

BB

50.degree. and the reaction mixt. was adjusted to pH 7 with 1 M phosphate buffer to give 2 isomers, each in 19% yield.

L4 ANSWER 14 OF 15 CAPLUS COPYRIGHT 1999 ACS
ACCESSION NUMBER: 1997:443365 CAPLUS
DOCUMENT NUMBER: 127:81289
TITLE: Preparation of epothilone derivatives as agrochemicals and pharmaceuticals
INVENTOR(S): Hofle, Gerhard; Kiffe, Michael
PATENT ASSIGNEE(S): Gesellschaft Fur Biotechnologische Forschung Mbh (Gbf), Germany; Hofle, Gerhard; Kiffe, Michael
SOURCE: PCT Int. Appl., 38 pp.
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 2
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9719086	A1	19970529	WO 96-EP5080	19961118
W: JP, US				
RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
DE 19542986	A1	19970522	DE 95-19542986	19951117
DE 19639456	A1	19980326	DE 96-19639456	19960925
EP 873341	A1	19981028	EP 96-939097	19961118
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
PRIORITY APPLN. INFO.:			DE 95-19542986	19951117
			DE 96-19639456	19960925
			WO 96-EP5080	19961118

OTHER SOURCE(S): MARPAT 127:81289
AB The title compds., e.g., I [R = H, C1-4 alkyl; R1, R2 = H, C1-6 alkyl, C1-6 acyl, benzoyl, C1-4 trialkylsilyl, benzyl, Ph, C1-6 alkoxy, C6 alkyl-, hydroxy-, and halo-substituted benzyl or phenyl; X, Y = H, halo, pseudohalo, OH, acyloxy, alkoxy, benzyloxy; or YZ = O, bond; however, I may not be epothilone A or B], useful as agrochems. and pharmaceuticals (no data), are prep'd. Thus, epothilone A in acetone contg. trifluoroacetic acid was heated overnight at 50.degree. and the reaction mixt. was adjusted to pH 7 with 1 M phosphate buffer to give 2 isomers, each in 19% yield.

L4 ANSWER 15 OF 15 CAPLUS COPYRIGHT 1999 ACS
ACCESSION NUMBER: 1994:52841 CAPLUS
DOCUMENT NUMBER: 120:52841
TITLE: Epothilone derivatives
INVENTOR(S): Hoefle, Gerhard; Bedorf, Norbert; Gerth, Klaus; Reichenbach, Hans
PATENT ASSIGNEE(S): Gesellschaft fuer Biotechnologische Forschung mbH (GBF), Germany
SOURCE: Ger. Offen., 10 pp.
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

THIS PAGE BLANK (USPTO)

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4138042	A1	19930527	DE 91-4138042	19911119
DE 4138042	C2	19931014		
WO 9310121	A1	19930527	WO 92-EP2656	19921119
		W: AU, CA, FI, HU, JP, KR, NO, US RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE		
AU 9229437	A1	19930615	AU 92-29437	19921119
PRIORITY APPLN. INFO.:			DE 91-4138042	19911119
			WO 92-EP2656	19921119

OTHER SOURCE(S): MARPAT 120:52841

AB Fungicidal antibiotic epothilones I ($R_1 = H$, alkyl, acyl, Li, etc.; $R_2 = H, Me$) and a fermentative process for their prepn. are claimed. The process for their prepn. comprises the fermn. of Sorangium cellulosum in the presence of a resin. During the fermn. epothilon A ($R_1 = R_2 = H$) and epothilone B ($R_1 = H, R_2 = Me$) are bound to the resin. Agrochem. fungicides contg. epothilone A and epothilone B

THIS PAGE BLANK (USPTO)

5/27/97
BB

An das
Deutsche Patentamt
80297 München

DEUTSCHES PATENTAMT

①

Sendungen des Deutschen Patentamts sind zu richten an:

In der
Anschw.
Straße,
Haus-Nr.
und evgl.
Postleitz.
angaben

Herrn Patentanwalt
Dr. Hans D. Boeters
Bereiteranger 16
81541 München

Antrag
auf Erteilung eines Patents

196 39 456.2

②

Vorname des Anmelders/Vertreters (max. 20 Stellen)

8299-GBF

Vorname des Anmelders/Vertreters (max. 20 Stellen)

089765 00 85

Datum

26. Sept. 1996

③

Der Empfänger in Feld ① ist der

Anmelder Zustellungsbevollmächtigte

Vertreter

ggf. Nr. der Altersbeschr. Vermerk

④

Anmelder

nur zuver-
lässiger, wenn
durchaus
von Fall ①

Gesellschaft für Biotech-
nologische Forschung mbH (GBF)
Mascheroder Weg 1
38124 Braunschweig

Dr. Hans D. Boeters
Dipl.-Ing. Robert Bauer
Dr. Enno Meyer
Bereiteranger 16
81541 München

sowie ⑤
bekannt

Anmeldercode-Nr.

Vertretercode-Nr.

Zustellungscode-Nr.

⑥

Bezeichnung der Erfindung (bei Überlieferung auf gesondertem Blatt - siehe)

Epothilon-Derivate, Herstellung und Mittel

⑦

Sonstige Anträge

Altersbeschr. der Hauptanmeldung (des Hauptantrags)

z. Erste-
rungen u.
Korrektu-
runterschr.
auf der
Rückseite

Die Anmeldung ist Zusatz zur Patentanmeldung (zum Patent) →

Prüfungsantrag - Prüfung der Anmeldung (§ 44 Patentgesetz)

Recherchenantrag - Ermittlung der öffentlichen Druckschriften ohne Prüfung (§ 43 Patentgesetz)

Lieferung von Ablichtungen der ermittelten Druckschriften im

Prüfungsverfahren

Aussetzung des Erstlingsbeschlusses auf Monate

(§ 49 Abs. 2 Patentgesetz) (Max. 15 Mon. ab Anmelde- oder Prioritätsstag)

Recherchenverfahren

⑧

Erklärungen

Altersbeschr. der Sonstigen Anmeldung

Tötung/Aussetzung aus der Patentanmeldung →

an Lizenzvergabe interessiert (unverbindlich)

mit vorzeitiger Offenlegung und damit früher Altersbeschr. einverstanden (§ 31 Abs. 2 Nr. 1 Patentgesetz)

