Exercice 1 Trouver une famille de fonctions dénombrable, dense dans les fonctions continues de \mathbb{R} dans \mathbb{R} , de \mathbb{R}^p dans \mathbb{R}^n .

Exercice 2 Montrer que si $D \subset \mathbb{R}$ est dénombrable alors $\mathbb{R} \setminus D$ est en bijection avec \mathbb{R} .

Exercice 3 L'écriture décimale

Soit $x \in \mathbb{R}_+$. Un développement décimal de x est une suite d'entiers $\{n_0, n_1, \ldots\}$ où pour tout $k \geq 1$, $n_k \in \{0, \ldots, 9\}$, telle que la série

$$\sum_{n>0} \frac{n_k}{10^k}$$

converge vers x.

1. Soit n_0 le plus grand nombre entier tel que $n_0 \le x$. Pour $k \ge 1$, on définit par récurrence n_k comme le plus grand nombre entier qui satisfait

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x$$
.

Pour tout $k \geq 1$, donner l'expression de n_k en fonction de n_{k-1} et x et vérifier que $\{n_0, n_1, \ldots\}$ est un développement décimal de x.

- **2.** Montrer que tout x non décimal admet un unique développement décimal, qui est propre (c'est-à-dire : $\forall n \in \mathbb{N}, \ \exists k \geq n/\ n_k \in \{0, \dots, 8\}$).
- 3. Montrer que tout nombre décimal admet exactement deux écritures décimales.

Exercice 4 Montrer que les ensembles suivants ont la puissance du continu :

- 1. $\mathbb{R} \times \mathbb{R}$, \mathbb{R}^n
- $2. \mathbb{R}^{\mathbb{N}}$
- 3. Les fonctions continues de \mathbb{R} dans \mathbb{R} .

Exercice 5 Baire Soit E un espace métrique complet, Montrer le théorème de Baire :

Une intersection d'ouvert dense est dense.

Montrer qu'il n'existe pas d'espace métrique complet a base dénombrable.

Exercice 6 Soit f_n une suite de fonctions continues de \mathbb{R} dans \mathbb{R} qui converge simplement vers f. Montrer que f continue sur un ensemble dense dans \mathbb{R} .

Exercice 7 Nombres transcendants

- 1. Prouver que l'ensemble de polynômes $\mathbb{Z}(X)$ est dénombrable ainsi que l'ensemble A des racines de ces polynômes.
- 2. Construire (par un procédé diagonale) le développement décimal d'un nombre transcendant

Exercice 8

- 1. Montrer que l'ensemble des valeurs d'adhérence d'une suite est fermé.
- 2. Soit (u_n) une suite réelle strictement croissante et $E = \{u_n/n \in \mathbb{N}\}$. Montrer que E est fermé dans \mathbb{R} si et seulement si $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 9 Soit E un \mathbb{R} -espace vectoriel normé et $f \in \mathcal{L}(E)$. Montrer que f est continue si et seulement si elle transforme toute suite tendant vers 0 en une suite bornée.

Exercice 10 Montrer que si E est un espace vectoriel sur lequel toutes les normes sont équivalentes, alors toute forme linéaire sur E est continue. En déduire qu'un espace vectoriel est de dimension finie si et seulement si toutes les normes dont on peut le munir sont équivalentes.

Exercice 11 On considère, dans \mathbb{R}^2 muni de la norme euclidienne, l'ensemble

$$\Gamma = \{(t, \sin(1/t)), \ t \in]0; +\infty[\}.$$

- 1. Montrer que Γ est connexe par arcs.
- 2. Décrire $\bar{\Gamma}$.
- 3. Montrer que $\bar{\Gamma}$ n'est pas connexe par arcs.

Exercice 12 Combien de topologies peut-on mettre sur un ensemble à trois éléments?

Exercice 13 Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Montrer que deux normes équivalentes sur E définissent la même topologie.

Exercice 14 On dit qu'un espace topologique E est *séparé* si pour tous $x \neq y$ dans E, il existe des ouverts V_1 , V_2 disjoints tels que $x \in V_1$ et $y \in V_2$.

- 1. Montrer que tout espace métrique est séparé.
- 2. Construire une topologie τ sur \mathbb{R}^2 (autre que la topologie grossière!) telle que (\mathbb{R}^2, τ) ne soit pas séparé.