Gage MPC: Bypassing Residual Function Leakage for Non-Interactive MPC

Ghada Almashaqbeh¹ Fabrice Benhamouda² Seungwook Han³
Daniel Jaroslawicz³ Tal Malkin³ Alex Nicita³ Tal Rabin^{4,2}
Abhishek Shah³ Eran Tromer^{3,5}

¹UConn, ²Algorand, ³Columbia, ⁴UPenn, ⁵Tel-Aviv University

Gage MPC

• A new model combining MPC and blockchains/smart contracts

Circumvent lower bounds in NIMPC

2/30

Gage MPC

• A new model combining MPC and blockchains/smart contracts

Circumvent lower bounds in NIMPC

MPC? NIMPC? MPC and blockchains?

2/30

Multiparty Computation (MPC)

Multiparty Computation (MPC)

Interactive, available!

Non-interactive MPC (NIMPC)

Gage MPC Feb 2022 5 / 30

Non-interactive MPC (NIMPC)

(ロ) (間) (目) (目) (目)

6/30

NIMPC Lower Bounds

 Leakage of the Residual Function is inherent
 Evaluator and say P₀ can compute f(●, m₁,..., m_N)

NIMPC Lower Bounds

- Leakage of the Residual Function is inherent
 Evaluator and say P₀ can compute f(●, m₁,..., m_N)
- Setup assumptions: pre-shared randomness and a dedicated party to do the computation

7/30

NIMPC Lower Bounds

- Leakage of the Residual Function is inherent
 Evaluator and say P₀ can compute f(●, m₁,..., m_N)
- Setup assumptions: pre-shared randomness and a dedicated party to do the computation

Avoid such limitations??!

7/30

MPC and Blockchains

• Gen I. A blockchain implements a broadcast channel

8/30

MPC and Blockchains

- Gen I. A blockchain implements a broadcast channel
- Gen II. Payments are incorporated into MPC

8/30

MPC and Blockchains

- Gen I. A blockchain implements a broadcast channel
- Gen II. Payments are incorporated into MPC
- Gen III. This work; Gage MPC!
 - Smart contracts and miners are active participants in MPC
 - Circumvent the residual function leakage in NIMPC

8/30

Gen II: Circumvent Fairness Lower Bound

 $f(x_1, x_2)$

Fairness: either all get the output or none

Gage MPC

Gen II: Circumvent Fairness Lower Bound

Collateral is large enough to incentivize Bob to complete the computation

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

10/30

Gen II: Circumvent Fairness Lower Bound

 $f(x_1, x_2)$

Bob may forgo his collateral \rightarrow Not a complete fairness!

11/30

Gen III: Gage MPC

Complete fairness!

Gage MPC

Gage MPC

A monetary assumption. An honest party can put a collateral of value much higher than what an adversary can expend on computation.

Feb 2022

13/30

On Circumventing NIMPC Lower Bounds

- Eliminate the leakage of the residual function
 - Re-valuating f on a different set of inputs is very costly (same amount of the collateral)

Gage MPC Feb 2022 14 / 30

On Circumventing NIMPC Lower Bounds

- Eliminate the leakage of the residual function
 - Re-valuating f on a different set of inputs is very costly (same amount of the collateral)
- Eliminate setup assumptions.
 - No PKI or pre-shared randomness
 - No need for a dedicated online evaluator

14 / 30

On Circumventing NIMPC Lower Bounds

- Eliminate the leakage of the residual function
 - Re-valuating f on a different set of inputs is very costly (same amount of the collateral)
- Eliminate setup assumptions.
 - No PKI or pre-shared randomness
 - No need for a dedicated online evaluator

Gage MPC guarantees short term security!

Gage MPC Feb 2022 14 / 30

Gage MPC: Our Construction

Time Capsules

Simply commit to a value that can be force-opened after expending a pre-specified amount of computation

E.g.,
$$h(s)$$
 where $s \leftarrow \{0,1\}^{\lambda^*}$

Gage MPC Feb 2022 16 / 30

Time Capsules Definition

- Commit: $(c,d) \leftarrow TC.Commit(1^{\lambda},1^{\lambda^*},m)$
 - ullet λ is the regular security parameter
 - $oldsymbol{\lambda}^*$ sets the complexity for force open
- Decommit Verify: $TC.DVrfy(1^{\lambda}, c, d, m)$ outputs 1 if d is a valid opening with respect to c and m
- Forced Open: (m, d) = TC.ForceOpen(c) brute-forces the opening of c

17/30

Time Capsules Properties

- Correctness
- Binding
- Hiding:
 - Related computation required to force open
 - \bullet For any adversary with computation less than $2^{\lambda^*},$ the capsule should remain hiding

18 / 30

Proof of Time Capsules (POTC)

How about front running?

19/30

Proof of Time Capsules (POTC)

How about front running?

POTC:

- Instead of announcing the decommitment itself (i.e., d and m), prove in zero knowledge that d has been found and announce m
- Connect the opening to the miner's wallet or public key via a tag
- Proof Verify: $TC.PVrfy(1^{\lambda}, c, m, \pi, tag)$ outputs 1 if π is correct with respect to c, m and tag

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

20 / 30

Is POTC Enough?

- How to reward for force-open?
- How to choose m while the other party's input is not known yet?

21/30

Gage Time Capsules (GaTC)

Bundle several POTCs together

A smart contract will manage the collateral (force-open award)

◆ロト ◆個ト ◆意ト ◆意ト · 意 · からぐ ·

22 / 30

The Computation?

POTC takes care of hiding the input labels

How to perform the computation using these labels?

23 / 30

Label Driven MPC (LD-MPC)

A generalization of Garbled Circuits that is robust to the exposure of additional labels.

24/30

Label Driven MPC (LD-MPC)

Conventional Yao; Exposure of any additional label compromises privacy

25/30

Label Driven MPC (LD-MPC)

Conventional Yao; Exposure of any additional label compromises privacy

 $\mathsf{LD}\mathsf{-MPC} = \mathsf{Linear} \; \mathsf{Error} \; \mathsf{Correcting} \; \mathsf{Codes} \; + \; \mathsf{Yao}$

4□ > 4□ > 4 = > 4 = > = 90

26/30

Main Result — Gage MPC

Combines LD-MPC with GaTC

Simplest case; Only P_0 's input is private

- P_0 prepares a garbled circuit, GaTCs for input labels for P_1, \ldots, P_N , and a controller smart contract
- P_1, \ldots, P_N submit their inputs
- Either P₀ will come back and open the corresponding labels, or bounty hunters will do
- Smart contract (aka blockchain miners) evaluate the circuit over the labels and record the output

27/30

Gage MPC — Transformations

The private input versions support only two party computation

28 / 30

Conclusion

Main Result — Gage MPC

NIMPC for f leaking R and requiring $TS \rightarrow NIMPC$ with no R and TS

Gen III of MPC + blockchain

Side Result

Several new primitives (POTC, GaTC, and LD-MPC) that could be of independent interest

29 / 30

Thank you!

Questions?

