Karuš, Kun-Takerova metoda

Anja Buljević Aleksandra Mitrović Smilja Stokanović

9. novembar 2020.

0.1 Uvodna razmatranja

Posmatra se višedimenziona kriterijumska funkcija (funkcija cilja)

$$y = f(\underline{x})$$
,

gde je $\underline{x} = [x_1 \ x_2 ... x_n]^T$ vektor promenljivih stanja. Potrebno je odrediti optimum postavljenog problema ukoliko su promenljive stanja x_i ograničene relacijama

$$h_i(\underline{x}) = 0$$
 $i = 1, ..., m_1$
 $g_j(\underline{x}) \le 0$ $j = 1, ..., m_2$.

Jednačine $h_i(\underline{x})$ predstavljaju **ograničenja tipa jednakosti**, dok jednačine $g_i(\underline{x})$ predstavljaju **ograničenja tipa nejednakosti**.

Primena Karuš, Kun-Takerove metode na pronalaženje optimuma datog problema podrazumeva primenu algoritma koga čine sledeći koraci

 Formiranje proširenog kriterijuma optimalnosti F bez uvođenja dodatnih promenljivih kod ograničenja tipa nejednakosti

$$F = f(\underline{x}) + \sum_{i=1}^{m_1} \mu_i h_i(\underline{x}) + \sum_{j=1}^{m_2} \lambda_j g_j(\underline{x}) ,$$

gde su μ_i množitelji za ograničenja tipa jednakosti, a λ_j su množitelji za ograničenja tipa nejednakosti ;

2. Parcijalni izvodi proširenog kriterijuma optimalnosti po originalnim promenljivim moraju biti jednaki nuli

$$\frac{\partial F}{\partial x_k} = 0 \quad k = 1, \dots, n \; ;$$

3.

$$h_i(\underline{x}) = 0$$
 $i = 1, ..., m_1$
 $\lambda_j g_j(\underline{x}) = 0$ $j = 1, ..., m_2$;

- 4. Rešavanje sistema jednačina iz koraka 2. i koraka 3. **Proveriti** da li dobijena rešenja zadovoljavaju ograničenja;
- 5. Na osnovu izračunatih vrednosti Lagranževih množitelja λ_i diskutuje se karakter esktrema

I $\lambda_i \geq 0 \quad \Rightarrow \quad \text{tačka je minimum}$, II $\lambda_i \leq 0 \implies \text{tačka je maksimum}$.

Važno je napomenuti da mora bar jedna vrednost Lagranževog množitelja λ_i biti veća od nule (ne mogu sve vrednosti biti jednake nuli) kako bi tačka bila minimum. Sa druge strane, da bi tačka bila maksimum mora bar jedna vrednost Lagranževog množitelja λ_i biti manja od nule. Ukoliko su sve vrednosti Lagranževog množitelja $\lambda_i = 0$, ne znamo ništa o karakteru tačke. Na kraju, ukoliko λ_i menja znak radi se o prevojnoj tački.

Zadaci

1. Primenom Karuš, Kun-Takerove metode odrediti ekstremne vrednosti sledećeg optimizacionog problema

$$f(\underline{x}) = x_1 x_2$$

 $g(\underline{x}) : x_1^2 + x_2^2 - 25 \le 0$.

Rešenje.

Prvi korak je formiranje novog kriterijuma optimalnosti F

$$F = x_1 x_2 + \lambda (x_1^2 + x_2^2 - 25) .$$

Sledi izjednačavanje parcijalnih izvoda funkcije F po promenljivim x_1 i x_2 sa nulom

$$\frac{\partial F}{\partial x_1} = x_2 + 2\lambda x_1 = 0 \tag{1}$$

$$\frac{\partial F}{\partial x_2} = x_1 + 2\lambda x_2 = 0 , \qquad (2)$$

a potom

$$\lambda(x_1^2 + x_2^2 - 25) = 0 \quad \Rightarrow \quad \lambda = 0 \quad \lor \quad x_1^2 + x_2^2 - 25 = 0$$

pa razmatramo dva slučaja:

a) $\lambda = 0$

$$(1) \quad \Rightarrow \quad x_2 = 0$$

$$(2) \Rightarrow x_1 = 0,$$

odnosno dobijena je tačka A(0,0) koja zadovoljava jednačinu ograničenja $g(\underline{x})$. Vrednost Lagranževog množitelja za datu tačku je $\lambda = 0$ pa ne znamo ništa o karakteru tačke.

