

Procedimento: Métado Estático · Metirar, com evidado, a mola do suporte medite a sua massa com a balamea. Medir rada uma das massas mi a ordena-las por ordem crasconte da grandeta. Medor a massa do presto (mpresto) Coloror movamente a mola mo suporte com o preato ma sua extremidade. Les a posição extrema do prento (La) sem massas por eima dele. · Imierar o processo de corga, isto é, colocar a massa mais pequena (mi) e ler a posição relativa (Li) à posição extrema do prato. Poloeur de seguida a massa min e los a posição Lita Cuidades a ter: (1º) Distribuir o mais uniformemente possive as massas m; pola base do panto 2º Utilizzor o esquadro para raduzire voios de paralaxe. (3°) o priato deve estar estátio a cada medição (4) Não rietiscos a massa amtoros antes de calocer a mora · Interes o processo de desewega, isto é, retireve as massas mi pla ordem Invorsa da que foram colocadas e loi o li respetivo. (1=2) · Tragar o gráfico M(1) e determinar / e respetiva incentera · Determinar ordenada na origem e explicitor a seu significado · Comeluir se Fé do tipo elastreo, justificando



| m3 = ( 53, 27<br>m3 = ( 50,07 t                              | to,01)g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (48,32 to,01)g                                                                |   |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---|
| m3 = ( 53, 27<br>m3 = ( 50,07 t                              | to,01)g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |   |
| ms = (50,07 t                                                | A CONTRACTOR OF THE PARTY OF TH |                                                                               |   |
|                                                              | 0.01/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m6 = (50,30+0,01)g                                                            |   |
| 100 - (1,000                                                 | 1708 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg=(80,51±0,01g)                                                              |   |
| $m_7 = (48,83)$                                              | oration a Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |   |
| mg = (51,47+                                                 | 0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rm 10 = (50,49 to,01)g                                                        | • |
| 10 = (57,00 ± 0,0                                            | Li corga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L; deauga                                                                     |   |
| 100 48,06  100 48,06  100 100 100 100 100 100 100 100 100 10 | 57,00<br>58,50<br>60,30<br>61,80<br>63,40<br>65,00<br>66,50<br>67,90<br>69,90<br>71,50<br>73,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71,40<br>69,90<br>68,00<br>65,00<br>63,20<br>61,80<br>60,20<br>58,50<br>57,00 | • |



| Fazendo a media das duas constantes alastras.                                  |
|--------------------------------------------------------------------------------|
| K' = Kenga + Kdossareac = 30,5+30,4 = 30,45                                    |
| V(K')=0,1                                                                      |
| Embão, (K'= (30,5±0,1) N/m                                                     |
| Os gravificos M(L) e de residuos para everge e desaurege<br>são os seguinotesi |

| mi (g) | u (mi) (g) | mi (kg) | u (mi) (kg) | M (kg)  | u (M) (kg) | Li carga (±0,05) cm | Li carga (±0,0005) m |
|--------|------------|---------|-------------|---------|------------|---------------------|----------------------|
| 0      | -          | 0       | -           | 0,09328 | 0,00001    | 57,00               | 0,5700               |
| 48,06  | 0,01       | 0,04806 | 0,00001     | 0,14134 | 0,00001    | 58,50               | 0,5850               |
| 96,38  | 0,01       | 0,09638 | 0,00001     | 0,18966 | 0,00001    | 60,30               | 0,6030               |
| 145,21 | 0,02       | 0,14521 | 0,00002     | 0,23849 | 0,00002    | 61,80               | 0,6180               |
| 194,83 | 0,02       | 0,19483 | 0,00002     | 0,28811 | 0,00002    | 63,40               | 0,6340               |
| 244,9  | 0,02       | 0,2449  | 0,00002     | 0,33818 | 0,00002    | 65,00               | 0,6500               |
| 295,2  | 0,02       | 0,2952  | 0,00002     | 0,38848 | 0,00002    | 66,50               | 0,6650               |
| 345,69 | 0,03       | 0,34569 | 0,00003     | 0,43897 | 0,00003    | 67,90               | 0,6790               |
| 396,2  | 0,03       | 0,3962  | 0,00003     | 0,48948 | 0,00003    | 69,90               | 0,6990               |
| 447,67 | 0,03       | 0,44767 | 0,00003     | 0,54095 | 0,00003    | 71,50               | 0,7150               |
| 500 94 | 0.03       | 0.50094 | 0.00003     | 0.59422 | 0.00003    | 73.20               | 0.7320               |

