

MetConSIN

James D. Brunner, Ph.D. August 15, 2022

MetConSIN

Concept:

- Genome-scale models and constraint based methods are commonly used and allow us to use knowledge of microbial genome sequences to predict metabolic behavior.
- This modeling paradigm implies a dynamical system that couples optimization with differential equations, and is very difficult to simulate and analyze.
 - Naively, optimization must be done at every time-step.
 - Really, optimization is only required at a (relatively) sparse set of time-points.
- This dynamical system can be understood as a sequence of simpler dynamical systems which model species-metabolite interaction networks.

Planned Implementation:

- Use metagenomic sequencing of environmental samples to build genome scale models of microbial community members.
- Simulate community genome (metagenome) scale dynamics of metabolism.
- Identify time intervals of constant network topology & corresponding networks.
- Identify impactful transitions in network topology.
- Develop simplified & tractable predictive modeling for design & engineering by leveraging the "sequence of networks" structure of the microbial community.

MetConSIN

During simulated growth of E. coli, we observe two distinct networks of interactions between metabolites (as mediated by E. coli).

Idea

Simulating a microbiome (microbes & external metabolites) using genome scale metabolic models provides a dynamically changing network of interactions.

Using GEMs constructed from metagenomic data. MetConSIN will allow us to

- Understand the interactions of microbes & metabolites in a microbiome.
- Predict & manipulate microbial community composition.
- Predict & manipulate microbiome metabolite production.