Tilting in functor categories

Marcin Chałupnik

Kyoto, February 2025

The category \mathcal{P}_d of strict polynomial functors of degree d

k is a field of caharacteristic p > 0, $\Gamma^d(V) := (V^{\otimes d})^{\Sigma_d}$

An object of \mathcal{P}_d is determined by:

- 1. $V \mapsto F(V)$,
- 2. $F_{V,W}: \Gamma^d(\operatorname{Hom}_{\mathbf{k}}(V,W)) \longrightarrow \operatorname{Hom}_{\mathbf{k}}(F(V),F(W))$ satisfying the compatibility conditions.

$$\operatorname{Hom}_{\mathcal{P}_d}(F,G) := \operatorname{Nat}(F,G)$$

The category \mathcal{P}_d of strict polynomial functors of degree d

k is a field of caharacteristic p > 0, $\Gamma^d(V) := (V^{\otimes d})^{\Sigma_d}$

An object of \mathcal{P}_d is determined by:

- 1. $V \mapsto F(V)$,
- 2. $F_{V,W}: \Gamma^d(\operatorname{Hom}_{\mathbf{k}}(V,W)) \longrightarrow \operatorname{Hom}_{\mathbf{k}}(F(V),F(W))$ satisfying the compatibility conditions.

$$\operatorname{Hom}_{\mathcal{P}_d}(F,G) := \operatorname{Nat}(F,G)$$

Evaluation $F \mapsto F(\mathbf{k}^n)$ endows \mathbf{k}^n with a structure of representation of $GL_n(\mathbf{k})$.

When $n \ge d$ it yields an equivalence of abelian categories

$$\mathcal{P}_d \simeq \Gamma^d(\mathsf{End}_{\mathbf{k}}(\mathbf{k}^n))\text{-mod} =: S_{n,d}(\mathbf{k})\text{-mod}$$

Examples of polynomial functors, parameters

$$V \rightsquigarrow V^{\otimes d}$$
 $(I^d),$ $V \rightsquigarrow (V^{\otimes d})_{\Sigma_d}$ $(S^d),$ $V \rightsquigarrow (V^{\otimes d})^{\Sigma_d}$ $(\Gamma^d),$ $V \rightsquigarrow ((V^{\otimes d})^{alt})^{\Sigma_d} \simeq ((V^{\otimes d})^{alt})_{\Sigma_d}$ $(\Lambda^d),$ If $\operatorname{char}(\mathbf{k}) = \mathbf{p}, \ p > 0,$ $V \rightsquigarrow V^{(1)}$ $(I^{(1)}),$ $F^{(1)} := F \circ I^{(1)}.$

Examples of polynomial functors, parameters

$$V \rightsquigarrow V^{\otimes d}$$
 $(I^d),$
 $V \rightsquigarrow (V^{\otimes d})_{\Sigma_d}$ $(S^d),$
 $V \rightsquigarrow (V^{\otimes d})^{\Sigma_d}$ $(\Gamma^d),$
 $V \rightsquigarrow ((V^{\otimes d})^{alt})^{\Sigma_d} \simeq ((V^{\otimes d})^{alt})_{\Sigma_d}$ $(\Lambda^d),$
If $\operatorname{char}(\mathbf{k}) = p, \ p > 0,$
 $V \rightsquigarrow V^{(1)}$ $(I^{(1)}),$
 $F^{(1)} := F \circ I^{(1)}$

Functors with parameters: $U \in \mathbf{k} - \mathrm{mod}^f$, $F_U(V) := F(U \otimes V)$. We have: $\mathrm{Hom}_{\mathcal{P}_d}(\Gamma_{U^*}^d, F) \simeq F(U)$, (Yoneda lemma), hence if $\dim(U) \geq d$, then $\Gamma_{U^*}^d$ is a projective generator \mathcal{P}_d .

