ASAB – Week 3 Intro to Sequence Alignment Motif search

Algorithms for Sequence Analysis in Bioinformatics

Arnau Cordomí arnau.cordomi@esci.upf.edu

Why do we align sequences?

```
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDV
ALTLYYDRYTTSRRLEPIPOLKCVGGTAGCDSYTPKVIOCONRGWDGYDVOWECKTDLDV
ALTLHHDRYTTSRRLDPIPOLKCVGGTAGCDSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLYSDRYTTSRRLDPIPOLKCVGGTAGCEAYTPRVIQCONKGWDGYDVOWECKTDLDI
ALTLYSDRYTTSRRLDPIPOLKCVGGTAGCDAYTPKVVOCONKGWDGYDVOWECKTDLDI
ALTLHYDRYTTSRRLEPIPOLKCVGGTAGCDAYTPKVIOCONKGWDGYDVOWECKTDLDV
ALTLHYNRYTTSRRLDPVPOLKCIGGTAGCNSYTPKVIOCONKGWDGYDVOWECKTDLDI
ALTLHRDRFTTARRTAPIPOLOCLGGSAGCPAHIPEIVOCRNKGWDGFDVOWECKAELDT
VLTLHRGRYTTARRTAAVPOLOCIGGSAGCS-DIPEVVOCYNRGWDGYDVOWOCKADLEN
TITLYADRYTNARRSAPVPOLKCIGGNAGCHAMVPOVVOCHNRGWDGLDVOWECRVDMDN
AITLYADRYTNARRSAPVPOLKCIGGSAGCHTMVPOVVOCHNRGWDGFDVOWECKVDMDN
VLTLYRGRYTTARRSSPVPOLOCIGGSAGCGSFTPEVVOCYNRGSDGIDAOWECKADMDN
VLTLYKGKYTTARRSSAVPOLOCVGGSAGCGSFIPEVVOCKNKGWDGVDAOWECKTDMDN
VLTLYRGLYTTARRSSPVPOLOCVGGSAGCHAFVPEVVOCONKGWDGMDIOWECRTDMDN
TLTLYRGRYTTARRSSPVPOLRCVGGSAGCOAFVPEVVOCONRGWDGVDVOWECKTDMDN
ALTLYKNRYTTARRASPVPOLOCVGGSAGCOAFVPEVVOCONKGWDGVDVOWECRTDMDN
VLTLYKGRYTTARRSSPVLOLOCAGGTAGCGSFVPEVVOCYNRGSDGIDTOWECKADMDN
AITLHKGKMTTGRRVSPTFOLKCVGG-SAKGAFTPKVVOCANOGFDGSDVOWRCDADLPH
AITLNKGKMTTGRRVAPTLOLKCVGG-SAKGAFTPKVVOCSNOGFDGSDVOWRCDADLPH
AITLHKGKMTTGRRVAPALOLKCVGG-SAKGOFSPKVVOCANOGFDGSDVOWRCDADLPH
. : **
                   ** * ** *.
                                  * . **
```

Comparison of biological sequences is the most fundamental tool of Bioinformatics.

- Similar genes/proteins have similar functions
- Similar proteins have similar structures
- Identify evolutionary relationships between genes or proteins
- Classification

Charles Darwin: the Galapagos finches

Anatomy: beak sizes and shapes

- Gene Sequences: DNA, RNA, Proteins
- Structures of proteins, RNA and Genomes
- Genome Sequences: CNV and epigenetics
- Omics phenotypes: Transcriptomes, Proteomes, Metabolomes
- Phenotypes and Behaviors: Big Data

The **central dogma of biology** describes the flow of genetic information within a biological system (Francis Crick in 1957)

Anfinsen's dogma: the protein's sequence determines the native structure

Proteins are molecular machines

Sequence comparison

Myoglobin (MYG, Mg)

Human vs. Chimpanzee

MYG_HUMAN PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
MYG_PANTR PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154

>99% Sequence identity

Sequence comparison (Myoglobins)

