Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения» Лабораторная работа № 5-6

Выполнил: студент группы ИУ5-63Б Попов С. Д.

Проверил: Гапанюк Ю. Е.

Лабораторная работа

Выберите набор данных (датасет) для решения задачи классификации или регресии.

В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков. С использованием метода train_test_split разделите выборку на обучающую и тестовую. Обучите следующие ансамблевые модели:

- две модели группы бэггинга (бэггинг или случайный лес или сверхслучайные деревья);
- AdaBoost:
- градиентный бустинг.
- одну из моделей группы стекинга.
- модель многослойного персептрона. По желанию, вместо библиотеки scikit-learn возможно использование библиотек TensorFlow, PyTorch или других аналогичных библиотек.
- двумя методами на выбор из семейства МГУА (один из линейных методов COMBI / MULTI + один из нелинейных методов MIA / RIA) с использованием библиотеки gmdh.

Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.

```
!pip install heamy
!pip install gmdh

→ Collecting heamy

           Downloading heamy-0.0.7.tar.gz (30 kB)
           Preparing metadata (setup.py) ... done
       Requirement already satisfied: scikit-learn>=0.17.0 in /usr/local/lib/python3.10/dist-packages (from heamy) (1.2.2)
       Requirement already satisfied: pandas>=0.17.0 in /usr/local/lib/python3.10/dist-packages (from heamy) (2.0.3)
       Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from heamy) (1.16.0)
       Requirement already satisfied: scipy>=0.16.0 in /usr/local/lib/python3.10/dist-packages (from heamy) (1.11.4)
       Requirement already satisfied: numpy>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from heamy) (1.25.2)
       Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.17.0->h
       Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.17.0->heamy) (202
       Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.17.0->heamy) (2
       Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.17.0->heam Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.17.0->heam Requirement already satisfied: threadpoolctl>=0.17.0->heam Requirement already satisfied: threadpoolctl>=0.17.0->h
       Building wheels for collected packages: heamy
           Building wheel for heamy (setup.py) ... done
           Created wheel for heamy: filename=heamy-0.0.7-py2.py3-none-any.whl size=15347 sha256=438912c8ffaabef6240cf080ff7bd7e06
           Stored in directory: /root/.cache/pip/wheels/e5/e4/9a/bc85119b96421369998ff0f53c0854b57bfb518c460fe8c5de
       Successfully built heamy
       Installing collected packages: heamy
       Successfully installed heamy-0.0.7
       Collecting gmdh
           Downloading gmdh-1.0.3-cp310-cp310-manylinux1_x86_64.whl (875 kB)
                                                                                   875.3/875.3 kB 4.9 MB/s eta 0:00:00
       Collecting docstring—inheritance (from gmdh)
          Downloading docstring_inheritance-2.2.0-py3-none-any.whl (24 kB)
       Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from gmdh) (1.25.2)
       Installing collected packages: docstring-inheritance, gmdh
       Successfully installed docstring-inheritance-2.2.0 gmdh-1.0.3
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gmdh
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import *
from heamy.dataset import Dataset
from heamy.estimator import Regressor, Classifier
from heamy.pipeline import ModelsPipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier, StackingClassifier, GradientBoostingClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error, r2_score
      <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module
       <frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module(
<frozen importlib._bootstrap>:914: ImportWarning: _GenerativeAIImportHook.find_spec() not found; falling back to find_mo
       <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module()
<frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin
       <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module()
       <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module()
       <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module
<frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module(
```

<frozen importlib._bootstrap>:914: ImportWarning: _GenerativeAIImportHook.find_spec() not found; falling back to find_mo <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module <frozen importlib. bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module(<frozen importlib _bootstrap>:914: ImportWarning: _GenerativeAIImportHook.find_spec() not found; falling back to find_mo <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module() APICoreClientInfoImportHook.find_spec() not found; falling back to fin <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module() _AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib. bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module _PyDriveImportHook.find_spec() not found; falling back to find_module(<frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _GenerativeAIImportHook.find_spec() not found; falling back to find_mo <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module() _AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: __PyDrive2ImportHook.find_spec() not found; falling back to find_module _PyDriveImportHook.find_spec() not found; falling back to find_module(<frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _GenerativeAIImportHook.find_spec() not found; falling back to find_mo <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin _BokehImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module <frozen importlib._bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module(<frozen importlib._bootstrap>:914: ImportWarning: GenerativeAIImportHook.find_spec() not found; falling back to find_mo <frozen importlib._bootstrap>:914: ImportWarning: OpenCVImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module() AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module _PyDriveImportHook.find_spec() not found; falling back to find_module(<frozen importlib._bootstrap>:914: ImportWarning: _GenerativeAIImportHook.find_spec() not found; falling back to find_mo <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: _OpenCVImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module <frozen importlib._bootstrap>:914: ImportWarning: <frozen importlib. bootstrap>:914: ImportWarning: <frozen importlib._bootstrap>:914: ImportWarning: OpenCVImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: APICoreClientInfoImportHook.find_spec() not found; falling back to fin <frozen importlib._bootstrap>:914: ImportWarning: _BokehImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _AltairImportHook.find_spec() not found; falling back to find_module() <frozen importlib._bootstrap>:914: ImportWarning: _PyDrive2ImportHook.find_spec() not found; falling back to find_module <frozen importlib _bootstrap>:914: ImportWarning: _PyDriveImportHook.find_spec() not found; falling back to find_module(

import warnings
warnings.filterwarnings('ignore')

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call
and should_run_async(code)

df = pd.read_csv('cleaned_all_phones.csv')

df.head()

₹		phone_name	brand	os	inches	resolution	battery	battery_type	ram(GB
	0	Y6II Compact	Huawei	Android 5.1	5.0	720x1280	2200	Li-Po	
	1	K20 plus	LG	Android 7.0	5.3	720x1280	2700	Li-lon	
	2	P8 Lite (2017)	Huawei	Android 7.0	5.2	1080x1920	3000	Li-lon	
	3	Redmi Note 4	Xiaomi	Android 6.0	5.5	1080x1920	4100	Li-Po	
	4	P10	Huawei	Android 7.0	5.1	1080x1920	3200	Li-lon	

