Find line of intersection of:

$$\chi + \gamma + Z = 0$$
 $\chi - Z = 0$

The sol. we give is a line in R^3 , so we need to parameterize it: $\tau(t) = \langle x(t), y(t), z(t) \rangle$

Since $\chi - Z = 0$, we get $\chi = Z$, and we can write $\chi(t) = Z(t) = 1$.

Then since the $\chi(t) = 1$ and $\chi(t) = -x(t) - z(t) = -2t$, the first $\chi(t) = -x(t) - z(t) = -x(t) - z(t)$ and $\chi(t) = -x(t) - z(t) = -x(t) - z(t)$.