

Análise Matemática II

Atividade 02 – Métodos Numéricos para resolução de Sistemas ED

Docente: Arménio Correia

Miguel Ângelo Rodrigues Ferreira nº 2020107016 - LEI

Pablo Oliveira Amaral nº 2020143935 - LEI

Paulo Henrique Figueira Pestana de Gouveia nº 2020121705 – LEI

Índice

1	Intro	odução3		
2	Métodos numéricos para resolução de Sistemas de ED			∠
	2.0 Cálc		ulo do Passo	
	2.1	Mét	odo de Euler	5
2 2 2 3 3 3 3 3 3 3 3 3	2.1.1		Fórmulas	5
	2.1.	2	Algoritmo/Função	(
	2.2	Mét	odo de Euler melhorado ou modificado	7
	2.2.	1	Fórmulas	7
	2.2.2		Algoritmo/Função	<u>c</u>
	2.3	Mét	odo de RK2	11
	2.3.1		Fórmulas	11
	2.3.2		Algoritmo/Função	13
	2.4 Mét		odo de RK4	15
	2.4.	1	Fórmulas	15
	2.4.	2	Algoritmo/Função	17
3	3 Exemplos de aplicação e teste dos métodos		s de aplicação e teste dos métodos	19
	3.1	Algo	oritmo de Resolução	19
	3.2 Pro		olema do Pêndulo	20
	3.3 Mov		vimento Livre Amortecido	22
	3.4 Mod		delo Vibratório Mecânico	24
	3.5 Mc		vimento Livre Sem Amortecimento	26
	3.6 Circ		uitos Elétricos	27
4	1 Conclusão			20

1 Introdução

Este trabalho foi realizado no âmbito da unidade curricular de Análise Matemática II e consiste na redefinição e adaptação das funções desenvolvidas e implementadas na atividade anterior (Atividade 01 – Métodos Numéricos para EDO/PVI), para a resolução de Sistemas de Equações Diferenciais (ED) com condições iniciais.

Pretende-se implementar os métodos anteriormente referidos, através do desenvolvimento de um GUI em MATLAB, com o objetivo de resolver os exemplos/exercícios (Pêndulo, Movimento livre sem amortecimento, Movimento livre amortecido, Modelo vibratório mecânico e circuitos elétricos), de forma a testar as funções implementadas.

2 Métodos numéricos para resolução de Sistemas de ED

2.0 Cálculo do Passo

Em todos os métodos numéricos implementados ao longo do trabalho, será utilizado o valor do passo, h. De forma a evitar múltiplas repetições, a definição e a fórmula de calculo deste valor será apresentado aqui.

Este valor, é o tamanho de cada subintervalo no intervalo original [a, b], e pode calculado da seguinte forma:

$$h = \frac{b - a}{n}$$

Em que:

- h → Tamanho de cada subintervalo (passo);
- $\alpha \rightarrow$ Limite esquerdo do intervalo;
- b → Limite direito do intervalo;
- $n \rightarrow N$ úmero de subintervalos.

Nota: Quanto menor for o valor h, maior será a quantidade de subintervalos que irão existir dentro de um determinado intervalo e maior será a aproximação ao valor real.

2.1 Método de Euler

2.1.1 Fórmulas

O método de Euler é um procedimento numérico de primeira ordem (y') para aproximação da solução da equação diferencial y' = f(t, y) que satisfaz a condição inicial: $y(t_0) = y_0$.

O Método de Euler para resolver um Sistema de Equações é dado pelas seguintes equações:

Fórmula Geral (ED's 1º ordem):

$$y_i + 1 = y_i + h * f(x_i, y_i)$$

Em que:

- $y_i + 1 \rightarrow \text{Pr\'oximo valor aproximado da solu\'ção do problema inicial (na abcisa <math>t_i + 1$);
- $y_i \rightarrow \text{Valor aproximado da solução do problema inicial na abcissa atual;}$
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor da equação em } t_i \in y_i$.

