## Notas em matemática

# Análise

Douglas Santos douglass@ufrj.br

## Conteúdo

| ıências                              | 2 |
|--------------------------------------|---|
| reta real estendida                  |   |
| equências infinitas                  | 3 |
| Sequências infinitas unilaterais     | 3 |
| Sequências bi-infinitas              | 3 |
| equências monótonas                  |   |
| equências limitadas                  | 4 |
| imite de uma sequência               | 4 |
| ropriedades de limites de sequências | 6 |
| ubsequências                         | 6 |
| eguência de Cauchy                   | 7 |

## Sequências

#### A reta real estendida

Existem algumas sequências que não convergem para um número real e dependendo de como é a sua lei de formação podemos enxergar isso. Essas sequências convergem para  $+\infty$  ou  $-\infty$ . Talvez seja adequado dizer que a sequência

esteja convergindo para +∞, enquanto

$$-1, -2, -3, -4, -5, \dots$$

esteja convergindo para  $-\infty$ .

#### Definição 1 (Reta real estendida)

A reta real estendida  $\mathbf{R}^*$  é a reta real  $\mathbb{R}$  com dois elementos distintos de qualquer outro elemento de  $\mathbb{R}$ .

$$\mathbf{R}* := \mathbb{R} \cup \{-\infty, +\infty\}$$

#### Definição 2 (Supremo)

Seja E um subconjunto dos números reais. Se E é não vazio e tem algum limite superior, definimos sup(E) como o limite superior mínimo de E (o menor dos limites superiores de E, e, também, ele é único).

Se E é um conjunto não vazio e não tem um limite superior, o  $\sup(E) := +\infty$ . Se E for vazio temos  $\sup(E) := -\infty$ .



Limite Superior de E:

$$LS(E) := x \le m, \ \forall x \in E$$

Limite Inferior de E:

$$LI(E) := m \le x, \forall x \in E$$

$$max(E) := max x : x \in E$$

$$min(E) := min x : x \in E$$

#### **Definição 3** (Supremo do conjunto de reais estendidos)

Seja E um subconjunto de **R**\*. Então definimos o *supremo* sup(E) como

- (a) Se E esta contido em  $\mathbb{R}(\{-\infty, +\infty\}) \notin E)$  então  $\sup(E)$  é definido da forma usual (definição de supremo acima).
- (b) Se E contem  $+\infty$ , então  $\sup(E) := +\infty$ .
- (c) Se E não contem  $+\infty$  mas contem  $-\infty$ , então

$$\sup(E) := \sup(E \setminus \{-\infty\}).$$

Mas isso é um subconjunto de  $\mathbb{R}$  e, então, cai no item (a).

Como visto na figura acima também temos o *ínfimo*  $\inf(E)$ . O *ínfimo* de E é o maior numero do limite inferior.

$$inf(E) := -sup(-E)$$
.

#### Exemplo 1

Seja E os inteiros negativos, juntos com  $-\infty$ :

$$E = \{-1, -2, -3, -4, ...\} \cup \{-\infty\}.$$

Assim

$$\sup(E) = \sup(E \setminus \{-\infty\}) = -1$$
,

enquanto  $\inf(E) = -\sup(-E) = -(+\infty) = -\infty$ .

#### Proposição 1

Seja E um conjunto vazio. Então  $\sup(E) = -\infty$  e  $\inf(E) = +\infty$ .

Este é o único caso onde o supremo é menor que o ínfimo.

Imaginando uma reta real com  $+\infty$  para a direita e  $-\infty$  para a esquerda. Movendo-se de  $+\infty$  para a esquerda ate parar quando encontrar o conjunto E. Esse local de parada é o supremo de E. Analogamente movendo-se de  $-\infty$  para a direita ate encontrar o conjunto E; o local de parada será o ínfimo de E. No caso de E ser um conjunto vazio não haverá local de parada e os "pontos" se movendo na reta irão para direções opostas. Portanto, o supremo se torna  $-\infty$  e o ínfimo  $+\infty$ .