5 rows × 22 columns

df.tail()

	phone_name	brand	os	inches	resolution	battery	battery_type	ram
1507	vivo Y77t	Vivo	Android 13	6.64	1080x2388	5000	Li-Po	
1508	11x	Realme	Android 13	6.72	1080x2400	5000	Li-Po	
1509	GT5	Realme	Android 13	6.74	1240x2772	5240	Li-Po	
1510	GT5 240W	Realme	Android 13	6.74	1240x2772	4600	Li-Po	
1511	vivo iQOO Z7 Pro	Vivo	Android 13	6.78	1080x2400	4600	Li-Po	

df.shape

₹

→ (1512, 22)

5 rows × 22 columns

df.info()

<<ru><</pre>

#	Column	Non-Null Count	Dtype				
0	phone_name	1512 non-null	object				
1	brand	1512 non-null	object				
2	0S	1512 non-null	object				
3	inches	1512 non-null	float64				
4	resolution	1512 non-null	object				
5	battery	1512 non-null	int64				
6	battery_type	1512 non-null	object				
7	ram(GB)	1512 non-null	int64				
8	announcement_date	1512 non-null	object				
9	weight(g)	1512 non-null	float64				
10	storage(GB)	1512 non-null	int64				
11	video_720p	1512 non-null	bool				
12	video_1080p	1512 non-null	bool				
13	video_4K	1512 non-null	bool				
14	video_8K	1512 non-null	bool				
15	video_30fps	1512 non-null	bool				
16	video_60fps	1512 non-null	bool				
17	video_120fps	1512 non-null	bool				
18	video_240fps	1512 non-null	bool				
19	video_480fps	1512 non-null	bool				
20	video_960fps	1512 non-null	bool				
21	price(USD)	1512 non-null	float64				
	<pre>dtypes: bool(10), float64(3), int64(3), object(6) memory usage: 156.6+ KB</pre>						

df.describe()

₹		inches	battery	ram(GB)	weight(g)	storage(GB)	<pre>price(USD)</pre>
	count	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000
	mean	6.422460	4389.798942	6.683862	187.636243	109.164683	337.847036
	std	0.477043	784.607022	2.701433	26.200115	74.436484	266.740821
	min	3.800000	1821.000000	1.000000	130.000000	1.000000	40.000000
	25%	6.300000	4000.000000	4.000000	175.000000	64.000000	179.997500
	50%	6.500000	4500.000000	8.000000	187.000000	128.000000	260.000000
	75%	6.670000	5000.000000	8.000000	197.250000	128.000000	400.000000
	max	10.400000	7250.000000	24.000000	500.000000	512.000000	2300.000000

df.duplicated().sum()

→ 0

df.isna().sum()

→ *	phone_name	0
	brand	0
	OS	0
	inches	0

```
resolution
   batterv
   battery_type
                    0
   ram(GB)
   announcement_date
                    0
   weight(g)
   storage(GB)
                    0
   video_720p
   video_1080p
   video_4K
   video_8K
video_30fps
                    0
                    0
   video_60fps
                    0
   video_120fps
                    0
   video_240fps
   video_480fps
                    0
   video_960fps
   price(USD)
   dtype: int64
df.columns
```

Преобразование данных

dtype='object')

```
df['width'] = [int(i.split('x')[0] )for i in df['resolution']]
df['height'] = [int(i.split('x')[1] )for i in df['resolution']]
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['brand'] = le.fit_transform(df['brand'])
df['battery_type'] = le.fit_transform(df['battery_type'])
df['os'] = le.fit_transform(df['os'])
bool_col = [col for col in df.columns if df[col].dtype == 'bool']
df[bool_col] = df[bool_col].astype(int)
df['announcement_date'] = pd.to_datetime(df['announcement_date'])
df['year'] = df['announcement_date'].dt.year
camera = [ x for x in df.columns if 'video' in x]
df['camera_score'] = df[camera].sum(axis=1)
df.drop(bool_col, axis = 1, inplace=True)
df.columns
df = df.drop(['phone_name', 'announcement_date', 'resolution'], axis = 1)
df.info()
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1512 entries, 0 to 1511
    Data columns (total 13 columns):
                     Non-Null Count
        Column
                                    Dtype
    #
                      1512 non-null
                                     int64
     0
        brand
     1
        05
                      1512 non-null
                                     int64
        inches
                      1512 non-null
                                     float64
        battery
                      1512 non-null
                                     int64
                      1512 non-null
                                     int64
        battery_type
        ram(GB)
                      1512 non-null
                                     int64
                      1512 non-null
        weight(g)
                                     float64
        storage(GB)
                      1512 non-null
                                     int64
     8
        price(USD)
                      1512 non-null
                                     float64
        width
                      1512 non-null
                                     int64
```

10 height 1512 non-null int64 11 year 1512 non-null int32 12 camera_score 1512 non-null int64 dtypes: float64(3), int32(1), int64(9) memory usage: 147.8 KB

plt.figure(figsize = (15,15))
sns.heatmap(df.corr(), annot = True)

Масштабирование данных

```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(df)
df = pd.DataFrame(scaled_data, columns=df.columns)

X = df.drop(['price(USD)'], axis = 1)
y = df['price(USD)']
```

Разделение выборки на обучающую и тестовую

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

X_train.shape, y_train.shape, X_test.shape, y_test.shape

$\frac{1}{2}$ ((1209, 12), (1209,), (303, 12), (303,))
```

Обучение ансамблевых моделей

∨ Модель бэггинга

