Формальные грамматики

Евгений Борисов

грамматика составляющих

грамматика зависимостей

грамматика составляющих (constituency grammar)

— разметка (вложенных) групп

именная группа (группа существительного, ИГ; англ. noun phrase, NP) — возглавляется существительным; группа прилагательного (ГПрил; adjectival phrase, AP) — возглавляется прилагательным; наречная группа (НарГ; adverbial phrase, AdvP) — возглавляется наречием; предложная группа (ПрГ; prepositional phrase, PP) — возглавляется предлогом; глагольная группа (ГГ; verb phrase, VP) — возглавляется глаголом; предложение (П; sentence, S).

Эти школьники скоро будут писать диктант по русскому языку

Формальная грамматика - способ описания языка

$$G=(N,\Sigma,R,s); V=N\cup\Sigma$$

N — множество (алфавит) нетерминальных символов (синтаксические переменные или понятия)

Σ - множество (алфавит) терминальных символов (не пересекается с N)

V - словарь грамматики G

s - начальный нетерминал (принадлежит алфавиту нетерминалов N)

R - конечное множество правил вывода (продукции), вида $A \to b$, где A, b — последовательности символов из алфавита V грамматики G

Нетерминальные символы

- объекты, обозначающие какую-либо сущность языка (предложение, формула и т.д.).

Терминальные символы

- объекты непосредственно присутствующие в языке.

Форма Бэкуса-Наура (БНФ) - способ представления КС-грамматик

Lex/Yacc калькулятор:

```
%token INTEGER
```

```
expr: INTEGER
| "-" expr
| "(" expr ")"
| expr "-" expr
| expr "+" expr
| expr "*" expr
| expr "/" expr
```

```
expr — нетерминальный символ (объект, обозначающий сущность языка)
- + () * / число — терминальные символы (объекты непосредственно присутствующие в языке)
(пример описывает только INT)
```

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

$$G=(N,\Sigma,R,s); V=N\cup\Sigma$$

Avram Noam Chomsky

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

контекстно-зависимые

 $R: \alpha A\beta \rightarrow \alpha \gamma \beta$

А — нетерминал из N

 α,β — любые (в т.ч. пустые) последовательности из V

у — любая непустая последовательность из V

$G=(N,\Sigma,R,s); V=N\cup\Sigma$

Avram Noam Chomsky

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

контекстно-зависимые

 $R: \alpha A\beta \rightarrow \alpha \gamma \beta$

А — нетерминал из N

α,β — любые (в т.ч. пустые) последовательности из V

у — любая непустая последовательность из V

$G=(N,\Sigma,R,s); V=N\cup\Sigma$

Avram Noam Chomsky

контекстно-свободные

 $R:A \rightarrow \beta$

А — нетерминал из N

 β — любая (в т.ч. пустая) последовательность из V

применяются для описания компьютерных языков

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

контекстно-зависимые

 $R: \alpha A\beta \rightarrow \alpha \gamma \beta$

А — нетерминал из N

 α, β — любые (в т.ч. пустые) последовательности из V

ү — любая непустая последовательность из V

$G=(N,\Sigma,R,s); V=N\cup\Sigma$

Avram Noam Chomsky

контекстно-свободные

 $R:A \rightarrow \beta$

А — нетерминал из N

 β — любая (в т.ч. пустая) последовательность из V

применяются для описания компьютерных языков

регулярные

 $R: A \rightarrow A\beta$, $A \rightarrow \beta$ (леворекурсивные)

 $R: A \rightarrow \beta A$, $A \rightarrow \beta$ (праворекурсивные)

А — нетерминал из N

 β — последовательность (в т.ч. пустая) терминалов из Σ

применяются для описания простых конструкций

Нормальна форма грамматики по Хомскому (CNF)

продукции имеют вид: $A \rightarrow BC$, $A \rightarrow \alpha$, $s \rightarrow \epsilon$,

где

А, В, С - нетерминалы (В и С не могут являться начальными символами),

α - терминальный символ,

s - начальный символ,

ε - пустая строка.

Эквивалентность грамматик

- сильная (совпадает язык и дерево разбора)
- слабая (совпадает язык, деревья разбора могут отличаться)

Теорема:

любая КС-грамматика может быть преобразована в эквивалентную CNF-грамматику.

Контекстно-свободные грамматики и регулярные языки

- Контекстно-свободные грамматики являются обобщением регулярных грамматик
- Центральная вставка $A \to \alpha A \beta$
- Пример:
 - -The luggage arrived.
 - -The luggage that the passengers checked arrived.
 - -The luggage that the passengers that the storm delayed checked arrived.

Методы синтаксического разбора

- рекурсивный спуск (top-down parsing)
- восходящий анализ (bottom-up parsing)
- алгоритм Кока-Янгера-Касами (CKY parsing)
- алгоритм Эрли (Earley parser)

. . .

 $S \to NP \ VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Det → that I this I a

Noun → book I flight I meal I money

Verb → book | include | prefer

Pronoun → II she I me

Proper-Noun → Houston I TWA

Aux → does

Preposition → from I to I on I near I through

Анализ рекурсивным спуском (top-down parsing)

правила формальной грамматики раскрываются, начиная со стартового символа, до получения требуемой последовательности токенов.

Восходящий анализ (bottom-up parsing)

сначала распознает мелкие детали самого низкого уровня текста, а затем его структуры среднего уровня, и оставляет общую структуру самого высокого уровня на потом.

Частичный разбор (группировка, применение группы правил)

Применяется для извлечения именованных сущностей

- Partial parsing, Shallow parsing
- Chunking, фрагментирование
 - -[NP The morning flight][PP from][NP Denver][VP has arrived]
 - -[NP The morning flight] from [NP Denver] has arrived

Группировка на основе машинного обучения

- Классы BIO (begin, inside, outside)
- Тренировочное множество Treebank

Признаки: The, DT, B_NP, morning, NN, I_NP, flight, NN, from, IN, Denver, NNP

Статистические КС-грамматики

$$G=(N,\Sigma,R,s); V=N\cup\Sigma$$

N — множество (алфавит) нетерминальных символов (синтаксические переменные или понятия)

Σ - множество (алфавит) терминальных символов (не пересекается с N)

V - словарь грамматики G

s - начальный нетерминал (принадлежит алфавиту нетерминалов N)

R - конечное множество правил вывода (продукции), вида $\mathbf{A} \to \mathbf{\beta}[\mathbf{p}]$

где

А — нетерминал из N

β — последовательности символов из алфавита V грамматики G

р — вероятность правила P(β|A) (сумма вероятностей всех правил вида $A \to *$ равна 1)

Нетерминальные символы

- объекты, обозначающие какую-либо сущность языка (предложение, формула и т.д.).

Терминальные символы

- объекты непосредственно присутствующие в языке.

Статистические КС-грамматики

Грамматика	Вероятность	Лексикон
$S \rightarrow NP VP$	0.8	Det → the a that this
$S \rightarrow Aux NP VP$	0.1 + 1.0	0.6 0.2 0.1 0.1
$S \rightarrow VP$	0.1	Noun → book flight meal money
NP → Pronoun	0.2	0.1 0.5 0.2 0.2
NP → Proper-Noun	0.2 + 1.0	Verb → book include prefer
NP → Det Nominal	0.6	0.5 0.2 0.3
Nominal → Noun	0.3	Pronoun \rightarrow I he she me
Nominal → Nominal Nou	ın 0.2 + 1.0	0.5 0.1 0.1 0.3
Nominal → Nominal PP	0.5	Proper-Noun → Houston NWA
VP → Verb	0.2	0.8 0.2
VP → Verb NP	0.5 + 1.0	Aux → does
$VP \rightarrow VP PP$	0.3	1.0
PP → Prep NP	1.0	Prep → from to on near through
		0.25 0.25 0.1 0.2 0.2

Статистические КС-грамматики

Разрешение многозначности

• Вероятность разбора

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

- Вероятность P(T,S) = P(T)P(S|T) = P(T)
- Выбор наиболее вероятного дерева разбора $\hat{T}(S) = \arg \max P(T|S)$

$$\hat{T}(S) = \operatorname*{arg\,max}_{T} \frac{P(T,S)}{P(S)}$$

$$\hat{T}(S) = \operatorname*{arg\,max}_{T} P(T, S)$$

$$\hat{T}(S) = \operatorname*{arg\,max}_{T} P(T)$$

Статистические КС-грамматики

Разрешение многозначности

 $P(T-left) = .05^*.20^*.20^*.20^*.75^*.30^*.60^*.10^*.40 = 2.2^*10^{-6}$ $P(T-right) = .05^*.10^*.20^*.15^*.75^*.75^*.30^*.60^*.10^*.40 = 6.1^*10^{-7}$

Статистические КС-грамматики

Обучение СКС

 Вычисление вероятности на основе банка деревьев

$$P(\alpha \to \beta | \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\gamma} Count(\alpha \to \beta)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

- Вывод без тренировочного множества (ЕМ)
 - На основе множества предложений построить множество наиболее вероятных синтаксических разборов
 - Обновить значения вероятностей на основе полученных данных
 - -(Manning and Schutze 1999)

Оценка качества алгоритма

- Метрика PARSEVAL: пусть Р дерево разбора, созданное алгоритмом, Т дерево разбора, созданное экспертами
 - -Точность = (# правильных компонент в P) / (# компонент в T)
 - **—Полнота** = (# правильных компонент в P) / (# компонент в P)
 - -F-mepa = 2PR / (P + R)
- Современные алгоритмы показывают точность и полноту более 90%

Литература

git clone https://github.com/mechanoid5/ml_nlp.git

Турдаков Д.Ю.

Основы обработки текстов. лекция 7.

Формальные грамматики и синтаксический анализ. ИСП РАН, 2017 https://www.youtube.com/watch?v=TkMtUm-D6aE

Steven Bird, Ewan Klein, and Edward Loper Analyzing Text with the Natural Language Toolkit https://www.nltk.org/book/

D.Jurafsky, J.H. Martin Speech and Language Processing. third edition, 2020

А. Ахо, Дж. Ульман. Теория синтаксического анализа, перевода и компиляции. М.: Мир, 1978.

Д.Кук, Г.Бейз Компьютерная математика - Москва: Наука, 1990

В.С.Проценко, П.Й.Чаленко Элементы компиляции - Киев: УМК ВО, 1988

E.С.Борисов Методы и средства построения грамматических анализаторов. http://mechanoid.su/programming-grammar-analysis.html