| Li descarga (±0,05) cm | Li descarga (±0,0005) m | ΔL Carga (±0,0005) m | ΔL Descarga (±0,0005) m |
|------------------------|-------------------------|----------------------|-------------------------|
| 57,00                  | 0,5700                  | 0                    | 0                       |
| 58,50                  | 0,5850                  | 0,0150               | 0,0150                  |
| 60,20                  | 0,6020                  | 0,0330               | 0,0320                  |
| 61,80                  | 0,6180                  | 0,0480               | 0,0480                  |
| 63,20                  | 0,6320                  | 0,0640               | 0,0620                  |
| 65,00                  | 0,6500                  | 0,0800               | 0,0800                  |
| 66,50                  | 0,6650                  | 0,0950               | 0,0950                  |
| 68,00                  | 0,6800                  | 0,1090               | 0,1100                  |
| 69,90                  | 0,6990                  | 0,1290               | 0,1290                  |
| 71,40                  | 0,7140                  | 0,1450               | 0,1440                  |
| 73,20                  | 0,7320                  | 0,1620               | 0,1620                  |

|                       | mi (±0,01) (g) |
|-----------------------|----------------|
| i = 1                 | 48,06          |
| i = 2                 | 48,32          |
| i = 3                 | 53,27          |
| i = 4                 | 49,62          |
| i = 5                 | 50,07          |
| i = 6                 | 50,3           |
| i = 7                 | 48,83          |
| i = 8                 | 50,51          |
| i = 9                 | 51,47          |
| i = 10                | 50,49          |
|                       |                |
| m prato (±0,00001) kg | 0,09328        |
| m mola (±0,00001) kg  | 0,14136        |
|                       |                |



| fit (carga) | Resíduos (carga) |
|-------------|------------------|
| 0,091596012 | 0,0017           |
| 0,138191532 | 0,0031           |
| 0,194106157 | -0,0044          |
| 0,240701677 | -0,0022          |
| 0,290403566 | -0,0023          |
| 0,340105455 | -0,0019          |
| 0,386700975 | 0,0018           |
| 0,430190128 | 0,0088           |
| 0,492317488 | -0,0028          |
| 0,542019377 | -0,0011          |
| 0,594827633 | -0,0006          |

| Carga |        |       |      |
|-------|--------|-------|------|
| m     | 3,11   | 0,092 | b    |
| u(m)  | 0,02   | 0,002 | u(b) |
| r^2   | 0,9995 | 0,004 | u(y) |





| fit (descarga) | Resíduos (descarga) |
|----------------|---------------------|
| 0,092816167    | 0,000463833         |
| 0,139341517    | 0,001998483         |
| 0,192070248    | -0,002410248        |
| 0,241697289    | -0,003207289        |
| 0,285120949    | 0,002989051         |
| 0,34095137     | -0,00277137         |
| 0,387476721    | 0,001003279         |
| 0,434002071    | 0,004967929         |
| 0,492934182    | -0,003454182        |
| 0,539459533    | 0,001490467         |
| 0,595289954    | -0,001069954        |

| Descarga |        |       |      |
|----------|--------|-------|------|
| m        | 3,10   | 0,093 | b    |
| u(m)     | 0,02   | 0,002 | u(b) |
| r^2      | 0,9997 | 0,003 | u(y) |

