Simulación de Peines de Frecuencia Óptica Generados por Láseres de Semiconductor

Autor

Jaime Díez González-Pardo

Director:

Ángel Valle

24 de septiembre de 2019

Jaime Díez

Láser de Semiconductor

OFC

Ec. de Balance Resolución estocástica Dinamica No

Láser en Solitario Encendido p

Ganancia

C S --- IC

Jaime Díez

Láser de Semiconductor

OFC

Ec. de Balar Resolución estocástica Dinamica No

Láser en Solitario

Encendido po Ganancia

de Luz

G-S con IO

Conclusione

Láser de Semiconductor:

Emisión Lateral

Jaime Díez

Láser de Semiconductor

OFC

Ec. de Balan
Resolución
estocástica
Dinamica No

Láser en Solitario

Encendido po Ganancia

G G T/

Conclusiones

Láser de Semiconductor:

Emisión Lateral

Jaime Díez

Láser de Semiconductor

OFC

Ec. de Balan Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido

Encendido po Ganancia

C S con IC

Conclusione

Láser de Semiconductor:

- Emisión Lateral
- Modo discreto (DML)

Peines de Frecuencia Óptica OFC

Jaime Díez

Láser de Semiconductor

OFC

Resolución estocástica Dinamica No

Láser en Solitario

Encendido por Ganancia

$$P(\omega) = \lim_{T \to \infty} |\mathcal{F}(x)(\omega)|^2$$

Peines de Frecuencia Óptica OFC

Jaime Díez

Láser de Semiconductor

OFC

Ec. de Balan-Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido por Ganancia

G G

$$P(\omega) = \lim_{T \to \infty} |\mathcal{F}(x)(\omega)|^2 \quad \delta \nu \delta t = \text{Cte}$$

Peines de Frecuencia Óptica OFC

Jaime Díez

Láser de Semiconductor ofC

Ec. de Balan Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido po Ganancia

de Luz

G-S con I

$$P(\omega) = \lim_{T \to \infty} |\mathcal{F}(x)(\omega)|^2 \quad \delta \nu \delta t = \text{Cte}$$

$$x(t) = X_T(t) * S(t)$$

$$\chi(\nu) = \chi_T(\nu) \cdot S(\nu)$$

Jaime Díez

áser de emiconictor

OFC

Ec. de Balance Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido po Ganancia

Inyección de Luz

G-S con IO

Conclusiones

Encendido por Ganacia (**Gain-Switching**):

Jaime Díez

Láser de Semicon ductor

OFC

Ec. de Balance Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido p Ganancia

Inyección de Luz

G-S con IC

Conclusiones

Encendido por Ganacia (Gain-Switching):

 Se alcanza rápidamente un alto valor para la ganancia del láser

Jaime Díez

Láser de Semiconductor

Ec. de Balar Resolución

estocástica

Dinamica No
Lineal

Láser en Solitario

Encendido por Ganancia

Inyección de Luz

G-S con IC

Conclusiones

Encendido por Ganacia (Gain-Switching):

- Se alcanza rápidamente un alto valor para la ganancia del láser
- Pulsos del láser de corta duración y grandes picos de potencia

Jaime Díez

Láser de Semicon ductor

OFC

Resolución estocástica Dinamica No Lineal

Láser en Solitario

Ganancia Inyección

G-S con IC

Conclusiones

Encendido por Ganacia (Gain-Switching):

- Se alcanza rápidamente un alto valor para la ganancia del láser
- Pulsos del láser de corta duración y grandes picos de potencia

Jaime Díez

Láser de Semiconductor

OFC

Ec. de Balance Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido p

Inyección de Luz

G-S con IC

Conclusiones

Encendido por Ganacia (Gain-Switching):

- Se alcanza rápidamente un alto valor para la ganancia del láser
- Pulsos del láser de corta duración y grandes picos de potencia

Inyección Óptica:

• Inyectar fotones provenientes de un segundo láser

Jaime Díez

Láser de Semicon ductor

OFC Ec. de B

Resolución estocástica Dinamica No

Láser en Solitario Encendido por Ganancia

Inyección de Luz

G-S con IC

Conclusione

Encendido por Ganacia (Gain-Switching):

- Se alcanza rápidamente un alto valor para la ganancia del láser
- Pulsos del láser de corta duración y grandes picos de potencia

