BIP in Embedded Systems

TinyML: porting Machine Learning to MCU's

Thomas Herpoel

February 15, 2024

École d'ingénieurs de la HELHa

TinyML

Deployment of machine learning models on resource-constrained devices, such as microcontrollers and embedded systems.

• Model is trained and run in the cloud

- Model is trained and run in the cloud
- Input data and model outputs are in the wild

- Model is trained and run in the cloud
- Input data and model outputs are in the wild
- Requires heavy infrastructure

- Model is trained and run in the cloud
- Input data and model outputs are in the wild
- Requires heavy infrastructure
- Latency!

 Model is created and trained on Al specific powerful hardware

- Model is created and trained on Al specific powerful hardware
- Input data and model outputs stay local

- Model is created and trained on Al specific powerful hardware
- Input data and model outputs stay local
- Low power in use

- Model is created and trained on Al specific powerful hardware
- Input data and model outputs stay local
- Low power in use
- Latency compatible with real-time constraints

Challenges

- Limited work memory (RAM)
- Limited storage (Flash)

Challenges

- Limited work memory (RAM)
- Limited storage (Flash)
- Limited processing power (CPU)

Challenges

- Limited work memory (RAM)
- Limited storage (Flash)
- Limited processing power (CPU)
- Low power availability

 Model definition and training Important to keep the tinyml goal in mind!

- Model definition and training Important to keep the tinyml goal in mind!
- Model optimization
 Quantization, Pruning,
 Compression

- Model definition and training Important to keep the tinyml goal in mind!
- Model optimization
 Quantization, Pruning,
 Compression
- Model conversion for embedded device
 Output is C code + framework library

- Model definition and training Important to keep the tinyml goal in mind!
- Model optimization
 Quantization, Pruning,
 Compression
- Model conversion for embedded device
 Output is C code + framework library
- 4. Integration into Firmware

Demo - the problem

Demo - creating dataset

Demo - creating dataset

Temp [C]	NTC [V]	
	22.6	1.881
	23.1	1.87
	24.1	1.836
	26.4	1.755
	28.5	1.671
	31	1.573
	36.8	1.32
	37.2	1.229
	43.8	0.986
	44.5	0.97
	45.2	0.93
	52.3	0.747
	53.3	0.705
	54.4	0.656
	62.4	0.492

Demo - test circuit

