Mark Petersen

Homework 16

Sections 30 and 31

30. Uncountable Sets

Exercise 30.1. Let $a, b \in \mathbb{R}$ with a < b. Construct a bijection $f : (0, 1) \to (a, b)$, and prove it is a bijection.

Proof: Let f be a function defined as

$$f(x) = a + x \cdot (b - a),$$

and we wish to show that it is a bijection. This is done by proving that it is both injective and surjective.

Injective: We suppose contrapositively that f(m) = f(k) for some $m, k \in (0, 1)$, then

$$f(m) = f(k)$$

$$a + m(b - a) = a + k(b - a)$$

$$mb - ma = kb - ka$$

$$b(m - k) = a(m - k),$$

since a < b, this equality holds only when m - k = 0. Thus, m = k. Therefore, f is injective.

Surjective: We suppose directly that $y \in (a, b)$, and we want to find a $z \in x(0, 1)$ such that f(z) = y. We do this by solving for z as follows

$$y = a + z (b - a)$$
$$y - a = z (b - a)$$
$$\frac{y - a}{b - a} = z,$$

since b-a>y-a>0, we know that $1>\frac{y-a}{b-a}>0$. Plugging in the expression for z into f yields

$$f(z) = a + \frac{y - a}{b - a} (b - a)$$
$$= a + y - a$$
$$= y,$$

thus, f is surjective. Since it is both surjective and injective, we know that f is a bijection.

Exercise 30.2. Prove that the interval [0,1) has continuum cardinality, by creating a bijection $[0,1) \rightarrow (0,1)$.

Proof: We define a piecewise bijection $f:[0,1)\to (0,1)$. Let $S=\{1/\left(n+1\right):n\in\mathbb{Z}\geq0\}\subsetneq[0,1).$ Now define f by the rule

$$f(x) = \begin{cases} x & \text{if } x \notin S \\ 1/(n+2) & \text{if } x = 1/(n+1) \in S \end{cases}.$$

It is easy to see that f is a bijection from $[0,1)-S \to (0,1)-S$ (as it is essentially the identity function on this set). It is also a bijection from $S \to S$

 $(0,1) \cap S$. By pasting together we have a bijection. Thus, [0,1) has continuum cardinality since (0,1) has continuum cardinality.

Exercise 30.3. Prove that the interval [0,1] has continuum cardinality.

Proof: Let $S=(0-\delta,1+\delta)$ and $T=(0+\delta,1-\delta)$ with $\delta\in\mathbb{R}-\{0\}$. Then $T\subseteq[0,1]\subseteq S$. Since S and T are both open intervals in \mathbb{R} , it has been proven that they have continuum cardinality. Since a set cannot have less elements than it's subset, nor can a subset have more elements than the set of which it is a subset, the set [0,1] must have continuum cardinality.

Exercise 30.4. Prove that the irrational numbers are uncountable.

Proof: According to theorem 29.1. If S and T are countable sets, then $S \cup T$ is countable. The contrapositive of this is if $S \cup T$ is uncountable, then S or T is uncountable. The rational numbers $\mathbb R$ is the union of the irrational and rational numbers, i.e. $\mathbb R = \mathbb Q \cup \mathbb I$ where $\mathbb I$ denotes the set of irrational numbers. Since $\mathbb R$ is an uncountable set, either $\mathbb Q$ and/or $\mathbb I$ is an uncountable set. It was already shown that $\mathbb Q$ is a countable set, thus $\mathbb I$ must be an uncountable set.

Exercise 30.5. Prove or disprove: The set \mathbb{C} of complex numbers is uncountable.

Proof: Since $\mathbb{R} \subsetneq \mathbb{C}$, and \mathbb{R} is an uncountable set, then according to theorem 30.6, the set \mathbb{C} is uncountable.

Exercise 30.6. We defined a product of two sets A and B to be the collection of the ordered pairs from A and B.

Let A_1, A_2, A_3, \ldots be sets. Define the product $\prod_{i=1}^{-\infty} A_i = A_1 \times A_2 \times A_3 \times \cdots$ to be the set of ordered sequences

$$\{(a_1, a_2, a_3, \ldots) : a_i \in A_i \text{ for each integer } i \geq 1\}.$$

We showed previously that a finite product of countable sets is countable. Show that the countable product $\prod_{i=1}^{\infty} \{0,1\} = \{0,1\} \times \{0,1\} \times \{0,1\} \times \cdots$ is not countable

Proof: Let $f: \mathbb{N} \to \prod_{i=1}^{\infty} \{0,1\}$ and let

$$\operatorname{dig}(i) = \begin{cases} 0 & \text{if } i = 1\\ 1 & \text{if } i = 0. \end{cases}$$

We will show that f is not surjective. Write f(n) as the ordered tuple (a_1,a_2,a_3,\ldots) where $a_i\in\{0,1\}$, and let $x\in\prod_{i=1}^\infty\{0,1\}$ be written as the ordered tuple (b_1,b_2,b_2,\ldots) where $b_n=\operatorname{dig}(a_n)$. In other words, the nth digit of x is the digit change of the nth digit of f(n). Hence $x\neq f(n)$ for each $n\in\mathbb{N}$. Therefore f is not surjective, as x is not in the image.

