

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 A61K 38/22, 45/00	A1	(11) 国際公開番号 WO98/34636
		(43) 国際公開日 1998年8月13日(13.08.98)
(21) 国際出願番号 PCT/JP98/00483		(81) 指定国 AU, CA, CN, HU, JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) 国際出願日 1998年2月5日(05.02.98)		
(30) 優先権データ 特願平9/22594	1997年2月5日(05.02.97) JP	添付公開書類 国際調査報告書
(71) 出願人 (米国を除くすべての指定国について) サントリー株式会社(SUNTORY LIMITED)[JP/JP] 〒530-0004 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP)		
(72) 発明者 ; および (75) 発明者／出願人 (米国についてのみ) 猪俣則夫(INOMATA, Norio)[JP/JP] 山木 明(YAMAKI, Akira)[JP/JP] 古谷真優美(FURUYA, Mayumi)[JP/JP] 日高寿範(HIDAKA, Toshinori)[JP/JP] 〒618-8503 大阪府三島郡島本町若山台1丁目1番1号 サントリー株式会社 生物医学研究所内 Osaka, (JP)		
(74) 代理人 弁理士 石田 敬, 外(ISHIDA, Takashi et al.) 〒105-8423 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP)		
(54)Title: MEDICINAL COMPOSITIONS FOR TREATING CARDIAC DISEASES CAUSED BY CARDIAC HYPERTROPHY		
(54)発明の名称 心肥大に基づく心臓病治療用医薬組成物		
(57) Abstract Medicinal compositions for treating cardiac diseases caused by cardiac hypertrophy, such as cardiac failure, ischemic cardiac diseases and arrhythmia. These compositions contain, as the active ingredient, substances capable of binding to GC-A which is an NP receptor and promoting the production of cGMP. Examples of these active substances include natriuretic peptides such as atrial natriuretic peptides and cerebral natriuretic peptides.		

(57) 要約

心不全、虚血性心疾患及び不整脈等の心臓病発症の原因である心肥大に基づく心臓病治療用医薬組成物を提供する。このため、N P受容体であるG C - Aに結合し、c G M P産生を亢進し得る物質を有効成分とする心肥大に基づく心臓病治療用医薬組成物を提供する。有効成分の具体例として、ナトリウム利尿ペプチド、例えば心房性ナトリウム利尿ペプチド、脳性ナトリウム利尿ペプチドが挙げられる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AL アルバニア	FI フィンランド	LT リトアニア	SN セネガル
AM アルメニア	FR フランス	LU ルクセンブルグ	SZ スワジランド
AT オーストリア	GA ガボン	LV ラトヴィア	TD チャード
AU オーストラリア	GB 英国	MC モナコ	TG トーゴー
AZ アゼルバイジャン	GE グルジア	MD モルドヴァ	TJ タジキスタン
BA ボスニア・ヘルツェゴビナ	GH ガーナ	MG マダガスカル	TM トルコミニスタン
BB バルバドス	GM ガンビア	MK マケドニア旧ユーゴス	TR トルコ
BE ベルギー	GN ギニア	ML マリ	TT トリニティ・トバゴ
BF ブルキナ・ファソ	GW キニニア・ビサオ	MN モンゴル	UA ウクライナ
BG ブルガリア	GR ギリシャ	MR モーリタニア	UG ウガンダ
BH ベナン	HU ハンガリー	MW マラウイ	US 米国
BR ブラジル	ID インドネシア	MX メキシコ	UZ ウズベキスタン
BY ベラルーシ	IE アイルランド	NE ニジエール	VN ヴィエトナム
CA カナダ	IL イスラエル	NL オランダ	YU ユーロースラヴィア
CF 中央アフリカ	IS アイスランド	NO ノールウェー	ZW ジンバブエ
CG コンゴ共和国	IT イタリア	NZ ニュージーランド	
CH スイス	JP 日本	PL ポーランド	
CI コートジボアール	KE ケニア	PT ポルトガル	
CM カメルーン	KG キルギス	RO ルーマニア	
CN 中国	KR 韓国	RU ロシア	
CU キューバ	KZ カザフスタン	SD スーダン	
CY キプロス	LC セントルシア	SE スウェーデン	
CZ チェコ	LK シリビテンシティン	SG シンガポール	
DE ドイツ	LK スリランカ	SI シエニニア	
DK 邦マーク	LR リベリア	SK スロ伐キア	
EE エストニア	LS レソト	SL シエラ・レオネ	
ES スペイン			

明細書

心肥大に基づく心臓病治療用医薬組成物

技術分野

本発明は、ナトリウム利尿ペプチド（N P）受容体であるグアニル・サイクラーゼA（G C - A）に作用し、サイクリックグアノシンモノフォスフェート（c G M P）産生を亢進し得る物質を有効成分とする心肥大に基づく心臓病治療用医薬組成物に関するものである。

背景技術

高血圧症や心弁膜症による心室への負荷の増大、あるいは心筋梗塞、心筋炎や心筋症などによる心筋細胞自体の障害が生じると、主に心筋細胞の肥大により心室は心拍出量を保つようにその形態を変化させ、いわゆる心肥大となる。このような心肥大は、ある程度までは心筋細胞障害や機械的負荷に対する適応現象と考えられるが、過剰な負荷が持続的に加わり肥大が著しいときには、収縮機能や拡張機能が破綻し、心拍出量が低下して慢性心不全に至るとともに、虚血状態に陥りやすく致死性の不整脈も発生しやすくなる。心肥大の程度は心臓病の予後を規定する要因の一つであると考えられ、フラミンガムスタディーを代表とする大規模前向調査により、心肥大があると心不全を始め、狭心症や心筋梗塞などの虚血性心疾患、不整脈などの発病率が2.5～3倍に上昇することが判明している（山崎 力、矢崎義雄、心不全、p37-45、篠山重威編、医薬ジャーナル社、1997）。従って、過度の心肥大の形成を抑制する、あるいは心肥大を退縮させる薬剤は慢性心不全を含む心臓病の発症進展の防

