		×××××××××××××××××××××××××××××××××××××××	
	-Δχ		
F	Figure 8-5 – Representation of a Relatively Small Transn	nission Line Segment	
Given that Z and Y are the system impedance and admittance per unit length respectively, V is the conductor voltage and I is the	e conductor current, then the system in Figure 8-5 is de	escribed mathematically by the telegrapher's equations (as the limi	t Dxg 0):
	$\frac{d'\mathbf{V}}{dt} = -\mathbf{Z} \cdot \mathbf{I}$	(8-2)	
	dx - · · · · · · · · · · · · · · · · · ·	(0, 0)	
	$\frac{d\mathbf{r}}{d\mathbf{x}} = -\mathbf{Y} \cdot \mathbf{V}$	(8-3)	
In multi-conductor systems, \boldsymbol{Z} and \boldsymbol{Y} are square matrices, and \boldsymbol{V} and \boldsymbol{I} are vectors, both with dimension equal to the total equival	lent number of conductors.		
The derivation of Z and Y differs depending on the system. Specifically whether the system is underground or in air, or whether	the conductors are bare (i.e. overhead lines) or bundle	ed in cables.	
Underground Cables			
Solving the \mathbf{Y} and \mathbf{Z} matrices for cable systems is a bit more involved than that of aerial transmission lines. In most practical systems	tems, cables will possess multiple conducting layers, an	nd most often run underground.	
The LCP includes algorithms to solve single-core (SC) coaxial type cable systems: SC cables will consist of a centre conductor, and The centre conductor can be either a hollow pipe possessing a finite thickness, or a solid, cylindrical conductor (by entering an i			
A cross-section of an SC cable consisting of core and sheath conductors is illustrated in Figure 8-6.			
			
Insulation ($arepsilon_{ u}\mu_{ u}$	(2) — ///////////////////////////////////		
Insulation ($arepsilon_{\!\!\!2}\mu_{\!\!\!2}$	\	r_A	
		r_2 r_3 r_4	
		$r_o \mid r_i \mid $	
Core $(ho_{b}\mu_{b}$	1)	Conducting Layer	
Sheath ($ ho_{\!\scriptscriptstyle D} \mu_{\!\scriptscriptstyle B}$		Insulating Layer	
	Figure 8-6: Cross-Section of a 2-Conducting La	yer SC Cable	
Where,			
μ = Relative permeability			
arepsilon= Relative permittivity $arrho=$ Resistivity [Wm]			
r = Radius of each layer [m]			
Series Impedance Z			
Apart from the centre conductor, each concentric conducting layer is represented by a combination of inner and outer surface in the series impedance, the SC cable shown in Figure 8-6 can be represented by the following equivalent circuit:	mpedances, as well as mutual impedance between it a	nd the adjacent conductors. Each insulating layer is characterized!	by a single impedance with no mutual components. As such, and with respect t
	Core ←		
	z_4 $\geq z_i + z_i$	$Z_2 + Z_3 - Z_4$	
	Sheath o—		
	\$ _{z.+}	- Z ₆ - Z ₄	
	≥ ^{25 +}	20 Z4	
	Earth		
	Figure 8-7: Cross-Section of a 2-Layer Coax	cial Cable	
NOTE : This method of circuit equivalency can be extended to consider any number of coaxial layers. The Line Constants Pro	ogram extends this method to a maximum of 4 conduct	ting layers plus 4 insulating layers	
This equivalent circuit can be derived by considering the effects of two circulating currents: The first flowing down the core cond			a [7]
	iductor and returning back through the sheath, and the	second down the sheath and back through the surrounding media	* [/]·
The series impedance \mathbf{Z} of n , single-core cables is given as follows:			
	$Z = Z_i + Z_0$	(8-4)	
Where,			
$Z_i = The SC cable internal impedance matrix Z_0 = The return media (earth) impedance matrix$			
-v	a layere in a sale was a state of the sale	weither in mature formant it would were to the	
The elements of Z_i and Z_0 are themselves sub-matrices of dimension $m \times m$, where m corresponds to the number of conducting	з layers in each respective cable <i>n</i> . If Equation 9-4 is rev	written in matrix format, it would appear as follows:	
	[Z: 0 0 0] [Z: Z: Z	7 。 7	

 $V + \triangle V$

Deriving System Y and Z Matrices

The analysis of both overhead lines and underground cables begins with two well-known equations, sometimes referred to as the 'fundamental' or 'telegrapher's equations' [5], [7] and [24].