⑨

Inländische Priorität (Datum, Altersbeschr. der Voranmeldung)

bei Überlieferung auf gesondertem Blatt - siehe)

Aussländische Priorität (Datum, Land, Altersbeschr. der Voranmeldung)

bei Überlieferung auf gesondertem Blatt - siehe)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321. 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 338. 339. 340. 341. 342. 343. 344. 345. 346. 347. 348. 349. 350. 351. 352. 353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368. 369. 370. 371. 372. 373. 374. 375. 376. 377. 378. 379. 380. 381. 382. 383. 384. 385. 386. 387. 388. 389. 390. 391. 392. 393. 394. 395. 396. 397. 398. 399. 400. 401. 402. 403. 404. 405. 406. 407. 408. 409. 410. 411. 412. 413. 414. 415. 416. 417. 418. 419. 420. 421. 422. 423. 424. 425. 426. 427. 428. 429. 430. 431. 432. 433. 434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447. 448. 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. 460. 461. 462. 463. 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475. 476. 477. 478. 479. 480. 481. 482. 483. 484. 485. 486. 487. 488. 489. 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500. 501. 502. 503. 504. 505. 506. 507. 508. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519. 520. 521. 522. 523. 524. 525. 526. 527. 528. 529. 530. 531. 532. 533. 534. 535. 536. 537. 538. 539. 540. 541. 542. 543. 544. 545. 546. 547. 548. 549. 550. 551. 552. 553. 554. 555. 556. 557. 558. 559. 560. 561. 562. 563. 564. 565. 566. 567. 568. 569. 570. 571. 572. 573. 574. 575. 576. 577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 587. 588. 589. 590. 591. 592. 593. 594. 595. 596. 597. 598. 599. 600. 601. 602. 603. 604. 605. 606. 607. 608. 609. 610. 611. 612. 613. 614. 615. 616. 617. 618. 619. 620. 621. 622. 623. 624. 625. 626. 627. 628. 629. 630. 631. 632. 633. 634. 635. 636. 637. 638. 639. 640. 641. 642. 643. 644. 645. 646. 647. 648. 649. 650. 651. 652. 653. 654. 655. 656. 657. 658. 659. 660. 661. 662. 663. 664. 665. 666. 667. 668. 669. 661. 662. 663. 664. 665. 666. 667. 668. 669. 670. 671. 672. 673. 674. 675. 676. 677. 678. 679. 680. 681. 682. 683. 684. 685. 686. 687. 688. 689. 681. 682. 683. 684. 685. 686. 687. 688. 689. 690. 691. 692. 693. 694. 695. 696. 697. 698. 699. 691. 692. 693. 694. 695. 696. 697. 698. 699. 700. 701. 702. 703. 704. 705. 706. 707. 708. 709. 701. 702. 703. 704. 705. 706. 707. 708. 709. 710. 711. 712. 713. 714. 715. 716. 717. 718. 719. 711. 712. 713. 714. 715. 716. 717. 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 721. 722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 733. 734. 735. 736. 737. 738. 739. 731. 732. 733. 734. 735. 736. 737. 738. 739. 740. 741. 742. 743. 744. 745. 746. 747. 748. 749. 741. 742. 743. 744. 745. 746. 747. 748. 749. 750. 751. 752. 753. 754. 755. 756. 757. 758. 759. 751. 752. 753. 754. 755. 756. 757. 758. 759. 760. 761. 762. 763. 764. 765. 766. 767. 768. 769. 761. 762. 763. 764. 765. 766. 767. 768. 769. 770. 771. 772. 773. 774. 775. 776. 777. 778. 779. 771. 772. 773. 774. 775. 776. 777. 778. 779. 780. 781. 782. 783. 784. 785. 786. 787. 788. 789. 781. 782. 783. 784. 785. 786. 787. 788. 789. 790. 791. 792. 793. 794. 795. 796. 797. 798. 799. 791. 792. 793. 794. 795. 796. 797. 798. 799. 800. 801. 802. 803. 804. 805. 806. 807. 808. 809. 801. 802. 803. 804. 805. 806. 807. 808. 809. 810. 811. 812. 813. 814. 815. 816. 817. 818. 819. 811. 812. 813. 814. 815. 816. 817. 818. 819. 820. 821. 822. 823. 824. 825. 826. 827. 828. 829. 821. 822. 823. 824. 825. 826. 827. 828. 829. 830. 831. 832. 833. 834. 835. 836. 837. 838. 839. 831. 832. 833. 834. 835. 836. 837. 838. 839. 840. 841. 842. 843. 844. 845. 846. 847. 848. 849. 841. 842. 843. 844. 845. 846. 847. 848. 849. 850. 851. 852. 853. 854. 855. 856. 