Written Certification Exam, Day 1

June 18, 2012, 9:00am - 12:00pm

- (1) Let $p: X' \to X$ be a covering map, and assume that X' is path-connected. Let $x_0, x_1 \in X'$ and $x \in X$ be points such that $p(x_0) = x = p(x_1)$. Prove that the subgroups $p_*\pi_1(X', x_0)$ and $p_*\pi_1(X', x_1)$ are conjugate in $\pi_1(X, x)$.
- (2) Ideals and quotients.
 - (a) Find all ideals of the quotient ring $\mathbb{Q}[x]/(x^{14}-1)$. In particular, how many such ideals are there?
 - (b) Determine the structure of the quotient ring $\mathbb{Z}[x]/(5, x^2 2)$. Be as precise as you can.
- (3) Of the following smooth manifolds, which ones admit a continuous nowhere vanishing vector field:
 - S^2 minus a point.
 - \bullet S^2
 - \bullet S^3
 - \bullet $S^1 \times S^1$
 - $SL(n,\mathbb{R})$
 - An oriented compact surface of genus three with no boundary.
- (4) Let $f: A \subset \mathbb{R} \to \mathbb{R}$ be a function. Give three criteria (ϵ/δ) , open sets, sequences for f to be continuous on A. Show that these definitions are equivalent.
- (5) Let Ω be an open connected subset of \mathbb{C} . Suppose that f_n is holomorphic¹ on Ω for each $n \geq 1$ and that the sequence $\{f_n\}$ converges to a function f uniformly on each compact subset of Ω .
 - (a) Show that f is holomorphic on Ω .
 - (b) Show that the sequence $\{f'_n\}$ of derivatives converges to f' uniformly on compact subsets of Ω .
- (6) Let L be the splitting field over \mathbb{Q} of $x^9 8$.
 - (a) Determine the degree $[L:\mathbb{Q}]$ carefully explaining all conclusions.
 - (b) Justify whether or not the Galois group $\operatorname{Gal}(L/\mathbb{Q})$ is abelian.
 - (c) Justify whether or not the Galois group $Gal(L/\mathbb{Q})$ is solvable.

¹We say that g is holomorphic on Ω if g'(z) exists for all $z \in \Omega$.

Written Qualification Exam, Day 2

June 19, 2012, 9:00am - 12:00pm

- (1) Let the field K be an extension field of a field k. Show that there is a natural isomorphism of K-algebras $K \otimes_k \mathrm{M}_n(k) \to \mathrm{M}_n(K)$, where for a ring R, $\mathrm{M}_n(R)$ denotes the ring of $n \times n$ matrices over R.
- (2) Denote by S^n the unit sphere in \mathbb{R}^{n+1} . If $F: S^n \to S^n$ is the antipodal map defined by F(x) = -x, then show by calculation, that the degree of F is $(-1)^{n+1}$.
- (3) Let C([0,1]) be the complex vector space of continuous complex-valued functions on [0,1].
 - (a) Suppose that $\{f_n\}$ is a sequence in C([0,1]) and that f is a function on [0,1] such that f_n converges uniformly to f. Show that $f \in C([0,1])$.
 - (b) Assume without proof that

$$||f||_{\infty} := \sup\{ |f(t)| : t \in [0,1] \}$$

is a norm on C([0,1]). Show that C([0,1]) is a Banach space with respect to $\|\cdot\|_{\infty}$.

- (4) Let T be a linear operator on a finite dimensional vector space V defined over a field k. Let $\chi_T(x) = (x \lambda_1)^{m_1} \cdots (x \lambda_r)^{m_r}$ be the characteristic polynomial, and assume all the λ_i are distinct. Let V_i be the eigenspace corresponding to the eigenvalue λ_i .
 - (a) Show that dim $V_i \ge 1$ for all $i, 1 \le i \le r$.
 - (b) Choose nonzero $v_i \in V_i$. Show that $\{v_1, \ldots, v_r\}$ is linearly independent.
 - (c) Conclude that if dim $V_i = m_i$ for all i, then T is diagonalizable.
- (5) Determine the singular homology groups of the standard torus (i.e., regarded as an identification space of a 2-dimensional rectangle) using the Mayer-Vietoris sequence.
- (6) Let \mathcal{H} be a complex Hilbert space and $T: \mathcal{H} \to \mathcal{H}$ a linear map.
 - (a) Show that if T is bounded, then there is a linear map $S: \mathcal{H} \to \mathcal{H}$ such that $(Tv \mid w) = (v \mid Sw)$ for all $v, w \in \mathcal{H}$. (In other words, show that T has an adjoint.)
 - (b) Conversely, show that if there is a (not necessarily bounded) map $S: \mathcal{H} \to \mathcal{H}$ such that $(Tv \mid w) = (v \mid Sw)$ for all $v, w \in \mathcal{H}$, then T is bounded.

Written Qualification Exam, Day 3

June 20, 2012, 9:00am - 12:00pm

- (1) Show that any group of order 30 is the semidirect product of two smaller *abelian* groups.
- (2) Let f be a complex function on an open connected subset Ω of the complex plane.
 - (a) What are the Cauchy-Riemann equations for f at $z_0 \in \Omega$?
 - (b) Discuss the existence of the complex derivative $f'(z_0)$ in terms of the Cauchy-Riemann equations at z_0 . (Ideally, you should give both necessary as well as sufficient conditions for $f'(z_0)$ to exist. Note that you are not asked to prove anything here.)
 - (c) Show that a real-valued function on Ω is holomorphic if and only if it is constant.
- (3) Let m > 1 be a square-free integer, and $n \ge 1$ an odd integer. Let F/\mathbb{Q} be any field extension with $[F : \mathbb{Q}] = 2$. Show that $x^n m$ is irreducible in the polynomial ring F[x].
- (4) Let \mathcal{H} be a complex Hilbert space and $T: \mathcal{H} \to \mathcal{H}$ a linear map.
 - (a) What does it mean for T to be bounded?
 - (b) Define the operator norm, ||T||, of T and show that $||Th|| \le ||T|| ||h||$ for all $h \in \mathcal{H}$.
 - (c) Show that T is bounded if and only if T is continuous from \mathcal{H} to \mathcal{H} .
- (5) Let ϕ_1 and ϕ_2 be two charts on \mathbb{R} defined by $\phi_1(t) = t$ and $\phi_2(t) = t^3$. Are they C^{∞} compatible? Prove your answer.
- (6) Define the wedge product of two differential forms on a manifold. How does one use this operation to define the cup product of two de Rham cohomology classes? Prove that the cup product is well defined.