- Inyectar fotones provenientes de un segundo láser
- las características de la fase del láser inyectado pasan a estar determinadas por la inyección

Jaime Díez

Láser de Semicon ductor

Ec. de Balan Besolución

Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido por Ganancia

Inyección de Luz

G-S con IC

Conclusiones

Encendido por Ganacia (Gain-Switching):

- Se alcanza rápidamente un alto valor para la ganancia del láser
- Pulsos del láser de corta duración y grandes picos de potencia

- Inyectar fotones provenientes de un segundo láser
- las características de la fase del láser inyectado pasan a estar determinadas por la inyección
- Bloqueo por inyección

Jaime Díez

Láser de Semicon ductor

OFC

Resolución estocástica Dinamica No

Láser en Solitario Encendido po Ganancia

Inyecció de Luz

G-S con IC

Conclusione

Encendido por Ganacia (Gain-Switching):

- Se alcanza rápidamente un alto valor para la ganancia del láser
- Pulsos del láser de corta duración y grandes picos de potencia

- Inyectar fotones provenientes de un segundo láser
- las características de la fase del láser inyectado pasan a estar determinadas por la inyección
- Bloqueo por invección

Ecuaciones de Balance

Densida

Jaime Díez

Láser de Semicon ductor OFC

Ec. de Balance

Resolución estocástica Dinamica N

Láser en Solitario

Encendido por Ganancia

Inyección de Luz

G-S con IO

Conclusiones

Densidad de Portadores:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{I(t)}{eV_{act}} - R(N) - \frac{v_g g(N)S(t)}{1 + \epsilon S(t)}$$

Ecuaciones de Balance

Jaime Díez

Láser de Semiconductor ofc

Ec. de Balance

estocástica Dinamica N

Dinamica No Lineal

Láser en Solitario

Encendido por Ganancia

Inyección de Luz

G-S con IO

Conclusiones

Densidad de Portadores:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{I(t)}{eV_{act}} - R(N) - \frac{v_g g(N)S(t)}{1 + \epsilon S(t)}$$

Densidad de Fotones:

$$\frac{dS}{dt} = \left[\frac{\Gamma v_g g(N)}{1 + \epsilon S(t)} - \frac{1}{\tau_p}\right] S(t) + \beta \Gamma B N^2(t) + \sqrt{2\beta \Gamma B N^2(t) S(t)} F_S(t) + Y_S(t)$$

Ecuaciones de Balance

Jaime Díez

Láser de Semicon ductor ofc

Ec. de Balance

Resolución estocástica Dinamica No

Láser en

Encendido por Ganancia

C C . I

Conclusiones

Densidad de Portadores:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{I(t)}{eV_{act}} - R(N) - \frac{v_g g(N)S(t)}{1 + \epsilon S(t)}$$

Densidad de Fotones:

$$\frac{dS}{dt} = \left[\frac{\Gamma v_g g(N)}{1 + \epsilon S(t)} - \frac{1}{\tau_p}\right] S(t) + \beta \Gamma B N^2(t)$$
$$+ \sqrt{2\beta \Gamma B N^2(t) S(t)} F_S(t) + Y_S(t)$$

Fase Óptica:

$$\frac{d\Phi}{dt} = \frac{\alpha}{2} \left[\Gamma v_g g(N) - \frac{1}{\tau_p} \right] + 2\pi \Delta \nu(I)$$
$$+ \sqrt{\frac{\beta \Gamma B N^2(t)}{2S(t)}} F_{\Phi}(t) + Y_{\Phi}(t)$$

Jaime Díez

íser de emiconector

Orc

Resolución estocástica

Dinamica No

Solitario

Encendido po Ganancia

de Luz

G-S con IO

Conclusione

Jaime Díez

Láser de Semicon ductor

Orc

Resolución estocástica

Dinamica No

Láser en Solitario

Encendido po

Inyecció de Luz

G-S con IO

Conclusione

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(x,t) + b(x,t)F(t)$$

Jaime Díez

Láser de Semiconductor

OFC

Resolución estocástica

Dinamica N

Láser en

Encendido por

Inyección de Luz

G-S con IO

Conclusiones

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(x,t) + b(x,t)F(t)$$

$$x(t+\Delta t) = x(t) + a(x,t)\Delta t + \eta(t)\sqrt{\Delta t}$$

Jaime Díez

Láser de Semiconductor

.

