Перечень теоретических вопросов и задач для подготовки к экзамену по дисциплине «МАТЕМАТИКА» (II семестр, специальности ПОИТ, ДЭиВИ)

ПРОГРАММА КУРСА

- 1. Возрастание и убывание функции. Условия монотонности дифференцируемой функции на интервале.
- 2. Экстремумы функции. Необходимое и достаточные условия существования экстремума.
 - 3. Алгоритм нахождения точек локального экстремума.
 - 4. Наибольшее и наименьшее значения функции на отрезке.
 - 5. Достаточное условие выпуклости графика функции.
 - 6. Вертикальные, горизонтальные и наклонные асимптоты кривых.
- 7. Функции двух переменных, область определения, линии уровня. Предел и непрерывность функции двух переменных.
 - 8. Частные производные функции двух переменных, их геометрический смысл.
- 9. Частные производные высших порядков. Теорема о равенстве смешанных производных.
- 10. Понятие дифференцируемости функции двух переменных. Необходимые и достаточное условия дифференцируемости.
- 11. Частные и полное приращения функции нескольких переменных. Дифференциал функции нескольких переменных.
- 12. Правило дифференцирования сложной функции нескольких переменных. Производные неявно заданной функции.
- 13. Линии уровня, градиент и производная по направлению функции двух переменных. Свойства градиента.
- 14. Экстремумы функции двух переменных. Необходимое и достаточное условия существования экстремума.
- 15. Алгоритм нахождения наибольшего и наименьшего значений функции двух переменных в области.
- 16. Первообразная и неопределенный интеграл. Основные свойства неопределенного интеграла.
- 17. Интегрирование по частям и заменой переменной в неопределенном интеграле. Примеры подстановок.
 - 18. Интегрирование простейших рациональных дробей.
 - 19. Алгоритм интегрирования рациональных дробей.
 - 20. Универсальная тригонометрическая подстановка.
 - 21. Интегралы вида $\int \sin^m x \cos^n x dx$, где m и n целые числа.
 - 22. Интегралы вида $\int R\left(x, (ax+b)^{m_1/n_1}, (ax+b)^{m_2/n_2}, \ldots\right) dx$.
 - 23. Интегралы вида $\int R(x, \sqrt{ax^2 + bx + c}) dx$.
 - 24. Понятие и примеры неберущихся интегралов.

- 25. Понятие определенного интеграла, его геометрический смысл. Условия интегрируемости функций.
- 26. Основные свойства определенного интеграла. Оценки интегралов. Теорема о среднем значении функции на отрезке.
- 27. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 28. Замена переменной и интегрирование по частям в определенном интеграле. Свойства интегралов от четных и нечетных функций по симметричному относительно нуля промежутку.
- 29. Несобственные интегралы с бесконечными пределами интегрирования. Признаки сравнения. Примеры сходящихся и расходящихся интегралов.
- 30. Несобственные интегралы от неограниченных функций. Признаки сравнения. Примеры сходящихся и расходящихся интегралов.
 - 31. Геометрические приложения определенного интеграла.
 - 32. Приближенное вычисление определенного интеграла.
- 33. Понятия дифференциального уравнения, его общего и частного решений. Задача Коши. Теорема существования и единственности решения задачи Коши.
- 34. Основные типы дифференциальных уравнений первого порядка и методы их решения.
- 35. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- 36. Линейные однородные дифференциальные уравнения (ЛОДУ) n-го порядка, теорема о структуре общего решения.
 - 37. Интегрирование ЛОДУ второго порядка с постоянными коэффициентами.
- 38. Линейные неоднородные дифференциальные уравнения (ЛНДУ), теорема о структуре общего решения. Метод вариации произвольных постоянных.
- 39. Метод неопределенных коэффициентов для решения ЛНДУ с постоянными коэффициентами и специальной правой частью.
 - 40. Методы решения ЛНДУ. Теорема о наложении решений ЛНДУ.
- 41. Системы дифференциальных уравнений. Сведение систем к одному дифференциальному уравнению.
- 42. Понятия оригинала и изображения. Основные свойства преобразования Лапласа.
 - 43. Изображения функций 1; t; t^n ; $e^{\alpha t}$; $\sin \beta t$; $\cos \beta t$.
- 44. Применение операционного исчисления для решения дифференциальных уравнений. Примеры.
 - 45. Численные методы решения дифференциальных уравнений.
 - 46. Интегралы по фигуре, их свойства, геометрический и физический смысл.
- 47. Двойной интеграл, его свойства, геометрические и физические приложения.
- 48. Тройной интеграл, его свойства, геометрические и физические приложения.

- 49. Полярная система координат на плоскости. Цилиндрическая и сферическая системы координат в пространстве.
- 50. Криволинейный интеграл 1-го рода (по длине дуги), его свойства, геометрические и физические приложения.
- 51. Поверхностный интеграл 1-го рода (по площади поверхности), его свойства, геометрические и физические приложения.
- 52. Криволинейный интеграл 2-го рода (по координатам), его физический смысл и свойства.
- 53. Формула Грина. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования.
- 54. Поверхностный интеграл 2-го рода. Поток векторного поля через поверхность.
 - 55. Поток и дивергенция векторного поля. Формула Остроградского-Гаусса.
 - 56. Циркуляция и ротор векторного поля. Формула Стокса.
- 57. Соленоидальные и потенциальные поля. Определение потенциала по его полному дифференциалу.

вопросы и задачи

Уровень А

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ

Bonpocы.

- 1. Функция y = f(x) называется возрастающей на (a; b), если ... Функция y = f(x) называется убывающей на (a; b), если ...
- **2.** Достаточное условие монотонности дифференцируемой функции на интервале. Пусть функция y = f(x) дифференцируема на (a; b). Если ..., то f(x) возрастает на (a; b). Если ..., то f(x) убывает на (a; b).
- 3. Точка x_0 называется точкой локального максимума функции f(x), если ... Точка x_0 называется точкой локального минимума функции f(x), если ...
- **4.** Необходимое условие экстремума. Если точка x_0 является точкой локального экстремума функции y = f(x), то ...
- **5.** Достаточное условие экстремума. Пусть точка x_0 является критической точкой функции y=f(x) (т. е. ...). Если ..., то x_0 точка локального максимума. Если ..., то x_0 точка локального минимума.
- **6.** Алгоритм нахождения наибольшего и наименьшего значений непрервной функции на отрезке.

Задачи.

Задача 1. Найти наибольшее и наименьшее значения функции:

- а) $y = x^4 2x^2$ на отрезке [0; 2];
- б) $y = (x+1) e^{3-x}$ на отрезке [-1; 2].

Задача 2. Найти точки экстремума функции: a) $y = 3x^4 + 16x^3 + 18x^2 + 1$;

6)
$$y = \frac{x^2 - 2x + 4}{x - 2}$$
; B) $y = x \ln^2 x + x + 4$; Γ $y = \ln (x^2 - 1)$.

Задача 3. Найти интервалы монотонности функции:

a)
$$y = x^3 + x$$
; 6) $y = \frac{x^4}{4} - x + 2$; b) $y = \frac{x^2 + 1}{x}$; r) $y = \frac{2x}{x^2 + 1}$.

Задача 4. Найти интервалы выпуклости и вогнутости функции:

а)
$$y = x^2(x+6)$$
; б) $y = \frac{x}{x^2+1}$; в) $y = \ln(x^2+1)$; г) $y = (x^2+1) e^{-x}$.

1. а) $y_{\text{наиб}} = y(2) = 8$, $y_{\text{наим}} = y(1) = -1$; б) $y_{\text{наиб}} = y(0) = \mathrm{e}^3$, $y_{\text{наим}} = y(-1) = 0$. 2. а) $y_{\text{max}} = y(-1) = 6$, $y_{\text{min}} = y(-3) = -26$, $y_{\text{min}} = y(0) = 1$; б) $y_{\text{max}} = y(0) = -2$, $y_{\text{min}} = y(4) = 6$; в) нет точек экстремума, функция монотонно возрастает на $(0; +\infty)$; г) нет точек экстремума, функция убывает на $(-\infty; -1)$ и возрастает на $(1; +\infty)$. 3. а) возрастает на $(-\infty; +\infty)$; б) убывает на $(-\infty; 1)$, возрастает на $(1; +\infty)$; в) убывает на (-1; 0) и (0; 1), возрастает на $(-\infty; -1)$ и $(1; +\infty)$; г) убывает на $(-\infty; -1)$ и $(1; +\infty)$, возрастает на (-1; 1). 4. а) график является выпуклым вверх на $(-\infty; -\sqrt{3})$ и $(0; \sqrt{3})$, выпуклым вниз на $(-2; +\infty)$; б) график является выпуклым вверх на $(-\infty; -\sqrt{3})$ и $(0; \sqrt{3})$, выпуклым вниз на $(-\sqrt{3}; 0)$ и $(\sqrt{3}; +\infty)$; в) график является выпуклым вверх на (1; 3) и выпуклым вниз на $(-\infty; 1)$ и $(3; +\infty)$.

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Bonpocu.

- 1. Что такое линии уровня функции двух переменных? Что такое поверхности уровня функции трех переменных?
 - **2.** Записать полное приращение Δz функции z = f(x; y).
 - **3.** Записать частные приращения $\Delta_x z$ и $\Delta_y f$ функции z = f(x; y).
 - **4.** Дать определение частной производной функции z = f(x; y).
- 5. Записать формулу для нахождения полного дифференциала функции z = f(x; y).
- **6.** Сформулировать необходимые условия дифференцируемости функции z = f(x; y) в точке $(x_0; y_0)$.
- 7. Сформулировать достаточные условия дифференцируемости функции z = f(x;y) в точке $(x_0;y_0)$.
- 8. Сформулировать теорему о независимости смешанной производной от порядка дифференцирования.
- 9. Записать формулы для вычисления частных производных функции двух переменных, заданной неявно.
- **10.** Как вычислить производную функции z = f(x; y) по направлению вектора \overrightarrow{l} ?
 - **11.** Что такое градиент функции z = f(x; y)?
 - **12.** Перечислить свойства градиента функции z = f(x; y).
- **13.** Дать определение точки локального максимума функции z = f(x; y). Дать определение точки локального минимума функции z = f(x; y).
- 14. Сформулировать необходимое условие экстремума функции двух переменных.

15. Сформулировать достаточные условия экстремума дифференцируемой функции двух переменных.

Задачи.

Задача 1. Найти все частные производные 2-го порядка для функции:

a)
$$z = 3x^3 - 2x^2y + 4xy^2 - 5y^4 + 3x;$$
 6) $z = 3x^4y^5 + 2x^6 - y^2 + 1;$

в)
$$z = e^{x^2 - 3y^3}$$
; г) $z = \arctan(xy^2)$.

Задача 2. Удовлетворяет ли функция $z = \ln(e^x + e^y)$ уравнению

$$\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0?$$

Задача 3. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$, если $z = \sin(xy)$.

Задача 4. Найти частные производные функции z, заданной неявно уравнением $z^2 - z = \sin(x - y^3)$.

Задача 5. Найти градиент и производную по направлению вектора:

а)
$$\overrightarrow{l} = -5\overrightarrow{i} + 12\overrightarrow{j}$$
 для функции $z = \frac{x^2}{y}$ в точке $A(1;2)$;

б)
$$\overrightarrow{l}=2\overrightarrow{i}-3\overrightarrow{j}+6\overrightarrow{k}$$
 для функции $u=xy^2-x^2z^3$ в точке $A(-1;3;1)$.

Задача 6. Исследовать на экстремум функцию:

а)
$$z = 1 - 3(x - 2)^2 - (y + 4)^2$$
; б) $z = 3x^2 + 3xy + y^2 - 6x - 2y + 1$. Ответы.

