

MATEMÁTICAS

Fundamentos Matemáticos

Corrección Parcial

Alexander Mendoza June 12, 2023

Contents

1 Corrección Parcial

 $\mathbf{2}$

Chapter 1

Corrección Parcial

1

Defina los siguientes términos:

- Función: Es un subconjunto F del producto cartesiano $A \times B$ de dos conjuntos A y B, denotado como $f:A \to B$, tal que para cada elemento a en A, existe uno y solo un elemento b en B tal que el par ordenado (a,b) está en F. El conjunto A se llama el dominio de la función f, y el conjunto B se llama el codominio de f. En otras palabras, una función asigna a cada elemento de su dominio un único elemento en su codominio. Una función está completamente determinada por su dominio, codominio y el conjunto de pares ordenados que satisfacen la condición de definición.
- Imagen directa: Dada una función $f: A \to B$ y un subconjunto E de A, la imagen directa de E por f se define como el conjunto de todos los elementos de B que son imágenes de algún elemento en E bajo f. Es decir, la imagen directa de E por f se denota por f(E) y se define como:

$$f(E) = \{ y \in B | \exists x \in E, f(x) = y \}$$

- \bullet Partición: Una partición de un conjunto no vacío A es una familia D de subconjuntos no vacíos de A tal que:
 - 1. Para cualquier dos subconjuntos distintos $P,Q\in D$, tenemos $P\cap Q=\emptyset$, es decir, P y Q son disjuntos.
 - 2. La unión de todos los subconjuntos en D es igual a A, es decir,

$$\bigcup_{P \in D} P = A$$

En otras palabras, una partición de un conjunto A es una forma de dividir A en subconjuntos no vacíos de tal manera que cada elemento de

 ${\cal A}$ pertenece exactamente a uno de esos subconjuntos, y ningún par de subconjuntos tiene elementos en común.

• Elemento Maximal: Un elemento a en un poset (A, \preceq) es un elemento maximal si no existe un elemento $x \in A$ tal que $a \preceq x$ y $a \neq x$. En otras palabras, no hay un elemento mayor que a en el poset, excepto posiblemente a mismo.

$\mathbf{2}$

Sea $f: A \to B$ una función de A en B. Sea I un conjunto no vacio y $\{C_i\}_{i \in I}$ una familia de subconjuntos de A. Pruebe que $f(\bigcap_{i \in I} C_i) \subseteq \bigcap_{i \in I} f(C_i)$ ¿Se tiene la contenencia recíproca? En caso afirmativo, demuéstrelo, en caso contrario, muestre un contraejemplo.

Sea $x \in f(\bigcap_{i \in I} C_i)$. Luego existe $y \in \bigcap_{i \in I} C_i$ tal que f(y) = x. Así $y \in C_i$ para todo C_i , luego $f(y) \in f(C_i)$ para todo C_i . Por lo tanto $f(y) \in \bigcap_{i \in I} C_i$.

Por otro lado, consideremos la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$ y los conjuntos $C_1 = (-1,0)$ y $C_2 = (0,1)$ de \mathbb{R} . Podemos ver que $\bigcap_{i \in I} C_i = 0$. Sin embargo, $f(\bigcap_{i \in I} C_i) = f(0) = 0$. Por otro lado, $f(C_1) = f((-1,0)) = [0,1)$ y $f(C_2) = f((0,1)) = [0,1)$. Entonces, $\bigcap_{i \in I} f(C_i) = [0,1)$.

Por lo tanto, se tiene que $f(\bigcap_{i\in I} C_i) = 0 \nsubseteq [0,1) = \bigcap_{i\in I} f(C_i)$. Con este contraejemplo se muestra que la contenencia no es recíproca.

3

Para los siguientes items, responda si es falso o verdadero, si es falso muestre un contraejemplo, si es verdadero realice una demostración.

- En una relación de equivalencia, todas las clases de equivalencia son equipotentes.
 - Falso. No necesariamente todas las clases de equivalencia son equipotentes, sea $A = \{x, y, z\}$. La relación de equivalencia E está dada por la partición $\{\{x, y\}, \{z\}\}$. Entonces, la primera clase tiene 2 elementos, mientras que la segunda tiene 1. Por lo tanto no son equipotentes.
- Sea $f:A\to B$ una función de A en B, suponga que f tiene inversa a derecha $g:B\to A$ y a izquierda $h:B\to A$, entonces h=g y f es biyectiva.

