Python Computing for Data Science

Compute & data space

https://astro.datahub.berkeley.edu (log in with your CalNet ID)

Files for the Course:

git clone https://github.com/profjsb/python-seminar.git (if you dont have *git*, please set it up later)

Signup (Discord):

Welcome to the **Python Computing for Data Science**Seminar

AY 250: Monday 4-7pm (Campbell Hall 131)

Instructor: Josh Bloom

GSI: Ellie Abrahams

Instructor+GSI email: ucbpythonclass+seminar@gmail.com

Democratizing Trends in the Sciences

Data

Decreasing cost to obtain, move, store

Compute

Technology/ Methodology

Democratizing Trends in the Sciences

Data

Decreasing cost to obtain, move, store

open data, more freely shared

Compute

Decreasing cost, increasing specialty

more accessible

Technology/ Methodology

Algorithmic innovation, software tooling

--- open source

If anyone can get Data, Compute, Tech... who wins?

domain expertise - They who asks the right questions

They who answers questions better & faster than others:

- computational access

Motivation for this Course:

short version

leverage the Python ecosystem to do cutting-edge research

long version

- get you using Python to do cutting-edge research in the physical, biological and/or social sciences
- 2) help you realize that Python is a viable framework to do just about any 21st century problem well (and costs zero). "Super Glue"
- 3) introduce you into the Python community so you know how to navigate it yourself and so it potentially benefits from having you part of it

How we plan to do this:

- "formal" lectures on specialized topics each week (with some Guest appearances from the Python community!) (Monday)
- "breakout work sessions" interspersed within the lectures
- homework assignments based on week's lecture
- final project

Prerequisites:

- working knowledge (or more) of the core Python language
- laptop for use in class and for homeworks
- (optional) local development: installation of Python (3.9.X), scientific 3rd party packages (Anaconda distro), & git
- tolerance for our terrible computer humor

Discord for real-time/off-line interaction homework updates, ...

github is the main data portal for us...

Course Schedule

Course scriedule			
Date	Content	Reading	Leader
Jan 24 Online only	Numpy, Scipy, & Pandas launch binder	scipy §§ 1.3, 1.5, 2.2numpyskim chap 4/5 ofMcKinney	Josh
Jan 31	Data visualization (Matplotlib, Bokeh, Altair, Plotly)	Skim Tufte'sVisualization bookcolormap talk (Scipy 2015)	Josh
Feb 7	Application building and Testing	None	Josh
Feb 14	Parallelism (asyncio, dask, ray, jax)	- ipyparallel docs	Josh
Feb 21	Holiday (no class)		
Feb 28	Database interaction (sqlite, postgres, SQLAlchemy, peewee), Large datasets (xarray, HDF5)	None	Josh
Mar 7	Machine Learning I (sklearn, NLP)	None	Josh
Mar 14	Machine Learning II (keras [tensorflow], pytorch)	None	Josh
Mar 21	Spring Break		
Mar 28	Interacting with the world (requests, email, IoT/pyserial)	None	Josh
Apr 1 Friday 1-3pm	Web frameworks & RESTful APIs, Flask	None	Josh
Apr 4	No lecture		
Apr 11	Bayesian programming & Symbolic math	Probabalistic Programming eBook install: pip install pymc3	Josh
Apr 18	Image processing (OpenCV, skimage)	None	Stefan van der Walt
Apr 25	Speeding it up (Numba, Cython, wrapping legacy code)	None	Josh
Onward	final project work		

Course Schedule

https://github.com/profjsb/python-seminar

Concepts/Practices in this Course

- Jupyter & JuypterLab
- using git & github
- Docker
- Data science workflows
- reproducible research
- application building
- debugging
- testing

"Data science is an interdisciplinary field about processes and systems to extract knowledge or insights from data in various forms, either structured or unstructured, which is a continuation of some of the data analysis fields such as statistics, data mining, and predictive analytics..."

-wikipedia

Workflow for a typical week

Friday:

email w/ special installation instructions, reading/tutorials

Monday:

```
4:00 cd python-seminar; git pull
```

4:10 - 5pm Intro topics Lecture

5 - 5:30pm Breakout coding

5:30-6:15pm Detailed topics lecture (+stretch)

6:15-6:30pm Breakout coding

6:30-7:00pm Detailed topics lecture

Following Tuesday:

Homework project due

Course Grade

•10% participation in lectures/breakouts

• 60% Problem Sets
There will be 9 assignments. Do at least 5. We will keep your best 5.

• 30% Final Project, due May 10 (no final exam)

Final Project

a) Build a substantial framework for doing something in your own research, based on at least two topics from different weeks. Something you will use for a long time...

e.g., image analysis package, hardware control software, a webservice that does some crunching under the hood, provide a parallelization of some algorithm or code you use, etc.

- or -

b) Contribute code/functionality to an open-source Python project (Juypter, scipy, Cython, numpy, matplotlib, etc.)

"Parallel Image Reconstruction from Realtime Prediction of Activity Behavior Radio Interferometry Data" from Smartphone"

"Graph Theory Analysis of Growing Graphs"

http://mb3152.github.io/Graph-Growth/

The state of the s

- Psychology
- Astronomy
- Neuroscience
- Biostatistics
- Physics
- Chemical Engineering
- ISchool
- Earth and Planetary Sciences
- Industrial Engineering
- Mechanical Engineering

