1.INTRODUCTION

1.1 Project Overview

The College Food Choices project is an innovative health and wellness analytics initiative designed to uncover and interpret the dietary habits, emotional influences, and nutritional behaviors of college students. Leveraging a robust dataset (food_coded.csv), the project explores a multidimensional view of food preferences, caloric intake, exercise patterns, emotional triggers, and perceived health status among students.

This data-driven effort uses tools like **Tableau** for interactive dashboard creation, **Python and SQL** for data cleaning and transformation, and **Flask** for web integration—culminating in a dynamic platform that visualizes real-world insights and encourages evidence-based decisions.

The final product offers educational stakeholders, health teams, and campus administrators actionable analytics to support nutrition-driven student wellness strategies and curriculum enhancements.

1.2 Purpose

The primary purpose of the College Food Choices project is to empower educational institutions with the ability to:

- **Understand** how emotional and lifestyle factors influence students' food choices and health perceptions.
- **Visualize** behavioral trends through intuitive Tableau dashboards that highlight key areas like comfort food triggers, parental influence, and self-perceived wellness.
- **Integrate** analytical insights into operational systems via a Flask web app, ensuring broad access to meaningful health indicators.
- **Enable** real-time analysis and predictive alerts to identify nutrition gaps, risky patterns, or declining health signals.
- **Support** academic policy development, wellness campaigns, and personalized dietary plans rooted in behavioral evidence.

By transforming raw data into accessible and impactful insights, this project aligns with the broader mission of enhancing student health, academic performance, and long-term well-being.

2. IDEATION PHASE

2.1 Problem Statement

"Comprehensive Analysis and Dietary Strategies with Tableau: A College Food Choices Case Study" is an innovative project aimed at revolutionizing how dietary data among college students is visualized and utilized to drive informed decision-making and enhance student health and academic performance. In today's educational environment, it's crucial to have access to comprehensive insights into dietary trends, nutritional habits, and health impacts to empower stakeholders with actionable information.

This project seeks to create a dynamic and intuitive platform using Tableau, where data from various aspects of student diets, exercise habits, and health perceptions can be transformed into interactive visualizations and insightful analytics. By leveraging Tableau's capabilities effectively, the "Enhancing Dietary Strategies" project aims to empower educational institutions with actionable insights, foster data-driven decision-making, and drive student well-being by facilitating a deeper understanding of dietary dynamics and promoting evidence-based nutritional strategies.

Scenarios:

Scenario 1: Monitoring Nutritional Intake

In a real-time scenario, imagine receiving an alert indicating a concerning trend in nutritional intake among students, such as a significant decrease in fruit and vegetable consumption. Using the College Food Choices data, we can quickly assess the extent and potential impact of this trend, identify contributing factors, and deploy immediate interventions to encourage healthier eating habits. Whether it's through targeted awareness campaigns, adjustments in cafeteria menus, or personalized dietary advice, real-time analysis enables rapid decision-making and proactive measures to promote student health.

Scenario 2: Addressing Dietary Deficiencies

In the event of identifying widespread dietary deficiencies, such as low vitamin intake or high consumption of unhealthy snacks, real-time access to College Food Choices data enables swift response and management. University health services and nutritionists can utilize the dataset to gather crucial information about the deficiencies, including their prevalence, potential health impacts, and affected student demographics. By leveraging real-time analytics, they can coordinate health promotion efforts, allocate resources effectively, and implement educational programs to address the deficiencies and ensure the nutritional well-being of all students.

Scenario 3: Predictive Analysis and Personalized Nutrition Plans

Leveraging predictive analytics capabilities, College Food Choices empowers universities to anticipate and prevent potential health issues related to poor dietary habits. By analyzing historical data and identifying predictive indicators, health professionals can proactively address nutritional gaps, unhealthy eating patterns, and other risk factors that could lead to health problems. Real-time monitoring of dietary choices, meal consumption patterns, and nutritional intake enables timely interventions, personalized nutrition plans, and continuous support to encourage long-term healthy eating habits among students.

