Samanfatning av SF1673 Analys i en variabel

Yashar Honarmandi

3 januari 2018

Sammanfattning

Denna samanfattning samlar centrala definitioner och satsar användt i KTH:s kurs SF1673 Analys i en variabel

Innehåll

1	Aängder	1
	.1 Definitioner	1
		1
2	Calföljder	1
	.1 Definitioner	1
	.2 Satser	2
3	unktioner	3
	.1 Definitioner	3
	.2 Satser	5
4	Gränsvärden	7
	.1 Definitioner	7
	.2 Satser	8
5	Derivata	9
	.1 Definitioner	9
	.2 Satser	9
6		13
	.1 Definitioner	13
	.2 Satser	14
7		L 5
	.1 Definitioner	15
	2. Cotron	16

1 Mängder

1.1 Definitioner

Delmängder Låt A, B vara mängder. A är en delmängd av B om det för varje $x \in A$ gäller att $x \in B$. Notation: $A \subset B$.

Union och snitt Låt A, B vara mängder. Unionen $A \cup B$ består av de element som ligger i någon av mängderna. Snittet $A \cap B$ består av de element som är i båda.

Övre och undra begränsningar Ett tal m är en övre begränsning av en mängd A om $x \leq m$ för varje $x \in A$, och en undra begränsning om $x \geq m$ för varje $x \in A$.

Supremum och infimum Ett tal m är supremum till en mängd A om m är den minsta övre begränsningen till A. m är infimum till A om m är den största undra begränsningen till A. Notation: $\sup A$, $\inf A$.

1.2 Satser

Supremumsegenskapen Varje uppåt begränsade delmängd av \mathbb{R} har en minsta övre begränsning.

Bevis Överkurs.

2 Talföljder

2.1 Definitioner

Definitionen av en talföjld En talföljd är en följd av tal $a_1, a_2, ...$ och betecknas $(a_n)_{n=1}^{\infty}$.

Växande och avtagande talföljder En talföljd är växande om $a_{n+1} \ge a_n$ för varje $n \ge 1$. Avtagande talföljder definieras analogt.

Uppåt och nedåt begränsade talföljder En talföljd är uppåt begränsad om det finns ett M så att $a_n \leq M$ för alla $n \geq 1$.

Begränsade talföljder En talföljd är begränsad om den är både uppåt och nedåt begränsad.

Konvergens av talföljder En talföljd konvergerar mot ett gränsvärde A om det för alla $\varepsilon > 0$ finns ett N sådant att $|a_n - A| < \varepsilon$ för varje n > N. Detta beteendet betecknas

$$\lim_{n \to \infty} a_n = A.$$

Divergenta talföljder En divergent talföljd är inte konvergent.

Binomialsatsen För $n \in \mathbb{Z}$ har man

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Binomialkoefficienter

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

e, Eulers tal

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

2.2 Satser

Gränsvärden för kombinationer av talföljder Låt $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ vara talföljder med gränsvärden A och B. Då följer att

- a) $(a_n + b_n)_{n=1}^{\infty}$ är konvergent med gränsvärdet A + B.
- b) $(a_n b_n)_{n=1}^{\infty}$ är konvergent med gränsvärdet AB.
- c) om $B \neq 0$ är $\left(\frac{a_n}{b_n}\right)_{n=1}^{\infty}$ konvergent med gränsvärdet $\frac{A}{B}$.
- d) om $a_n \leq b_n$ för varje n så gäller att $A \leq B$.

Bevis Aa.

Växande och uppåt begränsade talföljder Om $(a_n)_{n=1}^{\infty}$ är en växande och uppåt begränsad talföljd så är den konvergent och

$$\lim_{n \to \infty} a_n = \sup \{ a_n : n \ge 1 \}$$

Det analoga gäller för avtagande och nedåt begränsade mängder.

Bevis Enligt supremumsegenskapen finns det ett $K = \sup (a_n)_{n=1}^{\infty}$. Då finns det även a_i godtyckligt nära K - med andra ord finns det ett N så att $|a_N - K| < \varepsilon$ för något $\varepsilon > 0$. Eftersom talföljden är växande, är detta även sant när n > N, vilket fullbördar beviset.

Gränsvärde för potenser

$$\lim_{n \to \infty} n^p = \begin{cases} \infty, & p > 0 \\ 0, & p < 0 \end{cases}$$

Bevis Meh.

Standardgränsvärden Låt a > 1 och b > 0. Då gäller att

$$\lim_{n \to \infty} \frac{a^n}{n^b} = \infty$$

$$\lim_{n \to \infty} \frac{n!}{b^n} = \infty$$

Bevis Nä.

Endeligt värde av e Talföljden $(a_n)_{n=1}^{\infty}$ med

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

är konvergent.

Bevis Säkert någon gång.

Bolzano-Weierstrass' sats Låt $(a_n)_{n=1}^{\infty}$ vara en begränsad talföljd. Då finns det konvergent delföljd. En delföljd av en talföljd är en del av talen som fortfarande är oändligt stor.

2

3 Funktioner

3.1 Definitioner

Definition av en funktion Låt X, Y vara mängder. En funktion $f: X \to Y$ är ett sätt att till varje element $x \in X$ tilldela ett välbestämt element $y \in Y$. Vi säger att x avbildas på y och att y är bilden av x. x kallas argumentet till f. X kallas funktionens definitionsmängd, och betecknas även D_f . Y kallas funktionen målmängd.

