

Wprowadzenie do Sztucznej Inteligencji (WSI)

Paweł Wawrzyński

Uczenie maszynowe
Uczenie się ze wzmocnieniem

Plan na dziś

- Uczenie się ze wzmocnieniem
- Proces decyzyjny Markowa
- Programowanie dynamiczne
- Q-Learning

Sekwencyjne decyzje w warunkach niepewności

Proces Decyzyjny Markowa (PDM)

- agent + środowisko
- dyskretny czas $t = 1, 2, \dots$
- stan x_t
- akcja u_t
- następny stan x_{t+1}
- nagroda/wzmocnienie r_t
- epizody
- cel: maksymalizacja przyszłych nagród

PDM formalnie

- przestrzeń stanów $x \in \mathcal{X}$
- przestrzeń akcji $u \in \mathcal{U}$
- rozkład przejścia stanów $P_x(x_{t+1}|x_t, u_t)$
- nagrody $r_t = r(u_t, x_{t+1})$
- stany terminalne epizodów \mathcal{X}^*
- ullet rozkład stanów początkowych epizodu $\,P_0\,$
- środowisko: P_x , r, \mathcal{X}^* i P_0

Przykład: problem dyskretny

- skończona przestrzeń stanów $x \in \mathcal{X}$
- skończona przestrzeń akcji $u \in \mathcal{U}$
- środowisko P_x , r, \mathcal{X}^* i P_0
- cel: maksymalizacja sumy przyszłych nagród
- ilustracja: labirynt
 - nagroda -1 za każdą chwilę pobytu w labiryncie

Przykład: problem ciągły

- Sterowanie urządzeniem o nieznanej dynamice
 - stan środowiska: stan urządzenia + stan docelowy
 - akcje: sterowanie
 - nagroda: minus odchyłka

Przykład: problem dyskretno-ciągły

- Bot w grze komputerowej
 - stan środowiska: orientacja bota w świecie gry + obserwowana przez niego sytuacja w grze
 - akcje: sterowanie
 - nagroda: przeżycie, zbieranie fantów, wyrządzanie jak najbardziej perfidnej szkody ludzkiemu graczowi...

Ogólne podejścia

- Znany model środowiska
 - strategia deliberatywna, np. MIN-MAX
 - strategia reaktywna << programowanie dynamiczne
- Nieznany model środowiska
 - skonstruować model środowiska i jw.
 - nauczyć się strategii reaktywnej przy użyciu "prób i błędów" czyli: uczenie się ze wzmocnieniem

Polityka i cel

- polityka $\pi \rightarrow$ na podstawie stanów
 - → akcje lub ich prawdopodobieństwa
- funkcja wartości $V^{\pi}(x) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x; \pi\right)$
- dyskonto: $\gamma \in (0,1)$
- cel: taka polityka, która maksymalizuje funkcję wartości dla każdego stanu

Narzędzia analizy

- stany $x \in \mathcal{X}$ akcje $u \in \mathcal{U}$
- środowisko P_x, r, \mathcal{X}^* i P_0 polityka π
- Funkcja wartości

$$V^{\pi}(x) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x; \pi\right)$$

Funkcja wartości-akcji

$$Q^{\pi}(x,u) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x, u_{t} = u; \pi\right)$$

Ilustracja: labirynt

$$V^{\pi}(x) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x; \pi\right)$$

$$Q^{\pi}(x,u) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x, u_{t} = u; \pi\right)$$

nagroda = -1, dyskonto = 1

Polityka

Pullyka			
Wy	<	<	<
>	>	>	٨
>	>	>	٨
		<u> </u>	

V, Q			
	-2	-3	-4
	<mark>-1</mark> -1 -3	<mark>-2</mark> -2 -4	<mark>-3</mark> -3 -4
	-7	-6	-5
<u>-1</u>	<mark>-2</mark>	<mark>-3</mark>	<mark>-4</mark>
-8 -7 -7	-8 -6 -6	-7 -5 -5	-6 -4 -5
-9	-8	-7	-6
<mark>-8</mark>	<mark>-7</mark>	<mark>-6</mark>	<mark>-5</mark>
-9 -8 -8	-9 -7 -7	-8 -6 -6	-7 -5 -6
-10	-9	-8	-7

Polityka wyindukowana

Wy	<	<	<
۸	٨	۸	٨
٨	٨	۸	٨

proces decyzyjny Markowa

Narzędzia analizy 2

$$V^{\pi}(x) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x; \pi\right)$$
$$Q^{\pi}(x, u) = E\left(\sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \middle| x_{t} = x, u_{t} = u; \pi\right)$$

