

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: **0 590 530 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93115418.1

(51) Int. Cl. 5: **C12N 15/62, C07K 15/28,**
C12N 9/00, C12N 15/81,
A01K 67/027, A61K 37/02,
G01N 33/68, C12N 1/21,
C12N 5/10

(22) Anmeldetag: 24.09.93

(30) Priorität: 02.10.92 DE 4233152

(71) Anmelder: **BEHRINGWERKE**
Aktiengesellschaft
Postfach 1140
D-35001 Marburg(DE)

(43) Veröffentlichungstag der Anmeldung:
06.04.94 Patentblatt 94/14

(72) Erfinder: **Gehrman, Mathias**
Wingertstrasse 11
D-35457 Lollar(DE)
Erfinder: **Seemann, Gerhard**
Weissdornweg 32
D-35041 Marburg(DE)
Erfinder: **Bosslet, Klaus**
An der Haustatt 64
D-35037 Marburg(DE)
Erfinder: **Czech, Jörg**
Höhenweg 3
D-35041 Marburg(DE)

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE

(54) Fusionsproteine zur Prodrug-Aktivierung.

(57) Die Erfindung betrifft Verbindungen, die eine Antigenbinderegion enthalten, welche an mindestens ein Enzym gebunden ist, das eine nicht oder wenig zytotoxische Verbindung (Prodrug) in eine zytotoxische Verbindung (Drug) metabolisieren kann, wobei die Antigenbinderegion aus einer einzigen Polypeptidkette besteht. Vorteilhafterweise befinden sich an der Polypeptidkette kovalent gebundene Kohlenhydrate.

EP 0 590 530 A2

Die Erfindung betrifft Verbindungen, die eine Antigenbinderegion enthalten, welche an mindestens ein Enzym gebunden ist, das eine nicht oder wenig zytotoxische Verbindung (Prodrug) in eine zytotoxische Verbindung (Drug) metabolisieren kann, wobei die Antigenbinderegion aus einer einzigen Polypeptidkette besteht. Vorteilhafterweise befinden sich an der Polypeptidkette kovalent gebundene Kohlenhydrate.

5 Die Kombination von Prodrug und Antikörper-Enzym-Konjugaten zur Anwendung als therapeutisches Mittel ist in der Fachliteratur bereits beschrieben. Hierbei werden gegen ein bestimmtes Gewebe gerichtete Antikörper, an die ein Prodrug-spaltendes Enzym gebunden ist, einem Organismus injiziert, und anschließend wird eine enzym-aktivierbare Prodrug-Verbindung verabreicht. Unter der Einwirkung des am Zielgewebe gebundenen Antikörper-Enzym-Konjugates soll die Prodrug-Verbindung in eine Verbindung umgewandelt werden, die eine zytotoxische Wirkung gegen das gebundene Gewebe ausübt. Allerdings hat sich bei Arbeiten mit Antikörper-Enzym-Konjugaten gezeigt, daß diese chemischen Konjugate eine ungünstige Pharmakokinetik besitzen, so daß eine ortsspezifische tumorselektive Spaltung der Prodrug nur unzureichend erfolgt. Manche Autoren haben versucht, diesen offensichtlichen Mangel durch zusätzliche Injektion eines anti-Enzymantikörpers, der eine schnelle Eliminierung des Antikörperenzymkonjugates aus dem Plasma bewirken soll, zu beheben (Sharma et al., Brit. J. Cancer, 61, 659, 1990). Ein weiteres Problem von Antikörperenzymkonjugaten ist die begrenzte Möglichkeit, große Mengen reproduzierbar und homogen herzustellen.

20 Aufgabe der vorliegenden Erfindung war nun, Fusionsproteine zu finden, die in großtechnischem Maßstab hergestellt werden können und aufgrund ihrer pharmakokinetischen und pharmakodynamischen Eigenschaften für therapeutische Anwendungen geeignet sind.

25 Es wurde dabei gefunden, daß Verbindungen, die eine Antigenbinderegion enthalten, welche aus einer einzigen Polypeptidkette besteht, für die Herstellung und Verwendung von Fusionsproteinen, welche vorteilhaft mit Kohlenhydraten besetzt sind, bei der Prodrug-Aktivierung unerwartete Vorteile besitzen.

Gegenstand der Erfindung sind daher Verbindungen, die eine Antigenbinderegion enthalten, welche an 30 mindestens ein Enzym gebunden ist, wobei die Antigenbinderegion aus einer einzigen Polypeptidkette besteht und das Fusionsprotein vorteilhaft mit Kohlenhydraten besetzt ist.

Unter Antigenbinderegion versteht man im Sinne der Erfindung eine Region, die mindestens zwei variable Domänen eines Antikörpers enthält, vorzugsweise eine variable Domäne einer schweren Antikörerkette und eine variable Domäne einer leichten Antikörerkette (sFv-Fragment). Die Antigenbinderegion kann jedoch auch bi- oder multivalent aufgebaut sein, d.h. zwei oder mehr Binderegionen besitzen, wie beispielweise in der EP-A-0 404 097 offenbart. Besonders bevorzugt ist jedoch ein humanes oder humanisiertes sFv-Fragment, insbesondere ein humanisiertes sFv-Fragment.

Vorzugsweise bindet die Antigenbinderegion an ein tumorassoziiertes Antigen (TAA), wobei insbesondere folgende TAAs bevorzugt sind:

35 neural cell adhesion molecule (N-CAM),
polymorphic epithelial mucin (PEM),
epidermal growth factor receptor (EGF-R),
Thomsen Friedenreich antigen β (TF β),
gastrointestinal tract carcinoma antigen (GICA),
40 ganglioside GD₃ (GD₃),
ganglioside GD₂ (GD₂),
Sialyl-Le^a, Sialyl-Le^x,
TAG72,
das durch MAk L6 definierte Glykoprotein mit 24-25 kDa,
45 CA 125 und vor allem das
carcinoembryonic antigen (CEA).

Als Enzyme sind diejenigen Enzyme bevorzugt, die eine nicht oder wenig zytotoxische Verbindung in eine zytotoxische Verbindung metabolisieren können. Beispiele sind die β -Lactamase, Pyroglutamat-Aminopeptidase, Galactosidase oder D-Aminopeptidase wie z.B. in der EP-A2-0 382 411 oder EP-A2-0 392 50 beschrieben, eine Oxidase wie z.B. Ethanoloxidase, Galactoseoxidase, D-Aminosäureoxidase oder α -Glyceryl-Phosphatoxidase, wie z.B. in der WO 91/00108 beschrieben, eine Peroxidase gemäß z.B. EP-A2-0 361 908, eine Phosphatase, wie z.B. in EP-A1-0 302 473 beschrieben, eine Hydroxynitrillyase oder Glucosidase gemäß z.B. WO 91/11201, eine Carboxypeptidase, wie z.B. die Carboxypeptidase G2 (WO 88/07378), eine Amidase, wie z.B. die Penicillin-5-amidase (Kerr, D. E. et al. Cancer Immunol. Immunther. 1990, 31), eine Protease, Esterase oder Glycosidase, wie die bereits erwähnte Galactosidase, Glucosidase oder eine Glucuronidase, wie z.B. in der WO 91/08770 beschrieben. Bevorzugt ist eine β -Glucuronidase, vorzugsweise aus *Kobayasia nipponica* oder *Secale cereale* und besonders bevorzugt aus *E. coli* oder eine humane β -Glucuronidase. Die Substrate der einzelnen Enzyme sind in den genannten Schutzrechten

