Линейная регрессия

Сергей Николенко Академия MADE — Mail.Ru 6 февраля 2021 г.

Random facts:

- 6 февраля День Вайтанги; именно 6 февраля 1840 г. в Вайтанги представители Великобритании и вожди 40 племён маори подписали соглашение, положившее основу государства Новая Зеландия
- 6 февраля Международный день бармена, отмечающийся в день святого Аманда, который в VII веке стал миссионером на территории современной Бельгии
- 6 февраля на Ямайке отмечается как День Боба Марли, который родился 6 февраля 1945 г. в деревне Nine Mile
- 6 февраля 1865 г. в Санкт-Петербурге впервые отметили полдень выстрелом из пушки
- 6 февраля 1886 г. Клеменс Винклер открыл германий предсказанный Д.И. Менделеевым «экасилиций»
- 6 февраля 1969 г. врач-ортопед Виктор Дега стал первым кавалером ордена Улыбки, присуждаемого тем, кто приносит детям радость

Линейная регрессия

Метод наименьших квадратов

• Линейная регрессия: рассмотрим линейную функцию

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{p} x_j w_j = \mathbf{x}^{\top} \mathbf{w}, \quad \mathbf{x} = (1, x_1, \dots, x_p).$$

• Таким образом, по вектору входов $\mathbf{x}^{\top} = (x_1, \dots, x_p)$ мы будем предсказывать выход y как

$$\hat{y}(\mathbf{x}) = \hat{w}_0 + \sum_{j=1}^{p} x_j \hat{w}_j = \mathbf{x}^{\top} \hat{\mathbf{w}}.$$

1

Метод наименьших квадратов

- Как найти оптимальные параметры $\hat{\mathbf{w}}$ по тренировочным данным вида $(\mathbf{x}_i, y_i)_{i=1}^N$?
- Метод наименьших квадратов: будем минимизировать

$$\mathrm{RSS}(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2.$$

• Как минимизировать?

Метод наименьших квадратов

• Можно на самом деле решить задачу точно – записать как

$$\mathrm{RSS}(w) = (y - Xw)^{\top}(y - Xw),$$

где X – матрица $N \times p$, продифференцировать по \mathbf{w} , получится

$$\hat{W} = (X^{\top}X)^{-1}X^{\top}y,$$

если матрица $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ невырожденная.

· Замечание: $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ называется *псевдообратной матрицей Мура-Пенроуза* (Moore-Penrose pseudo-inverse) матрицы \mathbf{X} ; это обобщение понятия обратной матрицы на неквадратные матрицы.

1

- Теперь давайте поговорим о линейной регрессии по-байесовски.
- Основное наше предположение в том, что шум (ошибка в данных) распределён нормально, т.е. переменная *t*, которую мы наблюдаем, получается как

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

Иными словами,

$$p(t \mid \mathbf{x}, \mathbf{w}, \sigma^2) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \sigma^2).$$

• Здесь пока у – любая функция.

 Чтобы не повторять совсем уж то же самое, мы рассмотрим не в точности линейную регрессию, а её естественное обобщение – линейную модель с базисными функциями:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x})$$

(М параметров, М - 1 базисная функция, $\phi_0(\mathbf{x}) = 1$).

- Базисные функции ϕ_i это, например:
 - результат feature extraction;
 - расширение линейной модели на нелинейные зависимости (например, $\phi_i(x) = x^i$);
 - \cdot локальные функции, которые существенно не равны нулю только в небольшой области (например, гауссовские базисные функции $\phi_j(\mathbf{x}) = e^{-rac{(\mathbf{x}-\mu_j)^2}{2s^2}}$);

• ..

- Рассмотрим набор данных $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ со значениями $\mathbf{t} = \{t_1, \dots, t_N\}.$
- Будем предполагать, что данные взяты независимо по одному и тому же распределению:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N} \left(t_n \mid \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right).$$

• Прологарифмируем (опустим **X**, т.к. по нему всегда условная вероятность будет):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n))^2.$$

• Прологарифмируем (опустим **X**, т.к. по нему всегда условная вероятность будет):

$$\ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n))^2.$$

• И вот мы получили, что для максимизации правдоподобия по **w** нам нужно как раз минимизировать среднеквадратичную ошибку!

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n).$$

• Решая систему уравнений $\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = 0$, получаем то же самое, что и раньше:

$$W_{ML} = \left(\mathbf{\Phi}^{\top}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\top}t.$$

· Здесь $\mathbf{\Phi} = (\phi_j(\mathbf{x}_i))_{i,j}$.

• Теперь можно и относительно σ^2 максимизировать правдоподобие; получим

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \mathbf{w}_{ML}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2,$$

т.е. как раз выборочная дисперсия имеющихся данных вокруг предсказанного значения.

Оверфиттинг

в линейной регрессии

• Мы говорили о регрессии с базисными функциями:

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}).$$

• Давайте для примера рассмотрим такую регрессию для $\phi_j(x) = x^j$, т.е.

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M.$$

- И будем, как раньше, минимизировать квадратичную ошибку.
- Пример с кодом.

