UDP

UDP(User Datagram Protocol)

• 속도와 효율을 우선하는 비연결형 전송 프로토콜을 의미한다.

특징

- 비연결형 서비스로 연결 생성 없이 통신이 가능하다.
- 데이터를 데이터그램 단위로 처리한다.
- 데이터 통신 시 전송, 응답 신호 전차를 걸치지 않아 신뢰성이 낮다.
- 데이터를 순서대로 운반할 수 없다.
- TCP에 비해 속도가 빠르다.
 - 이 특징으로 인해 **실시간 스트리밍이나 온라인 게임에서 주로 사용**된다.
- 흐름 제어, 오류 제어, 혼합 제어 등의 절차를 거치지 않는다.
 - 헤더의 Checksum 필드를 통해 최소한의 오류만 검출한다.

🤔 데이터그램?

- 독립적 관계를 지니는 패킷을 의미하며, 데이터 전송을 위한 논리적 경로를 필요로 하지 않는다.
 - **각각 패킷은 다른 경로로 수신자에게 전송**된다.
- 순서대로 데이터를 전송하더라도 네트워크 사용량에 따라 순서대로 도착하지 않을 수 있다.

UDP 헤더

UDP Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port	Destination Port
Length	Checksum

- 응용 계층의 데이터 단위인 메시지를 받아 UDP 프로토콜에 따라 분할하고, 분할된 데 이터에 UDP 헤더가 붙는다.
 - UDP 헤더가 붙은 데이터를 UDP 데이터그램라고 한다.
- 신뢰성과 정확성이 필요하지 않기 때문에 TCP 헤더에 비해 용량이 작다.
 - 。 이로 인해 전송 속도가 TCP에 비해 훨씬 빠르다.
- Source Port, Destination Port
 - 。 출발지 포트 번호, 목적지 포트 번호
- Length
 - 。 프로토콜 헤더를 포함한 UDP 데이터그램의 전체 크기
- Checksum
 - 데이터 전송 중 발생할 수 있는 오류를 검출하기 위한 값
 - 수신자 측에서 데이터를 받은 후 일련의 과정을 거쳐 데이터가 정상인지 판단한다.

UDP의 데이터 전송

USER DATAGRAM PROTOCOL (UDP)

- 데이터그램을 전송하고, 데이터그램은 전송 과정에서 독립적으로 중개된다.
- 오로지 효율성과 속도만을 중시하므로 상대방이 데이터를 잘 수신했는지 전혀 확인하지 않는다.
- 수신자는 Checksum 을 이용해 간단한 에러 검사 기능만을 수행한다.
- 또한 UDP는 LAN에 있는 컴퓨터나 네트워크 장비에 데이터를 일괄로 전송할 수 있다. (브로드캐스트)

브로드캐스트

- TCP는 데이터 전송 시 확인 응답을 거쳐야하기 때문에 불특정 다수에게 보내는 통신에 적합하지 않다.
- UDP에서의 브로드캐스트는 목적지 관계없이 LAN에서 일괄적으로 데이터를 전송한다.

DNS와 UDP

• DNS(Domain Name System)

- URL을 IP 주소로 변환하는 서비스를 의미한다.
- o 225.235.64.222 \rightarrow http://www.gilbut.co.kr
- DNS에서 기본적으로 UDP를 사용하는 이유는 아래와 같다.
 - DNS는 기본적으로 신뢰성보다 속도가 중요한 서비스이기 때문에 TCP보다는 UDP를 사용한다.
 - 또한 UDP는 512 바이트를 넘기지 않는 패킷만 전송이 가능한데, **DNS가 전송하는** 데이터 패킷 사이즈가 매우 작아 UDP에 적합하다.
 - DNS 서버는 많은 클라이언트를 수용하기 위해 연결 상태를 유지하는 것을 원하지 않는다.
 - 신뢰성이 낮은 문제는 애플리케이션 계층에서 재전송, 타임아웃 등을 사용함으로서 해결한다.
 - → 누군가 도메인을 입력할 때마다 서버와 클라이언트가 연결하면 속도가 느려지기 때문에 사용한다.
- 다만, 메시지 사이즈가 512 바이트를 넘는 경우 TCP로 다시 요청해 응답을 받는다.

UDP에서의 전송 오류

• 데이터그램 분실

- 데이터 순서 번호 기능을 전혀 제공하지 않으므로, 데이터그램 분실 여부 확인이 불가능하다.
- **애플리케이션 계층 스스로 데이터 분실을 확인하는 기능을 수행해 복구**해야 한다.

• 데이터그램 도착 순서 변경

- 마찬가지로 데이터 순서 번호 기능을 제공하지 않으므로, 데이터그램 도착 순서가 변경될 수 있다.
- 역시 애플리케이션 계층에서 스스로 데이터 순서 번호 기능을 구현해야 한다.

TCP VS UDP

프로토콜 종류	TCP	UDP
연결 방식	연결형 서비스	비연결형 서비스
패킷 교환 방식	가상 회선 방식	데이터그램 방식
전송 순서	전송 순서 보장	전송 순서가 바뀔 수 있음
수신 여부 확인	수신 여부를 확인함	수신 여부를 확인하지 않음
통신 방식	1:1 통신	1:1 OR 1:N or N:N 통신
신뢰성	높다	낮다
속도	느리다	빠르다

• TCP를 사용하기에 적절한 환경

- 。 전자 메일
- o www 서비스
- o HTTP 통신
- 。 파일 전송

• UDP를 사용하기에 적절한 환경

- 。 IP 전화
- 。 실시간 스트리밍 서비스
- 。 온라인 게임
- DNS

References

- https://jennana.tistory.com/265
- https://blog.naver.com/PostView.naver?
 isHttpsRedirect=true&blogId=awefgyul1&logNo=221547705959
- https://gentlysallim.com/dns란-뭐고-네임서버란-뭔지-개념정리/

8