Geometry of Manifolds Qualifying Exam Fall 1997

Part A. Do all nine (9) questions in part A.

- 1. What is the fundamental group of
 - (a) \mathbb{RP}^2 (the real projective plane)
 - (b) $S^1 \times S^1$
 - (c) T(M), the total space of the tangent bundle to a simply connected smooth manifold, M.
- **2.** Describe in detain the flows of the vectorfield on \mathbb{R}^2 given by

$$-y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$

3. Let ω be the 1-form on \mathbb{R}^2 given by x(x-1)(y-1)dx, and let R be the region

$$\{(x,y)|0 \le x \le 1, 0 \le y \le 1\}.$$

Find $\int_{B} d\omega$.

- 4. (a) Give an example of a compact orientable manifold with non-trivial tangent bundle.
 - (b) Give an example of a compact orientable manifold with trivial tangent bundle.
 - (c) Give an example of a compact non-orientable manifold.
- **5.** If $M = S^1 \times S^4$, what is the dimension of the fibres of the third exterior bundle $\Lambda^3(M)$?
- **6.** How many non-zero vectorspaces of differential forms are there in the deRham complex of $S^2 \times S^2$?
- 7. What is the scalar curvature of the surface 3x + 2y z = 0 in \mathbb{R}^3 at the point (0,0,0)?
- 8. Give an example of a locally Euclidean topological space which is not a topological manifold.
- 9. State the deRham Theorem.

Part B. Choose four (4) and only four of the following problems.

- 1. On \mathbb{R}^3 with standard Euclidean coordinates (x,y,z), consider the 2-form $\alpha = f(x,y,z)dx \wedge dy + yzdx \wedge dz + x^2dy \wedge dz$. Choose a function f(x,y,z) so that $d\alpha = 0$ and $\alpha|_{z=1} = dx \wedge dy$.
- 2. (a) Define the deRham cohomology groups of a differentiable manifold.
 - (b) Calculate the deRham cohomology groups of the circle S^1 directly from the definition in part (a).
- **3.** Give a detailed computation of the fundamental group of the closed compact surface of genus 2 (a.k.a the "two-holed torus").
- **4.** (a) Write down the deRham cohomology groups for the 4-sphere S^4 .
 - (b) Suppose that ω is a differential 2-form on S^4 and that $d\omega = 0$. Show that
 - i. $\omega \wedge \omega = d\phi$ for some 3-form ϕ .

- ii. $\int_{S^4} \omega \wedge \omega = 0$.
- iii. There is at least one point $x \in S^4$ such that $\omega \wedge \omega(x) = 0$.
- 5. (a) Define what we mean by a Lie group.
 - (b) If G is a Lie group, define its Lie algebra g.
 - (c) Apply the construction of b) to determine the Lie algebra of SO(3), including a derivation of the bracket.
 - (d) Show that the tangent bundle to a Lie group is equivalent to a trivial (product) bundle.
- **6.** Let (M,g) be a Riemannian manifold and V(M) be the smooth vectorfields over M.
 - (a) For $X, Y \in V(M)$ define the Riemannian curvature operator $R(X, Y) : V(M) \to V(M)$.
 - (b) Show that if $M = \mathbb{R}^n$ and g is the Euclidean metric, then R(X,Y)Z = 0 for all vectorfields X,Y,Z.
 - (c) Suppose that R(X,Y)Z=0 for all vector fields X,Y,Z on an arbitrary Reimannian manifold (M,g). Sketch a proof that shows that for $x\in M$ there is a coordinate system (x_1,\ldots,x_n) around x such that

$$g = \sum_{i=1}^{n} dx^{i} \otimes dx^{i}$$