Class 18: Pertussis Mini Project

Zoe Matsunaga (PID: A16853288)

Table of contents

Background	1
Examining cases of Pertussis by year	1
Enter the CMI-PB project	3
Focus on IgG levels	1

Background

Pertussis (aka whooping cough) is a common lung infection caused by the bacteria *B. Perussis*.

The CDC tracks cases of Pertussis in the US: https://tinyurl.com/pertussiscdc

Examining cases of Pertussis by year

We can use the **datapasta** package to scrape case numbers from the CDC website.

Q. Make a plot of pertussis cases per year using ggplot.

Q2. Add some key time points in our history of interaction with Pertussis to our plot. These include wP roll-out (the first vaccine) in 1945, and the switch to aP in 1996.

We can use geom_vline() for this.

```
cases +
  geom_vline(xintercept = 1945, col= "orange") +
  geom_vline(xintercept = 1996, col= "lightgreen") +
  geom_vline(xintercept = 2020, col= "lightblue") +
  annotate("text", x = 1945, y = 200000, label = "wP Roll-out", col= "orange") +
  annotate("text", x = 1996, y = 200000, label = "aP Roll-out", col= "lightgreen") +
  annotate("text", x = 2020, y = 200000, label = "COVID-19 Pandemic", col= "lightblue")
```


After the wP roll-out case numbers decreased significantly, and continued to stay low after the aP roll-out. In 2020, Covid pandemic began, and we see a significant decrease in cases, most likely due to quarentining, social distancing, and lockdown measures. However, in 2024, we see an increase in cases due to a variety of factors, such as vaccine hesitancy and vaccinations not being required for school.

Mounting evidence suggests that the \mathbf{aP} vaccine is less effective over the long term than the older \mathbf{wP} vaccine. Vaccine protection wanes more rapidly with the \mathbf{aP} than with the \mathbf{wP} , which is why a booster \mathbf{aP} vaccine is required.

Enter the CMI-PB project

CMi-PB (computational models of Immunity - Pertusis boost) major goal is to investigate how the immune system responds differently with aP vs wP vaccinated individuals and be able to predict this at an early stage.

CMI-PB makes all their collected data freely available wnd theu store it in a database composed different tables. Here we will access a few of these.

We can use the **jsonlite** package to read this data.

```
library(jsonlite)
subject <- read json("https://www.cmi-pb.org/api/v5 1/subject", simplifyVector = TRUE)</pre>
```

head(subject)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
           1
                      wP
                                  Female Not Hispanic or Latino White
2
           2
                      wP
                                  Female Not Hispanic or Latino White
           3
                                  Female
3
                      wP
                                                         Unknown White
4
           4
                      wP
                                    Male Not Hispanic or Latino Asian
5
           5
                      wP
                                    Male Not Hispanic or Latino Asian
           6
6
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset
     1986-01-01
                   2016-09-12 2020_dataset
1
2
                   2019-01-28 2020_dataset
     1968-01-01
3
    1983-01-01
                   2016-10-10 2020_dataset
     1988-01-01
4
                   2016-08-29 2020_dataset
5
    1991-01-01
                   2016-08-29 2020_dataset
6
    1988-01-01
                   2016-10-10 2020_dataset
```

Q. How many subjects (i.e. enrolled people) are there in this dataset?

nrow(subject)

[1] 172

Q. How many "aP" and "wP" subjects are there?

table(subject\$infancy_vac)

```
aP wP
87 85
```

Q. How many Male/Female are in the dataset?

table(subject\$biological_sex)

```
Female Male
```

Q. How about gender and race numbers?

table(subject\$race, subject\$biological_sex)

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	32	12
Black or African American	2	3
More Than One Race	15	4
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	14	7
White	48	32

Q. Is this representative of the US population?

NO

Let's read another database table from the CMI-PB

```
specimen <- read_json("http://cmi-pb.org/api/v5_1/specimen", simplifyVector = TRUE)
ab_data <- read_json("http://cmi-pb.org/api/v5_1/plasma_ab_titer", simplifyVector = TRUE)</pre>
```

Take a peek

head(specimen)

	${\tt specimen_id}$	subject_id	actual	_day_relative_	to_boost
1	1	1			-3
2	2	1			1
3	3	1			3
4	4	1			7
5	5	1			11
6	6	1			32
	planned_day_	_relative_to	_boost	specimen_type	visit
1			0	Blood	1
2			1	Blood	2
3			3	Blood	3
4			7	Blood	4
5			14	Blood	5
6			30	Blood	6

We want to "join" these tables to get all our information together. For this we will use **dplyr** package and the inner_join() function.

library(dplyr)

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag
```