Fórmula Geral modificada para um Sistema de Equações:

$$u_{i+1} = u_i + h * f(t_i, u_i, v_i)$$

$$v_{i+1} = v_i + h * g(t_i, u_i, v_i)$$

Em que:

- $u_{i+1} \rightarrow \text{Pr}$ óxima ordenada da solução aproximada y(t);
- $v_{i+1} \rightarrow \text{Próxima ordenada da solução aproximada } y'(t);$
- $u_i \rightarrow \text{Ordenada atual da solução aproximada } y(t);$
- $v_i \rightarrow \text{Ordenada da solução aproximada } y'(t);$
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i);$

2.1.2 Algoritmo/Função

Algoritmo:

- 1. Definir o valor do passo (h);
- 2. Definir um vetor u e um vetor v para guardar as soluções e atribuir $n_1 = n_0$ e $v_1 = v_0$;
- 3. Atribuir o primeiro valor de n e de v;
- 4. Para i de 1 a n, fazemos o cálculo do método de Euler para n iterações no vetor n e v.

Função (Matlab)

```
function [t,u,v] = NEulerSED(f,g,a,b,n,u0,v0)
%NEulerSED Método Númerico para resolver um Sistema se SED/PVI: Método de Euler
% y = NEulerSED(f,g,a,b,n,u0,v0) Método numérico para a resolução de um PVI
%INPUT:
% f - lª Função do sistema de equações diferenciais, em v, u e t
   g - 2º Função do sistema de equações diferenciais, em v, u e t
   a - Limite esquerdo do intervalo
   b - Limite direito do intervalo
   n - Numero de sub-intervalos ou iterações do método
 u0 - 1º Valor (condição) Inicial do PVI, quando u=0
   v0 - 2° Valor (condição) Inicial do PVI, quando v=0
SOUTPUT:
% t - vector do X, dos passos de "a" a "b"
   u - vector das soluções apróximadas dos deslocamentos
   v - vector das soluções aproximadas das velocidades
  15/04/2021 Arménio Correia armenioc@isec.pt
  15/04/2021 Paulo Gouveia a2020121705.isec.pt
% 15/04/2021 Miguel Ferreira a2020107016.isec.pt
   15/04/2021 Pablo Amaral a2020143935.isec.pt
88
h = (b-a)/n;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
   u(i+1) = u(i)+h*f(t(i),u(i),v(i));
   v(i+1) = v(i)+h*g(t(i),u(i),v(i));
end
end
```


2.2 Método de Euler melhorado ou modificado

2.2.1 Fórmulas

O método de Euler melhorado acaba por ser semelhante ao método de Euler.

A única diferença entre eles está no facto de o método de Euler utilizar a médias das inclinações em cada ponto para cada iteração, enquanto o método melhorado calcula a inclinação em x_0 e x_1 , obtendo resultados mais aproximados.

Fórmula Geral (ED's de 1ª ordem):

$$y_{i+1} = y_i + \frac{h}{2}(k_1 + k_2), i = 0, 1, 2, ..., n - 1$$

Em que:

- $y_{i+1} \rightarrow \text{Próximo valor aproximado da solução do problema original (na abcissa <math>t_{i+1}$);
- $y_i \rightarrow \text{Valor aproximado da solução do problema original na abcissa atual;}$
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $k_1 \rightarrow$ Inclinação no início do intervalo;
- $k_2 \rightarrow$ Inclinação no fim do intervalo.

Cálculo de k1:

$$k_1 = f(t_i, y_i)$$

Em que:

- $k_1 \rightarrow$ Inclinação no início do intervalo;
- $f(t_i, y_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, y_i).$

Cálculo de k2:

$$k_2 = h * f(t_{i+1}, y_i + k_1)$$

- $k_2 \rightarrow$ Inclinação no fim do intervalo;
- $t_{i+1} \rightarrow \text{Pr}$ óxima abcissa do intervalo escolhido;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $y_i \rightarrow \text{Valor aproximado da solução do problema original na abcissa atual;}$
- $k_1 \rightarrow$ Inclinação no início do intervalo;

Fórmula Geral modificada para um Sistema de Equações:

$$u_{i+1} = u_i + h * u_k$$

$$v_{i+1} = v_i + h * v_k$$

Em que:

- $u_{i+1} \rightarrow \text{Aproximação do método de Euler melhorado para } n \text{ iterações};$
- $v_{i+1} \rightarrow \text{Aproximação do método de Euler melhorado para } n \text{ iterações};$
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $v_i \rightarrow \text{Ordenada}$ atual da função aproximada y'(t);
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $u_k \rightarrow \text{Cálculo da média das inclinações};$
- $v_k \rightarrow$ Cálculo da média das inclinações.

