Geometry:

Run title	> Run Title (change this lir	ne using inp <mark>&</mark> variable 'runtitle')	= 13.87 m
PROCESS Versio	n> 1.0.17	a	= 3.368 m
Date:	> 03/09/2020	Α	= 4.117
Time:	> 10:38	К ₉₅	= 1.65
User:	> apearce	δ_{95}	= 0.3333
Optimising:	> Plasma major radius	Surface area	$= 2590 \text{ m}^2$
Plasma compositio	in:	Plasma volume	$= 5248 \text{ m}^3$
Number densities relative to electron density:		No. of TF coils	= 16
D + T	= 0.8808	inboard blanket+shield	= 1.055 m
He	= 0.05835	ouboard blanket+shield	= 1.782 m
Xe	= 1e-08	Fusion power	= 2166 MW
W	= 5e-05		

Colour Legend:

ITR OP

Coil currents etc:

PF 1	= 14.93 MA
PF 3	= -8.62 MA
PF 5	= -5.518 MA
Startup flux swing	= 752.2 Wb
Available flux swing	= -991.4 Wb
Burn time	= 2 hrs

TF coil type is WST Nb3Sn

Peak field at conductor (w. rip.)	= 12.93 T
I/I _{crit}	= 0.6069
TF Temperature margin	= 1.5 K
CS Temperature margin	= 8.383 K
TF Cond max TRESCA stress	= 416.3 MPa
TF Case max TRESCA stress	= 580 MPa
Allowable stress	= 580 Pa
Mass per TF coil	= 6.712e + 06 kg

Power flows:

Nominal neutron wall load

Normalised radius of 'core' region= 0.75 No pedestal model used		
Helium fraction	= 0.05835	
Core radiation	= 123.5 MW	
Total radiation	= 203.2 MW	
Nuclear heating in blanket	= 1530 MW	
Nuclear heating in shield	= 2.377 MW	
TF cryogenic power	= 89.23 MW	
Power to divertor	= 243.4 MW	

 $= 0.6151 \text{ MW m}^{-2}$

Nuclear heating in shield	= 2.377 MW
TF cryogenic power	= 89.23 MW
Power to divertor	= 243.4 MW
Divertor life	= 3.888 years
Primary (high grade) heat	= 2825 MW
Gross cycle efficiency	= 37.5 %
Net cycle efficiency	= 31.57 %
Gross electric power	= 1059 MW
Net electric power	= 500 MW
Fusion-to-electric efficiency $\frac{P_{\rm e,net}}{P_{\rm fus}}$	= 23.09 %

Physics:

,	
I_p	= 21.22 MA
Vacuum B_T at R_0	= 7.552 T
q ₉₅	= 3.5
eta_N , thermal	$= 0.9146 \% \text{ m T MA}^{-1}$
eta_N , total	$= 1.032 \% \text{ m T MA}^{-1}$
$oldsymbol{eta_P}$, thermal	= 0.573
β_P , total	= 0.6465
< t _e >	= 7.421 keV
< n _e >	$= 5.358e + 19 \text{ m}^{-3}$
$< n_{\rm e, line} > /n_G$	= 1.2
$T_{e0}/ < T_e >$	= 2.45
$n_{\rm e0}/< n_{\rm e,vol}>$	= 2
$Z_{ m eff}$	= 1.243
$n_Z/ < n_{\rm e, vol} >$	= 5.001e-05
$ au_e$	= 4.275 s
H-factor	= 1.3
H-mode threshold	= 243.4 MW
Scaling law	= ITER-96P

Electron Cyclotron Current Drive:

Steady state auxiliary power	= 33.32 MW
Power for heating only	= 0.001 MW
Bootstrap fraction	= 0.2112
Auxiliary fraction	= 0.06339
Inductive fraction	= 0.7254
Plasma heating used for H facto	r = 323.1 MW
$\frac{P_{\text{div}}}{R_0}$	$= 17.55 \text{ MW m}^{-1}$
$\frac{P_{\text{div}}}{\langle n \rangle R_0}$	$= 32.76 \times 10^{-20} MW m^2$
P _{div} P _{I H}	= 1
H* (non-rad. corr.)	= 1.146

Costs

Cost output not selected

