

Measuring technical efficiency and total factor productivity change with undesirable outputs in Stata

王道平

上海财经大学

DaopingWang@outlook.com

Outline

- Introduction
- Model
- Stata commands
- Illustrative example
- Outlook

Efficiency

Some basic concepts

- Decision-Making Unit (DMU)
 - firms, cities, provinces
- Production Frontier
- Production Possibility Set (PPS)/ Technology set

$$T = \{(\boldsymbol{x}, \boldsymbol{y}) : \boldsymbol{x} \text{ can produce } \boldsymbol{y}\}$$

Distance function

The output-oriented measure

$$D_o(\boldsymbol{x}, \boldsymbol{y}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta(\boldsymbol{0}, \boldsymbol{y})) \in T\}$$

• The input-oriented measure

$$D_i(\boldsymbol{x}, \boldsymbol{y}) = \sup \{ \beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta(-\boldsymbol{x}, \boldsymbol{0})) \in T \}$$

$$D_r(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{g}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta \boldsymbol{g}) \in T\}$$

Radial measure

• The output-oriented measure

$$D_o(\boldsymbol{x}, \boldsymbol{y}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta(\boldsymbol{0}, \boldsymbol{y})) \in T\}$$

• The input-oriented measure

$$D_i(\boldsymbol{x}, \boldsymbol{y}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta(-\boldsymbol{x}, \boldsymbol{0})) \in T\}$$

Slack in radial measure

• The input-oriented measure

$$D_i(\boldsymbol{x}, \boldsymbol{y}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta(-\boldsymbol{x}, \boldsymbol{0})) \in T\}$$

Non-radial measure

$$D_{nr}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{g}) = \sup \{ \boldsymbol{w}^T \boldsymbol{\beta} : ((\boldsymbol{x}, \boldsymbol{y}) + diag(\boldsymbol{\beta}) \cdot \boldsymbol{g}) \in T \}$$

$$D_r(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{g}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}) + \beta \boldsymbol{g}) \in T\}$$

Undesirable outputs

- Sustainability
- Environmental regulation

Directional distance functions with undesirable outputs

Technology set

$$T = \{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}) : \boldsymbol{x} \text{ can produce } (\boldsymbol{y}, \boldsymbol{b})\}$$

• Radial measure

$$D_r(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}; \boldsymbol{g}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}) + \beta \boldsymbol{g}) \in T\}$$

• Non-radial measure

$$D_{nr}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}; \boldsymbol{g}) = \sup \{ \boldsymbol{w}^T \boldsymbol{\beta} : ((\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}) + diag(\boldsymbol{\beta}) \cdot \boldsymbol{g}) \in T \}$$

Estimation of technology set

- Parametric methods
 - describe the frontier in some specific functional form
 - use econometric methods to obtain the unknown parameters

- Nonparametric methods
 - use observed data to construct the frontier

Estimation of technology set

$$T = \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}) : \sum_{j=1}^{J} \lambda_{j} \boldsymbol{x}_{j} \leq \boldsymbol{x}, \sum_{j=1}^{J} \lambda_{j} \boldsymbol{y}_{j} \geq \boldsymbol{y}, \sum_{j=1}^{J} \lambda_{j} \boldsymbol{b}_{j} = \boldsymbol{b}, \& \boldsymbol{\lambda} \geq 0 \right\}$$

Estimation of radial DDF

$$D_r(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}; \boldsymbol{g}) = \sup\{\beta : ((\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}) + \beta \boldsymbol{g}) \in T\}$$

• Estimation of non-radial DDF $D_{nr}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}; \boldsymbol{g}) = \sup\{\boldsymbol{w}^T\boldsymbol{\beta} : ((\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{b}) + diag(\boldsymbol{\beta}) \cdot \boldsymbol{g}) \in T\}$

$$egin{aligned} D_{nr}(oldsymbol{x}, oldsymbol{y}, oldsymbol{b}; oldsymbol{g}) &= \max_{oldsymbol{eta}, oldsymbol{\lambda}} oldsymbol{w}^T oldsymbol{eta} \ & ext{s.t.} \sum_{j=1}^J \lambda_j oldsymbol{x}_j &\leq oldsymbol{x} + diag(oldsymbol{eta}_x) \cdot oldsymbol{g}_x, \ & ext{} \sum_{j=1}^J \lambda_j oldsymbol{b}_j &\geq oldsymbol{y} + diag(oldsymbol{eta}_y) \cdot oldsymbol{g}_y, \ & ext{} \sum_{j=1}^J \lambda_j oldsymbol{b}_j &= oldsymbol{b} + diag(oldsymbol{eta}_b) \cdot oldsymbol{g}_b, \ & ext{} oldsymbol{eta} &\geq 0; \lambda_j \geq 0, j = 1, ..., J. \end{aligned}$$

