Algorithmes d'optimisation

Pr. Faouzia Benabbou (faouzia.benabbou@univh2c.ma)

Département de mathématiques et Informatique

Master Data Science & Big Data

2024-2025

Plan du Module: Algorithmes d'optimisation

Les algorithmes d'optimisation

- Méthode Lagrangien augmenté (Augmented Lagrangian Method —ALM)
 - La Méthode des Multiplicateurs de Lagrange Augmentés (ALM) est une technique d'optimisation conçue pour résoudre des **problèmes non linéaires** où l'on cherche à minimiser une fonction sous des contraintes **d'égalité et/ou d'inégalité.**
 - Son principal atout réside dans sa capacité à combiner les avantages de la méthode des **multiplicateurs de Lagrange** classique avec ceux des méthodes de **pénalisation**, tout en atténuant leurs inconvénients respectifs.
 - Comme les autres méthodes, l'ALM transforme le problème d'optimisation contraint en **une série de sous-problèmes d'optimisation** non contrainte résolvables par les méthodes classiques comme la méthode quasi- Newton BFGS.

Méthode Lagrangien augmenté

Soit le problème (P)
$$\begin{cases} \min_{x \in \mathbb{R}^n} f(x), f \text{ une fonction objective.} \\ g(x) & 0 \\ h(x) = 0 \end{cases}$$

- où h : $\mathbb{R}^n \to \mathbb{R}^p$ est de classe \mathbb{C}^1 , la fonction de contrainte d'égalité.
- $g: \mathbb{R}^n \to \mathbb{R}^m$, est de classe \mathbb{C}^1 , la fonction de contrainte d'inégalité.
- $x \in \mathbb{R}^n$ est le vecteur des variables de décision.

Définition. La fonction Lagrangienne Augmentée pour un problème général avec égalités et inégalités se définie comme suit :

- $\lambda \in \mathbb{R}^p$: multiplicateurs pour égalités
- $\mu \in \mathbb{R}^m, \mu \ge 0$: multiplicateurs pour inégalités
- $\rho > 0$: paramètre de pénalisation

Méthode Lagrangien augmenté : Version simplifiée

$$L\rho(x,\lambda,\mu)=$$

$$f(x) + \lambda^{T}h(x) + \mu^{T}g(x) + \frac{\rho}{2} \left[\sum_{i=1}^{i=p} (h_{i}(x))^{2} + \sum_{j=1}^{j=m} \max(\mathbf{0}, g_{j}(\mathbf{x}))^{2} \right]$$

En d'autres termes :

$$L(x, \lambda, \mu, \rho) =$$

$$f(x)+\lambda^{T}h(x)+\frac{\rho}{2}\sum_{i=1}^{i=p} h_{i}(x)^{2}+\mu^{T}g(x)+\frac{\rho}{2}\sum_{j=1}^{j=m} \max(0,g_{j}(x))^{2}$$

Méthode Lagrangien augmenté : version plus stable

$$L\rho(x,\lambda,\mu)=$$

$$L(x, \lambda, \mu, \rho) = f(x) + \lambda^{T}h(x) + \frac{\rho}{2} \sum_{i=1}^{i=p} (h_{i}(x))^{2} + \frac{\rho}{2} \sum_{j=1}^{j=m} (\max(0, g_{j}(x) + \frac{\mu_{j}}{\rho})^{2} - (\frac{\mu_{j}}{\rho})^{2}))$$

Le terme max($\mathbf{0}$, $g_j(\mathbf{x}) + \frac{\mu_j}{\rho}$) agit comme une "**contrainte relaxée**".

Si
$$g_j(\mathbf{x}) + \frac{\mu_j}{\rho} \le 0$$
, La pénalisation est nulle (contrainte inactive)

Si $g_j(\mathbf{x}) + \frac{\mu_j}{\rho} > 0$, La pénalisation devient quadratique en $g_j(\mathbf{x})$.

$$\frac{\rho}{2} (\max(\mathbf{0}, g_j(\mathbf{x}) + \frac{\mu_j}{\rho})^2 - \left(\frac{\mu_j}{\rho}\right))^2 = \begin{cases} \mu_j g_j(\mathbf{x}) + \frac{\rho}{2} \mathbf{g_j}(\mathbf{x})^2 \mathbf{si} g_j(\mathbf{x}) + \frac{\mu_j}{\rho} \ge 0 \\ -\frac{\mu_j}{2\rho} \end{cases}$$

- est un **correcteur** qui empêche les multiplicateurs μ_i de diverger.
- Pour les problèmes complexes cette version et plus stable et converge plus rapidement.

