第十一章 对偶理论 第 32 讲 Lagrange 对偶

黄定江

DaSE @ ECNU djhuang@dase.ecnu.edu.cn

- 1 32.1 Lagrange
- ② 32.2 Lagrange **对偶**

- 1 32.1 Lagrange
- ② 32.2 Lagrange 对偶

32.1.1 Lagrange

考虑标准形式的优化问题 (不一定是凸的)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\cdots,m$
$$h_i(x)=0, \quad i=1,\cdots,p$$
 (1)

自变量 $x \in R^n$, 定义域 $\mathcal{D} = \bigcap_{i=1}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$, 最优值 p^*

32.1.1 Lagrange

Lagrange 函数: $L: \mathcal{D} \times R^m \times R^p \to R$ 为

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

其中定义域为 $\mathbf{dom} L = \mathcal{D} \times R^m \times R^p$

- Lagrange 对偶的基本思想:添加约束条件的加权和,得到增广的目标函数
- λ_i 称为第 i 个不等式约束 $f_i(x) \leq 0$ 对应的 Lagrange 乘子
- ν_i 称为第 i 个等式约束 $h_i(x) = 0$ 对应的 Lagrange 乘子
- 向量 λ 和 ν 称为对偶变量或者问题 (1) 的 Lagrange **乘子向量**

32.1.2 Lagrange 对偶函数

Lagrange 对偶函数 (或对偶函数) $g: R^m \times R^p \to R$ 为 Lagrange 函数关于 x 取得的 最小值: 即对 $\lambda \in R^m, \nu \in R^p$,有

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- 函数关于 x 无下界,则对偶函数取值为 $-\infty$
- 对偶函数是一族关于 (λ, ν) 的仿射函数的逐点下确界,所以即使原问题 (1) 非 凸,对偶函数也是凹函数

对偶问题构成了原问题 (1) 最优值 p^* 的下界: 即对任意 $\lambda \geq 0$ 和 ν , 下式成立

$$g(\lambda, \nu) \le p^* \tag{2}$$

证明.

设 \tilde{x} 是原问题 (1) 的一个可行点,即 $f_i(\tilde{x}) \leq 0$ 且 $h_i(\tilde{x}=0)$ 。根据假设, $\lambda \geq 0$,有

$$\sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) \le 0$$

左边第一项非正,第二项为零

黄定江 (DaSE@ECNU)

第十一章 对偶理论

Proof.Cont.

根据上述不等式。有

$$L(\tilde{x}, \lambda, \nu) = f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x}) \le f_0(\tilde{x}).$$

因此

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) \le L(\tilde{x}, \lambda, \nu) \le f_0(\tilde{x})$$

由于每一个可行点 \tilde{x} 都满足 $g(\lambda,\nu) \leq f_0(\bar{x})$, 因此 $g(\lambda,\nu) \leq p^*$ 成立

- 针对 $x \in R$ 和具有一个不等式约束的某简单问题,图 (1) 描述了式 (2) 所给出的下界
- 虽然不等式 (2) 成立,但当 $g(\lambda, v) = -\infty$ 时其意义不大
- 只有当 $\lambda \geq 0$ 且 $((\lambda, v)) \in \operatorname{dom} g$ 时, $g(\lambda, v)$ 是对偶可行的

图 1: 对偶可行点给出的下界。实线表示目标函数 f_0 ,虚线表示约束函数 f_1 。可行集 [-0.46,0.46],如图中两条垂直点线所示。最优点 $x^*=-0.46$,最优值 $p^*=1.54$ 。点线表示一系列 Lagrange 函数 $L(x,\lambda)$,其中 $\lambda=0.1,0.2,\cdots,1.0$ 。每个 Lagrange 函数都有一个极小值,均小于原问题最优目标值 p^* ,这是因为在可行集上有 $L(x,\lambda) \leq f_0(x)$ 。

|黄定江 (DaSE@ECNU) 第十一章 对偶理论 10/30

图 2: **图1中问题的对偶函数** g。函数 f_0 和 f_1 都不是凸函数,但是对偶函数是凹函数。水平 虚线是原问题的最优函数值 p^* 。

◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ▶ ○ 壹 ● ♡ Q ○

32.1.4 通过线性逼近来理解

通过对集合 $\{0\}$ 和 $-R_+$ 的示性函数进行线性逼近来理解 Lagrange 函数和其给出下界的性质。将原问题 (1) 重新描述为一个无约束问题:

minimize
$$f_0(x) + \sum_{i=1}^m I_{-}(f_i(x)) + \sum_{i=1}^p I_0(h_i(x))$$
 (3)

