import numpy as np import matplotlib.pyplot as plt from scipy import sparse, stats from scipy.linalg import fractional_matrix_power from scipy.sparse import csgraph, issparse from scipy.spatial.distance import pdist, squareform import sklearn from sklearn import datasets from sklearn.datasets import make_circles from sklearn.metrics import confusion_matrix, classification_report
<pre>from sklearn.neighbors import NearestNeighbors from sklearn.semi_supervised import _label_propagation from sklearn.utils.extmath import safe_sparse_dot import pandas as pd import pygon from pygon.data import cora import os import warnings /opt/homebrew/Caskroom/miniforge/base/envs/CS584/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htm from .autonotebook import tqdm as notebook_tqdm</pre>
Assignment 5 Jane Downer A20452471 CS584-02 Problem 1: Label Propagation
<pre>1. In [P_0 = np.matrix([0,0,0,-1,-1,1]).T print(P_0) [[0]</pre>
[-1] [1] 2. in [mult_3 = lambda a,b,c: np.matmul(a,np.matmul(b,c)) def D(S): sums = [] for i in range(len(S)): in range(len(S)):
<pre>sum_ = sum(S[i][j] for j in range(len(S[i])) if i != j) sums.append(sum_) return np.round(np.diag(sums),3) def sim_norm(S): D_</pre>
<pre>S = np.array([[0,1,0,0,1,1],</pre>
<pre>print('S_norm = \n\n'.format(S_norm)) alpha = 0.8 P_1</pre>
S = [[0 1 0 0 1 1] [1 0 1 1 0 0] [0 1 0 1 0 0] [0 1 1 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]] S_norm =
[[0. 0.333 0. 0. 0.577 0.577] [0.333 0. 0.408 0.408 0. 0.] [0. 0.408 0. 0.5 0. 0.] [0. 0.408 0.5 0. 0. 0.] [0.577 0. 0. 0. 0. 0.] [0.577 0. 0. 0. 0. 0.]
P_1 = [[0.
<pre>3. in [P_2 = np.multiply(1-0.8,P_1) + np.multiply(0.8,np.matmul(S_norm,P_1)) [10,11,12] = np.concatenate(P_2[:3]) print('P_2 = \n'.format(np.round(P_2,3))) print('\nl0 = {}, l1 = {}, l2 = {}'.format(l0, l1, l2)) P_2 =</pre>
[[-0.087] [-0.261] [-0.267] [-0.307] [-0.04] [-0.04] [-0.04]] 10 = [[-0.08695296]], 11 = [[-0.26112]], 12 = [[-0.26653696]] Positive values are associated with the positive class (Class 1, label 1) and negative values are associated with the negative class (Class 2, label -1).
<pre>4. In [pwr = lambda x,p: fractional_matrix_power(x,p) I = np.identity(S_norm.shape[0]) I_as_neg1 = pwr(I-alpha*s_norm,-1.0) P_inf = np.round((1-alpha)*np.matmul(I_as_neg1,P_0),3) [10,11,12] = np.concatenate(P_inf[:3])</pre>
<pre>print('P_inf = \n\n'.format(P_inf)) print('10 = {}, 11 = {}, 12 = {}'.format(10, 11, 12)) P_inf = [[-0.097] [-0.209] [-0.209] [-0.352] [-0.245]</pre>
[0.155]] 10 = -0.097, 11 = -0.209, 12 = -0.209 Positive values are associated with the positive class (Class 1, label 1) and negative values are associated with the negative class (Class 2, label -1). 5. In [D_ = D(S) L=DS
<pre>L_uu = L[:3,:3] L_ul = L[:3,:3] Y_1 = P_0[3:] F_u = np.round(mult_3(-pwr(L_uu,-1.0),L_ul,Y_1),3) [[10],[11],[12]] = np.round(F_u,3).tolist()[:3] print('Using normalized similarity matrix:\n\n') print('F_u = \n'.format(F_u)) print('\nl0 = {}, l1 = {}'.format(10, l1, l2))</pre> Using normalized similarity matrix:
$F_u = [[-0.231] \\ [-0.692] \\ [-0.846]]$ $10 = -0.231, \ 11 = -0.692, \ 12 = -0.846$ Positive values are associated with the positive class (Class 1, label 1) and negative values are associated with the negative class (Class 2, label -1).
<pre>2. In [n_samples = 200 X,y = make_circles(n_samples=n_samples,shuffle=False) outer,inner = 0,1 labels = np.full(n_samples,-1) labels[0] = outer labels[-1] = inner</pre>
<pre>plt.rcParams["figure.figsize"] = (5,5) plt.scatter(x=[X[0][0],X[-1][0]],y=[X[0][1],X[-1][1]],color='orange',label='labeled') plt.scatter(x=X[1:-1][:,0],y=X[1:-1][:,1],color='blue',label='unlabeled') plt.title('Original Data') plt.legend(loc='upper right') plt.show()</pre> Original Data Original Data Original Data Indeed unlabeled Original Data Original Dat
0.75 - unlabeled 0.50 - 0.25 - 0.000.250.500.751.00 -
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 In [This block of code references the sklearn.semi-supervisedlabel_propagation source code: https://github.com/scikit-learn/blob/582fa30a3/sklearn/semi_supervised/_label_propagation.py#L332
<pre>def fit(X, y,</pre>
<pre>graph_matrix==[]: graph_matrix = _build_graph1(X,kernel,gamma) classes = np.unique(y) classes = classes[classes != -1] classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1</pre>
<pre>label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes:</pre>
<pre>graph_matrix = graph_matrix.tocsr() for n_iter_ in range(max_iter): if np.abs(label_distributions l_previous).sum() < tol: break l_previous = label_distributions_ label_distributions_ = safe_sparse_dot(graph_matrix, label_distributions_) label_distributions_ = (np.multiply(alpha, label_distributions_) + y_static</pre>
<pre>else: warnings.warn(</pre>
<pre>transduction = classes_[np.argmax(label_distributions_, axis=1)] transduction_ = transduction.ravel() return transduction,label_distributions_ def _get_kernel(X, y=None,nn_fit=None,gamma=20,n_neighbors=7,n_jobs=1): if nn_fit is None: nn_fit = NearestNeighbors(</pre>
<pre>nn_fitfit_X, n_neighbors, mode="connectivity") else: return nn_fit.kneighbors(y, return_distance=False) def _build_graph1(X,kernel,gamma): if kernel == "knn": nn_fit = None n_samples = X.shape[0] affinity_matrix = _get_kernel(X,gamma=gamma) L = csgraph.laplacian(affinity_matrix, normed=True)</pre>
<pre>L = -L if sparse.isspmatrix(L): diag_mask = L.row == L.col L.data[diag_mask] = 0.0 else: L.flat[:: n_samples + 1] = 0.0 # set diag to 0.0 return L def similarity_knn(X,number_neighbors=7): nn = NearestNeighbors(n_neighbors=number_neighbors)#,n_jobs=None)</pre>
<pre>nn.fit(X) S = nn.kneighbors_graph(X, number_neighbors,mode='connectivity') S = nn.kneighbors_graph(X, number_neighbors,mode='connectivity') normal = S.sum(axis=0) S /= normal[:,np.newaxis] return S def laplacian_(S): L = -csgraph.laplacian(S,normed=True) L.flat[:: S.shape[0]+1]=0 return L</pre>
<pre>knn_sim = similarity_knn(X,7) S = knn_sim L = laplacian_(S) labels_fitted_knn,_ = fit(X,</pre>
number_neighbors=13, max_iter=500, graph_matrix=knn_sim) /var/folders/mq/2x_qs6yx2rdcmj160y9p9h700000gn/T/ipykernel_98670/2401231619.py:10: DeprecationWarning: elementwise comparison failed; this will raise an error in the future. if graph_matrix==[]: def split_by_class(X,labels): classes = list(np.unique(labels)) class_points_dict = {c:[] for c in classes}
<pre>for i in range(len(labels)): c = labels[i] class_points_dict[c] = class_points_dict[c] + [[X[i][0],X[i][1]]] points = [np.asarray(L) for L in list(class_points_dict.values())] return points points_0_knn,points_1_knn = split_by_class(X,labels_fitted_knn) plt.scatter(x=points_0_knn[:,0],y=points_0_knn[:,1],label='Cluster 1',color='blue') plt.scatter(x=points_1_knn[:,0],y=points_1_knn[:,1],label='Cluster 2',color='orange')</pre>
plt.title('Fully Labeled Points (KNN kernel)',fontsize=14) plt.legend(loc='upper right') plt.show() Fully Labeled Points (KNN kernel) 100 075 050 025
$\frac{000}{-0.25} - \frac{1}{0.00} - $
We start by learning a label propagation model with only 10 labeled points, then we select the top 5 most confident points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process 4 times to have a model trained with 30 labeled examples. Plea report accuracy and confusion matrix after learning each model. The sample code to load the digit dataset is as follows: #!pip install sklearn from sklearn import datasets from scipy import stats from sklearn.metrics import confusion_matrix, classification_report
<pre>digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) images = digits.images[indices[:330]] X3 = digits.data [indices[:330]] y3 = digits.target[indices[:330]] classes = np.unique(y3)</pre>
<pre>n_total_samples = len(y3) n_labeled_points = 10 all_indices = range(n_total_samples) unlabeled_indices = all_indices[n_labeled_points:] labeled_indices = all_indices[:n_labeled_points] y_train = [-1 if i in unlabeled_indices else y3[i] for i in all_indices] predicted_labels, P_t = fit(X3, y_train, 0.8, kernel='knn')#, gamma=0.25) these_predicted_labels = predicted_labels[unlabeled_indices]</pre>
<pre>for _ in range(5): predicted_labels, P_t = fit(X3, y_train, 0.8, kernel='knn')#, gamma=0.25) these_predicted_labels = predicted_labels[unlabeled_indices] true_labels = np.array(y3)[unlabeled_indices] cm = confusion_matrix(true_labels, these_predicted_labels, labels=classes) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" %</pre>
<pre>(n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print('\n',classification_report(true_labels, these_predicted_labels,zero_division=1),'\n') print('************************************</pre>
y_train = [-1 if i in unlabeled_indices else y3[i] for i in all_indices] n_labeled_points = len(labeled_indices) Label Spreading model: 10 labeled & 320 unlabeled points (330 total) precision recall f1-score support 0 1.00 0.00 0.00 24 1 0.00 0.00 0.00 29 2 0.53 1.00 0.69 31 3 1.00 0.00 0.00 28
4 1.00 0.00 0.00 27 5 0.89 0.69 0.77 35 6 0.81 0.95 0.87 40 7 0.52 1.00 0.69 36 8 0.60 0.88 0.72 33 9 0.71 0.78 0.74 37 accuracy macro avg 0.71 0.53 0.45 320 weighted avg 0.70 0.58 0.50 320

3 1.00 0.00 0.00 28 4 0.58 0.85 0.69 26 5 0.88 0.85 0.87 34 6 1.00 0.93 0.96 40 7 0.85 0.97 0.91 35 8 0.61 0.85 0.71 33 9 0.83 0.78 0.81 37 accuracy macro avg 0.72 0.72 0.66 315 weighted avg 0.73 0.73 0.68 315

2 0.54 0.93 0.68 30 3 1.00 0.00 0.00 28 4 0.77 0.92 0.84 25 5 0.88 0.82 0.85 34 6 1.00 0.93 0.96 40 7 0.92 0.97 0.94 35 8 0.57 0.97 0.72 32 9 0.64 0.80 0.71 35 accuracy macro avg 0.73 0.73 0.73 0.67 310
macro avg 0.73 0.73 0.67 310 weighted avg 0.74 0.75 0.68 310 ***********************************
2 0.57 0.93 0.71 30 3 1.00 0.00 0.00 28 4 0.65 0.96 0.77 23 5 0.88 0.82 0.85 34 6 0.76 0.97 0.85 38 7 0.92 0.94 0.93 35 8 0.66 0.91 0.76 32 9 0.72 0.80 0.76 35
macro avg 0.71 0.73 0.66 306 weighted avg 0.71 0.74 0.67 306 ***********************************
1 0.00 0.00 0.00 29 2 0.72 1.00 0.84 28 3 0.92 0.85 0.88 27 4 0.62 0.95 0.75 22 5 0.88 0.82 0.85 34 6 0.95 0.97 0.96 38 7 0.97 0.86 0.91 35 8 0.67 0.91 0.77 32 9 0.72 0.74 0.73 35
accuracy 0.81 302 macro avg 0.74 0.81 0.77 302 weighted avg 0.75 0.81 0.77 302 ***********************************
<pre>f = plt.figure(figsize=(15, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] if index+1 > 20: break sub = f.add_subplot(2, 10, index+1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks((])</pre>
sub.set_title('predict: %i\ntrue: %i' % (predicted_labels[image_index], y3[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show() Learning with small amount of labeled data predict: 6 predict: 5 predict: 6 predict: 5 predict: 6 predict: 6 predict: 2 predict: 6 predict: 7 true: 6 true: 5 true: 6 true: 5 true: 6 true: 5 true: 6 true: 5 true: 6 true: 7
predict: 4 predict: 5 predict: 5 predict: 5 predict: 5 true: 5
Problem 4 in [env_ = '/opt/homebrew/Caskroom/miniforge/base/envs/CS584' site_packages = '/lib/python3.8/site-packages' os.chdir(env_+site_packages+'/pygcn')
Ipython3 train.pytrain_size=240 Loading cora dataset Test set results: loss= 0.8259 accuracy= 0.7540 Loading cora dataset Test set results: loss= 0.7610 accuracy= 0.8120 Loading cora dataset Test set results: loss= 0.6889 accuracy= 0.8280 Loading cora dataset Test set results: loss= 0.6989 accuracy= 0.8280 Loading cora dataset Test set results: loss= 0.6908 accuracy= 0.8400