```
from sklearn.ensemble import BaggingRegressor
bagging_model = BaggingRegressor(n_estimators=5, oob_score=True, random_state=10)
bagging_model.fit(X_train, y_train)
bagging_y = bagging_model.predict(X_test)
bin_array = np.zeros((5, X_train.shape[0]))
for i in range(5):
    for j in bagging_model.estimators_samples_[i]:
        bin_array[i][j] = 1
bin_array
\rightarrow array([[0., 0., 0., ..., 1., 1., 0.],
             [0., 1., 0., ..., 0., 1., 1.], [1., 1., 1., ..., 1., 0., 0.],
             [1., 0., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 0.]])
fig, ax = plt.subplots(figsize=(12,2))
ax.pcolor(bin_array, cmap='PuBuGn')
plt.show()
\overline{\rightarrow}
```


Случайный лес

```
# 10 деревьев
tree = RandomForestRegressor(n_estimators=10, random_state=12)
tree.fit(X_train, y_train)
tree_y = tree.predict(X_test)
tree_y
 0.11712035, 0.19685841, 0.21578761, 0.14050885, 0.09756637, 0.08584071, 0.11147566, 0.08453142, 0.26202389, 0.08601062,
                0.04324726, 0.10297699, 0.23807788, 0.0880531 , 0.38230088,
                0.30313009, 0.08893805, 0.02763274, 0.14610566, 0.09175522,
                0.15221239, 0.09159292, 0.12538301, 0.10486726, 0.10474336,
                0.18858354, 0.18650442, 0.14779159, 0.1135469 , 0.15115472,
                0.15588407, 0.11712035, 0.17208053, 0.06548673, 0.11451372, 0.04061947, 0.32364779, 0.28821504, 0.30353982, 0.08038348,
                0.12141593, 0.08893805, 0.22787611, 0.26150442, 0.16497788,
               0.14291549, 0.09140118, 0.09335752, 0.07710575, 0.06016947, 0.17787611, 0.09557522, 0.18858354, 0.36411504, 0.14773894,
                0.27396903, 0.12131814, 0.17377301, 0.27402655, 0.06769912,
                0.16566394, 0.02827743, 0.33141593, 0.05584071, 0.10375133,
                0.13185841, 0.12365652, 0.19110619, 0.15324867, 0.12256637
                0.22581106, 0.07163274, 0.09132743, 0.06769912, 0.09026549,
                0.04469027, 0.11688053, 0.05973451, 0.11283186, 0.19513274,
                0.15 , 0.50176991, 0.07250619, 0.02857699, 0.2000385, 0.17310841, 0.14233053, 0.13244653, 0.12616504, 0.13853783, 0.14032212, 0.08119469, 0.12166991, 0.05641745, 0.20012788,
                 0.05320531, \ 0.20112832, \ 0.0857194 \ , \ 0.14469027, \ 0.04955752, 
               0.10499749, 0.2000385, 0.10575221, 0.06371681, 0.09047699, 0.38761062, 0.23008805, 0.20229513, 0.06530973, 0.18225664,
               0.07655605, 0.12220743, 0.07345133, 0.05978451, 0.04930389, 0.3854351, 0.34245442, 0.08938053, 0.09380531, 0.11747788,
                0.10336168, 0.09911504, 0.15767982, 0.08561947, 0.06039823,
                0.04895499, 0.19557522, 0.06412248, 0.14115044, 0.16575208,
                0.15457788, 0.26349558, 0.05728496, 0.37234513, 0.20707965,
                0.02876106, 0.08849558, 0.15562965, 0.01700619, 0.17699115,
               0.12079646, 0.1659292 , 0.1141141 , 0.0941146 , 0.10022736, 0.33592867, 0.06279808, 0.10349558, 0.14115044, 0.10929204,
                0.14836667, 0.08982257, 0.50486726, 0.0960177, 0.03802313,
                0.09229504, 0.06761805, 0.04055434, 0.12079646, 0.14292035, 0.16163717, 0.07710575, 0.16401858, 0.14376106, 0.13850084,
               0.16057367, 0.1 , 0.12131814, 0.20707965, 0.08205611, 0.12345133, 0.15728168, 0.04729833, 0.02337876, 0.27145708,
                0.18440133, 0.11495115, 0.08761062, 0.0829154 , 0.12644735,
                0.10987739, 0.19915487, 0.02119602, 0.06457876, 0.17437788,
                0.10416681, 0.08390466, 0.20256549, 0.08400531, 0.11946903, 0.11844425, 0.05796407, 0.03973451, 0.03802313, 0.18903973,
                0.11353938, 0.09690265, 0.08938584, 0.11599558, 0.16327434,
               0.21725664, 0.16007876, 0.1874073, 0.27181361, 0.19043274, 0.08663009, 0.17989947, 0.14970487, 0.04079189, 0.2610177,
               0.14911504, 0.08837522, 0.1135469, 0.05097345, 0.06906062, 0.1185836, 0.12300885, 0.13565324, 0.15940265, 0.13424912,
                0.06398894, 0.13053097, 0.26884558, 0.16222071, 0.1473885 ,
                0.09675708, 0.12920354, 0.08061858, 0.04709265, 0.10176991,
                 0.0877985 \ , \ 0.34645442, \ 0.07035398, \ 0.1948177 \ , \ 0.29527434, 
                0.23118221, 0.17890855, 0.07431416, 0.13274115, 0.37871681,
               0.03753673, 0.15 , 0.0804615 , 0.10336168, 0.23265398, 0.13353929, 0.20676991, 0.07816018, 0.18262071, 0.5079646 ,
                0.05708496, 0.2102208 , 0.08128628, 0.10708451, 0.04469027,
                0.09867212, 0.19263805, 0.18150301, 0.12743363, 0.10268982, 0.1380531, 0.19424779, 0.03035398, 0.09778761, 0.09574867,
                0.26957655, 0.12973451, 0.07875389, 0.05740301, 0.12075168,
                0.05740301, 0.28404867, 0.05522124, 0.09593186, 0.08717115,
                0.1311782 , 0.26442434, 0.19238938, 0.17566372, 0.08980885,

