

Low noise silicon bipolar RF transistor

Product description

 NPN silicon planar epitaxial transistor in 4-pin dual-emitter SOT343 package for low noise and low distortion wideband amplifiers. This RF transistor benefits from Infineon long-term experience in RF components and combines ease-of-use to stable volumes production, at benchmark quality and reliability.

Features

- For high voltage applications V_{CE} < 12 V
- Maximal power P_{tot} = 700 mW
- Transition frequency f_T = 7.5 GHz
- Noise figure NF_{min} = 1.3 dB at 900 MHz
- Easy to use Pb-free (RoHS compliant) and halogen-free industry standard SOT343 package with visible leads

Application

- GNSS active antenna
- Amplifiers in antenna and telecommunications systems
- CAT\
- Power amplifier for DECT and PCN systems

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Device information

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Type / Ordering code	Package	Pi	Pin configuration			Marking	Related Links
BFP196WN / BFP196WNH6327XTSA1	SOT343	1=E	2=C	3=B	4=E	RLs	see SOT343 Package

Low noise silicon bipolar RF transistor

Table of contents

Table of contents

	Product description	1
	Features	
	Application	1
	Product validation	1
	Device information	1
	Table of contents	2
1	Absolute maximum ratings	3
2	Thermal characteristics	
3	Electrical performance in test fixture	5
3.1	DC parameter table	
3.2	AC parameter tables	
3.3	Characteristic DC diagrams	
3.4	Characteristic AC diagrams	
4	SOT343 Package	17
	Revision history	18
	Trademarks	19

Low noise silicon bipolar RF transistor

Absolute maximum ratings

1 Absolute maximum ratings

Table 1 Absolute maximum ratings at T_A = 25 °C (unless otherwise specified)

Parameter	Symbol	Va	alues	Unit	Note or Test condition	
	Min. Max.					
Collector emitter voltage	V _{CEO}	_	12	V	Base open	
Collector emitter voltage	V _{CES}	-	20	V	Emitter / base short circuited	
Collector base voltage	V _{CBO}	_	20	V	Emitter open	
Emitter base voltage	V _{EBO}	_	2	V	Collector open	
DC collector current	I _C	_	150	mA	-	
DC base current	I _B	_	15	mA	-	
Total power	P _{tot}	_	700	mW	-	
Junction temperature	TJ	_	150	°C	-	
Storage temperature	T _{Stg}	-55	150	°C	-	

Attention: Stresses above the maximum values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the component.

Thermal characteristics

2 Thermal characteristics

Table 2 Thermal resistance

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Junction - soldering point	R _{thJS}	_	115	_	K/W	1)

Figure 1 Absolute maximum power dissipation Ptot vs. Ts

Note:

In the horizontal part of the above curve the junction temperature T_J is lower than $T_{J,max}$. In the declining slope it is $T_J = T_{J,max}$. P_{tot} has to be reduced according to the curve in order not to exceed $T_{J,max}$. It is $T_{J,max} = T_S + P_{tot} * R_{THJS}$.

¹ For the definition of R_{thJS} please refer to the application note AN077

3 Electrical performance in test fixture

3.1 DC parameter table

Table 3 DC characteristics at T_A = 25 °C

Parameter	Symbol		Values		Unit	Note or Test Condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	V _{CEO}	12	_	_	V	I _C = 1 mA, open base
Collector emitter leakage current	I _{CES}	-	-	100	μА	V _{CE} = 20 V, V _{BE} = 0 V Emitter / base short circuited
Collector base leakage current	I _{CBO}	-	-	100	nA	$V_{CB} = 10 \text{ V}, V_{BE} = 0$ Open emitter
Emitter base leakage current	I _{EBO}	_	_	1	μΑ	V _{EB} = 1 V, I _C = 0 Open collector
DC current gain	h _{FE}	70	100	140		V _{CE} = 8 V, I _C = 50 mA Pulse measured

3.2 AC parameter tables

Table 4 General AC characteristics at T_A = 25 °C

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Transition frequency	f _T	5	7.5	_	GHz	V _{CE} = 8 V, I _C = 90 mA, f=500 MHz
Collector base capacitance	C _{CB}	-	0.9	_	pF	$V_{CB} = 10 \text{ V}, V_{BE} = 0 \text{ V},$ f = 1 MHz Emitter grounded
Collector emitter capacitance	C _{CE}	-	0.35	_	pF	V _{CE} = 10 V, V _{BE} = 0 V, f = 1 MHz Base grounded
Emitter base capacitance	C _{EB}	-	3.8	_	pF	V _{EB} = 0.5 V, V _{CB} = 0 V, f = 1 MHz Collector grounded

Low noise silicon bipolar RF transistor

Electrical performance in test fixture

Measurement setup for the AC characteristics shown in the following tables is a test fixture with Bias T's in a 50 Ω system, $T_A = 25$ °C.

