10.3HD

Task 1: Integration

1) Explain why the following functions are or are not probability density functions

a)
$$f(x) = \frac{7}{x}$$
 for $x \in [1, e^{0.5}]$

Evidence and conclusion

- Positive division gives a positive >0 result, so property 1 is supported
- $_{\circ}\;$ The final result is not =1, dismissing property 2

As property 1 is supported but 2 is not supported, this function is not a valid probability density function.

Working out

Testing property 1

Since a positive number divided by a positive number (like all those x values found in the domain) equals a positive number, we can safely say that property 1 is supported.

For further evidence, $\frac{7}{1} = 7$ and $\frac{7}{e^{0.5}} \approx 4.25$.

Testing property 2

$$\int_{1}^{e^{0.5}} \left(\frac{7}{x}\right) \\
-> 7 \ln(|x|) \\
= [7 \ln(|x|)]_{1}^{e^{0.5}}$$

Upper bound (b)

$$7 \ln(|e^{0.5}|)$$
-> 7×0.5
= $\frac{7}{2}$

Lower bound (a)

$$7 \ln(|1|)$$
-> 7×0
= 0

Final results

$$\frac{\frac{7}{2}-0}{=\frac{7}{2}}$$

b)
$$f(x) = \frac{1}{8}(16 - x^4)$$
 for $x \in [0, 4]$

Evidence and conclusion

- 0..2 give x-values ≥ 0 but 3..4 are < 0, not supporting property 1
- $\quad \hbox{ The final result is not} = 1, \hbox{ dismissing property 2} \\$

As property 1 and 2 are not supported, this function is not a valid probability density function.

Working out

Testing property 1

Testing bounds

In order from
$$x=0..\,x=4$$
:
$$\frac{1}{8}(16-x^4)$$

$$2,\frac{15}{8},0,-\frac{65}{8},-30$$

Testing property 2

$$\begin{array}{l} \int_0^4 \frac{1}{8} (16-x^4) dx \\ -> \frac{1}{8} \times \int_0^4 (16-x^4) dx \\ -> \frac{1}{8} \times \left(\frac{16}{1} x - \frac{1}{5} x^5\right) \\ -> \frac{1}{8} \times (16 x - \frac{1}{5} x^5) \\ = \frac{1}{8} \times [16 x - \frac{1}{5} x^5]_0^4 \end{array}$$

Upper bound (b), x=4

$$\begin{array}{l} \frac{1}{8} \times (16(4) - \frac{1}{5}(4)^5) \\ >> \frac{1}{8}(64 - \frac{1}{5}1024) \\ >> \frac{1}{8}(\frac{320}{5} - \frac{1024}{5}) \\ >> \frac{1}{8}(-\frac{704}{5}) \\ >> \frac{704}{40} \end{array}$$

Lower bound (a), x = 0

$$\frac{1}{8}(\times 16(0) - \frac{1}{5}(0)^5)$$

-> $\frac{1}{8} \times 0 \times 0$

Final results

c)
$$f(x) = \frac{7}{3} \sin(x)$$
 for $x \in [0, 5\pi]$

Evidence and conclusion

- $\,\,^{\circ}\,$ There were multiple x values that were negative, so we can not support property 1
- $\,\,^{\bullet}\,\,$ The final result is not =1, dismissing property 2 as valid

As property 1 and 2 are not supported, this function is not a valid probability density function.

Working out

Testing property 1

```
\begin{array}{l} \frac{7}{3}\sin(x)\\ \text{We will test }x\text{ values }0,\frac{1}{2},\pi,\frac{3\pi}{2},\frac{9\pi}{5}5\pi\\ \text{Results: }0,\approx1.12,0,-\frac{7}{3},\approx-1.37,0 \end{array}
```

Testing property 2

$$\int_0^{5\pi} (\frac{7}{3}\sin(x))dx$$
-> $-\frac{7}{3}\cos(x)$

$$[-\frac{7}{3}\cos(x)]_0^{5\pi}$$

Upper bound (b),
$$x=5\pi$$
 $-\frac{7}{3}\cos(5\pi)$

$$-\frac{7}{3}\cos(3\pi)$$

$$-> -\frac{7}{3} \times -1$$

$$= \frac{7}{3}$$

Lower bound (a),
$$x=0$$

$$-\frac{7}{3}\cos(x)$$

$$- > -\frac{7}{3} \times 1$$

$$= -\frac{7}{3}$$

Final results

$$\begin{array}{l} \frac{7}{3} - -\frac{7}{3} \\ = \frac{14}{3} \end{array}$$

Task 2: \sin and \cos graph

Find the total area between $y = \sin(x)$ and $y = \cos(x)$ given the domain of $x \in [0, 2\pi]$

Answers

total area $=4\sqrt{2}$ given $y=\sin(x)$, $y=\cos(x)$, and the domain $x\in[0,2\pi]$

Graph

Working out

As the functions intersect, the area is not found directly by $[f(x) - g(x)]_0^{2\pi}$. We need to split it up into further intervals.

According to the graph, there is a clear point of intersection at every $\frac{\pi}{4} + n\pi$ point (n starts at 0). We will use these intersection points and graph to distinguish the interval points for the integral.

$$\begin{split} & \int_0^{2\pi} (\sin(x) - \cos(x)) dx \\ & -> [-\cos(x) - \sin(x)]_0^{2\pi} \\ & \int_0^{2\pi} (\cos(x) - \sin(x)) dx \\ & -> [\sin(x) + \cos(x)]_0^{2\pi} \end{split}$$

The intervals we will use are therefore going to be:

$$\left[\sin(x) + \cos(x)\right]_0^{\frac{\pi}{4}}$$
 $\sin(0) + \cos(0)$

$$0+1$$

$$= 1$$

$$\sin(\frac{\pi}{4}) + \cos(\frac{\pi}{4})$$

$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$= \frac{\frac{2}{\sqrt{2}}}{\sqrt{2}}$$

$$= \sqrt{2}$$

 $=\sqrt{2}-1$

$$[-\cos(x)-\sin(x)]^{rac{5\pi}{4}}$$

$$-\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right)
-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}
-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}
-\frac{\sqrt{2} - \sqrt{2}}{2}
= -\sqrt{2}$$

$$\frac{-\sqrt{2}-\sqrt{2}}{2}$$

$$= -\sqrt{2}$$

$$\begin{aligned}
&-\cos\left(\frac{5\pi}{4}\right) - \sin\left(\frac{5\pi}{4}\right) \\
&\frac{\sqrt{2}}{2} - -\frac{\sqrt{2}}{2} \\
&\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \\
&= \sqrt{2}
\end{aligned}$$

$$\sqrt{2} - -\sqrt{2}$$
 $\Rightarrow 2\sqrt{2}$

$$[\sin(x)+\cos(x)]^{2\pi}_{rac{5\pi}{4}}$$

$$\sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right)$$
$$-\frac{\sqrt{2}}{2} + \frac{-\sqrt{2}}{2}$$
$$= -\sqrt{2}$$

 $\sin(2\pi)+\cos(2\pi)$

$$0+1$$

$$\begin{aligned} 1 &- -\sqrt{2} \\ &= \sqrt{2} + 1 \end{aligned}$$

$$(\sqrt{2}-1) + (2\sqrt{2}) + (\sqrt{2}+1)$$

 $\Rightarrow 2\sqrt{2} + 2\sqrt{2}$
 $= 4\sqrt{2}$