b)
$$x_1^2 + x_2^2 - 25 = 0$$

Rešava se sistem jednačina 1

$$x_2 + 2\lambda x_1 = 0$$
$$x_1 + 2\lambda x_2 = 0$$

na sledeći način

$$x_2 + 2\lambda x_1 = 0 / \cdot (-x_2)$$
 \Rightarrow $-x_2^2 - 2\lambda x_1 x_2 = 0$ (3)

$$x_1 + 2\lambda x_2 = 0 / \cdot x_1$$
 $\Rightarrow x_1^2 + 2\lambda x_1 x_2 = 0$, (4)

Sabiranjem jednačina (3) i (4) dobija se

$$x_1^2 = x_2^2 . (5)$$

Nakon smene u jednačinu $x_1^2 + x_2^2 - 25 = 0$ sledi

$$x_1^2 = \frac{25}{2} \quad \Rightarrow \quad x_1 = \pm \frac{5}{\sqrt{2}} ,$$

pa se uvrštavanjem u (5) može izračunati

$$x_2=\pm\frac{5}{\sqrt{2}}.$$

Izračunate vrednosti su dobijene iz jednačine ograničenja g(x) tako da je ograničenje zadovoljeno. Vrednost Lagranževog množitelja za svaku tačku se može izračunati iz jednačine

$$\lambda = -\frac{x_2}{2x_1} \ .$$

Na kraju, za dobijene tačke su izračunate vrednosti Lagranževog množitelja i komentarisan je karakter dobijenih tačaka

jedinstven, odnosno sistem se može rešavati i na drugačiji način.

¹ Čitaocu napominjemo da princip rešavanja datog sistema jednačina nije

Tabela 1: Karakter stacionarne tačke.

2. Primenom Karuš, Kun-Takerove teoreme odrediti ekstreme funkcije $z(\underline{x}) = -x_1(30 - x_1) - x_2(50 - 2x_2) + 3x_1 + 5x_2 + 10x_3$ uz ograničenja $g_1(\underline{x}) : x_1 + x_2 \le x_3$ i $g_2(\underline{x}) : x_3 \le 17.25$.

Rešenje.

Prvo je neophodno transformisati jednačine ograničenja na sledeći način

$$g_1(\underline{x}): x_1 + x_2 - x_3 \le 0$$

 $g_2(\underline{x}): x_3 - 17.25 \le 0$

Novi kriterijum optimalnosti je

$$F = -x_1(30 - x_1) - x_2(50 - 2x_2) + 3x_1 + 5x_2 + 10x_3 + \lambda_1(x_1 + x_2 - x_3) + \lambda_2(x_3 - 17.25).$$

Izjednačavanjem parcijalnih izvoda po osnovnim promenljivim dobija se

$$\frac{\partial F}{\partial x_1} = -30 + 2x_1 + 3 + \lambda_1 = 0 \tag{6}$$

$$\frac{\partial F}{\partial x_2} = -50 + 4x_2 + 5 + \lambda_1 = 0 \tag{7}$$

$$\frac{\partial F}{\partial x_3} = 10 - \lambda_1 + \lambda_2 = 0. {(8)}$$

Na osnovu jednačina ograničenja formiraju se relacije

$$\lambda_1(x_1 + x_2 - x_3) = 0 \Rightarrow \lambda_1 = 0 \lor x_1 + x_2 - x_3 = 0$$

 $\lambda_2(x_3 - 17.25) = 0 \Rightarrow \lambda_2 = 0 \lor x_3 - 17.25 = 0$,

na osnovu kojih razmatramo četiri različita slučaja:

a)
$$\lambda_1 = 0 \quad \wedge \ \lambda_2 = 0$$

(8)
$$\Rightarrow$$
 10 = 0 \perp

b)
$$\lambda_1 = 0 \quad \land \ x_3 = 17.25 = \frac{69}{4}$$

$$(6) \quad \Rightarrow \quad x_1 = \frac{27}{2}$$

$$(7) \quad \Rightarrow \quad x_2 = \frac{45}{4}$$

Dobijena je tačka $A\left(\frac{27}{2}, \frac{45}{4}, \frac{69}{4}\right)$. Uvrštavanjem dobijenih vrednosti u jednačinu ograničenja $g_1(\underline{x})$ sledi

$$g_1(\underline{x}) \Rightarrow \frac{27}{2} + \frac{45}{4} - \frac{69}{4} = \frac{15}{2} \le 0 \quad \bot$$

Kako ograničenje nije zadovoljeno, dobijenu tačku A odbacujemo.

c)
$$x_1 + x_2 - x_3 = 0 \land \lambda_2 = 0$$

(8)
$$\Rightarrow$$
 $\lambda_1 = 10$

$$(6) \quad \Rightarrow \quad x_1 = \frac{17}{2}$$

$$(7) \quad \Rightarrow \quad x_2 = \frac{35}{4}$$

Na osnovu dobijenih vrednosti moguće je izračunati i vrednost x₃

$$x_3 = x_1 + x_2 = \frac{69}{4} \ .$$

Dobijena je tačka $B\left(\frac{17}{2},\frac{35}{4},\frac{69}{4}\right)$ čije vrednosti zadovoljavaju jednačine ograničenja $g_1(\underline{x})$ i $g_2(\underline{x})$. Kako je $\lambda_1 = 10 > 0$ i $\lambda_2 = 0$ sledi da je tačka B minimum.

d) $x_1 + x_2 - x_3 = 0 \wedge x_3 = 17.25 = \frac{69}{4}$

Kombinovanjem navedenih jednačina dobija se

$$x_1 + x_2 - \frac{69}{4} = 0 \quad \Rightarrow \quad x_1 = \frac{69}{4} - x_2$$
.

Uvrštavanjem dobijene smene u (6) sledi

(6)
$$\Rightarrow$$
 $-30 + 2(\frac{69}{4} - x_2) + 3 + \lambda_1 = 0 \rightarrow \lambda_1 = 2x_2 - \frac{15}{2}$.

Smenom u jednačinu (7) dobija se

(7)
$$\Rightarrow$$
 $-50 + 4x_2 + 5 + 2x_2 - \frac{15}{2} = 0 \rightarrow x_2 = \frac{35}{4}$.

Na kraju, vrednost za x_1 je

$$x_1 = \frac{69}{4} - \frac{35}{4} = \frac{17}{2} \ .$$

Dobijena je tačka $C\left(\frac{17}{2},\frac{35}{4},\frac{69}{4}\right)=B$ kao u prethodno razmatranom slučaju. Tačka je minimum jer je $\lambda_1 = 10 > 0$ i $\lambda_2=0.$

3. Primenom Karuš, Kun-Takerove teoreme odrediti ekstreme sledećeg optimizacionog problema

$$f(\underline{x}) = 4x_1 - x_2^2 - 12$$

$$h_1(\underline{x}) : 25 - x_1^2 - x_2^2 = 0$$

$$g_1(\underline{x}) : 10x_1 - x_1^2 + 10x_2 - x_2^2 - 38 \ge 0$$

$$g_2(\underline{x}) : x_1 \ge 2$$

$$g_3(\underline{x}) : x_2 \ge 0$$

Rešenje.

Prvo je potrebno transformisati jednačine ograničenja

$$h_1(\underline{x}): x_1^2 + x_2^2 - 25 = 0$$

$$g_1(\underline{x}): x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38 \le 0$$

$$g_2(\underline{x}): 2 - x_1 \le 0$$

$$g_3(\underline{x}): -x_2 \le 0$$

$$F = 4x_1 - x_2^2 - 12 + \mu(x_1^2 + x_2^2 - 25) + \lambda_1(x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38) + \lambda_2(2 - x_1) + \lambda_3(-x_2).$$

Prvi izvodi funkcije F po promenljivim x_1 i x_2 se izjednačavaju sa nulom pa se dobija sistem jednačina

$$\frac{\partial F}{\partial x_1} = 4 + 2\mu x_1 + 2\lambda_1 x_1 - 10\lambda_1 - \lambda_2 = 0 \tag{9}$$

$$\frac{\partial F}{\partial x_2} = -2x_2 + 2\mu x_2 + 2\lambda_1 x_2 - 10\lambda_1 - \lambda_3 = 0 , \qquad \text{(10)}$$

dok se na osnovu jednačina ograničenja formira sistem jednačina

$$x_1^2 + x_2^2 - 25 = 0$$

$$\lambda_1(x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38) = 0 \quad \Rightarrow \quad \lambda_1 = 0 \quad \forall \quad x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38 = 0$$

$$\lambda_2(2 - x_1) = 0 \quad \Rightarrow \quad \lambda_2 = 0 \quad \forall \quad 2 - x_1 = 0$$

$$\lambda_3(-x_2) = 0 \quad \Rightarrow \quad \lambda_3 = 0 \quad \forall \quad -x_2 = 0.$$

U nastavku ćemo razmatrati sve slučajeve koji se dobijaju kombinovanjem dobijenih uslova:

a)
$$\lambda_1 = 0 \quad \wedge \ \lambda_2 = 0 \quad \wedge \ \lambda_3 = 0$$

$$(9) \quad \Rightarrow \quad 4 + 2\mu x_1 = 0 \quad \to \quad x_1 = -\frac{2}{\mu}$$