Human, Horse, Whale (ORCOR), Zebrafish (DANRE), Tuna (KATPE)

```
sp|P02144|MYG HUMAN
                       MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASE
                                                                                  60
sp|P68082|MYG HORSE
                       MGLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASE
                                                                                  60
sp|P02173|MYG ORCOR
                       MGLSDGEWQLVLNVWGKVEADLAGHGQDILIRLFKGHPETLEKFDKFKHLKTEADMKASE
                                                                                  60
sp | Q6VN46 | MYG DANRE
                       ----MADHDLVLKCWGAVEADYAANGGEVLNRLFKEYPDTLKLFPKFSGIS-QGDLAGSP
                                                                                  55
sp|Q9DGI8|MYG KATPE
                       ----MADLDAVLKCWGAVEADFNTVGGLVLARLFKDHPETQKLFPKFAGIT--GDIAGNA
                                                                                  54
                            *** ****
                                              * * * * * * * * * * * * *
sp|P02144|MYG HUMAN
                       DLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKH
                                                                                  120
sp|P68082|MYG_HORSE
                       DLKKHGTVVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSKH
                                                                                  120
sp|P02173|MYG ORCOR
                       DLKKHGNTVLTALGAILKKKGHHDAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRH
                                                                                  120
sp | Q6VN46 | MYG DANRE
                       AVAAHGATVLKKLGELLKAKGDHAALLKPLANTHANIHKVALNNFRLITEVLVKVMAEKA
                                                                                  115
sp|Q9DGI8|MYG KATPE
                       AVAAHGATVLKKLGELLKAKGNHAAIIKPLANSHAKQHKIPINNFKLITEALAHVLHEKA
                                                                                  114
                        sp|P02144|MYG HUMAN
                       PGDFGADAQGAMNKALELFRKDMASNYKELGFQG
                                                            154
sp|P68082|MYG_HORSE
                       PGDFGADAQGAMTKALELFRNDIAAKYKELGFQG
                                                            154
sp|P02173|MYG ORCOR
                       PAEFGADAQGAMNKALELFRKDIAAKYKELGFHG
                                                            154
sp | Q6VN46 | MYG DANRE
                       --GLDAAGQGALRRVMDAVIGDIDGYYKEIGFAG
                                                            147
sp|Q9DGI8|MYG KATPE
                       --GLDAAGQTALRNVMGIVIADLEANYKELGFTG
                                                            146
                          : * : * *: . *: . *** *
     1: sp|P02144|MYG HUMAN
                                  100.00
                                             88.31
                                                       85.71
                                                                 41.50
                                                                           44.52
     2: sp|P68082|MYG HORSE
                                    88.31
                                            100.00
                                                       88.96
                                                                 40.14
                                                                           43.84
     3: sp|P02173|MYG ORCOR
                                    85.71
                                                                 41.50
                                                                           45.21
                                             88.96
                                                      100.00
     4: sp|Q6VN46|MYG DANRE
                                   41.50
                                             40.14
                                                       41.50
                                                                100.00
                                                                           70.55
     5: sp|Q9DGI8|MYG KATPE
                                    44.52
                                             43.84
                                                       45,21
                                                                 70.55
                                                                          100.00
```


The biochemical properties and cellular functions tend to be preserved

Normally we only see the end of hidden the story!

- Large sequence identity between 2 sequences is telling us that proteins diverged from a common ancestor.
- Homology refers to the similarity between characteristics of organisms due to a common origin from a common ancestor.
- 2 types of homologs: orthologs and paralogs

Orthologous sequences: inferred to be descended from the same ancestral sequence separated by *speciation events*.

Orthologous proteins have the same function.

Paralogs: Descendants from a common ancestor separated by *a duplication event*. Often acquire new molecular functions.