其中, $I_{-}: R \to R$ 是非正实数集的示性函数

$$I_{\underline{}}(u) = \begin{cases} 0 & u \le 0 \\ \infty & u > 0 \end{cases}$$

- 在表达式 (3) 中,函数 $I_{-}(u)$ 可以理解为对约束函数值 $u = f_{i}(x)$ 的一种恼怒或不满: 如果 $f_{i}(x) \leq 0, I_{-}(u)$ 为零,如果 $f_{i}(x) > 0$, $I_{-}(u)$ 为 ∞
- 可以认为函数 I_{-} 是一个"砖墙式"或"无限强硬"的不满意方程;即随着函数 $f_{i}(x)$ 从非正数变为正数,不满意度从 0 升到无穷大

黄定江 (DaSE@ECNU) 第十一章 对偶理论 12/30

32.1.4 通过线性逼近来理解

设在表达式 (3) 中,用线性函数 $\lambda_i u$ 替代函数 $I_-(u)$,其中 $\lambda_i \geq 0$,用函数 $v_i u$ 替代 $I_0(u)$ 。则目标函数变为 Lagrange 函数 $L(x,\lambda,v)$,且对偶函数值 $g(\lambda,v)$ 是问题 (4) 的最优值

minimize
$$L(x,\lambda,v) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x) \tag{4}$$

- 表达式 (4) 中,用线性或者"软"的不满意函数替换了函数 I_{-} 和 I_{0} ,如果 $f_{i}(x) = 0$,不满意度为 0,当 $f_{i}(x) > 0$ 时,不满意度大于 0 (假设 $\lambda_{i} > 0$),随着约束"越来越被违背",我们越来越不满意
- 用线性函数 $\lambda_i u$ 去逼近 $I_-(u)$ 远远不够,但线性函数可看成是示性函数的一个下估计,因为对任意 u,有 $\lambda_i u \leq I_-(u)$ 和 $v_i u \leq I_0(u)$,随之可得到,对偶函数是原问题最有函数值的一个下界

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

 黄定江 (DaSE@ECNU)
 第十一章 对偶理论
 13/30

32.1.5 Lagrange 对偶函数和共轭函数

回忆函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的共轭函数 f^* 为

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^{\mathrm{T}}x - f(x))$$

考虑问题

minimize
$$f_0(x)$$

subject to $Ax < b$, $Cx = d$ (5)

利用函数 fo 的共轭函数, 其对偶函数为

$$g(\lambda, \nu) = \inf_{x} \left(f_0(x) + \lambda^{\mathrm{T}} (Ax - b) + \nu^{\mathrm{T}} (Cx - d) \right)$$

$$= -b^{\mathrm{T}} \lambda - d^{\mathrm{T}} \nu + \inf_{x} \left(f_0(x) + (A^{\mathrm{T}} \lambda + C^{\mathrm{T}} \nu)^{\mathrm{T}} x \right)$$

$$= -b^{\mathrm{T}} \lambda - d^{\mathrm{T}} \nu - f_0^* (-A^{\mathrm{T}} \lambda - C^{\mathrm{T}} \nu)$$
(6)

函数 g 的定义域 $\operatorname{dom} g = \{(\lambda, v) | -A^{\mathrm{T}}\lambda - C^{\mathrm{T}}v \in \operatorname{dom} f_0^*\}$

等式约束条件下的范数极小化

例 1

考虑问题

minimize
$$||x||$$

subject to $Ax = b$ (7)