御に有効であると考えられる。

慢性心不全に対する治療法としては、従来心臓の収縮力を改善し、心拍出量を増大する目的で強心薬が主に用いられてきた。しかしながら、強心薬は急性的に自覚症状改善効果、運動耐容能改善効果を示すものの、慢性心不全治療の最終目標である生命予後の改善、すなわち延命効果の面では効果がなく、むしろ予後を悪くするという結果が得られている (Packer et al., N. Engl. J. Med., Vol. 325, p1468, 1991)。

一方、心肥大の発生・進展には、カテコールアミン、アンジオテンシンII、アルドステロン、エンドセリン、バソプレッシンなどの神経体液性因子が関与することが示唆されており、これらの因子の産生あるいは情報伝達系を阻害する薬剤の開発、臨床応用が進められている。しかし、生体内において心肥大の発生機序にはこれら因子の複数が関わっており、単一の因子に対する拮抗作用だけでは不十分であることが予想される。例えば、アンジオテンシンIIを產生する酵素であるアンジオテンシン変換酵素 (ACE) の阻害剤は、動物モデルにおいて心肥大の発症進展を抑制し (Brilla et al., Circulation, Vol. 83, p1771, 1991)、臨床的にも慢性心不全患者に投与した場合、心肥大を退縮させ、生命予後を延長することが観察されているが (The SAVE Investigation, N. Engl. J. Med., Vol. 327, p678, 1992)、その効果は未だ十分なものとは言えない。

実際に、最先端の治療を行っても慢性心不全の発症後5年間の死亡率は現在なお約50%に達している。最近エンドセリン拮抗薬 (Ito et al., Circulation, Vol. 89, p2198, 1994) やバソプレッシン拮抗薬 (Tomura et al., Circulation, Vol. 94 (Suppl. I-264), 1996) が動物モデルにおいて心肥大の形成を抑制することが報告

されているが、さらに新しいメカニズムに基づき心肥大を抑制する心臓病治療薬の開発が望まれている。

発明の開示

従って、本発明の目的は慢性心不全などの心臓病の発症進展に関する心肥大の防止に有効な医薬組成物を提供することであり、更に詳しくは、ナトリウム利尿ペプチド（N P）受容体であるG C - Aに結合し、c G M P 産生を亢進し得る物質を有効成分とする心肥大に基づく心臓病治療用医薬組成物を提供することである。

図面の簡単な説明

図 1 は、大動脈狭窄によるラット心肥大モデルにおいて、狭窄直後よりA N P 0. 1 μ g / k g / 分又は5 %グルコースを1週間投与した場合のS h a m群、対照群及びA N P投与群の尿排泄量（A）、及び尿中ナトリウム排泄量（B）の経時変化を示す図である。△はS h a m群（n = 1 9）を、▲は対照群（n = 2 0）を、●はA N P群（n = 1 2）を各々示す。また、各値は平均値±標準誤差を示す。

図 2 は、腹部大動脈シャントによるラット心不全モデルにおいて、手術2週間後よりA N P 0. 1 μ g / k g / 分又は5 %グルコースを2週間投与した場合のS h a m群、対照群及びA N P投与群の右心房重量／体重比（A）、左心房重量／体重比（B）、右心室重量／体重比（C）、左心室重量／体重比（D）を示す図である。各値は6例の平均値±標準誤差を示す。また、*及び**は各々 p < 0. 0 5、0. 0 1でS h a m群との間に有意差があることを示し、#及び##は各々 p < 0. 0 5、0. 0 1で対照群との間に有意差があることを示す。有意差はA N O V Aの分散分析法にて検

定した。

図3は、図2と同様の条件における、試験終了時のSham群、対照群、及びANP投与群の肺重量／体重比（A）、ヘマトクリット値（B）を示す図である。各値は6例の平均値±標準誤差を示す。＊及び＊＊は各々 $p < 0.05$ 、 0.01 でSham群との間に有意差があることを示し、＃及び＃＃は各々 $p < 0.05$ 、 0.01 で対照群との間に有意差があることを示す。有意差はANOVAの分散分析法にて検定した。

発明を実施するための形態

本発明は、ナトリウム利尿ペプチド（NP）受容体であるグアニル・サイクラーゼA（GC-A）に作用し、サイクリックグアノシンモノフォスフェート（cGMP）産生を亢進し得る物質を有効成分とする心肥大に基づく心臓病治療用医薬組成物に関するものである。心肥大に基づく心臓病の具体例としては心不全（例えば、慢性心不全）、虚血性心疾患（例えば、心筋梗塞、狭心症）及び不整脈等が挙げられる。

本発明に係る医薬組成物の有効成分として用い得る物質は、NP受容体であるGC-Aを介してcGMP産生を亢進し得る特性を有する物質であればよく、特に特定されるのではない。当該特性を有する物質は、候補物質をGC-Aを発現する細胞又は組織（例えば、血管内皮細胞、血管平滑筋細胞、副腎皮質球状層細胞やGC-Aを強制発現させた細胞、または大動脈、肺動脈、腎糸球体、副腎皮質等）に添加し、インキュベーションした際に、cGMP分解酵素であるホスホジエステラーゼの阻害剤存在下で、（1）細胞内cGMP濃度を測定することにより当該活性を上昇させることができる物質として、又は（2）GC-Aを発現する細胞若しくは組織の膜

