Adopted Levels, Gammas

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019					

 $Q(\beta^-)=4958\ 15;\ S(n)=6360.8\ 16;\ S(p)=17266.7\ 18;\ Q(\alpha)=-12241.2\ 19$ 2017Wa10 $S(2n)=11507.2\ 16,\ S(2p)=31890\ 310\ (2017Wa10).$

Mass measurement: 2012La05 (TOF-ICR resonance frequency ratios using TITAN Penning trap spectrometer at TRIUMF-ISAC facility).

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 125 primary references for structure calculations. Additional information 1.

50 Ca Levels

Cross Reference (XREF) Flags

A	50 K β^{-} decay (472 ms)	F	48 Ca(α ,2p)
В	51 K β^{-} n decay (365 ms)	G	$^{48}\text{Ca}(^{238}\text{U},\text{X}\gamma)$
C	52 K β^{-2} n decay (110 ms)	H	208 Pb(48 Ca,X γ)
D	1 H(50 Ca,P' γ)	I	$^{238}\text{U}(^{48}\text{Ca,X}\gamma)$
E	48 Ca(t,p),(pol t,p)		

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{a}$	XREF	Comments
0.0	0+	13.45 s 5	ABCDEFGHI	$\%\beta^{-}=100$
				$T_{1/2}$: measured by 2017Ga25 from fit to the decay curves of 1519- and
				1591-keV γ transitions, ⁵⁰ Ca beam produced in Ta(p,X),E=500 MeV at
				TRIUMF, and counted using GRIFFIN array of Ge detectors. Others: 13.9 s 6
				(1970Wa29, from decay curve for 257 γ); 14 s 3 (1968Ch11, from decay curve for all γ rays); 9 s 2 (1964Sh14, decay curves for 72 γ and 258 γ).
				Nuclear rms charge radius: $\langle r^2 \rangle^{1/2} = 3.517$ fm 7 (2013An02, evaluation).
				Measured δr^2 (40 Ca, 50 Ca)=0.291 fm ² 3(stat) 12(syst) (2016Ga34, using
				COLLAPS at ISOLDE-CERN; see also 2017Ne04 review article on
				measurements at this facility). Previous measurement: 0.276 fm ² 34
				(1992Ve02, online collinear laser spectroscopy).
				Measured isotope shift δv (40 Ca, 50 Ca)=1969.2 MHz 9(stat) 47(syst)
				(2016Ga34, using COLLAPS at ISOLDE-CERN). Previous measurement:
				1951 MHz 9(stat) 20(syst) (1992Ve02, online collinear laser spectroscopy). Measurement of isotope shift and rms radii: 1992Ve02, 2017Ne04.
1026.72 10	2+	66.5 ps 21	ABCDEFGHI	J^{π} : E2 1026.7 γ to 0 ⁺ ; L(t,p)=2 from 0 ⁺ .
1020.72 10	-	00.5 ps 21	IID CD LI GIII	$T_{1/2}$: recoil-distance Doppler-shift method (2009Va06) in 208 Pb(48 Ca,X γ).
				Other: 68.6 ps 55 from DSAM in $({}^{50}\text{Ca,p'}\gamma)$.
3002.1 5	(2^{+})	<0.69 ps	AB DEFGH	J^{π} : L(t,p)=(2). L(t,p)=(4) and L(α ,2p)=(4) are also proposed but in the latter
				case L=2 does not seem ruled out in figure 32 of 1990Fi07.
3531.7 4	$(1,2^+)$		AB E	XREF: E(3519).
				J^{π} : 3531.7 γ to 0 ⁺ . Note that J^{π} =0 ⁺ is suggested in 1968Br01, 1967Gl08 and
				1966Ve06 in theoretical analyses of (t,p) results for a 3519 level observed by 1967Bj06. It is possible two separate levels are populated near this energy.
3997.22 <i>21</i>	(3^{-})	<0.69 ps	DEFGHI	J^{π} : L(t,p)=(3). Inconsistent with L(α ,2p)=4, but L=3 comparison of $\sigma(\theta)$ data
	(-)			was not shown in figure 32 of 1990Fi07.
4035.7 4	$(1,2^+)$		AB D	J^{π} : 4035.6 γ to 0 ⁺ .
4475.8 <i>5</i>	(0^{+})		A E	J^{π} : L(t,p)=(0).
4515.04 <i>14</i>	(4^{+})	<1.04 ps	DE GHI	J^{π} : strong population in ²³⁸ U(⁴⁸ Ca,X γ) suggests yrast 4 ⁺ level. L(t,p)=(3) for a 4517 <i>15</i> group is inconsistent.
4830.6 <i>3</i>	(4)	<0.69 ps	E GHI	J^{π} : L(t,p)=(4); (4 ⁻) proposed in ²³⁸ U(⁴⁸ Ca,X γ) from γ to (3 ⁻).
4870 5	(2^{+})		G	J^{π} : 4870 γ to 0 ⁺ . J=1 less likely to be populated in high-spin reaction.
4886.3 <i>5</i>	(1^{-})		A E	J^{π} : L(t,p)=(1); 4886.0 γ to 0 ⁺ .

