ĐỀ KHỞI ĐỘNG 06

Câu 1: Có bao nhiều cách xếp 5 bạn học sinh ngồi vào một hàng ghế có 5 chiếc ghế (mỗi bạn ngồi một ghế)?

A. 24

- **B.** 120

D. 5

Câu 2: Trong không gian Oxyz, cho hai vector $\vec{u} = (1; -2; 3)$ và $\vec{v} = (0; 1; -1)$. Khi đó $\vec{u}.\vec{v}$ bằng

A.-5

B.5

- **C.** $2\sqrt{7}$
- **D.**-2

Câu 3: Cho mặt cầu có bán kính r = 2. Diện tích của mặt cầu đã cho bằng

- **A.** $\frac{16\pi}{3}$
- $\mathbf{B.}16\pi$
- $C.\frac{32\pi}{2}$
- $\mathbf{D.}4\pi$

Câu 4: Cho hàm số đa thức bậc ba y = f(x) có đồ thị như hình vẽ bên.

Mệnh đề nào sau đây là mệnh đề đúng?

A.Hàm số f(x) đồng biến trên $(0; +\infty)$

B.Hàm số f(x) nghịch biến trên (-2;1)

C.Hàm số f(x) đồng biến trên $(1;+\infty)$

D.Hàm số f(x) nghịch biến trên $(-\infty; -2)$

- A. Hai mặt.
- B. Ba mặt.
- C. Bốn mặt.
- D. Năm mặt.

Câu 6: Cho hàm số y = f(x) có bảng biến thiên như hình vẽ

Khẳng định nào sau đây **đúng**?

- **A.** Giá trị cực đại của hàm số là $y_{CD} = 3$
- **B.** Giá trị cực đại của hàm số là $y_{CD} = 4$
- C. Giá trị cực tiểu của hàm số là $y_{CT} = -3$
- **D.** Giá trị cực tiểu của hàm số là $y_{CT} = 1$

Câu 7: Cho khối hộp chữ nhật ABCD.A'B'C'D' có AA' = a, AB = 3a, AC = 5a. Thể tích khối hộp bằng

- **A.** $12a^{3}$
- $\mathbf{B.4}a^3$
- $C.15a^{3}$
- **D.** $5a^{3}$

Câu 8: Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-2;4). Điểm đối xứng với điểm M qua trục Ox có tọa độ là:

- **A.** (-1,-2,4).
- **B.** (1;2;-4). **C.** (-1;2;-4). **D.** (1;-2;-4).

Câu 9: Hàm số nào trong các hàm số sau có bảng biến thiên như hình bên dưới

A. $y = \log_3 x$.

B. $y = \log_{\frac{1}{x}} x$. **C.** $y = 3^x$.

D. $y = \left(\frac{1}{3}\right)^x$.

Câu 10: Cho hàm số g(x) xác định trên K và G(x) là một nguyên hàm của g(x) trên K. Khẳng định nào dưới đây là đúng?

A. $G(x) = g(x), \forall x \in K$

B. $G'(x) = g(x), \forall x \in K$

C. $g'(x) = G(x), \forall x \in K$

D. $G'(x) = g'(x), \forall x \in K$

Câu 11: Tập nghiệm của bất phương trình $5^x < 3$ là

A. $(-\infty; \log_3 5)$.

B. $\left(-\infty; \frac{3}{5}\right)$. **C.** $\left(-\infty; \frac{5}{3}\right)$.

D. $\left(-\infty; \log_5 3\right)$.

Câu 12: Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Diện tích xung quanh của hình nón tạo thành khi quay tam giác ABC quanh trục AB bằng

A. 20π

B. 40π

C. 15π

D. 12π

Câu 13: Trong không gian Oxyz, cho các vector $\vec{a} = (1; -2; -1)$ và $\vec{b} = (2; 1; -1)$. Giá trị của $\cos(\vec{a}, \vec{b})$ là

A. $-\frac{1}{6}$

B. $\frac{\sqrt{2}}{2}$

Câu 14: Với *n* là số nguyên dương tùy ý lớn hơn 1, mệnh đề nào dưới đây đúng?

