

Análise e Síntese de Algoritmos Ordenação topológica. CLRS Cap. 22

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro ASA @ LEIC-T 2024/2025

Resumo

Ordenação Topológica

Algoritmo de Kahn Algoritmo de baseado na DFS

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica [CLRS, Cap.15]
 - Algoritmos greedy [CLRS, Cap.16]
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares

ASA @ LEIC-T 2024/2025

- Tópicos Adicionais
 - Complexidade Computacional [CLRS, Cap.34]

P.T. Monteiro

Ordenação Topológica

Motivação

Grafo que representa um conjunto de dependências ou precedências:

Ordenação Topológica:

P.T. Monteiro ASA @ LEIC-T 2024/2025 3/14 P.T. Monteiro ASA @ LEIC-T 2024/2025 4/14

Ordenação Topológica

Caminhos em Grafos

Dado um grafo G = (V, E), um caminho p é uma sequência $\langle v_0, v_1, ..., v_k \rangle$ tal que para todo o i, $0 \le i \le k - 1$, $(v_i, v_{i+1}) \in E$

- Se existe um caminho p de u para v,
 então v diz-se atingível a partir de u usando p
- Um ciclo num grafo G = (V, E)é um caminho $\langle v_0, v_1, ..., v_k \rangle$, tal que $v_0 = v_k$
- Um grafo dirigido G = (V, E) se não tem ciclos diz-se acíclico (Directed Acyclic Graph DAG)

P.T. Monteiro

ASA @ LEIC-T 2024/2025

5/14

Ordenação Topológica

Algoritmo eliminação de vértices (Kahn's)

Propriedades DAG

Dado que não contém ciclos:

- Existe pelo menos um nó com indegree=0
- Existe pelo menos um nó com outdegree=0

Ordenação Topológica

Ordenação Topológica

Dado um **DAG** G = (V, E) é uma ordenação de todos os vértices tal que se $(u, v) \in E$ então u aparece antes de v na ordenação

Aplicações

- Gestão dependências pacotes
- Avaliação de células em folhas de cálculo
- Resolução dependências símbolos em linkers
- •

Soluções Algorítmicas

- Eliminação de vértices
- Utilizando informação de DFS

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Ordenação Topológica

Algoritmo eliminação de vértices (Kahn's)

Topological-Sort-Kahn(G)

 $\texttt{L} \,\leftarrow \emptyset$

 $Q \leftarrow \emptyset$

P.T. Monteiro

Complexidade

```
• \Theta(V+E)
```

Ordenação Topológica

Exemplo

Ordenação? d, a, b, c, e, f, g, h

P.T. Monteiro

ASA @ LEIC-T 2024/2025

9/14

Ordenação Topológica

Algoritmo baseado na DFS

Topological-Sort-DFS(G)

DFS(G) para calculo do tempo de fim f[v], para cada v \in G.V Quando um vértice é terminado, inserir numa pilha return pilha

Complexidade

• $\Theta(V+E)$

Ordenação Topológica

Algoritmo baseado na DFS: Intuição

Depois de executar a DFS:

- $f[v_3]$ é sempre $> f[v_4]$
- $f[v_2]$ é sempre $> f[v_4]$
- $f[v_1]$ é sempre $> f[v_2], f[v_4]$

Num DAG, se existe caminho de u para v, então f[u] > f[v]!

Logo, basta ordenar os vértices de forma decrescente dos tempos de fim

P.T. Monteiro ASA @ LEIC-T 2024/2025 10/14

Ordenação Topológica

Exemplo

Ordenação? d, a, c, f, h, b, e, g

Ordenação Topológica

Exemplo

Ordenação? d, a, c, b, e, f, g, h

P.T. Monteiro ASA @ LEIC-T 2024/2025

Questões?

Dúvidas?

P.T. Monteiro ASA @ LEIC-T 2024/2025 14/14