## Definição 4 (Supremo e infimo de sequências)

Seja  $\{a_n\}_{n=m}^{\infty}$  uma sequência de números reais. Definimos  $\sup(\{a_n\}_{n=m}^{\infty})$  como o supremo do conjunto  $\{a_n:n\geqslant m\}$  e  $\inf(\{a_n\}_{n=m}^{\infty})$  como o infimo do mesmo conjunto.

## Exemplo 2

Seja  $a_n:=\frac{1}{n}$ . Assim, temos  $\{a_n\}_{n=m}^\infty$  eh a sequência 1,1/2,1/3,1/4,... Então  $\sup(\{a_n\}_{n=1}^\infty)=1$  e o  $\inf(\{a_n\}_{n=1}^\infty)=0$ .

## Sequências infinitas

Sequências são um tipo de especial de função. Considere uma função de variável inteira, ou seja,

$$a_n := a(n) : \mathbb{Z} \to A; n \mapsto a_n.$$

O domínio de uma sequência é sempre o conjunto dos inteiros. A imagem da sequência depende do contexto, pois o contradomínio pode ser um subconjunto do conjunto  $\mathbb{R}$ ,  $\mathbb{C}$  ou um espaço topológico. De qualquer forma, a imagem é geralmente denotada por  $\mathfrak{a}_n$ .

#### Sequências infinitas unilaterais

São sequências onde o domínio pode ser sempre o conjunto  $\mathbb{N}$ . Considere a aplicação  $f: \mathbb{N} \to A$ ;  $\mathfrak{n} \mapsto f(\mathfrak{n})$ . Uma sequência infinita unilateral seria algo do tipo

$$\left\{\mathfrak{a}_{\mathfrak{n}}\right\}_{\mathfrak{n}\in\mathbb{N}}^{\infty}$$
.

## Exemplo 3

Considere a sequência  $\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$ . Então, a imagem é  $\left\{1,\frac{\sqrt{3}}{2},\frac{1}{2},\ldots\right\}$ .

## Sequências bi-infinitas

Sequências bi-infinitas são sequências do tipo

$$\left\{ \alpha_{n}\right\} _{n=-\infty}^{\infty}.$$

#### Exemplo 4

Considere  $\{4n\}_{n=-\infty}^{\infty}$ . Então, temos

$$(..., -16, -12, -8, -4, 0, 4, 8, 12, 16, ...)$$

### Sequências monótonas

Sequências monótonas são sempre crescentes ou decrescentes.

#### **Definição 5** (Sequências monotonicamente crescentes)

A sequência  $\{a_n\}_{n=1}^{\infty}$  é monotonicamente crescente se e somente se  $a_{n+1} \ge a_n$ , para todo  $n \in \mathbb{N}$ . Se cada termo consecutivo é estritamente maior que o anterior, então a sequência é estritamente monotonicamente crescente.

#### Definição 6 (Sequências monotonicamente decrescentes)

Analogamente, uma sequência é monotonicamente decrescente se a cada termo consecutivo for menor que o anterior. A sequência será *estritamente monotonicamente decrescente* se cada termo for estritamente menor que o anterior.

## Sequências limitadas

#### Definição 7

Uma sequência  $\{a_n\}_{n\in A}^{\infty}$  é limitada quando o conjunto de seus termos é limitado, ou seja, existem K e M contidos em A tais que  $K \leq a_n \leq M$ ,  $\forall n \in A$ .

i. Se  $\{a_n\}$  é limitada superiormente temos

$$a_n \leq M, \forall n \in A.$$

ii. Se  $\{a_n\}$  é limitada inferiormente temos

$$K \leq a_n, \forall n \in A.$$

iii. Se  $\{a_n\}$  é inferiormente e superiormente limitada então  $\{a_n\}$  é uma sequência limitada. Isto é,  $a_n$  é limitada se existir um L > 0,  $L \subseteq A$ , tal que  $|a_n| \le L$ ,  $\forall n \in A$ .

