HONEYCOMB FILTER OF EXHAUST GAS PURIFIER

Patent number:

JP5068828

Publication date:

1993-03-23

Inventor:

SHIMADO KOJI; others: 01

Applicant:

IBIDEN COLTD

Classification:

- international:

B01D46/00

- european:

Application number:

JP19910236573 19910917

Priority number(s):

Abstract of JP5068828

PURPOSE:To secure required filtration capacity and to miniaturize the entire filter by specifying the rate of perforation of the honeycomb filters on the exhaust gas inlet and outlet sides and the cell pitch. CONSTITUTION: The rate of perforation of a honeycomb filter 3 on the exhaust gas outlet side is controlled to 20-30%, when that on the inlet side is adjusted to 60-70%. The pitch of the cell 7a opened to the inlet side is set at 2.5-5.0mm to reduce the pressure drop. The thickness of the inner wall of the cell 7a is controlled to 0.15-0.5mm and the pore diameter to 1-50mum. The cell 7a has a hexagonal cross section hollow part 5a, and the cell 7b opened to the exhaust gas outlet side has a trigonal cross section hollow part 5b. The specific surface of such a filter 3 is appropriately adjusted to 1.7-2.3cm<2>cm<2>/g, and the size of the entire filter can be decreased to <=1/2 of the conventional one while securing the specified filtration capacity.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-68828

(43)公開日 平成5年(1993)3月23日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

B 0 1 D 46/00

302

7059-4D

B 0 1 J 35/04

301 E 8516-4G

審査請求 未請求 請求項の数3(全 5 頁)

(21)出願番号

(22)出願日

特願平3-236573

平成3年(1991)9月17日

(71)出願人 000000158

イビデン株式会社

岐阜県大垣市神田町2丁目1番地

(72)発明者 島戸 幸二

岐阜県揖斐郡揖斐川町北方1の1 イビデ

ン 株式会社大垣北工場内

(72)発明者 伊藤 淳

岐阜県揖斐郡揖斐川町北方1の1 イビデ

ン 株式会社大垣北工場内

(74)代理人 弁理士 恩田 博宜

(54)【発明の名称】 排気ガス浄化装置のハニカムフイルタ

(57)【要約】

【目的】 小型で、圧力損失が低く、かつ捕集効率の高 い排気ガス浄化装置のハニカムフィルタを提供する。・ 【構成】 ハニカムフィルタの排気ガス流入側の排気ガ スが60~70%のとき流出側の開口率を20~30% に設定し、前記流入側のセルピッチを2.5~5.0 mm に設定した小型で、圧力損失が低く、かつ捕集効率の高 い排気ガス浄化装置のハニカムフィルタ。

【特許請求の範囲】

内燃機関(E)の排気側に連通するケー 【請求項】】 シング(2)内に配置されると共に、軸線方向に延びる 複数のセル (7a, 7b) を有し、各セル (7a, 7 b) は少なくとも排気ガスの流入側及び排気ガスの流出 側の何れか一方において開口され、かつ各セル(7a, 7 b) の内壁(8) によって内燃機関(E) の排気ガス を浄化するハニカムフィルタ(3)において、

1

ハニカムフィルタ(3)の排気ガス流入側の開口率が6 0~70%のとき、流出側の開口率を20~30%に設 10 定し、前記流入側にて開口する各セル (7 a) のセルピ ッチを2.5~5.0 mmに設定したことを特徴とする排 気ガス浄化装置のハニカムフィルタ。

【請求項2】 前記流入側にて開口する各セル(7a) は内壁(8)の厚さが0.15~0.5mm、気孔径が1 ~50μmであることを特徴とする請求項1記載の排気 ガス浄化装置のハニカムフィルタ。

【請求項3】 前記排気ガス流入側にて開口する各セル (7a)は断面六角形状の中空部(5a)を有すると共 に、排気ガス流出側にて開口する各セル(7b)は断面 20 三角形状の中空部(5b)を有することを特徴とする請 求項1または2記載の排気ガス浄化装置のハニカムフィ

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は内燃機関の排気ガスを浄 化する装置のハニカムフィルタに関するものである。 [0002]

【従来の技術】近年、多孔質焼結体によって製造される 排気ガス浄化装置用のハニカムフィルタが提案されてい る。この種のハニカムフィルタでは、ガス流入側及び流 出側にそれぞれ開口するように複数のセルが形成されて おり、排気ガスがセル間の内壁を通過する際に浄化され る構造を有している。このようなセルは、例えば、断面 四角形状或いは断面正三角形状の中空部を有し、その中 空部の断面積はガス流入側及び流出側でほぼ同一に形成 されている。また、フィルタのガス流入側及び流出側の 開口率は共に30~43%程度である。

[0003]