1. а)
$$z''_{xx} = (9x^2 - 4xy + 4y^2 + 3)'_x = 18x - 4y; \ z''_{xy} = z''_{yx} = (9x^2 - 4xy + 4y^2 + 3)'_y = -4x + 8y;$$
 $z''_{yy} = (-2x^2 + 8xy - 20y^3)'_y = 8x - 60y^2;$ б) $z''_{xx} = (12x^3y^5 + 12x^5)'_x = 36x^2y^5 + 60x^4; \ z''_{xy} = z''_{yx} = (12x^3y^5 + 12x^5)'_y = 60x^3y^4; \ z''_{yy} = (15x^4y^4 - 2y)'_y = 60x^4y^3 + 2;$ в) $z''_{xx} = (2 + 4x^2) e^{x^2 - 3y^3}; \ z''_{xy} = z''_{yx} = -18xy^2 e^{x^2 - 3y^3}; \ z''_{yy} = (-18y + 81y^4) e^{x^2 - 3y^3}; \ r) \ z''_{xx} = -\frac{2xy^6}{(1 + x^2y^4)^2}; \ z''_{xy} = z''_{yx} = \frac{2y - 2x^2y^5}{(1 + x^2y^4)^2};$ $z''_{yy} = \frac{2x - 6x^3y^4}{(1 + x^2y^4)^2}.$ 2. Удовлетворяет. 3. $\frac{\partial^3 z}{\partial x \partial y^2} = -2x\sin(xy) - x^2y\cos(xy)$. 4. $\frac{\partial z}{\partial x} = \frac{\cos(x - y^3)}{2z - 1};$ $\frac{\partial z}{\partial y} = -\frac{3y^2\cos(x - y^3)}{2z - 1}.$ 5. а) $\overrightarrow{\operatorname{grad}} z(A) = \overrightarrow{i} + \frac{1}{4}\overrightarrow{j}; \frac{\partial z}{\partial l}(A) = -\frac{8}{13};$ б) $\overrightarrow{\operatorname{grad}} u(A) = 11\overrightarrow{i} - 6\overrightarrow{j} - 3\overrightarrow{k};$ $\frac{\partial u}{\partial l}(A) = \frac{22}{7}.$ 6. а) $z_{\max} = z(2; -4) = 1;$ б) $z_{\min} = z(2; -2) = -3.$

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Bonpocы.

- **1.** Что называется первообразной для функции f(x)?
- **2.** Что называется неопределенным интегралом от функции f(x)?
- 3. Таблица интегралов.
- 4. Формула интегрирования по частям.
- 5. Что называется рациональной дробью?
- 6. Что называется правильной рациональной дробью? Что называется неправильной рациональной дробью?
- **7.** В каком виде нужно представить неправильную рациональную дробь для того, чтобы ее проинтегрировать?

- 8. В каком виде нужно представить правильную рациональную дробь для того, чтобы ее проинтегрировать?
 - 9. Перечислить 4 типа простейших рациональных дробей.
 - 10. Что такое универсальная тригонометрическая подстановка?
 - 11. Записать формулы понижения степени для $\sin^2 x$ и $\cos^2 x$. Задачи.

Задача 1. Найти интеграл и сделать проверку:

a)
$$\int (5x+3)^{10} dx$$
; 6) $\int \cos(\frac{\pi}{3}-7x) dx$; B) $\int \frac{dx}{\sqrt{(5x+1)^5}}$;

$$\Gamma$$
) $\int \frac{dx}{\sqrt{1-4x^2}};$ д) $\int \frac{x dx}{\sqrt{1-4x^2}};$ е) $\int x e^{-3x^2} dx;$

ж)
$$\int x^3 \sqrt[4]{5x^4 - 7} \, \mathrm{d} x;$$
 з) $\int \frac{x^3 \, \mathrm{d} x}{9 - 4x^8};$ и) $\int \sin \frac{1}{x} \cdot \frac{\mathrm{d} x}{x^2};$

к)
$$\int \frac{\ln^2 x \, \mathrm{d} \, x}{x};$$
 л) $\int \frac{\mathrm{d} \, x}{x\sqrt{1-4\ln x}};$ м) $\int \sin^5 x \cos x \, \mathrm{d} \, x;$

H)
$$\int \frac{\sin x \, \mathrm{d} x}{\sqrt{\cos^3 x}}; \qquad \text{o) } \int \frac{\cos 3x \, \mathrm{d} x}{\sin^2 3x}; \qquad \text{ii) } \int \frac{\sqrt[5]{4 \cot x} \, \mathrm{d} x}{\sin^2 x};$$

р)
$$\int \frac{\mathrm{d} x}{\arcsin^4 x \sqrt{1-x^2}};$$
 с) $\int \frac{\mathrm{e}^x \mathrm{d} x}{2+\mathrm{e}^x};$ т) $\int \frac{\mathrm{e}^{\arcsin x} \mathrm{d} x}{\sqrt{1-x^2}}.$ Задача 2. Найти интеграл методом интегрирования по

г)
$$\int \ln 9x \, dx$$
; д) $\int \frac{\ln x \, dx}{\sqrt[3]{x}}$; е) $\int x \ln(x-2) \, dx$;

ж)
$$\int \ln(x^2 + 4) dx$$
; з) $\int \arcsin 2x dx$; и) $\int x \arctan 3x dx$.

Задача 3. Найти интеграл:
a)
$$\int \frac{dx}{\sqrt{9-4x^2}}$$
; б) $\int \frac{x dx}{\sqrt{9-4x^2}}$; в) $\int \frac{2x+3}{\sqrt{9-4x^2}} dx$;

$$\Gamma$$
) $\int \frac{\mathrm{d} x}{4x^2 + 1};$ χ) $\int \frac{x \, \mathrm{d} x}{4x^2 + 1};$ χ) $\int \frac{x + 1}{4x^2 + 1};$ χ) $\int \frac{x + 1}{\sqrt{x^2 + 1}} \, \mathrm{d} x;$

3)
$$\int \frac{8x+3}{4x^2+3x+5} dx$$
; $\qquad \text{и}) \int \frac{x+3}{\sqrt{x^2+6x+10}} dx$.

Задача 4. Найти интеграл, выделив полный квадрат в квадратном трехчлене: a)
$$\int \frac{\mathrm{d} x}{x^2 + 4x + 5};$$
 6) $\int \frac{2x + 5}{x^2 - 4x + 8} \, \mathrm{d} x;$ в) $\int \frac{x \, \mathrm{d} x}{\sqrt{3 - 2x - x^2}}.$

Задача 5. Найти интеграл от рациональной дроби:

а)
$$\int \frac{\mathrm{d} x}{x+4}$$
; б) $\int \frac{\mathrm{d} x}{(x-2)^2}$; в) $\int \frac{\mathrm{d} x}{(x-1)^3}$; г) $\int \frac{\mathrm{d} x}{(x+3)^4}$; д) $\int \frac{x \, \mathrm{d} x}{x-3}$; е) $\int \frac{x \, \mathrm{d} x}{(x+2)^2}$; ж) $\int \frac{x^2 \, \mathrm{d} x}{x+1}$; з) $\int \frac{x^2}{x^2+4} \, \mathrm{d} x$;

д)
$$\int \frac{x \, dx}{x-3}$$
; e) $\int \frac{x \, dx}{(x+2)^2}$; ж) $\int \frac{x^2 \, dx}{x+1}$; з) $\int \frac{x^2}{x^2+4} \, dx$;

и)
$$\int \frac{x^4}{x^2 + 1} dx$$
; к) $\int \frac{x^4}{x - 2} dx$; л) $\int \frac{x^2 dx}{x^2 + 6x + 10}$; м) $\int \frac{4x^3 - 1}{1 - x^2} dx$.

Задача 6. Найти интеграл от правильной рациональной дроби, разложив ее на простейшие дроби:

a)
$$\int \frac{(2x+8) dx}{x(x-1)(x+2)};$$
 6) $\int \frac{x^2 dx}{(x+1)(x-2)^2};$ B) $\int \frac{(x+3) dx}{(x+1)(x^2+1)}.$

а)
$$\int \frac{\sqrt{x+3}}{\sqrt{x+3}+1} dx$$
; б) $\int \frac{dx}{\sqrt{x}+2\sqrt[4]{x}}$; в) $\int \frac{dx}{\sqrt[3]{(x-1)^2}+2\sqrt{x-1}}$.

Задача 8. Найти интегр

a)
$$\int_{c} \sin^{2} 5x \, dx$$
; 6) $\int_{c} \cos^{2} \frac{x}{4} \, dx$; B) $\int_{c} (9 - 4\sin x)^{2} \, dx$;

г)
$$\int \cos^3 2x \, dx$$
; д) $\int \cos^5 x \, dx$; е) $\int \sin^2 x \cos^3 x \, dx$;

ж)
$$\int \sin^5 x \cos^3 x \, dx$$
; з) $\int \frac{\sin^5 x}{\cos^3 x} \, dx$; и) $\int tg^3 x \, dx$.

1. a)
$$\frac{1}{55}(5x+3)^{11}+C$$
; b) $C-\frac{1}{7}\sin\left(\frac{\pi}{3}-7x\right)$; b) $C-\frac{2}{15\sqrt{(5x+1)^3}}$; c) $\frac{1}{2}\arcsin 2x+C$;

д)
$$C - \frac{1}{4}\sqrt{1 - 4x^2}$$
; е) $C - \frac{1}{6}e^{-3x^2}$; ж) $\frac{1}{25}\sqrt[4]{(5x^4 - 7)^5} + C$; з) $C - \frac{1}{48}\ln\left|\frac{2x^4 - 3}{2x^4 + 3}\right|$; и) $\cos\frac{1}{x} + C$;

к)
$$\frac{\ln^3 x}{3} + C$$
; л) $C - \frac{1}{2}\sqrt{1 - 4\ln x}$; м) $\frac{1}{6}\sin^6 x + C$; н) $\frac{2}{\sqrt{\cos x}} + C$; о) $C - \frac{1}{3\sin 3x}$;

п)
$$C - \frac{5}{24} \sqrt[5]{(4\operatorname{ctg} x)^6}$$
; р) $C - \frac{1}{\arcsin^3 x}$; с) $\ln(2 + e^x) + C$; т) $e^{\arcsin x} + C$.

2. а)
$$\frac{1}{3}(3x+1)e^{3x}+C$$
; б) $(4x-8)\sin\frac{x}{2}+8\cos\frac{x}{2}+C$; в) $(8-2x^2)\cos\frac{x}{2}+8x\sin\frac{x}{2}+C$; г) $x\ln 9x-x+C$; д) $\frac{3}{2}\sqrt[3]{x^2}\ln x-\frac{9}{4}\sqrt[3]{x^2}+C$; е) $\left(\frac{x^2}{2}-2\right)\ln(x-2)-\frac{x^2}{4}-x+C$; ж) $x\ln(x^2+4)-2x+4\arctan\frac{x}{2}+C$;

з)
$$x \arcsin 2x + \frac{1}{2}\sqrt{1-4x^2} + C$$
; и) $\left(\frac{x^2}{2} + \frac{1}{18}\right) \arctan 3x - \frac{x}{6} + C$.

3. a)
$$\frac{1}{2}\arcsin\frac{2x}{3}+C$$
; 6) $C-\frac{1}{4}\sqrt{9-4x^2}$; B) $C-\frac{1}{2}\sqrt{9-4x^2}+\frac{3}{2}\arcsin\frac{2x}{3}$; r) $\frac{1}{2}\arctan2x+C$;

д)
$$\frac{1}{8}\ln(4x^2+1)+C$$
; e) $\frac{3}{2}\arctan(2x-\frac{1}{8}\ln(4x^2+1)+C)$; ж) $\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)+C$;

3)
$$\ln (4x^2 + 3x + 5) + C$$
; $\ln \sqrt[2]{x^2 + 6x + 10} + C$.

