Spring 2015: Real Analysis Graduate Exam

Peter Kagey

January 9, 2018

Problem 1. Consider the sequence

$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-n} \cos\left(\frac{x}{n}\right), \quad n = 1, 2, \dots$$

Evaluate

$$\lim_{n} \int_{0}^{\infty} f_n(x) \ dx,$$

being careful to justify your answer.

Proof. The boundedness of cosine and non-negativity of $1+\frac{x}{n}$ imply that for n>2 and x>0

$$|f_n(x)| \le \left(1 + \frac{x}{n}\right)^{-n} \le \left(1 + \frac{x}{2}\right)^{-2} = g(x).$$

The function g is integrable on $[0, \infty)$ because by the p-test

$$\int_{0}^{\infty} g(x) \ dx = \int_{0}^{\infty} \frac{dx}{1 + x + \frac{x^{2}}{4}} \le 4 \int_{0}^{\infty} \frac{dx}{x^{2}} < \infty$$

Thus the Dominated Convergence Theorem with g allows the limit to be moved inside the integral:

$$\lim_{n} \int_{0}^{\infty} f_{n}(x) \ dx = \int_{0}^{\infty} \lim_{n} f_{n}(x) \ dx = \int_{0}^{\infty} \frac{\lim_{n} \cos(x/n)}{\lim_{n} (1 + x/n)^{n}} dx = \int_{0}^{\infty} \frac{\cos(0)}{e^{x}} dx = \int_{0}^{\infty} e^{-x} dx = 1$$

Problem 2. Suppose that $f:[0,\infty)\to\mathbb{R}$ is Lebesgue integrable.

- (i) Show that there exists a sequence $x_n \to \infty$ such that $f(x_n) \to 0$.
- (ii) Is it true that f(x) must converge to 0 as $x \to \infty$? Give a proof or counterexample.
- (iii) Suppose additionally that f is differentiable and $f'(x) \to 0$ as $x \to \infty$. Is it true that f(x) must converge to 0 as $x \to \infty$? Give a proof or counterexample.

Proof. (i) Suppose that there was no point x_{ε} such that $|f(x_{\varepsilon})| < \varepsilon$. Then $|f| \ge \varepsilon$ for all $\varepsilon > 0$. This means that

$$\int_0^\infty |f| \ dm \ge \int_0^\infty \varepsilon \ dm = \epsilon m((0, \infty)) = \infty,$$

which is a contradiction, because f is integrable by hypothesis. Therefore for each $\varepsilon > 0$, there exists some x_{ε} such that $f(x_{\varepsilon}) < \varepsilon$. Take a sequence such that $|f(x_n)| < 1/n$ for all n. This sequence converges to 0.

(ii) Let $f = \mathbb{1}_{\mathbb{Q}}$ be the indicator function for the rational numbers. Then f does not converge to 0, but it is integrable:

$$\int_0^\infty f \ dm = m(\mathbb{Q}) = 0$$

(iii) The idea is that if $f \neq 0$, then there exists some ε such that for any M, there exists $x_0 > M$ such that $f(x_0) > \varepsilon$. Choose M large enough that |f'(x)| < 2, then the area from x_0 to the next x-intercept must be greater than ε . But this means that the integral $\int_0^\infty |f| dm = \sum_{i=1}^\infty \varepsilon = \infty$.

Problem 3. Define $f_n(x) = a \exp(-nax) - b \exp(-nbx)$ where 0 < a < b.

(i) Show that

$$\sum_{n=1}^{\infty} \int_0^{\infty} f_n(x) \ dx = 0$$

and

$$\int_0^\infty \sum_{n=1}^\infty f_n(x) \ dx = \log(b/a).$$

(ii) What can you deduce about the value of

$$\int_0^\infty \sum_{n=1}^\infty |f_n(x)| \, dx?$$

Proof. (i) Notice that

$$\int_0^\infty f_n(x) \ dx = \frac{\exp(-nbx)}{n} - \frac{\exp(-nax)}{n} \Big|_0^\infty = 0 - \left(\frac{-1}{n} + \frac{1}{n}\right) = 0$$

because $exp(-kx) \to 0$ as $x \to \infty$ for k > 0, and exp(0) = 1.

(idea from Daniel Douglas's solution) By the identity

$$\sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$

we can see that

$$\sum_{n=1}^{\infty} a \exp(-nax) - b \exp(-nbx) = a \sum_{n=1}^{\infty} \exp(-ax)^n - b \sum_{n=1}^{\infty} \exp(-bx)^n = \frac{a}{1 - e^{-ax}} - \frac{b}{1 - e^{-bx}}$$

so integrating this value gives

$$\int_0^\infty \sum_{n=1}^\infty f_n(x) dx = \int_0^\infty \frac{ae^{-ax}}{1 - e^{-ax}} - \frac{be^{-bx}}{1 - e^{-bx}} dx$$

doing substition with $u = 1 - e^{-ax}$ and $v = 1 - e^{-bx}$ gives

$$\int_0^1 \frac{dv}{v} - \int_0^1 \frac{du}{u} = \log(v) - \log(u) \Big|_0^1 = \log(1 - e^{-a}) - \log(1 - e^{-b}) = \log\left(\frac{1 - e^{-a}}{1 - e^{-b}}\right)$$

(ii) Let $g_n = \sum_{k=1}^n f_k(x)$. Fubini's theorem says that when g_n is integrable,

$$\lim_{n \to \infty} \int_0^\infty g_n dm = \int_0^\infty \lim_{n \to \infty} g_n dm$$

Thus g_n is not integrable and by the triangle inequality

$$\int_0^\infty \sum_{n=1}^\infty |f_n(x)| \, dx \ge \int_0^\infty \left| \sum_{n=1}^\infty f_n(x) \right| dx = \int_0^\infty \left| \lim_{n \to \infty} g_n \right| dm = \infty.$$

Problem 4. Assume that f is integrable on [0,1] with respect to the Lebesgue measure m, and let $F(x)=\int_0^x f(t)dt$. Assume that $\phi:\mathbb{R}\to\mathbb{R}$ is Lipschitz, i.e., there exists a constant $C\geq 0$ such that

$$\phi(x_1) - \phi(x_2) \le C(x_1 - x_2), \quad x_1, x_2 \in \mathbb{R}.$$

Prove that there exists a function g which is integrable on [0,1] such that $\phi(F(x)) = \int_0^x g(t) \ dt$ for $x \in [0,1]$.

Note. This is similar to problem # from the Spring 20## Real Analysis Exam.

Proof. Replace this text with the details of your proof or solution.