SERVICIO NACIONAL DE APRENDIZAJE SENA

TECNOLOGÍA EN CONTRUCCIÓN EN EDIFICACIONES

Contenido

1. Introducción	3
2. Mapa conceptual elementos estructurales	3
3. Sistemas Constructivos	6
4. Procesos Constructivos	7
4.1. EEstructura	7
5. Sistemas Estructurales	
5.1 Sistema de muros de carga	4
5.2 Sistema combinado	5
5.3 Sistema de pórtico	5
5.4 Sistema dual	5
	0
6. Glosario de términos	9
7. Poforentes Pibliográficos	10
7. Referentes Bibliográficos	10
8. Creative Commons	11
o. Creditive Commons	11
9. Créditos	12
5. Greates	12

1. Introducción

Los elementos estructurales de un sistema constructivo representan el soporte sobre el cual un edificio se asienta. Éstos pueden variar en función y forma dependiendo del sistema utilizado: pero básicamente obedecen a los mismos principios físicos que les permiten transmitir las cargas vivas y muertas del edificio al terreno. En este sentido, de la adecuada selección y disposición de los elementos estructurales dependerá la seguridad, la estabilidad y la firmeza de la edificación.

Para comprender qué es un sistema estructural, antes debemos asimilar los conceptos de sistema y proceso constructivo ya que éstos están estrechamente ligados, aunque tienden a confundirse. Mientras el sistema constructivo se refiere a la ordenación de los diferentes elementos de una construcción (incluyendo la estructura), el proceso constructivo hace alusión más bien al procedimiento para llevar a cabo la construcción.

Si bien existen múltiples elementos estructurales (vigas, columnas, zapatas, losas etc.) cada uno cumple una función diferente conformando un sistema en el cual todos son necesarios y codependientes; por lo cual es importante conocer cuáles son las funciones que cumple cada uno de ellos. Se resalta que en el medio se utilizan diferentes tipos de sistemas estructurales tales como el a porticado, la mampostería estructural y el sistema dual (combinado) los cuales están regidos por la Norma NSR - 10.

Ninguno de ellos es mejor que los otros: simplemente cada uno se adecúa de diferentes formas a las condiciones de cada proyecto. En este documento, aprenderás a conceptualizar cada uno de los sistemas estructurales y sus elementos constitutivos con el fin de aplicarlos adecuadamente dentro de la obra.

2. Mapa conceptual elementos estructurales

A continuación, se presentará un mapa conceptual que permite identificar los elementos fundamentales y sus relaciones.

Figura 1. Mapa Conceptual Elementos estructurales **Fuente.** Elaboración propia

3. Sistemas Constructivos

Un sistema constructivo es el conjunto de elementos y unidades de un edificio que forman una organización funcional con una misión constructiva común, sea ésta de sostén (estructura), de definición y protección de espacios habitables (cerramientos), de obtención de acondicionamiento (confort), o de expresión de imagen y aspecto (decoración). Es decir, el sistema como conjunto articulado, más que el sistema como método. Cabe mencionar que éstos suelen estar constituidos por unidades, éstas por elemento, y, éstos a su vez se construyen a partir de determinados materiales. Un sistema requiere de un diseño, para lo cual se debe atender en primer lugar a las exigencias funcionales de cada uno (función) y a las acciones exteriores de la construcción en la que se aplicará (forma y espacios), además de tener en cuenta las posibilidades de los materiales que se van a utilizar, en función de su calidad y esfuerzos que los mismos soportan estructuras (Avila, 2016).

4. Procesos Constructivos

Se define proceso Constructivo al conjunto de fases, sucesivas o solapadas en el tiempo, necesarias para la materialización de un edificio o de una infraestructura. Si bien el proceso constructivo es singular para cada una de las obras que se pueda concebir, si existen algunos pasos comunes que siempre se deben realizar. El paso previo al proceso constructivo consiste en asignar la obra a un constructor o a un grupo de personas, una comunidad, por ejemplo, estableciendo todos los documentos necesarios para que durante el proceso constructivo no surjan dudas respecto a las calidades, los plazos o las condiciones administrativas. Es preciso destacar que la actividad de la construcción es, con frecuencia, una fuente de conflictos entre los diferentes agentes que intervienen y que, por tanto, es necesario plasmar por escrito cualquier relación contractual que tenga lugar durante este proceso (Cladera et al., 2021).

4.1 Estructura

En construcción, es el nombre que recibe el conjunto de elementos, unidos, ensamblados o conectados entre sí, que tienen la función de recibir cargas, soportar esfuerzos y transmitir esas cargas al suelo, garantizando así la función estático - resistente de la construcción (ECURED, 2021).

5. Sistemas Estructurales

Se reconocen cuatro tipos generales de sistemas estructurales de resistencia sísmica, los cuales se definen en esta sección. Cada uno de ellos se subdivide según los tipos de elementos verticales utilizados para resistir las fuerzas sísmicas y el grado de capacidad de disipación de energía del material estructural empleado. Los sistemas estructurales de resistencia sísmica que reconoce este Reglamento son los siguientes:

5.1 Sistema de muros de carga

Es un sistema estructural que no dispone de un pórtico esencialmente completo y en el cual las cargas verticales son resistidas por los muros de carga y las fuerzas horizontales son resistidas por muros estructurales o pórticos con diagonales.

Figura 2. Sistemas de muros de carga **Fuente.** Elaboración propia

5.2 Sistema combinado

Es un sistema estructural, en el cual las cargas verticales son resistidas por un pórtico no resistente a momentos, esencialmente completo, y las fuerzas horizontales son resistidas por muros estructurales o pórticos con diagonales, o las cargas verticales y horizontales son resistidas por un pórtico resistente a momentos, esencialmente completo, combinado con muros estructurales o pórticos con diagonales, y que no cumple los requisitos de un sistema dual.

5.3 Sistema de pórtico

Es un sistema estructural compuesto por un pórtico espacial, resistente a momentos, esencialmente completo, sin diagonales, que resiste todas las cargas verticales y fuerzas horizontales.

5.4 Sistema dual

Es un sistema estructural que tiene un pórtico espacial resistente a momentos y sin diagonales, combinado con muros estructurales o pórticos con diagonales. Para que el sistema estructural se pueda clasificar como sistema dual se deben cumplir los siguientes requisitos:

- El pórtico espacial resistente a momentos, sin diagonales, esencialmente completo, debe ser capaz de soportar las cargas verticales.
- Las fuerzas horizontales son resistidas por la combinación de muros estructurales o pórticos con diagonales, con el pórtico resistente a momentos, el cual puede ser un pórtico de capacidad especial de disipación de energía (DES), cuando se trata de concreto reforzado o acero estructural, un pórtico con capacidad moderada de disipación de energía (DMO) de concreto reforzado, o un pórtico con capacidad mínima de disipación de energía (DMI) de acero estructural.

El pórtico resistente a momentos, actuando independientemente, debe diseñarse para que sea capaz de resistir como mínimo el 25 por ciento del cortante sísmico en la base.

Los dos sistemas deben diseñarse de tal manera que en conjunto sean capaces de resistir la totalidad del cortante sísmico en la base, en proporción a sus rigideces relativas, considerando la interacción del sistema dual en todos los niveles de la edificación, pero en ningún caso la responsabilidad de los muros estructurales, o de los pórticos con diagonales, puede ser menor del 75 por ciento del cortante sísmico en la base.

Toda edificación o cualquier parte de ella, debe quedar clasificada dentro de uno de los cuatro sistemas estructurales de resistencia sísmica descritos en las tablas A.3-1 a A.3-4.

A. Sistema de r	muros de carga	Valar.	Malan		ZONA	S DE AMI	ENAZA SÍ	SMICA	
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0	Al	ta	Interr	nedia	Ва	ija
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.
1. Paneles de cortante de madera	Muros ligeros de madera laminada	3.0	2.5	si	6m	si	9m	Si	12m
2. Muros estructurales									
a. Muros de concreto con capacidad especial de disipación de energía (DES)	Lo mismo	5.0	2.5	Si	50m	Si	sin límite	Si	sin límite
b. Muros de concreto con capacidad moderada de disipación de energía (DMO)	Lo mismo	4.0	2.5	si	50m	si	sin límite	Si	sin límite
c. Muros de concreto con capacidad mínima de disipación de energía (DMI)	Lo mismo	4.0	2.5	No se p	ermite	No se p	ermite	si	sin límite
d. Muros de mampostería reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	Lo mismo	3.5	2.5	si	50m	Si	sin límite	Si	sin límite

Tabla 1. A.3-1 Sistema estructural de muros de carga (Nota 1) **Fuente.** Elaboración propia