- mit angegeben und sollen auch zum Offenbarungsgehalt der vorliegenden Anmeldung gehören. Bevorzugte Substrate der β -Glucuronidase sind N-(D-Glycopyranosyl)-benzyloxycarbonyl-anthracycline und insbesondere das N-(4-Hydroxy-3-nitro-benzyloxycarbonyl)-doxorubicin bzw. daunorubicin- β -D-glucuronid (J. C. Florent et al. (1992) Int. Carbohydr. Symp. Paris, A262, 297 oder S. Andrianomenjanahary et al. (1992) Int. Carbohydr. Symp. Paris, A 264, 299).
- Ein weiterer Gegenstand der Erfindung sind Nukleinsäuren, die für die erfindungsgemäßen Verbindungen kodieren. Insbesondere bevorzugt ist eine Nukleinsäure sowie deren Varianten und Mutanten, die für ein humanisiertes sFv-Fragment gegen CEA (Carcinoembryonales Antigen) verbunden mit einer humanen β -Glucuronidase kodiert (sFv-hu β -Gluc), vorzugsweise mit der in Tabelle 1 angegebenen Sequenz.
- Die Herstellung der erfindungsgemäßen Verbindungen erfolgt im allgemeinen gentechnisch, nach dem Fachmann allgemein bekannten Verfahren, wobei die Antigenbinderegion mit einem oder mehreren Enzymen entweder direkt oder über einen Linker, vorzugsweise einem Peptidlinker, verbunden sein kann. Als Peptidlinker kann beispielsweise eine "Hinge-Region" eines Antikörpers oder eine "hinge"-ähnliche Aminosäuresequenz verwendet werden. Das Enzym ist dabei vorzugsweise mit dem N-Terminus an die Antigenbinderegion direkt oder über einen Peptidlinker verbunden. Das oder die Enzyme können jedoch auch chemisch, wie z.B. in der WO 91/00108 offenbart, mit der Antigenbinderegion verbunden werden.
- Die für die Aminosäuresequenz der erfindungsgemäßen Verbindungen kodierende Nukleinsäure, wird im allgemeinen in einem Expressionsvektor kloniert, in prokaryontischen oder eukaryontischen Wirtszellen, wie z.B. BHK-, CHO-, COS-, HeLa-, Insekten-, Tabakpflanzen-, Hefe- oder *E.coli*-Zellen eingebracht und exprimiert. Die so hergestellte Verbindung kann anschließend isoliert und als Diagnostikum oder Therapeutikum verwendet werden. Ein weiteres allgemein bekanntes Verfahren zur Herstellung der erfindungsgemäßen Verbindung ist die Expression der dafür kodierenden Nukleinsäuren in transgenen Säugern mit Ausnahme von Mensch, vorzugsweise in einer transgenen Ziege.
- Mit den erfindungsgemäßen Nukleinsäuren transfizierte BHK-Zellen exprimierten ein Fusionsprotein (sFv-hu β -Gluc), welches sowohl spezifisch für CEA war als auch volle β -Glucuronidase Aktivität besitzt (siehe Bsp. 5).
- Dieses Fusionsprotein wurde über Anti-idiotyp Affinitätschromatographie entsprechend der in EP O 501 215 A2 (Beispiel M) beschriebenen Methode gereinigt. Das so gereinigte Fusionsprotein besitzt unter reduzierenden Bedingungen in der SDS-PAGE ein Molekulargewicht von 100 kDa, unter nichtreduzierenden Bedingungen treten Moleküle von 100 bzw. 200 kDa auf.
- Gelchromatographie unter nativen Bedingungen (TSK-3000 Gel-chromatographie) zeigte einen Protein-Peak (Bsp. 6, Abb. I), der mit dem Aktivitätspeak im Spezifitätsenzymaktivitätstest (EP O 501 215 A2) korreliert. Die Position des Peaks im Vergleich zu Standard-Molekulargewichtsmarkern deutet auf ein Molekulargewicht von \approx 200 kDa hin. Dieser Befund, verbunden mit den Daten aus der SDS-PAGE, suggeriert, daß das funktionelle, enzymatisch aktive sFv-hu β -Gluc Fusionsprotein als "bivalentes Molekül", d.h. mit 2 Binderegionen und 2 Enzymmolekülen, vorliegt. Hier nicht beschriebene Versuche deuten darauf hin, daß das Fusionsprotein unter bestimmten Kultivierungsbedingungen auch als Tetramer, mit 4 Binderegionen und 4 Enzymmolekülen, vorliegen kann. Nachdem das sFv-hu β -Gluc Fusionsprotein gereinigt und in vitro funktionell charakterisiert war, wurde die Pharmakokinetik und die Tumorlokalisierung des Fusionsproteins in nackten Mäusen bestimmt, die mit menschlichen Magenkarzinomen bestückt waren. Die Mengen an funktionell aktivem Fusionsprotein wurden in den Organen sowie dem Tumor zu unterschiedlichen Zeitpunkten nach adäquater Aufarbeitung der Organe (Beispiel 7) sowie immunologischer Bestimmung (Triple-Determinanten-Test, Beispiel 8) bestimmt. Die Ergebnisse eines repräsentativen Versuches sind in Tabelle 4 zusammengefaßt.
- Erstaunlicherweise wird bereits nach 48 Stunden ein Tumor/Plasma Verhältnis von 5/1 erreicht. Zu späteren Zeitpunkten wird dieses Verhältnis noch günstiger und erreicht Werte $>$ 200/1 (Tag 5). Die Ursache für dieses günstige pharmakokinetische Verhalten des sFv-hu β -Gluc Fusionsproteins liegt darin, daß nicht am Tumor gebundenes Fusionsprotein hauptsächlich über Rezeptoren für Mannose-6-Phosphat und Galaktose aus dem Plasma und den Normalgeweben durch Internalisation entfernt wird. (Diese Aussage läßt sich dadurch belegen, daß die β -Glucuronidase Werte intrazellulär, z.B. in der Leber, ansteigen).
- Wie in Tabelle 5 gezeigt, enthält das sFv-hu β -Gluc größere Mengen an Galaktose und vor allem Mannose, die hauptsächlich für die Anbindung an die jeweiligen Rezeptoren verantwortlich sind. Der so entstandene, über die Kohlenhydratreste des Fusionsproteins gebundene Fusionsprotein-Rezeptorkomplex wird dann durch Internalisation aus dem extrazellulären Kompartiment entfernt.
- Dieser hauptsächlich über Galaktose und Mannose vermittelte schnelle Internalisationsmechanismus ist maßgeblich an der vorteilhaften Pharmakokinetik des erfindungsgemäßen Fusionsproteins beteiligt. Diese vorteilhafte Pharmakokinetik des mit Galaktose und vor allem Mannose besetzten Fusionsproteins ermög-

licht die i.v. Applikation einer sich extrazellulär verteilenden, hydrophilen Prodrug zu einem relativ frühen Zeitpunkt, ohne eine unspezifische Prodrugaktivierung hervorzurufen. Hierbei ist ein Eliminierungsschritt wie bei Sharma et al. (Brit. J. Cancer, 61, 659, 1990) beschrieben, nicht nötig. Basierend auf den Daten der Tabelle 4 ist die Injektion einer geeigneten Prodrug (S. Adrianomenjanahari et al. 1992, Int. Carbohydrate Symp., Parts A264, 299) schon 3 Tage nach Injektion des sFv-hu β -Gluc Fusionsproteins ohne Erzeugung von signifikanten Nebenwirkungen möglich (Daten nicht gezeigt).

Ein ähnlich vorteilhafter Kohlenhydratbesatz auf Fusionsproteinen ist z.B. auch durch sekretorische Expression des sFv-hu β -Gluc Fusionsprotein in bestimmten Hefestämmen wie *Saccharomyces cerevisiae* oder *Hansenula polymorpha* zu erzielen. Diese Organismen sind in der Lage, Fusionsproteine, die entsprechende N-Glykosylierungsstellen besitzen, sehr wirkungsvoll zu mannosylieren (Goochee et al., Biotechnology, 9, 1347-1354, 1991). Solche sekretorisch in Hefezellen exprimierten Fusionsproteine zeigen einen hohen Mannosylierungsgrad und eine dem in BHK-Zellen exprimierten sFv-hu β -Gluc Fusionsprotein vergleichbare günstige Pharmakokinetik (Daten nicht gezeigt). Hierbei wird die Abwesenheit von Galaktose durch den noch höheren Mannosylierungsgrad des Fusionsproteins ausgeglichen (Tabelle 6). Das oben beschriebene sFv-hu β -Gluc Fusionsprotein wurde, wie in Beispiel 9 näher beschrieben, gentechnisch konstruiert und in Hefe exprimiert.

