Chapter ML:II (continued)

II. Machine Learning Basics

- Concept Learning: Search in Hypothesis Space
- □ Concept Learning: Version Space
- □ From Regression to Classification
- Evaluating Effectiveness

ML:II-1 Machine Learning Basics ©STEIN 2021

Simple Classification Problems

Setting:

- \Box X is a multiset of feature vectors.
- $C = \{\text{no, yes}\}\$ is a set of two classes. Similarly: $\{0,1\}, \{-1,1\}, \{\ominus, \oplus\},$ "belongs to a concept or not", etc.
- $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$ is a multiset of examples.

Learning task:

 \Box Approximate D with a feature-value pattern.

Example Learning Task

X contains vectors encoding weather in the six dimensions "Sky", "Temperature", "Humidity", "Wind", "Water", and "Forecast". D contains examples of weather conditions $\mathbf{x} \in X$ along with a statement whether or not our friend will enjoy her favorite sport (surfing):

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	warm	same	yes 1
2	sunny	warm	high	strong	warm	same	yes 1
3	rainy	cold	high	strong	warm	change	no 0
4	sunny	warm	high	strong	cool	change	yes 1

- What is the concept behind "EnjoySport"?
- What are possible hypotheses to formalize the concept "EnjoySport"?

Similarly: What are the elements of the set or class "EnjoySport"?

ML:II-3 Machine Learning Basics ©STEIN 2021

Remarks:

□ Domains of the features in the learning task:

Sky	Temperature	Humidity	Wind	Water	Forecast
sunny	warm	normal	strong	warm	same
rainy	cold	high	light	cool	change
cloudy					

- A concept is a subset of a larger set of objects. In the exemplary learning task the larger object set contains all possible weather conditions, while the subset (= the concept) contains those weather conditions when surfing is enjoyed.
- □ A hypothesis is expected to "capture a (target) concept", to "explain a (target) concept", or to "predict a (target) concept" in terms of the feature expressions of the objects.
- ☐ The "quality", the "persuasiveness", or the "power" of a hypothesis depends on its capability to represent (= to explain) a given set of observations, which are called examples here.
- □ In our learning setting, a hypothesis cannot be inferred or proven by deductive reasoning. A hypothesis is a finding or an insight gained by *inductive reasoning*.

ML:II-4 Machine Learning Basics ©STEIN 2021

Simple Classification Problems (continued)

Definition 1 (Concept, Hypothesis, Hypothesis Space)

Let O be a set of objects, \mathbf{X} the feature space associated with a model formation function $\alpha: O \to \mathbf{X}$, and $X = \{\mathbf{x} \mid \mathbf{x} = \alpha(o), o \in O\}$ be a multiset of feature vectors.

A concept is a subset of O and induces a subset $X' \subseteq X$. Concept learning means learning the indicator function for X', which returns 1 if $\mathbf{x} \in X'$ and 0 otherwise.

Simple Classification Problems (continued)

Definition 1 (Concept, Hypothesis, Hypothesis Space)

Let O be a set of objects, \mathbf{X} the feature space associated with a model formation function $\alpha: O \to \mathbf{X}$, and $X = \{\mathbf{x} \mid \mathbf{x} = \alpha(o), o \in O\}$ be a multiset of feature vectors.

A concept is a subset of O and induces a subset $X' \subseteq X$. Concept learning means learning the indicator function for X', which returns 1 if $\mathbf{x} \in X'$ and 0 otherwise.

A hypothesis is a function $h(\mathbf{x})$, $h: X \to \{0,1\}$, that approximates the indicator function for X' based on an example set D. The hypothesis space is a set H of hypotheses among which $h(\mathbf{x})$ is searched.

[ML:I Specification of Learning Problems]

Remarks:

- A hypothesis may also be called *model function* or *model*. Note however, that it is common practice to designate only the *parameters* of a model function, w, as hypothesis (and not the model function itself), especially if the setting focuses on a certain class of models, such as linear models, polynomials of a fixed degree, or Gaussian distributions.
- ☐ The subtle semantic distinction between the terms "model function" and "hypothesis" made in machine learning is that the former term is typically used to denote a function *class* or a particular *class* of computational approaches, while the latter term refers to a specific instance of that class.
- Depending on the learning task—more specifically: on the structure of the feature space—a hypothesis (model function, model) can take different forms and, accordingly, is denoted differently: $h(\mathbf{x})$ (as done here), $y(\mathbf{x})$ (in regression settings), T (for decision trees), $\prod P(A \mid B)$ (within statistical learning), etc.

ML:II-7 Machine Learning Basics ©STEIN 2021

Simple Classification Problems (continued)

The example set D, $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$, contains usually both positive (c = 1) and negative (c = 0) examples. [learning task]

Definition 2 (Positive Classified, Consistent)

An example (\mathbf{x}, c) is positive classified by a hypothesis $h(\mathbf{x})$ iff $h(\mathbf{x}) = 1$.

