Automatic Control

Hak-Tae Lee

Dynamics

Models of Electric Circuit

Models of Electric Circuit

Electric circuits

- Interconnections between sources of electric voltage and current, and other electric elements
- 3 passive elements: resistor (R), inductor (L), capacitor (C)
- Other elements:
 - Operational amplifiers
 - Transistors

Why?

 Actual implementation of control system is in the form of electric circuits

Kirchhoff's laws

Kirchhoff

- Gustav Robert Kirchhoff (1824 1887), German physicist
- Electric circuits, spectroscopy, black-body radiation

- KCL (Kirchhoff's Current Law): The algebraic sum of currents leaving a junction or node equals the algebraic sum of the currents entering that node
- KVL (Kirchhoff's Voltage Law): The algebraic sum of all voltages taken around a closed path in a circuit is zero

Elements of Electric Circuits

Circuit Element	Symbol	Schematic	
Resistor	R	or	v = iR
Inductor	L		$v = L \frac{di}{dt}$
Capacitor	C		$i = C \frac{dv}{dt}$
DC Voltage Source	V_s	-+ or -+	
DC Current Source	I_s	-	

$$i = C\frac{dv}{dt}$$

Ohm's Law

$$i = \frac{v}{R}$$

Ohm's Law

$$i = \frac{u}{R_1 + R_2}$$
$$y = iR_2$$

$$\frac{u-y}{R_1} = \frac{y-0}{R_2}$$

Circuits with Capacitors

KCL:
$$i = i_1 + i_2$$

$$i_1 = C \frac{d(u - y)}{dt} \qquad i_2 = \frac{(u - y)}{R_1}$$

$$i = \frac{(y - 0)}{R_2}$$

$$C\dot{u} + \frac{1}{R_1}u = C\dot{y} + \left(\frac{1}{R_1} + \frac{1}{R_2}\right)y$$

Circuits with Capacitors

$$\frac{u-y}{R} = C \frac{d(y-0)}{dt}$$

$$y + RC\dot{y} = u$$

Response – Small Capacitance

Response – Large Capacitance

RLC Circuit

$$i = \frac{u - v}{R}$$

$$L\frac{di}{dt} = (v - y)$$

$$C\frac{dy}{dt} = i$$

$$LC\ddot{y} + RC\dot{y} + y = u$$

Compare this with

$$m\ddot{y} + b\dot{y} + ky = u$$

Operational Amplifier

- DC-coupled high-gain voltage amplifier with a differential input and a single output
- Building blocks for analogue circuit design

Operational Amplifier

- Text book description
 - Output voltage = (Large gain) x (voltage difference between the two inputs)
- What it actually does
 - OP Amp make sense only in a constructed circuit
 - It adjust the output voltage until the two input voltage becomes the same
 - No current flows in/out through the inputs

OP Amp Circuits

Inverting amplifier

$$V_{out} = -\frac{R_f}{R_{in}} V_{in}$$

Non-inverting amplifier

$$V_{out} = \frac{R_1 + R_2}{R_1} V_{in}$$

OP Amp Circuits

Voltage follower (unity buffer)

$$V_{out} = V_{in}$$

Summing amplifier

$$V_{out} = -R_f \left(\frac{1}{R_1} V_1 + \frac{1}{R_2} V_2 + \dots + \frac{1}{R_n} V_n \right)$$

Integrator and Differentiator

Inverting integrator

$$V_{out}(t_1) = V_{out}(t_0) - \frac{1}{RC} \int_{t_0}^{t_1} V_{in}(t) dt$$

Inverting differentiator

$$V_{out} = -RC \frac{dV_{in}}{dt}$$

Exercise 1

Your pressure sensor's output voltage ranges from 0 to 0.5 V for the pressures that you want to measure.

Your A/D converter is 5 V. Pick your resistor values so that the non-inverting amplifier scales the sensor output voltage to fit the A/D convertor input voltage.

Exercise 2

To make a PD controller, you need to generate a signal u that is linear combination of input signal e and its derivative.

Construct an op-amp circuit to perform this.

$$u = ae + b\dot{e}$$