DAND Open Street Maps w/ MongoDB

For Jeresy City, Hoboken and surrounding area in New Jersey, USA

By Richard Lorenzo

Introduction:

This project analyses the Open Street Maps data for a metropolitan region of New Jersey. I chose this area because I live in New Jersey, and the area is an interesting mix of upscale urban residences in Hoboken, mixed income homes in Jersey City, commercial / industrial businesses, major highways, and even part of Newark International Airport.

The studied area is a rectangle bounded by the following coordinates:

- Latitude / Longitude = (40.6881, -74.0201)
- Latitude / Longitude = (40.7646, -74.2086)

Map and Description excerpts from Wikipedia:

Jersey City is the second-most-populous city in the U.S. state of New Jersey after Newark. [22] It is the seat of Hudson County as well as the county's largest city. [23][24] As of 2015, the Census Bureau's Population Estimates Program calculated that Jersey City's population was 264,290, [16] with the largest population increase of any municipality in New Jersey since 2010, [25] an increase of about 6.7% from the 2010 United States Census, when the city's population was at 247,597, [15][26] ranking the city the 75th-largest in the nation. [27]

Hoboken (/ˈhoʊboʊkən/ Ho-bo-ken; [21] Unami: Hupokàn [22]) is a city in Hudson County, New Jersey, United States. As of the 2010 United States Census, the city's population was 50,005, [10][11][12] having grown by 11,428 (+29.6%) from 38,577 counted in the 2000 Census, which had in turn increased by 5,180 (+15.5%) from the 33,397 in the 1990 Census. [23] Hoboken is part of the New York metropolitan area and is the site of Hoboken Terminal, a major transportation hub for the region.

Analysis Overview:

The first section provides and summary of the analysis, steps, data results, and interpretations. The specific "code-walkthrough" is included at the end and allows the reader to re-run or tweak the programming.

Analysis Steps:

- 1) Using my coordinates, and OSM query tools, I downloaded 117MB of OSM Data in an XML format.
- 2) I imported the ,xml data using python's "ElementTree" library using the "iterparse" method to read all elements for inspection.
- 3) Clean the data using the accepted "blueprint" steps:
 - a) Audit the data
 - b) Create a data cleaning plan
 - c) Execute the data cleaning plan
 - d) Manually Correct the Data
 - e) Iterate the above steps to confirm the data is cleaned.
- 4) Audit the Data:
 - a) I found element types and counts:
 - b) I found errors and inconsistencies in the street names:
- 5) Create a data cleaning plan:
 - a) Using a mapping function correct the following street names:
 - b) Validate suspected errors using google searches.
 - c) Individually remove suite numbers from the street name data
 - d) Create a shaping function that corrects and shapes the XML data into a JSON format.
 - e) Import the JSON data into MongoDB for validation
 - f) Validate and make manual corrections of errors spotted with MongoDB queries.
 - g) Validate again until the data is clean.
- 6) Execute the plan / Manually Correct / Iterate: The code walk-through section shows these steps in detail.
- 7) Gather statistics that characterize this area of the country.
- 8) Draw conclusions, and propose future analysis.

Data Results:

Element Counts:

Element	Counts
'member'	63,531
'meta'	1
'nd'	644,614
'node'	510,264
'note'	1
'osm'	1
'relation'	525
'tag'	161809
'way'	79972

Expected Street Names: (No Errors)

"Street", "Avenue", "Boulevard", "Drive", "Court", "Place", "Square", "Lane", "Road", "Trail", "Parkway", "Commons", "Center", "Highway", "Plaza", "Turnpike", "Walk", "Walkway",

Odd Street types, but correct: (No Errors):

"Way", "East", "Hudson", "North"

Street Type Error with Correction mapping:

```
"St": "Street"
"St.": "Street"
"Ave": "Avenue"
"Rd.": "Road"
"Blvd": "Boulevard"
"Ctr": "Center"
"Clinton": "Clinton Street"
"1st": "1st Street"
```

Errors needing individual corrections:

```
'1204' for 'Journal Square #1204'
'3' for '16th Street # 3'
'C' for '2nd Street #C' and 'Avenue C'
'US-1 (NJ)' for 'US-1'
```

These Street types are wrong, but cannot be corrected with mapping.

