Session Evaluation

Expanding the Model

This Session

- What are Estimated Marginal Means
- What are covariates
- Using EMMs and Covariates to check for moderation
- Dealing with Random Slopes and Intercepts

Last Time

Type III Tests of Fixed Effects

Source	DF	F	Sig.
Intercept	24.132	18995.535	.000
Session	343.185	70.955	.000
Hemisphere	343.756	63.420	.000
Prime	344.281	671.031	.000
Target	343.559	414.250	.000
Session * Hemisphere	342.950	0.272	.603
Session * Prime	344.428	186.437	.000
Session * Target	340.544	0.003	.956
Hemisphere * Prime	345.203	0.073	.788
Hemisphere * Target	343.152	3.531	.061
Prime * Target	344.165	19.956	.000
Session * Hemisphere * Target	347.960	17.249	.000
Session * Prime * Target	344.887	3.624	.058

```
MIXED Visual_Response BY Session Hemisphere Prime Target
  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.00000000001) HCONVERGE(0,
        ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Session Hemisphere Prime Target Session*Hemisphere Session*Prime Session*Target
        Hemisphere*Prime Hemisphere*Target Prime*Target Session*Hemisphere*Target
        Session*Prime*Target | SSTYPE(3)
        /METHOD=REML
        /PRINT=SOLUTION R
        /REPEATED=Session*Hemisphere*Prime*Target | SUBJECT(PP) COVTYPE(CSH).
```

```
MIXED Visual_Response BY Session Hemisphere Prime Target
  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
    ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Session Hemisphere Prime Target Session*Hemisphere Session*Prime Session*Target
    Hemisphere*Prime Hemisphere*Target Prime*Target Session*Hemisphere*Target
    Session*Prime*Target | SSTYPE(3)
  /METHOD=REML
  /PRINT=SOLUTION R
  /REPEATED=Session*Hemisphere*Prime*Target | SUBJECT(PP) COVTYPE(CSH)
  /EMMEANS=TABLES(Session) COMPARE ADJ(SIDAK)
  /EMMEANS=TABLES(Session*Prime).
```

```
MIXED Visual_Response BY Session Hemisphere Prime Target
  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
        ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Session Hemisphere Prime Target Session*Hemisphere Session*Prime Session*Target
        Hemisphere*Prime Hemisphere*Target Prime*Target Session*Hemisphere*Target
        Session*Prime*Target | SSTYPE(3)
        /METHOD=REML
        /PRINT=SOLUTION R
        /REPEATED=Session*Hemisphere*Prime*Target | SUBJECT(PP) COVTYPE(CSH)
        /EMMEANS=TABLES(Session) COMPARE ADJ(SIDAK)
        /EMMEANS=TABLES(Session*Prime) COMPARE(Session) ADJ(SIDAK).
```

```
MIXED Visual_Response BY Session Hemisphere Prime Target
  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.00000000001) HCONVERGE(0,
        ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Session Hemisphere Prime Target Session*Hemisphere Session*Prime Session*Target
        Hemisphere*Prime Hemisphere*Target Prime*Target Session*Hemisphere*Target
        Session*Prime*Target | SSTYPE(3)
  /METHOD=REML
  /PRINT=SOLUTION R
  /REPEATED=Session*Hemisphere*Prime*Target | SUBJECT(PP) COVTYPE(CSH)
  /EMMEANS=TABLES(Session) COMPARE ADJ(SIDAK)
  /EMMEANS=TABLES(Session*Prime) COMPARE(Session) ADJ(SIDAK)
  /EMMEANS=TABLES(Session*Prime*Target) COMPARE(Session) ADJ(SIDAK)
  /EMMEANS=TABLES(Session*Prime*Target) COMPARE(Session) ADJ(SIDAK)
  /EMMEANS=TABLES(Session*Hemisphere*Target) COMPARE(Session) ADJ(SIDAK)
```