Example:

		I'm trying to	But	Because	Which makes me feel
Statement (PS)	(Customer)				
PS-1	a college	maintain a	I often don't		overwhelmed and
	student living	balanced diet	have	data is	uncertain about
	on campus	while	visibility	fragmented	improving my eating
		managing my	into how	and there's	habits
		academic and	my daily	little	
		social life	food	personalized	
			choices	feedback	

		impact my health		
nutritionist or health	address nutritional gaps among students	time, actionabl e	cafeterias,	frustrated and limited in delivering timely interventions

2.2 Empathy Map Canvas

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.

It is a useful tool to helps teams better understand their users.

Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

Example:

2.3 Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3. REQUIREMENT ANALYSIS

3.1 Customer Journey map

Stage	Steps (What Happens)		Goals & Motivations (Help Me)		Negative Moments	Opportunities
Entice	Recognize need for nutritional awareness among students	Conversations with students, faculty, admin; academic wellness reports		enthusiasm for	Limited existing data or	Build data-driven awareness of emotional eating, comfort food patterns, and diet perception
Enter	Collect food behavior data (CSV) via surveys or institutional datasets	CSV files (food_coded.c sv), forms, or backend intake forms	collect detailed data on food, exercise, emotions, preferences	ingestion into pandas	values, non- uniform	Automate preprocessing with Python & SQL filters; normalize categories (e.g., food types, mood triggers)
	Clean, filter, and preprocess data using pandas + SQL	Jupyter Notebook, SQL Workbench, pandas	trust the data structure and clean variables before visualization	recoded categories, ready for	cleaning, subjective survey inputs	Document assumptions, use value labels, and track cleaning scripts in version control
Engage	Design Tableau dashboards to visualize calorie trends, comfort	Tableau Desktop, Public Gallery, SQL-	quickly grasp complex patterns via interactive dashboards	between	convey qualitative factors	Use text clustering, emotional keywords, or pre-scored behavioral tags to reveal latent patterns

	food,	filtered data		food" and		
	emotion	sources		"sadness")		
	triggers, GPA, exercise frequency					
Exit	platforms like Render via GitHub workflows	GitHub (repo hosting), Render (deployment), custom	solution with wider	centralized dashboard	Network hiccups or	Add CI/CD setup for auto-deploy, README docs for ease of use, and uptime monitoring

3.2 Solution Requirement

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Data Exploration & Filtering	- Filter by Gender, Diet Status, Vitamin Intake, Comfort Food Reason
FR-4	Dashboard Interactivity	 - View dynamic charts (e.g., Calories vs. Exercise) - Drill-down by GPA or Cuisine - Tooltip insights on hover

FR-5	Scenario-Based Storytelling	Nutrition Alert Triggers
		- Predictive Insights for Intervention
		- Persona-based narrative views
	1	Download PDF or Image of Dashboard
	Options	- Submit feedback form or survey

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The dashboard should have an intuitive and clean
		user interface, ensuring ease of navigation and interaction for both students and administrators.
NFR-2	Security	User data must be protected through access control and secure storage practices, especially if personal
		health metrics are included.
NFR-3	Reliability	The solution should consistently deliver accurate and updated insights without crashes or data
		discrepancies.
NFR-4	Performance	Dashboards should load within 2–3 seconds with minimal latency, even when filters and multiple visualizations are applied.
NFR-5	Availability	The dashboard should be accessible 24/7 via campus network or public link with minimal downtime.
NFR-6	Scalability	The system should support growing datasets and user expansion (e.g., across departments or universities) without performance degradation.

3.3 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

College Food Choices

3.4 Technology Stack

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Example: Order processing during pandemics for offline mode

Here's your custom **Technology Stack** for the *College Food Choices* project, presented in a clear and structured table format:

Component	Tool / Technology	Purpose
Data Source Layer	_	Raw dataset containing students' dietary behaviors, preferences, and lifestyle indicators
Data Storage		Centralized storage for cleaned and filtered datasets
Data Processing	• •	Cleaning, filtering, recoding variables, and transforming data for analysis

Data Filtering	SQL Queries	Custom filters based on GPA, calorie intake, gender, diet status, etc.
Statistical Modeling	R Programming (optional)	Advanced statistical analysis (e.g., ANOVA, regression)
Visualization Engine	Tableau Desktop / Tableau Public	Create interactive dashboards to visualize trends and behavioral patterns
Web Framework	Flask	Serve visualizations via a lightweight Python web app
Embedding Tool	Tableau IFrame Integration	Embed dashboards into the Flask application
Version Control	GitHub	Code repository, versioning, and collaboration

Component	Tool / Technology	Purpose
Deployment Platform		Host the Flask + Tableau web application for external access
Frontend Interface	_	Present dashboards in a responsive and clean user interface
	Markdown / Jupyter Notebooks	Track data flow, methodology, and decisions

4. PROJECT DESIGN

4.1 Problem Solution Fit

4.2 Proposed Solution

Project team shall fill the following information in the proposed solution template.

