

Business Understanding

Background

Prediction Task

Relevance

Business Understanding

Background

- City of Chicago
- Ride-hailing industry

Prediction Task

Trip duration estimation

Relevancy

- Enhancing real time predictions
- Stakeholder Analysis ⇒

Stakeholder Analysis

Primary Stakeholders

Operations Team

Customer Service

Product Management

Data Science Team

Secondary Stakeholders

Drivers

Passengers

Business Leadership

External Stakeholders

Ride-Hailing Providers

Reulators and City Planners

Data Understanding

Data Source Overview

Data Acquisition & Loading

Data Source Overview

- City of Chicago Open Data Portal
- 2023-2024
- 174M rows of data
- 24 individual features
- Data collected via routine reporting by ride-hailing companies

Data Acquistion & Loading

- Filter application
- Reducing data to every 100th row
- 327,526 individual trips for further processing
- ~55 trips per unique pickup/dropoff area code combination

Data Limitations & Modeling Considerations

Deficient Data
Quality

Data Representation Challenges

Modeling Considerations

Data Preparation

Data Exploration*

Data Cleaning

Feature Engineering

Feature Selection

Post-Prep EDA & Visualizations

Data Exploration

Various graphs regarding trip duration

Mean: 16 minutes

Median: 12.6 minutes

 Distribution heavily rightskewed

Most trips between 4-16 minutes

Trip distance vs. Trip duration analysis

- Positive correlation with high variability
- Frequent delays relative to distance
- Speed distribution reflects urban conditions
- Distribution consistency confirms data quality

Strategic takeaways for stakeholders via spatial analysis

- Commuter Zones (12&18)
- Peripheral Areas (76&56)
- Short-Trip Neighborhoods (41,37,42)
- Service Planning

Insights from Top 15 community areas by trip count

- Busy areas (8,28,32)
- Range of trip duration
- Statistical anomalies (41&76)

Stakeholder Reflections

Are long trips from peripheral areas a result of poor infrastructure, or natural commuting patterns?

Should we target
service
improvements (e.g.,
transit or rideshare
coverage) in areas
with longer average
trip durations?

Can we optimize dispatch or resource allocation based on highly local vs. outbound trip behaviors?

What socioeconomic or geographical features explain why some areas generate shorter vs. longer trips?

Financial Analysis

- Strong positive correlation between trip duration and fare
- Efficiency gains per-mile
- Charge Clustering
- Independent additional charges

Possible Business Implications for Stakeholders

Pricing Strategy

Short trip premium

Surge pricing impact

Operational Insights

Trip duration sweet spot
Pricing transparency
Market segmentation

Data Quality Observations

Outlier Management
Missing values
Skewed distribution

Data Cleaning

Feature Engineering

Temporal Feature Extraction

• Extracting from trip_start_timestamp via Pandas

Merging Weather Data

- Weather conditions like temperature, rainfall, wind etc.
- Cleaning up Weather Data

Removal of Irrelevant Features

- Based on previous descisions
- Prior final feature selection

Feature Encoding

• For categorial (coordinate) variables

Feature Scaling

• Standardize numeric features using StandardScaler

Final Feature Selection

Final Feature Selection - Coding Results

Trip_miles

Fare

Additional_charges

Hour

Is_peak_hour

Month

Temp_pickup

Prcp_pickup

Wsdp_pickup

Dropoff_community_area_target_encoded

Trip_seconds

Post-Prep EDA & Visualizations

Weather data correlation

Temporal factors

Basic Temporal Analysis of Trip Duration

Basic Temporal Analysis of Trip duration

- Peak hour congestion (4pm&7am)
- Increasing demand over the day
- Weekday vs. weekend patterns
- Seasonal Variation

Seasonal Trip Duration Analysis (Summer vs Winter)

Seasonal Insights

- Higher demand and longer trips during summer
- Stronger peak hours during summer
- Seasonal marketing and off-season opportunities

Correlation Insights: Weather vs. Trip duration

Weather variables show very weak linear relationships with trip duration

Modeling

The Machine Learning Framework

- Hypothesis function
- Loss function
- Optimization method

Model Selection

- Linear Regression
- Random Forest Regression

Evaluation Strategy

- Training Set (60%)
- Validation Set (20%)
- Test Set (20%)

Complementary regression metrics

Data Splitting

- RMSE
- MAE
- R^2 Score

Multiple Polynomial Linear Regression

Baseline model

 Identifies non-linear Relationships between certain features and target while remaining linear in its parameters

Objective

 Enhance capabilities through polynomial features and ridge regularization

Implementation Considerations

- Streamlining with Pipeline
- Hyperparameter Tuning with GridSearchCV

Results

- R^2 score of 0.6546
- RMSE of 328.301 seconds

Multiple Polynomial Linear Regression

Linear Regression: Outliers vs. Clipped Data Comparison

Multiple Polynomial Linear Regression

3D Scatter Plot with Regression Plane Slice (First Two Features - Enhanced Model)