Schur, Weyl and simple objects, Kuhn duality

Young diagram of weight d: $\lambda = (\lambda_1, \dots, \lambda_k)$, $\sum \lambda_j = d$.

$$S_{\lambda} := \operatorname{im}(\Lambda^{\lambda_{1}} \otimes \ldots \otimes \Lambda^{\lambda_{k}} \longrightarrow I^{d} \longrightarrow S^{\widetilde{\lambda}_{1}} \otimes \ldots \otimes S^{\widetilde{\lambda}_{s}}),$$

$$W_{\lambda} := \operatorname{im}(\Gamma^{\widetilde{\lambda}_{1}} \otimes \ldots \otimes \Gamma^{\widetilde{\lambda}_{s}} \longrightarrow I^{d} \longrightarrow \Lambda^{\lambda_{1}} \otimes \ldots \otimes \Lambda^{\lambda_{k}}),$$

The complete set (of classes of isomorphism) of simples in \mathcal{P}_d : $F_{\lambda} := \operatorname{im}(W_{\lambda} \longrightarrow \Lambda^{\lambda_1} \otimes \ldots \otimes \Lambda^{\lambda_k} \longrightarrow S_{\lambda})$

$$F_{\lambda} \hookrightarrow S_{\lambda}, \ W_{\lambda} \multimap F_{\lambda},...$$
 (\mathcal{P}_d is highest weight actegory)

$$F^{\#}(V) := (F(V^*)^*, (S^d)^{\#} = \Gamma^d, (\Lambda^d)^{\#} = \Lambda^d, (S_{\lambda})^{\#} = W_{\lambda}, (F_{\lambda})^{\#} = F_{\lambda}.$$

Tilting in \mathcal{P}_d aka Koszul duality aka Ringel duality

If $\dim(U) \geq d$, then $\Lambda_{U^*}^d$ is a tilting object in \mathcal{P}_d , hence we have:

$$\mathcal{D}(\mathcal{P}_d) \simeq \mathcal{D}(\operatorname{End}_{\mathcal{P}_d}(\Lambda_{U^*}^d)^{op} - \operatorname{mod}) \simeq \mathcal{D}(\Gamma^d(\operatorname{End}_{\mathbf{k}}(U)) - \operatorname{mod}) \simeq \mathcal{D}\mathcal{P}_d,$$

or we can directly define an auto-equivalence of \mathcal{DP}_d given as:

$$\Theta(F^{\bullet})(V) := \mathrm{RHom}_{\mathcal{P}_d}(\Lambda^d_{V^*}, F^{\bullet})$$

One can compare this with the Yoneda lemma:

$$\operatorname{Hom}_{\mathcal{P}_d}(\Gamma^d_{V^*},F)=F(V).$$

Tilting in \mathcal{P}_d aka Koszul duality aka Ringel duality

If $\dim(U) \geq d$, then $\Lambda_{U^*}^d$ is a tilting object in \mathcal{P}_d , hence we have:

$$\mathcal{D}(\mathcal{P}_d) \simeq \mathcal{D}(\operatorname{End}_{\mathcal{P}_d}(\Lambda_{U^*}^d)^{op} - \operatorname{mod}) \simeq \mathcal{D}(\Gamma^d(\operatorname{End}_{\mathbf{k}}(U)) - \operatorname{mod}) \simeq \mathcal{D}\mathcal{P}_d,$$

or we can directly define an auto-equivalence of \mathcal{DP}_d given as:

$$\Theta(F^{\bullet})(V) := \mathrm{RHom}_{\mathcal{P}_d}(\Lambda^d_{V^*}, F^{\bullet})$$

One can compare this with the Yoneda lemma:

$$\operatorname{Hom}_{\mathcal{P}_d}(\Gamma^d_{V^*},F)=F(V).$$

Θ enjoys nice properties:

$$\Theta(S^d) = \Lambda^d
\Theta(S_{\lambda}) = W_{\widetilde{\lambda}}
\Theta(I^{(1)}) = I^{(1)}[-(p-1)]$$

Abelian vs. triangulated case

Theorem (Gabriel) Let A be an AB5 category and let $T \in A$ satisfies the conditions:

- ▶ T generates A (ie. if $X \neq 0$ then $Hom_A(T, X) \neq 0$).
- T is projective.
- ▶ T is compact (ie. $Hom_A(T, -)$ commutes with infinite sums).

