Поверхностные интегралы

1 Способы определения поверхности

а) явно заданная поверхность

Пусть функция z = f(x, y) определена и непрерывна на $D \subseteq \mathbb{R}^2$.

Множество точек $\Sigma = \{(x, y, f(x, y)) | (x, y) \in D\}$ называется поверхностью Σ , явно заданной функцией f(x, y).

Уравнение z = f(x, y) называется уравнением поверхности Σ .

б) параметрически заданная поверхность

Пусть

$$\Sigma = \begin{cases} x = x(u, v), \\ y = y(u, v), \\ z = z(u, v), \end{cases} (u, v) \in \Delta \subseteq \mathbb{R}^2.$$
 (1)

Пусть функции системы (1) непрерывны вместе со своими частными производными в Δ и ранг матрицы

$$\begin{pmatrix} x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{pmatrix} \tag{2}$$

равен 2.

Тогда система (1) определяет поверхность Σ , называемую *параметрически заданной поверхностью*, и эта поверхность является гладкой.

NB Если ранг матрицы (2) равен 1 в некоторой точке, такая точка называется *особой*.

в) неявно заданная поверхность

Пусть дано уравнение

$$F(x, y, z) = 0, (3)$$

где функция F непрерывна вместе со своими частными производными и $(F'_x)^2 + (F'_y)^2 + (F'_z)^2 \neq 0$ в некоторой области $\Omega \subseteq \mathbb{R}^3$. (Например, $F'_z \neq 0$.)

Тогда существует функция z = f(x, y) — непрерывное и непрерывно дифференцируемое решение уравнения (3).

Поверхность $\Sigma = \{(x,y,f(x,y))|\ F(x,y,f(x,y))=0\}$ называется поверхностью Σ , неявно заданной уравнением. Эта поверхность гладкая.

NB Если $(F_x')^2 + (F_y')^2 + (F_z')^2 \neq 0$ в некоторой точке, такая точка называется *особой*.

2 Касательная плоскость. Вектор нормали

Определение. Плоскость, проходящая через точку M_0 поверхности Σ , называется *касательной плоскостью к поверхности* Σ в этой точке, если в ней лежат касательные ко всем кривым, проходящим через точку M_0 и лежащим на Σ .

б) параметрически заданная поверхность

$$\Sigma = \begin{cases} x = x(u, v), \\ y = y(u, v), \\ z = z(u, v), \end{cases} (u, v) \in \Delta \subseteq \mathbb{R}^2.$$
 (1)

в векторной форме:

$$\mathbf{r} = \mathbf{r}(u, v), \quad (u, v) \in \Delta$$

касательная плоскость:
$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

нормаль:
$$\vec{N}=(A,B,C)=\mathbf{r}'_u\times\mathbf{r}'_v=\left|\begin{array}{ccc}\mathbf{i}&\mathbf{j}&\mathbf{k}\\x'_u&y'_u&z'_u\\x'_v&y'_v&z'_v\end{array}\right|$$

а) явно заданная поверхность

$$\Sigma = \{ (x, y, f(x, y)) | (x, y) \in D \}$$

Поверхность Σ называется гладкой, если f_x', f_y' непрерывны на D.

касательная плоскость:
$$z-z_0=f_x'(x_0,y_0)(x-x_0)+f_y'(x_0,y_0)(y-y_0)$$

нормаль:
$$\vec{N} = (-f_x', -f_y', 1)$$

в) неявно заданная поверхность

$$F(x, y, z) = 0 (3)$$

касательная плоскость:
$$F_x'(x_0,y_0,z_0)(x-x_0)+F_y'(x_0,y_0,z_0)(y-y_0)+F_z'(x_0,y_0,z_0)(z-z_0)=0$$

нормаль:
$$\vec{N}=(F_x',F_y',F_z')$$

3 Площадь поверхности

Сапог Шварца

Пусть Σ — гладкая поверхность с границей $L=\partial \Sigma$ — кусочно-гладкой гривой. $\Sigma=\bigcup_{i=1}^n \Sigma_i$ — разбиение Σ на части Σ_i кусочно-гладкими кривыми. $d_i=\sup\{\rho(M,N)|\ M,N\in\Sigma_i\},\quad d=\max d_i$ — диаметр разбиения

 $M_i \in \Sigma_i$.

 π_i — касательная плоскость в точке M_i к Σ .

 D_i — проекция Σ_i на π_i .

Определение. Если существует предел сумм площадей проекций Σ_i на касательные плоскости π_i при стремлении диаметра разбиения к нулю, то он называется *площадью поверхности* Σ , а сама поверхность называется $\kappa \epsilon a \partial p u p y \epsilon m o \check{u}$:

$$S(\Sigma) = \lim_{d \to 0} \sum_{i=1}^{n} S(D_i).$$

Теорема. Пусть Σ — гладкая поверхность с кусочно-гладкой границей $L = \partial \Sigma$, заданная уравнением $\mathbf{r} = \mathbf{r}(u, v), \ (u, v) \in \Delta$. Тогда Σ квадрируема и

$$S(\Sigma) = \iint_{\Delta} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, du dv = \iint_{\Delta} \sqrt{EG - F^{2}} \, du dv,$$

где

$$E = (\mathbf{r}_u, \mathbf{r}_u), \quad G = (\mathbf{r}_v, \mathbf{r}_v), \quad F = (\mathbf{r}_u, \mathbf{r}_v).$$