EE2026 Digital Design

LOGIC GATES

Massimo ALIOTO

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

Get to know the latest silicon system breakthroughs from our labs in 1-minute video demos

Outline

- Logic gate introduction
 - AND/NAND, OR/NOR, NOT/buffer, XOR/XNOR
- Levels of abstraction: Boolean function, truth table, graphical, Verilog
- Implementation of Boolean function using gates
- Design simplification via algebraic manipulations
- Positive and negative logic
- Implementation of Boolean function with gate-level netlist

Introduction to Logic Gates

- Logic gates are digital circuits implementing fundamental Boolean operators or some simple combination of them
 - Abstraction: actually made up of transistors (not shown here), closer to physical implementation of digital systems

logic gate	symbol	function (<i>F</i>)	logic gate	symbol	function (<i>F</i>)
AND	A B	$A\cdot B$	NAND	A-B-F	$\overline{A\cdot B}$
OR	$A \longrightarrow F$	A + B	NOR	A B F	$\overline{A+B}$
NOT	A	$ar{A}$	Buffer	A — F	A

AND and NAND Gates

$$\begin{array}{ccc}
\mathsf{A} & & \\
\mathsf{B} & & \\
\end{array}$$

AND

F is 1 only when both A and B are 1

```
module andgate(A, B, F);
input A, B;
output F;
assign F = A & B;
endmodule
```

Truth table (AND, NAND)

Α	В	$A \cdot B$	$A \cdot B$
0	0	0	1
1	0	0	1
0	1	0	1
1	1	1	0

NAND

• F is 0 only if both A and B are 1

```
module nandgate(A, B, F);
input A, B;
output F;
assign F = ~(A & B);
endmodule
```

OR and NOR Gates

OR

• F is 1 when either A or B are 1

```
module orgate(A, B, F);
input A, B;
output F;
assign F = A | B;
endmodule
```

Truth table (OR, NOR)

Α	В	A + B	A + B
0	0	0	1
1	0	1	0
0	1	1	0
1	1	1	0

NOR

• F is 1 only if both A and B are 0

```
module norgate(A, B, F);
input A, B;
output F;
assign F = ~(A | B);
endmodule
```

XOR and XNOR Gates

- Logic gate that is not fundamental in Boolean algebra
 - But very useful (e.g., arithmetic circuits see week 4)

• **F** is 1 when either **A** or **B** (exclusively) are 1, or equivalently different from each other

```
module xorgate(A, B, F);
  input A, B;
  output F;
  assign F = A ^ B;
endmodule
```

Truth Table (XOR, XNOR)

Α	В	$A \oplus B$	$A \oplus B$
0	0	0	1
1	0	1	0
0	1	1	0
1	1	0	1

XNOR

• **F** is 1 when either **A** or **B** (exclusively) are 0, or equivalently equal

```
module xnorgate(A, B, F);
input A, B;
output F;
assign F = ~(A ^ B);
endmodule
```

Implementation of Boolean Functions with Logic Gates

- Translate Boolean function into gate-level implementation
 - Logic gates as building blocks of any digital system
- Start simple: SOP form → gate-level design
 - Example of SOP with constraint: max number of logic gate inputs is 4 (fan-in)

$$F(w, x, y, z) = \overline{w}\overline{x}z + \overline{w}xz + wyz + xyz$$

if AND5 or more is needed: two-level ANDing (same for OR):

$$\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3 \cdot \mathbf{x}_4 \cdot \mathbf{x}_5 \cdot \mathbf{x}_6 = (\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3 \cdot \mathbf{x}_4) \cdot (\mathbf{x}_5 \cdot \mathbf{x}_6)$$

parentheses (~w & x & z) not needed in SOP, as precedence order is ~, &, ^, |


```
module func(w,x,y,z,F);
input w, x, y, z;
output F;
assign F = ~w & ~x & z | ~w & x & z | w & y & z | x & y & z;
```

Implementation of Boolean Functions with Logic Gates

• Another example of SOP with constraint: max number of logic gate inputs is 4 $F(a,b,c,d) = ab\bar{c} + abc + bcd + \bar{a}cd + a\bar{b}\bar{c}d$


```
module func(a,b,c,d,F);
    input a, b, c, d;
    output F;
    assign F = a & b & ~c | a & b & c | b & c & d | ~a & c & d | a & ~b & ~c & d;
endmodule
```

Implementation of Boolean Functions with Logic Gates

Example of POS with constraint: max number of logic gate inputs is 4

$$F(a,b,c) = (a+b+\overline{c})(a+c)(\overline{a}+\overline{b}+c)(a+\overline{b}+\overline{c})$$

parentheses needed in POS, as precedence order is ~, &, ^, |

```
module func(a,b,c,F);

input a, b, c;

output F;

assign F = (a | b | ~c) & (a | c) & (~a | ~b | c) & (a | ~b | ~c);

endmodule
```

Boolean Function Simplification

- To reduce the hardware cost, the Boolean function must be simplified before gate-level implementation
 - Eliminate redundancies, minimize gate count
- Definition of simplified Boolean Function
 - It contains a minimal number of terms and literals in each term, such that no other expression with fewer literals and terms will represent the original function

literals (variables, complemented or not)
$$F_2(A,B,C) = \overline{ABC} + A\overline{B} + \overline{B}C + AB\overline{C}$$
terms

- Simplification can be carried out via
 - Algebraic manipulations using postulates and theorems
 - Karnaugh maps

Example: SOP

$$F(a,b,c,d) = \bar{a}\bar{b}\bar{c} + \bar{a}b\bar{c}\bar{d} + \bar{a}b\bar{c}d$$

$$= \bar{a}\bar{b}\bar{c} + \bar{a}b\bar{c}(\bar{d}+d) \longleftarrow (A+\bar{A}=1)$$

$$= \bar{a}\bar{c}(\bar{b}+b) \longleftarrow (A+\bar{A}=1)$$

$$= \bar{a}\bar{c} \qquad \longleftarrow (A+\bar{A}=1)$$

Before simplification

gate count = 8 (62.5% reduction!)

