Studio Projektowe 2

Projekt:

Śledzenie Obiektów z Wykorzystaniem Granular Video Computing Unsupervised Trucking

Autorzy

Michał Burda - michaburda@student.agh.edu.pl

Radosław Barszczak - rbarszczak@student.agh.edu.pl

Cel projektu

- Główne założenie: Implementacja systemu śledzenia obiektów na podstawie wejściowego wideo RGB-D
- Techniki:
 - Teoria zbiorów przybliżonych (rough sets)
 - Grafy przepływu (flow graphs)
- Tryb działania:
 Śledzenie bez nadzoru (unsupervised)

Najważniejsze funkcje

- Wypunktuj funkcje z sekcji *Features*:
- Sledzenie bez nadzoru z użyciem rough sets i flow graphs
- Obsługa formatu wideo RGB-D
- Modularna architektura: preprocessing, tracking, postprocessing
- **Z** Testy jednostkowe
- Prosta instalacja, niewielkie wymagania

Struktura projektu

- object_tracking/
- — data/
- ⊢— models/
- preprocessing/
- postprocessing/
- — utils/
- — results/
- — tests/
- ├— main.py
- ☐ README.md

Jak używać?

- Wczytaj wideo RGB-D przy użyciu load_frames_from_mp4 z modułu preprocessing
- Przekaż klatki do funkcji object_tracking()
- Ustal ścieżkę zapisu, próg detekcji (threshold) i parametr śledzenia p

Wyniki — separacja obiektu

 Przekształcenie ramki do postaci maski ruchu

Wyniki — detekcja obiektu

 Wideo RGB-D z zaznaczonym wykrytym obiektem

Podsumowanie

REALIZACJA KOMPLETNEGO PIPELINE'U DO ŚLEDZENIA OBIEKTÓW

MODUŁOWOŚĆ KODU UŁATWIA ROZWÓJ I TESTOWANIE

SKUTECZNOŚĆ W WYKRYWANIU OBIEKTÓW NA RÓŻNYCH SCENACH

MOŻLIWOŚĆ DALSZEGO ROZSZERZENIA (NP. ŚLEDZENIE WIELU OBIEKTÓW, DEEP LEARNING)

Koniec