EEM 323

REVIEW ELECTROMAGNETIC WAVE THEORY II

2013 – 2014 FALL SEMESTER

Prof. S. Gökhun Tanyer

DEPARTMENT OF ELECTRICAL-ELECTRONICS ENGINEERING FACULTY OF ENGINEERING, BASKENT UNIVERSITY

KAYNAKÇA

Üniversitemizde kaynak kitap olarak kullanılmakta olan ve D. Cheng tarafından yayınlanmış kitaplardan aynen faydalanılmıştır.

Kaynağı belirtilmeyen ve Dr. S. G. Tanyer tarafından hazırlanmamış olan tüm şekil, tablo, eşitlik ve denklemler vb., *Course Outline* dokümanında yer alan kaynaklardan alınmıştır. Copyright problemlerinden dolayı bu dokümana erişim imkanı sağlanamayacaktır. Doğrudan kaynağın kendisine erişilmesi gerekmektedir.

Ders kapsamında paylaşılan dosyaların basılı ve/veya bilgisayar sürümleri, <u>sadece</u> <u>Başkent Üniversitesi öğrencilerinin</u> kullanımı için hazırlanmıştır. Dokümana erişim sağlayan kişiler tarafından kopyalanması, internet vb. ortamlarda yayınlanması, ancak dokümanın sahibinin izni ile mümkündür.

REVIEW OF ELECTROMAGNETIC WAVE THEORY II (PART 1) (EEM323)

We will review 'Time-varying electromagnetic fields' in this lecture:

Second Edition

Field and Wave Electromagnetics

David K. Cheng

Life Fellow, I.E.E.; Fellow, I.E.E.; C. Eng.

ELEKTRİK ALANI İLE MANYETİK ALANI SABİT OLDUKLARI TAKDİRDE (ZAMAN İÇERİSİNDE DEĞİŞMEYEN / DURGUN / DURAĞAN) BİRBİRLERİNDEN BAĞIMSIZDIRLAR !..

Michael Faraday (1761 - 1867)

'The Forces of Matter'

'Experimental Researches in Electricity'

EXPERIMENTAL RESEARCHES IN ELECTRICITY

MICHAEL FARADAY, D.C.L., F.R.S.

LONDON: J. M. DENT & SONS LTD. NEW YORK: E. P. DUTTON & CO. INC.

FARADAY'S LAW OF ELECTROMAGNETIC INDUCTION

LECTURES ON THE FORCES OF MATTER

TRANSFORMERS

James Clerk Maxwell (1831 - 1879)

1865: 'A Dynamical Theory of the Electromagnetic Field'

MAXWELL'S EQUATIONS

James Clerk Maxwell

A Dynamical Theory of the Electromagnetic Field

with an appreciation by

ALBERT EINSTEIN

edited and introduced by

THOMAS F. TORRANCE

POTENTIAL FUNCTIONS

ELECTROMAGNETIC BOUNDARY CONDITIONS

WAVE EQUATIONS AND THEIR SOLUTIONS

SOURCE-FREE WAVE EQUATIONS

TIME-HARMONIC FIELDS
THE USE OF PHASORS

TIME-HARMONIC ELECTROMAGNETICS

SCALAR POTENTIAL AND VECTOR POTENTIAL

Hermann Ludwig Ferdinand von Helmholtz (1821-1894)

SOURCE-FREE FIELDS IN SIMPLE MEDIA HOMOGENEOUS VECTOR / HELMHOLTZ EQUATIONS

HOMOGENEOUS VECTOR / HELMHOLTZ EQUATIONS

ELECTROMAGNETIC SPECTRUM

8

Plane

Electromagnetic Waves

DOPPLER EFFECT

TRANSVERSE ELECTROMAGNETIC WAVES

POLARIZATION OF PLANE WAVES

Linear, Circular and Elliptical Polarization Animation in a Single Shot.mp4

PLANE WAVES IN LOSSY MEDIA LOW-LOSS DIELECTRICS GOOD CONDUCTORS

GROUP VELOCITY

FLOW OF ELECTROMAGNETIC POWER THE POYNTING VECTOR

INSTANTANEOUS POWER DENSITY
AVERAGE POWER DENSITY

NORMAL INCIDENCE AT A PLANE CONDUCTING BOUNDARY

STANDING WAVES

http://www.google.com.tr/url?sa=t&rct=j&q=standing%20waves%20resonance%20in%20violins &source=web&cd=10&cad=rja&ved=0CHsQFjAJ&url=http%3A%2F%2Fwww.physics.umd.edu%2Flecdem%2Fmisc%2Fphys102%2FPH102chap03.ppt&ei=vuUWUciZKIGZhQf9sYDYBg&usg=AFQjCNG2GO3vn-Fw_ozEiJK36Td-JA1h0w&bvm=bv.42080656,d.d2k

OBLIQUE INCIDENCE AT A PLANE CONDUCTING BOUNDARY PERPENDICULAR POLARIZATION

PARALEL POLARIZATION

NORMAL INCIDENCE AT A PLANE DIELECTRIC BOUNDARY

REFLECTION COEFFICIENT (Γ)

TRANSMISSION COEFFICIENT (τ)

REFLECTION COEFFICIENT (Γ) AND TRANSMISSION COEFFICIENT (τ) ARE RELATED AS GIVEN BELOW:

STANDING WAVE RATIO

INCIDENCE AT MULTIPLE DIELECTRIC INTERFACES

(NORMAL) (OBLIQUE)

TOTAL REFLECTION (CRITICAL ANGLE)

+ POLARIZATION FILTERING SUNGLASSES!