Тема: Преобразование Лапласа

 1^0 . Определение оригинала, порядка роста, изображения. Определение преобразования Лапласа. 2^0 . Свойства преобразования Лапласа (линейность, теорема подобия). Примеры. Теорема смещения. Примеры. 3^0 . Формула обращения преобразования Лапласа. 4^0 . Теоремы о дифференцировании и интегрировании оригиналов и изображений. 5^0 . Применение преобразование Лапласа к решению задачи Коши для обыкновенного дифференциального уравнения с постоянными коэффициентами.

 1^0 . Пусть есть локально суммируемая функция $f:[0,+\infty)\to\mathbb{C}$ аргумента $t\geq 0$. Тогда для любого конечного отрезка [b,c], вложенного в положительную полуось, справедливо неравенство

$$\int\limits_{oldsymbol{b}}^{oldsymbol{c}}\leftert f(t)
ightert dt<+\infty .$$

Среди всех таких функций выделяется специальный подкласс, элементы которого называются оригиналами.

Определение. Функция f(t) называется оригиналом, если существует такое вещественное число a, что

$$\int\limits_{0}^{+\infty}|f(t)|e^{-at}dt<+\infty,\quad a\in\mathbb{R}.$$
 (O)

На множестве всевозможных функций — оригиналов устанавливается определенная градация. Точнее, каждому оригиналу приписывается некоторая его вещественная характеристика, называемая порядком роста этого оригинала.

Определение. Порядком роста функции f(t) называется точная нижняя граница множества всех вещественных чисел a, обладающих свойством (o):

$$a(f)=\inf\Big\{a\in\mathbb{R}\;\Big|\;\int\limits_0^{+\infty}|f(t)|e^{-at}dt<+\infty\Big\}.$$

Пример. Функция Хевисайда H(t), определяемая равенством

$$H(t) = egin{cases} 0 & ext{при } t < 0, \ 1 & ext{при } t \geq 0, \end{cases}$$

является оригиналом с порядком роста нуль:

$$\forall a > 0 \qquad \Rightarrow \int\limits_0^{+\infty} H(t)e^{-at}dt = \int\limits_0^{+\infty} e^{-at}dt = \frac{1}{a}.$$

При этом

$$\int\limits_0^{+\infty} H(t)\,dt = \int\limits_0^{+\infty} dt = +\infty.$$

По заданному оригиналу f(t) определим новую функцию F=F(
ho) комплексной переменной $ho= au+i\sigma$, положив

$$F(
ho) = \int\limits_0^{+\infty} f(t)e^{-
ho t}dt. \hspace{1cm} (Im)$$

Этот интеграл сходится при условии, что вещественная часть комплексной переменной $ho = \tau + i\sigma$ строго больше порядка роста функции f(t), то есть при $au = \mathrm{Re}\, \rho > a(f)$. В этом случае имеем

$$\left| \int_{0}^{+\infty} f(t)e^{-\rho t} dt \right| \leq \int_{0}^{+\infty} |f(t)||e^{-\rho t}| dt.$$

Учитывая, что $|e^{-\rho t}|=e^{-\tau t}$, получаем далее для некоторого положительного ε с тем УСЛОВИЕМ, ЧТО 0<arepsilon< au-a(f):

$$\int\limits_0^{+\infty}|f(t)|\cdot|e^{-\rho t}|dt=\int\limits_0^{+\infty}|f(t)|e^{-\tau t}dt=$$

$$=\int\limits_{0}^{+\infty}|f(t)|\cdot e^{-(a(f)+\varepsilon)t}\cdot e^{-(\tau-a(f)-\varepsilon)t}dt\leq$$

$$\leq \int_{0}^{+\infty} |f(t)|e^{-(a(f)+\varepsilon)t}dt < +\infty.$$

Последнее неравенство справедливо в силу определения порядка роста a(f) и условия, что $\varepsilon>0$.

