Academic Integrity Report

Comprehensive Plagiarism and AI Content Analysis

File: nearest summer training report.docx

Generated on August 27, 2025 at 03:05 AM

Student/User: **katendeelie411-20250806085846**

Document ID: 40

Document Information

File Name: nearest summer training File Size: 934.5 KB

report.docx

Upload Date: August 27, 2025 **Analysis Date:** August 27, 2025

Analysis Results

Plagiarism Detection

15.8%

Similarity Found

Total Words: 4029 Matched Words: 636 **AI Content Detection**

37.4%

AI Generated

Total Words: 4029 AI Words: 1506

Analysis Type	Score	Issues Found	Risk Level
Plagiarism Detection	15.8%	248 instances	Medium Risk
AI Content Detection	37.4%	248 instances	High Risk

Document Analysis with Highlighted Issues

Plagiarism Detected (248)

AI Generated Content (248)

GIRNE AMERICAN UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

AcadCheck: AI and Plagiarism Detection Tool

SUMMER TRAINING REPORT

Student: Elie katende kazwela

Student ID: 221701001

Supervisor: Mr. Cliff

Acknowledgements

I would like to sincerely thank all those who supported me during my internship at the university and throughout the preparation of this report.

First and foremost, I am especially grateful to my supervisor, Mr. Peter Cliff, for his guidance, encouragement and constant support. His expertise and thoughtful feedback played a key role in the progress and success of my work.

I also wish to express my appreciation to the staff and faculty of the university for welcoming me,

Providing the necessary resources, and creating a positive environment that made this internship a valuable learning experience. the knowledge and skills I gained have been highly beneficial to my academic and professional growth.

Lastly ,I would like to thank my family and friends for their patience, encouragement, and continuous

Support, which greatly helped me in completing this project.

Abstract

This report introduces AcadCheck, a web application developed to detect both plagiarism and AI generated content in academic documents. If the system was implemented using React, TypeScript, and Supabase, and it integrates advanced document analysis methods with a user-friendly interface to deliver precise and comprehensive results.

The main objectives of the project are structured around four core component:

Plagiarism detection: comparing documents against a large corpus by applying N-grams, semantic similarity, and pattern-matching techniques.

AI content detection – identifying AI-generated text through transformer-based models and linguistic analysis.

Document analysis and reporting – producing detailed, sentence-level feedback with metrics such as lexical diversity, syntactic complexity, semantic coherence, and perplexity.

Secure and scalable architecture – leveraging Supabase for database management, data protection, and Row Level Security (RLS).

This report presents the overall architecture, development process, challenges, faced and evaluation results of the application, while also reflecting on the ethical considerations involved. It highlights the use of modern approaches to document analysis, the integration of artificial intelligence in plagiarism detection, and the design of scalable web applications.

Chapter 1: Introduction

Background

In academic settings, maintaining the integrity of written work is essential. The growing use of digital tools, online resources, and AI-assisted content creation has heightened the risk of plagiarism and the improper use of external materials. AcadCheck tackles these issues by offering an automated solution that can identify both plagiarized content and text generated by artificial intelligence, helping to uphold academic honesty and the quality of scholarly work.

Contemporary document analysis relies on advanced technologies such as machine learning, semantic evaluation, and natural language processing (NLP). By combining these methods with a straightforward and intuitive web interface, AcadCheck enables educators, students, and researchers to examine documents effectively while ensuring the security and privacy of their data.

1.2 Objectives

The primary goals of this internship project are:

To create a web application capable of identifying both plagiarism and AI-generated content.

To integrate sophisticated analysis techniques, combining machine learning with heuristic methods.

To provide comprehensive reporting, including analysis at the sentence level, confidence indicators, and clear visual cues.

To guarantee secure management of user data, leveraging authentication, Row-Level Security (RLS), and protected storage.

To deliver a user-friendly and responsive interface that accommodates multilingual users effectively.

1.3 Scope

This project centers on the design, development, and implementation of AcadCheck as a tool for research and education. The application is compatible with PDF, DOCX, and TXT file formats, and it offers detailed sentence-level analysis for both plagiarism and AI-generated content.

All testing and usage of the application are carried out ethically, within controlled environments, and in strict accordance with data protection regulations. *The project does not involve deployment in untrusted environments or the collection of unauthorized data.*

1.4 Importance of the Study

AcadCheck contributes to multiple domains:

Academic integrity: Helps institutions maintain originality standards.

AI literacy: Educates users on distinguishing AI-generated content.

Technical education: Demonstrates the use of modern web technologies, machine learning, and database security in practical applications.

By integrating AI detection with plagiarism analysis, the project addresses modern challenges in digital content evaluation, providing insights for students, educators, and software developers.

1.5 Structure of the Report

The organization of the report is:

Chapter 1: Introduction – Presents background, objectives, scope, and significance.

Chapter 2: Literature Review – Reviews plagiarism detection methods, AI content detection, and ethical/legal considerations.

Chapter 3: Methodology – Details the system architecture, tools, libraries, and implementation steps.

Chapter 4: Implementation and Discussion – Covers code implementation, document processing, analysis workflow, and troubleshooting.

Chapter 5: Conclusion – Summarizes findings, limitations, educational value, and future improvements.

References – List of sources cited throughout the report.

CHAPTER 2: LITERATURE REVIEW

2.1 Overview of Plagiarism Detection

Detecting plagiarism is essential for upholding academic integrity. Traditional tools mainly rely on exact text matching, which can spot direct copying but often misses paraphrased or slightly altered content. Modern systems, like AcadCheck, use a combination of syntactic, semantic, and contextual analysis, enabling more accurate detection of potential plagiarism.

N-gram Analysis: Documents are broken into sequences of words (n-grams) and compared to a reference corpus. *Similar sequences indicate potential plagiarism*. AcadCheck uses adaptive n-gram sizes to capture both short phrases and longer patterns.

Semantic Similarity: Using NLP techniques, AcadCheck compares the meaning of sentences rather than exact wording.

This allows the system to detect paraphrased content.

Contextual Patterns: Certain academic formulations are commonly reused. By identifying these patterns, the system can differentiate between general academic phrases and copied unique content.

Recent research emphasizes the integration of machine learning models for more nuanced plagiarism detection, allowing systems to learn from labeled datasets and improve detection accuracy over time.

2.2 AI-Based Text Detection

With the emergence of AI-generated content, particularly large language models like GPT, distinguishing between human-written and AI-generated text has become a crucial challenge. AcadCheck implements hybrid AI detection techniques, combining transformer-based models with linguistic heuristics:

Transformer Models: Pre-trained models analyze text for patterns indicative of AI generation, such as overuse of certain connectors, predictable phrasing, or low variability.

Linguistic Heuristics: Metrics such as lexical diversity, syntactic complexity, and perplexity are used to evaluate the naturalness of text. AI-generated text often exhibits high perplexity uniformity and low lexical diversity.

Sentence-Level Scoring: Each sentence is assigned an AI score, indicating the likelihood of machine generation.

This granularity allows users to review suspicious content precisely.

By integrating AI detection with plagiarism analysis, AcadCheck provides a comprehensive evaluation of document originality.

2.3 Document Analysis Techniques

Effective plagiarism and AI detection require robust document analysis. AcadCheck supports multiple formats, including PDF, DOCX, and TXT, with consistent text extraction:

PDF Analysis: Using

PDF. js, the system extracts text while preserving document structure.

Word Document Handling: Mammoth and DOCX Preview convert DOCX files to HTML, ensuring accurate rendering and sentence-level analysis.

Text Preprocessing: Cleaning, tokenization, and normalization prepare the content for further analysis.

Sentence segmentation, feature extraction, and vectorization are applied before any similarity or AI detection algorithms, ensuring that results are both accurate and interpretable.

2.4 Ethical and Legal Considerations

Given the sensitivity of plagiarism and AI detection, ethics and legality are central to AcadCheck's design:

User Consent: Only documents uploaded with explicit consent are analyzed.

Data Security: Supabase provides encrypted storage and Row Level Security (RLS) to isolate user data.

Legal Compliance: The system aligns with GDPR and other data protection regulations, preventing unauthorized access or retention.

Responsible Reporting: Results are presented solely for educational or institutional purposes, avoiding misuse of the analysis.

Ethical considerations also guide the inclusion of AI detection. The system is designed for transparency, providing users with interpretable metrics and avoiding punitive assumptions.

2.5 Use of React, TypeScript, and Supabase in Web Apps

Modern web technologies play a key role in the functionality and usability of AcadCheck:

React (v18.3. 1): Provides a responsive, dynamic frontend capable of handling real-time document previews and interactive dashboards.

TypeScript: Adds type safety and improves maintainability, especially important for complex components such as analysis tables and reports.

Supabase: Serves as a backend and database solution, offering authentication, secure storage, and serverless functions. RLS ensures that users only access their own analyses.

Frontend UI Components: Using Tailwind CSS and shaden/ui, the interface is modern, clean, and intuitive. *Components like DocumentViewer and HighlightedText provide detailed visual feedback to users*.

The combination of these technologies allows for a robust, scalable, and secure web application, supporting complex AI and plagiarism detection workflows while maintaining excellent user experience.

2.6 Integration of Detection Algorithms in Web Applications

A critical aspect of modern plagiarism detection systems is the seamless integration of backend analysis algorithms with frontend visualization:

Sentence-Level Analysis: Each sentence is analyzed for plagiarism and AI content. Results are transmitted from the backend to the frontend, where they are visually highlighted in the document.

Scoring and Metrics: Global scores, confidence levels, and detailed metrics are presented using interactive dashboards.

Real-Time Feedback: Users can upload documents and receive analysis results without page reloads, thanks to React's component architecture.

This integration ensures that technical sophistication in analysis does not compromise usability.

2.7 Summary

Chapter 2 shows that modern plagiarism and AI detection relies on multi-layered methods that combine semantic analysis, machine learning, and secure web technologies.

AcadCheck applies these principles by providing a system that is easy to use, secure, and accurate, effectively tackling today's challenges in maintaining academic integrity.

CHAPTER 3: METHODOLOGY

3.1 Design Objectives and System Architecture

The main goal in designing AcadCheck is to build a web application that is secure, scalable, and easy to use for detecting plagiarism and AI-generated content. The key aspects taken into account include:

Accuracy: Implement advanced algorithms for precise detection of plagiarized and AI-generated text.

Security: Ensure strict user data isolation through authentication and Row Level Security (RLS).

Usability: Provide an intuitive dashboard and interactive reports that can be easily interpreted by students, educators, and researchers.

Scalability: Design the system to handle large volumes of document uploads and concurrent analyses.

The system architecture is composed of the following layers:

Frontend (React + TypeScript): Handles user interaction, document preview, and visualization of analysis results.

Backend (Supabase + Serverless Functions): Processes document uploads, manages user authentication, and executes analysis algorithms.

Database (PostgreSQL): Stores user data, documents, analysis results, and sentence-level metrics.

AI Engine: Implements transformer-based models and linguistic heuristics for AI detection.

Security Layer: Enforces RLS, secure storage, and access control to protect sensitive data.

The architecture is modular, allowing future integration of additional features such as multi-language support, paraphrasing detection, and integration with LMS platforms.

3.2 Tools and Libraries

The following tools and libraries were selected for their suitability and robustness:

Frontend:

React 18.3.1 for component-based UI

TypeScript for type safety and maintainability

Tailwind CSS and shaden/ui for consistent, responsive styling

React Router DOM for client-side routing

Backend & Database:

Supabase (PostgreSQL) for secure user management, storage, and database operations

Serverless functions for document processing

Document Processing:

PDF.js for PDF extraction

Mammoth and DOCX Preview for Word document conversion and rendering

Custom fileToText library for preprocessing and normalization

AI & Plagiarism Detection:

Hugging Face Transformers for AI detection

N-gram analysis, semantic similarity, and heuristic algorithms for plagiarism detection

Testing & Quality:

Jest and React Testing Library for unit tests

Cypress for integration tests

ESLint, Prettier, and Husky for code quality and consistency

3.3 Development and Implementation

The development of AcadCheck was divided into several modules to ensure modularity and maintainability.

