0 积分公式

1.

2.

$$\int_a^b f(x) \, g'(x) \, dx = ig[f(x) g(x)ig]_a^b - \int_a^b f'(x) \, g(x) \, dx \ J_F(x,y) = egin{bmatrix} rac{\partial f_1}{\partial x} & rac{\partial f_1}{\partial y} \ rac{\partial f_2}{\partial x} & rac{\partial f_2}{\partial x} \end{bmatrix}.$$

3. $d \tan x = \sec^2 x$

 $d \sec x = \sec x \tan x$

$$d\cot x = -\csc^2 x$$

 $d\csc x = -\csc x \cot x$

$$d\sin^{-1}x=rac{1}{\sqrt{1-x^2}}$$

$$d\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

$$d\tan^{-1}x = \tfrac{1}{1+x^2}$$

4. Taylor series

$$\begin{split} \frac{1}{1-x} &= 1+x+x^2+\dots+x^n+\dots = \sum_{n=0}^\infty x^n, \qquad |x|<1.\\ \frac{1}{1+x} &= 1-x+x^2-\dots+(-x)^n+\dots = \sum_{n=0}^\infty (-1)^n x^n, \qquad |x|<1.\\ e^x &= 1+x+\frac{x^2}{2!}+\dots+\frac{x^n}{n!}+\dots = \sum_{n=0}^\infty \frac{x^n}{n!}, \qquad x\in\mathbb{R}.\\ \sin x &= x-\frac{x^3}{3!}+\frac{x^5}{5!}-\dots+(-1)^n \frac{x^{2n+1}}{(2n+1)!}+\dots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \qquad x\in\mathbb{R}.\\ \cos x &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\dots+(-1)^n \frac{x^{2n}}{(2n)!}+\dots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!}, \qquad x\in\mathbb{R}.\\ \ln(1+x) &= x-\frac{x^2}{2}+\frac{x^3}{3}-\dots+(-1)^{n-1}\frac{x^n}{n}+\dots = \sum_{n=1}^\infty (-1)^{n-1}\frac{x^n}{n}, \qquad -1< x\leq 1.\\ \tan^{-1}x &= x-\frac{x^3}{3}+\frac{x^5}{5}-\dots+(-1)^n \frac{x^{2n+1}}{2n+1}+\dots = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}, \qquad |x|\leq 1. \end{split}$$

5.

1 Basic Ideas in Probability

1. 容斥原理:

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \ldots (-1)^{n-1} P(A_1 A_2 \ldots A_n)$$

2.
$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

2 Random Variables and Distribution

1. 琴生:

•
$$E(|X|) \ge |E(X)| (g(x) = |x|)$$

•
$$E(X^2) \ge (E(X))^2 (g(x) = x^2)$$

•
$$E(|X|^p) \ge |E(X)|^p$$
 对于 $p \ge 1$ $(g(x) = |x|^p, p \ge 1)$

•
$$E(e^{cX}) \ge e^{cE(X)} \left(g(x) = e^{cX} \right)$$

2.
$$Y=g(X)$$
, $h(y)=g^{-1}(y)$, $\Rightarrow f_Y(y)=egin{cases} |h'(y)|\cdot f_X(h(y)), au h(y)$ 有定义处 0 ,否则

3.	分布	PDF/PMF	期望	方差
	均匀 (a,b)	$f(x) = egin{cases} rac{1}{b-a}, & ext{if } a < x < b \ 0, & ext{otherwise} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	正态 (μ, σ^2)	$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
	指数 (λ)	$f(x) = egin{cases} \lambda e^{-\lambda x}, & ext{if } x \geq 0 \ 0, & ext{otherwise} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	几何 (p)(无记忆离散)	$p(x)=p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	泊松(λ)	$p(x) = rac{\lambda^x}{x!} e^{-\lambda}$	λ	λ
	二项(n,p)	$p(x) = C_n^x p^x (1-p)^{n-x}$	np	np(1-p)
	伯努利(p)	$p(x) = p^x (1-p)^{1-x}$	р	p(1-p)

4. 标准化:
$$Z=rac{X-\mu}{\sigma}$$

5.
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

6.
$$E(Y) = E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

7.
$${
m Var}({
m X})=E(X-E(X))^2=E(X^2)-[E(X)]^2=\int_{-\infty}^{\infty}[x-E(X)]^2f(x)dx$$

3 Joint Distributions

1.
$$Cov(X, Y) = E(XY) - E(X)E(Y) = E[(X - E(X))(Y - E(Y))]$$

2.
$$Cov(aX, bY) = abCov(X, Y)$$

3.
$$\operatorname{Var}(X \pm Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \pm 2\operatorname{Cov}(X,Y)$$

4.
$$Cov(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j)$$

5.
$$ho_{XY} = Cor(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

6. **MSE**:

$$egin{align*} b_0 &= rac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(X)} \ a_0 &= E(Y) - rac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(X)} E(X) \ \min_{a,b} MSE &= \mathrm{Var}(Y) (1-
ho_{XY}^2) \ \end{array}$$

7. Law of total expectation: E(X) = E((X|Y))

$$E(X) = \int_{-\infty}^{\infty} E(X|Y=y) \cdot f_Y(y) dy$$