Implementation for mpi

boundary corrections

2.1 Reminder of black hole simulations

2.1.1. general relativity

4d dimensions proper seperation:

ds = g pv dx dx g g signahen = (-+++)

Einstein field equation:

Stress energy momentum tensor

in vacuum Tus = 0

density

perfect fluid Tus = (g+p) un uv + Pfuv

pressure flow velocity

7:0 momentum derliby

Tis flux at momentum i in disection of

Your velousy
$$u^n = \frac{dx}{dx}$$
 $u'u_n = -1$, it is it vest frame $u^n = (1,0,0,0)$ four-momentum $p_n = mu^n$

The force pushing force

$$V^{\mu\nu} = \begin{pmatrix} -1 \\ 1_1 \end{pmatrix}$$

2.1.2. 3+1 decomposition

2.1.2. 3+1 decomposition

$$R = R_{pp} g^{pp}$$

evolving in time of the normal vector you need the extrinsic curvature

move from one slice to the other slice

you can choose in every slice new coordinates

2.1.3. evolution equations

from
$$k_{\mu\nu} = -\frac{1}{2} \times h S_{\mu\nu}$$
 we get $x_{\mu} Y_{ij} = -2 \times k_{ij} + P_{i}P_{i}$

$$G_{\mu\nu} = 8T T_{\mu\nu} \quad Combactain Y_{ij} Y_{ij} \qquad derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{ij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{ij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{ij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{ij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{ij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{ij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = \beta J_{h}k_{ij} + k_{h}J_{i}P_{h} - P_{i}P_{i} \times d + \chi \left(R_{ij} + k_{kij} - 2k_{kij}k_{ij} \right) + derivation$$

$$J_{k} k_{ij} = J_{k}J_{k} + J_{kij}J_{k} + J$$

2.1.4. constraint equations