Linearni funkcionali

Klemen Šivic

16. junij 2022

1 Dualna baza

Spomnimo se: Če je V končnorazsežen vektorski prostor nad obsegom \mathcal{O} , potem je linearen funkcional na V linearna preslikava iz V v \mathcal{O} . Množico $\mathcal{L}(V,\mathcal{O})$, ki jo sestavljajo vsi linearni funkcionali na V, običajno označimo z V^* . Imenujemo jo dualni prostor prostora V. Vemo že, da je V^* vektorski prostor nad \mathcal{O} in da v matrični predstavitvi linearnih preslikav linearnim funkcionalom ustrezajo vrstice. Če je dim V=n, je torej $V^*\cong \mathcal{O}^{1\times n}$, zato je

$$\dim V^* = \dim \mathcal{O}^{1 \times n} = n = \dim \mathcal{O}^n = \dim V,$$

torej sta prostora V in V^* izomorfna.

Če v V izberemo neko bazo, potem v V^* obstaja odlikovana baza, ki jo imenujemo dualna baza.

Definicija 1.1. Naj bo $\mathcal{B}_V = \{v_1, \dots, v_n\}$ baza prostora V. Množica funkcionalov $\{\varphi_1, \dots, \varphi_n\} \subseteq V^*$ je dualna baza za bazo \mathcal{B}_V , kadar velja $\varphi_i(v_j) = \delta_{ij} := \begin{cases} 1; & i = j \\ 0; & i \neq j \end{cases}$ za vsaka $i, j = 1, \dots, n$. δ_{ij} se imenuje Kroneckerjev delta.

Iz definicije ne sledi niti obstoj niti enoličnost dualne baze. Da dualna baza obstaja in je z bazo \mathcal{B}_V enolično določena, bomo dokazali v naslednji trditvi. Prav tako bomo v tej trditvi upravičili ime dualne baze, t.j. dokazali bomo, da je (v primeru, ko je V končnorazsežen) dualna baza res baza dualnega prostora.

Trditev 1.2. Dualna baza za bazo \mathcal{B}_V vedno obstaja, je z bazo \mathcal{B}_V enolično določena in je res baza prostora V^* .

Dokaz. Linearen funkcional je enolično določen s svojimi vrednostmi na bazi. Če torej za linearen funkcional φ_i velja $\varphi_i(v_j) = \delta_{ij}$ za $j = 1, \ldots, n$ in je $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$ razvoj poljubnega elementa $x \in V$ po bazi, potem je

$$\varphi_i(x) = \varphi_i(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha_1 \varphi_i(v_1) + \dots + \alpha_n \varphi_i(v_n) = \alpha_i.$$

Ker je razvoj po bazi enoličen, sledi, da je vrednost preslikave φ_i v vsakem vektorju prostora V enolično določena, kar pomeni, da je φ_i enolično določen.

Za dokaz obstoja pa za vsak $i=1,\ldots,n$ definirajmo $\varphi_i(\alpha_1v_1+\cdots+\alpha_nv_n)=\alpha_i$. Ker vsak element prostora V lahko enolično razvijemo po bazi, je s tem predpisom dobro definirana preslikava $\varphi_i\colon V\to\mathcal{O}$. Z računom hitro lahko preverimo, da je to linearen funkcional. Očitno tudi velja $\varphi_i(v_j)=\delta_{ij}$ za $i=1,\ldots,n$. S tem je dokaz obstoja dualne baze končan.

Dokažimo še, da je množica $\{\varphi_1,\ldots,\varphi_n\}$ res baza prostora V^* . Ker je dim V^* = dim V=n, zadošča dokazati, da so funkcionali $\varphi_1,\ldots,\varphi_n$ linearno neodvisni. Pa naj bo $\alpha_1\varphi_1+\cdots+\alpha_n\varphi_n=0$ za neke $\alpha_1,\ldots,\alpha_n\in\mathcal{O}$. Po definiciji to pomeni, da je $\alpha_1\varphi_1(x)+\cdots+\alpha_n\varphi_n(x)=0$ za vsak $x\in V$. Če namesto x vstavimo v_i , vidimo, da za vsak $i=1,\ldots,n$ velja

$$0 = \alpha_1 \varphi_1(v_i) + \dots + \alpha_n \varphi_n(v_i) = \alpha_1 \delta_{1i} + \dots + \alpha_n \delta_{ni} = \alpha_i.$$

S tem je linearna neodvisnost množice $\{\varphi_1, \ldots, \varphi_n\}$ dokazana.