8

Méthode Lagrangien augmenté

Algorithme 13. Pénalisation classique (interne)

- **1. Initialisation** : x_0 , ε (1e 6), f : $\mathbb{R}^n \to \mathbb{R}$, λ_0 , μ_0 paramètre de pénalité $\rho_0 > 0$, $\beta > 1$, k = 0, max_iter = 100.
- 2. Répéter:
 - a)Résoudre le problème sans contrainte (algorithme de descente, Newton):

$$\min_{\mathbf{x}}[\mathbf{L}(x, \lambda_{\mathbf{k}} \mathbf{\mu}_{\mathbf{k}}, \rho_{\mathbf{k}})]$$

- b) Mise à jour: x_{k+1} est la solution approchée
- c) Mise à jour des multiplicateurs de Lagrange :

pour chaque contrainte d'égalités
$$h_i$$
: $\lambda_i^{k+1} = \lambda_i^k + \rho_k \cdot h_i (x_{k+1})$

pour chaque contrainte d'égalités
$$\mathbf{g_j}$$
: $\mathbf{\mu}_j^{k+1} = \max(0, \ \mathbf{\mu}_j^k + \rho_k \cdot \mathbf{g_j}(\mathbf{x_{k+1}}))$

- d) diminuer la pénalité : $\rho_{k+1} = \beta \rho_k$,
- e)violation 1 = max($\max_{i} |h_{i}(x_{k+1})|$, violation 2 = $\max_{j} (\max_{i} (0, g_{j}(xk_{+1})))$
- 3. Jusqu'à (violation $1 < \varepsilon$ et violation $2 < \varepsilon$) ou max_iter atteint

- Méthode Lagrangien augmenté
 - les critères d'arrêt signifient :
 - ✓ Satisfaction des Contraintes d'Égalitémax $|h_i(x_{k+1})|, <\epsilon$):
 - Le problème original impose que les contraintes d'égalité hi(x)=0 soient satisfaites., ce critère vérifie si la valeur absolue de la fonction de contrainte d'égalité h évaluée à la solution courante xk+1 est suffisamment proche de zéro. Si cette condition est satisfaite pour toutes les contraintes d'égalité, cela signifie que la solution courante est presque réalisable par rapport à ces contraintes.
 - La tolérance ϵ définit le niveau de précision souhaité pour la satisfaction des contraintes. Une valeur plus petite de ϵ exigera une satisfaction plus stricte des contraintes.
 - ✓ Satisfaction des Contraintes d'Inégalité $|max(0, g(x_{k+1})| < \epsilon$:
 - o Le problème original impose que les contraintes d'inégalité $g_j(x) \le 0$ soient satisfaites.
 - La fonction $\max(0, g_j(\mathbf{x}_{k+1}))$ évalue la violation de la contrainte d'inégalité. Si $g_j(\mathbf{x}_{k+1}) \le 0$, alors $\max(0, g_j(\mathbf{x}_{k+1})) = 0$, ce qui signifie que la contrainte est satisfaite. Si $g_j(\mathbf{x}_{k+1}) > 0$, alors $\max(0, g_j(\mathbf{x}_{k+1})) = g_j(\mathbf{x}_{k+1})$, ce qui représente la quantité de violation de la contrainte.

 Méthode Lagrangien augmenté Exemple.

$$\begin{cases} \min f(x,y) = (x-1)^2 + (y-2)^2 \\ h(x,y) = x + y - 1 = 0 \\ g(x,y) = x - 0.5 \le 0 \end{cases}$$

$$(1) L_{\rho}(x,\lambda,\mu) =$$

$$f(x) + \lambda^T h(x) + \mu^T g(x) + \frac{\rho}{2} \left[\sum_{i=1}^{i=p} (h_i(x))^2 + \sum_{j=1}^{j=m} \max \left(\mathbf{0}, g_j(x) \right)^2 \right]$$

(2)
$$L(x, \lambda, \mu, \rho) =$$

$$L(x, \lambda, \mu, \rho) = f(x) + \lambda^{T} h(x) + \frac{\rho}{2} \sum_{i=1}^{i=p} (h_{i}(x))^{2} + \frac{\rho}{2} \sum_{j=1}^{j=m} (\max(0, g_{j}(x) + \frac{\mu_{j}}{\rho})^{2} - (\frac{\mu_{j}}{\rho})^{2}))$$

