西安交通大学入学数学测试

2020年8月7日

1 2016 年西安交通大学入学数学测试

2016 年 8 月 24 日
一、填空题: (本大题共 14 小题, 每题 5 分, 共 70 分.)
1. 设 $f(n)$ 是正整数 n 的各个数字之和,则使 $f(n)=22$ 成立的最小的 n 是
2. 设 $(a+1)(b+1) = 2$, 则 $\arctan a + \arctan b = $
3. 已知 $f(x)$ 满足 $f(x+1) = \frac{1-f(x)}{1+f(x)}$,则 $f(x)$ 的最小正周期是
4. 设 n 为正整数,若整数 x,y 满足 $ x + y \le n$, 则整点 (x,y) 的个数为
5. $\c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_3 + 8^2 a_2 + 8 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le a \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1 \le 7, a_i \in N), \c 0.026 = 8^3 a_1 + a_0 (1$
6. 两个或两个以上的整数除以 $N(N$ 为整数, $N>1)$, 若所得的余数相等且都是非负数,则数学上定义
这两个或两个以上的数同余,若 $69,90$ 和 125 对于某个 N 是同余的,则对于同样的 $N,81$ 同余于
———— 7. 已知复数 z 的模 $ z =1$, 则 $ z^2-z+1 $ 的最大值为
8. 对于函数 $y = f(x)$, $f(x+1) - f(x)$ 称为 $f(x)$ 在 x 处的一阶差分 Δy , 对于 Δy 在 x 处的一阶差分称
为 $f(x)$ 在 x 处的二阶差分 $\Delta^2 y$,则函数 $y = f(x) = x + 3^x$ 在 x 处的二阶差分 $\Delta^2 y = $
9. 已知 $f_1(x) = \frac{3x-1}{x+1}$,对于 $n = 1, 2, 3 \cdots$,定义 $f_{n+1}(x) = f_1[f_n(x)]$,则 $f_{35}(3) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
10. 已知钝角 $\triangle ABC$ 的最大边长为 2,其余两边长分别为 a,b , 则 $\{(x,y) x=a,y=b\}$ 所表示的平面图
形的面积为
11. 一矩形的一边在 x 轴上,另两个顶点在函数 $y = \frac{x}{1+x^2}(x>0)$ 的图像上,则此矩形绕 x 轴旋转而成的几何体的面积的最大值为
12. 边长为 1 的正五边形的对角线长为
13. 非空集合 $\{t f(x)$ 在区间 $[t,t^2-2t-2]$ 上为奇数 $\}$ 的元素为
14. 某停车场有 4 行 4 列 16 个停车位,车辆停放任意一个车位是等可能的,现有 4 辆型号不同的汽车
停放,则每一行每一列只停放 1 辆车的概率
二、(8 分) 证明给定的正数 ε , 都存在正数 δ , 使得对任意的正数 x, y , 只要 $ x-y < \delta$, 就有
$ \sqrt{x}-\sqrt{y} <\varepsilon.$
三、 $(8 \ \%)$ 圆周上有 7 盏灯 (如图), 每盏灯有两种状态"开"或"关"进行切换. 对任意一盏灯进行开关
切换时,同时切换与之相邻的两盏灯,称此过程为一次操作.问:不论各盏灯的初始状态如何,是否总能经
过一系列的上述操作, 使得所有灯都处于"开"的状态. 请建立数学模型证明你的结论.
A

四、 $(7 \ \ \%)$ 试设计一种求 π 近似值的算法, 试给出求解步骤或程序框图.

五、(7 分) 设 f 是 $(-\infty, +\infty)$ 上的函数,对于任意的 $x, y \in (-\infty, +\infty)$,都有 $|f(x) - f(y)| \le (x-y)^2$ 证明: 对任意的 $x,y\in (-\infty,+\infty)$ 及任意的正整数 n, 都有 $|f(x)-f(y)|\leq \frac{1}{n}(x-y)^2$

2017 年西安交通大学入学数学测试

2017年8月

- 一、选择题: (本大题共 10 小题, 每题 4 分, 共 40 分.)
- 1. 已知复数 z 的共轭复数为 \bar{z} , 若 $(z+2\bar{z})(1-2i)=3-4i(i$ 为虚数单位) 则在复平面内,复数 z 对应的 点位于()
- A. 第一象限
- B. 第二象限
 - C. 第三象限
- D. 第四象限
- 2. 设向量 a, b 满足 $|a+b| = 5, |a-b| = 1, 则 <math>a \cdot b = ($)
- B.4
- C.5 D.6
- 3. 已知圆 $(x-1)^2 + (y+1)^2 = 4$ 被直线 ax + y 2 = 0 所截的弦长为 4, 则 a = (
- B.-3
- C.4
- D.-4
- 4. 定义在区间 $(0,+\infty)$ 的函数 f(x) 使不等式 2f(x) < xf'(x) < 3f(x) 恒成立, 其中 f'(x) 为 f(x) 的导 数,则(

- 天多织相同的布),第一天织5尺布,现一月(按30天计算)共织390尺布",则从第2天起,每天比前 一天多织()尺布.
- $A_{\frac{1}{2}}$
- $B_{\frac{8}{15}}$
- $C.\frac{16}{29}$ $D.\frac{16}{31}$
- $6.(ax^2 \frac{1}{2})^9$ 展开式中的各项系数和为 1,则该展开式中常数项为 (

- C.5376
- 7. 一块石料表示的几何体恰好是一个直三棱柱,底面是一个直角三角形,其中
- $AC = 3, BC = 4, \angle ABC = 90^{\circ},$ 则棱长 $AA_1 = 10$,将该石材切削,打磨,加工成球,则能得到的最大球 的表面积等于(

