 \cdot Timasok^{2.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) + (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot Timasok^{2.000} + 1.000 \cdot Timasok^{2.000} + 1.000$

IN THE POINT (Timasok = 3.000, Vlados = 1.000)IT'S VALUE = -16.975 !!!

Let's calculate the 3 derivation of the expression:

Calculating the 1 derivation of the expression:

1 step: finding a derivation of function:

Vlados

1.000 2 step: finding a derivation of function:

Timasok

3 step: finding a derivation of function:

19

1.000

1.000

4 step: finding a derivation of function:

1.000 $\overline{Timasok}$

0.000

_	\sim
.,	"

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right)$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

Timasok

8 step: finding a derivation of function:

1.000

 $Timasok^{3.000}$

 $3.000 \cdot Timasok^{2.000}$

 $Timasok^{3.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right)$

- $3.000 \cdot Timasok^{2.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) + (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot Timasok^{2.000} + 1.000 \cdot Timasok^{2.000} + 1.000$

Calculating the 2 derivation of the expression:

Timasok

here it is:

1.000

 $Timasok^{3.000}$

here it is:

31

 $3.000 \cdot Timasok^{2.000}$

3 step:	finding	a derivation	of function:

1.000

0.000

32

here it is:

Timasok

here it is:

1.000

 $Timasok^{2.000}$

here it is:

 $2.000 \cdot Timasok$

$6 { m step:}$	finding	a	${\it derivation}$	of	function

0.000

(-1.000)

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{\left(Timasok^{2.000}\right)^{2.000}}$

 $\left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{(Timasok^{2.000})^{2.000}}$

9 step:	finding a	a derivation	of function:

1.000

40

Vlados

Timasok

here it is:

*1*1

1.000

1.000

here it is:

0.000

 $\frac{1.000}{Timasok}$

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

 $\sin\left(\frac{1.000}{Timasok} + Vlados\right)$

14 step: finding a derivation of function:

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

(-1.000)

0.000

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right)$

 $(-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

- $(-1.000) \cdot \cos \left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot Timasok^{3.000}$

- $((-1.000) \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} +$

Vlados

here it is:

56

1.000

Timasok

here it is:

viriason.

1.000

21	step:	finding	a	derivation	of	function:

1.000

here it is:

0.000

$\frac{1.000}{Timasok}$

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

- 24 step: finding a derivation of function:

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right)$

- 25 step: finding a derivation of function:

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

Timasok

26 step: finding a derivation of function:

1.000

 $Timasok^{2.000}$

 $2.000 \cdot Timasok$

27 step: finding a derivation of function:

3.000

28 step: finding a derivation of function:

0.000

 $3.000 \cdot Timasok^{2.000}$

 $3.000 \cdot 2.000 \cdot Timasok$

 $3.000 \cdot Timasok^{2.000} \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right)$

- $3.000 \cdot Timasok^{2.000} \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} + (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot Timasok^{2.000} + (-1.000) \cdot Timasok^{2.00$

- here it is:

 - 0.000

Timasok

here it is:

1.000

here it is:

 $Timasok^{2.000}$ $2.000 \cdot Timasok$

4 step:	finding	a	derivation	of	function:

76

(-1.000)

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{(Timasok^{2.000})^{2.000}}$

 $\left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{\left(Timasok^{2.000}\right)^{2.000}}$

7 ste	p: finding	g a deriva	tion of fu	nction:

Vlados

here it is:

81

Timasok

here it is:

9 step: finding a d	erivation of function:
---------------------	------------------------

1.000

0.000

83

here it is:

$\frac{1.000}{Timasok}$

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

 $\sin\left(\frac{1.000}{Timasok} + Vlados\right)$

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

(-1.000)

ere it is.

90

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right)$

14 step: finding a derivation of function:

 $(-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

15 step: finding a derivation of function:

$$(-1.000) \cdot \cos \left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + \frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-$$

Timasok

here it is:

1 00000

1.000

here it is:

 $Timasok^{2.000}$

96

 $2.000 \cdot Timasok$

18	step:	finding	a	derivation	of	function	1:

3.000

97

here it is:

 $3.000 \cdot Timasok^{2.000}$

 $3.000 \cdot 2.000 \cdot Timasok$

 $3.000 \cdot Timasok^{2.000} \cdot (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

110

 $3.000 \cdot 2.000 \cdot Timasok \cdot (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + ((-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right$

Timasok

here it is:

1.000

here it is:

 $Timasok^{3.000}$

 $3.000 \cdot Timasok^{2.000}$

here it is:

Vlados

1.000

Timasok

here it is:

104

25 step:	finding	a	derivation	of	function:

0.000

1.000

106

 $\frac{1.000}{Timasok}$

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

110

 $\sin\left(\frac{1.000}{Timasok} + Vlados\right)$

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

(-1.000)

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right)$

 $(-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

Timasok

114

31 step: finding a derivation of function:

32 step: finding a derivation of function:

1.000

 $(Timasok^{2.000})$

33 step: finding a derivation of function:

 $2.000 \cdot Timasok$

 $\left(Timasok^{2.000}\right)^{2.000}$

34 step: finding a derivation of function:

117

 $2.000 \cdot Timasok^{2.000} \cdot 2.000 \cdot Timasok$

Timasok

here	e it

is:

35 step: finding a derivation of function:

011011

118

1.000

0.000

 $2.000 \cdot Timasok$

(-1.000)

120

38 step: finding a derivation of function:

0.000

 $(-1.000) \cdot 2.000 \cdot Timasok$

39 step: finding a derivation of function:

(-1.000)

122

-2.000

40 step: finding a derivation of function:

0.000

 $(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok$

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{\left(Timasok^{2.000}\right)^{2.000}}$

$$\frac{2.000 \cdot \left(Timasok^{2.000}\right)^{2.000} - 2.000 \cdot Timasok^{2.000} \cdot 2.000 \cdot Timasok \cdot \left(-1.000\right) \cdot \left(-1.000\right) \cdot 2.000 \cdot Timasok}{\left(\left(Timasok^{2.000}\right)^{2.000}\right)^{2.000}}$$

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{\left(Timasok^{2.000}\right)^{2.000}} \cdot (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right)$

- $\underline{2.000 \cdot \left(Timasok^{2.000}\right)^{2.000} 2.000 \cdot Timasok^{2.000} \cdot 2.000 \cdot Timasok \cdot \left(-1.000\right) \cdot \left(-1.000\right) \cdot \left(-1.000\right) \cdot 2.000 \cdot Timasok} \cdot \left(-1.000\right) \cdot \sin\left(-1.000\right) \cdot$

 $((Timasok^{2.000})^{2.000})^{2.000}$

43 step: finding a derivation of function:	43 step:	finding	a derivat	ion of	function:
--	----------	---------	-----------	--------	-----------

0.000

129

Timasok

here it is:

130

here it is:

 $Timasok^{2.000}$

 $2.000 \cdot Timasok$

46 step:	finding	a derivation	of function:

132

(-1.000)

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{(Timasok^{2.000})^{2.000}}$

 $\left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{(Timasok^{2.000})^{2.000}}$

49 step:	finding	a deriv	ation	of	function	1:

0.000

1.000

Timasok

here it is:

1.000

 $Timasok^{2.000}$

here it is:

139

 $2.000 \cdot Timasok$

here it is:

140

(-1.000)

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{\left(Timasok^{2.000}\right)^{2.000}}$

- 54 step: finding a derivation of function:

 $\left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

144

 $\frac{{{\left({ - 1.000} \right) \cdot \left({ - 1.000} \right) \cdot 2.000 \cdot Timasok}}}{{{{\left({Timasok^{2.000} } \right)}^{2.000}}}}$

here it is:

Vlados

1.000

here it is:

1.000

Timasok

57 step: finding a derivation of function:	
here it is:	

1.000 0.000

$\frac{1.000}{Timasok}$

- 59 step: finding a derivation of function:

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right)$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

154

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

$$h\epsilon$$

62 step: finding a derivation of function:	
--	--

156

(-1.000)

0.000

 $(-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

- $((-1.000) \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} +$

- $((-1.000) \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} +$

$$((-1.000) \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.0$$

Timasok

here it is:

167

1.000

 $Timasok^{2.000}$

here it is:

168

 $2.000 \cdot Timasok$

0 step: finding a derivation of function:	3.000
ere it is:	0.000

here it is:

 $3.000 \cdot Timasok^{2.000}$

 $3.000 \cdot 2.000 \cdot Timasok$

72 step: finding a derivation of function:	
here it is:	

1.000

0.000

Timasok

1.000

here it is:

1 000000

 $Timasok^{2.000}$

here it is:

173

 $2.000 \cdot Timasok$

75 step: finding a derivation of function	n:
---	----

174

(-1.000)

0.000

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{\left(Timasok^{2.000}\right)^{2.000}}$

 $\left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $\frac{(-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok}{(Timasok^{2.000})^{2.000}}$

78 step:	finding	a derivation	of function:

Vlados

179

here it is: 1.000

Timasok

here it is:

180

1.000

80 step: finding a derivation of function:	
so beep. maing a derivation of function.	1.000
nere it is:	
	0.000

182

 $\frac{1.000}{Timasok}$

 $(\frac{1.000}{Timasok} + Vlados)$

 $\frac{(-1.000)}{Timasok^{2.000}} + 1.000$

 $\sin\left(\frac{1.000}{Timasok} + Vlados\right)$

84 step: finding a derivation of function:
$$(-1.000) \label{eq:condition}$$

187

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

nere to is.