Estimates of Fixed Effects

Parameter	Estimate	Std. Error	df	t	Sig.
Intercept	-2.099334 (β ₀)	.095524	34.630	-21,977	.000
X ₁ - [Session=1]	$0.088284~(\beta_1)$.138783	83.107	0.636	.526
X ₂ - [Hemisphere=0]	-0.268412 (β ₂)	.126612	113.425	-2.120	.036
X ₃ - [Prime=0]	-1.777300 (β_3)	.118407	89.862	-15.010	.000
X ₄ - [Target=0]	-0.643985 (β_4)	.144279	89.972	-4.463	.000
X ₅ - [Session=1] * [Hemisphere=0]	-0.511187 (β ₅)	.156703	179.406	-3.262	.001
X ₆ - [Session=1] * [Prime=0]	1.266037 (β_6)	.155710	189.037	8.131	.000
X ₇ - [Session=1] * [Target=0]	$-0.668476 (\beta_7)$.197265	159.145	-3.389	.001
X ₈ - [Hemisphere=0] * [Prime=0]	-0.029592 (β_8)	.109820	345.203	-0.269	.788
X ₉ - [Hemisphere=0] * [Target=0]	-0.248907 (β ₉)	.157123	175.478	-1.584	.115
X ₁₀ - [Prime=0] * [Target=0]	-0.691462 (β_{10})	.156733	186.827	-4.412	.000
X ₁₁ - [Session=1] * [Hemisphere=0] * [Target=0]	0.908256 (β ₁₁)	.218691	347.960	4.153	.000
X ₁₂ - [Session=1] * [Prime=0] * [Target=0]	0.416681 (β_{12})	.218891	344.887	1.904	.058

$$\hat{Y} = \beta_0 + (x_1\beta_1) + (x_2\beta_2) + (x_3\beta_3) + (x_4\beta_4) + (x_5\beta_5) + (x_6\beta_6) + (x_7\beta_7) + (x_8\beta_8) + (x_9\beta_9) + (x_{10}\beta_{10}) + (x_{11}\beta_{11}) + (x_{12}\beta_{12})$$

$$\hat{Y} = -2.099 + (x_10.088) + (x_2 - 0.268) + (x_3 - 1.777) + (x_4 - 0.644) + (x_5 - 0.511) + (x_61.266) + \dots$$

$$(x_7 - 0.668) + (x_8 - 0.029) + (x_9 - 0.249) + (x_{10} - 0.691) + (x_{11}0.908) + (x_{12}0.417)$$

Session	Hemisphere	Prime	Target	Predicted
1	Left	Low	Low	-4,259
1	Right	Low	Low	-4,110
1	Left	High	Low	-3,444
1	Right	High	Low	-3,324
1	Left	Low	High	-3,332
1	Right	Low	High	-2,522
1	Left	High	High	-2,791
1	Right	High	High	-2,011
3	Left	Low	Low	-5,759
3	Right	Low	Low	-5,212
3	Left	High	Low	-3,261
3	Right	High	Low	-2,743
3	Left	Low	High	-4,175
3	Right	Low	High	-3,877
3	Left	High	High	-2,368
3	Right	High	High	-2,099

Session	Prime	Predicted
1	Low	-3,556
1	High	-2,892
3	Low	-4,756
3	High	-2,618

2. Session * Prime

Estimates^a

					95% Confidence Interval	
Session	Prime	Mean	Std. Error	df	Lower Bound	Upper Bound
1	Low	-3,556	,052	87,314	-3,659	-3,452
	High	-2,892	,053	86,763	-2,997	-2,788
3	Low	-4,756	,050	89,428	-4,855	-4,656
	High	-2,618	,058	89,844	-2,733	-2,503

Session	Prime	Predicted
1	Low	-3,556
1	High	-2,892
3	Low	-4,756
3	High	-2,618

Pairwise Comparisons^a

							95% Confidence Interval for	
			Mean				Differ	ence ^c
Prime	(I) Session	(J) Session	Difference (I-J)	Std. Error	df	Sig. ^c	Lower Bound	Upper Bound
Low	1	3	1,200 [*]	,074	188,717	,000	1,054	1,346
	3	1	-1,200 [*]	,074	188,717	,000	-1,346	-1,054
High	1	3	-,274 [*]	,080,	188,513	,001	-,432	-,117
	3	1	,274*	,080,	188,513	,001	,117	,432

Based on estimated marginal means

*. The mean difference is significant at the ,05 level.

a. Dependent Variable: Visual_Response.

c. Adjustment for multiple comparisons: Sidak.

a. Dependent Variable: Visual_Response.

Post-Hoc Results

Session*Prime Pairwise Comparisons

	Mean Difference				95% CI for D	oifference
Prime	(Ses1-Ses3)	SE	df	Sig.	LB	UB
Low	1,200 [*]	,074	188,717	,000	1,054	1,346
High	-,274 [*]	,080,	188,513	,001	-,432	-,117

Session*Prime Pairwise Comparisons

	Mean Difference			
Dots	(Ses1-Ses3)	SE	df	Sig.
Low	1,146 [*]	,455	19,868	,020
High	-,228	,426	19,097	,599

Covariates

A covariate is a Continuous Predictor, nothing more

When we say Covariate we mean a Continuous Predictor, whereas Factors are categorical

Second Analysis

The previous analysis was done on the **Visual Response**, the brain reacting to seeing something.

