

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

MC, NL, PT, SE).

WO 96/28115

A61F 2/06

A1

(43) International Publication Date: 19 September 1996 (19.09.96)

(21) International Application Number:

PCT/US95/11817

(22) International Filing Date:

15 September 1995 (15.09.95)

(30) Priority Data:

08/401.871 08/508,033 10 March 1995 (10.03.95)

27 July 1995 (27.07.95)

US US

(71) Applicant: IMPRA, INC. [US/US]; 1625 West Third Street, P.O. Box 1740, Tempe, AZ 85280-1740 (US).

(72) Inventors: BANAS, Christopher, E.; 2524 North Alba, Mesa, AZ 85213 (US). EDWIN, Tarun, J.; 5302 West Dublin Court, Chandler, AZ 85226 (US).

(74) Agent: ROSENBAUM, David, G.; Tiffany & Hoffmann, Suite #500, 1850 North Central Avenue, Phoenix, AZ 85004 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: AT, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KR, LK, MX, NO, NZ, PL, RO, RU, SI, SK, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU,

(54) Title: ENDOLUMINAL ENCAPSULATED STENT AND METHODS OF MANUFACTURE AND ENDOLUMINAL DELIVERY

(57) Abstract

A radially expandable stent-graft and method of making the same, including at least one stent member encapsulated between at least two longitudinally expanded polytetrafluoroethylene (ePTFE) coverings. The at least one stent member (22) has openings through wall surfaces of the stent to permit radial expansion. The at least two longitudinally expanded ePTFE coverings (24, 26) are circumferentially applied over the at least one stent member in their unsintered state, and sintered during application of a circumferential pressure to bond the ePTFE around and through the wall surfaces of the stent (22). The sintered ePTFE forms a substantially continuous, monolithic and integral encapsulation of the at least one stent. Upon radial expansion of the stent graft (10), the stent and the ePTFE node-fibril microstructure radially deform. Radial deformation of the ePTFE encapsulation results in nodal elongation in the axis of radial expansion. After radial expansion of the stent-graft (10), a substantial bonded area remains intact and maintains the encapsulation of the stent in vivo.