Caratterizzazione delle funzioni a derivata nulla

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (caratterizzazione delle funzioni a derivata nulla) Sia $f:(a,b) \to \mathbb{R}$ una funzione. È importante il fatto che f sia definita su un intervallo, eventualmente anche tutto \mathbb{R} .

Allora: $\forall x_0 \in (a, b) \ f'(x_0) = 0 \iff f = c, \text{ con } c \in \mathbb{R}.$

Dimostrazione:

Dobbiamo dimostrare i due versi dell'implicazione.

Cominciamo con $f = c \implies \forall x_0 \in (a,b)$ $f'(x_0) = 0$, ovvero se f è costante su un intervallo (a,b), allora la sua derivata in tutti i punti di (a,b) è uguale a 0. Ma questo lo sapevamo già, per la regola di derivazione di una costante.

Dimostriamo allora l'implicazione nell'altro verso.

$$\forall x_0 \in (a, b) \ f'(x_0) = 0 \implies f = c$$

Fissiamo il punto $x_0 \in (a, b)$, e consideriamo un punto $x \neq x_0, x \in (a, b)$. E consideriamo l'intervallo $[x, x_0]$ (o eventualmente $[x_0, x]$ se $x > x_0$).

La funzione f soddisfa tutte le ipotesi del teorema di Lagrange in $[x, x_0]$, quindi $\exists c \in (a, b) : \frac{f(x) - f(x_0)}{x - x_0} = f'(c)$. Ma f'(c) = 0 per ipotesi, quindi $\frac{f(x) - f(x_0)}{x - x_0} = 0 \iff f(x) - f(x_0) = 0$, ovvero $f(x) = f(x_0)$. Questo ragionamento si può ripetere per ogni x, ottenendo che la funzione assume lo stesso valore $\forall x \in (a, b)$, ovvero la funzione è costante, proprio ciò che volevamo dimostrare.