Значения RMS

Можно собрать больше данных...

Можно собрать больше данных...

Значения коэффициентов

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Оверфиттинг

- Итак, мы увидели, что даже в линейной регрессии может наступить оверфиттинг.
- Что же делать?..

Регуляризация в линейной

регрессии

Регуляризация

- Итак, получается, что у нас сильно растут коэффициенты.
- Давайте попробуем с этим бороться. Бороться будем прямолинейно и простодушно: возьмём и добавим размер коэффициентов в функцию ошибки.

Регуляризация

• Было (для тестовых примеров $\{(x_i,y_i)\}_{i=1}^N$):

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2$$
.

· Стало:

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \|\mathbf{w}\|^2$$
,

где α – коэффициент регуляризации (его надо будет как-нибудь выбрать).

• Как оптимизировать эту функцию ошибки?

Регуляризация

• Да точно так же – запишем как

$$\mathrm{RSS}(\mathbf{w}) = \frac{1}{2} \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)^{\top} \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right) + \frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}$$

и возьмём производную; получится

$$\mathbf{w}^* = \left(\mathbf{X}^\top \mathbf{X} + \alpha \mathbf{I}\right)^{-1} \mathbf{X}^\top \mathbf{y}.$$

• Это гребневая регрессия (ridge regression); кстати, добавление αI к матрице неполного ранга делает её обратимой; это и есть регуляризация, и это и было исходной мотивацией для гребневой регрессии.

Гребневая регрессия: $\ln \alpha = -\infty$

Гребневая регрессия: $\ln \alpha = -18$

Гребневая регрессия: $\ln \alpha = 0$

Гребневая регрессия: коэффициенты

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$w_3^{\overline{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Гребневая регрессия: RMS

Другая регуляризация

- Почему именно так? Почему именно $\frac{\alpha}{2} \|\mathbf{w}\|^2$?
- Мы сейчас ответим на этот вопрос, но, вообще говоря, это не обязательно.
- Лассо-регрессия (lasso regression) регуляризует L_1 -нормой, а не L_2 :

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \alpha \sum_{j=0}^{M} |w_j|.$$

• Есть и другие типы; об этом будем говорить позже.

Регрессия по-байесовски

Байесовская регуляризация

- А теперь давайте посмотрим на регрессию с совсем байесовской стороны.
- Напомним основу байесовского подхода:
 - 1. найти апостериорное распределение на гипотезах/параметрах:

$$p(\theta \mid D) \propto p(D|\theta)p(\theta)$$

(и/или найти максимальную апостериорную гипотезу $\arg\max_{\theta} p(\theta \mid D)$);

2. найти апостериорное распределение исходов дальнейших экспериментов:

$$p(x \mid D) \propto \int_{\theta \in \Theta} p(x \mid \theta) p(D|\theta) p(\theta) d\theta.$$

Байесовская регуляризация

- В нашем рассмотрении пока не было никаких априорных распределений.
- Давайте какое-нибудь введём; например, нормальное (почему так позже):

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0).$$

• Рассмотрим набор данных $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ со значениями $\mathbf{t} = \{t_1, \dots, t_N\}$. В этой модели мы предполагаем, что данные независимы и одинаково распределены:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N} \left(t_n \mid \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right).$$

Байесовская регуляризация

• Тогда наша задача – посчитать

$$\begin{split} p(\mathbf{w} \mid \mathbf{t}) &\propto p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^2) p(\mathbf{w}) \\ &= \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \prod_{n=1}^N \mathcal{N} \left(t_n \mid \mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \right). \end{split}$$

• Давайте подсчитаем.

Байесовская регуляризация

• Получится

$$p(\mathbf{w} \mid \mathbf{t}) = \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_{N}, \boldsymbol{\Sigma}_{N}),$$

$$\mu_{N} = \boldsymbol{\Sigma}_{N} \left(\boldsymbol{\Sigma}_{0}^{-1} \mu_{0} + \frac{1}{\sigma^{2}} \boldsymbol{\Phi}^{\top} \mathbf{t} \right),$$

$$\boldsymbol{\Sigma}_{N} = \left(\boldsymbol{\Sigma}_{0}^{-1} + \frac{1}{\sigma^{2}} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \right)^{-1}.$$

• Теперь давайте подсчитаем логарифм правдоподобия.

Байесовская регуляризация

• Если мы возьмём априорное распределение около нуля:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \frac{1}{\alpha}I),$$

то логарифм правдоподобия получится

$$\ln p(\mathbf{w} \mid \mathbf{t}) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n))^2 - \frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w} + \text{const},$$

то есть в точности гребневая регрессия.

Лассо

• Теперь давайте рассмотрим лассо-регрессию:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{p} |w_j|.$$

- Главное отличие теперь форма ограничений (т.е. форма априорного распределения) такова, что весьма вероятно получить строго нулевые w_i .
- · Кстати, что значит «форма ограничений»?