4. a)
$$\operatorname{arctg}(x+2) + C$$
; 6) $\ln(x^2 - 4x + 8) + \frac{9}{2} \operatorname{arctg} \frac{x-2}{2} + C$; B) $C - \sqrt{3 - 2x - x^2} - \arcsin \frac{x+1}{2}$.

5. a)
$$\ln|x+4|+C$$
; 6) $C-\frac{1}{x-2}$; B) $C-\frac{1}{2(x-2)^2}$; Γ) $C-\frac{1}{3(x+3)^3}$; Γ) Γ

e)
$$\ln|x+2| + \frac{2}{x+2} + C$$
; ж) $\frac{x^2}{2} - x + \ln|x+1| + C$; з) $x - 2 \arctan \frac{x}{2} + C$; и) $\frac{x^3}{3} - x + \arctan x + C$

$$C; \kappa \frac{x^4}{4} + \frac{2x^3}{3} + 2x^2 + 8x + 16\ln|x - 2| + C; \pi x - 3\ln(x^2 + 6x + 10) - \arctan(x + 3) + C;$$

M)
$$C - 2x^2 - \frac{3}{2} \ln|x - 1| - \frac{5}{2} \ln|x + 1|$$
.

6. a)
$$-4 \ln|x| + \frac{10}{3} \ln|x-1| + \frac{2}{3} \ln|x+2| + C$$
; 6) $\frac{1}{9} \ln|x+1| + \frac{8}{9} \ln|x-2| - \frac{4}{3(x-2)} + C$;

B)
$$\ln |x+1| - \frac{1}{2} \ln(x^2+1) + 2 \arctan x + C$$
.

7. a)
$$x - 2\sqrt{x+3} + 2\ln\left(\sqrt{x+3} + 1\right) + C$$
; 6) $2\sqrt{x} - 8\sqrt[4]{x} + 16\ln\left(\sqrt[4]{x} + 2\right) + C$;

в) $3\sqrt[3]{x-1} - 12\sqrt[6]{x-1} + 24\ln\left(\sqrt[6]{x-1} + 2\right) + C$. 8. а) $\frac{x}{2} - \frac{1}{20}\sin 10x + C$; б) $\frac{x}{2} + \sin\frac{x}{2} + C$; в) $89x + 72\cos x - 4\sin 2x$; г) $\frac{1}{2}\sin 2x - \frac{1}{6}\sin^3 2x + C$; д) $\sin x - \frac{2}{3}\sin^3 x + \frac{\sin^5 x}{5} + C$; е) $\frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C$; ж) $\frac{\sin^6 x}{6} - \frac{\sin^8 x}{8} + C$; з) $\frac{1}{2\cos^2 x} + 2\ln|\cos x| - \frac{\cos^2 x}{2} + C$; и) $\frac{1}{2} \tan^2 x - \frac{1}{2} \ln(\tan^2 x + 1)$.

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ

Вопросы.

- 1. Формула Ньютона-Лейбница.
- 2. Формула интегрирования по частям в определенном интеграле.
- 3. Геометрический смысл определенного интеграла.
- **4.** Формулы для вычисления площадей плоских фигур с помощью определенного интеграла.
 - 5. Формулы для вычисления объемов тел вращения.
 - 6. В чем заключается особенность несобственного интеграла 1-го рода?
 - 7. В чем заключается особенность несобственного интеграла 2-го рода? $3a\partial a uu$.

Задача 1. Вычислить определенный интеграл:

а)
$$\int_{1}^{2} (3x^{2} + 2x + 1) dx;$$
 б) $\int_{0}^{1} xe^{-2x} dx;$ в) $\int_{0}^{\pi} x \cos \frac{x}{2} dx;$ г) $\int_{1}^{2} \ln(x+1) dx;$ д) $\int_{0}^{1} \frac{x dx}{x^{2} + 4x + 5};$ е) $\int_{0}^{4} \frac{\sqrt{x} dx}{\sqrt{x} + 1};$ ж) $\int_{1}^{3} \frac{dx}{\sqrt{2x+3} + 2};$ з) $\int_{0}^{\pi/2} \sin^{2} x dx;$ и) $\int_{0}^{\pi} \cos^{2} x dx.$

Задача 2. Вычислить несобственный интеграл или установить его расходимость:

а)
$$\int_{1}^{+\infty} \frac{\mathrm{d} x}{(x-1)^2}$$
; б) $\int_{1}^{+\infty} \frac{\mathrm{d} x}{\sqrt{x}}$; в) $\int_{0}^{+\infty} x \, \mathrm{e}^{-x^2} \, \mathrm{d} x$; г) $\int_{-\infty}^{+\infty} \frac{\mathrm{d} x}{x^2+1}$; д) $\int_{0}^{1} \frac{\mathrm{d} x}{(x-1)^2}$; е) $\int_{0}^{1} \frac{\mathrm{d} x}{\sqrt{x}}$.

Задача 3. Построить прямые:

а) y = 3x - 2; б) 3x - 2y = 6; в) y = 3x; г) y = 3; д) y = 0; е) x = 5; ж) x = 0. Задача 4. Построить параболы:

а)
$$y=x^2$$
; б) $y=2x-x^2$; в) $y=x^2-6x+10$; г) $x=4-y^2$; д) $3x+1=y^2$. Задача 5. Построить окружности:

Задача 6. Построить линии:

a)
$$xy = 1;$$
 6) $x^2 - y^2 = 4;$ B) $\frac{x^2}{4} + \frac{y^2}{9} = 1;$ Γ) $\frac{x^2}{4} - \frac{y^2}{9} = 1.$

Задача 7. Найти точку пересечения прямых 3x - y = 6 и x + 2y = 9.

Задача 8. Найти точки пересечения линий $3x + 1 = y^2$ и x - 2y + 3 = 0.

Задача 9. Найти площадь фигуры, ограниченной линиями:

a)
$$y = x^2$$
, $y = 3 - 2x$; 6) $xy = 6$, $x + y = 7$;

в)
$$y = 6x - x^2$$
, $y = x^2 - 6x + 10$, $x = -1$; г) $y = 4 - x^2$, $y = (x - 2)^2$, $y = 0$;

д)
$$3x = (y+3)^2$$
, $x+y=3$; e) $y=x+1$, $y=2x+1$, $y=2$.

Задача 10. Вычислить объем тела, которое получается при вращении фигуры, ограниченной линиями:

а)
$$y = x^2$$
, $y = 3 - 2x$, вокруг оси Ox ;

б)
$$y = 4 - x^2$$
, $y = (x - 2)^2$, $y = 0$, вокруг оси Ox ;

в)
$$y = (x+2)^2$$
, $y = 4-x$, $y = 0$, вокруг оси Ox ;

$$\Gamma$$
) $y = x^2$, $y = x$, вокруг оси Oy ;

д)
$$y = x + 1$$
, $y = 2x + 1$, $y = 2$, вокруг оси Oy .

Ответы.

1. а) 11; б)
$$\frac{1}{4} - \frac{3}{4} e^{-2}$$
; в) $2\pi - 4$; г) $3 \ln 2 - 1$; д) $\frac{1}{2} \ln 2 - 2 \arctan 3 + 2 \arctan 2$; е) $2 \ln 3$; ж) $2 - 2 \ln \frac{5}{3}$; $\frac{\pi}{2}$; н) $\frac{\pi}{2}$ 2. а) 0. 5; б) расуодится: в) 0. 5; г) $\lim_{n \to \infty} \arctan R = \lim_{n \to \infty} \arctan A = \frac{\pi}{2} + \frac{\pi}{2} = \pi$;

3)
$$\frac{\pi}{4}$$
; и) $\frac{\pi}{2}$. 2. а) 0,5; б) расходится; в) 0,5; г) $\lim_{B\to +\infty} \operatorname{arctg} B - \lim_{A\to -\infty} \operatorname{arctg} A = \frac{\pi}{2} + \frac{\pi}{2} = \pi$;

д) расходится,
$$\lim_{\varepsilon \to +0} \int_{0}^{1-\varepsilon} \frac{\mathrm{d}\,x}{(x-1)^2} = +\infty$$
; е) $\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{\mathrm{d}\,x}{\sqrt{x}} = 2$. 3. б) Прямая пересекает ось Ox при

x=2, а ось Oy- при y=-3; в) прямая проходит через начало координат и точку (1;3); г) прямая проходит горизонтально и пересекает ось Oy в точке (0;3); д) прямая совпадает

с осью Ox; е) прямая проходит вертикально и пересекает ось Ox в точке (5;0); ж) прямая совпадает с осью Oy. 4. а) Вершина параболы в начале координат, ветви направлены вверх,

парабола проходит через точку (1;1); б) вершина параболы — точка (1;1), ветви направлены вниз, парабола пересекает ось Ox в точках (0;0) и (2;0); в) вершина параболы — точка (3;1),

ветви направлены вверх, парабола пересекает ось Oy в точке (0;10); г) вершина параболы — точка (4;0), ветви направлены влево, парабола пересекает ось Oy в точках (0;2) и (0;-2);

д) вершина параболы — точка $\left(-\frac{1}{3};0\right)$, ветви направлены вправо, парабола пересекает ось Oy

в точках (0;1) и (0;-1). **5.** а) Окружность с центром в начале координат и радиусом R=2;

б) окружность с центром в точке (2;0) и радиусом R=2; в) окружность с центром в точке (0;2) и радиусом R=2. 6. а) Гипербола, расположенная в I и III четвертях; б) гипербола с полуосями

a=b=2, действительная ось — ось Ox; в) эллипс с полуосями $a=2,\,b=3;$ в) гипербола с

полуосями a=2, b=3, действительная ось — ось Ox. 7. (3;3). 8. (1;2); (5;4).

9. a)
$$S = \int_{-3}^{1} (3 - 2x - x^2) dx = 10\frac{2}{3};$$
 6) $S = \int_{1}^{6} \left(7 - x - \frac{6}{x}\right) dx = 17, 5 - 6 \ln 6;$

B)
$$S = \int_{-1}^{1} (x^2 - 6x + 10 - (6x - x^2)) dx = \int_{-1}^{1} (2x^2 - 12x + 10) dx = 21\frac{1}{3};$$

$$\Gamma) S = \int_{-2}^{0} (4 - x^2) dx + \int_{0}^{2} (x - 2)^2 dx = 8; \qquad A) S = \int_{-9}^{0} (3 - y - \frac{(y + 3)^2}{2}) dy = 4, 5;$$

e)
$$S = \int_{1}^{2} \left(y - 1 - \frac{y - 1}{2} \right) dy = \int_{0}^{1/2} (2x + 1 - (x + 1)) dx + \int_{1/2}^{1} (2 - (x + 1)) dx = 0, 25.$$

10. a) $V_{Ox} = \pi \int_{-3}^{1} (3 - 2x)^{2} dx - \pi \int_{-3}^{1} (x^{2})^{2} dx = 36 \frac{8}{15} \cdot \pi;$

6) $V_{Ox} = \pi \int_{-2}^{0} (4 - x^{2})^{2} dx + \pi \int_{0}^{2} (x - 2)^{4} dx = 66 \frac{2}{15} \cdot \pi;$

B) $V_{Ox} = \pi \int_{-2}^{1} (x + 2)^{4} dx + \pi \int_{0}^{1} (4 - x)^{2} dx = 328 \frac{1}{15} \cdot \pi;$ F) $V_{Oy} = \pi \int_{0}^{1} y dy - \pi \int_{0}^{1} y^{2} dy = \frac{\pi}{6};$
 $V_{Oy} = \pi \int_{0}^{1} (y - 1)^{2} dy - \pi \int_{0}^{1} \frac{(y - 1)^{2}}{4} dy = \frac{3}{4} \pi \int_{0}^{2} (y - 1)^{2} dy = \frac{\pi}{4}.$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Вопросы.

