投稿類別:工程技術類

篇名: APP 藍芽存錢筒

作者:

彭翊峰。臺北市立松山高級工農職業學校。子三仁葉智元。臺北市立松山高級工農職業學校。子三仁

指導老師: 鄧明發老師

壹●前言

一、研究動機

現在,大部分的小朋友都會有存錢的習慣,當自己的錢存到存錢 筒時,還要記住每一次所存的錢,過幾天就忘記了。有時把存錢筒打 開或是將存錢筒剖開,再計算到底有多少錢,但是一般的存錢筒敲開 後就無法修復,不僅在統計錢時浪費時間,還損毀一個存錢筒,最後 的金額一但計算錯誤,就得重新再來一遍,這是多麼麻煩的事啊!而 我們所研發的藍芽存錢筒,不但符合時代科技的快數變化,還可以替 你方便的顯示出所有的錢到手機上,讓你無時無刻都知道金額的數 目,還會引起你投錢的慾望。現代所有東西都講求效率和方便的產品, 就是如此。

二、研究方法與目的

我們研究的方法是先將自動販賣機所運作的技術,了解之後,我們試著把判斷投入1、5、10、50元的方法,使用光遮斷器的感測告知電路,透過藍芽將投入的金額、日期、時間顯示在手機 APP上,這樣就可以清楚記錄所有存錢的過程,如果想要取出全部金錢,按下手機 APP 已經設定好的按鍵,就可以開啟存錢筒拿出裡面的硬幣,為了防止被外人操作,甚至竊取裡面的金錢,導致存錢筒有所變動,所以我們在手機 APP中,加裝了輸入密碼的功能,使整個存錢筒更加機密。

而我們主要討論的項目有下列幾點:

- (一)、系統方塊圖
- (二)、研究手機 App Inventor 介面功能
- (三)、探討藍芽模組的傳輸原理及應用
- (四)、探討如何使用光遮斷器
- (五)、系統流程圖介紹
- (六)、成品功能說明

貳●正文

一、系統方塊圖

如【圖一】所示為本小論文之系統方塊圖,此裝置的系統主要分 為五大區塊,光遮斷器掃描、藍芽接收/傳輸、LED 指示燈、步進馬達 控制及手機 APP 程式, 而核心控制我們使用 Arduino 來完成。由 Arduino 依據投入零錢來傳送資料顯示在手機 APP 上,並紀錄投入金額、時間 及日期,而 Arduino 中的藍芽再判斷手機 APP 預設的按鍵是否被按下, 來控制存錢筒的開啟。

二、手機 App Inventor

App Inventor 原本是 Google 實驗室的一個計畫, Google 工程師與 Google 使用者共同參與。2010年 12月 15日對公眾開放。2011年 12 月31日Goole終止了這應用開發者軟體,2012年1月1日移交給麻省 理工學院行動學習中心。App Inventor 是一個完全線上開發 Android 程 式環境,拋棄複雜的程式碼而使用樂高積木式的堆疊法來完成我們 Android 程式。App Inventor 的生成方式是從 App Inventor 伺服 器裡編譯好再把 APK 格式的檔案下載到手機上安裝,或是將開發完 成的程式在模擬器上執行如【圖二】。【註一】

【圖二】App Inventor 產生圖

三、藍芽模組

(一)、藍芽模組 HC-06

HC-06 的硬體採用英國劍橋的 CSR(全球市佔率最高的藍牙通訊 晶片廠)公司的 BC417143 晶片, HC-06 主要用到的接腳 VCC(接 5V)、GND、TXD、RXD 如【圖三】, 而 HC-06 的內部狀態,主端或從端模式,不能擅自更改,市面上通常是「從端」模式。【註二】

(二)、如何配對,操作如下

- 1、進行連接時,要注意 Arduino 與藍芽模組連接線路如【圖四】。
- 2、執行搜尋裝置,行動裝置會向附近的藍芽發出信號,進行連線。
- 3、若有搜尋到可用的裝置則進行密碼配對,一般密碼設定為 1234。
- 4、HC-06 從機模式:當 LED 長亮代表已連線,慢速閃爍代表等待配對。

