Recurrent Neural Networks

Vladislav Goncharenko

Senior researcher

ITMO, spring 2024

Questions

- 1. Формула для весов линейной регрессии с L2 регуляризацией
- 2. Назовите 3-5 функций активации
- 3. Перечислить основные критерии, по которым различаются функции активации
- 4. Сколько параметров содержит линейный слой переводящий 10 признаков в 3?
- 5. Как изменяется поведение batch norm в случае предсказания?
- 6. Напишите формулу для вычисления momentum (инерции) в градиентом спуске?

Outline

- 1. Vanilla RNN
- 2. Gradient related problems
 - a. Exploding
 - b. Vanishing
- 3. LSTM
 - a. GRU
- 4. Multilayer RNNs
 - a. bidirectional

RNNs generating...

Shakespeare

Algebraic Geometry (Latex)

Linux kernel (source code)

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves F on X_{disfe} we have

$$O_X(F) = \{morph_1 \times_{O_X} (G, F)\}$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \rightarrow Y' \rightarrow Y \rightarrow Y \rightarrow Y' \times_X Y \rightarrow X$$
.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

```
* If this error is set, we will need anything right after that BSD.
static void action new function(struct s stat info *wb)
 unsigned long flags:
 int lel idx bit = e->edd, *sys & -((unsigned long) *FIRST COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bvtes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
   "original MLL instead\n"),
   min(min(multi run - s->len, max) * num data in),
   frame pos, sz + first seg);
 div u64 w(val, inb p);
 spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex);
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```


Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

.

Proof. This is an algebraic space with the composition of sheaves F on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

This since $\mathcal{F} \in \mathcal{F}$ and $x \in \mathcal{G}$ the diagram

is a limit. Then $\mathcal G$ is a finite type and assume S is a flat and $\mathcal F$ and $\mathcal G$ is a finite type f_* . This is of finite type diagrams, and

- the composition of G is a regular sequence,
- O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and $\mathcal F$ is a finite type representable by algebraic space. The property $\mathcal F$ is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas ??. A reduced above we conclude that U is an open covering of C. The functor F is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}} -1(\mathcal{O}_{X_{\text{étale}}}) \longrightarrow \mathcal{O}_{X_{\epsilon}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{n}}^{\overline{v}})$$

is an isomorphism of covering of \mathcal{O}_{X_i} . If \mathcal{F} is the unique element of \mathcal{F} such that X is an isomorphism.

The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_{X} -algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG_PG vesa slot addr pack
#define PFM NOCOMP AFSR(0, load)
#define STACK DDR(type) (func)
#define SWAP ALLOCATE(nr)
                             (e)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd %%esp, %0, %3" :: "r" (0)); \
 if ( type & DO READ)
static void stat PC SEC read mostly offsetof(struct seg argsqueue, \
         pC>[1]);
static void
os prefix(unsigned long sys)
#ifdef CONFIG PREEMPT
 PUT PARAM RAID(2, sel) = get state state();
  set pid sum((unsigned long)state, current state str(),
          (unsigned long)-1->lr full; low;
```


Vanilla RNN

girafe ai

Sequential data

The state of the s

- Time series
 - o 1-d signals
 - Sounds
- Videos
- Texts

We use same weight matrices for all steps

RNN as encoder for sequential data

RNNs can be used to encode an input sequence in a fixed size vector.

This vector can be treated as a representation of input sequence.

RNN formulas

$$h_0 = \bar{0}$$

$$h_1 = \sigma(\langle W_{\text{hid}}[h_0, x_0] \rangle + b)$$

$$m_1 = o(\langle vv_{\text{hid}}[m_0, x_0] \rangle + o)$$

$$b = -\sigma(/W_{\text{tot}}[b, \sigma_{\text{tot}}] + b)$$

$$h_{i+1} = \sigma(\langle W_{\text{hid}}[h_i, x_i] \rangle + b)$$

$$P(x_{i+1}) = \operatorname{softmax}(\langle W_{\text{out}}, h_i \rangle + b_{\text{out}})$$

 $h_2 = \sigma(\langle W_{\text{hid}}[h_1, x_1] \rangle + b) = \sigma(\langle W_{\text{hid}}[\sigma(\langle W_{\text{hid}}[h_0, x_0] \rangle + b, x_1] \rangle + b))$

Activation functions

- ReLU not okay because of matrix powers
- sigmod/tangent ok because they are normed

How to train it?

Vanilla RNN

Problems with gradient

girafe

Exploding gradient problem

If the gradient becomes too big, then the SGD update step becomes too big:

$$heta^{new} = heta^{old} - \alpha \nabla_{\theta} J(\theta)$$
 gradient

This can cause bad updates: we take too large a step and reach a bad parameter configuration (with large loss).

