recall: V defines $V^v = Hom(V, F)$

Q let U sub V be a linear subspace do we then have U' sub V'?

<u>A</u> no: dual to inclusion i : U to V is i^v : V^v to U^v [instead:]

Df the annihilator Ann_{V'}(U) sub V' is def by $\{\theta \text{ in } V^v \mid \theta(u) = 0 \text{ for all } u \text{ in } U\}$

<u>Lem</u>

- 1) Ann_ $\{V^{v}\}(U)$ is a linear subspace of V^{v}
- 2) U sub U' iff

Ann_{V'}(U') sub Ann_{V'}(U)

Pf 1) if θ, θ' in Ann(U) and α in F, then $(\theta + \theta')(u) = \theta(u) + \theta'(u) = 0$ $(\alpha \cdot \theta)(u) = \alpha \cdot \theta(u) = 0$

2) suppose U sub U' pick φ in Ann_{V'}(U') for all u in U, have u in U' so φ(u) = 0 so φ in Ann_{V'}(U)

other direction is also boring

recall: if V is finite-dim'l, then dim $V^v = \dim V$

Q what is dim Ann_{V'}(U) in terms of dim V, dim U? [note: U larger means Ann(U) smaller]
A [guess] dim Ann_{V'}(U) = dim V – dim U

[note: dim $U = dim U^v$] [relate Ann, V^v , U^v ?]

<u>Lem</u> Ann_ $\{V^v\}(U) = \ker(i^v : V^v \text{ to } U^v)$

 $\underline{\mathsf{Pf}}$ what is i^v?

 $i^{v}(\theta) = \theta | U$ [restrict the domain]

now, θ in Ann_{V'}(U) iff θ|_U is zero iff θ in ker(i') \Box

[so it remains to show $im(i^v) = U^v$]

Lem if V is finite-dim'l and U sub V then V' to U' is surjective

Pf pick ψ in U' want to exhibit θ in V' s.t. θ |_U = ψ

lem from a long time ago:

any basis of U can be extended to one of V
so pick u_1, ..., u_\ell, v_1, ..., v_m s.t.

u's form a basis of U

u's and v's form a basis of V

let θ be def by $\theta(u_i) = \psi(u_i)$ $\theta(v_j) = \text{anything!}$

Rem does it extend to the infinite-dim'l case?

 $\underline{\mathsf{Thm}\; 1} \qquad \dim \mathsf{Ann}_{\{\mathsf{V}^{\mathsf{V}}\}}(\mathsf{U}) = \dim \mathsf{V} - \dim \mathsf{U}$

[cannot just set $\theta(v) = 0$ for v notin U, since the resulting map may not be linear]

 $\frac{Pf}{dim Ann} = \dim V^{v} - im(i^{v})$ $= \dim V^{v} - \dim U^{v}$ $= \dim V - \dim U$

observe:

if V = U + U' as a direct sum, then
 giving a map T : V to W is equivalent to
 giving maps S : U to W and S' : U' to W

explicitly: if v = u + u' with u in U and u' in U' then set Tv = Su + Su'

so to extend a map out of U to a map out of V, need a <u>complement</u> U' [i.e., V = U + U' as dir sum]

[putting the last lemma in context:]

Thm 2 let T : U to V be any lin map with dual T' : V' to U'

- 1) if V is fin. dim. and T inj., then T' is surj.
- 2) if T is surj., then T' is inj.
 [with no hypotheses of fin-dim'lity]

Thm 2 in turn follows from Thm 3 below:

<u>Df</u>	let T : U to V be any lin map
	let Ω be any vector space

$$T^{v}(\theta) = T^{v}(\theta')$$
 says $\theta(T(u)) = \theta'(T(u))$ for all u in U while $\theta = \theta'$ says $\theta(v) = \theta'(v)$ for all v in V

pullback T': Hom(V,
$$\Omega$$
) to Hom(U, Ω) is def by

pf of 1) very similar to pf of earlier lem

$$\mathsf{T}^{\mathsf{v}}(\mathsf{\theta}) = \mathsf{\theta} \, \circ \, \mathsf{T}$$

then
$$\theta(v) = \theta(T(u)) = \theta'(T(u)) = \theta'(v)$$

Thm 3 above:
if V is fin. dim. and T inj., then T' is surj.

Rem to show T^v inj., would have been easier to show $ker(T^v) = \{0\}$ but this proof generalizes:

2) if T is surj., then T' is inj.

Pf

(<u>Thm</u>) for any sets X, Y, Z and map f : X to Y if f is surj., then

to prove 2): suppose T surj. pick θ , θ' : V to Ω s.t. $T^{v}(\theta) = T^{v}(\theta')$ want to show $\theta = \theta'$

Maps(Y, Z) to Maps(X, Z) is inj. θ mapsto $\theta \circ f$

(Axler §3E) have seen:

giving a lin. subsp. of V is equiv to giving a vector space U and inj. lin. map i : U to V key: i injective iff U is iso to im(i)

[what about surj. lin. maps out of V?]

<u>Df</u> suppose U is a lin. subsp. of V set $v + U = \{v + u \mid u \text{ in } U\}$ for all v in V

warning: v + U = v' + U whenever v - v' in U

the linear quotient of V by U is the vec. sp. formed as follows from $V/U = \{v + U \mid v \text{ in } V\}$ ["V mod U"]: for all v + U and w + U and a in F: (v + U) + (w + U) = (v + w) + U $a \cdot (v + U) = a \cdot v + U$

<u>Lem</u> above, + and • are well-defined so V/U is indeed a vector space

Pf if v + U = v' + U and w + U = w' + Uthen (v + w) - (v' + w')= (v - v') + (w - w')in U + Uin Uso (v + w) + U = (v' + w') + U

pf that • is well-defined is similar

now see:

giving a lin. quotient of V is equiv to giving a vector sp. W and surj. lin. map q: V to W key: q surjective iff W is iso to V/ker(q)

more parallels:

lin. subsp. U to V gives lin. quotient V' to U' when V is fin. dim'l

lin. quot. V to V/U gives lin. subsp. (V/U)^v to V^v

[naturally suggests:]

<u>next time:</u> for any V,

U inj V surj V/U dualizes to

 $(V/U)^{v}$ inj V^{v} to U^{v}

and:

- $(V/U)^{\vee}$ iso to Ann_ $\{V^{\vee}\}(U)$
- for V fin. dim'l, the last map is surj