Lenguaje natural:

Se va a recorrer un árbol en búsqueda de una etiqueta pasada por parámetros. Por lo tanto, para recorrer el árbol se va a aplicar el recorrido de primer hijo, hermano derecho. Si este se encuentra, devolvemos su etiqueta, pero si no está, devolvemos nulo.

PreCondiciones:

- El árbol no debe estar vacío.

PostCondiciones:

- Si se encuentra un nodo con la etiqueta buscada, se devuelve ese nodo.
- Si no se encuentra el nodo con la etiqueta buscada, se devuelve nulo.
- El árbol no se modifica.

Pseudocódigo y Orden del tiempo de ejecución:

Buscar(unaEtiqueta):

COM

unhijo <- PrimerHijo;	O(1)
MIENTRAS unHijo <> nulo hacer	O(n)
unHijoBuscar <- unHijo. Buscar(unaEtiqueta);	O(1)
SI unHijoBuscar <> nulo hacer	O(1)
SI (unHijo.getEtiqueta() == unaEtiqueta)	O(1)
return unHijo	O(1)
SINO	
unHijo <- unHijo.hermanoDerecho;	O(1)
FIN MIENTRAS	
Return nulo	

FIN

Orden de ejecución del algoritmo: O(n)

Ejemplo de ejecución para encontrar "Facultad de ciencias empresariales":

- 1 Rectoría
- 2 Vicerrectoría del medio universitario
- 3 Vicerrectoría académica
- 4 Vicerrectoría administrativa
- 5 Facultad de ciencias empresariales

Cantidad de comparaciones: 5

Ejemplo para encontrar "Departamento de Medicina":

Va a recorrer todo el árbol buscando la etiqueta, y va a devolver nulo ya que, no la va a encontrar.

Cantidad de comparaciones para una etiqueta que no existe: n siendo "n" la cantidad de objetos que tiene el árbol.

g) Orden de tiempo de ejecución para distintos casos:

El orden de tiempo de ejecución para todos los casos va a ser O(n).