Model Formulation

Table 1: List of Variables

Variable	Definition	Unit
k_s^B	Battery power rating at charging station s	MW
e_s^B	Energy capacity for battery at charging station s	MWh
g_{st}^B	Battery electricity generation at charging station s at time t	MWh
d_{st}^B	Inflow demand for battery at charging station s at time t	MWh
x_{st}^B	State of charge for battery at charging station s at time t	MWh
k_s^H	H_2 power rating at charging station s	MW
e_s^H	Energy capacity for H_2 at charging station s	MWh
g_{st}^H	H_2 electricity generation at charging station s at time t	MWh
x_{st}^H	State of charge for H_2 at charging station s at time t	MWh
d_{st}^H	Inflow demand for H_2 at charging station s at time t	MWh
k_s^P	Solar capacity at charging station s	MW
g_{st}^P	Solar electricity generation at charging station s at time t	MWh
g_{st}^{M}	SMR electricity generation at charging station s at time t	MWh
u_s^M	Number of SMR modules to build at charging station s	Whole number
u_{si}^W	Whether to build (1) or not build (0) transmission line of capacity group i at station s	Binary
g_{st}^W	Electricity generation purchased from wholesale markets to charging station \boldsymbol{s} at time t	MWh

Table 2: List of Parameters and Sets

Parameter/Set	Definition	Unit
Parameters:		
p^{BK}	Battery annual capital cos	\$/MW
p^{BC}	Battery energy cost	\$/MWh
p^{BE}	Battery operating cost	\$/MWh
r_s^B	Battery ramp rate at charging station s at time t	MWh
h^B	Battery hour	hour
p^{HK}	${ m H_2}$ capital cost	\$/MW
p^{HC}	H_2 energy cost	\$/MWh
p^{HE}	H_2 operating cost	\$/MWh
$ar{d}_{st}^H$	H_2 demand at charging station s at time t	MWh
r_s^H	H_2 ramp rate at charging station s at time t	MWh
p^{PK}	Solar capital cost	\$/MW
p^{PE}	Solar operating cost	\$/MWh
f_{st}^P	Solar capacity factor at charging station s at time t	%
g_{min}^{M}	SMR minimum stable load	MWh
p^{MK}	SMR capital cost	\$/MW
p^{ME}	SMR operating cost	\$/MWh
$ar{k}^M$	SMR module capacity s	MW
$ar{l}_{si}^{W}$	Length of transmission line of capacity group i built to connect to charging station s	Miles
$ar{k}^W_i$	Effective capacity of transmission line in group i	MW
p_{si}^{WK}	Transmission capital cost for transmission capacity group i at charging station s	\$/MW
p_{si}^{WI}	Transmission infrastructure cost for transmission capacity group i at charging station s	\$/mile
p_{si}^{WC}	Conductor cost for transmission capacity group i at charging station s	\$/mile
p_{si}^{WL}	Land cost for transmission capacity group i at charging station s	\$/mile
p_{st}^{WE}	Wholesale electricity cost at charging station s at time t	\$/MWh
p_s^{WO}	Overhead add-ons at charging station s	%
d_{st}^E	Electricity demand at charging station s at time t	MWh
Sets:		
${\rm I\hspace{1em}I}$	Set of transmission line capacity levels, index $i = \{1, 2, 3,, 7\}$	_
S	Set of stations, index $s = \{1, 2, 3,, 170\}$	-
${\mathbb T}$	Set of hours, index $t = \{1, 2, 3,, 24\}$	-
\mathbb{Z}_0^+	Set of whole numbers, $\mathbb{Z}_0^+ = \{0, 1, 2, 3,\}$	-
\mathbb{Z}_2	Set of binary numbers, $\mathbb{Z}_2 = \{0,1\}$	_

$$\min_{\substack{u_{si}^{W}, k_{s}^{B}, k_{s}^{H}, k_{s}^{P}, u_{s}^{M}, \\ e_{s}^{B}, e_{s}^{H}, e_{s}^{H}, u_{s}^{H}, u_{s}^{H},$$

s.t.

General Non-negativity:
$$k_s^B, k_s^H, k_s^P, k_s^W, e_s^B, e_s^H \ge 0,$$
 $\forall s \in \mathbb{S}$ (2)

Market Clearing Conditions:
$$g_{st}^B + g_{st}^H + g_{st}^P + g_{st}^M + g_{st}^W \ge d_{st}^E - \bar{d}_{st}^H + d_{st}^B + d_{st}^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (3)

 $0 \leq d_{st}^B \leq k_{st}^B$

Battery Constraints:

$$0 \leq g_{st}^{B} \leq k_{s}^{B}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$

$$0 \leq g_{st}^{B} \leq x_{st}^{B}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$

$$e_{s}^{B} = h^{B}k_{s}^{B}, \qquad \forall s \in \mathbb{S}$$

$$0 \leq x_{st}^{B} \leq e_{s}^{B}, \qquad \forall s \in \mathbb{S}$$

$$0 \leq x_{st}^{B} \leq e_{s}^{B}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$

$$x_{st}^{B} = x_{s(t-1)}^{B} + d_{st}^{B} - g_{st}^{B}, \qquad \forall s \in \mathbb{S}, \forall t > 1 \in \mathbb{T}$$

$$x_{s(t-1)}^{B} = 0.5 \times e_{s}^{B}, \qquad \forall s \in \mathbb{S}$$

$$(10)$$

Hydrogen Constraints:
$$0 \le d_{st}^H \le k_s^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (11) $0 \le g_{st}^H \le k_s^H$, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (12) $0 \le g_{st}^H \le x_{st}^H$, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (13)

$$0 \le x_{st}^H \le e_s^H, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$

$$x_{st}^H = x_{s(t-1)}^H + d_{st}^H - g_{st}^H, \qquad \forall s \in \mathbb{S}, \forall t > 1 \in \mathbb{T}$$

$$(14)$$

 $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$

(4)

$$\mathbf{x}_{s(t=1)}^{H} = 0.5 \times \mathbf{e}_{s}^{H}, \qquad \forall s \in \mathbb{S}$$
 (16)

$$g_{st}^{H} > \bar{d}_{st}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (17)

Solar PV Constraints:
$$0 \le g_{st}^P \le f_{st}^P k_s^P$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (18)

SMR Constraints:
$$0 \le g_{st}^M \le u_s^M \bar{k}^M$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (19)

$$u_s^M \in \mathbb{Z}_0^+,$$
 $\forall s \in \mathbb{S}$ (20)

$$g_{st}^{M} \ge g_{min}^{M}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (21)

$$\|g_{st}^{M} - g_{s(t-1)}^{M}\| \le r_s^{M} u_s^{M} \bar{k}^{M}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (22)

Wholesale Power Constraints:
$$0 \le g_{st}^W \le \sum_i u_{si}^W \bar{k}_i^W$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (23)

$$u_{si}^{W} \in \mathbb{Z}_{2},$$
 $\forall s \in \mathbb{S}, \forall i \in \mathbb{I}$ (24)

$$\sum_{i} u_{si}^{W} \le 1, \qquad \forall s \in \mathbb{S}, \forall i \in \mathbb{I}$$
 (25)