Immune Tolerance II

How the immune system distinguishes self from non-self TregsTregsTregs

Lernziele

- Sie können die Entstehung von regulatorischen T /Treg) Zellen im Thymus beschreiben
- Sie kennen die wichtigsten Merkmale und transkriptionsfaktoren in Treg Zellen
- Sie können Beispiele nennen, wie Treg Zellen Immunantworten supprimieren
- Sie darlegen, wie eine Erkrankung wie die Multiple Skelrose entstehen kann.

Tolerance Mechanisms

ı	ayers of self-tolerance	e
Type of tolerance	Mechanism	Site of action
Central tolerance	Deletion Editing	Thymus Bone marrow
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (e.g. thyroid, pancreas)
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissue and sites of inflammation
Clonal deletion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation

Figure 14-2 Immunobiology, 7ed. (© Garland Science 2008)

Regulatory T cells (Tregs)

Prüfung

Wichtig

Wichtig

Wichtig

The main mechanism of peripheral tolerance: Tregs

Tregs suppress autoimmune responses

These (as well as all other T cells) arise in the thymus

So, again in the thymus (sorry!)

Central and Peripheral Tolerance

The principal fate of T cells that recognize self antigens is death (deletion), BUT:

Some CD4 T cells may differentiate into regulatory (suppressive) T lymphocytes

Abbas, Cellular and molecular Immunology

Development of Regulatory T cells

Wichtig

Foxp3 – The Transcription Factor for Tregs

Wichtig

Wichtig

Definition of regulatory T cells:

CD4+CD25+Foxp3+

Ultra Pazifist des Immunsystems

Foxp3-/- mice: loss of Tregs

Splenomegaly Lymphadenopathy

Severe inflammation

Fontenot, Rudensky, 2003

FACS analysis of CD4+ T cells

CD4+ T cells display an activated phenotype in *Foxp3*-/- mice compared to WT control mice

Lethal lymphoproliferative autoimmune disease

In humans: Mutations in *FOXP3* lead to Treg deficiency and multiorgan lymphocyte infiltrates, IPEX syndrome

Regulatory T cells maintain Self-Tolerance throughout Life

- Injection of DT results in depletion of Tregs in Foxp3^{DTR} mice.
- This leads to the activation of CD4+ T cells and severe systemic autoimmunity.

Kim et al; Natlmm, 2007

Wirkmechanismen regulatorischer T Zellen

Restricting Immunity Through CTLA-4¹

Restricting Immunity Through CTLA-4¹

Restricting Immunity Through CTLA-4¹

So what now?

Why does immune tolerance fail in some people?

→ AUTOIMMUNITY

1900: Horror autotoxicus

Julius Morgenroth (1871-1924) Paul Ehrlich (1854-1915) 1908 Nobel Prize in Medicine

Autoimmunerkrankungen

Disease	Disease mechanism	Consequence		
Graves' disease	Autoantibodies against the thyroid-stimulating-hormone receptor	Hyperthyroidism: overproduction of thyroid hormones		
Rheumatoid arthritis	Autoreactive T cells against antigens of joint synovium	Joint inflammation and destruction causing arthritis		
Hashimoto's thyroiditis	Autoantibodies and autoreactive T cells against thyroid antigens	Destruction of thyroid tissue leading to hypothyroidism: underproduction of thyroid hormones		
Type 1 diabetes (insulin-dependent diabetes mellitus, IDDM)	Autoreactive T cells against pancreatic islet cell antigens	Destruction of pancreatic islet β cells leading to non-production of insulin		
Multiple sclerosis	Autoreactive T cells against brain antigens	Formation of sclerotic plaques in brain with destruction of myelin sheaths surrounding nerve cell axons, leading to muscle weakness, ataxia, and other symptoms		
Systemic lupus erythematosus	Autoantibodies and autoreactive T cells against DNA, chromatin proteins, and ubiquitous ribonucleoprotein antigens	Glomerulonephritis, vasculitis, rash		
Sjögren's syndrome	Autoantibodies and autoreactive T cells against ribonucleoprotein antigens	Lymphocyte infiltration of exocrine glands, leading to dry eyes and/or dry mouth; other organs may be involved, leading to systemic disease		

Figure 14-1 Immunobiology, 7ed. (© Garland Science 2008)

Balancing lymphocyte activation and control

Activation Tolerance Effector T cells Regulatory T cells Reactions against pathogens No response to self

Krebs entsteht und es kann keine Immunreaktionen vonstatten gehen

Inflammatory disease (reactions against self)