A hypothesis $h(\mathbf{x})$ is consistent with an example (\mathbf{x},c) iff $h(\mathbf{x})=c$.

A hypothesis $h(\mathbf{x})$ is consistent with a set D of examples, denoted as consistent(h, D), iff:

$$\forall (\mathbf{x}, c) \in D : h(\mathbf{x}) = c$$

- □ The string "Iff" or "iff" is an abbreviation for "If and only if", which means "necessary and sufficient". It is a textual representation for the logical biconditional, also known as material biconditional or iff-connective. The respective symbol is "↔". [Wolfram] [Wikipedia]
- □ The following terms are used synonymously: concept, target concept, target function.
- ☐ The fact that a hypothesis is consistent with an example can also be described the other way round: an example is consistent with a hypothesis.
- Given an example (\mathbf{x}, c) , notice the difference between (1) positive classified and (2) being consistent with a hypothesis. The former asks for $h(\mathbf{x}) = 1$, disregarding the actual target concept value c. The latter asks for the identity between the target concept c and the hypothesis $h(\mathbf{x})$.
- The consistency of $h(\mathbf{x})$ can be analyzed for a single example as well as for a set D of examples. Given the latter, consistency requires that $h(\mathbf{x}) = 1$ iff c = 1, for all $(\mathbf{x}, c) \in D$. This is equivalent with the condition that $h(\mathbf{x}) = 0$ iff c = 0, for all $(\mathbf{x}, c) \in D$.
- \Box Learning means to determine a hypothesis $h(\mathbf{x}) \in H$ that is consistent with D. Similarly: Machine learning means to systematically search the hypothesis space.

ML:II-9 Machine Learning Basics © STEIN 2021

Simple Classification Problems (continued)

Structure of a hypothesis h(x):

- 1. conjunction of feature-value pairs
- 2. three kinds of values: literal, ? (wildcard), \perp (contradiction)

A hypothesis for EnjoySport [learning task]: \(\sunny, ?, ?, strong, ?, same \)

ML:II-10 Machine Learning Basics ©STEIN 2021

Simple Classification Problems (continued)

Structure of a hypothesis h(x):

- 1. conjunction of feature-value pairs
- 2. three kinds of values: literal, ? (wildcard), ⊥ (contradiction)

A hypothesis for EnjoySport [learning task]: \(\sunny, ?, ?, strong, ?, same \)

Definition 3 (Maximally Specific / General Hypothesis)

The hypotheses $s_0(\mathbf{x}) \equiv 0$ and $g_0(\mathbf{x}) \equiv 1$ are called maximally specific and maximally general hypothesis respectively. No $\mathbf{x} \in X$ is positive classified by $s_0(\mathbf{x})$, and all $\mathbf{x} \in X$ are positive classified by $g_0(\mathbf{x})$.

Maximally specific / general hypothesis in the example [learning task]:

- $\Box \quad g_0 = \langle ?, ?, ?, ?, ?, ? \rangle \qquad \text{(always enjoy sport)}$

Order of Hypotheses

$$\mathbf{x}_1 = (\textit{sunny, warm, normal, strong, warm, same})$$

$$\mathbf{x}_4 = (\textit{sunny, warm, high, strong, cool, change})$$

$$h_1=\langle$$
 sunny, ?, normal, ?, ?, ? $angle$ $h_2=\langle$ sunny, ?, ?, warm, ? $angle$ $h_4=\langle$ sunny, ?, ?, ?, ?, ? $angle$

ML:II-12 Machine Learning Basics ©STEIN 2021

Order of Hypotheses (continued)

Definition 4 (More General Relation)

Let X be a multiset of feature vectors and let $h_1(\mathbf{x})$ and $h_2(\mathbf{x})$ be two boolean-valued functions with domain X. Then $h_1(\mathbf{x})$ is called more general than $h_2(\mathbf{x})$, denoted as $h_1(\mathbf{x}) \geq_q h_2(\mathbf{x})$, iff:

$$\forall \mathbf{x} \in X : (h_2(\mathbf{x}) = 1 \text{ implies } h_1(\mathbf{x}) = 1)$$

 $h_1(\mathbf{x})$ is called strictly more general than $h_2(\mathbf{x})$, denoted as $h_1(\mathbf{x}) >_q h_2(\mathbf{x})$, iff:

$$(h_1(\mathbf{x}) \ge_g h_2(\mathbf{x}))$$
 and $(h_2(\mathbf{x}) \not\ge_g h_1(\mathbf{x}))$

In the illustration: $h_2(\mathbf{x}) = 1$ implies that $h_4(\mathbf{x}) = 1$. I.e., h_4 is more general than h_1 .