Adopted Levels, Gammas (continued)

⁵⁰Ca Levels (continued)

E(level) [†]	${\rm J}^{\pi \ddagger}$	$T_{1/2}^{a}$		XREF		Comments
4.97×10 ³ 5 5043 15 5084.56 25	(4 ⁺ &5 ⁻) [#] (1 ⁻) (4 ⁻) [@]			F E	I	J^{π} ,E(level): $L(\alpha,2p)=4+5$ for a possible doublet. J^{π} : $L(t,p)=(1)$.
5109.88 20	$(5^{-})^{@}$	<0.69 ps		DE GI		
5147.34 <i>17</i> 5168 20 5281 20 5362 20 5434 20	(5+)@	1		E E E	I	
5516.92 20	$(5^{-})^{\textcircled{@}}$			E	Ι	J^{π} : L(t,p)=(4), but data were insufficient to get a reliable L value.
5576 20 6519 8			A	E		J^{π} : L(t,p)=(4), but data were insufficient to get a reliable L value. $%n\approx100$
	@					Additional information 2.
6869.27 <i>25</i> 7039 <i>36</i>	$(7^{-})^{@}$		A		Ι	%n≈100
7269 46			A			Additional information 3. %n≈100 Additional information 4.
7309 <i>51</i>			A			%n≈100 Additional information 5.
7619 <i>66</i>			A			%n≈100 Additional information 6.
7999 87			A			%n≈100 Additional information 7.
8249 97			A			%n≈100 Additional information 8.
$8.38 \times 10^3 5$	(7 ⁻)#			F		
$8.81 \times 10^3 \ 12$	$(0^-,1^-)^{\&}$		A			%n≈100 Additional information 9.
$8.98 \times 10^3 5$	(7 ⁻)#			F		
9239 46	(0-,1-)&		A			%n≈100 Additional information 10.
9779 72	$(0^-,1^-)^{\&}$		A			%n≈100 Additional information 11.
$9.80 \times 10^3 5$	$(6^+)^{\#}$			F		J^{π} : 8 ⁺ is not completely ruled out.
$10.33 \times 10^3 \ 5$	(8 ⁺) [#]			F		J^{π} : 6 ⁺ is not completely ruled out.
10430 36	$(0^-,1^-)$ &		A	_		%n≈100 Additional information 12.
1.055×10 ⁴ 11	$(0^-,1^-)^{\&}$		A			%n≈100 Additional information 13.
11059 36	(0 ⁻ ,1 ⁻)&		A			%n≈100 Additional information 14.
11479 52	(0 [−] ,1 [−]) ^{&}		A			%n≈100 Additional information 15.

[†] For levels populated in γ -ray studies, values are from least-squares to γ -ray energies. For levels populated in particle-reaction studies, averages are taken when possible.

[†] From DWBA analysis of $\sigma(\theta)$ in (t,p), except as noted. See (t,p) for additional tentative J^{π} assignments. For L(t,p) and L(α ,2p) transfer reactions, target J^{π} =0⁺. Most L(t,p) are considered by the evaluators as tentative values due either to disagreements with

Adopted Levels, Gammas (continued)

⁵⁰Ca Levels (continued)

other reactions or to weak populations of levels.

