EECS 203 Discussion 4

Proof by Cases, Intro to Sets

Upcoming Exam

- Exam 1 is on Monday, February 19th from 7:00 9:00 PM!
- If you have a time conflict, contact the course staff ASAP!
- Practice exam questions have been released on Canvas!
 - They can be found on via Files -> Practice Exams -> Exam 1

Upcoming Homework

- Homework/Groupwork 4 will be due Feb. 15th
 - Don't forget to match pages!
 - Please note as soon as you press submit you've successfully submitted by the deadline. You can still match pages with no rush without adding to your submission time.

Groupwork

- Groupwork can be done alone, but the problems tend to be more difficult, and the goal is for you to puzzle them out with others!
- Your discussion section is a great place to find a group!
- There is also a pinned Piazza thread for searching for homework groups.

Proof Methods Overview

Making a Valid Argument (Writing a Proof)

- Argument/Proof: An argument for a statement S is a sequence of statements ending with S. S is called the conclusion. An argument starts with some beginning statements you assume are true, called the premises.
- Valid Argument/Proof: An argument is valid if every statement after the premises is implied (→) by the some combination of the statements before it.
 - Whenever the premises are true, the conclusion must be true.

Today we will be discussing word-style proofs

Proof Methods

Direct Proof: Proves p → q by showing

$$p \rightarrow stuff \rightarrow q$$

• Proof by Contraposition: Proves $p \rightarrow q$ by showing

$$\neg q \rightarrow stuff \rightarrow \neg p$$

Proof by Contradiction: Proves p → q by showing

$$(p \land \neg q) \rightarrow F \rightarrow \neg (p \land \neg q) \equiv \neg p \lor q \equiv p \rightarrow q$$

• **Proof by Cases:** Proves $p \rightarrow q$ by showing

$$p \rightarrow p1 \ V \ p2 \ V \dots \ V \ pn \rightarrow q$$

Some Methods of Proving $p \rightarrow q$:

Direct Proof:

Proves $p \rightarrow q$ by showing $p \rightarrow stuff \rightarrow q$

Proof by Contraposition:

Proves $p \to q$ by showing $\neg q \to stuff \to \neg p$ (Once you show $\neg q \to \neg p$, you can immediately conclude $p \to q$ by contraposition)

Proof by Contradiction:

Assume p and $\neg q$ are true. Derive a contradiction (F), by arriving at a mathematically incorrect statement (ex: 0 = 2) or two statements that contradict each other (x = y and x \neq y). Therefore, p \rightarrow q.

$$(p \land \neg q) \rightarrow F \rightarrow \neg (p \land \neg q) \equiv \neg p \lor q \equiv p \rightarrow q$$

• Proof by Cases:

Break p into cases and show that each case implies q (in which case $p \rightarrow q$).

$$p \rightarrow p_1 \lor p_2 \lor ... \lor p_n \rightarrow q$$

Proof by Cases

Proof by Cases

Break p into cases and show that each case implies q (in which case $p \rightarrow q$).

$$p \rightarrow p_1 \lor p_2 \lor ... \lor p_n \rightarrow q$$

 $p_1 \vee p_2 \vee ... \vee p_n$ should cover all possible cases for p.

- We break our statement into all possible cases
- We show that each case leads to the conclusion we want

1. Proof by Cases/Contradiction \star

Prove that there is no rational solution to the equation $x^3 + x + 1 = 0$. **Hint:** Use the fact that 0 is an even number.

You can use the following lemmas without proving:

- Odd \times Even = Even
- $Odd \times Odd = Odd$
- Even \times Even = Even
- Odd + Even = Odd
- Odd + Odd = Even
- Even + Even = Even

1. Proof by Cases/Contradiction *

Prove that there is no rational solution to the equation $x^3 + x + 1 = 0$. **Hint:** Use the fact that 0 is an even number.

Seeking contradiction, suppose there is a rational solution. Let a solution be $\frac{a}{b}$, with a, b in reduced form.

Then we know that $\frac{a^3}{b^3} + \frac{a}{b} + 1 = 0 \iff a^3 + ab^2 + b^3 = 0.$

Since the RHS is even, LHS should be even as well.

Case 1: a, b both odd.

Then we have LHS = odd + odd + odd = odd.

Case 2: a is odd, b is even.

Then we have LHS = odd + even + even = odd.

Case 3: a is even, b is odd.

(note that WLOG does not apply here since a, b are not symmetric; there is a term ab^2).

Then we have LHS = even + even + odd = odd.

Case 4: a, b are both even.

This cannot occur since a, b is in reduced form.

Each case results in LHS being odd which is a contradiction if LHS = 0. Thus we have proved by contradiction that the equation $x^3 + x + 1$ has no solution in \mathbb{Q} .

