

Nov_11 SWAG Fall 2020 - Lecture 11,12: Class function, character tables an lifting representation 8. Class functions **Definition 8.1.** A class function on G is a function $\underline{f}:G\to\mathbb{C}$ such that $\underline{f}(g)=f\left(xgx^{-1}\right)$ for all $x,g\in G$. In other words, f is a complex-valued function on G that is constant on conjugacy classes. Example 8.2. (1) Any character χ_V is a class function. (2) Let Cl(g) be the conjugacy class of g in G. Then, the following is a glass function $\underline{ch_{Cl(g)}(x)} = \begin{cases} 1 & \text{if } x \in Cl(g) \\ 0 & \text{if } x \notin Cl(g) \end{cases}$ (3) The following is a class function if and only if $g \in Z(G)$ the center of the group G: $\underline{ch_g(x)} = \begin{cases} 1 & x = g \\ 0 & x \neq g \end{cases}$ Definition 8.3. $\mathscr{C} := \{f : G \to \mathbb{C} : f \text{ is a class function}\}\$ is the <u>space of class functions</u> of G.

Given $f_1, f_2 \in \mathscr{C}, \langle f_1, f_2 \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{f_1(g)} f_2(g)$.

Proposition 8.4. . $(f_1(g_1) + f_2(g_2) - f_3(g_1)) \cdot (f_2(g_1) + f_3(g_2)) \cdot (f_3(g_1) + f_3(g_2)) \cdot (f_3(g_2) + f_3(g_2) + f_3(g_2)) \cdot (f_3(g_2) + f_3(g_2) + f_3(g_2)) \cdot (f_3(g_2) + f_3(g_2) + f_3(g_2)$ (1) Sis a C-vector space. (2) Let C_1, \dots, C_m be the complete list of mutually distinct conjugacy classes of G. Then, the function $ch_{C_1}, \cdots, ch_{C_m}$ form a basis of \mathscr{C} (3) dim \(\mathscr{C} = # \) conjugacy classes in \(G \). *Proof.* (1) We know already that $\mathbb{C}[G] = \{f : G \to \mathbb{C}\}\$ is a \mathbb{C} -vector space, so we want to prove that \mathscr{C} is a subspace of $\mathbb{C}[G]$. Let $f_1, f_2 \in \mathscr{C}$ and $\lambda, \mu \in \mathbb{C}$. Then, by definition, $(\lambda f_1 + \mu f_2)(g) = (\lambda f_1)(g) + (\mu f_2)(g) = \lambda (f_1(g)) + \mu (f_2(g)) = \lambda (f_1(x^{-1}gx)) + \mu (f_2(x^{-1}gx)) = (\lambda f_1 + \mu f_2)(x^{-1}gx)$ thus $(\lambda f_1 + \mu f_2) \in \mathscr{C}$ as desired. (2) Let $f \in \mathscr{C}$ and $g_i \in C_i$ for $1 \le i \le m$. Then we claim that $f = \sum_{i=1}^m f(g_i) ch_{C_i}.$ To see this, let $x \in G$. Then, $x \in C_j$ for some unique j, $1 \le j \le m$. So, $\left(\sum_{i=1}^{m} f(g_i)ch_{C_i}\right)(x) = \sum_{i=1}^{m} f(g_i)ch_{C_i}(x) = f(g_1) \cdot 0 + f(g_2) \cdot 0 + \dots + f(g_j) \cdot 1 + \dots + f(g_m) \cdot 0 = f(g_j) = f(x)$ Thus, $ch_{C_1}, \cdots, ch_{C_m}$ are a spanning set for \mathscr{C} . To prove the linear independence, suppose that $\sum_{i=1}^{m} \lambda_i ch_{C_i} = 0$ where $\lambda_i \in \mathbb{C}$. Evaluating at g_j for $1 \leq j \leq m$ produces $0 = \sum_{i=1}^{m} \lambda_i ch_{C_i}(g_j) = \lambda_j$ as desired. (3) Consequence of (2). **Theorem 8.5.** Let $I_1, \dots I_n$ be a complete list of non-isomorphic irreducible representations of G. Then, $\chi_{I_1}, \dots, \chi_{I_n}$ form a basis of C. Pr: & -> GLCV) Pr(f): To see this, we need a prepartory lemma **Lemma 8.6.** Let $f \in \mathscr{C}$ and (ρ, V) is a representation of G. Define a new linear function $\mathcal{C}: V \to V$ such that $\rho_V(f) = \sum_{g \in G} \overline{f(g)} \rho(g).$ Then, $\rho_V(f)$ is G-intertwining and $\rho_V(g) = \frac{|G|}{\dim V} \langle f, \chi_V \rangle \operatorname{Id}_V$ Proof. $\begin{array}{c} \rho(h^{-1})\rho_V(g)\rho(h) = \sum_{g \in G} \rho(h^{-1})\overline{f(g)}\rho(g)\rho(h) \\ = \sum_{g \in G} \overbrace{f(g)\rho(h^{-1})\rho(g)\rho(h)} \end{array}$ Hence, $\rho_V(f)$ is G-intertwining. If V is irreducible, then by Schur's lemma, $\rho_V(y) = \frac{\text{Tr}(\rho_V(y))}{\dim V} \text{Id}_V$. Thus, it suffices to show that $\text{Tr}(\rho_V(y)) = \frac{\text{Tr}(\rho_V(y))}{\dim V} \text{Thus}$. $|G|\langle f, \chi_V \rangle$. To see this, observe that $\operatorname{Tr}(\rho_V(g)) = \operatorname{Tr}(\sum_{g \in G} \overline{f(g)} \rho(g)) = \sum_{g \in G} \overline{f(g)} \operatorname{Tr}(\rho(g)) = \sum_{g \in G} \overline{f(g)} \chi_V(g) = |G| \frac{1}{|G|} \sum_{g \in G} \overline{f(g)} \chi_V(g) = |G| \langle f, \chi_V \rangle$ Now, we can see the proof of theorem 8.5. Proof of theorem 8.5. We have already shown that $\chi_{I_1, \dots, \chi_{I_n}}$ are orthogonal elements of \mathscr{C} w.r.t. \langle , \rangle . Any such set can be extended to an orthogonal basis of & (using Gram-Schmidt). So if we show that there are no further elements of \mathscr{C} that are orthogonal to $\chi_{I_1}, \cdots, \chi_{I_n}$ then this list must inded form a basis. Let $f \in \P$ such that $\langle f, \chi_{I_j} \rangle = \P$ for all $j, 1 \leq j \leq n$. We will show that f = 0. To see this, observe that if we decompose $\mathbb{C}[G] = U_1$ $\sum_{g \in G} \overline{f(g)} \rho_{U_1}(g)$ $\sum_{g \in G} \overline{f(g)} \rho_{U_2}(g)$ $\sum_{g \in G} f(g) \rho_{U_t}(g)$ $\frac{|G|}{\dim U_1} \langle f, \chi_{U_1} \rangle \operatorname{Id}_{U_1}$ $\frac{|G|}{\dim U_2} \langle f, \chi_{U_2} \rangle \operatorname{Id}_{U_2}$ $\langle f, \chi_{U_t} \rangle Id_U$

