IET Colloquium on Antennas, Wireless and Electromagnetics 26 May 2015, The IET Austin Court, Birmingham, UK

ESPAR Antennas – A New Beamforming Scheme and the Applications

Mathini Sellathurai and Rongrong Qian,

Signal Processing for Intelligent Systems and Communications Group (SPICOM),
Institute of Sensors, Signals and Systems (ISSS)
Heriot-Watt University
Edinburgh EH14 4AS

Email: M.Sellathurai@hw.ac.uk

Introduction

- Key trends to the next-generation networks: Smart antennas
- A smart antenna can be employed in a variety of ways: beamforming, direction finding, MIMO [1], etc.
 - Challenges in the employment of multi-active antennas:
 - RF hardware complexity and cost,
 - power consumption,
 - antenna system efficiency,
 - inter-chain interference,
 - spatial correlation.

Parasitic Antennas

- Parasitic antennas use non-driven (parasitic) elements to achieve beamforming, where a parasitic element is connected to a simple control circuit rather than an expensive RF chain.
- The first parasitic antenna is the Yagi-Uda antenna [2]
 - Beamforming is achieved by changing the dimension $(I_1,I_2,I_3 \text{ and } d_1,d_2)$. Director d_2
 - Extensively used for TV reception.

Parasitic Antennas

- Harrington's "reactively controlled array" [3]
 - A single dipole is surrounded by 6 parasitic elements each of which is loaded to reactive loads.
 - $\begin{bmatrix} & & & & & & \\ & & & & & & \\ X \end{bmatrix}^3 & & & & & \\ X \end{bmatrix}^2 & & & & & \\ X \end{bmatrix}^4 & & & & & \\ X \end{bmatrix}^5 & & & & & \\ X \end{bmatrix}^5$

- Switched parasitic antenna [4]
 - A parasitic element becomes a reflector when shorted to the ground plane by the electronic switch, when not shorted, it has little effect on the beampattern response.

ESPAR Antennas

ESPAR antenna is developed by Ohira et al. (2000) [5], which is a modified version of the Harrington Array in the sense that monopoles are mounted on a ground plane.

Classical 7-element ESPAR with a $\lambda/4$ spacing

Reactance load control circuit to a parasitic element

ESPAR Antennas

Multi-active antennas vs. ESPARs

Multi-active antennas	ESPARs
X M RF chainsX Large inter-element spacing >λ/2	✓ 1 RF chain✓ Small inter-element spacing≤λ/4
 X Mutual coupling is a problem ✓ Less frequency dependent 	 ✓ Mutual coupling is required X Characteristics change with frequency
✓ Wideband operation possible	X Only narrowband operation
✓ Concurrent signal sampling	X Sequential signal sampling

Applications: Adaptive beamforming

The ESPAR produces a beampattern:

$$B(\theta) = \mathbf{w}^T \mathbf{a}(\theta),$$

where $\mathbf{a}(\theta)$ is the steering vector. $\mathbf{w} \in \mathbb{C}^{(M+1)}$ is the equivalent weight vector given by

$$\mathbf{w} = (\mathbf{Z} + \mathbf{X})^{-1} \mathbf{u}_0,$$

and the loading matrix is

$$\mathbf{X} = diag([Z_s \quad jx_1 \quad \cdots \quad jx_M]).$$

■ ESPAR's beampattern $B(\theta)$ is a function of the reactance loads $jx_m, m = \{1, \cdots, M\}$.

Applications: Adaptive Beamforming

- Modify the MVDR algorithm as an iterative algorithm for ESPARs [6]:
 - The estimate correlation matrix is obtained by measuring the signal via different beampatterns;
 - 2) Reformulate the MVDR optimization problem as a convex problem and introduce a projector for feasible reactance loads.

$$\min_{t_1,\mu_2,\tilde{\boldsymbol{v}}} \quad \beta_1\mu_1 + \beta_2\mu_2,$$

$$s.t. \quad \|\hat{\boldsymbol{U}}\tilde{\boldsymbol{v}}\|^2 \leq \mu_1, \longrightarrow \text{Minimize output power}$$

$$|\tilde{\boldsymbol{v}}^H\boldsymbol{a}_{rd}(\theta_d) - 1|^2 \leq \mu_2, \longrightarrow \text{Distortionless response}$$

$$\|\bar{\boldsymbol{Z}}_L(\tilde{\boldsymbol{v}}^H\boldsymbol{W}^T)^T\|^2 \leq \epsilon, \longrightarrow \text{Stay close to feasible set}$$

$$[\boldsymbol{Z}(\tilde{\boldsymbol{v}}^H\boldsymbol{W}^T)^T](1) + Z_s[(\tilde{\boldsymbol{v}}^H\boldsymbol{W}^T)^T](1) = 1. \longrightarrow \text{Constraint to Zs}$$

