

4^{ème}Math Classe:

(Gr Standard)

Série 25 oscillations électriques forcées(bac)

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1:

C 25min

Contrôle 4 sc 2014

Dans le circuit précédent on insère, en série avec le condensateur de capacité $C = 2 \cdot 10^{-6} \, F$, une bobine d'inductance L et de résistance r.

On ajuste la résistance du résistor à la valeur R_2 = 90 Ω et on remplace le générateur de fem E par un générateur de basses fréquences GBF délivrant une tension sinusoïdale u (t) = U_m sin ($2\pi Nt$), d'amplitude U_m constante et de fréquence N réglable (figure 3).

Le système d'acquisition permet d'avoir à la fois les chronogrammes de la tension \mathbf{u} (\mathbf{t}) et de la tension \mathbf{u}_{R2} (\mathbf{t}) aux bornes du résistor.

Pour une valeur N_1 de la fréquence N du générateur, on obtient les courbes \mathscr{C}_4 et \mathscr{C}_5 de la figure 4.

- a Montrer que la courbe & correspond à u (t).
 - Justifier que le circuit est le siège d'oscillations électriques forcées.
- 2) En exploitant les courbes de la figure 4, déterminer :
 - a la fréquence N₁ de u (t) et l'intensité maximale I_{1m} du courant qui circule dans le circuit.
 - b la phase initiale de u_{R2} (t).
- a Préciser la nature du circuit (inductif, capacitif ou résistif)
 à la fréquence N₁.
 - b Calculer l'impédance électrique Z du dipôle RLC étudié.
 - c Déterminer les valeurs de r et L et déduire la fréquence propre N₀ de l'oscillateur.

Exercice 2:

C 30min

(Bac science principale 2014)

Dans le but de déterminer la valeur de la résistance r de la bobine (B) et celle de son inductance L, on insère en série dans le circuit précédent :

- un générateur de basses fréquences (GBF) délivrant une tension alternative sinusoïdale

u (t) =
$$U\sqrt{2}\sin(2\pi N t + \frac{\pi}{4})$$
, de valeur efficace U constante et de fréquence N réglable ;

- un ampèremètre (A) de résistance négligeable.

Pour une valeur N₁ = 377,4 Hz de la fréquence, l'intensité instantanée du courant électrique qui circule dans le

circuit est: $i_1(t) = I_1 \sqrt{2} \sin(2\pi N_1 t)$; où I_1 est l'intensité efficace du courant électrique. Deux voltmètres (V_1) et (V_2) sont branchés respectivement aux bornes du résistor de résistance R_0 et aux bornes de l'ensemble {bobine, condensateur}{Figure 4}.

Les deux voltmètres (V_1) et (V_2) donnent respectivement les valeurs $U_1 = 2,50 \text{ V}$ et $U_2 = 3,05 \text{ V}$.

- a Déterminer la valeur de l'intensité I₁.
 - b Préciser, en le justifiant, la nature du circuit (inductif, capacitif ou résistif).

- 2) La figure 7 de la page 5/5 (à remplir par le candidat et à remettre avec la copie), représente la construction de Fresnel inachevée et associée au circuit étudié à la fréquence N₁.
 - a Compléter la construction de Fresnel à l'échelle : 2 cm pour √2 V. On désignera par :
 - * OA le vecteur associé à la tension u_R (t);
 - * AB le vecteur associé à la tension u (B, C) (t), (tension aux bornes de l'ensemble bobine et condensateur);
 - * OB le vecteur associé à la tension u (t).
 - b Déduire les valeurs de U, r et L.
- 3) On prendra dans la suite de l'exercice $r = 10 \Omega$. On règle maintenant la fréquence N à une valeur N_2 de façor avoir $U_1 = 5 U_2$.
 - a Montrer que le circuit est le siège d'une résonance d'intensité.
 - b Montrer que dans ces conditions, on a : $\frac{U_c}{U} = \frac{1}{(R_o + r)} \sqrt{\frac{L}{C}}$.
 - c Déduire la nature du phénomène qui se produit aux bornes du condensateur. Ya-t-il risque de claquage du condensateur sachant que sa tension nominale est égale à 18V ?

Figure 7

Exercice3:

(Bac math, principale 2018)

GBF

Figure 3

Le circuit électrique de la figure 3 comporte, montés en série, un conducteur ohmique de résistance $R=50~\Omega$, deux dipôles D_1 et D_2 inconnus et un générateur basse fréquence (GBF) qui délivre une tension alternative sinusoïdale $u(t)=U_m sin(2\pi Nt)$ de fréquence N réglable et d'amplitude U_m constante.