857. 858. 859. 851. 852. 853. 854. 855. 856. 857. 858. 859. 860. 861. 862. 863. 864. 865. 866. 867. 868. 869. 861. 862. 863. 864. 865. 866. 867. 868. 869. 870. 871. 872. 873. 874. 875. 876. 877. 878. 879. 871. 872. 873. 874. 875. 876. 877. 878. 879. 880. 881. 882. 883. 884. 885. 886. 887. 888. 889. 881. 882. 883. 884. 885. 886. 887. 888. 889. 890. 891. 892. 893. 894. 895. 896. 897. 898. 899. 891. 892. 893. 894. 895. 896. 897. 898. 899. 900. 901. 902. 903. 904. 905. 906. 907. 908. 909. 901. 902. 903. 904. 905. 906. 907. 908. 909. 910. 911. 912. 913. 914. 915. 916. 917. 918. 919. 911. 912. 913. 914. 915. 916. 917. 918. 919. 920. 921. 922. 923. 924. 925. 926. 927. 928. 929. 921. 922. 923. 924. 925. 926. 927. 928. 929. 930. 931. 932. 933. 934. 935. 936. 937. 938. 939. 931. 932. 933. 934. 935. 936. 937. 938. 939. 940. 941. 942. 943. 944. 945. 946. 947. 948. 949. 941. 942. 943. 944. 945. 946. 947. 948. 949. 950. 951. 952. 953. 954. 955. 956. 957. 958. 959. 951. 952. 953. 954. 955. 956. 957. 958. 959. 960. 961. 962. 963. 964. 965. 966. 967. 968. 969. 961. 962. 963. 964. 965. 966. 967. 968. 969. 970. 971. 972. 973. 974. 975. 976. 977. 978. 979. 971. 972. 973. 974. 975. 976. 977. 978. 979. 980. 981. 982. 983. 984. 985. 986. 987. 988. 989. 981. 982. 983. 984. 985. 986. 987. 988. 989. 990. 991. 992. 993. 994. 995. 996. 997. 998. 999. 991. 992. 993. 994. 995. 996. 997. 998. 999. 1000. 1001. 1002. 1003. 1004. 1005. 1006. 1007. 1008. 1009. 1001. 1002. 1003. 1004. 1005. 1006. 1007. 1008. 1009. 1010. 1011. 1012. 1013. 1014. 1015. 1016. 1017. 1018. 1019. 1011. 1012. 1013. 1014. 1015. 1016. 1017. 1018. 1019. 1020. 1021. 1022. 1023. 1024. 1025. 1026. 1027. 1028. 1029. 1021. 1022. 1023. 1024. 1025. 1026. 1027. 1028. 1029. 1030. 1031. 1032. 1033. 1034. 1035. 1036. 1037. 1038. 1039. 1031. 1032. 1033. 1034. 1035. 1036. 1037. 1038. 1039. 1040. 1041. 1042. 1043. 1044. 1045. 1046. 1047. 1048. 1049. 1041. 1042. 1043. 1044. 1045. 1046. 1047. 1048. 1049. 1050. 1051. 1052. 1053. 1054. 1055. 1056. 1057. 1058. 1059. 1051. 1052. 1053. 1054. 1055. 1056. 1057. 1058. 1059. 1060. 1061. 1062. 1063. 1064. 1065. 1066. 1067. 1068. 1069. 1061. 1062. 1063. 1064. 1065. 1066. 1067. 1068. 1069. 1070. 1071. 1072. 1073. 1074. 1075. 1076. 1077. 1078. 1079. 1071. 1072. 1073. 1074. 1075. 1076. 1077. 1078. 1079. 1080. 1081. 1082. 1083. 1084. 1085. 1086. 1087. 1088. 1089. 1081. 1082. 1083. 1084. 1085. 1086. 1087. 1088. 1089. 1090. 1091. 1092. 1093. 1094. 1095. 1096. 1097. 1098. 1099. 1091. 1092. 1093. 1094. 1095. 1096. 1097. 1098. 1099. 1100. 1101. 1102. 1103. 1104. 1105. 1106. 1107. 1108. 1109. 1101. 1102. 1103. 1104. 1105. 1106. 1107. 1108. 1109. 1110. 1111. 1112. 1113. 1114. 1115. 1116. 1117. 1118. 1119. 1111. 1112. 1113. 1114. 1115. 1116. 1117. 1118. 1119. 1120. 1121. 1122. 1123. 1124. 1125. 1126. 1127. 1128. 1129. 1121. 1122. 1123. 1124. 1125. 1126. 1127. 1128. 1129. 1130. 1131. 1132. 1133. 1134. 1135. 1136. 1137. 1138. 1139. 1131. 1132. 1133. 1134. 1135. 1136. 1137. 1138. 1139. 1140. 1141. 1142. 1143. 1144. 1145. 1146. 1147. 1148. 1149. 1141. 1142. 1143. 1144. 1145. 1146. 1147. 1148. 1149. 1150. 1151. 1152. 1153. 1154. 1155. 1156. 1157. 1158. 1159. 1151. 1152. 1153. 1154. 1155. 1156. 1157. 1158. 1159. 1160. 1161. 1162. 1163. 1164. 1165. 1166. 1167. 1168. 1169. 1161. 1162. 1163. 1164. 1165. 1166. 1167. 1168. 1169. 1170. 1171. 1172. 1173. 1174. 1175. 1176. 1177. 1178. 1179. 1171. 1172. 1173. 1174. 1175. 1176. 1177. 1178. 1179. 1180. 1181. 1182. 1183. 1184. 1185. 1186. 1187. 1188. 1189. 1181. 1182. 1183. 1184. 1185. 1186. 1187. 1188. 1189. 1190. 1191. 1192. 1193. 1194. 1195. 1196. 1197. 1198. 1199. 1191. 1192. 1193. 1194. 1195. 1196. 1197. 1198. 1199. 1200. 1201. 1202. 1203. 1204. 1205. 1206. 1207. 1208. 1209.

