10 74074C

Calculation of the Radar Cross Section of a Perfectly Conducting Sphere

LAMONT V. BLAKE

Radar Geophysics Branch Radar Division

April 1972

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

27 R

UNCLASSIFIED			
Security Classification			
DOCUMENT CONT	ROL DATA - R & D		
(Security classification of title, body of abstract and indexing			سين والمساد النات الأساد والمساد والمساد
1 ORIGINATING ACTIVITY (Corporate author)	24.		ECURITY CLASSIFICATION
Naval Research Laboratory	<u> </u>		LASSIFIED
Washington, D.C. 20390	26.	GROUP	
3 REPORT TITLE			······································
CALCULATION OF THE RADAR CROSS SEC SPHERE	TION OF A PER	FECTL	Y CONDUCTING
4. DESCRIPTIVE NOTES (Type of raport and inclusive dates)			
A final report on one phase of the problem; v	vork is continuin	g.	
5 AUTHOR(S) (First name, middle initial, last name)			
Lament V. Blake			
6 REPORT DATE	78. TOTAL NO. OF PA	GES	7b. NO. OF REFS
April 1972	26		5
80. CONTRACT OR GRANT NO.	98, ORIGINATOR'S RE	PORT NUM	PER(5)
NRL Problem 53R02-55	MPT Momos	nandum	Report 2419
b. PROJECT NO.	MILE MEHIO	ranuum	Report 2419
RF-151-402-4011			
c.	9b. OTHER REPORT N	10(5) (Any o	ther numbers that may be essigned
d.	ĺ		
10. DISTRIBUTION STATEMENT	L		
TO DISTRICT TO THE MENT			
Approved for public release; distribution unl	imited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILI	TARY ACTI	VITY
	Department		
	(Office of N	aval Re	search)
	Washington,		· · · · · · · · · · · · · · · · · · ·
13 ABSTRACT	1 ,,,,,,,,		
A Fortran computer program has been v	vritten to comput	e the ra	dar cross section
of a conducting sphere. The program is usef			
target for calibrating a radar for target-cros			
to machine-plot with high precision a curve o			
cross section) as a function of the radius/wa	velength ratio. I	The com	puted data used to
plot the curve are also presented in tabular i	form, The mathe	matics	of the problem are
briefly reviewed, and a listing of the compute			-
in a contract of the contract	10 0-		
		1	

DD FORM 1473 (PAGE 1)

UNCLASSIFIED

23

Security Classification

UNCLASSIFIED

Security Classification	LIN	K A		K D		кс
KEY WORDS	ROLE		ROLE	WT	ROLE	WT
Radar targets						
Radar cross section				ĺ		
		ł			1	
					1	l
]	ļ]	
	}]]	
	1				!	
					İ	
	j					
	Į.					
					1	
	,]	
	ļ					
	Į į					
			1			
]	
			j			
			ĺ			
		l	- 1			
			1			
		l	1			
		l				
		Ì				
		<u> </u>				
		1				
	[[1				
			l			
			j		}	
		1	ł			

24

DD FORM 1473 (987)
(PAGE 2)

UNCLASSIFIED

Security Classification

CONTENTS

Abstract Authorization	ii ii
INTRODUCTION	1
RESULTS	1
MATHEMATICAL FORMULAS	8
FORTRAN PROCRAM	12
REFERENCES	22

ABSTRACT

A Fortran computer program has been written to compute the radar cross section of a conducting sphere. The program is useful when a metal sphere is used as a standard target for calibrating a radar for target-cross-section measurement. It has been used to machine-plot with high precision a curve of cross section (normalized to the optical cross section) as a function of the radius/wavelength ratio. The computed data used to plot the curve are also presented in tabular form. The mathematics of the problem are briefly reviewed, and a listing of the computer program is given.

AUTHORIZATION

NRL Problem R02-35 Project RF-151-402-4011

CALCULATION OF THE RADAR CROSS SECTION OF A PERFECTLY CONDUCTING SPHERE

INTRODUCTION

This calculation is of interest because spheres of high-conductivity material (metal) are used as standard targets for calibrating a radar for target cross-section measurement. Published curves based on calculations are unsatisfactory for precise work because they appear to be imprecisely plotted (1) or the scale size is too small for accurate reading of values (2,3). Therefore the problem of writing a computer program to calculate the cross section and to plot it accurately by machine was undertaken.

The computation requires summing a series whose terms involve spherical Bessel and Hankel functions. These terms are complex quantities. Manual calculation would be extremely laborious and computer calculation also poses some difficult problems. After a successful program had been written, it was learned that others had also done it (3). Their programming approach was somewhat different, and their actual program is not presented in their paper. The program developed here is presented in a form that allows it to be used for the calculation of cross sections of specific sphere sizes, by reading in data giving the radius of the sphere and the radar frequency. This procedure would be used if the curve and table do not provide a sufficiently accurate number.

RESULTS

The computer program was used to machine plot a curve, Fig. 1, of the normalized radar cross section $\sigma/\pi a^2$, where σ is the actual cross section and a is the radius of the sphere, as a function of the ratio a/λ , where λ is the wavelength. The normalizing quantity πa^2 is of course the optical cross section of the sphere. The plot was made in a large size (20 x 25 inches) on the NRL Gerber Model 875 Automatic Drafting Machine, with an accuracy of the order of .001 inch. The coordinate grid was plotted by the machine also, so that there are no registration errors, as might occur if the plot were made on standard graph paper.

The computations were made for values of a/λ from .05 to 5.045 in steps of .005. These results are tabulated in Table 1. The plot was also made from these values. Even though the a/λ interval .005 is quite small, a direct digital plot does not result in a perfectly smooth curve. Therefore a "smoothing" subroutine, described in a previous NRL report (4), was used for

Fig. 1 - Radar cross section of a perfectly cenducting sphere, normalized to the optical cross section πa^2 , as a function of the radius-to-wavelength ratio a/λ .

Table 1 Normalized Values of Radar Cross Section (SiGMA) of a Perfectly Conducting Sphere for Specified Radius/Wavelength (RATIO) Values

1 1		1	1 - 1	1 1		i	ŀ
RATIO	SIGMA	HATTO	STOMA	RATIO	SIGMA	RATIO	SIGMA
0.0500	0.08t0	0.3000	0.5412	. 0.5500	1.5211	0.4000	1.1222
0.0550	0.1254	0.3050	0.6544	0.5550	1.5567	0.8050	1.0659
0.0600	0.1767	0.3100	1.7806	0.5600	1.5793	0.8100	1.0096
0.0650	0.2418	0.3150	0.9158	0.5650	1.5884	0.8150	0.9550
0.0700	0.3229	0.3200	1.0557	0.5700			
0.0750	0.4218	0.3250	1.1963		1.5840	0.4200	0.9034
0.0800	0.5404	0.3290		0.5750	1.5663	0.8250	0.8551
			1.3337	0.5800	1.5360	0.4300	0.8143
0.0850	0.6800	0.3350	1,4641	0.5850	1.4941	0.8350	0.7790
0.0900	0.8417	0.3400	1,5845	0.5900	1 • 4 4 1 7	0.8400	0.7510
0.0950	1.0258	0.3450	1,6919	0.5950	1 • 3R05	0.8450	0.7310
0.1000	1.2315	0+3500	1,7839	0.6000	1.3122	0.4500	0.7194
0.1050	1.4572	0.3550	1.8587	0.6050	1.2388	0.4550	0.7163
0.1100	1.6999	0.3600	1.9150	0.6100	1.1622	0.8600	0.7218
0.1150	3.9549	0.3650	1.9517	0.6157	1.0845	0.8650	0.7355
0.1200	2.2164	0.3700	1.9684	0.6200	1.0080	0.8700	0.7569
0.1250	2.4772	0.3750	1.9653	0.6250	0.9344	0.8750	0.7855
0.1300	2.7294	0.3800	1.9427	0.6300	2.8658	0.8800	0.8203
0.1350	2,9646	0.3850	1.9015	0.6350	0.8037	0.4850	0.8603
0.1400	3.1747	0.3900	1.8431	0.6400	0.7498	0.4900	0.9043
0.1450	3.3524	0.3950	1.7691	0.6450	0.7053	0.8950	0.9512
0.1500	3.4921	0.4000	1.6815	0.6500	0.6711	0.9000	0.4946
0.1550	3.5898	0.4050	1.5827	0.6550	0+5480	0.9050	1.0482
0.1600	3.6435	0.4100	1.4753	0.6600	0.6362	0.9100	1.0457
0.1650	3.6533	0.4150	1.3620	0.6650	0.6359	0.4150	1.1407
0.1700	3.6208	0.4200	1.2458	0.6700	0.646B	0.9200	1.1822
0.1750	3.5490	0.4250	1,1296	0.6750	0.6685	0.9250	1.2191
0.1800	3.4418	0.4300	1.0165	0.6800	0.7001	0.9300	1.2504
0.1850	3.3038	3.4350	0.9092	0.6850	0.7407	0.9350	1.2753
0.1900	3.1397	0.4400	0.8106	0.6900	0.7889		
0.1950	2.9542	0.4450	0.7228	0.6950	0.8435	0.9400	1.2932
0.2000	2.7522	0.4500	0.6481	0.7000			1.3039
0.2050	2.5380	0.4550	0.5881	0.7050	0.9028	1 0.9500	1.3069
0.2100	2.3160	0.4600	0.5439	0.7100	0.9653	0.9550	1.3025
0.2150	2.0900	0.4650	0.5164		1.0290	0.9600	1.2908
0.2200	1.8638	0.4700		0.7150	1.0052	0.9650	1.2721
0.2250	1.6412	0.4750	0.5057	0.7200	1.1539	0.9700	1.2472
	1.4255		n.5118	0.7250	1.2116	0.9750	1.5166
0.2309		0.4800	1.5339	0.7300	1.2641	0.9800	1.1813
0.2350	1.2202	0.4850	0.5710	0.7350	1.3101	0.9850	1.1423
0.2400	1.0284	0.4900	0.6217	0.7400	1+3483	0.9900	1.1007
0.2450	0.8533	0.4950	0.6841	0.745g	1.3780	0.9950	1.0575
0.2500	0.6976	0.5000	1.7564	0.7500	1+3983	1.0000	1.0140
0.2550	0.5641	0.5050	n.8363	0.7550	1+4089	1.0050	0.9712
0.2600	0.4548	0.5100	0.9216	0.7600	1 • 4 0 9 5	1.0100	0.9304
0.2650	0.3718	0.5150	1.0098	0.7650	1+4004	1.0150	0.8925
0.2700	0.3161	0.5200	1.0986	0.7700	1.3819	1.0200	0.8586
0.2750	0.2884	0.5250	1.1856	0+7750	1+3545	1.0250	0.8294
0.2800	0.2886	0.5300	1.2686	0.7800	1.3193	1.0300	0,8057
0.2850	0.3159	0.5350	1.3454	0.7850	1.2771	1.0350	0.7881
0.2900	0,3688	0.5400	1.4142	0.7900	1.2293	1.0400	0.7770
0.2950	0.4449	0.5450	1.4732	0.7950	1-1772	1.0450	0.7725
		L		L			

Table 1 (Continued)

Normalized Values of Radar Cross Section (SIGMA) of a Perfectly Conducting Sphere for Specified Radius/Wavelength (RATIO) Values

0.700		RATIO	STGMA	RATIO	SIRMA	RATIO	SIGMA
RATIO	SIGMA	RATIO	 		├°′′′′ - ┤		
1.0500	0.7348	1 1.3000	1.0951	1.5500	1.1124	1.8000	0.8977
1.0550	3 .876	1.3050	1.1209	1.5550	1.0934	1.4050	0.8911
1.0600	n 1987	1.3100	1.1436	1.5000	1.0723	1.8100	0.8876
1.0650	Q 95	1.3150	1.1626	1.5650	1.0496	1.8150	0.8873
1.0762	0.6435	1.3200	1,1774	1.5700	1.0260	1.4200	0.8901
1.0.50	0.8758	1.3250	1.1876	1.5750	1.0022	1.4250	0.8959
1.0800	0.9096	1.3300	1,1931	1.5800	0.9787	1.4300	0.9047
1.0850	0.9460	1.3350	1.1936	1.5850	0.9562	1.8350	0.9160
1.0900	0.9840	1.3400	1,1893	1.5900	n•9353	1.8400	0.9297
1.0950	1.0224	1.3450	1.1803	1.5950	0.9165	1.8450	0.9452
1.1000	1.0603	1.3500	1,1669	1.6000	0.9003	1.8500	0.9622
1.1050	1.0966	1.3550	1.1495	1.6050	0.8871	1.8550	0.9802
1,1100	1.1305	1.3600	1,1286	1.6100	0.8772	1.4600	0.9988
1.1150	1.1600	1.3650	1.1047	1.6150	0.8709	1.8650	1.0173
1.1200	1.1873	1.3700	1.0786	1.6200	0.8685	1.4700	1.0354
1 13 254	1.2088	1.3750	1.0510	1.6250	0.8693	1.8750	1.0525
1.136	1.2250	1.35")	1.0225	1.6300	0.8741	1.4800	1.0683
1.1350	1 . 7355	1.3850	0.9940	1.6350	0.8823	1.4850	1.0822
1,1400	, °4C0	1.3900	0.9663	1.6400	0.8938	1.4900	1.0940
45	1 36	1 1 3950	0.9400	1.6450	0.9082	1.8950	1.1032
1.15:	! i 2313	1.4000	0.9158	1.6500	0.9252	1.9000	1.1099
1.15%	2183	1.4050	n.8944	1.6550	0.9442	1.9050	1.1136
1.10	1.2001	1.4100	0.8763	1.6600	0.9646	1.9100	1.1145
1.165	. 1.1773	1.4150	0.8620	1.6550	0.9851	1.9150	1.1124
1.1700	1.1503	1.4200	0.8517	1.6700	1.0079	1.9200	1.1075
1.1750	1.1201	1.4250	8458	1.6750	1.0295	1.9250	1.0998
1.1800	1.9875	1.4300	0.8443	1.6800	1.0503	1.9300	1.0897
1.1850	1.0533	1.4350	0.8473	1.6850	1.0697	1.9350	1.0774
1900	1.0184	1.4400	n.8545	1.6900	1.0873	1.9400	1.0633
1.1950	0.9839	1.4450	0.8659	1.6950	1.1627	1.9450	1.0477
1.200"	0.9506	1.4500	n_8809	1.7000	1.1153	1.9500	1.0311
1.2050	0.9193	1.4550	1.8993	1.7050	1.1249	1.9550	1.0140
1.2100	0.6910	1.4600	0.9204	1.7150	1.1313	1.9600	0.9966
1.2150	0.8663	1.4650	n.9437	1.7150	1.1343	1.9650	0.9797
1.2200	0.0458	1.4700	n.9685	1.7200	1.1338	1.9700	0.9635
1.2250	0.8391	1.4750	1.9942	1.7250	1.1300	1.0750	0.9485
1.2300	0.8194	1.4800	1.0200	1.7300	1.1229	1.9800	0.9352
1.2350	0.8141	1.4850	1.0454	1.7350	1.1128	1,4850	0.9237
1.2400	0.8141	1.4900	1.0695	1.7400	1.0999	1.9900	0.9145
1.2450	0.8196	1.4950	1.0918	1./450	1.0846	1.9950	0.9078
1.2500	0.8301	1.5000	1 1.1117	1.7500	1.0674	2.0000	0.9037
1.2550	0.8455	1.5050	1.1296	1.7550	1.0486	2.0050	0.9022
1.2600	0.8652	1.5100	1,1423	1.7600	1.0289	2,0100	0.9035
1.2650	0.8887	1.5150	1.1522	1.7650	1.0097	2.0150	0.9075
1.2700	0.9152	1.5200	1.1542	1.7700	0.9887	2.0200	0.9140
1.2750	0.9441	1.5250	1.1602	1.7750	0.9692	2.0250	0.9229
1.2800	0.9745	1.5300	1.15#1	1.7800	0.9509	2.0300	0.9338
1.2850	1.0056	1.5350	1,1520	1.7850	0.9342	2.0350	0.9466
1.2900	1.0367	1.5400	1.1422	1.7900	0.9195	2.0400	0.9607
1.2950	1.0667	1.5450	1.1249	1.7950	0.9072	2.0450	0.9760
	1		1		1	1 1	1

Table 1 (Continued)

Normalized Values of Radar Cross Section (SIGMA) of a Perfectly Conducting Sphere for Specified Radius/Wavelength (RATIO) Values

		-					
RATIO	SIGMA	HATTO	STGMA	RATIO	SIGMA	RATIO	SIGMA
2.0500	0.9918	2.3000	1.0838	2.5500	0.9681	2.4000	0.9609
2.0550	1.0079	2.3050	1.0798	2.5550	0.9588	2.A050	0.9687
2.0600	1.0237	2.3100	1.0739	2.5600	0.9507	2.A100	0.9772
2.0650	1.0389	2.3150	1.0660	2.5650	0.9440	2.4150	0.9864
2.0700	1.0530	2.3200	1.0566	2.5700	0.9389	2.8200	0.9959
2.0750	1.0657	2.3250	1.0458	2.5750	0.9355	2.A250	1.0055
2.0800	1.0767	2.3300	1.0339	2.5800	0.9339	2.A300	1.0149
2.0850	1.0857	2.3350	1.0213	2.5850	0.9341	2.A350	1.0240
2.0900	1.0924	2.3400	1.0082	2.5900	0.9361	2.4400	1.0324
2.0950	1.0968	2.3450	1.9451	2.5950	1.9398	2.8450	1,0399
2.1000	1.0986	2.3500	n.9824	2.6000	0.9452	2.8500	1.0464
2.1050	1.0979	2.3550	0.9702	2.6050	0.9521	2.8550	1.0516
2.1100	1.0947	2.3600	0.9590	2.6100	0,9602	2.4600	1.0555
2.1150	1.0890	2.3650	1.9490	2.6150	0.9694	2.4650	1.0579
2.1200	1.0812	2.3700	n.9405	2.6200	0.9794	2.4700	1.0589
2.1250	1.0714	2.3750	n.9337	2.6250	0.9900	2.4750	1.0583
2.1300	1.0598	2.3800	0.9286	2.6300	1.0008	2.4800	1.0562
2.1350	1.0468	2.3850	0.9259	2.6350	1.0115	2.A850	1.0527
2.1400	1.0328	2.3900	0.9251	2.6400	1.0220	2.A900	1.0478
2.1450	1.0181	2.3950	0.9263	2.6450	1.0318	2.8950	1.0417
2.1500	1.0031	2.4000	0.9295	2.6500	1.0408	2.9000	1.0347
2.1550	2686.0	2-4050	0.9347	2.6550	1.0487	2.4050	1.0267
2.1600	0.973A	2.4100	0.9416	2.6600	1.0553	2.9100	1.0182
2.1650	0.9604	2.4150	0.9501	2.6650	1.0605	2.4150	1.0093
2.1700	0.9481	2.4200	0.9509	2.6700	1.0641	2.9200	1.0002
2.1750	0.9374	2.4250	0.9706	2.0750	1.0660	2.9250	0.9912
2.1800	0.9286	2.4300	r. 982's	2.6800	1.0662	2.9300	0.9825
2.1850	0.9218	2.4350	n.9946	2.6850	1.0647	2.9350	0.9744
2.1900	0.9172	2.4400	1.0068	2.6900	1.0615	2.9400	0.9670
2.1950	0.9150	2.4450	1.0189	2.6950	1.0568	2.9450	0.9606
2.2000	0.9151	2.4500	1.0304	2.7000	1.0506	2.9500	0.9554
2.2050	0.9175	2.4550	1.0411	2.7050	1.0432	2.9550	0.9514
2.2100	0.9222	2.4600	1.0508	2.7100	1.0348	2.9600	0.9487
2.2150	0.9290	2.4650	1.0590	2.7150	1.0255	2.9650	0.9474
5.5500	0.9378	2.4700	1.0658	2.7200	1.0156	2.9700	0.9476
2.2250	0.9482	2.4750	1.0708	2.7250	1.0055	2.9750	0.9492
2.2300	0.9600	2.4800	1.0739	2.7300	0.9953	2.9800	0.9522
2.2350	0.9729	2.4850	1.0751	2.7350	0.9853	2.9850	0.9565
2.2400	0.9865	2.4900	1.0744	2.7400	0.9759	2.9900	0.9619
2.2450	1.0004	2.4950	1.0718	2.7450	0.9672	2.9950	0.9684
2.2500	1.0143	2.5000	1.0674	2.7500	0.9594	3.0000	0.9757
2.2550	1.0278	2.5050	0612	2.7550	0.9529	3.0050	0.9836
5.5900	1.0406	2.5100	1.0535	2.7600	0.9476	3.0100	0.9920
2.2650	1.0523	2.5150	1.0446	2.7650	0.9439	3.0150	1.0005
2.2700	1.0626	2.5200	1.0345	2.7700	0.9417	3.0200	1.0090
2.2750	1.0712	2.5250	1.0237	2.7750	0.9411	3.0250	1.0173
5.5800	1.0780	2.5300	1.0124	2.7800	0.9421	3.0300	1.0251
2.2850	1.0827	2.5350	1.0008	2.7850	0.9447	3.0350	1.0323
5.5900	1.0853	2.5400	0.9894	2.7900	0.9488	3.0400	1.0386
2.2950	1.0856	2.5450	0.9784	2.7950	0.9542	3.0450	1.0438
£ 9 € > 3 0	'*****		"•]]	1	J L	

Table 1 (Continued)

Normalized Values of Radar Cross Section (SIGMA) of a Perfectly Conducting Sphere for Specified Radius/Wavelength (RATIO) Values

RATIO	SIGMA	HATTO	STGMA	RATIO	SIGMA	RATIO	SIGMA
3.0500	1.0479	3.3000	1.0075	3.5500	0.9620	3.9000	1.0159
3.0550	1.0508	3.3050	1.0002	3.5550	0.9636	3.4050	1.0207
3.0600	1.0523	3.3100	1 0.9930	3.5600	0.9662	3.A100	1.0249
3.0650	1.0524	3.3150	n.9860	3.5650	0.9697	3.8150	1.0285
3.0700	1.0513	3.3200	0.9794	3.5700	0.9740	3.A200	1.0314
3.0750	1.0487	3.3250	0.9735	3.5750	0.9789	3.8250	1.0334
3.0000	1.0450	3.3200	1.9643	3.5800	0.9845	3.8300	1.0346
3.0850	1.0401	3.3350	n.9640	3.5850	0.9904	3.A350	1.0348
3.0900	1.0342	3.3400	0.9607	3.5900	0.9966	3.8400	1.0341
3.0950	1.0275	3.3450	n.9585	3.5950	1.0029	3.8450	1.0326
3.1000	1.0201	3.3500	1.9575	3.6000	1.0090	3.8500	1.0302
3.1050	1.0123	3.3550	0.9576	3.6050	1.0150	3.8550	1.0271
3.1100	1.0042	3.3600	1.9588	3.6100	1.0205	3.8600	1.0233
3.1150	0.9961	3.3650	0.9612	3.6150	1.0235	3.4650	1.0189
3.1200	0.9881	3.3700	0.9646	3.6200	1.0298	3.8700	1.0140
3.1250	0.9806	3.3750	0.9689	3.6250	1.0333	3.8750	1.0088
3.1300	0.9737	3.3800	0.9741	3.6300	1.0359	3.8800	1.0034
3.1350	0.9675	3.3850	0.9800	3.6350	1.0376	3.8850	0.9980
3.1400	0.9622	3.3900	0.9864	3.6400	1.0384	3.8900	0.9927
3.1450	0.9580	3.3950	1.9931	3.6450	1.0381	3.8950	0.9876
3.1500	0.9550	3.4000	1.0000	3.6500	1.0368	3.9000	0.9829
3.1550	0.9532	3.4050	1.0069	3.6550	1.0346	3.9050	0.9787
3.1600	0.9527	3.4100	1.0136	3.6600	1.0315	3.9100	0.9750
3.1650	0.9535	3.4150	1.0200	3.6650	1.0276	3.9150	0.9721
3.1700	0.9556	3.4200	1.0258	3.6700	1.0230	3.9200	0.4700
3.1750	0.9588	3.4250	1.0300	3.6750	1.0179	3.9250	0.9686
3.1800	0.9632	3.4300	1.0352	3.6800	1.0123	3.9300	0.9681
3.1850	0.9685	3.4350	1.0345	3.6850	1.0065	3.9350	0.9585
3.1900	0.9747	3.4400	1.0409	3.6900	1.0005	3.9400	0.9698
3.1950	0.9815	3.4450	1.0422	3.6950	0.9946	3.9450	0.9718
3.2000	0.9888	3.4500	1.0424	3.7000	0.9889	3.9500	0.9746
3.2050	0.9964	3.4550	1.0415	3.7050	0.9A35	3.9550	0.9781
3.2100	1.0041	3.4600	1.0395	3.7100	0.9786	3.9600	0.9821
3.2150	1.0117	3.4650	1.0365	3.7150	0.9743	3.4650	0.9866
3.220v	1.0189	3.4700	1.0326	3.7200	0.9707	3.9700	0.4915
3.2250	1.0257	3.4750	1,0279	3.7250	0.9680	3.9750	0.9966
3.2300	1.0317	3.4800	1,0225	3.7300	0.9661	3.9800	1.0018
3.2350	1.0370	3.4850	1.0165	3.7350	0.9451	3.9850	1.0069
3,2400	1.0412	3.4900	1,0102	3.7400	0.9651	3.9900	1.0118
3,2450	1.0443	3.4950	1.0036	3.7450	0.9661	3.9950	1.0164
3.2500	1.0463	3.5000	0.9971	3.7500	6.9679	4.0000	1.0206
3.255v	1.0471	3.5050	0.9906	3.7550	0.4706	4.0050	1.0242
3.2600	1.0467	3.5100	1 0.9845	3.7600	0.9741	4.0100	1.0272
3.2650	1.0450	3.5150	r.97HA	3.7650	1.9783	4.0150	1.0295
3.2700	1.0422	3.5200	0.9737	3.7700	0.9831	4.0200	1.0310
3.2750	1,0344	3.5250	1.4644	3.7750	0.9983	4.0250	1.0316
3.2900	1,0335	3.5300	0.9660	3.7800	0.9938	4.0300	1.0315
3,2850	1.0279	3.5350	0.9634	3.7850	0.9495	4+0350	1.0306
3,2900	1.0215	3.5400	0.4619	3.7900	1.0051	4.0400	1.0288
3.2950	1.0147	3.5450	r.9615	3.795n	1.0106	4.0450	1.0263
		L	الــــــــــــــــــــــــــــــــــــ	L		L	

Table 1 (Continued)

Normalized Values of Radar Cross Section (SIGMA) of a Perfectly Conducting Sphere for Specified Radius/Wavelength (RATIO) Values

RATIO	SIGMA	HATTO	STOMA	RATIO	SIGMA	RATIO	SIGMA
4.0500	1.0232	4.3000	0.9770	4.5500	0.9945	4.4000	1.0223
4.0550	1.0195	4.3050	0.9751	4.5550	0.9984	4.R0=0	1.0219
4.0600	1.0153	4.3100	0.9739	4.5600	1.0024	4.#100	1.0208
4.0650	1.0107	4.3150	0.9734	4.5650	1.0063	4.4150	1.0192
4.0700	1.0059	4.3200	1.9736	4.5700	1.0100	4.4200	1.0172
4.0750	1.0010	4.3250	0.9745	4.5750	1.0135	4.4250	1.0147
4.0800	0.9960	4.3300	0.9761	4.5800	1.0166	4.4300	1.011#
\$.0H50	0.9913	4.3350	1.9744	4.5850	1.0192	4.4350	1.0086
4.0900	0.9867	4.3400	n.9812	4.5900	1.0214	4.8400	1.0053
4.0950	0.9826	1 4.3450	1.9845	4.5950	1.0230	4.8450	1.001#
4.1000	0.9790	4.3500	0.9882	4.6900	1.0239	4.4500	0.4383
4.1050	0.9760	4.3550	1.9923	4.6050	1.0243	4.4550	0.9949
4.1100	0.9736	4.3600	0.9965	4.6100	1.0240	4.4600	0.9916
4.1150	0.9720	4.3650	1.0008	4.6150	1.0232	4.8650	0.9886
4.1200	0.9711	4.3700	1.0051	00500	1.0217	4.4700	0.9859
4.1250	0.9710	4.3750	1,0093	4.6250	1.0196	4.A750	0.9836
4.1300	0.9717	4.3800	1.0132	4.6300	1.0171	4.8800	0.9817
4.1350	0.9731	4.JR50	1.0167	4.6350	1.0141	4.RASO	0.9804
4.1400	0.9753	4.3900	1.0198	4.6400	1-0108	4.4900	0.9796
4-1450	0.9781	4.3950	1.0224	4.6450	1.0072	4.4950	0.9793
4.1500	0.9815	***000	1.0244	4.6500	1.0035	4.9000	0.9796
4.1550	0.9854	4-4050	1.0257	4.6556	0.9997	4.9050	0.9804
4.1600	0.9897	4.4100	1.0264	4.6500	0.9959	4.9100	0.9818
4.1650	0.9942	4.4150	1.0264	4.6650	0.9923	4.4150	0.9836
4.1700	0.9949	4.4200	1.0257	4.6700	0.9889	4.9200	0.9859
4.1750	1.0036	4.4250	1.6244	4.6750	0.9858	4.9250	0.9886
4.1P0U	1.0042	4.4300	1_0224	4.6800	0.9831	4.9300	0.9915
4.1850	1.0126	4.4350	1.0198	4.6850	0.9809	4.9350	0.9947
4.1900	1.0167	4.4400	1.0168	4.6900	0.9792	4.9400	0.9980
4.3950	1.0203	4.4450	1.0133	4.6950	0.9781	4.4450	1.0014
4.2000	1.0233	4.4500	1.0095	4.7000	0.9776	4.9500	1.0047
4.2050	1.025A	4-4550	1.0055	4.7050	0.9776	4.9550	1.0079
4.2100	1.0276	4.4600	1.0014	4.7100	0.9783	4.4600	1.0109
4.2150	1.0586	4.4650	1 0.4973	4.7150	n.0796	4.9650	1.0136
4.2200	1.0589	4.4700	1.4932	4.7200	0.9814	4.9700	1.0159
4.2250	1.0285	4.4750	0,9894	4.7250	0.983"	4.9750	1.0178
4.2300	1.0273	4.4800	1.9459	4.7300	1.9864	4.9800	1.0192
4.2350	1.0254	4.4A50	N.9828	4.7350	0,9895	4.4850	\$.0202
4.2400	1.0229	4.4900	10.4802	4.7400	U-465W	4.9900	1.0206
4.2450	1.0198	4.4950	0.9781	4.7450	n.9964	4.4950	1.0205
4.2500	1.0162	4.5000	n,9766	4.7500	1.0000	5.0000	1.0198
4.2550	1.0122	4.5 050	n.9758	4.7550	1.0037	5.0050	1.0187
4.2600	1.0079	4.5100	1.9756	4.7660	10072	5.0100	1.0170
4.2650	0.9949	4.5150	0.9761	4.7650	1.0105	5.0150	1.0149
4.2750	0.9945	4.5250	n.9772 n.9744	4.7700	1.0136	5.0200	1-0125
4.2400	0.9902	4.5300	0.9812	4.7800	1.0163	5.0250	1.0097
4.2850	0.9862	4.5350	n.9840		1.0185	5.0300	1.0067
4.2900	0.9826	4.5400	0.9872	4.7850 4.7900	1.0203	5.0350	1.0036
4.2950	0.9795	4.5450	0.9907	4.7950	1.0333	5.0400	1.0004
706730	******	7.34.30	"• ***'	401,320	1.0555	5.0450	0.9971

the plotting; this subroutine interpolates additional points where they are needed, using a critic interpolating polynomial.

The program was then modified so that it calculates the radar cross section, in both square meters and square feet, of a specific sphere at a specific frequency. Printouts of sample calculations using this program are shown as Figs. 2, 3, and 4. A listing of the program is given later in this report.

MATHEMATICAL FORMULAS

Kerr¹ gives the following equation (p. 451) for the radar cross section σ of a sphere of radius a:

$$\frac{\sigma}{\pi a^{2}} = \frac{1}{\rho^{2}} \left| \sum_{n=1}^{\infty} (-1)^{n} (2n+1) (a_{n}^{s} - b_{n}^{s}) \right|^{2}$$
 (1)

where $\rho=2\pi a/\lambda$, λ is the wavelength, and the a_n^s and b_n^s are terms of a "multipole expansion" -- that is, these terms are proportional to the amplitudes of magnetic and electric multipoles induced in the sphere by the incident wave. When the sphere is perfectly conducting (Kerr, p. 452):

$$a_n^s = -\frac{j_n(\rho)}{h_n(z)(\rho)}$$
 (2)

$$b_{n}^{s} = \frac{-[\rho j_{n}(\rho)]'}{[\rho h_{n}^{(2)}(\rho)]'}$$
(3)

where the primes denote differentiation with respect to the argument. The functions j_n and $h_n^{(2)}$ are, respectively, the spherical Bessel function of the first kind, and the spherical Hankel function of the second kind.

A subroutine to evaluate j_n , j_n , and also the spherical Bessel function of the second kind and its derivative, y_n and y_n , was obtained from the NRL CDC-3800 program library.* No subroutine for evaluating the

^{*}Library Catalog Identification C3-UCSD-BFFGH. Subroutine BFFGH was written by Frank Hagin of Texas Instruments, Dallas Texas.

CALCL																																						
REFFE																											K A	g	1	Θ	h	A	VE	ESa	£			
RAD L	" A	В	S	FH	ÌΙ	E	;	V	٩L		1	. 3	,	F	٠,	J	4 !	51	,	(E C	•	7	9	•			-										
=																				į.																		
=			-		-			- 1	-	-	- •	•			• •	•	- •		•	•	• •	•	- •	•	•	•	• •	•	₩									
INPUT	1	DA	۲.	A	A	ΝΓ)	DI	=R	I	VE	D	ſ	QL	JΔ	N	T :	Ţ	I	ţ Ş	5	÷	•															
	_						_		_	_																											_	_
	R,	A D	Į	JS		۲	١E	T	: F	S	•	•	•	ę e		•	•	• •	•	• 1		•	• •	•	•	•	• •	•	•	• (• •	•	•			1	-	
	R	A D	Ų	US		F	E	F	1	٠		•	•	• •		•			•	. (•			•	•		•	•	•			•				•	000
	R	A D	A	R	F	RF	0	U	ΞN	Ċ,	٧,	,	M	E (àδ	Н	FF	₹ 1	Z	1	, ,	•			•	•		٠	•	•		•	•			131	3,	60
	W	A۷	E	ĻΕ	N	G 1	ľH		۲	E.	TE	R	S	•				. ,		. (• (•	.,					7	۶,	16
	R	A I)	1	VS	1	WA	١V	E	LE	N	G 1	Н	-	R	\ T	1	ନ		•	• (t •	•	• (•										D . :		
	C	ĮR	C	UM	IF	EF	₹E	N(Ĵ٤	/1	W A	١V	٤I	LE	- N	ıG	TI	-	R	A'	1	0	1		•	•	, ,	•	•	•			•		4	4 , 4	42	:70
CUTPL	ĮΤ	[]	A.	T A	i	- •	•																															
	N	UM	В	ER	ł	e f	,	SI	ĒF	11	5	ŝ	TI	EF	3 M	١S	,	4 [a D	FI																		12
	R	ΔD	ΙΔÍ	F	c	R	āS	S	S	E	ר, ז	1	01	N.		Ř.	ดเ	5 m	IA	1	7	Ē	r,	Ť	้ด	•	a P	7	Ť	Ċ	A I	•	•		,	0,0	3 F	
	R	A D) A	F	č	RI	15	5	ç	F	ĊĪ	i	e e	N	, -	S	n I		ê	Ë.	M	L	7 (R	2	•	٠.	1	• '	٠.	^ •	•			•	7 (
	R	A D	1 🛦	G	r	R f	, C	S	ç	=	C 1	•	<u>a</u>	Ni.		Š	ni ni		9	E		<u> </u>	- 1	- '`			• •	•	•	•	• •	•	•			, , , 5 . :		
	,	A D	_	1.	U	110	3 🔾	, , ,	_	-	ا ما	٠	Ų,	un 1	,	J	(4 1	~	-	r	•			•	•	•	• •	•	•	•	•	•	•		/:	7 į ·	, T C	· C =

Fig. 2 - Computer printout from Program SPHERE for radius 5 feet and frequency 138.6 MHz.

CALCULATION OF PADAR CROSS SECTION OF SPHERE REFFRENCE - KERP. #PROPAGATION OF SHORT RADIO WAVES# RAD LAB SFRIES VOL. 13, P. 451, EQ. 29, INPUT DATA AND DERIVED QUANTITIES --50,00 RADIUS. CENTIMETERS 1,640 RADIUS, FEET 1000,00 RADAF FREQUENCY, MEGAHERTZ 29,98 WAVELENGTH. CENTIMETERS 1,6678 RADIUS/WAYFLENGTH RATIO 10,4792 CIRCUMFERENCE/WAVELENGTH RATIO EUTPUT DATA --20 NUMBER OF SERIES TERMS ADDFD 0,9984 HADAR CROSS SECTION, NORMALIZED TO OPTICAL 0,7841 RADAR CROSS SECTION, SQUARE METERS RADAR CRASS SECTION, SQUARE FEFT 8,4401

Fig. 3 - Computer printout from Program SPHERE for radius 0.5 meter and frequency 1000 MHz.

CALCL	-		•																							-															
refer																											F	A	D	I	0	h	I A	V	E.S	*					
RAD L	, A 8		iE	R	1 6	: 5	١	V	L	•	1	.3	ŧ	F	٠,		4	5	L e		E	, c)	2	9	ŧ															
							.						_	• •			_				- ,	.		_		•				4											
						_																							-												
INPUT	• r	۱ ۸ ۱	7 4			מ	1	٠.	ے .	11	, c	n		n i	1 4		•	,	7 7	٤:	ς.		_																		
THEGI	_		۰.			10	,		, F	•		. U		G (ى ر		'	٠	, 1	r	-	•	, –																		
	RA	D	EU	IS		C	٤١	v 1	1	ME	- 1	Ë	R	S										•															6	. 1	0 0
	R																																						?	•	36
	R	D	A F		F	RE	Q	UE	٨	C	γ,	, -	M	E(31	H	F	R	TZ	•	•	• (•	•	•	•		•	•	•						10) (0	•	0 0
	WA																																								98
	R/																																								1
	C	R	ÇU	M	F	:R	E	NC	E	/1	M A	۷	E	Ll	E۱	'G	T	H	F	A §	7	I (9	•	•	•	• (•	•	•	•	• •	• •	•			1	L +	2	5	75
EUTPL	Ţ	D	A T	A	•																																				
	NL	IM	RF	Ę.	•	35		SE	·Ř	11	:: <u> </u>	:	T	۴I	3 1	15		Δi	ī i f	١F	C									_	_										6
	R																																				:	٠,	7	4	_
	·																																		3,						
	R/																																		·						
																																			3,						

Fig. 4 - Computer printout from Program SPHERE for radius 0.06 meter and frequency 1000 MHz.

spherical Hankel function was available. However, the problem was solved by the use of an expression relating the spherical Hankel function to the spherical Bessel functions. The necessary relation is given by Messiah (5):

$$h_k^{(2)} = j_k - iy_k$$

$$\therefore h_k^{(z)'} = j_k' - iy_k'$$

Since Subroutine BFFCH gives j_k , j_k ', y_k , and y_k ', it is a simple matter to obtain h_k ⁽²⁾ and h_k ⁽²⁾. (To interpret the relations given by Messiah, it is necessary to note that his function n_k is the negative of y_k , and his functions h_k ⁽⁺⁾ and h_k ⁽⁻⁾ are equal to ih_k ⁽¹⁾ and $-ih_k$ ⁽²⁾, respectively.)

For very small values of ρ, the approximation*

$$\frac{\sigma}{\pi a^2} = 9\rho^4 = 1.4027 \ (a/\lambda)^4 \times 10^4$$
 (4)

can be used; this is the well known Rayleigh scattering law (for back scattering).

For very large values of ρ (or a/λ), the asymptotic result is

$$\frac{\sigma}{\pi a^2} \approx 1$$

As will be discussed in some detail, this approximation is valid to 4 significant figures for $a/\lambda > 44$ (and possibly for somewhat smaller values).

FORTRAN PROGRAM

The program written to compute the cross section is simply a Fortran algorithm to evaluate Eq. (1). The summation of multipole terms (which are complex numbers) is carried to the point to which the fractional change in σ

^{*}Reference 1, page 452.

due to the last term added is less than 10^{-6} . No exact analysis of the accuracy obtained by this procedure was made; however, a check on accuracy is afforded by the knowledge that as a/λ becomes large, the envelope of the oscillations of σ asymptotically approaches πa^2 . The numerical results obtained for large a/λ agree with this prediction. To test this, the program was run with the value of a/λ doubled for each successive calculation. The results are shown in Table 2. The initial value of a/λ was .0850 and this was doubled until the value 21.76 was reached, at which time the run terminated. An additional run was then made for the values $a/\lambda = 44$ and $a/\lambda = 88$. The second column of the table gives the number of series terms summed before the above-stated criterion was met (fractional change in $\sigma < 10^{-6}$).

a/\	No. of Terms Summed ,	σ/πa ²
.0850	5	0.6800
.1700	6	3.6208
.3400	7	1.5845
.6800	11	0.7001
1.3600	17	1.1286
2.7200	28	1.0156
5.4400	47	0.9929
10.8800	83	0.9970
21.7600	158	0.9997
44.0000	303	1.0000
88.0000	586	1.0000

It is seen that for $a/\lambda \ge 44$, the values of $\sigma/\pi a^2$ differ from 1 by less than 5 x 10^{-5} . This suggests that the calculation is accurate to at least 4 significant figures for values of a/λ up to at least 88. To make sure that the values 1.0000 were not obtained "by accident" at $a/\lambda = 44$, the program was run with values $a/\lambda = 44.04$ and 44.045. These numbers were chosen to insure that if a/λ just happened to result in $\sigma/\pi a^2 = 1.0000$ when the value is still actually oscillating appreciably, the oscillation would be revealed. The results, printed out to additional decimal places, were $\sigma/\pi a^2 = 0.999982$ and 0.999981, respectively. It thus seems reasonable to conclude that the calculation does have at least 4-significant-figure accuracy.

Since for large values of a/λ the number of terms summed almost doubles with each doubling of a/λ , a point would eventually be reached at which the accuracy would be reduced by computer round-off error. However, in the CDC-3800 this event occurs at a value of a/λ well above the point at which the approximation $\sigma/\pi a^2 \approx 1$ can be assumed to 4 significant figures. It is therefore recommended that for values of $a/\lambda > 44$, the optical approximation $\sigma/\pi a^2 = 1.000$ be used instead of making an actual computer calculation.

The time required for the calculation with the CDC-3800 is approximately 58 milliseconds per series term, not including compilation time and input-output operations. Therefore calculation of single values of σ for the usual range of values of a/λ requires only a few seconds at most.

A listing of the Fortran program that has output of the type shown in Figs. 2-4 follows. The input to this program is a data card or cards (one for each combination of sphere size and frequency to be calculated). Any number of data cards can be stacked at the appropriate place in the deck, and followed by an end-of-file card. The program will then read each card, do the appropriate computations, and print out the results. The data card format is:

Card Columns	Quantity	Format Specification
1-10	Radius of sphere	F10.
11-20	Radar frequency	F10.
30	Radius units designator	11

The radius of the sphere can be given in either meters or feet. If it is given in meters, Column 30 is left blank. If it is given in feet, a 1 is punched in Column 30. The radar frequency is given in megahertz. Both the radius and the frequency can be punched as floating-point numbers anywhere within the specified fields; a decimal point must be included unless the numbers are integers and are right-adjusted in the field.

As mentioned in the introduction, the computer program that follows was written before the paper of Adler and Johnson (3) was called to the author's attention. They describe a method of computing the spherical Bessel and Hankel functions based on a recursion relation. Use of this method instead of Subroutine BFFGH would have been somewhat more direct and possibly would reduce computing time; however, since the program as it stands works well and runs without excessive use of computer time, it was decided not to change it.

```
PROGRAM SPHERE
      COMPUTES RADAR CROSS SECTION OF A PERFECTLY CONDUCTING SPHERE.
      MATHEMATICS GIVEN BY KERR, *PROPAGATION OF SHORT RADIO WAVES*
C
C
      RAD LAB SERIES VOL. 13 (MCGRAW-HILL, 1950), P. 451, EQ. 29.
      PROGRAM WRITTEN BY L. V. BLAKE, NRL CODE 5370, THIS VERSION 3/1/72
C
C
      COMPUTES AS MANY CASES (SPHERE SIZES, FREQUENCIES) AS THERE ARE
C
      DATA CARDS. RADIUS OF SPHERE, COLS, 1-10, FREQUENCY MEGAHERTZ.
C
C
      COLS. 11-20. IF MADIUS IS GIVEN IN FEET, PUNCH A 1 IN COL. 30.
      IF RADIUS IS GIVEN IN METERS, NO PUNCH (OR ZERO PUNCH) IN COL. 30.
C
      TYPE COMPLEX HN2, DHN2, ANS, BNS, TERM, SUM
      DATA (PI=3.1415926536), (M=0)
  500 READ SO, RADIUS, FRONCY, IUNITS
      IF (E0F,60) 88,89
   88 STOP
   89 IF (IUNITS, EQ, 1) 31,32
   31 RADFT=RADIUS
      RADIUS=RADIUS=.3048
      G6 T6 33
   32 RADFY=RADIUS/,3046
   33 WVLGTH=299,7925/FRONCY
      RATIO = RADIUS/WVLGTH
      RHO = 2. PJ = RATIO
      N = 0
      QSO = 1.
      IKO = 1
      Y = 1:
      N = 0
      SUMLAST = 0:
      ISIGN = 1
      SUM = CMPLX(0..0.)
    1 N = N+1
      ISIGN * ISIGN*(-1)
      CALL HFFGH(RHO, N. HJ, DHJ, DDRJ, BY, DBY, DDRY, QSQ, IQK, Y)
      HN2 = CMPLX(BJ, +BY)
      DHN2 = CMPLX(DBJ,-DBY)
      SUH/LB- = SUA
      BNS = ~(RMO*DBJ+BJ)/(HH0*DHN2+HN2)
      TERM = ISIGN*(2*N*1)*(*NS-BNS)
      SUM = SUM+TERM
      ABSUM2 = (CABS(SUH1)++2
      DIFFREARS ((ABSUMZ-SUMLAST)/ABSUMZ)
      IF (DIFFR ,LT, 1, 1-6) 60 TO 9
      SUMLAST = ABSUM2
      GO TO 1
    9 SIGNML
               * ABSUM2/(RH0+RH0)
      SIGHA=SIGNML+PI+RADIUS+RADIUS
      SIGFT=SIGH4+10.76591
      IF (M, EQ. 0) 80,81
   80 H=1
```

GO TO 82 b1 PRINT 998 b2 PRINT 992 PRINT 99

```
PRINT 990
   PRINT 991
   PRINT 999
   PRINT 100
   IF (RADIUS ,GE. 1,) 40,41
 40 PRINT 101, RADIUS
 43 PRINT 102, RADFT
   GO TO 42
 41 RADCM#RADIUS # 100.
   PRINT 1011, RADOM
   IF (RADFT ,GE, 1,) 43,44
 44 RADINARADFT+12.
   PRINT 1012, RADIN
 42 PRINT 103, FRONCY
   IF (WYLGTH.GE.1.) 50,51
 50 PRINT 104, WVLGTH
   GO TO 52
 51 WVLGHH#WVLGTH+100.
   PRINT 105, WVLGHH
 52 PRINT 106, RATIO
   PRINT 107, RHO
   PRINT 108
   PRINT 1080, N
   PRINT 109, SIGNML
   PRINT 110, SIGMA
   IF (SIGMA .LT. 1. .OR. SIGMA .GT. 99999.9999) PRINT 112, SIGMA
   PRINT 111, SIGFT
   IF (SIGFT .LT. 1, .0R. SIGFT .GT. 99999.9999) PRINT 113, SIGFT
   GO TO 500
 50 FORMAT(2F10,2,9X,11)
998 FORMAT(1H1)
992 FORMAT(/////)
 99 FORMAT(15X; *CALCULATION OF RADAR CROSS SECTION OF SPHERE* )
990 FORMAT(15%, *REFERENCE - KERR, *PROPAGATION OF SHORT RADIO WAVES;**)
991 FORMAT(15x. + RAD LAB SERIES VOL. 13, P. 451, FQ. 29.
999 FORMAT(15x, +-----
100 FORMAT(15x. *INPUT DATA AND DERIVED QUANTITIES --*/)
1011 FORMAT(20X, *RADIUS, CENTIMETERS ,...,.........., F10.2
1012 FORMAT(20x, *RADIUS, INCHES ............................, F10.2
108 FORMAT(15X, +OUTPUT DATA --+/)
199 FORMAT(20x, *RADAR CROSS SECTION, NORMALIZED TO OPTICAL *, F10.4
110 FORMAT(20x, *RADAR CROSS SECTION, SQUARE METERS ....., F10,4
```

```
SUBROUTINE BFFGH (Z, L, BA, BJP, BJPP, BB, BYP, BYPP,QSQ,[KQ,Y)
      C3 UCSD BFFGH
C
      DIMENSION 8J(5), BJL(5), BY(5), BYL(5),R(3)
      YSAVE # Y
      IF (Y - 1_1) 102, 102, 101
  101 Y = 1.
  102 FL = L
      L1=L+1
      ZB = Z
      ZE = 0.
      FL1 = FL + 1.
      ZSQ = Z \cdot Z
      FLR = SQRTF (FL + FL1)
      SINE # SINF(Z)
      COSE = COSF(7)
      IF (IKQ - 1) 104,104,108
  100 IF (Z - FLR) 800,800,900
  104 IF (Z-1,) 300,200,200
  109 IF (QSQ) 110, 110, 104
  110 IF (Z - 1,) 500, 400, 400
  200 BJ(1) = SINE / 4B
      SIGN = 1.
      ER = -Y
      BY(1) = ER + COSE
  210 BY(1) * BY(1) / ZB
      ER = UJ(1) / 28
IF (SIGN) 211,242,212
  211 ER . ER
  212 8J(2) = (8Y(1)/Y + ER)/Y
      BY(2) = (BY(1)/2 - Y*BJ(1))*Y
      FLX = 2.
  221 TEMP #(2, *FLX =1,)/Z
      BJ(3) = (TEMP + BJ(2) + BJ(1)/Y)/Y
      IF (SIGN) 223,224,224
  223 BJ(3) = -4J(3)
                   TEMP . BY(2)
  224 ER
      BY(3) = Y \bullet BY(1)
      IF (SIGN) 225,226,226
  225 BY(3) = -8Y(3)
  226 BY(3) =((ER - BY(5)))+ Y
       IF (FLX -FL1) 222,228,728
  228 IF (SIGN) 430,430,100
  222 \text{ BJ(1)} = \text{BJ(2)}
      BY(1) = EY(2)
      BJ(2) = BJ(3)
      BY(2) = BY(3)
      FLX = FLX + 1.
      GO TO 221
  390 LX = L - 1
       SEXIT = 1,
  391 DO 320 I = 1, 3
  301 SUM? = 1.
      SUM1 = 1.
       TERM1 = 1.
       TERM2 = 1.
```

FM = 1.

```
TL = 2 + LX
302 TM = 2, + FM
    TERM1 =-TERM1 * ZSQ / (TM * (TL * TM * 1.)) * SEXIT
    TERM2 = TERM2 * 750 / (TM * (TL + TM + 1.)) * SEXIT
    OLD1 * SUM1
    OLD2 = SUM2
    SUM1 = SUM1 + TERM1
    SUM2 = SUM2 + TERM2
    DIFF = ABSF((OLD1 - SUM1) / SUM1) + ABSF((OLD2 - SUM2) / SUM2)
    IF (DIFF - .000001) 306, 306, 304
304 FM =FM + 1.
    GO TO 302
306 IX= 2 * LX- 1
    ASM = -1.
    IF (LX) 310, 310, 307
307 NO 306 J = 1, IX, 2
    AJ = J
LA * MZA = MZA BUE
310 \ ZYL = (Z / Y) ** LX
    ZYL1=ZYL + (Z / Y)
    IF (LX) 312, 312, 314
312 ASM1 = 1,
    GO TO 316
314 ALX = LX
    ASM1 = -ASM + (2, + ALX + 1,)
316 BJ(I) = ZYL + SUM1 / ASM1
    BY(I) = ASM + SUM2 / ZYL1
320 LX = LX + 1
    IF (SEXIT) 450,430,900
400 SIGN = -1,
    ER = EXPF (Z9)
    ERL = 1, / ER
    SNH = ,5 + (ER - ERL)
    CSH = ,5 + (ER + ERL)
    BJ(1) = SNH / ZH
    BY(1) * Y * CSH
    GE TO 210
500 LX = L - 1
SEXIT = -1.
    GO TO 391
430 KNT = 2
    BY(1) = Y/ZB
    BY(2) = Y + Y + (1. + ZB) / (2B + ZB)
563 BY(3) = (2.*FL@ATF(KNT) -1.)*Y*BY(2) / ZB + Y*Y*BY(1)
    IF (KNT-L-1) 582,581,581
582 BY(1) = BY(2)
    RY(2) = RY(3)
    KNT = KNT + 1
    G0 T0 583
561 EXZ = EXPF(+ZB)
    D\theta = 584 N = 1.3
564 BY(N) = BY(N) + EXZ
    If (ZU-1.) 600,580,580
560 IF (Z-4.+FLR) 700,600,600
600 ER = 2,+ FL + 1,
    BJP = (FL + BJ(1) / Y + FL1 + BJ(3) + Y) / ER
```

```
BYP = + (FL + RY(1) + Y + FL1 + RY(3) / Y) / ER
    LUC=1
    It (L.EQ.U) GO TO 110U
    BUPP = 2. • BUP / Z = (1. • FL • FL1 / ZS9) • BU(2)
    RYPP * 2. * RYP / 7
                         - (1. + FL + FL1 / 250) + HY(2)
    GU TO 950
800 A = 0.1
    14E = U
    8 = 0,35
    L1 = L+1
    FN1 = L
    IDX = -1
    FN2 = Z - 0.5 + SURTF(30.0 + 5 + 2)
    Zt = 0.
    11 = 2. * 7/(2.* + N1 + 1.)
    U2 = 2. * 7/(2.* + N2 + 1.)
    M1 = FN1 + 30, * (A + R*Ul*(2,*U1*U1)/(2. *(1. - U1 * U1)))
    M2 = 1 \times 12 + 30 = (A + 9 \times 12 \times (2, -1/2)/(2, +(1, -1/2))
    AL = L
    IF (FN2-AL) 801,801,802
801 AM = M1 + 1
    M = M1
    G0 T0 803
202 IF (M1 - M2) 801,801,805
805 AM = M2 +1
    M = M2
803 R(3) = 2/(2. + AM + 3.)
    N = M
RUR AN = N
    R(2) = Z/(2. + AN + 3. - Z + R(3))
    N = N - 1
    IF (L - N) 806,806,807
806 R(3) = R(2)
    GO TO 808
807 \text{ BJ}(3) = R(2)
    BJ(2) = 1.
    AL = 2+L +1
    BJ(1) = AL/Z - R(2)
809 LA = +L
    LA1=-L-1
    ALPHA = Z+Z+(BJ(2)+BY(1)+Y++LA-BJ(1)+BY(2)+Y++LA1)
    NA = L-1
    D0 812 N=1,3
    RJ(N)=(1./(Y++NA+ALPHA)) +3J(N)
ale NA=NA+1
    G6 T8 900
700 A = 0.1
    8 = .55
    FN = +,5 + SQRTF(30; + 8 + ZB)
    IF (FN+FL) 701,702,702
701 FN = FL
702 U = 2, • Z8 /(2, v FM + 1,)
    M = FN + 30, \bullet (A + B \bullet U) + 1,
    R(3) = ZB/2, *FLGATF(M) + 1,
    M = M - 1
705 AN = M
```

```
R(2) + ZB/(2, + AN + 1, + ZB + R(3))
    H = H - 1
     IF (M - L -1) 703,704,704
704 R(3) = R(2)
     G9 T8 705
703 \text{ BJ}(3) = \text{R}(2)
     BJ(2) = 1,
     BJ(1) =(2,+FL + 1,)/Z8 +R(2)
     ALPHA=ZB+\dot{Z}B+(BJ(2)+BY(1)/Y++L+BJ(1)+BY(2)/Y++L1)
     NA=FL+1.
     D0 712 N=1,3
     BJ(N) = (1./(Y++NA+ALPHA)) + BJ(N)
 712 NA=NA+1
     G9 T9 600
900 ER # 1, / (2, * FL * 1,)

8JP = ER * (FL * BJ(1) / Y * FL1 * BJ(3) * Y)
     BYP = ER * (FL * BY(1) * Y * FL1 * BY(3) / Y)
     LUC=2
     IF (L.EQ.0) GO TO 1100
     BJPP # (FL * FL1 / ZSU - 1.) * BJ(2) = 2. * BJP / Z
     BYPP * (FL * FL1 / ZSQ - 1.) * BY(2) - 2. * BYP / Z
 950 BA = BJ(2)
     BB # BY(2)
1000 Y = YSAVE
     RETURN
1100 IF (IKO.La,1)1120,1110
1110 IF (QSQ.LT,0)1150,1120
1120 BA=SIN(Z)/Z
     AB=-COS(Z)/Z
     IF (LOC-1)1130,1130,1140
1130 BJPP=2.+BJP/Z-(1,+FL+FL1/2SU)+BA
     BYPP=2, =BYP/Z-(1, +FL = + L1/ZSQ) = BB
     RETURN
1140 BJPP=(FL+FL1/ZSQ-1.)+UA-2,+UJP/Z
     BYPP=(FL+FL1/ZSQ+1.)+BB-2.+BYP/Z
     RETURN
1150 BA=SINH(Z)/Z
     PI=3,1415926535
     98=EXP(-Z)*P1/(2,*Z)
     IF (LGC-1)1130,1150,1140
     END
```

FUNCTION SINH(Z) SINH=(EXP(Z)-EXP(-Z))/2. END

REFERENCES

- 1. Kerr, D. E., "Propagation of Short Radio Waves," Radiation Laboratory Series Vol. 13, McGraw-Hill, New York, 1951, Chapter 6.
- Skolnik, M. I., "Introduction to Radar Systems," McGraw-Hill, New York, 1962, p. 41; also, "Radar Handbook," McGraw-Hill, New York, 1970, Chapter 27, p. 21.
- 3. Adler, S. B. and Johnson, R. S., "New Backscattering Computation and Tables for Dielectric and Metal Spheres," Applied Optics, 1 (No. 5): 655-660 (Sept. 1962).
- 4. Blake, L. V., "A 'French Curve' Computer Plotting Subroutine," NRL Memorandum Report 2335, Sept. 1971.
- 5. Messiah, A., "Quantum Mechanics," Vol. I, Wiley, New York, 1961; p. 489.