This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

19 日本国特許庁 (JP)

⑫公開特許公報(A)

10 特許出願公開

昭59—6305

1 Int. Cl.³ B 22 F 9/08

識別記号

庁内整理番号 7141-4K ❸公開 昭和59年(1984)1月13日

発明の数 1 審査請求 未請求

(全 3 頁)

砂金属粒の製造方法

@特

顧 昭57-113556

②出

顧 昭57(1982)6月30日

仍発 明 者 川口清一

平塚市新町1番地75号田中貴金 属工業株式会社平塚工場内

⑪出 顒 人 田中貴金属工業株式会社

東京都中央区日本橋茅場町2丁

目6番6号

明 細 4

1. 発明の名称

金属粒の製造方法

2. 特許請求の範囲

- 1) 炉体の底面に空孔率30~70% のフィルターを設け、このフィルターを通して潜融金属を冷却液中に満下させることを特徴とする金属粒の製造方法。
- 2) フィルターが黒船又は酸化アルミニウム,酸化シリコン,酸化マグネンウム或いは塩化ポロンの耐火物の少くとも一種より成ることを特象とする特許財水の範囲第1項記載の金属粒の製造方法。

3. 発明の詳細な説明

本発明は、均一な粒色の金属粒を得る為の製造 方法に関する。

一般に根被的加工等を約さずに溶験金属から直接金属粒を得る方法としては、第1回に示す如く 溶験金属を入れる炉体,例えば溶験炉。保置炉等 の炉体1の底面に所定の孔2を有するノメル3を 取付け、炉体 1 の下方に冷却水等の冷却液 4 を入れた冷却槽 5 を設置して、前紀炉体 1 に移験金属を入れ、ノズル 3 の孔 2 を通して溶融金属を冷却液 4 中に滴下させ、金属粒を形成する方法が主に用いられている。

然し作ら、斯かる金属粒の製造方法では、 都融金属中のノロ及び耐火物 , ルッポ等の破片等の具物が静酸金属の演下中にノズル3の孔2の中に入り込み、孔2の径を小さくしてしまい、一定の登の商融金属が満下されず、 均一を粒径の金属粒が得られないととがあった。 またノズル3の孔2に リロ及び耐火物 , ルッポ等の破片が入り込んだ場合、 これらの異物が孔2を閉塞してしまい、溶験金属が滴下できなくなるものである。

上記のような欠点を解消するには、ノメル3の孔2の径を大きくしたければならないが、孔2の径をあまり大きくすると、小さい粒径の金属粒を得るととができず、また溶散金属が大量に従れてしまう為に粒状とならず棒状となったりして、均一な形状、粒径の金属粒が得られないという欠点

特間昭59-6305(2)

があった。またノズル3の材質によっては孔2を 穿ける為の機械的加工が困難であったり、移動金 属の演下中にノズル3の孔2の径が大きくなって しまい、 信下始めと摘下終りでは金属粒の粒径が 異なるという欠点があった。

本発明は新かる簡事情に競みなされたものであり、溶融金属中のノロ及び耐火物 , ルツ が等の破片により詰ることが無く、また溶散金属の滴下中に孔岳が大きくならず、従って常に均一を粒径の金属粒を得ることのできる金属粒の製造方法を提供せんとするものである。

本発明による金属粒の製造方法は、第2回に示す如く 溶融炉、保温炉等の炉体1の底面に、空孔率が30~70%のフィルター6を取付け、炉体1の下方に冷却水等の冷却液4を入れた冷却槽5を設置して、炉体1に溶散金属を入れ、フィルター6を通じて溶融金属を冷却液4中に摘下させることを特徴とするものである。

前記フィルター 6 は、 最低又は液化アルミニウム,酸化シリコン,像化マグネシウム或いは盤化

ポロンの耐火物の少くとも一個より或るものでき エ

上記の如く本発明による金属粒の到途方法は、空孔率30~70 多のフィルター 6 を通して母融を用き合わる4 中に海下させるので、若融金属中のノロ及び耐火物・ルッポ等の破片がフィルター 6 の空孔7 に入り込み、空孔7 が一部詰っても空孔7 に入り込み、空孔7 が一部詰っても空孔7 が全部完全に開塞されることは無く、また番出すのように均等に満下されるので、流で中に空孔7 の孔径が大きくなることができる。

