

HCC/HCF4043B HCC/HCF4044B

QUAD 3-STATE R-S LATCHES

QUAD NOR R-S LATCH-4043B QUAD NAND R-S LATCH-4044B

- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 3-LEVEL OUTPUTS WITH COMMON OUTPUT ENABLE
- SEPARATE SET AND RESET INPUT FOR EACH LATCH
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- NOR AND NAND CONFIGURATIONS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4043B, HCC4044B, (extended temperature range) and the HCF4043B, HCF4044B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micropackage. The HCC/HCF4043B types are quad crosscoupled 3-state COS/MOS NOR latches and the HCC/HCF4044B types are quad cross-coupled 3state COS/MOS NAND latches. Each latch has a separate Q output and individual SET and RESET inputs. The Q outputs are controlled by a common ENABLE input. A logic "1" or "high" on the ENABLE input connects the latch states to the Q outputs. A logic "0" or "low" on the ENABLE input disconnects the latch states from the Q outputs, resulting in an open circuit condition on the Q outputs. The open circuit feature allows common bussing of the outputs.

June 1989 1/13

FUNCTIONAL DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
l ₁	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T_{op} = Full Package-temperature Range	200 100	mW mW
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltage values are referred to Vss pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃

LOGIC DIAGRAMS

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	٧ı	٧o	$ I_0 $	V_{DD}	TL	o w*		25°C		T Hi	gh*	Unit
			(V)	(V) (μA) (V)	Min.	Max.	Min.	Тур.	Max.		Max.			
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	HCC	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
		HCF	0/ 5			5		4		0.02	4		30	•
		Types	0/10			10		8		0.02	8		60	
		Types	0/15			15		16		0.02	16		120	
V_{OH}	Output High	า	0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		

^{*} $T_{Low} = -55^{\circ}C$ for HCC device : $-40^{\circ}C$ for HCF device. * $T_{High} = +125^{\circ}C$ for HCC device : $+85^{\circ}C$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

STATIC ELECTRICAL CHARACTERISTICS (continued)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	٧ı	٧o	I ₀	V _{DD}	Τ _L	T _{Low} * 25°C				T Hi	gh*	Unit
			(V)	(V)	(μΑ)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		A
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		mA
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output	нсс	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	Турез	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/ 5	0.4		5	0.52		0.44	1		0.36		ША
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		Types	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input leakage	HCC Types	0/18	Any In	nut	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μA
	Current	HCF Types	0/15	Ally III	put	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΛ
Гон	3-state Output	HCC Types	0/18	0/18		18		± 0.4		±10 ⁻⁴	± 0.4		± 12	μΑ
		HCF Types	0/15	0/15		15		± 1.0		±10 ⁻⁴	± 1.0		± 7.5	± 7.5
Cı	Input Capa	citance		Any In	put					5	7.5			pF

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall times = 20ns)

0	D = 0 = 0 = 0 = 0	Test Condition	Test Conditions				1124
Symbol	Parameter		V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} , t _{PHL} Propagation Delay Time			5		150	300	
	(SET or RESET to Q)		10		70	140	ns
			15		50	100	
t _{PZH} , t _{PHZ}	3-state Propagation Delay Time		5		115	230	
	(ENABLE to Q)		10		55	110	ns
			15		40	80	

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC	FL FCTRICAL	CHARACTERISTICS (continued)	
	LLLCINICAL	CHARACTERISTICS (CONTINUED)	,

	Parameter	Test Condition	ns		11		
Symbol	Parameter		V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLZ} , t _{PZL}	Propagation Delay Time		5		90	180	
			10		50	100	ns
			15		35	70	
t _{TLH} , t _{THL}	Transition Time		5		100	200	
			10		50	100	ns
			15		40	80	
t _W	Pulse Width (SET or RESET)		5	160	80		
			10	80	40		ns
			15	40	20		

Typical Output Low (sink) Current.

Typical Output High (source) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Typical Power Dissipation/device vs. Frequency.

Switch Bounce Eliminator.

APPLICATIONS

MULTIPLE BUS STORAGE.

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Current.

Enable Propagation Delay Time and Waveforms.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Divi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
ı			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
Α			1.75			0.068			
a1	0.1		0.2	0.004		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45°	(typ.)					
D	9.8		10	0.385		0.393			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		8.89			0.350				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.62			0.024			
S		8° (max.)							

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