Applications: Adaptive Beamforming

Applications: Blind Interference Alignment

- Blind interference alignment (BIA) [7] is a promising technique providing an optimal DoF in the multi-user MISO BC without knowledge of CSIT (channel state information at the transmitter).
- The key to BIA is antenna mode switching (e.g., frequency, polarization and beampattern) at the receiving end.
- Compared to frequency switching and polarization switching, the beampattern switching is an easier operating manner. Thus, the ESPAR antenna can be employed as the solution to beampattern switching for BIA [8-10].

Applications: Blind Interference Alignment

Antenna switching patterns

Applications: Blind Interference Alignment

- Three ESPAR beamforming methods for BIA:
- Random beamforming 2) Sector beam selection
- 3) SVD beamforming

Applications: DoA Estimation

- Compressive sensing based DoA estimation is with high resolution, reduced sampling numbers, robust to noise and correlated signals [11].
- Overcomplete dictionary: discretize the azimuth plane $\tilde{\theta} = [\tilde{\theta}_1, \tilde{\theta}_2, \cdots, \tilde{\theta}_{N_{\theta}}], N_{\theta} \gg P$ (the number of source signals), therefore the overcomplete dictionary is $\tilde{A} = [a(\tilde{\theta}_1), a(\tilde{\theta}_2), \cdots, a(\tilde{\theta}_{N_{\theta}})]$.
- **Projection matrix**: introduce a projection matrix $W = [w_1, w_2, \cdots, w_M]^T$ to project the spare signal into measures in beamspace.

Sparse representation problem:

$$y = r + e = W\tilde{A}\tilde{s} + e,$$

Applications: DoA Estimation

Conclusions

- ESPAR antennas, using a single RF chain, is suitable for applications of the small terminals.
- A fast adaptive beamforming is modified from the MVDR algorithm.
- ESPAR antennas can be employed as the beam switching solution for the implementation of BIA. Moreover, the directional beampattern helps to improve the BIA performance by enhancing receive SNR.
- The compressive sensing has been studied for the DoA estimation with the ESPAR antenna, and showed the superiority to the MUSIC algorithm.

Acknowledgements

The authors would like to thank the EPSRC Project EP/M014126/1, Large Scale Antenna Systems Made Practical: Advanced Signal Processing for Compact Deployments [LSAS-SP].

References

- [1] M. Sellathurai and S. Haykin, "Space-time layered information processing for wireless communications," *John Wiley & Sons*, volume 30, 2009.
- [2] H. Yagi, "Beam transmission of ultra short waves," *IEEE Proc. The Institute of Radio Engineers,* vol. 16, no. 6, pages 715 740, Aug., 1928.
- [3] F. Harrington, "Reactively controlled directive antennas," *IEEE Trans. Antennas Propag.*, vol. 26, no. 3, pages 390 395, May 1978.
- [4] D. Thiel and S. Smith, "Switched parasitic antennas for cellular communications," *Artech House*, 2001.

References

- [5] T. Ohira and K. Gyoda, "Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming," In Proc. IEEE International Conference on Phased Array Systems and Technology, pages 101 104, 200.
- [6] R. Qian, M. Sellathurai and D. Wilcox, "A study on MVDR beamforming applied to an ESPAR antenna," *IEEE Signal Process. Lett.*, vol. 22, no. 1, pages 67 70, Jan. 2015.
- [7] T. Gou, C. Wang, S. Jafar, "Aiming perfectly in the dark Blind interference alignment through staggered antenna switching," IEEE Trans. Signal Process., vol. 59, no. 6, pages 2734 2744, Mar., 2011.

References

- [8] R. Qian, M. Sellathurai and D. Wilcox, "On the design of blind interference alignment using ESPAR antenna," In *Proc. IEEE CHINACOM*, pages 866 870, 2012.
- [9] R. Qian, M. Sellathurai, "Performance of the blind interference alignment using ESPAR antenna," In *Proc. IEEE ICC*, pages 4885 4889, 2013.
- [10] R. Qian, M. Sellathurai, "Design of ESPAR based blind interference alignment for cellular systems," In *Proc. IEEE WCNC*, pages 3083 3087, 2013.
- [11] R. Qian, M. Sellathurai, J. Chambers, "Direction-of-arrival estimation with single-RF ESPAR antennas via sparse signal reconstruction," *IEEE SPAWC*, Stockholm, June, 2015.