Cohomology of certain p-adic Groups

2022

Daniel Kongsgaard

Contents

1	Cohomology of Unipotent Groups		1
	1.1	Introduction	1
	1.2	The p -valuation	2
	1.3	A multiplicative spectral sequence	9
	1.4	Dimension of cohomology of \mathfrak{n} and $N = \mathcal{N}(\mathbb{Z}_p)$	9
	1.5	Cohomology of $N = \mathcal{N}(\mathbb{Z}_p)$	10
Bibliography		11	
Index			12

CONTENTS ii

Some extra stuff.

Chapter 1

Cohomology of Unipotent Groups

cha:cohunigps

1.1 Introduction

So far some of the details are still skipped, but I have tried to write pretty much everything that's not already written in results I cite.

Notation and setup

Let p be a prime and let $k = \mathbb{Z}_p$. Also note that the following is true for any integral domain k (in particular also for \mathbb{F}_p).

Let $\mathcal{G}_{\mathbb{Z}}$ be a split and connected reductive algebraic \mathbb{Z} -group and let $\mathcal{G} =$ $(\mathcal{G}_{\mathbb{Z}})_k$ (the base change from \mathbb{Z} to k). Let $\mathcal{T}_{\mathbb{Z}}$ be a split maximal torus of $\mathcal{G}_{\mathbb{Z}}$ and DK Note: We set $\mathcal{T} = (\mathcal{T}_{\mathbb{Z}})_k$. Let $\Phi = \Phi(\mathcal{G}, \mathcal{T})$ be the root system of \mathcal{G} with respect to \mathcal{T} and note that Φ can be identified with the root system of $\mathcal{G}_{\mathbb{Z}}$ with respect to $\mathcal{T}_{\mathbb{Z}}$. Also note that $\text{Lie}(\mathcal{G}) = \text{Lie}(\mathcal{G}_{\mathbb{Z}}) \otimes_{\mathbb{Z}} k$ and for any $\alpha \in \Phi$ we have the root subgroup $\mathcal{N}_{\alpha} \subseteq \mathcal{G}$ with $\operatorname{Lie} \mathcal{N}_{\alpha} = (\operatorname{Lie} \mathcal{G})_{\alpha} = (\operatorname{Lie} \mathcal{G}_{\mathbb{Z}})_{\alpha} \otimes_{\mathbb{Z}} k$. Now fix a k-basis X_{α} of the Lie algebra of \mathcal{N}_{α} . This choice gives rise to a unique isomorphism isomorphism of group schemes $x_{\alpha} \colon \mathcal{G}_a \xrightarrow{\cong} \mathcal{N}_{\alpha}$ such that $(dx_{\alpha})(1) = X_{\alpha}$. We furthermore fix a basis $\Delta \subseteq \Phi$ of the root system such that we get a decomposition $\Phi = \Phi^+ \cup \Phi^$ into positive and negative roots. Let $\mathcal{B} = \mathcal{T} \mathcal{N}$ and $\mathcal{B}^+ = \mathcal{T} \mathcal{N}^+$ denote the Borel subgroups of \mathcal{G} corresponding to Φ^- and Φ^+ , respectively, with unipotent radicals \mathcal{N} and \mathcal{N}^+ . (Here we also have corresponding algebraic \mathbb{Z} -groups.)

For any total ordering of Φ^- the multiplication induces an isomorphism of schemes $\prod_{\alpha \in \Phi^-} \mathcal{N}_\alpha \xrightarrow{\cong} \mathcal{N}$. For convenience we fix in the following such a total ordering which has the additional property that $\alpha_1 \geq \alpha_2$ if $\operatorname{ht}(\alpha_1) \leq \operatorname{ht}(\alpha_2)$. All

might be able to avoid going through \mathbb{Z} at first with Also, we may need to assume that \mathcal{G} is simple.

products indexed by Φ^- are meant to be taken according to this ordering. Here we have the height function ht: $\mathbb{Z}[\Delta] \to \mathbb{Z}$ given by $\sum_{\alpha \in \Delta} m_{\alpha} \alpha \mapsto \sum_{\alpha \in \Delta} m_{\alpha}$. In particular, since $\Phi \subseteq \mathbb{Z}[\Delta]$ the height ht(β) of any root $\beta \in \Phi$ is defined.

