

CLAIMS

- 1 1. A light-emitter structure comprising:
 - 2 a platform;
 - 3 an $In_x(Al_yGa_{1-y})_{1-x}P$ lower clad region formed on said platform and having a
 - 4 lattice constant between approximately 5.49 Å and 5.62 Å;
 - 5 a strained quantum well active region formed on said lower clad region; and
 - 6 an $In_x(Al_yGa_{1-y})_{1-x}P$ upper clad region formed on said strained quantum well
 - 7 active region.
- 1 2. The light-emitter structure of claim 1, wherein said strained quantum well active
- 2 region comprises an $In_x(Al_yGa_{1-y})_{1-x}P$ strained quantum-well active region where
- 3 $0.27 \leq x \leq 0.50$ and $0 \leq y \leq 1$ formed on said lower clad region.
- 1 3. The light-emitter structure of claim 1, wherein said upper clad region is approximately
- 2 lattice-matched to said lower clad region formed on said strained quantum well.
- 1 4. The light-emitter structure of claim 1, wherein said platform comprises a
- 2 $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded buffer placed between a substrate and said lower clad
- 3 region.
- 1 5. The light-emitter structure of claim 4, wherein said substrate comprises GaP.
- 1 6. The light-emitter structure of claim 1 further comprising a cap layer that is deposited
- 2 on said upper clad region.

1 7. The light-emitter structure of claim 6, wherein said cap layer comprises InGaP that is
2 deposited on and approximately lattice-matched to said upper clad region.

1 8. The light-emitter structure of claim 1 further comprising separate confinement
2 heterostructures (SCH) placed between said upper clad region, said lower clad region and
3 said strained quantum well active region.

1 9. The light-emitter structure of claim 8, wherein said separate confinement
2 heterostructures (SCH) comprises InGaP or InAlGaP that is approximately lattice-
3 matched to said clad layer, and placed between said upper clad region, lower clad region
4 and said strained quantum well active region.

1 10. The light-emitter structure of claim 1, wherein said upper and lower clad regions
2 comprise concentration values $x=0.22$ and $y=0.2$.

1 11. The light-emitter structure of claim 1, wherein said strained quantum well active
2 region comprises concentration values $x=0.32$ and $y=0$.

1 12. The light-emitter structure of claim 1, wherein said lower clad region and upper clad
2 region are n-doped and p-doped, respectively.

1 13. The light-emitter structure of claim 1, wherein said lower clad region and upper clad
2 region are p-doped and n-doped, respectively.

1 14. The light-emitter structure of claim 1, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded
2 buffer and said lower clad region are n-doped, and said upper clad is p-doped.

1 15. The light-emitter structure of claim 1, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded
2 buffer and said lower clad region are p-doped, and said upper clad is n-doped.

1 16. The light-emitter structure of claim 1, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded
2 buffer is undoped, said lower clad region is n-doped, and said upper clad region is p-
3 doped.

1 17. The light-emitter structure of claim 1, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded
2 buffer is undoped, said lower clad region is p-doped, and said upper clad region is n-
3 doped.

1 18. The light-emitter structure of claim 1, wherein said strained quantum well active
2 region is doped.

1 19. The light-emitter structure of claim 8, wherein said SCH structures are doped.

1 20. The light-emitter structure of claim 1 further comprising a double top contact.

1 21. The light-emitter structure of claim 1 further comprising an insulator stripe top
2 contact.

1 22. A method of forming a light-emitter structure comprising:
2 providing a platform;
3 forming an $In_x(Al_yGa_{1-y})_{1-x}P$ lower clad region having a lattice constant between
4 approximately 5.49 Å and 5.62 Å on said platform;
5 forming a strained quantum well active region on said lower clad region; and

6 forming an $\text{In}_x(\text{Al}_y\text{Ga}_{1-y})_{1-x}\text{P}$ upper clad region on said strained quantum well
7 active region.

1 23. The method of claim 22, wherein said strained quantum well active region comprises
2 an $\text{In}_x(\text{Al}_y\text{Ga}_{1-y})_{1-x}\text{P}$ strained quantum-well active region where $0.27 \leq x \leq 0.50$ and
3 $0 \leq y \leq 1$ formed on said lower clad region.

1 24. The method of claim 22, wherein said upper clad region is approximately lattice-
2 matched to said lower clad region formed on said strained quantum well.

1 25. The method of claim 1, wherein said platform comprises a $\nabla_x[\text{In}_x(\text{Al}_y\text{Ga}_{1-y})_{1-x}\text{P}]$
2 graded buffer placed between a substrate and said lower clad region..

1 26. The method of claim 25, wherein said substrate comprises GaP.

1 27. The method of claim 22 further comprising depositing a cap layer on said upper clad
2 region.

1 28. The method of claim 27, said cap layer comprises InGaP that is deposited on and
2 approximately lattice-matched to said upper clad region.

1 29. The method of claim 22 further comprising placing separate confinement
2 heterostructures (SCH) between said upper clad region, said lower clad region and said
3 strained quantum well active region.

1 30. The method of claim 29, wherein said separate confinement heterostructures (SCH)
2 comprises InGaP or InAlGaP that is approximately lattice-matched to said clad layer and

3 placed between said upper clad region, lower clad region and said strained quantum-well
4 active region.

1 31. The method of claim 22, wherein said upper and lower clad regions comprise of
2 concentration values x=0.22 and y=0.2.

1 32. The method of claim 22, wherein said strained quantum well active region comprises
2 of concentration values x=0.32 and y=0.

1 33. The method of claim 22, wherein said lower clad region and upper clad region are n-
2 doped and p-doped, respectively.

1 34. The method of claim 22, wherein said lower clad region and upper clad region are p-
2 doped and n-doped, respectively.

1 35. The method of claim 22, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded buffer and said
2 lower clad region are n-doped and said upper clad is p-doped.

1 36. The method of claim 22, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded buffer and said
2 lower clad region are p-doped and said upper clad is n-doped.

1 37. The method of claim 22, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded buffer is
2 undoped, said lower clad region is n-doped, and said upper clad region is p-doped.

1 38. The method of claim 22, wherein said $\nabla_x[In_x(Al_yGa_{1-y})_{1-x}P]$ graded buffer is
2 undoped, said lower clad region is p-doped, and said upper clad region is n-doped.

1 39. The method of claim 22, wherein said strained quantum well active region is doped.

- 1 40. The method of claim 29, wherein said SCH structures are doped.
- 1 41. The method of claim 22 further comprising providing a double top contact.
- 1 42. The method of claim 22 further comprising providing an insulator stripe top contact.
- 1 43. The method of claim 22, wherein said platform comprises a substrate that is lattice-matched to said lower clad region.
- 1 44. The light-emitter structure of claim 1, wherein said platform comprises a substrate that is lattice-matched to said lower clad region.