

Deep Learning

1 활성화 함수의 개념을 이해하고 종류를 알 수 있다.

2 오차역전파의 개념을 이해할 수 있다.

3 다양한 경사하강법 종류를 알 수 있다.

4 인공신경망이 학습하는 과정에 대해 이해할 수 있다.

아침에 구름이 없고 바람이 약하면, 맑은 날이 될 확률이 높다

아침에 구름이 많고 바람이 강하면, 비가 올 확률이 높다

구름	바람	날씨
0.8	0.6	**
0.6	0.9	44
0.1	0.2	***
0.3	0.1	***
0.6	0.6	**
0.4	0.3	***
0.1	0.2	***

x1	x2	у
0.8	0.6	1
0.6	0.9	1
0.1	0.2	0
0.3	0.1	0
0.6	0.6	1
0.4	0.3	0
0.1	0.2	0

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

x1	x2
8.0	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

y	\hat{y}
1	0
1	
0	
0	
1	
0	
0	

х1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	ŷ
1	0
1	
0	
0	
1	
0	
0	

W_i	:=	W_i	$+\alpha$	*	(y -	$-\hat{y}$	$* x_i$
L		L					L

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	\hat{y}
1	0
1	
0	
0	
1	
0	
0	

$$w_i \coloneqq w_i + \alpha * (y - \hat{y}) * x_i$$

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	\hat{y}
1	0
1	
0	
0	
1	
0	
0	

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

\hat{y}
0
0

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

У	\hat{y}
1	0
1	0
0	
0	
1	
0	
0	

$$w_i \coloneqq w_i + \alpha * (y - \hat{y}) * x_i$$

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	\hat{y}
1	0
1	0
0	
0	
1	
0	
0	

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

y	$\hat{\mathcal{Y}}$
1	0
1	0
0	0
0	
1	
0	
0	

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	\hat{y}
1	0
-	
1	0
0	0
0	
1	
0	
0	

Gradient Descent Algorithm(경사하강법)

출처: https://www.slideshare.net/yongho/ss-79607172

- 신경망은 한 계층의 신호를 다음 계층으로 그대로 전달하지 않고 활성 화 함수를 거친 후에 전달함
- 사람의 신경망 속 뉴런들도 모든 자극을 다 다음 뉴런으로 전달하는 것
 은 아니고 역치 이상의 자극만 전달하게 됨
- 활성화 함수는 이런 부분까지 사람과 유사하게 구현하여 사람처럼 사고하고 행동하는 인공지능 기술을 실현하기 위해 도입됨
- 또한 선형모델을 기반으로 하는 딥러닝 신경망에서 분류 문제를 해결 하기 위해서 비선형 활성화 함수가 필요함

Step function(계단함수)

x1	x2
8.0	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

$$w_i \coloneqq w_i + \alpha * (y - \hat{y}) * x_i$$

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	\hat{y}
1	0
1	
0	
0	
1	
0	
0	

$$w_i \coloneqq w_i + \alpha * (y - \hat{y}) * x_i$$

x1	x2
8.0	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

у	\hat{y}
1	0
1	
0	
0	
1	
0	
0	

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

퍼셉트론 학습

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

중간층 활성화 함수로 선형함수(linear)를 사용하면 다층 구조의 효과를 살릴 수 없다.

선형함수(linear, 항등함수) 수식은 h(x) = x

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

x1	x2
0.8	0.6
0.6	0.9
0.1	0.2
0.3	0.1
0.6	0.6
0.4	0.3
0.1	0.2

ŷ

Sigmoid function (시그모이드함수)

Sigmoid function (시그모이드 함수)

Back Propagation (오차 역전파 알고리즘)

딥러닝 역사

딥러닝 역사

David Rumelhart 수리심리학자

Geoffrey Hinton 실험심리학자 컴퓨터과학자

Ronald J. Williams 컴퓨터과학자

출처

https://www.psychologicalscience.org/observer/david-rumelhart https://www.frontiersofknowledgeawards-fbbva.es/galardonados/geoffrey-hinton-2/https://www.ccs.neu.edu/home/rjw/

출처

https://paperswithcode.com/dataset/mnist

오차역전파 (Back Propagation)_수치 미분의 한계

연결 가중치의 개수: 784 * 100 + 100 * 10 = 79,400

편향 개수 : 100 + 10 = 110

한 개의 이미지 손실 계산 : 79,400번의 연산량 (가중치만 고려)

한 개의 파라미터를 업데이트 하기 위한 연산량 : 4,446,400,000 = 79,400 * 56,000 Train size = 80%

모든 파라미터들를 업데이트 하기 위한 각각의 연산량 : 4,446,400,000 * 79,511 = 353,537,710,400,000 (=79,400 + 110 + 1)

3층 신경망 가중치를 한번 바꾸는데 걸리는 시간 : 353,537,710,400,000 / 850,000,000 = 약 415,926 초 = 약 115h

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$
 $E = \frac{1}{N} \sum_{i=1}^{n} (y_1 - \hat{y}_1)^2$

