Prednášky z Matematiky (4) — Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2018/2019

5. prednáška

Tablový kalkul a jeho korektnosť

18. marca 2019

Obsah 5. prednášky

Tablový kalkul Korektnosť

Midterm, náhrada praktických cvičení

Midterm

🛱 utorok 2. apríla o 18:10 v A

Mimoriadne konzultácie pred midtermom

utorok 1. apríla o 14:00—16:30 v I-9

Náhrada praktických cvičení 27. marca, 1. a 8. mája pravdepodobne konzultácie v piatky v rovnakom týždni

Logické kalkuly (opakovanie)

Logické kalkuly – vyplývanie syntakticky

Logický kalkul je formálny/syntaktický systém na dokazovanie vyplývania

- Manipulácia postupnosťami symbolov
- Pri používaní sa netreba odvolávať na sémantiku (ohodnotenia)

Zvyčajne má dve zložky:

Axiómy alebo ich schémy — "základné pravdy"

Napríklad hilbertovské schémy axióm:

- $(A \rightarrow (B \rightarrow A))$
- $((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$
- $((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A))$
- $((A \land B) \rightarrow A), ((A \land B) \rightarrow B)$
- $(A \rightarrow (B \rightarrow (A \land B)))$
- $(A \rightarrow (A \lor B)), (B \rightarrow (A \lor B))$
- $((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)))$

Pravidlá — "formy správnych úsudkov", odvodzujú "nové pravdy" zo základných, obsiahnutých v teórii, už odvodených Napríklad jediné pravidlo hilbertovského kalkulu:

(MP)
$$\frac{A \quad (A \to B)}{B}$$

Korektnosť a úplnosť

```
Kalkul je najužitočnejší, keď je súčasne 
korektný (angl. sound):
dovoľuje odvodiť iba skutočne vyplývajúce formuly,
úplný (angl. complete):
```

umožňuje odvodiť všetky vyplývajúce formuly.

Korektnosť a úplnosť hilbertovského kalkulu

Hilbertovský kalkul je korektný aj úplný

Veta 2.74

Pre každú množinu formúl S a každú formulu X platí:

(korektnosť) ak je X dokázateľná z S (S \vdash X),

tak X výrokovologicky vyplýva z S (S \models X);

(úplnosť) $ak X výrokovologicky vyplýva z S (S <math>\models X$),

tak X je dokázateľná z S $(S \vdash X)$.

- Jednoduchá definícia a dôkazy jeho vlastností
- Nie úplne jednoduché použitie

2.9

Tablový kalkul

Dôkaz vyplývania sporom v slovenčine

Príklad 2.75

```
Dokážme, že z T'_{party} = \{ (kim \rightarrow (jim \land \neg sarah)), (eva \rightarrow kim) \} vyplýva (sarah \rightarrow \neg eva).
```

Podme na to sporom: Predpokladajme, že existuje také ohodnotenie v, že v $\models T'_{party}$, teda (1) v $\models (kim \rightarrow (jim \land \neg sarah))$ a (2) v $\models (eva \rightarrow kim)$, ale pritom (3) v $\not\models (sarah \rightarrow \neg eva)$.

Podľa definície splnenia implikácie z faktu (3) vyplýva, že (4) $v \models sarah$ a zároveň (5) $v \not\models \neg eva$. Z (5) dostávame, že (6) $v \models eva$.

Podľa (2) máme dve možnosti: (7) $v \not\models eva$ alebo (8) $v \models kim$. Možnosť (7) je v spore s (6).

Platí teda (8) a podľa (1) ďalej môžu nastať dva prípady:

(9) $v \not\models kim$, ktorý je však v spore s (8),

alebo (10) $v \models (jim \land \neg sarah)$. V tom prípade (11) $v \models jim$ a (12) $v \models \neg sarah$, čiže (13) $v \not\models sarah$, čo je zase v spore s (4).