(10)
$$\Rightarrow -2x_2 + 2\mu x_2 = 0$$

 $-2x_1(1-\mu) = 0 \rightarrow x_2 = 0 \lor 1-\mu = 0$

i.
$$x_2 = 0$$

Iz jednačine ograničenja $h_1(\underline{x})$ sledi

$$h_1(\underline{x}) \quad \Rightarrow \quad x_1^2 = 25 \quad \rightarrow \quad x_1 = \pm 5 \; ,$$

odnosno dobijene su tačke A(-5,0) i B(5,0). Odmah se može zaključiti da tačku A odbacujemo zbog ograničenja $g_2(\underline{x})$. Vršimo proveru ograničenja $g_1(\underline{x})$ za tačku B.

$$g_1(\underline{x}) \Rightarrow 25 - 50 + 38 = 13 \le 0 \perp$$

pa odbacujemo i tačku B.

ii. $\mu = 1$

$$(9) \quad \Rightarrow \quad 4 + 2x_1 = 0 \quad \rightarrow \quad x_1 = -2$$

Razmatranje u ovom slučaju ne nestavljamo jer je očigledno da nije zadovoljeno ograničenje $g_2(\underline{x})$.

b) $\lambda_1 = 0 \quad \wedge \ \lambda_2 = 0 \quad \wedge \ x_2 = 0$ Iz jednačine ograničenja $h_1(\underline{x})$ sledi

$$h_1(\underline{x}) \Rightarrow x_1^2 = 25 \rightarrow x_1 = \pm 5$$
.

Zaključujemo da su dobijene iste vrednosti kao u već razmatranom slučaju a)i. pa se vrednosti odbacuju zbog ograničenja $g_1(\underline{x})$ i $g_2(\underline{x})$.

c)
$$\lambda_1 = 0 \quad \wedge \ x_1 = 2 \quad \wedge \ \lambda_3 = 0$$

(10)
$$\Rightarrow -2x_2 + 2\mu x_2 = 0$$

 $-2x_2(1-\mu) = 0 \rightarrow x_2 = 0 \lor 1-\mu = 0$

i. $x_2 = 0$ Tačka (2,0) se odbacuje zbog ograničenja $h_1(\underline{x})$

$$h_1(x) \Rightarrow 25 - 4 = 21 \neq 0$$

ii. $\mu = 1$

(9)
$$\Rightarrow \lambda_2 = 8$$

Iz jednačine ograničenja $h_1(x)$ sledi

$$h_1(\underline{x}) \quad \Rightarrow \quad x_2^2 = 21 \quad \rightarrow \quad x_2 = \pm \sqrt{21} \; ,$$

odnosno dobijamo tačke $C(2, \sqrt{21})$ i $D(2, -\sqrt{21})$. Tačka Dse odmah može odbaciti zbog ograničenja $g_3(x)$, dok za tačka C odmah možemo zaključiti da zadovoljava ograničenja $g_2(\underline{x})$ i $g_3(\underline{x})$, dok ograničenje $g_1(\underline{x})$ proveravamo

$$g_1(\underline{x}) \quad \Rightarrow \quad 4 - 20 + 21 - 10\sqrt{21} + 38 \approx -2.85 \le 0 \quad \checkmark$$

odnosno zadovoljena su sva tri ograničenja. Sledi da tačka *C* predstavlja minimum jer je $\lambda_1 = 0$, $\lambda_2 = 8 > 0$ i $\lambda_3 = 0$.

d) $\lambda_1=0$ \wedge $x_1=2$ \wedge $x_2=0$ Kao i u slučaju c)i. tačku (2,0) odbacujemo zbog ograničenja $h_1(x)$.

e) $x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38 = 0 \quad \land \lambda_2 = 0 \quad \land \Lambda_3 = 0$ Iz jednačine ograničenja $h_1(x)$ sledi

$$x_1^2 + x_2^2 = 25 ,$$

pa se dobija

$$25 - 10x_1 - 10x_2 + 38 = 0$$
 \rightarrow $x_1 = \frac{63}{10} - x_2$.

