A Pipeline for Indoor Navigation

Group 9:

Ted Lutkus (001651321)

Yutao Jing (001215322)

Xupeng Zhu (001814074)

Shreekant Kodukula (001817642)

Why indoor navigation?

Indoor navigation always deals with navigation within buildings. However, GPS signal normally can't penetrate the buildings' walls, finding an alternative way to navigate is needed.

IMU based navigation

- Spread widely
- Cost advantage

Overview of Pipeline

SLAM Navigation/Mapping Methods

- Mapping in Turtlebot can be done with different methods:
- Laser Based SLAM:
- → The laser rangefinder emits short pulses of infrared laser light and measures how long it takes for the reflection pulse to return.
- Vision Based SLAM: It uses a camera to build a map.

SLAM Navigation/Mapping Methods: GMapping

There are particularly three methods, involved in laser based SLAM for simultaneous mapping and localization, which are::

1). GMapping: SLAM package that supports 2D indoor mapping.

SLAM Navigation/Mapping Methods: Cartographer

2). Cartographer: package that provides 2D and 3D mapping support for turtlebot.

We will have to use a camera for 3D mapping.

SLAM Navigation/Mapping Methods: Hector

3). Hector: can be used without the use of odometry mechanisms, and with platforms which have motion sensors. Provides 2D estimates.

Some of the methods for Vision Based SLAM include RTAB-Map (Real Time Appearance Based Mapping).

Mapping Environment...

Localization Methods

LiDar

IMU

Localization Methods - LiDar I. Bayes filter

x: the location of the robot

z: LiDar data

u: joystick command

t: at time t

$$p(x_t \mid z^t, u^t) = \text{const.} \cdot p(z_t | x_t) \int p(x_t | u_t, x_{t-1})$$
$$p(x_{t-1} | z^{t-1}, u^{t-1}) dx_{t-1}$$
(1)

Localization Methods - LiDar II. Particle filter

Initialization (t=0):

Draw M particles $\sim p(x_0) => X_0$

Recursion (t>0):

Generate x_t for each $x_{t-1} \sim p(x_t \mid u_t, x_{t-1})$

Draw M particles for each $x_t \sim p(z_t \mid x_t) => X_t$

$$p(x_t \mid z^t, u^t) = \text{const.} \cdot p(z_t | x_t) \int p(x_t | u_t, x_{t-1})$$
$$p(x_{t-1} | z^{t-1}, u^{t-1}) dx_{t-1}$$
(1)

Sebastian Thrun, Particle Filtersin Robotics

Localization Methods - LiDar II. Particle filter

As t→infinity:

X_t→converge

Why?

More accurate informations

Sebastian Thrun, Particle Filtersin Robotics

IMU Methods

Why IMU could work for indoor navigation?

By estimating the forward velocity, we can obtain the displacement. Then it's possible to locate a person in a room by mapping the estimated trajectory on the room map.

Start point

End point

Estimated Velocity from IMU

Indoor Trajectory

Visualization

Current Position and Heading

RViz

• Real-time display

• Goal selected by user

Goal: Kitchen

Current Results

- SLAM/Mapping
 - Complete
- Localization
 - Complete
- IMU Processing
 - o Complete
- Visualization
 - Complete

Particle Filter using SLAM in Turtlebot

Visualization Demo

Questions