1. Business Understanding

This initial phase focuses on understanding the project objectives and requirements from a business perspective, and then converting this knowledge into a data mining problem definition, and a preliminary plan designed to achieve the objectives.

In this situation let's pretend we are a real estate agency in Boston MA and we are interested in purchasing some houses. We would like to know which houses are under value to help us narrow down the list and put in an accurate bid on a house.

Objective: Identify what makes a property valuable? What is a fair price for a house?

Dataset: Boston

Goal: Predict medy column in Test Dataset!

- 1. crim: per capita crime rate by town.
- 2. **zn**: proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. indus: proportion of non-retail business acres per town.
- 4. chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- 5. **nox**: nitrogen oxides concentration (parts per 10 million).
- 6. rm: average number of rooms per dwelling.
- 7. age: proportion of owner-occupied units built prior to 1940.
- 8. **dis**: weighted mean of distances to five Boston employment centres.
- 9. rad: index of accessibility to radial highways.
- 10. **tax**: full-value property-tax rate per \$10,000.
- 11. ptratio: pupil-teacher ratio by town.
- 12. black: 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town.
- 13. **Istat**: lower status of the population (percent).
- 14. **medv**: median value of owner-occupied homes in \$1000s.

Load Library

```
In [1]: | #import Libraries for data handling
    import os
    import pandas as pd
    import numpy as np

#import for visualization
    import seaborn as sns
    import matplotlib
    import matplotlib.pyplot as plt
    %matplotlib inline

#import for Linear regression
    from sklearn.linear_model import LinearRegression
```

Load Data into Pandas Dataframe

```
In [2]:
              #Get Working Directory
              cwd = os.getcwd()
              cwd
              # Load the dataset
              file = cwd+'/train.xlsx'
              basetable1 = pd.read_excel(file)
In [3]:
             # peek preview into the data
              basetable1.head(6)
    Out[3]:
                 ID
                        crim
                               zn indus chas
                                                                    dis rad
                                                                             tax ptratio
                                                                                          black
                                                                                                 Istat
                                                nox
                                                        rm
                                                            age
                  1 0.00632
                             18.0
                                    2.31
                                            0 0.538 6.575 65.2 4.0900
                                                                             296
                                                                                    15.3
                                                                                         396.90
                                                                                                  4.98
              0
                                                                          1
              1
                  2 0.02731
                                    7.07
                                                                                         396.90
                              0.0
                                            0 0.469 6.421 78.9 4.9671
                                                                          2
                                                                             242
                                                                                    17.8
                                                                                                  9.14
                    0.03237
              2
                              0.0
                                    2.18
                                              0.458 6.998 45.8
                                                                 6.0622
                                                                             222
                                                                                    18.7
                                                                                         394.63
                                                                                                  2.94
              3
                  5 0.06905
                              0.0
                                    2.18
                                            0 0.458 7.147 54.2 6.0622
                                                                             222
                                                                                    18.7
                                                                                         396.90
                                                                                                  5.33
                  7 0.08829
                             12.5
                                    7.87
                                            0 0.524 6.012 66.6 5.5605
                                                                             311
                                                                                    15.2 395.60 12.43
                     0.22489 12.5
                                    7.87
                                            0 0.524 6.377 94.3 6.3467
                                                                             311
                                                                                    15.2 392.52 20.45
```

Here we see first 5 rows. Data is loaded Successfully!

2. Data Understanding (EDA)

Print a concise summary of a DataFrame.

This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage.

```
In [4]:
            # Information on the Dataframe
            print("\n\n", basetable1.info())
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 333 entries, 0 to 332
            Data columns (total 15 columns):
                        333 non-null int64
            crim
                        333 non-null float64
                        333 non-null float64
            zn
            indus
                        333 non-null float64
            chas
                        333 non-null int64
                        333 non-null float64
            nox
                        333 non-null float64
            rm
                        333 non-null float64
            age
                        333 non-null float64
            dis
                        333 non-null int64
            rad
            tax
                        333 non-null int64
                        333 non-null float64
            ptratio
                        333 non-null float64
            black
            lstat
                        333 non-null float64
                        333 non-null float64
            medv
            dtypes: float64(11), int64(4)
            memory usage: 39.1 KB
             None
In [5]:
            #how big is the data?
            print(basetable1.size)
            4995
```

