Motor Trend Car Road Analysis

Executive Summary

You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- 1. "Is an automatic or manual transmission better for MPG"
- 2. "Quantify the MPG difference between automatic and manual transmissions"

Data Processing

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

```
library (datasets)
data (mtcars)
```

It consists of 32 observations on 11 variables.

- 1. [, 1] mpg Miles/(US) gallon
- 2. [, 2] cyl Number of cylinders
- 3. [, 3] disp Displacement (cu.in.)
- 4. [, 4] hp Gross horsepower
- 5. [, 5] drat Rear axle ratio
- 6. [, 6] wt Weight (lb/1000)
- 7. [, 7] qsec 1/4 mile time
- 8. [, 8] vs V/S
- 9. [, 9] am Transmission (0 = automatic, 1 = manual)
- 10. [,10] gear Number of forward gears
- 11. [,11] carb Number of carburetors

Is an automatic or manual transmission better for MPG?

For automatic:

```
summary(mtcars[mtcars$am==0,])
##
         mpg
                        cyl
                                        disp
                                                       hp
                                                                     drat
##
    Min.
          :10.4
                   Min. :4.00
                                   Min.
                                          :120
                                                 Min.
                                                       : 62
                                                               Min.
                                                                      :2.76
    1st Ou.:14.9
                  1st Ou.:6.00
                                  1st Qu.:196
                                                 1st Qu.:116
                                                               1st Qu.:3.07
##
    Median :17.3
                   Median :8.00
                                  Median :276
                                                 Median :175
                                                               Median :3.15
    Mean
           :17.1
                   Mean
                          :6.95
                                          :290
                                                 Mean
                                                       :160
                                                               Mean
                                                                       :3.29
                                  Mean
    3rd Ou.:19.2
                   3rd Ou.:8.00
                                   3rd Ou.:360
                                                 3rd Ou.:192
                                                                3rd Ou.:3.69
                                                        :245
           :24.4
                          :8.00
                                          :472
                                                                       :3.92
   Max.
                   Max.
                                  Max.
                                                 Max.
                                                               Max.
```

```
wt qsec vs am gear
##
## Min. :2.46 Min. :15.4 Min. :0.000 Min. :0 Min. :3.00
  1st Qu.:3.44 1st Qu.:17.2 1st Qu.:0.000 1st Qu.:0 1st Qu.:3.00
##
  Median: 3.52 Median: 17.8 Median: 0.000 Median: 0 Median: 3.00
  Mean :3.77 Mean :18.2 Mean :0.368 Mean :0 Mean :3.21
##
##
  3rd Qu.:3.84 3rd Qu.:19.2 3rd Qu.:1.000 3rd Qu.:0 3rd Qu.:3.00
  Max. :5.42 Max. :22.9 Max. :1.000 Max. :0 Max. :4.00
##
   carb
##
  Min. :1.00
##
  1st Qu.:2.00
##
## Median :3.00
## Mean :2.74
## 3rd Qu.:4.00
## Max. :4.00
```

For manual:

summary(mtcars[mtcars\$am==1,])

##	mpg	cyl	disp	hp	
##	Min. :15.0	Min. :4.00	Min. : 71.1	Min. : 52	
##	1st Qu.:21.0	1st Qu.:4.00	1st Qu.: 79.0	1st Qu.: 66	
##	Median :22.8	Median :4.00	Median :120.3	Median :109	
##	Mean :24.4	Mean :5.08	Mean :143.5	Mean :127	
##	3rd Qu.:30.4	3rd Qu.:6.00	3rd Qu.:160.0	3rd Qu.:113	
##	Max. :33.9	Max. :8.00	Max. :351.0	Max. :335	
##	drat	wt	qsec	VS	am
##	Min. :3.54	Min. :1.51	Min. :14.5	Min. :0.000	Min. :1
##	1st Qu.:3.85	1st Qu.:1.94	1st Qu.:16.5	1st Qu.:0.000	1st Qu.:1
##	Median :4.08	Median :2.32	Median :17.0	Median :1.000	Median :1
##	Mean :4.05	Mean :2.41	Mean :17.4	Mean :0.538	Mean :1
##	3rd Qu.:4.22	3rd Qu.:2.78	3rd Qu.:18.6	3rd Qu.:1.000	3rd Qu.:1
##	Max. :4.93	Max. :3.57	Max. :19.9	Max. :1.000	Max. :1
##	gear	carb			
##	Min. :4.00	Min. :1.00			

```
## 1st Qu::4.00 1st Qu::1.00

## Median::4.00 Median::2.00

## Mean::4.38 Mean::2.92

## 3rd Qu::5.00 3rd Qu::4.00

## Max::5.00 Max::8.00
```

Hence, the mean of mpg is greater for manual (at 24.4) than automatic (at 17.1).

Investigating further...

Quantify the MPG difference between automatic and manual transmissions.

```
boxplot(mpg ~ am, data = mtcars, xlab = "Transmission", ylab = "Miles per gallon", main="Miles per
gallon by Transmission Type")
```

Miles per gallon by Transmission Type

Transmission

Manual (represented by 1) has a higher mean for mpg than automatic (represented by 0).

Hypothesis Testing

```
aggregate(mpg~am, data = mtcars, mean)
## am mpg
## 1 0 17.15
## 2 1 24.39
```

The mean transmission for manual is 7.24mpg higher than automatic. Let alpha=0.5.

```
auto <- mtcars[mtcars$am == 0,]
manual <- mtcars[mtcars$am == 1,]
t.test(auto$mpg, manual$mpg)

##
## Welch Two Sample t-test
##
## data: auto$mpg and manual$mpg
## t = -3.767, df = 18.33, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.28 -3.21
## sample estimates:
## mean of x mean of y
## 17.15 24.39</pre>
```

Since p-value = 0.001374, we reject the null hypothesis. There is a major difference between mpg of manual and automatic transmissions.

```
m<-lm(mpg~am,data=mtcars)
summary(m)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
## Min  1Q Median  3Q Max
## -9.392 -3.092 -0.297  3.244  9.508
##</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.15 1.12 15.25 1.1e-15 ***
                 7.24 1.76 4.11 0.00029 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.9 on 30 degrees of freedom
## Multiple R-squared: 0.36, Adjusted R-squared: 0.338
## F-statistic: 16.9 on 1 and 30 DF, p-value: 0.000285
From the above, we may conclude that automatic run at 17.15mpg, while manual have 7.24 more mpg.
Also, R^2 is 0.36, hence the model only accounts for 36% variance.
Performing multivariate linear regression:
model <- lm(mpg~am + wt + hp + cyl, data = mtcars)</pre>
anova (m, model)
## Analysis of Variance Table
## Model 1: mpg ~ am
## Model 2: mpg ~ am + wt + hp + cyl
    Res.Df RSS Df Sum of Sq F Pr(>F)
       30 721
## 1
## 2
       27 170 3 551 29.2 1.3e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The final model is below:
summary(model)
##
## Call:
\#\# lm(formula = mpg \sim am + wt + hp + cyl, data = mtcars)
## Residuals:
      Min 1Q Median 3Q
                                 Max
```

Coefficients:

```
## -3.476 -1.847 -0.554 1.276 5.661
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                  11.64 4.9e-12 ***
## (Intercept) 36.1465
                           3.1048
## am
               1.4780
                           1.4411
                                   1.03
                                           0.3142
               -2.6065
                           0.9198
                                  -2.83
                                           0.0086 **
## wt
## hp
               -0.0250
                           0.0136
                                  -1.83
                                           0.0786 .
               -0.7452
                           0.5828
                                  -1.28
                                           0.2119
## cyl
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.51 on 27 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.827
## F-statistic: 38 on 4 and 27 DF, p-value: 1.02e-10
```

Conclusion

This model explains 84.9% of the variance. It may be concluded that on average, manual transmissions have 1.478 more mpg than automatic.

APPENDIX

plot(model)

Residuals vs Fitted

Fitted values Im(mpg ~ am + wt + hp + cyl)

Hence, the residuals are normally distributed, and homoskedastic.						