

Analyse et visualisation du protéome de Chlamydomonas reinhardtii

Maël Pretet

Directeur de stage : Marc Baaden

Introduction

Objectifs du stage

Analyser les données protéomiques des cystéines ayant subi une modification post-traductionnelle pour en dégager des pistes de représentation visuelle à travers UnityMol.

Question biologique:

Quels sont les facteurs permettant de déterminer les cystéines modifiées après traduction?

Chlamydomonas reinhardtii

- Organisme modèle
- 1282 structures protéiques
- 501 cystéines modifiées provenant de
 286 modèles

https://eol.org

Modifications post-traductionnelle (PTM)

https://www.researchgate.net

Nitrosylation

https://www.sciencedirect.com

Glutathionylation

https://www.mdpi.com

Oxydo-réduction

Choix des descripteurs

Descripteurs initiaux :

```
Access / cys_pos / modif / PDBcode / p_id / qmean / cys_modelled / PDB_blast / p_id_blast / SS / SS_pos / pKa / ASA_cys / ASA_SH / Rossman-like / scop_access / scop_cys / nb_A / nb_B / patch_score / patch_name / residue up to 11 Å
```

Descripteurs supplémentaires :

Aromatic / polar / aliphatic / charged / negative / positive / hydrophobic / small / tiny

Présentation des résultats

Partitionnement des données

Algorithme k-means

- Minimiser la variance intra-groupe
- 4 centres initiaux

Représentation graphique

- Matrice de distance
- Fonction cmdscale
- Coloration en fonction du cluster

Figure 1 : Projection des individus colorés selon leur cluster

Répartition des PTM dans les clusters

Le nombre de modifications est-il indépendant des clusters?

• Test du χ^2 , $\alpha = 5\%$

H0: Facteurs indépendants

H1: Pas d'indépendance

p-value = 0.0004, H0 rejetée

PTM \ Cluster	Unique	Multiples		
1	-0.036	0.094		
2	-1.087	2.814		
3	-0.017	0.042		
4	1.092	-2.826		

Tableau 1 : Matrice des résidus

Différences statistiques entre les clusters

Le facteur cluster a-t-il une influence sur les descripteurs?

• Test ANOVA, $\alpha = 5\%$

H0: Toutes les moyennes sont égales

H1: Une moyenne au moins est différente

Différences statistiques entre les clusters

Si conditions d'application non respectées

• Test kruskal-wallis, $\alpha = 5\%$

H0: Toutes les médianes sont égales

H1: Une médiane au moins est différente

Tableau récapitulatif des p-value

A	4.5×10 ⁻¹⁴	Н	4.2×10 ⁻³	Т	4×10 ⁻⁵	Negative	0
R	9.1×10 ⁻¹⁴	1	0	W	0.93	Positive	0
N	0.11	L	0	Y	0.01	Hydrophobic	0
D	3.8x10 ⁻⁹	K	6.7×10 ⁻¹³	V	1.4×10 ⁻¹⁸	Small	0
С	0.21	М	3.9x10 ⁻⁵	<u>Aromatic</u>	8.8×10 ⁻⁵	Tiny	0
Е	0	F	7.7×10 ⁻⁹	<u>Polar</u>	0	 Bleu: significatif Souligné: ANOVA Non souligné: 	
Q	0	Р	5.6×10 ⁻³	<u>Aliphatic</u>	0		
G	0	S	6.5×10 ⁻⁹	Charged	0	kruskal-\	wallis

Résultats post-hoc d'intérêt

Résidus chargés positivement

Résidus chargés négativement

Résidus hydrophobes

Représentation des propriétés d'intérêt

Choix des couleurs des résidus

Hydrophobe: Bleu

Positifs: Rouge

Négatifs : Vert

Protéine A8IX81, cystéine 164 modifiée

Conclusion

- → Difficultés de lier les PTM aux descripteurs de manière directe
- → Clustering pour pallier à ce problème
- → Permet de pistes de représentation et de visualisation comparative