```
2 title: "DSC520_FinalProject_Deibler"
 3 author: "Ashley Deibler"
 4 date: "`r Sys.Date()`"
 5 output: pdf_document
 6 - ---
 7 - # create variables

⊕ 

▼ 

▶

 9 catdogdata <- aas_catdogdata
10 head(catdogdata)
11
12 id <- catdogdata$ID
13 species <- catdogdata$species</pre>
14 breed <- catdogdata$breed
15 condition_intake <- catdogdata$intake_condition
16 sex_outcome <- catdogdata$sex_outcome</pre>
17 age_intake <- catdogdata$age_intake_days
18 age_outcome <- catdogdata$age_outcome_days</pre>
19 time_shelter <- catdogdata$time_shelter_days</pre>
20 outcome_type <- catdogdata$outcome_type</pre>
21 outcome_sub <- catdogdata$outcome_subtype
22 -
```

A tibble: 6 x 10	species <chr></chr>	breed <chr></chr>	intake_condition <chr></chr>	sex_outcome <chr></chr>	age_intake_days <dbl></dbl>	age_outcome_days <dbl></dbl>	time_shelter_days <dbl></dbl>	outcome_type <chr></chr>	outcome_subtype <chr></chr>
A350276	Cat	Abyssinian Mix	Normal	Spayed Female	4745	4745	168.167361	Adoption	NA
A664906	Cat	Abyssinian Mix	Normal	Spayed Female	365	365	5.054861	Adoption	NA
A707713	Cat	Abyssinian Mix	Normal	Spayed Female	7	90	91.075000	Adoption	NA
A765955	Cat	American Curl Shorthair	Normal	Spayed Female	30	60	28.754167	Adoption	Foster
A765956	Cat	American Curl Shorthair	Normal	Spayed Female	30	60	28.753472	Adoption	Foster

```
24 → # boxplot for outcome v age
26 install.packages("ggplot2")
27 library("ggplot2")
28 install.packages("tidyverse")
29 library(tidyverse)
30 install.packages("dplyr")
31 library(dplyr)
32
33 adoption = filter(catdogdata, outcome_type=="Adoption")
34 died = filter(catdogdata, outcome_type=="Died")
35 missing = filter(catdogdata, outcome_type=="Missing")
36 return_owner = filter(catdogdata, outcome_type=="Return to Owner")
37 euthanasia = filter(catdogdata,outcome_type=="Euthanasia")
38
   transfer = filter(catdogdata, outcome_type=="Transfer")
39
40
41
    out_age_bp <- ggplot() +
42
      geom_boxplot(data = adoption, mapping = aes(x =outcome_type, y = age_outcome_days),
43
                   col = 'blue') +
44
      geom_boxplot(data = transfer, mapping = aes(x =outcome_type, y = age_outcome_days),
                   col = 'lightgreen')
45
46
      geom\_boxplot(data = \overline{euthanasia}, mapping = aes(x = outcome\_type, y = age\_outcome\_days),
47
                   col = '<u>red</u>') +
48
      geom_boxplot(data = died, mapping = aes(x =outcome_type, y = age_outcome_days),
49
                   col = 'black') +
50
      geom\_boxplot(data = missing, mapping = aes(x = outcome\_type, y = age\_outcome\_days),
51
                   col = 'magenta') +
52
      geom_boxplot(data = return_owner, mapping = aes(x =outcome_type, y = age_outcome_days),
                   col = 'purple')+
53
54
      theme_classic() +
55
      labs(title = "Age vs Outcome",
56
           x = "Outcome",
57
           y = \text{"Age (days)"}) +
      theme(plot.title = element_text(size = 16,
```

```
58
59
60
                              hjust = 0.5)
61
62 out_age_bp
                                Age vs Outcome
      8000
      6000
    Age (days)
      2000
             Adoption
                        Died
                                 Euthanasia
                                            Missing
                                                    Return to Owner
                                                                 Transfer
                                      Outcome
```

```
65 - # barplot for reproductive status v outcome
66 - ``` {r}
67 library(ggplot2)
68
69 outcome <- rbind(adoption, died, transfer, missing, return_owner, euthanasia)
70
71
   intactmale = filter(outcome, sex_outcome=="Intact Male")
72 neuteredmale = filter(outcome, sex_outcome=="Neutered Male")
73 intactfemale = filter(outcome, sex_outcome=="Intact Female")
    spayedfemale = filter(outcome, sex_outcome=="Spayed Female")
75
76
    repro_stat <- rbind(intactfemale, spayedfemale, intactmale, neuteredmale)</pre>
78
79
    repro_bar <- ggplot(repro_stat, aes(x = outcome_type, fill = sex_outcome)) +</pre>
      geom_bar(position = 'dodge', width = 0.7) +
80
81
      scale_fill_manual(values = c("pink",
82
83
84
85
      labs(title = "Reproductive Status vs Outcome",
86
           x = "Outcome",
87
           y = "Count",
fill = "Sex") +
88
      theme_classic() +
89
      theme(plot.title = element_text(size = 16,
90
91
                                       face = "bold",
92
                                       hjust = 0.5)
93
94 repro_bar
```



```
98 - # barplot for outcome v species 99 - ```{r}
100 ##Packages
101 library(ggplot2)
102
103 ##Create Barplot
species_bar <- ggplot(outcome, aes(x = outcome_type, fill = species)) +

geom_bar(position = 'dodge', width = 0.8) +

scale_fill_manual(values = c("orange",

"royalblue")) +
          labs(title = "Species vs Outcome",
108
                x = "Outcome",
109
                y = "Count",
fill = "Species") +
110
111
          theme_classic() +