Cálculo de u_k e v_k :

$$u_k = \frac{1}{2} * (u_{k1} + u_{k2})$$

$$v_k = \frac{1}{2} * (v_{k1} + v_{k2})$$

Em que:

- $u_k, v_k \rightarrow \text{Cálculo da média das inclinações};$
- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $u_{k2}, v_{k2} \rightarrow$ Inclinação no fim do intervalo.

Cálculo de u_{k1} e v_{k1} :

$$u_{k1} = f(t_i, u_i, v_i)$$

$$v_{k1} = g(t_i, u_i, v_i)$$

Em que:

- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i);$

Cálculo de u_{k2} e v_{k2} :

$$u_{k2} = f(t_{i+1}, u_i + u_{k1} * h, v_i + v_{k1} * h)$$

$$v_{k2} = g(t_{i+1}, u_i + u_{k1} * h, v_i + v_{k1} * h)$$

Em que:

- $u_{k2}, v_{k2} \rightarrow$ Inclinação no fim do intervalo;
- $t_{i+1} \rightarrow \text{Pr\'oxima abcissa do intervalo escolhido};$
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$

2.2.2 Algoritmo/Função

Algoritmo

- 1. Definir o passo h;
- 2. Criar um vetor \boldsymbol{u} e um vetor \boldsymbol{v} para guardar as soluções e atribuir $u_1 = u_0$ e $v_1 = v_0$;
- 3. Atribuir o primeiro valor de u e de v;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no fim do intervalo;
- 6. Cálculo da média das inclinações;
- 7. Cálculo do valor aproximado para n iterações.

Função (Matlab)

```
function [t,u,v] = NEulerMSED(f,g,a,b,n,u0,v0)
%NEulerMSED Método Númerico para resolver um Sistema se SED/PVI: Método de Euler Melhorado

y = NEulerMSED(f,g,a,b,n,u0,v0) Método numérico para a resolução de um PVI

%INPUT:
% f - lª Função do sistema de equações diferenciais, em v, u e t
    g - 2ª Função do sistema de equações diferenciais, em v, u e t
   a - Limite esquerdo do intervalo
   b - Limite direito do intervalo
   n - Numero de sub-intervalos ou iterações do método
    u0 - 1º Valor (condição) Inicial do PVI, quando u=0
   v0 - 2° Valor (condição) Inicial do PVI, quando v=0
%OUTPUT:
   t - vector do X, dos passos de "a" a "b"
   u - vector das soluções apróximadas dos deslocamentos
   v - vector das soluções aproximadas das velocidades
   15/04/2021 Arménio Correia armenioc@isec.pt
   13/05/2021 Paulo Gouveia a2020121705.isec.pt
% 13/05/2021 Miguel Ferreira a2020107016.isec.pt
    13/05/2021 Pablo Amaral a2020143935.isec.pt
કક
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
    u(i+1) = u(i)+h*f(t(i),u(i),v(i));
    v(i+1) = v(i)+h*g(t(i),u(i),v(i));
    u\,(\,\mathrm{i} + 1) \; = \; u\,(\,\mathrm{i}\,) + (\,\mathrm{h}/2\,) * (\,\mathrm{f}\,(\,\mathrm{t}\,(\,\mathrm{i}\,)\,, u\,(\,\mathrm{i}\,)\,, v\,(\,\mathrm{i}\,)\,) + \mathrm{f}\,(\,\mathrm{t}\,(\,\mathrm{i} + 1)\,, u\,(\,\mathrm{i} + 1)\,, v\,(\,\mathrm{i} + 1)\,)\,)\;;
    v(i+1) = v(i) + (h/2) * (g(t(i),u(i),v(i))+g(t(i+1),u(i+1),v(i+1)));
end
end
```


2.3 Método de RK2

2.3.1 Fórmulas

Método Runge-Kutta de ordem 2, é um método que requer apenas derivadas de primeira ordem, utilizando para cada iteração dois valores, denominados "k", sendo estes a inclinação no início do intervalo e a inclinação no final do intervalo, por fim calcula-se a media das inclinações com o objetivo de obter a inclinação em cada uma das iterações.

