\sim Flash Maths \sim

Terminale S

Équation du second degré

Équation : P(x) = 0 avec $P(x) = ax^2 + bx + c$.

-1								
	$\Delta = b^2 - 4ac$	> 0	= 0					
	Solution(s)	$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, x_2 = \frac{-b + \sqrt{\Delta}}{2a}$	$x_1 = -\frac{b}{2a}$					
	P(x)	$a(x-x_1)(x-x_2)$	$a(x-x_1)^2$					

 $\Delta < 0 \Rightarrow$ pas de solution réelle.

Dérivation

Nombre dérivé en a: $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. Tangente à y = f(x) en A(a, f(a)): y = f(a) + f'(a)(x-a). Linéarité : $(\lambda f(x) + g(x))' = \lambda f'(x) + g'(x)$. Dérivées : a' = 0, x' = 1, (ax + b)' = a, $(x^2)' = 2x$, $(x^n)' = nx^{n-1}$. $(\sin(x))' = \cos(x), (\cos(x))' = -\sin(x), (e^x)' = e^x, (\ln(x))' =$

$$(a^x)' = \ln(a)a^x$$
, $(uv)' = u'v + uv'$, $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$, $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$,

 $(\tan(x))' = 1 + (\tan(x))^2.$

Dérivées de composées : $(f(ax+b))' = af'(ax+b), (u^n)' = u'nu^{n-1},$

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}, (\cos(u))' = -u'\sin(u), (\sin(u))' = u'\cos(u),$$

$$(e^u)' = u'e^u$$
, $(\ln(|u|))' = \frac{u'}{u}$, $(f \circ u)'(x) = u'(x)f'(u(x))$.

Exponentielle

Définition: $(\exp(x))' = \exp(x)$, $\exp(0) = 1$. $D_{\exp} = \mathbb{R}$.

Expression : $\exp(x) = e^x = "2,71828$ puissance x".

$$(e^x)^n = e^{nx}, \frac{e^x}{e^y} = e^{x-y}, \sqrt{e^x} = e^{\frac{x}{2}}, e^x > 1 + x.$$

Propriétés : e^x est strictement croissante, $e^x e^y = e^{x+y}$, $e^{-x} = \frac{1}{e^x}$, $(e^x)^n = e^{nx}$, $\frac{e^x}{e^y} = e^{x-y}$, $\sqrt{e^x} = e^{\frac{x}{2}}$, $e^x > 1 + x$. Limites : $\lim_{x \to -\infty} e^x = 0$, $\lim_{x \to +\infty} e^{-x} = 0$, $\lim_{x \to +\infty} e^x = +\infty$,

$$\lim_{x\to -\infty} e^{-x} = +\infty, \ \lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty, \ \lim_{x\to +\infty} x^n e^{-x} = 0.$$

Définition : $i^2 = -1$, $\forall z \in \mathbb{C}$, \exists deux uniques $(a, b) \in \mathbb{R}^2$ t.q. z = a + ib. Conjugué: $z = a + ib \Rightarrow \overline{z} = a - ib$, $z + \overline{z} = 2a$, $z - \overline{z} = 2bi$, $z\overline{z} = \overline{z}z = a^2 + b^2$, $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}}$, $\overline{z + z'} = \overline{z} + \overline{z'}$, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{z'}$.

Module:
$$|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$$
, $|z| = |\overline{z}| = |-\overline{z}|$, $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a}{a^2 + b^2} + i\left(\frac{-b}{a^2 + b^2}\right), |z + z'| \le |z| + |z'|.$$
 Forme trigonométrique : $z = r(\cos(\theta) + i\sin(\theta)), r = |z|, \theta = \arg(z).$ Forme exponentielle : $z = re^{i\theta}, zz' = rr'e^{i(\theta + \theta')}, \frac{1}{z} = \frac{1}{r}e^{-i\theta}.$

Formules d'addition : $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$, $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y).$

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
Valeurs :	$\sin(x)$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$, \tan = \frac{\sin}{\cos}.$
	$\cos(x)$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	

Continuité

Définition : f continue en $a \Leftrightarrow \forall \epsilon > 0, \exists h > 0$ t.q.

