

But 
$$(x) = \int_{-\infty}^{\infty} x(x) \delta(x-x) dx$$

• Discrete Time unit impulse function:
$$\delta(n) = \int_{-\infty}^{\infty} (x-x) dx$$
• Shifted discrete time unit impulse function:
$$\delta(n-k) = \int_{-\infty}^{\infty} (x-x) dx$$
• Shifted discrete time unit impulse function:
$$\delta(n-k) = \int_{-\infty}^{\infty} (x-x) dx$$
•  $(n) = \int_{-\infty}^{\infty} (x-x) dx$ 
•  $(n) = \int_{$ 



Properties of discrete - Time unit sample sequence.

1. 
$$\delta(n) = u(n) - u(n-1)$$

2.  $\delta(n-k) = \int_{-\infty}^{\infty} 1$ ,  $n=k$ 

0,  $n \neq k$ 

3.  $\alpha(n) = \int_{-\infty}^{\infty} \alpha(k) \delta(n-k)$ 

4.  $\sum_{k=-\infty}^{\infty} \alpha(n) \delta(n-n_0) = \alpha(n_0)$ 

Q. Evaluate the following integrals:

Que know, 
$$\delta(4-5) = \int_{-\infty}^{\infty} 1$$
,  $t=5$ 

we know,  $\delta(4-5) = \int_{-\infty}^{\infty} 1$ ,  $t=5$ 

o, elsewhere

$$\int_{-\infty}^{\infty} e^{-at^2} \delta(4-5) dt$$

$$= \left[e^{-at^2}\right]_{t=5}^{\infty}$$

$$= e^{-25\alpha}$$

(b) Given, 
$$\int_{-\infty}^{\infty} x^2 \cdot \delta(x-6) dt$$

Eaco

We know,  $\delta(x-6) = \int_{-\infty}^{\infty} 1, t=6$ 
 $\delta(x-6) = \int_{-\infty}^{\infty} 0, \text{ elsewhere}$ 
 $\delta(x-6) = \int_{-\infty}^{\infty} 1, t=6$ 
 $\delta(x-6) = \int_{-\infty}^{\infty} 1, t=6$ 
 $\delta(x-6) = \int_{-\infty}^{\infty} 1, t=6$ 
 $\delta(x-6) = \int_{-\infty}^{\infty} 1, t=6$ 

© Given,
$$\delta(4) \sin 5\pi t dt$$
We know that,
$$\delta(4) = \int_{0}^{\infty} (1) t^{\frac{1}{2}} dt$$

$$\vdots \int_{0}^{\infty} \delta(t) \sin 5\pi t dt$$

 $0 = \begin{bmatrix} Sin 5\pi t \end{bmatrix} t = 0$ 

Scanned by CamScanner

(a) Given, 
$$\alpha$$

$$\int (x-2)^3 \delta(x-2) dt$$

$$\int (x-2)^3 \delta(x-2) dt$$

$$\int (x-2) \delta(x-2) dt$$

$$\int (x-2) \delta(x-2) dt$$

$$\int (x-2)^3 dt$$

$$\int (x-2)^3 dt$$