TRƯỜNG ĐẠI HỌC KIẾN TRÚC TP. HỔ CHÍ MINH PGS. PTS. VŨ MANH HÙNG

SỐ TAY THỰC HÀNH KẾT CÂU CÔNG TRÌNH

NHÀ XUẤT BẢN XÂY DỰNG

'ma

TRƯỜNG ĐẠI HỌC KIẾN TRÚC TP.HỒ CHÍ MỊNH

PGS - PTS VŨ MANH HÙNG

Số tay thực hành KẾT CẦU CÔNG TRÌNH

NHÀ XUẤT BẢN XÂY DỤNG Hà Nội - 1999

LÒI MỞ ĐẦU

Xuất phát từ mong muốn của các kiến trúc sư, kỹ sư xây dựng, giám sát kỹ thuật và sinh viên kiến trúc - xây dựng v.v... cần có một tài liệu tra cứu ngắn gọn và thiết thực về kết cấu công trình, chúng tôi đã biên soạn cuốn "Sổ tay thực hành kết cấu công trình"

Cuốn sách gồm có 5 phần:

Phần 1. Đặc trưng hình học và xác định nội lực

Phần 2. Số liệu về tải trọng

Phần 3. Vật liệu và thi công

Phần 4. Trình tự tính toán các cấu kiện

Phần 5. Minh họa cấu tạo

Những công thức, số liệu tra cứu, ví dụ tính toán minh họa cấu tạo phục vụ cho việc thiết kế, thi công, làm đồ án các công trình dân dụng và công nghiệp thường gặp.

Hy vọng cuốn sách sẽ hỗ trợ có hiệu quả cho người sử dụng. Tuy nhiên, trong quá trình biên soạn và xuất bản khó tránh được các thiếu sót, vì vậy rất mong nhận được nhiều góp ý của độc giả. Xin chân thành cám ơn.

Tác giả

.

Phần 1 ĐẶC TRƯNG HÌNH HỌC VÀ XÁC ĐỊNH NỘI LỰC

Bảng 1-1. Đổi đơn vị giữa hai hệ US và SI

Đổi từ đơn vị US sang dơn vị SI nhân với	Đơn vị US	Đơn vị SI	Đổi từ đơn vị SI sang đơn vị US nhân với
25,40000	in	mm	0,0397
0,30480	ft	m	3,2810
645,20000	in^2	mm^2	$1,55 \times 10^{-3}$
$16,39.10^3$	in^3	mm_{-}^{3}	$61,02 \times 10^{-6}$
$416, 2.10^3$	in ⁴	mm^4	$2,403 \times 10^{-6}$
0,09290	ft^2	m^2	10,76000
0,02832	ft^3	$^{\mathrm{m}^3}$	35,31000
0,45360	lb (khối lượng)	kg	2,20500
4,44800	lb (lực)	N	0,22480
4,44800	kip (lực)	kN	0,22480
1,35600	ft-lb (mômen)	Nm	0,73760
1,35600	kip-ft (mômen)	kNm	0,73760
1,48800	lb/ft (khối lượng)	kg/m	0,67200
14,59000	lb/ft (tải trọng)	N/m	0,06858
14,59000	kip/ft (tải trọng)	kN/m	0,06858
6,89500	PSi (ứng suất)	kPa	0,14500
6,89500	Ksi (ứng suất)	MPa	0,14500
0,04788	psf (tải trọng, áp lực)	kPa	20,93000
47,88000	ksf (tải trọng, áp lực)	kPa	0,02093
$0,566 \times (^{0}F - 32)$	° F	°C	$(1.8 \times {}^{6}\text{C}) + 32$

```
Ghi chú:
     lb
                = pound;
                                                      1 \text{ kip} = 1000 \text{ lb}
                = lb/ft^2;
     psf
                                                               = kip/ft^2
                = lb/ft^3;
                                                                  lb/in<sup>2</sup>;
     pcf
                                                      psi
                                                                              ksi = kip/in^2
               = 1000N
     1kN
                = 1 \text{N/m}^2
                            = 0.1 kG/m^2
                                                      1 \, \text{Bar} = 10^5 \text{Pa}
     1Pa
                = 1000 Pa = 1000 N/m^2
                                               = 100 \text{kG/m}^2
     1kPa
                = 1.000.000Pa
                                                               = 100.000 \text{kG/m}^2 = 100 \text{T/m}^2 = 10 \text{kG/cm}^2
     1MPa
                                               = 1000 \text{kPa}
     1GPa
                = 1.000.000.000  Pa
                                               = 1000MPa = 100.000T/m^2
```

Bảng 1-2. Trọng tâm và diện tích của một số hình

Tên hình	Hình	$\frac{1}{x}$	<u> </u>	Diện tích
a Tam giác	b/2 b/2		$\frac{\underline{\mathbf{h}}}{3}$	<u>bh</u> 2
$rac{1}{4}$ hình tròn	C \overline{x} \overline{y}	<u>4r</u> 3π	$\frac{4r}{3\pi}$	$\frac{\pi \cdot r^2}{2}$
Bán nguyệt	V C C	0 0	$\frac{4\mathbf{r}}{3\pi}$	$rac{\pi.r^2}{2}$
$rac{1}{2}$ parabol	$\begin{array}{c c} & & \\ & &$	3 <u>a</u> 8	3 <u>h</u> 5	<u>2ah</u> 3
Parabol	y C o h	Angle (1875) and the second of	3 <u>h</u> 5	4ah 3
Giới hạn bởi parabol	$y = kx^{2}$ \overline{x}	3 <u>a</u> 4	$\frac{3\mathrm{h}}{10}$	<u>ah</u> 3
Quạt	$\begin{array}{c c} & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$	<u>2rsinα</u> 3α	O	ar ²

Bảng 1-3. Mômen quán tính của một số hình

Tên hình	Hình	Các loại mômen quán tính
Chữ nhật	h y y x x	$J_{x'} = \frac{1}{12} bh^3$ $J_{y'} = \frac{1}{12} b^3 h$ $J_x = \frac{1}{3} bh^3$ $J_y = \frac{1}{3} b^3 h$
Tam giác	y h	$J_{x'} = \frac{1}{36} bh^3$ $J_{x} = \frac{1}{12} bh^3$
Tròn	y 0 x	$J_{x} = J_{y} = \frac{1}{4} \pi r^{4}$ $J_{o} = \frac{1}{2} \pi r^{4}$
Bán nguyệt	C	$J_x = J_y = \frac{1}{8}\pi r^4$ $J_0 = \frac{1}{4}\pi r^4$
$rac{1}{4}$ Hình tròn	+ _c	$J_x = J_y = \frac{1}{16} \pi r^4$ $J_0 = \frac{1}{8} \pi r^4$

Tên hình	Hình	Các loại mômen quán tính
Enlip	y b x	$J_{x} = \frac{1}{4} \pi a b^{3}$ $J_{y} = \frac{1}{4} \pi a^{3} b$ $J_{0} = J_{0} = \frac{1}{4} \pi (a^{2} + b^{2})$
Chữ T	x y x x y x x x x x x x x x x x x x x x	$J_{x} = J_{x_{2}} - y_{1}^{2}F$ $J_{x_{2}} = \frac{1}{3} [(B - b)c^{3} + bh^{3}]$ $J_{y} = \frac{1}{12} [B^{3}c + b^{3}(h - c)]$
Hộp	C X h H	$J_{x} = \frac{BH^{3} - bh^{3}}{12}$ $J_{y} = \frac{HB^{3} - hb^{3}}{12}$
Hai nhánh	C h H	$J_x = \frac{b}{12} (H^3 - h^3)$ $J_y = \frac{b^3}{12} (H - h)$
Vuông, đặt nghiêng 45°	a C x h	$J_{x} = J_{y} = \frac{h^{4}}{48}$

Bảng 1-4. Lực cắt - phản lực gối tựa mômen uốn và độ võng của dầm một nhịp

So đồ	Lực cắt và phản lực gối tựa (A và Q)	Mômen uốn (M _{x)}	Độ võng ($\mathbf{f_x}$)
1	2	3	4
		Dầm công xôn	
A P B			
M	$\mathbf{B} = \mathbf{P}$ $\mathbf{Q}_{\mathbf{x}} = -\mathbf{P}$	$M_{X} = -P_{X}$ $M_{B} = -PI$	$f_{A} = \frac{PI^{3}}{3EJ}$
	· · · · · · · · · · · · · · · · · · ·		
P A B		$M_{x} = -\frac{px^{2}}{2}$	
M	$\mathbf{B} = \mathbf{p}I$		$f_{A} = \frac{p \cdot I^{4}}{8EJ}$
Q	$Q_{\mathbf{x}} = -\mathbf{p}\mathbf{x}$	$M_{\rm B} = -\frac{p\dot{I}^2}{2}$	8EJ
A B	$B = \frac{p I}{2}$ $Q_x = -\frac{p_x x}{2}$	$\mathbf{M_x} = -\frac{\mathbf{px}^3}{6l}$	
Q Q	$p_{\mathbf{x}} = p \frac{\mathbf{x}}{l}$	$\mathbf{M}_{\mathrm{B}} = -\frac{\mathbf{p}I^2}{6}$	$f_{A} = \frac{p I^{4}}{30EJ}$
		À 1 A 1	
		ầm trên hai gối tựa	
A P B	;	$Khi x \leq \frac{1}{2} , \qquad M_x = \frac{p_x}{2}$	
Q	$Q_{\mathbf{x}} = \pm \frac{\mathbf{P}}{2}$	Khi $x \ge \frac{l}{2}$, , $M_x = \frac{P(l-x)}{2}$	$tai x = \frac{1}{2}$

1	2	3	4
A P B A A A M Q	$A = \frac{Pb}{l}; B = \frac{Pa}{l}$ Khi $x \le a$; $Q_x = \frac{Pb}{l}$ Khi $x \ge a$; $Q_x = \frac{Pa}{l}$	Khi $x \le a$; $M_x = \frac{Pb}{l}x$ Khi $x \ge a$ $M_x = \frac{Pa}{l}(l - x)$ $M_{max} = \frac{Pab}{l}$	$f_{\text{max}} = \frac{Pb}{3EJI} \sqrt{\left[\frac{a^2 + 2ab}{3}\right]^3}$ $tai \ x = \sqrt{\frac{a}{3}(a + 2b)}$
A A B A B A B M M	Khi x < a Q = P Khi a < x < a + b Q = 0	Khi x < a $M_x = Px$ Khi a < x < a + b $M_x = M_{max} = Pa$	$f_{\text{max}} = \frac{Pa}{24EJ}(3J^2 - 4a^2)$
A B B	$A = B = \frac{pI}{2}$ $Q_x = \frac{pI}{2}(I - \frac{2x}{I})$	$M_{x} = \frac{px}{2}(l - x)$ $M_{max} = \frac{pl^{2}}{8}$	$f_{\text{max}} = \frac{5pI^4}{384EJ}$
a b M	$A = \frac{pb^{2}}{2l}$ $B = \frac{pb}{2l}(l+a)$ $Khi x < a; Q_{x} = \frac{pb^{2}}{2l}$ $Khi x > a$ $Q_{x} = \frac{pb^{2}}{2l} - p(x-a)$	Khi x < a $M_{x} = \frac{pb^{2}}{2l}_{x} = Ax;$ Khi x > a $M_{x} = -A \left[x - l \left(\frac{x - a}{b} \right)^{2} \right]$ $M_{max} = \frac{pl^{2}}{8} \left(1 - \frac{a^{2}}{l^{2}} \right)^{2}$	$f_{max} = 0.0026 \frac{pf^4}{EJ}$ tai $a = 0.5471$
A	$A = B = \frac{pl}{4}$ $Q_{x} = \frac{pl}{4} \left[1 - 4 \frac{x^{2}}{l^{2}} \right]$	$(tai x = \frac{b^2}{2l} + a)$ Khi $M_x = \frac{plx}{4} \left[1 - \frac{4}{3} \frac{x^2}{l^2} \right]$ $M_{max} = \frac{pl^2}{12}$	$f_{\text{max}} = \frac{pl^4}{120 \text{EJ}}$

1	2	3	4	
Dầm trên hai gối tựa có hai công xôn đối xứng				
PAB AAA	Trên công xôn $Q_{x} = -P$ Ở nhịp $Q_{x} = 0$	Trên công xôn $M_x = -P (a + x)$ Ở nhịp $M_x = -Pa$	$f_{\min} = -\frac{PaP}{8EJ}$	
AA AB A M	Trên công xôn $Q_{x} = -p (a - x)$ Ở nhịp $Q_{x} = p \left(x - \frac{1}{2}\right)$ $A = B = p \left(a + \frac{1}{2}\right)$	$M_{x} = -\frac{p}{2}(a^{2} - lx - x^{2})$ $M_{max} = \frac{p}{2}\left(\frac{f^{2}}{4} - a^{2}\right)$	$f_{\text{max}} = \frac{pI^2}{48EJ} \left[\frac{5}{8} I^2 - 3a^2 \right]$	
<u> </u>		hai gối tựa, một gối là ngàn	n	
A A B B M	Khi x < a $Q_x = A$ Khi x > a $Q_x = -B$ $A = \frac{Pb}{2l} \left(3 - \frac{b^2}{l^2} \right)$	Khi x < a $M_x = M_A + A_X$ $M_A = \frac{-Pab}{2I} \left[1 + \frac{b}{I} \right]$ Khi x > a	Khi x < a $f_x = \frac{x^2}{6EJ} (3M_A + Ax)$ Khi x > a x^2	
Q	$B = \frac{Pa^2}{2l^2} \left(2 + \frac{b}{l} \right)$	$M_x = M_A + A_x + P(x - a)$ $M_{max} = Bb \text{ tai } x = a$	$f_x = \frac{x^2}{6EJ}(3M_A + Ax) + \frac{P(x-a)^3}{6EJ}$	
· ¾ \ \	$A = \frac{11}{16} p$ $B = \frac{5}{16} p$	$M_{A} = -\frac{3}{16} PI$ $M_{I/2} = \frac{5}{32} PI$	$f_{\text{max}} \approx 0,00933 \frac{P I^3}{EJ}$	
P B M Q	$A = \frac{5}{8} pI$ $B = \frac{3}{8} pI$	$M_{x} = \frac{-pl^{2}}{8} \left(l - \frac{5x}{l} + \frac{4x^{2}}{l^{2}} \right)$ $M_{A} = \frac{-pl^{2}}{8}$ $M_{max} = \frac{9}{128} pl^{2}$	$f_{\text{max}} = \frac{pI^4}{185\text{EJ}}$ $tai x = 0,579 I$	
		$tai x = 0,6251$ $M = 0 tai x = \frac{1}{4}$	0,0101	

1	2	3	4
P M Q	$Q_{x} = \frac{pl}{10} \left(4 - 10 \frac{x}{l} + 5 \frac{x^{2}}{l^{2}} \right)$ $A = \frac{2}{5} pl \qquad B = \frac{1}{10} pl$	$M_{A} = -\frac{pl^2}{15}$ $M_{max} = \frac{pl^2}{33,6}$ $Tai x = 0,553 I$	$f_{\text{max}} = \frac{pI^4}{418 \cdot 6EJ}$ $tai x = 0,552 I$
A P P B A M M	$A = P\left(1 + \frac{3}{2} \frac{ab}{l^2}\right)$ $B = P\left(1 - \frac{3ab}{2l^2}\right)$	$M_{A} = -\frac{3Pab}{2l}$ $Tai x = a$ $M_{a} = M_{A} + Aa$ $Tai x = a + b$ $M_{a+b} = Ba$	
-	Dầm trên hai gối t	ựa, một đầu ngàm, một đầu	công xôn
M	$A = -\frac{3Pa}{2l}$ $B = P\left(1 + \frac{3a}{2l}\right)$	$M_A = \frac{Pa}{2}$ $M_B = -Pa$	$f_{\min} = -\frac{Pal^2}{27EJ}$ $tai x = 2\frac{l}{3}$
	$B = \frac{pa}{8} \left(\frac{3I}{a} + \frac{6a}{I} + 8 \right)$	$M_{A} = -\frac{p}{8}(I^{2} - 2a^{2})$ $M_{A} = 0 \text{ khi } a = 0,707 I$ $M_{B} = -\frac{pa^{2}}{2}$ $\hat{n}_{B} = -\frac{pa^{2}}{2}$	
	7	ầm ngàm ở hai đầu	
	$Q_{x} = \frac{pI}{2} \left(1 - 2 \frac{x}{I} \right)$	$M_{x} = -\frac{p l^{2}}{12} \left(1 - 6 \frac{x}{l} + 6 \frac{x^{2}}{l^{2}} \right)$ $M_{A} = M_{B} = -\frac{p l^{2}}{12}$ $M_{max} = \frac{p l^{2}}{24}$	$f_{\text{max}} = \frac{pI^4}{384EJ}$

1	2	3	4
a b l	$B = P \frac{(a + 3b)a^2}{\beta^3}$ Khi x < a Q _x = A	$Khi x = a$ $2Pa^2h^2$	Khi a > b $f_{max} = \frac{2}{3} \frac{Pa^3b^2}{EJ(3a+b)^2}$ $tai x = \frac{2al}{3a+b}$ Khi a < b $f_{max} = \frac{2}{3} \cdot \frac{Pa^2b^3}{EJ(a+3b)^2}$ $tai x = \frac{l^2}{a+3b}$
P	$A = B = \frac{P}{2}$ $Q_x = \pm \frac{P}{2}$	$M_{A} = M_{B} = -\frac{Pl}{8}$ $M_{1/2} = \frac{Pl}{8}$	$f_{ ext{max}} = rac{ ext{P}J^3}{192 ext{EJ}}$

Bảng 1-5. Mômen uốn, lực cắt và phản lực gối tựa trong dầm liên tục đều nhịp $(M_{ik}$ - Mômen ở nhịp i, tiết diện k)

Tải trọng t	rên 1 nhịp	ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	P	↓P ↓P
Dầm liên tục			1/2 / 1/2	1/3 1/3 1/3
1	2	3	4	5
·	M_{11}	$0,07 pl^2$	0,156 <i>Pl</i>	0,222 Pl
	· M ₁₂		~	$0{,}111Pl$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{M}_{13}	- '	<u>.</u> .	<u>-</u>
	$M_{ m B}$	$-0.125~pl^2$	-0,188 <i>PI</i>	-0,333 <i>PI</i>
1 1 1 1	$A = Q_{1A}$	0,375 pl	0,313 P	0,667~P
	В	1,250 pl	$1,\!375~P$	2,667~P
Dầm 2 nhịp	Q_{1B}	-0,625 pl	-0,688 P	-1,333 P

1	2	3	4	5
1 - 1 N	M_{11}	1 0,080 pl ²	0,175 <i>Pl</i>	0,244 Pl
A B C D	\mathbf{M}_{12}	: -	-	0,156 Pl
	M_{21}	$0.025 pl^2$	0,100 Pl	0,067 Pl
	M_{22}	-	<u>.</u>	0,067 <i>Pl</i>
 	M_{B}	$-0,100 \ pl^2$	-0,150 <i>Pl</i>	-0,267 <i>Pl</i>
To â la	$A = Q_{1A}$	0,400 pl	$0,\!350\;P$	0,733 P
Dầm ba nhịp	В	1,100 <i>pl</i>	1,150 P	2,267 P
	, Q _{1B}	-0,600 pl	-0,650 P	-1,267 P
	$Q_{2B} = Q_{2C}$	0,500 pl	0,500 P	1,000 P
	M_{11}	$0.077 pl^2$	0,170 <i>Pl</i> -	0,238 <i>PI</i>
	\mathbf{M}_{12}	-	-	0,143 <i>Pl</i>
A B C D E	M_{21}	$0,037 \ pl^2$	0,116 <i>Pl</i>	0,079 <i>Pl</i>
Δ1Δ2Δ3Δ4Δ	$ m M_{22}$. ·	<u>.</u> .	0,111 <i>Pl</i>
	$ m M_{23}$	-	-	
	$M_{\rm B}$	$-0.107 pl^2$	-0,161 <i>Pl</i>	-0,286 <i>Pl</i>
Dầm bốn nhịp	Mc	$-0.071 \ pl^2$	-0,107 P	-0,190 <i>Pl</i>
	$A = Q_{1A}$	0,393 pl	0,339 Pl	: 0,714 P
	В	1,143 pl	1,214 P	$2,\!381P$
	C	0,929 <i>pl</i>	0,892 P	1,810 P
	Q_{1B}	-0,607 <i>pl</i>	-0,661 P	-1,286 P
	Q_{2B}	0,536 <i>pl</i>	0,554 P	$1,095 \ P$
	, Q 2C	-0,464 <i>pl</i>	-0,446 P	-0,905 P
	М.,	$0,078 pl^2$	0.171 77	0.040 77
	M ₁₁	0,078 <i>pi</i>	0,171 <i>Pl</i>	0,240 Pl
	$egin{array}{cccc} \mathbf{M}_{12} & & & & \\ & \mathbf{M}_{21} & & & & \end{array}$	$0,033 \ pl^2$	0,112 <i>Pl</i>	0,146 Pl
A B C D E F	M ₂₂	0,055 <i>pi</i>	0,112 PI	0,076 <i>Pl</i> 0,099 <i>Pl</i>
Δ1Δ2Δ3Δ4Δ5Δ	M ₃₁	$0,046 pl^2$	0,132 <i>Pl</i>	0,099 Pl 0,123 Pl
11111111	M ₃₂	0,040 pi	0,152 F1	0,123 Pl 0,123 Pl
1	$M_{ m B}$	$-0.105 pl^2$	-0,158 <i>Pl</i>	-0,281 <i>Pl</i>
m · ·	M _C	$-0,079 pl^2$	-0,118 Pl	-0,211 <i>Pl</i>
	$A = Q_{1A}$	0,395 pl	0,342 P	0.719 P
Dầm năm nhịp	B B	1,132 pl	1,197 P	2,351 P
	C	0,974 pl	0,960 P	1,930 P
	Q_{1B}	-0,605 pl	-0,658 P	-1,281 <i>P</i>
	Q_{2B}	0,526 pl	0,540 P	1,070 P
	Q _{2C}	-0,474 pl	-0,460 P	-0,930 P
	Q _{3C}	0,500 pl	0,500 P	1,000 P

Bảng 1-6 - Mômen uốn trong bản và dầm không đều nhịp

Sơ đồ dầm	Mômen gối tựa	Trị số mômen gối
$ \begin{array}{c cccc} A & B & C \\ \hline \Delta & \Delta & \Delta \\ \downarrow & l_1 & l_2 & \downarrow \end{array} $	$ m M_B$	$-\frac{1}{K_1}N_1$
A B C D	$\mathbf{M}_{\mathbf{B}}$	$-\frac{K_2}{K_3}N_1 + \frac{J_2}{K_3}N_2$
11 12 13	$ m M_{C}$	$\frac{l_2}{K_3} N_1 \frac{K_1}{K_3} N_2$
	$\mathbf{M}_{\mathbf{B}}$	$\frac{\mathbf{K}_5}{\mathbf{K}_6} \ \mathbf{N}_1 \ + \frac{\mathbf{K}_3 l_2}{\mathbf{K}_6} \ \mathbf{N}_2 \ - \ \frac{l_2 l_3}{\mathbf{K}_6} \ \mathbf{N}_3$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ m M_{C}$	$\frac{K_3 l_2}{K_6} N_1 - \frac{K_3 K_1}{K_6} N_2 + \frac{K_1 l_3}{K_6} N_3$
	$ m M_D$	$-\frac{l_2 l_3}{K_6} N_1 + \frac{K_1 l_3}{K_6} N_2 - \frac{K_4}{K_6} N_3$
	$\mathbf{M}_{\mathbf{B}}$	$-\frac{K_3}{K_9}N_1 + \frac{K_6l_2}{K_9}N_2 - \frac{K_4l_2l_3}{K_9}N_3 + \frac{l_2l_3l_4}{K_9}N_4$
A B C D E F	$ m M_{ m C}$	$\frac{K_6 I_2}{K_9} N_1 - \frac{K_1 K_6}{K_9} N_2 + \frac{K_1 K_4 I_3}{K_9} N_3 - \frac{K_1 I_3 I_4}{K_9} N_4$
11 12 13 14 15	\mathbf{M}_{D}	$-\frac{K_4 l_2 l_3}{K_9} N_1 + \frac{K_1 K_4 l_3}{K_9} N_2 - \frac{K_9 K_4}{K_9} N_3 + \frac{K_5 l_4}{K_9} N_4$
	$ m M_{ m E}$	$\frac{l_2 l_3 l_4}{K_9} N_1 - \frac{K_1 l_3 l_4}{K_9} N_2 + \frac{K_5 l_4}{K_9} N_3 - \frac{K_8}{K_9} N_4$

Tiếp bảng 1-6 : Các hệ số K

		•		
Hệ số		Số	nhịp	•
nę so	··· 2	3	4	5
К1	$2(l_1 + l_2)$	$2(I_{1+}I_{2})$	$2(l_{1} + l_{2})$	$2(I_{1+}I_{2})$
$ m K_2$		$2(l_{2+}l_{3})$	$2(l_{2+}l_{3})$	$2(I_{2} + I_{3})$
K ₃	-	$\mathbf{K_1K_2}$ - $\mathbf{l_2}^2$	2(l _{3 +} l ₄)	2(1 _{3 +} 1 ₄)
K ₄	•	-	$K_1K_2 - l_2^2$	2(l _{4 +} l ₅)
K ₅	-	-	K ₂ K ₃ - <i>l</i> ₃ ²	$\mathbf{K_1K_2} - \mathbf{l_3}^2$
K6	<u>-</u>	<u>-</u> · · ·	K ₃ K ₄ - K ₄ <i>l</i> ₃ ²	K3K4 - 14 ²
K ₇	·		· -	K ₂ K ₆ - K ₄ l ₃ ²
$ m K_8$	-	-	-	K ₃ K ₅ - K ₁ <i>l</i> ₃ ²
K 9	-		<u>.</u>	K ₅ K ₆ - K ₁ K ₄ <i>l</i> ₃ ²

Tiếp bảng 1-6 : Tri số N

		Sơ đồ đặt	tải trọng	
Trị số N	p l	✓ P Δ	P P P P P P P P P P P P P P P P P P P	P P P P P P P P P P P P P P P P P P P
N_1	$\frac{q_1 \vec{h} + q_2 \vec{k}}{4}$	$\frac{3}{8} (P_1 l_1^2 + P_2 l_2^2)$	$\frac{2}{3} (P_1 h_1^2 + P_2 h_2^2)$	$\frac{15}{16} (P_1 l_1^2 + P_2 l_2^2)$
N_2	$\frac{q_2 l_2^3 + q_3 l_3^3}{4}$	$\frac{3}{8} (P_2 I_2^2 + P_3 I_3^2)$	$\frac{2}{3} (P_2 l_2^2 + P_3 l_3^2)$	$ \frac{15}{16} (P_2 l_2^2 + P_3 l_3^2) $
N_3	$\frac{q_3 \cancel{k}_3^3 + q_4 \cancel{k}_4^3}{4}$	$\frac{3}{8} (P_3 I_3^2 + P_4 I_4^2)$	$\frac{2}{3} (P_3 l_3^2 + P_4 l_4^2)$	$\frac{15}{16} (P_3 l_3^2 + P_4 l_4^2)$
N ₄	$\frac{q_4 l_4^2 + q_5 l_5^2}{4}$	$\frac{3}{8} (P_4 l_4^2 + P_5 l_5^2)$	$\frac{2}{3} (P_4 l_4^2 + P_5 l_5^2)$	$\frac{15}{16} (P_4 I_4^2 + P_5 I_5^2)$

Bảng 1-7: Mômen uốn, mômen xoắn của dầm có mặt bằng hình gẫy góc và cung tròn

Sơ đồ và tải trọng	Công thức tính M, M _x
	$V\acute{o}i \lambda = \frac{EJ}{GJ_x} = 1$
4 111111111111111111111111111111111111	$M = -q \frac{x^2}{2} + q \frac{a^2 \sin^2 \alpha}{6}$
A A α B B Mặt bằng A a	$\mathbf{M}_{\mathbf{x}} = \mathbf{q} \frac{\mathbf{a}^2 \sin \alpha \cos \alpha}{6}$
XX C	Khi $\alpha = 45^{\circ}$ MA = MB = -0,409 qa ² ; (0,461 qa ²)
	$M_c = +0.091 \text{ qa}^2$; (0.039 qa^2)
(My) Wattimer	M = 0 tai x = 0.426 a; (0.279 a)
•	Số không có ngoặc ứng với $\frac{h}{b} = 0.5$
	Số trong ngoặc ứng với $\frac{h}{b} = 2$
	$M_x = 0.091 \text{ qa}^2$; (0.039 qa^2)
χ J.P κ	$V\acute{o}i \ \lambda = \frac{EJ}{GJ_x} = 1$
A Z α β β β	$M = P\left(\frac{a \sin^2 \alpha}{4} - \frac{x}{2}\right)$
Mặt bằng X C a	$M_{x} = P \frac{a \sin \alpha \cos \alpha}{4}$
M	$Khi \alpha = 45^{\circ}$
(Mx) VV	$M_A = M_B = -0.730$ Pa; (0.882Pa)
V V V V V V V V V V	$M_C = +0.270$ Pa; $(0.118$ Pa)
	$M_X = 0.27$ Pa; $(0.118$ Pa)

(Bång 1-7)

Bảng 1-8. Khung một nhịp một tầng

	_	ip mot tang
Mômen	M _c M _d M _b M _b	Ma Mb
Ma	$rac{\mathrm{q} \ l^2}{12} \ \mathrm{k}$	$\frac{\operatorname{Puv} l}{2} [k - (v - u) L']$
$M_{ m b}$	$\frac{q l^2}{12} k$	$\frac{\operatorname{Puv} l}{2} [\mathrm{k} - (\mathrm{v} - \mathrm{u}) \mathrm{L}']$
$ m M_c$	$\frac{q l^2}{6} k$	Puv <i>l</i> [0,5(v - u) L' + k]
$ m M_d$	$\frac{\operatorname{q} l^2}{6} k$	Puv <i>I</i> [k - 0,5(v - u) L']
Mômen	M _c M _d M _d M _b M _b	Mc Md Md Mb Mb
$ m M_a$	$\frac{Ph}{2} (1 - 3\mu L)$	gh ² 24 [(39 + 19μ)k - 12 μL'-12]
$\mathbf{M}_{\mathbf{b}}$	$\frac{\mathrm{Ph}}{2}\left(1-3\mu\mathrm{L}\right)$	$\frac{\mathrm{gh}^2}{24}[(9+5\mu)\ \mathrm{k}-12\ \mu\mathrm{L'}]$
$ m M_c$	$\frac{\mathrm{Ph}}{2}\left(3\mu\mathrm{L}\right)$	$\frac{\mathrm{gh}^2}{24}(12\mathrm{L'-k})$
$ m M_d$	$rac{ ext{Ph}}{2}\left(3\mu ext{L} ight)$	$\frac{qh^2}{24}(12L'+k)$
	$\mu = rac{J_2 \; h}{J_1 \; l} \; ; \; k = rac{1}{2 \; + \; \mu} \; ; \; L' = rac{1}{1 \; + \; 6 \mu}$ J_1 - của cột J_2 - của c	lầm

Bảng 1-9. Khung gẫy góc một nhịp

Trường hợp đặt tải trọng	M _A	M _B	\mathbf{Q}_{A} ; \mathbf{Q}_{B}
A B	$+\frac{pl^2}{48}$	$-\frac{pl^2}{48}$	$Q_{A} = Q_{B} = \frac{5pI^{2}}{32f}$
A B	$+\frac{5pJ^2}{192}$	$+\frac{pl^2}{192}$	$Q_{A} = \frac{5pl^2}{64f} = Q_{B}$
A I B	$-\frac{pl^2}{192}$	$-\frac{5 p l^2}{192}$	$QA = \frac{5pI^2}{64f} = QB$
p f B	+ <mark>5pf²</mark>	+ \frac{p \frac{p}{4}}{48}	$QA = -\frac{11pf}{16}$ $QB = \frac{5pf}{16}$
A B	$-\frac{\mathrm{pf}^2}{48}$	$-\frac{5 \mathrm{pf}^2}{48}$	$Q_{B} = \frac{5pf}{16}$ $Q_{B} = -\frac{11pf}{16}$
a P b	$\frac{+\operatorname{Pa}\left(\frac{l}{2}-\operatorname{a}\right)(2l-3\operatorname{a})}{l^2}$	$+\frac{\operatorname{Pa}^{2}\left(\frac{l}{2}-\operatorname{a}\right)}{l^{2}}$	$QA = \frac{Pa}{4f} \left(3 - 4\frac{a^2}{l^2} \right) = QB$
a P b	$-\frac{\mathrm{Pb}^2\!\!\left(\!\frac{l}{2}-\mathrm{b}\!\right)}{l^2}$	$-\frac{\mathrm{Pb}\left(\frac{l}{2}-\mathrm{b}\right)(2l-3\mathrm{b})}{l^2}$	$Q_{A} = Q_{B} = \frac{Pb}{4f} \left[3 - \frac{4b^{2}}{l^{2}} \right]$
b P f	+ Pab(4b + a) 4f ²	$+\frac{Pa^2}{4f^2}\frac{b}{4f^2}$	$Q_{A} = [P - Q_{B}]$ $Q_{B} = \frac{Pa}{4f} \begin{bmatrix} 3 - \frac{a^{2}}{f^{2}} \end{bmatrix}$
f B B	$+\frac{Pa^2 b}{4f^2}$	$+\frac{\text{Pab}(4b + a)}{4f^2}$	$Q_{A} = [P - Q_{B}];$ $Q_{B} = \frac{P_{a}}{4f} \left[3 - \frac{a^{2}}{f^{2}} \right]$
A P b B	$-\frac{\mathrm{Pa}^2}{4\mathrm{f}^2}$	- <u>Pab(4b + a)</u> 4f ²	$QA = \frac{Pa}{4f} \left[3 - \frac{a^2}{f^2} \right];$ $QB = -[P - QA]$

Bảng 1-10. Vòm hai khóp có thanh căng chịu lực tập trung đặt đối xứng

1						
>						
•					•	
1						
				(
0	: _	100				
5						
1		Ĺ			> =	
	-			የተ	,	-
	๙	Ф				
	-	-	/エ	ł		
	ิฒ		1			
	- 2a				~	
	٠.		1	1		
	_1	<u>L</u>	7 _	À.		
	์ เช	۵.	1			
	-10			به	_ 1	
		<u> </u>	L	_	_<	-
			Ţ	1		

	c4)
- B	+
ပ []	2c.
••	1
Д. 11	्रे
, EQ	⊡ 4
>	00
д	ςĭ
II	II
Α	Ë

8/1/8 B// L/3 B// B// B// B// B// B// B// B// B// B//			d d g _{ll}	9/	1 d d h	174	31/8 3/1/8 P	1
$H = 0,1512 \frac{Pl}{f} k$ $H = 0,1980 \frac{Pl}{f} l$	k	x H = 0,1	$\frac{P}{f}$	$rac{l}{r}$ k	$\mathbf{H} = 0,2784 \frac{\mathbf{P}l}{\mathbf{f}} \mathbf{I}$	- الا الا	$X = 0,3612 \frac{PI}{f} \frac{A}{f}$	и
M _x Qo M _x		Mx		Q°	M _x	وي ا	Mx	Q _o
0,00 1,00 0,00		00'0		1,00	0,00	1,00	0,00	1,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	÷	0,1250-0,08	369 k	1,00	$0,1250-0,1222\ K$	1,00	0,1250-0,1582 k	1,00
0,1250-0,0846 k 0,00 0,1667-0,1101 k		0,1667-0,1	101 k	1,00	0,1667-0,1548 k	1,00	0,1667-0,2008 k	1,00
0,1250-0,1134 k 0,00 0,1667-0,1485 k		0,1667-0,1	485 k	0,00	0,2500-0,2094 k	1,00	0,2500-0,2710 k	1,00
0,1250-0,1418 k 0,00 0,1667-0,1860 k		0,1667-0,1	.860 k	0,00	0,2500-0,2618 k	0,00	0,3750-0,3388 k	1,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,1667-0,1	1980 k	00,00	0,2500-0,2784 k	0,00	0,3750-0,3612 k	0,00
Pl P	1	. Pl	·	P	. <i>I</i> d	P	PI	Ъ

E - Môđun đàn hồi của vật liệu làm thanh vòm

 $\mathbf{E}_{\mathbf{z}^*}$ Môđun đàn hồi của vật liệu thanh căng

F - Diện tích tính đổi của tiết diện thanh vòm

 $\mathbf{F}_{\mathbf{z}}$ - Diện tích tiết diện thanh căng

I - Mômen quán tính tính đổi của tiết diện thanh vòm

Bang 1-11: Vòm hai khớp có thanh căng chịu lực tập trung đặt ở một phía

 $V_A = P(I - c)$; $V_B = P_C$; $c = \frac{a}{l}$; $H = 0.625 \frac{Pl}{f} k (c - 2c^3 + c^4)$

$H = 0.0756 \frac{Pl}{f} k$ $M_{x} \qquad Q_{0}$ $0.00 \qquad 0.875$ $0.1094-0.0331k + 0.875$ $0.1041-0.0423k - 0.125$ $0.0937-0.0567k - 0.125$ $0.0781-0.0709k - 0.125$ $0.0625-0.0756k - 0.125$	$\begin{array}{c c} & & & \\ \hline f & & \\ \hline f & & \\ \hline f & & \\ \hline Q_0 & & \\ \hline 0,875 & & \\ \hline -0,125 & & \\ \hline -0,125 & & \\ \end{array}$	H = 0,0990 Mx 0,00 0,1047-0,0435k	7 k 60 0,833 0,833	$A = 0.1392 \frac{P^I}{f} k$: : : /		
H = 0,0756 Mx 0,00 94-0,0331k 41-0,0423k 37-0,0567k 31-0,0709k	Pl k f Qo 0,875 - 0,125 - 0,125	H = 0,0990 Mx Mx 0,00 0,1047-0,0435k 0,1389-0,0550 k	7 k f Q ₀ 0,833	$^{\Delta}$ H = $0,1392^{\overline{J}}$	ſ	•			~
M _x 0,00 0,400 0,41-0,0423k 0,37-0,0567k 81-0,0709k	Q _o 0,875 -0,125 -0,125	M _x 0,00 0,1047-0,0435k 0,1389-0,0550 k	Q ₀ 0,833 0,833		$\frac{\Delta}{f}_{ m k}$	$A = 0,1806^{\frac{1}{2}}$	$\frac{\Lambda}{Pl}_{\mathbf{k}}$	$A = 0.1955 \stackrel{\text{L}}{=}$	$\frac{P}{\epsilon}_{\mathbf{k}}$
0,00 .094-0,0331k .041-0,0423k .937-0,0567k .781-0,0709k .625-0,0756k	0,875 + 0,875 - 0,125 - 0,125	0,00 0,1047-0,0435k 0,1389-0,0550 k	0,833	Mx	ြီ	Mx	9	Mx	
1094-0,0331k 1041-0,0423k 1037-0,0567k 10381-0,0709k	+ 0,875 - 0,125 - 0,125	0,1047-0,0435k 0,1389-0,0550 k	0,833	0,00	0,750	0,00	0,625	00'0	0,500
.1041-0,0423k 0937-0,0567k 0781-0,0709k 0625-0,0756k	-0,125	.389-0,0550 k		0,0937-0,0611k	0,750	0,0781-0,0791k	0,625	0,0625-0,0856k	0,500
0937-0,0567k 0781-0,0709k 0625-0,0756k	-0,125		0,833 -0,167	0,1252-0,0774 k	0,750	0,1044-0,1004 k	0,625	0,0835-0,1087 k	0,500
,0781-0,0709k ,0625-0,0756k		0,1250-0,0743 k	- 0,167	0,1875-0,1047 k	+ 0,750	0,1563-0,1356 k	0,625	0,1250-0,1466 k	0,500
0,0625-0,0756k		0,1047-0,0929 k - 0,167		0,1563-0,1309 k	- 0,250	0,2344-0,1694 k	+ 0,625	0,1857-0,1834 k	0,500
-	-0,125	0,0833-0,0990 k	0,167	0,1250-0,1392 k	- 0,250	0,0875-0,1806 k	- 0,375	0,2500-0,1955 k	+ 0,500
0,0469-0,0709k - 0,125		0,0625-0,0929 k	- 0,167	0,0693-0,1309 k	- 0,250	0,1406-0,1694 k	- 0,375	0,1857-0,1834 k	- 0,500
0,0313-0,0567k	- 0,125	0,0417-0,0743 k	0,167	0,0635-0,1047 k	- 0,250	0,0937-0,1355 k	- 0,375	0,1250-0,1466 k	- 0,500
0,0209-0,0423k	- 0,125	0,0278-0,0550 k	0,167	0,0418-0,0774 k	- 0,250	0,0626-0,1004 k	- 0,375	0,0835-0,1087 k	- 0,500
0,0156-0,0331k	- 0,125	0,0208-0,0435 k	- 0,167	0,0313-0,0611 k	- 0,250	0,0469-0,0791 k	- 0,375	0,0625-0,0856 k	- 0,500
0,00	- 0,125	0,00	-0,167	0,00	- 0,250	0,00	- 0,375	00,0 >	- 0,500
Pl	Ъ	Pl	Д	P1	Ъ	P <i>J</i>	Ъ	P <i>j</i>	Ъ

Bảng 1-12 : Vòm hai khớp có thanh căng chịu tải trọng phân bố đều đặt đối xứng

H = 0,1250 $\frac{ql^2}{\epsilon}$ k (5c² - 5c⁴ + 2c⁵)

 $V_A = qa$; $V_B = qa$; c =

		$H = 0.1250 \frac{g^2 k}{}$		00	001	0,500	0,375	000	0,533	0.00	0,250	1 0	0,125	90	0,00
	5	H = 0,		Mx	000	0,00	0,0040	0.0604	€000°	0.000	0,0000	0.1170	0,1116	0.1950	0,1400
	3/1/8/	9/ ² k	- 	<u>ල</u>	0.375		-4	0.208	22-12	0 125	2,	000	20,0	0.00	2
	S/18	$f = 0.0774 \frac{ql^2}{f} K$		Mx	0:00	0.0391-0.0340 &	* 0-10	0,0487-0,0430 k		$0,0625-0,0580 \ k$		0,0700-0.0726 k		0,0700-0,0774 k	
	41	A If K		ලි	0,250	0,125		0,083		00,0		0,00		0000	
- 11	1 d d d d d d d d d d d d d d d d d d d	$A = 0.0368 \frac{qP}{f} K$		IVIX	00'0	0,0235 - 0,0162 k		0,0279 - 0,0204 k		$0,0310 - 0,0276 \ k$		$0,0310 - 0,0346 \ K$		0,0310 - 0,0368 k	
//Si		9/² k f	6	O.W	0,167	0,042		00,0		0,00		0,00		00,00	
9/11	<u>Б</u>	$H = 0.0169 \frac{q^2}{f} \text{ k}$	Mx		0,00	0,0126-0,0074 K		0,0139-0,0094 K		0,0139-0,0128 K		0,0139-0,0159 K		0,0139-0,0169 k	
8//		3/² k f	S	3	0,125	00,00		00,0		00,00		0,00		00,0	
8//	5	$H = 0,0996 \frac{g^2}{f} k$	Mx	000	00,00	0,0079-0,0042k	0 0000	0,0079-0,0053 <i>k</i>	0.0079.0.00797	37100,0-6100,0	.00000000000000000000000000000000000000	0,0078-0,0090K		U,UU79-U,U095K	
: :	Z. Zi	tiết diện		_ c	, 	8/8	$\frac{1}{1}$	6,	μì	4	— ကြ	8	<u>ابا</u>	2	N.P. S.