S.No.	Parameter	Description
1.	solved)	Lack of real-time, integrated insights into college students' dietary habits and health outcomes, making it difficult to promote

		informed nutrition and wellness decisions across campuses.
2.	Idea / Solution description	A Tableau-based interactive dashboard that visualizes diverse lifestyle and nutrition data (e.g., calories, comfort food patterns, cooking frequency, GPA, exercise, vitamin intake), enabling stakeholders to monitor student health trends, personalize interventions, and improve dietary strategies.
3.	Novelty / Uniqueness	Combines academic performance, emotional factors, lifestyle behavior, and nutrition in a single visualization platform, with predictive analytics, scenario modeling, and user personas
		derived from real survey data.
4.	Social Impact / Customer Satisfaction	Improves student health awareness and empowers campus wellness teams to act early. Fosters behavioral change and wellbeing
		through accessible, relatable visual stories and real-time insights.
5.	Business Model (Revenue Model)	Can be offered as a subscription model to universities for ongoing analytics and well-being tracking. Additional tiers could include personalized dashboards for individual students or nutritionist integration.
6.	Scalability of the Solution	The model can scale to different campuses and be customized for various educational settings. Additional datasets (e.g., wearable

4.3 Solution Architecture

Solution Architecture

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Sprint	Functional Requiremen t (Epic)		User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-2	As a user, I can load data into the processing environment	1	High	ALL
Sprint-2	Data Preprocessin g	USN-3	As a user, I can handle missing values in the dataset	3	Medium	ALL
Sprint-2	Data Preprocessin g	USN-4	As a user, I can encode or map categorical variables appropriately	2	Medium	ALL
Sprint-3	Making Graphs/Visu alizations	USN-5	As a user, I can build the initial model based on processed data	5	High	ALL
SPRINT - 4	Dashboard & STORIES	USN - 6	Dark ui with eye feasted color palette	6	HIGH	ALL
SPRINT - 5	Report & documentati on	USN - 7	The step by step guide documentation		MEDIU M	ALL

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Completed (as	Sprint Release Date (Actual)
Sprint-1	20	1 Day	21 June 2025	21 June 2025	20	21 June 2025
Sprint-2	20	1 Day	22 June 2025	22 June 2025	20	22 June 2025
Sprint-3	20	1 Day	23 June 2025	23 June 2025	20	23 June 2025
Sprint-4	20	1 Day	24 June 2025	24 June 2025	20	24 June 2025
Sprint-5	20	1 Day	25 June 2025	25 June 2025	20	25 June 2025

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Screenshot / Values
1.	Data Rendered	food_coded.csv with 100+ variables including GPA, exercise, dietary habits, preferences, etc.
2.	Data Preprocessing	- Null value handling for columns like calories_day, weight - Encoded categorical fields (e.g., diet_current, gender, exercise) - Created standardized fields for calorie intake and health ratings
3.	Utilization of Filters	Filters added for: - Gender - Diet Status - Exercise Frequency - Cuisine Preferences - Self-perceived weight status