1단계: Forward Propagation

2단계: 오차계산

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

$$y = 1$$

$$0.5 \Rightarrow x_1 = 0.5
w_1 = 0.5
w_2 = 0.3
0.7 \Rightarrow x_2 = 0.3
w_3 = 0.3
w_4 = 0.6
a_1 h_1
w_5 = 0.5
a_3 y_1
w_6 = 0.35$$

$$a_1 = w_1 x_1 + w_3 x_2 = 0.5 * 0.5 + 0.3 * 0.7 = 0.46$$

 $a_2 = w_2 x_1 + w_4 x_2 = 0.3 * 0.5 + 0.6 * 0.7 = 0.57$
 $h_1 = sigmoid(a_1) \approx 0.613$
 $h_2 = sigmoid(a_2) \approx 0.638$
 $a_3 = w_5 h_1 + w_6 h_2 = 0.5 * 0.613 + 0.35 * 0.638 = 0.5298$
 $\hat{y}_1 = sigmoid(a_3) \approx 0.629$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \Rightarrow x_1 = 0.5$$

$$w_1 = 0.5$$

$$w_2 = 0.3$$

$$0.7 \Rightarrow x_2 = 0.3$$

$$w_3 = 0.3$$

$$w_4 = 0.6$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E = \frac{1}{N} \sum_{i=1}^{n} (y_1 - \hat{y}_1)^2$$

2단계: 오차 계산

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \Rightarrow \begin{array}{c} x_1 \\ w_1 = 0.5 \\ w_2 = 0.3 \end{array} \begin{array}{c} a_1 \\ h_1 \\ w_5 = 0.5 \\ a_3 \\ \hat{y}_1 \end{array} \begin{array}{c} a_2 = 0.57 \\ h_1 \approx 0.613 \\ h_2 \approx 0.638 \\ a_3 = 0.5298 \\ \hat{y}_1 \approx 0.629 \end{array}$$

$$E = \frac{1}{1} \sum_{i=1}^{1} (1 - 0.629)^{2}$$
$$= (1 - 0.629)^{2} \approx 0.1376$$

2단계: 오차 계산

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

Chain rule
$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_5}$$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

체인를 (Chain rule)

Chain rule
$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_5}$$

> 사과의 익는 속도 = 2 * (2 * (1.5 * 레몬의 속도)) 사과의 익는 속도 = 6 * 레몬의 속도 $\frac{d \text{사과}}{d \text{레몬}} = \frac{d \text{사과}}{d \text{오렌지}} * \frac{d \text{오렌지}}{d \text{바나나}} * \frac{d \text{바나나}}{d \text{레몬}}$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \Rightarrow x_1 = 0.5
w_1 = 0.5
w_2 = 0.3
0.7 \Rightarrow x_2 = 0.3
w_3 = 0.3
w_4 = 0.6
a_1 h_1
w_5 = 0.5
a_3 y_1
w_6 = 0.35$$

Chain rule
$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_5}$$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

$$E = \frac{1}{N} \sum_{i=1}^{n} (y_1 - \hat{y}_1)^2$$

$$\mathbf{E} = (y_1 - \hat{y}_1)^2$$

$$\frac{\partial E}{\partial \hat{y}_1} = -2(y_1 - \hat{y}_1)^{2-1}$$

스마트인재개발원 Smart Human Resources Development

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \rightarrow \begin{array}{c} x_1 & w_1 = 0.5 \\ w_2 = 0.3 & a_1 \\ w_2 = 0.3 & a_2 \\ \hline 0.7 \rightarrow \begin{array}{c} x_2 & w_3 = 0.3 \\ \hline w_4 = 0.6 & a_2 \\ \hline \end{array} \begin{array}{c} h_1 & w_5 = 0.5 \\ \hline a_3 & \hat{y}_1 \\ \hline \end{array}$$

Chain rule
$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_5}$$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

$$E = \frac{1}{N} \sum_{i=1}^{n} (y_1 - \hat{y}_1)^2$$

$$\mathbf{E} = (y_1 - \hat{y}_1)^2$$

$$\frac{\partial E}{\partial \hat{y}_1} = -2(1 - 0.629)^1 = -0.742$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

$$y = 1$$

$$0.5 \rightarrow \begin{array}{c} \chi_{1} & w_{1} = 0.5 \\ w_{2} = 0.3 & a_{1} \\ w_{2} = 0.3 & a_{3} \\ \hline 0.7 \rightarrow \begin{array}{c} \chi_{2} & w_{3} = 0.5 \\ \hline w_{4} = 0.6 & a_{2} \\ \hline w_{4} = 0.6 & a_{2} \\ \hline \end{array}$$

Chain rule
$$\frac{\partial E}{\partial w_5} = -0.742 * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_5}$$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

$$E = \frac{1}{N} \sum_{i=1}^{N} (y_1 - \hat{y}_1)^2$$

$$\mathbf{E} = (y_1 - \hat{y}_1)^2$$

$$\frac{\partial E}{\partial \hat{y}_1} = -2(1 - 0.629)^1 = -0.742$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

$$y = 1$$

$$0.5 \Rightarrow x_1 = 0.5
w_1 = 0.5
a_1 h_1
w_5 = 0.5
a_3 y_1
0.7 \Rightarrow x_2 = 0.3
a_4 h_2 w_6 = 0.35$$