Ex: myoglobin and hemoglobin alpha hemoglobin and beta hemoglobin

Sequence similarities can be low between proteins that share the same structure

Sequence comparison (Globins)

MYG: Myoglobin (human)

HBA: Hemoglobin alpha (human)

LGB2: Leghemoglobin (plant)


```
sp|P02240|LGB2 LUPLU
                         MGALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLK---GTSEVPQN
                                                                                      57
sp|P69905|HBA HUMAN
                         -MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHG-----
                                                                                      52
sp|P02144|MYG HUMAN
                         -MGLSDGEWOLVLNVWGKVEADIPGHGOEVLIRLFKGHPETLEKFDKFKHLKSEDEMK-A
                                                                                      58
                            *: .: * * : . : . : . * : * : . .
sp|P02240|LGB2 LUPLU
                         NPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKGV-ADAHFPVVKEAIL
                                                                                      116
sp|P69905|HBA HUMAN
                         SAQVKGHGKKVADALTNA-----VAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLL
                                                                                      107
sp P02144 MYG HUMAN
                         SEDLKKHGATVLTALGGI-----LKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECII
                                                                                     113
                         . : : * . * :
                                                         :. *.. *. *
sp|P02240|LGB2 LUPLU
                         KTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA----- 154
sp|P69905|HBA HUMAN
                         VTLAAHLPAEFTPAVHAS----LDKFLASVSTVLTSKYR----- 142
sp | P02144 | MYG HUMAN
                         QVLQSKHPGDFGADAQGA----MNKALELFRKDMASNYKELGFQG 154
```

```
1: sp|P02240|LGB2_LUPLU 100.00 17.52 18.18
2: sp|P69905|HBA_HUMAN 17.52 100.00 26.76
3: sp|P02144|MYG HUMAN 18.18 26.76 100.00
```

Structural comparison (Globins)

The money graph (by Cedric Notredame)

By putting amino acids in the same column, you make a hypothesis about their relationships.

A relationship may mean different things

Sequence similarity: amino acids in the same column are those that yield and alignment with maximum similarity.

- Most programs use this criteria because is the easiest.

Evolution: ammino acids related to the same amino acid in the common ancestor of all the sequences are put in the same column.

- Programs do not use it explicitly but respect it.

Structural similarity: amino acids that play the same role in each structure are in the same column.

- Used in structure superposition programs.

Functional similarity: amino acids with the same function are in the same column.

- No program use this criterion, but you may impose it

The alignment problem

10 letters

THEFASTCAT

match score = 1

SCORING SYSTEM

mismatch score = -1

m: number of **m**atches **n**: number of **n**ot matches

score = $m \cdot match$ score +

9

8

10

n · mismatch score

THELASTCAT THELASTRAT THEFASTCAT

matches (m) mismatches (n)

1

score

10

ALGORITHMS FOR SEQUENCE ANALYSIS IN BIOINFORMATICS

Comparing sequences of different length (I)

Comparison requires an alignment

10 letters	
THEFASTCAT	
THEFATCAT	1
THEFATCA T	3
THEFATC AT	5
THEFAT CAT	7
THEFA TCAT	9
THEF ATCAT	7
THE FATCAT	5
TH EFATCAT	3
T HEFATCAT	1
THEFATCAT	1
THEFATCAT	
9 letters ALGORITHMS FOR SEQUENCE	

```
scoring system

match score = 1

mismatch score = -1

gap scrore = 0
```

g: number of gaps

```
score = m · match score +
n · mismatch score +
g · gap score
```

alignments): $L_1 - g + 1 = 10$

Comparing sequences of different length (II)

1o letters			
THEFASTCAT	THEFASTCAT	THEFASTOAT	
AFASTCAT	AFASTCA T	AFASTC A T	
AFASTCA T	AFASTC AT	AFAST CA T	
AFASTC AT	AFAST CAT	AFAS TCA T	
AFAST CAT	AFAS TCAT	AFA STCA T	•••
AFAS TCAT	AFA STCAT	AF ASTCA T	6, 5, 4,
AFA STCAT	AF ASTCAT	A FASTCA T	3, 2, 1
AF ASTCAT	A FASTCAT	AFASTCA T	, ,
A FASTCAT	AFASTCAT	_	
AFASTCAT	8	7	
AFASTCAT L = 10		r of	

ALGORITHMS FOR SEQUENCE ANALYSIS IN BIOINFORMATICS

8 letters

AFASTCAT

number of alignments: $L_1 - g + 1 = 10 - 2 + 1 = 9$

g = 2 (two gaps together)

