Package 'CongreveLamsdell2016'

December 10, 2018

```
Version 1.0.0
Date 2018-12-07
Title Distance metrics for trees generated by Congreve and Lamsdell (2016)
Description Includes the 100 datasets simulated by Congreve and Lamsdell (2016)
     <doi:10.1111/pala.12236>, and analyses of the partition and quartet distance of
     reconstructed trees from the generative tree, as analysed by Smith (2019).
URL https://github.com/ms609/CongreveLamsdell2016
BugReports https://github.com/ms609/Quartet/issues
Copyright Data from Congreve & Lamsdell (2016) released under a CC0 license
     <doi:10.5061/dryad.7dq0j/1>.
License GPL (\geq 2)
Encoding UTF-8
Language en-GB
Depends R (>= 3.4.0)
Imports Ternary
Suggests ape,
     knitr,
     phangorn,
     Quartet,
     TreeSearch (> 0.2.0),
     Ternary,
     usethis
Remotes ms609/Quartet,
     ms609/TreeSearch
LazyData true
ByteCompile true
VignetteBuilder knitr
RoxygenNote 6.1.1
Roxygen list(markdown = TRUE)
```

2 clColours

R topics documented:

	clCI	
	clColours	
	clInitializeTernaryQuarts	
	clInitializeTernarySplits	
	clPhyDat	
	clPlotQuartets	
	clReferenceTree	
	clResults	
	SplitsToPoints	
Index		

Congreve Lamsdell consistency indices

clCI

Description

Congreve Lamsdell consistency indices

Usage

clCI

Format

An object of class numeric of length 100.

clColours

 $Default\ colours\ for\ analyses$

Description

Default colours for analyses

Usage

clColours

Format

An object of class character of length 8.

clInitialize Ternary Quarts

Initialize ternary plots for quartet plotting

Description

Initialize ternary plots for quartet plotting

Usage

```
clInitializeTernaryQuarts(zoom = 1, padding = 0.1, gridLines = 10, fontSize = 1, gridCol = rgb(0.92, 0.92, 0.92), backgroundCol = rgb(0.985, 0.985, 0.992), xLim = c(0, 1/zoom) - 0.01, yLim = c(0.5 - (1/zoom), 0.5))
```

clInitializeTernarySplits

Initialize ternary plots for partition plotting

Description

Initialize ternary plots for partition plotting

Usage

```
clInitializeTernarySplits(fontSize = 1, xlim = NULL, ylim = NULL,
  gridCol = rgb(0.92, 0.92, 0.92), padding = 0.1)
```

clPhyDat

100 simulated data matrices

Description

Contains the 100 simulated matrices generated by Congreve & Lamsdell (2016) using a heterogeneous Markov-k model, generated from the clReferenceTree topology, with all branches sharing an equal length.

Usage

clPhyDat

clMatrices

4 clPlotQuartets

Format

clPhyDat: A list with 100 entries, each comprising a phyDat object of 55 characters for 22 taxa.

• clMatrices: A list with 100 entries, each comprising a list of character tokens for each simulated character, as read from raw nexus files using ape::read.nexus.data. The four dummy 'characters' have been removed.

Source

http://datadryad.org/resource/doi:10.5061/dryad.7dq0j

References

- Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59(3), 447–465. doi: 10.1111/pala.12236.
- Congreve, C. R. & Lamsdell, J. C. (2016). Data from: Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Dryad Digital Repository. doi: 10.5061/dryad.7dq0j.

clPlotQuartets

Plot results

Description

Plot results

Usage

cIReferenceTree 5

Arguments

tree Integer specifying which tree to plot

cex, pch, ... Graphical parameters to pass to JoinTheDots

Named vector specifying colour in which to plot each analysis

Value

Returns invisible.

Functions

- clPlotAverageQuartets: Plots average across all 100 trees
- clPlotTheseAverageQuartets: Plot average for single dataset across all 100 trees
- clPlotSplits: Splits equivalent of clPlotQuartets
- clPlotTheseAverageSplits: Splits equivalent of clPlotTheseAverageQuartets
- clPlotTheseBestAverageSplits: Splits equivalent of clPlotTheseBestAverageQuartets
- clPlotAverageSplits: Splits equivalent of clPlotAverageQuartets
- clPlotBestAverageSplits: Splits equivalent of clPlotAverageQuartets

Author(s)

Martin R. Smith

clReferenceTree

Tree topology for matrix simulation

Description

The tree topology used to generate the matrices in clMatrices Congreve & Lamsdell (2016)

Usage

clReferenceTree

Format

A single phylogenetic tree saved as an object of class phylo

6 clResults

Source

Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59(3), 447–465. doi: 10.1111/pala.12236.

