The Sequence $s_n = \frac{2^{2n+1}+1}{3}$: A Complete Mathematical Analysis

[Author Name]

August 11, 2025

Abstract

We provide a rigorous mathematical analysis of the integer sequence defined by $s_n = \frac{2^{2n+1}+1}{3}$ for $n \ge 0$. We prove that this formula is well-defined, establish a linear recurrence relation, and analyze divisibility properties. All results are presented with complete proofs.

1 Introduction and Preliminaries

Definition 1.1 (2-adic valuation). For a nonzero integer m, the 2-adic valuation $\nu_2(m)$ is the largest integer k such that 2^k divides m. We define $\nu_2(0) = \infty$.

Definition 1.2 (2-adic absolute value). For a nonzero integer m, the 2-adic absolute value is $|m|_2 = 2^{-\nu_2(m)}$. We define $|0|_2 = 0$.

Lemma 1.3. For all integers $n \ge 0$, we have $2^{2n+1} \equiv 2 \pmod{3}$.

Proof. We have $2 \equiv -1 \pmod{3}$, so $2^{2n+1} = 2 \cdot (2^2)^n = 2 \cdot 4^n$. Since $4 \equiv 1 \pmod{3}$, we get $2^{2n+1} \equiv 2 \cdot 1^n = 2 \equiv -1 \pmod{3}$. Therefore $2^{2n+1} + 1 \equiv 0 \pmod{3}$.

2 Main Results

Theorem 2.1 (Well-defined sequence). The sequence $s_n = \frac{2^{2n+1}+1}{3}$ consists of positive integers for all $n \geq 0$.

Proof. By Lemma 1.3, 3 divides $2^{2n+1}+1$, so s_n is an integer. Since $2^{2n+1}>0$, we have $s_n>0$. \square

Theorem 2.2 (Explicit values). The first terms of the sequence are:

- $s_0 = 1$
- $s_1 = 3$
- $s_2 = 11$
- $s_3 = 43$
- $s_4 = 171$

Proof. Direct computation:

$$s_0 = \frac{2^1 + 1}{3} = \frac{3}{3} = 1 \tag{1}$$

$$s_1 = \frac{2^3 + 1}{3} = \frac{9}{3} = 3 \tag{2}$$

$$s_2 = \frac{2^5 + 1}{3} = \frac{33}{3} = 11 \tag{3}$$

$$s_3 = \frac{2^7 + 1}{3} = \frac{129}{3} = 43 \tag{4}$$

$$s_4 = \frac{2^9 + 1}{3} = \frac{513}{3} = 171$$

Theorem 2.3 (Recurrence relation). For all $n \ge 0$, we have $s_{n+1} = 4s_n - 1$.

Proof. Starting from the definition:

$$s_{n+1} = \frac{2^{2(n+1)+1}+1}{3} = \frac{2^{2n+3}+1}{3}$$

We can rewrite $2^{2n+3} = 4 \cdot 2^{2n+1}$. Therefore:

$$s_{n+1} = \frac{4 \cdot 2^{2n+1} + 1}{3}$$

From the definition of s_n , we have $3s_n = 2^{2n+1} + 1$, which gives $2^{2n+1} = 3s_n - 1$. Substituting:

$$s_{n+1} = \frac{4(3s_n - 1) + 1}{3} = \frac{12s_n - 4 + 1}{3} = \frac{12s_n - 3}{3} = 4s_n - 1$$

Theorem 2.4 (Modular inverse property). For all $n \ge 0$, s_n is the unique integer with $0 < s_n < 2^{2n+1}$ satisfying $3s_n \equiv 1 \pmod{2^{2n+1}}$.

Proof. From the definition, $3s_n = 2^{2n+1} + 1$, so $3s_n - 1 = 2^{2n+1}$. This means $3s_n \equiv 1 \pmod{2^{2n+1}}$. Since $s_n = \frac{2^{2n+1} + 1}{3} < \frac{2^{2n+1} + 2^{2n+1}}{3} = \frac{2 \cdot 2^{2n+1}}{3} < 2^{2n+1}$, we have $0 < s_n < 2^{2n+1}$. For uniqueness: Suppose $3t \equiv 1 \pmod{2^{2n+1}}$ with $0 < t < 2^{2n+1}$. Then $3(s_n - t) \equiv 0$

For uniqueness: Suppose $3t \equiv 1 \pmod{2^{2n+1}}$ with $0 < t < 2^{2n+1}$. Then $3(s_n - t) \equiv 0 \pmod{2^{2n+1}}$. Since $\gcd(3, 2^{2n+1}) = 1$ (as 3 is odd and 2^{2n+1} is a power of 2), we have $s_n \equiv t \pmod{2^{2n+1}}$. Since both s_n and t lie in the interval $(0, 2^{2n+1})$, we must have $s_n = t$.

