Estratégias de Paralelização em Sistemas de Spins

Pedro Henrique Mendes

Orientador: Heitor C. M. Fernandes

Instituto de Física Universidade Federal do Rio Grande do Sul

SIC - 2020

Paralelização

O alto custo energético relacionado aos processadores originou o desenvolvimento dos processadores com múltiplas *threads*.

- ► Threads: Linhas de execução dentro do processador.
- Paralelização: Execução simultânea de processos em threads diferentes.
- ➤ Simulações em Monte Carlo (MC): Não existem pacotes populares de simulação em MC em paralelo

Modelo de Ising

A energia do sistema é descrita matematicamente pelo Hamiltoniano

$$\mathcal{H} = -J \sum_{\langle ij \rangle} s_i s_j \tag{1}$$

Rede quadrada 8×8 .

O sistema passa por uma transição de fase na região de temperatura $T=T_C\approx 2,269$ (para $k_B=J=1$) $^1.$ O algoritmo de aceitação será o Algoritmo de Metropolis.

¹S. R. A. Salinas, "Introdução a Física Estatística", 2013, Editora da Universidade de São Paulo

Resultados - Serial

Abaixo podemos visualizar series temporais da energia e da magnetização $(\sum s_i)$ para o sistema 16×16 e banho térmico T = 2.2

(*Esq.*) Trecho da serie temporal da energia. (*Dir.*) Trecho da serie temporal da magnetização.

600000

Resultados - Serial

Abaixo encontram-se os histogramas da energia e da magnetização para o sistema 16×16 e banho térmico T=2.2

(Esq.) Histograma da energia. (Dir.) Histograma da magnetização.

Andamento

- ► Familiarização com a ferramenta *OpenMP*
- ► Estratégia Tabuleiro de Xadrez (*Checkboard*)

Estratégia checkboard

-		C	0.1.1	0.1.1
	Lado	Série	2 threads	8 threads
	20	$5,5 \pm 0,5$	$4,0 \pm 0,5$	$2,2 \pm 0,5$
	40	22 ± 1	14 ± 1	5 ± 1
ı	100	144 ± 5	92 ± 5	29 ± 5
	250	1032 ± 10	626 ± 10	218 ± 10
ı	500	4447 ± 50	2878 ± 50	900 ± 50
ı				

Tempos de simulação medidos em segundos para banho térmico de $T = 2.2^2$.

Perspectivas

- Reproduzir e explorar estratégias mais complexas de paralelização do Modelo de Ising ³
- Simulações do Modelo do Gás de Rede em serial e paralelo
- Explorar comportamento difusivo e outras dinâmicas

Estratégia checkboard reorganizada

³L. C. F. Latoski, "*Estudo de modelos de rede por meio de algoritmos de execução* em paralelo". 2020

Agradecimentos

Obrigado pela atenção!