Topic 20 - Diagnostics and Remedies

STAT 525 - Fall 2013

STAT 525

Outline

- Diagnostics
 - Plots
 - Residual checks
 - Formal Tests
- Remedial Measures

Topic 20

STAT 525

Overview

- ullet General assumptions
 - Normally distributed error terms
 - Independent observations
 - Constant variance
- Will adopt or adapt diagnostics and remedial measures from linear regression
- Many are the same but others require slight modifications

STAT 525

Residuals

• Predicted values are the cell means

$$\hat{\mu}_i = \overline{Y}_{i.}$$

• Residuals are the difference between the observed and predicted

$$e_{ij} = Y_{ij} - \overline{Y}_{i.}$$

- Properties:
 - Same least squares properties
 - $-\sum_{j} e_{ij} = 0 \,\forall i$

Topic 20

3

Basic Plots

- Plot the data vs the factor levels
- Plot the residuals vs the factor levels
- Plot the residuals vs the fitted values
- Histogram of the residuals
- QQplot of the residuals

Topic 20

STAT 525

Topic 20

SAS Commands

```
data a1; infile 'u:\.www\datasets525\CH17TA02.txt';
   input score brand;
symbol1 v=circle i=none;
proc gplot;
                                           ***Scatterplot:
   plot score*brand;
proc glm;
   class brand:
   model score=brand;
   output out=a2 r=res p=pred;
proc gplot;
                                           ***Residual plots;
   plot res*(brand pred);
proc univariate noprint;
                                           ***Histogram and QQplot;
   histogram res / normal kernel(L=2);
   qqplot res / normal (L=1 mu=est sigma=est);
run;
```

STAT 525

Example Page 777

- Experiment designed to study the effectiveness of four rust inhibitors
- Forty units were used in the experiment
- Units randomly and equally assigned to rust inhibitors $(n_i = 10)$
- Each unit exposed to severe weather conditions (accelerated life study)
- Y coded score (higher means less rust)
- X brand of rust inhibitor
 - -i=1,2,3,4
 - -i=1,2,...,10

Topic 20

STAT 525

Topic 20

Topic 20

STAT 525

Summary

- Look for
 - Outliers
 - Non-constant variance
 - Non-normal errors
- Nothing too obvious in this example
- Can plot residuals vs time or other explanatory variable if they are available

Topic 20

13

STAT 525

Homogeneity Tests

• Hartley statistic (Table B.10)

$$H = \frac{\max(s_i^2)}{\min(s_i^2)}$$

- Modified Levene Brown-Forsythe
 - Same as regression approach
 - Groups are the factor levels
- Bartlett's test
 - Basically a likelihood ratio test

Formal Tests

- Normality
 - Wilk-Shapiro
 - Anderson-Darling
 - Kolmogorov-Smirnov
- Homogeneity of Variance
 - Hartley test
 - Modified Levene test Brown-Forsythe
 - Bartlett's

Topic 20

14

STAT 525

Homogeneity Tests

- Often caught in problem with assumptions
 - ANOVA is robust with respect to moderate deviations from normality
 - ANOVA results can be sensitive to homogeneity of variance, especially when there is unequal cell size
- Homogeneity tests are often sensitive to normality assumption
- Modified Levene's often best choice

Topic 20

15

Modified Levene's Test

- More robust against normality
- Considers the absolute deviation of each observation Y_{ij} about its factor level median \tilde{Y}_i

$$d_{ij} = \left| Y_{ij} - \tilde{Y}_i \right|$$

- Tests whether the expected value of these absolute deviations is equal across factor levels
- Simply performs ANOVA on these absolute deviations

Topic 20

Example Page 783

- Experiment designed to assess the strength of five types of flux used in soldering wire boards
- Forty units were used in the experiment
- Units randomly and equally assigned to flux type $(n_i = 8)$
- \bullet Y strength
- \bullet X type of flux

Topic 20

STAT 525

Topic 20

SAS Commands

Scatterplot

strength
20
19
18
18
17
16
15
18
14
13
12
11
10
9
8

Topic 20

STAT 525

STAT 525

Output

Source DF Sum of Squares Mean Square F Value Pr > F Model 4 353.6120850 88.4030213 41.93 <.0001 Error 35 73.7988250 2.1085379 Cor Total 39 427.4109100

Brown and Forsythe's Test for Homogeneity of strength Variance
ANOVA of Absolute Deviations from Group Medians

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
type	4	9.3477	2.3369	2.94	0.0341
Error	35	27.8606	0.7960		
	strength	Sta	andard		

	strength	Standard	
type	LSMEAN	Error	Pr > t
1	15.4200000	0.5133880	<.0001
2	18.5275000	0.5133880	<.0001
3	15.0037500	0.5133880	<.0001
4	9.7412500	0.5133880	<.0001
5	12.3400000	0.5133880	<.0001

