1 Lezione del 02-05-25

Avevamo dato la definizione del teorema di Peano (teorema 16.2), per l'errore della generica formula di quadratura J_n . Per ora quest'espressione ci risulta poco maneggevole in quanto richiede il calcolo dell'errore G(t) sulla funzione $s_m(t)$, detto nucleo di Peano (definizione 16.5).

Riprendiamo quindi la definizione dell'errore dal teorema di Peano:

$$E_n(f) = \frac{1}{m!} \int_a^b f^{(m+1)}(t) \cdot G(t) dt$$

e accorgiamoci che se G(t) non cambia segno in [a,b] possiamo sfruttare il teorema della media integrale per dire che esiste un certo punto $\varepsilon \in [a,b]$ tale che:

$$E_n(f) = \frac{1}{m!} f^{(m+1)}(\varepsilon) \int_a^b G(t) dt$$

Cerchiamo adesso di trovare una forma più maneggevole per l'integrale del nucleo di Peano G(t). Abbiamo che questa non dipende da f, e se valutiamo l'errore per $f(x)=x^{m+1}$ si ottiene:

$$E_n(x^{m+1}) = \frac{1}{m!} \int_a^b \frac{d^{m+1}}{dt^{m+1}} t^{m+1} G(t) \, dt = \frac{1}{m!} (m+1)! \int_a^b G(t) \, dt \implies \int_a^b G(t) \, dt = \frac{E_n(x^{m+1})}{m+1} \int_a^b G(t) \, dt = \frac{E_n(x^{m$$

Prendiamo quindi questo come un corollario del teorema di Peano.

Osserviamo allora che se si vuole trovare una disuguaglianza del tipo:

$$|E_n(f)| \leq M$$

si può prendere:

$$M = \max_{x \in [a,b]} \left| f^{(m+1)}(x) \right| \cdot \frac{E_n(x^{m+1})}{m+1}$$

dove il primo termine può essere stimato con studi di funzione o maggiorazioni esplicite, mentre il secondo termine si può calcolare esplicitamente (lo facevamo per valutare manualmente il grado di una formula di integrazione).

1.0.1 Esempio: errore di Peano nella formula dei trapezi

Vediamo quindi cosa si ottiene quando n=m=1, cioè nel caso della formula dei trapezi. In questo caso il nucleo è calcolato su $s_1(t)$:

$$s_1(x-t) = \begin{cases} 0, & x < t \\ x-t, & x \ge t \end{cases}$$

e quindi sarà:

$$G(t) = E_n(s_m(x-t)) = \int_a^b s_1(x-t) dx - J_1(s_1(x-t))$$

Prendiamo l'intervallo [a, b] = [-1, 1] e svolgiamo i conti. Si ha:

$$G(t) = \int_{-1}^{1} s_1(x-t) dx - s_1(-1-t) - s_1(1-t) = \int_{-1}^{1} (x-t) dx - 0 - 1 - t$$

dal fatto che -1 - t è sempre negativo e 1 - t è sempre positivo. Proseguendo si ha:

$$= \frac{(x-t)^2}{2} \Big|_t^1 - 1 + t = \frac{(1-t)^2}{2} - 1 + t = \frac{1+t^2 - 2t - 2 + 2t}{2} = \frac{t^2 - 1}{2} \le 0, \quad \forall t \in [-1, 1]$$

cioè il segno di G(t) non cambia.