#### Lema 1 (Sequências finitas são limitadas)

Toda sequência finita  $a_1, a_2, ..., a_n$  é limitada.

*Demonstração.* Por indução, primeiramente, temos que quando n=1 a sequência  $\{a_1\}$  é claramente limitada, pois se escolhermos  $M:=|a_1|$  então temos  $|a_i| \le M$  para todo  $1 \le i \le n$ . Agora suponha que ja provamos o lema para algum  $n \ge 1$ ; agora temos que provar isso para n++, i.e, nos temos que provar que toda sequência  $\{a_i\}_{i=1}^{n++}$  é limitada. Pela hipótese da indução temos que  $a_1, a_2, ..., a_n$  é limitada por algum  $M \ge 0$ . Em particular, queremos a limitação por  $M + |a_{n++}|$ . Por outro lado,  $\{a_{n++}\}$  também é limitada por  $M + |a_{n++}|$ . Assim  $a_1, a_2, ..., a_n, a_{n++}$  é limitada por  $M + |a_{n++}|$ . Isso termina a indução em n. ■

#### Limite de uma sequência

Sequências são tipos especiais de funções e com isso podemos investigar seus limites. No entanto, temos uma restrição:  $a_n$  está definida para valores inteiros de n. O único limite que usado será de  $a_n \to +\infty$ .

#### **Definição 8** (Intuitiva)

Dada uma sequência  $\mathfrak{a}_n$  dizemos que o limite de uma sequência é L se, enquanto  $\mathfrak{n}$  se torna grande,  $\mathfrak{a}_n$  começa a estar arbitrariamente perto de L. Se enquanto  $\mathfrak{n} \to +\infty$   $\mathfrak{a}_n$  não se aproxima de L, então dizemos que o limite não existe.

#### Definição 9

Dada uma sequência  $a_n$  dizemos que  $\lim_{n\to\infty} a_n = L$  se para todo  $\epsilon > 0$  existir um inteiro k, tal que  $|a_n - L| < \epsilon$  para todo  $n \ge k$ .

#### Teorema 2

Seja  $a_{n n=n_0}$  uma sequência e suponha que f(x) é uma função real para a qual  $f(n)=a_n$  para todos os inteiros  $n \ge k$ , onde  $k \ge n_0$ . Se

$$\lim_{x\to\infty} f(x) = L, \quad \lim_{n\to\infty} a_n = L.$$

## Exemplo 5

Seja  $a_n = \frac{5n+1}{6n+7}$ . Determine se a sequência  $a_{nn=1}$  tem um limite.

Demonstração. Como

$$\lim_{x \to \infty} \frac{5x + 1}{6x + 7} = \frac{5}{6}, \quad \text{então } \lim_{x \to \infty} \frac{5n + 1}{6n + 7} = \frac{5}{6}.$$

#### Observação -

Se  $\lim_{x\to\infty} f(x)$  não existe,  $\lim_{n\to\infty} a_n$  pode não existir.

## Exemplo 6

Considere  $a_n = \sin(n\pi) e f(x) = \sin(x\pi)$ .

Demonstração. Analisando a sequência  $a_n$  vemos que ela resulta em uma lista ordenada de zeros:

$$\sin(\theta\pi)^{-0}$$
,  $\sin(1\pi)^{-0}$ ,  $\sin(2\pi)^{-0}$ ,  $\sin(3\pi)^{-0}$ , ...

Como os termos da sequência são zeros temos que  $\lim_{n\to\infty} a_n = 0$ . Mas avaliando para valores reais, i.e, quando consideramos f(x) temos que  $\lim_{x\to\infty} f(x)$  não existe. Os valores de  $\sin(x\pi)$  para  $x\to\infty$  oscilam entre -1 e 1.

