If you draw the perpendicular line to a like y=moute from the origin in 2 diversional rectangular coordinates, you can define the angle between the line and the x-axis in counter-abolivities as O, and the distance between the aigin and y=moute as Q.

If y=mx+c pusses the origin, letine the angle between y=mx+c and x-axis in counter-clockwise as θ , and $\rho=0$. Then the gradient of the perpendicular line is $\frac{\partial S_{in}\theta}{\partial ros\theta}$, so $\frac{\sin\theta}{\cos\theta} \times m=-1$, therefore $m=-\frac{\cos\theta}{\sin\theta}$, and $c=\frac{\rho}{\sin\theta}$.

Threfore, we can say that every point on yourse can be devoted as p=xrosot y simb.
and on 6-0 place, each point or yourse devotes a sinusoid.

Using $cos(x-d) = cos \times cos d + sin \times sin d$, $\times cos \theta + y sin \theta = R cos(x-d) = 0$ where $con d = \frac{1}{x}$ and $R = \sqrt{x^2 + y^2}$. Therefore, or plittude of the sinusoid is determined by $\sqrt{x^2 + y^2}$ and phase of the sinusoid is determined by $ton d = \frac{1}{x}$.

2) Assuming that you take center pixel as the origin. O varies from 0 to 271 and Omax equals half of the diagonal, which is JW2H2 X=

0 < 0 < 2 to 100 + H2

1) Lambertian BRDF:
$$f(\Theta_i, \emptyset_i, \Theta_f, \Phi_f) = \frac{L(\Theta_f, \Phi_f)}{E(\Theta_i, \Phi_i)} = \frac{C_d}{R}$$

$$L(\Theta_f, \Phi_f) = \frac{C_d}{R} \frac{d\Phi_i}{dA} = \frac{C_d}{R} \frac{d\Phi_i}{dW} \cos \Theta_i = \frac{C_d}{R} I \cos \Theta_i = \frac{C_d}{R} I \overrightarrow{R} \cdot \overrightarrow{S}$$

$$E(\Theta_i, \Phi_i) = \frac{d\Phi_i}{dA} = \frac{dA}{R} \frac{dA \cos \Theta_i}{R^2} = \frac{dA \cos \Theta_i}{R^2}$$

By conservation of energy,

$$0 \le \int L(\theta_r, \Phi) = \int_{\pi}^{Q} I(\sigma s \theta_r, dw) \le I$$

Aerisphere herrighere
$$U = A \longrightarrow dw = A = \sin \theta d\theta d\phi$$

$$U = A \longrightarrow dw = A = \sin \theta d\theta d\phi$$

Since power rowing from a foreshortened oven is the some. In this ruse, because brightness of the surface increases with increasing angle between whener and surface, we can say that $BRDF = \frac{L(\Theta_1, \Theta_2)}{E(\theta_1, \Theta_2)}$ is proportional to $\frac{1}{\cos \Theta_1}$ (BRDF $\propto \frac{1}{\cos \Theta_2}$). Therefore putting the constant part as 1, we can say that image intensity $I = \frac{\cos \Theta_1}{\cos \Theta_2}$. In surface normal, where of viewer is (0,0,1) and vector of surface normal is (p,q,1). Therefore $\cos \Theta_1 = \frac{0.910 \cdot 911 \cdot 1}{\sqrt{0.910 \cdot 1} \cdot \sqrt{0.911 \cdot 1}} = \frac{1}{\sqrt{0.911 \cdot 1} \cdot \sqrt{0.911 \cdot 1}}$

$$X_i = PX_i$$

With Pi being ith row of P, Put P as $P = \begin{pmatrix} P_i^T \\ P_2^T \\ P_3^T \end{pmatrix}$

$$p_i^T X_i = Wu$$
:
 $p_2^T X_i = Wv$:
 $p_3^T X_i = Wv$:
 $X_i^T P_3 - Wv = 0$
 $X_i^T P_3 - W = 0$

$$\begin{pmatrix} X_{i}T & O & O & -u_{i} \\ O & X_{i}T & O & -v_{i} \\ O & O & X_{i}T & -1 \end{pmatrix} \begin{pmatrix} P_{i} \\ P_{2} \\ P_{3} \\ W \end{pmatrix} = \begin{pmatrix} O \\ O \\ O \end{pmatrix}$$

$$= A_{1} \begin{pmatrix} (2 \times 13) \\ (2 \times 13) \\ (3 \times 1) \end{pmatrix}$$

U.

6/2

By SVD, I = On O whoe M2M2 -- Or one eigenvalues of A.

Therefore to minimize 11 Zyll and 11411=1, y=(0,0, ... 1)

p= Vy Therene, p is the last column of V corresponding to smallest eigen-nine of A.

