MTH 372 : STATISTICAL INFERENCE ASSIGNMENT-1

Q.1

a) Generation of 1000 samples using rexp() function in R for Exponential Distribution for λ = 1,2,3,4:-

Values	
data1	num [1:1000] 0.8435 0.5766 1.3291 0.0316 0.0562
data2	num [1:1000] 0.1117 0.0588 1.5258 0.2453 1.0191
data3	num [1:1000] 0.68054 0.00159 0.83791 0.22473 0.03614
data4	num [1:1000] 0.22 0.021 0.14 0.195 0.24

b) Calculation for Method of Moment and Maximum Likelihood Estimation :-

	DELTA PONOL
*	Exponential distribution (1):-
=>	$f(x;\lambda) = \lambda e^{-\lambda n}$
=>	Maximum Likelihaad Estimation:
>	let likelihood function, 1(0), and suppose is have n-iid variable on samples of Extended distribution.
	on samples of Expanadial distribution. ((0) = II re-2xi
3)	- λ ⁿ e-λ Εχ?
23	Pas for simplicity we will take logy
2)	$\log (L(0)) - L(0) = \log likelihood function,$ $L(0) = -\lambda \sum_{i} + n \log \lambda$
2)	Pas ca will differentiate for minimo on nexima,
^.	J(101) = 0
か	- \(\frac{1}{2} \) = \(\
*>	More for charling whether the foint is making as minimo we again
	differentiale It,
Section 1	λ= I h maxima.
2	mie value: (n n e-n Exi)
	(EIX) A.

```
method of normal is the one provider (1), so

the next only one of to folice i.e.,

y E(x) = Exi

Expected volve of advorantial distribution is a

i. I = Exi

x

So from hore we get \lambda = \frac{n}{2\pi}. In
```

Results from R:-

```
For \lambda = 1:-
Initial value = Method of moments = 1/mean :-
$par
[1] 0.9708933
$value
[1] -1029.539
Initial value = 1/mean - 0.4 :-
$par
[1] 0.9708933
$value
[1] -1029.539
Initial value = 1/mean + 0.4 :-
$par
[1] 0.9708933
$value
[1] -1029.539
```

So from all three initial values we get the same output which is our maximum likelihood and as expected our par is close to 1 at which our likelihood function yields maximum value.

```
For \lambda = 2:-
Initial value = Method of moments = 1/mean :-
$par
[1] 2.012931
$value
[1] -300.4081
Initial value = 1/mean - 0.4 :-
$par
[1] 2.012931
$value
[1] -300.4081
Initial value = 1/mean + 0.4 :-
$par
[1] 2.012931
$value
[1] -300.4081
```

So from all three initial values we get the same output which is our maximum likelihood and as expected our par is close to 2 at which our likelihood function yields maximum value.

```
For λ = 3:-
Initial value = Method of moments = 1/mean:-
$par
[1] 2.929678

$value
[1] 74.89265

Initial value = 1/mean - 0.4:-
```

```
$par
[1] 2.929678

$value
[1] 74.89265

Initial value = 1/mean + 0.4:-
$par
[1] 2.929678

$value
[1] 74.89265
```

So from all three initial values we get the same output which is our maximum likelihood and as expected our par is close to 3 at which our likelihood function yields maximum value.

```
For \lambda = 4:-
Initial value = Method of moments = 1/mean:-
$par
[1] 4.200171
$value
[1] 435.1253
Initial value = 1/mean - 0.4 :-
$par
[1] 4.200171
$value
[1] 435.1253
Initial value = 1/mean + 0.4 :-
$par
[1] 4.200171
$value
[1] 435.1253
```

So from all three initial values we get the same output which is our maximum likelihood and as expected our par is close to 4 at which our likelihood function yields maximum value.

```
c) Plot for \lambda = 1:-
```


We can clearly see that at λ closes to 1, plot point at maximum mle value. So graphically also our b result for λ = 1 data is verified.

Plot for $\lambda = 2$:-

We can clearly see that at λ closes to 2, plot point at maximum mle value. So graphically also our b result for λ = 2 data is verified.

Plot for $\lambda = 3$:-

We can clearly see that at λ closes to 3, plot point at maximum mle value. So graphically also our b result for λ = 3 data is verified.

Plot for $\lambda = 4$:-

We can clearly see that at λ closes to 4, plot point at maximum mle value. So graphically also our b result for λ = 4 data is verified.

Q.2

a) Calculation for Maximum Likelihood Estimation :-

	DELTA PONOL	
3	Normal Listribution: ~ N(4,62)	
	Take O,= in and of=O2,	
	-1 (x-8)2	
	$f(u) = \frac{1}{\sqrt{2\pi}Q_2} e^{-\frac{1}{2}Q_2} \left(x - \frac{1}{2}Q_2^2\right)^2$	
23		
=)	Let's take n-9id variables of $N(u, \sigma^2)$, so likelihood will be $L(0)$, $L(0) = \prod_{i=1}^{n+1} \frac{1}{\sqrt{2\pi\sigma_2}} \left(\frac{1}{2\sigma_1} O_i\right)^2$	
	1=1 52002	
=>	$L(0) = \frac{1}{(2\pi0)^{\frac{1}{2}}} e^{-\frac{1}{20}} (\Sigma x^{2} - 20 \Sigma x^{2} + n.0^{2})$	
2)	now for simplicity we take log,	
75	(A) = 1 (512 22 51 42 A)	
	Por for Simplicity we take log, $\log (10) = 10$) $1(0) = -n \log 2\pi O_2 - 1 (\Sigma x_1^2 - 2a_1 \Sigma x_1^2 + na_1^2)$ $2O_2$	
	(Q)	
	$l(0) = -n log 2\pi O_2 - 1 \Sigma (xi - 0_1)^2 Ay$	
=)	Mas for firsting matina on whiten, we will differentiate $J(I(0)) = 0$ and $J(0) = 0$.	
	2(100) =0 and 2100 = 0.	
	30,	
	1(1(0)) = +1 \(\tau(0) - 0 \) - 0	
,	J(10) = +1 E(xi-0,) =0	
	= $nQ_1 = \Sigma x_1^2 \Rightarrow Q_1 = \Sigma x_2^2 = dample rean(x)$	
	n	
=)	100) = -n × 1 × 2/ + 1 \(\int(x; -0)^2 = 0\)	
	= -n + 1 [(x; -0,) 20	
	$= 0_2 = \frac{\sum (x_1^2 - \overline{x})^2}{n} A_7$	

We have ophnum of = X and or = 5(x*-x)2 for maximum 22100) 40 and have oz = 5(x= x)2 when is postitue and Tx-n >0 ô, andôz is roman pontar radina Ay

Output from R code after simulation MLE function :-

b) Assuming we know the optimum mean value and varying the variance to different values and we get a plot shown below :-

From the above plot we can clearly see that variance close to 15 gives the maximum likelihood value.

Now, Assuming we know the optimum variance value and varying the mean to different values and we get a plot shown below:-

From the above plot we can clearly see that the mean of the data close to 4000 gives the maximum likelihood value.

c) ML estimate of $e^{-\mu}$: We know the maximum likelihood value of μ from part a) i.e., μ = 4000.04397, so by invariance property of mle, we have mle of $e^{-\mu}$ is $e^{-4000.04397}$.