5SENG003W - Algorithms, Week 8

Dr. Klaus Draeger

RECAP

Last week...

- We talked about some more specialised data structures
 - Stacks
 - Last In, First Out
 - Queues
 - First In, First Out
 - Priority queues
 - Contents partially sorted by priority
 - Highest priority item in front
 - Heaps
 - Used in priority queues
 - Heap Sort

Overview of today's lecture

- Graphs
 - Definition
 - Representations
 - Properties
- Graph traversals
 - Breadth-first
 - Depth-first

Introduction to Graphs

Graphs are a more general non-linear data structure than trees. A graph G = (V, E) is given by:

- ► A set *V* of **vertices** (or nodes)
- ► A set *E* of **edges**

where edges represent connections between vertices, either:

- ▶ directed edges from $v \in V$ to $w \in V$
- ▶ undirected edges between $v \in V$ and $w \in V$

Accordingly *G* is a **directed** or **undirected** graph.

- ► Each vertex is **incident** with the edges connected to it
- Two vertices are adjacent if they share an edge.

The **degree** of a vertex v is the number of incident edges. In a directed graph this is split into

- ightharpoonup the **indegree**: the number of edges **into** v,
- the outdegree: the number of edges out of v

Example: Directed and Undirected Graphs

These graphs are defined by:

- $V_1 = \{a, b, c, d\},\ E_1 = \{(a, b), (a, c), (b, d), (c, b), (d, c)\}$
 - Directed edges written as ordered pairs like (a, b)
 - Note (a, b) is different from (b, a)
- $V_2 = \{e, f, g, h\},\ E_2 = \{\{e, f\}, \{e, h\}, \{f, h\}, \{g, h\}\}\}$
 - ▶ Undirected edges written as **unordered** pairs like {*e*, *f*}
 - Note {e, f} is the same as {f, e}

Loops and Parallel Edges

Some graphs are more general than what we have defined

- ▶ There can be loops from a vertex to itself
 - ▶ This can still be represented as a pair (v, v) or $\{v, v\}$
- ► There can be parallel edges, i.e. multiple edges between the same vertices
 - For this we would use separate sets $V = \{v_1, v_2, \dots, v_k\}$ and $E = \{e_1, e_2, \dots, e_n\}$
 - Along with a function mapping each edge to a pair of vertices

Additional Data

The vertices and/or edges can have additional data attached to them

- Both as part of the input and the solution
- Either discrete data
 - Colours in colouring problems
 - Underground lines on the tube map
 - Transition labels in finite state machines
- Or infinite domains like the integers
 - Weights (distances, costs), giving rise to weighted graphs
 - Capacities in network flow problems
- We will have a quick look at some example problems.

Example: Colouring problems

Colouring problems are about assigning colours to the vertices or edges of an undirected graph

- Edge colouring:
 - Assign a colour from a given set to each edge
 - At each vertex, all incident edges must have different colours
- Vertex colouring:
 - Assign a colour from a given set to each vertex
 - Adjacent verteices must have different colours
 - Originates in map drawing
 - Assign one vertex per country
 - Add adges between neighbouring countries
 - These should have different colours to be distinguishable
 - Usually want to use as few colours as possible

Graph Colouring Example

Graph Colouring Example

Example: Maximum Flow

In a **Maximum Flow** problem we want to get a resource from a **source** to a **target** (or **sink**) within a network.

- ▶ The network is a directed graph G = (V, E)
- Every edge e ∈ E has a capacity c(e)
- The source and target are vertices in V

We want to assign to each edge e another number, the **flow** f(e) such that

- ightharpoonup f(e) is between 0 and c(e)
- At every vertex, the total flow in is the same as the total flow out
 - except at the source (only flow out) and target (only flow in)
- The total flow into the target is as high as possible

Maximum Flow Example

Maximum Flow Example

Some Graph Properties

Let G = (V, E) be a graph.

- We will write
 - \triangleright $v \rightarrow w$ if (v, w) or $\{v, w\}$ is in E
 - \triangleright $v \leftrightarrow w$ if (v, w), (w, v) or $\{v, w\}$ is in E
- ▶ A sequence of vertices $v_1, v_2, ..., v_n \in V$ is
 - ightharpoonup a walk if $v_1 \rightarrow v_2, \dots, v_{n-1} \rightarrow v_n$
 - ▶ a **lax walk** if $v_1 \leftrightarrow v_2, \dots, v_{n-1} \leftrightarrow v_n$ (i.e. it ignores edge directions)
- It is a path if it has no repeated vertices.
- It is a cycle if it has more than one vertex and its first and last vertex are the same.
- ► An **Euler Walk** is a walk using every edge exactly once.
- ► A **Hamiltonian Path** is a path visiting every vertex exactly once.

- Each vertex except the first and last would be exited as often as it would be entered
- So each vertex except the first and last would have to have even degree
- But here all vertices have degree 3

Some Graph Properties

Based on these we can define properties of a graph:

- ► G is acyclic if it has no cycles
- G is connected if there is a lax walk between any two vertices
- ▶ Equivalently: G is connected if we cannot split V into nonempty sets $V = V_1 \cup V_2$ such that there are no edges between V_1 and V_2
- A directed graph is strongly connected if there is a path between any two vertices.

