数值代数实验报告

PB21010483 郭忠炜 2023 年 10 月 26 日

一、问题描述

Exercise1.1

编写计算矩阵一范数的程序,估计 5 到 20 阶 Hilbert 矩阵的 ∞ 范数条件数。

Exercise1.2

生成 5 到 30 阶的矩阵 A,随机生成 x,计算 b=Ax,然后利用列主元高斯消去法解决 Ax=b 的线性方程组,最后估计解的精度并计算真实相对误差。

二、程序介绍

Exercise1.1

生成符号向量 (Sign Vector Generation):

- 函数描述: sign 函数用于生成输入向量 w 的符号向量,即返回一个与 w 同样大小的向量,其中元素为 w 中对应元素的符号。
- 使用方式: 调用 sign(w) 函数,传入向量 w,函数返回符号向量。

计算向量内积 (Vector Inner Product):

- 函数描述: InnerProduct 函数用于计算两个输入向量 a 和 b 的内积。
- 使用方式: 调用 InnerProduct(a, b) 函数,传入两个向量 a 和 b,函数返回它们的内积。

计算向量无穷范数 (Vector Infinity Norm):

- **函数描述:** VectorInfinityNorm 函数用于计算输入向量 vec 的无穷范数,即返回 vec 中绝对值最大的元素。
- 使用方式: 调用 VectorInfinityNorm(vec) 函数, 传入向量 vec, 函数返回无穷范数。

计算向量一范数 (Vector One Norm):

- 函数描述: VectorOneNorm 函数用于计算输入向量 vec 的一范数,即返回 vec 中所有元素的绝对值之和。
- 使用方式: 调用 VectorOneNorm(vec) 函数, 传入向量 vec, 函数返回一范数。

生成对应下标为 1 单位向量 (Unit Vector Generation):

- 函数描述: UnitVectorGenerating 函数用于生成一个与输入向量 vec 同样大小的单位向量,其中单位向量的值对应于 vec 的无穷范数下标。
- 使用方式: 调用 UnitVectorGenerating(vec, n) 函数, 传入向量 *vec* 和整数 *n*, 函数返回单位 向量。

计算矩阵一范数 (Matrix One Norm):

- 函数描述: MatrixOneNorm 函数用于计算输入矩阵 A 的一范数,即返回 A 中每列元素的绝对值之和的最大值。
- 使用方式: 调用 MatrixOneNorm(n, A) 函数,传入整数 n 和矩阵 A,函数返回一范数。

计算矩阵无穷范数 (Matrix Infinity Norm):

- **函数描述:** MatrixInfinityNorm 函数用于计算输入矩阵 *matrix* 的无穷范数,即返回 *matrix* 中每行元素的绝对值之和的最大值。
- 使用方式: 调用 MatrixInfinityNorm(matrix) 函数,传入矩阵 matrix, 函数返回无穷范数。

Exercise1.2

矩阵向量乘法 (Matrix-Vector Multiplication):

- 函数描述: MatrixVectorMultiply 函数用于计算矩阵 A 和向量 b 的乘积,返回一个向量。
- 使用方式: 调用 MatrixVectorMultiply(A, b) 函数,传入矩阵 A 和向量 b,函数返回乘积向量。

向量减法 (Vector Subtraction):

- 函数描述: VectorSubtraction 函数用于计算两个输入向量 x 和 y 的差,返回一个向量。
- 使用方式: 调用 VectorSubtraction(x, y) 函数, 传入两个向量 x 和 y, 函数返回它们的差向量。

除了上面列举的函数之外,我还调用了第一章作业中定义的函数,比如生成 Hilbert 矩阵、矩阵转置和方程求解有关的程序。

三、实验结果

${\bf Exercise 1.1}$

矩阵规模	∞ 范数条件数
5	943656
6	2.90703e+07
7	9.85195e + 08
8	$3.38728e{+10}$
9	1.09965e + 12
10	$3.53525\mathrm{e}{+13}$
11	$1.22961\mathrm{e}{+15}$
12	$3.82265\mathrm{e}{+16}$
13	$5.50049e{+17}$
14	$3.19705\mathrm{e}{+18}$
15	$1.02714\mathrm{e}{+18}$
16	$6.27368e{+}18$
17	$3.80892e{+}18$
18	$4.3539e{+}18$
19	$4.43764e{+}18$
20	4.45685e + 18

