

Corso di Laurea Magistrale in Ingegneria Informatica

CORSO DI ALGORITMI E STRUTTURE DATI

Prof. ROBERTO PIETRANTUONO

Indicazioni

Si consegni un file in **formato** .txt nominandolo *CognomeNome*.txt, in cui è riportata l'implementazione (nel linguaggio scelto) seguita da una indicazione della complessità temporale dell'algoritmo implementato (complessità nel caso peggiore, è sufficiente il limite superiore O(f(n))). Se si utilizzano librerie di cui non si conosce la complessità, lo si indichi nella spiegazione (ad esempio, "la complessità è O(n log n) al netto della complessità dell'algoritmo x, che è non nota"). Se si utilizza la randomizzazione, si indichi anche il tempo di esecuzione atteso.

PROBLEMA 1

Data una matrice di N righe e M colonne, si scriva un algoritmo per trovare la minima differenza assoluta tra uno qualsiasi dei due elementi adiacenti di un array di dimensione N creato selezionando un elemento da ogni riga della matrice (l'elemento selezionato dalla riga 1 sarà arr[0], l'elemento selezionato dalla riga 2 sarà arr[1] e così via). Una soluzione a forza bruta prevede la costruzione di tutti i possibili array, che avrebbe complessità O(M^N). Si implementi una soluzione a complessità non esponenziale (si suggerisce di utilizzare dapprima un algoritmo di ordinamento sulle righe).

INPUT

L'input è costituito da una prima riga che indica il numero di casi di test T. Le righe successive sono i casi di test. Ogni caso di test inizia con una riga che indica la dimensione di riga e colonna, e segue poi una matrice che rappresenta il labirinto L.

OUTPUT

Si riporti per ogni caso di test il valore della differenza minima.

Sample Input

1

2 2

85

6 10

Sample Output

1

PROBLEMA 2

Sia data in input una stringa di caratteri. Si implementi un algoritmo di **backtracking** per stampare tutte le possibili stringhe che possono essere create posizionando uno spazio oppure nessuno spazio tra i caratteri. Ad esempio con "XYZ" posso ottenere: XYZ, XY Z, X YZ, X YZ.

INPUT

L'input è costituito da un numero intero T che indica il numero di casi di test, seguito da T linee contenenti ciascuna un caso di test (ossia una stringa di input).

OUTPUT

Per ogni input, l'algoritmo stampi l'elenco di tutte le possibili stringhe che si possono ottenere. Al termine dell'output per ogni caso di test si stampi "*END*".

Sample Input

2

XYZ

ABCDE

Sample Output

XYZ

XY Z

X YZ

XYZ

END

ABCDE

ABCD E

ABC DE

ABC D E

AB CDE

AB CD E

AB C DE

AB C D E

A BCDE

A BCD E

A BC DE

A BC D E

A B CDE

A B CD E

A B C DE

ABCDE

END