THIS PAGE BLANK (USPTO)

BOETERS & BAUER
PATENTANWÄLTE
EUROPEAN PATENT ATTORNEYS
BEREITERANGER 15
D - 81541 MÜNCHEN

PAG BOETERS & BAUER
BEREITERANGER 15, D-81541 MÜNCHEN

DIPL.-CHEM. DR. HANS D. BOETERS
DIPLO.-ING. ROBERT BAUER
PHYS. DR. ENNO MEYER
TELEFON: (089) 66 00 88
TELEFAX: (089) 66 39 62
TELEGRAMME: PROVENTION, MÜNCHEN

25. September 1996/he

Unser Zeichen: 8299-GBF

Epothilonderivate, Herstellung und Mittel

Die vorliegende Erfindung betrifft allgemein Epothilonderivate und deren Verwendung zur Herstellung von Arzneimitteln. Insbesondere betrifft die vorliegende Erfindung die Herstellung der Epothilonderivate der nachfolgend dargestellten allgemeinen Formeln 1 bis 7 sowie deren Verwendung zur Herstellung von therapeutischen Mitteln und Mitteln für den Pflanzenschutz.

THIS PAGE BLANK (USPTO)

2

3

4

- 3 -

5

6

7

In den vorstehenden Formeln 1 bis Formel 7 bedeuten:

R = H, C₁₋₄-Alkyl;
R¹, R², R³, R⁴, R⁵ = H, C₁₋₆-Alkyl,
C₁₋₆-Acyl-Benzoyl,
C₁₋₄-Trialkylsilyl,
Benzyl,
Phenyl,
C₁₋₆-Alkoxy-,
C₆-Alkyl-, Hydroxy- und Halogen-
substituiertes Benzyl bzw. Phenyl;

wobei auch zwei der Reste R¹ bis R⁵ zu der Gruppierung -(CH₂)_n- mit n = 1 bis 6 zusammengetragen können und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

In der Formel 1 sind X und Y entweder gleich oder verschieden und stehen jeweils für Halogen, OH, O-(C₁₋₆)-Acyl, O-(C₁₋₆)-Alkyl, O-Benzoyl.

In der Formel 3 steht X allgemein für -C(O)-, -C(S)-, -S(O)-, -CR¹R²-, wobei R¹ und R² die Bedeutung haben wie oben angegeben, und -SiR₂-, wobei R die Bedeutung hat wie oben angegeben.

In der Formel 4 bedeutet X Sauerstoff, NOR³, N-NR⁴R⁵, und N-NHCONR⁴R⁵, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben.

In der Formel 5 bedeutet X Wasserstoff, C₁₋₁₈-Alkyl, C₁₋₁₈-Acyl, Benzyl, Benzoyl und Cinnamoyl.

Für Epothilon A und B sei verwiesen auf DE-A-41 38 042.

Verbindungen gemäß der allgemeinen Formel 1 sind ausgehend von Epothilon A und B sowi von deren 3-O- und/oder 7-O-geschützt n Derivaten durch Öffnung d s 12,13-Epoxids zugänglich. Werden dazu

Hydrogenwasserstoffsäuren in einem bevorzugt nicht wässrigen Lösungsmittel eingesetzt, wobei man die Halogenhydrine X = Hal, Y = OH und Y = OH, Y = Hal erhält. Protonensäuren wie z.B. Toluolsulfonsäure und Trifluoressigsäure führen in Gegenwart von Wasser zu 12,13-Diolen, die anschließend nach Standardverfahren acyliert (z.B. mit Carbonsäureanhydriden und Pyridin oder Triethylamin/DMAP) oder alkyliert (Alkylhalogenide und Silberoxid) werden. Die 3- und 7-Hydroxygruppen können dazu vorübergehend als Formiat (Abspaltung mit NH₃/MeOH) oder p-Methoxybenzylether (Abspaltung mit DDQ) geschützt werden.

Verbindungen gemäß der allgemeinen Formel 2 sind aus Epothilon A und B sowie deren 3-O- und/oder 7-O-geschützten Derivaten durch Reduktion, z.B. mit NaBH₄ in Methanol erhältlich. Sind dabei 3-OH und/oder 7-OH reversibel geschützt, so können nach Acylierung oder Alkylierung und Entfernen der Schutzgruppen 5-O-monosubstituierte, 3,5- oder 5,7-O-disubstituierte Derivate der allgemeinen Formel 2 erhalten werden.

Umsetzungen von Epothilon A und B mit bifunktionellen elektrophilen Reagenzien, wie (Thio)Phosgen, (Thio)Carbonyldimidazol, Thionylchlorid oder Dialkylsilyldichloriden bzw. -bistriflaten ergeben Verbindungen der allgemeinen Formel 3. Als Hilfsbasen dienen dabei Pyridin, Trialkylamine, ggf. zusammen mit DMAP bzw. 2,6-Lutidin in einem nichtprotischen Lösungsmittel. Die 3,7-Acetale der allgemeinen Formel 3 entstehen durch Umacetalisierung z.B. von Dimethylacetalen in Gegenwart eines sauren Katalysators.

Verbindungen gemäß der allgemeinen Formel 4 werden aus Epothilon A und B oder ihren 3-O- und/oder 7-O-geschützten Derivaten durch Ozonolyse und reduktive Aufarbeitung, z.B. mit Dimethylsulfid, erhalten. Die C-16-Ketone können anschließend nach dem Fachmann geläufigen Standardverfahren in Oxime, Hydrazone oder Semicarbazone umgewandelt werden. Sie werden weiterhin durch Wittig-, Wittig-Horner-, Julia- oder Petersen-Olefinierung in C-16/C-17-Olefine überführt.

Durch Reduktion der C-16-Ketogruppe, z.B. mit einem Aluminium- oder Borhydrid, sind die 16-Hydroxyderivate gemäß der allgemeinen Formel 5 erhältlich. Diese können, wenn 3-OH und 7-OH mit entsprechenden Schutzgruppen versehen sind, selektiv acyliert oder alkyliert werden. Die Freisetzung der 3-OH- und 7-OH-Gruppen erfolgt z.B. bei O-Formyl durch NH₃/MeOH, bei O-p-Methoxybenzyl durch DDQ.

Die Verbindungen der allgemeinen Formel 6 werden aus Derivaten von Epothilon A und B erhalten, bei denen die 7-OH-Gruppe durch Acyl- oder Ethergruppen geschützt ist, in dem die 3-OH-Gruppe z.B. formyliert, mesyliert oder tosyliert und anschließend durch Behandlung mit einer Base z.B. DBU eliminiert wird. Die 7-OH-Gruppe kann wie oben beschrieben freigesetzt werden.

Verbindungen der allgemeinen Formel 7 werden aus Epothilon A und B oder deren 3-OH- und 7-OH-geschützten Derivaten durch basische Hydrolyse erhalten, z.B. mit NaOH in MeOH oder MeOH/Wasser. Vorrangig werden Verbindungen der allgemeinen Formel 7 aus Epothilon A oder B oder deren 3-OH- oder 7-OH-geschützten Derivaten durch enzymatische Hydrolyse erhalten, insbesondere mit Esterasen oder Lipasen. Die Carboxylgruppe kann mit Diazoalkanen nach Schutz der 19-OH-Gruppe durch Alkylierung in Ester umgewandelt werden.

