Analytic Geometry

In Chapter 2, we studied vectors, vector spaces and linear mappings at a general but abstract level. In this chapter, we will add some geometric interpretation and intuition to all of these concepts. In particular, we will look at geometric vectors, compute their lengths and distances or angles between two vectors. To be able to do this, we equip the vector space with an inner product that induces the geometry of the vector space. Inner products and their corresponding norms and metrics capture the intuitive notions of similarity and distances, which we use to develop the Support Vector Machine in Chapter 12. We will then use the concepts of lengths and angles between vectors to discuss orthogonal projections, which will play a central role when we discuss principal component analysis in Chapter 10 and regression via maximum likelihood estimation in Chapter 9. Figure 3.1 gives an overview of how concepts in this chapter are related and how they are connected to other chapters of the book.

Figure 3.1 A mind map of the concepts introduced in this chapter, along with when they are used in other parts of the book.

Draft chapter (September 2, 2018) from "Mathematics for Machine Learning" ©2018 by Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. To be published by Cambridge University Press. Report errata and feedback to http://mml-book.com. Please do not post or distribute this file, please link to https://mml-book.com.

68

Figure 3.3 For different norms, the red lines indicate the set of vectors with norm 1. Left: Manhattan norm; Right: Euclidean distance.

1545

1550

3.1 Norms

When we think of geometric vectors, i.e., directed line segments that start at the origin, then intuitively the length of a vector is the distance of the "end" of this directed line segment from the origin. In the following, we will discuss the notion of the length of vectors using the concept of a norm.

norm

Definition 3.1 (Norm). A *norm* on a vector space V is a function

$$\|\cdot\|:V\to\mathbb{R}\,,$$
 (3.1)

$$x \mapsto \|x\|$$
, (3.2)

length

which assigns each vector x its *length* $||x|| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $x, y \in V$ the following hold:

Triangle inequality 1548

Positive definite 154

ullet Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$

ullet Triangle inequality: $\|oldsymbol{x}+oldsymbol{y}\| \leqslant \|oldsymbol{x}\| + \|oldsymbol{y}\|$

• Positive definite: $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$.

Figure 3.2 Triangle inequality. 155

In geometric terms, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side; see Figure 3.2 for an illustration.

Recall that for a vector $x \in \mathbb{R}^n$ we denote the elements of the vector using a subscript, that is x_i is the i^{th} element of the vector x.

Manhattan norm

Example 3.1 (Manhattan Norm)

The *Manhattan norm* on \mathbb{R}^n is defined for $oldsymbol{x} \in \mathbb{R}$ as

$$\|\boldsymbol{x}\|_1 := \sum_{i=1}^n |x_i|,$$
 (3.3)

 ℓ_1 norm

where $|\cdot|$ is the absolute value. The left panel of Figure 3.3 indicates all vectors $\boldsymbol{x} \in \mathbb{R}^2$ with $\|\boldsymbol{x}\|_1 = 1$. The Manhattan norm is also called ℓ_1 norm.

Example 3.2 (Euclidean Norm)

The length of a vector $\boldsymbol{x} \in \mathbb{R}^n$ is given by

$$\|x\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^\top x},$$
 (3.4)

which computes the *Euclidean distance* of x from the origin. This norm is called the *Euclidean norm*. The right panel of Figure 3.3 shows all vectors $x \in \mathbb{R}^2$ with $\|x\|_2 = 1$. The Euclidean norm is also called ℓ_2 norm.

Euclidean distance Euclidean norm ℓ_2 norm

Remark. Throughout this book, we will use the Euclidean norm (3.4) by default if not stated otherwise. ♦

Remark (Inner Products and Norms). Every inner product induces a norm, but there are norms (like the ℓ_1 norm) without a corresponding inner product. For an inner product vector space $(V, \langle \cdot, \cdot \rangle)$ the induced norm $\|\cdot\|$ satisfies the *Cauchy-Schwarz inequality*

Cauchy-Schwarz inequality

 \Diamond

$$|\langle x, y \rangle| \leqslant ||x|| ||y||. \tag{3.5}$$

1559

1560

1561

1563

1564

1566

1567

1568

1558

3.2 Inner Products

Inner products allow for the introduction of intuitive geometrical concepts, such as the length of a vector and the angle or distance between two vectors. A major purpose of inner products is to determine whether vectors are orthogonal to each other.

3.2.1 Dot Product

We may already be familiar with a particular type of inner product, the *scalar product/dot product* in \mathbb{R}^n , which is given by

scalar product dot product

$$\boldsymbol{x}^{\top}\boldsymbol{y} = \sum_{i=1}^{n} x_i y_i. \tag{3.6}$$

We will refer to the particular inner product above as the dot product in this book. However, inner products are more general concepts with specific properties, which we will now introduce.

3.2.2 General Inner Products

Recall the linear mapping from Section 2.7, where we can rearrange the mapping with respect to addition and multiplication with a scalar. A *bilinear* mapping

mapping Ω is a mapping with two arguments, and it is linear in each argument, i.e., when we look at a vector space V then it holds that for all $x, y, z \in V, \lambda \in \mathbb{R}$

$$\Omega(\lambda x + y, z) = \lambda \Omega(x, z) + \Omega(y, z)$$
(3.7)

$$\Omega(x, \lambda y + z) = \lambda \Omega(x, y) + \Omega(x, z). \tag{3.8}$$

Equation (3.7) asserts that Ω is linear in the first argument, and equation (3.8) asserts that Ω is linear in the second argument.

Definition 3.2. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

symmetric

positive definite

1571

1576

1582

1583

- Ω is called *symmetric* if $\Omega(x, y) = \Omega(y, x)$ for all $x, y \in V$, i.e., the order of the arguments does not matter.
- Ω is called *positive definite* if

$$\forall \boldsymbol{x} \in V \setminus \{\boldsymbol{0}\} : \Omega(\boldsymbol{x}, \boldsymbol{x}) > 0, \quad \Omega(\boldsymbol{0}, \boldsymbol{0}) = 0$$
 (3.9)

Definition 3.3. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

inner product space79
vector space with 1580
inner product 1581
Euclidean vector

space

- A positive definite, symmetric bilinear mapping $\Omega: V \times V \to \mathbb{R}$ is called an *inner product* on V. We typically write $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ instead of $\Omega(\boldsymbol{x}, \boldsymbol{y})$.
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called an *inner product space* or (real) *vector space* with inner product. If we use the dot product defined in (3.6), we call $(V, \langle \cdot, \cdot \rangle)$ a *Euclidean vector space*.

We will refer to the spaces above as inner product spaces in this book.

Example 3.3 (Inner Product that is not the Dot Product)

Consider $V = \mathbb{R}^2$. If we define

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$$
 (3.10)

then $\langle\cdot,\cdot\rangle$ is an inner product but different from the dot product. The proof will be an exercise.

3.2.3 Symmetric, Positive Definite Matrices

Symmetric, positive definite matrices play an important role in machine learning, and they are defined via the inner product.

