Математический Анализ Конспект Семинара 21.

Филиппов Андрей (БПМИ193-2)

$\begin{array}{c} 2020.02.25\text{--}? \\ 2020.03.02\ 17\text{:}31\text{:}00 \end{array}$

Содержание

1	Эбозначения Эбозначения	1
2	Семинар	2
	.1 Теория: Вспоминаем	. 2
:	.2 Теория: Признак Вейерштрасса	. 2
:	.3 Задание	. 2
	.4 Теория: Сходимость эквивалентных функция	. 3
	.5 Задание	. 3
	.6 Задание	. 3
:	.7 Задание	. 3
:	.8 Задание	. 4
:	.9 Теория: Признаки сходимости Дирихле-Абеля	. 5
:	.10 Задание	. 6
:	.11 Задание	. 6
	.12 Задание	. 6
	.13 Задание	. 6

1 Обозначения

- Обозначения, принятые в конспектах лекций;
- \bullet C любая возможная константа.

2 Семинар

2.1 Теория: Вспоминаем

$$\int_{a}^{b} f(x)dx = \lim_{B \to b-0} \int_{a}^{B} f(x)dx$$

$$\int\limits_a^c + \int\limits_c^b -$$
должны сходится оба, тогда сходится результат: $\int\limits_a^b$

????

$$\int\limits_{1}^{+\infty} rac{1}{x^{lpha}} dx$$
 сход $<=>(lpha>1)$

$$\int\limits_0^1 rac{1}{x^lpha} dx$$
 сход $<=>(lpha<1)$?????

2.2 Теория: Признак Вейерштрасса

1)
$$f, g: [a, b) \to \mathbb{R}$$

2)
$$\forall x \in [a, b] \implies |f(x)| \le g(x)$$

3)
$$\forall B \in (a,b) \implies f \in \mathfrak{R}[a,B]$$

$$4) \exists \int_{a}^{b} g(x)dx$$

$$\implies \int\limits_a^b |f(x)| \, dx$$
 сход $\implies \int\limits_a^b f(x) dx$ сход

2.3 Задание

$$\exists ? \int_{1}^{\infty} \frac{\ln x}{\underbrace{x^{1.1}}} \, dx$$

$$\int_{1}^{\infty} = \int_{1}^{n} + \int_{n}^{+\infty}$$

финально – с какого-то х и больше

$$\underbrace{\frac{\ln x}{x^{1.1}}}_{=f(x)} \le \frac{x^{0.05}}{x^{1.1}} = \underbrace{\frac{1}{x^{1.05}}}_{=g(x)}$$

по пр. Вейерштрасса
$$\implies \int \exists$$

$$\int\limits_{1}^{+\infty}\underbrace{\arctan\left(e^{\sin^2x}\right)}_{=f(x)}dx$$

$$|f(x)| \le \frac{n/2}{x^2}$$

т. к.
$$\exists \int\limits_{1}^{+\infty} \frac{1}{x^2} dx \implies$$
 исход. инт. сход.

2.4 Теория: Сходимость эквивалентных функция

1)
$$f, g: [a, b) \to \mathbb{R}$$

2)
$$\forall x \in [a, b) \implies f(x), g(x) > 0$$

3)
$$\lim_{x\to b-0} \frac{f(x)}{g(x)} = L \neq 0, \pm \infty$$

$$\implies \int\limits_a^b f(x) dx$$
 и $\int\limits_a^b g(x) dx$ имеют один. сходимость

2.5 Задание

$$\int_{0}^{+\infty} \underbrace{\frac{x^2 - 5x + 1}{x^4 + 18x + 90}}_{=f(x)} dx = \int_{0}^{n} + \int_{n}^{+\infty} \underbrace{\sum_{x \in \mathbb{Z}}}_{x} \int_{1}^{+\infty} \frac{1}{x^2} dx - cx.$$

cx. - cxo dumcя

???? — что-то про знаки при $\lim_{x \to \infty}$, например, $\frac{\sin x}{x}$ меняет знак

2.6 Задание

$$\int_{1}^{+\infty} \underbrace{\frac{1}{x + \sin x}}_{=f(x)} dx \sim \int_{1}^{+\infty} \frac{1}{x^2} - cx.$$

?????^^^????

$$f(x) \sim \frac{1}{x} \ (x \to +\infty)$$

????

2.7 Задание

$$\int_{0}^{+\infty} \underbrace{\frac{\arctan x}{x^{\alpha}}}_{=f(x)} dx = \underbrace{\int_{0}^{1}}_{=I_{1}} + \underbrace{\int_{1}^{+\infty}}_{=I_{2}}$$

Рассматриваем I_2 :

$$\frac{\arctan x}{x^{\alpha}} \sim \frac{\pi/2}{x^{\alpha}}, \, x \to +\infty \, \, ; \, \text{cx.} <=>\alpha>1$$

Рассматриваем I_1 :

$$x \to 0 + 0$$
: $\frac{\operatorname{arctg} x}{x^{\alpha}} = \underbrace{\frac{\operatorname{arctg} x}{x}}_{\to 1, x \to 0 + 0} \cdot \frac{x}{x^{\alpha}}$

$$f(x) \sim \frac{1}{x^{\alpha - 1}}, \, x \to 0 + 0$$

$$\int_{0}^{1} \frac{1}{x^{\alpha-1}} dx \text{ cx. } <=> \alpha-1 < 1 \iff \alpha < 2$$

Итог:

$$\int_{0}^{+\infty} cx. <=> \alpha \in (1,2)$$

- какое-то пояснение ?????

2.8 Задание

$$\int\limits_0^{+\infty} \frac{\sin x}{x^\alpha} dx = \int\limits_{-I_1}^1 + \int\limits_{-I_2}^{+\infty} \left(I_1 \text{ сх. } \Longleftrightarrow \ \alpha {<} 2, \ I_2 \text{ сх. } \Longleftrightarrow \ \alpha {>} 0, \ \text{поэтому для исходный инт. сх. при } \alpha \in (0,2) \right)$$

$$\frac{\sin x}{x^{\alpha}} \underset{x \to 0+0}{\sim} \frac{\sin x}{x} \cdot \frac{x}{x^{\alpha}} \sim \frac{1}{x^{\alpha - 1}}$$

$$(\int\limits_0^1 rac{1}{x^{lpha}} dx \ \mathrm{cx.}) <=> (lpha - 1 < 1 \iff lpha < 2)$$

$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx = \underbrace{-\frac{\cos x}{x^{\alpha}} \Big|_{1}^{+\infty}}_{\text{CX IIDM } \alpha > 0} - \alpha \int_{1}^{+\infty} \frac{\cos x}{x^{\alpha + 1}} dx$$

 $|f(x)| \leq \frac{1}{x^{\alpha+1}}$ — сход. при $\alpha > 0$, значит f(x) точно сходится при $\alpha > 0$

— пояснение того, как ведёт себя
$$\frac{\sin x}{x}$$
 при $\alpha < 0$

 $if\ and\ only\ if=iff\ (morda\ u\ moлько\ morda,\ коrda)$ — общепринятое обозначение, которое можно использовать

$$\frac{S_1 + S_2 + \dots + S_n}{n}$$
 — что это??????

2.9 Теория: Признаки сходимости Дирихле-Абеля

Дирихле

- 1) f непр. на [a;b)
- 2) F огранич.. на [a, b)
- 3) $g \in C^{(1)}(a,b)$
- 4) g монот. на [a, b)
- 5) $g(x) \to 0, x \to b 0$

Абель

- 1) —"—
- $2) \ \exists \int^b f(x) dx$
- 3) —"—
- 4) —"—
- 5) $g \in B([a,b))$ то есть ограниченная на [a,b)

Дирихле или Абель $\implies \exists \int\limits_a^b f(x)g(x)dx$

2.10 Задание

$$\int_{0}^{+\infty} \frac{\sin x}{x^{\alpha}} dx$$

 $\alpha > 0$

 $f = \sin x$

$$g = \frac{1}{x^2}$$

 \implies при $\alpha > 0$ инт. сход. по Дирихле

Если не получилось доказать сходимость по Дирихле или Абелю, то не факт, что не сходится.

 $F(x) = \int_{0}^{x} \frac{\sin x}{x}$ — первообразная для $\frac{\sin x}{x}$ — TODO, про то, как можно восстановить первообразную, если она не в элементарных, но мы знаем, что она точно существует

2.11 Задание

$$\int\limits_{1}^{+\infty} \frac{\sin x \cdot \arctan x}{x^{\alpha}} dx \implies \text{сход. если } \alpha > 0 \text{ (расход. при } \alpha \leq 0 \text{)}$$

$$f(x) = \frac{\sin x}{x^{\alpha}}$$
 непрер. на $[1, +\infty)$

$$g(x) = \operatorname{arctg} x$$

$$\int\limits_{1}^{+\infty} \frac{\sin x}{x^{\alpha}}$$
сход. <=> $\alpha > 0$ (было доказано раньше, в другом задании)

3,4,5 вып. ?? \Longrightarrow инт. сход. если $\alpha>0$

2.12 Задание

 $\int\limits_{0}^{+\infty} \frac{\sin x \cdot \arctan x}{x^{\alpha}} dx \text{ (как предыдущее задание, только теперь от 0; в таком случае проблема в том, что старая <math>f(x)$

может быть не непрерывна)

$$\int_{0}^{+\infty} \underbrace{\frac{\sin x \cdot \arctan x}{x^{\alpha}}}_{f} dx = \int_{0}^{1} + \int_{1}^{+\infty} -\operatorname{cx.} <=> \alpha \in (0,3)$$

2.13 Задание

$$\int_{0}^{1} \sin\left(\frac{1}{1-x}\right) \cdot \frac{1}{1-x} dx$$

Будем доказывать по Дирихле.

$$f = \sin\left(\frac{1}{1-x}\right) \cdot \frac{1}{\left(1-x\right)^2}$$

$$g = 1 - x$$

$$F(x) = -\cos\frac{1}{1-x}$$
 — первообразная f (нашли устно) \implies 2 вып.

Итого, сх. по Дирихле.