Algorithmen und Datenstrukturen

Beispiel: Lernplanung

Prof. Justus Piater, Ph.D.

15. Juni 2022

Inhaltsverzeichnis

1 Beispiel: Lernplanung

1

1 Beispiel: Lernplanung

Lernplanung [Piater 2009] [Slide 1]

Gegeben: Eine Sequenz S von K Elementen mit Gewichten $w_k,\ k=1,...,K.$

 k_n ist das letzte Kapitel, das ich am Tag n lesen sollte, damit meine Arbeitsbelastung möglichst gleichmäßig verteilt ist:

Gesucht: Eine Partitionierung $0=k_0\leq k_1\leq \cdots \leq k_N=K$ von S in N Teilsequenzen, die

$$C = \sum_{n=1}^{N} \left(\bar{w} - \sum_{k=k_{n-1}+1}^{k_n} w_k \right)^2$$

$$\propto \sum_{n=1}^{N} \left(\sum_{k=k_{n-1}+1}^{k_n} w_k \right)^2 = \sum_{n=1}^{N} C_{k_{n-1}+1,k_n}$$

minimiert, wobei $\bar{w} = \frac{1}{N} \sum_{k=1}^{K} w_k$.

Beweis der Proportionalität: Schreibe $C = \sum_n (c-v_n)^2$ und expandiere; $\sum_n v_n = \sum_n v_n = \sum_n v_n$

$$\sum_{n=1}^N \sum_{k=k_{n-1}+1}^{k_n} w_k = \sum_{k=1}^K w_k$$
ist unabhängig von der Partitionierung.

Anmerkung

Dies ist nur interessant, falls K > N.

Brute-Force-Algorithmus? [Slide 2]

Die Zahl der möglichen Partitionierungen ist

$$s(K,N) \; = \; \left\{ \begin{array}{ll} 1 & \text{falls } K \leq N \text{ oder } N \leq 1, \\ \sum_{k=1}^{K-N+1} s(K-k,N-1) & \text{andernfalls.} \end{array} \right.$$

- Gibt es weniger Kapitel als Tage, oder gibt es nur einen Tag, dann sind alle sinnvollen Lösungen äquivalent.
- Andernfalls beenden wir den ersten Tag nach Kapitel $k, k=1,\dots,k_{\max}$ (wobei k_{\max} mindestens ein Kapitel für jeden verbleibenden Tag übrig lässt), und fahren rekursiv mit der um einen Tag verkürzten Sequenz und den verbleibenden Kapiteln fort.

Falls $K \gg N$, ist dies mindestens $\Omega(2^N)$.

Diese untere Grenze wird erreicht, falls es für jeden Tag n genau zwei unabhängige Möglichkeiten k_n gibt, das letzte Kapitel für diesen Tag zu wählen.

Anzahl der möglichen Partitionierungen [Slide 3]

	N = 1	N = 2	N = 3	N = 4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
K = 1	1	1	1	1	1	1	1	1	1	1
K = 2	1	1	1	1	1	1	1	1	1	1
K = 3	1	2	1	1	1	1	1	1	1	1
K = 4	1	3	3	1	1	1	1	1	1	1
K = 5	1	4	6	4	1	1	1	1	1	1
K = 6	1	5	10	10	5	1	1	1	1	1
K = 7	1	6	15	20	15	6	1	1	1	1
K = 8	1	7	21	35	35	21	7	1	1	1
K = 9	1	8	28	56	70	56	28	8	1	1
K = 10	1	9	36	84	126	126	84	36	9	1
K = 11	1	10	45	120	210	252	210	120	45	10
K = 12	1	11	55	165	330	462	462	330	165	55
K = 13	1	12	66	220	495	792	924	792	495	220
K = 14	1	13	78	286	715	1287	1716	1716	1287	715
K = 15	1	14	91	364	1001	2002	3003	3432	3003	2002
K = 16	1	15	105	455	1365	3003	5005	6435	6435	5005
K = 17	1	16	120	560	1820	4368	8008	11440	12870	11440
K = 18	1	17	136	680	2380	6188	12376	19448	24310	24310
K = 19	1	18	153	816	3060	8568	18564	31824	43758	48620
K = 20	1	19	171	969	3876	11628	27132	50388	75582	92378

Für die Planung dieses Kurses: Der Kurs enthält K=26 unteilbare Abschnitte (ohne dieses Kapitel), die möglichst gleichmäßig auf N=12 wöchentliche Unterrichtseinheiten zu verteilen sind: s(26,12)=4457400 verschiedene Möglichkeiten

Greedy-Algorithmus? [Slide 4]

Für n = 1, ..., N wähle k_n so, dass

$$C_n = \left(\bar{w} - \sum_{k=k_{n-1}+1}^{k_n} w_k\right)^2$$

minimiert wird.

Laufzeit?

O(K)

Minimiert diese Lösung
$$C = \sum_{n=1}^{N} C_n$$
?

Beispiel:

$$w_k = 3, K = 8, N = 6$$

Divide-and-Conquer-Algorithmus? [Slide 5]

1. Divide: Falls $K \leq N$ oder falls $N \leq 1$, gibt es nur eine Lösung. Andernfalls finde

$$\begin{array}{lcl} n_{\mathrm{mid}} & = & \left \lfloor \frac{N}{2} \right \rfloor \\ k_{\mathrm{mid}} & = & \operatorname*{argmin}_{l} \{C_{1,l} + C_{l+1,K}\} \end{array}$$

- 2. Rekursion: Löse die beiden Teilprobleme.
- 3. Conquer: Verkette die beiden Teillösungen.

Laufzeit?

Rekursionsbaum mit O(K) Arbeitsschritten auf jeder Ebene (zum Finden der Mittelpunkte), und $\log N$ Ebenen, also $O(K\log N)$

3

Minimiert diese Lösung C?

Beispiel:

$$S = \{2, 2, 2, 2, 8\}, N = 4$$

Dynamic Programming [Slide 6]

Optimale Unterproblemstruktur: In einer optimalen Partitionierung der Länge N ist die Teilpartitionierung der ersten N-1 Elemente optimal.

Beweis?

Durch Widerspruch: Eine Verbesserung dieser Teilpartitionierung verbessert auch die gesamte Partitionierung.

Korollar: Um eine optimale Partitionierung der Länge N zu finden, genügt es, die beste Kombination einer optimalen Teilpartitionierung der Länge N-1 der k < K ersten Elemente mit den verbleibenden K-k Elementen des letzten Tages zu bestimmen.

Überlappung der Unterprobleme: Um die optimale Partitionierung der Länge N zu finden, berücksichtigen wir Teillösungen, die wir bereits für N-1 berechnet haben.

Genau dies war beim Brute-Force-Algorithmus nicht der Fall!

Einfacher DP-Algorithmus [Slide 7]

Fülle eine Tabelle T mit den minimalen Kosten einer Partitionierung der Länge n der Elemente 1, ..., k:

$$T_k^n \ = \ \min_{1 \le l < k} \left\{ T_l^{n-1} + C_{l+1,k} \right\}$$

Dies ist exakt die mathematische Umsetzung des obigen Korollars.

 $(T ext{ besitzt einen unteren und einen oberen Index}, keinen Exponenten.)$

1	n = 4						
		T_{1}^{3}					
		T_2^3					
		T_{3}^{3}					
		T_{4}^{3}					
= 5							

Laufzeit?

Tabelle mit $\Theta(KN)$ Einträgen, deren Berechnung jeweils eine Zeit von $\Theta(K)$ benötigt, also $\Theta(K^2N)$.

Wie finden wir die Partitionierung?

In einer Hilfstabelle L merken wir uns Für jeden Eintrag in T den Wert l, der die Teilkosten minimiert (also das letzte Kapitel des Vortags), und geben rekursiv alle optimalen Teilsequenzen aus.

Verbesserter DP-Algorithmus [Slide 8]

Beobachtung: Um T_k^n zu berechnen, ist es überflüssig,

- die l < n-1 zu betrachten, denn diese lassen Tage zu Beginn der Sequenz ungenutzt;
- die k > K N + n zu betrachten, denn diese lassen Tage am Ende der Sequenz ungenutzt.

Dies ergibt

$$T_k^n \ = \ \min_{n-1 \le l < k} \left\{ T_l^{n-1} + C_{l+1,k} \right\}$$

wobei man die Spalte njeweils nur für die Zeilen kmit $n \leq k \leq K - N + n$ ausfüllt.

So enthält jede Spalte der Tabelle nur K-N+1 Werte!

Laufzeit?

Tabelle mit $\Theta((K-N)N)$ Einträgen, deren Berechnung jeweils $\Theta(K-N)$ Zeit benötigt, also $\Theta((K-N)^2N)$.

Beispiel [Slide 9]

Verteile K=6 Kapitel mit Gewichten $w_{k=1,\dots,6}=2,5,3,4,7,6$ auf N=3 Tage.

$$T_k^n = \left[egin{array}{cccc} 4 & & & & & \ 49 & 29 & & & \ 100 & 58 & 38 & & \ 196 & 98 & 74 & & \ & & 221 & 147 & \ & & & & 257 \end{array}
ight], L_k^n = \left[egin{array}{cccc} 0 & & & & \ 0 & 1 & & \ 0 & 2 & 2 & \ 0 & 2 & 3 & \ & 3 & 4 & \ & & 5 \end{array}
ight]$$

- Tag 1: Kapitel 1–3, $\sqrt{C_{1,3}}=10$
- Tag 2: Kapitel 4–5, $\sqrt{C_{4,5}} = 11$
- Tag 3: Kapitel 6, $\sqrt{C_{6,6}} = 6$

Python-Implementation [Slide 10]

```
#!/usr/bin/env python3
# -*- python -*-
import sys
import numpy as np
def displayPartitions(W, Wcum, T, L, k, n):
   if n > 1:
      displayPartitions(W, Wcum, T, L, L[k, n], n - 1)
   print("%g:" % (Wcum[k] - Wcum[L[k, n]]), end=' ')
   for w in range(L[k, n] + 1, k + 1):
       print(W[w], end=' ')
   print()
def partition(W, K, N):
   T = np.zeros((K + 1, N + 1)) # cost table
   # To recover the partitions :
   L = np.zeros((K + 1, N + 1), int) # table of min-cost separators
   Wcum = np.cumsum(W)
   for k in range(1, K - N + 1 + 1):
       T[k, 1] = Wcum[k] * Wcum[k]
   for n in range(2, N + 1):
       for k in range(n, K - N + n + 1):
          tMin = float('Inf')
          for l in range(n - 1, k):
              wRest = Wcum[k] - Wcum[l]
              t = T[1, n - 1] + wRest * wRest
```

```
tMin = t
                 T[k, n] = t
                 L[k, n] = 1
   print(T)
   print(L)
   displayPartitions(W, Wcum, T, L, K, N)
if len(sys.argv) < 2:
   print("Usage: " + sys.argv[0] + " w1 w2 ... wK N")
   print("Example: " + sys.argv[0] + " 2 5 3 4 7
   print("Example: " + sys.argv[0] + " 1 2 3 4 5 4 3 2 1 5")
   print("Example: " + sys.argv[0] + " 5 4 3 2 1 2 3 4 5
   sys.exit(0)
# Mathematical indexing: All valid data start at index 1.
                        # number of chapters
K = len(sys.argv) - 2
N = int(sys.argv[K + 1]) # number of readings (= reading sessions)
W = [0.] + list(map(float, sys.argv[1:K + 1])) # chapter weights
if N > K:
   print("%d days > %d readings; read one a day." % (N, K))
   sys.exit(0)
partition(W, K, N)
```

Graph-Algorithmus [Slide 11]

• $V = \{k = 0, ..., K\} \times \{n = 0, ..., N\}$

if t < tMin:

- E enthält alle gerichteten Kanten von $v_{k,n}$ nach $v_{l,n+1}, \ k < l \leq K$, gewichtet mit $w(v_{k,n},v_{l,n+1}) = \left(\sum_{i=k+1}^l w_i\right)^2 = C_{k+1,l}$.
- Berechne den kürzesten Weg von $v_{0,0}$ nach $v_{K,N}$.

Laufzeit?

 $\Theta(KN)$ Knoten, und $\Theta(K^2)$ Kanten pro Tag, also $\Theta(K^2N)$ Kanten, deren Gewichte sich jeweils in konstanter Zeit berechnen lassen. Dijkstra ist also $O(K^2N\log(KN)) = O(K^2N\log K)$ mit einem binary heap, $\Theta(K^2N^2)$ mit einer unsortierten Liste (was vorteilhaft ist, wenn die Zahl der Kapitel exponentiell in der Anzahl der Tage ist), oder $O(K^2N + KN\log(KN)) = O(K^2N)$ mit einem Fibonacci heap.

Dies entspricht dem einfachen DP-Algorithmus. Lassen wir die Knoten und Kanten trivial suboptimaler Konfigurationen weg, erhalten wir das Äquivalent zum verbesserten DP-Algorithmus, mit derselben asymptotischen Laufzeit wie diesem.

Platzbedarf?

Im Gegensatz zum DP-Algorithmus repräsentiert der Graph alle möglichen täglichen Lektüren explizit.

Beispiel [Slide 12]

Verteile K = 6 Kapitel auf N = 3 Tage.

Bibliographie [Slide 13]

Piater, Justus (2009). "Planning Readings: a Comparative Exploration of Basic Algorithms". In: Computer Science Education 19.3, S. 179-192. DOI: 10.1080/08993400903255226. URL: https://iis.uibk.ac.at/public/papers/Piater-2009-CSE.pdf.