The Expectation-Maximization Algorithm

version: 2018-02-15 · 09:56:44

Motivation: Inference with Missing Data

- ▶ Regression Model: $y_i = \alpha x_i + \beta z_i + \sigma \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$.
- ▶ Suppose some of the z_i are **missing**:
 - ▶ Let $\delta_i = 0$ if z_i missing and $\delta_i = 1$ if z_i observed.
 - ► Observed data:

$$\mathcal{D} = egin{bmatrix} y_1 & x_1 & z_1 & \delta_1 = 1 \ y_2 & x_2 & exttt{NA} & \delta_2 = 0 \ y_3 & x_3 & exttt{NA} & \delta_3 = 0 \ dots & dots & dots & dots \ y_n & x_n & z_n & \delta_n = 1 \end{bmatrix}.$$

▶ **Problem:** How to estimate $\theta = (\alpha, \beta, \sigma)$ from \mathcal{D} ?

Solution 1: Use only complete observations $S_1 = \{i : \delta_i = 1\}.$

Solution 1: Use only complete observations $S_1 = \{i : \delta_i = 1\}$.

- 1. Inefficient (throws out data)
- 2. Potentially misleading, as in the following example:
 - $\triangleright x, z \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$
 - ▶ True parameters $\alpha = \beta = \sigma = 1$.
 - ▶ Missing data mechanism: $P(\delta = 0 \mid y \le 2) = 5\%$, $P(\delta = 0 \mid y > 2) = 90\%$ (overall 15% missing)
 - ▶ Parameter estimates for $n = 10^6$:

	$\hat{lpha}(se)$	eta(se)
No missing data $(\delta \equiv 1)$.997(.002)	1.001(.002)
Using only ${\cal S}_1$ (85% of sample)	.901(.001)	.900(.001)

Solution 2: Maximize likelihood over θ and $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$

$$(\hat{\boldsymbol{\theta}}, \hat{\mathbf{z}}_0) = \operatorname*{arg\,max}_{(\boldsymbol{\theta}, \mathbf{z}_0)} \left\{ -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^n \frac{(y_i - \alpha x_i - \beta z_i)^2}{\sigma^2} \right\}.$$

Solution 2: Maximize likelihood over θ and $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$

$$(\hat{\boldsymbol{\theta}}, \hat{\mathbf{z}}_0) = \operatorname*{arg\,max}_{(\boldsymbol{\theta}, \mathbf{z}_0)} \left\{ -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^n \frac{(y_i - \alpha x_i - \beta z_i)^2}{\sigma^2} \right\}.$$

▶ Profile likelihood:

$$\hat{z}_i(\boldsymbol{\theta}) = \beta^{-1}(y_i - \alpha x_i) \implies (y_i - \alpha x_i - \beta \hat{z}_i(\boldsymbol{\theta}))^2 = 0$$

$$\implies \hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \left\{ -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \frac{(y_i - \alpha x_i - \beta z_i)^2}{\sigma^2} \right\}$$

Solution 2: Maximize likelihood over θ and $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$

$$(\hat{\boldsymbol{\theta}}, \hat{\mathbf{z}}_0) = \operatorname*{arg\,max}_{(\boldsymbol{\theta}, \mathbf{z}_0)} \left\{ -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^n \frac{(y_i - \alpha x_i - \beta z_i)^2}{\sigma^2} \right\}.$$

Profile likelihood:

$$\begin{split} \hat{z}_i(\boldsymbol{\theta}) &= \beta^{-1}(y_i - \alpha x_i) \implies \left(y_i - \alpha x_i - \beta \hat{z}_i(\boldsymbol{\theta})\right)^2 = 0 \\ &\implies \hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \left\{ -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \sum_{i \in \mathcal{S}_1} \frac{(y_i - \alpha x_i - \beta z_i)^2}{\sigma^2} \right\} \end{split}$$

- $(\hat{\alpha}, \hat{\beta})$ exactly the same as using complete data S_1 only!
- $\hat{\sigma} = \hat{\sigma}_1 \cdot n_1/n$, where $\hat{\sigma}_1$ is the estimator from S_1 , so confidence intervals even narrower!
- ▶ **Problem: z**₀ is a random variable, not a parameter.

Solution 3: Model the missing data.

If nothing is known about the missing data mechanism, consider the following model:

$$\begin{array}{ll} x \sim p(x \,|\, \pmb{\eta}) & \pmb{\theta} = (\alpha, \beta, \sigma) \text{ : original parameters} \\ z \,|\, x \sim p(z \,|\, x, \pmb{\varphi}) & \pmb{\varphi} \text{ : nuisance parameters} \\ y \,|\, z, x \sim \mathcal{N}(\alpha x + \beta z, \sigma^2) & \pmb{\eta} \text{ : ignorable parameters} \\ \delta \,|\, y, z, x \sim \text{Bernoulli}\{r(y, x, \pmb{\eta})\} & \pmb{\Theta} = (\pmb{\theta}, \pmb{\varphi}, \pmb{\eta}) \text{ : all parameters} \end{array}$$

Likelihood:

$$\begin{split} \mathcal{L}(\boldsymbol{\Theta} \,|\, \boldsymbol{\mathcal{D}}) &= \prod_{i \in \boldsymbol{\mathcal{S}}_1} p(\delta_i = 1, y_i, z_i, x_i \,|\, \boldsymbol{\Theta}) \times \prod_{i \in \boldsymbol{\mathcal{S}}_0} p(\delta_i = 0, y_i, x_i \,|\, \boldsymbol{\Theta}) \\ &= \prod_{i \in \boldsymbol{\mathcal{S}}_1} r(y_i, x_i, \boldsymbol{\eta}) \cdot p(y_i \,|\, z_i, x_i, \boldsymbol{\theta}) \cdot p(z_i \,|\, x_i, \boldsymbol{\varphi}) \cdot p(x_i \,|\, \boldsymbol{\eta}) \\ &\times \prod_{i \in \boldsymbol{\mathcal{S}}_0} [1 - r(y_i, x_i, \boldsymbol{\eta})] \cdot \underbrace{p(y_i \,|\, x_i, z_i, \boldsymbol{\theta}) \cdot p(x_i \,|\, \boldsymbol{\eta})}_{\int p(y_i \,|\, x_i, z_i, \boldsymbol{\theta}) \cdot (z_i \,|\, x_i, \boldsymbol{\varphi}) \, \mathrm{d}z_i} \end{split}$$

Solution 3: Model the missing data.

If nothing is known about the missing data mechanism, consider the following model:

$$x \sim p(x \mid \eta)$$
 $\theta = (\alpha, \beta, \sigma)$: original parameters $z \mid x \sim p(z \mid x, \varphi)$ φ : nuisance parameters $y \mid z, x \sim \mathcal{N}(\alpha x + \beta z, \sigma^2)$ η : ignorable parameters $\delta \mid y, z, x \sim \text{Bernoulli}\{r(y, x, \eta)\}$ $\Theta = (\theta, \varphi, \eta)$: all parameters

► Likelihood:

$$\begin{split} \mathcal{L}(\boldsymbol{\Theta} \,|\, \boldsymbol{\mathcal{D}}) &= \prod_{i=1}^{n} r(y_{i}, x_{i}, \boldsymbol{\eta})_{i}^{\delta} \cdot [1 - r(y_{i}, x_{i}, \boldsymbol{\eta})]^{1 - \delta_{i}} \cdot p(x_{i} \,|\, \boldsymbol{\eta}) \\ &\times \prod_{i \in \boldsymbol{\mathcal{S}}_{1}} p(y_{i} \,|\, z_{i}, x_{i}, \boldsymbol{\theta}) \cdot p(z_{i} \,|\, x_{i}, \boldsymbol{\varphi}) \times \prod_{i \in \boldsymbol{\mathcal{S}}_{0}} \int p(y_{i} \,|\, x_{i}, z_{i}, \boldsymbol{\theta}) \cdot (z_{i} \,|\, x_{i}, \boldsymbol{\varphi}) \, \mathrm{d}z_{i} \\ &= \mathcal{L}(\boldsymbol{\eta} \,|\, \boldsymbol{\mathcal{D}}) \cdot \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi} \,|\, \boldsymbol{\mathcal{D}}) \\ &\Longrightarrow \max_{\boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{\Theta} \,|\, \boldsymbol{\mathcal{D}}) = \max_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\eta} \,|\, \boldsymbol{\mathcal{D}}) \cdot \max_{\boldsymbol{\theta} \in \boldsymbol{\mathcal{S}}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi} \,|\, \boldsymbol{\mathcal{D}}). \end{split}$$

 $\Rightarrow \hat{\theta}_{ML}$ does not depend on $p(x \mid \eta)$ and $p(\delta \mid y, z, x, \eta)$. The missing data mechanism and covariate distribution of x are thus said to be **ignorable**.

