

WEATHER FORECAST CASE STUDY

Luisa Reske and Rubén Vásquez

Motivation

Objectives

- Research question:
 - How does the weather forecast changed and evolved for the 18 of May in the city of Köln?
- Data processing objectives:
 - Data preprocessing, data management and data FAIRness
 - Analysis/processing and visualization of the data
 - Documentation, repository

Structure

Workflow:

- 1. Sources investigation
- Creation of repository, Github implementation
- 3. Download of information
- 4. Data preprocessing
- Analysis and visualization.
- 6. Scripts optimization
- 7. Function testing
- 8. Documentation and wrapping

(IFS)

worldwide

forecast

ECMWF Integrated Forecast System

• global atmospheric model: describes

dynamical evolution of atmosphere

no model can produce precisely

correct forecasts ⇒ Ensemble

access with ecmwf-api-client

S2S, ECMWF, Realtime, Instantaneous and Accumulated

Public access to this dataset will be transitioning to a new interface, dates to be announced soon. For

more information on how to access this data in the future, please consult the dedicated page on

S2S sets

- · Real time
- Reforecasts

Statistical process

- · Instantaneous and accumulated
- · Daily averaged

Origins

- BoM
- · CMA
- CNRM
- CPTEC
- ECCC
- ECMWF
- HMCR
- IAP-CAS
- ISAC-CNR
- IMA
- KMA
- NCEP
- UKMO

Type of level

- · Potential temperature
- Pressure levels
- Surface

Type

- · Control forecast
- Perturbed forecast

Please login before retrieving data from this dataserver.

Decommissioning of ECMWF Public Datasets service.

This dataset is available daily. Read more

Select a month

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2015	0	0	0	0	0	0	0	0	0	0	0	0	2016	0	0	0	0	0	0	0	0	0	0	0	0
2017	0	0	0	0	0	0	0	0	0	0	0	0	2018	0	0	0	0	0	0	0	0	0	0	0	0
2019	0	0	0	0	0	0	0	0	0	0	0	0	2020	0	0	0	0	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0	0	0	0	0	2022	0	0	0	0	0	0	0	0	0	0	0	0
2023	0	0	0	0	0	0	0	0	0	0	0	0	2024	0	0	0	0	0	0	0	0				
	lan	Feb	Mar	Apr	Mav	lun	lul	Aug	Sep	Oct	Nov	Dec		lan	Feb	Mar	Apr	May	lun	lul	Aug	Sep	Oct	Nov	Dec

Select number

□ 1	2	3	_4	□ 5	□6	□ 7	□8	□9	□10	□ 11	□12	□ 13	□ 14	□ 15
□16	□ 17	□ 18	□19	□ 20	□21	□ 22	□ 23	□ 24	□ 25	□ 26	□ 27	□ 28	□ 29	□ 30
□31	□ 32	□ 33	□ 34	□ 35	□36	□ 37	□38	□ 39	□ 40	□ 41	42	□ 43	44	□ 45
□ 46	47	□ 48	□ 49	□ 50	□ 51	□ 52	□ 53	□ 54	□ 55	□ 56	□ 57	□ 58	□ 59	□ 60
□ 61	□ 62	□ 63	□ 64	□ 65	□ 66	□ 67	□ 68	□ 69	□70	□ 71	□72	□ 73	□74	□ 75
□ 76	□ 77	□ 78	□ 79	□ 80	□81	□ 82	□ 83	□ 84	□ 85	□ 86	□ 87	□ 88	□ 89	□ 90
□91	□ 92	□ 93	94	□ 95	□ 96	□ 97	□ 98	□ 99	□100					

Select All or Clear

Select step

	□ 36 □ 42 □ 48 □ 54 □ 60 □ 66 □ 72	□30	□ 24	□ 18	□12	□ 6		
D155 D163 D160 D174 D100 D105 D103 D100 D204 D210 D216 D2	8 🗆 114 🗆 120 🗆 126 🗆 132 🗆 138 🗆 144 🗆 150	□ 108	□ 102	□ 96	□ 90	□ 84	□ 78	
0 130 0 102 0 106 0 174 0 100 0 100 0 192 0 196 0 204 0 210 0 210	6 🗆 192 🗆 198 🗆 204 🗆 210 🗆 216 🗆 222 🗆 228	□ 186	□ 180	□ 174	□ 168	□ 162	□ 156	

Select parameter

☐ 10 metre U wind component	□ 10 n	
Convective precipitation	☐ Max	
☐ Mean sea level pressure	☐ Mini	
Snowfall water equivalent	Surf	
Surface long-wave (thermal) radiation downwards	Surf	
Surface net short-wave (solar) radiation	Surf	
☐ Surface runoff	Surf	
Surface short-wave (solar) radiation downwards	□Time	
☐ Time-integrated northward turbulent surface stress	□Тор	

Select All or Clear

▼ Total Precipitation

View data retrieval request

Retrieve GRIB

request

□ Wat

Estimated number of fields: 87

Python script

MARS request

For more information on how to retrieve data programmatically, in Python, please go to Access ECMWF Public Datasets.

```
#!/usr/bin/env python
from ecmwfapi import ECMWFDataServer
server = ECMWFDataServer()
server.retrieve({
    "class": "s2",
    "dataset": "s2s",
    "date": "2024-02-01/to/2024-02-29",
    "expver": "prod",
    "levtype": "sfc",
    "model": "glob",
    "number": "1",
    "origin": "ecmf",
    "param": "228228",
    "step": "0/6/12",
    "stream": "enfo",
    "time": "00:00:00",
    "type": "pf",
    "target": "output"
```


Repository Structure

⇒ Link to Git

https://github.com/RubenVasquezArr/Weather_forecast_case_study/tree/main

DATA ANALYSIS AND VISUALIZATION

Regionwide Forecast: Mean Ensemble

Regionwide Forecast: Standard Deviation Ensemble

Forecast City of Cologne

Forecast City of Cologne

Comparison to Reanalysis Data

Interactive map

Conclusion

Incorrect forecasts due:

- initial conditions uncertainties
- model uncertainties
- boundary condition uncertainties
- atmosphere is a chaotic system

Further improvements:

comparing to other forecast model (e.g. from DWD)

Conclusion to project and Issues

- Biggest challenges:
 - Information search
 - Data comprehension and processing
 - standardization of functions
- Biggest learnings:
 - Github is a powerful tool to share and co-create projects.
 - Thinking for others and the future: documentation and FAIR principles.

