5

CLAIMS

1. A method for manufacturing a compound semiconductor epitaxial substrate comprising a step of epitaxially growing an InGaAs layer on an InP single crystal substrate or on an epitaxial layer lattice-matched to the InP single crystal substrate under conditions of

ratio of V/\coprod : 10 - 100,

growth temperature: 630°C - 700°C, and

10 growth rate: 0.6 μm/h - 2 μm/h.

- 2. The method according to claim 1, wherein the InP single crystal substrate has a plane direction accuracy of $\pm 0.05^{\circ}$ in the (100).
- 3. The method according to claim 1 or 2, wherein the epitaxially growing is carried out by using MOCVD.
 - 4. The method according to any of claims 1-3, wherein gallium raw material used for epitaxially growing is selected from the group consisting of trimethyl gallium and triethyl gallium.
- 5. The method according to any of claims 1-4, wherein indium raw material used for epitaxial growing is trimethyl indium.
 - 6. The method according to any of claims 1-5, wherein arsenic raw material is arsine.
- 25 7. A method for reducing concave defects in a compound

semiconductor epitaxial substrate comprising a step of epitaxially growing an InGaAs layer on an InP single crystal substrate or on an epitaxial layer lattice-matched to the InP single-crystal substrate under conditions of ratio of V/III: 10 to 100,

growth temperature: 630° C - 700° C, and growth rate: $0.6 \ \mu\text{m/h}$ - $2 \ \mu\text{m/h}$.

8. A compound semiconductor epitaxial substrate obtained by using the method according to any of claims 1-6.

10