31. INJECTIONS AND CARDINALITIES

Exercise 31.1. Answer each of the following true or false problems, proving your answer.

- a) Every uncountable set has the same cardinality as (0,1) *Disproof:* We know that $|\mathbb{R}| = |(0,1)|$. From theorem 31.5 we know that $|\mathbb{R}| < |\mathcal{P}(\mathbb{R})|$. This shows that the uncountable set $\mathcal{P}(\mathbb{R})$ has a larger cardinality than (0,1).
- b) Let A and B be sets. If $A \subseteq B$, then $|A| \le |B|$. Proof: Let $f: A \to B$ be the identity function. Since $A \subseteq B$, we know that f is either surjective (if A = B) or nor surjective if $A \ne B$. If it is surjective, then |A| = |B|, and if it is injective, then $|A| \le |B|$. In either case, we have that $|A| \le |B|$.
- c) For sets A and B, if $A \subsetneq B$, then |A| < |B|. Disproof: Consider the sets $\mathbb N$ and $\mathbb Z$ that have the relation $\mathbb N \subsetneq \mathbb Z$; however, it has been shown that $|\mathbb N| = |\mathbb Z|$. This example proves that the statement is false.
- d) Given sets A,B, and C, if $A\subseteq B\subseteq C$ and both A and C are countably infinite, then B is countably infinite. Proof: Since B is a subset of C, there exists an injective function $f:B\to C$ that is the identity function, thus $|B|\leq |C|$. Also, since $A\subseteq B$, then there exists an injective function $g:A\to C$ that can be the identity function, thus $|A|\leq |C|$. Hence $|A|\leq |B|\leq |C|$. Which shows that B is countably infinite.
- e) No subsets of \mathbb{R} has smaller cardinality than \mathbb{R} . Disproof: We disprove this statement with a simple example. Consider the empty set $\emptyset \subseteq \mathbb{R}$. Surely $|\emptyset| < |\mathbb{R}|$. Thus the statement is false.
- f) For sets S and T, if |S| < |T| and S is finite, then T is infinite. Disproof: We disprove this statement with a counterexample. Let $S = \emptyset$ and $T = \{0\}$, then |S| < |T|, but T is not infinite. This is a contradiction to the statement, thus the statement is false.
- g) For sets S and T, if |S| < |T| and S is countable, then T is uncountable. Disproof: We disprove this statement with a counterexample. Let $S = \emptyset$ and $T = \{0\}$, then |S| < |T|, S and T are both finite sets and are thus both countable. This is a contradiction to the statement, thus it is false.
- h) For sets S and T, if |S|<|T| and S is countably infinite, then T is uncountable.
 - *Proof:* A countably infinite set has cardinality \aleph_0 , the next largest cardinality is \aleph_1 which pertains to a set that is uncountable. Since |S| < |T|, then T must be uncountable since $|T| \ge \aleph_1$.
- i) For any set S, there exists another set T such that |S| < |T|. Proof: We assume directly that S is a set, then according to theorem 31.5, $|S| < |\mathcal{P}(S)|$. By letting $T = \mathcal{P}(S)$, we have shown that there exists another set T such that |S| < |T|.

Exercise 31.2. Let $S=\{a,b,c,d,e\}$ and let $g:S\to \mathcal{P}(S)$ be defined by the rule $g(a)=\{b,d\}, g(b)=\{a,c,e\}, g(c)=\{a,c,d,e\}, g(d)=\emptyset, g(e)=\{e\}.$ List the elements of the barber set $B=\{s\in S:s\not\in g(s)\}$. Why is it not in the image of g?

 $B = \{a, b, d\}.$

Proof: We suppose by contradiction that $B = \{s \in S \ s \notin g(s)\}$ and that B = g(x) for some $x \in S$. Then there are two cases:

Case 1. Let $x \in B$, this can't be the case by the definition of B.

Case 2. Let $x \notin B$, well then $x \in B$ according to the definition of B.

Since both cases lead to a contradiction, the statement must be false. Thus B can never be in the image of g.