Ferner können Verbindungen der Formel 7 durch Lactonisierung nach den Methoden von Yamaguchi (Trichlorbenzoylchlorid/DMAP), Corey (Aldrichiol/Triphenylphosphin) oder Kellogg (omega-Brom-säure/Caesiumcarbonat) in Verbindung der Formel 2 umgewandelt werden. Einschlägige Arbeitsmethoden finden sich bei:

Inanaga et al. in Bull. Chem. Soc. Japan, 52 (1979) 1989; Corey & Nicolaou in J. Am. Chem. Soc., 96 (1974) 5614; und Kruizinga & Kellogg in J. Am. Chem. Soc., 103 (1981) 5183.

Die Erfindung betrifft ferner Mittel für den Pflanzenschutz in Landwirtschaft, Forstwirtschaft und/oder Gartenbau, bestehend aus einer oder mehreren der vorstehend aufgeführten Epothilonederivate bzw. bestehend aus einem oder mehreren der vorstehend aufgeführten Epothilonederivate neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

Schließlich betrifft die Erfindung therapeutische Mittel, bestehend aus einer oder mehreren der vorstehend aufgeführten Verbindungen oder einer oder mehreren der vorstehend aufgeführten Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n). Diese Mittel können insbesondere cytotoxische Aktivitäten entwickeln und/oder Immunsuppression bewirken, so daß sie besonders bevorzugt als Cytostatika verwendbar sind.

Die Erfindung wird im folgenden durch die Beschreibung von einigen ausgewählten Ausführungsbeispielen näher erläutert und beschrieben.

Beispiele

Beispiel 1:

Verbindung 1a

20 mg (0.041 mmol) Epothilon A werden in 1 ml Aceton gelöst, mit 50 µl (0.649 mmol) Trifluoressigsäure versetzt und über Nacht bei 50 °C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15).

Ausbeute: 4 mg (19 %) Isomer I
4 mg (19 %) Isomer II

Isomer I

R_f (Dichlormethan/Aceton, 85 : 15): 0.46

IR (Film): ny = 3440 (m, b, Sch), 2946 (s, Sch), 1734 (vs), 1686 (m), 1456 (m), 1375 (w), 1256 (s, Sch), 1190 (w, b, Sch), 1071 (m, Sch), 884 (w), 735 (w) cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (43 [M-H₂O]⁺), 394 (47), 306 (32), 206 (30), 181 (40), 166 (72), 139 (100), 113 (19), 71 (19), 57 (24), 43 (24).

Hochauflösung: C₂₆H₃₉O₆NS ber.: 493.2498 für [M-H₂O]⁺
gef.: 493.2478

Isomer II

R_f (Dichlormethan/Aceton, 85 : 15): 0.22

IR (Film): ny = 3484 (s, b, Sch), 2942 (vs, Sch), 1727 (vs), 1570 (w), 1456 (m), 1380 (m), 1265 (s), 1190 (w), 1069 (m), 975 (w) cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (21 [M-H₂O]⁺), 394 (12), 306 (46), 206 (37), 181 (63), 166 (99), 139 (100), 113 (21), 71 (23), 57 (33), 43 (28).

Hochauflösung: C₂₆H₃₉O₆NS ber.: 493.2498 für [M-H₂O]⁺
gef.: 493.2475

Beispiel 2:

Verbindung 1b

55 mg (0.111 mmol) Epothilon A werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 N Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 90 : 10). Ausbeute: 19 mg (32 %)

R_f (Dichlormethan/Methanol, 90 : 10): 0.46

IR (Film): ν = 3441 (s, br, Sch), 2948 (s, Sch), 1725 (vs, Sch), 1462 (m), 1381 (w), 1265 (m), 1154 (w), 972 (m, br, Sch) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 210 (4.29), 248 (4.11) nm.

MS (20/70 eV): m/e (%) = 529 (13 [M⁺]), 494 (10), 342 (38), 306 (23), 194 (32), 164 (100), 140 (31), 113 (15), 57 (16).

Hochauflösung: C₂₆H₄₀O₆ClNS ber.: 529.2265 für [M⁺], gef.: 529.2280

Beispiel 3:

Verbindung 1c

25 mg (0.047 mmol) 12-Chlor-13-hydroxy-epothilon A (1b) werden in 1 ml Dichlormethan gelöst, mit 29 mg (0.235 mmol) Dimethylaminopyridin, 151 µl (1.081 mmol) Triethylamin und 20 µl (0.517

mmol) 98 %-iger Ameisensäure versetzt. Das Reaktionsgemisch wird mit Eis/Natriumchlorid abgekühlt. Nach Erreichen von -15 °C werden dem Reaktionsgemisch 40 µl (0.423 mmol) Essigsäureanhydrid zugegeben und 70 Minuten bei -15 °C gerührt. Nachdem ein Dünnschichtchromatogramm keinen vollständigen Umsatz anzeigt, werden dem Reaktionsgemisch weitere 6 mg (0.047 mmol) Dimethylaminopyridin, 7 µl (0.047 mmol) Triethylamin, 2 µl 98 %-ige Ameisensäure (0.047 mmol) und 4 µl (0.047 mmol) Essigsäureanhydrid zugesetzt und 60 Minuten gerührt. Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur erwärmt, mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10). Ausbeute: 5 mg (18 %)

R_f (Dichlormethan/Aceton. 90 : 10): 0.67

IR (Film): ny = 3497 (w, b, Sch), 2940 (s, b, Sch), 1725 (vs), 1468 (m, b, Sch), 1379 (m), 1265 (s), 1253 (s), 1175 (vs), 972 (m, b, Sch), 737 (s) cm⁻¹

MS (20/70 eV): m/e (%) = 613 (9 [M⁺]), 567 (43), 472 (63), 382 (23), 352 (21), 164 (100), 151 (33), 96 (31), 69 (17), 44 (26).

Hochauflösung: C₂₉H₄₀O₉NSCl ber.: 613.2112 für [M⁺] gef.: 613.2131

Beispiel 4:

Verbindung 1d

10 mg (0.020 mmol) Epothilon B werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15). Ausbeute: 1 mg (9 %)

R_f (Dichlormethan/Aceton, 85 : 15): 0.38

MS (20/70 eV): m/e (%) = 543 (3 [M⁺]), 507 (14), 320 (19), 234 (9), 194 (17), 182 (23), 164 (100), 140 (22), 113 (14), 71 (13).

