UWA – ENSC2003 Engineering Electrical Fundamental

	a Fraingering Electrical	direction
WAYA - FNSC200)3 Engineering Electrical is se complete your details below:	, T . 40
UWA - LIVS	se complete your details being	agen WELLLAM
Plea	Civen Nam	e: ADAM WILLIAM
- A/	Given	~
Surname: WILKINSON	Signature:	Ross
Surname:	Signaturo	
Student ID: 23/00559	:00PM, Thursday, August 18	
Student ID12	:00PM, Thursday, Aug	. :
	ass Test 1 (OPEN BOOK)	This paper contains:
Cl	ass lest 1 (0/2)	a short questions and
	ime allowed: 40 Illinois	4 calculation questions
	May mark: 30	4 calculation questi
	Assessment Weight: 6%	
	Assessment	
		i -imal places, sho

Candidates should attempt all questions and show all working with numerical answers to 2 decimal places, show as much working as possible to gain maximum marks. You can use the blank pages for rough working, but these pages will not be marked.

Your test paper will be returned back to you in the week 6 practical class. Indicate below the day and time of your practical class. Select ONE only.

ss. Select ONE only.	☐ Friday 11AM-1PM
☐ Tuesday 3-5PM ☐ Wednesday 8-10AM ☐ Wednesday 11AM-1PM ☐ Thursday 10AM-12PM	☐ Friday 2-4PM ☐ Friday 4-6PM ☐ I don't know
Illuraday	

			Test I	Marker Use	Only		Total	Marke
Short Questions		Calculation Questions				(/30)	Widike	
21(/2)	O2(/2)	Q3(/2)	Q1(/6)	Q2(/6)	Q3(/6)	Q4(/6)	111	
21(12)		7/	7	1	7_		14	
0			7		<u> </u>		1	

Part A: Short Questions

Short Question 1. In the circuit shown below, Determine the voltage V. (2 marks)

(a) 1 V

(c) 11 V

(d) - 2 V

Write your answer(s) in the answer box below

Short Question 1 Answer:

Short Question 2. Which of the following statement(s) is(are) correct for the circuit given below. (2 marks)

- (a) R_1 and R_2 are in series
- (b) R_2 and R_3^{\vee} are in parallel
- (c) R₂ and R₃ are in series
- (\mathfrak{D}) R_1 and R_2 are in parallel

(a) R_1 and R_4 are in series

(f) R_3 and R_4 are in parallel

Write your answer(s) in the answer box below

Short Question 2 Answer:

Short Question 3. In the circuit shown below, a decrease in R_3 leads to a decrease of, select all that apply. (2 marks)

- (a) current through R_3 (c) voltage across R_3
- (e) none of the above

(b) power dissipated in R_2

(d) voltage across R₁

Write your answer(s) in the answer box below

Short Question 3 Answer:

Part B: Calculation Questions

Calculation Question 1. A current through a conductor is measured to have the time relationship shown below. Given that 80 coulombs have passed a point A on the conductor at time t=0 second. Determine the total charge that has passed point A for a period of time from 0 seconds to 8 seconds. Show all works. (6 marks)

-2+8+80=86 conloads

86 Rt. 6 x 15 15 70

86 contros

Calculation Question 2. In the circuit shown below, the datum node has been labelled. Use node-to-datum analysis technique to find the nodal voltages V₁. Show all works and label necessary details in sketch. (6 2Ω $\Omega 8$

Calculation Question 4. For the circuit shown in the following figure,

(a) Find the equivalent resistance R_{eq} seen by the voltage source. Show all works and label necessary details

(b) Calculate power delivered by the source. (1 mark)