Nhân với

ď

 $ql^2(l-k)$

ď

q¹²

ď

 ql^2

ď

 ql^2

ď

 q^{j^2}

 $V_A = V_B = 0.5q(I - 2a)c = \frac{a}{r}$

a l-2a a

Bảng 1-13: Vòm hai khóp có thanh căng chịu tải trọng phân bố đều đặt một phía

$$V_A = qa(1 - \frac{c}{2}); V_B = \frac{qa^2}{2l}; c = \frac{a}{l}$$

H = 0,0625 $\frac{ql^2}{f}$ K(5c² - 5c⁴ + 2c⁵)

	b <u> 8//</u>		p m/9/1		1/4 q		3//8		1/2 mannamana q	
Vị trí tiết						A				Λ°
diện	$H = 0,0048. \frac{q^{1}}{f}$	$\frac{I^2}{\mathrm{f}}\cdot\mathrm{k}$	H=0,0085 9	$\frac{\mathfrak{q}I^2}{\mathrm{f}}$. \mathbf{k}	$\frac{1}{f}$ H = 0,0184 · $\frac{qI}{f}$	-2- 	$H = 0.0387 \cdot 91^{\frac{2}{1}}$	$\frac{l^2}{k}$. \mathbf{k}	H = 0,0625 . 9	$rac{ extsf{q}l^2}{ extsf{f}}$. k
	Mx	တိ	Mx	ලං	Mx	රු	Mx	Qo	Mx	රු
0 .	0,00	0,117	0,00	0,1528	00,00	0,219	0,00	0,305	00'0	0,375
$\frac{1}{8}I$	0,0070-0,0021k	800'0 -	0,0113-0,0037 k	0,0278	0,0195 - 0,0081 k	0,094	0,0303-0,0170 k	0,180	0,0392-0,0274k	0,250
$\frac{1}{6}I$	0,0067-0,0027 k	- 0,008	0,0116-0,0047 K	-0,0139	0,0227 - 0,0102 k	0,052	0,0370-0,0215 k	0,138	0,0487-0,0348k	0,202
$\frac{1}{4}I$	0,0060-0,0036 k	- 0,008	0,0104-0,0063 K	-0,0139	0,0233 - 0,0138 k	- 0,031	0,0450-0,0290 k	0,055	0,0625-0,0469k	0,125
$\frac{3}{8}I$	0,0050-0,0045 K	- 0,008	0,0087-0,0079 k	-0,0139	0,0194 - 0,0173 k	- 0,031	0,0437-0,0363 k	-0,070	0,0703-0,0586k	0,000
$\frac{1}{2}I$	0,0040-0,0048 k	- 0,008	0,0069-0,0085 k	-0,0139	0,0155 - 0,0184 K	- 0,031	0,0350-0,0387 k	-0,070	0,0625-0,0625k	-0,125
$l\frac{2}{8}$	0,0030-0,0045 k	- 0,008	0,0052-0,0079 k	-0,0139	0,0116 - 0,0173 K	180,0-	0,0263-0,0363 K	-0,070	0,0469-0,0586k	-0,125
$\frac{3}{4}I$	0,0020-0,0036 k	- 0,008	¥ 8900'0-9800'0	6810'0-	0,0078 - 0,0138 k	- 0,031	0,0175-0,0290 k	-0,070	0,0313-0,0469k	-0,125
$\frac{5}{6}I$	0,0013-0,0027 k	- 0,008	0,0023-0,0047 k	681,0,0-	0,0052 - 0,0102 k	- 0,031	0,0117-0,0215 k	-0,070	0,0209-0,0848k	-0,125
$l\frac{8}{2}$	0,0010-0,0021 k	800'0 -	0,0017-0,0037 k	6810'0-	0,0039 - 0,0081 K	.0,031	0,0088-0,0170 K	-0,070	0,0156-0,0274k	-0,125
11	00,00	- 0,008	00'0	- 0,0139	0,00	- 0,031	00'0	-0,070	0,00	-0,125
Nhân với	d^{b}	l'b	qP	l'b	ql ²	ď.	q1 ²	ľb	ql^2	ď

Bảng 1-14. Phản lực, lực xô ngang, mômen uốn của vòm thoải $\left|rac{f}{1} \le rac{1}{4}
ight|$ không có liên kết khớp

Tiếp bảng 1-14

Mc	Khi $\alpha \le 0,5$; $-\frac{qI^2}{8}\alpha^3 (2.5\alpha + 2\alpha^2)$	$-\frac{ql^2}{4}\alpha^3(2-5\alpha+2\alpha^2)$	- <mark>92</mark> - 560
$\mathbf{M}_{\mathbf{B}}$	$\frac{ql^2}{2}\alpha^3(1\cdot 2\alpha + \alpha^2)$	= MA	$-\frac{q^{p}}{210}$
$\mathbf{M}_{\mathbf{A}}$	$\frac{ql}{2}\alpha(2-2\alpha^2+\alpha^3) \left \begin{array}{c} \frac{ql^2}{2}\alpha^3 (2-\alpha) \\ \\ \end{array} \right \frac{ql^2}{8f}\alpha^3 (10-15\alpha+6\alpha^2) - \frac{ql^2}{2}\alpha^2 (1-3\alpha+3\alpha^2-\alpha^3) \left \begin{array}{c} \frac{ql^2}{2}\alpha^3 (1-2\alpha+\alpha^2) \\ \\ \end{array} \right $	$\frac{ql^2}{4f}\alpha^3(10\text{-}15\alpha\text{+}6\alpha^2) - \frac{ql^2}{2}\alpha^2(1\text{-}4\alpha\text{+}5\alpha^2\text{-}2\alpha^3)$	$-rac{q^{2}}{210}$
H	$rac{ql^2}{8\mathbf{f}}lpha^3(10-15lpha+6lpha^2)$	$\frac{ql^2}{4f}\alpha^3(10-15\alpha+6\alpha^2)$	<u>q.^p.</u> 56f
В	$\frac{ql}{2}\alpha^3(2-\alpha)$	ρlα	9 /b
A	$\frac{ql}{2}\alpha(2-2\alpha^2+\alpha^3)$	plp	9 76
Tải trọng trên vòm	p(III)	The Tall	Trimming 1-4

Bảng 1-15 : Mômen uốn và lực cắt trong đầm giao thoa của bản sàn (chu vi kê tự do) chịu tải trọng phân bố đều trên mặt bản

G 73 2		$A_1 \cdot A_1$		B ₁ - B	1 '
Sơ đồ mặt bằng	Nội lực	$\mathbf{l_x} \neq \mathbf{l_y}$	$l_x = l_y$		$l_x = l_y$
B ₁	M ₁	$\frac{q}{2} \cdot \frac{I_{x}^{2}I_{y}^{4}}{(I_{x}^{3} + I_{y}^{3})}$	<u>ql³</u>	$\frac{\mathbf{q}}{2} \cdot \frac{f_{\mathbf{y}}^2 l_{\mathbf{x}}^4}{(f_{\mathbf{x}}^3 + f_{\mathbf{y}}^3)}$	$\frac{ql^3}{4}$
A1 1 A1 ly B1	Qmax	$rac{\mathrm{q}}{2} \cdot rac{l_{\mathrm{x}} l_{\mathrm{y}}^4}{l_{\mathrm{x}}^3 + l_{\mathrm{y}}^3}$	$\frac{ql^2}{4}$	$rac{\mathrm{q}}{2}\cdotrac{\mathit{l_y}\mathit{l_x^4}}{(\mathit{l_x^3}+\mathit{l_y^3})}$	$\frac{\Im^2}{4}$
B ₁ B ₁ b _X b _X	$\mathbf{M_{1}}$	$\mathbf{q} \cdot \frac{\mathit{l}_{\mathbf{x}}^{2} \mathit{l}_{\mathbf{y}}^{4}}{5\mathit{l}_{\mathbf{x}}^{3} + \mathit{l}_{\mathbf{y}}^{3}}$	<u>ql³</u> 6	$\frac{\mathbf{q}}{2} \cdot \frac{5I_{x}^{4}I_{y}^{2}}{(5I_{x}^{3} + I_{y}^{3})}$	$\frac{5}{12} \cdot ql^3$
A1 1 1 A1 iy B1 B1	Qmax	$q \cdot \frac{I_x I_y^4}{5I_x^3 + I_y^3}$	<u>ql²</u> 6	$\frac{q}{2} \cdot \frac{5l_{x}^{4}l_{y}}{(5l_{x}^{3} + l_{y}^{3})}$	$\frac{5}{12} \cdot ql^2$
	\mathbf{M}_1	$\mathbf{q} \cdot \frac{I_{\mathbf{x}}^2 I_{\mathbf{y}}^4}{I_{\mathbf{x}}^3 + I_{\mathbf{y}}^3}$	$\frac{ql^3}{2}$	$q \cdot \frac{I_{x}^{4}I_{y}^{2}}{(I_{x}^{3} + I_{y}^{3})}$. <u>ql</u> ³
A1 1 1 A1 ly B1 B1	Qmax	$\mathbf{q} \cdot \frac{I_{\mathbf{x}}I_{\mathbf{y}}^{4}}{I_{\mathbf{x}}^{3} + I_{\mathbf{y}}^{3}}$	$\frac{\mathrm{q}l^2}{2}$	$q \cdot \frac{I_x^4 I_y}{(I_x^3 + I_y^3)}$	$\frac{\mathrm{q} l^2}{2}$

Bảng 1-16: Mômen uốn và lực cắt trong dầm giao thoa của bản sàn (chu vi kê tự do) khi ô bản là hình vuông chịu tải trọng phân bố đều trên mặt bản

Sơ đồ mặt bằng	Nội lực	\mathbf{A}_1 - \mathbf{A}_1	\mathbf{B}_1	- B ₁	B ₂ - B ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mı	$\frac{5}{41}$. q l^3	<u>17</u> 41	-q1 ³	-
A ₁	$ m M_2$	$\frac{3}{41}$ q l^3	-		$\frac{22,5}{41} q I^3$
B ₁ B ₂ B ₁	Q _{max}	$\frac{5}{41}$ q I^2	$\frac{17}{41}$	qI^2	$\frac{22,5}{41}$ q I^2
B ₁ B ₂ B ₁	M_1	$\frac{85}{217}$. ql^3	$\frac{142}{21}$	2 7 ^q 1 ³	- -
$\begin{bmatrix} A_1 & 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 & A_1 \end{bmatrix}$	$ m M_2$	$\frac{95}{217}$ q I^3		-	$\begin{array}{ c c }\hline \frac{197}{217} q l^3\end{array}$
B ₁ B ₂ B ₁	Q _{max}	$\frac{85}{217}$ q l^2	$\frac{142}{21'}$	$\frac{2}{7}$ q l^2	$\frac{197}{217} qI^2$
B ₁ B ₂ B ₁		A ₁ - A ₁ ; B ₁ -	B ₁	A ₂ - A	A ₂ ; B ₂ - B ₂
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	M_1	$\frac{85}{128}ql^3$			_
A ₂ 1 3 1 A ₂	$ m M_2$	$\frac{106}{128}q\vec{l}^3$			$\frac{18}{28}ql^3$
A ₁	М3	-	·		$\frac{150}{128}ql^3$
	Q_{max}	$\frac{85}{128}q\mathring{l}^3$		•	$\frac{118}{128}q^{2}$

Bảng 1-17: Phân phối tải trọng và mômen uốn trong các dầm sàn giao thoa, chu vi kê tự do

Sơ đồ mặt bằng	Dầm	Tải trọng (q - tải trọng trên 1m² sàn)	$ m M_{max}$
1	2	3	4
	A-A	0,562 q <i>l</i>	$1{,}1248~\mathrm{q}i^3$
A B B	В-В	0,415 q <i>l</i>	0,832 q <i>l</i> ³
A A A A	A-A	0,55 q <i>l</i>	1,715 q <i>l</i> ³
A A B A B	В-В	0,316 q <i>l</i>	0,9875 q <i>i</i> ³
A B C	A-A	0,635 q <i>l</i>	2,8584 q <i>i</i> ³
A I I A I B I	В-В	0,523 q <i>I</i>	2,3544 q <i>i</i> ³
CJC l	C-C	0,293 q <i>I</i>	1,3176 q <i>l</i> 3
BAA	A-A	0,305 q <i>l</i>	0,0382 $ m q\it I\!L^2$
A	В-В	0,596 q <i>l</i>	0,0746 q 几 ²

Tiếp bảng 1-17

1	2	3	4
C B A	A-A	0,34 ql	$0.0425~\mathrm{qlL}^2$
B	В-В	0,302 ql	$0,0378~ m qlL^2$
A L	C-C	0,583 ql	$0.0729~ m qlL^2$
	A-A	0,311 ql	$0.0389~\mathrm{qlL}^2$
	В-В	0,341 ql	$0.0427~\mathrm{qlL}^2$
	C-C	0,308 ql	$0,0385~\mathrm{qlL}^2$
A	D-D	0,570 ql	$0,0713~\mathrm{qlL}^2$

Bảng 1-18 : Phân phối tải trọng lên hệ dầm có sườn giằng

Sợ đồ mặt bằng	Tải trọng thành phần	Hệ số K
1	2	3
3 dầm + 1 sườn giằng Dầm E ₁ J ₁ Sườn giằng E ₂ J ₂ P P ₂ P ₁ P ₂	$P_1 = P \cdot \frac{1 + 2K}{3 + 2K}$ $P_2 = P \cdot \frac{1}{3 + 2K}$	8a ³ E ₁ J ₁ 1 ³ E ₂ J ₂

		Tiep bang 1-10
· 1	2	3
5 dầm + 1 sườn giằng	·	
\ <u></u>		
	$R_{\rm b} = 7K^2 + 18K + 1$	
<u>i</u> 2 P	$P_1 = P \cdot \frac{7K^2 + 18K + 1}{7K^2 + 34K + 5}$	8a ³ E ₁ J ₁
	, it follers	l^3 E $_2$ J $_2$
	1177 ± 1	l
	$P_2 = P \cdot \frac{11K + 1}{7K^2 + 34K + 5}$	Khi K $\frac{1}{2}$ chỉ
a a a	7K ⁻ + 34K + 5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P		phân phối cho 3
	$P_3 = P \cdot \frac{1 - 3K}{7K^2 + 34K + 5}$	dầm.
	$7K^2 + 34K + 5$	
$P_3 \sim P_2 \sim P_1 \qquad P_2 \sim P_3$		
7 dôm i 1 mile sik		:
7 dầm + 1 sườn giằng	0.0773	
	$P_1 = P \cdot \frac{26K^3 + 131K^2 + 27K + 1}{26K_3 + 193K^2 + 196K + 7}$:
	$26K_3 + 193K^2 + 196K + 7$	•
		:
$\frac{l}{2}$ $\stackrel{\square}{=}$ $\stackrel{\square}{=}$ $\stackrel{\square}{=}$ $\stackrel{\square}{=}$ $\stackrel{\square}{=}$	$P_2 = P \cdot \frac{46K^2 + 57K + 1}{26K^3 + 193K^2 + 196K + 7}$	$8a^3E_1J_1$
2	$26K^3 + 193K^2 + 196K + 7$	l^3 E $_2$ J $_2$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Khi K > 0,056
a a a a a		chỉ phân phối
I P	$P_3 = P \cdot \frac{-18K^2 + 23K + 1}{26K^3 + 193K^2 + 196K + 7}$	cho 5 dầm.
	20K + 193K + 196K + 7	cho 5 dani.
P ₄ P ₃ P ₂ P ₁ P ₂ P ₃ P ₄	$P_4 = P \cdot \frac{3K^2 - 18K + 1}{26K^3 + 193K^2 + 196K + 7}$	
	$26K^3 + 193K^2 + 196K + 7$	
111111111111111111111111111111111111111		· · · · · ·
P		
<u>Γ</u>		•
	2K+5	
P 8/1	$P_1 = P - \frac{2K + 5}{2K + 15}$	a = 9-
		$\frac{27a^3E_1J_1}{2}$
a a	ъ. дъ 5	${\color{blue}1^{3}\textbf{E}_{2}\textbf{J}_{2}}$
P	$P_2 = P \cdot \frac{5}{2K + 15}$	
		×
	l de la companya de	
P_2 P_1 P_2		:

Tiếp bảng 1-18

	10-11	: -
1	2	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{1} = P \cdot \frac{7K^{2} + 90K + 25}{7K^{2} + 170K + 125}$ $P_{2} = P \cdot \frac{55K + 25}{7K^{2} + 170K + 125}$ $P_{3} = P \cdot \frac{25 - 15K}{7K^{2} + 170K + 125}$	$rac{27a^3 E_1 J_1}{l^3 E_2 J_2}$ Khi K > $rac{5}{3}$ chỉ phân phối cho 3 dầm.
P P4 P3 P2 P1 P2 P3 P4	$\begin{split} P_{1} = & P. \frac{26K^3 + 655K^2 + 1800K + 125}{26K^3 + 965K^2 + 4900K + 875} \\ P_{2} = & P. \frac{230K^2 + 1425K + 125}{26K^3 + 965K^2 + 4900K + 875} \\ P_{3} = & P. \frac{90K + 575K + 125}{26K^3 + 965K^2 + 4900K + 875} \\ P_{4} = & P. \frac{15K^2 - 450K + 125}{26K^3 + 965K^2 + 4900K + 875} \end{split}$	27a ³ E ₁ J ₁ 1 ³ E ₂ J ₂ Khi K > 0,267 chỉ phân phối cho 5 dầm.

Bảng 1-19 : Các hệ số tính đan sàn chữ nhật làm việc hai phương chịu tải trọng phân bố đều trên mặt bản

	<u>□</u> ∀				k 32	0,0893	0,0883	0,0867	0,0844	0,0820	0,0791	0,0760	0,0726	0,0688	0,0654	0,0620	0,0585	0,0553	0,0519	0,0489	0,0460	0,0432	0,0407	0,0332	0,0339	0.0338
	~ 			Ymman Y	m 32	0,0334	0,0325	0,0313	0,0302	0,0292	0,0280	0,0269	0,0258	0,0248	0,0237	0,0228	0,0219	0,0208	0,0198	0,0190	0,0181	0,0172	0,0165	0,0157	0,0149	0.0142
**	Sơ đồ 3				m 31	0,0273	0,0293	0,0313	0,0332	0,0348	0,0363	0,0378	0,0391	0,0401	0,0411	0,0420	0,0427	0,0433	0,0437	0,0441	0,0443	0,0444	0,0445	0,0445	0,0444	0.0443
•	- 	11111111	7 1/1+	"	k 21	0,0892	0,0895	0,0892	0,0885	0,0872	0,0859	0,0843	0,0827	0,0808	0,0790	0,0772	0,0754	0,0735	0,0718	0,0701	0,0685	0,0668	0,0653	0,0638	0,0624	0.0610
		2		¥ Turning	111 22	0,0273	0,0252	0,0231	0,0213	0,0196	0,0179	0,0165	0,0152	0,0140	0,0128	0,0119	0,0109	0,0101	0,0093	9800'0	0,0080	0,0075	6900'0	0,0064	0,0060	0.0056
	Sơ đồ 2		·		m21	0,0334	0,0343	0,0349	0,0353	0,0357	0,0359	0,0359	0,0358	0,0357	0,0353	0,0350	0,0346	0,0341	0,0338	0,0333	0,0329	0,0326	0,0321	0,0316	0,0310	0.0303
,				Yaman Yang	m 12	0,0365	0,0341	0,0330	0,0314	0,0298	0,0282	0,0268	0,0253	0,0240	0,0225	0,0214	0,0201	0,0189	0,0179	0,0169	0,0158	0,0148	0,0140	0,0133	0,0125	0.0118
	Sơ đồ 1	- 7		i	m11	0,0365	0,0384	0,0399	0,0414	0,0428	0,0440	0,0452	0,0461	0,0469	0,0475	0,0480	0,0484	0,0485	0,0486	0,0488	0,0486	0,0485	0,0484	0,0480	0,0476	0.0473
		7	$\overline{l_1}$			1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50	1,55	1,60	1,65	1,70	1,75	1,80	1,85	1,90	1,95	2,00

-																			<i>о</i> р			
ο,	\mathbf{k}_{62}	0,0625	0,0590	0,0558	0,0522	0,0488	0,0454	0,0421	0,0391	0,0361	0,0334	0,0310	0,0286	0,0265	0,0245	0,0228	0,0211	0,0196	0,0183	0,0169	0,0160	0,0147
	\mathbf{k}_{61}	0,0625	0,0655	0,0675	0,0691	0,0703	0,0710	0,0711	0,0711	0,0709	0,0703	0,0695	0,0686	0,0678	0,0668	0,0657	0,0645	0,0635	0,0622	0,0612	0,0599	0,0588
7	\mathbf{m}_{62}	0,0269	0,0255	0,0242	0,0228	0,0214	0,0202	0,0188	0,0176	0,0165	0,0154	0,0144	0,0134	0,0125	0,0117	0,0109	0,0097	9600,0	0,0089	0,0084	0,0078	0,0074
Sơ đồ 6	\mathbf{m}_{61}	0,0269	0,0282	0,0292	0,0301	0,0309	0,0314	0,0319	0,0320	0,0323	0,0324	0,0324	0,0323	0,0321	0,0319	0,0316	0,0313	0,0308	0,0306	0,0302	0,0299	0,0294
α. ************************************	\mathbf{k}_{52}	0,0694	0,0705	0,0708	0,0710	0,0707	0,0700	0,0689	0,0676	0990'0	0,0641	0,0621	0,0599	0,0577	0,0555	0,0531	0,0507	0,0484	0,0461	0,0439	0,0418	0,0397
Turning 7	${f m}_{52}$	0,0267	0,0265	0,0262	0,0258	0,0254	0,0248	0,0242	0,0235	0,0229	0,0222	0,0214	0,0207	0,0200	0,0193	0,0186	0,0179	0,0172	0,0165	0,0158	0,0152	0,0146
Sơ đồ 5	m ₅₁	0,0180	0,0199	0,0218	0,0236	0,0254	0,0271	0,0287	0,0302	0,0316	0,0329	0,0341	0,0352	0,0362	0,0369	0,0376	0,0383	0,0388	0,0393	0,0396	0,0398	0,0400
2 + 1	\mathbf{k}_{41}	0,0694	0,0680	0,0667	0,0650	0,0633	0,0616	0,0599	0,0582	0,0565	0,0550	0,0533	0,0519	0,0506	0,0493	0,0476	0,0466	0,0454	0,0443	0,0432	0,0422	0,0412
-22	m42	0,0180	0,0161	0,0146	0,0131	0,0118	0,0106	0,0097	0,0088	0,0080	0,0072	9900'0	0,0060	0,0056	0,0051	0,0047	0,0043	0,0040	0,0037	0,0034	0,0032	0,0030
Sơ đồ 4	m ₄₁	0,0267	0,0267	0,0266	0,0264	0,0261	0,0257	0,0254	0,0250	0,0245	0,0240	0,0235	0,0230	0,0226	0,0221	0,0217	0,0212	0,0208	0,0204	0,0199	0,0196	0,0193
$\frac{l2}{l_1}$		1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50	1,55	1,60	1,65	1,70	1,75	1,80	1,85	1,90	1,95	2,00

	Sơ đồ 7				Sơ đồ 8		<u> </u>	<u>-</u>	Sơ đồ 9	*		ď
	*****	.1	7	<u>ınının</u>		, j	-n	mum.	. 1	7		
	-		7	шЩ		:						
·												•
	m 71	m 72	k 71	k ₇₂	m81	m82	k 81	k 82	m 691	m 92	k 91	k 92
1,00	0,0226	0,0198	0,0556	0,0417	0,0198	0,0226	0,0417	0,0556	0,0179	0,0179	0,0417	0,0417
1,05	0,0231	0,0184	0,0560	0,0385	0,0213	0,0221	0,0450	0,0545	0,0187	0,0171	0,0437	0,0394
1,10	0,0234	0,0169	0,0565	0,0350	0,0226	0,0212	0,0481	0,0530	0,0194	0,0161	0,0450	0,0372
1,15	0,0236	0,0154	0,0564	0,0319	0,0238	0,0206	0,0507	0,0511	0,0200	0,0150	0,0461	0,0349
1,20	0,0236	0,0142	0,0560	0,0292	0,0249	0,0198	0,0530	0,0491	0,0204	0,0142	0,0468	0,0325
1,25	0,0236	0,0132	0,0552	0,0267	0,0258	0,0189	0,0549	0,0470	0,0207	0,0133	0,0473	0,0303
1,30	0,0235	0,0120	0,0545	0,0242	0,0266	0,0181	0,0565	0,0447	0,0208	0,0123	0,0475	0,0281
1,35	0,0233	0,0110	0,0536	0,0222	0,0272	0,0172	0,0577	0,0424	0,0210	0,0115	0,0474	0,0262
1,40	0,0230	0,0102	0,0526	0,0202	0,0279	0,0162	0,0588	0,0400	0,0210	0,0107	0,0373	0,0240
1,45	0,0228	0,0094	0,0516	0,0185	0,0282	0,0154	0,0593	0,0377	0,0209	0,0100	0,0469	0,0223
1,50	0,0225	0,0086	0,0506	0,0169	0,0285	0,0146	0,0597	0,0354	0,0208	0,0093	0,0464	0,0206
1,55	0,0221	0,0079	0,0495	0,0155	0,0289	0,0138	0,0599	0,0332	0,0206	9800,0	0,0459	0,0191
1,60	0,0218	0,0073	0,0484	0,0142	0,0289	0,0130	0,0599	0,0312	0,0205	0,0080	0,0452	0,0177
1,65	0,0214	0,0067	0,0473	0,0131	0,0290	0,0123	0,0597	0,0293	0,0202	0,0074	0,0446	0,0164
1,70	0,0210	0,0062	0,0462	0,0120	0,0290	0,0116	0,0594	0,0274	0,020,0	0,0069	0,0438	0,0152
1,75	0,0206	0,0058	0,0452	0,0112	0,0200	0,0109	0,0589	0,0256	0,0197	0,0064	0,0431	0,0141
1,80	0,0203	0,0054	0,0442	0,0102	0,0288	0,0103	0,0583	0,0240	0,0195	0,000,0	0,0423	0,0131
1,85	0,0200	0,0050	0,0432	0,0095	0,0286	0,0097.	0,0576	0,0225	0,0192	0,0056	0,0415	0,0122
1,90	0,0196	0,0046	0,0422	0,0088	0,0284	0,0092	0,0570	0,0212	0,0190	0,0052	0,0408	0,0113
1,95	0,0192	0,0043	0,0413	0,0082	0,0282	9800'0	0,0562	0,0198	0,0186	0,0049	0,0400	0,0107
2,00	0,0189	0,0040	0,0404	0,0076	0,0280	0,0081	0,0555	0,0187	0,0183	0,0046	0,0392	0,0098
						1					,	

Bảng 1-20 : Mômen uốn, lực cắt trong các bản tam giác đều, hình tròn, bán nguyệt, lục giác đều ngàm chu vi chịu tải trọng phân bố đều (p) trên mặt bản

Các trị số mômen, lực cắt	$M_1 = -0.0731 pR^2$ $Q_1 = -0.491 pR$ $M_2 = -0.0584 pR^2$ $Q_2 = -0.412 pR$	$M_{\rm X} = My = 0.049835(1 + \mu$) pa ² $M_{\rm O} = -0.153484$ pa ² $Q_{\rm O} = 1.337428$ pa
Mặt bằng bản	M, M	Moo o o o
Các trị số mômen, lực cắt	$Mx = 0.00812 \text{ p}/2$ $My = 0.00716 \text{ p}/2$ $\overline{M}_g = -0.01787 \text{ p}/2$	$M_{r} = \frac{P}{16\pi} [1 + \mu - (3 + \mu)\rho^{2}]$ $M_{t} = \frac{P}{16\pi} [1 + \mu - (1 + 3\mu)\rho^{2}]$ $Q_{r} = -\frac{P}{2a\pi}\rho$ $P_{\pi}\pi a^{2} \rho$
Mặt bằng bản	Mg My	$\rho = \frac{r}{a}$ $\mu - H\hat{e} s\hat{o} Po\hat{a}t x\hat{o}ng$

Bảng 1-21 : Công thức và các hệ số xác định mômen uốn của bản ngàm bốn cạnh chịu tải trọng tam giác

l _y	M _x	M _y	$\lambda_{\mathbf{x}}$	$\lambda_{ m y}$	Độ võng z	D	μ	
$\frac{2}{3} \sim 1$	$\eta_{\mathbf{x}} p \lambda_{\mathbf{x}}^2$	η $_{yp}\lambda_{x}^{2}$	$\frac{l_x}{6}$	-	$\alpha \cdot \frac{p\lambda_x^2}{D}$	$\frac{Eh^3}{12(1 - \mu^2)}$	Hệ số	
1,5	$\eta_{\mathbf{x}} \mathfrak{p} \lambda_{\mathbf{y}}^2$	η $_{ extbf{y}}$ ρ $\lambda_{ extbf{y}}^2$:	<u>ly</u> 6	$lpha \cdot rac{p\lambda_y^2}{D}$	12(1 – μ-)	Poát xông	
$\frac{l_y}{l_x}$	Điểm	α	ηx .	η_y		Sơ đồ bản	: :	
	. 1	0	- 0,0764	- 0,4582	+	<u>**</u> *1	<u> </u>	
$\frac{2}{3}$	7	0	- 0,3326	- 0,0554	ور الأبدا ا	72 1, 22		
3	13	0	- 0,1117	- 0,670	4 / (**)	- *		
	22	0,33898	0,1314	0,2939		13 		
	1	0	- 0,0999	- 0,5992				
1	7	0	- 0,8051	- 0,1342				
<u>-</u> ,	13	0	- 0,1685	- 1,011				
	22	0,99428	0,3844	0,3844				
	1	0	- 0,0336	- 0,2014		•		
1,5	7	0	- 0,5641	- 0,094			:	
	13	0	- 0,0773	- 0,4639		·.		
-	22	0,33898	0,2939	0,1314				

Phần 2

Số LIỆU VỀ TẢI TRỌNG

Bảng 2-1. Trọng lượng đơn vị một số loại vật liệu xây dựng (Trị số tiêu chuẩn)

Số TT	Tên vật liệu, sản phẩm	Đơn vị đo	Trọng lượng (kg)
1	Gạch lá nem nung $20 \times 20 \times 2$ cm	1000 viên	1200
2	Gạch bông $20 \times 20 \times 2$ cm	nt	1800
3	Gạch men $15 \times 15 \times 1$ cm	nt	1000
4	Ngói máy loại 13 v/m²	nt nt	3100
5	Ngói máy loại 22 v/m²	nt	2100
6	Khối xây gạch đặc	m ³	1800
7	Khối xây gạch có lỗ	· -	1500
8 ,	Khối xây đá hộc		2400
9	Khối xây gạch xỉ than	_	1300
10	Đất pha cát	_	2000
11	Đất pha sét	(<u> </u>	2200
12	Vữa xi mặng - cát	-	1600
13	Cát khô		1500
14	Xi măng	_	1700
15	Bêtông không thép	· · · · · · · · · · · · · · · · · · ·	2200
16	Bêtông cốt thép	_	2500
17	Bêtông gạch võ	_	1600
18	Gỗ nhóm I-II	- ·	800 - 1400
19	Gỗ nhóm III-IV-V		600 - 800
20	Tường 10 gạch thẻ	$ m m^2$	200
21	Tường 10 gạch ống	•	180
22	Tường 20 gạch thẻ	. <u>-</u>	400
23	Tường 20 gạch ống	• • • • • • • • • • • • • • • • • • •	330
24	Mái FBXM đòn tay gỗ	_	25
25	Mái FBXM đòn tay thép hình	•	30
26	Mái ngói đỏ đòn tay gỗ	-	60

Tiếp bảng 2-1

Số TT	Tên vật liệu, sản phẩm	Đơn vị đo	Trọng lượng (kg)
27	Mái tôn thiếc đòn tay gỗ	<u>-</u>	15
28	Mái tôn thiếc đòn tay thép hình	-	20
29	Trần ván ép dầm gỗ	-	30
30	Trần gỗ dán dầm gỗ	. -	20
31	Trần lưới sắt đắp vữa		90
32	Cửa kính khung gỗ	-	25
33	Cửa kính khung thép	-	40
34	Cửa ván gỗ (panô)		30
35	Cửa thép khung thép		45
36	Sàn dầm gỗ, ván sàn gỗ		40
37	Sàn đan BTCT với 1 cm chiều dày		25
		8 ⁹ (1)	

Bảng 2-2. Trọng lượng tính toán của một mét dài tấm lạm, dầm, cột bêtông cốt thép (kg/m)

h _{cm}	15	20	25	30	35	40	45	50	55	.60	65	70
5	21	28	35	42	48	55	-			-	-	
6	23	33	42	50	58	66	74	83	-	-	•	-
8	· 33	44	55	66	. 77	88	99	110	121	132	-	-
10	42	55	69	83	96	110	124	138	151	165	179	193
12	50	66	83	99	116	132	149	165	182	198	215	231
15	62	83	103	124	145	165	186	206	227	248	268	289
20	83	110	138 [:]	165	193	220	248	275	303	330	358	385
25	103	138	172	207	241	275	309	344	378	413	447	481
30	124	165	207	248	289	330	371	413	454	495	5 36	578
35	145	193	241	289	337	385	433	481	529	578	6 26	674
40	165	220	275	330	385	440	495	550	605	660	715	770
45	186	248	309	371	433	495	557	819	681	743	804	866
50	206	275	344	413	481	550	619	688	756	825	894	963

Bảng 2-3. Tải trọng tức thời tiêu chuẩn phân bố đều lên sàn và cầu thang (theo TCVN 2737 - 1995)

		Tải trọng tiêu chuẩn			
Loại phòng	Đặc điểm	Đơn vị	Toàn phần	Phần dài hạn	
11	2	3	4	. 5	
	a) Thuộc khách sạn, bệnh viện, trại giam	daN/m²	200	70	
1. Phòng ngủ	b) Thuộc nhà ở, nhà trẻ, mẫu giáo, trường học nội trú, nhà nghỉ, nhà điều dưỡng	daN/m²	150	30	
	a) Thuộc nhà ở	daN/m²	150	30	
2. Phòng ăn, phòng khách, buồng tắm, vệ sinh	b) Thuộc nhà trẻ, mẫu giáo, trường học, nhà nghỉ, nhà dưỡng lão, nhà điều dưỡng, khách sạn, bệnh viện, trại giam, trụ sở cơ quan, nhà máy	daN/m ²	200	70	
	a) Thuộc nhà ở	daN/m ²	150	130	
3. Bếp, phòng giặt	b) Thuộc nhà trẻ, mẫu giáo, trường học, nhà nghỉ, nhà dưỡng lão, nhà điều dưỡng, khách sạn, bệnh viện, trại giam, nhà máy	daN/m²	300	100	
4. Văn phòng, phòng thí nghiệm	Thuộc trụ sở cơ quan, trường học, bệnh viện, ngân hàng, cơ sở nghiên cứu khoa học.	daN/m²	200	100	
5. Phòng nồi hơi, phòng động cơ và quạt kể cả khối lượng máy	Thuộc nhà ở cao tầng, cơ quan, trường học, nhà nghỉ,nhà dưỡng lão, nhà điều dưỡng, khách sạn, bệnh viện, trại giam, cơ sở nghiên cứu khoa học	daN/m²	750	750	
6. Phòng đọc sách	a) Có đặt giá sách	daN/m²	400	140	
	b) Không đặt giá sách	daN/m²	200	70	
7a. Nhà hàng ăn uống		daN/m²	300	100	
7b. Triển lãm, trưng bày, cửa hàng		daN/m²	400	140	
8. Phòng hội họp, khiều	a) Có ghế gắn cố định	daN/m ²	400	140	
vũ, phòng đợi, phòng khán giả, hoà nhạc, phòng thể thao, khán đài	b) Không có ghế gắn cố định	daN/m²	500	180	

Tiếp bảng 2-3

1	2	3	4	5 bang 2-3
9. Sân khấu		daN/m²	750	270
	a) Kho sách lưu trữ (xếp dày đặc sách, tài liệu)	daN/lm chiều	480	480
10. Kho	b) Kho sách ở các thư viện	cao vật	240	240
4.50 3	c) Kho giấy	liệu chất	400	400
	d) Kho lạnh	kho	500	500
11. Phòng học	Thuộc trường học	daN/m²	200	70
	a) Xưởng đúc	daN/m²	2000	
12. Xưởng	b) Xưởng sửa chữa, bảo dưỡng xe có trọng lượng ≤ 2500 kG	daN/m ²	500	Theo thiết kế công
· · · · · · · · · · · · · · · · · · ·	c) Phòng lớn có lắp máy và có đường đi lại	daN/m²	400 .	nghệ
13. Phòng áp mái	Trên diện tích không đặt thiết bị, vật liệu	daN/m²	70	-nt-
	 a) Tải trọng phân bố đều từng dải trên diện tích rộng 0,8 m dọc theo lan can, ban công, lôgia. 	daN/dåi rộng 0,8 m	400	140
14. Ban công, lôgia	b) Tải trọng phân bố đều trên toàn bộ diện tích ban công lôgia (được xét đến nếu tác dụng của nó bất lợi hơn khi lấy theo mục a)	daN/m²	200	70
15. Sảnh, phòng giải	 a) Văn phòng, phòng thí nghiệm, phòng ngủ, phòng bếp, phòng giặt, phòng vệ sinh, phòng kỹ thuật 	daN/m²	300	100
lao, cầu thang, hành lang thông với các phòng,	b) Phòng đọc, nhà hàng, phòng hội họp, khiêu vũ, phòng đợi, phòng khán giả, phòng hoà nhạc, phòng thể thao, kho, ban công lôgia	daN/m²	400	140
	c) Sân khấu	daN/m²	500	180
16. Gác lửng	•	daN/m²	75	Theo thiết kế công nghệ

1	2	3	4	5
17 M 1 1 × ^:	a) Gia súc nhỏ	daN/m ²	200	70
17. Trại chăn nuôi	b) Gia súc lớn	daN/m ^{2·}	500	180
	 a) Phần mái có thể tập trung đông người (đi ra từ các phòng sản xuất, giảng đường, các phòng lớn) 	daN/m ²	400	140
18. Mái bằng có sử	b) Phần mái dùng để nghỉ ngơi	daN/m²	150	50
dung	c) Các phần khác	daN/m²	50	theo thiết kế công nghệ
19. Mái không sử dụng	 a) Mái ngói, mái fibrô xi măng, mái tôn và các mái tương tự, trần vôi rơm, trần bê tông đổ tại chỗ không có người đi lại sửa chữa, chưa kể các thiết bị điện nước, thông hơi nếu có b) Mái bằng, mái dốc bằng bê tông cốt 	daN/m ²	30	theo thiết kế công nghệ
	thép, máng nước mái hắt, trần bê tông lắp ghép không có người đi lại, chỉ có người đi lại sửa chữa, chưa kể các thiết bị điện nước, thông hơi nếu có	daN/m ²	75	theo thiết kế công nghệ
20. Sàn nhà ga, bến tầu điện ngầm		daN/m²	400	140
21. Gara ôtô	Đường cho xe chạy, dốc lên xuống dùng cho xe con, xe khách và xe tải nhẹ có tổng trọng lượng ≤ 2500 kG	daN/m ²	500	180

 $Ghi chú : -1 daN/m^2 = 1 kG/1m^2$

⁻ Tải trọng nêu ở mục 14 (bảng 2-3) dùng để tính các kết cấu chịu lực của ban công, lô gia. Khi tính kết cấu tường, cột, móng đỡ ban công, lô gia thì tải trọng trên ban công, lô gia lấy bằng tải trọng các phòng chính kề ngay đó và được giảm theo các quy định.

