OXYDOREDUCTION

Exercice n°1

- 1°) Tracer le domaine de prédominance ou d'existence pour Sn^{4+} , Sn^{2+} et Sn, dans l'hypothèse où $[Sn^{2+}]_{lim} = 0.10$ mol/l. Conclure.
- 2°) On agite de l'étain métal en excès dans une solution de chlorure d'étain (IV) à 0.1 mol/l Décrire les phénomènes observés.

Déterminer la composition finale de la solution.

On donne $E^{\circ}(Sn^{2+}/Sn) = -0.14V$; $E^{\circ}(Sn^{4+}/Sn^{2+}) = 0.15V$

Exercice n°2

- 1°) On traite du cuivre par de l'acide nitrique, HNO₃. Que se passe-t-il ?
- 2°) Même question avec le zinc.
- 3°) Quelle est l'action de l'acide chlorhydrique, HCl sur ces deux métaux ?

Données : H⁺/ H₂ E° = 0 ; NO₃⁻/ NO E° = 0.96V ; Cu²⁺/Cu E° = 0.34 V et Zn²⁺/Zn E° = -0.76 V.

Exercice n°3

L'ion mercurique Hg²⁺ n'existe pratiquement pas en solution en présence de mercure Hg_I à cause de l'équilibre :

$$Hg^{2+} + Hg_1 = Hg_2^{2+}$$
 (1)

On donne : E_1° (Hg²⁺/Hg₂²⁺) = 0.907V, E_2° (Hg²⁺/Hg)= 0.850 V

- 1°) Calculer le potentiel standard E₃ du couple Hg₂²⁺/Hg.
- 2°) Calculer la constante de l'équilibre (1). Commenter l'affirmation du début de l'énoncé.

Exercice n°4

On construit la pile suivante :

- ① Electrode de zinc plongeant dans une solution de sulfate de zinc 0.1 mol/l
- ② Electrode d'argent plongeant dans une solution de nitrate d'argent 0.1 mol/l
- 1°) Préciser les polarités, déterminer la f.e.m de cette pile. Faire un schéma clair de la pile.
- 2°) On fait débiter la pile.
- 2.1°) Ecrire les réactions d'électrodes, et la réaction globale.
- 2.2°) Préciser le sens du courant.
- 2.3°) Calculer la constante d'équilibre de la réaction.
- 2.4°) Calculer la concentration des espèces ioniques restant en solution lorsque la f.e.m atteint la valeur 1.40 V.
- 3°) On ajoute de l'ammoniac concentré dans l'un ou l'autre des compartiments. Que se passe-t-il, qualitativement, dans chaque cas?
- 4°) Donner la f.e.m de la pile suivante :
- Zn NH₃ 1.5 mol/l, Zn²⁺ 0.1 mol/l NH₃ 1 mol/l, Ag⁺ 0.1 mol/l Ag

On donne
$$Zn^{2+}/Zn$$
 $E^{\circ}=-0.76V$ Ag^{+}/Ag $E^{\circ}'=0.80 \ V$ $Zn(NH_3)_4^{2+} \ pK=9.5$ $Ag(NH_3)_2^{2+} \ pK'=7.1$

Exercice n°5

Soit la pile: Ni Ni²⁺ 0.1 mol/l; HNO₃ 0.01 mol/l | NaOH 1 mol/l; PbS (s) Pb

On mesure sa f.e.m e = 0.69 V

On donne: Ni²⁺/Ni E°₁=-0,23V; Pb²⁺/Pb E°₂ = -0,13V H₂S pK₁ = 7.0 pK₂ = 13.0

- 1°) Faire un schéma de la pile.
- 2°) Préciser sa polarité.
- 3°) Calculer le produit de solubilité du sulfate de plomb.

Exercice n°6

Calculer le potentiel d'électrode lorsque la solution a atteint l'état d'équilibre:

 Cr^{3+} : 0.1 mol/l + Hg_2^{2+} : 0.3 mol/l.

On donne Cr^{3+}/Cr^{2+} $E_1^{\circ} = -0.41$ V; Hg^{2+}/Hg_2^{2+} $E_2^{\circ} = 0.91$ V.