Anstelle der humanen β -Glucuronidase kann man jedoch auch eine andere Glucuronidase mit vorteilhaften Eigenschaften einsetzen. Beispielsweise hat die *E.coli* β -Glucuronidase insbesondere den Vorteil, daß ihre katalytische Aktivität bei pH 7.4 signifikant höher ist als die der humanen β -Glucuronidase. In Beispiel 10 wurde mittels gentechnischer Methoden ein sFv-*E. coli* β -Gluc Konstrukt hergestellt und in *Saccharomyces cerevisiae* sekretorisch als funktionell aktives mannosyliertes Fusionsprotein exprimiert. Die pharmakokinetischen Daten sind denen des sFv-hu β -Gluc Moleküls, welches in Hefe bzw. in BHK-Zellen exprimiert wurde (Tabelle 4), vergleichbar.

Die Glucuronidasen aus dem Pilz *Kobayasia nipponica* und aus der Pflanze *Secale cereale* haben z.B. den Vorteil, daß sie auch als Monomere aktiv sind. In Beispiel 11 ist mittels gentechnischer Methoden ein Konstrukt hergestellt worden, welches nach Expression in *Saccharomyces cerevisiae* ein sFv-*B. cereus* β -lactamase II Fusionsprotein in vorzugsweise mannosylierter Form ausscheidet.

Dieses Fusionsprotein hat ebenfalls, wie die erfundungsgemäßen Fusionsproteine, auf β -Glucuronidase-Basis eine für die Prodrugaktivierung günstige Pharmakokinetik (Tabelle 4).

Ferner können die erfundungsgemäßen Verbindungen nicht nur in Kombination mit einer Prodrug, sondern auch im Rahmen der gängigen Chemotherapie eingesetzt werden, bei der als Glucuronide metabolisierte und somit inaktivierte Zytostatika durch die applizierten Verbindungen wieder in ihre toxische Form umgewandelt werden können.

Die nachfolgenden Beispiele beschreiben nun die gentechnische Synthese von sFv-hu β -Gluc Fusionsproteinen, sowie den Nachweis der Funktionsfähigkeit.

Ausgangsmaterial waren die Plasmide pABstop 431/26 hum V_H und pABstop 431/26 hum V_H. Diese Plasmide enthalten die humanisierte Version des V_H- bzw. V_L-Gens des anti CEA MAK BW 431/26 (Güssow und Seemann, 1991, Meth. Enzymology, 203, 99-121). Als weiteres Ausgangsmaterial diente das Plasmid pABstop 431/26 V_H-hu β -Gluc 1H (EP-A2-0 501 215), das ein V_H-Exon, einschließlich der V_H-eigenen Signalsequenz, gefolgt von einem CH1-Exon, dem Hinge-Exon eines humanen IgG3 C-Gens und die vollständige cDNA der humanen β -Glucuronidase enthält.

Beispiel 1:

45 Amplification der V_H und V_L Gene des MAK hum 431/26

Mit den Oligonukleotiden pAB-Back und Linker-Anti (Tab. 2) wird aus pABstop 431V_H hum das V_H-Gen einschließlich der V_H-Gen eigenen Signalsequenz herausamplifiziert (V_H 431/26) (Güssow und Seemann, 1991, Meth. Enzymology, 203, 99-121). Mit den Oligonukleotiden Linker-Sense und V_{L(Mut)}-For (Tab. 3) wird aus pABstop 431V_L hum das V_L-Gen herausamplifiziert (V_L 431/26).

Beispiel 2:**Zusammenfügen der V_H 431/26 und V_L 431/26 Genfragmente**

Die Oligonukleotide Linker-Anti und Linker-Sense sind partiell komplementär zueinander und codieren für einen Polypeptid-Linker, der die V_H- und V_L-Domäne zu einem sFv-Fragment verknüpfen soll. Um die amplifizierten V_H- mit den V_L-Fragmenten zu fusionieren, werden sie gereinigt und in einer 10 Zyklen Reaktion wie folgt eingesetzt:

H ₂ O:	37.5 µl
dNTPs (2.5 mM):	5.0 µl
PCR-Puffer (10x): Taq-Polymerase (Perkin-Elmer Corp., Emeryville, CA)	5.0 µl
(2.5 U/µl):	0.5 µl
0.5 µg/µl DNA des V _L -Frag.:	1.0 µl
0.5 µg/µl DNA des V _H -Frag.:	1.0 µl

PCR-Puffer (10x): 100mM Tris, pH8.3, 500mM KCl, 15 mM MgCl₂, 0.1% (w/v) Gelatin.

Die Oberfläche des Reaktionsgemisches wird mit Paraffin versiegelt und anschließend die 10 Zyklen Reaktion in einer PCR-Apparatur mit dem Programm 94 °C, 1 min; 55 °C, 1 min; 72 °C, 2 min, durchge-

führt. Danach werden 2,5 pM der flankierenden Primer pAB-Back und $V_{L(Mut)}\text{-For}$ zugegeben und weitere 20 Zyklen durchgeführt. Man erhält ein PCR-Fragment, das aus dem V_H -Gen besteht, welches über einen Linker mit dem V_L -Gen verbunden ist. Vor dem V_H -Gen befindet sich noch die V_H -Gen eigene Signalsequenz. Durch das Oligonukleotid $V_{L(Mut)}\text{-For}$ wird gleichzeitig die letzte Nukleotidbase des V_L -Gens, ein C, 5 gegen ein G ausgetauscht. Dieses PCR-Fragment codiert für einen humanisierten Single-Chain-Fv (sFv 431/26).

Beispiel 3:

Klonierung des sFv 431/26 Fragmentes in den Expressionsvektor, der das hu β -Glucuronidasegen enthält.

Das sFv-Fragment aus (2) wird mit HindIII und BamHI geschnitten und in den mit HindIII vollständig und mit BgIII partiell gespaltenen Vektor pAB 431V_H hum/CH1 + 1h/ β Glc ligiert. Der Vektor pABstop 431/26V_Hhu β Gluc1H enthält ein V_H -Exon, einschließlich der V_H -eigenen Signalsequenz, gefolgt von einem 45 CH1-Exon, dem Hinge-Exon eines humanen IgG3 C-Gens und der vollständigen cDNA der humanen β -Glucuronidase. Es wird der Plasmidklon pMCG-E1 isoliert, der den humanisierten sFv 431/26, ein Hinge-Exon und das Gen für die humane β -Glucuronidase enthält (pMCG-E1).

50

55

Beispiel 4:

40 Expression des sFv-hu β -Gluc Fusionsproteins in BHK Zellen.

Der Klon pMCG-E1 wird zusammen mit dem Plasmid pRMH 140, das ein Neomycin-Resistenzgen trägt und dem Plasmid pSV2, das ein Methotrexat-Resistenzgen trägt, in BHK Zellen transfiziert. Daraufhin wird 45 von den BHK Zellen ein Fusionsprotein ausgeprägt, das sowohl die Antigenbindungs-eigenschaften des MAK BW 431/26hum als auch die enzymatische Aktivität der humanen β -Glucuronidase hat.

50

55

EP 0 590 530 A2

Beispiel 5:

Nachweis der Antigenbindungeigenschaften und der enzymatischen Aktivität des sFv-hu β -Gluc Fusionsproteins.

