Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Курсовая работа Часть 1 Вариант: 64

> Выполнил: Студент группы Р3106(поток 1) Рубцов Арсений Дмитриевич Принял: Поляков Владимир Иванович

Таблица истинности

Nº	$x_1x_2x_3x_4x_5$	x_2x_4	x_5	x_1x_3	x_2x_4	f
0	0 0 0 0 0	0	0	0	0	0
1	00001	0	1	0	0	0
2	00010	1	0	0	1	0
3	0 0 0 1 1	1	1	0	1	0
4	0 0 1 0 0	0	0	1	0	1
5	0 0 1 0 1	0	1	1	0	0
6	0 0 1 1 0	1	0	1	1	0
7	0 0 1 1 1	1	1	1	1	0
8	0 1 0 0 0	2	0	0	2	0
9	0 1 0 0 1	2	1	0	2	0
10	0 1 0 1 0	3	0	0	3	d
11	0 1 0 1 1	3	1	0	3	d
12	0 1 1 0 0	2	0	1	2	0
13	0 1 1 0 1	2	1	1	2	0
14	0 1 1 1 0	3	0	1	3	d
15	0 1 1 1 1	3	0	1	3	d
16	10000	0	0	2	0	1
17	10001	0	1	2	0	1
18	10010	1	0	2	1	1
19	10011	1	1	2	1	0
20	10100	0	0	3	0	1
21	10101	0	1	3	0	1
22	10110	1	0	3	1	1
23	10111	1	1	3	1	1
24	11000	2	0	2	2	0
25	1 1 0 0 1	2	1	2	2	0
26	11010	3	0	2	3	d
27	11011	3	1	2	3	d
28	11100	2	0	3	2	1
29	11101	2	1	3	2	0
30	11110	3	0	3	3	d
31	11111	3	1	3	3	d

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

Минимизация булевой функции методом Квайна-Мак-Класки Кубы различной размерности и простые импликанты

$K^0(f)$				
$\cup N(f)$	$k^1(f)$	$K^2(f)$	$K^3(f)$	Z(f)
1) 00100	1) 1000X(2-3)	1) 10X0X(1-7)	1)X1X1X(3-9)	1)X0100
2) 10000	2) 100X0(2-4)	2) 10XX0(2-8)		2)10X0X
3) 10001	3) 10X00(2-5)	3)01X1X(5-14)		3)10XX0
4) 10010	4) X0100(1-5)	4)101XX(7-16)		4)101XX
5) 10100	5) 0101X(6-10)	5)1X1X0(8-19)		5)1X1X0
6) 01010	6) 01X10(6-11)	6)1XX10(10-20)		6)1XX10
7) 10101	7) 1010X(5-7)	7)X101X(5-18)		7)1X11X
8) 10110	8) 101X0(5-8)	8)X1X10(6-20)		8)X1X1X
9) 11100	9) 10X01(3-7)	9)11X1X(18-24)		
10) 01011	10) 10X10(4-8)	10)1X11X(16-24)		
11) 011100	11) 1X010(4-12)	11)X111X(14-24)		
12) 11010	12) 1X100(5-9)	12)X1X11(15-25)		
13) 10111	13) X1010(6-12)			
14) 01111	14) 0111X(11-13)			
15) 11011	15) 01X11(10-2)			
16) 11110	16) 1011X(8-13)			
17) 11111	17) 101X1(7-13)			
	18) 1101X(12-15)			
	19) 111X0(9-16)			
	20) 11X10(12-16)			
	21) 1X110(8-16)			
	22) X1011(10-15)			
	23) X1110(11-16)			
	24) 1111X(16-17)			
	25) 11X11(15-17)			
	26) 1X111(13-17)			
	27) X1111(14-17)	3		

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам, а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

Ядро покрытия:

$$T = \left\{ \begin{matrix} X0100 \\ 10X0X \\ 1X110 \end{matrix} \right\}$$

Получим следующую упрощенную импликантную таблицу:

Простые импликанты		0-кубы			
		0	1	1	
		1	0	1	
		1	0	0	
		0	0	1	
		0	1	0	
		12	17	26	
A	01X00	X			
В	X1100	X			
C	X00X1		X		
D	10XX1		X		
E	XX01X			X	
F	1XX1X			X	

Метод Петрика:

Условия покрытия всех вершин: $Y = (A \lor B)(C \lor D)(E \lor F)$

Приведем выражение в ДНФ: $Y = ACE \lor ACF \lor ADE \lor ADF \lor BCE \lor BCF \lor BDE \lor BDF$

Возможные покрытия:

$$C_{1} = \begin{cases} T \\ A \\ B \end{cases} = \begin{cases} X0100 \\ 10X0X \\ 1X1X0 \\ 10XX0 \\ 101XX \end{cases} \qquad C_{2} = \begin{cases} T \\ A \\ D \end{cases} = \begin{cases} X0100 \\ 10X0X \\ 1X1X0 \\ 10XX0 \\ 1X11X \end{cases} \qquad C_{3} = \begin{cases} T \\ B \\ C \end{cases} = \begin{cases} X0100 \\ 10X0X \\ 1X1X0 \\ 101XX \\ 1XX10 \end{cases}$$

$$S_{1}^{a} = 16 \\ S_{1}^{b} = 21 \qquad S_{2}^{a} = 16 \\ S_{2}^{b} = 21 \qquad S_{3}^{a} = 16 \\ S_{2}^{b} = 21 \qquad S_{3}^{b} = 21$$

$$C_{4} = \begin{cases} T \\ C \\ D \end{cases} = \begin{cases} X0100 \\ 10X0X \\ 1X1X0 \\ 1XX10 \\ 1X11X \end{cases}$$

$$S_{4}^{a} = 16 \\ S_{4}^{b} = 21$$

Минимальное покрытие:

$$C_{\min} = \begin{cases} X0100 \\ 10X0X \\ 1X1X0 \\ 10XX0 \\ 101XX \end{cases}$$
$$S^{a} = 16$$
$$S^{b} = 21$$

