Biomedical Data Analysis

Biomedical Data Analysis

Assume we are concated by a bio-medical lab

- They have collected data about patients with a certain condition
- ...And they want to get a better understanding of the involved process

Our Dataset

This use case is based on a real-world example

...But for privacy and simplicity reasons we are going to use synthetic data

In [35]: data, name_map = util.generate_data(size=500, seed=42)
data

Out[35]:

	u0	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	u11	u12	u13	u1
0	0.0	4.052587	0.0	0.0	1.069842	-0.744702	0.984682	2.069759	-0.859787	1.615419	1.0	0.0	3.905281	1.422892	0.
1	0.0	2.520945	1.0	0.0	-1.924131	-2.340844	4.663292	-1.633941	-0.322910	0.426927	1.0	0.0	1.319270	1.771152	0.
2	0.0	1.061444	0.0	1.0	0.288059	-1.550216	2.641967	0.823806	1.408493	1.498628	1.0	0.0	-1.072016	-0.750879	0.
3	1.0	0.523647	1.0	1.0	1.824137	-3.052719	4.099077	-2.287757	0.293904	1.628930	1.0	1.0	1.299762	2.085999	1.
4	0.0	2.010178	0.0	0.0	-0.050319	-1.734852	3.162254	-0.803245	-1.318084	0.507807	0.0	0.0	0.307414	-0.884796	0.
•••															
495	1.0	7.434214	1.0	1.0	-1.948899	-2.436769	2.303599	0.505025	2.199709	1.713777	1.0	0.0	5.451237	0.257810	1.
496	0.0	7.857776	1.0	0.0	0.239719	-0.604961	2.301580	-1.150514	-0.416341	2.100331	0.0	0.0	4.269326	0.760440	0.
497	1.0	3.348010	0.0	0.0	0.147685	-2.913812	2.887376	-0.372831	0.630228	0.967976	0.0	0.0	0.576445	0.450504	0.
498	1.0	2.784484	0.0	0.0	-2.082640	-1.505432	4.271790	-0.269379	0.882540	0.745919	1.0	1.0	0.424243	-1.446797	0.
499	1.0	1.808553	1.0	0.0	-2.458112	-0.539921	3.231171	-2.915948	0.373485	2.988293	1.0	1.0	-0.618186	-0.810217	1.
F.O.(_	4 /													

How do we start?

Our Dataset

Let's have a first look at the dataset

[64]:	data.describe()													
		u0	u1	u2	u3	u4	u5	u6	u7	u8				
	count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.0000			
	mean	0.396000	1.828261	0.514000	0.330000	-0.030795	-1.435561	2.995727	-0.361947	0.418395	1.0805			
	std	0.489554	2.112032	0.500305	0.470684	1.440194	0.964821	1.008219	1.463672	0.977034	1.3008			
	min	0.000000	0.055230	0.000000	0.000000	-4.699421	-4.185974	0.033381	-5.647642	-2.714647	-2.8838			
	25%	0.000000	0.547481	0.000000	0.000000	-1.034566	-2.131690	2.289419	-1.295046	-0.244845	0.1887			
	50%	0.000000	1.127278	1.000000	0.000000	0.023120	-1.446049	3.044132	-0.320448	0.376119	1.0583			
	75%	1.000000	2.127061	1.000000	1.000000	0.927888	-0.754598	3.714111	0.561467	1.077532	1.9744			
	max	1.000000	13.486418	1.000000	1.000000	3.747794	1.144399	5.906263	4.334036	3.374752	5.5265			

- lacktriangleright There is one target binary variable Y, representing the condition under study
- All other columns represent potentially correlate variables
- we are going to refer to them as "potential correlates"
 - Thoy are called II which stands for "unknown"

Categorial and Numerical Variables

Some of the potential correlates are numeric, others are categorical

```
In [65]: # Identify numeric and categorical columns
    num_cols = [c for c in data.columns[:-1] if len(data[c].unique()) > 2]
    cat_cols = [c for c in data.columns[:-1] if len(data[c].unique()) == 2]
    print(f'Numeric: {num_cols}')
    print(f'Categorical: {num_cols}')

    Numeric: ['u1', 'u4', 'u5', 'u6', 'u7', 'u8', 'u9', 'u12', 'u13']
    Categorical: ['u1', 'u4', 'u5', 'u6', 'u7', 'u8', 'u9', 'u12', 'u13']
```

- In this synthetic dataset, all categorical variables are binary
- ...Which explains the simple filter we used to identify them

In a real world setting, you'd need to talk to a domain expert for this

Let's check the distribution of the numerical candidate correlates

```
In [66]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
          for ax, cname in zip(axes.ravel(), num_cols):
              data.hist(cname, ax=ax)
          plt.tight_layout()
                                                                                      100
           200
           100 -
             0.0 2.5 5.0 7.5 10.0 12.5
           100
                                                                                      100
                                                                                          -5.0 -2.5 0.0 2.5 5.0
```


Let's check the distribution of the numerical candidate correlates

```
In [66]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), num_cols):
              data.hist(cname, ax=ax)
          plt.tight_layout()
                                                                                     100
           200
           100 -
             0.0 2.5 5.0 7.5 10.0 12.5
           100
                                                                                     100
```

Most of them seem to follow a Normal distribution

Let's check the distribution of the binary candidate correlates

```
In [67]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
          for ax, cname in zip(axes.ravel(), cat_cols):
               data.hist(cname, ax=ax, bins=2)
          plt.tight_layout()
                                                                  u2
                                                                                                      u3
           300
                                               200
           200
                                                                                   200
                                               100
           100
                                                                                    100
                           0.4
                                            1.0
                                                         0.2
                                                               0.4
                                                                    0.6
                                                                          0.8
                                                                                1.0
                                                                                             0.2
                                                                                                   0.4
                                                                                                         0.6
                             u10
           300
           200
                                               200
                                                                                   200
           100
                                               100
                                                                                    100
```


Let's check the distribution of the binary candidate correlates

```
In [67]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
          for ax, cname in zip(axes.ravel(), cat_cols):
               data.hist(cname, ax=ax, bins=2)
          plt.tight_layout()
                                                                                                      u3
            300
                                                200
            200
                                                                                    200
                                                100
            100
                                                                                    100
                           0.4
                                            1.0
                                                         0.2
                                                               0.4
                                                                    0.6
                                                                           0.8
                                                                                1.0
                                                                                             0.2
                                                                                                   0.4
                                                                                                         0.6
                             u10
            300
            200
                                                200
                                                                                    200
            100
                                                100
                                                                                    100
```

Some are well balanced, othere less so

Let's check the target distribution

Let's check the target distribution

The target distribution quite balanced

Checking Univariate Dependencies

Let's check the fraction of Y=1 for the categorical candidates

```
In [56]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
          for ax, cname in zip(axes.ravel(), cat_cols):
               data.groupby(cname)['y'].mean().plot.bar(ax=ax)
          plt.tight_layout()
                                                                                  0.4
           0.4
                                               0.4 -
           0.2 -
                                                                                  0.2
                                              0.2 -
           0.0
           0.6
                                               0.4
                                                                                  0.4
           0.4
                                               0.2 -
                                                                                  0.2
           0.2
```


Checking Univariate Dependencies

Let's check the fraction of Y=1 for the categorical candidates

```
In [56]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
          for ax, cname in zip(axes.ravel(), cat_cols):
               data.groupby(cname)['y'].mean().plot.bar(ax=ax)
          plt.tight_layout()
           0.4
                                              0.4 -
           0.2
                                                                                 0.2
                                              0.2 -
           0.0
           0.6
                                              0.4
                                                                                 0.4
           0.4
                                              0.2 -
                                                                                 0.2
           0.2
```

A few of them seems to have a correlation, other cases are less clear

Checking Univariate Dependencies

Let's check the fraction of y = 1 for the numerical candidates

```
In [57]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
                                                                      for ax, cname in zip(axes.ravel(), num cols):
                                                                                                      bin size = (data[cname].max() - data[cname].min()) / 10
                                                                                                     data['y'].groupby(data[cname] // bin_size).mean().plot.bar(ax=ax)
                                                                      plt.tight layout()
                                                                                                 0.0 - 1.0 - 1.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 -
```

Most of them appear to have some non-linear correlation

Checking Linear Correlations

It's worth checking how all features are correlated

One way to do it is by plotting a correlation matrix (e.g. Pearson)

```
In [63]: plt.figure(figsize=figsize)
            sn.heatmap(data.corr(method='pearson'), annot=True, vmin=-1, vmax=1, cmap='RdBu');
                                                                                                                               - 1.00
                         -0.018 -0.031 0.093 0.028 <mark>-0.046</mark> 0.025 0.042 0.064 -0.05
                                                                                  0.017
                                                                                         0.3 -0.0098-0.00036 0.044
                               0.049 0.0024 -0.0028 -0.013 0.017 -0.01 0.046 0.0046 -0.033 -0.0055 0.53
                                                                                                     0.016 0.02
                                                                                                                 -0.096
                                                                                                                               - 0.75
                                 0.11 0.036 0.053 0.036 <mark>-0.073 -0.065 -0.023 -0.0014 -0.054</mark> 0.056 0.039
                                                                                                                 -0.091
                                           0.021 -0.032 -0.036 -0.0047 0.0065 0.033 0.092 0.047
                                                                                                                 -0.033
                                                                                                                                0.50
                                                  1 0.089 -0.0069 -0.016 -0.0073 0.025
                                                                                                                               - 0.25
                                                         1 -0.088 -0.033 -0.61 -0.045 0.039 0.0012 0.077 -0.022 -0.0005
                                     -0.036 0.094 0.089
                                                                     0.023
                         -0.01 -0.073 -0.0047 0.023 -0.0069 -0.088
                                                                            -0.51 -0.036 0.015
                                                                                                                               - 0.00
                         0.046 -0.065 0.0065 0.054 -0.016 -0.033 0.023
                                                                           -0.047 0.02
                                                                                  0.03 -0.083 0.0018 0.019
               u9 - -0.05 0.0046 -0.023 0.033 -0.066 -0.0073 -0.61 -0.51 -0.047
                                                                                                                               - -0.25
              u10 - 0.017 -0.033 -0.0014 0.092 -0.0056 0.025 -0.045 -0.036
                                                                            0.03
                                                                                        0.032 0.039
              ull - 0.3 -0.0055 -0.054 0.047 -0.019 0.01 0.039 0.015
                                                                     0.045
                                                                           -0.083 0.032
                                                                                              0.041 -0.032
                                                                                                                               - -0.50
                                     0.069
                                             0.18 0.033 0.0012
                                                                     0.051 0.0018
                                                                                                                 0.046
                                            0.47 -0.011 0.077 -0.046 0.055 0.019 -0.082 -0.032
              u13 -0.00036 0.016 0.039
                                     0.036
                                                                                                                  0.14
                                                                                                                               - -0.75
                                      0.094 0.055
                                                   0.11 -0.022 -0.037 -0.036 0.019 -0.0069 -0.04
                        -0.096 -0.091 -0.033
                                            0.12 0.043 -0.0005 0.028 -0.0076 0.0076
                                                                                        0.022
                                                                                                                                -1.00
```


 \searrow Sparse correlations in general, weak (linear) correlations for Y

So far we have just inspected our dataset, but... what is exactly our goal?

Use Case Objective

Unlike in classical ML tasks, we don't have an estimation problem

Rather, our goal is understanding the process behind the data

- We want to identify the true correlates among our candidates
- lacksquare We want to see how they are linked to the target y

In an ideal world, we'd like to know about causal relationships

...But in practice, we'll need to be happy with correlations

- Studying causality is indeed possible (a good start is <u>Judea Pearl's book</u>)
- ...But also very challenging, and there's no general a mature tool available

So, we'll count on the domain expert to check the correlations

