软工23C1《数据结构与算法》- 图论和排序

开始时间 2024/05/28 15:26:00 结束时间 2024/07/08 17:26:00 答题时长 59160分针	ф
判断题	26 分
1-1 对 N 个记录进行快速排序,在最坏的情况下,其时间复杂度是 $O(NlogN)$ 。 \bigcirc T \bigcirc F $ $ 参考答案	1分
答案 F	
1-2 如果无向图G必须进行两次广度优先搜索才能访问其所有顶点,则G一定有2个连通分量。	1分
参考答案	
答案 T	
1-3 Prim 算法是通过每步添加一条边及其相连的顶点到一棵树,从而逐步生成最小生成树。	1分
● T│ 参考答案	
答案 T	
1-4 无向图中的一条边,在其邻接表存储结构中对应两个弧结点。	1分
● T│ 参考答案	
答案 T	
1-5 最小生成树是指边数最少的生成树。	1分
○ T	
答案 F	
1-6 若图G为连通图,则G必有唯一的一棵最小生成树。	1分
○ T	

	答案	F		
1-7	若图G有环,	则G不存在拓扑排序序列。		1分
	● T		○ F	
	参考答案			
	答案	Т		
1-8	拓扑序一定是	是唯一的。		1分
	ОТ		● F	
	参考答案			
	答案	F		
1-9	有向图的邻排	 妾矩阵一定是不对称的		1分
	O T		● F	
	〉			
	答案	F		
1_10	是小生成物	的Kruskal算法是一个贪心法。		1分
1 10		IIIN USKAI并从定一一页心体。	OF	173
	参考答案			
	答案	Т		
1 11	医 协深度从		ᄼᅉᄮᄮᄓᇊᆉᇄᄓᅉᅶᅩᄝᆇᇙᇄᇚᇊᆈᆑᆒ	1/\
1-11		尤	广度优先遍历非递归算法通常采用队列实现。	1分
	▼ T 参考答案		○ F	
	答案	Т		
1 10	V l . l 答	ᆉᄝᅝᅛᆕᆘᅚᄳᅟᄼᇄᇽᄫᄓᅕᄳ		1/\
1-12		太定通过母步添加一余边及其相连的.	顶点到一棵树,从而逐步生成最小生成树。	1分
	□ T 参考答案		● F	
	答案	F		
	古采	1		
1-13	一个无向图	G,若某顶点v到其它每个顶点都有至	E少一条路径,则图G只有1个连通分量。	1分
			\circ F	
	参考答案			
	答案	T		

1-14	如果无向图G	必须进行两次广度优先搜索才能访问其所有顶点,则G中一定有回路。	1分
	ОТ	● F	
	参考答案		
	答案	F	
1-15		c向图中,若b到a的最短路径距离是12,且c到b之间存在一条权为2的边,则c到 s距离一定不小于10。	1分
		○ F	
	参考答案		
	答案	Т	
1-16	希尔排序是稳	急定的算法。	1分
	O T	◎ F	
	参考答案		
	答案	F	
4 47			4.0
		型数一定大于顶点个数减1。	1分
	O T	● F	
	参考答案		
	答案	F	
1-18	用邻接表法有	存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。 	1分
	ОТ	© F	
	参考答案		
	答案	F	
1 10			1/\
		法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。 	1分
	T	○ F	
	参考答案		
	答案	Т	
1-20	在一个有向图	图中,所有顶点的入度与出度之和等于所有边之和的2倍。	1分
		○ F	
	参考答案		
	答案	Т	

1-21	对 N 个记录进	行简单选择排序,	比较次数和移动	协次数分别为($O(N^2)$ 和 $O(N^2)$	N).	1分
				○ F			
	参考答案						
	答案	Т					
1-22	快速排序是稳	完的管法					1分
		ACII)#1/A 0		⊚ F			173
) 参考答案						
	答案	F					
1-23	求解带有负边 用。	(权值为负数的边)的图的单源最	景短路径问题,	迪杰斯特拉	(Dijkstra)算法不	适 1分
				○ F			
	参考答案						
	答案	Т					
1-24	无向连通图的	最小生成树是唯一	的。				1分
	ОТ			<pre> F</pre>			
	参考答案						
	答案	F					
1-25	若连诵图 上各	边的权值均不相同	则该图的最小	\生成树是唯-			1分
			, AIMELLIAX.I		7.0		.,,,
	》 参考答案						
	答案	Т					
1-26	有向图G存在技	拓扑排序序列,则(G必定无环且连	通。			1分
	ОТ			⊚ F			
	参考答案						
	答案	F					
	_						
单选题	<u>坝</u>						84 分
2-1 7	生用邻接表表示	R有 N 个结点 E 条证	也的图时,深度	优先遍历算法	的时间复杂度	为:	2分
	A. $O(N)$						
	B. $O(N+1)$	E)					
(${\sf C.}O(N^2)$						

