Computational Methods in Economics **Algorithms**

January 14, 2020

Theory •0000000

Computing and Algorithms

- Algorithm: well-defined computational procedure that takes some value as **input** and produces some value as **output**.
- Designing an algorithm is about finding the most efficient way to create an input/output relationship.

Theory 00000000

Stable Matching (1)

- Gale and Shapley (1962): Can we design a college admissions. process or a job recruiting process that was self-enforcing?
- Consider the marriage problem.
- A set of men and women desire to form partnerships.
- Each woman has a preference ordering over men.
- Each man has a preference ordering over women.
- Based on those preferences, women make offers to men, and marriages happen.

Stable Matching (2)

Initially all m in M and w in W are free.

```
While there is a man m who is free and hasn't
proposed to every woman w
Choose such a man m
Let w be the highest-ranked woman in m's preference list
to which m has not yet proposed
   If w is free then
   (m, w) become engaged
   Else w is currently engaged to m'
   If w prefers m' to m then
     m remains free
   Else w prefers m to m'
     (m, w) become engaged
     m' becomes free
```

Endif

Theory 00000000

Endif

Endwhile

Constraints

- Physical constraints (RAM, storage).
- Worst-case and average-case analysis. (Benchmark)
- Order of growth (scale).

Theory 00000000

Structure

Initialization.

Theory 00000000

- Maintenance.
- Termination.

Design

- Incremental approach
- Divide and Conquer

Theory 00000000

Divide-and-conquer approach

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively.
- **Combine** the solutions to the subproblems into the solution for the original problem.

Examples

- Search and Matching
- EM algorithm

Theory 0000000 Theory

Example 1

Example 2

Computation

Searching, Matching and Migrating: Space and population

- Geography
 - **Discrete** set \mathcal{J} of J cities j where people both live and work
 - Exogenous sites summarized by the distance matrix $d = (d_{il})$
 - Endogenous population size L_i and number of firms N_i
 - Some cities may disappear in equilibrium
- Land market
 - Discrete choice: one unit of land per individual
 - Competition between commercial and residential real estate
 - Firms, vacant or active, consume ψ units

$$R_j = R(L_j + \psi N_j)$$

- All individuals are workers
 - Fixed total population (normalized to 1)
 - Endowed with individual **ability** $h \sim \ell(\cdot) = U([0,1])$
 - Die at rate Ξ (perpetual youth, exit value set to zero)

Searching, Matching and Migrating: Workers

- Set-up
 - Maximize total discounted (at rate r) lifetime income
 - **Unemployed** i = u are in measure $u_i(h)$ and earn b (fixed)
 - **Employed** i = e are in measure $\ell_i(h) u_i(h)$ and earn w
 - All workers are endowed with bargaining power β
 - Mobility cost $\phi_{il} = \phi(d_{il})$ between two cities
- Initial location problem
 - New urban workers, in measure $\omega_i(h)$, start off as unemployed
 - Reshuffling is irrespective of skills (no skill dynasties):

$$\omega_j(h) = \Xi \ell(h) L_j$$

- Assumption: workers may only migrate upon finding a job
 - Means that mobility costs (or housing market frictions) are very high for unemployed workers

Searching, Matching and Migrating: Firms

- Set-up
 - Distribution of latent **productivity** $p \sim g(\cdot) = U([0,1])$
 - Firms equate **jobs**: not a theory of firm size
 - Value of a type-p vacancy: $\Pi_i^v(p)$
 - If matched, **location-invariant** production technology f(h, p)
- Vacancies
 - Local measure of type-p vacancy $v_i(p)$
 - Total number of vacancies $V_i = \int v_i(p)dp$
 - **Selection**: lower bound \underline{p}_i s.t. $\Pi_i^{\nu}(\underline{p}_i) = 0$
- Matches
 - Joint match distribution m_i(h, p)
 - Exogenous destruction at rate δ
 - Local accounting relationship $L_i U_i \equiv N_i V_i$

