

客户端服务器模型

- ■大多数网络应用基于客户端-服务器模型:
 - ■由一个服务器进程和一个或多个客户端进程组成
 - ■服务器管理某些资源
 - ■服务器通过为客户端操作资源来提供服务
 - ■服务器通过客户端的请求激活服务

注意:客户端和服务器是运行在主机上的进程 (客户端和服务器可以运行在同一个或不同的主机上)

Network

网络主机的硬件组织

计算机网络

- **网络**是一种由盒子和电线按照地理位置组织的分层系统:
 - ■系统区域网络(SAN, System Area Network):覆盖集群或机房。典型的技术包括交换以太网、Quadrics QSW等。
 - ■局域网(LAN, Local Area Network):覆盖一个建筑或校园。以太网是最显著的例子。
 - ■广域网(WAN,Wide Area Network):覆盖一个国家或世界。通常使用高速点对点电话 线路。
- 互联网 (internet): 一个由互联的网络组成的系统
 - 全球 IP 互联网 (Internet) 是最著名的互联网 (internet) 的例子。
- 接下来,我们将从基础开始看看互联网是如何建立的。

最低级别: 以太网段

- ■以太网段由一组通过电缆(双绞线)连接到集线器的主机组成。
- 它通常覆盖建筑内的一个房间或楼层。
- 工作模式:
 - ■每个以太网适配器都有一个唯一的48位地址(MAC地址)
 - 例如: 00:16:ea:e3:54:e6
 - 主机将数据以块的形式发送到任何其他主机时,这些数据块被称为帧 (frame)
 - ■集线器 (hub) 会将每个端口的数据都复制到其他端口上
 - 每个主机都能看到数据
 - ■集线器正在逐渐被淘汰,因为桥接器(交换机、路由器)变得足够便宜,可以替代它们。

下一级别:桥接以太网段

- 覆盖一个建筑或是整个校园
- 桥接器(Bridge)可以学习哪些主机可以从哪些端口访问,然后有选择地将帧从一个端口复制 到另一个端口

局域网的概念图

■简单起见,集线器、桥接器和电线通常显示为连接到一根电线的多个主机的集合:

下一级别: 互联网

- ■多个不兼容的局域网可以通过称为<mark>路由器</mark>(router)的专用计算机进行物理连接。
- 这些连接的网络被称为**互联网**(internet)。

注意: LAN1和LAN2可能完全不同,完全不兼容(例如,以太网、光纤、802.11*、T1链路、DSL等)。

互联网的逻辑结构

- 采用临时互连(Ad hoc)的方式组织
 - 没有特定的拓扑结构
 - 路由器和链路容量差异巨大

- 通过在网络之间跳跃,将数据包从源发 送到目的地
 - ■路由器从一个网络到另一个网络形成桥接
 - 一不同的数据包可能会走不同的路线

互联网协议

Network

■如何在不兼容的局域网(LAN)和广域网(WAN)上发送数据?

- ■解决方案:在每台主机和路由器上运行<mark>协议</mark>软件。
 - ■协议是一组规则,用于规范主机和路由器在从一个网络传输数据到另一个网络时 应该如何协作。
 - ■这种软件消除不同网络之间的差异。

■提供命名方案

- ■互联网协议定义了一种统一的主机地址格式。
- ■每台主机(和路由器)至少被分配一个唯一标识它的互联网地址。

提供传输机制

- ■互联网协议定义了一种标准的传输单元(数据包)。
- 数据包由头部和有效载荷组成:
 - ■头部:包含信息,如数据包大小、源地址和目的地址。
 - ■有效载荷:包含从源主机发送的数据位。

网络

Network

在互联网中传输协议封装后的数据

- ■我们在上面的讨论中忽略了许多重要的问题:
 - ■如果不同网络有不同的最大帧大小怎么办? (分段)
 - ■路由器如何知道将帧转发到哪里?
 - ■当网络拓扑结构发生变化时,路由器如何获知?
 - ■如果数据包丢失了怎么办?