答案 B	
下面给出的有向图中,有个强连通分量。	2分
2 3 4	
○ A. 1 ({0,1,2,3,4})	
○ B. 1 ({1,2,3,4})	
参考答案	
答案 C	
下列关于无向连通图特征的叙述中,正确的是: 1. 所有顶点的度之和为偶数 2. 边数大于顶点个数减1 3. 至少有一个顶点的度为1	2分
D A. 只有1	
○ C. 1和2	
○ D. 1和3	
参考答案	
答案 A	
	下面给出的有向图中,有个强连通分量。

○ C. 进行图的深度优先遍历

○ D. 进行图的广度优先遍历

|参考答案

答案 A

2-5 给定一有向图的邻接表如下。从顶点V1出发按广度优先搜索法进行遍历,则得到的一种顶点序列为:

- A. V1,V2,V3,V4,V5
- B. V1,V2,V3,V5,V4
- C. V1,V3,V2,V4,V5
- D. V1,V4,V3,V5,V2

答案 C

2-6 图的广度优先遍历类似于二叉树的:

Α

- A. 层次遍历
- B. 中序遍历
- C. 后序遍历
- O. 先序遍历

|参考答案

答案

2-7 给定有权无向图如下。关于其最小生成树,下列哪句是对的?

- ◎ A. 最小生成树不唯一, 其总权重为23
- B. 最小生成树唯一,其总权重为20
- C. 边(B, F)一定在树中, 树的总权重为23
- D. 边(H, G)一定在树中,树的总权重为20

|参考答案

答案

Α

2-8 给定一有向图的邻接表如下。从顶点V1出发按深度优先搜索法进行遍历,则得到的一种顶点序列

2分

2分

- A. V1,V5,V4,V7,V6,V2,V3
- B. V1,V5,V4,V7,V6,V3,V2
- C. V1,V2,V3,V4,V7,V6,V5
- D. V1,V5,V6,V4,V7,V2,V3

答案 B

- **2-9** 设无向图为 G=(V, E), 其中 V={v1,v2,v3,v4}, E={(v1,v2), (v3,v4), (v4,v1), (v2,v3), (v1,v3)}。 则每个顶点的度依次为:
 - A. 2, 1, 1, 1
 - B. 1, 1, 2, 1
 - © C. 3, 2, 3, 2
 - O. 2, 3, 2, 3

|参考答案

答案 C

2-10 对于给定的有向图如下, 其邻接矩阵为:

A.
$$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

2分

答案 D

2-11 对于给定的有向图如下, 其邻接表为:

答案 C

2-12 对于给定的有向图如下, 其逆邻接表为:

答案 D

2-13 以下哪个不是给定无向带权图的最小生成树?

D 答案

2-14 给定无向带权图如下,以下哪个是从顶点 a 出发深度优先搜索遍历该图的顶点序列(多个顶点可 以选择时按字母序)?

- A. abecdfhg
- B. abcdehgf
- C. abcdefgh
- O. abchgfde

|参考答案

答案 С

2-15 给定一个图的邻接矩阵如下,则从V1出发的深度优先遍历序列(DFS,有多种选择时小标号优 先)是:

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
V1	0	1	1	1	0	0	0	0	0	0
V2	0	0	0	1	1	0	0	0	0	0
V3	0	0	0	1	0	1	0	0	0	0
V4	0	0	0	0	0	1	1	0	1	0
V5	0	0	0	0	0	0	1	0	0	0
V6	0	0	0	0	0	0	0	1	1	0
V7	0	0	0	0	0	0	0	0	1	0
V8	0	0	0	0	0	0	0	0	0	1
V9	0	0	0	0	0	0	0	0	0	1
V10	0	0	0	0	0	0	0	0	0	0

