Some slides referred from a lecture note of George Mason University (Shuochao Yao, Yiwen Xu, Daniel Calzada)

ML Coding Practice
Lecture 02-1

Network Pruning & Quantization

Prof. Jongwon Choi Chung-Ang University Fall 2022

Today's Lecture

Matrix Factorization (SVD)

Network Pruning

Network Quantization

Network Pruning + Quantization

Outline

- Weight Pruning
 - Magnitude-based method
 - Iterative pruning + Retraining
 - Pruning with rehabilitation
 - Hessian-based method
- Quantization method

Pruning + Quantization + Encoding

Design small architecture: Squeeze
 Net

Magnitude-based method: Iterative Pruning + Retraining

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Magnitude-based method: Iterative Pruning + Retraining (Algorithm)

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Prune the weights of which magnitudes are less than a threshold τ .
- 4. Train the network until a reasonable solution is obtained.
- 5. Iterate to step 3.

Magnitude-based method: Iterative Pruning + Retraining (Experiment: AlexNet)

Layer	Weights	FLOP	Act%	Weights%	FLOP%
conv1	35K	211M	88%	84%	84%
conv2	307K	448M	52%	38%	33%
conv3	885K	299M	37%	35%	18%
conv4	663K	224M	40%	37%	14%
conv5	442K	150M	34%	37%	14%
fc1	38M	75M	36%	9%	3%
fc2	17M	34M	40%	9%	3%
fc3	4M	8M	100%	25%	10
Total	61M	1.5B	54%	11%	30%

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Magnitude-based method: Iterative Pruning + Retraining (Experiment: Tradeoff)

Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.

Pruning with rehabilitation: Dynamic Network Surgery (Motivation)

- Pruned connections have no chance to come back.
- Incorrect pruning may cause severe accuracy loss.
- Avoid the risk of irretrievable network damage.
- Improve the learning efficiency.

Pruning with rehabilitation: Dynamic Network Surgery (Formulation)

- W_k denotes the weights, and T_k denotes the corresponding 0/1 masks.
- $\min_{W_k, T_k} L(W_k \odot T_k)$ s.t. $T_k^{(i,j)} = h_k(W_k^{(i,j)}), \forall (i,j) \in \mathfrak{T}$
 - \odot is the element-wise product. $L(\cdot)$ is the loss function.
- Dynamic network surgery updates only W_k . T_k is updated based on $h_k(\cdot)$.

•
$$h_k(W_k^{(i,j)}) = \begin{cases} 0 & a_k \ge |W_k^{(i,j)}| \\ T_k^{(i,j)} & a_k \le |W_k^{(i,j)}| \le b_k \\ 1 & b_k \le |W_k^{(i,j)}| \end{cases}$$

• a_k is the pruning threshold. $b_k=a_k+t$, where t is a pre-defined small margin. Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.

Pruning with rehabilitation: Dynamic Network Surgery (Algorithm)

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Update T_k based on $h_k(\cdot)$.
- 4. Update W_k based on back-propagation.
- 5. Iterate to step 3.

Pruning with rehabilitation: Dynamic Network Surgery (Experiment on AlexNet)

Layer	Parameters	Parameters (Han et al. 2015)	Parameters (DNS)
conv1	35K	84%	53.8%
conv2	307K	38%	40.6%
conv3	885K	35%	29.0%
conv4	664K	37%	32.3%
conv5	443K	37%	32.5%
fc1	38M	9%	3.7%
fc2	17M	9%	6.6%
fc3	4M	25%	4.6%
Total	61M	11%	5.7%

Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.

Outline

- Weight Pruning
 - Magnitude-based method
 - Hessian-based method
 - Diagonal Hessian-based method
 - Full Hessian-based method
- Quantization method

Pruning + Quantization + Encoding

Design small architecture: Squeeze
 Net

Diagonal Hessian-based method: Optimal Brain Damage

- The idea of model compression & speed up: traced by to 1990.
- Actually theoretically more "optimal" compared with the current stat e of the art, but much more computational inefficient.

- Delete parameters with small "saliency".
 - Saliency: effect on the training error
- Propose a theoretically justified saliency measure.

