Appendices

Appendix A 偶然気づいたこと

定義 A.1. $2n \times 2n$ のオセロ盤を考える. $(i,j)_{2n}$ で左下の角マスから、上に i-1、右に j-1 進んだマスを表すものとする.

具体的には $(1,1)_{2n}$ は左下の角マス, $(2n,2n)_{2n}$ は右上の角マスとなる.

注意 以下より、オセロのとある試合を考えることになるのだが、最初の石の配置は $(n, n+1)_{2n}$ 、 $(n+1,n)_{2n}$ には黒、 $(n,n)_{2n}$ 、 $(n+1,n+1)_{2n}$ を採用する. また、先攻は黒とする.

定義 A.2. 「 $(i,j)_{2n}$ が辞書順で $(i',j')_{2n}$ より小さい」は「i < i' または『i = i' かつ j < j'』」と定義する.

定義 A.3. 置けるマスすべてのうち、定義 A.1 のように見たときに辞書順で最小のものを選ぶことを nice-select と言う.

さて, 次のようなことに気が付いた:

命題 A.1. 6×6 のオセロ盤で、黒も白も nice-select し続けると、引き分けになる.

オセロ盤の大きさを変えて実験してみた. その結果をまとめると、次のようになった.

命題 **A.2.** $2m \times 2m$ ($4 \le m \le 100$) のオセロ盤で、黒も白も nice-select し続けると、m = 46,54,74,78,90,94 のときは、先攻が勝ち、それ以外では、後攻が勝つ.

 200×200 まではほとんど後攻が勝つことが確認できた. これを踏まえて次の予想を考えた.

予想 **A.1.** 3 以上の整数 n であって, $2n \times 2n$ のオセロ盤で, 黒も白も nice-select し続けたとき, 引き分けになるのは n=3 だけである.

予想 A.2. 3以上の整数 n であって, $2n \times 2n$ のオセロ盤で, 黒も白も nice-select し続けたとき, 先攻 が勝つのは n=46,54,74,78,90,94 以外にも存在していて, それは無数にある.

予想 A.3. 3以上の整数 n に対して $,a_n,b_n,c_n$ を次のように定義する.

- $3 \le i \le n$ をみたす整数 i であって, $2i \times 2i$ のオセロ盤で, 黒も白も nice-select し続けるて後攻 が勝つようなものの総数を a_n , そうでないものを b_n とする.(引き分けも含まれる)
- $c_n = a_n/b_n$.

この時, c_N は $N \to \infty$ とすると $c_N \to \infty$ となる.

Appendix B 実験結果まとめ

初期の色の配置を入れ替えたとき、言葉だけでは説明し難い結果となった。この結果も併せて以下の表にした.(左が通常、右が色反転)

board size	black	white
6×6	18	18
8×8	19	45
10×10	35	65
12×12	61	83
14×14	60	136
16×16	86	170
18×18	93	231
20×20	161	239
22×22	198	286
24×24	278	298
26×26	251	425
28×28	336	448
30×30	385	515
32×32	440	584
34×34	472	684
36×36	564	732
38×38	599	845
40×40	708	892
42×42	777	987
44×44	912	1024
46×46	931	1185
48×48	1046	1258
50×50	1068	1432
52×52	1287	1417
54×54	1334	1582
56×56	1445	1691

board size	black	white
6×6	24	12
8×8	40	24
10×10	43	57
12×12	104	40
14×14	54	142
16×16	162	94
18×18	85	239
20×20	149	251
22×22	191	293
24×24	218	358
26×26	252	424
28×28	522	262
30×30	322	578
32×32	542	482
34×34	675	481
36×36	651	645
38×38	820	624
40×40	814	786
40×40 42×42	960	804
42×42 44×44	828	1108
46×46	1194	922
40×40 48×48	1184	1120
50×50	1416	1084
50×50 52×52	1178	1526
52×52 54×54	1546	1370
56×56	1579	1557

