BIAS REDUCTION WHEN THERE IS NO UNBIASED ESTIMATE(U) FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS H DOSS ET AL. JAN 88 FSU-TR-H777 AFOSR-TR-87-219 DARL83-86-K-8894 F/G 12/3 AD-8189 487 1/1 UNCLASSIFIED NL

ľ	•	•	
C)	
701	1	r	
707))	
C	Ç)	
7		-	
<	1		
	ı		
		١	
<u> </u>	1	-	

val economics species of economics forces in the property serious formed and the formed

SECURITY CLASSIFICATION OF THIS PAGE (When Date E	ntered)					
REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	. GOVT ACCESSION NO.					
ARO 23699.17-MA	N/A	N/A UIIG FILE COI				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED				
Bias Reduction When There is N Estimate	o Unbiased	Technical Report				
D3 CI mace		6. PERFORMING ONG, REPORT NUMBER				
7. AUTHOR(s)		FSU Technical Report M-777 6. CONTRACT OR GRANT NUMBER(s)				
•						
Hani Doss and Jayaram Sethuraman		DAAL03-86-K-0094				
9. PERFORMING ORGANIZATION NAME AND ADDRESS Florida State University Department of Statistics Tallahassee, FL 32306-3033		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
U.S. Army Research Office Post Office Box 12211		13. NUMBER OF PAGES				
Research Triangle Park, NC 2770	9	15. SECURITY CLASS, (of this report)				
		UNCLASSIFIED				
		154. DECLASSIFICATION DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report) for public release; distr	ibution unlimite	DTIC ELECTE FEB 0 2 1988				
17. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different from	Report)				
N/A		E				
18. SUPPLEMENTARY NOTES						
15. KEY WORDS (Continue on reverse side if necessary and i	denilly by block number)					
bias reduction, jackknife estimat	e of bias; bootstr	ap estimate of bias.				
20 AESTRACT (Continue on severae aide II necessary and id	lentily by block number)					

Let ϕ be a parameter for which there is no unbiased estimator. This note shows that for an arbitrary sequence of estimators $T^{(k)}$, if the biases of $T^{(k)}$ tend to 0 then their variances must tend to ∞ .

DD , FORM 1473

BIAS REDUCTION WHEN THERE IS NO UNBIASED ESTIMATE

by

Hani Doss*

and

Jayaram Sethuraman[†]

Department of Statistics Florida State University Tallahassee, FL 32306

FSU Technical Report No. M-777 AFOSR Technical Report No. 87-219 USARO Technical Report No. D-101

January, 1988

^{*} Research supported by the Air Force Office of Scientific Research Grant Number F49620-85-C-0007.

AMS 1980 subject classifications. Primary 62F11; secondary 62A99.

Research supported by the U. S. Army Research office under Grant Number DAAL03-86-k-0094.

Key words and phrases: bias reduction, jackknife estimate of bias, bootstrap estimate of bias.

BIAS REDUCTION WHEN THERE IS NO UNBIASED ESTIMATE

by

Hani Doss and Jayaram Sethuraman

Florida State University

ABSTRACT

Let ϕ be a parameter for which there is no unbiased estimator. This note shows that for an arbitrary sequence of estimators $T^{(k)}$, if the biases of $T^{(k)}$ tend to 0 then their variances must tend to ∞ .