Diagonal Hessian-based method: Optimal Brain Damage (Formulation)

Approximate objective function E with Taylor series:

•
$$\delta E = \sum_{i} \frac{\partial E}{\partial u_{i}} \delta u_{i} + \frac{1}{2} \sum_{i} \frac{\partial^{2} E}{\partial^{2} u_{i}} \delta^{2} u_{i} + \frac{1}{2} \sum_{i} \frac{\partial^{2} E}{\partial u_{i} \partial u_{j}} \delta u_{i} \delta u_{j} + O(\|\delta U\|^{3})$$

- Deletion after training has converged: local minimum with gradients equal 0.
- Neglect cross terms

•
$$\delta E = \frac{1}{2} \sum_{i} \frac{\partial^2 E}{\partial^2 u_i} \delta^2 u_i$$

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.

Diagonal Hessian-based method: Optimal Brain Damage (Algorithm)

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Compute the second derivatives for each parameters.
- 4. Compute the saliencies for each parameter $S_k = \frac{\partial^2 E}{\partial^2 u_k} u_k^2$.
- 5. Sort the parameters by saliency and delete some low-saliency parameters
- 6. Iterate to step 2

Diagonal Hessian-based method: Optimal Brain Damage (Experiment: OBD vs. Magnitude)

• OBD vs. Magnitude

 Deletion based on sa liency performs bett er

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.

Diagonal Hessian-based method: Optimal Brain Damage (Experiment: Retraining)

How retraining helps?

Figure 2: Objective function (in dB) versus number of parameters, without retraining (upper curve), and after retraining (lower curve). Curves are given for the training set (a) and the test set (b).

LeCun, Yann, et al. "Optimal brain damage." NIPs. Vol. 2. 1989.

Full Hessian-based method: Optimal Brain Surgeon

Motivation:

- A more accurate estimation of saliency.
- Optimal weight updates.

Advantage:

- More accuracy estimation with saliency.
- Directly provide the weight updates, which minimize the change of objective function.

Disadvantage

- More computation compared with OBD.
- Weight updates are not based on minimizing the objective function. Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning. Optimal brain surgeon." NIPS, 1993

Full Hessian-based method: Optimal Brain Surgeon (Formulation)

Approximate objective function E with Taylor series:

•
$$\delta E = \left(\frac{\partial E}{\partial w}\right)^T \cdot \delta w + \frac{1}{2}\delta w^T \cdot H \cdot \delta w + O(\|\delta W\|^3)$$

• with constraint $e_q^T \cdot \delta w + w_q = 0$

• We assume the trained network with local minimum and ignore high order terms. Solve it through Lagrangian form:

•
$$\delta \mathbf{w} = -\frac{w_q}{[H^{-1}]_{qq}} H^{-1} \cdot e_q \text{ and } L_q = \frac{w_q^2}{2 \cdot [H^{-1}]_{qq}}$$

• L_q is saliency for weight w_q

Full Hessian-based method: Optimal Brain Surgeon (Algorithm)

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Find the q that gives the smallest saliency L_q , and decide to delete q or stop pruning.
- 4. Update all weights based on calculated δw .
- 5. Iterate to step 3.

Full Hessian-based method: Optimal Brain Surgeon

Hassibi, Babak, and David G. Stork. "Second order derivatives for network pruning: Optimal brain surgeon." NIPS, 1993

Outline

- Weight Pruning
- Quantization method
 - Full Quantization
 - Fixed-point format
 - Code book
 - Quantization with full-precision copy

Pruning + Quantization + Encoding

Design small architecture: Squeeze
 Net

Full Quantization: Fixed-point format

- Limited Precision Arithmetic
 - [QI,QF], where QI and QF correspond to the integer and the fractional part of the number.
 - The number of integer bits (IL) plus the number of fractional bits (FL) yields the e total number of bits used to represent the number.
 - WL = IL + FL.
 - Can be represented as $\langle IL, FL \rangle$.
 - $\langle IL, FL \rangle$ limits the precision to FL bits.
 - $\langle IL, FL \rangle$ sets the range to $[-2^{IL-1}, 2^{IL-1} 2^{-FL}]$.