The following objects are masked from 'package:base':

```
intersect, setdiff, setequal, union
```

```
meta <- inner_join(subject, specimen)</pre>
```

Joining with `by = join_by(subject_id)`

head(meta)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
                                  Female Not Hispanic or Latino White
1
           1
                      wP
2
           1
                      wP
                                  Female Not Hispanic or Latino White
3
           1
                      wP
                                  Female Not Hispanic or Latino White
4
           1
                      wP
                                  Female Not Hispanic or Latino White
5
           1
                      wΡ
                                  Female Not Hispanic or Latino White
           1
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset specimen_id
     1986-01-01
                   2016-09-12 2020_dataset
1
                                                       1
2
                   2016-09-12 2020 dataset
                                                       2
     1986-01-01
3
     1986-01-01
                   2016-09-12 2020_dataset
                                                       3
                   2016-09-12 2020_dataset
                                                       4
4
     1986-01-01
5
     1986-01-01
                   2016-09-12 2020_dataset
                                                       5
     1986-01-01
                   2016-09-12 2020_dataset
 actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                                       Blood
1
                                                             0
2
                              1
                                                                       Blood
                                                             1
3
                              3
                                                             3
                                                                       Blood
```

```
4
                                  7
                                                                     7
                                                                                 Blood
5
                                 11
                                                                     14
                                                                                 Blood
6
                                 32
                                                                    30
                                                                                 Blood
  visit
       1
1
2
       2
3
       3
4
       4
5
       5
       6
6
```

head(ab_data)

```
specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
1
            1
                   IgE
                                      FALSE
                                              Total 1110.21154
                                                                      2.493425
2
            1
                   IgE
                                      FALSE
                                              Total 2708.91616
                                                                      2.493425
3
            1
                   IgG
                                       TRUE
                                                 PT
                                                       68.56614
                                                                      3.736992
4
            1
                                       TRUE
                                                PRN
                                                     332.12718
                                                                      2.602350
                   IgG
5
            1
                   IgG
                                       TRUE
                                                FHA 1887.12263
                                                                     34.050956
6
            1
                   IgE
                                       TRUE
                                                ACT
                                                       0.10000
                                                                      1.000000
   unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

One more "join" to get ab_data and meta all together.

```
abdata <- inner_join(ab_data, meta)
```

Joining with `by = join_by(specimen_id)`

head(abdata)

	specimen_id	isotype	is_antigen_	_specific	$\verb"antigen"$	MFI	MFI_normalised
1	1	IgE		FALSE	Total	1110.21154	2.493425
2	1	IgE		FALSE	Total	2708.91616	2.493425
3	1	IgG		TRUE	PT	68.56614	3.736992

```
4
                   IgG
                                       TRUE
                                                 PRN 332.12718
                                                                       2.602350
            1
5
                                       TRUE
                                                                      34.050956
            1
                   IgG
                                                 FHA 1887.12263
6
            1
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
                   IgE
   unit lower_limit_of_detection subject_id infancy_vac biological_sex
1 UG/ML
                         2.096133
                                            1
                                                        wΡ
                                                                    Female
2 IU/ML
                        29.170000
                                            1
                                                                    Female
                                                        wP
3 IU/ML
                         0.530000
                                            1
                                                        wP
                                                                    Female
4 IU/ML
                         6.205949
                                            1
                                                        wΡ
                                                                    Female
5 IU/ML
                         4.679535
                                            1
                                                                    Female
                                                        wP
6 IU/ML
                         2.816431
                                            1
                                                        wΡ
                                                                    Female
                ethnicity race year_of_birth date_of_boost
                                                                    dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
3 Not Hispanic or Latino White
                                                   2016-09-12 2020_dataset
                                    1986-01-01
4 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
5 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
6 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                              -3
                                                              0
                                                                         Blood
2
                                                              0
                             -3
                                                                         Blood
                                                                         Blood
3
                             -3
                                                              0
                              -3
                                                              0
4
                                                                         Blood
5
                             -3
                                                              0
                                                                         Blood
6
                             -3
                                                              0
                                                                         Blood
  visit
      1
1
2
      1
3
      1
4
      1
5
      1
6
      1
```

dim(abdata)