Le circuit électrique est parcouru par un courant électrique sinusoïdal d'intensité $i(t) = I_m \sin(2\pi Nt + \phi_i)$ d'amplitude I_m et de phase initiale ϕ_i . Chacun des dipôles D_1 et D_2 , peut être soit un conducteur ohmique de résistance R_0 , soit un condensateur de capacité C, soit une bobine d'inductance L et de résistance négligeable.

On se propose d'identifier les deux dipôles D1 et D2 et de déterminer

la grandeur caractéristique de chacun d'eux. Pour une fréquence N_1 de N, on réalise les expériences suivantes (1) et (2):

Expérience (1):

A l'aide d'un oscilloscope bicourbe, convenablement branché, on visualise simultanément l'évolution au cours du temps des tensions \mathbf{u}_{NM} (t) et \mathbf{u}_{PM} (t).

Expérience (2):

On change le branchement de l'oscilloscope et on visualise simultanément l'évolution au cours du temps des tensions $u_{NM}(t)$ et $u_{OM}(t)$.

Les expériences réalisées, ont permis d'obtenir les courbes représentées sur les figures 4 et 5.

- 1) Justifier que les courbes de la figure 5 correspondent à l'expérience (2).
- 2) a- Déterminer graphiquement N1, Um et Im.
 - b- Montrer que $\phi_i = +\frac{\pi}{4} \, rad$.
- 3) En exploitant les courbes représentées sur les figures 4 et 5:
 - a- Montrer que D1 est la bobine alors que D2 ne peut être que le condensateur.
 - b- Déduire que L $\approx 6.2.10^{-2}$ H.
- 4) La figure 6 de la page 5/5, à remplir par le candidat et à rendre avec la copie, représente la construction de Fresnel inachevée correspondant au circuit électrique étudié à la fréquence N₁ où le

vecteur OA est associé à la tension unm(t).

- a- Compléter, avec toutes les indications nécessaires, la construction de Fresnel, en respectant l'échelle suivante : 1 cm ←→ 1 V
- b- En déduire la valeur de C.

Exercice4:

© 25min

Les deux circuits électriques (a) et (b) schématisés sur la figure 3, de la page 5/5 à compléter par le candidat et à remettre avec la copie, comportent chacun : une bobine d'inductance L et de résistance r, un condensateur de capacité C, un conducteur ohmique de résistance $R = 50 \Omega$, un générateur (GBF) délivrant une tension sinusoïdale $u(t) = U_m \sin(2\pi Nt)$ de fréquence N réglable et d'amplitude U_m constante et un ampèremètre A.

A l'aide d'un oscilloscope bicourbe, on visualise simultanément les tensions $\mathbf{u}(t)$ sur la voie \mathbf{Y}_A et $\mathbf{u}_C(t)$ aux bornes du condensateur sur la voie \mathbf{Y}_B . Pour une fréquence \mathbf{N}_1 du (GBF), on obtient les oscillogrammes de la figure 4 visualisés avec les sensibilités suivantes :

sensibilité horizontale : 2 ms.div⁻¹.

sensibilités verticales : voie Y_A : 2 V.div⁻¹ et voie Y_B : 4 V.div⁻¹.

- a- Choisir le schéma convenable (a) ou (b) de la figure 3 de la page 5/5 et y indiquer les connexions avec l'oscilloscope permettant de visualiser simultanément les tensions u(t) et u_C(t).
 - **b-** Justifier que l'oscillogramme (C_1) correspond à $u_C(t)$.
- 2) En exploitant les oscillogrammes de la figure 4, déterminer :
 - a- les valeurs des amplitudes U_m et U_{Cm} respectivement des tensions u(t) et $u_C(t)$;
 - b- la valeur de la fréquence N₁.
- 3) a- Montrer que l'intensité instantanée i(t) du courant électrique est en avance de phase de $\frac{\pi}{6}$ rad par rapport à u(t).
 - b- Déduire si le circuit est capacitif ou inductif.
- 4) Soit Z l'impédance du circuit.
 - a- Montrer que : $20\pi N_1 ZC = 7$.
 - b- Sachant que $Z = 74.5 \Omega$, déterminer la valeur de la capacité C du condensateur.
 - c- Déterminer la valeur de l'intensité I du courant électrique indiquée par l'ampèremètre.