Understand Correlation between Dependednt (medv) and other Features

Correlation Based Inferences

- 1. ID Column though has Negative correlation but actually does not have any value to the Data. Eliminating at at later stage
- 2. rm: +vely MOST Impacting: average number of rooms per dwelling has High Correlation with medv (Dependent Variable)
- 3. Istat : -vely MOST Impacting: lower status of the population (percent) has High Correlation with medv (Dependent Variable)

C:\Users\kvibhaas\AppData\Local\Continuum\anaconda3\lib\site-packages\sci py\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for mul tidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `a rr[seq]`. In the future this will be interpreted as an array index, `arr [np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [9]:
Set the palette to the "pastel" default palette:
sns.set_palette("pastel")
#Seaborn has six variations of its default color palette:: deep, muted, paste

In [12]: x = np.random.gamma(6, size=200)
sns.distplot(x, kde=False, fit=stats.gamma);

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb7a2f10b8>

In [14]: N sns.distplot(basetable1.medv, bins = 5, hist = True, rug = True)

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb7a3780b8>

Logarithm base 10 of 14 is : 1.146128035678238 2.5224442335063197 9.379559743707995

```
In [18]: Second strict structure in the second structure is second structure in the second structure in the second structure is second structure in the second structure in the second structure is second structure in the second structure in the second structure is second structure in the second structure in the second structure is second structure in the second structure is second structure in the second structure in the second structure is second structure in the second structure in the second structure is second structure in the second structure in the second structure is second structu
```


Linear Regression Assumptions

- 1. Linear relationship between target and features
- 2. No outliers
- 3. No high-leverage points
- 4. Homoscedasticity of error terms
- 5. Uncorrelated error terms
- 6. Independent features

```
In [20]:  plt.scatter(x,y,color = 'red')
    #plot.plot(xTrain, linearRegressor.predict(xTrain), color = 'blue')
    plt.title('medv vs rm')
    plt.xlabel('rm')
    plt.ylabel('medv')
    plt.show()
```


	ID	crim	zn	indus	chas	nox	
rm \ ID 90	1.000000	0.456312	-0.155639	0.421978	0.007958	0.440185	-0.1127
crim 80	0.456312	1.000000	-0.210913	0.422228	-0.041195	0.463001	-0.3101
zn 97	-0.155639	-0.210913	1.000000	-0.518679	-0.024442	-0.501990	0.3281
indus 65	0.421978	0.422228	-0.518679	1.000000	0.037496	0.750087	-0.4403
chas 51	0.007958	-0.041195	-0.024442	0.037496	1.000000	0.080275	0.1122
nox 15	0.440185	0.463001	-0.501990	0.750087	0.080275	1.000000	-0.3385
rm 00	-0.112790	-0.310180	0.328197	-0.440365	0.112251	-0.338515	1.0000
age 73	0.257300		-0.544513		0.068286		
dis 91		-0.397067		-0.702327			0.2691
rad 83	0.707526		-0.303663		0.007714		
tax 87	0.686246		-0.311180		-0.021826	0.670722	
ptratio 27	0.309838		-0.380449		-0.125067		
black 02				-0.335049		-0.369416	0.1552
1stat 47	0.281953		-0.388112		-0.050055		
medv 98	-0.221694	-0.407454	0.344842	-0.473932	0.204390	-0.413054	0.6895
at \	age	dis	rad	tax	ptratio	black	lst
-	0.257300	-0.356461	0.707526	0.686246	0.309838	-0.271619	0.2819
	0.379034	-0.397067	0.666636	0.617081	0.313409	-0.475796	0.5320
	-0.544513	0.637142	-0.303663	-0.311180	-0.380449	0.168130	-0.3881
indus 55	0.638378	-0.702327	0.569779	0.708313	0.391087	-0.335049	0.6141
chas 55	0.068286	-0.081834	0.007714	-0.021826	-0.125067	0.062029	-0.0500
nox 74	0.736000	-0.769364	0.612180	0.670722	0.192513	-0.369416	0.5988
rm 47						0.155202	
age 34	1.000000	-0.764208	0.447380	0.511893	0.259293	-0.268054	0.5888
39						0.284374	
rad	0.447380	-0.477610	1.000000	0.903562	0.470849	-0.406405	0.4845

medv ID -0.221694 crim -0.407454 0.344842 zn -0.473932 indus chas 0.204390 -0.413054 nox 0.689598 rm age -0.358888 dis 0.249422 -0.352251 rad tax -0.448078 ptratio -0.481376 black 0.336660 lstat -0.738600 1.000000 medv