4.	Calculation fields Used	Calcution fields	
	Carcaration neras osca	Calorie Consumption	
		ComfortFoodReasons_Label	
		FavComfortfoods	
		SportsParticipation	
		MEAL PAY RANGE	
		Weight (bin)	
		Breakfast (copy)	
		COUNT_1	
		Numeric to string conversion	
		Gender(count)	
		Marital Status(count)	
		Parentscook(count)	
		Vitamins(count)	
5.	Dashboard design	Visualizations-23	
		1. GPA Distribution	
		2. Gender Distribution	
		3. Breakfast distribution	
		4. Calorie Consumption per day	
		5. Fav Comfort Foods	
		6. Comfort Food Reasons	
		7. Cooking Frequency per week	
		8. Cuisine Preferences	
		9. Diet Status	
		10. Exercise Frequency	
		11. EmployeeStatus	
		12. HealthyFeeling	
		13. LifeRewardingRating	
		14. Marital Status	
		15. Nutritional Check	
		16. ParentalCookingHabits	
		17. MealPaymentHabits	
		18. WeightSelfPerception	
		19. SportsParticipation	
		20. VitaminIntake	
		21. WeightDistribution	
		_	
		22. Eatingout	
		23. Coffee Consumption	
		Dashboards-4	
		Dietary Habits and Preferences	
		Parental Influence and Eating Out History In Commission	
		3. Lifestyle Overview	
		4. Health and Nutrition	
	Cham: Daniera	Shami Daviera 1	
6	Story Design	Story Design-1	
		A college food choices story board	

7. RESULTS

7.1 Output Screenshots

GENDER DISTRIBUTION

GPA DISTRIBUTION

Comfort_food_reasons

1.Exercise Frequency

2.Healthy Feeling

Life Rewarding

Marital Status

Weight Self Perceptron

Meal Payment Habits

Coffee Consumption

4. Veggieandfruit_Consumption

8. ADVANTAGES & DISADVANTAGES

Advantages

- **Multidimensional Insights**: Combines dietary, emotional, lifestyle, and academic data to offer a holistic understanding of student wellness.
- **Interactive Visualization**: Tableau dashboards provide an engaging way to explore data patterns and trends.
- Web Accessibility: The Flask-based web app makes the dashboards publicly accessible across devices and platforms.

- **Scalable & Modular Design**: The system can easily be extended with predictive models, new data sources, or broader campus integration.
- Actionable Analytics: Empowers stakeholders to make data-backed decisions that improve student health, behavior, and campus policy.
- Educational Value: Supports students, researchers, and administrators in understanding behavior change through evidence.
- **Open Source Workflow**: Python, SQL, and GitHub tools keep the project lightweight, reproducible, and collaborative.
- **Cultural Awareness**: Visuals like comfort food triggers and cuisine preferences allow for culturally inclusive recommendations

Disadvantages

- **Self-Reported Data Limitations**: Survey responses may be biased, inconsistent, or lacking in accuracy.
- **No Real-Time Data Capture**: The system is currently batch-based and doesn't support live data feeds or updates.
- **Requires Technical Expertise**: Setup, customization, and maintenance require familiarity with Tableau, Python, Flask, and SQL.
- **Hosting Constraints**: Deployment on platforms like Render may encounter performance issues under heavier traffic or dataset size.
- **Privacy Concerns**: Health and behavior-related insights must be handled carefully to protect student confidentiality and consent.
- Scalability Considerations: Expanding the solution to multiple institutions may involve reworking data schemas or dashboard logic.

9. CONCLUSION

The *College Food Choices* project offers a powerful, data-driven lens into the eating behaviors and wellness perceptions of college students. By synthesizing food choices, emotional influences, and lifestyle patterns into engaging Tableau dashboards, it transforms raw data into actionable knowledge.

This initiative doesn't just visualize trends—it drives impact. From sparking personalized health conversations to enabling evidence-based policy decisions, the project equips institutions with the tools needed to promote holistic student wellbeing. Through intuitive access and deep analytical capabilities, it bridges the gap between data science and real-world behavioral change.

10. FUTURE SCOPE

Predictive Modeling: Introduce machine learning models to forecast students at risk of poor nutrition or emotional eating patterns.

Real-Time Monitoring: Expand architecture to support continuous data collection through mobile apps or campus wellness platforms.

Personalized Wellness Dashboards: Offer tailored dashboards for students that reflect their personal data and health goals.

Institutional Benchmarking: Compare wellness metrics across different departments or campuses to inform systemic interventions.

Data Privacy Enhancements: Implement anonymization protocols and user consent modules to ensure ethical usage.

Wider Deployment: Extend the platform's reach to other educational institutions, NGOs, or public health bodies for large-scale impact.

11. APPENDIX

Dataset Link

https://www.kaggle.com/datasets/borapajo/food-choices?select=food_coded.csv

GitHub & Project Demo Link

reddeppareddy-27/A-College-Food-Choices-Intiative-CaseStudy