Ignorable vs Nuisance Parameters

- ▶ True Data-Generating Process: $(Y, X) \sim p_0(Y, X)$.
- ▶ Conditional Inference Model: $M_C : \mathbf{Y} \mid \mathbf{X} \sim p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta})$.
 - ▶ Suppose M_C is *correct*, i.e., exists $\theta = \theta_0$ such that $p(\mathbf{Y} \mid \mathbf{X}, \theta_0) = p_0(\mathbf{Y} \mid \mathbf{X})$.
 - ▶ Let $\hat{\boldsymbol{\theta}}_{\mathcal{C}} = \arg\max_{\boldsymbol{\theta}} p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta})$. If $M_{\mathcal{C}}$ is correct, then $\hat{\boldsymbol{\theta}}_{\mathcal{C}} \rightarrow \boldsymbol{\theta}_{0}$.
- ► Full Inference Model:

$$M_F: (\mathbf{Y}, \mathbf{X}) \sim p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta}) \times p(\mathbf{X} \mid \boldsymbol{\theta}, \boldsymbol{\eta}).$$

- ▶ Let $(\hat{\theta}_F, \hat{\eta}_F) = \arg \max_{(\theta, \eta)} p(\mathbf{Y} | \mathbf{X} | \theta) \cdot p(\mathbf{X} | \theta, \eta)$.
- ▶ If marginal model M_X : $\mathbf{X} \sim p(\mathbf{X} \mid \boldsymbol{\eta})$ does not depend on $\boldsymbol{\theta}$, then $\hat{\boldsymbol{\theta}}_F = \hat{\boldsymbol{\theta}}_C$, i.e., $p(\mathbf{X} \mid \boldsymbol{\eta})$ is ignorable.
- ▶ If $M_X : \mathbf{X} \sim p(\mathbf{X} \mid \boldsymbol{\theta}, \boldsymbol{\eta})$ does depend on $\boldsymbol{\theta}$, then $\hat{\boldsymbol{\theta}}_F \neq \hat{\boldsymbol{\theta}}_C$.
 - ▶ If M_X is correct, then $\hat{\theta}_F \to \theta_0$, and $\text{var}(\hat{\theta}_F) < \text{var}(\hat{\theta}_C)$. Since we need to maximize over η to get $\hat{\theta}_F$, η are called nuisance parameters.
 - ▶ If M_X is incorrect, then generally $\hat{\theta}_F \not\to \theta_0$, even if M_C is correct.

▶ Missing Data Setup: $y_i = \alpha x_i + \beta z_i + \sigma \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$.

 $\delta_i = 1$ if z_i is observed and $\delta_i = 0$ if it is missing.

▶ Complete Data Model: $M: (y, x, z) \sim \mathcal{N}(\mathbf{0}, \Sigma)$

$$\delta \mid y, x, z \sim \mathsf{Bernoulli}\{r(y, x, \frac{\eta}{\eta})\}$$

Note that under M, we have $y \mid x, z \sim \mathcal{N}(\alpha x + \beta z, \sigma^2)$, where

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \mathbf{\Sigma}_{xx} & \mathbf{\Sigma}_{xz} \\ \mathbf{\Sigma}_{zx} & \mathbf{\Sigma}_{zz} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{\Sigma}_{xy} \\ \mathbf{\Sigma}_{zy} \end{bmatrix}, \qquad \sigma^2 = \mathbf{\Sigma}_{yy} - \begin{bmatrix} \mathbf{\Sigma}_{yx} & \mathbf{\Sigma}_{yz} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

► Observed Data Likelihood:

$$\ell(\mathbf{\Sigma} \mid \mathbf{\mathcal{D}}) = -\frac{1}{2} \sum_{i \in \mathbf{S}_{1}} \left\{ \begin{bmatrix} y_{i} \times_{i} z_{i} \end{bmatrix} \mathbf{\Sigma}^{-1} \begin{bmatrix} y_{i} \\ x_{i} \\ z_{i} \end{bmatrix} + \log |\mathbf{\Sigma}| \right\}$$
$$-\frac{1}{2} \sum_{i \in \mathbf{S}} \left\{ \begin{bmatrix} y_{i} \times_{i} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{yy} \mathbf{\Sigma}_{yx} \\ \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_{xx} \end{bmatrix}^{-1} \begin{bmatrix} y_{i} \\ x_{i} \end{bmatrix} + \log \left| \mathbf{\Sigma}_{yy} \mathbf{\Sigma}_{yx} \mathbf{\Sigma}_{yx} \right| \right\}$$

- ▶ Missing Data Setup: $y_i = \alpha x_i + \beta z_i + \sigma \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$.
 - $\delta_i=1$ if z_i is observed and $\delta_i=0$ if it is missing.
- ▶ Complete Data Model: $M:(y,x,z)\sim \mathcal{N}(\mathbf{0},\mathbf{\Sigma})$

(and ignorable missing data), with $M: y \mid x, z \sim \mathcal{N}(\alpha x + \beta z, \sigma^2)$.

► Observed Data Likelihood:

$$\ell(\mathbf{\Sigma} \mid \mathbf{\mathcal{D}}) = -\frac{1}{2} \sum_{i \in \mathbf{S}_{1}} \left\{ \begin{bmatrix} y_{i} \times_{i} z_{i} \end{bmatrix} \mathbf{\Sigma}^{-1} \begin{bmatrix} y_{i} \\ x_{i} \\ z_{i} \end{bmatrix} + \log |\mathbf{\Sigma}| \right\} \\ -\frac{1}{2} \sum_{i \in \mathbf{S}_{2}} \left\{ \begin{bmatrix} y_{i} \times_{i} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{yy} \mathbf{\Sigma}_{yx} \\ \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_{xx} \end{bmatrix}^{-1} \begin{bmatrix} y_{i} \\ x_{i} \end{bmatrix} + \log \left| \mathbf{\Sigma}_{yy} \mathbf{\Sigma}_{yx} \mathbf{\Sigma}_{xx} \right| \right\}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed! That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\Sigma} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[\begin{smallmatrix} y_i \; x_i \; z_i \end{smallmatrix} \right] \mathbf{\Sigma}^{-1} \left[\begin{smallmatrix} y_i \\ z_i \end{smallmatrix} \right] + \log |\mathbf{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_0} \left\{ \left[\begin{smallmatrix} y_i \; x_i \end{smallmatrix} \right] \left[\begin{smallmatrix} \mathbf{\Sigma}_{yy} \; \mathbf{\Sigma}_{yx} \\ \mathbf{\Sigma}_{xy} \; \mathbf{\Sigma}_{xx} \end{smallmatrix} \right]^{-1} \left[\begin{smallmatrix} y_i \\ x_i \end{smallmatrix} \right] + \log \left| \begin{smallmatrix} \mathbf{\Sigma}_{yy} \; \mathbf{\Sigma}_{yx} \\ \mathbf{\Sigma}_{xy} \; \mathbf{\Sigma}_{xx} \end{smallmatrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\Sigma} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

- ightharpoonup Strategy: Iterative algorithm $(\hat{\Sigma}^{(1)},\hat{\mathbf{z}}_0^{(1)}),\ldots,(\hat{\Sigma}^{(m)},\hat{\mathbf{z}}_0^{(m)})$
 - $\blacktriangleright \hat{\Sigma}^{(m+1)} = \hat{\Sigma}(\mathbf{y}, \mathbf{x}, \hat{\mathbf{z}}_0^{(m)}, \mathbf{z}_1)$
 - $\hat{\mathbf{z}}_0^{(m+1)} = ???$

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[\begin{smallmatrix} y_i \; x_i \; z_i \end{smallmatrix} \right] \mathbf{\Sigma}^{-1} \left[\begin{smallmatrix} y_i \\ z_i \end{smallmatrix} \right] + \log |\mathbf{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_2} \left\{ \left[\begin{smallmatrix} y_i \; x_i \end{smallmatrix} \right] \left[\begin{smallmatrix} \mathbf{\Sigma}_{yy} \; \mathbf{\Sigma}_{yx} \\ \mathbf{\Sigma}_{xy} \; \mathbf{\Sigma}_{xx} \end{smallmatrix} \right]^{-1} \left[\begin{smallmatrix} y_i \\ x_i \end{smallmatrix} \right] + \log \left| \begin{smallmatrix} \mathbf{\Sigma}_{yy} \; \mathbf{\Sigma}_{yx} \\ \mathbf{\Sigma}_{xy} \; \mathbf{\Sigma}_{xx} \end{smallmatrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\Sigma} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

- ▶ Strategy: Iterative algorithm $(\hat{\Sigma}^{(1)}, \hat{\mathbf{z}}_0^{(1)}), \dots, (\hat{\Sigma}^{(m)}, \hat{\mathbf{z}}_0^{(m)})$
 - $\blacktriangleright \hat{\Sigma}^{(m+1)} = \hat{\Sigma}(\mathbf{y}, \mathbf{x}, \hat{\mathbf{z}}_0^{(m)}, \mathbf{z}_1)$

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\,\frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[y_i \,\, \boldsymbol{x}_i \,\, \boldsymbol{z}_i \right] \boldsymbol{\Sigma}^{-1} \left[\begin{matrix} \boldsymbol{y}_i \\ \boldsymbol{x}_i \\ \boldsymbol{z}_i \end{matrix} \right] + \log |\boldsymbol{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_0} \left\{ \left[\begin{matrix} \boldsymbol{y}_i \,\, \boldsymbol{x}_i \,\, \right] \left[\begin{matrix} \boldsymbol{\Sigma}_{yy} \,\, \boldsymbol{\Sigma}_{yx} \\ \boldsymbol{\Sigma}_{xy} \,\, \boldsymbol{\Sigma}_{xx} \end{matrix} \right]^{-1} \left[\begin{matrix} \boldsymbol{y}_i \\ \boldsymbol{x}_i \end{matrix} \right] + \log \left| \begin{matrix} \boldsymbol{\Sigma}_{yy} \,\, \boldsymbol{\Sigma}_{yx} \\ \boldsymbol{\Sigma}_{xy} \,\, \boldsymbol{\Sigma}_{xx} \end{matrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\mathbf{\Sigma}} = \frac{1}{2} \mathbf{Y}' \mathbf{Y}$.

