

tworks

nal)

- 설정
- 업데이트
- 성취도
- 도움말 센터
- 로그아웃
- Youngeun In~

테스트: Recurrent Neural Networks **10개의 질문**

Programming Assignments

테스트테스트 • 30 min30 minutes

Recurrent Neural Networks

과제 제출

기한년 8월 23일 오후 3:59 KST년 8월 23일 오후 3:59 KST 시도하기8 hours당 3회

계속하기

성적 받기 통과 점수:80% 이상 성적 100%

피드백 보기

최고 점수가 유지됩니다.

탐색 확인

이 페이지에서 나가시겠습니까?

이 페이지에 머물기

이 페이지에서 나가기

Recurrent Neural Networks 성적 평가 퀴즈 • 30 min

만료 년 8월 23일 오후 3:59 KST

축하합니다! 통과하셨습니다!

Recurrent Neural Networks

최신 제출물 성적 100%

1. 질문 1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} jth word in the i^{th} ith training example?

 $x^{(i)} < j > x(i) < j >$

 $x^{< i > (j)}x < i > (j)$

 $x^{(j) < i > } x(j) < i >$

 $x^{< j > (i)} x < j > (i)$

맞습니다

We index into the i^{th} ith row first to get the i^{th} ith training example (represented by parentheses), then the j^{th} jth column to get the j^{th} jth word (represented by the brackets).

2. 질문 2

Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x = T_v Tx = Ty$$

00

$$T_x < T_v Tx < Ty$$

00

$$T_x > T_y Tx > Ty$$

00

$$T_x = 1 \text{Tx} = 1$$

/

맞습니다

It is appropriate when every input should be matched to an output.

3. 질문 3

To which of these tasks would you apply a many-to-one KNN architecture? (Check all that apply).
 1/1½ □
Speech recognition (input an audio clip and output a transcript)
Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
✓ 맞습니다
Correct!
Image classification (input an image and output a label)
Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
✓ 맞습니다
Correct!
4. 질문 4
You are training this RNN language model.
At the t^{th} tth time step, what is the RNN doing? Choose the best answer.
Estimating $P(y^{<1>}, y^{<2>},, y^{}) P(y<1>, y<2>,, y)$
00
Estimating $P(y < t >) P(y < t >)$
Estimating $P(y^{< t>} y^{< 1>}, y^{< 2>},, y^{< t-1>}) P(y < t> y < 1>, y < 2>,, y < t-1>)$
\bigcirc \bigcirc
Estimating $P(y^{} y^{<1>}, y^{<2>},, y^{})$ $P(y < t> y < 1>, y < 2>,, y < t>)$
✓ 맞습니다
Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.
5. 질문 5
You have finished training a language model RNN and are using it to sample random sentences, as follows:
What are you doing at each time step t t?
(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$ y^ <t>. (ii)</t>

Then pass the ground-truth word from the training set to the next time-step.
00
(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$ y^ <t>.(ii) Then pass the ground-truth word from the training set to the next time-step.</t>
00
(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$ y^ <t>.(ii) Then pass this selected word to the next time-step.</t>
(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$ y^ <t>.(ii) Then pass this selected word to the next time-step.</t>
✔ 맞습니다 6. 질문 6
You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
Vanishing gradient problem.
Exploding gradient problem.
00
ReLU activation function $g(.)$ used to compute $g(z)$, where z is too large.
00
Sigmoid activation function $g(.)$ used to compute $g(z)$, where z is too large.
✔ 맞습니다 7. 질문 7
Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$ a <t>. What is the dimension of $\Gamma_u \Gamma u$ at each time step?</t>
1
100
\circ
300
\circ
10000
나 맞습니다
Correct, $\Gamma_u\Gamma u$ is a vector of dimension equal to the number of hidden units in the LSTM.
✔ 맞습니다

8.

질문 8		

Here're the update equations for the GRU.

?

Alice proposes to simplify the GRU by always removing the $\Gamma_u\Gamma u$. I.e., setting $\Gamma_u\Gamma u=1$. Betty proposes to simplify the GRU by removing the $\Gamma_r\Gamma r$. I. e., setting $\Gamma_r\Gamma r=1$ always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing $\Gamma_u \Gamma u$), because if $\Gamma_r \approx 0 \Gamma r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Alice's model (removing $\Gamma_u\Gamma u$), because if $\Gamma_r\approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Betty's model (removing $\Gamma_r\Gamma_r$), because if $\Gamma_u\approx 0\Gamma u\approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Betty's model (removing $\Gamma_r\Gamma_r$), because if $\Gamma_u\approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

맞습니다

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ c<t> to be highly dependent on $c^{< t-1>}$ c<t-1>.

9. 질문 9

Here are the equations for the GRU and the LSTM:

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

 $\Gamma_n \Gamma u$ and $1 - \Gamma_n 1 - \Gamma u$

 $\Gamma_u \Gamma u$ and $\Gamma_r \Gamma r$

 $1 - \Gamma_n \mathbf{1} - \Gamma \mathbf{u}$ and $\Gamma_n \Gamma \mathbf{u}$

 $\Gamma_r\Gamma_r$ and $\Gamma_n\Gamma_u$

맞습니다

Yes, correct!

10.

질문 10

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},...,x^{<365>}$ x<1>,...,x<365>. You've

