HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of flat, rectangular plates

45112-01				
Issue C Year 1970				
Page	1	of	2	

Key Words: Buckling, buckling factor, shear loading

References

[1] RAS, Data Sheet 02.03.01, 1963

1 General

This HSB sheet provides buckling factors for rectangular plates under shear loading for various support conditions and length/width ratios. The buckling factors are applicable only to plates of isotropic material.

2 List of Symbols

Symbol	Unit	Description
a	mm	length of plate
b	$_{ m mm}$	width of plate
k		buckling factor
k^*		modified buckling factor
t	mm	thickness of plate
E	MPa	Young's modulus
ν		Poisson's ratio
$ au_{cr}$	MPa	critical buckling stress

3 Analyses

The critical buckling stress is given by:

$$\tau_{cr} = k \cdot \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{t}{b}\right)^2 \tag{3-1}$$

With the modified buckling factor $k^* = k \cdot \frac{\pi^2}{12 \cdot (1 - \nu^2)}$ it follows:

$$\tau_{cr} = k^* \cdot E \cdot \left(\frac{t}{b}\right)^2 \tag{3-2}$$

For $\nu=0.3$ the modified buckling factor is calculated as $k^*=k\cdot\frac{\pi^2}{12\cdot(1-0.3^2)}=0.904\cdot k$. It should be noted, however, that for most of the aluminum alloys used in airframe design $\nu=0.33$, resulting in a slightly different critical buckling stress. The curves provided in Fig. 1 are valid for $\nu=0.3$.

Prepared:	Checked:	Date:	
Vaih	Vaih	18.02.1970	MBB-UF

HANDBUCH STRUKTUR **BERECHNUNG**

Shear buckling of flat, rectangular plates

45112-01				
Issue C Year 1970				
Page	2	of	2	

Figure 1: Buckling factor k and modified buckling factor k^* vs aspect ratio b/a

Application

The data provided for the critical buckling stress are valid for linear elastic conditions. The Young's $\stackrel{\cdot}{modulus} E$ is to be reduced if the plastic regime is entered.

Prepared:	Checked:	Date:	
Vaih	Vaih	18.02.1970	MBB-UF

HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of flat, rectangular, orthotropic plates

45112-02				
Issue B Year 1994				
Page	1	of	4	

(Bindustrie Ausschuss Struktur Berechnungsunterlagen (IASB). All rights reserved. Confidential and proprietary document

Key Words: Buckling, buckling factor, orthotropic plate, shear loading

References

- [1] Davenport, O.B. and Bert, C.W.: Buckling of Orthotropic, Curved, Sandwich Panels Subjected of Edge Shear Loads, J. of Aircraft VOL. 9, No. 7, July 1971
- [2] Seydel, E.: Ausbeul-Schublast rechteckiger Platten, Zeitschrift für Flugtechnik und Motorluftschiffahrt, 24. Jahrg. 1933 Nr. 3

1 General

This HSB sheet provides buckling factors for rectangular orthotropic laminated plates under shear loading. The plate is simply supported at all four edges.

2 List of Symbols

Symbol	Unit	Description
\overline{a}	mm	length of plate
b	mm	width of plate
k		buckling factor
q_{cr}	N/mm	critical buckling section shear force
\overline{t}	mm	thickness of plate
x, y	mm	coordinates
D_{ij}	$N \cdot mm$	bending stiffness of laminate
E_x, E_y	MPa	Young's modulus (in x- and y-direction)
G_{xy}	MPa	shear modulus (in the xy-plane)
$\bar{\alpha}$		effective aspect ratio
β	******	Seydel's orthotropy parameter
$\nu_{xy}, \ \nu_{yx}$		Poisson's ratios of the laminate

Subscripts	
cr	critical buckling
x, y	coordinate directions
i, j	stiffness matrix subscripts
1, 2, 3	orthotropic axes

001uk 30.03.2007, 13:59, page 1 of 4

Prepared:	Checked:	Date:	Deutsche Aerospace
Kröber	Brüns-Treml	08.09.1994	Airbus

HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of flat, rectangular, orthotropic plates

45112-02					
Issue B Year 1994					
Page 2 of 4					

Cindustrie Ausschuss Struktur Berechnungsunterlagen (IASB). All rights reserved. Confidential and proprietary document

3 Analyses

3.1 Critical buckling section shear force

The critical buckling section shear force is calculated as

$$q_{cr} = k \cdot \left(\frac{\pi}{b}\right)^2 \cdot \sqrt[4]{D_{11} \cdot D_{22}^3} \tag{3-1}$$