Opomba 1.3. V zgornjem dokazu smo upoštevali, da že vemo, da je dim $V^* = \dim V$ in je za dokaz, da je $\{\varphi_1, \ldots, \varphi_n\}$ baza prostora V^* , dovolj dokazati linearno neodvisnost. Da je ta množica ogrodje prostora V^* , pa ni težko dokazati. Če je namreč $f \in V^*$ poljuben funkcional in $x = \alpha_1 v_1 + \cdots + \alpha_n v_n \in V$ poljuben vektor, potem je

$$f(x) = f\left(\sum_{i=1}^{n} \alpha_i v_i\right) = \sum_{i=1}^{n} \alpha_i f(v_i) = \sum_{i,j=1}^{n} f(v_i) \alpha_j \varphi_i(v_j) = \sum_{i=1}^{n} f(v_i) \varphi_i \left(\sum_{j=1}^{n} \alpha_j v_j\right)$$
$$= \sum_{i=1}^{n} f(v_i) \varphi_i(x) = \left(\sum_{i=1}^{n} f(v_i) \varphi_i\right) x,$$

kjer smo upoštevali, da je $\varphi_i(v_j) = \delta_{ij}$ za vsaka i in j. Dokazali smo torej, da je $f = \sum_{i=1}^n f(v_i)\varphi_i$. Pri tem je seveda $f(v_i) \in \mathcal{O}$ za vsak i. Ker je bil $f \in V^*$ poljuben funkcional, od tod sledi, da je $\{\varphi_1, \ldots, \varphi_n\}$ ogrodje prostora V^* . Na ta način lahko alternativno dokažemo, da je dim $V^* = \dim V$ in posledično $V^* \cong V$.

Naslednja trditev nam pove, da se dualna baza lepo obnaša pri matričnih operacijah.

Trditev 1.4. Naj bo $\mathcal{B}_V = \{v_1, \dots, v_n\}$ baza prostora V in $\mathcal{B}_{V^*} = \{\varphi_1, \dots, \varphi_n\}$ njej dualna baza. Naj bo $x \in V$ in $f \in V^*$. Vektor x in funkcional f razvijmo po bazah: $x = \alpha_1 v_1 + \dots + \alpha_n v_n$,

$$f = \beta_1 \varphi_1 + \dots + \beta_n \varphi_n$$
. Označimo $a = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$ in $b = [\beta_1 \cdots \beta_n]$. Potem je $f(x) = ba$.

Povedano z besedami, vednost f(x) je enaka "skalarnemu produktu"vrstice, ki pripada funkcionalu f (qlede na dualno bazo), in stolpca, ki pripada vektorju x.

Dokaz. Trditev sledi iz naslednjega računa, kjer upoštevamo, da je $\varphi_i(v_i) = \delta_{ij}$.

$$f(x) = \left(\sum_{i=1}^{n} \beta_{i} \varphi_{i}\right) \left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) = \sum_{i,j=1}^{n} \beta_{i} \alpha_{j} \varphi_{i}(v_{j}) = \sum_{i=1}^{n} \beta_{i} \alpha_{i} = \left[\beta_{1} \cdots \beta_{n}\right] \left[\begin{array}{c} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{array}\right] = ba.$$

Primer 1.5. Na primeru si oglejmo, kako dualno bazo poiščemo v praksi. Naj bo $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$,

$$v_2=\left[egin{array}{c} 0\\ 2\\ 1 \end{array}
ight]$$
 in $v_3=\left[egin{array}{c} 2\\ 3\\ 0 \end{array}
ight]$. Poiščimo dualno bazo k bazi $\mathcal{B}=\{v_1,v_2,v_3\}$ prostora \mathbb{R}^3 .

