CPT_S 260 Intro to Computer Architecture Lecture 26

Digital Design: Sequential Logic March 21, 2022

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Announcements

• Mid term exam 2

- Friday, April 1, 2022
- Format will be similar to exam 1
- Tentative topics: MIPS, digital logic, single cycle MIPS implementation

Recap: Incorporating NOR

Recap: Incorporating slt

- Perform a b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box

Incorporating slt

Recap: Incorporating beq

■ Perform a – b and

- Confirm that the
- Result is all zero's

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

Sequential Logic

Registers

- Register a <u>collection</u> of binary storage elements
- In theory, a register is sequential logic which can be defined by a state table
- More often think of a register as storing a vector of binary values
- Frequently used to perform simple data storage and data movement and processing operations

Example: 4-bit Register

SI -> Shift In

SO -> Shift Out

Clear -> Clears the bits in register

Load -> Reads the inputs into register

Clock -> Provides timing for read/writes

Sequential Elements

Flip flops: stores data in a circuit

- Uses a clock signal to determine when to update the stored value
- Edge-triggered: update when Clk changes from 0 to 1

Clocking Sequence

Sequential Elements

Flip flop with write control

- Only updates on clock edge when write control input is '1'
- Used when stored value is required later

Clocking Methodology

Combinational logic transforms data during clock cycles

- Between clock edges
- Input from state elements, output to state element
- Longest delay determines clock period

Example

- 5. Sequential Logic (10 points). The following figure shows a sequential circuit with two D Flip Flops with a common input clock. Assume that the flip flops are initialized at '0'. That is, Q₁ = Q₂ = 0 during Cycle 0. This means the output of this circuit is initially Q₂Q₁ = '00'.
 - a. (5 points) Compute the value of each output signal (Q2 and Q1) for 8 cycles using the table below.
 - b. (5 points) Convert the 3-bit binary Q₂Q₁ to its equivalent decimal in the table. How many unique output states (i.e., Q₂Q₁) does this circuit produce?

Clock Cycle	Q_2 Q_1	Decimal (Q= Q ₂ Q ₁)
0	0 0	0
1	1 0	2
2	0 1	1
3	1 1	. 3
4	0 0	0
5	1 0	2
6	0 1	1
7	1 1	3
8	0 0	0

Example

3. Consider the following Boolean expression:

$$F = (\tilde{A} + AB) [(A + A)B + A\bar{B}]$$

Assume that you are allowed to use only these three gate types: NOT, 2-input AND, 2-input OR to design the digital circuit for F although you are not required to use all the three types. Furthermore, assume that the latency of each gate is 500 ps (i.e., 500 picoseconds).

- a. Simplify function 'F' as much as possible. What is the final simplified expression of 'F'?
- b. Draw equivalent digital circuit for the simplified function.
- c. What is the overall latency of the simplified circuit?

c. latency =
$$1 \times 500 ps = 500 ps$$

one gate

Example

- 5. Basics of Digital Design (10 points). The following figure shows a sequential circuit with three D Flip Flops with a common input clock. Not that the inverted output of the last flip-flop (\bar{Q}_0) is connected to the input of the first flip-flop (D input of the far left flip flop). Assume that the flip flops are initialized at '0'. That is, $Q_2 = Q_1 = Q_0 = 0$ during Cycle 0. This means the output of this circuit is initially $Q_2Q_1Q_0 = '000$ '.
 - (5 points) Compute the value of each output signal (Q2, Q1, and Q0) for 10 cycles using the table below.
 - b. (5 points) Convert the 3-bit binary Q₂Q₁Q₀ to its equivalent decimal in the table. How many unique output states (i.e., Q₂Q₁Q₀) does this circuit produce?

Clock Cycle	Q2 Q1 Q0	Decimal ($Q=Q_2Q_1Q_0$)
0	0 0 0	0 .
1	1 0 0	4
2	1 1 0	6
3	1 1 1	7
4	0 11	3
5	0 01	1
6	0 0 0	0
7	100	4
8	11 0	6
9	11 f	7
10	0 1 1	3

There are 6 distinct states: 0, 4, 6, 7, 3,1

Memory Definitions

- Memory A collection of storage cells together with the necessary circuits to transfer information to and from them.
- Memory Organization the basic architectural structure of a memory in terms of how data is accessed.
- Random Access Memory (RAM) a memory organized such that data can be transferred to or from any cell (or collection of cells) in a time that is not dependent upon the particular cell selected.
- Memory Address A vector of bits that identifies a particular memory element (or collection of elements).

Memory Block Diagram

- A basic memory system is shown here:
- k address lines are decoded to address 2^k words of memory.
- Each word is n bits.
- Read and Write are single control lines defining the simplest of memory operations.

Memory Organization Example

Example memory contents:

- A memory with 3 address
 bits & 8 data bits has:
- k = 3 and n = 8 so $2^3 = 8$ addresses labeled 0 to 7.
- $-2^3 = 8$ words of 8-bit data

Memory Address Binary Decimal		Memory Content
000	0	10001111
0 0 1	1	11111111
0 1 0	2	10110001
0 1 1	3	00000000
100	4	10111001
101	5	10000110
110	6	00110011
111	7	11001100