Now we will analyze the **Numeric Response**, the brain processing the numerical information that the symbol represents.

First we will do the same analysis as before (without covariates), and then we will take the **Visual Response** into account (with covariates).

Without Covariates

Type III Tests of Fixed Effects

Source	Denominator df	F	Sig.
Intercept	24	2452.170	.000
Session	360	46.769	.000
Hemisphere	360	92.950	.000
Prime	360	42.937	.000
Target	360	29.705	.000
Session * Hemisphere	360	2.408	.122
Session * Prime	360	6.259	.013
Session * Target	360	15.441	.000
Hemisphere * Prime	360	0.533	.466
Hemisphere * Target	360	3.177	.076
Prime * Target	360	14.304	.000
Session * Hemisphere * Prime	360	0.010	.922
Session * Hemisphere * Target	360	0.122	.727
Session * Prime * Target	360	1.469	.226
Hemisphere * Prime * Target	360	1.005	.317
Session * Hemisphere * Prime * Target	360	0.373	.542

A Grand Total of 97 Levels
A Covariance Structure with 136 Values
A Total of 152 Parameters to Estimate

Without Covariates

Type III Tests of Fixed Effects

Source	Sig.	Sig.	Sig.	Sig.	Sig.	Source
Intercept	.000	.000	.000	.000	.000	Intercept
Session	.000	.000	.000	.000	.000	Session
Hemisphere	.000	.000	.000	.000	.000	Hemisphere
Prime	.000	.000	.000	.000	.000	Prime
Target	.000	.000	.000	.000	.000	Target
Session * Hemisphere	.114	.096	.106	.107	.107	Session * Hemisphere
Session * Prime	.011	.011	.013	.013	.011	Session * Prime
Session * Target	.000	.000	.000	.000	.000	Session * Target
Hemisphere * Prime	.456	.455	.472	.465	.455	Hemisphere * Prime
Hemisphere * Target	.069	.075	.054	.053	.048	Hemisphere * Target
Prime * Target	.000	.000	.000	.000	.000	Prime * Target
Session * Hemisphere * Prime	.921	.908	.912			
Session * Hemisphere * Target	.722	.783	.734	.723		
Session * Prime * Target	.217	.236	.217	.217	.211	Session * Prime * Target
Hemisphere * Prime * Target	.307	.326				
Session * Hemisphere * Prime * Target	.534					

Structure	Parameters	-2LL	AIC	BIC
UN	152	1053.529	1325.529	1862.816
TPH	47	1176.630	1238.630	1361.099
ARH(1)	33	1191.007	1225.007	1292.168
CSH	33	1190.084	1224.084	1291.245
TP	32	1192.569	1224.569	1287.779
AR(1)	18	1207.514	1211.514	1219.416
CS	18	1206.685	1210.685	1218.587

Session	Correlation	Sig.
1	.387	<.001
3	.583	<.001
Overall	.537	<.001

Visual Response

...and now something scary...

Type III Tests of Fixed Effects

Source	Denominator df	F	Sig.
Intercept	368.000	251.145	.000
Session	366.527	.309	.579
Hemisphere	361.385	2.242	.135
Prime	359.931	1.545	.215
Target	363.405	4.668	.031
Session * Hemisphere	365.265	.000	.986
Session * Prime	367.845	1.953	.163
Session * Target	367.620	.143	.706
Hemisphere * Prime	366.721	.083	.774
Hemisphere * Target	366.152	.082	.774
Prime * Target	362.653	2.613	.107
Session * Hemisphere * Prime	362.349	.431	.512
Session * Hemisphere * Target	367.194	.318	.573
Session * Prime * Target	364.155	.267	.605
Hemisphere * Prime * Target	364.909	.239	.625
Session * Hemisphere * Prime * Target	367.777	.043	.836
Visual_Response	363.676	45.150	.000
Session * Visual_Response	367.001	.091	.764
Hemisphere * Visual_Response	361.058	8.404	.004
Prime * Visual_Response	361.507	.471	.493
Target * Visual_Response	364.146	3.456	.064
Session * Hemisphere * Visual_Response	365.626	.028	.867
Session * Prime * Visual_Response	367.975	1.475	.225
Session * Target * Visual_Response	367.907	.006	.940
Hemisphere * Prime * Visual_Response	367.615	.227	.634
Hemisphere * Target * Visual_Response	364.356	.308	.579
Prime * Target * Visual_Response	365.326	2.608	.107
Session * Hemisphere * Prime * Visual_Response	363.273	.111	.739
Session * Hemisphere * Target * Visual_Response	366.379	.921	.338
Session * Prime * Target * Visual_Response	363.339	.047	.828
Hemisphere * Prime * Target * Visual_Response	362.762	.185	.668
Session * Hemisphere * Prime * Target * Visual_Response	367.786	.060	.806

