# Homework 4

Robbie McKinstry, Jack McQuown, Cyrus Ramavarapu 9 September 2016

# **Greedy Problems**

### Problem 12:

This greedy algorithm can be shown to be correct by an exchange argument.

Let Alg be the process by which the greedy algorithm operates. Assume that there is some input I such that Alg(I) is incorrect. Let Opt(I) be an optimal solution that agrees with the most number of steps with Alg(I).

#### Problem 18:

A:

B:

 $\mathbf{C}$ :

### **Dynamic Programming**

#### Problem 1:

**A**:

B:

To show that only  $O(n^2)$  operations are needed if every duplicate T(i) is calculated only once, begin by expanding the sum in the recurrence.

$$T(n) = \sum_{i=1}^{n-1} T(i)T(i-1)$$

$$T(n) = T(1)T(0) + T(2)T(1) + T(3)T(2) \cdot \cdot \cdot + T(n-2)T(n-3) + T(n-1)T(n-2)$$

Since every T(i) will only be calculated once, following sequence can be observed by counting the number of operations needed to determine each T(i).

It can be shown that the T(i+1) element of the sum requires two additional operations to calculate: a multiplication and an addition. Hence, this sequence will continue. It can be proven inductively that a closed form expression for the sum of operations required is  $n^2$ . Therefore, in this case  $O(n^2)$  operations are required.

 $\mathbf{C}$ :

A O(n) algorithm can be derived from the original recurrence relationship by first eliminating the summation by calculating T(n+1) in the following manner.

$$T(n+1) = \sum_{i=1}^{n} T(i)T(i-1)$$
 
$$T(n) = \sum_{i=1}^{n-1} T(i)T(i-1)$$
 
$$T(n+1) - T(n) = \sum_{i=1}^{n} T(i)T(i-1) - \sum_{i=1}^{n-1} T(i)T(i-1)$$

T(n+1) and T(n) overlap for all values  $i: 1 \le i \le n-1$ , therefore subtracting the two sums leaves only the final in the sum for T(n+1).

$$T(n+1) - T(n) = T(n)T(n-1)$$

The values for n can be shifted by setting n = m - 1.

$$T(m) - T(m-1) = T(m-1)T(m-2)$$

However, the label m is without meaning, so label m = n.

$$T(n) - T(n-1) = T(n-1)T(n-2)$$

Equivalently,

$$T(n) = T(n-1)[1 + T(n-2)]$$

This expression is easily expressed as a single O(n) loop.

$$\begin{array}{l} Array: \ T \\ T[0] = 2 \\ T[1] = 2 \\ \textbf{for } i \leftarrow 2 \ to \ n \ \textbf{do} \\ \mid \ T[i] = T[i-1] * (1+T[i-2]) \\ \textbf{end} \\ Output: \ T[n] \end{array}$$