画分においてグアニリル・サイクラーゼ活性を測定することにより当該活性を上昇させることができる物質として得ることができる。なお、上記測定方法は公知の方法を用いることができ、例えば、Minamitake, Y. et al., Biochem. Biophys. Res. Commun., 172, 971-978 (1990), Furuya, M., et al. Biochem. Biophys. Res. Commun., 170, 201-208(1990), Furuya, M., et al. Biochem. Biophys. Res. Commun., 177, 927-931(1991)、日高寿範ら日薬理誌、101, 309-325(1993)等に記載される方法を用いることができる。上記特性を有する物質として、好ましくはナトリウム利尿ペプチド (N P) が挙げられ、更に好ましくは心房性ナトリウム利尿ペプチド (A N P) や脳性ナトリウム利尿ペプチド (B N P) 等が挙げられる。

更にA N Pとしては28個のアミノ酸よりなるヒト由来 α -h A N P (Kangawa et al., Biochem. Biophys. Res. Commun., Vol. 118, p131, 1984) (配列番号: 1) やラット由来 α -r A N P (Kangawa et al., Biochem. Biophys. Res. Commun., Vol. 121, p585, 1984) (配列番号: 2) を用いることができるが、本発明に係る有効成分のペプチドとしては、A N Pのリング構造 (C y sに基づくジスルフィド結合の形成) 及びリング構造に続くC末端部を有するペプチドであればよい。当該ペプチドとしては α -h A N Pの7-28位のアミノ酸残基を有するペプチド (配列番号: 3) が挙げられる。A N Pとしては特にヒト由来の α -h A N Pが望ましい。

また、B N Pとしては32個のアミノ酸よりなるヒトB N P (Sudo et al., Biochem. Biophys. Res. Commun., Vol. 159, p1420, 1989) (配列番号: 4) 等が挙げられる。

上記物質 (例えば、 α -h A N P) に係るアミノ酸配列に基づき、当業者であれば適宜公知の方法により、当該配列中のアミノ酸残基を欠失、置換、付加、挿入等の修飾を施すことが可能であり、得

られたペプチドがANPの受容体であるGC-Aに作用し、cGM
P産生を亢進し得るペプチドであればいずれも用いることができる
。

また、当該ペプチドは天然から純粹に単離・精製されたもの、化
学合成法又は遺伝子組換え法により製造されたものの何れをも用い
ることができる。これらのペプチドとしては、前記のものの他に、
カエルANP（配列番号：5）、ブタBNP（配列番号：6）、ラ
ットBNP（配列番号：7）、ニワトリNP（配列番号：8）など
が挙げられる。

更に、本発明の医薬組成物の有効成分に係る物質は、無機酸、例
えば塩酸、硫酸、リン酸、あるいは有機酸、例えばギ酸、酢酸、酪
酸、コハク酸、クエン酸等の酸付加塩として用いることができる。
ナトリウム、カリウム、リチウム、カルシウム等の金属塩、有機塩
基による塩の形態であってもよい。また、本発明に係る医薬組成物
は、その有効成分に係る物質の遊離形としても、又はその医薬的に
許容し得る塩であってもよい。

本発明に係る物質又はその薬理学的に許容し得る塩は、自体公知
の薬理学的に許容し得る担体、賦形剤、希釈剤などと混合して医薬
に一般に使用されている投与方法、即ち経口投与方法、又は静脈内
投与、筋肉内投与若しくは皮下投与等の非経口投与方法によって投
与するのが好ましい。

有効成分がペプチドの場合、経口投与では消化管内で分解を受ける
ため、この投与方法は一般的には効果的でないが、消化管内で分
解を受けにくい製剤、例えば活性成分であるペプチドをリボゾーム
中に包容したマイクロカプセル剤として経口投与することも可能で
ある。また、直腸、鼻内、舌下などの消化管以外の粘膜から吸収せ
しめる投与方法も可能である。この場合は坐剤、点鼻スプレー、舌

下錠といった形態で投与することができる。

本発明に係る医薬組成物の投与量は、疾患の種類、患者の年齢、体重、症状の程度及び投与経路などによっても異なるが、一般的に $0.1 \mu\text{g}/\text{kg} \sim 100 \text{mg}/\text{kg}$ の範囲で投与することができ、 $0.5 \mu\text{g}/\text{kg} \sim 5 \text{mg}/\text{kg}$ で投与するのが好ましい。

ANPは心臓より分泌され、水電解質代謝及び血圧の調節に重要な役割を果たすペプチドホルモンである。ANPの受容体は膜結合型グアニリル・サイクラーゼ構造をとり、GC-AあるいはNPR-Aと称されている。すなわち、ANPはGC-Aに結合し、細胞内のcGMPを上昇させることにより利尿・血管拡張作用などの生理作用を発現する。

ヒト及びモデル動物において、心肥大及び心不全の重症度に伴い、血中ANP濃度が上昇することが知られている。また、ANPは正常心臓では主として心房で合成されるが、心肥大時には心室でのANP産生も著明に増加する。このように病態の進展に伴い産生亢進されるANPは心不全に対する代償機構として生体防御的に作用していると考えられている。実際に心不全患者においてANPの短期間（1～24時間）の投与により血管拡張作用及び利尿作用が発現し、心臓の前負荷、後負荷が軽減され、血行動態改善効果が認められている。

しかし、心肥大に対してANPがいかなる作用を有するかについては明らかにされていない。一方、CaoらはANPが *in vitro*において培養心線維芽細胞のDNA合成を阻害することを報告している（Cao et al, Hypertension, Vol. 25, p227, 1995）が、心室において最も大きな容量（約70%）を占め、心肥大の中心的役割を果たす心筋細胞の肥大に対するANPの作用は未だ検討されていない。

更に、生体内で A N P の代謝分解に関与する中性エンドペプチダーゼ (NEP, EC 3. 4. 24. 11) の阻害剤が容量負荷により誘発した心肥大モデルラットにおいて、利尿作用及び軽度的心肥大抑制作用を示すことが報告されているが、この時の血中 A N P 濃度の上昇は明確でなく、また、NEP は A N P のみならずブラジキニンなど他のペプチドホルモンの代謝にも関わることから、利尿作用や心肥大抑制作用が A N P の分解を抑制したことに基づく、即ち A N P の作用を反映したものかどうかは明らかでない (Willenbrock et al., *Hypertension*, Vol. 27, p1259, 1996)。

