Digital Image Processing Project part 1

Submitted by: Muhammad Hameez Rizwan

Submitted to: Sir Usman Sadiq

Roll no: 16L-4135

P2.1:
Gray Scale image 1:

Histogram of grayscale image 1:

Gray Scale image 2:

Histogram of image 2:

Gray Scale image 3:

Histogram of image 3:

Gray Scale image 4:

Histogram of Image 4:

Gray Scale image 5:

Histogram of Image 5:

BAD HISTOGRAM EXPLANATION:

Histogram of **Image 2** can be defined as a bad histogram. The x-axis represent the color range of the grayscale images whereas the y axis represent the intensity of the specific color ranging from 0-255. Now for image 2 we can see that the histogram values are concentrated only in values between. **(90-140)**, which results in a low contrast picture.

P2.2:Displaying the image and it's histogram before contrast equalization:

Displaying the image after contrast equalization:

Corrected histogram of stretched image:

P2.3:

The code for probability calculation is written in MATLAB and attached with the email in a ZIP file.

P2.4:

Using the probabilities found in part 3, we will find the cumulative probabilities and hence perform histogram equalization.

Final Image after histogram equalization:

Histogram after equalization:

P2.5:

Bay Area original Image:

Histogram of Original image:

Image After contrast Stretching:

Histogram of Image after contrast Stretching:

Image after Histogram Equalization:

Histogram after histogram equalization:

