Kartennetz lehre

Hochschule Karlsruhe Technik und Wirtschaft

Prof. Dr.-Ing. G. Schweinfurth Kartennetzlehre

Studienarbeit Kartennetzlehre

Arne Johannessen 3. Fachsemester 19. Juni 2006

Aufgabe 1

Berechnung und Kartierung eines Azimutalentwurfs

Gegeben:

Maßstab $M = 1:120\,000\,000$, Erdradius $R \approx 6370\,\mathrm{km}$

 \Rightarrow Maßstabsfaktor $f = R \cdot M = 6370 \text{ km} : 120\,000\,000 \approx 5,31 \text{ cm}$

Abbildungsgleichungen der normalen stereographischen Projektion:

$$\alpha = \lambda$$
, $m = 2 \cdot \tan \frac{\delta}{2}$ mit Poldistanz $\delta = 90^{\circ} - \varphi$

Die Zeichnung 1 stellt das Netzgitter der konformen azimutalen Abbildung mit Meridianen im Abstand von 30° zu 30° und Parallelkreisen im Abstand von 15° zu 15° dar. Für die Umsetzung der Zeichnung wird für die Parallelkreise der jeweilige Radius $F = m \cdot f$ benötigt.

Längenverzerrungen LV:
$$h = \frac{d\left(2 \cdot \tan \frac{\delta}{2}\right)}{d\delta} = \frac{1}{\cos^2 \frac{\delta}{2}}$$

$$k = \frac{2 \cdot \tan \frac{\delta}{2}}{\sin \delta} = \frac{1}{\cos^2 \frac{\delta}{2}}$$

$$h = k = a = b$$

Winkelverzerrung WV:
$$\sin \omega = \frac{a-b}{a+b} = \frac{0}{a+b} = 0$$

Flächenverzerrung FV:
$$\Phi = a \cdot b = \left(\cos^4 \frac{\delta}{2}\right)^{-1}$$

Zeichnung 1

Winkeltreuer Azimutalentwurf

Maßstab 1:120000000

Aufgabe 2

Berechnung und Kartierung zweier Zylinderentwürfe

Gegeben:

Maßstab $M = 1:100\,000\,000$, Erdradius $R \approx 6370\,\mathrm{km}$

 \Rightarrow Maßstabsfaktor $f = R \cdot M = 6370 \text{ km} : 100\,000\,000 = 6,37 \text{ cm}$

Abbildungsgleichungen der flächentreuen Zylinderprojektion:

$$x = \sin \varphi$$
, $y = \operatorname{arc} \lambda$

Die Zeichnung 2 stellt das Netzgitter der flächentreuen Zylinderprojektion mit Meridianen und Parallelkreisen im Abstand von 15° dar.

$\mid \varphi \mid$	x	$ x \cdot f $	λ	y	$ y \cdot f $
0°	0	0,00 cm	0°	0	0,00 cm
15°	0,25882	1,65 cm	15°	0,26180	1,67 cm
30°	0,50000	3,19 cm	30°	0,52360	3,34 cm
45°	0,70711	4,50 cm	45°	0,78540	5,00 cm
60°	0,86603	5,52 cm	60°	1,04720	6,67 cm
75°	0,96593	6,15 cm	75°	1,30900	8,34 cm
90°	1	6,37 cm	90°	1,57080	10,01 cm

Abbildungsgleichungen der konformen Zylinderprojektion:

$$x = \ln \tan \left(45^\circ + \frac{\varphi}{2}\right), \ y = \operatorname{arc} \lambda$$

Die Zeichnung 3 stellt das Netzgitter der winkeltreuen Zylinderprojektion mit Meridianen und Parallelkreisen im Abstand von 15° dar.

$ \varphi $	x	$ x \cdot f $	λ	y	$ y \cdot f $
0°	0	0,00 cm	0°	0	0,00 cm
15°	0,26484	1,69 cm	15°	0,26180	1,67 cm
30°	0,54931	3,50 cm	30°	0,52360	3,34 cm
45°	0,88137	5,61 cm	45°	0,78540	5,00 cm
60°	1,31696	8,39 cm	60°	1,04720	6,67 cm
75°	2,02759	12,92 cm	75°	1,30900	8,34 cm
90°	~	∞	90°	1,57080	10,01 cm