    Ada boosting
```

```
0.17395657, 0.16756232, 0.16756232, 0.22073009, 0.16756232, 0.14869284, 0.17883235, 0.18824637, 0.19664357, 0.17883235, 0.14478193, 0.18824637, 0.26920256, 0.26240248, 0.11645297,
0.14925959, 0.14478193, 0.14478193, 0.17883235, 0.2616506, 0.13521878, 0.14925959, 0.16756232, 0.14925959, 0.14392564,
0.17395657, 0.12097364, 0.17395657, 0.2616506, 0.17395657, 0.18824637, 0.17883235, 0.16756232, 0.30167762, 0.12097364,
 0.17883235, 0.14925959, 0.26920256, 0.14925959, 0.16756232,
0.14925959, 0.17883235, 0.18824637, 0.17883235, 0.14869284, 0.21700813, 0.2616506, 0.16756232, 0.12097364, 0.25469012, 0.14478193, 0.16756232, 0.099378, 0.099378, 0.14869284, 0.17883235, 0.39222966, 0.16756232, 0.14925959, 0.33385408, 0.16756232, 0.17883235, 0.39222966, 0.16756232, 0.14925959, 0.33385408, 0.16756232, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.1788325, 0.1788325, 0.17882355, 0.1788235, 0.17882355, 0.17882355, 0.17882355, 0.17882355, 0.17882355, 0.
  0.16756232, \ 0.17883235, \ 0.17883235, \ 0.17883235, \ 0.17883235, \\
0.1859162 , 0.14392564, 0.16756232, 0.14925959, 0.17883235, 0.14925959, 0.26920256, 0.14925959, 0.099378 , 0.099378 , 0.16756232, 0.33385408, 0.12097364, 0.099378 , 0.17883235,
 0.25469012, 0.22073009, 0.25469012, 0.17883235, 0.18824637,
 0.16756232, 0.14925959, 0.12097364, 0.14925959, 0.14925959,
 0.54160177, 0.34432782, 0.14478193, 0.25469012, 0.14925959,
0.17883235, 0.17883235, 0.17883235, 0.16946697, 0.16234584, 0.14925959, 0.17883235, 0.14925959, 0.13246773, 0.17883235,
0.16756232, 0.18824637, 0.14925959, 0.34159646, 0.17395657, 0.13521878, 0.14478193, 0.16756232, 0.14925959, 0.18859162, 0.14869284, 0.17395657, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.106756232, 0.14925959, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883235, 0.17883255, 0.17883255, 0.17883255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255, 0.17885255
 0.1859162 , 0.14925959, 0.14478193, 0.14478193, 0.14478193,
0.16756232, 0.16756232, 0.54160177, 0.14869284, 0.14478193, 0.12097364, 0.14869284, 0.14925959, 0.14869284, 0.14869284,
 0.16756232, 0.14925959, 0.17883235, 0.16756232, 0.14925959,
 0.17883235, 0.17883235, 0.17883235, 0.14869284, 0.14925959,
 0.14478193, 0.17883235, 0.14925959, 0.14925959, 0.17395657,
 0.17883235, 0.17883235, 0.12097364, 0.16756232, 0.16234584,
 0.17883235, 0.1859162 , 0.14925959, 0.1859162 , 0.14925959,
0.14478193, 0.17883235, 0.18824637, 0.16234584, 0.12097364, 0.14925959, 0.17883235, 0.14478193, 0.14478193, 0.18824637, 0.16756232, 0.17883235, 0.14925959, 0.17883235, 0.17883235, 0.14869284, 0.17883235, 0.16756232, 0.16756232, 0.17395657,
 0.17883235, 0.17883235, 0.16756232, 0.14925959, 0.2616506 ,
 0.17395657, 0.14925959, 0.22073009, 0.14478193, 0.14925959,
  0.16756232, \ 0.17883235, \ 0.16756232, \ 0.13521878, \ 0.17883235, \\
 0.099378 , 0.099378 , 0.17395657, 0.16756232, 0.17883235, 0.14925959, 0.13521878, 0.14925959, 0.14925959, 0.16756232,
 0.16756232, 0.30397909, 0.17883235, 0.26920256, 0.17883235,
0.18824637, 0.1859162, 0.099378, 0.17883235, 0.25469012, 0.14925959, 0.17883235, 0.14925959, 0.17883235, 0.17395657,
 0.17883235, 0.17883235, 0.14925959, 0.17883235, 0.54160177,
0.14925959, 0.34159646, 0.14925959, 0.16756232, 0.13521878, 0.16946697, 0.1859162, 0.18824637, 0.17883235, 0.17883235,
  0.14478193, \ 0.2616506 \ , \ 0.12097364, \ 0.14925959, \ 0.13061342, 
 0.19191669, 0.16234584, 0.14925959, 0.14925959, 0.17883235,
 0.14925959, 0.26920256, 0.14478193, 0.16756232, 0.14925959, 0.17883235, 0.18824637, 0.17883235, 0.2616506, 0.16756232
```

Модель градиентного бустинга

from sklearn.ensemble import GradientBoostingRegressor