表 1: 5 到 20 阶 Hilbert 矩阵的 ∞ 范数条件数

Exercise1.2

矩阵规模	估计精度	真实精度
5	1.39355e-15	5.37651e-16
6	3.99934 e-16	2.03221e-16
7	$4.44164e ext{-}16$	2.05858e-16
8	3.4203 e-15	1.41432e-15
9	3.35443 e-16	2.25212e-16
10	1.14152e-14	4.78374e-15
11	1.39223 e-14	5.84474e-15
12	1.3475 e-13	6.0411e-14
13	7.64566e-14	3.19566e-14
14	7.04473e-14	3.33849e-14
15	1.34147e-12	$6.02681 \mathrm{e}\text{-}13$

16 8.65455e-14 3.94364e-14 17 7.7722e-12 2.86122e-12 18 1.837e-12 9.30363e-13 19 1.2035e-13 7.6454e-14 20 1.2426e-11 6.55229e-12 21 3.1232e-11 1.52572e-11 22 6.02992e-11 2.64836e-11 23 6.42282e-11 3.59628e-11 24 4.12898e-10 2.23124e-10 25 1.04553e-09 4.87306e-10 26 2.61624e-10 1.03894e-10 27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09 30 6.48284e-09 3.33615e-09			
18	16	8.65455e-14	3.94364e-14
19	17	7.7722e-12	2.86122e-12
20	18	1.837e-12	9.30363e- 13
21 3.1232e-11 1.52572e-11 22 6.02992e-11 2.64836e-11 23 6.42282e-11 3.59628e-11 24 4.12898e-10 2.23124e-10 25 1.04553e-09 4.87306e-10 26 2.61624e-10 1.03894e-10 27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	19	1.2035e-13	7.6454e-14
22 6.02992e-11 2.64836e-11 23 6.42282e-11 3.59628e-11 24 4.12898e-10 2.23124e-10 25 1.04553e-09 4.87306e-10 26 2.61624e-10 1.03894e-10 27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	20	1.2426e-11	6.55229 e-12
23 6.42282e-11 3.59628e-11 24 4.12898e-10 2.23124e-10 25 1.04553e-09 4.87306e-10 26 2.61624e-10 1.03894e-10 27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	21	3.1232e-11	1.52572e-11
24 4.12898e-10 2.23124e-10 25 1.04553e-09 4.87306e-10 26 2.61624e-10 1.03894e-10 27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	22	6.02992 e-11	2.64836e-11
25	23	6.42282 e-11	3.59628e-11
26 2.61624e-10 1.03894e-10 27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	24	4.12898e-10	2.23124e-10
27 1.2612e-10 6.56837e-11 28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	25	1.04553e-09	4.87306e-10
28 3.04428e-10 1.72571e-10 29 3.63452e-09 1.52792e-09	26	2.61624 e-10	1.03894e-10
29 3.63452e-09 1.52792e-09	27	1.2612 e-10	6.56837e-11
	28	3.04428e-10	1.72571e-10
30 6.48284e-09 3.33615e-09	29	3.63452 e-09	1.52792 e-09
	30	6.48284e-09	3.33615e-09

表 2: 矩阵规模为 5~30 时的估算精度与真实精度

四、结果分析

Exercise1.1

从运算结果来看,Hilbert∞ 范数条件数随着矩阵规模增大到 14, 其数量级迅速增大到 1e+18, 之后稳定在改数量级,这可能是由于 Hilbert 矩阵本身的性质。

Exercise1.2

随着矩阵规模的增大,可以观察到估算精度和真实精度表现出了同步的增大,数量级上从 n=5 时的 1e-15 上涨到了 n=30 时 1e-9,但是估算精度与真实精度之间的比例几乎保持不变。