Таким образом, область определения соответствующей заданному оригиналу функции $F(\rho)$ — это та часть комплексной плоскости \mathbb{C} , в которой $\tau = \operatorname{Re} \rho > a(f)$, то есть полуплоскость.

Определение. Функцию $F(\rho)$, $\mathrm{Re}\, \rho > a(f)$, определяемую по заданному оригиналу f(t) формулой

$$F(
ho) = \int\limits_0^{+\infty} f(t) e^{-
ho t} dt,$$

называют изображением оригинала f(t).

Таким образом, установлено соответствие

оригинал $f \mapsto$ изображение F.

Для того чтобы обозначить эту взаимосвязь между f(t) и $F(\rho)$ часто используются специальные обозначения, например, такое:

$$f(t)
ightharpoons F(
ho)$$
.

Определение. Преобразование, сопоставляющее каждому оригиналу его изображение, называют **преобразованием Лапласа**. Обычно преобразование Лапласа обозначают как \mathcal{L} , так что соотношение $f(t) \not = F(\rho)$ эквивалентно равенству $F(\rho) = \mathcal{L}(f(t))$.

Пример. Изображение функции Хевисайда задается равенством

$$F(
ho) = \int\limits_0^{+\infty} e^{-
ho t} dt = rac{1}{
ho}.$$

Последнее равенство справедливо при любом комплексном ρ , лежащем в правой полуплоскости, то есть при $\operatorname{Re} \rho > 0$. В этом случае в силу аналитичности функции $e^{-\rho t}$ интеграл вычисляется по формуле Лейбница как приращение первообразной:

$$\int\limits_{0}^{+\infty}e^{-
ho t}dt=-rac{1}{
ho}e^{-
ho t}\Big|_{t=0}^{t=+\infty}.$$

Учитывая, что ${
m Re}\,
ho > 0$, имеем предельное равенство

$$e^{-
ho t}
ightarrow 0$$
 при $t
ightarrow + \infty$.

Таким образом, получаем искомое выражение для преобразования Лапласа от функции Хевисайда

$$H(t) \stackrel{.}{=} rac{1}{
ho} \quad \Leftrightarrow \quad rac{1}{
ho} = \mathcal{L}(H(t)).$$

Отметим, что не всякая гладкая функция является оригиналом, то есть не для всякой гладкой функции определено ее преобразование Лапласа.

Например, функция $f(t) = e^{t^2}$ бесконечно диф-ференцируема на всей числовой прямой, но оригиналом не является.

Функция $f(t) = \frac{1}{t}$ также не имеет преобразования Лапласа: для любого вещественного

числа a несобственный интеграл $\int\limits_0^{+\infty} \frac{1}{t}e^{-at}\,dt$ расходится. При этом удобно полагать, что порядок роста функции $f(t)=\frac{1}{t}$ равен $+\infty$.

Функция $f(t)=\frac{1}{\sqrt{t}}$, хотя и стремится к бесконечности при $t\to +0$, но преобразование Лапласа имеет, то есть является оригиналом. Порядок роста этой функции равен нулю: a(f)=0.

Отметим, что порядок роста функции может равняться $-\infty$. В качестве примера достаточно рассмотреть оригинал $f(t) = e^{-t^2}$. Лемма (признак оригинала). Пусть функция f(t) определена и непрерывна при $t\geqslant 0$ и при этом существуют такие постоянные M>0 и k > 0, 4TO

$$|f(t)| \leq Me^{oldsymbol{k}t}$$
 при $orall \, t \geq 0.$

Тогда функция f(t) — это оригинал.