```
gradient_model = GradientBoostingRegressor(n_estimators=5)
gradient_model.fit(X_train, y_train)
y_gradientboosting = gradient_model.predict(X_test)
y_gradientboosting
⇒ array([0.13511246, 0.17233101, 0.11277814, 0.18850368, 0.13255121, 0.12122442, 0.11866317, 0.12122442, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.135112
                                                       0.12949012, 0.13511246, 0.12949012, 0.15173054, 0.12122442,
                                                      0.11866317, 0.12014078, 0.15173054, 0.11866317, 0.18850368, 0.28359385, 0.11866317, 0.11866317, 0.15173054, 0.12122442,
                                                       0.13511246, 0.13255121, 0.12122442, 0.13255121, 0.13511246,
                                                       0.11866317, 0.13255121, 0.13511246, 0.12122442, 0.12122442,
                                                       0.12723572, 0.13511246, 0.15173054, 0.13255121, 0.13511246,
                                                      0.10475473, 0.21019676, 0.14315799, 0.175785 , 0.11866317, 0.12949012, 0.11866317, 0.13255121, 0.12122442, 0.13511246,
                                                       0.13255121, 0.11866317, 0.13511246, 0.0988697, 0.11277814, 0.17687004, 0.11866317, 0.11866317, 0.12949012, 0.13255121, 0.20202027, 0.11866317, 0.12949012, 0.13255121, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.118258127, 0.20202027, 0.20202027, 0.202027, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2020227, 0.2
                                                     0.21019676, 0.11840048, 0.13511246, 0.20638317, 0.11866317, 0.13511246, 0.11866317, 0.16867485, 0.11277814, 0.12122442,
                                                       0.13255121, 0.12122442, 0.15173054, 0.13511246, 0.14315799,
                                                       0.15699616, 0.11866317, 0.12122442, 0.11866317, 0.15405581,
                                                       0.10475473, 0.13511246, 0.11866317, 0.11866317, 0.19594753,
                                                       0.13511246, 0.23390039, 0.11866317, 0.11866317, 0.20638317,
                                                       0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13511246,
                                                       0.13511246, 0.11866317, 0.13511246, 0.0988697, 0.13511246, 0.11277814, 0.15774704, 0.12949012, 0.11866317, 0.11866317,
                                                       0.13511246, 0.20638317, 0.11866317, 0.11866317, 0.12122442, 0.18850368, 0.15173054, 0.15173054, 0.10731599, 0.1400969,
```

```
0.13511246, 0.11866317, 0.11866317, 0.11277814, 0.10475473,
0.12122442, 0.20638317, 0.10475473, 0.14315799, 0.11866317, 0.12122442, 0.12122442, 0.13511246, 0.13742704, 0.11840048,
0.11866317, 0.13511246, 0.11277814, 0.13255121, 0.13511246, 0.12122442, 0.16657322, 0.11866317, 0.20638317, 0.15800067,
0.11866317, 0.11866317, 0.13511246, 0.0988697, 0.13511246, 0.14315799, 0.12949012, 0.11866317, 0.13511246, 0.11840048,
0.13511246, 0.10475473, 0.11866317, 0.13255121, 0.11866317,
0.12122442, 0.13511246, 0.13672193, 0.14315799, 0.10475473,
0.11866317, 0.10475473, 0.0988697, 0.14315799, 0.13511246, 0.13511246, 0.0988697, 0.13511246, 0.12122442, 0.11866317, 0.13511246, 0.12122442, 0.11866317,
0.13255121, 0.13511246, 0.0988697, 0.11866317, 0.13511246, 0.13511246, 0.13511246, 0.1351246, 0.1351246, 0.1351246, 0.1351246, 0.1351246, 0.1351246, 0.1351246,
0.13511246, 0.12122442, 0.10169365, 0.10449204, 0.11866317, 0.11866317, 0.12122442, 0.16657322, 0.10731599, 0.11866317,
0.11866317, 0.12122442, 0.10475473, 0.10475473, 0.15173054,
0.13511246, 0.13511246, 0.11277814, 0.13511246, 0.13511246,
0.13511246, 0.13511246, 0.13511246, 0.13511246, 0.13255121,
0.13511246, 0.13511246, 0.13511246, 0.11277814, 0.15173054, 0.13511246, 0.11866317, 0.12122442, 0.11866317, 0.11866317,
0.13511246, 0.13511246, 0.13511246, 0.11866317, 0.13511246, 0.10475473, 0.11866317, 0.13511246, 0.11866317, 0.13511246,
 0.13255121, \ 0.13255121, \ 0.11866317, \ 0.0988697 \ , \ 0.13511246, 
0.11840048, 0.19164992, 0.12122442, 0.15173054, 0.13511246,
0.18850368, 0.13511246, 0.11866317, 0.13511246, 0.205448, 0.11866317, 0.13511246, 0.10169365, 0.12122442, 0.13511246,
0.13511246, 0.13511246, 0.11277814, 0.13511246, 0.13672193,
0.11866317, 0.13511246, 0.10169365, 0.13511246, 0.11866317,
0.13747281, 0.13672193, 0.15173054, 0.15173054, 0.12122442,
0.13255121, 0.11866317, 0.11866317, 0.11277814, 0.13255121,
0.16867485, 0.11277814, 0.10475473, 0.0988697, 0.13511246,
 \tt 0.0988697 \ , \ \tt 0.15173054, \ \tt 0.11866317, \ \tt 0.13511246, \ \tt 0.11866317, \\
```

Стекинг

```
dataset = Dataset(X_train, y_train, X_test)

model_rf = Regressor(dataset=dataset, estimator=RandomForestRegressor, parameters={'n_estimators': 10},name='rf')
model_lr = Regressor(dataset=dataset, estimator=LinearRegression, parameters={},name='lr')

pipeline = ModelsPipeline(model_rf, model_lr)
stack_ds = pipeline.stack(k=15, seed=111)

stacker = Regressor(dataset=stack_ds, estimator=DecisionTreeRegressor)
stacker_y = stacker.predict()
results = stacker.validate(k=15, scorer=mean_squared_error)

Metric: mean_squared_error
    Folds accuracy: [0.017915427802896483, 0.021731769122982064, 0.013347832485804257, 0.017442330518269072, 0.0290147083254
Mean accuracy: 0.020128072334420894
    Standard Deviation: 0.005419890362223638
    Variance: 2.9375211538524682e-05
```

Модель многослойного персептрона