Full Quantization : Fixed-point format (Rounding Modes)

- Define [x] as the largest integer multiple of $\epsilon = 2^{-FL}$.
- Round-to-nearest:

•
$$Round(x, \langle IL, FL \rangle) = \begin{cases} [x] & [x] \le x \le [x] + \frac{\epsilon}{2} \\ [x] + \epsilon & [x] + \frac{\epsilon}{2} \le x \le [x] + \epsilon \end{cases}$$

• Stochastic rounding (unbiased):

•
$$Round(x, \langle IL, FL \rangle) = \begin{cases} [x] & w.p. \ 1 - \frac{x - [x]}{\epsilon} \\ [x] + \epsilon & w.p. \ \frac{x - [x]}{\epsilon} \end{cases}$$

• If x lies outside the range of $\langle IL, FL \rangle$, we saturate the result to either the lower or the upper limit of $\langle IL, FL \rangle$:

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.

Multiply and accumulate (MACC) operation

- During training:
- 1. \boldsymbol{a} and \boldsymbol{b} are two vectors with fixed point format $\langle IL, FL \rangle$.
- 2. Compute $z = \sum_{i=1}^d a_i b_i$.
 - Results a fixed point number with format $(2 \times IL, 2 \times FL)$.
- 3. Covert and round z back to fixed point format $\langle IL, FL \rangle$.
- During testing:
- With fixed point format $\langle IL, FL \rangle$.

Full Quantization: Fixed-point format (Experiment on MNIST with CNNs)

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.

Full Quantization: Fixed-point format (Experiment on CIFAR10 with fully connected DNNs)

Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.

Full Quantization: Code book

Quantization using k-means

- Perform k-means to find k centers $\{c_z\}$ for weights W.
- $\widehat{W}_{ij} = c_z$ where $\min \|W_{ij} c_z\|^2$.
- Compression ratio: $32/\log_2 k$ (codebook itself is negligible).

Product Quantization

- Partition $W \in \mathbb{R}^{m \times n}$ colum-wise into s submatrices $W = [W^1, W^2, \cdots, W^s]$.
- Perform k-means for elements in W^i to find k centers $\{c_z^i\}$.
- $\widehat{W_j^i} = c_z^i$ where $\min_{z} ||W_j^i c_z^i||^2$.
- Compression ratio: $32mn/(32kn + \log_2 k ms)$

Residual Quantization

- Quantize the vectors into k centers.
- Then recursively quantize the residuals for t iterations.
- Compression ratio: $m/(tk + \log_2 k \cdot tn)$

Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).

Full Quantization: Code book (Experiment on PQ)

Figure 2: Comparison of PQ compression with aligned compression rate for accuracy@1. We can clearly find when taking codebook size into account, using more centers do not necessarily lead to better accuracy with same compression rate. See text for detailed discussion.

Full Quantization: Code book

Figure 3: Comparison of different compression methods on ILSVRC dataset.

Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint arXiv:1412.6115 (2014).

Outline

- Weight Pruning
- Quantization method
 - Full quantization
 - Quantization with full-precision copy
 - Binnaryconnect
 - BNN
- Design small architecture: Squeeze
 Net

Quantization with full-precision copy: Binaryconnect (Motivation)

• Use only two possible value (e.g. +1 or -1) for weights.

Replace many multiply-accumulate operations by simple accumulations.

 Fixed-point adders are much less expensive both in terms of area and energy than fixed-point multiply-accumulators.

Quantization with full-precision copy: Binaryconnect (Binarization)

• Deterministic Binarization:

•
$$w_b = \begin{cases} +1 & if \ w \ge 0 \\ -1 & otherwise \end{cases}$$

Stochastic Binarization:

•
$$w_b = \begin{cases} +1 & \text{with probability } p = \sigma(w_b) \\ -1 & \text{with probability } 1 - p \end{cases}$$

•
$$\sigma(x) = clip\left(\frac{x+1}{2}, 0, 1\right) = max\left(0, min\left(1, \frac{x+1}{2}\right)\right)$$

 Stochastic binarization is more theoretically appealing than the deter ministic one, but harder to implement as it requires the hardware to g enerate random bits when quantizing.
Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015

Quantization with full-precision copy: Binaryconnect

- 1. Given the DNN input, compute the unit activations layer by layer, le ading to the top layer which is the output of the DNN, given its input. This step is referred as the **forward propagation**.
- 2. Given the DNN target, compute the training objective's gradient w.r .t. each layer's activations, starting from the top layer and going down layer by layer until the first hidden layer. This step is referred to as the backward propagation or backward phase of back-propagation.
- 3. Compute the gradient w.r.t. each layer's parameters and then update the parameters using their computed gradients and their previous values. This step is referred to as the **parameter update**.

