Calculus II Homework on Lecture 19

1. Determine the interval of convergence for the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{3\sqrt{n+1}}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$$
.

(c)
$$\sum_{n=1}^{\infty} \frac{10^n (x-1)^n}{n^3}$$
.

(d)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x+1)^n}{2n+1}.$$

(e)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$$
.

(f)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

$$(g) \sum_{n=0}^{\infty} (n+1)x^n.$$

(h)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}.$$

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

(j)
$$\sum_{n=1}^{\infty} \binom{\frac{1}{2}}{n} x^n$$
, where we recall that the binomial coefficient $\binom{q}{n}$ stands for $\frac{q(q-1)\dots(q-n+1)}{n!}$.

2. (a) Find the Maclaurin series for xe^{x^3} .

(b) Use your series to find the Maclaurin series of $\int xe^{x^3}dx$.

3. For each of the items below, do the following.

• Find the Maclaurin series of the function (i.e., the power series representation of the function around a=0).

• Find the radius of convergence of the series you found in the preceding point. You are not asked to find the entire interval of convergence, but just the radius.

(a) e^x .

(g) $\sin x$.

(b) xe^{-2x} .

(h) $\cos x$.

(c) e^{2x} .

(i) $\sin(2x)$.

(d) e^{x^2} .

(j) $\cos(2x)$.

(u) c .

()

(e) e^{-3x^2}

(k) $\cos^2(x)$.

(f) x^2e^{2x} .

(1) $x \sin x$.

- 4. For each of the items below, do the following.
 - Find the Maclaurin series of the function (i.e., the power series representation of the function around a=0).
 - Find the radius of convergence of the series you found in the preceding point.

(i)
$$\frac{1}{(1-x)^3}$$
.

(b)
$$\frac{1}{3-2x}$$
.

(j)
$$\ln(1+x)$$
.

(c)
$$\frac{1}{2x+3}$$
.
(d) $\frac{1}{1+x^2}$.

(k)
$$\ln(1-x)$$
.

$$(d) \frac{2x+3}{1}$$

(1)
$$\ln(1-3x)$$
.

(e)
$$\frac{1+x^2}{1-2x^2}$$
.

(m)
$$\ln(1-3x^2)$$
.

(f)
$$\frac{1-2x^2}{r^2-1}$$
.

(n)
$$\ln(3-2x^2)$$
.

(1)
$$\frac{1}{x^2 - 1}$$
.

(o)
$$x \ln(3 - 2x^2)$$
.

(g)
$$\frac{\frac{1}{2}}{x-1} - \frac{\frac{1}{2}}{x+1}$$
.

(p)
$$\arctan x$$
.

(h)
$$\frac{1}{(1-x)^2}$$
.

(q)
$$\arctan(2x)$$
.

(r)
$$\arctan(2x^2)$$
.

5. Compute the Maclaurin series of

$$\left(\frac{1}{(1-x)^k}\right) \quad ,$$

where $n \ge 1$ is an integer.

6. Compute the Maclaurin series of

$$(1+x)^q \quad ,$$

where $q \in \mathbb{R}$ is an arbitrary real number.

7. Compute the Maclaurin series of the function.

(a)
$$\sqrt{1+x}$$
.

(c)
$$\frac{1}{\sqrt{1-x^2}}$$
.

(b)
$$\frac{1}{\sqrt{1+x}}$$
.

- (d) $\arcsin x$.
- 8. Find the Taylor series of the function at the indicated point.

(a)
$$\frac{1}{x^2}$$
 at $a = -1$.

(b)
$$\ln \left(\sqrt{x^2 - 2x + 2} \right)$$
 at $a = 1$.

- (c) Write the Taylor series of the function $\ln x$ around a = 2.
- 9. Find the Taylor series around the indicated point. The answer key has not been proofread, use with caution.

(a)
$$\frac{1}{x}$$
 at $a = 1$.

(b)
$$\frac{1}{x^2}$$
 at $a = 1$.

10. (This problem is of higher difficulty, it will not appear on the quiz.) Let f(x) be defined as

$$f(x) := \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

2

(a) Prove that if R(x) is an arbitrary rational function,

$$\lim_{\substack{x \to 0 \\ x > 0}} R(x)e^{-\frac{1}{x^2}} = 0$$

- (b) Prove that f(x) is differentiable at 0 and f'(0) = 0.
- (c) Prove that the Maclaurin series of f(x) are 0 (but f(x) is clearly a non-zero function).