Bảng 2-4. Hệ số vượt tải γ

Loại tải trọng	Hệ số vượt tải γ
2	3
1.1. Trọng lượng của kết cấu :	
a) kết cấu thép (1)	1,05
b) kết cấu gạch đá, gạch đá có cốt thép	1,1
c) kết cấu bêtông trên 1.600 kC/m ³	1,1
 d) kết cấu bêtông từ 1.600 kG/m³ trở xuống, vật liệu ngăn cách, lợp trát, hoàn thiện 	en e
- sản xuất tại nhà máy	1,2
- sản xuất tại công trường	1,3
1.2 Trọng lượng, áp lực đất (2) :	
a) đất nguyên thổ	1,1
b) đất đắp	1,15
1.3 Tải trọng do thiết bị, người, hàng chất kho :	
trọng lượng của :	
a) thiết bị cố định	1,05
b) lớp ngăn cách của thiết bị cố định	1,2
c) vật liệu chứa trong thiết bị, bể, ống dẫn :	
i) chất lỏng	1,0
ii) chất rời, cặn, huyền phù	1,1
d) thiết bị bốc dỡ, xe cộ	1,2
e) tải trọng do vật liệu có khả năng hút ẩm, ngấm nước	1,3
1.4 Tải trọng phân bố đều lên sàn, cầu thang :	
a) khi tải trọng tiêu chuẩn :	
- nhỏ hơn 200 daN/m²	1,3
- không nhỏ hơn 200 daN/m²	1,2
b) do trọng lượng của vách ngăn tạm thời	theo muc 1.1
1.5. Tải trọng tập trung và tải trọng lên lan can	1,2
1.6. Tải trọng của cẩu trục, cẩu treo	1,1
	1.1. Trọng lượng của kết cấu: a) kết cấu thép (1) b) kết cấu gạch đá, gạch đá có cốt thép c) kết cấu bêtông trên 1.600 kG/m³ d) kết cấu bêtông từ 1.600 kG/m³ trở xuống, vật liệu ngăn cách, lợp trát, hoàn thiện - sản xuất tại nhà máy - sản xuất tại công trường 1.2 Trọng lượng, áp lực đất (2): a) đất nguyên thổ b) đất đắp 1.3 Tải trọng do thiết bị, người, hàng chất kho: trọng lượng của: a) thiết bị cố định b) lớp ngăn cách của thiết bị cố định c) vật liệu chứa trong thiết bị, bể, ống dẫn: i) chất lỏng ii) chất rời, cặn, huyền phù d) thiết bị bốc dỡ, xe cộ e) tải trọng do vật liệu có khả năng hút ẩm, ngấm nước 1.4 Tải trọng phân bố đều lên sản, cầu thang: a) khi tải trọng tiêu chuẩn: - nhỏ hơn 200 daN/m² - không nhỏ hơn 200 daN/m² b) do trọng lượng của vách ngăn tạm thời 1.5. Tải trọng tập trung và tải trọng lên lan can

1	2	3
	1.7. Tải trọng gió : thời gian sử dụng giả định của công trình : /	
•	50 năm	1,2
	. 40 năm	1,15
	30 năm	1, 1
	20 năm	1,0
	10 năm	0,9
	5 năm	0,75
2) Tính toán độ bền mỏi		1,0 riêng đối với dầm cầu trục
3) Tính toán theo biến dạng và chuyển vị		1,0 (nếu không có quy định khác)

TẢI TRỌNG GIÓ

Theo tiêu chuẩn TCVN 2737-1995 "Tải trọng và tác động", tải trọng gió gồm 2 thành phần tĩnh và động.

I. Thành phần

1) Thành phần tĩnh

Giá trị tiêu chuẩn thành phần tĩnh của tải trọng gió ở độ cao Z so với mốc chuẩn được xác định theo công thức :

$$W = W_o \times k \times c$$

trong đó :

 W_0 - giá trị áp lực gió theo bản đồ phân vùng và bảng 2.2.2

- k hệ số tính đến sự thay đổi của áp lực gió theo độ cao và dạng địa hình (theo bảng 5, TCVN 2737-1995)
- c hệ số khí động, xác định theo bảng 6, TCVN 2737-1995 với cách xác định mốc chuẩn theo phụ lục G, TCVN 2737-1995.

2) Thành phần động

Không cần tính đến thành phần động khi xác định áp lực mặt trong của các công trình xây dựng ở địa hình dạng A và B (địa hình trống trải và tương đối trống trải, theo điều 6.5 của TCVN 2737-1995) và có đặc điểm là nhà nhiều

tầng, cao dưới $40 \, \text{m}$, hoặc nhà công nghiệp $1 \, \text{tầng}$, cao dưới $3,6 \, \text{m}$, tỷ số độ cao trên nhịp nhỏ hơn 1,5.

II. Phân vùng theo áp lực gió Wo

Tiêu chuẩn "Tải trọng và tác động - TCVN 2737-1995" đã phân vùng lãnh thổ VN theo áp lực gió như sau :

1) Theo áp lực gió, lãnh thổ VN được phân thành các vùng (xem bản đồ phân vùng áp lực gió)

IA, IIA, IIB, IIIA, IIIB, IVB, VB

trong đó:

Các vùng có ký hiệu A là vùng ít bị ảnh hưởng của bão, vùng có ký hiệu B là vùng chịu ảnh hưởng của bão (xem bảng 2.5)

Bảng 2-5. Phân vùng áp lực gió (theo TCVN 2737-1995)

Vùng	Ånh hưởng bão	Áp lực gió W_0 (da N/m^2)
ΙA	không	65 (Vùng núi, đồi, đồng bằng, thung lũng) 55
		(Các vùng còn lại)
II A	yếu	83
II B	khá mạnh	95
III A	yếu	110
III B	mạnh	125
IV B	rất mạnh	155
VВ	rất mạnh	185

Ghi chú : Khu vực I-A gồm các tỉnh vùng rừng núi phía Bắc như Cao Bằng, Hà Giang, Lai Châu, Lạng Sơn, Lao Cai, Sơn La, Tuyên Quang, Yên Bái; các tỉnh vùng cao nguyên Trung bộ như Công Tum, Gia Lai, Đắc Lắc, Lâm Đồng; các tỉnh phía tây Nam Bộ như An Giang, Đồng Nai, Đồng Tháp...

Khu vực II-A gồm thành phố Hồ Chí Minh, Khánh Hoà và các tỉnh miền Đông Nam Bộ như Bà Rịa - Vũng Tầu, Bến Tre, Cần Thơ, Bạc Liêu, Cà Mau, Long An, Sóc Trăng, Tiền Giang, Trà Vinh, Vĩnh Long...

Khu vực II-B gồm thành phố Hà Nội, các tỉnh Bắc Giang, Bắc Ninh, Hà Tây, và một số vùng phụ cận Hà Nội của các tỉnh Hải Dương, Hưng Yên, Hoà Bình, Vĩnh Phúc, Phú

Thọ....; một số vùng núi Thanh Hoá, Nghệ An...; một số vùng đồng bằng các tỉnh miền Trung như Quảng Bình, Quảng Trị, Thừa Thiên - Huế, Quảng Nam, thành phố Đà Nẵng, Quảng Ngãi...

Khu vực III-B gồm một số vùng của các tỉnh đồng bằng Bắc Bộ như Hải Dương, Hưng Yên, Nam Định, Hà Nam, Ninh Bình, vùng đồng bằng Thanh Hoá, một số vùng ven biển của Quảng Ninh và các tỉnh miền Trung như Nghệ An, Quảng Bình, Quảng Trị, Thừa Thiên - Huế, Quảng Nam, Đà Nẵng, Quảng Ngãi, Phú Yên...

Khu vực IV-B gồm tỉnh Thái Bình, Hải Phòng và một số vùng ven biển Bắc Bộ và Trung bộ như Hà Nam, Nam Định, Ninh Bình, Thanh Hoá, Hà Tĩnh...

Khu vực V-B là các khu vực ở ngoài hải đảo như quần đảo Hoàng Sa... - Đối với vùng ảnh hưởng của bão được đánh giá là yếu, giá trị của áp lực gió W_0 được giảm đi $10 k G/m^2$ đối với vùng I-A, $12 k G/m^2$ đối với vùng II-A và $15 k G/m^2$ đối với vùng III-A.

- 2) Công trình ở vùng núi và hải đảo có cùng độ cao, địa hình và ở sát các trạm quan trắc khí tượng có trong bảng 2.5 thì giá trị áp lực gió tính toán được lấy theo trị số độc lập của trạm đó.
- 3) Công trình xây dựng ở vùng có địa hình phức tạp (hẻm núi, cửa đèo...) giá trị áp lực gió W_0 phải lấy theo số liệu quan trắc tại hiện trường. Khi đó áp lực gió được tính theo công thức :

$$W_0 = 0.0613 \times V_0^2$$

trong đó:

Vo - vận tốc gió (m/s) (vận tốc trung bình trong khoảng 3 giây, bị vượt trung bình một lần trong 20 năm), ở độ cao 10m so với mốc chuẩn, tương ứng với địa hình dạng B (địa hình tương đối trống trải theo điều 6.5, TCVN 2737-1995).

Bản đồ phân vùng áp lực gió

Bảng 2-6. Hệ số K

· · · · · · · · · · · · · · · · · · ·		· · ·	2.4
Dạng địa hình Độ cao Z (m)	A	В	C
Dọ cao Z (III)		11.	<u> </u>
3	1,00	0,80	0,47
5	1,07	0,88	0,54
10	1,18	1,00	0,66
15	1,24	1,08	0,74
20	1,29	1,13	0,80
30	1,37	1,22	0,89
40	1,43	1,28	0,97
50	1,47	1,34	1,03
60	1,51	, 1,38	1,08
80	1,57	1,45	1,18
100	1,62	1,51	1,25
150	1,72	1,63	1,40
200	1,79	1,71	1,52
250	1,84	1,78	1,62
300	1,84	1,84	1,70
350	1,84	1,84	1,78
≥ 400	1,84	1,84	1,84

Ghi chú : - Địa hình dạng A là địa hình trống trải, không có hoặc có rất ít vật cản cao không quá 1,5m (bờ biển thoáng, mặt sông, hồ lớn, đồng muối, cánh đồng không có cây cao...).

- $Dia\ hình\ dạng\ B$ là địa hình tương đối trống trải, có thưa thớt một số vật cản nhưng cao không quá 10m (vùng ngoại ô ít nhà, thị trấn, làng mạc, vùng rừng thưa, hoặc rừng non, vùng trồng cây thưa...).
- Dia hình dạng C là địa hình bị che chắn mạnh, có nhiều vật cản sát nhau cao từ $10~{\rm m}$ trở lên (trong thành phố, vùng rừng rậm...).

Công trình được xem là thuộc dạng địa hình nào nếu tính chất của dạng địa hình đó không thay đổi trong khoảng cách 30h khi h \leq 60m và 2km khi h > 60m tính từ mặt đón gió của công trình, h là chiều cao của công trình.

- Đối với các độ cao trung gian, giá trị K cho phép xác định bằng cách nội suy tuyến tính các số liệu trong bảng.

Bảng 2-7. Hệ số điều chỉnh tải trọng gió với thời gian sử dụng giả định của công trình khác nhau

Thời gian sử dụng giả định - năm	5	10	20	30	40	≥50
Hệ số điều chỉnh tải trọng gió	0,61	0,72	0,83	0,91	0,96	1

Bảng 2-8. Chỉ dẫn xác định hệ số khí động C (theo TCVN 2737-1995)

Sơ đồ nhà, công trình, các cấu kiện và sơ đồ tải trọng gió		Chỉ dẫn	Chỉ dẫn xác định hệ số khí động	iệ số khí (dộng		Chú thích	
			2				3	
1.				.,,, ;;				
a) Các mặt phẳng thẳng đứng								
- Đón gió	c = +0,8	∞ '				:	:	
- Khuất gió	c = - 0,6							
b) Các mặt phẳng thẳng đứng hay				·				
nghiêng với phương thăng đứng không			÷.	() P () C () C				
qua 15' nam trong cae una unieu eua				es ue e e				
(nếu không có sơ đồ tương ứng trong								
bảng này)				. :			:	·
- Mặt biên hay mặt trung gian nhô lên								
Cao								
Dón gió	c = +0,7	7						
Khuất gió	o;0 -= o				•			
- Mặt trung gian khác						·		
Đón gió	c = -0.5	16	* * **					
Khuất gió	c = -0.5							
2. Nhà có mái đốc hai phía	Hà số	α. đô		$p_{1/l}$			- Khi gió thổi vào đầu	o đầu
18).	î	0	0,5	.1	≥2	hôi nhà, các mặ	it mái
1	ş	0	0	9,0	- 0,7	8'0 -	dêu lây $c_{ m e}$ = - 0,7	
		20	+ 0,2	- 0,4	7,0 -	8,0 -		
+==0		40	+ 0,4	+ 0,3	- 0,2	- 0,4		
Minimum minimum		09	+ 0,8	+ 0,8	+ 0,8	+ 0,8		
L. Mặt cất	ce2	09 >	- 0,4	- 0,4	- 0,5	8,0 -		

2. Mái hai chiểu kín úp sát đất Ce Ce Ce Ce Ce Ce Ce Ce Ce C		$\begin{array}{c c} bJL \\ & \leq 1 \\ & \geq 2 \\ & \alpha \\$	Giá trị C _c ≤ 0,5 = -0,4 - 0,5 0 0	Giá trị c_{e3} khi h_1/L bằng $\leq 0,5$ 1 ≥ 2 $0,4$ $0,5$ $0,6$ $0,$, bằng ≥ 2 - 0,6 - 0,6 + 0,8		co:	
4. Mái vòm kín úp sát đất Ce, co, s co,	Hệ số h_1/J $0,1$ $0,2$ $-0,2$ ce_{7} $0,2$ $-0,2$ ce_{2} ≥ 1 $-0,8$ ce_{2} ≤ 1 $\leq 0,2$ $-0,8$ ce_{2} ≤ 1 $\leq 0,3$ Giá trị ce_{3} lấy theo sơ đồ 2	7 0,1 + 0,1 5 - 0,8 - 0,8 - 0,8 6 2 leo sơ đồ 2	671 0,1 0,2 0,5 0,5 + 0,2 - 0,1 - 0,1 - 0,7	f.n f.n f.n f.n f.n f.n f.n f.n f.n f.n	0,4 + 0,6 + 0,5 + 0,3 - 1,1	0,5 + 0,7 + 0,7 + 0,7 - 1,2		Thep bang 2-c

လ		 Khi b₁ ≤ b₂ và 0 ≤ β≤30º thì c₀ lấy theo bảng này. Khi b₁ > b₂ thì c₀ lấy theo sơ đồ 2. Giá trị c_{e1}, c_{e2}, c_{e3} lấy theo sơ đồ 2. 	- Khi tính khung ngang của nhà có cửa trời theo sơ đồ 8 và có các tấm chắn gió thì hệ số khí động tổng cộng lên hệ thống "cửa trời - tấm chắn" lấy bằng 1,4. - Khi xác định hệ số v theo điều 6.15 thì h = h ₁
2	α ce ₁ $\leq 15^{\circ}$ + 0,2 30° 0 $\geq 60^{\circ}$ + 0,8	h ₁ /h ₂ C_0 1,2 -0,5 1,4 -0,3 1,6 0 2,0 +0,2 2,5 +0,4 3,0 +0,6 \geq 4,0 +0,6	Giá trị c _{e1} , c _{e2} , c _{e3} lấy theo sơ đồ 2 - Hệ số khí động đối với các mặt của cửa trời lấy bằng -0,6 - Hệ số khí động đối với mặt đón gió của cửa trời khi góc nghiêng mái nhỏ hơn 20° lấy bằng -0,8
The second secon	6. Nhà kin mái đốc một chiều \$\frac{\alpha}{2} \frac{Ce_t}{4} \frac{\alpha}{2} \frac{Ce_t}{40,8} \frac{\alpha}{2} \alp	7. Nhà kín có phần bán mái Ce t Co Ce	8. Nhà một nhịp có cửa trời dọc theo chiều-dài nhà ce = +0,7 ce = +0,7 ce = -0,6 ce = -0,5 ce =

dọc theo - Xem chỉ dẫn hệ số khí động của sơ đô 8 - Đối với mái mhà trên đọan AB hệ số ce lấy như sơ đô 8, - Đối với cửa trời đoạn BG khi $\lambda \le 2$ thì $c_{\mathbf{x}} = 0,2$ - Đối với cửa trời đoạn BG khi $\lambda \le 2$ thì $c_{\mathbf{x}} = 0,1\lambda$ - Đối với những đoạn mái còn lại $c_{\mathbf{e}} = -0,5$ dọc theo - Xem chỉ đãn hệ số khí động của sở đồ 8 - Hệ số c'e ₁ , c'e ₁ , ce ₂ lấy như sơ đồ 2 khi xác định c ₁ , theo h, (chiều cao tường đón giớ) - Đối với đoạn AB hệ số c, xác định inhư đoạn BC của sơ đồ 9 khi chiều cao cửa trời bằng (h ₁ - h ₂) đốc hai - Hệ số c ₂ , lấy như sơ đồ 2.		2	8
cửa trởi dọc theo - Xem chỉ dẫn hệ số khí động của sơ đồ 2 khi xác định c _{q,i} lệch nhau - Hệ số c'e ₁ , c"e ₁ , ce ₂ lấy như sơ đồ 2 khi xác định c _{q,i} theo h, (chiều cao tương đón gió) - Đối với đoạn AB hệ số c _c xác định như đoạn BC của sơ đồ 9 khi chiều cao cửa trời bằng (h ₁ - h ₂) dỗ, mái đốc hai - Hệ số c _{e1} lấy như sơ đồ 2.	chiều dài nhà chiều dài nhà chiều dài nhà Ce = -0,5 Ce Ce Ce Ce Ce Ce Ce Ce		- Tường đón gió, khuất gió và tường bất kì, hệ số khí ; động xác định như sơ đồ 2. - Khi xác định hệ số v theo điều 6.15 thì h = h ₁
độ, mái đốc hai - Hệ số c _{e†}		- Xem chỉ dẫn hệ số khí động của sơ đồ 2 khi xác định c _{e1} , the số c'e ₁ , c'e ₁ , ce ₂ lấy như sơ đồ 2 khi xác định c _{e1} , theo h ₁ (chiều cao tường đón gió) - Đối với đoạn AB hệ số c _e xác định như đoạn BC của sơ đồ 9 khi chiều cao cửa trời bằng (h ₁ - h ₂)	- Xem chứ thích ở sơ đồ 9.
độ, mái dốc hai - Hệ số c _{e1}	numhimmmmm * 1		
Ce ₁ -0,5 -0,4	độ, mái dốc hai		
The second of th	Ce ₁ -0,5 -0,4		

			<u> </u>	Tiep vang 2-0
3	-		• • • •	
2	lốc hai - Hệ số c _{c1} lấy như sơ đồ 2		- Hệ số c_{e_1} lấy như sơ đồ 2 - Hệ số c_{c_2} lấy như sau : $c_{e_2}=0.6~\times(1-2h_1/h)$ Nếu $h_1>h$ thì $c_{e_2}=-0.6$	Hệ số khí động xem sơ đồ bên
1	12. Nhà kín hai khẩu độ, mái dốc haichiêu, cao độ lệch nhau	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13. Nhà kín ba khẩu độ, mái đốc hai chiều, cao độ lệch nhau $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} + \frac$	14. Nhà kín có cưa trời và một phản bán mái mái \$\begin{align*} \text{c} \\ \phi \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \qquad \qq \qquad \qq \qua

	· · · · · · · · · · · · · · · · · · ·	1		Tiep bang 2-0
				:
		;	:	
<u>س</u>				
-			:	
	: :			
		Hệ số $c_{\rm el}$ lấy như sơ đồ 2. Hệ số $c_{\rm eg}$ lấy như sau : $c_{\rm e2}$ = 0,6 × (1 - $2h_1/h$) Nếu h_1 > h thì $c_{\rm e2}$ = -0,6		<u>:</u>
		(1 - 2	:	
62		0,6 ×		
	ô bên	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0ên
	80° Å	o đồ sau: = -0,	au : 0,6 0,2	٥ đồ]
	xem	như s như (hì c _{ez}	ihu s == + == +	em s
	độu độu đ	lấy lấy s lấy s h t	lấy r thì c thì c _e	o guộ
	Hệ số khí động xem sơ đồ bên	số c _{e2} số c _{e2} u h_1)	số c _{e1} ≤ 4h ≤ 4h t	khí đ
	Hė s	- Hệ số c_{e_1} lấy như sơ đồ 2 - Hệ số c_{e_2} lấy như sau : c_1 Nếu $h_1 > h$ thì $c_{e_2} = -0,6$	- Hệ số c_{e_1} lấy như sau : Khi a \leq 4h thì c_{e_1} = + 0,6 Khi a \leq 4h thì c_{e_1} = + 0,2	ê số l
-	1-0't			dốc hai Hệ số khí động xem sơ đồ bên
	hần	cửa	troit 4/	
	dai ph	ra có co o 5	dô, có cửa t Ĉ -0,6 0 0,5 1	mái //////
	i và hi 0,6 -0,6	3, giữa	9,0-	1 gái,
-	3,6	âu độ, 1-0,6 dò,	âu độ,	
	cín có cửa trở 9, 0,6	o ba khi	a khẩu a có.5	tượn 🛴
	kín c	sa sa ka sa	sún bis 7 ,0-	kín có tường con gái, mái (
	15. Nhà kín có cửa trời và hai phần bán mái	Nhà kí dọc nhà Cet a	Nhà ki hà .0,2,40,8	Dhúa ki hia hia hia hia hia hia hia hia hia hi
	1.5. B,0+	16. Nhà kín ba khẩu độ, giữa có dọc nhà Oca	17. Nhà kín ba khẩu độ, có cửa trời dọc nhà chi hà chi có của trời dọc nhà có	18. Nhà kín có tường con gái, mái phía +1,3

3				
2	Hệ số khí động xem sơ đồ bên	Hệ số khí động xem sơ đồ bên	Hệ số khí động xem sơ đồ bên	Hệ thống khí động xem sơ đồ bên
1	19. Nhà kín mái vòm có cửa trời ngầm -0,8 -0,8 -1,2 -1,2 -0,5	20. Nhà kín mái vòm hai khẩu độ, có cửa trời ngầm	21. Nhà kín một khẩu độ có cửa trời và tấm chắn gió $\frac{1}{\varphi} - \frac{1}{\varphi} - 1$	22. Nhà kín hai khẩu độ có cửa trời và tấm chấn gió

_				
က			Lực ma sát tính theo hướng gió với cr = 0,04 · Xem chú thích ở' sơ đồ 9	- Xem chú thích sơ đồ 9
7	mái lượn Hệ số c_{e_1} và c_{e_3} lấy như sau - Như sơ đồ 2 nếu $f/b \le 0,25$ - Như sơ đồ 9 nếu $f/b > 0,25$		- Hệ số c_{e_1} và c_{e_3} lấy theo sơ đồ 2 - Lực ma sát W_1 tính cho trường hợp hướng gió theo chiều mũi tên cũng như theo phương vuông góc với mặt phẳng bản về	- Hệ số c _{e1} và c _{e3} lấy theo sơ đồ 2 - Lực ma sát W ₁ tính như sơ đồ 24
1	23. Nhà kín, mái vỏ mỏng và mái lượn sóng-hoặc gấp nếp Ce, that the ces h	+0.8	24. Nhà có mái ràng cua Ce, -0,6 -0,5 -0,5 -0,5 -0,4 -0,4 13	25. Nhà có cửa trời thiên đỉnh -0.5 Ce-1.0.5 Ce-1.0.5 -0.5 Ce-1.0.5 Ce-1.0.5 -0.5 -0.5 Ce

-		các lực hơn hơn Wo n ² . từ từ các các	
တ		 Hệ số c_e lấy theo sơ đồ 2 Với nhà kín lấy c₁ = 0. Trong các nhà giá trị tiêu chuẩn của áp lực ngoài lên vách ngăn nhẹ (khi tỷ trọng bề mặt của chúng nhỏ hơn 100 kG/m²) lấy bằng 0,2 W_o nhưng không nhỏ hơn 10kG/m². Với mỗi tưởng nhà, dấu + háy của c₁₁ khi μ ≤ 5% xác định từ điều kiện thực nghiệm với các phương án tải trọng bất lợi nhất. 	
7	- Hệ số c _{c1} lấy như sau : Khi a ≤ 4h thì c _{c1} = +0,2 Khi a > 4h thì c _{c1} = +0,6	Gọi μ là khẩu độ thẩm thấu gió của tưởng, bằng tỉ số giữa diện tích lỗ cửa mở và diện tích của mặt tưởng. - Khi μ≥5% thì c₁₁ = c₁₂ = ±0,2 tùy theo hướng đón hay khuất gió - Khi μ≥30% thì c₁₁ = c₂₃ = xác định theo sơ đồ 2 và c₁₂=+0,8 - Trường hợp mở một mặt hoàn toàn cũng lấy như khi μ≥30%	- Hê số $c_{\mathrm{e_{1}}}$, $c_{\mathrm{e_{2}}}$ và $c_{\mathrm{e_{3}}}$ lấy theo sơ đồ 2
1	26. Nhà kin nhiều khẩu độ phức tạp a 0,7 -0,6 -0,5 -0,5 -0,5 -0,5 -0,5 -0,5 -0,5 -0,5	$27.$ Nhà có một mặt mở thường xuyên (mở hoàn toàn hoặc mở một phân) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	28. Nhà hờ hai phía đối diện nhau Ce, Ce, Ce, Ce, Ce, Ce, Ce, Ce

က	eo sơ đồ 2 n gió lấy bằng +0,8, ắng c _{c3}	 - Đối với các phân mái nằm ngang hay nghiêng (α < 15°), các hệ số khi động trên chiều cao h₁ và h₂ cũng lấy như trên phân thắng đưng. - Khi h₁>h₂ chiều dài của đoạn chuyển sang áp lực âm lấy bằng h₁/2. - Các hệ số khí động trên mặt góc lõm vào của nhà (trên chiều dài a) song song với hướng gió cũng lấy như đối với cạnh đón gió. - Khi b>a chiều dài đoạn chuyển sang áp lực âm lấy bằng a/2. 	cc ₃ cc ₄	7. 1 - 1,5 0 - Đời với mài lượn sông, nêu hướng 5 0 0 gió dọc theo mái thì phải kể đến lực 8 0,4 0,4 , ma sát W ₁ với c ₁ = 0,04 4
2	Hệ số c _{c1} , c _{c2} và c _{c3} lấy theo sơ đồ 2 Hệ số c _{c4} đối với phía đón gió lấy bằng +0,8, với phía khuất gió lấy bằng c _{c3}		0,5 1,1 2,1	II 20 0,5 0,5 0,5 0,8 10 1,4 0,4 11 20 1,8 0,5
	29. Nhà hở ba phía Ce, C14 C14 C14 C14 A V LH C13 C14 A V T T T T T T T T T T T T	30. Nhà có nhiều bậc Cer -0,70,70,70,70,80,50,50,50,5	31. Mái hiên	

Bảng 2-9. Các số liệu về cầu trục chạy điện

1. Chỉ tiêu cầu trục chạy điện, chế độ làm việc nhẹ

Sức trục	Nhịp cầu	Kích	thước c	ầu trục	, mm		bánh xe ray, T	Trọng	lượng,T
Q, t	trục L _K , m	В	K	$\mathbf{H_{ct}}$	B ₁	${ m P}^{ m tc}_{ m max}$	${ m P_{min}^{tc}}$	Xe con G	Toàn cầu trục
	- 11	ŀ				6,8	2,3	-	13,2
	14					7,3	2,7		15,0
٠ ـ	17	5000	3500	1650	230	8,0	3,4	2,00	17,7
5	20		1			8,7	4,0		20,4
	23				1	10,0	4,9		24,8
:	26	6500	5000			10,5	5,8	ļ	27,7
	29	1 A		<u> </u>		11,3	6,3	, ,	31,0
	11			1 .	:	11,5	2,0	"	17,0
	14]	11			12,0	2,5	·	19,0
10	17	6300	4400	1900	260	12,5	2,8	.3,8	20,5
10	: 20	:		İ		13,5	3,2		23,5
	23	$\mathbb{E}_{\mathbb{R}^{n}}(X_{n})^{\perp}$				14,5	3,8		26,5
	26]		15,5	4,2		29,5
	29		5000		: :	17,0	5,2		34,5
· 1.	11					14,5	2,8		19,5
	14					15,5	2,8		21,5
15	17	6300	4400	2300	260	16,5	3,2	5,2	24,5
10	20					17,5	3,8	, ,	27,5
	23					18,5	4,2		30,5
	26					19,5	4,8		33,5
<u> </u>	29	· <u></u>	5000			21,0	6,8		40,5
	10,5					17,5	4,0		23,0
	13,5					18,5	4,0		25,0
20 5	16,5	6300	4400	2400	260	19,5	4,5	8,4	28,0
5	19,5				-	21,0	5,0	, , <u>, , , , , , , , , , , , , , , , , </u>	32,0
	22,5		,			22,0	5,8		35,5
	25,5	\$.		•		23,5	6,8	·	40,5
	28,5	· •				25,5	7,5		46,0

2. Chỉ tiêu cầu trục chạy điện, chế độ làm việc trung bình

Sức trục	Nhịp cầu	Kích	thước	cầu trục	, mm		bánh xe ray, T	Trọng	lượng, T
Q, t	trục Lĸ, m	В	К	\mathbf{H}_{ct}	B ₁	$P_{\max}^{ ext{tc}}$	${ m P}_{ m min}^{ m tc}$	Xe con G	Toàn cầu trục
1	2	3	4 .	5	6	7	8	9	10
5	11 14			ī		7,0 7,5	2,3 2.7		13,6 15,4

1	2	3	4	5	6	7	8	9	10
	17	5000	3500	1650	230	8,2	3,4	2,2	18,1
	. 20		<u> 1.11 () </u>			8,9	4,0		20,8
5	23		·			10,1	4,9		25,0
	26	6500	5000			10,7	5,8		28,0
	29	N. 77		1	* 1	11,5	6,6	·	31,2
	11			("		11,5	2,2	, ;	17,5
:	14		.,		-	12,0	2,8		19,5
10	17	6300	4400	1900 :	260	12,5	3,0	4,0	21,0
	20					13,5	3,5		24,0
	23		1 5 2 4	:		14,5	4,0		27,0
	26	·	1 .57	:		15,5	4,5		30,0
	29		5000		.e	17,0	5,4		34,8
	11					14,5	3,0		20,0
15	14					15,5	3,0		22,0
10	17	6300	4400	2300	260	16,5	3,5	5,3	25,0
	20					17,5	4,0		28,0
	23					18,5	4,5		31,0
	26		1 2	-		19,5	5,0		34,0
	29		5000			21,0	7,0		41,0
	10,5				İ	17,5	4,2	:	23,5
	13,5				:	18,5	4,2	:	25,5
20	16,5	6300	4400	2400	260	19,5	4,8	8,5	28,5
$\frac{20}{5}$	19,5					21,0	5,2		32,5
	22,5				:	22,0	6,0	<u> </u>	36,0
	25,5					23,5	7,0		41,0
	28,5		5000			25,5	7,8		46,5

3. Chỉ tiêu cầu trục chạy điện, chế độ làm việc nặng

Súc trục	Nhịp cầu	Kích	thước c	eầu trục	, mm	Áp lực l lên r	pánh xe ay,T	Trọng	lượng, T
Q, t	trục L _k , m	B	K	Hct	$\mathbf{B_1}$	P _{max}	$\mathbf{P_{min}^{tc}}$	Xe con G	Toàn cầu trục
1	2	3 +	4	5	6	7	8	9	10
	⁷ 11	-		1		7,6	2,2		14,6
No.	14					8,1	2,6		16,4
5	17	5000	3500	1750	230	8,8	3,3	3,0	19,1
Э	20			;		9,5	3,9		21,8
	23					10,7	4,8	**************************************	26,0
	. 26	6500	5000			11,3	5,7		29,0
	29				:	12,1	6,5		32,2

Tiếp bảng 2-9

1	2	3	4	5	6	7	8	9	10
	11	 -				12,5	2,0	*	19,0
	14]	13,0	2,5		21,0
10	17	6300	4400	2100	260	13,5	3,0	5,6	23,0
10	20					14,5	3,5		26,0
	2 3					15,0	4,0		28,0
	26					16,0	4,5	,	31,0
	29		5000			17,5	5,9		36,8
i	11					15,0	3,8		22,5
1.5	14	'			:	16,0	3,8		24,5
15	17	6300	4400	2300	260	16,5	4,8	6,0	27,5
	20	. :				17,5	5,8	· ·	31,5
	23	:	•			18,5	6,5		35,0
<u> </u>	26	1.	<u> </u>			19,5	7,2		38,5
<u> </u>	29		5000		· <u> </u>	21,5	8,2		44,5
	10,5					18,5	4,0		25,0
	13,5		!	: .		19,5	4,0	· 1.	27,0
$\frac{20}{5}$	16,5	6300	4400	2400	260	20,5	4,5	9,3	30,0
5	19,5		: 1	ŧ		22,0	4,8		33,5
	22,5			' : : 		23,0	5,5		37,0
	25,5					24,5	6,6		41,0
	28,5		5000			26,0	7,2		46,5

Giải thích ký hiệu:

Q - sức nâng của cầu trục, nếu Q chỉ có một số cầu trục có một móc cẩu, nếu có hai số theo dạng phân số cầu trục có hai móc cẩu;

Lk - nhịp cầu trục, tính bằng khoảng cách giữa hai trục ray;

B - bề rộng cầu trục;

K - khoảng cách giữa hai trục bánh xe của cầu trục;

 H_{ct} - chiều cao cầu trục, là khoảng cách từ đỉnh ray đến mặt trên của xe con;

B₁ - khoảng cách từ trục ray đến mút cầu trục;

 $P_{\,\,\mathrm{max}}^{\,\,\mathrm{tc}}$ - áp lực tiêu chuẩn lớn nhất của một bánh xe cầu trục lên ray;

 P_{\min}^{tc} - áp lực tiêu chuẩn nhỏ nhất của một bánh xe cầu trục lên ray;

G - trọng lượng xe con.

Phần 3 VẬT LIỆU VÀ THI CÔNG

Bảng 3-1. Diện tích (cm²) và trọng lượng (kG/m) cốt thép tròn

Đường			-		Số thanl	1				Trọng
kính danh nghĩa (mm) ¢	1	2	3	4	5	6	7	8	9	lượng (kG) của 1m dài
6	0,283	0,570	0,850	1,132	1,420	1,700	1,980	2,260	2,550	0,222
8	0,503	1,010	1,510	2,010	2,520	3,020	3,520	4,020	4,530	0,395
10	0,785	1,570	2,360	3,140	3,930	4,710	5,500	6,280	7,070	0,617
12	1,131	2,260	3,390	4,520	5,650	6,780	7,910	9,040	10,170	0,888
14	`1,539⁄	3,080	4,610	6,150	7,680	9,230	10,770	12,300	13,580	1,208
16	2,011	4,020	6,030	8,040	10,050	12,060	14,070	16,080	18,090	1,578
18	2,545	5,090	7,630	10,170	12,720	15,260	17,800	20,360	22,900	1,998
20	3,140	6,280	9,410	12,560	15,700	18,840	22,000	25,130	28,870	2,466
22	3,811	7,600	11,400	15,200	19,000	22,810	26,610	30,410	34,210	2,984
24	4,524	9,040	13,560	18,080	22,620	27,140	31,670	36,190	40,710	3,551
5 26	4,909	9,820	14,730	19,640	24,540	29,450	34,360	39,270	44,180	3,850
28	6,158	12,320	18,470	24,630	30,780	36,950	43,100	49,260	55,420	4,830
30	7,069	14,130	21,210	28,270	35,340	42,410	49,480	56,550	63,620	5,550
32	8,042	16,080	24,130	32,170	40,210	48,250	56,300	64,340	72,380	6,313
36	10,178	20,360	30,540	40,720	50,800	61,070	71,250	81,430	91,610	7,990

Ghi chú

- Đường kính thép trơn:
- Đường kính thép có gân (kể cả phần gân) :
- Khi cùng ϕ thì thép trơn và thép có gân có cùng diện tích

Bảng 3-2. Diện tích và trọng lượng cốt thép tròn quy cách đường kính tính theo inch

Quy cách Nº	Đường kính danh nghĩa (mm)	Diện tích tiết diện (cm²)	Trọng lượng một mét dài (kG/m)
3	9,52	0,71	0,560
4	12,70	1,29	0,994
5	15,88	2,00	1,552
6	19,05	2,84	2,235
7	22,22	3,87	3,042
8	25,40	5,10	3,973
9	28,65	6,45	5,060
10	32,26	8,19	6,404
11	35,81	10,06	7,907
14	43,00	14,52	11,380
18	57,33	25,81	20,240

Ghi chú -

- Quy cách thí dụ như N^{o} -10 có nghĩa là đường kính bằng $\frac{10}{8}=1,25$ inch = 31,75 mm , đường kính danh nghĩa lấy bằng 32,26 mm.
- Đường kính danh nghĩa có nghĩa là đường kính kể cả gân thép.

