On interpretations between propositional logics

Tommaso Moraschini joint with Ramon Jansana

Institute of Computer Science Czech Academy of Sciences

BLAST 2019 University of Colorado, Boulder

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics".

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics".

Remark. In most results, propositional logics can be replaced by infinitary universal Horn theories without equality.

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics".

Remark. In most results, propositional logics can be replaced by infinitary universal Horn theories without equality.

Some sources of inspiration:

- ► Matrix semantics for logics (Łukasiewicz, Tarski, Łos, Suszko, Wójcicki . . .)
- ▶ Blok and Pigozzi's seminal work on algebraizable logics
- ► Leibniz hierarchy of propositional logics (Czelakowski, Font, Herrmann, Jansana, Raftery . . .)
- ► Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss, Kearnes, McKenzie, Szendrei . . .)
- ► Interpretations between varieties (Taylor, Neumann, Garcia, Opršal, Tschantz . . .)

Basic questions:

Basic questions:

▶ What do we mean by an interpretation between logics?

Basic questions:

- ▶ What do we mean by an interpretation between logics?
- ► And what do we mean by logic?

Let T be a first-order theory without equality.

Let T be a first-order theory without equality.

Let T be a first-order theory without equality.

$$a \equiv c \iff a$$
 and c satisfies the same equality-free types with constants \iff for every non-equality atomic formula $\phi(x, y_1, \ldots, y_n)$ and for every $b_1, \ldots, b_n \in M$, $M \models \phi(a, b_1, \ldots, b_n)$ iff $M \models \phi(c, b_1, \ldots, b_n)$.

Let T be a first-order theory without equality.

▶ Every model **M** of T is associated with an **indiscernibility** relation \equiv that mimics equality: for every $a, c \in M$,

$$a \equiv c \iff a$$
 and c satisfies the same equality-free types with constants \iff for every non-equality atomic formula $\phi(x,y_1,\ldots,y_n)$ and for every $b_1,\ldots,b_n\in M$, $M\models\phi(a,b_1,\ldots,b_n)$ iff $M\models\phi(c,b_1,\ldots,b_n)$.

The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.

Let T be a first-order theory without equality.

$$a \equiv c \iff a$$
 and c satisfies the same equality-free types with constants \iff for every non-equality atomic formula $\phi(x,y_1,\ldots,y_n)$ and for every $b_1,\ldots,b_n\in M$, $M\models\phi(a,b_1,\ldots,b_n)$ iff $M\models\phi(c,b_1,\ldots,b_n)$.

- The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.
- ► M/≡ satisfies the same sentences without equality than M.

Let T be a first-order theory without equality.

$$a \equiv c \iff a$$
 and c satisfies the same equality-free types with constants \iff for every non-equality atomic formula $\phi(x, y_1, \ldots, y_n)$ and for every $b_1, \ldots, b_n \in M$, $M \models \phi(a, b_1, \ldots, b_n)$ iff $M \models \phi(c, b_1, \ldots, b_n)$.

- ▶ The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/\equiv is the identity.
- ▶ M/\equiv satisfies the same sentences without equality than M.
- ► Thus, the natural models of *T* are the ones whose indiscernibility relation is the identity relation.

Let T be a first-order theory without equality.

$$a \equiv c \iff a$$
 and c satisfies the same equality-free types with constants \iff for every non-equality atomic formula $\phi(x,y_1,\ldots,y_n)$ and for every $b_1,\ldots,b_n\in M$, $\mathbf{M}\models\phi(a,b_1,\ldots,b_n)$ iff $\mathbf{M}\models\phi(c,b_1,\ldots,b_n)$.

- The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.
- ▶ M/\equiv satisfies the same sentences without equality than M.
- ► Thus, the natural models of *T* are the ones whose indiscernibility relation is the identity relation.
- ► This setting subsumes model theory with equality.

► A **logic** is a consequence relation ⊢ on the set **Fm** of formulas of some algebraic language with **infinitely many** variables

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary Horn theories without equality.

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary Horn theories without equality.

▶ Let \vdash be a logic and let P(x) be a unary predicate symbol.

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary Horn theories without equality.

- ▶ Let \vdash be a logic and let P(x) be a unary predicate symbol.
- ▶ Let T_{\vdash} be the theory in the equality-free language obtained extending the algebraic language of \vdash with P(x),

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary Horn theories without equality.

