RV1126 RV1109 GPIO 电源域配置说明

文档标识: RK-SM-YF-903

发布版本: V1.0.1

日期: 2021-05-12

文件密级:□绝密□秘密□内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

主控电源域的IO电平要与对接外设芯片的IO电平保持一致,还要注意软件的电压配置要跟硬件的电压一致,否则,最坏的情况可能会导致GPIO的损坏

本文主要描述了RV1126/RV1109平台Linux SDK配置GPIO电源域的方法,旨在帮助开发者正确配置GPIO的电源域。

产品版本

芯片名称	内核版本
RV1126/RV1109	Linux 4.19

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	CWW	2021-04-21	初始版本
V1.0.1	CWW	2021-05-12	修正第四步和第五步标题

目录

RV1126 RV1109 GPIO 电源域配置说明

- 1. 第一步: 获取硬件原理图并确认硬件电源的设计方案
- 2. 第二步: 查找对应的内核dts配置文件
- 3. 第三步: 修改内核dts的电源域配置节点pmu_io_domains
- 4. 第四步: SDK查看当前固件电源域配置
- 5. 第五步: 烧录固件后确认寄存器值是否正确

1. 第一步: 获取硬件原理图并确认硬件电源的设计方案

本文以RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630 EVB板为例进行介绍。

硬件原理图: RV1126 RV1109 EVB DDR3P216SD6 V13 20200630.pdf

电源方案: 从硬件原理图分析, EVB板RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630是带PMU(RK809-2)方案。

2. 第二步: 查找对应的内核dts配置文件

由第一步可知,该EVB板的硬件电源设计是带PMU方案的,所以对应的内核dts配置文件位于: kernel/arch/arm/boot/dts/rv1126-evb-ddr3-v13.dts(本文讨论的方案)

如果硬件电源设计不带PMU方案(即分立电源方案),对应的内核dts配置文件存放于: kernel/arch/arm/boot/dts/rv1126-38x38-v10-emmc.dts

3. 第三步: 修改内核dts的电源域配置节点pmu_io_domains

```
&pmu_io_domains {
    status = "okay";

pmuio0-supply = <&vcc1v8_pmu>;
    pmuio1-supply = <&vcc3v3_sys>;
    vccio2-supply = <&vccio_sd>;
    vccio3-supply = <&vcc_1v8>;
    vccio4-supply = <&vcc_1v8>;
    vccio5-supply = <&vcc_1v8>;
    vccio5-supply = <&vcc_1v8>;
    vccio6-supply = <&vcc_1v8>;
    vccio6-supply = <&vcc_1v8>;
    vccio7-supply = <&vcc_1v8>;
};
```

以**pmuio0-supply**为例,首先查看硬件原理图确认pmuio0电源域(pmuio0_vdd)的配置如图所示。 **pumio0_vdd** 配置的电源域为VCC1V8_PMU(即1.8v)。

[注] 软件不配置vcciol vdd,硬件根据实际存储接口IO电源域电平配置。

4. 第四步: SDK查看当前固件电源域配置

命令: ./build.sh info

5. 第五步: 烧录固件后确认寄存器值是否正确

以**RV1126/RV1109**芯片为例,根据手册获取PUMGRF_IO_VSEL寄存器(基地址: 0xFE020140)说明如下:

PMUGRF IO VSEL
Address: Operational Base + offset (0x0140)

Bit		Reset Value	+ offset (0x0140) Description
31:16	wo	0×0000	write_enable Write enable for lower 16bits, each bit is individual. 1'b0: Write access disable 1'b1: Write access enable
15:10	RO	0x00	reserved
9	RW	0×0	pmuio1_vsel PMUIO1 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
8	RW	0×0	pmuio0_vsel PMUIO0 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
7	RW	0×0	vccio7_vsel VCCIO7 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
6	RW	0×0	vccio6_vsel VCCIO6 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
5	RW	0×0	vccio5_vsel VCCIO5 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
4	RW	0×0	vccio4_vsel VCCIO4 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
3	RW	0×0	vccio3_vsel VCCIO3 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
2	RW	0×0	vccio2_vsel VCCIO2 voltage selection. 1'b0: 3.3V 1'b1: 1.8V
1	RW	0×0	vccio1_vsel VCCIO1 voltage selection. 1'b0: 3.3V 1'b1: 1.8V

io -4 -r 0xFE020140 fe020140: 000001d8