(2) χ can be lifted from $G/\ker(\chi)$.

and $\{e\} \neq K_{\chi}$ because $g \in K_{\rho}$. Thus, G is not simple.

 $\chi_{\bar{\rho}}$.

Proof. (1): Let $\chi = \chi_{V,\rho}$. By the above lemma, $\ker(\chi) = \ker(\rho) \not\supseteq G$.

(2) Let $K = \ker(\chi)$. We can define $\tilde{\rho}: G/K \to GL(V)$ a representation by setting $\tilde{\rho}(gK) = \rho(g)$. This is well-defined since gK = g'K implies $g^{-1}g' \in K$, thus $\rho(g^{-1}g') = \mathrm{Id}_V$, hence $\rho(g) = \rho(g')$. By this construction, χ is the lift of

Corollary 9.4 G is not simple $\iff \exists g \in G \setminus \{e\}$ and a nontrivial irreducible character χ such that $\chi(g) = \chi(e)$.

Proof. Suppose the righthandside. Then, set $K_{\chi} = \ker \chi \leq G$ by the theoem. Then, $K_{\chi} \neq G$ because χ is nontrivial

Suppose the G is not simple. Take $N \subseteq G$, $\{e\} \neq N \neq G$. Then, let $\tilde{\chi}$ be a nontrivial irreducible characer of G/N

Liff $\tilde{\chi}$ to a character χ of G. Then, χ is irreducible and $\chi(g) = \tilde{\chi}(gN) = \tilde{\chi}(eN) = \chi(e)$ for all $g \in N$.

9/k-) GL(U) 7(5K)=P(g)