S3C7281 PRODUCT OVERVIEW

1

PRODUCT OVERVIEW

OVERVIEW

The S3C7281 is a SAM48 core-based 4-bit CMOS single-chip microcontroller. It is built around the SAM48 core CPU and contains ROM, RAM. 14 I/O lines, buzzer and inverted buzzer output, and LCD driver/controller with an up-to-64-dot.

The S3C7281 can be used for dedicated control functions in a variety of applications, and is especially designed for LCD general purpose.

PRODUCT OVERVIEW S3C7281

FEATURES

Memory

- 1024 x 8 bit program memory
- 64 x 4 bit data memory (Including stack and excluding LCD RAM)

14 I/O Pins

- I/O: 6 pins
- Output: 8 pins(Sharing with segment outputs)

8-Bit Basic Timer

- 4 clock source(0.26, 2.1, 8.2, 32.8ms at 1MHz)
- · Watch-dog timer

Watch Timer

- Quasi interrupt(stand by release mode only)
- Time divider:
 3.91, 32, 125, 500ms at fw=32.8kHz
- BUZ, BUZ output(0.5, 1, 2, 4kHz at 1MHz<main>, 32.8kHz<sub>)

Key Interrupt input(Quasi-interrupt)

- Falling edge detection(KS0, KS1)
- Stand by mode(idle, stop) release

Power on RESET (Program ROM MASK option)

- Initial power on RESET
- Reset operation under 2.0V

LCD Display

- 16 segments and 4 common pins
- 2, 3, and 4 common selectable
- Internal resistor for LCD bias(170 KΩ)

Memory Mapped I/O Structure

Data memory bank 15

Power-Down Modes

- Idle: only CPU clock stops
- Stop: Main System clock and CPU clock stops
- Subsystem clock stop mode

Oscillation Sources

- Main: Internal RC OSC(1MHz)
- Sub: External 32.8kHz crystal only

Instruction Execution Times

- Main system clocks:4, 8, 64µs at 1MHz
- Subsystem clocks: 122 μs at 32.768 kHz

Operating Voltage Range

1.8 V to 5.5 V at 1MHz/32.8kHz

Power Consumption(The LVD circuit needs 100uA or more current on all the below mode)

- Main: Operation 0.5mA at 1MHz, 3V
- Sub: Operation 12μA at LCD off, 3V Idle - 5μA at LCD off idle, 3V Stop - 1μA at 5.5V