Searching, Matching and Migrating: Search

- Set-up
 - Continuous time, infinite horizon, random search
 - Both off-the-job and on-the-job & both within and between cities
- Jobseekers
 - Intensity-adjusted measure E_j of jobseekers in city j
 - $\varrho_{Ij} = \varrho(d_{jI}) \in [0,1]$ **connectedness** of workers in I to jobs in j
 - ullet ζ relative search efficiency of employed workers

$$E_j = U_j + \zeta(L_j - U_j) + \sum_{k \neq j} \varrho_{kj} \left[U_k + \zeta(L_k - U_k) \right]$$

- Matching
 - $\mathcal{M}(E_j, V_j)$ number of matches in j and $\theta_{lj} = \frac{\varrho_{lj}\mathcal{M}(E_j, V_j)}{E_j \times V_j}$

Meeting rates

	Worker $(i,j) o V$ acancy in I (independent of h)	
i = u	$\theta_{jl}v_l(p)$	$\theta_{lj}u_l(h)$
i = e	$\zeta \theta_{jl} v_l(p)$	$\zeta \theta_{Ij} m_I(h, p')$

Searching, Matching and Migrating: Value functions and surplus

- Agents' value functions
 - The value for a type-p firm in city j when matched with a type-h worker paid at wage w is $\Pi_i^f(h, w, p)$
 - The corresponding value for the worker is $\mathcal{V}_{i}^{e}(h, w, p)$
 - The value of a type-h unemployed worker in city j is $V_i^u(h)$
- Match product (transferability)

$$\forall w, \ \mathbb{P}_j(h,p) \equiv \Pi_j^f(h,w,p) + \mathcal{V}_j^e(h,w,p)$$

Surplus

$$S_{il}^*(h,p) = \mathbb{P}_l(h,p) - \mathcal{V}_i^u(h) - \Pi_l^v(p)$$

Searching, Matching and Migrating: Wage determination

- Bargaining à-la Lise et al. (2016) over gross match surplus
 - But match occurrence depends on net surplus
- Reservation-wage strategy $\psi_{jl}(h, p)$:

$$\begin{aligned} \forall p \in \mathcal{P}_{jl}^{0}(h) &\equiv \left\{ y : \mathcal{S}_{jl}(h, y) \geq 0 \right\}, \\ \mathcal{V}_{l}^{e}(h, \psi_{jl}(h, p), p) - \mathcal{V}_{j}^{u}(h) &= \beta \mathcal{S}_{jl}^{*}(h, p) \\ \forall h \in \mathcal{H}_{jl}^{0}(p) &\equiv \left\{ x : \mathcal{S}_{jl}(x, p) \geq 0 \right\}, \\ \Pi_{l}^{f}(h, \psi_{jl}(h, p), p) - \Pi_{l}^{v}(p) &= (1 - \beta) \mathcal{S}_{jl}^{*}(h, p) \end{aligned}$$

• Firm-switching wage-change strategy $\psi_{jl}(h, p, p')$:

```
 \forall p' \in \mathcal{P}_{jj}^{c}(h, p) \equiv \{y : S_{jj}(h, p) \leq S_{jl}(h, y)\}, 
 \mathcal{V}_{l}^{e}(h, \psi_{jl}(h, p, p'), p') - \mathcal{V}_{j}^{u}(h) = S_{jj}^{*}(h, p) + \beta[S_{jl}^{*}(h, p') - S_{jj}^{*}(h, p)] 
 \forall p' \in \mathcal{P}_{jj}^{f}(h, p) \equiv \{y : S_{jj}(h, y) \leq S_{jl}(h, p)\}, 
 \Pi_{l}^{f}(h, \psi_{jl}(h, p', p), p) - \Pi_{l}^{v}(p) = (1 - \beta)[S_{jl}^{*}(h, p) - S_{jj}^{*}(h, p')]
```

Searching, Matching and Migrating: Bellman equations

 Lifetime discounted income of a type-h unemployed worker in city j:

$$(r+\Xi)\mathcal{V}_{j}^{u}(h)=b-R_{j}+\sum_{k\in\mathcal{I}}\theta_{jk}\int_{\mathcal{P}_{ik}^{0}(h)}\left[\mathcal{V}_{k}^{e}(h,\psi_{jk}(h,y),y)-\mathcal{V}_{j}^{u}(h)\right]v_{k}(y)dy$$