A. $A_n^2 = 2n$.

B. $A_n^2 = \frac{n(n-2)}{2}$. **C.** $A_n^2 = n(n-1)$. **D.** $A_n^2 = \frac{n(n-1)}{2}$.

Câu 15: Cho cấp số nhân (u_n) có số hạng đầu $u_1 = 3$ và công bội q = 2. Số hạng thứ năm của cấp số nhân (u_n) là

 $A.u_5 = 96$

B. $u_5 = 32$

 $C.u_5 = 48$

D. $u_5 = 24$

Câu 16: Cho số thực x và số thực $y \neq 0$ tùy ý. Mệnh đề nào dưới đây sai?

A. $(2.7)^x = 2^x.7^x$ **B.** $4^{\frac{x}{y}} = \frac{4^x}{4^y}$

C. $(5^x)^y = (5^y)^x$ **D.** $3^x . 3^y = 3^{x+y}$

Câu 17: Hàm số $y = \log_a x (0 < a \ne 1)$ có đồ thị là hình bên. Giá trị của cơ số a bằng

A. $\sqrt[4]{2}$

B. 4

 $\mathbf{C}.\sqrt{2}$

D. 2

Câu 18: Cho hàm số $y = ax^4 + bx^3 + cx^2 + dx + e(a \ne 0)$. Biết rằng hàm số f(x) có đạo hàm là f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số nghịch biến trên:

A. Khoảng
$$(-\infty, -2)$$
 B. Khoảng $(0,1)$

C. Khoảng
$$(-1,1]$$

C. Khoảng
$$(-1,1)$$
 D. Khoảng $(1,+\infty)$

Câu 19: Giả sử F(x) là một nguyên hàm của hàm số $f(x) = \cos x$ thoả mãn F(0) = 0. Khẳng định nào sau đây đúng?

$$\mathbf{A} \cdot F(x) = \tan x$$

$$\mathbf{B.}\,F(x) = \cos x$$

B.
$$F(x) = \cos x$$
 C. $F(x) = \sin x$ **D.** $F(x) = \cot x$

$$\mathbf{D.}\,F(x) = \cot x$$

Câu 20: Cho hàm số $y = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ. Giá tri của a+b+c+d là

Câu 21: Trong không gian cho hệ trục Oxyz, đường thẳng (d) có phương trình $\begin{cases} y = 3 + t \text{ và mặt phẳng} \end{cases}$

 $(\Delta): x+2y-2z+3=0$. Góc giữa (d) và (Δ) là góc α . Khẳng định nào sau đây là đúng?

A.
$$\sin \alpha = \frac{\sqrt{3}}{9}$$
 B. $\cos \alpha = \frac{\sqrt{3}}{9}$ **C.** $\tan \alpha = \frac{\sqrt{3}}{9}$ **D.** $\cot \alpha = \frac{\sqrt{3}}{9}$

B.
$$\cos \alpha = \frac{\sqrt{3}}{9}$$

C.
$$\tan \alpha = \frac{\sqrt{3}}{9}$$

D.
$$\cot \alpha = \frac{\sqrt{3}}{9}$$

Câu 22: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và AB = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối chóp S.ABC

$$\mathbf{A.}V = \frac{a^3 \sqrt{3}}{4}$$

B.
$$V = \frac{a^3 \sqrt{3}}{3}$$

$$\mathbf{C.}V = \frac{a^3 \sqrt{3}}{12}$$

B.
$$V = \frac{a^3 \sqrt{3}}{3}$$
 C. $V = \frac{a^3 \sqrt{3}}{12}$ **D.** $V = \frac{2a^3 \sqrt{3}}{3}$

Câu 23: Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(1;-2;-1) và có tiếp diện là mặt phẳng (P): 2x + y + 2z + 5 = 0, có phương trình là.