Operating Temperature

- 40 °C to 85 °C

Package Type

32-SOP-450A Package

S3C7281 PRODUCT OVERVIEW

BLOCK DIAGRAM

Figure 1-1. S3C7281 Simplified Block Diagram

PRODUCT OVERVIEW S3C7281

PIN ASSIGNMENTS

Figure 1-2. S3C7281 32-SOP Pin Assignment Diagram

S3C7281 PRODUCT OVERVIEW

PIN DESCRIPTIONS

Table 1-1. S3C7281 Pin Descriptions

Pin Name	Pin Type	Description	Number	Share Pin
P0.0 P0.1 P0.2 P0.3	I/O	4-bit I/O port. 1-bit or 4-bit read/write and test is possible. 1-bit unit pull-up resistors are assignable to input pins by software and are automatically disabled for output pins. Individual pins can be allocated as input or output(1-bit unit). The n-channel open-drain or pushpull output can be selected by software(1-bit unit).	31 30 29 28	CLO BUZ BUZ
P1.0 P1.1	I/O	4-bit I/O port. 1-bit or 4-bit write and test is possible. 4-bit unit pull-up resistors are assignable to input pins by software and are automatically disabled for output pins. The pins can be allocated as input or output(4-bit unit). The n-channel open-drain or push-pull output can be selected by software(4-bit unit).	5 6	KS0 KS1
P2.0 - P2.7	0	8-bit output port. 1-bit, 4-bit, 8-bit read/write and test is possible. The n-channel open-drain or push-pull output can be selected by software(4-bit unit).	27 - 20	SEG17- SEG10
CLO	I/O	Clock output.	31	P0.0
BUZ	I/O	Buzzer signal output.	30	P0.1
BUZ	I/O	Inverted buzzer signal output.	29	P0.2
KS0 KS1	I/O	External interrupt with falling edge detection.	5 6	P1.0 P1.1
SEG0 SEG1	0	LCD segment signal output.	10 11	COM0 COM1
SEG2-SEG9	0	LCD segment signal output.	12 - 19	_
SEG10-SEG17	0	LCD segment signal output.	20 - 27	P2.7 - P2.0
COM0 COM1	0	LCD common signal output.	8 9	_
COM2 COM3	0	LCD common signal output.	10 11	SEG0 SEG1
XT _{IN} XT _{OUT}	_	Crystal oscillator pins for subsystem clock.	2 3	-
V _{DD}	_	Main power supply.	32	_
V _{SS}	_	Ground.	1	_
RESET	I	Chip reset signal input.	7	_
TEST	I	Chip test signal input (must be connected to V_{SS}).	4	_

PRODUCT OVERVIEW S3C7281

Table 1-1. S3C7281 Pin Descriptions (Continued)

Pin Name	Pin Type	Share Pin	Circuit Type	RESET Value
P0.0 - P0.2 P0.3	I/O	CLO, BUZ, BUZ	E-2	Input
P1.0 - P1.1	I/O	KS0, KS1	E-2	Input
P2.0 - P2.7	0	SEG17 - SEG10	H-28	Low output
COM0, COM1	0	-	H-4	Low output
COM2, COM3	0	SEG0, SEG1	H-6	Low output
SEG2 - SEG9	0	+	H-5	Low output
SEG10 - SEG17	0	P2.7 - P2.1	H-28	Low output
V _{DD}	_	-	_	-
V _{SS}	_	-	_	-
RESET	I	-	В	_
XT _{IN} , XT _{OUT}	_	_	_	-
TEST	I	-	_	_

S3C7281 PRODUCT OVERVIEW

PIN CIRCUIT DIAGRAMS

Figure 1-3. Pin Circuit Type B

Figure 1-5. Pin Circuit Type H-4

Figure 1-4. Pin Circuit Type E-2

Figure 1-6. Pin Circuit Type H-5

PRODUCT OVERVIEW S3C7281

Figure 1-7. Pin Circuit Type H-6

Figure 1-8. Pin Circuit Type H-28

13 ELECTRICAL DATA

OVERVIEW

In this section, information on S3C7281 electrical characteristics is presented as tables and graphics. The information is arranged in the following order:

Standard Electrical Characteristics

- Absolute maximum ratings
- D.C. electrical characteristics
- Power-On Reset Circuit characteristics
- Subsystem clock oscillator characteristics
- I/O capacitance
- A.C. electrical characteristics
- Operating voltage range

Miscellaneous Timing Waveforms

- A.C timing measurement point
- Power-On Reset timing
- Clock timing measurement at XT_{IN}
- TCL timing
- Input timing for RESET
- Input timing for external interrupts
- Serial data transfer timing

Stop Mode Characteristics and Timing Waveforms

- RAM data retention supply voltage in stop mode
- Stop mode release timing when initiated by RESET
- Stop mode release timing when initiated by an interrupt request

Table 13-1. Absolute Maximum Ratings

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Conditions	Rating	Units
Supply Voltage	V _{DD}	-	-0.3 to +6.5	V
Input Voltage	VI	Ports 0, 1	-0.3 to $V_{DD} + 0.3$	V
Output Voltage	VO	-	-0.3 to $V_{DD} + 0.3$	V
Output Current High	I _{OH}	One I/O pin active	– 15	mA
		All I/O pins active	- 30	
Output Current Low	I _{OL}	One I/O pin active	+ 30 (Peak value)	mA
			+ 15 ^(note)	
		Total for pins 0, 1, 2	+ 100 (Peak value)	
			+ 60 ^(note)	
Operating Temperature	T _A	-	- 40 to +85	°C
Storage Temperature	T _{STG}	-	- 65 to + 150	°C

NOTE: The values for Output Current Low (I_{OL}) are calculated as Peak Value \times $\sqrt{\text{Duty}}~$.