Exercice5:

(S) 35min

Bac science, principale 2020)

Le circuit électrique de la figure 1 comporte, montés en série, un résistor de résistance $R=130~\Omega$, une bobine d'inductance L et de résistance r, un condensateur de capacité C et un ampèremètre (A). Un générateur basse fréquence (GBF) impose, aux bornes de ce circuit, une tension sinusoïdale $u(t)=U_m \sin(2\pi N t)$, d'amplitude U_m constante et de fréquence N réglable. L'intensité instantanée du courant électrique qui circule dans le circuit est $i(t)=I_m \sin(2\pi N t+\phi_i)$, avec I_m son amplitude et ϕ_i sa phase initiale. À l'aide d'un oscilloscope bicourbe, on visualise simultanément la tension u(t) et la tension $u_R(t)$ aux bornes du résistor de résistance R. Pour une fréquence $N=N_1$, on obtient les courbes de la figure 2.

1) En exploitant les courbes de la figure 2 :

a- déterminer la valeur de la fréquence N1;

t (ms)

u(t)

Figure 2

u_R(t)

b-montrer que le déphasage de la tension $\mathbf{u}(t)$ par rapport à l'intensité instantanée $\mathbf{i}(t)$ du courant électrique est : $\Delta \phi = \phi_{\mathbf{u}} - \phi_{\mathbf{i}} = \frac{\pi}{3} \text{ rad}$.

4,6

0

3

En déduire la nature du circuit (capacitif, inductif ou résistif).

- a- Déterminer la valeur de l'intensité efficace I₁ du courant électrique indiquée par l'ampèremètre.
 - b- Déterminer la valeur de l'impédance électrique
 Z₁ du circuit.

3) L'équation différentielle régissant l'évolution de i(t) au cours du temps s'écrit :

$$(R + r)i + L\frac{di}{dt} + \frac{1}{C} \int idt = u(t)$$

Un voltmètre (V) branché aux bornes de

l'ensemble {résistor, bobine} du circuit indique une valeur $U_1 = 11,6 \text{ V}$.

- a- Compléter, en respectant l'échelle donnée, la construction de Fresnel de la figure 3 de la page 5/5.
- b- En déduire les valeurs de L et de C.
- 4) Le voltmètre (V) est maintenant branché aux bornes de l'ensemble {bobine, condensateur}. On règle la fréquence N à une valeur N₂ de façon à annuler le déphasage Δφ.
 - a- Déterminer la valeur de l'intensité efficace l₂ du courant électrique indiquée par l'ampèremètre.
 - b- Déterminer la valeur de la tension efficace U2 indiquée par le voltmètre (V).

Devoir de syntheseN°2

Sciences physiques

Lycée Farhat Hached M'Saken

Prof: karmous Med

Date: Mars2022

Section: 4^{me} Math

<u>Coef</u>: 4

Durée 3heures

Chimie

Exercice n°1 (4points)

Toutes les solutions sont prises à 25°C, température à laquelle le produit ionique de l'eau est **Ke** = 10⁻¹⁴. On négligera les ions provenant de l'ionisation propre de l'eau devant ceux provenant de l'ionisation de. chacune des monobases étudiées

- 1°) **7** n considère une solution aqueuse (S) d'une monobase B, de concentration molaire C et de pH Montrer que Pour une solution aqueuse de base forte son pH s'écrit : **pH = pKe + log** C.
- 2°)On dilue **n fois** la solution (S), on obtient une solution aqueuse (S') de concentration molaire C' et dont le **pH** a une valeur **pH'**. Montrer que : $\mathbf{n} = \mathbf{10}^{(\mathbf{pH} \mathbf{pH'})}$.
- $3^{\text{o}}\text{)} Le taux d'avancement final de la réaction de la monobase B avec l'eau est noté <math display="inline">\tau_{f}.$

Exprimer τ_f en fonction du **pH** de la solution aqueuse de B, sa concentration molaire **C** et **pKe**. **4°**)On prépare trois solutions aqueuses (S₁), (S₂) et (S₃) de même concentration molaire **C**₀ et contenant respectivement les monobases **B**₁, **B**₂ et **B**₃. On dilue **5 fois** chacune des trois solutions précédentes. Les mesures de pH des trois solutions avant et après la dilution, fournissent les résultats consignés dans le tableau suivant :

Solution	(S ₁)	(S_2)	(S ₃)
pH avant la dilution	10,95	12,70	10,10
pH après la dilution	10,60	12,00	9,75