Применяя эту лемму, заключаем, что оригиналами являются функции $e^{\alpha t}$, где $\alpha \in \mathbb{C}$, и степенная функция t^n . Соответствующие преобразования Лапласа вычисляются по формулам

$$e^{lpha t}
ightharpoonup rac{1}{
ho - lpha}, \quad t^n
ightharpoonup rac{n!}{
ho^{n+1}}.$$

Теорема (об аналитичности изображения). Пусть функция f(t) — это оригинал с пока-

зателем роста a(f). Тогда несобственный интеграл

$$F(
ho) = \int\limits_0^{+\infty} f(t) e^{-
ho t} dt, \quad
ho = au + i \sigma,$$

абсолютно сходится при любом ρ с условием $\mathrm{Re}\, \rho > a(f)$. При этом функция $F(\rho)$ аналитична в полуплоскости $\tau > a(f)$. Если $\tau = \mathrm{Re}\, \rho$ стремится к $+\infty$, то $F(\rho) \to 0$. **Замечание.** Если $F(\rho)$ — функция, аналитическая в окрестности бесконечно удаленной точки, то $F(\rho) \to 0$ при условии, что ρ стремится к ∞ по любому направлению, а не только при $\operatorname{Re} \rho \to +\infty$.

Пример. Пусть функция $f(t) = e^{\alpha t}$, где $\alpha \in \mathbb{C}$. Тогда ее преобразование Лапласа задается равенством

$$F(
ho) = rac{1}{
ho - lpha}.$$

Эта функция $F(\rho)$ является аналитической во всей комплексной плоскости кроме точки $\rho=\alpha$, в которой $F(\rho)$ имеет полюс первого порядка. По теореме об аналитичности $F(\rho)$ аналитична при $\operatorname{Re}\rho>\operatorname{Re}\alpha$ и при этом $F(\rho)\to 0$ при $\rho\to\infty$.

 2^0 . Укажем некоторые свойства преобразования Лапласа.

1) Преобразование Лапласа линейно, то есть

$$\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{L}\{f(t)\} + \beta \mathcal{L}\{g(t)\}$$

для любых комплексных lpha, eta и любых оригиналов f(t) и g(t).

Это свойство сразу следует из линейности операции интегрирования. Следует только

заметить, что если оригиналы f(t) и g(t) имеют разные порядки роста, то соответствующие им интегралы Лапласа сходятся в **раз**ных полуплоскостях, то есть при

$$\operatorname{Re}
ho > a(f)$$
 V $\operatorname{Re}
ho > a(g)$.

В этом случае интеграл Лапласа для их суммы заведомо сходится при

$$\operatorname{Re} \rho > \max \{a(f), a(g)\}.$$

В качестве примера найдем преобразование Лапласа от функции $f(t)=\sin\omega t$, где $\omega\in\mathbb{C}$. По формуле Эйлера имеем

$$\sin \omega t = \frac{e^{i\omega t} - e^{-i\omega t}}{2i}.$$

Используя линейность преобразования Лапласа, получаем далее

$$f(t) \stackrel{.}{=} rac{1}{2i} \Bigl\{ rac{1}{
ho - i \omega} - rac{1}{
ho + i \omega} \Bigr\} =$$

$$=rac{1}{2i}rac{2i\omega}{
ho^2+\omega^2}=rac{\omega}{
ho^2+\omega^2}=F(
ho).$$

Теорема (подобия). Пусть f(t) — оригинал, f(t)
ightharpoonup F(
ho) и $\omega > 0$. Тогда

$$f(\omega t)
ightharpoonup rac{1}{\omega} F\Big(rac{
ho}{\omega}\Big).$$

Доказательство. Проводится с помощью замены переменной под интегралом, определяющим преобразование Лапласа.

Рассмотрим два примера применения теоремы подобия. Пусть $f(t) = \cos t$. Тогда для вещественных значений ho имеем

$$F(\rho) = \int_{0}^{+\infty} e^{-\rho t} \cos t \, dt = \operatorname{Re} \left\{ \int_{0}^{+\infty} e^{it - \rho t} dt \right\} =$$

$$= \operatorname{Re} \left\{ \frac{1}{i - \rho} e^{(i - \rho)t} \Big|_{0}^{+\infty} \right\} = \operatorname{Re} \left\{ \frac{1}{\rho - i} \right\} =$$

$$= \operatorname{Re} \left\{ \frac{\rho + i}{\rho^2 + 1} \right\} = \frac{\rho}{\rho^2 + 1}.$$

Полученное равенство допускает естественное продолжение в полуплоскость $\operatorname{Re}
ho > 0$.