Table 13-2. D.C. Electrical Characteristics

 $(T_A = -40 \,^{\circ}\text{C to } + 85 \,^{\circ}\text{C}, V_{DD} = 1.8 \,\text{V to } 5.5 \,\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input High Voltage	$V_{\rm IH1}$	Ports 0, 1, and RESET	0.8V _{DD}	-	V_{DD}	V
	$V_{\rm IH2}$	XT _{IN}	V _{DD} – 0.1		V_{DD}	
Input Low Voltage	V_{IL1}	Ports 0, 1, and RESET	_	_	0.2V _{DD}	V
	$V_{\rm IL2}$	XT _{IN}			0.1	
Output High Voltage	V _{OH}	$V_{DD} = 4.5 \text{ V}$ to 5.5 V $I_{OH} = -1 \text{ mA}$ Ports 0, 1, 2	V _{DD} – 1.0	-	ı	>
Output Low Voltage	V _{OL}	$V_{DD} = 4.5 \text{ V}$ to 5.5 V $I_{OL} = 15 \text{ mA}$ Ports 0, 1, 2	-	-	2.0	V
		$V_{DD} = 1.8 \text{ V}$ to 5.5 V $I_{OL} = 1.6 \text{ mA}$			0.4	

Table 13-2. D.C. Electrical Characteristics (Continued)

 $(T_A = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 1.8 \,^{\circ}\text{V} \text{ to } 5.5 \,^{\circ}\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input High Leakage Current	I _{LIH1}	V _I = V _{DD} All input pins except those specified below for I _{LIH2}	_	_	3	μΑ
	I _{LIH2}	$V_I = V_{DD}$ XT_{IN}			20	
Input Low Leakage Current	I _{LIL1}	$V_I = 0 V$ All input pins except RESET and XT_{IN}	_	_	-3	
	I _{LIL2}	$V_I = 0 V$ XT_{IN}			- 20	
Output High Leakage Current	I _{LOH}	$V_O = V_{DD}$ All output pins	_	ı	3	
Output Low Leakage Current	I _{LOL}	V _O = 0 V All output pins	_	ı	-3	
Pull-Up Resistor	R _{L1}	$V_{I} = 0 \ V; \ V_{DD} = 5V$	25	50	75	kΩ
		Ports 0, 1				
		$V_{DD} = 3V$	50	100	150	
	R _{L2}	$V_I = 0 \text{ V}; V_{DD} = 5\text{V}; \text{RESET}$	100	200	300	
		$V_{DD} = 3V$	250	500	750	
LCD Voltage Dividing Resistor	R _{LCD}	T _A = + 25 °C	120	170	220	
V _{LC0} -COMi Voltage Drop (i = 0-3)	V _{DC}	- 15 uA per common pin	_	1	120	mV
V_{LC0} -SEGx Voltage Drop (x = 0–17)	V _{DS}	– 15 uA per common pin	_	ı	120	
Middle Output	V _{LC0}	$V_{DD} = 1.8V \text{ to } 5.5V, 1/3 \text{ bias}$	V _{DD} -0.2	V_{DD}	V _{DD} +0.2	V
Voltage (note)	V _{LC1}	LCD clock = 0Hz	2V _{DD} /3-0.2	2V _{DD} /3	2V _{DD} /3+0.2	
	V _{LC2}		V _{DD} /3-0.2	V _{DD} /3	V _{DD} /3+0.2	

NOTE: It is middle output voltage when 1/4 duty and 1/3 bias.

