Aufgabe 2: Spießgesellen

Teilnahme-Id: 55628

Bearbeiter dieser Aufgabe: Michal Boron

April 2021

Inhaltsverzeichnis

1	Lösungsidee			
	1.1	Formulierung des Problems	1	
	1.2	Bipartiter Graph	1	
	1.3	Logik	2	
	1.4	Komponenten	3	
	1.5	Prüfung auf Korrektheit der Eingabe	4	
	1.6	Laufzeit	4	
2	Ums	setzung	4	
3	Beispiele			
	3.1	Beispiel 0 (Aufgabenstellung)	4	
	3.2	Beispiel 1 (BWINF)	4	
	3.3	Beispiel 2 (BWINF)	4	
	3.4	Beispiel 3 (BWINF)	4	
	3.5	Beispiel 4 (BWINF)	5	
	3.6	Beispiel 5 (BWINF)	5	
	3.7	Beispiel 6 (BWINF)	5	
	3.8	Beispiel 7 (BWINF)	5	
4	Que	ellcode	5	

1 Lösungsidee

1.1 Formulierung des Problems

TODO: use definitions

Gegeben sind eine Menge von n Obstsorten A und eine Menge von n ganzen Zahlen $B = \{1, 2, ..., n\}$, die für die Indizes der Obstsorten stehen. Gegeben sind auch m Spießkombinationen, wobei jede ite Spießkombination aus einer Menge von Obstsorten $F_i \subseteq A$ und einer Menge der Zahlen $Z_i \subseteq B$ besteht. Für jedes i besteht die Menge Z_i nur aus den in B enthaltenen Indizes, die den Obstsorten in F_i entsprechen, deshalb haben auch die beiden Mengen F_i und Z_i dieselbe Anzahl an Elementen. Außerdem gegeben ist auch eine $Wunschliste\ W \subseteq A$.

Die Aufgabe ist, zu entscheiden, ob die Menge der Indizes der in W gegebenen Obstsorten $W'\subseteq B$ anhand der m Spießkombinationen eindeutig bestimmt werden kann. Falls ja, soll sie auch ausgegebn werden.

1.2 Bipartiter Graph

TODO: use definitions Annahmen beschreiben

Man kann die beiden Mengen A und B zu Knoten eines bipartiten Graphen $G = (A \cup B = V, E)$ umwandeln. Die Menge der Kanten E wird im Folgenden festgelegt. Man stellt den Graphen als eine Adjazenzmatrix M der Größe $n \times n$ dar. Als M_i bezeichne ich die Liste der Länge n, die die Beziehungen des Knotens $i \in A$ zu jedem Knoten $j \in B$ als 1 (Kante) 0 (keine Kante) darstellt.

Nach der Aufgabenstellung gehört jeder Obstsorte aus A genau ein Index aus B. Dennoch man kann am Anfang keiner Obsorte einen Index zuweisen. Deshalb verbinden wir zunächst jeden Knoten aus A mit jedem Knoten aus B durch eine Kante. Am Anfang ist M dementsprechend voll mit 1-en. Bei der Erstellung der Adjazenzmatrix können wir den Vorteil nutzen, dass die jeweilige Liste von Nachbarn des jeden Knotens $x \in A$ nur aus 0-en und 1-en besteht, indem wir diese Liste als Bitmasken darstellen (mehr dazu in der Umsetzung).

Abbildung 1: Beide Abbildungen stellen den Graphen für das Beispiel aus der Aufgabenstellung dar. Die Buchstaben stehen für die entsprechenden Obstsorten aus diesem Beispiel (s. auch 3.1).

Teilnahme-Id: 55628

- (a) Die entsprechenden Mengen des Graphen
- (b) Der Graph am Anfang

Jede i-te $Spie\beta kombinationen$ bringt uns Informationen über die Obstsorten in F_i . Als $a \leadsto b$ bezeichnen wir, dass a den Index b haben kann. Wir können Folgendes festellen.

Lemma 1. Für jede i-te Spießkombination mit $F_i \subseteq A$ und $Z_i \subseteq B$ gilt, dass $\forall x \in F_i, \forall y \in Z_i : x \leadsto y$. Es gilt gleichzeitig, dass $\nexists p \in F_i, \forall q \in B \setminus Z_i : p \leadsto q$

TODO: Beweis

Beweis. \Box

Nach Lemma 1 dürfen wir alle Kanten, die aus jedem Knoten $x \in F_i$ zu einem Knoten $y \in B \setminus Z_i$ führen, aus E entfernen und nur die Kanten lassen, die zu allen $z \in Z_i$ führen. Da wir Bitmasken für die Darstellung jeder Liste M_i $(i \in A)$ verwenden, können wir die Laufzeit bei der Analyse der jeweiligen Spießkombination optimieren, weil ich für die Operation des Entfernens Logikgatter verwende.