其中 ||·|| 是任意范数。求其对偶函数

等式约束条件下的范数极小化

 $f_0 = \|\cdot\|$ 的共轭函数为

$$f_0^*(y) = \begin{cases} 0 & \|y\|_* \le 1 \\ \infty &$$
其他情况

可以看出此函数是对偶范数单位球的示性函数。利用结论 (6) 得到问题 (7) 的对偶函数为

$$g(v) = -b^{\mathrm{T}}v - f_0^*(-A^{\mathrm{T}}v) = egin{cases} -b^{\mathrm{T}}v & \|A^{\mathrm{T}}v\|_* \leq 1 \\ -\infty &$$
其他情况

熵的最大化

例 2

考虑问题

minimize
$$f_0(x) = \sum_{i=1}^n x_i \log x_i$$
 (8)

 $\textit{subject to} \quad Ax \leq b, \quad \mathbf{1}^{\mathrm{T}}x = 1$

其中 $\mathbf{dom} f_0 = R_{++}^n$ 。 求其对偶函数

熵的最大化

关于实变量 u 的负熵函数 $u\log u$ 的共轭函数是 e^{v-1} 。由于函数 f_0 是不同变量的负熵函数的和,其共轭函数为

$$f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

其定义域为 $\operatorname{dom} f_0^* = R^n$ 。根据前述结论 (6),问题 (8) 的对偶函数为

$$g(\lambda, v) = -b^{T}\lambda - v - \sum_{i=1}^{n} e^{-a_{i}^{T}\lambda - v - 1} = -b^{T}\lambda - v - e^{-v - 1}\sum_{i=1}^{n} e^{-a_{i}^{T}\lambda}$$

其中 a_i 是矩阵 A 的第 i 列向量

- 1 32.1 Lagrange
- ② 32.2 Lagrange 对偶

32.2.1 线性方程组的最小二乘解

例 3

考虑问题

minimize
$$x^{\mathrm{T}}x$$

subject to $Ax = b$ (9)

其中 $A \in \mathbb{R}^{p \times n}$ 。求其对偶函数

32.2.1 线性方程组的最小二乘解

此问题无不等式约束,有 p 个 (线性) 等式约束,其 Lagrange 函数为

$$L(x,\nu) = x^{\mathrm{T}}x + \nu^{\mathrm{T}}(Ax - b)$$

定义域为 $R^n \times R^p$ 。对偶函数为

$$g(\nu) = \inf_{x} L(x, \nu)$$

32.2.1 线性方程组的最小二乘解

因为 L(x, v) 是 x 的二次凸函数,可通过求解最优性条件得到函数的最小值

● L 关于 x 取极小值,梯度为零:

$$\nabla_x L(x, \nu) = 2x + A^{\mathrm{T}} \nu = 0 \implies x = -(1/2)A^{\mathrm{T}} \nu$$

● 代入到 L 得到函数 g:

$$g(\nu) = L((-1/2)A^{\mathrm{T}}\nu, \nu) = -(1/4)\nu^{\mathrm{T}}AA^{\mathrm{T}}\nu - b^{\mathrm{T}}\nu$$

是关于 ν 的二次凹函数,定义域为 R^p

最优值下界: 根据性质 (2), 对 $\forall \nu \in R^p$

$$p^* \ge -(1/4)\nu^{\mathrm{T}} A A^{\mathrm{T}} \nu - b^{\mathrm{T}} \nu$$

32.2.2 标准形式的线性规划

例 4

考虑问题

minimize
$$c^{\mathrm{T}}x$$

subject to $Ax = b, \quad x \ge 0$ (10)

其中,不等式约束函数为 $f_i(x)=-x_i, i=1,\cdots,n$ 。求其对偶函数

32.2.2 标准形式的线性规划

为了推导 Lagrange 函数,对 n 个不等式约束引入 Lagrange 乘子 λ_i ,对等式约束引入 Lagrange 乘子 ν_i ,得到

$$L(x, \lambda, \nu) = c^{T} x - \sum_{i=1}^{n} \lambda_{i} x_{i} + \nu^{T} (Ax - b)$$
$$= -b^{T} \nu + (c + A^{T} \nu - \lambda)^{T} x$$