|    | K carga                               |                                             |
|----|---------------------------------------|---------------------------------------------|
|    | u (K carga)                           | 30,5                                        |
|    | K descarga                            | 30,4                                        |
|    | u (k descarga)                        | 0,2                                         |
|    | Κ'                                    | 30,5                                        |
|    | u (K')                                | 0,1                                         |
|    | Unidades                              | N/m                                         |
|    |                                       |                                             |
| A- | surção: M evorespor                   | ade, meste cuso, à sonna de m               |
| A. | surção: M corouespor<br>com a massa ( | ade, meste euso, à sonna de mo<br>lo prato! |
| A- |                                       | ade, meste euso, à sama de mo<br>la prenta! |

| Método Dimârmico                                                                                        |     |
|---------------------------------------------------------------------------------------------------------|-----|
| Da instrudução tessura retiranse:                                                                       | •   |
| 72 = 432 M 00 T2 - 4972 (5)                                                                             |     |
| $\frac{1}{K} = \frac{T^{2}}{M} \frac{1}{4\Omega^{2}} \approx K = \frac{1}{T^{2}} \frac{1}{4\Omega^{2}}$ |     |
| $E = \frac{4\pi^2}{100}$ $M = 1,307 = 0,0$ $M = 1,307 = 0,0$                                            | 007 |
| $k = (30, 2 \pm 0, 2) N/m$                                                                              |     |
| O gráfico 72(M) e de resíduos são os seguintes                                                          | 51. |

| mi (g) | u (mi) (g) | mi (kg) | u (mi) (kg) | M (±0,00001) (kg) | 20T (±0,01) |
|--------|------------|---------|-------------|-------------------|-------------|
| 48,06  | 0,01       | 0,04806 | 0,00001     | 0,18846           | 10,07       |
| 96,38  | 0,01       | 0,09638 | 0,00001     | 0,23678           | 11,29       |
| 145,21 | 0,02       | 0,14521 | 0,00002     | 0,28561           | 12,27       |
| 194,83 | 0,02       | 0,19483 | 0,00002     | 0,33523           | 13,36       |
| 244,90 | 0,02       | 0,24490 | 0,00002     | 0,38530           | 14,21       |
| 295,20 | 0,02       | 0,29520 | 0,00002     | 0,43560           | 15,19       |
| 345,69 | 0,03       | 0,34569 | 0,00003     | 0,48609           | 15,95       |
| 396,20 | 0,03       | 0,39620 | 0,00003     | 0,53660           | 16,83       |
| 447,67 | 0,03       | 0,44767 | 0,00003     | 0,58807           | 17,60       |
| 500,94 | 0,03       | 0,50094 | 0,00003     | 0,64134           | 18,41       |

| T (±0,0005) s | T^2 (s^2) | u (T^2) (s^2) | fit     | Resíduos |
|---------------|-----------|---------------|---------|----------|
| 0,5035        | 0,2535    | 0,0005        | 0,25227 | 0,0012   |
| 0,5645        | 0,3187    | 0,0006        | 0,3154  | 0,0033   |
| 0,6135        | 0,3764    | 0,0006        | 0,3792  | -0,0028  |
| 0,6680        | 0,4462    | 0,0007        | 0,44404 | 0,0022   |
| 0,7105        | 0,5048    | 0,0007        | 0,50946 | -0,0047  |
| 0,7595        | 0,5768    | 0,0008        | 0,57518 | 0,0017   |
| 0,7975        | 0,6360    | 0,0008        | 0,64116 | -0,0051  |
| 0,8415        | 0,7081    | 0,0008        | 0,70715 | 0,0010   |
| 0,8800        | 0,7744    | 0,0009        | 0,77441 | 0,0000   |
| 0,9205        | 0,8473    | 0,0009        | 0,84401 | 0,0033   |