- ightharpoonup Strategy: Iterative algorithm $(\hat{\Sigma}^{(1)},\hat{\mathbf{z}}_0^{(1)}),\dots,(\hat{\Sigma}^{(m)},\hat{\mathbf{z}}_0^{(m)})$
 - $\blacktriangleright \ \ \hat{\boldsymbol{\Sigma}}^{(m+1)} = \hat{\boldsymbol{\Sigma}}(\boldsymbol{\mathsf{y}},\boldsymbol{\mathsf{x}},\hat{\boldsymbol{\mathsf{z}}}_0^{(m)},\boldsymbol{\mathsf{z}}_1)$
 - $\qquad \qquad \hat{\mathbf{z}}_0^{(m+1)} = \operatorname{arg\,max}_{\mathbf{z}_0} p(\mathbf{z}_0 \,|\, \boldsymbol{\mathcal{D}}, \boldsymbol{\hat{\Sigma}}^{(m+1)})?$

No, converges to $\arg\max_{\Sigma,z_0}\ell(\Sigma\,|\,\mathcal{D},z_0)
eq \arg\max_{\Sigma}\ell(\Sigma\,|\,\mathcal{D}).$

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[\begin{smallmatrix} y_i \; x_i \; z_i \end{smallmatrix} \right] \mathbf{\Sigma}^{-1} \left[\begin{smallmatrix} y_i \\ z_i \end{smallmatrix} \right] + \log |\mathbf{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_0} \left\{ \left[\begin{smallmatrix} y_i \; x_i \end{smallmatrix} \right] \left[\begin{smallmatrix} \mathbf{\Sigma}_{\mathsf{yy}} \; \mathbf{\Sigma}_{\mathsf{yx}} \\ \mathbf{\Sigma}_{\mathsf{xy}} \; \mathbf{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right]^{-1} \left[\begin{smallmatrix} y_i \\ x_i \end{smallmatrix} \right] + \log \left| \begin{smallmatrix} \mathbf{\Sigma}_{\mathsf{yy}} \; \mathbf{\Sigma}_{\mathsf{yx}} \\ \mathbf{\Sigma}_{\mathsf{xy}} \; \mathbf{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\mathbf{\Sigma}} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

- ightharpoonup Strategy: Iterative algorithm $(\hat{\Sigma}^{(1)},\hat{\mathbf{z}}_0^{(1)}),\ldots,(\hat{\Sigma}^{(m)},\hat{\mathbf{z}}_0^{(m)})$

 - $\triangleright \hat{\mathbf{z}}_0^{(m+1)} \sim p(\mathbf{z}_0 \mid \mathcal{D}, \hat{\mathbf{\Sigma}}^{(m+1)})?$

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[\begin{smallmatrix} y_i \; x_i \; z_i \end{smallmatrix} \right] \mathbf{\Sigma}^{-1} \left[\begin{smallmatrix} y_i \\ z_i \end{smallmatrix} \right] + \log |\mathbf{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_0} \left\{ \left[\begin{smallmatrix} y_i \; x_i \end{smallmatrix} \right] \left[\begin{smallmatrix} \mathbf{\Sigma}_{\mathsf{yy}} \; \mathbf{\Sigma}_{\mathsf{yx}} \\ \mathbf{\Sigma}_{\mathsf{xy}} \; \mathbf{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right]^{-1} \left[\begin{smallmatrix} y_i \\ x_i \end{smallmatrix} \right] + \log \left| \begin{smallmatrix} \mathbf{\Sigma}_{\mathsf{yy}} \; \mathbf{\Sigma}_{\mathsf{yx}} \\ \mathbf{\Sigma}_{\mathsf{xy}} \; \mathbf{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \arg \max_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\mathbf{\Sigma}} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

- ightharpoonup Strategy: Iterative algorithm $(\hat{\Sigma}^{(1)},\hat{\mathbf{z}}_0^{(1)}),\ldots,(\hat{\Sigma}^{(m)},\hat{\mathbf{z}}_0^{(m)})$
 - $\hat{\boldsymbol{\Sigma}}^{(m+1)} = \hat{\boldsymbol{\Sigma}}(\mathbf{y}, \mathbf{x}, \hat{\mathbf{z}}_0^{(m)}, \mathbf{z}_1)$
 - $\triangleright \hat{\mathbf{z}}_0^{(m+1)} \sim p(\mathbf{z}_0 \mid \mathcal{D}, \hat{\boldsymbol{\Sigma}}^{(m+1)})?$

This produces a stationary stochastic process $\hat{\Sigma}^{(1)}, \hat{\Sigma}^{(2)}, \ldots$, for which the expectation $\tilde{\Sigma} = E[\hat{\Sigma}^{(t)}] \to \Sigma_0$ as $n \to \infty$. However, $\tilde{\Sigma}$ is less efficient than the MLE...

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[\begin{smallmatrix} y_i \; x_i \; z_i \end{smallmatrix} \right] \mathbf{\Sigma}^{-1} \left[\begin{smallmatrix} y_i \\ z_i \end{smallmatrix} \right] + \log |\mathbf{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_0} \left\{ \left[\begin{smallmatrix} y_i \; x_i \end{smallmatrix} \right] \left[\begin{smallmatrix} \mathbf{\Sigma}_{\mathsf{yy}} \; \mathbf{\Sigma}_{\mathsf{yx}} \\ \mathbf{\Sigma}_{\mathsf{xy}} \; \mathbf{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right]^{-1} \left[\begin{smallmatrix} y_i \\ x_i \end{smallmatrix} \right] + \log \left| \begin{smallmatrix} \mathbf{\Sigma}_{\mathsf{yy}} \; \mathbf{\Sigma}_{\mathsf{yx}} \\ \mathbf{\Sigma}_{\mathsf{xy}} \; \mathbf{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\mathbf{\Sigma}} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

- ightharpoonup Strategy: Iterative algorithm $(\hat{\Sigma}^{(1)},\hat{\mathbf{z}}_0^{(1)}),\ldots,(\hat{\Sigma}^{(m)},\hat{\mathbf{z}}_0^{(m)})$

 - $\hat{\mathbf{z}}_0^{(m+1)} = E[\mathbf{z}_0 \,|\, \mathcal{D}, \hat{\mathbf{\Sigma}}^{(m+1)}]?$

► Observed Data Likelihood:

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \boldsymbol{\mathcal{D}}) &= -\, \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_1} \left\{ \left[\begin{smallmatrix} y_i \; x_i \; z_i \end{smallmatrix} \right] \boldsymbol{\Sigma}^{-1} \left[\begin{smallmatrix} y_i \\ x_i \\ z_i \end{smallmatrix} \right] + \log |\boldsymbol{\Sigma}| \right\} \\ &- \frac{1}{2} \sum_{i \in \boldsymbol{\mathcal{S}}_0} \left\{ \left[\begin{smallmatrix} y_i \; x_i \end{smallmatrix} \right] \left[\begin{smallmatrix} \boldsymbol{\Sigma}_{\mathsf{yy}} \; \boldsymbol{\Sigma}_{\mathsf{yx}} \\ \boldsymbol{\Sigma}_{\mathsf{xy}} \; \boldsymbol{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right]^{-1} \left[\begin{smallmatrix} y_i \\ x_i \end{smallmatrix} \right] + \log \left| \begin{smallmatrix} \boldsymbol{\Sigma}_{\mathsf{yy}} \; \boldsymbol{\Sigma}_{\mathsf{yx}} \\ \boldsymbol{\Sigma}_{\mathsf{xy}} \; \boldsymbol{\Sigma}_{\mathsf{xx}} \end{smallmatrix} \right| \right\} \end{split}$$

▶ Inference: $\hat{\Sigma} = \operatorname{arg\,max}_{\Sigma} \ell(\Sigma \,|\, \mathcal{D})$

Difficult to calculate directly, but simple when $\mathbf{z}_0 = \{z_i : \delta_i = 0\}$ is observed. That is, if $\mathbf{Y}_{n \times 3} = (\mathbf{y}, \mathbf{x}, \mathbf{z})$, then $\hat{\mathbf{\Sigma}} = \frac{1}{n} \mathbf{Y}' \mathbf{Y}$.

- ▶ **Strategy:** Iterative algorithm $(\hat{\Sigma}^{(1)}, \hat{\mathbf{z}}_0^{(1)}), \dots, (\hat{\Sigma}^{(m)}, \hat{\mathbf{z}}_0^{(m)})$
 - $\blacktriangleright \hat{\Sigma}^{(m+1)} = \hat{\Sigma}(\mathbf{y}, \mathbf{x}, \hat{\mathbf{z}}_0^{(m)}, \mathbf{z}_1)$
 - $\hat{\mathbf{z}}_0^{(m+1)} = E[\mathbf{z}_0 \mid \mathcal{D}, \hat{\mathbf{\Sigma}}^{(m+1)}]$?

Almost!

The Expectation-Maximization Algorithm (EM)

- ► Setup:
 - ▶ y_{obs}: observed data
 - ▶ y_{miss}: missing data

- $\qquad \qquad \textbf{y}_{\mathsf{comp}} = \textbf{y}_{\mathsf{obs}} \cup \textbf{y}_{\mathsf{miss}} \text{: complete data}$
- ▶ Goal: Find $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \,|\, \mathbf{y}_{\text{obs}})$.

► Problem:

While
$$\mathcal{L}(\theta \mid \mathbf{y}_{\text{comp}})$$
 is tractable, $\mathcal{L}(\theta \mid \mathbf{y}_{\text{obs}}) = \int p(\mathbf{y}_{\text{obs}}, \mathbf{y}_{\text{miss}} \mid \theta) \, d\mathbf{y}_{\text{miss}}$ is not.

- **EM Algorithm:** An *iterative* algorithm $\hat{\theta}^{(1)}, \hat{\theta}^{(2)}, \ldots$ alternating between two steps:
 - ► E-Step: Construct function $Q_t(\theta) = E[\ell(\theta \mid \mathbf{y}_{comp}) \mid \mathbf{y}_{obs}, \hat{\boldsymbol{\theta}}^{(t)}]$ $= \int \ell(\theta \mid \mathbf{y}_{obs}, \mathbf{y}_{miss}) \cdot p(\mathbf{y}_{miss} \mid \mathbf{y}_{obs}, \hat{\boldsymbol{\theta}}^{(t)}) \, d\mathbf{y}_{miss}$
 - ▶ M-Step: Maximize to find next value of θ : $\hat{\theta}^{(t+1)} = \arg\max_{\theta} Q_t(\theta)$.