Vraćanjem u jednačinu ograničenja $h_1(x)$ dobija se kvadratna jednačina

$$2x_2^2 - \frac{63}{5}x_2 + \frac{1469}{100} = 0 ,$$

čiji su koreni

$$x_{21} = 4.7554 \rightarrow x_{11} = 1.5449$$

 $x_{22} = 1.5445 \rightarrow x_{12} = 4.7555$

Tačku E(1.5446, 4.7554) odbacujemo zbog ograničenja $g_2(x)$, dok se na osnovu tačke F(4.7555, 1.5445) formira sistem jednačina

(10)
$$\Rightarrow$$
 $-3.089 + 3.089 \mu - 6.911 \lambda_1 = 0$

(9)
$$\Rightarrow$$
 4 + 9.511 μ - 0.489 λ_1 = 0,

na osnovu koga se dobija

$$\lambda_1 = -\frac{4.388}{6.752} = -0.65 \; .$$

Na kraju, možemo zaključiti da je tačka F maksimum jer je $\lambda_1 = -0.65 < 0$ i $\lambda_2 = \lambda_3 = 0$.

f)
$$x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38 = 0$$
 $\wedge \lambda_2 = 0$ $\wedge x_2 = 0$ Slučaj se odbacuje jer je

$$x_1 = \frac{10 \pm \sqrt{100 - 4 \cdot 38}}{2} \; ,$$

odnosno nemamo realna rešenja.

Iz jednačine ograničenja $h_1(x)$ sledi

$$h_1(\underline{x}) \quad \Rightarrow \quad x_2^2 = 21 \quad \rightarrow \quad x_2 = \pm \sqrt{21} \; ,$$

pa zaključujemo da smo dobili identičan slučaj kao u c)ii.

h)
$$x_1^2 - 10x_1 + x_2^2 - 10x_2 + 38 = 0$$
 \land $x_1 = 2$ \land $x_2 = 0$ Identičan slučaj kao u c)i. i d.

4. Karuš, Kun-Takerovom metodom naći minimum sledećeg optimizacionog problema

$$f(x_1, x_2) = e^{-x_1 - x_2}$$

uz ograničenja

$$g_1(x_1, x_2) : e^{x_1} + e^{x_2} \le 20$$

 $g_2(x_1, x_2) : x_1 \ge 0$.

Rešenje.

Jednačine ograničenja se transformišu na sledeći način

$$e^{x_1} + e^{x_2} - 20 \le 0$$

$$-x_1 \le 0.$$

Formira se novi kriterijum optimalnosti

$$F = e^{-x_1-x_2} + \lambda_1(e^{x_1} + e^{x_2} - 20) + \lambda_2(-x_1)$$
.

Izjednačavanjem parcijalnih izvoda funkcije F po promenljivim x_1 i x_2 sa nulom dobija se sistem jednačina

$$\frac{\partial F}{\partial x_1} = -e^{-x_1 - x_2} + \lambda_1 e^{x_1} - \lambda_2 = 0 \tag{11}$$

$$\frac{\partial F}{\partial x_2} = -e^{-x_1 - x_2} + \lambda_1 e^{x_2} = 0 , \qquad (12)$$

dok se na osnovu jednačina ograničenja dobija sistem

$$\lambda_1(e^{x_1} + e^{x_2} - 20) = 0 \quad \Rightarrow \quad \lambda_1 = 0 \quad \lor \quad e^{x_1} + e^{x_2} - 20 = 0$$

$$\lambda_2(-x_1) = 0 \quad \Rightarrow \quad \lambda_2 = 0 \quad \lor \quad -x_1 = 0.$$

Kombinovanjem dobijenih uslova razmatraju se četiri slučaja:

a)
$$\lambda_1 = 0 \quad \wedge \ \lambda_2 = 0$$

$$(11) \quad \Rightarrow \quad -e^{-x_1-x_2} = 0 \quad \perp$$

b)
$$\lambda_1 = 0 \land x_1 = 0$$

$$(12) \quad \Rightarrow \quad -e^{-x_2} = 0 \quad \perp$$

c)
$$e^{x_1} + e^{x_2} - 20 = 0 \quad \land \ \lambda_2 = 0$$

(11)
$$\Rightarrow -e^{-x_1-x_2} + \lambda_1 e^{x_1} = 0 / \cdot (-1)$$

(12)
$$\Rightarrow -e^{-x_1-x_2} + \lambda_1 e^{x_2} = 0$$

Kombinovanjem prethodne dve jednačine dobija se

$$-\lambda_1 e^{x_1} + \lambda_1 e^{x_2} = 0$$

-\lambda_1 (e^{x_1} - e^{x_2}) = 0 \Rightarrow -\lambda_1 = 0 \times e^{x_1} - e^{x_2} = 0

i.
$$\lambda_1 = 0$$

$$(12) \quad \Rightarrow \quad -e^{-x_1-x_2} = 0 \quad \perp$$

ii.
$$e^{x_1} = e^{x_2}$$

Iz jednačine uslova sledi

$$2e^{x_1} - 20 = 0$$

 $x_1 = \ln 10 \implies x_2 = \ln 10$,

odnosno dobijena je tačka A(ln 10, ln 10) koja zadovoljava obe jednačine ograničenja. Vrednost Lagranževog množitelja λ_1 se može izračunati na sledeći način

(12)
$$\Rightarrow \lambda_1 = \frac{e^{-x_1 - x_2}}{e^{x_2}} = \frac{e^{-2\ln 10}}{e^{\ln 10}} = 0.001$$
.

