해석개론 및 연습 2 과제 #2

2017-18570 컴퓨터공학부 이성찬

1. Suppose that f is not a constant function. Then there exists $\alpha, \beta \in [0, \infty)$ such that $f(\alpha) \neq f(\beta)$. Now we show by contradiction that $\{f_n\}$ cannot be equicontinuous on [0, 1]. Set $\epsilon = |f(\alpha) - f(\beta)|$. There should be a $\delta > 0$ such that for all $n \in \mathbb{N}$,

$$x, y \in [0, 1], |x - y| < \delta \implies |f_n(x) - f_n(y)| < \epsilon.$$

However, we can always choose $N \in \mathbb{N}$ large enough $(N > \alpha, \beta)$ so that $|\alpha - \beta|/N < \delta$. For $x = \alpha/N, y = \beta/N, x, y \in [0, 1]$ and $|x - y| = |\alpha - \beta|/N < \delta$ but

$$|f_N(x) - f_N(y)| = \left| f_N\left(\frac{\alpha}{N}\right) - f_N\left(\frac{\alpha}{N}\right) \right| = |f(a) - f(b)| = \epsilon.$$

Thus such $\delta > 0$ cannot exist and $\{f_n\}$ cannot be equicontinuous, leading to a contradiction. f has to be a constant function.

2. Let $\epsilon > 0$ be given. Equicontinuity of $\{f_n\}$ lets us choose $\delta > 0$ such that

$$x, y \in K, d(x, y) < \delta \implies |f_n(x) - f_n(y)| < \frac{\epsilon}{3}$$
 (*)

for all $n \in \mathbb{N}$. The set $\bigcup_{x \in K} B_{\delta}(x)$ is an open cover of K, and there exists a finite subcover because K is a compact set.

$$\exists x_1, x_2, \dots, x_r \in K \text{ such that } K \subseteq \bigcup_{i=1}^r B_{\delta}(x_i).$$

For all $x \in K$, there exists $s \leq r$ such that $x \in B_{\delta}(x_s)$. By (*),

$$|f_n(x) - f_n(x_s)| < \frac{\epsilon}{3}, \quad (\forall n \in \mathbb{N})$$

Also since $\{f_n\}$ converges pointwise, there exists $N \in \mathbb{N}$ such that for $n, m \geq N$,

$$|f_n(x_s) - f_m(x_s)| < \frac{\epsilon}{3}.$$

Therefore, for $n, m \geq N$,

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_n(x_s)| + |f_n(x_s) - f_m(x_s)| + |f_m(x_s) - f_m(x)| < \frac{\epsilon}{3} \cdot 3 = \epsilon$$

for all $x \in K$. f_n converges uniformly on K.

(Counterexample) Take $f_n(x) = x/n$ over \mathbb{R} .

3. We first prove the following claim.

Claim. Suppose $f \ge 0$, f is continuous on [a,b], and $\int_a^b f(x) dx = 0$. Then f(x) = 0 on [a,b].

Proof. Suppose there exists some $x_0 \in [a, b]$ such that $f(x_0) > 0$. Since f is continuous, we can find $\delta > 0$ such that

$$x \in [x_0 - \delta, x_0 + \delta] \implies |f(x) - f(x_0)| < \frac{f(x_0)}{2}.$$

We can conclude that $f(x) > \frac{f(x_0)}{2}$ on $[x_0 - \delta, x_0 + \delta]$. Then,

$$0 = \int_{a}^{b} f(x) dx \ge \int_{x_0 - \delta}^{x_0 + \delta} f(x) dx \ge \int_{x_0 - \delta}^{x_0 + \delta} \frac{f(x_0)}{2} dx = \delta f(x_0) > 0,$$

which is a contradiction. Therefore f(x) = 0 on [a, b].

Since f is continuous on [0,1] and bounded (Extreme Value Theorem), there exists a sequence of polynomials $\{P_n\}$ such that $P_n \to f$ uniformly on [0,1]. Let $P_n(x) = \sum_{k=0}^{\deg P_n} p_{n,k} x^k$. Then

$$\int_0^1 f(x)P_n(x) dx = \int_0^1 f(x) \sum_{k=0}^{\deg P_n} p_{n,k} x^k dx = \sum_{k=0}^{\deg P_n} p_{n,k} \int_0^1 f(x) x^k dx = 0.$$

Note that P_n is uniformly bounded by its uniform convergence. Since P_n and f are both bounded, $f(x)P_n(x)$ converges uniformly on [0,1]. Therefore,

$$\int_0^1 f(x)^2 dx = \int_0^1 \lim_{n \to \infty} f(x) P_n(x) dx = \lim_{n \to \infty} \int_0^1 f(x) P_n(x) dx = 0.$$

(Uniform convergence lets us switch the order of integration and limit.) By the claim above, $f(x)^2 = 0$ on [0, 1], which implies f(x) = 0 on [0, 1].