■计算机网络领域的专家们已经给出了解决方案

全球IP因特网 (Internet)

- ■最著名的互联网应用
- 基于TCP/IP协议族:
 - IP(Internet协议):提供基本的命名方案和不可靠的从主机到主机的数据包(数据报)传输能力。
 - UDP(不可靠数据报协议): 使用IP提供从进程到进程的不可靠数据报传输。
 - TCP(传输控制协议): 使用IP提供从进程到进程的可靠字节流传输。
- 通过Unix文件I/O和套接字接口的函数混合访问互联网。

因特网应用的软硬件架构

网络

Network

因特网的基本结构

- 骨干网 (Internet backbone):
 - 由高速点对点网络连接的路由器集合(全国范围或全球范围)。
- 互联网交换点 (Internet Exchange Points, IXP):
 - 连接多个骨干网的路由器(也会采用对等互联方案)。
 - ■也称为网络接入点(NAP)。
- 区域网络:覆盖较小地理区域(例如城市或省)的较小骨干网。
- 出现点(Point of presence, POP): 连接到互联网的机器。
- 互联网服务提供商(Internet Service Providers, ISP): 提供拨号或直接访问POP的服务。

Network

IXP IXP 两个骨干网之间通 IXP 过私有的"对等"协 议,绕过互联网交 数据中心 换点 (IXP) Backbone Backbone Backbone Backbone POP POP POP POP POP POP POP Т3 Regional net ISP **Big Business** POP POP POP POP POP POP POP Cable DSL T1 Л1 modem **Small Business** Pgh employee ISP (for individuals) DC employee

程序员视角中的因特网

Network

- 主机映射到一组32位的IP地址:
 - 128.2.203.179

- 这组IP地址映射到一组的标识符,这些标识符被称为<mark>域名</mark>:
 - 128.2.203.179映射到www.cs.cmu.edu

■ 互联网上的一个主机上的进程可以通过<mark>网络连接</mark>与另一个主机上的进程进行通信

- ■原始互联网协议使用32位地址,被称为互联网协议版本4 (IPv4)。
- ■1996年: 互联网工程任务组 (IETF) 引入了使用128位地址的互联网协议版本6 (IPv6), 意在替代IPv4。
- ■截至2015年,绝大多数互联网流量仍然由IPv4承载。
 - ■只有4%的用户使用IPv6访问Google服务。
- ■后面的课程中会以IPv4为主,并介绍如何编写与协议无关的网络代码。

- 32位IP地址存储在一个IP地址结构体中。 in_addr
 - ■IP地址总是以网络字节序(大端字节序)存储在内存中
 - ■一般来说,任何从一台机器传输到另一台机器的数据包头中的整数都是使 用网络字节序
 - ■例如: 用于标识互联网连接的端口号。

```
/* Internet address structure */
struct in_addr {
   uint32_t s_addr; /* network byte order (big-endian) */
};
```


点分十进制表示法

■按照约定,32位IP地址中的每个字节都以其十进制值表示,并由句点分隔。

■例如: **0x8002C2F2** = **128.2.194.242**

■使用getaddrinfo和getnameinfo函数(稍后会介绍)在IP地址和点分十进制格式之间进行转换。

Network

■ IPv4地址空间被分为五种类型:

	0	1	23	8	3 16	24		31
Class A	0	Net ID			Host ID			
Class B	1	0	Net ID			Host ID		
Class C	1	1	0 Net ID				Host ID	
Class D	1	1	1 0 Multicast address					
Class E	1	1	1 1 Reserved for experiments					

- 网络ID以w.x.y.z/n的形式表示:
 - n是主机地址中的位数。
 - 例如,卡耐基梅隆大学(CMU)的网络ID表示为128.2.0.0/16 (B类地址)
- 私有IP地址包括:

10.0.0.0/8、172.16.0.0/12、192.168.0.0/16

域名系统 (DNS)

- ■互联网在一个称为DNS的全球分布式数据库中维护着IP地址和域名之间的映射关系。
- ■从概念上讲,程序员可以将DNS数据库视为由数百万个主机条目组成的集合。
 - ■每个主机条目定义了域名和IP地址之间的映射关系。
 - ■从数学角度看,一个主机条目是域名和IP地址的等价类。

DNS映射

可以使用nslookup来探索DNS映射的关系

■輸出的结果经过一定程度的简化

■ 每个主机都有一个本地定义的域名localhost, 它总是映射到回环地址127.0.0.1。

> nslookup localhost
Address: 127.0.0.1

■使用hostname命令可以确定本地主机的真实 域名:

> hostname
whaleshark.ics.cs.cmu.edu

youmeng@LYM-DESKTOP2:~\$ nslookup www.baidu.com

Server: 172.21.80.1 Address: 172.21.80.1#53

Non-authoritative answer:

www.baidu.com canonical name = www.a.shifen.com.