Možemo zaključiti da dobijena tačka A predstavlja minimu jer je $\lambda_1 = 0.001 > 0$ i $\lambda_2 = 0$.

d)
$$e^{x_1} + e^{x_2} - 20 = 0 \land x_1 = 0$$

Kombinovanjem jednačina uslova dobija se

$$1 + e^{x_2} - 20 = 0 \implies x_2 = \ln 19$$
.

Vrednosti Lagranževih množitelja za dobijenu tačku B(0, ln 19) se mogu izračunati na sledeći način

(12)
$$\Rightarrow \lambda_1 = \frac{e^{-x_1 - x_2}}{e^{x_2}} = \frac{e^{-\ln 19}}{e^{\ln 19}} = 0.0028$$

(11)
$$\Rightarrow \lambda_2 = -e^{-x_1 - x_2} + \lambda_1 e^{x_1} = -e^{-\ln 19} + 0.0028 = -0.049$$
.

Na kraju, kako je $\lambda_1 = 0.0028 > 0$ i $\lambda_2 = -0.049 < 0$ zaključujemo da je tačka B prevojna tačka.

5. Primenom Karuš, Kun-Takerove metode naći ekstreme funkcije

$$f(x_1, x_2) = \sin(x_1)\cos(x_2)$$
,

uz ograničenja

$$\frac{\pi}{4} \le x_1 \le \frac{3\pi}{4}$$

$$\pi \leq x_2 \leq \frac{5\pi}{4} .$$

Rešenje.

Formiraju se četiri jednačine ograničenja

$$g_1(x_1, x_2) : x_1 - \frac{3\pi}{4} \le 0$$

$$g_2(x_1, x_2) : -x_1 + \frac{\pi}{4} \le 0$$

$$g_3(x_1, x_2) : x_2 - \frac{5\pi}{4} \le 0$$

$$g_4(x_1, x_2) : -x_2 + \pi \le 0$$

Novi kriterijum optimalnosti je

$$F = \sin(x_1)\cos(x_2) + \lambda_1\left(x_1 - \frac{3\pi}{4}\right) + \lambda_2\left(-x_1 + \frac{\pi}{4}\right) + \lambda_3\left(x_2 - \frac{5\pi}{4}\right) + \lambda_4(-x_2 + \pi).$$

Izjednačavanjem parcijalnih izvoda funkcije F po promenljivim x₁ i x₂ dobija se sistem jednačina

$$\frac{\partial F}{\partial x_1} = \cos(x_1)\cos(x_2) + \lambda_1 - \lambda_2 = 0$$

$$\frac{\partial F}{\partial x_2} = -\sin(x_1)\sin(x_2) + \lambda_3 - \lambda_4 = 0.$$
(13)

Na osnovu jednačina ograničenja formira se sistem jednačina

$$\lambda_{1}\left(x_{1} - \frac{3\pi}{4}\right) = 0 \quad \Rightarrow \quad \lambda_{1} = 0 \quad \forall \quad x_{1} - \frac{3\pi}{4} = 0$$

$$\lambda_{2}\left(-x_{1} + \frac{\pi}{4}\right) = 0 \quad \Rightarrow \quad \lambda_{2} = 0 \quad \forall \quad -x_{1} + \frac{\pi}{4} = 0$$

$$\lambda_{3}\left(x_{2} - \frac{5\pi}{4}\right) = 0 \quad \Rightarrow \quad \lambda_{3} = 0 \quad \forall \quad x_{2} - \frac{5\pi}{4} = 0$$

$$\lambda_{4}(-x_{2} + \pi) = 0 \quad \Rightarrow \quad \lambda_{4} = 0 \quad \forall \quad -x_{2} + \pi = 0.$$

Razmatraju se svi slučajevi koji se dobijaju kombinacijom izvedenih uslova iz prethodnog sistema jednačina.

a)
$$\lambda_1 = 0 \quad \land \lambda_2 = 0 \quad \land \lambda_3 = 0 \quad \land \lambda_4 = 0$$

$$(13) \quad \Rightarrow \quad \cos(x_1)\cos(x_2) = 0 \quad \to \quad \cos(x_1) = 0 \quad \lor \quad \cos(x_2) = 0$$

$$(14) \quad \Rightarrow \quad -\sin(x_1)\sin(x_2) = 0 \quad \to \quad \sin(x_1) = 0 \quad \lor \quad \sin(x_2) = 0$$
i. $\cos(x_1) = 0 \quad \land \quad \sin(x_1) = 0$
Slučaj se može odmah odbaciti jer ne postoji vrednost x_1

koja zadovoljava date uslove.

