

Medidas de associação Felipe

. . ~

Figueiredo

Medidas de associação Correlação Linear

Felipe Figueiredo

UNIAN - Centro Universitário Anhanguera de Niterói

Sumário

Medidas de associação

Felipe Figueiredo

Correlação

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson

Sumário

Medidas de associação

Felipe Figueiredo

Correlação

Associação

Covariância entr duas amostras

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação Felipe

Figueiredo

Associação

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única

Medidas de associação

Felipe Figueiredo

Associação Covariância entre duas amostras

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação

Felipe Figueiredo

Associação

- Quando uma associação é forte, podemos identificá-la subjetivamente
- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

 Quando uma associação é forte, podemos identificá-la subjetivamente

- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Medidas de associação

Felipe Figueiredo

Associação

Medidas de associação

Felipe Figueiredo

Associação

- Quando uma associação é forte, podemos identificá-la subjetivamente
- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Exemplo

Medidas de associação

Felipe Figueiredo

Correlação Associação

Exemplo

Felipe

x and y

(Fonte: Triola)

x and y

Exemplo

Medidas de associação

Felipe Figueiredo

Correlação Associação

Covariância entre duas amostras Pearson

(g) No correlation (h) Nonlinear relationship between x and y between x and y

(Fonte: Triola)

Sumário

Medidas de associação

Felipe Figueiredo

Correlação
Associação

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson

Variância

Medidas de associação

Felipe
Figueiredo

Correlação Associação

- Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra
- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Variância

 Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra

- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Medidas de associação

Felipe Figueiredo

Correlação
Associação

Variância

Medidas de associação

Felipe Figueiredo

Associação Covariância entre duas amostras

- Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra
- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Covariância entre duas amostras

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

Covariancia entri duas amostras Pearson

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

 Obs: duas variáveis independentes tem covariância igual a zero!

Covariância entre duas amostras

Medidas de associação

Felipe Figueiredo

Associação

Covariância entre

Covariância entr duas amostras Pearson

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

 Obs: duas variáveis independentes tem covariância igual a zero!

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

duas amostras

Definition

A correlação é a associação estatística entre duas variáveis.

Para medir essa associação, calculamos o coeficiente de correlação *r*.

Sumário

Medidas de associação

Felipe Figueiredo

Pearson

- Associação entre duas variáveis
- Covariância entre duas amostras.
- Coeficiente de correlação de Pearson

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Associação

Coupriêncie entre

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Associação

Covariância entre

Definition

O coeficiente de correlação *r* é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

O coeficiente de correlação de Pearson é a covariância normalizada

- Pode ser calculado para populações (ρ) ou amostras (r)
- População

$$\rho = \frac{\text{Cov}(X, Y)}{\sigma_X \times \sigma_Y}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra Medidas de associação Felipe

Figueiredo

Associação
Covariância entre
duas amostras
Pearson

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra

Medidas de associação Felipe

Figueiredo Correlação

Associação
Covariância entre duas amostras
Pearson

 O coeficiente de correlação de Pearson é a covariância normalizada

- Pode ser calculado para populações (ρ) ou amostras (r)
- População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra Medidas de associação
Felipe

Figueiredo Correlação

Associação
Covariância entre
duas amostras
Pearson

O coeficiente de correlação de Pearson é a covariância normalizada

- Pode ser calculado para populações (ρ) ou amostras (r)
- População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra

Medidas de associação Felipe

Figueiredo

Correlação
Associação
Covariância entre
duas amostras
Pearson

Medidas de associação

Felipe Figueiredo

Correlação Associação

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação
Felipe

Figueiredo

Associação Covariância entre

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Felipe Figueiredo

> Associação Covariância entre

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Figueiredo correlação

Associação Covariância entre duas amostras Pearson

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Felipe Figueiredo

Associação Coupriância entre

Covariância entre duas amostras Pearson

- Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ
- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ, e testamos a significância estatística da forma usual

Medidas de associação

Felipe Figueiredo

Associação

Covariância entre duas amostras Pearson

- Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ
- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ , e testamos a significância estatística da forma usual

Medidas de associação

Felipe Figueiredo

Associação
Covariância entre

duas amostras Pearson

- Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ
- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ, e testamos a significância estatística da forma usual

Example

Pesquisadores queriam entender por que a insulina varia tanto entre indivíduos. Imaginaram que a composição lipídica das células do músculo afetam a sensibilidade do músculo para a insulina. Para isto, eles injetaram insulina em 13 jovens adultos, e determinaram quanta glicose eles precisariam injetar nos sujeitos para manter o nível de glicose sanguínea constante. A quantidade de glicose injetada para manter o nível sanguíneo constante é, então, uma medida da sensibilidade à insulina.

(Fonte: Motulsky, 1995)

Medidas de associação

Felipe Figueiredo

Associação
Covariância entre
duas amostras

Pearson

Medidas de associação

Felipe Figueiredo

Associação
Covariância entre

Covariância entr duas amostras Pearson

Example

Os pesquisadores fizeram uma pequena biópsia nos músculos para aferir a fração de ácidos graxos poliinsaturados que tem entre 20 e 22 carbonos (%C20-22). Como variável resposta, mediram o índice de sensibilidade à insulina.

Valores tabelados a seguir.

Table 17.1. Correlation Between %C20–22 and Insulin Sensitivity

% C20-22	
Polyunsaturated Fatty Acids	Insulin Sensitivity (mg/m²/min)
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

Medidas de associação

Felipe Figueiredo

Associação Covariância entre

Pearson

Exemplo: Diagrama de dispersão dos dados

Medidas de associação

Felipe Figueiredo

Associação
Covariância entre
duas amostras
Pearson

Obs: na verdade, r = 0.77.

Medidas de associação

Felipe Figueiredo

Associação

Covariância entr duas amostras Pearson

- O tamanho da amostra foi n = 13
- Consultamos o valor crítico de r na tabela a seguir
- Testamos a H₀ que não há relação entre as variáveis na população (H₀: ρ = 0).

Medidas de associação

Felipe Figueiredo

Pearson

- O tamanho da amostra foi n=13
- Consultamos o valor crítico de r na tabela a seguir

Medidas de associação

Felipe Figueiredo

Associação
Covariância entre

Covariancia entr duas amostras Pearson

- O tamanho da amostra foi n = 13
- Consultamos o valor crítico de r na tabela a seguir
- Testamos a H_0 que não há relação entre as variáveis na população ($H_0: \rho = 0$).

TABLE A	Pearson	Critical Values of the Pearson Correlation Coefficient <i>r</i>	
n	$\alpha = .05$	$\alpha = .01$	
4	.950	.999	
5	.878	.959	
6	.811	.917	
7	.754	.875	
8	.707	.834	
9	.666	.798	
10	.632	.765	
11	.602	.735	
12	.576	.708	
13	.553	.684	
14	.532	.661	
15	.514	.641	
16	.497	.623	
17	.482	.606	
18	.468	.590	

Medidas de associação

Felipe Figueiredo

Correlação

Covariância entr duas amostras Pearson

• O valor crítico da tabela para uma amostra de tamanho 13 é $r_c = 0.553$

- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação

Felipe Figueiredo

Medidas de associação Felipe

Figueiredo

- O valor crítico da tabela para uma amostra de tamanho 13 é $r_c = 0.553$
- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação
Felipe

Figueiredo Correlação

- O valor crítico da tabela para uma amostra de tamanho 13 é $r_c = 0.553$
- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

- O valor crítico da tabela para uma amostra de tamanho 13 é $r_c = 0.553$
- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação

Felipe Figueiredo

Medidas de associação

Felipe Figueiredo

- Pode-se também calcular o p-valor para o coeficiente de correlação r.
- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

 Pode-se também calcular o p-valor para o coeficiente de correlação r.

- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Medidas de associação Felipe

Figueiredo

- Pode-se também calcular o p-valor para o coeficiente de correlação r.
- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Medidas de associação

Felipe Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação
Felipe

Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação
Felipe

Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Interpretando o r

 Nunca devemos ignorar a última possibilidade (erro tipo I)!

- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

Medidas de associação Felipe

Figueiredo

Associação Covariância entre duas amostras

Pearson

Interpretando o r

- Nunca devemos ignorar a última possibilidade (erro tipo I)!
- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

Medidas de associação Felipe

Figueiredo

Interpretando o r

 Nunca devemos ignorar a última possibilidade (erro tipo I)!

- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

Medidas de associação

Felipe Figueiredo

Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados

- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação Felipe

Figueiredo

Medidas de associação Felipe Figueiredo

Correlação

- Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

 Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados

- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação Felipe

Figueiredo

 Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados

- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação

Felipe Figueiredo

Interpretando o r^2

Medidas de associação Felipe

Figueiredo

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r^2) também é utilizado na Regressão!

Interpretando o r²

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r²) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo

Correlação
Associação

Covariância entre duas amostras Pearson

Interpretando o r²

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r²) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariência entre

Covariância entre duas amostras Pearson

Interpretando o r^2

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r^2) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo

Interpretando o r^2

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r²) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo