Комплексни числа. Полета - числови полета и примери за нечислови полета.

Задача 1. Да се даде определение за комплексно число z, реална и имагинерна части на z, комплексно спрегнато \overline{z} на z и модул |z| на z.

Доказателство. Ако i е решение на уравнението $x^2+1=0$, то полиномите a+bi на i от степен ≤ 1 с коефициенти $a,b\in\mathbb{R}$ се наричат комплексни числа. Означаваме с

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

множеството на комплексните числа.

Реалната част на a+bi е Re(a+bi)=a, а имагинерната част е Im(a+bi)=b.

Комплексно спрегнатото на z=a+bi е $\overline{z}=a-bi$. Ако $\mathbb C$ се отъждестви с равнината $\mathbb R^2$, то z и \overline{z} са симетрични относно реалната ос Ox^{\rightarrow} .

Произволно комплексно число има $z.\overline{z}=(a+bi)(a-bi)=a^2+b^2\geq 0$ с $z.\overline{z}=0$ тогава и само тогава, когато a=b=0 и z=0. Неотрицателният реален корен квадратен от $z.\overline{z}$ се нарича модул на z и се бележи с $|z|,\,|z|=\sqrt{z.\overline{z}}^{\geq 0}=\sqrt{a^2+b^2}^{\geq 0}$. Модулът на конплексно число е разстоянието от $0\in\mathbb{C}$ до това число.

Задача 2. Да се докаже, че:

(i) комплексни числа a_1+ib_1 и a_2+ib_2 са равни тогава и само тогава, когато реалните им части $a_1=a_2$ са равни и имагинерните им части $b_1=b_2$ са равни;

$$\textit{(ii)} \ \overline{z_1+z_2}=\overline{z_1}+\overline{z_2}\ \textit{u}\ \overline{z_1-z_2}=\overline{z_1}-\overline{z_2}\ \textit{за произволни комплексни числа}\ z_1,z_2\in\mathbb{C};$$

(iii)
$$\overline{z_1 z_2} = \overline{z_1 z_2}$$
 u $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{\overline{z_1}}{\overline{z_2}}}$.

за комплексни числа $z_1, z_2 \in \mathbb{C}, z_2 \neq 0.$

Доказателство. (i) Ако допуснем, че $a_1 + ib_1 = a_2 + ib_2$ и $b_1 \neq b_2$, то

$$i = \frac{a_2 - a_1}{b_1 - b_2} \in \mathbb{R},$$

което е противоречие. Затова от $a_1 + ib_1 = a_2 + ib_2$ следва $b_1 = b_2$ и $a_1 = a_2$.

(ii) Ако $z_j=a_j+ib_j$ за $1\leq j\leq 2$ и $a_j,b_j\in\mathbb{R}$, то

$$\overline{z_1 + z_2} = \overline{(a_1 + a_2) + i(b_1 + b_2)} = (a_1 + a_2) - i(b_1 + b_2) =$$

$$= (a_1 - ib_1) + (a_2 - ib_2) = \overline{z_1} + \overline{z_2}.$$

Прилагайки съгласуваността на събирането на комплексни числа с комплексното спрягане получаваме, че

$$\overline{z_1} = \overline{(z_1 - z_2) + z_2} = \overline{z_1 - z_2} + \overline{z_2},$$

откъдето

$$\overline{z_1} - \overline{z_2} = \overline{z_1 - z_2}.$$

(iii) Ако $z_j=a_j+ib_j$, за $a_j,b_j\in\mathbb{R},\,1\leq j\leq 2$, то

$$\overline{z_1 z_2} = \overline{a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)} =$$

$$= a_1 a_2 - b_1 b_2 - i(a_1 b_2 + a_2 b_1) = (a_1 - ib_1)(a_2 - ib_2) = \overline{z_1} \ \overline{z_2}.$$

Прилагаме доказаното тъждество към произведението на $\frac{z_1}{z_2}$ с z_2 и получаваме

$$\overline{z_1} = \overline{\left(\frac{z_1}{z_2}\right)z_2} = \overline{\left(\frac{z_1}{z_2}\right)}\overline{z_2},$$

откъдето

$$\frac{\overline{z_1}}{\overline{z_2}} = \overline{\left(\frac{z_1}{z_2}\right)}.$$

Задача 3. (i) Ако $z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1) \in \mathbb{C} \setminus \{0\}$ и $z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2) \in \mathbb{C} \setminus \{0\}$ са ненулеви комплексни числа в тригонометричен вид, да се пресметне z_1z_2 и $\frac{z_1}{z_2}$.