Exercise 31.3. Find a set with cardinality bigger than that of \mathbb{R} . Then find a set with cardinality bigger than that.

The power sets $\mathcal{P}(\mathbb{R})$ and $\mathcal{P}(\mathcal{P}(\mathbb{R}))$.

Exercise 31.4. Theorem 27.5 says that for finite sets A and B, if |A| = |B| and $f: A \to B$ is a function, then f is injective if and only if f is surjective. Prove that this fails for infinite sets, by proving the following.

a) Find and infinite set S and a function $f:S\to S$ that is injective but not surjective.

Let $S = \mathbb{Z}$ and consider the piecewise function

$$f(x) = \begin{cases} 2x & \text{if } x \ge 0\\ 2(-x) + 1 & \text{if } x < 0 \end{cases}$$

which is injective but not surjective. (The problem doesn't say that I have to prove it)

b) Find an infinite set S and a function $g:S\to S$ that is surjective but not injective.

Let $S = \mathbb{Z}$ and consider the piecewise function

$$g(x) = \begin{cases} x - 1 & \text{if } x \ge 0 \\ x & \text{if } x < 0 \end{cases}$$

which is surjective and not injective.

Exercise 31.5. Let A and B be sets with $f:A\to B$ a bijection. Define a new map $g:\mathcal{P}(A)\to\mathcal{P}(B)$ by the rule $g(S)=\{f(s):s\in S\}$, where $S\subseteq A$ is an arbitrary element of $\mathcal{P}(A)$. Prove that g is a bijection. Conclude that if |A|=|B| then $|\mathcal{P}(A)|=|\mathcal{P}(B)|$.

Proof: To show that the function g is a bijection, we must show that it is injective and surjective.

Injective: We suppose contrapositively that g(M) = g(N) for some $M, N \in \mathcal{P}(A)$, then

$$g\left(M\right)=g\left(N\right)$$

$$\left\{ f\left(m\right)\,:\,m\in M\right\} =\left\{ f\left(n\right)\,:\,n\in N\right\} ,$$

since the function f is a bijection, f(m) = f(n) only if m = n. Thus, for g(M) = g(N), M must equal N. Therefore, g is injective.

Surjective: Let $X \in \mathcal{P}(B)$, then $X \subseteq B$ and there exists a corresponding $Y \subseteq A$ such that f(A) = B since f is bijective. Thus $g(Y) = \{f(y) : y \in Y\} = B$. Therefore, g is surjective.

Since g is both surjective and injective, then it is bijective. And because there is a bijection from $\mathcal{P}(A) \to \mathcal{P}(B)$ we see that if |A| = |B| then $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.

Example 31.6. Define a function $f : \mathbb{R} \to \mathcal{P}(\mathbb{Q})$ by the rule

$$f(x) = \{ q \in \mathbb{O} : q < x \}.$$

Prove that f in injective.

Proof: We suppose contrapositively that $f\left(m\right)=f\left(n\right)$ for some $m,n\in\mathbb{R}$, then

$$f\left(m\right) = f\left(n\right)$$

$$\left\{q \in \mathbb{Q} \, : \, q \leq m\right\} = \left\{q \in \mathbb{Q} \, : \, q \leq n\right\},$$

Because there is a rational number between any two real numbers x < y, and the two sets contain all of the same elements, m = n. Therefore f is injective.

Since f is injective, $|\mathbb{R}| \leq \mathcal{P}(\mathbb{Q})$. We know that $|\mathbb{Q}| = |\mathbb{N}|$. Using the result from the previous exercise, we get that $|\mathcal{P}(\mathbb{Q})| = |\mathcal{P}(\mathbb{N})|$. Therefore $|\mathbb{R}| \leq |\mathcal{P}(\mathbb{N})|$.

Example 31.7. Let A and B be nonempty sets. Prove that there exists an injection $f: A \to B$ if and only if there exists a surjection $g: B \to A$.

Proof: Since the statement is biconditional, we must show both ways.

 (\Longrightarrow) : We suppose directly that $f:A\to B$ is an injection. Then $|A|\le |B|$. Since the cardinality of B is greater or equal to the cardinality of A, then there exists a function $g:B\to A$ that is surjective. The function g can be a piecewise function that includes \hat{f}^{-1} .

 (\longleftarrow) : We suppose directly that $g:B\to A$ is surjective. Then for all $a\in A$, there exists a $b\in B$ such that g(b)=a. We can then define a function $f:A\to B$ by the rule that f(a) =one of the elements which mapped to a. And f would be an injective map.

Since both implications are true, the biconditional statement is true.