Digital Design & Computer Architecture Sarah Harris & David Harris

Chapter 5: Digital Building Blocks

Chapter 5 :: Topics

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

Introduction

Digital building blocks:

- Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
 - Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes
- We'll use these building blocks in Chapter
 7 to build a microprocessor

Chapter 5: Digital Building Blocks

Adders

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

$$S = C_{out} =$$

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Multibit Adders: CPAs

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Symbol

Chapter 5: Digital Building Blocks

Ripple Carry Addition

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$t_{\text{ripple}} =$$

where t_{FA} is the delay of a 1-bit full adder

Chapter 5: Digital Building Blocks

Carry Lookahead Addition

Carry-Lookahead Adder

Compute C_{out} for k-bit blocks using generate and propagate signals

Some definitions:

- Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
- Calculate generate (G_i) and propagate (P_i) signals for each column:
 - **Generate:** Column *i* will generate a carry out if A_i and B_i are both 1.

$$G_i = A_i B_i$$

• **Propagate:** Column *i* will propagate a carry in to the carry out if A_i or B_i is 1.

$$P_i = A_i + B_i$$

• Carry out: The carry out of column *i* (*C_i*) is:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Propagate and Generate Signals

Examples: Column propagate and generate signals:

Column propagate:
$$P_i = A_i + B_i$$

Column generate:
$$G_i = A_i B_i$$

Now use column Propagate and Generate signals to compute **Block Propagate** and **Block Generate** signals for k-bit blocks, i.e.:

- Compute if a k-bit group will propagate a carry in (of the block) to the carry out (of the block)
- Compute if a k-bit group will generate a carry out (of the block)

- Example: 4-bit blocks
 - Block propagate signal: P_{3:0} (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

Examples:

- Example: 4-bit blocks
 - Block propagate signal: P_{3:0} (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

- Block generate signal: G_{3:0} (single-bit signal)
 - A carry is generated:
 - in column 3, or
 - in column 2 and propagated through column 3, or
 - in column 1 and propagated through columns 2 and 3, or
 - in column 0 and propagated through columns 1-3

$$G_{3:0} = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3$$

$$G_{3:0} = G_3 + P_3 [G_2 + P_2 (G_1 + P_1 G_0)]$$

- Example: 4-bit blocks
 - Block generate signal: $G_{3:0}$ (single-bit signal)
 - A carry is: generated in column 3, or generated in column 2 and propagated through column 3, or ...

$$G_{3:0} = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3$$

- Example: 4-bit blocks
 - Block propagate signal: P_{3:0} (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

- Block generate signal: G₃₋₀ (single-bit signal)
 - A carry is generated:
 - in column 3, or
 - in column 2 and propagated through column 3, or
 - in column 1 and propagated through columns 2 and 3, or
 - in column 0 and propagated through columns 1-3

$$G_{3:0} = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3$$

$$G_{3:0} = G_3 + P_3 [G_2 + P_2 (G_1 + P_1 G_0)]$$

$$C_3 = G_{3:0} + P_{3:0} C_{-1}$$

• **Example:** Block propagate and generate signals for 4-bit blocks ($P_{3:0}$ and $G_{3:0}$):

$$P_{3:0} = P_3 P_2 P_1 P_0$$

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

$$C_3 = G_{3:0} + P_{3:0} C_{-1}$$

32-bit CLA with 4-bit Blocks

- Step 1: Compute G_i and P_i for all columns
- **Step 2:** Compute *G* and *P* for *k*-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate logic (meanwhile computing sums)
- Step 4: Compute sum for most significant kbit block

• Step 1: Compute G_i and P_i for all columns

$$G_i = A_i B_i$$
$$P_i = A_i + B_i$$

- Step 1: Compute G_i and P_i for all columns
- **Step 2:** Compute *G* and *P* for *k*-bit blocks

$$P_{3:0} = P_3 P_2 P_1 P_0$$

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

- Step 1: Compute G_i and P_i for all columns
- **Step 2:** Compute *G* and *P* for *k*-bit blocks
- **Step 3:** C_{in} propagates through each k-bit propagate/generate logic (meanwhile

computing sums)

