TREES

-Mannu (_mannuscript)

WHAT ARE TREE BASED ALGORITHMS?

- Set of:
 - Non-linear,
 - Supervised algorithms
 - For classification and regression.
- Examples:
 - Decision trees,
 - Random forests,
 - Gradient boosting.

WHY TREES?

WHY TREES?

- Easy to understand.
- Very less fancy statistics required.
- Not data hungry.
- Not affected by outliers.

PROBLEM

- Predict if a given loan application is safe or risky.
- Given the data:
 - Credit History
 - Income
 - Term
 - Personal Information

PROBLEM

- Credit History
- Income
- Term
- Personal Information

A2015 2016 Emily East & Carlos Cuastri

• Objective:

- Given a dataset, create a Tree T(x) with minimum classification error on the training dataset.
- Classification error = # of incorrect prediction / # of samples.

But wait!

O How to decide the feature/node placements?

- Objective: find t from T to min(E).
 - o T: Set of all possible decision tree for give features.
 - o E: Classification error on training data.
 - o t: Best tree.
- Easy: Just calculate E for all t in T!

- There is a problem:
 - o NP-hard problem!!!
 - # of trees grows exponentially.
 - No approximate solution.
- Need some heuristic to build the tree:
 - Greedy algorithm.

DECISION TREES: GREEDY ALGORITHM

- Start with an empty tree.
- Select a feature to split.
- 3. For each split:
 - a. If nothing more, stop the recursion.
 - b. Otherwise, recurse, go back to step 2 and continue to split.

DECISION TREES: GREEDY ALGORITHM

- Start with an empty tree.
- 2. Select a feature to split.
- 3. For each split:
 - a. If nothing more, stop the recursion.
 - b. Otherwise, recurse, go back to step 2 and continue to split.

- Two challenges:
 - How to decide which feature to split at step 2?
 - What are the stopping conditions at step 3.a?

- What are the stopping conditions?
 - Nothing to split.
 - No more features left.
 - Constraint on max depth of the tree.

- How to decide which feature to split first?
 - Gini Index
 - Information Gain
 - Classification Error

- Classification Error:
 - a. For each (remaining) feature:
 - Split on the values
 - For each split:
 - Assign majority class as the prediction class
 - Calculate the misclassified examples M_s
 - Calculate $E^f = (\sum_s M^f)/Total$ examples
 - b. Choose the feature with min E^f.

- Classification Error:
 - a. For each (remaining) feature:(Choose Credit)
 - Split on the values (excellent, fair, poor)
 - For each split:
 - Assign majority class as the prediction class.
 (Safe, Safe, Risky)
 - Calculate the misclassified examples M_s (0, 4, 4)
 - Calculate E^f (0 + 4 + 4)/40

Choice 1: Split on Credit

- Classification Error:
 - a. For each (remaining) feature: (Choose Term)
 - Split on the values (3y, 5y)
 - For each split:
 - Assign majority class as the prediction class. (Safe, Risky)
 - Calculate the misclassified examples M_s (4, 6)
 - Calculate $E^f = (4 + 6)/40$

Choice 2: Split on Term

- Classification error:
 - \circ Credit: (0 + 4 + 4)/40 = .2
 - \circ Term: (4 + 6)/40 = .25

- 1. Start with an empty tree.
- 2. Select a feature to split.
- 3. For each split:
 - a. If nothing more, stop the recursion.
 - b. Otherwise, recurse, go back to step 2 and continue to split.

DECISION TREES: PREDICTING VALUES

- Predicting =Traversing the tree
- E.g. (Credit = Poor, Term = 5y, Income = High)

DECISION TREES: CONTINUOUS VALUED FEATURES

- Features are not only categorical.
- How to split now?
 - a. Number of classes are infinite.
- Use threshold split.
- Algorithm:
 - a. Sort the values
 - b. For i = 1 to N-1:
 - $t_i = (N_i + N_{i+1})/2$
 - Compute classification error
- Choose the N_i with min(error) as the threshold split.

DECISION TREES: HANDS ON

OVERFITTING IN DECISION TREES

Early stopping

- Limit the depth of the tree.
- Not considering splits that do not reduce classification error
- Do not split for less data.

Pruning

- o Bottom up
- Cost = Error(T) + lambda * #of leaves

BOOSTING

- Week learner vs complex model.
- Need to find the sweet spot.
- Two ways:
 - o Increase the
 complexity of the
 model. (Depth)
 - o Boosting!

BOOSTING

- Combines(Boosts) multiple weak learners to increase performance.
- Keep committing mistakes and keep learning from them.
- Algorithm:
 - o 1. Learn a weak classifier
 - 2. M = Find the misclassified examples
 - o 3. Give higher weights to M
 - 4. Go back to 1

BOOSTING: ADABOOST

- Ensembling: Pred = $w_1 * h_1 + w_2 * h_2 + w_3 * h_3 + \dots$
- AdaBoost algorithm:
 - \circ Initialize weights $\alpha_{i} = 1/n$
 - For t = 1 to T (where T is the number of week learners)
 - Learn h_{t} with data weights α_{i}
 - lacktriangle Compute coefficient \mathbf{w}_{t}
 - lacksquare Recompute weights $lpha_{,}$
 - Final model: pred = $W_1 * h_1 + W_2 * h_2 + W_3 * h_3 + \dots + W_t * h_t$
- Challenges:
 - Finding W₊
 - \circ Finding α_{i} for each step.

BOOSTING: ADABOOST: FINDING W_{τ}

- Previous error = # of misclassified examples / # of examples.
- New error = weighted error = $(\sum \alpha_i$ of misclassified examples) $/(\sum \alpha_i)$
- But how to calculate w₊:
 - w₊ is directly proportional to weighted error.
 - \circ w_t = .5 * ln((1-weighted_error(f_t))/weighted_error(f_t))

BOOSTING: ADABOOST: FINDING α_1

• New weights are inversely proportional to weight.

```
• \alpha_i = \alpha_i e^{-W_t} (correct)
• \alpha_i = \alpha_i e^{W_t} (incorrect)
```

BAGGING: RANDOM FOREST

- Ensemble of decision trees
- Wisdom of crowd, poll unrelated models.
- For t = 1 to T (T is number of trees in the forest):
 - Select k features randomly.
 - Train h₊
- For prediction: majority vote!

BOOSTING VS BAGGING:

HOMEWORK:

Programming:

- a. Extend the decision tree code for multiclass and continuous valued features.
- b. Extend it to implement random forest (and AdaBoost?).

2. Theory:

a. Study how to do regression using decision trees (Teach us tomorrow morning?)

3. Practical:

a. Get familiar with decision tree, Random forest, Adaboost, xgboost libraries and use them on some datasets.