- ▶ Let \vdash be a logic and let P(x) be a unary predicate symbol.
- ▶ Let T_{\vdash} be the theory in the equality-free language obtained extending the algebraic language of \vdash with P(x), axiomatized by the infinitary universal Horn sentences

$$\forall \vec{x} \bigwedge_{\gamma \in \Gamma} P(\gamma(\vec{x})) \to P(\varphi(\vec{x}))$$

for all valid inferences $\Gamma \vdash \varphi$ of \vdash .

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash} .

▶ A matrix is a pair $\langle A, F \rangle$ where **A** is an algebra and $F \subseteq A$.

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary Horn theories without equality T_\vdash .

▶ A matrix is a pair $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is an algebra and $F \subseteq A$. A matrix $\langle \mathbf{A}, F \rangle$ is a

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash} .

▶ A matrix is a pair $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is an algebra and $F \subseteq A$. A matrix $\langle \mathbf{A}, F \rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup \{ \varphi \} \subseteq \mathbf{Fm}$,

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash} .

A matrix is a pair $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is an algebra and $F \subseteq A$. A matrix $\langle \mathbf{A}, F \rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$,

if
$$\Gamma \vdash \varphi$$
, then for every hom $v \colon \mathbf{Fm} \to \mathbf{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash} .

▶ A matrix is a pair $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is an algebra and $F \subseteq A$. A matrix $\langle \mathbf{A}, F \rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$,

if
$$\Gamma \vdash \varphi$$
, then for every hom $v : \mathbf{Fm} \to \mathbf{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Intuitively, A is an algebra of truth-values and F are the values representing truth.

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash} .

A matrix is a pair $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is an algebra and $F \subseteq A$. A matrix $\langle \mathbf{A}, F \rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$,

if
$$\Gamma \vdash \varphi$$
, then for every hom $v \colon \mathbf{Fm} \to \mathbf{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Intuitively, A is an algebra of truth-values and F are the values representing truth.

▶ Observe that $\langle \mathbf{A}, F \rangle$ is a model of \vdash iff it is a model of T_\vdash in the standard sense.

$$a \equiv c \iff p(a) \in F \text{ iff } p(c) \in F,$$
for all unary polynomial functions p of A .

$$a \equiv c \iff p(a) \in F \text{ iff } p(c) \in F,$$
 for all unary polynomial functions p of A .

Examples.

$$a \equiv c \iff p(a) \in F \text{ iff } p(c) \in F,$$
for all unary polynomial functions p of A .

Examples.

▶ If **A** is a Heyting algebra and F a lattice filter, then

$$a \equiv c \iff p(a) \in F \text{ iff } p(c) \in F,$$
for all unary polynomial functions p of A .

Examples.

ightharpoonup If **A** is a Heyting algebra and F a lattice filter, then

$$a \equiv c \iff \{a \rightarrow c, c \rightarrow a\} \subseteq F.$$

$$a \equiv c \iff p(a) \in F \text{ iff } p(c) \in F,$$
for all unary polynomial functions p of A .

Examples.

 \blacktriangleright If **A** is a Heyting algebra and F a lattice filter, then

$$a \equiv c \iff \{a \rightarrow c, c \rightarrow a\} \subseteq F.$$

▶ If **A** is a modal algebra and F a lattice filter, then

$$a \equiv c \iff p(a) \in F \text{ iff } p(c) \in F,$$
 for all unary polynomial functions p of A .

Examples.

 \triangleright If **A** is a Heyting algebra and F a lattice filter, then

$$a \equiv c \iff \{a \rightarrow c, c \rightarrow a\} \subseteq F$$
.

▶ If **A** is a modal algebra and F a lattice filter, then

$$a \equiv c \iff \{\Box^n(a \to c), \Box^n(c \to a) : n \in \omega\} \subseteq F.$$

► Logics ⊢ are associated with models without indiscernibles

 $\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \mathsf{and} \\ \equiv \mathsf{is the identity relation}\}.$

$$\begin{split} \mathsf{Mod}^\equiv(\vdash) &:= \mathbb{P}_{\!\mathsf{sd}}\{\langle \mathbf{\textit{A}}, \mathit{F}\rangle \colon \langle \mathbf{\textit{A}}, \mathit{F}\rangle \text{ is a } \mathbf{model} \text{ of } \vdash \mathsf{and} \\ &\equiv \mathsf{is } \mathsf{the } \mathbf{identity } \mathbf{relation}\}. \end{split}$$