Die Fähigkeit des sFv-hu β -Gluc Fusionsproteins spezifisch an das durch den 431/26 definierte Epitop auf CEA zu binden und gleichzeitig die enzymatische Aktivität der humanen β -Glucuronidase auszuüben, wurde in einem Spezifitäts-Enzymaktivitätstest gezeigt (EP-A2-0501215). Der Test bestimmt die Freisetzung von 4-Methyl-umbelliferon aus 4-Methyl-umbelliferyl- β -Glucuronid durch den β -Glucuronidase Anteil des Fusionsproteins, nachdem das Fusionsprotein über den sFv-Anteil an ein Antigen gebunden ist. Die ermittelten Fluoreszenzwerte werden als relative Fluoreszenzeinheiten (FE) angegeben. Der Test zeigt eine signifikante Methyl-umbelliferon Freisetzung durch das Fusionsprotein in den mit CEA beschichteten Platten. Dagegen wird durch das Fusionsprotein kein Methyl-umbelliferon in mit PEM (polymorphic epithelial mucin) beschichteten Kontrollplatten freigesetzt.

Beispiel 6:**TSK-3000 Gelchromatographie**

Von dem über Anti-idiotyp Affinitätschromatographie gereinigten sFv-hu β -Gluc Fusionsprotein wurden 200 ng in 25 μ l auf einer TSK Gel G 3000 SW XL Säule (TOSO HAAS Best.Nr. 3.5Wx N3211, 7.8 mm x 300 mm) in einem geeigneten Laufmittel (PBS, pH 7.2, enthaltend 5 g/l Maltose und 4.2 g/l Arginin) mit einer Flußrate von 0.5 ml/min chromatographiert. Die Merck Hitachi HPLC-Anlage (L-4000 UV-Detektor, L-6210 Intelligent Pump, D-2500 Chromato-Integrator) wurde mit \approx 20 bar betrieben, die optische Dichte des Eluats wurde bei 280 nm bestimmt, und mittels eines LKB 2111 Multisac Fraktionssammlers wurden 0.5 ml Fraktionen gesammelt, die anschließend im Spezifitätsenzymaktivitätstest (SEAT) (EP 0501215 A2, Beispiel J) analysiert wurden. Das Ergebnis dieses Experiments ist in Abb. 1 gezeigt. Es ist deutlich zu erkennen,

daß die Position des durch optische Dichtemessung bei 280 nm detektierbaren Peaks mit dem Peak übereinstimmt, der die Spezifität und Enzymaktivität (SEAT) des Eluats bestimmt. Basierend auf den mittels Pfeilen angedeuteten Molekulargewichtspositionen von Standardproteinen kann gefolgert werden, daß das funktionell aktive sFv-hu β -Gluc Fusionsprotein unter nativen Bedingungen ein ungefähres Molekulargewicht von \approx 200 kDa hat.

Beispiel 7:

Aufarbeitung von Organen/Tumoren zur Fusionsproteinbestimmung

- Folgende sequentielle Schritte wurden durchgeführt:
- mit Fusionsprotein bzw. Antikörperenzymkonjugat behandelte Nacktmäuse (CD1), die einen subkutanen Tumor haben, werden retroorbital entblutet und dann getötet
 - das Blut wird sofort in ein Eppendorfgefäß gegeben, in dem sich schon 10 µl Liquemin 25000 (Fa. Hoffman-LaRoche AG) befindet
 - dann wird 10 min bei 2500 U/min in einer Zentrifuge (Megafuge 1.0, Fa. Heraeus) zentrifugiert
 - danach wird das Plasma gewonnen und bis zur Testung eingefroren
 - die Organe bzw. der Tumor werden entnommen und gewogen
 - dann werden sie mit 2 ml 1 % BSA in PBS, pH 7.2, vollständig homogenisiert
 - die Tumorhomogenate werden mit 0.1 N HCl auf pH 4.2 eingestellt (die Probe darf nicht übertitriert werden, da die β -Glucuronidase bei pH < 3.8 inaktiviert wird!)
 - alle Homogenate werden 30 min bei 16000 g zentrifugiert
 - der klare Überstand wird abgenommen
 - die Tumorüberstände werden mit 0.1 N NaOH neutralisiert
 - die Überstände und das Plasma können nun in immunologischen Tests quantifiziert werden.

Beispiel 8:

Triple-Determinanten-Test

- Die Testung läuft folgendermaßen ab:
- pro Loch einer Mikrotitrationsplatte (Polystyrol U-Form, Typ B, Fa. Nunc, Best.Nr. 4-60445) werden 75 µl eines mit 2 µg/ml in PBS, pH 7.2, verdünnten Maus-anti-hu β -Gluc Antikörpers (MAk 2118/157 Behringwerke) gegeben
 - die Mikrotitrationsplatten werden abgedeckt und über Nacht bei R.T. inkubiert
 - anschließend werden die Mikrotitrationsplatten 3x mit 250 µl 0.05 M Tris-Citrat-Puffer, pH 7.4, pro Loch gewaschen
 - diese so beschichteten Mikrotitrationsplatten werden pro Loch mit je 250 µl Blocklösung (1 % Casein in PBS, pH 7.2) für 30' bei R.T. inkubiert (Blockierung unspezifischer Bindungsstellen) (nicht benötigte beschichtete Mikrotitrationsplatten werden 24 Stunden bei R.T. getrocknet und dann zusammen mit Trockenpatronen zur Langzeitlagerung in beschichtete Aluminiumbeutel eingeschweißt)
 - während der Blockierung wird in einer unbehandelten 96 Loch U-Boden Mikrotiterplatte (Polystyrol, Fa. Renner, Best.Nr. 12058) 10 Proben + 2 Positivkontrollen + 1 Negativkontrolle in 1 % Casein in PBS, pH 7.2, 1:2 in 8 Stufen ausverdünnt (ausgehend von 150 µl Probe werden 75 µl Probe in 75 µl Casein-Vorlage pipettiert usw.)
 - die Blocklösung wird von der mit anti-hu β -Gluc Antikörpern beschichteten Mikrotitrationsplatte abgesaugt, 50 µl der verdünnten Proben werden pro Loch von der Verdünnungsplatte auf die Testplatte übertragen und 30 min bei R.T. inkubiert
 - während der Probeninkubation wird das ABC-AP Reagenz (Fa. Vectastain, Best.Nr. AK-5000) angesetzt: 2 Tropfen Reagenz A (Avidin DH) in 10 ml 1 % Casein in PBS, pH 7.2, gut mischen und 2 Tropfen Reagenz B (Biotinylierte alkalische Phosphatase) zugeben, gut mischen. (Die ABC-AP Lösung muß mindestens 30' vor Gebrauch angesetzt werden.)
 - die Testplatte wird 3 mal mit ELISA Waschpuffer (Behringwerke, Best.Nr. OSEW 96) gewaschen
 - pro Loch werden 50 µl Biotin markiertes Nachweisantikörpermisch (1 + 1 Gemisch aus Maus Anti 431/26 Antikörper (MAk 2064/353, Behringwerke) und Maus anti CEA Antikörper (MAK 250/183, Behringwerke) mit einer Konzentration von je 5 µg/ml verdünnt in 1 % Casein in PBS, pH 7.2, Endkonzentration 2.5 µg/ml je Antikörper) gegeben
 - die Testplatte wird 3 mal mit ELISA Waschpuffer gewaschen