Chain rule
$$\frac{\partial E}{\partial w_5} = -0.742 * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_5}$$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$\hat{y} = \frac{1}{1 + e^{-a}}$$

$$\frac{\partial \hat{y}}{\partial a} = \hat{y}(1 - \hat{y}) = 0.629 * 0.371$$
$$\approx 0.233$$

$$\hat{y}_1 = sigmoid(a_3) \approx 0.629$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

$$y = 1$$

$$0.5 \rightarrow \begin{array}{c} x_1 & w_1 = 0.5 \\ w_2 = 0.3 & a_1 \\ w_3 = 0.3 & a_2 \\ w_4 = 0.6 & a_2 \\ w_6 = 0.35 \end{array}$$

Chain rule
$$\frac{\partial E}{\partial w_5} = -0.742 * 0.233 * \frac{\partial a_3}{\partial w_5}$$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

$$a_3 = h_1 w_5 + h_2 w_6$$

$$\frac{\partial a_3}{\partial w_5} = h_1 \approx 0.613$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

Chain rule
$$\frac{\partial E}{\partial w_5} = -0.742*0.233*0.613$$

$$\approx -0.1059$$

$$0.5 \rightarrow \begin{array}{c} \chi_{1} & w_{1} = 0.5 \\ w_{2} = 0.3 & h_{1} \\ w_{5} = 0.5 \\ w_{3} = 0.3 & a_{3} \\ \hline w_{4} = 0.6 & a_{2} \\ \hline w_{4} = 0.6 & a_{2} \\ \hline \end{array}$$

$$0.7 \rightarrow \begin{array}{c} \chi_{2} & w_{3} = 0.5 \\ w_{4} = 0.6 & a_{2} \\ \hline \end{array}$$

$$a_1 = 0.46$$
 $a_2 = 0.57$
 $h_1 \approx 0.613$
 $h_2 \approx 0.638$
 $a_3 = 0.5298$
 $\hat{y}_1 \approx 0.629$

$$w_5 \coloneqq w_5 - \alpha \frac{\partial E}{\partial w_5}$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

Chain rule
$$\frac{\partial E}{\partial w_5} = -0.742*0.233*0.613$$

$$\approx -0.1059$$

$$0.5 \Rightarrow \begin{array}{c} x_1 & w_1 = 0.5 \\ w_2 = 0.3 \end{array} \qquad \begin{array}{c} a_1 & b_1 \\ w_2 = 0.3 \end{array} \qquad \begin{array}{c} a_1 = 0.46 \\ a_2 = 0.57 \end{array} \qquad \begin{array}{c} a_1 = 0.46 \\ a_2 = 0.57 \end{array} \qquad \begin{array}{c} 0.51059 = 0.5 - 0.1(-0.1059) \\ a_1 \approx 0.613 \\ a_2 \approx 0.638 \\ a_3 = 0.5298 \\ \hat{y}_1 \approx 0.629 \end{array}$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \rightarrow \chi_{1} \qquad w_{1} = 0.5$$

$$w_{1} = 0.5$$

$$w_{2} = 0.3$$

$$0.7 \rightarrow \chi_{2} \qquad w_{3} = 0.3$$

$$w_{4} = 0.6$$

$$a_{1} = 0.46$$

$$a_{2} = 0.57$$

$$a_{3} \hat{y}_{1} \qquad h_{1} \approx 0.613$$

$$h_{2} \approx 0.638$$

$$a_{3} = 0.5298$$

$$\hat{y}_{1} \approx 0.629$$

Chain rule
$$\frac{\partial E}{\partial w_6} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial w_6}$$

$$a_1 = 0.46$$

$$a_3 = 0.5298$$

$$E \approx 0.1376$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \rightarrow \begin{array}{c} \chi_{1} & w_{1} = 0.5 \\ w_{2} = 0.3 & a_{1} \\ w_{2} = 0.3 & a_{3} \\ \hline 0.7 \rightarrow \begin{array}{c} \chi_{2} & w_{3} = 0.3 \\ w_{4} = 0.6 & a_{2} \\ \hline \end{array} \quad \begin{array}{c} h_{1} & w_{5} = 0.5105 \\ a_{3} & y_{1} \\ \hline \end{array}$$

