WSINDy For PDEs: User's Guide

Daniel A. Messenger

January 7, 2021

1 wsindy_pde_script.m

All model selection is executed from this script, which is set up to demonstrate the WSINDy algorithm on PDEs used in [1].

%% Load data

This code block is used to load the "exact" data and computational grid as well as coarsen and add noise if desired. Solution data should be loaded as a cell array U_{exact} with each cell holding the data for each state variable (e.g. for a reaction-diffusion system with two components u and v, $U_{\text{exact}}\{1\}$ holds data for u and $U_{\text{exact}}\{2\}$ holds data for v). The computational grid should be loaded as a cell array xs with each cell containing the grid points along each dimension (x_1, \ldots, x_D, t) such that $xs\{1\}$ holds points along the spatial coordinate x_1 , $xs\{D\}$ holds points along the spatial coordinate x_D and $xs\{D+1\}$ holds points along the time coordinate t.

Use the variables below to coarsen data and add noise. The result of this code block will be the "observed" data U_obs and rewritten computational grid xs (both cell arrays) obtained from U_exact and the original xs by coarsening and adding noise. pde_num is used to select an example dataset from the examples used in the manuscript.

%% Set Hyperparameters

This next block of code sets the hyperparameters of the test function ψ , the subsampling rates (s_x, s_t) for convolution query points, the included terms in the model library, and the specifications for solving the sparse regression problem. All matlab variables follow the naming convention of the manuscript.

Variable	Type	Default	Use
pde_num	int	1 - inviscid Burgers	Selects PDE
coarsen_data	int array	ones(D+1,2) - no coarsening	coarsens data by subsam-
			pling (1st col) and truncat-
			ing (2nd col)
sigma_NR	float	0.0 - no added noise	noise ratio (see σ_{NR} in
			manuscript)
noise_dist	binary	0	0 - white noise, 1 - uniform
noise_alg	binary	0	0 - additive noise $\mathbf{U} + \epsilon$
			1 - multiplicative $\mathbf{U}(1+\epsilon)$

Each example PDE in the manuscript has its own default settings.

For the model library, terms $D^{\alpha}f(u)$ are identified by "tags" which are integer arrays that specify the nonlinear function f and differential operator D^{α} . Consider again the reaction-diffusion system with components u and v over coordinates (x_1, x_2, t) . General monomial and trigonometric terms are given the following tags:

 $(u^m v^n)$ $\frac{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial t^{\alpha_3}}{\partial^{\alpha_1 + \alpha_2 + \alpha_3}}$ $\frac{\frac{1}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial t^{\alpha_3}} \cos(ku)}{\frac{\partial \alpha_1 + \alpha_2 + \alpha_3}{\partial x_1^{\alpha_2} \partial t^{\alpha_3}} \sin(ku)}$ ki0 α_1 α_2 α_3 $\frac{1}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial t^{\alpha_3}} \sin(\overline{ku})$ $-ki \quad 0 \quad \alpha_1$ $\alpha_2 \quad \alpha_3$ ki $\cos(kv)$ $\frac{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial t^{\alpha_3}}{\partial^{\alpha_1 + \alpha_2 + \alpha_3}}$ $\frac{1}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial t^{\alpha_3}} \sin(ku)$ -ki α_1

For example, [0, -2, 2, 0, 0] denotes the term $\partial_{x_1x_1}\sin(2v)$ and [1, 2, 0, 3, 0] denotes $\partial_{x_2x_2x_2}(uv^2)$.

%% Find Dynamics

This section calls the function $wsindy_pde_fun$ which takes as input the previously defined variables and outputs a large array of useful variables. Most notable are the first 5 variables: the weight vector W, the Gram matrix G, the left-hand side matrix b, the scale vector M, and the learned sparsity threshold lambda_hat. Solving G X = b using sequential-thresholding least squares with threshold lambda_hat will produce X=W./M.

%% Display Results

print_loc	string or binary	1	0- don't print results
			1- print results to terminal
			string - print results to
			string
toggle_plot_basis_fcn	binary	0	plot basis functions and par-
			tial derivatives
toggle_plot_sol	binary	0	if data has only one spatial
			dimension, plots data U_obs
toggle_plot_loss	binary	0	if a range of lambda val-
			ues is given by lambda, this
			plots the loss function \mathcal{L}
			for each value (defined in
			manuscript)

Table 4: Display results options.

References

[1] Daniel A Messenger and David M Bortz. Weak sindy for partial differential equations. <u>arXiv preprint</u> arXiv: 2007.02848, 2020.

Variable	Type	Default	Use
m_x	int	(depends on PDE)	selects spatial test function
			ϕ_x support size in num-
			ber of grid points $(m_x \text{ in })$
		(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	manuscript)
m_t	int	(depends on PDE)	selects temporal test func-
			tion ϕ_t support size in num-
			ber of grid points $(m_t \text{ in } m_t)$
S_X	int	(depends on PDE)	manuscript) subsampling rate along spa-
p_x	1110	(depends on 1 DE)	tial coordinates such that
			every s_x th point is a query
			point
s_t	int	(depends on PDE)	subsampling rate along
			temporal coordinate such
			that every $s_{-}t$ th point is a
			query point
phi_class	int	1 - piecewise polynomial	selects test function class
			1- piecewise poly
	0 .	10-10	2 - Gaussian
tau	float	10^{-10}	sets the value of ϕ near edge
+	float	0 no automatic galactica	of support (τ in manuscript) sets number of standard
tauhat	поац	0 - no automatic selection	deviations into tail of $\hat{\phi}$
			to place critical wavenum-
			bers (changepoints) (k_x, k_t)
			of data (see appendix of
			manuscript)
toggle_scale	$\{0,1,2,\mathtt{Inf}\}$	2 - bound column ℓ^2 -norms	scale coordinates so that the
			columns of G are bounded
			by the $\ \mathbf{U}\ $ for selected
			norms (0 selects no scaling)

Table 1: Variables used to specify weak discretization.

lambda	float array	10.^(linspace(-4,0,50))	STLS threshold values.
			if length(lambda)>1,
			MSTLS is used (defined in
			manuscript)
gamma	float	0	Tikhonov regularization

Table 2: Variables used to tune sparse regression problem.

max_dx	int	6	Maximum spatial derivative in library
max_dt	int	1	Maximum temporal derivative in library
polys	int array	0:6	summed monomial degrees in library (e.g. uv has a summed monomial degree 2)
trigs	float array	[]	trigonometric frequencies
use_all_pt	binary	0	0 - only include time derivative $\partial^{\text{max.dt}} t$ 1 - include all derivatives up
			to $\partial^{\text{max.dt}} t$ and cross derivatives (e.g. ∂_{xt})
use_cross_dx	binary	0	0 - don't include cross derivatives 1 - do include
true_nz_tags	cell array	{[]}	tags for true model nonzero terms if known. Each cell contains tags for each equation
lhs	float matrix	(PDE dependent)	tags left-hand side of each equation in system to be discovered (e.g. to specify $\partial_t u$ and $\partial_t v$, set $lhs = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$
custom_add	float array	[]	Add additional terms (as tags) not automatically generated by max_dx, max_dt, polys, trigs
custom_remove	float array	[]	Remove terms (as tags) that are automatically generated by max_dx, max_dt, polys, trigs

Table 3: Variables used to specify model library.