- 1. Что называется дифференциальным уравнением?
- 2. Что называется решением дифференциального уравнения?
- **3.** Что называется дифференциальным уравнением с разделяющимися переменными? Указать метод его решения.
- **4.** Дифференциальное уравнение 1-го порядка называется однородным, если ...

Указать метод его решения.

- **5.** Дифференциальное уравнение 1-го порядка называется линейным, если ... Указать метод его решения.
- **6.** Дифференциальное уравнение вида F(x; y'; y'') = 0 допускает понижение порядка подстановкой ...
- 7. Дифференциальное уравнение вида F(;y';y'')=0 допускает понижение порядка подстановкой ...
- **8.** Линейное однородное дифференциальное уравнение 2-го порядка это уравнение вида ...
- **9.** Линейное неоднородное дифференциальное уравнение 2-го порядка это уравнение вида ...
- 10. Сформулировать теорему о структуре общего решения линейного неоднородного дифференциального уравнения.
- 11. Метод неопределенных коэффициентов применяется для решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами и правой частью вида $f(x) = \dots$

Задачи.

Задача 1. Найти общее решение (или общий интеграл) дифференциального уравнения с разделяющимися переменными:

а) $y' = xy^2$; б) $(y + y\sqrt{x})dx = xdy$; в) $y^2dx + x^2dy = xy(xdy - ydx)$; г) $6xyy' + y^2 = 2$; д) x + xy + y'(y + xy) = 0; е) $xy^2 + 2xy' = y'$.

г)
$$6xyy' + y^2 = 2$$
; д) $x + xy + y'(y + xy) = 0$; е) $xy^2 + 2xy' = y'$.

Задача 2. Найти общее решение (или общий интеграл) дифференциального уравнения:

a) (x+y)y'=y; 6) $2x^2y'=x^2+y^2$; B) y-xy'=x+yy'; y'=x+yy'; y'=x+yy';

д)
$$xy' + 3y = x^2$$
; e) $y' \sin x - y \cos x = 1$; ж) $y' + 2y = e^{3x}$.

Задача 3. Решить задачу Коши (найти частное решение или частный интеграл дифференциального уравнения):

6) $y = y' \ln y$, y(2) = 1: a) $y' = 3y^{2/3}$, y(0) = -1;

B) $\sqrt{1+y^2}dx - xydy = 0$, y(1) = 2; F) $x^2y' = 4x^2 + xy + y^2$, y(1) = 2;

e) $y' - 2y = e^{-x}$, y(0) = 1: $\mu(x)xy' + y = \cos x, \ y(\pi) = 1;$

ж) $y' + y \operatorname{tg} x = \cos x$, y(0) = 5.

Задача 4. Найти общее решение (или общий интеграл) дифференциального уравнения:

ā) xy'' = 2014y'; 6) $x^2y'' = (y')^2;$ B) xy'' = (1-3x)y';

г) $y'' - 2\operatorname{ctg} xy' = \sin^3 x$; д) $y''(1-y) + 2(y')^2 = 0$.

Задача 5. Найти частное решение (или частный интеграл) дифференциального уравнения:

a) $y^3y'' = -1$, y(1) = 1, y'(1) = 0; 6) $y''(x^2 + 1) = 2xy'$, y(0) = 1, y'(0) = 3.

Задача 6. Найти общее решение дифференциального уравнения:

a) y'' + y' - 2y = 0; 6) y'' + 3y' = 0; B) y'' + 4y' + 4y = 0; c) y'' + 6y' + 13y = 0; D) y'' + 25y = 0; e) $y'' + 4y' + 4y = 18e^x;$ E) $y'' + y' - 2y = \cos x;$ 3) $y'' + 3y' = x^2 + 3x - 2;$ E) $y'' + 4y' + 5y = e^{2x}.$

Задача 7. Решить задачу Коши (найти частное решение) дифференциального уравнения:

a) y'' + 5y' + 6y = 0, y(0) = 1, y'(0) = -6;

6) y'' - 10y' + 25y = 0, y(0) = 0, y'(0) = 1;

B) y'' + 6y' + 18y = 0, y(0) = 1, y'(0) = -6;

y''' - 3y'' = 0, y(0) = 0, y'(0) = 3, y''(0) = 9;

д) $y'' + y = -\sin 2x$, $y(\pi) = y'(\pi) = 1$;

e) $y'' - 2y' + 10y = 10x^2 + 18x + 6$, y(0) = 1, y'(0) = 3, 2;

ж) $y'' + 9y = e^{3x}$, y(0) = y'(0) = 0.

1. a) $y = -\frac{2}{x^2 + C}$; б) $y = Cx e^{\sqrt{x}}$; в) $\ln|y| + \frac{1}{y} = \ln|x| - \frac{1}{x} + C$; г) $2 - y^2 = \frac{C}{\sqrt[3]{x}}$; д) $y - Cx e^{\sqrt{x}}$; д) $y - Cx e^{\sqrt{x}}$ $\ln|1+y| = -x + \ln|1+x| + C$; e) $\frac{1}{y} = \frac{x}{2} + \frac{1}{4}\ln|2x-1| + C$. 2. a) $-\frac{x}{y} + \ln|y| = C$; 6) $\frac{2x}{x-y} = \frac{x}{y} + \frac{1}{4}\ln|2x-1| + C$. $\ln |Cx|$; B) $\frac{1}{2}\ln(x^2+y^2) + \arctan\frac{y}{x} = C$; Γ) $y = x^2 \ln |Cx|$; π) $y = \frac{x^2}{5} + \frac{C}{r^3}$; e) $y = C \sin x - \cos x$; ж) $y = \frac{1}{5} e^{3x} + C e^{-2x}$. **3.** a) $y = (x-1)^3$; б) $\frac{\ln^2 y}{2} = x-2$; в) $1+y^2 = 5x^2$; г) $\arctan \frac{y}{2x} = \frac{\pi}{4} + \ln|x|$; д) $y = \frac{\sin x + \pi}{x}$; e) $y = \frac{4}{3}e^{2x} - \frac{1}{3}e^{-x}$; ж) $y = (x+5)\cos x$. 4. a) $y = C_1x^3 + C_2$; б) $y = C_1x - C_1^2 \ln|x + y|$

 $C_1|+C_2$; B) $y=C_1(3x+1)e^{-3x}+C_2$; Γ) $y=\frac{C_1}{2}x-\frac{C_1}{4}\sin 2x-\frac{1}{3}\sin^3 x+C_2$; Γ) $-\frac{1}{y-1}=C_1x+C_2$. **5.** a) $(x-1)^2 + y^2 = 1$; 6) $y = x^3 + 3x + 1$. **6.** a) $y = C_1 e^x + C_2 e^{-2x}$; 6) $y = C_1 + C_2 e^{-3x}$; в) $y = C_1 e^{-2x} + C_2 x e^{-2x}$; г) $y = C_1 e^{-3x} \cos 2x + C_2 e^{-3x} \sin 2x$; д) $y = C_1 \cos 5x + C_2 \sin 5x$; е) $\frac{7}{18}x^2 - \frac{25}{27}x$; и) $y = C_1 e^{-2x} \cos x + C_2 e^{-2x} \sin x + \frac{1}{17} e^{2x}$. 7. a) $y = 4 e^{-3x} - 3 e^{-2x}$; б) $y = x e^{5x}$; в) $y = e^{-3x} (\cos 3x - \sin 3x)$; г) $y = e^{3x} - 1$; д) $y = \cos x - \frac{1}{3} \sin x + \frac{1}{3} \sin 2x$; е) $y = 0, 16 e^x \cos 3x + 1$ $0,28 e^x \sin 3x + x^2 + 2,2x + 0,84; \text{ m}) y = -\frac{1}{18} \cos 3x - \frac{1}{18} \sin 3x + \frac{1}{18} e^{3x}.$

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ

Вопросы.

- 1. Что называется преобразованием Лапласа функции f(t)? Что называется изображением функции f(t)?
 - 2. Какая функция называется оригиналом?
 - 3. Что такое функция Хевисайда?

Задачи.

Задача 1. Найти изображения, используя таблицу изображений и основные свойства преобразования Лапласа:

а)
$$f(t) = 3 - 8t$$
; б) $f(t) = \frac{1}{2}\cos 4t - \frac{1}{6}\sin 6t$; в) $f(t) = 2e^{-3t} - 3t$; г) $f(t) = 2t^2 + 7te^{-4t}$; д) $f(t) = e^{-4t}\cos 2t$; е) $f(t) = (3t^2 + 5)e^{2t}$.

Задача 2. Найти оригиналы по их изображениям: а) $F(p) = \frac{5}{n} - \frac{3}{n^3} + \frac{11}{n-1}$;

б)
$$F(p) = \frac{2p+1}{p^2+16}$$
; $F(p) = \frac{p-1}{p^2-4p+6}$; $F(p) = \frac{p-1}{p(p+1)(p+2)}$.

Задача 3. Решить операционным методом дифференциальные уравнения:

a)
$$y'' + 4y' - 5y = 0$$
, $y(0) = 3$, $y'(0) = -3$;

6)
$$y'' - 3y' + 2y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 0$;

б)
$$y'' - 3y' + 2y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 0$;
в) $y'' + y' = t^2 + 2t$, $y(0) = 4$, $y'(0) = -2$.

1. a)
$$\frac{3}{p} - \frac{8}{p^2}$$
; 6) $\frac{1}{2} \cdot \frac{p}{p^2 + 16} - \frac{1}{p^2 + 36}$; B) $\frac{2}{p+3} - \frac{3}{p^2}$; Γ) $\frac{4}{p^3} + \frac{7}{(p+4)^2}$; Γ) $\frac{p+4}{(p+4)^2 + 4}$; e) $\frac{6}{(p-2)^3} + \frac{5}{p-2}$. 2. a) $5 - \frac{3}{2}t^2 + 11e^t$; 6) $2\cos 4t + \frac{1}{4}\sin 4t$; B) $e^{2t}\cos \sqrt{2}t + \frac{\sqrt{2}}{2}e^{2t}\sin \sqrt{2}t$; Γ) $\frac{1}{2}\left(1 - 4e^{-t} + 5e^{-2t}\right)$.

3. a)
$$y = 2e^t + e^{-5t}$$
; 6) $y = \frac{1}{6}e^{-t} - \frac{1}{2}e^t + \frac{1}{3}e^{2t}$; B) $y = \frac{t^3}{3} + 2 + 2e^{-t}$.

КРАТНЫЕ ИНТЕГРАЛЫ

Bonpocы.

- 1. Геометрический смысл двойного интеграла.
- 2. Формула для вычисления площади плоской фигуры с помощью двойного интеграла.

- 3. Формула перехода к полярным координатам в двойном интеграле.
- 4. Геометрический смысл тройного интеграла.
- 5. Формула для вычисления объема тела с помощью тройного интеграла.
- 6. Формула перехода к цилиндрическим координатам в тройном интеграле.
- 7. Физический смысл двойного и тройного интегралов.

Задачи.

Задача 1. Вычислить интеграл и нарисовать фигуру, площадь которой он выражает:

a)
$$\int_{1}^{2} dy \int_{1/y}^{y} dx$$
; 6) $\int_{0}^{2} dx \int_{x}^{x^{2}+2} dy$.

Задача 2. Вычислить интеграл; проверить результат, изменив порядок интегрирования:

a)
$$\int_{0}^{1} dx \int_{x}^{2-x} x^{2}y dy;$$
 6) $\int_{0}^{5} dy \int_{y^{2}}^{5y} (1+y) dx.$

Задача 3. Вычислить $\int_{-1}^{1} \mathrm{d} x \int_{x}^{1} (x^2 + y^2) \, \mathrm{d} y$. Изобразить область интегрирования.

Задача 4. Представить двойной интеграл $\int_{D} f(x;y) dx dy$ в виде повторного интеграла с внешним интегрированием по x и внешним интегрированием по y, если область D — треугольник с вершинами A(0;0), B(2;4), C(0;4).