Fórmula Geral (ED's de 1ª Ordem):

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2), i = 0, 1, ..., n - 1$$

Em que:

- y_{i+1} → Próximo valor aproximado da solução do problema original (na abcissa t_{i+1});
- $y_i \rightarrow \text{Valor aproximado da solução do problema original na abcissa atual;}$
- $k_1 \rightarrow$ Inclinação no início do intervalo;
- $k_2 \rightarrow$ Inclinação no fim do intervalo;

Cálculo de k1:

$$k_1 = hf(t_i, y_i)$$

- $k_1 \rightarrow$ Inclinação no início do intervalo
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, y_i) \rightarrow \text{Valor da equação em } x_i \text{e } y_i$;

Cálculo de k2:

$$k_2 = hf(t_{i+1}, y_i + k_1)$$

- $k_2 \rightarrow$ Inclinação no fim do intervalo;
- $t_i \rightarrow \text{Valor da abcissa atual};$
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $y_i \rightarrow \text{Valor aproximado da solução do problema original na abcissa atual;}$
- $k_1 \rightarrow$ Inclinação no início do intervalo

Fórmula Geral modificada para um sistema de Equações:

$$u_{i+1} = u_i + u_k$$

$$v_{i+1} = v_i + v_k$$

Em que:

- $u_{i+1} \rightarrow \text{Aproximação do método de RK2 para } n \text{ iterações};$
- $v_{i+1} \rightarrow \text{Aproximação do método de RK2 para } n \text{ iterações};$
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$
- $u_k \rightarrow \text{Cálculo da média das inclinações};$
- $v_k \rightarrow$ Cálculo da média das inclinações.

Cálculo de u_k e v_k :

$$u_k = \frac{(u_{k1} + u_{k2})}{2}$$

$$v_k = \frac{(v_{k1} + v_{k2})}{2}$$

Em que:

- $u_k, v_k \rightarrow \text{Cálculo da média das inclinações};$
- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $u_{k2}, v_{k2} \rightarrow$ Inclinação no fim do intervalo.

Cálculo de u_{k1} e v_{k1} :

$$u_{k1} = f(t_i, u_i, v_i)$$

$$v_{k1} = g(t_i, u_i, v_i)$$

Em que:

- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i);$

Cálculo de u_{k2} e v_{k2} :

$$u_{k2} = h * f(t_{i+1}, u_i + u_{k1}, v_i + v_{k1})$$

$$v_{k2} = h * g(t_{i+1}, u_i + u_{k1}, v_i + v_{k1})$$

Em que:

- $u_{k2}, v_{k2} \rightarrow$ Inclinação no fim do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Pr}$ óxima abcissa do intervalo escolhido;
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$

2.3.2 Algoritmo/Função

Algoritmo

- 1. Definir o passo h;
- 2. Criar um vetor \boldsymbol{u} e um vetor \boldsymbol{v} para guardar as soluções e atribuir $u_1 = u_0$ e $v_1 = v_0$;
- 3. Atribuir o primeiro valor de u e de v;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no fim do intervalo;
- 6. Cálculo do ponto médio das inclinações do intervalo;
- 7. Cálculo do valor aproximado para n iterações.

Função (Matlab)

```
function [t,u,v] = NRK2SED(f,g,a,b,n,u0,v0)
%NRK2SED Método Númerico para resolver um Sistema se SED/PVI:
%Runge-Kutta de Ordem 2
  y = NRK2SED(f,g,a,b,n,u0,v0) Método numérico para a resolução de um PVI
%INPUT:
% f - lª Função do sistema de equações diferenciais, em v, u e t
% g - 2º Função do sistema de equações diferenciais, em v, u e t
   a - Limite esquerdo do intervalo
   b - Limite direito do intervalo
   n - Numero de sub-intervalos ou iterações do método
  u0 - 1º Valor (condição) Inicial do PVI, quando u=0
  v0 - 2° Valor (condição) Inicial do PVI, quando v=0
%OUTPUT:
  t - vector do X, dos passos de "a" a "b"
  u - vector das soluções apróximadas dos deslocamentos
   v - vector das soluções aproximadas das velocidades
  15/04/2021 Arménio Correia armenioc@isec.pt
  14/05/2021 Paulo Gouveia a2020121705.isec.pt
  14/05/2021 Miguel Ferreira a2020107016.isec.pt
  14/05/2021 Pablo Amaral a2020143935.isec.pt
88
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
    klu = h*f(t(i),u(i),v(i));
   klv = h*g(t(i),u(i),v(i));
   k2u = h*f(t(i+1),u(i)+klu,v(i)+klv);
   k2v = h*g(t(i+1),u(i)+klu,v(i)+klv);
   u(i+1) = u(i) + (klu+k2u)/2;
    v(i+1) = v(i) + (klv+k2v)/2;
end
```


2.4 Método de RK4

2.4.1 Fórmulas

O método de Runge-Kutta de ordem 4 não necessita do cálculo da derivada f, mas depende de uma função definida através da avaliação de f em múltiplos pontos.

