

Presentación del equipo

Stefanny Escobar
Preparación
de los datos e
investigación

Sara Gallego
Revisión de datos e investigación

Isabella
Navarro
Correcciones y
conclusiones

Problemática

La crisis del 2008 en Estados Unidos causó problemas económicos mundiales, uno de estos siendo que empresas quebraran y muchos inversionistas perdieran su dinero.

Figura 1 periódico crisis [8]

Objetivo general

Evaluar la efectividad del modelo de regresión logística en el fenómeno de la bancarrota en los bancos estadounidenses.

Figura 2 banco[8]

Justificación

Justificación

- Cerca del 25% de las importaciones colombianas provienen de Estados Unidos.
- El motivo de esta investigación es ayudar a los inversionistas Colombianos al invertir su dinero en bancos estadounidenses.

Figura 3 Bancos americanos [9]

Conceptos básicos

Liquidez:

Capacidad para cumplir con los compromisos a corto y mediano plazo. Primer análisis para conocer si la empresa cuenta con dinero.

Rentabilidad:

Capacidad de una inversión de generar utilidad.

Calidad de credito:

Es la capacidad de poder cumplir con los pagos al momento de adquirirlos.

Eficiencia:

Sacar el máximo provecho de los recursos.

Conceptos básicos

Solvencia:

Capacidad de cumplir con los pagos independiente si es en forma inmediata o posterior.

Productividad:

Calcula cuántos bienes y servicios se han producido por cada factor utilizado.

Razón de aplacamiento:

Es la razón entre el capital de la empresa y las deudas.

Rotación de activos:

Mide el nivel de eficiencia con la que una empresa utiliza sus activos para generar ingresos.

Conceptos básicos

Margen operativo:

Cuantifica el porcentaje de ingresos por ventas que la empresa convierte en beneficios, antes de descontar impuestos e intereses.

Matriz de confusión:

Permite visualizar el desempeño de un algoritmo de aprendizaje supervisado.

Regresión logística

- Método estadístico
- Permite establecer una relación y obtener una estimación estadística ajustada de probabilidad de la ocurrencia de un evento(Binario)

Matemáticamente

 Tenemos la variable dependiente y, las variables independientes Xi, los parámetros del modelo Wi,

Figura 5 Interpretación modelo [11]

$$S(w^t x) = \frac{1}{1 + e^{-w^t x}}$$

Regresión logística

¿Cómo funciona internamente?

- Tenemos la variable dependiente y, con 0 y 1 (dicotómico)
- El vector de variables independientes Xi
- El vector transpuesto de parámetros **W**i
- Combinación lineal entre los parámetros y variables características

$$F(w^t x) = 1 - \frac{1}{1 + e^{w^t x}}$$

 Luego las probabilidades del modelo estan dadas por:

$$p = \frac{e^{w^t x}}{1 + e^{w^t x}}$$

X: v.a quebrado o no quebrado

Regresión logística

Función Sigmoide

 La predicciones de este modelo vienen calibradas entre 0 y 1, gracias a la función sigmoide.

$$S(t) = \frac{1}{1 + e^{-t}}$$

 La combinación lineal en la función sigmoide resultante es:

$$S(w^t x) = \frac{1}{1 + e^{-w^t x}}$$

 Esta permite que la probabilidad este correctamente calibrada.

Figura 6 Modelo Calibrado [12]

$$1 \operatorname{sis}(w^t x) \ge 0, 5$$

 $0 \operatorname{sis}(w^t x) < 0, 5$

Variables e hipotésis

Neurona artificial:

W se calcula atraves del entrenamiento

Figura 7 Regresión lógistica para la clasificación [13]

Metodología

- Los datos fueron tomados del laboratorio financiero y Kaggle
- 120 bancos no quebrados y 71 quebrados
- Muestra inicial 200 bancos de 2007 a 2017
- Modelo de regresion logística binaria, para analizar los datos se uso matrices de confusión, precisión, recall, F1 score y support

Figura 8 Plot de datos

Indicadores financieros

EPS (Earnings per share)

 Ganancia generada por cada acción de la compañía.

$$= \frac{Profit - Dividends}{\# of shares outstanding}$$

Market Book Ratio

 Evaluar si la compañía está infravalorada o sobrevalorada.

$$= \frac{Book\ Value}{Market\ Value}$$

- Ratio > 1 undervalued
- Ratio < 1 overvalued

Tobin's Q

 Indicador básico de rentabilidad y de beneficios a largo plazo.

$$= \frac{Equitity\ Market\ Value}{Equitity\ Book\ Value}$$

- Ratio > 1 overvalued
- Ratio < 1 undervalued

Return on Equity

 La eficiencia que tiene una compañía de generar ganancias.

$$= \frac{Profit}{Equity}$$

Variables e hipotésis

 Para las variables Xi Tomamos indicadores financieros como: EPS, Liquidity, profitability... Se implementó el modelo con herramientas de machine learning, librerias como imblearn, sklearn, pandas... de esta manera el modelo internamente identifica pesos e importancia de las categorías.