Questo si generalizza facilmente ad intervalli [a, b] generici, in quanto con passaggi simili:

$$G(t) = \int_a^b s_1(x-t) dx - J_1(s_1(x-t)) = \int_t^b (x-t) dx - \frac{b-a}{2} s_m(a-t) - \frac{b-a}{2} s_m(b-t)$$

da cui si ha quindi, per la definizione di $s_1(x-t)$ appena data:

$$G(t) = \int_{t}^{b} (x-t) dx - \frac{b-a}{2} s_{m}(a-t) - \frac{b-a}{2} s_{m}(b-t) = \int_{t}^{b} (x-t) dx - \frac{b-a}{2} (b-t)$$

$$= \frac{(x-t)^{2}}{2} \Big|_{t}^{b} - \frac{b^{2} - bt - ab + at}{2} = \frac{(b-t)^{2}}{2} - \frac{b^{2} - bt - ab + at}{2}$$

$$= \frac{b^{2} - 2bt + t^{2} - b^{2} + bt + ab - at}{2} = \frac{t^{2} - bt - at}{2} = \frac{(t-a)(t-b)}{2} \le 0, \quad \forall t \in [a,b]$$

Questo in realtà era chiaro osservando che il nucleo di Peano in questo caso valuta la differenza fra l'area in azzuro e la somma dell'area in azzurro e e dell'area in rosso nel seguente grafico:

che sarà chiaramente sempre ≤ 0 .

Per la formula dei trapezi vale quindi, in generale:

$$E_1(f) = \frac{1}{m!} f^{(m+1)}(\varepsilon) \int_a^b G(t) dt = \frac{1}{m!} f^{(m+1)}(\varepsilon) \frac{E_n(x^{m+1})}{m+1} = \frac{f''(\varepsilon)}{2} E_1(x^2)$$

Preso m=1. Vediamo quindi che per $f=x^2$:

$$E_1(x^2) = \int_a^b x^2 dx - \frac{b-a}{2}(a^2+b^2) = \frac{x^3}{3} \Big|_a^b - \frac{ba^2+b^3-a^3-ab^2}{2}$$

$$=\frac{b^3-a^3}{3}-\frac{ba^2+b^3-a^3-ab^2}{2}=\frac{2b^3-2a^3-3ba^2-3b^3+3a^2+3ab^2}{6}=-\frac{(b-a)^3}{6}$$

da cui:

$$E_1(f) = -\frac{(b-a)^3}{12} \cdot f''(\varepsilon), \quad \varepsilon \in [a,b]$$

1.0.2 Esempio: errore di Peano nella formula di Simpson

Si dimostra che anche la formula di Simpson è tale per cui G(t) non cambia segno, quindi vale:

$$E_2(f) = \frac{f^{(4)}(\varepsilon)}{4!} \cdot E_2(x^4)$$

Vediamo quindi che per l'intervallo [-1, 1] vale:

$$E_2(x^4) = \frac{2}{5} - \frac{2}{3} = -\frac{4}{15}$$

per cui:

$$E_2(f) = \frac{f^{(4)}(\varepsilon)}{24} \cdot \left(-\frac{4}{15}\right) = -\frac{1}{90} \cdot f^{(4)}(\varepsilon), \quad \epsilon \in [-1, 1]$$

Lo stesso ragionamento si può chiaramente fare per [a, b] generico, cioè:

$$E_{2}(x^{4}) = \int_{a}^{b} x^{4} dx - \frac{b-a}{6} \left(a^{4} + 4 \frac{(a+b)^{4}}{16} + b^{4} \right) = \frac{b^{5} - a^{5}}{5} - \frac{b-a}{24} \left(5a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + 5b^{4} \right)$$

$$= \frac{24b^{5} - 24a^{5} - 5\left(5a^{4}b + 4a^{3}b^{2} + 6a^{2}b^{3} + 4ab^{4} + 5b^{5} - 5a^{5} - 4a^{4}b - 6a^{3}b^{2} - 4a^{2}b^{3} - 5ab^{4} \right)}{120}$$

$$= \frac{24b^{5} - 24a^{5} - 25a^{4}b - 20a^{3}b^{2} - 30a^{2}b^{3} - 20ab^{4} - 25b^{5} + 25a^{5} + 20a^{4}b + 30a^{3}b^{2} + 20a^{2}b^{3} + 25ab^{4}}{120}$$

$$= -\frac{(b-a)^{5}}{120}$$

da cui:

$$E_2(f) = \frac{f^{(4)}(\varepsilon)}{24} \cdot \left(-\frac{(b-a)^5}{120} \right) = -\frac{(b-a)^5}{2880} \cdot f^{(4)}(\varepsilon), \quad \epsilon \in [a, b]$$