このように、現在 A N P そのものの投与により心肥大の発症が抑制される、あるいは心肥大が退縮されるか否かは判っていない。

従って、本発明者らは圧負荷心肥大モデルを用いて後述の方法により A N P 持続投与による心肥大発生予防効果及び退縮効果を検討した。

また、心肥大は、高血圧による圧負荷の亢進、弁膜症による容量負荷の亢進など種々の要因によってもたらされる。そこで、A N P の心肥大抑制効果をさらに明らかにするために、前述した高血圧性の圧負荷型心肥大モデルに加えて後述の方法により容量負荷型心肥大モデルであるラット腹部動脈シャントモデルを作製し、A N P の心肥大抑制効果を検討した。更に、本モデルでは慢性心不全の主要な症状の一つである肺うっ血も呈することから、A N P の肺うっ血軽減効果についても検討した。

A. 圧負荷型心肥大モデルを用いた心肥大発生予防効果及び退縮効果の実験方法

1. 圧負荷によるラット心肥大モデルの作製方法

実験には Sprague-Dawley 系の 9 週齢雄性ラットを用いた。ペントバルビタールナトリウム (40 mg / kg) の腹腔

内投与によりラットを麻酔し、腹臥位に固定した。開腹後、腹部大動脈を露出させ、左右の腎動脈間の部分を剥離した。21G注射針を大動脈に沿わせ、左右の腎動脈間で大動脈とともに綿糸で結紮し、その後注射針を引き抜くことにより、大動脈狭窄を行った。本モデルにおいてはこのような腹部大動脈狭窄により収縮期血圧が上昇し、心臓の後負荷が増大して、左心室の肥大が生じる。偽手術 [Sham-operation (Sham)] 群には腹部大動脈の剥離のみを施した。

2. ANPの投与方法

ペントバルビタールナトリウム (40 mg/kg) の腹腔内投与による麻酔下で、ラット頸部を切開し、右頸静脈にシリコンカテーテルを挿入し、背部で固定後、カテーテルを微量注入ポンプに接続した。ヒト型ANP (α -hANP) は5%グルコースに溶解し、 $0.1 \mu\text{g}/\text{kg}/\text{分}$ の速度で静脈内に持続投与した。対照群及びSham群には5%グルコースを $2.5 \mu\text{l}/\text{分}$ の速度で持続静脈内投与した。

3. 評価方法

試験終了時に、ペントバルビタールナトリウム (40 mg/kg) の腹腔内投与によりラットを麻酔し、左頸動脈にポリエチレンカテーテルを挿入し、圧トランステューサーを介して血圧及び心拍数を測定した。その後、血漿中 α -hANP 及び rat ANF 濃度及びANPの細胞内情報伝達のセカンドメッセンジャーであるcGMP濃度を測定するために、1% (w/v) EDTA・2Na 及び 5000 KIU/mI のアプロチニンを $1/10$ 容量含む注射筒を用いて頸動脈より血液 2mI を採取した。血液は直ちに 4°C にて遠心分離し、得られた血漿を -80°C にて保存した。血漿中 α -hANP、rat ANP 及び cGMP は、それぞれ抗 α -hANP ウ

サギ血清、抗 rat ANP ウサギ血清及び抗サクシニル化 cGM P モノクローナル抗体を用いたラジオイムノアッセイ法にて測定した。さらに、採血後過剰量のペントバルビタールナトリウムを静脈内投与してラットを致死せしめ、体重を測定した後、心臓を摘出し、左心室及び右心室を分離し、それぞれの重量を測定した。体重に対する左心室重量の比率を心肥大の指標とした。

B. 容量負荷型心肥大モデルを用いた心肥大抑制効果及び肺うっ血軽減効果の実験方法

1. 容量負荷によるラット心肥大モデルの作製方法

実験には Sprague-Dawley 系の 9 週齢雄性ラットを用いた。ペントバルビタールナトリウム (40 mg/kg) の腹腔内投与によりラットを麻酔し、腹臥位に固定した。開腹後、腹部大動脈を露出させ、大動脈の腎動脈分岐部及び大腿動脈分岐部において、それぞれクランプで血流を停止した。止血した部位で大動脈内に 18 G 注射針を挿入し、大静脉へと貫通させ、動静脉シャントを作製した。注射針を引き抜き、動脈部の傷口を手術用接着剤で塞ぎ、クランプをはずした。シャント部で静脉内に動脈血が流入するのを確認した後、閉腹した。本モデルにおいてはこのような腹部大動脈シャントの形成により、静脉圧が上昇し、心臓の前負荷が増大して、右心房、右心室、左心房、左心室の順に負荷が加わり肥大が生じる。さらに、静脉系のコンプライアンスが低いため血液が貯留し、肺うっ血を呈する。偽手術 [Sham-operation (Sham)] 群には腹部大動脈の剥離のみを施した。

2. ANP の投与方法

圧負荷型心肥大モデルの場合と同様の方法で投与した。

3. 評価方法

試験終了時に、ペントバルビタールナトリウム (40 mg/kg)