Consider a short transmission segment, whose length is small when compared to the wavelength, and the ground is the voltage reference. The system will possess a series-impedance and shunt-admittance, which is illustrated graphically as shown in Figure 8-5:

Underground Cables

Overhead (Aerial) Conductors

Outer Insulator Impedance:

Shunt Admittance Y

Modified Bessel function of the first kind

Modified Bessel function of the second kind

 $\sqrt{j\omega \cdot \frac{\mu_0 \mu_r}{\rho}}$ Inverse complex depth of penetration

The SC cable internal potential coefficient matrix

Internal potential coefficient sub-matrix of each cable

Core Potential Coefficient

Sheath Potential Coefficient

The SC cable representation in Figure 8-6 (i.e. m = 2) corresponds to an internal impedance sub-matrix given as follows:

Note that in underground systems, the surrounding earth acts as an electrostatic shield resulting in null off-diagonal elements in Y [7].

Deriving the shunt admittance matrix Y for a system of SC cables is relatively simple compared to complexities of the series impedance. Y is based on the potential coefficient matrix P:

The elements of P; are themselves sub-matrices of dimension m x m, where m corresponds to the number of conducting layers in each respective cable n. If Equation 8-15 is rewritten in matrix format, it would appear as follows:

The inclusion of semi-conducting layers to the coaxial cable model is based on reference [29]. The semiconductor layers can be easily added by modifying the properties of the main insulation layer (ex. by changing the permittivity of the insulation).

Where,

Where,

Where,

 $p_{ej} = \frac{1}{2\pi \cdot \varepsilon_{ij} \cdot \varepsilon_{0}} \cdot ln \left(\frac{r_{3j}}{r_{2j}}\right)$ $p_{sj} = \frac{1}{2\pi \cdot \varepsilon_{2j} \cdot \varepsilon_{0}} \cdot ln \left(\frac{r_{5j}}{r_{4j}}\right)$

Semiconducting Layers

Where,

<u>Assumptions</u>

Where,

Where,

Where,

Where,

Where,

Shunt Admittance Y

Frequency [rad/s]

Permittivity of free space

with Earth Return [m].

Series Impedance Z

See reference [30].

Outer radius of the inner conductor

Thickness of inner semiconducting screen

Thickness of outer semiconducting screen

 $R_4 = R_2 + D_2$. Outer radius of inner conductor + thickness of inner

 $A = R_1 + D_1$. Outer radius of inner conductor + thickness of inner

semiconducting screen + thickness of insulator layer + thickness of outer

much higher than that of insulator. In the admittance equivalent circuit of the cable, two capacitors are in series. The total capacitance is

must be less than the R_2 - R_1 and thickness of the second semiconducting layer must be less than the R_3 - R_2 , where R_3 is the outer radius of the sheath.

NOTE: For more information on the derivation of earth return impedance, see the section entitled Mutual Impedance with Earth Return in this chapter

NOTE: See the section entitled Underground Cables in this chapter for a detailed explanation why approximations are chosen over the Bessel method.

insulation. The Line Constants Program provides the option to model an overhead conductor as both solid or hollow (i.e. as a conducting annulus).

 $B = R_2$. Outer radius of inner conductor + thickness of inner semiconducting

Outer radius of the insulator

semiconducting screen

semiconducting screen.

Since $C_{ins} \ll C_{semi}$, then $C_{total} \approx C_{ins}$.

