& Constructing homotopy eclimits

· yeometric Realisation:

Given  $X: riangle^{
ho} \longrightarrow extstyle ag{5}$  a simplicial space define its geometric realisation as

$$|\times| := every \left( \underset{[n] \to [k]}{\coprod} \times_{k} \times \triangle^{n} \xrightarrow{\longrightarrow} \underset{n}{\coprod} \times_{n} \times \triangle^{n} \right) \xrightarrow{\text{Top map}} \times \left( \underset{[n] \to [k]}{(n) \to (k)} \right) : \times_{k} \xrightarrow{\times} \times_{n} \times \triangle^{n}$$

$$\stackrel{\cong}{\cong} \underset{n}{\coprod} \times_{n} \times \triangle^{n} / (\partial_{i} \times_{i} +) \sim (n, d^{\ell} +)$$

$$(s_{i} \times_{i} +) \sim (n, s_{i} +)$$

$$\left( S_{i} \times_{i} +) \sim (n, s_{i} +) \right)$$

$$\left( S_{i} \times_{i} +) \sim (n, s_{i} +)$$

$$\left( S_{i} \times_{i} +) \sim (n, s_{i} +) \right)$$

$$\left( S_{i} \times_{i} +) \sim (n, s_{i} +)$$

$$\left( S_{i} \times_{i} +) \sim (n, s_{i} +) \right)$$

Q. Jiven objectivize weak equivalence  $X \longrightarrow Y$  when is  $|X| \simeq |Y|$ ? A. When X, Y are Reedy cofibrant (as defined below)

Def not Latching object of 
$$X:$$
 eg:  $L_0X=\phi$ , 
$$L_nX:=\bigcup_{i=1}^n S_i(X_{n-i}) \qquad \qquad L_1X=X_0, \quad L_2X=X_1\bigcup_{X_0}X_1$$
 We have a natural inclusion:  $L_nX\longrightarrow X_n$  We way that  $X$  is Reedy cofibrant of this map is a cofibration.

· We also have a natural map  $|X| \longrightarrow colim_{\triangle^{op}} \times (\cong coeq(X_1 \xrightarrow{3_0} X_0))$  which map a point in  $X_1 \times \triangle^n$  to any of its vertices. Such a map is well-defined as we're taking the colimit over  $\triangle^{op}$ .

· Homotopy colimits:

If Given a small diagram  $\mathscr{D}: \mathbb{T} \longrightarrow \mathcal{T}_{op}$  , a simplicial explanement of  $\mathscr{D}$  is defined as:

$$\operatorname{srep}(\mathcal{A}) := \coprod_{i_0 \in \mathcal{I}} \mathcal{A}(i_0) = \coprod_{i_0 \in \mathcal{I}_1} \mathcal{A}(i_1) = \coprod_{i_0 \in \mathcal{I}_1} \mathcal{A}(i_2)$$

Define 
$$\operatorname{hocolim}_{\mathbb{T}} \mathcal{D} := |\operatorname{Srep}(\mathcal{D})|$$

· We have a natural map

The srep (2) is always Reedy volibrant, so if  $\mathscr{D}, \mathscr{D}': \mathbb{I} \longrightarrow \mathsf{Top}$  are objectivise equivalent then so are hocolin.  $\mathscr{D}$ , hocolin.  $\mathscr{D}': \mathbb{I} \longrightarrow \mathsf{Top}$  are objectivise equivalent.

The above theorem is false if we replace Top with an arbitrary simplicially enriched model category. In that case, we further require  $\mathcal{Q},\mathcal{Q}'$  to be diagrams of cofibrant objects.

eg: 
$$\vartheta = X \xrightarrow{f} Y$$
 so degenerate

In this wase the hocolin D is the mapping cylinder



$$\begin{array}{ccc}
A \times [0,1] \\
\downarrow & & \\
X & & \\$$

· Alternative formula for hosplim:

given  $\mathcal{D}: \mathbb{I} \to \mathcal{T}_{op}$  we have

$$\text{hocolum}_{\pm} \mathcal{D} \cong \text{long}\left(\coprod_{i \to j} \mathcal{D}(i) \times \mathcal{B}\left(j \downarrow I\right)^{\circ \flat}\right) \Longrightarrow \coprod_{i} \mathcal{D}(i) \times \mathcal{B}\left(i \downarrow J\right)^{\circ \flat}\right)$$
 where  $\mathcal{B}$  denotes merve

• 
$$j\downarrow \perp$$
 is the category of eljects  $\{j\}$  and morphisms  $\{i\downarrow j\}$ 

The mense of 
$$B((j\downarrow \perp)^{\circ b})$$
 is the simplicial set 
$$\underset{j \to i}{\coprod} \Delta^{\circ} \iff \underset{i \to i}{\coprod} \Delta^{\circ} = \underset{i \to i}{\coprod$$

The newse of 
$$B((j\downarrow T)^{\circ k})$$
 is the simplicial set

$$\downarrow \downarrow \triangle^{\circ} \iff \downarrow \downarrow \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longleftarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{$$