

AVT 2014/15

Assignment 1

Breve Introdução ao Tema

O jogo *Frogger* foi criado em 1981 numa parceria entre a SEGA e a Konami, para consolas *arcade*. O jogador controla um sapo que tem de atravessar, em tempo limitado, um rio e uma estrada cheios de perigos. Na estrada o sapo deve evitar carros, camiões, autocarros e até ciclistas, enquanto no rio deve usar as costas dos crocodilos, e das tartarugas, assim como os troncos para cruzar o rio sem cair à água. Em ambos os casos, os objectos deslocam-se horizontalmente. O sapo tem de sair da parte inferior do ecrã e atingir uma das "casas de sapo" que existem na parte superior. Sempre que é atingido por um dos obstáculos na estrada ou no rio, o sapo morre, i.e. o jogador perde uma das cinco vidas.

Nas últimas décadas têm aparecido inúmeras versões deste jogo, incluindo algumas reimplementações com o grafismo original, ilustrado na figura acima, juntamente com a capa do jogo. Algumas destas versões podem ser jogadas online¹.

¹ http://www.happyhopper.org/

Trabalho a realizar

O objectivo dos trabalhos de laboratório de AVT deste ano é recriar este clássico numa versão 3D, recorrendo a C++ e OpenGL versão 3.1+, numa primeira fase (3 assignments) e a WebGL com Google Cardboard VR headset no browser Chrome numa segunda fase (dois assignments). A ideia é manter a jogabilidade original alterando a perspectiva gráfica para que os vários elementos do jogo tenham um aspecto 3D. Podem ver um exemplo para inspiração na figura seguinte.

O trabalho está dividido em cinco partes (assignments) que serão avaliadas individualmente ao longo do semestre. Cada assignment será avaliado com 20 pontos e corresponde a uma determinada percentagem da nota final. Em cada uma destas avaliações existem objectivos e tarefas específicas para que possam explorar as várias componentes do programa de AVT.

O resto deste documento refere-se ao primeiro *assignment*. As outras quatro partes serão publicadas ao longo do semestre.

Objectivos

Os objectivos da primeira parte dos trabalhos de laboratório são compreender e implementar a arquitectura de uma aplicação gráfica interativa e explorar os conceitos básicos de modelação.

A avaliação da primeira parte do trabalho será realizada na semana de **13 a 17 de Outubro** e corresponde a **2 valores (10%)** da nota total.

Tarefas

As tarefas para a primeira parte são:

- 1. Modelar o rio e as suas margens, assim como a estrada e as suas bermas usando um cubo para cada elemento. Modelar o sapo, os carros e os troncos, recorrendo a objectos geométricos tridimensionais simples (cubos, esferas, cilindos, cones, etc.). O sapo deve ser composto por mais do que um objecto geométrico, num mínimo de dois objectos, enquanto o carro deve ser composto por um mínimo de quatro. Sugere-se, numa abordagem simplista, o uso da biblioteca vsResSurfRevLib.cpp (Very Simple Surfaces of Revolution Model Library) que pode ser encontrada no code sample L3DLighting no tutorial "GLSL Core Tutorial" no site da Lighhouse3D. Posteriormente, os grupos poderão melhorar a qualidade gráfica dos modelos recorrendo a ferramentas de modelação mais completas[6 pontos]
- 2. Definir três câmaras: uma câmara fixa com uma vista de topo sobre a cena utilizando uma projecção ortogonal, (semelhante à vista 2D do jogo original), uma outra câmara fixa também com uma vista de topo mas usando uma projecção perspectiva, e uma câmara móvel, utilizando uma projecção perspectiva, que deve estar colocada atrás do sapo e acompanhar o seu movimento (o sapo deve estar visível). Deve ser possível alternar entre as três câmaras utilizando as teclas "1", "2" e "3". [5 pontos]
- 3. Orientar a câmara móvel através do movimento do rato, utilizando a tecla da esquerda pressionada. [2 pontos]
- 4. Controlar o movimento do sapo com:
 - o teclado utilizando as tecla 'O' para mover o sapo para a esquerda, 'P' para mover para a direita, 'Q' para mover para a frente e 'A' para mover paratrás. O sapo deve iniciar o movimento quando a tecla é pressionada e parar quando a tecla é largada. [2 pontos]

- o rato, utilizando a tecla da direita pressionada. [2 pontos]
- 5. Implementar (parcialmente) o movimento dos carros, autocarros, tartarugas e troncos. Este deve ser um movimento rectilíneo uniforme, à semelhança do jogo original. Diferentes tipos de elementos devem movimentar-se com velocidade diferente e a sua velocidade vai aumentando com o tempo de jogo, i.e quanto mais tempo o utilizador levar a atravessar a estrada e o rio, mais rápido os elementos se movem. O aparecimento dos obstáculos no jogo deve seguir um comportamento aleatório. [3 pontos]