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate logic (meanwhile computing sums)
- Step 4: Compute sum for most significant k-

bit block

32-bit CLA with 4-bit Blocks

Carry-Lookahead Adder Delay

For *N*-bit CLA with *k*-bit blocks:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

- $-t_{pg}$: delay to generate all P_i , G_i
- $-t_{pg_block}$: delay to generate all $P_{i:j}, G_{i:j}$
- $t_{
 m AND~OR}$: delay from $C_{
 m in}$ to $C_{
 m out}$ of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Chapter 5: Digital Building Blocks

Prefix Addition

Prefix Adder

• Computes carry in (C_{i-1}) for each column, then computes sum:

$$S_i = (A_i \oplus B_i) \oplus C_{i-1}$$

- It computes C_{i-1} by:
 - Computing G and P for 1-, 2-, 4-, 8-bit blocks,
 etc. until all G_i (carry in) known
 - $G_i = C_i$
- log₂N stages

Prefix Adder

- Carry out either generated in a column or propagated from a previous column.
- Column -1 holds C_{in} , so

$$G_{-1} = C_{\text{in}}, P_{-1} = X \text{ (not used)}$$

• Carry in to column *i* = carry out of column *i*-1:

$$C_{i-1} = G_{i-1:-1}$$

 $G_{i-1:-1}$: generate signal spanning columns i-1 to -1

• Sum equation:

$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$

• **Goal:** Quickly compute $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ... (called *prefixes*) (= C_0 , C_1 , C_2 , C_3 , C_4 , C_5 , ...)

Prefix Adder

Generate and propagate signals for a block spanning bits i:j

$$G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$$

$$P_{i:j} = P_{i:k} P_{k-1:j}$$

- In words:
 - Generate: block i:j will generate a carry if:
 - upper part (i:k) generates a carry $(G_{i:k})$ or
 - upper part (i:k) propagates a carry $(P_{i:k})$ generated in lower part (k-1:j) $(G_{k-1:j})$
 - **Propagate:** block i:j will propagate a carry if both the upper and lower parts propagate the carry $(P_{i:k}AND P_{k-1:j})$

Prefix Adder Example

Step 1. Calculate P's and G's for **1-bit block**

Step 2. Calculate P's and G's for **2-bit blocks**

Step 3. Calculate P's and G's for **4-bit blocks**

Step 4. Continue to calculate P's and G's for larger blocks (8-bit, 16-bit, etc.)

Step 5. Use prefixes to calculate sums

Prefix Adder Schematic

Prefix Adder Delay

$$t_{PA} = t_{pg} + \log_2 N(t_{pg_prefix}) + t_{XOR}$$

 t_{pg} : delay to produce P_i , G_i (AND or OR gate)

 t_{pg} prefix: delay of black prefix cell (AND-OR gate)

Adder Delay Comparisons

Compare the delay of: 32-bit ripple-carry, CLA, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay = 100 ps; full adder delay = 300 ps

t_{ripple}

t_{CLA}

 t_{PA}

Chapter 5: Digital Building Blocks

Subtracters & Comparators

Subtracter

$$A - B = A + \overline{B} + 1$$

Symbol

Implementation

Comparator: Equality

Symbol

Implementation

Comparator: Signed Less Than

A < B if A-B is negative Beware of overflow

Chapter 5: Digital Building Blocks

ALU:

Arithmetic Logic Unit

ALU should perform:

- Addition
- Subtraction
- AND
- OR

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B

 $ALUControl_{1:0} = 11$

Result = A OR B

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B

 $ALUControl_{1:0} = 11$

Mux selects output of OR gate as Result,

so:

Result = A OR B

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A + B

 $ALUControl_{1:0} = 00$

 $ALUControl_0 = 0$, so:

 C_{in} to adder = 0

 2^{nd} input to adder is B

Mux selects Sum as Result, so

Result = A + B

ALU with Status Flags

Flag	Description
N	Result is Negative
Z	Result is Zero
С	Adder produces Carry out
V	Adder oVerflowed

