Name:	Maths Class:

SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics Extension 1

HSC Course

Assessment 1

December, 2016

Time allowed: 90 minutes

General Instruction

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- BOSTES reference sheet is located at the end of the exam.

Section 1 Multiple Choice Questions 1-7 7 Marks

Allow approximately 10 minutes for this section

Section II Questions 8-13 48 Marks

Allow approximately 80 minutes for this section

			•

Section 1

7 marks

Attempt Questions 1-7Allow about 10 minutes for this section Use the Multiple Choice answer sheet for questions 1-7

1. By considering \triangle ABC and \triangle PBA the value of x is:

NOT TO SCALE

- (A) 14
- (B) $\frac{8}{3}$
- (C) $2\sqrt{10}$
- (D) $5\sqrt{2}$
- 2. For x > 1, which one of the following expressions represents the limiting sum of this series? $1 \frac{1}{x} + \frac{1}{x^2} \frac{1}{x^3} + \frac{1}{x^4} \dots$
- (A) $\frac{x}{1+x}$
- (B) $\frac{x}{1-x}$
- (C) $\frac{1+x}{x}$
- (D) $\frac{1-x}{x}$

- 3. The points A, B and C lie on the circle with centre O. OA is parallel to CB.
 - AC intersects OB at D and \angle ODC= α .

What is the size of \angle OAD in terms of α ?

- (A) $\frac{\alpha}{2}$
- (B) $\frac{\alpha}{3}$
- (C) $\frac{2\alpha}{3}$
- (D) 3α
- 4. If $x = t^2$ and $y = \sqrt{t}$ which of the following is an expression for, $\frac{dy}{dx}$?
- (A) $t^{0.5}$
- (B) $x^{-0.25}$
- (C) $\frac{3}{2}x^{-0.5}$
- (D) $\frac{1}{4}t^{-1.5}$
- 5. When g(x) is divided by $x^2 + x 12$ the remainder is (5x+9). What is the remainder when g(x) is divided by (x+4)?
 - (A) -11
 - (B) -8
 - (C) 0
 - (D) 29

6. The graph below shows a polynomial function y = P(x).

Which of the following could represent the equation of y = P(x)?

(A)
$$P(x) = (x+1)(x+2)(x+3)(x-1)$$

(B)
$$P(x) = (x+1)(x+2)(x+3)(1-x)$$

(C)
$$P(x) = (x+1)(x-2)(x-3)(x-1)$$

(D)
$$P(x) = (x+1)(x-2)(x-3)(1-x)$$

7. Two secants from an external point cut off intervals on a circle as shown below.

What is the value of x?

(A)
$$\frac{1+\sqrt{14}}{2}$$

- (B) 4
- (C) $\frac{-3+\sqrt{73}}{4}$
- (D) 5

-

Section II

Attempt Questions 8-13

Allow about 1 hour and 20 minutes for this section.

Answer each question in your answer booklet STARTING EACH QUESTION ON A NEW PAGE.

In Questions 8-13 your responses should include all relevant mathematical reasoning and / or calculations.

Question 8 - 8 marks

a. A series is given as;

$$24 + 16 + 8 + 0 + \dots$$

- i. Find an expression for the *nth* term of this series (2)
- ii. Which term in this series has the value of -192? (1)

(2)

(1)

b. Show that the Cartesian equation of the curve defined by the parametric equation

$$x = t - 1,$$
 $y = t^2 + t - 1$

is a parabola and state the co-ordinates of its vertex.

c. In the circle, centre O, BC is a diameter. AT is a tangent to the circle at the point A and \angle TAC = 39°.

i. Explain the theorem that supports
$$\angle ABC = 39^{\circ}$$

Question 9 - 8 marks

Begin this question on a NEW PAGE in your answer booklet.

a. In the diagram below, the points A, B, C and D are concyclic. The point O is the centre of the circle, AD is a diameter of the circle and the arc lengths BC and CD are equal.

