

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A polymer characterized by comprising a repeating unit represented by the following formula (1) and having a number average molecular weight, in terms of polystyrene, of 10^3 to 10^8 :

wherein R₁ represents a hydrogen atom, or an alkyl, alkoxy, alkylthio, aryl, aryloxy, arylthio, arylalkyl, arylalkoxy, arylalkylthio, arylalkenyl, arylalkynyl, amino, substituted amino, silyl, substituted silyl, silyloxy, substituted silyloxy or monovalent heterocyclic group, or a halogen atom; and rings D and E each independently represent an optionally substituted aromatic ring.

2. (original): The polymer according to claim 1, wherein the aromatic ring is an aromatic hydrocarbon ring or a heteroaromatic ring.

3. (original): The polymer according to claim 2, wherein the aromatic ring is an aromatic hydrocarbon ring.

4. (previously presented): The polymer according to claim 2, wherein the aromatic hydrocarbon ring is a benzene, naphthalene or anthracene ring.

5. (original): The polymer according to claim 4, wherein the repeating unit represented by the formula (1) is represented by the following formula (2-1), (2-2), (2-3), (2-4) or (2-5):

wherein R₁ represents the same group as that in the formula (1).

6. (previously presented): The polymer according to claim 1, wherein the repeating unit is represented by the following formula (3):

wherein R₁ represents the same group as that in the formula (1); R₂ and R₃ each independently represent an alkyl, alkoxy, alkylthio, aryloxy, arylthio, arylalkyl, arylalkoxy, arylalkylthio, amino or substituted amino group.

7. (previously presented): The polymer according to claim 1, further comprising a repeating unit represented by the following formula (4), (5), (6) or (7):

wherein Ar₁, Ar₂ and Ar₃ each independently represent an arylene group, a divalent heterocyclic group or a divalent group having a metal complex structure; X₁ represents -C≡C-, -N(R₂₂)- or -(SiR₂₃R₂₄)_y-; X₂ represents -CR₂₀=CR₂₁-, -C≡C-, -N(R₂₂)- or -(SiR₂₃R₂₄)_y-; R₂₀ and R₂₁ each independently represent a hydrogen atom, or an alkyl, aryl, monovalent heterocyclic, carboxyl, substituted carboxyl or cyano group; R₂₂, R₂₃ and R₂₄ each independently represent a hydrogen atom, or an alkyl, aryl, monovalent heterocyclic or arylalkyl group; w represents an integer of 0

to 1; and y represents an integer of 1 to 12.

8. (currently amended): The polymer according to claim 7, wherein the repeating unit represented by the formula (4) is represented by the following formula (8), (9), (10), (11), (12) or (13):

wherein R_{25} represents an alkyl, alkoxy, alkylthio, aryl, aryloxy, arylthio, arylalkyl, arylalkoxy, arylalkylthio, arylalkenyl, arylalkynyl, amino, substituted amino, silyl, substituted silyl, silyloxy or substituted silyloxy group, or a halogen atom, or an acyl, acyloxy, imino, amide, imide, monovalent heterocyclic, carboxyl, substituted carboxyl or cyano group; and z represents an integer of 0 to 4;

wherein R_{26} and R_{27} each independently represent the same group as the R_{25} in the formula (8); and aa and bb each independently represent an integer of 0 to 3;

wherein R₂₈ and R₃₁ each independently represent the same group as the R₂₅ in the formula (8); cc and dd each independently represent an integer of 0 to 4; and R₂₉ and R₃₀ each independently represent a hydrogen atom, or an alkyl, aryl, monovalent heterocyclic, carboxyl, substituted carboxyl or cyano group;

wherein R₃₂ represents an alkyl, alkoxy, alkylthio, aryl, aryloxy, arylthio, arylalkyl, arylalkoxy, arylalkylthio, arylalkenyl, arylalkynyl, amino, substituted amino, silyl or substituted silyl group, or a halogen atom, or an acyl, acyloxy, imino, amide, imide, monovalent heterocyclic, carboxyl, substituted carboxyl or cyano group; ee represents an integer of 0 to 2; Ar₆ and Ar₇ each independently represent an arylene group, a divalent heterocyclic group or a divalent group having a metal complex structure; sa and sb each independently represent 0 or 1; and X₄ represents O, S, SO, SO₂, Se or Te;

wherein R₃₃ and R₃₄ each independently represent the same group as the R₂₅ in the formula (8); ff and gg each independently represent an integer of 0 to 4; X₅ represents O, S, SO, SO₂, Se, Te, N-R₃₅ or SiR₃₆R₃₇; X₆ and X₇ each independently represent N or C-R₃₈; and R₃₅, R₃₆, R₃₇ and R₃₈ each independently represent a hydrogen atom, or an alkyl, aryl, arylalkyl or monoaldehyde heterocyclic group; and

wherein R₃₉ and R₄₄ each independently represent the same group as the R₂₅ in the formula (8); hh and jj each independently represent an integer of 0 to 4; R₄₀, R₄₁, R₄₂ and R₄₃ each independently represent the same group as the R₂₉ in the formula (10); and Ar₅ represents an arylene group, a divalent heterocyclic group or a divalent group having a metal complex structure.