A Grand Total of 178 Levels (+81)
A Covariance Structure with 136 Values
A Total of 168 (+16) Parameters to Estimate

Structure	Parameters	-2LL	AIC	BIC
UN	168	993.295	1265.295	1796.794
TPH	63	1114.071	1176.071	1297.222
ARH(1)	49	1127.669	1161.669	1228.106
CSH	49	1127.877	1161.877	1228.314
TP	48	1131.943	1163.943	1226.473
AR(1)	34	1145.948	1149.948	1157.764
CS	34	1146.344	1150.344	1158.161

Model Including Covariate

Type III Tests of Fixed Effects

Type III Tests of Fixed Effects							
Source	Sig.	Sig.	Sig.	Sig.	Sig.	Before	Source
Intercept	.000	.000	.000	.000	.000	.000	Intercept
Session	.000	.000	.000	.000	.000	.000	Session
Hemisphere	.058	.072	.134	.279	.272	.000	Hemisphere
Prime	.121	.128	.126	.118	.159	.000	Prime
Target	.306	.319	.296	.238	.330	.000	Target
Session * Hemisphere	.606	.518	.478	.265	.298	.107	Session * Hemisphere
Session * Prime	.065	.068	.064	.060	.125	.011	Session * Prime
Session * Target	.000	.000	.000	.000	.000	.000	Session * Target
Hemisphere * Prime	.003	.004	.007	.014	.011	.455	Hemisphere * Prime
Hemisphere * Target	.727	.725	.969	.654	.567	.048	Hemisphere * Target
Prime * Target	.017	.020	.020	.022	.016	.000	Prime * Target
Session * Hemisphere * Prime	.180	.196	.272				Session * Hemisphere * Prime
Session * Hemisphere * Target	.061	.087	.059	.070			Session * Hemisphere * Target
Session * Prime * Target	.034	.036	.031	.033	.034	.211	Session * Prime * Target
Hemisphere * Prime * Target	.110	.137					Hemisphere * Prime * Target
Session * Hemisphere * Prime * Target	.238						Session * Hemisphere * Prime * Target
Visual_Response	.000	.000	.000	.000	.000		Visual_Response
Hemisphere * Visual_Response	.002	.002	.005	.010	.008		Hemisphere * Visual_Response

Values of the Numeric Response

IF

The **Visual Response** is -3.455

Values of the Numeric Response IF

The **Visual Response** is not constant

...What about that Moderation?...

Moderation

A Moderator is just a Fancy Interaction

Moderation means that the relationship between a dependent and independent is affected by a third variable

The **Hemisphere*Visual Response** interaction was significant (p=.008). Which means that the effect of **Hemisphere** changes based on the value of **Visual Response**

We want to know what the differences between Left and Right hemisphere is for a Low (-1SD)-Average-High (+1SD) Visual Response (M=-3.455; SD=1.168)

```
MIXED Numeric Response BY Session Hemisphere Prime Target WITH Visual Response
  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
   ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Session Hemisphere Prime Target Session*Hemisphere Session*Prime Session*Target
    Hemisphere*Prime Hemisphere*Target Prime*Target Session*Prime*Target
   Visual Response Hemisphere*Visual Response | SSTYPE(3)
  /METHOD=REML
  /PRINT=SOLUTION
  /REPEATED=Session*Hemisphere*Prime*Target | SUBJECT(PP) COVTYPE(CSH)
  /EMMEANS=TABLES(Hemisphere*Prime) COMPARE(Hemisphere) ADJ(SIDAK)
  /EMMEANS=TABLES(Hemisphere*Prime) COMPARE(Prime) ADJ(SIDAK)
  /EMMEANS=TABLES(Session*Prime*Target) COMPARE(Session) ADJ(SIDAK)
  /EMMEANS=TABLES(Hemisphere) WITH(Visual Response=-4.623352) COMPARE ADJ(SIDAK)
  /EMMEANS=TABLES(Hemisphere) WITH(Visual Response=-3.455150) COMPARE ADJ(SIDAK)
  /EMMEANS=TABLES(Hemisphere) WITH(Visual Response=-2.286948) COMPARE ADJ(SIDAK).
```


Estimates 1SD Below

Hemisphere	Mean	Std. Error	df
Left	2,037	,136	156,210
Right	3,250	,171	196,271

Visual_Response = -4.62

Estimates Mean

Hemisphere	Mean	Std. Error	df
Left	3,011	,082	68,360
Right	3,775	,082	63,750

Visual_Response = -3.46

Estimates 1SD Above

Hemisphere	Mean	Std. Error	df
Left	3,985	,181	179,276
Right	4,300	,133	144,265

Visual_Response = -2.29

Short Break

Model 1: Fixed Effects

Keeping everything fixed

Session 3

Model 2: Random Slope

Should we allow each group to have their own slope value?