- i. State why \angle BOC= \angle COD (1)
- ii. Show that AB is parallel to OC, giving clear and full reasons. (2)
- b. The roots of $x^3 x^2 5x + 2 = 0$ are given as α, β and χ

i. Find the value of
$$\alpha\beta\chi$$
 (1)

ii. Find the value of
$$\alpha\beta + \alpha\chi + \beta\chi$$
 (1)

iii. Show that
$$\beta + \chi = 1 - \alpha$$
 and $\frac{\beta + \chi}{\alpha} = \frac{1}{\alpha} - 1$ (2)

iv. Hence, evaluate,

$$\frac{\beta+\chi}{\alpha}+\frac{\chi+\alpha}{\beta}+\frac{\alpha+\beta}{\chi}\tag{1}$$

Question 10 - 8 marks

Begin this question on a NEW PAGE in your answer booklet.

a. Consider an Arithmetic series where,

$$T_5 = 3 \times T_2$$
 and $S_6 = 144$

Find the value of the third term.

(3)

b. Evaluate
$$\sum_{n=0}^{5} 3n^2 - 1$$

(1)

c. ABCD is a rhombus. The point E lies on side AB as shown below.

$$\angle CBE = 2\alpha$$
 and $\angle CEB = 2\theta$

$$\angle ACE=3\alpha$$
 and $\angle ECB=\alpha$

i. Without finding the value of α or θ , Show that $\theta = \frac{7\alpha}{2}$ (include clear reasoning)

(2)

ii. Find the values of α and θ

(2)

Question 11 - 8 marks

Begin this question on a NEW PAGE in your answer booklet.

a. Show that;

$$(a+2)(a^2-3a+5) = a^3 - a^2 - a + 10$$
 (1)

- b. Each term of the arithmetic sequence a, a+d, a+2d,... is added to the corresponding term of the geometric sequence b, ab, ba^2 ,..... to form a third sequence, S.
 - i. Show that the first three terms of the sequence S can be written as;

$$(a+b),(a+ab+d),(a+ba^2+2d)$$
 (1)

ii. Given that the first three terms of the sequence S have the values
-1, -2 and 6 respectively. Show that,

$$a^3 - a^2 - a + 10 = 0 (2)$$

- iii. Given that a is real find the value of a and b. (2)
- iv. Hence, show that the nth term of S is given by,

$$T_n = 2(n-2) + (-2)^{n-1}$$
 (2)

Question 12 - 8 marks

Begin this question on a NEW PAGE in your answer booklet.

Hilton borrows \$400 000 from a bank. The loan is to be repaid in equal monthly repayments of M, at the end of each month, over 30 years. Reducible interest is charged at 3.6% p.a., calculated monthly.

Let A_n be the amount owing after the *nth* repayment.

i. Show that the amount Hilton owes immediately after his second repayment can be written as:

$$A_2 = 400000(1.003)^2 - M(1+1.003)$$
 (1)

(3)

- ii. Write an expression for A_n , in terms of M and n, and hence calculate how much Hilton would need to pay each month to fully repay the loan in exactly 30 years. (2)
- iii. However, just after Hilton makes his 120th payment, Hilton decides to increase his repayments, from \$M a month, to \$2100 per month. In how many more months will he pay off the remainder of the loan?

iv. How much money will Hilton save as a result of changing his repayment amount? (2)

Question 13 - 8 marks

Begin this question on a NEW PAGE in your answer booklet.

a. Two circles C_1 and C_2 centres at P and Q with equal radii intersect at A and B respectively. AC is a diameter in circle C_1 and AD is a diameter in C_2 .

