Universidade do Minho

Braga, Portugal

Redes de Computadores TP2

23rd October 2019

1.B. Comportamento esperado, foi feita uma rota entre o servidor s1 e o PC h5 através dos routers r2, r3 e r4, sendo feito um ping com sucesso, e recebida uma reply.

1.C. ttl mínimo = 4

1.D. RTT médio = 0.209 ms

2.

No. Time Source Destination Protocol Length Info
59 16.242882635 172.26.60.248 193.136.9.240 ICMP 74 Echo (ping) request
id=0x00002, seq=1/256, ttl=1 (no response found!)
Frame 59: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0

Interface id: 0 (wlp3s0)
Encapsulation type: Ethernet (1)
Arrival Time: Nov 6, 2019 14:14:03.293189771 WET
[Time shift for this packet: 0.0000000000 seconds]
Epoch Time: 1573049643.293189771 seconds

/tmp/wireshark_wlp3s0_20191106141346_v1xytK.pcapng 34304 total packets, 34 shown

[Time delta from previous captured frame: 0.000566051 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 16.242882635 seconds]
Frame Number: 59

Frame Length: 74 bytes (592 bits)
Capture Length: 74 bytes (592 bits)
[Frame is marked: False]
[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:icmp:data]
[Coloring Rule Name: TCMP]

[Coloring Rule Name: ICMP]
[Coloring Rule String: icmp || icmpv6]
Ethernet II, Src: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)

Internet Protocol Version 4, Src: 172.26.60.248, Dst: 193.136.9.240
0100 = Version: 4
.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
Total Length: 60
Identification: 0x95c9 (38345)

Flags: 0x0000 ...0 0000 0000 0000 = Fragment offset: 0 Time to live: 1

Protocol: ICMP (1)
Header checksum: 0x6f6d [validation disabled]
[Header checksum status: Unverified]

Source: 172.26.60.248 Destination: 193.136.9.240 Internet Control Message Protocol

- 2.A 172.26.60.248
- 2.B ICMP. Identifica o protocolo de comunicação e encaminhamento dos dados em rede.
- 2.C Cabeçalho: 20 bytes. Payload: 40 bytes. Tamanho total menos cabeçalho, 60-20=40 bytes
- 2.D Não, pois o payload length do packet nao supera o MTU(Maximum Transmission Unit).
- 2.E Identification, TTL, Header Checksum.

/tmp/wireshark_wlp3s0_20191106141346_v1xytK.pcapng 34304 total packets, 34 shown

```
Protocol Length Info
         Time
                          Source
                                                   Destination
65 16.243077670 172.26.60.248 193.
id=0x0002, seq=7/1792, ttl=3 (no response found!)
                                                                                       74
                                                   193.136.9.240
                                                                                               Echo (ping) request
Frame 65: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0
Ethernet II, Src: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00) Internet Protocol Version 4, Src: 172.26.60.248, Dst: 193.136.9.240
    0100 .... = Version: 4
       .. 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 60
    Identification: 0x95cf (38351)
    Flags: 0x0000
     ...0 0000 0000 0000 = Fragment offset: 0
    Time to live: 3
    Protocol: ICMP (1)
    Header checksum: 0x6d67 [validation disabled]
     [Header checksum status: Unverified]
    Source: 172.26.60.248
    Destination: 193.136.9.240
Internet Control Message Protocol
```

- 2.F Identification e TTL v\u00e4p incrementando em 1.
- 2.G TTL= 255. Nao, pois algumas replies tem sources diferentes.

```
/tmp/wireshark_wlp3s0_20191106141346_v1xytK.pcapng 34304 total packets, 34 shown
```

```
Source
                                                     Destination
                                                                                Protocol Length Info
      75 16.261136420
                           172.26.254.254
                                                     172.26.60.248
                                                                                          70
                                                                                                   Time-to-live exceeded
(Time to live exceeded in transit)
Frame 75: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface 0
Ethernet II, Src: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00), Dst: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9)
Internet Protocol Version 4, Src: 172.26.254.254, Dst: 172.26.60.248
    0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0xc0 (DSCP: CS6, ECN: Not-ECT)
     Total Length: 56
     Identification: 0x1f4d (8013)
     Flags: 0x0000
     ...0 0000 0000 0000 = Fragment offset: 0
     Time to live: 255
     Protocol: ICMP (1)
     Header checksum: 0x078c [validation disabled]
[Header checksum status: Unverified]
     Source: 172.26.254.254
Destination: 172.26.60.248
Internet Control Message Protocol
```