- Odd \times Even = Even
- $Odd \times Odd = Odd$
- Even \times Even = Even
- Odd + Even = Odd
- Odd + Odd = Even
- Even + Even = Even

2. Prime Proof *

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a natural number ≥ 2 such that p and 1 are the only factors that divide p.

2. Prime Proof *

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a natural number ≥ 2 such that p and 1 are the only factors that divide p.

We can consider two cases: either p is even, or it is odd.

- Case 1: Consider the even primes, which is just p = 2. $p^2 + 11 = 15$, and $15 = 5 \cdot 3$ is composite.
- Case 2: Now we consider the odd primes, or any prime greater than 2. Since p is odd, we have p = 2k + 1 for some integer k > 1. Then

$$p^{2} + 11 = (2k+1)^{2} + 11 = 4k^{2} + 4k + 12 = 2(2k^{2} + 2k + 6).$$

Hence, p^2+11 can be factored into 2 and $2k^2+2k+6$, therefore p^2+11 is composite.

We have exhausted all non-overlapping cases and proved that for all primes $p,\,p^2+11$ is composite.

3. Proving the Triangle Inequality

Prove the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

3. Proving the Triangle Inequality

Prove the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

This is a proof by cases. There are 4 cases to consider:

- \bullet x and y are both nonnegative
- x and y are both negative
- $x \ge 0, y < 0, x \ge -y$
- $x \ge 0, y < 0, x < -y$

Since x and y play symmetric roles (you can switch the values of x and y without impacting the validity of the triangle inequality), we can assume without loss of generality (WLOG) for the last two cases that $x \ge 0$ and y < 0.

- Case 1: If x and y are both nonnegative, then |x| + |y| = x + y = |x + y|.
- Case 2: If x and y are both negative, then |x| + |y| = (-x) + (-y) = -(x+y) = |x+y|.
- Case 3: If $x \ge 0$ and y < 0 and $x + y \ge 0$, then |x| + |y| = x + (-y) is some number greater than x. |x + y| is some positive number less than x since y is negative. Thus, $|x| + |y| \ge x \ge |x + y|$.
- Case 4: If $x \ge 0$ and y < 0 and x + y < 0, then |x| + |y| = x + (-y) is some number greater than -y. |x + y| = -(x + y) = (-x) + (-y) which is some positive number less than or equal to -y, since -x is nonpositive. Thus, we have $|x| + |y| \ge -y \ge |x + y|$.

We have now proved for all cases that the triangle inequality is valid. This example is purposely lengthy to show in full detail a proof by cases.

Alternate Solution

3. Proving the Triangle Inequality

Prove the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

$$\begin{aligned} a+b &\leq |a|+b \leq |a|+|b| \\ -(a+b) &= -a-b \leq |-a|-b \leq |-a|+|-b| = |a|+|b| \end{aligned}$$

Since |a+b| = a+b or -(a+b), and both cases are $\leq |a|+|b|$, we have proven the triangle inequality.

Intro to Sets

Set Terminology

- Set: A set is an unordered collection of distinct objects
- Universe: In set theory, a universe is a collection that contains all the entities one wishes to consider in a given situation.
- **Union** S ∪ T: The set containing the elements that are in S or T:

$$S \cup T = \{x \mid x \in S \lor x \in T\}$$

Intersection S ∩ T: The set containing the elements that are in S and T:

$$S \cap T = \{x \mid x \in S \land x \in T\}$$

• Complement \bar{A} of A: The set containing the elements that are in the universe U but not in A:

$$\bar{A} = \{x \mid x \in U \land x \notin A\}$$

• Minus S - T: The set containing the elements that are in S but not in T:

$$S - T = \{x \mid x \in S \land x \notin T\}$$

Set Terminology

• **Subset:** The set A is a subset of B if and only if every element of A is also an element of B. Denoted $A \subseteq B$. Note that A and B may be the same set.

$$A \subseteq B \text{ iff } \forall x [x \in A \rightarrow x \in B]$$

 Proper Subset: The set A is a proper subset of B if and only if A is a subset of B and A ≠ B. That is, A is a subset of B and there is at least one element of B that is not in A.

$$A \subsetneq B$$
. $A \subsetneq B$ iff $\forall x [x \in A \rightarrow x \in B] \land (A \neq B)$

- Disjoint: The sets A and B are disjoint if and only if they do not share any elements
- **Empty Set:** The empty set, denoted \emptyset or **{}**, is the unique set having no elements.