ML:II-13 Machine Learning Basics ©STEIN 2021

Order of Hypotheses (continued)

Definition 4 (More General Relation)

Let X be a multiset of feature vectors and let $h_1(\mathbf{x})$ and $h_2(\mathbf{x})$ be two boolean-valued functions with domain X. Then $h_1(\mathbf{x})$ is called more general than $h_2(\mathbf{x})$, denoted as $h_1(\mathbf{x}) \geq_q h_2(\mathbf{x})$, iff:

$$\forall \mathbf{x} \in X : (h_2(\mathbf{x}) = 1 \text{ implies } h_1(\mathbf{x}) = 1)$$

 $h_1(\mathbf{x})$ is called strictly more general than $h_2(\mathbf{x})$, denoted as $h_1(\mathbf{x}) >_g h_2(\mathbf{x})$, iff:

$$(h_1(\mathbf{x}) \ge_g h_2(\mathbf{x}))$$
 and $(h_2(\mathbf{x}) \not\ge_g h_1(\mathbf{x}))$

In the illustration: $h_2(\mathbf{x}) = 1$ implies that $h_4(\mathbf{x}) = 1$. I.e., h_4 is more general than h_1 .

About the maximally specific / general hypothesis:

- \Box We will consider only hypothesis spaces that contain $s_0(\mathbf{x})$ and $g_0(\mathbf{x})$.

ML:II-14 Machine Learning Basics ©STEIN 2021

Remarks:

- □ If $h_1(\mathbf{x})$ is more general than $h_2(\mathbf{x})$, then $h_2(\mathbf{x})$ can also be called being more specific than $h_1(\mathbf{x})$.
- The relations \geq_g and $>_g$ are independent of a target concept. They depend only on the fact that examples are positive classified by a hypothesis, i.e., whether $h(\mathbf{x}) = 1$, $(\mathbf{x}, c) \in D$. It is not required that c = 1.
- The \geq_g -relation defines a partial order on the hypothesis space $H:\geq_g$ is reflexive, anti-symmetric, and transitive. The order is *partial* since (unlike in a total order) not all hypothesis pairs stand in the relation. [Wikipedia partial, total]
 - I.e., we are given hypotheses $h_i(\mathbf{x})$, $h_j(\mathbf{x})$, for which neither $h_i(\mathbf{x}) \geq_g h_j(\mathbf{x})$ nor $h_j(\mathbf{x}) \geq_g h_i(\mathbf{x})$ holds, such as the hypotheses $h_1(\mathbf{x})$ and $h_2(\mathbf{x})$ in the illustration.

ML:II-15 Machine Learning Basics ©STEIN 2021

Remarks on entailment:

- The semantics of the implication, in words "a implies b", denoted as $a \to b$, is as follows. $a \to b$ is true if either (1) a is true and b is true, or (2) if a is false and b is true, or (3) if a is false and b is false—in short: "if a is true then b is true as well", or, "the truth of a implies the truth of b".
- " \rightarrow " can be understood as "causality connective": Let a and b be two events where a is a cause for b. If we interpret the occurrence of an event as true and its non-occurrence as false, we will observe only occurrence combinations such that the formula $a \rightarrow b$ is true. The connective is also known as material conditional, material implication, material consequence, or simply, implication or conditional.
- Note in particular that the connective " \rightarrow " does not mean "entails", which would be denoted as either \Rightarrow or \models . Logical entailment (synonymously: logical inference, logical deduction, logical consequence) allows to infer or to prove a formula β given a formula α .

 Consider for instance the More-General-Definition: From the formula $\alpha =$ " $h_2(\mathbf{x}) = 1$ " we
 - Consider for instance the More-General-Definition: From the formula $\alpha = h_2(\mathbf{x}) = 1$ we cannot infer or prove the formula $\beta = h_1(\mathbf{x}) = 1$.
- In the More-General-Definition the implication specifies a condition that is to be fulfilled by the definiendum (= the thing to be defined). The implication is used to check whether or not a thing belongs to the set of things specified by the definiens (= the expression that defines):

 Each pair of functions, $h_1(\mathbf{x})$, $h_2(\mathbf{x})$, is a thing that belongs to the set of things specified by the definition of the \mathbf{x} -relation (i.e. stands in the \mathbf{x} -relation) if and only if the implication

definition of the \geq_g -relation (i.e., stands in the \geq_g -relation) if and only if the implication $h_2(\mathbf{x}) = 1 \rightarrow h_1(\mathbf{x}) = 1$ is true for all $\mathbf{x} \in X$.

