

Environmental Calculationsin ENPEP-BALANCE

ENPEP-BALANCE Training CourseSingapore December 5-9, 2011

Guenter CONZELMANN

Center for Energy, Environmental, and Economic Systems Analysis Decision and Information Sciences Division (DIS)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

guenter@anl.gov; ++1-630-252-7173

In General, there are Several Ways to do an Environmental Analysis

- "Optimize" energy, economics, and environment
 - Very complex
 - Results not as transparent
 - Too many assumptions ("black box")
- Maximize environmental "benefit"
 - Often too expensive to implement
- Design economic energy system, then iterate to meet environmental requirements
 - Resembles decision making process
 - Approach used in ENPEP

Main Design Characteristics for Environmental Calculations

- Compute annual levels of atmospheric emissions from energy production, conversion, and consumption
- Implement emissions taxes (e.g., carbon tax) and examine the resulting changes in the energy supply mix and overall emission levels
- Introduce emission control technologies (e.g., electrostatic filters, flue gas desulfurization, DeNox, etc.) and analyze their effect on mitigating pollution levels (++)
 - Compute emissions after control
 - Compute avoided emissions
 - Compute incremental control costs including capital and O&M cost
 - Compute cost-effectiveness of emission controls
 - Update price/cost of output link of process
- Implement emissions limits and examine emissions trading, e.g. cap and trade (++)

(++) Currently not implemented

Emissions are Assumed to be a Function of the Following General Parameters

- Level of fuel consumption
- Type of fuel (e.g., coal versus oil versus gas, high sulfur coal versus low sulfur coal)
- Type of combustion technology (steam turbine versus gas turbine, pulverized coal versus stoker furnace, etc.)
- Type of pollution control equipment

ENPEP Uses a Standard Methodology to Determine the Uncontrolled and Controlled Source Emissions

Uncontrolled = Emissions

Fuel Consumption

Emission Factor Chemical Scale

Controlled Emissions

Uncontrolled Emissions

x (100 - Control Efficiency) / 100

The Environmental Calculations Can be Activated under Run Parameters

- Checking the "Perform Environmental Calculations" box will activate the environmental routines
- After activating, the user has access to the environmental input data screens as well as the output screens
 - If not activated, the environmental input/output screens are "greyed-out" to indicate they are NOT accessible
- Run Parameters | Pollutants | Output Codes | Non-electric Units | Electric Units Click to activate Convergence Parameters: environmental Relative Tolerance: 0.010 (Fraction) calculations 10.000 (kBOE) Absolute Tolerance: Maximum Iterations: 11 (1-100) Lower Book Relaxation Range: 0.100 Upper Bound Relaxation Range: 0.900 10.0 % Discount Rate: Perform Environmental Calculations: 🔽
- After entering all environmental information and running the case,
 the user can turn the environmental calculations off again by unchecking this box
 - Speeds up the calculations; useful if BALANCE-energy is not finalized yet
 - Environmental information (inputs and results) is maintained in the database but no calculations are performed
 - Environmental calculations can be turned back on again by re-checking the box

The User May Add or Delete Pollutants to the Current Default List

- *Name* indicates the name of the pollutant
- Abbreviation is the 5 character abbreviation for the pollutant
- Chemical Scale indicates whether the emissions are considered to be a linear function of a certain fuel characteristic, such as fuel carbon content for CO2 emissions, fuel sulfur content for SO2 emissions, etc.

The User May Specify the Units Used for Environmental Inputs and Outputs

- Environmental units may be specified for both nonelectric and electric (if electric sector is used)
- Default Unit is the unit used internally by the model
- The pull-down menu under Unit Name provides a choice of alternative units
 - User may add units
 - User may delete units

 Unit Conversion Factor is used internally to convert the user-selected unit back to the default unit

Default Unit = New Unit * Unit Conversion Factor example: kg/GJ = kg/TJ * 0.001 TJ/GJ

 Note that the environmental units can only be selected if the "Perform Environmental Calculations" checkbox in Run Parameters is checked