[1] 61956 20

Q. How many Ab isotypes are there in the dataset?

table(abdata\$isotype)

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 7265 11993 12000 12000 12000
```

Q. How many different antigens are measured in the dataset?

table(abdata\$antigen)

ACT	BETV1	DT	FELD1	FHA	FIM2/3	LOLP1	LOS	Measles	OVA
1970	1970	6318	1970	6712	6318	1970	1970	1970	6318
PD1	PRN	PT	PTM	Total	TT				
1970	6712	6712	1970	788	6318				

Q. Make a boxplot of antigen levels across the whole dataset (MFI vs antigen).

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

Q. Are there obvious differences between aP and wP values

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

Or we can "facet" by infancy_vac to get two individual plots one for each value of infancy_vac.

```
y = "Antigen") +
theme_minimal()
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

Antigen Levels Based on Vaccine Type

Focus on IgG levels

IgG is the most abundant antibidy in blood. With four sub-classes (IgG1, IgG2, IgG3, and IgG4) crucial for long-term immunity and responding to bacterial & viral infections.

```
igg <- abdata |> filter(isotype=="IgG")
head(igg)
```

	specimen_id	isotype	<pre>is_antigen_specific</pre>	$\verb"antigen"$	MFI	MFI_normalised
1	1	IgG	TRUE	PT	68.56614	3.736992
2	1	IgG	TRUE	PRN	332.12718	2.602350
3	1	IgG	TRUE	FHA	1887.12263	34.050956
4	19	IgG	TRUE	PT	20.11607	1.096366

```
5
           19
                   IgG
                                       TRUE
                                                PRN 976.67419
                                                                       7.652635
                                       TRUE
6
           19
                   IgG
                                                FHA
                                                       60.76626
                                                                       1.096457
   unit lower_limit_of_detection subject_id infancy_vac biological_sex
1 IU/ML
                         0.530000
                                            1
                                                        wΡ
                                                                   Female
2 IU/ML
                                            1
                         6.205949
                                                        wP
                                                                   Female
3 IU/ML
                                            1
                                                                   Female
                         4.679535
                                                        wΡ
4 IU/ML
                         0.530000
                                            3
                                                        wΡ
                                                                   Female
5 IU/ML
                         6.205949
                                            3
                                                        wΡ
                                                                   Female
6 IU/ML
                         4.679535
                                            3
                                                                   Female
                                                        wP
                ethnicity race year_of_birth date_of_boost
                                                                   dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                  2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                                  2016-09-12 2020_dataset
                                    1986-01-01
3 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
4
                  Unknown White
                                    1983-01-01
                                                  2016-10-10 2020_dataset
5
                  Unknown White
                                    1983-01-01
                                                  2016-10-10 2020_dataset
6
                  Unknown White
                                    1983-01-01
                                                  2016-10-10 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                              0
                                                                         Blood
1
2
                             -3
                                                              0
                                                                         Blood
                                                              0
3
                             -3
                                                                         Blood
4
                             -3
                                                              0
                                                                         Blood
5
                             -3
                                                              0
                                                                         Blood
6
                             -3
                                                                         Blood
  visit
1
      1
2
      1
3
      1
4
      1
5
      1
6
      1
```

Same boxplot as before but let's facet_wrap() by visit to see how antigen levels change over time.

Antigen Levels

Focus in further on just one of these antigens - let's pick **PT** (Pertussis Toxin, one of the main toxins of the bacteria) in the **2021_dataset** again for **IgG** antibody isotypes.

```
table(igg$dataset)
```

```
2020_dataset 2021_dataset 2022_dataset 2023_dataset 1182 1617 1456 3010
```

```
dim(pt_igg)
```

[1] 231 20

Let's make a plot of Time vs MFI_normalised.

```
ggplot(pt_igg) +
        aes(actual_day_relative_to_boost, MFI_normalised, col=infancy_vac, group=subject_id)
geom_point() +
geom_line() +
geom_vline(xintercept = 0) +
geom_vline(xintercept = 14) +
labs(title = "PT IgG Levels Over Time",
        x = "Visit",
        y = "MFI Normalised") +
theme_minimal()
```

PT IgG Levels Over Time infancy_vac aP wP