【圖三】藍芽模組 HC-06

【圖四】藍芽模組正確連接方式

(三)、App Inventor 的藍芽程式

藍芽連接 Arduino 和 App 必須使用 Arduino 的<SoftwareSerial.h>函式庫,以及 App Inventor 的 BluetoothClien 如【圖五】,<SoftwareSerial.h>是 Arduino 硬體內建支援串列通訊 UART,包含 RX、TX 腳的設定、串列傳輸鮑率、讀取傳送資料和資料傳送功能。BluetoothClient 是藍芽客戶端,此元件有藍牙裝置進行連線、中斷、接收和傳送功能。【註三】。

【圖五】BluetoothClien 元件

四、光遮斷器

在光遮斷器中,從發光元件到受光元件之間,有一空氣的間隙,如【圖六】所示,若此間隙中沒有物體阻止,則發光元件所射出的光將直接照射到受光元件,反之,若間隙中有物體阻擋光線,則受光件無光線照射而改變輸出狀態,E(發光二極體)為發射端,D(光電晶體為受光端如【圖七】所示。

五、系統流程圖介紹

(一)、Arduino 程式流程圖

如【圖八】所示,LOOP 迴圈開始,Arduino 會接收 APP 傳來的訊號,並判斷是否啟動馬達,若馬達開啟則綠色 LED 亮,如果沒有,接著判斷光遮斷器是否有零錢投入,如果 1 元投入,點亮紅 LED 將金額加 1、如果 5 元投入,點亮紅 LED 將金額加 5,以此類推,而手機 APP 上也會收到投入的金額、時間,最後 LOOP 迴圈會一直執行。

【圖八】Arduino 程式流程圖

(二)、APP 程式流程圖

如【圖九】所示,開啟 APP 後進入登入畫面,如果密碼不正確會重返畫面,密碼正確後會進入主選單,主選單會有密碼、領錢、退出、連線、斷線五個按鈕,當點選密碼時,可以自行更改密碼,按下領錢時,要先輸入密碼才能傳送開啟訊號給 APP 開啟存錢筒,退出按鍵是退出此 APP,連線按鍵是開啟藍芽並連線,斷線是關閉藍芽並斷開藍芽的連線。

【圖九】APP 程式流程圖

五、成品功能說明

(一)、金額判斷構造圖

判斷裝置主要是由四個洞口組成,先設計分類金額,並且能剛好通過1元、5元、10元、50元的4個洞口如【圖十】,當硬幣先經過分類後,流下來的硬幣會順著滑道再經過光遮斷器的感測,判斷1元、5元、10元、50元如【圖十一】。

【圖十】硬幣分類結構圖

【圖十一】感應金額構造圖

(二)、手機 APP 登入

開啟手機藍芽及 APP 會看到登入畫面【圖十二】第一次登入的密碼為"000000",輸入密碼後【圖十三】,按下 OK 進入 APP 就會顯示"成功登入"【圖十四】,進入 APP 點選連接會開啟選擇視窗如【圖十五】,點選 HC-06 就可連線上藍芽模組。

【圖十二】登入畫面

【圖十三】輸入 000000

【圖十四】成功登入

【圖十五】藍芽選擇

(三)、手機 App 密碼設置功能

登入後就可以自行更改密碼,如果原來的密碼輸入正確但是更改的密碼兩次輸入不一致【圖十六】,更改密碼視窗會顯示"更改的密碼不相等"【圖十七】,這樣密碼不會更改,輸入的密碼正確與更改的密碼兩次輸入一樣【圖十八】,更改密碼視窗則會顯示"密碼更改完成"【圖十九】,這樣密碼就會更改成"203228"了。

更改密碼	更改密碼
原來的密碼	原來的密碼
	000000
更改的密碼	更改的密碼
	203232
再輸入一次	再輸入一次
	203228
確定 返更改的密碼不相等	確定返回
【圖十六】錯誤的輸入	【圖十七】更改的密碼不相等
^{更改密碼} 原來的密碼	^{更改宏碼} 原來的密碼
203228	