) の腹腔内投与によりラットを麻酔し、左頸動脈及び左頸静脈にポリエチレンカテーテルを挿入し、それぞれ血圧、心拍数、及び右心房圧を測定した。その後、血漿中 α -hANP 及び rat ANP 濃度を測定するため、1% (w/v) EDTA · 2Na 及び 5000 KIU/ml のアプロチニンを 1/10 容量含む注射筒を用いて頸動脈より血液 2ml を採取した。血液は直ちに 4°C にて遠心分離し、得られた血漿を -80°C にて保存した。血漿中 α -hANP 及び rat ANP 濃度は、それぞれ抗 α -hANP ウサギ血清及び抗 rat ANP ウサギ血清を用いたラジオイムノアッセイ法にて測定した。また、動脈血をヘマトクリット管に採取し、遠心分離後ヘマトクリット値を測定した。さらに、採血後過剰量のペントバルビタールナトリウムを静脈内投与してラットを致死せしめ、体重を測定した後、心臓を摘出し、右心房、左心房、右心室、左心室、及び肺を分離し、それぞれの重量を測定した。体重に対する各心重量及び肺重量の比率を心肥大、及び肺うっ血の指標とした。

実施例

以下に、本発明を実施例により更に具体的に説明する。

実施例 1. ANP の心肥大発症予防効果の検討

本発明者らはまず ANP の心肥大発症予防効果について検討した。ラットに腹部大動脈狭窄手術あるいは偽手術を施した直後に頸静脈にシリコンカテーテルを挿入し、 α -hANP 0.1 μ g/kg/分、又は 5% グルコースを 2.5 μ l/分の速度で 1 週間持続静脈内投与した。1 週間後にラットの血行動態を麻酔下に測定し、採血した後屠殺し、心重量を測定した。結果を表 1 に示す。

表1：腹部大動脈狭窄ラットにおけるANP 1週間持続投与の体重、心重量、血圧および心拍数に対する作用

グループ	動物数	体重 (g)	収縮期血圧 (mmHg)	心拍数 (beats/分)	左心室重量 (mg)	左心室重量/ 体重 (mg/g)	右心室重量 (mg)	右心室重量/ 体重 (mg/g)
Sham	19	282 ± 2	146 ± 3	450 ± 7	565 ± 10	2.01 ± 0.03	154 ± 3	0.54 ± 0.01
ANP	12	283 ± 3	188 ± 8**	465 ± 7	592 ± 10	2.09 ± 0.04#	147 ± 4	0.52 ± 0.02
対照	20	269 ± 4	188 ± 5**	470 ± 10	628 ± 12**	2.34 ± 0.07**	149 ± 4	0.56 ± 0.02

Sham群は偽手術、対照群およびANP群には腹部大動脈狭窄手術を行い、Sham群および対照群には5%グルコース2.5μl/分、ANP群にはα-hANP 0.1μg/kg/分を手術直後より1週間持続静脈内投与した。

各値は平均値±標準誤差を表す。

*: **: p<0.05または0.01. Sham群との間の有意差をANOVAの分散分析法により検定した。
#: p<0.05. 対照群との間の有意差をANOVAの分散分析法により検定した。

表1に示されるように、大動脈狭窄手術及び薬物投与開始1週間後においてSham群、対照群とANP投与群との間の体重及び心拍数には有意な差異は見られなかった。対照群では大動脈狭窄による血管抵抗の増大によりSham群に比べ有意な収縮期血圧の上昇が見られ、ANP投与によりこの血圧変化に対する影響は観察されなかった。一方、対照群においてはSham群と比べて有意に左心室重量が増加し、心肥大の指標とした左心室重量／体重比(mg/g)も 2.01 ± 0.03 から 2.34 ± 0.07 に有意に増大したが、ANP投与群では左心室重量の増加は少なく、左心室重量／体重比(mg/g)は 2.09 ± 0.04 と対照群と比べて有意に小さかった。右心室重量／体重比には各群間で差異はなかった。

ANP投与群において投与7日目の血漿中 α -hANP濃度は $502 \pm 72\text{ pg}/\text{ml}$ (約 0.17 nM)であった。また、ANPの細胞内情報伝達のセカンドメッセンジャーであるcGMPの血漿中濃度はANP投与群で $5.3 \pm 0.4\text{ pmole}/\text{ml}$ であり、Sham群及び対照群(それぞれ 2.0 ± 0.3 、及び $3.4 \pm 0.5\text{ pmole}/\text{ml}$)に比べて高値を示し、持続的にANPが静脈内投与されたことが確認された。

また、血漿中の内因性ラットANP濃度はSham群で $83 \pm 8\text{ pg}/\text{ml}$ であったのに対し、対照群では $139 \pm 19\text{ pg}/\text{ml}$ に有意に上昇していたが、これは大動脈狭窄による心臓の負荷に対して代償的に内因性ANPの分泌が亢進したことを示唆する。

一方、ANP投与群における内因性ラットANP濃度は $113 \pm 10\text{ pg}/\text{ml}$ と低値傾向を示し、心肥大形成が抑制されたことを反映するものであった。

また、本試験においては α -hANP投与開始後ラットを代謝ケージにて飼育し、24時間ごとに尿を採取し、尿量及び尿中ナトリ

ウム排泄量も測定した。図1に示されるように投与期間中の尿量及び尿中Na排泄量には各群間で有意な差異は認められず、本モデルではANP投与による利尿作用は観察されなかった。

このように、ANPの1週間持続静脈内投与により心肥大の形成が抑制されることが示された。この時、体重及び右心室重量には影響がなかったことから、ANPの作用は負荷を受けた左心室に特異的なものであり、全身的な代謝障害や細胞毒性によるものではないと考えられた。また、本モデルにおいて今回用いた用量(0.1μg/kg/min)ではANPの利尿作用や降圧作用が観察されなかったことから、ANPは心臓に直接作用し、心肥大の発症を抑制したと考えられた。