Topic 20

Remedies

- Delete potential outliers
 - Is their removal important?
- Use weighted regression
- Box-Cox Transformation
- Non-parametric procedures

Topic 20

STAT 525

Topic 20

SAS Commands

```
proc means data=a1;
                                             ***Obtain sample variances
   var strength;
                                                for weights;
   by type;
   output out=a2 var=s2;
data a2; set a2; wt=1/s2;
data a3; merge a1 a2; by type;
proc glm data=a3;
                                             ***Weighted ANOVA;
   class type;
   model strength=type;
   weight wt;
   lsmeans type / stderr cl;
                                             ***Mixed model with diff
proc mixed data=a1;
   class type;
                                                variances for all types;
   model strength=type / ddfm=kr;
   repeated / group=type;
```

STAT 525

GLM Output

			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		4	324.2130988	81.0532747	81.05	<.0001	
Error		35	35.0000000	1.0000000			
Corrected	Total	39	359.2130988				
Least Squ		eans	Standaro	i			
type		SMEAN	Erro	r Pr > t	95%	Confide	nce Limits
1	15.420	00000	0.4373949	9 <.0001	14.53	2041	16.307959
2	18.527	75000	0.442992	1 <.0001	17.62	8178	19.426822
3	15.003	37500	0.879161	4 <.0001	13.21	8957	16.788543
4	9.741	2500	0.288712	9 <.0001	9.15	5132	10.327368
5	12.340		0.272029	4 <.0001	11.78	7754	12.892249

MIXED Output

Cov Parm Estimate Group Residual type 1 1.5305 Residual type 2 1.5699 Residual type 3 6.1834 Residual 0.6668 type 4 Residual type 5 0.5920

Fit Statistics

-2 Res Log Likelihood 122.1
AIC (smaller is better) 132.1
AICC (smaller is better) 134.2
BIC (smaller is better) 140.6

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
4 13.73 0.0082

Topic 20

MIXED Output

Type 3 Tests of Fixed Effects

Num Den Effect DF DF F Value Pr > F type 4 14.8 71.78 <.0001

Least Squares Means

Standard

			btandard			
Effect	type	Estimate	Error	DF	t Value	Pr > t
type	1	15.4200	0.4374	7	35.25	<.0001
type	2	18.5275	0.4430	7	41.82	<.0001
type	3	15.0038	0.8792	7	17.07	<.0001
type	4	9.7413	0.2887	7	33.74	<.0001
type	5	12.3400	0.2720	7	45.36	<.0001

Topic 20

STAT 525

Summary

- GLM (weighted ANOVA) and MIXED analysis provide the same factor level estimates and standard errors.
- Without ddfm=kr, F test and df are also the same.
- With ddfm=kr, F test similar to Welch F test and factor level df more reasonable.
- Can consider groups of factor levels with similar variances

- Group1=1: Type 1 and 2

- Group1=2: Type 3

- Group1=3:Type 4 and 5

STAT 525

MIXED Output

***Much better fit

28

Cov Parm Group Estimate
Residual Group 1 1.5502
Residual Group 2 6.1834
Residual Group 3 0.6294

Fit Statistics

-2 Res Log Likelihood 122.1
AIC (smaller is better) 128.1
AICC (smaller is better) 128.9

BIC (smaller is better) 133.2

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
2 13.70 0.0011

Topic 20 27 Topic 20

MIXED Output

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
type	4	19.8	77.68	<.0001

Least Squares Means

Standard

Effect	type	Estimate	Error	DF	t Value	Pr > t
type	1	15.4200	0.4402	14	35.03	<.0001
type	2	18.5275	0.4402	14	42.09	<.0001
type	3	15.0038	0.8792	7	17.07	<.0001
type	4	9.7413	0.2887	14	34.73	<.0001
type	5	12.3400	0.2720	14	43.99	<.0001

Topic 20

STAT 525

Transformations

- Suppose σ_x^2 depends on $\mu_x \to \sigma_x^2 = q(\mu_x)$
- Want to find Y = f(X) such that $Var(Y) \approx c$
- Have shown $Var(f(X)) \approx [f'(\mu_x)]^2 \sigma_x^2$
- Want to choose f such that $[f'(\mu_x)]^2 g(\mu_x) \approx c$