Let furthermore ρ be the half-sum of the elements of Φ^+ , let $X = X(\mathcal{T}) \cong X(\mathcal{T}_{\mathbb{Z}})$ be the character group of \mathcal{T} , let

$$X^+ = \{ \lambda \in X \mid \langle \lambda, \alpha^{\vee} \rangle \ge 0 \text{ for all } \alpha \in \Phi^+ \},$$

and let h be the Coxeter number of \mathcal{G} and assume from now on that $p \geq h - 1$. For any $\lambda \in X^+$, let $V_{\mathbb{Z}}(\lambda)$ be the Weyl module for $\mathcal{G}_{\mathbb{Z}}$ over \mathbb{Z} with highest weight λ , and let $V_k(\lambda) = V_{\mathbb{Z}}(\lambda) \otimes_{\mathbb{Z}} k$.

Let Φ^{\vee} be the dual root system of Φ and let W be the corresponding Weyl group with length function ℓ on W. Let $\mathfrak{n}_{\mathbb{Z}} = \mathrm{Lie}(\mathcal{N}_{\mathbb{Z}})$ be the Lie algebra of $\mathcal{N}_{\mathbb{Z}}$ over \mathbb{Z} and $\mathfrak{n} = \mathfrak{n}_{\mathbb{F}_p} = \mathrm{Lie}(\mathcal{N}_{\mathbb{F}_p}) = \mathfrak{n}_{\mathbb{Z}} \otimes \mathbb{F}_p$ be the Lie algebra of $\mathcal{N}_{\mathbb{F}_p}$ over \mathbb{F}_p . Finally let $G = N = \mathcal{N}(\mathbb{Z}_p) = \mathcal{N}_{\mathbb{Z}}(\mathbb{Z}_p)$ and let $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$.

1.2 The p-valuation

sec:pval

This section is mainly based on some unpublished notes by Schneider.

In this section we will write N for $\mathcal{N}(\mathbb{Z}_p)$, and we note that as a set N is the direct product $N = \prod_{\alpha \in \Phi^-} x_{\alpha}(\mathbb{Z}_p)$, which allows us to introduce the function

$$\omega \colon N \setminus \{1\} \to \mathbb{N}$$

$$\prod_{\alpha \in \Phi^{-}} x_{\alpha}(a_{\alpha}) \mapsto \min_{\alpha \in \Phi^{-}} (v_{p}(a_{\alpha}) - \operatorname{ht}(\alpha)),$$

where v_p denotes the usual p-adic valuation on \mathbb{Z}_p . Here it is important to note that we write any $g \in N$ uniquely as product

$$g = \prod_{\alpha \in \Phi^-} x_{\alpha}(a_{\alpha})$$

by taking the product following the total ordering \geq of Φ^- defined above. Now, with the convention that $\omega(1) := \infty$, we define the descending sequence of subsets

$$N_m := \{ g \in N \mid \omega(g) \ge m \}$$

in N for $m \ge 0$. The main goal of this section is to show that ω is a p-valuation by a careful analysis of the sequence of subsets given by N_m .

We first note that clearly $N_1 = N$, $\bigcap_m N_m = \{1\}$, and

$$\begin{split} N_m &= \prod_{\alpha \in \Phi^-} x_\alpha(p^{\max(0,m+\operatorname{ht}(\alpha))} \mathbb{Z}_p) \\ &= \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -1}} x_\alpha(p^{m-1} \mathbb{Z}_p) \cdots \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -(m-1)}} x_\alpha(p \mathbb{Z}_p) \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \leq -m}} x_\alpha(\mathbb{Z}_p). \end{split} \tag{1.1}$$

In our analysis of this sequence we will also need two other filtrations of N. Firstly we will consider the filtration by congruence subgroups

$$N(m) := \ker \left(\mathcal{N}(\mathbb{Z}_p) \to \mathcal{N}(\mathbb{Z}/p^m \mathbb{Z}) \right)$$

$$= \prod_{\alpha \in \Phi^-} x_{\alpha}(p^m \mathbb{Z}_p)$$

$$(1.2) \quad \text{{eq:N(m)}}$$

for $m \geq 0$. Secondly, using the descending central series of the group $\mathcal{G}(\mathbb{Q}_p)$ defined by $C^1\mathcal{G}(\mathbb{Q}_p) := \mathcal{G}(\mathbb{Q}_p)$ and $C^{m+1}\mathcal{G}(\mathbb{Q}_p) := [C^m\mathcal{G}(\mathbb{Q}_p), \mathcal{G}(\mathbb{Q}_p)]$, we consider the filtration given by

$$N_{(m)} := N \cap C^m \mathcal{G}(\mathbb{Q}_p)$$

for $m \geq 1$. By BT we have that

DK Note:

Check

$$N_{(m)} = \prod_{\substack{\alpha \in \Phi^{-} \\ \operatorname{ht}(\alpha) \leq -m}} x_{\alpha}(\mathbb{Z}_{p}). \tag{1.3} \quad \text{reference (m)}$$

We note that the natural map

$$\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -m}} x_{\alpha}(\mathbb{Z}_p) \to N_{(m)}/N_{(m+1)}$$

is an isomorphism of abelian groups, and that all the subgroups N(m) and $N_{(m)}$ are normal in N.