ALU with Status Flags

ALU with Status Flags: Negative

ALU with Status Flags: Zero

ALU with Status Flags: Carry

ALU with Status Flags: oVerflow

ALU with Status Flags: oVerflow

$$V = 1$$
 if:

ALU is performing addition or subtraction $(ALUControl_1 = 0)$

AND

A and Sum have opposite signs

AND

A and B have same signs for addition $(ALUControl_0 = 0)$

OR

A and B have different signs for subtraction $(ALUControl_0 = 1)$

ALU with Status Flags

Comparison based on Flags

Compare by subtracting and checking flags
Different for signed and unsigned

Comparison	Signed	Unsigned
==	Z	Z
!=	~Z	~Z
<	N ^ V	~C
<=	Z (N ^ V)	Z ~C
>	~Z & ~(N ^ V)	~Z & C
>=	~(N ^ V)	С

Other ALU Operations

- Set Less Than (also called Set if Less Than)
 - Sets Isb of result if A < B</p>
 - Result = 0000...001 if A < B
 - Result = 0000...000 otherwise
 - Comes in signed and unsigned flavors
- XOR
 - Result = A XOR B

Extending ALU: SLT

ALUControl _{2:0}	Function
00	add
01	subtract
10	and
11	or
	SLT

Fixing Overflow Error in SLT Logic

Chapter 5: Digital Building Blocks

Shifters,
Multipliers,
& Dividers

Shifters

Logical shifter: shifts value to left or right and fills empty spaces with 0's

```
- Ex: 11001 >> 2 =
- Ex: 11001 << 2 =</pre>
```

Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb)

```
- Ex: 11001 >>> 2 =
- Ex: 11001 <<< 2 =</pre>
```

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end

```
Ex: 11001 ROR 2 =Ex: 11001 ROL 2 =
```

Shifter Design

Shift Left

Logical Shift Right

Arithmetic Shift Right

$$shamt_{1:0}$$
 $\downarrow 2$
 $A_{3:0} \xrightarrow{4} \xrightarrow{5} \xrightarrow{4} Y_{3:0}$

$$A_{3:0} \xrightarrow{4} Y_{3:0}$$

Shifters as Multipliers and Dividers

•
$$A << N = A \times 2^{N}$$

•
$$A >>> N = A \div 2^N$$

Multipliers

- Partial products formed by multiplying a single digit of the multiplier with multiplicand
- Shifted partial products summed to form result

4 x 4 Multiplier

Dividers

$$A/B = Q + R/B$$

Decimal Example: 2584/15 = 172 R4

Long-Hand:

Long-Hand Revisited:

$$\begin{array}{c|ccccc}
0002 \\
- & 15 \\
\hline
-13 & 0 \\
\hline
& & & & & \\
\hline
0025 \\
- & 15 & 0 \\
\hline
& & & & & \\
\hline
& & &$$

Dividers

$$A/B = Q + R/B$$

Decimal: 2584/15 = 172 R4 **Binary:** 1101/0010 = 0110 R1

Dividers

$$A/B = Q + R/B$$

$$R' = 0$$

for $i = N-1$ to 0
 $R = \{R' << 1, A_i\}$
 $D = R - B$
if $D < 0$, $Q_i = 0$; $R' = R$
else $Q_i = 1$; $R' = D$
 $R = R'$

Binary: 1101/10 = 0110 R1

$$\begin{array}{c|ccccc}
0001 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-0010 & 0 & 0 & 0 & 0 \\
\hline
-1111 & 0 & 0 & 0 & 0 \\
\hline
\end{array}$$
R1

4 x 4 Divider

Division: A/B = Q + R/B
R' = 0
for
$$i = N-1$$
 to 0
R = {R' << 1, A_i}
D = R - B
if D < 0, Q_i=0, R' = R
else Q_i=1, R' = D
R=R'

Each row computes one iteration of the division algorithm.

