Cover

Buck Converter Design Project

EE365 - Power Electronics

Supervisor: Prof. Drazen Dujic

Assistants: Miodrag Basić, Nikolina Djekanović, Xiaotong Du,

Nicolai Hildebrandt, Milan Utvić

Project Designers - Group 1:

Pierre Tarazi 288217

Teng Kuan Hsieh 320027

☐ Goal of project:

□ Design a Buck converter with the following specifications.

☐ Specification:

- \square 32 V \leq V_{in} \leq 48 V.
- \Box $V_{out} = 24 \text{ V}.$
- \Box f_{switch} = 50 kHz.
- \Box P_{Nominal} = 50 W.
- \Box $I_{L, peak ripple} = 10\% \cdot I_{L}$
- \Box $V_{out, peak ripple} = 1\% \cdot V_{out}$

1. Buck Converter Specifications

I/O Voltage transfer function:

Vout/ Vin = D (range: 0.5 - 0.75)

$$\Delta I_L = \frac{V_{out}}{I_{min}} (1 - D) T_s$$

$$L_{min} = L_{selected} = 1.2 \text{ mH (D = 0.5)}$$

$$C_{min} = \frac{\Delta I_L T_s}{8\Delta V_{out}} = 2.167 \text{ \muF,}$$

$$C_{min} = \frac{1}{8\Delta V_{out}} = 2.16$$

$$C_{selected} = 2.2 \,\mu\text{F}$$

2. Semiconductor Components

$$I_{L,Max} = I_{L} + \frac{\Delta I_{L,pp}}{2}$$
$$= I_{MOSFET,max} = I_{diode,max} = 2.184 \text{ A}$$

- $V_{MOSFET max} = V_{diode max} = 48 \text{ V}$
- MOSFET model 4: ZXMN10A11K
- Diode model 1: B3100-13-F

PLECS verification through simulations

$$V_{in} = 48 \text{ V with } D = 0.75$$

$$V_{in} = 32 \text{ V with } D = 0.5$$

3. Buck Converter Power Losses

Heatsink selection for diode and MOSFET

1. Select R_{in} , C_{in} , R_{out} , C_{out} Power dissipations: P_{ESR} , $P_{R,in}$, $P_{R,out}$

Summary & Conclusion

End

Cover

Select R_{shunt}, R_f, C_f
 Power dissipation: P_{shunt}

Current Measurement Filtering

PCB schematic

Cover

PCB layout overview with polygon pourings shelved End

Cover

4. Calculation of air gap length, fringing flux factor & adjustment of $N_{\rm selected}$ with $F_{\rm fringe}$

Fringing flux induced copper losses

$$I_g = (\mu_0 \cdot N^2_{\text{selected}} \cdot A_C) / L - MPL / \mu_r$$
$$= 0.75 \text{ mm}$$

$$I_{g.estimate} = 0.95 \text{ mm}$$

$$N_{lavers} = I_{q} / thickness \cdot \frac{1}{2} = 5.8$$

thus count 6 layers.

$$N_{\text{new selected}} = \sqrt{\langle I_g + \frac{MPL}{\mu_r} \rangle \frac{L/F_{\text{finge}}}{\mu_0 \cdot A_C}}$$

$$= 68.92$$

5. Verification of the design constraints

$$R_L = N_{\text{new}} \cdot MLT \cdot \frac{R}{\text{length}} = 83 \text{ m}\Omega, \text{ while } R_{L,\text{max}} = 220 \text{ m}\Omega$$

$$P_{Cu,dc} = 0.38 \text{ W} = 0.76\% P_{out}$$

$$B_{ac} = 14.4 \text{ mT}$$

$$B_{pk} = 302.5 \text{ mT}$$

$$K_u = 0.43$$
 with N_{new}

Saturation flux density of ferrite N27

Compute the overall efficiency of your Buck converter for the nominal output power.

$$\eta_{\text{Buck,best}} = 94.4\%$$
with $V_{\text{in}} = 48 \text{ V}$, $P_{\text{loss,R1,min}} = 1.8 \text{ W}$

Cover

Summary table for the Buck Converter Design

Electrical specification

Nominal inductance	L _{nom}	1.2 mH	
Effective current	l _{L,rms}	2.14 A	
Current ripple	$\Delta I_{L,pk-pk}$	2.08 A	
Ripple frequency	f _{sw}	50 kHz	

Core specification

Core shape and size		ETD39/20/13	
Co il former		B66364B1016T001	
Core material		N27	
Peak flux density	\mathcal{B}_{pk}	302.5 mT	
Air gap length	I _g	0.75 mm	
Number of Kapton tape layers		6	

Winding specification

wire diameter	Ø	1.2 mm
number of turns	N	68

Losses and temperature rise

Core losses	P _{core}	0.069 W	
Winding losses	P _{Cu,dc}	0.38 W	
Total inductor losses	P _{L,loss} /P _{out}	0.9 %	
Temperature rise	ΔΤ	7.2 K	

End

☐ Challe	enges/	Prob	lems
----------	--------	------	------

- Understanding how to find the good components on DigiKey
- Understanding the relationship between the to ICs in Report 2 and finding the needed info in the datasheets and Application Notes.

Learnings

- Extract needed information from application notes and data sheets.
- How to select a component from DigiKey.
- How is Buck converter constituted from A to Z.
- Feedback for the design project
 - Include more theory related to the project in the lectures.

End

Thank you for your attention!