Resolución estocástica

Dinamica No

Láser en Solitario

Encendido por Ganancia

Inyección

G-S con IO

Conclusiones

• Las EDS vienen definidas por la ecuación de Langevin

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(x,t) + b(x,t)F(t)$$

$$x(t+\Delta t) = x(t) + a(x,t)\Delta t + \eta(t)\sqrt{\Delta t}$$

• $\eta(t)$ es de tipo gaussiano con $\eta = \sqrt{V[\eta]}Z + E[\eta] = bZ$.

Jaime Díez

Láser de Semiconductor

. . . .

Resolución

Dinamica No

Láser en

Encendido po

Ganancia

C C --- I

Conclusiones

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(x,t) + b(x,t)F(t)$$

$$x(t+\Delta t) = x(t) + a(x,t)\Delta t + \eta(t)\sqrt{\Delta t}$$

•
$$\eta(t)$$
 es de tipo gaussiano con $\eta = \sqrt{V[\eta]}Z + E[\eta] = bZ$.

$$x_{i+1} = x_i + a(x_i, t_i)\Delta t + b(x_i, t_i)Z_i\sqrt{\Delta t}$$

Jaime Díez

Láser de Semiconductor ofc

Ec. de Balance Resolución

Dinamica No.

Dinamica No Lineal

Láser en Solitario Encendido po Ganancia

Inyección de Luz

G-S con IO

Conclusione

 Comportamiento aleatorio y errático, Caos Determinista

Jaime Díez

Láser de Semiconductor OFC

Ec. de Balance Resolución

Dinamica No

Lineal

Láser en Solitario Encendido

Inyección de Luz

G-S con IO

- Comportamiento aleatorio y errático, Caos Determinista
- Se caracterian por la divergencia de trayectorias cercanas

Jaime Díez

ductor
OFC
Ec. de Balance

Resolución

Dinamica No

Láser en Solitario Encendido por

Inyecciór de Luz

G-S con IO

- Comportamiento aleatorio y errático, Caos Determinista
- Se caracterian por la divergencia de trayectorias cercanas
- En los sitemas disipativos las trayectorias tienden al atractor

Jaime Díez

Láser de Semiconductor OFC

Resolución estocástica

Dinamica No

Láser en Solitario Encendido po Ganancia

0.0 10

- Comportamiento aleatorio y errático, Caos Determinista
- Se caracterian por la divergencia de trayectorias cercanas
- En los sitemas disipativos las trayectorias tienden al atractor

Jaime Díez

Semiconductor

Ec. de Balance Resolución estocástica

Dinamica No

Laser en Solitario Encendido po Ganancia

de Luz

G-5 COII 10

 Comportamiento aleatorio y errático, Caos Determinista

- Se caracterian por la divergencia de trayectorias cercanas
- En los sitemas disipativos las trayectorias tienden al atractor

Jaime Díez

Láser de Semicon ductor

Ec. de Balance Resolución estocástica

Dinamica No

Lineal

Solitario
Encendido po
Ganancia

de Luz

Conclusiones

- Comportamiento aleatorio y errático, Caos Determinista
- Se caracterian por la divergencia de trayectorias cercanas
- En los sitemas disipativos las trayectorias tienden al atractor

 Una bifurcación es el cambio en la solución debido al cambio en los parámetros

Jaime Díez

ductor

OFC

Ec. de Balance

Resolución

estocástica

Dinamica No

Láser en Solitario

Encendido po Ganancia

Inyección de Luz

G-S con IC

Jaime Díez

ductor
OFC
Ec. de Balanc
Resolución
estocástica
Dinamica No

Láser en Solitario

Encendido po Ganancia

Inyección de Luz

G-S con IC

Láser de Semiconductor OFC

Ec. de Balanc Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido po Ganancia

Inyección

G-S con IC

$$\lambda_0 = \frac{2nL}{q}$$

Jaime Díez

ductor
OFC
Ec. de Balanc
Resolución
estocástica

Láser en Solitario

Encendido po Ganancia

Inyección

G-S con IC

$$\lambda_0 = \frac{2nL}{q}$$

I_{bias} [mA]	$\lambda_{sim} [nm]$	$\lambda_{exp} [\mathrm{nm}]$
15	1546.86	1546.84
20	1546.90	1546.88
25	1546.94	1546.93
30	1546.99	1546.98
35	1547.05	1547.05

