Aughdon Breslin and Isabella Cruz 9/25/20

"I pledge my honor that I have abided by the Stevens Honor System."

Problem 1

For each regular expression below, construct an equivalent NFA.

a)(0 U 1)* 000 (0 U 1)*

b) (((00)* 11) U 01)*

 $c)\phi*$

- a) $\{w \in \{a, b\} * : w \text{ does not end } i \text{n ba}\}$
 - i) $\varepsilon U a U (a U b)^*(aa U b)$
- b) $\{w \in \{0,1\}^* : w = \alpha \circ \beta, \alpha \text{ has an even number of 1' s and } \beta \text{ has an even number of 0'}s\}$
 - i) O* (1 O* 1)* 1*(O 1* O)*

Problem 3

In some programming languages, comments appear between delimiters such as /# and #/. Let C be the language of all valid delimited comment strings. Each member of C must begin with /# and end with #/ but have no intervening #/. For simplicity, let the alphabet be {a, b, /, #}. Give a regular expression to describe C.

basically any character forever, except after the #s there's gotta be a letter to prevent #/

once done with slashes, can put as many # as
you like, also this way can have # w/o a U b after

A: /# (a U b U #*(a U b) U /)* #* #/

Prove that the following languages are regular (your answer can be any one of: DFA/NFA/regular expression). Unless stated otherwise, $\Sigma = \{a, b\}$.

- a) {w: w starts and ends with the same symbol}
- b) Let $\Sigma = \{a, b, c, d\}$. The language L consists of all strings in which at least one symbol of Σ is missing.
- c) $\{w : w \text{ has even length and an odd number of } a's\}$

A:

b) ε U a*b*c* U a*b*d* U a*c*d* U b*c*d*

Using regular expressions only (no NFA/DFA involved) prove that the reverse of every regular language is also regular

A: As we learned in lecture, a language is regular if it can be described with a regular expression. We can use the theorem from Problem 2 of Problem Set 2 to show that if we can simplify an expression to a language, we can prove its reverse is regular. If regular expression R describes a regular language, R^R would be:

1. If R = a, a $\in \Sigma$,

 $R^{R} = a^{R} = a$; so when reversed the language is still regular.

2. If $R = \varepsilon$.

 $R^{R} = \varepsilon^{R}$ still contains only the empty string; so it is regular

3. If $R = \Phi$.

 $R^{R} = \Phi^{R}$ still is equal to the empty set; so it is regular

4. If R = Reg1 U Reg2,

 R^R = (Reg1 U Reg2)^R would equal the regular expression Reg1^R U Reg2^R. Since R^R can be described using that regular expression, it is a regular language. ex/ if Σ = {a,b}, Reg1 = a, Reg2 = b; R = Reg1 U Reg2 = a U b, so R^R would accept R^R U R^R is regular because it can be expressed using the regular expression R^R U R^R is regular because it can be expressed using the regular

5. If R = Reg1 o Reg2,

 $R^R = (Reg1 \ o \ Reg2)^R$ would equal $Reg2^R \ o \ Reg1^R$. Since R^R can be described using that regular expression, it is a regular language.

ex/ if Σ = {a,b}, Reg1 = a, Reg2 = b; R = Reg1 o Reg2 = a o b, so R^R would accept b^R o a^R; thus R^R is regular because it can be expressed using the regular expression b^R o a^R

6. If $R = R^*$.

 $R^R = (R^R)^*$; so if R is regular, R^R is regular because it can be represented by the regular expression (R^R)*

ex/ if Σ = {a,b} and R = (ab)* then R^R = (ba)*; thus R^R is regular because it can be expressed using a regular expression (ba)*

7. If R = string with an even length,

 R^R = the reverse of R. Since R^R can be described using that regular expression(the string reversed), it is a regular language. ex/ if Σ = {a,b} and R = ababab; R^R would be "bababa" where:

the outermost members of the string will be switched, the the second outermost, so on and so forth until you've switched the middle to members of the string. R^R would be regular because it is described by this new regular expression "bababa".

8. If R = string with an odd length,

 R^R = the reverse of R. Since R^R can be described using that regular expression(the string reversed), it is a regular language. ex/ if Σ = {a,b} and R = aabab; R^R would be "babaa" where:

the outermost members of the string will switch, the then second outermost, so on and so forth until you reach the member at the (string length $/\!/ 2$) + 1 (integer division) index of the string. That member does not move and you have now successfully reversed the string.

 R^R would be regular because it is described by this new regular expression "babaa".

For any language A, define REMOVE(A) to be the language consisting of all strings in A but with exactly one symbol missing. Formally, $REMOVE(A) = \{\alpha\beta : \alpha y\beta \in A, y \in \Sigma, and \alpha, \beta \in \Sigma^*\}$

Note: For convenience, removing a symbol from the empty string results in the empty string.

Construct an NFA to show that if A is regular then so is REMOVE(A). Next, prove this using regular expressions only

----- Side Questions (Answered) ------

Can you define the rules to change reg ex in english? - Yes, it can be done in english

When it says "All strings but with exactly one symbol missing" does it mean Abcdab turns to abcda_ or to a_cda_? Would you just remove a symbol entirely or one occurrence of one symbol? Just one occurrence

A: Given a regular expression that defines the language A, removing one occurrence of a symbol with REMOVE(A) would still leave a regular language.

If the removed symbol fell within an a* (where $a \in A$, $a \in \Sigma$), then the new regular expression would remain the same. Since the symbol was removed from a*, there had to be at least one occurrence of a within a*, and one less occurrence therefore could still be represented using a*.

Ex: A is represented by a*b. "ab" $\subseteq A$. REMOVE(A) yields just "b". "b" is still rep'd by a*b and REMOVE(A) is still regular. aaaab would yield aaab and is still rep'd by a*b; the language is still regular.

If the removed symbol fell on either side of a concatenation (\circ) or union (U), then the new regular expression would consist of the old regular expression but with an empty string (ε) as replacement of the removed symbol.

Ex1 - Concatenation: A is rep'd by ab. REMOVE(A) would be rep'd by ϵ b, or just b.

Ex2 - Union: A is rep'd by a U b. REMOVE(A) would be rep'd by ε U b.

In any case, the removal of exactly one symbol in a regular expression would not destroy the validity of the regular expression under these rules for change. As noted in the problem, removal of a symbol from language A represented by ε would yield a language REMOVE(A) that continues to be represented by ε . Therefore, if A is regular then so is REMOVE(A).

Note: REMOVE(A) can remove any symbol that belongs to the language indiscriminately, I just removed 'a' for simplicity of explanation (and because it reads as "REMOVE A").