Examples

$$\begin{array}{ll} g(\mu)=\mu & \text{(Poisson)} & f(X)=\int \frac{1}{\sqrt{\mu}}d\mu \to f(X)=\sqrt{X} \\ g(\mu)=\mu(1-\mu) & \text{(Binomial)} & f(X)=\int \frac{1}{\sqrt{\mu(1-\mu)}}d\mu \to f(X)=\mathrm{asin}(\sqrt{X}) \\ g(\mu)=\mu^{2\beta} & \text{(Box-Cox)} & f(X)=\int \mu^{-\beta}d\mu \to f(X)=X^{1-\beta} \\ g(\mu)=\mu^2 & \text{(Box-Cox)} & f(X)=\int \frac{1}{\mu}d\mu \to f(X)=\log X \end{array}$$

Delta Method

- Consider response X with $E(X) = \mu_x$ and $Var(X) = \sigma_x^2$
- Define Y = f(X); What is the mean and var of Y?
- Consider the following Taylor series expansion

Consider
$$f(X)$$
 where $f'(\mu_x) \neq 0$

$$f(X) \approx f(\mu_x) + (X - \mu_x)f'(\mu_x)$$

$$E(Y) = E(f(X)) \approx E(f(\mu_x)) + E((X - \mu_x)f'(\mu_x)) = f(\mu_x)$$

$$Var(Y) \approx [f'(\mu_x)]^2 Var(X) = [f'(\mu_x)]^2 \sigma_x^2$$

Topic 20

STAT 525

30

Transformation Guides

- Regress $\log(s_i)$ vs $\log(\overline{Y_{i.}}) \to \hat{\lambda} = 1 b_1$
- Use Proc TRANSREG

proc transreg data=a1; model boxcox(strength)=class(type);

- When $\sigma_i^2 \propto \mu_i$ use $\sqrt{}$
- When $\sigma_i \propto \mu_i$ use log
- When $\sigma_i \propto \mu_i^2$ use 1/Y
- For proportions, use arcsin(√)
 arsin(sqrt(Y)) is SAS data step

Topic 20

31

Topic 20

3

Topic 20 33

$GLM\ Output$ - Box-Cox Transformation

Source		DF	Squ	ares	Mean	Square	F Va	alue	Pr > 1
Model		4	0.0328	34060	0.0	0821015	50	0.05	<.000
Error		35	0.0057	4192	0.0	0016405			
Correct	ed Total	39	0.0385	8252					
	bcstrength	St	andard						
type	LSMEAN		Error	Pr >	> t	95% Co	nfide	ence	Limits
1	0.50507700	0.00	452845	<.	.0001	0.4958	84	0.	514270
2	0.48230819	0.00	452845	<.	.0001	0.4731	15	0.	491501
3	0.50998508	0.00	452845	<.	.0001	0.5007	92	0.	519178
4	0.56659809	0.00	452845	<.	.0001	0.5574	05	0.	575791
5	0.53382040	0.00	452845	<.	.0001	0.5246	27	0.	543014

Topic 20

STAT 525

STAT 525

Nonparametric Approach

- Based on ranking the observations and using the ranks for inference
- SAS procedure NPAR1WAY
- Could also perform permutation test
 - Under H_0 all observations from population with same mean
 - Any observation could be assigned to any group
 - Permute observations numerous times
 - For each permutation compute test statistic
 - Compare observed statistic with this distribution

```
STAT 525
```

SAS Commands

```
proc npar1way data=a1;
 var strength;
 class type;
*Approximate approach
proc rank;
 var strength;
 ranks strength1;
proc glm;
 class type;
 model strength1=type;
```

Topic 20

Topic 20

STAT 525

Output

Median Scores (Number of Points Above Median)

		Sum of	Expected	Std Dev	Mean
type	N	Scores	Under HO	Under HO	Score
1	8	7.0	4.0	1.281025	0.8750
2	8	8.0	4.0	1.281025	1.0000
3	8	5.0	4.0	1.281025	0.6250
4	8	0.0	4.0	1.281025	0.0000
5	8	0.0	4 0	1 281025	0 0000

Median One-Way Analysis Chi-Square 28.2750

DF Pr > Chi-Square <.0001

Topic 20

STAT 525

DF

STAT 525

Background Reading

- KNNL Chapter 18
- knnl777.sas, knnl783.sas
- KNNL Chapter 19

Output

Wilcoxon Scores (Rank Sums) Sum of Expected Std Dev Mean Scores Under HO Under HO Score type 29.573377 25.1250 201.0 164.0 2 282.0 164.0 29.573377 35.2500 3 23.7500 190.0 164.0 29.573377 36.0 164.0 29.573377 4.5000 111.0 164.0 29.573377 13.8750

Kruskal-Wallis Test Chi-Square 32.1634 Pr > Chi-Square <.0001