AGH, EiT	TECHNIKI OBLICZENIOWE	
	ANALIZA RUCHU POCISKU Z UWZGLĘDNIENIEM WIATRU I GĘSTOŚCI POWIETRZA	
data wykonania: 22.01.2024	Wojciech Minior Bartłomiej Kozieł	

1. WPROWADZENIE

1.1 Cel projektu

Celem projektu jest przeprowadzenie analizy trajektorii pocisku z uwzględnieniem wpływu wiatru i zmiennej gęstości powietrza. Projekt ma na celu dostarczenie narzędzia umożliwiającego precyzyjne prognozowanie ruchu pocisków w różnych warunkach atmosferycznych.

1.2 Zakres projektu

Projekt obejmuje implementację symulacji ruchu pocisku, uwzględniając wpływ sił oporu powietrza, grawitacji oraz ruchu wiatru. Dodatkowo, modelowane są zmieniające się w zależności od wysokości gęstość powietrza oraz prędkość wiatru .

2. ANALIZA MATEMATYCZNA

2.1 Równania ruchu pocisku

Ruch pocisku jest opisany równaniami kinematycznymi, uwzględniając siły oporu powietrza, grawitację, oraz wpływ wiatru. Parametry te są implementowane w postaci algorytmu numerycznego.

Gęstość powietrza na różnych amplitudach modelowana jest równaniem gradientu atmosfery:

$$ho = rac{p_0 M}{RT_0}igg(1-rac{Lh}{T_0}igg)^{rac{gM}{RL}-1}$$

,gdzie:

p₀ jest gęstością powietrza na poziomie morza;

M jest masą molową powietrza;

R jest stałą gazu idealnego powietrza;

T₀ jest temperatura na poziomie morza;

L jest współczynnikiem gradientu temperatury, różniącym się w zależności od amplitudy: dla h<11000m: L = 0.0065; dla h od 11000m do 20000m: L = 0; dla większych wysokości L = -0.001;

2.2 Modelowanie prędkości wiatru

Prędkość wiatru na różnych amplitudach modelowana jest równaniem gradientu wiatru:

$$v_w(h) = v_{10} \cdot \left(rac{h}{h_{10}}
ight)^a$$

,gdzie:

v₁₀ jest prędkością wiatru zmierzoną na wysokości odniesienia;

h₁₀ jest wysokością odniesienia standardowo wynoszącą 10m nad poziomem gruntu;

a jest współczynnikiem szorstkości terenu zależnym od jego ukształtowania;

h jest aktualną wysokością, na której znajduje się pocisk.

3. INTERFEJS UŻYTKOWNIKA

3.1 Dane wejściowe

Użytkownik dostarcza parametry pocisku, warunki atmosferyczne oraz siłe wiatru.

3.2 Wyniki symulacji

Program generuje wizualizacje trajektorii pocisku, a także numeryczne wyniki takie jak maksymalna wysokość lotu, zasięg i czas lotu.

4. WYNIKI I WNIOSKI

Projekt zakończono sukcesem, uzyskując precyzyjne wyniki symulacji trajektorii pocisku z uwzględnieniem wpływu wiatru i zmiennej gęstości powietrza. Wprowadzone algorytmy numeryczne pozwalają na skuteczną analizę ruchu pocisku w zróżnicowanych warunkach atmosferycznych.

Przykładowe wykresy:

```
m = 1; % masa [kg]
r = 0.2; % promień [m]
C = 0.25; % Współczynnik oporu
v = 100; % prędkość początkowa [m/s]
alfa = 45; % kąt rzutu [°]
h = 0.01; % początkowa wysokość [m]
```


Na wykresie toru lotu pocisku widać charakterystyczne przesunięcie wierzchołka paraboli świadczące o działających siłach oporu. Wykresy prędkości oraz przyspieszenia od czasu obrazują siłę oporu powietrza, która rośnie z kwadratem prędkości.

Poniżej widzimy tor lotu pocisku o takich samych warunkach początkowych, a jedynie o zwiększonej pięciokrotnie masie. Jak widać przesunięcie wierzchołka paraboli nie jest już tak zauważalne. Jest to spowodowane większą proporcją pędu do działających na pocisk sił. Gdybyśmy zwiększyli adekwatnie również i promień pocisku, kształt toru lotu nie uległby zmianie.

```
m = 5; % masa [kg]
r = 0.2; % promień [m]
```

```
m = 1; % masa [kg]
r = 0.2; % promień [m]
C = 0.25; % Współczynnik oporu
v = 300; % prędkość początkowa [m/s]
alfa = 60; % kąt rzutu [°]
h = 21000; % początkowa wysokość [m]
```


Powyżej zobrazowany jest rzut z wysokości 21000m. Jak widać przejście przez poszczególne warstwy atmosfery jest płynne. Można zauważyć, że po wytraceniu początkowej prędkości poziomej ruch odbywa się głównie w osi pionowej i przypomina swobodny spadek.

```
_____
```

```
m = 1; % masa [kg]
r = 0.2; % promień [m]
C = 0.25; % Współczynnik oporu
v = 100; % prędkość początkowa [m/s]
alfa = 45; % kąt rzutu [°]
h = 0.001; % początkowa wysokość [m]
% Parametry wiatru
wind10 = 5; % prędkość wiatru na wysokości 10m
wind_h10 = 10; % wysokość pomiaru - standardowo 10m
terrain_alfa = 0.2; % współczynnik szorstkości terenu
wind angle = 2; % kąt wiatru
```


Powyższy wykres przedstawia rzut taki sam jak w przypadku pierwszym, jednak w tym wypadku na pocisk działa również wiatr skierowany zgodnie z osią x. Powoduje to zmianę kształtu toru lotu i zwiększenie zasięgu.