Zeichnung 2 **Flächentreuer Zylinderentwurf**Maßstab 1:1000000000

											- 75° N	Zeichnung 3 Winkeltreuer Zylinderentwurf Maßstab 1:100 000 000
											- 60° - 45° - 30°	nördliche Breite
Äquator	90°W	75°	60°	westliche 45°	15°	0° 15°	östliche 30°	60°	75°	90° E	- 15° - 0° - 15°	südliche Breite
											- 60° - 75° S	

Aufgabe 3

Berechnung und Kartierung eines Kegelentwurfs

Gegeben:

Maßstab $M = 1:100\,000\,000$, Erdradius $R \approx 6370\,\mathrm{km}$

⇒ Maßstabsfaktor $f = R \cdot M = 6370 \text{ km} : 100\,000\,000 = 6,37 \text{ cm}$ Punkt A: $\varphi_A = 0^\circ$, $\lambda_A = 60^\circ$ W, Punkt B: $\varphi_B = 80^\circ$ N, $\lambda_B = 80^\circ$ E

Abbildungsgleichungen der flächentreuen Schnittkegelprojektion für die beiden längentreuen Parallelkreise $\varphi_1 = 60^\circ \text{ N}$, $\varphi_2 = 20^\circ \text{ N}$:

$$\alpha = n \cdot \lambda \text{ mit } n = \frac{\cos \delta_1 + \cos \delta_2}{2}$$

$$m = \sqrt{\frac{4}{n^2} \cdot \sin^2 \frac{\delta_1}{2} \cdot \sin^2 \frac{\delta_2}{2} + \frac{4}{n} \cdot \sin^2 \frac{\delta}{2}}$$
mit Poldistanz $\delta = 90^\circ - \varphi$

Die Zeichnung 4 stellt das Netzgitter der flächentreuen Schnittkegelprojektion mit Meridianen und Parallelkreisen im Abstand von 10° mit den Eckpunkten A und B dar. Für die Umsetzung der Zeichnung wird für die Parallelkreise der jeweilige Radius $F = m \cdot f$ benötigt.

$oldsymbol{arphi}$	δ	m	$\boldsymbol{\mathit{F}}$	λ	$ \alpha $
0,	90°	1,88487	12,01 cm	0°	00
10°	80°	1,72562	10,99 cm	10°	6,0°
20°	70°	1,55572	9,91 cm	20°	12,1°
30°	60°	1,37738	8,77 cm	30°	18,1°
40°	50°	1,19348	7,60 cm	40°	24,2°
50°	40°	1,00810	6,42 cm	50°	30,2°
60°	30°	0,82778	5,27 cm	60°	36,2°
70°	20°	0,66431	4,23 cm	70°	42,3°
80°	10°	0,54030	3,44 cm	80°	48,3°

Flächenverzerrung FV: $\Phi = a \cdot b = 1 \Leftarrow$ flächentreuer Entwurf

Längenverzerrungen LV:
$$h = \frac{dm}{d\delta} = \frac{\sin \delta}{m \cdot n}$$
$$k = \frac{1}{h} = \frac{m \cdot n}{\sin \delta} \iff \Phi = 1$$
$$a = \begin{cases} k : \delta \notin (\delta_1, \delta_2) \\ h : sonst \end{cases}$$
$$b = \begin{cases} h : \delta \notin (\delta_1, \delta_2) \\ k : sonst \end{cases}$$

 $b = \begin{cases} h : \delta \notin (\delta_1, \delta_2) \\ k : sonst \end{cases}$ Winkelverzerrung WV: $\sin \omega = \frac{a - b}{a + b} = \begin{cases} \frac{k - h}{k + h} : \delta \notin (\delta_1, \delta_2) \\ \frac{h - k}{h + k} : sonst \end{cases}$

Die Punkte A und B liegen beide außerhalb des Bereichs zwischen den beiden längentreuen Parallelkreisen; es gilt δ_A , $\delta_B \notin (\delta_1, \delta_2)$. Damit ist h < k und somit h = b und k = a. Mit Einsetzen ergibt sich:

$$h_{\rm A} = b_{\rm A} \approx 0.87834, \ k_{\rm A} = a_{\rm A} \approx 1.13851, \ \Phi_{\rm A} = 1, \ \sin \omega_{\rm A} \approx 0.12900$$

 $h_{\rm B} = b_{\rm B} \approx 0.53209, \ k_{\rm B} = a_{\rm B} \approx 1.87939, \ \Phi_{\rm B} = 1, \ \sin \omega_{\rm B} \approx 0.55870$

Zeichnung 4

Flächentreuer Kegelentwurf Maßstab 1:1000000000

 \perp

