Lecture 22

Network Security

Chapter 4

Key Distribution

Symmetric Key Distribution and User Authentication 4.2

Ways to achieve symmetric key distribution

- A key could be selected by A and physically delivered to B
- A third party could select the key and physically deliver it to A and B
- If A and B have previously and recently used a key, one party could transmit the new key to the other, using the old key to encrypt the new key
- If A and B each have an encrypted connection to a third-party C, C could deliver a key on the encrypted links to A and B

Terminologies

- Session key
- Permanent key
- key distribution center (KDC)
 - third party authority, centralized infrastructure
 - give permissions for two parties to communicate

Kerberos

4.3

Many-to Many Authentication

How do users prove their identities when requesting services from machines on the network?

Threats

- User impersonation
 - Malicious user with access to a workstation pretends to be another user from the same workstation
- Network address impersonation
 - Malicious user changes network address of his workstation to impersonate another workstation
- Eavesdropping, tampering, replay
 - Malicious user eavesdrops, tampers, or replays other users' conversations to gain unauthorized access

Requirements

- Security
 - against attacks by eavesdroppers and malicious users
- Transparency
 - users shouldn't notice authentication taking place
 - entering password is ok, if done rarely
- Scalability
 - Large number of users and servers

Kerberos

• scenario: users at workstations wish to access services on servers distributed throughout the network – many to many authentication

Kerberos

- a centralized authentication server provides mutual authentication between users and servers
 - a key distribution and user authentication service developed at MIT
 - works in an open distributed environment
- client-service model
- Kerberos protocol messages are protected against eavesdropping and replay attacks
- Kerberos v4 and v5 [RFC 4120]

A Simple Authentication Dialogue

- 1. C —> AS: ID_c | |P_c | |ID_v
- 2. AS -> C : Ticket = $E(K_V, [ID_C | AD_C | ID_V])$
- 3. C —> V: ID_c | | Ticket

- ID_{*} identifier
- P_c password of user
- AD_c network address of C
- K_v secret encryption key shared by AS and V

Cheat sheet

Allow for half of an A4 paper