Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>R3142</u>	К работе допущен
Студент Лоскутова И. В	Работа выполнена
Преподаватель Курашова С. А	<u> А. </u>

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

- 1. Цель работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы.
 - 1. Снятие измерений для определенного интервала времени.
 - 2. Построение гистограммы распределения результатов измерения.
 - 3. Вычисление среднего значения и дисперсии полученной выборки.
 - 4. Сравнение гистограммы с графиком функции Гаусса с совпадающими средним значением и дисперсией экспериментального распределения.
- 3. Объект исследования.

Ошибка, возникающая при снятии измерений случайной величины.

4. Метод экспериментального исследования.

Многократное исследование определённого интервала времени.

5. Рабочие формулы и исходные данные.

$$p(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}, \qquad \langle t \rangle_N = \frac{1}{N}(t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

$$\Delta t = \langle t \rangle_N - t_{\text{MCT}}, \ \varepsilon_x = \frac{\Delta t}{t_{ucm}}, \ \sigma_N = \sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^N (t_i - \langle t \rangle_N)^2}, \ m = \sqrt{N}, \ \Delta_{\bar{t}} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \cdot \sum_{i=1}^N (t_i - \langle t \rangle_N)^2}, \qquad \Delta t = \frac{[t_{min}; \ t_{max}]}{m}, \qquad \rho_{max} = \frac{1}{\sigma_N \cdot \sqrt{2\pi}}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора Используемый диапазон		Погрешность прибора
1	Секундомер	цифровой	60 c	0,01 c
2	Секундомер	механический	60 c	0,2 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

- 1 механический секундомер
- 2 цифровой секундомер

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

<u> </u>			
Nº	t_i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2, c^2$
1	4,81	-0,13	0,18*10-1
2	4,81	-0,13	0,18*10-1
3	4,81	-0,13	0,18*10-1
4	4,84	-0,10	0,11*10-1
5	4,84	-0,10	0,11*10-1
6	4,85	-0,09	0,90*10-2
7	4,85	-0,09	0,90*10-2
8	4,85	-0,09	0,90*10-2
9	4,87	-0,07	0,56*10-2
10	4,87	-0,07	0,56*10-2
11	4,87	-0,07	0,56*10-2
12	4,88	-0,06	0,42*10-2

13	4,88	-0,06	0,42*10-2
14	4,89	-0,05	0,30*10-2
15	4,90	-0,04	0,20*10-2
16	4,90	-0,04	0,20*10-2
17	4,91	-0,03	0,12*10-2
18	4,91	-0,03	0,12*10-2
19	4,91	-0,03	0,12*10-2
20	4,91	-0,03	0,12*10-2
21	4,93	-0,01	0,22*10-3
22	4,93	-0,01	0,22*10-3
23	4,93	-0,01	0,22*10-3
24	4,93	-0,01	0,22*10-3
25	4,93	-0,01	0,22*10-3
26	4,94	-0,05*10-1	0,25*10-4
27	4,94	-0,05*10-1	0,25*10-4
28	4,94	-0,05*10-1	0,25*10-4
29	4,94	-0,05*10-1	0,25*10-4
30	4,94	-0,05*10-1	0,25*10-4
31	4,97	0,03	0,63*10-3
32	4,97	0,03	0,63*10-3
33	4,97	0,03	0,63*10-3

34	4,97	0,03	0,63*10-3		
35	5,00	0,06	0,30*10-2		
36	5,00	0,06	0,30*10-2		
37	5,00	0,06	0,30*10-2		
38	5,00	0,06	0,30*10-2		
39	5,01	0,07	0,42*10-2		
40	5,01	0,07	0,42*10-2		
41	5,03	0,09	0,72*10-2		
42	5,03	0,09	0,72*10-2		
43	5,03	0,09	0,72*10-2		
44	5,03	0,09	0,72*10-2		
45	5,04	0,10	0,90*10-2		
46	5,05	0,11	0,01		
47	5,05	0,11	0,01		
48	5,08	0,14	0,02		
49	5,15	0,21	0,04		
50	5,15	0,21	0,04		
	$\langle t \rangle N = 4.94 \ c, \ \sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0.00 \ c$ $\sigma_N = 0.08 \ c, \ p_{max} = 0.49 \ c^{-1}$				

Таблица 1: Результаты прямых измерений

Среднее значение времени $\langle t \rangle_N$: $\langle t \rangle_N = \frac{1}{N} \cdot \sum_{i=1}^N t_i = \frac{1}{50} \cdot 247,25 = 4,94$ с Проверка среднего значения времени $\langle t \rangle_N$: $\sum_{i=1}^N (t_i - \langle t \rangle_N) = 0,15*10^{-14} = 0$ с

Выборочное СКО:
$$\sigma_N = \sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50-1} \cdot 0.33} = 0.08 \text{ c} = 0.08 \text{ c}$$

Максимальное значение плотности распределения ρ_{max} : $\rho_{max} = \frac{1}{\sigma_N \cdot \sqrt{2\pi}} = \frac{1}{0.08 \cdot \sqrt{2\pi}} = 4.88 \text{ c}^{-1}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Границы интервалов, <i>с</i>	ΔΝ	$\frac{\Delta N}{N \cdot \Delta t}$, c^{-1}	t,c	$ ho$, c^{-1}
4,81	8	2,90	4,84	
4,86	8 2,90	4,04	1,82	
4,86	0		4.90	
4,91	8	2,90 4,89		3,90
4,91	1.4	5.00	4,94	
4,96	14	5,09	4,94	4,84
4,96	8	2.00	4.00	
5,01	o	2,90	4,99	4,20
5,01	9	3 27	5,04	
5,06	9	9 3,27 5,04	3,04	2,49
5,06	1	0.26	5.00	
5,11	1	0,36	5,09	1,26
5,11	2	0,72	5,13	0,21
5,15		0,72	3,13	· · · · · · · · · · · · · · · · · · ·

Таблица 2: Данные для построения гистограммы

	Интер	рвал, с	ΔΝ	ΔN	D
	ОТ	до	ΔΙΝ	N	Г
$\langle t \rangle_N \pm \sigma_N$	4,86	5,03	32	0,64	0,683
$\langle t \rangle_N \pm 2\sigma_N$	4,78	5,11	48	0,96	0,954
$\langle t \rangle_N \pm 3\sigma_N$	4,70	5,19	50	1,00	0,997

Таблица 3: Стандартные доверительные интервалы

Абсолютная погрешность измерения: $\Delta t = |\langle t \rangle_N - t_{\text{ист}}| = |4,94-5| = 0,06$ Относительная погрешность измерения: $\varepsilon_x = \frac{\Delta t}{t_{ucm}} = \frac{0,06}{5} = 0,01*100\% = 1,00\%$ Количество интервалов m: $t_{min} = 4,81$ c, $t_{max} = 5,15$ c, $m = \sqrt{N} = \sqrt{50} \approx 7$

Значение t- середина выбранных интервалов, для 4-го интервала: $t=\frac{4,96+5,01}{2}=4,99$ с

Плотность распределения ρ для значений t (пример для t_4 – середины первого интервала):

$$\rho(t) = \frac{1}{\sigma_N \cdot \sqrt{2\pi}} \cdot \exp\left(-\frac{(t - \langle t \rangle_N)^2}{2\sigma_N^2}\right) = \frac{1}{0.08 \cdot \sqrt{2\pi}} \cdot \exp\left(-\frac{(4.99 - 4.95)^2}{2 \cdot 0.08^2}\right) = 4.20$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

СКО среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \cdot \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50 \cdot 49} \cdot 0.33} = 0.12 * 10^{-1} \text{ c}$$

Случайная погрешность (при доверительной вероятности $\alpha=0.95$, количестве измерений N=50 и коэффициенте Стьюдента $t_{\alpha,N}=2.0085591$):

$$\Delta_{\bar{t}} = t_{\alpha,N} \cdot \sigma_{(t)} = 2,0085591 \cdot 0,01 = 0,02 \text{ c}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Среднее время: $\langle t \rangle_N = 4,94 \, \text{c}$

Выборочное СКО: $\sigma_N=0.08~{\rm c}$

Максимальная плотность распределения: $\rho_{max} = 4.87 \ {\rm c}^{-1}$

Абсолютная погрешность измерения: $\Delta t = 0.06$

Относительная погрешность измерения: $\varepsilon_x = 1,00\%$

СКО среднего значения: $\sigma_{(t)} = 0.12 * 10^{-1} \text{ c}$

Значение интервала: $\Delta t = 0.05 \text{ c}$

Случайная погрешность: $\Delta_{\bar{t}} = 0.02 \text{ c}$

13. Выводы и анализ результатов работы.

В результате проведения исследования данных, снятых при многократном измерении определенного промежутка времени, была построена гистограмма распределения случайной величины и график функции Гаусса. Получено среднее время, среднеквадратичное отклонение среднего значения, максимальное значение плотности распределения, а также случайная погрешность. Полученные значения соответствуют закону нормального распределения.

Анализируя полученную гистограмму, можно отметить, что она немного различается с графиком функции Гаусса из-за маленького размера выборки (N=50). Некоторые ее столбики (номера при счете: 1, 3, 4, 6) сильно различаются со своими ожидаемыми значениями (значения, при которых будет идеальное совпадение с графиком функции Гаусса), что также вызывает асимметрию гистограммы.

14. Дополнительные задания. Выполнение дополнительных заданий.

- 1. Являются ли, по вашему мнению, случайными следующие физические величины:
 - плотность алмаза при $20^{\circ}C$
 - напряжение сети
 - сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением
 - число молекул в 1см3 при нормальных условиях?

Приведите другие примеры случайных и неслучайных физических величин.

Случайными величинами будут являться напряжение сети и сопротивление резистора.

Неслучайными величинами являются плотность алмаза и число молекул.

Примеры:

- Случайная величина число выпавших очков на игральной кости
- Неслучайная величина число Авогадро
- 2. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких измерений получились такие результаты (в вольтах): 1,50; 1,49; 1,50; 1,50; 1,49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента?

Я бы не стала менять методику измерений, но продолжила бы измерения для получения достаточного большого числа выборки.

3. При обработке результатов измерений емкости партии конденсаторов получено: $\langle \mathcal{C} \rangle$ = 1,1 мкФ, σ = 0,1 мкФ. Если взять коробку со 100 конденсаторами из этой партии, то сколько среди них можно ожидать конденсаторов с емкостью меньше 1 мкФ? больше 1,3 мкФ?

При С < 1:

$$\int_{-\infty}^{1} \frac{1}{\sigma \sqrt{2\pi}} * e^{-\frac{(C - < C >)^2}{2\sigma^2}} dc * 100 \approx 0,16 * 100 \approx 16 \text{ шт}$$

При С > 1,3:

$$\int_{1,3}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} * e^{-\frac{(C - < C >)^2}{2\sigma^2}} dc * 100 \approx 0.02 * 100 \approx 2 \text{ int}$$