2分

- A. V1, V2, V4, V3, V6, V8, V10, V9, V7, V5
- B. V1, V2, V3, V4, V5, V6, V7, V9, V8, V10
- © C. V1, V2, V4, V6, V8, V10, V9, V7, V5, V3
- D. V1, V2, V3, V5, V7, V9, V10, V6, V8, V4

答案 C

2-16 给定一个图的邻接矩阵如下,则从V1出发的宽度优先遍历序列(BFS,有多种选择时小标号优先)是:

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
V1	0	1	1	1	0	0	0	0	0	0
V2	0	0	0	1	1	0	0	0	0	0
V3	0	0	0	1	0	1	0	0	0	0
V4	0	0	0	0	0	1	1	0	1	0
V5	0	0	0	0	0	0	1	0	0	0
V6	0	0	0	0	0	0	0	1	1	0
V7	0	0	0	0	0	0	0	0	1	0
V8	0	0	0	0	0	0	0	0	0	1
V9	0	0	0	0	0	0	0	0	0	1
V10	0	0	0	0	0	0	0	0	0	0

- A. V1, V2, V4, V3, V6, V8, V10, V9, V7, V5
- B. V1, V2, V3, V4, V5, V6, V7, V9, V8, V10
- C. V1, V2, V4, V6, V8, V10, V9, V7, V5, V3
- D. V1, V2, V3, V5, V7, V9, V10, V6, V8, V4

|参考答案

答案 B

2-17 给出如下图所示的具有 7 个结点的网 G, 哪个选项对应其正确的邻接矩阵?

$$\bigcirc A. \begin{bmatrix} \infty & 1 & 3 & \infty & \infty & \infty & 5 \\ 0 & \infty & \infty & 4 & \infty & \infty & 6 \\ 0 & \infty & \infty & \infty & 4 & \infty & 3 \\ \infty & 0 & \infty & \infty & \infty & 7 & 2 \\ \infty & \infty & 0 & \infty & \infty & 1 & 5 \\ \infty & \infty & \infty & 0 & 0 & \infty & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & \infty \end{bmatrix}$$

2分

B.
$$\begin{bmatrix} \infty & 1 & 3 & \infty & \infty & \infty & 5 \\ 1 & \infty & \infty & 4 & \infty & \infty & 6 \\ 3 & \infty & \infty & \infty & 4 & \infty & 3 \\ \infty & 4 & \infty & \infty & \infty & 7 & 2 \\ \infty & \infty & 4 & \infty & \infty & 1 & 5 \\ \infty & \infty & \infty & 7 & 1 & \infty & 2 \\ 5 & 6 & 3 & 2 & 5 & 2 & \infty \end{bmatrix}$$

$$\begin{array}{c} 0 & 1 & 3 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 4 & 0 & 0 & 6 \\ 3 & 0 & 0 & 0 & 4 & 0 & 3 \\ 0 & 4 & 0 & 0 & 0 & 7 & 2 \\ 0 & 0 & 4 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 7 & 1 & 0 & 2 \\ 5 & 6 & 3 & 2 & 5 & 2 & 0 \end{bmatrix}$$

$$\begin{array}{c} 0 & 1 & 3 & \infty & \infty & \infty & 5 \\ 0 & 0 & 0 & 7 & 1 & 0 & 2 \\ 5 & 6 & 3 & 2 & 5 & 2 & 0 \end{bmatrix}$$

$$\begin{array}{c} 0 & 1 & 3 & \infty & \infty & \infty & 5 \\ 0 & 0 & 0 & 7 & 1 & 0 & 2 \\ 5 & 6 & 3 & 2 & 5 & 2 & 0 \end{bmatrix}$$

$$\begin{array}{c} 0 & 1 & 3 & \infty & \infty & \infty & 5 \\ 0 & 0 & 0 & 7 & 1 & 0 & 2 \\ 5 & 6 & 3 & 2 & 5 & 2 & 0 \end{bmatrix}$$

答案 B

00

2-18 给出如下图所示的具有 7 个结点的网 G,采用Prim算法,从4号结点开始,给出该网的最小生成树。下列哪个选项给出了正确的树结点收集顺序?