Figure 2 BFP196WN testing circuit

Table 5 AC characteristics, V_{CE} = 8 V, f = 0.45 GHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain					dB	I _C = 50 mA
Maximum power gain	G _{ms}	_	23.5	_		$Z_s = Z_{Sopt}, Z_L = Z_{Lopt}$
Transducer gain	$ S_{21} ^2$	_	19.0	_		$Z_S=Z_L=50 \Omega$
Minimum noise figure	NFmin	_	0.95	_	dB	$I_C = 20 \text{ mA}, Z_S = Z_{Sopt}$
Linearity					dBm	I _C = 50 mA
1 dB compression point at output	OP1dB	_	19	_		$Z_S=Z_L=50 \Omega$
3rd order intercept point at output	OIP3	_	32	_		

Table 6 AC characteristics, V_{CE} = 8 V, f = 0.9 GHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain					dB	I _C = 50 mA
Maximum power gain	G _{ms}	_	17.0	_		$Z_s = Z_{Sopt}, Z_L = Z_{Lopt}$
Transducer gain	$ S_{21} ^2$	_	13.0	_		$Z_S=Z_L=50 \Omega$
Minimum noise figure	NFmin	_	1.1	_	dB	$I_C = 20 \text{ mA}, Z_S = Z_{Sopt}$
Linearity					dBm	I _C = 50 mA
1 dB compression point at output	OP1dB	_	19	_		$I_C = 50 \text{ mA}$ $Z_S = Z_L = 50 \Omega$
3rd order intercept point at output	OIP3	_	32	_		

Low noise silicon bipolar RF transistor

Electrical performance in test fixture

Table 7 AC characteristics, V_{CE} = 8 V, f = 1.5 GHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain					dB	I _C = 50 mA
Maximum power gain	G _{ms}	_	12.5	_		$Z_s = Z_{Sopt}, Z_L = Z_{Lopt}$
Transducer gain	$ S_{21} ^2$	_	8.5	_		$Z_S=Z_L=50 \Omega$
Minimum noise figure	NFmin	_	1.7	_	dB	$I_C = 20 \text{ mA}, Z_S = Z_{Sopt}$
Linearity					dBm	I _C = 50 mA
1 dB compression point at output	OP1dB	_	19	_		$Z_S=Z_L=50 \Omega$
3rd order intercept point at output	OIP3	_	32	_		

Table 8 AC characteristics, V_{CE} = 8 V, f = 1.9 GHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain					dB	I _C = 50 mA
Maximum power gain	G _{ms}	_	11	_		$Z_s = Z_{Sopt}, Z_L = Z_{Lopt}$
Transducer gain	$ S_{21} ^2$	_	6.5	_		$Z_S=Z_L=50 \Omega$
Minimum noise figure	NFmin	_	2.1	_	dB	$I_C = 20 \text{ mA}, Z_S = Z_{Sopt}$
Linearity					dBm	I _C = 50 mA
1 dB compression point at output	OP1dB	_	19	_		$Z_S=Z_L=50 \Omega$
3rd order intercept point at output	OIP3	_	32	_		

Table 9 AC characteristics, V_{CE} = 5 V, f = 2.4 GHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain					dB	
Maximum power gain	G _{ms}	_	9.7	_		I _C = 50 mA
Transducer gain	$ S_{21} ^2$	-	4.8	-		$I_C = 50 \text{ mA}$ $Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$ $Z_S = Z_L = 50 \Omega$
Minimum noise figure	NFmin	-	2.5	_	dB	$I_C = 20 \text{ mA}, Z_S = Z_{Sopt}$
Linearity					dBm	I _C = 50 mA
1 dB compression point at output	OP1dB	_	19	_		$I_C = 50 \text{ mA}$ $Z_S = Z_L = 50 \Omega$
3rd order intercept point at output	OIP3	_	32	_		