3. Data Preparation

In [24]: ▶	ba	seta	ble1.	head	l()													
Out[24]:		ID	crin	n	zn ir	ndus	chas	nox	r	m a	age	dis	rad	tax	ptra	atio b	lack	Istat
	0	1	0.0063	2 18	8.0	2.31	0	0.538	6.57	'5 6	35.2	4.0900	1	296	1	5.3 39	6.90	4.98
	1	2	0.0273	1 (0.0	7.07	0	0.469	6.42	21 7	78.9	4.9671	2	242	1	7.8 39	6.90	9.14
	2	4	0.0323	7 (0.0	2.18	0	0.458	6.99	8 4	45.8	6.0622	3	222	1	8.7 39	4.63	2.94
	3	5	0.0690	5 (0.0	2.18	0	0.458	7.14	7 5	54.2	6.0622	3	222	1	8.7 39	6.90	5.33
	4	7	0.0882	9 12	2.5	7.87	0	0.524	6.01	2 6	6.6	5.5605	5	311	1	5.2 39	5.60	12.43
	4																	•
In [25]: ▶	ba:	<pre># Drop ID basetable2 = basetable1.drop('ID',axis=1) print("ID Column Dropped from Dataframe") basetable2.head() ID Column Dropped from Dataframe</pre>																
Out[25]:	10	COI	uiiii Di	орр	ieu ii	OIII L	Jacai	i aiiic										
out[25].		(crim	zn	indus	cha	as n	юх	rm	age		dis rac	l ta	c ptr	atio	black	Ist	at m
	0	0.00	0632 1	8.0	2.31		0 0.5	538 6.	575	55.2	4.09	900 1	296	6 '	15.3	396.90	4.9	98 2
	1	0.02	2731	0.0	7.07		0 0.4	69 6.	121	78.9	4.96	671 2	2 242	2 ′	17.8	396.90	9.	14 2
	2	0.03	3237	0.0	2.18		0 0.4	58 6.	998	15.8	6.06	622 3	3 222	2	18.7	394.63	2.9	94 3
	3	0.06	8905	0.0	2.18		0 0.4	58 7.	147	54.2	6.06	622 3	3 222	2 ′	18.7	396.90	5.3	33 3
	4	0.08	3829 1	2.5	7.87		0 0.5	524 6.	012	6.6	5.56	605 5	31 ⁻	1 ′	15.2	395.60	12.4	43 2
	4																	•

Split Data into Test & Train

- **Motivation:** we need a way to choose between machine learning models and our goal is to estimate likely performance of a model on out-of-sample data.
- **Initial idea:** we can train and test on the same data. However this will cause overfitting. As the number of features in a dataset increases the problem will increase
- Alternative idea: we can use train/test split. We can split the dataset into two pieces so that the model can be trained and tested on different data. Then, testing accuracy is a better estimate than training accuracy of out-of-sample performance.

Dependent variable : 'medv' Column removed from features

Out[26]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
3	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
4	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43

Target variable : 'medv' Column retained from features

```
Out[30]: 0 24.0
1 21.6
2 33.4
3 36.2
4 22.9
```

Name: medv, dtype: float64

train_test_split

Training and testing split by 70/30 was successful

4. Model

Im1 : Raw data only removing ID

Prediction of Y based on test sample

Out[48]: Text(0, 0.5, 'Coefficient')

5. Model Evaluation

1. root-mean-square error (RMSE) for the Model

2. R-Sqauared for the Model

1. Using Statmodels.api to train the model

2 Print Summary for the Model

> Dep. Variable: R-squared: 0.954 medv Model: OLS Adj. R-squared: 0.951 Method: Least Squares F-statistic: 348.0 **Date:** Tue, 17 Dec 2019 Prob (F-statistic): 1.05e-138 Time: 07:45:33 Log-Likelihood: -714.65 No. Observations: 233 AIC: 1455. **Df Residuals:** 220 BIC: 1500. **Df Model:** 13