We are now ready to prove the following lemma, which will help us when showing that ω is a p-valuation.

lem:N_m
item:N_m

Lemma 1.1. (i) $N_m = \prod_{1 \le i \le m} N(m-i) \cap N_{(i)}$, for any $m \ge 1$, is a normal subgroup of N which is independent of the choices made.

item:N_mcom

- (ii) $[N_{\ell}, N_m] \subseteq N_{\ell+m}$ for any $\ell, m \ge 1$.
- (iii) N_m/N_{m+1} , for any $m \ge 1$, is an \mathbb{F}_p -vector space of dimension equal to $|\{\alpha \in \Phi^- \mid \operatorname{ht}(\alpha) \ge -m\}|$.

item:g^p

(iv) Let $g \in N_m$ for some $m \ge 1$. If $g^p \in N_{m+2}$, then $g \in N_{m+1}$.

Proof. (i) Using (1.2) and (1.3) we note that

$$\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -i}} x_{\alpha}(p^{m-1}\mathbb{Z}_p) \subseteq N(m-i) \cap N_{(i)} \quad \text{and} \quad \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \leq -m}} x_{\alpha}(\mathbb{Z}_p) = N(0) \cap N_{(m)}$$

for $1 \leq i < m$, so by (1.1) it's clear that $N_m \subseteq \prod_{1 \leq i \leq m} N(m-i) \cap N_{(i)}$. We also note, by (1.2) and (1.3), that

$$(N(m-i) \cap N_{(i)}) (N(m-i-1) \cap N_{(i+1)})$$

$$\subseteq \Big(\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) = -i}} x_{\alpha}(p^{m-i}\mathbb{Z}_p)\Big) (N(m-i-1) \cap N_{(i+1)})$$

for any $1 \le i < m$, so

$$\prod_{1 \le i \le m} N(m-i) \cap N_{(i)}$$

$$\subseteq \prod_{\substack{\alpha \in \Phi^{-} \\ \operatorname{ht}(\alpha) = -1}} x_{\alpha}(p^{m-1}\mathbb{Z}_{p}) \cdots \prod_{\substack{\alpha \in \Phi^{-} \\ \operatorname{ht}(\alpha) = -(m-1)}} x_{\alpha}(p\mathbb{Z}_{p}) \left(N(0) \cap N_{(m)}\right)$$

$$= N_{m}$$

by induction, (1.1) and (1.3). This shows the equality and that N_m is normal clearly follows.

(ii) We first recall the following formulas for commutators

$$[gh,k] = g[h,k]g^{-1}[g,k]$$
 and $[g,hk] = [g,h]h[g,k]h^{-1}$. (1.4) [eq:comformulas]

Now, using (1.4), (i) and the fact that all the involved subgroups are normal, it's enough to show that

$$[N(\ell) \cap N_{(i)}, N(m) \cap N_{(j)}] \subseteq N(\ell+m) \cap N_{(i+j)}.$$

This further reduces to showing that

$$[N(\ell),N(m)]\subseteq N(\ell+m)\quad \text{ and }\quad [N_{(i)},N_{(j)}]\subseteq N_{(i+j)}.$$

The right inclusion is a well known property of the descending central series, so it follows from our defintion of $N_{(m)}$. For the left inclusion it suffices, by (1.2), to show that

$$[x_{\alpha}(p^{\ell}\mathbb{Z}_p), x_{\beta}(p^m\mathbb{Z}_p)] \subseteq N(\ell+m)$$

for any $\alpha, \beta \in \Phi^-$. To show this inclusion we recall Chevalley's commutator formula

$$[x_{\alpha}(a), x_{\beta}(b)] \in x_{\alpha+\beta}(ab\mathbb{Z}_p) \prod_{\substack{i,j \ge 1\\i+j > 2}} x_{i\alpha+j\beta}(a^ib^j\mathbb{Z}_p),$$

where on the right hand side the convention is that $x_{i\alpha+j\beta} \equiv 1$ if $i\alpha + j\beta \notin \Phi$ (cf. BT). From (1.2) and Chevalley's commutator formula the inclusion follows. DK Note:

DK Note: Check reference.