Naj bo dualna baza množica $\mathcal{B}^* = \{\varphi_1, \varphi_2, \varphi_3\}$, kjer je $\varphi_i = [a_{i1} \ a_{i2} \ a_{i3}]$ za i = 1, 2, 3. Pogoji $\varphi_i(v_i) = \delta_{ij}$ so ekvivalentni naslednjim enačbam.

$$a_{11} - a_{13} = 1$$

$$a_{21} - a_{23} = 0$$

$$a_{31} - a_{33} = 0$$

$$2a_{12} + a_{13} = 0$$

$$2a_{22} + a_{23} = 1$$

$$2a_{32} + a_{33} = 0$$

$$2a_{11} + 3a_{12} = 0$$

$$2a_{21} + 3a_{22} = 0$$

$$2a_{31} + 3a_{32} = 1$$

Dobimo sistem 9 linearnih enačb z 9 neznankami, ki pa je sestavljen iz 3 sistemov s po 3 enačbami, vsi trije sistemi pa imajo isto matriko sistema. Še več, če označimo $A = [a_{ij}]$ in $B = [v_1, v_2, v_3]$, je zgornji sistem ekvivalenten matrični enačbi $B^T A^T = I$. Sledi $A = B^{-1}$, kar izračunamo po običajnem postopku za računanje inverza:

$$\begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & | & -2 & 1 & -2 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & | & -3 & 2 & -4 \\ 0 & 1 & 0 & | & -3 & 2 & -3 \\ 0 & 0 & 1 & | & 2 & -1 & 2 \end{bmatrix}.$$

Torej je
$$A = B^{-1} = \begin{bmatrix} -3 & 2 & -4 \\ -3 & 2 & -3 \\ 2 & -1 & 2 \end{bmatrix}$$
, od koder sledi $\varphi_1 = [-3 \ 2 \ -4]$, $\varphi_2 = [-3 \ 2 \ -3]$ in $\varphi_3 = [2 \ -1 \ 2]$.

Pokažimo primer uporabe dualne baze.

Primer 1.6. Naj bodo $a_0, a_1, \ldots, a_n \in \mathbb{R}$ paroma različni in $b_0, b_1, \ldots, b_n \in \mathbb{R}$ poljubni. Vemo, da obstaja natanko en polinom $p \in \mathbb{R}[X]$ stopnje največ n, za katerega je $p(a_0) = b_0, p(a_1) = b_1, \ldots, p(a_n) = b_n$. Kako bi tak polinom poiskali?

Način, ki se ga najprej spomnimo, je naslednji: Polinom p(X) razpišemo po koeficientih kot $p(X) = c_0 + c_1 X + \cdots + c_n X^n$. Potem enačbe $p(a_0) = b_0, \ldots, p(a_n) = b_n$ podajajo sistem n+1 enačb v n+1 neznanih koeficientih c_0, \ldots, c_n . Z reševanjem sistema dobimo neznane koeficiente c_i in s tem polinom p(X).

Način, opisan v prejšnjem odstavku, zna biti precej zamuden. V tem primeru bomo poiskali rešitev brez pretiranega računanja. Pomagali si bomo z dualno bazo.

Naj bo V vektorski prostor realnih polinomov stopnje največ n. Spomnimo se, da je ta prostor (n+1)-razsežen. Če je $a \in \mathbb{R}$ poljubno število, je s predpisom $p \mapsto p(a)$ definiran linearen funkcional na V (kar preverite sami!). Za vsak $i=0,1,\ldots,n$ je torej s predpisom $\varphi_i(p)=p(a_i)$ definiran linearen funkcional $\varphi\colon V\to\mathbb{R}$. Iščemo torej tak polinom $p\in V$, za katerega bo $\varphi_i(p)=b_i$ za vsak $i=0,1,\ldots,n$. Predpostavimo zdaj, da znamo poiskati bazo $\{p_0,p_1,\ldots,p_n\}$ prostora V, da bo za vsaka $i,j=0,1,\ldots,n$ veljalo $\varphi_i(p_j)=\delta_{ij}$ in naj bo $p=\alpha_0p_0+\alpha_1p_1+\cdots+\alpha_np_n$ razvoj polinoma p po tej bazi. Potem za vsak $i=0,1,\ldots,n$ velja

$$b_i = \varphi_i(p) = \varphi_i(\alpha_0 p_0 + \dots + \alpha_n p_n) = \alpha_0 \varphi_i(p_0) + \dots + \alpha_n \varphi_i(p_n) = \alpha_i.$$

