November 14, 2019

1

G is a finite abelian group, so it is isomorphic to the direct product of finite cyclic groups of prime power order, and can thus be written as $\bigoplus_i \mathbb{Z}_{p_i^{k_i}}$, where each p_i is prime and each k_i is an integer.

We know that every group of the form \mathbb{Z}_n is a ring when equipped with multiplication modulo n, so the direct product of finite cyclic groups above is also a direct product of rings, giving us a ring whose additive group is isomorphic to G, as desired.

 $\mathbf{2}$

Let $\frac{a}{b} + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$, and suppose WLOG that $\gcd(a, b) = 1$. Then $\left| \frac{a}{b} + \mathbb{Z} \right| = b$, since $b \cdot \frac{a}{b} \in \mathbb{Z}$, and a and b are coprime. Thus any element in \mathbb{Q}/\mathbb{Z} has finite order b, but since $b \in \mathbb{Z}$ and \mathbb{Z} has no maximum element, this order can be arbitrarily large.

Suppose for a contradiction that R is a commutative unital ring whose additive group is isomorphic to \mathbb{Q}/\mathbb{Z} . Let 1 be R's multiplicative identity. $(R, +) \cong \mathbb{Q}/\mathbb{Z}$, so 1 has finite order, say n. Then for any $r \in R$, we have

$$n \cdot r = n \cdot (1 \cdot r)$$
$$= (n \cdot 1) \cdot r$$
$$= 0 \cdot r$$
$$= 0$$

so $|r| \leq n$, a contradiction, since the order of an element in \mathbb{Q}/\mathbb{Z} (and hence (R,+)) can be arbitrarily large, thus greater than n, and so no such ring R exists, as desired.

3

By the first isomorphism theorem, we know that $F/\ker\varphi\cong\operatorname{im}\varphi$. We also know that the kernel of a homomorphism is an ideal. F is a field, so its only ideals are $\{0\}$ and itself. Suppose $\ker\varphi=F$. Then $\operatorname{im}\varphi\cong F/F\cong\{0\}$. This is not possible since φ is unital, so it must be the case that $\ker\varphi=\{0\}$, and thus φ is injective, as desired.