This document lists out definitions in Math that I couldn't possibly organize in my tiny brain. The definitions are expected to be built off of the previous ones.

1 Binary Relations

Definition 1.1 (Binary Relation)

A binary relation R over sets X, Y is a subset of $X \times Y$. $(x, y) \in R$ is equivalent to xRy. We say x is R-related to y.

In other words, R imposes some condition that $(x,y) \in R$ must satisfy to be included in the set. e.g. $x \ge y$

Definition 1.2 (Homogenous Relation/Endorelation)

A homogenous relation is a binary relation from a set to itself, i.e. $R: X \times X \to X$.

Definition 1.3 (Reflexive, Irreflexive, Symmetric, Antisymmetric, Asymmetric, Transitive, Connected, Strongly Connected)

Let R be a homogenous relation over set X. Then the following properties are defined as:

- 1. R is **reflexive** if $\forall x \in X, xRx \text{ e.g.} \geq$
- 2. R is **irreflexive** if $\forall x \in X, \neg xRx \text{ e.g.} >$
- 3. R is **symmetric** if $\forall x, y \in X, xRy \Leftrightarrow yRx$ e.g. shares the same house
- 4. R is **antisymmetric** if $\forall x, y \in X, xRy \land yRx \Rightarrow x = y \text{ e.g. } \geq$
- 5. R is asymmetric if $\forall x, y \in X, xRy \Rightarrow \neg yRx \text{ e.g.} >$
- 6. R is **transitive** if $\forall x, y, z \in X, xRy \land yRz \Rightarrow xRz \text{ e.g. } >, \geq$
- 7. R is **connected** if $\forall x, y \in X, x \neq y \Rightarrow xRy \lor yRx$
- 8. R is strongly connected if $\forall x, y \in X, xRy \vee yRx$

Remark

In some sense, **asymmetry** is **antisymmetry** + **irreflexivity**; antisymmetry gets upgraded when there is irreflexivity.

Definition 1.4 (Partial Order)

A partial order is a relation that is reflexive, antisymmetric and transitive. e.g. \geq

Definition 1.5 (Strict Partial Order)

A **strict partial order** is a relation that is irreflexive, asymmetric and transitive. e.g. >

Definition 1.6 (Total Order)

A total order is a relation that is reflexive, antisymmetric, transitive and connected.

Definition 1.7 (Strict Total Order)

A strict total order is a relation that is irreflexive, asymmetric, transitive and connected.

Remark

In short, total adds on the requirement that it must be connected, while strict changes reflexivity into irreflexivity (and since everyone has antisymmetry, this changes into asymmetry too)

Definition 1.8 (Equivalence Relation)

An equivalence relation is a relation that is reflexive, symmetric and transitive.

2 Basic Algebraic Structures

Definition 2.1 (Group)

A non-empty set G equipped with a binary operation $\cdot: G \times G \to G$ is called a **group** if they satisfy the following *group axioms*:

- 1. (Associativity) $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. (Identity) $\exists e \in G \text{ s.t. } \forall g \in G, e \cdot g = g \cdot e = g$
- 3. (Inverse) $\forall g \in G, \exists g' \in G \text{ s.t. } g'g = e. \text{ Then } g^{-1} := g'$

Remark

The above axioms of a group imply:

- 1. Identity is unique
- 2. Inverse is unique

Even when one restricts the axioms to just simply having left identity and left inverse, the above remark still holds

Definition 2.2 (Subgroup)

 $H \subseteq G$ is a **subgroup** of G if

- 1. $e \in H$
- 2. H is closed under \cdot and taking inverses

Definition 2.3 (Abelian Group)

A group (G, \cdot) is **Abelian** if the operation \cdot is also commutative.

Recap: Associativity, Commutativity, Identity, Inverse

Definition 2.4 (Ring)

A **ring** is a set R equipped with two binary operations (addition, multiplication) $+, \cdot : R \times R \to R$ s.t. they satisfy the following *ring axioms*:

- 1. (R, +) is an Abelian group (Associativity, Commutativity, Identity, Inverse)
- 2. (Multiplicative Associativity) $\forall a, b, c \in R, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. (Multiplicative Identity) $\forall r \in R, \exists 1 \in R \text{ s.t. } 1 \cdot r = r \cdot 1 = r$
- 4. (Left, Right Distributivity) This property governs how the 2 operations interact

$$a\cdot (b+c) = (a\cdot b) + (a\cdot c)$$

$$(b+c) \cdot a = (b \cdot a) + (c \cdot a)$$

Note that multiplicative commutativity and multiplicative inverse are not here!