#### Definição 10

Dada duas sequências  $a_n$  e  $b_n$ , a notação  $a_n \ll b_n$  significa que

$$\lim_{n\to\infty}\frac{a_n}{b_n}=0\quad e\quad \lim_{n\to\infty}\frac{b_n}{a_n}=\infty.$$

#### Teorema 3

Sejam p,q reais positivos, com b > 1. Temos a seguinte relação:

$$\ln^p(n) \ll n^q \ll b^n \ll n! \ll n^n$$
.

Qualquer potencia de ln(n) cresce mais *lentamente* do que qualquer potencia de n.

#### Exemplo 7

Seja  $a_n = \frac{\ln^9(n)}{n^{1/2}}$ . Ache o limite da sequência  $a_n$ .

*Demonstração*. O teorema anterior indica que  $\ln^p(n) \ll n^q$ , i.e,  $\lim_{n\to\infty} \frac{\ln^p(n)}{n^q} = 0$ , para qualquer real positivo p e q. Portanto,  $\lim_{n\to\infty} \frac{\ln^9(n)}{n^{1/2}} = 0$ .

#### Exemplo 8

Seja  $a_n = \frac{n^{100} + n^n}{n! + 5^n}$ . Ache o limite da sequência  $a_n$ .

*Demonstração.* Vamos começar analisando o numerador. Pelo teorema, temos que  $n^n \gg n^q$ , que nesse caso é  $n^n \gg n^{100}$ . No denominador, novamente pelo teorema, temos que  $n! \gg b^n$ , que nesse caso é  $n! \gg 5^n$ . Então, iremos saber da existência de  $\lim_{n\to\infty} a_n$  considerando  $\lim_{n\to\infty} \frac{n^n}{n!}$ . Novamente pelo teorema temos que  $n^n \gg n!$ , assim  $\lim_{n\to\infty} a_n = \infty$ . Mais precisamente,

$$\lim_{n\to\infty} \frac{n^{100}+n^n}{n!+5^n} = \lim_{n\to\infty} \frac{n^n \left(\lim_{n\to\infty} \left(\frac{n^{100}}{n^n}\right)^{-0} + 1\right)}{n! \left(1+\lim_{n\to\infty} \left(\frac{5^n}{n!}\right)^{-0}\right)} = \lim_{n\to\infty} \frac{n^n}{n!}.$$

#### Teorema 4

Suponha que  $a_n,b_n$  e  $c_n$  são sequências com

$$a_n \leq b_n \leq c_n$$
.

Se

$$\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} c_n$$

, então  $\lim_{n\to\infty} b_n = L$ .

## Propriedades de limites de sequências

## Proposição 2 (Propriedades aritméticas)

Considere duas sequências  $a_n$  e  $b_n$  tais que  $\lim_{n\to\infty} a_n = L$  e  $\lim_{n\to\infty} b_n = M$ , então

i. 
$$\lim_{n\to\infty} (a_n + b_n) = L + M$$
;

ii. 
$$\lim_{n\to\infty} (a_n - b_n) = L - M;$$

iii. 
$$\lim_{n\to\infty} (a_n \cdot b_n) = L \cdot M$$
;

iv. 
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}, M \neq 0.$$

#### Subsequências

#### **Definição 11** (Subsequências)

Sejam  $\{a_n\}_{n=0}^{\infty}$  e  $\{b_n\}_{n=0}^{\infty}$  sequências de números reais. Dizemos que  $\{b_n\}_{n=0}^{\infty}$  é uma subsequência de  $\{a_n\}_{n=0}^{\infty}$  se e somente se existe uma função  $f:\mathbb{N}\to N$  sendo f estritamente crescente (ou seja,  $f(n+1)>f(n), \forall n\in\mathbb{N}$ ) tal que

$$b_n = a_{f(n)}, \forall n \in \mathbb{N}.$$

Vale notar que essa aplicação f é necessariamente injetiva. Do contrario f não seria estritamente crescente, o que violaria a definição.