(iii) We note that

$$N(m-i) \cap N_{(i)} = \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \le -i}} x_{\alpha}(p^{m-i}\mathbb{Z}_p)$$

for $1 \le i \le m$, so the statement follows from (i) and (ii).

DK Note: Write (iii) better.

(iv) For any $1 \le \ell \le m$ we consider the chain of normal subgroups

$$N_{m+2}(N_m \cap N_{(\ell+1)}) \subseteq N_{m+1}(N_m \cap N_{(\ell+1)}) \subseteq N_{m+1}(N_m \cap N_{(\ell)})$$

between N_{m+2} and N_m . By (1.4) and an argument like in (ii), we get that

$$[N_{m+1}(N_m \cap N_{(\ell)}), N_{m+1}(N_m \cap N_{(\ell)})] \subseteq N_{m+2}(N_m \cap N_{(\ell+1)}),$$

so the quotient group

$$N_{m+1}(N_m \cap N_{(\ell)})/N_{m+2}(N_m \cap N_{(\ell+1)})$$

is abelian. Now looking carefully at the groups as sets, we see that

$$N_m \cap N_{(\ell)} = \prod_{\substack{\alpha \in \Phi^- \\ \operatorname{ht}(\alpha) \le -\ell}} x_{\alpha}(p^{\max(0, m + \operatorname{ht}(\alpha))} \mathbb{Z}_p)$$

and thus (using Chevalley's commutator formula and the fact that $\operatorname{ht}(i\alpha+j\beta) \le \operatorname{ht}(\alpha+\beta) < \operatorname{ht}(\alpha), \operatorname{ht}(\beta)$ to move the products for the $\operatorname{ht}(\alpha) = -\ell$ term)

$$N_{m+1}(N_m \cap N_{(\ell)}) = \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) > -\ell}} x_{\alpha}(p^{\max(0,m+1+\operatorname{ht}(\alpha))} \mathbb{Z}_p)$$

$$\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) = -\ell}} x_{\alpha}(p^{m-\ell} \mathbb{Z}_p)$$

$$\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) < -\ell}} x_{\alpha}(p^{\max(0,m+\operatorname{ht}(\alpha))} \mathbb{Z}_p).$$

Similarly

$$N_{m+2}(N_m \cap N_{(\ell+1)}) = \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) > -\ell}} x_{\alpha}(p^{\max(0,m+2+\operatorname{ht}(\alpha))} \mathbb{Z}_p)$$

$$\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) = -\ell}} x_{\alpha}(p^{m+2-\ell} \mathbb{Z}_p)$$

$$\cdot \prod_{\substack{\alpha \in \Phi^-\\ \operatorname{ht}(\alpha) \le -(\ell+1)}} x_{\alpha}(p^{\max(0,m+\operatorname{ht}(\alpha))} \mathbb{Z}_p),$$

and since the quotient group

$$N_{m+1}(N_m \cap N_{(\ell)})/N_{m+2}(N_m \cap N_{(\ell+1)})$$

is abelian, we see that it is isomorphic to

$$\prod_{\substack{\alpha \in \Phi^- \\ \operatorname{tt}(\alpha) > -\ell}} \frac{x_{\alpha}(p^{\max(0,m+1+\operatorname{ht}(\alpha))}\mathbb{Z}_p)}{x_{\alpha}(p^{\max(m+2+\operatorname{ht}(\alpha))}\mathbb{Z}_p)} \times \prod_{\operatorname{ht}(\alpha) = -\ell} \frac{x_{\alpha}(p^{m-\ell}\mathbb{Z}_p)}{x_{\alpha}(p^{m+2-\ell}\mathbb{Z}_p)}.$$

Here the subgroup

$$N_{m+1}(N_m \cap N_{(\ell+1)})/N_{m+2}(N_m \cap N_{(\ell+1)})$$

corresponds to

$$\prod_{\operatorname{ht}(\alpha)>-\ell} \frac{x_{\alpha}(p^{\max(0,m+1+\operatorname{ht}(\alpha))}\mathbb{Z}_p)}{x_{\alpha}(p^{\max(0,m+2+\operatorname{ht}(\alpha))}\mathbb{Z}_p)} \times \prod_{\operatorname{ht}(\alpha)=-\ell} \frac{x_{\alpha}(p^{m+1-\ell}\mathbb{Z}_p)}{x_{\alpha}(p^{m+2-\ell}\mathbb{Z}_p)}.$$

It follows that $N_{m+1}(N_m \cap N_{(\ell+1)})/N_{m+2}(N_m \cap N_{(\ell+1)})$ is the p-torsion subgroup of $N_{m+1}(N_m \cap N_{(\ell)})/N_{m+2}(N_m \cap N_{(\ell+1)})$.

