This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

TAKADA & ASSOCIATES

Japanese Patent Application Publication (KOKOKU) No. 3-71577

- The country or office which issued the captioned document
 Japanese Patent Office
- 2. Document number

Japanese Patent Application Publication (KOKOKU) No. 3-71577

- 3. Publication date indicated on the document
 November 13, 1991
- 4. Title of the invention

MULTIPLE CYLINDER TYPE ROTARY DAMPER USING VISCOUS FLUID

⑲ 日本国特許庁(JP)

m 特許出願公告

$\Psi 3 - 71577$ 許 公 報(B2) ⑫特

®Int. Cl. 5

識別記号

庁内整理番号

2000公告 平成3年(1991)11月13日

F 16 F 9/12 8714-3 J

請求項の数 2 (全7頁)

❷発明の名称	粘性流体を用いた多筒式回転ダンパー
	②特 願 昭63-149582 ⑥公 開 平1-320336 ②出 願 昭63(1988)6月17日 ⑥平1(1989)12月26日
@発 明 者	菅 佐 原 盛 治 東京都千代田区東神田1丁目8番11号 スガツネ工業株式
⑩発 明 者	会社内 常 木 建 東京都千代田区東神田 1 丁目 8 番11号 スガツネ工業株式 会社内
@発明者	大 島 一 吉 東京都千代田区東神田 1 丁目 8 番11号 スガツネ工業株式
@発明者	会社内 中 山 洋 二 郎 東京都千代田区東神田 1 丁目 8 番11号 スガツネ工業株式 会社内
個発明 者	早 川 達 也 東京都千代田区東神田 1 丁目 8 番11号 スガツネ工業株式
@発明者	会社内 田村静一郎東京都千代田区東神田1丁目8番11号 スガツネ工業株式 会社内
勿出 願 人	スガツネ工業株式会社 東京都千代田区東神田 1 丁目 8 番11号
四代理 人	弁理士 寮藤 義雄
審査官	清田栄章

1

の特許請求の範囲

1 ケーシング内に、外力により回転自在とした 可動軸と共に、回転される所要数の可動円筒と、 当該可動円筒と同軸にして交互配置であり、かつ 上記可動軸の回転に非連動である所要数の固定円 5 筒とが嵌装状態にて配設され、当該ケーシング内 の粘性流体が、これら可動円筒、固定円筒の対向 面間に配在されているダンパーにおいて、上記の 固定円筒がケーシングとの係合により、前記可動 径方向へは変動自在であり、かつ前記可動円筒も その径方向へは変動自在であると共に、上記可動 円筒、固定円筒の一方または双方に前記粘性流体 の流通路が形成されていることを特徴とする粘性 流体を用いた多筒式回転ダンパー。

2 可動円筒、固定円筒の一方または双方に形成 されている粘性流体の流通路が、直線状または曲

2

線状の通孔、分離スリット、分割スリットの何れ か一種以上により構成されている請求項1記載の 粘性流体を用いた多筒式回転ダンパー。

発明の詳細な説明

《産業上の利用分野》

本発明は複数の固定円筒と回転円筒とを同軸と なるようケーシング内で嵌装状態に配設し、当該 ケーシング内に供与されたポリイソプチレンなど の高分子粘性流体を、上記両円筒間に存在させる 軸の回転には不動状態であるが、当該固定円筒の 10 ことで、回転円筒を回転させた際、当該粘性流体 の粘性剪断抵抗を利用することによつて抵抗力が 得られるようにし、この抵抗力によつて外力に対 する緩衝作用すなわち制動力を発揮させるように した各種用途に供し得る多筒式回転ダンパーに関 15 する。

《従来の技術》

従来のダンパーには、既知の如く油を用い、こ

3

れが狭い通隙を通るときの乱流抵抗を利用するよ うにしたものが多用されて来た。

しかし、当該緩衝装置によるときは、所定の抵 抗力による制動を得るのに、上記の通際に対し高 い精度が要求されることとなり、また衝撃的な外 力を受けた際には、油が圧縮不能であるため、各 部材に外力そのままの衝撃が加わることとなり、 この結果高い強度が必要となることから大形化し てしまう難点があり、さらに当該通隙が汚物によ ある。