Задача 5. С помощью двойного интеграла вычислить площадь области, ограниченной линиями:

a)
$$y = 2x^2$$
, $y = 2$; 6) $y^2 = 4x$, $x + y = 3$, $y = 0$.

Задача 6. Вычислить массу неоднородной пластины D, ограниченной линиями $y^2=x,\,x=3,$ если ее поверхностная плотность $\rho(x;y)=x.$

Задача 7. Вычислить двойной интеграл $\iint_D (x+y) \, \mathrm{d} \, x \, \mathrm{d} \, y$, если область D

определена неравенствами $y \geqslant x^2 - 1, y \leqslant 1 - x^2$.

Задача 8. Вычислить двойной интеграл $\iint_D (x-y) \, \mathrm{d} \, x \, \mathrm{d} \, y$, если область D- параллелограмм с вершинами $O(0;0), \ A(2;2), \ B(2;4), \ C(0;2).$

Задача 9. Вычислить двойной интеграл $\int\limits_{-\sqrt{3}}^{0}\mathrm{d}\,x\int\limits_{0}^{\sqrt{3-x^2}}\frac{\mathrm{d}\,y}{\sqrt{1+x^2+y^2}},$ перейдя к полярным координатам.

Задача 10. Вычислить интеграл:

a)
$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{xy}^{x+y} dz$$
; 6) $\int_{0}^{2} dx \int_{0}^{1} dy \int_{0}^{xy} (x+z)dz$.

Задача 11. Найти объем тела, ограниченного плоскостями x + 3z = 6, x =0, y = 0, y = 3, z = 0.

Задача 12. Найти объем тела, ограниченного плоскостями y=2x, x=0, y=2, z = 0, z = 2.

Задача 13. Найти массу тела, ограниченного координатными плоскостями и плоскостью x + 2y + 3z = 6, если плотность $\rho(x; y; z) = y$.

OTBETЫ.

1. a)
$$1, 5 - \ln 2; 6)$$
 $4\frac{2}{3}$. 2. a) $\int_{0}^{1} dy \int_{0}^{y} x^{2}y \, dx + \int_{1}^{2} dy \int_{0}^{2-y} x^{2}y \, dx = \frac{1}{6}; 6)$ $\int_{0}^{25} dx \int_{x/5}^{\sqrt{x}} (1+y)dy = 72\frac{11}{12}.$

3. $\frac{4}{3}$. 4. $\int_{0}^{2} dx \int_{2x}^{4} f(x;y) \, dy = \int_{0}^{4} dy \int_{0}^{y/2} f(x;y) \, dx$. 5. a) $S = \int_{-1}^{1} dx \int_{2x^{2}}^{2} dy = 2\frac{2}{3};$

6) $S = \int_{0}^{1} dx \int_{0}^{\sqrt{x}} dy + \int_{1}^{3} dx \int_{0}^{3-x} dy = \int_{0}^{2} dy \int_{y^{2}/4}^{3-y} dx = 3\frac{1}{3}.$ 6. $m = \int_{-\sqrt{3}}^{\pi} dy \int_{y^{2}}^{3} x \, dx = 7, 2 \cdot \sqrt{3}.$

7. $\int_{-1}^{1} dx \int_{x^{2}-1}^{1-x^{2}} (x+y) \, dy = 0.$ 8. $\int_{0}^{2} dx \int_{x}^{x+2} (x-y) \, dy = -4.$ 9. $\int_{\pi/2}^{\pi} d\varphi \int_{0}^{3} \frac{r \, dr}{\sqrt{1+r^{2}}} = \frac{\pi}{2}.$ 10. a) $\frac{5}{12};$

6) $2\frac{7}{9}$. 11. $V = \int_{0}^{6} dx \int_{0}^{3} dy \int_{0}^{2-x/3} dz = 18.$ 12. $V = \int_{0}^{1} dx \int_{2x}^{2} dy \int_{0}^{2} dz = 2.$ 13. $m = \int_{0}^{6} dx \int_{0}^{3} dy \int_{0}^{3} y \, dz = 4, 5.$

КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Bonpocы.

- 1. Геометрический смысл криволинейного интеграла 1-го рода (по длине дуги).
- 2. Формула для вычисления длины кривой с помощью криволинейного интеграла.
 - 3. Физический смысл криволинейного интеграла 1-го рода (по длине дуги).
 - 4. Формула для вычисления массы кривой.
- 5. Формула для вычисления криволинейного интеграла 1-го рода (по длине дуги), если кривая задана явно уравнением y = y(x).
- 6. Формула для вычисления криволинейного интеграла 1-го рода (по длине дуги), если кривая задана параметрически.
- 7. Формула для вычисления криволинейного интеграла 1-го рода (по длине дуги), если кривая задана уравнением в полярных координатах.

- 8. Основные свойства криволинейного интеграла 1-го рода (по длине дуги).
- 9. Физический смысл криволинейного интеграла 2-го рода (по координатам).
- 10. Формула для вычисления работы силы $\overrightarrow{F} = P\overrightarrow{i} + Q\overrightarrow{j} + R\overrightarrow{k}$ при перемещении материальной точки вдоль кривой.
- 11. Формула для вычисления криволинейного интеграла 2-го рода (по координатам), если кривая задана явно уравнением y = y(x).
- 12. Формула для вычисления криволинейного интеграла 2-го рода (по координатам), если кривая задана параметрически.
 - 13. Основные свойства криволинейного интеграла 2-го рода (по координатам). Задачи.

Задача 1. Вычислить криволинейный интеграл 1-го рода:

а)
$$\int y dl$$
 по параболе $x=3y^2$ от точки $A(0;0)$ до точки $B(12;2);$

б)
$$\int\limits_{I}^{Z}(x-y)dl$$
 по отрезку прямой от точки $A(0;0)$ до точки $B(4;3);$

в)
$$\int\limits_{L} xydl$$
 по четверти эллипса $\begin{cases} x=2\cos t, \\ y=4\sin t, \end{cases}$ $t\in [0;\pi/2].$

 ${f 3agava~2.}$ Найти массу материальной линии L- полуокружности

$$\begin{cases} x = \cos t, \\ y = \sin t, \end{cases} \quad t \in [0; \pi], \text{ если ее линейная плотность } \rho(x; y) = y.$$

ча 3. Вычислить криволинейный интеграл 2-го рода:

а)
$$\int_L (x^2 - 2xy) dx + (y^2 - 2xy) dy$$
 по параболе $y = x^2$ от точки $A(-1;1)$ до точки $B(1;1)$;

б)
$$\int_{L} y dx + 2x dy$$
 по окружности $\begin{cases} x = 2\cos t, \\ y = 2\sin t, \end{cases}$ от точки $A(-2;0)$ до точки $B(2;0)$.

 $\overrightarrow{\mathbf{3aдaчa}}$ 4. Вычислить работу силы $\overrightarrow{F} = xy\overrightarrow{i} + (x+y)\overrightarrow{j}$ при перемещении материальной точки из точки A(2;0) в точку B(0;0) по параболе $y=2x-x^2$. Задача 5. Найти работу силы $\overrightarrow{F}=x\overrightarrow{i}+y\overrightarrow{j}+(x+y-1)\overrightarrow{k}$ при перемещении

материальной точки по прямой из A(1; 1; 1) в B(2; 3; 4).

1. a)
$$\int_{0}^{12} \sqrt{\frac{x}{3}} \cdot \sqrt{1 + \frac{1}{12x}} \, dx = \int_{0}^{2} y \sqrt{1 + 36y^2} \, dy = \frac{\sqrt{145^3} - 1}{108}; \, 6) \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4} \left(x - \frac{3}{4}x \right) \sqrt{1 + \frac{9}{16}} \, dx = \frac{1}{108} \int_{0}^{4}$$

$$2,5; \text{ B}) \int_{0}^{\pi/2} 2\cos t \cdot 4\sin t \sqrt{4\sin^2 t + 16\cos^2 t} \, dt = -\frac{8}{2 \cdot 12} \int_{0}^{\pi/2} \sqrt{4 + 12\cos^2 t} \, d\left(4 + 12\cos^2 t\right) = 12\frac{4}{9}.$$

2.
$$m = \int_{L} y dl = \int_{0}^{\pi} \sin t \sqrt{\sin^{2} t + \cos^{2} t} dt = \int_{0}^{\pi} \sin t dt = 2.$$

3. a)
$$\int_{-1}^{1} ((x^2 - 2x^3) + (x^4 - 2x^3) \cdot 2x) dx = -\frac{14}{15}; 6) \int_{\pi}^{0} (-4\sin^2 t + 8\cos^2 t) dt = -2\pi.$$

4.
$$A = \int_{L} xy \, dx + (x+y) \, dy = \int_{2}^{0} (x(2x-x^{2}) + (x+2x-x^{2}) \cdot (2-2x)) \, dx = 0.$$

5.
$$A = \int_{L} x \, dx + y \, dy + (x + y - 1) \, dz = \int_{0}^{1} (t + 1 + (2t + 1) \cdot 2 + (t + 1 + 2t + 1 - 1) \cdot 3) \, dt = 13.$$

ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

Bonpocu.

- 1. Что называется скалярным полем?
- 2. Примеры скалярных полей.
- 3. Что называется векторным полем?
- 4. Примеры векторных полей.
- **5.** При каком условии векторное или скалярное поле называется стационарным?
 - 6. Свойства градиента скалярного поля.
 - 7. Вычисление дивергенции векторного поля.
 - 8. Вычисление ротора векторного поля.
 - 9. При каком условии векторное поле называется потенциальным?
 - **10.** Какое векторное поле называется соленоидальным? $3a\partial auu$.

Задача 1. Найти направление наискорейшего возрастания поля $u=2x^2y+xz^2-3yz$ в точке $M_0(-2;1;3)$.

Задача 2. Найти дивергенцию векторного поля $\overrightarrow{F} = x^2 \overrightarrow{i} - xy^3 \overrightarrow{j} + (y+z) \overrightarrow{k}$ в точках $M_1(1;-1;3), M_2(-4;1;2), M_3(1;5;0).$

Задача 3. Найти ротор векторного поля \overrightarrow{F} :

a)
$$\overrightarrow{F} = (2x+y)\overrightarrow{i} + xy\overrightarrow{j} + (2y-z)\overrightarrow{k}$$
; 6) $\overrightarrow{F} = (yz+1)\overrightarrow{i} + xz\overrightarrow{j} + xy\overrightarrow{k}$.

Задача 4. Вычислить циркуляцию векторного поля $\overrightarrow{F} = (x - y^2)\overrightarrow{i} + 2xy\overrightarrow{j}$ вдоль замкнутого контура, ограничивающего область $D: x^2 \leqslant y \leqslant x$, в положительном направлении обхода контура, двумя способами:

а) непосредственно; б) по формуле Грина.

Ответы.

1.
$$\overrightarrow{i} - \overrightarrow{j} - 15 \overrightarrow{k}$$
. 2. $\operatorname{div} \overrightarrow{F}(M_1) = 0$, $\operatorname{div} \overrightarrow{F}(M_2) = 5$, $\operatorname{div} \overrightarrow{F}(M_3) = -72$. 3. a) $\operatorname{rot} \overrightarrow{F} = 2 \overrightarrow{i} + (y-1) \overrightarrow{k}$; 6) $\operatorname{rot} \overrightarrow{F} = \overrightarrow{0}$. 4. a) $\coprod_L(\overrightarrow{F}) = \oint_L (x-y^2) dx + 2xy dy = \int_0^1 (x-x^4+2x\cdot x^2\cdot 2x) dx + \int_1^0 (x-x^2+2x^2) dx = \frac{4}{15}$; 6) $\coprod_L(\overrightarrow{F}) = \iint_D (2y-(-2y)) dx dy = \int_0^1 dx \int_{x^2}^x 4y dy = \frac{4}{15}$.