Värdemängd Värdemängden till $f: X \to Y$ definieras som:

$$V_f = \{ y \in Y : y = f(x) \text{ för något } x \in X \}$$

alltså alla värden f antar.

Injektivitet f är injektiv om det för varje $x_1, x_2 \in X$ gäller att om $f(x_1) = f(x_2)$ så är $x_1 = x_2$.

Surjektivitet f är surjektiv om $V_f = Y$.

Bijektivitet Om f är injektiv och surjektiv, är f bijektiv.

Inversa funktioner Låt $f: X \to Y$ vara en bijektiv funktion. Inversen till f är avbildningen $f^{-1}: Y \to X$ som ges av $f^{-1}(y) = x$, där y = f(x). Funktioner som har en invers kallas inverterbara.

Växande och avtagande funktioner En funktion f är växande på en mängd $M \in D_f$ om det för varje $x, y \in M : x < y$ gäller att $f(x) \le f(y)$. Om $M = D_f$ kallas f växande. Avtagande funktioner definieras analogt.

Strängt växande och avtagande funktioner En funktion f är strängt växande på en mängd $M \in D_f$ om det för varje $x, y \in M : x < y$ gäller att f(x) < f(y). Om $M = D_f$ kallas f strängt växande. Strängt avtagande funktioner definieras analogt.

Monotona funktioner Om en funktioner är antingen strängt växande respektiva strängt avtagande eller växande respektiva avtagande i ett intervall, är den strängt monoton respektiva monoton.

Uppåt och nedåt begränsade funktioner En funktion f är uppåt begränsad om V_f är uppåt begränsad. Nedåt begränsade funktioner definieras analogt. Om funktioner saknar övre eller nedra begrensning är den uppåt eller nedåt obegränsad.

Minima och maxima En funktion f har ett lokalt maximum i x_0 om det finns en omgivning I till x_0 så att $f(x) \leq f(x_0)$ för alla $x \in I \cap D_f$. Det analoga gäller för ett lokalt minimum. Om f har antingen ett lokalt maximum eller minimum i x_0 har f ett lokalt extrempunkt i f.

Globala maxima och minima En funktion f har ett globalt maximum i x_0 om $f(x) \leq f(x_0$ för varje $x \in D_f$.

Trigonometriska funktioner Betrakta enhetssirkeln i figur 1, med radie 1.

Man tenker sig en punkt på cirkeln enligt figuren, var linjen från cirkelns centrum till cirkeln bildar en vinkel θ med x-axeln. Denna vinkeln startar när punkten på cirkeln ligger på den positiva sidan av x-axeln, och ökar moturs. Från denna konstruktionen definieras sin och cos utifrån x- och y-koordinaterna till punkten för en given θ , var θ mäts i radianer. Vi definierar även tan $\theta = \frac{\sin \theta}{\cos \theta}$.

Från definitonerna ser vi at $\sin x$ och $\cos x$ är definierade för alla $x \in \mathbb{R}$, medan $\tan x$ är definierad för alla $x \neq \frac{\pi}{2}n, n \in \mathbb{Z}$.

Radianer Radianer är ett mått på vinklar som är baserad på enhetscirkeln. Om man tenker sig att punkten i figur 1 beväger sig från startpunktet och till nån

Figur 1: Enhetscirkeln.

Trigonometriska funktioners egenskaper Från definitionen av dom trigonometriska funktionerna följer många egenskaper vid dissa. Några essensiella är listad under:

$$\cos^2 x + \sin^2 x = 1$$

$$\sin(\theta + 2\pi n) = \sin \theta$$

$$\cos(\theta + 2\pi n) = \cos \theta$$

$$\sin(\theta - \frac{\pi}{2}) = \cos \theta$$

$$\cos(\theta + \frac{\pi}{2}) = \sin \theta$$

$$\sin(-\theta) = -\sin \theta$$

$$\cos(-\theta) = -\cos \theta$$

$$\sin(\theta + \pi) = -\sin \theta$$

$$\cos(\theta + \pi) = -\cos \theta$$

Inversa trigonometriska funktioner Låt $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ sådan att $f(x) = \sin x$. Inversen till denna funktionen betecknas $f^{-1}(x) = \arcsin x$.

Låt $f:[0,\pi]\to[-1,1]$ sådan att $f(x)=\cos x$. Inversen till denna funktionen betecknas $f^{-1}(x)=\arccos x$. Låt $f:(-\infty,\infty)\to(-\frac{\pi}{2},\frac{\pi}{2})$ sådan att $f(x)=\tan x$. Inversen till denna funktionen betecknas $f^{-1}(x)=\arctan x$.

Exponentialfunktionen I häftet definieras inte exponentialfunktionen $a^x, a > 1$, utan den antas vara en strängt växande funktion med värdemängd $(0, \infty)$ som uppfyller

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{x+y} = a^{x}a^{y}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$(a^{x})^{y} = a^{xy}$$

Logaritmfunktionen Låt $f: \mathbb{R} \to (0, \infty)$ sådan att $f(x) = a^x$ för något a > 1. Inversen till denna funktionen betecknas som $f^{-1}(x) = \log_a x$.

Absolutbelopp Absolutbeloppet definieras som $|x| = \sqrt{x^2}$. Detta impliserar att

$$|x| = \begin{cases} -x, & x < 1\\ x, & x \ge 1 \end{cases}$$

Kontinuitet Låt f vara en reellvärd funktion med $D_f \subset \mathbb{R}$, sådan att varje punkterad omgivning till x = a innehåller punkter från D_f och $a \in D_f$. f är kontinuerlig i a om

$$\lim_{x \to a} f(x) = f(a).$$

Likformig kontinuitet f är likformig kontinuerlig på intervallet I om det för varje $\varepsilon > 0$ existerar ett $\delta > 0$ sådant att $|f(x) - f(y)| < \varepsilon$ för varje $x, y \in I$ som uppfyller att $|x - y| < \delta$.