Consider an n-dimensional vector space V with an inner product $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$ (see Definition 3.3) and an ordered basis $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ of V. Recall the definition of a basis (Section 2.6.1), which says that any vector can be written as a linear combination of basis vectors. That is, for any vectors $\boldsymbol{x} \in V$ and $\boldsymbol{y} \in V$ we can write them as $\boldsymbol{x} = \sum_{i=1}^n \psi_i \boldsymbol{b}_i \in V$

1587

1589

1592

71

and $\boldsymbol{y} = \sum_{j=1}^n \lambda_j \boldsymbol{b}_j \in V$, for $\psi_i, \lambda_j \in \mathbb{R}$. Due to the bilinearity of the inner product it holds that for all \boldsymbol{x} and \boldsymbol{y} that

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \left\langle \sum_{i=1}^{n} \psi_{i} \boldsymbol{b}_{i}, \sum_{j=1}^{n} \lambda_{j} \boldsymbol{b}_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i} \left\langle \boldsymbol{b}_{i}, \boldsymbol{b}_{j} \right\rangle \lambda_{j} = \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}}, \quad (3.11)$$

where $A_{ij} := \langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle$ and $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}$ are the coordinates of \boldsymbol{x} and \boldsymbol{y} with respect to the basis B. This implies that the inner product $\langle \cdot, \cdot \rangle$ is uniquely determined through \boldsymbol{A} . The symmetry of the inner product also means that \boldsymbol{A} is symmetric. Furthermore, the positive definiteness of the inner product implies that

$$\forall \boldsymbol{x} \in V \setminus \{\boldsymbol{0}\} : \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} > 0. \tag{3.12}$$

Definition 3.4 (Symmetric, positive definite matrix). A symmetric matrix $A \in \mathbb{R}^{n \times n}$ that satisfies (3.12) is called *symmetric*, *positive definite* or just *positive definite*. If only \geqslant holds in (3.12) then A is called *symmetric*, *positive semi-definite*.

symmetric, positive definite positive definite symmetric, positive semi-definite

Example 3.4 (Symmetric, Positive Definite Matrices)

Consider the following matrices:

$$\mathbf{A}_1 = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}, \quad \mathbf{A}_2 = \begin{bmatrix} 9 & 6 \\ 6 & 3 \end{bmatrix} \tag{3.13}$$

Then, A_1 is positive definite because it is symmetric and

$$\boldsymbol{x}^{\top} \boldsymbol{A}_{1} \boldsymbol{x} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$
(3.14)

$$=9x_1^2 + 12x_1x_2 + 5x_2^2 = (3x_1 + 2x_2)^2 + x_2^2 > 0$$
 (3.15)

for all $\boldsymbol{x} \in V \setminus \{\boldsymbol{0}\}$. However, \boldsymbol{A}_2 is symmetric but not positive definite because $\boldsymbol{x}^{\top}\boldsymbol{A}_2\boldsymbol{x} = 9x_1^2 + 12x_1x_2 + 3x_2^2 = (3x_1 + 2x_2)^2 - x_2^2$ can be smaller than 0, e.g., for $\boldsymbol{x} = [2, -3]^{\top}$.

If $A \in \mathbb{R}^{n \times n}$ is symmetric, positive definite then

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}} \tag{3.16}$$

defines an inner product with respect to an ordered basis B where \hat{x} and \hat{y} are the coordinate representations of $x, y \in V$ with respect to B.

Theorem 3.5. For a real-valued, finite-dimensional vector space V and an ordered basis B of V it holds that $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is an inner product if and only if there exists a symmetric, positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \hat{\boldsymbol{x}}^{\top} A \hat{\boldsymbol{y}} \,. \tag{3.17}$$

The following properties hold if $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite of order n:

1597

1598

1600

1602

1605

- The null space (kernel) of ${\boldsymbol A}$ consists only of ${\boldsymbol 0}$ because ${\boldsymbol x}^{\top}{\boldsymbol A}{\boldsymbol x}>0$ for all ${\boldsymbol x}\neq{\boldsymbol 0}$. This implies that ${\boldsymbol A}{\boldsymbol x}\neq0$ if ${\boldsymbol x}\neq0$.
 - The diagonal elements of A are positive because $a_{ii} = e_i^{\top} A e_i > 0$, where e_i is the ith vector of the standard basis in \mathbb{R}^n .

In Section 4.3, we will return to symmetric, positive definite matrices in the context of matrix decompositions.

3.3 Lengths and Distances

In Section 3.1, we already discussed norms that we can use to compute the length of a vector. Inner products and norms are closely related in the sense that any inner product induces a norm

$$\|\boldsymbol{x}\| := \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} \tag{3.18}$$

in a natural way, such that we can compute lengths of vectors using the inner product. However, not every norm is induced by an inner product. The Manhattan norm (3.3) is an example of a norm that is not induced by an inner product. In the following, we will focus on norms that are induced by inner products and introduce geometric concepts, such as lengths, distances and angles.

Example 3.5 (Length of Vectors using Inner Products)

In geometry, we are often interested in lengths of vectors. We can now use an inner product to compute them using (3.18). Let us take $x = [1, 1]^{\top} \in \mathbb{R}^2$. If we use the dot product as the inner product, with (3.18) we obtain

$$\|x\| = \sqrt{x^{\top}x} = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 (3.19)

as the length of x. Let us now choose a different inner product:

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} \boldsymbol{y} = x_1 y_1 - \frac{1}{2} (x_1 y_2 + x_2 y_1) + x_2 y_2.$$
 (3.20)

If we compute the norm of a vector, then this inner product returns smaller values than the dot product if x_1 and x_2 have the same sign (and $x_1x_2 > 0$), otherwise it returns greater values than the dot product. With this inner product we obtain

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle = x_1^2 - x_1 x_2 + x_2^2 = 1 - 1 + 1 = 1 \implies ||\boldsymbol{x}|| = \sqrt{1} = 1, \quad (3.21)$$

such that x is "shorter" with this inner product than with the dot product.

Definition 3.6 (Distance and Metric). Consider an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then

$$d(\boldsymbol{x}, \boldsymbol{y}) := \|\boldsymbol{x} - \boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle}$$
(3.22)

induce norms.

Inner products

is called *distance* of $x, y \in V$. If we use the dot product as the inner product, then the distance is called *Euclidean distance*. The mapping

distance Euclidean distance

$$d: V \times V \to \mathbb{R} \tag{3.23}$$

$$(\boldsymbol{x}, \boldsymbol{y}) \mapsto d(\boldsymbol{x}, \boldsymbol{y})$$
 (3.24)

of is called metric.

metric

Remark. Similar to the length of a vector, the distance between vectors does not require an inner product: a norm is sufficient. If we have a norm induced by an inner product, the distance may vary depending on the choice of the inner product.

A metric d satisfies:

1. d is positive definite, i.e., $d({m x},{m y})\geqslant 0$ for all ${m x},{m y}\in V$ and $d({m x},{m y})=0$ for all ${m x}$

positive definite

2. d is symmetric, i.e., d(x, y) = d(y, x) for all $x, y \in V$.

symmetric Triangular inequality

3. Triangular inequality: $d(x, z) \leq d(x, y) + d(y, z)$.

1612

1616

1618

1619

1620

1621

3.4 Angles and Orthogonality

The Cauchy-Schwarz inequality (3.5) allows us to define angles ω in inner product spaces between two vectors x, y. Assume that $x \neq 0, y \neq 0$. Then

$$-1 \leqslant \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} \leqslant 1. \tag{3.25}$$

Therefore, there exists a unique $\omega \in [0, \pi]$ with

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}, \qquad (3.26)$$

see Figure 3.4 for an illustration. The number ω is the *angle* between the vectors \boldsymbol{x} and \boldsymbol{y} . Intuitively, the angle between two vectors tells us how similar their orientations are. For example, using the dot product, the angle between \boldsymbol{x} and $\boldsymbol{y}=4\boldsymbol{x}$, i.e., \boldsymbol{y} is a scaled version of \boldsymbol{x} , is 0: Their orientation is the same.

