(20229) פתרון ממ"ן 16 – אלגברה לינארית 2

2023 ביוני

תהי מטריצה

$$A = \begin{pmatrix} 6 & -9 \\ 1 & 0 \end{pmatrix}$$

'סעיף א

 $A^{-1}AP=G$ נמצא צורת ז'ורדן G של A ומטריצה הפיכה A ומטריצה נמצא

A נמצא את הפולינום האופייני של

$$|A| = (t-6)t + 9 = t^2 - 6t + 9 = (t-3)^2$$

$$(A-3I)^2 = \begin{pmatrix} 3 & -9 \\ 1 & -3 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

ולכן אינדקס הנילפוטנטיות שלה הוא 2.

. נשתמש האיא באיח בסיס אשר כסיס למצוא כדי לא 11.7 על 11.7 בסעיף מופיע אשר בו החישוב אשר באלגוריתם לא כדי למצוא באלגוריתם מופיע מופיע בסעיף באלגוריתם איז איז לא מופיע בסעיף באלגוריתם החישוב איז מופיע באלגוריתם החישוב החישוב

$$P = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, P^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} J = P^{-1}AP = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

'סעיף ב

נובע כי 11.3.6 ומטענה 11.3.6 ומטענה את החילה נחשב את החילה נחשב את G^{100} . ממסקנה 11.3.6 ואת את החילה נחשב את את החילה נחשב את מסקנה 11.3.7 ואת החילה נחשב את החילה נחשב את מסקנה 11.3.7 ומטענה החילה מסקנה מסקנה החילה מסקנה החילה מסקנה החילה מסקנה מסקנה מסקנה מסקנה החילה מסקנה מ

$$J^{100} = J_2(3)^{100} = \sum_{k=0}^{1} {100 \choose k} 3^{100-k} J_2(0)^k = {100 \choose 0} 3^{100} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + {100 \choose 1} 3^{99} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 3^{100} & 100 \cdot 3^{99} \\ 0 & 3^{100} \end{pmatrix}$$

משאלה 8.2.3 א' נובע כי

$$A^{100} = P^{-1}J^{100}P = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3^{100} & 100 \cdot 3^{99} \\ 0 & 3^{100} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix}$$

'סעיף ג

נמצא נוסחה עבור , a_n עבור נתון

$$a_n = \begin{cases} a & n = 0 \\ b & n = 1 \\ 6a_{n+1} - 9a_n & n > 1 \end{cases}$$

מחישוב ישיר ניתן לראות כי מתקיים

$$A \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} 6a_{n+1} - 9a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix}$$

לכן נוכל להוכיח באינדוקציה כי

$$\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = A^n \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3^n & n \cdot 3^{n-1} \\ 0 & 3^n \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix}$$
$$= \begin{pmatrix} 3^n & n3^n + 3^n \\ 3^n & n3^{n-1} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix}$$
$$= \begin{pmatrix} (1+n)3^n & -n3^n \\ n3^{n-1} & (1-n)3^n \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix}$$
$$\to a_n = b(1+n)3^n - na3^n$$

T:V o V מרחב לינארית העתקה סופי מממד מוניטרי אוניטרי מרחב ער מרחב ער אוניטרי היי

 T^* של עצמי וקטור גם הוא דה אם עצמי עצמי ידוע כי כל וקטור עצמי אוי

. נוכיח כי T העתקה נורמלית

T של של העצמיים הערכים $\lambda_1, \lambda_2, \ldots, \lambda_n$ יהיו

 λ_i של בעצמי המרחב להיות להיות ונגדיר את א $1 \leq i \leq n$ של יהי מספר כך מיהי

 V_i אנו של $T_i:V_i o V_i$ צמצום של דולכן נגדיר אנו ולכן תוקיים של $T_i:V_i o V_i$ אנו יודעים כי לכל

מהדרתה נובע ש־ T_i היא העתקה סקלרית ולכן מטריצת יצוגה דומה ל- $\lambda_i I_n$ ולכן מהגדרה 3.1.1 נובע כי היא לכסינה אוניטרית ונורמלית. מסיבה זו נוכל גם לקבוע כי קיים בסיס אורתונורמלי $B_i\subseteq V_i$ אשר מלכסן אוניטרית את