58×58	1474	1890
60×60	1672	1928
62×62	1717	2127
64×64	1896	2200
66×66	1894	2462
68×68	2300	2324
70×70	2200	2700
72×72	2293	2891
74×74	2383	3093
76×76	2844	2932
78×78	2564	3520
80×80	2876	3524
82×82	3029	3695
84×84	3417	3639
86×86	3276	4120
88×88	3477	4267
90×90	3583	4517
92×92	4251	4213
94×94	3943	4893
96×96	4502	4714
98×98	4211	5393
100×100	4805	5195
102×102	4644	5760
104×104	5023	5793
106×106	5183	6053
108×108	5914	5750
110×110	5361	6739
112×112	5987	6557
114×114	5675	7321
116×116	6669	6787
118×118	6573	7351
120×120	6317	8083
122×122	6420	8464
124×124	7352	8024
126×126	7297	8579
128×128	7666	8718
130×130	7791	9109
132×132	8577	8847
134×134	8037	9919

58×58	1872	1492
60×60	1540	2060
62×62	1963	1881
64×64	1977	2119
66×66	2453	1903
68×68	1990	2634
70×70	2690	2210
72×72	2719	2465
74×74	2835	2641
76×76	2523	3253
78×78	3337	2747
80×80	3074	3326
82×82	3141	3583
84×84	2944	4112
86×86	4144	3252
88×88	3393	4351
90×90	4511	3589
92×92	3770	4694
94×94	4664	4172
96×96	4341	4875
98×98	5352	4252
100×100	3959	6041
102×102	5273	5131
104×104	4766	6050
106×106	6211	5025
108×108	4723	6941
110×110	7001	5099
$112{\times}112$	5161	7383
114×114	7277	5719
$116{\times}116$	5635	7821
118×118	7958	5966
$120{\times}120$	7005	7395
122×122	8352	6532
124×124	6229	9147
126×126	9009	6867
128×128	8651	7733
130×130	9584	7316
132×132	8004	9420
134×134	9743	8213

136×136	8787	9709
138×138	8189	10855
140×140	9656	9944
142×142	8942	11222
144×144	9892	10844
146×146	9856	11460
148×148	11143	10761
150×150	9968	12532
152×152	10564	12540
154×154	11029	12687
156×156	12492	11844
158×158	11683	13281
160×160	12279	13321
162×162	11582	14662
164×164	12604	14292
166×166	12031	15525
168×168	13122	15102
170×170	12921	15979
172×172	14786	14798
174×174	14053	16223
176×176	14415	16561
178×178	13614	18070
180×180	16456	15944
182×182	15211	17913
184×184	15676	18180
186×186	16255	18341
188×188	18049	17295
190×190	16800	19300
192×192	17207	19657
194×194	16448	21188
196×196	18950	19466
198×198	18393	20811
200×200	19681	20319

$136{\times}136$	9047	9449
138×138	10846	8198
140×140	7665	11935
142×142	11553	8611
144×144	9788	10948
146×146	12169	9147
148×148	10202	11702
$150{\times}150$	12966	9534
$152{\times}152$	11009	12095
154×154	13636	10080
$156{\times}156$	11227	13109
158×158	14221	10743
160×160	12265	13335
162×162	15087	11157
164×164	11998	14898
166×166	14479	13077
168×168	11718	16506
170×170	16706	12194
$172{\times}172$	11488	18096
174×174	17449	12827
176×176	14575	16401
178×178	18335	13349
180×180	14149	18251
182×182	17363	15761
184×184	16460	17396
186×186	20005	14591
188×188	16333	19011
190×190	20524	15576
$192{\times}192$	17187	19677
194×194	21867	15769
196×196	17896	20520
198×198	20459	18745
200×200	18938	21062