Figure 3.4 When restricted to $[0,\pi]$ then $f(\omega)=\cos(\omega)$ returns a unique number in the interval [-1,1].

angle

Example 3.6 (Angle between Vectors)

Let us compute the angle between $\boldsymbol{x} = [1,1]^{\top} \in \mathbb{R}^2$ and $\boldsymbol{y} = [1,2]^{\top} \in \mathbb{R}^2$, see Figure 3.5, where we use the dot product as the inner product. Then we get

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle \langle \boldsymbol{y}, \boldsymbol{y} \rangle}} = \frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\sqrt{\boldsymbol{x}^{\top} \boldsymbol{x} \boldsymbol{y}^{\top} \boldsymbol{y}}} = \frac{3}{\sqrt{10}}, \quad (3.27)$$

and the angle between the two vectors is $\arccos(\frac{3}{\sqrt{10}})\approx 0.32\,\mathrm{rad}$, which corresponds to about 18° .

Figure 3.5 The angle ω between two vectors x,y is computed using the inner product.

1626

1628

1629

1630

1632

The inner product also allows us to characterize vectors that are orthogonal.

orthogonal

Definition 3.7 (Orthogonality). Two vectors x and y are *orthogonal* if and only if $\langle x, y \rangle = 0$, and we write $x \perp y$. If additionally ||x|| = 1 = ||y||, i.e., the vectors are unit vectors, then x and y are *orthonormal*.

orthonormal

An implication of this definition is that the **0**-vector is orthogonal to every vector in the vector space.

Remark. Orthogonality is the generalization of the concept of perpendicularity to bilinear forms that do not have to be the dot product. In our context, geometrically, we can think of orthogonal vectors as having a right angle with respect to a specific inner product.

Example 3.7 (Orthogonal Vectors)

Figure 3.6 The angle ω between two vectors $\boldsymbol{x}, \boldsymbol{y}$ can change depending on the inner product.

Consider two vectors $\boldsymbol{x} = [1,1]^{\top}, \boldsymbol{y} = [-1,1]^{\top} \in \mathbb{R}^2$, see Figure 3.6. We are interested in determining the angle ω between them using two different inner products. Using the dot product as inner product yields an angle ω between \boldsymbol{x} and \boldsymbol{y} of 90° , such that $\boldsymbol{x} \perp \boldsymbol{y}$. However, if we choose the inner product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{y},$$
 (3.28)

we get that the angle ω between x and y is given by

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} = -\frac{1}{3} \implies \omega \approx 1.91 \,\mathrm{rad} \approx 109.5^{\circ},$$
 (3.29)

and \boldsymbol{x} and \boldsymbol{y} are not orthogonal. Therefore, vectors that are orthogonal with respect to one inner product do not have to be orthogonal with respect to a different inner product.

orthogonal matrix

Definition 3.8 (Orthogonal Matrix). A square matrix $A \in \mathbb{R}^{n \times n}$ is an *orthogonal matrix* if and only if its columns are orthonormal so that

$$AA^{\top} = I = A^{\top}A, \qquad (3.30)$$

which implies that

1637

1639

1640

1642

1643

1644

1645

1646

1647

1649

1650

1651

$$\boldsymbol{A}^{-1} = \boldsymbol{A}^{\top}, \tag{3.31}$$

i.e., the inverse is obtained by simply transposing the matrix.

Remark. Transformations by orthogonal matrices are special because the length of a vector \boldsymbol{x} is not changed when transforming it using an orthogonal matrix \boldsymbol{A} . For the dot product we obtain

$$\|Ax\|^2 = (Ax)^{\top}(Ax) = x^{\top}A^{\top}Ax = x^{\top}Ix = x^{\top}x = \|x\|^2$$
. (3.32)

Moreover, the angle between any two vectors x, y, as measured by their inner product, is also unchanged when transforming both of them using an orthogonal matrix A. Assuming the dot product as the inner product, the angle of the images Ax and Ay is given as

$$\cos \omega = \frac{(A\boldsymbol{x})^{\top}(A\boldsymbol{y})}{\|A\boldsymbol{x}\| \|A\boldsymbol{y}\|} = \frac{\boldsymbol{x}^{\top} A^{\top} A \boldsymbol{y}}{\sqrt{\boldsymbol{x}^{\top} A^{\top} A \boldsymbol{x} \boldsymbol{y}^{\top} A^{\top} A \boldsymbol{y}}} = \frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}, \quad (3.33)$$

which gives exactly the angle between x and y. This means that orthogonal matrices A with $A^{\top} = A^{-1}$ preserve both angles and distances. \diamondsuit

It is convention to call these matrices "orthogonal" but a more precise description would be "orthonormal".

Transformations with orthogonal matrices preserve distances and angles.

3.5 Orthonormal Basis

In Section 2.6.1, we characterized properties of basis vectors and found that in an n-dimensional vector space, we need n basis vectors, i.e., n vectors that are linearly independent. In Sections 3.3 and 3.4, we used inner products to compute the length of vectors and the angle between vectors. In the following, we will discuss the special case where the basis vectors are orthogonal to each other and where the length of each basis vector is 1. We will call this basis then an orthonormal basis.

Let us introduce this more formally.

Definition 3.9 (Orthonormal basis). Consider an n-dimensional vector space V and a basis $\{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ of V. If

$$\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 0 \quad \text{for } i \neq j$$
 (3.34)

$$\langle \boldsymbol{b}_i, \boldsymbol{b}_i \rangle = 1 \tag{3.35}$$

for all i, j = 1, ..., n then the basis is called an *orthonormal basis* (ONB). If only (3.34) is satisfied then the basis is called an *orthogonal basis*.

orthonormal basis ONB orthogonal basis

Note that (3.35) implies that every basis vector has length/norm 1. The Gram-Schmidt process (Strang, 2003) is a constructive way to iteratively build an orthonormal basis $\{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ given a set $\{\tilde{\boldsymbol{b}}_1,\ldots,\tilde{\boldsymbol{b}}_n\}$ of non-orthogonal and unnormalized basis vectors.

1653

1656

1657

1650

1660

1662

1663

1665

1669

1672

1674

Example 3.8 (Orthonormal basis)

The canonical/standard basis for a Euclidean vector space \mathbb{R}^n is an orthonormal basis, where the inner product is the dot product of vectors.

In \mathbb{R}^2 , the vectors

$$\boldsymbol{b}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \boldsymbol{b}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 (3.36)

form an orthonormal basis since $\boldsymbol{b}_1^{\top} \boldsymbol{b}_2 = 0$ and $\|\boldsymbol{b}_1\| = 1 = \|\boldsymbol{b}_2\|$.

We will exploit the concept of an orthonormal basis in Chapter 12 and Chapter 10 when we discuss Support Vector Machines and Principal Component Analysis.

3.6 Inner Product of Functions

Thus far, we looked at properties of inner products to compute lengths, angles and distances. We focused on inner products of finite-dimensional vectors.

