Report Topic 01 - Regression

https://github.com/leesiro12/Report-Topic-1-Regression.git

This report details the research and application of linear regression compared to logistic regression. The objective is to understand and learn these methods and how to apply them for other purposes. The data used for this analysis are taken from:

Nash, Warwick, et al. "Abalone." UCI Machine Learning Repository, 1994, https://doi.org/10.24432/C55C7W.

Dataset head:									
	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight			
Sex									
М	0.455	0.365	0.095	0.5140	0.2245	0.1010			
M	0.350	0.265	0.090	0.2255	0.0995	0.0485			
F	0.530	0.420	0.135	0.6770	0.2565	0.1415			
M	0.440	0.365	0.125	0.5160	0.2155	0.1140			
I	0.330	0.255	0.080	0.2050	0.0895	0.0395			
	Shell_weight target(Age)								
Sex									
М		0.150	15						
M		0.070	7						
F		0.210							
M		0.155	10						
I		0.055	7						

Fig 1. Dataset of abalone

The train-test split ratio is 0.8

Training set size: 3341Testing set size: 836

```
The model Mean Absolute Percentage Error: 0.17
The model Mean Squared Error: 5.73
The model r-squared: 0.47
```

Fig 2. Evaluation using sk-learn

		OLS Regres	sion Results					
========= Dep. Variable:		======= arget(Age)	 R-squared:			0.535		
Model:		OLS	Adj. R-squ	ared:	0.534			
Method:	Lea	st Squares	F-statisti	c:	547.5			
Date:	Sun, 0	6 Apr 2025	Prob (F-st	atistic):	0.00			
Time:		10:13:02	Log-Likeli	hood:	-7357.4			
No. Observations:		3341	AIC:		1.473e+04			
Df Residuals:		3333	BIC:		1.47	78e+04		
Df Model:		7						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.97		
const	2.9431	0.298	9.874	0.000	2.359	3.5		
Length	-3.3102	2.078	-1.593	0.111	-7.385	0.7		
Diameter	12.2094	2.551	4.787	0.000	7.208	17.2		
Height	23.0027	2.378	9.675	0.000	18.341	27.6		
Whole_weight	9.5181	0.834	11.412	0.000	7.883	11.1		
Shucked_weight	-19.7104	0.927	-21.271	0.000	-21.527	-17.8		
Viscera_weight	-10.2366	1.447	-7.075	0.000	-13.074	-7.4		
Shell_weight	6.7166	1.296	5.184	0.000	4.176	9.2		
========= Omnibus:	=======	 748.154		 Durbin-Watson:		1.964		
Prob(Omnibus):	0.000		Jarque-Bera (JB):		2001.276			
Skew:		1.188	Prob(JB):			0.00		
Kurtosis:		5.954	Cond. No.			136.		

Fig 3. Evaluation using OLS

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	target(Age)	predicted	MSE	SST	SSR
Sex												
F	0.450	0.335	0.105	0.4250	0.1865	0.0910	0.1150	9	8.238814	0.579405	0.888464	0.579405
F	0.615	0.520	0.150	1.3435	0.6290	0.2605	0.3450	10	10.881268	0.776633	0.003297	0.776633
М	0.590	0.470	0.145	0.9235	0.4545	0.1730	0.2540	9	9.900945	0.811703	0.888464	0.811703
F	0.375	0.290	0.115	0.2705	0.0930	0.0660	0.0885	10	8.321296	2.818047	0.003297	2.818047
M	0.300	0.240	0.090	0.1610	0.0725	0.0390	0.0500	6	6.818367	0.669724	15.543966	0.669724

Fig 4. Summary table of all calculations

Fig 5. Age of abalone to size

From here is where logistic regression is applied to the data. The sigmoid curve is not present in this plot when I applied the code. This is most likely errors from me but could also be this method is not appropriate for this dataset.

Fig 6&7. Scatter plot using logistic regression; heatmap of plot including accuracy score