Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

	PRÓB	Y EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ 2023
		Arkusz I
Czas	pracy: 60 mi	t Liczba punktów do uzyskania: 15
Instr	ukcja dla zd	ącego
1.		y arkusz egzaminacyjny zawiera 10 stron (zadania 1 – 3). Ewentualny brak zgłoszącemu zespołu nadzorującego egzamin.
2.	Rozwiąza	a i odpowiedzi zamieść w miejscu na to przeznaczonym.
3.	Pisz czyte	ie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
4.	Nie używa	korektora, a błędne zapisy wyraźnie przekreśl.
5.	Pamiętaj,	zapisy w brudnopisie nie podlegają ocenie.
6.		żej zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe ęzyka programowania oraz program użytkowy.
7.		ązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez ji: listy kroków, pseudokodu lub języka programowania, który wybrałaś/eś na
 Dane	uzupełnia u	zeń:
WYB	RANE:	(środowisko)
		(kompilator)
		(program użytkowy)
PESE	EL:	
Klasa	ı:	

Zadanie 1. Test (0-5)

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F, jeśli zdanie jest fałszywe. W każdym zadaniu uzyskasz punkt, jeśli poprawnie odpowiesz na wszystkie jego części.

Zadanie 1.1. (0-1)

Pesymistyczna złożoność obliczeniowa sortowania

1.	przez wstawianie to $O(n^2)$	P	F
2.	szybkiego to $O(n^2)$	P	F
3.	przez wstawianie to $O(n \log n)$	P	F
4.	przez scalanie to $O(n \log n)$	P	F

Zadanie 1.2. (0-1)

Protokół sterowania transmisją TCP (ang. Transmission Control Protocol) to protokół, którego zadaniem jest:

1.	znajdowanie odpowiednich dróg połączeń między węzłami sieci (tzw. routing). Operuje adresami logicznymi węzłów sieci które przydzielane są niezależnie od rzeczywistej adresacji fizycznej poszczególnych urządzeń.	P	F
2.	gwarantowanie wyższym warstwom komunikacyjnym dostarczenia wszystkich pakietów w całości, z zachowaniem kolejności i bez duplikatów. Zapewnia to wiarygodne połączenie kosztem większego narzutu w postaci nagłówka i większej liczby przesyłanych pakietów.	P	F
3.	pośredniczenie między warstwami łącza danych i sieciową, w kojarzeniu adresu MAC przypisanemu interfejsowi z adresem sieciowym IP.	Р	F
4.	zamiana nazwy domenowej, zrozumiałej dla człowieka na adresy IP urządzeń w sieci.	P	F

Zadanie 1.3. (0–1)

W wyniku wywołania poniższej funkcji

```
f(n):
jeśli n<5 wykonaj dwie instrukcje:
    f(n+1)
    wypisz(n-1)</pre>
```

dla wartości n = 1 otrzymamy kolejno liczby:

1.	3 2 1 0	P	F
2.	4 3 2 1 0	P	F
3.	4	P	F
4.	0 1 2 3	P	F

Zadanie 1.4. (0–1)

Liczba 2223 zapisana jest w systemie trójkowym. Wskaż prawdziwe relacje.

1.	222 ₃ > 121 ₆	P	F
2.	$222_3 = 10_{11}$	P	F
3.	222 ₃ > 11 ₁₀	P	F
4.	2223 < 1214	P	F

Zadanie 1.5. (0–1)

W bazie danych *Spedycja* znajduje się tabela *Pojazdy(Nr_rejestracyjny, Model, Ladownosc)* zawierająca następujące dane:

Nr_rejestracyjny	Model	Ladownosc
CT KU99	Transporter	3,5
CT 9927	Multipla	1
CTR 27FL	Transporter	3,5
CLI 1237	Dublo	3
PO PO17	Dublo	2
PO 2716	Ducato	4
PO 232X	Ducato	3,5

	Wynikiem zapytania:		
	SELECT Model, Sum(Ladownosc)		
	FROM Pojazdy		
1	GROUP BY Model	P	F
	HAVING Count(Nr_rejestracyjny) < 2;		
	jest zestawienie:		
	Multipla 1		

	Wynikiem zapytania:		
	SELECT Model, Ladownosc		
2	FROM Pojazdy	Р	F
2	WHERE Nr_rejestracyjny Like '*L*';		
	jest zestawienie:		
	Dublo 3		
	Wynikiem zapytania:		
	SELECT Model, Sum(Ladownosc)		
	FROM Pojazdy		
	WHERE Ladownosc > 2	,	_
3	GROUP BY Model;	P	F
	jest zestawienie:		
	Transporter 7		
	Dublo 3		
	Ducato 7,5		
	Wynikiem zapytania:		
	SELECT Ladownosc	_	_
4	FROM Pojazdy;	P	F
	jest zestawienie		
	20,5		