Then the functor: $X \mapsto \operatorname{Hom}_{\mathcal{A}}(T,X)$ yields an equivalence of abelian categories:

$$\mathcal{A} \simeq (\operatorname{End}_{\mathcal{A}}(T)^{op}\operatorname{-mod}).$$

Theorem (Beilinson, Keller,...) Let \mathcal{A} be an AB5 category and let $T^{\bullet} \in \mathrm{Kom}(\mathcal{A})$ satisfies the conditions:

- ▶ T^{\bullet} generates $\mathcal{D}(\mathcal{A})$.
- → T[•] is compact.

Then the functor: $X^{\bullet} \mapsto \mathrm{RHom}_{\mathcal{A}}(T^{\bullet}, X^{\bullet})$ yields an equivalence of triangulated categories:

$$\mathcal{D}(\mathcal{A}) \simeq \mathcal{D}(\operatorname{REnd}_{\mathcal{A}}(\mathcal{T}^{\bullet})^{op}\operatorname{-dgmod}).$$

Collapsing conjecture and formality

Let $\mathcal{D}(\mathcal{P}_d^{(1)})$ be the full subcategory of $\mathcal{D}(\mathcal{P}_{pd})$ spanned by $F^{(1)}$ for $F \in \mathcal{P}_d$. $\mathcal{D}(\mathcal{P}_d^{(1)})$ is coreflective (ie. inclusion admits the right adjoint) and

 $\mathcal{D}(\mathcal{P}_d^{(1)})$ is coreflective (ie. inclusion admits the right adjoint) and generated by $\Gamma_{U^*}^{d(1)}$ when $\dim(U) \geq d$. Therefore:

$$\mathcal{D}(\mathcal{P}_d^{(1)}) \simeq \mathcal{D}(\operatorname{REnd}_{\mathcal{P}_{pd}}(\Gamma_{U^*}^{d(1)})^{op}\text{-dgmod}).$$

Collapsing conjecture and formality

Let $\mathcal{D}(\mathcal{P}_d^{(1)})$ be the full subcategory of $\mathcal{D}(\mathcal{P}_{pd})$ spanned by $F^{(1)}$ for $F \in \mathcal{P}_d$. $\mathcal{D}(\mathcal{P}_d^{(1)})$ is coreflective (ie. inclusion admits the right adjoint) and generated by $\Gamma_{U*}^{d(1)}$ when $\dim(U) \geq d$. Therefore:

$$\mathcal{D}(\mathcal{P}_d^{(1)}) \simeq \mathcal{D}(\mathrm{REnd}_{\mathcal{P}_{pd}}(\Gamma_{U^*}^{d(1)})^{\mathit{op}}\text{-dgmod}).$$

Theorem/"Collapsing conjecture" (MC)

There is a quasi-isomorphism of dg-algebras:

$$\operatorname{REnd}(\Gamma_{U^*}^{d(1)}) \simeq H^*(\operatorname{End}(\Gamma_{U^*}^{d(1)})) = \operatorname{Ext}^*(\Gamma_{U^*}^{d(1)}, \Gamma_{U^*}^{d(1)}) = \Gamma^d(\operatorname{End}(U) \otimes A),$$

where $A := \operatorname{Ext}_{\mathcal{P}_p}^*(I^{(1)}, I^{(1)}) \simeq \mathbf{k}[x]/x^p$, for $\deg(x) = 2$.

Hence there is an equivalence of triangulated categories:

$$\mathcal{D}(\mathcal{P}_d^{(1)}) \simeq \mathcal{D}(\Gamma^d(\operatorname{End}_{\mathbf{k}}(U) \otimes A) - \operatorname{dgmod}).$$

Affine strict polynomial functors

An object of \mathcal{P}_d^{af} is determined by:

- 1. For a fg. free graded A-module V, the graded **k**-module F(V)
- 2. For any pair V, W of fg. free graded A-modules, the graded k-linear map:

 $F_{V,W}:\Gamma^d(\operatorname{Hom}_A(V,W))\longrightarrow \operatorname{Hom}_{\mathbf{k}}(F(V),F(W))$ satisfying the compatibility conditions.

