Christian Haase Jan Marten Sevenster Theresa Graeber Eva Schinzel

Hausaufgabe 1

Abgabe Montag, 8. Mai 2023 um 10h00 (ein PDF, eine Seite pro Aufgabe)

Aufgabe 1.1 4 Punkte

Es sei K ein Körper und $f \in K[t]$ ein nicht konstantes Polynom vom Grad höchstens 3. Ein Polynom heißt *irreduzibel*, wenn seine einzigen Faktorisierungen trivial sind, d.h.

$$f = gh$$
 impliziert $g \in K[t]^*$ oder $h \in K[t]^*$,

wobei $K[t]^*$ die Menge der invertierbaren Elementen von K[t] ist.

Zeigen Sie, dass f irreduzibel ist, wenn es keine Nullstellen hat.

Aufgabe 1.2 4 Punkte

(1) Es sei K ein Körper von Charakteristik 0 und $f \in K[t]$, zeigen Sie, dass für $x \in K$ gilt

$$\mu(f, x) = \max\{n \in \mathbb{Z}_{>0} \mid f^{(n)}(x) = 0\}.$$

(2) Geben Sie ein Beispiel an, woraus deutlich wird, dass diese Gleichheit nicht gilt für $K = \mathbb{Z}/2\mathbb{Z}$.

Aufgabe 1.3 4 Punkte

Es sei $(F_n)_{n\geq 0}$ die bekannte Fibonacchi Folge, gegeben durch

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Wir können diese Rekursion wie folgt formulieren:

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}.$$

Wir setzen $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

- (1) Diagonalisieren Sie die Matrix A.
- (2) Geben Sie eine geschlossene Formel für A^n an.
- (3) Geben Sie eine geschlossene Formel für F_n an.