In Fig. 1, the buckling factor k is given as a function of the effective aspect ratio

$$\bar{\alpha} = \frac{b}{a} \cdot \sqrt[4]{\frac{D_{11}}{D_{22}}} \tag{3-2}$$

and Seydel's orthotropy parameter

$$\beta = \frac{D_{12} + 2 \cdot D_{33}}{\sqrt{D_{11} \cdot D_{22}}} \tag{3-3}$$

B001uk 30.03.2007, 13:59, page 2 of 4

Prepared:	Checked:	Date:	Deutsche Aerospace
Kröber	Brüns-Treml	08.09.1994	Airbus

HANDBUCH STRUKTUR **BERECHNUNG**

Shear buckling of flat, rectangular, orthotropic plates

45112-02					
Issue B Year 1994					
Page 3 of 4					

Figure 1: Buckling factor k vs effective aspect ratio $\bar{\alpha}$

Deutsche Aerospace Checked: Date: Prepared: 08.09.1994 Brüns-Treml Kröber Airbus

©Industrie Ausschuss Struktur Berechnungsumterlagen (IASB). All rights reserved. Confidential and proprietary document

3.2 Procedure

For fibre composite laminates, the plate stiffness values D depend on the percentage share of the different fibre directions as well as on their distribution over the plate thickness.

During the conceptual design of structural items, the lay-up of the laminate is normally not yet exactly decided on, with the implication that the stiffness values are not exactly known, either. But to allow for a prediction of the critical buckling section shear forces, it may be assumed that the fibre layers are equally distributed over the thickness, leading to a homogeneous model of the plate. Based on this simplification, the stiffness values can be directly obtained from the elastic constants of the laminate and the plate thickness:

$$D_{11} = \frac{E_x \cdot t^3}{12 \cdot (1 - \nu_{xy} \cdot \nu_{yx})}$$

$$D_{22} = \frac{E_y \cdot t^3}{12 \cdot (1 - \nu_{xy} \cdot \nu_{yx})}$$

$$D_{12} = \nu_{xy} \cdot D_{22} = \nu_{yx} \cdot D_{11}$$

$$D_{33} = \frac{G_{xy} \cdot t^3}{12}$$
(3-4)

The critical buckling section shear force predicted with this simplification provides a typical value. The exact critical buckling section shear force is higher if the layers in the direction of the short edges generally lie nearer to the outer surfaces of the plate than those in the direction of the long edges. Therefore, in the latter case, it is strongly recommended to use the actual stiffness values for design verification.

4 Application

The following prerequisites are assumed:

- The orthotropic axes are parallel to the edges of the rectangular plate.
- The laminate is symmetric to its center plane.
- The predicted critical buckling section shear force lies within the regime where the stresses still remain linear elastic.

d
÷
C
Ť
n
č
ď
C
o
Š
Ċ,
4
1
C
Č
Ò
3
C
C
ď.
=
2
Ğ
40
÷
⇆

Prepared:	Checked:	Date:	Deutsche Aerospace
Kröber	Brüns-Treml	08.09.1994	Airbus

HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of corrugated webs

45112-05				
Issue C Year 1978				
Page	1	of	5	

Key Words: Buckling, buckling factor, corrugated web, shear loading

References

- [1] Seydel, E.: Beitrag zur Frage des Ausbeulens von versteiften Platten bei Schubbeanspruchung. DVL-Jahrbuch 1930, S. 235-254
- [2] Schapitz, E.: Festigkeitslehre für den Leichtbau. VDI-Verlag, 1963
- [3] Hertel, H.: Leichtbau. Springer Verlag, 1960

1 General

This HSB sheet provides the critical buckling shear stress of a corrugated web. The corrugated web is treated as a whole item. It can be modelled as an geometrically orthotropic plate with two different bending stiffness values in directions perpendicular to each other (see [3]). All four edges are simply supported. The external section shear force acts in the center plane. If the sheet is very thin, local buckling may occur, which needs to be checked additionally.