A. Sistema de r	muros de carga	Valor			ZONA	S DE AMI	ENAZA SÍ	ÍSMICA	
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0	Al	ta	Interr	nedia	Ва	ija
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.
e. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Lo mismo	2.5	2.5	si	30m	si	50m	si	sin límite
f. Muros de mampostería parcialmente reforzada de bloque de perforación vertical	Lo mismo	2.0	2.5	Grupo I	2 pisos	si	12m	si	18m
g. Muros de mampostería confinada	Lo mismo	2.0	2.5	Grupo I	2 pisos	Grupo I	12m	Grupo I	18m
h. Muros de mampostería de cavidad reforzada	Lo mismo	4.0	2.5	si	2 pisos	si	12m	si	sin límite
i. Muros de mampostería no reforzada (no tiene capacidad de disipación de energía)	Lo mismo	1.0	2.5	No se p	permite	No se permite		Grupo I nota 3	18m
3. Pórticos con diag	onales (las diagonales l	levan fuerza	vertical)						
a. Pórticos de acero estructural con diagonales concéntricas (DES)	Lo mismo	5.0	2.5	si	24m	si	30m	si	sin límite
b. Pórticos con diagonales de concreto con capacidad moderada de disipación de energía (DMO)	Lo mismo	3.5	2.5	No se permite		si	30m	si	30m
c. Pórticos de madera con diagonales	Lo mismo	2.0	2.5	si	12m	si	15m	si	18m

Tabla 1. A.3-1 Sistema estructural de muros de carga (Nota 1) **Fuente.** Elaboración propia

El sistema de muros de carga es un sistema estructural que no dispone de un pórtico esencialmente completo, en el cual las cargas verticales son resistidas por los muros de carga y las fuerzas horizontales son resistidas por muros estructurales o pórticos con diagonales.

- Para edificaciones clasificadas como irregulares el valor de RO debe multiplicarse por ϕ a , ϕ p y ϕ r para obtener R =2. (A.3.3)
- La mampostería no reforzada sólo se permite en las regiones de las zonas de amenaza sísmica baja donde Aa sea menor o igual a 0.05 cuando se trata de edificaciones del grupo de uso I, de uno y dos pisos.
- El valor de Ω0 puede reducirse restándole 0.5 en estructuras con diafragma flexible, pero no debe ser menos de 2.0 para cualquier estructura.

B. Sistema	Combinado				ZONA	S DE AME	NAZA SÍ	SMICA			
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0	Al	ta	Intern	nedia	Ва	ja		
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.		
1. Pórticos de acero co	1. Pórticos de acero con diagonales excéntricas										
a. Pórticos de acero con diagonales excéntricas si las conexiones con las columnas por fuera del vínculo son resistentes a momento	Pórticos de acero resistentes a momentos con capacidad mínima de disipación de energía (DMI)	7.0	2.0	Si	45m	Si	60m	Si	sin límite		
b. Pórticos de acero con diagonales excéntricas si las conexiones con las columnas por fuera del vínculo no son resistentes a momento	Pórticos de acero resistentes a momentos con capacidad mínima de disipación de energía (DMI)	6.0	2.0	si	45m	Si	60m	Sİ	sin límite		
c. Pórticos de acero con diagonales excéntricas si el vínculo no se conecta a la columna	Pórticos de acero no resistentes a momentos	6.0	2.0	si	30m	Si	45m	Si	sin límite		
d. Pórticos de acero con diagonales excéntricas si el vínculo tiene conexión resistente a momento con la columna	Pórticos de acero resistentes a momentos con capacidad mínima de disipación de energía (DMI)	5.0	2.0	si	30m	si	45m	Si	sin límite		

Tabla 2. A.3-2 Sistema estructural combinado (Nota 1) **Fuente.** Elaboración propia

B. Sistema	Combinado		Volon	ZONAS DE AMENAZA SÍSMICA											
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0	Al	Alta		nedia	Ва	ja						
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.						
2. Muros estructurale	S														
a. Muros de concreto con capacidad especial de disipación de energía (DES)	Pórticos de concreto con capacidad especial de disipación de energía (DES)	7.0	2.5	Si	72m	Si	sin límite	Si	sin límite						
b. Muros de concreto con capacidad moderada de disipación de energía (DMO)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	5.0	2.5	No se p	No se permite		No se permite		72m	si	sin límite				
c. Muros de concreto con capacidad moderada de disipación de energía (DMO)	Pórticos losa- columna (Nota 3) con capacidad moderada de disipación de energía (DMO)	3.5	2.5	No se p	No se permite		18m	si	27m						
d. Muros de concreto con capacidad mínima de disipación de energía (DMI)	Pórticos de concreto con capacidad mínima de disipación de energía (DMI)	2.5	2.5	No se p	No se permite		ermite	Si	72m						
e. Muros de concreto con capacidad mínima de disipación de energía (DMI)	Pórticos losa- columna (Nota 3) con capacidad mínima de disipación de energía (DMI)	2.0	2.5	No se p	No se permite		No se permite		No se permite No se		o se permite No se permite		ermite	Sİ	18m
f. Muros de mampostería reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	Pórticos de concreto con capacidad especial de disipación de energía (DES)	4.5	2.5	Si	30m	si	45m	Si	45m						
g. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Pórticos de concreto con capacidad especial de disipación de energía (DES)	3.5	2.5	Si	30m	Si	45m	Si	45m						

Tabla 2. A.3-2 Sistema estructural combinado (Nota 1) **Fuente.** Elaboración propia

B. Sistema	Combinado		· Valor	ZONAS DE AMENAZA SÍSMICA							
Sistema resistencia	Sistema resistencia	Valor R0	Ω0	Al	Alta Inte		Intermedia		ija		
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.		
h. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	2.5	25	No se p	No se permite		No se permite		30m	si	45m
i. Muros de mampostería confinada (DMO - capacidad moderada de disipación de energía)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	2.0	25	No se p	No se permite		No se permite		18m	Grupo I	21m
j. Muros de mampostería confinada (DMO - capacidad moderada de disipación de energía)	Pórticos de concreto con capacidad mínima de disipación de energía (DMI)	2.0	25	No se p	No se permite		No se permite N		ermite	Grupo I	18m
k. Muros de mampostería de cavidad reforzada (DES - capacidad especial de disipación de energía)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	4.0	25	No se p	No se permite		No se permite		30m	si	45m
i. Muros de mampostería de cavidad reforzada (DES — capacidad especial de disipación de energía)	Pórticos de concreto con capacidad mínima de disipación de energía (DMI)	2.0	25	No se permite		No se p	ermite	si	45m		
m. Muros de cortante con placa de acero (DES)	Pórticos de acero resistente o no a momentos	7.0	25	si	50m	si	sin limite	si	sin limite		

Tabla 2. A.3-2 Sistema estructural combinado (Nota 1) **Fuente.** Elaboración propia

B. Sistema	Combinado		Valor	ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0	Al	ta	Intern	nedia	Ва	aja	
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.	
n. Muros de cortante compuestos con placa de acero y concreto	Pórticos de acero resistente o no a momentos	6.5	2.5	si	50m	si	sin límite	si	sin límite	
o. Muros de concreto reforzado (DES) mixtos con elementos de acero	Pórticos de acero resistente o no a momentos	6.0	2.5	si	50m	si	sin límite	si	sin límite	
p. Muros de concreto reforzado (DMO) mixtos con elementos de acero	Pórticos de acero resistente o no a momentos	5.5	2.5	No se p	oermite	No se permite		si	sin límite	
q. Muros de concreto reforzado (DMI) mixtos con elementos de acero	Pórticos de acero resistente o no a momentos	5.0	2.5	No se permite		No se permite		si	45m	
3. Pórticos con diagor	nales concéntricas									
a. Pórticos de acero con diagonales concéntricas (DES)	Pórticos de acero no resistentes a momentos	5.0	2.5	si	30m	Si	45m	si	60m	
b. Pórticos de acero con diagonales concéntricas (DMI)	Pórticos de acero no resistentes a momentos	4.0	2.5	No se p	permite	Si	10m	si	60m	
c. Pórticos mixtos con diagonales concéntricas (DES)	Pórticos de acero no resistentes a momentos	5.0	2.0	si	50m	si	sin límite	si	sin límite	
d. Pórticos mixtos con diagonales concéntricas (DMI)	Pórticos de acero no resistentes a momentos	3.0	2.0	No se permite (nota 5)				si	sin límite	
f. Pórticos de acero con diagonales concéntricas restringidas a pandeo, con conexiones viga- columna no resistentes a momento	Pórticos de acero resistente o no a momentos	6.0	2.5	si	30m	si	45m	si	sin límite	

Tabla 2. A.3-2 Sistema estructural combinado (Nota 1) **Fuente.** Elaboración propia

B. Sistema	B. Sistema Combinado		Malan	ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia			Valor R0	Valor Ω0	Al	ta	Intern	nedia	Ва	ja
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2) (Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.		
g. Pórticos de concreto con diagonales concéntricas con capacidad moderada de disipación de energía (DMO)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	3.5	2.5	No se p	permite	Si	24m	Si	30m	

Tabla 2. A.3-2 Sistema estructural combinado (Nota 1) **Fuente.** Elaboración propia

El sistema combinado es un sistema estructural en el cual: (a) las cargas verticales son resistidas por un pórtico no resistente a momentos, esencialmente completo, y las fuerzas horizontales son resistidas por muros estructurales o pórticos con diagonales, o (b) las cargas verticales y horizontales son resistidas por un pórtico resistente a momentos, esencialmente completo, combinado con muros estructurales o pórticos con diagonales, y que no cumple los requisitos de un sistema dual.

