

COMP7/8118 M50

Data Mining

Classification Evaluation

Xiaofei Zhang

THE UNIVERSITY OF MEMPHIS.

Classification Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Classification Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a	b
CLASS	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

• Most widely-used metric:
$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)
CLASS	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of classifying class j example as class i

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	
	+	-1	100
	•	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	
	+	150	40
	•	60	250

Accuracy = 80%

Cost = 3910

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	•
	+	250	45
	•	5	200

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS			
	Class=Yes Class=No			
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

Cost	PREI	DICTED CL	LASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	р	q
CLASS	Class=No	q	р

Accuracy is proportional to cost if

1.
$$C(Yes|No)=C(No|Yes)=q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Precision-Recall

Precision (p) =
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$

Recall (r) =
$$\frac{a}{a+b} = \frac{TP}{TP + FN}$$

F-measure (F) =
$$\frac{1}{\left(\frac{1/r+1/p}{2}\right)} = \frac{2rp}{r+p} = \frac{2a}{2a+b+c} = \frac{2TP}{2TP+FP+FN}$$

- Precision is biased towards C(Yes | Yes) & C(Yes | No)
- Recall is biased towards C(Yes | Yes) & C(No | Yes)
- F-measure is biased towards all except C(No No)

Precision-Recall plot

Usually for parameterized models, it controls the precision/recall tradeoff

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - One sample may be biased -- Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
 - Guarantees that each record is used the same number of times for training and testing
- Bootstrap
 - Sampling with replacement
 - ~63% of records used for training, ~27% for testing

Dealing with class Imbalance

- If the class we are interested in is very rare, then the classifier will ignore it.
 - The class imbalance problem
- Solution
 - We can modify the optimization criterion by using a cost sensitive metric
 - We can balance the class distribution
 - Sample from the larger class so that the size of the two classes is the same
 - Replicate the data of the class of interest so that the classes are balanced
 - Over-fitting issues

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve

Effect of small sample size:

- Bias in the estimate
 - Poor model
 - Underfitting error
- Variance of estimate
 - Poor training data
 - Overfitting error

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)

$$TPR = \frac{TP}{TP + FN}$$

Fraction of positive instances predicted as positive

$$FPR = \frac{FP}{FP + TN}$$

Fraction of negative instances predicted as positive

	PREDICTED CLASS		
		Yes	No
Actual	Yes	a (TP)	b (FN)
, ioida	No	c (FP)	d (TN)

ROC (Receiver Operating Characteristic)

- Performance of a classifier represented as a point on the ROC curve
- Changing some parameter of the algorithm, sample distribution, or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (*positive* and *negative*)
- any points located at x > t is classified as *positive*

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

	PREDICTED CLASS			
	Yes No			
Actual	Yes	a (TP)	b (FN)	
, 131GIGI	No	c (FP)	d (TN)	

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small
 FPR
 - M₂ is better for large
 FPR
- Area Under the ROC curve (AUC)
 - Ideal: Area = 1
 - Random guess:
 - Area = 0.5

ROC curve vs Precision-Recall curve

Area Under the Curve (AUC) as a single number for evaluation