- pro Loch werden 50 µl der vorbereiteten ABC-AP Lösung gegeben und 30 min bei R.T. inkubiert
 - während der ABC-AP Inkubation wird das Substrat angesetzt (für jeden Test frisches Substrat: 1 mM 4-Methylumbelliferyl Phosphat, Best.Nr. M-8883, Fa. Sigma, in 0.5 M Tris + 0.01 % MgCl, pH 9.6)
 - die Testplatte wird 7 mal mit ELISA Waschpuffer gewaschen
- 5
- pro Loch werden 50 µl Substrat aufgetragen, die Testplatte abgedeckt und 2 h bei 37 °C inkubiert
 - danach wird zu jedem Loch 150 µl Stoplösung (0.2 M Glycin + 0.2 % SDS, pH 11.7) hinzugegeben
 - die fluorometrische Auswertung erfolgt im Fluoroscan II (ICN Biomedicals, Kat.Nr. 78-611-00) bei einer Anregungswellenlänge von 355 nm und einer Ausstrahlungswellenlänge von 460 nm
 - anhand der Fluoreszenzwerte der im identischen Experiment mitgeführten Positivkontrolle (Verdünnungsreihe mit gereinigtem sFv-huβ-Gluc gemischt mit CEA 5 µg/ml als Eichkurve) wird die unbekannte Konzentration von Fusionsprotein in der Probe bestimmt.
- 10

Beispiel 9:**15 Expression des sFv-huβ-Glucuronidase Fusionsproteins in Hefe.**

Der Single-chain-Fv (sFv) aus Beispiel 2 wird mit den Oligos 2577 und 2561 (Tabelle 7) amplifiziert und in den mit XbaI/HindIII verdaulichen pUC19 Vektor kloniert (Abb. 2).

20 Das humane β-Glucuronidase Gen wird mit den Oligos 2562 und 2540 (Tabelle 8) aus dem Plasmid pAB 431/26 V_Hhum/CH1 + 1H/huβ-Gluc (Beispiel 3) amplifiziert und in den mit BglII/HindIII geschnittenen Plasmid sFv 431/26 in pUC19 (Abb. 2) ligiert (Abb. 3).

Ein KpnI/Ncol-Fragment wird mit den Oligos 2587 und 2627 (Tabelle 9) aus dem sFv 431/26 amplifiziert und in den mit KpnI/Ncol verdaulichen Hefe-Expressionsvektor pIXY 120 kloniert (Abb. 4).

25 Das BstEII/HindIII Fragment aus dem Plasmid sFv 431/26 huβ-Gluc in pUC19 (Abb. 3) wird in den mit BstEII/partiell HindIII verdaulichen Vektor pIXY 120 ligiert, der das V_H-Gen, den Linker sowie einen Teil des V_L-Gens trägt (V_H/link/V_K part. in pIXY 120) (Abb. 5).

Das entstandene Plasmid sFv 431/26 huβ-Gluc in pIXY 120 wird in *Saccharomyces cerevisiae* transformiert und das Fusionsprotein ausgeprägt.

30 Beispiel 10:**Expression des sFv-E.coli-β-Glucuronidase Fusionsproteins in Hefe.**

Das E.coli β-Glucuronidase Gen wird aus pRAJ 275 (Jefferson et al. Proc. Natl. Acad. Sci. USA, 83: 35 8447-8451, 1986) mit den Oligos 2638 und 2639 (Tabelle 10) amplifiziert und in den mit BglII/HindIII geschnittenen sFv 431/26 in pUC19 (Beispiel 9, Abb. 2) ligiert (Abb. 6).

Ein BstEII/HindIII Fragment aus sFv 431/26 E.coli β-Gluc in pUC19 wird in den mit BstEII/HindIII partiell verdaulichen Vektor V_H/link/V_Kpart. in pIXY 120 (Beispiel 9, Abb. 4) kloniert (Abb. 7).

40 Das Plasmid sFv 431/26 E.coli β-Gluc in pIXY 120 wird in *Saccharomyces cerevisiae* transformiert und das Fusionsprotein ausgeprägt.

Beispiel 11:**Expression des sFv-β-lactamase Fusionsproteins in Hefe.**

45 Der Single-chain-Fv (sFv) aus Beispiel 2 wird mit den Oligos 2587 und 2669 (Tabelle 11) amplifiziert und in den mit KpnI/HindIII verdaulichen pUC19 Vektor ligiert (Abb. 8).

Das β-lactamase II Gen (Hussain et al., J. Bacteriol. 164: 223-229, 1985) wird mit den Oligos 2673 und 2674 (Tabelle 11) aus Gesamt-DNA von *Bacillus cereus* amplifiziert und in den mit EcoRI/HindIII verdaulichen pUC19 Vektor ligiert (Abb. 9). Ein BclI/HindIII Fragment des β-lactamase Gens wird in den mit BglII/HindIII geschnittenen sFv 431/26 in pUC19 ligiert (Abb. 10).

55 Das KpnI/HindIII sFv-β-lactamase Fragment wird in den mit KpnI/partiell HindIII verdaulichen pIXY 120 ligiert (Abb. 11). Das Plasmid wird in *Saccharomyces cerevisiae* transformiert und ein Fusionsprotein ausgeprägt, das sowohl die Antigenbindungeigenschaften des MAk 431/26 als auch die enzymatische Aktivität der β-lactamase von *Bacillus cereus* trägt.

Tabelle 1:

	CCAAGCTTAT GAATATGCAA ATCCTGCTCA TGAATATGCA AATCCTCTGA	50
5	ATCTACATGG TAAATATAGG TTTGTCTATA CCACAAACAG AAAAACATGA	100
	GATCACAGTT CTCTCTACAG TTACTGAGCA CACAGGACCT CACC ATG GGA TGG Met Gly Trp	153
10	AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGTAAAGGGC Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr -10	199
	TCACAGTAGC AGGCTTGAGG TCTGGACATA TATATGGGTG ACAATGACAT	249
15	CCACTTTGCC TTTCTCTCCA CA GGT GTC CAC TCC CAG GTC CAA CTG CAG Gly Val His Ser Gln Val Gln Leu Gln 1	298
	GAG AGC GGT CCA GGT CTT GTG AGA CCT AGC CAG ACC CTG AGC CTG Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln Thr Leu Ser Leu 10	343
20	ACC TGC ACC GTG TCT GGC TTC ACC ATC AGC AGT GGT TAT AGC TGG Thr Cys Thr Val Ser Gly Phe Thr Ile Ser Ser Gly Tyr Ser Trp 20	388
	CAC TGG GTG AGA CAG CCA CCT GGA CGA GGT CTT GAG TGG ATT GGA His Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp Ile Gly 40	433
25	TAC ATA CAG TAC AGT GGT ATC ACT AAC TAC AAC CCC TCT CTC AAA Tyr Ile Gln Tyr Ser Gly Ile Thr Asn Tyr Asn Pro Ser Leu Lys 50	478
	AGT AGA GTG ACA ATG CTG GTA GAC ACC AGC AAG AAC CAG TTC AGC Ser Arg Val Thr Met Leu Val Asp Thr Ser Lys Asn Gln Phe Ser 70	523
30	CTG AGA CTC AGC AGC GTG ACA GCC GCC GAC ACC GCG GTC TAT TAT Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 80	568
	TGT GCA AGA GAA GAC TAT GAT TAC CAC TGG TAC TTC GAT GTC TGG Cys Ala Arg Glu Asp Tyr Asp Tyr His Trp Tyr Phe Asp Val Trp 100	613
35	GGC CAA GGG ACC ACG GTC ACC GTC TCC TCA GGA GGC GGT GGA TCG Gly Gln Gly Thr Thr Val Ser Ser Gly Gly Gly Gly Ser 110	658
	GGC GGT GGT GGG TCG GGT GGC GGC GGA TCT GAC ATC CAG CTG ACC Gly Gly Gly Ser Gly Gly Ser Asp Ile Gln Leu Thr 120	703.
40	CAG AGC CCA AGC AGC CTG AGC GCC AGC GTG GGT GAC AGA GTG ACC Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr 130	748
	ATC ACC TGT AGT ACC AGC TCG AGT GTA AGT TAC ATG CAC TGG TAC Ile Thr Cys Ser Thr Ser Ser Val Ser Tyr Met His Trp Tyr 140	793
45	CAG CAG AAG CCA GGT AAG GCT CCA AAG CTG CTG ATC TAC AGC ACA Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Thr 150	838
		160
		170
		180

