МФТИ ФПМИ

Функциональный анализ

Кулапин Артур

Гагаринов Даниил

Рухадзе Альбина

Максимов Игорь

Кроо Дмитрий

Мельникова Татьяна

Копец Максим

Гриб Александр

Огромная благодарность Титову Андрею за выдержку и подготовку основной базы конспекта

Осень 2020 – Весна 2021

Содержание

1	Метрические пространства						
	1.1	Метрические и топологические пространства. Примеры. Неравенства Гелдера и Мин-					
		КОВСКОГО	6				
		1.1.1 Метрические и топологические пространства	6				
		1.1.2 Примеры пространств	6				
		1.1.3 Необходимые неравенства	8				
2	Полные метрические пространства						
	2.1	Теорема о вложенных шарах. Теорема Бэра	9				
		2.1.1 Теорема о вложенных шарах	9				
		2.1.2 Теорема Бэра	10				
	2.2	Принцип сжимающих отображений	11				
3	Компактные метрические пространства						
	3.1	1 Компактность. Центрированные системы замкнутых множеств					
	3.2	Критерии компактности.	12				
	3.3	Теорема Арцела-Асколи	14				
4	Линейные нормированные пространства						
	4.1	Теорема Рисса (некомпактность сферы в $E, dimE = \infty$)	16				
	4.2						
		странства	17				
		4.2.1 Евклидовы пространства	17				
		4.2.2 Банаховы и гильбертовы пространства	17				
	4.3	Эквивалентность норм в конечном пространстве. Понятие линейного топологического					
		пространства, примеры	17				
		4.3.1 Эквивалентность норм в конечном пространстве	17				
		4.3.2 Линейное топологическое пространство	18				
	4.4	Теорема Рисса о проекции	18				
	4.5	Сепарабельные гильбертовы пространства	20				

5	Линейные ограниченные операторы в линейных нормированных пространствах								
	5.1	Связь	непрерывности и ограниченности линейного оператора	22					
	5.2	югии и сходимости в $\mathcal{L}(E_1,E_2)$. Полнота $\mathcal{L}(E_1,E_2)$, когда E_2 банахово	23						
		5.2.1	Пространство $\mathcal{L}(E_1, E_2)$	23					
		5.2.2	Полнота $\mathcal{L}(E_1,E_2)$, когда E_2 банахово	23					
	5.3	5.3 Продолжение непрерывного отображения							
	5.4	4 Теорема Банаха-Штейнгауза							
	5.5 Поточечная сходимость			26					
		5.5.1	Полнота $\mathcal{L}(E_1,E_2)$ относительно поточечной сходимости	26					
		5.5.2	Критерий поточечной сходимости операторов из $\mathcal{L}(E_1,E_2)$	26					
6	Обратный оператор. Обратимость								
	6.1	Образ	гимость линейного ограниченного снизу оператора	27					
		6.1.1	Левый и правый обратные операторы	27					
		6.1.2	Ограниченный снизу оператор	28					
	6.2	3.2 Обратимость возмущенного оператора							
	6.3	ма Банаха. Спектр, резольвента.	30						
		6.3.1	Теорема Банаха об обратном операторе	30					
		6.3.2	Спектр, резольвента.	30					
7	Аналитические свойства резольвенты								
	7.1	Резольвента. Ее аналитические свойства							
8	Сопряженное пространство. Теорема Рисса-Фреше. Теорема Хана-Банаха.								
	8.1	Сопряженное пространство							
	8.2	Теорема Рисса-Фреше							
	8.3	Teope	ма Хана-Банаха	34					
		8.3.1	Следствия из т. Хана-Банаха	35					
9	Слабая сходимость в банаховом пространстве								
	9.1	Изоме	етричность вложения E в E^{**} . Критерий слабой сходимости последовательности	37					
		9.1.1	Изометричность вложения E в E^{**}	37					

	9.1.2	Критерий слабой сходимости	38
9.2	2 Сла	бая сходимость и ограниченные операторы	39
10 Π _]	реобра	зование Фурье и свертка в пространствах $L_1(\mathbb{R})$ и $L_2(\mathbb{R})$	39
10	.1 Опр	еделения и основные свойства. Формула умножения. Преобразование Фурье свертки	39
	10.1	1 Определения и свойства	39
	10.1	2 Формула умножения	40
	10.1	З Преобразование Фурье свертки	40
	10.1	4 Преобразование Фурье в $L_2(\mathbb{R})$	40
11 C	пряж	енный оператор	40
11	.1 Hop	ма сопряженного оператора в ЛНП	40
11	.2 Соп	ряженные операторы в ГП. Равенство $H=\mathrm{Ker}A^*\oplus \overline{\mathrm{Im}A}$	41
12 Ca	амосоі	ряженный оператор	41
12		йства квадратичной формы (Ax,x) . Собственные значения самосопряженного опе-	44
	_	pa	41
12	.2 Разл	ложение $\Gamma\Pi$ оператором на $\mathrm{Ker}(A-\lambda I)\oplus\overline{\mathrm{Im}(A-\lambda I)}$	42
12	.3 Кри	терий принадлежности числа спектру. Вещественность спектра	42
	12.3	1 Критерий принадлежности числа спектру	43
	12.3	2 Вещественность спектра	43
12	_	рема о спектре самосопряжённого оператора	
	$\sigma(A)$	$0 \subseteq [m_{-}, m_{+}], r(A) = A \dots \dots$	44
13 K	омпак	гные операторы	45
13	.1 Сво	йства компактных операторов	45
13	.2 Сво	йства собственных значений компактного оператора	46
13	.3 Teo _l	рема Фредгольма для компактных самосопряженных операторов	47
13	.4 Спе	ктр компактного самосопряженного оператора. Теорема Гильберта-Шмидта	48
14 3.	темен	гы нелинейного анализа	49
14	.1 Π _{DO}	изводная Фреше, производная Гато. Формула конечных приращений	49

15 Additional information

53

1 Метрические пространства

1.1 Метрические и топологические пространства. Примеры. Неравенства Гелдера и Минковского

1.1.1 Метрические и топологические пространства

Def. Норма — функция $\rho: X \to \mathbb{R}^+$ такая, что:

- 1. $\rho(x) = 0 \iff x = 0$
- 2. $\forall \alpha \in \mathbb{R} \ \rho(\alpha \cdot x) = |\alpha| \cdot \rho(x)$
- 3. $\forall x, y \in X \ \rho(x+y) \le \rho(x) + \rho(y)$

Def. Функция $\rho: X \times X \to \mathbb{R}^+$ является метрикой, если:

- 1. $\rho(x,y) = 0 \iff x = y$
- 2. $\forall x, y \in X \ \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X \ \rho(x, z) \le \rho(x, y) + \rho(y, z)$

Note. Часто метрика порождается нормой, так как норма разности это по сути своей метрика.

Def. Метрическое пространство — пара (X, ρ) , где X — произвольное множество, а ρ — метрика.

Def. Пусть дано множество X, тогда $\mathcal{T} \subset 2^X$ называется топологией на X, если:

- 1. $X, \emptyset \in \mathcal{T}$
- 2. $\forall n \in \mathbb{N} \ X_1, \dots, X_n \in \mathcal{T} \Longrightarrow \bigcap_{i=1}^n X_i \in \mathcal{T}$ (конечное пересечение внутри).
- 3. ${\cal T}$ замкнуто относительно произвольного объединения своих элементов.

Note. Множество, лежащее в топологии, мы будем называть открытым. А замкнуты те, чьи дополнения открыты.

Def. Топологическое пространство — пара (X, \mathcal{T}) , где \mathcal{T} — топология на X.

1.1.2 Примеры пространств

Пространство l_p

Def. Пространство l_p — пространство последовательностей $\{x_n\}$ таких, что $\sum_{n=1}^{\infty}|x_n|^p<\infty$.

Note. Норма на l_p определяется как $\|x\|_{l_p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$

Пространство l_{∞}

Note. Получено из предыдущего путем устремления $p \to \infty$.

Def. Пространство l_{∞} — пространство последовательностей $\{x_n\}$ таких, что $\sup_{n\in\mathbb{N}}|x_n|<\infty$.

Note. Норма на l_{∞} определяется как $\|x\|_{l_{\infty}} = \sup_{n \in \mathbb{N}} |x_n|$

Пространство $C_p[a,b]$

Def. Пространство $C_p[a,b]$ — пространство непрерывных функций на [a,b] с метрикой

$$\rho_p(f,g) = \left(\int_a^b |f(x) - g(x)|^p dx\right)^{\frac{1}{p}}$$

Пространство $C^n[a,b]$

Def. Пространство $C^n[a,b]$ — пространство n раз непрерывно дифференцируемых функций. Норма на таком пространстве:

$$||f|| = \sum_{l=0}^{n} \sup_{x \in [a,b]} |f^{(l)}(x)|$$

Пространство $L_p(E)$

Def. Пространство $L_p(E)$ — пространство классов эквивалентности функций по отношению равенства почти всюду, p-я степень которых интегрируема по Лебегу (подразумевается, что E измеримо):

$$\rho_p(f,g) = \left(\int_E |f(x) - g(x)|^p d\mu\right)^{\frac{1}{p}}$$

Note. Заметим, что тут равенство метрики нулю верно с точностью равенства почти всюду. Поэтому тут все же вводится не норма, а полунорма.

Пространство $L_{\infty}(E)$

 $\mathbf{Def.}$ Пусть f измерима, тогда ее существенная верхняя грань

ess sup
$$f = \inf \left\{ \sup_{x \in X} f(x) : X \subset E, \ \mu(E \setminus X) = 0 \right\}$$

Def. Измеримая функция f существенно ограничена на измеримом E, если ее существенно верхняя грань конечна.

Note. Функция f существенно ограничена, если она эквивалентна ограниченной.

Def. Пространство $L_{\infty}(E)$ — пространство классов эквивалентности существенно ограниченных функций по отношению равенства почти всюду (подразумевается, что E измеримо):

$$\rho(f,g) = \operatorname{ess\,sup}|f - g|$$

Note. Заметим, что тут равенство метрики нулю верно с точностью равенства почти всюду. Поэтому тут все же вводится не норма, а полунорма.

1.1.3 Необходимые неравенства

Лемма. пусть $a,b\geq 0,\,p\in (1,\infty)$ и $\frac{1}{p}+\frac{1}{q}=1,$ тогда

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Доказательство: Если ab=0, то все очевидно. Иначе вспомним о том, что экспонента выпукла:

$$e^{\frac{x}{p} + \frac{y}{q}} \le \frac{e^x}{p} + \frac{e^y}{q}$$

где $x = p \log a$, $y = q \log b$.

Неравенство Гельдера

Пусть $f,g:E\to [0,\infty]$ измеримы, $E\subset \mathbb{R}^n$ тоже измеримо, $p\in (1,\infty)$ и $\frac{1}{p}+\frac{1}{q}=1$, тогда верно неравенство Гельдера

$$\int_{E} fgd\mu \le \left(\int_{E} f^{p}d\mu\right)^{\frac{1}{p}} \left(\int_{E} g^{q}d\mu\right)^{\frac{1}{q}} \tag{1.1}$$

Доказательство: Пусть $A=\left(\int\limits_E f^p d\mu\right)^{\frac{1}{p}}$ и $B=\left(\int\limits_E g^q d\mu\right)^{\frac{1}{q}}$

- 1. Если A=0, то f=0 почти всюду, тогда неравенство верно.
- 2. Если A>0, $B=\infty$, то $AB=\infty$ и неравенство верно.
- 3. Теперь A, B ненулевые и конечные, тогда

$$\frac{1}{AB} \int\limits_E fg d\mu = \int\limits_E \frac{f}{A} \frac{g}{B} d\mu \le \int\limits_E \left(\frac{1}{p} \left(\frac{f}{A} \right)^p + \frac{1}{q} \left(\frac{g}{B} \right)^q \right) d\mu = \frac{1}{p} \frac{\int\limits_E f^p d\mu}{A^p} + \frac{1}{q} \frac{\int\limits_E g^q d\mu}{B^q} = \frac{1}{p} + \frac{1}{q} = 1$$

Неравенство Минковского

Пусть $f,g:E\to [0,\infty]$ измеримы, $E\subset \mathbb{R}^n$ тоже измеримо, $p\in (1,\infty)$, тогда верно неравенство Минковского

$$\left(\int_{E} (f+g)^{p} d\mu\right)^{\frac{1}{p}} \leq \left(\int_{E} f^{p} d\mu\right)^{\frac{1}{p}} + \left(\int_{E} g^{p} d\mu\right)^{\frac{1}{p}} \tag{1.2}$$

Доказательство: Пусть

$$A = \left(\int\limits_E f^p d\mu\right)^{\frac{1}{p}} B = \left(\int\limits_E g^p d\mu\right)^{\frac{1}{p}} C = \left(\int\limits_E (f+g)^p d\mu\right)^{\frac{1}{p}}$$

- \bullet Если $A=\infty$ или $B=\infty$, тогда неравенство верно.
- Иначе

$$(f+g)^p \le (2\max\{f,g\})^p = 2^p \cdot \max\{f^p,g^p\} \le 2^p(f^p+g^p)$$

To есть $C < \infty$.

Теперь воспользуемся неравенством Гельдера 1.1, чтобы закончить доказательство:

$$C^{p} = \int_{E} f(f+g)^{p-1} d\mu + \int_{E} g(f+g)^{p-1} d\mu \le A \cdot \left(\int_{E} (f+g)^{(p-1)q} d\mu \right)^{\frac{1}{q}} + B \cdot \left(\int_{E} (f+g)^{(p-1)q} d\mu \right)^{\frac{1}{q}} = (A+B) \cdot \left(\int_{E} (f+g)^{p} d\mu \right)^{1-\frac{1}{p}} = (A+B) \cdot C^{p-1}$$

2 Полные метрические пространства

2.1 Теорема о вложенных шарах. Теорема Бэра

Def. Последовательность $\{x_n\} \in X$ фундаментальна, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n, m > N \ \rho(x_n, x_m) < \varepsilon$$

Def. Метрическое пространство (X, ρ) полное, если в нем любая фундаментальная последовательность сходится к элементу из данного пространства, то есть

$$\forall \{x_n\} \in X$$
 фундаментальной $\hookrightarrow \exists x \in X: \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ \rho(x_n,x) < \varepsilon$

2.1.1 Теорема о вложенных шарах

Def. Точка $A \in X$ — точка прикосновения для топологического X снабженного метрикой, если $\forall \varepsilon > 0$ $B_{\varepsilon}(A) \cap X \neq \varnothing$.

Теорема (о вложенных шарах).

Метрическое пространство (X, ρ) полно тогда и только тогда, когда любая последовательность вложенных друг в друга замкнутых шаров $\{B_j\}$, радиусы которых стремятся к нулю, имеет непустое пересечение.

Доказательство:

 \Longrightarrow Пусть X полно, тогда выберем произвольную последовательность шаров $B_j = \{\overline{B}(x_j, r_j)\}$ вложенных друг в друга и чьи радиусы стремятся к нулю. Заметим, что последовательность центров является фундаментальной. Действительно, $\forall k>j \ \rho(x_j,x_k)< r_j$, а радиусы стремятся к нулю. Так как X полно, $\exists \lim_{j\to\infty} x_j = x \in X$. Покажем, что $x \in \bigcap_{j=1}^\infty B_j$.

Заметим, что B_j содержит все x_k , кроме, быть может x_1, \ldots, x_{j-1} , а значит x — точка прикосновения всех шаров. В силу замкнутости шаров получаем, что $\forall j \ x \in B_j$, что и требовалось.

 \longleftarrow Пусть $\{x_n\}$ фундаментальна. Покажем, что она сходится в X. Так как $\{x_n\}$ фундаментальна, $\exists n_1 : \forall n > n_1 \ \rho(x_n, x_{n_1}) < \frac{1}{2}$. Тогда пусть $B_1 = \overline{B}(x_{n_1}, 1)$. Теперь построим по индукции последовательность шаров B_k следующим образом.

Выберем $n_k > n_{k-1}$ и точку x_{n_k} такую, что $\forall n > n_k \ \rho(x_n, x_{n_k}) < \frac{1}{2^k}$. Тогда $B_k = \overline{B}\left(x_{n_k}, \frac{1}{2^{k-1}}\right)$. Замкнутость таких шаров вытекает из построения, покажем вложенность.

$$\forall x \in B_k \ \rho\left(x, x_{n_{k-1}}\right) \leq \rho\left(x, x_{n_k}\right) + \rho\left(x_{n_k}, x_{n_{k-1}}\right) \leq \underbrace{\frac{1}{2^{k-1}}}_{\text{из построения } B_k} + \underbrace{\frac{1}{2^{k-1}}}_{\text{из определения } x_{n_{k-1}}} = \underbrace{\frac{1}{2^{k-2}}}_{\text{из определения } x_{n_{k-1}}}$$

Таким образом, $B_k \subset B_{k-1}$, то есть последовательность шаров вложенная, да еще и радиусы стремятся к нулю, таким образом все условия теоремы соблюдены. А, значит, $\exists x \in \bigcap_{j=1}^{\infty} B_j$. Но тогда

$$\rho\left(x, x_{n_k}\right) \le \frac{1}{2^{k-1}} \Longrightarrow x = \lim_{k \to \infty} x_{n_k}$$

В силу фундаментальности $\{x_n\}$ получим, что

$$\rho\left(x, x_n\right) \le \rho\left(x, x_{n_k}\right) + \rho\left(x_n, x_{n_k}\right)$$

Откуда при устремлении $n \to \infty$ получаем, что оба слагаемых в неравенстве выше стремятся к нулю, а значит $\lim_{n \to \infty} x_n = x \in X$.

