

Introducción al análisis de datos NGS

Programa de Genética Humana, ICBM Facultad de Medicina, U. de Chile

Abril 2019

Temas a cubrir

- 1. Secuenciación por síntesis
- 2. Datos de secuenciación masiva
- 3. Flujos de trabajo NGS
- 4. Control de calidad de los datos

Evolución de la técnica de secuenciación del ADN

Introducción – Taller Genomica y Medicina – R. A. Verdugo - 201

11/15/10

Polimerización de los nucleótidos

• El grupo 5 'de un nucleótidos trifosfato (dNTP) se acerca grupo hidroxilo 3' de una cadena de nucleótidos.

Polimerización de los nucleótidos

- El grupo hidroxilo 3' forma un enlace con el átomo de fósforo más próxima al átomo de oxígeno 5' del nucleótido libre (dNTP).
- El enlace entre el primer átomo de fósforo y el átomo de oxígeno que une a los próximos grupos fosfato se rompe.
- Se libera un protón (H⁺) y un grupo OH⁻)

Polimerización de los nucleótidos

- Un nuevo enlace fosfodiester une los dos nucleótidos
- Se libera un grupo pirofosfato
- Se libera un protón (H+)

Polimerización de los nucleótidos

- El grupo pirofosfato se hidroliza (se agregar agua)
- Se libera energía que se usa para la siguiente reacción

Más detealles en:

http://www.ncbi.nlm.nih.gov/books/NBK22513/

https://www.chem.wisc.edu/deptfiles/genchem/netorial/modules/biomolecules/modules/dna1/dna13.htm

I. Secuenciación masiva

Secuenciación de última generación Secuenciación paralela Next Generation Sequencing (NGS)

illumına^r

Base-calling has two aspects: Identifying the base-call and assigning a confidence estimate to the call Making a base-call is usually based on the intensity estimates - Signal-processing needs to correct for confounding factors: - Frequency cross-talk (optical detection mechanism) - Phasing effects (imperfect chemistry) - Signal decay Assignment of a confidence estimate or quality score is vital for downstream analysis - phred method can be extended to Next_gen technologies Corrected Intensity C G T

Quality scores quantify the probability that a base-call is correct (or wrong) Termninology: Base quality scores - Individual bases have quality scores which reflect the likelihood of the base being correct/incorrect Alignment scores - Probability than an alignment to a given position in the reference genome is correct Allele scores, SNP scores, - Probability that a given allele, SNP was observed (often conditional on the alignment being correct) Base and alignment scores are single read scores; SNP scores are consensus scores Consensus calls use information from multiple reads illumına'

Phred scores

- A base quality score assigned by the phred software (or a program based on the phred)
- 2. A quality score expressed on a logarithmic scale:
 - Q = 10 log10(probability of an error)
 - Example: Q20 = 1% error probability

Secuenciación en cáncer - R. A. Verdugo - 2015

4/9/19

Número de muestras que pueden ser estudiadas en una corrida

Key Area	MiSeq	NextSeq 500	HiSeq 2500
DN	A Sequencing	100	
Whole Genome - Large (e.g. Human)		1	1-10
Whole Genome - Small (e.g. E. coli)	1 - 96	120 -792	96 - 6660
Targeted - Exome or large panels	1	1 - 12	12 - 160
Targeted - Small gene panels	3	15 - 48	36 - 72
RN	A Sequencing		
RNA Profiling	1 - 2	12 - 36	24 - 396
Transcriptome Analysis		3 - 10	8 - 96
Small RNA Analysis	1 - 5	25 - 80	60 - 792
Targeted RNA	384	384	6144
Regula	ation Applications		
ChIP-Seq	1	8 - 24	20 - 264
Methylation Analysis		1	

IV. Control de Calidad en NGS

1. Calidad de la muestra de ADN o ARN

- o Revisar degradación
- o Espectrofotometría (Nanodrop)
- o Fluorimetría (Pico- y Ribo-Green)
- Electroforesis en gel o capilar (Bioanalyser, TapeStation, Fragment Analyzer). RNA Integrity Number (RIN) de Agilent para RNA (RIN>7)

Tecnologías NGS - R. A. Verdugo

4/9/19

Control de Calidad en NGS

1. Calidad de las secuencias

- o Sequence Analysis Viewer (SAV) en Basespace
- o FastQC¹
- MultiQC
- o FQC Dashboard (Bioinformatics:33(19):3137)

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

Tecnologías NGS - R. A. Verdugo

4/9/19

Calidad Q30 en MiSeq Quality Scores† MiSeq Reagent Kit v2 > 90% bases higher than Q30 at 1 × 36 bp > 90% bases higher than Q30 at 2 × 25 bp > 90% bases higher than Q30 at 2 × 25 bp > 85% bases higher than Q30 at 2 × 300 bp > 80% bases higher than Q30 at 2 × 150 bp > 75% bases higher than Q30 at 2 × 250 bp † A quality score (Q-score) is a prediction of the probability of an error in base calling. The percentage of bases > Q30 is averaged across the entire run.

