Sprint 1 Summary

Doscker

10 de septiembre de 2018

Lenguajes interpretados

Un lenguaje interpretado es un programa cuyo código no es necesario de ser compilado o procesado mediante un compilador, es decir, que es capaz de ejecutar el código dado por el programador sin traducir de manera compleja el código. Esto es gracias a un programa que esta encargado de traducir el código de lenguaje "humano" a lenguaje máquina, y este programa es llamado interprete.

Su función principal es de leer una a una las instrucciones del código, y des-componerlas en instrucciones del sistema. Por otro lado, se encarga de automatizar algunas de las tareas típicas de un programador.

(Escobar, 2017)

El interpreté se basa en 3 pasos, los cuales son:

- 1. Lexer: En este paso, la linea de código es descompuesta en palabras individuales que el *lexer* reconozca como sintaxis correcta.
- 2. Parser: Después del lexer, el parser construye parse trees o abstract syntax trees (AST) con las acciones que identifica.
- 3. El intérprete: Finalmente lee y evalúa el parse tree y lo ejecuta.

Ejemplos de lenguajes interpretados:

- 1. Python
- 2. Ruby
- 3. PHP

Para ver las ventajas y desventajas, y el resto del contenido de los lenguajes interpretados, ir al siguiente link: $https://docs.google.com/presentation/d/1pU6T46ocPFmjibrW9yBCv-UKMv4PG_3qAF6AKMeIh4/edit?usp = sharing$

Programacón 2 Doscker

Comparación POO y Programación estructurada

Programación Orientada a Objetos	Programación Estructurada
Técnica de programación para representar acciones o cosas de la vida real basadas en objetos.	Técnica de desarrollo de programas de la forma más clara posible haciendo uso tras estructura de control.
Datos y procedimientos están separados y sin relación, ya que lo único que se busca es el procesamiento de datos de entrada para obtener datos de salida.	Anima al programador a pensar en procedimientos o funciones y en las estructuras de datos de las mismas.
Primero se definen los objetos para luego enviarles mensajes solicitándoles que realicen métodos por sí mismos. (Unidad de programación es la clase)	Solo se manejan funciones. (Unidad de programación es la función)
Se separa en segmentos pequeños. (Incluye datos y procedimientos en diferentes clases.)	Puede ser leído en secuencia. (Estructura del programa más clara, ya que instrucciones están relacionadas)
Incorpora mecanismos como: polimorfismo, herencia, entre otros.	Se utilizan las instrucciones para que se cumplan las condiciones y se muestren claramente la relaciones existentes entre funciones.

Juego Roll a ball

Figura 1: Link del repositorio para el el cuadro comparativo y el juego realizado en Unity: $\frac{1}{2}$ https://github.com/Fernando0107/Doscker

Programacón 2 Doscker

Vídeo Interpretado vs. Compilado

Figura 2: Link del video: https://youtu.be/CLejB6rdtMA

Programacón 2 Doscker

Doodle de Java

