Język ludzki – kod maszynowy

Język ludzki (mowa)

Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza się.

Język programowania wysokiego poziomu if (liczba_pkt > 50)
zaliczenie=true
else
zaliczenie=false

Język programowania niskiego poziomu mov ecx, 50 dec ecx push eax pop ecx or ecx, eax

Język maszynowy (kod binarny)

Historia języków programowania

1954

Od kodu do programu

if (liczba_pkt > 50)
 zaliczenie=true
else
 zaliczenie=false

Kompilator (kompilacja)

Napisany przez programistę kod poddawany jest **kompilacji**. Po sprawdzeniu poprawności kodu **kompilator** przekształca go na kod maszynowy. Następnie **linker** łączy z kodem potrzebne do jego działania biblioteki i tworzy **plik wykonywalny** aplikacji. Rozszerzenie .exe jest umowne i charakterystyczne dla systemu Windows.

dodatkowe biblioteki i moduły

Linker (konsolidacja)

program.exe działająca aplikacja

Jak powstaje program

ZADANIA PROGRAMU:

- 1. obliczanie pola
- 2. obliczanie objętości
- 3. ...

ALGORYTM:

- 1. pobierz promień
- 2. oblicz pole
- 3. wyświetl pole
- 4. ...

```
© CyDer Cpp/Projektypro1\promien.exe

Padaj promien: 4

Pada promieniu 4

Pada o promieniu 4

uynosi: 50: 2655

Aby kontynuovać, naciśnij dovolny klavisz . . .
```

```
int main() {
  int pole;
  cin >> r;
  pole = r * r + 3;
  cout << pole; }</pre>
```


Algorytmy

- Algorytmem nazywamy skończony ciąg czynności, przekształcający zbiór danych wejściowych na zbiór danych wyjściowych.
- Algorytmy, które wykonują działania matematyczne na danych liczbowych, nazywamy algorytmami numerycznymi.
- Algorytmy, w których kolejność czynności jest zawsze taka sama i niezależna od wartości danych wejściowych, nazywamy algorytmami sekwencyjnymi lub inaczej linowymi.

Etapy konstruowania algorytmu

- 1. Sformułowanie zadania.
- 2. Określenie danych wejściowych.
- 3. Określenie wyniku i sposobu jego prezentacji.
- 4. Ustalenie metody wykonania zadania.
- 5. Zapisanie algorytmu za pomocą wybranej metody.
- 6. Analiza poprawności rozwiązania.
- 7. Testowanie rozwiązania dla różnych danych algorytm powinien być uniwersalny, tzn. działać dla różnych zestawów danych.
- 8. Ocena skuteczności algorytmu.

Sposoby zapisu algorytmu

LISTA KROKÓW:

- 1. Pobierz dane promienia
- 2. Oblicz wartość pola
- 3. Wyświetl wynik na ekranie
- 4. Zakończ

PSEUDOJĘZYK:

Początek; Rzeczywiste r; Pole = r * r * PI; Wyświetl Pole; Koniec.

SCHEMAT BLOKOWY

 przedstawia algorytm w postaci symboli graficznych.

Elementy schematu blokowego

Blok graniczny – początek algorytmu

Blok operacyjny – operacje zmieniające wartości zmiennych.

Blok wejścia/wyjścia – operacje wprowadzania i wyprowadzania danych.

Blok decyzyjny – wybór jednej z dwóch możliwych dróg działania.

Blok graniczny – koniec algorytmu

Specyfikacja problemu

- Specyfikacją problemu algorytmicznego nazywamy dokładny opis zadania, które ma zostać rozwiązane, oraz podanie danych wejściowych i danych wyjściowych wraz z ich typami.
- **Zmienną** nazywamy obiekt występujący w algorytmie, określony przez nazwę i służący do zapamiętywania pewnych danych.
- **Typ zmiennej** określa rodzaj wartości, jakie może ona przechowywać.
- **Zmienna pomocnicza** umożliwia realizację algorytmu, służy do przechowywania danych przejściowych.
- Stałe przechowują wartości, które w trakcie działania algorytmu nie ulegają zmianie, np. wartość PI (3,14).

Złożoność algorytmu

- Na złożoność obliczeniową algorytmu składają się:
 - złożoność pamięciowa zależy od liczby i rozmiaru danych wykorzystywanych w algorytmie i oznacza rozmiar pamięci potrzebny do realizacji algorytmu;
 - złożoność czasowa określa czas potrzebny do wykonania algorytmu w odniesieniu do rozmiaru danych wejściowych. Za jednostkę czasu przyjmuje się wykonanie operacji dominującej (najczęściej wykonywanej) algorytmu (np. dodawanie, mnożenie w a. numerycznych, czy porównanie i przestawianie w a. porównujących).
- **Pesymistyczna złożoność obliczeniowa** to złożoność algorytmu dla pesymistycznego zestawu danych.

Podstawowe typy danych

Тур	Typowy rozmiar w bajtach	Zakres
char	1	-128 127
int	2, 4 lub 8	-32 768 32 767
long int	4	-2 147 483 648 2 147 483 647
float	4	6 cyfr znaczących -3,4E38 3,4E38
double	8	10 cyfr znaczących -1,7E308 1,7E308
bool	1	true, false

Stałe i zmienne

- Stałe tekstowe i liczbowe nie zmieniają swojej wartości w trakcie działania programu.
 Przykładowa definicja: const string KP = "Kot Pulpet";
- Zmienne przed pierwszym użyciem zawsze należy zadeklarować określając typ danych przez nią przechowywanych. Dobrze jest również inicjować zmienne, czyli nadawać im początkowe wartości.
- Deklaracja zmiennej: int wynik; Definicja zmiennej: int wynik = 0; Inicjacja zmiennej: wynik = 0;

Nazywanie stałych i zmiennych

- Nazwa powinna określać przeznaczenie stałej lub zmiennej. Może zawierać znaki alfabetu (poza narodowymi), cyfry i podkreślenia, ale nie może rozpoczynać się od cyfry. W nazwach stałych używa się zwyczajowo DUŻYCH liter.
- Nie można używać słów zarezerwowanych w języku C:
 - auto, break, case, char, class, const, continue, default, do, double, else, enum, extern, float, for, goto, if, int, long, private, register, return, short, signed, sizeof, static, struct, switch, try, typedef, unsigned, void, while.

Operatory i wyrażenia

• Wyrażenie jest kombinacją stałych, zmiennych i operatorów, stosowaną do zapisu operacji matematycznych lub innych.

Symbol	Znaczenie	Przykład
+	dodawanie	x=a+b;
-	odejmowanie	x=a-b;
*	mnożenie	x=a*b;
1	dzielenie	x=a/b;
%	reszta z dzielenia	x=a%b;
++	inkrementacja o 1	x++; ++x;
	dekrementacja o 1	X;X;
=	przypisanie	x=2*3; x=y=4;
,	łączenie	int x,y,z;

Operatory skróconego przypisania

Operator	Nazwa	Przykład	Znaczenie
+=	przypisanie z dodawaniem	x+=2;	x=x+2;
-=	przypisanie z odejmowaniem	x-=2;	x=x-2;
=	przypisanie z mnożeniem	x=2;	x=x*2;
/=	przypisanie z dzieleniem	x/=2;	x=x/2;
%=	przypisanie reszty z dzielenia	x%=2;	x=x%7;

Operatory relacji

Operator	Nazwa	Przykład	Wynik
==	równe	12==(10+2);	1 (true)
!=	różne od	7!=(9-2);	0 (false)
<	mniejsze	3<9;	1 (prawda)
>	większe	4>(2+7);	0 (fałsz)
<=	mniejsze lub równe	5<=(2+3)	1 (prawda)
>=	większe lub równe	4>=5	0 (fałsz)

Zadanie

- Skonstruuj algorytm obliczający pole trójkąta o bokach a, b i c podanych na wejściu. Uwzględnij błędne wartości danych wejściowych.
- Wykorzystaj wzór Herona: pole = $\sqrt{p(p-a)(p-b)(p-c)}$ gdzie p = $\frac{(a+b+c)}{2}$
- oraz zależność mówiącą o tym, że suma dowolnych dwóch boków trójkąta jest większa od długości trzeciego boku.

Przykładowy algorytm

- Zadeklaruj zmienne a, b i c.
- Pobierz od użytkownika wartości a, b i c (długość boków trójkąta).
- Sprawdź, czy podane boki tworzą trójkąt.
- Jeżeli tak, oblicz współczynnik p.
- Oblicz pole trójkąta przy wykorzystania wzoru Herona.
- Wyprowadź wynik na ekranie.