

NNSE 784 Advanced Analytics Methods

Instructor: F Doyle (CESTM L210)

MW 4:30 – 5:50, NFN 203

Slide Set #18 K-Nearest Neighbors

Lecture Outline

- Data Cleaning
- K Nearest Neighbors Classifier
- Jupyter notebook example

Data Cleaning

- Issues:
 - Irrelevant Columns
 - These can be fully dropped or filtered out
 - Missing or Invalid Values
 - Strategies for missing/invalid values:
 - Delete rows with missing/invalid values
 - Impute the missing data
 - E.g., replace with a mean value for the column or for a subgroup of the column associated with a particular row
 - Use a classification or regression model to predict missing values

Simple Example for Cleaning

```
import pandas as pd
import numpy as np
```

	SEX	neart_rate	aye	DIIII
0	F	0	62	26
1	М	82	51	27
2	М	75	28	32
3	М	0	43	31
4	F	66	17	25
5	М	69	30	0
6	М	0	70	33
7	М	58	21	28
8	М	73	21	27
9	М	90	60	0

sex heart rate age bmi

Occurrences of Invalid Values

We would retain 70% and 80% of our data respectively if we filtered on only one of the features in question.

If we filter on the two combined, we lose 50% of our entries.

If we are training a model using only one or the other of these features as a predictor, we do not need to remove entries

```
df['heart_rate'].value_counts()[0]
3
df['bmi'].value counts()[0]
2
mask = ((df['heart_rate'] > 0) & (df['bmi']>0))
mask
     False
      True
     True
     False
     True
     False
     False
     True
     True
     False
dtype: bool
mask.value counts()
False
True
Name: count, dtype: int64
```

Fully Filtered Dataframe

```
df2 = df[mask]
df2
   sex heart_rate age bmi
     Μ
              82
                       27
     Μ
                  28
    F
              66
                       25
     Μ
              58
                       28
     Μ
              73
                       27
```

K - Nearest Neighbors

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	2

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1.	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1.	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1.	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

What is KNN?

- A method for classifying cases based there on similarity to other cases
- Cases that are near each other are said to be "neighbors"
- Based on similar cases with same class labels are near each other

The K-Nearest Neighbors Algorithm

- 1. Pick a value for K
- 2. Calculate the distance of unknown case from all cases
- 3. Select the K-observations in the training data that are "nearest" to the unknown data point
- 4. Predict the response ("category"/"class") of the unknown data point using the most common response value from the K-nearest neighbors

Calculating Distance in 1-Dimensional Space

Euclidean Distance

Customer 1

Age

34

Customer 2

Age

30

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

Dis
$$(x_1, x_2) = \sqrt{(34 - 30)^2} = 4$$

Same for Multidimensional Space

Customer 1							
Age	Income	Education					
34	190	3					

Customer 2							
Age	Income	Education					
30	200	8					

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

$$= \sqrt{(34-30)^2+(190-200)^2+(3-8)^2} = 11.87$$

Picking Value of K

• K = 1 class 1

Overfit

• K =1 class 1

Overfit vs Over Generalized

• K =1 class 1

A very high value such K = 20 would also be bad as it would over generalize the model.

What is the Best Value of K?

