

14 Fragerunde & Abschluss

Dominic Schmitz & Janina Esser

1. Frequentist vs. Bayesian

2. Power-Analyse

Frequentist vs. Bayesian

- wir arbeiten im Workshop im s.g. Frequentist Framework
 - traditioneller Ansatz zur Statistik, der auf dem Konzept der Wahrscheinlichkeit basiert
 - die Wahrscheinlichkeit eines Ereignisses wird als die Langzeitfrequenz interpretiert, mit der dieses Ereignis in einer großen Anzahl identischer Versuche auftritt
 - geht davon aus, dass
 - der zu schätzende Parameter fest und unbekannt ist
 - die Daten eine Zufallsstichprobe aus einer Population darstellen
 - Ziel: Daten verwenden, um **Schlussfolgerungen** über Populationsparameter zu ziehen, wie z.B. dessen Wert zu schätzen oder Hypothesen darüber zu testen

Frequentist vs. Bayesian

- alternativ kann man auch im s.g. Bayesian Framework arbeiten
 - moderner Ansatz zur Statistik, der ebenfalls auf dem Konzept der Wahrscheinlichkeit basiert
 - die Wahrscheinlichkeit eines Ereignisses wird als als Grad des Glaubens (belief) oder der Unsicherheit (uncertainty) über dieses Ereignis interpretiert
 - geht davon aus, dass
 - der zu schätzende Parameter nicht fest ist, sondern eine Zufallsvariable mit einer eigenen Wahrscheinlichkeitsverteilung
 - Ziel: vorherige Überzeugungen über den Parameter mithilfe von Daten zu aktualisieren, um eine Posteriorverteilung zu erhalten, die die aktualisierten Überzeugungen (belief, uncertainty) über den Parameter darstellt

Beispiel 1: Münzwurf

Frage: Ist die Münze fair?

Kopf	Zahl
6	4

Frequentist

$$P(Kopf) = \frac{6}{6+4} = 0.6$$

$$P(Zahl) = \frac{4}{6+4} = 0.4$$

Bayesian

- Annahme: P(Kopf) = P(Zahl) = 0.5
- Posterior: $L(Kopf) = P(Kopf) * P_{observed}(Kopf) = 0.5 * 6 = 3$
- Posterior-Annahme: $P_{post}(Kopf) = \frac{L(Kopf)}{L(Kopf) + L(Zahl)} = \frac{3}{3+2} = 0.6$

Beispiel 2: Zufriedenheitsumfrage

Frage: Sind mindestens 80% der User*innen zufrieden?

Ja	Nein
10	5

Frequentist

$$P(Ja) = \frac{10}{10 + 5} \approx 0.67$$

Bayesian

• Annahme: P(Ja) = 0.8

• Posterior: $L(Ja) = P(Ja) * P_{observed}(Ja) = 0.8 * 10 = 8$

• Posterior-Annahme: $P_{post}(Ja) = \frac{L(Ja)}{L(Ja) + L(Nein)} = \frac{8}{8+1} \approx 0.89$

Beispiel 3: Textkorpus

Frage: Kommt Hund so häufig wie Katze vor?

Hund	andere Wörter
3	13

Frequentist

$$P(Hund) = \frac{3}{3+13} \approx 0.19$$

Bayesian

- Annahme: P(Hund) = P(Katze) = 0.25
- Posterior: $L(Hund) = P(Hund) * P_{observed}(Hund) = 0.25 * 3 = 0.75$
- Posterior-Annahme: $P_{post}(Hund) = \frac{L(Hund)}{L(Hund) + L(andere)} = \frac{0.75}{0.75 + 9.75} \approx 0.07$

Frequentist vs. Bayesian

Was schließen wir daraus?

- beide Frameworks haben grundlegende Voraussetzungen, die zu Problemen werden können
 - Frequentist: wir nehmen an, dass unser Datensatz repräsentativ für die Gesamtpopulation ist
 - Bayesian: wir nehmen an, dass unsere initiale Annahme P annäherend zutrifft

1. Frequentist vs. Bayesian

2. Power-Analyse

Power-Analyse

- bestimmt die Wahrscheinlichkeit, dass eine statistische Hypothese bei einer gegebenen Stichprobengröße und einem gegebenen Signifikanzniveau abgelehnt wird
- nützlich, wenn man die Größe einer Stichprobe bestimmen muss, die benötigt wird, um eine Hypothese mit einer bestimmten
 Wahrscheinlichkeit abzulehnen
- hängt von mehreren Faktoren ab, einschließlich der Größe der Stichprobe, der Größe des Effekts, der geprüften Hypothese, des Signifikanzniveaus und des statistischen Tests, der verwendet wird
- mehr Daten = mehr Power

Beispiel: t-Test

Frage: Sind Frauen und Männer unterschiedlich groß?

Parameter	Bedeutung	in unserem Beispiel
delta	minimal erkennbarer Unterschied	2 cm
sd	Standardabweichung der Stichprobe	5 cm
sig.level	Signifikanzlevel α	0.05
power	gewünschte Power	0.8
type	Typ des t-Tests	two.sample (unabhängig)
alternative	Typ der Hypothese	two.sided (zweitseitig)

gesucht: die Stichprobengröße *n*

praktisches Package: pwr

1. Frequentist vs. Bayesian

2. Power-Analyse

Fragen?

1. Frequentist vs. Bayesian

2. Power-Analyse

Dankeschön!