Chain rule
$$\frac{\partial E}{\partial w_6} = -0.742 * 0.233 * \frac{\partial a_3}{\partial w_6}$$

$$a_1 = 0.46$$
 $a_2 = 0.57$
 $h_1 \approx 0.613$
 $h_2 \approx 0.638$
 $a_3 = 0.5298$
 $\hat{y}_1 \approx 0.629$

$$\frac{\partial a_3}{\partial w_6} = h_2 \approx 0.638$$

 $a_3 = h_1 w_5 + h_2 w_6$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

Chain rule
$$\frac{\partial E}{\partial w_6} = -0.742 * 0.233 * 0.638$$

$$\approx -0.1103$$

$$0.5 \Rightarrow \begin{array}{c} x_1 \\ w_1 = 0.5 \\ w_2 = 0.3 \end{array} \qquad \begin{array}{c} a_1 \\ h_1 \\ w_5 = 0.51059 \end{array} \qquad \begin{array}{c} a_2 = 0.57 \\ h_1 \approx 0.613 \\ h_2 \approx 0.638 \\ a_3 = 0.529 \\ \hline \hat{y}_1 \approx 0.629 \end{array}$$

$$a_1 = 0.46$$
 $a_2 = 0.57$ $w_6 \coloneqq w_6 - 1$
 $h_1 \approx 0.613$
 $h_2 \approx 0.638$
 $a_3 = 0.5298$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

Chain rule
$$\frac{\partial E}{\partial w_6} = -0.742*0.233*0.638$$

$$\approx -0.1103$$

$$0.5 \Rightarrow \begin{array}{c} x_1 & w_1 = 0.5 \\ w_2 = 0.3 \end{array} \qquad \begin{array}{c} a_1 = 0.46 \\ h_1 & w_5 = 0.51059 \quad a_2 = 0.57 \\ a_3 & \hat{y}_1 & h_1 \approx 0.613 \\ h_2 & \approx 0.638 \\ a_3 = 0.5298 \\ \hat{y}_1 \approx 0.629 \end{array} \qquad \begin{array}{c} 0.36103 = 0.35 - 0.1(-0.1103) \\ 0.36103$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \rightarrow \begin{array}{c} x_1 \\ w_2 = 0.5 \\ 0.7 \rightarrow \begin{array}{c} x_2 \\ w_4 = 0.6 \end{array} \qquad \begin{array}{c} a_1 \\ a_2 \\ a_2 \\ w_4 = 0.6 \end{array} \qquad \begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 = 0.51059 \end{array} \qquad \begin{array}{c} a_1 = 0.46 \\ a_2 = 0.57 \\ h_1 \approx 0.613 \\ h_2 \approx 0.638 \\ a_3 = 0.5298 \\ \hat{y}_1 \approx 0.629 \end{array}$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$0.5 \Rightarrow \begin{array}{c} x_1 \\ w_1 = 0.5 \\ w_2 = 0.3 \end{array} \qquad \begin{array}{c} a_1 \\ h_1 \\ w_5 = 0.51059 \end{array} \qquad \begin{array}{c} a_2 = 0.57 \\ a_2 \\ \hline \end{array} \qquad \begin{array}{c} y_1 \\ h_1 \approx 0.613 \\ h_2 \approx 0.638 \\ a_3 = 0.5298 \\ \hline \\ \hat{y}_1 \approx 0.629 \end{array}$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_1}$$

$$-0.742 * 0.233$$

$$a_{1} = 0.46$$

$$0.5 \Rightarrow \chi_{1} \quad w_{1} = 0.5$$

$$a_{1} \quad h_{1} \quad w_{5} = 0.51059 \quad a_{2} = 0.57$$

$$a_{3} \quad \hat{y}_{1} \quad h_{1} \approx 0.613$$

$$h_{2} \approx 0.638$$

$$a_{3} = 0.5298$$

$$\hat{y}_{1} \approx 0.629$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_1}$$

$$-0.742 * 0.233 * 0.5$$

$$0.5 \Rightarrow \chi_1 \qquad w_1 = 0.5 \qquad a_1 \qquad h_1 \qquad w_5 = 0.51059 \qquad a_2 = 0.57 \qquad h_1 \approx 0.613 \qquad h_2 \approx 0.638 \qquad a_3 = 0.52 \qquad a_4 = 0.6$$

$$a_1 = 0.46$$
 $a_2 = 0.57$
 $h_1 \approx 0.613$
 $h_2 \approx 0.638$
 $a_3 = 0.5298$
 $\hat{y}_1 \approx 0.629$

 $E \approx 0.1376$

$$a_3 = \mathcal{N}_1 w_5 + h_2 w_6$$
 $\frac{\partial a_3}{\partial h_1} = w_5 = 0.5$ ※수정 되기 전 w_5 의 값 $a_1 h_1 w_5 = 0.5$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_1}$$

$$-0.742 * 0.233 * 0.5 * 0.237$$

$$0.5 \rightarrow \chi_{1} \qquad w_{1} = 0.5 \qquad a_{1} \qquad h_{1} \qquad w_{5} = 0.51059$$

$$0.7 \rightarrow \chi_{2} \qquad w_{3} = 0.3 \qquad a_{2} \qquad h_{2} \qquad w_{6} = 0.36103$$

$$0.7 \rightarrow \chi_{2} \qquad w_{4} = 0.6 \qquad a_{2} \qquad h_{2} \qquad w_{6} = 0.36103$$

$$a_1 = 0.16$$
 $a_2 = 0.57$
 $h_1 \approx 0.613$
 $a_2 \approx 0.638$
 $a_3 = 0.5298$
 $\hat{y}_1 \approx 0.629$