実施例2. ANPの心肥大退縮効果の検討

次に、実施例1に示したプロトコールに従って、既に心肥大が生じた後にANPを持続投与し、心肥大退縮効果を有する可能性について検討した。

ラットに腹部大動脈狭窄手術あるいは偽手術を施した後15週間放置し、心肥大が定常状態に達した後に、頸静脈にシリコンカテーテルを挿入し、α-hANP 0.1μg/kg/分、又は5%グルコースを2.5μl/分の速度で3週間持続静脈内投与した。投与開始3週間後にラットの血行動態を麻酔下に測定し、採血した後屠殺し、心重量を測定した。表2にSham群、対照群及びANP投与群における薬物投与終了時の心重量及び血行動態の測定値を示した。

表 2 : 腹部大動脈狭窄手術 15 週間後のラットにおける ANP 3 週間持続投与の体重、心重量、血圧および心拍数に対する作用

グループ	動物数	体重 (g)	収縮期血圧 (mmHg)	心拍数 (beats/分)	左心室重量 (mg)	左心室重量/ 体重 (mg/g)	右心室重量 (mg)	右心室重量/ 体重 (mg/g)
S ham	9	523 ± 11	136 ± 8	380 ± 16	938 ± 15	1.80 ± 0.04	217 ± 6	0.42 ± 0.02
対照	9	492 ± 10	214 ± 8	** 428 ± 14 *	1171 ± 25 **	2.38 ± 0.05 **	214 ± 6	0.44 ± 0.01
ANP	12	502 ± 9	205 ± 8	** 451 ± 9	1056 ± 20 **, #	2.11 ± 0.06 **, #	220 ± 4	0.44 ± 0.01

S ham群は偽手術、対照群およびANP群には腹部大動脈狭窄手術を行い、S ham群および対照群には5%グルコース2.5μl/分、ANP群にはα-hANP 0.1μg/kg/分を手術15週間後より3週間持続静脈内投与した。

各値は平均値±標準誤差を表す。

* , ** : p<0.05 または 0.01. S ham群との間の有意差をANOVAの分散分析法により検定した。

: p<0.01. 対照群との間の有意差をANOVAの分散分析法により検定した。

表2に示されるように各群の体重には有意な差はなかった。対照群では大動脈狭窄による血管抵抗の増大によりSham群に比べ有意な収縮期血圧の上昇が見られ、ANP投与群においても対照群と同様に血圧が上昇し、ANPによる血圧への影響は観察されなかつた。心拍数は対照群及びANP投与群でSham群より有意に増加していた。

一方、左心室重量及び心肥大の指標である左心室重量／体重比(mg/g)はSham群(1.80±0.04)と比し、対照群(2.36±0.05)及びANP投与群(2.11±0.06)で有意に増加し、心肥大が見られたが、ANP投与群では対照群に比べて有意に低値を示し、心肥大が軽減していた。右心室重量／体重比には各群間で差異はなく、ANPの心重量低下作用は肥大した左心室に特異的であった。

なお、薬物投与を開始した手術15週間後における左心室重量は、Sham群で937±23mg、対照群で1199±28mg(各n=3)であり、対照群でSham群に比べて著明な心重量の増加、即ち心肥大の形成が認められた。この時の心重量は薬物投与終了時(18週間後)と差異がなかったことから[Sham群, 938±15mg; 対照群, 1171±25mg(各n=9)]、圧負荷による心肥大は手術15週後までに完成し定常状態に達し、薬物投与期間中(手術後15~18週)、心肥大のさらなる進展は殆どなかつたことが示された。従って、手術15週後からANPを投与することにより左心室重量／体重比が低下したことは、ANPが既に形成された心肥大を退縮させる効果を持つことを示唆するものである。

この時、内因性ラットANP濃度はSham群で70±5pg/mlであったのに対し、対照群では126±9pg/mlに有意に

上昇し、A N P 投与群では低下傾向にあった ($105 \pm 18 \text{ pg/m}^1$)。また、A N P 投与群における投与終了時の血漿中 $\alpha - \text{h A N P}$ 濃度は $426 \pm 53 \text{ pg/m}^1$ (約 0.14 nM) であった。

このように、A N P は心肥大の発生のみならず、既に発症した心肥大を退縮させる効果を示した。

実施例 3. A N P の心肥大及び肺うっ血軽減効果の検討

ラットに腹部大動脈シャント形成術又はS h a m手術を施した2週間後より、 $\alpha - \text{h A N P } 0.1 \mu \text{g/kg}/\text{分}$ 、又は5%グルコースを $2.5 \mu \text{l}/\text{分}$ の速度で2週間持続投与し、A N P の心肥大及び肺うっ血に対する作用を検討した。表3にS h a m群、対照群及びA N P 投与群における薬物投与終了時の体重及び血行動態の測定値を示した。

表3：腹部大動脈シャント手術2週間後のラットにおけるANP2週間持続投与の体重、血圧、心拍数および右心房圧に対する作用

グループ	動物数	体重 (g)	収縮期血圧 (mmHg)	心拍数 (beats/分)	右心房圧 (mmHg)
Sham	6	375 ± 10	148 ± 7	434 ± 21	7.3 ± 0.5
対照	6	373 ± 12	145 ± 6	436 ± 18	13.6 ± 2.6 **
ANP	6	369 ± 9	143 ± 4	460 ± 14	12.6 ± 0.7 *

Sham群は偽手術、対照群およびANP群には腹部大動脈シャント手術を行い、Sham群および対照群には5%グルコース2.5μl/分、ANP群にはα-hANP 0.1μg/kg/分を手術2週間後より2週間持続静脈内投与した。

各値は平均値±標準誤差を表す。

*、** : p<0.05または0.01。Sham群との間の有意差をANOVAの分散分析法により検討した。

表 3 に示されるように各群の体重に有意な差はなかった。平均血圧及び心拍数にも各群間で差異はなかった。対照群では動静脈シャントによる容量負荷の増大により S h a m 群に比べ有意な右心房圧の上昇が見られた。A N P 投与群においても対照群と同様に右心房圧が上昇し、A N P による血行動態への影響は観察されなかった。

