Roll.no: 210701308

EX .NO:7a IMPLEMENT LINEAR AND LOGISTIC REGRESSION

AIM:

To implement Linear and Logistic regression using R language.

a)Linear regression

```
# Sample data
```

heights <- c(150, 160, 165, 170, 175, 180, 185) weights <- c(55, 60, 62, 68, 70, 75, 80)

Create a data frame data <data.frame(heights, weights)

Fit a linear regression model linear_model <lm(weights ~ heights, data = data)

Print the summary of the model print(summary(linear_model))

Plotting the data and regression line plot(data\$heights, data\$weights,

main = "Linear Regression: Weight vs.

Height", xlab = "Height (cm)", ylab =
"Weight (kg)",
pch = 19, col = "blue")

Add regression line abline(linear_model, col = "red", lwd = 2)

Roll.no: 210701308

b) Logistic regression

Load the dataset data(mtcars)

Convert 'am' to a factor (categorical variable) mtcarsam < -factor(mtcars<math>am, levels = c(0, 1), labels = c("Automatic", "Manual"))

Fit a logistic regression model logistic_model <- glm(am ~ mpg, data = mtcars, family = binomial)

Print the summary of the model print(summary(logistic_model))

Predict probabilities for the logistic model predicted_probs
<- predict(logistic_model, type = "response")</pre>

Display the predicted probabilities print(predicted_probs)

Plotting the data and logistic regression curve plot(mtcars\$mpg, as.numeric(mtcars\$am) - 1, main = "Logistic Regression: Transmission vs. MPG", xlab = "Miles Per Gallon (mpg)", ylab = "Probability of Manual Transmission", pch = 19, col = "blue")

Add the logistic regression curve curve(predict(logistic_model, data.frame(mpg = x), type = "response"), add = TRUE, col = "red", lwd = 2)

RESULT: Thus to implement linear and logistic regression using R language is successfully done.