概率论与数理统计笔记

Guotao He

2025-01-25

目录

1	概率	^逐 论的基本概念	2
	1.1	基本概念	2
	1.2	概率公式的基本计算	3
	1.3	古典概率模型	4
2	随机	1变量及其分布	4
	2.1	离散型随机变量及其分布律	4
	2.2	连续型随机变量及其分布律	4
3	多维	主随机变量	4
4	杂七	三杂八	4
5	测试	代章节	5
	5.1	Test 01	5

1 概率论的基本概念

1.1 基本概念

- **样本空间与样本点** 对于一个随机的试验 E,其实验的所有可能的结构构成一个集合,此集合称为随机实验 E 的**样本空间**,记为 S,样本空间的每一个元素被称为一个**样本点**。
- **随机事件** 随机试验 E 的样本空间 S 的子集 A 被称为 E 的一个**随机事件**。特别的,由一个样本点组成的单点集,称为 **基本事件**,样本空间 S 是自身的子集,且每次实验中必然发生,称 S 为 E 的**必然事件**,空集 \emptyset 不包含任何样本点,也为样本空间 S 的子集,其在每次实验中必然不发生, \emptyset 称为 E 的**不可能事件**。
- 事件空间 在随机试验 E 中的所有随机事件构成一个集合 \mathcal{F} (集合的每一个元素也是集合),此集合被称为事件空间

事件本质上是样本空间的一个子集,因此事件之间的运算自然按集合论中集合之间的运算处理。具体而言,有:

- 1. $A \subseteq B$ 表示事件 B 包含事件 A, 若 A 发生则 B 一定也发生
- 2. A = B 表示 $A \subseteq B$ 且 $B \subseteq A$
- 3. $A + B = A \cup B = \{x | x \in A \text{ or } x \in B\}$
- 4. $AB = A \cap B = \{x | x \in A \text{ and } x \in B\}$
- 5. $A B = \{x | x \in A \text{ and } x \notin B\}$
- 6. $A \cap B = \emptyset$,称 $A \ni B$ 互斥
- 7. $A \cup B = S, A \cap B = \emptyset$, 称 A = B 互为**逆事件**, 互为**对立事件**
- 8. 记 A 的对立事件为 $\overline{A} = S A$

摩根率(对偶率) $\overline{A+B} = \overline{A}\overline{B}$, $\overline{AB} = \overline{A} + \overline{B}$

Definition 1.1.1 (概率): 设随机试验 E 的样本空间为 S, $\mathscr F$ 为 S 的某些子集组成的一个事件空间,如果对任一事件 $A \in \mathscr F$, 定义在 F 上的一个实值函数 P(A) 满足如下性质:

- 1. 非负性: $\forall A \in \mathcal{F}, P(A) > 0$
- 2. 规范性 (归一性): P(S) = 1
- 3. 可加可列性: $\forall A_1, A_2, ... \in \mathcal{F}$, 且满足 $A_i A_j = \emptyset, i \neq j, i, j \in \mathbb{R}$, 有:

$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$$

则我们称 $P \in E$ 的概率测度,称 $P(A) \in A$ 的概率。

换句话说,所谓概率,就是一个从事件空间 $\mathcal F$ 到 $\mathbb R$ 上的一个映射,且满足上面三个条件。

1 概率论的基本概念

上述定义为概率的一个常见的公理化定义,从测度论出发可以得到类似但更严谨更准确的公理化定义,在此不做过多说明。

概率空间 所谓概率空间是一个三元组,包含样本空间 S,事件集合 $\mathcal F$ 和概率测度 P,记为 $(S,\mathcal F,P)$

Definition 1.1.2 (条件概率): 设 A, B 是两个事件, 且 P(A) > 0, 称:

$$P(B|A) = \frac{P(AB)}{P(A)}$$

为事件 A 发生的条件下事件 B 发生的条件概率。

独立性 对于试验 E 中的两个事件 A,B,若事件 A 发生的概率对事件 B 发生的概率无影响,即 P(AB) = P(A)P(B),则我们称事件 A 与 B 互相**独立**。 更一般地,若 $P(A_1A_2...A_n) = P(A_1)P(A_2)...P(A_n)$ 则我们称 $A_1,A_2,...,A_n$ 相互独立。

Mark: 这里需要区分 A, B 互相独立和 A, B 互相对立的区别。实际上,事件 A, B 的独立性和对立性不可能同时成立,若已知 A, B 对立,且 A 不成立,则我们可以马上得到 B 成立,显然这不符合 A, B 互相独立的定义。

另外,A, B 对立很容易在 Venn 图中表示,但 A, B 独立不然,究其原因是因为 Venn 图并无体现数量关系,故无法表示 A, B 独立这一数量关系。

1.2 概率公式的基本计算

Theorem 1.2.1 (加法公式): 对于概率空间 (S, \mathcal{F}, P) 若 $A_1, ..., A_n \in \mathcal{F}$,则:

$$P\!\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n \sum_{1 \leq i_1 < \ldots < i_n \leq n} (-1)^{k-1} P\!\left(A_{i_1} \ldots P\!\left(A_{i_k}\right)\right)$$

Theorem 1.2.2 (减法公式): 对于概率空间 (S, \mathcal{F}, P) , 若 $A, B \in \mathcal{F}$, 则:

$$P(A-B) = P(A) - P(AB) \\$$

Theorem 1.2.3 (乘法公式): 对于概率空间 (S, \mathcal{F}, P) , 若 $A_1, ..., A_n \in \mathcal{F}$, 则:

$$P(A_1...A_n) = \prod_{i=1}^n P(A_i|A_1...A_{n-1}) = \sum_{k=1}^n \sum_{1 \leq i_1 < i_n \leq n} (-1)^{k-1} P\Big(A_{i_1} \cup ... \cup A_{i_k}\Big)$$

Theorem 1.2.4 (全概率公式): 对于概率空间 (S,\mathcal{F},P) ,若 $B,A_1,...,A_n\in\mathcal{F}$,其中 A_i 是 S 的分割,则:

$$P(B) = \sum_{j} P \big(A_j \big) P \big(B | A_j \big)$$

Theorem 1.2.5 (Bayes 公式): 对于概率空间 (S, \mathcal{F}, P) ,若 $B, A_1, ..., A_n \in \mathcal{F}$,其中 A_i 是 S 的分割,则:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_j P\big(A_j\big)P\big(B|A_j\big)}$$

1.3 古典概率模型

Definition 1.3.1 (古典概型):

2 随机变量及其分布

- 2.1 离散型随机变量及其分布律
- 2.2 连续型随机变量及其分布律
 - 3 多维随机变量
 - 4 杂七杂八

5 测试章节

5.1 Test 01