Characteristic DC diagrams 3.3

Collector current $I_C = f(V_{CE})$, $I_B = parameter$ Figure 3

Current gain h_{FE} = $f(I_C)$, V_{CE} = 8 VFigure 4

Figure 5 Collector current $I_C = f(V_{BE})$, $V_{CE} = 8 \text{ V}$

Figure 6 Base current $I_B = f(V_{BE})$, $V_{CE} = 8 \text{ V}$

Figure 7 Base/emitter leakage current $I_B = f(V_{EB})$, $V_{CE} = 8 \text{ V}$

Note: Regard absolute maximum ratings for I_C , V_{CE} and P_{tot} (see **Table 1**)

3.4 Characteristic AC diagrams

Figure 8 Transition frequency $f_T = f(I_C)$, $V_{CE} = parameter$

Figure 9 Gain G_{ms} , G_{ma} , $IS_{21}I^2 = f(f)$, $I_C = 50$ mA, $V_{CE} = 8$ V

Figure 10 Maximum power gain $G_{max} = f(I_C)$, $V_{CE} = 8 \text{ V}$, f = parameter

Figure 11 Maximum power gain $G_{max} = f(V_{CE})$, $I_C = 50$ mA, f = parameter

Figure 12 Output reflection coefficient $S_{22} = f(f)$ at $V_{CE} = 8 \text{ V}$, $I_C = 20$, 50 mA

Figure 13 Input reflection coefficient $S_{11} = f(f)$ at $V_{CE} = 8 \text{ V}$, $I_C = 20$, 50 mA

Figure 14 Source impedance for minimum noise figure $Z_{Sopt} = f(f)$, $V_{CE} = 8 \text{ V}$, $I_{C} = 20$, 50 mA

Figure 15 Noise figure $N_{Fmin} = f(f)$, $V_{CE} = 8 \text{ V}$, $I_C = 20$, 50mA, $Z_S = Z_{Sopt}$

Figure 16 Noise figure NF_{min} = $f(I_C)$, V_{CE} = 8 V, f = parameter, Z_S = Z_{Sopt}

Figure 17 Noise figure NF₅₀ = f(f), V_{CE} = 8 V, I_{C} = 20, 50 mA, Z_{S} = 50 Ω

infineon

Electrical performance in test fixture

Figure 18 Noise figure NF₅₀ = $f(I_C)$, V_{CE} = 8 V, f = parameter, Z_S = 50 Ω

Note: The curves shown in this chapter **Characteristic AC diagrams** have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves. $T_A = 25 \, ^{\circ}\text{C}$.

SOT343 Package

4 SOT343 Package

Figure 19 SOT343 package outline (dimension in mm)

Figure 20 SOT343 footprint (dimension in mm)

Figure 21 SOT343 marking layout

Figure 22 SOT343 standard packing (dimension in mm)

Low noise silicon bipolar RF transistor

Revision history

Revision history

Major changes since previous revision

Reference	Description
Revision History:	2016-12-21, Revision 0.9
rev 0.9	Preliminary datasheet

Trademarks of Infineon Technologies AG

μΗVIC", μΙΡΜ", μΡΓC", AU-ConvertIR", AURIX", C166", CanPAK", CIPOS", CIPURSE", CoolDP", CoolGaN", COOLIR", CoolMOS", CoolSiC", DAVE", DI-POL", DirectFET", DrBlade", EasyPIM", EconoBRIDGE", EconoDUAL", EconoPACK", EconoPIM", EiceDRIVER", eupec", FCOS", GaNpowiR", HEXFET", HITFET", HybridPACK", iMOTION", IRAM", ISOFACE", ISoPACK", LEDrivIR", LITIX", MIPAQ", ModSTACK", my-d", NovalithIC", OPTIGA", OptiMOS", ORIGA", PowlRaudio", PowlRstage", PrimePACK", PrimeSTACK", PROFET", PRO-SIL", RASIC", REAL3", SmartLEWIS", SOLID FLASH", SPOC", StrongIRFET", SupIRBuck", TEMPFET", TRENCHSTOP", TriCore", UHVIC", XHP", XMC".

Trademarks Update 2015-12-22

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-01-20 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-kst1478698311373

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BFP196WNH6327XTSA1