The EM Algorithm: Exponential Families

Model:

$$p(\mathbf{y}_{\mathsf{comp}} \,|\, \boldsymbol{\eta}) = \exp ig\{ \mathbf{T}' \boldsymbol{\eta} - \Psi(\boldsymbol{\eta}) ig\} h(\mathbf{y}_{\mathsf{comp}})$$

► E-step:

$$\begin{aligned} & \mathbf{Q}_{t}(\boldsymbol{\eta}) = E[\ell(\boldsymbol{\eta} \mid \mathbf{y}_{\mathsf{comp}}) \mid \mathbf{y}_{\mathsf{obs}}, \hat{\boldsymbol{\eta}}^{(t)}] \\ & = \mathbf{\bar{T}}_{t}' \boldsymbol{\eta} - \Psi(\boldsymbol{\eta}), & \mathbf{\bar{T}}_{t} = E[\mathbf{T} \mid \mathbf{y}_{\mathsf{obs}}, \hat{\boldsymbol{\eta}}^{(t)}], \end{aligned}$$

and \bar{T}_t often easy to compute.

► M-step: Convex optimization!

The EM Algorithm

Theorem. If $\hat{ heta}^{(t)}$ and $\hat{ heta}^{(t+1)}$ are successive steps of the EM algorithm, then

$$\ell(\hat{oldsymbol{ heta}}^{(t)} \, | \, \mathbf{y}_{\mathsf{obs}}) \leq \ell(\hat{oldsymbol{ heta}}^{(t+1)} \, | \, \mathbf{y}_{\mathsf{obs}}).$$

The EM Algorithm

Theorem. If $\hat{ heta}^{(t)}$ and $\hat{ heta}^{(t+1)}$ are successive steps of the EM algorithm, then

$$\ell(\hat{oldsymbol{ heta}}^{(t)} \,|\, \mathbf{y}_{\mathsf{obs}}) \leq \ell(\hat{oldsymbol{ heta}}^{(t+1)} \,|\, \mathbf{y}_{\mathsf{obs}}).$$

Rate of convergence.

Convergence of EM to (local) mode θ^* is *linear*:

$$|\hat{\boldsymbol{\theta}}^{(t+1)} - \boldsymbol{\theta}^{\star}| < \mathcal{K} \times |\hat{\boldsymbol{\theta}}^{(t)} - \boldsymbol{\theta}^{\star}|.$$

Convergence of Newton-Raphson to (local) model is quadratic:

$$|\hat{\boldsymbol{\theta}}^{(t+1)} - \boldsymbol{\theta}^{\star}| < \mathcal{K} \times |\hat{\boldsymbol{\theta}}^{(t)} - \boldsymbol{\theta}^{\star}|^2$$

In practice, whichever is easier to implement will work better.

Example: Multivariate Normal

- ▶ Missing Data: \mathbf{x}_i always observed, but $\delta_i = \begin{cases} 1 & \mathbf{z}_i \text{ observed} \\ 0 & \mathbf{z}_i \text{ missing} \end{cases}$
- ► Observed Data:
 - ▶ Let $S_k = \{i : \delta_i = k\}, \quad Z_k = \{z_i : i \in S_k\}, \quad k = 0, 1.$
 - $ightharpoonup \ \mathbf{y}_{ ext{obs}} = \mathcal{D} = (\mathbf{X}, \mathbf{Z}_1, \boldsymbol{\delta}).$
- ► Complete Data:

$$\mathbf{X}_{n\times p}=(\mathbf{x}_1,\ldots,\mathbf{x}_n),$$

$$\mathbf{y}_{\mathsf{comp}} = (\mathbf{Y}, \boldsymbol{\delta}), \qquad \mathbf{Y}_{n \times (p+q)} = (\mathbf{X}, \mathbf{Z}), \qquad \mathbf{Z}_{n \times q} = (\mathbf{z}_1, \dots, \mathbf{z}_n).$$

• Previous example $y \sim \mathcal{N}(\alpha x + \beta z, \sigma^2)$ is a special case with p = 2 and q = 1:

$$\mathbf{x} \leftarrow (y, x), \quad \mathbf{z} \leftarrow z.$$

Example: Multivariate Normal

- ▶ Model: $\mathbf{y} = (\mathbf{x}, \mathbf{z}) \sim \mathcal{N} \left\{ \mathbf{0}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{xx}} & \boldsymbol{\Sigma}_{\mathsf{xz}} \\ \boldsymbol{\Sigma}_{\mathsf{zx}} & \boldsymbol{\Sigma}_{\mathsf{zz}} \end{bmatrix} \right\}, \qquad \mathbf{x} = (x_1, \dots, x_p), \\ \mathbf{z} = (z_1, \dots, z_q).$
- ▶ Missing Data: \mathbf{x}_i always observed, but $\delta_i = 1$ (0) if \mathbf{z}_i is observed (missing)
- ▶ Observed Data: $y_{obs} = \mathcal{D} = (X, Z_1, \delta), \quad Z_1 = \{z_i : \delta_i = 1\}.$
- ▶ Complete Data: $y_{comp} = (Y, \delta), Y = (X, Z).$
- ► Complete Data Likelihood: Assuming an ignorable missing data mechanism $\delta \mid \mathbf{x}, \mathbf{z} \sim \text{Bernoulli}\{r(\mathbf{x}, \boldsymbol{\eta})\}$,

$$\begin{split} \ell(\mathbf{\Sigma} \,|\, \mathbf{y}_{\mathsf{comp}}) &= -\frac{1}{2} \Big\{ n \log |\mathbf{\Sigma}| + \sum_{i=1}^{n} \mathbf{y}_{i}' \mathbf{\Sigma}^{-1} \mathbf{y}_{i} \Big\} \\ &= -\frac{1}{2} \Big\{ n \log |\mathbf{\Sigma}| + \sum_{i=1}^{n} \mathsf{tr}(\mathbf{\Sigma}^{-1} \mathbf{y}_{i} \mathbf{y}_{i}') \Big\}. \end{split}$$

Multivariate Normal: EM Algorithm

- ▶ Observed Data: $y_{obs} = \mathcal{D} = (X, Z_1, \delta), Z_1 = \{z_i : \delta_i = 1\}.$
- ▶ Complete Data Likelihood: For $y_{comp} = (Y, \delta)$, Y = (X, Z),

$$\ell(\mathbf{\Sigma} \,|\, \mathbf{y}_{\mathsf{comp}}) = -rac{1}{2} \Big\{ n \log |\mathbf{\Sigma}| + \sum_{i=1}^{n} \mathsf{tr}(\mathbf{\Sigma}^{-1}\mathbf{y}_{i}\mathbf{y}_{i}') \Big\}.$$

- ► E-Step:
 - ▶ **Q-Function:** $Q_t(\Sigma) = -\frac{1}{2} \Big\{ n \log |\Sigma| + \operatorname{tr}(\Sigma^{-1} \mathbf{Y}_1' \mathbf{Y}_1) + \sum_{i \in \mathcal{S}_0} \operatorname{tr} \Big(\Sigma^{-1} E \Big[\mathbf{y}_i \mathbf{y}_i' \mid \mathbf{x}_i, \hat{\Sigma}^{(t)} \Big] \Big) \Big\},$ where $\mathbf{Y}_1 = \{ \mathbf{y}_i : i \in \mathcal{S}_1 \}.$

Multivariate Normal: EM Algorithm

▶ Complete Data Likelihood: For $y_{comp} = (Y, \delta)$, Y = (X, Z),

$$\ell(\mathbf{\Sigma} \,|\, \mathbf{y}_{\mathsf{comp}}) = -rac{1}{2} \Big\{ n \log |\mathbf{\Sigma}| + \sum_{i=1}^n \mathsf{tr}(\mathbf{\Sigma}^{-1}\mathbf{y}_i\mathbf{y}_i') \Big\}.$$

- ► E-Step:
 - ▶ **Q-Function:** $Q_t(\Sigma) = -\frac{1}{2} \Big\{ n \log |\Sigma| + \operatorname{tr}(\Sigma^{-1} \mathbf{Y}_1' \mathbf{Y}_1) + \sum_{i \in \mathcal{S}_0} \operatorname{tr} \Big(\Sigma^{-1} E \Big[\mathbf{y}_i \mathbf{y}_i' \mid \mathbf{x}_i, \hat{\Sigma}^{(t)} \Big] \Big) \Big\},$ where $\mathbf{Y}_1 = \{ \mathbf{y}_i : i \in \mathcal{S}_1 \}.$
 - ► Conditional Expectation:

$$\begin{split} \mathbf{z}_{i} \, | \, \mathbf{x}_{i}, \, & \hat{\boldsymbol{\Sigma}}^{(t)} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}_{i}^{(t)}, \hat{\boldsymbol{\Omega}}^{(t)}), & \hat{\boldsymbol{\mu}}_{i}^{(t)} = \hat{\boldsymbol{\Sigma}}_{zx}^{(t)} [\hat{\boldsymbol{\Sigma}}_{xx}^{(t)}]^{-1} \mathbf{x}_{i} \\ & \hat{\boldsymbol{\Omega}}^{(t)} = \hat{\boldsymbol{\Sigma}}_{zz}^{(t)} - \hat{\boldsymbol{\Sigma}}_{zx}^{(t)} [\hat{\boldsymbol{\Sigma}}_{xx}^{(t)}]^{-1} \hat{\boldsymbol{\Sigma}}_{xz}^{(t)} \\ \Longrightarrow E \left[\mathbf{y}_{i} \mathbf{y}_{i}^{\prime} \, | \, \mathbf{x}_{i}, \, \hat{\boldsymbol{\Sigma}}^{(t)} \right] = E \left\{ \begin{bmatrix} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} \, \mathbf{x}_{i} \mathbf{z}_{i}^{\prime} \\ \mathbf{z}_{i} \mathbf{x}_{i}^{\prime} \, \mathbf{z}_{i} \mathbf{z}_{i}^{\prime} \end{bmatrix} \, | \, \mathbf{x}_{i}, \, \hat{\boldsymbol{\Sigma}}^{(t)} \right\} = \underbrace{\begin{bmatrix} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} \, \mathbf{x}_{i} [\hat{\boldsymbol{\mu}}_{i}^{(t)}]^{\prime} \\ [\hat{\boldsymbol{\mu}}_{i}^{(t)}] \mathbf{x}_{i}^{\prime} \, \hat{\boldsymbol{\Omega}}^{(t)} + [\hat{\boldsymbol{\mu}}_{i}^{(t)}][\hat{\boldsymbol{\mu}}_{i}^{(t)}]^{\prime}}_{\hat{\boldsymbol{T}}_{i}^{(t)}} \\ \Longrightarrow Q_{t}(\boldsymbol{\Sigma}) = -\frac{1}{2} \left\{ n \log |\boldsymbol{\Sigma}| + \operatorname{tr} \left[\boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{1}^{\prime} \mathbf{Y}_{1} + \boldsymbol{\Sigma}_{i \in \boldsymbol{\mathcal{S}}_{0}} \, \hat{\boldsymbol{T}}_{i}^{(t)}) \right] \right\}. \end{split}$$