Istotne własności

$$V^{\pi}(x) = E(Q^{\pi}(x_t, u_t) | x_t = x; \pi)$$

$$Q^{\pi}(x, u) = E(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | x_t = x, u_t = u; \pi)$$

$$= E(r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \dots) | x_t = x, u_t = u; \pi)$$

$$= E(r_t + \gamma V^{\pi}(x_{t+1}) | x_t = x, u_t = u)$$

Narzędzia analizy 3

• Funkcja $Q: \mathcal{X} \times \mathcal{U} \mapsto \mathfrak{R}$ indukuje politykę π jeśli

$$\arg\max_{u} Q(x_t, u) \to u_t$$

• Polityka π' indukowana przez Q^{π} jest niegorsza niż π

$$(\forall x \in \mathcal{X}) V^{\pi'}(x) \ge V^{\pi}(x)$$

• Jeśli π nie jest optymalna to

$$(\exists x \in \mathcal{X}) V^{\pi'}(x) > V^{\pi}(x)$$

Iteracja polityki

• Optymalna polityka, funkcja wartości i funkcja wartości-akcji

$$\pi^*$$
 V^* Q^*

• Q^* indukuje π^*

Programowanie dynamiczne

- Mamy model środowiska
- Możemy użyć programowania dynamicznego
- Algorytm Iteracji polityki:

- 0. Określ dowolną politykę początkowa π .
- 1. Wyznacz funkcję Q^{π} dla polityki π .
- 2. Wyznacz politykę indukowaną przez Q^{π} i przypisz ją do π .
- 3. Jeśli w ostatnim kroku polityka zmieniła się, wróć do 1.

Idea algorytmu Q-Learning

- Utrzymywana jest funkcja Q która ma zbiegać do Q^*
- Krok algorytmu = krok agenta w środowisku
- W każdym kroku $Q(x_t, u_t)$ jest poprawiana na podstawie zdobytego doświadczenia

Q-Learning

Algorytm

- 0: Zainicjalizuj: $t \leftarrow 1$, Q.
- 1: Wylosuj u_t na podstawie Q i x_t .
- 2: Wykonaj u_t , zarejestruj x_{t+1} i r_t .
- 3: Przypisz

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \beta_t \left(r_t + \gamma \max_u Q(x_{t+1}, u) - Q(x_t, u_t) \right).$$

przy czym $Q(x_{t+1},\cdot) \equiv 0$, jeśli po akcji u_t skończył się epizod.

4: Przypisz $t \leftarrow t + 1$ i wróć do Punktu 1.

Q-Learning

Punkt 1 algorytmu

- 0: Zainicjalizuj: $t \leftarrow 1, Q$.
- 1: Wylosuj u_t na podstawie Q i x_t .
- 2: Wykonaj u_t , zarejestruj x_{t+1} i r_t .
- 3: Przypisz

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \beta_t \left(r_t + \gamma \max_{u} Q(x_{t+1}, u) - Q(x_t, u_t) \right).$$

przy czym $Q(x_{t+1}, \cdot) \equiv 0$, jeśli po akcji u_t skończył się epizod.

4: Przypisz $t \leftarrow t + 1$ i wróć do Punktu 1.

• Strategia
$$\epsilon$$
- zachłanna

$$P(u_t = u | x_t) = \epsilon \frac{1}{|\mathcal{U}|} + (1 - \epsilon) \frac{[u \in \arg \max_u Q(x_t, u)]}{|\arg \max_u Q(x_t, u)|}$$

Strategia Bolzmannowska

$$P(u_t = u | x_t) = \frac{\exp(Q(x_t, u)/T)}{\sum_{u' \in \mathcal{U}} \exp(Q(x_t, u')/T)}$$

Eksploracja vs. eksploatacja

Q-Learning

Warunki zbieżności z prawdopodobieństwem 1

- Skończona przestrzeń stanów
- Skończona przestrzeń akcji
- Ograniczone nagrody
- Każda akcja w każdym stanie jest zostaje wykonana nieskończenie wiele razy

Uczenie się ze wzmocnieniem: co jeszcze?

- Algorytmy działające gdy przestrzenie stanów i akcji są ciągłe
- Algorytmy optymalizujący parametryczną politykę decyzyjną: Aktor-Krytyk
- Algorytmy, które nie zakładają, że stan jest obserwowalny
- Zastosowania
 - w grach, np. Go
 - wspomaganie metod z innych obszarów