В силу теоремы подобия справедливы равенства

$$\cos \omega t \stackrel{.}{=} \frac{1}{\omega} \cdot \frac{\frac{\rho}{\omega}}{1 + (\frac{\rho}{\omega})^2} = \frac{\rho}{\rho^2 + \omega^2}.$$

Аналогично:

$$\sin t \stackrel{.}{=} \frac{1}{1+\rho^2} \quad \Rightarrow \quad \sin \omega t \stackrel{.}{=} \frac{\omega}{\rho^2+\omega^2}.$$

Теорема (смещения). Пусть f(t) — это оригинал, $f(t) \neq F(\rho)$, и $\alpha \in \mathbb{C}$. Тогда произведение $e^{-\alpha t}f(t)$ — это также оригинал и при этом имеет место соответствие

$$e^{-\alpha t}f(t) = F(\rho + \alpha).$$

Применяя теорему смещения, получаем следующие три соответствия.

$$e^{\alpha t}\cos\omega t \stackrel{
ightharpoonup}{=} rac{
ho-lpha}{(
ho-lpha)^2+\omega^2};$$

$$e^{lpha t} \sin \omega t
ightharpoonup rac{\omega}{(
ho - lpha)^2 + \omega^2}; \hspace{0.5cm} t^n e^{lpha t}
ightharpoonup rac{n!}{(
ho - lpha)^{n+1}}.$$

Теорема (запаздывания). Пусть $f(t) = \mathfrak{F}(\rho)$, и a > 0. Тогда функция

$$f_{oldsymbol{a}}(t) = egin{cases} 0 & ext{при } t < a \ f(t-a) & ext{при } t \geq a \end{cases}$$

также является оригиналом, преобразование Лапласа которого задается соотношением

$$f_a(t) = e^{-\rho a} F(\rho).$$

Рассмотрим два примера применения теоремы запаздывания. Сдвиг функции Хевисайда задается равенством

$$m{H}(t-a) = egin{cases} 1 & ext{при } t \geq a; \ 0 & ext{при } t < a. \end{cases}$$

Следовательно, имеет место соответствие

$$H(t-a) = H_a(t) \stackrel{.}{=} \frac{1}{\rho} e^{-\rho a}.$$

Определим **единичный импульс** следующим образом:

$$arphi(t) = egin{cases} 1 & ext{при } 0 \leq t < a; \ 0 & ext{при } t < 0 \ ext{И} \ t \geq a, \end{cases}$$

где a>0. Заметим, что $arphi(t)=H(t)-H_{a}(t)$ и по теореме запаздывания справедливы равенства

$$\varphi(t) \stackrel{\cdot}{=} \frac{1}{\rho} - \frac{1}{\rho}e^{-\rho a} = \frac{1 - e^{-\rho a}}{\rho}.$$

 3^0 . Пусть функция u(t) определена и **непре-**рывно дифференцируема при $t \geq 0$, причем

$$|u(t)| \le Me^{kt}, \quad |u'(t)| \le Me^{kt} \quad \forall t \ge 0.$$

Пусть кроме того

$$|u'(t_2) - u'(t_1)| \le N(T)|t_2 - t_1|^{\frac{1}{2}}, \quad \forall t_1, t_2 \in [0, 2T],$$

где T>0 — произвольное конечное число. Тогда функции u(t) и u'(t) — это оригиналы.