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015

Quantization with full-precision copy: Binaryconnect

• BinaryConnect only **binarize** the weights during the **fo rward** and **backward** propagations (steps 1 and 2) but **not** during the **parameter update** (step 3).

Quantization with full-precision copy: Binaryconnect

- 1. Binarize weights and perform forward pass.
- 2. Back propagate gradient based on binarized weights.
- 3. Update the full-precision weights.
- 4. Iterate to step 1.

Quantization with full-precision copy: Binaryconnect

Method	MNIST	CIFAR-10	SVHN
No regularizer	$1.30 \pm 0.04\%$	10.64%	2.44%
BinaryConnect (det.)	$1.29\pm0.08\%$	9.90%	2.30%
BinaryConnect (stoch.)	$1.18 \pm 0.04\%$	8.27%	2.15%
50% Dropout	$1.01\pm0.04\%$		
Maxout Networks [29]	0.94%	11.68%	2.47%
Deep L2-SVM [30]	0.87%		
Network in Network [31]		10.41%	2.35%
DropConnect [21]			1.94%
Deeply-Supervised Nets [32]		9.78%	1.92%

Courbariaux, et al. "Binaryconnect: Training deep neural networks with binary weights during propagations." NIPS. 2015

Quantization with full-precision copy: Binarized Neural Networks (Motivation)

• Neural networks with **both binary weights and activat ions** at run-time and when computing the parameters' gradient at train time.

Quantization with full-precision copy: Binarized Neural Networks

- Propagating Gradients Through Discretization ("straight-through estim ator")
 - q = Sign(r)
 - Estimator g_q of the gradient $\frac{\partial C}{\partial q}$ Straight-through estimator of $\frac{\partial C}{\partial r}$:
 - - $g_r = g_q 1_{|r| \le 1}$
 - Can be viewed as propagating the gradient through hard tanh
- Replace multiplications with bit-shift
 - Replace batch normalization with shift-based batch normalization
 - Replace ADAM with shift-based AdaMax

Quantization with full-precision copy: Binarized Neural Networks

Data set	MNIST	SVHN	CIFAR-10							
Binarized activations+weights, during training and test										
BNN (Torch7)	1.40%	2.53%	10.15%							
BNN (Theano)	0.96%	2.80%	11.40%							
Committee Machines' Array (Baldassi et al., 2015)	1.35%	_	-							
Binarized weights, during	raining and test									
BinaryConnect (Courbariaux et al., 2015)	$1.29 \pm 0.08\%$	2.30%	9.90%							
Binarized activations+weig	ghts, during test									
EBP (Cheng et al., 2015)	-	-								
Bitwise DNNs (Kim & Smaragdis, 2016)	1.33%	-	-							
Ternary weights, binary activ	ations, during te	st								
(Hwang & Sung, 2014)	1.45%	-	-							
No binarization (standard results)										
Maxout Networks (Goodfellow et al.)	0.94%	2.47%	11.68%							
Network in Network (Lin et al.)	-	2.35%	10.41%							
Gated pooling (Lee et al., 2015)	-	1.69%	7.62%							

Quantization with full-precision copy: Binarized Neural Networks

Outline

- Matrix Factorization
- Weight Pruning
- Quantization method
- Pruning + Quantization + Encoding
 - Deep Compression
- Design small architecture: Squeeze
 Net

Pruning + Quantization + Encoding: Deep Compression

Pruning + Quantization + Encoding: Deep Compression

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Prune the network with magnitude-based method until a reasonable e solution is obtained.
- 4. Quantize the network with k-means based method until a reasonab le solution is obtained.
- 5. Further compress the network with Huffman coding.

