EE450, Foll 2015, Zahid lecture #5 Tuesday, Sept 8	
Network Performana Massales Delay (lateracy) Throughput Packet (Sec) (bps) (Erro	Š
Deterministic Random (EESSS) (

End-to-End Delay (Transfer Time)

RTT - Round Trip Time

Response Time

Throughput: The rate at which the (Ups) bits are delivered.

"reliably" to the receiver

Data Rate = the vote at which the (bps) but one transmitted.

Network Performance Measures

- The two most important network performance measures are Delay/Latency & Throughput (bps)
- End-to-end delay consists of several components
 - Transmission time
 - Propagation delay
 - Nodal processing
 - Queuing delay (Random, depends on network loading, link capacities, disciplines, etc..)

Transmission Time

- Transmission Time (ttrans)
 - The time it takes to transmit a group of bits (e.g., a Message/Packet/Frame) of bits into a network

t_{tran} = <u>Number of Message (Packet) bits</u>

Data rate [bps]

Propagation Delay

- Propagation time (tprop)
 - The time it takes for a bit to traverse the link

- · Example propagation velocities:
 - Air/Free space: c = 3x10⁸ meters/sec
 - Cat 5 UTP: 2~2.5x108 meters/sec
 - Optical Fiber: 2~2.5x10⁸ meters/sec

Nodal Processing/Queueing

- Nodal processing:
 - Check bit errors
 - Determine output link (Routing decision)
- Queuing
 - Time waiting at output link for transmission
 - Depends on congestion level of router

More on Queueing Delay

- R: link bandwidth (bps)
- L: packet length (bits/Packet)
- λ: average packet arrival rate (In Packets/sec)
- * $\lambda L/R \sim 0$: avg. queueing delay small
- * $\lambda L/R \le 1$: avg. queueing delay large
- \star $\lambda L/R > 1$: more "work" arriving than can be serviced, average delay in

EE450, USC, Zahid $\lambda L/R \rightarrow 1$

Loss and Delay: Why?

- packets *queue* in router buffers
- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

packets queueing (delay)

free (available) buffers: arriving packets dropped (loss) if no free buffers

Summary of Delay Components

d_{proc}: nodal processing

- check bit errors
- determine output link
- typically < msec</p>

dqueue: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Message Transfer Time

- Message Transfer Time (t_{xfr}) = Message latency
 - Time for sender to transmit message to the receiver and for the receiver to receive the entire message. Also known as the end-to-end delay

$$t_{xfr} = t_{trans} + t_{prop} + t_{queuing/processing}$$

Round Trip Time (RTT)

- Round Trip Time: The time to send a message from a sender to the receiver and receive a response back
- RTT depends on message size, length of link, direction of propagation, propagation velocity, network node processing, network loading, etc...
- For simplicity, RTT is normally assumed to be twice the end-to-end propagation delay although this might not be true if the message and the response traverses different links

Real Internet Delays & Routes

- What do "real" Internet delay & loss look like?
- Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.

Throughput

- The Throughput is defined as the number of information bits that can be transferred reliably over a certain period of time. It is measured in "bps"
- The throughput is the carried load and it is <u>not</u> equal to the offered load
- Protocols add overhead bits and time delays in addition to the transmission time of the actual information bits. That would result in reduced throughput.
- Link errors are result in reduced throughput

Instantaneous vs. Average Throughput

- Throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - Instantaneous: rate at given point in time
 - Average: rate over long period of time

Server sends bits (fluid) into pipe

Pipe that can carry fluid at rate R_s bits/sec)

EE450, USC, Zahid

Pipe that can carry fluid at rate R_c bits/sec)

More on Throughput

• $R_s < R_c$ What is average end-end throughput?

R_s > R_c What is average end-end
 throughput?

R bits/sec

Bottleneck Link

link on end-end path that constrains end-end throughput

Example on Throughput

- per-connection endend throughput: $min(R_c,R_s,R/3)$
- In practice: R_c or R_s is often bottleneck
- Trunks have huge BW (i.e. R is v. Large)

3 connections (fairly) share backbone bottleneck link R bits/sec

Bandwidth/Capacity

- The bandwidth or the data rate is the number of bits that can be transmitted over a certain period of time.
 - For example, 10 Mbps means that 10 million bits are transmitted every seconds.
- Link Capacity is the maximum data rate possible on the link with negligible error rate (Shannon Theorem, to be discussed later)

Hertz

Bandwidth X Delay Product

- Pipe Size: The maximum amount of data present on the line, usually in an interval of RTT
- Example: If the line bandwidth (data rate) is 10 Mbps and the end-to-end delay is 30 msec, the amount of data found on the line is 600K Bits (75 Kbytes)

Networking Perspective

- Application Programmer / End User
 - Guaranteed timely, reliable and recognizable delivery of message/information
- Network Designer
 - Cost-effective design. Resources (Bandwidth, Memory and CPUs) must be used efficiently and are fairly allocated
- Network Provider
 - Administration & management effort, fault detection/fault isolation, easy to account for usage

The Internet Today

- ~ 1 Billion Web Sites
- ~ 3 Billion Internet users
 - Number of Internet-ready devices exceeding number of users. Smart Phones, Tablets, etc...
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Face book ~ One billion users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, email, etc.
- E-commerce, universities, enterprises running their services in "cloud" (e.g. ELA MOZOR) hid

Emergence of the Internet of Things

- Extending the traditional "IP-over-everything, everything-over-IP" paradigm to smart objects, sensors, actuators, control systems, etc..
- IoT is enabled by the latest developments in RFID, Smart Sensors, embedded devices, communications Technologies, Internet Protocols and of course applications
- Emerging new applications: Smart Homes, Smart Buildings, eHealth, Smart Grid, Smart Cities, Industrial Automation, Transportation, etc...

Smart Home

Smart City

EE450, USC, Zahid