Compute the *Edit Distance* (also known as *Levenshtein Distance*) between the strings "SATU" and "SUNDA" by completing the Dynamic Programming table below. We assume that all edit operations cost one unit.

(10 marks)

	S	Α	Т	U
S				
U				
N				
D				
Α				

Let $h_1(s)$ be an admissible A* heuristic. Let $h_2(s) = 2 h_1(s)$

(a)	Is the solution found by	A^*	tree search with h_2	guaranteed to be an optimal solution?	Justify
you	r answer.				

(2 marks)

(b)	Is the solution found	by A*	tree search with h_2	guaranteed	to have a cost at m	nost twice as
mu	ch as the optimal path?	Justify	your answer.			

(2 marks)

(c) Consider the state space graph shown below in which some of the states are missing a heuristic value. Determine the possible range for each missing heuristic value so that the heuristic is admissible and consistent. If this isn't possible, write so.

(6 marks)

Suppose that you have implemented a program for Reinforcement Learning (RL) using the Q-learning algorithm. To check this program, you will compute by hand a test case. Consider a small toy example where the environment can be in four different states s (1, 2, 3 and 4), and the agent in each time step chooses one out of three actions a (1, 2 and 3). The Q-function is stored as a table in the program, and you initialize it with the values below:

	s = 1	s = 2	s = 3	s = 4
a = 1	0.1	0.2	0.3	0.4
a = 2	0.5	0.6	0.7	0.8
a = 3	0.9	1.0	1.1	1.2

The discount of future rewards γ is set to 0.9. The learning rate λ is 0.2 (that is, the Q-value is adapted by 20% of the temporal difference value).

The system starts in State 3 and there the agent decides to take Action 1. The environment responds by giving a reward of 1 and moves to State 2. There, the agent chooses Action 2 which gives a reward of 0, and moves the agent to State 4.

To check your program, you will compute by hand how the Q-values in the table should change after these two steps.

(a)	State	which (Q- values	have c	hanged	and l	by l	now	much	after	the	agent	has c	comple	eted 1	the :	first
step	(take	Action	1 in State	e 3 and	arrive	in Sta	ate :	2 wit	h a re	ward	of 1). Giv	ve th	e relev	vant 1	forn	ıula
upda	ate(s)	for the a	ction val	ues.													

(3 marks)

Question 3 continued overleaf

Question 3 continued

c) Explain what happens in reinforcement learning if the agent always chooses the action tha naximizes the Q-value. (2 marks) d) Suggest a way to force a RL agent to explore its policy space. (2 marks)	apdate(s) for the action values.	(3 marks)
naximizes the Q-value. (2 marks) (3 marks)		(5 marns)
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3 marks) (4) Suggest a way to force a RL agent to explore its policy space.		
naximizes the Q-value. (2 marks) (3) Suggest a way to force a RL agent to explore its policy space.		
d) Suggest a way to force a RL agent to explore its policy space.		ses the action tha
d) Suggest a way to force a RL agent to explore its policy space.	naximizes the Q-value.	(2 marks)
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		(2 IIIdiks)
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)		
d) Suggest a way to force a RL agent to explore its policy space. (2 marks)	<u> </u>	
(2 marks)	d) Suggest a way to force a RL agent to explore its policy space.	(0 1)
		(2 marks)

- (a) Consider the following cancer testing scenario:
 - 1% of women have breast cancer (and therefore 99% do not).
 - 80% of mammograms detect breast cancer when it is there (and therefore 20% miss it).
 - 9.6% of mammograms detect breast cancer when it is not there (and therefore 90.4% correctly return a negative result).

Show your work below.	(0 - 1
	(6 marks)

Question 4 continued overleaf

Question 4 continued

(b) Given the table below,

Ex#	A	В	С	D	Y
1	1	1	1	1	0
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	0	0	0
5	0	0	1	0	0
6	1	0	1	0	0
7	0	1	0	1	1

Apply Naïve Bayes rule to calculate the ratio	P(Y=1 A=0,B=1,C=0,D=0)		
	P(Y=0 A=0,B=1,C=0,D=0)		

(6 marks)