1. INTRODUCTION.

Let $X=(X_1,\ldots,X_n)$ have distribution P_θ , where the unknown parameter varies in Θ . Suppose that we need to estimate a real valued function $\phi(\theta)$ of the parameter. Let $\hat{\phi}=\hat{\phi}(X)$ be a biased estimator of ϕ . There exist several procedures for reducing the bias of $\hat{\phi}$: jackknifing, bootstrapping (see Efron (1982)), and other procedures based on expansions of $E_\theta(\hat{\phi})$ (see Cox and Hinkley (1974, Section 8.4)). These procedures may not eliminate the bias completely, and one often hears the following suggestion. Let $\hat{\phi}^{(1)}$ be obtained from $\hat{\phi}$ by one of these biasreduction procedures. If $\hat{\phi}^{(1)}$ is still biased, repeat the bias-reduction procedure and obtain $\hat{\phi}^{(2)}$, $\hat{\phi}^{(3)}$ etc. until a desired amount of reduction in bias is obtained or the bias is removed completely. Such "higher-order bias corrections" are described for instance in the review paper of Miller (1974) in connection with the jackknife. There are examples where no unbiased estimator of ϕ exists but there exists a sequence of estimators $\hat{\phi}$, $\hat{\phi}^{(1)}$, $\hat{\phi}^{(2)}$,... whose biases converge to zero (see Section 2).

The purpose of this note is to show (Theorem 1) that when no unbiased estimator of ϕ exists, then reducing the bias to zero necessarily forces the variance of the estimators to tend to ∞ . This theorem therefore gives qualitative support to the widely held view that bias reduction is by itself not a desirable property, but becomes desirable only if it can be demonstrated that it is accompanied by a reduction in mean squared error.

2. MAIN RESULT AND REMARKS.

Let (X, S) be a measurable space and $(P_{\theta}, \theta \in \Theta)$ be a family of probability measures on (X, S). Let ϕ be a real valued function defined on Θ . The bias of an estimator T = T(X) is defined by $\beta_T(\theta) = E_{\theta}(T(X)) - \phi(\theta)$, assuming that $E_{\theta}(T(X))$ exists.

THEOREM 1. Suppose that

(A1) $P_{\theta_1} \ll P_{\theta_2}$ for all θ_1, θ_2 in Θ ,

(A2)
$$\int (\frac{dP_{\theta_1}}{dP_{\theta_2}})^2 dP_{\theta_2} < \infty$$
 for all θ_1, θ_2 in Θ ,

and that $\{T_k\}_{k=1}^{\infty}$ is a sequence of estimators for which

(1)
$$\beta_{T_k}(\theta) \to 0 \text{ for all } \theta \text{ in } \Theta.$$

If there does not exist an unbiased estimator of ϕ then

(2)
$$\operatorname{Var}_{\theta}(T_k) \to \infty \text{ as } k \to \infty, \text{ for all } \theta \in \Theta.$$

<u>Proof</u>: Suppose that (2) is not true. Then there exists a θ_0 in Θ and a subsequence $\{k^*\}$ of $\{k\}$ such that $\operatorname{Var}_{\theta_0}(T_{k^*})$ is bounded. Now, consider the usual Hilbert space $H_{\theta_0} = L^2(\mathcal{X}, \mathcal{S}, P_{\theta_0})$ of all functions that are square-integrable with respect to P_{θ_0} . Notice that $\{T_{k^*}\}$ is a norm-bounded set in H_{θ_0} . From the sequential weak-compactness of norm-bounded sets, there exists a T in H_{θ_0} and a subsequence $\{k^{**}\}$ of $\{k^*\}$ such that $T_{k^{**}} \to T$ weakly in H_{θ_0} along the subsequence $\{k^{**}\}$, i.e.

$$\int T_{k^{\bullet\bullet}} f dP_{\theta_0} \to \int T f dP_{\theta_0} \ \text{ for every function } f \text{ in } H_{\theta_0}.$$

In particular, setting $f = dP_{\theta}/dP_{\theta_0}$, we get

$$E_{\theta}(T_{k}\cdots) \rightarrow E_{\theta}(T),$$

along the subsequence $\{k^{**}\}$, for all θ in Θ . From (1), it now follows that $E_{\theta}(T) = \phi(\theta)$, that is T is unbiased for ϕ , which contradicts one of our assumptions. Hence (2) holds and the proof is complete.