In the following, we will look at an example of inner products of a different type of vectors: inner products of functions.

The inner products we discussed so far were defined for vectors with a finite number of entries. We can think of these vectors as discrete functions with a finite number of function values. The concept of an inner product can be generalized to vectors with an infinite number of entries (countably infinite) and also continuous-valued functions (uncountably infinite). Then, the sum over individual components of vectors, see (3.6) for example, turns into an integral.

An inner product of two functions $u:\mathbb{R}\to\mathbb{R}$ and $v:\mathbb{R}\to\mathbb{R}$ can be defined as the definite integral

$$\langle u, v \rangle := \int_{a}^{b} u(x)v(x)dx$$
 (3.37)

for lower and upper limits $a,b<\infty$, respectively. As with our usual inner product, we can define norms and orthogonality by looking at the inner product. If (3.37) evaluates to 0, the functions u and v are orthogonal. To make the above inner product mathematically precise, we need to take care of measures, and the definition of integrals. Furthermore, unlike inner product on finite-dimensional vectors, inner products on functions may diverge (have infinite value). Some careful definitions need to be observed, which requires a foray into real and functional analysis which we do not cover in this book.

3.7 Orthogonal Projections

Figure 3.8 Orthogonal projection of a two-dimensional data set onto a one-dimensional subspace.

(b) Original data points (black) and their corresponding orthogonal projections (red) onto a lower-dimensional subspace (straight line).

Example 3.9 (Inner Product of Functions)

1677

1678

1680

1681

1682

1683

1685

1686

1687

1688

1690

1691

1692

If we choose $u=\sin(x)$ and $v=\cos(x)$, the integrand f(x)=u(x)v(x) of (3.37), is shown in Figure 3.7. We see that this function is odd, i.e., f(-x)=-f(x). Therefore, the integral with limits $a=-\pi, b=\pi$ of this product evaluates to 0. Therefore, \sin and \cos are orthogonal functions.

Figure 3.7 $f(x) = \sin(x)\cos(x)$.

Remark. It also holds that the collection of functions

$$\{1, \cos(x), \cos(2x), \cos(3x), \dots\}$$
 (3.38)

is orthogonal if we integrate from $-\pi$ to π , i.e., any pair of functions are orthogonal to each other. \diamondsuit

In Chapter 6, we will have a look at a second type of unconventional inner products: the inner product of random variables.

3.7 Orthogonal Projections

Projections are an important class of linear transformations (besides rotations and reflections). Projections play an important role in graphics, coding theory, statistics and machine learning. In machine learning, we often deal with data that is high-dimensional. High-dimensional data is often hard to analyze or visualize. However, high-dimensional data quite often possesses the property that only a few dimensions contain most information, and most other dimensions are not essential to describe key properties of the data. When we compress or visualize high-dimensional data we will lose information. To minimize this compression loss, we ideally find the most informative dimensions in the data. Then, we can project the original high-dimensional data onto a lower-dimensional feature space

"Feature" is a commonly used word for "data representation".

1694

1696

1699

1701

1702

1704

1707

1710

1711

1714

1718

1710

1720

1722

1725

1726

1727

1729

1731

and work in this lower-dimensional space to learn more about the data set and extract patterns. For example, machine learning algorithms, such as Principal Component Analysis (PCA) by Pearson (1901b); Hotelling (1933) and Deep Neural Networks (e.g., deep auto-encoders Deng et al. (2010)), heavily exploit the idea of dimensionality reduction. In the following, we will focus on orthogonal projections, which we will use in Chapter 10 for linear dimensionality reduction and in Chapter 12 for classification. Even linear regression, which we discuss in Chapter 9, can be interpreted using orthogonal projections. For a given lower-dimensional subspace, orthogonal projections of high-dimensional data retain as much information as possible and minimize the difference/error between the original data and the corresponding projection. An illustration of such an orthogonal projection is given in Figure 3.8.

Before we detail how to obtain these projections, let us define what a projection actually is.

projection

lines

Definition 3.10 (Projection). Let V be a vector space and $W \subseteq V$ a subspace of V. A linear mapping $\pi: V \to W$ is called a *projection* if $\pi^2 = \pi \circ \pi = \pi$.

projection matrices₇₁₃

Remark (Projection matrix). Since linear mappings can be expressed by transformation matrices, the definition above applies equally to a special kind of transformation matrices, the *projection matrices* P_{π} , which exhibit the property that $P_{\pi}^2 = P_{\pi}$.

 \Diamond

1715

In the following, we will derive orthogonal projections of vectors in the inner product space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ onto subspaces. We will start with one-dimensional subspaces, which are also called *lines*. If not mentioned otherwise, we assume the dot product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\top \boldsymbol{y}$ as the inner product.

3.7.1 Projection onto 1-Dimensional Subspaces (Lines)

Assume we are given a line (1-dimensional subspace) through the origin with basis vector $\mathbf{b} \in \mathbb{R}^n$. The line is a one-dimensional subspace $U \subseteq \mathbb{R}^n$ spanned by \mathbf{b} . When we project $\mathbf{x} \in \mathbb{R}^n$ onto U, we want to find the point $\pi_U(\mathbf{x}) \in U$ that is closest to \mathbf{x} . Using geometric arguments, let us characterize some properties of the projection $\pi_U(\mathbf{x})$ (Fig. 3.9 serves as an illustration):

- The projection $\pi_U(x)$ is closest to x, where "closest" implies that the distance $\|x \pi_U(x)\|$ is minimal. It follows that the segment $\pi_U(x) x$ from $\pi_U(x)$ to x is orthogonal to U and, therefore, the basis b of U. The orthogonality condition yields $\langle \pi_U(x) x, b \rangle = 0$ since angles between vectors are defined by means of the inner product.
- The projection $\pi_U(x)$ of x onto U must be an element of U and, there-

3.7 Orthogonal Projections

(a) Projection of ${\boldsymbol x} \in \mathbb{R}^2$ onto a subspace Uwith basis vector b.

1733

1734

(b) Projection of a two-dimensional vector \boldsymbol{x} with $\|\boldsymbol{x}\|=1$ onto a one-dimensional subspace spanned by b.

Figure 3.9 Examples of projections onto one-dimensional subspaces.

fore, a multiple of the basis vector \boldsymbol{b} that spans U. Hence, $\pi_U(\boldsymbol{x}) = \lambda \boldsymbol{b}$, for some $\lambda \in \mathbb{R}$.

In the following three steps, we determine the coordinate λ , the projection 1735 $\pi_U(\boldsymbol{x}) \in U$ and the projection matrix \boldsymbol{P}_{π} that maps arbitrary $\boldsymbol{x} \in \mathbb{R}^n$ onto 1737

 λ is then the coordinate of $\pi_U(\boldsymbol{x})$ with respect to b.

With a general inner

||b|| = 1.

