Заголовок статьи

И. Н. Нестеров, С. В. Клочков, А. С. Чурсанова

1 Введение

Рассматривается линейное однородное дифференциальное уравнение

$$x^{(n)} = \alpha_1 x^{(n-1)} + \ldots + \alpha_n,$$

где $\alpha_k \in \mathbb{C}, k=\overline{1,n}$. Данное уравнение обычным способом сводится к системе линейных дифференциальных уравнений вида

$$\dot{y} = Ay$$
,

где матрица оператора A имеет вид

$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_n & \alpha_{n-1} & \alpha_{n-1} & \dots & \alpha_1 \end{pmatrix}$$

Пусть $\lambda_1,\ldots,\lambda_m$ – корни характеристического многочлена $f(\lambda)=\lambda^n-\alpha_1\lambda^{n-1}-\ldots-\alpha_n,\lambda\in\mathbb{C}$ этой матрицы кратности k_1,\ldots,k_m соответственно.

2 Пример

Для примера рассмотрим частный случай n=3. Тогда матрица ${\cal A}$ имеет вид:

$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \alpha_3 & \alpha_2 & \alpha_1 \end{pmatrix}$$

Возможны три варианта:

- 1. все собственные значения различны;
- 2. есть собственные значения $\lambda_1, \lambda_2,$ которые имеют кратности $k_1=2,\ k_2=1$ соответственно;
- 3. все собственные значения одинаковы;

Рассмотрим первый случай. Пусть матрица \mathcal{A} имеет собственные значения $\lambda_1, \lambda_2, \lambda_3$ которые имеют кратности $k_1 = k_2 = k_3 = 1$ соответственно. Оператор A имеет простую структуру. Тогда жорданова форма матрицы \mathcal{A} имеет вил:

$$\mathcal{J} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

Далее запишем матрицу перехода \mathcal{U} и обратную к ней \mathcal{U}^{-1} :

$$\mathcal{U} = \begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix},$$

$$\mathcal{U}^{-1} = \frac{1}{\Delta} \begin{pmatrix} \lambda_2 \lambda_3 (\lambda_3 - \lambda_2) & \lambda_2^2 - \lambda_3^2 & \lambda_3 - \lambda_2 \\ \lambda_1 \lambda_3 (\lambda_1 - \lambda_3) & \lambda_3^2 - \lambda_1^2 & \lambda_1 - \lambda_3 \\ \lambda_1 \lambda_2 (\lambda_2 - \lambda_1) & \lambda_1^2 - \lambda_2^2 & \lambda_2 - \lambda_1 \end{pmatrix},$$

где $\Delta = \det \mathcal{U} = (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_2 - \lambda_1)$. Теперь запишем проекторы оператора A:

$$\mathcal{A} = \mathcal{U}\mathcal{J}\mathcal{U}^{-1},$$
 $\mathcal{P}_i = \mathcal{U}\mathcal{P}_i'\mathcal{U}^{-1},$
 $\mathcal{P}_i' = \left(p_{jk}'\right),$
 $p_{jk}' = \begin{cases} 1, & \text{если } j = k = i; \\ 0, & \text{в противном случае.} \end{cases}$

где $i,j,k\in\{1,2,3\}$, и \mathcal{P}'_i — проекторы жордановой матрицы \mathcal{J} оператора A. Тогда по теореме о спектральном разложении оператора простой структуры [1]:

$$\mathcal{A} = \lambda_1 \mathcal{P}_1 + \lambda_2 \mathcal{P}_2 + \lambda_3 \mathcal{P}_3$$

Рассмотрим второй случай. Пусть матрица \mathcal{A} имеет собственные значения $\lambda_1,\ \lambda_2$ которые имеют кратности $k_1=2,\ k_2=1$ соответственно. Тогда жорданова форма матрицы \mathcal{A} имеет вид:

$$\mathcal{J} = \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$$

Запишем матрицу перехода $\mathcal U$ и обратную к ней $\mathcal U^{-1}$:

$$\mathcal{U} = \begin{pmatrix} 1 & 0 & 1 \\ \lambda_1 & 1 & \lambda_2 \\ \lambda_1^2 & 2\lambda_1 & \lambda_2^2 \end{pmatrix},$$

$$\mathcal{U}^{-1} = \frac{1}{\Delta} \begin{pmatrix} \lambda_2^2 - 2\lambda_1\lambda_2 & 2\lambda_1 & -1 \\ \lambda_1^2\lambda_2 - \lambda_1\lambda_2^2 & \lambda_2^2 - \lambda_1^2 & \lambda_1 - \lambda_2 \\ \lambda_1^2 & -2\lambda_1 & 1 \end{pmatrix},$$

где $\Delta = \det \mathcal{U} = (\lambda_1 - \lambda_2)^2$.

Для спектрального разложения найдем проекторы и нильпотентную часть

оператора A:

$$\mathcal{A} = \mathcal{U}\mathcal{J}\mathcal{U}^{-1},$$

$$\mathcal{P}_{i} = \mathcal{U}\mathcal{P}'_{i}\mathcal{U}^{-1},$$

$$\mathcal{P}'_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \mathcal{P}'_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\mathcal{Q} = \mathcal{U}\mathcal{Q}'\mathcal{U}^{-1},$$

$$\mathcal{Q}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

где $i \in \{1,2\}$, и $\mathcal{P}'_i, \mathcal{Q}'$ — проекторы жордановой матрицы \mathcal{J} оператора A и её нильпотентная часть соответственно. Тогда по теореме о спектральном разложении линейного оператора [1]:

$$\mathcal{A} = \lambda_1 \mathcal{P}_1 + \lambda_2 \mathcal{P}_2 + \mathcal{Q}$$

И наконец последний случай. Пусть матрица ${\mathcal A}$ имеет одно собственное значение λ кратности k=3. Тогда жорданова форма матрицы ${\mathcal A}$ имеет вид:

$$\mathcal{J} = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

Запишем матрицу перехода \mathcal{U} и обратную к ней \mathcal{U}^{-1} :

$$\mathcal{U} = \begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ \lambda^2 & 2\lambda & 2 \end{pmatrix},$$
$$\mathcal{U}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 1 & 0 & 0 \\ -\lambda & 1 & 0 \\ \frac{1}{2}\lambda^2 & -\lambda & \frac{1}{2} \end{pmatrix},$$

где $\Delta = \det \mathcal{U} = 2$.

Спектральное разложение для этого случая очевидно.

Список литературы

[1] Г. Баскаков А. Лекции по алгебре. — Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2013.-159 с.