Multivariate Normal: EM Algorithm

- ▶ Observed Data: $y_{obs} = D = (X, Z_1, \delta), Z_1 = \{z_i : \delta_i = 1\}.$
- ► E-Step:

$$\textstyle Q_t(\Sigma) = -\frac{1}{2} \left\{ n \log |\Sigma| + \operatorname{tr} \left[\Sigma^{-1} (Y_1' Y_1 + \sum_{i \in \mathcal{S}_0} \hat{\mathbf{T}}_i^{(t)}) \right] \right\}.$$

► M-Step:

$$\hat{\mathbf{\Sigma}}^{(t+1)} = \frac{1}{n} \left(\mathbf{Y}_1' \mathbf{Y}_1 + \sum_{i \in \mathbf{S}_0} \hat{\mathbf{T}}_i^{(t)} \right)$$

(Since $Q_t(\Sigma)$ has same shape as loglikelihood of $\mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mathbf{0}, \Sigma)$)

- ► Exponential Family: $\mathbf{y} \sim g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\} \cdot h(\mathbf{y})$.
- ▶ **Mixture Model:** The *K*-component mixture model is

$$f(\mathbf{y} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k),$$

where $\Lambda=(\eta_1,\ldots,\eta_K)$, $oldsymbol{
ho}=(
ho_1,\ldots,
ho_K)$, and $ho_k\geq 0$, $\sum_{k=1}^K
ho_k=1$.

► Model: $f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^{K} \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} - \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$

► Example: K = 2, $g(y | \eta_k) \cong \mathcal{N}(\mu_k, \sigma_k^2)$,

$$\mu = (2,6), \qquad \sigma = (1,2), \qquad \rho = (.6,.4)$$

► Model:
$$f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^{K} \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} - \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$$

- ► Applications:
 - 1. **Density Estimation:** For large enough K, mixture model is arbitrarily accurate approximate to any data-generating process $\mathbf{y} \sim f_0(\mathbf{y})$ with same support.
 - **2. Classification:** To simulate $\mathbf{y} \sim f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho})$:

$$\mathbf{z} = (z_1, \dots, z_K) \stackrel{\mathrm{iid}}{\sim} \mathsf{Multinomial}(1, oldsymbol{
ho})$$
 $\mathbf{y} \mid \mathbf{z} \stackrel{\mathrm{ind}}{\sim} g(\mathbf{y} \mid \eta_\mathbf{z}), \qquad \eta_\mathbf{z} \text{ is } \eta_k \text{ for which } z_k = 1$

$$\Rightarrow \mathsf{Pr}(\mathbf{y} \; \mathsf{is} \; \mathsf{in} \; \mathsf{group} \; k \, | \, \mathbf{y}, \mathbf{\Lambda}, \boldsymbol{\rho}) = \mathsf{Pr}(z_k = 1 \, | \, \mathbf{y}, \mathbf{\Lambda}, \boldsymbol{\rho})$$

$$\mathsf{by} \; \mathsf{Bayes} \; \mathsf{Formula:} \; \; \mathsf{Pr}(A \, | \, B) = \frac{\mathsf{Pr}(B \, | \, A) \, \mathsf{Pr}(A)}{\mathsf{Pr}(B)} \qquad = \frac{\mathsf{Pr}(\mathbf{y} \, | \, z_k = 1, \mathbf{\Lambda}, \boldsymbol{\rho}) \, \mathsf{Pr}(z_k = 1, \mathbf{\Lambda}, \boldsymbol{\rho})}{f(\mathbf{y} \, | \, \mathbf{\Lambda}, \boldsymbol{\rho})} = \frac{\rho_k \cdot \mathbf{g}(\mathbf{y} \, | \, \mathbf{\eta}_k)}{\sum_{i=1}^K \rho_i \cdot \mathbf{g}(\mathbf{y} \, | \, \mathbf{\eta}_i)}$$

- $\qquad \qquad \textbf{Model:} \qquad f(\mathbf{y} \,|\, \boldsymbol{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^K \rho_k \cdot g(\mathbf{y} \,|\, \boldsymbol{\eta}_k), \qquad g(\mathbf{y} \,|\, \boldsymbol{\eta}) = \exp\{\mathbf{T}' \boldsymbol{\eta} \boldsymbol{\Psi}(\boldsymbol{\eta})\} h(\mathbf{y}).$
- ▶ Inference: Estimate $\theta = (\Lambda, \rho)$ given $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$, $\mathbf{y}_i \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \Lambda, \rho)$.

- ► Model: $f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^{K} \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$
- ▶ Inference: Estimate $\theta = (\Lambda, \rho)$ given $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$, $\mathbf{y}_i \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \Lambda, \rho)$.
 - ► Simulation:

$$\mathbf{z}_i = (z_{i1}, \dots, z_{iK}) \stackrel{\mathsf{iid}}{\sim} \mathsf{Multinomial}(1, oldsymbol{
ho})$$
 $\mathbf{y}_i \, | \, \mathbf{z}_i \stackrel{\mathsf{ind}}{\sim} g(\mathbf{y} \, | \, oldsymbol{\eta}_{\mathbf{z}_i}), \qquad oldsymbol{\eta}_{\mathbf{z}_i} \; \mathsf{is} \; oldsymbol{\eta}_k \; \mathsf{for} \; \mathsf{which} \; z_{ik} = 1$

- ► Model: $f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^{K} \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$
- ▶ Inference: Estimate $\theta = (\Lambda, \rho)$ given $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$, $\mathbf{y}_i \stackrel{\mathsf{iid}}{\sim} f(\mathbf{y} \mid \Lambda, \rho)$.
 - ► Simulation:

$$\mathbf{z}_i = (z_{i1}, \dots, z_{iK}) \stackrel{\mathsf{iid}}{\sim} \mathsf{Multinomial}(1, oldsymbol{
ho})$$
 $\mathbf{y}_i \, | \, \mathbf{z}_i \stackrel{\mathsf{ind}}{\sim} g(\mathbf{y} \, | \, oldsymbol{\eta}_{\mathbf{z}_i}), \qquad oldsymbol{\eta}_{\mathbf{z}_i} \; \mathsf{is} \; oldsymbol{\eta}_k \; \mathsf{for} \; \mathsf{which} \; z_{ik} = 1$

- ► Suggests that the EM setup would be
 - ► y_{comp} = (Y, Z)
 - ightharpoonup $y_{obs} = Y$
 - ightharpoonup $\mathbf{y}_{\text{miss}} = \mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_n).$

Mixture of EFs: EM Algorithm

- ► Model: $\mathbf{y}_i \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^K \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$
- ► Complete Data: $\mathbf{y}_i \mid \mathbf{z}_i \stackrel{\text{ind}}{\sim} g(\mathbf{y} \mid \boldsymbol{\eta}_{\mathbf{z}_i}), \quad \mathbf{z}_i \stackrel{\text{iid}}{\sim} \text{Multinomial}(1, \boldsymbol{\rho}).$
- ► Complete Data Log-likelihood:

$$\ell(\boldsymbol{\theta} \mid \mathbf{Y}, \mathbf{Z}) = \sum_{i=1}^{n} \underbrace{\begin{bmatrix} \mathbf{T}_{i}' \boldsymbol{\eta}_{z_{i}} - \boldsymbol{\Psi}(\boldsymbol{\eta}_{\mathbf{z}_{i}}) \end{bmatrix}}_{\text{Exponential Family}} + \sum_{i=1}^{n} \underbrace{\sum_{k=1}^{K} z_{ik} \log(\rho_{k})}_{\text{Multinomial}}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ik} \Big[\mathbf{T}_{i}' \boldsymbol{\eta}_{k} - \boldsymbol{\Psi}(\boldsymbol{\eta}_{k}) + \log(\rho_{k}) \Big]$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n} z_{ik} \Big[\mathbf{T}_{i}' \boldsymbol{\eta}_{k} - \boldsymbol{\Psi}(\boldsymbol{\eta}_{k}) + \log(\rho_{k}) \Big].$$

Mixture of EFs: EM Algorithm

- ► Model: $\mathbf{y}_i \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^K \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$
- ► Complete Data: $\mathbf{y}_i \mid \mathbf{z}_i \stackrel{\text{ind}}{\sim} g(\mathbf{y} \mid \eta_{\mathbf{z}_i}), \quad \mathbf{z}_i \stackrel{\text{iid}}{\sim} \text{Multinomial}(1, \rho).$
- ► Complete Data Log-likelihood:

$$\ell(\boldsymbol{\theta} \mid \mathbf{Y}, \mathbf{Z}) = \sum_{k=1}^{K} \sum_{i=1}^{n} z_{ik} \Big[\mathbf{T}_{i}' \boldsymbol{\eta}_{k} - \Psi(\boldsymbol{\eta}_{k}) + \log(\rho_{k}) \Big].$$