- 4. Hough Transform for Line Detection
- 2) non maximal suppression in edge detection

In this part, I divided the 2pi into four sections.(0~pi/4, pi/4~pi/2, 2/pi~3pi/4, 3pi/4~pi) This is possible because we look at both direction of gradient direction and its opposite at the same time. I calculated tan(Io) using edge orientation value Io, in order to interpolate between the two pixels the direction is pointing to. Then as I got two interpolated values, I compared them with the pixel edge magnitude Im of the original edge. If any interpolated value is bigger than the edge magnitude of the original, I suppressed the original edge magnitude by putting its value as zero. Otherwise if the edge magnitude is the biggest, which means that it is local maximum, I preserved its original value.

```
Im_nms = np.zeros(Im.shape)
Im_h, Im_w = Im.shape
for i in range(1, Im_h-1):
    for j in range(1, Im_w-1):
        if (0 \leftarrow Io[i, j] \leftarrow (np.pi / 4) \text{ or } -np.pi \leftarrow Io[i, j] \leftarrow -(np.pi * 3 / 4)):
            a = np.abs(np.tan(Io[i, j]))
            p = a * Im[i-1, j+1] + (1-a) * Im[i, j+1]
           r = a * Im[i+1, j-1] + (1-a) * Im[i, j-1]
        elif ((np.pi / 4) <= Io[i, j] < (np.pi / 2) or -(np.pi * 3 / 4) <= Io[i, j] < -(np.pi / 2)):
            a = np.abs(1/np.tan(Io[i, j]))
            p = a * Im[i-1, j+1] + (1-a) * Im[i-1, j]
            r = a * Im[i+1, j-1] + (1-a) * Im[i+1, j]
        elif ((np.pi / 2) <= Io[i, j] < (np.pi * 3 / 4) or -(np.pi / 2) <= Io[i, j] < -(np.pi / 4)):
            a = np.abs(1/np.tan(Io[i, j]))
            p = a * Im[i-1, j-1] + (1-a) * Im[i-1, j]
            r = a * Im[i+1, j+1] + (1-a) * Im[i+1, j]
        elif ((np.pi * 3 / 4) <= Io[i, j] <= np.pi or -(np.pi / 4) <= Io[i, j] < 0):
            a = np.abs(np.tan(Io[i, j]))
            p = a * Im[i-1, j-1] + (1-a) * Im[i, j-1]
            r = a * Im[i+1, j+1] + (1-a) * Im[i, j+1]
        if Im[i, j] > p and Im[i, j] > r:
            Im\_nms[i, j] = Im[i, j]
            Im_nms[i, j] = 0
```

Example 4.2.1. Implemented code of non maximum suppression

Example 4.2.2. Before non maximum suppression

Example 4.2.3. After non maximum suppression

3) Hough transform

Example 4.3.1. Im after applying the threshold (threshold = 0.03)

Example 4.3.2. H(rhoRes=1, thetaRes=pi/180)

4) HoughLines

```
# loop through number of peaks to identify
indicies = []
1Rho = []
1Theta = []
H1 = np.copy(H)
for i in range(nLines):
    idx = np.argmax(H1) # find argmax in flattened array
    H1 idx = np.unravel index(idx, H1.shape) # remap to shape of H
    indicies.append(H1_idx)
    # surpess indicies in neighborhood
    idx_y, idx_x = H1_idx # first separate x, y indexes from argmax(H)
    1Rho.append(idx y)
    1Theta.append(idx_x)
    if idx_x - (nhood_size_x // 2) < 0:
        min x = 0
    else:
        min x = idx x - (nhood size x // 2)
    if (idx x + (nhood size x // 2) + 1) > H.shape[1]:
        max_x = H.shape[1]
    else:
        max_x = idx_x + (nhood_size_x // 2) + 1
    # if idx y is too close to the edges choose appropriate values
    if idx y - (nhood size y / 2) < 0:
        min_y = 0
    else:
        min_y = idx_y - (nhood_size_y // 2)
    if (idx_y + (nhood_size_y // 2) + 1) > H.shape[0]:
        max_y = H.shape[0]
        \max y = idx y + (nhood size y // 2) + 1
    # bound each index by the neighborhood size and set all values to 0
    for x in range(min_x, max_x):
        for y in range(min_y, max_y):
            # remove neighborhoods in H1
            H1[y, x] = 0
            # highlight peaks in original H
            if (x == min_x or x == (max_x - 1)):
                H[y, x] = 255
            if (y == min_y or y == (max_y - 1)):
                H[y, x] = 255
```

Example 4.4.1. Implemented code of non maximum suppression

Source:

http://fourier.eng.hmc.edu/e161/dipum/houghpeaks.m

https://gist.github.com/ri-sh/45cb32dd5c1485e273ab81468e531f09

Example 4.4.2 Plotted lines on the original image

rhoRes and thetaRes is needed when deciding the size of the neighborhood(nhood_size) which is a area surrounding the local maximum on Hough space. I suppressed values smaller than the local maximum in the neighborhood.

5) HoughLineSegments

Example 4.5.1. Plotted line segments on the original image