Linderman Lab Presentation

•••

Michael Murphy

Summer Internship

- Working with Libby and Dietrich on the fundamentals of machine learning and computational neuroscience
- Learning about the **math and statistics** concepts that underlie these fundamentals
- Applying what I have been learning to **Killifish data** using **Python** and tools such as **Numpy** and **Matplot.lib**

Killifish Keypoint Data

- Convolutional Neural Network traces the different keypoints of a Killifish from a video recording
- Recording is 200 days long, recording at 20 frames per second, tracking 12 different keypoints meaning there is 4.14 billion data points!
- I worked with one day of it, meaning 1.7 million frames of data

	frame_count	frame_timestamp	x_snout	y_snout	x_midbody	y_midbody	x_sidebody	y_sidebody	x_endbody	y_endbody	x_tail	y_tail	x_fan	y_fan
0		1.619461e+09	109.540108	142.976059	124.138733	135.067261	NaN	NaN	151.504974	123.650360	165.433395	113.957596	180.608887	105.863663
1		1.619461e+09	107.265854	142.104813	121.822556	136.475708	NaN	NaN	147.926788	123.891907	160.844559	115.370964	174.711700	106.121666
2	2	1.619461e+09	105.351967	142.368988	119.697525	136.510712	NaN	NaN	145.834869	123.651062	160.248383	116.183006	174.869812	107.406532
3	3	1.619461e+09	103.469025	142.543152	117.734238	136.160843	NaN	NaN	143.201263	124.122238	158.663406	117.667580	176.247086	109.998772
4	4	1.619461e+09	102.180344	142.780396	115.806297	136.204010	NaN	NaN	142.057327	123.676147	157.429688	117.932121	176.791046	110.939461
1723651	1726808	1.619548e+09	84.945068	53.992599	96.640488	65.568367	NaN	NaN	108.316635	89.087357	109.255569	107.692741	109.788170	128.898438
1723652	1726809	1.619548e+09	83.437828	49.815742	97.773056	63.414818	NaN	NaN	112.321381	86.499474	113.034012	104.349236	106.420898	123.391586
1723653	1726810	1.619548e+09	82.824081	46.829994	97.266914	60.762054	NaN	NaN	114.773003	81.535423	120.126129	98.978592	110.384720	118.568207
1723654	1726811	1.619548e+09	81.770180	42.896610	94.724854	55.871910	NaN	NaN	115.567490	77.666855	122.965393	94.156998	117.896706	115.093361
1723655	1726812	1.619548e+09	81.606567	42.340202	93.756645	53.572468	NaN	NaN	114.121025	74.155083	124.118027	88.861328	125.768005	111.091743
1723656 rows × 14 columns														

Goals

 Learn more about computational neuroscience, machine learning, math, and statistics

- Get hands on experience working with and visualizing big data with Python

- Participate in real science with a professional lab!

Math and Statistics

Differential Calculus

- Derivative rules
 - Power rule
 - Chain rule
- When derivative = 0,either local min or max
 - Determine which by computing the second derivative

Linear Algebra

- Vectors
- Matrices
- Dot Product
- Linear Combination
- Eigenvectors and Values

Statistics

- Normal / Gaussian Distributions
- Bayes Rule
- Bayesian vs. FrequentistApproaches

Linear Regression

Maximum Likelihood Estimation

 If the noise of your data is Gaussian, you can estimate the likelihood of a given linear weight theta by plugging it in to a modified Gaussian density function

By setting the derivative to 0, you can find the maximum likelihood value, for which the corresponding value of theta is the optimal linear weight

Principal Components Analysis

- Method of reducing dimensionality of your data
 - Ties in linear algebra

Reconstruction from PCA

Once we have S and W how do we reconstruct X?