Now let $g \in N_m$ for some $m \geq 1$ and assume that $g^p \in N_{m+2}$. For $\ell = 1$ we have $g \in N_m = N_{m+1}(N_m \cap N_{(1)})$, since $N_{(1)} = N$, and clearly $g^p \in N_{m+2}(N_m \cap N_{(2)})$. Since $N_{m+1}(N_m \cap N_{(2)})/N_{m+2}(N_m \cap N_{(2)})$ is the p-torsion subgroup of $N_{m+1}(N_m \cap N_{(1)})/N_{m+2}(N_m \cap N_{(2)})$, it follows that $g \in N_{m+1}(N_m \cap N_{(2)})$ and $g^p \in N_{m+2}(N_m \cap N_{(3)})$. By induction on ℓ , we thus get that $g \in N_{m+1}(N_m \cap N_{(m+1)}) = N_{m+1}$. Here the last equality follows from the fact that $N_{(m+1)} \subseteq N_{m+1}$ by (1.1) and (1.3).

Proposition 1.2. The function ω is a *p*-valuation on N, i.e., it satisfies for any $g, h \in N$:

- (a) $\omega(g) > \frac{1}{p-1}$,
- (b) $\omega(g^{-1}h) \ge \min(\omega(g), \omega(h)),$
- (c) $\omega([g,h]) \ge \omega(g) + \omega(h)$,
- (d) $\omega(g^p) = \omega(g) + 1$.

Proof. We note that (a) is obvious by our definition of ω , (c) follows from Lemma 1.1 (ii) and (d) follows from Lemma 1.1 (iv).

It only remains to show (b), which we will do by following the proof idea of Lemma 1 from [Zab], i.e., we are going to use triple induction. Also, for the sake of this proof (and only during this proof), we will take all product $\prod_{\alpha \in \Phi^-} x_{\alpha}(a_{\alpha})$ to be in descending order in Φ^- .

At first by induction on the number of non-zero coordinates among $(a_{\alpha})_{\alpha \in \Phi^{-}}$ in $\prod_{\alpha \in \Phi^{-}} x_{\alpha}(a_{\alpha})$ we are reduced to the case where g is of the form $g = x_{\alpha}(a_{\alpha})$ for some $\alpha \in \Phi^{-}$ and $a_{\alpha} \in \mathbb{Z}_{p}$. To see this let $g \in N \setminus \{1\}$ and write $g = \prod_{\alpha \in \Phi^{-}} x_{\alpha}(a_{\alpha})$ in our unique way (according to the descending ordering of Φ^{-}), and let β be the smallest element of Φ^{-} for which $a_{\alpha} \neq 0$ so that $g = g' \cdot x_{\beta}(a_{\beta})$. Then $g^{-1}h = x_{\beta}(a_{\beta})^{-1}((g')^{-1}h)$ and thus strong induction will imply that

$$\omega(g^{-1}h) \ge \min(v(a_{\beta}) - \operatorname{ht}(\beta), \omega((g')^{-1}h))$$

$$\ge \min(v(a_{\beta}) - \operatorname{ht}(\alpha), \omega(g'), \omega(h)) = \min(\omega(g), \omega(h)).$$

Let now h be of the form $h = \prod_{k=1}^r x_{\beta_k}(a_{\beta_k})$ with $\beta_1 > \beta_2 > \cdots > \beta_r$ in Φ^- . If $\alpha \geq \beta_1$, then $g^{-1}h = x_{\alpha}(-a_{\alpha}) \cdot x_{\beta_1}(a_{\beta_1}) \prod_{k=2}^r x_{\beta_k}(a_{\beta_k})$, so (b) is clearly true if $\alpha > \beta_1$ (by the definition of ω), and if $\alpha = \beta_1$, then $x_{\alpha}(-a_{\alpha}) \cdot x_{\beta_1}(a_{\beta_1}) = x_{\alpha}(-a_{\alpha} + a_{\beta_1})$ and (b) follows from $v_p(a + b) \geq \min(v_p(a), v_p(b))$ for $a, b \in \mathbb{Z}_p$. On the other hand, if $\alpha < \beta_1$, then we write

$$g^{-1}h = x_{\alpha}(-a_{\alpha}) \cdot \prod_{k=1}^{r} x_{\beta_{k}}(a_{\beta_{k}})$$
$$= [x_{\alpha}(-a_{\alpha}), x_{\beta_{1}}(a_{\beta_{1}})]x_{\beta_{1}}(a_{\beta_{1}}) \cdot x_{\alpha}(-a_{\alpha}) \prod_{k=2}^{r} x_{\beta_{k}}(a_{\beta_{k}}).$$

