Título en español (definido en Cascaras\cover.tex) Title in English (defined in Cascaras\cover.tex)

Trabajo de Fin de Grado Doble grado en Ingeniería Informática y Matemáticas Curso 2019–2020

Autor Nombre Apellido1 Apellido2

Director 1

Director 2

Colaborador

Colaborador 1 Colaborador 2

Facultad de Informática Universidad Complutense de Madrid

Título en español (definido en Cascaras\cover.tex) Title in English (defined in Cascaras\cover.tex)

Autor Nombre Apellido1 Apellido2

Director

Director 1

Director 2

Colaborador

Colaborador 1

Colaborador 2

Dirigida por el Doctor

Director 1

Director 2

Facultad de Informática Universidad Complutense de Madrid

17 de marzo de 2020

Dedicatoria

Agradecimientos

A Guillermo, por el tiempo empleado en hacer estas plantillas. A Adrián, Enrique y Nacho, por sus comentarios para mejorar lo que hicimos. Y a Narciso, a quien no le ha hecho falta el Anillo Único para coordinarnos a todos.

Resumen

Título en español (definido en Cascaras\cover.tex)

Un resumen en castellano de media página, incluyendo el título en castellano. A continuación, se escribirá una lista de no más de 10 palabras clave.

Palabras clave

Máximo 10 palabras clave separadas por comas

Abstract

Title in English (defined in Cascaras\cover.tex)

An abstract in English, half a page long, including the title in English. Below, a list with no more than 10 keywords.

Keywords

10 keywords max., separated by commas.

Índice

1.	\mathbf{Intr}	oducci	ón	1
	1.1.	¿Por q	ué la navegación por interiores?	2
	1.2.	Objeti	vos	3
	1.3.	Plan d	le trabajo	3
	1.4.	Explic	aciones adicionales sobre el uso de esta plantilla	3
2.	Esta	ado de	la Cuestión	5
	2.1.	Aplica	ciones de guía	5
		2.1.1.	Google Maps	5
		2.1.2.	BlindSquare	7
		2.1.3.	Nearby Explorer	9
		2.1.4.	Lazarillo	10
		2.1.5.	Wayfindr	10
		2.1.6.	Conclusiones	11
	2.2.	Sistem	as de posicionamiento	12
		2.2.1.	GPS	12
		2.2.2.	Wi-Fi	13
		2.2.3.	Balizas Bluetooth	13
3.	Des	cripció	on del Trabajo	15
	3.1.	Reunió	ón en el Centro de Tiflotecnología e Innovación de la ONCE	15
		3.1.1.	Introducción	15
		3.1.2.	Entrevista	16
		3.1.3.	Conclusiones	18
	3.2.	Estudi	o de la precisión de los beacons	18
		3.2.1.	Aplicación miniapp	19
		3.2.2.	Aplicación cuadrantes v1	19
		3.2.3.	Resultados	19
		3.2.4.	Mediciones en puntos clave de la facultad	21
	3.3.	Mapeo	o del edificio	23
	3.4.	Nuestr	ra aplicación (ponerle nombre)	23
		3.4.1.	Servidor	24
		3.4.2.	Posicionamiento con beacons	24
		3.4.3.	Cálculo de la ruta óptima e instrucciones de guía	25

4.	Conclusiones y Trabajo Futuro	27
5 .	Introduction	29
6.	Conclusions and Future Work	31
Bi	bliografía	33
Α.	Título del Apéndice A	35
в.	Título del Apéndice B	37

Índice de figuras

2.1.	Plano de un edificio proporcionado por Google Maps	6
2.2.	Vista del interior del Madison Square Garden.	7
2.3.	Ejemplo de navegación y búsqueda en Google Maps Indoors	7
2.4.	Método de triangulación GPS	12
3.1.	Interfaz de la aplicación miniapp.	20
3.2.	Interfaz de la aplicación cuadrantes v1	21
3.3.	Gráfico con las distancias medidas al beacon CPne.	22
3.4.	Gráfico con las distancias medidas al beacon eAaw.	22
3.5.	Gráfico con las distancias medidas al beacon 8v2c	23
3.6.	Gráfico con las distancias medidas conjuntas de los beacons 8v2c y CPne,	
	estando uno sobre otro.	23
3.7.	Mapa de la planta baja de la Facultad de Informática con la ubicación de	
	los beacons (rojo) y los puntos de medición (verde)	24

Índice de tablas

Introducción

"Frase célebre dicha por alguien inteligente"
— Autor

article En la actualidad, los *smartphones* se han convertido en los protagonistas indiscutibles de nuestro día a día. El informe anual de *Ditrendia* (Rivero, 2019) recoge que el 68 % de la población mundial (5100 millones) cuenta con un *smartphone*, mientras que este porcentaje ascienden al 96 % cuando hablamos de la población española. Es decir, aproximadamente 32,6 millones de españoles navegan por Internet a diario con su teléfono móvil.

Por otro lado, resulta prácticamente imposible imaginar un smartphone que no tenga instalado una aplicación de navegación, ya que este tipo de aplicaciones se han convertido en herramientas esenciales y habituales, puesto que no solo se limitan a dar la ruta óptima entre dos puntos, sino que también aportan distintas alternativas para ir a pie, con transporte público, información sobre el mismo como horarios, cambios temporales, etc. Se estima que el $75\,\%$ de los usuarios españoles utilizan aplicaciones de navegación mensualmente, siendo la tercera actividad más practicada después de la mensajería instantánea y la visualización de videos online (Rivero, 2019).

No cabe duda de lo útil que resulta poder consultar la ruta entre dos puntos pero, jestas aplicaciones son igual de apropiadas para todos los usuarios? ¿Se tienen en cuenta las necesidades de aquellos que padecen discapacidad visual? En España, 70.775 personas sufren ceguera legal según la ONCE (Gómez Ulla). Este término engloba dos tipos marcados y diferenciados, lo que se conoce como ceguera (ausencia de visión o solo percepción de luz) y la deficiencia visual (mantenimiento de un resto de visión funcional para la vida cotidiana). En ambos casos, las personas que las padecen afrontan numerosos desafíos en su vida diaria, la mayor parte de ellos derivados de la total falta de información. Un vistazo a nuestro alrededor es suficiente para darnos cuenta de cuán visuales son la mayor parte de los mensajes útiles que usamos en nuestro entorno: desde leer la etiqueta de un producto en el supermercado, hasta saber si nos encontramos en la parada de autobús correcta. De ahí que los ojos sean considerados los principales órganos sensoriales y que su pérdida conlleve una reducción considerable de independencia, ya que el acceso a la información significa autonomía. En ocasiones, esto viene acompañado de un segundo problema con el que muchos están acostumbrados a lidiar, el exceso de protección. A menudo familiares, amigos o incluso desconocidos asumen que un invidente necesita ayuda sin preguntar o sin esperar a ser llamados. Este frecuente comportamiento genera impotencia en el individuo en lugar de independencia y le quita espacio para aprender a realizar una tarea por sí mismo.

En resumen, la falta de accesibilidad es el eje central del que nacen numerosos problemas que afectan a la vida de las personas que presentan ceguera legal. Otro ejemplo más es el caso del ocio y la tecnología. No abundan los libros adaptados. De hecho, según la World Blind Union "más del 90 % del material publicado no es accesible para invidentes o personas con deficiencia visual" (Envision, 2019). E igual ocurre con Internet. El grueso de las páginas web y aplicaciones no consideran las necesidades especiales de estos potenciales usuarios, dejándoles completamente al margen. Por ello, la respuesta a las dos preguntas lanzadas al comienzo de esta sección es no, actualmente son pocas las aplicaciones que tienen en cuenta a las personas que sufren discapacidad visual y, en particular, son pocas las aplicaciones de navegación que están adaptadas. Es por esto, que en nuestro trabajo de fin de grado hemos querido abordar este problema, estudiando, para ello, tecnologías accesibles que nos permitan desarrollar una aplicación de navegación que facilite una guía adaptada para estos usuarios.

1.1. ¿Por qué la navegación por interiores?