ii.
$$\cos(x_1) = 0$$
 \wedge $\sin(x_2) = 0$
$$x_1 = \frac{\pi}{2}$$

$$x_2 = 0 + k\pi, \quad k = \{0, 1\}$$

Za dobijene tačke $\left(\frac{\pi}{2},0\right)$ i $\left(\frac{\pi}{2},\pi\right)$ ne možemo komentarisati karakter jer je $\lambda_1=0$, $\lambda_2=0$, $\lambda_3=0$ i $\lambda_4=0$.

iii.
$$\cos(x_2) = 0$$
 \wedge $\sin(x_1) = 0$
$$x_2 = \frac{3\pi}{2}$$

$$x_1 = 0 + k\pi \quad \bot$$

Dobijene vrednosti ne razmatramo jer se ne može odrediti vrednost x_1 koja zadovoljava ograničenja $g_1(x_1, x_2)$ i $g_3(x_1, x_2)$.

iv.
$$cos(x_2) = 0$$
 \wedge $sin(x_2) = 0$ Slučaj se može odmah odbaciti jer ne postoji vrednost x_2 koja zadovoljava date uslove.

b)
$$\lambda_1 = 0 \quad \wedge \lambda_2 = 0 \quad \wedge \lambda_3 = 0 \quad \wedge x_2 = \pi$$

$$(13) \quad \Rightarrow \quad \cos(x_1)\cos(\pi) = 0$$

$$\cos(x_1) = 0 \quad \Rightarrow \quad x_1 = \frac{\pi}{2}$$

Vrednost Lagranževog množitelja se može izračunati kao

$$(14) \quad \Rightarrow \quad \lambda_4 = -\sin(x_1)\sin(x_2) = 0 \; ,$$

pa karakter tačke $(\frac{\pi}{2}, \pi)$ ne možemo komentarisati jer je $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0.$

c)
$$\lambda_1 = 0 \quad \wedge \lambda_2 = 0 \quad \wedge x_2 = \frac{5\pi}{4} \quad \wedge \lambda_4 = 0$$

$$(14) \quad \Rightarrow \quad \cos(x_1)\cos\left(\frac{5\pi}{4}\right) = 0$$

$$\cos(x_1) = 0 \quad \Rightarrow \quad x_1 = \frac{\pi}{2}$$

Vrednost Lagranževog množitelja se može izračunati kao

(14)
$$\Rightarrow \lambda_3 = \sin(x_1)\sin(x_2) = \frac{\sqrt{2}}{2}$$
,

pa zaključujemo da tačka $\left(\frac{\pi}{2}, \frac{5\pi}{4}\right)$ predstavlja minimum jer je $\lambda_1 = \lambda_2 = \lambda_4 = 0$ i $\lambda_3 = \frac{\sqrt{2}}{2} > 0$.

d)
$$\lambda_1=0$$
 \wedge $\lambda_2=0$ \wedge $x_2=\frac{5\pi}{4}$ \wedge $x_2=\pi$ Slučaj se odbacuje zbog kontradiktornosti uslova.

e)
$$\lambda_1 = 0 \quad \wedge \quad x_1 = \frac{\pi}{4} \quad \wedge \quad \lambda_3 = 0 \quad \wedge \quad \lambda_4 = 0$$

$$(14) \quad \Rightarrow \quad -\sin\left(\frac{\pi}{4}\right)\sin(x_2) = 0$$

$$\sin(x_2) = 0 \quad \Rightarrow \quad x_2 = 0 + k\pi, \quad k = \{0, 1\}$$

Vrednost Lagranževog množitelja λ_2 se može izračunati iz jednačine

$$\lambda_2 = \cos(x_1)\cos(x_2) ,$$

pa sledi da je njegova vrednost za tačku $\left(\frac{\pi}{4},0\right)$, $\lambda_2=\frac{\sqrt{2}}{2}>$ 0, a za tačku $\left(\frac{\pi}{4}, \pi\right)$ je $\lambda_2 = -\frac{\sqrt{2}}{2} < 0$. Zaključujemo da prva tačka predstavlja minimum, dok druga tačka predstavlja maksimum.

