INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère

Ammoniac

SEUILS DE TOXICITÉ AIGUË

■ Identification

Formule Chimique	N°CAS	N°Index	N°EINECS	Dénominations (Designation)	Etat physique (*)
NH ₃	7664-41-7	007-001-00-5	231-635-3	Hydroxide d'ammonium Ammonia Ammonia gas Anhydrous ammonia	gaz

^(*) à T et P ambiante (20°C / 1 atm)

■ Principales utilisations

Il est utilisé dans la fabrication de fertilisants agricoles, d'explosifs, de fibres textiles synthétiques, de produits d'entretien ménagers, de colorants. Il est également utilisé en synthèse organique, comme agent frigorigène et pour le traitement des métaux.

■ Étiquetage

T, C, N R10, R23, R34, R50 S1/2, S9, S16, S26, S36/37/39, S45, S61

■ Paramètres physico-chimiques

• Masse molaire (g/mol)17,03	· Solubilité dans l'eau à 20°C (g/L)				
· Pression de vapeur (Pa)	· Température de fusion (°C)77,7				
à 20℃ 8,57.10 ⁵	· Température d'ébullition (°C)33,4				
· Concentration de vapeur saturante à 20°C	·Température d'auto-inflammation (°C) 651				
en g/m³5 990	• Point éclair (°C)(*)				
en ppm 8 436 620	· Limites d'explosivité (% dans l'air)				
· Densité de la phase vapeur	Inférieure (LIE) 16				
(par rapport à l'air)0,59	Supérieure (LSE) 25				
	·Facteur de conversion (à 25°C / 1 atm)				
• Seuil de perception (SP)3,5 à 35 mg/m ³	1 ppm = 0.70 mg/m^3				
5 à 50 ppm	1 mg/m ³ = 1,44 ppm				

(*) Non concerné

INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère

Ammoniac

SEUILS DE TOXICITÉ AIGUË

■ Seuils des effets toxiques (août 2003 / août 2004)

Concentration	Temps (min.)						
	1	3	10	20	30	60	
Seuil des effets létaux significatifs - SELS							
· mg/m³	19 623	ND	6 183	4 387	3 593	2 543	
· ppm	28 033	ND	8 833	6 267	5 133	3 633	
Seuil des premiers effets létaux - SPEL							
· mg/m³	17 710	10 290	5 740	4 083	3 337	2 380	
· ppm	25 300	14 700	8 200	5 833	4 767	3 400	
Seuil des effets irréversibles - SEI							
· mg/m³	1 050	700	606	428	350	248	
· ppm	1 500	1 000	866	612	500	354	
Seuil des effets réversibles - SER							
· mg/m³	196	140	105	84	77	56	
• ppm	280	200	150	120	110	80	

ND: non déterminé

■ Justification scientifique

Effets létaux :

- Etude critique : Appelman et al., 19821 (cotation de Klimisch : 1)
- Etude expérimentale chez le rat, mesure de la létalité. Cinq concentrations d'exposition pour chaque temps, quatre temps d'exposition (10, 20, 40 et 60 minutes).
- Utilisation du logiciel probit-standard pour détermination des CLx%.
- Utilisation d'un facteur d'incertitude (3 inter-espèces).

Effets irréversibles :

- Etudes critiques : Wallace, 1978² et Silverman *et al.*, 1949³ (études de bonne qualité)
- Etudes expérimentales chez des volontaires sains.
 - Première étude : anomalies fonctionnelles respiratoires et irritation oculaire, une concentration d'exposition (500 ppm), un temps d'exposition (30 minutes).
 - Deuxième étude : anomalies fonctionnelles respiratoires et irritation oculaire, plusieurs concentrations d'exposition (150 à 1 500 ppm), plusieurs temps de d'exposition (1 à 3 minutes).
- Deux couples concentration-temps (Wallace, 1978) et utilisation de loi de Haber (Silverman et al., 1949).
- Pas d'utilisation de facteurs d'incertitude.

³ Silverman L., James L., Whittenberger J.L. and Muller J. (1949) – Physiological response of man to ammonia in low concentrations. *J Ind Hyg Toxicol*, 31, 74–78.

¹ Appelman L.M., ten_Berge W.F. and Reuzel P.G. (1982) – Acute inhalation toxicity study of ammonia in rats with variable exposure periods. *Am Ind Hyg Assoc J*, 43, 9, 662–665.

² Wallace D.P. (1978) - Atmospheric emissions and control ICI, Agricultural Division. Billingham, England, 51-55.

INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seulls de toxicité aiguë

Ammoniac

Effets réversibles :

- Etudes critiques : Cole et al., 1977⁴ et Verbeck, 1977⁵ (études de bonne qualité).
- Etudes expérimentales chez des volontaires sains.
 - Première étude : anomalies fonctionnelles respiratoires, plusieurs concentrations d'exposition (72 à 495 ppm), un temps de d'exposition (en moyenne 10 minutes).
 - Deuxième étude : irritation des voies respiratoires supérieures, quatre concentrations d'exposition, jusqu'à 2 heures d'exposition.
- Utilisation de la loi de Haber (lecture sur papier logarithmique).
- Pas de facteurs d'incertitude.

■ Remarques importantes

Attention, aux réactions vives, voire violente ou explosive, avec de nombreux composés.

Pour les effets irréversibles, les données toxicologiques des deux études critiques induit une rupture de pente.

■ Courbes des seuils SELS, SPEL, SEI, SER et SP en fonction du temps d'exposition

⁴ Cole T.J., Cotes J.E., Johnson G.R., Martin H.D., Reed J.W. and Saunders J.E., 1977. Ventilation, cardiac frequency and pattern of breathing during exercise in men exposed to O-chlorobenzylidene malononitrile (CS) and ammonia gas in low concentrations. *QJ Exp Physiol Cogn Med Sci*, 62, 4, 341–351.

⁵ Verberk M.M., 1977. Effects of ammonia in volunteers. Int Arch Occup Environ Health, 39, 2, 73-81.