Name: www.a.shifen.com Address: 182.61.200.6 Name: www.a.shifen.com Address: 182.61.200.7 Name: www.a.shifen.com

Address: 240c:4003:111:f4c0:0:ff:b07c:1608

Name: www.a.shifen.com

Name:

dns.baidu.com

Address: 240c:4003:111:3f1f:0:ff:b0ea:3686

Address: 110.242.68.134
Name: ns2.baidu.com
Address: 220.181.33.31
Name: ns3.baidu.com
Address: 153.3.238.93
Name: ns3.baidu.com
Address: 36.155.132.78
Name: ns4.baidu.com
Address: 14.215.178.80
Name: ns4.baidu.com
Address: 14.215.178.80
Address: 111.45.3.226

■简单情况: 域名和IP地址之间的一对一映射:

> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

■多个域名映射到相同的IP地址:

> nslookup cs.mit.edu

Address: 18.62.1.6

> nslookup eecs.mit.edu

Address: 18.62.1.6

■多个域名映射到多个IP地址:

```
> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230
```

> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

■有些有效的域名不映射到任何IP地址:

```
> nslookup ics.cs.cmu.edu
*** Can't find ics.cs.cmu.edu: No answer
```

Network

- 客户端和服务器通过在连接上发送字节流进行通信。每个连接都包含以下特征:
 - 点对点:连接一对进程。
 - 全双工:数据可以同时在两个方向上流动。
 - 可靠: 源发送的字节流最终将按发送顺序被目标接收。

- 一个套接字是一个连接的端点。
 - 套接字地址是IP地址和端口的组合 ip:port。

- 一个端口是一个16位整数,用于标识一个进程:
 - ■临时端口: 当客户端发出连接请求时, 由客户端内核自动分配。
 - ■知名端口:与服务器提供的一些服务相关联(例如,端口80与Web服务器相关联)。

知名端口和服务名称

一些主流的服务有固定的端口号

■回显服务: 7/echo

SSH服务: 22/ssh

■邮件服务: 25/smtp

■Web服务: 80/http

■每台Linux上的/etc/services文件中包含知名端口和服务名称之间的映射 关系。

连接的结构

- ■一个连接通过其端点(endpoint)的套接字地址(套接字对)唯一标识:
 - (cliaddr:cliport, servaddr:servport)
 - endpoint 指的是连接的端点,即数据传输开始或结束的地方

使用端口识别服务

因特网的演化史

■ 最初想法:

- 每个节点都有唯一的 IP 地址
 - 每个节点都可以直接与其他节点通信。
- 没有保密或身份验证
 - 消息对于同一局域网(LAN)上的路由器和主机都是可见的
 - 数据包头中的源字段可能被伪造。

局限性:

- IP 地址不足: 随着互联网的发展,最初设计的 IPv4 地址空间已经不能满足全球范围内的需求。
- **隐私问题:** 不希望每个人都能访问或了解所有其他主机的信息
- **安全问题**: 需要确保数据传输的保密性和身份验证,以防止恶意攻击和数据泄露。

网络

Network

因特网的演化史:IP地址分配

■ 动态地址分配:

- ■大多数主机不需要已知地址:只有那些作为服务器运行的主机需要已知地址。
- DHCP(动态主机配置协议):本地互联网服务提供商(ISP)为分配的临时地址。

示例:

- 智能与计算学部主页:
 - IP 地址为 202.113.2.198 (cic.tju.edu.cn)。
 - 静态分配。
- 家中的笔记本电脑:
 - IP 地址为 192.168.1.5。
 - 仅在家庭网络中有效。

因特网的演化史: 防火墙

- 将组织的节点隐藏起来
- 在组织内使用局部 IP 地址
- 为外部服务提供代理服务

- 1. 客户端请求:源地址=10.2.2.2,目的地址=216.99.99.99。
- 2. 防火墙转发请求:源地址=176.3.3.3,目的地址=216.99.99.99。
- 3. 服务器响应:源地址=216.99.99.99,目的地址=176.3.3.3。
- 4. 防火墙转发响应:源地址=216.99.99.99,目的地址=10.2.2.2。