Emissions Are Calculated and Reported by Node

- For depletable and renewable resources, emissions are calculated based on the resource output
- For single input/single output and multiple output processes, emissions are calculated based on process fuel/energy input
- For thermal electric generating units, emissions are calculated based on fuel input or fuel consumption
- For multiple input nodes, emissions are calculated based on process output
 - Output based emission factor needs to be calculated and input as weighted average across all fuel inputs
- For demand nodes, emissions are calculated based on process input
 - Demand nodes should only be used for situations where sectors are modeled in terms of final energy

Example: Emission Factors for Conversion Process

- Uncontrolled Emission Factor Input Based represents the emission factor for this specific process without using any pollution control technology; factor is based on the process input or fuel consumption
- Scale Value is the chemical content in percent that will be used to linearly scale the emissions
 - Scale value may be left blank if already included in emission factor (default 1.0)
 - For example CO2: enter 104.68 kg/GJ (1.349 * 77.6) and leave scale value blank; alternatively, enter
 1.349 kg/GJ and 77.6% carbon
- Emissions Tax

represents the tax imposed on a process for a specific pollutant

 All three parameters above can be changed year by year

	Technical Properties	Economic Properties		Emissio	ons Properties	Cor	ntrol Properties		
		Pollutant bbreviation CH4	Uncontrolled Emission Factor Input Based (kg/Gj)		Chemical Sca	<u>le</u>	Scale Value (%)	Emissions Tax (\$/tonne)	
		CO2 N2O		1.349	Carbon		77.60	20.00	
Chemical scale is efined in the Run Parameters – Pollutants screen		NMTOC		0.001 0.399		_ ,			
		PM SO2		0.698	Ash Sulfur		17.50 4.50	100.00	

Environmental Results Can be Viewed Directly in the Network Using the Node Overlays

Environmental Reports and Graphs Can be Accessed for Each Node Using "View Output"

- Results can be viewed for each pollutant individually by using the Selected Pollutant pulldown menu or for all pollutants at the same time
- The pollutant selection in this screen will influence what will be displayed in the environmental graph screen

Environmental Reports and Graphs Can be Accessed for Each Node Using "View Output" (cont'd)

- Input Quantity reports the annual fuel consumption for this process
- Pollutant Abbreviation indicates which pollutant you are viewing
- Emission Factor Times Scale Value displays the combined or aggregate emission factor including the chemical scale for the selected pollutant
- **Emissions** reports the annual pollutant release for this process for the selected pollutant
- Emission Taxes displays the annual pollution taxes incurred by this process for this pollutant
 - There may be taxes on more than one pollutant
 - Taxes are calculated using the following equation

Annual = Annual x Emission Tax Emission Tax

The Environmental Graph Shows Emission Results for the Pollutant(s) Selected in the Environmental Report

The Environmental Report Can Also be Used to View the Change in Emission Factor over Time

The Environmental Report Can be Used to Display the Annual Emissions Taxes Incurred by this Process

System-wide Emissions Results Can be Exported to EXCEL to Create Custom Reports and Graphs

	Α	В	С	D	E	F	G	Н		J	K	L
1		Pollutant	8CO2 🔻									
2												
3	Sector ▼											
4		Data ▼	AGRI	COAL	ELEC	FMIX	INDU	REFI	RESI	SERV	TRAN	Grand Total
5	1991	Sum of 1991	1,149,057	0	15,414,470	1,962	12,273,706	1,118,393	2,417,921	4,938,058	7,458,533	44,772,100
6	1995	Sum of 1995	1,379,198	0	24,450,304	0	13,592,133	1,307,607	2,563,915	6,003,888	8,951,511	<u>58</u> ,248,557
7	2000	Sum of 2000	1,711,011	0	40,383,535	0	19,478,998	1,307,607	2,713.51	Use fo	ormating	792,761
8	2005	Sum of 2005	2,189,336	0	57,088,782	0	26,005,222	العمر المالي ا			•	08,693
9	201 8	Sum of 2010			80,056,027		25,683,680	1,307,607	3,043,51	commands to		68,164
10	2015	Sum or	Onl		00 047 040		24,528,976	1,307,607	2,796,72	customi	ze the piv	<mark>0t</mark> 28,459
11	2020	Sum of 2020	-	sert colun	•	P	24,399,614	1,307,607	2,642,94	table	e report	231,946
	use in the graph as x-axis										•	
	values											