Expected discounted **profit** of a type-p vacancy in city j:

$$\begin{split} r\Pi_{j}^{\mathsf{v}}(p) &= -\psi R_{j} + \sum_{k \in \mathcal{J}} \theta_{kj} \int_{\mathcal{H}_{kj}^{0}(p)} \left[\Pi_{j}^{f}(x, \psi_{kj}(x, p), p) - -\Pi_{j}^{\mathsf{v}}(p) \right] u_{k}(x) dx \\ &+ \zeta \sum_{k \in \mathcal{J}} \theta_{kj} \int_{\mathcal{H}_{kj}^{0}(p)} \int_{\mathcal{P}_{kj}^{f}(x, p)} \left[\Pi_{j}^{f}(x, \psi_{kj}(x, y, p), p) - (1 - \beta) \phi_{jk} - \Pi_{j}^{\mathsf{v}}(p) \right] m_{k}(x, y) dy dx \end{split}$$

• **Product** of a type-(h, p) match in city j:

$$r\mathbb{P}_{j}(h,p) = f(h,p) - (1+\psi)R_{j} - \delta \Big[\mathbb{P}_{j}(h,p) - (\mathcal{V}_{j}^{u}(h) + \Pi_{j}^{v}(p))\Big] - \Xi \Big[\mathbb{P}_{j}(h,p) - \Pi_{j}^{v}(p)\Big]$$
$$-\zeta \sum_{k \in \mathcal{I}} \theta_{jk} \int_{\mathcal{P}_{ik}^{c}(h,p)} \Big[\mathbb{P}_{j}(h,p) - (\mathcal{V}_{k}^{e}(h,\psi_{jk}(h,p,y),y) + \Pi_{j}^{v}(p))\Big] v_{k}(y) dy$$

Searching, Matching and Migrating: Steady state

• Destruction rate for a type-(h, p) match in city j:

$$\delta_j(h,p) = \delta + \Xi + \zeta \sum_{k \in \mathcal{J}} \theta_{jk} \int_{\mathcal{P}_{jk}^c(h,p)} v_k(y) dy$$

Motion laws on the labor market:

$$u_{j}(h)\left(\Xi + \sum_{k \in \mathcal{J}} \theta_{jk} \int_{\mathcal{P}_{jk}^{0}(h)} v_{k}(y) dy\right) = \delta \int m_{j}(h, y) dy + \omega_{j}(h)$$

$$m_{j}(h, p) \delta_{j}(h, p) = v_{j}(p) \sum_{k \in \mathcal{J}} \theta_{kj} \left(1_{h \in \mathcal{H}_{kj}^{0}(p)} u_{k}(h) + \zeta \int_{\mathcal{P}_{kj}^{f}(h, p)} m_{k}(h, y) dy\right)$$

$$v_{j}(p) \sum_{k \in \mathcal{J}} \theta_{kj} \int_{\mathcal{H}_{kj}^{0}(p)} \left(u_{k}(x) + \zeta \int_{\mathcal{P}_{kj}^{f}(x, p)} m_{k}(x, y) dy\right) dx = \int \delta_{j}(x, p) m_{j}(x, p) dx$$

Searching, Matching and Migrating: "Closed" forms

• Conditional on surplus, closed forms for unmatched agents:

$$(r + \Xi)\mathcal{V}_{j}^{u}(h) = b - R_{j} + \beta \sum_{k \in \mathcal{J}} \theta_{jk} \int_{\mathcal{P}_{jk}^{0}(h)} \mathcal{S}_{jk}(h, y) v_{k}(y) dy$$

$$r \Pi_{j}^{v}(p) = -\psi R_{j} + (1 - \beta) \sum_{k \in \mathcal{J}} \theta_{kj} \int_{\mathcal{H}_{kj}^{0}(p)} \mathcal{S}_{kj}(x, p) u_{k}(x) dx$$

$$+ (1 - \beta)\zeta \sum_{k \in \mathcal{J}} \theta_{kj} \int_{\mathcal{H}_{kj}^{0}(p)} \int_{\mathcal{P}_{kj}^{f}(x, p)} [\mathcal{S}_{kj}(x, p) - \mathcal{S}_{kk}(x, y)] m_{k}(x, y)$$

