3.1 (4) Моделирование машины Тьюринга с несколькими лентами на машине Тьюринга с одной лентой.

Машина Тьюринга (МТ) состоит из:

- бесконечной в две стороны ленты, в ячейках которой могут быть записаны символы алфавита A (некоторого конечного множества);
- головки, которая может двигаться вдоль ленты, обозревая в каждый данный момент времени одну из ячеек;
- оперативной памяти, которая имеет конечный размер (другими словами, состояние оперативной памяти это элемент некоторого конечного множества, которое называется множеством состояний MT Q);
 - таблицы переходов (или программы), которая задаёт функцию.

У **многоленточных** машин не одна лента, а несколько (фиксированное число для конкретной машины). На каждой ленте есть своя головка. За такт работы головки могут перемещаться по всем лентам. Действие на такте работы зависит как от состояния машины, так и от всего набора символов, которые видят головки машины на всех лентах.

Чтобы задать машину с h лентами, нужно указать:

- алфавит A, в котором выделен пустой символ Λ ;
- множество состояний Q, в котором выделено начальное состояние q_0 ;
- таблицу переходов, которая теперь является функцией вида $\delta: A^h \times Q \to A^h \times Q \times \{-1,0,+1\}^h$ (первый аргумент символы, которые машина видит на ленте; последний команды движения для головок на каждой ленте);
- выделить среди лент ленту входа и ленту результата (возможно, что это одна и та же лента).

h-MT M вычисляет функцию $f: B^* \to B^*$ (где B — подмножество алфавита машины, не содержащее пустого символа), если для каждого w из области определения функции f результат работы M равен f(w), а для каждого w не из области определения f машина M не останавливается на входе w.

Любая функция, вычислимая на многоленточной MT, вычислима и на одноленточной машине.

Докажем, построив для произвольной h-MT искомую одноленточную. Если описывать конфигурации h-MT M_h в виде матрицы конфигурации размера $h \times N$, то каждый столбец такой матрицы может находиться в конечном числе состояний: не более $(A \cdot (Q+1))^h$, где A — размер алфавита, а Q — количество состояний.

Моделирующая машина M_1 использует расширенный алфавит из $A + (A \cdot (Q+1))^h$ (пустой символ и символы, отвечающие различным столбцам матрицы конфигурации). Она поддерживает описание матрицы конфигурации машины M_h в этом алфавите и изменяет его, моделируя работу M_h по тактам.

Поскольку действия M_h на каждом такте работы зависят от её состояния и символов под головками на каждой ленте, машина M_1 поддерживает также и эту информацию, записывая её в «оперативную память». Т.е. состояния M_1 представляются парами («управляющее состояние», «оперативная память»).

Такт работы машины M_h моделируется машиной M_1 в два этапа. На первом этапе машина M_1 просматривает все непустые ячейки на своей ленте слева направо и определяет, какие символы расположены под текущими положениями головок машины M_h .

На втором этапе M_1 изменяет содержимое своей ленты в соответствии с таблицей переходов машины M_h .

Более детальное описание устройства M_1 :

- Алфавит машины $M_1 A' = A \cup (A \times (Q \cup \Lambda))^h$;
- Пустой символ тот же, что и у моделируемой машины M_h ;
- Машина M_1 является последовательным соединением трёх машин: M_s , M_w , M_f .
- 1. M_s . Первая машина M_s подготавливает содержимое ленты к двухэтапному моделированию тактов работы машины M_h . Машина M_s просматривает ячейки входного слова. Первый символ a_1 она заменяет на $((a_1,q_0),(\Lambda,q_0),...,(\Lambda,q_0))$ (это первый столбец матрицы начальной конфигурации M_h), а каждый последующий символ входа а на $((a,\Lambda),(\Lambda,\Lambda),...,(\Lambda,\Lambda))$ (это остальные столбцы матрицы начальной конфигурации напомним, что в начальной конфигурации все ленты, кроме входной, пусты). Обнаружив пустой символ Λ , машина M_s возвращается в крайнее левое положение и останавливается.
- 2. M_w . Вторая машина M_w моделирует такты работы M_h описанным выше способом. Она проходит непустые ячейки ленты два раза. При движении слева направо машина M_w «запоминает» символы под головками машины M_h по следующему правилу: если в очередном столбце матрицы конфигурации машины M_h на і-й позиции находится пара $(a,q), q \in Q$, то і-я головка расположена над символом а. К концу первого прохода в оперативной памяти M_w содержится полная информация о символах под головками и состоянии M_h , что однозначно определяет строчку таблицы переходов M_h , которую нужно применить на данном такте. Если такой строчки нет, то M_w заканчивает работу.

На втором проходе найденная строчка таблицы переходов M_h используется для обновления матрицы конфигурации. Информация о символах на лентах M_h обновляется по следующему правилу: если в очередном столбце матрицы конфигурации машины M_h на і-й позиции находится пара $(a,q), q \in Q$, то столбец меняется так, чтобы в этой позиции было написана пара (a',q), где a' — символ, который M_h записывает на і-ую ленту. Те пары в столбце, которые соответствуют ячейкам, над которыми нет головки, не изменяются.

Кроме того, нужно обновить информацию о положениях головок соответственно текущей команде движения. Для этого машина M_w переписывает вторые компоненты пар, из которых состоит столбец матрицы конфигурации M_h (т.е. текущий столбец матрицы). Движение по каждой ленте может быть как влево, так и вправо. Поэтому для выполнения этого действия M_w перемещается из текущего положения на шаг вправо, записывая в этот столбец новые положения головок, и на шаг влево, выполняя аналогичное действие. При выполнении этих действий машина M_w может выйти за пределы рабочей зоны (матрицы конфигурации). Тогда она оказывается над пустым символом, который заменяется на подходящий столбец, описывающий пустые символы и положения головок машины M_h .

3. M_f . По завершении работы M_w начинает работу третья машина M_f , которая восстанавливает на ленте состояние ленты результата машины M_h . Она проходит по всем ячейкам рабочей зоны и заменяет столбец матрицы конфигурации на символ из алфавита A машины M_h , если головка M_h на ленте результата не находится в этом столбце. Затем она возвращается в ту ячейку, которая соответствует положению головки на ленте результата машины M_h , и производит ту же замену. После этого M_f останавливается с чувством выполненного долга.