

Semântica da Lógica de Primeira Ordem Lógica para Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

02 e 09 de julho de 2021

⁰Slides baseados no livro Logic in Computer Science: Modelling and reasoning about systems. ¹.

¹HUTH, Michael; RYAN, Mark. Logic in Computer Science: Modelling and reasoning about systems. Cambridge university press, 2004.

Introdução

- Aprenderemos a interpretar o significado das fórmulas da linguagem de primeira ordem
- Nas aulas passadas, vimos uma ideia intuitiva de como fazer isso
- Precisamos, primeiro, estabelecer o universo a que pertence a linguagem
- Depois, interpretamos as constantes como elementos do universo, os símbolos relacionais como relações nesse mesmo universo, e os símbolos funcionais como funções
- A estrutura formada por todas essas componentes é chamada de modelo para uma linguagem de primeira ordem, e veremos como determinar se uma sentença é verdadeira ou falsa em um dado modelo

- Para ilustrar o que é um modelo, antes de entrarmos na definição técnica, consideramos, na linguagem da aritmética, a sentença $\exists x (x.x = 1 + 1)$
- Se considerarmos a sentença no modelo dos números racionais, o universo, também chamado de domínio, é o conjunto dos números racionais
- A constante 1, vista como um símbolo da linguagem, será interpretada como o número racional 1, na metalinguagem
- ullet Os símbolos + e . serão interpretados, respectivamente, como a soma e o produto de números racionais
- Nesse modelo, a sentença em questão é falsa, pois sabemos que a raiz quadrada de 2 é irracional
- Mas no modelo dos números reais a sentença é verdadeira

- Apesar de parecerem complicadas, as definições que se seguem estão muito próximas da nossa concepção intuitiva e até mesmo da linguagem natural
- Compreender essa proximidade entre o uso intuitivo dos símbolos lógicos e a definição rigorosa é fundamental no estudo da lógica

Modelos

- Seja L uma linguagem de primeira ordem
- Um modelo ${\mathcal M}$ para a linguagem L é uma estrutura constituída das seguintes componentes:
 - Um conjunto não-vazio D, que chamaremos de domínio, ou universo, de \mathcal{M} ;
 - Para cada símbolo relacional n-ário R, uma relação n-ária $R^{\mathcal{M}}$ em D (isto é, $R^{\mathcal{M}}$ é um subconjunto de D^n)
 - Para cada constante c um elemento $c^{\mathcal{M}}$ de D;
 - Para cada símbolo funcional n-ário F, uma função n-ária $F^{\mathcal{M}}$ de D^n em D.

Modelo

Formalmente, um modelo é uma quádrupla ordenada $(D,(R_i)_{i\in I},(F_j)_{j\in J},(c_k)_{k\in K})$, onde R_i,F_j e c_k são interpretações dos símbolos relacionais, símbolos funcionais e constantes, respectivamente

Interpretação de termos

- Os termos de uma linguagem representam elementos do domínio
- A interpretação de termos será uma função que determinará a qual objeto do domínio se refere o termo
- Essa interpretação dependerá de três fatores
- Primeiro, é claro, da linguagem, que dirá quais são os símbolos utilizados na formação dos termos
- Em segundo lugar, a interpretação depende do modelo, que interpretará as constantes e os símbolos funcionais
- Porém as variáveis, como o nome sugere, não têm uma interpretação fixa que depende apenas do modelo
- Para completarmos o terceiro fator que irá determinar a interpretação dos termos, precisamos estabelecer uma valoração para as variáveis

Definição

Se $\mathcal M$ é um modelo cujo domínio é D, uma valoração para o modelo $\mathcal M$ é uma função σ que associa a cada variável um elemento de D

- Uma valoração estabelece o valor, no domínio, apenas das variáveis
- Precisamos estender a função da valoração para todos os termos, pois, conforme foi explicado nas aulas anteriores, os termos representam objetos do domínio
- A interpretação dos termos depende unicamente da valoração e do modelo
- A primeira determina os elementos do domínio associado às variáveis
- A segunda estabelece a interpretação das constantes e dos símbolos funcionais

Definição

Dados um modelo $\mathcal M$ e uma valoração σ , a interpretação de termos sob a valoração σ é uma função σ^* que estende a função σ para todos os termos, conforme as seguintes condições:

- Se x é variável, $\sigma^*(x) = \sigma(x)$;
- Se c é uma constante, $\sigma^*(c) = c^{\mathcal{M}}$;
- Se F é um símbolo funcional n-ário e $t_1, ..., t_n$ são termos, então $\sigma^*(F(t_1, ..., t_n)) = F^{\mathcal{M}}(\sigma^*(t_1), ..., \sigma^*(t_n)).$

Definição de verdade

Sejam \mathcal{M} um modelo, σ uma valoração para o modelo \mathcal{M} e A uma fórmula. Denotamos por $(\mathcal{M}, \sigma) \models A$ quando A é verdadeira no modelo \mathcal{M} para uma valoração σ , que definimos recursivamente do seguinte modo:

Definição de verdade

- Para quaisquer termos t_1 e t_2 , $(\mathcal{M}, \sigma) \models (t_1 = t_2)$ se, e somente se, $\sigma^*(t_1) = \sigma^*(t_2)$;
- Se R é um símbolo relacional n-ário e $t_1, ..., t_n$ são termos, então $(\mathcal{M}, \sigma) \models R(t_1, ..., t_n)$ se, e somente se, $(\sigma^*(t_1), ..., \sigma^*(t_n)) \in R^{\mathcal{M}}$;
- $(\mathcal{M}, \sigma) \vDash \neg A$ se, e somente se, não ocorre $(\mathcal{M}, \sigma) \vDash A$;
- $(\mathcal{M}, \sigma) \vDash A \land B$ se, e somente se, $(\mathcal{M}, \sigma) \vDash A$ e $(\mathcal{M}, \sigma) \vDash B$;
- $(\mathcal{M}, \sigma) \vDash A \lor B$ se, e somente se, $(\mathcal{M}, \sigma) \vDash A$ ou $(\mathcal{M}, \sigma) \vDash B$;
- $(\mathcal{M}, \sigma) \vDash A \to B$ se, e somente se, $(\mathcal{M}, \sigma) \vDash B$ ou não ocorre $(\mathcal{M}, \sigma) \vDash A$;
- $(\mathcal{M}, \sigma) \vDash \forall x A$ se, e somente se, $(\mathcal{M}, \theta) \vDash A$, para toda valoração θ que satisfaz $\theta(v) = \sigma(v)$, para toda variável v diferente de x;
- $(\mathcal{M}, \sigma) \vDash \exists x A$ se, e somente se, existe uma valoração θ tal que $(\mathcal{M}, \theta) \vDash A$ e $\theta(v) = \sigma(v)$, para toda variável v diferente de x.

- Denotamos por $\mathcal{M} \models A$ (que significa que A é verdadeira no modelo \mathcal{M} , ou, também, \mathcal{M} satisfaz a fórmula A) quando $\mathcal{M} \models A$ para toda valoração σ .
- \bullet Expliquemos um pouco mais sobre a definição de satisfazibilidade para fórmulas que começam com o quantificador \forall
- Novamente precisamos discutir sobre a diferença entre linguagem e metalinguagem
- É comum, em demonstrações matemáticas informais, dizermos coisas como "tome x igual a 2". Porém, quando estamos formalizando a lógica de primeira ordem, x é visto como um símbolo, apenas

- Não pode ser igual a 2 ou a qualquer outro número. O que muda é a valoração, de modo que o correto seria dizer: "tome uma valoração que atribui a x o valor 2"
- Portanto, dizer que a fórmula $\forall xA$ é verdadeira em um modelo mediante uma valoração σ , significa que A é verdadeira nesse modelo, mesmo modificando o valor de σ na variável x
- Mas não garante que A continua verdadeira quando alterarmos a valoração σ em outras variáveis além de x

- Observe que, cada vez que quantificamos uma variável, dentro do escopo daquele quantificador temos a liberdade de mudar a valoração naquela variável específica
- Por exemplo, se quisermos verificar se a fórmula $\forall x(x+y=0)$ é verdadeira em um modelo mediante uma valoração σ , precisamos testar todas as alterações de σ na variável x, mantendo, porém, o valor de σ em y
- Em particular, a validade da fórmula A só depende da valoração nas variáveis livres
- Formalizamos esse argumentos através do seguinte teorema:

Teorema

Sejam \mathcal{M} um modelo para uma linguagem L, A uma fórmula de L e σ e θ duas valorações para o modelo \mathcal{M} tais que $\sigma(v) = \theta(v)$, para toda variável v que ocorre livre em A. Então $(\mathcal{M}, \sigma) \vDash A$ se, e somente se, $(\mathcal{M}, \theta) \vDash A$.

Em particular, se a fórmula A é uma sentença (ou seja, não possui variáveis livres) então a satisfazibilidade de A em um modelo $\mathcal M$ não depende da valoração. Ou seja, se uma fórmula for verdadeira em uma valoração, será verdadeira em qualquer outra. Segue, portanto, do teorema, o seguinte corolário:

Corolário

Se A é uma sentença e \mathcal{M} é um modelo, então $\mathcal{M} \models A$ ou $\mathcal{M} \models \neg A$

Demonstração

- Suponha que não vale $\mathcal{M} \vDash \mathcal{A}$
- Isto é, existe uma valoração σ tal que $(\mathcal{M}, \sigma) \vDash \neg \mathcal{A}$
- Pelo Teorema 5.3, como A e, consequentemente, $\neg A$ não possui variáveis livres, temos que $(\mathcal{M}, \theta) \vDash \neg \mathcal{A}$, para toda valoração θ
- Portanto, $\mathcal{M} \models \neg \mathcal{A}$
- A recíproca é análoga
- •

Definição

Seja Γ um conjunto de fórmulas (possivelmente infinito) na lógica de predicados e ψ uma fórmula da lógica de predicados.

- 1. A vinculação semântica $\Gamma \vDash \psi$ é verdade sse para todos os modelos $\mathcal M$ e todas as valorações
- l, sempre que $\mathcal{M} \vDash_{l} \varphi$ é verdade para toda $\varphi \in \Gamma$, então $\mathcal{M} \vDash_{l} \psi$ também é verdade
- 2. A fórmula ψ pode ser satisfeita sse existe algum modelo $\mathcal M$ e algum contexto l tal que $M \vDash_l \psi$ é verdade
- 3. A fórmula ψ é válida sse $M \vDash_I \psi$ é verdade para todos os modelos $\mathcal M$ e todos os contextos l para os quais podemos verificar ψ
- 4. O conjunto Γ é consistente ou pode ser satisfeito sse existe algum modelo \mathcal{M} e algum contexto l tal que $M \vDash_{l} \varphi$ é verdade para todo $\varphi \in \Gamma$

Próxima Aula

O que vem por aí?

- Exercícios
- Sistemas dedutivos Lógica de Primeira Ordem

Semântica da Lógica de Primeira Ordem Lógica para Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

02 e 09 de julho de 2021

⁰Slides baseados no livro Logic in Computer Science: Modelling and reasoning about systems.².

¹HUTH, Michael; RYAN, Mark. Logic in Computer Science: Modelling and reasoning about systems. Cambridge university press, 2004.