- $A.(-\frac{1}{2},2)$
- B. $(-2, \frac{1}{2})$ C. (-2, 1) D. $(\frac{1}{2}, 1)$
- 9. 抛物线 $y^2 = 2px(p>0)$ 的焦点为 F,准线为 l,A,B 是抛物线上两个动点,且满足 $\angle AFB = \frac{\pi}{3}$,设 线段中点 P 在 l 上的投影为 Q, 则 $\frac{|PQ|}{|AB|}$ 的最大值为 ()
- B. $\sqrt{2}$ C. 1
- 10. 函数 $f(x) = \lg |x-1| |\sin \pi x| (-3 \le x \le 5)$ 的所有零点之和为 (
- A.0
- B.8
- C.12
- 二、填空题: (本大题共5小题,每题4分,共20分)

- $A_1, A_2,$ 则 $\overrightarrow{AA_1} \cdot \overrightarrow{AA_2}$ 的值是 _____

- 15. 已知四棱锥 S-ABCD 底面 ABCD 为正方形, $SA \perp$ 底面 ABCD. 如果该四棱锥外接球半径为 3,则此四棱锥体积的最大值为
- 16. 若"任意 $x \in [-1,1], x^2 + 1 < m$ "是真命题,则实数 m 的最小值为 ______
- 三、解答题 (解答应写成必要的文字说明、证明过程或演算步骤)
- 17.(本小题满分 12 分) 已知各项均为正数的等比数列 $\{a_n\}$, 其前 n 项和为 S_n 且 $S_2 = 1$, $a_4 = 2a_2 + a_3$,
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设数列 $\{b_n\}$ 满足 $b_n = (6n-3)a_n$, 其前 n 项和为 T_n , 求使得不等式 $T_n > 2017$ 成立的正整数 n 的最小值.(参考数据: $2^7 = 128, 2^8 = 256, 2^9 = 512$).
- 18. (本小题满分 12 分) 如图, 在四校锥 P-ABCD 中,PC 上底面ABCD, 底面 ABCD 是直角梯形, $AB \perp AD$, AB//CD, AB = 2, AD = CD = 1, E 是 PB 上一点
- (1) 求证: 平面 $EAC \perp$ 平面 PBC;
- (2) 若 E 是 PB 的中点,且二面角 P-AC-E 的余弦值是 $\frac{\sqrt{6}}{3}$, 求直线 PA 与平面 EAC 所成角的正弦值.

- 19. (本小题满分 10 分) 已知 A 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右顶点, 其离心率为 $\frac{1}{2}$, 圆 $x^2 + y^2 2\sqrt{3}y + 2 = 0$ 的圆心与椭圆 C 的上项点重合.
- (1) 求椭圆 C 的方程;
- (2) 若直线 l: y = kx + 1 与椭圆 C 交于 M N 两点 (不同于点 A), 若 $\angle MAN$ 为钝角,求实数 k 的取值 范围.
- 20. (本小题满分 10 分) 已知函数 $f(x) = \frac{1}{2}ax^2 a \ln x + x$
- (1) 讨论函数 f(x) 的单调性;
- (2) 若 a < 0, 设 g(x) = f(x) x, $h(x) = -2x \ln x + 2x$, 若对任意

 $x_1, x_2 \in [1, +\infty)$ $(x_1 \neq x_2), |g(x_2) - g(x_1)| \ge |h(x_2) - h(x_1)|$ 恒成立, 求实数 a 的取值范围.

附加题

报考工科试验班 (钱学森班)、理科试验班的同学可在第 17-20 题中任意选择少做一题 (须在选择少做 题处明确标注"弃做"), 但必须做下面两题,单独计分.

- 1. (10 分) 设 n 是正整数, $S = \{1, 2, \dots, n\}$. 设 A, B 均为 S 的子集且 $A \cup B = S$. 问: 这样的 A, B 构成的 "有序对" (即当 $A \neq B$ 时把 A, B 和 B, A 视为两对) 有多少个?
- 2.(10 分) 对任意的正整数 n, 设 $S_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$. 证明: 对任意的正数 M 以及正整数 n, 都存在正整数 p, 使得 $S_{n+p} \geq S_n + M$

3 2019 年西安交通大学入学数学测试

2019年8月21日

- **一、填空题:** (本大题共 12 小题, 每题 5 分, 共 60 分.)
- 1. 设复数 z 满足 $|z| = 2, z^3 = a + bi, a, b$ 为实数, 则 a + b 最小值为 ______
- 2. 函数 $f(x) = |x+1| + |x+2| + \cdots + |x+19|$ 最小值是 ______
- 3. 如果 $\cos x + \cos y + \cos z = 0$, $\sin x + \sin y = \sin z$, 那么 $\cos^2 x + \cos^2 y + \cos^2 z =$ ______
- 4. 设数列 $\{a_n\}$ 满足 $a_1=1, n(a_{n+1}-1)=\sum_{k=1}^n a_k,$ 则 $\frac{1}{a_{2020}-a_{2019}}=$
- 5. 把 10 名游客分成两个小组,并在每个小组中选出一个组长,共有 ______ 个方案.

- 四、(10 分) 已知平面上第一象限内有 n 个互异的点 (x_i,y_i) $(i=1,2,\cdots,n)$,试寻找一条直线 f(x)=ax 使得该直线与这所有点 "最接近" (即每个 $x=x_i$ 处直线上的值 $f(x_i)$ 与已知值 y_i 之差的平方和最小). 五、(10 分) 是否存在整数集 \mathbb{Z} 上的函数 $f:\mathbb{Z}\to \{-1,0,1\}$,对任意的整数 $x,y\in\mathbb{Z}$,只要 $|x-y|\in\{2,3,5\}$ 就有 $f(x)\neq f(y)$? 证明你的结论.