112
113
          theme(plot.title = element_text(size = 16,
                                                  face = "bold",
114
                                                  hjust = 0.5)
115
116
117 species_bar
118 -
```



```
119
120
123 ##Packages
124
125 library(ggplot2)
126 library(dplyr)
127
     ##Create Histogram
128
129
130
     agehist <- ggplot(data = adoption, mapping = aes(x = age_outcome_days)) +</pre>
      geom_histogram(bins = 50, binwidth = 200,
131
132
                    color = "<mark>black</mark>", fill = "<mark>blue</mark>") +
     labs(title = "Age of Adopted Animals (days)",
    x = "Age (days)",
    y = "Number of Animals") +
133
134
135
      theme_classic() +
136
      137
138
139
140 agehist
141
142
143 -
```



```
144
145 - # histogram for distribution of ages and those returned to their owners
146
147 - ```{r}
148 ##Packages
149
    library(ggplot2)
150
    library(dplyr)
151
152
    ##Create Histogram
153
154
155
    rto_hist <- ggplot(data = return_owner, mapping = aes(x = age_outcome_days)) +</pre>
    156
157
158
         x = "Age (days)",
y = "Number of Animals") +
159
160
161
      theme_classic() +
     162
163
                               hjust = 0.5))
164
165 rto_hist
166
167 -
```



```
169 \star # pie chart for reasons behind euthanaia 170 \star \ref{r}
171 ##Create Data Frame
172
173
     #Count Suffering
174 value_suff <- "Suffering"
175 count_suffering <- length(which(euthanasia$outcome_subtype == value_suff))
176 count_suffering #2006
177
178 #Count At Vet
     value_vet <- "At Vet"
179
180 count_vet <- length(which(euthanasia$outcome_subtype==value_vet))</pre>
181 count_vet #35
182
183 #Count Rabies
184 value_rabies <- "Rabies Risk"
185
     count_rabies <- length(which(euthanasia$outcome_subtype==value_rabies))</pre>
186 count_rabies #149
187
188 #Count Medical
189 value_med <- "Medical"
190 count_med <- length(which(euthanasia$outcome_subtype==value_med))</pre>
191
     count_med #118
192
193 #Count Aggressive
194 value_agg <- "Aggressive"
195 count_agg <- length(which(euthanasia$outcome_subtype==value_agg))</pre>
196 count_agg <u>#496</u>
197
198
     #Count Court Investigation
199 value_court <- "Court/Investigation"
200 count_court <- length(which(euthanasia$outcome_subtype==value_court))</pre>
201 count_court #23
202
reason = c("Suffering", "Rabies Risk", "Aggressive", "At Vet", "Medical", "Court/Investigation")
```

```
205 reasons_euth <- data.frame(reason, value)</pre>
206
207
     ##Create Blank Theme
208 blank_theme <- theme_minimal() +
209
      theme(
210
         axis.title.x = element_blank(),
211
         axis.title.y = element_blank(),
212
         panel.border = element_blank(),
213
         panel.grid = element_blank(),
214
         axis.ticks = element_blank(),
215
         plot.title = element_text(size = 14, face = "bold"))
216
217 ##Packages
218 library(dplyr)
219 library(ggplot2)
220 install.packages("ggrepel")
221 library(ggrepel)
222 library(forcats)
223 library(scales)
224
225 ##Create Pie Chart
226
227 reasons_euth %>%
228
      arrange(desc(value)) %>%
229
       mutate(prop = percent(value/sum(value))) -> reasons_euth
230
231
     euth\_pie \leftarrow ggplot(reasons\_euth, aes(x = "", y = value, fill = fct\_inorder(reason))) +
232
       geom_bar(width = 1, stat = "identity") +
233
       coord_polar("y", start = 0) +
234
       geom\_label\_repel(aes(label = prop), size = 5, show.legend = F, nudge\_x = 1) +
235
       guides(fill = guide_legend(title = "Reason for Euthanasia")) +
       labs(title = "Proportion of Reasons for Euthanasia") +
scale_fill_manual(values = c("red","orange","yellow", "green", "blue", "purple")) +
236
237
238
239
      theme(axis.text.x = element_blank())
```



```
245 \star # barplot for intake condition and outcome 246 \star ```{r}
247 ##Packages
248 library(ggplot2)
249 library(dplyr)
250
251
252 condition_intake
253 normal = filter(outcome, intake_condition=="Normal")
254 injured = filter(outcome, intake_condition=="Injured")
255 sick = filter(outcome, intake_condition=="Sick")
256 aged = filter(outcome, intake_condition== "Aged")
257
    nursing = filter(outcome, intake_condition=="Nursing")
258
     feral = filter(outcome, intake_condition=="Feral")
259
260 condition <- rbind(normal, injured, sick, aged, nursing, feral)</pre>
261
262
     con_euth <- filter(condition, outcome_type=="Euthanasia")</pre>
263
264
     con_euth_bar \leftarrow ggplot(con_euth, aes(x = intake_condition)) +
265
       geom_bar(position = 'dodge', width = 0.8, fill = 'darkgreen') +
266
       labs(title = "Intake Condition of Euthanized Animals",
267
            x = "Condition",
268
            y = "Count") +
269
       theme_classic() +
270
       theme(plot.title = element_text(size = 16,
271
                                        face = "bold",
272
                                        hjust = 0.5)
273
274 con_euth_bar
275
276 ## Create Bar plot
```

