

哈爾濱工業大學

第37讲非参数假设检验

前面讨论了正态总体下,参数的假设检验问题.

实际问题中,可能总体服从何种分布并不知道.需要我们对总体的分布形式提出假设. 利用数据(样本)对假设进行检验,看能否获得通过.

例1 在一实验中,每隔一定时间观察一次由某种铀所放射的到达计数器上的 α 粒子数X,共观察了100次,数据如下

α粒子数	0	1	2	3	4	5	6	7	8	9	10	11	≥12
观察次数	1	5	16	17	26	11	9	9	2	1	2	1	0

上述实验数据与X服从泊松分布的理论结果是 否相符? 检验方法—χ²拟合优度检验

检验: $H_0: F(x) = F_0(x)$,

其中,F(x)为总体X的分布函数,

 $F_0(x)$ 是某一完全已知或类型已知但含若干

未知参数的分布函数.

当总体X是离散型,

 H_0 : X的分布列为 $P(X = x_i) = p_i (i = 1, 2, \cdots)$. 当总体X是连续型,

 H_0 : X的概率密度为f(x).

χ^2 拟合优度检验的原理与步骤:

- 1. 将总体X的取值范围分成k个互不相交的区间 A_1, A_2, \dots, A_k .
- 2. H_0 成立下,当 $F_0(x)$ 含有未知参数时,求未知参数的最大似然估计值;
- $3. H_0$ 成立下,可以算出总体X的值落入每个 A_i 的概率 p_i (或 \hat{p}_i),称 np_i (或 $n\hat{p}_i$) 为落入 A_i 的 样本值的理论频数.

 $[\dot{x}]$ 当 $F_0(x)$ 中含有m个未知参数时,用最大似然法估计未知参数,算得 p_i 的估计 \hat{p}_i .

4. 数出 A_i 中含样本值个数 n_i ,并计算统计量

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n\hat{p}_{i})^{2}}{n\hat{p}_{i}},$$

可以证明如下结论

定理 在 H_0 成立下,当n充分大时,

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} \stackrel{\text{近似}}{\sim} \chi^2(k-1),$$
 $\chi^2 = \sum_{i=1}^k \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \stackrel{\text{近似}}{\sim} \chi^2(k-m-1),$

其中,k为子区间个数,m为 $F_0(x)$ 中未知参数的个数.

5. H_0 的显著性水平为 α 的检验的拒绝域为 $\chi^2 \geq \chi_\alpha^2 (k-1)$,(不需估计未知参数) $\chi^2 \geq \chi_\alpha^2 (k-m-1)$,(有m个未知参数需估计)

注意:该检验方法是在n 充分大时使用的,因而,一般要求 $n \geq 50$,及 $np_i \geq 5$. 否则应适当合并区间,使 np_i 满足要求.

下面用拟合优度检验解例1

解 检验:
$$H_0: P(X=i) = \frac{\lambda^i}{i!} e^{-\lambda} (i=0,1,\cdots).$$

先求出 λ 的最大似然估计 $\hat{\lambda} = \bar{x} = 4.2$.

若
$$H_0$$
成立,则 $P(X=i)$ 有估计

$$\hat{p}_{i} = \hat{P}(X = i) = \frac{4.2^{i}}{i!} e^{-4.2} (i = 0, 1, \dots, 11).$$

$$\hat{p}_{12} = \hat{P}(X \ge 12) = 1 - \sum_{i=1}^{11} \hat{p}_{i}.$$

计算结果如下:

i	n_{i}	$oldsymbol{\hat{p}}_i$	$n\hat{p}_{i}$	$n_i - n\hat{p}_i$	$\frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i}$
0 1 2 3 4 5 6 7 8 9 10 11 12	1 5 16 17 26 11 9 9 2 1 2 1 0	0.015 0.063 0.132 0.185 0.194 0.163 0.114 0.069 0.036 0.017 0.007 0.003 0.002	1.5\ 6.3\ 13.2 18.5 19.4 16.3 11.4 6.9 3.6 1.7 0.7 0.3 0.2	-1.8 2.8 -1.5 6.6 -5.3 -2.4 2.1	0.415 0.594 0.122 2.245 1.723 0.505 0.693
		Σ			6.282

检验统计量的值为

$$\chi^{2} = \sum_{i=0}^{\infty} \frac{(n_{i} - n\hat{p}_{i})^{2}}{n\hat{p}_{i}} = 6.282,$$

在 $\alpha = 0.05$ 下的临界值为

$$\chi_{\alpha}^{2}(k-m-1)=\chi_{0.05}^{2}(8-1-1)=12.592.$$

6.282 < 12.592,故接受 H_0 ,即认为试验数据与理论结果相符.

谢 谢!