5.13 Puisque la formule $(x^n)' = n x^{n-1}$ a déjà établie pour tout $n \in \mathbb{N}$, il reste à prouver qu'elle est encore valable pour tout $n \in \mathbb{Z}$ avec $n \leq 0$.

Si
$$n = 0$$
, alors $(x^0)' = (1)' = 0 = 0 x^{0-1}$.

Soit
$$n \in \mathbb{Z}$$
 avec $n < 0$. Alors $-n \in \mathbb{N}$.

$$(x^{n})' = (x^{-(-n)})' = \left(\frac{1}{x^{-n}}\right)' = \frac{-(x^{-n})'}{(x^{-n})^{2}} = \frac{-(-n)x^{-n-1}}{x^{-2n}} = n x^{(-n-1)-(-2n)}$$
$$= n x^{n-1}$$

Analyse : dérivées Corrigé 5.13