 $L_1 = 10$

alignments (shortest alignments) $L_1 \cdot (L_1 - 1) / 2 = 45$

Alignments up to $|s_1| + |s_2|$ characters long

$$\begin{pmatrix} L_1 + L_2 \\ L_1 \end{pmatrix} = \frac{(L_1 + L_2)!}{L_1! L_2!}$$

$$L_1 = 10$$

$$L_2 = 9$$

alignments = 92378

THEFASTCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT

THEFATCAT

9 letters

10 letters

Write the possible alignments

 Which alignments are possible between ACTG and TG with a maximum of two gaps? (shortest alignments; L = 4)

2) Which other alignments are possible between ACTG and TG (L = 6)?

Motif search

CAT

CAT

BACHELOR'S DEGREE IN

THEFASTCAT

ΔΤ

CAT

TCAT

STCAT

ASTCAT

FASTCAT

AFASTCAT

AFASTCAT

8 letters

AFASTCAT

AFASTCA

AFASTC

AFAST

AFAS

AFA

FAST

FAST FAST

FAST FAST

CAT CAT **FAST** CAT **FAST** CAT

CAT CAT

- String S - Substring of S: a string occurring inside S

FAST

CAT 4 letters

3 letters

 $L_1 - L_2 + 1 = 8$ $L_1 - L_2 + 1 + = 7$

THEFATCAT

T HEFATCAT **THEFATCAT**

9 letters

10 letters

THEFASTCAT

THEFATCA T

THEFATC AT

THEFAT CAT

THEFA TCAT

THEF ATCAT

THEFATCAT

THE FATCAT TH EFATCAT

ΑF

Why motif search?

Table 7-1 Some Gene Regulatory Proteins and the DNA Sequences That They Recognize

	NAME	DNA SEQUENCE RECOGNIZED	
Bacteria	lac repressor	5' AATTGTGAGCGGATAACAATT	
		3' TTAACACTCGCCTATTGTTAA	Ser , III
	CAP	TGTGAGTTAGCTCACT	Arg Arg
		ACACTCAATCGAGTGA	Asn'iii
	lambda repressor	TATCACCGCCAGAGGTA	C
		ATAGTGGCGGTCTCCAT	
l'east	Gal4	CGGAGGACTGTCCTCCG	Arg
		GCCTCCTGACAGGAGGC	, and the state of
	Mata2	CATGTAATT	(A) (B)
		GTACATTAA	Figure 7.46. A house density hound to its energific DNA con
	Gcn4	ATGACTCAT	Figure 7-16 - A homeodomain bound to its specific DNA seq
		TACTGAGTA	COOH DNA-binding
Drosophila	Kruppel	AACGGGTTAA	COOH protein
		TTGCCCAATT	Arg 5 G C CH
	Bicoid	GGGATTAGA	Am
		CCCTAATCT	
Mammals	Sp1	GGGCGG	His T A
		CCCGCC	Arg G C
	Oct-1 Pou domain	ATGCAAAT	all G C
		TACGTTTA	
	GATA-1	TGATAG	Arg C G
		ACTATC (A)	(B) Arg G C
	MyoD	CAAATG	NH ₂ major groove
		GTTTAC	N-H
	<u>p53</u>	GGGCAAGTCT Fig	e 7-18 - DNA binding by a zinc finger protein
		CCCGTTCAGA	(C N

New York: Garland Science; 2002.

ALGORITHMS FOR SEQUENCE ANALYSIS IN BIOINFORMATICS

Figure 7-27 - One of the most common protein-DNA interactions

- Basic Local Alignment Search Tool
- Compare a query protein or nucleotide sequence with a library of sequences,

