

Industrial Master's Degree Topic Thesis Defense

Intra-Limb Adaptive Compliance-Based Locomotion Learning Control

Run Janna

Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC)

PTT Exploration and Production Public Company Limited

Technology Readiness Level (TRL)

https://brain.vistec.ac.th/research/projects

MARINE

Inspection robot in Challenged Environment

Splash Zone Pole Inspection

- Low magnetic Force
- Perturbation (e.g., wind, sea water wave)
 Underwater & Seabed Inspection
- Outer Pipe Obstacle (e.g., Valve, Frank Joint)
- Underwater wave
- Seabed walking

Robot Literature

Outer pipe inspection robot

Outer Pipe Robot

Robot Literature

Outer pipe inspection robot

Outer Pipe Robot Low magnetic Force

Robot Literature

Outer pipe inspection robot

Outer Pipe Robot Low magnetic Force **Amphibian Environment**

Conceptual Robot Design

Outer Pipe Robot Low magnetic Force

Amphibian Environment

Intra-Limb Adaptive Compliance-Based Control and Locomotion Learning

I: Locomotion Learning

II: Adaptive Compliant-Based Control

III: Adaptive Locomotion Control

I. Locomotion Learning:

II. Central Pattern Generator-Radial Basis Function network (CPG-RBF)

II. Adaptive Compliance-Based Control:

Online Adaptive Impedance Control (OAIC)

Adaptive Compliance-Based Control

Joint Compliance Mechanism

Fast treadmill speed: 0.63 m/s

: Fast treadmill speed: 0.63 m/s

Impedance Observer

Fast treadmill speed: 0.63 m/s

III. Adaptive Locomotion Control: Novel method

(a) CPG B₁ W₁₂(S) Transmitted signal (c) VRMs Adaptive Modular Neural Network **Locomotion Learning** VRM₁ (d)Motor neurons (CR1) 1 1 N4 (TL1) X Xiong, P Manoonpong, et al., 2014

Conceptual Control

Intra-Limb Adaptive Compliance-Based Control and Locomotion Learning

Conceptual Control

Intra-Limb Adaptive Compliance-Based Control and Locomotion Learning

Application	Description	Feature	
Recovery walking	Adapt trajectory of Proximal leg to recover broken leg	Adaptive Trajectory	
Adapt gait frequency	Increase/decrease speed of walking	Adaptive Trajectory	
Adapt gait amplitude	Across and avoid obstacle	Adaptive Trajectory	
Adapt gait phase	Self-organization Intra-Limb coordinate	Adaptive Trajectory	
Exploration Locomotion	Search behavior for uneven terrainInteractive Obstacle Avoidance	RewindPause-Resume	
Self-Stabilization	Redistribute gait trajectory to keep robot stable from disturbance and balance body on Constrain environment	Rewind	
Environment Observer	Observe stiffness/damping of environment	Online Adaptive Impedance	

Bio-inspired

Adapt gait phase

Self-organization Intra-Limb coordinate

Adaptive Trajectory

Exploration Locomotion

- Search behavior for uneven terrain
- Interactive Obstacle Avoidance

- Rewind
- Pause-Resume

Literature State-of-the-art Controls

	Publish Year	Author(s)	Control Feature(s)	Robot Type	Control Space	Additional Observer	Control-Based
Imitation Learning	2009	Andrej Gams	Record-Play, Adapt, Obstacle Avoidance, Pause-Resume	Robot Arm (Stationary)	Cartesian Space, Joint Space	None	DMP
	2010	Andrej Gams	Record-Play, Adapt, Pause-Resume	Robot Arm (Stationary)	Cartesian Space, Orientation Space	Vision, Interaction Force	DMP
	2023	Francesco Iori	Record-Play, Adapt	Robot Arm (Stationary)	Cartesian Space	Vision, Interaction Force	DMP
	2021*	Tao Sun	Pause-Resume, Adapt	Legged Robot (Mobile)	Joint Space	Interaction Force	CPG-RBF
	2023	Chaicharn Akkawutvanich	Record-Play, Adapt	Lower Limb Exoskeleton	Joint Space	None	CPG-RBF
	2023	Arthicha Srisuchinnawong	Record-Play, Adapt	Lower Limb Exoskeleton	Joint Space	None	CPG-RBF
	2019	Matheshwaran Pitchai	Record-Play, Adapt	Legged Robot (Mobile)	Joint Space	None	CPG-RBF and RL
	2021	MathiasThor	Record-Play, Adapt	Legged Robot (Mobile)	Joint Space	None	CPG-RBF and RL
	2021	MathiasThor	Record-Play, Adapt	Legged Robot (Mobile)	Joint Space	Interaction Force	CPG-RBF and RL
l	2023	Alexander Dupond Larsen	Record-Play, Adapt	Legged Robot (Mobile)	Joint Space	Interaction Force	CPG-RBF
Adaptive Interaction Learning from Interaction	2010	Etienne Burdet	Adapt	Robot Arm (Stationary)	Joint Space	Interaction Force, Impedance	Impedance/Force Control
	2010*	Gowrishankar Ganesh	Adapt	Robot Arm (Stationary)	Joint Space	Interaction Force, Impedance	Impedance/Force Control
	2018*	Yanan Li	Adapt	Robot Arm (Stationary)	Cartesian Space	Interaction Force, Impedance	Impedance/Force Control
	2018	Xiaofeng Xiong	Adapt	Robot Arm (Stationary)	Joint Space	Impedance	Impedance/Force Control
	2017	Andrea Bajcsy	Record-Play, Adapt, Obstacle Avoidance	Robot Arm (Stationary)	Cartesian Space	Interaction Force	RL
	2021*	Dylan P. Losey	Record-Play, Adapt, Obstacle Avoidance	Robot Arm (Stationary)	Cartesian Space	Interaction Force	RL
	2025	Run Janna	Record-Play, Pause-Resume, Rewind/Reverse, Adapt, Interactive Obstacle Avoidance, Environment Observer, Self-Stabilization, Exploration Locomotion	Legged Robot (Mobile)	Joint Space	Interaction Force, Impedance	CPG-RBF and Impedance/Force Control

Thank you for your attention

Presenter

Run Janna

Email: run.janna@gmail.com, runj_pro@vistec.ac.th