$$\mathbf{A.}(x-1)^{2} + (y+2)^{2} + (z+1)^{2} = 4$$

B.
$$(x+1)^2 + (y-2)^2 + (z-1)^2 = 1$$

$$\mathbf{C} \cdot (x+1)^2 + (y-2)^2 + (z-1)^2 = 4$$

$$\mathbf{D.}(x-1)^2 + (y+2)^2 + (z+1)^2 = 1$$

Câu 24: Cho hình chóp S.ABCD có tất cả các canh đều bằng a. Gọi M và N lần lượt là trung điểm của SC và BC (tham khảo hình vẽ bên). Số đo của góc giữa hai đường thẳng MN và CD bằng

- **A.** 90°.
- **B.**30°.
- **C.** 45°.
- **D.** 60° .

Câu 25: Số nghiệm nguyên của bất phương trình $2^x + 8.2^{-x} < 9$ là

A. 3

B. 2

C. 0

D. 1

Câu 26: Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \log(x^2 - 2mx + 9)$ có tập xác định là \mathbb{R} ?

A. 7

B. 6

Câu 27: Tìm nguyên hàm F(x) của hàm số $f(x) = 2x + 1 - \frac{2}{x-2}$ biết F(1) = 3

- **A.** $F(x) = x^2 + x 2\ln(2-x) + 1$
- **B.** $F(x) = x^2 + x + 2 \ln|x 2| + 1$
- C. $F(x) = x^2 + x \ln|x 2| + 1$
- **D.** $F(x) = x^2 + x 2 \ln|x 2| + 1$

Câu 28: Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} , có đồ thị trong hình bên. Tìm giá trị nhỏ nhất m của hàm số y = f(x)trên đoạn [-2;2].

A.
$$m = -1$$

B.
$$m = -3$$

C.
$$m = -5$$

D.
$$m = 2$$

Câu 29: Trong không gian Oxyz, cho phương trình $x^2 + y^2 + z^2 - 2(m-2)x + 2my - 6z + m^2 + 10 = 0(*)$. Số giá trị nguyên của m thuộc đoạn [-2;10] để (*) là phương trình của một mặt cầu là:

- **A.** 13.
- **B.** 10.
- **C.** 12.

Câu 30: Trong không gian Oxyz, cho đường thẳng $d: \frac{x-1}{-2} = \frac{y+2}{1} = \frac{z-4}{3}$ và đường thẳng $d': \begin{cases} x = -1+t \\ y = -t \end{cases}$.

Xét vi trí tương đối của d và d'

- A.d chéo d'
- $\mathbf{B.}d//d$
- $\mathbf{C}.d$ cắt d'
- $\mathbf{D} \cdot d \equiv d'$

Câu 31: Cho hàm số f(x) có đạo hàm và liên tục trên đoạn [1;3], f(3) = 4 và $\int_{0}^{x} f'(2x+1)dx = 6$.

Tính giá trị của f(1).

A.
$$f(1) = -8$$
 B. $f(1) = -2$

B.
$$f(1) = -2$$

C.
$$f(1) = 16$$

D.
$$f(1) = 10$$

Câu 32: Tìm tất cả các giá trị m để phương trình $x^3 - 3x - m + 1 = 0$ có ba nghiệm phân biệt

- A. -1 < m < 3
- **B.** m = 1
- **C.** $-1 \le m \le 3$
- **D.** m < -1 hoặc m > 3

Câu 33: Cho hàm số $y = -x^3 - 6x^2 + (4m - 9)x + 4$. Số giá trị nguyên của tham số m thuộc đoạn [-8;8]để hàm số đã cho nghịch biến trên khoảng $(-\infty;-1)$ là

Câu 34: Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = -1 và x = 4, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ $x(-1 \le x \le 4)$ thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là x và 2x+1.

