K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam April - May 2016

Max. Marks:100 Class SY B. Tech

Name of the Course: Analysis of Algorithms

Course Code: UCEC403

Duration: 3hrs Semester: IV Branch: COMP

Instructions:

(1) All Questions are Compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Question No.		Max. Marks
Q 1 (a)	Define asymptotic notations. Explain the time complexity and space complexity in detail with examples.	10
Q 1 (b)	 i) Solve the recurrence relation T(n)=2T(N/2)+ N using recurrence tree method ii) Derive worst case and best case complexity for Binary Search sort. 	10
Q2 (a)	 i) Apply Merge sort and Quick sort sorting technique to the given input and show output after each pass for both the algorithms. ii) Also state complexity for both the algorithm Input:- 66, 87,21, 57, 3, 71, 22, 99, 10, 88 OR i) Explain MaxMin as divide and conquer method. ii) For the given input, Draw the divide and conquer tree diagram to find minimum and maximum of the given Input:- 44,11,56,1,38,10,19,40,78 iii) Also compute complexity of the algorithm 	10
Q2 (b)	Explain the concept of Job sequencing with deadlines with an example. Compute all feasible solutions and prove how the greedy strategy gives optimal solution for the problem.	10
Q3 (a)	Solve the given instance of problem to compute Single source shortest path from first vertex in sequence to the rest of vertices using greedy Programming. (Source vertex =1)	10

	0	2		-(2))	The state of the		1
	4		3)~	10			
	(3)- 2	4		2		-(5)		
						39		
	5	3	4	-	6			
Q3 (b)		1	21.11	(7)	ř			
	-Define the Problem -Define optimal substructure -Write the recursive formula -Compute the answer -Construct the answer -State the answer(s) clearly							
	-Write complexity							
	Problem 1: 0/1 knapsac	ek						
	N=6, M=10. P={3,12,5							
	Problem 2: Travelling	salesper	son pr	R oblem				
		0	10	15	20			
			W					
		5	0	9	10			
		6	13	0	12	***************************************		
		8	8	9	0			
Q4 (a)	For the given graph, co	mpute	the m	inimur	n chro	motio number 1		
	the graph such that no to possible combinations of Draw state space tree and	f such o	olora	or nees	nave t	he same color. Give all sing backtracking.	10	
	Define N-Queen's problem using state space tree and Define 15-puzzle problem							
	Define 15-puzzle problen & Bound search.Solve giv	L. LADIO	111 (1)11	itionir	g using	g Least Cost Branch	10	
-	CV DOUBLE Cornel Cal.	ton or	na an I			TOTAL COLLEGIA	10	

	1	2	3	4	1	2	3	4		
	5	6	7	8	5	6	7	8		
	9		10	11	9	10	11	12		
	13	14	15	12	15	14	15			
	Initia	l State			Go	al State				
Q5 (a)	solve the following string matching problem using Longest common subsequence problem X= compatibility Y= optimality						10			
25 (b)	Explain string matching with finite automata algorithm with an example. OR Explain the concept of Naïve string matching algorithm. Use the algorithm to find all the occurrences of Pattern =Offer in Text = CourseOffered.							10		