Идентификация диктора по голосу

Постановка задачи

Построить модель, которая по звуковому сигналу позволит определить личность диктора из ограниченного пула.

Методы решения задачи

• Выделение признаков из звукового сигнала с помощью мел-кепстральных коэффициентов (MFCC).

• Обучение различных архитектур классификатора на полученных признаках.

Данные

- Датасет состоит из аудиокниг 5 различных дикторов.
- Каждая книга разбита на равное количество сэмпломв (для баланса классов)
- Семплы состоят из МГСС.
- Итоговый размер всего сета обучения: (744к*5, 39)

Изначальный сигнал

Произношение слова "один":

Изначальный сигнал

Преобразование Фурье:

Изначальный сигнал

Разбиваем по мел-шкале:

Модели

LightGBM (Baseline)

Bidirectionnel LSTM

Bidirectionnel GRU

Модели. LightGBM

В качестве baseline был взять LightGBM классикикатор.

Обучение на семплах из датасета (один семпл как отдельный элемент для обучения).

Kачество на тесте: $f1_score = 0.763$

Сначала были дикие проблемы с переобучением на фоновой музыке. Решение- изменение частоты дискретизации (обучались на качестве записи), изменение датасета для получения единообразия.

Данные. RNN

Для рекуррентной сети пришлось подготовить данные тщательнее.

Последовательности длиной 10к (~4 мин)

По 500 последовательностей на каждого диктора в обучении и валидации.

Модели. LSTM

Архитектура

Bidirectional, 3 скрытых слоя, размерность 25 + Классификатор (полносвязный слой).

Модели. LSTM

Результаты

В связке с transfer learning удалось получить качество f1_score = 0.844

Модели. GRU

Дополнительно была рассмотрена архитектура GRU с аналогичными LSTM параметрами + Transfer Learning

Kачество на тесте: $f1_score = 0.75$

Модели. GRU

Сравнение темпов обучения BLSTM + TL & BGRU + TL

Выводы

Удалось получить результат значительно улучшивший baseline.

Остается острой проблема с исходными данными: очень чувствителен к качеству записи.

Спасибо за внимание!