Randomization

Quicksort

Sorting

Input:

An array A[n] of n integers.

Output:

An array B[n] such that B contains the entries of A[n] in an ascending order.

Sorting

Input:

An array A[n] of n integers.

For simplicity, distinct values.

Output:

An array B[n] such that B contains the entries of A[n] in an ascending order.

We don't actually need a new array.

Outline

- Quicksort
 - Pivot
 - Paranoid
- Runtime
 - $O(n \log n)$ in expectation
 - With high probability in the tutorial exercises

Learning objectives:

You are able to

- describe the paranoid quicksort algorithm
- bound of pivot candidates per recursive call in expectation

Quicksort

• Works in expected $O(n \log n)$ time

Mergesort is also

 $O(n \log n) !?$

Quicksort

- Works in expected $O(n \log n)$ time
 - In practice, tends to be faster than Mergesort
 - Behaves well with caching
 - can be implemented without extra space
- Can also be shown to work in time $O(n \log n)$ with high probability
 - We will discuss a simpler $O(n \log^2 n)$ analysis in the tutorial session

Classic Quicksort:

- 1. Pick a pivot p randomly.
- 2. Elements smaller than p to the left and greater to the right.
- 3. Recurse.

Classic Quicksort:

- 1. Pick a pivot p randomly.
- 2. Elements smaller than p to the left and greater to the right.
- 3. Recurse.

Simpler to analyse

Paranoid Quicksort:

- 1. Pick a pivot p randomly.
- 2. If less than 1/10 elements smaller or larger, pick a new pivot.
- 3. Elements smaller than p to the left and greater to the right.
- 4. Recurse.

No split is too bad

Quicksort(A, ℓ , r):

If $(\ell \geq r)$ Return

Until(p is good)

Choose random $p \in \ell, ..., r$

Partition($A[\ell, r], p$)

Quicksort(A, ℓ , p-1)

Quicksort(A, p + 1, r)

Pivot p is good if at least |A|/10 elements of A are larger and smaller than p.

Any pivot is good if |A| < 10.

```
Quicksort(A, \ell, r):
```

If $(\ell \geq r)$ Return

Until(p is good) \leftarrow Choose random $p \in \ell, ..., r$

Partition($A[\ell, r], p$)
Quicksort($A, \ell, p - 1$)
Quicksort(A, p + 1, r)

Pivot p is good if at least |A|/10 elements of A are larger and smaller than p.

Any pivot is good if |A| < 10.

Quicksort(A, ℓ , r):

If $(\ell \geq r)$ Return

Until(p is good)

Choose random $p \in \ell, ..., r$

Partition($A[\ell, r], p$)

Quicksort(A, ℓ , p-1)

Quicksort(A, p + 1, r)

Pivot p is good if at least |A|/10 elements of A are larger and smaller than p.

Any pivot is good if |A| < 10.

Quicksort(A, ℓ , r):

If $(\ell \geq r)$ Return

Until(p is good) \leftarrow Choose random $p \in \ell, ..., r$

Partition($A[\ell,r],p$)
Quicksort($A,\ell,p-1$)
Quicksort(A,p+1,r)

Pivot p is good if at least |A|/10 elements of A are as large and as small as p.

Any pivot is good if |A| < 10.

Only touch the relevant entries.


```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

```
    10
    15
    5
    0
    11
    65
    4
    2
    9

    i j
```

```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

```
    10
    15
    5
    0
    11
    65
    4
    2
    9

    i j
```

```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

 10
 15
 5
 0
 11
 65
 4
 2
 9

 i j

```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

```
    10
    15
    5
    0
    11
    65
    4
    2
    9

    i j
```

```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

```
      10
      15
      5
      0
      11
      65
      4
      2
      9

      i j
      5
      0
      11
      65
      4
      2
      9

      i j
      65
      4
      2
      9
```

```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

```
5
10
   15
              11
                  65
                      4
                             9
   i j
10
   15
              11
                  65
                             9
           0
                      4
10
       15
              11
                  65
                             9
                      4
```

```
Partition(A, p):

Swap(A[0], A[p])

i \coloneqq 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i \coloneqq i + 1

Swap(A[i - 1], A[0])
```



```
Partition(A, p):

Swap(A[0], A[p])

i := 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i := i + 1

Swap(A[i - 1], A[0])
```

```
15
       5
              11
                  65
10
                      4
                             9
   i j
10
   15
              11
                  65
                             9
           0
                      4
                  65
10
       15
              11
                             9
                      4
10
           15
              11
                  65
                      4
                             9
                  65
10
       0
              11
                      15
```

```
Partition(A, p):

Swap(A[0], A[p])

i \coloneqq 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i \coloneqq i + 1

Swap(A[i - 1], A[0])
```



```
Partition(A, p):

Swap(A[0], A[p])

i \coloneqq 1

for(j = i, ...)

if(A[j] < A[0])

Swap(A[i], A[j]);

i \coloneqq i + 1

Swap(A[i - 1], A[0])
```

Observation:

Let |A| = n. Partition takes O(n) time

Correctness:

Almost 1-to-1 the same as with Mergesort

Outline

- Quicksort
 - Pivot
 - Paranoid
- Runtime
 - Expectation
 - With high probability in the tutorial exercises


```
Quicksort(A, \ell, r):

If(\ell \geq r)
Return

Until(p \text{ is } good)
Choose random p \in \ell, ..., r

Partition(A[\ell, r], p)
Quicksort(A, \ell, p - 1)
Quicksort(A, p + 1, r)
```



```
Quicksort(A, \ell, r):

If(\ell \geq r)
Return

Until(p \text{ is } good)
Choose random p \in \ell, ..., r

Partition(A[\ell, r], p)
Quicksort(A, \ell, p - 1)
Quicksort(A, p + 1, r)
```


$$T(n) = T(n-i) + T(i) + R(n)$$

Random variables

Depend on each other

The cost of *j*:th level depends on j-1

Paranoia:

The array A[n] is always split at least $\frac{1}{10}$: $\frac{9}{10}$

Recursion tree depth is $O(\log n)$

Paranoia:

The array A[n] is always split at least $\frac{1}{10}$: $\frac{9}{10}$

Recursion tree depth is $O(\log n)$

Linearity of Expectation:

$$E[T(n)] = \max_{i} \{T(n-i) + T(i)\} + E[\#partitions] \cdot cn$$

Paranoia:

The array A[n] is always split at least $\frac{1}{10}$: $\frac{9}{10}$

Recursion tree depth is $O(\log n)$

Linearity of Expectation:

$$E[T(n)] = \max_{i} \{T(n-i) + T(i)\} + E[\#partitions] \cdot cn$$

Figure out the worst case (expected) cost per level.

Cost of **Partition** on k elements is O(k)

Cost of **Partition** on k elements is O(k)

Cost of **Partition** on k elements is O(k)

Cost per level: $E[\#partitions] \cdot c \cdot n = O(n)$

Expected cost per level:

 $E[\#partitions] \cdot c \cdot n = O(n)$

Recursion tree depth is $O(\log n)$

Linearity of Expectation:

Total expected cost is the sum of costs per level:

$$O(\log n \cdot O(n)) = O(n \log n)$$

Wrap up