Tabelle 1 (Fortsetzung):

TCC AAC CTG GCT TCT GGT GTG CCA AGC AGA TTC AGC GGT AGC GGT Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly	883
190 200	
5 AGC GGT ACC GAC TTC ACC TTC ACC ATC AGC AGC CTC CAG CCA GAG Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro Glu	928
210 220 230	
GAC ATC GCC ACC TAC TAC TGC CAT CAG TGG AGT AGT TAT CCC ACG Asp Ile Ala Thr Tyr Tyr Cys His Gln Trp Ser Ser Tyr Pro Thr	973
240	
10 TTC GGC CAA GGG ACC AAG CTG GAG ATC AAA GGTGAGTAGA ATTTAAACTT Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys	1023
240	
TGCTTCCTCA GTTGGATCTG AGTAACCTCCC AATCTCTCTCTGCA GAG CTC AAA Glu Leu Lys	1077
15 ACC CCA CTT GGT GAC ACA ACT CAC ACA TGC CCA CGG TGC CCA Thr Pro Leu Gly Asp Thr Thr His Thr Cys Pro Arg Cys Pro	1119
250 25	
GGTAAGCCAG CCCAGGACTC GCCCTCCAGC TCAAGGCCGG ACAAGAGCCC	1169
20 TAGAGTGGCC TGAGTCCAGG GACAGGCCCG AGCAGGGTGC TGACGCATCC	1219
260 25 GCG GTG CAG GGC GGG ATG CTG TAC CCC CAG GAG AGC CCG TCG CGG Ala Val Gln Gly Gly Met Leu Tyr Pro Gln Glu Ser Pro Ser Arg	1316
270 280 290	
280 30 TCT GAC AAC CGA CGC CGG GGC TTC GAG GAG CAG TGG TAC CGG CGG Ser Asp Asn Arg Arg Arg Gly Phe Glu Gln Trp Tyr Arg Arg	1406
300 310 320	
CCG CTG TGG GAG TCA GGC CCC ACC GTG GAC ATG CCA GTT CCC TCC Pro Leu Trp Glu Ser Gly Pro Thr Val Asp Met Pro Val Pro Ser	1451
330 340 350	
AGC TTC AAT GAC ATC AGC CAG GAC TGG CGT CTG CGG CAT TTT GTC Ser Phe Asn Asp Ile Ser Gln Asp Trp Arg Leu Arg His Phe Val	1496
330 340 350	
GGC TGG GTG TGG TAC GAA CGG GAG GTG ATC CTG CCG GAG CGA TGG Gly Trp Val Trp Tyr Glu Arg Glu Val Ile Leu Pro Glu Arg Trp	1541
360 370 380	
360 40 ACC CAG GAC CTG CGC ACA AGA GTG GTG CTG AGG ATT GGC AGT GCC Thr Gln Asp Leu Arg Thr Arg Val Val Leu Arg Ile Gly Ser Ala	1586
370 380	
CAT TCC TAT GCC ATC GTG TGG GTG AAT GGG GTC GAC ACG CTA GAG His Ser Tyr Ala Ile Val Trp Val Asn Gly Val Asp Thr Leu Glu	1631
390 400 410	
CAT GAG GGG GGC TAC CTC CCC TTC GAG GCC GAC ATC AGC AAC CTG His Glu Gly Tyr Leu Pro Phe Glu Ala Asp Ile Ser Asn Leu	1676
400 410	
GTC CAG GTG GGG CCC CTG CCC TCC CGG CTC CGA ATC ACT ATC GCC Val Gln Val Gly Pro Leu Pro Ser Arg Leu Arg Ile Thr Ile Ala	1721

50

55

Tabelle 1 (Fortsetzung):

5	ATC AAC AAC ACA CTC ACC CCC ACC ACC CTG CCA CCA GGG ACC ATC Ile Asn Asn Thr Leu Thr Thr Leu Pro Pro Gly Thr Ile 420	1766
	CAA TAC CTG ACT GAC ACC TCC AAG TAT CCC AAG GGT TAC TTT GTC Gln Tyr Leu Thr Asp Thr Ser Lys Tyr Pro Lys Gly Tyr Phe Val 430	1811
10	CAG AAC ACA TAT TTT GAC TTT TTC AAC TAC GCT GGA CTG CAG CGG Gln Asn Thr Tyr Phe Asp Phe Asn Tyr Ala Gly Leu Gln Arg 450	1856
	TCT GTA CTT CTG TAC ACG ACA CCC ACC ACC TAC ATC GAT GAC ATC Ser Val Leu Leu Tyr Thr Pro Thr Thr Tyr Ile Asp Asp Ile 460	1901
15	ACC GTC ACC ACC AGC GTG GAG CAA GAC AGT GGG CTG GTG AAT TAC Thr Val Thr Ser Val Glu Gln Asp Ser Gly Leu Val Asn Tyr 480	1946
	CAG ATC TCT GTC AAG GGC AGT AAC CTG TTC AAG TTG GAA GTG CGT Gln Ile Ser Val Lys Gly Ser Asn Leu Phe Lys Leu Glu Val Arg 490	1991
20	CTT TTG GAT GCA GAA AAC AAA GTC GTG GCG AAT GGG ACT GGG ACC Leu Leu Asp Ala Glu Asn Lys Val Val Ala Asn Gly Thr Gly Thr 510	2036
	CAG GGC CAA CTT AAG GTG CCA GGT GTC AGC CTC TGG TGG CCG TAC Gln Gly Gln Leu Lys Val Pro Gly Val Ser Leu Trp Trp Pro Tyr 520	2081
25	CTG ATG CAC GAA CGC CCT GCC TAT CTG TAT TCA TTG GAG GTG CAG Leu Met His Glu Arg Pro Ala Tyr Leu Tyr Ser Leu Glu Val Gln 540	2126
	CTG ACT GCA CAG ACG TCA CTG GGG CCT GTG TCT GAC TTC TAC ACA Leu Thr Ala Gln Thr Ser Leu Gly Pro Val Ser Asp Phe Tyr Thr 550	2171
30	CTC CCT GTG GGG ATC CGC ACT GTG GCT GTC ACC AAG AGC CAG TTC Leu Pro Val Gly Ile Arg Thr Val Ala Val Thr Lys Ser Gln Phe 570	2216
	CTC ATC AAT GGG AAA CCT TTC TAT TTC CAC GGT GTC AAC AAG CAT Leu Ile Asn Gly Lys Pro Phe Tyr Phe His Gly Val Asn Lys His 580	2261
35	GAG GAT GCG GAC ATC CGA GGG AAG GGC TTC GAC TGG CCG CTG CTG Glu Asp Ala Asp Ile Arg Gly Lys Gly Phe Asp Trp Pro Leu Leu 600	2306
	GTG AAG GAC TTC AAC CTG CTT CGC TGG CTT GGT GCC AAC GCT TTC Val Lys Asp Phe Asn Leu Leu Arg Trp Leu Gly Ala Asn Ala Phe 610	2351
40	CGT ACC AGC CAC TAC CCC TAT GCA GAG GAA GTG ATG CAG ATG TGT Arg Thr Ser His Tyr Pro Tyr Ala Glu Glu Val Met Gln Met Cys 630	2396
	GAC CGC TAT GGG ATT GTG GTC ATC GAT GAG TGT CCC GGC GTG GGC Asp Arg Tyr Gly Ile Val Val Ile Asp Glu Cys Pro Gly Val Gly 640	2441
45	CTG GCG CTG CCG CAG TTC TTC AAC AAC GTT TCT CTG CAT CAC CAC Leu Ala Leu Pro Gln Phe Phe Asn Asn Val Ser Leu His His His 660	2486
	ATG CAG GTG ATG GAA GAA GTG GTG CGT AGG GAC AAG AAC CAC CCC Met Gln Val Met Glu Glu Val Val Arg Arg Asp Lys Asn His Pro 670	2531
50		680