Pruning + Quantization + Encoding: Deep Compression

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

		Weights%		Weight	Index	Index	Compress	Compress
Layer	#Weights	(P)	bits	bits	bits	bits	rate	rate
		(1)	(P+Q)	(P+Q+H)	(P+Q)	(P+Q+H)	(P+Q)	(P+Q+H)
conv1	35K	84%	8	6.3	4	1.2	32.6%	20.53%
conv2	307K	38%	8	5.5	4	2.3	14.5%	9.43%
conv3	885K	35%	8	5.1	4	2.6	13.1%	8.44%
conv4	663K	37%	8	5.2	4	2.5	14.1%	9.11%
conv5	442K	37%	8	5.6	4	2.5	14.0%	9.43%
fc6	38M	9%	5	3.9	4	3.2	3.0%	2.39%
fc7	17M	9%	5	3.6	4	3.7	3.0%	2.46%
fc8	4M	25%	5	4	4	3.2	7.3%	5.85%
Total	61M	11%(9×)	5.4	4	4	3.2	3.7% (27×)	2.88% (35×)

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weigh bits (P+Q)	Weight bits (P+Q+H)	Index bits (P+Q)	Index bits (P+O+H)	Compress rate (P+Q)	Compress rate (P+Q+H)
conv1_1	2K	58%	8	6.8	5	1.7	40.0%	29.97%
conv1_2	37K	22%	8	6.5	5	2.6	9.8%	6.99%
conv2_1	74K	34%	8	5.6	5	2.4	14.3%	8.91%
conv2_2	148K	36%	8	5.9	5	2.3	14.7%	9.31%
conv3_1	295K	53%	8	4.8	5	1.8	21.7%	11.15%
conv3_2	590K	24%	8	4.6	5	2.9	9.7%	5.67%
conv3_3	590K	42%	8	4.6	5	2.2	17.0%	8.96%
conv4_1	1M	32%	8	4.6	5	2.6	13.1%	7.29%
conv4_2	2M	27%	8	4.2	5	2.9	10.9%	5.93%
conv4_3	2M	34%	8	4.4	5	2.5	14.0%	7.47%
conv5_1	2M	35%	8	4.7	5	2.5	14.3%	8.00%
conv5_2	2M	29%	8	4.6	5	2.7	11.7%	6.52%
conv5_3	2M	36%	8	4.6	5	2.3	14.8%	7.79%
fc6	103M	4%	5	3.6	5	3.5	1.6%	1.10%
fc7	17M	4%	5	4	5	4.3	1.5%	1.25%
fc8	4M	23%	5	4	5	3.4	7.1%	5.24%
Total	138M	7.5%(13×)	6.4	4.1	5	3.1	3.2% (31×)	2.05% (49×)

Outline

- Weight Pruning
- Quantization method
- Pruning + Quantization + Encoding
- Design small architecture: Squeeze
 Net

Design small architecture: SqueezeNet

Compression scheme on pre-trained model

VS

Design **small CNN architecture** from scratch (also preserve accuracy?)

SqueezeNet Design Strategies

- Strategy 1. Replace 3x3 filters with 1x1 filters
 - Parameters per filter: (3x3 filter) = 9 * (1x1 filter)
- Strategy 2. Decrease the number of input channels to 3x3 filters
 - Total # of parameters: (# of input channels) * (# of filters) * (# of parameters per filt er)
- Strategy 3. Downsample late in the network so that convolution layers have large activation maps
 - Size of activation maps: the size of input data, the choice of layers in which to downs ample in the CNN architecture

Microarchitecture – Fire Module

• Fire module is consist of:

- A squeeze convolution layer
 - full of s_{1x1} # of 1x1 filters
- An expand layer
 - mixture of e_{1x1} # of 1x1 and e_{3x3} # of 3x3 filters

Figure 1: Microarchitectural view: Organization of convolution filters in the **Fire module**. In this example, $s_{1x1} = 3$, $e_{1x1} = 4$, and $e_{3x3} = 4$. We illustrate the convolution filters but not the activations.

Microarchitecture – Fire Module

Figure 1: Microarchitectural view: Organization of convolution filters in the **Fire module**. In this example, $s_{1x1} = 3$, $e_{1x1} = 4$, and $e_{3x3} = 4$. We illustrate the convolution filters but not the activations.