Table 13-2. D.C. Electrical Characteristics (Continued)

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 1.8 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Supply Current ⁽¹⁾	I _{DD1} (2)	V _{DD} = 5 V ± 10% Internal RC oscillator	1.15 MHz	-	1.0	2.5	mA
Disable LVR (5)		V _{DD} = 3 V ± 10%	1 MHz		0.5	1.2	
	I _{DD2} ⁽²⁾	Idle mode V _{DD} = 5 V ± 10% Internal RC oscillator	1.15 MHz		0.5	1.0	
		V _{DD} = 3 V ± 10%	D = 3 V ± 10% 1 MHz		0.15	0.4	
	I _{DD3} (3)	V _{DD} = 3 V ± 10% 32 kHz crystal oscillator	_	12.0	24	μА	
	I _{DD4} (3)	Idle mode; V _{DD} = 3 V ± 10% 32 kHz crystal oscillator	dle mode; V _{DD} = 3 V ± 10% 32 kHz crystal oscillator			15	
	I _{DD5}	Stop mode; $V_{DD} = 5 \text{ V} \pm 10\%$	SCMOD = 0000B		2.5	5	
		Stop mode; V _{DD} = 3 V ± 10%	XT _{IN} = 0V		0.5	3	
		V _{DD} = 5 V ± 10%	SCMOD =		0.2	3	
		V _{DD} = 3 V ± 10%	0000B		0.1	2	

- 1. Currents in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors, output port drive currents.
- 2. Data includes power consumption for subsystem clock oscillation.
- 3. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the subsystem clock is used.
- 4. Every values in this table is measured when the power control register (PCON) is set to "0011B".
- 5. Current in the LVR circuit is not included.

Table 13-2. D.C. Electrical Characteristics (Concluded)

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.2 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Supply Current ⁽¹⁾	I _{DD1} (2)	V _{DD} = 5 V ± 10% Internal RC oscillator	1.15 MHz	_	1.12	2.7	mA
Enable LVR (5)		V _{DD} = 3 V ± 10%	1 MHz		0.6	1.35	
	I _{DD2} ⁽²⁾	Idle mode V _{DD} = 5 V ± 10% Internal RC oscillator	1.15 MHz		0.62	1.2	-
		V _{DD} = 3 V ± 10%	1 MHz		0.25	0.55	
	I _{DD3} (3)	V _{DD} = 3 V ± 10% 32 kHz crystal oscillator		_	112.0	174	μА
	I _{DD4} (3)	Idle mode; V _{DD} = 3 V ± 10% 32 kHz crystal oscillator	Idle mode; V _{DD} = 3 V ± 10% 32 kHz crystal oscillator			165	
	I _{DD5}	Stop mode; $V_{DD} = 5 \text{ V} \pm 10\%$	SCMOD = 0000B		122.5	205	
		Stop mode; V _{DD} = 3 V ± 10%	XT _{IN} = 0V		100.5	153	
		V _{DD} = 5 V ± 10%	SCMOD =		120.2	203	
		V _{DD} = 3 V ± 10%	0000B		100.1	152	

- 1. Currents in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors, output port drive currents.
- 2. Data includes power consumption for subsystem clock oscillation.
- 3. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the subsystem clock is used.
- 4. Every values in this table is measured when the power control register (PCON) is set to "0011B".
- 5. When LVR is enabled, the LVR circuit needs 100µA or more current on the all below mode.

Table 13-3. Power-On Reset Circuit Characteristics

 $(T_A = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}, V_{DD} = 1.8 \,^{\circ}\text{V} \text{ to } 5.5 \,^{\circ}\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Power-On Reset Voltage High	V_{DDH}	_	2.2	_	5.5	V
Power-On Reset Voltage Low	V_{DDL}	-	0	1.8	2.0	V
Power Supply Voltage Rise Time	t _R	-	10	_	(1)	μS
Power Supply Voltage Off Time	t _{OFF}	-	0.5	_	_	S
Power-On Reset Circuit	I _{DDPR}	V _{DD} = 5 V ± 10%	_	120	200	μΑ
Consumption Current (2)		V _{DD} = 3 V ± 10%	_	100	150	

NOTE:

- 1. $2^{**}5/fx (= 8.19ms at fx = 1MHz)$
- 2. Current consumed when power-on reset circuit is provided internally.