- Para edificaciones clasificadas como irregulares el valor de RO
- (Véase A.3.3.3).
- Los pórticos losa-columna incluyen el reticular celulado.debe multiplicarse por φa , φp y φr , para obtener R = φaφp φr R0
- El valor de Ω0 puede reducirse restándole 0.5 en estructuras con diafragma flexible, pero no debe ser menos de 2.0 para cualquier estructura.
- Se permite una altura de 20 m en edificios de un piso (naves industriales o similares) que no sean del grupo de uso IV.
- Sistema estructural de pórtico resistente a momentos (Nota 1)

	órtico resistente nentos		Valor	ZONAS DE AMENAZA SÍSMICA											
Sistema resistencia	Sistema resistencia	Valor R0	Ω0	Al	ta	Interr	media	Ва	ja						
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.						
1. Pórticos resistentes	a momentos con capac	cidad especi	al de disipa	ción de e	nergía (D	ES)									
a. De concreto (DES)	El mismo	7.0	3.0	si	sin límite	si	sin límite	si	sin límite						
b. De acero (DES)	El mismo	7.0 (Nota- 3)	3.0	si	sin límite	si	sin límite	si	sin límite						
c. Mixtos	Pórticos de acero o mixtos resistentes o no a momentos	7.0	3.0	si	30m	si	45m	si	60m						
d. De acero con cerchas dúctiles (DES)	Pórticos de acero resistentes o no a momentos	6.0	3.0	si	30m	si	45m	si	sin límite						
2. Pórticos resistentes	a momentos con capac	cidad mode	rada de disi	pación de	e energía	(DMO)									
a. De concreto (DES)	El mismo	5.0	3.0	No se p	ermite	si	sin límite	si	sin límite						
b. De acero (DES)	El mismo	5.0 (Nota- 3)	3.0	No se p	ermite	si	sin Iímite	si	sin límite						
c. Mixtos con conexiones rígidas (DMO)	Pórticos de acero o mixtos resistentes o no a momentos	5.0 (Nota- 3)	3.0	No se p	permite	si	sin límite	si	sin límite						
3. Pórticos resistentes	a momentos con capac	cidad mínim	a de disipa	ción de er	nergía (D	MI)									
a. De concreto (DES)	El mismo	2.5	3.0	No se p	ermite	No se p	ermite	si	sin límite						
b. De acero (DES)	El mismo	3.0	2.5	No se permite		No se p	ermite	si	sin límite						
c. Mixtos con conexiones totalmente restringidas a momento (DMI)	Pórticos de acero o mixtos resistentes o no a momentos	3.0	3.0	No se permite		No se permite		No se permite		No se permite N		No se p	permite	si	sin límite

Tabla 3. Sistema estructural de pórtico resistente a momentos **Fuente.** Elaboración propia

	órtico resistente nentos	Valor	Valor	ZONAS DE AMENAZA SÍSMICA																	
Sistema resistencia	Sistema resistencia	RO	Ω0	Al	Alta		Alta Intermedia		Intermedia		ija										
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Altura Permit Max.		Uso Permit	Altura Max.	Uso Permit	Altura Max.												
d. Mixtos con conexiones parcialmente restringidas a momento	Pórticos de acero o mixtos resistentes o no a momentos	6.0	3.0	No se p	No se permite		No se permite		No se permite		No se permite		No se permite		No se permite		No se permite		30m	Si	50m
e. De acero con cerchas no dúctiles	Lo mismo	1.5	1.5	No se p (Not		No se p (Not		si	12m												
f. De acero con perfiles de lámina doblada en frío y perfiles tubulares estructurales PTE que no cumplen los requisitos de F.2.2.4 para perfiles no esbeltos (nota 6)	Lo mismo	1.5	1.5		No se permite (Nota 5)		permite ta 5)	Si	sin límite												
g. Otras estructuras de celosía tales como vigas y cerchas		No se p no ser q	oueden usa Jue tengan (tr	r como pa conexione ratadas co	s rígidas	a column	nas, en cu	cia sísmic yo caso s	a, a erán												
4. Pórticos losa-colum	na (incluye reticular cel	ulado)																			
a. De concreto con capacidad moderada de disipación de energía (DMO)	Lo mismo	2.5	3.0	No se permite		si	15m	Si	21m												
b. De concreto con capacidad mínima de disipación de energía (DMI)	Lo mismo	1.5	3.0	No se permite		No se permite		No se permite		No se permite		No se permite		No se permite		No se p	oermite	Si	15m		