3

/tmp/wireshark_wlp3s0_20191106141346_v1xytK.pcapng 34304 total packets, 34 shown

```
Protocol Length Info
          Time
                                                           Destination
      77 16.278435885
                              172.16.2.1
                                                           172.26.60.248
                                                                                         ICMP
                                                                                                    70
                                                                                                              Time-to-live exceeded
(Time to live exceeded in transit)
Frame 77: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface 0
Ethernet II, Src: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00), Dst: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9)
Internet Protocol Version 4, Src: 172.16.2.1, Dst: 172.26.60.248
     0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
     Total Length: 56
     Identification: 0x8ce0 (36064)
     Flags: 0x0000
...0 0000 0000 0000 = Fragment offset: 0
     Time to live: 254
     Protocol: ICMP (1)
     Header checksum: 0x98c0 [validation disabled]
     [Header checksum status: Unverified]
     Source: 172.16.2.1
     Destination: 172.26.60.248
Internet Control Message Protocol
```

3.

/tmp/wireshark_wlp3s0_20191106151919_9UcLZ9.pcapng 298 total packets, 34 shown

```
Protocol Length Info
No.
        Time
                                             Destination
     88 2.257340343
                       172.26.60.248
                                             193.136.9.240
                                                                   ICMP
                                                                            1258 Echo (ping) request
id=0x0003, seq=1/256, ttl=1 (no response found!)
Frame 88: 1258 bytes on wire (10064 bits), 1258 bytes captured (10064 bits) on interface 0
Ethernet II, Src: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
Internet Protocol Version 4, Src: 172.26.60.248, Dst: 193.136.9.240
    0100 .... = Version: 4
       . 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 1244
    Identification: 0x5d5d (23901)
    Flags: 0x0172
    ...0 1011 1001 0000 = Fragment offset: 2960
    Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0xa1c7 [validation disabled]
    [Header checksum status: Unverified]
    Source: 172.26.60.248
    Destination: 193.136.9.240
    [3 IPv4 Fragments (4184 bytes): #86(1480), #87(1480), #88(1224)]
Internet Control Message Protocol
```

- 3.A Como o packet é superior ao MTU então tem de ser partido para poder ser enviado.
- 3.B Flags com more fragments e como fragment offset = 0, é o primeiro fragmento. Tamanho do datagrama é de 1500

```
/tmp/wireshark_wlp3s0_20191106151919_9UcLZ9.pcapng 298 total packets, 298 shown
```

```
Source
                                                Destination
                                                                       Protocol Length Info
     86 2.257321401
                        172.26.60.248
                                                193.136.9.240
                                                                       IPv4
                                                                                 1514 Fragmented IP protocol
(proto=ICMP 1, off=0, ID=5d5d) [Reassembled in #88]
Frame 86: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface 0
Ethernet II, Src: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
Internet Protocol Version 4, Src: 172.26.60.248, Dst: 193.136.9.240
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 1500
    Identification: 0x5d5d (23901)
    Flags: 0x2000, More fragments
     ...0 0000 0000 0000 = Fragment offset: 0
    Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0x8239 [validation disabled]
    [Header checksum status: Unverified]
    Source: 172.26.60.248
    Destination: 193.136.9.240
    Reassembled IPv4 in frame: 88
```

3.C. Fragment offset é diferente de 0 logo não é o primeiro. Há mais fragmentos pois apresenta a flag more fragments.

/tmp/wireshark_wlp3s0_20191106151919_9UcLZ9.pcapng 298 total packets, 298 shown

```
Time
                       Source
                                             Destination
                                                                   Protocol Length Info
     87 2.257337115
                      172.26.60.248
                                             193.136.9.240
                                                                                  Fragmented IP protocol
                                                                   IPv4
                                                                            1514
(proto=ICMP 1, off=1480, ID=5d5d) [Reassembled in #88]
Frame 87: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface 0
Ethernet II, Src: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
Internet Protocol Version 4, Src: 172.26.60.248, Dst: 193.136.9.240
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 1500
    Identification: 0x5d5d (23901)
    Flags: 0x20b9, More fragments
    ...0 0101 1100 1000 = Fragment offset: 1480
    Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0x8180 [validation disabled]
    [Header checksum status: Unverified]
    Source: 172.26.60.248
    Destination: 193.136.9.240
    Reassembled IPv4 in frame: 88
```

3.D Foram criados 3 fragmentos. Contém a identificação de todos os fragmentos.

/tmp/wireshark_wlp3s0_20191106151919_9UcLZ9.pcapng 298 total packets, 298 shown

```
Protocol Length Info
No.
        Time
                        Source
                                               Destination
     88 2.257340343
                       172.26.60.248
                                               193.136.9.240
                                                                      ICMP
                                                                               1258
                                                                                     Echo (ping) request
id=0x0003, seq=1/256, ttl=1 (no response found!)
Frame 88: 1258 bytes on wire (10064 bits), 1258 bytes captured (10064 bits) on interface 0
Ethernet II, Src: Azurewav_d2:bb:b9 (28:c2:dd:d2:bb:b9), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
Internet Protocol Version 4, Src: 172.26.60.248, Dst: 193.136.9.240
    0100 .... = Version: 4
     ... 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 1244
    Identification: 0x5d5d (23901)
    Flags: 0x0172
    ...0 1011 1001 0000 = Fragment offset: 2960
    Time to live: 1
    Protocol: ICMP (1)
    Header checksum: 0xa1c7 [validation disabled]
    [Header checksum status: Unverified]
    Source: 172.26.60.248
    Destination: 193.136.9.240
    [3 IPv4 Fragments (4184 bytes): #86(1480), #87(1480), #88(1224)]
        [Frame: 86, payload: 0-1479 (1480 bytes)]
[Frame: 87, payload: 1480-2959 (1480 bytes)]
        [Frame: 88, payload: 2960-4183 (1224 bytes)]
         [Fragment count: 3]
        [Reassembled IPv4 length: 4184]
        [Reassembled IPv4 data: 08008e720003000148494a4b4c4d4e4f5051525354555657...]
Internet Control Message Protocol
```

3.E Flags e header checksum. As flags permitem identificar quanto do datagrama já foi enviado e se existe mais fragmentos, quando chega ao último fragmento, reconstroi o datagrama.

Parte 2:

1.

a)

- **b)** Públicas porque são endereços de classe A (entre 10.0.0.0 e 10.255.255.255).
- **c)** Os switches não possuem endereços IP porque a função dos mesmos é a de conectar vários elementos a um router, sendo estes apenas uma maneira de melhor organizar as ligações.

d)

PC do departamento A:

PC do departamento C:

```
[n16 n16.conf]# ping 10.0.8.10
PING 10.0.8.10 (10.0.8.10) 56(84) bytes of data.
64 bytes from 10.0.8.10: icmp_seq=1 ttl=62 time=0.871 ms
64 bytes from 10.0.8.10: icmp_seq=2 ttl=62 time=0.691 ms
64 bytes from 10.0.8.10: icmp_seq=3 ttl=62 time=0.802 ms
^C
--- 10.0.8.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2026ms
rtt min/avg/max/mdev = 0.691/0.788/0.871/0.074 ms
[n16 n16.conf]#
```

PC do departamento D:

```
[n11 n11.conf]# ping 10.0.8.10
PING 10.0.8.10 (10.0.8.10) 56(84) bytes of data.
64 bytes from 10.0.8.10: icmp_seq=1 ttl=61 time=1.07 ms
64 bytes from 10.0.8.10: icmp_seq=2 ttl=61 time=0.899 ms
64 bytes from 10.0.8.10: icmp_seq=3 ttl=61 time=0.926 ms
^C
--- 10.0.8.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2026ms
rtt min/avg/max/mdev = 0.899/0.965/1.072/0.075 ms
[n11 n11.conf]#
```

PC do departamento B:

e)

Teste de conectividade desde router exterior até servidor S1:

```
[Rext Rext.conf]# ping 10.0.8.10

PING 10.0.8.10 (10.0.8.10) 56(84) bytes of data.

64 bytes from 10.0.8.10: icmp_seq=1 ttl=61 time=0.908 ms

64 bytes from 10.0.8.10: icmp_seq=2 ttl=61 time=0.852 ms

64 bytes from 10.0.8.10: icmp_seq=3 ttl=61 time=0.815 ms

^C
--- 10.0.8.10 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2009ms

rtt min/avg/max/mdev = 0.815/0.858/0.908/0.038 ms

[Rext Rext.conf]# traceroute -I 10.0.8.10

traceroute to 10.0.8.10 (10.0.8.10), 30 hops max, 60 byte packets

1 10.0.9.2 (10.0.9.2) 0.757 ms 0.669 ms 0.711 ms

2 10.0.1.1 (10.0.1.1) 0.690 ms 0.670 ms 0.661 ms

3 10.0.0.1 (10.0.0.1) 0.650 ms 0.643 ms 0.635 ms

4 10.0.8.10 (10.0.8.10) 5.837 ms 5.844 ms 5.823 ms

[Rext Rext.conf]# [Rext Rext.conf]# [Rext Rext.conf]# [Rext Rext.conf]# [Rext Rext.conf]#
```

Pode se concluir que existe conectividade IP entre o router Rext e o servidor S1.

2.

a)

Comando executado no router do departamento B:

```
[Rb Rb.conf]# netstat -rn

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

10.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

10.0.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

10.0.2.0 10.0.1.2 255.255.255.0 UG 0 0 0 eth1

10.0.3.0 10.0.0.1 255.255.255.0 UG 0 0 0 eth0

10.0.4.0 10.0.0.1 255.255.255.0 UG 0 0 0 eth0

10.0.5.0 10.0.0.1 255.255.255.0 UG 0 0 0 eth0

10.0.6.0 10.0.1.2 255.255.255.0 UG 0 0 0 eth0

10.0.7.0 0.0.0.0 255.255.255.0 UG 0 0 0 eth1

10.0.7.0 10.0.0.1 255.255.255.0 UG 0 0 0 eth0

10.0.8.0 10.0.0.1 255.255.255.0 UG 0 0 0 eth1

[Rb Rb.conf]#
```

Comando executado num PC do departamento B:

b)

Analisando os processos que estão a correr no Rb (Router do departamento B), obtemos:

```
[Rb Rb.conf]# ps -e
PID TTY TIME CMD
1 ? 00:00:00 vnoded
54 ? 00:00:00 zebra
60 ? 00:00:00 ospf6d
64 ? 00:00:00 ospfd
81 pts/7 00:00:00 bash
85 pts/7 00:00:00 ps

[Rb Rb.conf]# ■
```

Aqui podemos observar que temos dois processos que referem protocolos de encaminhamento dinâmico (OSPF). Conclui-se então que está a ser usado encaminhamento dinâmico.

c)

Executando o comando "route delete default" acontece que deixa de haver ligações default para IPs diferentes de 10.0.8.0, qualquer ligação alternativa não vai ter resposta.

d)

Comandos para adicionar todas as rotas estáticas:

e)

Utilizando o comando ping verificamos que existe conectividade a todos os departamentos.

Tabela netstat nova:

[S1 S1.conf]# netstat -rn							
Kernel IP routing table							
Destination	Gateway	Genmask	Flags	MSS	Window	irtt	Iface
10.0.0.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.1.0	10.0.4.1	255:255:255:0	UG	0	0	0	eth0
10.0.2.0	10.0.4.1	255,255,255.0	UG	0	0	0	eth0
10.0.3.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.4.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.4.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
10.0.5.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.6.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.7.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.8.0	10.0.4.1	255.255.255.0	UG	0	0	0	eth0
10.0.9.0	10.0.4.1	255,255,255.0	UG	0	0	0	eth0
[S1 S1.conf]#							

Conclusões:

Com este trabalho ganhamos muita experiência a utilizar e analisar os vários programas indicados, como o CORE, em que ficamos proficientes a fazer topologias de redes e utilizar comandos para simular e testar ligações entre routers, PC's e servidores. Ficamos também familiarizados com o Wireshark de maneira a analisar as mensagens e pedidos enviados entre os vários componentes de uma topologia.

O uso de terminal também foi essencial para a execução dos diferentes comandos indicados no enunciado ('netstat', 'route', 'traceroute', entre outros). Foi necessário verificar a documentação de alguns destes comandos para poder analisar os seus resultados, fizemos isto a partir do uso do comando 'man' no terminal.

Tivemos mais dificuldade na questão 3 devido a não termos interpretado bem o enunciado, mas no resto do trabalho conseguimos fazer o pedido, com a ajuda ocasional do professor.

Em conclusão, este trabalho foi essencial para o nosso desenvolvimento e aprendizagem desta cadeira e na utilização de software de simulação de redes.