1.3 Logik

TODO: Veranschauung

Betrachten wir, bzw. analysieren wir, eine Spießkombination s, die aus den Mengen $F_s \subseteq A$ und $Z_s \subseteq B$ besteht. Wir erstellen 3 Bitmasken bf, bn und br jeweils der Länge n. Die Bitmaske bf besteht aus n 1–en.In der Maske bn stehen die 1–Bits an allen Stellen, die den Indizes in Z_s entsprechen. Die Bitmaske

br wird auf folgende Weise definiert:

$$br := \neg(bn) \wedge bf$$
.

Teilnahme-Id: 55628

So können wir auf allen Listen M_i , wobei $i \in F_s$, die AND-Operation mit der Maske bn durchführen:

$$M_i := M_i \wedge bn$$
.

Analog führen wir die AND-Operation mit der Maske br auf allen Listen M_i , wobei $j \in A \setminus F_s$, durch:

$$M_i := M_i \wedge br$$
.

Was die beschriebenen Operationen verursachen, erläutere ich anhand der folgenden Fallunterscheidung.

- 1. Falls es sich um einen Knoten $x \in F_s$ handelt.
 - a) Falls ein Knoten y zu Z_s gehört, aber an der Stelle y in M_x 0 steht, ergibt sich laut Lemma 1 ein Widerspruch. [MB: No i co z tego?? Dopisać]
 - b) Falls ein Knoten y zu Z_s gehört und an der Stelle y in M_x 1 steht, bleibt es auch 1.
 - c) Falls ein Knoten y nicht zu Z_s gehört und an der Stelle y in M_x 0 steht, bleibt es auch 0.
 - d) Falls ein Knoten y nicht zu Z_s gehört, aber an der Stelle y in M_x 1 steht, wird die Stelle y in M_x zu 0.
- 2. Falls es sich um einen Knoten $x \in A \setminus F_s$ handelt.
 - a) Falls ein Knoten y nicht zu Z_s gehört, aber an der Stelle y in M_x 0 steht, ergibt sich laut Lemma 1 ein Widerspruch.
 - b) Falls ein Knoten y nicht zu Z_s gehört und an der Stelle y in M_x 1 steht, bleibt es auch 1.
 - c) Falls ein Knoten y zu Z_s gehört, aber an der Stelle y in M_x 1, wird die Stelle y in M_x zu 0.
 - d) Falls ein Knoten y zu Z_s gehört und an der Stelle y in M_x 0 steht, bleibt es auch 0.

1.4 Komponenten

Nach der Analyse der allen m Spießkombinationen verfügen wir über einen Graphen G, in dem viele Kanten in E entfernet wurden. Auf diese Weise können wir schon anfangen, die Indizes der Obstsorten aus W festzulegen.

Definition 1 (Matching). Sei G = (V, E) ein ungerichtetes Graph. Als ein **Matching** bezeichnen wir eine Teilmenge $S \subseteq E$, sodass für alle $v \in V$ gilt, dass höchstens eine Kante aus S inzident zu v ist. Wir bezeichnen einen Knoten $v \in V$ als in S gematcht, wenn eine Kante aus S inzident zu v sit.

Definition 2 (Perfektes Matching). Sei $\mathcal{G} = (V, E)$ ein ungerichtetes Graph. Ein **perfektes Matching** $\mathcal{M} \subseteq E$ ist so ein Matching, in dem alle Knoten aus V gematcht sind.

Definition 3 (Nachbarschaft). Sei $\mathcal{G} = (V, E)$ ein ungerichtetes Graph. Für alle $X \subseteq V$ definieren wir die **Nachbarschaft** von X als $\mathcal{N}(X) = \{y \in V : (x, y) \in E \text{ für einige } x \in X\}.$

Satz 1 (Satz von Hall). Sei $\mathcal{G} = (L \cup R, E)$ ein bipartites, ungerichtetes Graph. Es existiert ein perfektes Matching genau dann, wenn es für alle Teilmengen $K \subseteq L$ gilt: $|K| \leq |N(K)|$.

