PROTOKOLL

for laboratory practice

Oscillator

Gruppe / Klasse	Protokollführer	Unterschrift:
5 / 4AHELS	Andreas Böhm	
Übungs- / Abgabedatum	Mitarbeiter	Unterschrift:
11.3.2014 18.3.2014	Thomas Asch	
Lehrer	Mitarbeiter	Unterschrift:
Tillich	Peter Neunteufl	
Note:	Mitarbeiter	Unterschrift:

Oscillator

VERWENDETE GERÄTE:

Tektonix TDS1001B

Protokoll wurde auf EL-Labor Abgabeordner gespeichert: am: 18.3.2014

Labordeckblatt 2013

Task 1:

Calculate a Phase-Shifting-Oscillator Circuit with an OPV and realize it.

$$f_0 = 1kHz$$

Asymmetric Source = 10 V.

Circuit:

Fig.1: OPV Phase-Shifting Circuit

Calculations:

Assumption:

$$C = 22nF$$

$$f_0 = 1/(R * 2 * \pi * \sqrt{6} * C)$$

$$\rightarrow R = 1/(f_0 * 2 * \pi * \sqrt{6} * C)$$

$$R = 2,95k\Omega$$

$$\Rightarrow R = 2,7 k\Omega$$

$$V = P/R \ge 30!$$

$$\rightarrow P > R*30 \rightarrow P = 100k$$

Fig.2: Ua(t) with good Potentiometer position

Fig.3: Spectrum of Ua(t) with good Potentiometer position

$$THD = -49.2 \text{ dB}$$

$$\Rightarrow THD = 0.346\%$$

Zum Ändern der Messung Bildschirmtaste drücken

Fig.4: Ua(t) with bad Potentiometer position

Fig.3: Spectrum of Ua(t) with bad Potentiometer position

$$THD = -18.4 \text{ dB}$$

$$\Rightarrow THD = 12,022\%$$

Comment:

In the first measurement the Output Signal Ua(t) had very low harmonics. In the second measurement the THD was up to 12%, that means the difference between fist Harmonic and second Harmonic is very low and the sinus isn't perfect.

Task 2:

Calculate a Phase-Shifting-Oscillator Circuit with a Transistor and realize it.

 $f_0 = 1kHz$

Asymmetric Source = 12 V.

Circuit:

Fig.5: Circuit of Phase-Shifting-Oscillator with a Transistor

Calculation:

Assumption:

C = 22nF

 $I_C = 1 \text{ mA}$

$$f_0 = \sqrt{6/(2*\pi*C*R)}$$

$$\rightarrow R = \sqrt{6/(2*\pi*C*f_0)}$$

R - 17.72 kO

$$R = 17,72 \text{ k}\Omega$$

 $\Rightarrow R = 18\text{k}\Omega$

 $R_1:R_2 = 8V:2V = 4:1$

Assumption:

 $R_2 = 12 \text{ k}\Omega$

$$R_1 = 4*R_2 = 48 \text{ k}\Omega$$

$$\; \Rightarrow \; R_1 = 47 \; k\Omega$$

$$R_c = 5V/I_c = 5 k\Omega$$

$$\Rightarrow \ R_c = 4.7 \ k\Omega$$

$$R_E=2V/I_c=2\ k\Omega$$

$$\Rightarrow$$
 R_E = 1,8 k Ω

Comment:

Also, through the help of the teacher, the build circuit didn't oscillate. A problem could be the calculation, because there is no or rather a too low Voltage between the Base and the Emitter of the Transistor.