 $u \in V_i$ לכל בי נובע נובע 3.2.5 מנורמליות על־פי למה T_i

$$T_i^* u = \overline{\lambda_i} u \tag{1}$$

 $v_i \in V_i, v_j \in V_j$ יהיו וקטורים ויהיו והיו ב $i,j \leq n, i \neq j$ כך יהיו יהיו היו כל כל נקטור עצמי של T^* אנו יודעים כי כל וקטור עצמי של Tהוא גם וקטור עצמי

$$(Tv_i, v_j) = \lambda_i(v_i, v_j) = (v_i, T^*v_j) \stackrel{\text{8.4.8}}{=} (v_i, T_j^*v_j) \stackrel{\text{(1)}}{=} (v_i, \overline{\lambda_j}v_j) \stackrel{\text{1.2.3}}{=} \lambda_j(v_i, v_j)$$

ולכן בהתאם

$$(\lambda_i - \lambda_j)(v_i, v_j) = 0$$

ידוע כי עצמיים שונים שונים לערכים עצמיים לשני וקטורים כל שני וקטורים ($(v_i,v_j)=0$ בהכרח אונים הם אורתוגונליים. אנו ידועים כי אני ולינארית, ועתה וועתה בובע גם כי $B_i \perp B_j$ לכן גם

$$B = \bigcup_{i=1}^{n} B_i$$

 $.V^{\text{-}}$ לינערים קבוצת מהווה מהגדרת ומהגדרת לינארים יוצרים בלתי אורתונורמלי, אורתונורמלי

A אנו יודעים כי לכל אלכסונית ולכן מהגדרת מהגדרת ולכן מהגדרת ולכן דb=lpha b אנו יודעים כי לכל

לכן גם ולכן אוניטרית לכסינה לכסינה נובע כי 3.1.1 נובע לכן מהגדרה לכן לכ

מש"ל

'סעיף א

נמצא צורת ז'ורדן למטריצה הבאה

$$A = \begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}$$

ננתחיל בחישוב ערכיה העצמיים בעזרת פולינום אופייני:

$$P(t) = \begin{vmatrix} t-1 & 3 & 0 & -3 \\ 2 & t+6 & 0 & -13 \\ 0 & 3 & t-1 & -3 \\ 1 & 4 & 0 & t-8 \end{vmatrix} = (t-1) \begin{vmatrix} t-1 & 3 & -3 \\ 2 & t+6 & -13 \\ 1 & 4 & t-8 \end{vmatrix}$$
$$= (t-1)((t-1)(t+6)(t-8) - 39 - 24 + 3(t+6) - 6(t-8) + 52(t-1)) = (t-1)^4$$

A אשר אלגברי הוא א אשר יחיד Aל-

A-I(u=0) בחב הפתרונות של A עבור A עבור עבור של עבור את הריבוי הגאומטרי של את עבור עבור עבור אידי של A

$$\begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & -7 \\ 0 & 1 & 0 & 1 \\ 0 & -3 & 0 & 3 \\ 0 & -3 & 0 & 3 \end{pmatrix} \rightarrow \rho(A - I) = 2$$

אז הריבוי הגאומטרי של 1 הוא 2.

.3 הוא A-I מוצאים כי WolfarmAlpha, לכן אינדקס הנילפוטנטיות של WolfarmAlpha מוצאים כי

מטענה 11.8.1 אנו מסיקים כי מספר מטריצות הז'ורדן היסודיות המופיעות במטריצת הז'ורדן הדומה ל-A היא 2 ומטריצת הז'ורדן הגדולה ביותר היא בגודל 3. לכן 4 דומה למטריצה הבאה

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

'סעיף ב

נגדיר מטריצה

$$B = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}$$

 $B=P^{-1}JP$ המקיימת P הפיכה B ומטריצה B של המטריצה J דורדן ז'ורדן $P_B(t)=(t-1)^3$ אנו למדים של A אנו הפולינום הפולינום הפולינום האופייני של A אנו למדים כי אינדקס הנילפוטנטיות של A-I הוא A הוא בשל נתונים אלה אנו יכולים להסיק מטענה $P_B(t)=0$

