

Departamento de Electrónica Industrial

Mestrado Integrado em Engenharia Física

UC de Análise de Circuitos

Departamento de Eletrónica Industrial e Computadores

Paulo Carvalhal pcarvalhal@dei.uminho.pt

- Teorema de Norton
 - ... O teorema de Norton permite a redução de um circuito com qualquer número de resistências e fontes e acessível por dois terminais, a um circuito com apenas uma fonte de corrente e uma resistência interna em paralelo ...

- Teorema de Norton
 - ... a resistência equivalente de Norton R_N , é a resistência vista a partir dos dois terminais do circuito que se pretende reduzir, quando se anulam os efeitos de todas as fontes

$$R_N = R_3 //(R_1 + R_2) = \frac{(5 \Omega)(15\Omega)}{5 \Omega + 15 \Omega} = 3.75 \Omega$$

Teoremas

Teorema de Norton

... a corrente equivalente de Norton I_N , é a corrente que circula entre os dois terminais na situação de curto-circuito (considerando o efeito de todas as fontes)

$$I_N = \frac{E}{R_1} = \frac{40 \text{ V}}{13+2 \Omega} = 2,67 \text{ A}$$

■ Teoremas

$$I_N = 2,67 A$$

$$R_N = 3,75 \Omega$$

- Teorema de Norton
- Metodologia
- para encontrar R_N
 - i) retirar a carga
 - ii) marcar os dois terminais
 - iii) calcular R_N neutralizando as fontes, calculando Req aos terminais da carga
- Para encontrar I_N
 - iv) colocar as fontes nas condições originais (sem a carga)
 - v) encontrar corrente de curto-circuito entre os dois terminais, devida a essas fontes

■ Teoremas

Conversão de modelos

...para Thevenin, de Norton

...para Norton, de Thevenin

$$R_{Th}=R_N$$

$$R_N = R_{Th}$$

$$V_{Th} = (I_N)(R_N)$$

$$I_N = rac{V_{Th}}{R_{Th}}$$

- Teorema da Máxima Transferência de Potência
- ... A máxima transferência de potência entre uma fonte e uma carga ocorre quando a resistência da carga é igual à resistência interna da fonte ...

Teoremas

Teorema da Máxima Transferência de Potência

Considerem-se os casos limite na carga:

R = ∞ Tensão na carga é máxima mas a corrente é nula, e por isso também a potência é nula

R = 0 → Tensão na carga é nula e a corrente é máxima. A potência é nula.

Maximizar a potência transferida não se consegue maximizando a tensão (ou a corrente)

Teoremas

... Então, se pudermos reduzir o circuito da fonte ao seu equivalente de Thevenin, isto quer dizer que se obtém potência máxima na carga, quando a sua resistência for igual à resistência de Thevenin da fonte que alimenta a carga.

$$I = \frac{E_{Th}}{R_{Th} + RL}$$

$$P_{L} = R_{L}I^{2} = RL \frac{E_{Th}^{2}}{(R_{Th} + RL)^{2}}$$

$$P_{max} \Rightarrow R = R_{TH}$$

$$\Rightarrow P_{max} = \frac{E_{Th}^{2}}{4R}$$

Teoremas

Teorema da Máxima Transferência de Potência

Quanto maior a resistência da carga (comparativamente à resistência interna da fonte), maior a eficiência, pois há menos potência de perdas (dissipada na resistência interna)

Mas a potencia na carga diminui, dado que a corrente diminui

Teoremas

Teorema da Máxima Transferência de Potência

Quanto menor a resistência da carga (comparativamente à resistência interna da fonte), menor a eficiência.

Há mais potência de perdas (dissipada na resistência interna)

Mas apesar de a potencia total aumentar, a potencia na carga é menor, já que muito mais energia vai ser dissipada na resistência interna

■ Teoremas

Teorema da Máxima Transferência de Potência

... Aplicações

Transmissores de rádio (entregar potência à antena) Desenho de veículos elétricos (entregar potencia ao motor)

. . .