In the worst case, this will result in Inf or NaN in your network (then you have to restart training from an earlier checkpoint).

Exploding gradient solution

 Gradient clipping: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
 $\mathbf{if} \ \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then}$
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$
end \mathbf{if}

Intuition: take a step in the same direction, but a smaller step

Exploding gradient solution

Without clipping

With clipping

J(w,b)

chain rule!

chain rule!

chain rule!

Vanishing gradient problem:

When the derivatives are small, the gradient signal gets smaller and smaller as it backpropagates further

More info: "On the difficulty of training recurrent neural networks", Pascanu et al, 2013 http://proceedings.mlr.press/v28/pascanul3.pdf

Vanishing gradient solution

Gradient Scaling

To prevent underflow, "gradient scaling" multiplies the network's loss(es) by a scale factor and invokes a backward pass on the scaled loss(es). Gradients flowing backward through the network are then scaled by the same factor. In other words, gradient values have a larger magnitude, so they don't flush to zero.

see https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution(but not actually for that problem): dense connections (just like in DenseNet)

Conclusion:

Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]. Gradients magnitude drops exponentially with connection length.

Vanishing gradient in non-RNN

Vanishing gradient is present in **all** deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- **Potential solution:** direct (or skip-) connections (just like in ResNet)

Figure 2. Residual learning: a building block.

Source: "Deep Residual Learning for Image Recognition", He et al, 2015.

32

Vanishing gradient in non-RNN

Vanishing gradient is present in **all** deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- **Potential solution:** dense connections (just like in DenseNet)

Source: "Densely Connected Convolutional Networks", Huang et al, 2017

Another view on ResNets and vanishing gradient

"Residual Networks Behave Like Ensembles of Relatively Shallow Networks"

(a) Conventional 3-block residual network

34

Long short-term memory

girafe ai

Problems with vanilla RNN

We use same weight matrices for all steps

Long short-term memory cell

Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Long term memory cell mechanics

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Overall structure

LSTM with formulas

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

<u>Hidden state</u>: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$oldsymbol{i}^{(t)} = \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight)$$

$$oldsymbol{o}^{(t)} = \sigma \Big[oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o \Big]$$

$$oldsymbol{ ilde{c}} ilde{oldsymbol{c}}^{(t)} = anh\left(oldsymbol{W}_coldsymbol{h}^{(t-1)} + oldsymbol{U}_coldsymbol{x}^{(t)} + oldsymbol{b}_c
ight)$$

$$oldsymbol{c}^{(t)} = oldsymbol{f}^{(t)} \circ oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)}$$

$$m{h}^{(t)} = m{o}^{(t)} \circ anh m{c}^{(t)}$$

Gates are applied using element-wise product

All these are vectors of same length *n*

Gated recurrent unit (GRU)

LSTM at minimum wages

Gated recurrent unit (GRU)

GRU with formulas

<u>Update gate:</u> controls what parts of hidden state are updated vs preserved

Reset gate: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate simultaneously controls what is kept from previous hidden state, and what is updated to new hidden state content

$$oxed{u^{(t)}} = \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight)$$
 $oxed{r^{(t)}} = \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight)$

$$oldsymbol{ ilde{h}}^{(t)} = anh\left(oldsymbol{W}_h(oldsymbol{r}^{(t)} \circ oldsymbol{h}^{(t-1)}) + oldsymbol{U}_h oldsymbol{x}^{(t)} + oldsymbol{b}_h
ight) \ oldsymbol{h}^{(t)} = (1 - oldsymbol{u}^{(t)}) \circ oldsymbol{h}^{(t-1)} + oldsymbol{u}^{(t)} \circ oldsymbol{ ilde{h}}^{(t)}$$

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info long-term (e.g. by setting update gate to 0)

LSTM vs GRU

LSTM and GRU are both great

- o GRU is quicker to compute and has fewer parameters than LSTM
- There is no conclusive evidence that one consistently performs better than the other
- LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)

Rule of thumb:

start with LSTM, but switch to GRU if you want something more efficient

Шмидхубер, Юрген

Шмидхубер приходит на экзамен по машинному обучению, а преподаватель спрашивает его:

— Юрген, назови мне хоть один метод в области глубокого машинного обучения, первооткрывателем которого был не ты

Шмидхубер задумался и говорит:

— Вот валит, гад!

https://t.me/rlabrats/5012

Multilayer RNN

girafe

Simple multilayer RNN

Outputs of RNN go to another RNN

RNN pooling

Bidirectional RNN

More complex schemes

Softmax

This includes average pooling, start+end pooling, etc

Revise

- 1. Vanilla RNN
- 2. Gradient related problems
 - a. Exploding
 - b. Vanishing
- 3. LSTM
 - a. GRU
- 4. Multilayer RNNs
 - a. bidirectional

Thanks for attention!

Questions?