Como es natural, todos nos vemos obligados a desplazarnos en nuestro día a día. Normalmente suelen ser lugares conocidos a los que llegamos de una manera más o menos automática, sin tener que pensar mucho ya que conocemos y memorizamos todo lo que hay en dichos recorridos. Sin embargo, de manera puntual modificamos dichas rutinas, ya sea por problemas temporales que inhabilitan la ruta en cuestión, como por la necesidad de desplazarnos a un lugar al que no habíamos ido antes. Paralelamente, hay un conjunto de edificios que visitamos con cierta frecuencia y que por ende nos resultan familiares y donde nos ubicamos perfectamente, pero en ocasiones nos surge la necesidad de ir a otros por primera vez, véase un hospital, un museo o un centro comercial.

A menudo estas situaciones despiertan desorientación, incomodidad y rechazo en las personas que las viven ya que se encuentran frente a una situación de descontrol e incertidumbre debido a la falta de conocimiento. A nadie le gusta sentirse perdido, pero cuando te falta uno de los cinco sentidos y uno de los más esenciales, la vista, esto se vuelve mucho más duro, ya que, hay un gran vacío informativo. Basta pensar en cuántas personas se te cruzan por la calle, cuántos obstáculos sorteas a diario tanto en interiores como en exteriores, cuántas veces cruzas la carretera para alcanzar tu destino, cuántas veces te apoyas leyendo el nombre de una calle o un cartel en un edificio, cuántas veces bajas/subes unas escaleras o esperas al ascensor, o miras el número del autobús que está por llegar... Ahora imagina hacerlo sin ayuda de la vista. Todo esto son ejemplos de situaciones muy cotidianas que para las personas videntes no suponen ningún esfuerzo mientras que para las personas con discapacidad visual suponen un gran reto.

En los últimos años se ha estudiado mucho el sector de la navegación por exteriores, actualmente son varias las apps que mediante el GPS proporcionan una guía de origen a destino. Este hecho, acompañado de la creciente sesibilización con el problema de la ceguera y del boom de las tecnologías accesibles ha favorecido que cada vez más desarrolladores se interesen por la accesibilidad y la promuevan en este tipo de aplicaciones. Sin embargo, en la navegación por interiores aún vemos un claro vacío ya que es un terreno menos explorado en general y, consecuentemente, menos adaptado. Por ello, hemos decidido centrar nuestras investigaciones en este sector, buscando paliar el malestar al que estos usuarios se enfrentan en su día a día. Para la consecución de este fin, desarrollaremos una aplicación accesible que sirva de guía a invidentes por espacios interiores, más concretamente por la Facultad de Informática de la Universidad Complutense de Madrid.

1.2. Objetivos

1.2. Objetivos

Descripción de los objetivos del trabajo.

1.3. Plan de trabajo

Aquí se describe el plan de trabajo a seguir para la consecución de los objetivos descritos en el apartado anterior.

1.4. Explicaciones adicionales sobre el uso de esta plantilla

Si quieres cambiar el **estilo del título** de los capítulos, edita TeXiS\TeXiS_pream.tex y comenta la línea \usepackage[Lenny]{fncychap} para dejar el estilo básico de LATeX.

Si no te gusta que no haya **espacios entre párrafos** y quieres dejar un pequeño espacio en blanco, no metas saltos de línea (\\) al final de los párrafos. En su lugar, busca el comando $\mathbf{setlength}\{parskip}\{0.2ex\}$ en TeXiS\TeXiS_pream.tex y aumenta el valor de 0.2ex a, por ejemplo, 1ex.

TFMTeXiS se ha elaborado a partir de la plantilla de TeXiS¹, creada por Marco Antonio y Pedro Pablo Gómez Martín para escribir su tesis doctoral. Para explicaciones más extensas y detalladas sobre cómo usar esta plantilla, recomendamos la lectura del documento TeXiS-Manual-1.0.pdf que acompaña a esta plantilla.

¹http://gaia.fdi.ucm.es/research/texis/

Estado de la Cuestión

2.1. Aplicaciones de guía

En los últimos años ha aumentado la sensibilización tecnológica en áreas de inclusión a usuarios con discapacidad visual. De modo que las tecnologías accesibles tienen, cada vez más, un papel central en el desarrollo de aplicaciones, logrando recortar las limitaciones que antes las separaban de las personas que sufren algún tipo mayor de dificultad visual y dirigiéndose a un público más amplio.

Al igual que las personas videntes, las personas con ceguera son usuarios de aplicaciones de muy variada índole, por ello encontramos apps ya adaptadas en categorías como: redes sociales, entretenimiento, lectura, identificación de colores y objetos, etc.

En esta sección, haremos un pequeño estudio sobre las aplicaciones accesibles existentes en el campo de la navegación, bien sea por interiores o exteriores, y su funcionamiento.

2.1.1. Google Maps

El pasado 10 de Octubre de 2019, en el "World Sight Day", Google dió a conocer la última actualización de la famosa aplicación *Google Maps*¹. Esta incluiría una nueva característica desarrollada desde cero por y para personas con discapacidad visual que convertiría a la misma en una app accesible.

El proyecto consiste en la implementación de una nueva funcionalidad que facilita la posibilidad de recibir instrucciones de voz más detalladas y nuevos tipos de anuncios verbales muy útiles para las rutas de a pie para personas con visibilidad reducida. Algunas de las nuevas instrucciones incluidas son: informar de manera proactiva que estás en la ruta correcta, la distancia hasta el próximo giro, la dirección en la que estás caminando, avisos para cruzar con precaución si te aproximas a una gran intersección, notificaciones en caso de ser redirigido por causa de haber abandonado accidentalmente la ruta correcta, etc. De esta manera, la aplicación pretende brindar de independencia a las personas que padecen ceguera tratando de que se sientan cómodas y seguras a la hora de explorar lugares nuevos y desconocidos. La guía de voz detallada para la navegación está actualmente en desarrollo, estando ya disponible en inglés en los Estados Unidos y en japonés en Japón. Su soporte para otros idiomas y países sigue en camino.

En cuanto a la navegación por interiores, $Google\ Maps^2$ con su actualización $\theta.\theta$ incor-

 $^{^{1}} https://blog.google/products/maps/better-maps-for-people-with-vision-impairments/$

²https://www.google.es/intl/es/maps/about/partners/indoormaps/

Figura 2.1: Plano de un edificio proporcionado por Google Maps.

poró los primeros planos de ciertos edificios públicos, entre los cuales destacan aeropuertos, centros comerciales, estadios y puntos de transporte público. Gracias a esta nueva versión, Google Maps ayuda a determinar dónde estás, en qué planta y hacia dónde ir. Para ello, basta con hacer zoom sobre un edificio cuyo plano esté disponible en la app, y este aparecerá automáticamente y completamente detallado. En la Figuras 2.1 y 2.2 vemos un ejemplo del famoso Madison Square Garden de Nueva York.

Con estos nuevos planos podrás localizar dónde están los baños, escaleras, ascensores, entradas y salidas, etc., los cuales aparecen representados mediante iconos globalmente aceptados (ver Figura 2.1). También aparecen detallados los distintos establecimientos que se localizan en el edificio e incluye la posibilidad de hacer ciertas búsquedas, tanto generales (de cafeterías, librerías, tiendas, restaurantes...) como concretas (Starbucks, McDonald's...) (ver Figura 2.3). Otra funcionalidad que no falta en la versión de interiores es la posibilidad de señalar un destino y recibir indicaciones sobre cómo llegar a el. Para ello, aparece el habitual punto azul que te acompaña e indica tu posición, actualizando el plano con cada movimiento que lleves a cabo (incluidos cambios de una planta a otra) (ver figura 2.3). Esta aplicación es un proyecto colaborativo y por ende, desde la web es posible actualizar y subir nuevos planos. Está disponible tanto para ordenador como plataformas Android e iOS.

Esta aplicación pone a nuestro servicio la utilidad de *Maps* pero en interiores. Además, nos permite colaborar, pudiendo subir nosotros mimos el plano de un edificio. Sin dudar del gran avance que esta aplicación supone en la navegación por interiores, no debemos olvidar algunas de sus desventajas: el posicionamiento, al contrario que en exteriores, no es muy preciso (en la web hablan de varios metros), y las búsquedas que puedes realizar son limitadas, no pudiendo, por ejemplo, preguntar por la ubicación de los baños; esto es, puedes ver dónde están pero no puedes seleccionarlos como destino para que te vaya indicando la ruta a seguir. Pero sobre todo, tiene el inconveniente de que no es una tecnología

Figura 2.2: Vista del interior del Madison Square Garden.

Figura 2.3: Ejemplo de navegación y búsqueda en Google Maps Indoors.

accesible: $Google\ Maps\ Indoors^3$ es una aplicación completamente visual que no cuenta con soporte auditivo por lo que descarta completamente a usuarios invidentes.

2.1.2. BlindSquare

Es una de las aplicaciones de navegación más populares. Su uso se extiende a más de 130 países y está habilitada en 25 idiomas, entre los cuales se incluye el español. Esta aplicación, desarrollada para iOS y diseñada para personas con discapacidad visual, proporciona una guía completa, de origen a destino, tanto en exteriores como en interiores. Además, describe el entorno y anuncia posibles puntos de interés para el usuario (como pueden ser los lugares considerados populares o aquellos visitados frecuentemente). Su principal característica es que permite interactuar mediante voz gracias al controlador de música de Apple.

BlindSquare⁴ determina tu posición mediante localización GPS y, a partir de ahí, puede darte información sobre las proximidades utilizando Foursquare y OpenStreetMap. De este modo, es capaz tanto de guiarte a un cierto destino como de notificarte qué establecimientos hay en tu radio: restaurantes a 200m, parques más cercanos, farmacias...

Con el fin de agilizar el uso de la app, y que por tanto esta sea cómoda y rentable para

 $^{^3}$ https://www.youtube.com/watch?v=cPsTWj_03Qs

⁴https://www.blindsquare.com

los usuarios finales, incluye: accesos directos a funciones mediante gestos (como sacudir el móvil para que nos diga la ubicación actual y puntos cercanos) y la posibilidad de establecer filtros para recibir únicamente el tipo de información deseada. Por ejemplo, permite filtrar por restaurantes para no tener notificaciones sobre estaciones de tren o librerías.

En cuanto a la navegación por interiores, $BlindSquare^5$ emplea un sistema de balizas bluetooth, llamadas beacons, que colocan es sitios estratégicos de los edificios, para solventar el problema del posicionamiento. Por lo demás, incluye las mismas posibilidades y funcionalidades que la navegación por exteriores, con la única limitación de que el edificio debe estar provisto de dichos sistemas de posicionamiento.

En su web encontramos un ejemplo de la utilización de los beacons en un campus ⁶: una vez que entras en el edificio, uno de los beacons se dará cuenta de tu aplicación BlindSquare y te hará saber dónde te encuentras y cómo llegar a tu destino, indicándote los ascensores, escaleras e intersecciones más cercanas. Integrar en el campus servicios como estos promueve tanto a visitantes como a estudiantes con discapacidad visual moverse por el entorno con total autonomía y seguridad.

Entre los puntos fuertes de esta aplicación destacamos los siguientes:

- Da información sobre los metros que quedan hasta llegar a un determinado objetivo.
 Resulta útil porque si van disminuyendo sabes que vas por el camino adecuado.
- Utiliza indicaciones de tipo reloj (a las 10, a las 3,...) muy usadas por las personas con discapacidad visual.
- Avisa de las intersecciones.
- Cuando te da una nueva indicación y la superas, usa el sonido asociado a correto o check. Así, puedes seguir sin preocuparte. Si por el contrario te equivocas, reproduce un sonido en consecuencia.
- Se pueden añadir ubicaciones en una lista de lugares marcados.
- Puedes ir girando con el móvil y te va indicando lo que tienes enfrente.
- También tiene opción de simulación, que permite prepararse un camino antes de ir.
- Te permite ser más autónomo y descubrir nuevos sitios.
- A la hora de desplazarte te indica las distintas alternativas por adelantado. Esto es, mientras que para espacios exteriores te señala la posible ruta utilizando transporte público, privado, a pie, etc. Para espacios interiores te especifica, siempre que la haya, la opción de utilizar escaleras, ascensor, escaleras mecánicas, etc., de esta manera te proporciona una idea global del espacio y de las distintas vías que puedes seguir para llegar a tu destino.
- Permite llevar las manos libres.
- Incluye un lector de códigos QR, es más cómodo porque puede dar más información que la línea braille.

Su principal punto negativo es el precio, ya que cuesta 40 libras.

 $^{^{5}}$ https://www.youtube.com/watch?v=9jH-Bdjmgb4

 $^{^6}$ https://www.blindsquare.com/2019/11/01/blindsquares-getting-straight-as-on-campus/

Al contrario que la aplicación anterior, esta sí es una aplicación diseñada para personas con discapacidad visual. Las diferencias saltan a la vista: el modo de dar las indicaciones, avisos constantes para indicarte si vas por el camino correcto, permite más autonomía; gracias a la comunicación constante que ofrece permite llevar las manos libres, entre otras. Parece imposible pensar que el interior de un edificio pueda resultar menos seguro que una gran avenida, lo cierto es, que para personas con discapacidad visual, muchas veces es así. El interior de un gran centro comercial o una biblioteca resultan un laberinto cuando se va por primera vez, más aún si tenemos algún tipo de dificultad para leer las indicaciones que, normalmente, suelen estar en lugares altos y no adaptadas para personas con discapacidad visual. Lo que se pretende con esta aplicación es mantener la autonomía del usuario tanto dentro como fuera de un edificio ⁷.

2.1.3. Nearby Explorer

Nearby Explorer⁸ es otra de las aplicaciones que encuadramos en el campo de la navegación accesible por interiores y exteriores. Está habilitada tanto para Android como para iOS y su descarga se encuentra disponible en el App Store de manera gratuita.

La guía por exteriores se basa en la misma idea que BlindSquare, y por ende funciona de manera similar. Entre sus características destacan: la posibilidad de ejecutar ciertas acciones poniendo el móvil en distintas posiciones, como por ejemplo, inclinarlo verticalmente para que funcione como una brújula; y, la capacidad de filtrar la información de modo que ésta se adapte completamente a las necesidades del usuario. Entre la información que Nearby Explorer puede proporcionar a sus usuarios encontramos los lugares cercanos a la ubicación actual, los nombres de las calles por las que pasa, los números de los bloques de las calles por las que pasa, la distancia que hay al destino desde un punto de referencia (como casa, trabajo...), etc. Además de la posibilidad de filtrar la información deseada, las indicaciones por audio pueden ser pausadas en cualquier momento de modo que no interfieran con otras señales auditivas (como las paradas en un autobús, por ejemplo). Otra gran funcionalidad con la que cuenta Nearby Explorer es la de explorar una ruta por adelantado, sin tener que estar físicamente en el sitio, pudiendo incrementar o decrementar el radio de exploración.

Por otro lado, vemos que la navegación por interiores se basa en un sistema de beacons que sustituye a las señales GPS y se encarga de solventar el problema del posicionamiento en interiores. Pueden configurarse de dos maneras: ad hoc y mapeo completo.

En el caso de la configuración *ad hoc*, cuenta con la ventaja de que tiene una instalación muy sencilla pero aparecen los siguientes problemas:

- No se puede determinar la ubicación exacta de un beacon.
- No se puede obtener información del entorno a menos que te encuentres dentro del radio de detección de un beacon.
- Tienes que habilitar cierto soporte para detectar los beacons (no se detectan de manera automática).

Por el contrario, el *mapeo completo* es más robusto por lo que su instalación es más compleja pero a cambio nos proporciona una localización precisa del dispositivo por lo que tiene un comportamiento similar al de otras aplicaciones.

 $^{^7} https://{\tt www.blindsquare.com/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door/2019/10/24/independence-on-both-sides-of-the-door-2019/10/24/independence-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-sides-on-both-side$

 $^{^8}$ https://play.google.com/store/apps/details?id=org.aph.nearbyonline&hl=es

Desde el punto de vista de la navegación por exteriores es una aplicación completa y fácil de utilizar, que incluye una interfaz sencilla y trata de adaptarse siempre a las distintas necesidades o situaciones del usuario mediante un opciones configurables. Además, cuenta con una versión gratuita (algo poco común en aplicaciones de tal categoria) que aunque no incluye todas las funcionalidades de la versión de pago te permite probarla y familiarizarte con ella antes de tomar una decisión final. Por otro lado, la funcionalidad de navegación indoors no está tan desarrollada y su uso está supeditado exclusivamente a aquellos lugares que cuenten con la instalación necesaria y hayan incluido sus datos en OpenStreetMap, configurando el espacio en nodos, aristas y relaciones. Esta tarea es tediosa y a menudo parte de cero por lo que son pocos los edificios que actualmente están mapeados y pueden aprovechar la app.

2.1.4. Lazarillo

Lazarillo (laz, 2014) es una aplicación que actualmente solo proporciona guía para exteriores. Inicialmente la idea era cubrir también la navegación por interiores pero su desarrollo no fue posible por problemas de financiación.

La navegación por exteriores cuenta con las funcionalidades básicas que ya hemos mencionado en las apps anteriores:

- Buscar lugares de interés, cercanos a la ubicación actual. Esta búsqueda se puede acotar filtrando por categorías que vienen predefinidas (transporte, bancos y cajeros, salud, comida, tiendas, etc.).
- Buscar una dirección específica a partir de la cual se desplegarán todas las posibles rutas (a pie, en transporte público, privado, etc.) y una vez seleccionada la ruta deseada, comenzarán las indicaciones mediante audio con la información pertinente (metros, giros a derecha e izquierda, etc.).
- Guardar una lista de lugares favoritos.
- Posibilidad de rastrear una dirección, previamente marcada con la opción "Seguir este lugar", de modo que con independencia de a dónde nos estemos dirigiendo se activará una alerta a medida que nos acerquemos a dicha ubicación.
- Ajustar la configuración de las indicaciones, velocidad, tipo de voz...

En resumidas cuentas, Lazarillo es una aplicación que, como otras, busca mejorar la calidad de vida de las personas con discapacidad visual indicándoles para ello qué les rodea y proporcionándoles una mayor independencia. Ésta, sin embargo, cubre únicamente los aspectos más básicos y elementales, sin reparar en otras posibles funcionalidades o indicaciones (obstáculos, peligros...) que la convierten en una aplicación incompleta.

La app es completamente gratuita y cuenta con versión para Android y iOs.

2.1.5. Wayfindr

Wayfindr (Autores, 2014) nació en 2015 en Londres, con la misión de capacitar a las personas con discapacidad visual para que viajen de manera independiente a través de una navegación de audio inclusiva y accesible. Con este fin, han desarrollado el primer estándar del mundo aprobado internacionalmente para la navegación de audio accesible y ya cuentan con las primeras demos de un sistema de navegación en red basado en audio que pretende dar soporte para que las personas con discapacidad visual puedan adentrarse

por esos lugares que están repletos de señales escritas, por los que las personas que ven pasan sin pensar pero que son precisamente los que más temen y evitan aquellos que tienen discapacidad visual (estaciones de metro, tren, aeropuertos, centros comerciales, hospitales, etc.).

Este proyecto de código abierto ha realizado ya numerosas pruebas en distintos escenarios, como por ejemplo en el metro de Londres donde el funcionamiento⁹ de la aplicación es tan práctico como sencillo: se basa en una serie de *beacons*, colocados en puntos estratégicos a lo largo de las distintas estaciones de metro, que emiten unas señales que son captadas por el móvil a su paso por un cierto radio de detección. Estas señales permiten ubicar al usuario y darle la siguiente indicación para el conseguimiento de su objetivo (coger un tren o salir de la estación). O más recientemente en el metro de Los Ángeles.

Los desarrolladores recomiendan el uso de auriculares de conducción ósea, de manera que puedan escuchar otros sonidos del exterior.

La idea de este proyecto supone un gran avance para las personas que tienen algún tipo de discapacidad visual ya que pretende empoderarlas para que no se sientan retenidas por su pérdida de visión ni tengan que vivir supeditadas a una persona vidente que las ayude, para lograr así, que se rompan de una vez por todas las barreras a las que están sometidas. Para la consecución de este fin, esta organización sin ánimo de lucro proporciona a los fabricantes de navegación digital y propietarios de espacios públicos las habilidades y técnicas para proporcionar a las personas con discapacidad visual, servicios de navegación digital consistentes y de alta calidad. Wayfindr utiliza varias tecnologías para rastrear la ubicación de una persona y activar el audio de las instrucciones en su teléfono móvil en el momento adecuado para llevarlos a su destino. De esta manera, busca permitir que las personas con discapacidad visual naveguen por el mundo utilizando las instrucciones de audio de sus teléfonos inteligentes.

2.1.6. Conclusiones

Tras este breve recorrido por algunas de las aplicaciones de navegación adaptadas para personas ciegas o con visibilidad reducida podemos decir que cada vez son más las opciones. Hemos visto desde aplicaciones de navegación por exteriores, como también por interiores, llegando hasta algunas tan específicas como Wayfindr que está dirigida al metro de Londres concretamente. Todas ellas se rigen por un patrón común: el de la simpleza, sin conllevar por ello una reducción de la funcionalidad. Pues estas aplicaciones nos permiten filtrar la información que se quiere recibir, guardar nuestros lugares más visitados, manejarlas mediante voz o con sacudidas del teléfono..., es decir, nos proporcionan un gran abanico de posibilidades que el usuario puede ejecutar de manera sencilla.

Por otro lado, si comparamos las apps, encontramos que aquellas de navegación por interiores están aún por desarrollar ya que el mapeo del interior de los edificios debe realizarse de manera particular e individual, convirtiéndose en una tarea mucho más tediosa que la que lleva a cabo el famoso coche de *Google Maps*. Además, el posicionamiento también es más complejo ya que no es posible utilizar el sistema GPS y hay que recurrir a la triangulación de señales WIFI o a las balizas bluetooth, teniendo que estudiar de nuevo cada caso concreto.

⁹https://www.youtube.com/watch?v=mc3KmbfxuUQ

Figura 2.4: Método de triangulación GPS.

2.2. Sistemas de posicionamiento

Para la consecución de nuestro objetivo, el desarrollo de una aplicación de navegación por interiores, uno de los primeros problemas que se nos plantea es el del posicionamiento en un mapa ya que es de vital importancia poder determinar donde estamos para después indicar la ruta pertinente hacia el destino indicado. En esta sección haremos un pequeño estudio sobre las distintas tecnologías existentes que nos permiten solventar nuestro problema y determinar la posición exacta de un cierto dispositivo, y discutiremos su validez para su aplicación a este trabajo de fin de grado.

2.2.1. GPS

El Sistema de Posicionamiento Global (GPS) es un sistema de localización, diseñado por el Departamento de Defensa de los Estados Unidos con fines militares para proporcionar estimaciones precisas de posición, velocidad y tiempo. Este sistema se encuentra operativo desde enero de 1994 y se desarrolló a partir de los 24 satélites que componen la constelación NAVSTAR, cada uno de los cuales cuenta con una órbita de 26.560Km de radio y un periodo de 12h (Pozo-Ruz et al., 2000).

El método mediante el cual el GPS determina la altitud, longitud y latitud de cualquier objeto que se encuentre en la superficie terrestre se conoce como triangulación. Este requiere la distancia desde el dispositivo en cuestión (receptor) a tres satélites como mínimo cuya localización es conocida de antemano. Entonces, cuando el receptor detecta el primer satélite, se genera una esfera a su alrededor cuyo radio será la distancia desde el receptor hasta dicho satélite. De este modo, el receptor se encontrará en un punto de la superficie de esa esfera, aún por determinar. Repetimos el proceso con otro satélite. Al crearse esa segunda esfera, el dispositivo receptor se encontrará en alguno de los puntos de corte de ambas esferas, por lo que el resto de puntos se descartan. De nuevo, se utiliza un tercer satélite de modo que se crea una nueva esfera que cortará a las anteriores. De este modo, con el corte de las tres esferas, y teniendo en cuenta que el dispositivo se encuentra en la superficie terrestre, tendremos el punto concreto buscado. En caso de querer conocer la altitud, bastará con usar un cuarto satélite como referencia y repetir el proceso. En la Figura 2.4 vemos un esquema del proceso que acabamos de explicar empleando 3 y 4 satélites.

El problema del Sistema de posicionamiento Global es que pierde mucha precisión cuando nos encontramos bajo superficies como túneles, tejados, etc. ya que la señal se debilita enormemente y el dispositivo no es capaz de llevar a cabo la triangulación de manera exacta. Es por esto, que descartamos este sistema para nuestro propósito.