Theorem 2.5 (Divisibility by powers of 2). For all $n \ge 0$, s_n divides $2^{4n+2} - 1$.

Proof. We have $3s_n = 2^{2n+1} + 1$, so $2^{2n+1} \equiv -1 \pmod{s_n}$. Squaring both sides: $(2^{2n+1})^2 \equiv 1 \pmod{s_n}$. Therefore $2^{4n+2} \equiv 1 \pmod{s_n}$, which means $s_n \mid (2^{4n+2} - 1)$.

Theorem 2.6 (Congruence modulo 8). We have:

- For n = 0: $s_0 = 1 \equiv 1 \pmod{8}$
- For n = 1: $s_1 = 3 \equiv 3 \pmod{8}$
- For $n \geq 2$: $s_n \equiv 3 \pmod{8}$

Proof. For $n \ge 2$, we have $2n + 1 \ge 5$, so $2^{2n+1} \equiv 0 \pmod{32}$. Therefore $2^{2n+1} + 1 \equiv 1 \pmod{32}$. We need to find $s_n = \frac{2^{2n+1} + 1}{3} \pmod{8}$. Since $2^{2n+1} + 1 \equiv 1 \pmod{32}$, we can write $2^{2n+1} + 1 \equiv 32k + 1$ for some integer k.

We need $32k + 1 \equiv 0 \pmod{3}$, which gives $k \equiv 1 \pmod{3}$. So k = 3m + 1 for some integer m, and $2^{2n+1} + 1 = 32(3m+1) + 1 = 96m + 33$.

Therefore
$$s_n = \frac{96m + 33}{3} = 32m + 11 \equiv 11 \equiv 3 \pmod{8}$$
.

3 Convergence in the 2-adic Integers

Theorem 3.1 (Cauchy sequence). The sequence $\{s_n\}$ is Cauchy with respect to the 2-adic metric. *Proof.* For $m > n \ge 0$:

$$s_m - s_n = \frac{2^{2m+1} + 1}{3} - \frac{2^{2n+1} + 1}{3}$$

$$= \frac{2^{2m+1} - 2^{2n+1}}{3}$$
(5)

$$=\frac{2^{2m+1}-2^{2n+1}}{3}\tag{6}$$

$$=\frac{2^{2n+1}(2^{2(m-n)}-1)}{3}\tag{7}$$

Since $2^{2(m-n)}-1$ is odd for m>n (as 2^k-1 is odd for all $k\geq 1$), and 3 is odd, the denominator contributes no factors of 2. Therefore $\nu_2(s_m - s_n) = 2n + 1$.

This gives
$$|s_m - s_n|_2 = 2^{-(2n+1)} \to 0$$
 as $n \to \infty$.

4 Base-4 Representation

Theorem 4.1. For $n \ge 1$, in base-4 notation: s_n consists of (n-1) digits of 2 followed by a single digit 3.

Proof. We proceed by induction.

Base case (n = 1): $s_1 = 3 = 3_4$. \checkmark

Inductive step: Assume s_n has (n-1) two followed by a three in base 4.

This means $s_n = 2(4^{n-1} + 4^{n-2} + \dots + 4 + 1) + 1 = 2 \cdot \frac{4^{n-1}}{4-1} + 1 = \frac{2 \cdot 4^n - 2 + 3}{3} = \frac{2 \cdot 4^n + 1}{3}$. Now $s_{n+1} = 4s_n - 1 = 4 \cdot \frac{2 \cdot 4^n + 1}{3} - 1 = \frac{8 \cdot 4^n + 4 - 3}{3} = \frac{8 \cdot 4^n + 1}{3} = \frac{2 \cdot 4^{n+1} + 1}{3}$. This has the form required for n + 1, completing the induction.

Now
$$s_{n+1} = 4s_n - 1 = 4 \cdot \frac{2 \cdot 4^n + 1}{3} - 1 = \frac{8 \cdot 4^n + 4 - 3}{3} = \frac{8 \cdot 4^n + 1}{3} = \frac{2 \cdot 4^{n+1} + 1}{3}$$

Open Questions 5

- 1. How many terms s_n are prime numbers?
- 2. Can we characterize all prime divisors of s_n for given n?
- 3. What is the growth rate of the largest prime factor of s_n ?

Conclusion 6

We have provided a complete mathematical characterization of the sequence $s_n = \frac{2^{2n+1}+1}{3}$ with rigorous proofs of all stated properties. The sequence has interesting connections to modular arithmetic and the 2-adic integers.

References

- [1] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 2008.
- [2] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-Verlag, 1984.