f)
$$\lambda_1 = 0$$
 $\wedge x_1 = \frac{\pi}{4}$ $\wedge \lambda_3 = 0$ $\wedge x_2 = \pi$

$$(13) \Rightarrow \lambda_2 = \cos\left(\frac{\pi}{4}\right)\cos(\pi) = -\frac{\sqrt{2}}{2} < 0$$

$$(14) \Rightarrow \lambda_4 = -\sin\left(\frac{\pi}{4}\right)\sin(\pi) = 0$$

Tačka $\left(\frac{\pi}{4},\pi\right)$ je maksimum.

g)
$$\lambda_1 = 0$$
 $\wedge x_1 = \frac{\pi}{4}$ $\wedge x_2 = \frac{5\pi}{4}$ $\wedge \lambda_4 = 0$
$$(13) \Rightarrow \lambda_2 = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{5\pi}{4}\right) = \frac{1}{2} > 0$$

$$(14) \Rightarrow \lambda_3 = \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{5\pi}{4}\right) = \frac{1}{2} > 0$$

Tačka $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ je minimum.

- h) $\lambda_1 = 0 \quad \wedge \ x_1 = \frac{\pi}{4} \quad \wedge \ x_2 = \frac{5\pi}{4} \quad \wedge \ x_2 = \pi$ Slučaj se odbacuje zbog kontradiktornosti uslova.
- i) $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ je minimum.

j)
$$x_1 = \frac{3\pi}{4} \wedge \lambda_2 = 0 \wedge \lambda_3 = 0 \wedge \lambda_4 = 0$$

(14)
$$\Rightarrow$$
 $-\sin\left(\frac{3\pi}{4}\right)\sin(x_2) = 0$ $\sin(x_2) = 0 \Rightarrow x_2 = 0 + k\pi, \quad k = \{0, 1\}$

Vrednost Lagranževog množitelja λ_1 se može odrediti iz jednačine

$$(13) \quad \Rightarrow \quad \lambda_1 = -\cos(x_1)\cos(x_2) \,,$$

pa sledi da je njegova vrednost za tačku $\left(\frac{3\pi}{4},0\right)$, $\lambda_1=\frac{\sqrt{2}}{2}>$ 0, a za tačku $\left(\frac{3\pi}{4},\pi\right)$ je $\lambda_1=-\frac{\sqrt{2}}{2}<0$. Zaključujemo da prva tačka predstavlja minimum, dok druga tačka predstavlja maksimum.

k)
$$x_1 = \frac{3\pi}{4} \wedge \lambda_2 = 0 \wedge \lambda_3 = 0 \wedge x_2 = \pi$$

(13) $\Rightarrow \lambda_1 = -\cos\left(\frac{3\pi}{4}\right)\cos(\pi) = -\frac{\sqrt{2}}{2} < 0$
(14) $\Rightarrow \lambda_4 = -\sin\left(\frac{3\pi}{4}\right)\sin(\pi) = 0$

Tačka $\left(\frac{3\pi}{4},\pi\right)$ je maksimum.

1)
$$x_1 = \frac{3\pi}{4} \wedge \lambda_2 = 0 \wedge x_2 = \frac{5\pi}{4} \wedge \lambda_4 = 0$$

(13) $\Rightarrow \lambda_1 = -\cos\left(\frac{3\pi}{4}\right)\cos\left(\frac{5\pi}{4}\right) = \frac{1}{2} > 0$
(14) $\Rightarrow \lambda_3 = \sin\left(\frac{3\pi}{4}\right)\sin\left(\frac{5\pi}{4}\right) = \frac{1}{2} > 0$

Tačka $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ je minimum.

- m) $x_1=\frac{3\pi}{4}$ \wedge $\lambda_2=0$ \wedge $x_2=\frac{5\pi}{4}$ \wedge $x_2=\pi$ Slučaj se odbacuje zbog kontradiktornosti uslova.
- n) $x_1 = \frac{3\pi}{4} \wedge x_1 = \frac{\pi}{4} \wedge \lambda_3 = 0 \wedge \lambda_4 = 0$ Slučaj se odbacuje zbog kontradiktornosti uslova.
- o) $x_1=\frac{3\pi}{4} \quad \wedge \ x_1=\frac{\pi}{4} \quad \wedge \ \lambda_3=0 \quad \wedge \ x_2=\pi$ Slučaj se odbacuje zbog kontradiktornosti uslova.
- p) $x_1 = \frac{3\pi}{4} \wedge x_1 = \frac{\pi}{4} \wedge x_2 = \frac{5\pi}{4} \wedge \lambda_4 = 0$ Slučaj se odbacuje zbog kontradiktornosti uslova.
- q) $x_1 = \frac{3\pi}{4} \wedge x_1 = \frac{\pi}{4} \wedge x_2 = \frac{5\pi}{4} \wedge x_2 = \pi$ Slučaj se odbacuje zbog kontradiktornosti uslova.