Completeness.

$$\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \mathsf{and} \\ \equiv \mathsf{is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $\mathsf{Mod}^{\equiv}(\vdash)$, i.e.

$$\mathsf{Mod}^{\equiv}(\vdash) \coloneqq \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \mathsf{and}$$
 $\equiv \mathsf{is the identity relation}\}.$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\Gamma \vdash \varphi \iff$$
 for every $\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ and hom $v \colon \mathbf{Fm} \to \mathbf{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

$$\mathsf{Mod}^{\equiv}(\vdash) \coloneqq \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \mathsf{and}$$
$$\equiv \mathsf{is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $\mathsf{Mod}^\equiv(\vdash)$, i.e.

$$\Gamma \vdash \varphi \iff$$
 for every $\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ and hom $v \colon \mathbf{Fm} \to \mathbf{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Examples.

$$\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{\textit{A}}, \mathit{F} \rangle \colon \langle \mathbf{\textit{A}}, \mathit{F} \rangle \text{ is a model of } \vdash \mathsf{and}$$

$$\equiv \mathsf{is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\Gamma \vdash \varphi \iff \text{for every } \langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash) \text{ and hom } v \colon \mathbf{Fm} \to \mathbf{A},$$
 if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Examples.

 $\mathsf{Mod}^\equiv(\mathsf{CPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\}\}$

$$\mathsf{Mod}^\equiv(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{\textit{A}}, \mathit{F} \rangle \colon \langle \mathbf{\textit{A}}, \mathit{F} \rangle \text{ is a model of } \vdash \mathsf{and} \\ \equiv \mathsf{is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\Gamma \vdash \varphi \iff$$
 for every $\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ and hom $v \colon \mathbf{Fm} \to \mathbf{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Examples.

$$\mathsf{Mod}^\equiv(\mathsf{CPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\}\}$$
 $\mathsf{Mod}^\equiv(\mathsf{IPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\}\}.$

▶ A translation of an algebraic language \mathcal{L} into another \mathcal{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1, \ldots, x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1, \ldots, x_n)$ of \mathcal{L} .

- ▶ A translation of an algebraic language \mathcal{L} into another \mathcal{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1, \ldots, x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1, \ldots, x_n)$ of \mathcal{L} .
- ▶ Given an \mathcal{L}' -algebra \mathbf{A} , we define an \mathcal{L} -algebra

- ▶ A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathscr{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathscr{L} .
- ▶ Given an \mathscr{L}' -algebra A, we define an \mathscr{L} -algebra

$$\mathbf{A}^{\mathbf{\tau}} \coloneqq \langle A; \{ \mathbf{\tau}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathscr{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathscr{L} .
- ▶ Given an \mathcal{L}' -algebra A, we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} := \langle A; \{ \mathbf{\tau}(f)^{\mathbf{A}} : f \in \mathscr{L} \} \rangle.$$

Example.

- ▶ A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathscr{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathscr{L} .
- ▶ Given an \mathcal{L}' -algebra \mathbf{A} , we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} := \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} : f \in \mathscr{L} \} \rangle.$$

Example. Let $\mathcal{L}_{\wedge\vee}$ be the language of lattices, and $\mathcal{L}_{\mathsf{BA}}$ that of Boolean algebras.

- ▶ A translation of an algebraic language \mathcal{L} into another \mathcal{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1, \ldots, x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1, \ldots, x_n)$ of \mathcal{L} .
- ▶ Given an \mathcal{L}' -algebra \mathbf{A} , we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} \coloneqq \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} : f \in \mathcal{L} \} \rangle.$$

Example. Let $\mathcal{L}_{\wedge\vee}$ be the language of lattices, and \mathcal{L}_{BA} that of Boolean algebras. If τ is the inclusion map from $\mathcal{L}_{\wedge\vee}$ to \mathcal{L}_{BA} , and \boldsymbol{A} a Boolean algebra, then \boldsymbol{A}^{τ} is its lattice reduct of \boldsymbol{A} .