Verdadero. Sabemos que si f teine inversa a izquierda y a derecha, f tiene inversa y que f^{-1} is igual a inversa a izquierda y a derecha. Por transitividad de igualdad h = g, luego como f tiene inversa, f es biyectiva.

4

Sea $f:A\to B$ una función de A en B sobreyectiva, muestre que existe un conjunto C y funciones $\gamma:A\to C$ sobreyectiva y $g:C\to B$ biyectiva tales que $f=g\circ\gamma.$

Ayuda: Considere $C=\{f^{-1}(b)|b\in B\}$ ¿Cómo definiría γ y g para que se cumplan las condiciones pedidas?

Sea $C=\{f^{-1}(b)|b\in B\}$, luego Definamos la función $\gamma:A\to C$ como $\gamma(a)=f^{-1}(f(a))$, es decir, $\gamma(a)$ es la preimagen de f(a) a través de f. Es fácil ver que γ es sobreyectiva, ya que para cada $c\in C$, podemos encontrar un elemento $a\in A$ tal que $\gamma(a)=c$. De hecho, si $c=f^{-1}(b)$ para algún $b\in B$, entonces como f es sobreyectiva, existe $a\in A$ tal que f(a)=b, y por lo tanto $\gamma(a)=f^{-1}(f(a))=f^{-1}(b)=c$.

Ahora definamos la función $g: C \to B$ como g(c) = f(c), es decir, g(c) es la imagen de c a través de f. Observemos que g está bien definida, ya que si $c \in C$, entonces $c = f^{-1}(b)$ para algún $b \in B$, y como f es sobreyectiva, existe al menos un elemento $a \in A$ tal que f(a) = b, por lo que $f(c) = f(f^{-1}(b)) = b$.

5

Sea (C, \preceq) un conjunto ordenado con la siguiente propiedad: Todo subconjunto $A \subseteq C$ no vacío y acotado superiormente tiene supremo. Sean $A_n = [a_n, b_n]$ una sucesión de intervalos encajados en C, esto es, si n < m entonces $A_m \subseteq A_n$, pruebe que $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$.

Ayuda: Sean $D = \{a_n | n \in \mathbb{N}\}\$ y $B = \{b_n | n \in \mathbb{N}\}\$ ¿Cómo se relacionan los elementos B con los elementos de D? ¿D tiene supremo? ¿B tiene ínfimo? ¿Cómo estás preguntas le ayudan a resolver el ejercicio?

Sean $D = a_n | n \in \mathbb{N}$ y $B = b_n | n \in \mathbb{N}$. Luego, por la propiedad dada del conjunto ordenado (C, \preceq) , sabemos que D tiene supremo y B tiene ínfimo. Denotemos al supremo de D como S_D y al ínfimo de B como I_B . Queremos demostrar que $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$.

Consideremos el intervalo $[S_D, I_B]$.

Demostremos que $[S_D, I_B] \subseteq \bigcap_{n \in \mathbb{N}} A_n$. Sea $x \in [S_D, I_B]$. Entonces, $a_n \le S_D \le x \le I_B \le b_n$ para todo $n \in \mathbb{N}$. Esto significa que x es un elemento común a todos los intervalos A_n , lo que implica que $x \in \bigcap_{n \in \mathbb{N}} A_n$. En otras palabras, cualquier elemento en el intervalo $[S_D, I_B]$ también es un elemento del conjunto intersección $\bigcap_{n \in \mathbb{N}} A_n$. Por lo tanto, $[S_D, I_B] \subseteq \bigcap_{n \in \mathbb{N}} A_n$. Como $[S_D, I_B]$ es no vacío, ya que de lo contrario implicaría que $S_D > I_B$ generando una contradicción, concluimos que $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$.

La ayuda nos facilita a resolver el ejercicio ya que nos da pistas de cómo construir una base en la dirección correcta para determinar la conclusión, en partícular nos ayuda a determinar el supremo e ínfimo de los conjuntos para encontrar un intervalo que esté entre todos los intervalos. Además tenemos que todos los elementos de D son menores que todos los elementos de B.