 $\forall x \in]a - h; a + h[\cap D_f, |f(x) - f(a)| \le \epsilon.$

Propriétés : f dérivable en $a \Rightarrow f$ continue en a.

f et g continues en $a \Rightarrow f + g$ et $f \times g$ continues en a.

Théorème des valeurs intermédiaires (tvi): f continue sur I et

 $(a,b) \in I^2 \Rightarrow \forall k \in]f(a); f(b)[, \exists c \in]a; b[\text{ t.q. } f(c) = k.$

Corollaire du tvi (ctvi): f continue et strictement monotone sur I et $(a,b) \in I^2 \Rightarrow \forall k \in]f(a); f(b)[, \exists \text{ un unique } c \in]a; b[\text{ t.q. } f(c) = k.$

Logarithme népérien

Définition : $\ln(x) = y \Leftrightarrow x = e^y$. $D_{\ln} =]0, +\infty[$.

Valeurs particulières : $\ln(1) = 0$, $\ln(e) = 1$. Propriétés : $\ln(e^x) = x$, $e^{\ln(x)} = x$, $\ln(x)$ est strictement croissante sur

$$]0, +\infty[, \ln(xy) = \ln(x) + \ln(y), \ln\left(\frac{1}{x}\right) = -\ln(x),$$

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y), \ \ln(x^n) = n \ln(x), \ \ln(\sqrt{x}) = \frac{1}{2}\ln(x).$$

$$\text{Limites}: \lim_{x \to 0} \ln(x) = -\infty, \ \lim_{x \to +\infty} \ln(x) = +\infty, \ \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0,$$

$$\lim_{x \to 0} x^n \ln(x) = 0, \ \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Dérivée :
$$(\ln(x))' = \frac{1}{r}$$
, $(\ln(|u|))' = \frac{u'}{u}$

Dérivée : $(\ln(x))' = \frac{1}{x}$, $(\ln(|u|))' = \frac{u'}{u}$. Fonctions puissances : $a^x = e^{x \ln(a)}$, $a^x a^y = a^{x+y}$, $(a^x)^y = a^{xy}$, $\frac{a^x}{a^y} = a^{x-y}, (a^x)' = \ln(a)a^x.$

Géométrie

Produit scalaire : $\overrightarrow{OA}.\overrightarrow{OB} = OA \times OB \times \cos(\widehat{AOB})$. $\overrightarrow{u}(a,b,c), \ \overrightarrow{v}(a',b',c'), \ \overrightarrow{u}.\overrightarrow{v} = aa' + bb' + cc'$.

Norme euclidienne : $\|\overrightarrow{u}\| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{a^2 + b^2 + c^2}$.

Propriétés : $\|\overrightarrow{u}\| = 0 \Leftrightarrow \overrightarrow{u} = \overrightarrow{0}, \|-\overrightarrow{u}\| = \|\overrightarrow{u}\|,$

 $\begin{array}{c} \overrightarrow{u}.\overrightarrow{(-v)} = -\overrightarrow{u}.\overrightarrow{v}, \ \|\overrightarrow{u}+\overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 + 2\overrightarrow{u}.\overrightarrow{v}, \\ \|\overrightarrow{u}-\overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\overrightarrow{u}.\overrightarrow{v}, \ \overrightarrow{u}.\overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{u} \perp \overrightarrow{v}. \end{array}$ Droite : La représentation paramétrique d'une droite définie par

$$A(x_A, y_A, z_A) \text{ et } \overrightarrow{u}(a, b, c) \text{ est : } \begin{cases} x = x_A + sa, \\ y = y_A + sb, , s \in \mathbb{R}. \\ z = z_A + sc, \end{cases}$$
 Équation cartésienne d'une droite $(d): ax + by + c = 0.$

Vecteur normal : $\overrightarrow{n}(a,b)$. Vecteur directeur : $\overrightarrow{u}(-b,a)$.

