Two diverse models gave us the best results

Predicted number of ridership from different models

^{*} Calculated based on MAE (Mean absolute error) - average of difference between prediction and actual Note: all the performance and impact are calculated based on static (one year) model

55000

Stacking boosts the prediction by reducing MAE by ~150

55000

Predicted number of ridership from different models

Leveraging existing data with external data is key to achieving better prediction performance...

...with the most important features identified from each category

- Average ridership in same day/ week/ month in past years, adjusted for holiday
- Lag values

- Total number of students in school
- Flag for summer holiday

- Highest Temperature
- Extra weather data including humidity, wind, dew point
- Young population (aged 6 18) in Minnesota