 ∞

 ∞

 ∞

- A. 4501362
- B. 4526301
- C. 4561023
- D. 4563201

|参考答案

答案 D

2-19 给定有向图如下。下列哪个选项不是对应的拓扑序列?

- A. abedfc
- B. aedbfc
- C. aedfbc
- D. abdfce

答案

D

2-20 对下图从顶点C出发进行深度优先搜索,哪个是错误的搜索序列?

- A. CBADEFGH
- B. CDABEHFG
- O. CDAEHGFB
- O. CBAEFGHD

|参考答案

答案

В

2-21 对下图从顶点C出发进行广度优先搜索,哪个是正确的搜索序列?

- A. CBDAEFGH
- B. CDABEHFG
- C. CBAEHGFD
- D. CBDAEHFG

|参考答案

答案

D

2-22 已知无向图 G 如下所示,使用克鲁斯卡尔(Kruskal)算法求图 G 的最小生成树,加入到最小生 成树中的边依次是:

答案 C

2-26 下列说法不正确的是:

					有两种:浇 一个递归;		万和广	度遍	通历														
			度遍历	万不为	适用于有问	图																	
	参考答:	案																					
	答案		D																				
2-27	给定有权	(无向]图的	1邻接	 接矩阵如下	,其最	小生	成树	的总	总权重	Ē是:											2	2分
	[co 3	1	15	1	9]																		
	3 00	3	13	00	8																		
	1 3	00	1	1	2																		
	15 13																						
	1 00																						
	[9 8	2	00	2	യ]																		
	O A. 20																						
	O B. 22																						
	© C. 8																						
	O D. 15																						
	参考答	案																					
	答案		С																				
2-28	选择一个	数据 数据 算》	的规 居的存 法的和]模 字储7 稳定	性	时空效	逐外	·, 下	列因	因素中	Þ, ì	还需	要老	考虑	的是	i .						2	2分
	〇 A. 仅 I	II																					
	〇 B. 仅 I																						
	〇 C. 仅 I																						
	D. I、I	I、III	I、IV	/																			
	参考答	案																					
	答案		D																				
2-29	• (I). • (II)	直接 . 直挂	接插 <i>入</i> 妾插之	\排序 入排;	的数组进行 序过程中元 序过程中原 序过程中	素之间]的比 内辅助	较次 加空间	な数 到更 /	更少 少	比简单	单选	择排	非序	效率	更高	词 ,	其原	見因見	Ē:		2	2分
	◎ A. 仅 I																						
	〇 B. 仅 I	II																					
	〇 C. 仅 I	,																					
	O D. I、I	Ⅰ和Ⅰ	III																				

2-30	对一组包含10个元素的非递减有序序列,采用直接插入排序排成非递增序列,其可能的比较次数	2分
2 30	和移动次数分别是:	2/3
	O A. 100, 100	
	O B. 100, 54	
	○ C. 54, 63	
	D. 45, 44	
	参考答案	
	答案 D	
2-31	输入 10^6 个只有一位数字的整数,可以用 $O(N)$ 复杂度将其排序的算法是:	2 / 2
	○ A. 快速排序	
	● B. 桶排序	
	○ C. 插入排序	
	○ D. 希尔排序	
	参考答案	
	答案 B	
2-32	给定初始待排序列{ 15, 9, 7, 8, 20, -1, 4 }。如果希尔排序第一趟结束后得到序列为{ 15, -1, 4, 8, 20, 9, 7 },则该趟增量为:	2 / 3
	答案 D	
2-33	下列排序算法中,占用辅助空间最多的是:()	2 / 3

2分

答案

Α

2-34 下列排序算法中, 不稳定的是:

I、 希尔排序 Ⅱ、 归并排序

- Ⅲ、快速排序
- IV、 堆排序
- V、基数排序
- 〇 A. 仅 I、II

答案 C

2-35 使用快速排序算法对数据进行升序排序,若经过一次划分后得到的数据序列是 68, 11, 70, 23, 80, 77, 48, 81, 93, 88, 则该次划分的枢轴是:

2分

- O A. 11
- B. 70
- C. 80
- D. 81

|参考答案

答案 D

2-36 图G如下所示,

2分

使用Prim(普利姆)算法从顶点C开始寻找最小生成树,选择的第3条边是:

