```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
In [3]: from sklearn import preprocessing
         from sklearn.model_selection import train_test_split
In [5]: from sklearn.linear_model import LinearRegression, Ridge, Lasso
         from sklearn.metrics import r2_score
In [9]: data=pd.read_csv(r'C:\Users\DELL\Downloads\car-mpg.csv')
In [11]: data.head()
Out[11]:
                       disp
                             hp
                                        acc yr origin car_type
            mpg cyl
                                   wt
                                                                             car_name
         0
             18.0
                    8 307.0 130 3504 12.0 70
                                                     1
                                                              0 chevrolet chevelle malibu
             15.0
                    8 350.0 165 3693 11.5 70
                                                              0
                                                                        buick skylark 320
                                                     1
         2
             18.0
                   8 318.0 150 3436 11.0 70
                                                              0
                                                                       plymouth satellite
             16.0
                    8 304.0 150 3433 12.0 70
                                                              0
                                                                           amc rebel sst
                                                     1
                                                              0
             17.0
                   8 302.0 140 3449 10.5 70
                                                                             ford torino
In [13]: data = data.drop(['car_name'], axis=1)
In [15]: | data['origin'] = data['origin'].replace({1: 'america', 2: 'europe',3: 'asia'})
         data= pd.get_dummies(data,columns =['origin'], dtype=int)
         data= data.replace('?',np.nan)
In [19]: data=data.apply(pd.to numeric, errors='ignore')
         numeric cols=data.select dtypes(include=[np.number]).columns
         data[numeric_cols] = data[numeric_cols].apply(lambda x: x.fillna(x.median()))
        C:\Users\DELL\AppData\Local\Temp\ipykernel_27080\202028991.py:1: FutureWarning: e
        rrors='ignore' is deprecated and will raise in a future version. Use to_numeric w
        ithout passing `errors` and catch exceptions explicitly instead
          data=data.apply(pd.to_numeric, errors='ignore')
In [21]: data.head()
```

```
Out[21]:
            mpg cyl
                       disp
                               hp
                                         acc yr car_type origin_america origin_asia origin_
                                     wt
         0
             18.0
                   8 307.0 130.0 3504 12.0
                                             70
                                                        0
                                                                       1
                                                                                  0
             15.0
                   8 350.0 165.0 3693 11.5 70
                                                        0
                                                                                  0
             18.0
                   8 318.0 150.0 3436 11.0 70
                                                        0
                                                                       1
                                                                                  0
         2
             16.0
                    8 304.0 150.0 3433 12.0
                                                        0
             17.0
                   8 302.0 140.0 3449 10.5 70
                                                        0
                                                                       1
                                                                                  0
         Model Building
In [23]: X=data.drop(['mpg'],axis=1)
         y=data[['mpg']]
In [31]: X_s=preprocessing.scale(X)
         X_columns=X.columns
         X_s=pd.DataFrame(X_s, columns= X_columns)
         y_s=preprocessing.scale(y)
         y_columns=y.columns
         y_s=pd.DataFrame(y_s, columns= y_columns)
In [33]: X_train, X_test, y_train,y_test = train_test_split(X_s, y_s, test_size = 0.30, r
         X_train.shape
Out[33]: (278, 10)
         Simple Linear Regression
In [38]: regression_model = LinearRegression()
         regression_model.fit(X_train, y_train)
         for idx, col_name in enumerate(X_train.columns):
             print('The coefficient for {} is {}'.format(col_name, regression_model.coef_
         intercept = regression_model.intercept_[0]
         print('The intercept is {}'.format(intercept))
        The coefficient for cyl is 0.3210223856916108
        The coefficient for disp is 0.3248343091848394
        The coefficient for hp is -0.2291695005943759
        The coefficient for wt is -0.7112101905072299
        The coefficient for acc is 0.014713682764191435
        The coefficient for yr is 0.3755811949510741
        The coefficient for car type is 0.38147694842331
        The coefficient for origin_america is -0.0747224754758417
        The coefficient for origin_asia is 0.04451525203567813
        The coefficient for origin_europe is 0.04834854953945371
        The intercept is 0.019284116103639715
         Regularized Ridge Regression
In [41]:
```

ridge_model = Ridge(alpha = 0.3)
ridge model.fit(X train, y train)

```
print('Ridge model coef: {}'.format(ridge_model.coef_))
        Ridge model coef: [[ 0.31649043  0.31320707 -0.22876025 -0.70109447  0.01295851
        0.37447352
          0.37725608 -0.07423624 0.04441039 0.04784031]]
         Regularized Lasso Regression
In [44]: lasso_model = Lasso(alpha = 0.1)
         lasso_model.fit(X_train, y_train)
         print('Lasso model coef: {}'.format(lasso_model.coef_))
                                      -0.
                                                 -0.01690287 -0.51890013 0.
        Lasso model coef: [-0.
        0.28138241
         0.1278489 -0.01642647 0.
                                           0.
                                                       ]
         Score Comparision
In [47]: #Simple Linear Model
         print(regression_model.score(X_train, y_train))
         print(regression_model.score(X_test, y_test))
         print('************************)
         #Ridge
         print(ridge_model.score(X_train, y_train))
         print(ridge_model.score(X_test, y_test))
         print('*************************
         #Lasso
         print(lasso_model.score(X_train, y_train))
         print(lasso_model.score(X_test, y_test))
        0.8343770256960538
        0.8513421387780067
        0.8343617931312617
        0.8518882171608501
        ********
        0.7938010766228453
        0.8375229615977084
         Model Parameter Tuning
In [52]: data_train_test = pd.concat([X_train, y_train], axis =1)
         data_train_test.head()
```