2.2.2. Wi-Fi

La técnica de posicionamiento mediante señales Wi-Fi fue una de las primeras que surgió para solventar el problema de la localización en interiores. Tal y como hemos mencionado en el apartado anterior, la señal GPS no es suficiente pues las barreras arquitectónicas como las paredes o tejados la debilitan enormemente. Por ello apareció esta técnica que se basa en leer con un dispositivo la intensidad de señal que recibe desde distintos puntos de acceso Wi-Fi del edificio. Una vez leída esta señal existen varios métodos para establecer la posición exacta del dispositivo, el más utilizado se basa en medir la intensidad con la que se recibe la señal en un cierto punto (Received Signal Strength Indicator, RSSI) desde varios puntos de acceso y, en base a eso, establecer la localización en la que se encuentra el dispositivo. Este método es fácil y barato de implementar, su mayor inconveniente es que no proporciona una buena exactitud (de 2 a 5 metros), ya que la señal es muy dependiente del ambiente: personas, paredes, etc.

Otro método que también se utiliza es el denominado fingerprint, este consiste en guardar la intensidad de la señal desde distintos puntos de acceso en una base de datos de acuerdo a coordenadas conocidas del cliente durante una fase sin conexión. Durante la fase de conexión, las medidas actuales RSSI de una posición que no se conoce se comparan con las guardadas en la base de datos y, aquellas que más se le parezcan, se devuelven como estimación de la posición del usuario. Esta técnica tiene mejores resultados en cuanto a la exactitud, cuyo error baja a menos de 3m (Shah, 2012).

Una de las grandes ventajas de la tecnología Wi-Fi es que prácticamente la totalidad de las casas, colegios y edificios en general, están equipados con una red Wi-Fi.

2.2.3. Balizas Bluetooth

Los beacons o balizas bluetooth son pequeños dispositivos que emiten señales de radio. Estas señales los identifican de manera única y pueden ser captadas por otros dispositivos receptores, estableciéndose así un canal de comunicación que permanece vivo siempre que los receptores permanezcan en un radio de alcance de entre 10 y 30 metros como máximo, según el dispositivo. Es importante remarcar que generalmente los beacons no aceptan conexiones de otros dispositivos, lo que significa que no pueden registrar qué aparatos están cerca. Por tanto, esta simplicidad conlleva la necesidad de una aplicación capaz de interpretar la señal de la baliza. Otra característica de los beacons es que son de bajo consumo, es decir, sus baterías tienen una duración muy prolongada (aproximadamente 2 años) con una simple pila de botón, y su coste es reducido.

Esta tecnología se hizo muy popular en 2013 cuando Apple introdujo el *iBeacon* estándar y comenzó a utilizarlos para la navegación, más concretamente, para el posicionamiento en interiores. En 2015 Google, que no quiso quedarse atrás, lanzó el protocolo Eddystone, un protocolo, que a diferencia del de Apple, es de código abierto y ofrece soporte oficial tanto para iOS como para Android. Otra ventaja que incluye la versión de Google es que proporciona dos APIs que facilitan mucho el manejo de los *beacons*, y que emite 4 paquetes distintos de información, en lugar de 1 como en el caso de los *iBeacons*. Estos paquetes son:

■ Eddystone-UID: transmite un identificador de baliza único compuesto por 16 bytes, 10 de ellos referidos al espacio de nombres, que identifican a un grupo de beacons, y 6 que se refieren e identifican a la instancia particular dentro del grupo. Esta distinción entre espacio de nombres e instancia se pensó para optimizar el escaneo de beacons. Este paquete es idéntico al que ofrecen los iBeacons.

- Eddystone-URL: transmite una URL utilizando un formato de codificación.
- Eddystone-TLM: transmite información sobre la baliza. Como puede ser el nivel de la batería, los datos del sensor u otra información relevante para los administradores de balizas. Para poder usarse también como baliza necesita ir acompañado de otro tipo de marco (Eddystone-URL o Eddystone-UID).
- Eddystone-EID: emite un identificador encriptado que cambia periódicamente, de modo que su uso está restringido a aplicaciones y dispositivos autorizados.

Por todo esto, consideramos que el protocolo Eddystone es más ventajoso.

Por otro lado, de cara a establecer la posición exacta de un dispositivo receptor hay dos alternativas, triangular la posición a partir de la distancia obtenida por la señal de los 3 beacons más cercanos. El inconveniente de este método es que se requiere un número muy alto de balizas para poder cubrir por completo todo el espacio por lo que los costes de la instalación se elevan, además cualquier cambio en la estructura del edificio puede afectar a la posición de los beacons y por ende, al algoritmo de triangulación. El otro método consiste en establecer los beacons en puntos de decisión (landmarks) donde los usuarios esperan recibir instrucciones. Algunos de estos puntos son las puertas, escaleras, intersecciones, etc. El número de balizas necesario es mucho más reducido por lo que los costes derivados de la instalación también. No obstante, hay que tener en cuenta que es muy importante decidir con cuidado la disposición exacta de los beacons.

Como conclusión, aunque la alternativa tecnológica Wi-Fi es también adecuada para solventar el problema del posicionamiento en interiores y cuenta con ventajas como la de aprovechar la infraestructura del edificio sin necesitar ningún dispositivo extra, también conlleva inconvenientes como que la intensidad de las señales Wi-Fi dependen mucho del entorno y en ocasiones puede ser complicado diferenciar la posición entre plantas, si estas no se encuentran a suficiente distancia. Además, los beacons cuentan con ventajas como su bajo coste, flexibilidad: podemos colocarlos donde queramos (son pequeños y ligeros) mientras que los puntos de acceso Wi-Fi vienen predeterminados, y tienen una precisión de 1 a 3 metros, algo más alta que con la señal Wi-Fi¹⁰. Por ello, para este proyecto nos hemos decantado por las balizas bluetooth acompañadas del protocolo Eddystone y más concretamente por el método de los landmarks ya que debido a las limitaciones de presupuesto y a las características de nuestros usuarios lo consideramos más adecuado pues así podemos estudiar mejor los puntos de interés y asegurarnos una buena señal y más precisión en ciertos puntos.

 $^{^{10} \}mathtt{https://www.infsoft.com/technology/positioning-technologies/bluetooth-low-energy-beacons}$

Descripción del Trabajo

3.1. Reunión en el Centro de Tiflotecnología e Innovación de la ONCE

La idea de este TFG surgió de la necesidad de resolver problemas reales para gente real, concretamente para personas con discapacidad visual. Por ello, como no podía ser de otra manera, comenzamos nuestro camino por lo más importante: conocer las necesidades de los usuarios finales. Con este fin y gracias a la oportunidad que nos brindó la Universidad Complutense de Madrid con la profesora María Guijarro al frente, pudimos reunirnos y entrevistar a personas especializadas en el campo de las tecnologías que sufren discapacidad visual

En este documento recogemos las notas que tomamos durante la reunión el día 11 de octubre de 2019 en el CTI (Centro de Tiflotecnología e Innovación) de la ONCE.

3.1.1. Introducción

La entrevista comenzó con una breve explicación, de la mano de José María Ortiz, director del Departamento de Consultoría e Innovación, sobre las principales tareas que se llevan a cabo en el centro, entre las cuales destacan:

- Ayudar a una persona con discapacidad visual en su adaptación al trabajo y a la vida cotidiana, proporcionandole para ello el material necesario (teclados, líneas de braille, bastones, etc.).
- Responder a **consultas** sobre el funcionamiento de dispositivos.

Luego, nos comentó los departamentos en los que se estructura el centro para que pudiésemos hacernos una idea más global de todo lo que abarca. Éstos son:

- El departamento de Consultoría e Innovación: donde actualmente están desarrollando el programa EDICO en colaboración con la UCM, que tiene como objetivo hacer las matemáticas accesibles mediante un editor de texto. De manera paralela se encargan del desarrollo de aplicaciones de muy diversa índole, véase apps para la biblioteca de la ONCE, de películas audio-descritas, etc.
- Departamento de Evaluaciones y Auditoría: donde se encargan de evaluar los productos que se van a sacar al mercado.

- Departamento de diseño y producción: donde se encargan de, tal y como indica su nombre, diseñar y producir elementos de adaptabilidad, como pueden ser unas plantillas con relieve de policarbonato para las vitrocerámicas. Recordemos que estas, aunque no presentan dificultad alguna para los usuarios videntes, son tediosas para aquellos que cuentan con discapacidad visual ya que la pantalla táctil no tienen ningún tipo de relieve que pueda servirles como referencia y guiarles en su uso.
- Departamento de Asesoría en tecnología: especializado en tecnologías accesibles.

