Extracting low energy hadron-hadron physics from Lattice QCD

Silas R. Beane (New Hampshire)

Paulo F. Bedaque (Maryland)

Will Detmold (Washington U, Seattle)

Thomas C. Luu (Livermore)

Kostas Orginos (William & Mary, Williamsbrug)

Assumpta Parreño (Barcelona)

Martin J. Savage (Washington U, Seattle)

Aaron Torok (New Hampshire)

Andre Walker-Loud (Maryland)

Resources: JLaB & FermiLaB (DOE, USA), Livermore (USA), Tungsten (Illinois, USA), Mare Nostrum (BSC, Spain).

HADRON-TH07, Barcelona, October 1-4 2007

Up to now we have done work in the meson-meson sector:

$$\pi^+\pi^+$$
 scattering (I=2 $\pi\pi$) π^+K^+ scattering (I=3/2 and 1/2 πK) K^+K^+ scattering (I=1 KK)

and in the baryon-baryon sector:

singlet and triplet NN,
$$\Lambda+N$$
, $\Sigma+N$, YY \longrightarrow hypernuclear physics neutron star interior scattering

Alternative/complementary source of information on those sectors where experiments are difficult/absent

October 1-4 2007

Why a LQCD calculation?

Absence of analytic solutions of QCD in the non-perturbative regime \Rightarrow Approximations:

1. Models:

- o formulate effective degrees of freedom (pions)
- o formulate interactions retaining as much of the basic underlying theory as possible (phenomenological parameters)

2. First principles:

- o keep the basic degrees of freedom (quarks, gluons)
- o approximate the calculations (perturbative expansions, LQCD)

transition matrix element within the path integral formalism in QFT

$$\left\langle \theta_f(x, t_f) \middle| \theta_i(x, t_i) \right\rangle \approx \sum_{\theta_P} \exp(iS(\{\theta_P\}, \{\partial_\mu \theta_P\}))$$

$$= N_0 \lim_{N_x \to \infty} \lim_{N_t \to \infty} \int \prod_{m=1}^{N_x} \prod_{n=1}^{N-1} d\theta(x_m, t_n) \exp(iS[\{\theta(x_m, t_n), \partial_{\mu}\theta(x_m, t_n)\}])$$

Imaginary time
$$\rightarrow t = -i \tau$$

Euclidean action $\rightarrow S^E = -iS$

For real and positive actions $\exp(iS) \rightarrow \exp(-S^E)$

(PROBABILITY!) weighting factor

LQCD

Non-perturbative implementation of ET Uses the Feynman Path Integral approach

Starting point: Partition function in Euclidean space-time

$$Z = \int \mathcal{D}A_{\mu} \mathcal{D}\overline{\Psi} \mathcal{D}\Psi e^{-S} \frac{QCD \text{ action}}{S = d^4x (1/4 F_{\mu\nu} F^{\mu\nu} - \overline{\Psi} M \Psi)}$$

By exact integration (Gaussian) on the fermion fields

$$Z = \int \mathcal{D}A_{\mu} \frac{detM}{detM} \exp[-d^4x (1/4 F_{\mu\nu} F^{\mu\nu})]$$

nonlocal term which contains the fermionic contribution M(A)

-S_{gluon}

LQCD ↔ First principle calculations with à priori less uncertainty

Formulate QCD in an Euclidean lattice

Path-Integral Formalism:

$$-\langle \hat{O} \rangle = \frac{1}{Z} \int DU \, \hat{O} \det M[U] e^{-S[U]}$$

Plaquette

 $\left\langle G[\phi] \right
angle_T = rac{\displaystyle\sum_{\phi} e^{-\overline{kT}} G[\phi]}{\displaystyle\sum_{c} e^{-\overline{E[\phi]} \over kT}}$

~Thermal average over configurations

Monte-Carlo Evaluation

Formulate QCD in an Euclidean lattice

$$L >>$$
 relevant scales $>> b$

$$\left(\frac{1}{L} << m_{\pi} << \Lambda_{\chi} << \frac{1}{b}\right)$$

Cost
$$\approx \left[\frac{\text{\# configs}}{1000}\right] \cdot \left[\frac{m_q}{20 \text{ MeV}}\right]^{-1} \cdot \left[\frac{V}{32 \text{ fm}^4}\right]^{\frac{3}{4}} \cdot \left[\frac{b}{0.08 \text{ fm}}\right]^{-6}$$

(L. Giusti, Lattice'06)

Present

 $L \sim 2.5 \text{ fm}$

b ~ 0.1 fm

 $m_q \sim m_s/2$

Approaching nature

EFT

large L

 $b \rightarrow 0$

 $m_q \rightarrow m_{u,d}^{phys}$

HADRON-TH07, Barcelona, October 1-4 2007

Computational resources and simulation

 Resources: JLaB (USA), FermiLaB (USA), Livermore (USA), Tungsten (Illinois, USA), Mare Nostrum (Barcelona, Spain).

DW fermion propagators (sea) light quark mass (sea) strange quark mass # configurations bm_I^{dwf} bm_s^{dwf} # sources Ensemble bm_l bm_s (468)0.0500.0812064f21b676m007m050 0.0070.0081x 16 (658)x 20 0.0100.01380.0812064f21b676m010m050 0.050(486)x 24 2064f21b679m020m050 0.020 0.0500.03130.081 (564)x 8 2064f21b681m030m050 0.030 0.0500.04780.081("chopped": $64 \rightarrow 32$) $20^3 \times 64$ (valence) strange quark mass (valence) light quark mass

Chroma software

 $m\pi = 295, 357, 495, 595 \text{ MeV}$

R.G. Edwards and B.Joo [SciDAC Collaboration]

MILC gauge configurations

¿What is simulated?

Lattice simulations \rightarrow Evaluation of vacuum correlation functions:

$$\left\langle \Gamma_{1}(t)\Gamma_{2}(0)\right\rangle \equiv \left\langle 0\left|\Gamma_{1}(t)\Gamma_{2}(0)\right|0\right\rangle \qquad \text{at large t}$$

$$\begin{split} \left\langle \Gamma_{1}(t)\Gamma_{2}(0)\right\rangle = &\left\langle 0 \left|\Gamma_{1}(0)\,e^{-\hat{H}t}\,\Gamma_{2}(0)\right|0\right\rangle = \sum_{n}\left\langle 0 \left|\Gamma_{1}(0)\right|E_{n}\right\rangle e^{-E_{n}t}\left\langle E_{n}\left|\Gamma_{2}(0)\right|0\right\rangle \\ \to &\left\langle 0 \left|\Gamma_{1}(0)\right|E_{0}\right\rangle \left\langle E_{0}\right|\Gamma_{2}(0)\left|0\right\rangle e^{-E_{0}t}, \quad \text{as} \quad t\to\infty \end{split}$$

$$\to \left\langle 0 \left|\Gamma_{1}(0)\right|E_{0}\right\rangle \left\langle E_{0}\right|\Gamma_{2}(0)\left|0\right\rangle e^{-E_{0}t}, \quad \text{as} \quad t\to\infty \end{split}$$

from the exponential decay \rightarrow energies

Ensure that the (assimptotic) exponential dominates the correlation function

Ex:

$$C_{\pi^{+}}(t) = \sum_{\vec{x}} \left\langle \pi^{-}(t, \vec{x}) \pi^{+}(0, \vec{0}) \right\rangle, \quad \pi^{+}(t, \vec{x}) = \overline{u}(t, \vec{x}) \gamma_{5} d(t, \vec{x}_{0})$$

Extracting masses and energy shifts

One-baryon correlator:

mass

$$C_A(t) = \sum_{\vec{x}} \left\langle A(t, \vec{x}) A^{\dagger}(0, \vec{0}) \right\rangle = \sum_n C_A^n e^{-E_A^n t} \rightarrow C_A e^{-M_A t}$$

2-baryon correlator:

$$C_{AB}(t) = \sum_{\vec{x}, \vec{y}} \left\langle A(t, \vec{x}) B(t, \vec{x}) B(0, \vec{0}) A(0, \vec{0}) \right\rangle = \sum_{n} C_{AB}^{n} e^{-E_{AB}^{n}t} \longleftrightarrow C_{AB} e^{-E_{AB}t}$$

Energy shift: $\Delta E = E_{AB} - M_A - M_B$

$$\frac{C_{AB}(t)}{C_{A}(t)C_{B}(t)} = \sum_{n} C^{n} e^{-\Delta E^{n} t} \rightarrow Ce^{-\Delta E t}$$

effective ΔE : looking for plateaus

Energy shift:
$$\Delta E = E_{AB} - M_A - M_B$$

$$G_{AB}(t) = \frac{C_{AB}(t)}{C_A(t)C_B(t)} = \sum_n C^n e^{-\Delta E^n t} \rightarrow Ce^{-\Delta E t}$$

 $\Delta E = E_{AB} - M_A - M_B$

Build:
$$\log \frac{G_{AB}(t)}{G_{AB}(t+1)} \rightarrow \log \frac{Ce^{-\Delta E t}}{Ce^{-\Delta E(t+1)}} \rightarrow \Delta E^{eff}$$

HADRON-TH07, Barcelona, October 1-4 2007

Scattering from LQCD?

$$\langle 0 | N_{1}(t,-\vec{k}) N_{2}(t,\vec{k}) N_{1}^{+}(0,-\vec{k}) N_{2}^{+}(0,\vec{k}) | 0 \rangle =$$

$$\sum_{n} e^{-Ht} \langle 0 | N_{1}(0,-\vec{k}) N_{2}(0,\vec{k}) | n \rangle \langle n | N_{1}^{+}(0,-\vec{k}) N_{2}^{+}(0,\vec{k}) | 0 \rangle$$

$$\rightarrow \qquad \qquad e^{-2m_{N}t} \langle 0 | N_{1}(0,-\vec{k}) N_{2}(0,\vec{k}) | (N_{1}N_{2})_{\text{rest}} \rangle \langle (N_{1}N_{2})_{\text{rest}} | N_{1}^{+}(0,-\vec{k}) N_{2}^{+}(0,\vec{k}) | 0 \rangle$$

$$(t \to \infty)$$

Forbidden except for kinematical thresholds!!

The Maiani-Testa theorem states that infinite-volume Euclidean space Green functions cannot be used to extract S-matrix elements except at kinematic thresholds.

Lüscher method

$$L >> |a|, \qquad E_0 = \frac{4\pi a}{ML^3} \left[1 - c_1 \frac{a}{L} + c_2 \left(\frac{a}{L} \right)^2 + \dots \right] + O(L^{-6})$$

Pionless theory of NN interactions

2B elastic scattering amplitude in the continuum of a $EFT(\pi)$ of nrel baryons:

$$\mathcal{A} = \frac{\sum C_{2n} p^{2n}}{1 - I_0 \sum C_{2n} p^{2n}} , \quad I_0 = \left(\frac{\mu}{2}\right)^{4-D} \int \frac{d^{D-1}\mathbf{q}}{(2\pi)^{D-1}} \frac{1}{E - \frac{|\mathbf{q}|^2}{M} + i\epsilon}$$
 linearly divergent

PDS scheme to
$$I_0$$
 \Rightarrow $I_0^{(PDS)} = -\frac{M}{4\pi} \; (\frac{\mu + ip}{\mu + ip}) \; + \; \mathcal{O}(D-4)$
$$p = \sqrt{ME} \; \Rightarrow \; \mathcal{A} = \frac{4\pi}{M} \, \frac{1}{p \cot \delta - ip}$$

$$p < \sqrt{m_{\pi}M}$$

Pionless theory of NN interactions in a box

We are interested in the energy eigenvalues of 2N placed in a box of size L with PBC

$$p \cot \delta(p) = -\frac{1}{\pi L} S\left(\frac{p^2 L^2}{4\pi^2}\right) = -\frac{1}{\pi L} \left[\sum_{\vec{j}=1}^{|\vec{j}| < \Lambda} \frac{1}{|\vec{j}|^2 - \left(\frac{p^2 L^2}{4\pi^2}\right)^2} - 4\pi \Lambda \right]$$

(valid for scattering and bound states)

Beane, Bedaque, Parreño, Savage, Phys. Lett. B 585,1-2, 106-114 (2004)

