

# Department of Computer Science

# CS-217 – Object Oriented Programming Spring 2021

**Instructor Name:** Muhammad Owais Idrees **TA Name:** M. Faizan

Email address: Owais.Idrees@nu.edu.pk Email address: 1174155@lhr.nu.edu.pk

**Office Location:** Exam Hall

**Office Hours:** 

#### **Course Information**

**Program:** BS (CS)

**Credit Hours:** 3 + 1 for Lab

Type: Core

Class Venue: CS-10

**Pre-requisites:** Programming Fundamentals (CS-118)

**Class Meeting Time:** 

## **Course Description/Objectives/Goals:**

The core objectives of this course are to introduce,

- Object oriented programming with data abstraction and encapsulation.
- The classes, objects and relationship among different objects and classes in C++?
- Generic programming using templates, and template specializations.

# **Course Learning Outcomes (CLOs):**

|   | Level |
|---|-------|
|   | +===  |
| C | 2     |
| С | 2     |
| С | 3     |
| С | 3     |
| С | 4     |
|   | C     |

#### **Course Textbooks:**

domain

- 1. C++ Programming: Program Design Including Data Structures, by D. S. Malik (8<sup>th</sup> Edition)
- 2. C++: How to Program? by Deitle & Deitle (9<sup>th</sup> Edition)

#### Additional references and books related to the course:

- 3. Problem Solving with C++, by Walter Savitch
- 4. https://www.learncpp.com

# **Course Contents Weekly and Lecture-wise Breakdown**

| Week | Topic                   | Lecture-1                                    | Lecture-2                                      |  |  |
|------|-------------------------|----------------------------------------------|------------------------------------------------|--|--|
| 1    | •                       | Pointers Introduction, Pointer variables and | Use of Constant with Pointers.                 |  |  |
|      |                         | Initialization, Address of Operator,         | Difference between a Pointer and a             |  |  |
|      |                         | Dereferencing Operator. Pointer              | Reference.                                     |  |  |
|      |                         | Operations (Relational, Arithmetic)          | Passing pointers to functions by value and     |  |  |
|      |                         |                                              | by reference.                                  |  |  |
| 2    |                         | Dynamic memory allocation using pointers     | Dynamic 1- dimensional arrays, Create,         |  |  |
|      | Pointers                | and accessing dynamic memory. Dynamic        | Delete, Grow and Shrink.                       |  |  |
|      |                         | Variables new and delete operators.          | Example of programs using 1D dynamic           |  |  |
|      |                         |                                              | allocation: e.g., mathematical sets union and  |  |  |
|      |                         |                                              | intersection.                                  |  |  |
| 3    |                         | Memory Leak and Dangling Pointers,           | Pointers Indirection. Dynamic 2D,              |  |  |
|      |                         | Dynamic 1- dimensional char arrays for       | allocation, matrices, CStrings etc.            |  |  |
|      |                         | strings, string operations like search,      |                                                |  |  |
|      |                         | concatenation etc.                           |                                                |  |  |
| 4    |                         | Structured Programming vs Object-            | Objects vs Class, state vs behavior, access    |  |  |
|      |                         | oriented Programming, Principles of          | specifiers (Public, Private), Member           |  |  |
|      | Object enjoyted         | modularization, abstraction and              | functions (accessors, utilities, mutators etc) |  |  |
|      | Object-oriented basics  | encapsulation.                               |                                                |  |  |
| 5    | Dasies                  | Constructors (default, overloaded),          | Dynamic memory allocation and Object           |  |  |
|      |                         | Function overloading.                        | assignment, Parameter passing, Shallow vs      |  |  |
|      |                         |                                              | Deep copy,                                     |  |  |
| 6    | Mid Term 1              |                                              |                                                |  |  |
| 7    | Object enjected         |                                              | Cascaded function calls, static members,       |  |  |
|      | Object-oriented basics  | Copy constructor, Destructors, this pointer, | inline functions and other miscellaneous       |  |  |
|      | Dasies                  |                                              | issues                                         |  |  |
| 8    | Operator                | Unary operators using member functions       | Binary operators using member functions        |  |  |
| 9    | overloading             | Binary operators using non-member            | Unary operators, Pre and post increment,       |  |  |
|      |                         | functions, concept of friendship,            | subscript operator.                            |  |  |
| 10   |                         | Part-whole relationships,                    | Composition                                    |  |  |
|      | <b>Object and Class</b> | Association/Aggregation                      | Implementation issues (constructor call        |  |  |
|      | relationships           |                                              | sequence, initializer list, etc)               |  |  |
| 11   |                         | Inheritance basics, Type of Inheritance,     | Function Overriding and sub-typing details     |  |  |
| - 10 |                         | public, protected, private.                  |                                                |  |  |
| 12   | Mid Term 2              |                                              |                                                |  |  |
| 13   |                         | Polymorphism introduction Static vs          | Polymorphism vs down casting, run-time         |  |  |
|      |                         | dynamic binding details, virtual tables and  | type identification, dynamic cast              |  |  |
|      |                         | virtual pointers,                            |                                                |  |  |
| 14   | <b>Object and Class</b> | Pure-virtual functions, Abstract classes,    | Multiple Inheritance and Diamond Problem       |  |  |
|      | relationships           | Interfaces (optional)                        | Multiplicity, Memory Management                |  |  |
|      |                         |                                              | Bi-directional relationships, Forward-class    |  |  |
|      |                         |                                              | declarations issues                            |  |  |
| 15   | Generic                 | Template functions                           | Template classes                               |  |  |
|      | Programming             | r                                            | Template Specializations,                      |  |  |
| 16   | &                       | Exception Handling.                          | Introduction to STL, Iterators and             |  |  |
|      | Exception               | F                                            | Collections                                    |  |  |
|      | Handling.               |                                              |                                                |  |  |

## (Tentative) Grading Criteria:

1. Assignments + Home works + Project (20 %)

Quizzes (10 %)
Midterms (30 %)
Final Exam (40 %)

- Grading scheme for this course is **Absolute** under application of CS department's grading policies.
- Minimum requirement to pass this course is to obtain at least 50% absolute marks

### **Course Policies:**

- o All assignments and homework must be done individually.
- o Late Submissions of assignments will not be accepted.
- Plagiarism in any work (Quiz, Assignment, Midterms, Project and Final Exam) from any source, Internet or a Student will result in deduction of absolute marks or F grade.
- o Minimum **80%** attendance is required for appearing in the Final exams.