11. String Matching

The problem

• Input: a text T (very long string) and a pattern P (short string).

• Output: the index in T where a copy of P begins.

Example

T: b a c b a b a b a b a c a b

P: a b a b a c a

Brute force method

Basic idea:

Analysis

- Step 2 takes O(|P|) comparisons in the worst case.
- Step 2 could be repeated O(|T|) times.
- Total running time is O(|T||P|).

Notations and Terminologies

- P and T: the lengths of P and T.
- **P[i]**: the i-th letter of P.
- Prefix of P: a substring of P starting with P[1].
- **P**[1...i]: the prefix containing the first i letters of P.

Example: abcabbccaa.

prefix: a, ab, abc, abca, abcab, abcabb,

Knuth-Morris-Pratt (KMP) Method (linear time algorithm)

A better idea

- In step 3, when there is a mismatch we move the pattern forward by one position (i=i+1).
- We may move more than one position at a time when a mismatch occurs. (carefully study the pattern P).

For example:

```
P: ABABC ABABABCCA

T: ABABABCCA ABABABCCA
```

Property of ABAB:
$$ABA(frist 3) \neq BAB, last 3$$

 $AB(frist 2) = AB(last 2)$

• **Key:** When mismatch occurs at P[i+1], we want to find the **longest** prefix of P[1..i] which is also a suffix of P[1..i].

Failure function

• f(i) is the largest r with (r<i) such that P[1] P[2] ...P[r] = P[i-r+1]P[i-r+2], ..., P[i].

Prefix of length r Suffix of P[1]P[2]...P[i] of length r

Example: P=abcabbabcabbaa

$$f(1)=0$$
, $f(2)=0$, $f(3)=1$, $f(4)=2$, $f(5)=3$, $f(6)=0$, $f(7)=1$

The Scan Algorithm

- i : indicates that T[i] is the next character in T to be compared (green arrow).
- q: indicates that P[q+1] is the next character in P to be compared with T[i] (red arrow-1).
- 1. i=1 and q=0;
- 2. compare T[i] with P[q+1] case 1: T[i]==P[q+1] i=i+1;q=q+1;if q==|P| then print "P occurs at i-|P|", and q=f(|P|). case 2: T[i] \neq P[q+1] and q \neq 0 q=f(q); % the pattern shifts forward case 3: T[i] \neq P[q+1] and q==0 i=i+1; % the pattern shifts one position forward
- 3. Repeat step2 until i==|T|.

<u>Illustration:</u> given a String 'S' and pattern 'P' as follows:

Let us execute the KMP algorithm to find whether 'P' occurs in 'T'.

the failure function, f was computed previously and is as follows:

q	1	2	3	4	5	6	7
f	0	0	1	2	3	0	1

Initially:
$$n = size ext{ of } T = 15$$
; $m = size ext{ of } P = 7$
Step 1: $i = 1$, $q = 0$ comparing $P[0+1]$ with $T[1]$

This is a comparing $P[0+1]$ with $P[1]$ to be a comparing $P[1]$. Possible with $P[1]$ does not match with $P[1]$. Possible with $P[1]$ with

P[1] matches T[2]. Since there is a match, P is not shifted.

a

P

b

a

Pattern 'P' has been found to completely occur in string 'T'. The total number of shifts that took place for the match to be found are: i - m = 13 - 7 = 6 shifts.

P

Solution:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T	ь	a	c	b	a	b	a	b	a	b	a	c	a	c	a
	a														
		a	b												
			a	b	a	b	a	c							
					a	b	a	b	a	c					
						_	a	b	a	b	a	c	a		_

P occurs at i=7 in T.

Running time complexity(hard)

- The running time of the scan algorithm is O(|T|).
- Proof:
 - After each comparison.
 either i increases by 1 (i.e, the pointer moves one step forward)
 or the pattern moves at least one postion forward.

Another version of scan algorithm (code)

```
n = |T|
m = |P|
q=0
for i=1 to n
    while q>0 and P[q+1]\neq T[i] do
        q=f(q)
    if P[q+1] == T[i] then
         q=q+1
    if q==m then
        print "pattern occurs at i-m+1"
         q=f(q)
```

Failure Function

$$f(7)=4$$
, $f(8)=f(7)+1$

Failure Function

$$f(7)=4$$
, $f(8)=f(7)+1=5$, $f(8)=f(9)+1=6$, $f(10)=f(9)+1=7$

f(11): try to see if P[1..f(f(10))] is good!