Tabla 3. Sistema estructural de pórtico resistente a momentos **Fuente.** Elaboración propia

	C. Sistema de pórtico resistente a momentos		Valor	ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia	Sistema resistencia	Valor R0 (Nota 2)	Ω0	A	lta	Interr	nedia	Ва	ja	
sísmica (fuerzas horizontales)	para cargas verticales	(NOLA Z)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.	
5. Estructuras de péndulo invertido										
a. Pórticos de acero resistentes a momento con capacidad especial de disipación de energía (DES)	El mismo	2.5 (Nota- 3)	2.0	si	sin límite	si	sin límite	si	sin límite	
b. Pórticos de concreto con capacidad especial de disipación de energía (DES)	El mismo	2.5	2.0	si	sin límite	si	sin límite	si	sin límite	
c. Pórticos de acero resistentes a momento con capacidad moderada de disipación de energía (DMO)	El mismo	1.5 (Nota- 3)	No se pe	ermite	sin límite	si	sin límite	si	sin límite	

Tabla 3. Sistema estructural de pórtico resistente a momentos **Fuente.** Elaboración propia

- El sistema de pórtico es un sistema estructural compuesto por un pórtico espacial, resistente a momentos, esencialmente completo, sin diagonales, que resiste todas las cargas verticales y las fuerzas horizontales.
- Para edificaciones clasificadas como irregulares el valor de RO debe multiplicarse por φa , φp y φr , para obtener R = φaφpφr RO
- (Véase A.3.3.3).
- Cuando se trate de estructuras de acero donde las uniones del sistema de resistencia sísmica son soldadas en obra, el valor de RO debe multiplicarse por 0.90.
- El valor de Ω0 puede reducirse restándole 0.5 en estructuras con diafragma flexible, pero no debe ser menos de 2.0 para cualquier estructura.
- Se permite hasta una altura de 12m en edificios de un piso (naves industriales o similares) que no sean del grupo de Uso IV.
- Los perfiles de lámina doblada y los perfiles tubulares estructurales que cumplen con los requisitos de F.2.2.4 para miembros no esbeltos que se diseñen con conexiones dúctiles calificadas de acuerdo con F.3.1.8 se podrán diseñar como pórticos resistentes a momentos convencionales.

D. Sister	ma Dual				ZONA	S DE AMI	ENAZA SÍ	SMICA	
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0	Al	ta	Intermedia		Baja	
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)	(Nota 4)	Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.
1. Muros estructurale	S								
a. Muros de concreto con capacidad especial de disipación de energía (DES)	Pórticos de concreto con capacidad especial de disipación de energía (DES)	8.0	2.5	si	sin Iimite	si	sin limite	si	sin limite
b. Muros de concreto con capacidad especial de disipación de energía (DES)	Pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	8.0	2.5	si	sin limite	si	sin limite	si	sin limite
c. Muros de concreto con capacidad moderada de disipación de energía (DMO)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	6.0	2.5	No se p	No se permite		sin limite	Sİ	sin limite
d. Muros de concreto con capacidad moderada de disipación de energía (DMO)	Pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	8.0	2.5	No se p	No se permite		sin limite	si	sin limite
e. Muros de mampostería reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	Pórticos de concreto con capacidad especial de disipación de energía (DES)	5.5	3.0	si	45m	si	45m	si	45m
f. Muros de mampostería reforzada de bloque de perforación vertical (DES) con todas las celdas rellenas	Pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	5.5	3.0	si	45m	si	45m	si	45m

Tabla 4. A.3-4 Sistema estructural dual (Nota 1) **Fuente.** Elaboración propia

D. Sistema Dual				ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia	Sistema resistencia	Valor R0 (Nota 2)	Valor Ω0 (Nota 4)	Alta		Intermedia		Ва	ija	
sísmica (fuerzas horizontales)	para cargas verticales			Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.	
g. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Pórticos de concreto con capacidad especial de disipación de energía (DES)	4.5	2.5	Si	35m	si	35m	Si	35m	
h. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	4.5	2.5	si	35m	si	35m	si	35m	
i. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	3.5	2.5	No se permite		si	30m	si	30m	
j. Muros de mampostería reforzada de bloque de perforación vertical (DMO)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	3.5	2.5	No se permite		si	30m	si	30m	
k. Muros de cortante con placa de acero (DES)	Pórticos de acero con alma llena, con conexiones rígidas (DES)	7.0	2.5	si	sin límite	Sİ	sin límite	Sİ	sin límite	
m. Muros de cortante mixtos con placa de acero	Pórticos de acero con alma llena, con conexiones rígidas (DES)	6.5	2.5	si	sin límite	si	sin límite	si	sin límite	
n. Muros de concreto reforzado (DES) mixtos con elementos de acero	Pórticos de acero con alma llena, con conexiones rígidas (DES)	6.0	2.5	si	sin límite	si	sin límite	si	sin límite	
o. Muros de concreto reforzado (DMI) mixtos con elementos de acero	Pórticos de acero con alma llena, con conexiones rígidas (DES)	5.0	2.5	No se permite		No se p	ermite	Si	sin límite	

Tabla 4. A.3-4 Sistema estructural dual (Nota 1) **Fuente.** Elaboración propia

D. Sistema Dual		\/-I	Valar	ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia	Sistema resistencia	Valor R0 (Nota 2)	Valor Ω0 (Nota 4)	Alta		Intermedia		Baja		
sísmica (fuerzas horizontales)	para cargas verticales			Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.	
p. Muros de concreto reforzado (DMI) mixtos con elementos de acero	Pórticos de acero con alma llena, con conexiones rígidas (DMO)	4.0	3.0	No se permite		No se permite		si	sin limite	
2. Pórticos de acero con diagonales excéntricas										
a. Pórticos de acero con diagonales excéntricas si las conexiones con las columnas por fuera del vínculo son resistentes a momento	Pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	8.0	2.5	si	sin limite	si	sin limite	si	sin limite	
b. Pórticos de acero con diagonales excéntricas si las conexiones con las columnas por fuera del vínculo no son resistentes a momento	Pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	7.0	2.5	si	sin limite	si	sin Iimite	si	sin limite	

Tabla 4. A.3-4 Sistema estructural dual (Nota 1) **Fuente.** Elaboración propia

D. Sistema Dual		Volon	V. I	ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia	Sistema resistencia	Valor R0	Valor Ω0 (Nota 4)	Alta		Intermedia		Baja		
sísmica (fuerzas horizontales)	para cargas verticales	(Nota 2)		Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.	
a. Pórticos de acero con diagonales excéntricas si las conexiones con las columnas por fuera del vínculo son resistentes a momento	Pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	6.0	2.5	si	sin límite	si	sin límite	Si	sin límite	
b. Pórticos de acero con diagonales excéntricas si las conexiones con las columnas por fuera del vínculo no son resistentes a momento	Pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	5.0	2.5	si	sin límite	si	sin límite	Si	sin límite	
3. Pórticos con diagon	3. Pórticos con diagonales concéntricas									
a. De acero con capacidad especial de disipación de energía (DES)	Pórticos de acero resistentes a momentos con capacidad especial de disipación de energía (DES)	6.0	2.5	Si	sin límite	si	sin Iímite	Si	sin límite	
b. De acero con capacidad mínima de disipación de energía (DMI)	Pórticos de acero resistentes a momentos con capacidad moderada de disipación de energía (DMO)	3.0	2.5	No se permite		si	60m	si	sin límite	
c. De concreto con capacidad moderada de disipación de energía (DMO)	Pórticos de concreto con capacidad moderada de disipación de energía (DMO)	4.0	2.5	No se permite		si	24m	si	30m	
d. Pórticos mixtos con diagonales concéntricas (DES)	Pórticos de acero con alma llena con conexiones rígidas (DES)	6.0	2.5	Si	sin límite	si	sin límite	Si	sin límite	

Tabla 5. (Continuación) Sistema estructural dual **Fuente.** Elaboración propia

D. Sistema Dual		Valor	Valor	ZONAS DE AMENAZA SÍSMICA						
Sistema resistencia	Sistema resistencia	RO (Nota 2)	Ω0 (Nota 4)	Alta		Intermedia		Ваја		
sísmica (fuerzas horizontales)	para cargas verticales			Uso Permit	Altura Max.	Uso Permit	Altura Max.	Uso Permit	Altura Max.	
e. Pórticos de acero con diagonales concéntricas restringidas al pandeo	Pórticos de acero con alma llena con conexiones rígidas (DES)	7.0	2.5	si	sin limite	Si	sin limite	si	sin limite	
f. Pórticos de acero con diagonales concéntricas (DES)	Pórticos de acero con alma llena con conexiones rígidas (DMO)	6.0	2.5	No se permite		si	10m	si	sin limite	
g. Pórticos mixtos con diagonales concéntricas (DES)	Pórticos de acero con alma llena con conexiones rígidas (DMO)	5.5	2.5	si	50m	si	30m	si	sin limite	
h. Pórticos con diagonales concéntricas que resistan solo a tensión	El mismo	3.0	2.5	No se permite (nota 4)						

