

INTRODUCTION TO CLOUD COMPUTING FOR BIG GEODATA ANALYSIS

dr. ing. Serkan Girgin MSc s.girgin@utwente.nl

Motivation

- Not all geospatial problems require cloud computing technology.
- Organizations are usually <u>heterogeneous</u> with respect to interests and needs, and for some people the topic is not and will not be relevant or even interesting.
- Even if there is no apparent need or interest, it is **still important** to have <u>at least</u> a basic understanding of the topic, because it is **becoming** a **key component** of the geospatial domain.
- This should be is an <u>organizational priority</u>.

Problem

- **Geospatial data** is getting **BIG** (e.g., satellites, drones, vehicles, social networks, mobile devices, cameras, etc.).
- Large and complex geospatial big data sets are <u>difficult to</u>
 <u>handle</u> using traditional systems and methods to analyse and extract information.
- Numerous spatial computing methods and systems have been developed to tackle the difficulties and enable discovery, delivery, analysis, and visualization of geospatial data.
- However, data processing and analysis tasks are still mostly performed on local workstations and they are time consuming (sometimes even ∞).

Solution?

- Recent developments in <u>both</u> hardware and software infrastructure have given big push and new direction to geospatial data processing capabilities.
- Scalable and affordable geospatial data analysis capabilities are available through:
 - Open-source systems that allow computing clusters on commodity hardware
 - Proprietary <u>cloud-based</u> data storage and computing services
- However, it is challenging to choose the right solution(s)
 depending on the <u>nature</u> of geospatial (big) data and the
 analysis <u>needs</u>.

Analysis Needs

- Regional conventional studies with medium size data
 - Analysis can be done faster by parallel computing on a workstation
- Machine learning and AI studies with medium size data
 - Analysis requires special processing units (e.g., GPU/TPU) due to computational complexity
- National or multi-national (e.g. continental) studies with big data
 - Analysis requires distributed computing on a computing cluster due to <u>large volume of data or high computational complexity</u>

All these analysis needs require specialized know-how and expertise, as well as adequate computing infrastructure...

... and transition in modus operandi!

Cloud computing is the <u>on-demand availability</u> of computer system resources, especially data storage and computing power, without direct active management by the user

Main Characteristics

- On-demand self-service: provision of computing capabilities as needed without requiring human interaction.
- **Broad network access**: availability over the Internet with **standard access mechanisms** for <u>different</u> client platforms (e.g., tablets, laptops, mobile phones).
- Resource pooling: <u>dynamic</u> <u>assignment and reassignment</u> of physical and virtual resources according to consumer demand.
- Rapid elasticity: capability to scale rapidly outward and inward proportionate to consumer demand.
- Measured service: <u>accurate</u> monitoring, control, and reporting of resource and service utilization.

They sound nice, but...

Status Quo

- Existing experience is not widespread, and difficulties exist in identifying the cases where cloud computing can play a role.
- Challenges exist in **proper selection and efficient use** of cloud computing *methods, tools, and services*.
- Available platforms and services <u>are little used</u> mainly due to high cost and limited domain-specific technical support.
- There is a <u>high interest</u> in getting **training** on *how to (better)* use cloud computing technology.
- There is also interest in **learning how** the technology is <u>applied</u> to solve domain-specific problems (e.g., what others do?)

Landscape

Source: https://mattturck.com/data2021/

Principle Needs

- <u>State-of-the-art</u> *technical and scientific information* should be **actively communicated** to the staff.
- Proficiency of the staff on cloud computing should be improved.
- <u>Easy-to-use and efficient</u> *cloud computing infrastructure* should be **made available** for training and work purposes.
- Workflows should be enhanced and improved with cloud computing technology where relevant.
- Ad hoc technical and scientific support and advise on cloud computing technology should be provided.
- <u>Knowledge and good practices</u> on better use of cloud computing technology should be **transferred** between *partner institutions*.

It is crucial to build a community that is self-motivated to learn, practice more, and share knowledge and experience!

Cloud Computing Services

• Infrastructure as a service (laaS)

On-demand (virtual) hardware

- Provider supplies the infrastructure
- User deploys and run arbitrary software, including operating system
- Examples
 - Amazon AWS
 - Microsoft Azure
 - Google Cloud
 - ESA DIASS
 - National Research Clouds
 - ...

Low level: Fine control on resources, custom system design, optimum performance, <u>but</u> difficult to manage, requires expertise!

