1) 1) Write a program that finds whether the given number N is Prime or not.

If the number is prime, the program should return 2 else it must return 1.

Assumption: $2 \le N \le 5000$, where N is the given number.

Example1: if the given number N is 7, the method must return 2

Example2: if the given number N is 10, the method must return 1

PROGRAM:

```
a= int(input())
```

if a % 2 == 1:

print("2")

else:

print("1")

OUTPUT:

	Input	Expected	Got	
~	7	2	2	~
~	10	1	1	~

2) Write a program to find the count of unique digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number >= 1 and <= 25000.

For e.g.

If the given number is 292, the program should return 2 because there are only 2 unique digits '2' and '9' in this number

If the given number is 1015, the program should return 3 because there are 3 unique digits in this number, '1', '0', and '5'.

PROGRAM:

print(len(set(input())))

OUTPUT:

	-	Expected		
~	292	2	2	~
~	1015	3	3	~
~	123	3	3	~

3) Given a number N, find the next perfect square greater than N.

Input Format:

Integer input from stdin.

Output Format:

Perfect square greater than N.

Example Input:

10

Output:

16

PROGRAM:

```
import math as m
a = int(input())
for i in range(a, 10000):
    X = m.sqrt(i)
    if(i % x == 0):
        print(i)
        break
```

	Input	Expected	Got			
~	10	16	16	~		
Passed all tests! ✓						

4) Write a program to find the count of non-repeated digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number >= 1 and <= 25000.

Some examples are as below.

If the given number is 292, the program should return 1 because there is only 1 non-repeated digit '9' in this number

If the given number is 1015, the program should return 2 because there are 2 non-repeated digits in this number, '0', and '5'.

If the given number is 108, the program should return 3 because there are 3 non-repeated digits in this number, '1', '0', and '8'.

If the given number is 22, the function should return 0 because there are NO non-repeated digits in this number.

PROGRAM:
n = (input())
I=[0] *10
for i in n:
l[int(i)]+=1
c=0
for i in I:
if i==1:
c += 1

print(c)

OUTPUT:

	Input	Expected	Got	
~	292	1	1	~
~	1015	2	2	~
~	108	3	3	~
~	22	0	0	~

5) Write a program to find the sum of the series $1 + 11 + 111 + 1111 + \dots + n$ terms (n will be given as input from the user and sum will be the output)

Sample Test Cases

```
Test Case 1
Input
4
Output
1234
Test Case 2
Input
6
Output
123456
PROGRAM:
a=int(input())
n=0
t=0
for i in range (a):
   n=n*10+1
   t+=n
print(t)
```

	Input	Expected	Got	
~	4	1234	1234	~
~	6	123456	123456	~

Passed all tests! 🗸

square after adding 1 to it.
Input Format:
Single integer input.
Output Format:
Yes or No.
Example Input:
24
Output:
Yes
Example Input:
26
Output:
No
PROGRAM:
Import math as b
a=int(input())
a=a+1
m=b.sqrt(a)
if m %2==0 or m%2==1:
print("Yes")
else:
print("No")

7) Determine the factors of a number (i.e., all positive integer values that evenly divide into a number).

PROGRAM:

a=int(input())

for i in range (1,a+1):

if (a%i==0): print(I,end=" ")

	Input	Expected	Got	
~	20	1 2 4 5 10 20	1 2 4 5 10 20	~
~	5	1 5	1 5	~
~	13	1 13	1 13	~
Passe	d all tes			

8) Write a program to return the nth number in the fibonacci series.

The value of N will be passed to the program as input.

NOTE: Fibonacci series looks like -

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . and so on.

i.e. Fibonacci series starts with 0 and 1, and continues generating the next number as the sum of the previous two numbers.

- first Fibonacci number is 0,
- second Fibonacci number is 1,
- third Fibonacci number is 1,
- fourth Fibonacci number is 2,
- fifth Fibonacci number is 3,
- sixth Fibonacci number is 5,
- seventh Fibonacci number is 8, and so on.

PROGRAM:

z=int(input())

```
a=0
b=0
c=0
for i in range (0,z-1):
a=b
b=c
c=a+b
print(c)
```

	Input	Expected	Got	
~	1	0	0	~
~	4	2	2	~
~	7	8	8	~
Passe	d all tes	ts! 🗸		

9) Given a positive integer N, check whether it can be represented as a product of single digit numbers.

Input Format:

Single Integer input.

Output Format:

Output displays Yes if condition satisfies else prints No.

Example Input:

14

Output:

Yes

Example Input:
13
Output:
No
PROGRAM:
a=int(input())
if a%2==0 or %3==0 or a%5==0 ora%6==0:
print("Yes")
else:
print("No")

10) A Number is said to be Disarium number when the sum of its digit raised to the power of their respective positions becomes equal to the number itself. Write a program to print number is Disarium or not.

Input Format:

Single Integer Input from stdin.

Output Format:

```
Yes or No.
Example Input:
175
Output:
Yes
Explanation
1^1 + 7^2 +5^3 = 175
Example Input:
123
Output:
No
PROGRAM:
a=int(input())
x=str(a)
count=0
for i in range (len(x)):
    tot=pow(int(x[i]),i=1)
    count +=a:
if count ==a:
    print("Yes")
else:
    print("No")
```

	Input	Expected	Got			
~	175	Yes	Yes	~		
~	123	No	No	~		
Passed all tests! 🗸						