ЗАДАЧИ И ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

Уровень Б

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ

Теоретические упражнения.

- **1.** Привести пример графика функции y = f(x) в окрестности точки x_0 , если x_0 не является точкой экстремума, $f'(x_0) = \infty$, $f''(x_0 - 0) > 0$, $f''(x_0 + 0) < 0$.
- **2.** Привести пример графика функции y = f(x) на интервале (a; b), если f(x) > 0, f'(x) > 0, f''(x) > 0 при $x \in (a; b)$.
- 3. Что можно сказать о существовании наклонных и горизонтальных асимптот графика функции y = f(x), если:
- 1) $\lim_{x \to +\infty} \frac{f(x)}{x} = \infty$; $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$; 2) $\lim_{x \to \infty} \frac{f(x)}{x} = 0$; $\lim_{x \to \infty} f(x) = 0$;
- 3) $\lim_{x\to\infty}\frac{f(x)}{x}=-1;\quad \lim_{x\to\infty}\left(f(x)+x\right)=\infty?$ 4. Точка x_0 является точкой разрыва функции y=f(x). Обязательно ли прямая $x = x_0$ является вертикальной асимптотой графика функции y = f(x)? Ответ обосновать.
- **5.** Привести пример графика функции y = f(x), если прямая y = x является асимптотой графика при $x \to +\infty$ и график является выпуклым вверх на интервале $(0; +\infty)$.
- **6.** Привести пример графика непрерывной функции y = f(x), для которой $\lim_{x \to +0} f(x) = -\infty$, $x_0 = 5$ является точкой локального максимума и прямая y = 0является горизонтальной асимптотой при $x \to +\infty$.
 - 7. Может ли возрастающая функция иметь точки перегиба?
- 8. Является ли точка x_0 точкой экстремума функции $y = f(x), f(x_0) =$ $f'(x_0) = f''(x_0) = 0, f'''(x_0) > 0$?
- 9. Является ли точка x_0 точкой экстремума функции $y=f(x),\ f(x_0)=$ $f'(x_0) = 0, \ f''(x_0) > 0$?

Задачи.

Задача 1. Найти наибольшее и наименьшее значения функции:

- а) $y = x^2 \ln x$ на отрезке [1; e];
- б) $y = \sqrt[3]{x+1} \sqrt[3]{x-1}$ на отрезке [0; 1];
- в) $y = 4 x \frac{1}{x^2}$ на отрезке [1; 4].

Задача 2. Найти точки экстремума функции : а) $y = \sqrt{2x - x^2}$;

б)
$$y = \sqrt[3]{x^2} - x;$$
 в) $y = x \ln^2 x;$ г) $y = x^2 e^{-x};$ д) $y = x - \arctan x.$

Задача 3. Найти интервалы монотонности функции: а) $y = \frac{x^2 - 6x - 1}{x - 4}$;

б)
$$y = \frac{1}{\sqrt{2x - x^2}};$$
 в) $y = \sqrt[3]{x + 1} - \sqrt[3]{x - 1};$ г) $y = \frac{\mathrm{e}^{-x}}{x + 1};$ д) $y = \frac{\ln^2 x}{x}.$

Задача 4. Найти интервалы выпуклости и точки перегиба графика функции: а)
$$y=x^5-10x^2+3x;$$
 б) $y=\frac{x^3}{12+x^2};$ в) $y=\mathrm{e}^{x(1-x)};$ г) $y=\frac{\ln x}{\sqrt{x}}.$

Задача 5. Найти асимптоты графика функции: a)
$$y = \frac{1}{x^2 + 3x - 4}$$
; б) $y = \frac{x^3}{(x+1)^2}$; в) $y = \frac{\ln(2x+1)}{x+1}$; г) $y = e^{1/x} - 1$.

Задача 6. Исследовать функцию и построить ее график:

a)
$$y = (x-2)(x+1)^2;$$
 b) $y = \frac{x^2+x-6}{x+2};$ b) $y = \frac{x+3}{(x+2)^2};$

г)
$$y = \frac{e^{-x}}{1-x}$$
; д) $y = x^2 \ln x$; е) $y = x^2 e^{-x}$; ж) $y = \frac{x}{2} + 2 \arctan x$.

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Теоретические упраженения.

- Привести пример функции z = f(x; y), которая определена только на прямой y=1.
- Могут ли линии уровня функции z = f(x; y) иметь общие точки? Ответ обосновать.
- 3. В пространстве дана точка A. Расстояние переменной точки M от точки A есть функция координат точки M. Найти поверхности уровня этой функции.
- Верно ли утверждение: если функция z = f(x; y) имеет частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ в точке $(x_0; y_0)$, то она дифференцируема в этой точке? Ответ обосновать.
- Верно ли утверждение: если функция z=f(x;y) дифференцируема в 5. точке $(x_0; y_0)$, то она имеет частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ в этой точке? Ответ обосновать.
- **6.** Пусть z = f(x; y). Для каких функций полный дифференциал равен сумме частных дифференциалов?
- 7. Пусть z = f(x; y). Для каких функций полное приращение равно сумме частных приращений?
- Какой угол образует с положительным направлением оси абсцисс касательная к линии $\begin{cases} z = \frac{x^2 + y^2}{4}, \\ y = 4 \end{cases}$ в точке (2; 4; 5)?
 - **9.** Пусть $z = y \cdot f(x^2 y^2)$. Проверить, что $\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}$.
 - 10. Чему равна производная по направлению градиента? Ответ обосновать.
- Может ли производная по направлению градиента быть: 1) равной 0; 2) положительной; 3) отрицательной? Ответ обосновать.
- Пусть u = u(x; y; z), v = v(x; y; z) дифференцируемые функции. Показать, что $\operatorname{grad}(uv) = u \cdot \operatorname{grad}(v) + v \cdot \operatorname{grad}(u)$.

- 13. Верно ли утверждение: если точка $(x_0; y_0)$ является точкой экстремума функции z = f(x; y), то $\frac{\partial z}{\partial x} = 0$, $\frac{\partial z}{\partial y} = 0$ в этой точке? Ответ обосновать.
- **14.** Верно ли утверждение: если $\frac{\partial z}{\partial x} = 0$, $\frac{\partial z}{\partial y} = 0$ в точке $(x_0; y_0)$, то эта точка является точкой экстремума функции z = f(x; y)? Ответ обосновать.
- **15.** Верно ли утверждение: если в точке $(x_0; y_0)$ выполняется неравенство $\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 > 0$, то эта точка является точкой экстремума функции z = f(x; y)? Ответ обосновать. $3a\partial a u$.

Задача 1. Какой угол образует с положительным направлением оси абсцисс касательная к линии $\begin{cases} z=\frac{x^2+y^2}{4},\\ y=4 \end{cases}$ в точке (2;4;5)?

Задача 2. Найти частные производные функции z, заданной уравнением: a) $z^3 + 3xyz = 27$; б) $x^2 - 2y^2 + z^2 - 4x + 2z - 5 = 0$. Задача 3. При каком значении постоянной a функция $z = x^3 + axy^2$ удовле-

Задача 3. При каком значении постоянной a функция $z=x^3+axy^2$ удовлетворяет уравнению $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$?

Задача 4. Найти градиент и производную по направлению вектора $\overrightarrow{d} = 2\overrightarrow{i} - 2\overrightarrow{j} - 5\overrightarrow{k}$ для функции $u = \ln\cos\left(x^2y^2 + z\right)$ в точке $A\left(0; 0; \frac{\pi}{4}\right)$.

Задача 5. Исследовать на экстремум функцию $z=x^2+y^2-6xy-39x+18y+20.$

Задача 6. Найти наибольшее и наименьшее значения функции $z=x^2+2xy-y^2-4x$ в области D, ограниченной линиями x-y+1=0, x=3, y=0.

Задача 7. На плоскости Oxy найти точку, сумма квадратов расстояний которой от трех прямых $x=0,\ y=0,\ x+2y-16=0$ была бы наименьшей.

Задача 8. На плоскости x+y-2z=0 найти точку, сумма квадратов расстояний которой от плоскостей x+3z=6 и y+3z=2 была бы наименьшей.

Задача 9. Палатка имеет форму цилиндра с насаженной на него конической верхушкой. При каких соотношениях между линейными размерами палатки для ее изготовления потребуется наименьшее количество материала при заданном объеме?

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Теоретические упражнения.

1. Известно, что две первообразные для функции $f(x) = e^{x^2}$ в точке x = 1 отличаются на 2. На сколько отличаются эти же первообразные в точке x = 15? Ответ обосновать.

2. Для каких x справедливы формулы: a) $\int \frac{\mathrm{d} x}{x} = \ln x + C$; б) $\int \frac{\mathrm{d} x}{x} = \ln |x| + C$?

- **3.** Известно, что f'(x) = g'(x) на [a;b]. Следует ли отсюда, что f(x) = g(x) на [a;b]? Ответ обосновать.
- **4.** Известно, что $\int f(x) \, \mathrm{d} \, x = \int g(x) \, \mathrm{d} \, x$ на [a;b]. Следует ли отсюда, что f(x) = g(x) на [a;b]? Ответ обосновать.
 - 5. Разложить дробь $\frac{4}{x^4+4}$ на сумму простейших дробей.
- 6. Каким условиям должны удовлетворять коэффициенты a, b, c, чтобы интеграл $\int \frac{\mathrm{d}\,x}{ax^2+bx+c}$ являлся рациональной функцией? $3a\partial auu$.

Задача 1. Найти интеграл:

а)
$$\int \sqrt[5]{\lg^4 2x} \cdot \frac{\mathrm{d} \, x}{x};$$
 б) $\int \frac{\mathrm{d} \, x}{x \ln x \ln \ln x \ln \ln \ln x};$ в) $\int \frac{\ln \left(x + \sqrt{x^2 - 1}\right) \mathrm{d} \, x}{\sqrt{x^2 - 1}};$ г) $\int \sqrt{4 - x^2} \, \mathrm{d} \, x;$ д) $\int \mathrm{e}^{3x} \cos 2x \, \mathrm{d} \, x;$ е) $\int \sin(\ln x) \, \mathrm{d} \, x;$ ж) $\int \frac{\mathrm{d} \, x}{x^3 + 1};$ з) $\int \frac{x \, \mathrm{d} \, x}{(x^2 + 1)(x + 1)^2};$ и) $\int (3 - \cos 2x)^3 \, \mathrm{d} \, x;$ к) $\int \sin^3 \frac{x}{3} \cos^3 \frac{x}{3} \, \mathrm{d} \, x;$ л) $\int \sin^4 x \cos^2 x \, \mathrm{d} \, x;$ м) $\int \frac{\sin^4 x}{\cos^2 x} \, \mathrm{d} \, x;$ н) $\int \frac{\mathrm{d} \, x}{\mathrm{tg}^2 \, x + \mathrm{tg} \, x};$ о) $\int \frac{\mathrm{d} \, x}{\cos x};$ п) $\int \frac{\mathrm{d} \, x}{3 - 2 \sin x + \cos x};$ р) $\int \frac{\sqrt[3]{x} + \sqrt{x}}{\sqrt[3]{x^2} + \sqrt{x}} \, \mathrm{d} \, x;$ с) $\int \frac{1 - \sqrt[4]{x}}{\sqrt[4]{x^3}(1 + \sqrt{x})} \, \mathrm{d} \, x;$ т) $\int \frac{\sqrt{9 + x^2}}{x^4} \, \mathrm{d} \, x;$ у) $\int \frac{\mathrm{d} \, x}{x^2 \sqrt{x^2 - 4}};$ ф) $\int \frac{\mathrm{d} \, x}{1 + \sqrt{x} + \sqrt{x + 1}}.$

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Теоретические упраженения.

