In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types:

- 1. append(W) Append string W to the end of S.
- 2. delete(k) Delete the last k characters of S.
- 3. $print(\mathbf{k})$ Print the \mathbf{k}^{th} character of \mathbf{S} .
- 4. undo() Undo the last (not previously undone) operation of type 1 or 2, reverting S to the state it was in prior to that operation.

Input Format

The first line contains an integer, Q, denoting the number of operations.

Each line i of the Q subsequent lines (where $0 \leq i < Q$) defines an operation to be performed. Each operation starts with a single integer, t (where $t \in \{1, 2, 3, 4\}$), denoting a type of operation as defined in the *Problem Statement* above. If the operation requires an argument, t is followed by its spaceseparated argument. For example, if t=1 and W="abcd", line i will be 1 abcd.

Constraints

- $1 \le Q \le 10^6$
- $1 \le k \le |S|$
- The sum of the lengths of all W in the input $\leq 10^6$.
- The sum of k over all delete operations $< 2 \cdot 10^6$.
- All input characters are lowercase English letters.
- It is guaranteed that the sequence of operations given as input is possible to perform.

Output Format

Each operation of type 3 must print the k^{th} character on a new line.

Sample Input

```
1 abc
2 3
1 xy
3 1
```

Sample Output

c

Explanation

Initially, S is empty. The following sequence of 8 operations are described below:

- 1. S = "". We append abc to S, so S = "abc".
- 2. Print the 3^{rd} character on a new line. Currently, the 3^{rd} character is c. 3. Delete the last 3 characters in S (abc), so S = "". 4. Append xy to S, so S = "xy".

- 5. Print the 2^{nd} character on a new line. Currently, the 2^{nd} character is y.
 6. Undo the last update to S, making S empty again (i.e., S = "").
 7. Undo the next to last update to S (the deletion of the last S characters), making S = "abc".
- 8. Print the $\mathbf{1}^{st}$ character on a new line. Currently, the $\mathbf{1}^{st}$ character is a.