Sledi $p(X) = b_0 p_0(X) + \cdots + b_n p_n(X)$ (in v posebnem primeru je polinom p enolično določen). Preostane nam torej le še, da poiščemo tako bazo $\mathcal{B} = \{p_0, p_1, \dots, p_n\}$ prostora V, da bo $\varphi_i(p_j) = \delta_{ij}$ za vsaka $i, j = 0, 1, \dots, n$, torej da bo $\mathcal{B}^* = \{\varphi_0, \varphi_1, \dots, \varphi_n\}$ dualna baza k bazi \mathcal{B} (čeprav zaenkrat še ne vemo niti, da je \mathcal{B}^* res baza prostora V^*). Če je $i \neq j$, je $0 = \varphi_i(p_j) = p_j(a_i)$. Z besedami povedano: števila $a_0, \dots, a_{j-1}, a_{j+1}, \dots, a_n$ so ničle polinoma $p_j(X)$. Ker so te ničle vse različne, stopnja polinoma $p_j(X)$ pa je največ n, sledi, da je vsak polinom p_j oblike

$$p_j(X) = C_j(X - a_0) \cdots (X - a_{j-1})(X - a_{j+1}) \cdots (X - a_n),$$

kjer je $C_j \in \mathbb{R}$ neka konstanta. Zdaj pa upoštevajmo še, da je $\varphi_j(p_j) = 1$. Sledi

$$1 = \varphi_j(p_j) = p_j(a_j) = C_1(a_j - a_0) \cdots (a_j - a_{j-1})(a_j - a_{j+1}) \cdots (a_j - a_n),$$

od koder dobimo

$$C_j = \frac{1}{(a_j - a_0) \cdots (a_j - a_{j-1})(a_j - a_{j+1}) \cdots (a_j - a_n)}$$

in

$$p_j(X) = \frac{(X - a_0) \cdots (X - a_{j-1})(X - a_{j+1}) \cdots (X - a_n)}{(a_j - a_0) \cdots (a_j - a_{j-1})(a_j - a_{j+1}) \cdots (a_j - a_n)}$$
(1)

za vsak j = 0, 1, ..., n.

Dokazali smo že, da je $\varphi_i(p_j) = \delta_{ij}$ za $i, j = 0, 1, \ldots, n$, če so polinomi p_j definirani s predpisi (1). Dokazati moramo še, da je $\mathcal{B} = \{p_0, p_1, \ldots, p_n\}$ baza prostora V. Ker ima množica \mathcal{B} n+1 elementov, zadošča dokazati, da je linearno neodvisna. Pa naj bo $\alpha_0 p_0 + \cdots + \alpha_n p_n = 0$ za neke $\alpha_0, \ldots, \alpha_n \in \mathbb{R}$. To pomeni, da za vsak $x \in \mathbb{R}$ velja

$$\alpha_0 p_0(x) + \alpha_1 p_1(x) + \dots + \alpha_n p_n(x) = 0.$$

Naj bo zdaj $i \in \{0, 1, ..., n\}$ poljuben in v zgornjo enakost namesto x vstavimo a_i . Dobimo

$$0 = \alpha_0 p_0(a_i) + \alpha_1 p_1(a_i) + \dots + \alpha_n p_n(a_i) = \alpha_0 \varphi_i(p_0) + \alpha_1 \varphi_i(p_1) + \dots + \alpha_n \varphi_i(p_n) = \alpha_i.$$

Ker to velja za vsak i, je množica \mathcal{B} linearno neodvisna, torej baza prostora V. Vemo že, da je $\varphi_i(p_j) = \delta_{ij}$ za vsaka i in j, zato je po Trditvi 1.2 množica $\mathcal{B}^* = \{\varphi_0, \varphi_1, \dots, \varphi_n\}$ res baza prostora V^* , in je dualna baza bazi \mathcal{B} . Kot smo pokazali zgoraj, je iskani polinom enak

$$p(X) = \sum_{j=0}^{n} b_j p_j(X) = \sum_{j=0}^{n} b_j \frac{(X - a_0) \cdots (X - a_{j-1})(X - a_{j+1}) \cdots (X - a_n)}{(a_j - a_0) \cdots (a_j - a_{j-1})(a_j - a_{j+1}) \cdots (a_j - a_n)}.$$

Tej formuli pravimo Lagrangeva interpolacija.