1. Какую площадь выражает сумма (сделать рисунок):

а)
$$\sum_{i=1}^{n} f(x_i)(x_i - x_{i-1});$$
 6) $\sum_{i=1}^{n} f(x_{i-1})(x_i - x_{i-1})?$

2. Верно ли неравенство: а) $\int_{0}^{1} e^{x^2} dx > 1;$ 6) $\int_{0}^{1} e^{-x^2} dx > 1?$

3. Что больше: а) $\int_{0}^{1} 2^{x^2} dx$ или $\int_{0}^{1} 2^{x^3} dx;$ 6) $\int_{1}^{2} 2^{x^2} dx$ или $\int_{1}^{2} 2^{x^3} dx?$ Ответ

обосновать.

- **4.** Предложить три способа вычисления интеграла $\int_{0}^{1} \sqrt{1-x^2} \, \mathrm{d} \, x$.
- **5.** Какая геометрическая величина вычисляется по формуле (сделать рисунок):

- 6. С помощью определенного интеграла вывести формулы для вычисления объема цилиндра, конуса, усеченного конуса.
- 7. С помощью определенного интеграла вывести формулы для вычисления площади поверхности цилиндра, конуса, усеченного конуса.

Задачи.

Задача 1. Вычислить определенный интеграл:

a)
$$\int_{1}^{8} \frac{dx}{\sqrt[3]{x} + 2}$$
; 6) $\int_{0}^{2} \frac{dx}{\sqrt{4x + 1} + 3}$; в) $\int_{0}^{1} \arcsin \frac{x}{2} \cdot \frac{dx}{\sqrt{2 - x}}$. Верно ли неравенство:

a)
$$6 < \int_{0}^{2} \sqrt{12 + x^{2}} \, dx < 8;$$
 6) $\frac{2\pi}{13} < \int_{0}^{2\pi} \frac{dx}{10 + 3\cos x} < \frac{2\pi}{7}$?

Задача 3. Чему равна производная $\left(\int_{-\infty}^{1} \frac{\ln x}{x} dx\right)$?

Задача 4. Вычислить определенный интеграл:

a)
$$\int_{-2}^{2} \frac{x^{2015} dx}{x^4 + 1}$$
; 6) $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} dx$.

Задача 5. Вычислить несобственный интеграл или доказать его расходи-

a)
$$\int_{4}^{+\infty} \frac{dx}{x \ln^2 x}$$
; 6) $\int_{-\infty}^{0} \frac{dx}{\sqrt{x^2 + 9}}$; b) $\int_{0}^{5} \frac{dx}{(x - 2)^2}$; r) $\int_{0}^{1} \frac{dx}{\sqrt{3 - 2x - x^2}}$.

Задача 6. Сходится ли несобственный интеграл:

a)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt{x^4 + 4}};$$
 6) $\int_{2}^{+\infty} \frac{5 + \cos x}{x^4} dx;$ B) $\int_{0}^{1} \frac{dx}{x^5 + x^3};$ Γ) $\int_{0}^{1} \frac{dx}{\sqrt[3]{1 - x^4}}?$

Задача 7. Доказать, что $\int_{-\infty}^{+\infty} \frac{x^2 d x}{x^4 + x^2 + 1} < 0, 1.$

Задача 8. Найти площадь фигуры, ограниченной линиями:

a)
$$y = x$$
, $y = 3x$, $x + y = 4$; 6) $y = x^3$, $y = 2 - x$, $x = 0$.

Задача 9. Вычислить объем тела, которое получается при вращении вокруг

оси Оу фигуры, ограниченной линиями:

a)
$$x^2 + y^2 = 5$$
, $y \ge 2x$, $x \ge 0$;
 6) $y = \sqrt{x}$, $x + y = 2$, $y = 0$.

Задача 10. Найти объем эллипсоида, полученного при вращении вокруг оси Oy эллипса $x^2 + \frac{y^2}{4} = 1$.

Задача 11. Найти объем тела, ограниченного эллиптическим параболоидом $z=rac{x^2}{2}+rac{y^2}{4}$ и плоскостью z=1.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Теоретические упражнения.

1. Составить дифференциальное уравнение, общее решение которого имеет вид:

a) $y = Cx^2 - 2x$; b) $y = C_1x^2 + C_2x$; b) $y = C_1 e^x + C_2 e^{-2x}$.

- **2.** Можно ли утверждать, что решение задачи Коши $(y^2 x^2)y' = y$, y(1) = 1 существует и единственно?
- **3.** Можно ли утверждать, что решение задачи Коши $(y^2 + x^2)y' = y$, y(1) = 1 существует и единственно?
- **4.** Найти такие функции p(x) и q(x), чтобы решениями дифференциального уравнения y' + p(x)y = q(x) являлись функции $y = x^2 + 2$ и y = 2.
- **5.** Известно, что функции $y = y_1(x)$ и $y = y_2(x)$ являются решениями дифференциального уравнения y' + p(x)y = q(x). Доказать, что функция $y = y_1(x) + C(y_2(x) y_1(x))$ является общим решением этого уравнения.
- **6.** Известно, что функции $y = y_1(x)$ и $y = y_2(x)$ являются решениями дифференциального уравнения y' + p(x)y = q(x). При каком соотношении между числами α и β линейная комбинация $y = \alpha y_1(x) + \beta y_2(x)$ будет решением этого уравнения?
- 7. Известно, что функции $y = y_1(x)$ и $y = y_2(x)$ являются решениями некоторого обыкновенного дифференциального уравнения. Обязательно ли функция $y = C_1 y_1(x) + C_2 y_2(x)$ также является решением этого дифференциального уравнения?
- **8.** Известно, что функции $y = y_1(x)$ и $y = y_2(x)$ являются решениями некоторого линейного однородного дифференциального уравнения. Обязательно ли функция $y = C_1 y_1(x) + C_2 y_2(x)$ также является решением этого дифференциального уравнения?
- **9.** Известно, что функции $y = y_1(x)$ и $y = y_2(x)$ являются решениями некоторого линейного неоднородного дифференциального уравнения. Обязательно ли функция $y = C_1 y_1(x) + C_2 y_2(x)$ также является решением этого дифференциального уравнения?
 - **10.** Решить задачу Коши: y'' + 2015y' + 2016y = 0, y(13) = 0, y'(13) = 0.
- **11.** Является ли задача y'' + 2015y' + 2016y = 0, y(2015) = 0, y(2016) = 0 задачей Коши?

- 12. Является ли задача y'' + 2015y' + 2016y = 0, y(2015) = 0, y'(2016) = 0задачей Коши?
- **13.** Известно, что функция $y = e^x$ является решением дифференциального уравнения y'' + by' + 4y = 0. Найти общее решение этого уравнения.
- **14.** При каком значении параметра b все решения дифференциального уравнения y'' + by' + 4y = 0 являются периодическими функциями?
- **15.** Является ли функция $y = C_1 e^{2x} + C_2 e^{2x}$ общим решением дифференциального уравнения y'' - 4y' + 4y = 0?
- **16.** Функции x, x^3, e^x образуют фундаментальную систему решений некоторого линейного однородного дифференциального уравнения 3-го порядка. Составить это уравнение.
- 17. Является ли функция $y = e^x + e^{2x} + e^{3x}$ решением дифференциального уравнения $y'' - 3y' + 2y = 2e^{3x}$?
- При каких значениях p и q функция $y = e^x + x e^{2x}$ является решением дифференциального уравнения $y'' + py' + qy = -2 e^{2x}$ (р и q — числа)?
- **19.** Известно, что функция $y = e^x + e^{2x}$ является решением дифференциального уравнения $y'' + py' + qy = e^{2x}$ (p и q — числа). Является ли функция $y = x e^x + e^{2x}$ решением этого уравнения?
 - **20.** Проверить линейную независимость системы функций 1; $\sin x$; $\cos x$.
- 21. Предложить три способа решения дифференциального уравнения $y'' - 2y' = \sin 2x.$
 - 22. Указать общий вид частного решения уравнения:

a)
$$y'' - 2y' = \sin^2 x$$
; 6) $y'' - y = (x + e^x)^2$. $3a\partial a uu$.

Задача 1. Найти общее решение (или общий интеграл) дифференциального уравнения:

a)
$$y' - xy^2 = 2xy$$
; 6) $y'x + y = -xy^2$;

B)
$$x^2 dy + y^2 dx = 3(x^2 - y^2) dx;$$
 F) $x^2 dy + y^2 dx = xy(x dy - y dx).$

Задача 2. Найти частное решение (или частный интеграл) дифференциального уравнения:

a)
$$y \ln y dx + x dy = 0$$
, $y(1) = 2$; 6) $t(1+t^2) dx = (x+xt^2-t^2) dt$.

Задача 3. Найти общее решение (или общий интеграл) дифференциального уравнения:

а)
$$y''=2\left(y'-1\right)$$
 ctg x ; б) $x^2y'''=(y'')^2$; в) $2yy''-3(y')^2=4y^2$. **Задача 4.** Решить задачу Коши: $2yy''+1=(y')^2$, $y(0)=1$, $y'(0)=2$.

Задача 5. Найти общее решение дифференциального уравнения:

a)
$$y'' + 6y' + 10y = 30\sin 2x;$$
 6) $y'' - 4y' + 4y = \sin 2x;$

B)
$$y'' + 4y = e^{2x} + 4;$$
 Γ) $y'' - 6y' + 9y = \frac{e^{3x}}{x^2 + 9}.$

Задача 6. Решить систему дифференциальных уравнений:

a)
$$\begin{cases} \frac{dx}{dt} = 3x - y, & x(0) = 3, \\ \frac{dy}{dt} = 4x - y, & y(0) = 1; \end{cases}$$
6)
$$\begin{cases} \frac{dx}{dt} = y + t, & x(0) = 1, \\ \frac{dy}{dt} = x + e^t, & y(0) = 0; \end{cases}$$
8)
$$\begin{cases} \frac{d^2x}{dt^2} = y, \\ \frac{d^2y}{dt^2} = x; \end{cases}$$
6)
$$\begin{cases} yz\frac{dy}{dx} = x, \\ y^2\frac{dz}{dx} = x. \end{cases}$$

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ

Задачи.

Задача 1. Найти изображения, используя преобразование Лапласа:

6) f(t) = 3;

B) f(t) = 2t - 3.

Задача 2. Найти изображения, используя таблицу изображений и основные свойства преобразования Лапласа:

a) $f(t) = \cos^2 \frac{t}{2}$;

 $6) f(t) = t e^{3t} \cos 2t;$

 $\text{г) } f(t) = t^2 \cos t; \qquad \qquad \text{д) } f(t) = \frac{\mathrm{e}^t - 1}{t}; \qquad \qquad \text{e) } f(t) = \begin{cases} 0 & \text{при } t < 0, \\ 1 & \text{при } 0 \leqslant t \leqslant 3, \\ 0 & \text{при } t > 3; \end{cases}$

ж)
$$f(t) = \begin{cases} 0 & \text{при } t < 0, \ t \geqslant 4, \\ t & \text{при } 0 \leqslant t \leqslant 2, \\ 4 - t & \text{при } 2 < t < 4. \end{cases}$$

Задача 3. Решить операционным методом дифференциальные уравнения:

a) $y' + 2y = \sin t$, y(0) = 0;

6) $y'' + 4y' + 4y = t^2 e^{-2t}$, y(0) = 0, y'(0) = 0;

B) $4y''' - 8y'' - y' - 3y = -8e^t$, y(0) = 1, y'(0) = 1, y''(0) = 1;

 $\Gamma(y'' - y) = \frac{1}{1 + e^t}, \ y(0) = 0, \ y'(0) = 0;$

д) y'' + y = 0, $y(\pi) = 1$, $y'(\pi) = 0$;

e) y'' + y = 2t, y(1) = 1, y'(1) = -1.

