Analízis 3. (B és C szakirány)

Kidolgozott elméleti kérdéssor

A kidolgozást Tóta Dávid készítette Dr. Weisz Ferenc kérdéssora alapján, a dokumentum végén feltüntetett források segítségével. Jelen fájl ekkor lett frissítve: 2018. szeptember 16.

A legfrissebb verzió elérhető itt: http://people.inf.elte.hu/totadavid95/Analizis3/Anal3_def.pdf

Kéretik a félév végéig minden vasárnap este ellenőrizni a fenti linket, a folyamatos frissítés és a hibajavítások végett.

Fontos, hogy ez **nem egy hivatalos, tanárok által lektorált és elfogadott kidolgozás**! A készítők, bár a legjobb tudásuk és szándékuk szerint jártak el, **nem vállalnak felelősséget** az itt leírtak helyességéért, következésképpen azért sem, ha valaki emiatt pontot veszít valamilyen számonkérésen.

1. Definiálja a primitív függvényt.

Legyen $[a,b] \subset \mathbb{R}$ korlátos és zárt intervallum. A $F:[a,b] \to \mathbb{R}$ függvény a $f:[a,b] \to \mathbb{R}$ egy primitív függvénye, ha F folytonos [a,b]-n, $F \in D\{x\}$ minden $x \in (a,b)$ esetén és F'(x) = f(x).

2. Adjon meg olyan függvényt, amelynek nincs primitív függvénye.

$$f(x) = sin(x) \ (x \in (-1,1))$$

3. Definiálja az egy adott pontban eltűnő primitív függvény fogalmát.

 $\int_{x_0} f$ jelöli azt az egyetlen F primitív függvényt, amelyre $F(x_0) = 0$.

4. A primitív függvény létezésére vonatkozó szükséges feltétel.

Ha I intervallum és $f: I \to \mathbb{R}$ függvények \exists primitív függvénye, akkor f Darboux tulajdonságú.

5. Milyen elégséges feltételt ismer primitív függvény létezésére?

Ha $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$ folytonos függvény, akkor f-nek létezik primitív függvénye.

6. Mit jelent egy függvény határozatlan integrálja?

Ha az $f: I \to \mathbb{R}$ függvény primitív függvénye F, akkor legyen $\int f := \{F + c : c \in \mathbb{R}\}$ neve az, hogy határozatlan integrál.

7. Mit ért a határozatlan integrál linearitásán?

Legyen $I \subset \mathbb{R}$ nyílt intervallum. Ha $f, g: I \to \mathbb{R}$ függvényeknek létezik primitív függvénye, akkor tetszőleges $\alpha, \beta \in \mathbb{R}$ mellett $(\alpha f + \beta g)$ -nek is létezik primitív függvénye, és $\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$.

8. Milyen állítást ismer hatványsor összegfüggvényének a primitív függvényéről?

A $\sum \alpha_n(x-a)^n$, $x \in K_R(a)$, R > 0 hatványsor primitív függvénye:

$$\sum_{n=0} \alpha_n \frac{(x-a)^n + 1}{n+1} + c, x \in K_R(a).$$

9. Mit mond ki a primitív függvényekkel kapcsolatos parciális integrálás tétele?

Tegyük fel, hogy $f,g:I\to\mathbb{R},\ f,g\in D(I)$. Ha
 $\exists\ f'g$ primitív függvénye és $\int f*g'=f*g-\int f'*g$ és $\int_{x_0}f*g'=f*g-f(x_0)g(x_0)-\int_{(x_0)}f'*g$, akkor
 $\exists\ fg'$ primitív függvénye.

1

10. Hogyan szól a primitív függvényekkel kapcsolatos első helyettesítési szabály?

Legyen $g:I\to J,\ g\in D(I),\ f:J\to\mathbb{R},\ I,J\subset\mathbb{R}$ intervallum. Ha $\exists\ f$ -nek primitív függvénye, akkor

$$\int f \circ g * g' = \left(\int f \right) \circ g \text{ \'es } \int_{t_0} f \circ g * g' = \left(\int_{(g(t_0))} f \right) \circ g.$$

11. Fogalmazza meg a primitív függvényekkel kapcsolatos második helyettesítési szabályt.

Tegyük fel, hogy $f: I \to \mathbb{R}$, $g: J \to I$ bijekció, $g \in D(J)$, $g'(x) \neq 0$, $x \in I$. Ha $\exists f \circ g * g': J \to \mathbb{R}$ primitív függvény, akkor:

$$\int f = \left(\int f \circ g * g' \right) \circ g^{-1} \text{ és } \int_{x_0} f = \left(\int_{x_0} f \circ g * g' \right) \circ g^{-1}.$$

12. Adjon meg legalább három olyan függvényt, amelyiknek a primitív függvénye nem elemi függvény.

$$\int \frac{\sin(x)}{x}$$

$$\int \frac{\cos(x)}{x}$$

$$\int e^{-x^2} dx$$

13. Definiálja az intervallum egy felosztását.

Legyen $a, b \in \mathbb{R}$, a < b. Ekkor az [a, b] intervallum felosztásán olyan véges $\tau = \{x_0, x_1, ..., x_n\} \subset [a, b]$ halmazt értünk, amelyre $a = x_0 < x_1 < ... < x_n = b$.

14. Mit jelent egy felosztás finomítása?

Legyen $a, b \in \mathbb{R}$, a < b és $\tau_1, \tau_2 \subset [a, b]$ egy-egy felosztása [a, b]-nek. Ekkor τ_2 finomítása τ_1 -nek, ha $\tau_1 \subset \tau_2$.

15. Mi az alsó közelítő összeg definíciója?

Legyen $a, b \in \mathbb{R}$, a < b, $f : [a, b] \to \mathbb{R}$ egy korlátos függvény, $\tau = \{x_0, x_1, ..., x_n\} \subset [a, b]$ egy felosztása [a, b]-nek, $m_i := \inf\{f(x) | x_i \le x \le x_{i+1} (i = 0, 1, ..., n - 1)\}$. Ekkor

$$s(f,\tau) := \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

az f függvény $\tau\text{-hoz}$ tartozó alsó közelítő összege.

16. Mi a felső közelítő összeg definíciója?

Legyen $a, b \in \mathbb{R}$, a < b, $f : [a, b] \to \mathbb{R}$ egy korlátos függvény, $\tau = \{x_0, x_1, ..., x_n\} \subset [a, b]$ egy felosztása [a, b]-nek, $M_i := \sup\{f(x) | x_i \le x \le x_{i+1} (i = 0, 1, ..., n - 1)\}$. Ekkor

$$S(f,\tau) := \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

az f függvény τ -hoz tartozó felső közelítő összege.

17. Mi történik egy alsó közelítő összeggel, ha a neki megfelelő felosztást finomítjuk?

Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ egy korlátos függvény. Ha $\tau_1,\tau_2 \subset [a,b]$ egy-egy felosztása [a,b]-nek, $s(f,\tau_1),s(f,\tau_2)$ a megfelelő alsó közelítő összegek és τ_2 finomítása τ_1 -nek, akkor $s(f,\tau_1) \leq s(f,\tau_2)$.

2

18. Mi történik egy felső közelítő összeggel, ha a neki megfelelő felosztást finomítjuk?

Legyen $a, b \in \mathbb{R}$, $a < b, f : [a, b] \to \mathbb{R}$ egy korlátos függvény. Ha $\tau_1, \tau_2 \subset [a, b]$ egy-egy felosztása [a, b]-nek, $S(f, \tau_1), S(f, \tau_2)$ a megfelelő felső közelítő összegek és τ_2 finomítása τ_1 -nek, akkor $s(f, \tau_1) \geq s(f, \tau_2)$.

19. Milyen viszony van az alsó és a felső közelítő összegek között?

Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ egy korlátos függvény. Ha $\tau_1,\tau_2 \subset [a,b]$ egy-egy felosztása [a,b]-nek, $s(f,\tau_1),S(f,\tau_2)$ a megfelelő alsó, valamint felső közelítő összegek, akkor $s(f,\tau_1) \leq S(f,\tau_2)$.

20. Mi a Darboux-féle alsó integrál definíciója?

Legyen $a,b \in \mathbb{R}$, a < b, $f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $s(f,\tau)$ az f függvény τ -hoz tartozó alsó közelítő összege. Jelölje F([a,b]) az [a,b] felosztásainak a halmazát. Ekkor az $\{s(f,\tau)|\tau \in F([a,b])\}$ halmaz felülről korlátos, ezért létezik szuprémuma. Az

$$I_*(f) := \sup\{s(f,\tau) | \tau \in F([a,b])\}$$

számot az f függvény Darboux-féle alsó integráljának nevezzük.

21. Mi a Darboux-féle felső integrál definíciója?

Legyen $a,b \in \mathbb{R}$, a < b, $f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $S(f,\tau)$ az f függvény τ -hoz tartozó felső közelítő összege. Jelölje F([a,b]) az [a,b] felosztásainak a halmazát. Ekkor az $\{S(f,\tau)|\tau \in F([a,b])\}$ halmaz felülről korlátos, ezért létezik infimuma. Az

$$I_*(f) := \inf\{S(f,\tau) | \tau \in F([a,b])\}$$

számot az f függvény Darboux-féle felső integráljának nevezzük.

A kidolgozáshoz az alábbi anyagok lettek felhasználva:

- Dr. Weisz Ferenc kérdéssora Link
- Umann Kristóf L^AT_FX dokumentumai kiindulási alapnak Link
- Dr. Szili László Analízis 2 kidolgozása Link
- Szánthó József kidolgozásai Link
- Lanka Máté kidolgozása Link

Továbbá köszönet illeti a következő személyeket is az általuk nyújtott segítségért: Zatureczki Marcell, Tűri Erik, Mosi Zoltán