G-S a Altas Frecuencias $f_R = 5.0 \text{ GHz}$

Jaime Díez

Láser de Semicon ductor ofc

Ec. de Balano Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido por Ganancia

C C --- TC

G-S a Altas Frecuencias $f_R = 5.0 \text{ GHz}$

Jaime Díez

Láser de Semiconductor ofc

Resolución estocástica Dinamica No

Láser en Solitario

Encendido por Ganancia

Inyección de Luz

G-S con IC

G-S a Altas Frecuencias $f_R = 5.0 \text{ GHz}$

Jaime Díez

Semiconductor OFC Ec. de Bala

Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido por

Ganancia Invección

C S con 1

Conclusiones

Se observa la creación y destrucción de los peines a medida que se aumenta la amplitud

Jaime Díez

Láser de Semiconductor ofc

Ec. de Balanc Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido por Ganancia

Inyecciór de Luz

G-S con IO

Jaime Díez

Láser de Semiconductor ofc

Ec. de Balano Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido por Ganancia

Invección

C S con IC

Jaime Díez

Semiconductor OFC Ec. de Bala

Ec. de Balan Resolución estocástica Dinamica No Lineal

Láser en Solitario

Encendido por Ganancia

Inyección

C S con IC

Conaluciono

Jaime Díez

ductor
OFC
Ec. de Balan
Resolución
estocástica
Dinamica No

Láser en Solitario

Encendido por Ganancia

Invección

G G ... I

Jaime Díez

Láser de Semiconductor

Ec. de Balance Resolución estocástica Dinamica No

Láser en Solitario

Ganancia

Inyección de Luz

G-S con IO

Jaime Díez

Semiconductor
OFC
Ec. de Balanc
Resolución
estocástica
Dinamica No.

Láser en Solitario

Encendido po: Ganancia

Inyección de Luz

G-S con I

Jaime Díez

Láser de Semicon ductor OFC

Ec. de Balan-Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido por Ganancia

Inyección de Luz

G-S con IO

Jaime Díez

Semiconductor OFC Ec. de Balance Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido por Ganancia

Inyección de Luz

G-S con IO

Jaime Díez

ductor
OFC
Ec. de Balanc
Resolución
estocástica
Dinamica No

Láser en Solitario Encendido por Ganancia

Inyección de Luz

G-S con IC

Bloqueo por Inyección y OFC

Jaime Díez

Láser de Semicon ductor

Resolución estocástica Dinamica No

Dinamica No Lineal

Solitario
Encendido po

Inyección de Luz

G-S con IC

Jaime Díez

Láser de Semicon ductor ofc

Ec. de Balan
Resolución
estocástica
Dinamica No
Lineal

Solitario
Encendido po
Ganancia

G-S con IO

Jaime Díez

Láser de Semicon ductor ofc

Ec. de Balano
Resolución
estocástica
Dinamica No
Lineal

Solitario
Encendido po
Ganancia

G-S con IO

Conclusione

Se obtiene la bifurcación de doblamiento de periodo

Jaime Díez

ductor
OFC
Ec. de Balance
Resolución
estocástica

Láser en Solitario Encendido po

Ganancia Invección

G-S con IO

Jaime Díez

ductor
OFC
Ec. de Balance
Resolución
estocástica
Dinamica No

Láser en Solitario Encendido po Ganancia

Inyección de Luz

G-S con IO

Conclusiones

 Se ha observado la creación y destrucción de los OFC en función de la amplitud. Así como la mayor irregularidad para bajas frecuencias.

Jaime Díez

Semiconductor
OFC
Ec. de Balance
Resolución
estocástica

Láser en Solitario Encendido po Ganancia

Inyección de Luz

G-S con IC

- Se ha observado la creación y destrucción de los OFC en función de la amplitud. Así como la mayor irregularidad para bajas frecuencias.
- Se han determinado las diferentes regiones dinámicas para distintos valores de la inyección.

