# Data Mining & Organization: Iris and other data sets Data understanding and visualization

Chapter 3, Introduction to Data Mining by Tan, Steinbach, Kumar

#### Donatella Merlini

Università di Firenze Corso di Laurea Magistrale in Informatica Curriculum Data Science

## The Iris data set







Iris Versicolor



Iris Virginica

- Collected by E. Anderson in 1935
- Contains measurements of four real-valued variables: sepal length, sepal widths, petal lengths and petal width of 150 iris flowers of types Iris Setosa, Iris Versicolor, Iris Virginica (50 each).
- The fifth attribute is the name of the flower type.

## Visualization

- Visualization is the conversion of data into a visual or tabular format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported.
- Visualization of data is one of the most powerful and appealing techniques for data exploration.
  - Humans have a well developed ability to analyze large amounts of information that is presented visually.
  - Can detect general patterns and trends.
  - Can detect outliers and unusual patterns.

| slength | swidth | plength | pwidth | class           |
|---------|--------|---------|--------|-----------------|
| 5.1     | 3.5    | 1.4     | 0.2    | Iris-setosa     |
| 4.9     | 3.0    | 1.4     | 0.2    | Iris-setosa     |
|         |        |         |        |                 |
| 5.0     | 3.3    | 1.4     | 0.2    | Iris-setosa     |
| 7.0     | 3.2    | 4.7     | 1.4    | Iris-versicolor |
|         |        |         |        |                 |
| 5.7     | 2.8    | 4.1     | 1.3    | Iris-versicolor |
|         |        |         |        |                 |
| 6.3     | 3.3    | 6.0     | 2.5    | Iris-virginica  |

# The MySQL table

```
CREATE TABLE TRIS(
Id int primary key auto_increment,
slength decimal(2,1),
swidth decimal(2,1),
plength decimal(2,1),
pwidth decimal(2,1),
class varchar(20)
) ENGINE=INNODB;
I.OAD DATA I.OCAL INFILE 'DatiIris.csv' INTO TABLE IRIS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\r\n'
TGNORE 3 LINES
(slength, swidth, plength, pwidth, class);
```

You can use SQL queries to find statistics on the data set.

```
create view IrisSepalSummarv as
select count(*) as N, min(slength) as min_sepal_length, max(slength) as max_sepal_length,
avg(slength) as avg_sepal_length, min(swidth) as min_sepal_width, max(swidth) max_sepal_width,
avg(swidth) as avg_sepal_width from iris;
select * from IrisSepalSummary;
create view IrisPetalSummary as
select count(*) as N, min(plength) as min_petal_length, max(plength) as max_petal_length,
avg(plength) as avg petal length, min(pwidth) as min petal width, max(pwidth) max petal width,
avg(pwidth) as avg_petal_width from iris;
select * from IrisPetalSummary:
create view SepalSummary as
select class, count(*) as N, min(slength) as min_sepal_length,max(slength) as max_sepal_length,
avg(slength) as avg sepal length, min(swidth) as min sepal width, max(swidth) max sepal width,
avg(swidth) as avg sepal width from iris
group by class:
select * from SepalSummary;
create view PetalSummarv as
select class, count(*) as N, min(plength) as min_petal_length,max(plength) as max_petal_length,
avg(plength) as avg_petal_length, min(pwidth) as min_petal_width, max(pwidth) max_petal_width,
avg(pwidth) as avg petal width from iris
group by class:
select * from PetalSummary;
```

## Weka

- A software for Data Mining written in Java and distributed under the GNU Public License, available at www.cs.waikato.ac.nz/ml/weka
  - Waikato Environment for Knowledge Analysis
- Used in scientific, didactic and application areas, include:
  - A set of tools for pre-processing, learning algorithms and evaluation methods
  - Graphics Interface
  - A environment to compare the results of learning algorithms

## WEKA Data Management

- The main data type with which WEKA works is the Attribute-Relation file (ARFF file)
- An ARFF file describes the relationship, attributes, and values that it can contain.

```
@RELATION iris
@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

@DATA

$\text{8.1,3.5,1.4,0.2,Iris-setosa} \
4.9,3.0,1.4,0.2,Iris-setosa \
4.9,3.0,1.3,0.2,Iris-setosa \
4.7,3.2,1.3,0.2,Iris-setosa \
5.0,3.6,1.4,0.2,Iris-setosa \
5.0,3.6,1.4,0.2,Iris-setosa \
5.4,3.9,1.7,0.4,Iris-setosa \
5.4,3.9,1.7,0.4,Iris-setosa
```

Another common type of file for WEKA is .csv.