Distance de $A(x_A,y_A)$ à (d): $\frac{|ax_A+by_A+c|}{\sqrt{a^2+b^2}}.$ Plan : La représentation paramétrique d'un plan défini par

$$A(x_A, y_A, z_A), \ \overrightarrow{u}(a, b, c) \ \text{et} \ \overrightarrow{v}(a', b', c') \ \text{est} :$$

$$\begin{cases} x = x_A + sa + ta', \\ y = y_A + sb + tb', \\ z = z_A + sc + tc', \end{cases}$$

 $(s,t) \in \mathbb{R}^2$.

Équation cartésienne d'un plan \mathcal{P} : ax + by + cz + d = 0.

Vecteur normal : $\overrightarrow{n}(a,b,c)$.

Distance de $A(x_A,y_A,z_A)$ à $\mathcal{P}: \frac{|ax_A+by_A+cz_A+d|}{\sqrt{a^2+b^2+c^2}}$. Propriétés : $\mathcal{P}\perp\mathcal{P}'\Leftrightarrow\overrightarrow{n}.\overrightarrow{n'}=0$, $(d)\perp\mathcal{P}'\Leftrightarrow(d)\perp$ toutes les droites

Cercle: centre $A(x_A, y_A)$, rayon $R: (x - x_A)^2 + (y - y_A)^2 = R^2$

Suites

Suites
Suite arithmétique : $u_{n+1} = u_n + r$, $u_n = u_0 + nr$.

Sommes : $\sum_{k=0}^n u_k = \frac{(n+1)(u_0 + u_n)}{2}$, $\sum_{k=1}^n u_k = \frac{n(u_1 + u_n)}{2}$.

Suite géométrique : $u_{n+1} = qu_n$, $u_n = u_0q^n$.

Sommes : $\sum_{k=0}^n u_k = u_0 \frac{1-q^{n+1}}{1-q}$, $\sum_{k=1}^n u_k = u_1 \frac{1-q^n}{1-q}$.

Limite : $\lim_{n \to \infty} q^n = 0 \Leftrightarrow q \in]-1,1[$.

Monotonie : $(u_n)_{n\in\mathbb{N}}$ croissante $\Leftrightarrow \forall n\in\mathbb{N}, u_n\leq u_{n+1}$.

 $(u_n)_{n\in\mathbb{N}}$ décroissante $\Leftrightarrow \forall n\in\mathbb{N}, u_{n+1}\leq u_n$.

Dans les applications, on compare $u_{n+1} - u_n$ à 0 ou $\frac{u_{n+1}}{u_n}$ à 1.

Bornes : $(u_n)_{n\in\mathbb{N}}$ majorée $\Leftrightarrow \exists M \in \mathbb{R} \text{ t.q. } \forall n \in \mathbb{N}, u_n \leq M$.

 $(u_n)_{n\in\mathbb{N}}$ minorée $\Leftrightarrow \exists m\in\mathbb{R} \text{ t.q. } \forall n\in\mathbb{N}, u_n\geq m.$

 $(u_n)_{n\in\mathbb{N}}$ bornée $\Leftrightarrow (u_n)_{n\in\mathbb{N}}$ minorée et majorée.

Suite convergente : $(u_n)_{n\in\mathbb{N}}$ converge $\Leftrightarrow \exists \ell \in \mathbb{R}$ t.q. $\lim_{n \to \infty} u_n = \ell$.

 $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\Leftrightarrow\lim_{n\to\infty}u_n=\ell.$ Critères : $(u_n)_{n\in\mathbb{N}}$ croissante et majorée \Rightarrow $(u_n)_{n\in\mathbb{N}}$ converge. $(u_n)_{n\in\mathbb{N}}$ décroissante et minorée $\Rightarrow (u_n)_{n\in\mathbb{N}}$ converge.

 $(u_n)_{n\in\mathbb{N}}$ convergente $\Rightarrow (u_n)_{n\in\mathbb{N}}$ bornée.

Propriétés : $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ et f est continue sur I avec $\ell\in I$ $\Rightarrow (f(u_n))_{n \in \mathbb{N}}$ converge vers $f(\ell)$.

Théorème des gendarmes : $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers ℓ et $u_n \leq v_n \leq w_n \Rightarrow (v_n)_{n \in \mathbb{N}}$ converge vers ℓ .

Théorème du point fixe : $u_{n+1} = f(u_n)$, f est continue sur I et $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ avec $\ell\in I\Rightarrow \ell$ vérifie $f(\ell)=\ell$.

Suite adjacente : $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes \Leftrightarrow l'une est croissante, l'autre décroissante et $\lim_{n\to\infty} (u_n - v_n) = 0$.

Raisonnement par récurrence : énoncé de la propriété $P(n) \to \text{initial}$ isation $(P(0) \text{ vraie}) \rightarrow \text{hérédité } (P(m) \text{ vraie}) \Rightarrow P(m+1) \text{ vraie})$ \rightarrow conclusion.

Intégration

Définition : $\int_a^b f(x)dx$ est l'aire de la surface délimitée par la courbe de f et les trois droites : $x=a,\,x=b$ et y=0.

Primitive:
$$\int_a^b f(x)dx = [F(x)]_a^b = F(b) - F(a).$$

Valeur moyenne :
$$\mu = \frac{1}{b-a} \int_a^b f(x) dx$$
.

Relation de Chasles :
$$\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx.$$

Linéarité :
$$\int_a^b (\lambda f(x) + g(x)) dx = \lambda \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Hiérarchie :
$$f(x) \leq g(x) \Rightarrow \int_a^b f(x) dx \leq \int_a^b g(x) dx$$
.

Primitives:
$$\int f(x) =$$
 "une primitive de f " = $F(x)$: $\int 0 =$ a, $\int 1 = x$, $\int x = \frac{x^2}{2}$, $\int \cos(x) = \sin(x)$, $\int \sin(x) = -\cos(x)$, $\int \tan(x) = -\ln(|\cos(x)|)$, $\int e^x = e^x$, $\int \ln(x) = x \ln(x) - x$.

Primitives de composées :
$$\int af'(ax+b) = f(ax+b), \int nu'u^{n-1} = u^n,$$

$$\int \frac{u'}{\sqrt{u}} = 2\sqrt{u}, \int \frac{u'}{u} = \ln(|u|), \int u' \sin(u) = \cos(u),$$
$$\int u' \cos(u) = \sin(u), \int u' e^u = e^u, \int u'(x) f'(u(x)) = (f \circ u)(x).$$

Probabilités

Probabilité : Ω ensemble fini, $P:\Omega\to[0;1], P(\Omega)=1$,

 $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B).$

Propriétés : $P(A) \in [0,1], P(\overline{A}) = 1 - P(A), P(\emptyset) = 0,$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Probabilité uniforme : Ω fini et équi probabilité $\Rightarrow P$ probabilité uni-

Probabilité uniforme : Ω mm et equiprobabilité forme : $P(A) = \frac{\text{nombre d'éléments de } A}{\text{nombre d'éléments de } \Omega}$. Probabilité conditionnelle : $P_B(A) = \frac{P(A \cap B)}{P(B)}$.

Formules des probabilités totales : $P(A) = P(A \cap B) + P(A \cap \overline{B})$,

 $P(A) = P_B(A)P(B) + P_{\overline{B}}(A)P(\overline{B}).$

Indépendance : A et B indépendants $\Leftrightarrow P(A \cap B) = P(A)P(B)$.

A et B indépendants $\Leftrightarrow \overline{A}$ et B indépendants $\Leftrightarrow A$ et \overline{B} indépendants $\Leftrightarrow \overline{A}$ et \overline{B} indépendants.

Variables aléatoires discrètes

Variable aléatoire $(va): X: \Omega \to \mathbb{R}$.

Va discrète: $p_i = P(X = x_i), i \in \{1, ..., n\}, \sum_{i=1}^{n} p_i = 1.$

Espérance : $E(X) = \sum_{i=1}^{n} x_i p_i$. C'est la valeur moyenne de X.

Variance : $V(X) = E((X - E(X))^2) = \sum_{i=1}^{n} p_i(x_i - E(X))^2$.

Propriété : $V(X) = E(X^2) - (E(X))^2$, $E(X^2) = \sum_{i=1}^{n} x_i^2 p_i$.

Écart-type : $\sigma(X) = \sqrt{V(X)}$. Il mesure la dispersion des valeurs de X autour de E(X) et de même unité que X.

Loi de Bernoulli $\mathcal{B}(p)$: X vaut 0 ou 1 ; c'est un codage échec/succès. P(X = 0) = 1 - p, P(X = 1) = p, E(X) = p, V(X) = p(1 - p).

Loi binomiale $\mathcal{B}(n,p)$: X= nombre de fois qu'un événement A se réalise en n expériences indépendantes avec $P(A) = p \Rightarrow X$ suit la loi binomiale $\mathcal{B}(n,p)$: $p_k = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, k \in \{0,\dots,n\},$ E(X) = np, V(X) = np(1-p). On a $\mathcal{B}(1,p) = \mathcal{B}(p).$

Variables aléatoires à densité

Densité sur [a;b]: f continue, positive et $\int_a^b f(x)dx = 1$.

Va à densité : X de densité $f \Leftrightarrow P(a \le X \le b) = \int_{-b}^{b} f(x) dx$.

X modélise un caractère qui peut prendre une infinité de valeurs (en comptant les décimales) : poids, taille, durée de vie, temps d'attente...

Loi uniforme $\mathcal{U}([a;b])$: $f(x) = \frac{1}{b-a}$ si $x \in [a;b], 0$ sinon. $[c;d] \subseteq [a;b],$

$$P(c \le X \le d) = \frac{d-c}{b-a}, \ E(X) = \frac{a+b}{2}, \ V(X) = \frac{(b-a)^2}{12}.$$

$$P(X \le b) = 1 - e^{-\lambda b}, E(X) = \frac{1}{\lambda}, V(X) = \frac{1}{\lambda^2}.$$

 $P(c \le X \le d) = \frac{d-c}{b-a}, \ E(X) = \frac{a+b}{2}, \ V(X) = \frac{(b-a)^2}{12}.$ Loi exponentielle $\mathcal{E}(\lambda), \ \lambda > 0: \ f(x) = \lambda e^{-\lambda x} \ \text{si } x \ge 0, \ 0 \ \text{sinon.}$ $b > a \ge 0, \ P(a \le X \le b) = e^{-\lambda a} - e^{-\lambda b}, \ P(X \ge a) = e^{-\lambda a},$ $P(X \le b) = 1 - e^{-\lambda b}, \ E(X) = \frac{1}{\lambda}, \ V(X) = \frac{1}{\lambda^2}.$ Loi normale $\mathcal{N}(0;1): \ f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \ x \in \mathbb{R}, \ E(X) = 0, \ V(X) = 1,$ $P(a \le X \le b) = P(X \le b) - P(X \le a), \ P(X \le a) = 1 - P(X \le a), \ \forall a > 0, \ P(|X| \le a) = P(-a \le X \le a) = 2P(X \le a) - 1,$ $P(-1, 96 \le X \le 1, 96) = 0, 95.$

Loi normale $\mathcal{N}(\mu;\sigma)$: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}, E(X) = \mu,$

 $V(X) = \sigma^2$. X suit la loi $\mathcal{N}(\mu; \sigma) \Rightarrow U = \frac{X - \mu}{\sigma}$ suit la loi $\mathcal{N}(0; 1)$.

Graphes de f: "forme de cloche",

Intervalles de fluctuation et intervalle de confiance

Intervalle de fluctuation (IF): n taille d'un échantillon, p fréquence théorique, f fréquence observée, $n \geq 30, np \geq 5, n(1-p) \geq 5 \Rightarrow$ IF pour f au niveau 95% est :

If point
$$f$$
 at inveate $\frac{35}{n}$ est :
$$IF = \left[p - 1, 96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + 1, 96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right].$$
 Intervalle de confiance $(IC): n$ taille d'un échantillon, p fréquence

théorique, f fréquence observée, $n\geq 30,\, nf\geq 5,\, n(1-f)\geq 5 \Rightarrow$

IC pour p au niveau 95% est : $IC = \left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}} \right]$.

Amplitude de IC : $\frac{2}{\sqrt{n}}$