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

:P עתה נמצא את נמצא עתה נמצא

 $J_3(0)$ לבין B-I בין מטריצת היא התנאי את המקיימת המטריצה B-I בסיס הז'ורדן של בסיס על הע $W=(w_1,w_2,w_3)$ וכמובן נגדיר בסיס לגדיר בסיס או היא בסיס לע

ידוע כי

$$J_3(0) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

ולכן שטות, מטעמי מטעמי אבריך גדיר ($W_3 = (1,0,0)$ נגדיר נבדיר אריך להתקיים צריך להתקיים אבריך להתקיים על-פי הגדרת אבריך להתקיים על-פי א

$$(B-I)w_3 = \begin{pmatrix} 0 & -3 & 3 \\ -2 & -7 & 13 \\ -1 & -4 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}$$

 $w_2 = (0, -2, -1)$ בהתאם להגדרת w_3 נובע כי

על־פי הגדרת $(B-I)w_2=w_1$ גם מתקיים על־פי הגדרת על־פי

$$(A-I)w_2 = w_1 = (3,3,1)$$

.Bשל היים ז'ורדן אכן שיר, ואכן על־פי חישוב של-פי ו $(B-I)w_1=0$ בסיס אכן לב כי משים לב נשים מהגדרת מעבר נקבע

$$P = \begin{pmatrix} 3 & 0 & 1 \\ 3 & -2 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

 $\lambda \in \mathbb{C}$ יחיד עצמי ערך בעלת מסדר מסדר מסדר מטריצה מטריצה אות מסדר מ

$$ho(A-\lambda I)=2$$
 וכי $ho(A-\lambda I)^2=1$ ידוע כי

A של את צורת המינימלי ואת הפולינום את נמצא את נמצא את נמצא את וורדן ואת א

.3 אוא B מטריצה של הנילפוטנטיות כי אינדקס אנו פוענה 11.5 אנו מטענה נילפוטנטיות של $B=A-\lambda I$ מטענה 9.12.1 נובע כי

על־פי טענה 11.8.1 מספר מטריצות הז'ורדן היסודיות בצורת ז'ורדן של A הוא 5, וגם כי מטריצת הז'ורדן היסודית הגדולה ביותר היא מסדר A מסדר B דומה למטריצת ז'ורדן הבאה

ובהתאם ממשפט 11.9.2 נובע כי A דומה למטריצת ז'ורדו הבאה

$$J = \begin{pmatrix} \lambda & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

 $M_A(x) = (x - \lambda)^3$ על־כן נובע עם ענה 9.12.1 על־פי טענה

. בעלת ממשיים עצמיים ערכים בלבד בעלת בעלת בעלת
 $A \in M_3(\mathbb{C})$ ידוע כי צורת ז'ורדן של A^3 של היא

$$\begin{pmatrix}
8 & 1 & 0 \\
0 & 8 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$p_3(t) = (t-8)^2(t-1)$$
 אוא A^3 של האופייני הפולינום מניב כי הפולינום חישוב של חישוב

A הם A הם אינם ערכיה נובע כי ערכיה ממשיים נובע של ערכיה העצמיים כי כלל ערכיה העצמיים של A הם המשיים נובע כי ערכיה הקודם והעובדה כי כלל ערכיה העומייני של A הוא על־ידי שימוש בדרך חישוב החזקה בשאלה A סעיף ב' ושילוב זהויות דטרמיננטה, אנו יכולים להסיק כי הפולינום האופייני של A הוא

$$p(t) = (t - 2)^{2}(t - 1)$$

, אווה האופייני האופייני שלה, מטענה בובע כי הפולינום המינימלי של 11.3.2 מטענה בובע מיני האופייני שלה

$$M_A(t) = (t-2)^2 (t-1)$$

לבסוף נובע ממשפט 11.10.1 כי למטריצה A צורת ז'ורדן ומהפולינום המינימלי אנו יכולים למטריצה צורת צורדן אורדן אורדן אורדן מ

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$