

OCP U.S. SUMMIT 2016 March 9-10 | San Jose, CA

Agenda

- History
- Current Status
- Deployment
- Storage Enclosure Management
- Multi Node Server Management
- → User Interface SSH Utilities, REST API
- What's next
- → Q & A

→ Started in Facebook in 2014 Jun

- Started in Facebook in 2014 Jun
- Developed for Facebook TOR, Wedge
 - AST1250, 256M DDR3, 32M SPI Flash
 - I2C, PMbus, SMbus
 - UART, GPIO, PWM/TACHO
 - MAC
 - USB Gadget
 - SPI, EEPROM
 - Temperature sensor, voltage sensor
 - ADC, PSU

- Started in Facebook in 2014 Jun
- Developed for Facebook TOR, Wedge
- Used Yocto 1.6.1
 - Aspeed SDK 0.64
 - U-boot 2013.07
 - Kernel 2.6.28.9
 - Busybox
 - OpenSSH
 - Python 2.7

- Started in Facebook in 2014 Jun
- Developed for Facebook TOR, Wedge
- Used Yocto 1.6.1
- Open sourced through github
 - https://github.com//facebook/openbmc

- → Started in Facebook in 2014 Jun
- Developed for Facebook TOR, Wedge
- Used Yocto 1.6.1
- Open sourced through github
- Presented in 2015 OCP

3rd-party BMC vs. OpenBMC

	3rd Party BMC	OpenBMC
Source Code	Proprietary, Closed	Designed by FacebookOpen Source @ Github
User Interface	• ipmitool - Raw Bytes	 SSH to BMC Linux Shell REST API - JSON objects
Security	RMCP+ over UDPKnown vulnerabilities	Secure Shell (ssh)http(s)
Authentication/Authorization	 BMC-centric username/password database 	Centralized certificate based
Multi-Node Management	 Need to virtualize BMC with multiple IP addresses 	 Supported Natively with node/slot number

OpenBMC architecture

OpenBIMC now

- Migrated to Yocto 1.8.1
- Support 5 different boards
- → Thousands of boards running OpenBMC deployed in production

OpenBIC deployment

- Manage OpenBMC as server
- Push OpenBMC as SW
- Spatula framework to sync configuration
- Use ssh certs to manage access permission
- Use RESTful to access FRU and sensors

OpenBIC on Lightning

- NVMe-based OCP Open Vault Storage "knox"
- Supports upto
 - -30 (x4) SSDs
 - -60 (x2) SSDs

Why OpenBMC on Lightning?

- Enclosure Management
- Chassis Management
- Multi-host support

No sideband network

- → No NIC on Lightning
- Storage and Hosts mapping issue
- → BMC compute core too weak for Infrastructure tools.

OpenBMC Interfaces

- → USB bus from Host to Lightning BMC (In-band only)
- → I2C bus from Host BMC to Lightning BMC
- → PCle x1 (Gen1) from Host to Lightning BMC (In-band only)

Yosemite platform architecture

OpenBIC user interface

User Interface

→ SSH

- Linux Shell Access
- Utilities

→ REST API

- http/https
- RESTful Resource End Points

Utilities

FRU Information

fruid-util [all, slot#, spb, nic] [--dump | --write] <file>

Power Control/Status

- power-util [slot#] [status, graceful-shutdown, off, on, cycle, 12V-off, 12V-on, 12V-cycle]
- power-util sled-cycle

→ Serial-Over-Lan

- sol-util <slot#> <--force | --history>
- Ctrl-x to close the session

Sensor Readings

sensor-util [all, slot#, spb, nic] <--threshold> <sensor num>

Utilities (contd.)

Error Logs

log-util [all | slot# | spb | nic] <--clear|--print>

Firmware Information/Update

- fw-util <slot#> --version
- fw-util <slot#> --update <--cpld|bios|bicbl>

Front Panel Control

- fpc-util <slot#> --usb
- fpc-util <slot#|sled> --identify <on|off>

Configuration

cfg-util <dump-all|key> <value>

Utilities (contd.)

- Fan Control
 - fan-util <-get|--set> <fan#> <pwm%>
- Communication with Intel ME
 - me-util <slot#> <[0..n]data_bytes_to_send>
- → BMC firmware update
 - flaschcp –v <kernel> /dev/mtd2
 - flaschcp –v <rfs> /dev/mtd3
 - Reboot

REST API design

Resource Model

- Simple, Consistent, Discoverable
- Reflect hardware topology

Resource Node Attributes

- Information: { Key1: Value1, key2: value2, ... }
- Actions: [action1, action2, action3, ...]
- Resources: [node1, node2, node3, ...]

System resource model

(Yosemite)

RESTful resource endpoints

→ Root Node:

/api

→ Side Plane Board:

/api/spb, /api/spb/bmc, /api/spb/fruid, /api/spb/sensors, /api/spb/logs

Server Board:

/api/server3, /api/server3/fruid, /api/server3/sensors, /api/server3/logs

→ NIC Mezzanine Card:

• /api/mezz, /api/mezz/fruid, /api/mezz/sensors, /api/mezz/logs

REST API usage examples

- -> curl http://<bmc-ip-addr>:8080/api
- curl http://<bmc-ip-addr>:8080/api/spb/bmc
- curl http://<bmc-ip-addr>:8080/api/server2/fruid
- curl http://<bmc-ip-addr>:8080/api/mezz/sensors
- curl -H "Content-Type: application/json" -X POST -d '{"action": "power-on"}' http://<bmc-ip-addr>:8080/api/server3

Summary

What did we learn

- OpenBMC architecture is flexible to support different HW
- Easy to bringup a new board
- Most work focus on board specific changes

On-going

- Porting Drivers to Linux Kernel 4.1.x
- New Aspeed BMC chip (AST2500) support

Next steps

Challenges

- Driver stability issue
- Better Tooling: Development, provisioning, maintenance
- BMC Vendor's EVK: Limited to evaluation or bring-up
- Full Server h/w: Limited to few firms/engineers

OpenBMC Developer Platform

- Base board with AST2500 BMC: similar to EVK
- COM Express connectivity: Choose and plugin Host CPU
- Portwell COMe OpenBMC Carrier Board (Model: PCOM-C660-OCP, PN: 21-F91411-000)
- Enable and Accelerate Open Source innovation

