Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module			Beam Coverplate Connection	
MainMo	odule			Moment Connection
Moment(kNm)*			1.0	
Shear (kN)*			1.0
Axial (k	(N) *			2.0
		Section	•	
	Beam S	ection *		JB 150
т Ү	Prefe	rences		Outside
	Mate	erial *		E 250 (Fe 410 W)A
	Ultimate stren	ngth, fu (MPa)		410
(<u>B−t)</u> t — ZZ D	Yield Strength , fy (MPa)	250	R1(mm)	5.0
R ₁	Mass	7.1	R2(mm)	1.5
R ₂	Area(mm2) -	901.0	Iz(mm4)	3220000.0
ļ	D(mm)	150.0	Iy(mm4)	92000.0
	B(mm)	50.0	rz(mm)	59.8
	t(mm)	3.0	ry(mm)	10.1
	T(mm)	4.6	Zz(mm3)	42900.0
	FlangeSlope	91.5	Zy(mm3)	3700.0
		Bolt Details		
Diameter	(mm)*		[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]	
Grade	e *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*		Bearing Bolt	
Bolt hole	Bolt hole type		Standard	
Slip factor	r (µ_f)			0.3
Type of	edges		a - 1	Sheared or hand flame cut
Gap between beam and	<pre> support (</pre>	mm)		10.0
Are the members exposed to	 br>corrosive	influences		False

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{901.0 * 250}{1.1 * 10^3}$ $= 204.77$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{140.8 * 3.0 * 250}{\sqrt{3} * 1.1 * 10^3}$ $= 55.43$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 14868.48 * 250}{1.1 * 10^6}$ $= 3.38$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 42900.0 * 250}{1.1 * 10^6}$ $= 14.62$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(3.38, 14.62)$ = 3.38	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ = 0.3 * 204.77 = 61.43 $Ac_{max} = Ac$ = 204.77	$A_u = 61.43$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 55.43 = 33.26 $Vc_{max} = Sc$ = 55.43	$V_u = 33.26$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 3.38 = 1.69 $Mc_{max} = Mc$ = 3.38	$M_u = 1.69$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(150.0 - 2 * 4.6) * 3.0 * 61.43}{901.0}$ $= 28.8 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{14868.48 * 1.69}{47600.0}$ $= 0.53 \ kNm$	
Forces Carried by Flange		$A_{f} = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{61.43 * 50.0 * 4.6}{901.0}$ $= 15.68 \ kN$ $M_{f} = Moment \ in \ flange$ $= Mu - M_{w}$ $= 1.69 - 0.53$ $= 1.16 \ kNm$ $F_{f} = flange \ force$ $= \frac{M_{f} * 10^{3}}{D - T} + A_{f}$ $= \frac{1.16 * 10^{3}}{150.0 - 4.6} + 15.68$ $= 23.67 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 23.67$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 50.0 * 4.6 * 250}{1.1}$ $= 52.27$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 28.8$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 140.8 * 3.0 * 250}{1.1}$ $= 96$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 50.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T=4.6	$t_f = 6.0$	Pass
Plate Area check (mm2)	$pt.area >=$ $connected\ member\ area * 1.05$ $= 241.5$	outer.b = B = 50.0 pt.area = 6.0 * 50.0 = 300.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness	t = 1.5	$t_w = 6.0$	Pass
(mm)*			
		$web \ b = D - (2 * T) - (2 * r_1)$	
	pt.area >=	= 150.0 - (2*4.6) - (2*5.0)	
Plate Area	$ \ \ connected \ member \ area*1.05$	= 108.8	Pass
check (mm2)	= 342.72	pt.area = 6.0 * 2 * 108.8	
		= 1305.6	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Web Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 30 \ (Row \ Limit \ (r_l) = 2)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (2.0 - 1) * 30$ $= 80.0$	108.8	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 0.0 (Row \ Limit \ (r_l) = 1)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (1.0 - 1) * 30$ $= 50.0$	18.5	Fail

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View