Mathematical Methods in the Applied Sciences

HAC CCC EA KR HO

K O H T

B. St

Contents

A. Acker, Ames On the Geometric Form of Solutions of a Free Boundary Problem involving Galvanization	99
A. Bamberger and T. Ha Duong, Palaiseau Diffraction d'une Onde Acoustique par une Paroi Absorbante: Nouvelles Equa- tions Intégrales	431
H. Behncke, Osnabrück Optimization Models for the Force and Energy in Competitive Sports	298
W. Benz, Hamburg Ästhetische Rechtecksmaße, die maßstabsunabhängig sind	53
E. Bobula and K. Twardowska, Cracow On the Approximation Method of Solving Integral Equations in Diffusion Problems	220
H. Cabannes, Paris Motion of a Vibrating String in the Presence of a Convex Obstacle: A Free Boundary Problem	276
M. C. Calderer, Newark Finite Time Blow-up and Stability Properties of Materials with Fading Memory	13
Ph. Caussignac, J. Descloux, Lausanne, and J. Rappaz, Neuchâtel Study of an Elliptic Problem with Nonlinear Boundary Conditions	261
Ph. Cortey-Dumont, Palaiseau Sur l'Analyse Numérique des Equations de Hamilton-Jacobi-Bellman	198
K. Dressler, Kaiserslautern Stationary Solutions of the Vlasov-Fokker-Planck Equation	169
R. T. Glassey, Bloomington, and W. A. Strauss, Providence High Velocity Particles in a Collisionless Plasma	46
P. Grindrod and B. D. Sleeman, Dundee Weak Travelling Fronts for Population Models with Density Dependent Dis- persion	576
F. K. Hebeker, Paderborn An Integral Equation of the First Kind for a Free Boundary Value Problem of the Stationary Stokes' Equations	550

Mathematical Methods in the Applied Sciences

HAC CCC EA KR HO

K O H T

B. St

Contents

A. Acker, Ames On the Geometric Form of Solutions of a Free Boundary Problem involving Galvanization	99
A. Bamberger and T. Ha Duong, Palaiseau Diffraction d'une Onde Acoustique par une Paroi Absorbante: Nouvelles Equa- tions Intégrales	431
H. Behncke, Osnabrück Optimization Models for the Force and Energy in Competitive Sports	298
W. Benz, Hamburg Ästhetische Rechtecksmaße, die maßstabsunabhängig sind	53
E. Bobula and K. Twardowska, Cracow On the Approximation Method of Solving Integral Equations in Diffusion Problems	220
H. Cabannes, Paris Motion of a Vibrating String in the Presence of a Convex Obstacle: A Free Boundary Problem	276
M. C. Calderer, Newark Finite Time Blow-up and Stability Properties of Materials with Fading Memory	13
Ph. Caussignac, J. Descloux, Lausanne, and J. Rappaz, Neuchâtel Study of an Elliptic Problem with Nonlinear Boundary Conditions	261
Ph. Cortey-Dumont, Palaiseau Sur l'Analyse Numérique des Equations de Hamilton-Jacobi-Bellman	198
K. Dressler, Kaiserslautern Stationary Solutions of the Vlasov-Fokker-Planck Equation	169
R. T. Glassey, Bloomington, and W. A. Strauss, Providence High Velocity Particles in a Collisionless Plasma	46
P. Grindrod and B. D. Sleeman, Dundee Weak Travelling Fronts for Population Models with Density Dependent Dis- persion	576
F. K. Hebeker, Paderborn An Integral Equation of the First Kind for a Free Boundary Value Problem of the Stationary Stokes' Equations	550

G. Hobot and T. Pokora, Lublin Some Algorithms of the Projective-Newton Method for the Finite Element	
Space	1
R. Illner and M. Shinbrot, Victoria, B.C. Blow-Up of Solutions of the Gain-Term-Only Boltzmann Equation	251
J. W. Jerome, Evanston Evolution Systems in Semiconductor Device Modeling: A Cyclic Uncoupled Line Analysis for the Gummel Map	455
K. Kozel and J. Polášek, Praha Zu einigen mathematischen Problemen in der Theorie der transonischen Strö- mung	177
R. Kress, Göttingen On the Low Wave Number Asymtotics for the Two-dimensional Exterior Dirichlet Problem for the Reduced Wave Equation	335
M. Lachowicz, Warsaw On the Initial Layer and the Existence Theorem for the Nonlinear Boltzmann Equation	342
S. H. Lehnigk, Huntsville, Al On a Class of Probability Distributions	210
G. Leugering, Darmstadt Time Optimal Boundary Controllability of a Simple Linear Viscoelastic Liquid	413
H. A. Levine and R. A. Smith, Ames A Potential Well Theory for the Heat Equation with a Nonlinear Boundary Condition	127
G. Lukaszewicz, Warsaw On a Initial Boundary-Value Problem for a Model System of Equations of a Granulated Medium	231
E. Miersemann, Leipzig, and H. D. Mittelmann, Tempe A Free Boundary Problem and Stability for the Circular Plate	240
K. Morgenröther, Sindelfingen, and P. Werner, Stuttgart Resonances and Standing Waves	105
H. N. Mülthei, Mainz, and B. Schorr, Geneva On an Iterative Method for a Class of Integral Equations of the First Kind	137
K. D. P. Nigam, V. K. Srivastava, and M. W. Haque, New Delhi On Approximation to Convective Diffusion Equation	399
HD. Ohlenbusch and W. Freeden, Aachen The Electrostatic Potential of Spherical Polyelectrolytes in Aqueous Solution	324
J. Saranen, Oulu On the Convergence of the Spline Collocation with Discontinuous Data	59
B. Straughan, Glasgow Stability of a Layer of Dinelar Fluid Heated from Polory	25

The Galerkin-Averaging Method for Nonlinear, Undamped Continuous Systems	520
D. Teniou, Alger Approximation dans un Problème de Viscoélasticité Périodique	606
G. Warnecke, Stuttgart Über das homogene Dirichlet-Problem bei nichtlinearen partiellen Differen- tialgleichungen vom Typ der Boussinesq-Gleichung	493
E. Wegert and L. v. Wolfersdorf, Freiberg Plane Potential Flow Past a Cylinder With Porous Surface	587
R. Wegmann, Garching A Free Boundary Problem for Three-Dimensional Harmonic Vector Fields	367
H. J. Weinitschke, Erlangen On Finite Displacements of Circular Elastic Membranes	76
A. Willers, Lutter The Helmholtz Equation in Disturbed Half-Spaces	312

Verlagsnummern: 2933/1, 2933/2, 2933/3, 2933/4 ISSN 0170-4214

This work is subject to copyright. All rights are reversed, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproductions by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to VG WORT, Abteilung Wissenschaft, Goethestraße 49, D-8000 München 2, the amount of the fee to be determined by agreement with VG WORT.

Copying in the USA: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by B. G. Teubner, Stuttgart, for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$ 1.00 per copy, plus 0.20 per page is paid directly to CCC, 21 Congress Street, Salem, MA 01970, 0170-4214/83 \$ 01.00 + .20.

© B. G. Teubner, Stuttgart 1987

Printed in Germany

Printer: Krebs-Gehlen Druckerei · Hemsbach (Bergstraße)