Para resolver um PVI através do método RK4 são utilizadas as seguintes equações:

Fórmula geral (ED's de 1ª Ordem):

$$y_i + 1 = y_i + \frac{h}{6} * (k_1 + 2k_2 + 2k_3 + k_4), i = 0,1,2,...$$

Em que:

- $y_i + 1 \rightarrow \text{Aproximação pelo método RK4 de y(xn+1)};$
- $y_i \rightarrow \text{Valor de } \mathbf{y} \text{ em } \mathbf{n} \text{ iteração;}$
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$.
- $k_1, k_2, k_3 e k_4$:

$$\circ \quad k_1 = f(x_i, y_i)$$

$$o k_2 = f(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_1)$$

o
$$k_3 = f(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_2)$$

$$\circ \quad k_4 = f(x_i + h, y_i + hk_3)$$

- Onde:
 - o k₁→ Inclinação no início do intervalo;
 - o k₂ → Inclinação no ponto médio do intervalo;
 - o $k_3 \rightarrow$ Inclinação no ponto médio do intervalo;
 - o $k_4 \rightarrow$ Inclinação no final do intervalo.

Média ponderada das inclinações:

$$\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

Fórmula Geral modificada para um sistema de Equações:

$$u_{i+1} = u_i + u_k$$

$$v_{i+1} = v_i + v_k$$

Em que:

- $u_{i+1} \rightarrow \text{Aproximação do método de RK4 para } n \text{ iterações};$
- $v_{i+1} \rightarrow \text{Aproximação do método de RK4 para } n \text{ iterações};$
- $u_i \rightarrow \text{Ordenada}$ atual da função aproximada y(t);
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$
- $u_k \rightarrow \text{Cálculo da média das inclinações};$
- $v_k \rightarrow$ Cálculo da média das inclinações.

Cálculo de u_k e v_k :

$$u_k = \frac{(u_{k1} + 2 * u_{k2} + 2 * u_{k3} + u_{k4})}{6}$$
$$v_k = \frac{(v_{k1} + 2 * v_{k2} + 2 * v_{k3} + v_{k4})}{6}$$

Em que:

- $u_k, v_k \rightarrow \text{Cálculo da média das inclinações};$
- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $u_{k2}, v_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $u_{k3}, v_{k3} \rightarrow$ Inclinação no ponto médio do intervalo;
- $u_{k4}, v_{k4} \rightarrow$ Inclinação no fim do intervalo.

Cálculo de u_{k1} e v_{k1} :

$$u_{k1} = h * f(t_i, u_i, v_i)$$
$$v_{k1} = h * g(t_i, u_i, v_i)$$

Em que:

- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i);$

Cálculo de u_{k2} e v_{k2} :

$$u_{k2} = h * f(t_i + \frac{h}{2}, u_i + 0.5 * u_{k1}, v_i + 0.5 * v_{k1})$$

$$v_{k2} = h * g(t_i + \frac{h}{2}, u_i + 0.5 * u_{k1}, v_i + 0.5 * v_{k1})$$

Em que:

- $u_{k2}, v_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $u_{k1}, v_{k1} \rightarrow$ Inclinação no início do intervalo;
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$

Cálculo de u_{k3} e v_{k3} :

$$u_{k3} = h * f(t_i + \frac{h}{2}, u_i + 0.5 * u_{k2}, v_i + 0.5 * v_{k2})$$

$$v_{k3} = h * g(t_i + \frac{h}{2}, u_i + 0.5 * u_{k2}, v_i + 0.5 * v_{k2})$$

Em que:

- $u_{k3}, v_{k3} \rightarrow$ Inclinação no ponto médio do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $u_{k2}, v_{k2} \rightarrow$ Inclinação no ponto médio do intervalo;
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$

Cálculo de u_{k4} e v_{k4} :

$$u_{k4} = h * f(t_{i+1}, u_i + u_{k3}, v_i + v_{k3})$$

$$v_{k4} = h * g(t_{i+1}, u_i + u_{k3}, v_i + v_{k3})$$

Em que:

- $u_{k4}, v_{k4} \rightarrow$ Inclinação no final do intervalo;
- $h \rightarrow$ Tamanho de cada subintervalo (passo);
- $t_{i+1} \rightarrow \text{Pr\'oxima abcissa do intervalo escolhido}$;
- $u_i \rightarrow \text{Ordenada atual da função aproximada } y(t);$
- $u_{k3}, v_{k3} \rightarrow$ Inclinação no ponto médio do intervalo;
- $v_i \rightarrow \text{Ordenada atual da função aproximada } y'(t);$

2.4.2 Algoritmo/Função

Algoritmo

- 1. Definir o passo h;
- 2. Criar um vetor u e um vetor v para guardar as soluções e atribuir $u_1 = u_0$ e $v_1 = v_0$;
- 3. Atribuir o primeiro valor de u e de v;
- 4. Cálculo da inclinação no início do intervalo;
- 5. Cálculo da inclinação no ponto médio do intervalo;
- 6. Cálculo (novamente) da inclinação no ponto médio do intervalo;
- 7. Cálculo da inclinação no fim do intervalo;
- 8. Cálculo da média ponderada das inclinações;
- 9. Cálculo do valor aproximado para *n* iterações.
- 10. Cálculo do método RK4 para *n* iterações.

Função (Matlab)

```
function [t,u,v] = NRK4SED(f,g,a,b,n,u0,v0)
%NRK4SED Método Númerico para resolver um Sistema se SED/PVI:
%Runge-Kutta de Ordem 4
   y = NRK4SED(f,g,a,b,n,u0,v0) Método numérico para a resolução de um PVI
  f - lª Função do sistema de equações diferenciais, em v, u e t
   g - 2ª Função do sistema de equações diferenciais, em v, u e t
   a - Limite esquerdo do intervalo
  b - Limite direito do intervalo
  n - Numero de sub-intervalos ou iterações do método
  u0 - 1º Valor (condição) Inicial do PVI, quando u=0
   v0 - 2° Valor (condição) Inicial do PVI, quando v=0
%OUTPUT:
  t - vector do X, dos passos de "a" a "b"
  u - vector das soluções apróximadas dos deslocamentos
  v - vector das soluções aproximadas das velocidades
   15/04/2021 Arménio Correia armenioc@isec.pt
ę.
   16/05/2021 Paulo Gouveia a2020121705.isec.pt
  16/05/2021 Miguel Ferreira a2020107016.isec.pt
% 16/05/2021 Pablo Amaral a2020143935.isec.pt
કક
h = (b-a)/n;
t = a:h:b;
u = zeros(1,n+1);
v = zeros(1,n+1);
u(1) = u0;
v(1) = v0;
for i = 1:n
    klu = h*f(t(i),u(i),v(i));
   klv = h*g(t(i),u(i),v(i));
   k2u = h*f(t(i)+0.5*h,u(i)+0.5*klu,v(i)+0.5*klv);
   k2v = h*g(t(i)+0.5*h,u(i)+0.5*klu,v(i)+0.5*klv);
    k3u = h*f(t(i)+0.5*h,u(i)+0.5*k2u,v(i)+0.5*k2v);
   k3v = h*g(t(i)+0.5*h,u(i)+0.5*k2u,v(i)+0.5*k2v);
   k4u = h*f(t(i)+0.5*h,u(i)+k3u,v(i)+k3v);
   k4v = h*g(t(i)+0.5*h,u(i)+k3u,v(i)+k3v);
   u(i+1) = u(i) + (k1u+2*k2u+2*k3u+k4u)/6;
   v(i+1) = v(i) + (k1v+2*k2v+2*k3v+k4v)/6;
end
end
```


3 Exemplos de aplicação e teste dos métodos

3.1 Algoritmo de Resolução

Para resolução dos exercícios propostos e respetiva aplicação no GUI, este passa por 5 passos. Para começar é necessária uma Equação diferencial de 2ª ordem:

$$Ay'' + By' + Cy + D = 0$$

Sendo que, y, A, B, C e D são função em t.

O objetivo é obter a solução da ED numericamente, y(t).