We can also define trees in several ways, e.g.:

- An undirected graph is a tree if it is connected and acyclic
- A directed graph is a (rooted) tree if
 - it is connected
 - no vertex has an indegree > 1
 (then the root has indegree 0 and leaves have outdegree 0)

Example

Representing graphs

There are two main ways of representing a graph:

- The adjacency matrix
 - ▶ This is an n * n matrix where n is the size of V
 - Entries are 1,0 (or general numbers for **weighted** graphs)
 - lt will be **symmetric** for **undirected** graphs
- ► The adjacency lists
 - Vertex class
 - Each vertex contains a list
 - Can be linked or array-based
 - Contains either vertices or edges (using a separate class) if they need to contain additional data (weights etc)

Adjacency Matrix Example

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

is the adjacency matrix of this graph:

Adjacency List Example

Comparison

Adjacency matrices are

- easy to implement
- memory efficient for dense graphs
- convenient for some computations
 - e.g. to compute the **numbers of paths** of length k, compute A^k

Adjacency lists are

- memory efficient for sparse graphs
- suitable in case the number of vertices is initially unknown
 - why would this be?

Example: State-Transition Graphs

One major application for graphs is as a representation of systems:

- Vertices are states
- Edges are transitions

- ► These can be very large (3602880 states even for this simple 3*3 puzzle)
- We ideally want to represent only those which are needed
- ► This leads to "on the fly" exploration

Searching in graphs

- ► A common operation on graphs is **search**
 - Searching for some particular vertex
 - Searching for any vertex satisfying a given condition
 - Searching for a path between two vertices
 - Searching for a shortest path between two vertices
- Search in graphs is more complex than in trees or lists
 - Graphs can have cycles
 - Naive search could get stuck in a loop
 - Need to keep track of visited vertices to prevent this
- Two main strategies: depth-first and breadth-first search

- v unexplored
- v) visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v) visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v visited
- v fully explored

- v unexplored
- v) visited
- v fully explored

- v unexplored
- v) visited
- v fully explored

- v unexplored
- v) visited
- v fully explored

- In breadth-first search, we explore the graph in "layers"
- Not recursive
- We maintain two data structures:
 - The set of all visited vertices (often called the "closed list")
 - A queue of vertices that we have visited but not yet fully explored (often called the "open list")
- In each iteration, we
 - Go through the edges out of the open list's front element
 - Enqueue those edge targets that are not in the closed list (and add them to the closed list)
 - Dequeue the front element (it is now fully explored)

- v unexplored
- v visited
- v fully explored

Open list: [v₁]

Closed list: $\{v_1\}$

- v unexplored
- v visited
- v fully explored

Open list: [v_1 , v_2]

Closed list: $\{v_1, v_2\}$

- v unexplored
- v visited
- v fully explored

Open list: [v_2 , v_3]

Closed list: $\{v_1, v_2, v_3\}$

- v unexplored
- v visited
- v fully explored

Open list: [v_2 , v_3 , v_4]

Closed list: $\{v_1, v_2, v_3, v_4\}$

- v unexplored
- v visited
- (v) fully explored

Open list: [v_3 , v_4 , v_5]

Closed list: $\{v_1, v_2, v_3, v_4, v_5\}$

- v unexplored
- v visited
- (v) fully explored

Open list: [v₄ , v₅]

Closed list: $\{v_1, v_2, v_3, v_4, v_5\}$

- v unexplored
- v visited
- (v) fully explored

Open list: [v₅ , v₆]

Closed list: $\{v_1, v_2, v_3, v_4, v_5, v_6\}$

- v unexplored
- v visited
- v fully explored

Open list: [v₆]

Closed list: $\{v_1, v_2, v_3, v_4, v_5, v_6\}$

- v unexplored
- v visited
- v fully explored

Open list: []

Closed list: $\{v_1, v_2, v_3, v_4, v_5, v_6\}$

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

v unexplored

v visited

v fully explored

Open list: [v_1 , v_2 , v_4 , v_6 , v_5]

Closed list: $\{v_1, v_2, v_4, v_5, v_6\}$

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

v unexplored

v visited

v fully explored

Open list: [v_1 , v_2 , v_4 , v_3] Closed list: { v_1 , v_2 , v_3 , v_4 , v_5 , v_6 }

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

v unexplored

v visited

v fully explored

Open list: $[v_1, v_2, v_4]$ Closed list: $\{v_1, v_2, v_3, v_4, v_5, v_6\}$

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

- We can also perform depth-first search in the iterative style that we saw in breadth-first search
- The key change is organising the open list as a stack rather than a queue

The iterative version of DFS looks like this (assuming for simplicity that Vertex contains List<Vertex> adjacencyList;)

```
// Try to find an edge v->w with w not yet visited
public Vertex findSuccessor(Vertex v. Set<Vertex> c) {
   for(Vertex w : v.adjacencyList)
      if(! c.contains(w)) // not yet visited
         return w:
   return null: // no suitable edge
}
public void DFS (Vertex source) {
   // Set up open and closed list
   Stack<Vertex> o = new Stack<Vertex>():
   HashSet<Vertex> c = new HashSet<Vertex>():
   o.push(source);
   c.add(source);
   while (!o.emptv()) {
      Vertex v = o.peek(); // vertex on top of the stack
      Vertex w = findSuccessor(v, c);
      if (w != null) {
                           // push w onto o and add it to c
         o.push(w):
         c.add(w);
              // v is a dead end; pop it off o
         o.pop();
```