$$a_1 = 0.46$$
 $a_1 = 0.46$
 $a_2 = 0.57$
 $a_2 = 0.57$
 $a_3 = 0.46$
 $a_4 = 0.46$
 $a_5 = 0.613 * (1 - 0.613)$
 $a_6 = 0.237$

$$h_1 = sigmoid(a_1) \approx 0.613$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_1}$$

$$-0.742 * 0.233 * 0.5 * 0.237 * 0.5$$

 $a_1 = x_1 w_1 + \frac{x_2 w_3}{}$

$$0.5 \rightarrow \chi_{1} \qquad \begin{array}{c} u_{1} = 0.5 \\ w_{2} = 0.5 \\ w_{3} = 0.3 \end{array} \qquad \begin{array}{c} a_{1} = 0.46 \\ h_{1} \quad w_{5} = 0.51059 \quad a_{2} = 0.57 \\ h_{2} \approx 0.613 \\ h_{2} \approx 0.638 \\ a_{3} = 0.52 \\ \end{array}$$

$$0.7 \rightarrow \chi_{2} \qquad \begin{array}{c} w_{3} = 0.3 \\ w_{4} = 0.6 \\ \end{array} \qquad \begin{array}{c} a_{1} = 0.46 \\ a_{2} \quad w_{5} = 0.51059 \quad a_{2} = 0.57 \\ h_{2} \approx 0.638 \\ a_{3} = 0.52 \\ \end{array}$$

$$a_1 = 0.46$$
 $a_2 = 0.57$
 $h_1 \approx 0.613$
 $h_2 \approx 0.638$
 $a_3 = 0.5298$
 $\hat{y}_1 \approx 0.629$

$$\frac{\partial a_1}{\partial w_1} = x_1 = 0.5$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_1}$$

 $-0.742 * 0.233 * 0.5 * 0.237 * 0.5 \approx -0.0102$

$$0.5 \Rightarrow \chi_{1} = 0.5$$

$$w_{1} = 0.5$$

$$w_{2} = 0.3$$

$$a_{1} = 0.46$$

$$a_{2} = 0.57$$

$$a_{3} = 0.613$$

$$h_{1} \approx 0.613$$

$$h_{2} \approx 0.638$$

$$a_{3} = 0.5298$$

$$a_{3} \approx 0.639$$

$$= 0.46$$

$$= 0.57 w_1 \coloneqq w_1 - \alpha \frac{\partial E}{\partial w_2}$$

 $\hat{y}_1 \approx 0.629$

$$E \approx 0.1376$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_2}$$

 $-0.742 * 0.233 * 0.5 * 0.237 * 0.5 \approx -0.0102$

$$0.5 \Rightarrow \chi_{1} = 0.50102$$

$$0.5 \Rightarrow \chi_{1} = 0.3$$

$$0.7 \Rightarrow \chi_{2} = 0.3$$

$$0.7 \Rightarrow \chi_{2} = 0.3$$

$$0.7 \Rightarrow \chi_{2} = 0.3$$

$$0.8 \Rightarrow 0.3$$

$$0.9 \Rightarrow 0.3$$

$$a_1 = 0.46$$
 $a_2 = 0.57$
 $h_1 \approx 0.613$
 $h_2 \approx 0.638$
 $a_3 = 0.5298$
 $\hat{y}_1 \approx 0.629$

$$0.50102 = 0.5 - 0.1 * (-0.0102)$$

 $E \approx 0.1376$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$\frac{\partial E}{\partial w_2} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_2} * \frac{\partial h_2}{\partial a_2} * \frac{\partial a_2}{\partial w_2} \approx -0.00698$$

$$\frac{\partial E}{\partial w_3} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_1} * \frac{\partial h_1}{\partial a_1} * \frac{\partial a_1}{\partial w_3} \approx -0.01433$$

$$\frac{\partial E}{\partial w_4} = \frac{\partial E}{\partial \hat{y}_1} * \frac{\partial \hat{y}_1}{\partial a_3} * \frac{\partial a_3}{\partial h_2} * \frac{\partial h_2}{\partial a_2} * \frac{\partial a_2}{\partial w_4} \approx -0.00978$$

$$a_1 = 0.46$$

$$a_2 = 0.57$$

$$h_1 \approx 0.613$$

$$h_2 \approx 0.638$$

$$a_3 = 0.5298$$

$$\hat{y}_1 \approx 0.629$$

$$E \approx 0.1376$$

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

이전오차 E ≈ 0.1376

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

$$a_1 = w_1 x_1 + w_3 x_2 \approx 0.4604$$

$$a_2 = w_2 x_1 + w_4 x_2 \approx 0.5710$$

$$h_1 = sigmoid(a_1) \approx 0.613089$$

$$h_2 = sigmoid(a_2) \approx 0.639466$$

$$a_3 = w_5 h_1 + w_6 h_2 \approx 0.543653$$

$$\hat{y}_1 = sigmoid(a_3) \approx 0.6327$$

$$1 \sum_{i=1}^{n} (x_i + x_i)^2 \approx 0.1346$$

$$E = \frac{1}{1} \sum_{i=1}^{1} (y_1 - \hat{y}_1)^2 \approx 0.1349$$

이전오차 E ≈ 0.1376

Learning rate(학습률, α) = 0.1

Activation function(활성화 함수) = sigmoid()

