Prevalence of adverse dichotomous outcomes in the two groups and RR (95% CI).								
Outcome	Exp (n=99)	Con (n=104)	RR (95% CI)					
Fever, n (%)	22 (22)	41 (39)	0.56 (0.36 to 0.87)					

a) Using Analyze .. Descriptive statistics .. Crosstabs .. , obtain a table from which the above result can be calculated, and show the calculation. (Don't attempt to calculate the 95% CI for RR.) Perform an appropriate hypothesis test.

Group * Fever Crosstabulation

Count				
		Feve	r	
		no	yes	Total
Group	Con	63	41	104
	Exp	77	22	99
Total		140	63	203

Probability of Fever in Con group = No. of patients in Con group with Fever / No. of patients in Con group

= 0.39

Probability of Fever in Exp group = No. of patients in Exp group with Fever / No. of patients in Exp group

= 0.22

The relative risk of Fever in Exp group compared to Con group is

RR = Probability of Fever in Exp group / Probability of Fever in Con group

$$= 0.22 / 0.39$$

= 0.56

Since we are dealing with two categorical variables, the Chi-Square Test of Association is the appropriate hypothesis test to test the association between them.

H₀: Fever is not associated with Group

H₁: Fever is associated with Group

Chi-Square Tests Asymptotic Exact Sig. (2- Exact Sig. (1-Value (2-sided) 7.011ª Pearson Chi-Square .008 Continuity Correction^b 6.231 .013 Likelihood Ratio 7.100 .008 Fisher's Exact Test 203 N of Valid Cases

The expected cell count for each cell is greater than 5 which satisfies one of the assumptions.

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 30.72.

b. Computed only for a 2x2 table

Since it is a 2x2 table, the degrees of freedom (df) for the test statistic is

$$df = (rows - 1) * (columns - 1)$$

$$= (2 - 1) * (2 - 1)$$

df = 1

Pearson Chi-Square provides a test statistic X²(1) of 7.011

Since the p-value is less than 0.05 at 0.008, we reject the null hypothesis and conclude that there is an association Fever and Group.

b) Perform a logistic regression corresponding to the analysis in (a). What is the effect of the treatment on the incidence of Fever? Compare this with the effect given by Zhang et al .. is it the same? Comment.

Before performing logistic regression, let's look at the frequency tables of the categorical variables.

			Group			Fever						
		Frequency	Percent	Valid Percent	Cumulative Percent			Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Con	104	51.2	51.2	51.2	Valid	no	140	69.0	69.0	69.0	
	Exp	99	48.8	48.8	100.0		yes	63	31.0	31.0	100.0	
	Total	203	100.0	100.0			Total	203	100.0	100.0		

It seems like Exp might be the reference category in Group which might not be ideal as Con is the baseline in Group for any treatments. Recode the former as 0 and the latter as 1 to change the reference category.

In Fever, recode its non-incidence denoted by no as 0 and its incidence denoted by yes as 1.

	Variables in the Equation											
		В	S.E.	Wald	df	Sig.	Exp(B)					
Step 1ª	Group2(1)	823	.314	6.866	1	.009	.439					
	Constant	430	.201	4.583	1	.032	.651					
- 14	a Mariable (a) antered on the A. Conses											

In the logistic regression model, Group is significant with its p-value less than 0.05 at 0.009

Since Con group is the reference category, the beta coefficient of Group represents the Exp group.

where,

 $x_{i1} = \{1 \text{ if patient belonging to Exp group, 0 otherwise } \pi_i^* = \text{probability of a patient having Fever(1)}$

The odds of a patient belonging to Exp group having Fever decreases by 56% ($e^B = e^{-0.823} = 0.439$), when compared to patients in Con group.