1.1 Formule di quadratura interpolatorie

Vediamo l'approccio all'approssimazione integrale che prevede scegliere n+1 nodi $x_0,...,x_n$. In questo caso si utilizza come approssimazione di $\int_a^b f(x)\rho(x)\,dx$ la quantità:

$$\int_{a}^{b} f(x)\rho(x) dx \approx \int_{a}^{b} P_{n}(x)\rho(x) dx$$

con $P_n(x)$ polinomio di grado al più n tale che:

$$P_n(x_i) = f(x_i), \quad \forall i = 0, ..., n$$

cioè $P_n(x)$ polinomio interpolante.

Se f è sufficientemente regolare sappiamo che:

$$f(x) = P_n(x) + R_n(x), \quad R_n(x) = \frac{\Pi(x)}{(n+1)!} f^{(n+1)}(\varepsilon), \quad \varepsilon \in [a, b]$$

dal teorema 14.1.

Prendiamo quindi:

$$\int_{a}^{b} f(x)\rho(x) dx = \int_{a}^{b} P_{n}(x)\rho(x) dx + \int_{a}^{b} R_{n}(x)\rho(x) dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i})l_{i}(x) + \int_{a}^{b} R_{n}(x)\rho(x) dx$$

dove gli $l_i(x)$ sono i polinomi della base di Lagrange:

$$l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

da cui si può portare fuori la sommatoria:

$$\int_{a}^{b} f(x)\rho(x) dx = \sum_{i=0}^{n} f(x_i) \int_{a}^{b} l_i(x)\rho(x) dx + E_n(f)$$

che ha esattamente la forma di una formula di quadratura, dove gli $f(x_i)$ sono i nodi della formula $J_n(f)$ e gli:

$$\int_a^b l_i(x)\rho(x)\,dx$$

a moltiplicare sono i pesi, cioè quelli che avevamo finora chiamato a_i . L'errore $E_n(f)$ chiaramente si trascura.

Osserviamo che per costruzione le formule interpolatorie hanno grado di precisione almeno n (chiaramente dal fatto che il polinomio interpolante di grado n di un polinomio di grado n è esattamente sé stesso).

Viceversa, dati n+1 nodi c'è una sola formula di quadratura che ha grado di precisione $\geq n$ su qui nodi, e deve essere la formula di quadratura interpolatoria.

1.1.1 Esempio: formule di Newton-Cotes

L'esempio più classico delle formule di quadratura interpolatorie sono le formule di **Newton-Cotes**, che si basano sull'ipotesi di prendere nodi equispaziati su a, b. Un prima scelta è riguardo all'inclusione o meno degli estremi:

- Quando gli estremi (a, b) sono inclusi si parla di formule di Newton-Cotes *chiuse*;
- Quando gli estremi (a, b) sono esclusi si parla di formule di Newton-Cotes aperte.

Consideriamo per adesso le formule chiuse, per cui:

$$x_0 = a$$
, $x_1 = h$, ..., $x_i = a + ih$, ..., $x_n = b$

con:

$$h = \frac{b-a}{n}$$

detto passo della formula.

I pesi a_i saranno quindi:

$$a_i = \int_a^b l_i(x) \, dx$$

Le formule di Newton-Cotes equivalgono, per il grado 1 alle formule dei trapezi e per il grado 2 alle formule di Simosib.

Una proprietà importante delle formule di Newton-Cotes è che per ogni scelta di n vale che G(t) nucleo di Peano non cambia segno su [a,b], ergo si può usare la formula semplificata per l'errore di Peano:

$$E_n(f) = \frac{f^{(m+1)}(\varepsilon)}{(m+1)!} \cdot E_n(x^{m+1})$$

Sul grado n vale un fenomeno analogo al fenomeno di Runge (sezione 14.3.2). Per n>7 (cioè se si hanno più di 8 nodi) le formule di Newton-Cotes iniziano ad avere pesi di segno alternato (mentre per $n\leq 7$ sono sempre positivi), cioè si inizia ad avere cancellazione numerica e valutare le formule diventa instabile numericamente.