Konvexitet En funktion f är konvex i [a, b] om det för varje $x_1, x_2 \in [a, b]$ gäller att

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2), t \in [0,1].$$

Konkavitet En funktion f är konkav i [a, b] om -f är konvex i [a, b].

Inflexionspunkt Låt f vara en funktion definierad på ett intervall I. En punkt $x_0 \in I$ sägs vara en inflexionspunkt till f om det finns ett $\delta > 0$ sådan att f är konvex i $[x_0 - \delta, x_0]$ eller $[x_0, x_0 + \delta]$ och konkav i det andra.

Lodräta asymptoter Linjen x = a är en lodrät asymptot till f om f(x) går mot ∞ eller $-\infty$ när $x \to a^-$ eller $x \to a^+$.

Sneda asymptoter Linjen y = kx + m är en sned asymptot till f om

$$\lim_{x \to \infty} (f(x) - (kx + m)) = 0$$

eller

$$\lim_{x \to -\infty} (f(x) - (kx + m)) = 0.$$

Givet att f har en sned asymptot, ger definitionen

$$k = \lim_{x \to \infty} \frac{f(x)}{k}, m = \lim_{x \to \infty} (f(x) - kx)$$

eller analogt om asymptoten är vid $-\infty$.

Stora ordo vid oändligheten Låt f, g vara funktioner definierade i (a, ∞) för något a. f tillhör stora ordo av g då $x \to \infty$, med notation $f(x) = \mathcal{O}(g(x))$, om det finns M och x_0 så att

$$|f(x)| \le M|g(x)|$$

för varje $x > x_0$.

Stora ordo kring en punkt Låt f, g vara funktioner definierade i en omgivning till a. f tillhör stora ordo av g kring a, med notation $f(x) = \mathcal{O}(g(x))$, om det finns M och $\delta > 0$ så att

$$|f(x)| \leq M|g(x)|$$

för varje $x \in (a - \delta, a + \delta)$.

3.2 Satser

Trigonometriska funktioner med vinkelsummor

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Cosinussatsen Låt a,b,c vara sidorna i en triangel och θ vinkeln där sidlängderna a och b möts. Då gäller att

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Logaritmfunktionens egenskaper Låt a > 1. Då gäller att

$$\log_a 1 = 0 \tag{1}$$

$$\log_a(xy) = \log_a(x) + \log_a(y) \tag{2}$$

$$\log_a(x^y) = y \log_a(x) \tag{3}$$

Bevis Alla identiteter är baserade på inverterbarheten till exponentialfunktionen - $a^{\log_a x} = x$ - och injektiviteten till exponentialfunktionen, samt reglerna som exponentialfunktionen uppfyllar.

Ekvation 1 fås från att $a^{\log_a 1} = 1$ och att $a^0 = 1$. Eftersom exponentialfunktionen är injektiv, är det bevisad.

Ekvation 2 fås från att $a^{\log_a xy} = xy$ och att $a^{\log_a x + \log_a y} = a^{\log_a x} a^{\log_a y} = xy$.

Ekvation 3 fås från att $a^{\log_a x^y} = x^y$ och att $a^{y \log_a x} = (a^{\log_a x})^y = x^y$.

Absolutbeloppens egenskaper

$$|xy| = |x||y| \tag{4}$$

$$|x+y| \le |x| + |y| \tag{5}$$

Bevis Kommer kanskje någon gång.

Kontinuitet av samansatta funktioner Låt f vara kontinuerlig i b och låt $g(x) \to b$ när $x \to a$. Då gäller att

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

givet att vänsterledet är definierat.

Bevis Meh.

Kontinuitet och begränsning Låt $f:[a,b]\to\mathbb{R}$ vara en kontinuerlig funktion. Då är f begränsad.

Bevis

Inversfunktioners kontinuerlighet Låt $f: A \to B$ vara en kontinuerlig, inverterbar och strängt växande funktion. Då gäller att inversen $f^1: B \to A$ är kontinuerlig och strängt växande.

Bevis

Elementära funktioners kontinuerlighet Elementära funktioner är kontinuerliga.

Bevis

Kontinuerlighet av summa och produkt Summan och produktet av kontinuerliga funktioner är kontinuerlig.

Bevis

Intervallhalvering låt $[a_i, b_i]$ vara intervall så att $[a_{i+1}, b_{i+1}]$ vid att låta en vara mittpunktet på $[a_i, b_i]$ och den andra vara oändrat. Då finns det ett unikt x så att $x \in [a_i, b_i]$ för alla $i \in \mathbb{N}$.

Satsen om mellanliggande värde Låt f vara kontinuerlig i [a, b]. Då antar f alla värden mellan f(a) och f(b).

Bevis I fallet f(a) = f(b) är beviset trivialt.

Anta att f(a) < m < f(b) för något m (ett analogt bevis gäller i motsatta fallet). Definiera $a_0 = a$ och $b_0 = b$, bilda intervallet $[a_0, b_0]$ och beräkna funktionsvärdet i mittpunktet. Om detta är större än m, välj b_1 till att vara mittpunktet och $a_1 = a_0$, eller motsatt i motsatt fall. Fortsätta så med intervallhalvering. Då har vi $f(a_i) \le m \le f(b)$ för varje $i \in \mathbb{N}$.

