

The Forefront of Fraud Fighting

Miguel Araújo Senior Data Scientist miguel.araujo@feedzai.com

2018-09-04

QUICK FACTS

- 320+ employees and growing
- Founded by data scientists and aerospace engineers
- 20% of top 25 world banks (excl. China)
- Series C funded: \$82M raised to date
- Headquarters in Portugal with offices in Silicon Valley, New York City, Atlanta, Hong Kong, London, Lisbon, Coimbra and Porto.

ABOUT FEEDZAL

MISSION

A BETTER CUSTOMER EXPERIENCE THROUGH MACHINE LEARNING

INVESTORS

WHAT OTHERS SAY

The U.S. market fraud prevention just got a new player.

Ranked as a cool technology to watch.

Startups that are owning the data game.

Feedzai's machine learning is the next wave.

Payment Card Management: Essential tools for U.S. card issuers

feedzai

Source: itgovernance.co.uk

How fraud starts: Skimming

https://www.youtube.com/watch?v=DIKi1URjiwA

AGENDA

- 1. Detecting Points-of-Compromise
- 2. Feature Engineering at Scale
- 3. Automatic Machine Learning
- 4. Deep Learning
- 5. Reject Inference and Counterfactual Analysis

BreachRadar: Detecting Points-of-Compromise

Imagine you work at Feedzai

feedzai

feedzai

Given: Bipartite graph and "victim nodes".

Find: "Infectious nodes".

Given:

- > 100M credit cards, > 1B transactions;
- Fraud labels.

Find:

The most likely Points-of-Compromise.

Problem: Cards/locations with many transactions influence results disproportionately.

Lightweight Profiles

Life of a transaction

Life of a transaction

Life of a transaction

feedzai

Profiles are individual aggregations:

- Average spending in the last week.
- Distance to average location.
- Number of transactions in the last 10 minutes, ...

Context/Motivation

- Overhead of storing events.
- Overhead of expiring events.

Sliding window VS EWMA

$$EMA(t_0)=\sum_{i=0}^{+\infty}z_ie^{-rac{t_0-t_i}{ au}}$$
 Huge memory savings! $=EMA(t_1)e^{-rac{t_0-t_1}{ au}}+z_0$

AutoML

AutoML

> 50 Data Scientists

Tens of projects

Time to production

AutoML

Deep Learning

Why Deep Learning?

Automatic Feature Engineering is good.

No Feature Engineering is better.

Sequence Network

 Idea: instead of scoring a transaction, score the sequence of transactions of the card.

The sequence network

Deep Learning

Method	Dataset	Recall @ 1% FPR
Random Forest	engineered data	reference
XGBoost	engineered data	+5.4%
LightGBM	raw data	+5.8%
Sequence network	raw data	+12.5%

Reject Inference

Algorithms impact the real world

Algorithms impact the real world

Algorithms impact the real world

Many machine learning systems have direct influence in the real world

1. How to evaluate the production model?

Counterfactual Estimation

2. How to retrain a model, without bias?

Label Observed

Label Not Observed

Label Not Observed

APPROVES		DECLINES
Label Obse	erved	abel Not Observed
How to treat declines?	Model Evaluation	Model Re-Training
Ignore declines	0% Recall, NaN% Precision	Misses easy fraud

APPRO	VES			DECLINES	
	Label Observed		Label Not Observed		
low to tre	eat declines?	Model Evaluation		Model Re-Training	
gnore dec	lines	0% Recall, NaN% Pred	cision	Misses easy fraud	
reat decli	nes as fraud	100% Precision, 0% F	PR I	Biased model	

APPROVES		DECLINES
Label Observ	ed	Label Not Observed
How to treat declines?	Model Evaluation	Model Re-Training
Ignore declines	0% Recall, NaN% Precisio	n Misses easy fraud
Treat declines as fraud	100% Precision, 0% FPR	Biased model
Use expert information	Costly + analyst bias	Costly + analyst bias

Evaluating Models

- Randomly (with small probability, called propensity) let through transactions classified as fraud
- 2. After we get labels: estimate precision, recall, FPR without significant bias

Evaluating Models

For all metrics:

- 1. Ignore actually declined transactions
- 2. Weight each approved transaction by 1/propensity

Score	P(Approving)	Declined?	Fraudulent?	Weight
0.3	100%	No	Yes	1
0.4	100%	No	No	1
0.6	10%	Yes	?	0
0.7	10%	Yes	?	0
0.8	10%	No	Yes	10
0.9	10%	Yes	?	0

THANK YOU

we are hiring