Set Terminology

 Inclusion-Exclusion Principle: The inclusion-exclusion principle states that the size of the union of two sets is equal to the sum or their sizes minus the size of their intersection:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

• **Power Set:** The power set of a set S is the set of all subsets of S. P(S) denotes the power set of S:

$$P(S) = \{T \mid T \subseteq S\}$$

- Cardinality: The number of elements in a set. The cardinality of a set S is denoted by |S|.
- Cartesian Product: $A \times B$ is the set of all ordered pairs of elements (a, b) where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

4. Set Exploration \star

- a) What is $|\emptyset|$?
- b) Let $A = \{1, 2, 3\}$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}$, $D = \{4, 5\}$, and $E = \{\emptyset, 5\}$.
 - i. Is $\emptyset \in A$?
 - ii. Is $\emptyset \subseteq A$?
 - iii. Is $\emptyset \in B$?
 - iv. Is $\emptyset \subseteq B$?
 - v. Is $\emptyset \in C$?
 - vi. Is $\emptyset \subseteq C$?
 - vii. What is $A \cap D$?
 - viii. What is $B \cap C$?
 - ix. What is $B \cap E$?
 - x. What is |B|, |C|, |E|?
- c) Let A and C be the sets defined above.
 - i. What is P(A)?
 - ii. What is P(C)?
 - iii. Find a formula for the size of the power set of S, |P(S)|, in terms of |S|.
 - iv. What is $C \times A$?
 - v. What is A^2 ? $(A^2 = A \times A)$
 - vi. Find a formula for the size of the Cartesian product of A and B, $|A \times B|$ in terms of |A| and |B|.

a)
$$|\emptyset| = 0$$

- b) i. No, \emptyset is not an element of A, you would see it in A if it was.
 - ii. Yes, \emptyset is a subset of all sets. All elements of \emptyset (none) are elements of A: $\{\}\subseteq\{1,2,3\}$
 - iii. Yes, $\emptyset \in \{\emptyset\}$
 - iv. Yes, \emptyset is a subset of all sets.
 - v. Yes, $\emptyset \in \{\emptyset, \{\emptyset\}\}$
 - vi. Yes, Ø is a subset of all sets.
 - vii. $A \cap D = \emptyset$
 - viii. $B \cap C = \{\emptyset\}$
 - ix. $B \cap E = \{\emptyset\}$
 - |B| = 1, |C| = 2, |E| = 2
- c) i. $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$
 - ii. $\mathcal{P}(C) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
 - iii. $|\mathcal{P}(S)| = 2^{|S|}$
 - iv. $C \times A = \{(\emptyset, 1), (\emptyset, 2), (\emptyset, 3), (\{\emptyset\}, 1), (\{\emptyset\}, 2), (\{\emptyset\}, 3)\}$
 - v. $A^2 = A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - vi. $|A \times B| = |A| \times |B|$

4. Set Exploration ★

- a) What is $|\emptyset|$?
- b) Let $A = \{1, 2, 3\}, B = \{\emptyset\}, C = \{\emptyset, \{\emptyset\}\}, D = \{4, 5\}, \text{ and } E = \{\emptyset, 5\}.$
 - i. Is $\emptyset \in A$?
 - ii. Is $\emptyset \subseteq A$?
 - iii. Is $\emptyset \in B$?
 - iv. Is $\emptyset \subseteq B$?
 - v. Is $\emptyset \in C$?
 - vi. Is $\emptyset \subseteq C$?
 - vii. What is $A \cap D$?
 - viii. What is $B \cap C$?
 - ix. What is $B \cap E$?
 - x. What is |B|, |C|, |E|?
- c) Let A and C be the sets defined above.
 - i. What is P(A)?
 - ii. What is P(C)?
 - iii. Find a formula for the size of the power set of S, |P(S)|, in terms of |S|.
 - iv. What is $C \times A$?
 - v. What is A^2 ? $(A^2 = A \times A)$
 - vi. Find a formula for the size of the Cartesian product of A and B, $|A \times B|$ in terms of |A| and |B|.

5. Double Subset Equality *

Prove the set equivalence: $A - (B \cap C) = (A - B) \cup (A - C)$

5. Double Subset Equality \star

Prove the set equivalence: $A - (B \cap C) = (A - B) \cup (A - C)$

First, let's show $A-(B\cap C)\subseteq (A-B)\cup (A-C)$. Let x be an arbitrary element of the domain. Assume $x\in A-(B\cap C)$

- $x \in A \land x \in \overline{(B \cap C)}$
- $x \in A \land (x \notin B \lor x \notin C)$ (using DeMorgan's Law)
- $(x \in A \land x \notin B) \lor (x \in A \land x \notin C)$ (using the distributive property)
- $(x \in A B) \lor (x \in A C)$
- $x \in (A B) \lor (A C)$

Therefore, $A - (B \cap C) \subseteq (A - B) \cup (A - C)$

Now we will show $(A-B) \cup (A-C) \subseteq A - (B \cap C)$ Let x be an arbitrary element of the domain. Assume $x \in (A-B) \cup (A-C)$

Case 1: $x \in A - B$

- $x \in A \land x \notin B$
- $x \in A$
- $x \notin B$
- x ∉ B ∨ x ∉ C
 (Note: we can add whatever we want with an or statement, since we know the first half is always true!)
- $x \in A \land (x \notin B \lor x \notin C)$

Case 2: $x \in A - C$

- $\bullet \ x \in A \land x \not\in C$
- $\bullet \ x \in A$
- $x \notin C$
- $x \notin B \lor x \notin C$
- $x \in A \land (x \notin B \lor x \notin C)$

Now we need to use the conclusions of our cases:

- In both cases, we have $x \in A \land (x \notin B \lor x \notin C)$
- $x \in A \cap (\overline{B} \cup \overline{C})$
- $x \in A \cap \overline{(B \cap C)}$ (using DeMorgan's Law)
- $x \in A (B \cap C)$

Therefore, $(A - B) \cup (A - C) \subseteq A - (B \cap C)$

Since each side is a subset of the other, we can say $(A-B)\cup(A-C)=A-(B\cap C)$

6. Subset Proofs

Let A, B, and C be sets. Prove that

- a) $(A \cap B \cap C) \subseteq (A \cap B)$
- b) $(A-B)-C\subseteq A-C$

6. Subset Proofs

Let A, B, and C be sets. Prove that

- a) $(A \cap B \cap C) \subseteq (A \cap B)$
- b) $(A-B)-C\subseteq A-C$
- a) Consider an arbitrary $x \in (A \cap B \cap C)$
 - By the definition of intersection, we have $(x \in A) \land (x \in B) \land (x \in C)$
 - So we have $(x \in A) \land (x \in B)$
 - Thus we have, $x \in (A \cap B)$

Therefore, $(A \cap B \cap C) \subseteq (A \cap B)$ by definition.

- b) Consider an arbitrary $x \in (A B) C$
 - By definition of set difference, we know that $(x \in A B) \land (x \notin C)$
 - Since $x \in A B$, we know that $(x \in A) \land (x \notin B)$
 - Thus, $(x \in A) \land (x \notin B) \land (x \notin C)$
 - Then, we have $(x \in A) \land (x \notin C)$
 - Finally, by definition of set minus, we have $x \in A C$

Therefore, we have shown that $(A - B) - C \subseteq A - C$

7. Power Sets

Can you conclude that A = B if A and B are two sets with the same power set?

7. Power Sets

Can you conclude that A = B if A and B are two sets with the same power set?

The union of all the sets in the power set of a set X must be exactly X. In other words, we can recover X from its power set, uniquely. Therefore the answer is yes.

We can also show this is true through a proof by contraposition. Let A and B be sets and assume $A \neq B$. Because A and B are not equal, WLOG there exists an element $x \in A$ such that $x \notin B$. Therefore we conclude that $\{x\} \in \mathcal{P}(A)$, and that $\{x\} \notin \mathcal{P}(B)$, therefore $\mathcal{P}(A) \neq \mathcal{P}(B)$. Thus by the contrapositive, the original statement is true.

8. More Power Sets *

Determine whether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

8. More Power Sets *

Determine whether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- a) The power set of every set includes at least the empty set, so the power set cannot be empty. Thus \emptyset is not the power set of any set.
- b) This is the power set of $\{a\}$.
- c) We know that the power set a set of size n has 2^n elements, but this set has three elements. Since 3 is not a power of 2, this set cannot be the power set of any set. Set cardinality aside, the set $\{\emptyset, a\}$ may come to mind, but $P(\{\emptyset, a\}) = \{\emptyset, \{\emptyset\}, \{a\}, \{\emptyset, a\}\}.$
- d) This is the power set of $\{a, b\}$.

9. Power Set of a Cartesian Product

Prove or disprove that if A and B are sets, then $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.

9. Power Set of a Cartesian Product

Prove or disprove that if A and B are sets, then $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.

Solution: This is not true. The simplest counterexample is to let $A = B = \emptyset$ (or any two disjoint sets). Then $A \times B = \emptyset$ and $\mathcal{P}(A \times B) = \{\emptyset\}$, whereas $\mathcal{P}(A) = \mathcal{P}(B) = \{\emptyset\}$ and $\mathcal{P}(A) \times \mathcal{P}(B) = \{(\emptyset, \emptyset)\}$. Thus, $\mathcal{P}(A \times B) \neq \mathcal{P}(A) \times \mathcal{P}(B)$