4. (a) $\{f_n\}$ is uniformly bounded and \mathbb{Q} is countable. By Theorem 7.23, there exists a subsequence $\{f_{m_i}\}$ of $\{f_n\}$ such that $\{f_{m_i}(r)\}$ converges for $\forall r \in \mathbb{Q}$. Now let $f(x) = \sup_{r \leq x} f(r)$. Suppose that f is continuous at $x_0 \in \mathbb{R}$. Given $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \frac{\epsilon}{2}.$$

Take $r, s \in \mathbb{Q}$ from the interval $(x_0 - \delta, x_0 + \delta)$ such that $r \leq x_0 \leq s$. Since f_n is increasing for all $n \in \mathbb{N}$, f should also be increasing. Then

$$f(x_0) - \frac{\epsilon}{2} < f(r) \le f(x_0) \le f(s) < f(x_0) + \frac{\epsilon}{2}.$$
 (*)

Since $f_{m_i}(r) \to f(r)$ and $f_{m_i}(s) \to f(s)$, set i large enough so that

$$|f_{m_i}(r) - f(r)| < \frac{\epsilon}{2}, \quad |f_{m_i}(s) - f(s)| < \frac{\epsilon}{2}.$$

Combining these inequalities with (*) gives

$$f(x_0) - \epsilon < f(r) - \frac{\epsilon}{2} < f_{m_i}(r), \quad f_{m_i}(s) < f(s) + \frac{\epsilon}{2} < f(x_0) + \epsilon.$$

Since $f_{m_i}(r) \leq f_{m_i}(x_0) \leq f_{m_i}(s)$, we have that for large i,

$$f(x_0) - \epsilon < f_{m_i}(x_0) < f(x_0) + \epsilon \implies |f_{m_i}(x_0) - f(x_0)| < \epsilon.$$

Thus $\{f_{m_i}\}$ converges at points of continuity.

For a monotone function on \mathbb{R} , the set of discontinuities D is at most countable. We can apply Theorem 7.23 once again on $\{f_{m_i}\}$ to get a subsequence $\{f_{n_k}\}$ that converges for all $x \in D$.

Now we modify the definition of f(x) so that for $x \in D$,

$$f(x) = \lim_{k \to \infty} f_{n_k}(x).$$

Since $\{f_{n_k}\}$ is a subsequence of $\{f_{m_i}\}$, $\{f_{n_k}\}$ also converges for all $x \in \mathbb{R} \setminus D$, so we can write

$$f(x) = \lim_{k \to \infty} f_{n_k}(x), \quad x \in \mathbb{R}.$$

(b) Let f be a continuous function on a compact set K. Then f is uniformly continuous. Let $\epsilon > 0$ be given.

Take any $t \in K$. Since f is uniformly continuous, we can find $\delta > 0$ such that

$$x \in (t - \delta, t + \delta) \implies f(t) - \frac{\epsilon}{2} < f(x) < f(t) + \frac{\epsilon}{2}.$$
 (*)

Let $g_k = f_{n_k}$. Since g_k is increasing,

$$g_k\left(t - \frac{\delta}{2}\right) \le g_k(t) \le g_k\left(t + \frac{\delta}{2}\right).$$
 (\\(\ldhe\))

Also because $g_k \to f$ pointwise, there exists large enough $N \in \mathbb{N}$ such that

$$k \ge N \implies \left| g_k \left(t - \frac{\delta}{2} \right) - f \left(t - \frac{\delta}{2} \right) \right| < \frac{\epsilon}{2} \text{ and } \left| g_k \left(t + \frac{\delta}{2} \right) - f \left(t + \frac{\delta}{2} \right) \right| < \frac{\epsilon}{2}.$$

For $k \geq N$,

$$f\left(t - \frac{\delta}{2}\right) - \frac{\epsilon}{2} < g_k\left(t - \frac{\delta}{2}\right) \text{ and } g_k\left(t + \frac{\delta}{2}\right) < f\left(t + \frac{\delta}{2}\right) + \frac{\epsilon}{2}.$$

From (\spadesuit) ,

$$f\left(t - \frac{\delta}{2}\right) - \frac{\epsilon}{2} < g_k(t) < f\left(t + \frac{\delta}{2}\right) + \frac{\epsilon}{2}.$$

Since $t - \delta/2$, $t + \delta/2 \in (t - \delta, t + \delta)$, by (\star) ,

$$f(t) - \epsilon < f\left(t - \frac{\delta}{2}\right) - \frac{\epsilon}{2} < g_k(t) < f\left(t + \frac{\delta}{2}\right) + \frac{\epsilon}{2} < f(t) + \epsilon.$$

Thus for $k \geq N$, $|g_k(t) - f(t)| < \epsilon \ (\forall t \in K)$. $f_{n_k} \to f$ uniformly on K.

¹Heine-Cantor Theorem.

