Design and Analysis of Algorithms (COMP3001)

Tutorial 6 Greedy Graph Algorithms

Question 1.

Consider the following weighted connected graph.

- a) Use Kruskal's algorithm to find the MST. Show all the steps.
- b) Use Prim's algorithm to find the MST. Show all the steps.

Question 2.

Consider the following weighted directed graph.

Use Dijkstra's algorithm to find the shortest paths from vertex a. Show all the steps.

Question 3.

Let (u, v) be a minimum-weight edge in a graph G. Show that (u, v) belongs to some minimum spanning tree of G.

Ouestion 4.

Suppose that all edge weights in a graph are integers in the range from 1 to |V|.

- a) How fast can you make Kruskal's algorithm run?
- b) What if the edge weights are integers in the range 1 to W for some constant W? (Hint: Counting sort)

Question 5.

A clique of an undirected graph G = (V, E) is a subset of vertices $C \subset V$ where each vertex in C is connected to every other vertex in C. A maximum clique is a clique with the most vertices, |C|.

- a) Devise a greedy heuristic for determining the maximum clique of a graph.
- b) Give an example on which your heuristic actually produces the maximum clique, and also an example for which it does not.
- c) What is the time complexity of your algorithm?