2 Dualna preslikava

Definicija 2.1. Naj bosta V, W končnorazsežna vektorska prostora nad \mathcal{O} in $\mathcal{A} \in \mathcal{L}(V, W)$. Če je $\varphi \in W^*$, potem kompozitum $\varphi \circ \mathcal{A}$ slika iz $V \vee \mathcal{O}$. Poleg tega je kompozitum linearnih preslikav linearen, torej je $\varphi \circ \mathcal{A}$ linearen funkcional na V. Preslikava $\mathcal{A}^d \colon W^* \to V^*$, definirana s predpisom $\mathcal{A}^d(\varphi) = \varphi \circ \mathcal{A}$, se imenuje dualna preslikava preslikava \mathcal{A} .

Trditev 2.2. \mathcal{A}^d je linearna preslikava, torej $\mathcal{A}^d \in \mathcal{L}(W^*, V^*)$.

Dokaz. Z upoštevanjem znanih lastnosti kompozituma linearnih preslikav hitro vidimo, da za vsaka $\alpha, \beta \in \mathcal{O}$ in vsaka $\varphi, \psi \in W^*$ velja

$$\mathcal{A}^d(\alpha\varphi + \beta\psi) = (\alpha\varphi + \beta\psi) \circ \mathcal{A} = \alpha\varphi \circ \mathcal{A} + \beta\psi \circ \mathcal{A} = \alpha\mathcal{A}^d(\varphi) + \beta\mathcal{A}^d(\psi).$$

Trditev 2.3. Naj bodo U, V, W vektorski prostori nad \mathcal{O} , $\lambda \in \mathcal{O}$, \mathcal{A} , $\mathcal{B} \in \mathcal{L}(U, V)$ in $\mathcal{C} \in \mathcal{L}(V, W)$. Potem velja $(\mathcal{A} + \mathcal{B})^d = \mathcal{A}^d + \mathcal{B}^d$, $(\lambda \mathcal{A})^d = \lambda \mathcal{A}^d$ in $(\mathcal{C} \mathcal{A})^d = \mathcal{A}^d \mathcal{C}^d$.

Dokaz. Spet upoštevamo znane lastnosti kompozituma linearnih preslikav in za poljuben $\varphi \in V^*$ izračuna jmo

$$(\mathcal{A} + \mathcal{B})^d \varphi = \varphi \circ (\mathcal{A} + \mathcal{B}) = \varphi \circ \mathcal{A} + \varphi \circ \mathcal{B} = \mathcal{A}^d(\varphi) + \mathcal{B}^d(\varphi)$$

in

$$(\lambda \mathcal{A})^d \varphi = \varphi \circ (\lambda \mathcal{A}) = \lambda \varphi \circ \mathcal{A} = \lambda \mathcal{A}^d(\varphi),$$

za poljuben $\varphi \in W^*$ pa

$$(\mathcal{C}\mathcal{A})^d\varphi=\varphi\circ\mathcal{C}\mathcal{A}=(\varphi\circ\mathcal{C})\circ\mathcal{A}=\mathcal{C}^d(\varphi)\circ\mathcal{A}=\mathcal{A}^d(\mathcal{C}^d(\varphi)).$$

Od tod sledijo enakosti v trditvi.

Izrek 2.4. Če preslikavi $A \in \mathcal{L}(V, W)$ glede na bazi \mathcal{B}_V in \mathcal{B}_W prostorov V in W pripada matrika A, potem preslikavi $A^d \in \mathcal{L}(W^*, V^*)$ glede na dualni bazi baz \mathcal{B}_W in \mathcal{B}_V pripada matrika A^T .

