Шпора по околобесполезной херне

приницпы фон Неймана:

- 1. принцип двоичного кодирования
- 2. принцип адресности Все ячейки ОП имеют фиксированный размер, который называется машинным словом, также все ячейки пронумерованы, номер ячейки является её адресом
- 3. принцип программного управления
- 4. принцип последовательного исполнения
- 5. принцип однородности

cisc - complex instruction set computer

risc - reduced instruction set computer

УМ СОСТОИТ ИЗ: регистр для аргументов, регистр сумматор, регистр флагов, счётчика адреса, ОЗУ, контроллер памяти, регистр команд, контроллер ввод/вывода, несколько АЛУ.

цикл работы УМ: 0 - инциализация

1	2		3		4		5	5		6		
read command de		deco	de	read args из ОП		execute	execute in summ		write in OΠ		inc счётчик	
соглашение		1	параметры	реги-	параметры стек		чис	чистит стек		КМИ		
			стры									
stdcall		1	нет		справо-налево		выз	вызываемый		_<имя>[@N]		
cdecl		1	нет	справо-налево		лево	выз	вызывающий		_ <rmn>_</rmn>		
fastcall			ecx,edx		справо-налево		выз	вызываемый		[N@]<		
pascal		1	нет	сле		слева-направо вн		вызываемый		<ии	<имя> капсом	
register*		- ($_{ m eax,edx,ecx}$	слева-нап		раво	во вызываю		ощий (нет		()	
7	6		5	4	3		2		1		0	
extrn	n операнд в сте-		определён	регистр	перемен	цаемый	констн	нстнанта область да:		ных	метка	проце-
	ке				адрес						дура	

редко используемое: lock, clwb (cache line write back), clflush, sfence (store), lfence (load), mfence (s & l), prefetch[012], movntxx, int, iret.

1	2	3	4	5	6
Выбор команды	Декодирование	вычисление ад-	выбор операн-	выполнение	запись
		ресов	дов		

строковые операции: cmps[], movs[], scas[] (edi), lods[] (esi), stos[] (edi)

cld	DF:=0 строковые операции на увеличение адресов
std	DF:=1 строковые операции на уменьшение адресов
clc	$ ext{CF}{:=}0$
stc	$ ext{CF}:=1$
cmc	$\operatorname{CF}:=\operatorname{not}(\operatorname{CF})$
cli	IF:=0 Interrupt Flag замаскировать прерывания (кроме №2) прерывания будут игнорироваться
sti	IF:=1 Interrupt Flag вернуть обычное поведение с прерываниями
lahf	загрузить в ${f ah}$ арифметические флаги ${ m AH}:={ m EFLAGS}({ m SF,ZF,0,AF,0,PF,1,CF})$
sahf	загрузить из ${f ah}$ арифметические флаги ${ m EFLAGS}({ m SF,ZF,0,AF,0,PF,1,CF}):={ m AH}$
pushfd	загрузить в стек 32 рязрядный EFLAGS
popfd	забрать 32 разрядный EFLAGS

стандарт	размер	бит знака	порядок	мантисса	bias
half precision	16	1	5	10	15
single precision	32	1	8	23	127
double precision	64	1	11	52	2047
quad precision	128	1	15	112	32767
extended precision	80	1	15	64	32767