ML:II-16 Machine Learning Basics ©STEIN 2021

Remarks on entailment: (continued)

- In a nutshell: distinguish carefully between " α requires β ", denoted as $\alpha \to \beta$, on the one hand, and "from α follows β ", denoted as $\alpha \Rightarrow \beta$, on the other hand. $\alpha \to \beta$ is considered as a sentence from the *object language* (language of discourse) and stipulates a computing operation, whereas $\alpha \Rightarrow \beta$ is a sentence from the *meta language* and makes an assertion *about* the sentence $\alpha \to \beta$, namely: " $\alpha \to \beta$ is a tautology".
- □ Finally, consider the following sentences from the object language, which are synonymous:

```
"\alpha \to \beta"
```

" α implies β "

"if α then β "

" α causes β "

" α requires β "

" α is sufficient for β "

" β is necessary for α "

ML:II-17 Machine Learning Basics ©STEIN 2021

Inductive Learning Hypothesis

"Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples."

[p.23, Mitchell 1997]

Find-S Algorithm

```
1. h(\mathbf{x}) = s_0(\mathbf{x}) // h(\mathbf{x}) is a maximally specific hypothesis in H.

2. FOREACH (\mathbf{x},c) \in D DO

IF c=1 THEN // Learn only from positive examples.

IF h(\mathbf{x}) = 0 DO

h = min\_generalization(h,\mathbf{x}) // Relax h(\mathbf{x}) wrt.x.

ENDIF

ENDIF

ENDOO

3. return(h(\mathbf{x}))
```

ML:II-19 Machine Learning Basics © STEIN 2021

- □ Except for the first step, generalization means to substitute question marks (wildcards) for literals. Another term for "generalization" is "relaxation".
- The function $min_generalization(h, \mathbf{x})$ returns a hypothesis $h'(\mathbf{x})$ that is minimally generalized wrt. $h(\mathbf{x})$ and that is consistent with $(\mathbf{x}, 1)$. Denoted formally: $h'(\mathbf{x}) \geq_g h(\mathbf{x})$ and $h'(\mathbf{x}) = 1$, and there is no $h''(\mathbf{x})$ with $h'(\mathbf{x}) >_g h''(\mathbf{x}) \geq_g h(\mathbf{x})$ with $h''(\mathbf{x}) = 1$.
- \Box For more complex hypothesis structures the relaxation of $h(\mathbf{x})$, $min_generalization(h, \mathbf{x})$, may not be unique. In such a case one of the alternatives has to be chosen.
- □ If a hypothesis $h(\mathbf{x})$ needs to be relaxed towards some $h'(\mathbf{x})$ with $h'(\mathbf{x}) \notin H$, the maximally general hypothesis $g_0 \equiv 1$ can be added to H.
- \Box Similar to $min_generalization(h, \mathbf{x})$, a function $min_specialization(h, \mathbf{x})$ can be defined, which returns a minimally specialized, consistent hypotheses for negative examples.

ML:II-20 Machine Learning Basics ©STEIN 2021

Find-S Algorithm (continued)

See the example set *D* for the concept *EnjoySport*.

$$h_0 = \underline{s}_0 = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$$

 $\mathbf{x}_1 = (\textit{sunny}, \textit{warm}, \textit{normal}, \textit{strong}, \textit{warm}, \textit{same}) \quad h_1 = \langle \textit{sunny}, \textit{warm}, \textit{normal}, \textit{strong}, \textit{warm}, \textit{same} \rangle$

ML:II-21 Machine Learning Basics ©STEIN 2021

Find-S Algorithm (continued)

See the example set *D* for the concept *EnjoySport*.

$$h_0 = \underline{s_0} = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$$

$$\mathbf{x}_1 = (\textit{sunny}, \textit{warm}, \textit{normal}, \textit{strong}, \textit{warm}, \textit{same})$$

$$\mathbf{x}_2 = (ext{sunny, warm, high, strong, warm, same}) \qquad h_2 = \langle ext{ sunny, warm, ?, strong, warm, same} \rangle$$

$$h_1 = \langle \text{ sunny, warm, normal, strong, warm, same} \rangle$$

ML:II-22 Machine Learning Basics ©STEIN 2021

Find-S Algorithm (continued)

See the example set *D* for the concept *EnjoySport*.

$$h_0 = s_0 = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$$

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$

 $\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)$

$$h_1 = \langle$$
 sunny, warm, normal, strong, warm, same \rangle

 $h_2 = \langle \text{ sunny, warm, ?, strong, warm, same } \rangle$

 $\mathbf{x}_3 = (rainy, cold, high, strong, warm, change)$ $h_3 = \langle sunny, warm, ?, strong, warm, same \rangle$

ML:II-23 Machine Learning Basics © STEIN 2021

Find-S Algorithm (continued)

See the example set *D* for the concept *EnjoySport*.