Лассо

 Мы можем переписать регрессию с регуляризатором по-другому:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{p} |w_j| \right\},\,$$

эквивалентно

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{W}) - y_i)^2 \right\} \text{ при } \sum_{j=0}^{p} |w_j| \le t.$$

Упражнение. Докажите это.

Гребень и лассо

Гребень и лассо

Обобщение

 Можно рассмотреть обобщение гребневой и лассо-регрессии:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{p} (|w_j|)^q.$$

Упражнение. Какому априорному распределению на параметры **w** соответствует эта задача?

Разные q

в линейной регрессии

- Теперь давайте вернёмся к байесовской постановке:
 - 1. найти апостериорное распределение на гипотезах/параметрах:

$$p(\theta \mid D) \propto p(D|\theta)p(\theta)$$

(и/или найти максимальную апостериорную гипотезу $\arg\max_{\theta} p(\theta \mid D)$);

2. найти апостериорное распределение исходов дальнейших экспериментов:

$$p(x \mid D) \propto \int_{\theta \in \Theta} p(x \mid \theta) p(D|\theta) p(\theta) d\theta.$$

• В прошлый раз мы нашли апостериорное распределение: для гауссовского априорного

$$p(\mathbf{w} \mid \alpha) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \frac{1}{\alpha}I)$$

мы нашли

$$p(\mathbf{w} \mid \mathbf{t}, \alpha, \beta) = \mathcal{N}(\mathbf{w} \mid \boldsymbol{\mu}_{N}, \boldsymbol{\Sigma}_{N}),$$
$$\boldsymbol{\mu}_{N} = \boldsymbol{\Sigma}_{N} \left(\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0} + \beta \boldsymbol{\Phi}^{\top} \mathbf{t} \right),$$
$$\boldsymbol{\Sigma}_{N} = \left(\boldsymbol{\Sigma}_{0}^{-1} + \beta \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \right)^{-1},$$

где $\beta = \frac{1}{\sigma^2}$ (precision нормального распределения).

• Теперь сделаем следующий шаг – найдём апостериорное распределение наших предсказаний

$$p(t \mid \mathbf{t}, \alpha, \beta) = \int p(t \mid \mathbf{w}, \beta) p(\mathbf{w} \mid \mathbf{t}, \alpha, \beta) d\mathbf{w}.$$

• Это свёртка двух гауссианов, и получается...

• ...тоже гауссиан:

$$p(t \mid \mathbf{t}, \alpha, \beta) = \mathcal{N}(t \mid \boldsymbol{\mu}_N^{\top} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2),$$

где $\sigma_N^2 = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\Sigma}_N \boldsymbol{\phi}(\mathbf{x}).$

• Т.е. дисперсия складывается из шума в данных β и дисперсии параметров **w**; гауссианы независимы, и их дисперсии просто складываются.

Упражнение. Оценка всё время уточняется: $\sigma_{N+1}^2 \leq \sigma_N^2$.

• Вспомним наши байесовские предсказания:

$$p(t \mid \mathbf{t}, \alpha, \beta) = \mathcal{N}(t \mid \boldsymbol{\mu}_N^{\top} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2),$$

где $\sigma_N^2 = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\Sigma}_N \boldsymbol{\phi}(\mathbf{x}).$

· Давайте перепишем среднее апостериорного распределения в другой форме (вспомним, что $\boldsymbol{\mu}_{N}=\beta \boldsymbol{\Sigma}_{N} \boldsymbol{\Phi}^{\top} \mathbf{t}$):

$$\begin{aligned} y(\mathbf{x}, \boldsymbol{\mu}_N) &= \boldsymbol{\mu}_N^\top \boldsymbol{\phi}(\mathbf{x}) = \beta \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\Sigma}_N \boldsymbol{\Phi}^\top \mathbf{t} = \\ &= \sum_{n=1}^N \beta \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\Sigma}_N \boldsymbol{\phi}(\mathbf{x}_n) t_n. \end{aligned}$$

- · $y(\mathbf{x}, \boldsymbol{\mu}_N) = \sum_{n=1}^N \beta \phi(\mathbf{x})^{\top} \boldsymbol{\Sigma}_N \phi(\mathbf{x}_n) t_n$.
- Это значит, что предсказание можно переписать как

$$y(\mathbf{x}, \boldsymbol{\mu}_N) = \sum_{n=1}^N k(\mathbf{x}, \mathbf{x}_n) t_n.$$

- Т.е. мы предсказываем следующую точку как линейную комбинацию значений в известных точках.
- Функция $k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\top} \mathbf{\Sigma}_{N} \phi(\mathbf{x}')$ называется эквивалентным ядром (equivalent kernel).

Выводы про эквивалентное ядро

- Эквивалентное ядро $k(\mathbf{x}, \mathbf{x}')$ локализовано вокруг \mathbf{x} как функция \mathbf{x}' , т.е. каждая точка оказывает наибольшее влияние около себя и затухает потом.
- Можно было бы с самого начала просто определить ядро и предсказывать через него, безо всяких базисных функций ϕ такой подход мы ещё будем рассматривать.

Упражнение. Докажите, что $\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$.

Спасибо!

Спасибо за внимание!