<u>ĆWICZENIA 5 – ZADANIA</u> (Rachunek różniczkowy funkcji jednej zmiennej)

Zadanie.1 Korzystając z definicji pochodnej funkcji w punkcie wyznaczyć pochodne następujących funkcji:

a)
$$f(x) = 4x^2 + 7x$$
 w punkcie $x_0 = -1$

b)
$$f(x) = x - \frac{1}{x}$$
 w punkcie $x_0 = 1$.

c)
$$f(x) = \frac{1}{3}x^3 + 2x - 3$$
 w punkcie $x_0 = 0$.

d)
$$f(x) = \sqrt[3]{x}$$
 w punkcie $x_0 = 1$.

Zadanie.2 Obliczyć pochodne następujących funkcji:

a)
$$y = 4x^2 - 8x + 9600$$

b)
$$v = 10x^4 - 4x^{-2} + 9x^{-11}$$

c)
$$y = \frac{4}{x^3}$$

$$d) \quad y = \left(\frac{2}{x^2}\right)^5$$

$$e) \quad y = \sqrt{x} + 2x^2$$

f)
$$y = 8\sqrt[5]{x^7}$$

g)
$$y = \frac{2}{\sqrt[3]{x^2}} - \sqrt[5]{x}$$

$$h) \quad y = \frac{5x}{\sqrt[3]{x}}$$

$$i) \quad y = \frac{2}{x\sqrt{x}} + \frac{5}{\sqrt[7]{x}}$$

j)
$$y = (2x+8)(4+x^4)$$

k)
$$y = \left(4x^2 - 2x\sqrt{x} + \sqrt[4]{x^5}\right)\left(\frac{2}{\sqrt{x}} - \frac{4}{\sqrt{3}}\right)$$

1) y=sinx·cosx

m)
$$y = x \ln x$$

n)
$$y = x \sin x + 1 + tgx$$

o)
$$y = \cos x \cdot tgx$$

p)
$$y = \frac{4x-9}{6x^2-x+10}$$

q)
$$y = (x+1)(2x^2+2)(3x-2)$$

r)
$$y = \frac{2\sqrt[3]{x}}{1 - \sqrt[3]{x}}$$

$$s) \quad y = \frac{2\sqrt{x}}{x + \sqrt{x}}$$

t)
$$y = \frac{x}{4x^4} + 3$$

u)
$$y = \frac{x^5}{(x^2+1)(x^3+4)}$$

v)
$$y = \left(\frac{x+1}{x+3}\right) \left(x^2 - 2x - 1\right)$$

w)
$$y = (x+1)\left(x+1-\frac{1}{x+2}\right)$$

x)
$$y = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4}$$

y)
$$y = \frac{1}{x + x^2 + x^3 + x^4}$$

$$z) \quad y = e^x \ln x$$

<u>ĆWICZENIA 5</u> – **ZADANIA** (Rachunek różniczkowy funkcji jednej zmiennej)

REGUŁY OBLICZANIA POCHODNYCH

	Funkcja	Pochodna	Uwagi
1	y = c	y' = 0	c∈R
2	y = x	y'=1	
3	$y = \sin x$	$y' = \cos x$	
4	$y = \cos x$	$y' = -\sin x$	
5	$y = a^x$	$y' = a^x \ln a$	
6	$y = e^x$	$y'=e^x$	
7	$y = x^k$	$y' = kx^{k-1}$	$k \neq 0$
8	y = tgx	$y' = \frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + k\pi$
9	y = ctgx	$y' = \frac{1}{\cos^2 x}$ $y' = \frac{-1}{\sin^2 x}$	$x \neq k\pi$
10	$y = \log_a x$	$y' = \frac{1}{x \ln a}$	$a > 0, a \neq 1$ $0 < x < +\infty$
11	$y = \ln x$	$y' = \frac{1}{x}$	<i>x</i> > 0
12	$y = \arcsin x$	$y' = \frac{1}{x}$ $y' = \frac{1}{\sqrt{1 - x^2}}$	$-1 < x < +1$ $-\frac{\pi}{2} < y < +\frac{\pi}{2}$
13	$y = \arccos x$	$y' = \frac{-1}{\sqrt{1 - x^2}}$	$-1 < x < +1$ $0 < y < \pi$
14	y = arctgx	$y' = \frac{-1}{\sqrt{1 - x^2}}$ $y' = \frac{1}{1 + x^2}$	$-\frac{\pi}{2} < y < +\frac{1}{2}$
15	y = arcctgx	$y' = \frac{-1}{1+x^2}$	$0 < y < \pi$

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$(a \cdot f(x))' = a \cdot f'(x)$$

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x)\right]^2}$$