• Malmquist-Luenberger productivity index (Chung, 1997)

$$ML = \left[\frac{1 + D_r^s(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g})}{1 + D_r^s(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g})} \times \frac{1 + D_r^t(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g})}{1 + D_r^t(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g})} \right]^{1/2} \qquad \boldsymbol{g} = (\boldsymbol{0}, \boldsymbol{y}, -\boldsymbol{b})$$

$$MLEFFCH = \frac{1 + D_r^s(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g})}{1 + D_r^t(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g})}$$

$$MLTECH = \left[\frac{1 + D_r^t(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g})}{1 + D_r^s(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g})} \times \frac{1 + D_r^t(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g})}{1 + D_r^s(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g})} \right]^{1/2}$$

• Luenberger productivity indicator (Färe and Grosskopf, 2010)

$$L = \left[(D_{nr}^t(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g}) - D_{nr}^t(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g}) \right] \times \frac{1}{2}$$

$$+ \left[D_{nr}^s(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g}) - D_{nr}^s(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g}) \right] \times \frac{1}{2}$$

$$\boldsymbol{g} = (\boldsymbol{0}, \boldsymbol{y}, -\boldsymbol{b})$$

$$LEFFCH = D_{nr}^{s}(\boldsymbol{x}^{s}, \boldsymbol{y}^{s}, \boldsymbol{b}^{s}; \boldsymbol{g}) - D_{nr}^{t}(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}, \boldsymbol{b}^{t}; \boldsymbol{g})$$

$$LTECH = \left[D_{nr}^t(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g}) - D_{nr}^s(\boldsymbol{x}^t, \boldsymbol{y}^t, \boldsymbol{b}^t; \boldsymbol{g}) \right] \times \frac{1}{2}$$
$$+ \left[\left(D_{nr}^t(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g}) - D_{nr}^s(\boldsymbol{x}^s, \boldsymbol{y}^s, \boldsymbol{b}^s; \boldsymbol{g}) \right] \times \frac{1}{2}$$

Stata commands

- teddf estimates directional distance function with undesirable outputs.
 - radial Debreu-Farrell measures, non-radial Russell measures
 - different production technology, e.g., sequential, global
- gtfpch estimates total factor productivity change with undesirable outputs
 - Malmquist–Luenberger productivity index
 - Luenberger indicator

Stata commands

• The **teddf** command

```
teddf Xvarlist = Yvarlist:Bvarlist [if][in], dmu(varname) [
    time(varname) gx(varlist) gy(varlist) gb(varlist) nonradial
    wmat(name) vrs window(#) biennial sequential global tol(real)
    maxiter(#) saving(filename[,replace]) ]
```

Stata commands

• The **gtfpch** command

```
gtfpch Xvarlist = Yvarlist:Bvarlist [if][in], [ dmu(varname) luenberger
  ort(string) gx(varlist) gy(varlist) gb(varlist) nonradial wmat(name)
  window(#) biennial sequential global fgnz rd tol(real)
  maxiter(#) saving(filename[,replace]) ]
```

• a data set of China's provinces (Yan et al., 2020)

```
. use example.dta
. describe
Contains data from example.dta
 obs:
                  90
                                     6 Aug 2020 12:12
 vars:
              storage
                        display
variable name
                                     variable label
                type
                        format
Province
                str12
                        %12s
                                    province name
                        %10.0g
year
                int
                                    year
                                    capital stock (in 100 million 1997 CNY)
                float
                        %9.0g
                double
                        %10.0g
                                    employment (in 10 thousand persons)
                double
                        %10.0g
                                    energy consumption (in million tons of standard coal)
                float
                        %9.0g
                                    real GDP (in 100 million 1997 CNY)
                        %15.1f
C02
                float
                                    carbon dioxide emission (in kg)
```

• Estimation of radial DDF (Chung et al., 1997)

. teddf K L= Y: CO2, dmu(Province) time(year) sav(exiresult,replace)
The diectional vector is (-K -L Y -CO2)

Directional Distance Function Results:
(Row: Row # in the original data; Dval: Estimated value of DDF.)