【発明が解決しようとする課題】このような従来のフィ ルタでは、セル内壁に捕集された煤の量が一定量に達す ると、煤が燃焼されフィルタは元の状態に再生される。 ところが、所要の濾過能力、即ちセル内壁の比表面積を 確保するためにフィルタ全体を大型化すると、煤の燃焼 時に、フィルタにクラックが生じる危険性が増加する。 つまり、フィルタを大型化した場合、燃焼時にフィルタ の各部分間で温度差が生じ易く、それによってフィルタ に働く応力が増大し、クラックが発生する確率が高くな る。従って、クラックの発生を回避するためには、フィ ルタを大型化することなく、所要の濾過能力を確保する 50 には、フィルタ通過時における抵抗が小さくなる反面、

ことが要求される。

【0004】例えば、実開昭58-92409号広報に 開示される従来の別のフィルタでは、ガス流入側のセル の形状を断面六角形状にし、流出側のセルの形状を断面 三角形状にすることで、流入側の開口率が流出側の開口 率より大きくなるように設定され、これにより所要の濾 過能力を確保しつつ大型化を回避している。

【0005】しかしながら、実開昭58-92409号 広報のハニカムフィルタでは、流入側のセルピッチが 1.0~2.5 m程度と比較的小径であったため、ガス がフィルタを通過する際の圧力損失を充分に小さくする ことができない。このような理由から、前記フィルタは 実用的なものではなく、よって、圧力損失を低減するた めの更なる改善が望まれていた。

【0006】そとで、排気ガス流入側及び流出側の開口 率、並びに流入側のセルピッチの好適な組合せについ て、本発明者らが種々の検討を行ったところ、ハニカム フィルタの排気ガス流入側の開口率が60~70%のと き、流出側の開口率を20~30%に設定し、前記流入 側にて開口する各セルのセルビッチを2.5~5.0 mm に設定することで、圧力損失を従来よりも低減できるこ とを知見し、その知見に基づいて本発明を完成させた。 [0007]

【課題を解決するための手段及び作用】本発明では、内 燃機関の排気側に連通するケーシング内に配置されると 共に、軸線方向に延びる複数のセルを有し、各セルは少 なくとも排気ガスの流入側及び排気ガスの流出側の何れ か一方において開口され、かつ各セルの内壁によって内 燃機関の排気ガスを浄化するハニカムフィルタにおい て、ハニカムフィルタの排気ガス流入側の開口率が60 ~70%のとき、流出側の開口率を20~30%に設定 し、前記流入側にて開口する各セルのセルピッチを2. 5~5.0mに設定するようにしたものである。

【0008】上記のようなガス流入側及び流出側の開口 率。並びにセルピッチの設定範囲内であれば、排気ガス がフィルタを通過する際の圧力損失が低く、セル中に排 気ガスを容易に導入することができる。また、所定の濾 過能力(セル内壁の比表面積)を確保した状態でフィル タ全体を従来の1/2以下の大きさにコンパクトにする ことができる。従って、クラックの発生率が確実に低下 して、長期にわたるフィルタの使用が可能になり、シス テム全体のコンパクト化も達成し得る。

【0009】前記フィルタにおいては、排気ガス流入側 の開口率が60%未満の場合または流出側の開口率が2 0%未満の場合、流入時及び流出時におけるガスの通過 抵抗が大きくなる。また、セル内壁が厚くなるため、ガ スが内壁を通過する際に圧力が低下してしまう。

【0010】一方、排気ガス流入側の開口率が70%を 越える場合または流出側の開口率が30%を越える場合

2

セル内壁の厚さが薄くなることで、フィルタの強度が低 下する。

【0011】そして、流入側のセルのセルピッチが2. 5mm未満であると、圧力損失が大きくなり、実用性が低 下してしまう。また、セルピッチが5.0mmを越える と、煤捕集率が悪化するため、やはり実用性の低下を招

【0012】前記流入側にて開口する各セルは内壁の厚 さが0. 15~0.5 mm、気孔径が1~50 µmである ことが望ましい。前記内壁の厚さがO. 15mm未満であ 10 るとフィルタを製造することが非常に困難になり、0. 5 mmを越えると所定の濾過面積をフィルタに確保するこ とができず実用性に劣るものとなってしまう。更に、前 記気孔径が1μm未満であると圧力損失が増大し、50 μmを越えると煤捕集率が悪化する。

【0013】また、前記排気ガス流入側にて開口する各 ・セルは断面六角形状の中空部を有すると共に、排気ガス 流出側にて開口する各セルは断面三角形状の中空部を有 することが望ましい。各セルの中空部を上記形状にする コンパクトにでき、しかもフィルタに充分な強度を確保 することができるからである。

【0014】更に、このようなフィルタでは、フィルタ の比表面積が1. 7~2. 3 cm²/qの範囲であることが 好適である。フィルタの比表面積が1.7 cm²/q 未満で は、フィルタに所定の濾過能力を確保することができな い。一方、2.3 cm²/q を越えると、流入時における圧 力損失の低下及び濾過能力の向上が図れる反面、フィル タ全体が大型化してクラックが発生し易くなる。

[0015]

【実施例及び比較例】以下に本発明を具体化した実施例 について、図面を参照しながら詳しく説明する。

【0016】図1に示すように、排気ガス浄化装置1は 金属パイプ製のケーシング2を備え、そのケーシング2 の通路2aが内燃機関Eの排気管路Eaに接続されてい る。このケーシング2内には内燃機関Eから放出される 排気ガスを浄化するためのハニカムフィルタ3が配設さ れている。また、排気管路Ea内には再生処理用のバー ナー4が装着されている。

【0017】図2から図4に示すように、ハニカムフィ ルタ3は全体として円柱状(長さ130mm、直径140 m)であり、例えば炭化珪素焼結体等の多孔質焼結体に よってハニカム状に形成されている。このハニカムフィ ルタ3の軸線方向には複数の中空部5a, 5bが形成さ れている。各中空部5a, 5bの排気ガス流入側及び流

出側の何れかの端部には、多孔質焼結体からなる封止片 6が配置されている。この封止片6によって、流入側ま たは流出側の何れかに開口するセル7 a, 7 bが形成さ れている。従って、流入側に開口するセル7a側に導入 された排気ガスは、各セル7a,7b間に位置する内壁 8を介して、流出側に開口する隣接のセル7 b 側に排出 される。この時、煤のみが流入側に開口するセルフaの 内壁8面にトラップされることで、排気ガスの浄化が行 われる。

【0018】次に、上記のようなハニカムフィルタ3に おける再生処理について説明する。ハニカムフィルタ3 に所定量の煤がトラップされると、バーナー4に点火さ れ、ハニカムフィルタ3の加熱が開始される。そして、 ハニカムフィルタ3内の煤が燃焼され、フィルタ3が元 の状態に再生される。

【0019】ここで、本実施例のハニカムフィルタ3の 構造について図2及び図3に基づいて詳細に説明する。 図2に示すように、前記排気ガス流入側にて開口する各 セル7aの中空部5aは、一辺が約1.7mmの断面正六 理由は、各セルを効率的に配置してフィルタをより一層 20 角形状に形成され、排気ガス流入側の開口率((中空部 総断面積/フィルタ断面積) x 1 0 0 (%)) は6 8 % で ある。一方、図3に示すように、排気ガス流出側にて開 口する各セル7bの中空部5bは、一辺が約1.45mm の断面正三角形状に形成され、流出側の開口率は30% である。従って、排気ガス流入側の開口率は流出側の開 口率よりも大きく、この時のフィルタの比表面積、即 ち、単位重量当たりの内壁8の総面積は約2.0 cm²/q

> 【0020】また、本実施例のハニカムフィルタ3では 30 流入側にて開口する各セル7aのセルピッチ(セル7a の平均開口径)が3㎜に設定されている。そして、セル 7a. 7b間の内壁8の厚さが0.2mmに、かつその気 孔径が15μmに設定されている。

【0021】以上のように形成されたハニカムフィルタ 3をディーゼルエンジンの排気ガス浄化装置 1 に用い て、10gの煤を捕集した後に前述の再生処理を繰り返 し行った。また、煤の捕集前後における圧力損失(mma q) を測定した。更に、本実施例のフィルタ3と同材 料、同形状及び同サイズ (130 mm x 140 mm) であっ て、流出側のセル7aのセルピッチが2.4mm、5.1 mmのフィルタをそれぞれ製造し、比較例1及び比較例2 とした。これらについて比較検討した結果を表1に示

[0022]

【表1】

6

	実施例	比較例 1	比較例 2
開口率 流入側 (%) 流出側	6 8 3 0	3 0 3 0	4 0 4 0
比表面積 (cm²/g)	2. 0	1. 5	1. 2
煤捕集前の圧力損失 (mmaq)	8 0	1 0 0	120
煤捕集後の圧力損失 (mmaq)	130	2 1 0	250
セルピッチ (mm)	. 3. 0	2.4	5. 1

【00.23】上記の表1から明らかなように、実施例及び比較例1、2のハニカムフィルタにおいて、煤捕集前の圧力損失との差は、それぞれ50 mmaq、110 mmaq、130 mmaqであり、実施例では比較例1、2のような大きな排気ガス圧力の低下は見られなかった。

[0024]

【発明の効果】以上詳述したように、本発明の排気ガス 浄化装置のハニカムフィルタによれば、圧力損失の増大 を招くことなしに、所要の濾過能力を確保しつつフィル タ全体を小型化することができる。よって、クラックの 発生率が少なくなり、長期にわたって使用することがで きるという優れた効果を奏する。

【図面の簡単な説明】

*【図1】 この発明を具体化した一実施例におけるハニカムフィルタの装着状態を示す部分正断面図である。

【図2】 図1のハニカムフィルタの拡大左側面図であ ス

【図3】 図1のハニカムフィルタの拡大右側面図であ20 る。

【図4】 図2のハニカムフィルタのA-A線における側面図である。

【符号の説明】

排気ガス浄化装置、2. ケーシング、3 ハニカムフィルタ、5 a, 5 b 中空部、7 a, 7 b セル、8 内壁、E 内燃機関。

[図1]

【図3】

【図4】