- a- Montrer que la monobase B₂ est forte.
- b- Déterminer la valeur de C₀.
- c- Justifier que les monobases B1 et B3 sont faibles
- d- Comparer les forces des monobases B₁ et B₃.
- 5°) on prepare une solution (S₄)de la baseNH₃ concentration molaire $C_4 = 10^{-1}$ mol L⁻ et de PH₄=11.1
- a- Déduire que NH3 est faiblement ionise
- b- Montrer alors que laconstante d'acidité Ka du couple NH4/NH3 vérifie La relation

$$\log \tau_f = -\frac{1}{2} log(C_2, \frac{Ka}{Ke})$$

- c- La courbe suivante représente la variation de $\log \tau_f = f(\log c)$ ou c désigne la concentration de la
 - solution d'ammouniac NH3 préparée a partir de(S4)
 - *Justifier que cette courbe est celle d'une base faible
 - **Déduire l'effet d'une dilution sur l'ionisation de cette base
 - *** déterminer la valeur du pka du couple NH₄/NH₃ et la valeur de a indiquer sur le graphe

Exercice n°2 (3points)

 \emph{O} n se propose de réaliser le dosage pH-métrique d'une solution (S_a) d'acide propanoïque C_2H_5COOH . Pourcela on introduit un volume $V_a = 10$ mL de cette solution et un volume V_c d'eau dans un bécher qu'on dosepar une solution (S_b) d'hydroxyde de sodium NaOH de molarité $C_b = 0.1$ mol.L⁻¹.

On obtient la courbe $pH = f(V_b)$ de la figure 1

On donne: Le pke =14;

- 1°) Compléter la légende de schéma du dispositif du dosage (sur la figure 2 de la page 5 à rendre).
- **2°)** Déterminer les coordonnés de point E d'équivalence acido-basique.
- 3°) Justifier que l'acide propanoïque est un acide faible.
- **4°)** Déterminer la valeur de la concentration molaire C_a de la solution (S_a) .
- **5°)** *a* Ecrire l'équation bilan de la réaction qui se produit au cours de ce dosage
 - **b-** Montrer que cette réaction est pratiquement totale.
- 6°) Déterminer le volume V_e d'eau ajouté avant de commencer le dosage.
- 7°) Justifier la valeur de pH de milieu réactionnel pour $V_B = 20 \text{ mL}$.

Physique

Exercice n°1 (2points)

Danse d'un bouchon

Les ondes les plus faciles à voir sont toujours celles qui naissent sur l'eau quand on jette une pierre. Si simple soit-elle, cette expérience révèle une propriété essentielle des ondes les rides régulièrement espacées qui se déplacent à la surface de l'eau font danser un bouchon qui y flotte mais elles le font danser sur place. Elles ne l'entraînent pas du tout dans leur déplacement à la surface. Autrement dit, il n'y a pas de mouvement horizontal del'eau. Ce qui voyage, c'est seulement un dérangement de la surface. Ce dérangement transporte de l'énergie, puisqu'il soulève le bouchon, mais ne transporte pas de matière.

C'est précisément ce qui permet aux ondes à la surface de l'eau de donner un modèle utiledes ondes.

D'après : Encyclopédie Larousse

Questions

- 1°)Décrire la surface d'une nappe d'eau au repos quand on y jette une pierre.
- 2°)Remplacer les deux mots : "voyage " et " dérangement" utilisés dans le texte par deuxautres

mots plus spécifiques aux ondes.

 3°) a- Les ondes à la surface du liquide sont-elles transversales ou longitudinales ?

Donner un argument du texte.

- b- Donner un exemple d'onde transversale et longitudinale.
- 4°)Les ondes se déplacent avec une vitesse constante : relever dans le texte une phrase quijustifie ceci.

Exercice n2 (5points)

 \mathcal{L} e circuit électrique du document 1 page annexe, comporte en série une bobine (b) d'inductance L et de résistance $\mathbf{r} = 25 \,\Omega$, un condensateur (c) de **capacité** C, un résistor de résistance R, un ampèremètre (A) et un générateur électrique (G) produisant entres ses bornes une tension alternative sinusoïdale d'amplitude U_m constante, de fréquence Nréglable et de valeur instantanée $\mathbf{u}(\mathbf{t}) = U_m \sin(2\pi N \, \mathbf{t})$.

On désigne par $\mathbf{u_1(t)} = \mathbf{U_{1m}} \sin{(2 \pi N t + \phi_1)}$, la valeur instantanée de la tension aux bornes de l'ensemble résistor et condensateur (c).

I/

- 1°) Faire sur le document 1, les connexions à un oscilloscope permettant de visualiser simultanément la tension u sur la voie Y_1 et la tension u_1 sur la voie Y_2 .
- 2°) Etablir l'équation liant l'intensité i(t), sa dérivée première, sa primitive et la tension u(t).

