WHAT IS CLAIMED IS:

1	1. A method for converting a signal to differing sample rates,		
2	comprising:		
3	receiving, at a first sample rate, a plurality of data points, associated		
4	with a first signal;		
5	operating on said plurality of data points to associate said signal with a		
6	predetermined set of parameters, with said set of parameters including a first		
7	transition band having an image corresponding thereto; and		
8	varying said sample rate associated with said first signal by		
9	interpolation with an interpolator having associated therewith a second transition		
10	band, with the width associated with said second transition band being a function of		
11	a spectral separation of said first transition band and said image, wherein a second		
12	signal is produced having a sequence of data samples approximating the first signal.		
1	2. The method recited in claim 1 wherein varying said sample rate		
2	includes producing each data sample associated with said second signal by		
3	convolving a predetermined finite number N of data points with an equal number of		
4	coefficients, with N being greater than two.		
1	3. The method recited in claim 2 wherein coefficients vary as a		
2	function of the temporal spacing between the output point and the corresponding		
3	input points.		
1	4. The method as recited in claim 1 wherein varying said sample		
2	rate increases said sample rate.		

5. The method as recited in claim 1 wherein varying said sample 1 rate decreases said sample rate. 2 6. The method as recited in claim 1 wherein operating on said 1 plurality of data points includes up-sampling said plurality of data points by a factor 2 of two. 3 7. The method as recited in claim 1 wherein operating on said 1 plurality of data points includes filtering said plurality of data points with a half-2 band filter. 3 8. The method as recited in claim 1 wherein operating on said 1 plurality of data points includes decimating said plurality of data points with a half-2 band decimator. 3 9. The method as recited in claim 6 further including decimating a 1 plurality of data points output by said interpolator with a half-band decimator, with 2 varying said sample rate occurring after receiving said plurality of data points and 3 before decimating said plurality of data points. 4 10. 1 The method as recited in claim 1 wherein operating on said 2 plurality of data points to associate said signal includes filtering the same with a finite impulse response filter. 3 11. 1 The method as recited in claim 1 wherein operating on said plurality of data points to associate said signal includes filtering the same with an 2 infinite impulse response filter. 3

1	12. A method for converting a digital audio signal to a different		
2	sample rate, comprising:		
3	receiving a plurality of data points, associated with an audio signal, a		
4	an initial sample rate;		
5	halfband filtering said plurality of data points with a halfband filter;		
6	and		
7	interpolating with an interpolator having independently		
8	programmable parameters.		
1	13. The method as recited in claim 12 wherein:		
2	said halfband filtering is done in conjunction with upsampling said		
3	plurality of data points; and		
4	said interpolating follows said upsampling and halfband filtering.		
1	14. The method as recited in claim 12 wherein:		
2	said halfband filtering is done, without upsampling, on said plurality		
3	of datapoints; and		
4	said interpolating follows said halfband filtering.		
1	15. The method as recited in claim 12 wherein:		
2	said halfband filtering follows said interpolating.		
1	16. The method as recited in claim 12 wherein:		
2	said halfband filtering is done in conjunction with upsampling said		
3	plurality of data points;		

4	said interpolating follows said halfband filtering; and		
5	halfband filtering and decimating following said interpolating.		
6	17. A computer program product for converting signals to differing		
2	sample rates comprising:		
3	code for receiving a plurality of data points, associated with a signal, at		
4	a first sample rate;		
5	code for operating on said plurality of data points to associate said		
6	signal with a predetermined set of parameters, with said set of parameters including		
7	a first transition band having a first width;		
8	code for varying said sample rate associated with said first signal by		
9	interpolating a subset of data points of said plurality of data points with an		
10	interpolator having associated therewith a second transition band, with the width		
11	associated with said second transition band being a function of a spectral separation		
12	of said first transition band and said image, wherein a second signal is produced		
13	having a sequence of data samples approximating the first signal; and		
14	a computer-readable storage medium for storing code.		
1	18. The computer program product as recited in claim 17 wherein		
2	code for operating on said plurality of data points includes code for up-sampling		
3	said plurality of data points by a factor of two.		
1	19. The computer program product as recited in claim 17 wherein		
2	code for operating on said plurality of data points includes code for filtering said		
3	plurality of data points with a half-band filter.		

1	20. The computer program product as recited in claim 17 wherein		
2	code for operating on said plurality of data points includes code for decimating said		
3	plurality of data points with a half-band decimator.		
1	21. The computer program product as recited in claim 18 further		
2	including code for decimating said plurality of data points with a half-band		
3	decimator.		
1	22. The computer program product as recited in claim 17 wherein		
2	code for operating on said plurality of data points to associate said signal includes		
3	code for filtering said data points with a filter selected from the set of filters		
4	consisting essentially of a finite impulse response filter and a infinite impulse		
5	response filter.		
1	23. A computer program product for converting a digital audio		
2	signal to a different sample rate, comprising:		
3	a computer-readable storage medium for storing code, said code		
4	including		
5	code for receiving a plurality of data points, associated with an audio		
6	signal, at an initial sample rate;		
7	code for halfband filtering said plurality of data points with a halfband		
8	filter; and		
9	code for interpolating with an interpolator having independently		
10	programmable parameters.		

I	24	The computer program product as recited in claim 25 wherein.		
2	Sa	id code for halfband filtering is executable in conjunction with code		
3	for upsampling	for upsampling said plurality of data points; and		
4	Se	id code for interpolating is executable following said upsampling		
5	and halfband filtering code.			
1	2	The computer program product as recited in claim 23 wherein:		
2	Si	id code for halfband filtering is executable, without upsampling		
3	code, on said plurality of datapoints; and			
4	Si	id code for interpolating is executable following said halfband		
5	filtering code.			
1	2	The computer program product as recited in claim 23 wherein:		
2	S	id code for halfband filtering is executable following said code for		
3	interpolating.			
1	2	7. The computer program product as recited in claim 23 wherein:		
2	S	id code for halfband filtering is executable in conjunction with code		
3	for upsampling said plurality of data points;			
4	S	id code for interpolating is executable following said code for		
5	halfband filtering; and further comprising:			
6	c	ode for halfband filtering and decimating executable following said		
7	code for interp	code for interpolating.		
1	2	3. The method of claims 1 or 12 wherein said interpolator is an FIR		
2	Nth order sum	of products interpolator with linear interpolation of coefficients.		

1	29.	The computer program product of claims 17 or 23 wherein said	
2	interpolator is an I	FIR Nth order sum of products interpolator with linear	
3	interpolation of co	efficients.	
1	30.	The method of claims 1 or 12 wherein said interpolator has a	
2	transition band beginning adjacent the top of a passband and ending adjacent the		
3	bottom of a passband image.		
1	31.	The computer program product of claims 17 or 23 wherein said	
2	interpolator has a	transition band beginning adjacent the top of a passband and	
3	ending adjacent th	e bottom of a passband image.	
1	32.	The method of claims 7, 8, 9 or 12 wherein said halfband filter is	
2	an IIR filter composed of first order allpass blocks.		
1	33.	The computer program product of claims 19 or 23 wherein said	
2	halfband filter is a	n IIR filter composed of first order allpass blocks.	
3			
4			