Mängden av alla a_i är växande och uppåt begränsad av b_i , och mängden av alla b_i är avtagande och nedåt begränsad av a_i . Vi kan da låta $j \to \infty$, och får $f(x) \le m \le f(x) \implies f(x) = m$ för något $x \in [a,b]$. Detta gäller för alla m som uppfyllar kravet, och beviset är klart.

Största och minsta värden Låt $f:[a,b] \to \mathbb{R}$ vara en kontinuerlig funktion. Då finns $x_1, x_2 \in [a,b]$ så att sup $V_f = f(x_1)$ och inf $V_f = f(x_2)$.

Bevis Vi vet enligt 3.2 att funktionens värdemängd är begränsad. Definiera $M = \sup V_f$, som då existerar, och anta att $M \neq f(x)$ på [a, b]. Då är funktionen g så att

$$g(x) = \frac{1}{M - f(x)}$$

definierad på [a, b], kontinuerlig och därmed begränsad. Då finns $C = \sup V_g$, och

$$\frac{1}{M - f(x)} \le X \implies f(x) \le M - \frac{1}{C}.$$

Enligt antagandet är M > f(x), och då är C positiv. Då är $M - \frac{1}{C} < M$, och vi har hittat en mindre övre begränsning för f. Detta motsäjer antagandet, och då måste det finns ett $x \in [a, b]$ så att f(x) = M.

Ett analogt bevis gäller för att visa att f antar ett minsta värde.

Likformig kontinuitet och kontinuitet Låt f vara kontinuerlig på [a, b]. Då är f likformigt kontinuerlig på [a, b].

Bevis

Stora ordos egenskaper Låt f, g vara funktioner sådana att $\mathcal{O}(f(x)), \mathcal{O}(g(x))$ är definierade kring en punkt eller vid ∞ . Då gäller:

$$\mathcal{O}(f(x)) \mathcal{O}(g(x)) = \mathcal{O}(f(x)g(x)),$$

$$\mathcal{O}(f(x)) + \mathcal{O}(g(x)) = \mathcal{O}(|f(x)| + |g(x)|).$$

Bevis

4 Gränsvärden

4.1 Definitioner

Gränsvärde vid oändligheten Låt f vara en funktion definierad i (a, ∞) . f konvergerar mot gränsvärdet A när $x \to \infty$ om det for varje $\varepsilon > 0$ finns ett N sådant att $|f(x) - A| < \varepsilon$ för varje x > N. Detta skrivs

$$\lim_{x \to \infty} f(x) = A$$

eller $f(x) \to A$ när $x \to \infty$.

Divergens Om det för en funktion f inte finns ett sådant A, sägs f vara divergent då $x \to infty$.

Det oegentliga gränsvärdet Låt f vara en funktion definierad i (a, ∞) . f har det oegentliga gränsvärdet ∞ då x $to\infty$ om det för varje M finns ett N sådant att f(x) > M för varje x > N. Detta skrivs

$$\lim_{x \to \infty} f(x) = \infty.$$

Lokalt gränsvärde Låt f vara en reellvärd funktion med $D_f \subset \mathbb{R}$ sådan att varje punkterad omgivning till x = a innehåller punkter i D_f . f konvergerar mot A när x går mot a om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ sådant att $|f(x) - A| < \varepsilon$ för varje $x \in D_f$ som uppfyllar $0 < |x - a| < \delta$. Detta skrivs $\lim_{x \to a} f(x) = A$.

Vänster- och högergränsvärden Vid att endast studera x > a eller x < a kan man definiera ett vänster- och högergränsvärde för en funktion f. Dessa skrivs $\lim_{x \to a^-} f(x) = A$ eller $\lim_{x \to a^+} f(x) = A$. För en funktion f definierad i en punkterad omgivning till a existerar $\lim_{x \to a} f(x)$ om och endast om vänster- och högergränsvärden existerar och är lika.

Det oegentliga lokala gränsvärdet Låt f vara en funktion sådan att varje punkterad omgivning till x=a innehåller punkter i D_f . f har det oegentliga gränsvärdet ∞ då $x \to a$ om det för varje K finns ett delta sådant att f(x) > K för varje $x \in D_f$ som uppfyll ar $0 < |x - a| < \delta$

4.2 Satser

Gränsvärden för kombinationer av funktioner Låt f,g vara kontinuerliga funktioner sådana att $f(x) \to A, g(x) \to B$ när $x \to \infty$. Då gäller att

- a) $f(x) + g(x) \to A + B \text{ n\"ar } x \to \infty.$
- b) $f(x)g(x) \to AB \text{ när } x \to \infty.$
- c) om $B \neq 0$ så följer att $\frac{f(x)}{g(x)} \rightarrow \frac{A}{B}$ när $x \rightarrow \infty$.
- d) om $f(x) \leq g(x)$ för alla $x \in (a, \infty)$ så gäller att $A \leq B$.

Bevis Mjo.

Gränsvärden och supremum Låt $f:(a,\infty)\to\mathbb{R}$ för något $a\in\mathbb{R}$ vara växande och uppåt begränsad. Då gäller att

$$\lim_{n \to \infty} = \sup f(x) : x \ge a.$$

Bevis Nä.

Standardgränsvärden mot oändligheten Låt a > 1, b > 0. Då gäller att

$$\lim_{x \to \infty} \frac{a^x}{x^b} = \infty$$

$$\lim_{x \to \infty} \frac{x^b}{\log_a x} = \infty$$

Bevis

Standardgränsvärden mot 0

$$\lim_{x \to 0} \frac{\ln 1 + x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Bevis Too much.

