

Multivariate Analysis

B Banerje

Empeetite

Dispersio

Normal

Quadratic form:

T-Statist

Regression Analysis Multivariate Analysis

Buddhananda Banerjee

Department of Mathematics Centre for Excellence in Artificial Intelligence Indian Institute of Technology Kharagpur

bbanerjee@maths.iitkgp.ac.in

1 / 15

B Banerjee Multivariate Analysis IIT Kharagpur

Expectation

Multivariate Analysis

B Baner

Expectation

Dispersion

Normal

Quadratic forms

r_Staticti

Definition

Let $\mathbf{X} = (X_1, X_2, \dots, X_n)^T$ be a random vector with finite expectation for each of the component the we define expectation of a random vector as

$$E(\mathbf{X}) = (E(X_1), E(X_2), \cdots, E(X_n))^T.$$

Similarly if $\mathbf{Y} = ((Y_{ij}))_{m \times n}$ is a random matrix with finite expectation for each of the component the we define expectation of a random matrix as $E(\mathbf{Y}) = ((E(Y_{ii})))_{m \times n}$.

Dispersion

Multivariate Analysis

B Banerj

Expectati

Dispersion

.

Quadratic forms

T-Statistic

Definition

The dispersion matrix or the variance-covariance matrix is

$$D(\mathbf{X}) = ((Cov(X_i, X_j)))_{n \times n} = E[(\mathbf{X} - E(\mathbf{X}))(\mathbf{X} - E(\mathbf{X}))^T] = Cov(\mathbf{X}, \mathbf{X})$$

NOTE:

(1)
$$Cov(\mathbf{U}_p, \mathbf{V}_q) = ((Cov(U_i, V_i)))_{p \times q}$$

(2)
$$E(\mathbf{X} + \mathbf{b}) = E(\mathbf{X}) + \mathbf{b}$$

$$(3) D(\mathbf{X} + \mathbf{b}) = D(\mathbf{X})$$

$$(4)Cov(\mathbf{X} + \mathbf{b}, \mathbf{Y} + \mathbf{c}) = Cov(\mathbf{X}, \mathbf{Y})$$

Results

Multivariate Analysis

Dispersion

Let **X** be a random vector with *n*-components such that $E(\mathbf{X}) = \mu$ and $D(\mathbf{X}) = \Sigma$ then

- $\mathbf{I} E(l^T \mathbf{X}) = l^T \mu$, where $l \in \mathbb{R}^n$ is a constant vector
- $D(l^T \mathbf{X}) = l^T \Sigma l$
- **3** $E(\mathbf{AX}) = \mathbf{A}\mu$, where $\mathbf{A} \in \mathbb{R}^{p \times n}$ is a constant matrix
- 4 $D(\mathbf{AX}) = \mathbf{A} \Sigma \mathbf{A}^T$ and $Cov(\mathbf{AX}, \mathbf{BX}) = \mathbf{A} \Sigma \mathbf{B}^T$
- If $Cov(\mathbf{U}_n, \mathbf{V}_a) = \Gamma$ then $Cov(\mathbf{AU}, \mathbf{BV}) = \mathbf{A}\Gamma\mathbf{B}^T$

Exercise

Multivariate Analysis

Dispersion

Let **X** be a random vector with *n*-components such that $E(\mathbf{X}) = \mu$ and $D(\mathbf{X}) = \Sigma$ then

Note1 [3]. It will imply [1].

Note2 [5]. It will imply [2] and [4].

Note3 $D(\mathbf{X})$ is a p.s.d. matrix.

Theorems

Multivariate Analysis

B Banerj

Expecta

Dispersion

Multivariat Normal

Quadratic forms

T-Staticti

Theorem 1

Let **X** be a random vector with *n*-components such that $E(\mathbf{X}) = \mu$ and $D(\mathbf{X}) = \Sigma$. Show that $E(\mathbf{X}^T A \mathbf{X}) = trace(\Sigma A) + \mu^T A \mu$

Theorems

Multivariate Analysis

B Banerj

Expecta

Dispersion

Multivaria Normal

Quadratic forms

T_Staticti

Theorem 2

Let **X** be a random vector with *n*-components such that $E(\mathbf{X}) = \mu$ and $D(\mathbf{X}) = \Sigma$ then $P((\mathbf{X} - \mu) \in \mathcal{C}(\Sigma)) = 1$.