0.000

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right)$

 $(-1.000) \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

- $(-1.000) \cdot \cos \left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-1.000) \cdot (-1.000)}{\left(Timasok^{2.000}\right)^{2.000}} + \frac{(-$

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot 3.000 \cdot Timasok^{2.000}$

- $((-1.000) \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) + \frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot 2.000 \cdot Timasok^{2.000}}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000) \cdot (-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} + 1.000) \cdot (\frac{(-1.000) \cdot (-1.000)}{(Timasok^{2.000})^{2.000}} +$

88 s	tep:	finding	a	derivation	of	function	:

Vlados

1.000

Timasok

here it is:

1.000

90 step: finding a derivation of function:	1.000
here it is:	0.000

 $\frac{1.000}{Timasok}$

 $(\frac{1.000}{Timasok} + Vlados)$

 $\cos\left(\frac{1.000}{Timasok} + Vlados\right)$

93 step: finding a derivation of function:

 $(-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right)$

Timasok

95 step: finding a derivation of function:

204

1.000

2.000

96 step: finding a derivation of function:

0.000

 $2.000 \cdot Timasok$

97 step: finding a derivation of function:

2.000

3.000

here	it	

is:

98 step: finding a derivation of function:

 $3.000 \cdot 2.000 \cdot Timasok$

207

0.000

6.000

 $3.000 \cdot 2.000 \cdot Timasok \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right)$

 $6.000 \cdot \cos{\left(\frac{1.000}{Timasok} + Vlados\right)} + \left(-1.000\right) \cdot \sin{\left(\frac{1.000}{Timasok} + Vlados\right)} \cdot \left(\frac{(-1.000)}{Timasok} + 1.000\right) \cdot 3.000 \cdot 2.000 \cdot Timasok$

$$3.000 \cdot 2.000 \cdot Timasok \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} + (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot 3.000 \cdot (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)}) \cdot (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)})$$

пе

 $6.000 \cdot \cos\left(\frac{1.000}{Timasok} + Vlados\right) + (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + Vlados\right) \cdot \left(\frac{(-1.000)}{Timasok^{2.000}} + 1.000\right) \cdot 3.000 \cdot 2.000 \cdot Timasok + Vlados$

- here it is:

- $6.000 \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} + (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot 3.000 \cdot 2.000 \cdot Timasok + (-1.000) \cdot 3.000 \cdot 2.000 \cdot Timasok + (-1$

Finally... The 3 derivation of the expression:

$$6.000 \cdot \cos{(\frac{1.000}{Timasok} + Vlados)} + (-1.000) \cdot \sin{(\frac{1.000}{Timasok} + Vlados)} \cdot (\frac{(-1.000)}{Timasok^{2.000}} + 1.000) \cdot 3.000 \cdot 2.000 \cdot Timasok \cdot (-1.000) \cdot 3.000 \cdot 2.000 \cdot 2.000 \cdot Timasok \cdot (-1.000) \cdot 3.000 \cdot 2.000 \cdot 2.000 \cdot Timasok \cdot (-1.000) \cdot 3.000 \cdot 2.000 \cdot$$

BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT THE 3 DERIVATION OF THIS EXPRESSION!!! IN THE POINT (Timasok = 3.000, Vlados = 1.000)IT'S VALUE = -47.008!!!

Partial derivation of the expression on the variable 'Timasok':

- $3.000 \cdot Timasok^{2.000} \cdot \cos\left(\frac{1.000}{Timasok} + 1.000\right) + (-1.000) \cdot \sin\left(\frac{1.000}{Timasok} + 1.000\right) \cdot \frac{(-1.000)}{Timasok^{2.000}} \cdot Timasok^{3.000}$

- IN THE POINT (Timasok = 3.000, Vlados = 1.000) IT'S VALUE = 9.267228 !!!

Partial derivation of the expression on the variable 'Vlados':

218

 $27.000 \cdot (-1.000) \cdot \sin(0.333 + V lados)$

Full derivation:

 $\sqrt{\left(3.000 \cdot Timasok^{2.000} \cdot \cos\left(\frac{1.000}{Timasok} + 1.000\right) + \left(-1.000\right) \cdot \sin\left(\frac{1.000}{Timasok} + 1.000\right) \cdot \frac{\left(-1.000\right)}{Timasok^{2.000}} \cdot Timasok^{3.000}\right)^{2.000}}$

IN THE POINT (Timasok = 3.000, Vlados = 1.000)IT'S VALUE = 27.831!!!

Let's consider the expression as a function of Timasok variable: f(Timasok) =

 $Timasok^{3.000} \cdot \cos\left(\frac{1.000}{Timasok} + 1.000\right)$

Maklorens formula for Timasok near to 3.000000:

 $6.351 + 9.267 \cdot (Timasok - 3.000) + 4.022 \cdot (Timasok - 3.000)^{2.000} + 0.540 \cdot (Timasok - 3.000)^{3.000} + 0.000 \cdot (Timasok - 3.000)^{2.000} + 0.000 \cdot (Timasok - 3.000)^{2$

And remaining member is o maloe from:

And remaining member is o maioe iro.

Graph f(Timasok):

.

 $(Timasok - 3.000)^{4.000}$

Tangent equation in point -2.000: f(Timasok) =

 $9.572 \cdot (Timasok - (-2.000)) + (-7.021)$

Normal equation in point -2.000: f(Timasok) =

224

 $(-0.104) \cdot (Timasok - (-2.000)) + (-7.021)$