

GBI Tutorium Nr. 2⁵

Tutorium 4

Dominik Muth - dominik.muth@student.kit.edu | 7. November 2012

Outline/Gliederung

- Feedback und Folien
- Übungsblatt 3
- Wiederholung
- Pseudocode
- 5 div / mod
- 6 Algorithmen
 - Schleifen
- Schleifeninvarianz
- 8 Fragen

Feedback und Folien

domi-individual.bplaced.de/tut/

Pseudocode

Übungsblatt 3

Wiederholung

Feedback und Folien

Übungsblatt 3

Aufgabe 3.3 a)

$$|L_1^2| = |L_1 \times L_1|$$

Feedback und Folien

$$(L_1 \cup L_2)^* = (L_1^* \cdot L_2^*)^*$$

900 Algorithmen Schleifeninvarianz

Wiederholung

Pseudocode

div / mod

Übungsblatt 3

Aufgabe 3.3 a)

$$|L_1^2| = |L_1 \times L_1|$$

Aufgabe 3.3 c)

$$(L_1 \cup L_2)^* = (L_1^* \cdot L_2^*)^*$$

Fragen

4/22

- A* ist eine formale Sprache!
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^*$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^*$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- Eine bijektive Relation ist eine Funktion.
- Wenn $f : A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- lacktriangle Eine bijektive Relation ist eine Funktion. $\sqrt{}$
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

Schleifeninvarianz

Pseudocode

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- Eine bijektive Relation ist eine Funktion. $\sqrt{}$
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv. X
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- lacktriangle Eine bijektive Relation ist eine Funktion. $\sqrt{}$
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv. X
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A \sqrt{}$

Wiederholung - Aufgaben

- Schreiben sie die Injektivität als Prädikatenlogische Formel.
- Es sei $L \subseteq A^*$ eine formale Sprache. Beweisen oder widerlegen Sie: $L^+ \cdot L^+ \subset L^+$

Pseudocode

Übungsblatt 3

Wiederholung

Feedback und Folien

Wiederholung - Aufgaben

- Schreiben sie die Injektivität als Prädikatenlogische Formel.
- Es sei $L \subseteq A^*$ eine formale Sprache. Beweisen oder widerlegen Sie: $L^+ \cdot L^+ \subset L^+$

Feedback und Folien

Übungsblatt 3

Wiederholung

Wiederholung

Induktion

Feedback und Folien

Alice und Bob feiern ihren Hochzeitstag. Auf ihrer Party befinden sich $n \in \mathbb{N}_+$ Paare. Dabei begrüßen sich alle Paare mit Ausnahme des eigenen Partners.

- a) Geben Sie die Anzahl der Begrüßungen x_i für $i \in \{1, 2, 3, 4, 5\}$ Paare an.
- b) Stellen Sie für x_n eine geschlossene Formel (d.h. einen arithmetischen Ausdruck, in dem nur Zahlen, n und die Grundrechenarten vorkommen) auf.
- c) Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion

Übungsblatt 3

div / mod

Wiederholung

Was ist Pseudocode

Pseudocode ist Programmcode, der zur Darstellung von Algorithmen verwendet wird.

- Zuweisung: *x* ← 42

Was ist Pseudocode

Pseudocode ist Programmcode, der zur Darstellung von Algorithmen verwendet wird.

- Zuweisung: *x* ← 42
- Kommentare: //Kommentar
- Schleifen: for $i \leftarrow 0$ to 42do od while i < 42 do od
- Abfrage: if i = 42then.....endif

Was ist Pseudocode

Pseudocode ist Programmcode, der zur Darstellung von Algorithmen verwendet wird.

- Zuweisung: *x* ← 42
- Kommentare: //Kommentar
- Schleifen: for i ← 0 to 42do od while i < 42 do od</p>
 - Abfrage: if i = 42then.....endif

Was ist Pseudocode

Pseudocode ist Programmcode, der zur Darstellung von Algorithmen verwendet wird.

- Zuweisung: *x* ← 42
- Kommentare: //Kommentar
- Schleifen: for i ← 0 to 42do od while i < 42 do od</p>
- Abfrage: if i = 42then.....endif

div / mod

Erläuterung div

x div y entspricht der Ganzzahldivision ohne Rest:

 $\lfloor \frac{x}{y} \rfloor$

Beispiel: 14 div 3 = 2

Erläuterung mod

x mod y entspricht dem Rest der Ganzzahldivision.

Beispiel:

 $5 \mod 3 = 2$

Mod lässt sich auch durch \cdot , — und div darstellen:

 $x \mod y = x - (y \cdot (x \operatorname{div} y))$

Übung

Schleifeninvarianz

Übungsblatt 3

Wiederholung

Pseudocode

div / mod

Feedback und Folien

Algorithmen

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,

Wiederholung

Pseudocode

- hat endlich viele Schritte,
- ist skalierbar

Feedback und Folien

und ist nachvollziehbar

Übungsblatt 3

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,
- ist deterministisch,

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,

Pseudocode

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte.