- \triangleright A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1, \ldots, x_n)$ of \mathcal{L} .
- ▶ Given an \mathcal{L}' -algebra \mathbf{A} , we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} \coloneqq \langle A; \{ \mathbf{\tau}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

▶ An interpretation of a logic \vdash into another \vdash' is a translation τ between their languages such that

- ▶ A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1, \ldots, x_n)$ of \mathscr{L}' to every *n*-ary symbol $f(x_1, \ldots, x_n)$ of \mathscr{L} .
 - $\mathbf{A}^{\tau} := /\Lambda \cdot \{ \boldsymbol{\tau}(f)^{\mathbf{A}} \cdot f \in \mathscr{L} \}$

▶ Given an \mathcal{L}' -algebra \mathbf{A} , we define an \mathcal{L} -algebra

$$\mathbf{A}^{\boldsymbol{ au}} \coloneqq \langle A; \{ \boldsymbol{ au}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

- ▶ A translation of an algebraic language \mathcal{L} into another \mathcal{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathcal{L} .
- ▶ Given an \mathcal{L}' -algebra \mathbf{A} , we define an \mathcal{L} -algebra

$$\mathbf{A}^{\boldsymbol{\tau}} \coloneqq \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves.

- ▶ A translation of an algebraic language \mathcal{L} into another \mathcal{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathcal{L} .
- ▶ Given an \mathcal{L}' -algebra A, we define an \mathcal{L} -algebra

$$\mathbf{A}^{ au} \coloneqq \langle \mathsf{A}; \{ \mathbf{ au}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

- ▶ A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathscr{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathscr{L} .
- ▶ Given an \mathcal{L}' -algebra A, we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} := \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} : f \in \mathcal{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.

- ▶ A translation of an algebraic language \mathscr{L} into another \mathscr{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathscr{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathscr{L} .
- ▶ Given an \mathcal{L}' -algebra A, we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} := \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} : f \in \mathcal{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

- ▶ A translation of an algebraic language \mathcal{L} into another \mathcal{L}' is a map τ that assigns an *n*-ary term $\tau(f)(x_1,\ldots,x_n)$ of \mathcal{L}' to every *n*-ary symbol $f(x_1,\ldots,x_n)$ of \mathcal{L} .
- ▶ Given an \mathcal{L}' -algebra A, we define an \mathcal{L} -algebra

$$\mathbf{A}^{\tau} := \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} : f \in \mathcal{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathcal{L}_{\vdash} \subseteq \mathcal{L}_{\vdash'}$ and the \mathcal{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash)$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathcal{L}_{\vdash} \subseteq \mathcal{L}_{\vdash'}$ and the \mathcal{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Example. Recall that

 $\mathsf{Mod}^\equiv(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$ $\mathsf{Mod}^\equiv(\mathsf{IPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\} \}.$

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Example. Recall that

$$\mathsf{Mod}^\equiv(\mathsf{CPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\}\}$$
 $\mathsf{Mod}^\equiv(\mathsf{IPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\}\}.$

► The identity map is an interpretation of IPC into CPC.

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Example. Recall that

$$\mathsf{Mod}^\equiv(\mathsf{CPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\}\}$$
 $\mathsf{Mod}^\equiv(\mathsf{IPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\}\}.$

- ▶ The identity map is an interpretation of IPC into CPC.
- Is CPC interpretable into IPC?

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Example. Recall that

$$\mathsf{Mod}^\equiv(\mathsf{CPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\}\}$$
 $\mathsf{Mod}^\equiv(\mathsf{IPC}) = \{\langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\}\}.$

- ▶ The identity map is an interpretation of IPC into CPC.
- ▶ Is CPC interpretable into IPC? No, on cardinality grounds!

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Definition

Intepretability is a preorder on the proper class of all logics.

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathcal{L}_{\vdash} \subseteq \mathcal{L}_{\vdash'}$ and the \mathcal{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Definition

Intepretability is a preorder on the proper class of all logics.

The associated partial order Log is the "poset of all logics".

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $\mathsf{Mod}^{\equiv}(\vdash')$ belong to $\mathsf{Mod}^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Definition

Intepretability is a preorder on the proper class of all logics. The associated partial order Log is the "poset of all logics".

▶ Elements of Log are classes [⊢] of equi-interpretable logics.

The structure of the poset of all logics

The structure of the poset of all logics

Basic question:

The structure of the poset of all logics

Basic question:

► Do infima and suprema exist?

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$,

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra,

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$f \otimes_{i \in I} A_i(\vec{a}_1, \ldots, \vec{a}_n) := \langle \varphi_i^{A_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) : i \in I \rangle.$$

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$f \otimes_{i \in I} A_i(\vec{a}_1, \ldots, \vec{a}_n) := \langle \varphi_i^{A_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) : i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$,

▶ Given a set of algebraic languages $\{\mathcal{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathcal{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$\mathbf{f}^{\otimes_{i\in I}\mathbf{A}_i}(\vec{a}_1,\ldots,\vec{a}_n) := \langle \varphi_i^{\mathbf{A}_i}(\vec{a}_1(i),\ldots,\vec{a}_n(i)) \colon i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$, let $\bigotimes_{i \in I} \vdash_i$ be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i)\}$$

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$f \otimes_{i \in I} A_i(\vec{a}_1, \ldots, \vec{a}_n) := \langle \varphi_i^{A_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) : i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$, let $\bigotimes_{i \in I} \vdash_i$ be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i)\}$$

formulated with $\prod_{i \in I} |\mathbf{Fm}(\vdash_i)|$ variables.

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose n-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$\mathbf{f} \otimes_{i \in I} \mathbf{A}_i(\vec{a}_1, \ldots, \vec{a}_n) \coloneqq \langle \varphi_i^{\mathbf{A}_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) \colon i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$, let $\bigotimes_{i \in I} \vdash_i$ be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i) \}.$$

 $\bigotimes_{i \in I} \vdash_i$ is called the non-indexed product of the various \vdash_i .

▶ Given a set of algebraic languages $\{\mathcal{L}_i: i \in I\}$, let $\bigotimes_{i \in I} \mathcal{L}_i$ be the language whose n-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$f \otimes_{i \in I} A_i(\vec{a}_1, \ldots, \vec{a}_n) := \langle \varphi_i^{A_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) \colon i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$, let $\bigotimes_{i \in I} \vdash_i$ be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i) \}.$$

Theorem

▶ $\mathsf{Mod}^{\equiv}(\bigotimes_{i \in I} \vdash_i)$ is the closure under \mathbb{P}_{sd} of the above display.

▶ Given a set of algebraic languages $\{\mathcal{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathcal{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$f \otimes_{i \in I} A_i(\vec{a}_1, \ldots, \vec{a}_n) := \langle \varphi_i^{A_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) : i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$, let $\bigotimes_{i \in I} \vdash_i$ be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i) \}.$$

Theorem

- ▶ $\mathsf{Mod}^{\equiv}(\bigotimes_{i\in I}\vdash_i)$ is the closure under \mathbb{P}_{sd} of the above display.
- ▶ $\llbracket \bigotimes_{i \in I} \vdash_i \rrbracket$ is the infimum of $\{ \llbracket \vdash_i \rrbracket : i \in I \}$ in Log.

▶ Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$, let $\bigotimes_{i \in I} \mathscr{L}_i$ be the language whose *n*-ary operations f are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathcal{L}_i .

▶ Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra, let $\bigotimes_{i \in I} A_i$ be the $\bigotimes_{i \in I} \mathcal{L}_i$ -algebra with universe $\prod_{i \in I} A_i$ s.t.

$$f \otimes_{i \in I} A_i(\vec{a}_1, \ldots, \vec{a}_n) := \langle \varphi_i^{A_i}(\vec{a}_1(i), \ldots, \vec{a}_n(i)) : i \in I \rangle.$$

▶ Given a set of logics $\{\vdash_i : i \in I\}$, let $\bigotimes_{i \in I} \vdash_i$ be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i)\}.$$

Theorem

Log is a set-complete meet-semilattice.

▶ No: even binary suprema may fail to exist.

- ▶ No: even binary suprema may fail to exist.
- ▶ Let CPC¬ be the negation fragment of classical logic,

- ▶ No: even binary suprema may fail to exist.
- ▶ Let CPC¬ be the negation fragment of classical logic,

 $x \rhd \neg \neg x \quad \neg \neg x \rhd x \quad x, \neg x \rhd y.$

- ▶ No: even binary suprema may fail to exist.
- ► Let CPC¬ be the negation fragment of classical logic,

$$x \rhd \neg \neg x \quad \neg \neg x \rhd x \quad x, \neg x \rhd y.$$

▶ Consider the algebra $\mathbf{A} = \langle A; \lor, \mathsf{a}, \mathsf{b}, \mathsf{0} \rangle$ depicted below.

- ▶ No: even binary suprema may fail to exist.
- ▶ Let CPC¬ be the negation fragment of classical logic,

$$x \rhd \neg \neg x \quad \neg \neg x \rhd x \quad x, \neg x \rhd y.$$

▶ Consider the algebra $\mathbf{A} = \langle A; \lor, \mathsf{a}, \mathsf{b}, \mathsf{0} \rangle$ depicted below.

- ▶ No: even binary suprema may fail to exist.
- ▶ Let CPC¬ be the negation fragment of classical logic,

$$x \rhd \neg \neg x \quad \neg \neg x \rhd x \quad x, \neg x \rhd y.$$

▶ Consider the algebra $\mathbf{A} = \langle A; \lor, a, b, 0 \rangle$ depicted below.

Then let L be the logic induced by the pair of matrices

$$\{\langle \mathbf{A}, \{1\} \rangle, \langle \mathbf{A}, \{1, c\} \rangle\}.$$

- No: even binary suprema may fail to exist.
- ▶ Let CPC¬ be the negation fragment of classical logic,

$$x \rhd \neg \neg x \quad \neg \neg x \rhd x \quad x, \neg x \rhd y.$$

▶ Consider the algebra $\mathbf{A} = \langle A; \lor, \mathsf{a}, \mathsf{b}, \mathsf{0} \rangle$ depicted below.

Then let L be the logic induced by the pair of matrices

$$\{\langle \mathbf{A}, \{1\} \rangle, \langle \mathbf{A}, \{1, c\} \rangle\}.$$

► The supremum of **[CPC**¬] and **[L]** does not exist in Log.

Leibniz classes and hierarchy

Leibniz classes and hierarchy

Basic question:

Leibniz classes and hierarchy

Basic question:

▶ What are Leibniz classes of logics?

► A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

► A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

Example.

► A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

Example.

▶ A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ that defines indiscernibility

► A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

Example.

▶ A logic \vdash is **equivalential** if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle \mathbf{A}, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

► A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

Example.

▶ A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle \mathbf{A}, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F$$
.

▶ Syntactic characterization. A logic \vdash is equivalential iff there is a non-empty set $\Delta(x, y)$ of formulas s.t.

▶ A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

Example.

▶ A logic \vdash is **equivalential** if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle A, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F$$
.

▶ Syntactic characterization. A logic \vdash is equivalential iff there is a non-empty set $\Delta(x, y)$ of formulas s.t.

$$\emptyset \vdash \Delta(x, x) \qquad x, \Delta(x, y) \vdash y$$

$$\bigcup_{1 \leq i \leq n} \Delta(x_i, y_i) \vdash \Delta(f(x_1, \dots, x_n), f(y_1, \dots, y_n))$$

for every n-ary connective f.

► A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

Example.

▶ A logic \vdash is **equivalential** if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle \mathbf{A}, F \rangle$ of \vdash and $\mathbf{a}, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F$$
.

▶ Syntactic characterization. A logic \vdash is equivalential iff there is a non-empty set $\Delta(x, y)$ of formulas s.t.

for every n-ary connective f.

Equivalential logics form a Leibniz class.

if $\alpha \leqslant \beta$, then \vdash_{β} is interpretable into \vdash_{α} .

if
$$\alpha \leq \beta$$
, then \vdash_{β} is interpretable into \vdash_{α} .

▶ A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash .

if
$$\alpha \leqslant \beta$$
, then \vdash_{β} is **interpretable** into \vdash_{α} .

 $Log(\Phi) := \{\vdash : \vdash \text{ is a logic and satisfies } \Phi\}.$

▶ A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash . Let

if
$$\alpha \leqslant \beta$$
, then \vdash_{β} is **interpretable** into \vdash_{α} .

▶ A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash . Let

$$Log(\Phi) := \{\vdash : \vdash \text{ is a logic and satisfies } \Phi\}.$$

▶ A Leibniz class is a class of logics of the form $Log(\Phi)$, for some Leibniz condition Φ .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of **term-equivalent** logics, **compatible expansions**, and **non-indexed products** indexed by arbitrarily large sets.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- If ⊢ satisfies Φ,

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then some \vdash_{α} is interpretable into \vdash .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then \vdash is a term-equivalent to a compatible expansion of some \vdash_{α} .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ► Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in OR\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then \vdash is a term-equivalent to a compatible expansion of a non-indexed product of a set of logics in K.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then $\vdash \in \mathsf{K}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then $\vdash \in \mathsf{K}$.
- ▶ If \vdash ∈ K,

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then $\vdash \in \mathsf{K}$.
- ▶ If \vdash ∈ K, then \vdash ∈ V_{α} ∩ K = K $_{\alpha}$ for some α .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then $\vdash \in \mathsf{K}$.
- ▶ If \vdash ∈ K, then \vdash _{α} is intepretable in \vdash for some α .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then $\vdash \in \mathsf{K}$.
- ▶ If \vdash ∈ K, then \vdash satisfies Φ .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- ▶ Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- ▶ For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- ▶ Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- ▶ Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- ▶ Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then $\vdash \in \mathsf{K}$.
- ▶ If $\vdash \in \mathsf{K}$, then \vdash satisfies Φ .
- K is the class of logics satisfying Φ.

Indecomposable Leibniz classes

Indecomposable Leibniz classes

Basic question:

Indecomposable Leibniz classes

Basic question:

▶ Which of Leibniz classes are **primitive** or fundamental?

Definition

A Leibniz class K is said to be

Definition

A Leibniz class K is said to be

► meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some tautology),

```
if K = K_1 \cap K_2, then either K = K_1 or K = K_2.
```

Definition

A Leibniz class K is said to be

▶ meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some tautology),

```
if K = K_1 \cap K_2, then either K = K_1 or K = K_2.
```

 meet-prime if for every pair of Leibniz classes K₁ and K₂ (of logics with some tautology),

if $K \subseteq K_1 \cap K_2$, then either $K \subseteq K_1$ or $K \subseteq K_2$.

Definition

A Leibniz class K is said to be

► meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some tautology),

if
$$K = K_1 \cap K_2$$
, then either $K = K_1$ or $K = K_2$.

 meet-prime if for every pair of Leibniz classes K₁ and K₂ (of logics with some tautology),

if
$$K \subseteq K_1 \cap K_2$$
, then either $K \subseteq K_1$ or $K \subseteq K_2$.

Intuitively, a Leibniz class is meet-prime (resp. irreducible) when it captures a fundamental concept.

Definition

A Leibniz class K is said to be

► meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some tautology),

if
$$K = K_1 \cap K_2$$
, then either $K = K_1$ or $K = K_2$.

 meet-prime if for every pair of Leibniz classes K₁ and K₂ (of logics with some tautology),

if
$$K \subseteq K_1 \cap K_2$$
, then either $K \subseteq K_1$ or $K \subseteq K_2$.

- Intuitively, a Leibniz class is meet-prime (resp. irreducible) when it captures a fundamental concept.
- ► We shall apply this test to two conditions, i.e. the definability of truth-sets and of indiscernibility.

▶ A logic \vdash is truth-equational if there is a set of equations E(x) s.t. for every $\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$

$$a \in F \iff \mathbf{A} \models E(a)$$
, for all $a \in A$.

► A logic ⊢ with tautologies is truth-equational if there are no

$$\langle \mathbf{A}, F \rangle, \langle \mathbf{A}, G \rangle \in \mathsf{Mod}^{\equiv}(\vdash) \text{ such that } \emptyset \subsetneq F \subsetneq G.$$

▶ A logic \vdash with tautologies is truth-equational if there are no $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a **meet-prime** Leibniz class.

Proof sketch.

▶ A logic \vdash with tautologies is truth-equational if there are no $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

▶ Let \vdash_1 , \vdash_2 be non truth-equational logics (with tautologies).

▶ A logic \vdash with tautologies is truth-equational if there are no $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

- ▶ Let \vdash_1 , \vdash_2 be non truth-equational logics (with tautologies).
- ► Goal: find a non truth-equational logics in which ⊢₁ and ⊢₂ are interpretable.

▶ A logic \vdash with tautologies is truth-equational if there are no $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

- ▶ Let \vdash_1 , \vdash_2 be non truth-equational logics (with tautologies).
- ▶ Goal: find a non truth-equational logics in which \vdash_1 and \vdash_2 are interpretable.
- ▶ As \vdash_1 and \vdash_2 are not truth-equational, there are matrices

$$\langle \mathbf{A}_1, F_1 \rangle, \langle \mathbf{A}_1, G_1 \rangle \in \mathsf{Mod}^{\equiv}(\vdash_1) \text{ s.t. } \emptyset \subsetneq F_1 \subsetneq G_1$$

 $\langle \mathbf{A}_2, F_2 \rangle, \langle \mathbf{A}_2, G_2 \rangle \in \mathsf{Mod}^{\equiv}(\vdash_2) \text{ s.t. } \emptyset \subsetneq F_2 \subsetneq G_2.$

▶ We want to merge the two algebras into a single one.

