UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa Cálculo II

03	40	Λ σ	oato.	40	2016
			151.(1)		2010

1	
2	
3	
4	
5	
Total	

Aluno(a):.....

- (1) Calcule a integral indefinida $\int x(2x-5)^8 dx$.
- (2) Calcule a integral definida $\int_{1}^{3} r^{3} \ln(r) dr$.
- (3) Calcule as integrais:

(a)
$$\int \frac{1}{x^4} dx$$

(b)
$$\int_{-2}^{3} \frac{1}{x^4} dx$$

- (4) Utilize substituição trigonométrica para calcular a integral $\int \frac{x^2}{\sqrt{1-r^2}} dx$.
- (5) Dados os polinômios $p(x) = x^3 + 4$ e $q(x) = x^2 + 4$:
 - (a) Divida p(x) por q(x).
 - (b) Fatore q(x).
 - (c) Calcule a integral $\int \frac{p(x)}{q(x)} dx$.

Fórmulas úteis:
$$\cos (x) = \frac{1}{\sin (x)} \qquad \qquad \sec (x) = \frac{1}{\cos (x)} \qquad \qquad \cot (x) = \frac{\cos (x)}{\sin (x)}$$

$$sen^2(x) + cos^2(x) = 1$$
 $tg^2(x) + 1 = sec^2(x)$
 $1 + cotg^2(x) = cosec^2(x)$

$${\rm sen}^2(x) = \frac{1 - \cos(2x)}{2} \quad \cos^2(x) = \frac{1 + \cos(2x)}{2} \quad \int \frac{1}{x^2 + a^2} \ dx = \frac{1}{a} \, \arctan\left(\frac{x}{a}\right) + c$$

$$\operatorname{sen}(x+y) = \operatorname{sen}(x)\cos(y) + \operatorname{sen}(y)\cos(x) \quad \operatorname{sen}(x-y) = \operatorname{sen}(x)\cos(y) - \operatorname{sen}(y)\cos(x)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y) \quad \cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

Boa Prova!