Введем обозначение

$$\widetilde{u}(
ho)=\mathcal{L}\{u(t)\}.$$

Тогда для всех $t \in [t_0, T]$, где $t_0 > 0$, имеет место следующее неравенство:

$$\left| u(t) - \frac{1}{2\pi i} \int_{a-bi}^{a+bi} \widetilde{u}(\rho) e^{
ho t} d\rho \right| \leq \frac{M_1}{b}. \qquad (\mathcal{L}_{\leq}^{-1})$$

Здесь b>0 и a>k, где k — показатель из условий на функцию u(t) и ее производную

u'(t). Постоянная M_1 в правой части оценки $(\mathcal{L}_{<}^{-1})$ не зависит от величины b.

Устремляя b к $+\infty$, получаем в пределе формулу обращения преобразования Лапласа:

$$u(t) = rac{1}{2\pi i} \int\limits_{a-i\infty}^{a+i\infty} \widetilde{u}(
ho) e^{
ho t} d
ho, \quad a>k. \qquad (\mathcal{L}^{-1})$$

По этой формуле оригинал восстановливается по известному своему изображению. 4^0 . Установим связь производной оригинала с соответствующим ему преобразованием Лапласа.

Теорема (о производной оригинала). Пусть f(t) — это функция, непрерывная при $t \ge 0$ и дифференцируемая при $t \ge 0$, причем ее производная f'(t) — это оригинал. Тогда сама f(t) также является оригиналом и при этом

$$\mathcal{L}\{f(t)\} = \frac{1}{\rho}f(0) + \frac{1}{\rho}\mathcal{L}\{f'(t)\}.$$

Последнее равенство получается обычным интегрированием по частям:

$$\int_{0}^{+\infty} f'(t)e^{-\rho t}dt = -f(0) + \rho \int_{0}^{+\infty} f(t)e^{-\rho t}dt.$$

Следствие. Если функция u(t) имеет n непрерывных производных, причем $u^{(n)}(t)$ является оригиналом, то u(t) — также оригинал. Если при этом $u(t) \neq v(\rho)$, то

$$u^{(n)}(t) \stackrel{.}{=} \rho^n v(\rho) - \rho^{n-1} u(0) - \rho^{n-2} u'(0) - \dots - u^{(n-1)}(0).$$

На использовании этой формулы основаны приложения преобразования Лапласа к решению задач для линейных дифференциальных уравнений и систем.

Пример. Используем преобразование Лапласа для решения следующей задачи Коши.

$$x''' - 2x'' + x' = 4, \quad x'(0) = 1, \ x''(0) = 2, \ x''(0) = -2.$$

Решение. Применим преобразование Лапласа поочередно к обеим частям дифференциального уравнения x'''-2x''+x'=4. Проведем необходимые выкладки. Имеем

$$\int\limits_0^{+\infty} x'(t)e^{-\lambda t}dt = -x(0) + \lambda \widetilde{x}(\lambda) = -1 + \lambda \widetilde{x}(\lambda);$$

$$\int_{0}^{+\infty} x''(t)e^{-\lambda t}dt = -x'(0) + \lambda \int_{0}^{+\infty} x'(t)e^{-\lambda t}dt =$$

$$=-2+\lambda(\lambda\widetilde{x}(\lambda)-1);$$

$$\int\limits_{0}^{+\infty}x^{\prime\prime\prime}(t)e^{-\lambda t}dt=-x^{\prime\prime}(0)+\lambda\int\limits_{0}^{+\infty}x^{\prime\prime}(t)e^{-\lambda t}dt=$$

$$=2+\lambda^2(\lambda\widetilde{x}(\lambda)-1)-2\lambda=\lambda^3\widetilde{x}(\lambda)-\lambda^2-2\lambda+2.$$

