

## Big HW 1

Particle kinematics



## Task description

We have a mobile vehicle, which should survive after the track. We have some predefined trajectory, which is given in y(x) format.

The **goal** is to pass this trajectory as fast as possible. But at the end of the path, there is a drop-off. It means that the vehicle should stop in the end.

We have to establish some constraints, such as max tangent acceleration (max power on the motor), normal acceleration (road adhesion).



- 1. Vehicle simulation on the path. You should show a  $\bar{\mathbf{v}}$ ,  $\bar{\mathbf{a}}$ ,  $\bar{\mathbf{a}}_{\tau}$ ,  $\bar{\mathbf{a}}_{n}$  on the simulation.
- 2. plots: y(t), v(t),  $a_t(t)$ ,  $a_n(t)$ , -t is time in seconds.

$$y(x) = Ax \ln(\frac{2}{B})$$
, where  $A = 3$ ,  $B = 5$ ,  $x \in [0..4]$ 

$$a_{t_{max}} = 2$$
,  $a_{n_{max}} = 3$ ,  $v_{max} = 3$ 



## Hints

- Trapezoidal velocity and acceleration (subfolder «extra material»)
- Change between coordinate and natural forms (1st lab slides, theory)
- Curvature (1st Week HW)
- It's not a task about control. Your vehicle should move ideally along the trajectory.