Этому покрытию соответствует следующая МНДФ:

$$f = \overline{x_2} \, x_3 \overline{x_4} \, \overline{x_5} \, \vee x_1 \overline{x_2} \, \overline{x_4} \vee x_1 x_3 \overline{x_5} \, \vee x_1 \overline{x_2} \, \overline{x_5} \, \vee x_1 \overline{x_2} \, x_3$$

Минимизация булевой функции на картах Карно ${\rm M}{\rm J}{\rm H}\Phi$

$$C_{min} = \begin{cases} X0X1X \\ XXX11 \\ 01X00 \\ X00X1 \\ XX01X \end{cases} S^{a} = 13S^{b} = 18$$

$$f = \overline{x_2} \, x_3 \overline{x_4} \, \overline{x_5} \, \vee x_1 \overline{x_2} \, \overline{x_4} \, \vee x_1 x_3 \overline{x_5} \, \vee x_1 \overline{x_2} \, \overline{x_5} \, \vee x_1 \overline{x_2} \, x_3$$

МКНФ

$$C_{min} = \begin{cases} 0X0XX \\ 0XXX1 \\ 0XX1X \\ XX011 \\ 01XXX \\ X10XX \\ X1XX1 \end{cases} S^{a} = 15s^{b} = 22$$

$$f = (x_1 \vee x_3)(x_1 \vee \overline{x_5})(x_1 \vee \overline{x_4})(x_3 \vee \overline{x_4} \vee \overline{x_5})(x_1 \vee \overline{x_2})(\overline{x_2} \vee x_3)(\overline{x_2} \vee \overline{x_5})$$

Преобразование булевых функций

МДНФ

$$f = \overline{x_2} \, x_3 \overline{x_4} \, \overline{x_5} \, \vee x_1 \overline{x_2} \, \overline{x_4} \, \vee x_1 x_3 \overline{x_5} \, \vee x_1 \overline{x_2} \, \overline{x_5} \, \vee x_1 \overline{x_2} \, x_3 \qquad S_Q = 22 \quad \tau = 2$$

Декомпозиция не имеет смысла.

$$f = x_1 \overline{x_2} (x_3 \vee \overline{x_4} \vee \overline{x_5}) \vee x_3 \overline{x_5} (x_1 \vee \overline{x_2} \overline{x_4})$$
 $S_Q = 15 \quad \tau = 3$

$MKH\Phi$

$$f=(x_1\vee x_3)(x_1\vee \overline{x_5})(x_1\vee \overline{x_4})(x_3\vee \overline{x_4}\vee \overline{x_5})(x_1\vee \overline{x_2})(\overline{x_2}\vee x_3)(\overline{x_2}\vee \overline{x_5}) \hspace{0.5cm} S_Q=22 \hspace{0.5cm} \tau=2$$
 Декомпозиция не имеет смысла.

$$f = (x_1 \lor x_3 \overline{x_4} \, \overline{x_5})(\overline{x_2} \lor x_1 x_3 \overline{x_5})(x_3 \lor \overline{x_4} \lor \overline{x_5})$$
 $S_Q = 16 \quad \tau = 3$

Синтез комбинационных схем

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \overline{x_2} (x_3 \vee \overline{x_4} \vee \overline{x_5}) \vee x_3 \overline{x_5} (x_1 \vee \overline{x_2} \overline{x_4}) \qquad (S_Q = 15, \tau = 4)$$

Схема по упрощенной МКНФ:

$$f = (x_1 \vee x_3 \overline{x_4} \, \overline{x_5})(\overline{x_2} \vee x_1 x_3 \overline{x_5})(x_3 \vee \overline{x_4} \vee \overline{x_5}) \qquad (S_Q = 16, \tau = 3)$$

Сокращенный булев базис(И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ

$$f = \overline{\overline{x_1}\,\overline{x_2}\,\overline{\overline{x_3}}\,x_4\,x_5}\,\overline{x_1\,x_3}\,\overline{\overline{x_5}}\,\overline{\overline{x_2}}\,x_3\,\overline{\overline{x_4}}\,\overline{\overline{x_5}}} \quad (S_Q = 21, \tau = 6)$$

Схема по упрощенной МКНФ в базисе И, НЕ

$$f = \overline{\overline{x_1} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5}} \, \overline{x_2} \, \overline{x_1} \, \overline{x_3} \, \overline{x_5} \, \overline{x_3} \, \overline{x_4} \, x_5 \quad (S_Q = 21, \tau = 5)$$

Универсальный базис(И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_1} \, \overline{\overline{x_2}} \, \overline{\overline{x_3}} \, \overline{\overline{\overline{x_4}} \, \overline{x_5}}} \, \overline{\overline{x_3} \, \overline{\overline{x_5}} \, \overline{\overline{x_1}} \, \overline{\overline{\overline{x_2}} \, \overline{x_4}}} \quad (S_Q = 24, \tau = 7)$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \frac{\overline{\overline{\overline{x_1}} \overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{\overline{x_4}} \overline{\overline{x_1}} \overline{\overline{\overline{x_3}}} \overline{\overline{x_5}} \overline{\overline{x_1}} \overline{x_2}} \quad (S_Q = 22, \tau = 7)$$