Pr. F. BENABBOU - DSBD -2025

11

Méthode Lagrangien augmenté

```
def alm_algo(f, h, g, x0, lam0=0.0, mu0=0.0, rho=10.0, tol=1e-6, max_iter=20, verbose=True):
    xk = x0.copy()
    lam = lam0
    mu = mu0
    beta = 1.5
    history = {
        'x': [xk.copy()],
        'f': [f(xk)],
        'L_aug': [L_aug(xk, lam, mu, rho)],
        'h': [h(xk)],
        'g': [g(xk)],
    if verbose:
        print("Itération | x
                                      lу
                                                   lambda
                                                                             | h(x)
                                                                                         | g(x)")
    for k in range(max iter):
        res = minimize(lambda x: L_aug(x, lam, mu, rho), xk, method='BFGS')
        xk = res.x
        h val = h(xk)
        g_val = g(xk)
        lam = lam + rho * h_val
        mu = max(0, mu + rho * g val)
        rho = beta*rho
        history['x'].append(xk.copy())
        history['f'].append(f(xk))
        history['L_aug'].append(L_aug(xk, lam, mu, rho))
        history['h'].append(h val)
        history['g'].append(g_val)
        if verbose:
            print(f"\{k+1:9\} \mid \{xk[0]:.6f\} \mid \{xk[1]:.6f\} \mid \{lam:.6f\} \mid \{mu:.6f\} \mid \{h\_val:+.2e\} \mid \{g\_val:+.2e\}"\}
        if abs(h val) < tol and max(0, g val) < tol:
    return xk, history
```

Méthode Lagrangien augmenté

penalty eq = lam * h val + (rho / 2) * h val**2

return f(x) + penalty eq +penalty ineq

penality ineq = mu * g val + (rho / 2) * (max(0, g val)**2)

```
# Fonction objective
Exemple. \begin{cases} \min f(x,y) = (x-1)^2 + (y-2)^{\text{def } f(x):} \\ h(x,y) = x + y - 1 = 0 \\ g(x,y) = x - 0.5 \le 0 \end{cases}
                                                                         return x[0] + x[1] - 1 # égalité : x + y = 1
                                                                     def g(x):
                                                                         return x[0] - 0.5 # inégalité : x \le 0.5
                                                                     # Lagrangien augmenté version robuste
                                                                     def L aug(x, lam, mu, rho):
                                                                         h_val = h(x)
# Lagrangien augmenté version 1
                                                                         g \text{ val} = g(x)
def L_aug(x, lam, mu, rho):
                                                                         penalty_eq = lam * h_val + (rho / 2) * h_val**2
   h val = h(x)
                                                                         # Terme pour l'inégalité (version 2)
    g \text{ val} = g(x)
                                                                         if g val + mu/rho > 0:
```

else:

return f(x) + penalty_eq + penalty_ineq

penalty ineq = -(mu**2)/(2*rho)

penalty ineq = (rho/2)*(g val + mu/rho)**2 - (mu**2)/(2*rho)

Méthode Lagrangien augmente

Exemple. $\begin{cases} \min f(x,y) = (x-1)^2 + (y-2)^2 \\ h(x,y) = x + y - 1 = 0 \\ g(x,y) = x - 0.5 \le 0 \end{cases}$

Itération	x	l y	lambda	mu	h(x)	g(x)
1	0.090909	1.090909	1.818182	0.000000	+1.82e-01	-4.09e-01
2	0.005682	1.005682	1.988636	0.000000	+1.14e-02	-4.94e-01
3	0.000242	1.000242	1.999516	0.000000	+4.84e-04	-5.00e-01
4	0.000007	1.000007	1.999986	0.000000	+1.39e-05	-5.00e-01
5 1	a aggagg	1 1 000000	1 000000	0 000000	+2 670-07	-5 000-01

Minimum trouvé : x = 0.000000, y = 1.000000f(x, y) = 1.999999

Méthode Lagrangien augmenté

Avantage :

- ✓ Gestion des contraintes complexes : Combine pénalisation quadratique et multiplicateurs de Lagrange pour traiter égalités/inégalités.
- ✓ Bien adapté aux Problèmes non linéaires.
- ✓ Convergence théorique solide et plus rapide que les pénalisations pures
- ✓ utilisé dans l'optimisation sous contraintes en ingénierie, machine learning.
- ✓ Moins sensible que la méthode de pénalisation pure (quadratique) où des valeurs énormes de pénalité peuvent rendre la fonction mal conditionnée.

Inconvénient :

- ✓ Chaque itération demande de résoudre un sous-problème non contraint via une méthode numérique classique
- \checkmark Sensibilité au choix des paramètres ρ, β : Si ρ est trop grand le problème devient mal conditionné.
- \checkmark Peut converger vers des minima locaux si f(x) ou les contraintes sont non convexes.