Universidade Federal de Santa Catarina EEL7123/EEL510457 Solução Problema 4.9

Problema 4.9. Na figura seguinte se mostram os resultados de síntese em ASIC para uma tecnologia de 65nm do atraso de multiplicadores RNS e estimativas de unidades binário-RNS e RNS-binário. Caso quisermos fazer m multiplicações com uma faixa dinâmica de saída de 128-bits em serie usando a binaria e RNS:

	Moduli set	DR (bits)	Delay (ps) Bin-RNS	Delay (ps) RNS-Bin
3	2 ⁴³ , 2 ⁴³ -1, 2 ⁴³ +1	129	3100	5000
4	2 ³² , 2 ³² -1, 2 ³² +1, 2 ³² -3	128	2800	5000
5	2 ²⁶ , 2 ²⁶ -1, 2 ²⁶ +1, 2 ²⁶ -3, 2 ²⁶ +3	130	2600	5000
6	2 ²² , 2 ²² -1, 2 ²² +1, 2 ²² -3, 2 ²² +3, 2 ²² -5	132	2400	5000
7	2 ¹⁹ , 2 ¹⁹ -1, 2 ¹⁹ +1, 2 ¹⁹ -3, 2 ¹⁹ +3, 2 ¹⁹ +5, 2 ¹⁹ -7	133	2300	5000
8	2 ¹⁶ , 2 ¹⁶ -1, 2 ¹⁶ +1, 2 ¹⁶ -3, 2 ¹⁶ +3, 2 ¹⁶ -5, 2 ¹⁶ +7, 2 ¹⁶ -9	128	2200	5000
9	2 ¹⁵ , 2 ¹⁵ -1, 2 ¹⁵ +1, 2 ¹⁵ -3, 2 ¹⁵ +3, 2 ¹⁵ +5, 2 ¹⁵ -7, 2 ¹⁵ -9, 2 ¹⁵ +9	135	2100	5000
10	213, 213-1, 213+1, 213-3, 213+3, 213+5, 213+11, 213-13, 213+15, 213+17	130	2000	5000

(a) Sabendo que o atraso para um multiplicador de 128-bits usando abordagem binaria convencional é de 22,5ns. Qual é o ganho obtido para m=1 comparado com RNS usando um conjunto de 3 módulos?

O atraso da multiplicação RNS incluindo as conversões $binrio \to RNS$ e $RNS \to binrio$ vem dado pelo caminho critico da Figura mostrada abaixo $\Delta_{RNS(3modulos)}=3.10+3.10+5.0=11.2ns.$ Comparado com o atraso da

multiplicação binaria $\Delta_{BIN}=22.5ns$, o ratio de ganho será $\frac{11,2}{22,5}=2.01$, logo em RNS a operação de multiplicação será aproximadamente $\times 2$ mais rápido.

(b) Obtenha o atraso para m=3 em binário e em RNS usando um conjunto de 3 módulos.

Seguindo o mesmo raciocino do apartado anterior, o atraso da multiplicação RNS incluindo as conversões $binrio \rightarrow RNS$ e $RNS \rightarrow binrio$ será $\Delta_{RNS(3modulos)} = 3.10 + (m \times 3.10) + 5.0$, onde m=3, logo $\Delta_{RNS(3modulos)} = 17.4ns$. Comparado com o atraso de 3 multiplicações binarias em serie $\Delta_{BIN} = 3 \times 22.5 = 67.5ns$, o ratio de ganho será $\frac{67.5}{17.4} = 3.88$, logo em RNS a operação de multiplicação será quase $\times 4$ mais rápido.

(c) Faça uma tabela com os ganhos obtidos para m=1 em comparação com binário para os conjuntos de módulos apresentados (faça as aproximações que ache necessário).

# modulos	Bin-> RNS	Multiplicação	RNS -> Bin	Atraso Total RNS	Ganho
3	3.1ns	3.1ns	5.0ns	11.2ns	2.01
4	2.8ns	4.35ns	5.0ns	12.15ns	1.85
5	2.6ns	4.05ns	5.0ns	11.65ns	1.93
6	2.4ns	3.9ns	5.0ns	11.3ns	1.99
7	2.3ns	3.76ns	5.0ns	11.06ns	2.03
8	2.2ns	3.75ns	5.0ns	10.95ns	2.05
9	2.1ns	3.7ns	5.0ns	10.8ns	2.08
10	2.0ns	3.58ns	5.0ns	10.58ns	2.13

Atraso multiplicação binaria 22.5ns

(d) Faça uma tabela com os ganhos obtidos para o conjunto de três módulos e valores de m de 3 a 10.

Bin->RNS	Multiplicações (m)	RNS -> Bin	Atraso Total RNS	Atraso Total Bin	Ganho
3.1ns	3x3.1ns	5.0ns	17.4ns	3x22.5	3.88
3.1ns	4x3.1ns	5.0ns	20.5ns	4x22.5	4.39
3.1ns	5x3.1ns	5.0ns	23.6ns	5x22.5	4.77
3.1ns	6x3.1ns	5.0ns	26.7ns	6x22.5	5.06
3.1ns	7x3.1ns	5.0ns	29.8ns	7x22.5	5.28
3.1ns	8x3.1ns	5.0ns	32.9ns	8x22.5	5.47
3.1ns	9x3.1ns	5.0ns	36ns	9x22.5	5.63
3.1ns	10x3.1ns	5.0ns	39.1ns	10x22.5	5.75