XXII. Nemzetközi Magyar Matematikaverseny

Győr, 2013. március 14–18.

9. osztály

1. feladat: Határozza meg azokat az m > n > g pozitív egész számokat, amelyekre

$$m^2 - n^2 - g^2 = 2ng + 68.$$

Oláh György (Felvidék)

Megoldás: Egyenletünket átalakítva $m^2 - (n+g)^2 = 68$, illetve: (m+n+g)(m-n-g) = 68adódik. Mivel m+n+g>m-n-g>0, ezért elegendő a $68=68\cdot 1=17\cdot 4=34\cdot 2$ eseteket vizsgálni. (m+n+g)+(m-n-g)=2m, így csak m+n+g=34 és m-n-g=2 lehetséges. Ekkor 2m = 36, m = 18. Továbbá 18 + n + g = 34 és 18 - n - g = 2 miatt n + g = 16.

Ez akkor teljesül, ha

m	n	g
18	9	7
18	10	6
18	11	5
18	12	4
18	13	3
18	14	2
18	15	1

A feladat megoldását a felsorolt 7 számhármas adja, ezek ki is elégítik az eredeti feltételeket.

2. feladat: Kukori és Kotkoda egy tojással teli kosárral érkezett a piacra. Az első vevőjük Kopasznyakú volt, aki megvette a tojások felét és még két tojást. A második vevő Kendermagos volt, aki megvette az első vásárlásból megmaradt tojások felét és még két tojást. A harmadik vásárló, Hápogi megvette a második vásárlás után megmaradt tojások felét és még két tojást. A negyedik vásárló, Csőrike megvette a Hápogi vásárlása után megmaradt tojások felét és még két tojást. Csőrike vásárlása után Kotkoda örömmel állapította meg, hogy kiürült a kosár. Mennyi tojást vitt el Kukori és Kotkoda a kosárban a piacra?

Dr. Péics Hajnalka (Délvidék)

Megoldás: Jelölje x a kosárban levő tojások számát. Kopasznyakú vásárlása után $\frac{x}{2}-2$ tojás maradt a kosárban.

Kendermagos vásárlása után $\frac{1}{2}\left(\frac{x}{2}-2\right)-2=\frac{x}{4}-3$ tojás maradt a kosárban.

Hápogi vásárlása után $\frac{1}{2} \left(\frac{x}{4} - 3 \right)^2 - 2 = \frac{x}{8} - \frac{7}{2}$ tojás maradt a kosárban. Csőrike vásárlása után $\frac{1}{2} \left(\frac{x}{7} - \frac{7}{2} \right) - 2 = \frac{x}{16} - \frac{15}{4}$ tojás maradt a kosárban, s mivel a kosár kiürült, így az

$$\frac{x}{16} - \frac{15}{4} = 0$$

egyenletnek kell teljesülnie, amelynek megoldása x = 60.

Tehát Kukori és Kotkoda 60 tojást vitt a kosárban a piacra. Valóban, a vásárlások után 60/2 - 2 = 28, aztán 12, 4, 0 tojás maradt a kosárban.

Megjegyzés: A feladat – egyenlet nélkül – visszafelé is megoldható, sőt általánosítható.

3. feladat: Három kör közül mindegyik átmegy a másik kettő középpontján. Mekkora a három kör közös részének a területe?

Pintér Ferenc (Magyarország)

Megoldás: Jelölje a három kör középpontját A, B és C. A feladat feltételéből adódóan az ABC háromszög szabályos.

A keresett területet megkaphatjuk, ha az A, B és C középpontú 60° -os körcikkek területösszegéből (ami együttesen egy félkör területe) levonjuk az ABC szabályos háromszög területének a kétszeresét.

Ha a körök sugara r, akkor a 60°-os körcikk területe hatodrésze a kör területének, azaz $\frac{r^2\pi}{6}$, az r oldalú szabályos háromszög területe $\frac{r^2\sqrt{3}}{4}$, így a keresett terület:

$$3 \cdot \frac{r^2 \pi}{6} - 2 \cdot \frac{r^2 \sqrt{3}}{4} = \frac{r^2}{2} \left(\pi - \sqrt{3} \right).$$

4. feladat: Hányféle módon lehet a 2013-as számot olyan természetes számok összegeként előállítani, az összeadandók sorrendjétől eltekintve, amelyeknek a szorzata is 2013?

Szabó Magda (Délvidék)

Megoldás: Mivel $2013 = 3 \cdot 11 \cdot 61$ így először $2013 = 3 \cdot 11 \cdot 61 = 3 + 11 + 61 + 1 + \dots + 1$, az 1-esek száma 1938, az összeadandók sorrendjétől eltekintünk, ezért ez egy eset.

A második felbontásnál 2013 = $33 \cdot 61 = 33 + 61 + 1 + \ldots + 1$, az 1-esek száma 1919, ez a második eset.

A harmadik felbontásnál 2013 = $183 \cdot 11 = 183 + 11 + 1 + \dots + 1$, az 1-esek száma 1819, ez a harmadik eset.

A negyedik esethez $2013 = 3 \cdot 671 = 671 + 3 + 1 + \ldots + 1$, az 1-esek száma 1339.