1º Passo – Resolver a equação em ordem a y'':

$$y'' = -\frac{B}{A}y' - \frac{C}{A}y - \frac{D}{A}$$

2º Passo – Mudança de variável:

$$\begin{cases} u = y \\ v = y \end{cases}$$

 3° Passo – Derivar u e v e efetuar as respetivas substituições:

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \leftrightarrow \begin{cases} u' = v \\ v' = -\frac{B}{A}y' - \frac{C}{A}y - \frac{D}{A} \end{cases} \leftrightarrow \begin{cases} u' = v \\ v' = -\frac{B}{A}v - \frac{C}{A}u - \frac{D}{A} \end{cases}$$

4º Passo – Definir os PVI's e o sistema de ED's:

$$\begin{cases} u' = v \\ v' = -\frac{B}{A}v - \frac{C}{A}u - \frac{D}{A} \end{cases}$$

$$t \in [a, b]$$

$$\begin{cases} u(0) = u_0 \\ v(0) = v_0 \end{cases}$$

 5° Passo – Aplicar Métodos Numéricos na GUI, com f(t, u, v) = u' e g(t, u, v) = v', de modo a obter uma aproximação de y(t).

3.2 Problema do Pêndulo

Example 13-A Motion of a Nonlinear Pendulum

The motion of a pendulum of length L subject to damping can be described by the angular displacement of the pendulum from the vertical, θ , as a function of time. (See Fig. 13.1.) If we let m be the mass of the pendulum, g the gravitational constant, and c the damping coefficient (i.e., the damping force is $F = -c\theta'$), then the ODE initial-value problem describing this motion is

$$\theta'' + \frac{c}{mL}\theta' + \frac{g}{L}\sin\theta = 0.$$

The initial conditions give the angular displacement and velocity at time zero; for example, if $\theta(0) = a$ and $\theta'(0) = 0$, the pendulum has an initial displacement, but is released with 0 initial velocity.

Analytic (closed-form) solutions rely on approximating $\sin \theta$; the exact solutions to this approximated system do not have the characteristics of the physical pendulum, namely, a decreasing amplitude and a decreasing period. (See Greenspan, 1974, for further discussion.)

FIGURE 13.1a Simple pendulum.

FIGURE 13.1b The motion of a pendulum given by ODE above (solid line) and linearized ODE (dashed line).

Neste problema, consideram-se os seguintes valores:

$$\frac{C}{mL} = 0.3; \frac{G}{L} = 1; t \in [0, 15]; \ \theta = y$$

Como neste caso o pendulo é largado com velocidade nula, no momento em que a corda está perpendicular ao seu suporte, obtemos as condições iniciais:

$$y(0) = \frac{\pi}{2}; y'(0) = 0$$

Desta forma, obtemos a seguinte equação diferencial:

$$y'' + 0.3y' + \sin(y) = 0$$

Através do algoritmo apresentado anteriormente, podemos obter o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -\sin(u) - 0.3v \\ t \in [0, 15] \\ \left\{ u(0) = \frac{\pi}{2} \\ v(0) = 0 \end{cases} \end{cases}$$

Após inserir esta informação na aplicação, obtemos:

Observação: Uma vez que a equação diferencial deste problema não é linear, não é possível calcular uma solução exata através do MATLAB.

3.3 Movimento Livre Amortecido

c) Um peso de 6.4 lb provoca, numa mola, um alongamento de 1.28 ft. O sistema está sujeito à acção duma força amortecedora, numericamente igual ao dobro da sua velocidade instantânea. Determine a equação do movimento do peso, supondo que ele parte da posição de equilíbrio com uma velocidade dirigida para cima de 4 ft/s.

Resolução:

Sabe-se, pela lei de Hooke, que W=ks

No caso em estudo
$$k=\frac{6.4}{1.28}\Leftrightarrow k=5$$
 lb/ft. Como $W=mg$, tem-se $m=\frac{6.4}{32}\Leftrightarrow m=0.2$

A equação que descreve o movimento livre amortecido é

$$m\frac{d^2x}{dt^2} = -Kx - b\frac{dx}{dt}$$

onde b é uma constante positiva e o sinal "-" indica que as forças amortecedoras actuam na direcção oposta ao movimento.