Bevis Orkar inte.

5 Derivata

5.1 Definitioner

Derivatans definition Låt f vara en funktion definierad i en omgvning krin x_0 . f är deriverbar i x_0 om

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x_0} = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = f'(x_0)$$
$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existerar. Värdet kallas derivatan i x_0 .

Deriverbara funktioner Om en funktion f är deriverbar i alla punkter i definitionsmängden, är funktionen deriverbar. Funktionen $f' = \frac{df}{dx} \mod D_{f'} = D_f$ kallas derivatan.

Stationära punkt En funktion f har ett stationärt punkt x_0 om $\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x_0} = 0$.

Taylorpolynomet Låt f vara n gånger deriverbar. Polynomet

$$p_n(x) = \sum_{i=0}^{\infty} n \frac{\frac{d^i f}{dx^i}(0)}{i!} (x-a)^i$$

kallas Taylorpolynomet av grad n till f kring a. Specialfallet där a=0 kallas Maclaurinpolynomet till f av grad n.

Primitiva funktioner Låt f vara definierad på [a,b] och F vara kontinuerlig på [a,b]. F är en primitiv funktion till f om $\frac{\mathrm{d}F}{\mathrm{d}x}(x)=f(x)$ för varje $x\in(a,b)$.

5.2 Satser

Derivata och kontinuitet Låt f vara deriverbar i (a, b). Då är f kontinuerlig i (a, b).

Bevis Kan man tänka.

Derivationsregler Låt f, g vara deriverbara i punkten x. Då följer att f+g, fg är deriverbara i x. Derivatorna har sambandet

$$\frac{\mathrm{d}(f+g)}{\mathrm{d}x}(x) = \frac{\mathrm{d}f}{\mathrm{d}x}(x) + \frac{\mathrm{d}g}{\mathrm{d}x}(x),$$
$$\frac{\mathrm{d}(af)}{\mathrm{d}x}(x) = a\frac{\mathrm{d}f}{\mathrm{d}x}(x), a \in \mathbb{R},$$
$$\frac{\mathrm{d}(fg)}{\mathrm{d}x}(x) = f(x)\frac{\mathrm{d}g}{\mathrm{d}x}(x) + g(x)\frac{\mathrm{d}f}{\mathrm{d}x}(x).$$

Om $g(x) \neq 0$ är även $\frac{f}{g}$ deriverbar i x och

$$\left. \frac{\mathrm{d}}{\mathrm{d}x} \frac{f}{g} \right|_{x} = \frac{\left(g \frac{\mathrm{d}f}{\mathrm{d}x} - f \frac{\mathrm{d}g}{\mathrm{d}x} \right) \Big|_{x}}{g^{2}(x)}.$$

9

Bevis De två första följer nästan direkt från definitionen.

$$\begin{split} \frac{f(x+h)g(x+h)-f(x)g(x)}{h} \\ &= \frac{f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x)}{h} \\ &= \left(\frac{f(x+h)g(x+h)-f(x+h)g(x)}{h} + \frac{f(x+h)g(x)-f(x)g(x)}{h}\right) \\ \frac{\mathrm{d}fg}{\mathrm{d}x}(x) &= \lim_{h \to 0} \frac{f(x+h)g(x+h)-f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left(\frac{f(x+h)g(x+h)-f(x+h)g(x)}{h} + \frac{f(x+h)g(x)-f(x)g(x)}{h}\right) \\ &= f(x)\frac{\mathrm{d}g}{\mathrm{d}x}(x) + g(x)\frac{\mathrm{d}f}{\mathrm{d}x}(x). \end{split}$$

Kedjeregeln Låt f vara deriverbar i y, g deriverbar i x och y = g(x). Då är den sammansatta funktionen $f \circ g$ deriverbar och

$$\left. \frac{\mathrm{d}}{\mathrm{d}x} (f \circ g) \right|_x = \frac{\mathrm{d}}{\mathrm{d}x} f \left|_{q(x)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} g \right|_x.$$

Bevis

Derivatan av inversfunktioner Låt f vara en deriverbar och inverterbar funktion. Då är inversen f^{-1} deriverbar i alla punkter $y = \frac{d}{dx} f \big|_x$ där $\frac{d}{dx} f \big|_x \neq 0$ med derivatan

$$\frac{\mathrm{d}}{\mathrm{d}y}f^{-1}\bigg|_{y} = \frac{1}{\frac{\mathrm{d}}{\mathrm{d}x}f\bigg|_{x}}.$$

Bevis

Extrempunkt och derivata Låt f vara deriverbar i x_0 och ha en lokal extrempunkt i x_0 . Då är $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = 0$.

Bevis Låt f ha ett maximum i x_0 . Detta ger $f(x_0) \ge f(x)$ i en omgivning till x_0 . Betrakta

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

När $h \to 0$ från det positival hållet har man

$$\frac{f(x_0+h)-f(x_0)}{h} \le 0$$

eftersom nämnaren är negativ enligt antagandet. När $h \to 0$ från det negativa hållet har man

$$\frac{f(x_0+h)-f(x_0)}{h} \ge 0.$$

Vi räknar ut gränsvärdet när h går mot 0. Eftersom det existerar, måste vi ha att $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = 0$.

Rolles sats Låt f vara kontinuerlig på [a,b], deriverbar på (a,b) så att f(a) = f(b). Då existerar $p \in (a,b)$ så att $\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{p} = 0$.