2.1.2 Теорема Бэра

Def. Пусть X — метрическое пространство, а $M_1, M_2 \subset X$, тогда M_1 плотно в M_2 , если $M_2 \subset \overline{M_1}$

Def. Множество M всюду плотно в X, если $\overline{M} = X$

Def. Множество M нигде не плотно в X, если оно не плотно ни в одном шаре, то есть $\forall B \subset X$ $\exists B' \subset B$ такой, что $M \cap B' = \emptyset$.

Теорема (Бэр).

Полное метрическое пространство X не может быть представлено в виде счетного объединения нигде не плотных в X множеств.

Доказательство: Предположим противное. Пусть M_n нигде не плотны, при этом $X = \bigcup_{n=1}^{\infty} M_n$. Возьмем замкнутый шар B_0 радиуса 1. Так как M_1 нигде не плотно, получаем, что существует шар $B_1 \subset B_0$ радиуса не более $\frac{1}{2}$ и $B_1 \cap M_1 = \emptyset$. Тогда мы можем построить последовательность таких шаров с радиусами не превосходящими $\frac{1}{n+1}$, где n — номер шара, при этом $B_n \subset B_{n-1}$, а $B_n \cap M_n = \emptyset$. То есть получили последовательность вложенных друг в друга замкнутых шаров с стремящимися к нулю радиусами. Но тогда по теореме о вложенных шарах получаем, что $\exists x \in \bigcap_{n=1}^{\infty} B_n$.

По построению $x \notin \bigcup_{n=1}^{\infty} M_i$, откуда $x \notin X$, но в силу полноты X и теоремы о вложенных шарах $x \in X$. Противоречие.

2.2 Принцип сжимающих отображений

Def. Пусть X и Y — метрические пространства, тогда $f: X \to Y$ сжимающее, если

$$\exists \alpha \in (0,1): \forall x,y \in X \ \rho_Y(f(x),f(y)) \leq \alpha \cdot \rho_X(x,y)$$

Теорема (принцип сжимающих отображений).

Пусть X — полное МП, и $f: X \to X$ — сжимающее отображение, тогда f имеет единственную неподвижную точку.

Доказательство: Возьмём произвольную точку $x_0 \in X$ и рассмотрим её *орбиту*: $x_{n+1} = f(x_n)$. Покажем, что $\{x_n\}$ — фундаментальная последовательность:

$$\rho(x_n, x_{n+p}) \le \sum_{k=n}^{n+p-1} \rho(x_k, x_{k+1}) \le \sum_{k=0}^{p-1} \alpha^{n+k} \rho(x_0, x_1) \le \frac{\alpha^n}{1-\alpha} \rho(x_0, x_1) \to 0$$

Пусть $x=\lim_{n\to\infty}x_n$, тогда из равенства $x_{n+1}=f(x_n)$ предельным переходом можно получить, что x=f(x). Далее, пусть y=f(y) и z=f(z), тогда $\rho(y,z)=\rho(f(y),f(z))\leq \alpha\cdot \rho(y,z)$; поскольку $\alpha<1$, то $\rho(y,z)=0$, а значит, y=z.

3 Компактные метрические пространства

3.1 Компактность. Центрированные системы замкнутых множеств

Def. Топологическое пространство X называется компактным, если из любого открытого покрытия X можно выделить конечное подпокрытие.

Def. Система подмножеств $\{B_{\alpha}\}$ множества X называется центрированной, если всякая её конечная подсистема имеет непустое пересечение.

 $\mathbf{Лемма}$. Если для X верно, что любое его семейство замкнутых подмножеств с пустым пересечением содержало конечное подсемейство с пустым пересечением, то оно компактно.

Доказательство: Пусть $\{G_{\alpha}\}$ — произвольное открытое покрытие X, тогда система $\{F_{\alpha} = X \setminus G_{\alpha}\}$ представляет собой семейство замкнутых множеств с пустым пересечением, которое по условию теоремы содержит конечное подсемейство также с пустым пересечением. С точностью до обозначения, будем считать, что это множества $\{F_1, \ldots, F_N\}$, $\bigcap_{i=1}^N F_i = \emptyset$. Но тогда

$$\bigcup_{i=1}^{N} G_i = \bigcup_{i=1}^{N} (X \setminus F_i) = X \setminus \bigcap_{i=1}^{N} F_i = X \setminus \emptyset = X$$

То есть $\{G_i\}$ — искомое конечное открытое подпокрытие.

Теорема. Топологическое пространство X компактно тогда и только тогда, когда всякая uenmpu- posanhas cucmema замкнутых множеств имеет непустое пересечение.

Доказательство:

- \Rightarrow Пусть X компактно, и $\{F_{\alpha}\}$ центрированная система замкнутых множеств. Пусть $G_{\alpha} = X \setminus F_{\alpha}$; заметим, что любое конечное подмножество системы $\{G_{\alpha}\}$ не является покрытием (это очевидным образом следует из центрированности). Поскольку X компактно, то вся система $\{G_{\alpha}\}$ не является покрытием; следовательно, $\{F_{\alpha}\}$ имеет непустое пересечение.
- \Leftarrow Пусть $\{F_{\alpha}\}$ произвольное семейство замкнутых множеств X с пустым пересечением. Тогда оно должно содержать конечную подсистему с пустым пересечением, так как в противном случае семейство $\{F_{\alpha}\}$ было бы центрированным и имело, по условию непустое пересечение. Таким образом, мы получили, что любое семейство замкнутых множеств с пустым пересечением X содержит конечную подсистему множеств с пустым пересечением. А по лемме выше получим, что X компактно.

3.2 Критерии компактности.

Def. Пусть $X-\mathrm{M}\Pi$, и $M\subset X$, тогда

- 1. A является ε -сетью для M, если $M \subset \bigcup_{a \in A} \overline{B}(a, \varepsilon)$.
- 2. M называется вполне ограниченным, если для любого $\varepsilon > 0$ найдётся конечная ε -сеть для M.

Пример. $\overline{B}(0,1)$ в l_2 является ограниченным, но не вполне ограниченным подмножеством. Это следует из того, что расстояние между любыми элементами стандартного базиса в l_2 равно $\sqrt{2}$.

Теорема. Пусть $X - \text{M}\Pi$. Следующие утверждения эквивалентны:

- 1. X компактно
- 2. Х полно и вполне ограничено
- 3. Из любой последовательности элементов X можно выделить сходящуюся подпоследовательность
- 4. Всякое бесконечное подмножество X имеет предельную точку

Доказательство.

- $1\Rightarrow 2$ Для любого $\varepsilon>0$ можно рассмотреть покрытие X шарами радиуса ε : $X=\bigcup_{x\in X}B(x,\varepsilon)$. Центры элементов конечного подподкрытия образуют искомую ε -сеть. Таким образом, компактное МП вполне ограничено.
 - Пусть $\{x_n\}$ фундаментальная последовательность в X. Пусть $A_n = \{x_k \mid k \geq n\}$, тогда $\{\overline{A_n}\}$ центрированная система замкнутых множеств. Пусть $x_0 \in \bigcap \{\overline{A_n}\}$. Из фундаментальности следует, что для любого $\varepsilon > 0$ найдётся такой номер N, что $A_N \subset B(x_n, \varepsilon)$ для любого $n \geq N$, а значит, $\overline{A_N} \subset \overline{B(x_n, \varepsilon)} \subset \overline{B(x_n, \varepsilon)}$; в частности, $x_0 \in \overline{B(x_n, \varepsilon)}$ для любого $n \geq N$. Следовательно, $x_n \to x_0$.
- $2\Rightarrow 3$ Возьмём произвольную последовательность $\{x_n\}\subset X$. Пусть $\varepsilon_1=1$; заметим, что в одном из замкнутых шаров, порождённых соответствующей конечной ε_1 -сетью, содержится бесконечное множество элементов последовательности. Данный шар является полным и вполне ограниченных подпространством; положим $\varepsilon_2=1/2$, после чего возьмём новый шар, полученный аналогичным образом. Продолжая "до бесконечности", получим последовательность вложенных шаров с радиусами 1/n; выбирая по одному элементу из каждого шара (например, диагональным методом), получим фундаментальную подпоследовательность: $\rho(x_n, x_{n+p}) \leq 2/n$. Остаётся применить полноту X.
- $3\Rightarrow 1$ Покажем, что X вполне ограничено, методом "от противного": пусть при некотором $\varepsilon_0>0$ никакое конечное подмножество X не является ε_0 -сетью. Возьмём произвольную точку $x_1\in X$; поскольку $\{x_1\}$ не является ε_0 -сетью, то найдётся такая точка $x_2\in X$, что $\rho(x_1,x_2)>\varepsilon_0$. Аналогичным образом из множества $\{x_1,x_2\}$ можно получить новую точку x_3 ; продолжая "до бесконечности", получим последовательность $\{x_n\}$, из которой нельзя выделить фундаментальную (а значит, и сходящуюся) подпоследовательность противоречие.
 - Покажем компактность X методом "от противного": пусть $\{G_{\alpha}\}$ —покрытие X, из которого нельзя выделить конечное подпокрытие. Возьмём последовательность $\varepsilon_n = 1/n$; заметим, что в множестве замкнутых шаров, порождённых конечной ε_n -сетью, найдётся шар $B_n(x_n, 1/n)$, который нельзя покрыть конечным подмножеством $\{G_{\alpha}\}$. Рассмотрим сходящуюся подпоследовательность $\{x_{n_k}\}$; заметим, что её предел x_0 содержится в некотором $G_{\alpha_0} \in \{G_{\alpha}\}$. Поскольку G_{α_0} открыто, то найдётся такое r > 0, что $B(x_0, r) \subset G_{\alpha_0}$. Отметим, что при достаточно большом номере n справедливо утверждение $B_n \subset G_{\alpha_0}$, а это противоречит определению B_n .

- $3 \Rightarrow 4$ Пусть $M \subset X$ бесконечно. Рассмотрим последовательность $\{x_n\}$, все элементы которой различны; пусть $\{x_{n_k}\}$ её сходящаяся подпоследовательность, тогда её предел является предельной точкой M.
- $4 \Rightarrow 3$ Пусть $\{x_n\}$ последовательность в X. Если множество значений её элементов бесконечно, то (по условию) оно имеет предельную точку, а значит, к этой точке сходится некоторая подпоследовательность $\{x_{n_k}\}$. Если же множество значений элементов конечно, то существует элемент, встречающийся бесконечно часто, а потому образующий стационарную подпоследовательность.

3.3 Теорема Арцела-Асколи

Def. A предкомпактно, если его замыкание компактно.

Def. $C(X,\mathbb{R})$ — множество непрерывных функций из X в \mathbb{R} .

Def. Подмножество $M \subset C(X,\mathbb{R})$ равномерно ограничено, если

$$\exists K \in \mathbb{R} \ \forall f \in M \ (\sup_{x \in X} |f(x)| \le K)$$

Def. Равностепенная непрерывность:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in X \ (\rho(x_1, x_2) < \delta \Rightarrow \forall f \in M \ (|f(x_1) - f(x_2)| < \varepsilon))$$

Теорема (Кантор). Функция, непрерывная на компактном МП, равномерно непрерывна на нём.

Доказательство 1. Зафиксируем $\varepsilon > 0$, после чего для каждой точки $x \in X$ найдём шар B(x, r(x)) из определения непрерывности. Выберем конечное подпокрытие шарами $\{B(x_n, r(x_n)/2)\}$, после чего положим $\delta = \min\{r(x_n)/2\}$. Проверим, что δ удовлетворяет равномерной непрерывности: пусть $\rho(x,y) < \delta$; поскольку $x \in B(x_k, r(x_k)/2)$ верно для некоторого k, то $y \in B(x_k, r(x_k))$; следовательно,

$$|f(x) - f(y)| \le |f(x) - f(x_k)| + |f(y) - f(x_k)| < 2\varepsilon$$

Доказательство 2. Предположим, что существует функция f, непрерывная на компактном МП X, но не являющаяся равномерно непрерывной:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x, y \in X \ (\rho(x, y) < \delta \land |f(x) - f(y)| \ge \varepsilon_0)$$

Положим $\delta_n = 1/n$, после чего рассмотрим соответствующие последовательности $\{x_n\}$ и $\{y_n\}$. Выберем сходящуюся подпоследовательность $\{x_{n_k}\}$; заметим, что $\{y_{n_k}\}$ сходится к тому же пределу. В силу непрерывности функции последовательности $\{f(x_{n_k})\}$ и $\{f(y_{n_k})\}$ сходятся к одному пределу, что противоречит неравенству $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0$.

Теорема (Арце́ла-Аско́ли.). Пусть X — компактное МП, и $M \subset C(X, \mathbb{R})$, тогда M предкомпактно тогда и только тогда, когда оно "равномерно ограничено" и равностепенно непрерывно.

Доказательство:

 \Rightarrow Поскольку M предкомпактно, то для любого $\varepsilon > 0$ найдётся конечная ε -сеть $\{\varphi_n\}$; отсюда следует, что

$$\forall f \in M \ (\min_{k} \|f - \varphi_k\| \le \varepsilon)$$

Далее,

$$||f|| \le ||f - \varphi_k|| + ||\varphi_k|| \le \varepsilon + \max_k ||\varphi_k||$$

Таким образом, M равномерно ограничено.

По теореме Кантора $\{\varphi_n\}$ равномерно непрерывны; положим $\delta = \min_k \delta_k$, где каждое δ_k берётся из определения равномерной непрерывности φ_k .

$$|f(x) - f(y)| \le |f(x) - \varphi_k(x)| + |\varphi_k(x) - \varphi_k(y)| + |\varphi_k(y) - f(y)| \le 3\varepsilon$$

Отсюда следует, что M равностепенно непрерывно.

 \Leftarrow Рассмотрим случай "X = [a, b]" 1

Из равностепенной непрерывности следует, что для любого $\varepsilon>0$ найдутся такие $\delta>0$ и разбиение $\{x_n\}$ отрезка [a,b] мелкости не больше δ , что

$$\forall x, y \in [x_k, x_{k+1}] (|f(x) - f(y)| < \varepsilon)$$

Пусть K > 0 ограничивает модули функций из M; построим "сетку" мелкости не более (δ, ε) на множестве $[a,b] \times [-K,K]$, после чего проведём все возможные ломаные, проходящие через каждый столбец сетки ровно по одному разу, пересекая их в узлах. Покажем, что данные ломаные образуют 5ε -сеть.

Зафиксируем $f \in M$, после чего возьмём ломаную ψ , наиболее близко (по \mathcal{C} -норме в столбцах сетки) подходящую к f.

$$|f(x) - \psi(x)| \le |f(x) - f(x_k)| + |f(x_k) - \psi(x_k)| + |\psi(x_k) - \psi(x)|$$

$$\le |\psi(x_k) - \psi(x)| + 2\varepsilon$$

$$\le |\psi(x_k) - \psi(x_{k+1})| + 2\varepsilon$$

$$\le |\psi(x_k) - f(x_k)| + |f(x_k) - f(x_{k+1})| + |f(x_{k+1}) - \varphi(x_{k+1})| + 2\varepsilon$$

$$\le |f(x_k) - f(x_{k+1})| + 4\varepsilon$$

$$< 5\varepsilon$$

Таким образом, M вполне ограничено, а значит, предкомпактно.

¹Общий случай рассмотрен в книге Колмогорова и Фомина.

4 Линейные нормированные пространства

4.1 Теорема Рисса (некомпактность сферы в $E, dimE = \infty$)

Def. Линейным нормированным пространством называется линейное пространство E над полем F, где $F = \mathbb{R}$ или $F = \mathbb{C}$, снабжённое нормой.

Def. Пусть E — линейное нормированное пространство, тогда $M \subset E$ — линейное многобразие, если оно замкнуто относительно линейных операций.

Def. Подпространство — топологически замкнутое линейное многообразие.

Лемма (о «почти перпендикуляре»). Пусть E — нормированное ЛП, $E_1 \subsetneq E$ — подпространство, тогда

$$\forall \varepsilon > 0 \ \exists y \in E \ (\|y\| = 1 \land \rho(y, E_1) \ge 1 - \varepsilon)$$

Доказательство. Возьмём произвольный $y_0 \in E \setminus E_1$; поскольку E_1 замкнуто, то $d = \rho(y_0, E_1) > 0$. Из определения ρ следует, что

$$\forall \varepsilon > 0 \ \exists z_0 \in E_1 \ (\|y_0 - z_0\| < d (1 + \varepsilon))$$

Рассмотрим $y=\frac{y_0-z_0}{\|y_0-z_0\|}$; очевидно, что $\|y\|=1$. Положим $\alpha=\frac{1}{\|y_0-z_0\|}$; далее, для любого $z\in E_1$ получаем, что

$$||y - z|| = ||\alpha (y_0 - z_0) - z|| = |\alpha| \cdot ||y_0 - (z_0 + \frac{z}{\alpha})|| \ge |\alpha| \cdot d = \frac{d}{||y_0 - z_0||} > \frac{1}{1 + \varepsilon} > 1 - \varepsilon$$

Следовательно, $\rho(y, E_1) \geq 1 - \varepsilon$.

