MADNESS: CIS Excitation Energies

The Tutorial was written for the Git commit f03a51fbe4f5a30d870c28772e5960ae39502da9 which you can checkout before compiling via: $git\ checkout\ f03a51fbe4f5a30d870c28772e5960ae39502da9$ If you experience any sort of trouble please feel free to contact me at: jakob.kottmann@hu-berlin.de

1 Built LRCCS

Detailed information can be found in the MADNESS wiki on Github: https://github.com/m-a-d-n-e-s-s/madness/wiki

- Make shure you have Git installed
- Make shure you have (see also the MADNESS wiki):
 - C++11 Compiler: Clang-3.8 or later (Mac OS), GCC-4.8 or later (Linux)
 - Corresponding MPICH
 - GNU Autotools (autoconf 2.59 or later, automake 1.11 or later)
- Get the MADNESS source Code from Github git clone https://github.com/m-a-d-n-e-s-s/madness.git madness-source
- Execute autogen.sh in the madness-source directory
- Configure MADNESSS in your compile directory like this (use the correct paths): /path-to-source/madness-source/configure 'CC=/usr/bin/clang' 'CXX=/usr/bin/clang++' 'MPICC=/opt/local/bin/mpicc-mpich-clang38' 'MPICXX=/opt/local/bin/mpicxx-mpich-clang38'
- \bullet Compile the MADNESS libraries in your compile directory make -C /path-to-madness-compile/madness-compile/ libraries
- Compile LRCCS in the MADNESS examples directory make -C /path-to-madness-compile/madness-compile/src/examples lrccs

2 Run LRCCS

After compiling you can execute lrccs in the madness-compile/src/examples directory. For the calculation it is necessary that an input file with the name input is present in the directory from which you call lrccs.

3 Quick Tutorial

The programm LRCCS [2] will solve the linear-response equations for excitation energies in the CIS approximation via the following steps.

- 1. Solve Hartree-Fock (HF) ground state
- 2. Create guess vectorfunctions $\{x_i\}$ from the HF orbitals $\{\phi_i\}$ via

$$x_i = f \cdot \phi_i$$

where f is constructed from polynomials (see Keyword section)

- 3. Iterate the guess vectorfunctions
- 4. Iterate the lowest guess vectorfunctions further
- 5. Iterate sequentially untill convergence

Detailed information can be found in [2].

3.1 Input File Structure

The input file has four main sections.

Ground-State section: Begins with *dft* and ends with *end*

Mandatory Keywords:

- ullet xc value: value is the exchange correlation potential. To solve the CIS equations this has to be always hf
- k value: *value* is the order of polynomials for the MRA representation (usually around 6-9)
- econv value: *value* is the MRA:threshold for the HF orbitals and at the same time the convergence threshold for the energy

Optional Keywords:

- L value: *value* it the size of the cubic simulation box in atomic units. Each dimension of the box runs rum -L to L (default is 50.0)
- \bullet dconv value: value convergence threshold for the orbitals (does not affect MRA threshold)
- nuclear_corrfac value: value is the nuclear correlation factor which is used (default is none, other options are slater, GradientalGaussSlater, GaussSlater, LinearSlater and Polynomial). For more information see [1].
- no_compute or restart: Load the HF equations from the file restartdata.00000 which has to be present in the same directory. If restart is chosen the HF orbitals will be re-iterated

Response Section: Begins with *cc2* and ends with *end*

Mandatory Keywords

• thresh_3D value: value is the MRA threshold for the response vectorfunctions (default is 5)

Optional Keywords

- tda_econv_hard value: *value* is the final convergence threshold for the excitation energies
- \bullet tda_dconv_hard value: value is the final convergence threshold for the response vectorfunctions
- ullet tda_excitations value: value is the number of excitation energies which shall be calculated
- \bullet tda_guess_excitations value: value is the number of guess excitations which is iterated in the beginning
- tda_iterating_excitations value: *value* is the number of excitation vectors which are iterated together (change if you have memory problems)
- freeze value: value is the number of frozen core orbitals
- tda_guess value: value is the guess that is used (default is a big guess from a perturbed fock matrix). Possible entries are: dipole, dipole+, quadrupole, big_fock_3, big_fock_4, c2v, c2v_big and custom). The polynomials which are used for the specific guesses will be displayed in the output. The custom valueword has to be used together with the exop valueword.
- exop value: value is a custom polynomial to create a guess vector function from the HF orbitals. Example: $exop \ x \ 1.0 \ y \ 2.0, \ x \ 3.0 \ z \ 1.0 \ c \ -2.0$ corresponds to $xy^2 + -2.0 \cdot x^3z$. To calculate more than one guess the exop keyword can used more than one time. Example: The following line would be equivalent with the $tda_guess \ dipole+$ keyword:

```
tda\_guess\ custom

exop\ x\ 1.0

exop\ y\ 1.0

exop\ z\ 1.0

exop\ z\ 2.0,\ y\ 2.0,\ z\ 2.0
```

Geometry section: Begins with *geometry* and ends with *end*. Contains the molecular coordinates in atomic units

Plot section: Begins with *plot* and ends with *end*. Contains plotting information. Can in principle be empty but should be present.

3.2 Example Input

The example input File should also be found in the madness-source/src/examples directory with the name $input_example_lrccs$. Note that it has to be renamed to input

```
dft
xc hf
econv 1.e-5
dconv 1.e-4
end
cc2
thresh_3D 1.e-4
tda_econv_hard 1.e-4
tda_dconv_hard 1.e-3
tda_guess dipole+
end
geometry
he 0.0\ 0.0\ 0.0
end
plot
plane x1 x2
origin 0.0 0.0 0.0
zoom 1.0
end
```

References

- [1] Florian A. Bischoff. Regularizing the molecular potential in electronic structure calculations. I. SCF methods. *The Journal of Chemical Physics*, 141(18), 2014.
- [2] Jakob S. Kottmann, Sebastian Höfener, and Florian A. Bischoff. Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation. *Physical Chemistry Chemical Physics*, 17:31453–31462, 2015.