	Row	Province	year	Dval
1.	1	Anhui	2013	0.2917
2.	2	Anhui	2014	0.3589
3.	3	Anhui	2015	0.3735
4.	4	Beijing	2013	-0.0000
5.	5	Beijing	2014	-0.0000
6.	6	Beijing	2015	-0.0000
7.	7	Chongqing	2013	0.2068
8.	8	Chongqing	2014	0.2362
9.	9	Chongqing	2015	0.2570
10.	10	Fujian	2013	0.0877
11.	11	Fujian	2014	0.1423
12.	12	Fujian	2015	0.1482
13.	13	Gansu	2013	0.2894
14.	14	Gansu	2014	0.3679
15.	15	Gansu	2015	0.4425
16.	16	Guangdong	2013	-0.0000
17.	17	Guangdong	2014	0.0372
18.	18	Guangdong	2015	0.0487

$$egin{aligned} D_r(oldsymbol{x},oldsymbol{y},oldsymbol{b};oldsymbol{g}) &= \max_{eta,oldsymbol{\lambda}}eta \ & ext{s.t.} \sum_{j=1}^J \lambda_j oldsymbol{x}_j \leq oldsymbol{x} + eta oldsymbol{g}_x, \ & ext{} \sum_{j=1}^J \lambda_j oldsymbol{b}_j \geq oldsymbol{y} + eta oldsymbol{g}_y, \ & ext{} \sum_{j=1}^J \lambda_j oldsymbol{b}_j = oldsymbol{b} + eta oldsymbol{g}_b, \ & ext{} \lambda_j \geq 0, j = 1, ..., J. \end{aligned}$$

Estimation of non-radial DDF

```
teddf K L= Y: CO2, dmu( Province ) time(year) nonr sav(ex2result,replace)
The weight vector is (1 1 1 1)
The diectional vector is (-K -L Y -CO2)
Non-raidal Directional Distance Function Results:
```

Non-raidal Directional Distance Function Results: (Row: Row # in the original data; Dval: Estimated value of DDF.)

	l							
	Row	Province	year	Dval	B_K	B_L	B_Y	B_C02
1.	1	Anhui	2013	1.6710	0.4594	0.7225	0.0000	0.4890
2.	2	Anhui	2014	1.7823	0.5293	0.7198	0.0000	0.5331
3.	3	Anhui	2015	1.8210	0.5827	0.7181	0.0000	0.5202
4.	4	Beijing	2013	0.0000	0.0000	0.0000	0.0000	0.0000
5.	5	Beijing	2014	0.0000	0.0000	0.0000	0.0000	0.0000
6.	6	Beijing	2015	0.0000	0.0000	0.0000	0.0000	0.0000
7.	7	Chongqing	2013	1.3031	0.4994	0.5887	0.0000	0.2149
8.	8	Chongqing	2014	1.3988	0.5415	0.5781	0.0000	0.2792
9.	9	Chongqing	2015	1.3936	0.5777	0.5661	0.0000	0.2499
10.	10	Fujian	2013	0.7968	0.3578	0.4363	0.0000	0.0026
11.	11	Fujian	2014	1.0092	0.4289	0.4426	0.0000	0.1377
12.	12	Fujian	2015	0.9997	0.4915	0.4581	0.0000	0.0500
13.	13	Gansu	2013	1.9927	0.5204	0.7853	0.0000	0.6869
14.	14	Gansu	2014	2.2088	0.0000	0.4725	1.4444	0.2920
15.	15	Gansu	2015	2.3532	0.0000	0.3980	1.7971	0.1580
16.	16	Guangdong	2013	0.0000	0.0000	0.0000	0.0000	0.0000
17.	17	Guangdong	2014	0.6215	0.1373	0.4425	0.0000	0.0417
18.	18	Guangdong	2015	0.6649	0.1980	0.4420	0.0000	0.0250
19.	19	Guangxi	2013	1.5334	0.4916	0.7061	0.0000	0.3357
20.	20	Guangxi	2014	1.6170	0.5515	0.7041	0.0000	0.3613

$$egin{aligned} D_{nr}(oldsymbol{x}, oldsymbol{y}, oldsymbol{b}; oldsymbol{g}) &= \max_{oldsymbol{eta}, oldsymbol{\lambda}} oldsymbol{w}^T oldsymbol{eta} \ & ext{s.t.} \sum_{j=1}^J \lambda_j oldsymbol{x}_j &\leq oldsymbol{x} + diag(oldsymbol{eta}_x) \cdot oldsymbol{g}_x, \ & ext{} \sum_{j=1}^J \lambda_j oldsymbol{b}_j &\geq oldsymbol{y} + diag(oldsymbol{eta}_y) \cdot oldsymbol{g}_y, \ & ext{} \sum_{j=1}^J \lambda_j oldsymbol{b}_j &= oldsymbol{b} + diag(oldsymbol{eta}_b) \cdot oldsymbol{g}_b, \ & ext{} oldsymbol{eta} &\geq 0; \lambda_j \geq 0, j = 1, ..., J. \end{aligned}$$

Estimation of Malmquist-Luenberger productivity index

(Row: Row # in the original data; Pdwise: periodwise)

TFPCH TECH TECCH Row Province id Pdwise 2013_2014 0.9832 0.9179 1.0711 Anhui Anhui 2014_2015 0.9853 0.9027 1.0916 2013_2014 Beijing 1.0383 1.0000 1.0383 Beijing 2014_2015 4. 1.0620 1.0000 1.0620 Chongqing 2013_2014 5. 1.0029 0.9788 1.0246 6. Chongqing 2014_2015 1.0476 0.9348 1.1207 11 Fujian 2013_2014 0.9707 0.9248 1.0496 Fujian 2014_2015 0.9665 1.0685 12 1.0327 2013_2014 0.9721 0.9011 1.0788 14 Gansu 15 2014_2015 0.9791 0.8768 1.1167 10. Gansu 11. 17 Guangdong 2013_2014 1.0221 0.9556 1.0695 12. 18 Guangdong 2014_2015 1.0175 0.9823 1.0358 13. 20 Guangxi 2013_2014 1.0076 0.9709 1.0378 14. Guangxi 2014_2015 1.0750 0.9640 1.1152

Estimation of Luenberger productivity indicator

```
. gtfpch K L= Y: CO2, dmu( Province ) nonr global sav(ex4result,replace)
The weight vector is (0 0 1 1)
The diectional vector is (0 0 Y -CO2)
```

Total Factor Productivity Change:Luenberger Productivity Index (base on nonrial DDF) (Row: Row # in the original data; Pdwise: periodwise)

	Row	Province	id	Pdwise	TFPCH	TECH	TECCH
1.	2	Anhui	1	2013_2014	-0.0676	-0.2281	0.1605
2.	3	Anhui	1	2014_2015	0.0214	-0.0597	0.0811
3.	5	Beijing	2	2013_2014	0.0832	-0.0000	0.0832
4.	6	Beijing	2	2014_2015	0.1705	0.0000	0.1705
5.	8	Chongqing	3	2013_2014	0.0175	-0.0564	0.0738
6.	9	Chongqing	3	2014_2015	0.0178	-0.1079	0.1257
7.	11	Fujian	4	2013_2014	-0.0378	-0.0947	0.0569
8.	12	Fujian	4	2014~2015	0.0640	-0.0590	0.1230
9.	14	Gansu	5	2013_2014	-0.1748	-0.3039	0.1291
10.	15	Gansu	5	2014_2015	-0.1423	-0.2188	0.0765
	•						

Outlook

```
egin{aligned} \min_{\mathbf{x}} & \mathbf{c} \mathbf{x}' \ & \mathrm{such \ that} \ \mathbf{A}_{\mathrm{EC}} \mathbf{x}' = \mathbf{b}_{\mathrm{EC}} \ & \mathbf{A}_{\mathrm{IE}} \mathbf{x}' \leq \mathbf{b}_{\mathrm{IE}} \ & \mathrm{lowerbd} \leq \mathbf{x} \leq \mathrm{upperbd} \end{aligned}
```

help mata linearprogram (Mehrotra, 1992)

Step 1: Initialization

Step 2: Definition of linear programming problem

Step 3: Perform optimization

Step 4: Display or obtain results

Outlook

• help mata linearprogram (Mehrotra, 1992)

```
\max_{x_1, x_2} 5x_1 + 3x_2 such that -x_1 + 11x_2 = 33 0.5x_1 - x_2 \le -3 2x_1 + 14x_2 \le 60 2x_1 + x_2 \le 14.5 x_1 - 0.4x_2 \le 5 x_1 \ge 0 x_2 \ge 0
```

```
mata:
    c = (5, 3)
    Aec = (-1, 11)
    bec = 33
    Aie = (0.5, -1 \setminus 2, 14 \setminus 2, 1 \setminus 1, -0.4)
    bie = (-3 \setminus 60 \setminus 14.5 \setminus 5)
    lowerbd = (0, 0)
    upperbd = (., .)
    q = LinearProgram()
    q.setCoefficients(c)
    q.setEquality(Aec, bec)
    q.setInequality(Aie, bie)
    q.setBounds(Lowerbd, upperbd)
    q.optimize()
    q.parameters()
end
```


Outlook

https://github.com/kerrydu/

https://github.com/daopingw/

Thank You