Relative permeability

The series impedance **Z** of *n*, overhead lines is given as follows:

The internal impedance matrix

The earth return impedance matrix

If Equation 8-21 is rewritten in matrix format, it would appear as follows:

Internal impedance of each respective conductor

Internal Impedance of an Overhead Conductor (Solid Cylinder):

Internal Impedance of an Overhead Conductor (Hollow Core):

Modified Bessel function of the first kind

Modified Bessel function of the second kind

Inverse complex depth of penetration

Distances as described in the next section entitled Mutual Impedance

Earth return impedance between conductors j and k

be homogeneous – that is, composite conductors, such as ACSR must be approximated as homogeneous.

Resistivity [Wm]

Radius [m]

Overhead (Aerial) Conductors

screen + thickness of insulator layer

The shunt admittance matrix **Y** is then:

Home > EMTDC > Transmission Lines and Cables > Deriving System Y and Z Matrices

 $Z = \begin{bmatrix} Z_{i_1} & 0 & 0 & 0 \\ 0 & Z_{i_2} & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & Z_{i_n} \end{bmatrix} + \begin{bmatrix} Z_{0_{i1}} & Z_{0_{i2}} & \cdots & Z_{0_{in}} \\ Z_{0_{i2}} & Z_{0_{22}} & \cdots & Z_{0_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{0_{in}} & Z_{0_{2n}} & \cdots & Z_{0_{nn}} \end{bmatrix}$ Internal impedance sub-matrix of each respective SC cable Earth return impedance sub-matrix $Z_{i_j} = \begin{bmatrix} Z_{cc_j} & Z_{cs_j} \\ Z_{cs_j} & Z_{ss_j} \end{bmatrix}$ (8-6) $Z_{ccj} = Z_1 + Z_2 + Z_3 + Z_5 + Z_6 - 2 \cdot Z_4$ Core Self Impedance Mutual Impedance between Core and Sheath Sheath Self Impedance $Z_{O_{jk}} = \begin{bmatrix} z_{O_{jk}} & z_{O_{jk}} \\ z_{O_{jk}} & z_{O_{jk}} \end{bmatrix}$ (8-7) Earth return mutual impedance between cables j and k. **NOTE**: For more information on the derivation of earth return impedance, see the section entitled Mutual Impedance with Earth Return in this chapter.

Where, The SC cable representation in Figure 8-7 (i.e. m = 2) corresponds to an internal impedance sub-matrix given as follows: Where, $Z_{cs_j} = Z_5 + Z_6 - Z_4$ $Z_{ss_j} = Z_5 + Z_6$ The earth return impedance sub-matrix in the case of Figure 8-7 is given as: Where, There is more than one method by which to calculate the individual internal impedances of an SC cable: One popular method is to solve them directly by using the well-known Bessel function based equations [3]. The LCP instead solves these quantities by way of equivalent analytical approximations as described in [7], which are generally much better suited for digital computation. In an ideal sense, the Bessel function approach is of course more accurate, as these equations directly describe the theoretical characteristics of the conductor impedances. However when solved numerically in a digital program, the Bessel functions themselves can quickly become mired in precision overflow/underflow problems $(I_n(x))$ tends to infinity and $K_n(x)$ tends to zero), and additional steps must be taken avoid these situations. Also, algorithms available to solve these functions are themselves a combination of approximate formulae [14]. The Wedepohl/Wilcox approximations outlined in [7] are exact at very low and very high frequency. The error between these and the Bessel based equations for impedance of a solid cylinder, peaks at about 0.5% at mid-frequencies. The approximation error for the annulus impedances is even smaller, and approaches the exact functions with increasing accuracy as the thickness of the annulus becomes small compared with the radius of the annulus. The advantage to using these formulae over the Bessel function based impedances is mainly stability and speed of solution. The error introduced by the approximation equations is negligible in the time domain. The equations for the individual impedances z_1 to z_6 in Figure 8-7 are given as follows. Both the Bessel function and equivalent approximate formula are presented for comparison:

(8-8) $Z_i = \frac{m\rho_i}{2\pi \cdot r_i} \cdot \coth(0.733 \cdot mr_i) + \frac{0.3179 \cdot \rho_i}{\pi \cdot r_i^2}$ Bessel: $z_{j} = j\omega \cdot \frac{m\rho_{j}}{2\pi \cdot r_{j}} \cdot \frac{I_{0}(mr_{j})}{I_{1}(mr_{j})}$

Approximate: $z_i = \frac{m\rho_i}{2\pi \cdot r_i} \cdot \coth[m(r_i - r_0)] + \frac{\rho_i}{2\pi \cdot r_i \cdot (r_0 + r_i)}$ (8-9)

Internal Impedance of Core Outer Surface (Solid Cylinder): Internal Impedance of Core Outer Surface (Annulus): Bessel: $Z_{J} = j \omega \cdot \frac{\mu_{0} \mu_{J}}{2\pi} \cdot \frac{1}{mr_{J}} \cdot \frac{I_{0}(mr_{J}) \cdot K_{J}(mr_{0}) + K_{0}(mr_{J}) \cdot I_{J}(mr_{0})}{I_{J}(mr_{J}) \cdot K_{J}(mr_{0}) - K_{J}(mr_{J}) \cdot I_{J}(mr_{0})}$ Core Outer Insulator Impedance: (8-10) $Z_2 = \int \omega \cdot \frac{\mu_0 \mu_2}{2\pi} \cdot \ln \left(\frac{r_2}{r_3} \right)$ **Internal Impedance of Sheath Inner Surface:** Approximate: $z_3 = \frac{m\rho_2}{2\pi \cdot r_2} \cdot \coth[m(r_3 - r_2)] + \frac{\rho_2}{2\pi \cdot r_2 \cdot (r_3 + r_2)}$ (8-11)Sheath Mutual Impedance: Approximate: $z_4 = \frac{m\rho_2}{\pi \cdot (r_3 + r_2)} \cdot \csc h[m(r_3 - r_2)]$ (8-12)Bessel: $Z_4 = \frac{\rho_2}{2\pi \cdot r_2 r_3} \cdot \frac{1}{I_i(mr_3) \cdot K_i(mr_2) - K_i(mr_3) \cdot I_i(mr_2)}$ Internal Impedance of Sheath Outer Surface:

(8-13)

(8-14)

(8-15)

(8-17)

(8-18)

(8-19)

(8-20)

(8-21)

(8-23)

(8-24)

(8-25)

Approximate: $z_S = \frac{m\rho_2}{2\pi \cdot r_3} \cdot \coth[m(r_3 - r_2)] + \frac{\rho_2}{2\pi \cdot r_3 \cdot (r_3 + r_2)}$

Bessel: $Z_S = \int \omega \cdot \frac{\mu_0 \mu_3}{2\pi} \cdot \frac{1}{mr_3} \cdot \frac{I_0(mr_3) \cdot K_i(mr_2) + K_0(mr_3) \cdot I_i(mr_2)}{I_i(mr_3) \cdot K_i(mr_2) - K_i(mr_3) \cdot I_i(mr_2)}$

 $Z_6 = j\omega \cdot \frac{\mu_0 \mu_4}{2\pi} \cdot ln \left(\frac{r_4}{r_3}\right)$

 $P = P_i$

 $\mathbf{P} = \begin{bmatrix} \mathbf{P}_{i_1} & 0 & 0 & 0 \\ 0 & \mathbf{P}_{i_2} & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{P}_{i_n} \end{bmatrix}$

 $P_{i_j} = \begin{bmatrix} \rho_{c_j} + \rho_{s_j} & \rho_{s_j} \\ \rho_{s_j} & \rho_{s_j} \end{bmatrix}$