4 x 4 Divider

Chapter 5: Digital Building Blocks

Fixed-Point Numbers

Number Systems

Numbers we can represent using binary representations

- Positive numbers
 - Unsigned binary
- Negative numbers
 - Two's complement
 - Sign/magnitude numbers

What about **fractions**?

Numbers with Fractions

Two common notations:

- Fixed-point: binary point fixed
- Floating-point: binary point floats to the right of the most significant 1

Fixed-Point Numbers

6.75 using 4 integer bits and 4 fraction bits:

01101100
0110.1100
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand

Unsigned Fixed Point Formats

- Ua.b: unsigned number with
 - a integer bits
 - **b** fractional bits.
- **Example: 6.75** is
 - **U4.4**: 01101100
 - **U3.5**: 11011000
 - **U6.2**: 00011011
- 8, 16, and 32-bit fixed point numbers are common
 - U8.8 often represents sensor data, audio, pixels
 - **U16.16** used for higher precision signal processing

Signed Fixed Point Formats

- Qa.b: signed 2's complement number with
 - a integer bits (including the sign bit)
 - **b** fractional bits
- To negate a Q fixed point number:
 - Invert the bits
 - Add one to the LSB
- Example: write -6.75 in Q4.4
 - 6.75 = 01101100
 - Invert: 10010011
 - Add 1 LSB: 10010100
- Q1.15 (aka Q15) is common for signal processing (1, -1)

Saturating Arithmetic

- Fixed point overflow is usually bad
 - Produces undesired artifacts:
 - Video: dark pixel in middle of bright pixels
 - Audio: clicking sounds
- Saturating arithmetic
 - Instead of overflowing, use largest value
 - In U4.4: 11000000 + 01111000 = 11111111 12 + 7.5 = 15.9375

Chapter 5: Digital Building Blocks

Floating-Point Numbers

Floating-Point Numbers

- Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:

$$273 = 2.73 \times 10^{2}$$

In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

- M = mantissa
- B = base
- **E** = exponent
- In the example, M = 2.73, B = 10, and E = 2

Floating vs. Fixed Point Numbers

- Floating point numbers are like scientific notation
 - Allow a greater dynamic range of smallest to largest
 - **Arithmetic** is harder
 - Mantissa must be aligned before adding
 - This costs performance and power
- Fixed point numbers are harder for the programmer
 - **Smaller dynamic range**
 - Take care of **overflow**
- Floating Point is preferred for general-purpose computing where programming time is most important
- **Fixed Point** is preferred for signal processing performance, power, and hardware cost matter most
 - Machine learning, video

Floating-Point Numbers

Example: represent the value 228₁₀ using a 32-bit floating point representation

We show three versions – **the final version** is called the:

IEEE 754 floating-point standard

Floating-Point Representation 1

Convert decimal to binary:

2. Write the number in "binary scientific notation":

$$11100100_2 = 1.11001_2 \times 2^7$$

- 3. Fill in each field of the 32-bit floating point number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

Sign **Exponent**

Mantissa

Floating-Point Representation 2

First bit of the mantissa is always 1:

$$-228_{10} = 11100100_2 = 1.11001 \times 2^7$$

- So, no need to store it: implicit leading 1
- Store just fraction bits in 23-bit field

Sign	Exponent	Fraction
0	00000111	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating-Point Representation 3

- Biased exponent: bias = 127 (011111111₂)
 - Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

$$127 + 7 = 134 = 0 \times 10000110_{2}$$

The IEEE 754 32-bit floating-point representation of 228₁₀

Oigii	Exponent	Fraction
Sign	Biased	Eraction
0	10000110	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

in hexadecimal: 0x43640000

Floating-Point Example

Write **-58.25**₁₀ in floating point (IEEE 754)

1. Convert magnitude of decimal to binary:

$$58.25_{10} = 111010.01_2$$

2. Write in binary scientific notation:

$$1.1101001 \times 2^{5}$$

3. Fill in fields:

Sign bit: 1 (negative)

8 exponent bits: $(127 + 5) = 132 = 10000100_2$

23 fraction bits: 110 1001 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent

Fraction

in hexadecimal: 0xC2690000

Floating-Point Special Cases

Number	Sign	Exponent	Fraction
0	X	0000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

Floating-Point Precision

• Single-Precision:

- 32-bit
- 1 sign bit, 8 exponent bits, 23 fraction bits
- bias = 127

Double-Precision:

- 64-bit
- 1 sign bit, 11 exponent bits, 52 fraction bits
- bias = 1023

Floating-Point Rounding & Overflow

- Overflow: number too large to be represented
- Underflow: number too small to be represented
- Rounding modes:
 - Down
 - Up
 - Toward zero
 - To nearest
- Example: round 1.100101 (1.578125) to only 3 fraction bits

- **Down:** 1.100

- **Up:** 1.101

- **Toward zero:** 1.100

- **To nearest:** 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Chapter 5: Digital Building Blocks

Floating-Point Addition

Floating-Point Addition

- 1. Extract exponent and fraction bits
- 2. Prepend leading 1 to form mantissa
- **3.** Compare exponents
- 4. Shift smaller mantissa if necessary
- **5.** Add mantissas
- 6. Normalize mantissa and adjust exponent if necessary
- Round result
- **8. Assemble** exponent and fraction back into floating-point format

Add the following floating-point numbers:

0x3FC00000

0x40500000

1. Extract exponent and fraction bits

For first number (N1):

S = 0, E = 127, F = .1

For second number (N2):

S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

N1: 1.1

N2: 1.101

3. Compare exponents

$$127 - 128 = -1$$
, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1's mantissa:
$$1.1 >> 1 = 0.11 \ (\times 2^1)$$

5. Add mantissas

$$0.11 \times 2^{1} \\ + 1.101 \times 2^{1} \\ \hline 10.011 \times 2^{1}$$

6. Normalize mantissa and adjust exponent if necessary

$$10.011 \times 2^1 = 1.0011 \times 2^2$$

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

$$S = 0$$
, $E = 2 + 127 = 129 = 10000001_2$, $F = 001100...$

1 bit	8 bits	23 bits
0	10000001	001 1000 0000 0000 0000 0000

Sign Exponent

Fraction

in hexadecimal: 0x40980000

Chapter 5: Digital Building Blocks

Counters & Shift Registers

Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
 - 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Example uses:
 - Digital clock displays
 - Program counter: keeps track of current instruction executing

Symbol Implementation

Counter System Verilog Idiom

```
module counter(input logic clk, reset,
                output logic [7:0] g);
  always ff @(posedge clk)
    if (reset) q <= 0; // synchronous reset
    else q \leq q+1; //
end
// alternative more verbose
module counter(input logic clk, reset,
             output logic [7:0] q);
 logic [7:0] nextq;
 assign nextq = q + 1; // adder
 always ff @(posedge clk) // state register with synchronous reset
   if (reset) q \ll 0;
   else q <= nextq;
end
```

Divide-by-2^N Counter

- Most significant bit of an N-bit counter toggles every 2^N cycles.
- Useful for slowing a clock. Ex: blink an LED
- Example: 50 MHz clock, 24-bit counter
 - 2.98 Hz

Digitally Controlled Oscillator

- N-bit counter
- Add p on each cycle, instead of 1
- Most significant bit toggles at f_{out} = f_{clk} * p / 2^N
- Example: $f_{clk} = 50 \text{ MHz clock}$
 - How to generate a f_{out} = 200 Hz signal?
 - $p/2^N = 200 / 50 \text{ MHz}$
- Try N = 24, p = 67 \rightarrow f_{out} = 199.676 Hz
- Or N = 32, $p = 17179 \rightarrow f_{out} = 199.990 Hz$

Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

Symbol:

Implementation:

Shift Register with Parallel Load

- When *Load* = 1, acts as a normal *N*-bit register
- When *Load* = 0, acts as a shift register
- Now can act as a serial-to-parallel converter (S_{in} to $Q_{0:N-1}$) or a parallel-to-serial converter ($D_{0:N-1}$ to S_{out})