- \bigcirc A. (C,D)
- \bigcirc B. (A,G)
- \bigcirc C. (A,B)

- \bigcirc D. (D,J)
- \bigcirc E. (F,J)
- \bigcirc F. (C,H)

- \bigcirc G. (B,C)
- \bigcirc H. (C,J)
- \bigcirc L. (D,E)

|参考答案

答案 C

2-37 图G如下所示, 2分

使用Prim(普利姆)算法从**顶点B**开始寻找 **最小生成树** , 选择的第3条边是:

- \bigcirc A. (B,C)
- \odot B. (A,B)
- \bigcirc C. (C, H)

- \bigcirc D. (C,D)
- \bigcirc E. (A,G)
- ${igcup}$ F. (F,J)

- \bigcirc G. (D,J)
- \bigcirc H. (B,H)
- \bigcirc I. (G,H)

2分

|参考答案

答案

В

2-38 图G如下所示,

使用Kruskal(克鲁斯卡尔)算法寻找最小生成树,选择的第6条边是:

- \bigcirc A. (D,E)
- \odot B. (A,B)
- \bigcirc C. (A, E)或(C, D)
- \bigcirc D. (D,J)或(E,F)

|参考答案

答案

В

2-39 图G如下所示, 2分

使用Kruskal(克鲁斯卡尔)算法寻找最小生成树,选择的第6条边是:

- \odot A. (D,E)
- \bigcirc B. (A,B)
- \bigcirc C. (A, E)或(C, D)
- \bigcirc D. (D,J)或(E,F)

|参考答案

答案 A

2-40 图G如下所示,

使用**迪杰斯特拉(Dijkstra)算法**求 **顶点C** 到其他每个顶点的最短路径(显然,顶点C到自己的最短路径长度为0),则其他顶点中,第3个确定最短路径的是:

- A. 顶点B
- B. 顶点D
- C. 顶点F
- D. 顶点J

|参考答案

答案 A

2-41 图G如下所示, 2分

使用**迪杰斯特拉(Dijkstra)算法**求 **顶点C** 到其他每个顶点的最短路径(显然,顶点C到自己的最短路径长度为0),则其他顶点中,第3个确定最短路径的是:

- A. 顶点B
- B. 顶点D
- C. 顶点F
- D. 顶点J

|参考答案

答案 D

2-42 用Dijkstra算法求下图顶点A到其余各顶点的最短路径时,将按照什么的次序,依次求出A到它们

2分

10分

- A. BEDFC
- B. BCEDF
- OC. EDFCB
- D. BEDCF

|参考答案

答案 D

函数题 40 分

6-1 在图的邻接表存储结构下(基于顶点列表和单链表实现),本题要求图类里实现2个方法函数 def addVertex(self, vex_val): def addEdge(self, f, t, cost=0):

5. tox(osii, 16x_-tai). asi ada2ago(osii, i, t, osot o).

函数接口定义:

- 1 在这里描述函数接口。例如:
- 2 def addVertex(self, vex_val):

```
3
4 def addEdge(self, f, t, cost=0):
```

在这里解释接口参数。例如:其中 f和t分别是构成边的顶点在列表中的序号。

裁判测试程序样例:

```
1 在这里给出函数被调用进行测试的例子。例如:
2
   class arcnode:
3
       def __init__(self,adjvex,weight,link=None):
           self.adjvex = adjvex
 4
 5
           self.weight = weight
           self.link=link
 6
 7
8
   class vexnode:
9
       def __init__(self,data,first_arc=None):
10
           self.data = data
11
           self.first_arc = first_arc
12
   class Graph:
13
14
       def __init__(self):
15
           self.vex_list=[]
           self.vex_num=0
16
17
           self.edge_num=0
18
       # 请在这里填写答案
19
20
      # 请在这里填写答案
21
22
23
24
       def print_graph(self):
25
           for i in range(self.vex_num):
               print(self.vex_list[i].data,end="->")
26
27
               cur = self.vex_list[i].first_arc
28
               while cur:
29
                   print("adj:{}, weight:{}".format(cur.adjvex,cur.weight),end="->")
30
                   cur = cur.link
               print('None')
31
32
33 | if __name__ =="__main__":
34
      g = Graph()
35
       s =input()
36
       for vertex in s:
37
           g.addVertex(vertex)
38
39
       g.addEdge(0,1,11)
40
       g.addEdge(0,2,55)
41
       g.addEdge(2,3,88)
42
       q.addEdge(0,3,33)
43
       g.addEdge(1,2,44)
44
       g.print_graph()
```