Jaime Díez

Semiconductor OFC Ec. de Balance Resolución estocástica Dinamica No

Solitario
Encendido por
Ganancia

Invección

G-S con IO

- Se ha observado la creación y destrucción de los OFC en función de la amplitud. Así como la mayor irregularidad para bajas frecuencias.
- Se han determinado las diferentes regiones dinámicas para distintos valores de la inyección.
- Se han obtenido bifurcaciones de Hopf y de doblamiento de periodo

Jaime Díez

Semiconductor

OFC

Ec. de Balance

Resolución
estocástica

Dinamica No

Láser en Solitario Encendido por Ganancia

Inyección de Luz

G-S con IC

- Se ha observado la creación y destrucción de los OFC en función de la amplitud. Así como la mayor irregularidad para bajas frecuencias.
- Se han determinado las diferentes regiones dinámicas para distintos valores de la inyección.
- Se han obtenido bifurcaciones de Hopf y de doblamiento de periodo
- El programa desarrollado permite entender mejor los procesos físicos involucrados en la generación de OFC.

Ruido Estocástico

Jaime Díez

ductor
OFC
Ec. de Balanc
Resolución
estocástica
Dinamica No

Láser en Solitario ^{Encendido po} Ganancia

de Luz

G-S con IO

Conclusiones

Los términos de Langevin F_S y F_Φ tienen las siguientes relaciones de correlación:

Ruido Estocástico

Jaime Díez

ductor OFC Ec. de Balanc Resolución estocástica

Láser en Solitario Encendido po Ganancia

Ganancia Inyección

G-S con IO

Conclusiones

Los términos de Langevin F_S y F_{Φ} tienen las siguientes relaciones de correlación:

$$\langle F_i(t)F_j(t')\rangle = 2\delta_{ij}\delta(t-t')$$

 $\langle F_i(t)\rangle = 0$

Ruido Estocástico

Jaime Díez

Láser de Semicon ductor ofc

Resolución estocástica Dinamica No

Láser en Solitario Encendido p

Ganancia Inyección

G-S con IO

Conclusiones

Los términos de Langevin F_S y F_Φ tienen las siguientes relaciones de correlación:

$$\langle F_i(t)F_j(t')\rangle = 2\delta_{ij}\delta(t-t')$$

$$\langle F_i(t)\rangle = 0$$

Representan ruido blanco adicional debidos a la emisión espontánea

Modelo Computacional

Jaime Díez

ductor OFC Ec. de Balanc Resolución estocástica

Láser en Solitario Encendido po Ganancia

de Luz

G-S con 10

Conclusiones

• Se realiza la transformada rápida de Fourier FFT por lo que el tiempo de la ventana ha de cumplir:

$$\frac{t_{Total}}{\Delta N} = 2^n$$

Modelo Computacional

Jaime Díez

Laser de Semiconductor OFC Ec. de Balar Resolución

Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido pol Ganancia Inyección

G-S con IC

Conclusiones

• Se realiza la transformada rápida de Fourier FFT por lo que el tiempo de la ventana ha de cumplir:

$$\frac{t_{Total}}{\Delta N} = 2^n$$

• Las frecuencias de la FFT realizada para un paso de ΔN viene dado por el intervalo:

$$[-\frac{1}{2\Delta N},\frac{1}{2\Delta N})$$

Modelo Computacional

Jaime Díez

Semiconductor
OFC
Ec. de Balance
Resolución
estocástica
Dinamica No

Laser en Solitario Encendido por Ganancia

G-S con IC

Conclusiones

• Se realiza la transformada rápida de Fourier FFT por lo que el tiempo de la ventana ha de cumplir:

$$\frac{t_{Total}}{\Delta N} = 2^n$$

• Las frecuencias de la FFT realizada para un paso de ΔN viene dado por el intervalo:

$$[-\frac{1}{2\Delta N}, \frac{1}{2\Delta N})$$

• Hay que sumar una cantidad para que el espectro quede centrado en la frecuencia de emisión ν .

$$\nu_{th} - \frac{C(I)}{2\pi}$$

Transitorio

Jaime Díez

Láser de Semicon ductor

Ec. de Balanc Resolución estocástica

Dinamica N

Láser en Solitario

Encendido po

Ganancia

G-S con IC

Doblamiento de Periodo en IL

Jaime Díez

Láser de Semicor ductor

Ec. de Balan Resolución estocástica Dinamica No

Láser en Solitario Encendido p

Ganancia Invección

C S con I

Jaime Díez

Láser de Semicon ductor

Ec. de Balanc Resolución estocástica Dinamica No Lineal

Láser en Solitario Encendido por Ganancia

Ganancia Inyección

C S con IC

