# Bandgap Reference Cookbook

By: Abdelrahman Hassan Muhammed

## Design a band gap circuit in 65nm CMOS with the specifications listed in table

| Parameters            | Conditions                                           | Units | Target Specs. |      |      |
|-----------------------|------------------------------------------------------|-------|---------------|------|------|
|                       |                                                      |       | Min.          | Тур. | Max. |
| Operating Temperature |                                                      | °C    | -40           | 25   | 125  |
| Supply Voltage        | Nominal supply (1.1V) $\pm 10\%$                     | V     | 0.99          | 1.1  | 1.21 |
| BG Output Voltage     |                                                      | V     |               | 0.5  |      |
| PVT Variation         | Process, Voltage, and Temperature                    | %     | -3            |      | +3   |
| Mismatch Variation    | Monte Carlo Variation (3 $\sigma$ ) for 1000 run @TT | %     | -4            |      | +4   |
| BG PSRR               | At DC                                                | dB    | -50           |      |      |
| Phase Margin          | of any loop                                          | Deg.  | 50            |      |      |
| Gain Margin           | of any loop                                          | dB    | 10            |      |      |
| Startup Time          | After asserting "enable" while supply is present     | μs    |               |      | 10   |

#### Design Procedures

#### 1. Select the topology

We can achieve ZTAT behavior by adding PTAT and CTAT via two approaches:

- Currents summation approach.
- Voltage summation approach.

Voltage approach can not achieve reference voltage lower than 1.2V, on the other side, current approach can achieve sub1V references, So we will use current



#### 2. Choose I1, I2, I3

- Since no constrain on power consumption, I prefer choosing low ID to get low variation in PTAT and CTAT and low power consumption which make it suitable for modern applications.
- Assume R4 = 50K Ohm  $\rightarrow$  Vref = 0.5  $\rightarrow$  I3 = 10 uA
- We will mirror current with same aspect ratio so,  $I_1 = I_2 = I_3 = 10 \text{ uA}$

#### 3. See the characteristics for BJT and get the CTAT slope



 $V_{EB} = 1.248 - 0.0018717 \times T$ ; (T in Kelvin)

- 4. Design BGR Core (n, R1, R2, R3, R4)
  - First choose n = 8 for small size on chip and Since we get R4 = 50K Ohm before and

$$V_{ref} = I_3 R_4 = I_2 R_4 = R_4 \left( \frac{V_{EB1}}{R_3} + \frac{V_T \ln n}{R_2} \right) = \frac{1.248 \times R_4}{R_3} + \frac{KT \ln n \times R_4}{q \times R_2} - \frac{0.0018717 \times T \times R_4}{R_3}$$

• From previous equation we need

$$\frac{K \ln n}{q \times R_2} = \frac{0.0018717}{R_3} \rightarrow (2) \text{ and } \frac{1.248 \times R_4}{R_3} = 0.5 \rightarrow (3)$$

- 5. Design of the Current Mirrors
  - Use Large L ( $\geq 1$ um) is usually used because
    - 1 | Reduce V<sub>DS</sub> dependence CLM
    - 2 | Reduce flicker noise as the low frequency behavior is more important in this circuit
    - 3 | Large area gives better matching and Better for PSR
  - For low supply voltage, bias the transistors in MI or WI  $(\frac{g_m}{I_D} \geq 15)$
  - Use L = 6 um and  $\frac{g_m}{I_D} = 15 \rightarrow \text{using gm/ID charts}$



#### 6. Design of the Op-Amp

- There are three specs we can approximate for the Op-Amp
  - 1 | CMIR : From BJT characterization we can see that VBE of BJT changes in range from 516 mV to 822 mV, the input common mode of the Op-Amp must be able operate normally through that range, so CMIR of Op-Amp must be at least the same as that range with some margin say CMIR = 480 mV : 850 mV



2 | Gain (Av) : by replacing the Op-Amp by a VCVS and measuring the effect of this gain on the Vref across PVT, we find that we need voltage gain  $A_V \ge 500$  to maintain nominal error in the BGR across PVT



- 3 | Cout : Summation of the Cgg of the current mirrors + suitable margin for output transistors parasitic capacitance  $C_L=16\,pF$
- Designer choices
  - 1 | The CMIR is closer to VDD rail  $\rightarrow$  NMOS input stage
  - 2 | The required gain is quite high  $\rightarrow$  Use Two Stage OTA

## $\rightarrow$ Design of OTA input pair M1 and M2

Assume Large L = 4 um and large  $\frac{gm}{I_D}$  = 16 to achive large output resistance and small  $V_{GS}$  for CMIR<sub>L</sub>

$$@I_D = 5 \text{ uA} \rightarrow W_{1,2} = 12.85 \text{ um}$$









#### → Design of the current mirror of first stage M5

$$CMIR_{L} = V_{GS1,2} + V_{5}^{*} \le 480 \text{ mV}$$

$$V_5^* \leq 154.6 \text{ mV} \rightarrow \text{Choose } V_5^* = 125 \text{ mV} \rightarrow \frac{gm}{I_D} = 16$$

$$Assume \ L_5 = \ 1u \rightarrow W_5 = 6.286 \ um$$





#### → Design of the current mirror of second stage M7

set 
$$I_{B2} = 5I_{B1} = 50 \text{ uA} \rightarrow \text{to increase the PM}$$

Choose 
$$L_7 = L_5$$
 and  $V_{GS7} = V_{GS5}$ 





#### $\rightarrow$ Design of the active load of first stage M3 and M4

$$A_{V_1} \ge 50 \rightarrow g_{m1,2} \times R_{out1} = g_{m1,2} \times r_{o1,2} || r_{o3,4} \ge 50$$

$$r_{o3,4} \geq 1.07 \text{M Ohm} \rightarrow L_{3,4} \geq \ 1.2 \ \text{um}$$

$$\begin{aligned} \text{CMIR}_{\text{H}} &= \text{V}_{\text{GS1,2}} - \text{V}_{1,2}^* - \text{V}_{\text{SG3,4}} + \text{V}_{\text{DD}} = 850 \text{ mV} \rightarrow \text{V}_{\text{SG3,4}} \leq 0.4642 \text{ V} \rightarrow \text{V}_{\text{GS3,4}} = 0.355 \text{ mV} \\ &\quad \text{Choose L}_{3,4} = 2 \text{ um} \rightarrow \text{W}_{3,4} = 20.3 \text{ um} \end{aligned}$$



## $\rightarrow$ Design of the input transistor of second stage M6

use 
$$\left(\frac{g_m}{I_D}\right)_6 = \left(\frac{g_m}{I_D}\right)_{3.4}$$
 to cancel the systematic offset

$$\mathrm{A_{V_2}} \geq 10 \rightarrow \mathrm{~g_{m6}} \times \mathrm{R_{out2}} = \mathrm{g_{m6}} \times \mathrm{r_{o6}} ||~\mathrm{r_{o7}} \geq 10 \rightarrow \mathrm{r_{o6}} \geq 15 \mathrm{k~Ohm}$$

Choose 
$$L_6 = 200 \text{ nm} \rightarrow W_6 = 25.73 \text{ um}$$





#### 7. Schematic



## 8. Results

- VREF Vs Temp @ Nominal



- VREF Vs VDD @ Nominal



- PSR @ Nominal



## - STB Analysis



#### - Startup time



#### - Corners

## Setup



## Variations





## - VREF MC 1000 points



## - PSR MC 1000 points



## - PM MC 1000 points