Una vez concluida esta sección en la que nos contextualizaron, abrieron paso a la ronda de preguntas en la que pudimos acercarnos a ellos, conociendo sus problemas y necesidades en el día a día.

3.1.2. Entrevista

Durante esta parte, nos dirigimos especialmente a Mónica y José Luis Llorente, ambos ingenieros del CTI, para que, con su experiencia y conocimientos, nos explicaran lo máximo posible sobre tecnologías accesibles y nos dieran su punto de vista en las ideas que proponíamos. Por otro lado, Mónica no solo era experta en la materia sino que además era invidente, por lo que nos pudo contar su perspectiva y necesidades como usuaria.

Las preguntas avanzaron desde temas generales para conocer cómo una persona invidente se desenvuelve con la tecnología, sus gustos y qué sensaciones le despierta, hasta temas concretos dirigidos a conocer los problemas que plantea la navegación por espacios interiores.

• ¿Cómo utiliza una persona con discapacidad visual un dispositivo móvil?

Para responder a esta pregunta, Mónica nos hace una demostración en directo, para ello emplea un móvil Xiaomi con sistema operativo Android.

Mónica nos cuenta que para la navegación por su dispositivo utiliza un lector de pantalla, es decir, un software que facilita el uso del sistema operativo. Éste sirve como guía para las personas que, como ella, tienen discapacidad visual, ya que "lee y explica" mediante voz lo que se ve en la pantalla. Los lectores de pantalla vienen siempre incluidos en el dispositivo y se pueden encontrar en la sección de Accesibilidad, en Ajustes. En el caso de Android, este software se llama Talkback y es configurable. Por ejemplo, dice Mónica, se podría usar mediante la línea de braille en vez de la reproducción por voz.

Luego vemos como se desplaza por las aplicaciones utilizando *flicks*, movimientos secos en los que desliza el dedo hacia uno de los lados de la pantalla (izquierda o derecha, según interese). Del mismo modo, para la navegación por la web o dentro de alguna aplicación utiliza estos movimientos hacia arriba y hacia abajo. Por último, nos muestra cómo accede a un elemento mediante doble click.

También nos habla de la posibilidad de la navegación libre, eso sí, solo cuando ya te has familiarizado con el dispositivo lo suficiente como para saber dónde tienes determinadas aplicaciones.

Lo más cansado, según Mónica, es tener que hacer un barrido por toda la pantalla hasta encontrar lo que quieres, en vez de poder ir directamente. Para agilizar un poco este proceso, Mónica, por ejemplo, agrupa las aplicaciones por carpetas, de modo que el barrido es más sencillo que si la pantalla estuviese repleta.

Para las personas con baja visión también existe la posibilidad de hacer más grandes los iconos y ajustar los colores.

• Hemos leído que normalmente las aplicaciones se desarrollan para dispositivos iOS, ¿por qué es mejor?

"Si que es cierto que solía ser así ya que iOS le llevaba la delantera a Android en cuanto a accesibilidad, pero cada vez se usa más Android pues las diferencias están completamente recortadas, están muy igualados y los precios son mucho más asequibles. Yo misma, antes tenía un iPhone y ahora me he pasado a Android y no hay nada que eche en falta.", responde Mónica.

• ¿Cómo afronta una persona ciega su desplazamiento y orientación por interiores cuando pisa por primera vez dicho espacio u edificio?

Ante esta pregunta Mónica resopla y nos contesta: "Buufff..., ¿te vale?"

Nos puso como ejemplo la llegada a un hospital: "cuando entras necesitas saber, al menos, dónde está la recepción para pedir ayuda pero los carteles informativos están fuera de mi alcance, entonces entro por la puerta y pienso ¿y ahora qué?. ¿Dónde está el mostrador de recepción? No es tan fácil como echar un primer vistazo, necesitas ayuda mediante voz, algo que te describa el espacio y te vaya diciendo que hay a derecha e izquierda y a cuantos metros."

Nos contó que en cuanto a la descripción/guía por espacios interiores ahora mismo no hay disponible ninguna aplicación. Por ello, una vez superada la primera barrera de ubicar y localizar un cierto destino, la única opción que les queda es la de memorizar el camino. Mónica destacó que era increíble la cantidad de rutas que tiene en la cabeza.

Por todo esto, se comentó que una aplicación sería de gran ayuda para ellos, de manera que pudiesen tener una idea del edificio incluso antes de llegar a él para moverse con más seguridad. Una app que no solo les guiase a un punto concreto, sino que además describiese el edificio, indicándoles qué posibilidades les ofrece. También se mencionaron otras propuestas e ideas como tener previamente el plano del edificio para poder ir moviéndote con el dedo sobre él y que a su paso te vaya indicando las distintas salas que aparecen, o la impresión de un mapa 3D que disponga de un código QR o algo similar que fuese capturado mejor por Bluetooth que por foto que tras leerlo cargase el plano del edificio y pudiese proporcionar tanto información sobre el espacio en sí mismo (número de plantas, qué hay en cada una...) como información más precisa como puede ser averías, horarios, disponibilidad de salas, etc.

Obviamente de la mano de estas ideas surgían problemas y opiniones en contra: ¿Dónde estaría dicho mapa?, ¿Cómo encontrarlo?, ¿Todos los edificios estarán de acuerdo en facilitar los planos o puede que por motivos de seguridad no sea una idea factible?, ¿es posible llegar a un standard para que se pueda usar el mismo sistema en cualquier edificio?

• ¿Hay algún tipo de señales que os sirvan como referencia a la hora de desplazaros por un edificio?

"Hay señales de encaminamiento, que te indican dónde están las escaleras, ascensores, zonas de cruce, etc.", contesta.

• ¿Cuántos edificios cuentan con estas señales?

"La verdad que cada vez son más frecuentes y hoy en día se encuentran en casi todos los edificios, especialmente en los nuevos.", responde.

• ¿Cómo de factible es ir con el dispositivo móvil en la mano, para realizar una foto o cualquier cosa similar?

"Puedo hacer una foto en un momento puntual, en eso no hay problema alguno pero no es cómodo ir con el móvil en la mano constantemente porque además de que es aparatoso porque ya llevo en la mano el bastón, perro guía, etc. No es práctico, no sería la primera vez que roban un móvil a una persona invidente, es una realidad.", contesta Mónica. "Particularmente, con respecto a la foto el problema principal sería saber a dónde enforcar", añade.

3.1.3. Conclusiones

Tras el debate, algunas de las conclusiones que sacamos de la visita al CTI son:

- La implementación de una aplicación como la nuestra es muy útil y necesaria.
- Las modalidades más empleadas para interactuar con el móvil cuando tienes algún tipo de rastro visual son: flicks, sacudidas, mediante vibración, arrastrando o pulsando la pantalla con un dedo, dos,...
- No resulta cómodo ir barriendo el espacio con la cámara del móvil.
- El uso de dispositivos adicionales como una micro cámara, en principio, no sería un problema, siempre y cuando no la tengan que llevar de manera continuada en la mano.
- En caso de auriculares, se recomienda utilizar auriculares óseos de modo que dejen el canal auditivo libre para captar otros estímulos.
- El objetivo es que el grueso de las aplicaciones sean lo más inclusivas posibles, es decir, que su uso sea apto tanto para personas videntes como invidentes.
- El feedback de la aplicación no debe saturar pero sí se aconseja que sea constante para que no se malinterprete que la aplicación ha dejado de funcionar.

3.2. Estudio de la precisión de los beacons

Antes de ponernos manos a la obra con la aplicación debíamos conocer cómo se comportaban los beacons en cuanto a distancias. Ya conocíamos que esta tecnología era una de las más usadas para el posicionamiento en interiores pero necesitábamos saber los aspectos más tecnológicos: cuánto rango tenía la señal bluetooth de estos aparatos, si la intensidad de esta señal era suficiente para poder determinar a qué distancia estaban y, lo más importante, cómo afectaba a todo ello el espacio en el que se iban a colocar; el pasillo, una esquina, una puerta, etc. Puesto que las investigaciones que habíamos realizado ya avisaban de que la intensidad de los beacons era muy dependiente del lugar y el material sobre el que estos se colocaran. REFERENCIA AL PDF DE WAYFNDER.