The configuration is shown in the following sketch:

B001uk 30.03.2007, 13:59, page 1 of 5

	Prepared
1	

List of Symbols

Symbol	Unit	Description
a	mm	characteristic length in a trapezium-shaped profile
b	mm	width of the corrugated web
c_a		buckling coefficient
k^*		buckling factor
l	mm	length of the corrugated web
S	mm	overall height of the corrugated web
t	mm	thickness of the sheet
x, y	mm	coordinates
E	MPa	Young's modulus
D_x, D_y	$N \cdot mm$	average stiffness of the orthotropic plate in the x- and y-direction
D_{xy}	$N \cdot mm$	average twisting stiffness of the orthotropic plate
$\bar{\alpha}$		effective aspect ratio
β		orthotropy parameter
ν		Poisson's ratio
$ au_{cr}$	MPa	critical buckling shear stress

Su	bscript	
	cr	critical buckling
	x, y	coordinate directions

Analyses

The critical buckling shear stress of an orthotropic plate in the linear elastic regime is given by (see [1, 2]):

$$\tau_{cr} = c_a \cdot \frac{4}{b^2 \cdot t} \cdot \sqrt[4]{D_x \cdot D_y^3} \tag{3-1}$$

As stiffness input for the corrugated web one can use:

• for the bending stiffness of the sheet

$$D_x = \frac{E \cdot t^3}{12 \cdot (1 - \nu^2)} \tag{3-2}$$

 \bullet for the special case of a 60 $^{\circ}$ sinusoidal profile shape

$$D_y \approx \frac{E \cdot s^2 \cdot t}{6} \tag{3-3}$$

(for other profile shapes, D_y is to be determined individually)

• for the twisting stiffness, it is

$$D_{xy} \approx D_x \tag{3-4}$$

Prepared: Johst	Checked:	Date: 22.09.1976	DORNIER GmbH
301131	Rose		

HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of corrugated webs

45112-05					
Issue C Year 1978					
Page	3	of	5		

The buckling coefficient c_a is a function of the effective aspect ratio

$$\bar{\alpha} = \frac{b}{l} \cdot \sqrt[4]{\frac{D_x}{D_y}} \tag{3-5}$$

and the orthotropy parameter

$$\beta = \frac{D_{xy}}{\sqrt{D_x \cdot D_y}} \tag{3-6}$$

For a long sinusoidally shaped corrugated web according to the following sketch

it is $b \ll l$ and $t \ll s$, resulting in $D_x \ll D_y$ and $D_{xy} \ll D_y$, which leads to $\bar{\alpha} \approx 0$ and $\beta \approx 0$.

For an orthotropic plate with $\bar{\alpha}=0$ and $\beta=0$, the buckling coefficient is $c_a=8.125$ (see [1]) and Eq. (3-1) can be approximately transformed (for the special value $\nu=0.3$) into

$$\tau_{cr} \approx 4.7 \cdot E \cdot \left(\frac{s}{b}\right)^2 \cdot \sqrt{\frac{t}{s}}$$
(3-7)

For a trapezium-shaped profile according to the following sketch

one obtains

$$\tau_{cr} \approx 4.48 \cdot E \cdot \left(\frac{a}{b}\right)^2 \cdot \sqrt{\frac{t}{a}}$$
(3-8)

In analogy to the buckling formula for isotropic plates, the critical buckling shear stress given in Eq. (3-7) can be written as

$$\tau_{cr} = k^* \cdot E \cdot \left(\frac{s}{b}\right)^2 \tag{3-9}$$

with the buckling factor $k^* = 4.7 \cdot \sqrt{t/s}$; the corresponding diagram of k^* is shown in Fig. 1.

Prepared:	Checked:	Date:	
Johst	Rose	22.09.1976	DORNIER GmbH

HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of corrugated webs

45112-05				
Issue C Year 1978				
Page	4	of	5	

(Bindustrie Ausschuss Struktur Berechnungsunterlagen (IASB). All rights reserved. Confidential and proprietary document

The following diagrams (Figs. 2, 3) show the critical buckling shear stresses for corrugated webs with sinusoidal sheet profile for aluminum alloys with $E=70\,600\,\mathrm{MPa}$ and titanium alloys with $E=108\,000\,\mathrm{MPa}$, respectively.

Overlay WS-YHSB001uk 30.03.2007, 13:59, page 4 of 5

2	Prepared:	Checked:	Date:	
allay v	Johst	Rose	22.09.1976	DORNIER GmbH

HANDBUCH STRUKTUR BERECHNUNG

Shear buckling of corrugated webs

45112-05				
Issue	C	Year	1978	
Page	5	of	5	

(E)Industrie Ausschuss Struktur Berechnungsunterlagen (IASB). All rights reserved. Confidential and proprietary document

4 Application

The data provided for the critical buckling shear stress are valid for linear elastic conditions. The Young's modulus E is to be reduced if the plastic regime is entered.

ĺ	
	v)
	~
	n
	CO.

ΞΙ				
erlay WS-)	Prepared: Johst	Checked: Rose	Date: 22.09.1976	DORNIER GmbH