そこで、上記従来方式のダンパーがもつ欠陥を 解消するため、相対運動を行う二物体の相近接す る二面間に、高粘性をもつた粘性流体を配在させ 流体の粘性剪断抵抗を利用し、この粘性流体に内 部昇圧を発生させることなしに、外力に対する抵 抗力を得るようにした方式の緩衝装置が、既に開 発されるに至つている。

上記方式のダンパーとしては、何れもデイスク 20 状とした可動板と固定板とを用いた多板式ダンパ ーと、複数の固定円筒と回転円筒とを交互に嵌装 するようにした多筒式回転ダンパーとが知られて いるが、後者として既に提案されているもの(特 る。

すなわち円筒状に形成したケーシングaには、 その底板bから、外周固定円筒ciと同軸である内 周固定円筒c₂が立設され、このケーシング a の上 なるよう軸装されていると共に、この可動軸eに 固設されケーシングaに内装の回転円板 f から下 向きに突設された外周可動円筒gi、内周可動円筒 &が夫々前記外周固定円筒ciと内周固定円筒c2と よう嵌入され、かつこの際上記全円筒ci, c2, 81,82間の離間距離がすべて同寸法となるよう調 整され、当該ケーシングa内に粘性流体Aが充塡 されている。

従つて上記ダンパーによるときは、可転軸eに 40 回転力Fとしての外力を加えられることにより、 可転軸eに軸着状態である両可動円筒gi,giとケ ーシングaに固設の両固定円筒cı,c₂とを相対運 動させれば、このとき両板間の粘性流体による粘

性剪断抵抗が利用され、当該外力に対する緩衝作 用を発揮させ得ることとなるのであるが、この際 上記の如くすべての円筒ci, cz, gi, gzが、何れ も所定位置に固着の状態であるため、両板の離間 5 距離を高精度で均一に整合させておかないと、粘 性流体による粘性剪断抵抗は、各円筒の離間距離 が小さくなるほど大きくなるものであることか

4

ら、上記距離に狭い箇所があるときは、当該箇所 における両円筒間に抵抗力が大きく負担されるこ り狭塞されてしまうといつた支障が生ずる虞れも 10 ととなつて、当該部材に無理な力が加わり、破損 に至るのである。

この結果、製作に可成りの精度を要求されるだ けでなく、既知の如く粘性剪断抵抗なるものは、 両板の対向面積に比例するのであるが、この対向 ておき、上記相対運動に際して生ずる、当該粘性 15 面積を変更して抵抗力を別個の設定値にしたい場 合でも、両板の位置は固定化されているので、全 く新規にダンパーを製作しなければ、当該要求を 充足することはできない。

《発明が解決しようとする課題》

本発明は上記従来の欠陥に鑑み検討されたもの で、その第1の目的は可動軸を外力によつて回転 させることにより、この回転力は可動円筒に伝達 されて回転するが、当該可動円筒は回転軸の径方 向へは自由に変移可能としておくと共に、固定円 開昭53-127977) は第9図の如き構成となつてい 25 筒については、可動軸が回転しても回転は阻止さ れるようになし、かつ当該固定円筒も可動軸の径 方向へは自由に変動可能な構成とすることによつ て、これら全く自由に変動し得る固定円筒、可動 円筒が粘性流体内にあつて調心効果、すなわち粘 蓋dにあつて、その中心部に回転軸eが回転自在 30 性流体が、粘性剪断抵抗の大となつている箇所 (各円筒の離間距離が狭くなつているところ) へ 向けて流れることにより、当該離間距離が均分化 されることを利用できるようにし、これによつて 製作上高精度を要求されることなく、異常な粘性 の間と、内周固定円筒c2内とに何れも同軸となる 35 抵抗を局部的に発生させて、当該部品に損傷を与 えるといつたことも解消し、かつ抵抗力を変更し たいときは、固定円筒、可動円筒を除去したり加 えてやることで、即時ダンパーとしての各種要請 に対応できるようにしようとすることである。