Some Modeling Issues

- If your process is using a mix of fuels that changes every year (e.g., oil and gas), your average emission factor also changes every year
- The fuel mix, and thus the average emission factor may be different in each scenario
- The current version of the model does not track this information
- User needs to ensure consistency
- One way to do this is to compute an average emission factor year-by-year and enter the values into the model (this may have to be done for each of your scenarios)
- A better way to do this is by modifying the network structure
- The modified structure would make sure that each process uses just one type of fuel

Some Modeling Issues (cont'd)

- If your end use sectors are mostly in final energy structure without any conversion processes, emissions will not be accounted for
- One way to deal with this is to include emission factors into the demand nodes
 - If demand nodes are projecting a mix of fuels, the emission factors need to account for this by using a weighted average based on the mix ratio
 - When converting the sector into useful energy demand by inserting conversion processes, the emission factors in the demand nodes must be deleted
- Another way to deal with this is to include so-called "dummy" processes
 - Single input/single outputs
 - Efficiency 1.0, no cost, no change in energy flows
 - Only to obtain emissions for sectors with final energy

COAL MINING: methane (CH₄) emissions = 10 m³/tonne of coal (range 0.3-24) = $= 0.5 \text{ m}^3/\text{GJ}$ (1 tonne of coal = 20 GJ) = $0.3 \text{ kg CH}_4/\text{GJ}$ (1 m³ CH₄ = 0.6 kg)

COAL COMBUSTION (PM): 1 kg coal with 10% ash = 0.1 kg ash generated = 0.05 kg bottom ash + 0.05 kg fly ash => 0.05 kg fly ash / kg coal = 50 kg/tonne = 2.5 kg PM/GJ (1 tonne of coal = 20 GJ) - uncontrolled emissions

COAL COMBUSTION (SO_2): 1 kg coal with 1% sulfur = 0.01 kg S generated = 0.02 kg SO_2 (molar ratio $SO_2/S = 64/32 = 2.0$) generated = 0.018 kg emitted (90% oxidization) => 0.018 kg SO_2 / kg coal = 18 kg/tonne = 0.9 kg SO_2/GJ (1 tonne of coal = 20 GJ) - uncontrolled emissions

COAL COMBUSTION (CO₂): 1 kg coal with 70% C = 0.7 kg C generated = 2.5 kg CO₂ (molar ratio CO₂/C = 44/12 = 3.664) generated = 2.5 kg emitted (100% oxidization) => 2.5 kg CO₂ / kg coal = 2500 kg/tonne = 125 kg CO₂/GJ (1 tonne of coal = 20 GJ) - uncontrolled emissions

- Please note that the current version of ENPEP-BALANCE does not explicitly include emissions control technologies
 - This feature may be introduced in future versions
- To model controlled emissions (e.g., for PM, SO2, NOX) with the current version
 - Recalculate the emission factors based on the uncontrolled emission factor and the average control
 efficiency as below
 - Enter the controlled emission factor into the uncontrolled emission factor field
 - If available, emission control costs can be added to the conversion process or plant economic properties
 - Rerun the case

 It may be advisable to keep 2 separate cases: one case with uncontrolled emission and one case with controlled emissions

- PM emissions from coal combustion
 - Uncontrolled emission factor: 2.5 kg PM/GJ
 - Abatement technology with 98% efficiency
 - Controlled emission factor: $2.5 \times (1 0.98) = 0.05 \text{ kg PM/GJ}$
- SO2 emissions from coal combustion
 - Uncontrolled emission factor: 0.9 kg SO2/GJ
 - Abatement technology with 80% efficiency
 - Controlled emission factor: $0.9 \times (1 0.8) = 0.18 \text{ kg SO2/GJ}$
- CO2 emissions from coal combustion
 - Uncontrolled emission factor: 125 kg CO2/GJ
 - No abatement technology available