9. (original): The polymer according to claim 7, wherein the repeating unit

represented by the formula (5) is represented by the following formula (14):

wherein Ar₁₁, Ar₁₂, Ar₁₃ and Ar₁₄ each independently represent an arylene or divalent heterocyclic group; Ar₁₅, Ar₁₆ and Ar₁₇ each independently represent an aryl or monovalent heterocyclic group; and qq and rr each independently represent 0 or 1, wherein 0 ≤ qq + rr ≤ 1.

10. (currently amended): A method for producing the polymer according to claim 1, comprising subjecting a compound represented by the following formula (15), as one of its raw materials, to condensation polymerization:

wherein rings D, E and R₁ each independently represent the same as described above in claim 1; Y₁ and Y₂ each independently represent a substituent that takes part in the condensation polymerization.

11. (currently amended): A method for producing the polymer according to claim 7, comprising subjecting not only the compound represented by the following formula (15) but also a compound represented by any one of the following formula (16) to (19) to condensation

polymerization:

wherein R₁ represents a hydrogen atom, or an alkyl, alkoxy, alkylthio, aryl, aryloxy, arylthio, arylalkyl, arylalkoxy, arylalkylthio, arylalkenyl, arylalkynyl, amino, substituted amino, silyl, substituted silyl, silyloxy, substituted silyloxy or monovalent heterocyclic group, or a halogen atom; rings D and E each independently represent an optionally substituted aromatic ring; and Y₁ and Y₂ each independently represent a substituent that takes part in the condensation polymerization;

Y₃-Ar₁-Y₄ (16)

Y₃-Ar₁-X₁-(Ar₂-X₂)_w-Ar₃-Y₄ (17)

Y₃-Ar₁-X₂-Y₄ (18)

Y₃-X₂-Y₄ (19)

wherein Ar₁, Ar₂, Ar₃, w, X₁ and X₂ each represent the same as described above; and Y₃ and Y₄ each independently represent a substituent that takes part in the condensation polymerization.

12. (currently amended): The method according to claim-10 11, wherein Y₁, Y₂, Y₃ and Y₄ each independently represent a halogen atom, or an alkylsulfonate, arylsulfonate or arylalkylsulfonate group and the condensation polymerization is carried out using a zerovalent nickel complex.

13. (currently amended): The method according to claim 10 11, wherein Y₁, Y₂, Y₃ and Y₄ each independently represent a halogen atom, or an alkylsulfonate, arylsulfonate, arylalkylsulfonate, boric acid or borate ester group, the ratio of the total mole number of the halogen atom and the alkylsulfonate, arylsulfonate and arylalkylsulfonate groups to that of the boric acid and borate ester groups is substantially 1, and the condensation polymerization is carried out using a nickel or palladium catalyst.

14. (currently amended): A composition, characterized by comprising: at least one material compound selected from the group consisting of a hole transport material, an electron transport material and a light-emitting material; and at least one polymer according to claim 1.

15. (currently amended): An ink composition, characterized by comprising the polymer according to claim 1.

16. (original): The ink composition according to claim 15, having a viscosity of 1 to 20 mPa·s at 25°C.

17. (previously presented): A light-emitting thin film, comprising the polymer according to claim 1.

18. (previously presented): A conductive thin film, comprising the polymer according to claim 1.

19. (previously presented): An organic semiconductor thin film, comprising the polymer according to claim 1.

20. (currently amended): A polymeric light-emitting device, characterized by comprising a layer that comprises the polymer according to claim 1 between an anode and a

cathode.

21. (previously presented): The polymeric light-emitting device according to claim 20, wherein the layer that comprises the polymer is a light-emitting layer.

22. (original): The polymeric light-emitting device according to claim 21, wherein the light-emitting layer further comprises a hole transport material, an electron transport material or a light-emitting material.

23. (currently amended): A surface light source, ~~characterized by using comprising~~ the polymeric light-emitting device according to claim 20.

24. (currently amended): A segment display unit, ~~characterized by using comprising~~ the polymeric light-emitting device according to claim 20.

25. (currently amended): A dot matrix display unit, ~~characterized by using comprising~~ the polymeric light-emitting device according to claim 20.

26. (currently amended): A liquid crystal display unit, ~~characterized by using comprising~~ the polymeric light-emitting device according to claim 20 as its back light.