Tabelle 1 (Fortsetzung):

5	GCG GTC GTG ATG TGG TCT GTG GCC AAC GAG CCT GCG TCC CAC CTA Ala Val Val Met Trp Ser Val Ala Asn Glu Pro Ala Ser His Leu 690	2576
10	GAA TCT GCT GGC TAC TAC TTG AAG ATG GTG ATC GCT CAC ACC AAA Glu Ser Ala Gly Tyr Tyr Leu Lys Met Val Ile Ala His Thr Lys 700 710	2621
15	TCC TTG GAC CCC TCC CGG CCT GTG ACC TTT GTG AGC AAC TCT AAC Ser Leu Asp Pro Ser Arg Pro Val Thr Phe Val Ser Asn Ser Asn 720	2666
20	TAT GCA GCA GAC AAG GGG GCT CCG TAT GTG GAT GTG ATC TGT TTG Tyr Ala Ala Asp Lys Gly Ala Pro Tyr Val Asp Val Ile Cys Leu 730 740	2711
25	AAC AGC TAC TAC TCT TGG TAT CAC GAC TAC GGG CAC CTG GAG TTG Asn Ser Tyr Tyr Ser Trp Tyr His Asp Tyr Gly His Leu Glu Leu 750	2756
30	ATT CAG CTG CAG CTG GCC ACC CAG TTT GAG AAC TGG TAT AAG AAG Ile Gln Leu Gln Leu Ala Thr Gln Phe Glu Asn Trp Tyr Lys Lys 760 770	2801
35	TAT CAG AAG CCC ATT ATT CAG AGC GAG TAT GGA GCA GAA ACG ATT Tyr Gln Lys Pro Ile Ile Gln Ser Glu Tyr Gly Ala Glu Thr Ile 780	2846
40	GCA GGG TTT CAC CAG GAT CCA CCT CTG ATG TTC ACT GAA GAG TAC Ala Gly Phe His Gln Asp Pro Pro Leu Met Phe Thr Glu Glu Tyr 790 800	2891
45	CAG AAA AGT CTG CTA GAG CAG TAC CAT CTG GGT CTG GAT CAA AAA Gln Lys Ser Leu Leu Glu Gln Tyr His Leu Gly Leu Asp Gln Lys 810	2936
50	CGC AGA AAA TAT GTG GTT GGA GAG CTC ATT TGG AAT TTT GCC GAT Arg Arg Lys Tyr Val Val Gly Glu Leu Ile Trp Asn Phe Ala Asp 820 830	2981
55	TTC ATG ACT GAA CAG TCA CCG ACG AGA GTG CTG GGG ATT AAA AAG Phe Met Thr Glu Gln Ser Pro Thr Arg Val Leu Gly Asn Lys Lys 840	3026
60	GGG ATC TTC ACT CCG CAG AGA CAA CCA AAA AGT GCA GCG TTC CTT Gly Ile Phe Thr Arg Gln Arg Gln Pro Lys Ser Ala Ala Phe Leu 850 860	3071
65	TTG CGA GAG AGA TAC TGG AAG ATT GCC AAT GAA ACC AGG TAT CCC Leu Arg Glu Arg Tyr Trp Lys Ile Ala Asn Glu Thr Arg Tyr Pro 870	3116
70	CAC TCA GTA GCC AAG TCA CAA TGT TTG GAA AAC AGC CCG TTT ACT His Ser Val Ala Lys Ser Gln Cys Leu Glu Asn Ser Pro Phe Thr 880 890	3161
75	TGA GCAAGACTGA TACCAACCTGC GTGTCCCTTC CTCCCCGAGT CAGGGCGACT ...	3214
80	TCCACAGCAG CAGAACAAAGT GCCTCCTGGA CTGTTCACGG CAGACCAGAA CGTTTCTGGC CTGGGTTTG TGGTCATCTA TTCTAGCAGG GAACACTAAA	3264 3314

Tabelle 2:

pAB-Back:

Linker-Anti:

Tabelle 3:

Linker-Sense:

VL(Mut)-For:

5

10

15

20

25

30

35

40

45

50

Tabelle 4

Pharmakokinetik des sFv-hu β Gluc Fusionsproteins in MzSto1 tragenden CD1 nu/nu Mäusen
ng sFv-hu β Gluc pro Gramm Gewebe bzw ml Plasma gemessen im Tripledeterminantenest

Gewebetyp	0,05Std	Maus1	Maus2	Maus3	Maus4	Maus5a	Maus5b
	3Std	24Std	48Std	120Std	120Std	120Std	
Tumor	24,8	4	7,7	2,1	2,2	2,2	6,2
Milz	15,4	4,1	<0,1	<0,1	<0,1	<0,1	<0,1
Leber	40,9	10,1	0,8	0,8	0,3	0,3	<0,1
Darm	5,2	4,4	1,1	1,2	0,6	0,6	<0,1
Niere	44,4	7	<0,1	<0,1	<0,1	<0,1	<0,1
Lunge	154,8	17,3	<0,1	<0,1	<0,1	<0,1	<0,1
Herz	148,3	8,2	<0,1	<0,1	<0,1	<0,1	<0,1
Plasma	630,9	95	2,7	0,4	<0,1	<0,1	<0,1

i.v. Injektion von 0,8 μ g gereinigtem Fusionsprotein pro Maus

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 5**Monosaccharid-Komponentenanalytik des Kohlehydratanteils des sFv-huß-Gluc Fusionsproteins aus BHK-Zellen**

Das gereinigte sFv-huß-Gluc Fusionsprotein wurde auf seinen Kohlehydratanteil hin untersucht. Dabei wurden nach Hydrolyse folgende Einzelkomponenten im angegebenen Molverhältnis gefunden (mol Kohlenhydrat/mol sFv-huß-Gluc).

	Fukose	Galaktose	N-Acetylglukosamin	Galaktose	Glukose	Mannose	N-Acetylneuraminsäure
sFv-huß-Gluc	4	2	30	8	1	43	4

Aus den Molverhältnissen von Mannose, Glukosamin und Galaktose kann auf das Vorliegen von "High-Mannose Type"- und/oder "Hybrid Type"-Strukturen (neben "Complex Type"-Strukturen) geschlossen werden. Endständig treten deshalb Mannose, Galaktose, -Acetylneuraminsäure und evtl. N-Acetylglukosamin auf, wobei Mannose auch als Mannose-6-phosphat vorliegen kann.

Methoden:

Die Neuraminsäurebestimmung erfolgte nach Hermentin und Seidat (1991) GBF Monographs Volume 15, S. 185 - 188 (nach 30 min. Hydrolyse in Gegenwart von 0.1 N Schwefelsäure bei 80°C und nachfolgender Neutralisation mit 0.4 N Natronlauge) mittels "high-pH anion exchange chromatography with pulsed amperometric detection" (HPAE-PAD).

Die Bestimmung der Monosaccharid-Komponenten erfolgte (nach 4 h Hydrolyse in Gegenwart von 2 N Trifluoressigsäure bei 100°C und Einengung zur Trockne in einer SpeedVac) ebenfalls mittels HPAE-PAD in Anlehnung an das von Hardy et al. (1988) Analytical Biochemistry 170, 54 - 62 beschriebene Verfahren.

