Analysis 1 Inoffizielle Mitschrift

Eine etwas allgemeinere Herangehensweise

Definition 1 (Metrik und metrischer Raum). Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}$ heißt Metrik, falls für alle $x, y, z \in X$ gilt

- (i) $d(x,y) = 0 \Leftrightarrow x = y$
- (ii) d(x,y) = d(y,x)
- (iii) $d(x,z) \le d(x,y) + d(y,z)$

Ein Tupel (X, d) bestehend aus einer Menge X und einer Metrik d heißt metrischer Raum.

Definition 2 (Kugeln und Umgebungen). Sei (X, d) ein metrischer Raum, $a \in X$ und r > 0, dann heißt

$$B_r(a) := \{ x \in X : d(x, a) < r \}$$

die offene Kugel um a von Radius r. Eine Menge $U \subset X$ heißt Umgebung von $a \in X$, falls ein r > 0 existiert mit $B_r(a) \subset U$.

Definition 3 (Offene Mengen). Eine Menge $O \subset X$ heißt offen, falls sie Umgebung jedes ihrer Punkte ist. Die Menge $\{O \in \mathfrak{P}(X) : O \text{ offen}\} \subset \mathfrak{P}(X)$ heißt die (von d induzierte) Topologie auf X.

Beispiel. Offene Kugeln $B_r(x)$ für $x \in X$ sind offen. Sei $y \in B_r(x)$ und $\varepsilon := r - d(x, y)$. Dann gilt $B_{\varepsilon}(y) \subset B_r(x)$. Denn sei $z \in B_{\varepsilon}(y)$, dann gilt:

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + r - d(x,y) = r$$

also $z \in B_r(x)$.

Definition 4 (Konvergenz). Eine Folge $x_n \in X$, $\forall n \in \mathbb{N}$ heißt konvergent gegen $x \in X$, falls

$$\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : d(x_n, x) < \varepsilon$$

dann schreiben wir auch $\lim x_n = x$.

Seite 1

Analysis 1 Inoffizielle Mitschrift

Definition 5. Eine Menge $A \subset X$ heißt abgeschlossen, falls $X \setminus A$ offen ist.

Lemma 1. Sei (X, d) ein metrischer Raum, wir geben eine alternative Charakterisierung von Abgeschlossenheit an. Es gilt

- 1. $A \subset X$ ist abgeschlossen genau dann, wenn
- 2. Aus $x_n \in A$, $\forall n \in \mathbb{N}$ und (x_n) konvergent, folgt $\lim x_n \in A$

Beweis. Angenommen (i). Sei $A \subset X$ abgeschlossen und $x_n \in A$, $\forall n \in \mathbb{N}$ eine Folge mit $\lim x_n = x$. Angenommen $x \notin A$. Weil $X \setminus A$ offen ist, ist dann $X \setminus A$ eine Umgebung von x und es gibt ein r > 0 mit $B_r(x) \subset X \setminus A$. Nach Definition gilt für fast alle $n \in \mathbb{N}$: $d(x_n, x) < r$, also $x_n \in X \setminus A$ für fast alle $n \in \mathbb{N}$. Widerspruch.

Angenommen (ii). Sei $x \in X \setminus A$, angenommen es gäbe kein r > 0 mit $B_r(x) \subset X \setminus A$, dann könnten wir für alle $k \in \mathbb{N}$ ein $x_k \in X$ wählen mit $d(x_k, x) < 1/k$, dann gilt aber lim $x_k = x$, also $x \in A$. Widerspruch.

Definition 6 (Cauchy-Folge). Eine Folge (x_n) heißt Cauchy-Folge genau dann, wenn

$$\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n, m \ge n_0 : d(x_n, x_m) < \varepsilon$$

Lemma 2 (Jede konvergente Folge ist Cauchy). Sei (x_n) eine konvergente Folge, dann ist (x_n) eine Cauchy-Folge.

