Advance Calculus Exercise

1. Let \mathcal{T}_1 and T_2 be topologies on a set X. Prove or disprove that $\mathcal{T}_1 \cup \mathcal{T}_2$ and $\mathcal{T}_1 \cap \mathcal{T}_2$ are topologies on X.

Solution.

- (a) Claim $\mathcal{T}_1 \cup \mathcal{T}_2$ is a topology on X
 - $i) :: \mathscr{T}_1, \mathscr{T}_2$ is a topology on $X, :: \emptyset, X \subseteq \mathscr{T}_1 \emptyset, X \subseteq \mathscr{T}_2$ $\implies \emptyset, X \subseteq \mathscr{T}_1 \cup \mathscr{T}_2$
- ii) choose $\bigcup_{\alpha \in I} \in \mathscr{T}_1$ but not in \mathscr{T}_2 and $\bigcup_{\alpha' \in I'}$ but not in T_1 $\Longrightarrow U_{\alpha} \in \mathscr{T}_1 \cup \mathscr{T}_2$ and $U_{\alpha'} \in \mathscr{T}_1 \cup \mathscr{T}_2$ Claim $\bigcup_{\alpha \in I} U_{\alpha} \cup \bigcup_{\alpha' \in I'} \subseteq \mathscr{T}_1 \cup \mathscr{T}_2 \implies \bigcup_{\alpha \in I} U_{\alpha} \cup \bigcup_{\alpha' \in I'} \subseteq \mathscr{T}_1 \text{ or } \mathscr{T}_2(\to \leftarrow) \text{ with } \bigcup_{\alpha \in I} \in T_1 \text{ but not in } \mathscr{T}_2$
- (b) Claim $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology on X
 - $i) :: \mathcal{I}_1, \mathcal{I}_2$ is a topology on $X :: \emptyset, X \in \mathcal{I}_1$ and $\emptyset, X \in \mathcal{I}_2$ $\implies \emptyset, X \in \mathscr{T}_1 \cap \mathscr{T}_2$
- ii) let $U\alpha \in \mathcal{T}_1 \cap \mathcal{T}_2, \ \alpha \in I, :: \mathcal{T}_1, \mathcal{T}_2$ are topology on X
- $\therefore \bigcap_{i=1}^k U_i \subseteq \mathscr{T}_1 \text{ and } \bigcap_{i=1}^k U_i \subseteq \mathscr{T}_2 \implies \bigcap_{i=1}^k U_i \subseteq \mathscr{T}_1 \cap \mathscr{T}_2$
- 2. In any metric space $X, B(x,r) \subseteq \overline{B}(x,r)$ for all $r \ge 0$

Solution.

let
$$p \in \overline{B(x,r)} \implies \forall R > 0, \ B(p,R) \cap B(x,r) \neq \emptyset$$

- $\implies \exists q \in B(p,R) \cap B(x,r) \ni d(q,x) < r \text{ and } d(p,q) < R$
- $\implies d(p,x) \le d(p,q) + d(q,x) < r + R \text{ (triangular inequality)}$
- $\implies d(p,x) < r + R(\ \forall\ R) > 0 \implies d(p,x) r < R(\ \forall R > 0)$
- $\implies r d(p, x) > -R(\forall R > 0) \implies r d(p, x) \ge 0$
- $\implies r \ge d(p, x) \implies p \in \overline{B}(x, r)$

3. Let X be a metric space, $S \subseteq X$. Then S is closed if and only if $\partial S \subseteq S$

Solution.

- (\Rightarrow) let $p \in \partial S \implies p \in \overline{S}$ (by definition of partial S) $\therefore S \text{ is close } \therefore \overline{S} \subseteq S \implies p \in S$ the proof of S is close then $\overline{S} \subseteq S$ let $q \in \overline{S}$, Claim $q \notin S \implies q \in X - S$ $\therefore S$ is close $\therefore X - S$ is open $\implies \exists r > 0 \ni B(q,r) \subseteq X - S \implies B(q,r) \cap S = \emptyset$ $\therefore q \in \overline{S} \ \therefore \forall R > 0, \ B(q,R) \cap S \neq \emptyset$ pick R = r, $B(q, R) \cap S \neq \emptyset$ and $B(q, r) \subseteq X - S$ (\Leftarrow) let $p \in X - S \implies p \notin S \implies p \notin \partial S (\because \partial S \subseteq S)$
- $\implies p \notin \overline{S}(: p \in X S \text{ and } (X S) \subseteq \overline{X S} \text{ so}$ $p \in \overline{X - S}$ but $p \notin \partial S \implies p \notin \overline{S}$) $\implies \exists R > 0 \ni B(p,R) \cap S = \emptyset \implies B(p,R) \in X - S$ $\implies X - S$ is open $\implies S$ is close.
- 4. Show that:
- (a) $\left(\bigcup_{\alpha \in I} E_{\alpha}\right)^{c} = \bigcap_{a \in I} \left(E_{\alpha}\right)^{c}$ (b) $\left(\bigcap_{\alpha \in I} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} \left(E_{\alpha}\right)^{c}$

It is called De Morgan's laws.

Solution.

- (a) (\subseteq) let $p \in \left(\bigcup_{\alpha \in I} E_{\alpha}\right)^{c} \implies p \notin \bigcup_{\alpha \in I} E_{\alpha}$ $\implies p \notin E_{\alpha} \, \forall \alpha \in I \implies p \in (E_{\alpha})^{c} \, \forall \alpha \in I$
 - $\implies p \in \bigcap_{\alpha \in I} (E_{\alpha})^{c}$ $(\supseteq) \text{ let } p \in \bigcap_{\alpha \in I} (E_{\alpha})^{c} \implies p \in (E_{\alpha})^{c}$ $\implies p \in (E_{\alpha})^{c} \alpha \in I \implies p \notin E_{\alpha} \ \forall \alpha \in I$ $\implies p \notin \bigcup_{\alpha \in I} E_{\alpha} \implies p \in (\bigcup_{\alpha \in I} E_{\alpha})^{\prime}$
- (b) (\subseteq) let $p \in \left(\bigcap_{\alpha \in I} E_{\alpha}\right)^{c} \implies p \notin \bigcap_{\alpha \in I} E_{\alpha}$ $\implies p \in (E_{\alpha})^{c}$ for some $\alpha \in I \implies p \in \bigcup_{\alpha \in I} (E_{\alpha})^{c}$
 - (\supseteq) let $p \in \bigcup_{\alpha \in I} (E_{\alpha})^c \implies p \in (E_{\alpha})^c$ for some $\alpha \in I$ $\implies p \notin E_{\alpha}$ for some $\alpha \in I \implies p \notin \bigcap_{\alpha \in I} E_{\alpha}$ $\implies p \in \left(\bigcap_{\alpha \in I} E_{\alpha}\right)^{c}$

5. Let a function $f: X \to Y$ and $A \subseteq Y$. We define

$$f^{-1}(A) = \{ x \in X \mid f(x) \in A \}$$

is called the inverse image of a set B. Then

- (a) $B \subseteq f^{-1}(f(B))$ for all $B \subseteq X$
- (b) $f(f^{-1}(B))$ for all $B \subseteq Y$
- (c) $B = f^{-1}(f(B))$ for all $B \subseteq X$ if and only if f is injective
- (d) $f(f^{-1}(B)) = B$ for all $B \subseteq Y$ if and only if f is surjective.
- (e) Find an example to show that the inclusions in (a) and (b) may be strict.

Solution.

- (a) let $b \in B \implies f(b) \in f(B)$ (by definition)
- $b \in X \ (b \in X \ (b \in X) \ and \ f(b) \in f(B)$
- $\therefore b \in f^{-1}(f(B))$
- (b) $f(f^{-1}(B)) = \{f(x) \mid x \in X, f(x) \in B\}$

let $p \in f(f^{-1}(B))$, by definition, $p \in B$

- (c) (\Leftarrow) we proof $B \subseteq f^{-1}(f(B))$ in (a) Claim $f^{-1}(f(B)) \subseteq B$ when f is injective let $p \in f^{-1}(f(B)) :: f$ is injective $:: f(x) \in f(B)$ only $x \in B$ **if not**, let $y \notin B \ni f(y) \in f(B) \exists x \in B, \ f(x) = f(y), ::$ $<math>x \in B, \ y \notin B :: x \neq y, f$ is not injective therefore $p \in B$
- (\Rightarrow) We need to prove if $x, x' \in X \ni f(x) = f(x')$ then x = x'. Suppose $\exists x, x' \in X$ which $x \neq x'$ and f(x) = f(x') let $B = \{x\}, b' = \{x'\} \Rightarrow f(B) = \{f(x)\}, f(B') = \{f(x')\}$ by question, $B \subseteq f^{-1}(f(B)) = \{x \in X \mid f(x) \in f(B)\}$ $\Longrightarrow \{p \in X \mid f(x) = f(x)\} \subseteq \{x\}$ (\star) $\Longrightarrow f^{-1}(f(B)) = \{x\}$, and by similar method $f^{-1}(f(B')) = \{x\}$ by (\star) $f^{-1}(f(B)) = f^{-1}(f(B')) = \{x\}$ $\therefore f$ is injective.

(d) (\Leftarrow) we proof $f(f^{-1}(B)) \subseteq B$ in (b), now proof $f(f^{-1}(B)) \subseteq$ B when f is surjective.

let $b \in B$: f is surjective $\implies \exists x \in X \ni f(x) = b$ $\therefore b \in f(f^{-1}(B))$

 (\Rightarrow) we want to proof $\forall y \in Y \exists x \in X \ni f(x) = y$ let B = Y, we get $f(f^{-1}(Y)) \supseteq Y$ from question given $\therefore f^{-1}(Y) \subseteq X \therefore f(f^{-1}(Y)) \subseteq f(X)$ $\Longrightarrow Y \subseteq f(f^{-1}(Y)) \subseteq f(X) \subseteq Y \implies f(X) = Y$,

f is surjective.

(e) $X = \{1, 2, 3\}$ $Y = \{1, 2\}$ and f(1) = 1, f(2) = 1, f(3) = 2and let $B = \{1\}, B' = \{1, 2\}$

$$\{1\} = B \subset f^{-1}(f(B)) = \{1, 2\}$$

and

$$\{1\} = f(f^{-1}(B')) \subset B' = \{1, 2\}$$