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
crim	-0.0408	0.068	-0.597	0.551	-0.175	0.094
zn	0.0612	0.023	2.710	0.007	0.017	0.106
indus	-0.0192	0.095	-0.203	0.840	-0.206	0.167
chas	4.5415	1.631	2.784	0.006	1.326	7.757
nox	1.7283	5.583	0.310	0.757	-9.276	12.732
rm	5.2955	0.504	10.509	0.000	4.302	6.289
age	-0.0180	0.022	-0.821	0.412	-0.061	0.025
dis	-1.2825	0.343	-3.744	0.000	-1.958	-0.607
rad	0.2140	0.106	2.015	0.045	0.005	0.423
tax	-0.0096	0.006	-1.592	0.113	-0.022	0.002
ptratio	-0.2779	0.179	-1.556	0.121	-0.630	0.074
black	0.0214	0.004	5.036	0.000	0.013	0.030
Istat	-0.5250	0.079	-6.679	0.000	-0.680	-0.370
0	mnibus:	100.684	Durk	oin-Wats	son:	1.930
Prob(O	mnibus):	0.000	Jarque	e-Bera (JB): 4	55.674

Warnings:

Skew:

Kurtosis:

1.707

8.939

Cond. No. 9.01e+03

1.13e-99

Prob(JB):

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 9.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

coef std err t P>|t| [0.025 0.975] crim -0.0408 0.068 -0.597 0.551 -0.175 0.094 indus -0.0192 0.095 -0.203 0.840 -0.206 0.167 nox 1.7283 5.583 0.310 0.757 -9.276 12.732 age -0.0180 0.022 -0.821 0.412 -0.061 0.025 tax -0.0096 0.006 -1.592 0.113 -0.022 0.002

zn 0.0612 0.023 2.710 0.007 0.017 0.106

chas 4.5415 1.631 2.784 0.006 1.326 7.757

rm 5.2955 0.504 10.509 0.000 4.302 6.289

dis -1.2825 0.343 -3.744 0.000 -1.958 -0.607 rad 0.2140 0.106 2.015 0.045 0.005 0.423

ptratio -0.2779 0.179 -1.556 0.121 -0.630 0.074 black 0.0214 0.004 5.036 0.000 0.013 0.030 lstat -0.5250 0.079 -6.679 0.000 -0.680 -0.370

rad: index of accessibility to radial highways. tax: full-value property-tax rate per \$10,000.

High multi colinearity

```
In [53]: # Create New Feature Tax_Rad
basetable2['tax_rad'] = basetable2.tax * basetable1.rad
basetable2.head()
```

Out[53]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	m
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	2
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	2
2	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	3
3	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	3
4	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	2

```
In [54]: #drop Tax and Rad as they are highly multicolinear
basetable3 = basetable2.drop(['tax', 'rad'],axis=1)

print("tax & rad Column Dropped from Dataframe")
basetable3.head()
```

tax & rad Column Dropped from Dataframe

Out[54]:

	crim	zn	indus	chas	nox	rm	age	dis	ptratio	black	Istat	medv	Tax_F
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	15.3	396.90	4.98	24.0	<u>′</u>
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	17.8	396.90	9.14	21.6	2
2	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	18.7	394.63	2.94	33.4	(
3	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	18.7	396.90	5.33	36.2	(
4	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	15.2	395.60	12.43	22.9	18
4													•

In [55]: ▶ # Drop indus, nox, crim, age Based on High p Value

basetable3 = basetable2.drop(['indus', 'nox', 'crim', 'age'],axis=1)
print("indus, nox, crim, age Column Dropped from Dataframe")
basetable3.head()

indus, nox, crim, age Column Dropped from Dataframe

Out[55]:

	zn	chas	rm	dis	rad	tax	ptratio	black	Istat	medv	Tax_Rad
0	18.0	0	6.575	4.0900	1	296	15.3	396.90	4.98	24.0	296
1	0.0	0	6.421	4.9671	2	242	17.8	396.90	9.14	21.6	484
2	0.0	0	6.998	6.0622	3	222	18.7	394.63	2.94	33.4	666
3	0.0	0	7.147	6.0622	3	222	18.7	396.90	5.33	36.2	666
4	12.5	0	6.012	5.5605	5	311	15.2	395.60	12.43	22.9	1555