Shift Register SystemVerilog Idiom

```
module shiftreg # (parameter N=8)
               (input logic clk,
                input logic reset, load,
                input logic sin,
                input logic [N-1:0] d,
                output logic [N-1:0] q,
                output logic sout);
 always ff @(posedge clk, posedge reset)
   if (reset) q \leq 0;
   else if (load) q <= d;
   else q \le \{q[N-2:0], sin\};
 assign sout = q[N-1];
end
```

Chapter 5: Digital Building Blocks

Memory

Memory Arrays

- Efficiently store large amounts of data
- M-bit data value read/written at each unique N-bit address
- 3 common types:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)

Memory Arrays

- 2-dimensional array of bit cells
- Each bit cell stores one bit
- N address bits and M data bits:
 - -2^N rows and M columns
 - Depth: number of rows (number of words)
 - Width: number of columns (size of word)
 - Array size: depth \times width = $2^N \times M$

Memory Array Example

- $2^2 \times 3$ -bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Memory Arrays

Memory Array Bit Cells

Memory Array

• Wordline:

- like an enable
- single row in memory array read/written
- corresponds to unique address
- only one wordline HIGH at once

Types of Memory

- Random access memory (RAM): volatile
- Read only memory (ROM): nonvolatile

RAM: Random Access Memory

- Volatile: loses its data when power off
- Read and written quickly
- Main memory in your computer is RAM (DRAM)

Historically called *random access* memory because any data word accessed as easily as any other (in contrast to sequential access memories such as a tape recorder)

ROM: Read Only Memory

- Nonvolatile: retains data when power off
- Read quickly, but writing is impossible or slow
- Flash memory in cameras, thumb drives, and digital cameras are all ROMs

Historically called *read only* memory because ROMs were written at time of fabrication or by burning fuses. Once a ROM was configured, it could not be written again. This is no longer the case for Flash memory and other types of ROMs.

Chapter 5: Digital Building Blocks

RAM

Types of RAM

- DRAM (Dynamic random access memory)
- SRAM (Static random access memory)
- Differ in how they store data:
 - DRAM uses a capacitor
 - SRAM uses cross-coupled inverters

Robert Dennard, 1932 -

- Invented DRAM in 1966 at IBM
- Others were skeptical that the idea would work
- By the mid-1970's DRAM in virtually all computers

DRAM

- Data bits stored on capacitor
- Dynamic because the value needs to be refreshed (rewritten) periodically and after read:
 - Charge leakage from the capacitor degrades the value
 - Reading destroys the stored value

DRAM

SRAM

Memory Arrays Review

Chapter 5: Digital Building Blocks

ROM

ROM: Dot Notation

ROM Storage

Fujio Masuoka, 1944 -

- Developed memories and high speed circuits at Toshiba, 1971-1994
- Invented Flash memory as an unauthorized project pursued during nights and weekends in the late 1970's
- The process of erasing the memory reminded him of the flash of a camera
- Toshiba slow to commercialize the idea; Intel was first to market in 1988
- Flash has grown into a \$25 billion per year market

ROM Logic

$$Data_2 = A_1 \oplus A_0$$

$$Data_1 = \overline{A}_1 + A_0$$

$$Data_0 = \overline{A}_1 \overline{A}_0$$

Example: Logic with ROMs

Implement the following logic functions using a $2^2 \times 3$ -bit ROM:

$$-X = AB$$

$$-Y=A+B$$

$$-Z=A\overline{B}$$

Logic with Any Memory Array

Logic with Memory Arrays

Implement the following logic functions using a $2^2 \times 3$ -bit memory array:

Logic with Memory Arrays

Called *lookup tables* (LUTs): look up output at each input combination (address)