输入样例:

ABCD

输出样例:

在这里给出相应的输出。例如:

A->adj:3,weight:33->adj:2,weight:55->adj:1,weight:11->None

B->adj:2,weight:44->adj:0,weight:11->None

C->adj:1,weight:44->adj:3,weight:88->adj:0,weight:55->None

D->adj:0,weight:33->adj:2,weight:88->None

|参考答案

答案

编译器: PYTHON3

6-2 本题要求实现一个函数,试实现邻接矩阵存储图的深度优先遍历。

函数接口定义:

#顶点v(编号)出发对图G进行深度优先遍历 def dfs(G,v)

其中图G的定义如下:

```
class adjMatrixGraph:
   # 构造方法, n个顶点m条边
   def __init__(self,n,m):
      self.verNum = n #顶点数
       self.edgeNum = m #边数
       self.vertex = [0] * n
                               #顶点列表
       self.edge = [[0 for i in range(self.verNum)] \
                    for j in range(self.verNum)] #邻接矩阵二维列表
       self.vis = [False] * n #顶点的访问列表, 默认没访问过
   def addVertex(self,ls): #添加顶点列表
      self.vertex = ls
   def addEdge(self,fr,to):#添加边(fr,to)
       ifr = self.vertex.index(fr)
                                 #起点下标
       ito = self.vertex.index(to)
                                   #终点下标
       self.edge[ifr][ito] = self.edge[ito][ifr] = 1 #邻接矩阵
#邻接矩阵建图
def createGraph():
   n,m = map(int,input().split()) #输入n个顶点和m条边
   q = adjMatrixGraph(n,m)
                                #创建无向图G
   g.addVertex(list(input().split())) #输入顶点列表
                               #输入m条边
   for i in range(m):
      fr,to = input().split()
       g.addEdge(fr,to)
                                #返回无向图g
   return g
```

裁判测试程序样例:

```
g = createGraph() #创建无向图g
v = int(input()) #输入出发顶点的编号
print("DFS from " + g.vertex[v] + " : ",end = "")
dfs(g,v) #顶点v(编号)出发对图G进行深度优先遍历
#你的代码将被嵌在这里
```

输入样例:

例如无向图

第一行给出图的顶点数n和边数m。第二行给出n个顶点字符串(中间用1个空格分隔),表示n个顶点的数据元素的值。后面是m行,给出每一条边的两个顶点(中间用1个空格分隔)。最后一行输入出发顶点的编号。

```
4 5
A B C D
A B
A C
B C
C D
C D
```

输出样例(对于图中给出的树):

输出顶点v(编号)出发进行深度优先遍历的顶点(每个顶点前都有1个空格),格式参照样例。

```
DFS from A : A B C D
```

|参考答案

答案 编译器: PYTHON3

6-3 本题要求实现一个函数,输出无向图每个顶点的数据元素的值,以及每个顶点度的值。

10分

函数接口定义:

```
#输出无向图G每个顶点的度数
def printDegree(G)
```

其中图G的定义如下:

```
class adjMatrixGraph:
   # 构造方法, n个顶点m条边
   def __init__(self,n,m):
      self.verNum = n
                      #顶点数
       self.edgeNum = m #边数
       self.vertex = [0] * n
                              #顶点列表
       self.edge = [[0 for i in range(self.verNum)] \
                     for j in range(self.verNum)] #邻接矩阵二维列表
       self.vis = [False] * n
                              #顶点的访问列表, 默认没访问过
   def addVertex(self,ls): #添加顶点列表
      self.vertex = ls
   def addEdge(self,fr,to):#添加边(fr,to)
      ifr = self.vertex.index(fr)
                                #起点下标
       ito = self.vertex.index(to)
                                   #终点下标
       self.edge[ifr][ito] = self.edge[ito][ifr] = 1 #邻接矩阵
#邻接矩阵建图
def createGraph():
   n,m = map(int,input().split()) #输入n个顶点和m条边
   q = adjMatrixGraph(n,m)
                                #创建无向图G
   q.addVertex(list(input().split())) #输入顶点列表
   for i in range(m):
                                #输入m条边
       fr,to = input().split()
       g.addEdge(fr,to)
                                #返回无向图q
   return g
```