1. Finding the coordinate λ . The orthogonality condition yields

$$\langle \boldsymbol{x} - \pi_U(\boldsymbol{x}), \boldsymbol{b} \rangle = 0 \tag{3.39}$$

$$\langle \boldsymbol{x} - \pi_U(\boldsymbol{x}), \boldsymbol{b} \rangle = 0$$

$$\stackrel{\pi_U(\boldsymbol{x}) = \lambda \boldsymbol{b}}{\Longrightarrow} \langle \boldsymbol{x} - \lambda \boldsymbol{b}, \boldsymbol{b} \rangle = 0.$$
(3.39)

We can now exploit the bilinearity of the inner product and arrive at

 $\langle \boldsymbol{x}, \boldsymbol{b} \rangle - \lambda \langle \boldsymbol{b}, \boldsymbol{b} \rangle = 0$

(3.41) product, we get
$$\lambda = \langle \boldsymbol{x}, \boldsymbol{b} \rangle$$
 if

$$\iff \lambda = \frac{\langle \boldsymbol{x}, \boldsymbol{b} \rangle}{\langle \boldsymbol{b}, \boldsymbol{b} \rangle} = \frac{\langle \boldsymbol{x}, \boldsymbol{b} \rangle}{\|\boldsymbol{b}\|^2}$$
(3.42)

If we choose $\langle \cdot, \cdot \rangle$ to be the dot product, we obtain

$$\lambda = \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\boldsymbol{b}^{\top} \boldsymbol{b}} = \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^{2}}$$
(3.43)

If ||b|| = 1, then the coordinate λ of the projection is given by $b^{\top}x$.

2. Finding the projection point $\pi_U(x) \in U$. Since $\pi_U(x) = \lambda b$ we immediately obtain with (3.43) that

$$\pi_U(\boldsymbol{x}) = \lambda \boldsymbol{b} = \frac{\langle \boldsymbol{x}, \boldsymbol{b} \rangle}{\|\boldsymbol{b}\|^2} \boldsymbol{b} = \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^2} \boldsymbol{b},$$
 (3.44)

where the last equality holds for the dot product only. We can also compute the length of $\pi_U(x)$ by means of Definition 3.1 as

$$\|\pi_U(\mathbf{x})\| = \|\lambda \mathbf{b}\| = |\lambda| \|\mathbf{b}\|.$$
 (3.45)

This means that our projection is of length $|\lambda|$ times the length of **b**. 1730 This also adds the intuition that λ is the coordinate of $\pi_U(x)$ with 1740 respect to the basis vector b that spans our one-dimensional subspace 1741 1742

If we use the dot product as an inner product we get

$$\|\pi_{U}(\boldsymbol{x})\| \stackrel{\text{(3.44)}}{=} \frac{|\boldsymbol{b}^{\top}\boldsymbol{x}|}{\|\boldsymbol{b}\|^{2}} \|\boldsymbol{b}\| \stackrel{\text{(3.26)}}{=} |\cos \omega| \|\boldsymbol{x}\| \|\boldsymbol{b}\| \frac{\|\boldsymbol{b}\|}{\|\boldsymbol{b}\|^{2}} = |\cos \omega| \|\boldsymbol{x}\|.$$
(3.46)

Here, ω is the angle between x and b. This equation should be familiar 1743 from trigonometry: If ||x|| = 1 then x lies on the unit circle. It follows that the projection onto the horizontal axis spanned by b is exactly The horizontal axis745 $\cos \omega$, and the length of the corresponding vector $\pi_U(x) = |\cos \omega|$. An illustration is given in Figure 3.9.

3. Finding the projection matrix P_{π} . We know that a projection is a linear mapping (see Definition 3.10). Therefore, there exists a projection matrix P_{π} , such that $\pi_U(x) = P_{\pi}x$. With the dot product as inner product and

$$\pi_U(\boldsymbol{x}) = \lambda \boldsymbol{b} = \boldsymbol{b}\lambda = \boldsymbol{b} \frac{\boldsymbol{b}^{\top} \boldsymbol{x}}{\|\boldsymbol{b}\|^2} = \frac{\boldsymbol{b} \boldsymbol{b}^{\top}}{\|\boldsymbol{b}\|^2} \boldsymbol{x}$$
 (3.47)

we immediately see that

$$\boldsymbol{P}_{\pi} = \frac{\boldsymbol{b}\boldsymbol{b}^{\top}}{\|\boldsymbol{b}\|^2}.$$
 (3.48)

Projection matrices748 are always 1749 symmetric.

1752

1753

Note that bb^{\top} is a symmetric matrix (with rank 1) and $||b||^2 = \langle b, b \rangle$ is a scalar.

The projection matrix $m{P}_{\pi}$ projects any vector $m{x} \in \mathbb{R}^n$ onto the line through the origin with direction b (equivalently, the subspace U spanned by b).

Remark. The projection $\pi_U(x) \in \mathbb{R}^n$ is still an n-dimensional vector and not a scalar. However, we no longer require n coordinates to represent the projection, but only a single one if we want to express it with respect to the basis vector **b** that spans the subspace $U: \lambda$. \Diamond

Example 3.10 (Projection onto a Line)

Find the projection matrix P_{π} onto the line through the origin spanned by $b = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^{\top}$. b is a direction and a basis of the one-dimensional subspace (line through origin).

With (3.48), we obtain

$$P_{\pi} = \frac{bb^{\top}}{b^{\top}b} = \frac{1}{9} \begin{bmatrix} 1\\2\\2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2\\2 & 4 & 4\\2 & 4 & 4 \end{bmatrix}$$
 (3.49)

1758

1759

1760

1761

1762

1763

1764

1765

Let us now choose a particular x and see whether it lies in the subspace spanned by b. For $x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$, the projected point is

$$\pi_U(\boldsymbol{x}) = \boldsymbol{P}_{\pi} \boldsymbol{x} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 5 \\ 10 \\ 10 \end{bmatrix} \in \text{span}[\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}].$$
 (3.50)

Note that the application of P_{π} to $\pi_U(x)$ does not change anything, i.e., $P_{\pi}\pi_U(x) = \pi_U(x)$. This is expected because according to Definition 3.10 we know that a projection matrix P_{π} satisfies $P_{\pi}^2 x = P_{\pi} x$ for all x.

Figure 3.10 Projection onto a two-dimensional subspace U with basis b_1, b_2 . The projection $\pi_U(\boldsymbol{x})$ of $oldsymbol{x} \in \mathbb{R}^3$ onto U can be expressed as a linear combination of b_1, b_2 and the displacement vector $\boldsymbol{x} - \pi_U(\boldsymbol{x})$ is orthogonal to both With results from Chapter 4, we can show that $\pi_U(\boldsymbol{x})$ is also an eigenvector of P_{π} , and the corresponding eigenvalue is 1.

3.7.2 Projection onto General Subspaces

In the following, we look at orthogonal projections of vectors $x \in \mathbb{R}^n$ onto higher-dimensional subspaces $U \subseteq \mathbb{R}^n$ with $\dim(U) = m \geqslant 1$. An illustration is given in Figure 3.10.

Assume that $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m)$ is an ordered basis of U. Any projection $\pi_U(\boldsymbol{x})$ onto U is necessarily an element of U. Therefore, they can be represented as linear combinations of the basis vectors $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m$ of U, such that $\pi_U(\boldsymbol{x}) = \sum_{i=1}^m \lambda_i \boldsymbol{b}_i$.

As in the 1D case, we follow a three-step procedure to find the projection $\pi_U(x)$ and the projection matrix P_{π} :

If U is given by a set of spanning vectors, which are not a basis, make sure you determine a basis b_1, \ldots, b_m before proceeding.

The basis vectors form the columns of $\boldsymbol{B} \in \mathbb{R}^{n \times m}$, where $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_m]$.