(ii) Да се докаже, че ненулеви комплексни числа $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$ в тригонометричен вид са равни тогава и само тогава, когато модулите им $r_1 = r_2$ са равни и аргументите им $\varphi_2 - \varphi_1 = 2k\pi$, $k \in \mathbb{Z}$ се различават с цяло кратно на 2π .

Доказателство. (і) От

$$(\cos \varphi_1 + i \sin \varphi_1)(\cos \varphi_2 + i \sin \varphi_2) =$$

$$= \cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i(\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2) =$$

$$= \cos(\varphi_1 + \varphi_2) + i(\sin(\varphi_1 + \varphi_2))$$

И

$$\begin{split} \frac{\cos\varphi_1+i\sin\varphi_1}{\cos\varphi_2+i\sin\varphi_2} &= \\ &= \frac{\cos\varphi_1+i\sin\varphi_1}{\cos\varphi_2+i\sin\varphi_2} & \frac{\cos\varphi_2-i\sin\varphi_2}{\cos\varphi_2-i\sin\varphi_2} = \\ &= \frac{\cos\varphi_1+i\sin\varphi_1}{\cos\varphi_2+i\sin\varphi_2} & \frac{\cos(-\varphi_2)+i\sin(-\varphi_2)}{\cos(-\varphi_2)+i\sin(-\varphi_2)} = \\ &= \frac{\cos(\varphi_1-\varphi_2)+i\sin(\varphi_1-\varphi_2)}{\cos\theta_1+i\sin\theta_2} = \cos(\varphi_1-\varphi_2)+i\sin(\varphi_1-\varphi_2) \end{split}$$

следва, че

$$z_1 z_2 = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)]$$
 и $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)].$

(ii) Ако $r_1 = r_2$ и $\varphi_2 = \varphi_1 + 2k\pi$, то

$$z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2) = r_1[\cos(\varphi_1 + 2k\pi) + i\sin(\varphi_1 + 2k\pi)] = r_1(\cos\varphi_1 + i\sin\varphi_1) = z_1(\cos\varphi_1 + i\sin\varphi_2) = r_1(\cos\varphi_1 + i\sin\varphi_2) = r_1(\cos\varphi_1 + 2k\pi) + i\sin(\varphi_1 + 2k\pi) = r_1(\cos\varphi_1 + i\sin\varphi_2) = r_1(\cos\varphi_1 + i\sin\varphi_1) = r_1(\cos\varphi_1 + i\sin\varphi_2) = r_1(\cos\varphi_1 + i\sin\varphi_1) = r_1(\cos\varphi_1 + i\sin\varphi_2) = r_1(\cos\varphi_1 + i(i\varphi_1 + i\varphi_1)) = r_1(\cos\varphi_1 + i(i\varphi_1 + i\varphi_2)) = r_1(\cos\varphi_1 + i(i\varphi_1 + i\varphi_1)) = r_1(\cos\varphi_1 + i(i\varphi_1 + i\varphi_2)) = r_1(i\varphi_1 + i(i\varphi_1 + i\varphi_1)) = r_1(i\varphi_1 + i\varphi_1) = r_1(i\varphi_1 +$$

поради 2π -периодичността на $\cos x$ и $\sin x$.