	Intercept	Slope	
-	1 10.7625	-5.3866	Vous como on V is
2	2 10.7625	-2.1863	Your score on Y is
3	3 10.7625	-0.4107	Intercept (10.7625) plus
4	10.7625	0.0441	your score on X
Ţ	5 10.7625	1.4089	•
(5 10.7625	1.8426	times a Slope that comes from a population with
7	7 10.7625	2.0232	Mean Slope 0.848 (SD=2.524)
8	3 10.7625	2.0400	
g	9 10.7625	2.3855	
10	10.7625	2.7033	Intercept is Fixed, Slope is Random
13	1 10.7625	2.8252	
12	2 10.7625	2.8827	

Model 3: Random Intercept

What if we allow each group to have their own Intercept?

	Intercept	Slope
1	3,8020	-1,0265
2	7,1060	-1,0265
3	12,6626	-1,0265
4	15,2485	-1,0265
5	23,3656	-1,0265
6	28,1317	-1,0265
7	33,5212	-1,0265
8	35,5822	-1,0265
9	41,5343	-1,0265
10	47,7254	-1,0265
11	54,8262	-1,0265
12	59,2099	-1,0265

Your score on **Y** is

A variable Intercept with Mean 30.226 (SD=18.434) plus your score on X times the Slope (-1.0265)

Intercept is Random, Slope is Fixed

Model 4: Random Intercept & Slope

What if we allow both the Intercept and Slope to vary?

	Intercept	Slope
1	3,6061	-0,8333
2	6,5999	-0,8331
3	12,1338	-0,8577
4	14,8721	-0,9320
5	23,0201	-0,9586
6	28,2375	-1,0443
7	33,4508	-1,0171
8	35,5497	-1,0225
9	43,0132	-1,1929
10	48,8892	-1,1453
11	56,2343	-1,1499
12	61,3012	-1,1961

Your score on **Y** is

A variable Intercept with Mean 30.576 (SD=19.275)

plus your score on ${\bf X}$

times the variable Slope with Mean -1.015 (SD=0.175)

Intercept is Random and Slope is Random

Session 3

50

Selection: Which Model is better

Of the four models, which fits the data best?

	Parameters	-2LL	AIC	BIC
Fixed Model	3	568.714	570.714	573.258
Random Slope	4	545.484	549.484	554.571
Random Intercept	4	326.096	330.096	335.183
Random Intercept+Slope	6	324.455	332.455	342.628

Realistic Example

More of the same, but on a more realistic example

The data comes from the same experiment we saw before, except this time is regular old behavioral data (Reaction Times) in Same trials (dots and symbols show the same quantity).

The model only has session and symbol in it (because Dots is redundant). The observed data sure looks like a nice candidate for random effects; all participants have a different start- and end-point, some even show an increase in reaction time over time.

Structure	Parameters	-2LL	AIC	BIC
Fixed	7	952.447	958.447	965.667
Intercept	8	949.861	957.861	967.487
Slope	8	947.084	955.084	964.711
Both	9	945.060	955.060	967.094

Type III Tests of Fixed Effects

Source	Fixed	Intercept	Slope	Both
Intercept	.000	.000	.000	.000
Session	.000	.000	.000	.000
Symbol	.000	.000	.000	.000
Session * Symbol	.120	.176	.059	.087

Adding a random slope to the model improves the fit significantly, while the addition of a random intercept didn't do so much. Striking is how the interaction effect changes (the session effect too, but you can't see it).

It changes from p=.120 to p=.059. While in this case the conclusion didn't change, you can imagine situations where random effects can make a difference.

This Session

- What are Estimated Marginal Means
- What are covariates
- Using EMMs and Covariates to check for moderation
- Dealing with Random Slopes and Intercepts

The Next Session

How to build Models and decide on covariance structures (plus talk about what covariance structures are)

Adding covariates, random intercepts, and random slopes (Making the Mixed Models truly Mixed)

Adding Planned and Polynomial Contrasts (Thinking ahead like a good data scientist)

Session Evaluation