Chapter 5: Digital Building Blocks

SystemVerilog & Multiported Memories

SystemVerilog RAM

```
// 256 x 3 RAM with one read/write port
module ram(input logic clk, we,
           input logic [7:0] a,
           input logic [2:0] wd,
           output logic [2:0] rd);
  logic [2:0] RAM[255:0];
  assign rd = RAM[a];
  always @ (posedge clk)
    if (we)
     RAM[a] \le wd;
endmodule
```

SystemVerilog ROM

```
// 128 x 32 ROM with one read port
// Contents initialized from file
module rom(input logic [6:0] a,
           output logic [31:0] rd);
  logic [31:0] ROM[127:0];
  // initialize contents from file
  initial
    $readmemh("memfile.dat", ROM);
  // read port
  assign rd = ROM[a];
endmodule
```

SystemVerilog ROM memfile

```
// memfile.dat
// Contains up to 128 lines of 32-bit hex numbers
// defining the contents of the ROM
01234567
89ABCDEF
FFFFFFF
A5A5A5A5...
```

Multi-ported Memories

- Port: address/data pair
- 3-ported memory
 - 2 read ports (A1/RD1, A2/RD2)
 - 1 write port (A3/WD3, WE3 enables writing)
- Register file: small multi-ported memory

SystemVerilog Memory Arrays

```
// 32 x 32 register file with 2 read, 1 write port
// register 0 hardwired to read as 0
module regfile (input logic clk,
              input logic we3,
               input logic [4:0] ra1, ra2, wa3,
              input logic [31:0] wd3,
              output logic [31:0] rd1, rd2);
  logic [31:0] rf[31:0];
  always ff @(posedge clk)
    if (we3) rf[wa3] \le wd3;
  assign rd1 = (ra1 == 5'b00000) ? 32'b0 : rf[ra1];
  assign rd2 = (ra2 == 5'b00000) ? 32'b0 : rf[ra2];
endmodule
```

Chapter 5: Digital Building Blocks

Logic Arrays: PLAs & FPGAs

Logic Arrays

- PLAs (Programmable logic arrays)
 - AND array followed by OR array
 - Combinational logic only
 - Fixed internal connections
- FPGAs (Field programmable gate arrays)
 - Array of Logic Elements (LEs)
 - Combinational and sequential logic
 - Programmable internal connections

PLAs: Programmable Logic Arrays

•
$$X = \overline{ABC} + AB\overline{C}$$

• $Y = A\overline{B}$

PLAs: Dot Notation

- X = ABC + ABC
- Y = AB

FPGAs: Field Programmable Gate Arrays

Composed of:

- LEs (Logic elements): perform logic
- IOEs (Input/output elements): interface with outside world
- Programmable interconnection: connect LEs and IOEs
- Some FPGAs include other building blocks such as multipliers and RAMs

General FPGA Layout

LE: Logic Element

- Composed of:
 - LUTs (lookup tables): perform combinational logic
 - Flip-flops: perform sequential logic
 - Multiplexers: connect LUTs and flip-flops

Altera Cyclone IV LE

From Cyclone IV datasheet

Altera Cyclone IV LE

- The Altera Cyclone IV LE has:
 - 1 four-input LUT
 - 1 registered output
 - 1 combinational output

LE Configuration Example

Show how to configure a Cyclone IV LE to perform the following functions:

- $-X = \overline{ABC} + AB\overline{C}$
- $-Y = A\overline{B}$

Logic Elements Example 1

How many Cyclone IV LEs are required to build

 $Y = A1 \oplus A2 \oplus A3 \oplus A4 \oplus A5 \oplus A6$

Solution:

Logic Elements Example 2

How many Cyclone IV LEs are required to build

32-bit 2:1 multiplexer

Solution:

Logic Elements Example 3

How many Cyclone IV LEs are required to build

Arbitrary FSM with 2 bits of state, 2 inputs, 3 outputs

Solution:

FPGA Design Flow

Using a CAD tool (such as Altera's Quartus II)

- Enter the design using schematic entry or an HDL
- Simulate the design
- Synthesize design and map it onto FPGA
- Download the configuration onto the FPGA
- Test the design

About these Notes

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or non-commercial purposes so long as the source is attributed.