Vo všetkých prípadoch sme prišli k sporu, predpoklad je teda neplatný a každé ohodnotenie, ktoré spĺňa T'_{party} , spĺňa aj $(sarah \rightarrow \neg eva)$.

Tablová notácia pre dôkazy

Dôkaz stručne zapíšeme v tablovej (tabuľkovej) notácii:

- T X označuje v spĺňa X.
- F X označuje v nespĺňa X.
- Ak z niektorého predchádzajúceho faktu o formule X priamo z def. spĺňania vyplýva fakt (ne)splnenia niektorej priamej podformuly X, pridáme ho ako ďalší riadok tabla.
 - Poznačíme si k nemu písmeno α a číslo zdrojového faktu.
- Ak z niektorého predch. faktu o formule X vyplýva
 o jej priamych podformulách fakt F₁ alebo fakt F₂,
 tablo rozdelíme na dve vzájomne nezávislé vetvy (stĺpce),
 pričom prvá začne faktom F₁ a druhá faktom F₂.
 K obom si poznačíme písmeno β a číslo zdrojového faktu.
- Ak nastane spor medzi splnením a nesplnením tej istej formuly, pridáme riadok so symbolom *
 a poznačíme si čísla faktov, ktoré sú v spore.

Dôkaz vyplývania sporom v tablovej notácii

Prík	lad	2.76							
	1. $T(kim \rightarrow (jim \land \neg sarah))$							z T′ †	
	2. $T(eva \rightarrow kim)$							z T' _{party} †	
	3. $F(sarah \rightarrow \neg eva)$							dôkaz sporom [†]	
	4. T sarah								α3
	5. F ¬eva							α3	
	6.		T eva						α5
	7.	F eva	β2	8.	8. T kim			β2	
		*	6 a 7	9.	F kim	β1	10.	$T(jim \land \neg sarah)$	β1
					*	8 a 9	11.	T jim	α10
							12.	T ¬sarah	α10
							13.	F sarah	α12
								*	4 a 13
† Tento zápis nepoužívajte vo svojich riešeniach.									

Definícia tablového kalkulu

Tablová notácia

- Dohoda o stručnom zápise podrobných úvah v dôkaze sporom
- Neformálna a nie veľmi presná

Tablový *kalkul* — presne matematicky zadefinovaný formálny systém Zadefinujeme:

- Význam značiek T a F
- Axiómy a pravidlá kalkulu
- Tablo formálny dôkaz v tablovom kalkule
- Podmienky úspešného ukončenia dôkazu

Označené formuly a ich sémantika

Definícia 2.77

Nech X je formula výrokovej logiky.

Postupnosti symbolov **T** *X* a **F** *X* nazývame *označené formuly*.

Definícia 2.78

Nech v je ohodnotenie výrokových premenných a X je formula. Potom

- v spĺňa T X vtt v spĺňa X;
- v spĺňa F X vtt v nespĺňa X.

Dohoda

Pre označené formuly budeme používať veľké písmená zo začiatku a konca abecedy s horným indexom + a prípadne s dolnými indexmi, napr. A^+, X_7^+ . Pre množiny označených formúl budeme používať písmená S, T s horným indexom + a prípadne s dolnými indexmi, napr. S^+, T_3^+ .

Spĺňanie a priame podformuly

Nasledujúce fakty vyplývajú **priamo** z definície splnenia formuly ohodnotením:

Pozorovanie 2.79

Nech v je ľubovoľné ohodnotenie výrokových premenných. Nech X a Y sú ľubovoľné formuly.