After simplification

Another example: SOP

$$F(x,y,z) = \overline{w}\overline{x}z + \overline{w}xz + xyz + wxy$$

$$= \overline{w}z(\overline{x} + x) + w(xy) + z(xy) \qquad \longleftarrow (A + \overline{A} = 1)$$

$$= \overline{w}z + w(xy) + z(xy) \qquad \longleftarrow (A + \overline{A} = 1)$$

$$= \overline{w}z + wxy \qquad \longleftarrow (AB + \overline{A}C + BC = AB + \overline{A}C) - \text{consensus}$$

Before simplification

gate count = 7

After simplification

gate count = 4

(43% reduction!)

Another example: SOP

$$F(a,b,c,d) = ab\bar{c} + abc + bcd + \bar{a}cd + a\bar{b}\bar{c}d$$

$$= ab(\bar{c} + c) + bcd + \bar{a}cd + a\bar{b}\bar{c}d \qquad \longleftarrow (A + \bar{A} = 1)$$

$$= a[b + \bar{b}(\bar{c}d)] + bcd + \bar{a}cd \qquad \longleftarrow (A + \bar{A} \cdot B = A + B)$$

$$= a(b + \bar{c}d) + bcd + \bar{a}cd$$

$$= [ab + \bar{a}(cd) + b(cd)] + a\bar{c}d \qquad \longleftarrow (AB + \bar{A}C + BC = AB)$$

$$= ab + \bar{a}cd + a\bar{c}d$$

$$\leftarrow (A + \bar{A} = 1)$$

$$\leftarrow (A + \bar{A} \cdot B = A + B)$$

$$\leftarrow (AB + \bar{A}C + BC = AB + \bar{A}C) - \text{consensus}$$

Before simplification

After simplification

gate count = 6

(45.5% reduction!)

- Disadvantage of algebraic manipulations: not systematic, tedious, no guarantee of minimal function
- Proposed procedure to somewhat minimize Boolean functions using algebraic manipulations

1)
$$AB + A\bar{B} = A$$
 (Logical adjacency)
2) $A + \bar{A} \cdot B = A + B$
3) $AB + \bar{A}C + BC = AB + \bar{A}C$ (Consensus)

- Apply (1) until it cannot be applied further
- Apply (2) until it cannot be applied further
- Go back to (1) and then (2) until they can no longer be applied
- Apply (3) until it cannot be applied further
- Go back to (1), (2) and then (3) until none of them can be applied

Interfaces and Legacy Systems: Negative Logic

- Physical logic gates: voltage input and output levels low (L) and high (H)
 - Binary values 0 and 1 can be mapped in two ways
 - positive logic ("active high"): ex. X.H
 - negative logic ("active low"): ex. X.L
 - convert one to another via simple inverter

voltage level	positive logic value (X.H)	negative logic value (X.L)
Н	1	0
L	0	1

- In the (distant) past, active-low preferred because of lower power in H level
 - normally-off signals (e.g., reset) were set to H (e.g., TTL logic, open-collector)
 - it was easier to merge normally-off signals into one occasionally-on signal
 - today used only in system resets, interrupts and I²C busses
- Today (including FPGAs), no preference
 - think in terms of positive logic, negate any active-low input/output signal if necessary
 - graphically add "bubble" to signals to remind about the complement

\$R_{pull-up}

Bubble Pushing Rule

- Graphical interpretation of De Morgan's law(s), useful to
 - Manipulate gate-level netlists directly without Boolean expressions (tedious)
 - Transform logic gates from one type (e.g., NAND) into another one (NOR)
- Graphically, bubble = complement
 - If a bubble is needed, it can always be created anywhere (but in pairs)
 - Vice versa, two adjacent bubbles can always be dissolved

$$\longrightarrow \longrightarrow \longrightarrow \overline{\overline{A}} = A \longrightarrow \longrightarrow \longrightarrow A = \overline{\overline{A}}$$

 Bubbles at input of AND gate can be "pushed" at its output, and the gate is transformed into a NOR gate (similarly, NAND becomes OR)

$$\overline{A} \cdot \overline{B} = \overline{A + B}$$
 and vice versa (push from output to input)

Bubble Pushing Rule

Example: implement Boolean function using only NOR gates and inverter gates

$$F = \overline{\left(\overline{A} \cdot B + \overline{A \cdot C}\right)}$$

Step 1: place logic gates

Step 3: bubble pushing

- (i) Replace gates with targeted ones
- (ii) balance the bubbles using inverters to maintain the correct functionality

Step 2: add bubbles and connect

(add the complement where needed for the correct function)

Step 4: simplify

(eliminate redundant pairs of bubbles)

Α	В	$\overline{A \cdot B}$
0	0	1
1	1	0

Α	В	$\overline{A+B}$
0	0	1
1	1	0

Bubble Pushing Rule

 Another example: implement Boolean function with logic gates with active-low output, using only NAND gates (no inverter gates)

In Summary

- Logic gates
 - Building blocks of any digital system
 - Different levels of abstraction (Boolean, truth table, graphical, Verilog)
- Implementation of Boolean function using gates
- Design simplification via algebraic manipulations (limitations motivate introduction of K-maps)
- Positive → negative logic conversion for legacy systems
- Bubble pushing for direct manipulation of gate-level netlists (with no intermediate Boolean manipulations)