Strong Convergence

Definition: Strong Convergence

Let E be an inner product space and let (\vec{x}_n) be a sequence of vectors in E. To say that (\vec{x}_n) converges to $\vec{x} \in E$ strongly, denoted $\vec{x}_n \to \vec{x}$, means:

$$\|\vec{x}_n - \vec{x}\| \to 0$$

Theorem

Let E be an inner product space and let (\vec{x}_n) be a sequence of vectors in E:

$$\vec{x}_n \to \vec{x} \implies ||\vec{x}_n|| \to ||\vec{x}||$$

Proof

Assume $\vec{x}_n \to \vec{x}$.

$$0 \le ||\vec{x}_n|| - ||\vec{x}||| \le ||\vec{x}_n - \vec{x}||$$

But $\|\vec{x}_n - \vec{x}\| \to 0$.

$$|\vec{x}_n| - |\vec{x}|| \to 0$$
 and thus $||\vec{x}_n|| \to ||\vec{x}||$.

Theorem

Let E be an inner product space and let (\vec{x}_n) and (\vec{y}_n) be sequences of vectors in E:

$$\vec{x}_n o \vec{x} \text{ and } \vec{y}_n o \vec{y} \implies \langle \vec{x}_n, \vec{y}_n \rangle o \langle \vec{x}, \vec{y} \rangle$$

Proof

Assume $\vec{x}_n \to \vec{x}$ and $\vec{y}_n \to \vec{y}$.

This means that (\vec{x}_y) is bounded.

So $\exists M > 0$ such that $\forall n \in \mathbb{N}, ||\vec{y}_n|| \leq M$.

$$\begin{aligned} |\langle \vec{x}_n, \vec{y}_n \rangle - \langle \vec{x}, \vec{y} \rangle| &= |\langle \vec{x}_n, \vec{y}_n \rangle - \langle \vec{x}, \vec{y}_n \rangle + \langle \vec{x}, \vec{y}_n \rangle - \langle \vec{x}, \vec{y} \rangle| \\ &= |(\langle \vec{x}_n, \vec{y}_n \rangle - \langle \vec{x}, \vec{y}_n \rangle) + (\langle \vec{x}, \vec{y}_n \rangle - \langle \vec{x}, \vec{y} \rangle)| \\ &\leq |\langle \vec{x}_n, \vec{y}_n \rangle - \langle \vec{x}, \vec{y}_n \rangle| + |\langle \vec{x}, \vec{y}_n \rangle - \langle \vec{x}, \vec{y} \rangle| \\ &= |\langle \vec{x}_n - \vec{x}, \vec{y}_n \rangle| - |\langle \vec{x}, \vec{y}_n - \vec{y} \rangle| \\ &\leq ||\vec{x}_n - \vec{x}|| \, ||\vec{y}_n|| - ||\vec{x}|| \, ||\vec{y}_n - \vec{y}|| \\ &\leq ||\vec{x}_n - \vec{x}|| \, M - ||\vec{x}|| \, ||\vec{y}_n - \vec{y}|| \\ &\rightarrow 0 \end{aligned}$$

$$\therefore \langle \vec{x}_n, \vec{y}_n \rangle \rightarrow \langle \vec{x}, \vec{y} \rangle$$