Esteganografía con Imágenes

Wilson Duván Arce Quintero

Esteganografía

Procedente del griego y cuyo significado es "escrito protegido"

Es la ciencia que estudia la ocultación de información en otra información

Protección de datos

Criptografía: codificación de datos

Esteganografía: disfrazar datos

Datos de una imagen (RGB)

RGB(Red Green Blue)

Es un modelo de color en el cual es posible representar un color mediante la mezcla por adición de tres colores primarios: rojo, verde y azul.

Datos de una imagen (RGB)

Un pixel está compuesto por cierta cantidad de cada uno de estos colores (*channels*).

Estos valores van de 0 a 255, el rango de valores que se puede representar con 8 bits (1 *byte*).

Datos de una imagen (RGB)

Cada canal al ser representado en su forma binaria, se compone de una parte que incluye el Bit Más Significativo o MSB (Most Significant Bit) y otra con el Bit Menos Significant bit) (Least Significant Bit)

Medios de aplicación

- Texto
- Imágenes
- Audio
- Video

Secret image Cover image Stego image

El método propuesto

Ocultar una imagen en otra, uniendo sus datos mas relevantes en una tercera.

- Secret image: Imagen a ocultar
- Cover image: Imagen que ocultara la secreta y será visible
- Stego image: Resultado que contiene ambas, la secreta y la visible

P	Pixel 0			Pixel 1			
R	G	В	R	G	В		
235	143	64	180	43	200		
58	104	2					
160	39						
255							

El método propuesto

Inicialmente se obtiene de cada imagen una estructura de datos que contiene los valores de cada canal, por pixel.

R

El método propuesto

Estos datos se llevan a su forma binaria.

Pixel from Image 1

R(11001010) G(00100110) B(11101110)

Pixel from Image 2

```
R(00001010)
G(11000001)
B(11111110)
```

New pixel from the new Image

```
R(11000000)
G(00101100)
B(11101111)
```

El método propuesto

Los cuatro bits mas significativos de la imagen secreta se ocultan entre los bits menos significativos de la imagen visible, uniéndose en la imagen resultado.

Aplicación del método

Secret image (512 x 512)

Cover image (512 x 512)

Obtención de matriz RGB

Secret image (512 x 512)

235	143	64	180			
58	104	2				
160	39					
255						
		/				

Obtención de matriz RGB en forma binaria

RGB matrix size: 1536 x 512

RGB matrix binary size: 12288 x 512

1	0	0	1	1		
1	0	1	0			
0	1	0				
0	1					
1						

Resultado

Original images

Stego image (512 x 512)

Recuperación de imagen secreta

Stego image (512 x 512)

Recovered secret image (512 x 512)

Resultado de pruebas

 Se realizaron pruebas con imágenes de diferentes tamaños.

Image size	CPU time (s)	GPU time (s)
512 x 512	0.0261931	0.0228917
1200 x 800	0.1070182	0.0859753
1600 x 748	0.1631308	0.1428814
7680 x 5022	3.9483769	3.3815264
8000 x 4500	3.1172331	3.2769439

Rendimiento

Conclusiones

- Aplicación
- Combinación
- Rendimiento

Muchas gracias

Wilson Duván Arce Quintero