PCA on Killifish Data

	frame_count	frame_timestamp	x_snout	y_snout	x_midbody	y_midbody	x_sidebody	y_sidebody	x_endbody	y_endbody	x_tail	y_tail	x_fan	y_fan
0		1.619461e+09	109.540108	142.976059	124.138733	135.067261	NaN	NaN	151.504974	123.650360	165.433395	113.957596	180.608887	105.863663
1		1.619461e+09	107.265854	142.104813	121.822556	136.475708	NaN	NaN	147.926788	123.891907	160.844559	115.370964	174.711700	106.121666
2		1.619461e+09	105.351967	142.368988	119.697525	136.510712	NaN	NaN	145.834869	123.651062	160.248383	116.183006	174.869812	107.406532
3		1.619461e+09	103.469025	142.543152	117.734238	136.160843	NaN	NaN	143.201263	124.122238	158.663406	117.667580	176.247086	109.998772
4		1.619461e+09	102.180344	142.780396	115.806297	136.204010	NaN	NaN	142.057327	123.676147	157.429688	117.932121	176.791046	110.939461
1723651	1726808	1.619548e+09	84.945068	53.992599	96.640488	65.568367	NaN	NaN	108.316635	89.087357	109.255569	107.692741	109.788170	128.898438
1723652	1726809	1.619548e+09	83.437828	49.815742	97.773056	63.414818	NaN	NaN	112.321381	86.499474	113.034012	104.349236	106.420898	123.391586
1723653	1726810	1.619548e+09	82.824081	46.829994	97.266914	60.762054	NaN	NaN	114.773003	81.535423	120.126129	98.978592	110.384720	118.568207
1723654	1726811	1.619548e+09	81.770180	42.896610	94.724854	55.871910	NaN	NaN	115.567490	77.666855	122.965393	94.156998	117.896706	115.093361
1723655	1726812	1.619548e+09	81.606567	42.340202	93.756645	53.572468	NaN	NaN	114.121025	74.155083	124.118027	88.861328	125.768005	111.091743
1723656 rows x 14 columns														

- The 12 dimensional killyfish keypoint data can be modeled by just its first 4 principle components, with relatively low reconstruction error!

Numpy

```
eigvals st, eigvecs st = np.linalg.eig(cov st)
print(eigvals st, eigvecs st)
 6.40314495e+00
                 4.56719643e+00
                                  9.74716365e-01 -5.17432518e-01
  3.60518594e-01
                  2.02530768e-01 -4.36588799e-02
                                                 3.01574051e-02
  2.22033390e-02 -2.84729261e-03
                                 1.53732086e-03
                                                1.96403237e-031
   5.57366495e-01
                  1.89187581e-01 -1.77612131e-01
                                                  5.25388061e-01
   3.46165751e-02 2.25812165e-02 4.33823218e-01
                                                  8.38312222e-02]
 [-1.51168375e-01
                  3.67139538e-01
                                  4.44731084e-01 -3.69947772e-02
  -2.08346943e-01
                   3.66937314e-01
                                 1.16057321e-01 -5.47109717e-02
  -4.30246999e-01
                  4.68785105e-01 1.58256545e-01 1.37008062e-01]
 [ 3.72611165e-01
                   1.26017492e-01
                                   3.19894876e-02 2.11159578e-01
   3.37664328e-01
                  3.12172179e-01
                                  2.41057040e-01 -1.69777968e-01
  -1.58104256e-01 -3.32474173e-03 -5.43452046e-01 -4.25345691e-01
 [-1.66753880e-01
                   4.04291509e-01
                                   3.17038478e-01 -1.07817222e-01
```

- One numpy function I found interesting: "np.linalg.eig"
- Input any matrix, and it will return the ordered eigenvectors and eigenvalues
- Gets rid of the need to do eigendecomposition

Observations of Data

- Velocity of the fish, plotted for every 100th frame of an entire day
- The killyfish moves slower / less during the hours of 8pm 6am

Animations

Fish at 11am

Fish at 11pm

- Random samples of 100 frames from these times
- Follows trend of fish moving slower / less at night
- Logical trend, because fish is sleeping!

Future Plans

- Compare different features over the Killyfish entire life span
- Continue to learn about neuroscience,
 machine learning, math, and statistics
- To continue my learning, I am attending the UC Cosmos summer program at UC Irvine, where I will be researching the applications of Data Science to the Health Sciences, and learning the programming language R.

Thank You!

- Thanks to the Linderman Lab for taking me in this summer!
- Thanks to Libby and Dietrich for spending so much time teaching me!
- Thanks to Scott for giving me this unique and amazing opportunity and introduction to real science!