

# Formal Analysis of V2X Revocation Protocols

**Jorden Whitefield**, Liqun Chen, Frank Kargl, Andrew Paverd, Steve Schneider, *Helen Treharne* and Stephan Wesemeyer

University of Surrey, UK
Ulm University, Germany
Aalto University, Finland

STM 2017, Oslo, Norway

### Outline



- Security challenges of Intelligent Transportation Systems
- Revocation in Vehicle-to-Anything (V2X) communication
- Formal Verification of REWIRE Protocols: PLAIN and R-TOKEN

O-TOKEN: Addressing the issues found

### Intelligent Transport Systems (ITS)



What are they?

ITS's are the combination of transport and ICT Systems to enable safer, coordinated, environmentally friendly, and smarter transportation networks.

ITS's use Pseudonyms (short-lived certificates) for authenticated message exchange. Pseudonyms change frequently to protect privacy of vehicles.

#### **Standards**

- ➤ ISO15408-2
- > ETSI 102-941 and;
- > IEEE WAVE



### Overview of V2X Security



Trust
Architecture
Attestation
Assurance

Privacy
Anonymity
Pseudonymity
Unlinkability
Unobservability



Authentication

Authorisation

Revocation

Software
Safety / Run time
Verification
Assurance

# Pseudonyms in V2X



### Pseudonyms can enable:



# How do you remove a rogue vehicle?





- 1. Using Pseudonym Certificate Revocation Lists (does not scale)
  - 2. Prevent vehicle from broadcasting network messages, by deleting its issued pseudonyms

## How do you remove a rogue vehicle?





- 1. Using Pseudonym Certificate Revocation Lists (does not scale)
  - 2. Prevent vehicle from broadcasting network messages, by deleting its issued pseudonyms

# Pseudonym Lifecycle





# Existing REWIRE Protocols



By D. Förster, H. Löhr, J. Zibuschka, F. Kargl at TRUST 2015

- Use of Trusted Components (TC) to support revocation
- TC = no Certificate Revocation Lists
- Two schemes identified in paper
  - PLAIN: Uses pseudonyms to sign "confirm revocation" messages
  - R-TOKEN: Link token scheme. Uses Long-term key pair for "confirm revocation" message signing

# Formal Analysis of REWIRE Protocols



#### Goals

- Authentication: Completion of the protocol confirms the intended vehicle has been revoked
- Functional Correctness: revocation happens even in presence of a change of pseudonym
- Analysis performed using the TAMARIN Prover
  - Symbolic protocol analysis
  - Behavior defined as Multiset Rewrite rules
  - Properties expressed on traces using logic

# Summary of Results



- PLAIN: is not functionally correct
  - Revocation can only occur when there is no change of pseudonym
- R-TOKEN: has an authentication flaw
  - Revocation confirmation cannot be verified by the RA
- O-Token:

Improvement to the REWIRE protocols that ensures correct revocation

## PLAIN





## PLAIN





### R-TOKEN



- Creates pseudo-linkability between pseudonyms
- Vehicles in this scheme have long term key-pair PKvj / SKvj
- Introduces extra field 'R-TOKEN' in pseudonyms

$$\sigma_{Ps_i(V_j)} := \{ | V_j || PK_{V_j} || r | \}_{SK_{V_j}}$$

Pseudonym now consists of a key-pair and R-TOKEN.

### R-TOKEN





# OBSCURE-TOKEN (O-TOKEN)



- New key-pair "O keys" SKo / PKo
- O-TOKEN is an encryption of SKO under vehicle long-term symmetric key:

$$\phi_{Ps_i(V_j)} := \{ | SK_{O_{Ps_i(V_j)}} | \}_{LTK_{V_j}}$$

Pseudonyms contain O-Token and Pko

### O-TOKEN





## Future research directions