- Ak v spĺňa ¬X, tak v nespĺňa X.
 - ► Ak v nespĺňa ¬X, tak v spĺňa X.
- Ak v spĺňa (X ∧ Y), tak v spĺňa X a v spĺňa Y.
 - Ak v nespĺňa $(X \wedge Y)$, tak v nespĺňa X alebo v nespĺňa Y.
- 3 \blacktriangleright Ak v spĺňa (X \lor Y), tak v spĺňa X alebo v spĺňa Y.
 - Ak v nespĺňa $(X \vee Y)$, tak v nespĺňa X a v nespĺňa Y.
- 4 Ak v spĺňa (X \rightarrow Y), tak v nespĺňa X alebo v spĺňa Y.
 - Ak v nespĺňa $(X \rightarrow Y)$, tak v spĺňa X a v nespĺňa Y.

Tablové pravidlá

Pozorovanie 2.79 – dobrý základ pre odvodzovacie pravidlá

- Základné, ľahko overiteľné fakty
- Závery sú jednoduchšie ako premisy

Splnenie/nesplnenie vyjadríme označenými formulami podľa def. 2.78

$$\begin{array}{c|cccc} T \neg X & T(X \wedge Y) & T(X \vee Y) & T(X \to Y) \\ \hline FX & TX & TX & TY & FX \mid TY \\ \hline & \frac{T(X \wedge Y)}{TY} & & & \\ \hline \frac{F \neg X}{TX} & \frac{F(X \wedge Y)}{FX \mid FY} & \frac{F(X \vee Y)}{FX} & \frac{F(X \to Y)}{TX} \\ & & \frac{F(X \vee Y)}{FX} & \frac{F(X \to Y)}{FX} & & \\ \hline \end{array}$$

Tablové pravidlá – zjednotenie zápisu

- Nemáme žiadne axiómy
- Pravidiel je veľa
- Sú však zjavne dvoch druhov:
 - α: Pravidlá odvodzujúce jeden záver
 - **β**: Pravidlá odvodzujúce dva závery, z ktorých platí aspoň jeden
- Zjednoťme zápis pravidiel rovnakého druhu

Jednotný zápis označených formúl typu lpha

Definícia 2.80	(Jednotný zápis	označených	formúl typu α)
----------------	-----------------	------------	------------------------

Označená formula A^+ je $\emph{typu}~lpha$ vtt má jeden	α	α_1	α_2
z tvarov v ľavom stĺpci tabuľky pre nejaké	$T(X \wedge Y)$	ТX	ΤΥ
formuly X a Y.	$\mathbf{F}(X\veeY)$		
Takéto formuly budeme označovať	$F(X \rightarrow Y)$		
písmenom α ;	$T \neg X$		
$lpha_1$ bude označovať príslušnú označenú	F¬X		
formulu zo stredného stĺpca,	L M	1 /	1 /
α ₂ príslušnú formulu z pravého stĺpca.			

Pozorovanie 2.81 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Potom v spĺňa α vtt v spĺňa α_1 a v spĺňa α_2 .

Jednotný zápis označených formúl typu $oldsymbol{eta}$

Definícia 2.82 (Jednotný zápis označených formúl typu β)

Označená formula B^+ je $typu \beta$ vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.

Takéto formuly budeme označovať

Takéto formuly budeme označovať písmenom β ;

 eta_1 bude označovať príslušnú označenú formulu zo stredného stĺpca,

 β_2 príslušnú formulu z pravého stĺpca.

β	eta_1	β_2
$F(X \wedge Y)$	FΧ	FΥ
$T(X \vee Y)$	TX	ΤY
$T(X \rightarrow Y)$	FX	TY

Pozorovanie 2.83 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Potom v spĺňa β vtt v spĺňa β_1 alebo v spĺňa β_2 .

Tablo — dôkaz v tablovom kalkule

Akú štruktúru má dôkaz zapísaný v tablovej notácii?

Ako opíšeme vznik tabla?

Tablo pre množinu označených formúl

Definícia 2.84

Analytické tablo pre množinu označených formúl S⁺ (skrátene **tablo pre S**⁺) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech T je tablo pre S⁺ a y je nejaký jeho list. Potom tablom pre S⁺ je aj každé priame rozšírenie T ktorýmkoľvek z pravidiel:
 - α Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - β Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Nič iné nie je tablom pre S^+ .

