Neural Network for Titanic Survival Prediction

A Machine Learning Tutorial with Theoretical Insights and Implementation

Gopi Erla

Course: MSc Data Science with Placement Date: 13-12-2024

Contents

1	Introduction		
2	Neural Networks: Theoretical Foundations		
	2.1 What is a Neural Network?		
	2.2 Mathematical Representation of a Single Neuron		
	2.3 Activation Functions		
	2.4 Forward Propagation		
	2.5 Loss Function		
	2.6 Backpropagation and Optimization		
3	Data Preprocessing 3.1 Steps		
4	Model Implementation		
5	Results and Evaluation		
	5.1 Performance Metrics		
6	Conclusion		
7	References		

1 Introduction

The Titanic disaster of 1912 remains a historically significant event and serves as a popular problem in machine learning. The dataset, provided by Kaggle's Titanic competition, includes passenger details such as age, gender, ticket class, and fare paid to predict survival outcomes [5].

The task is a classic **binary classification problem** where the target variable has two classes:

- 1 (Survived): The passenger survived the Titanic disaster.
- 0 (Not Survived): The passenger did not survive.

In this tutorial, we solve this problem using a **Feedforward Neural Network** (**FNN**) implemented in TensorFlow/Keras. Neural Networks excel in learning non-linear relationships in data and can handle complex decision boundaries [1].

2 Neural Networks: Theoretical Foundations

2.1 What is a Neural Network?

A neural network is a computational model inspired by the human brain. It consists of multiple layers of interconnected nodes called neurons:

- Input Layer: Accepts the input features (e.g., age, fare, gender).
- **Hidden Layers:** Perform non-linear transformations using weighted connections and activation functions [2].
- Output Layer: Produces the final prediction.

2.2 Mathematical Representation of a Single Neuron

A single neuron in the network computes:

$$z = \sum_{i=1}^{n} w_i x_i + b$$

where:

- w_i : Weight of the input x_i ,
- b: Bias term,
- z: Linear combination of inputs.

The activation function f introduces non-linearity:

$$a = f(z)$$

2.3 Activation Functions

1. ReLU (Rectified Linear Unit) [3]:

$$f(z) = \max(0, z)$$

- Effective for hidden layers due to reduced vanishing gradient problems.

2. Sigmoid [1]:

$$f(z) = \frac{1}{1 + e^{-z}}$$

- Maps the output to the range (0,1), commonly used for binary classification.

2.4 Forward Propagation

Forward propagation calculates the output of a network layer:

$$a^{[l]} = f(W^{[l]}a^{[l-1]} + b^{[l]})$$

where:

• $W^{[l]}$: Weights of layer l,

• $b^{[l]}$: Bias of layer l,

• f: Activation function,

• $a^{[l-1]}$: Outputs of the previous layer [4].

2.5 Loss Function

The Binary Cross-Entropy Loss is used for binary classification:

$$L = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

where:

• y_i : True label,

• \hat{y}_i : Predicted probability.

2.6 Backpropagation and Optimization

Backpropagation calculates gradients using the chain rule. The weights are updated using optimizers such as Adam:

$$W = W - \eta \nabla L$$

3

where:

• η : Learning rate,

• ∇L : Gradient of the loss function.

3 Data Preprocessing

3.1 Steps

The dataset preprocessing involves:

- 1. Handling missing values for **Age** and **Embarked**.
- 2. Encoding categorical features using One-Hot Encoding.
- 3. Scaling numerical features (Age, Fare) using StandardScaler.

Code Snippet:

```
df['Age'].fillna(df['Age'].median(), inplace=True)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
df = pd.get_dummies(df, columns=['Sex', 'Embarked'], drop_first=True)
scaler = StandardScaler()
df[['Age', 'Fare']] = scaler.fit_transform(df[['Age', 'Fare']])
```

4 Model Implementation

The Feedforward Neural Network consists of:

- Input Layer: 64 neurons (ReLU activation),
- Dropout: 30% for regularization,
- Hidden Layer: 32 neurons (ReLU activation),
- Output Layer: 1 neuron (Sigmoid activation).

Code Snippet:

```
model = Sequential([
    Dense(64, input_dim=X_train.shape[1], activation='relu'),
    Dropout(0.3),
    Dense(32, activation='relu'),
    Dense(1, activation='sigmoid')
])
model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metric
```

5 Results and Evaluation

5.1 Performance Metrics

6 Conclusion

This tutorial demonstrated a practical implementation of a neural network for predicting survival on the Titanic dataset. Key takeaways:

• Neural Networks can effectively model non-linear relationships.

Figure 1: Training vs. Validation Accuracy for Neural Network

Figure 2: Training vs. Validation Loss for Neural Network

Metric	Class 0	Class 1
Precision	0.82	0.79
Recall	0.87	0.73
F1-Score	0.84	0.76

Table 1: Classification Report

• Preprocessing steps such as scaling and encoding improve accuracy.

Future Work:

- Hyperparameter tuning using GridSearchCV.
- Experimenting with deeper architectures.

7 References

References

- [1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016.
- [2] Christopher Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
- [3] Xavier Glorot and Yoshua Bengio. Deep sparse rectifier neural networks. AISTATS, 2011.
- [4] Andrew Ng. Machine Learning Course Notes. Stanford University, 2011.
- [5] Kaggle. Titanic Dataset. https://www.kaggle.com/c/titanic/data.