5

10

15

20

25

30

35

40

45

50

55

Tabelle 6

Monosaccharid-Komponentenanalytik des Kohlenhydratanteiles des sFv-hußGluc Fusionsproteins aus *Saccharomyces cerevisiae*.

sFv-hußGluc (mol/mol)	Glukosamin	Glucose	Mannose	mol/mol
	6	12	150	

Tabelle 7:

Oligos für sFv 431/26 Klonierung in pUC 19

5

sFv for (2561)

10 5' TTT TTA AGC TTA GAT CTC CAC CTT GGT C 3'

15 **sFv back (2577)**

20 5' AAA AAT CTA GAA TGC AGG TCC AAC TGC AGG
AGA G 3'

25

Tabelle 8:

30 Oligos für hum. β -Gluc Klonierung in sFv pUC 19

Hum. β -Gluc. back Oligo (2562)

35 5' AAA AAA GTG ATC AAA GCG TCT GGC GGG CCA CAG
GGC GGG ATC CTG TAC 3'

Hum. β -Gluc for Oligo (2540)

40 5' TTT TAA GCT TCA AGT AAA CGG GCT GTT 3'

45

50

55

Tabelle 9:

5 Oligos für sFv/hum- β -Gluc Klonierung in pIXY120

PCR Oligo VH_pIXY back (2587)

10

5' TTT TGG TAC CTT TGG ATA AAA GAC AGG TCC AAC TGC AGG AGA G 3'

15

PCR Oligo VK_pIXY for (2627)

20

5' A AAA CCA TGG GAA TTC AAG CTT CGA GCT GGT ACT ACA GGT 3'

25

Tabelle 10:

30 Oligos für E.coli- β -Gluc Klonierung in sFv pUC 19

E. coli- β -Gluc. for (2639)

35

5' TTT TAA GCT TCC ATG GCG GCC GCT CAT TGT TTG
CCT CCC TGC TG 3'

40

E. coli- β -Gluc. back (2638)

45

5' AAA AAG ATC TCC GCG TCT GGC GGG CCA CAG TTA
CGT GTA GAA ACC CCA 3'

50

55

Tabelle 11:5 Oligos für sFv/ β -lactamase Klonierung in pIXY12010 **PCR Oligo VH_pIXY back (2587)**15 5' TTT TGG TAC CTT TGG ATA AAA GAC AGG TCC AAC TGC AGG AGA G 3'15 **PCR Oligo VK_pIXY/ β -lactamase for (2669)**20 5' AAA AAG CTT AGA TCT CCA GCT TGG TCC C 3'25 **PCR Oligo link/ β -lactamase back (2673)**30 5' AAA GAA TTC TGA TCA AAT CCT CGA GCT CAG GTT CAC
 AAA AGG TAG AGA AAA CAG T 3' Linker35 **PCR Oligo β -lactamase for (2674)**35 5' TTT AAG CTT ATT TTA ATA AAT CCA ATG T 3'40 **Patentansprüche**

1. Verbindung, enthaltend eine Antigenbinderegion, welche an mindestens ein prodrug-aktivierendes Enzym gebunden ist, dadurch gekennzeichnet, daß die Antigenbinderegion aus einer einzigen Polypeptidkette besteht.
2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindung kovalent gebundene Kohlenhydrate trägt.
3. Verbindung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Antigenbinderegion eine variable Domäne einer schweren Antikörperkette und eine variable Domäne einer leichten Antikörperkette enthält (sFv-Fragment).
4. Verbindung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Antigenbinderegion an ein tumorassoziiertes Antigen (TAA) bindet.
5. Verbindung nach Anspruch 3, dadurch gekennzeichnet, daß das TAA ein N-CAM, PEM, EGF-R, Sialyl-Le^a, Sialyl-Le^x, TF^b, GICA, GD₃, GD₂, TAG72, CA125, das durch den MAk L6 definierte 24-25 kDa Glycoprotein oder CEA, vorzugsweise ein CEA ist.

6. Verbindung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Enzym eine Lactamase, vorzugsweise eine *Bacillus cereus* II β -lactamase, Pyroglutamat-Aminopeptidase, D-Aminopeptidase, Oxidase, Peroxidase, Phosphatase, Hydroxynitrillyase, Protease, Esterase, Carboxypeptidase, vorzugsweise eine Carboxypeptidase G2 aus *Pseudomonas* oder Glycosidase ist.
- 5 7. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß das Enzym eine β -Glucuronidase, vorzugsweise eine *E.coli*, *Kobayasia nipponica*, *Secale cereale* oder humane β -Glucuronidase ist.
- 10 8. Verbindung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Antigenbinderegion über einen Peptidlinker mit dem Enzym verbunden ist.
- 15 9. Verbindung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Glycosylierung entweder mittels chemischer Methoden oder durch Auswahl geeigneter Expressionssysteme erfolgt.
- 20 10. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß sie sekretorisch in *Saccharomyces cerevisiae* bzw. vorteilhafter in *Hansenula polymorpha* exprimiert wird.
- 25 11. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß sie in *E. coli* exprimiert wird und anschließend chemisch glycosyliert, vorzugsweise galaktosyliert und/oder mannosyliert wird.
- 30 12. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß das sFv β -lactamase Fusionsprotein, welches periplasmatisch in *E. coli* exprimiert wurde, chemisch glycosyliert, vorzugsweise galaktosyliert und/oder mannosyliert ist.
- 35 13. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß das sFv β -lactamase Fusionsprotein sekretorisch in *Saccharomyces cerevisiae* bzw. *Hansenula polymorpha* exprimiert ist.
- 40 14. Nukleinsäure, kodierend für eine Verbindung nach einem der Ansprüche 1 bis 8.
- 45 15. Nukleinsäure nach Anspruch 14, kodierend für ein humanisiertes sFv-Fragment gegen CEA und eine humane β -Glucuronidase.
- 50 16. Nukleinsäure nach Anspruch 14 mit der Sequenz gemäß Tab. 1.
- 55 17. Vektor, enthaltend eine Nukleinsäure nach einem der Ansprüche 14 bis 16.
- 60 18. Wirtszelle, enthaltend eine Nukleinsäure nach einem der Ansprüche 14 bis 16 oder einen Vektor nach Anspruch 17.
- 65 19. Wirtszelle nach Anspruch 18, dadurch gekennzeichnet, daß sie eine BHK-, CHO-, COS-, HeLa-, Insekten-, Tabakpflanzen-, Hefe- oder *E.coli*-Zelle ist.
- 70 20. Transgene Säugetiere mit Ausnahme von Mensch, enthaltend eine DNA nach einem der Ansprüche 14 bis 16 oder einen Vektor nach Anspruch 17.
- 75 21. Verfahren zur Herstellung einer Verbindung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß
- a) eine Nukleinsäure nach einem der Ansprüche 14 bis 16 oder ein Vektor nach Anspruch 17 in eine Wirtszelle eingebracht wird,
 - b) die Wirtszelle kultiviert und
 - c) die Verbindung isoliert wird.
- 80 22. Verfahren zur Herstellung einer Verbindung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß
- a) eine Wirtszelle nach Anspruch 18 oder 19 kultiviert und
 - b) die Verbindung isoliert wird.
- 85 23. Verwendung der Verbindung nach Anspruch 1 bis 13 zur Herstellung eines Arzneimittels oder eines Diagnostikums.

24. Verwendung der Verbindung nach Anspruch 1 bis 13 zur Herstellung eines Arzneimittels zur Behandlung von Krebs.
25. Arzneimittel, enthaltend eine Verbindung nach Anspruch 1 bis 13.
- 5 26. Diagnostikum, enthaltend eine Verbindung nach Anspruch 1 bis 13.

10

15

20

25

30

35

40

45

50

55

TSK 3000 Gelchromatographie

Abb.: 1

Probe: 200 ng sFv-hu β Gluc
Fusionsprotein in 25 μ l

Abb.: 2

Abb.: 3

Abb.: 4

Abb.: 5

Abb.: 6

Abb.: 7

Abb.: 8

Abb.: 9

Abb.: 10

Abb.: 11

4.