また、心肥大の指標である右心房、左心房、右心室及び左心室重量の体重比 (m g / g) を図 2 に示した。全ての部位において、S h a m 群と比し、対照群で有意に値が増加し、著明な心肥大が形成されていた。一方、A N P 投与群では対照群に比べて、右心房、右心室、左心房重量、左心室重量／体重比のいずれにおいても有意に低下し、心肥大の形成が抑制された。

更に、肺うっ血の指標として肺重量／体重比 (m g / g) 及びヘマトクリット値 (%) を図 3 に示した。肺重量／体重比において対照群では S h a m 群に比べ有意に高い値を示したが [S h a m 群, 4. 0 2 ± 0. 1 3 ; 対照群, 4. 8 1 ± 0. 1 7] 、 A N P 群では S h a m 群と同程度にまで値が低下し (4. 0 6 ± 0. 2 5) 、 A N P による肺うっ血軽減作用が認められた。ヘマトクリット値においても、 S h a m 群に比べ、対照群では低値を示したことから、血液量の増大、即ち全身的なうっ血傾向が示唆され、 A N P 群では値が改善した。

本モデルにおいても今回用いた用量 (0. 1 μ g / k g / 分) では A N P が血圧、右心房圧に影響しなかったことから、 A N P は心臓に直接作用し、心肥大の発症を抑制したと考えられる。この時、内因性ラット A N P 濃度は S h a m 群で 4 3 ± 1 1 p g / m l であったのに対し、対照群では 8 5 4 ± 2 6 5 p g / m l に著明に上昇し、 A N P 投与群では有意に低下した (4 1 9 ± 2 0 2 p g / m l) 。これらの結果はシャント手術による心肥大の形成、及び A N P

投与が心肥大を抑制した結果を裏付けるものである。また、A N P 投与群における投与終了時の血漿中 α -h A N P 濃度は $329 \pm 113 \text{ pg/ml}$ (約 0.11 nM) であった。

なお、薬物投与を開始した手術 2 週間後においては、Sham 群に比べ对照群でわずかに右心房重量／体重比の増加が見られたが (Sham 群 ; 0.10 ± 0.01 ($n = 6$) , 対照群 ; 0.13 ± 0.004 ($n = 8$)) 、左心房、右心室、左心室、肺重量／体重比に両群で差異はなく、血漿中ラット A N P 濃度もわずかに上昇傾向を示したのみであった (Sham 群 ; $34 \pm 3 \text{ pg/ml}$ ($n = 6$) , 対照群 ; $47 \pm 8 \text{ pg/ml}$ ($n = 8$)) 。このように、腹部大動脈シャント手術 2 週後においてはほとんど病態は発症しておらず、2 週後から 4 週後にかけて病態が進行したと考えられる。従って、A N P を手術 2 週後から 4 週後まで投与することにより心肥大や肺うっ血の発症が抑制されたことが示唆される。

以上のように、A N P は圧負荷による高血圧性左心室肥大のみならず、容量負荷による心肥大の形成も抑制すること、また、心肥大の発症のみならず、肺うっ血軽減の面でも有効であることを示した。

産業上の利用可能性

本発明により、ナトリウム利尿ペプチド受容体 G C - A に作用し、c G M P 産生を亢進し得る物質を有効成分とする組成物が慢性心不全などの心臓病の発症進展に関わる心肥大の防止に有効であることが証明された。特に、有効成分として A N P を用いた場合、圧負荷心肥大モデルにおいて、A N P が心肥大の形成過程を抑制したのみならず退縮効果を示したことは、既に心肥大を発症した患者に用いた場合の治療効果を示唆し、臨床上有用である。

また、容量負荷心肥大モデルにおいても A N P が心肥大抑制効果を示し、更に肺うっ血軽減作用も示したことから、慢性心不全の主要な症状で、呼吸困難を引き起こす原因となる肺うっ血を有する患者に用いた場合の効果が示唆された。更に、A N P は血圧や心拍数、尿量に影響しない用量において心肥大や肺うっ血抑制作用を示しており、血行動態の面での副作用が少なく、安全に使用できると考えられる。

これらのことから、A N P は高血圧や弁膜症、あるいは心筋梗塞などに基づく心肥大を改善し、さらに、心機能不全の結果として生じる肺うっ血を改善し得ることが十分に示唆された。心肥大はそれ自体が虚血性心疾患、不整脈や慢性心不全の独立した危険因子であり、特に慢性心不全は死亡率の高い予後不良の疾患である。よって、心肥大を改善し、心臓への負荷を軽減するのに有効な新しい薬剤に対する要望が非常に高い現状において、本発明に係る心肥大に基づく心臓病治療用医薬組成物は非常に有用である。

配列表

配列番号：1

配列の長さ：28

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Ser Leu Arg Arg Ser Ser Cys Phe Gly Gly Arg Met Asp Arg Ile Gly

1

5

10

15

Ala Gln Ser Gly Leu Gly Cys Asn Ser Phe Arg Tyr

20

25

配列番号：2

配列の長さ：28

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Ser Leu Arg Arg Ser Ser Cys Phe Gly Gly Arg Ile Asp Arg Ile Gly

1

5

10

15

Ala Gln Ser Gly Leu Gly Cys Asn Ser Phe Arg Tyr

20

25

配列番号：3

配列の長さ：22

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Cys Phe Gly Gly Arg Met Asp Arg Ile Gly Ala Gln Ser Gly Leu Gly

1 5 10 15

Cys Asn Ser Phe Arg Tyr

20

配列番号：4

配列の長さ：32

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Ser Pro Lys Met Val Gln Gly Ser Gly Cys Phe Gly Arg Lys Met Asp

1 5 10 15

Arg Ile Ser Ser Ser Ser Gly Leu Gly Cys Lys Val Leu Arg Arg His

20 25 30

配列番号：5

配列の長さ：24

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Ser Ser Asp Cys Phe Gly Ser Arg Ile Asp Arg Ile Gly Ala Gln Ser