	Numer zadania	1.1	1.2	1.3	1.4	1.5	Suma
Wypelnia egzaminator	Maksymalna liczba punktów	1	1	1	1	1	5
	Uzyskana liczba punktów						

Zadanie 2. GRA W KAMYKI (0-5)

Ada i Bajtek postanowili zagrać w, z pozoru prostą, grę. Na stole przed sobą rozłożyli *N* kamyków. Zasady gry są proste. Gracze grają na przemian, a Ada zaczyna jako pierwsza. W swoim ruchu gracz może zabrać ze stołu 1, 3 lub 4 kamyki (pod warunkiem, że na stole jest ich wystarczająca liczba). Wygrywa ten z graczy, który jako ostatni weźmie ze stołu pozostałe kamyki.

Przykładowy przebieg rozgrywki dla *N*=5 kamyków może wyglądać następująco: Ada bierze jeden kamyk ze stołu, następnie Bajtek weźmie cztery kamyki i wygra grę. Ada może też zacząć od zabrania trzech kamyków, następnie Bajtek może jedynie zabrać jeden kamyk (ponieważ na stole zostały dwa), a na końcu Ada zabiera ostatni kamyk i wygrywa grę.

Ada zastanawia się dla jakich liczb kamyków na stole ma strategię pozwalającą jej wygrać z Bajtkiem, niezależnie od tego, jakie ruchy on wykona. Pomóż jej odpowiedzieć na to pytanie.

Zadanie 2.1. (0-2)

Uzupełnij poniższą tabelkę zgodnie z przykładem – dla każdej liczby kamyków określ, czy Ada ma strategię pozwalającą jej wygrać z Bajtkiem.

N	Czy Ada ma strategię pozwalającą jej wygrać?
1	TAK
2	NIE
3	TAK
4	TAK
5	TAK
6	
7	
8	
14	

Miejsce na obliczenia

Zadanie 2.2. (0-3)

Zapisz w wybranej przez siebie notacji (w postaci listy kroków, pseudokodu lub w wybranym języku programowania) algorytm, który dla podanej liczby kamyków N>0 obliczy, czy Ada ma strategię wygrywającą w opisanej grze. Przy ocenie będzie brana pod uwagę złożoność obliczeniowa Twojego rozwiązania.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne: dodawanie, odejmowanie, mnożenie, dzielenie całkowite, resztę z dzielenia oraz porównywanie liczb; operacje logiczne: koniunkcja, alternatywa, zaprzeczenie; instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Algorytm

										-			
				-	-						-		

	Numer zadania	2.1	2,2	Suma
Wypełnia egzaminator	Maksymalna liczba punktów	2	3	5
	Uzyskana liczba punktów			

Zadanie 3. LICZBY SILNE (0-5)

Liczbą silną nazwiemy liczbę naturalną N, większą od zera, która jest równa sumie jednej lub kilku parami różnych silni. Dla przykładu liczba N=7 jest liczbą silną, ponieważ 7=3!+1!, natomiast liczba N=4 nie jest liczbą silną, chociaż 4=2!+2!, ale nie są to parami różne silnie.

Zadanie 3.1. (0-2)

Uzupełnij poniższą tabelkę. Dla każdej liczby określ, czy jest ona liczbą silną, a jeżeli tak, to wypisz jej sumę silni, zgodnie z przykładem.

N	Czy silna?	Suma
7	TAK	3! + 1!
4	NIE	-
5		
6		
9		
25		

Miejsce na obliczenia

Zadanie 3.2. (0–3)

Zapisz w wybranej przez siebie notacji (w postaci listy kroków, pseudokodu lub w wybranym języku programowania) algorytm zachłanny, który dla podanej liczby naturalnej N > 0 obliczy, czy liczba ta jest liczbą silną. Podczas oceny będzie brana pod uwagę złożoność obliczeniowa Twojego rozwiązania.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne: dodawanie, odejmowanie, mnożenie, dzielenie całkowite, resztę z dzielenia oraz porównywanie liczb; instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Algorytm

Wypełnia egzaminator	Numer zadania	3.1	3.2	Suma
	Maksymalna liczba punktów	2	3	5
	Uzyskana liczba punktów			

BRUDNOPIS (nie podlega ocenie)