In [59]: ▶ basetable3.head()

Out[59]:

	zn	chas	rm	dis	rad	tax	ptratio	black	Istat	medv	tax_rad
0	18.0	0	6.575	4.0900	1	296	15.3	396.90	4.98	24.0	296
1	0.0	0	6.421	4.9671	2	242	17.8	396.90	9.14	21.6	484
2	0.0	0	6.998	6.0622	3	222	18.7	394.63	2.94	33.4	666
3	0.0	0	7.147	6.0622	3	222	18.7	396.90	5.33	36.2	666
4	12.5	0	6.012	5.5605	5	311	15.2	395.60	12.43	22.9	1555

Model Attempt 2

```
In [60]:
             #get Predictor Dataframe
             predictor = basetable3.drop('medv', axis = 1)
             print(" Dependent variable : 'medv' Column removed from features")
             predictor.head()
             #get Target Dataframe
             target = basetable3['medv']
             target.head()
             from sklearn.model_selection import train_test_split
             x_train, x_test, y_train, y_test = train_test_split(predictor, target, test_s
             # Success
             print("Training and testing split by 70/30 was successful")
             print("Training Predictor dimension :",x_train.shape)
             print("Training Target dimension :",y_train.shape)
             print("Test Predictor dimension :",x_test.shape)
             print("Test Target dimension :",y_test.shape)
              Dependent variable : 'medv' Column removed from features
             Training and testing split by 70/30 was successful
             Training Predictor dimension: (233, 10)
             Training Target dimension : (233,)
             Test Predictor dimension: (100, 10)
             Test Target dimension: (100,)
```

In [61]: #import Library from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score #Model Training lm2 = LinearRegression(fit_intercept=True,normalize=False) print("Parameters of Linear Regressor function : ",lm2.get_params) #Model Training lm2.fit(x_train,y_train) #Predict y_pred = lm2.predict(x_test) print("Total number of predicted values = ",y_pred.shape) # The coefficients plt.plot(lm2.coef_)

Out[61]: [<matplotlib.lines.Line2D at 0x2bb7742d358>]

Ozn 1chas 2rm 3dis 4rad 5tax 6ptratio 7black 8lstat 9tax_rad chas : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise). rm : average number of rooms per dwelling.

Room and Charles river has highest coefficient

Model Evaluation

```
In [62]: M #Model Evaluation

from math import sqrt

#Calculate root-mean-square error (RMSE):
print("R-Squared for the above model: ",r2_score(y_test,y_pred)*100,"%")

#Calculate R-squared for the Model:
print("\nroot-mean-square error (RMSE) for the model is: ",sqrt(mean_squared)

R-Squared for the above model: 59.77538914536744 %

root-mean-square error (RMSE) for the model is: 5.894945770741745
```

Out[63]:

OLS Regression Results

Dep. Variable:	medv	R-squared:	0.964
Model:	OLS	Adj. R-squared:	0.962
Method:	Least Squares	F-statistic:	596.7
Date:	Tue, 17 Dec 2019	Prob (F-statistic):	7.03e-155
Time:	08:26:03	Log-Likelihood:	-683.65
No. Observations:	233	AIC:	1387.
Df Residuals:	223	BIC:	1422.
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
zn	0.0776	0.019	4.148	0.000	0.041	0.114
chas	3.0757	1.495	2.058	0.041	0.130	6.021
rm	4.8211	0.379	12.718	0.000	4.074	5.568
dis	-1.1184	0.238	-4.695	0.000	-1.588	-0.649
rad	1.1862	0.380	3.119	0.002	0.437	1.935
tax	-0.0029	0.005	-0.600	0.549	-0.013	0.007
ptratio	-0.3249	0.154	-2.111	0.036	-0.628	-0.022
black	0.0158	0.004	4.214	0.000	0.008	0.023
Istat	-0.4835	0.060	-8.089	0.000	-0.601	-0.366
tax_rad	-0.0016	0.001	-2.829	0.005	-0.003	-0.000

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 303.603

 Skew:
 1.317
 Prob(JB):
 1.18e-66

 Kurtosis:
 7.933
 Cond. No.
 4.24e+04

Durbin-Watson:

Omnibus: 77.703

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.097

[2] The condition number is large, 4.24e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Out[65]:

	zn	chas	rm	dis	ptratio	black	Istat	medv	tax_rad
0	18.0	0	6.575	4.0900	15.3	396.90	4.98	24.0	296
1	0.0	0	6.421	4.9671	17.8	396.90	9.14	21.6	484
2	0.0	0	6.998	6.0622	18.7	394.63	2.94	33.4	666
3	0.0	0	7.147	6.0622	18.7	396.90	5.33	36.2	666
4	12.5	0	6.012	5.5605	15.2	395.60	12.43	22.9	1555

Model Attempt 3

```
In [66]:
          #get Predictor Dataframe
             predictor = basetable4.drop('medv', axis = 1)
             print(" Dependent variable : 'medv' Column removed from features")
             predictor.head()
             #get Target Dataframe
             target = basetable4['medv']
             target.head()
             from sklearn.model selection import train test split
             x_train, x_test, y_train, y_test = train_test_split(predictor, target, test_s
             # Success
             print("Training and testing split by 70/30 was successful")
             print("Training Predictor dimension :",x_train.shape)
             print("Training Target dimension :",y_train.shape)
             print("Test Predictor dimension :",x_test.shape)
             print("Test Target dimension :",y_test.shape)
```

Dependent variable: 'medv' Column removed from features Training and testing split by 70/30 was successful Training Predictor dimension: (233, 8) Training Target dimension: (233,) Test Predictor dimension: (100, 8) Test Target dimension: (100,)

```
In [67]: #import Library
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

#Model Training
lm3 = LinearRegression(fit_intercept=True,normalize=False)
print("Parameters of Linear Regressor function : ",lm3.get_params)

#Model Training
lm3.fit(x_train,y_train)

#Predict
y_pred = lm3.predict(x_test)
print("Total number of predicted values = ",y_pred.shape)

# The coefficients
plt.plot(lm3.coef_)
```

Out[67]: [<matplotlib.lines.Line2D at 0x2bb78d7a080>]

Ozn 1chas 2rm 3dis 4ptratio 5black 6lstat 7tax_rad

```
In [68]: | #Model Evaluation

from math import sqrt

#Calculate root-mean-square error (RMSE):
print("R-Squared for the above model: ",r2_score(y_test,y_pred)*100,"%")

#Calculate R-squared for the Model:
print("\nroot-mean-square error (RMSE) for the model is: ",sqrt(mean_squared)

R-Squared for the above model: 70.86083121002729 %

root-mean-square error (RMSE) for the model is: 5.205159161462403
```

R squared is still low 70% and RMSE is high 5.2

In [69]: M model = sm.OLS(y_train,x_train).fit()
model.summary()

Out[69]:

OLS Regression Results

Dep. Variable: 0.959 medv R-squared: Model: OLS Adj. R-squared: 0.958 Method: Least Squares F-statistic: 660.7 **Date:** Tue, 17 Dec 2019 Prob (F-statistic): 1.20e-151 Time: 08:33:15 Log-Likelihood: -701.85 No. Observations: AIC: 233 1420. **Df Residuals:** 225 BIC: 1447.

Df Model: 8

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
zn	0.0352	0.020	1.764	0.079	-0.004	0.075
chas	2.9610	1.290	2.296	0.023	0.420	5.502
rm	5.8555	0.379	15.468	0.000	5.110	6.601
dis	-0.8757	0.257	-3.401	0.001	-1.383	-0.368
ptratio	-0.5564	0.156	-3.574	0.000	-0.863	-0.250
black	0.0138	0.004	3.207	0.002	0.005	0.022
Istat	-0.4786	0.059	-8.121	0.000	-0.595	-0.362
tax_rad	-3.185e-05	6.79e-05	-0.469	0.640	-0.000	0.000

Omnibus: 94.266 Durbin-Watson: 1.895

Prob(Omnibus): 0.000 Jarque-Bera (JB): 446.643

Skew: 1.559 **Prob(JB):** 1.03e-97

Kurtosis: 9.024 **Cond. No.** 3.18e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.18e+04. This might indicate that there are strong multicollinearity or other numerical problems.

tax_rad is not helping us. this is in significant. lets remove this and create model again. also Chas is zn has p value