Appendix C プログラム

平衡二分探索木を用いて実装しようと考えたが、Python をあまり触ったことがなかったため一から実装をしないといけず、面倒くさいなと思い C++ の std::set を用いて書くことにした。実際のプログラムを以下に記す.

```
#include <bits/stdc++.h>
using namespace std;
constexpr int black = 1;
constexpr int white = -1;
constexpr int empty = 0;
vector < vector < int>> direction = \{\{1, 1\}, \{1, 0\}, \{1, -1\}, \{0, 1\}, \{0, -1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1, 1\}, \{-1
              \{-1, 0\}, \{-1, -1\}\};
vector<vector<int>> create_board(int board_size) {
             vector<vector<int>> board(board_size, vector<int>(board_size, 0));
             int center = board_size / 2;
            board[center - 1][center - 1] = white;
            board[center] [center] = white;
            board[center - 1][center] = black;
            board[center] [center - 1] = black;
            return board;
}
set<pair<int, int>> create_valid(int board_size) {
             int center = board_size / 2;
            set<pair<int, int>> valid;
            for (int i = -2; i < 1 + 1; i++) {
                          if (i == -2 \text{ or } i == 1) {
                                      for (int j = -2; j < 1 + 1; j++) {
                                                   valid.insert(make_pair(center + i, center + j));
                                      }
                         }
                         else {
                                      for (int j = -2; j < 1 + 1; j += 3) {
                                                   valid.insert(make_pair(center + i, center + j));
                                      }
                         }
            }
            return valid;
}
bool valid_move(vector<vector<int>> &board, int now_turn, int board_size, vector<int> &sum,
```

```
set<pair<int, int>> &valid) {
bool flag = false;
vector<vector<int>> dirnum;
for (auto a : valid) {
   int i = a.first, j = a.second;
   for (auto k : direction) {
       bool nice_direction = false;
       int now_i = i + k[0], now_j = j + k[1], numnum = 0;
       while (true) {
           if (!(0 <= now_i and now_i < board_size and 0 <= now_j and now_j <
               board_size)) break;
           else if (!(abs(board[now_i][now_j]))) break;
           if (board[now_i][now_j] + now_turn) {
               if (numnum) nice_direction = true;
               break;
           }
           else {
              numnum++;
              now_i += k[0];
              now_j += k[1];
           }
       }
       if (nice_direction) {
           flag = true;
           dirnum.push_back({k[0], k[1], numnum});
       }
   }
   if (flag) {
       sum[(-now_turn + 1) / 2]++;
       valid.erase((make_pair(i, j)));
       for (auto p : dirnum) {
           vector<int>k(2);
           k[0] = p[0];
           k[1] = p[1];
           int numnum = p[2];
           sum[(-now_turn + 1) / 2] += numnum;
           sum[(now_turn + 1) / 2] -= numnum;
           for (int l = 0; l < numnum + 1; l++) board[i + k[0] * 1][j + k[1] * 1] =
               now_turn;
       }
       for (auto k : direction) {
           if (0 \le i + k[0]) and i + k[0] \le board_size and 0 \le j + k[1] and j + k
               [1] < board_size) {</pre>
               if (!(abs(board[i + k[0]][j + k[1]]))) valid.insert(make_pair(i + k[0],
                    j + k[1]);
```

```
}
           }
           break;
       }
   }
   return flag;
}
// latexにコピペできるように
void fingame(int board_size, vector<int> sum) {
 vector<string>s(3);
 s[0] = "\\cellcolor{blue!10}";
  s[1] = "\cellcolor{red!10}";
 s[2] = "\\cellcolor{yellow!10}";
 string g;
 if (sum[0] > sum[1]) g = s[0];
 else if (sum[0] < sum[1]) g = s[1];
 else g = s[2];
  cout << g << board_size << "\\times" << board_size << " & ";</pre>
 cout << g << sum[0] << " & " << g << sum[1] << " ";</pre>
  cout << endl;</pre>
}
int main() {
   clock_t st = clock();
   int start = 6; int board_size = start;
   int limit = 200;
   while (board_size < limit + 2) {</pre>
       vector<vector<int>> board = create_board(board_size);
       set<pair<int, int>> valid = create_valid(board_size);
       int now_turn = black;
       vector<int> sum = \{2, 2\};
       while (true) {
           if (valid_move(board, now_turn, board_size, sum, valid)) now_turn *= -1;
           else if (valid_move(board, -now_turn, board_size, sum, valid));
           else break;
       fingame(board_size, sum);
       board_size = board_size + 2;
   }
   clock_t ed = clock();
   cout << (double) (ed - st) / CLOCKS_PER_SEC << "s" << endl;</pre>
   return 0;
}
```