Now we use descending induction on α in the chosen ordering of Φ^- and suppose that the statement (b) is true for any h and any g' of the form

{eq:omega(Chev)}

 $g' = x_{\alpha'}(a_{\alpha'})$ with $\alpha' > \alpha$. Note that we already implicitly described the base case earlier and recall that Φ^- is finite and totally ordered. Note furthermore that Chevalley's commutator formula gives us

$$[x_{\alpha}(-a_{\alpha}), x_{\beta}(a_{\beta})] = \prod_{\substack{i\alpha+j\beta\in\Phi^{-}\\i,j>0}} x_{i\alpha+j\beta}(c_{\alpha,\beta,i,j}(-a_{\alpha})^{i}a_{\beta}^{j})$$
(1.5) [eq:Chevalley]

for any $\alpha, \beta \in \Phi^-$, where $c_{\alpha,\beta,i,j} \in \mathbb{Z}_p$. Also, we have $\operatorname{ht}(i\alpha+j\beta) \leq \operatorname{ht}(\alpha+\beta) < \operatorname{ht}(\alpha), \operatorname{ht}(\beta)$, so we can apply the inductional hypothesis for $x_{\beta_1}(a_{\beta_1})$ (since $\beta_1 > \alpha$) and for all terms on the right side of (1.5) (recalling that $\alpha' \geq \beta'$ if $\operatorname{ht}(\alpha') \leq \operatorname{ht}(\beta')$ and with the choice $\beta = \beta_1$) in order to obtain

$$\omega(g^{-1}h) \ge \min\left(\min_{\substack{i\alpha+j\beta\in\Phi^-\\i,j>0}} \omega(x_{i\alpha+j\beta}(c_{\alpha,\beta,i,j}(-a_{\alpha})^i a_{\beta}^j)),\right.$$

$$\omega(x_{\beta_1}(a_{\beta_1})), \omega\left(x_{\alpha}(-a_{\alpha})\prod_{k=2}^r x_{\beta_k}(a_{\beta_k})\right)\right). \tag{1.6}$$

Now, for i, j > 0 with $i\alpha + j\beta \in \Phi$,

$$\omega(x_{i\alpha+j\beta}(c_{\alpha,\beta,i,j}(-a_{\alpha})^{i}a_{\beta}^{j})) = v_{p}(c_{\alpha,\beta,i,j}(-a_{\alpha})^{i}a_{\beta}^{j}) - \operatorname{ht}(i\alpha+j\beta)$$

$$\geq v_{p}(c_{\alpha,\beta,i,j}) + v_{p}((-a_{\alpha})^{i}) + v_{p}(a_{\beta}^{j}) - \operatorname{ht}(\alpha+\beta)$$

$$\geq v_{p}(a_{\alpha}) - \operatorname{ht}(\alpha) + v_{p}(a_{\beta}) - \operatorname{ht}(\beta)$$

$$= \omega(x_{\alpha}(a_{\alpha})) + \omega(x_{\beta}(a_{\beta}))$$

$$\geq \min(\omega(x_{\alpha}(a_{\alpha})), \omega(x_{\beta}(a_{\beta}))).$$

So taking $\beta = \beta_1$ and using (1.7) in (1.6), we get that

$$\omega(g^{-1}h) \ge \min \left(\omega(x_{\alpha}(a_{\alpha})), \omega(x_{\beta_1}(a_{\beta_1})), \omega\left(x_{\alpha}(-a_{\alpha}) \prod_{k=2}^{r} x_{\beta_k}(a_{\beta_k})\right) \right). \quad (1.8) \quad \boxed{\{\text{eq:omega(ginvh)2}\}}$$

