Devoir à la maison n^{o} 7

Problème 1 —

Dans tout ce problème, le mot *entier* désignera un entier naturel supérieur ou égal à 1 et le mot *ensemble* désignera un ensemble de tels entiers.

Partie I -

Pour un ensemble A et un entier n, on définit :

- $\blacktriangleright \ \ \mathrm{le \ nombre} \ \nu_n(A) \ \mathrm{d'\'el\'ements} \ \mathrm{de} \ A \ \mathrm{compris} \ \mathrm{entre} \ 1 \ \mathrm{et} \ n \ \mathrm{i.e.} \ \nu_n(A) = \mathrm{card}(A \cap \llbracket 1, n \rrbracket) \ ;$
- ▶ la proportion $\delta_n(A)$ d'entiers de A parmi ceux compris entre 1 et n i.e. $\delta_n(A) = \frac{\nu_n(A)}{n}$.

La limite de la suite $(\delta_n(A))$, si elle existe, est appelée densité de A dans \mathbb{N}^* et est notée $\delta(A)$.

- 1. Déterminer, si elles existent les densités de
 - a. \mathbb{N}^* ;
 - **b.** d'un ensemble fini E;
 - c. de l'ensemble 2N des entiers pairs;
 - d. de l'ensemble C des carrés d'entiers;
 - **e.** de $A = \bigcup_{k \in \mathbb{N}} [2^{2k}, 2^{2k+1}]$;
 - f. de l'ensemble D des entiers dont l'écriture décimale ne comporte pas de 0.
- **2.** Soient $(a_n)_{n\geqslant 1}$ une suite strictement croissante d'entiers et $A=\{a_n,n\in\mathbb{N}^*\}$.
 - **a.** Que vaut $\nu_{a_n}(A)$?
 - **b.** Montrer que si A possède une densité, alors $\delta(A)$ est la limite de la suite $\left(\frac{n}{a_n}\right)$.
 - **c.** Montrer que $a_{\nu_n(A)} \leq n < a_{\nu_n(A)+1}$.
 - d. Montrer que si la suite $\left(\frac{n}{a_n}\right)$ possède une limite l, alors $\delta(A)=l$.
- 3. a. Soient $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$. Déterminer la densité de l'ensemble A des entiers congrus à un entier p modulo q.
 - $\mathbf{b.} \ \mathrm{Soit} \ \alpha \ \mathrm{un} \ \mathrm{r\acute{e}el} \ \mathrm{sup\acute{e}rieur} \ \mathrm{ou} \ \mathrm{\acute{e}gal} \ \mathrm{\grave{a}} \ 1. \ \mathrm{D\acute{e}terminer} \ \mathrm{la} \ \mathrm{densit\acute{e}} \ \mathrm{de} \ A = \{ \lfloor n\alpha \rfloor \ | \ n \in \mathbb{N}^* \}.$

Partie II -

1. Soient A et B deux ensembles. Montrer que si trois des quatre ensembles A, B, $A \cup B$ et $A \cap B$ ont une densité, alors le quatrième également et qu'alors

$$\delta(A) + \delta(B) = \delta(A \cup B) + \delta(A \cap B)$$

- a. Que dire dans le cas où A et B sont deux ensembles disjoints possédant une densité?
- **b.** Si A possède une densité, montrer que $\overline{A} = \mathbb{N}^* \setminus A$ possède également une densité. Que vaut celle-ci?

- ${\bf c.}$ On dit qu'un ensemble est $n\'{e}gligeable}$ s'il possède une densit\'e nulle. Que dire d'une partie d'un ensemble négligeable?
- **d.** Soit A un ensemble de densité δ et B un ensemble négligeable. Que dire de $A \cup B$?

Partie III -

Soit B un ensemble infini dont les éléments sont rangés en une suite strictement croissante $(b_n)_{n\geqslant 1}$. On appelle densité relative d'un ensemble A dans B la limite, si elle existe, de la suite de terme général

$$\delta_n(A|B) = \frac{\operatorname{card}(A \cap \{b_k, 1 \leqslant k \leqslant n\})}{n}$$

On note alors cette densité relative $\delta(A|B)$.

- 1. On se propose tout d'abord d'établir le lemme suivant. Soit (u_n) une suite réelle et (p_n) une suite d'entiers divergeant vers $+\infty$ vérifiant $p_n \leq p_{n+1} \leq p_n + 1$. Montrer que (u_n) est convergente si et seulement si (u_{p_n}) l'est et que dans ce cas, elles ont la même limite.
- 2. Soient A et B deux ensembles tels que $A \cap B$ et B possèdent une densité avec B non négligeable. Montrer que pour tout n suffisamment grand, $\delta_n(A|B) = \delta_{\nu_n(B)}(A|B)\delta_n(B)$. En déduire que A possède une densité relative dans B et que $\delta(A|B) = \frac{\delta(A \cap B)}{\delta(B)}$.
- **3.** On dit que deux ensembles A et B sont *indépendants* si A, B et A \cap B possèdent une densité et si $\delta(A \cap B) = \delta(A)\delta(B)$.
 - a. Montrer qu'un ensemble négligeable est indépendant de tout ensemble ayant une densité.
 - **b.** Soient A et B deux ensembles possédant une densité non nulle. Montrer que A et B sont indépendants si et seulement si A possède une densité relative dans B et $\delta(A|B) = \delta(A)$.
- 4. Pour un entier p, on note M_p l'ensemble des entiers multiples de p. Etudier l'indépendance de M_p et M_q pour des entiers p et q.
- 5. Soient A et B deux ensembles infinis dont les éléments sont rangés en des suites strictement croissantes $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$. On note $A_B=\{a_{b_n},n\in\mathbb{N}^*\}$. Montrer que si A et B ont des densité, alors A_B également et que, dans ce cas, $\delta(A_B)=\delta(A)\delta(B)$.

Partie IV -

On note $\mathbb P$ l'ensemble des nombres premiers et $(\mathfrak p_n)_{n\geqslant 1}$ la suite strictement croissante formée de ceux-ci. On note A_k l'ensemble des multiples de $\mathfrak p_k$ pour $k\geqslant 1$.

- $\textbf{1. Soit } k\geqslant \textbf{1. Justifier que} \bigcap_{i=1}^k \overline{A_i} \text{ possède une densit\'e } P_k \text{ et que } P_k = \prod_{i=1}^k \Big(1-\frac{1}{p_i}\Big).$
- **2.** Montrer que $\lim_{k\to+\infty} P_k = 0$.
- 3. En remarquant que $\bigcap_{i=1}^k \overline{A_i}$ contient tous les nombres premiers à partir de \mathfrak{p}_{k+1} , justifier que $\limsup_{n\to+\infty} \delta_n(\mathbb{P}) \leqslant P_k$.
- **4.** En déduire que \mathbb{P} est de densité nulle.