Assignment-1

EE:1205 Signals and Systems Indian Institute of Technology, Hyderabad

Abhey Garg **EE23BTECH11202**

I. Question 11.14.8

A spring balance has a scale that that reads fro 0 to 50 kg. The length of the scale is 20cm. A body is suspended from this balance, when displaced and released, oscillates with a period of 0.6s. What is weight of the body?

II. SOLUTION

TABLE 0 INPUT PARAMETERS

Parameter	Value	Description
M	50 kg	Mass of block
l	0.2 m	Maximum displacement of
		spring
T	0.6 s	Time period of oscillation
F	490 N	Force
k	2450	Spring Constant
	N/m	

Fig. 0. spring-mass system

$$F = ma = -kx \tag{1}$$

(2)

This equation can be rearranged as:

$$ma = -kx$$

$$m\frac{d^2x}{dt^2} = -kx\tag{3}$$

III. DERIVATION OF SIMPLE HARMONIC MOTION PERIOD USING LAPLACE TRANSFORM

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0\tag{4}$$

Take the Laplace transform of both sides:

$$s^{2}X(s) - sx(0) - x'(0) + \frac{k}{m}X(s) = 0$$
 (5)

Rearrange terms to solve for X(s):

$$X(s)(s^2 + \frac{k}{m}) = sx(0) + x'(0)$$
 (6)

Solve for X(s):

$$X(s) = \frac{sx(0) + x'(0)}{s^2 + \frac{k}{m}} \tag{7}$$

Find the roots of the characteristic equation:

$$s^2 + \frac{k}{m} = 0 \tag{8}$$

Let $\omega^2 = \frac{k}{m}$, then $s = \pm j\omega$. Express ω in terms of T:

$$T = \frac{2\pi}{\omega} \tag{9}$$

Solve for ω in terms of T:

$$\omega = \frac{2\pi}{T} \tag{10}$$

Substitute ω back into the characteristic equation:

$$s = \pm j \frac{2\pi}{T} \tag{11}$$

Now, the Laplace transform solution X(s) becomes:

Express s in terms of ω :

$$X(s) = \frac{s(x_0) + x'(0)}{(j\omega)^2 + \omega^2}$$
 (12)

Simplify and take the inverse Laplace transform to obtain the displacement x(t) in the time domain:

$$x(t) = A\cos(\omega t + \phi) \tag{13}$$

$$A = l = 0.2m \tag{14}$$

$$\phi = 0 \tag{15}$$

$$\omega = \frac{2\pi}{T} = 10.47 \text{rad/s} \tag{16}$$

Where A is the amplitude, ω is the angular frequency, and ϕ is the phase angle. The period T is related to the angular frequency by $T = \frac{2\pi}{\omega}$, giving the desired result:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{17}$$

The weight of th body is defined as:

Weight =
$$mg = 22.36 \times 9.8 = 219.16 \,\text{N}$$
 (18)

Therefore, the weight of the body is approximately $219\,\mathrm{N}.$