3.3.1 User Authentication and Session Management

Sign-up/Login: Users register with email and password. Supabase handles authentication securely.

Session Persistence: JWT tokens are stored in browser local storage, with automatic session renewal.

Route Protection: Only authenticated users can access dashboards and analysis features.

3.3.2 Document Upload and Preprocessing

Supported Formats: PDF, DOCX, and TXT

File Validation: Ensures correct format and maximum file size compliance

Preprocessing Steps:

Text extraction from uploaded files

Sentence segmentation and tokenization

Removal of unnecessary characters or formatting issues

3.3.3 Plagiarism Detection Algorithms

Exact Matching: Detects copied content using n-grams (3-5 words).

Semantic Similarity: Compares sentences against reference corpus using vector embeddings.

Contextual Analysis: Identifies repeated academic phrases to minimize false positives.

3.3.4 AI Content Detection

Transformer Models: Analyzes text for patterns indicative of AI generation.

Stylistic Metrics: Computes lexical diversity, syntactic complexity, semantic coherence, and perplexity.

Sentence-Level Scoring: Each sentence receives a probability score for AI authorship.

3.3.5 Analysis Report Generation

Visual Dashboard: Displays sentence-level highlights and overall metrics.

Export Options: Users can download PDF reports with annotated content.

Confidence Scores: Metrics such as AI score, plagiarism score, and confidence levels guide interpretation.

3.3.6 Internationalization

Languages Supported: English and French

Dynamic Switching: Users can switch languages without refreshing the page

Persistence: Language preferences saved in user profile

3.3.7 Security and RLS Policies

Row Level Security (RLS): Ensures users can only access their own analyses

Encrypted Storage: All uploaded documents are stored securely in Supabase buckets

Access Control: Temporary signed URLs prevent unauthorized access to stored files

3.4 Packaging and Deployment

Frontend Build: Using Vite for optimized bundle creation

Backend Deployment: Supabase handles serverless functions and database management

Environment Variables: Secured for production, including Supabase API keys and AI model endpoints

CI/CD Pipeline: Automated deployment with GitHub Actions and version control

3.5 Testing and Quality Assurance

Unit Tests: Validate individual components and algorithm functions

Integration Tests: Ensure end-to-end functionality from document upload to report generation

Performance Tests: Analyze large document handling and real-time AI scoring

Code Quality: ESLint, Prettier, and Husky ensure consistent, maintainable code

3.6 Ethical and Legal Considerations

All analyses performed on user-uploaded documents with explicit consent.

Compliance with GDPR and local privacy laws.

System designed for educational and research purposes only.

Users receive interpretable results, avoiding punitive or misrepresentative conclusions.

3.7 Summary

Chapter 3 provides a detailed account of AcadCheck's methodology, covering system architecture, tools, implementation, security, testing, and ethical considerations. *This methodology ensures accuracy, reliability, and usability, forming the foundation for Chapters 4 and 5, which present the actual implementation and results.*

CHAPTER 4: IMPLEMENTATION AND DISCUSSION

4.1 Development Environment Setup

The development of AcadCheck was performed using a modern web stack on a local and cloud-based environment:

Operating System: Windows 11 / Ubuntu 22.04

Frontend: Node. js 20, Vite, React 18.3.1, TypeScript

Backend & Database: Supabase (PostgreSQL), serverless functions for analysis

processing

IDE: Visual Studio Code with ESLint, Prettier, and Git integration

Version Control: GitHub for source code management and CI/CD pipelines

All dependencies were installed using npm or yarn. Environment variables were securely configured for API keys, database URLs, and AI model endpoints.

4.2 Frontend Implementation

The frontend was implemented using React and TypeScript, emphasizing responsive design and real-time feedback.

4.2.1 Dashboard and Document Upload

Drag-and-Drop Upload: Users can upload PDF, DOCX, or TXT files.

Live Preview: Using DocumentViewer, the uploaded file is displayed with high fidelity.

Upload Validation: The system checks file type, size, and integrity before analysis.

```
const handleFileUpload = async (file: File) => {
if (!isValidFile(file)) return;
const text = await fileToText(file);
setUploadedText(text);
};
```

4.2.2 Interactive Analysis Report

Sentence-level highlights indicate plagiarism and AI-generated content.

Users can hover over sentences to view metrics such as confidence scores and AI probability.

Results are dynamically updated without page reloads using React hooks.

4.3 Backend Implementation

The backend is built with Supabase, providing secure storage, authentication, and serverless analysis functions.

4.3.1 Document Storage

Uploaded documents are stored in encrypted buckets with temporary signed URLs.

Metadata, including document name, user ID, and timestamp, is stored in the analyses table.

4.3.2 Analysis Workflow

Text Extraction: Using PDF. *js and Mammoth for PDFs and DOCX respectively*.

Preprocessing: Tokenization, sentence segmentation, and cleaning.

Plagiarism Detection: N-grams and semantic similarity comparison with corpus documents.

AI Detection: Transformer models assign a probability score per sentence.

```
const analysisResult = await analyzeText(extractedText, {
```

corpus: referenceDocuments,

});

useAI: true

saveAnalysis(userId, analysisResult);

4.4 Document Analysis Workflow

User uploads document \rightarrow Frontend validates \rightarrow Sends to backend.

Backend extracts text and segments into sentences.

Each sentence is processed:

Plagiarism score calculated

AI detection score calculated

Results are stored in analysis sentences table.

Frontend renders interactive report with color-coded highlights.

Workflow Diagram:

[User Upload] → [Text Extraction] → [Sentence Segmentation] → [AI & Plagiarism Analysis] → [Database Storage] → [Interactive Report]

4.5 AI and Plagiarism Detection Results

Sentence-Level Scores: Each sentence is scored 0-100% for plagiarism and AI probability.

Global Metrics: Average plagiarism score, average AI score, lexical diversity, syntactic complexity.

Visual Feedback:

Red highlight → High plagiarism

Yellow highlight → Medium plagiarism or AI probability

Green \rightarrow Safe or low risk

Example Table:

4.6 Challenges and Troubleshooting

During implementation, several challenges were encountered:

Document Rendering Issues: Some DOCX formatting was lost; resolved using Mammoth and DOCX Preview.

Large File Handling: PDFs > 50MB caused slow extraction; solved by batch processing sentences.

AI Model Latency: Transformer-based scoring was time-consuming; optimized using caching and async functions.

Data Security: Careful attention was given to applying Row-Level Security (RLS) correctly across all tables. To ensure proper functionality, thorough testing was conducted, including unit tests, integration tests, and detailed logging.

4.7 Ethical and Legal Considerations

All analyses respect user privacy.

Temporary URLs prevent unauthorized document access.

System designed for demonstration and educational purposes, avoiding legal infringement.

Detailed logs and transparency ensure users can trust results.

4.8 Summary

Chapter 4 presents the hands-on implementation of AcadCheck, covering the frontend and backend development, document processing workflows, AI and plagiarism detection features, and strategies for troubleshooting. It also discusses the real-world challenges encountered when integrating complex algorithms into a modern web application, while ensuring security, scalability, and a smooth user experience.

CHAPTER 5: CONCLUSION

5.1 Key Findings

The development and deployment of AcadCheck led to several key insights:

Accurate Plagiarism Detection: By combining n-gram techniques, semantic comparisons, and contextual pattern recognition, AcadCheck can reliably detect both copied and paraphrased content.

AI Content Recognition: The use of transformer-based models alongside heuristic methods allows for precise identification of AI-generated text, with detailed analysis at the sentence level.

Intuitive User Interface: The interactive dashboard and real-time feedback make the results easy to understand, enhancing the overall user experience.

Secure and Scalable System: Built with Supabase, React, and TypeScript, the platform ensures data privacy, user authentication, and the ability to handle large volumes of documents efficiently.

Support for Multiple File Formats: PDFs, DOCX, and TXT files are processed while maintaining formatting, ensuring accurate and consistent analysis.

These observations highlight that tools for maintaining academic integrity must combine technical sophistication with user-centered design to be truly effective.

5.2 Educational Value

AcadCheck functions as a practical tool for students, researchers, and educators alike:

Learning Resource: Students can check their own work for accidental plagiarism or AIgenerated content, helping them improve their writing habits.

Teaching Aid: Educators can use the platform to illustrate proper citation methods and maintain academic writing standards.

Research Support: The application provides detailed metrics and visualizations that facilitate studies on academic integrity.

Additionally, the development of AcadCheck offered valuable hands-on experience in full-stack web development, AI integration, and implementing secure data management practices.

5.3 Limitations

Despite its achievements, AcadCheck has some limitations:

AI Detection Accuracy: Although generally reliable, the system may occasionally flag highly formal or technical writing as AI-generated.

Corpus Dependency: The accuracy of plagiarism detection depends heavily on the size and variety of the reference corpus.

Processing Time: Analyzing large documents or multiple files at once can take longer, even with performance optimizations in place.

Language Support: Currently, the application only handles English and French; supporting additional languages would require retraining the models.

Being aware of these limitations helps guide improvements and refinements for future versions of AcadCheck.

5.4 Recommendations for Future Work

Future development of AcadCheck could focus on several key areas:

Expanded Multilingual Support: Incorporating additional languages such as Spanish and German to make the tool accessible to a wider audience.

Integration with Learning Management Systems (LMS): Enabling direct connections to platforms like Moodle, Canvas, and Blackboard for seamless automated analysis.

Enhanced Paraphrasing Detection: Implementing more advanced semantic analysis techniques to identify subtle paraphrasing in student submissions.

Mobile Application: Creating a React Native version to allow users to access AcadCheck on smartphones and tablets.

API for External Tools: Providing a public API so third-party applications can utilize AcadCheck's detection algorithms.

Performance Improvements: Adopting microservices architecture and queue-based processing to efficiently handle large volumes of documents.

These improvements would further enhance AcadCheck's value as a reliable and professional tool for academic integrity and research support.

5.5 Final Thoughts

AcadCheck showcases how advanced AI, plagiarism detection, and secure web technologies can be combined into a practical, user-friendly platform. *It demonstrates that technology can support academic integrity in a way that is both ethical and transparent.*

The development of this project offered valuable hands-on learning experiences, covering everything from system architecture and algorithm implementation to frontend and backend integration, as well as data security management. The resulting application not only meets its intended goals but also provides a solid foundation for further research and innovation in academic integrity tools.

In conclusion, AcadCheck stands as a modern, dependable, and scalable solution for detecting plagiarism and AI-generated content, striking a balance between technical sophistication, usability, security, and ethical responsibility.

REFERENCES

Books / Monographs Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. *O'Reilly Media*.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*. MIT Press.

Jurafsky, D., & Martin, J. H. (2021). Speech and language processing (3rd ed.). Pearson.

Journal Articles / Conference Papers Alzahrani, S. M., Salim, N., & Abraham, A. (2012). Understanding plagiarism: Linguistic patterns, textual features, and detection techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(5), 1339–1352. https://doi.org/10.1109/TSMCC.2012.2184410

Potthast, M., Stein, B., Barrón-Cedeño, A., & Rosso, P. (2010).

An evaluation framework for plagiarism detection. Proceedings of the 23rd International Conference on Computational Linguistics (COLING), 997–1005.

Vaswani, A., Shazeer, N., Parmar, N., *Uszkoreit, J.*, Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. *Advances in Neural Information Processing Systems (NeurIPS)*, 30, 5998–6008.

Gao, C., Wang, X., & He, D. (2023). Detecting AI-generated text using linguistic features and transformer models. Journal of Artificial Intelligence Research, 76, 1201–1220. https://doi.org/10.1613/jair.1.13345

Web / Technical Documentation Hugging Face. (2025). Transformers documentation. Retrieved August 2025, from https://huggingface.co/docs/transformers

PDF.js. (2025). *Mozilla PDF*.js project. Retrieved August 2025, from https://mozilla.github.io/pdf.js/

Supabase. (2025). Supabase documentation. *Retrieved August 2025, from https://supabase.*com/docs

Vite. (2025). Vite documentation. Retrieved August 2025, from https://vitejs.dev/

Martin, J., & Ha, D. (2022). Detecting AI-generated content: Challenges and strategies. Medium. Retrieved from https://medium.com

Standards / Guidelines European Union. (2018). *General Data Protection Regulation* (GDPR). Official Journal of the European Union.

Association for Computing Machinery (ACM). (2021). ACM code of ethics and professional conduct. *Retrieved from https://www*.acm.org/code-of-ethics

APENDIX

This appendix presents visual documentation of the main features of the AcadCheck application developed during the internship. The figures illustrate the user interface, examples of plagiarism and AI detection results, and the report generation functionality.

All displayed content was created within a controlled academic setting and is intended solely for educational purposes.

Figure A.1 – Login and Authentication Interface

The screenshot displays AcadCheck's secure login page. Users can sign in using their email and password to access the dashboard. The page also provides options for account registration, password recovery, and selecting the interface language (English or French).

Figure A.2 – Main Dashboard Overview

This figure shows the main dashboard of AcadCheck, where users can access the core features, upload documents, and view summaries of plagiarism and AI detection results.

Figure A.3 – Document Preview (PDF/DOCX/TXT)

This screenshot displays the DocumentViewer feature, which lets users preview uploaded documents in real time. The component maintains the original formatting and offers zoom and navigation options for a thorough review.

Figure A.4 – Plagiarism and AI Detection Results

The figure shows sentence-by-sentence analysis, with plagiarism and AI-generated content scores. Color-coded highlights indicate suspicious sections, while confidence metrics provide additional insight for each sentence.

Figure A.5 – Detailed Report Generation

This screenshot presents the PDF report generated by AcadCheck. It includes global metrics, sentence-level scores, and highlighted passages. Users can download or share the report directly from the dashboard.

Figure A.6 – Analysis History and Filtering

This figure shows the historical analysis interface, listing previous uploads with dates, document names, and scores. Users can filter, search, and re-open previous reports for reference or export.

Detailed Issue Analysis

Plagiarism Detected

15.8% Match

"GIRNE AMERICAN UNIVERSITY Faculty of Engineering Department of Computer Engineering AcadCheck: AI and Plagiarism Detection Tool SUMMER TRAINING REPORT Student: Elie katende kazwela Student ID: 221701001 Supervisor: Mr."

Plagiarism Detected

15.8% Match

"Cliff Acknowledgements I would like to sincerely thank all those who supported me during my internship at the university and throughout the preparation of this report."

Plagiarism Detected

15.8% Match

"First and foremost, I am especially grateful to my supervisor, Mr."

Plagiarism Detected

15.8% Match

"Peter Cliff, for his guidance ,encouragement and constant support."

Plagiarism Detected

15.8% Match

"His expertise and thoughtful feedback played a key role in the progress and success of my work."

Plagiarism Detected

15.8% Match

"I also wish to express my appreciation to the staff and faculty of the university for welcoming me, Providing the necessary resources, and creating a positive environment that made this internship a valuable learning experience."

Plagiarism Detected

15.8% Match

"the knowledge and skills I gained have been highly beneficial to my academic and professional growth."

Plagiarism Detected

15.8% Match

"Lastly ,I would like to thank my family and friends for their patience , encouragement , and continuous Support , which greatly helped me in completing this project."

Plagiarism Detected

15.8% Match

"Abstract This report introduces AcadCheck, a web application developed to detect both plagiarism and AI generated content in academic documents ."

Plagiarism Detected

15.8% Match

"the system was implemented using React, TypeScript, and Supabase, and it integrates advanced document analysis methods with a user-friendly interface to deliver precise and comprehensive results."

Plagiarism Detected

15.8% Match

"The main objectives of the project are structured around four core component: Plagiarism detection: comparing documents against a large corpus by applying N-grams, semantic similarity, and pattern-matching techniques."

Plagiarism Detected

15.8% Match

"AI content detection – identifying AI-generated text through transformer-based models and linguistic analysis."

Plagiarism Detected

15.8% Match

"Document analysis and reporting – producing detailed, sentence-level feedback with metrics such as lexical diversity, syntactic complexity, semantic coherence, and perplexity."

Plagiarism Detected

15.8% Match

"Secure and scalable architecture – leveraging Supabase for database management, data protection, and Row Level Security (RLS)."

Plagiarism Detected

15.8% Match

"This report presents the overall architecture, development process, challenges, faced and evaluation results of the application, while also reflecting on the ethical considerations involved .it highlights the use of modern approaches to document analysis, the integration of artificial intelligence in plagiarism detection, and the design of scalable web applications."

Plagiarism Detected

15.8% Match

"Chapter 1: Introduction Background In academic settings, maintaining the integrity of written work is essential."

Plagiarism Detected

15.8% Match

"The growing use of digital tools, online resources, and AI-assisted content creation has heightened the risk of plagiarism and the improper use of external materials."

Plagiarism Detected

15.8% Match

"AcadCheck tackles these issues by offering an automated solution that can identify both plagiarized content and text generated by artificial intelligence, helping to uphold academic honesty and the quality of scholarly work."

Plagiarism Detected

15.8% Match

"Contemporary document analysis relies on advanced technologies such as machine learning, semantic evaluation, and natural language processing (NLP)."

Plagiarism Detected

15.8% Match

"By combining these methods with a straightforward and intuitive web interface, AcadCheck enables educators, students, and researchers to examine documents effectively while ensuring the security and privacy of their data."

Plagiarism Detected

15.8% Match

"1.2 Objectives The primary goals of this internship project are: To create a web application capable of identifying both plagiarism and AI-generated content."

Plagiarism Detected

15.8% Match

"To integrate sophisticated analysis techniques, combining machine learning with heuristic methods."

Plagiarism Detected

15.8% Match

"To provide comprehensive reporting, including analysis at the sentence level, confidence indicators, and clear visual cues."

Plagiarism Detected

15.8% Match

"To guarantee secure management of user data, leveraging authentication, Row-Level Security (RLS), and protected storage."

Plagiarism Detected

15.8% Match

"To deliver a user-friendly and responsive interface that accommodates multilingual users effectively."

Plagiarism Detected

15.8% Match

"1.3 Scope This project centers on the design, development, and implementation of AcadCheck as a tool for research and education."

Plagiarism Detected

15.8% Match

"The application is compatible with PDF, DOCX, and TXT file formats, and it offers detailed sentence-level analysis for both plagiarism and AI-generated content."

Plagiarism Detected

15.8% Match

"All testing and usage of the application are carried out ethically, within controlled environments, and in strict accordance with data protection regulations."

Plagiarism Detected

15.8% Match

"The project does not involve deployment in untrusted environments or the collection of unauthorized data."

Plagiarism Detected

15.8% Match

"1.4 Importance of the Study AcadCheck contributes to multiple domains: Academic integrity: Helps institutions maintain originality standards."

Plagiarism Detected

15.8% Match

"AI literacy: Educates users on distinguishing AI-generated content."

Plagiarism Detected

15.8% Match

"Technical education: Demonstrates the use of modern web technologies, machine learning, and database security in practical applications."

Plagiarism Detected

15.8% Match

"By integrating AI detection with plagiarism analysis, the project addresses modern challenges in digital content evaluation, providing insights for students, educators, and software developers."

Plagiarism Detected

15.8% Match

"1.5 Structure of the Report The organization of the report is: Chapter 1: Introduction – Presents background, objectives, scope, and significance."

Plagiarism Detected

15.8% Match

"Chapter 2: Literature Review – Reviews plagiarism detection methods, AI content detection, and ethical/legal considerations."

Plagiarism Detected

15.8% Match

"Chapter 3: Methodology – Details the system architecture, tools, libraries, and implementation steps."

Plagiarism Detected

15.8% Match

"Chapter 4: Implementation and Discussion – Covers code implementation, document processing, analysis workflow, and troubleshooting."

Plagiarism Detected

15.8% Match

"Chapter 5: Conclusion – Summarizes findings, limitations, educational value, and future improvements."

Plagiarism Detected

15.8% Match

"References – List of sources cited throughout the report."

Plagiarism Detected

15.8% Match

"CHAPTER 2: LITERATURE REVIEW 2.1 Overview of Plagiarism Detection Detecting plagiarism is essential for upholding academic integrity."

Plagiarism Detected

15.8% Match

"Traditional tools mainly rely on exact text matching, which can spot direct copying but often misses paraphrased or slightly altered content."

Plagiarism Detected

15.8% Match

"Modern systems, like AcadCheck, use a combination of syntactic, semantic, and contextual analysis, enabling more accurate detection of potential plagiarism."

Plagiarism Detected

15.8% Match

"N-gram Analysis: Documents are broken into sequences of words (n-grams) and compared to a reference corpus."

Plagiarism Detected

15.8% Match

"Similar sequences indicate potential plagiarism."

Plagiarism Detected

15.8% Match

"AcadCheck uses adaptive n-gram sizes to capture both short phrases and longer patterns."

Plagiarism Detected

15.8% Match

"Semantic Similarity: Using NLP techniques, AcadCheck compares the meaning of sentences rather than exact wording."

Plagiarism Detected

15.8% Match

"This allows the system to detect paraphrased content."

Plagiarism Detected

15.8% Match

"Contextual Patterns: Certain academic formulations are commonly reused."

Plagiarism Detected

15.8% Match

"By identifying these patterns, the system can differentiate between general academic phrases and copied unique content."

Plagiarism Detected

15.8% Match

"Recent research emphasizes the integration of machine learning models for more nuanced plagiarism detection, allowing systems to learn from labeled datasets and improve detection accuracy over time."

Plagiarism Detected

15.8% Match

"2.2 AI-Based Text Detection With the emergence of AI-generated content, particularly large language models like GPT, distinguishing between human-written and AI-generated text has become a crucial challenge."

Plagiarism Detected

15.8% Match

"AcadCheck implements hybrid AI detection techniques, combining transformer-based models with linguistic heuristics: Transformer Models: Pretrained models analyze text for patterns indicative of AI generation, such as overuse of certain connectors, predictable phrasing, or low variability."

Plagiarism Detected

15.8% Match

"Linguistic Heuristics: Metrics such as lexical diversity, syntactic complexity, and perplexity are used to evaluate the naturalness of text."

Plagiarism Detected

15.8% Match

"AI-generated text often exhibits high perplexity uniformity and low lexical diversity."

Plagiarism Detected

15.8% Match

"Sentence-Level Scoring: Each sentence is assigned an AI score, indicating the likelihood of machine generation."

Plagiarism Detected

15.8% Match

"This granularity allows users to review suspicious content precisely."

Plagiarism Detected

15.8% Match

"By integrating AI detection with plagiarism analysis, AcadCheck provides a comprehensive evaluation of document originality."

Plagiarism Detected

15.8% Match

"2.3 Document Analysis Techniques Effective plagiarism and AI detection require robust document analysis."

Plagiarism Detected

15.8% Match

"AcadCheck supports multiple formats, including PDF, DOCX, and TXT, with consistent text extraction: PDF Analysis: Using PDF.js, the system extracts text while preserving document structure."

Plagiarism Detected

15.8% Match

"Word Document Handling: Mammoth and DOCX Preview convert DOCX files to HTML, ensuring accurate rendering and sentence-level analysis."

Plagiarism Detected

15.8% Match

"Text Preprocessing: Cleaning, tokenization, and normalization prepare the content for further analysis."

Plagiarism Detected

15.8% Match

"Sentence segmentation, feature extraction, and vectorization are applied before any similarity or AI detection algorithms, ensuring that results are both accurate and interpretable."

Plagiarism Detected

15.8% Match

"2.4 Ethical and Legal Considerations Given the sensitivity of plagiarism and AI detection, ethics and legality are central to AcadCheck's design: User Consent: Only documents uploaded with explicit consent are analyzed."

Plagiarism Detected

15.8% Match

"Data Security: Supabase provides encrypted storage and Row Level Security (RLS) to isolate user data."

Plagiarism Detected

15.8% Match

"Legal Compliance: The system aligns with GDPR and other data protection regulations, preventing unauthorized access or retention."

Plagiarism Detected

15.8% Match

"Responsible Reporting: Results are presented solely for educational or institutional purposes, avoiding misuse of the analysis."

Plagiarism Detected

15.8% Match

"Ethical considerations also guide the inclusion of AI detection."

Plagiarism Detected

15.8% Match

"The system is designed for transparency, providing users with interpretable metrics and avoiding punitive assumptions."

Plagiarism Detected

15.8% Match

"2.5 Use of React, TypeScript, and Supabase in Web Apps Modern web technologies play a key role in the functionality and usability of AcadCheck: React (v18.3.1): Provides a responsive, dynamic frontend capable of handling real-time document previews and interactive dashboards."

Plagiarism Detected

15.8% Match

"TypeScript: Adds type safety and improves maintainability, especially important for complex components such as analysis tables and reports."

Plagiarism Detected

15.8% Match

"Supabase: Serves as a backend and database solution, offering authentication, secure storage, and serverless functions."

Plagiarism Detected

15.8% Match

"RLS ensures that users only access their own analyses."

Plagiarism Detected

15.8% Match

"Frontend UI Components: Using Tailwind CSS and shaden/ui, the interface is modern, clean, and intuitive."

Plagiarism Detected

15.8% Match

"Components like DocumentViewer and HighlightedText provide detailed visual feedback to users."

Plagiarism Detected

15.8% Match

"The combination of these technologies allows for a robust, scalable, and secure web application, supporting complex AI and plagiarism detection workflows while maintaining excellent user experience."

Plagiarism Detected

15.8% Match

"2.6 Integration of Detection Algorithms in Web Applications A critical aspect of modern plagiarism detection systems is the seamless integration of backend analysis algorithms with frontend visualization: Sentence-Level Analysis: Each sentence is analyzed for plagiarism and AI content."

Plagiarism Detected

15.8% Match

"Results are transmitted from the backend to the frontend, where they are visually highlighted in the document."

Plagiarism Detected

15.8% Match

"Scoring and Metrics: Global scores, confidence levels, and detailed metrics are presented using interactive dashboards."

Plagiarism Detected

15.8% Match

"Real-Time Feedback: Users can upload documents and receive analysis results without page reloads, thanks to React's component architecture."

Plagiarism Detected

15.8% Match

"This integration ensures that technical sophistication in analysis does not compromise usability."

Plagiarism Detected

15.8% Match

"2.7 Summary Chapter 2 shows that modern plagiarism and AI detection relies on multi-layered methods that combine semantic analysis, machine learning, and secure web technologies."

Plagiarism Detected

15.8% Match

"AcadCheck applies these principles by providing a system that is easy to use, secure, and accurate, effectively tackling today's challenges in maintaining academic integrity."

Plagiarism Detected

15.8% Match

"CHAPTER 3: METHODOLOGY 3.1 Design Objectives and System Architecture The main goal in designing AcadCheck is to build a web application that is secure, scalable, and easy to use for detecting plagiarism and AI-generated content."

Plagiarism Detected

15.8% Match

"The key aspects taken into account include: Accuracy: Implement advanced algorithms for precise detection of plagiarized and AI-generated text."

Plagiarism Detected

15.8% Match

"Security: Ensure strict user data isolation through authentication and Row Level Security (RLS)."

Plagiarism Detected

15.8% Match

"Usability: Provide an intuitive dashboard and interactive reports that can be easily interpreted by students, educators, and researchers."

Plagiarism Detected

15.8% Match

"Scalability: Design the system to handle large volumes of document uploads and concurrent analyses."

Plagiarism Detected

15.8% Match

"The system architecture is composed of the following layers: Frontend (React + TypeScript): Handles user interaction, document preview, and visualization of analysis results."

Plagiarism Detected

15.8% Match

"Backend (Supabase + Serverless Functions): Processes document uploads, manages user authentication, and executes analysis algorithms."

Plagiarism Detected

15.8% Match

"Database (PostgreSQL): Stores user data, documents, analysis results, and sentence-level metrics."

Plagiarism Detected

15.8% Match

"AI Engine: Implements transformer-based models and linguistic heuristics for AI detection."

Plagiarism Detected

15.8% Match

"Security Layer: Enforces RLS, secure storage, and access control to protect sensitive data."

Plagiarism Detected

15.8% Match

"The architecture is modular, allowing future integration of additional features such as multi-language support, paraphrasing detection, and integration with LMS platforms."

Plagiarism Detected

15.8% Match

"3.2 Tools and Libraries The following tools and libraries were selected for their suitability and robustness: Frontend: React 18.3.1 for component-based UI TypeScript for type safety and maintainability Tailwind CSS and shadon/ui for consistent, responsive styling React Router DOM for client-side routing Backend & Database: Supabase (PostgreSQL) for secure user management, storage, and database operations Serverless functions for document processing Document Processing: PDF.js for PDF extraction Mammoth and DOCX Preview for Word document conversion and rendering Custom fileToText library for preprocessing and normalization AI & Plagiarism Detection: Hugging Face Transformers for AI detection N-gram analysis, semantic similarity, and heuristic algorithms for plagiarism detection Testing & Quality: Jest and React Testing Library for unit tests Cypress for integration tests ESLint, Prettier, and Husky for code quality and consistency 3.3 Development and Implementation The development of AcadCheck was divided into several modules to ensure modularity and maintainability."

Plagiarism Detected

15.8% Match

"3.3.1 User Authentication and Session Management Sign-up/Login: Users register with email and password."

Plagiarism Detected

15.8% Match

"Supabase handles authentication securely."

Plagiarism Detected

15.8% Match

"Session Persistence: JWT tokens are stored in browser local storage, with automatic session renewal."

Plagiarism Detected

15.8% Match

"Route Protection: Only authenticated users can access dashboards and analysis features."

Plagiarism Detected

15.8% Match

"3.3.2 Document Upload and Preprocessing Supported Formats: PDF, DOCX, and TXT File Validation: Ensures correct format and maximum file size compliance Preprocessing Steps: Text extraction from uploaded files Sentence segmentation and tokenization Removal of unnecessary characters or formatting issues 3.3.3 Plagiarism Detection Algorithms Exact Matching: Detects copied content using n-grams (3-5 words)."

Plagiarism Detected

15.8% Match

"Semantic Similarity: Compares sentences against reference corpus using vector embeddings."

Plagiarism Detected

15.8% Match

"Contextual Analysis: Identifies repeated academic phrases to minimize false positives."

Plagiarism Detected

15.8% Match

"3.3.4 AI Content Detection Transformer Models: Analyzes text for patterns indicative of AI generation."

Plagiarism Detected

15.8% Match

"Stylistic Metrics: Computes lexical diversity, syntactic complexity, semantic coherence, and perplexity."

Plagiarism Detected

15.8% Match

"Sentence-Level Scoring: Each sentence receives a probability score for AI authorship."

Plagiarism Detected

15.8% Match

"3.3.5 Analysis Report Generation Visual Dashboard: Displays sentence-level highlights and overall metrics."

Plagiarism Detected

15.8% Match

 $\hbox{\it "Export Options: Users can download PDF reports with annotated content."}$

Plagiarism Detected

15.8% Match

"Confidence Scores: Metrics such as AI score, plagiarism score, and confidence levels guide interpretation."

Plagiarism Detected

15.8% Match

"3.3.6 Internationalization Languages Supported: English and French Dynamic Switching: Users can switch languages without refreshing the page Persistence: Language preferences saved in user profile 3.3.7 Security and RLS Policies Row Level Security (RLS): Ensures users can only access their own analyses Encrypted Storage: All uploaded documents are stored securely in Supabase buckets Access Control: Temporary signed URLs prevent unauthorized access to stored files 3.4 Packaging and Deployment Frontend Build: Using Vite for optimized bundle creation Backend Deployment: Supabase handles serverless functions and database management Environment Variables: Secured for production, including Supabase API keys and AI model endpoints CI/CD Pipeline: Automated deployment with GitHub Actions and version control 3.5 Testing and Quality Assurance Unit Tests: *Validate individual components and algorithm functions Integration Tests:* Ensure end-to-end functionality from document upload to report generation Performance Tests: Analyze large document handling and real-time AI scoring Code Quality: ESLint, Prettier, and Husky ensure consistent, maintainable code 3.6 Ethical and Legal Considerations All analyses performed on user-uploaded documents with explicit consent."

Plagiarism Detected

15.8% Match

"Compliance with GDPR and local privacy laws."

Plagiarism Detected

15.8% Match

"System designed for educational and research purposes only."

Plagiarism Detected

15.8% Match

"Users receive interpretable results, avoiding punitive or misrepresentative conclusions."

Plagiarism Detected

15.8% Match

"3.7 Summary Chapter 3 provides a detailed account of AcadCheck's methodology, covering system architecture, tools, implementation, security, testing, and ethical considerations."

Plagiarism Detected

15.8% Match

"This methodology ensures accuracy, reliability, and usability, forming the foundation for Chapters 4 and 5, which present the actual implementation and results."

Plagiarism Detected

15.8% Match

"CHAPTER 4: IMPLEMENTATION AND DISCUSSION 4.1 Development
Environment Setup The development of AcadCheck was performed using a
modern web stack on a local and cloud-based environment: Operating System:
Windows 11 / Ubuntu 22.04 Frontend: Node.js 20, Vite, React 18.3.1,
TypeScript Backend & Database: Supabase (PostgreSQL), serverless functions
for analysis processing IDE: Visual Studio Code with ESLint, Prettier, and Git
integration Version Control: GitHub for source code management and CI/CD
pipelines All dependencies were installed using npm or yarn."

Plagiarism Detected

15.8% Match

"Environment variables were securely configured for API keys, database URLs, and AI model endpoints."

Plagiarism Detected

15.8% Match

"4.2 Frontend Implementation The frontend was implemented using React and TypeScript, emphasizing responsive design and real-time feedback."

Plagiarism Detected

15.8% Match

"4.2.1 Dashboard and Document Upload Drag-and-Drop Upload: Users can upload PDF, DOCX, or TXT files."

Plagiarism Detected

15.8% Match

"Live Preview: Using DocumentViewer, the uploaded file is displayed with high fidelity."

Plagiarism Detected

15.8% Match

"Upload Validation: The system checks file type, size, and integrity before analysis."

Plagiarism Detected

15.8% Match

"const handleFileUpload = async (file: File) => { if (!isValidFile(file)) return; const text = await fileToText(file); setUploadedText(text); }; 4.2.2 Interactive Analysis Report Sentence-level highlights indicate plagiarism and AI-generated content."

Plagiarism Detected

15.8% Match

"Users can hover over sentences to view metrics such as confidence scores and AI probability."

Plagiarism Detected

15.8% Match

"Results are dynamically updated without page reloads using React hooks."

Plagiarism Detected

15.8% Match

"4.3 Backend Implementation The backend is built with Supabase, providing secure storage, authentication, and serverless analysis functions."

Plagiarism Detected

15.8% Match

"4.3.1 Document Storage Uploaded documents are stored in encrypted buckets with temporary signed URLs."

Plagiarism Detected

15.8% Match

"Metadata, including document name, user ID, and timestamp, is stored in the analyses table."

Plagiarism Detected

15.8% Match

"4.3.2 Analysis Workflow Text Extraction: Using PDF.js and Mammoth for PDFs and DOCX respectively."

Plagiarism Detected

15.8% Match

"Preprocessing: Tokenization, sentence segmentation, and cleaning."

Plagiarism Detected

15.8% Match

"Plagiarism Detection: N-grams and semantic similarity comparison with corpus documents."

Plagiarism Detected

15.8% Match

"AI Detection: Transformer models assign a probability score per sentence."

Plagiarism Detected

15.8% Match

"const analysisResult = await analyzeText(extractedText, { corpus: referenceDocuments, useAI: true }); saveAnalysis(userId, analysisResult); 4.4 Document Analysis Workflow User uploads document → Frontend validates → Sends to backend."

Plagiarism Detected

15.8% Match

"Backend extracts text and segments into sentences."

Plagiarism Detected

15.8% Match

"Each sentence is processed: Plagiarism score calculated AI detection score calculated Results are stored in analysis_sentences table."

Plagiarism Detected

15.8% Match

"Frontend renders interactive report with color-coded highlights."

Plagiarism Detected

15.8% Match

"Workflow Diagram: [User Upload] \rightarrow [Text Extraction] \rightarrow [Sentence Segmentation] \rightarrow [AI & Plagiarism Analysis] \rightarrow [Database Storage] \rightarrow [Interactive Report] 4.5 AI and Plagiarism Detection Results Sentence-Level Scores: Each sentence is scored 0-100% for plagiarism and AI probability."

Plagiarism Detected

15.8% Match

"Global Metrics: Average plagiarism score, average AI score, lexical diversity, syntactic complexity."

Plagiarism Detected

15.8% Match

"Visual Feedback: Red highlight → High plagiarism Yellow highlight → Medium plagiarism or AI probability Green → Safe or low risk Example Table: 4.6 Challenges and Troubleshooting During implementation, several challenges were encountered: Document Rendering Issues: Some DOCX formatting was lost; resolved using Mammoth and DOCX Preview."

Plagiarism Detected

15.8% Match

"Large File Handling: PDFs > 50MB caused slow extraction; solved by batch processing sentences."

Plagiarism Detected

15.8% Match

"AI Model Latency: Transformer-based scoring was time-consuming; optimized using caching and async functions."

Plagiarism Detected

15.8% Match

"Data Security: Careful attention was given to applying Row-Level Security (RLS) correctly across all tables."

Plagiarism Detected

15.8% Match

"To ensure proper functionality, thorough testing was conducted, including unit tests, integration tests, and detailed logging."

Plagiarism Detected

15.8% Match

"4.7 Ethical and Legal Considerations All analyses respect user privacy."

Plagiarism Detected

15.8% Match

"Temporary URLs prevent unauthorized document access."

Plagiarism Detected

15.8% Match

"System designed for demonstration and educational purposes, avoiding legal infringement."

Plagiarism Detected

15.8% Match

"Detailed logs and transparency ensure users can trust results."

Plagiarism Detected

15.8% Match

"4.8 Summary Chapter 4 presents the hands-on implementation of AcadCheck, covering the frontend and backend development, document processing workflows, AI and plagiarism detection features, and strategies for troubleshooting."

Plagiarism Detected

15.8% Match

"It also discusses the real-world challenges encountered when integrating complex algorithms into a modern web application, while ensuring security, scalability, and a smooth user experience."

Plagiarism Detected

15.8% Match

"CHAPTER 5: CONCLUSION 5.1 Key Findings The development and deployment of AcadCheck led to several key insights: Accurate Plagiarism Detection: By combining n-gram techniques, semantic comparisons, and contextual pattern recognition, AcadCheck can reliably detect both copied and paraphrased content."

Plagiarism Detected

15.8% Match

"AI Content Recognition: The use of transformer-based models alongside heuristic methods allows for precise identification of AI-generated text, with detailed analysis at the sentence level."

Plagiarism Detected

15.8% Match

"Intuitive User Interface: The interactive dashboard and real-time feedback make the results easy to understand, enhancing the overall user experience."

Plagiarism Detected

15.8% Match

"Secure and Scalable System: Built with Supabase, React, and TypeScript, the platform ensures data privacy, user authentication, and the ability to handle large volumes of documents efficiently."

Plagiarism Detected

15.8% Match

"Support for Multiple File Formats: PDFs, DOCX, and TXT files are processed while maintaining formatting, ensuring accurate and consistent analysis."

Plagiarism Detected

15.8% Match

"These observations highlight that tools for maintaining academic integrity must combine technical sophistication with user-centered design to be truly effective."

Plagiarism Detected

15.8% Match

"5.2 Educational Value AcadCheck functions as a practical tool for students, researchers, and educators alike: Learning Resource: Students can check their own work for accidental plagiarism or AI-generated content, helping them improve their writing habits."

Plagiarism Detected

15.8% Match

"Teaching Aid: Educators can use the platform to illustrate proper citation methods and maintain academic writing standards."

Plagiarism Detected

15.8% Match

"Research Support: The application provides detailed metrics and visualizations that facilitate studies on academic integrity."

Plagiarism Detected

15.8% Match

"Additionally, the development of AcadCheck offered valuable hands-on experience in full-stack web development, AI integration, and implementing secure data management practices."

Plagiarism Detected

15.8% Match

"5.3 Limitations Despite its achievements, AcadCheck has some limitations: AI Detection Accuracy: Although generally reliable, the system may occasionally flag highly formal or technical writing as AI-generated."

Plagiarism Detected

15.8% Match

"Corpus Dependency: The accuracy of plagiarism detection depends heavily on the size and variety of the reference corpus."

Plagiarism Detected

15.8% Match

"Processing Time: Analyzing large documents or multiple files at once can take longer, even with performance optimizations in place."

Plagiarism Detected

15.8% Match

"Language Support: Currently, the application only handles English and French; supporting additional languages would require retraining the models."

Plagiarism Detected

15.8% Match

"Being aware of these limitations helps guide improvements and refinements for future versions of AcadCheck."

Plagiarism Detected

15.8% Match

"5.4 Recommendations for Future Work Future development of AcadCheck could focus on several key areas: Expanded Multilingual Support: Incorporating additional languages such as Spanish and German to make the tool accessible to a wider audience."

Plagiarism Detected

15.8% Match

"Integration with Learning Management Systems (LMS): Enabling direct connections to platforms like Moodle, Canvas, and Blackboard for seamless automated analysis."

Plagiarism Detected

15.8% Match

"Enhanced Paraphrasing Detection: Implementing more advanced semantic analysis techniques to identify subtle paraphrasing in student submissions."

Plagiarism Detected

15.8% Match

"Mobile Application: Creating a React Native version to allow users to access AcadCheck on smartphones and tablets."

Plagiarism Detected

15.8% Match

"API for External Tools: Providing a public API so third-party applications can utilize AcadCheck's detection algorithms."

Plagiarism Detected

15.8% Match

"Performance Improvements: Adopting microservices architecture and queuebased processing to efficiently handle large volumes of documents."

Plagiarism Detected

15.8% Match

"These improvements would further enhance AcadCheck's value as a reliable and professional tool for academic integrity and research support."

Plagiarism Detected

15.8% Match

"5.5 Final Thoughts AcadCheck showcases how advanced AI, plagiarism detection, and secure web technologies can be combined into a practical, user-friendly platform."

Plagiarism Detected

15.8% Match

"It demonstrates that technology can support academic integrity in a way that is both ethical and transparent."

Plagiarism Detected

15.8% Match

"The development of this project offered valuable hands-on learning experiences, covering everything from system architecture and algorithm implementation to frontend and backend integration, as well as data security management."

Plagiarism Detected

15.8% Match

"The resulting application not only meets its intended goals but also provides a solid foundation for further research and innovation in academic integrity tools."

Plagiarism Detected

15.8% Match

"In conclusion, AcadCheck stands as a modern, dependable, and scalable solution for detecting plagiarism and AI-generated content, striking a balance between technical sophistication, usability, security, and ethical responsibility."

Plagiarism Detected

15.8% Match

"REFERENCES Books / Monographs Bishop, C."

Plagiarism Detected

15.8% Match

"M."

Plagiarism Detected

15.8% Match

"(2006)."

Plagiarism Detected

15.8% Match

"Pattern recognition and machine learning."

Plagiarism Detected

15.8% Match

"Journal Articles / Conference Papers Alzahrani, S."

Plagiarism Detected

15.8% Match

"M., Salim, N., & Abraham, A."

Plagiarism Detected

15.8% Match

"(2012)."

Plagiarism Detected

15.8% Match

"Understanding plagiarism: Linguistic patterns, textual features, and detection techniques."

Plagiarism Detected

15.8% Match

"IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(5), 1339–1352."

Plagiarism Detected

15.8% Match

"https://doi.org/10.1109/TSMCC.2012.2184410 Potthast, M., Stein, B., Barrón-Cedeño, A., & Rosso, P."

Plagiarism Detected 15.8% Match "(2010)." **Plagiarism Detected** 15.8% Match "An evaluation framework for plagiarism detection." 15.8% Match **Plagiarism Detected** "Proceedings of the 23rd International Conference on Computational Linguistics (COLING), 997–1005." **Plagiarism Detected** 15.8% Match "Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A." **Plagiarism Detected** 15.8% Match "N., Kaiser, Ł., & Polosukhin, I." **Plagiarism Detected** 15.8% Match "(2017)." **Plagiarism Detected** 15.8% Match "Attention is all you need."

Plagiarism Detected

15.8% Match

"Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008."

Plagiarism Detected

15.8% Match

"Gao, C., Wang, X., & He, D."

Plagiarism Detected

15.8% Match

"(2023)."

Plagiarism Detected

15.8% Match

 $"Detecting AI-generated \ text \ using \ linguistic \ features \ and \ transformer \ models."$

Plagiarism Detected

15.8% Match

"Journal of Artificial Intelligence Research, 76, 1201–1220."

Plagiarism Detected

15.8% Match

"https://doi.org/10.1613/jair.1.13345 Web / Technical Documentation Hugging Face."

Plagiarism Detected 15.8% Match "(2025)." **Plagiarism Detected** 15.8% Match "Transformers documentation." **Plagiarism Detected** 15.8% Match "Retrieved August 2025, from https://huggingface.co/docs/transformers PDF.js." **Plagiarism Detected** 15.8% Match "(2025)." **Plagiarism Detected** 15.8% Match "Mozilla PDF.js project." **Plagiarism Detected** 15.8% Match "Retrieved August 2025, from https://mozilla.github.io/pdf.js/ Supabase." **Plagiarism Detected** 15.8% Match "(2025)."

Plagiarism Detected 15.8% Match "Supabase documentation." **Plagiarism Detected** 15.8% Match "Retrieved August 2025, from https://supabase.com/docs Vite." **Plagiarism Detected** 15.8% Match "(2025)." **Plagiarism Detected** 15.8% Match "Vite documentation." **Plagiarism Detected** 15.8% Match "Retrieved August 2025, from https://vitejs.dev/Martin, J., & Ha, D." **Plagiarism Detected** 15.8% Match "(2022)." **Plagiarism Detected** 15.8% Match "Detecting AI-generated content: Challenges and strategies."

Plagiarism Detected 15.8% Match "Medium." **Plagiarism Detected** 15.8% Match "Retrieved from https://medium.com Standards / Guidelines European Union." **Plagiarism Detected** 15.8% Match "(2018)." **Plagiarism Detected** 15.8% Match "General Data Protection Regulation (GDPR)." **Plagiarism Detected** 15.8% Match "Official Journal of the European Union." **Plagiarism Detected** 15.8% Match "Association for Computing Machinery (ACM)." **Plagiarism Detected** 15.8% Match "(2021)."

Plagiarism Detected

15.8% Match

"ACM code of ethics and professional conduct."

Plagiarism Detected

15.8% Match

"Retrieved from https://www.acm.org/code-of-ethics APENDIX This appendix presents visual documentation of the main features of the AcadCheck application developed during the internship."

Plagiarism Detected

15.8% Match

"The figures illustrate the user interface, examples of plagiarism and AI detection results, and the report generation functionality."

Plagiarism Detected

15.8% Match

"All displayed content was created within a controlled academic setting and is intended solely for educational purposes."

Plagiarism Detected

15.8% Match

"Figure A.1 – Login and Authentication Interface The screenshot displays AcadCheck's secure login page."

Plagiarism Detected

15.8% Match

"Users can sign in using their email and password to access the dashboard."

Plagiarism Detected

15.8% Match

"The page also provides options for account registration, password recovery, and selecting the interface language (English or French)."

Plagiarism Detected

15.8% Match

"Figure A.2 – Main Dashboard Overview This figure shows the main dashboard of AcadCheck, where users can access the core features, upload documents, and view summaries of plagiarism and AI detection results."

Plagiarism Detected

15.8% Match

"Figure A.3 – Document Preview (PDF/DOCX/TXT) This screenshot displays the DocumentViewer feature, which lets users preview uploaded documents in real time."

Plagiarism Detected

15.8% Match

"The component maintains the original formatting and offers zoom and navigation options for a thorough review."

Plagiarism Detected

15.8% Match

"Figure A.4 – Plagiarism and AI Detection Results The figure shows sentenceby-sentence analysis, with plagiarism and AI-generated content scores."

Plagiarism Detected

15.8% Match

"Color-coded highlights indicate suspicious sections, while confidence metrics provide additional insight for each sentence."

Plagiarism Detected

15.8% Match

"Figure A.5 – Detailed Report Generation This screenshot presents the PDF report generated by AcadCheck."

Plagiarism Detected

15.8% Match

"It includes global metrics, sentence-level scores, and highlighted passages."

Plagiarism Detected

15.8% Match

"Users can download or share the report directly from the dashboard."

Plagiarism Detected

15.8% Match

"Figure A.6 – Analysis History and Filtering This figure shows the historical analysis interface, listing previous uploads with dates, document names, and scores."

Plagiarism Detected

15.8% Match

"Users can filter, search, and re-open previous reports for reference or export."

AI-Generated Content

37.4% Confidence

"GIRNE AMERICAN UNIVERSITY Faculty of Engineering Department of Computer Engineering AcadCheck: AI and Plagiarism Detection Tool SUMMER TRAINING REPORT Student: Elie katende kazwela Student ID: 221701001 Supervisor: Mr."

AI-Generated Content

37.4% Confidence

"Cliff Acknowledgements I would like to sincerely thank all those who supported me during my internship at the university and throughout the preparation of this report."

AI-Generated Content

37.4% Confidence

"First and foremost, I am especially grateful to my supervisor, Mr."

AI-Generated Content

37.4% Confidence

"Peter Cliff, for his guidance ,encouragement and constant support."

AI-Generated Content

37.4% Confidence

"His expertise and thoughtful feedback played a key role in the progress and success of my work."

AI-Generated Content

37.4% Confidence

"I also wish to express my appreciation to the staff and faculty of the university for welcoming me, Providing the necessary resources, and creating a positive environment that made this internship a valuable learning experience."

AI-Generated Content

37.4% Confidence

"the knowledge and skills I gained have been highly beneficial to my academic and professional growth."

AI-Generated Content

37.4% Confidence

"Lastly ,I would like to thank my family and friends for their patience, encouragement, and continuous Support, which greatly helped me in completing this project."

AI-Generated Content

37.4% Confidence

"Abstract This report introduces AcadCheck, a web application developed to detect both plagiarism and AI generated content in academic documents."

AI-Generated Content

37.4% Confidence

"the system was implemented using React, TypeScript, and Supabase, and it integrates advanced document analysis methods with a user-friendly interface to deliver precise and comprehensive results."

AI-Generated Content

37.4% Confidence

"The main objectives of the project are structured around four core component: Plagiarism detection: comparing documents against a large corpus by applying N-grams, semantic similarity, and pattern-matching techniques."

AI-Generated Content

37.4% Confidence

"AI content detection – identifying AI-generated text through transformer-based models and linguistic analysis."

AI-Generated Content

37.4% Confidence

"Document analysis and reporting – producing detailed, sentence-level feedback with metrics such as lexical diversity, syntactic complexity, semantic coherence, and perplexity."

AI-Generated Content

37.4% Confidence

"Secure and scalable architecture – leveraging Supabase for database management, data protection, and Row Level Security (RLS)."

AI-Generated Content

37.4% Confidence

"This report presents the overall architecture, development process, challenges, faced and evaluation results of the application, while also reflecting on the ethical considerations involved .it highlights the use of modern approaches to document analysis, the integration of artificial intelligence in plagiarism detection, and the design of scalable web applications."

AI-Generated Content

37.4% Confidence

"Chapter 1: Introduction Background In academic settings, maintaining the integrity of written work is essential."

AI-Generated Content

37.4% Confidence

"The growing use of digital tools, online resources, and AI-assisted content creation has heightened the risk of plagiarism and the improper use of external materials."

AI-Generated Content

37.4% Confidence

"AcadCheck tackles these issues by offering an automated solution that can identify both plagiarized content and text generated by artificial intelligence, helping to uphold academic honesty and the quality of scholarly work."

AI-Generated Content

37.4% Confidence

"Contemporary document analysis relies on advanced technologies such as machine learning, semantic evaluation, and natural language processing (NLP)."

AI-Generated Content

37.4% Confidence

"By combining these methods with a straightforward and intuitive web interface, AcadCheck enables educators, students, and researchers to examine documents effectively while ensuring the security and privacy of their data."

AI-Generated Content

37.4% Confidence

"1.2 Objectives The primary goals of this internship project are: To create a web application capable of identifying both plagiarism and AI-generated content."

AI-Generated Content

37.4% Confidence

"To integrate sophisticated analysis techniques, combining machine learning with heuristic methods."

AI-Generated Content

37.4% Confidence

"To provide comprehensive reporting, including analysis at the sentence level, confidence indicators, and clear visual cues."

AI-Generated Content

37.4% Confidence

"To guarantee secure management of user data, leveraging authentication, Row-Level Security (RLS), and protected storage."

AI-Generated Content

37.4% Confidence

"To deliver a user-friendly and responsive interface that accommodates multilingual users effectively."

AI-Generated Content

37.4% Confidence

"1.3 Scope This project centers on the design, development, and implementation of AcadCheck as a tool for research and education."

AI-Generated Content

37.4% Confidence

"The application is compatible with PDF, DOCX, and TXT file formats, and it offers detailed sentence-level analysis for both plagiarism and AI-generated content."

AI-Generated Content

37.4% Confidence

"All testing and usage of the application are carried out ethically, within controlled environments, and in strict accordance with data protection regulations."

AI-Generated Content

37.4% Confidence

"The project does not involve deployment in untrusted environments or the collection of unauthorized data."

AI-Generated Content

37.4% Confidence

"1.4 Importance of the Study AcadCheck contributes to multiple domains: Academic integrity: Helps institutions maintain originality standards."

AI-Generated Content

37.4% Confidence

"AI literacy: Educates users on distinguishing AI-generated content."

AI-Generated Content

37.4% Confidence

"Technical education: Demonstrates the use of modern web technologies, machine learning, and database security in practical applications."

AI-Generated Content

37.4% Confidence

"By integrating AI detection with plagiarism analysis, the project addresses modern challenges in digital content evaluation, providing insights for students, educators, and software developers."

AI-Generated Content

37.4% Confidence

"1.5 Structure of the Report The organization of the report is: Chapter 1: Introduction – Presents background, objectives, scope, and significance."

AI-Generated Content

37.4% Confidence

"Chapter 2: Literature Review – Reviews plagiarism detection methods, AI content detection, and ethical/legal considerations."

AI-Generated Content

37.4% Confidence

"Chapter 3: Methodology – Details the system architecture, tools, libraries, and implementation steps."

AI-Generated Content

37.4% Confidence

"Chapter 4: Implementation and Discussion – Covers code implementation, document processing, analysis workflow, and troubleshooting."

AI-Generated Content

37.4% Confidence

"Chapter 5: Conclusion – Summarizes findings, limitations, educational value, and future improvements."

AI-Generated Content

37.4% Confidence

"References – List of sources cited throughout the report."

AI-Generated Content

37.4% Confidence

"CHAPTER 2: LITERATURE REVIEW 2.1 Overview of Plagiarism Detection Detecting plagiarism is essential for upholding academic integrity."

AI-Generated Content

37.4% Confidence

"Traditional tools mainly rely on exact text matching, which can spot direct copying but often misses paraphrased or slightly altered content."

AI-Generated Content

37.4% Confidence

"Modern systems, like AcadCheck, use a combination of syntactic, semantic, and contextual analysis, enabling more accurate detection of potential plagiarism."

AI-Generated Content

37.4% Confidence

"N-gram Analysis: Documents are broken into sequences of words (n-grams) and compared to a reference corpus."

AI-Generated Content

37.4% Confidence

"Similar sequences indicate potential plagiarism."

AI-Generated Content

37.4% Confidence

"AcadCheck uses adaptive n-gram sizes to capture both short phrases and longer patterns."

AI-Generated Content

37.4% Confidence

"Semantic Similarity: Using NLP techniques, AcadCheck compares the meaning of sentences rather than exact wording."

AI-Generated Content

37.4% Confidence

"This allows the system to detect paraphrased content."

AI-Generated Content

37.4% Confidence

"Contextual Patterns: Certain academic formulations are commonly reused."

AI-Generated Content

37.4% Confidence

"By identifying these patterns, the system can differentiate between general academic phrases and copied unique content."

AI-Generated Content

37.4% Confidence

"Recent research emphasizes the integration of machine learning models for more nuanced plagiarism detection, allowing systems to learn from labeled datasets and improve detection accuracy over time."

AI-Generated Content

37.4% Confidence

"2.2 AI-Based Text Detection With the emergence of AI-generated content, particularly large language models like GPT, distinguishing between human-written and AI-generated text has become a crucial challenge."

AI-Generated Content

37.4% Confidence

"AcadCheck implements hybrid AI detection techniques, combining transformer-based models with linguistic heuristics: Transformer Models: Pretrained models analyze text for patterns indicative of AI generation, such as overuse of certain connectors, predictable phrasing, or low variability."

AI-Generated Content

37.4% Confidence

"Linguistic Heuristics: Metrics such as lexical diversity, syntactic complexity, and perplexity are used to evaluate the naturalness of text."

AI-Generated Content

37.4% Confidence

"AI-generated text often exhibits high perplexity uniformity and low lexical diversity."

AI-Generated Content

37.4% Confidence

"Sentence-Level Scoring: Each sentence is assigned an AI score, indicating the likelihood of machine generation."

AI-Generated Content

37.4% Confidence

"This granularity allows users to review suspicious content precisely."

AI-Generated Content

37.4% Confidence

"By integrating AI detection with plagiarism analysis, AcadCheck provides a comprehensive evaluation of document originality."

AI-Generated Content

37.4% Confidence

"2.3 Document Analysis Techniques Effective plagiarism and AI detection require robust document analysis."

AI-Generated Content

37.4% Confidence

"AcadCheck supports multiple formats, including PDF, DOCX, and TXT, with consistent text extraction: PDF Analysis: Using PDF.js, the system extracts text while preserving document structure."

AI-Generated Content

37.4% Confidence

"Word Document Handling: Mammoth and DOCX Preview convert DOCX files to HTML, ensuring accurate rendering and sentence-level analysis."

AI-Generated Content

37.4% Confidence

"Text Preprocessing: Cleaning, tokenization, and normalization prepare the content for further analysis."

AI-Generated Content

37.4% Confidence

"Sentence segmentation, feature extraction, and vectorization are applied before any similarity or AI detection algorithms, ensuring that results are both accurate and interpretable."

AI-Generated Content

37.4% Confidence

"2.4 Ethical and Legal Considerations Given the sensitivity of plagiarism and AI detection, ethics and legality are central to AcadCheck's design: User Consent: Only documents uploaded with explicit consent are analyzed."

AI-Generated Content

37.4% Confidence

"Data Security: Supabase provides encrypted storage and Row Level Security (RLS) to isolate user data."

AI-Generated Content

37.4% Confidence

"Legal Compliance: The system aligns with GDPR and other data protection regulations, preventing unauthorized access or retention."

AI-Generated Content

37.4% Confidence

"Responsible Reporting: Results are presented solely for educational or institutional purposes, avoiding misuse of the analysis."

AI-Generated Content

37.4% Confidence

"Ethical considerations also guide the inclusion of AI detection."

AI-Generated Content

37.4% Confidence

"The system is designed for transparency, providing users with interpretable metrics and avoiding punitive assumptions."

AI-Generated Content

37.4% Confidence

"2.5 Use of React, TypeScript, and Supabase in Web Apps Modern web technologies play a key role in the functionality and usability of AcadCheck: React (v18.3.1): Provides a responsive, dynamic frontend capable of handling real-time document previews and interactive dashboards."

AI-Generated Content

37.4% Confidence

"TypeScript: Adds type safety and improves maintainability, especially important for complex components such as analysis tables and reports."

AI-Generated Content

37.4% Confidence

"Supabase: Serves as a backend and database solution, offering authentication, secure storage, and serverless functions."

AI-Generated Content

37.4% Confidence

"RLS ensures that users only access their own analyses."

AI-Generated Content

37.4% Confidence

"Frontend UI Components: Using Tailwind CSS and shadon/ui, the interface is modern, clean, and intuitive."

AI-Generated Content

37.4% Confidence

"Components like DocumentViewer and HighlightedText provide detailed visual feedback to users."

AI-Generated Content

37.4% Confidence

"The combination of these technologies allows for a robust, scalable, and secure web application, supporting complex AI and plagiarism detection workflows while maintaining excellent user experience."

AI-Generated Content

37.4% Confidence

"2.6 Integration of Detection Algorithms in Web Applications A critical aspect of modern plagiarism detection systems is the seamless integration of backend analysis algorithms with frontend visualization: Sentence-Level Analysis: Each sentence is analyzed for plagiarism and AI content."

AI-Generated Content

37.4% Confidence

"Results are transmitted from the backend to the frontend, where they are visually highlighted in the document."

AI-Generated Content

37.4% Confidence

"Scoring and Metrics: Global scores, confidence levels, and detailed metrics are presented using interactive dashboards."

AI-Generated Content

37.4% Confidence

"Real-Time Feedback: Users can upload documents and receive analysis results without page reloads, thanks to React's component architecture."

AI-Generated Content

37.4% Confidence

"This integration ensures that technical sophistication in analysis does not compromise usability."

AI-Generated Content

37.4% Confidence

"2.7 Summary Chapter 2 shows that modern plagiarism and AI detection relies on multi-layered methods that combine semantic analysis, machine learning, and secure web technologies."

AI-Generated Content

37.4% Confidence

"AcadCheck applies these principles by providing a system that is easy to use, secure, and accurate, effectively tackling today's challenges in maintaining academic integrity."

AI-Generated Content

37.4% Confidence

"CHAPTER 3: METHODOLOGY 3.1 Design Objectives and System Architecture The main goal in designing AcadCheck is to build a web application that is secure, scalable, and easy to use for detecting plagiarism and AI-generated content."

AI-Generated Content

37.4% Confidence

"The key aspects taken into account include: Accuracy: Implement advanced algorithms for precise detection of plagiarized and AI-generated text."

AI-Generated Content

37.4% Confidence

"Security: Ensure strict user data isolation through authentication and Row Level Security (RLS)."

AI-Generated Content

37.4% Confidence

"Usability: Provide an intuitive dashboard and interactive reports that can be easily interpreted by students, educators, and researchers."

AI-Generated Content

37.4% Confidence

"Scalability: Design the system to handle large volumes of document uploads and concurrent analyses."

AI-Generated Content

37.4% Confidence

"The system architecture is composed of the following layers: Frontend (React + TypeScript): Handles user interaction, document preview, and visualization of analysis results."

AI-Generated Content

37.4% Confidence

"Backend (Supabase + Serverless Functions): Processes document uploads, manages user authentication, and executes analysis algorithms."

AI-Generated Content

37.4% Confidence

"Database (PostgreSQL): Stores user data, documents, analysis results, and sentence-level metrics."

AI-Generated Content

37.4% Confidence

"AI Engine: Implements transformer-based models and linguistic heuristics for AI detection."

AI-Generated Content

37.4% Confidence

"Security Layer: Enforces RLS, secure storage, and access control to protect sensitive data."

AI-Generated Content

37.4% Confidence

"The architecture is modular, allowing future integration of additional features such as multi-language support, paraphrasing detection, and integration with LMS platforms."

AI-Generated Content

37.4% Confidence

"3.2 Tools and Libraries The following tools and libraries were selected for their suitability and robustness: Frontend: React 18.3.1 for component-based UI TypeScript for type safety and maintainability Tailwind CSS and shadon/ui for consistent, responsive styling React Router DOM for client-side routing Backend & Database: Supabase (PostgreSQL) for secure user management, storage, and database operations Serverless functions for document processing Document Processing: PDF.js for PDF extraction Mammoth and DOCX Preview for Word document conversion and rendering Custom fileToText library for preprocessing and normalization AI & Plagiarism Detection: Hugging Face Transformers for AI detection N-gram analysis, semantic similarity, and heuristic algorithms for plagiarism detection Testing & Quality: Jest and React Testing Library for unit tests Cypress for integration tests ESLint, Prettier, and Husky for code quality and consistency 3.3 Development and Implementation The development of AcadCheck was divided into several modules to ensure modularity and maintainability."

AI-Generated Content

37.4% Confidence

"3.3.1 User Authentication and Session Management Sign-up/Login: Users register with email and password."

AI-Generated Content

37.4% Confidence

"Supabase handles authentication securely."

AI-Generated Content

37.4% Confidence

"Session Persistence: JWT tokens are stored in browser local storage, with automatic session renewal."

AI-Generated Content

37.4% Confidence

"Route Protection: Only authenticated users can access dashboards and analysis features."

AI-Generated Content

37.4% Confidence

"3.3.2 Document Upload and Preprocessing Supported Formats: PDF, DOCX, and TXT File Validation: Ensures correct format and maximum file size compliance Preprocessing Steps: Text extraction from uploaded files Sentence segmentation and tokenization Removal of unnecessary characters or formatting issues 3.3.3 Plagiarism Detection Algorithms Exact Matching: Detects copied content using n-grams (3-5 words)."

AI-Generated Content

37.4% Confidence

"Semantic Similarity: Compares sentences against reference corpus using vector embeddings."

AI-Generated Content

37.4% Confidence

"Contextual Analysis: Identifies repeated academic phrases to minimize false positives."

AI-Generated Content

37.4% Confidence

"3.3.4 AI Content Detection Transformer Models: Analyzes text for patterns indicative of AI generation."

AI-Generated Content

37.4% Confidence

"Stylistic Metrics: Computes lexical diversity, syntactic complexity, semantic coherence, and perplexity."

AI-Generated Content

37.4% Confidence

"Sentence-Level Scoring: Each sentence receives a probability score for AI authorship."

AI-Generated Content

37.4% Confidence

"3.3.5 Analysis Report Generation Visual Dashboard: Displays sentence-level highlights and overall metrics."

AI-Generated Content

37.4% Confidence

"Export Options: Users can download PDF reports with annotated content."

AI-Generated Content

37.4% Confidence

"Confidence Scores: Metrics such as AI score, plagiarism score, and confidence levels guide interpretation."

AI-Generated Content

37.4% Confidence

"3.3.6 Internationalization Languages Supported: English and French Dynamic Switching: Users can switch languages without refreshing the page Persistence: Language preferences saved in user profile 3.3.7 Security and RLS Policies Row Level Security (RLS): Ensures users can only access their own analyses Encrypted Storage: All uploaded documents are stored securely in Supabase buckets Access Control: Temporary signed URLs prevent unauthorized access to stored files 3.4 Packaging and Deployment Frontend Build: Using Vite for optimized bundle creation Backend Deployment: Supabase handles serverless functions and database management Environment Variables: Secured for production, including Supabase API keys and AI model endpoints CI/CD Pipeline: Automated deployment with GitHub Actions and version control 3.5 Testing and Quality Assurance Unit Tests: *Validate individual components and algorithm functions Integration Tests:* Ensure end-to-end functionality from document upload to report generation Performance Tests: Analyze large document handling and real-time AI scoring Code Quality: ESLint, Prettier, and Husky ensure consistent, maintainable code 3.6 Ethical and Legal Considerations All analyses performed on user-uploaded documents with explicit consent."

AI-Generated Content

37.4% Confidence

"Compliance with GDPR and local privacy laws."

AI-Generated Content

37.4% Confidence

"System designed for educational and research purposes only."

AI-Generated Content

37.4% Confidence

"Users receive interpretable results, avoiding punitive or misrepresentative conclusions."

AI-Generated Content

37.4% Confidence

"3.7 Summary Chapter 3 provides a detailed account of AcadCheck's methodology, covering system architecture, tools, implementation, security, testing, and ethical considerations."

AI-Generated Content

37.4% Confidence

"This methodology ensures accuracy, reliability, and usability, forming the foundation for Chapters 4 and 5, which present the actual implementation and results."

AI-Generated Content

37.4% Confidence

"CHAPTER 4: IMPLEMENTATION AND DISCUSSION 4.1 Development
Environment Setup The development of AcadCheck was performed using a
modern web stack on a local and cloud-based environment: Operating System:
Windows 11 / Ubuntu 22.04 Frontend: Node.js 20, Vite, React 18.3.1,
TypeScript Backend & Database: Supabase (PostgreSQL), serverless functions
for analysis processing IDE: Visual Studio Code with ESLint, Prettier, and Git
integration Version Control: GitHub for source code management and CI/CD
pipelines All dependencies were installed using npm or yarn."

AI-Generated Content

37.4% Confidence

"Environment variables were securely configured for API keys, database URLs, and AI model endpoints."

AI-Generated Content

37.4% Confidence

"4.2 Frontend Implementation The frontend was implemented using React and TypeScript, emphasizing responsive design and real-time feedback."

AI-Generated Content

37.4% Confidence

"4.2.1 Dashboard and Document Upload Drag-and-Drop Upload: Users can upload PDF, DOCX, or TXT files."

AI-Generated Content

37.4% Confidence

"Live Preview: Using DocumentViewer, the uploaded file is displayed with high fidelity."

AI-Generated Content

37.4% Confidence

"Upload Validation: The system checks file type, size, and integrity before analysis."

AI-Generated Content

37.4% Confidence

"const handleFileUpload = async (file: File) => { if (!isValidFile(file)) return; const text = await fileToText(file); setUploadedText(text); }; 4.2.2 Interactive Analysis Report Sentence-level highlights indicate plagiarism and AI-generated content."

AI-Generated Content

37.4% Confidence

"Users can hover over sentences to view metrics such as confidence scores and AI probability."

AI-Generated Content

37.4% Confidence

"Results are dynamically updated without page reloads using React hooks."

AI-Generated Content

37.4% Confidence

"4.3 Backend Implementation The backend is built with Supabase, providing secure storage, authentication, and serverless analysis functions."

AI-Generated Content

37.4% Confidence

"4.3.1 Document Storage Uploaded documents are stored in encrypted buckets with temporary signed URLs."

AI-Generated Content

37.4% Confidence

"Metadata, including document name, user ID, and timestamp, is stored in the analyses table."

AI-Generated Content

37.4% Confidence

"4.3.2 Analysis Workflow Text Extraction: Using PDF.js and Mammoth for PDFs and DOCX respectively."

AI-Generated Content

37.4% Confidence

"Preprocessing: Tokenization, sentence segmentation, and cleaning."

AI-Generated Content

37.4% Confidence

"Plagiarism Detection: N-grams and semantic similarity comparison with corpus documents."

AI-Generated Content

37.4% Confidence

"AI Detection: Transformer models assign a probability score per sentence."

AI-Generated Content

37.4% Confidence

"const analysisResult = await analyzeText(extractedText, { corpus: referenceDocuments, useAI: true }); saveAnalysis(userId, analysisResult); 4.4 Document Analysis Workflow User uploads document → Frontend validates → Sends to backend."

AI-Generated Content

37.4% Confidence

"Backend extracts text and segments into sentences."

AI-Generated Content

37.4% Confidence

"Each sentence is processed: Plagiarism score calculated AI detection score calculated Results are stored in analysis_sentences table."

AI-Generated Content

37.4% Confidence

"Frontend renders interactive report with color-coded highlights."

AI-Generated Content

37.4% Confidence

"Workflow Diagram: [User Upload] \rightarrow [Text Extraction] \rightarrow [Sentence Segmentation] \rightarrow [AI & Plagiarism Analysis] \rightarrow [Database Storage] \rightarrow [Interactive Report] 4.5 AI and Plagiarism Detection Results Sentence-Level Scores: Each sentence is scored 0-100% for plagiarism and AI probability."

AI-Generated Content

37.4% Confidence

"Global Metrics: Average plagiarism score, average AI score, lexical diversity, syntactic complexity."

AI-Generated Content

37.4% Confidence

"Visual Feedback: Red highlight → High plagiarism Yellow highlight → Medium plagiarism or AI probability Green → Safe or low risk Example Table: 4.6 Challenges and Troubleshooting During implementation, several challenges were encountered: Document Rendering Issues: Some DOCX formatting was lost; resolved using Mammoth and DOCX Preview."

AI-Generated Content

37.4% Confidence

"Large File Handling: PDFs > 50MB caused slow extraction; solved by batch processing sentences."

AI-Generated Content

37.4% Confidence

"AI Model Latency: Transformer-based scoring was time-consuming; optimized using caching and async functions."

AI-Generated Content

37.4% Confidence

"Data Security: Careful attention was given to applying Row-Level Security (RLS) correctly across all tables."

AI-Generated Content

37.4% Confidence

"To ensure proper functionality, thorough testing was conducted, including unit tests, integration tests, and detailed logging."

AI-Generated Content

37.4% Confidence

"4.7 Ethical and Legal Considerations All analyses respect user privacy."

AI-Generated Content

37.4% Confidence

"Temporary URLs prevent unauthorized document access."

AI-Generated Content

37.4% Confidence

"System designed for demonstration and educational purposes, avoiding legal infringement."

AI-Generated Content

37.4% Confidence

"Detailed logs and transparency ensure users can trust results."

AI-Generated Content

37.4% Confidence

"4.8 Summary Chapter 4 presents the hands-on implementation of AcadCheck, covering the frontend and backend development, document processing workflows, AI and plagiarism detection features, and strategies for troubleshooting."

AI-Generated Content

37.4% Confidence

"It also discusses the real-world challenges encountered when integrating complex algorithms into a modern web application, while ensuring security, scalability, and a smooth user experience."

AI-Generated Content

37.4% Confidence

"CHAPTER 5: CONCLUSION 5.1 Key Findings The development and deployment of AcadCheck led to several key insights: Accurate Plagiarism Detection: By combining n-gram techniques, semantic comparisons, and contextual pattern recognition, AcadCheck can reliably detect both copied and paraphrased content."

AI-Generated Content

37.4% Confidence

"AI Content Recognition: The use of transformer-based models alongside heuristic methods allows for precise identification of AI-generated text, with detailed analysis at the sentence level."

AI-Generated Content

37.4% Confidence

"Intuitive User Interface: The interactive dashboard and real-time feedback make the results easy to understand, enhancing the overall user experience."

AI-Generated Content

37.4% Confidence

"Secure and Scalable System: Built with Supabase, React, and TypeScript, the platform ensures data privacy, user authentication, and the ability to handle large volumes of documents efficiently."

AI-Generated Content

37.4% Confidence

"Support for Multiple File Formats: PDFs, DOCX, and TXT files are processed while maintaining formatting, ensuring accurate and consistent analysis."

AI-Generated Content

37.4% Confidence

"These observations highlight that tools for maintaining academic integrity must combine technical sophistication with user-centered design to be truly effective."

AI-Generated Content

37.4% Confidence

"5.2 Educational Value AcadCheck functions as a practical tool for students, researchers, and educators alike: Learning Resource: Students can check their own work for accidental plagiarism or AI-generated content, helping them improve their writing habits."

AI-Generated Content

37.4% Confidence

"Teaching Aid: Educators can use the platform to illustrate proper citation methods and maintain academic writing standards."

AI-Generated Content

37.4% Confidence

"Research Support: The application provides detailed metrics and visualizations that facilitate studies on academic integrity."

AI-Generated Content

37.4% Confidence

"Additionally, the development of AcadCheck offered valuable hands-on experience in full-stack web development, AI integration, and implementing secure data management practices."

AI-Generated Content

37.4% Confidence

"5.3 Limitations Despite its achievements, AcadCheck has some limitations: AI Detection Accuracy: Although generally reliable, the system may occasionally flag highly formal or technical writing as AI-generated."

AI-Generated Content

37.4% Confidence

"Corpus Dependency: The accuracy of plagiarism detection depends heavily on the size and variety of the reference corpus."

AI-Generated Content

37.4% Confidence

"Processing Time: Analyzing large documents or multiple files at once can take longer, even with performance optimizations in place."

AI-Generated Content

37.4% Confidence

"Language Support: Currently, the application only handles English and French; supporting additional languages would require retraining the models."

AI-Generated Content

37.4% Confidence

"Being aware of these limitations helps guide improvements and refinements for future versions of AcadCheck."

AI-Generated Content

37.4% Confidence

"5.4 Recommendations for Future Work Future development of AcadCheck could focus on several key areas: Expanded Multilingual Support: Incorporating additional languages such as Spanish and German to make the tool accessible to a wider audience."

AI-Generated Content

37.4% Confidence

"Integration with Learning Management Systems (LMS): Enabling direct connections to platforms like Moodle, Canvas, and Blackboard for seamless automated analysis."

AI-Generated Content

37.4% Confidence

"Enhanced Paraphrasing Detection: Implementing more advanced semantic analysis techniques to identify subtle paraphrasing in student submissions."

AI-Generated Content

37.4% Confidence

"Mobile Application: Creating a React Native version to allow users to access AcadCheck on smartphones and tablets."

AI-Generated Content

37.4% Confidence

"API for External Tools: Providing a public API so third-party applications can utilize AcadCheck's detection algorithms."

AI-Generated Content

37.4% Confidence

"Performance Improvements: Adopting microservices architecture and queuebased processing to efficiently handle large volumes of documents."

AI-Generated Content

37.4% Confidence

"These improvements would further enhance AcadCheck's value as a reliable and professional tool for academic integrity and research support."

AI-Generated Content

37.4% Confidence

"5.5 Final Thoughts AcadCheck showcases how advanced AI, plagiarism detection, and secure web technologies can be combined into a practical, user-friendly platform."

AI-Generated Content

37.4% Confidence

"It demonstrates that technology can support academic integrity in a way that is both ethical and transparent."

AI-Generated Content

37.4% Confidence

"The development of this project offered valuable hands-on learning experiences, covering everything from system architecture and algorithm implementation to frontend and backend integration, as well as data security management."

AI-Generated Content

37.4% Confidence

"The resulting application not only meets its intended goals but also provides a solid foundation for further research and innovation in academic integrity tools."

AI-Generated Content

37.4% Confidence

"In conclusion, AcadCheck stands as a modern, dependable, and scalable solution for detecting plagiarism and AI-generated content, striking a balance between technical sophistication, usability, security, and ethical responsibility."

AI-Generated Content

37.4% Confidence

"REFERENCES Books / Monographs Bishop, C."

AI-Generated Content

37.4% Confidence

"M."

AI-Generated Content

37.4% Confidence

"(2006)."

AI-Generated Content

37.4% Confidence

"Pattern recognition and machine learning."

AI-Generated Content

37.4% Confidence

"Journal Articles / Conference Papers Alzahrani, S."

AI-Generated Content

37.4% Confidence

"M., Salim, N., & Abraham, A."

AI-Generated Content

37.4% Confidence

"(2012)."

AI-Generated Content

37.4% Confidence

"Understanding plagiarism: Linguistic patterns, textual features, and detection techniques."

AI-Generated Content

37.4% Confidence

"IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(5), 1339–1352."

AI-Generated Content

37.4% Confidence

"https://doi.org/10.1109/TSMCC.2012.2184410 Potthast, M., Stein, B., Barrón-Cedeño, A., & Rosso, P."

AI-Generated Content 37.4% Confidence "(2010)." 37.4% Confidence **AI-Generated Content** "An evaluation framework for plagiarism detection." 37.4% Confidence **AI-Generated Content** "Proceedings of the 23rd International Conference on Computational Linguistics (COLING), 997–1005." 37.4% Confidence **AI-Generated Content** "Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A." **AI-Generated Content** 37.4% Confidence "N., Kaiser, Ł., & Polosukhin, I." **AI-Generated Content** 37.4% Confidence "(2017)." **AI-Generated Content** 37.4% Confidence "Attention is all you need."

AI-Generated Content

37.4% Confidence

"Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008."

AI-Generated Content

37.4% Confidence

"Gao, C., Wang, X., & He, D."

AI-Generated Content

37.4% Confidence

"(2023)."

AI-Generated Content

37.4% Confidence

"Detecting AI-generated text using linguistic features and transformer models."

AI-Generated Content

37.4% Confidence

"Journal of Artificial Intelligence Research, 76, 1201–1220."

AI-Generated Content

37.4% Confidence

"https://doi.org/10.1613/jair.1.13345 Web / Technical Documentation Hugging Face."

AI-Generated Content 37.4% Confidence "(2025)." **AI-Generated Content** 37.4% Confidence "Transformers documentation." **AI-Generated Content** 37.4% Confidence "Retrieved August 2025, from https://huggingface.co/docs/transformers PDF.js." **AI-Generated Content** 37.4% Confidence "(2025)." 37.4% Confidence **AI-Generated Content** "Mozilla PDF.js project." **AI-Generated Content** 37.4% Confidence "Retrieved August 2025, from https://mozilla.github.io/pdf.js/ Supabase." **AI-Generated Content** 37.4% Confidence "(2025)."

AI-Generated Content 37.4% Confidence "Supabase documentation." **AI-Generated Content** 37.4% Confidence "Retrieved August 2025, from https://supabase.com/docs Vite." 37.4% Confidence **AI-Generated Content** "(2025)." **AI-Generated Content** 37.4% Confidence "Vite documentation." **AI-Generated Content** 37.4% Confidence "Retrieved August 2025, from https://vitejs.dev/Martin, J., & Ha, D." **AI-Generated Content** 37.4% Confidence "(2022)." **AI-Generated Content** 37.4% Confidence "Detecting AI-generated content: Challenges and strategies."

AI-Generated Content

37.4% Confidence

"ACM code of ethics and professional conduct."

AI-Generated Content

37.4% Confidence

"Retrieved from https://www.acm.org/code-of-ethics APENDIX This appendix presents visual documentation of the main features of the AcadCheck application developed during the internship."

AI-Generated Content

37.4% Confidence

"The figures illustrate the user interface, examples of plagiarism and AI detection results, and the report generation functionality."

AI-Generated Content

37.4% Confidence

"All displayed content was created within a controlled academic setting and is intended solely for educational purposes."

AI-Generated Content

37.4% Confidence

"Figure A.1 – Login and Authentication Interface The screenshot displays AcadCheck's secure login page."

AI-Generated Content

37.4% Confidence

"Users can sign in using their email and password to access the dashboard."

AI-Generated Content

37.4% Confidence

"The page also provides options for account registration, password recovery, and selecting the interface language (English or French)."

AI-Generated Content

37.4% Confidence

"Figure A.2 – Main Dashboard Overview This figure shows the main dashboard of AcadCheck, where users can access the core features, upload documents, and view summaries of plagiarism and AI detection results."

AI-Generated Content

37.4% Confidence

"Figure A.3 – Document Preview (PDF/DOCX/TXT) This screenshot displays the DocumentViewer feature, which lets users preview uploaded documents in real time."

AI-Generated Content

37.4% Confidence

"The component maintains the original formatting and offers zoom and navigation options for a thorough review."

AI-Generated Content

37.4% Confidence

"Figure A.4 – Plagiarism and AI Detection Results The figure shows sentenceby-sentence analysis, with plagiarism and AI-generated content scores."

AI-Generated Content

37.4% Confidence

"Color-coded highlights indicate suspicious sections, while confidence metrics provide additional insight for each sentence."

AI-Generated Content

37.4% Confidence

"Figure A.5 – Detailed Report Generation This screenshot presents the PDF report generated by AcadCheck."

AI-Generated Content

37.4% Confidence

"It includes global metrics, sentence-level scores, and highlighted passages."

AI-Generated Content

37.4% Confidence

"Users can download or share the report directly from the dashboard."

AI-Generated Content

37.4% Confidence

"Figure A.6 – Analysis History and Filtering This figure shows the historical analysis interface, listing previous uploads with dates, document names, and scores."

AI-Generated Content

37.4% Confidence

"Users can filter, search, and re-open previous reports for reference or export."

AcadCheck Academic Integrity Platform

This report was generated using advanced AI-powered plagiarism and content detection technology.

For questions about this analysis, please contact your academic institution.