背景

实现一个短域名服务,要求:

短域名存储接口:接受长域名信息,返回短域名信息短域名读取接口:接受短域名信息,返回长域名信息

- 短域名长度最大为 8 个字符
- 采用SpringBoot, 集成Swagger API文档
- JUnit编写单元测试, 使用Jacoco生成测试报告(测试报告提交截图)
- 映射数据存储在JVM内存即可,防止内存溢出(因此本方案只讨论单机服务架构,不涉及集群)

短链接的原理

如图,访问短链接后服务会重定向到长链接。考虑到短链接与长链接的对应关系可能会变,同时方便服务端统计,返回长链接时采 用临时重定向302。

短链接的生成

任意长度的长链接得到限定长度的短链接,首先想到的就是Hash算法:

MD5: 128bitSHA-2: 256bit

Murmur3: 32bit和128bitSipHash-2-4: 64bit

- 1. 相较于MD5和SHA等加密Hash算法,MurmurHash和SipHash等非加密Hash的运算速度快n倍,并且SipHash能有效减缓hashflooding攻击。
- 2. 若采用SipHash-2-4算法,最大值为2的64次方: 18446744073709551616,十进制20位,可转换为62进制,得到IYGhA16ahyg,大于需求中要求的8个字符。
- 3. 若采用Murmur3_32算法,最大值为2的32次方: 4294967296,十进制10位,转换为62进制,得到4GFfc4,符合需求短链接 长度需求。即使MurmurHash的冲突概率再低,也不可避免Hash冲突,此时只能人为的给长链接加一些规则,重新计算Hash, 必要时可循环处理,直到没有冲突为止。
- 4. 每次生成短链接时都需要判断短链是否存在冲突,当数据量很大时会造成读压力,因此可以采用BloomFilter优化,以空间换时间。

短链接的存储

由于只能采用内存存储,并且数据是kv结构,可以选择本地缓存方案:

缓存	Encache	Guava Cache	Caffeine
读写性能	一般	一般	RingBuffer,很好
淘汰策略	LRU,LFU,FIFO	LRU,一般	W-TinyLFU,很好
是否持久化	是	否	否
是否支持集群	是	否	否

- 1. 由于Caffeine采用了最先进的淘汰算法W-TinyLFU,融合了LRU和LFU,性能无疑是最好的。
- 2. 但是当存储数据量很大时,为防止内存溢出,还是需要将kv数据持久化到磁盘文件。
- 3. 那么可以将Caffeine作为一级缓存,存储热点数据,再选择可持久化的Encache作为二级缓存,存储全量数据。

短链接的访问

当访问短链接时,先读取一级缓存,若没命中,再读取二级缓存,并将数据load到一级缓存中。

架构设计图

综上,整体的系统架构图如下:

Jacoco测试报告

Current scope: all classes

Overall Coverage Summary

Package	Class, %	Method, %	Line, %
all classes	100% (17/17)	91.4% (64/70)	86.9% (172/198)

Coverage Breakdown

Package ✓	Class, %	Method, %	Line, %
com.eagle.shorturl.util	100% (4/4)	66.7% (8/12)	77.8% (21/27)
com.eagle.shorturl.service.impl	100% (3/3)	100% (17/17)	80.3% (61/76)
com.eagle.shorturl.result	100% (2/2)	100% (11/11)	100% (21/21)
com.eagle.shorturl.param	100% (1/1)	100% (4/4)	100% (4/4)
com.eagle.shorturl.intercepter	100% (1/1)	100% (3/3)	90.9% (10/11)
com.eagle.shorturl.exception	100% (2/2)	90.9% (10/11)	92.6% (25/27)
com.eagle.shorturl.controller	100% (1/1)	100% (4/4)	100% (4/4)
com.eagle.shorturl.config	100% (2/2)	100% (6/6)	100% (25/25)
com.eagle.shorturl	100% (1/1)	50% (1/2)	33.3% (1/3)