$$h_0 = \underline{s_0} = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$$

$$\mathbf{x}_1 = (\textit{sunny}, \textit{warm}, \textit{normal}, \textit{strong}, \textit{warm}, \textit{same})$$

$$\mathbf{x}_2 = (\textit{sunny, warm, high, strong, warm, same})$$

$$\mathbf{x}_3 = (\textit{rainy, cold, high, strong, warm, change})$$

$$\mathbf{x}_4 = (\textit{sunny, warm, high, strong, cool, change})$$

$$h_1 = \langle$$
 sunny, warm, normal, strong, warm, same \rangle

$$h_2 = \langle$$
 sunny, warm, ?, strong, warm, same \rangle

$$h_3 = \langle \text{ sunny, warm, ?, strong, warm, same } \rangle$$

$$h_4 = \langle$$
 sunny, warm, ?, strong, ?, ? \rangle

ML:II-24 Machine Learning Basics ©STEIN 2021

Discussion of the Find-S Algorithm

- 1. Did we learn the only concept—or are there others?
- 2. Why should one pursuit the maximally specific hypothesis?
- 3. What if several maximally specific hypotheses exist?
- 4. Inconsistencies in the example set *D* remain undetected.
- 5. An inappropriate hypothesis structure or space H remains undetected.

ML:II-25 Machine Learning Basics ©STEIN 2021

Definition 5 (Version Space)

The version space $V_{H,D}$ of a hypothesis space H and a example set D is comprised of all hypotheses $h(\mathbf{x}) \in H$ that are consistent with a set D of examples:

$$V_{H,D} = \{ h(\mathbf{x}) \mid h(\mathbf{x}) \in H \land (\forall (\mathbf{x}, c) \in D : h(\mathbf{x}) = c) \}$$

ML:II-26 Machine Learning Basics © STEIN 2021

Definition 5 (Version Space)

The version space $V_{H,D}$ of a hypothesis space H and a example set D is comprised of all hypotheses $h(\mathbf{x}) \in H$ that are consistent with a set D of examples:

$$V_{H,D} = \{ h(\mathbf{x}) \mid h(\mathbf{x}) \in H \land (\forall (\mathbf{x}, c) \in D : h(\mathbf{x}) = c) \}$$

Illustration of $V_{H,D}$ for the example set D:

ML:II-27 Machine Learning Basics ©STEIN 2021

Remarks:

- \Box The term "version space" reflects the fact that $V_{H,D}$ represents the set of all consistent versions of the target concept that are encoded in D.
- A naive approach for the construction of the version space is the following: (1) enumeration of all members of H, and, (2) elimination of those $h(\mathbf{x}) \in H$ for which $h(\mathbf{x}) \neq c$ holds. This approach presumes a finite hypothesis space H and is feasible only for toy problems.

ML:II-28 Machine Learning Basics ©STEIN 2021

Definition 6 (Boundary Sets of a Version Space)

Let H be hypothesis space and let D be set of examples. Then, based on the \geq_g -relation, the set of maximally general hypotheses, G, is defined as follows:

$$G = \{ g(\mathbf{x}) \mid g(\mathbf{x}) \in H \land consistent(g, D) \land \\ (\not\exists g'(\mathbf{x}) : g'(\mathbf{x}) \in H \land g'(\mathbf{x}) >_g g(\mathbf{x}) \land consistent(g', D)) \}$$

Similarly, the set of maximally specific (i.e., minimally general) hypotheses, S, is defined as follows:

$$S = \{s(\mathbf{x}) \mid s(\mathbf{x}) \in H \land consistent(s, D) \land (\not\exists s'(\mathbf{x}) : s'(\mathbf{x}) \in H \land s(\mathbf{x}) >_g s'(\mathbf{x}) \land consistent(s', D) \}$$

ML:II-29 Machine Learning Basics ©STEIN 2021

Theorem 7 (Version Space Representation)

Let X be a multiset of feature vectors, $C = \{0,1\}$ be a set of classes, and H be a set of boolean-valued functions with domain X. Moreover, let $D \subseteq X \times C$ be a multiset of examples.

Then, based on the \geq_q -relation, each member of the version space $V_{H,D}$ lies between two members of G and S respectively:

$$V_{H,D} = \{ h(\mathbf{x}) \mid h(\mathbf{x}) \in H \land (\exists g(\mathbf{x}) \in G \ \exists s(\mathbf{x}) \in S : \ g(\mathbf{x}) \ge_q h(\mathbf{x}) \ge_q s(\mathbf{x})) \}$$

ML:II-30 Machine Learning Basics ©STEIN 2021

Remarks:

 \Box The correctness of Theorem 7 is not obvious. The theorem allows us to characterize the set of all consistent hypotheses by the two boundary sets G and S.