更に本発明の金属牧の製造方法では、フィルター 6 の空孔率を適宜変えるととにより、金属牧の牧祭を大きくしたり小さくしたりするととが容易にでき、フィルター 6 に機械的加工等により特別の孔を卸ける必要が無いものである。

満、フィルター6の空孔車を30~10多とした理由は、30多未満では存融金質が空孔7を通

過するととが困難で、常に均一な粒色の金 馬拉を得るととができず、70%を超えると格融金属が大量且つ連続的に通過してしまい、溶験金属が数次とならず、神状となってしまうからである。

次に本発明による金属粒の製造方法の効果を明瞭にする為に、その具体的な実施例と従来例について説明する。

(実施例1)

第2図に示す如く溶験炉の炉体1の底面に、A1203605,8102405150成り空孔率35%のフィルター6を取り付け、炉体1の下方に、冷却水4を入れた冷却槽5を設置して、炉体1にAgを入れて溶散し、この溶散Agをフィルター6の空孔7を通して冷却水4中に演下させて数径1.5mのAg 粒を得た。こうして得られたAg 粒を、網目1.5m及び1.0mの節にて適別した処、1.5mm~1.0mの包径のAg 粒は全体の96% であり、1.5mm~1.0mの包径の大きいものは1.5以下であった。(実施例2)

第2回に示す如く保護炉の炉体1の底面に、ZrOs

65%、SiO1 3、5%より成り空孔率65%のフィルター6を取付け、炉体の下方に、冷却水4を入れた冷却槽5を設置して、炉体1に溶験状態のAuを注入し、この溶験Auをフィルター8の空孔7を通して冷却水4中に調下させて粒径2.5 mmのAu粒を得た。こりして得られたAu粒を、網目2.5 mm及び2.0 mmの節にて週別した処、2.5 mm~2.0 mmの数値のAu粒は全体の8.5%であり、5.0 mm より粒径の大きいものは5.5以下であった。(従来例1)

第1 図に示す如く溶験炉の炉体 1 の底面に、 適径 1.0 mm の孔 2 を有するノベル 3 を取付け、 炉体 1 の下方に、 冷却水 4 を入れた冷却待 5 を設置して、 炉体 1 に Ag を入れて 存敵し、 この存散 Ag をノベル 3 の孔 2 を通して冷却水 4 中に 旗下させて 2 径 1.0 mm の 2 を で 2 を 利 目 1.5 mm 及び 1.0 mm の 2 を に て 2 別 した Ag 2 を 利 目 1.5 mm 及び 1.0 mm の 2 を は 全 体 の 6 5 が で 4 だ 少 たく、 1.5 mm よ り 粒 径 の 大きいものは 全 体 の 3 0 が 以上もあった。

特開昭59-6305 (3)

〔従来例2〕

第1 図に示す如く保護炉の炉体1 の底面に、直 低3.0 mの孔2 を有するノメル3 を取付け、炉体 1 の下方に、冷却水4を入れた冷却槽5を設置し て、炉体1 に潜触状態の Au を注入し、この溶験 Au をノメル3 の孔2 を通して冷却水4 中に満下 させて粒色 5.0 mの Au 粒を存た。こうして得ら れた Au 粒を網目 5.0 mの 及び 4.5 mの 歯にて 選別 した処、 5.0 m ~ 4.5 mの 也極の Au 粒は全体の 53 % で基だ少なく、残りの大部分が 5.0 m より 粒径の大きいものであった。

このように実施例1、2の方法により得られたAB 粒及びAu粒は、従来例1、2の方法により得られたAB 粒及びAu粒と比べその粒径が略均一で安定しており、しかも得ようとした粒径より大きいAB 粒及びAu粒は皆無であった。

以上評配した通り本発明の金属粒の製造方法は、 炉体の底面に空孔率30~70%のフィルターを 取付けて、このフィルターを通して容融金属を冷 却波中に病下させるのであるから、溶融金属中の ノロ及び耐火物,ルッポの破片等の異物によりフィルターの型孔が一部結っても型孔金体が開塞するようなことが無く、静酸金属はフィルターの型孔を登出するように全体から均等に適下し、常に略均一な粒径の金属粒を得ることができるという優れた効果がある。

4. 図面の簡単な説明

第1 図は従来の金属粒の製造方法を示す図、第 2 図は本発明による金属粒の製造方法を示す図で ある。

1 … … 炉体、 4 … … 冷却被、 5 … … 冷却槽、 6 … … フィルター、 7 … … フィルター の空孔。

出順人 田中貴金農工業株式会社

-27-