► E-Step: $Q_t(\theta) = \sum_{k=1}^K \sum_{i=1}^n E[z_{ik} | \mathbf{y}_i, \hat{\boldsymbol{\theta}}^{(t)}] [\mathbf{T}'_i \boldsymbol{\eta}_k - \Psi(\boldsymbol{\eta}_k) + \log(\rho_k)].$

To calculate the expectation, note that $z_{ik} \in \{0,1\}$, such that

$$E[z_{ik} \mid \mathbf{y}_i, \hat{\boldsymbol{\theta}}^{(t)}] = \Pr(z_{ik} = 1 \mid \mathbf{y}_i, \hat{\boldsymbol{\theta}}^{(t)}) = \frac{\hat{\rho}_k^{(t)} g(\mathbf{y}_i \mid \hat{\boldsymbol{\eta}}_k^{(t)})}{\sum_{j=1}^K \hat{\rho}_j^{(t)} g(\mathbf{y}_i \mid \hat{\boldsymbol{\eta}}_j^{(t)})} = \hat{\boldsymbol{q}}_{ik}^{(t)}.$$

Mixture of EFs: EM Algorithm

- ► Model: $\mathbf{y}_i \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \mathbf{\Lambda}, \boldsymbol{\rho}) = \sum_{k=1}^K \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$
- ▶ Complete Data: $\mathbf{y}_i \mid \mathbf{z}_i \stackrel{\text{ind}}{\sim} g(\mathbf{y} \mid \boldsymbol{\eta}_{\mathbf{z}_i}), \quad \mathbf{z}_i \stackrel{\text{iid}}{\sim} \text{Multinomial}(1, \boldsymbol{\rho}).$
- ► Complete Data Log-likelihood:

$$\ell(\boldsymbol{\theta} \mid \mathbf{Y}, \mathbf{Z}) = \sum_{k=1}^{K} \sum_{i=1}^{n} z_{ik} \Big[\mathbf{T}_{i}' \boldsymbol{\eta}_{k} - \Psi(\boldsymbol{\eta}_{k}) + \log(\rho_{k}) \Big].$$

► E-Step:
$$\begin{aligned} \mathbf{Q}_{t}(\boldsymbol{\theta}) &= \sum_{k=1}^{K} \sum_{i=1}^{n} \hat{\mathbf{q}}_{ik}^{(t)} \Big[\mathbf{T}_{i}^{\prime} \boldsymbol{\eta}_{k} - \boldsymbol{\Psi}(\boldsymbol{\eta}_{k}) + \log(\rho_{k}) \Big] \\ &= \sum_{k=1}^{K} \Big[\hat{\mathbf{T}}_{k}^{(t)\prime} \boldsymbol{\eta}_{k} - \mathbf{q}_{k}^{(t)} \boldsymbol{\Psi}(\boldsymbol{\eta}_{k}) + \mathbf{q}_{k}^{(t)} \log(\rho_{k}) \Big], \end{aligned}$$

where
$$\hat{\mathbf{T}}_k^{(t)} = \sum_{i=1}^n \hat{q}_{ik}^{(t)} \mathbf{T}_i$$
 and $q_k^{(t)} = \sum_{i=1}^n \hat{q}_{ik}^{(t)}$.

Mixture of EFs: EM Algorithm

- ► Model: $\mathbf{y}_i \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \mathbf{\Lambda}, \rho) = \sum_{k=1}^K \rho_k \cdot g(\mathbf{y} \mid \boldsymbol{\eta}_k), \quad g(\mathbf{y} \mid \boldsymbol{\eta}) = \exp\{\mathbf{T}'\boldsymbol{\eta} \Psi(\boldsymbol{\eta})\}h(\mathbf{y}).$
- ► Complete Data: $\mathbf{y}_i \mid \mathbf{z}_i \stackrel{\text{ind}}{\sim} g(\mathbf{y} \mid \eta_{\mathbf{z}_i}), \quad \mathbf{z}_i \stackrel{\text{iid}}{\sim} \text{Multinomial}(1, \rho).$
- ► E-Step: $Q_t(\theta) = \sum_{k=1}^K \left[\hat{\mathbf{T}}_k^{(t)\prime} \boldsymbol{\eta}_k q_k^{(t)} \boldsymbol{\Psi}(\boldsymbol{\eta}_k) + q_k^{(t)} \log(\rho_k) \right].$
- ► M-Step:
 - ► EF Parameters: $\eta_k^{(t+1)} = \arg\max_{\eta} \left[\hat{\mathbf{T}}_k^{(t)\prime} \eta q_k^{(t)} \Psi(\eta) \right]$, i.e., separable convex optimization problems.
 - ► Mixing Parameters: $\hat{\rho}^{(t+1)} = \arg \max_{\rho} \sum_{k=1}^{K} \frac{q_k^{(t)}}{q_k^{(t)}} \log(\rho_k)$.

Actually a K-1 dimensional optimization since $\rho_K=1-\sum_{k=1}^{K-1}\rho_k$. Similarly, by definition $\mathbf{q}_K^{(t)}=1-\sum_{k=1}^{K-1}\mathbf{q}_k^{(t)}$, such that with $\mathbf{q}^{(t)}=(\mathbf{q}_1^{(t)},\ldots,\mathbf{q}_K^{(t)})$,

$$\left. \frac{\partial}{\partial \rho_j} \sum_{k=1}^K \mathbf{q}_k^{(t)} \log(\rho_k) \right| = \frac{\mathbf{q}_j^{(t)}}{\hat{\rho}_i^{(t+1)}} - \frac{1 - \sum_{k=1}^{K-1} \mathbf{q}_k^{(t)}}{1 - \sum_{k=1}^{K-1} \hat{\rho}_k^{(t+1)}} = 0 \iff \hat{\boldsymbol{\rho}}^{(t+1)} = \mathbf{q}^{(t)}.$$

Example: Probit Regression

► Logistic Regression:

$$y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i), \qquad \rho = \frac{1}{1 + \exp(-\mathbf{x}_i'\beta)}.$$

▶ **Probit Regression:** $\rho_i = \Phi(\mathbf{x}_i'\beta)$, where Φ is the CDF of $\mathcal{N}(0,1)$.

Can think of this as $z_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta},1)$, and $y_i = \mathbb{1}\{z_i > 0\}$ since

$$\Pr(y = 1 \,|\, \mathbf{x}) = \Pr(z > 0 \,|\, \mathbf{x}) = \Pr(\underbrace{z - \mathbf{x}'\boldsymbol{\beta}}_{\mathcal{N}(0,1)} > -\mathbf{x}'\boldsymbol{\beta} \,|\, \mathbf{x}) = \Phi(\mathbf{x}'\boldsymbol{\beta}).$$

 \implies the EM setup is

$$\mathbf{y}_{\text{obs}} = (\mathbf{y}, \mathbf{X}), \qquad \mathbf{y}_{\text{comp}} = (\mathbf{z}, \mathbf{y}, \mathbf{X}), \qquad \mathbf{y}_{\text{miss}} = \mathbf{z}.$$

- ▶ Probit Regression: $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i), \qquad \begin{aligned} \rho_i &= \mathsf{Pr}(Z < \mathbf{x}_i'\beta), \\ Z \sim \mathcal{N}(0,1). \end{aligned}$
- ► Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► Complete Data Likelihood: $\ell(\beta \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (z_i \mathbf{x}_i' \beta)^2$
- ► E-Step: $Q_t(\beta) = E[\ell(\beta \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) \mid \mathbf{y}, \mathbf{X}, \hat{\boldsymbol{\beta}}^{(t)}]$ = $-\frac{1}{2} \sum_{i=1}^{n} E[(z_i - \mathbf{x}_i'\beta)^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}].$

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \text{Bernoulli}(\rho_i),$ $\frac{\rho_i = \Pr(Z < \mathbf{x}_i'\beta),}{Z \sim \mathcal{N}(0, 1).}$
- ► Complete Data: $z_i | \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i' \boldsymbol{\beta}), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► Complete Data Likelihood: $\ell(\beta \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (z_i \mathbf{x}_i' \boldsymbol{\beta})^2$
- ► E-Step: $Q_t(\beta) = -\frac{1}{2} \sum_{i=1}^n E\left[(z_i \mathbf{x}_i'\beta)^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)} \right].$

To calculate the expectation, note that $\pm (z_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)}) \sim \mathcal{N}(0,1)$, such that for $y_i = 0$,

$$E\left[(z_{i}-\mathbf{x}_{i}'\boldsymbol{\beta})^{2} \mid y_{i},\mathbf{x}_{i},\hat{\boldsymbol{\beta}}^{(t)}\right] = E\left[(z_{i}-\mathbf{x}_{i}'\boldsymbol{\beta})^{2} \mid z_{i} < 0,\mathbf{x}_{i},\hat{\boldsymbol{\beta}}^{(t)}\right]$$

$$= E\left[\left\{z_{i}-\mathbf{x}_{i}'\hat{\boldsymbol{\beta}}^{(t)}-\mathbf{x}_{i}'(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}^{(t)})\right\}^{2} \mid z_{i}-\mathbf{x}_{i}'\hat{\boldsymbol{\beta}}^{(t)} < -\mathbf{x}_{i}'\hat{\boldsymbol{\beta}}^{(t)}\right]$$

$$= E\left[\left\{Z-\mathbf{x}_{i}'(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}^{(t)})\right\}^{2} \mid Z < -\mathbf{x}_{i}'\hat{\boldsymbol{\beta}}^{(t)}\right], \qquad Z \sim \mathcal{N}(0,1).$$