Finally induction on r will imply that

$$\omega\Big(x_{\alpha}(-a_{\alpha})\prod_{k=2}^{r}x_{\beta_{k}}(a_{\beta_{k}})\Big) \geq \min\bigg(\omega(x_{\alpha}(a_{\alpha})),\omega\Big(\prod_{k=2}^{r}x_{\beta_{k}}(a_{\beta_{k}})\Big)\bigg)$$
$$= \min\Big(\omega(x_{\alpha}(a_{\alpha})),\min_{2\leq k\leq r}\omega(x_{\beta_{k}}(a_{\beta_{k}}))\Big),$$

which by (1.8) implies that

$$\omega(g^{-1}h) \ge \min(\omega(x_{\alpha}(a_{\alpha})), \min_{1 \le k \le r} \omega(x_{\beta_k}(a_{\beta_k})))$$
$$= \min(\omega(g), \omega(h)),$$

thus finishing the proof.

1.3 A multiplicative spectral sequence

sec:specsec

In this section we will write G for $\mathcal{N}(\mathbb{Z}_p)$, and we let $\mathfrak{g} = \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \operatorname{gr} G$.

Here gr $G \cong \mathbb{F}_p[\pi] \otimes_{\mathbb{F}_p} \mathfrak{n}$ by Proposition 3.2 of Schneider's notes, so $\mathfrak{g} \cong \mathbb{F}_p \otimes_{\mathbb{F}_p[\pi]} \mathbb{F}_p[\pi] \otimes_{\mathbb{F}_p} \mathfrak{n} \cong \mathfrak{n}$. (Which can also be shown by looking at the Chevalley constants.)

Note that G is a pro-p-group and by Corollary 2.2 of Schneider's notes G is p-valuable, so by Theorem 29.8 of [Sch] G is a (compact) p-adic Lie group.

Now we have a p-valued group (G, ω) , so by [Sør] we get a multiplicative convergent spectral sequence

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p).$$

Here $H^{s,t}(\mathfrak{g},\mathbb{F}_p) = H^{s+t}(\operatorname{gr}^s C^{\bullet}(\mathfrak{g},\mathbb{F}_p))$ by definition, where the Lie algebra $\mathfrak{g} \cong \mathfrak{n}$ is graded by the height function.

DK Note: This actually takes quite a lot of work to write the argument for, but it's mostly written in Schneider's notes already.

1.4 Dimension of cohomology of \mathfrak{n} and $N = \mathcal{N}(\mathbb{Z}_p)$

sec:dimofcoh

By Corollary 2.10 and Corollary 3.8 of [PT] and the Universal Coefficient Theorem there is a finite, natural $\mathcal{T}_{\mathbb{Z}}(\mathbb{Z})$ -filtration such that we get isomorphisms of \mathbb{F}_p -vector spaces¹

$$H^n(\mathfrak{n}_{\mathbb{Z}}, V_{\mathbb{F}_p}(0)) \cong \bigoplus_{\substack{w \in W \\ \ell(w) = n}} V_{\mathbb{F}_p}(w \cdot 0) \cong \operatorname{gr} H^n(\mathcal{N}_{\mathbb{Z}}(\mathbb{Z}), V_{\mathbb{F}_p}(0))$$

for any $n \geq 0$ if $p \geq h-1$ (which we assumed to be the case). (Here $V_{\mathbb{F}_p}(\lambda) \cong \mathbb{F}_p$ with $\mathcal{T}_{\mathbb{Z}}(\mathbb{F}_p) = \mathcal{T}(\mathbb{F}_p) = \mathcal{T}_{\mathbb{F}_p}(\mathbb{F}_p)$ acting via λ .)

Furthermore

$$H^n(\mathcal{N}_{\mathbb{Z}}(\mathbb{Z}), V_{\mathbb{F}_p}(0)) \cong H^n(\mathcal{N}(\mathbb{Z}_p), V_{\mathbb{F}_p}(0)).$$

To see this, first note that \mathbb{Z} is a discrete group, \mathbb{Z}_p is a profinite group, and the homomorphism $\mathbb{Z} \to \mathbb{Z}_p$ has dense image in \mathbb{Z}_p . So we have homomorphisms

$$H^n(\mathbb{Z}_p,\mathbb{F}_p) \to H^n(\mathbb{Z},\mathbb{F}_p)$$

for all $n \geq 0$ from [Ser, Section I §2.6]. Now both $H^0(\mathbb{Z}, \cdot)$ and $H^0(\mathbb{Z}_p, \cdot)$ are the functor of taking invariant, both $H^1(\mathbb{Z}, \cdot)$ and $H^1(\mathbb{Z}_p, \cdot)$ are the functor of

