Nov 2019

How retwork $C_1 = (V, E, c)$ Capacity for $c \in E \rightarrow TR$

f: E -> R is a flow ib:

OOSf(e) Scc(e) HeEE

(2) conservation of flow $\forall v \in V \text{ s.t. } v \neq s, v \neq t$ $\sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w)$

e.q.,

A cut (S,T) is a partition of vertices $V = S \sqcup T_{e} t$

TWO equiv problems (proof later today)

Max Flow = Min cut

The max value of flow $c(s,t) = \sum_{v \in V} c(u,v)$ $c(s,t) = \sum_{v \in V} c(u,v)$

eg., A = kids

B = presents

Redge = kid likes the present

goal: match presents to kids in order to

maximize # of happy kids.

no vertex is in more than

one edge of the matching MSE

TO Formulate as hax Flow, we are missing.

O capacitres on edges (* direction)

O need to ensure I present is not split

or given twice

(3) unclear what slt arc.

Theorem (that proves max flow = min out \(\frac{3}{3} + PF works \)
Let f be a flow in G=(V, E, c)
Then, the following are equivalent:
(1) If is a max flow (2) The residual graph has
(2) The residual graph has no augmenting path (3) 3 cut (S,T) s.t. f = c(S,T)
1:// 2.1 (2) "le preces" (3) (3)
Suff to prove
(1) = 3) (2) $(2) (2) (2) (3)$ (3) $(3) (3) (3)$
3 pieces

$$(3) = 7(1)$$

$$\exists cut (SiT) s.t.$$

$$|f| = c(SiT)$$

$$By cores$$

$$|f| \leq min c(SiT)$$

$$=) f is a max flow.$$

$$\exists cut (SiT) s.t.$$

$$|f| = c(SiT)$$

$$\exists flow.$$

Recall
Lemma 1: f flow on G(S,T) cut

=f f(S,T) = |f|Cor: $|f| \le c$ f(S,T)any flow any cut |f| = f(S,T)=f(S,T)