1) a)
$$f(x) = I_{1}x$$
 } $f'(x) = \frac{1}{x}$

$$(x^3) y = \frac{1}{x^3 + \cos x}$$
 $y' = \frac{3x^2 - \sin x}{x^3 + \cos x}$

3)
$$y(t) = tant \cdot ln(tant)$$

 $y(t) = spc^2 t \cdot ln(tant) + tant, \frac{1}{tant}, scc^2 x$

$$l_{xy} = sinx l_{x}(ax+1)$$

$$\frac{y'}{y} = \frac{\cos x \cdot \ln(ax+1)}{2x+1} + \frac{\sin x}{2x+1}$$

$$y' = y \left(\cos x \ln(2x+1) + \frac{2\sin x}{2x+1} \right)$$

5)
$$s(t) = 2t^3 - 106t^2 + 1500t$$

b)
$$V(6) = 600 f \frac{1}{5}$$

 $V(15) = -300 \frac{11}{5}$
 $V(36) = 1500 f \frac{1}{5}$

$$5^{2} + y^{2} = 784$$
 $x^{2} + y^{2} = 784$
 $y = \sqrt{569} \approx 27.584$ $2xx' + 2xy' = 0$

$$y' = \frac{-12}{2\sqrt{759}} \left\{ \frac{1}{96} = -\frac{6}{\sqrt{759}} \approx -.22 \right\}$$

7) a)
$$y = 3x^2 - 4x 3 \frac{1}{2} \frac{3y}{x} = 6x - 4$$

6)
$$y = In(6^3 + 1)$$
 $\frac{dy}{dt} = 36^3$

8)
$$y = \sqrt{x}$$
, $x = 4$, $\Delta x = 0.1$, $\partial y = ?$, $\Delta y = ?$

$$\triangle y = f(4+0.1) - f(4)$$

$$\begin{cases} f(4) = \sqrt{4.1} \\ f(4) = \sqrt{4.1} \end{cases}$$

$$y' = \frac{1}{2\sqrt{x}}$$
 $Jy = f'(x) Jy$

$$f(a) = 3.018$$
 $f(a) + f(a)(x-a)$
 $f(a) = 27.2709$

$$f(a) = 3x^2$$

 $f(3,01) = 27.1803$

$$f(3.01) = 27.1803(3.01) - 54.5418$$

10) c)
$$y = \sinh x + 3 = \frac{1}{2}e^{x} - \frac{1}{2}e^{-x}$$

b)
$$y = \cosh x \ 3 \ x = \frac{1}{2} e^x + \frac{1}{2} e^{-x}$$

$$\frac{e^{x} + e^{-x}}{2} - \frac{e^{x} - e^{-x}}{2} = e^{-x}$$

$$\frac{e^{x} + e^{-x} - e^{x} + e^{-x}}{2} = e^{-x}$$

$$\frac{2e^{-x}}{2} = e^{-x}$$

$$\frac{e^{2x} + e^{-2x}}{2} = \left(\frac{e^x + e^{-x}}{2}\right)^2 + \left(\frac{e^x - e^{-x}}{2}\right)^2$$

$$\frac{e^{2x} \cdot e^{-2x}}{2} = \frac{3e^{2x} + 7e^{-2x}}{4a}$$

13) a)
$$y = \cosh x$$
 } $\cosh x = e^x + e^{-x}$ } $\left(\cosh x' = \frac{e^x - e^{-x}}{2} = \sinh x'\right)$

(6)
$$y = \sinh x$$
 } $\sinh x = \frac{e^x - e^{-x}}{2}$ } $\sin h x' = \frac{e^x + e^{-x}}{2} = \cosh x$

$$(y) y = \cosh(x^3) \qquad \int_{x}^{2x} (\cosh(x^3)) \int_{3x}^{3y} (x^3)$$