	Data Year - Fiscal	Tobin's Q	EPS	Liquidity	Profitability	Productivity	Leverage Ratio	Asset Turnover	Operational Margin	Return on Equity	Market Book Ratio	Assets Growth	Sales Growth	Employee Growth
ВК														
0	2007.0	2.545333	1.884333	0.145250	-0.836250	0.069583	0.647833	1.103917	-0.863417	0.012333	1201.467333	1.571833	0.131683	0.059908
1	2010.0	1.772423	-2.652958	-0.257085	-2.940634	-0.254437	-3.371113	1.250690	-2.685085	-44.089324	52.931451	-0.142563	0.445592	0.004056

Fig 7 Promedio de los indicadores de bancarrota y no bancarrota

Implementación del modelo

Librerias usadas:

Pandas, Numpy, sklearn, matplotlib, seaborn y imblearn

Lectura de datos y análisis general de datos:

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
plt.rc("font", size=14)
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
sns.set(style="white")
sns.set(style="white")
sns.set(style="whitegrid", color_codes=True)
```

```
pgf = pd.read_csv("Bancarrota.finalll.csv")
data= pgf.dropna()
print(data)
print(list(data.columns))

data['BK'].value_counts()

0    120
1    71

count_no_sub = len(data[data['BK']==0])
count_sub = len(data[data['BK']==1])
pct_of_no_sub = count_no_sub/(count_no_sub+count_sub)
print("percentage of healthy bank", pct_of_no_sub*100)
pct_of_sub = count_sub/(count_no_sub+count_sub)
print("percentage of bankruptcy", pct_of_sub*100)
```

percentage of healthy bank 62.82722513089005 percentage of bankruptcy 37.17277486910995

Implementación del modelo

Implementación de regresión logística con sklearn:

Evaluación de modelo:

```
precision
                           recall f1-score
                   0.85
                             0.92
                                       0.88
                                                   24
                   0.85
                             0.73
                                       0.79
                                                   15
                                       0.85
                                                   39
    accuracy
                                       0.83
                                                   39
   macro avg
                   0.85
                             0.82
weighted avg
                   0.85
                                       0.84
                             0.85
                                                   39
```

print(classification_report(y_test,predictions))

logmodel.fit(X train,y train)

predictions = logmodel.predict(X test)

Matriz de confusión:

Direcciones de trabajo futuras

Empresas

Instituciones

Personas

Figura 9 Bankruptcy [14]

Matriz de Confusión y sus métricas

	precision	recall	f1-score	support
0 1	0.92 0.92	0.96 0.86	0.94 0.89	25 14
accuracy macro avg weighted avg	0.92 0.92	0.91 0.92	0.92 0.92 0.92	39 39 39

Figura 10 resultados obtenidos

Precisión:

$$= \frac{VP}{VP + FP}$$

macro avg:

$$= (0.5 * score class 0) + (0.5 * score class 1)$$

Weighted avg:

$$= (\frac{support}{total} * score class 0) + (0.5 * score class 1)$$

Recall:

$$= \frac{VP}{VP + FN}$$

f1-score:

$$= \frac{2*(precisi\'on*recall)}{precisi\'on+recall}$$

Accuracy:

$$= \frac{VP + VN}{VP + FP + FN + VN}$$

Clase 0: bancos sin bancarrota

Clase 1: bancos en bancarrota

		precision	recall	f1-score	support
	0	0.89	0.96	0.93	26
	1	0.91	0.77	0.83	13
accur	accuracy			0.90	39
macro	avg	0.90	0.87	0.88	39
weighted	avg	0.90	0.90	0.90	39

		precision	recall	f1-score	support
	0	0.86	0.92	0.89	26
	1	0.82	0.69	0.75	13
accur	acy			0.85	39
macro	avg	0.84	0.81	0.82	39
weighted	avg	0.84	0.85	0.84	39

		precision	recall	f1-score	support
	0	0.92	0.96	0.94	25
	1	0.92	0.86	0.89	14
				0.92	20
accui	racy			0.92	39
macro	avg	0.92	0.91	0.92	39
weighted	avg	0.92	0.92	0.92	39

		precision	recall	f1-score	support
	0	0.96	1.00	0.98	26
	1	1.00	0.92	0.96	13
accui	racy			0.97	39
macro	avg	0.98	0.96	0.97	39
weighted	avg	0.98	0.97	0.97	39

	precision	recall	f1-score	support
0 1	0.78 0.86	0.96 0.46	0.86 0.60	26 13
accuracy macro avg weighted avg	0.82 0.81	0.71 0.79	0.79 0.73 0.77	39 39 39

	precision	recall	f1-score	support
9 1	0.87 0.94	0.95 0.83	0.91 0.88	21 18
accuracy macro avg weighted avg	0.90 0.90	0.89 0.90	0.90 0.90 0.90	39 39 39

	precision	recall	f1-score	support
0	0.82	0.95	0.88	19
1	0.94	0.80	0.86	20
accuracy			0.87	39
macro avg	0.88	0.87	0.87	39
weighted avg	0.88	0.87	0.87	39

	precision	recall	f1-score	support
0	0.90	0.96	0.93	28
1	0.89	0.73	0.80	11
accuracy			0.90	39
macro avg	0.89	0.85	0.87	39
weighted avg	0.90	0.90	0.89	39

	precision	recall	f1-score	support
0	0.88	0.85	0.86	26
1	0.71	0.77	0.74	13
accuracy			0.82	39
macro avg	0.80	0.81	0.80	39
weighted avg	0.82	0.82	0.82	39

Resultados

Después de evaluar el modelo 9 veces se obtuvo en promedio (clase 0):

- Una precisión de 0.87 indicando que hubo pocos falsos positivos.
- Un recall de 0.94 indicando que hubo muy pocos falsos negativos.
- Un **f1-score** de **0.9** indicando que la precisión del modelo es muy buena.

Después de evaluar el modelo 9 veces se obtuvo en promedio (clase 1):

- Una precisión de 0.85 indicando que hubo pocos falsos positivos.
- Un **recall** de **0.75** indicando que hubo pocos falsos negativos.
- Un **f1-score** de **0.81** indicando que la precisión del modelo es buena.

 Como se puede visualizar, los resultados de la clase 0 son mejores a los de la clase 1. Esto se debe a que la clase 0 (bancos sin bancarrota) tiene más datos que la clase 1 (bancos en bancarrota).

- El modelo es muy eficaz prediciendo cuales bancos se van a quebrar y cuales no.
- Se desea que el modelo sea utilizado para predicción de bancarrota en los bancos estadounidenses por los inversionistas Colombianos.

Nuestro aporte:

Los datos utilizados en este modelo fueron del 2007-2017 logrando que el modelo sea más eficaz.

Referencias

- 1 HealthBigData. (2019).La matriz de confusión y sus metricas [fig 3]. https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/
- FINANZAS "¿Qué es y cómo se logra la eficiencia financiera?" .13 de marzo del 2018. URL: https://rpp.pe/campanas/contenido-patrocinado/que-es-y-como-se-logra-la-eficiencia-financiera-noticia-1110108
- 2 Mª Visitación García Jiménez, Jesús Mª Alvarado Izquierdo y Amelia Jiménez Blanco "La predicción del rendimiento académico: regresión lineal versus regresión logística" 2000. Vol. 12, Supl. nº 2, pp. 248-252.
- 3 Juan Camilo Vega, Edgar Guillermo Rodríguez Díaz, Alexandra Montoya R. "Metodología de evaluación del clima organizacional a través de un modelo de regresión logística para una universidad en Bogotá, Colombia" Revista CIFE: Lecturas de Economía Social, ISSN-e 2248-4914, Vol. 14, Nº. 21, 2012, págs. 63-88.
- 4 Clavijo, Maria A V. 2022. "Regresión Logística Robusta Para La Clasificación de Residuos Sólidos." OSF. April 1. doi:10.17605/OSF.IO/CW6UP.
- "Modelo de regresión logística para estimar la dependencia según la escala de Lawton y Brody.". Septiembre (2010). Vol. 36. Núm. 7
- 5 Barrios. I."La matriz de confusión y sus métricas"en 2019 URL: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas
- 6Rodrigo 2016. "Regresión logística simple y múltiple" el URL : https://www.cienciadedatos.net/\\documentos/27 regresion logística simple y multiple.
- 7Programming foundation. I."Module 4 \Logistic regression". URL:https://learn.theprogrammingfoundation.org/gett\\ing started/intro data science/module4
- 8Bankruptcy [Fig 9]. https://www.thebluediamondgallery.com/legal/images/bankruptcy.jpg
- 9Miguel Sotaquirá. Codificandobits. (2020).La Neurona Artificial y la Regresión Logística
- Investopedia URL:https://www.investopedia.com/1
- [10]https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/
- [11]https://www.cienciadedatos.net/documentos/27_regresion_logistica_simple_y_multiple
- [12] https://www.statdeveloper.com/regresion-logistica-en-python/
- [13][fig 8].https://www.codificandobits.com/blog/regresion-logistica-y-neurona-artificial/
- [14[Bancos americanosFig 3 https://www.eleconomista.es/mercados-cotizaciones/noticias/11299016/06/21/Los-bancos-estadounidenses-pagaran-mas-de-2000-millones-de-dolares-mas-en-dividendos-trimestrales.html

¡GRACIAS!

- El profesor Henry Laniado por su apoyo en el Proyecto.
- Monitores del laboratorio financiero que ayudaron a obtener los datos.
- La directora de Simat por su ayuda.

Todos los autores agradecen a la Vicerrectoría de Descubrimiento y Creación de la Universidad EAFIT por su apoyo en esta investigación.