Isogeny graphs in cryptography

Luca De Feo

Université Paris Saclay, UVSQ

July 29, 2019 Cryptography meets Graph Theory Würzburg, Germany

Plan

- Elliptic curves, isogenies, complex multiplication,
- Isogeny graphs,
- Key exchange,
- Signatures and whatnot.

Projective space

Definition (Projective space)

Let \bar{k} an algebraically closed field, the projective space $\mathbb{P}^n(\bar{k})$ is the set of non-null (n+1)-tuples $(x_0,\ldots,x_n)\in \bar{k}^n$ modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by $(x_0 : \cdots : x_n)$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

• $\mathcal{O} = (0:1:0)$ is the point at infinity;

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

 The law is algebraic (it has formulas);

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- O is the group identity;
- Opposite points have the same *x*-value.

Group structure

Torsion structure

Let E be defined over an algebraically closed field \bar{k} of characteristic p.

$$E[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

if
$$p \nmid m$$
,

$$E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} \ \{\mathcal{O}\} \end{cases}$$

ordinary case, supersingular case.

Free part

Let E be defined over a number field k, the group of k-rational points E(k) is finitely generated.

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \bar{k}$.

They are group isomorphisms.

j-Invariant

Let $E: y^2 = x^3 + ax + b$, its j-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Maps: isogenies

Theorem

Let $\phi: E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- ϕ is a surjective group morphism,
- ϕ is a group morphism with finite kernel,
- ϕ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{ll} [m] \; : \; E
ightarrow E, \ P \mapsto [m]P. \end{array}$$

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

• Kernel generator in red.

$$E: y^2 = x^3 + x$$
 $E': y^2 = x^3 - 4x$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Curves over finite fields

Frobenius endomorphism

Let E be defined over \mathbb{F}_q . The Frobenius endomorphism of E is the map

$$\pi : (X : Y : Z) \mapsto (X^q : Y^q : Z^q).$$

Hasse's theorem

Let E be defined over \mathbb{F}_q , then

$$|\#E(k)-q-1|\leq 2\sqrt{q}.$$

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field k are isogenous over k if and only if #E(k) = #E'(k).

Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$

 \mathbb{C}/Λ is a complex torus.

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

$$lpha \Lambda_1 = \Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $lpha \Lambda_1 = \Lambda_2$

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $lpha \Lambda_1 = \Lambda_2$

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $lpha \Lambda_1 = \Lambda_2$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

The *j*-invariant

We want to classify complex lattices/tori up to homothety.

Eisenstein series

Let Λ be a complex lattice. For any integer k>0 define

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-2k}.$$

Also set

$$g_2(\Lambda) = 60 G_4(\Lambda), \qquad g_3(\Lambda) = 140 G_6(\Lambda).$$

Modular *j*-invariant

Let Λ be a complex lattice, the modular j-invariant is

$$j(\Lambda) = 1728 \frac{g_2(\Lambda)^3}{g_2(\Lambda)^3 - 27g_3(\Lambda)^2}.$$

Two lattices Λ , Λ' are homothetic if and only if $j(\Lambda) = j(\Lambda')$.

Elliptic curves over $\mathbb C$

Weierstrass p function

Let Λ be a complex lattice, the Weierstrass \wp function associated to Λ is the series

$$\wp(z;\Lambda) = rac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight).$$

Fix a lattice Λ , then \wp and its derivative \wp' are elliptic functions:

$$\wp(z+\omega)=\wp(z), \qquad \wp'(z+\omega)=\wp'(z)$$

for all $\omega \in \Lambda$.

Uniformization theorem

Let Λ be a complex lattice. The curve

$$E : y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda)$$

is an elliptic curve over \mathbb{C} . The map

$$egin{aligned} \mathbb{C}/\Lambda &
ightarrow E(\mathbb{C}), \ 0 &\mapsto (0:1:0), \ z &\mapsto (\wp(z):\wp'(z):1) \end{aligned}$$

is an isomorphism of Riemann surfaces and a group morphism.

Conversely, for any elliptic curve

$$E: y^2 = x^3 + ax + b$$

there is a unique complex lattice Λ such that

$$g_2(\Lambda) = -4a, \qquad g_3(\Lambda) = -4b.$$

Moreover $j(\Lambda) = j(E)$.

Multiplication

Multiplication

Torsion subgroups

The ℓ-torsion subgroup is made up by the points

$$\left(rac{i\omega_1}{\ell},rac{j\omega_2}{\ell}
ight)$$

It is a group of rank two

$$egin{aligned} E[\ell] &= \langle \, a, \, b \,
angle \ &\simeq (\mathbb{Z}/\ell\mathbb{Z})^2 \end{aligned}$$

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then $\Lambda_1\subset \Lambda_2$ and we define a degree ℓ cover

$$\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

$$\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then $\Lambda_1\subset \Lambda_2$ and we define a degree ℓ cover

$$\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.

Taking a point $\frac{b}{b}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map.

 $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point $\frac{b}{b}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map.

 $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point $\frac{b}{b}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map.

 $\hat{\phi}$ is called the dual isogeny of ϕ .