Bevis Om f är konstant på [a, b] är beviset trivialt.

Annars, låt f(x) > f(a) för något $x \in (a, b)$. Eftersom f är kontinuerlig på [a, b], antar den enligt sats ett största värde. Eftersom f(a) = f(b) måste detta största värdet antas i något $q \in (a, b)$. Då f är deriverbar i q, gäller det enligt sats att $\frac{\mathrm{d}f}{\mathrm{d}x}(q) = 0$. Detta är punkten vi söker.

Ett analogt bevis gäller om f(x) < f(a) för något $x \in (a,b)$.

Generaliserade medelvärdessatsen Låt f och g vara reellvärda, kontinuerliga på [a,b] och deriverbara på (a,b). Då existerar $p \in (a,b)$ så att

$$\frac{\mathrm{d}f}{\mathrm{d}x}(p)(g(b) - g(a)) = \frac{\mathrm{d}g}{\mathrm{d}x}(p)(f(b) - f(a)).$$

Om $g(a) \neq g(b)$ och $\frac{\mathrm{d}g}{\mathrm{d}x} \, \big|_p \neq 0,$ gäller

$$\frac{\frac{\mathrm{d}g}{\mathrm{d}x}(p)}{\frac{\mathrm{d}g}{\mathrm{d}x}(p)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Medelvärdesatsen Välj g(x) = x. Detta ger

$$\frac{\mathrm{d}f}{\mathrm{d}x}\bigg|_{p}(b-a) = f(b) - f(a).$$

Bevis Bilda

$$h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)),$$

som är kontinuerlig och deriverbar på intervallet enligt annan sats. Denna uppfyller h(a) = h(b), och då existerar enligt Rolles sats ett $p \in (a, b)$ så att $\frac{dh}{dx}(p) = 0$. Vi har

$$\frac{\mathrm{d}h}{\mathrm{d}x}(x) = \frac{\mathrm{d}f}{\mathrm{d}x}(x)(g(b) - g(a)) - \frac{\mathrm{d}g}{\mathrm{d}x}(x)(f(b) - f(a)),$$

vilket ger

$$\frac{\mathrm{d}f}{\mathrm{d}x}(p)(g(b) - g(a)) = \frac{\mathrm{d}g}{\mathrm{d}x}(p)(f(b) - f(a)).$$

Följder av dessa satser Låt f vara deriverbar på (a, b). Då gäller:

- $\frac{\mathrm{d}f}{\mathrm{d}x}(x)=0$ för varje $x\in(a,b)$ om och endast om f är konstant på (a,b).
- $\frac{\mathrm{d}f}{\mathrm{d}x}(x) \geq 0$ för varje $x \in (a,b)$ om och endast om f är växande på (a,b).
- $\frac{\mathrm{d}f}{\mathrm{d}x}(x) > 0$ implicerar att f är strängt växande på (a,b).
- $\frac{\mathrm{d}f}{\mathrm{d}x}(x) \leq 0$ för varje $x \in (a,b)$ om och endast om f är avtagande på (a,b).
- $\frac{\mathrm{d}f}{\mathrm{d}x}(x) < 0$ implicerar att f är strängt avtagande på (a,b).

Bevis Om f är konstantfunktionen, är första påståendet triviellt. Om $\frac{\mathrm{d}f}{\mathrm{d}x}=0$ på (a,b), välj x_0,x_1 i intervallet så att $x_0 < x_1$. Då ger medelvärdesatsen att $f(x_1) - f(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x)(x_1 - x_0) = 0$, med $p \in (x_0, x_1)$, vilket bevisar omvändingen.

Om nu $\frac{df}{dx}(x) > 0$ på intervallet, ger medelvärdesatsen på samma sätt $f(x_1) - f(x_0) > 0$, med ett analogt argument om nollan inkluderas. Anta nu att f är växande. Detta ger

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \ge 0.$$

Anledningen till att det inte är en ekvivalens när derivatan är strikt positiv är att detta gränsvärdet kan bli 0 även om f är växande. Med ett analogt bevis för de två sista påståenden är beviset klart.

L'Hôpitals regel Låt f, g vara reellvärda, deriverbara funktioner i en omgivning I av a sådana att

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$$

Då gäller att

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{\mathrm{d}f}{\mathrm{d}x}(x)}{\frac{\mathrm{d}g}{\mathrm{d}x}(x)}.$$

Oändliga kvoter Låt

$$\lim_{x \to a} \frac{\frac{\mathrm{d}f}{\mathrm{d}x}(x)}{\frac{\mathrm{d}g}{\mathrm{d}x}(x)} = L,$$
$$\lim_{x \to a} f(x) = \pm \infty,$$
$$\lim_{x \to a} g(x) = \pm \infty.$$

Då gäller att

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Bevis

Konvexitet och derivata Låt f vara deriverbar i (a,b). Då är f konvex i (a,b) omm $\frac{df}{dx}$ är växande i (a,b).

Bevis

Andrederivata och konvexitet Låt f vara två gånger deriverbar i (a,b). Då är $\frac{d^2 f}{dx^2}(x) \ge 0$ för varje $x \in (a,b)$ omm f är konvex.

Bevis

Andrederivata och inflexionspunkt Låt f vara två gånger deriverbar och låt $\frac{d^2 f}{dx^2}$ vara kontinuerlig. Om f har en inflexionspunkt i x_0 så är $\frac{d^2 f}{dx^2}(x_0) = 0$.