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i),$ $\rho_i = \mathsf{Pr}(Z < \mathbf{x}_i'\beta),$ $Z \sim \mathcal{N}(0,1).$
- ▶ Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ▶ Complete Data Likelihood: $\ell(\beta \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (z_i \mathbf{x}_i' \beta)^2$
- ► E-Step: $Q_t(\beta) = -\frac{1}{2} \sum_{i=1}^n E\left[(z_i \mathbf{x}_i'\beta)^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)} \right].$

Similarly for $y_i = 1$,

$$E\left[(z_{i} - \mathbf{x}_{i}'\boldsymbol{\beta})^{2} \mid y_{i}, \mathbf{x}_{i}, \hat{\boldsymbol{\beta}}^{(t)}\right] = E\left[(z_{i} - \mathbf{x}_{i}'\boldsymbol{\beta})^{2} \mid z_{i} > 0, \mathbf{x}_{i}, \hat{\boldsymbol{\beta}}^{(t)}\right]$$

$$= E\left[\left\{Z - \mathbf{x}_{i}'(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^{(t)})\right\}^{2} \mid Z > -\mathbf{x}_{i}'\hat{\boldsymbol{\beta}}^{(t)}\right]$$

$$= E\left[\left\{Z - \mathbf{x}_{i}'(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^{(t)})\right\}^{2} \mid Z < \mathbf{x}_{i}'\hat{\boldsymbol{\beta}}^{(t)}\right], \qquad Z \sim \mathcal{N}(0, 1),$$

where we can replace Z by $-1 \times Z$ since $\mathcal{N}(0,1)$ is symmetric.

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i),$ $\rho_i = \mathsf{Pr}(Z < \mathbf{x}_i' \boldsymbol{\beta}),$ $Z \sim \mathcal{N}(0, 1).$
- ► Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► Complete Data Likelihood: $\ell(\beta \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (z_i \mathbf{x}_i'\beta)^2$
- ► E-Step:

$$\begin{aligned} Q_t(\boldsymbol{\beta}) &= -\frac{1}{2} \sum_{i=1}^n E\left[(z_i - \mathbf{x}_i' \boldsymbol{\beta})^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)} \right] \\ &= -\frac{1}{2} \sum_{i=1}^n \mathcal{G}\left(\mathbf{x}_i' (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^{(t)}), (2 \times \mathbb{1}\{y_i = 1\} - 1) \cdot \mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)} \right) \end{aligned}$$

where $G(a, b) = E[(Z - a)^2 | Z < b].$

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i),$ $\rho_i = \mathsf{Pr}(Z < \mathbf{x}_i'\beta),$ $Z \sim \mathcal{N}(0,1).$
- ► Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► Complete Data Likelihood: $\ell(\beta \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (z_i \mathbf{x}_i'\beta)^2$
- $\qquad \qquad \textbf{E-Step:} \ \ \frac{\textbf{Q}_t(\boldsymbol{\beta})}{\textbf{Q}_t(\boldsymbol{\beta})} = -\frac{1}{2} \sum_{i=1}^n \mathcal{G} \Big(\textbf{x}_i'(\boldsymbol{\beta} \hat{\boldsymbol{\beta}}^{(t)}), (2 \times \mathbb{1}\{y_i = 1\} 1) \cdot \textbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)} \Big),$

where $\mathcal{G}(a,b) = E[(Z-a)^2 | Z < b]$. To calculate $\mathcal{G}(a,b)$

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i),$ $\frac{\rho_i = \mathsf{Pr}(Z < \mathbf{x}_i' \boldsymbol{\beta}),}{Z \sim \mathcal{N}(0, 1).}$
- ► Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► Complete Data Likelihood:

$$\ell(\beta \,|\, \mathbf{z}, \mathbf{y}, \mathbf{X}) = -\frac{1}{2} \sum_{i=1}^{n} (z_i - \mathbf{x}_i' \beta)^2 = -\frac{1}{2} \sum_{i=1}^{n} z_i^2 - 2(\mathbf{x}_i' \beta) \cdot z_i + (\mathbf{x}_i' \beta)^2$$

► E-Step:

$$Q_{t}(\boldsymbol{\beta}) = E[\ell(\boldsymbol{\beta} \mid \mathbf{z}, \mathbf{y}, \mathbf{X}) \mid \mathbf{y}, \mathbf{X}, \hat{\boldsymbol{\beta}}^{(t)}]$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \left\{ E[z_{i}^{2} \mid y_{i}, \mathbf{x}_{i}, \hat{\boldsymbol{\beta}}^{(t)}] - 2(\mathbf{x}_{i}'\boldsymbol{\beta}) \cdot E[z_{i} \mid y_{i}, \mathbf{x}_{i}, \hat{\boldsymbol{\beta}}^{(t)}] + (\mathbf{x}_{i}'\boldsymbol{\beta})^{2} \right\}.$$

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \text{Bernoulli}(\rho_i),$ $\frac{\rho_i = \Pr(Z < \mathbf{x}_i'\beta),}{Z \sim \mathcal{N}(0, 1).}$
- ▶ Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► E-Step:

$$Q_t(\boldsymbol{\beta}) = -\frac{1}{2} \sum_{i=1}^n \left\{ E[z_i^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}] - 2(\mathbf{x}_i'\boldsymbol{\beta}) \cdot E[z_i \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}] + (\mathbf{x}_i'\boldsymbol{\beta})^2 \right\}.$$

To calculate the expectations, note that $\pm(z_i-\mathbf{x}_i'\hat{\boldsymbol{\beta}}^{(t)})\sim\mathcal{N}(0,1)$, such that

$$E[z_i | y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}] = \mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)} + E[z_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)} | y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}]$$

$$= \mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)} + \begin{cases} E[Z | Z < \mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)}] & y_i = 1 \\ E[Z | Z < -\mathbf{x}_i' \hat{\boldsymbol{\beta}}^{(t)}] & y_i = 0, \end{cases}$$

where $Z \sim \mathcal{N}(0,1)$, and similarly for $E[z_i^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}]$.

 \implies Need to calculate g(a) = E[Z|Z < a] and $h(a) = E[Z^2|Z < a]$.

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i),$ $\rho_i = \mathsf{Pr}(Z < \mathbf{x}_i'\beta),$ $Z \sim \mathcal{N}(0,1).$
- ► Complete Data: $z_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\beta), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► E-Step: $Q_t(\beta) = -\frac{1}{2} \sum_{i=1}^n \left\{ E[z_i^2 \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}] 2(\mathbf{x}_i'\beta) \cdot E[z_i \mid y_i, \mathbf{x}_i, \hat{\boldsymbol{\beta}}^{(t)}] + (\mathbf{x}_i'\beta)^2 \right\}.$
 - ▶ Requires g(a) = E[Z|Z < a] and $h(a) = E[Z^2|Z < a]$, where $Z \sim \mathcal{N}(0,1)$.
 - ► Moment-generating function (MGF) of a truncated normal:

$$\begin{split} M(t) &= E[e^{Zt} \mid Z < a] = \frac{\int_{-\infty}^{a} e^{tz} \cdot e^{-z^2/2} \, \mathrm{d}z}{\int_{-\infty}^{a} e^{-z^2/2} \, \mathrm{d}z} = \frac{e^{t^2/2} \Phi(a-t)}{\Phi(a)} \\ \Longrightarrow g(a) &= \frac{\mathrm{d}M(0)}{\mathrm{d}t} = -1 \times \frac{\phi(a)}{\Phi(a)}, \qquad h(a) &= \frac{\mathrm{d}^2 M(0)}{\mathrm{d}t^2} = 1 - a \times \frac{\phi(a)}{\Phi(a)}, \end{split}$$

where $\phi(z)$ and $\Phi(z)$ are the PDF and CDF of $Z \sim \mathcal{N}(0,1)$.

- ▶ **Probit Regression:** $y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(\rho_i),$ $\rho_i = \mathsf{Pr}(Z < \mathbf{x}_i'\beta),$ $Z \sim \mathcal{N}(0,1).$
- ► Complete Data: $z_i | \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i' \boldsymbol{\beta}), \quad y_i = \mathbb{1}\{z_i > 0\}.$
- ► E-Step: After some algebra, get

$$Q_t(\boldsymbol{\beta}) = -\frac{1}{2} \sum_{i=1}^n (\hat{\mathbf{z}}_i^{(t)} - \mathbf{x}_i' \boldsymbol{\beta})^2,$$

▶ M-Step: Equivalent to maximing the likelihood of $\hat{z}_i^{(t)} \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_i'\boldsymbol{\beta}, 1)$

$$\implies \hat{\boldsymbol{\beta}}^{(t+1)} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\hat{\mathbf{z}}^{(t)}.$$

Example: Multivariate t-Distribution

▶ **Definition:** Let $\mathbf{z} = (z_1, \dots, z_d) \sim \mathcal{N}(\mathbf{0}, \Sigma)$ II $\mathbf{z} \sim \chi^2_{(\nu)}$. Then

$$\mathbf{y} = \frac{\mathbf{z}}{\sqrt{x/\nu}} + \boldsymbol{\mu}$$

has a multivariate Student-t distribution, denoted $\mathbf{y} \sim t_{(
u)}(oldsymbol{\mu}, oldsymbol{\Sigma}).$

EM Setup: To simulate observations $\mathbf{y}_i \stackrel{\mathsf{iid}}{\sim} t_{(
u)}(\mu, \Sigma)$, do

$$egin{aligned} x_i \stackrel{\mathsf{iid}}{\sim} \chi^2_{(
u)} \ \mathbf{y}_i \, | \, x_i \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(oldsymbol{\mu},
u oldsymbol{\Sigma} / x_i). \end{aligned}$$

This suggests the setup for EM is

$$\blacktriangleright \ \mathbf{y}_{\text{obs}} = \mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n).$$

