Probeklausur Mathematik I

Prof. Dr. Sandra Eisenreich Wintersemester 2023/24, Hochschule Landshut

- (a) Schreiben Sie auf die ersten beiden Titelseiten Ihren Namen.
- (b) Schreiben Sie auf jedes Blatt Ihre Matrikelnummer.
- (c) Diese Probeklausur besteht aus 8 Aufgaben auf 8 Seiten. Bitte prüfen Sie, ob Aufgaben oder Seiten fehlen.
 - Verwenden Sie dokumentenechte Stifte (kein Bleistift) in blau oder schwarz.
 - Schreiben Sie Ihre Antworten in die dafür vorhergesehen Felder.
 - Hilfsmittel: nicht-programmierbarer Taschenrechner.
 - Legen Sie Ihren Personalausweis/Studentenausweis lesbar auf den Tisch.
 - Keine vorzeitige Abgabe in den letzten 5 Minuten möglich.
 - Bleiben Sie bitte am Ende an Ihrem Platz, bis die Klausuren eingesammelt und durchgezählt wurden.
 - Viel Erfolg!

Aufgabe	Punkte	Erreicht
Abbildungen	4	
Lineare Abhängigkeit	4	
Teilraum	5	
Berechnungen	17	
Logik	6	
Vollständige Induktion	10	
LGS	10	
Lineare (Un)abhängigkeit	4	
Gesamt	60	

Matrikelnummer:	Name:	
-----------------	-------	--

. Abbildungen Sei $f: \mathbb{R} \to \mathbb{R}_{\geq 1}, :$ Nein:	(4 Punkte) $x \mapsto x^2 + 1 \text{ Kreuzen Sie bei allen zutreffenden Aussagen Ja an, sonst}$
□ Ja □ Nein	Die Abbildung f ist injektiv.
□ Ja □ Nein	Die Abbildung f ist surjektiv.
□ Ja □ Nein	Die Abbildung f ist linear.
□ Ja □ Nein	Die Abbildung f ist ein Isomorphismus.
Lösung:	
F, W, F, F	
	gigkeit (4 Punkte) ktorraum. Unter welchen Bedingungen sind Vektoren $v_1, \ldots, v_n \in V$? Kreuzen Sie bei allen zutreffenden Aussagen Ja an, sonst Nein:
□ Ja □ Nein	Die Determinante der Matrix, die die Vektoren als Spalten hat, ist nicht Null.
\Box Ja \Box Nein	v_1 lässt sich schreiben als Linearkombination von v_2, \ldots, v_n
\Box Ja \Box Nein	$v_1 \in \operatorname{Span}(v_2, \dots, v_n).$
□ Ja □ Nein	Der Rang der Matrix, die die Vektoren als Spalten hat, ist n .
Lösung:	
F, W, W, F	
aufgeführten B	(5 Punkte) Tektorraum, und $U \subset V$ eine Teilmenge. Unter welchen der unten edingungen ist U ein Teilraum von V ? Falls U wie beschrieben ein euzen Sie "Jaän, sonst "Nein".
□ Ja □ Nein	U ist abgeschlossen bezüglich Inversenbildung und Addition.
□ Ja □ Nein	${\cal U}$ ist abgeschlossen bezüglich Skalarmultiplikation mit Elementen in ${\cal K}$ und Addition.
\Box Ja \Box Nein	$U = \operatorname{Span}(v)$ für einen Vektor $v \in V$.
\Box Ja \Box Nein	U ist eine Gerade, die nicht durch den Nullpunkt geht.
\Box Ja \Box Nein	$U = \{0\}$
Lösung:	W

4. Berechnungen

(17 Punkte)

- (a) (7 Punkte) Wandeln Sie die Zahl 131 ins Binär- und ins 9-er System um und geben Sie den Rechenweg an.
- (b) (3 Punkte) Berechnen Sie in $\mathbb{Z}/27\mathbb{Z}$ (wobei Sie das Ergebnis als Restklasse einer Zahl zwischen 0 und 26 darstellen):

$$\overline{4} \odot (\overline{11} \odot \overline{3} \oplus \overline{1})$$

- (c) (3 Punkte) Was ist die Länge der komplexen Zahl 3 4i?
- (d) (4 Punkte) Berechnen Sie das Matritzenprodukt $A \cdot B$ für folgende Matrizen:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 2 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

Lösung:

(a)

$$131:2 = 65$$
 Rest 1
 $65:2 = 32$ Rest 1
 $32:2 = 16$ Rest 0
 $16:2 = 8$ Rest 0
 $8:2 = 4$ Rest 0
 $4:2 = 2$ Rest 0
 $2:2 = 1$ Rest 0
 $1:2 = 0$ Rest 1

$$131:9 = 14$$
 Rest 5
 $14:9 = 1$ Rest 5 $\Rightarrow 131 = (155)_9$
 $1:9 = 0$ Rest 1

- (b) $\overline{4} \odot (\overline{11} \odot \overline{3} \oplus \overline{1}) = \overline{4} \odot (\overline{11} \cdot \overline{3} \oplus \overline{1}) = \overline{4} \odot (\overline{6} \oplus \overline{1}) = \overline{4} \odot \overline{7} = \overline{28} = \overline{1}.$
- (c) $|3-4i| = \sqrt{(3+4i)(3-4i)} = \sqrt{3^2+4^2} = 5.$

$$(d) \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 3 & 1 \\ 2 & -1 & 0 \end{array} \right) \cdot \left(\begin{array}{ccc} -1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{array} \right) = \left(\begin{array}{ccc} -3 & -1 & 0 \\ 5 & 4 & 4 \\ -3 & -1 & 1 \end{array} \right)$$

5. **Logik** (6 Punkte)

Prüfen Sie mit einer Wahrheitstabelle, ob folgende Äquivalenz von Aussagen gilt:

$$(A \vee B) \Leftrightarrow (\neg(\neg A \wedge \neg B))$$

Lösung:

A	B	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	$\neg(\neg A \land \neg B)$	$(A \lor B)$
w	w	f	f	f	w	w
w	f	f	w	f	w	w
f	w	w	f	f	w	w
f	f	w	w	w	f	f

Die Äquivalenz gilt.

6. Vollständige Induktion

(10 Punkte)

Zeigen Sie mit Hilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}.$$

Lösung:

Induktionanfang: n = 1:

linke Seite = $\frac{1}{1 \cdot 3} = \frac{1}{3}$; rechte Seite = $\frac{1}{2 \cdot 1 + 1} = \frac{1}{3}$

 \Rightarrow Die Behauptung ist richtig für n=1.

Induktionsvoraussetzung: Angenommen, die Behauptung gilt für n, also:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}.$$

Induktionsschritt: zu zeigen ist:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} + \frac{1}{(2(n+1)-1)\cdot (2(n+1)+1)} = \frac{n+1}{2(n+1)+1}$$

rechte Seite = $\frac{n+1}{2n+3}$

linke Seite = $\frac{1}{1\cdot3} + \frac{1}{3\cdot5} + \frac{1}{5\cdot7} + \dots + \frac{1}{(2n-1)\cdot(2n+1)} + \frac{1}{(2n+1)\cdot(2n+3)} \stackrel{IV}{=} \frac{n}{2n+1} + \frac{1}{(2n+1)\cdot(2n+3)} = \frac{n\cdot(2n+3)+1}{(2n+1)\cdot(2n+3)} = \frac{2n^2+3n+1}{(2n+1)\cdot(2n+3)} = \frac{n+1}{2n+3} = \text{rechte Seite.}$

Nebenrechnung Polynomdivision: $(2n^2 + 3n + 1) : (2n + 1) = n + 1$.

7. LGS (10 Punkte)

Lösen Sie folgendes lineares Gleichungssystem:

$$x_1$$
 - x_2 + $2x_3$ - x_4 = 1
 $2x_1$ + x_2 - x_3 + x_4 = 0
 x_1 + $2x_2$ - $2x_4$ = -6
 $-x_1$ - $2x_2$ + $2x_3$ = 4

Lösung:

Betrachte die erweiterte Matrix

⇒ $x_1 = 0, x_2 = -2, x_3 = 1, x_4 = 2.$ ⇒ Die Lösungsmenge besteht aus dem Vektor (0, -2, 1, 2).

8. Lineare (Un)abhängigkeit

(4 Punkte)

Sind die folgenden Vektoren linear unabhängig oder abhängig? Geben Sie den Rechenweg an!

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

Lösung:

Die drei Vektoren sind linear abhängig, da

$$\det \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix} = \det \begin{pmatrix} 0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ -1 & 2 & 3 & -1 & 2 \end{pmatrix} = 0 - 1 + 4 - 0 - 0 - 3 = 0.$$