Isogenies: back to algebra

Let $\phi: E o E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^* k(E')$ is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- **3** If ϕ is separable, then deg $\phi = \# \ker \phi$.
- ① If ϕ is purely inseparable, then $\ker \phi = \{\mathcal{O}\}$ and $\deg \phi$ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: back to algebra

Let $\phi: E o E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^* k(E')$ is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- **3** If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then $\ker \phi = \{\mathcal{O}\}$ and $\deg \phi$ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: separable vs inseparable

Purely inseparable isogenies

Examples:

- The Frobenius endomorphism is purely inseparable of degree q.
- All purely inseparable maps in characteristic p are of the form $(X:Y:Z)\mapsto (X^{p^e}:Y^{p^e}:Z^{p^e}).$

Separable isogenies

Let E be an elliptic curve, and let G be a finite subgroup of E. There are a unique elliptic curve E' and a unique separable isogeny ϕ , such that $\ker \phi = G$ and $\phi : E \to E'$.

The curve E' is called the quotient of E by G and is denoted by E/G.

The dual isogeny

Let $\phi:E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}:E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E,\quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

- \bullet $\hat{\phi}$ is defined over k if and only if ϕ is;
- ② $\widehat{\psi \circ \phi} = \hat{\phi} \circ \hat{\psi}$ for any isogeny $\psi : E' \to E''$;
- $oldsymbol{\widehat{\psi}+\phi}=\widehat{\psi}+\widehat{\phi}$ for any isogeny $\psi:E o E'$;
- $\hat{\hat{\phi}}=\phi.$

Algebras, orders

- A quadratic imaginary number field is an extension of \mathbb{Q} of the form $Q[\sqrt{-D}]$ for some non-square D>0.
- A quaternion algebra is an algebra of the form $\mathbb{Q} + \alpha \mathbb{Q} + \beta \mathbb{Q} + \alpha \beta \mathbb{Q}$, where the generators satisfy the relations

$$lpha^2, eta^2 \in \mathbb{Q}, \quad lpha^2 < 0, \quad eta^2 < 0, \quad etalpha = -lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- \mathbb{Z} is the only order contained in \mathbb{Q} ,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}(i)$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}(\sqrt{5})$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

The endomorphism ring

The endomorphism ring $\mathrm{End}(E)$ of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

• \mathbb{Z} , only if p=0

E is ordinary.

 \bullet An order ${\cal O}$ in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^a:

E is supersingular.

 a (ramified at p and ∞)

The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in $\operatorname{End}(E)$ for some $|t| \leq 2\sqrt{q}$, called the trace of π . The trace t is coprime to q if and only if E is ordinary.

Suppose E is ordinary, then $D_{\pi}=t^2-4q<0$ is the discriminant of $\mathbb{Z}[\pi]$.

- $K = \mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{D_{\pi}})$ is the endomorphism algebra of E.
- Denote by \mathcal{O}_K its ring of integers, then

$$\mathbb{Z}
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

In the supersingular case, π may or may not be in \mathbb{Z} , depending on q.

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order $\mathcal{O} \subset K$ can be written as $\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K$ for an integer f, called the conductor of \mathcal{O} , denoted by $[\mathcal{O}_k : \mathcal{O}]$.
- If d_K is the discriminant of K, the discriminant of \mathcal{O} is f^2d_K .
- If \mathcal{O} , \mathcal{O}' are two orders with discriminants d, d', then $\mathcal{O} \subset \mathcal{O}'$ iff d'|d.

Ideal lattices

Fractional ideals

Let \mathcal{O} be an order of a number field K. A (fractional) \mathcal{O} -ideal \mathfrak{a} is a finitely generated non-zero \mathcal{O} -submodule of K.

When K is imaginary quadratic:

- Fractional ideals are complex lattices,
- Any lattice $\Lambda \subset K$ is a fractional ideal,
- The order of a lattice Λ is

$$\mathcal{O}_{\Lambda} = \{ lpha \in K \mid lpha \Lambda \subset \Lambda \}$$

Complex multiplication

Let $\Lambda \subset K$, the elliptic curve associated to \mathbb{C}/Λ has complex multiplication by \mathcal{O}_{Λ} .

The class group

Let
$$\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$$
. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

The class group

The class group of \mathcal{O} is

$$Cl(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

Fundamental theorem of CM

Let \mathcal{O} be an order of a number field K, and let $\mathfrak{a}_1, \ldots, \mathfrak{a}_{h(\mathcal{O})}$ be representatives of $Cl(\mathcal{O})$. Then:

- $K(j(\mathfrak{a}_i))$ is an Abelian extension of K;
- The $j(\mathfrak{a}_i)$ are all conjugate over K;
- The Galois group of $K(j(\mathfrak{a}_i))$ is isomorphic to $Cl(\mathcal{O})$;
- $\bullet \ [\mathbb{Q}(j(\mathfrak{a}_i)):\mathbb{Q}] = [K(j(\mathfrak{a}_i)):K] = h(\mathcal{O});$
- The $j(\mathfrak{a}_i)$ are integral, their minimal polynomial is called the Hilbert class polynomial of \mathcal{O} .

Lifting

Deuring's lifting theorem

Let E_0 be an elliptic curve in characteristic p, with an endomorphism ω_o which is not trivial. Then there exists an elliptic curve E defined over a number field L, an endomorphism ω of E, and a non-singular reduction of E at a place $\mathfrak p$ of L lying above p, such that E_0 is isomorphic to $E(\mathfrak p)$, and ω_0 corresponds to $\omega(\mathfrak p)$ under the isomorphism.