Cloud Computing Services

- Platform as a service (PaaS)
 - Provider supplies the infrastructure, services, and tools that allow the user to deploy applications
 - User deploys applications and alters settings of the application hosting environment
 - Examples
 - Google Earth Engine
 - Microsoft Planetary Computer
 - ITC Geospatial Computing Platform
 - Google Colab
 - Amazon SageMaker
 - ...

Medium level: Limited control on resources, custom workflow design, good performance, <u>but</u> requires programming skills!

Cloud Computing Services

Software as a Service (SaaS)

On-demand software

- Provider supplies the infrastructure that run the applications
- User uses provided applications through an interface
- Examples
 - ArcGIS Online
 - CartoDB
 - Mapbox
 - R Studio Cloud
 - ...

High level: Easy to use, (usually) optimum performance, <u>but</u> no control on resources, usually paid!

There are also others, e.g., Function as a service (FaaS), Data as a service (DaaS), Data Processing as a service (DPaaS), etc.

Google Earth Engine

 GEE combines a multi-petabyte catalog of EO imagery and geospatial datasets with planetary-scale analysis capabilities available for free*.

https://earthengine.google.com/

Terrascope

• **Terrascope** provides VMs (4 vCPU, 8 GB RAM, 80 GB storage) with ready to use datasets (e.g., Sentinel-1, Sentinel-2, SPOT-VEGETATION, PROBA-V) and customizable pre-installed environment (e.g., QGIS, SNAP) for free*.

https://terrascope.be/

Geospatial Computing Platform

• **GCP** provides **GPU-enabled** (8 vCPU, 32 GB RAM, unlimited storage) and **Big Data** (72 vCPU, 768 GB RAM, unlimited storage) VM **clusters** with ready to use datasets (e.g., OSM), <u>customizable</u> pre-installed **interactive** and **desktop** environments, and **shared workspaces**.

Available Software

... and many more: 800+ Python and 400+ R packages!

Available Services

GeoServer

Open source server for sharing geospatial data

MapServer

Open source platform for publishing spatial data

PostgreSQL

Open source relational database

MariaDB

Open source relational database

GeoNode

Open source geospatial content management system

Dataverse

Open source research data repository software

Gitea

Open source lightweight code hosting solution

Open Data Kit

Open source platform to collect data quickly, accurately, offline, and at scale

Support

Support Center Home

Knowledgebase

Open a New Ticket

Check Ticket Status

Search our knowledge base

Search

Welcome to the CRIB Support Center!

In order to streamline support requests and better serve you, we utilize a support ticket system. Every support request is assigned a unique ticket number which you can use to track the progress and responses online. For your reference we provide complete archives and history of all your support requests.

Quick Access

- Report a Problem
- Shared Workspace Request
- Course Workspace Registration with Canvas Integration
- . External Account Request
- · Account Removal Request
- Account Transfer Request
- Software Request
- Dataset Request
- Database Request

Open a New Ticket

Check Ticket Status

Featured Questions

How can I access to the platform?

Is it secure?

How can I use the platform?

Which programming languages are supported on the platform?

Which libraries and packages are supported by the platform?

https://crib.utwente.nl/support/

Potential Benefits

- Better computing infrastructure (e.g., more CPUs, GPUs, RAM)
- Better storage (e.g., replicated, backup)
- Better scalability (e.g., more resources on-demand)
- Improved workflow performance due to colocation of data and computing resources (i.e., no download)
- Improved collaboration (e.g., direct access to same assets)
- Improved resource utilization (e.g., less idle time)
- No cost for investment and maintenance (if remote cloud)
- Low cost for extensive use (if local cloud)

Suggestions

- Ensure familiarity with the cloud computing technology through short talks and lectures
- Improve know-how by participating tool- and technology-specific training
- **Try and use** the infrastructure and platforms <u>available for free or through partner organizations</u>
- Follow a <u>hybrid approach</u> (i.e., local + cloud) to maximize the benefits
- Ask for technical and scientific support for better implementation and integration of the technology.
- Ask for guidance for the planning of future activities.
- **Share your knowledge** and good practices (e.g., for cost-effective and efficient use of the technology) with <u>your colleagues and partners</u>.

Moving to the Cloud

Source: Best practice for using cloud in research (Hong et al., 2018)

Big Geodata Newsletter

https://itc.nl/big-geodata/newsletter/

Subscribe Now

Contact

https://crib.utwente.nl

https://itc.nl/big-geodata

crib-itc@utwente.nl

@BigGeodata

dr.ing. Serkan Girgin MSc
Head of the Center of Expertise in Big Geodata Science
Assistant Professor
Faculty of Geo-information Science and Earth Observation
University of Twente
s.girgin@utwente.nl

+31 53 489 55 78