Chronische Entzündungen

und Autoimmunität

Controlled response to pathogens

Factors that break down immune tolerance

Figure 14-3 Immunobiology, 7ed. (© Garland Science 2008)

Genetics of Autoimmunity

- Human autoimmune diseases are complex polygenic traits
 - Identified by genome-wide association mapping
 - Single gene mutations are useful for pathway analysis
- Some polymorphisms are associated with multiple diseases
 - May control general mechanisms of tolerance and immune regulation
- Other genetic associations are disease-specific
 - May influence end-organ damage

Genetics of Autoimmunity: Recent Successes of Genomics

Wichtig

Polymorphisms associated to autoimmune disease

Wichtig

- NOD2: polymorphism associated with ~25% of Crohn's disease
 - Microbial sensor
- PTPN22: most common autoimmunity-associated gene; polymorphism in RA, SLE, others
 - Phosphatase
- CD25 (IL-2Rα): associated with MS, others; genome-wide association mapping
 - Role in Tregs and T cell activation

Single Gene Mutations That Cause Autoimmunity

Wichtig

Wichtig

- AIRE: Failure of central tolerance

APECED, also called APS1 (Autoimmune polyendocrine syndrome)

CTLA4: Polymorphisms associated with several autoimmune diseases

- FOXP3: Multiorgan lymphocytic infiltrates, Treg deficiency, IPEX Syndrome

Infections and Autoimmunity

Infections can trigger autoimmune reactions

- Clinical prodromes, animal models
- Autoimmunity develops after infection is eradicated (i.e. the autoimmune disease is precipitated by infection but is not directly caused by the infection)

How can infections lead to autoimmunity?

Wichtig

Wichtig

Molecular Mimicry

Bystander Activation

MS – Attacke des Immunsystems auf das Zentrale Nervensystem

Mehr als 230 Stellen des Genoms entscheiden über MS Risiko

In Gebieten mit hoher MS Frequenz tritt Pfeiffersches Drüsenfieber auch gehäuft auf

Pfeiffersches Drüsenfieber Einweisungen pro 100 000

Ramagopalan et al., J Neurol Neurosurg Psychiatry 2011

EBV Infektion erhöht das MS Risiko 32fach

Der Epstein Barr Virus (EBV) hat sich zum Umwelthauptrisikofaktor bei der MS entwickelt

Table 1 | Established and possible lifestyle and environmental risk factors for MS

Factor	OR	HLA gene interaction	Combined OR (nongenetic factor + HLA allele)	Effect during adolescence	Immune system implied	Level of evidence
Smoking	~1.6	Yes	14	No	Yes	+++
EBV infection (seropositivity)	~3.6	Yes	~15	Yes	Yes	+++
Vitamin D level < 50 nM	~1.4	No	NA	Probably	Yes	+++
Adolescent obesity (BMI >27 at age 20 years)	~2	Yes	~15	Yes	Yes	+++
CMV infection (seropositivity)	0.7	No	NA	Unknown	Yes	++
Night work	~1.7	No	NA	Yes	Yes	++
Low sun exposure	~2	No	NA	Probably	Yes	++
Infectious mononucleosis	~2	Yes	7	Yes	Yes	++
Passive smoking	~1.3	Yes	6	No	Yes	+
Organic solvent exposure	~1.5	Unknown	Unknown	Unknown	Unknown	+
Oral tobacco/nicotine	0.5	No	NA	Unknown	Yes	+
Alcohol	~0.6	No	NA	Unknown	Yes	+
Coffee	~0.7	No	NA	Unknown	Yes	+

Mögliche Mechanismen der EBV Assoziation mit MS

1. Molekulares Mimikry

2. EBV infizierte B Zellen als antigenpräsentierende Zellen im ZNS

3. Ähnliche genetische Prädisposition für Hyperaktivierung des Immunsystems während der Erstinfektion mit EBV und ZNS Autoimmunität

B Zell-depletierende Therapien in MS

Obwohl MS eine t-Zell vermittelte Immunerkrankung ist, stoppt die Krankheit bei B-Zell-Depletierung

<-- Vielleicht, weil Epstein-Barr
Virus B-Zellen angreift</pre>

Total Volume of Brain Lesions on T2-Weighted MRI

Hauser et al., N Engl J Med 2017

Montalban et al., N Engl J Med 2017

Autoimmunity is primarily understood as:

- Loss of immune tolerance and
- Activation of autoaggressive T & B cell clones

Loss of tolerance due to

- Genetic predisposition and
- Infection (mimicry)

Next lecture:

Autoimmunity or Cytokinopathy