자료구조

L11: Graph (2)

2022년 1학기 국민대학교 소프트웨어학부

Overview

- Shortest paths problems
- Dijkstra's algorithm
- Cost analysis of Dijkstra's algorithm

Shortest Paths Problems

- Input: A graph with <u>weights</u> associated with each edge
- Output: The list of edges forming the shortest path
- Sample problems:
 - Find shortest path between two named vertices
 - Find shortest paths from a vertex s to all other vertices
 - Find shortest paths between all pairs of vertices
- Will calculate shortest distances.

Shortest Paths Definitions

- δ(A, B) is the shortest distance from vertex A to B.
- w(A, B) is the weight of the edge connecting A to B.
 - If there is no such edge, then $w(A, B) = \infty$.

Single-Source Shortest Paths

- Given start vertex s, find the shortest path from s to all other vertices.
- Algorithm by Dijkstra
 - Maintain a set S of visited vertices. Also maintain distance array
 D of size n (# of vertices)
 - D[i] stores current estimate of distance d(s,i) between s and
 i
 - Initially, S is empty, and D[s] = 0
 - In each iteration (run this from n times)
 - Use D to do that
 - Update D for u's neighbors v by the following relax operation

Relax Operation

- Update D for u's neighbors v by the following relax operation
 - relax(u, v, w)
 - If d(s, v) > d(s, u) + w
 - d(s, v) = d(s, u) + w
 - prev(v) = u

Dijkstra's Algorithm Example

D vector

	A	В	С	D	E
Initial	0	8	8	8	8
Process A	0	10	3	20	8
Process C	0	5	3	20	18
Process B	0	5	3	10	18
Process D	0	5	3	10	18
Process E	0	5	3	10	18

Start vertex: A

Dijkstra's Algorithm Example

Correctness of Dijkstra

- Correctness
 - Claim: when u is added to S, $d(s, u) = \delta(s, u)$
 - This means that when u is added to S, d(s, u) is the shortest distance, and we found the shortest path to u
 - Key idea (from Dynamic Programming)
 - Assume there is a node x in the shortest path P from s to y
 - Then, the path from s to x in P is a shortest path from s to x

Correctness of Dijkstra

- Claim: when u is added to S, $d(s, u) = \delta(s, u)$
 - (Proof by Induction)
 - (Base case) When u = s, the claim is trivially true
 - (Induction Hypothesis) Assume the claim is true for S
 - Now we add u to S. We need to show that $d(s, u) = \delta(s, u)$
 - Assume a shortest path s to u, and x→y are the first boundary vertices between S and V-S in the shortest path
 - It can be shown that $d(s, u) = \delta(s, u)$
 - $d(s,y) \le d(s,x) + w(x,y)$ (from relax on x)
 - = $\delta(s, x) + w(x,y)$ (from I.H.)
 - = $\delta(s, y)$ (key idea)
 - That implies y and u are the same
 - $d(s, y) = \delta(s, y) \le \delta(s, u) \le d(s, u)$
 - But, $d(s, u) \le d(s, y)$ since u is added to S
 - Thus, $d(s, u) = \delta(s, u)$

Dijkstra's Implementation

```
function Dijkstra(G, r):
S = \{r\}
initialize an array D of size | V | with infinity
initialize an array prev of size | V |
D[r] = 0
while S != V:
    u = minNode(V-S, D)
    add u to S
    for v in G.neighbors(v):
        if v is not in S and D[u] + w(u,v) < D[v]:
            D[v] = D[u] + w(u,v)
            prev[v] = u
```

Implementing minNode

- Issue: How to determine the next-closest vertex?
 - (i.e., implement minNode)
- Approach 1: Scan through the table of current distances.
 - Total cost of Dijkstra: $\Theta(|V|^2 + |E|) = \Theta(|V|^2)$
- Approach 2: Store unprocessed vertices using a min-heap to implement a priority queue ordered by D value. Must update priority queue for each edge.
 - Cost: $\Theta((|V|+|E|)\log|V|)$

Questions?