Redraw the diagram in your answer booklet.

i. Show that
$$\triangle ABC$$
 is congruent to, $\triangle ABD$. (2)

ii. Show that
$$PB \parallel AD$$
. (2)

b. The variable point P has coordinates, $P(a\cos 2\theta, a\sin \theta)$.

i. Show that P lies on the curve
$$y^2 = -\frac{a}{2}(x-a)$$
 (1)

ii. Sketch the locus of
$$P$$
 as θ varies, taking into account any restrictions on x and y . (2)

REFERENCE SHEET

- Mathematics –
- Mathematics Extension 1
- Mathematics Extension 2

Mathematics

Distance between two points $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

 $a^2 - b^2 = \left(a + b\right)\!\left(a - b\right)$ Factorisation

 $a^3-b^3 = (a-b)(a^2+ab+b^2)$ $a^3+b^3 = (a+b)(a^2-ab+b^2)$

Perpendicular distance of a point from a line

 $d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$

Slope (gradient) of a line

Point-gradient form of the equation of a line

 $y - y_1 = m(x - x_1)$

 $\label{eq:nonlinear} \mbox{nth term of an arithmetic series}$ $T_n = a + (n-1)d$

Sum to n terms of an arithmetic series

 $S_n = \frac{n}{2} [2a + (n-1)a]$ or $S_n = \frac{n}{2} (a+1)$

nth term of a geometric series $T_n = a r^{n-1} \label{eq:Tn}$

Sum to n terms of a geometric series

 $S_n = \frac{a(r^n - 1)}{r - 1}$ or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

 $S = \frac{a}{1-r}$

Compound Interest

 $A_h = P \left(1 + \frac{7}{100} \right)^n$

Angle sum of a polygon $S = (n-2) \times 180^{\circ}$

Equation of a circle

 $(x-h)^2 + (y-k)^2 = r^2$

Trigonometric ratios and identifies

 $\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$

 $cosec\theta = \frac{1}{\sin\theta}$

 $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$

 $\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$

 $\sec\theta = \frac{1}{\cos\theta}$ $\tan\theta = \frac{\sin\theta}{\cos\theta}$

 $\sin^2\theta + \cos^2\theta = 1$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Exact ratios

Sine rule

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

 $c^2 = a^2 + b^2 - 2ab\cos C$ Cosine rule

Area of a triangle

Area = $\frac{1}{2}ab\sin C$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation x - - b ± \(b^2 - 4ac \) Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$
 $\alpha\beta = \frac{c}{a}$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

 $(ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$

$$e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

$$\int_{f(x)}^{f'(x)} dx = \ln|f(x)| + C$$

$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application) f^b

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \left[f(a) + f(b) \right]$$

Simpson's rule (one application)

$$\int_a^b f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$

 $180^{\circ} = \pi \text{ radians}$ Angle measure

Length of an arc

Area of a sector $Area = \frac{1}{2}r^2\theta$

Mathematics Extension 1

Angle sum Identities

 $\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$

 $\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$

 $\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$

If $t = \tan \frac{\theta}{2}$, then

$$\sin \theta = \frac{2t}{1 + t^2}$$

$$\cos \theta = \frac{1 - t^2}{1 + t^2}$$

$$\tan \theta = \frac{2t}{1 - t^2}$$

Seneral solution of trigonometric equations

 $\theta = n\pi + (-1)^n \sin^{-1} a$ $\theta = 2n\pi \pm \cos^{-1}a$ $\theta = n\pi + \tan^{-1}a$ $\sin \theta = a$ $an\theta = a$ Division of an interval in a given ratio

$$\frac{mx_2 + nx_1}{m + n} \frac{my_2 + ny_1}{m + n}$$

Parametric representation of a parabola

For
$$x^2 = 4ay$$
, $x = 2at$, $y = at^2$

At $(2at, at^2)$.

tormal: $x + ty = at^3 + 2at$

At (x_1, y_1) , tangent: $xx_1 = 2a(y + y_1)$ normal: $y - y_1 = -\frac{2a}{x_1}(x - x_1)$

Chord of contact from (x_0, y_0) : $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dy}{dt} = y\frac{dy}{dx} = \frac{d}{dx} \left(\frac{1}{2}y^2\right)$$

Simple harmonic motion $x = b + a\cos(nt + \alpha)$

 $\ddot{x} = -n^2 \left(x - b \right)$

 $\frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$ $\frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$

further integrals

Sum and product of roots of a cubic equation $\alpha + \beta + \gamma = -\frac{b}{a}$