Да допуснем, че комплексните числа $a_1+ib_1=z_1=z_2=a_2+ib_2$ са равни. Тогава $a_1=a_2,\,b_1=b_2,$ откъдето $|z_1|=r_1=\sqrt{a_1^2+b_1^2}^{>0}=\sqrt{a_2^2+b_2^2}^{>0}=r_2=|z_2|$ и точките

$$\cos\varphi_1+i\sin\varphi_1=\frac{z_1}{|z_1|}=\frac{z_2}{|z_2|}=\cos\varphi_2+i\sin\varphi_2\in S^1=\{t\in\mathbb{C}\,|\,|t|=1\}$$

от единичната окръжност съвпадат. Следователно $\cos \varphi_1 = \cos \varphi_2$, $\sin \varphi_1 = \sin \varphi_2$ и $\varphi_2 - \varphi_1 = 2\pi k \in 2\pi \mathbb{Z}$.

Задача 4. (Формула на Моавър:) $Ako\ z = r(\cos\varphi + i\sin\varphi) \in \mathbb{C}\setminus\{0\}$ е ненулево комплексно число в тригонометричен вид, то множеството $\sqrt[n]{z}$ на n-тите корени на zсъвпада с множеството

$$M = \left\{ \sqrt[n]{r} > 0 \left[\cos \left(\frac{\varphi + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi + 2k\pi}{n} \right) \right] \left| 0 \le k \le n - 1 \right\}$$

и се състои от n ненулеви комплексни числа. ($C \sqrt[n]{r}^{>0}$ означаваме положителния n-ти корен от $r \in \mathbb{R}^{>0}$.)

Упътване: Ако

$$M' := \left\{ \sqrt[n]{r}^{>0} \left[\cos \left(\frac{\varphi + 2m\pi}{n} \right) + i \sin \left(\frac{\varphi + 2m\pi}{n} \right) \right] \middle| m \in \mathbb{Z} \right\},\,$$

то проверете, че $M' \subseteq \sqrt[n]{z} \subseteq M' \subseteq M$, откъдето $M = M' = \sqrt[n]{z}$. След това докажете, че множеството M се състои от n различни комплексни числа.

Доказателство. За всяко

$$y = \sqrt[n]{r}^{>0} \left[\cos \left(\frac{\varphi + 2m\pi}{n} \right) + i \sin \left(\frac{\varphi + 2m\pi}{n} \right) \right] \in M'$$

е в сила

$$y^n = r(\cos\varphi + i\sin\varphi) = z,$$

така че $M' \subset \sqrt[n]{z}$.

Ако $x = s(\cos \psi + i \sin \psi) \in \sqrt[n]{z}$, то $z = x^n = s^n[\cos(n\psi) + i \sin(n\psi)]$, откъдето $s^n = r$ и $n\psi - \varphi = 2m\pi$ за някое $m \in \mathbb{N}$ и $x \in M'$. Това доказва $\sqrt[n]{z} \subseteq M'$ и $\sqrt[n]{z} = M'$.

Включването $M\subseteq M'$ е ясно. За обратното включване $M'\subseteq M$ делим произволно $m\in\mathbb{Z}$ на n с частно $q\in\mathbb{Z}$ и остатък $k\in\mathbb{Z},\,0\leq k\leq n-1,\,$ така че $m=nq+k,\,$ Тогава

$$\frac{\varphi + 2m\pi}{n} = \frac{\varphi + 2k\pi}{n} + 2q\pi,$$

откъдето

$$\sqrt[n]{r}^{>0} \left[\cos \left(\frac{\varphi + 2m\pi}{n} \right) + i \sin \left(\frac{\varphi + 2m\pi}{n} \right) \right] =$$

$$= \sqrt[n]{r}^{>0} \left[\cos \left(\frac{\varphi + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi + 2k\pi}{n} \right) \right] \in M,$$

съгласно 2π -периодичността на $\cos x$ и $\sin x$. Това доказва $M'\subseteq M$ и $\sqrt[n]{z}=M'=M$. Ако допуснем, че

$$\sqrt[n]{r}^{>0} \left[\cos \left(\frac{\varphi + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi + 2k\pi}{n} \right) \right] = \sqrt[n]{r}^{>0} \left[\cos \left(\frac{\varphi + 2l\pi}{n} \right) + i \sin \left(\frac{\varphi + 2l\pi}{n} \right) \right]$$

за $0 \le k < l \le n - 1$, то

$$\left(\frac{\varphi+2l\pi}{n}\right)-\left(\frac{\varphi+2k\pi}{n}\right)=\frac{2(l-k)\pi}{n}=2s\pi$$

за някое $s \in \mathbb{N}$. Следователно n дели $0 < l - k \le n - 1 < n$, което е противоречие, доказващо че $\sqrt[n]{z}$ се състои от n различни комплексни числа.

Задача 5. (а) Да се даде определение за числово поле.

- (б) Да се докаже, че:
- (6-1) множеството $\mathbb N$ на естествените числа не е числово поле;
- (6-2) множеството \mathbb{Z} на целите числа не е числово поле;
- (6-3) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ е числово поле.

Доказателство. (а) Подмножество $F\subseteq\mathbb{C}$ с поне два елемента е числово поле, ако за произволни $a,b\in F,\,b\neq 0$ е в сила

$$a+b, a-b, ab, \frac{a}{b} \in F.$$

- (б-1) Множеството \mathbb{N} на естествените числа е затворено относно събиране и умножение, но не и спрямо изваждане и деление. Например, $1,2 \in \mathbb{N}$, но $1-2=-1 \notin \mathbb{N}$ и $\frac{1}{2} \notin \mathbb{N}$.
- (б-2) Множеството \mathbb{Z} на целите числа е затворено относно събиране, изваждане и умножение, но не и спрямо деление. Например, за $1, -2 \in \mathbb{Z}$ е в сила $\frac{1}{(-2)} = -\frac{1}{2} \notin \mathbb{Z}$.
- (б-3) Множеството $\mathbb{Q}(\sqrt{2})$ съдържа поне две различни комплексни числа. За произволни $a+b\sqrt{2},c+d\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ е изпълнено

$$(a + b\sqrt{2}) \pm (c + d\sqrt{2}) = (a \pm c) + (b \pm d)\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in \mathbb{Q}(\sqrt{2}).$$

Ако $c + d\sqrt{2} \neq 0$, то

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{a+b\sqrt{2}}{c+d\sqrt{2}} \cdot \frac{c-d\sqrt{2}}{c-d\sqrt{2}} = \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

защото $c^2 \neq 2d^2$ за $c,d \in \mathbb{Q}$. По-точно, ако разложим числителите и знаменателите на c и d в прости множители и извършим съкращение, то целият степенен показател на 2 в дясната страна на $c^2 = 2d^2$ е нечетен, докато степенният показател на 2 в c^2 е четен. Това доказва $c^2 \neq 2d^2$ за $c,d \in \mathbb{Q}$. С това проверихме, че $\mathbb{Q}(\sqrt{2})$ е затворено относно действията събиране, изваждане, умножение и деление с ненулев елемент, така че $\mathbb{Q}(\sqrt{2})$ е числово поле.

Задача 6. Да се докаже, че:

(i) множеството \mathbb{Z}_p на остатъците $n\underline{p}u$ деление c просто число p e нечислово поле относно операциите събиране $\overline{a}+\overline{b}:=\overline{a+b}$ и умножение $\overline{a}\overline{b}:=\overline{ab}$;

(ii) множеството \mathbb{Z}_4 на остатъците при деление с 4 не е поле.

Доказателство. (i) От асоциативността (a+b)+c=a+(b+c) на събирането на цели числа $a,b,c\in\mathbb{Z}$ следва асоциативността на събирането на остатъци

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a + b} + \overline{c} = \overline{(a + b) + c} = \overline{a + (b + c)} = \overline{a} + \overline{b + c} = \overline{a} + (\overline{b} + \overline{c}).$$

Условието a+b=b+a за $a,b\in\mathbb{Z}$ е достатъчно за

$$\overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a}$$
.