5. Knowing that $||f||_2 \ge 0$ for any $f \in \mathcal{R}(\alpha)$, we shall prove that for $f, g \in \mathcal{R}(\alpha)$,

$$(\|f\|_2 + \|g\|_2)^2 \ge \|f + g\|_2^2. \tag{*}$$

Let I = [a, b].

$$\begin{aligned} (\|f\|_2 + \|g\|_2)^2 - \|f + g\|_2^2 &= \|f\|_2^2 + \|g\|_2^2 + 2 \|f\|_2 \|g\|_2 + \|f + g\|_2^2 \\ &= \int_I |f|^2 \ d\alpha + \int_I |g|^2 \ d\alpha + 2 \left\{ \int_I |f|^2 \ d\alpha \cdot \int_I |g|^2 \ d\alpha \right\}^{1/2} \\ &- \int_I |f|^2 \ d\alpha - \int_I |g|^2 \ d\alpha - 2 \int_I |fg| \ d\alpha \end{aligned} \\ &= 2 \left[\left\{ \int_I |f|^2 \ d\alpha \cdot \int_I |g|^2 \ d\alpha \right\}^{1/2} - \int_I |fg| \ d\alpha \right]. \quad (*)$$

Similarly, the integrals are all positive, so we instead prove the following.

Claim.
$$\int_{I} |f|^{2} d\alpha \cdot \int_{I} |g|^{2} d\alpha - \left(\int_{I} |fg| d\alpha \right)^{2} \ge 0.$$

Proof. Consider the function $(t|f|-|g|)^2$, where t is some real constant. Integrating this function with respect to α should be non-negative. Therefore,

$$\int_{I} (t |f| - |g|)^{2} d\alpha = t^{2} \int_{I} |f|^{2} d\alpha - 2t \int_{I} |fg| d\alpha + \int_{I} |g|^{2} d\alpha \ge 0.$$

Treating the above expression as a quadratic of t, the discriminant should be non-positive.

$$D/4 = \left(\int_{I} |fg| \ d\alpha\right)^{2} - \int_{I} |f|^{2} \ d\alpha \cdot \int_{I} |g|^{2} \ d\alpha \le 0,$$

giving the desired result. Equality holds when f, g are linearly dependent.

Hence $(*) \geq 0$, proving (\star) . For $f, g, h \in \mathcal{R}(\alpha)$, replacing f by f - g, g by g - h gives

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

proving the original inequality.

6. For any given partition $P = \{a = x_0, x_1, \dots, x_n = b\}$ of [a, b], define

$$g(t) = \frac{x_i - t}{x_i - x_{i-1}} f(x_{i-1}) + \frac{t - x_{i-1}}{x_i - x_{i-1}} f(x_i)$$

for $t \in [x_{i-1}, x_i]$. g(t) is piecewise continuous (linear) and for points in the partition except for the both ends, the left/right limit of g(t) at $t = x_i$ are the same. Thus g(t) is continuous on [a, b].

Since $f \in \mathcal{R}(\alpha)$, f is bounded on [a, b]. Let |f| < M for some positive real M.

For any interval $I_i = [x_{i-1}, x_i] \subseteq [a, b]$, $\inf_{x \in I_i} f(x) \le f(x) \le \sup_{x \in I_i} f(x)$ by definition. Also, since g(x) is linear,

$$\inf_{x \in I_i} f(x) \le \min\{f(x_{i-1}), f(x_i)\} \le g(x) \le \max\{f(x_{i-1}), f(x_i)\} \le \sup_{x \in I_i} f(x).$$

Therefore,

$$0 \le |f(x) - g(x)| \le \sup_{x \in I_i} f(x) - \inf_{x \in I_i} f(x) \implies |f(x) - g(x)|^2 \le \left(\sup_{x \in I_i} f(x) - \inf_{x \in I_i} f(x)\right)^2.$$

Additionally,

$$\sup_{x \in I_i} f(x) - \inf_{x \in I_i} f(x) < 2M.$$

Now let $\epsilon > 0$ be given. Since f is integrable, we can choose a partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \frac{\epsilon^2}{2M}.$$

Then we can define a continuous function g(x) as above, and

$$\begin{aligned} &\|f - g\|_{2}^{2} \leq U(P, |f - g|^{2}, \alpha) \\ &= \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_{i}]} |f(x) - g(x)|^{2} \left(\alpha(x_{i}) - \alpha(x_{i-1})\right) \\ &\leq \sum_{i=1}^{n} \left(\sup_{x \in [x_{i-1}, x_{i}]} f(x) - \inf_{x \in [x_{i-1}, x_{i}]} f(x)\right)^{2} \left(\alpha(x_{i}) - \alpha(x_{i-1})\right) \\ &\leq 2M \sum_{i=1}^{n} \left(\sup_{x \in [x_{i-1}, x_{i}]} f(x) - \inf_{x \in [x_{i-1}, x_{i}]} f(x)\right) \left(\alpha(x_{i}) - \alpha(x_{i-1})\right) \\ &= 2M \left(U(P, f, \alpha) - L(P, f, \alpha)\right) < 2M \cdot \frac{\epsilon^{2}}{2M} = \epsilon^{2}. \end{aligned}$$

Therefore $||f - g||_2 < \epsilon$, as desired.