¹You get more than this, but we don't need more here.

taking coinvariants, and all $H^n(\mathbb{Z}, \cdot)$ and $H^n(\mathbb{Z}_p, \cdot)$ vanish for $n \geq 2$, so \mathbb{Z} is "good" in the sense of [Ser, Section I §2.6 Exercise 2]. Thus [Ser, Section I §2.6 Exercise 2(d)] implies that the homomorphisms

$$H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p) \to H^n(\mathcal{N}(\mathbb{Z}), \mathbb{F}_p) \qquad n \ge 0,$$

induced by the homomorphism $\mathcal{N}(\mathbb{Z}) \to \mathcal{N}(\mathbb{Z}_p)$, are all isomorphisms.

Hence

$$\dim_{\mathbb{F}_p} H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathcal{N}_{\mathbb{Z}}(\mathbb{Z}), \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p).$$

Now $\mathfrak{n} = \mathfrak{n}_{\mathbb{Z}} \otimes \mathbb{F}_p$, and $H^n(\mathfrak{g}, \mathbb{F}_p) \cong H^n(\mathfrak{n}, \mathbb{F}_p)$ (since $\mathfrak{g} \cong \mathfrak{n}$) is the homology of the complex

$$C^{\bullet}(\mathfrak{n}, \mathbb{F}_p) = \operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}, \mathbb{F}_p \right)$$

while $H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p)$ is the homology of the complex

$$C^{\bullet}(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p) = \operatorname{Hom}_{\mathbb{F}_p} \Big(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p \Big).$$

Here $\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}$ is a free \mathbb{Z} -module and $(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}) \otimes \mathbb{F}_p \cong \bigwedge^{\bullet} (\mathfrak{n}_{\mathbb{Z}} \otimes \mathbb{F}_p) \cong \bigwedge^{\bullet} \mathfrak{n}$, so we have natural isomorphisms

$$\operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p \right) \cong \operatorname{Hom}_{\mathbb{F}_p} \left(\left(\bigwedge^{\bullet} \mathfrak{n}_{\mathbb{Z}} \right) \otimes \mathbb{F}_p, \mathbb{F}_p \right) \cong \operatorname{Hom}_{\mathbb{F}_p} \left(\bigwedge^{\bullet} \mathfrak{n}, \mathbb{F}_p \right).$$

These isomorphisms are clearly compatible with the differentials, so $C^{\bullet}(\mathfrak{n}, \mathbb{F}_p) \cong C^{\bullet}(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p)$, and thus $H^n(\mathfrak{n}, \mathbb{F}_p) \cong H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p)$. Hence

$$\dim_{\mathbb{F}_p} H^n(\mathfrak{n}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathfrak{n}_{\mathbb{Z}}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p).$$

1.5 Cohomology of $N = \mathcal{N}(\mathbb{Z}_n)$

Now Section 1.4 implies that

$$\sum_{s+t=n} \dim_{\mathbb{F}_p} H^{s,t}(\mathfrak{g}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(\mathfrak{g}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^n(G, \mathbb{F}_p),$$

so the multiplicative spectral sequence

$$E_1^{s,t} = H^{s,t}(\mathfrak{g}, \mathbb{F}_p) \Longrightarrow H^{s+t}(G, \mathbb{F}_p)$$

from Section 1.3 converges on the first page. I.e.,

$$H^n(N, \mathbb{F}_p) = H^n(G, \mathbb{F}_p) \cong H^n(\mathfrak{g}, \mathbb{F}_p) \cong H^n(\mathfrak{n}, \mathbb{F}_p),$$

giving us a good description of $H^n(\mathcal{N}(\mathbb{Z}_p), \mathbb{F}_p)$. (Since the spectral sequence is multiplicative, can we also say that the cup product can be taken from the right hand side?)

DK Note: How do we argue this purely from looking at the dimensions? Do we need to just look at the page and differentials in more detail?

Bibliography

- PT [PT] P. Polo and J. Tilouine. "Bernstein-Gelfand-Gelfand complexes and cohomology of nilpotent groups over \mathbb{Z}_p for representations with p-small weights". In: ().
- Sch Sch Peter Schneider. p-Adic Lie Groups. Springer, 2011.
- GalCoh [Ser] Jean-Pierre Serre. Galois Cohomology. Trans. by Patrick Ion. Springer, 2002.
 - Sor [Sør] Claus Sørensen. "Hochschild Cohomology and p-Adic Lie Groups". In: ().

Index

algebraic group, 1