Tablá a tablové pravidlá

Pôvodné tablo Možné priame rozšírenie Pravidlá a označené formuly v nich \mathcal{T} α_1 α α α_2 α_1 α_2 $T(X \wedge Y)$ TXTY $F(X \vee Y)$ FXFΥ $F(X \rightarrow Y)$ TXFΥ $\mathbf{T} \neg X$ FXFX $\mathbf{F} \neg X$ TXTX $i \in \{1,2\}$ β_2 $F(X \wedge Y)$ FX $T(X \vee Y) = TX$ FXTY

Legenda: y je list v table \mathcal{T} , π_v je cesta od koreňa k y

Uzavretosť a otvorenosť vetvy a tabla

Definícia 2.85

Vetvou tabla \mathcal{T} je každá cesta od koreňa \mathcal{T} k niektorému listu \mathcal{T} .

Označená formula X^+ sa *vyskytuje na vetve* π v \mathcal{T} vtt sa nachádza v niektorom vrchole na π . Skrátene to budeme zapisovať $X^+ \in \text{formulas}(\pi)$.

Tablo \sim dôkaz sporom. Vetvenie \sim rozbor možných prípadov.

⇒ Spor musí nastať vo všetkých vetvách.

Definícia 2.86

Vetva π tabla \mathcal{T} je uzavretá vtt

na π sa súčasne vyskytujú označené formuly **F** X a **T** X pre nejakú formulu X. Inak je π otvorená.

Tablo \mathcal{T} je uzavreté vtt každá jeho vetva je uzavretá.

Naopak, \mathcal{T} je **otvorené** vtt aspoň jedna jeho vetva je otvorená.

Spomeňte si V.1

- 1 Má každé tablo *aspoň* jedno priame rozšírenie?
- 2 Má každé tablo najviac jedno priame rozšírenie?

2.9.1

Korektnosť

Korektnosť tablového kalkulu

Veta 2.87 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 2.88

Nech S je množina formúl a X je formula.

Ak existuje uzavreté tablo pre $\{TA \mid A \in S\} \cup \{FX\}$ (skrátene $S \vdash X$), tak z S vyplýva X ($S \models X$).

Dôsledok 2.89

Nech X je formula.

Ak existuje uzavreté tablo pre $\{FX\}$ (skrátene $\vdash X$), tak X je tautológia $(\models X)$.

Korektnosť – idea dôkazu

Aby sme dokázali korektnosť tabiel, dokážeme postupne dve lemy:

- Ak máme tablo pre splniteľnú množinu S⁺ s aspoň jednou splniteľnou vetvou, tak každé jeho priame rozšírenie má tiež splniteľnú vetvu.
- Každé tablo pre splniteľnú množinu S⁺ má aspoň jednu splniteľnú vetvu.

Z toho ľahko sporom dokážeme, že množina, pre ktorú sme našli uzavreté tablo je nesplniteľná.

Korektnosť – splnenie priameho rozšírenia tabla

Hodí sa nám pomocná definícia:

Definícia 2.90

Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a nech v je ohodnotenie množiny výrokových premenných. Potom:

- $v splňa vetvu \pi v table \mathcal{T} vtt$ $v splňa všetky označené formuly vyskytujúce sa na na vetve <math>\pi$.
- v spĺňa tablo \mathcal{T} vtt v spĺňa niektorú vetvu v table \mathcal{T} .

Lema 2.91 (K1)

Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a nech v je ohodnotenie množiny výrokových premenných. Ak v spĺňa S^+ a v spĺňa \mathcal{T} , tak v spĺňa aj každé priame rozšírenie \mathcal{T} .

Korektnosť – splnenie priameho rozšírenia tabla

Dôkaz lemy K1.