A.
$$V = \frac{125}{3}$$
.

B.
$$V = \frac{125\pi}{3}$$

B.
$$V = \frac{125\pi}{3}$$
. **C.** $V = \frac{305\pi}{6}$. **D.** $V = \frac{305}{6}$.

D.
$$V = \frac{305}{6}$$

Câu 35: Trong không gian Oxyz, cho điểm A(1;0;2) và đường thẳng $d:\frac{x-1}{1}=\frac{y}{1}=\frac{z+1}{2}$. Viết phương trình đường thẳng Δ đi qua A, vuông góc và cắt d

A.
$$\Delta : \frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-1}$$
.

B.
$$\Delta: \frac{x-1}{1} = \frac{y}{-3} = \frac{z-2}{1}$$
.

C.
$$\Delta : \frac{x-1}{2} = \frac{y}{2} = \frac{z-2}{1}$$
.

D.
$$\Delta : \frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$$
.

Câu 36: Trong năm học 2022 – 2023 khối 12 trường X có 12 lớp được đặt tên theo thứ tự 12A1 đến 12A12. Nhằm chuẩn bị cho đợt sinh hoạt chào mừng 92 năm ngày thành lập Đoàn TNCS Hồ Chí Minh (26/3/1931-26/3/2023), Đoàn trường chọn ngẫu nhiên 4 lớp 12 để tổ chức sinh hoạt mẫu. Tính xác suất để trong 4 lớp được chọn có đúng 3 lớp có số thứ tự liên tiếp nhau.

A.
$$P = \frac{14}{99}$$
.

B.
$$P = \frac{16}{99}$$
.

$$\mathbf{C.}\frac{56}{495}$$
.

D.
$$\frac{8}{55}$$

Câu 37: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, đường thẳng SA vuông góc với mặt phẳng (ABCD), $SA = a\sqrt{2}$. Khoảng cách giữa hai đường thẳng SB và AD bằng

$$\mathbf{A.} \frac{a\sqrt{6}}{3}$$

$$\mathbf{A}.\frac{a\sqrt{6}}{3} \qquad \qquad \mathbf{B}.\frac{a\sqrt{2}}{3}$$

C.
$$\frac{a\sqrt{3}}{2}$$

Câu 38: Hàm số $y = \frac{ax+b}{cx+d}$ với a > 0 có đồ thị như hình vẽ bên.

Mệnh đề nào sau đây là đúng?

A.
$$b < 0, c < 0, d < 0$$
 B. $b < 0, c > 0, d < 0$

B.
$$b < 0, c > 0, d < 0$$

$$\mathbf{C.}b > 0, c > 0, d < 0$$
 $\mathbf{D.}b > 0, c < 0, d < 0$

$$\mathbf{D}, h > 0, c < 0, d < 0$$

Câu 39: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α) đi qua điểm M(1;2;3) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự tạo thành một cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng (α) .

A.
$$\frac{5\sqrt{21}}{21}$$

B.
$$9\sqrt{93}$$

C.
$$\frac{18\sqrt{91}}{91}$$

D.
$$\frac{4\sqrt{11}}{15}$$

A. $\frac{5\sqrt{21}}{21}$ **B.** $9\sqrt{93}$ **C.** $\frac{18\sqrt{91}}{91}$ **D.** $\frac{4\sqrt{11}}{15}$ **Câu 40:** Cho hàm số $f(x) = \begin{cases} 3x^2 + 6x & \text{khi } x \ge 2\\ \frac{2}{2x - 5} & \text{khi } x < 2 \end{cases}$. Nếu với a, b là các số nguyên dương

 $\int_{1}^{e^{2}} \frac{f(\ln^{2} x)}{x \ln x} dx = a - \frac{1}{5} \ln b \text{ thì } ab - b^{2} \text{ bằng}$

Câu 41: Cho hàm số $y = x^4 - 2(m-2)x^2 + 3 - m$ với m là tham số. Khi $m = m_0$ thì đồ thị hàm số đã cho có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O làm trực tâm. Giá trị m_0 thuộc khoảng nào dưới đây?

A.
$$(-5;-2)$$

B.
$$(-2;2)$$

D.
$$(2;5)$$

Câu 42: Có bao nhiều giá trị nguyên của tham số a thuộc đoạn $\begin{bmatrix} -10;10 \end{bmatrix}$ để hàm số $y = ax^4 + 3x^2 + cx$ đạt giá trị nhỏ nhất trên đoạn [0;4] tại x=1.