L 关于 x 线性, 因此对偶函数为

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \begin{cases} -b^{\mathrm{T}}\nu & A^{\mathrm{T}}\nu - \lambda + c = 0\\ -\infty &$$
其他情况

g 在仿射域 $\{(\lambda,
u)|A^{
m T}
u - \lambda + c = 0\}$ 上是线性函数,因此总体是凹函数最优值下界:如果 $A^{
m T}
u + c \geq 0$, $p^* \geq -b^{
m T}
u$

32.2.3 双向划分问题

例 5

考虑问题

minimize
$$x^{\mathrm{T}} W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$ (11)

其中, $W \in S^n$ 。求其对偶函数

32.2.3 双向划分问题

- 这是一个非凸问题;可行集包含 2ⁿ 个离散点
- 解释: 可将 {1,···, n} 划分为两个集合:

$$\{1, \dots, n\} = \{i \mid x_i = -1\} \cup \{i \mid x_i = 1\}$$

矩阵系数 W_{ij} 可以看成分量 i,j 在同一分区的成本, $-W_{ij}$ 可以看成分量 i,j 在不同分区内的成本。原问题中的目标函数是考虑分量间所有配件的成本,即寻找使得总成本最小的划分

32.2.3 双向划分问题

Lagrange 函数:

$$L(x,\nu) = x^{\mathrm{T}} W x + \sum_{i=1}^{n} \nu_i (x_i^2 - 1)$$
$$= x^{\mathrm{T}} (W + \operatorname{diag}(\nu)) x - \mathbf{1}^{\mathrm{T}} \nu$$

对偶函数:

$$\begin{split} g(\nu) &= \inf_x (x^\mathrm{T} \, W x + \sum_i \nu_i (x_i^2 - 1)) = \inf_x x^\mathrm{T} (\, W + \mathrm{diag}(\nu)) x - \mathbf{1}^\mathrm{T} \nu \\ &= \begin{cases} -\mathbf{1}^\mathrm{T} \nu & W + \mathrm{diag}(\nu) \geq 0 \\ -\infty & \mathbf{其他情况} \end{cases} \end{split}$$

最优值下界: 如果 $W + \operatorname{diag}(\nu) \ge 0$, $p^* \ge -\mathbf{1}^{\mathrm{T}}\nu = n\lambda_{\min}(W)$

4□ > 4□ > 4 = > 4 = > = 90

32.2.4 等式约束条件下的范数极小化

例 6

考虑问题

minimize
$$||x||$$

subject to $Ax = b$ (12)

求其对偶函数

32.2.4 等式约束条件下的范数极小化

对偶函数:

$$g(\nu) = \inf_{x} (\|x\| - \nu^{\mathrm{T}} A x + b^{\mathrm{T}} \nu) = \begin{cases} b^{\mathrm{T}} \nu & \|A^{\mathrm{T}} \nu\|_{*} \leq 1 \\ -\infty &$$
其他情况

其中 $||v||_* = \sup_{||u|| \le 1} u^{\mathrm{T}} v$ 是 $||\cdot||$ 的对偶范数。

最优值下界: 如果 $||A^{T}\nu||_{*} \leq 1$, $p^{*} \geq b^{T}\nu$

32.2.4 等式约束条件下的范数极小化

证明.

对全部的 x, 当 $||y||_* \le 1$, $\inf_x(||x|| - y^T x \ge 0)$, 否则为 $-\infty$

- 如果 $||y||_* \le 1$, 那么对所有 x, $||x|| y^T x \ge 0$, 当 x = 0 时取等
- 如果 $||y||_* > 1$, 令 x = tu 其中 $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$||x|| - y^{\mathrm{T}}x = t(||u|| - ||y||_*) \to -\infty \quad \stackrel{\mathbf{d}}{=} t \to \infty$$