Bevis

Taylors formel Låt f vara n gånger deriverbar och definierad i en omgivning av 0, sådan att $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$ är kontinuerlig. Då är

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^i f}{\mathrm{d} x^i}(0)}{i!} x^i + \frac{\frac{\mathrm{d}^i f}{\mathrm{d} x^i}(\alpha)}{n!} x^n$$

för något $\alpha \in [0, x]$. Kring en godtycklig punkt a blir formeln

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^{i} f}{\mathrm{d}x^{i}}(a)}{i!} (x-a)^{i} + \frac{\frac{\mathrm{d}^{n} f}{\mathrm{d}x^{n}}(\alpha)}{n!} (x-a)^{n}$$
(6)

för något $\alpha \in [a, x]$.

Bevis Vi beviser satsen först för a=0. Det är klart att formeln stämmer för x=0, så bilda

$$C = \frac{f(x) - p(x)}{x^n}, x \neq 0.$$

Då är beviset ekvivalent med att visa att $Cn! = \frac{\mathrm{d}^n f}{\mathrm{d}x^n}(\alpha)$ för et lämpligt α .

Notera att $\frac{\mathrm{d}^i f}{\mathrm{d}x^i}(0) = \frac{\mathrm{d}^i p}{\mathrm{d}x^i}(0), i = 0, \dots, n-1, \text{ och bilda}$

$$g(t) = f(t) - p(t) - Ct^n \implies \frac{d^i g}{dx^i}(0) = 0, i = 0, \dots, n - 1.$$

12

Från definitionen är även g(x) = 0, och eftersom g är kontinuerlig finns det enligt Rolles sats $x_1 \in (0, x)$ så att $\frac{dg}{dx}(x_1) = 0$. Et motsvarande argument användt flera gånger ger att det finns $x_n \in (0, x_{n-1}) \subseteq [0, x]$ så att $\frac{d^ng}{dx^n}(x_n) = 0$.

$$\frac{\mathrm{d}^n g}{\mathrm{d}x^n}(x_n) = \frac{\mathrm{d}^n f}{\mathrm{d}x^n}(x_n) - Cn!,$$

och nollstället ger önskad likhet.

För att visa satsen kring något $a \neq 0$, bilda g(t) = f(t+a). Denna uppfyller förutsättningarna för formeln vi har bevist, vilket ger

$$g(t) = \sum_{i=0}^{n-1} \frac{\frac{d^{i}g}{dx^{i}}(0)}{i!} t^{i} + \frac{\frac{d^{i}g}{dx^{i}}(\alpha_{0})}{n!} t^{n} = f(t+a), \alpha_{0} \in [0, t].$$

Vi använder att $\frac{\mathrm{d}^ig}{\mathrm{d}t^i}(t)=\frac{\mathrm{d}^if}{\mathrm{d}t^i}(t+a), i=0,\dots,n$ för att få

$$f(t+a) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^i f}{\mathrm{d}t^i}(a)}{i!} t^i + \frac{\frac{\mathrm{d}^i f}{\mathrm{d}t^i}(\alpha_0 + a)}{n!} t^n, \alpha \in [0, t].$$

Definiera x = t + a och $\alpha = \alpha_0 + a \in [a, x]$ för att få

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^i f}{\mathrm{d}t^i}(a)}{i!} t^i + \frac{\frac{\mathrm{d}^i f}{\mathrm{d}t^i}(\alpha)}{n!} t^n, \alpha \in [a, x].$$

Taylors formel och stora ordo Låt f vara n gånger deriverbar och $\frac{\mathrm{d}^n f}{\mathrm{d}x^n}$ vara kontinuerlig i en omgivning av 0. Då är

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^{i} f}{\mathrm{d} x^{i}}(0)}{i!} x^{i} + \mathcal{O}(x^{n}).$$

Bevis

6 Serier

6.1 Definitioner

Delsummor Låt $(a_i)_{i=1}^{\infty}$ vara en talföljd. Den motsvarande delsumman är

$$s_n = \sum_{i=1}^n a_i.$$

Serier En serie definieras som

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} s_n.$$

Konvergens Om $\lim_{n\to\infty} s_n$ existerar, är serien konvergent mot dens summa. Annars är den divergent.

Geometriska serier En geometrisk serie är på formen $a_i = x^i$.

Absolut konvergens Serien $\sum_{i=1}^{\infty} a_i$ är absolutt konvergent om $\sum_{i=1}^{\infty} |a_i|$ är konvergent.

Taylorserier Låt f vara o
ändligt deriverbar. Funktionens Taylorserie kring a är

$$s = \sum_{i=1}^{\infty} \frac{\frac{\mathrm{d}^{i} f}{\mathrm{d}x^{i}}}{i!} (x - a)^{i}.$$

Konvergensradie Enligt ekvation 6 är

$$f(x) - p_{n-1}(x) = R_n(x) = \frac{\frac{\mathrm{d}^n f}{\mathrm{d}x^n}(\alpha)}{n!} (x - a)^n.$$

f konvergerar mot sin Taylorserie om denna resttermen går mot 0 när $n \to \infty$ för ett givet x. Detta händer för x så att |x - a| < r, där r är Taylorseriens konvergensradie.

6.2 Satser

Seriers egenskaper Låt $\sum_{i=1}^{\infty} a_i, \sum_{i=1}^{\infty} b_i$ vara två konvergenta serier. Då gäller

$$\sum_{i=1}^{\infty} (a_i + b_i) = \sum_{i=1}^{\infty} a_i + \sum_{i=1}^{\infty} b_i,$$
$$\sum_{i=1}^{\infty} ca_i = c \sum_{i=1}^{\infty} a_i, c \in \mathbb{R}.$$

Bevis

Konvergens och termernas beteende Om $\sum_{i=1}^{\infty} a_i$ är konvergent är $\lim_{i \to \infty} a_i = 0$.