1. Find the coordinates $\lambda_1, \ldots, \lambda_m$ of the projection (with respect to the basis of U), such that the linear combination

$$\pi_U(\boldsymbol{x}) = \sum_{i=1}^m \lambda_i \boldsymbol{b}_i = \boldsymbol{B} \boldsymbol{\lambda}, \qquad (3.51)$$

$$\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_m] \in \mathbb{R}^{n \times m}, \, \boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_m]^{\top} \in \mathbb{R}^m,$$
 (3.52)

is closest to $x \in \mathbb{R}^n$. As in the 1D case, "closest" means "minimum distance", which implies that the vector connecting $\pi_U(x) \in U$ and $x \in \mathbb{R}^n$ must be orthogonal to all basis vectors of U. Therefore, we obtain m simultaneous conditions (assuming the dot product as the

inner product)

$$\langle \boldsymbol{b}_1, \boldsymbol{x} - \pi_U(\boldsymbol{x}) \rangle = \boldsymbol{b}_1^{\top}(\boldsymbol{x} - \pi_U(\boldsymbol{x})) = 0$$
 (3.53)

$$\langle \boldsymbol{b}_m, \boldsymbol{x} - \pi_U(\boldsymbol{x}) \rangle = \boldsymbol{b}_m^{\top}(\boldsymbol{x} - \pi_U(\boldsymbol{x})) = 0$$
 (3.55)

which, with $\pi_U(x) = B\lambda$, can be written as

$$\boldsymbol{b}_{1}^{\mathsf{T}}(\boldsymbol{x} - \boldsymbol{B}\boldsymbol{\lambda}) = 0 \tag{3.56}$$

$$\boldsymbol{b}_{m}^{\top}(\boldsymbol{x} - \boldsymbol{B}\boldsymbol{\lambda}) = 0 \tag{3.58}$$

such that we obtain a homogeneous linear equation system

$$\begin{bmatrix} \boldsymbol{b}_{1}^{\top} \\ \vdots \\ \boldsymbol{b}_{m}^{\top} \end{bmatrix} \begin{bmatrix} \boldsymbol{x} - \boldsymbol{B} \boldsymbol{\lambda} \end{bmatrix} = \boldsymbol{0} \iff \boldsymbol{B}^{\top} (\boldsymbol{x} - \boldsymbol{B} \boldsymbol{\lambda}) = \boldsymbol{0}$$
 (3.59)

$$\iff \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{\lambda} = \boldsymbol{B}^{\top} \boldsymbol{x} \,. \tag{3.60}$$

normal equation

The last expression is called *normal equation*. Since b_1, \ldots, b_m are a basis of U and, therefore, linearly independent, $\mathbf{B}^{\top}\mathbf{B} \in \mathbb{R}^{m \times m}$ is regular and can be inverted. This allows us to solve for the coefficients/coordinates

$$\boldsymbol{\lambda} = (\boldsymbol{B}^{\top} \boldsymbol{B})^{-1} \boldsymbol{B}^{\top} \boldsymbol{x} \,. \tag{3.61}$$

pseudo-inverse

In practical 1768 applications (e.g., linear regression), we often add a

1766

"jitter term" ϵI to $B^{\top}B$ to guarantee increased numerical stability and positive definiteness. This "ridge" can be rigorously derived using Bayesian inference. See 1766 Chapter 9 for

details.

The matrix $(\boldsymbol{B}^{\top}\boldsymbol{B})^{-1}\boldsymbol{B}^{\top}$ is also called the *pseudo-inverse* of \boldsymbol{B} , which can be computed for non-square matrices \boldsymbol{B} . It only requires that $\boldsymbol{B}^{\top}\boldsymbol{B}$ is positive definite, which is the case if \boldsymbol{B} is full rank.

2. Find the projection $\pi_U(x) \in U$. We already established that $\pi_U(x) = B\lambda$. Therefore, with (3.61)

$$\pi_U(\boldsymbol{x}) = \boldsymbol{B}(\boldsymbol{B}^{\top}\boldsymbol{B})^{-1}\boldsymbol{B}^{\top}\boldsymbol{x}. \tag{3.62}$$

3. Find the projection matrix P_{π} . From (3.62) we can immediately see that the projection matrix that solves $P_{\pi}x = \pi_U(x)$ must be

$$\boldsymbol{P}_{\pi} = \boldsymbol{B} (\boldsymbol{B}^{\top} \boldsymbol{B})^{-1} \boldsymbol{B}^{\top}. \tag{3.63}$$

Remark. Comparing the solutions for projecting onto a one-dimensional subspace and the general case, we see that the general case includes the 1D case as a special case: If $\dim(U)=1$ then $\boldsymbol{B}^{\top}\boldsymbol{B}\in\mathbb{R}$ is a scalar and we can rewrite the projection matrix in (3.63) $\boldsymbol{P}_{\pi}=\boldsymbol{B}(\boldsymbol{B}^{\top}\boldsymbol{B})^{-1}\boldsymbol{B}^{\top}$ as $\boldsymbol{P}_{\pi}=\frac{\boldsymbol{B}\boldsymbol{B}^{\top}}{\boldsymbol{B}^{\top}\boldsymbol{B}}$, which is exactly the projection matrix in (3.48).

Example 3.11 (Projection onto a Two-dimensional Subspace)

For a subspace $U=\mathrm{span}[\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}0\\1\\2\end{bmatrix}]\subseteq\mathbb{R}^3$ and $\boldsymbol{x}=\begin{bmatrix}6\\0\\0\end{bmatrix}\in\mathbb{R}^3$ find the

coordinates λ of x in terms of the subspace U, the projection point $\pi_U(x)$ and the projection matrix P_{π} .

First, we see that the generating set of U is a basis (linear indepen-

dence) and write the basis vectors of U into a matrix $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$.

Second, we compute the matrix $B^{ op}B$ and the vector $B^{ op}x$ as

$$\boldsymbol{B}^{\top}\boldsymbol{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}, \quad \boldsymbol{B}^{\top}\boldsymbol{x} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}.$$
(3.64)

Third, we solve the normal equation $B^{\top}B\lambda = B^{\top}x$ to find λ :

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \iff \lambda = \begin{bmatrix} 5 \\ -3 \end{bmatrix}. \tag{3.65}$$

Fourth, the projection $\pi_U(x)$ of x onto U, i.e., into the column space of B, can be directly computed via

$$\pi_U(\boldsymbol{x}) = \boldsymbol{B}\boldsymbol{\lambda} = \begin{bmatrix} 5\\2\\-1 \end{bmatrix}. \tag{3.66}$$

The corresponding $projection \ error$ is the norm of the difference vector between the original vector and its projection onto U, i.e.,

projection error

$$\|x - \pi_U(x)\| = \|[1 \quad -2 \quad 1]^\top\| = \sqrt{6}.$$
 (3.67)

Fifth, the projection matrix (for any $x \in \mathbb{R}^3$) is given by

$$\boldsymbol{P}_{\pi} = \boldsymbol{B}(\boldsymbol{B}^{\top}\boldsymbol{B})^{-1}\boldsymbol{B}^{\top} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix} . \tag{3.68}$$

To verify the results, we can (a) check whether the displacement vector $\pi_U(x) - x$ is orthogonal to all basis vectors of U, (b) verify that $P_{\pi} = P_{\pi}^2$ (see Definition 3.10).