Hochauflösung: C₂₇H₄₂O₆NSCl ber.: 543.2421 für [M⁺] gef.: 543.2405

Beispiel 5:

Verbindung 2a

100 mg (0.203 mmol) Epothilon A werden in 4 ml Tetrahydrofuran/1 M Phosphatpuffer pH 7 (1 : 1) gelöst und solange mit Natriumborhydrid (150 mg = 3.965 mmol) versetzt bis das Edukt laut Dünnschichtchromatogramm vollständig abreagiert ist. Anschließend wird mit 1 M Phosphatpuffer pH 7 verdünnt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt durch Kieselchromatographie

(Laufmittel: Dichlormethan/Aceton, 95 : 5 - grad - nach Dichlormethan/Aceton, 85 : 15).

Ausbeute: (20 %)

R_f (Dichlormethan/Aceton, 75 : 25): 0.27

IR (Film): ny = 3413 (s, b, Sch), 2965 (vs, Sch), 1734 (vs), 1458 (m, b, Sch), 1383 (m, Sch), 1264 (s, b, Sch), 1184 (m, b, Sch), 1059 (s, Sch), 966 (s), 885 (w), 737 (m) cm⁻¹

MS (20/70 eV): m/e (%) = 495 (6 [M⁺]), 477 (8), 452 (12), 394 (9), 364 (16), 306 (49), 194 (19), 178 (35), 164 (100), 140 (40), 83 (21), 55 (27).

Hochauflösung: C₂₆H₄₁O₆NS ber.: 495.2655 für [M⁺] gef.: 495.2623

Beispiel 6:

Verbindung 3a-d (a-d sind Stereocisomere)

100 mg (0.203 mmol) Epothilon werden in 3 ml Pyridin gelöst, mit 50 µl (0.686 mmol) Thionylchlorid versetzt und 15 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes und Trennung der vier Stereoisomeren 3a-d erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Verbindung 3a

Ausbeute: 4 mg (12 %)

R_f (Toluol/Methanol, 90 : 10): 0.50

IR (Film): ny = 2961 (m, b, Sch), 1742 (vs), 1701 (vs), 1465 (m, Sch), 1389 (m, Sch), 1238 (s, Sch), 1210 (vs, Sch), 1011 (s, Sch), 957 (s, b, Sch), 808 (m, Sch), 768 (s, Sch) cm⁻¹

UV (Methanol): λ_{max} (lg ε) = 210 (4.50), 248 (4.35) nm.

MS (20/70 eV): m/e (%) = 539 (40 [M⁺]), 457 (22), 362 (16), 316 (27), 222 (30), 178 (30), 164 (100), 151 (43), 96 (38), 69 (29), 55 (28), 43 (20).

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺]

Verbindung 3b

Ausbeute: 14 mg (13 %)

R_f (Toluol/Methanol, 90 : 10): 0.44

IR (Film): ny = 2963 (s, br, Sch), 1740 (vs), 1703 (s), 1510 (w), 1464 (m, br, Sch), 1389 (m, Sch), 1240 (s, br, Sch), 1142 (m), 1076 (w), 1037 (w), 1003 (m), 945 (s, br, Sch), 806 (m, Sch), 775 (s), 737 (m) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 211 (4.16), 250 (4.08) nm.

MS (20/70 eV): m/e (%) = 539 (27 [M⁺]), 475 (17), 322 (41), 306 (67), 222 (16), 206 (17), 194 (19), 178 (32), 164 (100), 151 (33), 125 (18), 113 (15), 96 (39), 81 (23), 64 (58), 57 (42), 41 (19).

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺] gef.: 539.1998

Verbindung 3c

Ausbeute: 4 mg (4 %)

R_f (Toluol/Methanol, 90 : 10): 0.38

MS (20/70 eV): m/e (%) = 539 (51 [M⁺]), 322 (22), 306 (53), 222 (36), 178 (31), 164 (100), 151 (41), 96 (25), 81 (20), 69 (26), 55 (25), 41 (25).

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺] gef.: 539.2001

Verbindung 3d

Ausbeute: 1 mg (1 %)

R_f (Toluol/Methanol, 90 : 10): 0.33

MS (20/70 eV): m/e (%) = 539 (69 [M⁺]), 322 (35), 306 (51), 222 (41), 178 (31), 164 (100), 151 (46), 96 (31), 81 (26), 69 (34), 55 (33), 41 (35)

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺] gef.: 539.1997

Beispiel 7:
Verbindung 4a

10 mg (0.020 mmol) Epothilon A werden in 2 ml Dichlormethan gelöst, auf -70 °C abgekühlt und anschließend 5 Minuten mit Ozon bis zur schwachen Blaufärbung behandelt. Das resultierende Reaktionsgemisch wird anschließend mit 0.5 ml Dimethylsulfid versetzt und auf Raumtemperatur erwärmt. Zur Aufarbeitung wird das Reaktionsgemisch vom Lösungsmittel befreit und schließlich durch präparative Schichtchromatographie (Laufmittel Dichlormethan/Aceton/Methanol, 85 : 10 : 5) gereinigt.

Ausbeute: 5 mg (64 %)

R_f (Dichlormethan/Aceton/Methanol, 85 : 10 : 5): 0.61

IR (Film): ny = 3468 (s, br, Sch), 2947 (s, br, Sch), 1734 (vs, Sch), 1458 (w), 1380 (w), 1267 (w), 1157 (w), 1080 (w), 982 (w) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 202 (3.53) nm.

MS (20/70 eV): m/e (%) = 398 (2 [M⁺]), 380 (4), 267 (14), 249 (17), 211 (20), 193 (26), 171 (34), 139 (34), 111 (40), 96 (100), 71 (48), 43 (50).

