MAT157 Tutorial 8

Given a function $f: I \to \mathbb{R}$ and $c \in I$, we say that f is **differentiable** at c if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

exists. If it exists, we define the **derivative** of f at c, written f'(c), to be the above limit. We say f is differentiable if it is differentiable at all $c \in I$. In this case, we can define the derivative function (or simply **derivative**) $f': I \to \mathbb{R}$ by $x \mapsto f'(x)$.

Recall some properties of the derivative we have shown:

- The derivative is linear: if f and g are both differentiable at c, then so is f + g, and (f + g)'(c) =f'(c) + g'(c). If f is differentiable at c and $\alpha \in \mathbb{R}$, then so is αf , and $(\alpha f)'(c) = \alpha f'(c)$.
- Power rule: if $f: I \to \mathbb{R}$ is defined by $f(x) = x^n$ with $n \in \mathbb{N}$, then f is differentiable and

$$f'(x) = nx^{n-1}.$$

• Product rule: if f and g are both differentiable at c, then so is fg, with

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c).$$

• Quotient rule: if f and g are both differentiable at c, and $g(c) \neq 0$, then so is f/g, with

$$\left(\frac{f}{g}\right)'(c) = \underbrace{\frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}}_{}$$

Problem 1

Find the derivative of the following functions.

1.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 157x + 10^{48}$$
.

2.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x^3 - 157x + 10^{48}}{2 + x^4}$$
.

3.
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R}, f(x) = \frac{x^3 - \frac{157}{x-1} + 10^{48}}{2 + x^4}.$$

$$\frac{2}{(3x^2-157)(24x^4)-(x^3-157x+1645)(4x^3)}$$

3.
$$\frac{d}{dx} \left(x^5 - \frac{157}{x-1} + 10^48 \right)$$

= $3x^2 + \frac{157}{(x-1)^2}$

$$\frac{d}{dx} \frac{x^3 - \frac{157}{x - 1} + 10^{48}}{2 + x^4} = \frac{3x^2 + \frac{152}{(x - 1)}(2x^4) - (x^3 - \frac{157}{x - 1} + 10^{48})(4x^3)}{(2 + x^4)^2}$$

Problem 2

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x}$. Show that

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$
ivative

for all x using the limit definition of the derivative.

$$f'(x) = \lim_{y \to x} \frac{\int_{y-1}^{y-1} - \int_{x}^{y-1} - \int_{x}^$$

$$\lim_{h \to 0} \frac{\int_{x+h} - \int_{x}}{h} = \lim_{h \to 0} \frac{\int_{z+h} - \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x+h} - \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x+h}}{h} \cdot \frac{\int_{x+h} + \int_{x}}{h} \cdot \frac{\int_{x+h} + \int_{x+h}}{h} \cdot \frac{\int_{x+h} + \int_{x+h}}{h} \cdot \frac{\int_{x+h}}{h} \cdot \frac{\int_{x+h}}$$

Problem 3

Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x^n}$ with $n \in \mathbb{N}$. Show that

$$f'(x) = -\frac{n}{x^{n+1}}$$

for all
$$x \neq 0$$
 using the limit definition of the derivative.
Hint: $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \ldots + ab^{n-2} + b^{n-1}).$

$$\frac{1}{y - x} \frac{1}{y - x} = \frac{1}{y - x} \frac{x^{n} - y^{n}}{(y - x)(x^{n}y^{n})}$$

$$= \frac{1}{y - x} \frac{1}{x^{n}y^{n}} \left(\frac{x^{n} - y^{n}}{y - x} \right)$$

$$= -\frac{1}{y - x} \frac{1}{x^{n}y^{n}} \left(\frac{x^{n} - y^{n}}{x - y} \right)$$

$$= -\frac{1}{y - x} \frac{1}{x^{n}y^{n}} \left(\frac{x^{n-1} + x^{n-2}y + \dots + x^{n-2} + y^{n-2} + y^{n-1}}{x^{n-1}} \right)$$

$$= -\frac{1}{x^{n}x^{n}} \left(x^{n-1} + x^{n-1} + \dots + x^{n-1} + x^{n-1} + x^{n-1} + x^{n-1} \right)$$

$$= -\frac{1}{x^{n}x^{n}} \left(x^{n-1} + x^{n-1} + \dots + x^{n-1} + x^{n-1} + x^{n-1} + x^{n-1} \right)$$

Problem 4 (Generalized Product Rule)

Suppose f_1, f_2, \ldots, f_n are functions that are all differentiable at c. Let f be the product of all f_i :

$$f = \prod_{i=1}^{n} f_i.$$

Show that

$$f'(c) = \sum_{i=1}^{n} \left(f'_i(c) \prod_{j=1, j \neq i}^{n} f_j(c) \right).$$

What does this say if n = 2? Hint: Use induction and the product rule.

Problem 4 (Generalized Product Rule)

Suppose f_1, f_2, \ldots, f_n are functions that are all differentiable at c. Let f be the product of all f_i :

$$f = \prod_{i=1}^{n} f_i.$$

Show that

$$f'(c) = \sum_{i=1}^{n} \left(f'_i(c) \prod_{j=1, j \neq i}^{n} f_j(c) \right).$$

What does this say if n = 2? Hint: Use induction and the product rule.

Base case
$$(n=1)$$
; $f=f_1$

$$f'=f_1'=\sum_{i=1}^{n}f_i$$

$$f'=f_1'=\sum_{i=1}^{n}f_i$$

Thus, base cose holds.

Induction step: assume
$$\left(\prod_{j=1}^{n} f_{ij}\right) = \sum_{j=1}^{n} f_{ij}(x) \prod_{j=1}^{n} f_{j}(x)$$

$$= \left(\sum_{j=1}^{j+1} \frac{1}{1} \int_{1}^{1} \frac{1}{1} \int_$$

$$= \left(\sum_{i=1}^{n} f_{i}^{i} \frac{n+1}{|I|} f_{j}\right) + \left(\sum_{i=1}^{n+1} f_{i}^{i}\right)$$

$$= \left(\sum_{i=1}^{n+1} f_{i}^{i} \frac{n+1}{|I|} f_{j}\right) + \left(\sum_{i=1}^{n+1} f_{i}^{i}\right) + \left(\sum_{i=1}^{n+1} f_{i}^{i}\right$$

Problem 5

Define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ x^2 & x \in \mathbb{Q}. \end{cases}$$

On which points (if any) is g differentiable? Where is g non-differentiable?

Problem 6

Let c > 0. Find the area of the triangle bounded between the x-axis, the y-axis, and the line tangent to the curve $y = \frac{1}{x}$ at c.

Eq for tangent line of f at c: |1:45 y = f(c) + f'(c)(x-c)

Eq for Conjust the of x arc: (C>0)

$$y = \frac{1}{c} + \left(\frac{1}{2}\right)(x-c)$$

$$= \frac{1}{c^2}(x-c)$$

y-intercept: x=0

$$\frac{1}{C} - \frac{1}{C}(0-c) = \frac{1}{C} + \frac{1}{C} = \frac{2}{C}$$

 χ -interrept: $\frac{1}{C} - \frac{1}{C^2}(\chi - \epsilon) = 0$

Triangle area = 1 bh

$$=\frac{1}{2}\left(2c\right)\left(\frac{2}{c}\right)=2.$$