The projection error is also called the *reconstruction error*.

Remark. The projections $\pi_U(x)$ are still vectors in \mathbb{R}^n although they lie in an m-dimensional subspace $U \subseteq \mathbb{R}^n$. However, to represent a projected

1775

Figure 3.11
Projection onto an affine space. (a) The original setting; (b) The setting is shifted by $-x_0$, so that $x-x_0$ can be projected onto the direction space U; (c) The projection is translated back to $x_0 + \pi_U(x-x_0)$, which gives the final orthogonal projection $\pi_L(x)$.

vector we only need the m coordinates $\lambda_1, \ldots, \lambda_m$ with respect to the basis vectors $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_m$ of U.

Remark. In vector spaces with general inner products, we have to pay attention when computing angles and distances, which are defined by means of the inner product.

We can find approximate 1781 solutions to unsolvable linear equation systems using projections. 1784

1787 1788 1789

1793

1795

1778

1779

Projections allow us to look at situations where we have a linear system Ax = b without a solution. Recall that this means that b does not lie in the span of A, i.e., the vector b does not lie in the subspace spanned by the columns of A. Given that the linear equation cannot be solved exactly, we can find an *approximate solution*. The idea is to find the vector in the subspace spanned by the columns of A that is closest to b, i.e., we compute the orthogonal projection of b onto the subspace spanned by the columns of A. This problem arises often in practice, and the solution is called the *least squares solution* (assuming the dot product as the inner product) of an overdetermined system. This is discussed further in Chapter 9.

least squares solution

Remark. We just looked at projections of vectors x onto a subspace U with basis vectors $\{b_1, \ldots, b_k\}$. If this basis is an ONB, i.e., (3.34)–(3.35) are satisfied, the projection equation (3.62) simplifies greatly to

$$\pi_U(\boldsymbol{x}) = \boldsymbol{B}\boldsymbol{B}^{\top}\boldsymbol{x} \tag{3.69}$$

since $B^{\top}B = I$. This means that we no longer have to compute the tedious inverse from (3.62), which saves us much computation time. \diamondsuit

3.7.3 Projection onto Affine Subspaces

Thus far, we discussed how to project a vector onto a lower-dimensional subspace U. In the following, we provide a solution to projecting a vector onto an affine subspace.

Consider the setting in Figure 3.11(a). We are given an affine space $L = x_0 + U$ where b_1, b_2 are basis vectors of U. To determine the orthogonal projection $\pi_L(x)$ of x onto L, we transform the problem into a problem

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

Figure 3.12 A rotation rotates objects in a plane about the origin. If the rotation angle is positive, we rotate counterclockwise.

that we know how to solve: the projection onto a vector subspace. In order to get there, we subtract the support point x_0 from x and from L, so that $L - x_0 = U$ is exactly the vector subspace U. We can now use the orthogonal projections onto a subspace we discussed in Section 3.7.2 and obtain the projection $\pi_U(x - x_0)$, which is illustrated in Figure 3.11(b). This projection can now be translated back into L by adding x_0 , such that we obtain the orthogonal projection onto an affine space L as

$$\pi_L(\boldsymbol{x}) = \boldsymbol{x}_0 + \pi_U(\boldsymbol{x} - \boldsymbol{x}_0), \qquad (3.70)$$

where $\pi_U(\cdot)$ is the orthogonal projection onto the subspace U, i.e., the direction space of L, see Figure 3.11(c).

From Figure 3.11 it is also evident that the distance of x from the affine space L is identical to the distance of $x - x_0$ from U, i.e.,

$$d(x, L) = ||x - \pi_L(x)|| = ||x - (x_0 + \pi_U(x - x_0))||$$
(3.71)

$$=d(\boldsymbol{x}-\boldsymbol{x}_0,\pi_U(\boldsymbol{x}-\boldsymbol{x}_0)). \tag{3.72}$$

3.8 Rotations

Length and angle preservation, as discussed in Section 3.4, are the two characteristics of linear mappings with orthogonal transformation matrices. In the following, we will have a closer look at specific orthogonal transformation matrices, which describe rotations.

A *rotation* is a linear mapping (more specifically, an automorphism of a Euclidean vector space) that rotates a plane by an angle θ about the origin, i.e., the origin is a fixed point. For a positive angle $\theta>0$, by common convention, we rotate in a counterclockwise direction. An example is shown in Figure 3.12. Important application areas of rotations include computer graphics and robotics. For example, in robotics, it is often im-

rotation

Figure 3.13 The robotic arm needs to rotate its joints in order to pick up objects or to place them correctly. Figure taken from (Deisenroth et al., 2015).

Figure 3.14 Rotation of the standard basis in \mathbb{R}^2 by an angle θ .

portant to know how to rotate the joints of a robotic arm in order to pick up or place an object, see Figure 3.13.

3.8.1 Rotations in \mathbb{R}^2

Consider the standard basis $\left\{e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$ of \mathbb{R}^2 , which defines the standard coordinate system in \mathbb{R}^2 . We aim to rotate this coordinate

the standard coordinate system in \mathbb{R}^2 . We aim to rotate this coordinate system by an angle θ as illustrated in Figure 3.14. Note that the rotated vectors are still linearly independent and, therefore, are a basis of \mathbb{R}^2 . This means that the rotation performs a basis change.

Rotations Φ are linear mappings so that we can express them by a rotation matrix $\mathbf{R}(\theta)$. Trigonometry (see Figure 3.14) allows us to determine the coordinates of the rotated axes (the image of Φ) with respect to the standard basis in \mathbb{R}^2 . We obtain

$$\Phi(\mathbf{e}_1) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad \Phi(\mathbf{e}_2) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}. \tag{3.73}$$

Therefore, the rotation matrix that performs the basis change into the rotated coordinates ${\bf R}(\theta)$ is given as

$$\mathbf{R}(\theta) = \begin{bmatrix} \Phi(\mathbf{e}_1) & \Phi(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$
 (3.74)

Draft (2018-09-02) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

rotation matrix

1812

1815

1819

1820

1821

1822

1823

1824

1826

1827

1828

1829

1831

1834

1835

Figure 3.15 Rotation of a vector (gray) in \mathbb{R}^3 by an angle θ about the e_3 -axis. The rotated vector is shown in blue.

3.8.2 Rotations in \mathbb{R}^3

In contrast to the \mathbb{R}^2 case, in \mathbb{R}^3 we can rotate any two-dimensional plane about a one-dimensional axis. The easiest way to specify the general rotation matrix is to specify how the images of the standard basis e_1, e_2, e_3 are supposed to be rotated, and making sure these images $\mathbf{R}e_1, \mathbf{R}e_2, \mathbf{R}e_3$ are orthonormal to each other. We can then obtain a general rotation matrix \mathbf{R} by combining the images of the standard basis.

To have a meaningful rotation angle we have to define what "counterclockwise" means when we operate in more than two dimensions. We use the convention that a "counterclockwise" (planar) rotation about an axis refers to a rotation about an axis when we look at the axis "head on, from the end toward the origin". In \mathbb{R}^3 , there are therefore three (planar) rotations about the three standard basis vectors (see Figure 3.15):

• Rotation about the e_1 -axis

$$\boldsymbol{R}_{1}(\theta) = \begin{bmatrix} \Phi(\boldsymbol{e}_{1}) & \Phi(\boldsymbol{e}_{2}) & \Phi(\boldsymbol{e}_{3}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}. \quad (3.75)$$

Here, the e_1 coordinate is fixed, and the counterclockwise rotation is performed in the e_2e_3 plane.