Loss function(손실 함수) = MSE

$$y = 1$$

1단계: Forward Propagation

2단계: 오차계산

Sigmoid function (시그모이드 함수)

Back Propagation (오차 역전파 알고리즘)

Sigmoid function (시그모이드함수)

Sigmoid function (시그모이드함수)

Sigmoid function (시그모이드함수)

Sigmoid 도함수

Sigmoid 함수의 문제점

- 기울기 소실 문제(Vanishing Gradient Problem)

Sigmoid 도함수

ReLU
Leaky ReLU
PReLU
ELU

최적화 함수 (Optimizer)

경사하강법(Gradient Descent Algorithm)

$$\hat{y} = 0.2x + 0$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w}$$

$$w \coloneqq w - \alpha \left(\frac{1}{n} * (-2) \sum_{i=1}^{n} (y_i - \widehat{y}_i) \right) \frac{\partial \widehat{y}}{\partial w}$$

$$MSE(L) = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{6} \{ (0-0)^2 + (0.8-0.2)^2 + (2.2-0.4)^2 + (2.3-0.6)^2 + (4.3-0.8)^2 + (4.9-1)^2 \}$$

= 5.66

$$\alpha = 0.01$$

$$\hat{y} = 0.2x + 0$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

$$0.2 \qquad w \coloneqq w - \alpha \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w}$$

$$w \coloneqq w - \alpha \left(\frac{1}{n} * (-2) \sum_{i=1}^{n} (y_i - \widehat{y}_i) * x_i \right)$$

$$MSE(L) = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{6} \{ (0-0)^2 + (0.8-0.2)^2 + (2.2-0.4)^2 + (2.3-0.6)^2 + (4.3-0.8)^2 + (4.9-1)^2 \}$$

= 5.66

= 5.66

$$\hat{y} = 0.2x + 0$$
 $MSE(L) = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w}$$

$$w \coloneqq w - \alpha \left(\frac{1}{n} * (-2) \sum_{i=1}^{n} (y_i - \widehat{y}_i) * x_i \right)$$

$$new w = 0.343$$

$$w \coloneqq 0.2 - 0.01 \left(\frac{1}{6} * (-2) * (0 * 0 + 0.6 * 1 + 1.8 * 2 + 1.7 * 3 + 3.5 * 4 + 3.9 * 5) \right)$$

$$= \frac{1}{6} \{ (0-0)^2 + (0.8-0.2)^2 + (2.2-0.4)^2 + (2.3-0.6)^2 + (4.3-0.8)^2 + (4.9-1)^2 \}$$

$$\alpha = 0.01$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w}$$

$$w \coloneqq w - \alpha \left(\frac{1}{n} * (-2) \sum_{i=1}^{n} (y_i - \widehat{y}_i) * x_i \right)$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w}$$

$$w \coloneqq w - \alpha \left(\frac{1}{n} * (-2) \sum_{i=1}^{n} (y_i - \widehat{y}_i) * x_i \right)$$

new
$$w = 0.272$$

$$w \coloneqq 0.2 - 0.01 \left(\frac{1}{1} * (-2) * (2.2 * 0.4) * 2 \right)$$

$$\alpha = 0.01$$

χ	y	ŷ
0	0	0
1	0.8	0.2
2	2.2	0.4
3	2.3	0.6
4	4.3	0.8
5	4.9	1

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w}$$

$$w \coloneqq w - \alpha \left(\frac{1}{n} * (-2) \sum_{i=1}^{n} (y_i - \widehat{y}_i) * x_i \right)$$

$$new w = 0.552$$

$$w \coloneqq 0.272 - 0.01 \left(\frac{1}{1} * (-2) * (4.3 * 0.8) * 4 \right)$$

Mini-batch Gradient Descent(미니배치 경사하강법)

Mini-batch Gradient Descent(미니배치 경사하강법)

미니배치 경사하강법

(Mini-Batch Gradient Descent) 확률적으로 선택된 일부 데이터들을 이용해 업데이트

출처: https://ml-explained.com

SGD with momentum

모멘텀

(Momentum)

경사 하강법에 관성을 적용해 업데이트 현재 batch뿐만 아니라 이전 batch 데이터의 학습 결과도 반영

모멘텀

(Momentum)

■ 가중치를 업데이트 하기 전, 이전 방향을 참고하여 업데이트

v : 속도 벡터

 β : 모멘텀 계수(일반적으로 0.9로 설정)

$$v \coloneqq \beta v + (1 - \beta) \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha v$$

NAG

(Nesterov Accelerated Gradient)