Nech $v \models S^+$. Nech v spĺňa $\mathcal T$ a v ňom vetvu π . Nech $\mathcal T_1$ je rozšírenie $\mathcal T$. Nastáva jeden z prípadov:

- \mathcal{T}_1 vzniklo z \mathcal{T} pravidlom α , pridaním nového dieťaťa z nejakému listu y v \mathcal{T} , pričom z obsahuje α_1 alebo α_2 pre nejakú formulu α na vetve π_y . Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π a teda je splnené.
 - Ak $\pi=\pi_{\rm y}$, tak v spĺňa aj α , pretože spĺňa π . Potom v musí spĺňať aj α_1 a α_2 . Spĺňa teda vetvu π_z v table \mathcal{T}_1 , ktorá rozširuje splnenú vetvu π o vrchol z obsahujúci splnenú ozn. formulu α_1 alebo α_2 . Preto v spĺňa tablo \mathcal{T}_1 .
- \mathcal{T}_1 vzniklo z \mathcal{T} pravidlom β , pridaním detí z_1 a z_2 nejakému listu y v \mathcal{T} , pričom z_1 obsahuje β_1 a z_2 obsahuje β_2 pre nejakú formulu β na vetve π_y . Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π a teda je splnené.
 - Ak $\pi=\pi_y$, tak v spĺňa aj β , pretože spĺňa π . Potom ale v musí spĺňať aj β_1 alebo β_2 . Ak v spĺňa β_1 , tak spĺňa aj vetvu π_{Z_1} v table \mathcal{T}_1 , a preto v spĺňa tablo \mathcal{T}_1 . Ak v spĺňa β_2 , spĺňa aj π_{Z_2} , a teda aj \mathcal{T}_1 .
- T₁ vzniklo z T pravidlom S⁺, pridaním nového dieťaťa z nejakému listu y v T, pričom z obsahuje formulu X⁺ ∈ S⁺. Ak π ≠ π_y, tak T₁ obsahuje π a teda je splnené.
 Ak π = π_y, tak v spĺňa vetvu π_z v table T₁, pretože je rozšírením splnenej vetvy π o vrchol z obsahujúci splnenú formulu X (pretože v |= S⁺). Preto v spĺňa tablo T₁. □

Korektnosť – splnenie množiny a tabla pre ňu

Lema 2.92 (K2)

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a nech v je ohodnotenie.

Ak v spĺňa S^+ , tak v spĺňa \mathcal{T} .

Dôkaz lemy K2.

Nech S^+ je množina označených formúl, nech v je ohodnotenie a nech v $\models S^+$. Úplnou indukciou na počet vrcholov tabla $\mathcal T$ dokážeme, že v spĺňa každé tablo $\mathcal T$ pre S^+ .

Ak má \mathcal{T} jediný vrchol, tento vrchol obsahuje formulu $X^+ \in S^+$, ktorá je splnená pri v. Preto je splnená jediná vetva v \mathcal{T} , teda aj \mathcal{T} .

Ak $\mathcal T$ má viac ako jeden vrchol, je priamym rozšírením nejakého tabla $\mathcal T_0$, ktoré má o 1 alebo o 2 vrcholy menej ako $\mathcal T$. Podľa indukčného predpokladu teda v spĺňa $\mathcal T_0$. Podľa predchádzajúcej lemy potom v spĺňa aj $\mathcal T$.

Korektnosť – dôkaz

Dôkaz vety o korektnosti.

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ .

Sporom: Predpokladajme, že existuje ohodnotenie, ktoré spĺňa S^+ .

Označme ho v.

Potom podľa lemy K2 v spĺňa tablo \mathcal{T} , teda v spĺňa niektorú vetvu π v \mathcal{T} .

Pretože $\mathcal T$ je uzavreté, aj vetva π je uzavretá,

teda π obsahuje označené formuly **T** X a **F** X pre nejakú formulu X.

Ale $v \models TX \text{ vtt } v \models X \text{ a } v \models FX \text{ vtt } v \not\models X$, čo je spor.

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.