Zhang et al observes with a relative risk of 0.56 that only 22% of Exp group had Fever when compared to 42% of Con group. The parameter interpretation of the logistic regression is in accordance with the observation of Zhang et al.

c) Model carefully the occurrence of Fever as a function of treatment and appropriate baseline and demographic covariates.

c(i) perform an initial exploratory analysis;

Categorical outcome variable vs Categorical predictor variables

Group2 * Fever2 Crosstabulation									
			Feve	er2					
			.00	1.00	Total				
Group2	.00	Count	77	22	99				
		% within Group2	77.8%	22.2%	100.0%				
	1.00	Count	63	41	104				
		% within Group2	60.6%	39.4%	100.0%				
Total		Count	140	63	203				
		% within Group2	69.0%	31.0%	100.0%				

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	7.011 ^a	1	.008		
Continuity Correction ^b	6.231	1	.013		
Likelihood Ratio	7.100	1	.008		
Fisher's Exact Test				.010	.006
Linear-by-Linear Association	6.977	1	.008		
N of Valid Cases	203				

Chi-Square Tests

22% of patients in Exp group(0) had Fever when compared to 40% of patients in Con group(1). As noted previously, Group is significant with a p-value less than 0.05 at 0.008.

b. Computed only for a 2x2 table

Gender							Site of surgery					
		Frequency	Percent	Valid Percent	Cumulative Percent			Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	F	79	38.9	38.9	38.9	Valid	abdo	99	48.8	48.8	48.8	
	М	124	61.1	61.1	100.0		thor	104	51.2	51.2	100.0	
	Total	203	100.0	100.0			Total	203	100.0	100.0		

There is no need to change the reference category for Gender and Site of surgery but their categories need to be recoded - F(0), M(1), abdo(0), thor(1) - for logistic regression.

	Ge	ender2 * Fever2 C	rosstabul	ation		Chi-Square Tests					
			Fev	er2			Malura		Asymptotic Significance	Exact Sig. (2-	Exact Sig. (1-
			.00	1.00	Total	Value		df	(2-sided)	sided)	sided)
						Pearson Chi-Square	.223ª	1	.637		
Gender2	.00	Count	56	23	79	Continuity Correction ^b	.100	1	.752		
		% within Gender2	70.9%	29.1%	100.0%	Likelihood Ratio	.224	1	.636		
	1.00	Count	84	40	124	Fisher's Exact Test				.756	.377
		% within Gender2	67.7%	32.3%	100.0%	Linear-by-Linear Association	.222	1	.638		
Total		Count	140	63	203	N of Valid Cases	203				
		% within Gender2	69.0%	31.0%	100.0%	a. 0 cells (0.0%) have expected on the computed only for a 2x2 table		less than 5.	The minimum ex	pected count is 24	4.52.

29% of female patients(0) had Fever when compared to 32% of male patients(1). Gender is not significant with a p-value greater than 0.05 at 0.637.

	Siteo	fsurgery2 * Fever2 Cro	sstabulat	tion		Chi-Square Tests					
		.	Feve	er2			Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
			.00	1.00	Total	Pearson Chi-Square	.274ª	1	.601		
Siteofsurgery2	.00	Count	70	29	99	Continuity Correction ^b	.138	1	.710		
		% within Siteofsurgery2	70.7%	29.3%	100.0%	Likelihood Ratio	.274	1	.601		
	1.00	Count	70	34	104	Fisher's Exact Test				.650	.355
	1.00	% within Siteofsurgery2	67.3%	32.7%	100.0%	Linear-by-Linear Association	.272	1	.602		
Total		Count	140	63	203	N of Valid Cases	203				
		% within Siteofsurgery2	69.0%	31.0%	100.0%	 a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 30.72 b. Computed only for a 2x2 table 					

29% of patients operated in abdomen(0) had Fever when compared to 33% of patients operated in thorax(1). Site of surgery is not significant with a p-value greater than 0.05 at 0.601.

Boxplots of Categorical outcome variable vs Continuous predictor variables

There seems to be a increasing trend in the boxplot between Duration of Surgery and Fever, indicating an association between them. It can be interpreted as patients being susceptible to Fever when their Duration of Surgery is longer, on an average.

The boxplots between Fever and other variables does not show any increasing or decreasing trend.

Scatterplots of Categorical outcome variable vs Continuous predictor variables

Fever ~ Age: Most of the patients are between the ages 40 and 80 and there seems to be less incidence of fever, on an average.

Fever ~ BodyMassIndex: No obvious pattern observed.

Fever ~ Durationofsurgery: On an average, less incidence of fever when Durationofsurgery is > 3 hours; and high incidence of fever when Durationofsurgery is 3-6 hours;

Fever ~ Maxtemponday1: The incidence of fever increase as the Maxtemponday1 increases, on an average.

Fever ~ Whitecellcountonday1: The incidence of fever is less when the Whitecellcountonday1 is between 13 and 20 which might be the ideal range.

c(ii) using a model selection criterion, develop an appropriate model. Give a table showing your workings, and give the table of parameter estimates for your final model.

Model selection criterion: AIC

Model	р	-2L(p)	AIC	p-values of
			-2L(p) + 2p	variables
Fever ~ Group	2	244.367	248.367	significant
Fever ~ Gender	2	251.243	255.243	not significant
Fever ~ Siteofsurgery	2	251.193	255.193	not significant
Fever ~ Age	2	250.795	254.795	not significant
Fever ~ Bodymassindex	2	251.442	255.442	not significant
Fever ~ Durationofsurgery	2	239.952	243.952	significant
Fever ~ Maxtemponday1	2	245.110	249.110	significant
Fever ~ Whitecellcountonday1	2	251.441	255.441	not significant

Model	р	-2L(p)	AIC	p-values of
			-2L(p) + 2p	variables
Fever ~ Durationofsurgery + Group	3	233.192	239.192	significant
Fever ~ Durationofsurgery + Gender	3	239.898	245.898	not significant
Fever ~ Durationofsurgery + Siteofsurgery	3	239.863	245.863	not significant
Fever ~ Durationofsurgery + Age	3	238.186	244.186	not significant
Fever ~ Durationofsurgery + Bodymassindex	3	239.891	245.891	not significant
Fever ~ Durationofsurgery + Maxtemponday1	3	231.305	237.305	significant
Fever ~ Durationofsurgery + Whitecellcountonday1	3	239.774	245.774	not significant

Model	р	-2L(p)	AIC -2L(p) + 2p	p-values of variables
Fever ~ Durationofsurgery + Maxtemponday1 + Group	4	225.780	233.780	significant
Fever ~ Durationofsurgery + Maxtemponday1 + Gender	4	231.305	239.305	not significant
Fever ~ Durationofsurgery + Maxtemponday1 + Siteofsurgery	4	231.216	239.216	not significant

Fever ~ Durationofsurgery + Maxtemponday1 +	4	229.960	237.960	not significant
Age				
Fever ~ Durationofsurgery + Maxtemponday1 +	4	231.222	238.222	not significant
Bodymassindex				
Fever ~ Durationofsurgery + Maxtemponday1 +	4	229.885	237.885	not significant
Whitecellcountonday1				

Model	р	-2L(p)	AIC	p-values of
			-2L(p) + 2p	variables
Fever ~ Durationofsurgery + Maxtemponday1 + Group +	5	225.780	235.780	not significant
Gender				
Fever ~ Durationofsurgery + Maxtemponday1 + Group +	5	225.697	235.697	not significant
Siteofsurgery				
Fever ~ Durationofsurgery + Maxtemponday1 + Group +	5	224.260	234.260	not significant
Age				
Fever ~ Durationofsurgery + Maxtemponday1 + Group +	5	225.682	235.682	not significant
Bodymassindex				
Fever ~ Durationofsurgery + Maxtemponday1 + Group +	5	223.614	233.614	not significant
Whitecellcountonday1				

Fever against Durationofsurgery, Maxtemponday1, Group and Whitecellcountonday1 has produced the least AIC score but Whitecellcountonday1 is not significant with its p-value grater than 0.05 at 0.151.

Therefore, we will retain the previously selected model Fever against Durationofsurgery, Maxtemponday1 and Group which has all its covariates to be significant and AIC at 233.780.

Model Fit

An ideal logistic regression model would produce a non-linear and sigmoidal curve as shown in the first figure. The selected model does not show a perfect sigmoidal curve, especially at the top and bottom, but does show some hints with its curvatures.

On an average, the Exp group (0) is having lower probabilities of fever when compared to Con group (1).

Outlier Diagnostics

There are no leverage h_{ii} values more than 0.105 which does not satisfy the required moderate leverage values of 0.2 - 0.5 and high leverage values of > 0.5.

There are no Cook's distance C_i values greater than 0.340 which satisfies the requirement of $C_i < 1$.

DFBETA_{ij} >
$$2/\text{sqrt}(n)$$

DFBETA_{ij} > $2/\text{sqrt}(203) = 0.140$

There is only one DFBETA_{ij} value greater than the absolute value of 0.140 at -0.146 but it does not seem too extreme, considering the range of values.

To conclude, there doesn't seem to be any influential observations.

Final model

Variables in the Equation											
		В	S.E.	Wald	df	Sig.	Exp(B)				
Step 1 a	Duration of surgery	.403	.115	12.343	1	.000	1.496				
	Max temp on Day 1	.889	.333	7.129	1	.008	2.432				
	Group2(1)	767	.331	5.374	1	.020	.465				
	Constant	-34.648	12.541	7.633	1	.006	.000				

a. Variable(s) entered on step 1: Duration of surgery, Max temp on Day 1, Group2.

c(iii) provide interpretations of the parameter estimates in your model. Do these agree with your investigations in (i)?

Since Con group is the reference category, the beta coefficient of Group represents the Exp group.

$$y_i \sim \text{Bernoulli } (\pi_i)$$
 where $i = 1,...., n$

$$\ln(\pi_{i}^{\prime}/1 - \pi_{i}^{\prime}) = -34.648 - 0.767 x_{i1} + 0.889 x_{i2} + 0.403 x_{i3}$$

where,

 $x_{i1} = \{1 \text{ if patient belonging to Exp group, 0 otherwise}\}$

 x_{i2} = Maximum temperature on day 1

 x_{i3} = Duration of surgery

 π_i^* = probability of a patient having Fever(1)

The odds of a patient in Exp group having Fever decreases by 54% ($e^B = e^{-0.767} = 0.465$), when compared to patients in Con group.

This effect of Group on Fever was suspected in c(i) where the Chi-Square Test of Association between Fever and Group showed significance at 0.008.

For every increase in degree Celsius in the Maximum temperature on day 1, the odds of a patient having Fever increases by 143% ($e^B = e^{0.889} = 2.432$).

This effect of Maximum temperature on day 1 on Fever was suspected in c(i) where the scatterplot showed that the incidence of fever increase as the Maximum temperature on day 1 increases, on an average.

For every increase in hour in the Duration of surgery, the odds of a patient having Fever increases by 50% ($e^B = e^{0.403} = 1.496$).

This effect of Duration of surgery on Fever was suspected in c(i) where the boxplot and scatterplot showed high incidence of fever when Duration of surgery is longer, 3-6 hours to be specific.

Fever ~ Maxtemponday1 by Group:

The predicted probabilities (blue) of the final model are able to be fitted across the spline which provides a summary of the relationship between Fever and Maxtemponday1.

On an average, the predicted probabilities of Exp group (green) are lower than the predicted probabilities of Con group (red). It indicates that patients in Exp group have less incidence of fever, when compared to Con group.

Fever ~ Durationofsurgery by Group:

The predicted probabilities (blue) of the final model are able to be fitted across the spline which provides a summary of the relationship between Fever and Durationofsurgery.

On an average, the predicted probabilities of Exp group (green) are lower than the predicted probabilities of Con group (red). Again, it indicates that patients in Exp group have less incidence of fever, when compared to Con group.

c(iv) Using your final model, compute the fitted probability of Fever of a patient with the following profile.

Group: control **Gender**: male **Age**: 45 years

BodyMassIndex: 21.5 Siteofsurgery: abdominal Durationofsurgery: 2 hours MaxtempDay1: 37.2C WhitecellcountDay1: 10

$$\ln(\pi_i^{\prime}/1 - \pi_i^{\prime}) = -34.648 - 0.767 x_{i1} + 0.889 x_{i2} + 0.403 x_{i3}$$

From the above model equation,
$$n_i^2 = -34.648 - 0.767 x_{i1} + 0.889 x_{i2} + 0.403 x_{i3}$$

= -34.648 - (0.767 * 0) + (0.889 * 37.2) + (0.403 * 2)
 $n_i^2 = -0.771$

Fitted probability of Fever
$$\pi_i^{\circ} = e^n / (1 + e^n)$$

= $e^{-0.771} / (1 + e^{-0.771})$
= 0.463 / (1 + 0.463)
 $\pi_i^{\circ} = 0.316$

c(v) Give the classification table, using a cut-off of the prior probability of Fever. What is the sensitivity and specificity?

			Fever2		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	.00	140	69.0	69.0	69.0
	1.00	63	31.0	31.0	100.0
	Total	203	100.0	100.0	

Prior Probability of Fever = Total number of patients having Fever(1) / Total number of patients = 63 / 203 = 0.310

Classification Table

			Predicte	ted			
			Feve	Percentage			
	Observe	d	.00	1.00	Correct		
Step 1	Fever2	.00	92	48	65.7		
		1.00	17	46	73.0		
	Overall P	ercentage			68.0		

The number of patients that were correctly predicted as not having Fever(0) over the total number of patients not having Fever(0).

Specificity =
$$92/(92+48) = 0.66$$

The number of patients that were correctly predicted as having Fever(1) over the total number of patients having Fever(1).

Sensitivity =
$$46 / (17 + 46) = 0.73$$

The model is not perfectly balanced but is just good enough to predict patients not having Fever(0) and having Fever(1), with the cut off probability of 0.310 which is the prior probability of Fever.

c(vi) Construct the ROC curve and give the area under the curve. What does the area under the curve indicate in this case?

Area under curve > 0.5 at 0.719

The model seems to have useful predictive ability, indicating that there is a 72% chance that the model will be able to predict patients without Fever and with Fever correctly.

d) Is there a large difference between the unadjusted and adjusted estimates of treatment effect on occurrence of Fever? Explain your answer.

Unadjusted model Adjusted model

Variables in the Equation									Variables in the Equation						
		В	S.E.	Wald	df	Sig.	Exp(B)			В	S.E.	Wald	df	Sig.	Exp(B)
			0.2.	TTUIG	ui	oig.	LAP(D)	Step 1ª	Group2(1)	767	.331	5.374	1	.020	.465
Step 1 a	Group2(1)	823	.314	6.866	1	.009	.439		Duration of surgery	.403	.115	12.343	1	.000	1.496
	Constant	430	.201	4.583	- 1	.032		.651		Max temp on Day 1	.889	.333	7.129	1	.008
	Constant	430	.201	4.563	1	.032	.051		Constant	-34.648	12.541	7.633	1	.006	.000
a. Vari	a. Variable(s) entered on step 1: Group2.							a. Var	able(s) entered on step	p 1: Group2,	Duration of s	surgery, Max	temp on Day	/1.	

All the variables in both the models are significant. Since Con group is the reference category, the beta coefficient of Group represents the Exp group.

In the unadjusted model, the odds of a patient belonging to Exp group having Fever decreases by 56% ($e^B = e^{-0.823} = 0.439$), when compared to patients in Con group.

In the adjusted model, the odds of a patient belonging to Exp group having Fever decreases by 54% ($e^B = e^{-0.767} = 0.465$), when compared to patients in Con group.

There seems to be a small difference of 2% between the unadjusted and adjusted estimates on patients in Exp group having Fever.

This difference in estimates could be attributed to the additional two covariates in the adjusted model which are predictive of the response variable, resulting in the change of the coefficient of existing covariate in the model. The estimated beta coefficient of an existing covariate in regression model might change if the newly added covariate(s) is correlated / associated with the existing covariate and the response variable.

Adjusted model

Moreover, the adjusted model could be preferred as its predictive ability is much better than the unadjusted model.