 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$

Estimation of roots of a polynomial equation

Newton's method

Newton's include
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

	1. C 2. A 3. Â 4. D	5. A 6. D 7: B
<u></u>		•
Q1/1/170S	Section 2	
- · K	Question 8	Question 9
77	a) 24 = a	a)
25	d = -8	1. Equal arcs subtend
<u>u</u>	Tn = a + (n-1)d	equal angles at the
72	= 24 - 8(n-1)	centre.
SampLi	Tn = 32 -8n	<u> </u>
3		Let Lcon=x
	11192 = 32 - 8n	: 180c = x
	8n = 224 n = 28	Now LAOB+2x=180
745K	28th term	(straight line)
77	(B)	: LAOB = 180-2x
	x=t-1 y=t2+t-1	as AO = BO (radii)
	x+1=t into y	10AB = LOBA
7		lequal angles opposite
\rightarrow	$y = (x + 1)^2 + (x + 1) - 1$	equal sides () AOB)
6	$y = x^2 + 2x + 1 + x$	Now
S	$y = x^2 + 3x + 1$	LADB + 2LABO = 180
TENS		(angle sum DAOB)
	Vertex (-3/2, -14)	L ABO = 7L
- ×	•	°° as LABO = 280c
4	c)1. LABC = LCAT	(=x)
	angle between the tangent	then as they are
HSC	and the chard equals the	equal alternate angles
4	angle in the alternate segment.	AB is parallel to OC.
	11.	
9	LBAC=90° (angle in the semi-circle)	
2016	Now 90' + 39" + CBCA = 180"	
2	(angle sum DBCA)	
	.'. LBCA = 51°	·
\		

		•
		<u>C</u> ,
		C

	con't	Δ.
•	1. abx = -d/a	T5 = 3 T2
	= - 7	a+4d=3(a+d)
	$11. \Delta \beta + \Delta Y + \beta Y = \frac{C}{a}$	d = 2a
	= -5	$S_6 = 6(2a + 5d) = 144$
	tii.	2
	d+B+8=-b	3(d+5d)=144
	= 1	3(6d)=144
*	1. 3+8=1-d	6d = 48
		<u>d = 8</u>
	Now B+8 = 1-2	·'. a = 4
	d d	$T_2 = \alpha + 2d$
	= 1 - 1	= 4 + 16
<u>C</u>	٧	= 20
	١٧٠.	$\frac{5}{2} \cdot \frac{3n^2 - 1}{3n^2 - 1}$
	B+8+8+2+2+B	$2 3n^2 - 1$
V-Automatish	d 3 8	(-1) + (2) + (11) + (26)
-	=1-2 + 1-B + 1-8	+ (47) + 74
	<u>α</u> β. 8	sum= 159
	= 1 - 1 + 1 - 1 + 1 - 1	
	β 8	. <u>c.</u>
	=(1+1+1)-3	1. LECD = LBEC
	(d B 8)	LECD = 20 (alternate angles ABIICD opposite sides rhombus parallel)
	= Bx + dx + dB - 3	parallel)
**************************************	288	ZACD = LACB (diagonals of rhombus) = 40 bisect interior angles)
	= -5 -3	: LECD = LECA + LACD (adjacent angle
	-2	ie 7 d = 20 (LECD)
	= -1-	and $\theta = \frac{7}{2}$.
1,000	11.	2x +8x = 180° (co-interior angles 48/100
		d = 18°
		∴ 0 = 63°

		•
		•
		C

	Mar 2 1/01 1
£	
	$a. (0+2)(0^2-3a+5)$
	$= a(a^2-3a+5)+2(a^2-3a+5)$
	$= a^3 - a^2 - a + 10$
	b. T ₁ T ₂ T ₃
	AP a a+d a+2d
	10 10 10 10 10 10 10 10 10 10 10 10 10 1
8	S = (a+b) + (a+ab+d) + (a+ab+2d)
	11a+b=-1 (1)
	$a + d + ab = -2 \implies a + d + a(-1-b) = -2$
	$d = a^2 - 2$
Q ₄	$d a + 2d + ba^2 = 6$ 3
	.: sub into () & (2) into (3)
	$a_{+2}(a^{2}-2) + a^{2}(-1-a) = 6$
	$a + 2a^2 - 4 - a^2 - a^3 - 6 = 0$
	$-a^3+a^2+a-10=0$
	$a^3 - a^2 - a^2 + 10 = 0$
	11) from part (a) $T_{\Lambda} = -2 + (\gamma - 1) \times 2 + 1(-2)^{\gamma - 1}$
	$(a+2)(a^2-3a+5)=0$
	as a is real = $2n - 4 + (-2)^{n-1}$
	0=-2
	$\alpha = -2$ as lequired
	b=1
	d = 2
	0 6
	$S = \begin{bmatrix} -2+1 \end{bmatrix} + \begin{bmatrix} 0+-2 \end{bmatrix} + \begin{bmatrix} 2+4 \end{bmatrix} +$
	1è (-2+0+2) + (1+-2+4+) → AP+GP.
	$T_n = a + (n-i)d + ar^{n-1}$
	$\frac{111-41(11-1)4}{111-111}$

	·
•	Question 12:
	n = 360
	3-6% = 0.003 p. month 11. 360 x 1818.58 = 654688.81
	120 × 1818·58 +
	$A_1 = 400000 (1.003) - M$ 196x2100
	$A_2 = \frac{400000(1.003) - m}{(1.003) - m} = 629829.60$
	$=400000(1.003)^{2}-m[1.003+1]$
The state of the s	Saved
[].	$A_n = 400000 (1.003)^{2} - M [1.003^{2} + + 1]$ \$24859.20
	$A_n = 400\ 000 \left(1.003\right)^n - M \left[1\left(1.003^n - 1\right)\right]$
	0.003
	Now An= 0 n= 360
	$M \left[\frac{1.003^{360}}{-1} \right] = 400 000 \left(1.003 \right)^{360}$
	L 0.003 $m = 1818.58
	A "120 [120]
11/-	$A_{120} = 400000 \left(1.003\right)^{120} - 1818.58 \left[1.003^{120} - 1\right]$
	= \$310 809.60
	Now
<u>C</u>	$A_n = 0 = 310809.60(1.003)^{2} - 2100(1.003^{2} - 1)$
	0.003
	0=310809.60(1.003)-700000(1.003)-1)
	0 = -389190.4(1.003) + 700 000
	1.003^= 1.7986
	n = log 1.7986
. .	1091.003
	= 195.963
	= 196 payments.

		•
		•

	MARSILOVIO.	
*	<u> </u>	As PB = QD equal radii
		of equal circles
	PXIX	and PB/IAD (part ii)
		PadB is a parallelogram
	C A D	as one pair of opposite
	В	sides are equal and
	1) As C, and C2 have	parallel.
***************************************	equal radii, given	
~	AC = AD	13 b)
	(equal diameters	$3c = a\cos 2\theta$, $y = a\sin \theta$
	of equal circles)	T
	LABC = LABD = 90°	1. $\frac{3c}{2} = 1 - 2\sin^2\theta$ (3)
	(angle in semi-circles	a
	C, and C2 AB is a	$(as cos 2\theta = 1 - 2sin^2\theta)$
	common chord)	sub (2) into (8)
	.º AABC = AABD (RHS)	$\frac{7}{a} = \left -2\left(\frac{y}{a}\right)^2\right $
-	11) Join PB	$x = 1 - 2y^2$
-	Let LADB=2	a a²
	os LACB=LADB	$ax = a^2 - 2g^2$
	= 2	$dy^2 = a^2 - a > L$
	(corresponding angles)	$y^2 = -a(z-a)$
	PC = PB (radii of	2
**************************************	circle C ₁)	11) as -1 Esino El
	: LPBC = LPCB (equal engle	-0 < y < a
	= 2 equal side	s) \ when $y = a$ $x = -c$
<u> </u>	Now	making x>,-a vertex@(a,o)
	LPBC = LADB	14 - y= a
<u> </u>	= 2	
·	of the corresponding angle	s of $(a,0)$ \times
, ,	PBC XADB one equal m	aking (4,0)
	PBIIAD.	3