ML:II-31 Machine Learning Basics © STEIN 2021

Candidate Elimination Algorithm [Mitchell 1997]

- 1. Initialization: $G = \{g_0\}, S = \{s_0\}$
- 2. If x is a positive example
 - \square Remove from G any hypothesis that is not consistent with \mathbf{x}
 - figspace For each hypothesis s in S that is not consistent with f x
 - lue Remove s from S
 - \Box Add to S all minimal generalizations h of s such that
 - 1. h is consistent with x and
 - 2. some member of G is more general than h
 - \square Remove from S any hypothesis that is less specific than another hypothesis in S

ML:II-32 Machine Learning Basics ©STEIN 2021

Candidate Elimination Algorithm [Mitchell 1997] (continued)

- 1. Initialization: $G = \{g_0\}, S = \{s_0\}$
- 2. If x is a positive example
 - \square Remove from G any hypothesis that is not consistent with x
 - \Box For each hypothesis s in S that is not consistent with \mathbf{x}
 - \square Remove s from S
 - \Box Add to S all minimal generalizations h of s such that
 - 1. h is consistent with x and
 - 2. some member of G is more general than h
 - $lue{}$ Remove from S any hypothesis that is less specific than another hypothesis in S
- 3. If x is a negative example
 - \square Remove from S any hypothesis that is not consistent with \mathbf{x}
 - $f \Box$ For each hypothesis g in G that is not consistent with ${f x}$
 - \square Remove g from G
 - \Box Add to G all minimal specializations h of g such that
 - 1. h is consistent with x and
 - 2. some member of S is more specific than h
 - \square Remove from G any hypothesis that is less general than another hypothesis in G

ML:II-33 Machine Learning Basics ©STEIN 2021

Remarks:

- \Box All hypothesis between G and S are consistent with all examples seen so far; i.e., they "accept" the positive examples and "reject" the negative examples.
- The basic idea of Candidate Elimination is as follows:
 - Deal with false positives. A maximally general hypothesis $g(\mathbf{x}) \in G$ tolerates the negative examples in first instance. Hence, $g(\mathbf{x})$ needs to be constrained (= specialized) with regard to each negative example that is not consistent with $g(\mathbf{x})$.
 - Deal with false negatives. A maximally specific hypothesis $s(\mathbf{x}) \in S$ restricts the positive examples in first instance. Hence, $s(\mathbf{x})$ needs to be relaxed (= generalized) with regard to each positive example that is not consistent with $s(\mathbf{x})$.
- \Box The G boundary of the version space summarizes the information from the previously encountered negative examples. The S boundary forms a summary of the previously encountered positive examples.

ML:II-34 Machine Learning Basics ©STEIN 2021

Candidate Elimination Algorithm (pseudo code)

```
1. G = \{g_0\} // G is the set of maximally general hypothesis in H. S = \{s_0\} // S is the set of maximally specific hypothesis in H.

2. FOREACH (\mathbf{x}, c) \in D DO

IF c = 1 THEN // \mathbf{x} is a positive example.

FOREACH g \in G DO IF g(\mathbf{x}) \neq 1 THEN G = G \setminus \{g\} ENDDO

FOREACH s \in S DO

IF s(\mathbf{x}) \neq 1 THEN

S = S \setminus \{s\}, S^+ = min\_generalizations(s, \mathbf{x})

FOREACH s \in S^+ DO IF (\exists g \in G : g \geq_g s) THEN S = S \cup \{s\} ENDDO

FOREACH s \in S DO IF (\exists s' \in S : s' \neq s \land s \geq_g s') THEN S = S \setminus \{s\} ENDDO

ENDDO

ELSE // \mathbf{x} is a negative example.
```

ENDIF ENDDO

3. return(G, S)

ML:II-35 Machine Learning Basics ©STEIN 2021

Candidate Elimination Algorithm (pseudo code) (continued)

```
1. G = \{g_0\} // G is the set of maximally general hypothesis in H.
    S = \{s_0\} // S is the set of maximally specific hypothesis in H.
2. FOREACH (\mathbf{x}, c) \in D DO
       IF c=1 THEN // x is a positive example.
         FOREACH g \in G DO IF g(\mathbf{x}) \neq 1 THEN G = G \setminus \{g\} ENDDO
         FOREACH s \in S DO
            IF s(\mathbf{x}) \neq 1 THEN
              S = S \setminus \{s\}, S^+ = min\_generalizations(s, x)
              FOREACH s \in S^+ do if (\exists g \in G : g \geq_q s) then S = S \cup \{s\} enddo
              FOREACH s \in S do if (\exists s' \in S : s' \neq s \land s \geq_q s') then S = S \setminus \{s\} enddo
         ENDDO
       ELSE // x is a negative example.
         FOREACH s \in S do if s(\mathbf{x}) \neq 0 then S = S \setminus \{s\} enddo
         FOREACH q \in G DO
            IF q(\mathbf{x}) \neq 0 THEN
              G = G \setminus \{q\}, G^- = min\_specializations(q, \mathbf{x})
              FOREACH g \in G^- do if (\exists s \in S : g \geq_q s) then G = G \cup \{g\} enddo
              FOREACH g \in G do if (\exists g' \in G : g' \neq g \land g' \geq_g g) then G = G \setminus \{g\} enddo
         ENDDO
       ENDIF
    ENDDO
3. return(G, S)
```

