

2017-2018 Midsemester Examination Period
FACULTY OF SCIENCE AND ENGINEERING
SCHOOL OF COMPUTING, MATHEMATICS & DIGITAL TECHNOLOGY
COMPUTING AND DIGITAL TECHNOLOGY POSTGRADUATE PROGRAMMES
Level 7

6G7Z1009 : INTRODUCTION TO COMPUTER FORENSICS AND SECURITY

Duration: 3 hours

Instructions to Candidates

Please answer FOUR questions (TWO Questions EACH from both SECTION A and SECTION B)

Each question carries 25 marks.

Students are permitted to use their own calculators subject to the standard Faculty conditions.

Section A Questions (1 - 3):

1. In the quest	context of EnCase digital forensics, please answer the following tions:	
	(a) What is a physical file size?	[2]
	(b) What is the area between the end of a file's logical size and the file's physical size called?	[2]
	(c) How many copies of the FAT does each FAT32 volume maintain its default configuration?	n in [2]
	(d) How does EnCase verify that the evidence file contains an exactopy of the suspect's hard drive?	t [2]
	(e) What is a hardware write blocker and what it's used for?	[4]
	(f) What is UNICODE ?	[3]
	(g) Within the EnCase Environment, what does the File Signatures function do?	[2]
	(h) Give THREE examples of compound files EnCase can open in hierarchical format?	[3]
	(i) Within EnCase evidence file structure; list THREE pieces of information can be found in the acquisition information section?	[3]
	(j) What does EnCase do when a deleted file's starting cluster numbers assigned to another file?	er [2]

2. Figure **Q2.1** shows a basic FAT directory entry structure and its hexadecimal and ASCII data associated from a Windows OS based machine which uses Intel processor, find out the following:

FIGURE Q2.1: Basic FAT directory entry structure and it Hex and ASCII data associated.

Count	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
HEX	E 5	69	64	64	65	6e	31	32	54	58	54	20	18	84	82	70	9F	2D	9F	2D	00	00	F1	71	9F	2D	16	02	80	00	00	00
ASCII	�	i	d	d	е	n	1	2	Т	Χ	Т				•	р	�	-	•	-				q	•	-			•			
	Status								Ext	Extension			IVOSCI VCO	2	Cr	eat	ed D		Date	Accessed	Ollasea	_	V:	<u>∃</u>	en Dala		Cluster	Starting	Fil	e S	Size	e

- (a) What is the file name, including the extension? [2]
- (b) Briefly explain what the starting cluster section contains and how it is used? [4]
- (c) What is the status of the file; and how did you identify it? [2]
- (d) What is the logical file size and how did you identify it? [5]
- (e) When was the file created; including date and time; show your calculations? [12]
- (a) Briefly explain how contiguous allocation differs from linked allocation in terms of performance, disk space management, file sizes management, random access of blocks?
 - (b) What is the 7-bit ASCII; within the 7-bit ASCII table: how many codes addressed; what types of codes represented and what types of characters? [9]
 - (c) Windows XP operating system does produce system data and artefacts that can be used as digital evidence. Describe **FOUR** types of the generated data and artefacts.

[8]

SECTION B Questions (4 - 6):

- 4. (a) Explain what is meant by a public key algorithm and explain the difference between Diffie-Hellman and RSA. [7]
 - b) The acronym CIA (confidentiality, integrity and availability) is often used as a basis of classifying computing and network security services. List three other security services. Explain the meaning of the terms: confidentiality, integrity and availability and the three 'additional' services and discuss 6 situations where each of them would be individually implemented [18]
- 5. a) Explain the block cipher and give an example that uses the block cipher method. [7]
 - b) Describe one-time pad and explain why it is secure [7]
 - c) Use symmetric ciphers to encrypt message "promised" and decrypt message "FOG". [11]

The representation of characters in modulo 26 is described as follows:

The mathematical equations for encryption and decryption can be described as follows:

Encryption $E_{(k)}$: $i ! i + k \mod 26$ Decryption $D_{(k)}$: $i ! i - k \mod 26$

i represents the messages (plaintext or cipher), k represents a symmetric key. In this case k=20

- 6. a) In the context of X.509 PKI, explain what is meant by Certificate Authority (CA) and the basic tasks of CA [4]
 - b) Explain Digital signature and Digital certificate, describes issues with Digital signature. [4]
 - c) Explain Message authentication and Message Authentication Code, and why message authentication is necessary [6]
 - d) With the aid of a diagram, state and explain what Kerberos is, how Kerberos works, and it's pros and cons [11]

END