#### Exemplo 9

Se  $\{a_n\}_{n=0}^{\infty}$  é uma sequência, então  $\{a_{2n}\}_{n=0}^{\infty}$  é a subsequência de  $\{a_n\}_{n=0}^{\infty}$ , pois a função  $f: \mathbb{N} \to \mathbb{N}$  definida por f(n) := 2n é uma função estritamente crescente de  $\mathbb{N}$  para  $\mathbb{N}$ .

#### Exemplo 10

Mais informalmente, as sequências

e

$$0.1, 0.01, 0.001, \dots$$

são subsequências de

$$1.1, 0.1, 1.01, 0.01, 1.001, 1.0001, \dots$$

## Sequência de Cauchy

#### **Definição 12** (Eventual estabilidade de $\epsilon$ )

Seja  $\epsilon > 0$ . A sequência  $\{a_n\}_{n=0}^{\infty}$  é dita ser *eventualmente*  $\epsilon$ -estável se e somente se a sequência  $a_N, a_{N+1}, a_{N+2}, ...$  é  $\epsilon$ -estável para algum número natural  $N \ge 0$ .

Parafraseando, a sequência  $a_0, a_1, a_2, ...$  é eventualmente  $\epsilon$ -estável se existir um N > 0 tal que a distancia entre dois termos for menor que  $\epsilon$  para todo j,  $k \ge N$ . Com efeito:

$$d(a_j, a_k) \le \varepsilon \Leftrightarrow |a_j - a_k| \le \varepsilon, \forall j, k \ge N.$$

## Exemplo 11

A sequência  $a_1, a_2, ...$  definida por  $a_n := 1/n$ , não é 0.1-estável, mas é eventualmente 0.1-estável, porque a sequência  $a_{10}, a_{11}, a_{12}, ...$ , isto é, (1/10, 1/11, 1/12, ...) é 0.1-estável.

#### Exemplo 12

A sequência  $10, 0, 0, 0, 0, \dots$  não é  $\epsilon$ -estável para qualquer  $\epsilon$  menor do que 10, mas é eventualmente  $\epsilon$ -estável para qualquer  $\epsilon > 0$ .

### **Definição 13** (Sequências de Cauchy)

A sequência  $\{a_n\}_{n=0}^{\infty}$  de números racionais é uma *sequência de Cauchy* se e somente se para todo racional  $\epsilon > 0$ , a sequência  $\{a_n\}_{n=0}^{\infty}$  é eventualmente  $\epsilon$ -estável.

Parafraseando... sequência  $a_0$ ,  $a_1$ ,  $a_2$ , ... é uma sequência de Cauchy se para todo  $\epsilon$  positivo a distancia entre dois termos dessa sequência seja menor ou igual a épsilon.

*Sequência Cauchy*  $a_n := 1/n$ . Seja  $\varepsilon > 0$  um número arbitrário. Vamos encontrar um número  $N \ge 1$  tal que a sequência  $a_N, a_{N+1}, ...$  é  $\varepsilon$ -estável. Isso significa que  $d(a_j, a_k) \le \varepsilon$  para todo  $j, k \ge N$ , i.e,

$$|1/j - 1/k| \le \epsilon, \forall j, k \ge N.$$

Como j,  $k \ge N$ , sabemos que 0 < 1/j,  $1/k \le 1/N$ , seguindo que  $|1/j - 1/k| \le 1/N$ . Então para termos |1/j - 1/k| menor ou igual a  $\varepsilon$  é suficiente que tenhamos 1/N menor que  $\varepsilon$ . Portanto, devemos escolher um N tal que 1/N é menor do que  $\varepsilon$ , ou, equivalentemente, que N seja maior do que  $1/\varepsilon$ .