Droites

Vecteur directeur d'une droite

<u>Définition</u>: On considère une droite d et deux points distincts A et B de d. On appelle **vecteur directeur** de la droite d tout vecteur non nul, colinéaire au vecteur \overrightarrow{AB} .

Remarques:

- On dit que le vecteur **dirige** la droite d.
- La direction (pas le sens) du vecteur directeur définit la direction de la droite d.
- Deux vecteurs directeurs de d ont la même direction : ils sont colinéaires.
- Deux droites parallèles ont la même direction : ainsi tout vecteur directeur de l'une est un vecteur directeur de l'autre.

<u>Propriété</u>: Une droite d peut être définie par la donnée d'un point A et d'un vecteur directeur \vec{u} . On a alors $M \in d$ si et seulement si \overrightarrow{AB} et \vec{u} sont colinéaires.

Équation cartésienne d'une droite

<u>Définition</u>: Une **équation cartésienne** de la droite passant par le point $A(x_A; y_A)$ et de vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est de la forme ax+by+c=0.

Preuve : Un point M est sur la droite \underline{ssi} \overline{AM} et \vec{u} colinéaires \underline{ssi} $\det(\overline{AM},\vec{u}) = 0$ \underline{ssi} $a \times (x - x_A) - (-b) \times (y - y_B) = 0$ \underline{ssi} $ax + by + (-ax_A - by_B) = 0$.

Propriété : Si les coordonnées d'un point M(x;y) satisfont l'équation ax+by+c=0, alors M appartient à une droite dont $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est vecteur directeur.

Équation réduite d'une droite

<u>Définition</u>: Soit d une droite d'équation cartésienne ax+by+c=0 avec a et b non tous nuls.

1. Si b=0, alors la droite d est **verticale**, parallèle à l'axe des abscisses. Elle admet une **équation réduite** de la forme x=k pour une constante $k \in \mathbb{R}$.

Preuve: $b=0 \Leftrightarrow ax+c=0 \Leftrightarrow x=-\frac{c}{a}$ car $a\neq 0$. Tous les points ont la même abscisse, c'est une droite verticale.

2. Si $b \neq 0$, alors la droite d admet une unique **équation réduite** de la forme y = mx + p. m est le **coefficient directeur** (ou la pente) de d et p est l'**ordonnée à l'origine** de d.

Preuve: $b \neq 0 \Leftrightarrow ax + by + c = 0 \Leftrightarrow y = -\frac{a}{b}x - \frac{c}{b}$.

Remarques

- Si a=0, la droite est horizontale, parallèle à l'axe des abscisses. Son équation est de la forme y=k pour $k\in\mathbb{R}$.
- Dans le second cas, la droite d est la représentation graphique de la fonction affine f(x) = mx + p.
- Une droite verticale ne peut être la représentation d'une fonction puisqu'un réel ne peut avoir qu'**UNE** image.

<u>Propriété</u>: Le vecteur de coordonnées $\begin{pmatrix} 1 \\ m \end{pmatrix}$ est un vecteur directeur de la droite d d'équation y = mx + p.

La phrase 'Lorsque j'avance de 1, je monte de m.' est la transcription parfaite de cette propriété. Souvenez-vous en. Le point d'intersection de la droite d avec l'axe des ordonnées est le point de coordonnées (0; p).

Propriété: Si l'on ne connait pas d'équation réduite de la droite, si celle-ci est donnée par deux points A et B par exemple, on peut facilement calculer le coefficient directeur de la droite AB grâce à la formule $aB = \frac{y_B - y_A}{x_B - x_A}$. Pour trouver l'ordonnée à l'origine, il suffit d'utiliser qu'un point appartient à la droite : $aB = \frac{y_B - y_A}{x_B - x_A}$.

Positions relatives de deux droites

Dans le plan, deux droites n'ont que trois situations possibles de coexister :

- elles sont **sécantes** : il existe un unique point d'intersection,
- elles sont **strictement parallèles** : l'intersection des deux droites est vide,
- elles sont confondues : l'intersection contient la droite elle-même.

Remarque : Deux droites confondues sont considérées comme parallèles.

<u>Propriété</u> Deux droites d'équations cartésiennes ax + by + c = 0 et a'x + b'y + c' = 0 sont parallèles <u>si et seulement</u> <u>si</u> leurs vecteurs directeurs $\begin{pmatrix} -b \\ a \end{pmatrix}$ et $\begin{pmatrix} -b' \\ a' \end{pmatrix}$ sont colinéaires, donc <u>si et seulement si</u> ab' - ba' = 0.

<u>Propriété</u> Deux droites d'équations réduites y=mx+p et y=m'x+p' sont parallèles <u>si et seulement si</u> m=m'. Si de plus p=p', alors elles sont confondues.

Systèmes linéaires d'équations

Dans le cas de deux droites sécantes, le point d'intersection M(x;y) a ses coordonnées qui vérifient les deux équations. On parle d'un système linéaire de deux équations à deux inconnues $\begin{cases} ax+by+c=0\\ a'x+b'y+c'=0 \end{cases}.$

D'après les résultats précédents, ce système admet une unique solution <u>si et seulement si</u> $ab'-ba'\neq 0$. Dans ce cas, les droites ne sont pas parallèles et la solution de ce système donne les coordonnées du point d'intersection.