Remark

One can derive that when a ring has 0 = 1 (additive identity = multiplicative identity), then it must be a trivial zero ring of $\{0\}$

Definition 2.5 (Rng)

A **rng** is a ring without the requirement of a multiplicative identity. Recap: Abelian group, multiplicative associativity, distributivity

Definition 2.6 (Commutative Ring)

A **commutative ring** is a ring, with the additional requirement of multiplication being commutative. Recap: Abelian group; multiplicative associativity, commutativity and identity; distributivity

Definition 2.7 (Field)

A field is a set F equipped with 2 binary operations (addition, multiplication) $+, \cdot : F \times F \to F$ s.t.

- 1. Addition and multiplication are associative
- 2. Addition and multiplication are commutative
- 3. There is an additive inverse 0
- 4. $\forall a \in F \setminus 0, \exists a^{-1} \text{ s.t. } a^{-1}a = 1$
- 5. Distributivity

In short, a field is a commutative ring where non-zero elements have multiplicative inverses. The non-zero elements then form a group equipped with multiplication with 1 as their identity. Recap: Abelian group; multiplicative associativity, commutativity, identity and inverse (inverse only for

Definition 2.8 (Ordered Field)

[Munkres - Ch.1 p.32]

non-zero); distributivity

3 The -isms

Definition 3.1 (Homomorphism)

homo: Greek homos, meaning "same"

morphism: Greek morphism, meaning "shape, form"

A homomorphism is a map $f: A \to B$, where A, B are (very generically) algebraic structures of the same type G and are therefore equipped with the same kind(s) of operation, WLOG, namely $\cdot_A, \cdot_B: G^k \to G$ (e.g. groups, vector spaces). A homomorphism f then preserves the structures of these operations, i.e.

$$f(x) \cdot_B f(y) = f(x \cdot_A y) \ \forall \ x, y \in A$$

if \cdot is binary, and the same concept applies for the general k-ary case.

Example

A **group homomorphism** is a homomorphism in a group, where the homomorphism preserves the \cdot equipped by the group.

Definition 3.2 (Isomorphism)

iso: Greek isos, meaning "equal"

An **isomorphism** is a homomorphism that is bijective.

Remark

For me, it's so common to just intuitively think that a homomorphism must be bijective, but no! e.g. $f: \mathbb{Z} \to \{0\}$, both equipped with +

Definition 3.3 (Endomorphism)

endo: Greek endon, meaning "in, within"

An **endomorphism** is a homomorphism that has the same domain and codomain, i.e.

$$f:A\to A$$

Definition 3.4 (Automorphism)

auto: Greek autos, meaning "self"

An automorphism is an endomorphism that is also an isomorphism, (or vice versa)

4 The -algebras

This section stemmed from my need to study probability and felt the urgent need to categorize what I'm working with immediately.

Definition 4.1 (Field of sets, Algebra)

A field of sets is a pair (X, \mathcal{F}) , where X is a set and \mathcal{F} is a collection of subsets of X, that satisfies:

- 1. $\emptyset \in \mathcal{F}$
- 2. (Closed under complementation)

$$\mathcal{F} \setminus F \in \mathcal{F} \ \forall \ F \in \mathcal{F}$$

3. (Closed under finite unions)

$$\bigcup_{k=1}^{n} F_k \in \mathcal{F} \ \forall \ F_1, F_2, \dots, F_k \in \mathcal{F}$$

 \mathcal{F} is then called an **algebra over** X

Remark

The property that \mathcal{F} is closed under finite unions also implies that it is closed under finite intersections, simply by applying De Morgan's Law.

Furthermore, one can think of \mathcal{F} as consisting of the admissible sets of X, the complexes of X, the nice ones that we can handle and get a hold of. In most contexts, this \mathcal{F} would be where we define a lot of things on, as not all subsets of X are nice to work with.