•
$$\mathbf{y}_{comp} = (\mathbf{Y}, \mathbf{x})$$
, where $\mathbf{x} = (x_1, \dots, x_n)$.

$$ightharpoonup y_{miss} = x.$$

- ▶ Model: $\mathbf{y}_i \stackrel{\mathsf{iid}}{\sim} t_{(\nu)}(\mu, \Sigma) \cong \mathcal{N}(0, \Sigma) / \sqrt{\chi^2_{(\nu)} / \nu} + \mu$.
- ► Complete Data: $x_i \stackrel{\text{iid}}{\sim} \chi_{(\nu)}^2$, $\mathbf{y}_i \mid x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu, \nu \Sigma / x_i)$.
- ▶ Complete Data Likelihood: With $\Omega = \nu \Sigma$ and $\theta = (\mu, \Omega, \nu)$,

$$\ell(\boldsymbol{\theta} \mid \mathbf{Y}, \mathbf{x}) = -\frac{1}{2} \left[n \log |\Omega| + \sum_{i=1}^{n} x_i \cdot (\mathbf{y}_i - \boldsymbol{\mu})' \Omega^{-1} (\mathbf{y}_i - \boldsymbol{\mu}) \right]$$
$$-\frac{1}{2} \left[n \nu \log(2) + 2n \log \Gamma(\nu/2) - \nu \sum_{i=1}^{n} \log(x_i) \right].$$

► E-Step:

$$Q_{t}(\boldsymbol{\theta}) = -\frac{1}{2} \left[n \log |\Omega| + \sum_{i=1}^{n} E[x_{i} | \mathbf{y}_{i}, \hat{\boldsymbol{\theta}}^{(t)}] \cdot (\mathbf{y}_{i} - \boldsymbol{\mu})' \Omega^{-1}(\mathbf{y}_{i} - \boldsymbol{\mu}) \right]$$

$$-\frac{1}{2} \left[n \nu \log(2) + 2n \log \Gamma(\nu/2) - \nu \sum_{i=1}^{n} E[\log(x_{i}) | \mathbf{y}_{i}, \hat{\boldsymbol{\theta}}^{(t)}] \right].$$

- ▶ Model: $\mathbf{y}_i \stackrel{\mathsf{iid}}{\sim} t_{(\nu)}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \cong \mathcal{N}(0, \boldsymbol{\Sigma}) / \sqrt{\chi^2_{(\nu)} / \nu} + \boldsymbol{\mu}.$
- ► Complete Data: $x_i \stackrel{\text{iid}}{\sim} \chi^2_{(\nu)}$, $\mathbf{y}_i \mid x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{\mu}, \nu \boldsymbol{\Sigma}/x_i)$.
- ▶ **E-Step:** Requires $E[x | y, \theta]$ and $E[\log(x) | y, \theta]$.
 - ► Conditional distribution of *x*:

$$\begin{split} \rho(x \,|\, \mathbf{y}, \boldsymbol{\theta}) &\propto \rho(\mathbf{y} \,|\, x, \boldsymbol{\theta}) \cdot \rho(x \,|\, \boldsymbol{\theta}) \\ &\propto \exp\left\{\frac{\nu - 2}{2} \log(x) - \frac{1}{2} x \cdot (\mathbf{y} - \boldsymbol{\mu})' \boldsymbol{\Omega}^{-1} (\mathbf{y} - \boldsymbol{\mu}) + \frac{d}{2} \log(x)\right\} \\ &= \exp\left\{(\alpha - 1) \log(x) - \beta \cdot x\right\}, \end{split}$$

where
$$\alpha = \alpha(\boldsymbol{\theta}) = \frac{1}{2}(\nu + d)$$

$$\beta = \beta(\boldsymbol{\theta}) = \frac{1}{2}[(\mathbf{y} - \boldsymbol{\mu})'\boldsymbol{\Omega}^{-1}(y - \boldsymbol{\mu}) + 1].$$

$$\Rightarrow x \mid \mathbf{y} \sim \mathsf{Gamma}(\alpha, \beta).$$

- ▶ Model: $\mathbf{y}_i \stackrel{\mathsf{iid}}{\sim} t_{(\nu)}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \cong \mathcal{N}(0, \boldsymbol{\Sigma}) / \sqrt{\chi^2_{(\nu)} / \nu} + \boldsymbol{\mu}.$
- ► Complete Data: $x_i \stackrel{\text{iid}}{\sim} \chi^2_{(\nu)}, \quad \mathbf{y}_i \mid x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{\mu}, \nu \boldsymbol{\Sigma} / x_i).$
- ▶ **E-Step:** Requires $E[x | y, \theta]$ and $E[\log(x) | y, \theta]$.
 - $\mathbf{x} \mid \mathbf{y}, \boldsymbol{\theta} \sim \mathsf{Gamma}(\alpha, \beta)$, where $\alpha = \frac{1}{2}(\nu + d)$ $\beta = \frac{1}{2}[(\mathbf{y} - \boldsymbol{\mu})'\boldsymbol{\Omega}^{-1}(\mathbf{y} - \boldsymbol{\mu}) + 1].$
 - ► Gamma distribution is an exponential family:

$$p(x | \mathbf{y}, \boldsymbol{\theta}) = \exp{\{\alpha \log(x) - \beta \cdot x - \Psi(\alpha, -\beta)\}} \cdot h(x),$$

where $\Psi(\alpha, -\beta) = -\alpha \log(\beta) + \log \Gamma(\alpha)$.

 \implies Sufficient statistics are $\mathbf{T} = (\log(x), x)$, such that

$$E[\mathbf{T} \,|\, y] = \nabla \Psi(\alpha, -\beta) = \left(-\log(\beta) + \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}, \frac{\alpha}{\beta}\right).$$

- ▶ Model: $\mathbf{y}_i \stackrel{\text{iid}}{\sim} t_{(\nu)}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \cong \mathcal{N}(0, \boldsymbol{\Sigma}) / \sqrt{\chi^2_{(\nu)} / \nu} + \boldsymbol{\mu}.$
- ► Complete Data: $x_i \stackrel{\text{iid}}{\sim} \chi^2_{(\nu)}, \quad \mathbf{y}_i \mid x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu, \nu \Sigma / x_i).$
- ► E-Step:

$$\frac{Q_t(\theta) = -\frac{1}{2} \left[n \log |\Omega| + \sum_{i=1}^n \hat{\mathbf{x}}_i^{(t)} \cdot (\mathbf{y}_i - \boldsymbol{\mu})' \Omega^{-1} (\mathbf{y}_i - \boldsymbol{\mu}) \right] \\
-\frac{1}{2} \left[n \nu \log(2) + 2n \log \Gamma(\nu/2) - \nu \sum_{i=1}^n \hat{\mathbf{w}}_i^{(t)} \right],$$

where

$$\hat{\mathbf{x}}_{i}^{(t)} = \frac{\hat{\alpha}^{(t)}}{\hat{\beta}_{i}^{(t)}} \qquad \hat{\mathbf{w}}_{i}^{(t)} = -\log\hat{\beta}_{i}^{(t)} + \frac{\Gamma'(\hat{\alpha}^{(t)})}{\Gamma(\hat{\alpha}^{(t)})}$$

$$\hat{\alpha}^{(t)} = \frac{1}{2}(\hat{\nu}^{(t)} + d) \qquad \hat{\beta}_{i}^{(t)} = \frac{1}{2}[(\mathbf{y}_{i} - \hat{\boldsymbol{\mu}}^{(t)})'\Omega^{-1}(\mathbf{y}_{i} - \hat{\boldsymbol{\mu}}^{(t)}) + 1].$$

- ▶ Model: $\mathbf{y}_i \stackrel{\text{iid}}{\sim} t_{(\nu)}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \cong \mathcal{N}(0, \boldsymbol{\Sigma}) / \sqrt{\chi^2_{(\nu)} / \nu} + \boldsymbol{\mu}.$
- ► Complete Data: $x_i \stackrel{\text{iid}}{\sim} \chi^2_{(\nu)}, \quad \mathbf{y}_i \mid x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{\mu}, \nu \boldsymbol{\Sigma}/x_i).$
- ► E-Step:

$$\frac{\mathbf{Q}_{t}(\boldsymbol{\theta}) = -\frac{1}{2} \left[n \log |\Omega| + \sum_{i=1}^{n} \hat{\mathbf{x}}_{i}^{(t)} \cdot (\mathbf{y}_{i} - \boldsymbol{\mu})' \Omega^{-1} (\mathbf{y}_{i} - \boldsymbol{\mu}) \right]
- \frac{1}{2} \left[n \nu \log(2) + 2n \log \Gamma(\nu/2) - \nu \sum_{i=1}^{n} \hat{\mathbf{w}}_{i}^{(t)} \right].$$

► M-Step:

$$\hat{\boldsymbol{\mu}}^{(t+1)} = \frac{\sum_{i=1}^{n} \hat{x}_{i}^{(t)} \mathbf{y}_{i}}{\sum_{i=1}^{n} \hat{x}_{i}^{(t)}}, \qquad \hat{\boldsymbol{\Omega}}^{(t+1)} = \frac{\sum_{i=1}^{n} \hat{x}_{i}^{(t)} (\mathbf{y}_{i} - \hat{\boldsymbol{\mu}}^{(t+1)}) (\mathbf{y}_{i} - \hat{\boldsymbol{\mu}}^{(t+1)})'}{\sum_{i=1}^{n} \hat{x}_{i}^{(t)}}.$$

 $\hat{\nu}^{(t+1)} = \arg\min_{\nu} \left\{ n\nu \log(2) + 2n \log \Gamma(\nu/2) - \nu \sum_{i=1}^{n} \hat{\mathbf{w}}_{i}^{(t)} \right\}, \text{ a convex optimization problem.}$