Random Forest Regressor

Key Concepts

Bagging (Bootstrap aggregation)

Feature Randomness

Prediction aggregation

Benefits to our Prediction Task

Complex feature interactions in urban mobility

Ability to handle mixed data

Robustness to Outliers

Limitations

Interpretability

Performance on small datasets

Results

RMSE of 246.283 seconds

R^2 score of 0.8056

Hyperparameter Tuning with RandomizedSearchCV

Wide range of hyperparameter values

Faster than GridSearchCV

Tests fixed number of random combinations

Very good approximation of the best model

Reduces training time

Random Forest Regressor

Evaluation of Trip Duration Prediction Models

Model Performance Comparison

• Random Forest Regressor Outperforms Linear Regression

Model	RMSE (min)	MAE (min)	R^2
Linear Regression	5.47	3.51	0.65
Random Forest	4.10	2.76	0.81

- Random Forest: Lower errors (RMSE, MAE) & better fit (Higher R²)
- Visually, Random Forest shows tighter predictions & better residual distribution.

Visual Comparison of Predictions

- Actual vs. Predicted
 Scatter Plots & Residuals
- The performance is also visually evident

Feature Importance - Key Differences

Understanding Feature Influence

Linear Regression:

Coefficients for *transformed & scaled* polynomial features.

Interpretation is complex; shows influence of combined/curved relationships.

Random Forest: Importance for *original* input features (e.g., Gini importance).

Clear, direct, and intuitive measure of impact.

```
Feature Importance (Linear Regression) ["Top 15)"]:
                                             Feature
                                                     Coefficient
0
                                         trip_miles 330.439342
                          trip_miles is_peak_hour^2 217.994425
1
2
                                       trip_miles^2 -185.832697
3
                            trip_miles is_peak_hour -153.049650
4
                                             hour^2 -143.471992
5
                                                      106.217965
                                                fare
6
                                    trip_miles fare
                                                    94.832009
7
                                fare is_peak_hour^2 75.091321
8
    trip_miles dropoff_community_area_target_encoded
                                                       53.166722
9
                                             hour^3
                                                      -51.767111
10
                                                       51.702226
                                               hour
11
                                  hour is_peak_hour
                                                      -47.474875
12
                                 additional_charges
                                                      46.638869
13
                                  trip_miles hour^2 -45.665637
                                  fare is_peak_hour
14
                                                      -42.366717
```

Feature Importance - Top Drivers

- Both Models Highlight trip_miles and fare
- Random Forest: trip_miles and fare are overwhelmingly most important (72% combined).
- additional_charges and hour also significant.

Model Selection 1

Multiple Polynomial Linear Regression

Pros:

- non-linear relationships through feature engineering.
- faster prediction
- informative coefficients

Cons

- Assumes a functional form for non-linearity
- Sensitive to outliers
- Interpretation of coefficients
- Less robust
- Lower performance than Random Forest

Model Selection 2Random Forest Regressor

Pros:

- Captures non-linear and complex feature relationships.
- Handling of a mix of numerical and categorical features
- Robust to outliers and noisy data
- Interpretable feature importance scores for original features.
- Generalization performance
- Superior performance metrics

Cons:

- Black box model
- Training is computationally more intensive
- Hyperparameter tuning

Final Selection = Random Forest

significantly better performance metrics

better generalization to unseen data

ability to handle non-linearity

Robustness to outliers

Black box

No informative coefficients

Slower prediction

Business Perspective

01

Value for Stakeholders

- Accurate trip_seconds prediction offers substantial value across the ride-hailing ecosystem.
- A comprehensive perspective, accounting for all stakeholders, is vital for business professionals.

02

Domain knowledge is indispensable for feature identification, result interpretation, and real-world implications.

Business Perspective

Company (Operations & Strate	Optimizes resource allocation, dynamic pricing,, strategic growth.
① Drivers:	Clearer expectations for time and income management. Potential increase in earning.
Passengers (Customers):	Delivers improved ETA accuracy and a better overall experience.
Investors/Shareholders:	Demonstrates a strong, data-driven business model and competitive advantage

Reflections & Potential Improveme nts

Reflections & Potential Improvements

• **Key Learnings:** CRISP-DM's value, outlier impact, crucial data prep, ensemble model power, and the performance vs. interpretability trade-off.

Improvements:

- Refine workflow planning.
- More advanced feature engineering (temporal, geospatial, interactions).
- Deeper dive into encoding and scaling strategies.
- Advanced outlier handling.
- Explore other (ensemble) models (e.g., Gradient Boosting).
- Detailed error analysis for targeted enhancements.