Definition 4.2 (σ -field of sets, σ -algebra)

A σ -field of sets is a field of sets (X, \mathcal{F}) that also satisfies:

4. (Closed under countable unions)

$$\bigcup_{i=1}^{\infty} F_i \in \mathcal{F} \, \forall \, F_1, F_2, \dots \in \mathcal{F}$$

 \mathcal{F} is then called a σ -algebra over X

Remark

The property that a σ -algebra is closed under countable unions also implies that it is closed under countable intersections, again, by an application of De Morgan's Law.

5 Linear Algebra

5.1 Vector Spaces

Definition 5.1 (Vector Spaces)

A **vector space** over a field F is a non-empty set V equipped with 2 binary operations (vector addition, scalar multiplication): $+: V \times V \to V, \cdot: F \times V \to V$ that satisfies:

- 1. (Abelian Group) (V, +) forms an abelian group
- 2. (Scalar and Field Multiplication)

$$(a \cdot_F b) \cdot v = a \cdot (b \cdot V)$$

3. (Field Multiplicative Identity)

$$1_F \cdot v = v \ \forall \ v \in V$$

4. (Distributivity) $\forall a \in F; u, v \in V$

$$a \cdot (u + v) = (a \cdot u) + (a \cdot v)$$

$$(a +_F b) \cdot v = a \cdot v + b \cdot v$$

Definition 5.2 (Linear Map)

Let V, W be vector spaces over the same field F. Then a **linear map** is a function $f: V \to W$ that is operations-preserving, i.e. satisfying:

1. (Preserving Addition)

$$f(v_1 +_V v_2) = f(v_1) +_W f(v_2) \ \forall \ v_1, v_2 \in V$$

2. (Preserving Scalar Multiplication)

$$f(c \cdot_V v) = c \cdot_W f(v) \ \forall \ c \in F, v \in V$$

More generally,

$$f(c_1v_1 + c_2v_2 + \dots + c_nv_n) = c_1f(v_1) + c_2f(v_2) + \dots + c_nf(v_n)$$

In other words, a linear map is a vector space homomorphism.

Definition 5.3 (Linear Isomorphism)

A linear isomorphism is a linear map that is also bijective.

Definition 5.4 (Linear Operator/Linear Endomorphism)

A linear operator or a linear endomorphism is a linear map that has the same domain and codomain, i.e. a linear map $f: V \to V$.

6 Analysis

6.1 Metric Spaces

Definition 6.1 (Metric Spaces)

Definition 6.2 (Isometry)

 $metry \colon$ Greek metria, meaning "measuring, measure" An

7 Topology

Remark

On indexing:

- 1. $\{E_1, E_2, \dots, E_N\}$, sometimes I like to use $\{E_k\}_{k \le N}$, suggests a finite indexing
- 2. $\{E_1, E_2, \dots\}$ or $\{E_n\}_{n \in \mathbb{N}}$ suggests a countable indexing
- 3. $\{E_{\alpha}\}\$ suggests an uncountable indexing (which kinda encompasses all previous cases and alludes to the "arbitrary" nature)

Definition 7.1 (Topology, Topological Space, Open Set)

A **topology** on set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. Arbitrary union of elements in \mathcal{T} is in \mathcal{T} , i.e.

$$\bigcup_{\alpha} E_{\alpha} \in \mathcal{T} \,\forall \, \{E_{\alpha}\} \subseteq \mathcal{T}$$

3. Finite intersection of elements in \mathcal{T} is in \mathcal{T} , i.e.

$$\bigcap_{k=1}^{N} E_k \in \mathcal{T} \,\forall \, \{E_k\}_{k \leq N} \subseteq \mathcal{T}$$

A set X with a specified topology \mathcal{T} is a **topological space**. $U \subseteq X$ is called an **open set** iff $U \in \mathcal{T}$, so think of \mathcal{T} as a (huge) collection of open sets.

Definition 7.2 (Basis For A Topology)

Often times, one is unable to specify the entire topology \mathcal{T} , so we can instead specify a smaller collection oof subsets of X and then define the topology using that.

Let X be a set, then a basis is a collection \mathcal{B} of subsets of X (called basis elements) s.t.

