03/02/2014.

Name: Alfred Ajoy Aureate. R. Roll No: EE10B052

Exoluses:

- Sign extension is necessary, especially when it is a negative number, say, $(3=01)_2$ in 3 bits, but when sign extended to 4 bits, becomes, $(3)_0=(001)_2$.

 whereas $(6=3)_{10}=(101)_2$ in 3 bits, but when sign extended to 4 bits,

 becomes, $(-3)_{10}=(1101)_2$.
 - 2) Example: (for 4 lists).

 $A_3 A_2 A_1 A_0$ $\times B_3 B_2 B_1 B_0$

A3Bo A2Bo A1Bo A0Bo

A3B, A2B, AB, AB,

A2B2 A2B2 A,B2 A0B2

3) It becomes doubty the * 2's complement expression.

Let
$$B = \sum_{i=0}^{n-1} b_i 2^i = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \cdots + b_0$$
.

Let $B = \sum_{i=0}^{n-1} b_i 2^i = b_{n-1} \times 2^{n-2} + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + b_{n-2} \times 2^{n-2} + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum_{i=0}^{n-1} b_i 2^i + \cdots + b_0$.

Let $B = \sum$

4)
$$C_{k} = -2 \times b_{2k+1} + b_{2k} + b_{2k-1}$$
 for $k = 0, \dots, \frac{n}{2} - 1$ with $b_{11} = 0$.

 $B = \sum_{k=0}^{n-1} b_{12}^{k} = \sum_{k=0}^{n-1} C_{k} 2^{2k}$.

 $E_{k=0}^{n-1} = \sum_{k=0}^{n-1} (-2 \times b_{n+1} + b_{n+1} + b_{n+2}) 2^{2k}$.

 $E_{k=0}^{n-1} = (-2 \times b_{n+1} + b_{n+1}) 2^{2k}$.

 $E_{k=0}^{n-1} = (-2 \times b_{n+1} + b_{n+1}) 2^{2k}$.

 $E_{k=0}^{n-1} = (-2 \times b_{n+1} + b_{n+1}) 2^{2k}$.

 $E_{k=0}^{n-1} = (-2 \times b_{n+1} + b_{n+1}) 2^{2k}$.

 $E_{k=0}^{n-1} = (-2 \times b_{n+1} + b_{n+1}) 2^{2k}$.