Освен това,

$$\overline{a} + \overline{0} = \overline{a+0} = \overline{a}$$
 и $\overline{a} + \overline{(-a)} = \overline{a+(-a)} = \overline{0}$.

Аналогично, умножението на остатъци при деление с p има свойствата

$$(\overline{a}\overline{b})\overline{c}=\overline{(ab)}\overline{c}=\overline{(ab)c}=\overline{a(bc)}=\overline{a}\overline{(bc)}=\overline{a}\overline{(bc)},$$

$$\overline{a}\overline{b} = \overline{ab} = \overline{ba} = \overline{b}\overline{a},$$

$$\overline{a}\overline{1} = \overline{a}.\overline{1} = \overline{a}.$$

В сила са дистрибутивни закони за събиране и умножение

$$(\overline{a}+\overline{b})\overline{c}=\overline{(a+b)}\overline{c}=\overline{(a+b)c}=\overline{ac+bc}=\overline{ac}+\overline{bc}=\overline{a}\,\overline{c}+\overline{b}\,\overline{c}$$
 и
$$\overline{a}(\overline{b}+\overline{c})=(\overline{b}+\overline{c})\overline{a}=\overline{b}\overline{a}+\overline{c}\overline{a}.$$

За обратимостта на ненулев остатък $\overline{a} \in \mathbb{Z}_p \setminus \{\overline{0}\}$ относно умножението разглеждаме умножението с \overline{a} ,

$$\mu_{\overline{a}}: \mathbb{Z}_p \longrightarrow \mathbb{Z}_p, \ \mu_{\overline{a}}(\overline{b}) = \overline{a}\overline{b}$$
 за всяко $\overline{b} \in \mathbb{Z}_p$.

Ако $\overline{a}\overline{b}=\mu_{\overline{a}}(\overline{b})=\mu_{\overline{a}}(\overline{c})=\overline{a}\,\overline{c},$ то

$$\overline{0} = \overline{a}\overline{b} - \overline{a}\overline{c} = \overline{ab} - \overline{ac} = \overline{ab - ac} = \overline{a(b - c)},$$

откъдето p дели a(b-c). Цялото число a е взаимно просто с p, защото p не дели a. Следователно p дели b-c и $\bar{b}=\bar{c}$. Това доказва инективността на $\mu_{\overline{a}}:\mathbb{Z}_p\to\mathbb{Z}_p$. В резултат, $\mu_{\overline{a}}(\mathbb{Z}_p)$ се състои от p различни остатъка и $\mu_{\overline{a}}(\mathbb{Z}_p)=\mathbb{Z}_p$. В частност, съществува $\bar{b}\in\mathbb{Z}_p$ с $\bar{a}\bar{b}=\mu_{\overline{a}}(\bar{b})=\bar{1}$ и всеки ненулев остатък $\bar{a}\in\mathbb{Z}_p\setminus\{\bar{0}\}$ е обратим относно умножението. Това доказва, че \mathbb{Z}_p е поле.

Ако допуснем, че \mathbb{Z}_p е числово поле, то полето \mathbb{Q} на рационалните числа се съдържа в \mathbb{Z}_p . Това е противоречие, защото \mathbb{Q} е безкрайно поле, а \mathbb{Z}_p има точно p елемента. Следователно полето \mathbb{Z}_p на остатъците при деление на просто число p не е числово.

(ii) Множеството \mathbb{Z}_4 на остатъците при деление с 4 не е поле, защото съществува ненулев остатък $\overline{2} \in \mathbb{Z}_4$, който не е обратим относно умножението. Ако допуснем, че съществува $\overline{a} \in \mathbb{Z}_4$ с $\overline{2a} = \overline{1}$, то почленното умножение с $\overline{2}$ дава

$$\overline{2} = \overline{2}.\overline{1} = \overline{2}.(\overline{2}.\overline{a}) = (\overline{2}.\overline{2}).\overline{a} = \overline{0}.\overline{a} = \overline{0}.$$

Това е противоречие, доказващо необратимостта на $\overline{2} \in \mathbb{Z}_4$ относно умножението.