Bevis Låt s_n beteckna seriens delsumma och S dens summa. Vi har

$$a_n = s_n - s_{n-1}.$$

Om serien är konvergent, kan vi räkna ut gränsvärdet enligt

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = S - S = 0.$$

Summan av en geometrisk serie Om |x| < 1 är

$$\sum_{i=1}^{\infty} x^i = \frac{1}{1-x}.$$

Bevis Betrakta $s_n - xs_n = 1 - x^{n+1}$. Detta ger

$$\sum_{i=1}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$

Om |x| < 1 har man

$$\sum_{i=1}^{\infty} x^i = \frac{1}{1-x}.$$

Jamförelse av termer och konvergens Låt $0 \le a_i \le b_i$ för alla i. Då gäller att

- om $\sum_{i=1}^{\infty} b_i$ är konvergent är $\sum_{i=1}^{\infty} a_i$ konvergent.
- om $\sum_{i=1}^{\infty} a_i$ är divergent är $\sum_{i=1}^{\infty} b_i$ divergent.

Bevis

Kvoten av termer och konvergens Låt $\sum_{i=1}^{\infty} a_i$, $\sum_{i=1}^{\infty} b_i$ vara två positiva serier vars termer uppfyller

$$\lim_{i \to \infty} \frac{a_i}{b_i} = K \neq 0.$$

Då konvergerar $\sum\limits_{i=1}^{\infty}a_{i}$ om och endast om $\sum\limits_{i=1}^{\infty}b_{i}$ konvergerar.

Bevis

Absolut konvergens och konvergens En absolut konvergent serie är konvergent.

Bevis

Summan av potenser Serien

$$\sum_{i=1}^{\infty} \frac{1}{i^p}$$

är konvergent om och endast om p > 1.

Bevis

7 Integraler

7.1 Definitioner

Trappfunktioner En trappfunktion på intervallet [a, b] är på formen

$$\Psi(x) = \begin{cases} c_1, a \le x \le x_1 \\ c_2, x_1 \le x \le x_2 \\ \vdots \\ c_n, x_{n-1} \le x \le x_n \end{cases}$$

Mängden av alla x_i kallas en uppdelning av intervallet och intervallerna $[x_{i-1}, x_i]$ kallas delintervall av uppdelningen.

Integralen av en trappfunktion. Låt Ψ vara en trappfunktion. Då definieras integralen av denna som

$$\int_{a}^{b} \Psi(x) \, \mathrm{d}x = \sum_{i=1}^{n} c_{i} x_{i} - x_{i-1}.$$

Övertrappor och undertrappor En övertrappa Ψ för en funktion f är en funktion så att

$$f(x) < \Psi(x)$$
.

Undertrappor definieras analogt. Integralerna av dessa kallas översummor och undersummor.

Integrerbarhet Låt f, definierad på [a,b], vara en begränsad funktion, L(f) vara mängden av alla undersummor till f och U(f) mängden av alla översummor till f. L(f) är uppåt begränsad av talen i U(f) och vice versa, så sup L(f), inf U(f) existerar. Om

$$\sup L(f) = \inf U(f)$$

 $\ddot{a}r f$ integrerbar.

Integralen Låt f vara integrerbar på [a,b]. Då definieras integralen av f på intervallet som

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sup L(f).$$

Byte av integrationsgränser

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$$

7.2 Satser

Integralen och ε Låt f vara begränsad på [a,b]. Då är f integrerbar om och endast om det för varje ε finns en övertrappa Ψ och en undertrappa Φ till f sådana att

$$\int_{a}^{b} \Psi(x) \, \mathrm{d}x - \int_{a}^{b} \Phi(x) \, \mathrm{d}x < \varepsilon.$$

Bevis

Summor mot integraler Låt f vara kontinuerlig på [a,b], $\{x_i\}_{i=0}^n$ vara en uppdelning, $\Delta_i = x_i - x_{i-1}$ och $M_i = \max f(x), m_i = \min f(x)$ på $[x_{i-1}, x_i]$. Då gäller att

$$\sum_{i=0}^{n} M_i \Delta_i \to \int_a^b f(x) \, \mathrm{d}x,$$
$$\sum_{i=0}^{n} m_i \Delta_i \to \int_a^b f(x) \, \mathrm{d}x$$

 $d\mathring{a} \max \Delta_i \to 0.$

Bevis

Integralens egenskaper Låt f vara integrerbar på [a, b]. Då gäller

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx,$$

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx,$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx,$$

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Om $f(x) \leq g(x)$ på [a, b] gäller

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

Medelvärdesatsen för integraler Låt f, g vara kontinuerliga på [a, b] och $g \ge 0$. Då finns det ett $\alpha \in (a, b)$ sådant att

$$\int_{a}^{b} f(x)g(x) dx = f(\alpha) \int_{a}^{b} g(x) dx.$$

Specialfall Välj g(x) = 1. Då blir satsen

$$\int_{a}^{b} f(x) dx = f(\alpha)(b - a).$$

Bevis

Analysens huvudsats Låt f vara kontinuerlig på [a, b]. Då är

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

en primitiv funktion till f på [a, b].

Bevis

Primitva funktioner och integralers värde Låt f vara kontinuerlig på [a,b] och låt F vara en primitiv funktion till f på [a,b]. Då är

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$