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,
- ist deterministisch.
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte.
- ist skalierbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Anweisungen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

while Schleife

Eine while Schleife wiederholt etwas, solange eine Bedingung erfüllt ist.

Pseudocode: while x > 1 do od

Jave: while(x > 1) $\{ \dots \}$

do while Schleife

Eine do while Schleife tut erst etwas, prüft danach, ob die Bedingung erfüllt ist und wiederholt dann den schleifenrumpf.

Pseudocode: **do** **od while** x > 1

Jave: do $\{ \dots \}$ while (x > 1)

•0000

Beispiel 1

Output: i

Feedback und Folien

```
Input: x \in \mathbb{N}_+
    i \leftarrow 0
    while x > 1 do
          x \leftarrow x \operatorname{div} 2
          i \leftarrow i + 1
    od
```

Wiederholung

Pseudocode

div / mod

Beispiel 2

$$k \leftarrow 0$$
 for $i \leftarrow 0$ to 20 do $k \leftarrow k + i$ od

- Ou

Output: k

div / mod

Pseudocode

Beispiel 3

Output: c

Feedback und Folien

Gegeben sei ein Wort w der Länge |w| = n. Das Array W hat an i-ter Stelle den i-ten Buchstabe von w. w ist ϵ -frei.

```
c \leftarrow 0

for i \leftarrow 0 to n-1 do

if A[i] = x then

c \leftarrow c+1

end if

od
```

Übungsblatt 3

Wiederholung

Übung 1, Winter 2008/2009

Es sei A ein Alphabet.

Schreiben Sie einen Algorithmus auf, der folgendes leistet: Als Eingaben erhält er ein Wort w über A und zwei Symbole $x \in A$ und $y \in A$. Am Ende soll eine Variable r den Wert 0 oder 1 haben, und zwar soll gelten:

$$r = \begin{cases} 1 & \text{falls irgendwo in w direkt hintereinander erst } x \text{ dann } y \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

Benutzen Sie zum Zugriff auf das i-te Symbol von w die Schreibweise w(i). Formulieren Sie den Algorithmus mit Hilfe einer for-Schleife.

Wiederholung

Übungsblatt 3

Feedback und Folien

7. November 2012

Definition

Feedback und Folien

Die Schleifeninvarianz bezeichnet eine Bedingung innerhalb einer Schleife, welche bei jedem Schleifendurchlauf gültig ist.

Pseudocode

Übungsblatt 3

Wiederholung

div / mod

Wofür?

Mit Schleifeninvarianten lässt sich die Korrektheit von Algorithmen beweisen.

Pseudocode

Wie

Feedback und Folien

Mit vollständiger Induktion

Wiederholung

div / mod

Beispiel

Input:
$$a, b \in \mathbb{N}_0$$

 $S \leftarrow a$
 $Y \leftarrow b$
for $i \leftarrow 0$ to $b - 1$ do
 $S \leftarrow S - 1$
 $Y \leftarrow Y - 1$
od

Feedback und Folien

Output: S

Pseudocode

Wiederholung

Beispiel

Input:
$$a, b \in \mathbb{N}_0$$

 $S \leftarrow a$
 $Y \leftarrow b$
for $i \leftarrow 0$ to $b-1$ do
 $S \leftarrow S-1$
 $Y \leftarrow Y-1$
od

Übung

Feedback und Folien

Output: S

Algorithmus mit a = 3 und b = 4 ausprobieren und Werte für S und Y bei jedem Schleifendurchlauf finden.

Pseudocode

Schleifeninvarianz

Übungsblatt 3

Wiederholung

Übung

Feedback und Folien

Gegeben sei folgendes Programmstück:

$$\begin{array}{l} X_0 \leftarrow 2 \\ Y_0 \leftarrow 5 \\ \textbf{for } i \leftarrow 0 \textbf{ to } n \textbf{ do} \\ j \leftarrow i \\ Y_{j+1} \leftarrow 5Y_j - 6X_j \\ X_{j+1} \leftarrow Y_j \\ \textbf{od} \end{array}$$

Beweisen Sie die Korrektheit der folgenden Aussage:

Wiederholung

Pseudocode

$$Y_j = 2^{j+1} + 3^{j+1} \wedge X_j = 2^j + 3^j$$

Übungsblatt 3

7. November 2012

Fragen

- Fragen zum Stoff?
- Fragen zum nächsten Übungsblatt?
- Generelle Fragen?

Übungsblatt 3

Wiederholung

Feedback und Folien

Pseudocode

EOF

source: http://imgs.xkcd.com/comics/michaelphelps.png