# MySQL and WEKA

- Connecting WEKA to a MySQL database:
  - you need the driver mysql-connector-java available at http://dev.mysql.com/downloads/connector/j/
  - put it in the archive extension (ext) of Java
  - ullet open WEKA o Explorer o Open DB and specify the following url:
    - jdbc:mysql://localhost/DBname
      and the user and password of the database.
- Otherwise, you can directly use a .csv file from WEKA. Use ','
  as fields separator and '.' for decimal numbers, an example is
  file DatiIrisWeka.csv.
- Finally, you can open the file iris.arff under the archive data of Weka

# Preprocessing with Weka

The preprocessing is carried out by means of filters, for example:

- Discretization:
  - Discretize (unsupervised): an instance filter that discretizes a range of numeric attributes in the data set into nominal attributes.
- Normalization:
  - Normalize: normalizes all numeric values in the given data set (apart from the class attribute, if set). The resulting values are by default in [0,1] for the data used to compute the normalization intervals. But with the scale and translation parameters one can change that, e.g., with scale = 2.0 and translation = -1.0 you get values in the range [-1, +1]
  - Standardize: standardizes all numeric attributes in the given data set to have zero mean and unit variance (apart from the class attribute, if set).

# Preprocessing with Weka

#### Sampling:

 Resample: produces a random subsample of a dataset using either sampling with replacement or without replacement.

#### Attribute transformation:

- NominalToBinary: converts all nominal attributes into binary numeric attributes.
- AddNoise: an instance filter that changes a percentage of a given attributes values. The attribute must be nominal.
   Missing value can be treated as value itself.

#### Missing values:

 ReplaceMissingValues: replaces all missing values for nominal and numeric attributes in a data set with the modes and means from the training data.

The preprocessing tab also allow you to visualize data distributions with respect to the classification attribute or other attribute.

## Visualize Iris data with Weka

Obtained with the Preprocess environment and by using Visualize All.



# Scatter plots (obtained with Weka)

Scatter plots visualize two variables in a two-dimensional plot. Each axes corresponds to one variable. The colors are Iris-setosa, Iris-versicolor, Iris-virginica



## A note on scatter plots

Data objects with the same values cannot be distinguished in a scatter plot. To avoid this effect, jitter is used, i.e. before plotting the points, small random values are added to the coordinates. Jitter is essential for categorical attributes.

#### Reminder: arithmetic mean, variance, standard deviation, median

Arithmetic mean:

$$mean(x) = \bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

(sensitive to the presence of outliers)

- Variance:  $var(x) = \frac{1}{n} \sum_{k=1}^{n} (x_k \bar{x})^2$
- Standard deviation:  $\sigma = \sqrt{var(x)}$
- Median: the value in the middle (for the values given in increasing order):

$$median(x) = \begin{cases} x_{m+1} & \text{if } n = 2m + 1 \\ (x_m + x_{m+1})/2 & \text{if } n = 2m \end{cases}$$

$$median$$

$$n \text{ odd}$$

$$n \text{ even}$$

$$median$$

#### Reminder: frequency, mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set. For example, given the attribute gender and a representative population of people, the gender female occurs about 50% of the time.
- The mode of a an attribute is the most frequent attribute value. The notions of frequency and mode are typically used with categorical data.
- For the iris data sete, the three types of flowers all have the same frequency and therefore the notion of a mode is not interesting.

#### Reminder: quantiles, quartiles, interquartile range

- q%-quantile (0 < q < 100): the value for which q% of the values are smaller and 100 q% are larger.
- The median is the 50%-quantile.
- Quartiles: 25%-quantile (1st quartile), median (2nd quantile),
   75%-quantile (3rd quartile).
- Interquartile range (IQR): 3rd quantile 1st quantile.

# Data understanding with R

R Code accompanying the book *Introduction to Data Mining* by Tan, Steinbach and Kumar can be found at https://github.com/mhahsler/Introduction\_to\_Data\_Mining\_R\_Examples

```
> iris <- datasets::iris</p>
> summarv(iris)
 Sepal.Length Sepal.Width
                               Petal.Length
                                             Petal.Width
     :4.300 Min.
 Min
                      .2.000
                              Min.
                                     .1 .000
                                             Min.
                                                   .0.100
 1st Qu.:5.100 1st Qu.:2.800
                              1st Qu.:1.600
                                             1st Qu.:0.300
 Median :5.800 Median :3.000
                              Median :4.350
                                             Median :1.300
 Mean :5.843 Mean :3.057
                              Mean :3.758
                                             Mean :1.199
 3rd Qu.:6.400
               3rd Qu.:3.300
                              3rd Qu.:5.100
                                             3rd Qu.:1.800
 Max .7.900
               Max .4.400
                              Max :6.900
                                             Max . 2.500
      Species
          :50
 setosa
 versicolor:50
virginica:50
```

The summary() function gives summary statistics for any dataset. It can also be called on one variable instead of on the whole dataset.

```
> summary(iris$Sepal.Length)

Min. 1st Qu. Median Mean 3rd Qu. Max. 4.300 5.100 5.800 5.843 6.400 7.900
```

## Scatter plots with R

> iris <- datasets::iris

```
> iris2 <- iris[,-5]
> species_labels <- iris[,5]
> colors <- c("blue", "red", "green")
> species_col <- colors[as.numeric(species_labels)]
> plot(iris,col = species_col)
```







The two attributes petal length and width provide a better separation of the classes Iris versicolor and Iris virginica than the sepal length and width.

```
> plot(PetalLength0,PetalWidth0,col = species_col0,pch=19,cex = 1.1,
+ xlab="Petal Length",ylab="Petal Width")
```



The Iris data set with two (additional artificial) outliers. One is an outlier for the whole data set, one for the class Iris setosa.



## Boxplots with R

> boxplot(Sepal.Length~Species,data = iris,xlab="Sepal.Length",col=c("blue","red", "green"))



The median and the interquartile range are shown.

> boxplot(iris[,1],xlab="Sepal.Length",ylab="Length",main="Summary Charateristics of Sepal.Length")

#### Summary Charateristics of Sepal.Length



Sepal.Length

# Histograms with R

> hist(SepalWidth)



# Alternative scatter plot matrix

- > library("GGally")
- > ggpairs(iris, ggplot2::aes(colour=Species))



## Parallel coordinates plot of the data

```
> par(las = 1, mar = c(4.5, 3, 3, 2) + 0.1, cex = .8)
> MASS::parcoord(iris2, col = species_col1, var.label = TRUE, lwd = 2)
# Add Title
> title("Parallel coordinates plot of the Iris data")
# Add a legend
> par(xpd = TRUE)
> legend(x = 1.75, y = -.13, cex = 1,
+ legend = as.character(levels(species_labels)),
+ fill = unique(species_col1), horiz = TRUE)
> par(xpd = NA)
```



## Visualization of the Iris Data Matrix

```
> iris_matrix <- as.matrix(iris[,1:4])
> library(seriation) ## for pimage
> iris_scaled <- scale(iris_matrix)
# values smaller than the average are blue
# and larger ones are red
> pimage(iris_scaled,
+ ylab="Object (ordered by species)",
+ main="Standard deviations from the feature mean")
```

#### Standard deviations from the feature mean



### Visualize correlation between objects (via correlation matrix)

```
> iris_matrix <- as.matrix(iris[,1:4])</pre>
> library(seriation) ## for pimage
# Correlation between objects
> cm2 <- cor(t(iris_matrix))</pre>
> pimage(cm2,
+ main="Correlation matrix", xlab="Objects", ylab="Objects",
    zlim = c(-1,1), col = bluered(100))
> pimage(cm2,
+ main="Correlation matrix", xlab="Objects", ylab="Objects",
    zlim = c(0.4,1), col = greenred(100))
```



Objects



Objects

# Other Visualization Techniques

- Star Plots: this technique uses one axis for each attribute, the axes radiate from a central point. The line connecting the values of an object is a polygon
- Chernoff Faces: approach created by Herman Chernoff, associates each attribute with a characteristic of a face; the values of each attribute determine the appearance of the corresponding facial characteristic:
  - sepal lenght=size of face
  - sepal width= forehead/jaw relative arc length
  - petal length= shape of forehead
  - petal width=shape of jaw

## Star Plots for Iris Data



## Chernoff Faces for Iris Data



# Proving similiar behaviour of attributes

- > Pearsoncorrelation <- cor(iris2, method="pearson")
- > Pearsoncorrelation

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
               1.0000000 -0.1175698
                                       0.8717538
                                                  0.8179411
Sepal.Width
              -0.1175698 1.0000000
                                      -0.4284401
                                                 -0.3661259
Petal.Length
               0.8717538 -0.4284401
                                       1.0000000
                                                  0.9628654
Petal Width
               0.8179411 -0.3661259
                                       0.9628654
                                                  1,0000000
```

> pimage(Pearsoncorrelation)

# ... and the corresponding visualization



- > Spearmancorrelation <- cor(iris2, method="spearman")
- > Spearmancorrelation

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
               1.0000000 -0.1667777
                                      0.8818981
                                                  0.8342888
Sepal.Width
              -0.1667777 1.0000000
                                      -0.3096351
                                                 -0.2890317
               0.8818981 -0.3096351
Petal.Length
                                       1.0000000
                                                  0.9376668
Petal Width
               0.8342888 -0.2890317
                                      0.9376668
                                                  1.0000000
```