



## PLAKAT INFORMACYJNY PROJEKTU GRUPOWEGO - MAJ 2024

# KATEDRA ALGORYTMÓW I MODELOWANIA SYSTEMÓW

| Zespół            | 1. Łukasz Nowakowski -   |
|-------------------|--------------------------|
| projektowy:       | kierownik                |
| 4@KAMS'2023/24    | 2. Konrad Bryłowski      |
|                   | 3. Aleksander Czerwionka |
|                   | 4. Michał Krause         |
|                   | 5. Krystian Nowakowski   |
| Opiekun:          | dr inż. Paweł Kowalski   |
| Klient:           | dr inż. Krzysztof        |
|                   | Manuszewski              |
| Data zakończenia: | 26.05.2024               |
| Słowa kluczowe:   | pojazd autonomiczny,     |
|                   | symulator, SI, unity     |



#### **TEMAT PROJEKTU:**

# Symulator pojazdu autonomicznego

## **CELE I ZAKRES PROJEKTU:**

Celem projektu jest wytworzenie symulatora, który będzie przydatny i łatwy w użyciu przy trenowaniu sztucznej inteligencji do sterowania małymi pojazdami bez potrzeby uruchamiania jej na modelu rzeczywistym. Przewidziane są dwa tryby nauki – naśladowanie operatora oraz samodzielną naukę – oraz dwa środowiska treningu – platformę ze ścieżką do śledzenia oraz scenerię korytarza WETI.

# **OSIAGNIETE REZULTATY:**

Po dwóch semestrach realizacji projektu wytworzono symulator w Unity zawierający generator losowej platformy ze ścieżką oraz scenerią pierwszego piętra budynku NE. W symulatorze zamodelowano pojazd wydrukowany w drukarce 3D przez opiekuna projektu, model przy domyślnych parametrach symulacji zachowuje się w sposób zbliżony do rzeczywistego, zaimplementowano zbieranie danych o sile napędu oraz kącie skrętu kół, a także obrazów otoczenia modelu. Zaimplementowano także interfejs komunikacji w postaci serwera WWW z API pozwalającym na inicjowanie nowych map oraz pojazdów na mapie, a także sterowanie parametrami pojazdu: mocą silnika oraz kątem skrętu. Wszystkie te funkcje dostępne są także przez interfejs użytkownika.

Zgodnie z zaplanowaną organizacją pracy, postępy projektu są publicznie dostępne na platformie GitHub: https://github.com/autonomous-vehicle-sim/Simulator

# CECHY CHARAKTERYSTYCZNE ROZWIĄZANIA, KIERUNKI DALSZYCH PRAC:

Rozwiązanie pozwala na dwa sposoby pracy: uruchomienie symulatora na stacji roboczej i sterowanie za pomocą klawiatury lub joysticka (umożliwiając np. trenowanie przez naśladowanie operatora) oraz uruchomienie na serwerze i kontrolowanie symulacji za pomocą HTTP z możliwością równoległego uruchomienia kilku symulacji z różnymi ścieżkami.





# **TEAM PROJECT INFORMATION FOLDER – MAY 2024**

# DEPARTMENT OF ALGORITHMS AND SYSTEMS MODELLING

| Project team:  | 1. Łukasz Nowakowski -   |
|----------------|--------------------------|
| 4@KAMS'2023/24 | leader                   |
|                | 2. Konrad Bryłowski      |
|                | 3. Aleksander Czerwionka |
|                | 4. Michał Krause         |
|                | 5. Krystian Nowakowski   |
| Supervisor:    | dr inż. Paweł Kowalski   |
| Client:        | dr inż. Krzysztof        |
|                | Manuszewski              |
| Date:          | 26.05.2024               |
| Key words:     | autonomous vehicle,      |
|                | simulator, AI, unity     |



#### **PROJECT TITLE:**

## **Autonomous vehicle simulator**

## **OBJECTIVES AND SCOPE:**

The main objective of the project is to create an easy-to-use simulator which should help in training miniature vehicle AI without running it on the real model. The simulator will have two modes: following operator's example and self-learning, and two sceneries: follow the line type and ETI hall scene.

## **RESULTS:**

After two semesters of project implementation, a simulator was developed in Unity featuring a random platform generator with a path and scenery of the first floor of the NE building. The simulator models a vehicle 3D-printed by the project supervisor, which behaves in a manner similar to the real vehicle under default simulation parameters. Data collection for drive force and wheel angle, as well as images of the model's surroundings, has been implemented. Additionally, a communication interface in the form of a web server with an API has been implemented, allowing for the initiation of new maps and vehicles on a map, as well as control of vehicle parameters: engine power and wheel angle. All these functions are also available through the user interface.

According to the planned work organization, project progress is publicly available on the GitHub platform: https://github.com/autonomous-vehicle-sim/Simulator

# **MAIN FEATURES, FUTURE WORKS:**

Final state of the project allows the user to control the simulator in two ways: running the simulation on a workstation and steering the vehicle with keyboard or joystick (allowing, for example, for training by following operator's example), and running the simulator on a server and controlling it via HTTP, with the capability of running several simulations in parallel with different paths.