Generative Ratio Matching Networks

Akash Srivastava *,1,2 , Kai Xu *,1 , Michael U. Gutmann 1 , Charles Sutton 1,3,4

- * equal contributions
- 1 University of Edinburgh 2 MIT-IBM Watson Al Lab 3 Google Al 4 Alan Turing Institute

Introduction

Adversarial Generative Models (GANs, MMD-GANs)

- can generate high-dimensional data such as natural images.
- X are very difficult to train due to the saddlepoint optimization problem

GRAM is a *stable* learning algorithm for *implicit* deep generative models that does **not** invlove a saddlepoint optimization problem and therefore is easy to train 🎉

Overview

- 1. Learn a low-dimensional manifold
 - \circ that preserves the difference between the data (p_x) and the model (q_x) densities.
 - \circ We use the ratio $(r(x)=rac{p_x}{q_x})$ of the two densities as the measure of this difference.
- 2. Train the model (G_{γ}) in the low-dimensional manifold
 - using the Maximum Mean Discrepency criterion as it work very well in low dimensional data.

GRAM: Algorithm

1. Learn the manifold projection function $f_{\theta}(x)$ by minimising the squared difference between the pair of density ratios:

$$egin{align} D(heta) &= \int q_x(x) \left(rac{p_x(x)}{q_x(x)} - rac{ar{p}(f_ heta(x))}{ar{q}(f_ heta(x))}
ight)^2 dx \ &= C - ext{PD}(ar{q},ar{p}) \end{split}$$

2. Train the generator $G\gamma$ by minimizing the empirical estimator of MMD in the low-dimensional manifold,

$$egin{aligned} \min_{\gamma} \left[rac{1}{N^2} \sum_{i=1}^{N} \sum_{i'=1}^{N} k(f_{ heta}(x_i), f_{ heta}(x_{i'})) - rac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k(f_{ heta}(x_i), f_{ heta}(G_{\gamma}(z_j)))
ight. \ \left. + rac{1}{M^2} \sum_{j=1}^{M} \sum_{j'=1}^{M} k(f_{ heta}(G_{\gamma}(z_j)), f_{ heta}(G_{\gamma}(z_{j'})))
ight] \end{aligned}$$

Pearson Divergence Maximisation and Density Ratio Estimation

Monte Carlo approximation of PD,

$$ext{PD}(ar{q},ar{p})pprox rac{1}{N}\sum_{i=1}^{N}\left(rac{ar{p}(f_{ heta}(x_i))}{ar{q}(f_{ heta}(x_i))}
ight)^2-1$$

where $x_i^q \sim q_x$.

We use a MMD based density ratio estimator (Sugiyama et al., 2012) under the fixed-design setup: $\hat{r}_q = \mathbf{K}_{q,q}^{-1} \mathbf{K}_{q,p} \mathbf{1}$.

• $\mathbf{K}_{q,q}$ and $\mathbf{K}_{q,p}$ are Gram matrices defined by $[\mathbf{K}_{q,q}]_{i,j}=k(f_{\theta}(x_i^q),f_{\theta}(x_j^q))$ and $[\mathbf{K}_{q,p}]_{i,j}=k(f_{\theta}(x_i^q),f_{\theta}(x_j^p)).$

The Ring dataset: Illustration of the Method and Stability

(a) Data and samples in the original (top) and projected space (bottom) during training; four plots are at iteration 10, 100, 1000 and 10, 000 respectively. Notice how the projected space separates \bar{p} and \bar{q} .

(b) Trace of $\hat{\mathcal{L}}_{\gamma}$ and D^* (equation (5)) during training. The left plot is for iteration 1 to 100 and the right plot is for 100 to 5,000, with the same y-axes in the log scale.

Figure 1: Training results with projected dimension fixed to 2.

Figure 2: Training after 2,000 epochs by varying noise dimension h and the hidden layer size of critic model. For each model, each row is a different layer size in [20, 100, 200] and each column is a different h in [2, 4, 8, 16]. Half of the GAN training diverges while all GRAM training converges.

Quantitative Results: Sample Quality

Table 1: Sample quality (measured by FID; lower is better) of GRAM-nets compared to GANs.

Arch.	Dataset	MMD-GAN	GAN	GRAM-net
DCGAN Weaker DCGAN	Cifar10 Cifar10 CelebA	40.00 ± 0.56 210.85 ± 8.92 41.105 ± 1.42	$26.82 \pm 0.49 31.64 \pm 2.10 30.97 \pm 5.32$	$\begin{array}{c} 24.85 \pm 0.94 \\ 24.82 \pm 0.62 \\ 27.04 \pm 4.24 \end{array}$

Qualitative Results: Random Samples

(a) CIFAR10

The End!

Extra slides to follow...

Density Ratio Estimation via (Infinite) Moment Matching

Maximum mean discrepancy

$$\mathrm{MMD}_{\mathcal{F}}(p,q) = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_p[f(x)] - \mathbb{E}_q[f(x)]
ight)$$

Gretton et al. (2012) show that it is sufficient to choose \mathcal{F} to be a unit ball in an reproducing kernel Hilbert space \mathcal{R} with a characteristic kernel k.

Using this definition of MMD, the density ratio estimator r(x) can be derived as the solution to

$$\min_{r \in \mathcal{R}} \left\| \int k(x;.) p(x) dx - \int k(x;.) r(x) q(x) dx
ight\|_{\mathcal{R}}^2.$$

Generator Training

• The generator $G\gamma$ is trained by minimizing the empirical estimator of MMD,

$$egin{aligned} \min_{\gamma} \left[rac{1}{N^2} \sum_{i=1}^{N} \sum_{i'=1}^{N} k(f_{ heta}(x_i), f_{ heta}(x_{i'})) - rac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k(f_{ heta}(x_i), f_{ heta}(G_{\gamma}(z_j)))
ight. \ \left. + rac{1}{M^2} \sum_{j=1}^{M} \sum_{j'=1}^{M} k(f_{ heta}(G_{\gamma}(z_j)), f_{ heta}(G_{\gamma}(z_{j'})))
ight] \end{aligned}$$

with respect to it's parameters γ .