ML:II-36 Machine Learning Basics

Illustration of the Candidate Elimination Algorithm

$$\boxed{\{<\bot,\bot,\bot,\bot,\bot,\bot>\}} \quad \mathcal{S}_0$$

$$\{,?,?,?,?,?\}$$
 $G_{0},$

ML:II-37 Machine Learning Basics © STEIN 2021

Illustration of the Candidate Elimination Algorithm (continued)

$$\{,?,?,?,?,?\}$$
 $G_0,G_1,$

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$

$$EnjoySport(\mathbf{x}_1) = 1$$

ML:II-38 Machine Learning Basics ©STEIN 2021

Illustration of the Candidate Elimination Algorithm (continued)

$$\{ \langle ?, ?, ?, ?, ?, ? \rangle \}$$
 G_0, G_1, G_2

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$ $\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)$ EnjoySport(\mathbf{x}_1) = 1 EnjoySport(\mathbf{x}_2) = 1

ML:II-39 Machine Learning Basics ©STEIN 2021

Illustration of the Candidate Elimination Algorithm (continued)

```
\{< sunny, ?, ?, ?, ?, ?, ?, eq. , eq. ,
```

```
\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)
\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)
\mathbf{x}_3 = (rainy, cold, high, strong, warm, change)
```

EnjoySport(
$$\mathbf{x}_1$$
) = 1
EnjoySport(\mathbf{x}_2) = 1

EnjoySport(\mathbf{x}_2) = 1 EnjoySport(\mathbf{x}_3) = 0 [feature domains] [algorithm]

ML:II-40 Machine Learning Basics ©STEIN 2021

Illustration of the Candidate Elimination Algorithm (continued)


```
\mathbf{x}_1 = (\textit{sunny, warm, normal, strong, warm, same})
```

 $\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)$ $\mathbf{x}_3 = (rainy, cold, high, strong, warm, change)$

 $\mathbf{x}_4 = (\textit{sunny}, \textit{warm}, \textit{high}, \textit{strong}, \textit{cool}, \textit{change})$

$$\begin{aligned} &\textit{EnjoySport}(\mathbf{x}_1) = 1 \\ &\textit{EnjoySport}(\mathbf{x}_2) = 1 \\ &\textit{EnjoySport}(\mathbf{x}_3) = 0 \end{aligned}$$

 $EnjoySport(\mathbf{x}_4) = 1$

[feature domains] [algorithm]

Discussion of the Candidate Elimination Algorithm

- 1. What about selecting examples from D according to a certain strategy? Keyword: active learning
- 2. What are partially learned concepts and how to exploit them? Keyword: ensemble classification
- 3. The version space as defined here is "biased". What does this mean? Keywords: representation bias, search bias
- 4. Will Candidate Elimination converge towards the correct hypothesis?
- 5. When does one end up with an empty version space?

ML:II-42 Machine Learning Basics ©STEIN 2021

Question 1: Selecting Examples from *D*

An example from which we can "maximally" learn:

 $\mathbf{x}_7 = (\textit{sunny}, \textit{warm}, \textit{normal}, \textit{light}, \textit{warm}, \textit{same})$

ML:II-43 Machine Learning Basics ©STEIN 2021

Question 1: Selecting Examples from D (continued)

An example from which we can "maximally" learn:

 $\mathbf{x}_7 = (\textit{sunny, warm, normal, light, warm, same})$

Irrespective the value of c, (\mathbf{x}_7, c) is consistent with 3 of the 6 hypotheses:

- \Box If $EnjoySport(\mathbf{x}_7) = 1$ S can be further generalized.
- \Box If $EnjoySport(\mathbf{x}_7) = \mathbf{0}$ G can be further specialized.