Hochauflösung: C₂₁H₃₄O₇ ber.: 398.2305 für [M⁺]
gef.: 398.2295

Beispiel 8:
Verbindung 6a

10 mg (0.018 mmol) 3,7-Di-O-formyl-epothilon A werden in 1 ml Dichlormethan gelöst, mit 27 µl (0.180 mmol) 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) versetzt und 60 Minuten bei Raumtemperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natriumdi-hydrogenphosphat-Puffer pH 4.5 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Nach Beseitigung des Lösungsmittel wird das resultierende Rohprodukt in 1 ml Methanol gelöst, mit 200 µl einer ammoniakalischen Methanolösung (2 mmol NH₃/ml Methanol) versetzt und über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt.

Ausbeute: 4 mg (22 %)

R_f (Dichlormethan/Aceton, 85 : 15): 0.46

IR (Film): ny - 3445 (w, br, Sch), 2950 (vs, br, Sch), 1717 (vs, Sch), 1644 (w), 1466 (m, Sch), 1370 (m, SCh), 1267 (s, br, Sch), 1179 (s, Sch), 984 (s, Sch), 860 (w), 733 (m) cm⁻¹

UV (Methanol): λ_{max} (lg ε) = 210 (4.16) nm.

MS (20/70 eV): m/e (%) = 475 (28 [M⁺]), 380 (21), 322 (37), 318 (40), 304 (66), 178 (31), 166 (100), 151 (29), 140 (19), 96 (38), 81 (20), 57 (26).

Hochauflösung: C₂₆H₃₇O₅NS ber.: 475.2392 für [M⁺] gef. 475.2384

Beispiel 9:

Verbindung 6b

50 mg (0.091 mmol) 3,7-Di-O-formyl-epothilon A (werden in 1 ml Dichlorethan gelöst, mit 2 ml (0.013 mol) 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) versetzt und 12 Stund n bei 90 °C gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natriumdihydrogenphosphat-Puffer pH 4.5 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des aus zwei Verbindungen bestehenden Rohproduktes erfolgt mittels präparativer Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10).

Ausbeute: 7 mg (15 %)

Substanzcode

R_f (Dichlormethan/Aceton, 90 : 10): 0.62

IR (Film): ny = 2951 (m, br, Sch), 1723 (vs), 1644 (w, br, Sch), 1468 (w), 1377 (w), 1271 (m, br, Sch), 1179 (s), 987 (m, br, Sch), 735 (w, br, Sch) cm⁻¹.

UV (Methanol): lambda_{max} (lg epsilon) = 210 (4.44) nm.

MS (20/70 ev): m/e (%) = 503 (68 [M⁺]), 408 (58), 390 (32), 334 (25), 316 (34), 220 (21), 206 (27), 194 (20), 181 (33), 164 (100), 151 (34), 139 (28), 113 (20), 96 (82), 81 (33), 67 (24), 55 (26), 43 (22).

Hochauflösung: C₂₇H₃₇O₆NS ber.: 503.2342 für [M⁺]
gef.: 503.2303

Beispiel 10:

Verbindung 6c

5 mg (0.009 mmol) 3,7-Di-O-acetyl-epothilon werden in 1 ml Methanol gelöst, mit 150 µl einer ammoniakalischen Methanollösung (2 mmol NH₃/ml Methanol) versetzt und über Nacht bei 50 °C gerührt.

Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Ausbeute: 3 mg (67 %)

R_f (Dichlormethan/Aceton, 90 : 10): 0.55

IR (Film): ν = 2934 (s, b, Sch), 1719 (vs, b, Sch), 1641 (m), 1460 (m, Sch), 1372 (s, Sch), 1237 (vs, b, Sch), 1179 (s, Sch), 1020 (s), 963 (s, Sch), 737 (vs) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 210 (4.33) nm.

MS (20/70 eV): m/e (%) = 517 (57 [M⁺]), 422 (58), 318 (31), 194 (20), 181 (34), 166 (100), 151 (31), 96 (96), 81 (32), 69 (27), 55 (29), 43 (69).

Hochauflösung: C₂₈H₃₉O₆NS ber.: 517.2498 für [M⁺] gef.: 517 2492

Beispiel 11:

Verbindung 7a

20 mg (0.041 mmol) Epothilon werden in 0.5 ml Methanol gelöst, mit 0.5 ml 1 N Natronlauge versetzt und 5 Minuten bei Raumtemperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat

extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 85 : 15).

Ausbeute: 11 mg (52 %)

R_f (Dichlormethan/Methanol, 85 : 15): 0.92

IR (Film): ny = 3438 (s, br, Sch), 2971 (vs, br, Sch),
1703 (vs), 1507 (m), 1460 (s, Sch), 1383
(m, Sch), 1254 (w), 1190 (w, br, Sch),
1011 (w, br, Sch), 866 (w, br), 729 (s)
cm⁻¹

MS (20/70 eV): m/e (%) = 423 (0.1 [M⁺]), 323 (4), 168 (89), 140
(100), 85 (31), 57 (67).

Hochauflösung: C₂₃H₃₇O₄NS ber.: 423.2443 für [M⁺]
gef.: 423.2410

Beispiel 12:

Verbindung 7b

5 mg (0.009 mmol) 7-O-Acetyl-epothilon werden in 1 ml Methanol gelöst, mit 200 µl einer ammoniakalischen Methanol-Lösung (2 mmol NH₃/ml Methanol) versetzt und zwei Tage bei 50 °C geruhrt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Ausbeute: 3 mg (59 %)

R_f (Dichlormeth n/Methanol, 90 : 10): 0.63

IR (Film): ny = 3441 (m, b, Sch), 2946 (s, Sch), 1732 (vs), 1600 (w), 1451 (m), 1375 (m), 1246 (s, b, Sch), 1013 (m, b, Sch) cm⁻¹

UV (Methanol): λ_{max} (lg epsilon) = 211 (3.75), 247 (3.59) nm.

MZ (20/70 eV): m/e (%) = 567 (1 [M⁺]), 465 (4), 422 (7), 388 (5), 194 (5), 182 (7), 168 (65), 164 (17), 140 (100), 97 (10), 71 (22), 43 (27).