- w, b값 업데이트 시 모멘텀 방식으로 먼저 더한 다음 계산
- 미리 해당 방향으로 이동한다고 가정하고 기울기를 계산해본 뒤 실제 업데이트 반영
- 불필요한 이동을 줄일 수 있음

$$v \coloneqq \beta v + \alpha \frac{\partial L(w - \beta v)}{\partial w}$$

$$w \coloneqq w - v$$

v : 속도 벡터

 β : 모멘텀 계수(일반적으로 0.9로 설정)

 $\frac{\partial L(w-\beta v)}{\partial w}$: 모멘텀에 의해 예측 된 위치에서 계산한 Gradient

AdaGrad

(Adaptive Gradient)

- 학습을 진행하면서 학습률을 점차 줄여가는 방법
- 처음에는 크게 학습하다가 조금씩 작게 학습

$$G_t = G_{t-1} + \left(\frac{\partial L}{\partial w_i}\right)^2$$

$$w \coloneqq w - \frac{\alpha}{\sqrt{G_t + \epsilon}} \frac{\partial L}{\partial w}$$

 G_t : 각 파라미터의 Gradient 제곱의 누적 합

RMSProp

(Root Mean Square Propagation)

$$E[g^2]_t = E[g^2]_{t-1} + (1-\beta) \left(\frac{\partial L}{\partial w_i}\right)^2$$

$$w \coloneqq w - \frac{\alpha}{\sqrt{E[g^2]_t + \epsilon}} \frac{\partial L}{\partial w}$$

 $E[g^2]_t$: Gradient 제곱의 지수 이동 평균

 β : 지수 이동 평균의 감쇠 계수(일반적으로 0.9)

- Adagrad와 동일하게 학습을 진행하면서 학습률을 점차 줄여가는 방법
- 최소값을 찾기전 학습이 멈추는 Adagrad의 단점을 지수이동 평균을 도입해서 해결
- 지수 이동 평균: 최근 학습한 수치의 영향력은 높이고 과거 학습한 수치의 영향력은 낮추는 방식

Adam
(Adaptive Moment Estimation)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \frac{\partial L}{\partial w}$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w}\right)^2$$

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$w \coloneqq w - \alpha \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

 m_t : Gradient 지수 이동 평균 (1차 모멘트)

 v_t : Gradient 제곱의 지수 이동 평균 (2차 모멘트)

 eta_1 : 1차 모멘트의 감쇠 계수(일반적으로 0.9로 설정)

 eta_2 : 1차 모멘트의 감쇠 계수(일반적으로 0.999로 설정)

 \widehat{m}_t : 편향 보정된 1차 모멘트

 \hat{v}_t : 편향 보정된 2차 모멘트

- 관성 방향으로 움직이는 Momentum과 보폭을 조절하며 움직이는 AdaGrad의 특성을 하나로 합친 최적화 함수.
- · 현재 보편적으로 사용하는 최적화 함수이며, 성능적인 측면에서 가장 나은 최적화 함수라 할 수 있음

출처: https://cs231n.github.io/neural-networks-3/

Batch Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

SGD with momentum

10 -

-10

-5

Keras

```
from tensorflow.keras import optimizers

opti = optimizers.SGD(learning_rate=0.01, momentum=0.9)

model.compile(loss='mse', optimizer=opti, metrics=['acc'])
```

```
Momentum
```

```
from tensorflow.keras import optimizers

opti = optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)

model.compile(loss='mse', optimizer=opti, metrics=['acc'])
```

NAG

model.compile(loss ="mse", optimizer="Adam", metrics=["acc"])

Adam

Adagrad, RMSprop, Adam 등은 이름으로 지정 가능

$$w \coloneqq w - \alpha \frac{\partial L}{\partial w}$$

Batch Gradient Descent

$$w \coloneqq w - \alpha \frac{\partial L_i}{\partial w}$$
 $i : 데이터셋의 각 샘플$

Stochastic Gradient Descent

- 모든 데이터 포인트에 대해 손실 함수의 Gradient 계산 후 가중치 업데이트
- 업데이트가 안정적이며, 각 스텝에서의 변화가 크지 않음
- 전체 데이터셋을 로드해야 하므로, 메모리 사용량이 크고, 속도가 느림

- 각 데이터 포인트에 대해 개별적으로 Gradient 계산 후 가중치 업데이트
- 업데이트 스탭이 빠르며, 메모리 사용량이 적음
- 업데이트가 불안정할 수 있고, 각 스텝의 변화가 큼

$$w \coloneqq w - \alpha \frac{\partial L_{mini-batch}}{\partial w}$$

Mini-Batch Gradient Descent

 $L_{mini-batch}$: 미니 배치에 대한 손실 함수

 $rac{\partial L_{mini-batch}}{\partial w}$: w에 대한 $L_{mini-batch}$ 의 Gradient

- 데이터셋을 여러 작은 배치로 나누어 각 배치 마다 Gradient 계산 후 가중치 업데이트
- 확률적 장점 + 배치 장점
- 배치 크기 설정이 중요하며, 배치 크기에 따라 Gradient 변동성이 다름

$$v \coloneqq \beta v + (1 - \beta) \frac{\partial L}{\partial w}$$

$$w \coloneqq w - \alpha v$$

Momentum

v: 속도 벡터(Momentum term)

