Théorie des Catégories

Louis Loiseau

Mars 2020

1 Catégories

1.1 Catégories et foncteurs

Définition 1

Une catégorie C est la donnée de:

- 1. Un ensemble $Ob(\mathcal{C})$
- 2. Pour tout $X, Y \in \text{Ob}(\mathcal{C})$, un ensemble $\text{Hom}_{\mathcal{C}}(X, Y)$
- 3. Pour tout $X, Y, Z \in Ob(\mathcal{C})$, une application:

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \to \operatorname{Hom}_{\mathcal{C}}(X,Z)$$

appelée la composition.

La composition doit être associative et admet l'identité comme neutre.

Un élement de $\mathrm{Ob}(\mathcal{C})$ est appelé un objet de \mathcal{C} , un élément de $\mathrm{Hom}_{\mathcal{C}}(X,Y)$ est appelé un morphisme. Une catégorie \mathcal{C} est une \mathcal{U} -catégorie si $\mathrm{Hom}_{\mathcal{C}}(X,Y)$ est \mathcal{U} -petit pour tout X,Y. Une catégorie \mathcal{U} -petite est une \mathcal{U} -catégorie telle que $\mathrm{Ob}(\mathcal{C})$ est \mathcal{U} -petite.

Deux morphismes f et g sont parallèles s'ils ont le même ensemble de départ et d'arrivée. On note $f, g: X \rightrightarrows Y$ Un morphisme f