m prato (±0,00001) kg 0,09328 m mola (±0,00001) kg 0,14136





| m    | 1,307  | 0,006 | b    |
|------|--------|-------|------|
| u(m) | 0,007  | 0,003 | u(b) |
| r^2  | 0,9998 | 0,003 | u(y) |

| k'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30,2                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <u>u(k')</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,2                        |
| <u>Unidades</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/m                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | my hard server age         |
| tempão: M, meste easo, é 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gual a mit monato + mmola  |
| Desta vez a massa da mola costa esta a ospilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | deve ser considerada jáque |
| Presultados<br>ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | da comstanta               |
| · Método estátreo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Carga => K=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (30,5±0,2) N/m             |
| Deservega => k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = (30,4±0,2) N/m           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e: K= (30,5±0,1) N/m       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| [ Método dimâmicoi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| K= (30,2 ± 0,2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) N/m                      |
| AND STATE OF |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |

- Em ambos es métodos os residuos estão espalhados aleatornamente, o que leva a induzir uma insignificamente e espalhados que poderão ter surgido durante a atividade experimentel.

  Forzam então efetuados boms gustes limenes, ja que mão existe qualquer tipo de temblimera dos residuos.
- · Para o método estático os valores de k obtidos para a corga e a desewiga são muito próximos, 30,5 e 30,4, respetivamente. A imenteza é a mesma para ambas as situações (0,2).
- · O valor de k obtido pelo método dimérmico foi de 30,2, valor muito próximo dos outros obtidos antonor mente e a incertera é 0,2 novamente.
- · Devido aos valores de la obtidos (ambos os métodos) serem todos muito próximos e a imagritera ser baixa e a mosana mas 3 situações, pode se perneur que a atividade experimental foi realizada de mamoira correta e bastanta eficaz.
  - · Considerando como valor final da constante da mala (k) a média entre os valores des 2 métodos, irra se obter k = (30,4±0,1) N/m = (30,35)
  - Pora o método estático obteve-se o valor 0,092

    pora a ordemada ma origem ma carga e o valor

    0,093 para a ordemada ma origem ma descarga.

    Os dois valores diforem um do outro 0,001

    e são muito peróximos de 0,0 que faz sentido,

    visto se estabelecor uma dependêmera direta embre

    a massa pado sistema e a variação de posição al

    Pode-se pensor mestas ordemadas ma origem

    eomo o pequeníssimo obstáculos a uma perfeita

    limearidade direta embre as a grandezas estudadas.

· Para o metodo dimármica acorntece a mesoma coisa. (2006) axind emanastra & magara am abandoro A o que demonstra a tal dependêmera limeur mas desta nez embre porrodo ao gradinado e massa M do sistema (M= m; + mproto + manala) · A Força exercida ma vertical com secreta assecratame é uma força vatabradora que combiuna o efeito do peso, que possui tamberm diração virtical mas Sem tido desermademte. A força tem portanto coracter elastro. No caso do método estático, o sisterma encontra-s. somprem equilibrio à medida que se adiciona mais corpos mo prato. O peso portamto cumernta visto a massa total armentor e, analogamente, a força lastica também gumenta (só assimo é que há equilibrio) à medida que a distâmera à posição imiera aumenta KA XXX No euso de la métado dimármico o sistema emcontra-se em o movimento oscilatorio em tormo da posição de equilibrar e as forças aplicadas (Peso e força restavadora têm semtidos opostos abuixo da posição de egilibrio e a mesmo sentido acima da posição de equilibrio (apomtam ambus pera baixo) A força restavradora (elástica) é sempre proporcional ao deslocamento e orientado no sentido contratio a este! Neste easo de método dinâmies, o movimente oscilatorio em tormo da posição de equilibrio é hormónico simples (MHS). · A les de Hooke é portamto válida, já que a mola é deforemada por uma forsa exterma (peso) la força elástica restauradora apomta mo semtido oposto ao movimento, freando o sistema a tender pere o seu estado oragimal de equilibra, sem trotura da mola.