γ (⁵⁰Ca)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.#	Comments
1026.72	2+	1026.7 <i>1</i>	100	0.0	0+	E2	B(E2)(W.u.)=0.68 2
							E _γ : weighted average of 1027.0 5 from 50 K β^- decay (472 ms), 1026.2 3 from (238 U,Xγ), and 1026.7 1 from (48 Ca,Xγ). Others: 1027 1 from 51 K β^- n decay (365 ms), 1027 1 from 52 K β^- 2n decay (110 ms), and 1028 2 from (50 Ca,p'γ).
3002.1	(2+)	1975.3 5	100	1026.72	2+	(D)	Mult.: $\gamma(\theta)$ and linear polarization in ²⁰⁸ Pb(⁴⁸ Ca,X γ). E_{γ} : from β^- decay. Other: 1976 <i>1</i> from β^- n decay; 1978.2 6 in ⁴⁸ Ca(²³⁸ U,X γ) is discrepant, possibly due to Doppler-shift effects. It is possible that 1978,2 γ defined a level separate from 3002, (2 ⁺), but there is no strong evidence for its existence.
3531.7	$(1,2^+)$	2504.5 8	100 13	1026.72	2+		E_{γ} : weighted average of 2504.9 5 from 50 K β^- decay (472 ms) and 2503 <i>I</i> from 51 K β^- n decay (365 ms). I_{γ} : from 50 K β^- decay . Other: 100 <i>I7</i> from β^- n decay.
		3531.7 4	92 13	0.0	0+		E _γ : weighted average of 3531.8 5 from 50 K β^- decay (472 ms) and 3530 2 from 51 K β^- n decay (365 ms). I _γ : from 50 K β^- decay . Other: 133 17 from β^- n decay.
3997.22	(3 ⁻)	2970.3 3	100	1026.72	2+	D	E _{γ} : weighted average of 2964 8 from (50 Ca,p' γ), 2971.4 6 from (238 U,X γ), and 2970.2 2 from (48 Ca,X γ).
4035.7	(1,2+)	3008.8 5	60 4	1026.72	2+		E _γ : weighted average of 3008.9 5 from 50 K β^- decay and 3008 2 from 51 K β^- n decay. I _γ : from 50 K β^- decay. Others: 60 20 from 51 K β^- n decay and 75 25 from (50 Ca,p' γ).
		4035.6‡ 5	100 6	0.0	0+		E _y : weighted average of 4035.6 5 from 50 K β^- decay and 4035 2 from 51 K β^- n decay. Other: 4030 18 from (50 Ca,p' γ). I _y : from 50 K β^- decay. Others: 100 20 from 51 K β^- n decay, and 100 25 from (50 Ca,p' γ).
4475.8	(0^+)	3449.0 [‡] 5	100	1026.72	2+		decay, and 100 25 from (Ca,p y).
4515.04	(4^{+})	518.4 7	2 1	3997.22			
		3488.2 <i>1</i>	100	1026.72	2+	(E2)	E_{γ} : others: 3482 <i>14</i> from (50 Ca,p' $_{\gamma}$) and 3488.4 8 from (238 U,X $_{\gamma}$).
4830.6	(4)	833.4 2	100	3997.22	(3-)	(D)	E_{γ} : weighted average of 833.9 5 from ($^{238}U,X\gamma$) and 833.3 2 from ($^{48}Ca,X\gamma$).
4870	(2^{+})	4870 5			0_{+}		E_{γ} : from (²³⁸ U,X γ) only.
4886.3	(1^{-})	4886.0 [‡] 5	100		0+		
5084.56	(4 ⁻)	1087.2 3	100	3997.22		D	E 11.1 (602.116 (50g.1) 505.5.2
5109.88	(5 ⁻)	594.9 2	100 6	4515.04		D	E _{γ} : weighted average of 603 11 from (50 Ca,p' γ), 595.5 3 from (238 U,X γ), and 594.8 1 from (48 Ca,X γ).
5147 24	(5 ⁺)	1112.6 2 632.3 <i>I</i>	6.8 14	3997.22 4515.04			
5147.34	(3.)	032.3 1	100	4313.04	(4.)		

[#] From CCBA and DWBA analyses in $(\alpha,2p)$.

[®] Tentative assignments in $^{238}\text{U}(^{48}\text{Ca},\text{X}\gamma)$ based on γ -decay pattern and possible model predictions. No supporting data are available for transition multipolarity assignments. & From allowed β transition (log ft=4.1 to 4.9) from 0⁽⁻⁾ parent state. α From RDDS method in α From RDDS m

Adopted Levels, Gammas (continued)

γ (50Ca) (continued)

 $^{^{\}dagger}$ From 238 U(48 Ca,X γ), unless stated otherwise.

[‡] From β^- decay. # From $\gamma(\theta)$ in 208 Pb(48 Ca,X γ), unless otherwise stated.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