```
from sklearn.neural_network import MLPRegressor
mlp = MLPRegressor(hidden_layer_sizes=(100, 50), # Структура скрытых слоев
                   activation='relu',
                                                  # Функция активации
                   solver='adam',
                                                  # Оптимизатор
                   max_iter=1000,
                                                  # Максимальное число итераций
                   random_state=42)
# Обучение модели
mlp.fit(X_train, y_train)
nn_y = mlp.predict(X_test)
nn_y
 0.13423277, \ 0.16312752, \ 0.12729333, \ 0.12887886, \ 0.07471095, 
           0.0960732 , 0.10433174, 0.08557473, 0.15507126, 0.10988527,
            0.06104875, \ 0.10879311, \ 0.24910293, \ 0.10433499, \ 0.28092765, \\
           0.23801488, 0.04902827, 0.06365788, 0.16587253, 0.09987761,
           0.12508277, 0.05000829, 0.10445032, 0.09697995, 0.10331713,
           0.05920072, 0.07695417, 0.11933005, 0.1128849 , 0.09731224,
           0.07838016, 0.13423277, 0.21531335, 0.08918128, 0.10878526,
           0.05755499, 0.426858 , 0.15757394, 0.26443565, 0.09275872, 0.11582431, 0.11065747, 0.10539497, 0.09496359, 0.15870614,
```

```
0.18636052, 0.09057254, 0.11070021, 0.09295011, 0.05394476,
                      0.11573772, 0.08166461, 0.05920072, 0.11768173, 0.11024979, 0.38750266, 0.07822764, 0.11128127, 0.24819281, 0.09657004,
                      0.11785008, 0.06577801, 0.20268041, 0.0654479, 0.10149517, 0.0748529, 0.09161444, 0.22952322, 0.20660413, 0.15227305,
                       0.16650595, 0.09842326, 0.10815743, 0.09657004, 0.05843818,
                       0.07857027, 0.16035054, 0.08934942, 0.08197133, 0.11695724,
                        0.1499057 \; , \; 0.27365063, \; 0.09579997, \; 0.05489506, \; 0.22235218, \\
                       0.10428457, 0.14893687, 0.12184264, 0.12823993, 0.12148396, 0.12133107, 0.08038515, 0.11647827, 0.08508838, 0.20314722,
                      0.06488663, 0.15596037, 0.09180963, 0.08795227, 0.07458806, 0.11532824, 0.22235218, 0.08483764, 0.0663059, 0.09709347,
                        0.17997262, \ 0.17822098, \ 0.14430179, \ 0.09157508, \ 0.14861832, 
                        0.11597013, \ 0.07500735, \ 0.09293246, \ 0.09486835, \ 0.05200361, \\
                      0.12717025, 0.21678705, 0.11396098, 0.1217402 , 0.05218756, 0.09204128, 0.1251515 , 0.17177759, 0.03124266, 0.08636616,
                        0.09969585, \ 0.1564211 \ , \ 0.07343659, \ 0.08114427, \ 0.11951358, 
                       0.09939511, 0.21067611, 0.09008146, 0.35425679, 0.12179877,
                       0.04827865, 0.10349031, 0.12395861, 0.04498454, 0.12854828,
                      0.13708183, 0.11929649, 0.04565419, 0.11000646, 0.10592178, 0.10058381, 0.08051355, 0.04612547, 0.08741956, 0.11507196,
                       0.08094913, 0.11448191, 0.19029131, 0.13929413, 0.05250748,
                       0.06689683, 0.08145896, 0.0409143 , 0.12124261, 0.10242368, 0.11621705, 0.09295011, 0.12686604, 0.10350314, 0.05857901,
                      0.18069666, 0.11418766, 0.06399392, 0.09958021, 0.12273068,
                       0.111828 , 0.11066595, 0.04494416, 0.09107661, 0.04948704,
                       0.10773866, 0.10147352, 0.16933085, 0.08453812, 0.09651596,
                      0.09716796, 0.0923456, 0.06067951, 0.05250748, 0.13565747, 0.14196901, 0.14378271, 0.11339027, 0.09044682, 0.12121381,
                       0.13192427, 0.12687243, 0.12229883, 0.22281299, 0.10515386,
                        0.12448383, \ 0.13118761, \ 0.11602733, \ 0.07547219, \ 0.18167834, \\
                      0.15204711, 0.09183976, 0.1128849, 0.07556754, 0.08525186, 0.16016537, 0.1513833, 0.11687761, 0.09458125, 0.12406388, 0.03242133, 0.06967397, 0.10409459, 0.08052159, 0.10291004,
                       0.1044202 , 0.12336455, 0.05937816, 0.08541059, 0.11610394,
                       0.1077498 , 0.24210172, 0.10620578, 0.21862241, 0.2507288 ,
                      0.22682944, 0.1097919 , 0.0829525 , 0.14970095, 0.29216552, 0.05741756, 0.1499057 , 0.07305057, 0.09204128, 0.11035619, 0.1094373 , 0.22946625, 0.06345325, 0.08912573, 0.18433933,
                       0.0971331 , 0.22367556 , 0.07646124 , 0.10870699 , 0.1121786 ,
                      0.1406179 , 0.18282943, 0.23367718, 0.15461364, 0.0706927 , 0.08988797, 0.07706828, 0.06979774, 0.10217188, 0.10503668,
                       0.17257081, 0.11849973, 0.08354512, 0.07193773, 0.10282381,
                      0.07193773, 0.16796394, 0.0690563, 0.11343235, 0.09616962, 0.08981784, 0.1504968, 0.18185462, 0.13083517, 0.09121092,
from gmdh import Multi, split_data
model = Multi()
x_train, x_test, y_train, y_test = split_data(X, y, test_size=0.33)
model.fit(x_train, y_train, k_best=2, test_size=0.3)
v predicted = model.predict(X test)
y_predicted
⇒ array([0.14208213, 0.15213179, 0.11057812, 0.21294061, 0.11326468,
                       0.18122046, 0.08545414, 0.13698165, 0.14320159, 0.14481173,
                       0.14500974, 0.15271739, 0.15417166, 0.14575538, 0.08192499, 0.1245362, 0.13336794, 0.12275594, 0.17018991, 0.14239416,
                      0.07194184, 0.11098339, 0.2083537, 0.11256565, 0.22848628, 0.22135126, 0.07678513, 0.07882243, 0.18729172, 0.13011019,
                       0.14333139, 0.08402621, 0.13332594, 0.12947767, 0.1326047
                       0.08911677, 0.11578084, 0.14635501, 0.14036831, 0.1316984
                       0.12951168, 0.14500974, 0.19079406, 0.12509798, 0.13163968,
                       0.06014699, 0.20485126, 0.19691121, 0.21110545, 0.09127589,
                      0.12908191, 0.11872863, 0.14331796, 0.1111788, 0.19870576, 0.16407523, 0.08942233, 0.13865871, 0.10409659, 0.09450742, 0.17633032, 0.13255134, 0.08911677, 0.12571356, 0.12078037,
                      0.19370552, 0.11453216, 0.14269018, 0.21274692, 0.08987196, 0.14011519, 0.07178486, 0.2392642, 0.07047723, 0.13145518, 0.11204668, 0.1242787, 0.20200727, 0.16611821, 0.17306605, 0.16032577, 0.09424487, 0.13363677, 0.08987196, 0.11210499, 0.0632574000, 0.19424487, 0.0944574000, 0.11210499, 0.11210499, 0.065574000, 0.11210499, 0.0944574000, 0.11210499, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.11210499, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0.08987196, 0
                       0.06352499, 0.18404729, 0.08452408, 0.11264963, 0.12707816,
                       0.14971526, 0.19519468, 0.11008545, 0.07129843, 0.21367027,
                       0.13979981, 0.16423087, 0.142288 , 0.14164306, 0.15077137, 0.14014441, 0.09193736, 0.14354145, 0.10440081, 0.17224424,
                       0.07409544, 0.15767965, 0.12585225, 0.09337711, 0.06672098,
                       0.14484908, 0.21367027, 0.08594463, 0.08024497, 0.13089564,
                       0.1884368 , 0.16642685 , 0.16994669 , 0.1224188 , 0.1147659 ,
                       0.14387621, 0.07194184, 0.09467171, 0.0998361 , 0.07489993, 0.1375897 , 0.1738458 , 0.11710169, 0.16456454, 0.0746844 , 0.0746844
                        0.12427652, \ 0.14452877, \ 0.16431892, \ 0.13868911, \ 0.11116841, \\
                       0.11052441, 0.18430581, 0.08909712, 0.12619687, 0.14011519,
                      0.13145518, 0.2016658, 0.10961697, 0.29093672, 0.13938798, 0.08883479, 0.10147025, 0.1429612, 0.06403787, 0.14493334,
```

y_mia

 $\overline{\mathbf{T}}$

```
0.10364631, 0.14715229, 0.16283633, 0.15173557, 0.06123221,
             0.06867783, \ 0.10146645, \ 0.06659009, \ 0.17503878, \ 0.13606144, \\
            0.14603511, 0.10409659, 0.14185536, 0.13308272, 0.08374318,
            0.15220061, 0.12242666, 0.11453216, 0.14739629, 0.07194184,
            0.11352265, 0.19127154, 0.10410614, 0.07081199, 0.13914318,
            0.18434555, 0.13737064, 0.1153479 , 0.13051237, 0.14395289,
            0.13393115, 0.16285892, 0.06382274, 0.12562947, 0.07431957,
           0.18140247, 0.13067076, 0.1824877, 0.12204499, 0.10628779, 0.11524497, 0.12524675, 0.05514081, 0.06123221, 0.16106344, 0.15690347, 0.15075592, 0.12175454, 0.1392487, 0.14743406,
            0.13767877, 0.14076144, 0.14142916, 0.17805237, 0.17123057,
            0.14290333, 0.19793271, 0.14798086, 0.08289172, 0.23978828,
            0.14939564, 0.11724043, 0.14036831, 0.08341685, 0.08557243,
            0.18273966, 0.15110703, 0.14545713, 0.07893899, 0.15017948,
             0.04619133, \ 0.07565283, \ 0.1349623 \ , \ 0.12970905, \ 0.13404103, 
            0.12392815, 0.13248939, 0.07991521, 0.10452242, 0.14387621,
            0.1266652 , 0.17555931, 0.14068454, 0.21233257, 0.21966616,
            0.20937512, 0.13469787, 0.08833144, 0.17341741, 0.24639154, 0.07951672, 0.14971526, 0.10335795, 0.12427652, 0.13877835,
            0.14159287, 0.19514062, 0.07262211, 0.14828798, 0.16283633, 0.11127771, 0.19021998, 0.10335795, 0.14370967, 0.08960123,
             0.13087995, \ 0.19144505, \ 0.20441554, \ 0.18518863, \ 0.11407599, \\
            0.13670735, 0.0660013 , 0.06851634, 0.11971725, 0.11892017,
            0.17755042, 0.12297064, 0.10311474, 0.10179335, 0.1332015
             0.10179335, \ 0.17026461, \ 0.06496807, \ 0.14788194, \ 0.11102069, 
from gmdh import Mia
mia_model = Mia()
mia_model.fit(x_train, y_train, k_best=5, p_average=3)
y_mia = mia_model.predict(X_test)
             0.12126872, 0.15739188, 0.12138252, 0.21974952, 0.1437926,
             0.08574617, 0.11747657, 0.19723418, 0.11587192,
                                                                  0.25088256.
                                                                  0.14152684,
             0.33463973, 0.08562167, 0.08562167, 0.18896404,
             0.16035437,
                          0.1122179 ,
                                       0.14376598,
                                                     0.13219958,
                                                                  0.16105563,
             0.1040853 ,
                          0.12064946, 0.16299098,
                                                     0.1437812 ,
                                                                  0.14102891.
             0.13976987,
                                                     0.12041645,
                          0.16482614, 0.21688645,
                                                                  0.15501119.
             0.08574844,
                          0.18442375, 0.17798824,
                                                     0.21632034,
                                                                  0.08527284,
             0.1209401 ,
                                                     0.11006675,
                          0.11589481, 0.13302232,
                                                                  0.17463837,
             0.13497775,
                          0.10411045, 0.15675786,
                                                     0.11702471,
                                                                  0.1041211
             0.14494979,
                          0.12484199, 0.1040853,
                                                     0.12078691,
                                                                  0.11926819.
             0.16523433,
                                                     0.30774505,
                          0.11052362, 0.15999851,
                                                                  0.09443733.
             0.16616816,
                                                     0.08579442,
                          0.08578454, 0.21877254,
                                                                  0.14071088.
                          0.1423262 ,
                                                     0.1643798 ,
             0.12019544,
                                       0.18310614.
                                                                  0.13882163,
             0.17223735,
                          0.0852821 ,
                                       0.14416395,
                                                     0.09443733,
                                                                  0.11142644,
             0.09050934,
                          0.16429734, 0.09444354,
                                                     0.10999438,
                                                                  0.12800016,
                                                     0.0857764 ,
             0.15793793,
                          0.206068
                                       0.11618405,
                                                                  0.3091745 ,
             0.15899454,
                          0.16317722,
                                                     0.16153994,
                                       0.15930468,
                                                                  0.16402871.
             0.15533822,
                          0.104105 , 0.16131944,
                                                     0.11696712,
                                                                  0.16316234,
             0.08580834,
                          0.18175991, 0.1205268,
                                                     0.06209487,
                                                                  0.08570927.
                          0.3091745 ,
             0.16017894,
                                                     0.09443644,
                                                                  0.14050196,
                                       0.09444147.
             0.2185989 ,
                          0.18165209, 0.21689169,
                                                     0.14336573. -0.00995588.
                                                     0.08497152,
             0.15881371,
                                                                  0.10412437,
                          0.08574617, 0.10080561,
                          0.19227421,
                                                     0.10482502,
             0.14140111,
                                       0.12462393,
                                                                  0.10409951
             0.14191762,
                          0.15155549,
                                       0.17245061,
                                                     0.11143697,
                                                                  0.12763639,
             0.11650635,
                          0.17013729,
                                       0.10413118,
                                                     0.13263546,
                                                                  0.16616816,
             0.14071088,
                          0.18090494,
                                       0.11628954,
                                                     0.23266555,
                                                                  0.13297006,
             0.10404767,
                          0.10873754,
                                       0.16092831,
                                                     0.08579141,
                                                                  0.16017894,
             0.10831974,
                          0.12946173, 0.08578454,
                                                     0.16011512,
                                                                  0.14481241.
             0.15877801,
                          0.11626195,
                                       0.0857189 ,
                                                     0.11044878,
                                                                  0.08527948,
                          0.16437037,
                                       0.17034547,
             0.11037388,
                                                     0.09403452,
                                                                  0.08576517.
                                       0.0858133 ,
             0.08570112,
                                                     0.12701052,
                                                                  0.1543229 ,
                          0.11639525,
             0.15897456,
                          0.11702471, 0.16904991,
                                                     0.14336573,
                                                                  0.10411067
             0.16320008,
                          0.13968547, 0.11052362,
                                                                  0.08574617,
                                                     0.13764917,
             0.12078143,
                          0.17340889,
                                                     0.08576683,
                                       0.11693489,
                                                                  0.16271117
             0.17790221,
                                       0.124524 ,
                          0.16277849,
                                                     0.14222955,
                                                                  0.16234439,
             0.15943525,
                          0.12506827,
                                       0.08578812,
                                                     0.14698252,
                                                                  0.10409402,
             0.10080747,
                          0.14376598,
                                       0.17751175,
                                                     0.14204973,
                                                                  0.08520939,
             0.11650635,
                                                     0.08576517,
                          0.14389082,
                                       0.07162622,
                                                                  0.18528137,
             0.16849024,
                          0.15817123,
                                       0.11657985,
                                                     0.16500657,
                                                                  0.16035437,
             0.16283607,
                          0.15694775,
                                       0.16151908,
                                                     0.16692319,
                                                                  0.13637818,
             0.15762768,
                          0.17316149, 0.16192641,
                                                     0.10412955,
                                                                  0.22156972,
             0.15381497,
                          0.11642423, 0.1437812,
                                                     0.09444396,
                                                                  0.10411045.
             0.16586888,
                                                     0.08570884,
                          0.15875835, 0.16112252,
                                                                  0.17270925,
                                                     0.12598949,
             0.07132141,
                          0.09443636,
                                       0.15999851,
                                                                  0.16032443,
                                                     0.1170128 ,
             0.12107588,
                          0.12030567,
                                       0.08578637,
                                                                  0.15881371
             0.13428453,
                          0.16686175,
                                       0.14091801,
                                                     0.27455851.
                                                                  0.17844207.
             0.21065266,
                          0.1617855 ,
                                        0.09643824,
                                                     0.16055858,
                                                                  0.24358203,
             0.10411045,
                          0.15793793,
                                        0.11661236,
                                                     0.14191762,
                                                                  0.16218302,
                          0.1680298 ,
             0.16320008,
                                       0.08579957,
                                                     0.17071183,
                                                                  0.17034547
                          0.1685697 ,
             0.11656236,
                                       0.11661236,
                                                     0.16192641,
                                                                  0.09443103,
```

```
U.1104/2/9,
U.11004/12,
            W.ZZZU9031,
                         W.WOJ/12JZ,
                                      U.10304//1,
0.14222955,
            0.17197698,
                         0.16938725,
                                      0.16139417,
                                                  0.11046053,
                        0.07129832,
            0.10411637,
0.11891289,
                                     0.11034979,
                                                  0.08573522,
0.14071088, 0.09444005, 0.08578812,
                                      0.19695382,
                                                  0.17067102,
0.11938378, 0.16315762, 0.1041211 ])
```

Оценка моделей