Model Attempt 4

Out[71]:

```
chas
           rm
                  dis ptratio
                              black
                                      Istat medv
                        15.3 396.90
     0 6.575 4.0900
                                      4.98
0
                                             24.0
1
     0 6.421 4.9671
                        17.8 396.90
                                      9.14
                                             21.6
     0 6.998 6.0622
2
                        18.7 394.63
                                      2.94
                                             33.4
3
     0 7.147 6.0622
                        18.7 396.90
                                      5.33
                                             36.2
     0 6.012 5.5605
                        15.2 395.60 12.43
                                             22.9
```

```
In [72]:
             #get Predictor Dataframe
             predictor = basetable5.drop('medv', axis = 1)
             print(" Dependent variable : 'medv' Column removed from features")
             predictor.head()
             #get Target Dataframe
             target = basetable5['medv']
             target.head()
             from sklearn.model_selection import train_test_split
             x_train, x_test, y_train, y_test = train_test_split(predictor, target, test_s
             # Success
             print("Training and testing split by 70/30 was successful")
             print("Training Predictor dimension :",x_train.shape)
             print("Training Target dimension :",y_train.shape)
             print("Test Predictor dimension :",x_test.shape)
             print("Test Target dimension :",y_test.shape)
```

Dependent variable: 'medv' Column removed from features Training and testing split by 70/30 was successful Training Predictor dimension: (233, 6) Training Target dimension: (233,) Test Predictor dimension: (100, 6) Test Target dimension: (100,)

In [73]: #import Library from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score #Model Training lm4 = LinearRegression(fit_intercept=True,normalize=False) print("Parameters of Linear Regressor function : ",lm4.get_params) #Model Training lm4.fit(x_train,y_train) #Predict y_pred = lm4.predict(x_test) print("Total number of predicted values = ",y_pred.shape) # The coefficients plt.plot(lm4.coef_)

Out[73]: [<matplotlib.lines.Line2D at 0x2bb7795ca58>]

Model Evaluation

```
In [102]:
                #Model Evaluation
                from math import sqrt
                #Calculate root-mean-square error (RMSE):
                print("R-Squared for the above model : ",r2_score(y_test,y_pred)*100,"%")
                #Calculate R-squared for the Model:
                print("\nroot-mean-square error (RMSE) for the model is : ",sqrt(mean squared
                R-Squared for the above model : -84.6901264244536 %
                root-mean-square error (RMSE) for the model is: 11.520263468475049
 In [75]:
                model = sm.OLS(y_train,x_train).fit()
                model.summary()
     Out[75]:
                OLS Regression Results
                    Dep. Variable:
                                                      R-squared:
                                                                     0.962
                                           medv
                                            OLS
                          Model:
                                                   Adj. R-squared:
                                                                     0.961
                                    Least Squares
                                                       F-statistic:
                         Method:
                                                                     966.3
                           Date: Tue, 17 Dec 2019 Prob (F-statistic): 1.49e-158
                           Time:
                                        08:47:02
                                                  Log-Likelihood:
                                                                   -703.44
                No. Observations:
                                            233
                                                            AIC:
                                                                     1419.
                    Df Residuals:
                                            227
                                                            BIC:
                                                                     1440.
                        Df Model:
                                              6
                 Covariance Type:
                                       nonrobust
                          coef std err
                                            t P>|t| [0.025 0.975]
                  chas
                        1.9041
                                 1.303
                                        1.461 0.145 -0.663
                                                           4.471
```

Model Attempt 5

Out[77]:

	rm	dis	ptratio	black	Istat	medv
0	6.575	4.0900	15.3	396.90	4.98	24.0
1	6.421	4.9671	17.8	396.90	9.14	21.6
2	6.998	6.0622	18.7	394.63	2.94	33.4
3	7.147	6.0622	18.7	396.90	5.33	36.2
4	6.012	5.5605	15.2	395.60	12.43	22.9

Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb777ca780>

Out[80]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb77223cc0>

In [81]: ► #dis is negatively skewed

Out[82]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb77052240>

In [83]: ▶ #pt ratio is potitively skewed

Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb77462588>

In [85]: ▶ #black is highly positively skewed

Out[86]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb775a8f98>

In [88]:

#remove ouliers

from scipy import stats

basetable6 = basetable5[(np.abs(stats.zscore(basetable5)) < 3).all(axis=1)]
print ("outliers removed beyond 3SD.")</pre>

basetable6.head()

outliers removed beyond 3SD.

