

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Fundamental Matrices of Continuous-Time LTI Systems

Continuous-Time Autonomous LTI Systems

The scalar ODE $\dot{x} = ax$ has the solution $x(t) = e^{at}x(0), t \ge 0$.

The autonomous linear time-invariant (LTI) system

$$\dot{x} = Ax$$

with $A \in \mathbb{R}^{n \times n}$ and the initial condition x(0) has the solution:

$$x(t)=e^{At}x(0), t\geq 0$$

Proof: Use the property $\frac{d}{dt}e^{At} = Ae^{At}$.

Fundamental Matrix

The fundamental matrix $\Phi(t)$ of the LTI system $\dot{x} = Ax$ is defined as

$$\Phi(t) := e^{At}$$

- Solution to the LTI system is given by $x(t) = \Phi(t)x(0)$
- Solution x(t) satisfies $x(t + t_0) = \Phi(t)x(t_0)$ for any t_0
- \bullet $\Phi(t)$ propagates the solution at any time along the solution t time forward
- $\Phi(t_1 + t_2) = \Phi(t_1)\Phi(t_2) = \Phi(t_2)\Phi(t_1)$ for all t_1 and t_2

Solution Space

Solution space of the LTI system $\dot{x} = Ax$ is the set of all its solutions:

$$\mathbb{X} := \{x(t), \ t \ge 0 \mid \dot{x} = Ax\}$$

 \mathbb{X} is an *n*-dimensional vector space

- One-to-one correspondence between $x(\cdot) \in \mathbb{X}$ and initial states $x(0) \in \mathbb{R}^n$
- A basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{R}^n yields a basis $\{e^{At}v_1, e^{At}v_2, \dots, e^{At}v_n\}$ of \mathbb{X}
- Any solution $x(t) \in \mathbb{X}$ from $x(0) = \alpha_1 v_1 + \cdots + \alpha_n v_n$ can be written as:

$$x(t) = \alpha_1(e^{At}v_1) + \cdots + \alpha_n(e^{At}v_n)$$

What would be a good choices of basis?

LTI System after a Change of Coordinates

Change of coordinates by a nonsingular $T = \begin{bmatrix} t_1 & \cdots & t_n \end{bmatrix} \in \mathbb{R}^{n \times n}$:

$$\tilde{x} = T^{-1}x$$

• \tilde{x} is the coordinates of x in the new basis $\{t_1,\ldots,t_n\}$ of \mathbb{R}^n

LTI system $\dot{x} = Ax$ in the new \tilde{x} -coordinates:

$$\dot{\tilde{x}} = \tilde{A}\tilde{x} := (T^{-1}AT)\tilde{x}, \quad \tilde{x}(0) = T^{-1}x(0)$$

Fundamental matrix in the new coordinates:

$$\widetilde{\Phi}(t) = e^{\widetilde{A}t} = T^{-1}\Phi(t)T$$