Bảng 3-3. Thép góc cán đều cạnh

Các ký hiệu :

b - bê rộng cánh

d - bề dày cạnh

zo - khoảng cách tính từ trọng tâm

J - mômen quán tính

r_{xy} - bán kính quán tính

R - bán kính góc uốn tròn bên trong

r - bán kính góc uốn tròn ở mép

Theo TCVN 1656 - 1975

		_		_							· · · · · · · ·				
n tính	bảng	14	шш	18	` .	1	1	ı	1	1	ı	2,58	2,61	2,81	2,85
Bán kính quán tính	ry2 (cm) khi 8 bảng	12	шш	17	i.	I ,	ı			I.	• .	2,51	2,53	2,74	2,77
Bán k	ry2 (c	10	EI EI	16	ι	ı			 I.	ı	•	2,43	2,45	2,66	2,69
	x1 - x1	. Z ₍₁₎	сш	15	1,09	1,13	1,17	1,21	1,26	1,30	1,33	1,38	1,42	1,52	1,57
	x1	J _{x1} .	cm ₄	14	6,35	8,53	10,75	9,04	12,10	15,3	12,40	16,60	20,90	23,3	29,5
ρ'n	yo - yo	Jro.	сш	13	62'0	0,78	0,79	0,89	0,89	0,88	1,00	0,99	0,98	1,11	1,10
ới các tr	yo	Jyo.	сш	12	1,47	1,90	2,39	2,12	2,74	3,33	2,95	3,80	4,63	5,41	6,59
Trị số đối với các trục	X ₀	Fxo.	cm,	11	1,55	1,53	1,54	1,75	1,71	1,72	1,95	1,94	1,92	2,18	2,16
Tri	X0 - X0	Jxo.	сш	10	5,63	7,26	8,75	8,13	10,5	12,7	11,3	14,6	17,8	20,8	25,4
;;;;	x - x	ľx,	сш	6	1,23	1,22	1,20	1,39	1,38	1,37	1,55	1,54	1,53	1,73	1,72
	×	Jx.	cm,	8	3,55	4,58	5,53	5,13	6,63	8,03	7,11	9,21	11,20	13,1	16
Trong	lượng	Im daı, kG		7	1,85	2,43	2,97	2,08	2,73	3,37	2,32	3,05	3,77	3,44	4,25
Diện	tich tiết	diện	CIII	9	2,35	3,08	3,79	2,65	3,48	4,20	2,96	3,89	4,86	4,38	5,41
		h .		5		1,7			1,7		•	1,8		¢	۷
Kích thước, mm		ra 		4		2			ರ			5.5		· ·	>
Kích th		p		3	က	4	5	က	4	5	က	4	5	4	5
	œ	م		22		40			45			50		56	
<u>.</u>	Số 3 hiệu b			1		4			4,5			22		ις.	2,
													L		

																					ncp		
18	3,09	3,12	3,14	3,36	3,38	3,40	3,43	3,45	3,57	3,60	3,61	3,65	3,67	3,78	3,80	3,82	3,84	4.18	4,21	4,23	4,25	4,58	4,60
17	3,01	3,04	3,06	3,29	3,30	3,33	3,36	3,37	3,49	3,52	3,55	3,54	3,59	3,71	3,72	3,75	3,77	4,11	4,13	4,15	4,18	4,50	4,52
16	2,93	2,96	2,99	3,22	3,23	3,25	3,28	3,29	3,42	3,44	3,47	3,50	3,51	3,64	3,65	3,67	3,69	4,04	4,06	4,08	4,11	4,43	4,45
15	1,69	1,74	1,78	1,88	1,90	1,94	1,99	2,02	2,02	2,06	2,10	2,15	2,18	2,17	2,19	2,23	2,27	2,43	2,47	2,51	2,55	2,68	2,71
14	.33,1	41,5	50;	51	56,7	68,4	80,1	91,9	9,69	83,9	98,3	113	127	93,2	102	119	137	145	169	194	219	214	231
13	1,25	1,25	1,24	1,39	1,39	1,38	1,37	1,37	1,49	1,48	1,48	1,47	1,46	1,59	1,58	1,58	1,57	1,79	1,78	1,77	1,77	1,99	1,98
12	7,81	9,52	11,2	12	13,2	15,5	17,8	20	16,4	19,3	22,1	24,8	27,5	21,8	23,5	27,0	30,3	34,0	38,9	43,8	48,6	50,1	54,5
11	2,45	2,44	2,43	2,72	2,72	2,71	2,69	2,68	2,91	2,91	2,89	2,87	2,86	3,11	3,11	3,09	3,08	3.5	3,49	3,48	3,46	3,88	3,88
10	29,9	36,6	42,6	46	50,7	59,6	68,2	76,4	62,6	73,9	84,6	94,9	105	83,6	90,4	104	116	.130	150	168	186	193	207
6	1,95	1,94	1,93	2,16	2,16	2,15	2,14	2,13	2,31	2,3	2,29	2,28	2,27	2,47	2,47	2,45	2,44	2,78	2,77	2,76	2,75	3,09	3,08
8	18,90	23,10	27,10	29,00	31,90	37,60	43,00	48,20	39,50	46,60	53,30	59,80	66,10	52,70	57,00	65,30	73,40	82.10	94,30	106	118	122	131
i-	3,90	4,81	5,72	4,87	5,38	6,39	7,39	8,37	5,80	6,89	7,96	9,02	10,10	6,78	7,36	8,51	9,6	8,33	9,64	10,9	12,2	10,E	10,8
9	4,96	6,13	7,28	6,20	98'9	8,15	9,42	10,7	7,39	8,78	10,10	11,50	12,80	8,63	9,38	10,80	12,80	10,60	12,30	13,90	15,60	12,8	13,8
5		2,3			•	2,7					က				çr	5		İ	c. c.	5,5		•	4
24		2	-		•	∞	;			:	6				σ	· .			10	21	- "	,	12
ಣ	4	ഹ	9	4,5	ıΩ	9	7	∞	5	.9	7	∞	တ်	5,5	9	7	∞	9		. ∞	တ	6,5	7
2		63				70				1	75	•	4.		Vα	S.				 S			100
_~		6,9					: .				7,5				œ	٥.			d	מ		(0.7

		7						T	<u> </u>				-	T			Г			-			
18	4,62	4,67	4,71	4,75	4,79	4,99	4,01	5,60	5,63	5,66	5,70	5,71	5,78	6,24	6,25	6,30	7,05	7,07	7,09	7,13	7,17	7,22	7,25
17	4,54	4,59	4,64	4,68	4,72	4,92	4,95	5,53	5,56	5,59	5,63	5,67	5,71	6,17	6,19	6,23	6,97	7,00	7,02	7,06	7,10	7,15	7,18
16	4,47	4,52	4,56	4,60	4,64	4,85	4,87	5,46	5,48	5,52	5,55	5,60	5,63	6,10	6,12	6,15	6,91	6,93	6,95	6,99	7,03	7,07	7,11
15	2,75	2,83	2,91	2,99	3,06	2,96	3,00	3,36	3,40	3,45	3,53	3,61	3,68	3,78	3,82	3,9	4,30	4,35	4,39	4,47	4,55	4,63	4,70
14	265	333	402	472	542	308	353	516	585	649	782	916	1021	818	911	1097	1356	1494	1633	1911	2191	2472	2756
13	1,98	1,96	1,95	1,94	1,94	2,19	2,18	2,49	2,48	2,47	2,46	2,45	2,44	2,79	2,78	2,76	3,19	3,18	3,17	3,16	3,14	3,13	3,12
12	6,09	74,1	6,98	99,3	112	72,7	81,8	122	135	149	174	200	224	192	211	248	319	348	376	431	485	537	589
11	3,87	3,84	3,81	3,78	3,74	4,29	4,28	4,87	4,86	4,84	4,82	4,78	4,75	5,47	5,46	5,43	6,25	6,24	6,23	6,20	6,17	6,13	6,10
10	233	284	331	375	416	279	315	467	520	571	670	764	853	739	813	957	1229	1341	1450	1662	1866	2061	2248
6	3,07	3,05	3,03	3,00	2,98	3,40	3,39	3,87	3,86	3,85	3,82	3,80	3,78	4,34	4,33	4,31	4,96	4,95	4,94	4,92	4,89	4,87	4,85
. 8	147	179	209	237	264	176	198	294	327	360	422	482	539	466	512	602	744	844	913	1046	1175	1299	1419
7	12,2	15,1	17,9	20,6	23,3	11,9	13,5	15,5	17,3	19,1	22,7	26,2	29,6	19,4	21,5	25,5	24,7	27,0	29,4	34,0	38,5	43,0	47,4
9	15,6	19,2	22,8	26,3	29,7	15,2	17,2	19,7	22,0	24,3	28,9	33,4	37,8	24,7	27,3	32,5	31,4	34,4	37,4	43,3	49,1	54,8	60,4
5			4				4			4,6		-			4,6					5,3			
4			12			- 6	77		:	14			_	<u> </u>	14	_			_	16			:
3	∞	10	12	14	16		8	_∞	တ	10	12	14	16	o	10	12	10	11	12	14	16	18	20
21			100			. 011	011			125					140					160			•
			10			,	1			12,5					14		···········		·	16			_

4.1

- 1															•			
18	7,88	7,90	8,69	8,71	8,73	8,77	98'8	8,95	9,05	9,51	9,56	10,75	10,79	10,83	10,88	10,93	10,99	11,03
17	7,81	7,83	8,62	8,64	8,67	8,70	8,79	8,88	8,97	9,45	9,49	10,69	10,73	10,76	10,81	10,86	10,92	10,96
16	7,74	7,76	8,55	8,58	8,60	8,64	8,72	8,81	8,90	9,38	9,42	10,62	10,65	10,69	10,74	10,79	10,82	10,89
15	4,85	4,89	5,37	5,42	5,46	5,54	5,70	5,89	6,07	5,93	6,02	6,75	6,83	6,91	7,00	7,11	7,23	7,31
14	2128	2324	3182	3452	3722	4264	5355	6733	8130	4941	5661	8286	9342	10401	11464	13064	14674	15753
13	3,59	3,58	3,99	3,98	3,97	3,96	3,93	3,91	3,89	4,38	4,36	4,98	4,96	4,94	4,93	4,91	4,89	4,89
12	500	540	749	805	861	970	1182	1438	1688	1159	1306	1942	2158	2370	2519	2887	3190	3389
11	7,06	7,04	7,84	7,83	7,81	7,78	7,72	7,63	7,55	8,60	8,58	9,78	9,75	9,72	69,6	9,64	9,59	9;26
10	1933	2090	2896	3116	3333	3755	4560	5494	6351	4470	5045	7492	8337	9160	9961	11125	12244	12965
6	5,60	5,59	6,22	6,21	6,20	6,17	6,12	6,08	6,00	6,83	6,81	7,76	7,73	7,11	7,69	7,65	7,61	7,59
8	1216	1217	1823	1961	2097	2363	2871	3466	4020	2814	3175	4717	5217	5765	6270	9002	7718	8177
2	30,5	33,1	37,0	39,9	42,8	48,7	60,1	74,0	87,6	47,4	53,8	61,5	6,89	76,1	83,3	94,0	104,5	111,4
9	38,8	42,2	47,1	50,9	54,6	62,0	76,5	94,3	111,5	60,4	68,6	78,4	87,7	97,0	106,1	119,7	133,1	142,0
20	ì	5,3		÷		9	. •			1					80			
4		91		,		18				:	21				24			
က	11	12	12	13	14	16	20	25	30	14	16	16	18	20	22	25	28	30
81		180				200				1	,220				250			
1		18			-	20	1.5				22	,			25			

Bảng 3-4. Thép góc cán không đều cạnh

Các ký hiệu

B - bê rộng cánh lớn

b - bề rộng cánh nhỏ

d - bê dày cánh

r - bán kính góc tròn bên mép R - bán kính góc tròn trong

J - mômen quán tính

		T T		_	Τ	4	-8	- 9	<u>ი</u>	27	00	9	٠	- 20	က	0	co
	В	p p	14	HH	24	1,84	1,78	1,96	1,99	2,05	2,08	2,16	2,35	2,38	2,43	2,30	2.33
	i δ, m	ry2, cm	12	шш	23	1,76	1,79	1,88	1,91	1,94	2,00	2,08	2,28	2,30	2,35	2,23	2.33
	nh kh		10,	шш	22	1,68	1,71	1,80	1,83	1,86	1,91	2,01	2,20	2,22	2,27	2,16	2.18
	quán tí		14	щщ	21	3,09	3,11	3,39	3,42	3,45	3,50	3,72	3,90	3,94	3,98	4,17	4.21
	Bán kính quán tính khi 8, mm	rx2, cm	71	шш	20	3,01	3,03	3,31	3,34	3,37	3,42	3,64	3,83	3,86	3,91	4,10	4.13
	Bá		10	mm	19	2,93	2,95	3,23	3,26	3,29	3,34	3,56	3,75	3,78	3,83	1,02	1,05
		, n	Furzin	cm	18	0,78	0,78	0,87	98'0	0,86	0,85	96,0	1,09	1,08	1,07	1,09	1,08
		- n	J_{umin}	cm ⁴	17	2,19	2,66	3,07	3,73	4,36	5,58	5,34	7,24	8,48	10,90	7,58	88.8
	v	- y 1:	χo.	cm	16	0,84	0,88	0,91	0,95	0,99	1,07	1,05	1,17	1,21	1,29	1,13	1,17
	số đối với các trục	y1 -	J_{y1}	cm 4	15	6,25	7,91	8,51	10,8	13,1	17,9	15,2	20,8	25,2	34,2	20,8	25,2
	i với c	- x1	yoʻ	СШ	14	1,82	1,86	2,03	2,03	2,12	2,20	2,28	2,39	2,44	2,52	2,60	2,95
	số đố	x1	J _{x1}	cm 4	13	23,2	29,5	33,0	41,4	49,9	66,99	56,7	8,69	83,9	112	84,6	102
	Tri	y –	ŗ	cm	12	1,02	1,01	1,13	1,12	1,11	1,09	1,27	1,43	1,42	1,40	1,41	1,40
		y	Jy'	CIII .	. 11	3,70	4,48	5,16	6,26	7,28	9,15	9,05	12,5	14,6	18,5	12,7	14,8
		×	ž	СĦ	01	1,78	1,77	2,01	2,00	1,99	1,96	2,23	2,39	2,38	2,35	2,56	2,55
		×	J,	сш	6	11,4	13,8	16,3	19,9	23,3	29,6	27,8	34,8	40,9	52,4	41,6	49,0
		guòn!	Im, kg		80	2,81	3,46	3,17	3,91	4,63	6,03	4,39	4,79	5,69	7,43	4,99	5,92
	Diện	tiết	diện	CILL	7	3,58	4,11	4,04	4,98	5,90	7,68	5,59	6,11	7,25	9,47	6,36	7,55
ſ	Ĭ		<u> </u>		9	2		2,3				2,5	2,7			2,7	
	ا ۽		# #		ıo	9		بخ				7,5	00			8	
	c, mi		च		4	4	က	4	'n	ဖ	œ	5	5	9	φ	ıc	9
	Kích thước, mm	: ,	۵.		es .	36	,	40				45	50			50	
	Kich		<u>n</u>		7	99		63				20	75			80	
		· ·	So bieu		-	5,6/3,6		6,3/4				7/4,5	7,5/5	_		8/2	

	<u></u> -	
× 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	<u>~</u> ~ ~ ~	
× × × × × × × × × × × × × × × × × × ×	X Q Q X	Theo TCVN 1657 - 1975

																										<u>r</u>		8	J-4
24	2,51	2,53	2,58	2,77	2,78	2,82	2,87	3,04	3,06	3,39	3,41	3,46	3,50	3,76	3,80	4,09	4,12	4,16	4,20	4,48	4,47	5,00	5,02	5,06	5,10	6,26	6,34	6,38	6,42
23	2,44	2,45	2,50	2,70	2,72	2,74	2,79	2,97	2,99	3,31	3,34	3,38	3,43	3,69	3,74	4,02	4,04	4,09	4,13	4,36	4,40	4,93	4,95	4,99	5,03	6,20	6,27	6,30	6,35
22	2,37	2,38	2,43	2,62	2,64	2,67	2,71	2,89	2,92	3,24	3,27	3,31	3,35	3,61	3,67	3,95	3,97	4,05	4,05	4,29	4,33	4,86	4,88	4,92	4,95	6,13	6,21	6,24	6,28
21	4,62	4,65	4,70	5,07	5,10	5,12	5,17	5,53	5,55	6,18	6,21	6,27	6,30	98,9	6,92	7,82	7,84	7,90	7,93	8,77	8,82	99'6	9,68	9,73	9,78	11,84	11,93	11,98	12,02
20	4,55	4,57	4,62	4,99	5,02	5,04	5,09	5,45	5,49	6,11	6,13	6,19	6,23	6,79	6,84	7,75	7,77	7,82	7,85	8,70	8,75	9,59	9,62	9,65	9,70	11,77	11,86	11,91	11,95
19	4,47	4,49	4,55	4,92	4,95	4,97	5,01	5,38	5,41	6,04	90,9	6,11	6,15	6,72	6,77	7,67				8,62	8,67	9,51	9,54	9,58	9,63	11,70	11,78	11,84	12,88
18	1,22	1,22	1,21	1,38	1,37	1,36	1,35	1,53	1,52	1,76	1,75	1,74	1,72	1,98	1,96	2,20	2,19	2,18	2,16	2,42	2,40	2,75	2,74	2,73	2,72	3,54 1	3,50 1	3,49	3,48
17	11,8	12,7	16,3	18,2	20,8	23,4	28,3	26,9	32,3	43,4	48,8	59,3	69,5	70,3	85,5	110	121	142	162	165	194	264	285	327	367	604	781	998	949
16	1,26	1,28	1,36	1,42	1,46	1,50	1,58	1,58	1,64	1,80	1,84	1,92	2,00	2,03	2,12	2,23	2,28	2,56	2,43	2,44	2,52	2,79	2,83	2,91	2,99	3,53	3,69	3,77	3,85
15	32,2	35,2	47,8	49,9	58,7	67,6	85,8	74,3	92,3	119	137	173	210	194	245	300	335	405	477	444	537	718	786	922	1001	1634 3,53	2200	2487	2776 3,85
14	2,92	2,95	3,04	3,23	3,28	3,32	3,40	3,55	3,61	4,01	4,05	4,14	4,22	4,49	4,58	5,19	5,23	5,32	5,40	5,88	5,97	6,50	6,54		6,71	7,97	8,14	8,23	
13	132	145	194	198	232	266	333	286	353	452	518	649	784	727	911	1221	1359	1631	1910	1933	2324	2920	3189	3726 6,62	4264	6212	8308	9358	10410 8,31
12	1,58	1,58	1,56	1,79	1,78	1,77	1,75	2,00	1,98	2,29	2,28	2,26	2,24	2,58	2,56	2,85	2,84	2,82	2,80	3,12	3,10	3,58	3,57	3,54	3,52	4,62	4,58		
11	19,7	21,2	27,1	30,6	35,0	39,2	47,1	45,6	54,6	73,7	83,0	100	117	120	146	186	204	239	272	276	324	446	482	551	617.	1031 4,62	1331	1475 4,55	7,97 1613 4,53
10	2,88	2,88	2,85	3,20	3,19	3,18	3,15	3,53	3,54	4,01	4,00	3,98	3,95	4,49	4,47	5,15	5,13	5,11	5,08	5,80	5,77	6,45	6,43	6,41	6,38	8,07	8,02	7,99	7,97
6	65,3	70,6	90,9	98,3	113	127	154	142	172	227	256	312	365	364	444	909	199	784	897	952	1123	1149	1568	1801	2026	3147	4091	4545	4987
œ	6,17	6,70	8,77	7,53	8,70	9,87	12,1	8,98	10,9	11,0	12,5	15,5	18,3	14,1	17,54	18,0	19,8	23,6	27,3	22,2	26,4	27,4	29,7	34,4	39,1	37,9	49,9	55,8	61,7
7	7,86	8,54	11,18	9,59	11,1	12,6	15,5	11,4	13,9	14,1	16,0	19,7	23,4	18,0	22,2	22,9	25,3	30,0	34,7	28,3	33,7	34,9	37,9	43,9	49,8	48,3	63,6	71,1	78,5
9	က			3,3				3,3		3,7			,	4		4,3				4,7		4,7				9			
ro	6			10				10		11				12		13				14		14				18			
4	5,5	9	∞	9	7	8	10	6,5	80	<u>.</u>	80	10	12	ω,	10	6	10	12	14	10	12	11	12	14	16	12	16	18	28
8	56			63				20		8			. 4	06		06				110		125				160			
83	06		_	100		_		110		125				140		160				180		200				250			
Н	9/2/6			10/6,3				11/7		12,5/8				14/9		16/10				18/11		20/12,5 200		,,		25/16	• •		
	-																					- 1							

Bảng 3-5. Thép cán dạng chữ I

Các kí hiệu : h - chiều cao dầm

b - bê rộng dâm

d - bê dây bán bụng

t - bê dây trung bình của cánh

r - bán kính góc uốn tròn trong

R - bán kính góc tròn ở mép W - mômen chống uốn J - mômen quán tính

S - mômen tĩnh của nửa tiết diện

r_{x,y} - bán kính quán tính

10
22
26
\vdash
1
Ò
355
\sim
7
├ ~
Ž
CV
$\mathcal{I}_{\mathcal{C}}$
ieo
7
~~

Šő			Kích thước,	ước, mm			Diện			Đặc	trung ti	Đặc trưng tiết diện theo các trục	heo các	trục	
hiệu +1.5							tích tiết	Trong luong	×	×	. X			y - y	
hinh Hình	ᅽ .	ر م	ש	+-	æ	H	diện,	1m, kG		Wx,	rx,	$\mathbf{S}_{\mathbf{x_{*}}}$	Jy,	W _y ,	ry,
							cm		cm	cm	cm	cm	cm ⁺	cm	cm
1	2	က	4	5	9	1	8	6	10	11	12	. 13	14	15	. 91
10	100	55	4,5	7,2	7,0	2,5	12,0	9,46	198	39,7	4,06	23,0	17,9	6,49	1,22
12	120	64	8,4	7,3	7,5	3,0	14,7	11,50	350	58,4	4,88	33,7	27,9	8,72	1,38
14	140	73	4,9	7,5	8,0	3,0	17,4	13,70	572	81,7	5,73	46,8	41,9	11,50	1,55
16	160	81	5,0	7,8	3,5	3,57	20,2	15,90	873	109,0	6,57	62,3	58,6	14,50	1,70
18	180	06	5,1	8,1	≥ 0.6	3,5	23,4	18,40	1290	143,0	7,42	81,4	82,6	18,40	1,88
18a	180	100	5,1	8,3	0,6	3,5	25,4	19,90	1430	159,0	7,51	8,68	114,0	22,80	2,12
20	200	100	5,2	8,4	9,5	4,0	26,8	21,00	1840	184,0	8,28	104,0	114,0	23,10	2,07
20a	200	110	5,2	9,8	9,5	4,0	28,9	22,70	2030	203,0	8,37	114,0	155,0	28,20	2,32
22	220	110.	5,4	8,1	10,0	4,0	30,6	24,00	2550	232,0	9,13	131,0	157,0	28,60	2,27
22a	220	120	5,4	8,9	10,0	4,0	32,8	25,80	2790	254,0	9,22	143,0	206;0	34,30	2,50
24	240	115	5,6	9,5	10,5	4,0	34,8	27,30	3460	289,0	9,97	163,0	198,0	34,50	2,37

2 3 4 5 6 240 115 5,6 9,8 10,5 270 125 6,0 10,2 11,0 300 135 6,5 10,7 12,0 330 140 7,0 11,2 13,0 360 145 7,5 12,3 14,0 400 155 8,3 13,0 15,0 500 170 10,0 15,2 17,0 600 190 12,0 17,8 20,0													
2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 12 14 15 4,0 37,5 29,40 3800 317,0 10,10 178,0 260,0 270 125 6,0 10,2 11,0 4,5 40,2 31,50 5010 317,0 11,30 229,0 260,0 270 125 6,0 10,2 11,0 4,5 46,5 32,90 5500 407,0 11,30 229,0 337,0 300 135 6,5 10,7 12,0 46,5 36,50 7780 472,0 12,30 260,0 337,0 300 135 6,5 10,7 12,0 46,0 53,60 7780 13,80 419,0 13,60 419,0 337,0 13,60 419,0 337,0 13,60 419,0 13,60 419,0	16	2,63	2,54	2,80	2,69	2,95	2,79	2,89	3,03	3,09	3,23	3,39	3,54
2 3 4 5 6 7 8 9 10 11 12 240 115 5,6 9,8 10,5 4,0 37,5 29,40 3800 317,0 10,10 270 125 6,0 10,2 11,0 4,5 40,2 31,50 5010 371,9 11,20 270 125 6,0 10,2 11,0 4,5 43,2 32,90 5500 407,0 11,20 300 135 6,5 10,2 12,0 5,0 46,5 36,50 7780 472,0 12,30 380 136 7,0 11,2 13,0 5,0 46,5 36,50 7780 518,0 13,50 380 146 7,0 11,2 13,0 5,0 49,9 39,20 78,0 13,50 400 155 12,3 14,0 6,0 6,0 6,0 72,6 57,00 19062 95,0 14,7 <th>15</th> <td>41,60</td> <td>41,60</td> <td>50,00</td> <td>49,90</td> <td>60,10</td> <td>59,90</td> <td>71,10</td> <td>86,10</td> <td>101,00</td> <td>123,00</td> <td>151,00</td> <td>182,00</td>	15	41,60	41,60	50,00	49,90	60,10	59,90	71,10	86,10	101,00	123,00	151,00	182,00
2 3 4 5 6 7 8 9 10 11 12 240 115 5,6 9,8 10,5 4,0 37,5 29,40 3800 317,0 10,10 270 125 6,0 10,2 11,0 4,5 40,2 31,50 5010 371,9 11,20 270 125 6,0 10,2 11,0 4,5 43,2 32,90 5500 407,0 11,20 300 135 6,5 10,2 12,0 5,0 46,5 36,50 7780 472,0 12,30 380 136 7,0 11,2 13,0 5,0 46,5 36,50 7780 518,0 13,50 380 146 7,0 11,2 13,0 5,0 49,9 39,20 78,0 13,50 400 155 12,3 14,0 6,0 6,0 6,0 72,6 57,00 19062 95,0 14,7 <th>14</th> <td>260,0</td> <td>260,0</td> <td>337,0</td> <td>337,0</td> <td>436,0</td> <td>419,0</td> <td>516,0</td> <td>0,799</td> <td>808,0</td> <td>1043,0</td> <td>1356,0</td> <td>1725,0</td>	14	260,0	260,0	337,0	337,0	436,0	419,0	516,0	0,799	808,0	1043,0	1356,0	1725,0
2 3 4 5 6 7 8 9 10 11 240 115 5,6 9,8 10,5 4,0 37,5 29,40 3800 317,0 270 125 6,0 .9,8 11,0 4,5 40,2 31,50 5010 371,9 270 125 6,0 .10,2 11,0 4,5 43,2 32,90 5010 371,9 300 135 6,5 10,2 12,0 4,5 43,2 32,90 510,0 407,0 300 135 6,5 10,7 12,0 5,0 49,9 39,20 7780 518,0 380 140 7,0 11,2 13,0 5,0 49,9 39,20 743,0 380 145 12,3 14,0 6,0 61,4 48,60 138,0 743,0 400 15 12,3 14,0 6,0 61,4 48,60 138,0 743,0	13	178,0	210,0	229,0	260,0	292,0	339,0	423,0	545,0	708,0	919,0~	1181,0	1491,0
2 3 4 5 6 7 8 9 10 240 115 5,6 9,8 10,5 4,0 37,5 29,40 3800 270 125 6,0 . 9,8 11,0 4,5 40,2 31,50 5010 270 125 6,0 . 10,2 11,0 4,5 40,2 31,50 5010 300 135 6,5 10,2 12,0 49,5 32,90 5500 330 140 7,0 11,2 12,0 49,9 39,20 7780 360 145 7,5 12,3 14,0 6,0 61,4 48,60 1380 400 155 8,3 13,0 15,0 6,0 70,6 57,00 19062 450 160 9,0 14,2 16,0 7,0 84,7 66,50 27,96 500 180 118,0 7,0 100,0 78,50 39727,7	12	10,10	11,20	11,30	12,30	12,50	13,50	14,70	16,20	18,10	19,90	21,80	23,60
2 3 4 5 6 7 8 9 10 240 115 5,6 9,8 10,5 4,0 37,5 29,40 3800 270 125 6,0 . 9,8 11,0 4,5 40,2 31,50 5010 270 125 6,0 . 10,2 11,0 4,5 40,2 31,50 5010 300 135 6,5 10,2 12,0 49,5 32,90 5500 330 140 7,0 11,2 12,0 49,9 39,20 7780 360 145 7,5 12,3 14,0 6,0 61,4 48,60 1380 400 155 8,3 13,0 15,0 6,0 70,6 57,00 19062 450 160 9,0 14,2 16,0 7,0 84,7 66,50 27,96 500 180 118,0 7,0 100,0 78,50 39727,7	11	317,0	371,9	407,0	472,0	518,0	597,0.	743,0	953,0	1231,0	1589,0	2035,0	2560,0
2 3 4 5 6 7 8 240 115 5,6 9,8 10,5 4,0 37,5 270 125 6,0 .9,8 11,0 4,5 40,2 270 125 6,0 .10,2 11,0 4,5 40,2 300 135 6,5 10,7 12,0 5,0 46,5 330 140 7,0 11,2 13,0 5,0 49,9 380 145 7,5 12,3 14,0 6,0 61,4 400 155 12,3 14,0 6,0 61,4 400 155 12,3 14,0 6,0 61,4 400 155 12,3 14,0 6,0 70,6 84,7 500 170 10,0 15,2 17,0 7,0 100,0 550 180 11,0 16,5 18,0 7,0 118,0 600 120 12,8 <th>10</th> <td>3800</td> <td>5010</td> <td>5500</td> <td>7080</td> <td>7780</td> <td>9840</td> <td>13380</td> <td>19062</td> <td></td> <td>39727</td> <td>55962</td> <td>75806</td>	10	3800	5010	5500	7080	7780	9840	13380	19062		39727	55962	75806
2 3 4 5 6 7 240 115 5,6 9,8 10,5 4,0 270 125 6,0 .9,8 11,0 4,5 270 125 6,0 .10,2 11,0 4,5 300 135 6,5 10,2 12,0 5,0 330 140 7,0 11,2 12,0 5,0 360 145 7,5 12,3 14,0 6,0 400 155 8,3 13,0 15,0 6,0 450 160 9,0 14,2 16,0 7,0 500 170 10,0 15,2 17,0 7,0 550 180 11,0 16,5 18,0 7,0 600 190 12,0 17,8 20,0 8,0	6	29,40	31,50	32,90	36,50	39,20	42,20	48,60	57,00	66,50	78,50	92,60	108,0
2 3 4 5 6 240 115 5,6 9,8 10,5 270 125 6,0 9,8 11,0 270 125 6,0 10,2 11,0 300 135 6,5 10,2 12,0 330 140 7,0 11,2 13,0 400 155 8,3 13,0 15,0 450 160 9,0 144,2 16,0 500 170 10,0 15,2 17,0 550 180 11,0 16,5 18,0 600 190 12,0 17,8 20,0	80	37,5	40,2	43,2	46,5	49,9	53,8	61,4	72,6	84,7	100,0	118,0	138,0
2 3 4 5 240 115 5,6 9,8 270 125 6,0 .9,8 270 125 6,0 .10,2 300 135 6,5 10,2 300 135 6,5 10,7 330 140 7,0 11,2 360 145 7,5 12,3 400 155 8,3 13,0 450 160 9,0 14,2 500 170 10,0 15,2 550 180 11,0 16,5 600 190 12,0 17,8	2	4,0	4,5	4,5	5,0	5,0	5,0	6,0	6,0	7,0	7,0	7,0	8,0
2 3 4 240 115 5,6 270 125 6,0 270 125 6,0 300 135 6,5 330 140 7,0 360 145 7,5 400 155 8,3 450 160 9,0 500 170 10,0 550 180 11,0 600 190 12,0	9	10,5	11,0	11,0	12,0	12,0	13,0	14,0	15,0	16,0	17,0	18,0	20,0
2 3 240 115 270 125 270 125 300 135 300 135 360 140 360 145 400 155 400 156 500 170 500 190	ಸು	8,6	8,6、	10,2	10,2	10,7	11,2	12,3	13,0	14,2	15,2	16,5	17,8
2 240 270 270 300 330 360 400 450 500 600	. 4	5,6	6,0	0,9	6,5	6,5	7,0	7,5	8,3	9,0	10,0	11,0	12,0
	အ	115	125	125	135	135	140	145	155	160	170	180	190
24a 27a 27a 30a 33 36 40 45 55 60	2	240	.270.	270	300	300	330	360	400	450	500	550	009
	·	24a	27	27a	30	30a	33	36	40	45	20 %	55	09

Bảng 3-6. Thép cán dạng chữ [có góc nghiêng ở mép

ч

Các kí hiệu: h - bê cao b - bê rộng cánh

d - bề dày bản bụng

t - bệ dày trung bình của cánh R - bán kính góc tròn trong r - bán kính góc tròn ở mép

J - mô men quán tính

r_{x, y} - bán kính quán tính W - mô men chống uốn

S - mô men tĩnh của nửa tiết diện zo - khoảng cách từ trục y - y

đến mặt ngoài bụng

Theo TCVN 1654 - 1975

	Trong			Kích th	uớc, mm		}	Diện			Các t	ri số đố	Các trị số đối yới các trục	trục:		
Số	lượng guỏni						:	tích tiết		- X	× -			y -	- y	
	dài (kG)	4	<u>.</u>	ਾਰ	+	8 4	Su .	diện, cm ²	$J_{x_{j}}$ cm^{4}	W _x ,	r _x ,	S _x ,	$\mathbf{J_{y,}}$ cm 4	W _{y,}	r _y , cm	Zo, cm
1	23	က	4	5	6	7	88	6	10	11	12	13	15	15	16	17
ıo.	4,84	20	32	4,4	7,0	6,0	2,5	6,16	22,8	9,1	1,92	5,59	5,61	2,75	0,954	1,16
6,5	5,90	. 65	36	4,4	7,2	6,5	2,5	7,51	48,6	15,0	2,54	9,00	8,70	3,68	1,08	1,24
∞	7,05	80	40	4,5	7,4	6,5	2,5	86,8	89,4	22,4	3,16	13,3	12,8	4,75	1,19	1,31
10	8,59	100	46	4,5	2,6	7,0	3,0	10,9	174	34,8	3,99	20,4	20,4	6,46	1,37	1,44
12	10,4	120	52	4,8	7,8	7,5	3,0	13,3	304	50,6	4,78	29,6	31,2	8,52	1,53	1,54
. 14	12,3	140	28	4,9	8,1	8,0	3,0	15,6	491	70,2	5,60	40,8	45,5	11,0	1,70	1,67
14a	13,3	140	62	4,9	8,7	8,0	3,0	17,0	515	77,8	5,66	45,1	57,5	13,3	1,84	1,87
16	14,2	160	64	5,0	8,4	8,5	3,55	18,1	747	93,4	6,42	54,1	63,3	13,8	1,87	1,80
16a	15,3	160	89	5,0	9,0	8,5	3,5	19,5	823	103	6,49	59,4	78,8	16,4	2,01	2,00

1	2	3	4	70	9	7	8	6	10	11	12	13	15	15	16	17
18	16,3	180	0.2	5,1	8,7	0,6	3,5	20,7	1090	121	7,24	8,69	86,0	17,0	2,04	1,94
18a	17,4	180	74	5,1	9,3	2,6	3,5	22,2	1190	132	7,32	76,1	105	20,7	2,18	2,13
20	18,4	200	92	5,5	9,0	9,5	4,0	23,4	1520	152	8,07	87,8	113	20,2	2,20	2,07
20a	19,8	200	80	5,2	9,7	9,5	4,0	25,2	1670	167	8,15	95,9	139	24,2	2,35	2,28
22	21,0	220	82	5,4	9,5	10,0	4,0	26,7	2110	192	8,89	110	151	25,1	2,37	2,21
22a	22,6	220	87	5,4	10,2	10,0	4,0	28,8	2330	212	8,99	121	187	30,0	2,55	2,46
24	24,0	240	06	5,6	10,0	10,5	4,0	30,6	2900	242	9,73	139	208	31,6	2,60	2,67
24a	25,8	240	95	5,6	10,7	10,5	4,0	32,9	3180	265	9,84	151	254	37,2	2,78	2,67
27	27,7	270	95	6,0	10,5	11,0	4,5	35,2	4160	308	10,9	178	262	37,3	2,73	2,47
30	31,8	300	100	6,5	11,0	12,0	5,0	40,5	5810	387	12,0	224	327	43,6	2,84	2,52
33	36,5	330	105	7,0	11,7	13,0	5,0	46,5	7980	484	13,1	281	410	51,8	2,97	2,59
36	41,9	360	110	7,5	12,6	14,0	6,0	53,4	10820	601	14,2	350	513	61,7	3,10	2,68
40	48,3	400	115	8,0	13,5	15,0	6,0	61,5	15220	761	.15,7	444	642	73,4	3,23	2,75

Báng 3-7 : Thép cán chữ [các biên cánh song song

N X X X

Các ký hiệu :

h - bê cao

b - bề rộng cánh

S - bề dày bản bụng

t - bề dày trung bình của cánh

R - bán kính góc tròn trong

r - bán kính góc tròn ở mép

J - mômen quán tính
W - mômen chống uốn
r_{x,y} - bán kính quán tính
S - mômen tính nửa tiết diện
zo - khoảng cách từ trọng tâm

	į	z _o ,	1,21	1,29	1,38	1,53	1,66	1,82	2,04	1,97	2,19	2,14	2,36
		ry, cm	0,983	1,120	1,240	1,440	1,620	1,810	1,960	2,000	1,150	2,200	2,350
ůc ,	y - y	W _y , cm ³	2,99	4,06	5,31	7,37	9,84	12,90	15,70	16,40	19,60	20,60	24,30
ới các tr	ber :	J_y , cm 4	5,95	9,35	13,90	22,60	34,90	51,50	65,20	72,80	90,50	100,00	123,00
Các trị số đối với các trục		S _x ,	5,61	9,02	13,30	20,50	29,70	40,90	45,20	54,30	59,50	70,00	76,30
Các 1		r _x ,	1,92	2,55	3,16	3,99	4,79	5,61	5,68	6,44	6,51	7,26	7,34
	. X	$\mathbf{W}_{\mathbf{x_s}}$	9,17	15,00	22,50	34,90	50,80	70,40	78,20	93,80	103,00	121,00	133,00
	-	$J_{\mathbf{x_i}}$ \mathbf{cm}^4	22,8	48,8	868	175,0	3,5	493,0	547,0	750,0	827,0	1090,0	1200,0
Trong	Inong	Im dài kG	4,84	5,90	7,05	8,59	10,40	12,30	13,30	14,20	15,30	16,30	17,40
Diện	tích	tiet diện cm²	6,16	6,51	8,98	10,90	13,30	15,60	17,00	18,10	19,50	20,70	22,20
		ı	3,5	3,5	3,5	4,0	4,5	4,5	4,5	5,0	5,0	5,0	5,0
		R	6,0	6,0	6,5	7,0	7,5	8,0	8,0	8,5	8,5	0,6	9,0
, ,		++	7,0	7,2	7,4	2,6	2,8	8,1	8,7	8,4	9,0	8,7	9,3
Kich thuces mm	CH CH	ď	4,4	4,4	4,5	4,5	4,8	4,9	6,4	5,0	5,0	5,1	5,1
K.5.	Z .	q	32	32	40	46	52	58	62	64	89	20	74
	,	ч	50	65	80	100	120	140	140	160	160	180	180
Š	hiệu	thép cán	5	6,5	∞	10	27	14	14a	16	16a	18	18a

16 17	2,390 2,30		2,540 2,50	•							
15 1.	25,20 2,3		28,70 2,5								
14 1	134,00 25	162,00 28		178,00 31							
1							•				
13	88,00	96,20	,	111,00	211,00	211,00 211,00 139,00	211,00 211,00 139,00 152,00	•	·		
12	8,08	8,17	8,90		9,01	9,01	9,01 9,75 9,86	9,01 9,75 9,86 10,90	9,01 9,75 9,86 10,90 12,00	9,01 9,75 9,86 10,90 12,00 13,10	9,01 9,75 9,86 10,90 12,00 13,10 14,30
11	153,00	168,00	193,00		212,00	212,00	212,00 243,00 266,00	212,00 243,00 266,00 310,00	212,00 243,00 266,00 310,00 389,00	212,00 243,00 266,00 310,00 389,00 486,00	212,00 243,00 266,00 310,00 389,00 486,00 603,00
10	1530,0	1680,0	2120,0		2340,0	2340,0 2910,0	2340,0 2910,0 3200,0	2340,0 2910,0 3200,0 4180,0	2340,0 2910,0 3200,0 4180,0 5830,0	2340,0 2910,0 3200,0 4180,0 5830,0 8010,0	2340,0 2910,0 3200,0 4180,0 5830,0 8010,0
6	18,40	19,80	21,00		22,60	22,60 24,00	22,60 24,00 24,80	22,60 24,00 24,80 27,70	22,60 24,00 24,80 27,70 31,80	22,60 24,00 24,80 27,70 31,80	22,60 24,00 24,80 27,70 31,80 36,50 41,90
88	23,40	25,20	26,70		28,80	28,80	28,80 30,60 32,90	28,80 30,60 32,90 35,20	28,80 30,60 32,90 35,20 40,50	28,80 30,60 32,90 35,20 40,50	28,80 30,60 32,90 35,20 40,50 46,50 53,40
2	5,5	5,5	6,0		6,0	6,0	6,0 6,0 6,0	6,0 6,0 6,0	6,0 6,0 6,5 7,0	6,0 6,0 6,5 7,0 7,5	6,0 6,0 6,0 7,0 7,0 8,3
٥	9,5	9,5	10,0		10,0	10,0	10,0 10,5 10,5	10,0 10,5 10,5 11,0	10,0 10,5 10,5 11,0 12,0		
ಸು	9,0	9,7	9,5								5,4 10,2 5,6 10,0 5,6 10,7 6,0 10,5 6,5 11,0 7,0 11,7 7,5 12,6
4	5,2	5,2	5,4		5,4	5,4	5,4 5,6 5,6	5,4 5,6 5,6 6,0	5,4 5,6 6,0 6,0	5,4 5,6 6,0 6,7 7,0	5,6 6,0 6,0 7,0 7,0
တ	92	08.	82		87	90	87 90 95	95	87 90 95 95	87 90 95 100 105	87 90 95 100 110
2	200	200	220		220	220	220 240 240	220 240 240 270	220 240 240 270 300	220 240 240 270 300 330	220 240 240 270 300 330
 -	20	12a	22		22a	22a 24	22a 24 24a	22a 24 24a 27	22a 24 24a 27	22a 24 24a 27 30	22a 24 24a 27 30 33

Bảng 3-16. Cường độ tính toán của thép hình (Nga) (kG/cm^2)

Loại cường độ	Ký hiệu	Thép c	ác bon
Loui olong do		CT3	CT5
Kéo, nén, uốn (人)	R (%)	2100	2300
Cắt	R _c R(V)	1300 /	1400
Ép mặt	Rem Ju	3200	3400

Bảng 3-17. Cường độ tính toán của đường hàn Rh (kG/cm²)

Loại đường hàn	Loại cường độ (hàn thủ công)	Ký hiệu	Cường độ tính toán của đường hàn kết cấu bằng thép CT3, que hàn E42
Hàn đối đầu	a) Nén	R_n^h	2100
	-b) Kéo	\mathbb{R}^k_h	1800
	c) Cắt	Rh	1300
Hàn góc	Nén, kéo, cắt	R	

Bảng 3-18. Cường độ tính toán của gỗ Việt Nam (kG/cm²)

_			Các loại cươ	dộ	
Nhóm gỗ	Nén dọc thớ R _n	Kéo dọc thớ R _k	Uốn Ru	Nén ngang-thó R _{n90}	Truot dọc thớ R _{tr}
IV	155 (135)	125 (120)	185 (165)	28 (25)	29 (25)
V	150 (130)	115 (110)	170 (150)	25 (24)	30 (25)
VI	130 (115)	-, 100 (95)	135 (120)	20 (18)	24 (21)
VII,	115 (100)	85 (80)	120 (100)	15 (13)	22 (19)

Khi cấu kiện có giảm yếu trong tiết diện tính toán, R_k phải nhân với 0.8. Số ngoài ngoặc ứng với W=15%, số trong ngoặc ứng với W=18%.

