

Chapter 8

Rate of Return Multiple Alternatives

Lecture slides to accompany

Engineering Economy

8th edition

Leland Blank
Anthony Tarquin

LEARNING OUTCOMES

- 1. Why incremental analysis is required in ROR
- 2. Incremental cash flow (CF) calculation
- 3. Interpretation of ROR on incremental CF
- 4. Select alternative by ROR based on PW relation
- 5. Select alternative by ROR based on AW relation
- Select best from several alternatives using ROR method

Why Incremental Analysis is Necessary

Selecting the alternative with _____ ROR may ____ yield ____ return on available capital
 Must consider _____ average of total capital available
 Capital not invested in a project is assumed to earn at _____

Example: Assume \$90,000 is available for investment and MARR = 16% per year. If alternative A would earn 35% per year on investment of \$50,000, and B would earn 29% per year on investment of \$85,000, the weighted averages are:

Overall ROR_A =
$$[50,000(0.35) + 40,000(0.16)]/90,000 = 26.6\%$$

Overall ROR_B = $[85,000(0.29) + 5,000(0.16)]/90,000 = 28.3\%$

Which investment is better, economically?

Why Incremental Analysis is Necessary

If selection basis is higher ROR: Select alternative A (_____ answer) If selection basis is higher ROR: Select alternative B Conclusion: Must use an _____ ROR analysis to make a consistently correct selection Unlike PW, AW, and FW values, if not analyzed correctly, ROR values can lead to an incorrect alternative selection. This is called the ranking _____ problem (discussed later)

Calculation of Incremental CF

_____ cash flow = cash flow_B – cash flow_A
where initial investment is Alternative B

Example: Either of the cost alternatives shown below can be used in a grinding process. Tabulate the incremental cash flows.

	A	В	B - A
First cost, \$	-40,000	- 60,000	-20,000
Annual cost, \$/year	-25,000	-19,000	+6000
Salvage value, \$	8,000	10,000	+2000

The incremental CF is shown in the (B-A) column

The ROR on the _____ \$20,000 investment in B determines which alternative to select (as discussed later)

8-5

Interpretation of ROR on Extra Investment

	does not yield at least the MARR should be made.		
RO with	ce a lower-cost alternative <i>has been economically</i> justified, to R on the <i>investment</i> (i.e., additional amount of money associated a higher first-cost alternative) must also yield a ROR < MARR (be extra investment is by selecting the economically-justified low rnative).	iated cause	
This incremental ROR is identified as			

For _____ projects, select all that have ROR ≥ MARR (___ incremental analysis is necessary)

ROR Evaluation for Two ME Alternatives

- (1) Order alternatives by _____ initial investment cost
- (2) Develop incremental CF series using LCM of years
- (3) Draw incremental cash flow diagram, if needed
- (4) Count sign changes to see if multiple $\triangle i^*$ values exist
- (5) Set up PW, AW, or FW = 0 relation and $find \triangle i^*_{B-A}$ Note: Incremental ROR analysis requires _____ comparison. The LCM of lives must be used in the relation
- (6) If $\Delta i^*_{B-A} < MARR$, select ___; otherwise, select ___

If multiple Δi^* values exist, **find EROR** using either MIRR or ROIC approach.

Example: Incremental ROR Evaluation

Either of the cost alternatives shown below can be used in a chemical refining process. If the company's MARR is 15% per year, determine which should be selected on the basis of ROR analysis?

	A	В
First cost ,\$	-40,000	-60,000
Annual cost, \$/year	-25,000	-19,000
Salvage value, \$	8,000	10,000
Life, years	5	5

Initial observations: ME, cost alternatives with equal life estimates and no multiple ROR values indicated

Example: ROR Evaluation of Two Alternatives

Solution, using procedure:

	A	В	B - A
First cost,\$	-40,000	-60,000	-20,000
Annual cost, \$/year	-25,000	-19,000	+6000
Salvage value, \$	8,000	10,000	+2000
Life, years	5	5	

Order by ____ cost and find ____ cash flow B - A |

Write ROR equation (in terms of PW, AW, or FW) on incremental CF

$$0 = -20,000 + 6000(P/A,\Delta i^*,5) + 2000(P/F,\Delta i^*,5)$$

Solve for $\triangle i^*$ and **compare** to MARR

$$\Delta i^*_{B-A} = 17.2\% > MARR of 15\%$$

ROR on \$20,000 extra investment is acceptable: Select ____

ROR Analysis – Multiple Alternatives

Six-Step Procedure for Mutually () Alternatives

- (1) Order alternatives from ______ to largest initial investment
- (2) For revenue alts, calculate i* (vs. DN) and _____ all with i* < MARR; remaining alternative with lowest cost is defender. For cost alternatives, go to step (3)
- (3) Determine incremental CF between *defender* and *next lowest-cost* alternative (known as the *challenger*). Set up ROR relation
- (4) Calculate ∆i* on incremental CF between two alternatives from step (3)
- (5) If $\Delta i^* \ge MARR$, eliminate _____ and challenger becomes new defender against next alternative on list
- (6) Repeat steps (3) through (5) until only ____ alternative remains. Select it.

For Independent Projects

Compare each alternative vs. DN and select all with ROR ≥ MARR

Example: ROR for Multiple Alternatives

The five mutually exclusive alternatives shown below are under consideration for improving visitor safety and access to additional areas of a national park. If all alternatives are considered to last indefinitely, determine which should be selected on the basis of a rate of return analysis using an interest rate of 10%.

First cost, \$ millions
Annual M&O cost, \$ millions

A	<u> </u>	<u> </u>	<u> </u>	<u> </u>
-20	-40	-35	-90	-70
-2	-1.5	-1.9	-1.1	-1.3

Solution: Rank on the basis of initial cost: A,C,B,E,D; calculate CC values

C vs. A:
$$0 = -15 + 0.1/\Delta i^*$$
 $\Delta i^* = 6.7\%$ (eliminate C) B vs. A: $0 = -20 + 0.5/\Delta i^*$ $\Delta i^* = 25\%$ (eliminate A) E vs. B: $0 = -30 + 0.2/\Delta i^*$ $\Delta i^* = 6.7\%$ (eliminate E) D vs. B: $0 = -50 + 0.4/\Delta i^*$ $\Delta i^* = 8\%$ (eliminate D)

Select alternative _____

Summary of Important Points

HOMEWORK

- 1. Please solve every Examples in your textbook. You do not have to submit your works.
- 2. Please upload following "PROBLEMS" solution file on "Assignment" menu in e-Class.
 - **(1) 8.17**
 - **2** 8.23
 - **3** 8.34
 - **4** 8.39
 - **5** 8.57