Out[88]:

	chas	rm	dis	ptratio	black	Istat	medv
0	0	6.575	4.0900	15.3	396.90	4.98	24.0
1	0	6.421	4.9671	17.8	396.90	9.14	21.6
2	0	6.998	6.0622	18.7	394.63	2.94	33.4
3	0	7.147	6.0622	18.7	396.90	5.33	36.2
4	0	6.012	5.5605	15.2	395.60	12.43	22.9

In [89]: ▶

sns.distplot(basetable6.ptratio, bins = bin_size, hist = True)
Visualize the outliers in normal distribution

Out[89]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb77408048>

Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb7a849780>

In [96]: N sns.distplot(basetable5.chas, bins = bin_size, hist = True)
Visualize the outliers in normal distribution

Out[96]: <matplotlib.axes._subplots.AxesSubplot at 0x2bb7aaa4898>

In [97]: basetable6.head()

Out[97]:

	chas	rm	dis	ptratio	black	Istat	medv
0	0	6.575	4.0900	15.3	396.90	4.98	24.0
1	0	6.421	4.9671	17.8	396.90	9.14	21.6
2	0	6.998	6.0622	18.7	394.63	2.94	33.4
3	0	7.147	6.0622	18.7	396.90	5.33	36.2
4	0	6.012	5.5605	15.2	395.60	12.43	22.9

Out[98]:

	rm	dis	ptratio	black	Istat	medv
0	6.575	4.0900	15.3	396.90	4.98	24.0
1	6.421	4.9671	17.8	396.90	9.14	21.6
2	6.998	6.0622	18.7	394.63	2.94	33.4
3	7.147	6.0622	18.7	396.90	5.33	36.2
4	6.012	5.5605	15.2	395.60	12.43	22.9

```
In [99]:
             #get Predictor Dataframe
             predictor = basetable6.drop('medv', axis = 1)
             print(" Dependent variable : 'medv' Column removed from features")
             predictor.head()
             #get Target Dataframe
             target = basetable6['medv']
             target.head()
             from sklearn.model_selection import train_test_split
             x_train, x_test, y_train, y_test = train_test_split(predictor, target, test_s
             # Success
             print("Training and testing split by 70/30 was successful")
             print("Training Predictor dimension :",x_train.shape)
             print("Training Target dimension :",y_train.shape)
             print("Test Predictor dimension :",x_test.shape)
             print("Test Target dimension :",y_test.shape)
```

Dependent variable: 'medv' Column removed from features Training and testing split by 70/30 was successful Training Predictor dimension: (200, 5) Training Target dimension: (200,) Test Predictor dimension: (87, 5) Test Target dimension: (87,)

```
In [94]: #import Library
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

#Model Training
lm5 = LinearRegression(fit_intercept=True,normalize=False)
print("Parameters of Linear Regressor function : ",lm5.get_params)

#Model Training
lm5.fit(x_train,y_train)

#Predict
y_pred = lm5.predict(x_test)
print("Total number of predicted values = ",y_pred.shape)

# The coefficients
plt.plot(lm5.coef_)
```

Out[94]: [<matplotlib.lines.Line2D at 0x2bb7a9c6438>]

root-mean-square error (RMSE) for the model is: 11.520263468475049

Now, this is bad. Ha ha ha:)

In [104]: basetable6.describe()

Out[104]:

	rm	dis	ptratio	black	Istat	medv
count	287.000000	287.000000	287.000000	287.000000	287.000000	287.000000
mean	6.273425	3.880460	18.418118	377.752753	11.941289	22.845645
std	0.626856	1.981831	2.132160	43.153169	6.422150	8.329401
min	4.368000	1.169100	12.600000	100.190000	1.730000	5.000000
25%	5.883500	2.262050	17.150000	379.540000	6.925000	18.100000
50%	6.208000	3.331700	18.700000	392.780000	10.420000	21.800000
75%	6.591500	5.344000	20.200000	396.900000	15.470000	25.000000
max	8.337000	9.222900	21.200000	396.900000	31.990000	50.000000

In []: ▶