- ▶ We want to merge the two algebras into a single one.
- ▶ The problem is that A_1 and A_2 have not the same universe.

- ▶ We want to merge the two algebras into a single one.
- ▶ The problem is that A_1 and A_2 have not the same universe.
- ► This is solved by "adding points" to A₁ and A₂, taking sufficiently large direct powers.

- ▶ We want to merge the two algebras into a single one.
- ▶ The problem is that A_1 and A_2 have not the same universe.
- ► This is solved by "adding points" to **A**₁ and **A**₂, taking sufficiently large direct powers.

- ▶ We want to merge the two algebras into a single one.
- ▶ The problem is that A_1 and A_2 have not the same universe.
- ► This is solved by "adding points" to **A**₁ and **A**₂, taking sufficiently large direct powers.
- We assume w.l.o.g. that \mathbf{A}_1 is \mathbf{A}_1^{κ} and \mathbf{A}_2 is \mathbf{A}_2^{κ} .

▶ We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.

- ▶ We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, F \rangle$ and $\langle \mathbf{A}, G \rangle$.

- ▶ We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, F \rangle$ and $\langle \mathbf{A}, G \rangle$.
- ▶ Goal: to show that \vdash is not truth-equational and that \vdash_1 and \vdash_2 are interpretable in \vdash .

- ▶ We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, F \rangle$ and $\langle \mathbf{A}, G \rangle$.
- ▶ \vdash is **not truth-equational**, since $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ and $\emptyset \subsetneq F \subsetneq G$.

- ▶ We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle A, F \rangle$ and $\langle A, G \rangle$.
- ▶ \vdash_i is interpretable into \vdash , since \vdash is induced by matrices $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle$ with a reduct in $\mathsf{Mod}^{\equiv}(\vdash_i)$.

- ▶ We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, F \rangle$ and $\langle \mathbf{A}, G \rangle$.
- ▶ \vdash_i is interpretable into \vdash , since \vdash is induced by matrices $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle$ with a reduct in $\mathsf{Mod}^{\equiv}(\vdash_i)$.
- ▶ The Leibniz class of truth-equational logics is a prime.

▶ A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle A, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

▶ A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle A, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F$$
.

▶ Problem.

The class of equivalential logics is **not** meet-irreducible.

▶ A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle A, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F$$
.

Problem.

The class of equivalential logics is **not** meet-irreducible.

► The class of equivalential logics is given by the Leibniz condition

$$\Phi = \{\vdash^{\mathsf{eq}}_{\alpha} : \alpha \in \mathsf{OR}\}$$

where $\vdash_{\alpha}^{\text{eq}}$ is the logic in the language with binary symbols $\{ \multimap_{\epsilon} : \epsilon < \max\{\omega, |\alpha| \} \}$ axiomatized by the rules

$$\emptyset \rhd \Delta_{\alpha}(x, x) \qquad x, \Delta_{\alpha}(x, y) \rhd y$$
$$\Delta_{\alpha}(x_1, y_1) \cup \Delta_{\alpha}(x_2, y_2) \rhd \Delta_{\alpha}(x_1, \neg e_{\varepsilon}, x_2, y_1, \neg e_{\varepsilon}, y_2)$$

where
$$\Delta_{\alpha} := \{x \multimap_{\epsilon} y : \epsilon < \max\{\omega, |\alpha|\}\}.$$

▶ A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle A, F \rangle$ of \vdash and $a, c \in A$,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F$$
.

Problem.

The class of equivalential logics is **not** meet-irreducible.

► The class of equivalential logics is given by the Leibniz condition

$$\Phi = \{\vdash^{\mathsf{eq}}_{\alpha} : \alpha \in \mathsf{OR}\}$$

where \vdash_{α}^{eq} is the logic axiomatized by the rules

$$\emptyset \rhd \Delta_{\alpha}(x, x) \qquad x, \Delta_{\alpha}(x, y) \rhd y$$
$$\Delta_{\alpha}(x_1, y_1) \cup \Delta_{\alpha}(x_2, y_2) \rhd \Delta_{\alpha}(x_1 \multimap_{\epsilon} x_2, y_1 \multimap_{\epsilon} y_2).$$

Theorem

The logic \vdash_{α}^{eq} is **completely meet-prime** in Log. Thus equivalential logics are determined by a Leibniz condition consisting only of completely meet-prime logics.

