Correction IE2 - 17 décembre 2018

	EXERCICE 1	
question	Réponse	
1.1	 nom des courbes (ébullition / rosée) 4 domaines Azéotrope (point identifié et nommé) points d'ébullition des deux corps purs identification de la variance aux points particuliers 	
1.2.	La solution n'est pas idéale (présence de l'azéotrope).	
1.3	Composition du mélange en fraction molaire d'éthanol : $x_{EM} = \frac{w_{EM}}{w_{EM} + (1 - w_E) \frac{M_E}{M_B}} \text{ (ou toute autre méthode)}$ AN : $x_E = 0,906$ A 75°C, deux phases en présences, phase liquide de composition $x_E = 0,950$ et une phase vapeur de composition $y_E = 0,842$. Règle des moments : $\frac{n_V}{n_T} = \frac{x_E - x_{EM}}{x_E - y_E} = \frac{0,950 - 0.906}{0,950 - 0.842} = 0,4074$ Nombre de moles total : $150 \ 10^3/78 + 850 \ 10^3/46 = 20401$ moles. 8311 moles de vapeur ; 12090 moles de liquide. $y_E \times n_V = 6998 \text{ moles d'éthanol vapeur, soit } 321,9 \text{ kg} = 1313 \text{ moles benzène vapeur, soit } 102,4 \text{ kg}$ Masse totale vapeur : 424,3 kg $x_E \times n_L = 11485,5 \text{ moles d'éthanol liquide, soit } 528,3 \text{ kg} = 12090 - 11485,5 = 604,5 \text{ moles de benzène liquide, soit } 47,15 \text{ kg}$ Masse totale liquide : 575,5 kg	
1.4.a)	La distillation fractionnée est une succession d'équilibres liquide-vapeur échelonnés sur la hauteur de l'appareil de distillation : la vapeur issue de l'étage précédent est recondensée en un mélange plus riche en composé le plus volatil ; si le nombre d'étage est suffisant, alors la vapeur sera de plus en plus riche en ce composé. A l'inverse, le résidu sera de plus en plus riche en composé le moins volatil (ou autre formulation équivalente).	
1.4.b)	Au distillat : mélange de composition azéotropique Résidu : éthanol pur. Tout le benzène sera dans le mélange azéotropique (150 kg, soit 1923 moles). $x_{az} = \frac{n_E}{n_E + n_B} \mathrm{donc} n_E = n_B \frac{x_{az}}{1 - x_{az}}$ AN : n_E =1560,7 moles, soit 71,8 kg d'éthanol dans l'azéotrope. Masse d'éthanol dans le résidu : 778,2 kg Pour les solutions idéales, $p_i = x_i p_i^*$	
1.5)	Donc $x_E = \frac{p - p_B^*}{p_E^* - p_B^*}$ et $y_E = x_E \frac{p_E^*}{p}$ AN: A 79°C, x_E =0,574 et y_E =0,588 A 79,5°C, x_E =0,286 et y_E =0,300	

	EXERCICE 2
2-1-a	a) À la limite de précipitation de l'hydroxyde de chrome, la concentration en ions Cr^{3+} n'a pas bougé. A partir de Ks , on calcule : $K^{\circ}_{s} = [Cr^{3+}][OH^{-}]^{3}, [Cr^{3+}] = 0,1 \text{ M} \rightarrow pH = 4,0.$
2-1-b	$K^{\circ}_{2} = [Cr(OH)_{4}]/([Cr^{3+}] * [OH^{-}]^{4})$
2-1-c	Dissolution de l'hydroxyde de chrome en milieu basique : $Cr(OH)_3(s) + OH^- \rightarrow Cr(OH)_4^-$ $K^{\circ}_3 = K^{\circ}_2 * K^{\circ}_s = 10^{30,6}.10^{-31} = 10^{-0,4} = 0,398$
2-1-d	Lorsque l'hydroxyde de chrome $Cr(OH)_3(s)$ se dissout, à la limite, la concentration en complexe vaut c , on peut donc en tirer le pH : $K^{\circ}_3 = c/[OH^{-}] = c.[H^{+}]/Ke$; $[H^{+}] = (K^{\circ}_3 * Ke)/c = 3,98 \cdot 10^{-14} \text{ mol.L}^{-1}$
	Ce qui donne un pH = 13,4. Cr^{3+} pH 4 $Cr(OH)_3$ pH 13,4 $Cr(OH)_4$ pH
2-1-e	Domaines de prédominance des espèces du couple acide-base.
2-2-a	<u>CH3COOH</u> рН 4,75 СН3СОО- рН
	Si le pH est inférieur à 4,75 on a majoritairement de l'acide éthanoïque
2-2-b	$Cr2O7^{2-} + 14 H^+ + 6 e$ \rightarrow $2 Cr^{3+} (aq) + 7 H_2O$
2-2-c	Équation-bilan de la réaction : $ Cr2O7^{2-} + 14 H^+ + 6 \underline{e} $
	$CH_3CH_2OH + H_2O$ → $CH_3COOH + 4H^+ + 4\acute{e}$ 2 Cr2O7 ²⁻ +16 H ⁺ +3 CH ₃ CH ₂ OH→4 Cr ³⁺ (aq)+3 CH ₃ COOH +11 H ₂ O
2-2-d	- Si pH considéré à 0 : InK ₄ = -ΔG°/RT = nFE°/RT
	A.N. : lnK ₄ = (12 x 96500 x (1.330 – 0.037))/(8.314 x 298) = 604
	- Ou bien si pH considéré à 1: [H ⁺] = 0,1 M
	Il faut calculer les potentiels apparents : $Cr : E = 1.330 + (0.06/6 \times log[H^+]^{14}) = 1.330 - 0.14 = 1.19 \text{ V}$
	Composé organique :
	$E = 0.037 + (0.06/4 \times log[H^+]^4) = 0.037 - 0.06 = -0.023 \text{ V}$
	$lnK_4 = (12 \times 96500 \times (1.190 + 0.023))/(8.314 \times 298) = 567$ La constante est très grande et on pourra doser l'éthanol par le dichromate
	autour de pH de 1.
2-2-е	n _{Cr2O72-} = 23,20 10 ⁻³ * 1,15 = 0,02668 mole Dans 20,00 mL prélevés n _{CH3CH2OH} = 1,5 * 0,02668 = 0,04002 mole [CH ₃ CH ₂ OH]= 2,00 mol L ⁻¹
2-2-f	Vtot = 53,2 mL
2-2-1	n Cr2O7 ²⁻ à l'équivalence = 1,15 * 23,2 10 ⁻³ mole = 0,02668 mole
	$n_T = n_A + n_B = (3/2) * 0,02668 = 0,04002 \text{ mole}$
227	
2-2-g	Pour Vtot = $53,20$ mL, [H+] introduite initialement = $(2*10,70*10)/53,20 = 4,023$ mol.L ⁻¹
	A l'équivalence, il reste [H+] = 4,023— (8 *0,5015) = 4,023 — 4,012 = 0,011 mol.L ⁻
	Soit pH =2 environ. L'acide acétique est donc majoritairement sous la forme CH₃COOH.
	Pas utile de tenir compte de l'équilibre CH₃COOH ←→ CH₃COO⁻ + H⁺