Relatório Técnico

Funções de Ativação em Redes Neurais: Implementação e Análise Prática

Análise de Implementações em Python

27 de setembro de 2025

Conteúdo

1	Intr	Introdução											
2	Funções de Ativação Implementadas												
	2.1	Funçã	ão Sigmoid										
		2.1.1	Definição Matemática										
		2.1.2	Características Principais										
		2.1.3	Implementação em Python										
		2.1.4	Exemplo Prático - Detecção de Fraude										
2.2 Função Softmax													
		2.2.1	Definição Matemática										
		2.2.2	Características Principais										
		2.2.3											
		2.2.4											
	2.3												
		2.3.1											
		2.3.2	Características Principais										
		2.3.3											
		2.3.4											
	2.4 Função ReLU (Rectified Linear Unit)												
		2.4.1											
		2.4.2											
		2.4.3											
		2.4.4											
	2.5	Funcã	áo LeakyReLU										
		2.5.1	·										

		2.5.2	Ca	arac	eterí	ístic	cas	Pr	inc	eipa	ais									6
		2.5.3	In	nple	emei	ntag	ção	en	n F	yt	ho	n.								7
	2.6	Função																		
		2.6.1																		
		2.6.2			cterí															
		2.6.3			emei															
3	Apl	icações	s P	rát	icas	s Ir	mp	ler	me	\mathbf{nt}	ad	as								8
	3.1	Sistem					_													8
	3.2	Anális				_														8
	3.3	Classif																		8
	3.4	Sistem																		8
4	Cor	nparaç	ção	en	tre	Fu	nç	ões	S											9
5	Cor	sidera	ıçõ€	es c	le I	mp	oler	me	enta	aç	ão									9
	5.1	Biblio	teca	as U	Jtili:	zad	las													9
	5.2	Boas I																		9
6	Cor	ıclusão)																	9

1 Introdução

Este relatório apresenta uma análise detalhada das principais funções de ativação utilizadas em redes neurais, com foco em suas implementações práticas, propriedades matemáticas e aplicações em problemas de classificação. As funções estudadas incluem Sigmoid, Softmax, TanH, ReLU, LeakyReLU e ELU.

2 Funções de Ativação Implementadas

2.1 Função Sigmoid

2.1.1 Definição Matemática

A função sigmoid é uma das funções de ativação mais clássicas, definida por:

$$f(x) = \frac{1}{1 + e^{-x}}$$

2.1.2 Características Principais

- Intervalo de saída: (0,1)
- Não-linearidade: Transforma entrada linear em saída não-linear
- Interpretação probabilística: Valores sempre positivos entre 0 e 1
- Aplicação: Classificação binária, camadas de saída

2.1.3 Implementação em Python

```
def funcao_sigmoide(x):
    """

Funcao sigmoid

Parametro: x - valor ou array de entrada
Retorna: valor entre 0 e 1
    """

return 1 / (1 + math.exp(-x))
```

2.1.4 Exemplo Prático - Detecção de Fraude

No documento, foi implementado um sistema de detecção de fraudes bancárias usando sigmoid com threshold de 0.5:

- Score > 0.5: Transação classificada como FRAUDE
- Score ≤ 0.5: Transação classificada como LEGÍTIMA

2.2 Função Softmax

2.2.1 Definição Matemática

A função softmax generaliza a sigmoid para múltiplas classes:

$$\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$$

2.2.2 Características Principais

• Intervalo de saída: (0,1) para cada classe

• Normalização: Soma das probabilidades = 1

• Aplicação: Classificação multiclasse

• Interpretação: Distribuição de probabilidades

2.2.3 Implementação em Python

```
def softmax(x):
    """

Funcao softmax para multiplas classes
    Parametro: x - array de scores (logits)

Retorna: array de probabilidades normalizadas
    """

exp_x = sy.exp(x)
    return exp_x / sy.Sum(exp_x)
```

2.2.4 Exemplo Prático - Classificação de Animais

Implementação para classificar imagens em três categorias:

• Cachorro: logit = 2.0

• Gato: logit = 1.0

• Pássaro: logit = 0.1

Após aplicar softmax: Cachorro (65.9%), Gato (24.2%), Pássaro (9.9%)

2.3 Função TanH (Tangente Hiperbólica)

2.3.1 Definição Matemática

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 = \frac{e^{2x} - 1}{e^{2x} + 1}$$

2.3.2 Características Principais

• Intervalo de saída: (-1,1)

• Centrada em zero: Facilita otimização

• Saturação suave: Evita mudanças bruscas

• Aplicação: Camadas ocultas, análise de sentimentos

2.3.3 Implementação em Python

```
def tanh(x):
    """

Tangente hiperbolica
    Parametro: x - valor de entrada
    Retorna: valor entre -1 e 1
    """

return (2 / (1 + sy.exp(-2*x))) - 1
```

2.3.4 Normalização para Probabilidade

Para converter saída tanh em probabilidade:

$$P = \frac{\tanh(x) + 1}{2}$$

2.4 Função ReLU (Rectified Linear Unit)

2.4.1 Definição Matemática

$$f(x) = \max(0, x)$$

2.4.2 Características Principais

- Simplicidade computacional: Muito eficiente
- Sem saturação positiva: Gradientes não desaparecem
- Esparsidade: Neurônios inativos para x < 0
- Problema: "Dying ReLU- neurônios podem morrer permanentemente

2.4.3 Implementação em Python

```
def relu(x):
    """"
    Funcao ReLU
    Parametro: x - valor ou array de entrada
    Retorna: max(0, x)
    """
    return sy.Max(0, x)
```

2.4.4 Análise de Ativação

No exemplo com CNN, observou-se que 55% dos neurônios permaneceram ativos após aplicar ReLU, demonstrando o efeito de esparsidade da função.

2.5 Função LeakyReLU

2.5.1 Definição Matemática

$$f(x) = \begin{cases} x & \text{se } x > 0\\ \alpha x & \text{se } x \le 0 \end{cases}$$

onde α é tipicamente 0.01 ou 0.3.

2.5.2 Características Principais

- Evita "dying ReLU": Pequena inclinação negativa
- Parâmetro α: Controla inclinação negativa
- Gradientes não-zero: Mesmo para valores negativos

2.5.3 Implementação em Python

2.6 Função ELU (Exponential Linear Unit)

2.6.1 Definição Matemática

$$f(x) = \begin{cases} x & \text{se } x > 0\\ \alpha(e^x - 1) & \text{se } x \le 0 \end{cases}$$

2.6.2 Características Principais

- Suavidade: Exponencial na parte negativa
- Saída média próxima de zero: Facilita aprendizado
- Sem "dying neurons": Gradientes sempre presentes

2.6.3 Implementação em Python

```
def elu(x, alpha=0.8):
    """"
    Funcao ELU
    Parametros: x - entrada, alpha - parametro de escala
    Retorna: x se x > 0, alpha*(exp(x)-1) caso contrario
    """"
    if x > 0:
        return x
    else:
        return alpha * (sy.exp(x) - 1)
```

3 Aplicações Práticas Implementadas

3.1 Sistema de Detecção de Fraudes

• Função: Sigmoid

• Threshold: 0.5

• Resultado: 2 de 5 transações classificadas como fraude

3.2 Análise de Sentimentos em E-commerce

• Função: Sigmoid para probabilidade de sentimento positivo

• Entrada: Scores de comentários

• Saída: Probabilidades de 10% a 97% para sentimento positivo

3.3 Classificação de Imagens com CNN

• Função: ReLU em camadas convolucionais

• Resultado: 55% de neurônios ativos após ReLU

• Aplicação: Detecção de características em 4 feature maps

3.4 Sistema de Controle de Motor

• Função: TanH para comandos suaves

• Intervalo: -1 (anti-horário) a +1 (horário)

• Benefício: Transições suaves evitam mudanças bruscas

4 Comparação entre Funções

Função	Intervalo	Centrada	Uso Principal						
Sigmoid	(0,1)	Não	Classificação binária						
Softmax	(0,1)	Não	Classificação multiclasse						
TanH	(-1,1)	Sim	Camadas ocultas						
ReLU	$[0,\infty)$	Não	Camadas convolucionais						
LeakyReLU	$(-\infty,\infty)$	Não	Evitar dying ReLU						
ELU	$(-\alpha, \infty)$	Quase	Redes profundas						

Tabela 1: Comparação das funções de ativação

5 Considerações de Implementação

5.1 Bibliotecas Utilizadas

• numpy: Operações vetorizadas

• sympy: Computação simbólica

• matplotlib: Visualização de gráficos

5.2 Boas Práticas Observadas

1. Vetorização: Uso de operações numpy para eficiência

2. Modularização: Funções bem definidas e reutilizáveis

3. Validação: Testes com múltiplos valores de entrada

4. Visualização: Gráficos para entender comportamento

6 Conclusão

As funções de ativação são componentes fundamentais em redes neurais, cada uma com características específicas adequadas para diferentes contextos:

- Sigmoid/Softmax: Ideais quando interpretação probabilística é necessária
- TanH: Útil quando valores centrados em zero são desejados

• ReLU e variantes: Escolha padrão para redes profundas devido à eficiência computacional

A escolha da função de ativação impacta diretamente no desempenho e convergência do modelo, sendo essencial considerar o problema específico e a arquitetura da rede.