Exercise Set 1: Big O Notation

Raja Kantheti

1 Question 1:

$$f(n) = 3n^2 + 7n + 10$$

Big O classiffication: $O(n^2)$

$$\mathbf{f(n)} = 5n\log(n) + n^2$$

Big O classification: $O(n^2)$

$$\mathbf{f(n)} = 2^n + n^2$$

Big O classification: $O(2^n)$

2 Question 2:

Growth Rates from slowest to fastest: $n \log(n) \longrightarrow n^2 \longrightarrow 2^n \longrightarrow n!$

3 Question 3:

We define the function:

$$f(n) = n^3 + 100n^2 + 50n + 10$$

To prove $f(n) = O(n^3)$, we need to find constants c > 0 and n_0 such that:

$$f(n) \le cn^3, \quad \forall n \ge n_0.$$

Replace each term with an upper bound proportional to n^3 :

$$n^3 + 100n^2 + 50n + 10 \le n^3 + 100n^3 + 50n^3 + 10n^3$$
.

Since for $n \ge 1$, we can deduct that, $n^2 \le n^3$, $n \le n^3$, and $1 \le n^3$

$$= (1 + 100 + 50 + 10)n^3 = 161n^3.$$

Thus, we have:

$$f(n) \le 161n^3, \quad \forall n \ge 1.$$

By setting c = 161 and $n_0 = 1$, we have a c and an n_0 which satisfy the definition of big O notation. Therefore, we can conclude that:

$$f(n) = O(n^3).$$

4 Question 4:

For SElection sort:

runns inner and ourter oop irrespective of the input. (Worst and best input)

Worst-case scenario: n^2 Best-case scenario: n^2

For Insertion sort:

Runs only the outer loop for input that is sorted. (Best Input)

RUns both inner and outer loop for input that is reverse sorted or random.(Worst input)

Worst-case scenario: n^2 Best-case scenario: n