 β : 모멘텀 계수(일반적으로 0.9로 설정)

- 이전 Gradient에 기반한 업데이트 방향에 일 정한 관성을 부여하여, 가중치가 최적값에 더 빠르고 안정적으로 수렴하도록 함
- 수도 벡터(v)를 활용하여, Gradient 방향과 크기에 대한 과거 정보를 포함
- 모멘텀 계수(β) 조정 필요
- 추가적인 속도 벡터(v)를 관리해야 함

v: 속도 벡터(Momentum term)

 β : 모멘텀 계수(일반적으로 0.9로 설정)

$$v \coloneqq \beta v + \alpha \frac{\partial L(w - \beta v)}{\partial w}$$

 $rac{\partial L(w-eta v)}{\partial w}$: 모멘텀에 의해 예측 된 위치에서 계산한

Gradient

 $w \coloneqq w - v$

Nesterov Accelerated Gradient(NAG)

$$G_t = G_{t-1} + \left(\frac{\partial L}{\partial w_i}\right)^2$$

$$w \coloneqq w - \frac{\alpha}{\sqrt{G_t + \epsilon}} \frac{\partial L}{\partial w}$$

AdaGrad

 G_t : 각 파라미터의 Gradient 제곱의 누적 합

- 모멘텀에 의해 예측된 위치에서 Gradient 계산(모멘텀을 적용한 후의 위치에서 Gradient를 계산하여 더 빠르고 정확하게 수렴)
- 모멘텀 상위 버전
- 여전히 학습률(lpha)과 모멘텀 계수(eta) 조정 필요하며, 더 복잡해짐

- Gradient 크기에 따라 학습률을 조절하여,
 자주 업데이트 되는 파라미터의 학습률을 줄이고, 적게 업데이트 되는 학습률을 유지
- 자주 업데이트 되는 파라미터의 변화가 안정 화됨
- · 감쇠(시간이 지나면서 학습률이 너무 작아져, 최적화가 정체될 수도 있음)

$$E[g^2]_t = \beta E[g^2]_{t-1} + (1-\beta) \left(\frac{\partial L}{\partial w_i}\right)^2$$

$$\Delta w_t = -\frac{\sqrt{E[\Delta w^2]_{t-1} + \epsilon}}{\sqrt{E[g^2]_t + \epsilon}} \frac{\partial L}{\partial w}$$

$$E[\Delta w^{2}]_{t} = \beta E[\Delta w^{2}]_{t-1} + (1-\beta)(\Delta w_{t})^{2}$$

 $w \coloneqq w + \Delta w_t$

AdaDelta

$$E[g^2]_t = E[g^2]_{t-1} + (1-\beta) \left(\frac{\partial L}{\partial w_i}\right)^2$$

 $E[g^2]_t$: Gradient 제곱의 지수 이동 평균

 β : 지수 이동 평균의 감쇠 계수(일반적으로 0.9)

 ϵ : 수치적 안정성을 위한 작은 값(일반적으로 10^{-8})

RMSProp

 $W := W - \frac{\alpha}{\sqrt{E[a^2]_t + \epsilon}} \frac{\partial L}{\partial W}$

(Root Mean Square Propagation)

- Adagrad의 변형으로 학습률을 적응적으로 조정하여 학습률이 작아지는 문제(감쇠)를 해
- 지수 이동 평균의 감쇠 계수(β)의 적절한 조 절 필요

 $E[g^2]_t$: Gradient 제곱의 지수 이동 평균

 $E[\Delta w^2]_t$: 업데이트 값 Δw 제곱의 지수 이동 평균

 β : 지수 이동 평균의 감쇠 계수(일반적으로 0.9)

- Adagrad의 문제를 해결하기 위해, Gradient의 제곱을 지수 이동 평균으로 누적 하여, 각 파라미터 학습률을 조정함
- 안정성과 효율성이 높음
- 지수 이동 평균의 감쇠 계수(β)의 조절 필요

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \frac{\partial L}{\partial w}$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) \frac{\partial L^2}{\partial w}$$

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$w \coloneqq w - \alpha \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

- 각 파라미터에 대해 적응형 학습률을 사용하며, 모멘텀을 통해 수렴속도를 높임
- 안정성과 효율성이 크며, 편향 보정이 포함됨
- 여러 하이퍼 파라미터 (β_1,β_2,α) 의 적절한 조정 필요

$$m_t$$
: Gradient 지수 이동 평균 (1차 모멘트)

 v_t : Gradient 제곱의 지수 이동 평균 (2차 모멘트)

 β_1 : 1차 모멘트의 감쇠 계수(일반적으로 0.9로 설정)

 β_2 : 1차 모멘트의 감쇠 계수(일반적으로 0.999로 설정)

 \widehat{m}_t : 편향 보정된 1차 모멘트

 \hat{v}_t : 편향 보정된 2차 모멘트

 ϵ : 수치적 안정성을 위한 작은 값(일반적으로 10^{-8})

Adam(Adaptive Moment Estimation)