Procedure

taken from our fits to lattice CF's

$$\Delta E = \sqrt{p^2 + M_A^2} + \sqrt{p^2 + M_B^2} - M_A - M_B$$

Eigenvalue Equation (below inelastic thresholds)

$$p \cot \delta(p) = -\frac{1}{\pi L} S \left(\frac{p^2 L^2}{4 \pi^2} \right) = -\frac{1}{a} + \frac{1}{2} r_0 p^2$$

$$S(\eta) \equiv \sum_{\vec{j}}^{|\vec{j}| < \Lambda} \frac{1}{|\vec{j}|^2 - \eta^2} - 4\pi \Lambda$$

u.v. regulator

signal-to-noise ratio ~ $\sqrt{N_{conf}} \; e^{-(M_N + M_\Lambda - 3m_\pi)t}$

Channel	$m_{\pi} \; ({\rm MeV})$	Range	$\Delta E \text{ (MeV)}$	$ \mathbf{k} \text{ (MeV)}$	δ (degrees)	$-(k \cot \delta)^{-1}$ (fm)
$n\Lambda$	$592 \pm 1 \pm 10$	8-12	$-9 \pm 8 \pm 20$	_	_	
$^1\!S_0$	$493\pm1\pm8$	6-9	$29.8 \pm 5.4 \pm 2.5$	$197 \pm 24 \pm 4$	$-32.3 \pm 8.1 \pm 2.8$	$0.63 \pm 0.12 \pm 0.014$
	$354\pm1\pm6$	5-9	$56.8 \pm 6.0 \pm 5.5$	$255\pm22\pm13$	$-53.4 \pm 8.5 \pm 10.1$	$1.04 \pm 0.24 \pm 0.15$
$n\Lambda$	$592 \pm 1 \pm 10$	8-13	$-13 \pm 13 \pm 8$	_	_	
3S_1	$493\pm1\pm8$	7-11	$-4 \pm 13 \pm 14$	_	_	
	$354\pm1\pm6$	5-10	$23\pm17\pm4$	$168 \pm 62 \pm 14$	$-23\pm18\pm4$	$0.50 \pm 0.26 \pm 0.06$
$n\Sigma^-$	$592 \pm 1 \pm 10$	9-13	$-17\pm11\pm27$	_	_	
$^1\!S_0$	$493\pm1\pm8$	5-9	$24.9 \pm 7.8 \pm 3.0$	$179 \pm 28 \pm 11$	$-27.2 \pm 9.0 \pm 3.8$	$0.57 \pm 0.13 \pm 0.05$
$n\Sigma^-$	$592 \pm 1 \pm 10$	6-10	$38.5 \pm 8.8 \pm 5.0$	$226\pm26\pm15$	$-44.3 \pm 9.8 \pm 5.4$	$0.85 \pm 0.20 \pm 0.10$
${}^{3}\!S_{1}$	$493 \pm 1 \pm 8$	6-10	$53 \pm 14 \pm 5$	$261 \pm 35 \pm 13$	$-58 \pm 15 \pm 5$	$1.19 \pm 0.51 \pm 0.15$

statistical

systematic

HADRON-TH07, Barcelona, October 1-4 2007

Infinite volume vs finite volume

Infinite volume

Binding energy:

 $\Delta E = M-2m < 0 \neq 0$

Scattering states:

 $\Delta E > 0$ (lowest=threshold)

Finite volume

Binding energy:

 $\Delta E = M-2m < 0 \neq 0$

Scattering states:

 $\Delta E = E_0 - 2m = O(1/L^3)$

 ΔE < 0 for attractive interaction ΔE > 0 for repulsive interaction

π^+ π^+ scattering

$$(m_\pi a_{\pi^+\pi^+})^{EFF}$$

combined with χPT

$$m_{\pi}a_{\pi\pi}^{I=2} = -0.04330 \pm 0.00042$$

NPLQCD, e-Print: arXiv:0706.3026 [hep-lat] (S. Beane, MENU07)

HADRON-TH07, Barcelona, October 1-4 2007

Summary

- Increasing (super)computing capabilities \rightarrow extensive use of dynamic simulations of the interactions between quarks and gluons \rightarrow interactions between two hadrons.
- In particular, we have performed the first dynamical LQCD simulation of the strong low energy YN interaction.
- Our results in the baryon-baryon sector are limited by the present statistics.
- This work is in progress. We are completing the analysis for the YN and YY channels,
 - accumulating more statistics with same L and b
 - increase the signal/noise ratio
 - future: reduce the systematic sources of error:
 - · smaller lattice spacings (continuum extrapolations)
 - · larger volumes