ML:II-44 Machine Learning Basics © STEIN 2021

Question 2: Partially Learned Concepts

Combine the 6 classifiers in the version space to decide about new examples:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
5	sunny	warm	normal	strong	cool	change	
6	rainy	cold	normal	light	warm	same	
7	sunny	warm	normal	light	warm	same	
8	sunny	cold	normal	strong	warm	same	

ML:II-45 Machine Learning Basics ©STEIN 2021

Question 2: Partially Learned Concepts (continued)

Combine the 6 classifiers in the version space to decide about new examples:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
5	sunny	warm	normal	strong	cool	change	6+:0-
6	rainy	cold	normal	light	warm	same	
7	sunny	warm	normal	light	warm	same	
8	sunny	cold	normal	strong	warm	same	

ML:II-46 Machine Learning Basics ©STEIN 2021

Question 2: Partially Learned Concepts (continued)

Combine the 6 classifiers in the version space to decide about new examples:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
5	sunny	warm	normal	strong	cool	change	6+:0-
6	rainy	cold	normal	light	warm	same	0+:6-
7	sunny	warm	normal	light	warm	same	
8	sunny	cold	normal	strong	warm	same	

ML:II-47 Machine Learning Basics ©STEIN 2021

Question 2: Partially Learned Concepts (continued)

Combine the 6 classifiers in the version space to decide about new examples:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
5	sunny	warm	normal	strong	cool	change	6+:0-
6	rainy	cold	normal	light	warm	same	0+:6-
7	sunny	warm	normal	light	warm	same	3+:3-
8	sunny	cold	normal	strong	warm	same	

ML:II-48 Machine Learning Basics ©STEIN 2021

Question 2: Partially Learned Concepts (continued)

Combine the 6 classifiers in the version space to decide about new examples:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
5	sunny	warm	normal	strong	cool	change	6+:0-
6	rainy	cold	normal	light	warm	same	0+:6-
7	sunny	warm	normal	light	warm	same	3+:3-
8	sunny	cold	normal	strong	warm	same	2+:4-

ML:II-49 Machine Learning Basics ©STEIN 2021

Question 3: Inductive Bias

A new set of training examples D:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
9	sunny	warm	normal	strong	cool	change	yes
10	cloudy	warm	normal	strong	cool	change	yes

 \Rightarrow $S = \{ \langle ?, warm, normal, strong, cool, change \rangle \}$

ML:II-50 Machine Learning Basics ©STEIN 2021

Question 3: Inductive Bias (continued)

A new set of training examples D:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport			
9	sunny	warm	normal	strong	cool	change	yes			
10	cloudy	warm	normal	strong	cool	change	yes			
	\Rightarrow $S = \{ \langle ?, warm, normal, strong, cool, change \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$									
			:							
11	rainy	warm	normal	strong	cool	change	no			

$$\Rightarrow$$
 $S = \{ \}$

Discussion:

□ What assumptions about the target concept are met by the learner a-priori?

ML:II-51 Machine Learning Basics ©STEIN 2021

Question 3: Inductive Bias (continued)

A new set of training examples D:

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport			
9	sunny	warm	normal	strong	cool	change	yes			
10	cloudy	warm	normal	strong	cool	change	yes			
	\Rightarrow $S = \{ \langle ?, warm, normal, strong, cool, change \rangle \}$									
11	rainy	warm	normal	strong	cool	change	no			

$$\rightarrow$$
 $S = \{ \}$

Discussion:

- □ What assumptions about the target concept are met by the learner a-priori?
- \rightarrow *H* may be designed to contain more elaborate concepts: $\langle sunny, ?, ?, ?, ?, ? \rangle \lor \langle cloudy, ?, ?, ?, ?, ? \rangle$.

ML:II-52 Machine Learning Basics ©STEIN 2021

Question 3: Inductive Bias (continued)

"The policy by which a [learning] algorithm generalizes from observed training examples to classify unseen instances is its inductive bias. [...]

Inductive bias is the set of assumptions that,
together with the training data,
deductively justify the classification by the learner to future instances."

[p.43, Mitchell 1997]

ML:II-53 Machine Learning Basics ©STEIN 2021

Question 3: Inductive Bias (continued)

- □ In a binary classification problem the unrestricted (= unbiased) hypothesis space contains $|\mathcal{P}(X)| = 2^{|X|}$ elements.
- A learning algorithm that considers all possible hypotheses as equally likely makes no a-priori assumption with regard to the target concept.
- □ A learning algorithm without a-priori assumptions has no "inductive bias".

ML:II-54 Machine Learning Basics ©STEIN 2021

Question 3: Inductive Bias (continued)

- In a binary classification problem the unrestricted (= unbiased) hypothesis space contains $|\mathcal{P}(X)| = 2^{|X|}$ elements.
- A learning algorithm that considers all possible hypotheses as equally likely makes no a-priori assumption with regard to the target concept.
- □ A learning algorithm without a-priori assumptions has no "inductive bias".
- → A learning algorithm without inductive bias has no directive to classify unseen examples. Put another way: the learner cannot generalize.
- → A learning algorithm without inductive bias can only memorize.

Which algorithm (Find-S, Candidate Elimination) has a stronger inductive bias?

ML:II-55 Machine Learning Basics ©STEIN 2021