### DM872 Math Optimization at Work

### Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

[Partly based on slides by David Pisinger, DIKU (now DTU)]

Relaxations and Bounds Subgradient Optimization

**Outline** 

1. Relaxations and Bounds

2. Subgradient Optimization

Relaxations and Bounds Subgradient Optimization

Outline

1. Relaxations and Bounds

2. Subgradient Optimization

### Relaxation

In branch and bound we find upper bounds by relaxing the problem

#### Relaxation

$$\max_{\boldsymbol{s} \in P} g(\boldsymbol{s}) \ge \left\{ \max_{\boldsymbol{s} \in P} f(\boldsymbol{s}) \atop \max_{\boldsymbol{s} \in S} g(\boldsymbol{s}) \right\} \ge \max_{\boldsymbol{s} \in S} f(\boldsymbol{s})$$

- P: candidate solutions;
- $S \subseteq P$  feasible solutions;
- $g(x) \geq f(x)$

#### Which constraints should be relaxed?

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Proper multipliers can be found efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up

### **Relevant Relaxations**

#### Different relaxations

- LP-relaxation
- Deleting constraint
- Lagrange relaxation
- Surrogate relaxation
- Semidefinite relaxation

Relaxations are often used in combination.

### **Tighter**

٨

Best surrogate relaxation

Best Lagrangian relaxation

LP relaxation

## **Surrogate Relaxation**

Integer Programming Problem:  $\max\{cx \mid Ax \leq b, Dx \leq d, x \in \mathbb{Z}_+^n\}^1$ Relax complicating constraints  $Dx \leq d$ . Surrogate Relax  $Dx \leq d$  using multipliers  $\lambda \geq 0$ , i.e., add together constraints using weights  $\lambda$ 

$$z_{SR}(\lambda) = \max cx$$
  
s.t.  $Ax \le b$   
 $\lambda Dx \le \lambda d$   
 $x \in \mathbb{Z}_+^n$ 

**Proposition:** Optimal Solution to relaxed problem gives an upper bound on original problem **Proof:** show that it is a relaxation

Each multiplier  $\lambda_i$  is a weighting of the corresponding constraint If  $\lambda_i$  large  $\Longrightarrow$  constraint satisfied (at expenses of other constraints) If  $\lambda_i = 0 \Longrightarrow$  drop the constraint

<sup>&</sup>lt;sup>1</sup>Notation: in this set of slides vectors are not in bold

## Surrogate Relaxation: Example

$$\begin{array}{lll} \text{maximize} & 4x_1 + & x_2 \\ \text{subject to} & 3x_1 - & x_2 \leq 6 \\ & & x_2 \leq 3 \\ & 5x_1 + 2x_2 \leq 18 \\ & x_1, & x_2 \geq 0, \text{integer} \end{array}$$



IP solution 
$$(x_1, x_2) = (2, 3)$$
 with  $z_{IP} = 11$   
LP solution  $(x_1, x_2) = (\frac{30}{11}, \frac{24}{11})$  with  $z_{LP} = \frac{144}{11} = 13.1$ 

First and third constraints complicating, surrogate relax using multipliers  $\lambda_1=2$  and  $\lambda_3=1$ :

$$\begin{array}{ll} \text{maximize} & 4x_1+x_2\\ \text{subject to} & x_2 \leq 3\\ & 11x_1 & \leq 30\\ & x_1, & x_2 \geq 0, \text{integer} \end{array}$$

Solution 
$$(x_1, x_2) = (2, 3)$$
 with  $z_{SR} = 4 \cdot 2 + 3 = 11$ . Upper bound.

.

## Lagrangian Relaxation

#### Integer Linear Programming problem

$$z = \max cx$$
s.t.  $Ax \le b$ 

$$Dx \le d$$

$$x \in \mathbb{Z}_+^n$$

We relax the Dx < d constraints:

Lagrangian Relaxation,  $\lambda \geq 0$ :

$$z_{LR}(\lambda) = \max cx - \lambda(Dx - d)$$
  
s.t.  $Ax \le b$   
 $x \in \mathbb{Z}^n_+$ 

optimizes over the x variables with  $\lambda$  fixed

Lagrange Dual Problem

$$z_{LD} = \min_{\lambda \ge 0} z_{LR}(\lambda)$$

optimizes over the  $\lambda$  variables with x fixed

# Tightness of Relaxations (1/2)

#### Integer Linear Programming problem

$$z = \max cx$$
s.t.  $Ax \le b$ 

$$Dx \le d$$

$$x \in \mathbb{Z}_+^n$$

### It corresponds to:

$$z = \max \{cx : x \in \text{conv}(Ax \le b, Dx \le d, x \in \mathbb{Z}_+^n)\}$$

#### LP-relaxation:

$$z_{LP} = \max \left\{ cx : x \in Ax \le b, Dx \le d, x \in \mathbb{R}^n_+ \right\}$$

#### Lagrangian Relaxation, $\lambda \geq 0$ :

$$z_{LR}(\lambda) = \max cx - \lambda(Dx - d)$$
  
s.t.  $Ax \le b$   
 $x \in \mathbb{Z}_+^n$ 

#### Lagrange Dual Problem

$$z_{LD} = \min_{\lambda \geq 0} z_{LR}(\lambda)$$

with best multipliers  $\lambda$  it corresponds to:

$$z_{LD} = \max \left\{ cx : Dx \leq d, x \in \text{conv}(Ax \leq b, x \in \mathbb{Z}_+^n) \right\}$$



# Tightness of Relaxations (2/2)

#### Surrogate Relaxation, $\lambda > 0$

#### Surrogate Dual Problem

$$z_{SR}(\lambda) = \max cx$$
  
s.t.  $Ax \le b$   
 $\lambda Dx \le \lambda d$   
 $x \in \mathbb{Z}_+^n$ 

$$z_{SD} = \min_{\lambda \geq 0} z_{SR}(\lambda)$$

with best multipliers  $\lambda$ :

$$z_{SD} = \max \left\{ cx : x \in \text{conv}(Ax \le b, \lambda Dx \le \lambda d, x \in \mathbb{Z}_+^n) \right\}$$

ightharpoonup Best surrogate relaxation (i.e., best  $\lambda$  multipliers) is tighter than best Lagrangian relaxation.

## Relaxation strategies

#### Which constraints should be relaxed

- "the complicating ones"
- remaining problem is polynomially solvable (e.g. min spanning tree, assignment problem, linear programming)
- remaining problem is totally unimodular (e.g. network problems)
- remaining problem is NP-hard but good techniques exist (e.g. knapsack)
- constraints which cannot be expressed in MIP terms (e.g. cutting)
- constraints which are too extensive to express (e.g. subtour elimination in TSP)

Relaxations and Bounds Subgradient Optimization

### **Outline**

1. Relaxations and Bounds

2. Subgradient Optimization

# Subgradient Optimization of Lagrangian Multipliers

$$z = \max \ cx$$
 s.t.  $Ax \le b$  
$$Dx \le d$$
 
$$x \in \mathbb{Z}_+^n$$

Lagrange Relaxation, multipliers  $\lambda \geq 0$ 

$$z_{LR}(\lambda) = \max_{x \in \mathcal{X}} cx - \lambda(Dx - d)$$
  
s.t.  $Ax \leq b$   
 $x \in \mathbb{Z}_{+}^{n}$ 

#### Lagrange Dual Problem

$$z_{LD} = \min_{\lambda > 0} z_{LR}(\lambda)$$

- We do not need best multipliers in B&B algorithm
- Subgradient optimization fast method
- Works well due to convexity
- Roots in nonlinear programming, Held and Karp (1971)

## Subgradient optimization, motivation



Lagrange function  $z_{LR}(\lambda)$  is piecewise linear and convex



Netwon-like method to minimize a function in one variable

## **Digression: Gradient methods**

#### Gradient methods are iterative approaches:

- find a descent direction with respect to the objective function f
- move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent, Newton-Raphson method and others. The step size can be computed either exactly or loosely by solving a line search problem.

#### Gradient descent algorithm:

```
Set iteration counter t=0, and make an initial guess x_0 for the minimum Repeat: Compute a descent direction \Delta_t = \nabla(f(x_t)) Choose \alpha_t to minimize f(x_t - \alpha \Delta_t) over \alpha \in \mathbb{R}_+ Update x_{t+1} = x_t - \alpha_t \Delta_t, and t=t+1 Until \|\nabla f(x_k)\| < tolerance
```

We will set  $\alpha_t$  'loosely' by taking small enough values  $\alpha_t > 0$ 

## Newton-Raphson method

Example of gradient algorithm:

Find zeros of a real-valued, derivable function

$$x:f(x)=0.$$

- Start with a guess  $x_0$
- Repeat: Move to a better approximation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$





Geometrically,  $(x_{n+1}, 0)$  is the intersection with the x-axis of a line tangent to f at  $(x_n, f(x_n))$ .

$$f'(x_n) = \frac{\Delta y}{\Delta x} = \frac{f(x_n) - 0}{x_n - x_{n+1}}.$$



## Subgradient

Subgradient: Generalization of gradients to non-differentiable functions.

#### Definition

An *m*-vector  $\gamma$  is subgradient of  $f(\lambda)$  at  $\bar{\lambda}$  if

$$f(\lambda) \ge f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$$

The inequality says that the hyperplane

$$y = f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$$

is tangent to  $y=f(\lambda)$  at  $\lambda=\bar{\lambda}$  and supports  $f(\lambda)$  from below



**Proposition** Given a choice of nonnegative multipliers  $\bar{\lambda}$ , if x' is an optimal solution to  $z_{LR}(\bar{\lambda})$  then

$$\gamma = d - Dx'$$

is a subgradient of  $z_{LR}(\lambda)$  at  $\lambda = \bar{\lambda}$ .

**Proof** Note that for us in the LD problem:  $f(\lambda) = \max_{Ax \leq b} (cx - \lambda(Dx - d))$ . We wish to prove that the inequality from the subgradient definition holds:

$$\max_{Ax \le b} \left( cx - \lambda(Dx - d) \right) \ge \max_{Ax \le b} \left( cx - \bar{\lambda}(Dx - d) \right) + \gamma(\lambda - \bar{\lambda})$$

Indeed:

- We note that in the LHS:  $\max_{Ax \leq b} \left( cx \bar{\lambda}(Dx d) \right) = \left( cx' \bar{\lambda}(Dx' d) \right)$  because x' is by hyothesis the optimal solution of  $f(\bar{\lambda})$ .
- Rewriting the inequality using the hypothesis on  $\gamma$  we have:

$$\max_{Ax \leq b} (cx - \lambda(Dx - d)) \geq (cx' - \bar{\lambda}(Dx' - d)) + (d - Dx')(\lambda - \bar{\lambda}) = cx' - \lambda(Dx' - d)$$

The right most part is the evaluation of the left most problem at a single feasible solution. Hence, it can be at most  $\leq$ .

#### Intuition

### Lagrange dual:

$$\begin{aligned} \min z_{LR}(\lambda) &= cx - \lambda(Dx - d) \\ \text{s.t. } Ax &\leq b \\ x &\in \mathbb{Z}_+^n \end{aligned}$$

Gradient in x' is

$$\gamma = d - Dx'$$

#### **Subgradient Iteration**

Recursion

$$\lambda^{k+1} = \max\left\{\lambda^k - \theta\gamma^k, 0\right\}$$

where  $\theta > 0$  is step-size

If  $\gamma > 0$  and  $\theta$  is sufficiently small  $z_{LR}(\lambda)$  will decrease.

- Small  $\theta$  slow convergence
- Large  $\theta$  unstable

# Held and Karp procedure (gradient descent)

Initially

$$\lambda^0 = [0, ..., 0]$$

compute the new multipliers by recursion

$$\lambda_i^{k+1} := \begin{cases} \lambda_i^k & \text{if } |\gamma_i| \le \epsilon \\ \max(\lambda_i^k - \theta \gamma_i, 0) & \text{if } |\gamma_i| > \epsilon \end{cases}$$

where  $\gamma$  is subgradient. The step  $\theta$  is defined by

$$\theta = \mu \frac{z_{LR}(\lambda^k) - \underline{z}}{\sum_i \gamma_i^2}$$

where  $\mu$  is an appropriate constant and  $\underline{z}$  a heuristic lower bound for the original ILP problem. E.g.  $\mu=1$  and halved if upper bound not decreased in 20 iterations.

#### Lagrange relaxation and LP

For an LP-problem where we Lagrange relax all constraints

- Dual variables are best choice of Lagrange multipliers
- Lagrange relaxation and LP "relaxation"give same bound

Gives a clue to solve LP-problems without Simplex

- Iterative algorithms
- Polynomial algorithms