International Rectifier

IRF7910

HEXFET® Power MOSFET

Applications

- High Frequency 3.3V and 5V input Pointof-Load Synchronous Buck Converters for Netcom and Computing Applications
- Power Management for Netcom,
 Computing and Portable Applications

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)}
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	R _{DS(on)} max	I _D
12V	$15m\Omega @V_{GS} = 4.5V$	10A

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V_{DS}	Drain-Source Voltage	12	V	
V_{GS}	Gate-to-Source Voltage	± 12	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	10		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	7.9	Α	
I _{DM}	Pulsed Drain Current [⊕]	79		
P _D @T _A = 25°C	Maximum Power Dissipation@	2.0	W	
P _D @T _A = 70°C	Maximum Power Dissipation@	1.3	W	
	Linear Derating Factor	16	mW/°C	
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

Symbol	ymbol Parameter		Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @		62.5	0,

Notes ① through ④ are on page 8 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	12			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11.5	15	mΩ	V _{GS} = 4.5V, I _D = 8.0A ③
			20	50	11122	$V_{GS} = 2.8V, I_D = 5.0A$
V _{GS(th)}	Gate Threshold Voltage	0.6		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS} Drain-to-Source Leakage Current				100	μA	V _{DS} = 9.6V, V _{GS} = 0V
I _{DSS}	Brail to Cource Leakage Guirent			250	μ/	$V_{DS} = 9.6V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	n^	V _{GS} = 12V
.000	Gate-to-Source Reverse Leakage			-200 nA		V _{GS} = -12V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9 fs	Forward Transconductance	18			S	V _{DS} = 6.0V, I _D = 8.0A
Qg	Total Gate Charge		17	26		$I_D = 8.0A$
Q _{gs}	Gate-to-Source Charge		4.4		nC	$V_{DS} = 6.0V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		5.2			$V_{GS} = 4.5V$
Q _{oss}	Output Gate Charge		16			$V_{GS} = 0V$, $V_{DS} = 10V$
t _{d(on)}	Turn-On Delay Time		9.4			$V_{DD} = 6.0V$
t _r	Rise Time		22		ns	$I_{D} = 8.0A$
t _{d(off)}	Turn-Off Delay Time		16] '''	$R_G = 1.8\Omega$
t _f	Fall Time		6.3			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		1730			V _{GS} = 0V
Coss	Output Capacitance		1340			$V_{DS} = 6.0V$
C _{rss}	Reverse Transfer Capacitance		330		pF	f = 1.0MHz

Avalanche Characteristics

Symbol	Symbol Parameter		Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		100	mJ
I _{AR}	Avalanche Current①		8.0	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			1.8		MOSFET symbol	
	(Body Diode)			1.0	A	showing the	
I _{SM}	Pulsed Source Current			70	^	integral reverse	
	(Body Diode) ①			79		p-n junction diode.	
V _{SD}	Diode Forward Voltage		0.85	1.3	V	$T_J = 25^{\circ}C$, $I_S = 8.0A$, $V_{GS} = 0V$ 3	
V SD	Diode Forward Voltage		0.70			$T_J = 125$ °C, $I_S = 8.0$ A, $V_{GS} = 0$ V ③	
t _{rr}	Reverse Recovery Time		50	75	ns	$T_J = 25$ °C, $I_F = 8.0$ A, $V_R = 12$ V	
Q _{rr}	Reverse Recovery Charge		60	90	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time		51	77	ns	$T_J = 125$ °C, $I_F = 8.0$ A, $V_R = 12$ V	
Q _{rr}	Reverse Recovery Charge		60	90	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF7910 International Internat

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRF7910

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF7910 International Internat

Fig 12. On-Resistance Vs. Drain Current

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

6

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

SO-8 Package Details

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Ε	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 B	ASIC	
e1	.025 B	.025 BASIC 0.635		BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- ① DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF7910

International IOR Rectifier

SO-8 Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 3.2mH $R_G = 25\Omega, \ I_{AS} = 8.0A.$
- ③ Pulse width \leq 300 μ s; duty cycle \leq 2%.
- 4 When mounted on 1 inch square copper board, t<10 sec

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.4/02