Теорема (Рисс). Пусть E — нормированное пространство, dim $E = \infty$. Тогда единичная сфера $S(0,1) \subset E$ не является компактом; более того, она даже не вполне ограниченна.

Доказательство:

Зафиксируем произвольный $\varepsilon \in (0,1)$. Выберем $y_1 \in S(0,1)$.

Т. к. $\dim E = \infty$, $M_1 := \langle y_1 \rangle \neq E$. Тогда по лемме о почти перпендикуляре мы можем выбрать $y_2 \in S(0,1)$ такой, что $\rho(y_2,M_1) \geqslant 1-\varepsilon$, и, опять же, $M_2 := \langle y_1,y_2 \rangle \neq E$. Продолжая этот процесс, получим последовательность векторов $\{y_n\}_{n=1}^{\infty} \subset S(0,1)$ такую, что $\rho(y_n,y_m) \geqslant 1-\varepsilon$ но тогда S(0,1) нельзя покрыть, например, конечной $\frac{1-\varepsilon}{3}$ -сетью.

4.2 Характеристическое свойство евклидовых пространств. Банаховы и гильбертовы пространства

4.2.1 Евклидовы пространства

Def. Линейное пространство E называется $e \epsilon \kappa n u \partial o \epsilon \omega M$, если введено $c \kappa a n s p h o e n p o u s e e d e h u e <math>(\cdot, \cdot)$: $E \times E \to \mathbb{K}$ (здесь $\mathbb{K} = \mathbb{C}$ или \mathbb{R}), удовлетворяющее следующим свойствам:

- 0. $(x,x) \ge 0$
- 1. $(x,x) = 0 \Leftrightarrow x = \overline{0}$
- 2. $(x,y) = \overline{(y,x)}$
- 3. $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$

Note. Легко убедиться, что всякое евклидово пространство является нормированным с нормой $||x|| = \sqrt{(x,x)}$.

Теорема (Неравенство Коши-Буняковского-Шварца.). $|(x,y)| \le ||x|| \cdot ||y||$

Доказательство в стиле неравенства Бесселя. Отметим, что $e = \frac{y}{\|y\|}$ — единичный вектор.

$$0 \le \|x - (x, e) e\|^2 = \|x\|^2 - \overline{(x, e)} (x, e) - (x, e) (e, x) + |(x, e)|^2 = \|x\|^2 - |(x, e)|^2$$
$$|(x, e)| \le \|x\|$$
$$|(x, e)| \cdot \|y\| = |(x, y)| \le \|x\| \cdot \|y\|$$

Теорема. Норма порождается некоторым скалярным произведением тогда и только тогда, когда выполняется равенство параллелограмма:

$$||x - y||^2 + ||x + y||^2 = 2 ||x||^2 + 2 ||y||^2$$

4.2.2 Банаховы и гильбертовы пространства

Def. Полное евклидово пространство (может быть бесконечной размерности) называется *гильбер- товым пространством*

Def. Полное нормированное пространство называется банаховым пространством

4.3 Эквивалентность норм в конечном пространстве. Понятие линейного топологического пространства, примеры

4.3.1 Эквивалентность норм в конечном пространстве

Def. Нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на E называются *эквивалентными*, если

$$\exists C_1, C_2 > 0 \ \forall x \in E \ (C_1 ||x||_2 \le ||x||_1 \le C_2 ||x||_2)$$

Утверждение. В конечномерном ЛП все нормы эквивалентны.

Доказательство: Пусть $\{e_n\}$ — базис в E; покажем, что всякая норма в E слабее евклидовой нормы:

$$x = \sum \xi_k e_k \Rightarrow ||x||_2 = \sqrt{(x,x)} = \sqrt{\sum \xi_k^2}$$

$$||x|| = \left|\left|\sum \xi_k e_k\right|\right| \le \sum ||\xi_k e_k|| = \sum |\xi_k| \cdot ||e_k|| \le ||x||_2 \cdot \sum ||e_k|| = C_2 ||x||_2$$

Осталось показать, что всякая норма сильнее евклидовой. Пусть это не так, тогда

$$\forall n \in \mathbb{N} \ \exists x_n \in E\left(\frac{\|x_n\|_2}{n} > \|x_n\|\right)$$

Рассмотрим последовательность $y_n = \frac{x_n}{\|x_n\|_2}$. Поскольку единичная сфера является компактом в E (по теореме Вейерштрасса), то существует сходящаяся подпоследовательность y_{n_k} . Пусть y — её предел, тогда

$$||y|| \le ||y - y_{n_k}|| + ||y_{n_k}|| < ||y - y_{n_k}|| + \frac{1}{n_k} \to 0$$

Следовательно, y = 0, а значит, он не лежит на сфере — противоречие

4.3.2 Линейное топологическое пространство

Def. Множество E называется линейным топологическим пространством, если

- 1. E это линейное пространство
- $2.\ E$ это топологическое пространство
- 3. Операции сложения и умножения на числа непрерывны относительно заданной в E топологии

Note. Последнее условие значит:

- 1. Если $z_0 = x_0 + y_0$, то для каждой окрестности U точки z_0 можно указать такие окрестности V и W точек x_0 и y_0 соответственно, что $\forall x \in V \ \forall y \in W \hookrightarrow x + y \in U$
- 2. Если $z_0 = \alpha_0 x_0$, то для каждой окрестности U точки z_0 существуют такая окрестность V точки x_0 и такое число $\varepsilon > 0$, что $\alpha x \in U$ при $|\alpha \alpha_0| < \varepsilon$ и $x \in V$

4.4 Теорема Рисса о проекции

Def. Система векторов $\{e_n\}_{n=1}^{\infty}$ называется базисом (или базисом Ша́удера) в нормированном ЛП E, если для любого $x \in E$ существует единственное "разложение в ряд по системе $\{e_n\}$ "

$$x = \sum_{n=1}^{\infty} \alpha_n e_n$$

(сходимость понимается в метрическом смысле).

Задача дополняемости. Пусть $E_1 \subsetneq E$ — подпространство. Существует ли такое подпространство E_2 , что E является прямой суммой E_1 и E_2 ?

Def. Аннулятор множества $S \subset H$:

$$S^{\perp} = \{ y \in H \mid \forall x \in S \ ((x, y) = 0) \}$$

Def. Определение. Пусть $S \subset H$. Элемент наилучшего приближения (ЭНП) для $x \in H$ — это такое $y \in S$, что

$$||x - y|| = \rho(x, S)$$

Лемма (о существовании и единственности ЭНП). Пусть $M \subset H$ —подпространство, тогда для любого $h \in H$ существует единственный ЭНП в M.

Доказательство в вещественнозначном случае.

1. (единственность) Предположим, что x_1 и x_2 — ЭНП для $h \in H$. Запишем равенство параллелограмма:

$$||x_1 - x_2||^2 = ||(x_1 - h) + (h - x_2)||^2 = -||x_1 + x_2 - 2h||^2 + 2||x_1 - h||^2 + 2||x_2 - h||^2$$

Введём обозначение: $d = \rho(h, M)$.

$$-\|x_1 + x_2 - 2h\|^2 = -4 \left\| \frac{x_1 + x_2}{2} - h \right\|^2 \le -4d^2$$
$$\|x_1 - x_2\|^2 \le -4d^2 + 2 \|x_1 - h\|^2 + 2 \|x_2 - h\|^2 = -4d^2 + 2d^2 + 2d^2 = 0$$

Следовательно, $x_1 = x_2$.

2. (существование) Пусть $\{x_n\}$ — такая последовательность элементов M, что $\lim_{n\to\infty} \|x_n - h\| = d$. Покажем, что эта последовательность сходится, и её предел является ЭНП для h.

Из определения $\{x_n\}$ следует, что

$$\forall \varepsilon > 0 \ \exists N \ \forall n \ge N \ (\|x_n - h\|^2 \le d^2 + \varepsilon)$$

Отсюда получаем, что

$$0 \le ||x_n - x_m||^2 = -||x_n + x_m - 2h||^2 + 2||x_n - h||^2 + 2||x_m - h||^2 \le -4d^2 + 4(d^2 + \varepsilon) = 4\varepsilon$$

Следовательно, $\{x_n\}$ фундаментальна; из замкнутости M получаем, что $\lim_{n\to\infty} x_n = x\in M$. Поскольку норма— непрерывная функция, то $d=\lim_{n\to\infty}\|x_n-h\|=\|x-h\|$, а значит, x является ЭНП.

Теорема Ф. Риса о проекции. Задача дополняемости имеет решение в гильбертовом пространстве. Дополняющее подпространство в таком случае является аннулятором или *ортогональным дополнением*. То есть, если H — гильбертово, $M \subset H$ - подпространство, тогда $H = M \oplus M^{\perp}$

Доказательство:

 $\forall h \in H$ по лемме выше $\exists ! x \in M$, являющийся $\exists H\Pi$ для h. Рассмотрим y = h - x и покажем, что $y \in M^{\perp}$.

Покажем, что для любого $z \in M$ выполнено равенство (z,y)=0. Положим $d=\|y\|=\|h-x\|$; из определения x следует, что

$$d^{2} = \|h - x\|^{2} \le \|h - x - \alpha z\|^{2} = \|h - x\|^{2} - 2(h - x, \alpha z) + \alpha^{2} \|z\|^{2}$$
$$2\alpha (h - x, z) = 2(h - x, \alpha z) \le \alpha^{2} \|z\|^{2}$$

Рассматривая $\alpha = \pm \varepsilon \neq 0$, получаем, что

$$|2\alpha (h - x, z)| \le \alpha^2 ||z||^2$$

Разделив обе части на α и перейдя к пределу при $\alpha \to 0$, получим, что (y,z)=(h-x,z)=0

4.5 Сепарабельные гильбертовы пространства

Def. Множество S из метрического пространства (X, ρ) называется всюду плотным в X, если его замыкание совпадает с X, т.е. для любого $x \in X$ и любого числа $\varepsilon > 0$ существует $y \in S$, такое, что $\rho(x,y) < \varepsilon$

Def. Метрическое пространство (X, ρ) называется сепарабельным, если в нем существует счетное всюду плотное множество.

Def. система $e \subset H$ полна, если $\overline{[e]} = H$

Утверждение. Если $\{e_n\}$ — ортонормированная система в евклидовом пространстве, и $x=\sum_{n=1}^{\infty}\alpha_n e_n$, тогда $\alpha_n=(x,e_n)$.

Доказательство: Пусть $S_N = \sum\limits_{n=1}^N \alpha_n e_n$. Если $k \leq N$, то $(S_N, e_k) = \alpha_k$, иначе $(S_N, e_k) = 0$. Переходя к пределу при $N \to \infty$, получаем искомое.

Лемма (минимальное свойство коэффициентов Фурье).

$$\forall x \in H \hookrightarrow \inf_{\alpha_1 \dots \alpha_n} ||x - \sum_{n=1}^N \alpha_n e_n|| = ||x - \sum_{n=1}^N (x, e_n) e_n||$$

Доказательство:
$$||x - \sum_{n=1}^{N} \alpha_n e_n|| = ||x||^2 - \sum_{n=1}^{N} (\overline{\alpha_n}(x, e_n) + \alpha_n \overline{(x, e_n)} - \alpha_n \overline{\alpha_n}) = ||x||^2 - \sum_{n=1}^{N} |\langle x, r_n \rangle|^2 + \sum_{n=1}^{N} |\langle x, r_n \rangle|^2 > ||x||^2 - \sum_{n=1}^{N} |\langle x, r_n \rangle|^2 = ||x - \sum_{n=1}^{N} (x, e_n) e_n||$$

Теорема. Пусть H — сепарабельное гильбертово пространство, и $\{e_n\}$ — некоторая ортонормированная система векторов в H. Следующие утверждения эквивалентны:

- 1. $\{e_n\}$ базис
- 2. $\{e_n\}$ полная система
- 3. $\{e_n\}^{\perp} = \{0\}$
- 4. Для любого $h \in H$ выполняется равенство Парсеваля: $\|h\|^2 = \sum |(h,e_n)|^2$

Доказательство:

•
$$1 \Rightarrow 2 \ \forall h \in H \exists \alpha_1 \dots \alpha_n, \dots : h = \lim_{\substack{n \\ e \in [e]}} \sum_{n=1}^{N} \alpha_n e_n \Rightarrow h \in \overline{[e]} \Rightarrow H = \overline{[e]}$$

- $2\Rightarrow 3$ $e^{\perp}=|$ по непрерывности скалярного произведения $|=\overline{[e]}^{\perp}=H^{\perp}=\{0\}$
- $3 \Rightarrow 2 H = \overline{[e]} \oplus e^{\perp} = \overline{[e]}$
- $2 \Rightarrow 1$

Пусть
$$x \in H, x \in [e] \Rightarrow \exists N, \alpha_1 \dots \alpha_N : ||x - \sum_{n=1}^N \alpha_n e_n|| < \varepsilon$$

По мин, св-ву коэф. Фурье $||x - \sum\limits_{n=1}^{N} (x,e_n)e_n|| \leq ||x - \sum\limits_{n=1}^{N} \alpha_n e_n|| < \varepsilon$. Последовательность $||x - \sum\limits_{n=1}^{N} (x,e_n)e_n||$ не возрастает $\Rightarrow ||x - \sum\limits_{n=1}^{N} (x,e_n)e_n|| \to 0$.

Если
$$x=\sum\limits_{n=1}^{\infty}\alpha_ne_n$$
, то $\langle x,e_k\rangle=\lim\limits_{N}\langle\sum\limits_{n=1}^{N}\alpha_ne_n,e_k\rangle=\alpha_k$

Значит это представление единственно

•
$$1 \Rightarrow 4 ||x - \sum_{n=1}^{N} \alpha_n e_n||^2 \to 0$$
 а дальше очевидно

•
$$4 \Rightarrow 1 ||x - \sum_{n=1}^{N} \alpha_n e_n||^2 = ||x||^2 - \sum_{n=1}^{N} \to 0$$
. Значит $x = \sum_{n=1}^{N} \langle x_n, e_n \rangle e_n$

Теоремы.

- 1. В любом сепарабельном гильбертовом пространстве существует ортонормированный базис.
 - **Доказательство.** Возьмём всюду плотную счётную систему векторов и построим для неё ортогонализацию Грама-Шмидта.
- 2. **Теорема Риса-Фишера.** Пусть $\{e_n\}$ ортонормированная система в гильбертовом пространстве H. Ряд $\sum \alpha_n e_n$ сходится тогда и только тогда, когда сходится ряд $\sum |\alpha_n|^2$.

3. Все сепарабельные гильбертовы пространства изоморфны.

Доказательство. Сопоставим каждому вектору последовательность коэффициентов Фурье. Из теоремы Риса-Фишера следует, что эта последовательность принадлежит ℓ_2 .

5 Линейные ограниченные операторы в линейных нормированных пространствах

5.1 Связь непрерывности и ограниченности линейного оператора

Def. Пусть X, Y — линейные пространства, тогда линейное отображение $A: X \to Y$ является линейным оператором.

Def. Норма оператора $||A|| = \sup_{\|x\| \le 1} ||Ax||$.

Def. Оператор A ограничен, если $||A|| < \infty$.

Def. Оператор A непрерывен в точке x_0 , если $\forall \{x_n\}$ такой, что $x_n \to x_0$ верно, что $Ax_n \to Ax_0$.

Проверка на эрудицию. Покажите, что линейный оператор обязательно переводит ноль в ноль.

Теорема. Линейный оператор A непрерывен $\iff A$ ограничен.

Доказательство:

- \longleftarrow Пусть $\|A\|=m$, тогда $\forall x \|Ax\| \leq m \cdot \|x\|$, откуда $\forall \{x_n\}$ такой, что $x_n \to x_0$ верно, что $\|Ax_n Ax_0\| = \|A(x_n x_0)\| \leq m \cdot \|x_n x_0\| \to 0$. А значит оператор A непрерывен в каждой точке, то есть на всем пространстве.
- \implies Пусть A непрерывен, значит он непрерывен и в нуле, тогда верно, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in B_{\delta}(0) \ \|Az\| \le \varepsilon.$$

В данном определении возьмем $\varepsilon=1$, откуда $\|Az\|\leq 1$. Заметим, что в нуле оператор ограничен. Теперь пусть $x\neq 0$, тогда рассмотрим $z=\frac{\delta}{2}\frac{x}{\|x\|}$. Тогда $\|z\|=\frac{\delta}{2}\in B_{\delta}(0)\Longrightarrow \|Az\|\leq 1$.

В силу линейности оператора $Az = \frac{\delta}{2\|x\|}Ax$, откуда $\|Ax\| \leq \frac{2}{\delta}\|x\|$. Тогда получаем, что $\|A\| \leq \frac{2}{\delta}$.

5.2 Топологии и сходимости в $\mathcal{L}(E_1, E_2)$. Полнота $\mathcal{L}(E_1, E_2)$, когда E_2 банахово

5.2.1 Пространство $\mathcal{L}(E_1, E_2)$

Def. Пространство $\mathcal{L}(E_1, E_2)$ — пространство линейных ограниченных операторов из E_1 в E_2 . На нем введем норму оператора как

$$||A|| = \sup_{\|x\|_{E_1} \le 1} ||Ax||_{E_2} \tag{5.1}$$

Утверждение. Равенство 5.1 является нормой.

Доказательство:

1. ||A|| = 0 означает, что мы все переводим в ноль по определению норммы в E_2 . А значит A — нулевой оператор, то есть ноль в пространстве $\mathcal{L}(E_1, E_2)$.

2.

$$||tA|| = \sup_{||x||_{E_1} \le 1} ||tAx||_{E_2} = |t| \sup_{||x||_{E_1} \le 1} ||Ax||_{E_2} = |t| ||A||$$

3.

$$||A + B|| = \sup_{\|x\|_{E_1} \le 1} ||Ax + Bx||_{E_2} \le \sup_{\|x\|_{E_1} \le 1} (||Ax||_{E_2} + ||Bx||_{E_2}) \le$$

$$\le \sup_{\|x\|_{E_1} \le 1} ||Ax||_{E_2} + \sup_{\|x\|_{E_1} \le 1} ||Bx||_{E_2} = ||A|| + ||B||$$

5.2.2 Полнота $\mathcal{L}(E_1, E_2)$, когда E_2 банахово

Теорема. Пусть $E_1-\Pi H\Pi$, а E_2 банахово, тогда $\mathcal{L}(E_1,E_2)$ полное.

Доказательство: Доказательство данного факта разобьем на три части: построение конструкта, линейность и ограниченность конструкта, предельность конструкта.

1. Рассмотрим фундаментальную последовательность операторов $\{A_n\} \in \mathcal{L}(E_1, E_2)$. Тогда $\forall x \in E_1 \ \forall n, m \in N$ верно, что $\|A_n x - A_m x\|_{E_2} \leq \|A_n - A_m\| \|x\|_{E_1}$.

Таким образом, последовательность $\{A_n x\}$ фундаментальна в полном E_2 , то есть сходится. То есть

$$\forall x \in E_1 \exists Ax = y \in E_2 \ \|A_n x - Ax\|_{E_2} \to 0$$

Ну тогда пускай $A: E_1 \to E_2$ и будет нашим конструктом.

2. Теперь надо показать линейность и ограниченность.

• Линейность (считаем, что K — поле скаляров, над которым построен E_1). $\forall x, y \in E_1 \ \forall \alpha, \beta \in K$ верно, что

$$||A_n(\alpha x + \beta y) - \alpha Ax - \beta Ay||_{E_2} \le |\alpha| ||A_n x - Ax||_{E_2} + |\beta| ||A_n y - Ay||_{E_2} \to 0$$

Откуда A линеен.

• Ограниченность. Заметим, что $\exists R > 0: \ \forall n \in \mathbb{N} \ \|A_n\| < R$. Заметили, теперь докажем. В силу фундаментальности $\{A_n\}$ существует $N_1 \in \mathbb{N}$ такой, что

$$\forall n \ge N_1 \ \|A_n - A_{N_1}\| \le 1 \Longrightarrow \|A_n\| \le \|A_{N_1}\| + 1$$

тогда $R = \max \{ \|A_1\|, \dots, \|A_{N_1}\| \} + 1$. Тогда $\forall x \in E_1$ верно, что

$$||Ax||_{E_2} = \lim_{n \to \infty} ||A_n x||_{E_2} \le ||x||_{E_1} \cdot \overline{\lim_{n \to \infty}} ||A_n|| \le R ||x||_{E_1} \Longrightarrow ||A|| \le R$$

Ограниченность доказали таким образом.

3. В силу фундаментальности $\{A_n\}$ $\forall \varepsilon>0$ $\exists N_\varepsilon: \forall n,m>N_\varepsilon$ $\|A_n-A_m\|\leq \varepsilon.$ Тогда $\forall x\in E_1:$ $\|x\|_{E_1}=1$ верно, что

$$\|A_n x - A_m x\|_{E_2} \le \|A_n - A_m\| \le \varepsilon$$
$$\|A_n x - A x\|_{E_2} = \lim_{m \to \infty} \|A_n x - A_m x\|_{E_2} \le \varepsilon$$

Тогда $\forall n > N_{\varepsilon}$ получаем $\|A_n - A\| = \sup_{\|x\|_{E_1} \le 1} \|A_n x - Ax\| \le \varepsilon$. То есть наш конструкт еще и пределом является, да и лежит в $\mathcal{L}(E_1, E_2)$, откуда $\mathcal{L}(E_1, E_2)$ полное.

5.3 Продолжение непрерывного отображения

Def. Пусть X — нормированное пространство, а $Z \subset X$ — подпространство. Пусть на Z определен оператор A, тогда оператор B является продолжением A, если B определен на X и $A = B\big|_Z$, а $\|A\|_Z = \|B\|_X$.

Note. Часто математикам интересно узнать, имеется ли у данного оператора продолжение на чтолибо. Сформулируем один из фактов в данном направлении.

Теорема (о продолжении на пополнение).

Пусть $A \in \mathcal{L}(E_1, E_2)$, E_1 — линейное нормированное, а E_2 — банахово. Также пусть $\overline{E_1}$ — пополнение (замыкание) E_1 , тогда существует единственное продолжение $\overline{A} \in \mathcal{L}(\overline{E_1}, E_2)$, при этом $||A|| = ||\overline{A}||$.

Доказательство: Пусть $\overline{x} = [\{x_n\}] \in \overline{E_1}$, где $\{x_n\}$ — фундаментальная последовательность. Так как $\|Ax_n - Ax_m\|_{E_2} \le \|A\| \cdot \|x_n - x_m\|_{E_1} \to 0$, откуда $\{Ax_n\}$ фундаментальна, но при этом E_2 полно,

а значит $\exists \lim_{n \to \infty} Ax_n = \overline{A}\overline{x}$. Убедимся в корректности данного определения. Пусть $\{x\} \sim \{x'\}$, то есть $\|x - x'\|_{E_1} = 0$. Введем $y = \lim_{n \to \infty} Ax_n$ и $y = \lim_{n \to \infty} Ax'_n$. Рассмотрим

$$||y' - y|| = \lim_{n \to \infty} ||Ax'_n - Ax_n|| \le \lim_{n \to \infty} ||A|| ||x'_n - x_n|| \to 0$$

Линейность оператора тривиальная по свойству предела, докажем ограниченность.

$$\|\overline{A}\overline{x}\| = \left\|\lim_{n\to\infty} Ax_n\right\| \le \|A\| \lim_{n\to\infty} \|x_n\| = \|A\| \|\overline{x}\|$$

То есть $\|\overline{A}\| \le \|A\|$, а в обратную сторону неравенство тривиально, норма при продолжении не могла уменьшиться.

5.4 Теорема Банаха-Штейнгауза

Def. Последовательность операторов $\{A_n\} \in \mathcal{L}(E_1, E_2)$ поточечно ограничена, если

$$\forall x \in E_1 \sup_{n \in \mathbb{N}} ||A_n x|| < \infty.$$

Теорема (Банах, Штейнгауз).

Пусть последовательность операторов $\{A_n\} \in \mathcal{L}(E_1, E_2)$, где E_1 — полное. Тогда если $\{A_n\}$ поточечно ограничена, то она просто ограничена $\sup_{n \in \mathbb{N}} \|A_n\| < \infty$.

Доказательство: Введем $A_n^{-1}\left(B_1^{E_2}(0)\right) = \left\{x \in E_1 \mid \|A_n x\|_{E_2} \le 1\right\}$. Тогда введем множество $F = \bigcap_{n \in \mathbb{N}} A_n^{-1}\left(B_1^{E_2}(0)\right)$

Так как A_n ограничены, значит они непрерывны. А тогда $A_n^{-1}\left(B_1^{E_2}(0)\right)$ замкнуто в E_1 , откуда F тоже замкнуто. Далее заметим, что $\forall x \in E_1 \ \exists N(x) \in \mathbb{N}: \ \|A_n x\|_{E_2} \leq N(x)$, то есть

$$\left\| A_n \left(\frac{x}{N(x)} \right) \right\|_{E_2} \le 1 \Longrightarrow \frac{x}{N(x)} \in F$$

Заметим тогда, что

$$E_1 \subset \bigcup_{N \in \mathbb{N}} (NF) \subset E_1 \Longrightarrow E_1 = \bigcup_{N \in \mathbb{N}} (NF)$$

Таким образом E_1 представлено в виде счетного объединения замкнутых множеств, но по теореме Бэра (2.1) хотя бы одно из этих множеств имеет непустую внутренность, откуда $\exists N_0 \in \mathbb{N}$, элемент $z_0 \in N_0 F$ и положительное r_0 такое, что

$$B_{r_0}(z_0) \subset N_0 F \Longrightarrow \frac{1}{N_0} B_{r_0}(z_0) = B_{\frac{r_0}{z_0}} \left(\frac{z_0}{N_0}\right) \subset F$$

Обозначим $\delta_0=\frac{r_0}{N_0}$ и $x_0=\frac{z_0}{N_0}$. Тогда $\forall x\in E_1:\ \|x\|_{E_1}=1$ получаем

$$x_0 + \delta_0 x \in B_{\delta_0}(x_0) \subset F \Longrightarrow \forall n \in \mathbb{N} \|A_n(x_0) + \delta_0 A_n(x)\|_{E_2} \le 1$$

То есть

$$||A_n x||_{E_2} \le \frac{1 + ||A_n x_0||_{E_2}}{\delta_0} \le \frac{1 + N_0}{\delta_0} = L_0$$

То есть $\forall n \in \mathbb{N} \, \|A_n\| = \sup_{\|x\|_{E_1}=1} \|A_n x\|_{E_2} \le L_0$, чего мы все и хотели.

5.5 Поточечная сходимость

Def. Последовательность $\{A_n\} \in \mathcal{L}(E_1, E_2)$ поточечно фундаментальна, если $\forall x \in E_1 \ \{A_n x\}$ фундаментальна в E_2 .

Def. $\mathcal{L}(E_1, E_2)$ полно относительно поточечной сходимости, если $\forall \{A_n\} \in \mathcal{L}(E_1, E_2)$ поточечно фундаментальной существует предел $A \in \mathcal{L}(E_1, E_2)$.

5.5.1 Полнота $\mathcal{L}(E_1, E_2)$ относительно поточечной сходимости

Теорема. Если E_1 и E_2 полны, то $\mathcal{L}(E_1, E_2)$ полно относительно поточечной сходимости.

Доказательство: Рассмотрим произвольную $\{A_n\}$ поточечно фундаментальную. В силу полноты $E_2 \ \forall x \in E_1 \ \exists y \in E_2$ такой, что $y = \lim_{n \to \infty} A_n x$. Тогда пусть A будет по x сопоставлять так построенный y. Линейность тривиальна из определения.

Так как $\{A_n x\}$ сходится для любого $x \in E_1$, значит она ограничена. То есть перед нами поточечно ограниченная последовательность, тогда по теореме Банаха-Штейнгауза данная последовательность просто ограничена в $\mathcal{L}(E_1, E_2)$. А тогда $\forall x \in E_1$

$$\left\|Ax\right\|_{E_{2}} \leq \left\|Ax - A_{n}x\right\|_{E_{2}} + \left\|A_{n}x\right\|_{E_{2}} \leq \left\|Ax - A_{n}x\right\|_{E_{2}} + L\left\|x\right\|_{E_{1}} \to L\left\|x\right\|_{E_{1}}$$

А это значит, что A ограничен. Значит $A \in \mathcal{L}(E_1, E_2)$, что и требовалось.

5.5.2 Критерий поточечной сходимости операторов из $\mathcal{L}(E_1, E_2)$

Теорема. Пусть E_2 банахово. Тогда для поточечной сходимости некоторой $\{A_n\} \in \mathcal{L}(E_1, E_2)$ необходимо и достаточно, чтобы:

- 1. $\{||A_n||\}$ ограничена
- 2. $\{A_n\}$ поточечно сходится на некотором линейном многообразии $X\subset E_1$, при этом X всюду плотно в E_1

Доказательство: Необходимость. Если $\forall x \in E_1 \ A_n x \to Ax$, $||A_n x|| \to ||Ax||$, а так как $|||A_n x|| - ||Ax||| \le ||A_n x - Ax|| \to 0$, значит $\{||A_n||\}$ ограничена. Второе утверждение тривиально, так как вместо X можно взять E_1 .

Теперь достаточность. Пусть A — поточечный предел $\{A_n\}$ на X, а $C = \max\left\{\sup_{n \in \mathbb{N}} \|A_n\|, \|A\|\right\}$. Так как X всюду плотно в E_1 , то $\forall \varepsilon > 0$ $\exists x' \in X$ такой, что $\|x - x'\| < \frac{\varepsilon}{4C}$. Тогда

$$||A_n x - Ax||_{E_2} = ||A_n (x - x') + (A_n x' - Ax') + A(x' - x)||_{E_2} \le$$

$$\le ||A_n|| ||x - x'|| + ||A_n x' - Ax'|| + ||A|| ||x' - x|| \le \frac{\varepsilon}{2} + ||A_n x' - Ax'||$$

Так как $\{A_n\}$ поточечно сходится на X, $\exists N: \forall n>N \|A_nx'-Ax'\|_{E_2}<\frac{\varepsilon}{2}$. Тогда $\|A_nx-Ax\|_{E_2}<\varepsilon$ на E_1 , что и требовалось.

6 Обратный оператор. Обратимость

6.1 Обратимость линейного ограниченного снизу оператора

6.1.1 Левый и правый обратные операторы

Def. Пусть $A \in \mathcal{L}(E_1, E_2)$, тогда $A_l^{-1} : \operatorname{Im} A \to E_1$ — левый обратный, если $\forall x \in E_1 \ A_l^{-1} A x = x$.

Def. Пусть $A \in \mathcal{L}(E_1, E_2)$, тогда $A_r^{-1} : \operatorname{Im} A \to E_1$ — правый обратный, если $\forall y \in \operatorname{Im} A \ AA_r^{-1}y = y$.

Лемма. Пусть $A \in \mathcal{L}(E_1, E_2)$. Тогда он взаимо инъективен тогда и только тогда, когда его ядро тривиально.

Доказательство:

- \implies Пусть $x \in \text{Ker} A$, тогда Ax = 0, откуда x = 0 в силу взаимооднозначности.
- = Пусть ядро тривиально. Предположим противное, то есть $\exists y \in \text{Im} A$ такой, что $\exists x \neq z \in E_1$ такие, что y = Ax = Az, но тогда 0 = A(x-z), то есть $x-z \in \text{Ker} A$, а оно тривиально, значит x = z противоречие.

Лемма. Пусть $A \in \mathcal{L}(E_1, E_2)$. Тогда A_l^{-1} существует тогда и только тогда, когда $\operatorname{Ker} A = \{0\}$. При этом A_l^{-1} единственен и линеен.

Доказательство:

 \Longrightarrow Пусть $\exists A_l^{-1}$, тогда заметим, что нулевой вектор однозначно в ядре. Теперь пусть $x \in \operatorname{Ker} A$, по определению

$$x = A_l^{-1}Ax = A_l^{-1}(0) = A_l^{-1}A(0) = 0 \Longrightarrow \text{Ker}A = 0$$

 \longleftarrow Пусть ядро A тривиально. Тогда A является взаимо однозначным соответствием $E_1 \to {\rm Im} A$, при этом $\forall y \in {\rm Im} A \; \exists ! x \in E_1$ такой, что Ax = y. Создадим конструкт, который будет по таким y возвращать x как показано выше. Тогда $\forall z \in E_1 \; A_l^{-1} Az = z$ в силу взаимооднозначности. То есть мы построили левый обратный.

Допустим есть еще один левый обратный B, тогда $\forall y \in \text{Im} A \ By = BAx = x = A_l^{-1}y$, то есть они совпадут с уже построенным. Линейность построенного оператора тривиальная.

Note. Правый обратный всегда существует, но не факт, что он линеен и единственен.

Note. Очевидно, что правый обратный единственен, если $\forall y \in \text{Im} A$ его прообраз единственен, то есть оператор является биекцией $E_1 \to \text{Im} A$. А его взаимооднозначность равносильна тривиальности ядра A.

Следствие. Пусть $A \in \mathcal{L}(E_1, E_2)$ и $\operatorname{Ker} A = 0$, тогда A имеет единственные правый и левый обратные, которые совпадут. При этом левый линеен, откуда и правый линеен.

Def. Пусть $A \in \mathcal{L}(E_1, E_2)$. Тогда A^{-1} обратный к A, если он одновременно и правый, и левый обратный.

Следствие. Существование обратного оператора (тогда он еще единственный и линейный, но, быть может, неограниченный) равносильно тривиальности ядра исходного оператора.

Def. Пусть $A \in \mathcal{L}(E_1, E_2)$. Тогда A непрерывно обратим, если $A^{-1} \in \mathcal{L}(\operatorname{Im} A, E_1)$.

6.1.2 Ограниченный снизу оператор

Def. Пусть $A \in \mathcal{L}(E_1, E_2)$, тогда A ограничен снизу, если $\exists L > 0$ такое, что $\forall x \in E_1 ||Ax|| \ge L ||x||$.

Теорема. Непрерывная обратимость линейного оператора равносильна его ограниченности снизу.

Доказательство:

 \Longrightarrow Пусть имеется $A^{-1} \in \mathcal{L}(\mathrm{Im}A, E_1)$, тогда

$$\forall x \in E_1 \ \|x\| = \|A^{-1}Ax\| \le \|A^{-1}\| \|Ax\| \Longrightarrow L = \frac{1}{\|A^{-1}\|}$$

 \Leftarrow Пусть имеется A ограничен снизу. Тогда если $x \in \text{Ker} A$, Ax = 0 и $0 = ||Ax|| \ge L \, ||x||$, то есть x = 0, откуда ядро тривиально, а по лемме выше существует линейный обратный оператор (казалось бы победа, но еще не обсуждена непрерывность). В силу ограниченности A снизу

$$||A^{-1}y|| \le \frac{||AA^{-1}y||}{L} = \frac{||y||}{L} \Longrightarrow ||A^{-1}|| \le \frac{1}{L}$$

6.2 Обратимость возмущенного оператора

Лемма. Пусть E банахово, $A \in \mathcal{L}(E, E)$ и ||A|| < 1, тогда существует $(I + A)^{-1} \in \mathcal{L}(E, E)$.

Доказательство: Рассмотрим последовательность операторов $S_n = \sum_{k=0}^n (-1)^k A^k$. Покажем, что она сходится в $\mathcal{L}(E,E)$ и определяет $(I+A)^{-1}$.

1. Покажем, что S_n сходится. Так как E банахово, $\mathcal{L}(E,E)$ тоже банахово, поэтому достаточно фундаментальности.

$$||S_{n+p} - S_n|| = \left| \left| \sum_{k=n+1}^{n+p} (-1)^k A^k \right| \right| \le \sum_{k=n+1}^{n+p} (-1)^k ||A^k|| \le \sum_{k=n+1}^{n+p} (-1)^k ||A||^k \to 0$$

Стремление к нулю за счет сходимости ряда из степеней норм, так как ограничен сверху сходящейся геометрической прогрессией. Таким образом $\exists S = \lim_{n \to \infty} S_n$.

2. Покажем, что (I+A)S=I. Так как $S_n \to S, \, (I+A)S_n \to (I+A)S.$ Заметим, что

$$(I+A)S \leftarrow (I+A)S_n = I + (-1)^n \underbrace{A^{n+1}}_{\longrightarrow 0} \longrightarrow I,$$

откуда (I+A)S=I.

3. Теперь заметим, что S_n — многочлен от оператора, как и (I+A), а многочлены коммутативны, то есть

$$S(I+A) = (I+A)S \leftarrow (I+A)S_n = I + (-1)^n \underbrace{A^{n+1}}_{I} \to I,$$

откуда S(I+A)=I.

То есть S является и левым, и правым обратным одновременно. Ограниченность S тривиальна из его построения.

Следствие. Пусть E_1, E_2 банаховы и операторы $A, \Delta A \in \mathcal{L}(E_1, E_2), \exists A^{-1} \in \mathcal{L}(E_2, E_1)$ и $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$. Тогда $\exists (A + \Delta A)^{-1}$.

Доказательство: Так как $||A^{-1}\Delta A|| < 1$, по лемме выше существует $(I + A^{-1}\Delta A)^{-1}$, но заметим, что $(A + \Delta A)^{-1} = (I + A^{-1}\Delta A)^{-1}A^{-1}$, а оба оператора определены и непрерывны. Тогда в силу непрерывности композиции требуемое доказано.

Следствие. $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$

Утверждение. Пусть E_1, E_2 банаховы и операторы $A, \Delta A \in \mathcal{L}(E_1, E_2), \exists A^{-1} \in \mathcal{L}(E_2, E_1)$ и $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$. Тогда верна оценка

$$\left\| (A + \Delta A)^{-1} - A^{-1} \right\| \le \frac{\|A^{-1}\|^2 \|\Delta A\|}{1 - \|A^{-1}\| \|\Delta A\|}$$

$$(6.1)$$

Доказательство: Пусть $B = (I + A^{-1}\Delta A)^{-1}A^{-1}$ обратный к $A + \Delta A$, по следствию выше он существует и $B \in \mathcal{L}(E)$. При этом верно равенство:

$$B = (A + \Delta A)^{-1} = \sum_{k=0}^{\infty} (-1)^k (A^{-1} \Delta A)^k A^{-1}$$

Ну теперь уже дело техники:

$$\left\| (A + \Delta A)^{-1} - A^{-1} \right\| = \left\| \sum_{k=1}^{\infty} (-1)^k (A^{-1} \Delta A)^k A^{-1} \right\| \le \sum_{k=1}^{\infty} \left\| A^{-1} \right\|^{k+1} \left\| \Delta A \right\|^k = \frac{\left\| A^{-1} \right\|^2 \left\| \Delta A \right\|}{1 - \left\| A^{-1} \right\| \left\| \Delta A \right\|}$$

6.3 Теорема Банаха. Спектр, резольвента.

6.3.1 Теорема Банаха об обратном операторе

Теорема (Банах) (б/д). Пусть $A \in \mathcal{L}(E_1, E_2)$, а E_1 и E_2 банаховы. Тогда существование $A^{-1} \in \mathcal{L}(E_2, E_1)$ равносильно тому, что ядро тривиально, а $\text{Im} A = E_2$.

6.3.2 Спектр, резольвента.

Def. Пусть $\lambda \in \mathbb{C}$, тогда введем $A_{\lambda} = A - \lambda I$.

Def. $\lambda \in \mathbb{C}$ называется регулярным числом для $A \in \mathcal{L}(E)$, если A_{λ} непрерывно обратим на E.

Def. Резольвентное множество $\rho(A) = \{\lambda \in \mathbb{C} \mid \exists A_{\lambda}^{-1} \in \mathcal{L}(E)\}.$

Def. Резольвентой оператора A называют A_{λ}^{-1} , где $\lambda \in \rho(A)$.

Def. Множество $\sigma(A) = \mathbb{C} \setminus \rho(A)$ называется спектром.

Def. Спектральный радиус $r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|$.

Def. Множество $\sigma_p(A) \subset \sigma(A)$ называется точечным спекторм, если $\lambda \in \sigma_p(A) \Longleftrightarrow \operatorname{Ker} A_\lambda \neq \{0\}.$

Def. Любое число из $\sigma_p(A)$ называется собственным числом A, а любой нетривиальный вектор из $\mathrm{Ker} A_\lambda$ называется собственным вектором.

Def. Множество $\sigma_c(A) \subset \sigma(A)$ называется непрерывным спектром, если

$$\lambda \in \sigma_c(A) \iff \operatorname{Ker} A_\lambda = \{0\}, \ \operatorname{Im} A_\lambda \neq X, \ \overline{\operatorname{Im} A_\lambda} = X$$

Def. Множество $\sigma_r(A) \subset \sigma(A)$ называется остаточным спектром, если

$$\lambda \in \sigma_r(A) \iff \operatorname{Ker} A_\lambda = \{0\}, \ \overline{\operatorname{Im} A_\lambda} \neq X$$

Утверждение. $\sigma(A) = \sigma_p(A) \cup \sigma_c(A) \cup \sigma_r(A)$

Доказательство: Рассмотреть все три случая, когда по теореме Банаха не будет существовать обратный к A_{λ} . Их всего три, каждый соответствует свой компоненте спектра.

7 Аналитические свойства резольвенты

7.1 Резольвента. Ее аналитические свойства.

Для доказательства примечательного факта нам понадобится восемь лемм, держитесь, коллеги.

Лемма 0. $\rho(A)$ открытое множество.

Доказательство: $\lambda \in \rho(A)$, то есть $(A - \lambda I)^{-1} \in \mathcal{L}(E)$. По теореме 6.2 о возмущенном операторе $\exists (A - \lambda I - \Delta \lambda I)^{-1}$, откуда получаем, что с каждой точкой в $\rho(A)$ лежит ее $\Delta \lambda$ -окрестность, а значит $\rho(A)$ открыто.

Лемма 1. $R_{\lambda_0} = (A - \lambda_0 I)^{-1}$ непрерывен.

Доказательство: Применим оценочку 6.1 о возмущенном операторе к $A - \lambda_0 I$ и $A - \lambda_0 I + (\lambda_0 - \lambda) I$, получим, что

$$||R_{\lambda_0} - R_{\lambda}|| \le \underbrace{|\lambda - \lambda_0|}_{\to 0} \cdot \underbrace{\frac{||R_{\lambda_0}||^2}{1 - |\lambda - \lambda_0| ||R_{\lambda_0}||}}_{\to ||R_{\lambda_0}||^2} \to 0$$

Лемма 2 (равенство Гильберта). Пусть $\lambda, \lambda_0 \in \rho(A)$, тогда $R_{\lambda} - R_{\lambda_0} = (\lambda - \lambda_0) R_{\lambda} R_{\lambda_0}$.

Доказательство:

$$R_{\lambda} - R_{\lambda_0} = R_{\lambda} R_{\lambda_0}^{-1} R_{\lambda_0} - R_{\lambda} R_{\lambda}^{-1} R_{\lambda_0} = R_{\lambda} (R_{\lambda_0}^{-1} - R_{\lambda}^{-1}) R_{\lambda_0} = R_{\lambda} (A - \lambda_0 I - A + \lambda I) R_{\lambda_0} = (\lambda - \lambda_0) R_{\lambda} R_{\lambda_0}$$

Лемма 3. R_{λ} дифференцируема на $\rho(A)$.

Доказательство:

$$\frac{R_{\lambda} - R_{\lambda_0}}{\lambda - \lambda_0} \to R_{\lambda_0}^2$$

Откуда следует требуемое по определению.

Лемма 4. Радиус сходимости ряда Неймана $-\frac{1}{\lambda}\sum_{n=0}^{\infty}\frac{A^n}{\lambda^n}$ равен спектральному радиусу.

Доказательство:

- 1. Пусть $|\lambda_0| > r(A) \Longrightarrow \lambda_0 \in \rho(A) \Longrightarrow R_\lambda$ дифференцируема в λ_0 , тогда мы можем разложить ее в ряд Лорана по отрицательным степеням λ (привет ТФКП), который единственен. Но ряд Неймана также имеет вид ряда Лорана и совпадет с ним, поэтому вне спектрального радиуса ряд точно сходится.
- 2. Пусть $|\lambda_0| < r(A)$. Ряд Неймана в ней расходится. Если бы он в ней сходился, то и в чуть больших $\lambda : |\lambda| > |\lambda_0|$ он и подавно сходился (мы только уменьшаем по модулю члены ряда), но тогда этот ряд задавал бы дифференцируемую функцию на окружности радиуса $|\lambda|$. Возьмем тогда $\lambda = r(A)$, в ней тогда бы ряд Лорана сходился, но на расстоянии r(A) есть хотя бы одна точка из спектра, где ряд Лорана расходится. Противоречие.

Следствие. Для спектрального радиуса работает формула Коши-Адамара для степенных рядов Лорана $r(A) = \overline{\lim_{n \to \infty} \sqrt[n]{\|A^n\|}}$.

Лемма 5. Спектр не пуст.

Доказательство: Предположим противное, то есть $\rho(A) = \mathbb{C}$, откуда $\forall \lambda \in \mathbb{C} \ \exists R_{\lambda}$ и R_{λ} дифференфируема во всей комплексной плоскости.

$$\|R_{\lambda}\| \leq \underbrace{\frac{1}{|\lambda|}}_{\to 0} \cdot \underbrace{\frac{1}{1 - \frac{\|A\|}{|\lambda|}}}_{\to 1} \to 0$$
 при $\lambda \to \infty$

По теореме Лиувилля (еще раз привет ТФКП: если функция дифференцируема во всей комплексной плоскости и при этом ограничена, то она является константной) $R_{\lambda}=B$ — не зависит от λ , при этом его норма стремится к нулю. Но ведь R_{λ} является биекцией вне зависимости от λ (так как обратим). Но это что-то невозможное, быть биекцией и все отпралять в ноль. Противоречие.

Лемма 6. $\lambda \in \sigma(A) \Longrightarrow \lambda^n \in \sigma(A^n)$

Доказательство: Предположим противное. $\lambda^n \in \rho(A^n)$, то есть $\exists (A^n - \lambda^n I)^{-1} \in \mathcal{L}(E)$.

$$A^{n} - \lambda^{n} I = (A - \lambda I)(A^{n-1} + \lambda A^{n-2} + \dots + \lambda^{n-1} I)$$

Допустим, у него есть обратный, тогда $I = (A - \lambda I) \cdot (\underbrace{A^{n-1} + \lambda A^{n-2} + \ldots + \lambda^{n-1} I) \cdot (A^n - \lambda^n I)^{-1}}_{\in \mathcal{L}(E)}$, то

есть и у $(A - \lambda I)$ есть правый обратный. Так как это многочлены от операторов кооммутативвны, получаем, что есть еще и левый обратный, а значит есть и просто обратный, что конечно неправда, так как $\lambda \in \sigma(A)$.

Лемма 7. $r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$.

Доказательство: $r(A) = \overline{\lim_{n \to \infty}} \sqrt[n]{\|A^n\|}$, но мы хотим избавиться от слова «верхний» в пределе. Лемма 6 говорит, что

$$(\sigma(A))^n \subset (\sigma(A^n)) \Longrightarrow (r(A))^n \le r(A^n) \Longrightarrow r(A) \le (r(A^n))^{\frac{1}{n}} \le ||A^n||^{\frac{1}{n}}$$

Пусть $\alpha_n = \|A^n\|^{\frac{1}{n}}$. То есть $\overline{\lim_{n \to \infty}} \alpha_n \le \alpha_n$, откуда $\lim_{n \to \infty} \alpha_n \ge \overline{\lim_{n \to \infty}} \alpha_n \le \alpha_n$, откуда $\overline{\lim_{n \to \infty}} \alpha_n = \lim_{n \to \infty} \alpha_n$.

Теорема. Пусть $E(\mathbb{C})$ — банахово, $A \in \mathcal{L}(E)$, тогда

- 1. $\sigma(A)$ непустой компакт
- 2. $r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$

Доказательство: Заметим, что как бы первое утверждение вытекает из нулевой и пятой леммы, а второе из седьмой.

8 Сопряженное пространство. Теорема Рисса-Фреше. Теорема Хана-Банаха.

8.1 Сопряженное пространство

Пусть E — линейной нормированное пространство над полем \mathbb{F} , где \mathbb{F} — поле комплексных или действительных чисел.

Def. $E^* = \mathcal{L}(E, \mathbb{F})$ – сопряженное к E пространство.

Свойство. E^* – банахово.

Remind. $\mathcal{L}(E_1, E_2)$ – банахово, если E_2 – банахово.

8.2 Теорема Рисса-Фреше

Теорема (Рисса-Фреше). Пусть H – гильбертово пространство, тогда $\forall f \in H^* \exists ! y_0 \in H$, т.ч. $\forall x \ f(x) = (x, y_0)$, причем $\|y_0\|_H = \|f\|_{H^*}$

Доказательство: Рассмотрим случаи:

- $f = 0 \Rightarrow y_0 = 0$
- $f \neq 0 \Rightarrow$ по теореме Т.4.3 (**теорема Рисса о проекции**) $\exists x_0 \notin \text{Ker} f, x_0 \in (\text{Ker} f)^{\perp}$ $\forall x \in H : x = z + \alpha x_0, \ \alpha \in \mathbb{F}, \alpha = \frac{f(x)}{f(x_0)}, z \in \text{Ker} f.$ Умножим скалярно обе части на x_0 : $(x, x_0) = 0 + \frac{f(x)}{f(x_0)} \|x_0\|^2$. $f(x) = \left(x, \frac{f(x_0)}{\|x_0\|^2} \cdot x_0\right)$

Единственность: Пусть $f(x)=(x,y_0')=(x,y_0'')$. Вычитая правую часть из левой, получаем, что $(x,y_0'-y_0'')=0$. Подставляя $x=y_0'-y_0''$, получаем, что $\|y_0'-y_0''\|=0 \Rightarrow y_0'-y_0''=0$

8.3 Теорема Хана-Банаха

Теорема (Хана-Банаха).

Пусть E — линейное нормированное пространство над полем $\mathbb{K},\,M\subset E$ - линейное многообразие, f — линейный ограниченный функционал на M. Тогда существует $\tilde{f}\in E^*$ такой, что

- 1) $\tilde{f}|_M = f$
- 2) $||\tilde{f}||_{(E^*)} = ||f||_{(M)}$

Доказательство:

Будем предполагать, что E сепарабельно, $\mathbb{K} = \mathbb{R}$, и $M \neq E$.

Рассмотрим многообразие $M_1 = M \oplus [x_0]$ (лин. оболочка), где $x_0 \notin M$; пусть $y \in M_1$, тогда $y = z + \alpha \cdot x_0$, где $z \in M$ и $\alpha \in \mathbb{R}$ (т.к. M — линейное многобразие). Тогда для любого линейного функционала f_1 , определённого на M_1 , по линейности выполнено равенство

$$f_1(y) = f_1(z) + \alpha \cdot f_1(x_0)$$

Мы стремимся к тому, чтобы оператор f_1 действовал на точки M_1 так:

$$f_1(y) = f(z) + \alpha \cdot f_1(x_0)$$

Далее будет построена последовательность $x_0, x_1, x_2, ...$, соответственно $M_1, M_2, ...$ и $f_1, f_2, ...$, и с учётом сепарабельности получен оператор \tilde{f} , удовлетворяющий нужным свойствам.

Для того, чтобы определить оператор f_1 как $f_1(y) = f(z) + \alpha \cdot f_1(x_0)$, достаточно определить его в точке x_0 (проверяя свойство $||f_1|| \le ||f||$). Заметим, что $||f_1|| \le ||f||$ будет выполнено, если

$$\forall y \in M_1 \ (|f_1(y)| \le ||f|| \cdot ||y||)$$

Воспользуемся вышеприведённым представлением у:

$$\forall z \in M \ \forall \alpha \in \mathbb{R} \ (|f(z) + \alpha \cdot f_1(x_0)| \le ||f|| \cdot ||z + \alpha \cdot x_0||)$$

Случай $\alpha=0$ очевиден. Если же $\alpha\neq 0$, то высказывание можно переписать в следующем виде:

$$\left| f\left(\frac{z}{\alpha}\right) + f_1(x_0) \right| \le \|f\| \cdot \left\| \frac{z}{\alpha} + x_0 \right\|$$

Введём обозначение $w=z/\alpha$, после чего воспользуемся определением модуля:

$$-f(w) - ||f|| \cdot ||w + x_0|| \le f_1(x_0) \le ||f|| \cdot ||w + x_0|| - f(w)$$

Отсюда следует, что для существования продолжения f на M_1 достаточно показать справедливость следующего неравенства:

$$\sup_{w \in M} (-f(w) - \|f\| \cdot \|w + x_0\|) \le \inf_{w \in M} (\|f\| \cdot \|w + x_0\| - f(w))$$

Зафиксируем $w_1, w_2 \in M$; без потери общности предположим, что $f(w_2 - w_1) \ge 0$.

$$|f(w_2 - w_1)| \le ||f|| \cdot ||w_2 - w_1||$$

$$f(w_2) - f(w_1) \le ||f|| \cdot ||w_2 - w_1 + x_0 - x_0||$$

$$\le ||f|| \cdot (||w_1 + x_0|| + ||w_2 + x_0||)$$

$$-f(w_1) - ||f|| \cdot ||w_1 + x_0|| \le ||f|| \cdot ||w_2 + x_0|| - f(w_2)$$

Искомое неравенство следует из полученного очевидным образом.

Поскольку E сепарабельно, то существует счётная полная система $X=\{x_n\}_{n=0}^{\infty}$. Используя полученный результат, построим последовательность продолжений $\{(M_n,f_n)\}_{n=0}^{\infty}$, где $M_0=M$ и $f_0=f$ (то есть, рассматривается случай, когда $E\neq M_n$ — иначе функционал f_n будет искомым по построению); здесь $M_i=M_{i-1}\oplus [x_i],\ f_i$ — продолжение f_{i-1} на M_i по принципу, описанному выше.

Определим $M_{\infty} = \bigcup M_k$, тогда $X \subset M_{\infty}$, а значит, $\overline{M_{\infty}} = E$. Определим f_{∞} на M_{∞} следующим образом: $f_{\infty}|_{M_k} = f_k$. Для продолжения на $\overline{M_{\infty}}$ воспользуемся теоремой о продолжении на пополнение (5.3) — здесь $\mathbb R$ банахово, а значит условия теоремы выполняются. Из построения $\{f_n\}$ и свойства продолжения в теореме 5.3 следует, что $||f_{\infty}|| = ||f||$, а значит, f_{∞} — искомый функцонал.

8.3.1 Следствия из т. Хана-Банаха

1. Пусть $M \subset E$ — такое линейное многообразие, что $\overline{M} \neq E$, и $x_0 \notin \overline{M}$, тогда существует такой $f \in E^*$, что $f \upharpoonright_M = 0$, $f(x_0) = 1$, и

$$||f|| = \frac{1}{\rho(M, x_0)}$$

- 2. Для любого $x \in E \setminus \{\bar{0}\}$ найдётся такой $f \in E^*$, что $\|f\| = 1$ и $f(x) = \|x\|$.
- 3. Если f(x)=0 для любого $f\in E^*,$ то $x=\bar{0}.$ Если f(x)=f(y) для любого $f\in E^*,$ то x=y.
- 4. Для любого $x \in E$ выполнено следующее равенство:

$$||x|| = \sup_{||f||_{E^*}=1} |f(x)|$$

Примеры.

1. К любой точке единичной сферы можно провести опорную гиперплоскость (её можно построить как $f^{-1}(1)$, где f берётся из следствия 2).

- 2. Корректность определения слабой сходимости следует из следствия 3.
- 3. Существует изометрия из E в E^{**} .

(Из следствия 4 можно получить, что каноническое вложение E в E^{**} является изометрией.)

4. Если последовательность $\{x_n\} \subset B_R(\bar{0})$ слабо сходится к x, то $||x|| \leq R$.

Доказательства следствий.

1. Введём обозначение: $\lambda = \rho(x_0, M)$.

Рассмотрим $M_1 = M \oplus [x_0]$. Пусть $x \in M_1$, тогда $x = z + \alpha \cdot x_0$, где $z \in M$. Определим линейный функционал f_1 следующим образом:

$$f_1(x) = \alpha$$

Найдём $||f_1||$. Если $\alpha=0$, то $|f_1(x)|=0\leq ||x||/\rho(x_0,M)$. Если же $\alpha\neq 0$, то

$$|f_1(x)| = |\alpha| = |\alpha| \cdot \frac{\|z + \alpha \cdot x_0\|}{\|z + \alpha \cdot x_0\|} = \frac{\|x\|}{\|z/\alpha + x_0\|} \le \frac{\|x\|}{\lambda}$$

Отсюда следует, что $||f_1|| \leq 1/\lambda$.

Далее, из определения λ следует существование такой последовательности $\{z_n\} \subset M$, что

$$\frac{1}{\|x_0 - z_n\|} \to \frac{1}{\lambda}$$

По определению нормы получается следующее:

$$||f_1|| = \sup_{M_1} \frac{|f_1(x)|}{||x||} \ge \frac{|f_1(x_0 - z_n)|}{||x_0 - z_n||}$$

Переходя к пределу, получаем, что $||f_1|| \ge 1/\lambda$. Продолжение f_1 на E (искомое f) строится по теореме Хана-Банаха.

- 2. Применим следствие 1 к $x_0 = x/\|x\|$ и $M = \{\bar{0}\}.$
- 3. Пусть $x \neq 0$ тогда по следствию 2 существует линейный $f \in E*$: $f(x) = ||x|| \neq 0$ противоречие. Второе равенство получается вычитанием f(x) из обеих частей и нахождением функционала из следствия для точки y-x
- 4. Случай $x = \bar{0}$ очевиден. Если же $x \neq \bar{0}$, то неравенство $||x|| \geq \sup_{||f||_{E^*}=1} |f(x)|$ следует из определения нормы функционала, а равенство можно получить из следствия 2.

9 Слабая сходимость в банаховом пространстве

9.1 Изометричность вложения E в E^{**} . Критерий слабой сходимости последовательности

Def. Пусть E — ЛНП. Тогда $x_n \xrightarrow{\text{сл.}} x$, если $\forall f \in E^* f(x_n) \to f(x)$.

Note. В гильбертовом пространстве Тогда $x_n \xrightarrow{\mathrm{c.r.}} x$ через теорему Рисса-Фреше $\forall y \in H \ (x_n, y) \to (x, y)$.

Remind. Из сходимости по норме следует слабая сходимость, тогда как обратное неверно.

Пример: В l_2 последовательность e_n — стандартный базис (на n-м месте 1, остальные нули). Тогда $e_n \stackrel{\text{сл.}}{\longrightarrow} 0$, но по норме никуда не сходятся.

Note. В конечномерных пространствах верно, что сходимость по норме и слабая эквивалентны.

9.1.1 Изометричность вложения E в E^{**}

Лемма. Пусть X — комплексное ЛНП, тогда верно следующее:

- 1. Если $L \subset X$ и L замкнуто, а $x \notin L$, то $\exists f \in X^*$ такой, что $\forall x \in L$ f(x) = 0 и $f(x_0) = 1$. И норма $\|f\| = \frac{1}{\rho(x_0, L)}$.
- 2. $\forall x_0 \neq 0 \ \exists f \in x^*$ такой, что ||f|| = 1 и $f(x_0) = ||x_0||$.
- 3. Если для вектора $x_0 \in X$ для любого $f \in X^*$ верно, что f(x) = 0, то x = 0.
- 4. $||x|| = \sup_{f \in X^*: ||f|| = 1} f(x)$

Доказательство:

1. На подпространстве $M=L\oplus\{\alpha x_0\mid \alpha\in\mathbb{C}\}$ рассмотрим функционал $h:M\to\mathbb{C}$ такой, что $h(y+\alpha x_0)=\alpha,\,y\in L,\,\alpha\in\mathbb{C}.$ Тогда

$$||h|| = \sup_{y \in L, \ \alpha \neq 0} \frac{|\alpha|}{||y + \alpha x_0||} = \sup_{z \in L} \frac{1}{||z + x_0||} = \frac{1}{\inf_{x \in Z} ||z - x_0||} = \frac{1}{\rho(x, L)}$$

Откуда h непрерывен, тогда по следствию из теоремы Хана-Банаха можем продлить h функционалом f на все X с сохранением нормы.

- 2. Пусть $L = \{0\}$. Так как $x_0 \neq 0 \Longrightarrow x_0 \notin L \Longrightarrow$ существует функционал по первому пункту g, тогда пусть $f = \|x_0\| g$ искомый.
- 3. Если предположить, что $x_0 \neq 0$, то по второму пункту есть $f: f(x_0) = ||x_0|| \neq 0$.

4. Если x=0, то f(x)=0. Иначе $|f(x)|\leq \|f\|\,\|x\|$, откуда $\sup_{f\in X^*}\|f\|=1$ пункта существует функционал g единичной нормы такой, что $g(x)=\|x\|$. Откуда

$$||x|| = g(x) = |g(x)| \le \sup_{f \in X^*} ||f(x)|| \le ||x||$$

Утверждение. Пусть X — комплексное ЛНП, тогда $F: X \to X^{**}$ вида

$$(Fx)(f) = f(x) \forall x \in X, \ \forall f \in X^*$$

осуществляет изометрический изоморфизм X и $\mathrm{Im} F$, то есть взаимнооднозначно отображает X в $\mathrm{Im} F \subset X^{**}$, при этом $\forall x \in X \, \|Fx\| = \|x\|$.

Доказательство: Если Fx = Fy, то $f(x) = f(y) \forall f \in X^*$, то есть f(x - y) = 0, то есть x = y по третьему пункту леммы. А это значит, что F взаимооднозначный.

В силу четвертого пункта леммы

$$||Fx|| = \sup_{f \in X^*} ||f|| = 1 |F(x)(f)| = \sup_{f \in X^*} ||f(x)|| = ||x||$$

9.1.2 Критерий слабой сходимости

Теорема. Пусть $S\subset X^*$ образует в X^* полную систему $(\overline{\langle S\rangle}=X^*),$ тогда $x_n\xrightarrow{\mathrm{с.r.}}y$ тогда и только тогда, когда

- 1. $\{||x_n||\}$ ограничена
- 2. $\forall f \in S \ f(x_n) \to f(y)$

Доказательство: Необходимость очевидна. Покажем достаточность. Так как $\forall g \in \langle S \rangle$ верно, что это конечная линейная комбинация функционалов из S, верно, что $g(x_n) \to g(y)$.

Пусть $\{\|x_n\|\} \leq R$. В силу полноты $S \ \forall f \in X^* \ \forall \varepsilon > 0$ найдется $g \in \langle S \rangle$ такой, что $\|f - g\| \leq \frac{\varepsilon}{R + \|y\|}$, тогда

$$|f(x_n) - f(x)| \le |f(x_n) - g(x_n)| + |g(x_n - g(y))| + |f(y) - g(y)| \le$$

$$\le ||f - g|| (||x_n|| + ||y||) + \varepsilon \le \frac{\varepsilon}{R + ||y||} (R + ||y||) + \varepsilon \le 2\varepsilon$$

To есть $f(x_n) \to f(y)$, а значит $x_n \xrightarrow{\text{сл.}} y$.

9.2 Слабая сходимость и ограниченные операторы

Теорема. Пусть $E_1, E_2 - \Pi H\Pi, A \in \mathcal{L}(E_1, E_2), \{x_n\} \subset E_1, x \in E_1$ и $x_n \xrightarrow{\text{сл.}} x$. Тогда $Ax_n \xrightarrow{\text{сл.}} Ax$.

Доказательство: Возьмём произвольный $g \in E_2^*$ и рассмотрим $f = g \circ A$ - суперпозиция двух линейных и непрерывных отображений, а потому $f \in E_1^*$, и по определению слабой сходимости

$$g(Ax_n) = f(x_n) \to f(x) = g(Ax)$$

- 10 Преобразование Фурье и свертка в пространствах $L_1(\mathbb{R})$ и $L_2(\mathbb{R})$
- 10.1 Определения и основные свойства. Формула умножения. Преобразование Фурье свертки
- 10.1.1 Определения и свойства

Def. Преобразование Фурье функции f:

$$F[f](y) = \hat{f}(y) = \int_{\mathbf{m}} f(x) e^{-ixy} dx$$

Note. $C_0(\mathbb{R}) = \{g \in C(\mathbb{R}) | \lim_{y \to \infty} g(y) = 0\}$

Note. $||g||_{B(\mathbb{R})}=\sup |g(y)|$, где B — класс всех ограниченных числовых функций.

Свойства.

1. $||F[f]||_B \le ||f||_{L_1}$

Следствие. $F \in L(L_1(\mathbb{R}), B(\mathbb{R}))$, причём $||F|| \leq 1$

2. Im $F \subset C_0(\mathbb{R})$

Доказательство. Введём обозначение: $\chi_A - xapaк mep u c mu ч e c к a я функция (индикатор) множества <math>A$.

Пусть $f = \chi_{[-R,R]}$; покажем, что $\hat{f} \in C_0(\mathbb{R})$:

$$\hat{f}(y) = \frac{2\sin(Ry)}{y}$$

Далее, поскольку линейная оболочка множества $\{\chi_{[-R,R]} \mid R \in \mathbb{R}\}$ плотна в $L_1(\mathbb{R})$, то в силу линейности и непрерывности F получаем искомое.

- 3. Пусть $g(x)=x\cdot f(x),$ и $f,g\in L_1,$ тогда \hat{f} дифференцируема, и $(\hat{f})'=-i\cdot \hat{g}.$
- 4. Пусть $f, f' \in L_1$, тогда $\hat{f}'(y) = iy \cdot \hat{f}(y)$, а значит, $\hat{f}(y) = o(1/y)$.

10.1.2 Формула умножения

Теорема (Фубини).

Если $f(x,y) \in L([a,b] \times [c,d])$, то $\int \int f(x,y) dx dy = \int dx \int f(x,y) dy = \int dy \int f(x,y) dx$

Следствие. Если конечен хотя бы один из повторных интеграллов то $f(x,y) \in L([a,b] \times [c,d])$

Лемма (формула умножения).

$$\int_{\mathbb{R}} \hat{f}(y) g(y) dy = \int_{\mathbb{R}} f(y) \hat{g}(y) dy$$

Доказательство:

$$\int\limits_{\mathbb{R}} \hat{f}(y) \, g(y) \, dy = \int\limits_{\mathbb{R}} \left(\int\limits_{\mathbb{R}} f(x) e^{-ixy} dx \right) g(y) dy = \int\limits_{\mathbb{R}} dx \left(\int\limits_{\mathbb{R}} f(x) g(y) e^{-ixy} dy \right) = \int\limits_{\mathbb{R}} f(y) \, \hat{g}(y) \, dy$$

10.1.3 Преобразование Фурье свертки

Def. Пусть $f, g \in L_1(\mathbb{R})$. Свёртка функций f и g определяется следующим образом:

$$(f * g)(x) = \int_{\mathbb{D}} f(y) g(x - y) dy$$

Свойства:

- 1. $f * g \in L_1(\mathbb{R})$, а значит, f * g конечна почти всюду.
- 2. $F[f * g] = F[f] \cdot F[g]$

Доказательство.

$$\int\limits_{\mathbb{R}} dx \cdot e^{-ixz} \int\limits_{\mathbb{R}} f(y) \, g(x-y) \, dy = \int\limits_{\mathbb{R}^2} f(y) \, g(x-y) \, e^{-ixz} \, dx \, dy = \int\limits_{\mathbb{R}^2} f(y) \, e^{-iyz} \cdot g(x-y) \, e^{-i(x-y)z} \, dx \, dy$$

10.1.4 Преобразование Фурье в $L_2(\mathbb{R})$

Чтобы построить преобразование Фурье в $L_2(\mathbb{R})$ достаточно продолжить его с $L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ на $L_2(\mathbb{R})$

Теорема (Планшерель, 1910). Преобразование Фурье $F: L_2 \to L_2$ —унитарный оператор (изометричная сюръекция). Более того, утверждение останется справедливым, если заменить L_2 на S.

11 Сопряженный оператор

11.1 Норма сопряженного оператора в ЛНП

Def. Пусть $A \in \mathcal{L}(E_1, E_2)$ и $\varphi \in E_2^*$, тогда $A^* : E_2^* \to E_1^*$ — сопряженный оператор, если $\varphi A = A^* \varphi$.

Note. Линейность оператора тривиальна.

Теорема. Пусть $A \in \mathcal{L}(E)$, и E линейное нормированное. Тогда $A^* \in \mathcal{L}(E^*)$ и $||A|| = ||A^*||$.

Доказательство: Докажем нестогое неравенство в обе стороны.

• $||A^*|| \le ||A||$

$$|(A^*g)x| = |gAx| \le ||g|| ||A|| ||x||$$
$$||A^*g|| \le ||g|| ||A||$$
$$||A^*|| \le ||A||$$

Теперь, так как A^* ограничен, к нему можно применять неравенства на нормы.

• $||A|| \le ||A^*||$. Рассмотрим $Ax \in E_2$. По следствию 4 из теоремы Хана-Банаха (9.1.1)

$$\|Ax\| = \sup_{\|g\|_{E_2^*}=1} |gAx| = \sup_{\|g\|_{E_2^*}=1} |(A^*g)x| \underbrace{\leq}_{\text{пункт выше}} \sup_{\|g\|_{E_2^*}=1} (\|A^*\| \, \|g\| \, \|x\|) = \|A^*\| \, \|x\|$$

11.2 Сопряженные операторы в ГП. Равенство $H = \operatorname{Ker} A^* \oplus \overline{\operatorname{Im} A}$

Теорема. Пусть $H(\mathbb{C})$ — гильбертово, а $A \in \mathcal{L}(H)$, тогда $H = \operatorname{Ker} A^* \oplus \overline{\operatorname{Im} A}$

Доказательство: Воспользуемся теоремой Рисса о проекции (4.4), тогда осталось доказать, что $\mathrm{Ker} A^* = (\mathrm{Im} A)^\perp$.

Воспользуемся третьим пунктом леммы из 9.1.1. Если $g \in \text{Ker}A^*$, то есть $\forall x \in H \ A^*gx = 0$, то есть gAx = 0, откуда $g \in (\text{Im}A)^{\perp}$, то есть $\text{Ker}A^* = (\text{Im}A)^{\perp}$.

12 Самосопряженный оператор

12.1 Свойства квадратичной формы (Ax, x). Собственные значения самосопряженного оператора

Def. Оператор самосопряженный, если $A^* = A$. В гильбертовом H перепишем это как

$$(Ax, y) = (x, A^*y) = (x, Ay)$$

Теорема. Пусть $H(\mathbb{C})$ — гильбертово, а A самосопряженный, тогда

1.
$$\forall x \ \mathcal{K}(x) = (Ax, x) \in \mathbb{R}$$

- 2. Если λ собственное значение, то $\lambda \in \mathbb{R}$
- 3. Если $\lambda_1 \neq \lambda_2$, то соответствующие им собственные вектора x_1, x_2 ортогональны

Доказательство:

- 1. Заметим, что $(Ax, x) = (x, Ax) = \overline{(Ax, x)}$, откуда $\mathcal{K}(x) = (Ax, x) \ \forall x \in \mathbb{R}$.
- 2. Если λ собственное значение, то $(Ax,x)=(\lambda x,x)=\lambda \|x\|^2$, откуда $\lambda=\frac{(Ax,x)}{\|x\|^2}\in\mathbb{R}$.
- 3. Пусть $\lambda_1 \neq \lambda_2$ собственные значения, а соответствующие им собственные вектора x_1, x_2 . Тогда

$$\lambda_1(x_1, x_2) = (Ax_1, x_2) = (x_1, Ax_2) = \lambda_2(x_1, x_2)$$

Значит $(\lambda_1 - \lambda_2)(x_1, x_2) = 0$, откуда $(x_1, x_2) = 0$

12.2 Разложение $\Gamma\Pi$ оператором на $\operatorname{Ker}(A-\lambda I)\oplus\overline{\operatorname{Im}(A-\lambda I)}$

Теорема. $\forall \lambda \in \mathbb{C}$ гильбертово $H(\mathbb{C})$ раскладывается самосопряженным A в виде $H = \operatorname{Ker}(A - \lambda I) \oplus \overline{\operatorname{Im}(A - \lambda I)}$

Доказательство: $A_{\lambda}^* = A^* - \overline{\lambda}I = A - \lambda I = A_{\overline{\lambda}}.$

Из 11.2 получаем, что $\mathrm{Ker} A_{\overline{\lambda}}^* = \overline{\mathrm{Im} A_{\lambda}}$, то есть

$$H = \operatorname{Ker}(A - \overline{\lambda}I) \oplus \overline{\operatorname{Im}(A - \lambda I)} = \operatorname{Ker}A_{\overline{\lambda}} \oplus \overline{\operatorname{Im}A_{\lambda}}$$

Если мнимая часть λ нулевая, то теорема доказана.

Теперь пусть она нетривиальна. Тогда с учетом того, что собственные значения самосопряженного оператора вещественные (второй пункт 12.1), $\lambda, \overline{\lambda} \notin \sigma_p(A)$. А тогда $\operatorname{Ker} A_{\lambda} = \operatorname{Ker} A_{\overline{\lambda}} = \{0\}$ (так как иначе ядро содержит собственный вектор).

Тогда ядро нулевое, а в силу опять же того, что 11.2 получаем, что $H = \overline{{
m Im}(A-\lambda I)}$. Таким образом, теорема доказана.

12.3 Критерий принадлежности числа спектру. Вещественность спектра

Лемма. Пусть E_1 банахово, а $A \in \mathcal{L}(E_1, E_2)$ непрерывно обратим, тогда $\mathrm{Im} A$ замкнут в E_2 .

Доказательство: Так как A непрерывно обратим, в силу $6.2 \; \exists L > 0$ такое, что $||Ax|| \geq L \; ||x||$. Пусть $y \in \overline{\mathrm{Im} A}$, тогда $\exists \{x_n\} \in E_1$ такая, что $||Ax_n - y|| \to 0$.

Тогда $||x_n - x_m|| \le \frac{1}{L} ||Ax_n - Ax_m|| \to 0.$

То есть $\{x_n\}$ фундаментальна в полном МП, а значит $\exists z \in E_1: x_n \to z$. Так как оператор A непрерывен, $\|Ax_n - y\| \to 0$, откуда $y \in \operatorname{Im} A$, а значит $\operatorname{Im} A$ замкнут.

12.3.1 Критерий принадлежности числа спектру

Теорема.

- 1. Число $\lambda \in \rho(A) \iff \exists L > 0 \ \forall x \in H \ \|A_{\lambda}x\| > L \|x\|$
- 2. Число $\lambda \in \sigma(A) \iff \exists \{x_n\} : \|x_n\| = 1$ и $\|A_{\lambda}x_n\| \to 0$

Доказательство:

1. Необходимость следует напрямую из 6.2. Перейдем к достаточности.

Пусть A_{λ} ограничен снизу на H, тогда по 6.2 получаем, что A_{λ} непрерывно обратим, откуда $\operatorname{Ker} A_{\lambda} = \{0\}$, откуда по 12.2 получаем, что $\overline{\operatorname{Im} A_{\lambda}} = H$, но $\operatorname{Im} A$ замкнут (лемма выше), откуда $\operatorname{Im} A = H$, то есть A_{λ} биективен. А значит $\lambda \in \rho(A)$.

2. Будем активно пользоваться первым пунктом. $\lambda \in \sigma(A) \iff \lambda \notin \rho(A) \iff A$ не ограничен снизу, то есть $\forall n \; \exists z_n : \; \|A_{\lambda}(z_n)\| < \frac{\|z_n\|}{n}$, а значит $z_n \neq 0$. Пусть $x_n = \frac{z_n}{\|z_n\|}$, что равносильно тому, что $\|A_{\lambda}x_n\| \leq \frac{1}{n} \to 0$.

12.3.2 Вещественность спектра

Теорема.

- 1. $\sigma(A) \subset \mathbb{R}$
- 2. Если $\lambda \notin \mathbb{R}$, то $\lambda = \mu + i\nu$, а $||A_{\lambda}^{-1}|| = ||R_A(\lambda)|| \leq \frac{1}{|\nu|}$

Доказательство: $\forall x \in H$

$$||A_{\lambda}x||^2 = (A_{\mu}x - i\nu x, A_{\mu}x - i\nu x) = ||A_{\mu}x||^2 + \nu^2 ||x||^2 \ge \nu^2 ||x||^2 \Longrightarrow ||A_{\lambda}x|| \ge |\nu| ||x||$$

Равенство выше верно, если $(x, A_{\mu}x) = (A_{\mu}x, x)$, то есть когда A_{μ} самосопряжен, что верно, так как $\mu \in \mathbb{R}$.

То есть A_{λ} ограничен снизу, откуда по теореме выше $\lambda \in \rho(A)$. Откуда любое число из спектра обязательно действительное, иначе оно попадает в резольветное множество. При этом

$$||R_A(\lambda)x|| \le \frac{||A_\lambda R_A(\lambda)x||}{|\nu|} = \frac{||x||}{\nu} \Longrightarrow ||R_A(\lambda)|| \le \frac{1}{|\nu|}$$

12.4 Теорема о спектре самосопряжённого оператора

$$\sigma(A) \subseteq [m_-, m_+], r(A) = ||A||$$

Def. Пусть E — линейное пространство над полем $\mathbf{F} = \mathbf{R}$ или $\mathbf{F} = \mathbf{C}$. Отображение $\langle \cdot, \cdot \rangle : E \times E \to \mathbf{F}$ называется полускалярным произведением, если оно удовлетворяет следующим свойствам:

- 1. $\langle x, x \rangle \ge 0$
- $2. \ \langle x, y \rangle = \overline{\langle y, x \rangle}$
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- 4. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Теорема. Путь H — комплексное гильбертово пространство, A — самосопряжённый оператор. Тогда

1. $\sigma(A) \subseteq [m_-, m_+]$, где

$$m_{-} = \inf_{\|x\|=1} (Ax, x)$$
 $m_{+} = \sup_{\|x\|=1} (Ax, x)$

причём $m_-, m_+ \in \sigma(A)$

2. $r(A) = \max(|m_-|, |m_+|) = ||A||$

Доказательство:

1. В силу пункта 2 12.1 достаточно рассмотреть $\lambda \in \mathbb{R}$. Покажем, что если $\lambda > m_+$, то $\lambda \in \rho(A)$. Для этого (по пункту 1 12.3.1) достаточно получить оценку: $||A_{\lambda}x|| \geq m ||x||$.

Воспользуемся неравенством Коши-Буняковского:

$$||A_{\lambda}x|| \cdot ||x|| \ge |(A_{\lambda}x, x)| = |(Ax - \lambda x, x)| = |(Ax, x) - \lambda ||x||^2|$$

При этом $(Ax,x) \leq m_+ \|x\|^2$ (т.к. $m_+ = \sup_{\|x\|=1} (Ax,x)$) и $\lambda > m_+$, значит можем раскрыть модуль: $|(Ax,x)-\lambda \|x\|^2 |=\lambda \|x\|^2 - (Ax,x)$. Таким образом,

$$||A_{\lambda}x|| \cdot ||x|| \ge \lambda ||x||^2 - (Ax, x) \ge (\lambda - m_+) ||x||^2$$

Сокращая неравенство на ||x|| мы видим, что нам подходит $m = \lambda - m_+$.

Чтобы доказать, что m_+ принадлежит спектру, мы вновь воспользуемся критерием (12.3.1) : найдём последовательность $\{x_n\}$ такую, что $\|x_n\|=1$ и при этом $\|A_{m_+}x_n\|\to 0$. В силу определения m_+ мы можем выбрать последовательность единичных векторов $\{x_n\}$ такую, что $(Ax_n,x_n)\to m_+$. Оператор $B=m_+I-A=-A_{m_+}$ самосопряжён и, кроме того, $(Bx,x)=m_+\|x\|^2-(Ax,x)\geq 0$. Следовательно, $\langle x,y\rangle_B=(Bx,y)$ — полускалярное произведение. Тогда, благодаря неравенству Коши-Буняковского для полускалярного произведения,

$$||Bx_n||^4 = (Bx_n, Bx_n)^2 = (x_n, Bx_n)_B^2 \le (x_n, x_n)_B \cdot (Bx_n, Bx_n)_B$$

Первый множитель стремится к нулю: $(x_n, x_n)_B = (Bx_n, x_n) = m_+ - (Ax_n, x_n) \to 0$. Второй — ограничен, т. к. $(Bx_n, Bx_n)_B = (B^2x_n, Bx_n) \le \|B^2x_n\| \cdot \|Bx_n\| \le \|B\|^3 \cdot \|x_n\|^2 = \|B\|^3$. Значит, $\|Bx_n\|^4 \to 0$, то есть $\{x_n\}$ - требуемая последовательность.

Аналогичные свойства m_- следуют из того, что $m_-(A) = -m_+(A)$.

2. Из пункта 1 мы тривиальным образом получаем, что $r(A) = \max\{|m_-|, |m_+|\}$ (т.к. $r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|$). Для второго равенства нам придётся воспользоваться тем фактом, что

$$r(A) = \lim_{n \to +\infty} \sqrt[n]{\|A^n\|}$$

Легко показать, что для самосопряжённого оператора A выполнено $||A^2|| = ||A||^2$:

- (a) $||A^2|| \le ||A||^2$ очевидно.
- (b) $||A^2|| \ge ||A||^2$

$$||Ax|| = \sqrt{(Ax, Ax)} = \sqrt{(A^2x, x)} \le \sqrt{||A^2x|| \cdot ||x||} \le \sqrt{||A^2||} \cdot ||x||$$

т.е.
$$||A|| \le \sqrt{||A^2||}$$
, значит $||A||^2 \le ||A^2||$.

Более того, A^n — тоже самосопряжённый оператор, а потому $\|A^{2^k}\| = \|A^{2^{k-1}}\|^2 = \ldots = \|A\|^{2^k}$. Если предел последовательности существует, то с ним совпадает любой частичный предел, а значит

$$r(A) = \lim_{k \to +\infty} \sqrt[2^k]{\|A^{2^k}\|} = \lim_{k \to +\infty} \sqrt[2^k]{\|A\|^{2^k}} = \lim_{k \to +\infty} \|A\| = \|A\|$$

13 Компактные операторы

13.1 Свойства компактных операторов

Def. Пусть E_1, E_2 — нормированные ЛП, линейный ограниченный оператор $A: E_1 \to E_2$ называется компактным, если образ любого ограниченного множества предкомпактен в E_2 .

Теорема. Если A_n — последовательность компактных операторов, действующих из E_1 в E_2 , и $\|A_n - A\| \to 0$, то оператор A — компактен.

Доказательство: Отметим, что неравенство $||A_n(x) - A(x)|| \le ||A_n - A|| \cdot ||x|| \le ||A_n - A||$ верно для всех $x \in \overline{B_1}(0)$. Далее, пусть $\{y_k\} - \varepsilon$ -сеть для $A_n(\overline{B_1}(0))$, и $x \in \overline{B_1}(0)$, тогда

$$\min_{k} ||A(x) - y_k|| \le ||A_n - A|| + \min_{k} ||A_n(x) - y_k||$$

Отсюда следует, что если $||A_n - A|| \le \varepsilon/2$, и $\{y_k\} - (\varepsilon/2)$ -сеть для $A_n(\overline{B}_1(0))$, то $\{y_k\}$ является ε -сетью для $A(\overline{B}_1(0))$.

Теорема. Пусть E бесконечномерно.

- 1. Тождественный оператор в E не компактен.
- 2. Если $A \in K(E)$ (компактен), то не существует $A^{-1} \in L(E)$.

Доказательство:

- 1. Следует из теоремы Риса о единичном шаре.
- 2. Пусть $A^{-1} \in L(E)$, тогда $I = A^{-1} \circ A \in K(E)$ противоречие.

13.2 Свойства собственных значений компактного оператора

Теорема. Пусть E — банахово пространство над $\mathbb{C}, A \in K(E),$ и $\lambda \neq 0$, тогда $\operatorname{Ker} A_{\lambda}$ конечномерно.

Доказательство: Достаточно показать, что единичная сфера в $\operatorname{Ker} A_{\lambda}$ компактна (вполне ограничена), т. е. из любой последовательности $\{x_n\}$, где $\|x_n\|=1$, можно выделить сходящуюся в $\operatorname{Ker} A_{\lambda}$ подпоследовательность.

Отметим, что $A(\{x_n\})$ вполне ограничено, а значит, существует подпоследовательность $\{A(x_{n_k})\}$, сходящаяся к некоторому y. Поскольку $A(x_n) = \lambda x_n$, то $x_{n_k} \to y/\lambda$. Отсюда следует, что $A(x_{n_k}) \to A(y/\lambda) = A(y)/\lambda$; в силу единственности предела получаем, что $A(y) = \lambda y$.

Теорема. Пусть $A \in K(E)$, тогда для любого $\delta > 0$ верно, что $\mathbb{C} \setminus \overline{B}_{\delta}(0)$ содержит конечное множество собственных значений A.

Доказательство для самосопряжённого оператора на H. Предположим, что при некотором δ_0 это неверно; пусть $\{\lambda_n\}$ — некоторое счётное подмножество собственных значений, лежащих вне

 $\overline{B}_{\delta_0}(0)$. Рассмотрим систему единичных собственных векторов $\{e_n\}$, соответствующих $\{\lambda_n\}$; поскольку они ортогональны друг другу, то

$$||A(e_n) - A(e_m)||^2 = ||\lambda_n e_n - \lambda_m e_m||^2 = |\lambda_n|^2 + |\lambda_m|^2 \ge 2\delta^2$$

Отсюда следует, что $\{A(e_n)\}$ не является вполне ограниченным — противоречие.

Следствие. Спектр компактного оператора не более чем счётен.

13.3 Теорема Фредгольма для компактных самосопряженных операторов

Лемма (1). Пусть H — комплексное гильбертово пространство, $A \in \mathcal{L}(H)$ — компактный самосопряжённый оператор. Тогда если $\lambda \neq 0$ — точка спектра A, то λ — собственное значение A.

Доказательство: По критерию принадлежности точки спектру самосопряжённого оператора, $\lambda \in \sigma(A) \iff$ существует последовательность $\{x_n\}$ такая, что

- 1. $||x_n|| = 1$,
- 2. $||(A \lambda I)x_n|| \to 0$.

 $\{Ax_n\}$ — предкомпакт, потому найдётся сходящаяся подпоследовательность: $Ax_{n_k} \to y$. Известно, что $Ax_{n_k} - \lambda x_{n_k} \to 0$ — тогда и второе слагаемое стремится к y: $\lambda x_{n_k} \to y \Longrightarrow_{\lambda \neq 0} x_{n_k} \to y \frac{1}{\lambda}$. Тогда $\frac{1}{\lambda}Ax_{n_k} - x_{n_k} \to 0$, и

$$\lim x_{n_k} = \lim \frac{1}{\lambda} A x_{n_k} - \lim \left(\frac{1}{\lambda} A x_{n_k} - x_{n_k} \right) = \frac{1}{\lambda} y.$$

Наконец, поскольку A непрерывен.

$$y = \lim Ax_{n_k} = A \lim x_{n_k} = \frac{1}{\lambda}Ay,$$

т. е.
$$Ay = \lambda y$$
.

Лемма (2). Пусть H — комплексное гильбертово пространство, $A \in \mathcal{L}(H)$ — самосопряжённый оператор, а M — подпространство H, инвариантное относительно A (т. е. $AM \subset M$). Тогда M^{\perp} также инвариантно относительно A.

Доказательство: $y \in M^{\perp}$, если $\forall x \in M \langle x, y \rangle = 0$. Поскольку для произвольного $x \in M$ также и $Ax \in M$, то

$$\langle x, Ay \rangle = \langle Ax, y \rangle = 0,$$

T. e.
$$Ay \in M^{\perp}$$
.

Лемма (3). Пусть H — комплексное гильбертово пространство, $A \in \mathcal{L}(H)$ — компактный самосопряжённый оператор. Если $\lambda \neq 0$, то $\overline{\mathrm{Im} A_{\lambda}} = \mathrm{Im} A_{\lambda}$.

Доказательство: Из доказательства теоремы о разложении гильбертова пространства 2 следует, что $(\operatorname{Ker} A_{\lambda})^{\perp} = \overline{\operatorname{Im} A_{\lambda}}$. $\operatorname{Ker} A_{\lambda}$ — инвариантно относительно A, а потому и $\overline{\operatorname{Im} A_{\lambda}}$ — тоже. Рассмотрим оператор

$$\tilde{A} = A \big|_{\overline{\operatorname{Im} A_{\lambda}}};$$

он также компактный и самосопряжённый. Мы отбросили $\operatorname{Ker} A_{\lambda}$ (за исключением нуля), поэтому λ не может быть собственным значением \tilde{A} . Значит, $\lambda \in \rho(\tilde{A})$. Тогда, конечно, образ оператора \tilde{A}_{λ} равен его области определения — $\overline{\operatorname{Im} A_{\lambda}}$. Наконец, поскольку \tilde{A}_{λ} — просто сужение A_{λ} ,

$$\operatorname{Im} A_{\lambda} \subset \overline{\operatorname{Im} A_{\lambda}} = \operatorname{Im} \tilde{A}_{\lambda} \subset \operatorname{Im} A_{\lambda}.$$

Теорема (Фредгольм). Пусть A — компактный самосопряжённый оператор над H, то для любого $\lambda \in \mathbb{C}$ верно, что $\operatorname{Im} A_{\lambda} \oplus \operatorname{Ker} A_{\lambda} = H$.

Теорема (Фредгольм, альтернативная формулировка). Пусть H — комплексное гильбертово пространство, $A \in \mathcal{L}(H)$ — компактный самосопряженный оператор, $\lambda \in \mathbb{C}, \lambda \neq 0$. Тогда либо λ не собственное значение A, и уравнение

$$Ax = \lambda x + y$$

имеет решение относительно x, определенное для любого $y \in H$ и непрерывно зависящее от него, либо λ — собственное значение A, и это уравнение разрешимо (не единственным) образом в точности для тех y, которые ортогональны всем собственным векторам для λ .

Доказательство:

Утверждение теоремы напрямую следует из доказанных лемм.

13.4 Спектр компактного самосопряженного оператора. Теорема Гильберта-Шмидта

Лемма. Пусть H — комплексное гильбертово пространство, $A \in \mathcal{L}(H)$ — ненулевой компактный самосопряжённый оператор. Тогда у A существует ненулевое собственное значение.

Доказательство: Поскольку A — самосопряжённый, $0 \neq ||A|| = \max\{|m_-|, |m_+|\}$. Значит, хотя бы одно из них ненулевое, а поскольку оба они принадлежат спектру, мы нашли ненулевую точку спектра. Наконец, вспомним, что она обязательно будет собственным значением.

Теорема (Гильберт—Шмидт). Пусть H — сепарабельное комплексное гильбертово пространство, $\dim H = \infty$, и $A \in \mathcal{L}(H)$ — компактный самосопряжённый оператор. Тогда в H существует ортонормированный базис из собственных векторов оператора A.

 $^{^2 \}Pi$ усть A — самосопряжённый оператор и $\lambda \in \mathbb{C}$. Тогда $\overline{\operatorname{Im} A_{\lambda}} \oplus \operatorname{Ker} A_{\lambda} = H$.

Доказательство: Для каждого собственного значения λ выберем ортонормированный базис в $\operatorname{Ker} A_{\lambda}$; в силу следствия теоремы (13.2) выше собственных значений не более, чем счётно много, а потому мы можем объединить все эти базисы в одну последовательность $e = \{e_n\}_{n=1}^N$, где, возможно, $N = \infty$. Поскольку собственные вектора для разных значений ортогональны, e — ортонормированная система. Обозначим $M = \overline{[e]}$; если мы покажем, что M = H или, эквивалентно, $M^{\perp} = \{0\}$, то e — требуемый ортонормированный базис H.

Заметим, что M инвариантно относительно A: если λ_n — собственное значение, которому соответствует e_n , то

$$A(\sum_{n=1}^{N} \alpha_n e_n) = \sum_{n=1}^{N} \alpha_n A e_n = \sum_{n=1}^{N} (\alpha_n \lambda_n) e_n \in M.$$

Тогда и M^{\perp} инвариантно относительно A, а значит $A_0 = A\big|_{M^{\perp}}$ — компактный самосопряжённый оператор из $\mathcal{L}(M^{\perp})$. Более того, он не имеет собственных значений. Значит, вследствие леммы выше, $A_0 = 0$. Тогда если $M^{\perp} \neq \{0\}$, то 0 — собственное значение A_0 , что противоречит его построению.

14 Элементы нелинейного анализа

14.1 Производная Фреше, производная Гато. Формула конечных приращений

Def. Пусть E_1 , E_2 вещественные ЛНП (линейные нормированные пространства). D открытое множество из E_1 , $x_0 \in D$. Отображение $F: D \to E_2$ называется дифференцируемым в точке x_0 , если

$$\exists A \in \mathcal{L}(E_1, E_2) \ F(x_0 + h) - F(x_0) = Ah + \epsilon(x_0, h)$$

где $\frac{\|E\|}{\|h\|} \to 0$ при $\|h\| \to 0$.

Тогда оператор A называется производной Фреше (или сильной производной) и обозначается $F'(x_0)$ Дифференциал Фреше в точке x_0 на приращении h определяется как $dF(x_0,h) = (F'(x_0))(h) = A(h)$

Утверждения.

- 1. Производная Фреше единственна
- 2. Если F константна на D, то F'(x) = 0 для всех $x \in D$
- 3. Если $F \in L(E_1, E_2)$, то F' = F на D
- 4. $(\alpha_1 F_1 + \alpha_2 F_2)' = \alpha_1 F_1' + \alpha_2 F_2'$
- 5. Пусть f дифференцируема в точке x_0 , и g дифференцируема в точке $y_0 = f(x_0)$, тогда $F = g \circ f$ дифференцируема в точке x_0 , и

$$F'(x_0) = g'(y_0) \circ f'(x_0)$$

Доказательство:

$$h_1 = f(x_0 + h) - y_0$$

$$F(x_0 + h) - F(x_0) = g(f(x_0 + h)) - g(y_0)$$

$$= (g'(y_0))(h_1) + \delta(h_1)$$

$$= (g'(y_0))((f'(x_0))(h) + \varepsilon(h)) + \delta(h_1)$$

$$= (g'(y_0) \circ f'(x_0))(h) + ((g'(y_0) \circ \varepsilon)(h) + \delta(h_1))$$

Поскольку $g'(y_0) \in L(E_1, E_2)$ и $\varepsilon(h) = o(h)$, то $(g'(y_0) \circ \varepsilon)(h) = o(h)$.

Покажем, что $\delta(h_1) = o(h)$:

$$\begin{split} \frac{\|\delta(h_1)\|}{\|h\|} &= \frac{\|\delta(h_1)\|}{\|h_1\|} \cdot \frac{\|h_1\|}{\|h\|} \\ \frac{\|h_1\|}{\|h\|} &= \frac{\|(f'(x_0))(h) + \varepsilon(h)\|}{\|h\|} \\ &\leq \frac{\|(f'(x_0))\| \cdot \|h\| + \|\varepsilon(h)\|}{\|h\|} \\ &= \|(f'(x_0))\| + \frac{\|\varepsilon(h)\|}{\|h\|} \end{split}$$

Теорема. Теорема Лагранжа (Формула конечных приращений) (Т 14.1)

Пусть E_1 , E_2 вещественные ЛНП, $D \in E_1$ - выпуклая область, отображение $F: D \to E_1$ дифференцируемо по Фреше на D, тогда

$$||F(x_1) - F(x_0)|| \le \sup_{y \in (x_0, x_1)} ||F'(y)|| \cdot ||x_1 - x_0||$$

Доказательство:

Введем $x:[0,1] \to E_1$ такое, что $x(t) = x_0 + t(x_1 - x_0)$ и возьмем $f \in E_2^*$

Обозначим $\varphi = f \circ F \circ x$. φ дифференцируема на [0,1] и $\varphi' = f' \circ F' \circ x'$ по утверждению 5. По т Лагранжа о среднем $\exists t_0 : \varphi(1) - \varphi(0) = \varphi'(t_0) \cdot (1-0)$

$$\varphi(1) - \varphi(0) = f(F(x_1)) - f(F(x_0)) = f(F(x_1) - F(x_0))$$
$$dx(t) = (x_1 - x_0)dt$$
$$d\varphi = f(dF(t_0, (x_1 - x_0)dt)) = f(dF(t_0, x_1 - x_0))dt$$

(из-за того что df = f по утверждению 3 и линейности f и dF)

$$\leq ||f|| ||F'(x(t_0))|| ||x_1 - x_0|| dt$$

$$\Rightarrow f(F(x_1) - F(x_0)) \leq ||f|| ||F'(x(t_0))|| ||x_1 - x_0||$$

Теперь определимся с выбором f

Если $F(x_1) - F(x_0) = 0$, то формула из теоремы и так верна, иначе:

По следствию из т Хана-Банаха, так как $F(x_1) - F(x_0) \neq 0$

$$\exists f \in E_2^* : \|f\| = 1$$
 и $f(F(x_1) - F(x_0)) = \|F(x_1) - F(x_0)\|$

$$\Rightarrow ||F(x_1) - F(x_0)|| \le ||F'(x(t_0))|| ||x_1 - x_0|| \le \sup_{y \in (x_0, x_1)} ||F'(y)|| \cdot ||x_1 - x_0||$$

Def. Пусть E_1, E_2 - вещественные ЛНП. $D \in E_1$ - открыто. $x_0 \in D$. Отображение $F : D \to E_2$. Тогда

$$\mathcal{D}F(x_0, h) = \lim_{t \to 0} \frac{F(x_0 + t \cdot h) - F(x_0)}{t} = \frac{d}{dt} F(x_0 + th) \Big|_{t=0}$$

называется дифференциалом Гато функции F в точке x_0 по направлению h и обозначается $F'_{\rm cn}(x_0)$

Если существует $A \in \mathcal{L}(E_1, E_2)$ такой что $A(h) = \mathcal{D}F(x_0, h)$ для любого h, то A называется производной F по Гато (или слабой производной) в точке x_0 и F называется дифференцируемой по Гато

Утверждение. Пусть F дифференцируема в т x_0 по Фреше, тогда она дифференцируема по Гато в т x_0 и $F'_{cn}(x_0) = F'(x_0)$

Доказательство:

F дифференцируема в т x_0 по Фреше $\Rightarrow F(x_0 + h) - F(x_0) = F'(x_0)h + \epsilon(x_0, h)$

$$\Rightarrow \lim_{t \to 0} \frac{F(x_0 + t \cdot h) - F(x_0)}{t} = \lim_{t \to 0} \frac{F'(x_0)th + \epsilon(x_0, th)}{t} =$$

$$= F'(x_0)h + ||h|| \lim_{t \to 0} \frac{\epsilon(x_0, th)}{||th||} = F'(x_0)h = ||h|| \cdot 0 = F'(x_0)h$$

 \Rightarrow F дифференцируема по Гато и $F'_{\mathrm{cn}}(x_0) = F'(x_0)$

Теорема. Усиление Теоремы Лагранжа (Формула конечных приращений) (Т 14.1)

(Фреше -> Γ ато)

Пусть E_1 , E_2 вещественные ЛНП, $D \in E_1$ - выпуклая область, отображение $F: D \to E_1$ дифференцируемо по Гато на D, тогда

$$||F(x_1) - F(x_0)|| \le \sup_{y \in (x_0, x_1)} ||F'_{c_{\pi}}(y)|| \cdot ||x_1 - x_0||$$

Доказательство: Аналогично доказательству с дифференцируемостью по Фреше, только нужно доказать, что $\varphi'(t_0) \leq \|f\| \|F'_{cn}(x(t_0))\| \|x_1 - x_0\|$

$$\varphi'(t_0) = \lim_{\delta \to 0} \frac{\varphi(t_0 + \delta) - \varphi(t_0)}{\delta} = \lim_{\delta \to 0} \frac{f(F(x(t_0 + \delta)) - F(x(t_0)))}{\delta} = f\left(\lim_{\delta \to 0} \frac{F(x(t_0 + \delta)) - F(x(t_0))}{\delta}\right) = f\left(\lim_{\delta \to 0} \frac{F(x(t_0 + \delta)) - F(x(t_0))}{\delta}\right) = f\left(\lim_{\delta \to 0} \frac{F(x(t_0 + \delta)) - F(x(t_0))}{\delta}\right) = f\left[F'_{c,\sigma}(x_0 + t_0(x_1 - x_0))(x_1 - x_0)\right] = f\left[F'_{c,\sigma}(x_0 - x_0(x_1 - x_0))(x_1 - x_0(x_1 - x_0)\right]$$

Теорема. (Т 14.2) Пусть отображение $F:D\to E_2$ дифференцируемо по Гато в окресности точки x_0 и $F'_{\rm cл}$ непрерывна в т x_0 , тогда F дифференцируемо по Фреше в т x_0 и $F'(x_0)=F'_{\rm cл}(x_0)$

Доказательство:

Достаточно доказать, что

$$||F(x) - F(x_0) - F'_{\text{cn}}(x_0)(x - x_0)|| = o(||x - x_0||)$$

Обозначим $G(x)=F(x)-F'_{\text{сл}}(x_0)(x-x_0)$. Тогда $G(x_0)=F(x_0)$ и $G'_{\text{сл}}(y)=F'_{\text{сл}}(y)-F'_{\text{сл}}(x_0)$

$$\frac{\|F(x) - F(x_0) - F'_{\text{ch}}(x_0)(x - x_0)\|}{\|x - x_0\|} = \frac{\|G(x) - G(x_0)\|}{\|x - x_0\|} \le$$

По теореме Лагранжа (Т 14.1)

$$\leq \sup_{y \in (x_0,x)} \|G_{\operatorname{ch}}'(y)\| = \sup_{y \in (x_0,x)} \|F_{\operatorname{ch}}'(y) - F_{\operatorname{ch}}'(x_0)\| \xrightarrow{x \to x_0} 0$$

так как $F'_{\scriptscriptstyle{\mathrm{C}\!\scriptscriptstyle \Pi}}(x)$ непрерывно в окрестности x_0

15 Additional information

- 1. Экзаменационная программа
- 2. Статус теха