Tabla 5. (Continuación) Sistema estructural dual **Fuente.** Elaboración propia

El sistema dual es un sistema estructural que tiene un pórtico espacial resistente a momentos y sin diagonales, combinado con muros estructurales o pórticos con diagonales. Para que el sistema estructural se pueda clasificar como sistema dual se deben cumplir los siguientes requisitos: (a) El pórtico espacial resistente a momentos, sin diagonales, esencialmente completo, debe ser capaz de soportar las cargas verticales. (b) Las fuerzas horizontales son resistidas por la combinación de muros estructurales o pórticos con diagonales, con el pórtico resistente a momentos, el cual puede ser un pórtico de capacidad especial de disipación de energía (DES), cuando se trata de concreto reforzado o acero estructural, un pórtico con capacidad moderada de disipación de energía de concreto reforzado, o un pórtico con capacidad mínima de disipación de energía de acero estructural. El pórtico resistente a momentos, actuando independientemente, debe diseñarse para que sea capaz de resistir como mínimo el 25 por ciento del cortante

sísmico en la base. (c) Los dos sistemas deben diseñarse de tal manera que en conjunto sean capaces de resistir la totalidad del cortante sísmico en la base, en proporción a sus rigideces relativas, considerando la interacción del sistema dual en todos los niveles de la edificación, pero en ningún caso la responsabilidad de los muros estructurales o los pórticos con diagonales puede ser menor del 75 por ciento del cortante sísmico en la base.

- Para edificaciones clasificadas como irregulares el valor de RO
- A.3.3.3).debe multiplicarse por φa , φpy φr , para obtenerR = φaφpφr R0(Véase El valor de Ω0 puede reducirse restándole 0.5 en estructuras con diafragma flexible, pero no debe ser menos de 2.0 para cualquier estructura.
- Se permite hasta una altura de 12m en edificios de un piso (naves industriales o similares) que no sean del grupo de uso IV.

5. Glosario

Cerramiento: superficies envolventes que delimitan y acondicionan los espacios tapando o cerrando una abertura para impedir el paso del aire o la luz.

Diagonales: línea recta que une dos ángulos no adyacentes; empleado para la subdivisión de un segmento en partes proporcionales.

Disipación: en física, la disipación incluye el concepto de un sistema dinámico en el que importantes modos mecánicos, como las ondas o las oscilaciones, pierden energía con el paso del tiempo, normalmente debido a la acción de la fricción o la turbulencia.

Elementos: cada uno de los componentes materiales que integran una obra de construcción. Se suelen clasificar en estructurales y compartimentados.

Estático: que permanece en un mismo estado, sin mudanza en él.

Infraestructura: es la parte de una construcción que está bajo el nivel del suelo.

Materializado: hacer realidad una idea o deseo.

Pórtico: es un espacio arquitectónico cubierto, conformado por una galería de columnas adosada a un edificio Estático.

Solapar: cubrir total o parcialmente algo con otra cosa.

6. Referentes bibliográficos

Avila, E. 2016. Portafolio virtual Tecnología de la construcción. Arquitectura. Guatemala. Recuperado de https://sites.google.com/site/bi2tdlc1arq5/tecnologia-de-la-construccion

Cladera, A., Etxeberria, M., Schiess, I., Pérez, A. Tecnologías y Materiales de Construcción Para el Desarrollo. Construmática (2021). Recuperado de https://www.construmatica.com/construpedia/Proceso_Constructivo_en_la_Cooperaci%C3%B3n_para_el_Desarrollo

EcuRed. Estructuras (Construcción) (2021). Recuperado de https://www.ecured.cu/Estructuras_(Construcci%C3%B3n)

7. Creative commons

Atribución, no comercial, compartir igual.

Este material puede ser distribuido, copiado y exhibido por terceros si se muestra en los créditos. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.

8. Créditos

SERVICIO NACIONAL DE APRENDIZAJE SENA

TECNÓLOGO EN CONTRUCCIÓN EN EDIFICACIONES

EQUIPO DIRECTIVO

Director regional

Juan Felipe Rendón

Subdirectora de centro(e)

Xiomara Posada Zuluaga

Líder SENNOVA

Hugo Fernando Ripoll de la Barrera

EQUIPO EJECUTOR

Líder de proyecto

Alvaro Pérez Niño

Experto pedagógico

Alexandra Cecilia Hoyos Figueroa

Expertos Temáticos

- •Linda Edith Pacheco Hernández
- Roberto Jairo Villa Vasco
- •Diana Lucelly Quintero Barco
- Ana Cristina Morales Echeverri
- Elsa María Orozco Murillo

Diseñador Multimedia

Jefferson Fuertes González

Desarrollador

Mauricio Rivero Padilla