Hochauflösung: C₂₉H₄₅O₈NS ber.: 567.2866 für [M⁺] gef.: 567.2849

Beispiel 13:

50 mg Epothilon A werden in 20 µl Dimethylsulfoxid gelöst und mit 30 ml Phosphatpuffer (pH 7,1, 30 mM) verdünnt. Nach Zugabe von 5 mg Schweineleberesterase (Fa. Boehringer Mannheim) wird 2 Tage bei 30 °C gerührt. Man säuert mit 2 N HCl auf pH 5 an und extrahiert die Epothilonsäure 7 mit Ethylacetat. Die organische Phase wird mit Natriumsulfat getrocknet, im Vakuum zur Trockne eingedampft. Ausbeute 48 mg (96 %).

Beispiel 14:

48 mg Epothilonsäure 7 werden in 6 ml THF abs. gelöst und unter Röhren mit 40 µl Triethylamin und 16 µl 2,4,6-Trichlorbenzoylchlorid versetzt. Nach 15 min wird vom Niederschlag abfiltriert und innerhalb von 15 min unter schnellem Röhren in eine siedende Lösung von 20 mg 4-Dimethylaminopyridin in 200 ml Toluol abs. getropft. Nach weiteren 10 min wird im Vakuum eingedampft und der Rückstand zwischen Ethylacetat/Citratpuffer (pH 4) verteilt. Der Eindampfrückstand der organischen Phas ergibt nach preparativer HPLC Trennung 15 mg Epothilon A.

25. September 1996/he

Patentansprüche

1. Epothilononderivat der Formel 1

wobei R = H, C₁₋₄-Alkyl; R¹, R² = H, C₁₋₆-Alkyl, C₁₋₆-Acyl, Benzoyl, C₁₋₄-Trialkylesteryl, Benzyl, Phenyl, C₁₋₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Rest n enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte R ste handelt, und X und Y entweder gleich oder verschieden sind und jeweils für Halog n, OH, O-(C₁₋₆)-Acyl, O-(C₁₋₆)-Alkyl, O-Benzoyl stehen.

- o - , *Angabe*
E 4 → E 8

2. Epothilonderivat der Formel 2

wobei R = H, C₁₋₄-Alkyl; R¹, R², R³ = H, C₁₋₆-Alkyl, C₁₋₆-Acyl, Benzoyl, C₁₋₄-Trialkylsilyl, Benzyl, Phenyl, C₁₋₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

3. Epothilonderivat der Formel 3

wobei R = H, C₁₋₄-Alkyl; R¹, R² = H, C₁₋₆-Alkyl, C₁₋₆-Acyl, Benzoyl, C₁₋₄-Trialkylsilyl, Benzyl, Phenyl, C₁₋₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X allgemein für -C(O)-, -C(S)-, -S(O)-, -CR¹R²- und -SiR₂- steht, wobei R, R¹ und R² die Bedeutung haben wie oben angegeben und R¹ und R² auch zusammen eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen bilden können.

4. Epothilonderivat der Formel 4

4

wobei R = H, C₁₋₄-Alkyl; R¹, R², R³, R⁴, R⁵ = H, C₁₋₆-Alkyl, C₁₋₆-Acyl, Benzoyl, C₁₋₄-Trialkylsilyl, Benzyl, Phenyl, C₁₋₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, X Sauerstoff, NOR³, N-NR⁴R⁵, und N-NHCONR⁴R⁵ bedeutet, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben und R⁴ und R⁵ auch zusammen eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen bilden können.

5. Epothilonederivat der Formel 5

5

wobei R = H, C₁₋₄-Alkyl; R¹, R² = H, C₁₋₆-Alkyl, C₁₋₆-Acyl, Benzoyl, C₁₋₄-Trialkylsilyl, Benzyl, Phenyl, C₁₋₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X Wasserstoff, C₁₋₁₈-Alkyl, C₁₋₁₈-Acyl, Benzyl, Benzoyl und Cinnamoyl bedeutet.

6. Epothilonederivat der Formel 6

6

wobei R = H, C₁₋₄-Alkyl und R¹ = H, C₁₋₆-Alkyl, C₁₋₆-Acyl, Benzoyl, C₁₋₄-Trialkylsilyl, Benzyl, Phenyl, C₁₋₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und halogen substituiertes Benzyl bzw. Phenyl

ist, und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

7. Epothilonederivat der Formel 7

wobei $R = H$, C_{1-4} -Alkyl und R^1 , R^2 , R^3 , $R^4 = H$, C_{1-6} -Alkyl, C_{1-6} -Acyl, Benzoyl, C_{1-4} -Trialkylsilyl, Benzyl, Phenyl, C_{1-6} -Alkoxy-, C_6 -Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

8. Verfahren zur Herstellung eines Epothilonederivats der Formel 7 gemäß Anspruch 7, dadurch gekennzeichnet, daß man Epothilon A, Epothilon B, ein 3-OH-geschütztes Derivat derselben oder ein 7-OH-geschütztes Derivat derselben

- (a) enzymatisch hydrolysiert, insbesondere mit einer Esterase oder Lipase, oder
- (b) in alkalischem Medium hydrolysiert, insbesondere mit Natriumhydroxid in einem Methanol/Wasser-Gemisch, und das Epothilonederivat der Formel 7 gewinnt und isoliert.

9. Verfahren zur Herstellung eines Epothilonederivats der Formel 2 gemäß Anspruch 2, dadurch gekennzeichnet, daß man ein

Epothilonderivat der Formel 7 gemäß Anspruch 7 oder als Produkt des Verfahrens gemäß Anspruch 8

- (a) nach der Yamaguchi-Methode oder
- (b) nach der Corey-Methode oder
- (c) nach der Kellogg-Methode

in das Epothilonderivat der Formel 2 umwandelt und dieses Umwandlungsprodukt isoliert.

10. Mittel für den Pflanzenschutz in der Landwirtschaft und Forstwirtschaft und/oder im Gartenbau, bestehend aus einem oder mehreren der Verbindungen gemäß einem der vorangehenden Ansprüche oder einer oder mehreren dieser Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

11. Therapeutisches Mittel, insbesondere zum Einsatz als Cytostatikum, bestehend aus einer oder mehrerer der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 7 oder einer oder mehrerer der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 7 neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

Zusammenfassung

Die vorliegende Erfindung betrifft Epothilonderivate und deren Verwendung.