

FORMES BILINÉAIRES ET FORMES QUADRATIQUES

AA2: Formes bilinéaires symétriques

Formes bilinéaires symétriques

Définition: Formes bilinéaires

Soit E un espace vectoriel sur \mathbb{R} . On appelle forme bilinéaire sur E toute application $b: E \times E \to \mathbb{R}$ telle que:

• Pour y fixé dans E, l'application $x \mapsto b(x,y)$ est une forme linéaire sur E. c'est-à-dire

$$\forall x, x', y \in E \quad \forall \lambda \in \mathbb{R} \quad b(\lambda x + x', y) = \lambda b(x, y) + b(x', y)$$

• Pour x fixé dans E, l'application $y \mapsto b(x, y)$ est une forme linéaire sur E. c'est-à-dire

$$\forall x, y, y' \in E \quad \forall \lambda \in \mathbb{R} \quad b(x, \lambda y + y') = \lambda b(x, y) + b(x, y')$$

Formes bilinéaires symétriques

Définition: Formes bilinéaires

Soit E un espace vectoriel sur \mathbb{R} . On appelle forme bilinéaire sur E toute application $b: E \times E \to \mathbb{R}$ telle que:

• Pour y fixé dans E, l'application $x \mapsto b(x,y)$ est une forme linéaire sur E. c'est-à-dire

$$\forall x, x', y \in E \quad \forall \lambda \in \mathbb{R} \quad b(\lambda x + x', y) = \lambda b(x, y) + b(x', y)$$

• Pour x fixé dans E, l'application $y \mapsto b(x, y)$ est une forme linéaire sur E. c'est-à-dire

$$\forall x, y, y' \in E \quad \forall \lambda \in \mathbb{R} \quad b(x, \lambda y + y') = \lambda b(x, y) + b(x, y')$$

bilinéarité= linéarité par rapport à la première variable + linéarité par rapport à la deuxième variable.

Exercice1

Parmi les expressions ci-dessous, déterminer celles qui définissent une forme bilinéaire sur \mathbb{R}^2 :

- $b_1(x,y) = x_1y_1 + x_2y_2.$
- $b_2(x,y) = 2 + x_1y_1 + 3x_2y_2.$

① Soit $E = \mathbb{R}^2$ et b_1 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_1(x, y) = x_1y_1 + x_2y_2$. est une forme bilinéaire. En effet

① Soit $E = \mathbb{R}^2$ et b_1 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_1(x, y) = x_1y_1 + x_2y_2$. est une forme bilinéaire. En effet

- ① Soit $E = \mathbb{R}^2$ et b_1 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_1(x, y) = x_1y_1 + x_2y_2$. est une forme bilinéaire. En effet
 - ▶ linéarité par rapport à x: Pour tout $x' = (x'_1, x'_2)$ et $\lambda \in \mathbb{R}$, on a

$$b_1(\lambda x + x', y) = (\lambda x_1 + x_1')y_1 + (\lambda x_2 + x_2')y_2 = \lambda x_1 y_1 + x_1' y_1 + \lambda x_2 y_2 + x_2' y_2.$$

$$= \lambda (x_1 y_1 + x_2 y_2) + x_1' y_1 + x_2' y_2$$

$$= \lambda b_1(x, y) + b_1(x', y)$$

- ① Soit $E = \mathbb{R}^2$ et b_1 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_1(x, y) = x_1y_1 + x_2y_2$. est une forme bilinéaire. En effet
 - ▶ linéarité par rapport à x: Pour tout $x' = (x'_1, x'_2)$ et $\lambda \in \mathbb{R}$, on a

$$b_1(\lambda x + x', y) = (\lambda x_1 + x_1')y_1 + (\lambda x_2 + x_2')y_2 = \lambda x_1 y_1 + x_1' y_1 + \lambda x_2 y_2 + x_2' y_2.$$

$$= \lambda (x_1 y_1 + x_2 y_2) + x_1' y_1 + x_2' y_2$$

$$= \lambda b_1(x, y) + b_1(x', y)$$

- ① Soit $E = \mathbb{R}^2$ et b_1 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_1(x, y) = x_1y_1 + x_2y_2$. est une forme bilinéaire. En effet
 - ▶ linéarité par rapport à *x*:

Pour tout $x' = (x'_1, x'_2)$ et $\lambda \in \mathbb{R}$, on a

$$b_1(\lambda x + x', y) = (\lambda x_1 + x_1')y_1 + (\lambda x_2 + x_2')y_2 = \lambda x_1 y_1 + x_1' y_1 + \lambda x_2 y_2 + x_2' y_2.$$

$$= \lambda (x_1 y_1 + x_2 y_2) + x_1' y_1 + x_2' y_2$$

$$= \lambda b_1(x, y) + b_1(x', y)$$

▶ linéarité par rapport à *y*:

Pour tout $y' = (y'_1, y'_2) \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, on a

$$b_1(x, \lambda y + y') = x_1(\lambda y_1 + y_1') + x_2(\lambda y_2 + y_2') = \lambda x_1 y_1 + x_1 y_1' + \lambda x_2 y_2 + x_2 y_2'.$$

$$= \lambda (x_1 y_1 + x_2 y_2) + x_1 y_1' + x_2 y_2'$$

$$= \lambda b_1(x, y) + b_1(x, y')$$

① Soit $E = \mathbb{R}^2$ et b_2 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_2(x, y) = 2 + x_1y_1 + 3x_2y_2$.

- ① Soit $E = \mathbb{R}^2$ et b_2 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_2(x, y) = 2 + x_1y_1 + 3x_2y_2$.
 - ▶ Soit $x' = (x'_1, x'_2) \in \mathbb{R}^2$

$$b_2(x + x', y) = 2 + (x_1 + x_1')y_1 + 3(x_2 + x_2')y_2$$

= 2 + x₁y₁ + 3x₂y₂ + x₁'y₁ + 3x₂'y₂
\(\neq b_2(x, y) + b_2(x', y)\)

- ① Soit $E = \mathbb{R}^2$ et b_2 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_2(x, y) = 2 + x_1y_1 + 3x_2y_2$.
 - ▶ Soit $x' = (x'_1, x'_2) \in \mathbb{R}^2$

$$b_2(x + x', y) = 2 + (x_1 + x_1')y_1 + 3(x_2 + x_2')y_2$$
$$= 2 + x_1y_1 + 3x_2y_2 + x_1'y_1 + 3x_2'y_2$$
$$\neq b_2(x, y) + b_2(x', y)$$

Alors, b_2 n'est pas linéaire par rapport à la première variable x et donc b_2 n'est pas une forme bilinéaire sur \mathbb{R}^2 .

- ① Soit $E = \mathbb{R}^2$ et b_2 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_2(x, y) = 2 + x_1y_1 + 3x_2y_2$.
 - Soit $x' = (x'_1, x'_2) \in \mathbb{R}^2$

$$b_2(x + x', y) = 2 + (x_1 + x_1')y_1 + 3(x_2 + x_2')y_2$$
$$= 2 + x_1y_1 + 3x_2y_2 + x_1'y_1 + 3x_2'y_2$$
$$\neq b_2(x, y) + b_2(x', y)$$

Alors, b_2 n'est pas linéaire par rapport à la première variable x et donc b_2 n'est pas une forme bilinéaire sur \mathbb{R}^2 .

② Soit $E = \mathbb{R}^2$ et b_3 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_3(x, y) = x_1x_2 + 8x_2y_1$.

- ① Soit $E = \mathbb{R}^2$ et b_2 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_2(x, y) = 2 + x_1y_1 + 3x_2y_2$.
 - ▶ Soit $x' = (x_1', x_2') \in \mathbb{R}^2$

$$b_2(x + x', y) = 2 + (x_1 + x_1')y_1 + 3(x_2 + x_2')y_2$$
$$= 2 + x_1y_1 + 3x_2y_2 + x_1'y_1 + 3x_2'y_2$$
$$\neq b_2(x, y) + b_2(x', y)$$

Alors, b_2 n'est pas linéaire par rapport à la première variable x et donc b_2 n'est pas une forme bilinéaire sur \mathbb{R}^2 .

- ② Soit $E = \mathbb{R}^2$ et b_3 l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par $b_3(x, y) = x_1x_2 + 8x_2y_1$.
 - Soit $\lambda = -1$, on a $b_3(-x, y) = x_1x_2 8x_2y_1 \neq -b_3(x, y)$.

Alors, b_3 n'est pas linéaire par rapport à la première variable x et donc b_2 n'est pas une forme bilinéaire sur \mathbb{R}^2 .

Définition: forme bilinéaire symétrique:

Soit E un espace vectoriel sur $\mathbb R$. Une forme bilinéaire sur E est dite symétrique si :

$$\forall (x,y) \in E^2, b(x,y) = b(y,x).$$

Exemples

① b_1 est une forme bilinéaire symétrique sur \mathbb{R}^2 . On a déjà vu au paragraphe précédent que c'est une forme bilinéaire sur \mathbb{R}^2 , de plus

$$\forall (x,y) \in \mathbb{R}^2 \times \mathbb{R}^2, b_1(x,y) = x_1y_1 + x_2y_2 = y_1x_1 + y_2x_2 = b_1(y,x)$$

Exemples

① b_1 est une forme bilinéaire symétrique sur \mathbb{R}^2 . On a déjà vu au paragraphe précédent que c'est une forme bilinéaire sur \mathbb{R}^2 , de plus

$$\forall (x,y) \in \mathbb{R}^2 \times \mathbb{R}^2, b_1(x,y) = x_1y_1 + x_2y_2 = y_1x_1 + y_2x_2 = b_1(y,x)$$

② Soit $E = \mathbb{R}^2$ et b l'application de $E \times E$ dans \mathbb{R} définie pour tout $x = (x_1, x_2)$ et $y = (y_1, y_2)$ de \mathbb{R}^2 par

$$b(x,y) = x_1y_1 - 2x_2y_1 + 2x_1y_2 - x_2y_2.$$

C'est une forme bilinéaire sur \mathbb{R}^2 (vérification immédiate).

Ce n'est pas une forme bilinéaire symétrique sur \mathbb{R}^2 . En effet

Soit
$$x = (1,0)$$
 et $y = (0,1)$.

Alors,
$$b(x, y) = 2$$
 et $b(y, x) = -2$

Écriture matricielle d'une forme bilinéaire

proposition

Soient b une forme bilinéaire symétrique sur \mathbb{E} et $B = (e_1, e_2, \dots, e_n)$ une base de \mathbb{E} . On appelle la matrice de b relative à la base B la matrice $M \in M_n(\mathbb{R})$ définie par:

$$M_{ij} = b(e_i, e_j).$$

Soint $x, y \in E$. Si X et Y désignent respectivement les matrices colonnes composées des coordonnées de x et y dans la base B, alors on a

$$b(x,y) = {}^t X M Y = {}^t Y M X.$$

Exercice

- ① Écrire la matrice de la forme bilinéaire $b(X,Y) = x_1y_1 + x_2y_2$.
- 2 Calculer b(X,Y) pour $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $Y = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ de deux manières:
 - *a*) En utilisant l'expression de *b*.
 - b) Avec le produit matriciel.

① Écrire la matrice de la forme bilinéaire $b(X,Y) = x_1y_1 + x_2y_2$.

① Écrire la matrice de la forme bilinéaire $b(X,Y) = x_1y_1 + x_2y_2$.

$$\mathbf{M}_{1,1} = b(e_1, e_1) = 1 \times 1 + 0 \times 0 = 1$$

$$\mathbf{M}_{1,2} = b(e_1, e_2) = 1 \times 0 + 0 \times 1 = 0$$

$$\mathbf{M}_{2,1} = b(e_2, e_1) = 0 \times 1 + 1 \times 0 = 0$$

$$\mathbf{M}_{2,2} = b(e_2, e_2) = 0 \times 0 + 1 \times 1 = 1$$

🔽 la matrice de la forme bilinéaire b:

$$M = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

② Calculer
$$b(X,Y)$$
 pour $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $Y = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ en utilisant l'expression de b .

② Calculer
$$b(X,Y)$$
 pour $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $Y = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ en utilisant l'expression de b .

$$b(X,Y) = 1 \times 2 + 2 \times (-1) = 0$$

② Calculer
$$b(X,Y)$$
 pour $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $Y = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ en utilisant l'expression de b .

$$b(X,Y) = 1 \times 2 + 2 \times (-1) = 0$$

③ Calculer
$$b(X,Y)$$
 pour $X=\begin{pmatrix}1\\2\end{pmatrix}$ et $Y=\begin{pmatrix}2\\-1\end{pmatrix}$ en utilisant le produit matriciel.

② Calculer
$$b(X,Y)$$
 pour $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $Y = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ en utilisant l'expression de b .

$$b(X,Y) = 1 \times 2 + 2 \times (-1) = 0$$

③ Calculer
$$b(X,Y)$$
 pour $X=\begin{pmatrix}1\\2\end{pmatrix}$ et $Y=\begin{pmatrix}2\\-1\end{pmatrix}$ en utilisant le produit matriciel.

$$b(X,Y) = {}^{t} YMX = (2-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = (2-1) \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0$$

Exercice

Soient les matrices suivantes:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 4 & 1 & 2 \end{pmatrix}$

- f Q Ecrire l'expression de la forme bilinéaire associée à chacune des matrices A et B.
- ② Lesquelles sont symétriques ?

① Calculer Ecrire l'expression de la forme bilinéaire associée à chacune des matrices A et B

① Calculer Ecrire l'expression de la forme bilinéaire associée à chacune des matrices A et B

 $lue{}$ La forme bilinéaire associée à la matrice A est:

$$b_1(X,Y) = x_1y_1 + x_2y_2 + x_2y_3 + x_3y_1 + x_3y_2 + 2x_3y_3$$

① Calculer Ecrire l'expression de la forme bilinéaire associée à chacune des matrices A et B

La forme bilinéaire associée à la matrice A est:

$$b_1(X,Y) = x_1y_1 + x_2y_2 + x_2y_3 + x_3y_1 + x_3y_2 + 2x_3y_3$$

La forme bilinéaire associée à la matrice B est:

$$b_2(X,Y) = x_1y_1 + 4x_1y_3 + x_2y_2 + x_2y_3 + 4x_3y_1 + x_3y_2 + 2x_3y_3$$

2 Lesquelles sont symétriques?

2 Lesquelles sont symétriques?

$$b_1(Y,X) = y_1x_1 + y_2x_2 + y_2x_3 + y_3x_1 + y_3x_2 + 2y_3x_3 \neq b_1(X,Y)$$

Donc, b_1 n'est pas symétrique.

2 Lesquelles sont symétriques?

$$b_1(Y, X) = y_1x_1 + y_2x_2 + y_2x_3 + y_3x_1 + y_3x_2 + 2y_3x_3 \neq b_1(X, Y)$$

Donc, b_1 n'est pas symétrique.

$$b_2(Y,X) = y_1x_1 + 4y_1x_3 + y_2x_2 + y_2x_3 + 4y_3x_1 + y_3x_2 + 2y_3x_3 = b_2(X,Y)$$

Donc, b_2 est symétrique.