Failure Function

```
Case 1: f(1) is always 0.

Case 2: if P[q] == P[f(q-1)+1] then f(q) = f(q-1)+1.

Example: p = abcabcc

abc

f(1) = 0; f(2) = 0; f(3) = 0; f(4) = 1; f(5) = 2; f(6) = 3; f(7) = 0;

P[4] = P[f(4-1)+1], f(4) = f(4-1)+1 = 1.

P[5] = P[f(5-1)+1], f(5) = f(5-1)+1 = 1+1=2.

P[6] = P[f(6-1)+1]. F(6) = f(6-1)+1=2+1=3.
```

```
Case 3: if P[q]≠P[f(q-1)+1] and f(q-1)≠0 then consider P[q] ?= P[f(f(q-1))+1] (Do it recursively)
Case 4: if P[q] ≠ P[f(q-1)+1] and f(q-1)==0 then f[q]=0.
Example: abc abc abb
```

abc abc
$$f(8)=5$$

abc $f(5)=2$
a $f(2)=0$

i: 1 2 3 4 5 6 7 8 9 f(i): 0 0 0 1 2 3 4 5 0

The algorithm (code) to compute failure function

Another version

```
1. m = |P|;
2. f(1) = 0;
3. k=0;
4. for q=2 to |P| do
5. k=f(q-1);
6. while (k>0 \text{ and } P[k+1]!=P[q]) do
7.
           k=f(k);
8. if (P[k+1] == P[q]) then k=k+1;
9. f[q]=k;
```

$$f(1)=0; f(2)=0; f(3)=0 f(4)=1;$$

$$f(5)=2;$$
 $f(6)=3;$ $f(7)=4;$ $f(8)=5;$

$$f(9)=6$$
; $f(10)=7$; $f(11)=1$ $f(12)=0$

Running time complexity (Fun Part, not required)

The running time of failure function construction algorithm is O(|P|). (The proof is similar to that for scan algorithm.)

Total running time complexity

The total complexity for failure function construction and scan algorithm is O(|P|+|T|).

• P=a b c a b c a b c a a c. Compute its failure function

q	1	2	3	4	5	6	7	8	9	10	11	12
	a	b	c	a	b	c	a	b	c	a	a	С

- Solution:
- q = 1, f(1) = 0
- q=2, $P(q)=b \neq P(f(q-1)+1)=P(0+1)=a$, f(2)=0
- q=3, $P(q)=c \neq P(f(q-1)+1)=P(0+1)=a$, f(3)=0
- q=4, P(q)=a=P(f(q-1)+1)=P(0+1)=a, f(4)=1
- q = 5 P(q)=b=P(f(q-1)+1)=P(1+1)=b, f(5)=2
- q = 6 P(q)=c = P(f(q-1)+1)=P(2+1)=b, f(6)=3
- •
- q=10,

$$f(10)=7$$

•
$$q=11$$
, $P(q) = a \neq P(f(q-1)+1) = P(7+1) = b$,

- $P(q) = a \neq P(f(f(q-1)) + 1) = P(f(7) + 1) = P(4+1) = b$ $P(q) = a \neq P(ff(f(q-1)) + 1) = P(f(4) + 1) = P(1+1) = b$ P(q) = a = P(fff(f(q-1)) + 1) = P(f(1) + 1) = P(0+1) = a f(11)=1
- q=12, $P(q) = c \neq P(f(q-1)+1)=P(1+1)=b$
- $P(q) = c \neq P(ff(q-1)+1) = P(f(1)+1) = P(0+1) = a.$
- f(12)=0.

Summary

- String Matching Problem
- KMP algorithm O(|P|+|T|)
- Failure Function

- Case 1: f(1) is always 0.
- Case 2: if P[q]==P[f(q-1)+1] then f(q)=f(q-1)+1.
- Case 3: if $P[q] \neq P[f(q-1)+1]$ and $f(q-1) \neq 0$ then consider P[q] ?= P[f(f(q-1))+1] (Do it recursively)
- Case 4: if $P[q] \neq P[f(q-1)+1]$ and f(q-1)==0 then f[q]=0.