Strategy 2. Decrease the number of input channels to 3x3 fil ters

Total # of parameters: (# of input channels) * (# of filters)
* (# of parameters per filter)

Squeeze Layer Set $s_{1x1} < (e_{1x1} + e_{3x3})$, limits the # of input channels to 3*3 filters

Strategy 1. Replace 3*3 filters with 1*1 filters
Parameters per filter: (3*3 filter) = 9 * (1*1 filter)

How much can we replace 3*3 with 1*1? $(e_{1x1} \text{ vs } e_{3x3})?$

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

Parameters in Fire Module

The # of expanded filter(e_i)

$$e_i = e_{i,1x1} + e_{i,3x3}$$

The % of 3x3 filter in expanded layer(pct_{3x3})

$$e_{i.3x3} = pct_{3x3} * e_i$$

The Squeeze Ratio(SR)

$$s_{i,1x1} = SR * e_i$$

(a) Exploring the impact of the squeeze ratio (SR) on model size and accuracy.

(b) Exploring the impact of the ratio of 3x3 filters in expand layers (pct_{3x3}) on model size and accuracy.

Figure 3: Microarchitectural design space exploration.

Macroarchitecture

Strategy 3. Downsample late in the network so that convolut ion layers have large activation maps

Size of activation maps: the size of input data, the choice of layers in which to downsample in the CNN architecture

These relative late placements of pooling concentrates activation map s at later phase to **preserve higher accuracy**

Macroarchitecture

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the Inception2 paper (Ioffe & Szegedy, 2015).)

layer name/type	output size	filter size / stride (if not a fire layer)	depth	S _{1x1} (#1x1 squeeze)	e _{1x1} (#1x1 expand)	e _{3x3} (#3x3 expand)	S _{1x1} sparsity	e _{1x1}	e _{3x3}	# bits	#parameter before pruning	#parameter after pruning
input image	224x224x3										-	-
conv1	111x111x96	7x7/2 (x96)	1				1	00% (7x7)	6bit	14,208	14,208
maxpool1	55x55x96	3x3/2	0									
fire2	55x55x128		2	16	64	64	100%	100%	33%	6bit	11,920	5,746
fire3	55x55x128		2	16	64	64	100%	100%	33%	6bit	12,432	6,258
fire4	55x55x256		2	32	128	128	100%	100%	33%	6bit	45,344	20,646
maxpool4	27x27x256	3x3/2	0									
fire5	27x27x256		2	32	128	128	100%	100%	33%	6bit	49,440	24,742
fire6	27x27x384		2	48	192	192	100%	50%	33%	6bit	104,880	44,700
fire7	27x27x384		2	48	192	192	50%	100%	33%	6bit	111,024	46,236
fire8	27x27x512		2	64	256	256	100%	50%	33%	6bit	188,992	77,581
maxpool8	13x12x512	3x3/2	0									
fire9	13x13x512		2	64	256	256	50%	100%	30%	6bit	197,184	77,581
conv10	13x13x1000	1x1/1 (x1000)	1					20 % (3x3)		6bit	513,000	103,400
avgpool10	1x1x1000	13x13/1	0									
											1,248,424	421,098
	activations		pa	arameters				compress	ion info	_	(total)	(total)

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

Evaluation of Results

Table 2: Comparing SqueezeNet to model compression approaches. By *model size*, we mean the number of bytes required to store all of the parameters in the trained model.

CNN architecture	Compression Approach	Data	Original \rightarrow	Reduction in	Top-1	Top-5
		Type	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al.,	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%
	2014)					
AlexNet	Network Pruning (Han	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
	et al., 2015b)					
AlexNet	Deep	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
	Compression (Han					
	et al., 2015a)					
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%

Further Compression on 4.8M?

Table 2: Comparing SqueezeNet to model compression approaches. By *model size*, we mean the number of bytes required to store all of the parameters in the trained model.

	_					
CNN architecture	Compression Approach	Data	Original \rightarrow	Reduction in	Top-1	Top-5
		Type	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al.,	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%
	2014)					
AlexNet	Network Pruning (Han	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
	et al., 2015b)					
AlexNet	Deep	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
	Compression (Han					
	et al., 2015a)					
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8\text{MB} \rightarrow 0.66\text{MB}$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%
			·			

Further Compression

• Deep Compression + Quantization

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size."

Today's Lecture

Matrix Factorization (SVD)

Network Pruning

Network Quantization

Network Pruning + Quantization