Dokaz. Naj bo $\mathcal{B}_V = \{v_1, \ldots, v_n\}$ baza prostora V, $\mathcal{B}_W = \{w_1, \ldots, w_m\}$ baza prostora W, $\mathcal{B}_{V^*} = \{\varphi_1, \ldots, \varphi_n\}$ dualna baza k bazi \mathcal{B}_V in $\mathcal{B}_{W^*} = \{\psi_1, \ldots, \psi_m\}$ dualna baza k bazi \mathcal{B}_W . Naj bo $A = [a_{ij}] = \mathcal{A}_{\mathcal{B}_W}^{\mathcal{B}_V}$ in $B = [b_{ij}] = (\mathcal{A}^d)_{\mathcal{B}_{V^*}}^{\mathcal{B}_{W^*}}$. Po definiciji to pomeni, da je $\mathcal{A}v_j = \sum_{i=1}^m a_{ij}w_i$ za vsak $j = 1, \ldots, n$ in

$$\psi_j \circ \mathcal{A} = \mathcal{A}^d \psi_j = \sum_{i=1}^n b_{ij} \varphi_i \operatorname{za} \operatorname{vsak} j = 1, \dots, m.$$

Če uporabimo to enakost za poljuben vektor v_k , dobimo

$$\psi_j(\mathcal{A}v_k) = (\psi_j \circ \mathcal{A})v_k = \sum_{i=1}^n b_{ij}\varphi_i(v_k) = \sum_{i=1}^n b_{ij}\delta_{ik} = b_{kj}$$
(2)

za vsak j = 1, ..., m in vsak k = 1, ..., n, kjer smo upoštevali, da je \mathcal{B}_{V^*} dualna baza k bazi \mathcal{B}_V . Zdaj pa upoštevamo še, da je \mathcal{B}_{W^*} dualna baza k bazi \mathcal{B}_W , ter enakost (2), in dobimo

$$b_{kj} = \psi_j(\mathcal{A}v_k) = \psi_j\left(\sum_{i=1}^m a_{ik}w_i\right) = \sum_{i=1}^m a_{ik}\psi_j(w_i) = \sum_{i=1}^m a_{ik}\delta_{ji} = a_{jk}$$

za vsaka j = 1, ..., m in k = 1, ..., n. Torej je $B = A^T$.

Iz izreka in zadnje trditve med drugim sledijo znane enakosti za transponiranje matrik $(A + B)^T = A^T + B^T$, $(\lambda A)^T = \lambda A^T$ in $(CA)^T = A^T C^T$.

3 Reprezentacija linearnih funkcionalov na vektorskih prostorih s skalarnim produktom

Naj bo V končnorazsežen vektorski prostor. Vemo, da sta prostora V in V^* izomorfna. To smo dokazali tako, da smo ugotovili, da imata bazi enakih moči. Izomorfizem med V in V^* , ki smo ga poiskali, je bil odvisen od izbire baz. V primeru, ko je V evklidski prostor, bomo poiskali izomorfizem med V in V^* , ki ne bo odvisen od izbire baz. Enako bo veljalo v primeru unitarnega prostora, le da v tem primeru ne bomo dobili izomorfizma, ampak poševni izomorfizem. Poleg tega bomo videli, da vsak linearen funkcional na prostoru s skalarnim produktom lahko predstavimo kot skalarni produkt s fiksnim vektorjem.

V celem poglavju naj bo $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ in V končnorazsežen vektorski prostor nad \mathbb{F} . Za $z \in V$ definirajmo preslikavo $\varphi_z \colon V \to \mathbb{F}$ s predpisom $\varphi_z(x) = \langle x, z \rangle$.

Lema 3.1. φ_z je linearen funkcional.

Dokaz.

$$\varphi_z(\alpha x + \beta y) = \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle = \alpha \varphi_z(x) + \beta \varphi_z(y).$$

Kot je bilo že zgoraj omenjeno, bo naš cilj dokazati, da je vsak linearen funkcional na V oblike φ_z za nek $z \in V$. Zaradi zgornje leme lahko definiramo preslikavo $\Phi \colon V \to V^*$ s predpisom $\Phi(z) = \varphi_z$.

Izrek 3.2. Preslikava $\Phi: V \to V^*$, definirana s predpisom $\Phi(z) = \varphi_z \colon x \mapsto \langle x, z \rangle$, je poševni izomorfizem $(t.j. \ aditivna \ in \ poševno \ homogena \ bijekcija)$.

V posebnem primeru, če je V evklidski prostor, je Φ izomorfizem.

Dokaz. Za vsaka $z,w\in V,$ vsak $\lambda\in\mathbb{F}$ in poljuben $x\in V$ velja

$$\Phi(z+w)x = \varphi_{z+w}(x) = \langle x, z+w \rangle = \langle x, z \rangle + \langle x, w \rangle = \varphi_z(x) + \varphi_w(x) = \Phi(z)x + \Phi(w)x$$

in

$$\Phi(\lambda z)x = \varphi_{\lambda z}(x) = \langle x, \lambda z \rangle = \overline{\lambda} \langle x, z \rangle = \overline{\lambda} \varphi_z(x) = \overline{\lambda} \Phi(z)x.$$

To pomeni, da je Φ aditiven (t.j. $\Phi(z+w) = \Phi(z) + \Phi(w)$) in poševno homogen (t.j. $\Phi(\lambda z) = \overline{\lambda}\Phi(z)$).

Dokažimo, da je Φ injektivna preslikava. Recimo, da je $\Phi(z) = \Phi(w)$ za neka $z, w \in V$. To pomeni, da je $\varphi_z = \varphi_w$, oziroma $\langle x, z \rangle = \langle x, w \rangle$ za vsak $x \in V$. Ekvivalentno, $\langle x, z - w \rangle = 0$ za vsak $x \in V$. Vektor z - w je torej pravokoten na vse vektorje prostora V, kar vemo, da je možno le, če je z - w = 0. Torej je w = z.

Dokažimo še surjektivnost. Naj bo $\varphi \in V^*$. Iščemo vektor $z \in V$, da bo $\varphi = \varphi_z$. Če je $\varphi = 0$, očitno lahko vzamemo kar z = 0. V nadaljevanju naj bo torej φ neničelni funkcional. Označimo $n = \dim V$. Ker je funkcional φ neničelni in slika v enorazsežen prostor \mathbb{F} , je surjektiven. Torej je dim im $\varphi = 1$ in dimenzijska enačba nam da dim ker $\varphi = n - 1$. Označimo $U = \ker \varphi$. Ker je dim U = n - 1, je dim $U^{\perp} = 1$. To pomeni, da obstaja neničeln vektor $v \in V$, da je $U^{\perp} = \mathbb{F} \cdot v = \{\lambda v; \lambda \in \mathbb{F}\}$. Predpostavimo lahko, da je ||v|| = 1.

Naj bo zdaj $x \in V$ poljuben. Ker je $V = U \oplus U^{\perp}$, obstajata enolično določena $y \in U = \ker \varphi$ in $\lambda \in \mathbb{F}$, da je

$$x = y + \lambda v. (3)$$

Enačbo (3) skalarni pomnožimo z v ter pri tem upoštevajmo, da je $v \in U^{\perp}$ in zato $\langle y, v \rangle = 0$. Dobimo

$$\langle x, v \rangle = \langle y + \lambda v, v \rangle = \langle y, v \rangle + \lambda ||v||^2 = \lambda.$$
 (4)

Zdaj pa na enakosti (3) uporabimo še funkcional φ . Pri tem upoštevajmo, da je $y \in \ker \varphi$, in enakost (4). Dobimo

$$\varphi(x) = \varphi(y + \lambda v) = \varphi(y) + \lambda \varphi(v) = \langle x, v \rangle \varphi(v) = \langle x, \overline{\varphi(v)} v \rangle, \tag{5}$$

kjer smo na koncu upoštevali poševno homogenost skalarnega produkta v drugem faktorju, saj je $\varphi(v) \in \mathbb{F}$. Iz enakosti (5) zdaj vidimo, da je $\varphi(x)$ enak skalarnemu produktu vektorja x s fiksnim vektorjem $\overline{\varphi(v)}v$ (ki ni odvisen od x, ampak samo od funkcionala φ). Če torej definiramo $z = \overline{\varphi(v)}v$, bo $\varphi(x) = \langle x, z \rangle$ za vsak $x \in V$, torej bo $\varphi = \varphi_z = \Phi(z)$. To dokazuje še surjektivnost preslikave Φ .

Iz zgoraj definirane bijektivnosti preslikave Φ očitno sledi naslednja posledica.

Posledica 3.3 (Rieszov izrek o reprezentaciji linearnih funkcionalov na prostoru s skalarnim produktom). Naj bo V končnorazsežen vektorski prostor s skalarnim produktom. Potem za vsak $\varphi \in V^*$ obstaja natanko en $z \in V$, da je $\varphi(x) = \langle x, z \rangle$ za vsak $x \in V$.

Primeri bodo na vajah.