Google of biological research

First step: locating short words in common between the two sequences

3 letter words

THE FAST CAT

F

Naïve search algorithm

Positions within a string S are referred to with *offsets*

(in Python) leftmost offset = 0

The substring occurs at offset 3

F F fA faS fasT F 0123456789 **FAST FAST**

ALGORITHMS FOR SEQUENCE ANALYSIS IN BIOINFORMATICS

Indexing

FATFASTRATFASTCAT FAST

0	1	2	3	4	5	6	7	8	9	offset		
THEFASTCAT	HEFASTCAT	EFASTCAT	FASTCAT	ASTCAT	STCAT	TCAT	CAT	ΑT	Т			
THEFASTCA	HEFASTCA	EFASTCA	FASTCA	ASTCA	STCA	TCA	CA	Α				
THEFASTC	HEFASTC	EFASTC	FASTC	ASTC	STC	TC	C					
THEFAST	HEFAST	EFAST	FAST	AST	ST	T						
THEFAS	HEFAS	EFAS	FAS	AS	S							
THEFA	HEFA	EFA	FA	Α				all substrings within				
THEF	HEF	EF	F							CTCAT		
THE	HE	E						IН	EFA:	STCAT		
TH	Н											
Т												

all substrings in alphabetic order (and offset)

Α	4	8	E	2	F	3	Н	1	S	5		TH	0
AS	4		EF	2	FA	3	HE	1	ST	5		THE	0
AST	4		EFA	2	FAS	3	HEF	1	STC	5		THEF	0
ASTC	4		EFAS	2	FAST	3	HEFA	1	STCA	5		THEFA	0
ASTCA	4		EFAST	2	FASTC	3	HEFAS	1	STCAT	5		THEFAS	0
ASTCAT	4		EFASTC	2	FASTCA	3	HEFAST	1	Т	0 6	9	THEFAST	0
AT	8		EFASTCA	2	FASTCAT	3	HEFASTC	1	TC	6		THEFASTC	0
C	7		EFASTCAT	2			HEFASTCA	1	TCA	6		THEFASTCA	0
CA	7						HEFASTCAT	1	TCAT	6		THEFASTCAT	0
CAT	7												

Dot plot

AGCTATTC vs. AATTCA

	Α	G	С	Т	Α	Т	Т	С
Α								
Α	•				9			
Т				•			•	
Т				•		•	-	
С			•					
Α	•				•			

AGCTATTC

Dot-matrix (dot-plot) is one of the simplest (qualitative) ways to compare two sequences

AATTCA

Fig.1. The diagrams obtained from comparisons of human cytochrome c (left margin of each diagram, N terminus at top) and the cytochromes c of monkey, fish and Rhodospirillum (upper margin, N termini at left end)

Gibbs and McIntyre 1970 https://febs.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1432 1033.1970.tb01046.x

Dot Plots. Analysis

- For few nucleotides the noise is low
- For many nucleotides, there is a lot of noise

Threshold = 4 (allow 4 matches in a window)

Dot Plots. Visualization

- With the window size, we can reduce the noise
- With the treshold (= stringency), we can tolerate some changes for a certain window size

Constructing the alignment

- Matches are represented by diagonal paths
- Indels are represented by horizontal or vertical paths

ALGORITHMS FOR SEQUENCE ANALYSIS IN BIOINFORMATICS

How can we compare two sequences?

- Word methods
- Dot-matrix
- Evolutionary alignments (dynamic programming)

PRACTICUM

- Implement algorithms
- Learn the foundations of some bioinformatics tools

Practice programming

Getting the solution of proposed exercises is not important

What matters is the process!!!

Biopython: a collection of free Python tools for computational biology

https://biopython.org/

- Access UniProt, NCBI resources
- Parse or run Clustal, Blast ...
- Tools for sequence manipulation

• • •

SeqIO module to read/write sequence files

Installation

Conda: \$ conda install biopython

Ubuntu: \$ sudo apt-get install python-biopython

Week 3 help notebook

Open Jupyter Lab or Jupyter Notebook

Run/complete: help_week3.ipynb

Topics:

- Read and write sequences (with and without Biopython)
- Exact matching (many finds)

PROGRAMMING EXERCICES ASAB

Requirements are indicated in parenthesis

Week 3

Scoring alignments

score seqs

score seqs gap

move_gaps

move gaps scores

move_seq2

move seq2 scores

Finding motifs

naive_match

many_finds

indexing

Dot matrix

<u>dot_matrix_basic</u>

https://acordomi.github.io/BDBI_ASAB/

Each exercise comes with tests (doctests)

- \$ python -m doctest score_seqs.py
- \$ python -m doctest -v score_seqs.py