Para comenzar esta investigación nos ayudamos en la propia SDK de *Kontakt*, la marca de nuestros beacons. Esta permite conocer qué beacons están en nuestro rango en un

momento determinado y actualizar esa lectura cada cierto tiempo. Además tiene implementado un sistema de categorías en función de cómo de cerca o lejos esté un cierto dispositivo. Las categorías son las siguientes:

- IMMEDIATE: Si el dispositivo se encuentra a menos de 0,5m.
- NEAR: Si el dispositivo se encuentra entre los 0,5m y los 3m.
- FAR: Si el dispositivo se encuentra a más de 3m.
- UNKNOWN: Si se ha perdido la señal del dispositivo.

Gracias a estas funciones ya implementadas en la SDK desarrollamos en poco tiempo pequeñas y simples aplicaciones que nos permitieron de manera muy visual comprobar las medidas leídas con las medidas reales a las que estaban los beacons. Estas medidas se realizaron tanto en la propia Facultad de Informática como en nuestras propias casas.

A continuación presentamos las herramientas desarrolladas para medir la fiabilidad y exactitud de nuestros beacons.

3.2.1. Aplicación miniapp

Esta aplicación fue la primera toma de contacto con los beacons, queríamos una aplicación visual que nos indicara la categoría de proximidad de los beacons. El tomar la categoría como aproximación de la distancia fue nuestra primera idea, puesto que teníamos en mente que la señal de los beacons no era muy estable. En la Figura 3.1 vemos la interfaz principal de la aplicación, con ella podíamos medir la categoría de hasta tres beacons. Los beacons considerados se encuentran debajo del panel de categorías y la categoría en la que se encuentran se resalta en verde. La lectura que se hace de los beacons se va actualizando cada x tiempo establecido.

La idea de esta aplicación fue la de establecer el grado de confianza que podíamos tener en las categorías ofrecidas por la SDK de *Kontakt*. El resultado fue muy positivo puesto que, a pesar de que las distancias fluctuaban, la categoría se asignaba correctamente sin grandes fluctuaciones.

3.2.2. Aplicación cuadrantes v1

En la Figura 3.2 vemos la interfaz principal de la aplicación cuadrantes v1, esta fue diseñada, en inicio, para saber a qué distancia debían estar los beacons y poder así dividir las distintas plantas de la facultad en cuadrantes (de ahí su nombre), de esta manera podríamos construir un grafo cuyos nodos fueran estos cuadrantes y, que representara el mapa de la facultad.

Es una aplicación muy sencilla, cuya función es recoger cada cierto tiempo, en la figura lo hace cada dos segundos, la señal de los beacons que están a su alcance, mostrar la categoría de su distancia y la distancia estimada en metros. La razón por la que llevamos un registro de qué está en el rango cada cierto tiempo es que notamos que las distancias fluctuaban, notoriamente en algunos casos, y quisimos hacer un estudio previo al desarrollo de la aplicación.

3.2.3. Resultados

A continuación presentamos los resultados de las distintas mediciones realizadas. Veamos primero aquellas recogidas en gráficas: en ellas podemos ver cómo se comportan los

Figura 3.1: Interfaz de la aplicación miniapp.

beacons si comparamos la medida real con la estimada por la aplicación.

En la Figura 3.3 vemos las lecturas que nos ha dado la aplicación cuadrantes v1 cuando hemos leído las distancias del beacon con identificador CPne. Las diferentes lecturas corresponden a las medidas estimadas cuando el beacon estaba a dos metros (azul), alrededor de dos metros y medio (naranja), cinco metros (gris) y a sesenta y cuatro centímetros (amarillo). De esta gráfica destacamos que, a grandes distancias, en este caso cinco metros, la medida estimada comienza a no ser muy fiable, a la par que muy fluctuante. Sin embargo, podemos ver cómo la medida a dos metros de distancia es la bastante exacta, fluctúa en menos de un metro a lo largo de casi toda la medición. Por último, la medición a menos de un metro, que se corresponde con la línea amarilla presenta fluctuaciones muy pequeñas, poco relevantes para nuestra aplicación. Como conclusión sacamos que cuanto mayor es la distancia a la que está el beacon menor es la fiabilidad que podemos depositar en la estimación de la medida obtenida.

En el caso de la Figura 3.4 el comportamiento es similiar, a pesar de que tenemos un par de picos importantes en los primeros segundos de medición, el valor medio que obtenemos es el de una distancia estimada de un metro para un beacon que realmente está situado a medio metro, un error que podríamos considerar como tolerable. La Figura 3.5 recoge tres mediciones distintas para una misma distancia, cada una de ellas recoge unos valores diversos y bastante bajos, lejos de los aproximadamente 4 metros reales. Una posible explicación a este fenómeno nos lo puede dar la Figura 3.6, que recoge la medición de dos beacons situados a la misma distancia y uno encima del otro. Como vemos, la medición del

Figura 3.2: Interfaz de la aplicación cuadrantes v1.

beacon situado abajo es bastante más baja, en comparación. Esto nos advierte de que la señal *bluetooth* es bastante dependiente de los obstáculos, el entorno, ¡hasta las condiciones meteorológicas!.

3.2.4. Mediciones en puntos clave de la facultad

Una vez que tuvimos una idea más clara del funcionamiento y el comportamiento de los beacons y habíamos superado la primera batalla tecnológica fue hora de abordar el problema desde el punto de vista del posicionamiento. La idea inicial fue la de colocar beacons en puntos clave, de tal manera que al encontrarnos con uno de ellos nos avisara de una intersección, un aula o cualquier otro destino o punto de interés.

En este caso los beacons tenían una posición muy concreta y los puntos desde los que se medía también. En la Figura 3.7 se puede ver en qué puntos se colocaron los beacons (punto rojo) y en qué puntos se midieron las distancias (cruz verde). Lo primordial era conocer la ubicación óptima de los beacons en los lugares más complicados, como son las intersecciones, los puntos donde se acumulan varios lugares de interés (como puede ser el caso de la puerta de entrada, delegación de alumnos y el aula cinco), así como aquellos espacios más grandes (como el hall de entrada). En el ANEXO se pueden ver los resultados de estas mediciones. A continuación exponemos las conclusiones recogidas:

• Los beacons no deben situarse demasiado cerca, esto altera las mediciones y hace que

Figura 3.3: Gráfico con las distancias medidas al beacon CPne.

Figura 3.4: Gráfico con las distancias medidas al beacon eAaw.

no sepamos distinguir cuál es el beacon más cercano.

- En lugares diáfanos, como el hall, la señal de los beacons fluye con mayor libertad. Es por ello que podemos situarlos a mayor distancia sin que queden puntos ciegos en lugares importantes. Uno de los inconvenientes de esto surgió a la hora de introducir un beacon en la puerta del salón de actos y otro en la esquina que forma la unión de la pared que da comienzo a las aulas y la que sale de la puerta de entrada al edificio situada al lado de la biblioteca. Desde la cruz verde próxima a este punto era prácticamente imposible hacer una distinción del beacon más cercano debido a la fluctuación de su señal.
- Se hicieron pruebas con los becons sobre distintas superficies. En el caso de las mediciones en la puerta de entrada al edificio situada al lado de Delegación de alumnos (a la izquierda del mapa) el beacon CPne se colocó justo encima de la puerta, en un bisel que sobresale. El resultado fue que la señal de ese beacon se proyectaba con mayor intensidad, dando lugar a que la distancia estimada de ese beacon fuera menor. Es decir, la aplicación nos sugería que CPne estaba más cerca de lo que en realidad estaba. Tras esto, decidimos que lo mejor sería poner los beacons en las mismas condiciones (o todos en el suelo, o todos sobre la pared, etc.) siempre que fuera posible.
- Otra puntualización que salió a partir de estas mediciones fue la de colocar los beacons de las intersecciones en lugares lo más neutros posibles. Esto quiere decir que había que tener en cuenta que a una intersección se puede llegar desde, al menos, dos puntos distintos y el beacon debía estar colocado de tal forma que desde todos ellos la situación fuera análoga.

En la sección que sigue veremos en qué se tradujeron todos estos resultados. Cómo se hizo la disposición final de los beacons y el mapeo del edificio.

Figura 3.5: Gráfico con las distancias medidas al beacon 8v2c.

Figura 3.6: Gráfico con las distancias medidas conjuntas de los beacons 8v2c y CPne, estando uno sobre otro.

