MATH 2135 Linear Algebra

Chapter 7 Operators Inner Product Spaces

Alyssa Motas

April 12, 2021

Contents

1	7.A	Self-Adjoint and Normal Operators
	1.1	Definition of adjoint, T^*
		1.1.1 Example
	1.2	Definition of self-adjoint
		1.2.1 Example
	1.3	Orthogonal Property
		1.3.1 Example
_		
2	7.B	The Spectral Theorem
	2.1	The real Spectral Theorem
	2.2	The complex Spectral Theorem
		2.2.1 The complex Spectral Theorem, Version 1
		2.2.2 The complex Spectral Theorem, Version 2
		2.2.3 The complex Spectral Theorem, Version 3

1 7.A Self-Adjoint and Normal Operators

Definition An $n \times n$ -matrix A is called symmetric if $A = A^T$.

1.1 Definition of adjoint, T^*

Suppose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^*: W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and every $w \in W$. Or in other words, let A be a complex $n \times n$ -matrix. The adjoint of A is the complex conjugate of the transpose of A, written

$$A^* = \overline{A^T}$$
.

1.1.1 Example

$$A = \begin{bmatrix} i & 5 & 1+i \\ 0 & 2i & -i \\ -7 & 3-i & 0 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} i & 0 & -7 \\ 5 & 2i & 3-i \\ 1+i & -i & 0 \end{bmatrix}$$
$$A^{*} = \overline{A^{T}} = \begin{bmatrix} -i & 0 & -7 \\ 5 & -2i & 3+i \\ 1-i & i & 0 \end{bmatrix}$$

1.2 Definition of self-adjoint

An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$. In other words, $T \in \mathcal{L}(V)$ is self-adjoint if and only if

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

for all $v, w \in V$. Alternative, an $n \times n$ -matrix A is called self-adjoint or hermitian if

$$A = A^*$$
.

1.2.1 Example

$$A = \begin{bmatrix} 1 & i & 1+i \\ -i & 2 & 5 \\ 1-i & 5 & 3 \end{bmatrix}$$

A is self-adjoint if for all $j, k, a_{jk} = \overline{a_{jk}}$.

Remark: If A is self-adjoint, the diagonal entries of A are real numbers.

1.3 Orthogonal Property

A real $n \times n$ -matrix A is called **orthogonal** if A is invertible and $A^{-1} = A^T$.

Remark: The following are equivalent:

- 1. A is orthogonal
- $2. \ AA^T = I$
- 3. $A^T A = I$
- 4. The columns of A form an orthonormal basis of \mathbb{R}^n .
- 5. The rows of A form an orthonormal basis of \mathbb{R}^n .

Proof. For $(1) \Leftrightarrow (2) \Leftrightarrow (3)$, it is obvious. To prove $(3) \Leftrightarrow (4)$, we write

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{bmatrix} \quad A^T = \begin{bmatrix} a_{11} & \dots & a_{n1} \\ a_{12} & \dots & \vdots \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{bmatrix}.$$

Condition (3) states that $A^T A = I$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & \dots & a_{n1} \\ a_{12} & \dots & \vdots \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix} \cdot \begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix} = 1, \text{i.e.} \quad \left\| \begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix} \right\|$$

$$\begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix} \cdot \begin{bmatrix} a_{12} \\ \vdots \\ a_{n2} \end{bmatrix} = 0.$$

So if

$$v_1 = \begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix}, v_2 = \begin{bmatrix} a_{12} \\ \vdots \\ a_{n2} \end{bmatrix}, \dots, v_n = \begin{bmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{bmatrix},$$

the condition $A^TA = I$ means exactly that

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

This ist he case if and only if v_1, \ldots, v_n are orthonormal.

1.3.1 Example

The following matrices are orthogonal:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

2 7.B The Spectral Theorem

2.1 The real Spectral Theorem

Let A be a real symmetric $n \times n$ -matrix. Then

- 1. There exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.
- 2. A is diagonalizable as $D = S^{-1}AS$ where S is an orthogonal matrix.

Remark: The columns of S are the orthonormal eigenvectors of A. Since S is orthogonal, we have

$$S^{-1} = S^T$$

so we have $D = S^T A S$.

2.2 The complex Spectral Theorem

"Unitary" is the complex version of "orthogonal" (for matrices). A complex $n \times n$ -matrix A is called unitary if A is invertible and $A^{-1} = A^*$.

Remark: A is unitary if and only if the columns of A form an orthonormal basis of \mathbb{C}^n .

Examples:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \qquad A^{*} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$

2.2.1 The complex Spectral Theorem, Version 1

Let A be a complex self-adjoint $n \times n$ -matrix. Then

- 1. There exists an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A.
- 2. A is diagonalizable as $D = S^{-1}AS$ where S is a unitary matrix.
- 3. The eigenvalues of A are real.

2.2.2 The complex Spectral Theorem, Version 2

Let A be unitary $n \times n$ -matrix. Then

- 1. There exists an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A.
- 2. Therefore, A is diagonalizable as $D = S^{-1}AS$ where S is unitary.
- 3. All the eigenvalues (the diagonal entries of D) satisfy $|\lambda| = 1$.

2.2.3 The complex Spectral Theorem, Version 3

A matrix A is called *normal* if

$$A^*A = AA^*.$$

Remark: Self-adjoint matrices are normal because $A=A^*\Rightarrow A^*A=A^2=AA^*$. Unitary matrices are normal because $A^{-1}=A^*=A^*A=A^{-1}A=I=AA^{-1}=AA^*$.

Let A be a normal matrix. Then

- 1. There exists an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A.
- 2. Therefore, A is diagonalizable as $D = S^{-1}AS$ where S is unitary.