Beweis. Auf den Beweis verzichte ich. Ein Beweis ist beispielsweise hier ¹ zu finden.

Lemma 2. Seien $x \in A$ ein Knoten in G, seine Kardinalität $\Delta(x) = 1$, und der einzelne Nachbar von x sei $y \in B$. Dann gehört der Index y der Obstsorte x.

Beweis. Nach dem Satz von Hall ist für $x \in A$ die Bedingung $|x| = \Delta(x) = 1 \le |N(x)| = 1$ erfüllt. Deshalb existiert ein perfektes Matching für $x \in A$ und das ist auch das einzelne mögliche Matching. Nach der Aufgabenstellung hat jede Obstsorte genau einen Index, also ist der Index der Obstsorte x somit gefunden.

TODO: Lemma: 2. Fall $\rightarrow \Delta(x) > 1$ + Beweis

¹Anup Rao. Lecture 6 Hall's Theorem. October 17, 2011. University of Washington. [Zugang 21.01.2021] https://homes.cs.washington.edu/~anuprao/pubs/CSE599sExtremal/lecture6.pdf

Teilnahme-Id: 55628

Lemma 3. Seien $x \in A$ ein Knoten in G und seine Kardinalität $\Delta(x) = k > 1$. Dann gehört x zu einer Zusammenhangskomponente C, die aus insgesamt 2k Knoten $x_1, ..., x_k \in A$ und $y_1, ..., y_k \in B$ und k^2 Kanten, die das jeweilige Paar von Knoten $(x_i, y_j) \in E$ für alle $1 \le i, j \le k$ verbinden, besteht.

Beweis. Der Beweis erfolgt durch Widerspruch.

TODO: DFS beschreiben

(b) Die ürbige Zusammenhangskomponente

- (a) Der Graph nach der Analyse der allen Spießkombinationen
- 1.5 Prüfung auf Korrektheit der Eingabe
- 1.6 Laufzeit
- 2 Umsetzung
- 3 Beispiele
- 3.1 Beispiel 0 (Aufgabenstellung)

Textdatei: spiesse0.txt

Apfel, Brombeere, Weintraube

1, 3, 4

3.2 Beispiel 1 (BWINF)

Textdatei: spiesse1.txt

Clementine, Erdbeere, Grapefruit, Himbeere, Johannisbeere

1, 2, 4, 5, 7

3.3 Beispiel 2 (BWINF)

Textdatei: spiesse2.txt

Apfel, Banane, Clementine, Himbeere, Kiwi, Litschi

1, 5, 6, 7, 10, 11

Teilnahme-Id: 55628

3.4 Beispiel 3 (BWINF)

Textdatei: spiesse3.txt

Clementine, Erdbeere, Feige, Himbeere, Ingwer, Kiwi, Litschi

unlösbar: Litschi gehört zur Komponente mit Grapefruit. Dabei ist Grapefruit kein Wunsch.

3.5 Beispiel 4 (BWINF)

Textdatei: spiesse4.txt

Apfel, Feige, Grapefruit, Ingwer, Kiwi, Nektarine, Orange, Pflaume

2, 6, 7, 8, 9, 12, 13, 14

3.6 Beispiel 5 (BWINF)

Textdatei: spiesse5.txt

Apfel, Banane, Clementine, Dattel, Grapefruit, Himbeere, Mango, Nektarine, Orange, Pflaume, Quitte, Sauerkirsche, Tamarinde

1, 2, 3, 4, 5, 6, 9, 10, 12, 14, 16, 19, 20

3.7 Beispiel 6 (BWINF)

Textdatei: spiesse6.txt

Clementine, Erdbeere, Himbeere, Orange, Quitte, Rosine, Ugli, Vogelbeere

4, 6, 7, 10, 11, 15, 18, 20

3.8 Beispiel 7 (BWINF)

Textdatei: spiesse7.txt

Apfel, Clementine, Dattel, Grapefruit, Mango, Sauerkirsche, Tamarinde, Ugli, Vogelbeere, Xenia, Yuzu, Zitrone

unlösbar: Apfel, Grapefruit und Xenia gehören zur Komponente mit Litschi. Dabei ist Litschi kein Wunsch. Ugli gehört zur Komponente mit Banane. Dabei ist Banane kein Wunsch.

4 Quellcode

./tex/spiesse.m