References

- Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59(3), 447–465. doi: 10.1111/pala.12236.
- Congreve, C. R. & Lamsdell, J. C. (2016). Data from: Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Dryad Digital Repository. doi: 10.5061/dryad.7dq0j.

Examples

```
library(ape) # Contains tree plotting functions
data(clReferenceTree)
plot(clReferenceTree)
```

clResults

Congreve and Lamsdell tree distances

Description

Distance of CL trees from generative tree.

Usage

clBremQuartets

clBremPartitions

clMkvPartitions

clMkvQuartets

clBootFreqPartitions

clBootFreqQuartets

clJackFreqPartitions

clJackFreqQuartets

clBootGcPartitions

cIResults 7

```
clBootGcQuartets
clJackGcPartitions
clJackGcQuartets
```

Format

An object of class list of length 7.

Details

For each of the 100 matrices generated by Congreve & Lamsdell (2016), I conducted phylogenetic analysis under different methods:

- markov: Using the Markov K model in MrBayes.
- equal: Using equal weights in TNT.
- implied1, implied2, implied3, implied5, implied10: Using implied weights in TNT, with the concavity constant (k) set to 1, 2, 3, 5, or 10
- impliedC: By taking the strict consensus of all trees recovered by implied weights parsimony analysis under the k values 2, 3, 5 and 10 (but not 1).

For each analysis, I recorded the strict consensus of all optimal trees, and also the consensus of trees that were suboptimal by a specified degree.

I then calculated, of the total number of quartets or partitions that were resolved in the reference tree, how many were the same or different in the tree that resulted from the phylogenetic analysis, and how many were not resolved in this tree (r2).

The data object contains a list whose elements are named after the methods, as listed above.

Each list entry is a three-dimensional array, whose dimensions are:

- 1. The suboptimality of the tree. Different measures of node support are employed: * Mkv: Posterior probabilities, at 2.5 97.5 * Brem: Bremer supports: the consensus of all trees that are (equal weights) 0, 1, 19, 20 steps less optimal than the optimal tree (implied weights: the consensus of all trees that are $0.73^{(19:0)}$ less optimal than the optimal tree). * Boot: Bootstrap supports (symmetric resampling, p = 0.33). * Jack: Jackknife supports (p = 0.36). Boot and Jack results are reported both as the frequency of splits among replicates, and using the gc (Groups Present / Contradicted) measure (Goloboff *et al.* 2003)
- 2. The number of quartets or partitions in total, the same, different, resolved in the estimated tree but not the generative tree (=0), resolved in the generative tree but not the estimated tree
- 3. The number of the matrix, from 1 to 100.

Source

Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. *Palaeontology* 59(3), 447–465. doi: 10.1111/pala.12236.

SplitsToPoints

References

Goloboff, P. A., J. S. Farris, M. Källersjö, B. Oxelman, M. J. Ramírez, and C. A. Szumik. 2003. Improvements to resampling measures of group support. *Cladistics* 19, 324–332. doi: 10.1016/S07483007(03)000604.

See Also

clMatrices, clReferenceTree.

SplitsToPoints

Convert splits data to ternary-plottable points

Description

Convert splits data to ternary-plottable points

Usage

SplitsToPoints(itemData)

Index

*Topic datasets	cl $Results, 6$
clCI, 2	
clColours, 2	invisible, 5
clPhyDat, 3	JoinTheDots, 5
clReferenceTree, 5	3011111100003, 3
clResults, 6	SplitsToPoints, 8
clBootFreqPartitions (clResults), 6	
clBootFreqQuartets (clResults), 6	
clBootGcPartitions (clResults), 6	
clBootGcQuartets (clResults), 6	
clBremPartitions (clResults), 6	
clBremQuartets(clResults), 6	
clCI, 2	
clColours, 2	
clInitializeTernaryQuarts,3	
clInitializeTernarySplits, 3	
clJackFreqPartitions(clResults), 6	
clJackFreqQuartets (clResults), 6	
clJackGcPartitions (clResults), 6	
clJackGcQuartets (clResults), 6	
clMatrices, 5, 8	
clMatrices (clPhyDat), 3	
clMkvPartitions (clResults), 6	
clMkvQuartets (clResults), 6	
clPhyDat, 3	
<pre>clPlotAverageQuartets (clPlotQuartets), 4</pre>	
clPlotAverageSplits(clPlotQuartets), 4	
clPlotBestAverageSplits	
(clPlotQuartets), 4	
clPlotQuartets, 4	
clPlotSplits (clPlotQuartets), 4	
clPlotTheseAverageQuartets	
(clPlotQuartets), 4	
clPlotTheseAverageSplits	
(clPlotQuartets), 4	
clPlotTheseBestAverageSplits	
(clPlotQuartets), 4	
clReferenceTree, 3, 5, 8	