Szélességi bejárás (szélességi keresés) – gyakorlat

óravázlat

TARTALOM

Tarta	alom	1
Mily	en feladatot old meg az algoritmus, mik az eredmények	2
Mily	en gráfokon használható	2
Az al	lgoritmus áttekintése	2
Leját	tszás	4
1.	Közösen megoldott feladat a bejárás szemléltetésére	5
2.	Önálló munkára kiadható feladat (bejárás lejátszása önállóan)	5
3. ut	Lefuttattuk a szélességi bejárást egy ismeretlen gráfon, a pi értékeket ismerjük, keressünk benne at, rajzoljuk le a szélességi fát	
Algo	ritmusok	9
4. pi	Nézzük meg az algoritmust csúcsmátrixos/szomszédossági listás ábrázolásra, tömböket használva, color értékekre.	
5.	Készítsünk rekurzív / iteratív útkiíró algoritmust	10
6. se	Adott egy irányítatlan gráf szomszédossági listás ábrázolásban, döntsük el szélességi bejárás egítségével, hogy a gráf fa-e?	11
7. pá	Adott egy irányítatlan összefüggő gráf, döntsük el a szélességi bejárás segítségével, hogy a gráf áros gráf-e	12
8.	Oldjuk meg az előbbi feladatot úgy is, hogy nem biztos, hogy a gráf összefüggő	13
Szor	galmi házi feladat	14
9.	Sakk: minimum hány ugrással jut a huszár egy start mezőről a cél mezőre?	14

MILYEN FELADATOT OLD MEG AZ ALGORITMUS, MIK AZ EREDMÉNYEK

Az algoritmus a gráfokra használt egyik nevezetes bejáró algoritmus: egy tetszőleges kezdő csúcsot megadunk, és az abból úttal elérhető csúcsokat felderíti. A felderített csúcsokhoz egy minimális hosszúságú utat állít elő a kezdőcsúcsból. Ha több ilyen út lenne, az egyiket.

Eredmények:

- d: minimális út hossza (élszáma), ∞, ha a csúcshoz nem vezet út a kiválasztott kezdőcsúcsból.
- π: szülő csúcsot adja meg a kezdőcsúcs és az adott csúcs közötti legrövidebb úton (honnan érkezünk a csúcsba), 0 a kezdőcsúcsnál, valamint azoknál a csúcsoknál, amelyek a kezdőcsúcsból nem érhetők el.
- color: a bejárások használják, egy csúcsnak három állapota lehet, ezt ábrázolja.
 - o white 'fehér' még felderítetlen a csúcs, nem találkozott vele a bejárás,
 - o grey 'szürke' már találkozott a bejárás a csúccsal, de még nem dolgozta fel,
 - o black 'fekete' a csúcs feldolgozása befejeződött, 'kész' állapotú.

A 'szürke' csúcsokat egy sor tárolja, abban várakoznak, hogy feldolgozásra kerüljenek.

MILYEN GRÁFOKON HASZNÁLHATÓ

Tetszőleges (nem üres) gráfon használható:

- irányított vagy irányítatlan
- összefüggő, nem összefüggő

Az algoritmus áttekintése

Struktogram áttekintése, műveletigény áttekintése, mi hagyható el belőle (d, pi, color) Műveletigénynél: G=(V,E), és |V|=n és |E|=m

$ig(\overline{\operatorname{BFS}(G:\mathcal{G}\;;\;s:\mathcal{V})}ig)$	Műveletigény	Műveletigény
	MT(n,m)	mT(n,m)
$\forall u \in G.V$		
$d(u) := \infty \; ; \; \pi(u) := \emptyset$	Θ(n)	Θ(n)
[color(u) := white]		O(II)
$d(s) := 0 \; ; \; [color(s) := grey]$	Θ(1)	Θ(1)
$Q: Queue \; ; \; Q.\mathrm{add}(s)$	Θ(1)	Θ(1)
$\neg Q.$ isEmpty()		
u := Q.rem()	Θ(n)	Θ(1)
$\forall v: (u,v) \in G.E$		csak a kezdőcsúcsot
$d(v) = \infty$	Θ(m)	dolgozza fel a ciklus
d(v) := d(u) + 1	O(m)	nullaszor lefutó ciklus
$\pi(v) := u$		is lehet, ha nincs éle a
[color(v) := grey] SKIP		gráfnak az s csúcsból
Q.add(v)		
[color(u) := black]	összesítve: ⊕(n+m)	összesítve: Θ(n)

Mit jelent a fejlécben szereplő "írott G" típus és "írott V" típus:

$$(\overline{\mathrm{BFS}(G:\mathcal{G}\;;\;s:\mathcal{V})})$$

Jegyzet 2. fejezetében definiált típusok¹:

- A gráfok absztrakt algoritmusainak leírásához bevezetjük a v (vertex, azaz csúcs) absztrakt típust. A v lesz a gráfok csúcsainak absztrakt típusa. Ez egy olyan elemi típus, amelyben mindegyik csúcshoz tetszőlegesen sok, névvel jelölt címke társítható, és mindegyik címkéhez tartozik valamilyen érték. A v halmazt az algoritmusok implementációiban legtöbbször az v0 halmaz reprezentálja, egy v0 csúcsú gráf csúcsait pedig egyszerűen az v0...(v0) halmaz, attól függően, hogy a tömböket egytől vagy nullától kezdve indexeljük. A csúcsokhoz tartozó címkéket gyakran tömbök reprezentálják.
 - d(u), color(u), $\pi(u)$ például ilyen címkék a szélességi bejárásban.
- Élek halmaza (ε)

$$\mathcal{E}$$
 + $u, v : \mathcal{V}$

• Gráf típus (**G**)

FONTOS! Az ábrázolással kapcsolatosan fontoljuk meg az éleket bejáró ciklus műveletigényét:

- A ∀v: (u,v) ∈ G.E ciklusban u szomszédjait dolgozza fel az algoritmus. Ez akár minden csúcsra lefutó ciklus lehet. Miért nem szabad úgy elképzelni ezt a ciklust, hogy az élek teljes halmazát bejárva keressük meg az (u,v) éleket?
 - Válasz: $\Theta(n^*m)$ -re növelné a (maximális) műveletigényt, sűrű gráf esetén ez már $\Theta(n^3)$!
- Ez a ciklus benne van egy O(n) lépésszámú ciklusban, így csak a szomszédok hatékony ábrázolása esetén lehet Θ(m) a maximális lépésszám.
- Ritka gráfon, szomszédossági listás ábrázolás esetén a lista első elemének elérése konstans időben történik, majd csak a szomszédokon megy végig a ciklus, így minden csúcsra végrehajtva a lista bejárását, épp Θ(m) lépésszám teljesül.
- Sűrű gráfok esetén, csúcsmátrixos ábrázolást használva, a szomszédok bejárása Θ(n), mivel ez benne van egy n-szer lefutó ciklusban, így maximális lépésszáma Θ(n²), viszont sűrű gráf esetén m=|G.E| ∈ Θ(n²), így a Θ(m) korlát ilyenkor is teljesül.

A csúcsok mely jellemzője (címkéje) hagyható el az algoritmusból (d, π ,color):

- color: általában kihagyható, mivel d(u)=∞ vizsgálat helyettesíti a color(u)=white vizsgálatot. A szürke és fekete szín sokszor helyettesíthető egy színnel (nem mindig!), ha csak azt szeretnénk eldönteni, hogy a csúcs már látókörbe került, vagy sem. Azaz arra használjuk, nehogy többször is bekerüljön a sorba ugyanaz a csúcs, amivel végtelen ciklusba kerülne a bejárás.
- π : a szülő pointer elhagyható, ha nem kell az előállított útvonal a feladathoz.
- d: ha csak a bejárás részét használjuk az algoritmusnak, nem célunk a legrövidebb út hosszának ellőállítása, akkor d elhagyható, de ilyenkor a color mindenképpen szükséges, és gyakran mindhárom állapot fontos: white, grey, black.

¹ Nem tudom pont azt a betűtípust használni, így az MS Word "Script MT Bold" karakterkészletét használtam.

LEJÁTSZÁS

- Legyen egy kisebb példa az órán, amin közösen áttekintjük az algoritmus működését, majd önállóan oldjanak meg a hallgatók egy nagyobb (9-10 csúcsból álló gráfon egy lejátszós feladatot).
- Kövessük a jegyzetben megadott szemléltetési módszert, egy táblázattal mutatjuk be az algoritmus működését.

dr Fekete István által készített jegyzetben (https://people.inf.elte.hu/fekete/algoritmusok_jegyzet/) nagyon jó szemléltető ábra van, hogyan terjed egyre nagyobb körökben a kezdő csúcs körül a felderített csúcsok köre. Ebből a jegyzetből másoltam ide egy részletet:

23.1. A szélességi bejárás stratégiája

A bejárási stratégiákról megkapóan szemléletes leírást találhatunk a *Rónyai Lajos*, *Ivanyos Gábor* és *Szabó Réka* szerzőhármas *Algoritmusok* című könyvében. Szabadon és tömören idézzük "az öreg városka girbe-gurba utcáin bolyongó kopott emlékezetű lámpagyújtogató esetét", illetve, most csak az egyik módszert arra, hogy végül az összes köztéri lámpa világítson.

Az egyik eljárás szerint a lámpagyújtogatót egy este nagyszámú barátja elkíséri a városka főterétre, ahol együtt meggyújtják az első lámpát. Utána annyi felé oszlanak, ahány utca onnan kivezet. A különvált kis csapatok meggyújtják az összes szomszédos lámpát, majd tovább osztódnak. A városka lámpáit ilyen módon széltében terjeszkedve érik el.

Ha fentről néznénk a várost, ahogy kigyulladnak a lámpák, azt látnánk, hogy a középpontból a város széle felé egyre nagyobb sugarú körben terjed a világosság. Ez a szemléletes alapelve a *szélességi bejárásnak*. A szélességi stratégiát a 23.1. ábrán látható néhány pillanatfelvétel illusztrálja.

23.1. ábra. Szélességi bejárás egy gráfon

1. Közösen megoldott feladat a bejárás szemléltetésére

Készítettem egy PPT bemutatót is az itt szereplő példára, azt érdemes levetíteni a gyakorlaton.

A gráf képe (kezdőcsúcs: 1):

A lejátszáskor kapott táblázat (megtalálható a mellékelt Excel fájlban):

Kiterjesztett		cs	úcsok	d érté	ékei		Sor		csú	icsok	π érté	kei	
csúcs	1	2	3	4	5	6	tartalma	1	2	3	4	5	6
	0	8	∞	∞	8	8	< 1 >	0	0	0	0	0	0
1, d:0		1		1			< 2 ;4 >		1		1		
2, d:1			2				< 4 ;3 >			2			
4, d:1					2		< 3 ;5 >					4	
3, d:2						3	< 5 ;6 >						3
5, d:2							< 6 >						
6, d:3							<>						
	0	1	2	1	2	3		0	1	2	1	4	3

2. Önálló munkára kiadható feladat (bejárás lejátszása önállóan)

4-es csúcsból indulva játsszuk le a szélességi bejárás algoritmusát.

A táblázat (mellékelve az Excel fájlban):

Kiterjesztett				csú	icsol	d é	rtéke	ei			Sor				csú	csok	πéι	rték	ei		
csúcs	1	2	3	4	5	6	7	8	9	10	tartalma	1	2	3	4	5	6	7	8	9	10
	8	8	8	0	8	8	8	8	8	8	< 4 >	0	0	0	0	0	0	0	0	0	0
4,d:0							1	1			< 7;8 >							4	4		
7,d:1			2			2					< 8;3;6 >			7			7				
8,d:1											< 3;6 >										
3,d:2		3									< 6;2 >		3								
6,d:2					3				3		< 2;5;9 >					6				6	
2,d:3	4										< 5;9;1 >	2									
5,d:3										4	< 9;1;10 >										5
9,d:3											< 1;10 >										
1,d:4											< 10 >										_
10,d:4											<>										
	4	3	2	0	3	2	1	1	3	4		2	3	7	0	6	7	4	4	6	5

A szélességi fa:

3. Lefuttattuk a szélességi bejárást egy ismeretlen gráfon, a π értékeket ismerjük, keressünk benne utat, rajzoljuk le a szélességi fát.

Egy ismeretlen gráfon lefuttattuk a szélességi bejárást. A szülő értékek ismertek, az alábbi táblázat szerintiek:

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

Adjuk meg, az 5-ös csúcsba vezető utat:

A π (5) értékből visszafelé indulva deríthető ki az út:

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

 $11\,{\to}\,5$

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

 $7 \rightarrow 11 \rightarrow 5$

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

 $2 \rightarrow 7 \rightarrow 11 \rightarrow 5$

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

 $4 \rightarrow 2 \rightarrow 7 \rightarrow 11 \rightarrow 5$

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

4-es volt a kezdőcsúcs, tehát az út:

$4 \rightarrow 2 \rightarrow 7 \rightarrow 11 \rightarrow 5$

Következő feladat: rajzoljuk fel a szélességi fát:

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

4-es a gyökér

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

a 4 gyerekei: 2 és 10

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

2 gyereke: 7 10 gyerekei: 1,6 és 12

Ezt folytatva a szélességi fa:

Mi lehetett itt a fa (több nulla is van a szülő értékek között):

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	3	0	6	5	3	0	11	5	6	0	9	9

Megoldás: 2,6 és 10 csúcs szülője nulla. Vegyük észre, hogy közülük csak a 6 szerepel szülőként, ami úgy lehetséges, hogy a 2 és 10 csúcsok nem voltak elérhetőek a 6-os csúcsból. Tehát a fa:

ALGORITMUSOK

4. Készítsük el a szélességi keresés algoritmusát csúcsmátrixos/szomszédossági listás ábrázolásra, tömböket használva d, pi, color értékekre.

Tipp: a szomszédossági listás ábrázolás algoritmusát beszéljük meg közösen, majd a hallgatókat megkérdezzük, hogy hol és miként változna az algoritmus, ha csúcsmátrixszal van a gráf ábrázolva, változna-e a műveletigény? Az elkészítés legyen gyakorló feladat, később megkaphatják a megoldást.

Megállapodások:

- a csúcsok nincsenek ábrázolva, az 1..n természetes számok, azonosítják őket,
- a szomszédossági listás ábrázolás az A/1:Edge*[n] tömbben van,
- a csúcsok d értékei a d/1:N[n] tömbben lesznek,
- a csúcsok π értékei a pi/1:N[n] tömbben lesznek,
- color-t nem használjuk.

Az algoritmus:

BFS(A/1:Edge*[n]; d/1:N[n]; pi/1:N[n]; s:1..n)

d és pi tömbök feltöltése

kezdő csúcs d-je legyen nulla berakjuk a sorba a kezdő csúcsot

az u csúcs feldolgozása
az u csúcshoz tartozó lista első elemére
állítjuk a p pointert
u szomszédja: p->v csúcs
ha v csúcs még nem került az
algoritmus látóterébe
d[v] és pi[v] értéket kap
v csúcs bekerül a sorba
p pointer tovább lép az u csúcs éllistáján

Miért nem lenne helyes a $d[v] = \infty$ feltétel helyett a pi[v] = 0 feltételt vizsgálni?

- $d[v] = \infty$ csak azokra a csúcsokra teljesül, amelyek elsőként kerülnek a látókörbe.
- pi[v] = 0 ezeknél a csúcsoknál nyilván teljesül, de nem csak ezeknél a csúcsoknál! A kezdő csúcsra is igaz! Emiatt az algoritmus hibásan működne: a kezdő csúcsot is úgy kezelné, mintha még nem járt volna ott.

Ez irányítatlan esetben a kezdőcsúcs bármely szomszédjánál azonnal hibát okozna, irányított gráfnál pedig, ha van olyan irányított köre, ami a kezdő csúcsra mutat.

Mit és hogyan kell változtatni, ha a gráf az A/1:bit[n][n] mátrixban van ábrázolva?

- Csak a szomszédok bejárása fog megváltozni az ábrázolás miatt.
- Mennyi így a műveletigény? A mátrixnak minden sorát bejárjuk, így a belső ciklus (maximális) műveletigénye: $\Theta(n^2)$,
 - az A[u,v]=1 feltétel viszont pontosan $\Theta(m)$ -szer fog teljesülni.

BFS(A/1:bit[n][n]; d/1:N[n]; pi/1:N[n]; s:1..n)

mátrix u-dik sorának bejárása van (u,v) éle a gráfnak

5. Készítsünk rekurzív / iteratív útkiíró algoritmust.

A csúcsokat 1..n azonosítja, szülő értékeket egy pi/1:N[n] tömb, s a kezdőcsúcs, u pedig az a csúcs, amelybe az utat ki akarjuk íratni. Figyeljünk a következőkre: u=s előfordulhat, illetve lehet, hogy a bejárás nem talált utat az u csúcsba, ekkor az algoritmus azt írja ki, hogy "Nincs út." Az úton a csúcsok közé írjunk egy "→" karaktert.

Tipp: egyiket oldjuk meg az órán, a másik legyen gyakorló feladat.

Rekurzív megoldás

Útkiír(pi/1:N[n]; s:1..n; u:1..n)

Iteratív megoldás

Útkiír(pi/1:N[n]; s:1..n; u:1..n)

6. Adott egy irányítatlan gráf szomszédossági listás ábrázolásban, döntsük el szélességi bejárás segítségével, hogy a gráf fa-e?

A csúcsokat 1..n azonosítja, a gráf az A/1:Edge*[n] tömbben van ábrázolva. Csak a color-t fogjuk használni. Legyen szín={white,grey,black} típus.

Fának tekintjük azt az irányítatlan gráfot, amely összefüggő és nem tartalmaz kört. Tehát ezt a két tulajdonságot kell ellenőriznünk.

Felmerül a következő egyszerű ötlet: nincs is szükség bejárásra, tudjuk, hogy n csúcsa van a gráfnak, számoljuk hát meg az éleket, n-1 él esetén nem lehet benne kör. Sajnos ez nem teljesen igaz, mert nem tudjuk, hogy a gráf összefüggő-e. Itt van egy egyszerű példa 6 csúcsra, a gráf 5 élt tartalmaz, és nem fa.

Be kell járnunk tehát a gráfot, meg kell vizsgálni, hogy bejárás közben találunk-e kört létrehozó élt, ha nem találkoztunk ilyen éllel, akkor végül még azt kell ellenőrizni, hogy mindegyik csúcsot meglátogattuk-e.

Kör észlelése bejárás közben:

- Tehát egy (u,v) él feldolgozása közben azt kell figyelni majd, hogy szin[v] = grey.
- Ez például egy olyan feladat, ahol két szín nem lenne elég, szükség van a háromféle színre.
 Megjegyezzük, hogy két szín elég abban az esetben, ha a szülőt nyilvántartó π tömböt még betesszük az algoritmusba, ekkor (u,v) él kört hoz létre, ha szin[v] ≠ white és v ≠ π[u].
- Azt, hogy minden csúcsot meglátogattunk-e, egyszerű számlálással fogjuk ellenőrizni: bevezetünk egy számlálót. mely a feldolgozott csúcsokat megszámolja. Ha ez végül n, akkor minden csúcsot feldolgoztunk.

Lássuk tehát az algoritmust:

Fa_e(A/1:Edge*[n]): Bool

C	olor:szin[1n]	//col	or, szin típu	ısú töm	b létrehozása				
		i =	= 2 to n						
color[i]:= white									
	Q:0	Queue	color[1]	:=grey					
	Q.a	dd(1)	fa:=igaz	c:=0					
		fa∧¬	Q.isEmpty(()					
u:=Q.rem() c:=c+1									
color[u]:=black p:= A[u]									
			fa ∧ p ≠ 0						
v:= p->v									
	color[v]=white	color[\	/]=grey	color[v]=blac				
	color[v]:	=grey	f l		-1.5-				
	Q.ado	l(v)	fa:=hamis		skip				
			p:=p->n	ext					
Ī		return	(fa ∧ c=n	1)					

szin={white,grey,black}
az 1-es csúcsból indítjuk az algoritmust, a
többit fehérre állítjuk
szokásos lépések, fa logikai változó fogja a
ciklusokat leállítani, ha a gráf nem fa

c-ben számoljuk a feldolgozott csúcsokat

fehér szomszéd esetén folytatódik a bejárás, szürke szomszéd kört jelent, a gráf nem fa, fekete szomszéd a csúcs "szülője", nem jelent kört.

ha fa igaz maradt, és minden csúcsot feldolgoztunk, a gráf fa

7. Adott egy irányítatlan összefüggő gráf, döntsük el a szélességi bejárás segítségével, hogy a gráf páros gráf-e.

Egy irányítatlan G=(V,E) gráfot akkor nevezünk párosnak, ha a gráf csúcsait két halmazba ($V=A\cup B$) tudjuk osztani úgy, hogy tetszőleges (u,v) él esetén az él végpontjai nem esnek ugyanabba a halmazba, azaz $u\in A$ esetén $v\in B$, vagy fordítva.

- Elsőként tegyük fel, hogy a gráf összefüggő (ez nem szükséges feltétele a párosságnak). Szélességi bejárást fogunk használni.
- Három színnel színezzük a gráf csúcsait, kezdetben mindegyik fehér. Amikor egy csúcs látókörbe kerül, piros vagy kék színű lesz, attól függően, hogy milyen színű az a csúcs, amelynek szomszédjaként rátaláltunk.
- A szomszédok vizsgálatánál pedig ellenőrizni kell, hogy nincs-e ugyanolyan színű szomszéd, mint az éppen kiterjesztett csúcs színe, mert ez azt jelenti, hogy a gráf nem páros.
- Az algoritmus páros gráf esetén megad egy lehetséges osztályozást is a csúcsokon: "A" lesz például a kék csúcsok halmaza, "B" pedig a piros csúcsoké.
- A színeket a 0,1,2 egészekkel fogjuk ábrázolni. Csak a color-t használjuk, d, π nem lesz.
- Ábrázolástól függetlenül, az absztrakt gráf típuson oldjuk meg a feladatot.

Az algoritmus:

Páros_e(G:G): Bool

Minden csúcsot fehérre színezünk.
színek: 0-white; 1-blue; 2-red
Választunk egy tetszőleges csúcsot kezdő
csúcsnak, kékre festjük, és berakjuk a
sorba.

u lesz a következő kiterjesztett csúcs, szomszédjainak színe szerint:

> fehér: ellentett színre állítjuk, és berakjuk a sorba,

ugyanolyan színű, mint u: a gráf nem páros, ellentett színű: mehet tovább

Piros és kék színűek a csúcsok, a gráf páros.

8. Oldjuk meg az előbbi feladatot úgy is, hogy nem biztos, hogy a gráf összefüggő.

- Ha a gráf nem összefüggő, akkor összefüggő komponensekből áll. Ha minden egyes komponenst megvizsgálunk az előbbi módszerrel, és mindegyik páros, a gráf páros.
- Célszerű lesz a szélességi bejárást egy külön algoritmusba kiemelni.
- A megoldás felső szintje gondoskodik a kezdeti fehér szín beállításról minden csúcsra. Majd összefüggő komponensenként megvizsgálja, hogy páros-e a komponens vagy sem, és ezt összegzi. Ezt úgy fogja csinálni, hogy sorba veszi a csúcsokat, és ha fehér színűt talál, az egy még nem feldolgozott komponens egy tetszőleges csúcsa: elindít belőle egy színezést, hogy megvizsgálja páros-e.
- A színezés a szélességi bejárást használja. Az összefüggő komponens bármely csúcsából indítható, megpróbálja piros/kék színekkel kiszínezni a komponens csúcsait. Igazzal vagy hamissal tér vissza aszerint, hogy sikeres volt-e a színezés, vagy nem.
- Visszatérve a felső szintű algoritmusba, ha a komponens páros volt, mehet tovább a csúcsok felsorolása: ha van még fehér csúcs, abból indul egy újabb szélességi színezés. Ha viszont a megvizsgált a komponens nem páros, az algoritmus leáll és nemleges választ ad.

A megoldás felső szintje:

Páros_e(G: G): Bool

Csúcsokat fehérre állítjuk.

Csúcsonként vizsgálódik,
ha egy fehér csúcsot lát,
elindít egy szinezést.
Ha színezés sikertelen, a gráf
nem páros.
Minden csúcs ki van színezve, a
gráf páros.

A szélességi bejáráson alapuló színezés:

Színez(G:G, s:V): Bool

A szélességi bejárást használva, megpróbálja az s-ből elérhető csúcsokat piros és kék színnel kiszínezni.

Szomszédok vizsgálata az előbb látottak szerint. Azonos színű szomszéd esetén ez a komponens nem páros.

Ez az összefüggő komponens páros.

SZORGALMI HÁZI FELADAT

9. Sakk: minimum hány ugrással jut a huszár egy start mezőről a cél mezőre?

Sokszor meglepő feladatoknál válik be a szélességi keresés. Első hallásra a feladatnak semmi köze a gráfokhoz. Egy ilyen érdekes feladat a következő:

Adott egy tetszőleges méretű sakktábla, tehát most nem a 8 x 8 -as táblára kell gondolni, hanem egy n x m -es n>0 és m>0 méretű táblára. Ennek egy adott (i1,j1) kockáján áll egy huszár. El kell juttatni egy (i2,j2) kockára, szabályos lépésekkel. Minimum hány lépésre van szüksége a huszárnak, hogy eljusson a start kockáról a cél kockára?

- Érdemes kicsit közösen gondolkodni, hogy mi köze van a feladatnak a gráfokhoz, és a szélességi bejáráshoz.
- Rá lehet jönni, hogy nem minden esetben lesz megoldása a feladatnak.
- Ha megoldható, akkor általában több út is létezik, de a minimális lépésszám állandó.
- A részletes, és pontos kidolgozásért lehet kicsit több szorgalmi pontot is kitűzni. (pl 5 pont)

A kép illusztráció a feladathoz:

