1 Ordinals

In this section the logic is always MSO, and the structures are ordinals.

Notations 1. Let $\iota_{\alpha}(X)$ denote that the set X is a closed interval isomorphic to α .

Let $\pi_{\alpha}(X)$ denote that the set X is a finite union of intervals and is isomorphic to α .

Let $\kappa_{\alpha}(x)$ denote that x is a multiple of α .

Proposition 1. Let $\alpha = \omega^{\beta}$ be an ordinals and $x, y \in \alpha$ some elements.

Then, [x, y] is isomorphic to α iff there exists some z which is a multiple of α , such that y is the least greater multiple of α and $z \leq x < y$.

Proof. Divide $x = \gamma \cdot \alpha + \delta$ where $\delta < \alpha$, and as $x + \alpha = y$, $y = \gamma \cdot \alpha + \delta + \alpha$. Now, as α is additively indecomposable, $\delta + \alpha = \alpha$, so $y = \gamma \cdot \alpha + \alpha = (\gamma + 1) \cdot \alpha$. Choosing $z = \gamma + 1$, indeed y is the least greter multiple of α , and $z \le x < y$, as we need.

Corollary 1. Let $\alpha = \omega^{\beta}$. Over ordinals, ι_{α} is expressible via κ_{α} .

Proof. By the previous lemma,

$$\iota_{\alpha}\left(X\right)\iff\exists x,y,z.X=\left[x,y\right]\wedge\kappa_{z}\wedge y=\min_{a}\left\{a:z< a\wedge\kappa_{\alpha}\left(a\right)\right\}$$

Proposition 2. Let $\alpha = \omega^{\beta}$. Then, a set X satisfies π_{α} iff it is a finite sum $X = \sum_{i=1}^{m} X_i$ where for i < m, X_i is a strict prefix of some interval satisfying ι_{α} , and for i = m, X_i satisfies ι_{α} .

Proof. Suppose X_i is indeed an interval which is less then α for i < m and equals α for i = m. Since α is additively indecomposable, the sum $\sum_{i=1}^{m} X_i$ is indeed α . Therefore, X is a disjoint sum of intervals isomorphic to α .

For the other direction, suppose X is a disjoint sum of intervals isomorphic to α . Let the intervals be X_i for i = 1, ..., m. Since α is additively indecomposable, nessessarily $X_i < \alpha$ for i < m and $X_m = \alpha$.

Also, note that for i < m, the interval from the left end of X_i to the right end of X_m is at least α , since it contains $X_i \cup X_m$ which is isomorphic to α , and thus there is an interval in which X_i is contained which is isomorphic to α . \square

Corollary 2. Let $\alpha = \omega^{\beta}$. Then π_{α} is expressible via ι_{α} .

Proof. By the previous corollary, it is enough to formulate that there exists a finite set of left endpoints and right endpoints, such that except for the last ones, All the intervals are strictly the prefix of an interval isomorphic to α , and such that the last interval is isomorphic to α .

 $\pi_{\alpha}\left(X\right) \iff \exists L \exists R. finite\left(L\right) \land finite\left(R\right) \land \min\left(L \cup R\right) \in L \land \max\left(L \cup R\right) \in R \land \forall x, y \in L. x < y \implies \exists z \in R \land \exists x \in R \land$

Proposition 3. Let α be any ordinal. Let the cantor decomposition be

$$\alpha = \sum_{i=1}^{k} \alpha_i$$

where $\alpha_i = \omega^{\beta_i}$.

Then, a set X satisfies π_{α} iff it is an ordered sum $X = \sum_{i=1}^{k} X_i$ where X_i satisfies π_{α_i} .

Proof. Obviously a disjoint sum of such intervals satisfies π_{α} .

For the other direction, suppose X is a union of closed intervals and is isomorphic to α . Let $\varphi: X \to \alpha$ be the isomorphism map. Recall that $\alpha =$ $\sum_{i=1}^{k} Y_i$ where $Y_i \cong \alpha_i$.

Let $X_i := \varphi^{-1}(Y_i)$ for i = 1, ..., k. Then it can easily be seen that X_i is a disjoint sum of closed intervals.

Corollary 3. Let α be any ordinal. Then π_{α} is expressible via $\pi_{\alpha_1},...,\pi_{\alpha_k}$ for some ordinals $\alpha_1 = \omega^{\beta_1}, ..., \alpha_k = \omega^{\beta_k}$.

Proof. This is pretty much the same trick as the previous corrollary, but is very tedious to write down.

Theorem 1. Let α be any ordinal.

Over ordinals, π_{α} is expressible via $\kappa_{\alpha_1}, ..., \kappa_{\alpha_k}$ where $\alpha_1 = \omega^{\beta_1}, ..., \alpha_k = \omega^{\beta_k}$.

Proof. Combine the three previous corollaries.

Definition 1. Let $\alpha > 0$ be a nonzero ordinal.

Let ξ be any ordinal. Let γ and δ be the unique ordinals such that $\xi = \gamma \alpha + \delta$. Then, define $\xi/\alpha := \gamma$ and $\xi\%\alpha := \delta$.

That is, ξ/α is the quotient of ξ by α , "rounded down".

Now, suppose C be a class of ordinals.

Define $C_{/\alpha} := \{ \xi/\alpha : \xi \in \mathcal{C} \}$ Define $C_{\%\alpha} := \{ \xi\%\alpha : \xi \in \mathcal{C} \}$

Theorem 2. Let C be a class of ordinals, and let $\alpha_1 = \omega^{\beta_1}, ..., \alpha_k = \omega^{\beta_k}$ be ordinals, where $\beta_1 \geq \cdots \geq \beta_k$, that is, $\alpha_k \mid \cdots \mid \alpha_1$.

Then the logic $MSO[\kappa_{\alpha_1},...,\kappa_{\alpha_k}]$ is decidable over C,

using oracles to decide MSO $[\kappa_{\alpha_1},...,\kappa_{\alpha_{k-1}}]$ over α and over $\mathcal{C}_{\%\alpha_k}$ and decide MSO over $\mathcal{C}_{/\alpha_k}$.

Proof. Denote $\alpha := \alpha_k$.

By the composition theorem, given φ of quantifier rank ρ , we can compute ψ' , with free variables $\{X_{\tau}\}_{\tau}$, where τ is a ρ -type.

such that for any $\xi = \sum_{i \in \xi/\alpha} \xi_i + \delta$, for $\delta < \alpha$, (denoting $\xi_{\xi/\alpha} := \delta$ we get $\xi = \sum_{i \in \xi/\alpha+1} \xi_i$),

$$\xi \vDash \varphi \iff \xi/\alpha + 1, Q_1, ..., Q_r \vDash \psi'$$

where $Q_{\tau} = \{ \xi_i \vDash \tau : i \in \xi/\alpha + 1 \}$

Now, since the Q_{τ} are all (except maybe the last index) or nothing (except including maybe last the index), we can actually describe them with two propositional/boolean variables. That is, we can replace each time X_{τ} appears in ψ' , by $\{i < \max : y_{\tau}\} \cup \{\max : z_{\tau}\}$ where y_{τ} and z_{τ} are two new propositional variables, and then:

$$\xi \vDash \varphi \iff \xi/\alpha + 1, Y_1, Z_1, ..., Y_r, Z_r \vDash \psi''$$

where $Y_{\tau} := \alpha \vDash \tau$, and $Z_{\tau} := \delta \vDash \tau$, and ψ'' is ψ' after the replacement.

Therefore, given a class \mathcal{C} of ordinals, we first determine for each τ what Y_{τ} is, using the fact that α is decidable over $MSO\left[\kappa_{\alpha_1},...,\kappa_{\alpha_{k-1}}\right]$, and that over α we can replace κ_{α_k} with =0.

Now, we calculate all the possible values of Z_{τ} : for that, we check if τ holds in all of $\mathcal{C}_{\%\alpha}$, and if $\neg \tau$ holds in all of $\mathcal{C}_{\%\alpha}$.

This is possible since $C_{\%\alpha}$ is decidable over $MSO\left[\kappa_{\alpha_1},...,\kappa_{\alpha_{k-1}}\right]$, and again, we can replace κ_{α_k} with =0.

Finally, for each possible combination of values $Y_1, Z_1, ..., Y_r, Z_r$, we calculate whether ψ'' holds over $\mathcal{C}_{/\alpha}$. This is possible since MSO is decidable over $\mathcal{C}_{/\alpha}$.

Then, suppose that φ holds over all $\xi \in \mathcal{C}$.

Then, it must be the case that ψ'' holds for any such combination.

And also for the contrary, every ordinal $\xi \in \mathcal{C}$ gives rise to some combination.

Corollary 4. Suppose in the previous theorem that C is either:

- 1. a single countable ordinal: $C = \{\xi\}$
- 2. the class of all countable ordinals

Then $MSO[\kappa_{\alpha_1},...,\kappa_{\alpha_k}]$ is decidable.

Proof. For a single countable ordinal ξ : α over $MSO\left[\kappa_{\alpha_1},...,\kappa_{\alpha_{k-1}}\right]$ is decidable by induction on k (for the induction step), since MSO is decidable over a single countable ordinal (for the base case)

 $C_{/\alpha} = \{\xi/\alpha\}$ again is decidable for the same reason.

and $C_{\%\alpha} = \{\xi\%\alpha\}$ is a single countable ordinal and so MSO is decidable over it.

Now, suppose \mathcal{C} is the class of all countable ordinals, then $CC_{/\alpha} = \mathcal{C}$, so $MSO\left[\kappa_{\alpha_1},...,\kappa_{\alpha_{k-1}}\right]$ is decidable over it by induction on k, or since MSO is decidable over the class of all countable ordinals (in the base case),

and $C_{\%\alpha} = \{\delta : \delta < \alpha\}$. MSO is decidable over it, since a formula φ is true over $\{\delta : \delta < \alpha\}$ iff $\varphi \vee \exists X.\kappa_{\alpha}$ is true over the class of all countable ordinals, and we have already established that this $MSO[\kappa_{\alpha}]$ is decidable over a single countable ordinal.

Theorem 3. Under the same conditions, $MSO[\pi_{\alpha_1},...,\pi_{\alpha_k}]$ is decidable.

Proof. Combine all the results we have had so far.