Une solution de l'équation trouvée est de la forme : $i(t) = I_m \sin(2\pi N t + \phi_i)$.

3°)La tension instantanée aux bornes de la bobine (b), s'écrit sous la forme : $u_2(t) = U_{2m} \sin(2 \pi N t + \phi_2)$ Exprimer U_{2m} en fonction de r, L, I_m et N.

II/ Pour la valeur N₁ de la fréquence N du générateur (G), l'ampèremètre (A) indique la

valeur $I_1=0.08/\sqrt{2}$ A et sur l'écran de l'oscilloscope, on obtient les courbes de la figure 1

représentant les tensions u (t) et u₁(t).

1°) Laquelle des deux courbes C_1 et C_2 Justifier.

2°)En se servant des courbes ci-dessus, déterminer :

$$N_1$$
, U_m , U_{1m} et ϕ_1 .

3°) Sur le document 2 page annexe, on a représenté les vecteurs de Fresnel — — — —

$$\overrightarrow{OA}$$
, \overrightarrow{AB} et \overrightarrow{OB}

Correspondent aux tensions u₁, u et u₂ à la fréquence N₁.

- *a* En exploitant de la construction de Fresnel du document 2, déterminer la tensionmaximale U_{2m} . En déduire l'inductance L de la bobine (b).
- **b--** Représenter sur le document 2, les vecteurs de Fresnel :
 - * V_1 associé à la tension $u_r = r$ i.

* V_2 associé à la tension $u_R = R$ i.

c-En déduire la valeur de la résistance R et celle de la capacité C.

4°°) Déterminer la phase initiale φ_i. En déduire la nature inductif, capacitif ou résistif ducircuit.

III/ On prend dans ce qui suit : $r = 25 \Omega$, $R = 55 \Omega$, L = 35 mH et $C = 6 \mu\text{F}$.

On change la fréquence du générateur (G) et pour une valeur N₂ de N, la tensionefficace U₃ aux bornes du résistor et la tension efficace U₄ aux bornes de l'ensemble

{condensateur (c) et bobine (b)} vérifie la relation : $U_3 = 2,2$ U_4 .

- 1°) Montrer que le circuit RLC série, est le siège d'une résonance d'intensité.
- 2°)Déterminer les tensions U₃ et U₄.

a-Déterminer U_{Cm}, N₂.

b-A-t-on le phénomène de surtension au niveau du condensateur? Justifier laréponse.

Exercice n°2 (5points)

Une des extrémités O d'une corde élastique horizontale vibre verticalement selon la loi yo (t) = a sin ($\omega t + \phi$) l'autre extrémité A est fixée à un dispositif d'amortissement empêchant la réflexion des ondes . La position de chaque point M de la corde est repérée par son abscisse x dans le repère (O , i) i vecteur unitaire dirigé dans le sens de la propagation .

On donne le diagramme de la vibration d'un point M_1 de la corde d'abscisse $x_1 = OM_1 = 0,15m$ et l'aspect de la corde à un instant de date t_0 .

1-a- Identifier les courbes

b-Déterminer en utilisant les deux courbes , la fréquence N et la longueur d'onde λ et déduire la célérité de propagation de l'onde .

- 2- a- Déterminer graphiquement l'équation de la vibration du point M₁.
 - b- En déduire l'équation horaire du mouvement de la source O.
 - c-Représenter y o(t) et comparer le mouvement de O et celui de M1 Justifier
- d-Déterminer graphiquement l'instant du premier passage de M_1 par son élongation maximale (y=a) . Retrouver ce résultat par le calcul .
- 3- a- Déterminer la date to pour laquelle on obtient la forme de la corde de la figure 1.
- b-Déterminer à cet instant le nombre et les positions des points de la corde ayant une élongation positive de 2,5mm et se dirigeant dans le sens négatif .
- c-Déterminer la distance parcourue par la source et la point M₁ à la date t = 50 ms.
- 4- On éclaire la corde par la lumière stroboscopique. Décrire ce qu'on observe si Ne = 12,50 Hz Ne = 12,4 Hz.
- 5- A un instant de date t_2 le vibreur est bloqué la figure 3 donne l'aspect de la corde à l'instant de date t_3 Déterminer t_2 et t_3

<u>Chimie :</u> <u>Exercice n°2 :</u>

Page annexe à remplir et à remettre avec la copie

Oscilloscope

Document 1