Table 13-4. Sub System Clock Oscillator Characteristics

 $(T_A = -40 \,^{\circ}C + 85 \,^{\circ}C, V_{DD} = 1.8 \,^{\circ}V \text{ to } 5.5 \,^{\circ}V)$

Oscillator	Clock Configuration	Parameter	Test Condition	Min	Тур	Max	Units
Crystal		Oscillation frequency ⁽¹⁾	-	32	32.768	35	kHz
Oscillator	XTIN XTOUT C1 C2	Stabilization time ⁽²⁾	V _{DD} = 2.7 V to 5.5 V	I	1.0	2	Ø
			$V_{DD} = 1.8 \text{ V to } 5.5 \text{ V}$	_	_	10	
External		XT _{IN} input frequency (1)	_	32	-	100	kHz
Clock	XTIN XTOUT	XT _{IN} input high and low level width (t _{XTL} , t _{XTH})	-	5	-	15	μS

- 1. Oscillation frequency and ${\rm XT}_{\rm IN}$ input frequency data are for oscillator characteristics only.
- 2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs.

Table 13-5. Input/Output Capacitance

 $(T_A = 25 \,^{\circ}C, V_{DD} = 0 \, V)$

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Capacitance	C _{IN}	f = 1 MHz; Unmeasured pins are returned to V _{SS}	_	_	15	pF
Output Capacitance	C _{OUT}		_	_	15	pF
I/O Capacitance	C _{IO}		_	_	15	pF

Table 13-6. A.C. Electrical Characteristics

(
$$T_A = -40\,^{\circ}C$$
 to $+85\,^{\circ}C$, $V_{DD} = 1.8\,V$ to $5.5\,V$)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Instruction Cycle Time (note)	t _{CY}	$V_{DD} = 1.8 \text{ V} \text{ to } 5.5 \text{ V}$	4	-	80	μS
		With subsystem clock (fxt)	114	122	125	
Interrupt Input High, Low Width	f _{INTH} , f _{INTL}	KS0, KS1	10	-	I	
RESET Input Low Width	t _{RSL}	Input	10	_	-	

NOTE: Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock (fx) source.

Figure 13-1. Standard Operating Voltage Range

Table 13-7. RAM Data Retention Supply Voltage in Stop Mode

ľ	Τ.	_	- 40	າ °C	to	+	85	°C)	

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V_{DDDR}	_	1.8	_	5.5	V
Data retention supply current	I _{DDDR}	V _{DDDR} = 1.8 V	_	0.1	10	μΑ
Release signal set time	t _{SREL}	_	0	_	_	μS
Oscillator stabilization wait time (1)	t _{WAIT}	Released by RESET	_	2 ¹⁷ / fx	ı	ms
		Released by interrupt	_	(2)	_	

- 1. During oscillator stabilization wait time, all CPU operations must be stopped to avoid instability during oscillator start-up.
- 2. Use the basic timer mode register (BMOD) interval timer to delay execution of CPU instructions during the wait time.

TIMING WAVEFORMS

Figure 13-2. Stop Mode Release Timing When Initiated by RESET

Figure 13-3. Stop Mode Release Timing When Initiated by Interrupt Request

Figure 13-4. A.C. Timing Measurement Points (Except for XT_{IN})

Figure 13-5. Clock Timing Measurement at $\mathrm{XT}_{\mathrm{IN}}$

Figure 13-6. Input Timing for RESET Signal

Figure 13-7. Input Timing for External Quais-Interrupts

Figure 13-8. Power-On Reset timing

S3C7281 MECHANICAL DATA

14 MECHANICAL DATA

OVERVIEW

This section contains the following information about the device package:

- Package dimensions in millimeters
- Pad diagram

MECHANICAL DATA S3C7281

Figure 14-1. 32-SOP Package Dimensions