# Uporaba grup v sinhronizaciji

Patrik Žnidaršič Mentor: Ganna Kudryavtseva

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

4. december 2023





### Definicija

Avtomat je končna množica stanj $\Omega$  in prehodov med njimi. Avtomat sinhronizira, če obstaja zaporedje prehodov (beseda), po uporabi katerega je avtomat v nekem fiksnem stanju.

### Izrek (Izrek o barvanju cest)

Naj bo G končen močno povezan digraf, kjer imajo vsa vozlišča enako izhodno stopnjo. Če je največji skupni delitelj dolžin vseh ciklov v G enak 1, lahko pobarvamo povezave tako, da nastali avtomat sinhronizira.

## Domneva (Černý, 1969)

Če avtomat z n stanji sinhronizira, sinhronizira tudi z neko besedo dolžine največ  $(n-1)^2$ .



## Domneva (Černý, 1969)

Če avtomat z n stanji sinhronizira, sinhronizira tudi z neko besedo dolžine največ  $(n-1)^2$ .



Najkrajša beseda, ki sinhronizira avtomat: R M M M R M M M R

#### Definicija

Transformacijski monoid  $T(\Omega)$  je monoid preslikav  $\Omega \to \Omega$ , generiran s preslikavami, ki določajo avtomat. Transformacijski monoid sinhronizira, če vsebuje preslikavo, katere slika vsebuje le en element.



Najkrajša beseda, ki sinhronizira avtomat: R M M M R M M M R

### Definicija

Transformacijski monoid  $T(\Omega)$  je monoid preslikav  $\Omega \to \Omega$ , generiran s preslikavami, ki določajo avtomat. Transformacijski monoid sinhronizira, če vsebuje preslikavo, katere slika vsebuje le en element.

### Definicija

 $\operatorname{\textit{Permutacijska grupa}}$  na množici  $\Omega$  je podgrupa  $\operatorname{Sym}\Omega$ .

Permutacijska grupa je sinhronizabilna, če za vsako singularno preslikavo  $f:\Omega \to \Omega$  monoid  $\langle G,f \rangle$  sinhronizira.

#### Lastnosti

 $\begin{array}{ccc} \hbox{2-tranzitivnost} &\Longrightarrow \hbox{2-homogenost} &\Longrightarrow \hbox{sinhronizabilnost} \\ &\Longrightarrow \hbox{osnovnost} &\Longrightarrow \hbox{primitivnost} &\Longrightarrow \hbox{tranzitivnost} \\ \end{array}$ 

#### Lastnosti

2-tranzitivnost  $\implies$  2-homogenost  $\implies$  sinhronizabilnost  $\implies$  osnovnost  $\implies$  primitivnost  $\implies$  tranzitivnost

#### Trditev

Naj bo G tranzitivna permutacijska grupa na  $\Omega$ . Potem je G sinhronizabilna natanko tedaj, ko za vsak netrivialen G-invarianten graf  $\Gamma$  z vozlišči  $\Omega$  velja  $\omega(\Gamma) \neq \chi(\Gamma)$ .