Confidential Transactions Theory Justification

Iftach Haitner *

July 23, 2025

Abstract

[Iftach's Note: TODO]

Contents

1	Introduction	2
2	Preliminaries	2
	2.1 Notation	2
	2.2 Homomorphic Encryption	2
3	The Confidential Transaction Protocols	2
	3.1 The Ideal Functionality	2
	3.2 The Protocol	3

^{*}Stellar Development Foundation. E-mail: iftach.haitner@stellar.org..

1 Introduction

[Iftach's Note: TODO]

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for integers and functions. Let \mathbb{N} denote the set of natural numbers. For $n \in \mathbb{N}$, let $[n] := \{1, \ldots, n\}$ and $(n) := \{0, \ldots, n\}$. For a relation \mathcal{R} , let $\mathcal{L}(\mathcal{R})$ denote its underlying language, i.e., $\mathcal{L}(\mathcal{R}) := \{x : \exists w : (x, w) \in \mathcal{R}\}$.

2.2 Homomorphic Encryption

An homomorphic encryption is a triplet (KeyGen, Enc, Dec) of efficient algorithms, with the standard correctness and semantic security properties. In addition, there is addition operation denote + over any two (valid) ciphertexts such that for any validly generated public key pk and valid ciphertexts x_0, x_1 , it holds that $\operatorname{Enc}_{sk}(x_0) + \operatorname{Enc}_{pk}(x_1) \in \operatorname{Supp}(\operatorname{Enc}_{sk}(x_0 + x_1 \bmod q), \text{ where } q \in \mathbb{N}$ is efficiently determined by pk.

[Iftach's Note: Do we really need the homomorphic properties or only for the proofs?]

3 The Confidential Transaction Protocols

3.1 The Ideal Functionality

Functionality 3.1 ($\mathcal{F}_{ConfTrans}$: Confidential transactions).

Parties: Issuer I, Chain C and users U_1, \ldots, U_n .

Init. Upon receiving init from all parties:

- 1. For each $i \in [n]$: ActBalance_i, PndBalance_i $\leftarrow 0$ and $\log_i \leftarrow \emptyset$.
- 2. $\log \leftarrow \emptyset$.

Issue. Upon receiving (sid, issue, x, d) from C and I:

- 1. Assert $(x \in \mathbb{N} \text{ and } d \in [n])$.
- 2. PndBalance_d += x.
- 3. Set $\log \cup = (\text{sid}, \text{issue}, x, d)$.

Transfer. Upon receiving (sid, transfer, d) from C and U_s , with U_s using private input x.

- 1. Assert $(x \in \mathbb{N}, ActBalance_s \ge x \text{ and } s, d \in [n])$.
- 2. ActBalance_s -= x.

- 3. PndBalance_d $\cup = x$.
- 4. Set $\log_d \cup = (\text{sid}, \text{transfer}, s, x)$
- 5. Set $\log \cup = (\text{sid}, \text{transfer}, s, d)$

Rollover. Upon receiving (sid, rollover) from party U_i and C, party C

- 1. Set ActBalance_i += PndBalance_i.
- 2. Set PndBalance_i $\leftarrow 0$.
- 3. Set $\log \cup = (\text{sid}, \text{rollover}, i)$

Withraw. Upon receiving (sid, withraw, x) from party U_i and C, party C

- 1. Assert $(x \in \mathbb{N}, ActBalance_i \ge x \text{ and } i \in [n])$.
- 2. ActBalance_i -= x.
- 3. Set $\log \cup = (\text{sid}, \text{withraw}, i, x)$

History. Upon receiving (sid, history) from party P_i and C:

Send (\log, \log_i) to P_i .

Audit. [Iftach's Note: Later]

3.2 The Protocol

Protocol 3.2 ($\Pi_{ConfTrans}$: Confidential transactions).

Parties: Issuer I, chain-holder C and users U_1, \ldots, U_n .

Paramters: 1^{κ_c} .

Subprotocols: See below.

Protocol 3.3 ($\Pi_{\mathsf{ConfTrans}}.\mathsf{Init}$).

Participating parties. All parties.

Operation:

- 1. P_i , for all $i \in [n]$,
 - (a) Set $(pk_i, sk_i) \stackrel{\mathbb{R}}{\leftarrow} \mathsf{KeyGen}(1^{\kappa_{\mathsf{c}}})$.
 - (b) Store sk_i .
 - (c) Send pk_i to all parties.
- 2. All parties store $\{pk_i\}_{i\in[n]}$.
- 3. C:

- (a) For all $i \in [n]$: Set $B_i \stackrel{\mathbb{R}}{\leftarrow} \operatorname{Enc}_{pk_i}(0)$ and $H_i \leftarrow \emptyset$.
- (b) Set $\log \leftarrow \emptyset$.

Protocol 3.4 ($\Pi_{ConfTrans}$.Issue).

Participating parties. I and C.

C's input. sid, $x \in \mathbb{N}$ and $i \in [n]$.

Operation:

- 1. I: Send (x, i) to C.
- 2. C: Set $H_i \cup = \{ \text{sid}, \text{issue}, (\text{Enc}_{pk_i}(x)) \}.$
- 3. C: Set $\log \cup = (\text{sid}, \text{issue}, x, i)$.

Protocol 3.5 ($\Pi_{ConfTrans}$.Transfer).

Participating parties. P_s and $\mathsf{C}.$

Proof's systems: $\Pi^{\mathsf{pos}}.\Pi^{\mathsf{lrg}}$

Common input. $d \in [n]$.

 P_s 's private input. $x \in \mathbb{N}$.

Operation:

- 1. P_s:
 - (a) $X \stackrel{\mathbb{R}}{\leftarrow} \operatorname{Enc}_{pk_d}(x;r)$ for $r \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^{\kappa_{\mathsf{c}}}$.
 - (b) $\pi^{\mathsf{pos}} \stackrel{\mathbb{R}}{\leftarrow} \mathsf{P}^{\mathsf{lrg}}((pk_d, X), (x, r)).$
 - $\text{(c)} \ \ \pi^{\mathsf{lrg}} \overset{\mathbb{R}}{\leftarrow} \mathsf{P}^{\mathsf{lrg}}((pk_s, pk_d, B_i, X), (sk_s, x, r)).$
 - (d) Send $(X, \pi^{pos}, \pi^{lrg})$ to C.
- 2. C:
 - (a) $\mathsf{V}^{\mathsf{pos}}(pk_d, X)$.
 - (b) $\mathsf{V}^{\mathsf{lrg}}(pk_s, pk_d, B_i, X)$.
 - (c) Set $H_d \cup = (\operatorname{sid}, s, X)$.
 - (d) Set $\log \cup = (\text{sid}, \text{transfer}, s, d)$.

Protocol 3.6 ($\Pi_{ConfTrans}.Update$).

Participating parties. P_i and C.

Operation: C

- 1. $B_i += \sum_{(\cdot, X) \in H_i} X$.
- 2. $H_i \leftarrow \emptyset$.
- 3. $\log += (\text{sid}, \text{rollover}, i)$

Protocol 3.7 ($\Pi_{ConfTrans}$.History).

Participating parties. P_i and C.

Operation: C sends (log, H_i) to P_i .