Sensitivity study of radiation pressure models for precise orbit determination

Dominik Stiller

B.Sc. Student, Faculty of Aerospace Engineering, TU Delft, Netherlands

Abstract

Keywords

Radiation pressure, orbit determination

Acronyms: LRO Lunar Reconnaissance Orbiter

1 Introduction

Lunar Reconnaissance Orbiter (LRO)

"SRP is the largest non-gravitational perturbation affecting the LRO orbit and inadequate modeling of SRP is the primary cause of large prediction errors for LRO, particularly during high-beta angle periods" [1]

Operational LRO OD does not use lunar albedo due to computational demand, but used for offline reprocessing. Self-shadowing from Mazarico, Zuber, Lemoine, and Smith is used [3]

High OD error during full-sun periods with cannonball model, but acceptable with multi-panel model and real attitude for SA and HGA [4]

albedo radiation significant since no atmosphere exists, up to 30 % [5]

model setup: solar array tracks Sun, HGA tracks Earth [6] start at start at 26 June 2010 06:00:00 Earth eclipses Sun during this time Moon does not eclipse Sun (Sun beta angle is about -90 deg, see [6])

mass: 1208 kg (1915 kg loaded mass, 644 kg prop used after mission orbit insertion, then 6.315 kg prop used for each of 10 sk maneuvers till 26 june 2010 [7])

2 Models

every irradiance in the list can be thought of as ray

3 Results

for radiation pressure acceleration, add partial/full eclipse to time axis

absolute acceleration magnitude likely influenced by mass uncertainty rp acceleration magnitude increases as mass decreases

References

 S. Slojkowski, J. Lowe, and J. Woodburn, "Orbit determination for the lunar reconnaissance orbiter using an extended kalman filter," in *International Symposium on Space Flight Dynamics* (ISSFD) 2015, 2015.

- E. Mazarico, M. T. Zuber, F. G. Lemoine, and D. E. Smith, "Effects of self-shadowing on nonconservative force modeling for mars-orbiting spacecraft," *Journal of Spacecraft and Rockets*, vol. 46, no. 3, pp. 662–669, May 2009. DOI: 10.2514/1.41679.
- 3. A. Nicholson, S. Slojkowski, A. Long, M. Beckman, and R. Lamb, "NASA GSFC lunar reconnaissance orbiter (LRO) orbit estimation and prediction," in *SpaceOps 2010 Conference*, American Institute of Aeronautics and Astronautics, Apr. 2010. DOI: 10.2514/6.2010-2328.
- S. E. Slojkowski, "Lunar reconnaissance orbiter orbit determination accuracy analysis," in *International Symposium* on Space Flight Dynamics, 2014.
- 5. R. Floberghagen, P. Visser, and F. Weischede, "Lunar albedo force modeling and its effect on low lunar orbit and gravity field determination," *Advances in Space Research*, vol. 23, no. 4, pp. 733–738, Jan. 1999. DOI: 10.1016/s0273-1177(99)00155-6.
- C. R. Tooley, M. B. Houghton, R. S. Saylor, C. Peddie, D. F. Everett, C. L. Baker, and K. N. Safdie, "Lunar reconnaissance orbiter mission and spacecraft design," *Space Science Reviews*, vol. 150, no. 1-4, pp. 23–62, Jan. 2010. DOI: 10.1007/s11214-009-9624-4.
- M. Mesarch, M. Beckman, D. Folta, R. Lamb, and K. Richon, "Maneuver operations results from the lunar reconnaissance orbiter (LRO) mission," in *SpaceOps 2010 Conference*, American Institute of Aeronautics and Astronautics, Apr. 2010. DOI: 10.2514/6.2010-1985.

Email: d.stiller@student.tudelft.nl