3.3. Mapeo del edificio

Cosas que contar:

- Contar el mapeo diciendo que nos apoyamos en el TFG "Generador interactivo de instrucciones de guía sobre plataformas móviles".
- El por qué de los cuadrantes así y de la ubicación de los beacons (si enlazas con cosas de la sección anterior dabutis)
- Imágenes de los mapas, claro.
- Contar que se han enlazado las dos plantas (cosa que en el otro no estaba). En general resaltar las cosas que en el otro no había, como la planta baja.

3.4. Nuestra aplicación (ponerle nombre)

Hacer intro de esta sección, supongo que cuando esté algo más hecho será más fácil hacerla.

La aplicación se planteó como un modelo cliente-servidor, de esta manera nuestro dispositivo móvil (cliente) no tendría que hacer cálculos tediosos ni gastar demasiada batería en ello. Veamos qué funciones tenía cada parte de la aplicación.

Figura 3.7: Mapa de la planta baja de la Facultad de Informática con la ubicación de los beacons (rojo) y los puntos de medición (verde).

3.4.1. Servidor

El servidor se diseñó de tal manera que este realizara las tareas pesadas. Las principales son: posicionamiento del usuario según la lectura que este había hecho de sus beacons, cálculo de la ruta desde el origen al destino y actualización de la misma siguiendo su posición actual.

Buena parte del código que conforma el servidor está tomado de trabajos anteriores, en concreto de Víctor Gutiérrez Rodríguez y Murga (2014). Sin embargo se han introducido cambios notorios para el desarrollo de esta aplicación:

3.4.2. Posicionamiento con beacons

A diferencia de todos los trabajos previos de guía que se han hecho en la Facultad de Informática (comenzando por AVANTI, PONER REFERENCIA), el nuestro introduce una tecnología nueva y en pleno auge: los ya conocidos beacons. Esto cambia por completo la manera que se tenía de hacer el posicionamiento, antes se hacía mediante la triangularización de señales Wi-Fi y ahora usaremos las señales bluetooth que emiten los beacons.

Pese a que con los beacons también era posible desarrollar un sistema de triangularización preferimos optar por un posicionamiento basado en el beacon más cercano, que veremos con detalle más adelante. Las razones por las que optamos por esta técnica se pueden resumir en:

- Necesitábamos una cantidad de beacons mayor, puesto que no podíamos tener ningún punto ciego con menos de las señales necesarias para hacer la triangularización (tres, generalmente).
- El esfuerzo que iba a conllevar esta práctica nos restaría demasiado tiempo, apenas dejando hueco al verdadero problema que se intenta resolver: la adaptabilidad.
- La mayoría de las aplicaciones de guía estudiadas (ver Capítulo 2) utilizaban ya el

posicionamiento por beacon más cercano.

 Más tarde surgió el problema del cierre de la Facultad por cuestiones sanitarias, lo que nos hubiera impedido, de manera física, realizar una triangularización exhaustiva dentro del edificio.

Así las cosas nuestro servidor recibe información solo del beacon más próximo al cliente y, en función de ese dato, determina el cuadrante en el que se encuentra y qué movimientos debe hacer el usuario. Veamos, de manera general, el funcionamiento del servidor cada vez que llega un nuevo cliente:

- 1. El servidor recibe el beacon más cercano que tiene el cliente y el destino al que quiere ir.
- 2. Calcula la ruta óptima (en lo que sigue veremos a qué nos referimos con esto) que debe seguir el cliente desde el origen o posición actual del cliente para llegar al destino.

El cliente va llamando al servidor cuando actualiza su posición actual, de esta manera el servidor puede ir actualizando también las instrucciones. Una vez que la ruta ha finalizado, el servidor se lo indica al cliente con una instrucción de finalización. Por ejemplo, su destino se encuentra a la derecha, el recorrido ha finalizado.

3.4.3. Cálculo de la ruta óptima e instrucciones de guía

Una vez que ya teníamos listo el mapeo del edificio y el posicionamiento del usuario era hora de comenzar a trabajar en la guía. El mapeo que hemos visto en la Sección 3.3, ya nos proporcionaba un grafo, pues pasar de los cuadrantes a esta estructura de grafo era algo relativamente fácil con el uso de una matriz de adyacencia. De esta manera, el cálculo de la ruta más corta entre dos cuadrantes se reducía a uno de los tantos problemas similares que hemos visto durante nuestros años en la Facultad, vimos claro que el algoritmo de Dijkstra nos sería de gran ayuda, y así se implementó.

Sin embargo, no debíamos olvidar que nuestra aplicación tenía un usuario final muy concreto: las personas con discapacidad visual. Es por ello que la ruta debía ser la más fácil para ellos, no la más corta necesariamente. Nos dimos cuenta al hacer pruebas de distintas rutas, concretamente una que salía desde la puerta principal de la facultad y terminaba en la puerta trasera de la cafetería. El algoritmo de *Dijkstra* nos sugirió que el camino más corto era pasando por detrás de conserjería (ver cuadrante 32 en PONER REFERENCIA DE LA FOTO DE LOS CUADRANTES) y no se equivocaba, es la ruta más corta en cuanto a cuadrantes pero no la óptima para una persona con discapacidad visual, pues ese pasillo es más estrecho y la gente se suele aglomerar, (están los ascensores, la gente continúa su camino a la cafetería o a la calle por ahí, etc) además de que el usuario tiene que hacer más giros. Mucho más conveniente sería continuar la ruta por delante de Secretaría y luego girar a la izquierda. Para lograrlo, simplemente añadimos más peso en nuestra matriz de adyacencia a aquellas conexiones que creímos más complicadas, en este caso a las conexiones entre los cuadrantes 31-32 y 32-22.

Conclusiones y Trabajo Futuro

Conclusiones del trabajo y líneas de trabajo futuro.

Antes de la entrega de actas de cada convocatoria, en el plazo que se indica en el calendario de los trabajos de fin de máster, el estudiante entregará en el Campus Virtual la versión final de la memoria en PDF. En la portada de la misma deberán figurar, como se ha señalado anteriormente, la convocatoria y la calificación obtenida. Asimismo, el estudiante también entregará todo el material que tenga concedido en préstamo a lo largo del curso.

Introduction

Introduction to the subject area. This chapter contains the translation of Chapter 1.

Conclusions and Future Work

Conclusions and future lines of work. This chapter contains the translation of Chapter 4.

Bibliografía

Y así, del mucho leer y del poco dormir, se le secó el celebro de manera que vino a perder el juicio.

 $(modificar\ en\ Cascaras \backslash bibliografia.tex)$

Miguel de Cervantes Saavedra

Lazarillo. urlhttps://www.lazarillo.app/es/, 2014.

AUTORES, V. Wayfindr. urlhttps://www.wayfindr.net/, 2014.

Envision. Challenges blind people face when living life. Disponible en https://www.letsenvision.com/blog/challenges-blind-people-face-when-living-life.

GÓMEZ ULLA, F. Informe sobre la ceguera en españa. Disponible en http://www.seeof.es/archivos/articulos/adjunto_20_1.pdf.

Pozo-Ruz, A., Ribeiro, A., García-Alegre, M., García, L., Guinea, D. y Sandoval, F. Sistema de posicionamiento global (gps): Descripción, análisis de errores, aplicaciones y futuro. ETS ingenieros de Telecomunicaciones. Universidad de Malaga, 2000.

RIVERO, F. Informe di trendia: Mobile en españa y en el mundo 2019. Disponible en https://mktefa.ditrendia.es/hubfs/Ditrendia-Informe%20Mobile%202019.pdf.

Shah, K., Darshan. Basic of wi-fi based positioning system. 2012.

Víctor Gutiérrez Rodríguez, J. D. L. M. y Murga, V. M. P. Generador interactivo de instrucciones de guía sobre plataformas móviles. Versión electrónica, 2014.

Título del Apéndice A

Contenido del apéndice

A - 2 U	
Apéndice	
Aperialice	

Título del Apéndice B

Este texto se puede encontrar en el fichero Cascaras/fin.tex. Si deseas eliminarlo, basta con comentar la línea correspondiente al final del fichero TFMTeXiS.tex.

-¿Qué te parece desto, Sancho? - Dijo Don Quijote Bien podrán los encantadores quitarme la ventura,
pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced. -No es menester firmarla - dijo Don Quijote-, sino solamente poner mi rúbrica.

> Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes