STATS 509 HOMEWORK 8

Yuan Yin

Question 2 (a)

(i)

```
library(Ecdat)
data(CRSPday)
crsp=CRSPday[,7]
ar1 = arima(crsp, order=c(1,0,0)); ar1
##
## Call:
## arima(x = crsp, order = c(1, 0, 0))
##
## Coefficients:
##
            ar1 intercept
##
         0.0853
                     7e-04
## s.e. 0.0198
                     2e-04
##
## sigma^2 estimated as 5.973e-05: log likelihood = 8706.18, aic = -17406.37
ar2 = arima(crsp,order=c(2,0,0)); ar2
##
## Call:
## arima(x = crsp, order = c(2, 0, 0))
##
## Coefficients:
##
                     ar2 intercept
            ar1
##
         0.0865 -0.0141
                              7e-04
## s.e. 0.0199
                  0.0199
                              2e-04
##
## sigma^2 estimated as 5.972e-05: log likelihood = 8706.43, aic = -17404.87
```

• I would prefer AR(1) model since we can see that the coefficient of ϕ_2 in AR(2) is -0.014 and the standard error is 0.02, which means that $\phi_2 = 0$ is in the 95% confidence interval, this coefficient is not significant. Since AR(1) is a simpler model, so we prefer AR(1). What's more, AR(1) has smaller AIC, it corresponds with our result.

(ii)

```
left = ar1$coef[1]-1.96*sqrt(ar1$var.coef[1,1])
right = ar1$coef[1]+1.96*sqrt(ar1$var.coef[1,1])
c(left, right)

## ar1 ar1
## 0.0464615 0.1241421
```

• Seeing that the 95% interval of ϕ in AR(1) is $0.085 \pm 1.96 * SE = [0.0465, 0.1241]$.

(iii)

Diagnostics plots from arima tsdiag(ar1)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

tsdiag(ar2)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic


```
## QQ plots of residuals
par(mfrow = c(1,2))
qqnorm(ar1$resid); qqline(ar1$resid)
qqnorm(ar2$resid); qqline(ar1$resid)
```

Normal Q-Q Plot

Normal Q-Q Plot

Theoretical Quantiles

Theoretical Quantiles

Seeing that both models fail to reject that residuals are white noise, and both QQ-plots show that residuals have heavy tails. This indicates that we can't tell differences between two models. For simplifying our models, we should choose AR(1). This doesn't change our answer

Question 2 (b)

```
library(forecast)
auto.arima(crsp, start.p=0, max.p = 4, max.q = 4, seasonal = FALSE, ic = "aic")
## Series: crsp
##
  ARIMA(0,0,1) with non-zero mean
##
##
  Coefficients:
##
            ma1
                   mean
##
         0.0869
                  7e-04
##
         0.0199
##
## sigma^2 estimated as 5.977e-05:
                                      log likelihood=8706.36
## AIC=-17406.73
                    AICc=-17406.72
                                      BIC=-17389.22
Seeing that MA(1) has the smallest AIC, let's make diagnostics on MA(1).
ma1 = arima(crsp, order=c(0,0,1)); ma1
##
## Call:
## arima(x = crsp, order = c(0, 0, 1))
##
## Coefficients:
```

```
## ma1 intercept
## 0.0869 7e-04
## s.e. 0.0199 2e-04
##
## sigma^2 estimated as 5.972e-05: log likelihood = 8706.36, aic = -17406.73
tsdiag(ma1)
```

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

qqnorm(ma1\$resid); qqline(ma1\$resid)

Normal Q-Q Plot

- Finding that with similar results with AR(1) and AR(2), we still fail to reject the residuals to be white noise, but from QQ-plot we can see the distribution is not normal since its heavy tails.
- Since MA(1) is the best AMRA model to fit the data, but there is not much difference between MA(1) and AR(1), maybe AMRA model is not a good model to fit the data, or maybe the residuals are nor normal distribution white noise but other type of white noise.