Math 302/600 Spring 2017 Homework #5

Due March 9, Thu. in class

Note: For any Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Let (x_k) be a Cauchy sequence in the metric space (M,d). Show that for any given $z \in M$, the real sequence $(d(x_k,z))$ converges. (*Hint*: consider the reverse triangle inequality of d.)
- 2. Let A be a set in the metric space (M, d), and A' be the set of all accumulation points of A. Suppose a sequence in A' converges to $x^* \in M$. Show that there exists a sequence in A that converges to x^* .
- 3. Let (M,d) be a metric space, and A,B be two subsets of M. Show the following:
 - (1) $\operatorname{cl}(A \cap B) \subseteq (\operatorname{cl} A) \cap (\operatorname{cl} B);$
 - (2) $(int A)^c = cl(A^c)$, where $(\cdot)^c$ denotes the complement of a set.
- 4. Determine which of the following sets is sequentially compact:
 - (1) On \mathbb{R} : $A_1 = \{2/n : n \in \mathbb{N}\}, A_2 = \mathbb{Q} \cap [0,1]$ (where \mathbb{Q} is the set of rational numbers);
 - (2) On \mathbb{R}^2 : $A_3 = \mathbb{Q} \times \mathbb{Q}$, $A_4 = \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| + x_2^2 \le 4\}$.

If a set is *not* sequentially compact, briefly explain why; otherwise, give a proof.

The following extra problem(s) are for Math 600 students only:

- 5. Let (x_k) and (y_k) be two sequences in the metric space (M,d) that converge to $x \in M$ and $y \in M$ respectively. Show that the real sequence $(d(x_k, y_k))$ converges to d(x, y).
- 6. Show via an example that the sum of *infinitely* many convergent sequences in a normed space may not be convergent.