Fibonacci Sequence (New Code 1-233)

Instruction	A#	Address	Opcode + Operand	
LDI	0	0000	0111 0000	Loa
STA	1	0001	0100 1101	Sto
OUT	2	0010	0101 0000	Out
LDI	3	0011	0111 0001	Loa
STA	4	0100	0100 1110	Sto
OUT	5	0101	0101 0000	Out
ADD	6	0110	0010 1101	Add
JC	7	0111	1000 0000	Go
STA	8	1000	0100 1111	Sto
LDA	9	1001	0001 1110	Loa
STA	Α	1010	0100 1101	Sto
LDA	В	1011	0001 1111	Loa
JMP	С	1100	0110 0100	Go
[X]	D	1101	0000 0000	
[Y]	Е	1110	0000 0000	
[Z]	F	1111	0000 0000	

ad 0 into Reg A	x = 0

4-11-2017

y = 1

x = y

y = z

Store Reg A value in X Variable

Output Reg A Load 1 into Reg A

Store Reg A value in Y Variable

Output Reg A

Add Y variable to Reg A z = x + y

Go to Beginning if over 255 Store Reg A value in Z Variable

Load Reg A with Y variable

Store Reg A value in X Variable Load Reg A with Z variable

Go to Address **0100** (4)

Variables

Count from 0 - 255 In increments of 1

ADD[4]	0	0000	0010 1000
OUT	1	0001	0101 0000
JMP	2	0010	0110 0000
[1]	8	1000	0000 0001

Adding 14 and 28 for sum of 42

LDA[4]	0000	0001 0100
ADD[5]	0001	0010 0101
OUT	0010	0101 0000
HLT	0011	1111 0000
[14]	0100	0000 1110
[28]	0101	0001 1100

Subtracting 14 from 28 for sum of 14

LDA[5]	0000	0001 0101
SUB[4]	0001	0011 0100
OUT	0010	0101 0000
HLT	0011	1111 0000
[14]	0100	0000 1110
[28]	0101	0001 1100

Subtracting 28 from 14 for sum of -14

LDA[4]	0000	0001 0100	
SUB[5]	0001	0011 0101	
OUT	0010	0101 0000	
HLT	0011	1111 0000	
[14]	0100	0000 1110	
[28]	0101	0001 1100	