Faculdade de Cursos Superiores
 Tecnologia de Tecnologia
Senac Pelotas

Fundamentos de redes de computadores

Prof. ME Pablo de Chiaro Rosa

- 1. Modelo OSI
- 2. Modelo TCP/IP
- 3. Camadas de Protocolos
- 4. Encapsulamento
- 5. Referências

Diagrama Simplificado de Rede

Modelos: OSI vs TCP/IP

Modelo de Referência OSI (Open System Interconnection) criado para estabelecer um padrão de compatibilidade e eficiência em redes de computadores, composto por 7 camadas.

As camadas têm a função de simplificar o estudo e implantação dos serviços e protocolos de rede.

Modelos: OSI vs TCP/IP

Devido a complexidade e a demora no desenvolvimento de aplicações do modelo de referência OSI, o modelo adotado de fato acabou sendo o TCP/IP.

Assim como proposto no OSI, no modelo TCP/IP cada um dos protocolos é capaz de adicionar uma funcionalidade a uma outra camada específica de forma assinalada.

Modelos: OSI vs TCP/IP

Camada Física

- → Trata dos aspectos físicos da transmissão de bits.
- → Não se preocupa com a correção dos dados
- → São definidos:
 - ◆ Taxa de transmissão (9600bit/s, 10Mbit/s, etc)
 - Tipo de Transmissão (Banda base, larga)
 - Quantos pinos e qual a função de cada pino dos conectores
 - Outros procedimentos eletrônicos e mecânicos

A camada física fornece a conexão real, física entre os dispositivos. Cabos Ethernet e cabos de fibra óptica operam na camada 1. Os dados fluem através dos cabos através da eletricidade ou luz. Os dados nesta camada são representados por bits (1 ou 0).

Camada Enlace de Dados

- Transformar o canal de comunicação em uma linha livre de erros de transmissão
- → Controle de erros
- Controle de fluxo
- → Mostra uma ligação ponto a ponto para a camada superior (os bits são passados na mesma ordem de saída).
- Disciplina acesso ao meio físico em redes de difusão (broadcast)
- Responsável pela delimitação/sincronização de quadros/caracteres = conjunto de bits da mesma mensagem que trafegam juntos pela rede.

Exemplos de Protocolos: PPP, Frame Relay, STP e IEEE 802.3 (Ethernet)

A unidade aqui é bits.

Camada Enlace de Dados

→ É nesta camada que os switches trabalham, utilizando o MAC Address para encaminhar o pacote à máquina certa. Com esse encaminhamento, o MAC se converte em endereço IP.

Exemplos de Protocolos: PPP, Frame Relay, STP e IEEE 802.3 (Ethernet)

A unidade de transmissão aqui é o quadro

Camada Rede

- Cria uma independência em relação às tecnologias empregadas para transmissão e interconexão entre sistemas
- → Abstração de rede lógica
- → Responsável pelo estabelecimento de rotas
- → Determina como os pacotes acham o caminho até seu destino
- → Trata dos problemas de congestionamento e de conversão de endereços entre sub-redes diferentes

Exemplos de Protocolos: IP, ICMP, IPv6, IPX, IGMP, IPSec

A unidade é o pacote

Camada Transporte

- Camada fim a fim
- Comunicação entre entidades de um mesmo nível nos sistemas finais
- → Garantir que a informação chega correta ao destino, oferecendo:
 - ◆ Controle de fluxo
 - Segurança
 - ◆ Transparência
 - ◆ Controle de erro

Exemplos de Protocolos: TCP, UDP, SPX, SCTP

A unidade aqui é o segmento

Camada Transporte

→ Camada fim a fim

Camada Sessão

- Mecanismo de controle de diálogo entre processos dos sistemas finais
- → Estabelece, mantém e sincroniza a interação entre sistemas de computação
 - Isto é, exerce o controle de quando a comunicação entre dois hosts (de origem e de destino – ou emissor e receptor) deve começar, terminar ou reiniciar.

Exemplos de Protocolos: SSL, TLS

A unidade aqui são os dados.

Camada Apresentação

- Oferece uma independência as aplicações quanto a representação interna de dados
- → Tratamento da sintaxe e da semântica dos dados transmitidos:
- Conversão de formatos de dados (big endian, little endian, ASCII, Unicode)
- → Mecanismos de compactação de dados

Criptografia

A unidade aqui são os dados.

Camada Aplicação

- → Os serviços de aplicação ao usuário
- → Definição dos protocolos que serão implementados pelo software aplicativo

Exemplos de Protocolos:

Transferência de arquivos (ex: ftp, scp, etc)

Correio eletrônico (ex: smtp, pop, imap, etc)

WWW (ex: http)

Compartilhamento de arquivos e recursos (ex: smb, cifs)

Encapsulamento

- Cada camada possui controles que são inseridos nos pacotes
- Estes controles formam o cabeçalho do pacote
- → O encapsulamento é o nome dado ao processo de controles aos dados empacotados

Encapsulamento

r n

```
4 0.002931 192.168.254.3 192.168.254.1 HTTP 195 GET /arquivo.exe HTTP/1.0

□ Ethernet II, Src: Vmware_c7:e0:c6 (00:0c:29:c7:e0:c6), Dst: Vmware_f2:dc:b2 (00:0c:29:f2:dc:b2)

 Destination: Vmware_f2:dc:b2 (00:0c:29:f2:dc:b2)

    ⊕ Source: Vmware_c7:e0:c6 (00:0c:29:c7:e0:c6)

   Type: IP (0x0800)
□ Internet Protocol Version 4. Src: 192.168.254.3 (192.168.254.3). Dst: 192.168.254.1 (192.168.254.1)
    Version: 4
   Header length: 20 bytes
 ⊕ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
    Total Length: 181
    Identification: 0xdd2b (56619)
 Fragment offset: 0
    Time to live: 64
    Protocol: TCP (6)

    Header checksum: 0xdfc0 [correct]

    Source: 192.168.254.3 (192.168.254.3)
   Destination: 192.168.254.1 (192.168.254.1)
    [Source GeoIP: Unknown]
    [Destination GeoIP: Unknown]

□ Transmission Control Protocol, Src Port: 37145 (37145), Dst Port: 80 (80), Seq: 1, Ack: 1, Len: 129

    Source port: 37145 (37145)
    Destination port: 80 (80)
    [Stream index: 0]
                         (relative sequence number)
    Sequence number: 1
    [Next sequence number: 130 (relative sequence number)]
    Acknowledgment number: 1
                                (relative ack number)
    Header length: 32 bytes

■ Flags: 0x018 (PSH, ACK)

    Window size value: 730
   [Calculated window size: 5840]
    [Window size scaling factor: 8]

    ⊕ Checksum: 0x6824 [validation disabled]

 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
  Hypertext Transfer Protocol

⊕ GET /arquivo.exe HTTP/1.0\r\n

    User-Agent: Wget/1.11.4 Red Hat modified\r\n
    Accept: */*\r\n
    Host: 192.168.254.1\r\n
    Connection: Keep-Alive\r\n
```

Referências

- → KUROSE, J. F.; ROSS, K. W. Redes de Computadores e a Internet: uma abordagem top-down. 3ª edição. São Paulo: Addison Wesley, 2007.
- Cisco Network Academy. CCNA Módulo 1 Capítulo 1.
- → TANENBAUM, A. S. Redes de Computadores. Editora Campus, 2003.

Aviso

→ Avaliação 10/05