Beweis. Sei $\varepsilon > 0$ beliebig, dann gibt es $n_0 \in \mathbb{N}$ s.d. für alle $n \geq n_0$ gilt $d(x_n, x) < \varepsilon/2$. Daher folgt für alle $n, m \geq n_0$:

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Definition 7. Ein metrischer Raum (X, d) heißt vollständig, wenn jede Cauchy-Folge eine konvergente Folge ist.

Beispiel. Sei $|\cdot|$ der herkömmliche Absolutbetrag auf \mathbb{Q} , dann ist $(\mathbb{Q}, |\cdot|)$ ein metrischer Raum, der nicht vollständig ist.

Definition 8 (Stetigkeit). Seien $(X, d_X), (Y, d_Y)$ metrische Räume. Eine Abbildung $f: X \to Y$ heißt stetig im Punkt $a \in X$, falls

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall b \in X : (d_X(a, b) < \delta \implies d_Y(f(a), f(b)) < \varepsilon)$$

f heißt stetig, falls f in jedem Punkt von X stetig ist.

Lemma 3. Eine Funktion $f: X \to Y$ zwischen metrischen Räumen ist (i) stetig im Punkt $x \in X$ genau dann, wenn (ii) für alle Folge (x_n) in X mit $\lim x_n = x$ gilt $\lim f(x_n) = f(x)$.

Analysis 1 Inoffizielle Mitschrift

Beweis. Angenommen f ist steitig. Sei (x_n) eine Folge mit $\lim x_n = x$. Sei $\varepsilon > 0$ beliebig, dann gibt es ein $\delta > 0$ mit

$$d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon$$

Es gibt ein $n_0 \in \mathbb{N}$: $\forall n \geq n_0 : d(x_n, x) < \delta$, dann ist aber $d_Y(f(x_n), f(x)) < \varepsilon$ für alle $n \geq n_0$, also $\lim_{n \to \infty} f(x_n) = f(x)$.

Angenommen (ii). Ange
ommen f wäre nicht stetig, dann gäbe es ein $\varepsilon>0$ sod
ass für alle $\delta>0$ gilt

$$d(x,y) < \delta$$
, und: $d_Y(f(x), f(y)) \ge \varepsilon$

Dann gibt es aber zu $\delta = 1/n$ stets ein $x_n \in X$ mit $d_X(x_n, x) < 1/n$ und $d_Y(f(x_n), f(x)) \ge \varepsilon$. Widerspruch.

Lemma 4. Sei $f: X \to Y$ eine Abbildung zwischen metrischen Räumen. Dann sind äquivalent

- (i) f ist stetig auf ganz X
- (ii) Für alle $x \in X$ und alle Folgen $(x_n) \subset X$ mit $\lim x_n = x$ gilt $\lim f(x_n) = f(x)$.
- (iii) Urbilder offener Mengen sind offen.

Beweis. Dass (i) und (ii) äquivalent sind haben wir schon gesehen.

(i) \Rightarrow (iii): Sei $V \subset Y$ offen, wir müssen zeigen, dass $O := f^{-1}(V) \subset X$ offen ist. Sei also $x \in O$ beliebig, dann ist $f(x) \in V$ und es gibt ein $\varepsilon > 0$ mit $B_{\varepsilon}(f(x)) \subset V$, weil V offen ist. Nach (i) gibt es dann aber ein $\delta > 0$ mit

$$f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset V \implies B_{\delta}(x) \subset O$$

(iii) \Rightarrow (i): Sei $\varepsilon > 0$ beliebig. Die Menge $U := f^{-1}(B_{\varepsilon}(f(x)) \subset X)$ ist offen nach (iii). Insbesondere ist $x \in U$. Daher ist U eine Umgebung von x nach Definition und es gibt ein $\delta > 0$ mit $B_{\delta}(x) \subset U$. Für dieses $\delta > 0$ gilt dann $f(B_{\delta}(x)) \subset f(U) = B_{\varepsilon}(f(x))$. \square