A.11

B.10

C.6

D.5

Câu 43: Gọi S là tập nghiệm của phương trình $(3-x)\log_5 \frac{x^2+4}{x} = x^3-8x^2+18x-9$. Tổng các nghiệm của phương trình là

A.3

B.8

C.4

D.12

Câu 44: Một bể bơi hình elip, có độ dài trục lớn bằng 10 m và trục nhỏ bằng 8 m. Khu vực A là chứa nước, khu vực B là bậc thang lên xuống bể boi, là nửa đường tròn có tâm là một tiêu điểm của elip, bán kính bằng 1 m. Phần còn lai là khu vực C (phần tô đâm) người ta lát gạch như hình vẽ. Nếu chi phí lát gạch cho mỗi mét vuông là 400 nghìn đồng thì chi phí lát gạch ở khu vực C là bao nhiều? (làm tròn đến hàng nghìn)

A. 2.950.000 đồng

B. 3.578.000 đồng

C. 1.360.000 đồng

D. 680.000 đồng

Câu 45: Trong không gian Oxyz, cho đường thẳng (d): $\frac{x-1}{2} = \frac{y+1}{2} = \frac{z-1}{1}$ và mặt phẳng (P): x+y+z+3=0. Gọi (d') là hình chiếu vuông góc của (d) lên mặt phẳng (P). Lấy M(a;b;1)thuộc (d'). Tính 2a + 3b

A.-7

D. -9

Câu 46: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn

 $f(x)+2f'(x)=(x-1)[4x^2-2x-4-f'(x)], \forall x \in \mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường y = f(x) và y = f'(x) bằng

D. 4

Câu 47: Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2 + x - 6$. Có bao nhiều giá trị nguyên của m để hàm số $y = f(x^3 - 3x^2 - 9x + m)$ có đúng 6 điểm cực trị.

A.10

D.9

Câu 48: Cho các số thực x, y thoả mãn $\frac{1}{\sqrt{3}^{(4x-2x^2)}} - \frac{1}{3^{y^2-2y+1}} + 2(x+y-1)^2 - 4xy = 0$. Gọi M, m lần lượt là

giá trị lớn nhất và nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 2y$. Tích M.m bằng

A.18

B. $9 + 2\sqrt{13}$ **C.** $9 - 2\sqrt{13}$

D. 29

Câu 49: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm O, bán kính R=2 và mặt cầu $(S'):(x-1)^2+y^2+(z-1)^2=1$. Mặt phẳng (P) thay đổi luôn tiếp xúc với hai mặt cầu (S) và (S'). Biết rằng (P) luôn đi qua điểm M(a;b;c) cố định. Tính giá trị của biểu thức a+b+c.

A. 2

Tài Liệu Ôn Thi Group

Câu 50: Cho hàm số y = f(x) liên tục trên \mathbb{R} . Đồ thị của hàm số y = f(1-x) được cho trong hình vẽ bên. Có bao nhiều giá trị nguyên của m để phương trình $\left| f\left(\frac{1-x}{x+2}\right) + m \right| = 1 \text{ có đúng 3 nghiệm phân biệt thuộc } \left[-1;1\right]?$ **A.** 3. **B.** 4

A. 3. **C**. 2

D. 1

-----HÉT-----

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.B	2.A	3.B	4.C	5.A	6.A	7.A	8.B	9.D	10.B
11.D	12.A	13.D	14.C	15.C	16.B	17.C	18.A	19.C	20.D
21.A	22.D	23.D	24.D	25.B	26.D	27.D	28.C	29.B	30.C
31.A	32.A	33.A	34.D	35.A	36.D	37.A	38.C	39.C	40.B
41.D	42.A	43.B	44.A	45.B	46.C	47.A	48.D	49.B	50.A

TAILE ON THE PARTY OF THE PARTY