CS161 - Quiz 5

Started: Mar 3 at 5:19pm

Quiz Instructions

Question 1	1 pts
Any sentence in first-order logic can be expressed without the existentia	I∃ quantifier
True	
○ False	

Question 2	1 pts
Which of the following is equivalent to the sentence $orall x \; \exists y \; Likes (x, \; y)$?	
$lacksquare$ $\neg\exists x orall y \neg Likes\left(x,\;y ight)$	
$\bigcirc \ \neg \exists x \ \neg orall y \ Likes (x, \ y)$	
$\bigcirc \ eg \forall x \ \exists y \neg Likes (x, \ y)$	
$\bigcirc \ \exists x orall y \ Likes (x, \ y)$	

Question 3	1 pts
Modus Ponens (MP) is a sound inference rule	
True	
○ False	

Question 4 1 pts

Resolving $R\left(F\left(y
ight)
ight)\ ee
eg G\left(y
ight)$ with $G\left(A
ight)ee S\left(w
ight)$ gives

- $\bigcirc S(F(A)) \lor R(F(A))$
- \circ $S(w) \lor R(F(A))$
- O None of the others
- $\bigcirc S(y) \lor R(F(A))$
- $\bigcirc S(A) \lor R(F(A))$

Quiz saved at 5:21pm

Submit Quiz