- 1. $\forall x \in X, \exists B \in \mathcal{B} \text{ s.t. } x \in B \text{ (wherever you are, I got you)}$
- 2. If $x \in B_1 \cap B_2$; $B_1, B_2 \in \mathcal{B}$ then $\exists B_3 \in \mathcal{B} \text{ s.t. } x \in B_3 \subseteq B_1 \cap B_2$

Definition 7.3 (Topology Generated By Basis)

Call this entity that we want to generate $\mathcal{T}_{\mathcal{B}}$ (my own notation). Then for subset $U \subseteq X$,

$$U \in \mathcal{T}_{\mathcal{B}}$$
 if $\forall x \in U, \exists B \in \mathcal{B} \text{ s.t. } x \in B \subseteq U$

7.1 Others

Definition 7.4 (Linear Continuum)

8 REU 2023

Definition 8.1 (Harmonic Function)

Let U be an open subset of \mathbb{R}^d , then f is **harmonic** in U if and only if it is continuous and satisfies the mean value property: for every $x \in U$, $\forall 0 < \varepsilon < dist(x, \partial U)$,

$$f(x) = MV(f; x, \varepsilon) = \int_{|y-x|=\varepsilon} f(y)ds(y)$$

9 Wilansky's Topology for Analysis

9.1 Chapter 2: Topological Space

Recall the definition of a **topology** from above; essentially when we define a topology, just need to define what "open sets" are. Finite intersections and arbitrary unions of those open sets would automatically be in the topology. Note that \varnothing and Ω are axiomatically in the topology.

Definition 9.1 (Semimetric, Metric)

Set X. Let $d: X \times X \to \mathbb{R}$ s.t.

- 1. $d(x,y) = d(y,x) \ge 0$
- 2. d(x,x) = 0
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Then d is a **semimetric**. A **metric** is a semimetric d s.t. d(x,y) > 0 when $x \neq y$

Definition 9.2 (Semimetric Space, Metric Space)

A (semi)metric space is a set that is equipped with a (semi)metric.

Definition 9.3 (Open ball, Closed ball, Disc)

Let X be a semimetric space. Define

- 1. **Open ball**: $N(a,r) = \{x \mid d(x,a) < r\}$
- 2. Closed ball: $D(a,r) = \{x \mid d(x,a) < r\}$
- 3. **Sphere**: $C(a,r) = \{x \mid d(x,a) = r\}$

Definition 9.4 (Topology on semimetric space)

The standard topology on semimetric spaces (from now on, metric spaces should be interpreted similarly) is that

- 1. \emptyset is open
- 2. $G \subset X$ is open if $\forall x \in G$, there exists open ball $N(x,r) \subset G$

Indeed, open balls are open.

Definition 9.5 (Neighborhood)

N is a **neighborhood** of x if there exists open set G s.t. $x \in G \subset N$ Equivalently, there exists open ball $N(x,r) \subset G \subset N$ It is here trivial that an open ball N(x,r) is also a neighborhood.

Definition 9.6 (Interior, Closure)

The **interior** of a set S is the set of all points x s.t. S is a neighborhood of x.

The closure of a set S is the intersection of all closed sets F s.t. $S \subset F$, i.e. the smallest closed set \bar{S} s.t. $S \subset \bar{S}$

Definition 9.7 (Local Base, Base)

A collection \mathcal{B} of subsets of a topological space is called a **local base at** x if

- 1. Every member of \mathcal{B} is a neighborhood of x
- 2. For every neighborhood N of x, there exists a set $S \in \mathcal{B}$ with $S \subset N$

A collection \mathcal{B} of subsets of a topological space is called a **base** for the topology if every member of \mathcal{B} is open and \mathcal{B} includes a local base at each point.

9.2 Chapter 3: Convergence

Definition 9.8 (Convergence)

A sequence $\{y_n\}$ in topological space X. y_n converges to x $(y_n \to x)$ if for every neighborhood N of $x, y_n \in N$ eventually, i.e. \forall neighborhood N of x, $\exists N \in \mathbb{N}$ s.t. $\forall n > N, y_n \in N$

Definition 9.9 (First Countable)

A topological space is called **first countable at** x if there is a countable local base at x, and **first countable** if it is first countable at each of its points.

Definition 9.10 (Filters)

A collection \mathcal{F} of subsets of a set X is a **filter** in X if

- 1. $X \in \mathcal{F}$
- 2. $\varnothing \notin \mathcal{F}$
- 3. $A \in \mathcal{F}, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- 4. $A \in \mathcal{F}, B \supset A \Rightarrow B \in \mathcal{F}$