LLM-powered topic modeling

Agenda

What is topic modeling?

How can it be applied to your research

Traditional topic models

LDA

LLM-powered topic models

- 1.BERTopic
- 2. TopClus (separate presentation)

Topic modeling

Collection of documents

Bulleted topics

RQ: What are the causes of obesity?

3. Lifestyle

Notes about topic modeling

Requires strong domain knowledge

Topic modeling ≠ summary

Examples of topic models in PH / SW

Traditional method – Latent **Dirichlet** allocation (LDA)

FYI

This iterative process is done through **gibbs sampling**

□ a Monte-Carlo Markov-chain (MCMC) method

Problems with LDA

Polysemy

Attention & Long range dependencies

Polysemy

Eg: Documents about things to do in LA

"Let's go to a LA Galaxy soccer game"

"Let's go learn about the Galaxy in the Griffith Observatory"

Polysemy

"Lets go to a LA Galaxy soccer game"

"Lets go learn about the Galaxy in the Griffith Observatory"

Attention & long-range dependency

<u>Low-income communities</u> are more prevalent to obesity due to their lack of investment in unhealthy food environments.

Attention & long-range dependency

Low-income communities are more prevalent to obesity due to their lack of investment in unhealthy food environments.

Solution

Pre-trained Large Language models (eg GPT or BERT)

Problems in using pre-trained LLMs in Topic Modeling

Curse of dimensionality

Lack of good document representation

Lack of good document representation

Lack of good document representation

which needs to be represented by words???

Recap:

- 1. The main training objectives of BERT-based models are:
 - 1. Masked Language Modeling (MLM)
 - 2. Next Sentence Prediction (NSP)

Recap:

- 1. The main training objectives of BERT-based models are:
 - 1. Masked Language Modeling (MLM)
 - 2. Next Sentence Prediction (NSP)

Masked Language Modeling

- original sentence
- Obesity can be caused by a lack of exercise, poor nutritional diets, and excessive drinking.
- Masked Sentence
- [MASK] can be caused by a lack of exercise, poor [MASK] diets, and excessive drinking.

Model is trained to predict the [MASK]

- If that were the case:
 - Assume we have V number of tokens in pre-trained BERT
 - # of tokens in the model |V|
 - The 'optimal' number of topics (T):T=|V|≈30,000

BERTopic

Part I: Grouping documents into topics

Part I: Grouping documents into topics

Collection of documents

Part I: Grouping documents into topics

Collection of documents

Part I: Grouping documents into topics

Collection of documents

Part II: Obtaining word representations for each topic

What is c-tf-idf

Average number of words in this topic / cluster

c-tf-idf: Idea

Words that appear frequently in this topic / cluster
BUT are **RARE** in other clusters

Words that appear frequently in this topic / cluster
AND are also frequent in other clusters

IMPORTANT

not so important

DEMO

Finetuning step

Different methods to fine-tune:

- 1. Maximal Marginal Relevance
- 2. KeyBERT
- 3. Zero-shot classification

All are self-supervised in nature!

$$MMR = arg \max_{D_i \in R \setminus S} [\lambda Sim_1(D_i, Q) - (1 - \lambda) \max_{D_j \in S} Sim_2(D_i, D_j)]$$

$$MMR = arg \max_{D_i \in R \setminus S} [\lambda Sim_1(D_i, Q) - (1 - \lambda) \max_{D_j \in S} Sim_2(D_i, D_j)]$$

$$MMR = arg \max_{D_i \in R \setminus S} [\lambda Sim_1(D_i, Q) - (1 - \lambda) \max_{D_j \in S} Sim_2(D_i, D_j)]$$

$$MMR = arg \max_{D_i \in R \setminus S} [\lambda Sim_1(D_i, Q) - (1 - \lambda) \max_{D_j \in S} Sim_2(D_i, D_j)]$$

Zero-shot classification

Sometimes, by looking at labels, you have an 'idea' of what the potential topics could be

→ You want to generate more representative keywords

Zero-shot classification

Sometimes, by looking at labels, you have an 'idea' of what the potential topics could be

→ You want to generate more representative keywords

Zero-shot classification

Sometimes, by looking at labels, you have an 'idea' of what the potential topics could be

→ You want to generate more representative keywords

Demo

Supervised

What if my data is already labelled with topics?
I just want to CREATE A PREDICTIVE MODEL THAT CAN CLASSIFY
TOPICS from the keywords

Semi-supervised

What if my data is partially labelled?
Some topics have already been identified?
But I don't know the others?

Manual

What if my data is already labelled with topics?
I want a better understanding of each topic
I just want to understand which keywords are associated with the topics.

Dynamic topic models

Sometimes documents could span across different timespans

• Eg different dates, years,

You want to observe the relationship across the timespan

Dynamic topic models

Hierarchical Topic Modeling

Sometimes topics produced may be a subset of a 'bigger topic' in a hierarchical manner

- You want to group these topics into a bigger topic
- Understand the hierarchical relationship

Maybe useful if
you produce
hundreds of topic,
making it difficult
to analyze each of
them individually

Hierarchical Topic Modeling

Create a distance matrix by calculating the cosine similarity between c-TF-IDF representations of each topic.

Apply a linkage function of choice on the distance matrix to model the hierarchical structure of topics.

Update the c-TF-IDF representation based on the collection of documents across the merged topics.

Limitations to BERTopic

- Curse of dimensionality
- ✓ Lack of good document representation
- XUnsuitable of PLMs for clustering