裁判测试程序样例:

```
g = createGraph() #创建无向图g
printDegree(g) #输出g的度数
#你的代码将被嵌在这里
```

输入样例:

例如无向图

第一行给出图的顶点数n和边数m。第二行给出n个顶点字符串(中间用1个空格分隔),表示n个顶点的数据元素的值。后面是m行,给出每一条边的两个顶点(中间用1个空格分隔)。

```
4 5
A B C D
A B
A C
B C
B C
C D
```

输出样例(对于图中给出的树):

输出n个顶点以及各顶点的度数,格式参照样例。

```
A:2
B:3
C:3
D:2
```

|参考答案

答案 编译器: PYTHON3

6-4 本题要求实现一个函数, 试实现邻接矩阵存储图的广度优先遍历。

10分

函数接口定义:

```
#顶点v(编号)出发对图G进行广度优先遍历
def bfs(G,v)
```

其中图G的定义如下:

```
class adjMatrixGraph:
   # 构造方法, n个顶点m条边
   def __init__(self,n,m):
       self.verNum = n
                        #顶点数
       self.edgeNum = m
                        #边数
       self.vertex = [0] * n
                                #顶点列表
       self.edge = [[0 for i in range(self.verNum)] \
                     for j in range(self.verNum)]
                                                #邻接矩阵二维列表
       self.vis = [False] * n
                             #顶点的访问列表,默认没访问过
   def addVertex(self,ls): #添加顶点列表
       self.vertex = ls
   def addEdge(self,fr,to):#添加边(fr,to)
      ifr = self.vertex.index(fr) #起点下标
       ito = self.vertex.index(to)
                                  #终点下标
       self.edge[ifr][ito] = self.edge[ito][ifr] = 1 #邻接矩阵
#邻接矩阵建图
def createGraph():
   n,m = map(int,input().split()) #输入n个顶点和m条边
   q = adjMatrixGraph(n,m)
                               #创建无向图G
```

```
g.addVertex(list(input().split())) #输入顶点列表
   for i in range(m):
                                 #输入m条边
      fr,to = input().split()
       g.addEdge(fr,to)
   return g
                                 #返回无向图g
#定义抽象类型队列Queue, FIFO (First In, First Out)
class Queue:
   #1.构造方法,定义一个空的列表
   def __init__(self):
      self.items = []
   #2.入队,队尾(列表尾部)入队
   def push(self,item):
       self.items.append(item)
   #3.出队,队首(列表头部)出队
   def pop(self):
       return self.items.pop(0)
   #4.判断队列是否为空
   def isEmpty(self):
       return self.items == []
   #5.取队首
   def getFront(self):
       return self.items[0]
   #6.求队列大小
   def qetSize(self):
       return len(self.items)
#你的代码将被嵌在这里
```

裁判测试程序样例:

```
g = createGraph() #创建无向图g
v = int(input()) #输入出发顶点的编号
print("BFS from " + g.vertex[v] + " :",end = "")
bfs(g,v) #顶点v(编号)出发对图G进行广度优先遍历
```

输入样例:

例如无向图

第一行给出图的顶点数n和边数m。第二行给出n个顶点字符串(中间用1个空格分隔),表示n个顶点的数据元素的值。后面是m行,给出每一条边的两个顶点(中间用1个空格分隔)。最后一行输入出发顶点的编号。

```
4 5
A B C D
A B
A C
B C
C D
C D
```

输出样例:

对于给定的无向图,输出顶点v(编号)出发进行广度优先遍历的顶点(每个顶点前都有1个空格),格式参照样例。

BFS from A: ABCD

| 参考答案

答案

编译器: PYTHON3

编程题

60分

7-1 采用邻接矩阵表示法创建无向图G, 依次输出各顶点的度。

10分

输入格式:

输入第一行中给出2个整数i(0<i≤10), j(j≥0), 分别为图G的顶点数和边数。输入第二行为顶点的信息,每个顶点只能用一个字符表示。 依次输入j行,每行输入一条边依附的顶点。

输出格式:

依次输出各顶点的度, 行末没有最后的空格。

输入样例:

5 7			
ABCDE			
AB			
AD			
BC			
BE			
CD			
CE			
DE			

输出样例:

2 3 3 3 3

|参考答案

答案 编译器: NO_COMPILER

7-2 采用邻接表创建无向图G, 依次输出各顶点的度。

10分

输入格式:

输入第一行中给出2个整数i(0<i≤10), j(j≥0), 分别为图G的顶点数和边数。输入第二行为顶点的信息,每个顶点只能用一个字符表示。 依次输入j行,每行输入一条边依附的顶点。

输出格式:

依次输出各顶点的度, 行末没有最后的空格。

输入样例:

```
5 7
ABCDE
AB
AD
BC
BE
CD
CE
DE
```

输出样例:

2 3 3 3 3

|参考答案

答案 编译器: NO_COMPILER

7-3 本题要求输出两个顶点之间是否存在路径

10分

输入格式:

输入包括两部分,第一部分是邻接矩阵表示方法中对应1的两个顶点,用0 0 表示结束 第二部分是两个顶点,例如 Vi和Vj

输出格式:

如果Vi和Vj存在路径,输出1;否则输出0

输入样例:

```
1 0
0 4
4 0
1 4
4 1
1 2
2 1
1 3
3 1
2 3
3 2
5 4
4 6
6 4
0 0
0 5
```

输出样例:

1

|参考答案

7-4 选择排序,从头至尾扫描序列,找出最小的一个元素,和第一个元素交换,接着从剩下的元素中继续这 种选择和交换方式,最终得到一个有序序列。

输入格式:

输入在第1行中给出N(1<N≤100),在第2行中给出N个待排序的整数,数字间以空格分隔,并保 证数字没有重复的出现。

输出格式:

给出选择排序每一遍后的中间结果数列,数字间以空格分隔,但末尾不得有多余空格。注意: 当排序 完成时应立即停止。

输入样例1:

4 5 7 6 3 2 1

输出样例1:

1 5 7 6 3 2 4 1 2 7 6 3 5 4 1 2 3 6 7 5 4 1 2 3 4 7 5 6 1 2 3 4 5 7 6 1 2 3 4 5 6 7

输入样例2:

1 2 3 5 4

输出样例2:

1 2 3 4 5

|参考答案

编译器: NO_COMPILER

答案

7-5 <mark>冒泡排序</mark>,将一个列表中的两个元素进行比较,并将最小的元素交换到顶部。两个元素中较小的会冒到顶部,而较大的会沉到底部,该过程将被重复执行,直到所有元素都被排序。

输入格式:

输入在第1行中给出N(1<N≤100),在第2行中给出N个待排序的整数,数字间以空格分隔,并保证数字没有重复的出现。

输出格式:

给出冒泡排序每一遍后的中间结果数列,数字间以空格分隔,但末尾不得有多余空格。 注意: 当排序 完成时应立即停止。

输入样例1:

7 4 5 7 6 3 2 1

输出样例1:

4 5 6 3 2 1 7 4 5 3 2 1 6 7 4 3 2 1 5 6 7 3 2 1 4 5 6 7 2 1 3 4 5 6 7 1 2 3 4 5 6 7

输入样例2:

6 1 2 3 6 5 4

输出样例2:

1 2 3 5 4 6 1 2 3 4 5 6

|参考答案

答案 编译器: NO_COMPILER

7-6 插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

输入格式:

输入在第1行中给出N(1<N≤100),在第2行中给出N个待排序的整数,数字间以空格分隔,并保证数字没有重复的出现。

输出格式:

给出插入排序每一遍后的中间结果数列,数字间以空格分隔,但末尾不得有多余空格。

输入样例:

```
7
4 5 7 6 3 2 1
```

输出样例:

```
4 5 7 6 3 2 1
4 5 7 6 3 2 1
4 5 6 7 3 2 1
3 4 5 6 7 2 1
2 3 4 5 6 7 1
1 2 3 4 5 6 7
```

|参考答案

答案	编译器: NO_COMPILER								