A 2013 = 2013 nyilvánvaló előállítást megoldásnak is tekinthetjük, ki is zárhatjuk (megállapodás kérdése). Ettől függően 4 vagy 5-féle előállítási módunk lesz. Mindkét választ elfogadjuk.

5. feladat: Tekintsük az

$$1 \cdot 5^0$$
, $1 \cdot 5^0 + 2 \cdot 5^1$, $1 \cdot 5^0 + 2 \cdot 5^1 + 3 \cdot 5^2$, ..., $1 \cdot 5^0 + 2 \cdot 5^1 + 3 \cdot 5^2 + \ldots + k \cdot 5^{k-1}$

számokat, ahol k tetszőleges pozitív egész szám és vegyük ezen számok utolsó számjegyét, majd alkossunk ezen számjegyekből egy sorozatot. Mi a sorozat 9024. tagja?

Bíró Béla (Erdély)

I. megoldás: Igazoljuk, hogy az (a_n) sorozat 4-es periódusú, azaz $a_{n+4} = a_n$, tetszőleges $n \in \{1, 2, 3, ...\}$ pozitív egész számra.

Egyrészt:

$$1 \cdot 5^0 = 1 \Rightarrow a_1 = 1$$

$$1 + 2 \cdot 5^1 = 11 \Rightarrow a_2 = 1$$

$$1 + 2 \cdot 5^1 + 3 \cdot 5^2 = 86 \Rightarrow a_3 = 6$$

$$1 + 2 \cdot 5^1 + 3 \cdot 5^2 + 4 \cdot 5^3 = 586 \Rightarrow a_4 = 6$$

Másrészt, a periodikussághoz elegendő belátni, hogy az $a_{n+4} - a_n$ számok 0-ra végződnek. Valóban:

$$a_{n+4} - a_n = (n+1)5^n + (n+2)5^{n+1} + (n+3)5^{n+2} + (n+4)5^{n+3} =$$

$$= (n+1)5^n + (n+2) \cdot 5 \cdot 5^n + (n+3) \cdot 25 \cdot 5^n + (n+4) \cdot 125 \cdot 5^n =$$

$$= (156n + 586)5^n = 2 \cdot 5^n (78n + 293),$$

ami osztható 10-el, bármely n pozitív egész szám esetén.

A $9024 = 4 \cdot (2256)$ -ik szám tehát 6.

II. megoldás: Jelöljük a_n -nel az $1 \cdot 5^0 + 2 \cdot 5^1 + \ldots + n \cdot 5^{n-1}$ számot, j_n -nel az utolsó jegyét. Ekkor $a_{n+1} - a_n = (n+1) \cdot 5^n$, ami n páratlan szám esetén egy 0-ra, míg páros esetén egy 5-re végződő szám. Tehát az utolsó jegy a sorozatban vagy megegyezik az előzővel, vagy pedig 5-tel tér el az előzőtől. Ez pedig ismétlődik rendre (hiszen a páros-páratlan számok is ismétlődnek), azaz a páratlan utáni páros indexű elemek megegyeznek, páros utáni páratlan pedig 5-tel tér el. Mivel $j_1 = 1; j_2 = 1; j_3 = 6; j_4 = 6; j_5 = 1...$ tehát az utolsó jegyek négyesével ismétlődnek.

6. feladat: Oldja meg a következő egyenletet a valós számok halmazán:

$$|2x - 4| - x = \{x\}$$

 $(\{x\}$ jelöli az x szám törtrészét, azaz x-nek és a legnagyobb, x-nél nem nagyobb egésznek a ($\{x\}$ jelöli az x szam tortreszet, azaz x-nek es a regueszet, különbségét. Pl.: $\{3,71\}=3,71-3=0,71,$ vagy $\{-2,4\}=-2,4-(-3)=0,6.\}$ $Dr.\ Katz\ Sándor\ (Magyarország)$

Megoldás: Az $\{x\}$ grafikonja 1 meredekségű, alul zárt, felül nyílt szakaszokból áll.

$$|2x-4|-x = \begin{cases} x-4 & \text{ha } x \ge 2\\ -3x+4 & \text{ha } x < 2 \end{cases}$$

 $0 \le \{x\} < 1$, ezért vizsgáljuk, hogy a |2x-4| - x (azaz az x-4 és -3x+4 kifejezések) hol vesznek fel a [0; 1] intervallumba eső értékeket!

Ha $x \le 1$, vagy $x \ge 5$, akkor $|2x-4|-x \ge 1$, és ha 4/3 < x < 4 akkor |2x-4|-x < 0, ezért az egyenlet megoldásait csak az [1;4/3] és a [4;5[intervallumokon kereshetjük .

Az [1;4/3] intervallumon az egyenletünk: -3x+4=x-1. Ennek megoldása x=5/4. Ez az adott intervallumba esik, és kielégíti az egyenletet.

A [4; 5] intervallumon az egyenletünk: x-4=x-4. Ennek megoldása minden olyan x, amely az adott intervallumba esik.

Tehát az egyenlet megoldásai x=5/4 és minden olyan x, amelyre $4 \le x < 5.$