- 1. Maximize $z = -x_1 + 3x_2$ subject to the constraints. $x_1 + x_2 \le 6$, $-x_1 + x_2 \le 4$, $x_1, x_2 \ge 0$
- 2. Maximize $z = x_1 + 3x_2$ subject to the constraints $x_1 + x_2 \le 7, x_1 + 2x_2 \le 10, x_1 \ge 0, x_2 \ge 0.$
- 3. Maximize $z = 5x_1 + 4x_2$ subject to the constraints $x_1 + x_2 \le 20, 2x_1 + x_2 \le 35, -3x_1 + x_2 \le 12, x_1, x_2 \ge 0.$
- 4. Maximize $z = 6x_1 + 12x_2$ subject to the constraints $0 \le x_1 \le 4, 0 \le x_2 \le 4, 6x_1 + 12x_2 \le 72$.
- 5. Maximize the daily output in producing x_1 glass plates by a process P_1 and x_2 glass plates by a process P_2 subject to the constraints

$$2x_1 + 3x_2 \le 130, 3x_1 + 8x_2 \le 300, 4x_1 + 2x_2 \le 140$$

Hints: The daily output is given by $z = x_1 + x_2$.

6. Maximize the daily profit in producing x_1 metal frames F_1 (profit \$90 per frame) and x_2 frames F_2 (profit \$50 per frame) subject to the constraints

$$x_1 + 3x_2 \le 18$$
 (material)
 $x_1 + x_2 \le 10$ (machine hours)
 $3x_1 + x_2 \le 24$ (labour)

Hints: The daily profit is $z = 90x_1 + 50x_2$.

7. Maximize the total output $z = x_1 + x_2 + x_3$ subject to the constraints

$$4x_1 + 5x_2 + 8x_3 \le 12, 8x_1 + 5x_2 + 4x_3 \le 12.$$

- 8. Maximize $z = 5x_1 + 6x_2 + x_3$ subject to the constraints $9x_1 + 3x_2 2x_3 \le 5, 4x_1 + 2x_2 x_3 \le 2, x_1 4x_2 + x_3 \le 3, x_1, x_2, x_3 \ge 0.$
- 9. Maximize $z = x_1 + 3x_2$ subject to the constraints $x_1 3x_2 \ge -6, x_1 + x_2 \le 6, x_1 \ge 0, x_2 \ge 0.$
- 10. Maximize $z = x_1 + 2x_2$ subject to the constraints $x_1 + x_2 \le 9, x_1 x_2 \ge 1, x_1 \ge 0, x_2 \ge 0.$
- 11. Maximize $z = 2x_1 + x_2$ subject to the constraints $x_1 + x_2 \le 12, x_1 + 2x_2 \le 20, -x_1 + x_2 \ge 2, x_1 \ge 0, x_2 \ge 0.$
- 12. Maximize $z = 2x_1 + x_2$ subject to the constraints $x_1 + x_2 \le 6, -x_1 + x_2 \ge 4, x_1 \ge 0, x_2 \ge 0.$
- 13. Minimize $z = 3x_1 + 6x_2$ subject to the constraints $-x_1 + x_2 \ge 6, x_1 + x_2 \ge 10, x_1 \ge 0, x_2 \ge 0.$
- 14. Minimize $z = 5x_1 20x_2$ subject to the constraints $-2x_1 + 10x_2 \le 5, 2x_1 + 5x_2 \le 10.$
- 15. Find the duals of the following linear programming problems
 - (a) Maximize $z = 2x_1 + 3x_2$ subject to $x_1 + x_2 \le 6, -x_1 + x_2 \le 4, x_1, x_2 \ge 0.$
 - (b) Maximize $z = x_1 x_2 + 4x_3$ subject to $x_1 + x_2 + x_3 \le 9, x_1 2x_2 + x_3 \ge 6, x_1, x_2, x_3 \ge 0.$
 - (c) Maximize $z = 3x_1 + 8x_2$ subject to $x_1 + 2x_2 \le 8$, $x_1 + 6x_2 \le 12$, $x_1, x_2 \ge 0$.

(d) Minimize $z = 8x_1 + 9x_2$ subject to $x_1 + x_2 \ge 5, 3x_1 + x_2 \ge 21, x_1 \ge 0, x_2 \ge 0.$

(e) Minimize $z = 4x_1 + 4x_2 + 6x_3$ subject to $x_1 - x_2 - x_3 \le 3, x_1 - x_2 + x_3 \ge 3$

16. Solve the following by using Dual Simplex Method

- (a) Minimize $z = 4x_1 + 7x_2$ subject to $x_1 + x_2 \ge 5, 3x_1 + x_2 \ge 21, x_1 \ge 0, x_2 \ge 0.$
- (b) Minimize $z = 8x_1 + 12x_2$ subject to $2x_1 + 2x_2 \ge 1, x_1 + 3x_2 \ge 2, x_1, x_2 \ge 0$
- (c) Minimize $z = x_1 + 8x_2 + 5x_3$ subject to $x_1 + x_2 + x_3 \ge 8, -x_1 + 2x_2 + x_3 \ge 2, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$
- (d) Maximize $z = 4x_1 x_2 x_3$ subject to $3x_1 + x_2 x_3 \le 4, x_1 + x_2 + x_3 \le 2, x_1 \ge 0, x_2 \ge 0.$

Answers

orthridge No.

1.
$$z = 14, x_1 = 1, x_2 = 5$$
 2. $z = 15, x_1 = 0, x_2 = 5$

3.
$$z = 95, x_1 = 15, x_2 = 5$$
. 4. $z = 72, x_1 = 4, x_2 = 4$

5.
$$z = 50, x_1 = 20, x_2 = 30$$
 6. $z = 780, x_1 = 7, x_2 = 3$

7.
$$z = 2.4, x_1 = 0, x_2 = 2.4, x_3 = 0.$$

8. No optimum solution (unbounded)

9.
$$z = 12, x_1 = 3, x_2 = 3$$

10.
$$z = 13, x_1 = 5, x_2 = 4$$

11.
$$z = 17, x_1 = 5, x_2 = 7$$

12.
$$z = 7, x_1 = 1, x_2 = 5$$

13.
$$z = 54, x_1 = 2, x_2 = 8$$

14.
$$z = -10, x_1 = 0, x_2 = 0.5$$

- 15. (a) Minimize $w = 6y_1 + 4y_2$ subject to $y_1 y_2 \ge 2$, $y_1 + y_2 \ge 3$, $y_1, y_2 \ge 0$.
 - (b) Minimize $w = 9y_1 + 6y_2$ subject to $y_1 + y_2 \ge 1$, $y_1 2y_2 \ge -1$, $y_1 + y_2 \ge 4$, $y_1, y_2 \ge 0$.
 - (c) Minimize $w = 8y_1 + 12y_2$ subject to $y_1 + y_2 \ge 3, 2y_1 + 6y_2 \ge 8, y_1, y_2 \ge 0.$
 - (d) Maximize $w = 5y_1 + 21y_2$ subject to $y_1 + 3y_2 \le 8$, $y_1 + y_2 \le 9$, $y_1, y_2 \ge 0$.
 - (e) Maximize $w = -3y_1 + 3y_2$ subject to $-y_1 + y_2 \le 4, y_1 y_2 \le 4, y_1 + y_2 \le 6, y_1, y_2 \ge 0.$
- 16. (a) Min. value of C=28 at $x_1 = 7$, $x_2 = 0$.
 - (b) Min. value of z=8 at $x_1 = 0$, $x_2 = \frac{2}{3}$.
 - (c) z=28 when $x_1 = 3, x_2 = 0, x_3 = 5$.
 - (d) Max. value of z=5.5 at $x_1 = 1.5$, $x_2 = 0$, $x_3 = 0.5$.

* * *