Então a equação diferencial de movimento de peco é 0.2x'' = -5x - 2x' $\Leftrightarrow x'' + 10x' + 25x = 0$ com x(0) = 0 ϵ x'(0) = -4

A partir do enunciado podemos obter a seguinte equação diferencial ao considerarse que x(t) = y(t):

$$y'' + 10y' + 25y = 0$$

Tal como as condições iniciais:

$$y(0) = 0$$
; $y'(0) = -4$

Através do algoritmo apresentado anteriormente, podemos obter o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -10v - 25u \\ t \in [0, 2] \\ u(0) = 0 \\ v(0) = -4 \end{cases}$$

3.4 Modelo Vibratório Mecânico

Modelos vibratórios mecánicos

Nestes sistemas, o deslocamento z obedece à equação diferencial linear de 2ª ordem

$$mx'' + bx' + k(x) = f(t)$$

onde:

m = macca; z = declocamento; b = factor de amortecimento;

k = constante da mola e f(t) = força aplicada

2.

a)
$$x'' + 2x' + 2x = 4\cos t + 2\sin t$$
, $x(0) = 0$ $x'(0) = 3$
 $\Rightarrow x(t) = e^{-t}\sin t + 2\sin t$

A partir do enunciado podemos obter a seguinte equação diferencial ao considerarse que x(t) = y(t):

$$y'' + 2y' + 2y - 4\cos(t) + 2\sin(t) = 0$$

Tal como as condições iniciais:

$$y(0) = 0$$
; $y'(0) = 3$

Através do algoritmo apresentado anteriormente, podemos obter o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -2v - 2u + 4\cos(t) + 2\sin(t) \\ t \in [0, 15] \\ \{u(0) = 0 \\ v(0) = 3 \end{cases}$$

3.5 Movimento Livre Sem Amortecimento

b) A equação mx'' + kx = 0 descreve o movimento harmónico simples, ou movimento livre não amortecido, e está sujeita às condições iniciais x(0) = a e x'(0) = b representando, respectivamente, a medida do deslocamento inicial e a velocidade inicial.

Use este conhecimento para dar uma interpretação física do problema de Cauchy

$$x'' + 16x = 0$$
 $x(0) = 9$ $x'(0) = 0$

e resolva-o

A partir do enunciado podemos obter a seguinte equação diferencial ao considerarse que x(t) = y(t):

$$y'' + 16y = 0$$

Tal como as condições iniciais:

$$y(0) = 9$$
; $y'(0) = 0$

Através do algoritmo apresentado anteriormente, podemos obter o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -16v \\ t \in [0, 10] \\ \{u(0) = 9 \\ v(0) = 0 \end{cases}$$

3.6 Circuitos Elétricos

PROBLEMA 1

Considere o circuito RLC apresentado abaixo (Figura 5). Com base nos dados determine a expressão que representa a tensão no capacitor em função do tempo para um tempo t > 0. Note que $I_L(0) = 4$ A (àmpers) e que $V_c(0) = -4V$ (volts).

Figura 5: Circuito RLC do Problema 1. Fonte: Autor.

A partir do enunciado podemos obter a seguinte equação diferencial ao considerarse que x(t) = y(t):

$$y'' + 6y' + 25y = 0$$

Considerando que o tempo é nulo, t = 0, obtemos:

$$R y(0) + Ly'(0) + V_C(0) = 0$$

Substituindo as condições iniciais $y_L(0) = 4$ e $v_C(0) = -4$, obtem-se:

$$6*4+y'(0)-4=0$$

Sendo que:

$$y'(0) = -20$$

Através do algoritmo apresentado anteriormente, podemos obter o seguinte sistema:

$$\begin{cases} u' = v \\ v' = -6v - 25u \\ t \in [0, 10] \\ u(0) = 4 \\ v(0) = -20 \end{cases}$$

4 Conclusão

Podemos então dizer que através da adaptação de métodos numéricos existentes (neste caso, Euler, Heun, RK2 e RK4), podemos aplicar esses mesmos métodos a Sistemas de Equações Diferenciais com condições iniciais, o que possibilita a resolução de problemas Equações Diferenciais de 2ª ordem.

Como já tinha sido observado no trabalho anterior, quanto maior for o n (subintervalo), menor será o erro dos métodos aplicados.

Relativamente à comparação de métodos, é possível observar que os métodos que verificam menor erro e, consequentemente, maior aproximação ao valor exato, são o método de Runge-Kutta de ordem 4 e o método usando a função ODE45 do MATLAB, que proporcionam maioritariamente erros na ordem das milésimas ou menor. Por outro lado, o método de Euler, quando comparado aos restantes métodos explorados, apresenta erros maiores.

Por fim, é vemos que através de "simples" Equações Diferenciais de 2ª ordem é possível a resolução de diversos problemas de diversas áreas distintas (Engenharia, Biologia, Economia, entre outras), sendo usadas no dia-a-dia de certas profissões.