$$\operatorname{Hom}_{\mathcal{P}_d^{af}}(F,G) := \operatorname{Nat}^{gr}(F,G)$$

There is an equivalence of triangulated categories:

$$\mathcal{D}(\mathcal{P}_d^{(1)}) \simeq \mathcal{D}(\mathcal{P}_d^{\mathsf{af}})$$

Towards $\operatorname{Ext}^*_{\mathcal{P}_d}(S_\lambda, S_\mu)$

How to compute $\operatorname{Ext}^*_{\mathcal{P}_{pd}}(S^{pd},\Lambda^{pd})$ (for p|d)? (done by Akin)

Consider the de Rham complex S^{pd} :

$$0 \to S^{pd} \to \ldots \to S^{pd-i} \otimes \Lambda^i \to S^{pd-i-1} \otimes \Lambda^{i+1} \to \ldots \to \Lambda^{pd} \to 0.$$

Theorem (Cartier) $H^*(S^{pd}) = S^{d(1)}$.

Hence one can proceed by induction on d as follows:

- ► Compute $\operatorname{Ext}^*_{\mathcal{P}_{pd}}(H^*(\mathbf{S}^{pd}), \Lambda^{pd}))$.
- ► Compute $\operatorname{HExt}^*_{\mathcal{P}_{pd}}(\mathbf{S}^{pd}, \Lambda^{pd}))$ by using $E_2^{**} = \operatorname{Ext}^*_{\mathcal{P}_{pd}}(H^*(\mathbf{S}^{pd}), \Lambda^{pd})) \Rightarrow \operatorname{HExt}^*_{\mathcal{P}_{pd}}(\mathbf{S}^{pd}, \Lambda^{pd})).$
- ► Compute $\operatorname{Ext}^*_{\mathcal{P}_{pd}}(S^{pd}, \Lambda^{pd})$ by using $E_1^{**} = \operatorname{Ext}^*_{\mathcal{P}_{pd}}(\mathbf{S}^{pd}, \Lambda^{pd})) \Rightarrow \operatorname{HExt}^*(\mathbf{S}^{pd}, \Lambda^{pd})$.

Schur-de Rham complex (MC, inspired by [ABW])

$$S^d = (I^{\otimes d})_{\Sigma_d}$$
 $S^d = ((I \xrightarrow{\mathrm{id}} I)^{\otimes d})_{\Sigma_d}$

Then for any Young diagram of weight *d*:

$$S_{\lambda} = s_{\lambda}(I^{\otimes d})$$
 $S_{\lambda} = s_{\lambda}((I \xrightarrow{\operatorname{id}} I)^{\otimes d})$

We have:

$$0 \longrightarrow S_{\lambda} \longrightarrow \ldots \longrightarrow W_{\widetilde{\lambda}} \longrightarrow 0$$

Problem: Compute $H^*(S_{\lambda})$.

Schur-de Rham complex (MC, inspired by [ABW])

$$S^d = (I^{\otimes d})_{\Sigma_d}$$
 $S^d = ((I \xrightarrow{\mathrm{id}} I)^{\otimes d})_{\Sigma_d}$

Then for any Young diagram of weight *d*:

$$S_{\lambda} = s_{\lambda}(I^{\otimes d})$$
 $S_{\lambda} = s_{\lambda}((I \xrightarrow{\operatorname{id}} I)^{\otimes d})$

We have:

$$0 \longrightarrow S_{\lambda} \longrightarrow \ldots \longrightarrow W_{\widetilde{\lambda}} \longrightarrow 0$$

Problem: Compute $H^*(S_{\lambda})$.

Alternatively, we can describe S_{λ} as:

$$\mathbf{S}_{\lambda}(V) := \operatorname{Hom}_{\mathcal{P}_d}(\mathbf{S}_{V^*}^d, \mathcal{S}_{\lambda})^{\#}$$

One can study the functor:

$$\mathcal{R}(F^{\bullet})(V) := \mathrm{RHom}_{\mathcal{P}_d}(\mathbf{S}^d_{V^*}, F^{\bullet})^{\#}$$