> 次に本発明の第2の目的は上記の可動円筒、固・ 定円筒の少なくとも一方に、粘性流体の流通路を 形成することにより、粘性流体の流通性を良好に し、前記の調心効果が瞬時にして、かつ円滑に発 揮される構成となし、これにより上記第1の目的

5

がより完全に達成され得るようになし、当該流通 路を後に詳記の分離スリットや分割スリットによ り形成することで、上記円筒の直径を外力によつ て変化させ得るようにし、これによりこれら両円 筒の離間距離を変更させて、抵抗力を加減するこ とも可能にしようとすることにある。

《課題を解決するための手段》

本発明は上記の目的を達成するため、ケーシン グ内に、外力により回転自在とした可動軸と共 に、回転される所要数の可動円筒と、当該可動円 10 筒と同軸にして交互配置であり、かつ上記可動軸 の回転に非連動である所要数の固定円筒とが嵌装 状態にて配設され、当該ケーシング内の粘性流体 が、これら可動円筒、固定円筒の対向面間に配在 されているダンパーにおいて、上記の固定円筒が 15 位置には軸承凹所1dが設けられている。 ケーシングとの係合により、前記可動軸の回転に は不動状態であるが、当該固定円筒の径方向へは 変動自在であり、かつ前記可動円筒もその径方向 へは変動自在であると共に、上記可動円筒、固定 形成されていることを特徴とする粘性流体を用い た多筒式回転ダンパーを提供しようとするもので ある。

《作用》

れることで、可動軸に係合されている可動円筒 が、ケーシングの粘性流体内にて回転されること となり、この際当該可動円筒と静止状態が保持さ れている固定円筒との間に、粘性流体による粘性 て作用することでダンパーとしての効用を果すこ ととなるが、前記の調心効果として、粘性流体が 上記粘性剪断抵抗力の大きい箇所へ向け流動する から、可動円筒と固定円筒との相互間隙に、それ まで広狭の差があつたとしても、粘性剪断抵抗の 35 大きな狭い間隙に粘性流体が流れ込み、これによ つて何れも径方向へ自由度を有する可動円筒、固 定円筒は変動し、結局全板が同心円状配置にてケ ーシング内に存置されるようになり、この結果局 支障が生ずることを絶滅し得ることとなる。

さらに本発明では、上記調心効果を発揮する 際、粘性流体が粘性剪断抵抗力の大きい箇所に流 動することになるが、当該粘性流体は可動円筒、

6

固定円筒の一方または双方に形成した流通路を介 して流れ得ることとなるから、可動円筒の回転と 同時に調心効果が高い即応性をもつて発揮される こととなり、また流通路に分離スリツト、分割ス リットを採択することで円筒の直径が可変とな り、このような場合は何等かの手段で当該円筒の 径を調整してやることで、円筒間の離間距離調整 による抵抗力の増減変更をも可能とすることがで きる。

《実施例》

本発明を第1図乃至第7図の実施例によつて詳 記すれば、器状のケーシング1は同筒器体1aと その開口部に螺着した蓋体1bとからなつてお り、円筒器体laの底壁lcにあつて、その中心

次に上記蓋体16の直下には可動軸2の円板状 であるフランジ2aが円筒器体1aに回転自在な るよう嵌合することで、ケーシング1に内装され ていると共に、フランジ2 aの軸心から直交状に 円筒の一方または双方に前記粘性流体の流通路が 20 突設されている夫々軸杆内部2bと軸杆外部2c とが夫々前記の軸承凹所 1 d、蓋体 1 b の軸承口 1 e に夫々回転自在なるよう軸嵌されており、軸 杆外部2cの軸承口1eから突出した角頭部2d に、回動腕3の角孔3aを嵌合した後、抜止螺子 本発明では外力が可動軸に回転力として加えら 25 4を角頭部2 dの連結用螺孔2 eに螺着すること で、当該回動腕3に付与される回転力により可動 軸2が回転され得るよう構成してある。

さらに上記ケーシング1内には所要数の可動円 筒5a, 5b、固定円筒6a, 6bとが、可動軸 剪断抵抗力が生じ、これが外力に対する抵抗とし 30 2 における軸杆内部 2 b の外周側にあつて交互配 置にて遊嵌されているが、図示例では軸杆内部 2 b側から、順次小径の固定円筒 6 a、小径の可動 円筒 5 a、大径の固定円筒 6 b、大径の可動円筒 5 bが嵌装されている。

ここで本発明では上記可動円筒5a,5bを可 動軸2の回転により回転力が伝達されると共に、 当該円筒5a, 5bがケーシング1の径方向へは 自由度を保有するようにするため、前記の可動軸 2におけるフランジ2aの下面にあつて、その直 所に無理な抵抗力がかかつて部材の破損といつた 40 径位置にスライド用凹溝2fを設けておき、これ に可動円筒5a,5bの上端縁から突設した一対 の係止片5 c, 5 dをスライド自在なるよう係嵌 させるようにしてある。

一方上記の固定円筒 6 a, 6 bは、上記可動軸

2の回転に伴い回転してしまうことなく、かつケ ーシング1の径方向へは可動円筒5a,5bと同 じように自由な変動が許容されるようにするた め、固定円筒6a,6bの下端縁から一対の係止 片 6c, 6d を突設し、これを前記円筒器体 1a 5 によつて形成するようにしてあり、図示例では何 の底壁1 c にあつて、その直径位置に設けたスラ イド用凹溝 1 f にスライド自在なるよう係嵌して あり、このスライド用凹溝 1 f と前記のスライド 用溝2fとは、第1図のように平行となるよう配 a, 6 b が共に同一径方向へ変動自在としてあ り、ケーシング1内には前記した粘性流体Aが充 塡されている。

本発明では、さらに上記した可動円筒5a,5 筒、あるいは一種円筒の一部等所望の円筒に一個 以上の流通路を設けるのであるが、第3図の実施 例では、当該流通路を全円筒5a,5b、6a, **6 b**につき 1 個宛、軸線と平行な直線状となるよ う切設した分離スリツトS1, S2, S3, S4によつて 20 もできる。 形成するようにしてあり、この際可動円筒 5 a, 5 bの分離スリツトS₁, S₂、また固定円筒 6 a, 6 bの分離スリットS3, S4夫々が、相互に一直径 線上にあつて離間位置となるよう切離されてい

これに対し第4図と第5図に示した流通路も、 第3図の実施例の如く分離スリットS1, S2、S3, SAによつて形成されているが、第4図では軸線と 平行でなく斜交する曲線(螺旋状)状に切設さ れ、第5図では軸線と平行状ではあるが直線状で 30 はなしに鋸歯状となるよう当該分離スリツトが切 設されており、このようにすることで、実際上各 円筒相互の離間距離は極く小さくなつてくるが、 この際第3図のような直線状の分離スリットとす れる自由端縁が互いに、衝当するといつたことが 生じないという点で好ましい。

さらに第6図の実施例では流通路を2個以上の スリット、すなわち一体であつた可動円筒 5 a, に切離されてしまう分割スリットDS1, DS2, DS₃, DS₄によつて形成されており、図示例では 当該スリットが何れも円筒を2等分にするように 設けられ、この際もちろん、前記の係止片 5 c,

5 d, 6 c, 6 dは、夫々の分割体に1個突設さ れている。

これに対し第7図の実施例による流通路は、ス リット状とすることなく通孔H1, H2, H3, H4 れの円筒にも複数条の長孔が軸線と平行に突設さ れた場合が示されている。