• Rotation about the e_2 -axis

$$\mathbf{R}_{2}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}. \tag{3.76}$$

If we rotate the e_1e_3 plane about the e_2 axis, we need to look at the e_2 axis from its "tip" toward the origin.

• Rotation about the e_3 -axis

$$\mathbf{R}_{3}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix} . \tag{3.77}$$

Figure 3.15 illustrates this.

1838

1839

1841

1843

1845

1847

1850

1851

1852

1853

1854

1855

1856

1857

1859

3.8.3 Rotations in n Dimensions

The generalization of rotations from 2D and 3D to n-dimensional Euclidean vector spaces can be intuitively described as fixing n-2 dimensions and restrict the rotation to a two-dimensional plane in the n-dimensional space. As in the three-dimensional case we can rotate any plane (two-dimensional subspace of \mathbb{R}^n).

Definition 3.11 (Givens Rotation). Let and V be an n-dimensional Euclidean vector space and $\Phi:V\to V$ an automorphism with transformation matrix

$$m{R}_{ij}(heta) := egin{bmatrix} m{I}_{i-1} & 0 & \cdots & \cdots & 0 \ 0 & \cos heta & 0 & -\sin heta & 0 \ 0 & 0 & m{I}_{j-i-1} & 0 & 0 \ 0 & \sin heta & 0 & \cos heta & 0 \ 0 & \cdots & \cdots & 0 & m{I}_{n-j} \end{bmatrix} \in \mathbb{R}^{n imes n}, \quad (3.78)$$

Givens rotation

for $1 \leqslant i < j \leqslant n$ and $\theta \in \mathbb{R}$. Then $\mathbf{R}_{ij}(\theta)$ is called a *Givens rotation*. Essentially, $\mathbf{R}_{ij}(\theta)$ is the identity matrix \mathbf{I}_n with

$$r_{ii} = \cos \theta$$
, $r_{ij} = -\sin \theta$, $r_{ji} = \sin \theta$, $r_{jj} = \cos \theta$. (3.79)

In two dimensions (i.e., n = 2), we obtain (3.74) as a special case.

3.8.4 Properties of Rotations

Rotations exhibit a number useful properties:

- Rotations preserve distances, i.e., $||x-y|| = ||R_{\theta}(x) R_{\theta}(y)||$. In other words, rotations leave the distance between any two points unchanged after the transformation.
- Rotations preserve angles, i.e., the angle between $R_{ heta}x$ and $R_{ heta}y$ equals the angle between x and y.
 - Rotations in three (or more) dimensions are generally not commutative. Therefore, the order in which rotations are applied is important, even if they rotate about the same point. Only in two dimensions vector rotations are commutative, such that $\mathbf{R}(\phi)\mathbf{R}(\theta) = \mathbf{R}(\theta)\mathbf{R}(\phi)$ for all $\phi, \theta \in [0, 2\pi)$, and form an Abelian group (with multiplication) only if they rotate about the same point (e.g., the origin).

3.9 Further Reading

In this chapter, we gave a brief overview of some of the important concepts of analytic geometry, which we will use in later chapters of the book. For a broader and more in-depth overview of some the concepts we presented we refer to the following excellent books: Axler (2015) and Boyd and Vandenberghe (2018).

Inner products allow us to determine specific bases of vector (sub)spaces, where each vector is orthogonal to all others (orthogonal bases) using the Gram-Schmidt method. These bases are important in optimization and numerical algorithms for solving linear equation systems. For instance, Krylov subspace methods, such as Conjugate Gradients or GMRES, minimize residual errors that are orthogonal to each other (Stoer and Burlirsch, 2002).

In machine learning, inner products are important in the context of kernel methods (Schölkopf and Smola, 2002). Kernel methods exploit the fact that many linear algorithms can be expressed purely by inner product computations. Then, the "kernel trick" allows us to compute these inner products implicitly in a (potentially infinite-dimensional) feature space, without even knowing this feature space explicitly. This allowed the "non-linearization" of many algorithms used in machine learning, such as kernel-PCA (Schölkopf et al., 1997) for dimensionality reduction. Gaussian processes (Rasmussen and Williams, 2006) also fall into the category of kernel methods and are the current state-of-the-art in probabilistic regression (fitting curves to data points). The idea of kernels is explored further in Chapter 12.

Projections are often used in computer graphics, e.g., to generate shadows. In optimization, orthogonal projections are often used to (iteratively) minimize residual errors. This also has applications in machine learning, e.g., in linear regression where we want to find a (linear) function that minimizes the residual errors, i.e., the lengths of the orthogonal projections of the data onto the linear function (Bishop, 2006). We will investigate this further in Chapter 9. PCA (Hotelling, 1933; Pearson, 1901b) also uses projections to reduce the dimensionality of high-dimensional data. We will discuss this in more detail in Chapter 10.

Exercises

3.1 Show that $\langle \cdot, \cdot \rangle$ defined for all $\boldsymbol{x} = (x_1, x_2)$ and $\boldsymbol{y} = (y_1, y_2)$ in \mathbb{R}^2 by:

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2(x_2 y_2)$$

is an inner product.

3.2 Consider \mathbb{R}^2 with $\langle \cdot, \cdot \rangle$ defined for all \boldsymbol{x} and \boldsymbol{y} in \mathbb{R}^2 as:

$$\langle oldsymbol{x}, oldsymbol{y}
angle := oldsymbol{x}^{ op} egin{bmatrix} 2 & 0 \ 1 & 2 \end{bmatrix} oldsymbol{y}$$

Is $\langle \cdot, \cdot \rangle$ an inner product?

3.3 Consider the Euclidean vector space \mathbb{R}^5 with the dot product. A subspace

1893

1894

1896

 $U \subseteq \mathbb{R}^5$ and $\boldsymbol{x} \in \mathbb{R}^5$ are given by

$$U = \operatorname{span}\begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 5 \\ 0 \\ 7 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} -1 \\ -9 \\ -1 \\ 4 \\ 1 \end{bmatrix}$$

- 1. Determine the orthogonal projection $\pi_U(\mathbf{x})$ of \mathbf{x} onto U
- 2. Determine the distance d(x, U)
- 3.4 Consider \mathbb{R}^3 with the inner product

$$\langle {m x}, {m y}
angle := {m x}^ op egin{bmatrix} 2 & 1 & 0 \ 1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix} {m y} \, .$$

Furthermore, we define e_1, e_2, e_3 as the standard/canonical basis in \mathbb{R}^3 .

1. Determine the orthogonal projection $\pi_U(\mathbf{e}_2)$ of \mathbf{e}_2 onto

$$U = \operatorname{span}[\boldsymbol{e}_1, \boldsymbol{e}_3].$$

Hint: Orthogonality is defined through the inner product.

- 2. Compute the distance $d(e_2, U)$.
 - 3. Draw the scenario: standard basis vectors and $\pi_U(e_2)$
- 1899 3.5 Prove the Cauchy-Schwarz inequality $|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leqslant \|\boldsymbol{x}\| \|\boldsymbol{y}\|$ for $\boldsymbol{x}, \boldsymbol{y} \in V$, where V is a vector space.