 This allows us to recover a closed-form expression for match product:

$$r\mathbb{P}_{j}(h,p) = f(h,p) - (1+\psi)R_{j} - (\delta + \Xi)S_{jj}(h,p) - \Xi\mathcal{V}_{j}^{u}(h)$$

$$+ \zeta \sum_{k \in \mathcal{T}} \theta_{jk} \int_{\mathcal{P}_{ik}^{c}(h,p)} \beta \left[S_{jk}(h,y) - S_{jj}(h,p)\right] v_{k}(y) dy$$

Searching, Matching and Migrating: Operationalization

Model	Parameterization
R_j	$R_0 + R_1 (L_j + \psi N_j)^{R_2}$
f(h,p)	$[h^{(\rho-1)/ ho} + ho^{(ho-1)/ ho}]^{ ho/(ho-1)}$
<i>Qj</i> I	$\exp(-\varrho d_{jl})$
$\mathcal{M}(E_j, V_j)$	$m_0 E_j^{m_1} V_j^{1-m_1}$
ϕ_{jl}	$1_{j eq I} imes \phi$

Algorithm

For a given
$$\Theta = (\underbrace{\Xi, r}_{\mathsf{Life}}, \underbrace{\psi, R_0, R_1, R_2}_{\mathsf{Land}}, \underbrace{b, \beta, \delta, \zeta, \rho, m_0, m_1}_{\mathsf{Labor}}, \underbrace{\varrho, \phi}_{\mathsf{Space}})$$
,

- 1. Assume $S_{il}(h, p)$, $u_i(h)$, $m_i(h, p)$ and θ_{il} known
- 2. Compute $\ell_i(h)$, L_i , U_i , V_i (from θ_{il}), N_i and R_i
- 3. Construct $\Pi_i^v(p)$
- 4. Find p_i from the zero-profit cutoff condition
- 5. Recover $v_i(p)$
- 6. Update $u_i(h)$ and $m_i(h, p)$ using steady state conditions
- 7. Construct $\mathcal{V}_i^u(h)$ and $\mathbb{P}_j(h,p)$ and update $\mathcal{S}_{jl}(h,p)$ from its definition
- 8. Repeat steps 3 to 7 until convergence.

Example 2 •00000

Example 2

Discrete Mixing Distributions (1)

Example 2 000000

- Consider a discrete choice model
- An agent i obtains utility U_{iit} from product j at time t.

$$U_{ijt} = \beta_i x_{ijt} + \epsilon_{ijt}$$

with

- ε_{iit} is iid and extreme value distributed.
- $\beta_i \sim f(\beta \mid \theta)$ where θ represents the parameters of the distribution
- Let y_{it} denote the alternative that agent i chooses in situation t.

Mixing Distributions (2)

Conditional on β , the probability of y_i is

$$K_i(\beta) = \prod_t \frac{\exp(x_{iy_it})}{\sum_j \exp(\beta x_{ijt})}$$
(1)

Example 2 000000

The choice probability is

$$P_i(\theta) = \int K_i(\beta) f(\beta \mid \theta) d\beta$$

• For discrete distribution with support at β_c , c = 1, ..., C, the choice probability is

$$P_i(\theta) = \sum_c s_c K_i(\beta_c) \tag{2}$$

Example 2 000000

where $s_c = f(\beta_c \mid \theta)$ is the share of the population that has coefficients β_c .

Mixing Distributions (4): EM

- Select initial values β_c^0 and $s_c^0 \, \forall$ c. Probably start with equal shares and estimates from a logit for partitions of the sample into C subsamples.
- Calculate the weights as

$$h_{ic}^{0}(\theta^{0}) = \frac{s_{c}^{0} K_{n}(\beta_{c}^{0})}{\sum_{m} s_{m}^{0} K_{n}(\beta_{m}^{0})}$$
(3)

Update the shares as

$$s_c^1 = \frac{\sum_n h_{ic}^0}{\sum_m \sum_i h^0}$$
 (4)

• Run C standard logits on the data using weights h_{nc}^0 in the c_{th} run, and derive β_c^1

Example 2 00000

- Number of iterations.
- Size of the update step.
- Convergence criteria.

Computation

Fundamentals

- ?solve or help(solve).
- R is case sensitive.
- "j-" is an assignment operator.
- Avoid loops in R.