Следовательно,

$$\mathcal{L}\{x^{\prime\prime\prime\prime}-2x^{\prime\prime}+x^{\prime}\}=\lambda^{3}\widetilde{x}(\lambda)-\lambda^{2}-2\lambda+2-2\lambda^{2}\widetilde{x}(\lambda)+$$

$$+2\lambda+4+\lambda\widetilde{x}(\lambda)-1=\lambda(\lambda-1)^2\widetilde{x}(\lambda)-\lambda^2+5.$$

Вычисляя преобразование Лапласа от правой части дифференциального уравнения, получаем

$$\int\limits_0^{+\infty}4e^{-\lambda t}dt=-rac{4}{\lambda}e^{-\lambda t}\Big|_{t=0}^{+\infty}=rac{4}{\lambda}$$
 при $\mathrm{Re}\,\lambda>0.$

Таким образом, имеем при ${
m Re}\,\lambda>0$:

$$\widetilde{x}(\lambda) = \frac{1}{\lambda(\lambda-1)^2} \left(\frac{4}{\lambda} + \lambda^2 - 5\right) = \frac{\lambda^3 - 5\lambda + 4}{\lambda^2(\lambda-1)^2} =$$

$$=rac{1}{\lambda^2(\lambda-1)^2}(\lambda-1)(\lambda^2+\lambda-4).$$

Следовательно,

$$\widetilde{x}(\lambda) = \frac{\lambda^2 + \lambda - 4}{\lambda^2(\lambda - 1)}.$$

Применяя формулу обращения, получаем

$$x(t) = rac{1}{2\pi i} \int\limits_{a-i\infty}^{a+i\infty} rac{\lambda^2 + \lambda - 4}{\lambda^2 (\lambda - 1)} e^{\lambda t} \, d\lambda, \quad a > 1,$$

ИЛИ

$$x(t) = \Big(rac{d^2}{dt^2} + rac{d}{dt} - 4\Big) \Big[rac{1}{2\pi i}\int\limits_{a-i\infty}^{a+i\infty} rac{1}{\lambda^2(\lambda-1)} e^{\lambda t}\,d\lambda\Big].$$

Остается вычислить интеграл

$$rac{1}{2\pi i}\int\limits_{a-i\infty}^{a+i\infty}rac{e^{\lambda t}}{\lambda^2(\lambda-1)}d\lambda, \quad a>1.$$

Согласно определению имеем

$$rac{1}{2\pi i}\int\limits_{a-i\infty}^{a+i\infty}rac{e^{\lambda t}}{\lambda^2(\lambda-1)}\,d\lambda=\lim_{R
ightarrow+\infty}rac{1}{2\pi i}\int\limits_{a-iR}^{a+iR}rac{e^{\lambda t}}{\lambda^2(\lambda-1)}\,d\lambda.$$

Заметим, что в комплексной плоскости подынтегральная функция $\frac{e^{\lambda t}}{\lambda^2(\lambda-1)}$ имеет в точности две изолированные особые точки: $\lambda_0=1$ (простой полюс) и $\lambda_0=0$ (полюс второго порядка).

По теореме о вычетах при достаточно большом R>a справедливо равенство:

$$a{+iR \over 2\pi i} \int\limits_{a-iR}^{a+iR} {e^{\lambda t} \over \lambda^2 (\lambda-1)} d\lambda =$$

$$= \operatorname{Res}_{\lambda=0} \frac{e^{\lambda t}}{\lambda^2(\lambda-1)} + \operatorname{Res}_{\lambda=1} \frac{e^{\lambda t}}{\lambda^2(\lambda-1)} -$$

$$-\int\limits_{\substack{\lambda-a|=R\ \operatorname{Re}\lambda< a}}rac{e^{\lambda t}}{\lambda^2(\lambda-1)}d\lambda. \hspace{1cm} (I_R)$$

Рассмотрим третье слагаемое в правой части последнего равенства, представляющее собой интеграл по полуокружности с центром в точке a и радиуса R.