Per esprimere l'errore delle formule di Newton-Cotes abbiamo quindi bisogno di trovarne l'errore $E_n(x^{m+1})$. In questo caso si assume un'espressione del tipo:

$$E_n(f) = \begin{cases} c_n \cdot h^{n+2} \cdot f^{(n+1)}(\varepsilon), & n \text{ dispari} \\ c_n \cdot h^{n+3} \cdot f^{(n+2)}(\varepsilon), & n \text{ pari} \end{cases}$$

Vediamo ad esempio:

• Formula dei trapezi: in questo caso si ha n=1, h=b-a, da cui l'errore è esprimibile come:

$$-\frac{(b-a)^3}{12} \cdot f''(\varepsilon) = -\frac{h^3}{12} \cdot f''(\varepsilon)$$

• Formula di Simpson in questo caso si ha n=2, $h=\frac{b-a}{2}$, da cui l'errore è esprimibile come:

$$-\frac{(b-a)^5}{2880} \cdot f^{(4)}(\varepsilon) = -\frac{h^5}{90} \cdot f^{(4)}(\varepsilon)$$

Un'altra osservazione da fare è che il grado di precisione e l'ordine della potenza di h è lo stesso per una formula con grado n pari e quella con grado dispari n+1. In genere, a parte il caso dei trapezi, si considerano più spesso le formule di Newton-Cotes con n pari.

1.1.2 Esempio: formule Gaussiane

Riprendiamo quindi anche le formule Gaussiane espresse come formule di quadratura interpolatorie.

Innanzitutto si può dire che anche per queste il nucleo di Peano G(t) non cambia segno su [a,b], cioè si può usare la formula di errore data dal corollario.

Un'altra proprietà è che i pesi delle formule Gaussiane sono sempre positivi, ergo non ci sono problemi di instabilità numerica per n grande.

Veniamo quindi a come ricavarle. Fissato l'intervallo [a,b] e la funzione peso $\rho(x)$ si ha che le formule Gaussiane sono completamente determinate. I nodi delle formule gaussiane si possono scrivere come zeri di particolari polinomi, detti *polinomi ortogonali*. Più precisamente sono gli zeri della successione di polinomi $\{q_n\}$, con $\deg(q_n)=n$, determinati da:

$$\langle q_n, p \rangle = 0, \quad \forall p : \deg(p) \langle n \rangle$$

sfruttando la definizione di prodotto scalare $<\cdot,\cdot>$ sullo spazio polinomiale $\mathbb{R}[x]$ data nei corsi di algebra lineare:

$$\langle a, b \rangle = \int_a^b a(x)b(x) dx$$

da cui:

$$\langle q_n, p \rangle = \int_a^b q_n(x) p(x) \rho(x) dx$$

- Nel caso specifico che stavamo calcolando, con [a,b] e $\rho(x)=1$ si trova l'insieme dei **polinomi di Legendre**.
- Usando [a, b] e la funzione peso:

$$\rho(x) = \frac{1}{\sqrt{1 - x^2}}$$

si ottiene invece il cosiddetto **polinomio di Chebyshev di prima specie**, le cui radici sono i nodi di Chebyshev (che avevamo già incontrato nella sezione 14.3.3).

Esistono metodi ad-hoc per trovare gli zeri dei polinomi ortogonali su [-1,1]. Una volta trovati questi si possono ottenere quelli su [a,b] con il cambio di variabili:

$$[-1,1] \rightarrow [a,b], \quad x \rightarrow \frac{b-a}{2}x + \frac{b+a}{2}$$

cioè una semplice operazione di scalatura lineare.