There are many examples of situations to which this theorem applies. One class can be obtained from the idea of the following example. Consider the family of Poisson distributions with parameter λ with $\lambda > 0$. It is well known that there exists no unbiased estimator of $1/\lambda$, and that all polynomials in λ are unbiasedly estimable. From (a slight modification of) the Stone-Weirstrass theorem, there exists a sequence of polynomials in λ which converge to $1/\lambda$ for each λ . Thus there exists a sequence of estimators which are unbiased for these polynomials in λ , and whose biases in estimating $1/\lambda$ converge to zero. A simple calculation shows that $\int \left(\frac{dP_{\lambda_1}}{dP_{\lambda_2}}\right)^2 dP_{\lambda_1} = \exp(\lambda_2 - 2\lambda_1 + \lambda_1^2/\lambda_2).$ Thus Theorem 1 applies to this case and the variances of these estimators must tend to ∞ .

It may appear that Theorem 1 does not apply to estimates based on the jackknife, since the "delete-one" jackknife can be formed only a finite number of times. However, a situation with an infinite sequence of estimators based on the jackknife arises in the following example, based on an idea of Gaver and Hoel (1970). Suppose that the data consists of a Poisson process $\{N(t); t \in [0,1]\}$ with rate λ . In connection with the biased maximum likelihood estimator $\hat{\phi} = e^{-\lambda N(1)}$ of $e^{-\lambda}$, Gaver and Hoel suggest splitting the interval [0,1] into n nonoverlapping intervals each of length 1/n, and letting N_i be the number of events in the ith interval. These are independent and identically distributed and one can therefore form the delete-one jackknife as usual. This yields, for each n, an estimate $\hat{\phi}_{(n)}$ and they show that as $n \to \infty$ $\hat{\phi}_{(n)}$ converges to an estimate $\hat{\phi}^{(1)}$

which depends on the Poisson process only through the sufficient statistic N(1). This procedure can be repeated indefinitely in principle, giving a sequence of estimators $\{\hat{\phi}^{(k)}\}_{k=1}^{\infty}$.

CONTRACTOR OF THE PROPERTY OF

REFERENCES

- Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.
- Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia.
- Miller, R. G. (1974). The jackknife a review : Biometrika 61, 1-15.
- Gaver, D. P., Jr. and Hoel, D. G. (1970). Comparison of certain small-sample Poisson probability estimates. *Technometrics* 12, 835-850.