- '1204' and '3' are house numbers miscoded in the Street Name.
- 'C' is correct when it is 'Avenue C', but it is also a house number when used in 2nd Street
- '(NJ)' cannot be fixed with the mapping function.

I modified the Shape function to check for and fix each of these errors.

Postal Codes:

After the first run-through in MongoDB, the following (5) postal codes were wrong:

- 07030-5774 This is the zip + 4 code.
- 07305-9997 -
- 07302-4522
- NI 07102
- NJ 07105

I created the get_zip() function and correct them in python.

Import .json to MongoDB

After correction the data, shaping it, and importing it into MongoDB, I ran the following queries to validate the data.

The tables on the next page show results of the above Street Name and Postal Code MongoDB queries:

Street Names	count
[Bloomfield Street]	57
[Garden Street]	53
[Park Avenue]	50
[Washington Street]	40
[7th Street]	39
[1st Street]	35
[Monroe Street]	33
[Willow Avenue]	29
[Hudson Street]	28
[Adams Street]	28
[4th Street]	23
[Grand Street]	23
[Jefferson Street]	23
[Jackson Street]	23
[6th Street]	22
[2nd Street]	22
[Madison Street]	21
[3rd Street]	18
[Clinton Street]	17
[River Street]	6
[Newark Street]	4
[Court Street]	2
[9th Street]	2
[Warren Street]	2
[US 1]	1
[Webster Avenue]	1
[Bergenline Avenue]	1
[Harrison Street]	1
[Marin Boulevard]	1
[Harborside Fin Center]	1
[Journal Square]	1
[16th Street]	1
[8th Street]	1

Postal Codes	count
[07302]	64
[07306]	25
[07030]	22
[07102]	10
[07304]	8
[07310]	6
[07104]	5
[07105]	5
[07114]	4
[10004]	3
[07307]	2
[07311]	2
[07087]	1
[07107]	1
[07305]	1
[07032]	1

Data Analysis with MongDB:

Total Size = 590,236

MongoDB query:

```
result = coll.find().count()
print
print "Total Size ="
```

Quantities of each data element: This table shows the quantities of each element

_id	Count	
0	node	510117
1	way	79959
2	broad_leafed	147
3	multipolygon	7
4	route	3
5	nature_museum	1
6	park	1
7	Public	1

MongoDB query:

Number of Unique users who updated the OSM data: (430)

The top 10 users with the most updates:

_id	count	
0	minewman	240825
1	smlevine	219881
2	wambag	24074
3	choess	14265
4	Семён Семёнов	9231
5	3yoda	8377
6	ingalls	7828
7	OceanVortex	7791
8	peace2	7141
9	KindredCoda	4579

Analysis of Amenities:

I studied the top (10) amenities. Unfortunately this data is not very detailed, and most name fields are null. The following page summarizes the amenities data for this area. Next I plotted the amenities with lat/lon information by groups to look for patterns

The following queries were used to create the tables on the following tables:

```
print "List the Top 10 Amenities by Quantity"
{"$limit" : 10}])
print "List Parking by Name"
result = coll.aggregate([ {'$match' : {'amenity' : "place_of_worship", 'religion' :
{'$ne' : None}}},
                   {"$group":{ "_id": "$religion", "count":{"$sum":1}}},
                   {"$sort" : {"count" : -1}},
                   1)
print "List Places of Worship by Religion"
                   {"$group":{ "_id": "$name","count":{"$sum":1}}}, 
{"$sort": {"count": -1}},
                   {"$limit" : 10}])
print "List Restaurants by Name"
print "List Fast Food by Name"
result = coll.aggregate([ {'$match' : {'amenity' : "hospital", 'name' : {'$ne' :
None } } },
                   {"$group":{ "_id": "$name", "count":{ "$sum":1}}},
                   {"\$sort" : {"count" : -1}},
                   1)
print "List Hospital by Name"
1)
print "List Toilets by Name"
1)
print "List Fire Stations by Name"
result = coll.aggregate([ {'$match' : {'pos' : {'$ne' : None}, 'amenity' : {'$ne' :
None } } },
                   {"$group":{ "_id": "$amenity","count":{"$sum":1}}},
{"$sort" : {"count" : -1}},
{"$limit" : 10}])
print "List Amenties with POS Coordinates for Scatter Plot"
```