Theorems

Multivariate Analysis

B Baner

Expectat

Dispersion

Horman

Quadratic forms

T-Statist

Theorem 3

Let **X** be a random vector with *n*-components such that $E(\mathbf{X}) = \mu$ and $D(\mathbf{X}) = \Sigma$ with $Rank(\Sigma) = r \le n$. Also assume that $\Sigma = BB^T$ where B is a $(n \times r)$ matrix and C is a left inverse of B i.e. $CB = \mathbf{I}_r$. Define $\mathbf{Y} = C(\mathbf{X} - \mu)$. Show that

- (i) $E(\mathbf{Y}) = \mathbf{0}$
- (ii) $D(\mathbf{Y}) = \mathbf{I}_r$
- (iii) $\mathbf{X} = \mu + B\mathbf{Y}$ with probability 1.

Definition

Multivariate Analysis

B Banerj

Expecta

Dispersion

Normal

Quadratic forms

T-Statistic

Multivariate Normal

A random vector **X** is said to follow multivariate normal $N(\mu, \Sigma)$ if it has a density

$$f(\mathbf{x}) = \frac{\exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\}}{(\sqrt{2\pi})^n \sqrt{|\boldsymbol{\Sigma}|}}$$

for some $\mu \in \mathbf{R}^n$ and p.s.d. Σ

- If $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $A\mathbf{X} \sim N(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A^T)$
- If $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then there exists B and its left inverse C such that $\mathbf{Y} = C(\mathbf{X} \boldsymbol{\mu}) \sim N(\mathbf{0}, \mathbf{I}_r)$ and $\mathbf{X} = \boldsymbol{\mu} + B\mathbf{Y}$ with probability one.

Defination

Multivariate Analysis

B Banerj

Expecta

Dispersion

Multivariate Normal

Quadratic forms

T Canalogi

χ^2 -distribution

If $\mathbf{X} \sim N(\boldsymbol{\mu}, \mathbf{I}_n)$ then $\mathbf{X}^T \mathbf{X}$ is said to follow Chi-squared distribution with degrees of freedom (d.f.) n and non-centrality parameter (n.c.p) $\boldsymbol{\mu}^T \boldsymbol{\mu}$.

Note: If $\mathbf{X} \sim N(\mu, \mathbf{I}_n)$, show that $E(\mathbf{X}^T\mathbf{X}) = n + \boldsymbol{\mu}^T\boldsymbol{\mu}$

Theorem

Multivariate Analysis

Ouadratic forms

χ^2 -distribution

If $\mathbf{X} \sim N(\boldsymbol{\mu}, \mathbf{I}_n)$ then $\mathbf{X}^T A \mathbf{X}$ has Chi-squared distribution iff A is idempotent. Moreover $\mathbf{X}^T A \mathbf{X} \sim \chi^2_{df=Rank(A),ncp=\boldsymbol{\mu}^T A \boldsymbol{\mu}}$

Corollary: If A_1 and A_2 are symmetric and idempotent matrices such that $Q = A_1 - A_2$ be a p.s.d. matrix then $\mathbf{X}^T Q \mathbf{X}$ and $\mathbf{X}^T A_2 \mathbf{X}$ are independently distributed.

Independence

Multivariate Analysis

B Banerj

Expecta

Dispersio

Multivaria Normal

Quadratic forms

Theorem

Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \mathbf{I}_n)$ and A is symmetric and $CA = \mathbf{0}$ then $\mathbf{X}^T A \mathbf{X}$ and $C \mathbf{X}$ are independently distributed.

Theorem

Multivariate Analysis

B Banerj

Expecta

Dispersio

Normal

Quadratic forms

Γ-Statist

Cochran's Theorem

Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \mathbf{I}_n)$ and $\mathbf{X}^T A \mathbf{X} \equiv \sum_{i=1}^k \mathbf{X}^T A_i \mathbf{X}$ where A_i s are symmetric and A is an idempotent matrix. Then $\mathbf{X}^T A_i \mathbf{X} \sim \chi^2_{Rank(A_i), \boldsymbol{\mu}^T A_i \boldsymbol{\mu}}$ and they are independent.

T-statistic

Multivariate Analysis

B Banery

Expecta

Dispersi

Multivariat Normal

Quadratic forms

T-Statistic

Let $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2$

- I Find the distribution of \bar{X} and S^2 .
- Show that they are independently distributed
- 3 Construct t-statistic from it.
- 4 Construct F-statistic from it.

References

Multivariate Analysis

B Baner

Expecta

Dispersi

Multivaria Normal

Quadratic form

T-Statistic

- 1 (APPENDIX C1) Introduction to Linear Regression Analysis, 5th Edition By Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining
- 2 . [CHAPTER 3] Linear Models : An Integrated Approach By Debasis Sengupta, Sreenivasa Rao Jammalamadaka

15 / 15