SE	CURITY	CLASSIE	ICATION	ΩF	THIS	PAC	GE
35		CLASSIT		UT	1 171-0	, -,	,,,

	UNCLASS	CLASSIFICATION	•	16. RESTRICTIVE	MARKINGS		_
24. SECUI		ICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY	OF REPORT	
NA						c Release;	Dist
	ASSIFICATION NA	N/DOWNGRADING SCHE	DULE"	Unlimited			
4. PERFO	RMING ORGA	NIZATION REPORT NUM	ABER(S)	S. MONITORING O	RGANIZATION	REPORT NUMBER	3(S)
FSU '	Technical	Report No. M-7	77	AFOSR Tec	hnical Re	port No. 87-	-219
64. NAME	OF PERFORM	ING ORGANIZATION	66. OFFICE SYMBOL (If applicable)	74. NAME OF MON	TORING ORGA	NIZATION	
Flor	rida Stat	e University	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AFOSR/NM			
6c ADDR	ESS (City, State	e and ZIP Code)	•	7b. ADDRESS (City,	State and ZIP C	ode)	
		f Statistics		Bldg. 410			
		FL 32306-3033		- 	FB, DC 20		
	OF FUNDING NIZATION	/SPONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT I	DENTIFICATION	NUMB
AFOS			NM				
	ESS (City, State g. 410	e and ZIP Code)		10. SOURCE OF FU	T	T -	
		DC 20332-6448		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	
11. TITLE	Unclude Securi	ity Classifications			<u> </u>		
Bi	as Reduction	tion When There	is No Unbiase	d Estimate			
Ha	ni Doss a	and Jayaram Setl	nuraman				•
134 TYPE	OF REPORT	136. TIME C		14. DATE OF REPO	AT (Yr., Mo., De	y) 15. PAGE	COUN
	nical EMENTARY N	FROM	<u> </u>			4	
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on reverse if ne	cessary and iden	tify by block numb	er)
17 FIELD	GROUP	T	18. SUBJECT TERMS (bias reduction, j	Continue on rewrie if no ackknife estima	te of bias,	tify by block numb bootstrap es	eri tima
FIELD	GROUP	SUB. GR.	bias reduction, j	ackknife estima	te of bias,	bootstrap es	tima
FIELD	GROUP	T	bias reduction, j	ackknife estima	te of bias,	bootstrap es	tima
FIELD	GROUP	SUB. GR.	bias reduction, j	ackknife estima	te of bias,	bootstrap es	tima
FIELD	GROUP ACT (Continue	SUB. GR.	bias reduction, j	ackknife estima	te of bias,	bootstrap es	tima
FIELD	CROUP ACT (Continue	SUB. GR. on reverse if necessary and ϕ be a paramet	bias reduction, j	ackknife estima	te of bias,	bootstrap es	tima
FIELD	CROUP ACT (Continue	SUB. GR. on reverse if necessary and ϕ be a paramet	bias reduction, j	ackknife estima	te of bias,	bootstrap es	tima
FIELD	Let note sh	SUB. GR. on reverse if necessary and ϕ be a paramet ows that for an air	bias reduction, j	ere is no unbia	te of bias,	bootstrap es	eri tima
FIELD	Let note sh	SUB. GR. on reverse if necessary and ϕ be a paramet	bias reduction, j	ere is no unbia	te of bias,	bootstrap es	er)
FIELD	Let note sh	SUB. GR. on reverse if necessary and ϕ be a paramet ows that for an air	bias reduction, j	ere is no unbia	te of bias,	bootstrap es	tima
FIELD	Let note sh	SUB. GR. on reverse if necessary and ϕ be a paramet ows that for an air	bias reduction, j	ere is no unbia	te of bias,	bootstrap es	tima
FIELD	Let note sh	SUB. GR. on reverse if necessary and ϕ be a paramet ows that for an air	bias reduction, j	ere is no unbia	te of bias,	bootstrap es	tima
FIELD	Let $T^{(k)}$ ter	SUB. GR. on reverse if necessary and ϕ be a paramet ows that for an air	bias reduction, j	ere is no unbia	te of bias, sed estima $T^{(k)},$ if the	tor. This biases of	tima
FIELD 19 ABSTR	Let note sh $T^{(k)}$ ter	SUB. GR. To never if necessary and ϕ be a parameter ows that for an analysis and to 0 then their	bias reduction, j	ere is no unbia e of estimators tend to ∞ .	te of bias, sed estima $T^{(k)},$ if the	tor. This biases of	tima
FIELD 19. ABSTR 20. DISTRII	Let note sh $T^{(k)}$ ter BUTION/AVAILED/UNLIMIT	sub. GR. on retained if receivery and t φ be a paramet ows that for an ai nd to 0 then their	bias reduction, j	ere is no unbia e of estimators tend to ∞ .	sed estima $T^{(k)}$, if the	tor. This biases of	tima
FIELD 19. ABSTR 20. DISTRI	Let note sh $T^{(k)}$ ter BUTION/AVAILED/UNLIMIT	SUB. GR. Ton reverse if necessary and to φ be a paramet ows that for an an and to 0 then their FLABILITY OF ABSTRACT FED SAME AS RPY. [bias reduction, j	ere is no unbia e of estimators tend to ∞ .	sed estima $T^{(k)}$, if the	tor. This biases of	tima
19 ABSTR 19 ABSTR 10 DISTRI	Let note shot of responsi	SUB. GR. On return if necessary and t φ be a paramet ows that for an an nd to 0 then their ILABILITY OF ABSTRACT TED SAME AS RPT. [IBLE INDIVIDUAL II	bias reduction, j	ere is no unbia e of estimators tend to ∞ .	sed estima $T^{(k)}$, if the	tor. This biases of	tima

H N D DATE FILMED MARCH 1988 DTIC