 $Y = \int \omega \cdot P^{-\beta}$

Figure 8-8: Cross-Section of an Coaxial Cable with Semi-Conductor Layers

The capacitance of the semi-conducting layers is neglected. The permittivity of semi-conducting layers is very high compared to the insulator permittivity of the semi-conducting layers and insulators are 1000 and 3 respectively), hence the capacitance of the semi-conducting layers is

The conductivity of the semi-conducting layer is much lower than that of core or sheath; hence the relative contribution of the longitudinal current in the semi-conducting layers is negligible. Typical values for conductivity of the core and the semi-layers are 1e8 and 10 S/m. Note that the thickness of the first semiconducting layer

Figure 8-9: Cross-Section of an Overhead Conductor

Each overhead conductor is modeled assuming a perfect cylindrical shape, which may possess a hollow core. As such, the conductor is represented by a combination of inner and outer surface impedances. If the conductor is solid, only the outer surface impedance is considered. The composition of the conductor is assumed to

 $\mathbf{Z} = \begin{bmatrix} Z_{i_1} & 0 & 0 & 0 \\ 0 & Z_{i_2} & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & Z_{i_n} \end{bmatrix} + \begin{bmatrix} Z_{0_{i_1}} & Z_{0_{i_2}} & \cdots & Z_{0_{i_n}} \\ Z_{0_{i_2}} & Z_{0_{22}} & \cdots & Z_{0_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{0_{i_n}} & Z_{0_{2n}} & \cdots & Z_{0_{nn}} \end{bmatrix}$ (8-22)

Approximate: $Z_{I} = \frac{m\rho}{2\pi \cdot r_{J}} \cdot \coth(0.733 \cdot mr_{J}) + \frac{0.3179 \cdot \rho}{\pi \cdot r_{J}^{2}}$

Approximate: $Z_{I} = \frac{m\rho}{2\pi \cdot r_{I}} \cdot \coth[m(r_{I} - r_{0})] + \frac{\rho}{2\pi \cdot r_{I} \cdot (r_{0} + r_{I})}$

Bessel: $Z_{I} = j \boldsymbol{\varpi} \cdot \frac{\mu_{0} \mu}{2 \pi} \cdot \frac{1}{m r_{J}} \cdot \frac{I_{0}(m r_{J}) \cdot K_{J}(m r_{0}) + K_{0}(m r_{J}) \cdot I_{J}(m r_{0})}{I_{J}(m r_{J}) \cdot K_{J}(m r_{0}) - K_{J}(m r_{J}) \cdot I_{J}(m r_{0})}$

 $\mathbf{Y}_{ij}^{-1} = \frac{1}{j\boldsymbol{\omega} \cdot 2\boldsymbol{\pi} \cdot \boldsymbol{\varepsilon}_{0}} \cdot \ln \left(\frac{D_{ij}}{d_{ij}} \right)$

Bessel: $Z_{j} = j \omega \cdot \frac{m \rho}{2\pi \cdot r_{j}} \cdot \frac{l_{0}(m r_{j})}{l_{j}(m r_{j})}$

 $Z = Z_i + Z_0$

Deriving the series impedance Z and the shunt admittance Y for overhead lines is a relatively straightforward procedure in comparison to cables. This is mainly due to the fact that overhead conductors are generally simple – that is, each medium consists of a single, cylindrical conductor with no additional layers separated by

Hollow Core (Optional) —

The internal impedance for an overhead conductor is given as shown below. The LCP uses an analytical approximation to the well known Bessel based equations. Both the analytical approximation and Bessel equations are given here for easy reference:

The shunt admittance matrix Y for aerial transmission systems can be easily derived, due to the fact that the surrounding air may be assumed as loss less, and the ground potential considered zero [24]. Therefore:

-Conductor (ρ, μ)

 $C_{total} = \frac{C_{ins} \cdot C_{semi}}{C_{ins} + C_{semi}}$

 $\varepsilon_{new_ins} = \varepsilon_{inu} \frac{ln(\frac{R_4}{R_1})}{ln(\frac{B}{A})}$