Top 10 Amenities by Quantity	
_id	count
0 parking	363
1 place_of_worship	270
2 school	205
3 parking_space	91
4 restaurant	77
5 hospital	39
6 fuel	28
7 fast_food	27
8 toilets	25
9 fire_station	20

List Parking by Name		
id	count	
	0 None	300
	1 Parking Garage	3
	2 Parking Lot B	2
	3 Eagle West	2
	4 Lot 12C	1
	5 Parking Lot D	1
	6 The Parking Spot Haynes	1
	7 The Parking Spot 2	1
	8 ParkFast Secaucus Junction	1
	9 Impark	1

Worship By Religion	
Religion	count
christian	255
muslim	3
jewish	1
hindu	1

Top 10 Schools by Name	
_id	count
0 None	17
Hoboken Catholic 1 Academy	3
Franklin Elementary 2 School	2
3 Market Street School	2
4 Jubilee Center	2
5 Hoboken High School	2
6 East Side High School	1
East Newark Public	_
7 Elementary School Lafayette Street	1
8 Elementary School	1
Dayton Street 9 Elementary School	1

Top 10 Restaurants by Na	ime
_id	count
0 None	6
1 Battello	2
2 Helen's Pizza	2
3 Liberty House Restaurant	1
4 Trolley Car	1
5 Maritime Parc	1
6 La Conguita Restaurant	1
7 Rio	1
8 Sanai's	1
9 New Jersey Truck Stop	1

Top 10 Fast Food by Name		
_id	count	
o None	5	
1 Burger King	4	
2 McDonald's	3	
3 Subway	2	
4 Dunkin' Donuts Kennedy Fried	2	
5 Chicken New York Fried	1	
6 Chicken	1	
7 Wendy's	1	
8 Dairy Queen Torico Ice	1	
g Cream	1	

_id 0 Saint James Hospital Grove Medical	count 1
•	1
1 Associates	1
2 MD Emergent Care	1
3 West Hudson Hospital St. Michael's Medical	1
4 Center	1
Hoboken University	
5 Medical Center	1
6 Fairmont Hospital	1
7 Christ Hospital	1

Fire Stations by Name	
_id	count
0 None	10
Hoboken Fire Department 1 Engine 3	_
. •	1
2 Engine No. 15	1
Hoboken Rescue Company 3 Number 1	1
Hoboken Ladder Company 4 Number 2	1
Hoboken Ladder Company Number 1;Hoboken	
5 Engine	1
6 Bayonne Engine Company 6	1
7 fire station 1	1
Hoboken Engine Company	
8 Number 1	1
9 Bayonne Ladder Company 3	1
Hoboken Fire Dept Ladder 2	
10 Engine 5	1

The plot above shows amenities are only recorded in three clusters. To check for geographical reasons, I plotted the same data using MatPlotLib's Basemap library below:

The geography still shows large areas without any reported amenities with lat/lon data.

Conclusions from amenities Data:

- 1) Amenity data is not deep in general, and it is limited to the higher income residential areas along the Hudson River across from Manhattan.
- 2) Parking garages and even parking spaces make up a large number of reported amenities.
- 3) The places of worship are overwhelming Christian.
- 4) The restaurant and fast food amenities are too under reported to draw conclusions.

Propose future analysis:

- 1) This dataset needs to supplemented to draw more conclusions.
- 2) I suggest adding US Census track data and look are household income.
- 3) Also, screen scrapes from Google and Yelp would improve amenity data. However, such screen scrapes may violate their terms of service.