Bảng 3-19. Cường độ tính toán chịu nén R (kG/cm²) của khối xây gạch nung đặc

Vữa Gạch	25	50	75.00	100
50	9	10	11	
75	11	13	14	. 15
100	13	. 15	1,7	18

Khi diện tích tiết diện < 3.000 cm². Các trị số trong bảng nhân với 0.8

Bảng 3-20. Cường độ tính toán chịu nén R (kG/cm²) của khối xây đá hộc đập thô

Vữa Đá	25	50	75	100
100	5,0	6,0	7,0	7,5
150	5,5	7,0	8,0	9,0
200	6,0	_8,0	10,0	11,0
300	7,0	9,5	11,5	13,0
400	8,0	11,0	13,0	15,0
500	8,5	13,0-	- 15,0	18,0

Bảng 3-21. Cường độ tính toán chịu nên R (kG/cm²) của khối xây bằng viên bê tông đặc và đá thiên nhiên có quy cách

			!	1 1		
Số hiệu	,	*	Số hiệ	น ขนัล		
bêtông hoặc đá	25	50	75	100	150	200
50 75	12 15	13	14	15 19	-	
100	18	20	22	23	25	25
150	24	26	; ²⁸	29	31	33
200	30	33	35	36	38	40
300;	40	43	45	47	49	53
400	50	53	55	58	60	65
500	60	64	67	69	73	78
600:	70	75	· 78	80	85	. 90
800	85	90	95	100	105	110
1000	105	110	115	120	125	130

Bảng 3-22. Yêu cầu độ sụt và chỉ số cứng của bêtông

Số TT	Hình dạng kết cấu	Độ sụt nói	ı cụt (mm)	Chỉ số
30 11	mm dang ket cau	Đầm máy	Đầm tay	độ cứng S
1	Bêtông lót móng	0 - 10	yan yan Ewil in in	50 - 40
2	Kết cấu khối lớn ít thép hoặc không thép	10 - 20	20 - 40	35 - 25
3	Kết cấu khối lớn có cốt thép, bản, dầm, cột	20 - 40	40 - 60	25 - 15
6 8 m 1 g 2 m	có tiết diện lớn và trung bình	20 - 40	40-00	20-10
4	Kết cấu bêtông cốt thép dầy, tường mỏng,	50 - 80	80 - 120	12 - 10
	cột, móng, dầm và bản có tiết diện nhỏ	50 - 60	00 - 120	12 - 10
5	Kết cấu dùng bêtông bơm	120	_200	-

Bảng 3-23. Tỷ lệ $\frac{N}{X}$ cần thiết cho các loại bêtông đẻo

Số hiệu ximăng	Số hiệu bêtông					
	50	100	150	200		
300	1,20	0,85	0,70	0,55		
400	không dùng	1,00	0,80	0,65		
500	không dùng	không dùng	không dùng	0,75		

Bảng 3-24. Thời gian trộn bêtông (phút)

Độ sụt		Dun	g tích máy trộn (lít)	
(cm)	< 500		500 - 1000	> 1000
< 1 cm	2		2,5	3,0
1 ~ 5 cm	1,5		2,0	2,5
> 5	1,0		1,5	2,0

Bảng 3-25. Thành phần vật liệu cho $1~\mathrm{m}^3$ bêtông nặng mác $100~\mathrm{m}$

Cốt liệu và quy cách	Mác	Ximăng	Cát	Đá, sỏi	Nước
	ximăng	(kg)	(kg)	(kg)	(lít)
Cốt liệu nhỏ M_1 = 2,1 - 3,5 Cốt liệu lớn có hạt D_{max} = 10mm	PC30	265	615	1260	195
Cốt liệu nhỏ M_1 = 2,1 - 3,5	PC30	245	665	1190	185
Cốt liệu lớn có hạt D_{max} = 40 ~ 50mm		224	680	1240	180
Cốt liệu nhỏ $M_1=2,1$ - $3,5$ Cốt liệu lớn có hạt $D_{max}=70 \mathrm{mm}$	PC30	219	725	1270	170

Bảng 3-26. Thời gian vận chuyển cho phép của bêtông

Nhiệt độ °C		>	Thời gian vận chuyển cho phép (p	hút)
•	> 30		30	
	20 - 30	and the same of th	45	
÷	10 - 20		60	
<u> </u>	5 - 10		90	

Bảng 3-27. Thời gian gián đoạn giữa lớp bêtông đổ trước và lớp bêtông đổ sau (dùng ximăng Poóclăng) khi không có phụ gia

Nhiệt độ khi đổ bêtông (°C)			Thời gian gián đoạn (phút)		
-1 4	>30	1 1	60		
	20 ~ 30	1111	90		
<u> </u>	10 ~ 20		135		

Bảng 3-28. Tỷ lệ (%) so với R₂₈ khi bêtông có t ngày tuổi

Ngày tuổi	2	3	7	14	21	28
%R	32	41	; 61	80	92	100

Bảng 3-29. Thời gian tối thiểu (ngày) để bêtông đạt cường độ 25 kG/cm² (bảo đảm cho góc cạnh, bề mặt bêtông không sút mẻ)

Loại Số hiệu		Số hiệu	Nhiệt độ trung bình hàng ngày				
Ximăng	Ximăng	Ximăng Bêtông		15°C	20°C	25°C	30°C
Ximăng	250	75 - 100	3,0	2,0	1,5	1,0	1,0
Poóclăng	300	150	2,5	1,5	1,5	1,0	1,0
	≥ 400	≥ 200	2,0	1,5	1,5	1,0	1,0

Bảng 3-30. Thời gian tối thiểu (ngày) để bêtông đạt cường độ cần thiết và có thể tháo đỡ ván khuôn

Bộ phận kết cấu	Loại	Số hiệu	Cường độ phải đạt để tháo dỡ	Nhiệt độ trung bình hàng ngày				
công trình	ximăng	ximăng	ván khuôn tính theo % cường độ ở 28 ngày	10°C	15°C	20°C	25°C	30°C
Bản hay vòm có $l \leq 2m$	Pooclăng	300 - 400 250 - 300	50 50	8 14	7 10	6 8	5 7	4 6
Bản hay vòm $2m < l \le 8m$	Pooclăng	300 - 400	70	16	12	10	9	.8
Cột chống, ván đáy của dầm l≤8m		250 - 300	70	22	16	14	11	9
Cột chống và ván khuôn ở bản, vòm, dầm <i>l</i> > 8m	Pooclăng	300 -400 250 - 300	90 90	35 40	30 30	27 28	24 26	20 22

Ghi chú: Sau khi tháo ván khuôn, bêtông chưa đạt 100% cường độ thiết kế thi không được cho chịu toàn bộ tải trọng thiết kế.

Bảng 3-31. Liều lượng pha chế hồ vữa (tính cho 1m³) dùng để xây trát

Loại vữa Nguyên liệu	Vữa 50 #	Vữa 75 #	Vữa 100 #
Ximăng PC40 Cát mịn	190 kg 1210 dm ³	$250\mathrm{kg}$ $1140\mathrm{dm}^3$	$330~\mathrm{kg}$ $1080~\mathrm{dm}^3$

Bảng 3-32. Chiều dài nối buộc tối thiểu của cốt thép chịu lực

	Chiều dài nối buộc					
Loại cốt thép	Vùng ch	iu kéo	Vùng chịu nén			
	Dầm hoặc tường	Kết cấu khác	Đầu cốt thép có móc	Đầu cốt thép không có móc		
Cốt thép trơn cán nóng	40 ф	30 ф	20 ф	30 ф		
Cốt thép có gờ cán nóng	40 ф	30 ф		20 ¢		
Cốt thép kéo nguội	45 ¢ ·	35 ф	20 ф	30 ф		

Bảng 3-33. Chiều dài nối buộc cốt thép khi dùng các loại bêtông khác nhau

	Mác bê tông					
Loại cốt thép chịu lực	.` ≤	150	≥ 200			
	Vùng chịu kéo	Vùng chịu nén	Vùng chịu kéo	Vùng chịu nến		
Cốt thép có gờ cán nóng Cốt thép trơn cán nóng Cốt thép kéo nguội	30 φ 35 φ 40 φ	20 φ 25 φ 30 φ	25 φ 30 φ 35 φ	15 φ 20 φ 25 φ		

Bảng 3-34. Chiều dài nối hàn (I_h)

Loại nối	Hình vẽ	Hàn 1 phía	Hàn 2 phía
Không có thanh ốp Có thanh ốp		10 ф	5 φ
	. [8 φ	4 φ

Bảng 3-35. Chiều dầy lớn nhất của mỗi lớp khi đổ bêtông

Số TT	Phương pháp đầm	Chiều dầy max (cm) 25 - 50 (= 1,25 phần công tác của đầm)				
1.	Đầm dùi (chấn động trong)					
2	Đầm chấn động mặt					
	- kết cấu không thép hoặc đặt cốt đơn	20				
	- kết cấu đặt cốt thép	12				
3	Đầm tay	20				

Bảng 3-36. Góc nghiêng giới hạn của máng, băng chuyền (độ) dùng để đổ bêtông

Độ sụt (cm)	Khi vận chuyển bê tông lên cao	Khi vận chuyển bê tông xuống thấp				
< 4	15	12				
4 - 8	15	10				

Bảng 3-37. Các sai lệch cho phép khi thi công kết cấu bêtông và bêtông cốt thép toàn khối

Tên các sai lệch	Mức cho phép, mm
1 - Độ lệch của các mặt phẳng và các đường cắt nhau của các mặt phẳng đó so với đường thẳng đứng hoặc so với độ nghiêng thiết kế:	
a) Trên 1m chiều cao kết cấu	5
b) Trên toàn bộ chiều cao kết cấu * Móng	20
* Tường đổ trong cốp pha cố định và cột đổ liền với sàn	15
* Kết cấu khung cột	10
* Các kết cấu thi công bằng cốp pha trượt hoặc cốp pha leo	1/500 chiều cao công trình nhưng không vượt quá 100mm
2 - Độ lệch của mặt bêtông so với mặt phẳng ngang	;
a) Tính cho 1m mặt phẳng về bất cứ hướng nào	5
b) Trên toàn bộ mặt phẳng công trình	20
3 - Sai lệch trục của mặt phẳng bêtông trên cùng so với thiết kế khi	. :
kiểm tra bằng thước dài 2m áp sát mặt bêtông	±8
4 - Sai lệch theo chiều dài hoặc nhịp của các kết cấu	±20
5 - Sai lệch tiết diện ngang của các bộ phận kết cấu	±8.
6 - Sai lệch vị trí và cao độ của các chi tiết làm gối tựa cho các kết cấu	
thép hoặc kết cấu bêtông cốt thép lắp ghép	± 5

Bảng 3-38. Thời gian bảo dưỡng ẩm cho kết cấu bêtông cốt thép

Vùng khí hậu bảo dưỡng bêtông	Mùa	Tháng Cường độ bảo dưỡng tố hạn (% R ₂₈)		Thời gian bảo dưỡng tối thiểu (ngày đêm)
A	Hè	4 - 9	50 - 55	3
	Đông	10 - 3	40 - 50	4
В	Khô	2 - 7	55 - 60	4
	Mua	8 - 1	35 - 40	2
C	Khô	12 - 4	70	6
	Mua	5 - 11	30	, 1

Vùng A: từ Diễn Châu Nghệ An trở ra Bắc

Vùng B : phía Đông Trường Sơn và từ Diễn Châu Nghệ An đến Thuận Hải

Vùng C: Tây Nguyên và Nam Bộ

Bảng 3-39. Góc ma sát trong (ϕ) của một số loại đất

Tên đất	Trạng thái của đất						
	Khô		Åт	Uót			
Đất bùn không có rễ cây	40°		25°	14°			
Đất mục (hữu cơ)	40	-	35	25			
Đất sét pha	50	ν.	40	30			
Cát hạt nhỏ	25	, -	30	20			
Cát hạt trung bình	28		35	25			
Cát hạt to	30	•	32	27			
Sỏi, đá dăm	40	23.35	40	35			

Bảng 3-40. Công thức tính thể tích các khối phức tạp

Số TT	Hình khối	Công thức tính toán
1	H ₁ H ₂ H ₃	$V = L.B \frac{H_1 + H_2 + H_3 + H_4}{4}$
2	H	$V = L.B.\frac{H}{2}$
3	B ₁ H ₁ H ₂	$V = \frac{L}{6} (B_1 H_1 + B_2 H_2) + \sqrt{B_1 H_1 \cdot B_2 H_2}$

Số TT	Hình khối	Công thức tính toán
4	H ₃	$V = \frac{LB}{6} (H_1 + H_2 + H_3)$
5	H	$V = \frac{\pi D^2 H}{4}$
6	H	$V = \frac{H}{4} (L_1 + L_2)(B_1 + B_2)$
7	# * * * * * * * * * * * * * * * * * * *	$V = \frac{\pi H D^2}{24}$
8	Tháp h Diện tích đáy S	$V = \frac{1}{3} S.h$

Số TT	Hình khối	Công thức tính toán
9	Tháp cụt s: diện tích đáy trên	
10	Lăng kính a ₁	$V = \frac{1}{6} (2a + a_1) bh$
11	Đống cát	$V = \frac{h}{6} [ab + (a + a_1)(b + b_1) + a_1b_1]$
12	Nón	$V = \frac{1}{3} \pi R^{2} h$ $S_{tp} = \pi R(R + I)$
13	Nón cut	$V = \frac{\pi}{3} h[R^2 + Rr + r^2]$ $S_{tp} = \pi [R^2 + r^2 + l(R + r)]$

Số TT	Hình khối	Công thức tính toán
14	Cầu PR D = 2R	$V = \frac{1}{6} \pi D^3$ $S_{tp} = 4\pi R^2$
15	Múi cầu	$V = \frac{2}{3} \pi R^2 h$ $S_{tp} = \pi R(a + 2h)$
16	Chỏm cầu	$V = \frac{1}{3} \pi h^{2} (3R - h)$ $S_{tp} = \pi (h^{2} + 2a^{2})$

Bảng 3-41. Lực tiêu chuẩn (P) do móc cẩu dùng thép có $R_a = 2000 \text{ kG/cm}^2$

ф	P (kG)	ф	P (kG)
6	100	18	2500
8	300	20	3100
10	700	22	3800
12	1100	25	4900
14	1500	28	6100
16	2000	32	8000

Bảng 3-42. Chiều dài một móc đầu thanh thép tròn tron (ΔI)

ф	∆l (mm)	ф	Δl (mm)
6	50	18	130
8	60	20	150
10	80	22	170
12	90	25	200
14	110	28	220
16	120	32	240

Phần 4

TRÌNH TỰ TÍNH TOÁN CÁC CẤU KIỆN

I. KẾT CẤU BỆTÔNG CỐT THÉP

A. CẤU KIỆN CHỊU NÉN ĐÚNG TÂM

1. Sơ bộ xác định diện tích tiết diện

$$F_b = \frac{kN}{R_n} \label{eq:fb}$$

k là hệ số kể tới mômen uốn. Từ đó chọn sơ bộ kích thước tiết diện b, h hoặc D. k=1,1 - 1,5, cột trong nhà k=1,1, cột biên k=1,3, cột góc k=1,5

2. Kiểm tra điều kiện ổn định

Tiết diện vuông, chữ nhật:

Độ mảnh:

$$\lambda = \frac{I_0}{b} \le 30$$

Tiết diện khác

Độ mảnh:

$$\lambda = \frac{l_0}{r_{\min}} \le 120$$

Liên kết hai đầu khớp $l_0 = l$ (chiều dài thực); nếu là cột thì l thay bằng H

Liên kết hai đầu ngàm

 $l_0 = 0.51$

Liên kết một đầu ngàm một đầu khớp

 $l_0 = 0.71$

Liên kết một đầu ngàm đầu kia tự do

 $l_0 = 2 l$

Cột nhà nhiều tầng nhiều nhịp $l_{\rm o}=0.7l$; cột nhà một tầng $l_{\rm o}$ lấy theo bảng 4-2.

3. Các loại bài toán

a) Kiểm tra khả năng chịu lực :

$$N \le \varphi(R_n F_b + R_a' F_a)$$

Khi cạnh cột < 30cm, đúc theo phương đứng thay R_n bằng 0,85 R_n Hệ số uốn dọc ϕ tra bảng 4-1.

Bảng 4-1. Hệ số ϕ

$\lambda = \frac{I_0}{b}$	≤8	10	12	14	16	18	20	22	24	26	28	30
$\lambda = \frac{l_0}{D}$	≤7	8,5	10,5	12	14	15,5	17	19	21	22,5	24	26
φ	1	0,98	0,96	0,93	0,89	0,85	0,81	0,77	0,73	0,68	0,64	0,59

- b) Tính cốt thép dọc:
- + Biết F_b, I_o, N, R_n, R'_a

$$F_a = \frac{\frac{N}{\phi} - R_n F_b}{R_a'}$$

- + Chọn và bố trí cốt thép
- + Kiểm tra hàm lượng $0.4\% \le \mu_a \le 3.5\%$

Vi~du~1: Một cột có hai đầu liên kết ngàm có chiều cao H = 7m, tiết diện hình vuông 30×30 cm chịu một lực nén N là 100T. Dùng bêtông mác 200 thép CII. ($R_a' = 2600 k G/cm^2$). Tính cốt thép chịu lực của cột.

Giải:
$$l_0 = 0.5 \times H = 0.5 \times 7 = 3.5 \text{ m}$$

$$\lambda_b = \frac{l_0}{b} = \frac{350}{30} = 11.7; \quad j = 0.97$$

$$F_a = \frac{\frac{100000}{0.97} - 90.30.30}{2600} = 8.91 \text{cm}^2$$

Chọn 4 ϕ 18 có $\mathrm{F_a}=10{,}18\mathrm{cm}^2>8{,}91\mathrm{cm}^2$

Bảng 4-2. Chiều dài tính toán của cột nhà một tầng

				$l_{ m o}$ khi tínl	ı cột trong mặt phẳng			
	Đặc trụ	mg của nhà và c	•.	Thẳng góc với khung ngang				
	Dạc 11 d	ing cua ima ya c	Ģi ,	Của khung ngang	khi có	khi không có		
					liên kết trong mặt phẳng của hàng cột dọc			
1	2	3	4	5	6	7		
1. Nhà có cầu chạy	Khi có kể đến tải	Phần cột dưới dầm cầu chạy	Liên tục Không liên tục	$1,5~\mathrm{H}_1 \ 1,2~\mathrm{H}_1$	0,8 H ₁ 0,8 H ₁	1,2 H ₁ 0,8 H ₁		
	trọng cầu chạy	Phần cột trên dầm cầu chạy	Liên tục Không liên tục	2,0 H ₂ 2,0 H ₂	1,5 H ₂ 1,5 H ₂	2,0 H ₂ 2,0 H ₂		

1 .	2	3	4	5	6	V. 70-
1. Nhà có	Khi không	Phần cột dưới	Một nhịp	1,5 H	0,8 H ₁	1,2 H
	kể đến tải trọng cầu	dầm cầu chạy của nhà	Nhiều nhịp	1,2 H	0,8 H ₁	1,2 H
	chạy	· •	Liên tục Không l iên tục	$2,5~\mathrm{H}_2$	1,5 H ₂ 1,5 H ₂	$2,0~{ m H}_2 \ 1,5~{ m H}_2$
2. Nhà không có	Cột có giật cấp	· ·	Một nhịp Nhiều nhịp	1,5 H 1,2 H	0,8 H 0,8 H	1,2 H 1,2 H
cầu chạy		Phần cột trên		$2,5~\mathrm{H}_2$	$0.8~\mathrm{H}_2$	2,5 H2
	I	Nhà một nhịp Nhà nhiều nhị	p	1,5 H 1,2 H	0,8 H 0,8 H	1,2 H 1,2 H

Ghi chú: H - Chiều cao toàn bộ cột từ mặt móng đến kết cấu mái

H₁ - Chiều cao phần cột dưới từ mặt móng đến mặt vai cột (H_d)

H2 - Chiều cao phần cột trên từ vai cột đến kết cấu mái (Ht)

B. CẤU KIỆN CHỊU NÉN LỆCH TÂM (Tiết diện chữ nhật)

1. Đặt thép đối xứng

a. Tính độ lệch tâm ban đầu eo

$$e_0 = e_{01} + e_{ng}$$

 $\begin{aligned} e_o &= e_{01} + e_{ng} \\ e_{01} &= \frac{M}{N} \end{aligned} \label{eq:e01} .$ Độ lệch tâm do nội lực

Độ lệch tâm ngấu nhiên $e_{ng} = \frac{h}{25}$ (do sai số thi công) nhưng luôn luôn $\geq 2cm$.

b. Tính hệ số uốn dọc:

$$\eta = \frac{1}{1 - \frac{N}{N_{th}}}$$

Lực nén tới hạn:

$$N_{th} = \frac{6.4}{I_0^2} \left(\frac{S}{K_{dh}} E_b J_b + E_a J_a \right)$$

S là hệ số kể tới độ lệch tâm

Khi $e_0 < 0.05h$ lấy S = 0.84

Khi 0,05h<
$$e_o$$
 < 5h lấy $S = \frac{0,11}{0,1 + \frac{e_o}{h}}$

Khi $e_0 > 5h$ lấy S = 0.122

 K_{dh} là hệ số kể tới tính chất dài hạn của tải trọng

$$K_{dh} = 1 + \frac{M_{dh} + N_{dh} \frac{h}{2}}{M + N \frac{h}{2}}$$

Nếukhông tách riêng $M_{\rm dh}$, $N_{\rm dh}$ thì lấy $K_{\rm dh}=2$.

Nếu M_{dh} ngược dấu với M thì M_{dh} mang dấu âm. Nếu K_{dh} < 1 phải lấy K_{dh} =1 M_{dh} ; N_{dh} là mômen và lực dọc do tải trọng dài hạn gây ra.

Mô
đun đàn hồi của thép $\rm E_a = 2.1 \times 10^6 \ kG/cm^2$

Mômen quán tính của thép : $J_a = \mu_t bh_o(0.5h - a)^2$

Giả thiết $\mu_t = 0.8$ - 1.2% (hàm lượng thép tổng công)

c. Tính độ lệch tâm tính toán

$$e = \eta e_0 + \frac{h}{2} - a$$

$$e' = \eta e_0 - \frac{h}{2} + a'$$

$$lech tem$$

d. Xác định trường hợp lệch tâm

$$x = \frac{N}{R_n \cdot b}$$

Nếu $x < \alpha_0 h_0$ thì lệch tâm lớn

Nếu $x \ge \alpha_0 h_0$ thì lệch tâm bé

Bảng 4-3. Trị số α_0

Cường độ chịu kéo tính toán của cốt thép (kG/cm³)				
can cot mep (ko/em)	200#	250# - 300#	350# - 400#	500#
≤ 3000	0,62	0,58	0.55	0.52

- e. Tính cốt thép dọc
- $\alpha,$ Trường hợp lệch tâm lớn (x < $\alpha_0 h_0)$
- Nếu x > 2a'

$$F_a = F'_a = \frac{N (e - h_o + 0.5 x)}{R'_a(h_o - a')}$$

- Nếu x ≤ 2a'

$$F_a = F'_a = \frac{Ne'}{R_a (h_0 - a')}$$

-Kiểm tra lại hàm lượng $\mu_{\min} \le \mu \le \mu_{\max} (\mu_{\min} = 0.4\%; \mu_{\max} = 3.5\%)$;

$$\mu_{\%} = \frac{\mathbf{F_a} + \mathbf{F'_a}}{\mathbf{b} \cdot \mathbf{h_0}} 100\%$$

Và $μ ≈ μ_t$ (μ là hàm lượng tổng cộng)

Nếu μ khác nhiều với μ_t giả thiết thì dùng μ tính lại N_{th} và η (Δ μ chỉ nên lấy $\leq 0,25\%$)

- β, Trường hợp lệch tâm bé $(x > \alpha_0 h_0)$
- Tính x', nếu $\eta e_0 \le 0.2h_0$ thì

$$x' = h - \left(1.8 + \frac{0.5h}{h_0} - 1.4\alpha_0\right) \eta e_0$$

nếu $\eta e_o > 0.2h_o thì$

$$\begin{aligned} x' &= 1,8 \; (e_{ogh} - \eta e_o) + \alpha_o h_o \\ e_{ogh} &= 0,4 (1,25 h - \alpha_o h_o) \end{aligned}$$

$$F_a = F_a' = \frac{Ne - R_n \; b \; x' \; (h_o \; -0,5 x')}{R_a' (h_o \; -a')}$$

- Kiểm tra lại μ

Vi~du~2. Tính cốt thép đối xứng cho một cột lắp ghép có tiết diện b = 40cm, h = 60cm, bêtông mác 200, cốt thép nhóm A-II, chiều dài tính toán $l_{\rm o}$ = 7,8m. Nội lực tính toán M = 26Tm, N = 96T, trong đó $M_{\rm dh}$ = 12Tm, $N_{\rm dh}$ = 61,3T.

Giai:

Tra các số liệu : R_n = 90kG/cm² ; R_a = 2800kG/cm² ; E_b = 240000kG/cm² ; E_a = 2100000 kG/cm² ; α_o = 0,62 ; A_o = 0,428.

Độ lệch tâm $e_{o1}=M/N=26/96=0,27m=27cm$. Độ lệch tâm ngẫu nhiên lấy bằng $e_{ng}=h/25=60/25=2,4cm$. Độ lệch tâm $e_{o}=27+2,4\ne29,4cm$.

Giả thiết a = a' = 4cm; $h_0 = 60 - 4 = 56cm$.

$$\frac{e_0}{h} = \frac{29.4}{60} = 0.49$$

$$Tinh S = \frac{0.11}{0.1 + \frac{e_o}{h}} + 0.1 = \frac{0.11}{0.1 + 0.49} + 0.1 = 0.286$$

$$K_{dh} = 1 + \frac{12 + 61,3 \times 0,3}{26 + 96 \times 0.3} = 1,555$$

$$J_b = \frac{bh^3}{12} = \frac{40 \times 60^3}{12} = 720.000 \text{ cm}^4$$

Giả thiết $\mu_t\%=1\%$, tính $J_a=\mu_t bh_o(0,5h-a)^2=0,01\times 40\times 56(30-4)^2=15142cm^4$ Tính lực dọc tới hạn

$$N_{\rm th} = \frac{6.4}{720^2} \left(\frac{0.286}{1.555} \times 240 \times 720 + 2.1 \times 15142 \right) 10^6 = 784939 {\rm kG}$$
;

$$\eta = \frac{1}{1 - \frac{N}{N_{th}}} = \frac{1}{1 - \frac{96}{784,939}} = 1,139$$

$$e = 1,139 \times 29,4 + 30 - 4 = 59,5cm$$

Xác định chiều cao vùng chịu nén :

$$x = \frac{N}{R_n b} = \frac{96.000}{90 \times 40} = 26,6cm$$

$$x < \alpha_0 h_0 = 0.62 \text{ x } 36 = 34.7 \text{cm}$$
; $x > 2a' = 8 \text{cm}$

Xảy ra trường hợp nén lệch tâm lớn. Tính F_a

$$F_a = F_a' = \frac{N \ (e - h_o + 0.5 \ x)}{R_a \ (h_o - a')} = \frac{96000 \ (59.5 \ - \ 56 \ + \ 13.3)}{2800 \ (56 - 4)} = 11.08 cm^2$$

Kiểm tra :
$$\mu = \frac{11,08}{40 \times 56} = 0,00495 = 0,495\% > \mu_{min} = 0,2\%$$

 $\mu_t = \frac{11,08~+~11,08}{40~\times~56} \times 100~=~0,99\%,~\text{tức là sai lệch so với giả thiết }1\%~\text{là không đáng kể.}$

Chọn cốt thép ở mỗi phía $3\phi22$ ($F_a=11,4cm^2$). Cốt đai dùng $\phi6$ (không dưới $1/4\times22=5,5$ mm) với khoảng cách u=30cm (nhỏ hơn $15\times2,2=33$ cm).

2. Đặt thép không đối xứng

- a. Tính độ lệch tâm ban đầu eo (như mục 1).
- b. Tính hệ số uốn dọc n (như mục 1)
- c. Tính độ lệch tâm tính toán e, e' (như mục 1)
- d. Xác định trường hợp lệch tâm.

Nếu $\eta e_o \ge e_{ogh} = 0.4(1.25h - \alpha_o h_o)$ cấu kiện chịu nén lệch tâm lớn.

Nếu ηe_o < e_{ogh} cấu kiện chịu nén lệch tâm bé.

- e. Tính cốt thép dọc
- α) Trường hợp lệch tâm lớn

$$F'_a = \frac{N e - A_0 R_n b h_0^2}{R'_a (h_0 - a')}$$

$$F_a = \frac{\alpha_0 R_n b h_0 - N}{R_a} + \frac{R'_a}{R_a} F'_a$$

β) Trường hợp lệch tâm bé

Khi $\eta e_0 \leq 0.2h_0$ tính x

$$x = h - (1.8 + \frac{0.5h}{h_0} - 1.4 \alpha_0) \eta e_0$$

Khi $\eta e_o > 0.2h_o$

$$x = 1.8 (e_{ogh} - \eta e_o) + \alpha_o h_o$$

$$F'_a = \frac{N_e - R_n b x (h_o - 0.5 x)}{R'_a (h_o - a')}$$

Khi $e_o \ge 0.15 h_o$, F_a đặt theo cấu tạo. Khi $e_o < 0.15 h_o$

$$F_a = \frac{Ne' - R_n b \times (0.5 x - a)}{\sigma_a (h_o - a')}$$

$$\sigma_a = \left(1 - \frac{\eta e_0}{h_0}\right) R_a'$$

γ) Kiểm tra lại hàm lượng

 μ_a và μ_a' phải > 0,002bh_o

$$\mu_{\min} < \mu = \mu_{a} + \mu'_{a} < \mu_{\max}$$

$$\Delta \mu = \left| \mu - \mu_{t} \right| \le 0.25\%$$

Nếu $\Delta\mu > 0.25\%$ tính lại N_{th} và η

$$V\acute{\sigma}i \qquad \overline{\mu} = \frac{\mu + \mu_t}{2}$$

Vi~du~3: Theo số liệu như ở ví dụ 2 nhưng yêu cầu tính cốt thép F_a và F_a' không đối xứng.

 $\begin{aligned} \textit{Giải}: \text{Tính $\eta e_o = 1,139 \times 29,4 = 33,4cm, tính $e_{ogh} = 0,40 \times (1,25\text{h} - \alpha_o h_o)$} \\ &= 0,40 \; (1,25 \times 60 - 0,62 \times 56) = 16,1cm < \eta e_o = 33,4cm. \end{aligned}$ Như vậy phải tính cốt thép theo trường hợp lệch tâm lớn.

$$F_a' = \frac{\text{Ne} - A_0 R_n b h_0^2}{R_a' (h_0 - a')} = \frac{96000 \times 59,5 -0,428 \times 90 \times 40 \times 56^2}{2800 (56 - 4)} = 6,04 \text{cm}^2$$

Kiểm tra
$$\mu_a$$
% = $\frac{6,04}{40 \times 56} \times 100 = 0,267\% > \mu_{min} = 0,2\%$

$$F_a = \frac{\alpha_o R_n b h_o - N}{R_a} + \frac{R'_a}{R_a} F'_a$$

$$= \frac{0.62 \times 90 \times 40 \times 56 - 96000}{2800} + 6.04 = 16.39 \text{cm}^2$$

Chọn cốt chịu nén là $2\phi20$ (F'a = 6,28cm²) và cốt chịu kéo là $2\phi25+2\phi22$ (Fa = 17,42cm²). Chọn cốt đai như sau : đường kính 8mm khoảng cách 30cm.

Vi~du~4: Các số liệu đều giống như ví dụ 2 nhưng nội lực tính toán là : M=9,36Tm ; N = 260T trong đó $M_{\rm dh}$ = 5Tm ; $N_{\rm dh}$ = 180T.

Tính eo có thể kể đến độ lệch tâm ngẫu nhiên:

$$e_0 = \frac{1}{25} \times 60 + \frac{936}{260} = 6cm$$

$$S = \frac{0.11}{0.1 + \frac{6}{60}} + 0.1 = 0.65$$

$$K_{dh} = 1 + \frac{5 + 180 \times 0.3}{9.36 + 260 \times 0.3} = 1.68$$

Sử dụng những kết quả đã tính ở ví dụ trên

$$N_{\rm th} = \frac{6.4}{720^2} \left(\frac{0.65}{1.68} \ 240 \times 720 + 2.1 \times 15142 \right) \ 10^6 = 1.218 \times 10^6 \, \rm kG$$

$$\eta = \frac{1}{1 - \frac{260}{1218}} = 1.27$$

$$\eta e_0 = 1.27 \times 6 = 7.62$$

 $e_{ogh} = 16,1$ cm $h > \eta e_o$ tức là rơi vào trường họp lệch tâm bé.

$$\eta e_0 < 0.15 h_0 = 0.15 \times 56 = 8.4 cm.$$

Tính F'a với x được tính như sau:

$$x = h - \left(1.8 + \frac{0.5h}{h_0} - 1.4 \alpha_0\right) \eta e.$$

$$= 60 - \left(1.8 + \frac{0.5 \times 60}{56} - 1.4 \times 0.62\right) 7.62 = 48.8cm$$

$$e = \eta e_0 + \frac{h}{2} - a = 7.62 + 30 - 4 = 33.62$$

$$F'_{a} = \frac{260000 \times 33,62 - 90 \times 40 \times 48,8 (56 - 0,5 \times 48,8)}{2800 (56 - 4)} = 21,91 \text{cm}^{2}$$

Fa được tính như sau:

$$e' = 0.5h - \eta e_0 - a' = 30 - 7.62 - 4 = 18.38cm ;$$

$$\sigma_a = R'_a \left(1 - \frac{\eta e_0}{h_0} \right) = 2800 \left(1 - \frac{7.62}{56} \right) = 2419 \text{ kG/cm}^2$$

$$F_a = \frac{260000 \times 18,38 - 90 \times 40 \times 48,8 \ (0.5 \times 48,8 - 4)}{2419 \ (56 - 4)} = 9,49 \text{cm}^2.$$

$$F_{amin} = 0.002 \times 40 \times 56 = 4.48 \text{cm}^2 < F_a$$

Chọn cốt thép F_a là $2\phi28+2\phi25$ ($F_a=22,14$ cm²), chọn cốt thép F_a là $2\phi25$ ($F_a=9,82$ cm²), cốt đai chọn $\phi8$, bước u=30cm.

C. CẤU KIỆN CHỊU KÉO

1. Cấu kiện chịu kéo đúng tâm

$$F_a = \frac{N}{R_a}; \qquad \mu_{min} = 0.4 \%$$

2. Cấu kiện chịu kéo lệch tâm (tiết diện chữ nhật)

a. Lệch tâm bé

$$\begin{split} F_a' &= \frac{N \, e}{R_a' \, \left(\, h_o \, - \, a' \right)} \\ F_a &= \frac{N e'}{R_a \, F_a \, \left(\, h_o \, - \, a' \right)} \\ e &= 0.5 h \cdot e_o \cdot a \\ e' &= 0.5 h + e_o \cdot a' \\ \mu &= \mu_a + \mu_a' \geq \mu_{min} = 0.1\% \end{split}$$

b. Lệch tâm lớn

$$F'_{a} = \frac{N e - A_{o} R_{n} b h_{o}^{2}}{R'_{a} (h_{o} - a')}$$

$$e = e_{o} - 0.5h + a$$

$$F_{a} = \frac{N + \alpha_{o} R_{n} b h_{o} + R'_{a} F'_{a}}{R_{o}}$$

c. Kiểm tra khả năng chịu lực

$$x = \frac{R_a F_a - R_a F_a - N}{R_n b}$$

Khi $2a' \le x < \alpha_0 h_0$

$$Ne \le R_n bx(h_0 - 0.5x) + R'_a F'_a(h_0 - a')$$

Khi $x > \alpha_0 h_0$ thay $x = \alpha_0 h_0$ vào công thức Ne

Khi x < 2a' ; Ne' $\leq R_a F_a (h_o - a')$

d. Tính theo lực cắt

Điều kiện $Q \le k_o R_n bh_o$

$$k_0 = 0.35$$
 với BT $\leq 400 \#$

Khi $Q \leq k_1 R_k b h_o$ - 0,2N , đặt đai theo cấu tạo như cấu kiện chịu uốn.

Variable Commencer and the Commencer of

Khi $Q > k_1 R_k bh_o$ - 0,2N, tính đai để bảo đảm điều kiện :

$$Q \le 2.8 \sqrt{(R_k \ b \ h_0 \ - \ 0.2 \ N \) \ h_0 \ q_d}$$
 $k_1 = 0.6 \ d\tilde{o}i$ với thanh chịu kéo
 $k_1 = 0.8 \ d\tilde{o}i$ với bản chịu kéo
 q_d tính như trong cấu kiên chiu uốn

- D. CẤU KIỆN CHỊU UỐN (Tính theo tiết diện thẳng góc)
 - 1. Tiết diện chữ nhật

$$h_o = h - a$$

$$A = \frac{M}{R_n b h_o^2}$$

Nếu $A \le A_o$ tính theo cốt đơn

Nếu $A_o < A < 0.5$ tăng h hoặc tính theo cốt kép.

Dùng thép có $R_a \le 3000 kG/cm^2$ thì

$$A_{o} = 0,428 \; \mathrm{khi} \; \mathrm{BT}\text{-}200\#$$

$$A_{o} = 0,412 \; \mathrm{khi} \; \mathrm{BT} = 250 \; \text{-} \; 300\#$$

a. Đặt cốt đơn :

- Từ A tra bảng 4-11 được α hoặc $\gamma,$ hoặc tính $\alpha=1-\sqrt{1-2A}$; $\gamma=0.5$ ($1+\sqrt{1-2A}$; α là tỷ số của chiều cao vùng nén (x) và chiều cao tính toán của tiết diện $(h_o).$

Bài toán : - Tính diện tích cốt thép dọc F_a

$$F_a \; = \; \frac{\alpha \; R_n b h_o}{R_a}$$
 hoặc
$$F_a \; = \; \frac{M}{R_a \; \gamma \; h_o}$$

- Kiểm tra $\mu > \mu_{min}$ $\mu \leq \mu_{max} = \frac{\alpha_o \ R_n}{R_a}$

 $\alpha_{o} = 0.62 \text{ khi BT-200#}$ $\alpha_{o} = 0.58 \text{ khi BT-250 - 300#}$

Bài toán : - Kiểm tra khả năng chịu lực khi biết b, h, Fa, bêtông và thép

$$\alpha = \frac{R_a F_a}{R_n b h_o}$$
, từ α tra bảng 4-11 ra A hoặc A = $\alpha(1 - 0.5\alpha)$

$$[M] = AR_nbh_0^2$$

 $Vi\ du\ 5$: Tính cốt thép (F_a) cho dầm có tiết diện chữ nhật với kích thước b×h = 25×50 cm. Dùng mác bê tông 200, thép nhóm CII, mômen tính toán là M = 17.8Tm.

Giải: Bêtông 200 có R_n = 90kG/cm², thép CII có R_a = 2600kG/cm²; giả thiết a =4cm; h_o =50-4=46cm.

$$A = \frac{1780000}{90 \times 25 \times 46^2} = 0,37 < A_0 = 0,428$$

$$\alpha = 1 - \sqrt{1 - 2 \times 0,37} = 0,49 < \alpha_0 = 0,62$$

$$F_a = 0.49 \frac{90}{2600} 25 \times 46 = 19.51 \text{ cm}^2$$

Thép cấu tạo

3 x 33mm

20 6 20 4 x 25

Hình 4-1

Chọn $4\phi 25$ có $F_a = 19,63 \text{cm}^2$, chọn thừa 0,62%

Hàm lượng
$$\mu$$
 % = $\frac{19,63}{25 \times 46}$ 100% = 1,7% < μ_{max} = 0,62. $\frac{90}{2600}$.100 = 2,15%

Bố trí trong tiết diện ngang (hình 4-1).

Khoảng cách thông thuỷ giữa các thanh thép là 33mm > đường kính cốt thép và > 25mm.

Vi~du~6: Một dầm có tiết diện chữ nhật với kích thước b × h = 20×45 cm, trong tiết diện ở vùng kéo đã đặt $3\phi 20$ nhóm AII, mác bêtông 200; h_o = 45 - 3 - 42cm.

Giải:

Bê tông mác 200 có $R_{\rm n}$ = $90kG/cm^2$

Thép nhóm AII có $R_n = 2800 kG/cm^2$

 $3\phi 20 \text{ có } F_a = 9.41 \text{cm}^2$

$$\alpha = \frac{9,41 \times 2800}{90 \times 20 \times 42} = 0,349 < \alpha_o = 0,42$$

$$A = 0,349(1 - 0,5 \times 0,349) = 0,288$$

$$M_{gh} = 0,288 \times 90.20.42^2$$

$$= 914458 \text{ kgcm} = 9,14\text{Tm}$$

b. Đặt cốt kép

Bài toán: • Tính diện tích cốt thép dọc:

Cốt chiu nén:
$$F'_{a} = \frac{M - A_{0} R_{n} b h_{0}^{2}}{R'_{a} (h_{0} - a')}$$

Cốt chiu kéo
$$F_a = \alpha_0 \; \frac{R_n \; b \; h_o}{R_a} + \frac{R_n}{R_a} \, F'_a \; . \label{eq:Fa}$$

Bài toán: • Kiểm tra khả năng chịu lực khi biết b, h, F'a, Fa, bêtông, thép.

$$\bullet \alpha = \frac{R_a F_a - R'_a F'_a}{R_n b h_o}$$

Nếu
$$\alpha > \alpha_o$$
 [M] = $A_o R_n b h_o^2 + R'_a F'_a (h_o - a')$

Nếu
$$\alpha < \frac{2a'}{h_0}$$
 [M] = $R_a F_a (h_o - a')$

Nếu
$$\alpha \le \alpha_0$$
 [M] = A.R_nbh₀²

Vi~du~7: Tính cốt thép cho dầm với các số liệu như sau : b × h = 25×50 cm ; a = 4cm, M = 21.9Tm. Dùng bêtông mác 200, thép nhóm AII.

 $Gi\acute{a}i$: Bêtông mác 200 có $R_n = 90 kG/cm^2$

Thép nhóm AII có $R_a = R'_a = 2800 \text{ kG/cm}^2$

$$h_0 = 50 - 4 = 46$$
cm.

$$A = \frac{2190000}{90 \times 25 \times 46^2} = 0.46$$

$$A_0 < A \le 0.5$$
, tính cốt kép

Chon a' = 3cm

$$F'_{a} = \frac{2190000 - 0,428 \times 90 \times 25 \times 46^{2}}{2800 (46 - 3)}$$

$$= 1,26 \text{cm}^{2} \text{ chon } 2\phi 10 (1,57 \text{cm}^{2})$$

$$F_{a} = \frac{0,62 \times 90 \times 25 \times 46}{2800} + 1,26 = 24,18 \text{ cm}^{2}$$

Chọn $4\phi28$ (24,63 cm²) sai số +1,86%

$$\mu\% = \frac{24,63 - 1,26}{25 \times 46} \times 100 = 2\%$$

$$\mu_{max} \; = \; 0.62 \, \frac{90}{2800} \times 100 \; \approx \; 2\%$$

Bố trí thép như hình vẽ 4-2

Hình 4-2

Vi~du~8: Tính khả năng chịu lực của dầm có tiết diện chữ nhật với b × h = 20×45 cm cốt thép dọc chịu kéo $4\phi25$, cốt thép chịu nén là $2\phi16$. Dùng bêtông 200 và thép nhóm AII ($R_a = R_a' = 2800$ kG/cm²).

$$\begin{aligned} \text{Giải}: 4\phi25 \text{ có } F_a &= 19,62\text{cm}^2 \text{ ; } 2\phi16 \text{ có } F'_a = 4,02\text{cm}^2 \text{ ; } \\ \alpha &= \frac{2800 \ (19,62-4,02)}{90 \times 20 \times 41} = 0,592 \ < \ \alpha_o \\ A &= 0,592(1-0,5 \times 0,592) = 0,417 \\ M_{gh} &= 0,417 \times 90 \times 20 \times 41^2 + 2800 \times 4,02 \\ &= 1689487 \text{Kgcm} = 16,9 \text{Tm} \end{aligned} \tag{41-3}$$

2. Tiết diện chữ T

Kiểm tra lại các yêu cầu về điều kiện cấu tạo của b'c (xem phần minh họa cấu tạo)

Xác định vị trí trục trung hòa

$$M_c = R_n b'_c h'_c (h_o - 0.5h'_c)$$

 $M \le M_c$ trục trung hòa qua cánh.

 $M > M_c$ trục trung hòa qua sườn

a. Trục trung hòa qua cánh

Tính như tiết diện chữ nhật b'_c × h

b. Trục trung hoà qua sườn :

Tinh
$$A = \frac{M - R_n h'_c (b'_c - b)(h_o - 0.5 h'_c)}{R_n b h_o^2}$$

Từ A tính hoặc tra ra α

Diện tích cốt dọc
$$F_a = \frac{R_n}{R_a} [\alpha b h_o + (b_c - b)h_c]$$

Chọn và bố trí cốt thép dọc:

Kiểm tra khả năng chịu lực khi $R_aF_a > R_n b_c' h_c'$

$$\alpha = \frac{R_a F_a -R_n (b_c - b) h_c'}{R_n b h_o}, \text{ n\'eu } \alpha < \alpha_o, \text{ tính A}.$$

$$[M] = AR_nbh_0^2 + R_n (b_c' - b) h_c' (h_0 - 0.5h_c')$$

 $Vi\ du\ 9$: Tính cốt thép cho dầm có tiết diện hình hộp như hình 4-3a, chịu M=19.8Tm. Dùng bê tông 200, thép nhóm CIII.

a) Tiết diện thực

b) Tiết diện tính toán

 c) Đặt thép trong tiết diện ngang

Hình 4-3

Giải:

Bêtông 200 có $R_n = 90kG/cm^2$, thép CIII có $R_a = 3400kG/cm^2$;

$$\alpha_{\rm o} = 0.62$$
; $A_{\rm o} = 0.428$

$$\begin{aligned} \text{Vi} & \quad h_c' = 8\text{cm} > 0,1 \times 50\text{cm nên } S_c \geq 6h_c' = 48\text{cm}, \ b_c' = 20 + 2 \times 48 = 116\text{cm} \ ; \\ h_o = 50 - 4 = 46\text{cm} \end{aligned}$$

Thực tế $b_c' = 58 \text{cm} < 116 \text{cm}$. Vậy $b_c' = 58 \text{cm}$ dùng để tính toán

$$M_c = 90 \times 58 \times 8(46 - 0.5.8) = 1754000 \text{Kgcm}.$$

= 17.54Tm.

 $M = 19.8 > M_c = 17.54$. Vậy trực trung hoà qua sườn.

$$A = \frac{1980000 - 90(58 - 20)8(46 - 0,5 \times 8)}{90 \times 20 \times 46^{2}}$$

$$A = 0.218 < A_0 = 0.428$$

Với
$$A = 0.218$$
 ta tính $\alpha = 0.249 < \alpha_0 = 0.62$

$$F_a = \frac{90}{3400} [0,249.20.46 + (58 - 20)8] = 14,11cm^2$$

Chon
$$2\phi 24 + 2\phi 18 (F_a = 14,13cm^2)$$

Bố trí thép trong tiết diện ngang.

Vi~du~10: Tính khả năng chịu lực của dầm có tiết diện chữ T với các kích thước h = 50cm, b = 12cm; h'_c = 8cm, b'_c = 30cm. Bê tông mác 200, cốt thép đặt $2\phi25$ nhóm AIII.

Giai: Thép nhóm AIII có $R_a = 3800 kG/cm^2$, $2\phi 25$ có $F_a = 9,82 cm^2$

$$h_0 = 50 - 4 = 46$$
cm

Vì $R_aF_a=9,82\times3800=37316kG>R_nb_c'$ $h_c'=90\times30\times8=21600kG$ nên trục trung hoà đi qua sườn.

$$\alpha = \frac{9.82 \times 3800 - 90(30 - 12)8}{90 \times 20 \times 46} = 0.49 < \alpha_0 = 0.62$$

Ta có :
$$A = 0.37$$

$$M_{gh} = 0.37 \times 90 \times 12 \times 46^2 + 90(30 - 12)8(46 - 0.5 \times 8)$$

= 1389900Kgcm = 13.9Tm

E. CẤU KIỆN CHỊU UỐN (Tính theo tiết diện nghiêng)

Điều kiện đặt cốt ngang (cốt đại và cốt xiên)

0,6 R_k b $h_o < Q <$ 0,35 R_n b h_o (với dầm đúc bằng $BT \leq 400 \text{\#})$

• Khi chỉ đặt cốt đại:

Bước đai là
$$U_u = R_{ax} n f_d \frac{8 R_k b h_o^2}{Q^2}$$
;

n - Số nhánh đại ;

fa - Diện tích tiết diện một nhánh đai

Utt phải thoả mãn các yêu cầu cấu tạo (xem phần minh hoa)

Dặt cốt xiên:
$$F_{x\,i} = \frac{Q_i - Q_{db}}{R_{ax} \, \sin\!\alpha}$$

Qi - Lực cắt tương ứng chân cốt xiên lớp thứ i;

α là góc nghiêng của cốt xiên

Trong đó lực cắt do đại và bêtông chịu

$$Q_{db} = 2.8h_o \sqrt{R_k \ b \ q_d} \ ; \qquad \qquad q_d = \frac{R_{ax} \ n \ f_d}{u}. \label{eq:qdb}$$

Vi~du~11: Thiết kế cốt đai cho dầm đơn giản có nhịp 4,8m, kích thước tiết diện ngang 20 x 45cm; $h_o=43$ cm. Dùng bêtông mác 150, cốt thép nhóm AI. Tải trọng tác dụng phân bố đều: q=4T/m.

Giải:

Các số liệu : $R_n = 65kG/cm^2$; $R_k = 6kG/cm^2$

$$R_{ad} = 1800 kG/cm^2$$

Giá tri lực cắt lớn nhất

$$Q = \frac{4 \times 4.8}{2} = 9.6T$$

 $k_1R_kbh_0 = 0,6.6.20.43 = 3096kG = 3,1T$

 $k_0 R_n b h_0 = 0.35.65.20.43 = 19565 k G = 19.6 T$

Vì vậy 3.1T < Q = 9.6T < 19.6T; ta cần tính cốt đại

Dùng đại $\phi 6(f_d = 0.283 \text{cm}^2)$ hai nhánh. Bước đại tính toán là :

$$u_{tt} = 1800 \times 2 \times 0,283 \frac{8 \times 6 \times 20 \times 43^2}{9600^2} = 19,6cm$$

$$u_{max} = \frac{1.5 \cdot 6 \cdot 30 \cdot 43^2}{9600} = 34.7cm$$

 $u_{ct} = 15cm \text{ vi } h = 45cm$

Ở đoạn đầu dầm dài 1,2m, đặt đai documents/. CấU KIỆN CHỊU UỐN XOẮN ĐỒNG THỜI (Tiết diện chữ nhật)

Điều kiện hạn chế
$$M_x \le 0.1R_nb^2h$$
 (a)

Theo sơ đồ M_x và M

$$M_x \le \frac{R_a F_a (h_0 - 0.5 x) (1 + m_d C^2) b}{C + v b}$$
 (b)

Trong đó
$$v = \frac{M}{M_x}$$
; $m_d = \frac{q_d}{R_a F_a (2h + b)} = \frac{R_{ad} f_d}{R_a F_a (2h + b) u}$

 $m_o \leq m_d \leq 3m_o$

$$m_0 = \frac{1}{\left(2 + 4\nu \sqrt{\frac{b}{2h} + b}\right) \cdot (2h + b) b}$$

 $C \le 2h + b$

Theo sơ đồ M_x và Q

$$\begin{split} M_x & \leq \frac{R_a \, F_{a1} \, (\, b_o - 0.5 \, x) \, (1 + m_{d1} \, C^2) \, h}{\left(1 + \frac{Qb}{2 \, M_x}\right) C} \\ m_{d1} & = \frac{R_{ad} \, f_d}{R_a \, F_{a1} \, (\, 2 \, b \, + \, h \,) \, u} \end{split}$$

 $C \le 2b + h$; $m_{o1} \le m_{d1} \le 3m_{o1}$

$$m_{o1} = \frac{1}{\left(2 + 4v\sqrt{\frac{h}{2b+h}}\right)(2b+h)h}$$

Khi $M_x \leq 0,5~Q_b$ không cần kiểm tra điều kiện (c) nhưng kiểm tra điều kiện sau đây :

$$Q + \frac{3M_x}{h} \le Q_{db}$$

Vi~du~12: Tính toán dầm tiết diện chữ nhật $b=30 {\rm cm};~h=55 {\rm cm};~b$ êtông mác 200. Mômen uốn tính toán $M=12 {\rm Tm};~m$ ômen xoắn tính toán $M_x=3 {\rm Tm}.$ Cốt thép dọc nhóm A-II, cốt đai nhóm A-I. Yêu cầu bố trí cốt thép, kiểm tra khả năng chịu lực.

Với bê tông mác 200 có $R_n=90 k G/cm^2$. Thép A-II có $R_a=2800 k G/cm^2$; A-I có $R_{ad}=1800\ k G/cm^2$. Dự kiến $h_o=51\ cm$

Giải:

Tính gần đúng cốt thép $F_a = \frac{M}{R_a \ \gamma \ h_o} với \gamma = 0.8$

$$F_a = \frac{1200000}{2800 \ \times \ 0.8 \ \times \ 51} = 10,50 cm^2. \ Chon \ dung \ 4\phi20 \ co \ F_a = 12,56 cm^2$$

Bố trí : lớp bảo vệ 2,5 cm; a = 3,5cm ; tính lại h_o = 55 - 3,5 = 51,5cm Cốt đai dùng $\phi 8$, f_d = 0,503cm². Dự kiến khoảng cách u = 7cm. Kiểm tra điều kiện hạn chế (a)

$$0.1 \text{ R}_{n}b^{2}h = 0.1 \times 90 \times 30^{2} \times 55 = 445500 \approx 4,45\text{Tm}$$

 $M_{x} = 3\text{Tm} < 0.1\text{R}_{n}b^{2}h = 4,45\text{Tm}$

$$\begin{split} \text{Tinh} \qquad & v = \frac{M}{M_x} = \frac{12}{3} = 4 \\ & m_d = \frac{R_{ad} \ f_d}{R_a \ F_a \ (2h + b) \ u} = \frac{1800 \times 0,503}{2800 \times 12,56 \ (2 \times 55 + 30 \) \ 7} = 0,0000262 \ \text{l/cm}^2 \\ & m_o = \frac{1}{\left(2 + 4 \times 4 \sqrt{\frac{30}{140}}\right) (2 \times 55 + 30 \) \ 30} = 0,0000253 \ \text{l/cm}^2 \end{split}$$

Thoả mãn điều kiện $m_o \le m_d \le 3 m_o$

Trong vùng nén có đặt cốt thép dọc cấu tạo nhưng bỏ qua trong tính toán $(F'_a = 0)$. Tính chiều cao vùng nén.

$$x = \frac{R_a F_a}{R_n b} = \frac{2800 \times 12,56}{90 \times 30} = 13,0cm$$

Kiểm tra $x < \alpha_0 h_0 = 0.62 \times 51.5 = 31.9 cm$

Tính vế phải của điều kiện (b) và đặt là M_{td}

$$M_{td} = \frac{R_a F_a (h_o - 0.5 x) (1 + m_d C^2) b}{C + v b}$$

$$= \frac{2800 \times 12.56 (51.5 - 6.50) (1 + 0.0000262 C^2) 30}{C + 4 \times 30}$$

$$= \frac{47476800 + 1244C^2}{C + 120}$$

Tìm C để có M_{td} bé nhất bằng cách xét đạo hàm bậc nhất và bậc hai của M_{td} theo C, tính được C = 109 cm. Thoả mãn điều kiện C = 109cm < 2h + b = 140cm.

Thay C = 109cm vào biểu thức tính M_{td} , tìm được $M_{td} = 2{,}73$ Tm.

Có $\rm M_x$ = 3Tm > 2,73Tm - không bảo đảm khả năng chịu lực, phải tăng cốt thép và tính lại.

Tăng cốt đại thành $\phi 10$, $f_d = 0.785$ cm². Tăng cốt dọc thành $4\phi 22$, $F_a = 15.2$ cm².

Tính lại được m_đ = 0,0000338; x = 15,76cm

$$M_{td} = \frac{55694016 \times 1882 \text{ C}^2}{\text{C} + 120}$$

Tim được C = 89,7cm; $M_{td} = 3,38Tm$.

Kiểm tra $M_x = 3 < M_{td} = 3,38 Tm$. Tiết diện đủ khả năng chịu lực.

G. MỘT SỐ CÔNG THỰC VÀ BẢNG TRA ĐỂ THIẾT KẾ KẾT CẦU BÊ TÔNG CỐT THÉP

1. Đan sàn đơn làm việc hai phương

Mômen ở nhịp trong phương ngắn $M_{i1} = m_{i1}P$

Mômen ở nhịp trong phương dài $M_{i2} = m_{i2}P$

Mômen ở gối trong phương ngắn $\overline{M}_{i1} = -k_{i1} P$

Mômen ở gối trong phương dài $\overline{M}_{i2} = -k_{i2} P$

Các hệ số m_{i1} , m_{i2} , k_{i1} , k_{i2} xem bảng 1-19 (i là loại bản tuỳ theo liên kết xung quanh).

$$P = (g + p)l_1l_2$$

- 2. Đan sàn liên tục làm việc hai phương
- a. Mômen ở nhịp

Trong phương ngắn : $M_{i1} = m_{11}P' + m_{i1}P''$

Trong phương dài : $M_{i2} = m_{12}P' + m_{i2}P''$

 m_{11} , m_{12} , m_{i1} , m_{i2} tra bảng 1-19.

$$P' = \left(g + \frac{p}{2}\right)I_1 I_2$$

$$P'' = \frac{p}{2} \cdot I_1 I_2$$

g, p tải trọng thường xuyên và tức thời trên 1m^2 đạn sàn.

b. Mômen ở gối tiếp giáp :
$$\overline{M} = \frac{\overline{M}_i + \overline{M}_{i'}}{2}$$

$$\overline{M}_{i1} = -k_{i1}P$$

$$\overline{M}_{i2} = -k_{i1}P$$

3. Truyền tải trọng từ đan sàn hai phương về dầm dưới dạng tương đương

Khi hai phía có tải trọng dạng tam giác $q_{td} = \frac{5}{8}qI_1$.

Khi hai phía có tải trọng dạng hình thang $q_{td} = k.q l_1$.

Bảng 4-4. Hệ số k truyền tải

ļ	l ₂ /l ₁	11	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
L	<u>k</u>	0,625	0,681	0,725	0,761	0,791	0,815	0,835	0,852	0,867	0,880	0,891

4. Tính mômen của dầm liên tục theo phương pháp gần đúng

Ký hiệu:

Số 1 khi dầm gối tự do

Số 2 khi dầm gối lên dầm lớn hơn

Số ③ khi dầm đúc cùng cột

Công thức mômen : $M = \pm kqP$

• Dầm 2 nhịp

① 0 ② 1

③ <u>1</u>

• Dầm nhiều nhịp

 $3\frac{1}{16}$

Hình 4-6

5. Móng đơn chịu tải đúng tâm

• Diện tích đế móng
$$F_m = \frac{N^{tc}}{R_d - \gamma_{tb} H_{cm}}$$

1/14

Rđ - cường độ đất nền

$$\gamma_{\text{tb}} = 2\text{T/m}^3$$
. $F_{\text{m}} = A \times B$; $A = (1 \sim 1.6)$

H_{cm} - chiều sâu chôn móng

• Chiều cao làm việc của móng theo điều kiện xuyên thủng

$$H_{om} = 0.5 \left[\sqrt{\frac{N}{0.75 R_k + p}} - 0.5 (h_c + b_c) \right]$$

 $p = \frac{N}{F_m}; h_c \text{ và } b_c \text{ là kích thước tiết diện cột.}$

• Chiều cao làm việc theo điều kiện chịu uốn

$$H_{om} = I_1 \sqrt{\frac{p \cdot A}{0.4 \cdot h_c \cdot R_n}}$$

$$l_1 = \frac{A - h_c}{2}$$
; A là canh lớn của móng.

Thép đáy móng

Trong phương dài
$$F_{aA} = \frac{M_A}{0.9 \; R_a \; H_{om}}$$
Trong phương ngắn
$$F_{aB} = \frac{M_B}{0.9 \; R_a \; H_{om}}$$

$$M_A = 0.125 \; pB \; (A - h_c)^2$$

$$M_B = 0.125 \; pA \; (B - b_c)^2$$

- 6. Móng đơn chịu tải lệch tâm
- Kích thước đế móng

$$A = e_{o} (2 + \sqrt{1,055 \text{ k}} - 2,5)$$

$$k = \frac{N^{\text{tc}}}{(1,2R_{d} - \gamma_{\text{tb}} H_{\text{om}}) \text{m } e_{o}^{2}}$$

$$e_{o} = \frac{M^{\text{tc}}}{N^{\text{tc}}} \text{ ; } B = \frac{A}{m} \text{ ; } m = 1 \sim 1,6$$
• Kiểm tra
$$\sigma_{\text{max}} = \frac{N}{A \cdot B} \left(1 \pm \frac{6 e_{o}}{A}\right)$$

$$\sigma_{\text{max}} \leq 1,2 R_{d}$$
• Chiều cao móng
$$H_{om} = I_{1} \sqrt{\frac{\sigma_{\text{tb}} A}{0,4 h_{c} R_{n}}}$$

$$\sigma'_{\text{tb}} = \sigma_{\text{min}} + (\sigma_{\text{max}} - \sigma_{\text{min}}) \left(0,75 + 0,25 \frac{h_{c}}{A}\right)$$

Bảng 4-5. Khoảng cách lớn nhất giữa các khe co giãn nhiệt độ cho phép không cần tính toán (đối với hệ kết cấu không chịu tác động trực tiếp và thường xuyên của mưa nắng)

Kết cấu	Khoảng cách lớn nhất giữa các khe co giãn, (m)
1. Khung lắp ghép (kể cả trường hợp cổ mái bằng kim loại hoặc gỗ)	70
2. Kết cấu lắp ghép bằng các tấm đặc	60
3. Khung toàn khối hoặc nửa lắp ghép	60
4. Kết cấu tấm đặc toàn khối hoặc nửa lắp ghép	50

2) Kết cấu chịu tác động trực tiếp và thường xuyên của mưa nắng

Đối với kết cấu chịu tác động trực tiếp và thường xuyên của mưa nắng như: lớp mặt mái nhà, ban công, mặt đường, khoảng cách khe co giãn nhiệt ẩm phải phù hợp với tiêu chuẩn TCVN 5718-1993: "Mái và sàn bêtông cốt thép trong công trình xây dựng - Yêu cầu kỹ thuật chống thấm nước." (Bảng 10.4.4)

Bảng 4-6. Khoảng cách tối đa của khe co giãn nhiệt ẩm, theo 2 chiều vuông góc (đối với kết cấu chịu tác động trực tiếp và thường xuyên của mưa nắng)

Loại kết cấu	Khoảng cách tối đa (m)
- Lớp bêtông chống thấm của mái không có lớp chống nóng. - Tường chắn mái bằng bêtông cốt thép	9
 Lớp bêtông chống thấm của mái có lớp chống nóng đạt yêu cầu kỹ thuật, quy định tại điều 4 của TCVN 5718 - 1993 Kết cấu bêtông cốt thép khác chịu tác động trực tiếp của bức xạ mặt trời. 	18

Bảng 4-7. Cấp chống nứt và giới hạn của bề rộng khe nứt

Loại kết cấu	Cấp chống n nứt giới hạr	ứt và giá trị của bề rộng khe 1 (mm) ứng với loại cốt thép được dùng				
	Thép thanh, dây thép thường	Dây thép cường độ cao d ≥ 4mm	Dây thép cường độ cao d ≤ 3mm			
1. Kết cấu chịu áp lực của chất lỏng hoặc hơi	G . 1	Cr. 1	C % - 1			
2. Kết cấu nằm dưới mực nước ngầm	Cấp 1	Cấp 1	Cấp 1			
3. Kết cấu chịu trực tiếp áp lực của vật liệu	Cấp 3	Cấp 2	Cấp 2			
rời	0,25	0,10	0,05			
4. Kết cấu ở ngoài trời hoặc trong đất, trên	Cấp 3	Cấp 2	Cấp 2			
mực nước ngầm	0,30	0,15	0,05			
5. Kết cấu ở nơi được che phủ	Cấp 3	Cấp 3	Cấp 2			
	0,35	0,15	0,15			

Ghi chú:

- (1) Bề rộng khe nứt giới hạn cho trong bảng ứng với tác dụng của toàn bộ tải trọng, kể cả dài hạn và ngắn hạn. Đối với kết cấu cấp 3 khi chỉ kiểm tra riêng với tải trọng dài hạn, giời hạn bề rộng khe nứt được giảm đi 0,05mm.
- (2) Ở những vùng chịu ảnh hưởng của nước mặn, giảm bề rộng khe nứt giới hạn 0,1mm đối với cấp 3, giảm 0,05mm đối với cấp 2. Nếu sau khi giảm mà bề rộng khe nứt giới hạn bằng không thì nâng kết cấu lên thành cấp 1.
- (3) Đối với những công trình tạm có niên hạn sử dụng dưới 20 năm cho phép tăng bề rộng khe nứt giới hạn lên 0,05mm.

Bảng 4-8: Trị số giới hạn của biến dạng f_{gh}

Loại cấu kiện	Giới hạn độ võng
1. Dầm cầu trục với:	
a/ Cầu trục quay tay	(1/500) L
b/ Cầu trục chạy điện	(1/600) L
2. Sàn có trần phẳng, cấu kiện của mái và tấm tường treo (khi	
tính tấm tường ngoài mặt phẳng), nhịp L :	
a/L < 6m	(1/200) L
b/ $6 \le L \le 7,5$ m	3cm
c/ L > 7,5m	(1/250) L
3. Sàn với trần có sườn và cầu thang, nhịp L :	
a/ L < 5m	(1/200) L
$b/5 \le L \le 10m$	2,5cm
c/ L > 10m	(1/400) L

Ghi chú :

- (1) L là nhịp tính toán của dầm hoặc bản kê lên 2 gối. Đối với các công xôn, dùng L = 2L1 với L1 là độ vươn của công xon.
- (2) Khi thiết kế kết cấu có độ vồng trước thì lúc kiểm tra về võng cho phép trừ đi độ vồng đó nếu không có những hạn chế gì đặc biệt.
- (3) Đối với các cấu kiện khác không nêu ở trong bảng thì giới hạn độ võng được quy định tuỳ theo tính chất và nhiệm vụ của chúng nhưng giới hạn đó không được lớn quá 1/150 nhịp hoặc 1/75 độ vươn của công xôn.
- (4) Khi quy định độ võng giới hạn không phải do yêu cầu về công nghệ sản xuất và cấu tạo mà chỉ do yêu cầu về thẩm mỹ thì để tính toán f chỉ lấy các tải trọng tác dụng dài hạn.

Bảng 4-9. Chọn kích thước tiết diện (b \times h.cm) của dầm bê tông cốt thép

Tải		Nhịp dầm (m)								
trọng từ sàn kG/m	3	3,5	4	4,5	5	5,5	6	6,5	7	
1000	10×25	10×30	15×30	15×35	20×35	20×40	20×40	20×45	20×45	
1200	10×30	10×30	15×30	15×35	20×35	20×40	20×45	20×45	20×45	
1400	10×30	15×30	15×35	15×35	20×40	20×40	20×45	20×45	25×50	
1600	15×30	15×30	15×35	15×40	20×40	20×45	20×45	25×50	25×50	
1800	15×30	15×35	20×35	20×40	20×40	20×45	20×45	25×50	25×50	
2000	15×30	15×35	20×35	20×40	20×45	20×45	25×45	25×50	25×55	
2400	15×35	20×35	20×40	20×40	20×45	25×45	25×50	25×50	25×55	
2800	15×35	20×35	20×40	20×45	25×45	25×50	25×50	25×50	25×55	
3200	20×35	20×40	20×40	20×45	25×50	25×50	25×50	25×55	25×60	
3600	20×35	20×40	20×40	20×45	25×50	25×50	25×55	25×55	25×60	

Bảng 4-10 : Chọn chiều dày đan sàn loại làm việc một phương ($l_{\rm d}$: $l_{\rm n}$ >2) (cm)

Hoạt tải		Chiếu dài phương ngắn I _n (m)							
trên sàn (kG/m²)	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	
≤ 200		2,							
250				1			ang san dan		
300		6 - 7							
350		t	.						
400							1.4		
450	¹	} :	7 - 8			•	·		
500	<u>.</u>) i	1		8-	9 .			
600							9 - 10		
700					.				
800		T		I vita Minima kana ka	reformer			1 1 1 1 1 1 1 1 1 1 	
900			1	• •				10 - 11	
1000			\$ 4 A A A						

Bảng 4-11. Trị số A, α , γ

α	γ	A	α	γ *	. A
0,01	0,995	0,010	0,32	0,840	0,269
0,02	0,990	0,020	0,33	0,835	0,275
0,03	0,985	0,030	0,34	0,830	0,282
0,04	0,980	0,039	0,35	0,825	0,289
0,05	0,975	0,048	0,36	0,820	0,295
0,06	0,970	0,058	0,37	0,815	0,301
0,07	0,965	0,068	0,38	0,810	0,309
0,08	0,960	0,077	0,39	0,805	0,314
0,09	0,955	0,085	0,40	0,800	0,320
0,10	0,950	0,095	0,41	0,795	0,326
0,11	0,945	0,104	0,42	0,790	0,332
0,12	0,940	0,113	0,43	0,785	0,337
0,13	0,935	0,122	0,44	0,780	0,343
0,14	0,930	0,130	0,45	0,775	0,349
0,15	0,925	0,139	0,46	0,770	0,354

Tiếp bảng 4-11

					• .
α	γ	A	. α.	γ	A
0,16	0,920	0,147	0,47	0,765	0,359
0,17	0,915	0,156	0,48	0,760	0,365
0,18	0,910	0,164	0,49	0,755	0,370
0,19	0,905	0,172	0,50	0,750	0,375
0,20	0,900	0,180	0,51	0,745	0,380
0,21	0,895	0,188	0,52	0,740	0,385
0,22	0,890	0,196	0,53	0,735	0,390
0,23	0,885	0,204	0,54	0,730	0,394
0,24	0,880	0,211	0,55	0,725	0,399
0,25	0,875	0,219	0,56	0,720	0,403
0,26	0,870	0,226	0,57	0,715	0,408
0,27	0,865	0,235	0,58	0,710	0,412
0,28	0,860	0,241	0,59	0,705	0,416
0,29	0,855	0,248	0,60	0,700	0,420
0,30	0,850	0,255	0,61	0,695	0,424
0,31	0,845	0,262	0,62	0,690	0,428

Bảng 4-12: Diện tích cốt thép tròn (cm²) khi biết khoảng cách và đường kính thép (Tính cho 1 m chiều rộng đan)

Khoảng				Đường kí	nh ¢ (mm)			···
cách thép (cm)	6	6/8	8	8/10	10	12	14	16
7	4,04	5,60	7,19	9,20	11,21	16,16	21,99	28,73
7,5	3,77	5,20	6,71	8,60	10,47	15,08	20,52	26,81
8	3,54	4,90	6,29	8,10	9,81	14,14	19,24	25,14
9	3,14	4,40	5,59	7,20	8,72	12,57	17,10	22,34
10	2,83	3,90	5,03	6,40	7,85	11,31	15,39	20,10
11	2,57	3,60	4,57	5,86	7,14	10,28	13,99	18,28
12	2,36	3,30	4,19	5,40	6,54	9,42	12,83	16,76
12,5	2,26	3,10	4,02	5,20	6,28	9,05	12,32	16,08
13	2,18	3,00	3,87	_5,00	6,04	8,70	11,84	15,47
14	2,02	2,80	3,59	4,60	5,61	8,08	11,00	14,36
15	1,89	2,60	3,35	4,30	5,23	7,54	10,26	13,41
1-6	1,77	2,50	3,14	4,10	4,91	7,07	9,62	12,57
17	1,66	2,30	2,46	3,80	4,62	6,65	9,05	11,83
18	1,57	2,20	2,79	3,60	4,36	6,28	8,55	11,17
19	1,49	2,10	2,65	3,40	4,13	5,95	8,10	10,08
20	1,41	2,00	2,51	3,20	3,93	5,65	7,69	10,05

II. KẾT CẤU GACH ĐÁ

A. KHỐI XÂY CHỊU NÉN ĐÚNG TÂM

$$N \leq \phi R.F$$

$$N = \frac{N_{\rm dh}}{m_{\rm dh}} + N_{\rm ngh}$$

 m_{dh} - hệ số xét ảnh hưởng tác dụng dài hạn của tải trọng, lấy theo bảng. ϕ - Hệ số uốn dọc phụ thuộc vào độ mảnh tương đương (β_{td})

Với tiết diện chữ nhật $\beta_{td} = \frac{I_0}{b}$

b là chiều rộng tiết diện cột hoặc chiều dầy tường $l_{\rm o}$ là chiều cao tính toán

Hình 4-7

Bảng 4-13: Hệ số m_{dh}

β	10	12	14	16	18	20	22	24
$m_{ m dh}$	0,96	0,92	0,88	0,84	0,80	0,75	0,71	0,67

Khi diện tích F < 3000 cm², thay R bằng 0,8 R

Bảng 4-14 : Hệ số uốn dọc ϕ

βtđ	4	6	8	10	12	14	16	18	20	22	24	26	28
φ	1	0,96	0,92	0,88	0,84	0,79	0,74	0,70	0,65	0,61	0,56	0,52	0,46

Bảng 4-15. Chiều cao giới hạn $\beta'=\frac{H}{b}$ của tường không có lỗ của, có chiều dài L < 2,5H

Số hiệu vữa	Khối xây gạch đặc ≥ 50 hoặc đá có quy cách	Ghi chú
≥.50	25	Với các loại tường khác điều chỉnh bằng k
25		Với các loại cột điều chỉnh bằng kc

Bảng 4-16. Hệ số điều chỉnh k và k_c

Đặc điểm tưởng và cột	k;k _c
Vách ngăn dầy 10 ~ 15 cm	1,6
Tường có lỗ cửa	$\sqrt{rac{{f F_{th}}}{{f F_{ng}}}}$
	F _{th} - Diện tích thu hẹp
	F _{ng} - Diện tích nguyên
Tường ngăn có lỗ cửa	0,9
Tường bằng đá hộc	0,8
Chiều rộng tiết diện cột gạch đá có quy cách (đá hộc)	•
b < 50 cm	0,6 (0,45)
$b = 50 \sim 70 \text{ cm}$	0,65 (0,50)

Vi~du~13: Trụ gạch có hai đầu liên kết khớp, H = 4m, a = 45cm, b = 33cm, gạch 100#, vữa 25#. Kiểm tra khả năng chịu nén ở giữa trụ.

Giải:

$$H = 400 \text{cm} < 0.6.22.33 = 436 \text{cm}$$

$$\beta_{\text{td}} = \frac{400}{33} = 12,12; \ \phi = 0,84$$

Gạch 100#, vữa 25#.có $R = 10.5 kG/cm^2$

$$F = 45 \times 33 = 1485 cm^2 < 3000 cm^2$$

[N]
$$\stackrel{\cdot}{=}$$
 0,84.0,8.10,5.1485

$$= 10603kG$$

B. KHỐI XÂY CHỊU NÉN LỆCH TÂM

1. Lệch tâm bé :
$$e_0 = \frac{M}{N} \le 0.225 \text{ a}$$

(a là chiều cao tiết diện chữ nhật)

$$N \leq \psi$$
. ϕ . R . F

Hệ số ảnh hưởng của độ lệch tâm

$$\psi = \frac{1}{1 + \frac{2e_o}{a}}$$

Ví dụ 14: Trụ gạch có tiết diện 45 × 45 cm, chân ngàm đỉnh tư do, lực nén đặt ở đỉnh $N_1 = 8.5T$, độ lệch tâm $e_1 = 9$ cm, gạch 100#, vữa 25#. Chiều cao trụ H = 4m. Kiểm tra khả năng chiu lực của tru tại chân tru.

Giải:

Trong lương của côt

$$P_g = 1.1 \times 0.45 \times 0.45 \times 4 \times 1.8 = 1.6 \text{ T}$$

Tại chân cột:

$$N = N_1 + P_g = 8.5T + 1.6T = 10.1 T$$

Mômen uốn:

$$M = 8.5 \times 0.09 = 0.765 \text{ Tm}$$

$$e_0 = \frac{0.765}{10.1} = 0.075 < 0.225.45 = 10.125$$
cm

$$\Psi = \frac{1}{1 + \frac{2.7,5}{45}} = 0,75$$

$$\beta_{td} = \frac{2 \times 400}{45} = 17.8 \; ; \; \phi = 0.774$$

$$R = 13kG/cm^2$$
; $F = 45 \times 45 = 2025cm^2 < 3000cm^2$

$$[N] = 0.75 \times 0.774.0.8.13.2025$$

= 12225 kg > 10100 kG

2. Lệch tâm lớn : $e_0 > 0.225$ a

$$N \leq [N] = \psi. \ \phi_u.R.F$$

$$N \leq [N] = \psi, \ \phi_u.R.F$$

$$\psi = \sqrt[3]{\left(1 - \frac{2 \ e_o}{a}\right)^2}$$

$$\phi_u = \frac{\phi + \phi_n}{2} \qquad \text{for all } \quad \text{for$$

 ϕ_n - Hệ số uốn dọc của phần tiết diện chịu n
én trong mặt phẳng tác dụng của mômen uốn xác định theo

$$\beta_{ntd} = \frac{H'}{a - 2e_0}$$

Khi mômen uốn có một dấu H' = H

Khi mômen uốn đổi dấu H' = 0,5H

Vi~du~15: Trụ gạch có tiết diện chữ nhật 33×45 cm chịu nén lệch tâm $e_o=18$ cm. Chiều cao trụ H=4,5m. Đỉnh và chân trụ gối khớp, biểu đồ mômen uốn không đổi dấu. Trụ xây gạch 75#, vữa 50#. Xác định khả năng chịu lực.

Giải:

$$\psi = \sqrt[3]{\left(1 - \frac{2 \cdot 18}{45}\right)^2} = 0,342$$

$$\beta_{td} = \frac{450}{45} = 10; \qquad \phi = 0,88$$

$$\beta_{ntd} = \frac{450}{45 - 2.18} = 50; \quad \phi_n = 0,15$$

$$\phi_n = \frac{0,88 + 0,15}{2} = 0,515$$

$$F = 33 \times 45 = 1485 \text{cm}^2$$

$$R = 13 \text{kG/cm}^2$$

$$[N] = 0,342.0,515.0,8 \times 13.1485 = 2720 \text{kG}$$

C. KHỐI XÂY CHỊU NÉN CỤC BỘ

$$\begin{split} N_{cb} &\leq \mu \alpha R_{cb} F_{cb} \\ \mu \alpha &= 0.75 \\ R_{cb} &= R \ \sqrt[3]{\frac{F}{F_{cb}}} \leq & 2R \end{split}$$

Hình 4-8

Vi~du~16: Trên tường dầy 45cm, gạch 100#, vữa 25#, có một dầm bê tông cốt thép rộng 15 cm, đặt lên tường một đọạn x = 20cm. Khoảng cách giữa các dầm là 3m. Phản lực đầu dầm là 3,5 tấn. Kiểm tra tường chịu nén cục bộ.

Khoảng cách hai dầm là 3m > 2.0,45m, ta có:

$$\begin{split} F &= (2 \times 45 + 15)20 = 2100 cm^2 \\ F_{cb} &= 15 \times 20 = 300 cm^2 \\ R_{cb} &= 13 \sqrt[3]{\frac{2100}{300}} = 24,5 kG/cm^2 < 2 \times 13 = 26 kG/cm^2 \\ [N]_{cb} &= 0,75.24,5.300 = 5500 kG > 3500 kG \end{split}$$

D. KHỐI XÂY CHỊU KÉO DỌC TRỤC

$$N \leq R_k F_{th}$$

Vi~du~17: Một bể nước tròn xây gạch 100#, vữa 50#. Thành bể dầy $b_t=22cm$, bán kính trong của bể là 2,2m. Tính áp lực nước tối đa là bao nhiều ? $R_k=1,6kG/cm^2$

Giải: [N] = 1,6kG/cm² × 22 cm × 1 cm = 35,2kG
N = p.r;

$$p = \frac{N}{r} = \frac{35,2}{220} = 0,16kG/cm2$$

có nghĩa chiều cao bể là

$$H = \frac{N}{\gamma} = \frac{0.16}{0.001} = 160cm$$

E. KHỐI XÂY CHỊU UỐN

Điều kiện về mômen uốn

$$M \leq R_{k\mathbf{u}}W$$

W - mômen kháng uốn Điều kiện về lực cắt

$$Q \leq R_{kc}bZ; \quad Z = \frac{2}{3} \; b_t$$

Vi~du~18: Tường gạch dầy 33cm, chiều dài nhịp l=2m, chịu tải trọng gió q=300kG/m. Gạch 100#, vữa 25#. Kiểm tra khả năng chịu uốn của tường. ($R_{\rm ku}=1.6$ kG/cm²; $R_{\rm kc}=0.8$ kG/cm²)

Giải

 $X\acute{e}t$ 1 đoạn tường cao b = 1m

$$M_{\text{max}} = \frac{0.3 \times 2^2}{8} = 0.15 \text{Tm}$$

$$Q_{\text{max}} = \frac{0.3 \times 2}{2} = 0.30 \text{T}$$

$$W = \frac{1}{6} 100.33^2 = 18150 \text{cm}^3$$

$$[M] = 1.6 \times 18150 = 29040 \text{kG/cm}$$

$$= 0.290 \text{ T}_{\text{m}} > M_{\text{max}}$$

$$[Q] = 0.8 \times 100 \times \frac{2}{3} \times 33 = 1760 \text{kG}$$

$$= 1.76 \text{ T} > Q_{\text{max}}$$

F. KHỐI XÂY CHIU CẮT

$$Q \le (R_c + 0.8 \text{ nf}\sigma_0)F$$

n : hệ số tuỳ thuộc khối xây; với khối xây gạch đặc n= 1, khối xây gạch rỗng n = 0.5

f: hệ số ma sát theo mạch vữa, khi khối xây trượt trên khối xây ở trạng thái khô f=0,7; ở trạng thái ướt f=0,6

$$\sigma_o = \frac{0.9 \ N}{F}$$

 $\it Vi~du~19$: Tường có tiết diện $68\times 100 cm$ xây gạch đặc 75#, vữa 25#. Kiểm tra khả năng chịu cắt tại tiết diện A-A. Lực đẩy chân vòm H = 16T, lực nén thẳng đứng N = 28T; $R_c=1,1kG/cm^2$

Giải

$$[Q] = [1,1 + 0,8 \times 1.0,7 \times 4,1] 6800 =$$

$$= 23000 \text{kG} > 16.000 \text{kG}$$

$$\sigma_0 = \frac{0,9 \times 28000}{68 \times 100} = 4,1 \text{kG/cm}^2$$

Hình 4-9

III. KẾT CẤU THÉP

A. LIÊN KẾT HÀN

- 1. Đường hàn đối đầu
- a) Đường hàn vuông góc với trục nén hoặc kéo :

$$\dot{\sigma_h} = \frac{N}{F_h} \leq R_n^h \;\; ; \; R_k^h$$

$$F_h = \delta . I_h; \quad I_h = b - 2 \delta$$

b) Đường hàn xiên góc α với trục chịu nén hoặc kéo :

$$\sigma_h = \frac{N \sin \alpha}{I_h \delta_h} \le R_n^h; R_k^h$$

$$\tau_h = \frac{N \cos \alpha}{\mathit{l}_h \ \delta_h} \leq \ R_c^h$$

c) Đường hàn chịu M và Q

$$\sigma_h = \frac{M}{W} \le R_n^h ; R_k^h$$

$$\tau_h = \frac{Q}{\delta l_h} \leq R_c^h ;$$

$$\sigma_{td} = \sqrt{\sigma_h^2 + 3\tau_h^2} \ \leq \ R_k^h$$

- 2. Đường hàn góc
- a) Chịu lực dọc

$$\sum I_{\rm h} = \frac{\rm N}{\rm 0.7 \ h_h \ R_g^h}$$

Chiều dài tối thiểu một đường hàn $l_{hmin}\!\geq 4h_h$ và $40mm;\,h_{hmin}\!\geq 5mm$

b) Chịu M, Q

$$\sigma_h = \frac{M}{W_h}$$

$$\tau_{\rm h} = \frac{\rm Q}{\sum I_{\rm h} \times 0.7 \ h_{\rm h}}$$

$$\sigma_{t\tilde{d}} = \sqrt{\sigma_h^2 \; + \; \tau_h^2} \; \leq R_g^h$$

Hình 4-14

Vi~du~20: Hai bản thép CT3 tiết diện $250\times12~\mathrm{mm}$ được liên kết bằng mối hàn đối đầu thẳng với lực kéo tính toán là N=50T.

Kiểm tra lại đường hàn nếu hàn tay, que hàn E.42

$$\begin{array}{ll} {\it Giai:} & A_h = \delta.\it{I}_h \\ & = 1,2 cm. \ (25\text{-}2 \ x \ 1,2) = 27,12 cm^2 \\ \\ \sigma_h^k & = \frac{50000}{27,12} \text{=} 1843,6 k G/c m^2 \\ \\ \sigma_h^k & > R = 1800 k G/c m^2 \ (\text{vuot 2,4\%, coi nhu dat yêu câu}) \end{array}$$

Vi~du~21: Liên kết hai bản thép ở ví dụ trên bằng đường hàn đối đầu xiên một góc 45° , hàn tay, que hàn E.42. Kiểm tra đường hàn với N = 50T.

Giải: Độ bền giới hạn của bản thép:

$$\begin{split} 25 \times 1, 2 \times 2100 &= 63000 \text{kg} = 63\text{T} > 50\text{T} \\ I_h &= \frac{I_o}{\sin \alpha} - 2 \ \delta = \frac{25}{\sqrt{2}} - 2 \times 1, 2 \approx 33 \text{cm} \\ \sigma_h^k &= \frac{500.000 \times \sin 45^\circ}{1, 2 \times 33} = 893 \text{kG/cm}^2 < R_k^h = 1800 \text{kG/cm}^2 \\ \tau_h &= \frac{500.000 \times \cos 45^\circ}{1.2 \times 33} = 893 \text{kG/cm}^2 < R_c^h = 1300 \text{kG/cm}^2 \end{split}$$

Liên kết hàn góc:

Vi~du~22: Liên kết hai tấm thép $150\times12~{
m mm}$ bằng hai tấm ốp. Liên kết chịu lực kéo N = 37T, dùng đường hàn góc cạnh. Tính chiều dài bản ốp, dùng thép CT3.

Giải: Diện tích của 2 bản ốp

$$2A_{b,\hat{o}} = \frac{37000}{2100} = 17,6c\,m^2$$

Chiều dầy một bản ốp

$$\delta_{b.\hat{o}} = \frac{17.6}{2 \times 12} = 0.73 cm$$

Chon $\{\delta\}_{b,\hat{o}} = 8 \text{ mm}$

Chiều cao đường hàn góc $h_h = 8mm$

Hình 4-15

Tổng chiều dài đường hàn ở mỗi phía của liên kết

$$\Sigma I_{\rm h} = \frac{37000}{0.7 \times 0.8 \times 1500} = 44 {
m cm}$$

Tổng chiếu dài $\sum l_{\rm h}$ bao gồm 4 đường hàn (phía trước và phía sau). Do đó chiều dài một đường hàn là $\frac{44}{4}$ = 11cm; $l_{\rm h}$ = 11 + 1 = 12cm

Chiều dài bản ốp

$$I_{b.\sigma} = 2 \times 12 \text{ cm} + 1 \text{ cm} = 25 \text{ cm}$$

(1cm là khe hở tối đa giữa hai bản thép)

Ví dụ 23: Tính liên kết ở bản mắt vì kèo như hình vẽ 4-16

Giải: Chiều cao đường hàn $h_h = 8mm$

Chiều dài đường hàn sống

$$I_{\text{hs}} = \frac{0.7 \times 42500}{2 \times 0.7 \times 0.8 \times 1500} = 17.7 \text{mm}$$

Cấu tạo $l_{\rm hs}$ = 17,7 + 1 = 18,7 chọn 19cm Chiều dài đường hàn mép

$$I_{\text{hm}} = \frac{0.3 \times 42500}{2 \times 0.7 \times 0.8 \times 1500} = 7.6 \text{cm}$$

1. Khả năng chịu cắt của 1 bu lông :

$$[N]_c^{bl} = n_c \frac{\pi d^2}{4} R_c^{bl}$$

 n_c - số mặt cắt của 1 bu lông

d-đường kính phần không ren của bu lông (thân bulông)

Với CT3, Rbl = 1300kG/cm²

2. Khả năng chịu ép mặt của 1 bulông :

$$[N]_{em}^{bl} = d \sum \delta_{min} R_{em}^{bl} (d:duòng kính thân bu lông)$$

 $\sum \delta_{min}$ là tổng chiều dầy nhỏ nhất của các bản thép trượt về một phía.

Với CT3, $R_{em}^{bl} = 3400 kG/cm^2$

Hình 4-16

3. Chịu kéo theo phương trục bulông :

$$[N]_k^{bl} = \frac{\pi d_o^2}{4} R_k^{bl} \quad (d_o: \text{duờng kính chỗ có ren})$$

Với CT3, $R_k^{bl} = 1700 kG/cm^2$

4. Số bulông khi cắt và ép mặt :

$$n_d = \frac{N}{[N]_{\min}^d}$$

 $[N]_{\min}^{d}$ trong 2 trị số $[N]_{\mathrm{cb}}^{l}$ và $[N]_{\mathrm{em}}^{\mathrm{bl}}$

Vi~du~24: Tính liên kết thép góc L 125×10 vào bản mắt dầy $\delta=14$ mm lực kéo N = 35T, đường kính bulông d = 24mm. Tính số bulông và bố trí bulông.

Hình 4-17

Hình 4-18

Giai

Khả năng chịu cắt của một bulông

$$[N]_{b1}^{o} = 1500.0,9 \frac{3 \times 14 \times 2,4^{2}}{4} : 1 = 6100 \text{kG}$$

Khả năng chịu ép mặt của một bulông

$$[N]_{\rm bl}^{\rm em} = 2,4.1.3400 = 8160 {\rm kG}$$

Chon
$$[N]_{bl}^{min} = [N]_{bl}^{c}$$

Số bulông trong liên kết

$$n_{\rm bl} = \frac{35000}{6100} = 5,74$$
 chọn 6 cái và bố trí như hình 4-18.

C. CÔT ĐẶC CHIU NÉN ĐÚNG TÂM

Biết lực nén N, điều kiện liên kết hai đầu trong hai phương, loại số hiệu thép. Trình tự giải

Bước 1 : Xác định l_{ox} , l_{oy}

Bước 2 : Dựa vào N, $l_{\rm ox}$, $l_{\rm oy}$ giả thiết $\lambda_{\rm gt}$ Khi N < 150 T $l_{\rm ox}$, $l_{\rm oy} \le 6$ m Lấy $\lambda_{\rm gt} = 80 \sim 100$ tra ra $\le \phi_{\rm gt}$

Bước 3: Tính diện tích tiết diện yêu cầu $F_{yc} = \frac{N}{\phi_{gt} R}$

 $Bu\acute{o}c$ 4 : Tính bán kính quán tính $r_{xyc} = \frac{l_{ox}}{\lambda_{gt}}$; $r_{yyc} = \frac{l_{oy}}{\lambda_{gt}}$

Bước 5 : Tính kích thước tiết diện chữ I, [hoặc L

Nếu tiết diện I ta có : $b = \frac{r_{yyc}}{0.24}$; $h = \frac{r_{xyc}}{0.42}$

Chọn trước $\delta_b,\,\delta_c$ theo các điều kiện cấu tạo

 $Bu\acute{o}c\ 6$: Kiểm tra lại sao cho $F \approx F_{yc}$

Bước 7: Tính J_x , r_x , λ_x tra ra ϕ_x Tính J_y , r_y , λ_y tra ra ϕ_y

Bước 8 : Kiểm tra lại với ϕ_{\min} trong $\phi_{\textbf{x}},\phi_{\textbf{y},\textbf{v}}\sigma=\frac{N}{\phi_{\min}}\leq R,$ tiết diện đạt yêu cầu.

Bước 9: Kiểm tra ổn định của bản cánh, bản bụng theo các điều kiện cấu tạo.

Vi~du~25: Chọn tiết diện thanh xiên đầu dàn chịu lực nén N_1 , N_2 như hình vẽ 4-20. Bản mắt dầy 12mm. Thép có $R=2100 k G/cm^2$. Dùng thép góc không đều cạnh ghép thành dạng chữ T.

Giải

Trong mặt phẳng dàn

$$l_{1x} = 170 cm$$

$$l_{2x} = 200 \text{cm}$$

Ngoài mặt phẳng dàn

$$l_{1y} = l_{2y} = 370$$
cm

Giả thiết $\lambda_{gt} = 80$, $\cos \phi = 0.734$

Hình 4-20

$$F_{yc} = \frac{57000}{0,734\times2100\times0,8} = 46,2cm^2 \ (0,8 \ la \ hệ số điều kiện làm việc)$$

$$r_{xyc} = \frac{200}{120} = 1,67cm$$

$$r_{yyc} = \frac{370}{120} = 3,08cm$$

Chọn tiết diện ghép từ $2L\ 160 \times 90 \times 10$ có

$$F = 2 \times 25,3 = 50,6 \text{cm}^2 > F_{yc}$$

$$r_x = 4.04 > r_{xyc}$$

$$r_y = 7,77 > r_{vvc}$$

Bảo đảm yêu cầu về độ mảnh

Kiểm tra lại tiết diện

Đoạn có $N_1 = 57T$

$$\lambda_{1y} = \frac{370}{7.77} = 47,62 \approx 48$$

$$\lambda_{1x} = \frac{370}{4,04} = 91,58 \approx 92$$
 chọn $\lambda_{max} = 92$

Ta được $\varphi = 0,652$

$$\sigma_{\text{max}} = \frac{57000}{0,652 \times 50 \times 6 \times 0,8} = 2160 \text{ kg/cm}^2 > 2100 \text{ kg/cm}^2$$

(vượt < 3% có thể cho phép)

Đoạn có $N_2 = 53T < N_1 = 57 T$ không cần phải kiểm tra

D. CÔT ĐẶC CHIU NÉN LỆCH TÂM

Điều kiện bền

$$\frac{N}{F_{th}} \pm \frac{M_x}{J_{x,th}} y \pm \frac{M_y}{J_{y,th}} \le R$$

ổn định tổng thể

$$\frac{N}{\phi_{lt} \ F_{ng}} \leq R$$

 ϕ_{lt} tra bảng 4-1 phụ thuộc vào độ mảnh quy ước $\overline{\lambda}_x=\lambda\times \sqrt{\frac{R}{E}}$ và độ lệch tâm tính đổi $m_1=\eta$ m;

 $\eta \text{ là hệ số ảnh hưởng của hình dạng tiết diện; với tiết diện I,][,[],]] } \eta = 1,3$ E. THANH CHỊU KÉO DỌC TRỤC $\text{Fyc} = \frac{N}{R}$

Vi~du~26: Xác định tiết diện thanh cánh hạ vì kèo chịu lực kéo N = 80T, chiều dài tính toán $l_{\rm x}=6{\rm m},~l_{\rm y}=18{\rm m}$. Tiết diện nguy hiểm nhất có hai lỗ định d = 19mm. Dùng thép CT3, hệ số điều kiện làm việc v=1, thép đệm dầy 10mm.

Giải:
$$F_{yc} = \frac{80000}{2100} = 38 \text{cm}^2$$

Vì có lỗ đinh nên lấy $F_{yc} = 1.1 \times 38 = 41.8 cm^2$

$$[\lambda] = 400;$$
 $r_{xyc} = \frac{600}{400} = 1.5 \text{cm},$ $r_{yyc} = \frac{1800}{400} = 4.5 \text{cm},$

Chọn 2L 125×9 ghép dạng chữ][

Có:
$$F = 2 \times 22 = 44 \text{cm}^2 > F_{yc}$$

 $r_x = 3,87 \text{cm} > r_{xyc}$
 $r_y = 5,48 \text{cm} > r_{yyc}$

Diện tích thu hẹp : $F_{th} = F - F_{l\tilde{0}} = 44 - 2.1,9.0,8 = 40,96 \text{cm}^2$

$$\sigma = \frac{N}{F_{\rm th}} = \frac{80000}{40,96} = 1953 {\rm k\,G/c\,m^2} < 2100 {\rm k\,G/cm^2}$$

F. DÂM ĐỊNH HÌNH

1. Chịu uốn phẳng

- Tính
$$W_{yc} = \frac{M_{max}}{R}$$

- Chọn I hoặc [theo bảng tra
- Kiểm tra lại tiết diện

Tại tiết diện có
$$M_{max}$$
 $\sigma = \frac{M_{max}}{W_{th}} \le R$

Tại tiết diện có
$$Q_{max}$$
 $\tau = \frac{Q_{max} \ S_c}{J_x \ \delta_b} \le R_c$

Tại tiết diện có M và Q $\sigma_{td} = \sqrt{\sigma_1^2 + 3\tau_1^2} \leq R$

 σ_1 , τ_1 tại chỗ tiếp giáp giữa bản cánh và bản bụng

$$\sigma_1 = \frac{M \ h_b}{W \ h_d} \qquad \qquad \tau_1 = \frac{Q \ S_c}{J_b \ \delta_b}$$

Tại chỗ có lực tập trung đặt ở cánh trên, tại đó không có sườn đứng cần kiểm tra

$$\sigma_{cb} = \frac{P}{\delta_{b} \cdot Z} \le R \qquad ; \qquad Z = b_c + 2 \ \delta_c$$

b_c là chiều dài thực tế truyền P lên dầm

- Kiểm tra đô võng

$$\frac{\mathbf{f}}{I} = \frac{5}{384} \times \frac{\mathbf{q}^{\mathbf{c}} \times I^{3}}{\mathbf{E} \mathbf{J}} \leq \left[\frac{\mathbf{f}}{I}\right]$$

 $Vi\ du\ 27$: Một dầm phụ có tiết diện chữ I, nhịp tính toán là 4m, tải trọng phân bố đều tính toán q = $2000 {\rm kG/m}$ (do tĩnh tải và hoạt tải sàn truyền vào). Chọn tiết diện dầm.

Giải

$$M = \frac{2000 \times 4^2}{8} = 4000 \text{KG m} = 400000 \text{KG c m}$$

$$W_{yc} = \frac{400000}{2100} = 190 \text{cm}^3$$

Chọn I.20a có $W_x = 203 cm^3$; $J_x = 2030 cm^4$, $F = 28,9 cm^2$, $S_x = 114 cm^3$ δ =0,52cm; trọng lượng tiêu chuẩn bản thân dầm : 22,7kG/m kiểm tra lại tiết diện

Tải trọng do sàn 2000kG/m

Bản thân dầm $1,1 \times 22,7 = 25 \text{kG/m}$

$$q_d = 2025kG/m$$

Úng suất pháp
$$σ = \frac{M}{W}$$

$$M = \frac{2025 \times 4^2}{8} = 4050 \text{kG cm} = 405000 \text{ kG cm}$$

$$\sigma = \frac{405000}{203} = 1995 \text{kG/cm}^2 < 2100 \text{kG/cm}^2$$

$$\text{ \'Ung suất tiếp } \tau = \frac{Q \ S_x}{J_x \ \delta}$$

$$Q = \frac{2050 \times 4}{2} = 4100 \text{kG}$$

$$\tau = \frac{4100 \times 114}{2030 \cdot 0,52} = 443 \text{kG/cm}^2 < R_c = 1500 \text{kG/cm}^2$$

Kiểm tra độ võng

$$M^{c} = \frac{4050}{1,15} = 3522 Kgm$$

$$f_1 = \frac{5}{48} \times \frac{352200 \times 400}{2,1 \times 10^6 \times 2030} = 0,003 = \frac{1}{333} < \frac{1}{250}$$

Chọn I.20a là đạt yêu cầu

2. Chịu uốn xiên

$$M_y = q \sin \alpha \frac{I^2}{8}$$

$$M_x = q \cos \alpha \, \frac{I^2}{8}$$

Chọn:
$$\frac{W_x}{W_y} = 8 \; ; \; W_x = \frac{M + \frac{W_x}{W_y} \cdot M_y}{R}$$

Kiểm tra
$$\sigma_{\text{max}} = \frac{1}{W_x} \left[M_x + \frac{W_x}{W_y} \times M_y \right] < R$$

Tính độ võng :
$$f_y = \frac{5}{48} \frac{M_x I^2}{E J_x}$$

$$f_x = \frac{5}{48} \frac{M_y l^2}{E J_y};$$

$$f = \sqrt{f_x^2 + f_y^2}; \frac{f}{l} \le \left[\frac{f}{l}\right]$$

Vi~du~28: Một dầm thép có tiết diện [dùng làm xà gồ trên mái nghiêng $\alpha=30^\circ$ chịu tải trọng phân bố đều q = 200kG/m, nhịp l=4m. Chọn số hiệu thép.

Giái :
$$\alpha = 30^{\circ}$$

 $\sin \alpha = 0,500$
 $\cos \alpha = 0,866$
 $M_y = 200.0,5 \times \frac{4^2}{8} = 200 \text{KGm}$
 $M_x = 200 \times 0,866 \times \frac{4^2}{8} = 346 \text{KGm}$

Sơ bộ chọn $\frac{W_x}{W_y} = 8$

$$W_x = \frac{M_x + \frac{W_x}{W_y} \times M_y}{R} = \frac{34600 + 8 \times 20000}{2100} = 93 \text{cm}^3$$

Sơ bộ chọn [N^{o} 18 có $W_{x} = 120 cm^{3}$; $W_{y} = 16,9 cm^{3}$

Kiểm tra lại ứng suất pháp

$$\sigma_{\text{max}} = \frac{1}{120} \left[34600 + \frac{120}{16,9} \cdot 20000 \right] = 1471 \text{kG/cm}^2 < 2100 \text{kG/cm}^2$$

Kiểm tra độ võng : Với [N°18 có $J_x = 1080 cm^4$; $J_y = 85,6 cm^4$

$$f_{y} = \frac{5}{48} \times \frac{34600 \times 400^{2}}{2,1 \times 10^{6} \times 1080} = 0,25cm$$

$$f_{x} = \frac{5}{48} \times \frac{20000 \times 400^{2}}{2,1 \times 10^{6} \times 85,6} = 1,85cm$$

$$f = \sqrt{0,25^{2} + 1,85^{2}} = 1,87cm$$

$$\frac{f}{I} = \frac{1,87}{400} \frac{1}{214} < \frac{1}{200}$$

Chọn [Nº 18 làm xà gồ đạt yêu cầu.

G. CÁC BƯỚC THIẾT KẾ DẦM TỔ HỢP HÀN

- Chọn tiết diện dầm

$$h_{dmin} = \frac{5}{24} \times \frac{R}{E} \left[\frac{I}{f} \right] \frac{I}{n_{dh}}$$

$$\frac{1}{n_{dh}} = \frac{g^{c} + p^{c}}{g + p}$$

- Chiều dầy bản bụng khi không cần sườn gia cường

$$\delta_b \ge \frac{h_b}{5.5} \sqrt{\frac{R}{E}}$$

$$\delta_b \ge 8 \text{ mm}$$

- Tiết diện cánh dầm, δ_c = 12 ~ 24 mm

$$\begin{split} b_c &= \frac{2}{\delta_c \times h_c^2} \Biggl(W_{yc} \ \frac{h_d}{2} \, - \, \frac{h_b^3}{12} \Biggr) \\ &\frac{b_c}{\delta_c} \leq \sqrt{\frac{E}{R}} \ ; \qquad \qquad b_c \leq 30 \ \delta_c \end{split}$$

thường lấy
$$b_c = \left(\frac{1}{5} - \frac{1}{2}\right) h_d$$

$$b_c \ge 180 mm$$

$$b_c \ge \frac{1}{10} h_d$$

- Kiểm tra bền về chịu uốn $\sigma = \frac{M}{W_{\rm th}} \leq R$

Kiểm tra bền về chịu cắt $\tau = \frac{Q_{max} \ S_c}{J \times \delta_b} \leq R_c$

Khi có M, Q : $\sigma_{td} = \sqrt{\sigma_1^2 + 3\tau_1^2} \leq 1{,}15~R$

Trong đó: $\sigma_1 = \frac{M \ h_b}{W \ h_d} \quad ; \quad \tau_1 = \frac{Q \ S_c}{J_d \ \delta_b} \ . \label{eq:sigma_sigma}$

- Khi có lực tập trung đặt ở chỗ không có sườn đứng

$$\sigma_{td} = \sqrt{\sigma_1^2 + \sigma_{cb}^2 - \sigma_{cb} \times \sigma_1 + 3\tau_1^2} \le 1{,}15 \text{ R}$$

- Kiểm tra độ võng

$$\frac{\mathbf{f}}{l} \leq \left\lceil \frac{\mathbf{f}}{l} \right\rceil$$

H. MỘT SỐ BẢNG TRA ĐỂ THIẾT KẾ KẾT CẦU THÉP

Khoảng cách giữa các khe co giãn nhiệt độ

Khoảng cách tối đa giữa các khe co giãn nhiệt độ của khung thép nhà một tầng và các công trình được quy định ở bảng 4-17

Bảng 4-17. Khoảng cách tối đa giữa các khe co giãn nhiệt độ (m)

· .	Khoảng cách tối đa (m)						
Đặc điểm	Giữa các k	Từ khe nhiệt độ hoặc tư					
công trình	Theo dọc nhà	Theo ngang nhà	dầu mút nhà dến trục của hệ giảng dúng gần nhất				
Nhà có cách nhiệt	230	150	90				
Các xưởng nóng	200	120	75				
Cầu cạn lộ thiên	130	<u>kan jarah ka</u> ntar	50				

Ghi chu:

Khi trong phạm vi đoạn nhiệt độ của nhà và công trình có hai hệ giằng đứng thì khoảng cách giữa các giằng đó (tính từ trục) không được vượt quá các giá trị : đối với nhà lấy từ 40 đến 50m,; đối với cầu cạn lộ thiên lấy từ 25 đến 30m.

Bảng 4-18. Hệ số phân phối nội lực N khi liên kết các thép góc với thép bản

Loại thép góc	Hình dạng	k	1-k
Đều cánh	[<u>•</u>		
		0.70	70.00
			0,30
			-
Không đều cánh	<u>•</u>		
		0,75	0,25
:	•	0,70	0,25
·			
Không đều cánh	• · · ·		
		0,60	0,40

Bảng 4-19. Hệ số điều kiện làm việc γ

Số TT	Các cấu kiện của kết cấu	γ
1	Dầm bụng đặc và các thanh chịu nén trong dàn của các sàn nhà hát, câu lạc bộ, rạp chiếu bóng, khán đài, cửa hàng, kho giữ sách và kho lưu trữ	. * •
	khi trọng lượng của sàn bằng hoặc lớn hơn tải trọng tạm thời	0,90
2	Cột của các nhà công cộng và của tháp nước	0,95
3	Các thanh bụng chịu nén chính (trừ thanh ở gối) tiết diện hình chữ T ghép từ hai thép góc của dàn mái (vì kèo) và dàn đỡ sàn khi độ mảnh ≥ 60	
4	Dầm bung đặc khi tính toán ổn định tổng thể	0,80 0,95
5	Các thanh căng, thanh kéo, thanh treo, thanh neo được làm từ thép cán	
6	Các cấu kiện của kết cấu thanh ở mái và sàn	0,90
	a) thanh chịu nén (trừ thanh tiết diện ống kín) khi tính toán ổn định	0,95
	b) thanh chiu kéo trong kết cấu hàn	0,95
·	c) các thanh chiu kéo, nén và các bản ghép trong kết cấu bulông (trừ kết cấu dùng bulông cường độ cao) từ thép có giới chảy nhỏ hơn	
	440 MPa (4500kG/cm²) chịu tải trọng tĩnh, khi tính toán về độ bền	0,95
7	Các cấu kiện tổ hợp: dầm bụng đặc, cột và các bản ghép bằng thép có giới hạn chảy nhỏ hơn 440 MPa chịu tải trọng tĩnh dùng liên kết bulông (trừ bulông cường độ cao) khi tính toán về độ bền	1,10
8	Tiết diện của các cấu kiện thép cán hoặc tổ hợp hàn và các bản ghép bằng thép có giới hạn chảy nhỏ hơn 440 MPa ở những chỗ nối, dùng liên kết bulông (trừ bulông cường độ cao) chịu tải trọng tĩnh, khi tính toán về độ bền.	
	a) dầm bụng đặc và cột	1,10
	b) kết cấu thanh của mái và sàn	
9	Các thanh bụng chịu nén của kết cấu không gian rỗng làm bằng một thép góc, được liên kết trên một cạnh (thép góc không đều cạnh là cạnh lớn) trực tiếp vào thanh cánh a) bằng các đường hàn hoặc bằng hai bulông trở lên đặt dọc theo thép góc:	1,05
	- đối với hệ không gian có các nút ở hai mặt tiếp giáp trùng nhau (trừ thanh xiên trong hệ bụng dạng chữ K) - thanh xiên của hệ bụng dạng chữ K	0,90 0,85
,	- đối với hệ không gian có các nút ở hai mặt tiếp giáp không trùng nhau	0,80
	b) bằng một bulông (trừ trường hợp hệ bụng dạng chữ thập phúc tạp), cũng như khi liên kết thanh bụng vào thanh cánh qua bản mã	0,75

Số TT	Các cấu kiện của kết cấu	γ
	c) bằng một bulông đối hệ bụng dạng chữ thập phức tạp	0,70
	Các thanh chịu nén làm bằng một thép góc được liên kết trên một cạnh	
10	(cạnh nhỏ đối với thép không đều cạnh) trừ các trường hợp nêu ở điểm	0,75
	9 của bảng	:

Chú thích : Các hệ số $\gamma < 1$ khi tính toán không xét cùng một lúc

Bảng 4-20. Độ mảnh giới hạn $[\lambda]$

STT	Cấu kiện	[λ] khi		khi chịu k o tải trọng	
	Cau kiện	chịu nén	tĩnh	động, trực tiếp	cầu trục
1	Thanh cánh, thanh đứng và thanh xiên ở gối truyền lực gối tựa (của dàn phẳng, kết cấu không gian)	120	400	250	250
2	Các thanh bụng dàn phẳng (trừ thanh đứng và thanh xiên truyền phản lực gối tựa)	150	400	350	300
3	Các thanh bụng của kết cấu không gian, dùng liên kết hàn (trừ thanh đứng và xiên truyền, phản lực gối tựa) khi :				•
'	$\alpha = N/(A_{ng}R) = 1$	150			
	$0.5 \le \alpha < 1$	210 - 60 α		•	
	$\alpha < 0.5$	180			
4	Các thanh bụng của kết cấu không gian, dùng				
₹ .	liên kết bulông (trừ thanh đứng và xiên truyền phản lực gối tựa)		400	350	300
	$khi \alpha = N/(A_{ng}R) = 1$	180	* .	ļ : · ;	
	$0.5 \le \alpha < 1$	220 - 40 α			, .
	$\alpha < 0.5$	200	•		
5	Cánh trên của dàn khi lắp ráp (không được gia cường)	220			,
6	Cột chính	120			
. 7	Cột phụ (cột sườn tường, cửa mái) và các thanh bụng của cột rỗng	150			
8	Các thanh giằng của hệ giằng đứng giữa các cột (ở dưới dầm cầu trục)	150	300	300	200

. 1	2	3	4	5	6
9	Các thanh giằng (trừ những thanh đã nêu ở	T		ţ	-
	điểm 8), các thanh cấu tạo để làm giảm chiều dài tính toán cho thanh khác và các thanh không chịu lực khác	.000	400	400	300
	Cánh dưới của dầm và dàn cầu trục				150

Bảng 4-21. Hệ số ϕ

Độ mảnh	Hệ	số φ đ	ối với	các cấ	u kiện	bằng t (kG/	hép có cm²)	cườn	g độ tí	nh toá	n R, M	Pa;
λ	200	240	280	320	360	400	440	480	520	560	600	640
ļ 	(2050)	(2450)	(2850)	(3250)	(3650)	(4100)	(4500)	(4900)				
10	988	987	985	984	983	982	981	980	979	978	977	977
20	967	962	959	955	952	949	946	943	941	938	936	934
30	939	931	924	917	911	905	900	895	891	887	883	879
40	906	894	883	873	863	854	846	839	832	825	820	814
50	869	852	836	822	809	796	785	775	764	746	729	712
60	827	805	7,85	766	749	721	696	672	650	628	608	588
70	782	754	724	687	654	623	595	568	542	518	494	470
80	734	686	641	602	566	532	501	471	442	414	386	359
90	665	612	565	·522	483	447	413	380	349	326	305	287
100	599	542	493	448	408	369	335	309	286	267	250	235
110	537	478	427	381	338	306	280	258	239	223	209	197
120	479	419	366	321	287	260	237	219	203	190	178	167
130	425	364	313	276	247	223	204	189	175	163	153	145
140	376	315	272	240	215	195	178	164	153	143	134	126
150	328	276	239	211	189	171	157	145	134	126	118	111
160	290	244	212	187	167	152	139	129	120	112	105	099
170	259	218	189	167	150	136	125	115	107	100	094	089
180	233 -	196	170	150	135	123	112	104	097	091	085	081
190	210	177	154	136	122	111	102	094	088	082	077	073
200	191	161	140	124	111	101	093	086	080	075	071	067
210	174	147	128	113	102	093	085	079	074	069	065	062
220	160	135	118	104	094	086	077	073	068	064	060	057

Chú thích : Trị số cho trong bảng đã được tăng lên 1000 lần

Bảng 4-22. Độ võng tương đối của cấu kiện thép

Các cấu kiện của kết cấu	Độ võng tương đối (đối với nhịp L)
1. Dầm và dàn cầu trục :- Chế độ làm việc nhẹ (bao gồm cầu trục tay pa-lăng điện và	
pa-lăng)	1/400
- Chế độ làm việc trung bình - Chế độ làm việc nặng và rất nặng	1/500
2. Dầm sàn công tác của nhà sản xuất với đường ray:	1/600
- Khổ rộng	1/600
- Khổ hẹp	1/400
3. Dầm sàn công tác của nhà sản xuất khi không có đường ray và dầm sàn giữa các tầng:	
- Dầm chính	1/400
- Các dầm khác và dầm cầu thang	1/250
- Sàn thép	1/150.
4. Dầm và dàn của mái và của sàn hầm mái :	
- Có treo thiết bị nâng chuyển hoặc thiết bị công nghệ	1/400
- Không thiết bị treo	1/250
- Xà gồ	1/200
- Sàn định hình	1/150
5. Các cấu kiện của sườn tường :	
- Xà ngang	1/300
- Dầm đỡ cửa kính	1/200

Ghi chú :

- (1) Đối với công xôn nhịp L lấy bằng hai lần phần vươn ra của công xôn.
- (2) Khi có lớp vữa trát, độ võng của dầm sàn chỉ do tải trọng tạm thời gây ra không được lớn hơn 1/350 chiều dài nhịp.

IV. KẾT CẤU GỖ

A. CẤU KIỆN CHỊU KÉO ĐÚNG TÂM

$$\sigma = \frac{N}{F_{\rm th}} \leq R_k$$

Vi~du~29: Kiểm tra cường độ một thanh chịu kéo đúng tâm (xem hình vẽ 4-21). Tiết diện thanh 15×20 cm có hai rãnh cắt hai bên sâu 3,5cm và cắc

bulông đường kính d = 1,6cm. Lực kéo tính toán N = 9,6T. Gỗ nhóm VI, đô ẩm 18%.

Giải:

Diện tích tiết diện nguyên: Đườ

$$F_{ng} = 15 \times 20 = 300 \text{cm}^2$$

Diện tích giảm yếu do rãnh:

$$F_{gy} = 2 \times 20 \times 3,5 = 140 \text{cm}^2$$

Vì khoảng cách hai hàng bulông là 10cm<20cm nên 3 lỗ bulông coi như nằm trong một mặt cắt. Diện tích giảm yếu do lỗ bulông:

$$F''_{gy} = 3 \times 1.6 \times (15 - 2 \times 3.5) = 38.4$$
cm²

Diện tích thu hẹp:

$$F_{th} = 300 - (140 + 38,4) = 121,6cm^2$$

Kiểm tra ứng suất:

$$\sigma = \frac{9600}{121.6} = 73.8 kG/cm^2 < 0.8 \cdot R_k = 0.8.95 = 76 kG/cm^2$$

B. CẤU KIỆN CHỊU NÉN ĐÚNG TÂM

1. Theo cường độ

$$\sigma = \frac{N}{N_{\rm th}} \le R_{\rm n}$$

2. Theo ổn định

$$\sigma = \frac{N}{\phi \; F_{tt}} \leq R_n$$

$$F_{gy} \leq 25\%~F_{ng}~~;~F_{tt} = F_{ng}$$

$$F_{\rm gy} > 25\%~F_{\rm ng}~~;~F_{\rm tt} = \frac{4}{3}~F_{\rm th}$$

Khi
$$\lambda > 75$$
, $\varphi = \frac{3100}{\lambda^2}$

Khi
$$\lambda \le 75$$
, $\varphi = 1 - 0.8 \left(\frac{\lambda}{100}\right)^2$

$$\lambda = \frac{I_0}{r_{min}}$$
, tiết diện chữ nhật $r_{min} = 0.289b$,

tiết diện tròn : $r_{min} = 0.25 D$.

 $[\lambda] = 120$: Cấu kiện nén chính

 $[\lambda] = 150$: Cấu kiện nén phụ

Vi~du~30: Kiểm tra cường độ và ổn định của một cột chịu nén, tiết diện 12×18 cm, chiều dài tính toán $I_0 = 3,2$ m, chịu lực nén tính toán N = 9T. Cột có hai lỗ bulông d = 16mm ở khoảng giữa chiều dài, gỗ nhóm VI (W = 18%).

Giải:

- Kiểm tra cường độ: Diện tích tiết diện nguyên

$$F_{ng}=12\times18=216cm^2$$

Diện tích giảm yếu: $F_{gy} = 2 \times 1,6 \times 12 = 38,4$ cm²

Diện tích thu hẹp: $F_{th} = 216 - 38,4 = 178 \text{cm}^2$

$$\sigma = \frac{9000}{178} = 50,6 \text{kG/cm}^2 < R_n = 115 \text{kG/cm}^2$$

- Kiểm tra ổn định:

Lỗ bulông không ra tới mép tiết diện và $F_{gy}=38,4 {\rm cm}^2<0,25 F_{ng}=54 {\rm cm}^2$ nên diện tích tính toán lấy bằng F_{ng} .

$$r_{min} = 0.289 \times 12cm = 3.47cm$$

Độ mảnh lớn nhất

$$\lambda = \frac{320}{3.47} = 92 < [\lambda] = 120 > 75$$

Hệ số uốn dọc

$$\varphi = \frac{3100}{92^2} = 0,366$$

Úng suất
$$\sigma = \frac{9000}{0.366 \times 216} = 113 \text{kG/cm}^2 < R_n = 135 \text{kG/cm}^2.$$

C. CẤU KIỆN CHỊU UỐN PHẮNG

$$\frac{M}{W_{\rm th}} \leq R_u$$

$$\frac{f}{l} = \frac{k M^{tc} I^2}{2 E J} < \left[\frac{f}{I}\right]; E = 10^5 kG/cm^2$$

Dầm đơn giản chịu tải trọng phân bố đều k = 0.208

Dầm đơn giản chịu tải trọng tập trung giữa nhịp k = 0.167.

Với sàn gác
$$\left[\frac{\mathbf{f}}{l}\right] = \frac{1}{250}$$
; kết cấu mái $\left[\frac{\mathbf{f}}{l}\right] = \frac{1}{200}$

Ví dụ 31: Chọn tiết diện dầm sàn, nhịp dầm dài 4,5m, tải trọng phân bố đều trên dầm $q^c = 400 kG/m$, q = 485 kG/m; dùng gỗ nhóm VI, W = 18%.

Giái:

$$M = \frac{485 \times 4,5^2}{8} = 1341 \text{kGm}; W_{yc} = \frac{134100}{115} = 1166 \text{cm}^3$$

Chọn tiết diện 14 x 25 cm

$$W = \frac{14 \times 25^2}{6} = 1458 \text{cm}^3 > 1166 \text{cm}^3$$

Kiểm tra độ võng dầm

$$J = \frac{14 \times 25^3}{12} = 18229 \text{cm}^4; M^c = \frac{400 \times 4,5^2}{8} = 1012,5 \text{kGm}$$

$$\frac{f}{l} = \frac{5}{48} \times \frac{101250 \times 450}{10^5 \times 18229} = 0,0026 = \frac{1}{385} < \left[\frac{f}{l}\right] = \frac{1}{250}$$

D. CẤU KIỆN CHỊU UỐN XIÊN

$$W_x = \frac{M_x}{R_u} \left(1 + tg\alpha \frac{h}{b} \right) = \frac{b h^2}{6}$$

$$h = (1 \sim 2)b$$

$$f_x = \frac{5}{48} \times \frac{M_y^c}{E J_y}$$

$$f_y = \frac{5}{48} \times \frac{M_x^c}{E J_y}$$

$$f_y = \frac{5}{48} \times \frac{M_x^c}{E J_x}$$

$$f = \sqrt{f_x^2 + f_y^2}$$
 ; $\frac{f}{I} \le \left[\frac{f}{I}\right]$

Vi~du~32: Chọn tiết diện xà gồ mái ngói, nhịp tính toán xà gồ là 3,3m, tải trọng tiêu chuẩn $q^c=120kG/m$, tải trọng tính toán q=145kG/m; góc dốc mái $\alpha=30^\circ$ (cos $\alpha=0.866$; sin $\alpha=0.5$)

Giai:

$$\begin{array}{l} q_x = q \; sin\alpha = 145.0, 5 = 72, 5kG/m \\ q_y = q \; cos\alpha = 145.0, 866 = 126kG/m \\ q_y^c = 120.0, 5 = 60kG/m; \; q_y{}^c = 120.0, 866 = 104kG/m \\ M_x = \frac{126 \times 3, 3^2}{8} \; ; \qquad M_y = \frac{72, 5 \times 3, 3^2}{8} \\ M_x = 171, 5kGm, \qquad M_y = 98, 9kGm \\ M_x^c = 142kGm; \qquad M_y^c = 81, 87kGm \end{array}$$

 $Chon \frac{h}{b} = 2$

$$\begin{split} W_x &= \frac{17150}{120} \ (1 + 0.577 \times 2) = 307 \text{cm}^3 \\ W_x &= \frac{b \ h^2}{6} = \frac{4 \ b^3}{6} \qquad ; \quad b = \sqrt[3]{\frac{6W_x}{4}} \\ b &= \sqrt[3]{\frac{6 \times 307}{4}} = 7.8 \text{cm chon b} = 8 \text{cm, h} = 16 \text{cm} \\ W_x &= \frac{8 \cdot 16^2}{6} = 341 \text{cm}^3 \\ J_x &= \frac{8 \times 16^3}{12} = 2728 \text{cm}^4; \\ J_y &= \frac{16 \times 8^3}{12} = 683 \text{cm}^4 \\ \sigma &= \frac{17150}{341} + \frac{9890}{170} = 108 \text{kG/cm}^2 < R_u = 120 \text{kG/cm}^2 \end{split}$$

Tính độ võng:

$$f_x = \frac{5}{48} \times \frac{8187 \times 330^2}{10^5 \times 683} = 1,36cm$$

$$f_y = \frac{5}{48} \times \frac{14200 \times 330^2}{10^5 \times 2728} = 0,59cm$$

Độ võng tổng cộng :
$$f=\sqrt{1,36^2+0,59^2}=1,48\text{cm}$$

$$\frac{f}{l}=\frac{1,48}{223}<\left[\frac{f}{l}\right]=\frac{1}{200}$$

E. CẤU KIỆN CHỊU NÉN UỐN

Kiểm tra điều kiên

$$\frac{N}{F_{th}} \, + \, \frac{M \; R_n}{\xi \times W_{th} \; R_u} \, \leq R_n \label{eq:resolvent}$$

Trong đó
$$\xi = 1 - \frac{\lambda^2 N}{3100 \times R_n F_{ng}}$$

Ví dụ 33 : Kiểm tra tiết diện của thanh chịu nén lệch tâm có tiết diện chữ nhật 12×18 cm, dài 3,5m, liên kết khớp ở hai đầu. Tại khoảng giữa chiều dài theo cạnh ngắn có một rãnh sâu 4cm ở một phía. Lực nén tính toán là N = 5000kG trong đó N_{dh} = 4300kG và N_{ngh} = 700kG.

Giải:

1. Kiểm tra tiết diện trong mặt phẳng uốn

Độ lệch tâm:

$$e = \frac{18 - 14}{2} = 2cm$$

$$M = N.e = 5000 \times 2 = 10000kGcm$$

$$F_{ng} = 18 \times 12 = 216cm^{2}$$

$$F_{th} = 14 \times 12 = 168cm^{2}$$

$$W_{th} = \frac{12 \times 14^{2}}{6} = 392cm^{3}$$

$$\lambda = \frac{l_{o}}{r_{x}} = \frac{350}{0,289 \times 18} = 67,3$$

$$\xi = 1 - \frac{\lambda^{2} N}{3100 R_{n} F_{ng}} = 1 - \frac{67,3^{2} \times 5000}{3100 \times 115 \times 216} = 0,706$$

Điều kiện bền trong mặt phẳng uốn

$$\frac{5000}{168} + \frac{10000 \times 115}{0,706 \times 392 \times 120} = 64,4 \text{kG/cm}^2 < 115 \text{kG/cm}^2$$

2. Kiểm tra tiết diện ngoài mặt phẳng uốn

$$\lambda_y = \frac{350}{0,289 \times 12} = 101 < 120$$

$$\phi = \frac{3100}{101^2} = 0,304; F_{tt} = F_{th} = 168 cm^2$$

$$\frac{5000}{0,304 \times 168} = 97,7 \text{ kG} < R_n = 115 kG/cm^2$$

3. Kiểm tra tiết diện chỉ chịu tác dụng của tải trọng thường xuyên

 $Vi~N_{dh} = 4300kG > 0.8.5000kG$

Nên cần kiểm tra khả năng chịu lực của thanh do tải trọng thường xuyên.

$$\frac{4300}{0.304 \times 168}$$
 = 84,2kG/cm² < 0,8 R_n = 0,8 × 115 = 92kG/cm²

F. CẤU KIỆN CHỊU KÉO UỐN

Kiểm tra điều kiện

$$\frac{N}{F_{th}} + \frac{M}{W_{th}} \times \frac{R_k}{R_u} \leq R_k$$

Vi~du~34: Kiểm tra cường độ của thanh gỗ hộp chịu kéo, có tiết diện 20×20 cm, có rãnh sâu 6cm ở một phía. Lực kéo N = 12000kG đặt đúng trục thanh.

Giải:

$$\begin{split} F_{th} &= 20~(20\text{ - }6) = 280\text{cm}^2 \\ e &= \frac{20}{2} - \frac{14}{2} = 3\text{cm} \\ M &= 12000 \times 3 = 36000\text{kGcm} \\ W_{th} &= \frac{20~(~20\text{ - }6~)^2}{6} = 653\text{cm}^3 \end{split}$$

$$\frac{12000}{280} + \frac{36000}{653} \times \frac{0.8 \times 95}{1.15 \times 120} = 73.2 kG/cm^2 < R_K = 0.8 \times 95 = 76 kG/cm^2$$

0,8 và 1,15 là các hệ số lấy trong trường hợp thanh kéo bị giảm yếu và thanh uốn có tiết diện lớn (b \geq 15cm, h \leq 50cm).

G. LIÊN KẾT MÔNG MỘT RẰNG

Vi~du~35: Tính liên kết mộng của nút đầu dàn theo các số liệu sau đây: Tiết diện các thanh trên và dưới là 16×18 cm, góc nghiêng $\alpha=26,5^\circ$; nội lực tính toán trong thanh trên $N_n=626$ kG, trong thanh dưới $N_k=5603$ kG (sin $\alpha=0,372$; cos $\alpha=0,895$). Dùng gỗ nhóm VI ở W = 18%.

Giải:

$$R_{em\alpha} = \frac{115}{1 + \left(\frac{115}{1.7 \times 18} - 1\right) 0.372^{3}} = 90.3 kG/cm^{2}$$

Bề sâu rãnh $< 1/3 \times 18$ cm = 6cm

$$h_r \ge \frac{6260 \times 0,895}{16 \times 90,3} = 3,9$$
 chon $4,5cm < \frac{1}{3} \times 18 = 6cm$

Chiều dài mặt trượt

$$I_{\rm tr} = \frac{5603}{21 \times 16 - 0.25 \times \frac{5603}{0.5 \times 18}} = 31 \, \text{cm}$$

 $Chon l_{tr} = 40cm < 10 h_{r} = 45cm$

Kiểm tra tiết diện thanh dưới:

$$\sigma = \frac{N_k}{b (h - h_r)} = \frac{5603}{16 (18 - 4.5)} = 26kG/cm^2 < 0.8.9, 5 = 76kG/cm^2$$

H. LIÊN KẾT CHỐT

Vi~du~36: Thiết kế mối nối chịu lực kéo N = 7T của hai thanh tiết diện 12×16 cm, dùng chốt thép đường kính 1,6cm, bản ghép bằng gỗ dầy 8cm.

Giải: Vì liên kết đối xứng, nên khả năng chịu lực của một mặt cắt chốt tính như sau :

$$\begin{split} T_a &= 80 \times 8 \times 1,6 = 1024 kG \\ T_c &= 50 \times 12 \times 1,6 = 960 kG \\ T_u &= 180 \times 1,6^2 + 2,8^2 = 589 kG < 250.1,6^2 = 640 kG \end{split}$$

Lấy trị số T_u = 589kG làm khả năng chịu lực tính toán của một mặt cắt. Khả năng chịu lực của 2 mặt cắt :

$$T = 2 \times 589 = 1178 kG$$

Số chốt cần thiết :
$$n = \frac{7000}{1178} = 6 \text{ c}$$
ái

Bố trí chốt như hình vẽ 13-10

Kiểm tra thanh gỗ theo tiết diện giảm yếu

$$\sigma = \frac{7000}{12 \times (16 - 2 \times 1.6)} = 46 \text{kG/cm}^2 < 0.8.95 = 76 \text{kG/cm}^2$$

Hình 4-22

I. MỘT SỐ BẢNG TRA ĐỂ THIẾT KẾ KẾT CẦU GỖ

Bảng 4-23. Độ võng tương đối (f/L) cho phép của cấu kiện chịu uốn

Cấu kiện	Độ võng tương đối
Sàn gác	1/250
Dầm trần, xà gồ, kèo	1/200
Câu phong, li tô	1/150

Ghi chú:

Để tính độ võng, mô đun đàn hồi dọc của gỗ được xác định như sau :

(a) Trong điều kiện nhiệt độ và độ ẩm bình thường, mô đun đàn hồi dọc của mọi loại gỗ chịu tác động của tải trọng thường xuyên và tạm thời lấy bằng:

 $E = 100.000 kG/cm^2$

(b) Trong điều kiện nhiệt độ cao, độ ẩm cao hoặc chỉ chịu tác động của tải trọng dài hạn thì trị số E phải nhân với các hệ số quy định trong bảng.

Bảng 4-24. Hệ số điều kiện làm việc của kết cấu nằm trong điều kiện độ ẩm cao hoặc nhiệt độ cao hoặc chỉ kiểm tra riêng với tải trọng dài hạn

Điều kiện sử dụng	Hệ số
 Gỗ bị ẩm ngắn hạn sau đó lại khô (công trình không được bảo vệ khỏi tác dụng của khí quyển, kết cấu bị ảnh hưởng ẩm ngắn hạn trong các gian sản xuất) 	0,85
- Gỗ bị ẩm lâu dài (trong nước, đất, kết cấu bị ẩm lâu trong các gian sản xuất)	0,75
- Chịu nhiệt độ không khí $35^{\circ}\mathrm{C}$ - $50^{\circ}\mathrm{C}$ (trong nhà sản xuất)	0,80
- Kết cấu chỉ tính với tải trọng thường xuyên	0,80

Phần 5 MINH HỌA CẤU TẠO

A. MÓNG BÊ TÔNG CỐT THÉP

Bảng 5-1.

< 1,5m 1:0,25	1,5 ~ 3m
1:0,25	1:1
1:0,5	1:1
1:0,25	1:0,67
	1:0,50
	1:0,25
	· · · · · · · · · · · · · · · · · · ·

LỚP LỚT MÓNG

CẤU TẠO GÓC CỨNG α CỦA MÓNG

KÍCH THƯỚC MÓNG BTCT

THÉP ĐÁY MÓNG

MÓNG CÓ LỖ ĐẶT CỘT LẮP GHÉP

SỰ CHỆNH LỆCH ĐÁY MÓNG

CÁC GIẢI PHÁP MÓNG TIẾP GIÁP NHÀ BÊN CẠNH

BỐ TRÍ CỌC BTCT TRONG MẶT BẰNG ĐÁY MÓNG

NEO COC VÀO ĐÀI

Không cần đập đầu cọc khi cọc chịu tải đúng tâm

Khi cọc chịu tải ngang, lệch tâm, lực nhổ

TIẾT DIỆN VÀ ĐẶT THÉP TRONG MÓNG BĂNG ĐỖ HÀNG CỘT

Bảng 5-2. Cọc BTCT đặc có tiết diện vuông

Chiều dài đoạn cọc (m)	Kích thước tiết diện cọc (mm)	Mác bê tông	Trọng lượng cọc (kg)	Cốt thép dọc
5	200 × 200	200	510	4 Ø 12
5	250×250	200	800 ·	4 Ø 12
5	300 × 300	200	1160	4 extstyle 0 extstyle 12
6	200 × 200	200	610	4 Ø 12
6	250×250	200	950	4 Ø 12
6	300 × 300	200	1390	4 Ø 12
7	200×200	200	710	4 Ø 12
7	250×250	200	1110	4 Ø 12
7	300×300	200	1620	4 Ø 12
8	250 imes 250	300	1270	4 Ø 12
8	300 × 300	300	1840	4 Ø 12
8	350×350	300	2500	4 Ø 12
9	300 × 300	300	2060	4 Ø 12
9	350×350	300	2800	4 Ø 12
10	300 × 300	300	2290	4 Ø 12
10	350×350	300	3120	4 Ø 12
11	300 × 300	300	2500	4 Ø 12
11	350×350	300	3420	4 Ø 12
12	300 × 300	300	2710	4 Ø 16
12	350 × 350	300	3710	4 Ø 16

B. CÔT BÊ TÔNG CỐT THÉP

CHIỀU CAO TÍNH TOÁN I

KÍCH THƯỚC TIẾT DIỆT CỘT CHỮ NHẬT THƯỜNG DÙNG

b(cm)	15	20	25	30	40
h(cm)	15	20,30,35,40	25,35,40,45,50	30,40,45,50	40,50,60,70, 80,100

THÉP DỌC TRONG CỘT

Đường kính: $12 \le \emptyset \le 28$ b ≤ 250 Ømin = 12 b ≥ 250 Ømin = 16

≥ 35Ø

KHOẢNG CÁCH CỐT THÉP

THẾP ĐAI TRONG CỘT

Đường kính đại : Ø đại ≥ 5

Bước đại U : U ≤ b_c

 $U \le 15 \varnothing$ $U \le 500$

Mốc đầu của đại

150

C. DẦM BÊ TÔNG CỐT THÉP

Bảng 5-4. Kích thước b, h của tiết diện dầm

кі́сн -	THƯỚC
TIÉT C	DIÊN

Loại dầm	Nhịp L	Chiều cao tiết diện h		Chiều rộng	
Doği dalii	(m)	Một nhịp	Nhiều nhịp	tiết diện b	
Phụ Chính	≤6 ≤10	$(\frac{1}{15} - \frac{1}{12})L$ $(\frac{1}{12} - \frac{1}{8})L$	$\geq \frac{1}{20}L$ $\geq \frac{1}{15}L$	$(\frac{1}{4} - \frac{1}{2})$ h	

Khi h'_c > 0,1 0,05h < h'_c < 0,1 $b_{c}^{t} \le b + 12 h_{c}^{t}$ $b_{c}^{t} \le b + 6 h_{c}^{t}$

KHOẢNG CÁCH MÉP CỘT THÉP

Bảng 5-5. Cắt thép chịu M ở các vị trí (theo kinh nghiệm)

Dầm	LƯỢNG CỐT THÉP CẮT TẠ			ắt tại
	Nhịp	1/2/	1/31	1/4/
Chính	Biên	≥ 2 thanh = ≥ 1/3 Fa	Số còn lại	1
Chính	Giữa	- i	≥ 2 thanh ≥ 1/3 Fa	Số còn lại
Phụ	Biên		≥ 2 thanh ≥ 1/4 Fa	Số còn lại
	Giữa		≥ 2 thanh ≥ 1/4 Fa	Số còn lại

Fa: Diện tích cốt thép tại mép gối tựa

l : nhịp đẩm

VỊ TRÍ CẮT THÉP CHỊU M^ CỦA DẨM CHÍNH

ĐẶT THÉP TẠI CHỖ GIAO NHAU GIỮA ĐAN, DẨM PHỤ, DẨM CHÍNH

ĐẠI GIA CƯỜNG

D. KHUNG BÊ TÔNG CỐT THÉP

Bảng 5-6. Chiều cao tiết diện ngang của dầm khung

HÌNH DẠNG DẨM	KHUNG MỘT NHỊP	KHUNG NHIỀU NHỊP
Thẳng min min	(1/10 ~ 1/12)/	(1/12 ~ 1/16)/
Gãy man man		
Không có thanh căng	(1/12 ~ 1/16)/	(1/12 ~ 1/18)/
Có thanh căng	(1/16 ~ 1/20)/	(1/16 ~ 1/24)/
Cong		
Không có thanh căng	(1/16 ~ 1/24)!	(1/18 ~ 1/30)/
Có thanh căng	(1/30 ~ 1/35)/	(1/30 ~ 1/40)/

Thép đi liên tục qua mắt

CÁC QUY ĐỊNH CẦU TẠO CỦĄ ĐẨM KHUNG LẤY THEO ĐẨM CHÍNH CỦA SÀN

E. SÀN BÊ TÔNG CỐT THÉP

ĐẶT THÉP TRONG ĐAN 1 PHƯƠNG KHI CHIỀU DÀY ĐAN $h_{\rm b}$ < 80

ĐẶT THÉP TRONG ĐẠN 1 PHƯƠNG CHIỀU DÀY ĐẠN $h_b \ge 80$

CÁC LOẠI MŨ CỘT SÀN NẤM

CÁC LOẠI TIẾT DIỆN TẨM SÀN LẮP GHÉP (Có Iỗ)

F. CÁC BỘ PHẬN BTCT CHỊU UỐN KHÁC

SÊ NÔ

ÔVĂNG, SÊNÔ DẠNG ĐAN GỐI LÊN DẨM

Khoảng cách dầm gánh

DẨM CÔNG SÔN

ĐỒNG MỰC DẨM SÀN

THẤP HƠN DẨM SÀN

Thép bậc cẩu thang xương cá luôn luôn chú ý cốt thép chịu lực ở phía trên và có biện pháp chống lật

MẶT BẰNG KẾT CẦU CẦU THANG CÓ LIMÔNG

MẶT CẮT ĐAN THANG

TƯỜNG CHẮN BỆ TÔNG CỐT THÉP CÓ SƯỜN Một đoạn tường liên tục ≤ 25m $\geq \delta_{\rm b}$ $(1/15 \sim 1/9) l_c$ 1,=2-3,5m TƯỜNG CHẮN BỊCT KHÔNG SƯỜN ≥ 100 2/3 số thép 1/30 ~ 1/10) 1/3 số thép (1/12 ~ 1/10)H G. CẤU KIỆN GẠCH ĐÁ ≥4 hàng Gạch ≥ 75# Dùng vữa ≥ 50# 1Ø6 cho chiều dày 12cm *l* ≤ 2m LANH TÔ GẠCH XÂY TƯỜNG Lớp gạch via 0,121 *l* ≤ 3,5m ≥ 0,06 *l* ≤ 2m $f = (1/5 \rightarrow 1/6)l$ LANH TÔ GẠCH CUỐN BẰNG

LANH TÔ CUỐN VÒM

l ≤ 4m

TƯỜNG CHẮN GẠCH ĐÁ

H. CẤU KIỆN THÉP

1. CỘT THÉP

 $b_{sn} \ge \frac{b_s}{30} + 40$ mm. δ_{sn} (chiều dày sườn ngang) $\ge \frac{b_s}{15}$

 $b_{sd} \ge 10 \delta_b$ δ_{sd} (chiều dày sườn đứng) $\ge 0,75 \; \delta_b$

CÁC TIẾT DIỆN CỘT CHỊU NÉN ĐÚNG TÂM

CÁC TIẾT DIỆN CỘT CHỊU NÊN LỆCH TÂM

Bảng 5-7 : Tỉ số $\frac{h_1}{H_1}$

l ₁ (m)	Cột đặc	Cột rỗng
≤ 12	$\frac{1}{10} \sim \frac{1}{14}$	$\frac{1}{9}$ ~ $\frac{1}{12}$
12 ~ 20	$\frac{1}{12} \sim \frac{1}{16}$	$\frac{1}{11} \sim \frac{1}{14}$

CỘT RỖNG DÙNG BẢN GIẰNG

CỘT RỖNG DÙNG THANH GIẰNG

BULÔNG NEO CHÂN CỘT

2. DẨM THÉP

LIÊN KẾT ĐẨM SÀN

3. VÌ KÈO THÉP VÀ HỆ GIẰNG MÁI

DẠNG VÌ KÈO MÁI ĐỐ PANEN BTCT

NÚT TRUNG GIAN CÓ NỐI THANH CÁNH BẰNG THÉP GÓC

NÚT GIỮA DƯỚI NÚT ĐỈNH DÀN (nối tại hiện trường) Bản ghép 25 a ≥ 6δ ~ 20mm δ - Bề dày bản mắt Bản ghếp Bản sườn Bản nối Bản mắt BỐ TRÍ HỆ GIẰNG VÌ KÈO THÉP Giằng đứng Giằng nằm . Thanh thượng Thanh giữa L≤60m Thanh hạ Giằng đứng giữa Giằng nằm cánh thượng Bulông gá Giằng đứng biên

Giằng nằm cánh hạ

GIẰNG NẰM

I. CẤU KIỆN GỖ

LIÊN KẾT MỘNG MỘT RĂNG

BỐ TRÍ CHỐT SONG SONG

Bố TRÍ CHỐT SO LE

b > 10d b ≤ 10d $S_1 \ge 7d$ $S_1 \ge 6d$ $S_2 \ge 3,5d$ $S_2 \ge 3d$

 $S_3 \ge 3d$ $S_3 \ge 2,5d$

MÚC LỰC

Lời mở đầu

ე	Phần 1	
ĐẠC	TRUNG HÌNH HỌC VÀ XÁC ĐỊNH NỘI	LŲC

Bảng 1-1 :	Đổi đơn vị giữa hai hệ US và SI	9
Bång 1-2 :	Trọng tâm và diện tích của một số hình	4
Bảng 1-3 :	Mômen quán tính của một số hình	5
Bảng 1-4 :	Lực cắt - phản lực gối tựa mômen uốn và độ võng của dầm một nhịp	7
Bång 1-5 :	Mômen uốn, lực cắt và phản lực gối tựa trong dầm liên tục đều nhịp	11
Bảng 1-6 :	Mômen uốn trong bản và dầm không đều nhịp, các hệ số K, trị số N	13
Bảng 1-7 :	Mômen uốn, mômen xoắn của dầm có mặt bằng hình gẫy góc và cung tròn	
Bảng 1-8 :	Khung một nhịp một tầng	15
Bảng 1-9 :	Khung gấy góc một nhịp	17
Bảng 1-10 :		18
	Vòm hai khớp có thanh căng chịu lực tập trung đặt ở một phía	19
Bảng 1-12 :	Vòm hai khớp có thanh căng chịu tải trọng phân bố đều đặt đối xứng	20
Bang 1-13:	Vòm hai khớn có thanh cặng chiu tội trong phác bố đầu đời là là	21
7.	(c 1)	23
Bang 1-14:	Phản lực, lực xô ngang, mômen uốn của vòm thoải $\left(\frac{f}{l} \le \frac{1}{4}\right)$ không có	
D: 1	liên kết khớp	24
Bång 1-15 :	do) chịu tải trọng phân bố đều trên mặt bản	26
Bång 1-16 :		_,
	do) khi ô bán là hình vuông chịu tải trọng phân bố đều trên mặt bản	27
Bång 1-17 :	Phân phối tải trọng và mômen uốn trong các dầm sàn giao thoa, chu vi kê tự do	28
Bảng 1-18:	Phân phối tải trọng lên hệ dầm có sườn giằng	
Bång 1-19:	Các hệ số tính đan sàn chữ nhật làm việc hai phương chịu tải trọng phân bố đều trên mặt bản	29
Bảng 1-20 :		32
	nguyệt, lục giác đều ngàm chu vi chịu tải trọng phân bố đều (p) trên mặt bản	20
Bång 1-21:	Công thức và các hệ số xác định mômen uốn của bản ngàm bốn cạnh chịu tải trọng tam giác	36
		37
	Phần 2 Số LIỆU VỀ TẢI TRONG	
Bảng 2-1:	Trọng lượng đơn vị một số loại vật liệu xây dựng (trị số tiêu chuẩn)	38
Bảng 2-2 :	Trọng lượng tính toán của một mét dài lam, dầm, cột bê tông cốt thép	39

Bảng 2-3 :	Tải trọng tức thời tiêu chuẩn phân bố đều lên sàn và cầu thang (theo TCVN 2737-1995)	40
Bảng 2-4 :	Hệ số vượt tải γ	43
Bảng 2-5 :	Phân vùng áp lực gió (theo TCVN 2737-1995)	45
Bảng 2-6 :	Hệ số K	48
Bảng 2-7 :	Hệ số điều chỉnh tải trọng gió với thời gian sử dụng giả định của công	
O	trình khác nhau	48
Bång 2-8 :	Chỉ dẫn xác định hệ số khí động C (theo TCVN 2737-1995)	49
Bảng 2-9 :	Các số liệu về cầu trục chạy điện	59
<u>-</u>	Phần 3	
	VẬT LIỆU VÀ THI CÔNG	
Bảng 3-1 :	Diện tích (cm²) và trọng lượng (kG/m) cốt thép tròn	62
Bang 3-2:	Diện tích và trọng lượng cốt thép tròn quy cách đường kính tính theo	
-	inch	63
Bång 3-3:	Thép góc cán đều cạnh	64
Bảng 3-4 :	Thép góc cán không đều cạnh	68
Bảng 3-5 :	Thép cán dạng chữ I	70
Bång 3-6 :	Thép cán dạng chữ [có góc nghiêng ở mép	72
Bảng 3-7 :	Thép cán chữ [các biên cánh song song	74
Bảng 3-8 :	Ký hiệu các thép hình của một số nước khác	76
Bång 3-9 :	Kích thước gỗ xẻ Việt Nam (Nghị định 10/CP)	76
Bảng 3-10:	Cường độ tính toán gốc và mô đun đàn hồi của bê tông	77
Bảng 3-11:	Hệ số tính đổi kết quả cường độ nén các viên	. **
	mẫu bê tông có kích thước khác với mẫu chuẩn (150×150×150) mm	78
Bảng 3-12:		78
Bảng 3-13:		:
	TCVN 1651-1985	78
	Tính chất cơ học của thép Liên Xô (cũ) theo GOST 5781-1975	79
	Giới hạn đàn hồi của một số loại thép nước ngoài	79
_	Cường độ tính toán của thép hình (Nga)	80
	Cường độ tính toán của đường hàn R ^h	. 80
	Cường độ tính toán của gỗ Việt Nam	80
	Cường độ tính toán chịu nén R của khối xây gạch nung đặc	. 80
Bảng 3-20 :	Cường độ tính toán chịu nén R của khối xây đá hộc	01
	đập thô	81
Bảng 3-21 :	Cường độ tính toán chịu nén R của khối xây bằng	01
	viên bê tông đặc và đá thiên nhiên có quy cách	81
	Yêu cầu độ sụt và chỉ số cứng của bê tông	. 81
Bảng 3-23 :	Tỷ lệ $rac{ ext{N}}{ ext{X}}$ cần thiết cho các loại bê tông dẻo	. 82
Bảng 3-24 :	Thời gian trộn bê tông	82

Bảng 3-25 :	Thành phần vật liệu cho 1m³ bê tông nặng mác 100	82
Bång 3-26:	Thời gian vận chuyển cho phép của bê tông	82
	Thời gian gián đoạn giữa lớp bê tông đổ trước và lớp bê tông đổ sau	
	(dùng xi măng Pooclăng) khi không có phụ gia	8,2
Bång 3-28:	Tỷ lệ (%) so với R ₂₈ khi bê tông có t ngày tuổi	8
	Thời gian tối thiểu (ngày) để bê tông đạt cường độ	•
	25kG/cm² (bảo đảm cho góc cạnh, bề mặt bê tông	
-	không sứt mẻ)	83
Bång 3-30:	Thời gian tối thiểu (ngày) để bê tông đạt cường độ cần thiết và có thể	
	tháo dỡ ván khuôn	88
Bảng 3-31 :	Liều lượng pha chế hồ vữa (tính cho 1 m³) dùng để xây trát	88
Bảng 3-32 :	Chiều dài nối buộc tối thiểu của cốt thép chịu lực	84
	Chiều dài nối buộc cốt thép khi dùng các loại bê tông khác nhau	84
Bảng 3-34 :	Chiều dài nối hàn	84
Bång 3-35:	Chiều dầy lớn nhất của mỗi lớp khi đổ bê tông	84
Bång 3-36:	Góc nghiêng giới hạn của máng, băng chuyên (độ) dùng để đổ bê tông	88
Bảng 3-37:	Các sai lệch cho phép khi thi công kết cấu bê tông và bê tông cốt thép	
	toàn khối	85
Bảng 3-38 :	Thời gian bảo dưỡng ẩm cho kết cấu bê tông cốt thép	85
Bảng 3-39 :	Góc ma sát trong φ của một số loại đất	86
Bảng 3-40 :	Công thức tính thể tích các khối phức tạp	86
	Lực tiêu chuẩn (P) do móc cẩu dùng thép có Ra = 2000kG/cm ²	89
Bảng 3-42 :	Chiều dài một móc đầu thanh thép tròn tron (ΔI)	89
	Phần 4	
	TRÌNH TỰ TÍNH TOÁN CÁC CẤU KIỆN	,
I. KẾT CẤU	BÊ TÔNG CỐT THÉP	91
A. Cấu kiện	chịu nén đúng tâm	91
Bảng 4-1 :	Hệ số φ	91
Bång 4-2 :	Chiều dài tính toán của cột nhà một tầng	91
B. Cấu kiệ	n chịu nén lệch tâm (tiết diện chữ nhật)	92
Bång 4-3 :	Trị số α_0	93
C. Cấu kiện	chiu kéo	98
D. Cấu kiện	c hịu uốn (tính theo tiết diện thẳng góc)	100
	n chịu uốn (tính theo tiết diện nghiêng)	105
F. Cấu kiệi	ı chịu uốn xoắn đồng thời (tiết diện chữ nhật)	106
	ông thức và bảng tra để thiết kế kết cấu bê tông cốt thép	109
	Hệ số k truyền tải	109
Bảng 4-5 :	Khoảng cách lớn nhất giữa các khe co giãn nhiệt độ cho phép không	
	cần tính toán	111
Bảng 4-6 :	Khoảng cách tối đa của khe co giãn nhiệt ẩm, theo 2 chiều vuông góc	112
	Cấp chống nứt và giới hạn của bề rộng khe nứt	112

Bảng 4-8 :	Trị số giới hạn của biến dạng fgh				113
Bång 4-9 :	Chọn kích thước tiết diện (b x h cm) của	dầm bê tôn	g cốt thép		113
Bảng 4-10:	Chọn chiều dày đan sàn loại làm việc m	ột phương ($l_d: l_n > 2)$		114
Bảng 4-11 :	Trị số A , α , γ	• # -	-		114
Bång 4-12 :	Diện tích cốt thép tròn (cm^2) khi biết kh	oảng cách v	rà đường kí:	nh thép	115
II. KẾT CẤU	J GACH ĐÁ		100		116
A. Khối xây	chịu nén đúng tâm		,		116
Bảng 4-13 :	Hệ số m _{dh}				116
Bång 4-14 :	Hệ số uốn dọc φ				116
Bång 4-15 :	Chiều cao giới hạn $\beta' = \frac{H}{b}$ của tường khô	ìng có lỗ cửa	a, có chiều d	lài	
:	L<2,5H	10.00			116
Bång 4-16 :	Hệ số điều chỉnh k và kc	+			117
B. Khối xây	chịu nén lệch tâm				117
C. Khối xây	y chịu nén cục bộ	*	•		119
D. Khối xâ	y chịu kéo dọc trục		, ,		120
E. Khối xâ	y chịu uốn	• ;	. *	*	120
F. Khối xây	z chịu cắt				121
III. KÆT CÂ	U THÉP		•		122
A. Liên kết	hàn			•	122
B. Liên kết	bulông		· 2.		124
C. Cột đặc	chịu nén đúng tâm				126
D. Cột đặc	chịu nén lệch tâm				128
E. Thanh	hịu kéo dọc trục				128
F. Dâm địi	ih hình				128
1. Chịu t	ốn phẳng				128
2. Chịu t	_	· ·			130
	rc thiết kế dầm tổ hợp hàn				132
•	oảng tra để thiết kế kết cấu thép				133
	Khoảng cách tối đa giữa các khe co giãn		41.14.1	•	133
_	Hệ số phân phối nội lực N khi liên kết c	các thép góc	với thép b	an	133
_	Hệ số điều kiện làm việc γ				134
_	Độ mảnh giới hạn [λ]				135
Bảng 4-21 :	•				136
_	Độ võng tương đối của cấu kiện thép				137
IV. KÉT CA	AU GO				137
A. Cấu kiệ	n chịu kéo đúng tâm				137
B. Cấu kiệ	n chịu nén đúng tâm				138
C. Cấu kiệ	n chịu uốn phẳng				139
D. Cấu kiệ	en chịu uốn xiên				140
E. Cấu kiệ	n chịu nén uốn				142

F. Cấu kiện chịu kéo uốn	143
G. Liên kết mộng một răng	144
H. Liên kết chốt	144
I. Một số bảng tra để thiết kế kết cấu gỗ	145
Bảng 4-23 : Độ võng tương đối $\left(rac{\mathbf{f}}{\mathbf{L}} ight)$ cho phép của cấu kiện chịu uốn	145
Bảng 4-24: Hệ số điều kiện làm việc của kết cấu nằm trong điều kiện độ ẩm cao hoặc nhiệt độ cao hoặc chỉ kiểm tra riêng với tải trọng dài hạn	145
Phần 5 MINH HOẠ CẤU TẠO	
A. MÓNG BÊ TÔNG CỐT THÉP	146
B. CỘT BÊ TÔNG CỐT THÉP	150
C. DẦM BÊ TÔNG CỐT THÉP	151
D. KHUNG BÊ TÔNG CỐT THÉP	156
E. SÀN BÊ TÔNG CỐT THÉP	158
F. CÁC BỘ PHẬN BÊ TÔNG CỐT THÉP CHỊU UỐN KHÁC	161
G. CẤU KIỆN GẠCH ĐÁ	165
H. CẤU KIỆN THÉP	166

Sổ tay thực hành KẾT CẦU CÔNG TRÌNH

Chịu trách nhiệm xuất bản KTS VŨ QUỐC CHINH

Biên tập nội dung : NGUYỄN THANH NGUYÊN

Biên tập kỹ thuật : ĐINH VĂN ĐỒNG

Kỹ thuật vi tính : NGUYỄN MẠNH HOÀNG

Sửa bản in : NGUYỄN MINH KHÔI

Bìa : ĐINH ĐỒNG - HỮU TÙNG