【圖十八】正確的輸入

更改的密碼

再輸入一次 203232

確定 返回

【圖十九】密碼更改完成

確定 返回密碼更改完成

更改的密碼

再輸入一次

(四)、外部成品圖

以下為 APP 藍芽存錢筒的外觀,我們存錢筒長 29 公分、寬 13 公分高 20 公分如【圖二十】,上半部有一個硬幣投入的洞口和顯示輸入的紅色 LED,這樣讓使用者方便觀察,而馬達、存錢筒取出的洞口我們則裝設在存錢筒的正面,並加上綠色 LED,如【圖二十一】成品圖所示,達到最方便、最輕鬆的存錢方式。

APP 藍芽存錢筒

【圖二十】存錢筒外觀

【圖二十一】存錢筒外觀

(五)、光遮斷測試

此功能為測試錢幣通過光遮斷器,當光遮斷器接收到訊號後紅色 LED 指示燈點亮【圖二十二】,並傳送給 Arduino 將訊號轉換金額,透 過已連線的藍芽傳給 APP 在視窗上顯示金額、時間、日期【圖二十三】。

【圖二十二】零錢指示燈

存錢數: 10 元

10 2015/10/28 下午7:16:04 ******

【圖二十三】APP 畫面

(六)、馬達裝置測試

APP 點選領錢【圖二十四】並且輸入正確的密碼,手機螢幕會顯示,再透過藍芽傳送訊號給 Arduino 點亮綠色 LED【圖二十五】,驅動馬達從原本平行【圖二十六】轉動 90 度來開啟存錢筒【圖二十七】。

【圖二十四】APP畫面

【圖二十五】馬達指示燈

APP 藍芽存錢筒

【圖二十六】馬達未轉動

【圖二十七】馬達已轉動

(七)、完成品測試

開啟手機 APP 登入並連線藍牙,將 66 元零錢從投幣孔投入,錢幣會依大小被分類到不同的洞口進入滑道,當滑過光遮斷器傳送訊號給 Arduino,收到訊號點亮紅色 LED【圖二十八】,透過藍芽傳送金額給 APP 顯示在視窗上【圖二十九】。點選領錢輸入正確的密碼,APP會顯示"錢全部取出"【圖三十】傳送訊號開啟存錢筒並點亮綠色 LED【圖三十一】,最後就能將投入的錢取出來。

【圖二十八】投入零錢

5 2015/10/28 下午7:17:24

1 2015/10/28 下午7:17:18 【圖二十九】APP顯示

1子或发, U 儿 *****

錢全部取出

【圖三十】 錢全部取出

【圖三十一】零錢取出

參●結論

一、問題與討論

經過這次實驗,我們發現了一個問題,整理如下:

APP與Arduino無法傳送正確的資料,藍芽連接上了但是傳送的資料不正確,例如存錢筒投入50元,APP接收到的卻是2。APP會收到2的原因是Arduino傳送的是ASCII碼,而十進制50為ASCII的2。

要解決此問題的方法是將金額拆開成十位數和個位數部分,再加上 48傳送,因為十進制48是ASCII的0,只要以0為基準就可以傳送正確的 金額了。例如傳送50,把50拆成十位數5和個位數0並各加上48成十位 數53和個位數48,傳送到APP就可以收到5、0了。

二、未來發展與運用

此小論文主要對習慣積蓄的人發展,目前只以銅板的存錢方式,來 實現本小論文,在未來的研究上,希望可以達到鈔票掃描的方式,讓存錢 的金額,能有更多的方式,每次存取的數量也可以比多,相信可以增加使 用者存錢的的意願。

除了上述之外,一般人在存錢的過程中很辛苦,如果辛苦累積的錢被偷走了,那是多麼惱人的事!如果能建立簡單的警告聲或是定位系統,當密碼未輸入時,存錢筒被破壞,則警鈴聲響起,手機能顯示存錢筒被偷的位址,相信一定可以阻止小偷的所作所為。

肆●引註資料

- 註一、AppInventor 中文學習網 http://www.appinventor.tw/
- 註二、HC-06 藍芽模組使用說明 http://swf.com.tw/?p=693
- 註三、楊明豐、王建賀、王雅雯。碁豐資訊股份有限公司(2014.01)。 台北市:Arduino 最佳入門與應用--打造互動設計輕鬆學。