Параметрически эту полуокружность можно задать следующим образом:

$$\lambda = a + Re^{oldsymbol{i}arphi}, \quad rac{\pi}{2} \leqslant arphi \leqslant rac{3\pi}{2}.$$

В точках этой полуокружности оценим по модулю подынтегральную функцию. При условии, что $\operatorname{Re} \lambda < a$ справедливы следующие оценки:

$$|e^{\lambda t}| = e^{(\operatorname{Re}\lambda)t} \leqslant e^{at},$$

$$\left| \frac{e^{\lambda t}}{\lambda^2 (\lambda - 1)} \right| \le C \frac{e^{at}}{|\lambda|^3}.$$

Если к тому же $\lambda = a + Re^{iarphi}$, R > a, то

$$|\lambda|^2 = a^2 + R^2 + 2aR\cos\varphi \geqslant (R - a)^2.$$

Таким образом, в точках полуокружности подынтегральная функция мажорируется следующим образом:

$$\left|rac{e^{oldsymbol{\lambda}t}}{oldsymbol{\lambda}^2(oldsymbol{\lambda}-1)}
ight| \leq Crac{e^{at}}{(R-a)^3}, \hspace{0.5cm} R>a.$$

При этом $d\lambda=iRe^{i\varphi}d\varphi$ и для любого достаточно большого радиуса R>a справедливы

соотношения

$$\left|\int\limits_{\substack{\lambda-a|=R\ \operatorname{Re}\lambda< a}} \frac{e^{\lambda t}}{\lambda^2(\lambda-1)} d\lambda
ight| \leqslant rac{CRe^{at}}{(R-a)^3} \int\limits_{rac{\pi}{2}}^{rac{3\pi}{2}} darphi = Crac{\pi Re^{at}}{(R-a)^3}.$$

Переходя здесь к пределу при $R \to +\infty$, видим, что рассматриваемый интеграл по полуокружности стремится к нулю. Учитывая это и перейдя к пределу при $R \to +\infty$ в уста-

новленном выше равенстве (I_R) , получаем

$$rac{1}{2\pi i}\int\limits_{a-i\infty}^{a+i\infty}rac{e^{\lambda t}}{\lambda^2(\lambda-1)}d\lambda=$$

$$= \operatorname{Res}_{\lambda=0} \frac{e^{\lambda t}}{\lambda^2(\lambda-1)} + \operatorname{Res}_{\lambda=1} \frac{e^{\lambda t}}{\lambda^2(\lambda-1)}.$$

Сосчитаем вычеты в правой части. Имеем

$$\operatorname{Res}_{\lambda=1} \frac{e^{\lambda t}}{\lambda^{2}(\lambda-1)} = \lim_{\lambda \to 1} \frac{1}{\lambda^{2}} e^{\lambda t} = e^{t},$$

$$\operatorname{Res}_{\lambda=0} \frac{e^{\lambda t}}{\lambda^{2}(\lambda-1)} = \lim_{\lambda \to 0} \frac{d}{d\lambda} \left[\frac{e^{\lambda t}}{\lambda-1}\right] = ?.$$

Вычисляя производную, получаем

$$\frac{d}{d\lambda} \left[\frac{e^{\lambda t}}{\lambda - 1} \right] = \frac{te^{\lambda t}}{\lambda - 1} - e^{\lambda t} \frac{1}{(\lambda - 1)^2}.$$

Если здесь $\lambda \to 0$, то в пределе получается функция -t-1. Таким образом, искомый интеграл задается равенством

$$rac{1}{2\pi i}\int\limits_{a-i\infty}^{a+i\infty}rac{e^{\lambda t}}{\lambda^2(\lambda-1)}d\lambda=e^t-t-1.$$

Возвращаясь к решению x=x(t) исходной задачи Коши, получаем окончательную формулу

$$x(t) = \left(\frac{d^2}{dt^2} + \frac{d}{dt} - 4\right) \left[e^t - t - 1\right] = 4t + 3 - 2e^t.$$

Это и есть искомый ответ.