Out[52]:		cyl	disp	hp	wt	acc	yr	car_type	origin_i
	350	-0.856321	-0.849116	-1.081977	-0.893172	-0.242570	1.351199	0.941412	0
	59	-0.856321	-0.925936	-1.317736	-0.847061	2.879909	-1.085858	0.941412	-1
	120	-0.856321	-0.695475	0.201600	-0.121101	-0.024722	-0.815074	0.941412	-1
	12	1.498191	1.983643	1.197027	0.934732	-2.203196	-1.627426	-1.062235	0
	349	-0.856321	-0.983552	-0.951000	-1.165111	0.156817	1.351199	0.941412	-1
	4 (•
In [54]:	ols1	rt statsmo = smf.ols .params		•		+wt+acc+yr	+car_type+	origin_ame	rica+or
Out[54]:	cyl disp hp wt acc yr car_ orig orig	type in_america in_europe in_asia e: float64	0.0483 0.0445	922 334 170 210 714 581 177 722					
In [56]:	prin	t(ols1.sum	mary())						

OLS Regression Results

Don Vaniable:		mna	P squanod:			a 024		
Dep. Variable: Model:		mpg OLS	R-squared: Adj. R-squ			0.834		
Method:	Loo		F-statisti			0.829		
Date:						150.0		
	mu, Z	_	Prob (F-st			3.12e-99		
Time:		13:52:20	Log-Likeli	.noou:		-146.89		
No. Observations:		278	AIC:			313.8		
Df Residuals:		268	BIC:			350.1		
Df Model:		9						
Covariance Type:		nonrobust						
		========	========	:=======	========	======		
=	5004	ctd one	_	Ds. [+]	[0 025	0.07		
- 1	coef	std err	t	P> L	[0.025	0.97		
5]								
_								
Intercept	0.0193	0.025	0.765	0.445	-0.030	0.06		
9								
cyl	0.3210	0.112	2.856	0.005	0.100	0.54		
2	0.00	******	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01005	01200	• • • • • • • • • • • • • • • • • • • •		
disp	0.3248	0.128	2.544	0.012	0.073	0.57		
6	0.32.0	0.120	2.5	0.012	0.075	0.57		
hp	-0.2292	0.079	-2.915	0.004	-0.384	-0.07		
4	012232	0.075	2.323	0.00.	0.50	0.07		
wt	-0.7112	0.088	-8.118	0.000	-0.884	-0.53		
9	007222	0,000	0.1_0			0.00		
acc	0.0147	0.039	0.373	0.709	-0.063	0.09		
2								
yr	0.3756	0.029	13.088	0.000	0.319	0.43		
2	0,0,00	0.025		0.000	01022			
car_type	0.3815	0.067	5.728	0.000	0.250	0.51		
3	0,0020		51725	0.000	0120	0.02		
origin_america	-0.0747	0.020	-3.723	0.000	-0.114	-0.03		
5		0.020	37723			0.05		
origin_europe	0.0483	0.021	2.270	0.024	0.006	0.09		
0 1 <u>g111_</u> ear ope	0.0403	0.021	2.270	0.024	0.000	0.03		
origin_asia	0.0445	0.020	2.175	0.031	0.004	0.08		
5	0.0443	0.020	2.175	0.031	0.004	0.00		
==========	:=======	========		.=======		====		
Omnibus:		22.678		son:	2.105			
Prob(Omnibus):			Jarque-Ber	a (JB):	36.139			
Skew:		0.513		. (/-		1.42e-08		
Kurtosis:		4.438				4e+16		
=======================================	:=======	=========	=========	:========	=========	=====		
						-		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.44e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [58]: mse = np.mean((regression_model.predict(X_test)-y_test)**2)

import math
rmse = math.sqrt(mse)
print('Root Mean Squared Error: {}'.format(rmse))
```

```
In [62]: fig = plt.figure(figsize=(10,8))
    sns.residplot(x= X_test['hp'], y= y_test['mpg'], color='green', lowess=True )
    plt.show()
```



```
In [68]: fig = plt.figure(figsize=(10,8))
    sns.residplot(x= X_test['hp'], y= y_test['mpg'], color='green', lowess=True )
    plt.show()

fig = plt.figure(figsize=(10,8))
    sns.residplot(x= X_test['acc'], y= y_test['mpg'], color='green', lowess=True )
    plt.show()
```


In [72]: y_pred = regression_model.predict(X_test)

plt.scatter(y_test['mpg'], y_pred)
plt.show()