Задача 4. Решить операционным методом систему дифференциальных урав-

a) $\begin{cases} x' + y = 0, & x(0) = 1, \\ y' + x = 0, & y(0) = -1; \end{cases}$ b) $\begin{cases} x' + 2x + y = \sin t, & x(0) = 0, \\ y' - 4x - 2y = \cos t, & y(0) = 1; \end{cases}$ c) $\begin{cases} x'' + y'' = 0, & x(0) = 0 \ x'(0) = 2, \\ x' + y = 1 + e^t, & y(0) = 0, \ y'(0) = 0; \end{cases}$ c) $\begin{cases} x' + 2x + y = \sin t, & x(0) = 0, \\ y' - 4x - 2y = \cos t, & y(0) = 1; \end{cases}$ c) $\begin{cases} x' + y + z = 2e^t + 3, & x(0) = 1, \\ y' + x + z = 2, & y(0) = 3, \\ z' + x + y = 2e^t + 1, & z(0) = 1. \end{cases}$

Задача 5. Решить интегральные уравнения:

a) $y(t) = \int_{0}^{t} y(u) du + 1;$ 6) $\int_{0}^{t} \cos(t - u)y(u) du = t + t^{2}.$

Задача 6. Решить интегро-дифференциальное уравнение

$$y'(t) - \int_{0}^{t} (t - u)y(u) du = \cos t, \ y(0) = 1.$$

КРАТНЫЕ ИНТЕГРАЛЫ

Теоретические упраженения.

- 1. Для какой области интегрирования при переходе в двойном интеграле к повторному в декартовых координатах пределы интегрирования во внутреннем интеграле постоянны?
- 2. Для какой области интегрирования при переходе в двойном интеграле к повторному в полярных координатах пределы интегрирования во внутреннем интеграле постоянны?
- 3. Для какой области интегрирования при переходе в тройном интеграле к повторному в декартовых координатах пределы интегрирования во внутренних интегралах постоянны?
- 4. Для какой области интегрирования при переходе в тройном интеграле к повторному в цилиндрических координатах пределы интегрирования во внутренних интегралах постоянны?

Задачи.

Задача 1. Доказать неравенство $-9\pi \leqslant \iint_{x^2+y^2\leqslant 9} \sin\frac{x^2-y+1}{x^2+y^2+1} \,\mathrm{d}\,x \,\mathrm{d}\,y \leqslant 9\pi.$ Задача 2. Вычислить $\iint (x+2y) \,\mathrm{d}\,x \,\mathrm{d}\,y$, если область D — треугольник с

вершинами O(0;0), A(3;0), B(0;2).

Задача 3. Вычислить $\iint (2x-y) \, \mathrm{d} \, x \, \mathrm{d} \, y$, если область D ограничена прямыми x + y = 1, x + y = 2, 2x - y = 1, 2x - y = 3.

Задача 4. Вычислить:
a)
$$\int_{0}^{2} \mathrm{d} x \int_{0}^{\sqrt{4-x^2}} \cos \sqrt{x^2+y^2} \, \mathrm{d} y$$
;
3 $\int_{0}^{3} \mathrm{d} x \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \mathrm{d} y \int_{0}^{\sqrt{9-x^2-y^2}} (x^2+y^2) \, \mathrm{d} z$.
3адача 5. Назвать и построить поверхность:

Задача 5. Назвать и построить поверхность:

1)
$$4x^2 + y^2 + z^2 = 4$$
; 2) $y = x^2 + z^2$; 3) $x^2 + z^2 = y^2$; 4) $x^2 + z^2 - y^2 = 4$

Задача 5. Назвать и построить поверхность:
1)
$$4x^2+y^2+z^2=4;$$
 2) $y=x^2+z^2;$ 3) $x^2+z^2=y^2;$ 4) $x^2+z^2-y^2=4;$ 5) $x^2+z^2=4z;$ 6) $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1;$ 7) $\frac{x^2}{a^2}+\frac{y^2}{b}=1;$ 8) $\frac{x^2}{a^2}+\frac{y}{b^2}=1.$ **Задача 6.** Найти объем тела, ограниченного плоскостями $y+z=2, y=x, y=0, z=0$

x = 0, z = 0.

Задача 7. Найти объем тела, ограниченного поверхностями $z=x^2+y^2,$ $x^2 + y^2 = 4$, z = 0.

КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ

Теоретические упражнения.

- 1. Как зависит криволинейный интеграл 1-го рода (по длине дуги) от направления пути интегрирования?
- 2. Как зависит криволинейный интеграл 2-го рода (по координатам) от направления пути интегрирования?
- 3. Верно ли утверждение: если $\operatorname{rot} \overrightarrow{F} = 0$, то криволинейный интеграл 2-го рода (по координатам) $\int\limits_{L}\overrightarrow{F}\cdot \mathrm{d}\overrightarrow{r}$ не зависит от пути интегрирования? Верно ли обратное утверждение?
- 4. Зависит ли криволинейный интеграл $\int\limits_{L} \frac{\partial U}{\partial x} \, \mathrm{d}\, x + \frac{\partial U}{\partial y} \, \mathrm{d}\, y$ от пути интегрирования?
- **5.** Как зависит поверхностный интеграл 1-го рода (по площади поверхности) от выбора стороны поверхности?
- **6.** Как зависит поверхностный интеграл 2-го рода от выбора стороны поверхности?

Задачи.

 $\int\limits_L rac{\mathrm{d} l}{x-y}$ по отрезку прямой y=0.5x-2 от точки A(0;-2) до точки B(4;0).

Задача 2. Вычислить криволинейный интеграл 1-го рода $\int\limits_L y\,\mathrm{d}l$ по параболе

 $x = y^2$ от точки A(1; -1) до точки B(1; 1). Задача 3. Вычислить криволинейный интегр

Задача 3. Вычислить криволинейный интеграл 1-го рода (по длине дуги) $\int\limits_L xy\,\mathrm{d}l$ по четверти эллипса $\begin{cases} x=2\cos t,\\ y=4\sin t, \end{cases}$ от точки A(-2;0) до точки B(0;4).

Задача 4. Вычислить криволинейный интеграл 1-го рода (по длине дуги) $\int\limits_L \sqrt{x^2+y^2}\,\mathrm{d}l$ по верхней половине кардиоиды $r=2(1+\cos\varphi).$

Задача 5. Вычислить криволинейный интеграл 1-го рода (по длине дуги) $\int xy\,\mathrm{d}l$, где L — прямоугольник, ограниченный прямыми $x=0,\ x=4,\ y=0,\ y=2.$

Задача 6. Найти длину дуги линии:

а)
$$x = \frac{2}{3}(y-1)^{3/2}$$
 от точки $A(0;1)$ до точки $B\left(\frac{2}{3};2\right)$;

б)
$$\begin{cases} x = t^2, \\ y = t - \frac{t^3}{3}, \end{cases}$$
 $t \in [0; \sqrt{3}];$ в) $\begin{cases} x = 3\cos^3 t, \\ y = 3\sin^3 t, \end{cases}$ $t \in [0; \pi/2];$ $t \in [0; \pi/2];$

Задача 7. Вычислить криволинейный интеграл 2-го рода $\int\limits_L y \, \mathrm{d}\, x - (y + x^2) \, \mathrm{d}\, y$

по параболе $y = 2x - x^2$ от точки A(2;0) до точки B(0;0).

Задача 8. Вычислить криволинейный интеграл 2-го рода

 $\int\limits_L (x^2+y+z)\,\mathrm{d}\,x + z^2\,\mathrm{d}\,y + (x+y^2)\,\mathrm{d}\,z$ по прямой от точки A(2;1;0) до точки B(4;3;1).

Задача 9. Вычислить криволинейный интеграл 2-го рода $\int\limits_L (4-y) \,\mathrm{d}\, x + x \,\mathrm{d}\, y$

по циклоиде $\begin{cases} x=2(t-\sin t),\\ y=2(1-\cos t), \end{cases}$ от точки $A(4\pi;0)$ до точки B(0;0). Задача 10. Вычислить криволинейный интеграл 2-го рода $\oint x\,\mathrm{d}\,y,$ где L

Задача 10. Вычислить криволинейный интеграл 2-го рода $\oint_L x \, \mathrm{d}\, y$, где L- контур треугольника, ограниченного осями координат и прямой 3x+2y=6, в положительном направлении обхода контура.

Задача 11. Найти работу силы $\overrightarrow{F} = (xy - x^2)\overrightarrow{i} + x\overrightarrow{j}$ при перемещении материальной точки вдоль кривой $y = 2x^2$ из точки A(0;0) в точку B(1;2).

Задача 12. Найти потенциал по его полному дифференциалу:

a) $dU = (3x^2y + 1) dx + (x^3 - 1) dy$; 6) $dU = 2xy dx + (x^2 - 2yz) dy - y^2 dz$.

Задача 13. Вычислить с помощью формулы Грина криволинейный интеграл 2-го рода $\oint (xy+x+y) \,\mathrm{d}\,x + (xy+x-y) \,\mathrm{d}\,y$ в положительном направлении обхода контура.

Задача 14. Вычислить поверхностный интеграл 1-го рода $\iint_{Q} x(y+z) \, \mathrm{d}S$,

где Q — часть цилиндрической поверхности $x=\sqrt{1-y^2},$ отсекаемая плоскостями z=0 и z=2.

Задача 15. Вычислить поверхностный интеграл 2-го рода $\iint_{\sigma} x^2 \,\mathrm{d}\, y \,\mathrm{d}z + z^2 \,\mathrm{d}\, x \,\mathrm{d}\, y, \, \mathrm{где}\, \sigma - \mathrm{часть} \,\mathrm{сферы}\, x^2 + y^2 + z^2 = R^2, \,\mathrm{лежащая} \,\mathrm{в} \,\mathrm{первом}$ октанте $(x \geqslant 0, \, y \geqslant 0, \, z \geqslant 0), \,\mathrm{в} \,\mathrm{направлении} \,\mathrm{внешней} \,\mathrm{нормали}.$

ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

Теоретические упражнения.

- **1.** Верно ли утверждение: циркуляция потенциального поля по окружности равна 0?
- **2.** Верно ли утверждение: циркуляция потенциального поля по любому замкнутому контуру равна 0?
- **3.** Верно ли утверждение: циркуляция соленоидального поля по любому замкнутому контуру равна 0?
- **4.** Верно ли утверждение: циркуляция гармонического поля по любому замкнутому контуру равна 0?
- **5.** Верно ли утверждение: поток потенциального поля через любую замкнутую поверхность равен 0?
- **6.** Верно ли утверждение: поток соленоидального поля через любую замкнутую поверхность равен 0?
- **7.** Верно ли утверждение: поток гармонического поля через любую замкнутую поверхность равен 0?
 - 8. Проверить, что div rot $\overrightarrow{G} = 0$ для любого векторного поля \overrightarrow{G} .
 - 9. Проверить, что rot grad $U = \overrightarrow{0}$ для любой функции U. $3a\partial a u$.
- Задача 1. Проверить, является ли поле $\overrightarrow{F} = (2xy+z)\overrightarrow{i} + (x^2-2y)\overrightarrow{j} + x\overrightarrow{k}$: а) потенциальным; б) соленоидальным.
- Задача 2. Вычислить циркуляцию плоского векторного поля $\overrightarrow{F} = 2(x^2 + y^2)\overrightarrow{i} + (x + y)^2\overrightarrow{j}$ вдоль замкнутого контура L двумя способами: а) непосредственно; б) с помощью формулы Грина. Контур L треугольник с вершинами в точках $A(1;1),\ B(2;2),\ C(1;3);$ направление обхода контура положительное.
- Задача 3. Вычислить поток векторного поля $\overrightarrow{F} = x \overrightarrow{i} 2y \overrightarrow{j} z \overrightarrow{k}$ через замкнутую поверхность $\sigma: z = 1 x^2 y^2, z = 0$, в направлении внешней нормали к поверхности, используя теорему Гаусса-Остроградского.