また、前記の実施例では可動円筒5a,5b、 固定円筒6a,6b何れの場合にも、これらに係 設することで、可動円筒5a,5b、固定円筒6 10 止片5c,5d,6c,6dを突設し、これを 夫々スライド用凹溝2f,1fに係嵌させるよう にしてあるが、もちろん雄雌関係を逆転させて第 8図aに示す如く、例えば円筒器体 1 aの底壁 1 cからスライド用突条 1 g を直径位置に突設して b、固定円筒 6 a, 6 bの全部またはその一種円 15 おき、固定円筒 6 a, 6 bの下端縁にあつて直径 位置に対設した係止溝6 eを、当該スライド用突 条1gにスライド自在なるよう係嵌するようにし てもよく、このスライド用突条1g、係止溝6e は同図bのように複数個併設するようにすること

従つて上記多筒式回転ダンパーを、ドアチエツ カーなどに用いた際にあつては、外力が回動腕3 に回転力として作用したとき、可動軸2の回転に より可動円筒5a,5bにも、フランジ2aに設 25 けられているスライド用凹溝2fと、可動円筒5 a, 5 bの係止片5 c, 5 d との係合により、当 該可動円筒5a,5bに回転力が伝達され、この とき固定円筒 6 a, 6 bの方は、その係止片 6 c, 6 dが円筒器体1 aのスライド用凹溝1 f に 係止されて非回転の状態にあるから、当該固定円 筒 6 a, 6 b と回転する可動円筒 5 a, 5 b との 筒面間に存在している粘性流体Aに基づく粘性剪 断抵抗力が作用すると共に、前記の調心効果によ りケーシング1の径方向に何れも自由度をもつ両 るよりは、円筒相互の当該スリツトにより形成さ 35 円筒 5 a, 5 b, 6 a, 6 bが変動し、各円筒の 離間距離が均等化され、この結果ケーシング 1 内 における直径を等分するように、両円筒が平行し て存置されることとなる。

さらに、本発明では粘性流体の流通路が所要の 5 b、固定円筒 6 a, 6 bが、二分割以上の部材 40 円筒に形成されていることから、粘性流体が当該 流通路を介して流通可能となり、この結果上記し た調心効果が高い即応性と円滑性をもつて発揮さ れ、ダンパーとしての制動力が遅滞なく確実に得 られることとなる。

10

《発明の効果》

本発明は以上のようにして構成されるものであ るから、可動円筒も固定円筒も、ケーシングの径 方向へ変動自由であるため、可動円筒が外力によ 態にて発揮され、この結果常に信頼性の高い抵抗 力が得られると共に、局部的に大きな負荷が加わ ることもないので、円筒等の部材を破壊するとい つた支障も生ぜず、外力作動時にも粘性流体の内 することができる。

しかも本発明では所要円筒に流通路を形成した ので、稼動に際し粘性流体の流通性がよくなり、 調心効果の即応性、信頼性が向上することとな る。

さらに粘性剪断抵抗力を大幅に設計変更したい ときも、可動円筒、固定円筒を異種寸法のものに 組みかえたり、またその枚数を変更するだけで、 新規に製作することなしに極めて容易に、その目 的を達成することができる。

また、流通路として分離スリットや分割スリッ トを採択した場合には、可動円筒、固定円筒の径 を外部から可変とすることも可能となり、ダンパ としての制動力を加減しようとする際、当該径 り回動された際の調心効果が、極めて理想的な状 5 の調整手段を活用することもできることになる。 図面の簡単な説明

第1図は本発明に係る粘性流体を用いた多筒式 回転ダンパーの一実施例を示す縦断正面図、第2 図は同上斜視図、第3図は同上分解斜視図、第4 圧が上昇しない多筒式回転ダンパーを安価に提供 10 図、第5図、第6図、第7図は夫々第3図のもの とは異種の各実施例を示した同上分解斜視図、第 8図a, bは他実施例による固定円筒と円筒器体 とを示した分解斜視図、第9図は従来の粘性流体 を用いた多筒式回転ダンパーを示す要部縦断正面 15 図である。

> 1……ケーシング、2……可動軸、5 a, 5 b ······可動円筒、6 a, 6 b······固定円筒、A······ 粘性流体、Si, S2, S3, S4……分離スリット、 DS₁, DS₂, DS₃, DS₄……分割スリット、H₁, 20 H₂, H₃, H₄······通孔。

