FRA331: Basic Control Theory

Homework 5: Time Response

1.) In this problem, you will have to find the zeros and poles of a closed system.

Given, the transfer function of the plant to be

$$G(s) = \frac{a}{s+a}$$

Let the controller be the following PID controller

$$u = K_p(e) + K_i \int_0^t (e) d\tau + K_d \frac{d}{dt}(e)$$

Where

$$e = r - \gamma$$

a.) Find the closed-loop transfer function of the system $T(s) = \frac{Y(s)}{R(s)}$ in term of a, K_p , K_i , K_d

b.) Determine the poles and zeros of the closed-loop transfer function. If

$$a = 0.2$$
, $K_p = 10$, $K_i = 4$, $K_d = 6$

c.) Sketch the poles and zeros of the closed-loop system in the plane

2.) Let the closed-loop system

$$G(s) = \frac{1}{s(s+a)}$$

a.) If the controller is

$$u = K(r - y)$$

$$a = 2$$

Find the value of *K* that makes the Settling Time equals to 4 seconds

b.) If the controller is

$$u=K(r-y)$$

$$\nu$$
 – Γ

Find the value of $\,a$ that makes the Peak Time equals to 2.

- c.) Given the constant \boldsymbol{a} , determine the range of \boldsymbol{K} for these 3 cases
 - a. Overdamped
 - b. Critically-damped
 - c. Underdamped

3.) Given the following specification

$$T_s = 2 seconds$$

$$\%OS = 20$$

a.) Sketch the poles of the systems in an imaginary plane

b.) Write the transfer function of the system where the unit step response reaches 1.