1 5 10 15

Gly Met Gly Cys Gly Arg Arg Phe

20

配列番号：6

配列の長さ：32

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Ser Pro Lys Thr Met Arg Asp Ser Gly Cys Phe Gly Arg Arg Leu Asp

1

5

10

15

Arg Ile Gly Ser Leu Ser Gly Leu Gly Cys Asn Val Leu Arg Arg Tyr

20

25

30

配列番号：7

配列の長さ：45

配列の型：

鎖の数：

トポロジー：直鎖状

配列の種類：

配列

Ser Gln Asp Ser Ala Phe Arg Ile Gln Glu Arg Leu Arg Asn Ser Lys

1

5

10

15

Met Ala His Ser Ser Ser Cys Phe Gly Gln Lys Ile Asp Arg Ile Gly

20

25

30

Ala Val Ser Arg Leu Gly Cys Asp Gly Leu Arg Leu Phe

35

40

45

配列番号：8

配列の長さ：29

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列

Met Met Arg Asp Ser Gly Cys Phe Gly Arg Arg Ile Asp Arg Ile Gly

1

5

10

15

Ser Leu Ser Gly Met Gly Cys Asn Gly Ser Arg Lys Asn

20

25

請求の範囲

1. ナトリウム利尿ペプチド受容体であるグアニリル・サイクラーゼAに作用し、サイクリックグアノシンモノフォスフェート産生を亢進し得る物質を有効成分とする心肥大に基づく心臓病治療用医薬組成物。
2. 心肥大に基づく心臓病が慢性心不全である請求項1に記載の医薬組成物。
3. ナトリウム利尿ペプチド受容体であるグアニリル・サイクラーゼAに作用し、サイクリックグアノシンモノフォスフェート産生を亢進し得る物質がナトリウム利尿ペプチドである請求項1に記載の医薬組成物。
4. ナトリウム利尿ペプチドが心房性ナトリウム利尿ペプチドである請求項3に記載の医薬組成物。
5. ナトリウム利尿ペプチドが脳性ナトリウム利尿ペプチドである請求項3に記載の医薬組成物。

Fig. 1

A. 尿排泄

B. 尿中ナトリウム排泄

Fig. 2

A. 右心房重量／体重比

B. 左心房重量／体重比

C. 右心室重量／体重比

D. 左心室重量／体重比

Fig. 3

A. 肺重量／体重比

B. ヘマトクリット値

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP98/00483

A. CLASSIFICATION OF SUBJECT MATTER
Int.C1⁶ A61K38/22, A61K45/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.C1⁶ A61K38/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAPLUS (STN), REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Li Cao, "Natriuretic Peptides Inhibit DNA Synthesis in Cardiac Fibroblasts", Hypertension, Vol. 25, No. 2 (1995) p.227-234	1-5
X	Hirofumi Yasue, "Clinical Significance of ANP and BNP (in Japanese)", Medicine Today, Vol. 47, No. 1 (1992) p.93-101, particularly p.97, p.98, p.100	1-5
X	Hiroshi Ito, "Cardiomegaly, Cardiac Failure and Natriuretic Peptide Family", Strides of Medicine, Vol. 165, No. 10 (1993) p.739-744, particularly p.743	1-5
X	JP, 61-167624, A (Merck & Co., Inc.), July 29, 1986 (29. 07. 86); Particularly Claims & EP, 189084, A & US, 4652549, A	1-5

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:		
"A" document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search April 28, 1998 (28. 04. 98)	Date of mailing of the international search report May 12, 1998 (12. 05. 98)
--	---

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/00483

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP, 63-303998, A (Merrel Dow Pharmaceuticals Inc.), December 12, 1988 (12. 12. 88), Particularly page 6, lower left column, line 19 & EP, 291999, A	1-5
A	Lesley A. Brown, "Differential Regulation of Natriuretic Peptide Receptor Messenger RNAs during the Development of Cardiac Hypertrophy in the Rat", J. Postgrad. Med. Sch. Vol. 92, No. 6 (1993) p.2702-2712	1-5
Y	Meihong Lin, "Cicletanine Inhibits Endothelin-1-Induced Hypertrophy of Rat Cardiomyocytes", Pharmacometrics, Vol. 51, No. 1 (1996) p.1-6	1
Y	Chemical Abstracts, Vol. 122, Abstract Number 72083 (1995) (Gardner, David G. "Molecular biology of the natriuretic peptides", Vol. 4, No. 4 (1994) p.159-164)	1

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1° A61K38/22, A61K45/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1° A61K38/22

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS(STN), REGISTRY(STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	Li Cao, "Natriuretic Peptides Inhibit DNA Synthesis in Cardiac Fibroblasts", Hypertension, Vol. 25, No. 2 (1995) P. 227-234	1-5
X	泰江 弘文, 「ANPとBNPの臨床的意義」, 最新医学, Vol. 47, No. 1 (1992) P. 93-101, 特にP. 97, P. 98, P. 100	1-5
X	伊藤 裕, 「心肥大・心不全とナトリウム利尿ペプチドファミリー」, 医学の歩み, Vol. 165, No. 10 (1993) P.	1-5

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 28.04.98	国際調査報告の発送日 12.05.98
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 田村 聖子 印 電話番号 03-3581-1101 内線 3452

C(続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	739-744, 特にP. 743	
X	J.P. 61-167624. A (メルク エンド カムパニー インコーポレーテッド) 29. 7月. 1986 (29. 07. 8 6), 特にクレーム & EP, 189084, A & US, 4652549, A	1-5
X	J.P. 63-303998. A (メレルダウファーマスティカルズ インコーポレーテッド) 12. 12月. 1988 (12. 12. 88), 特に第6頁左下欄第19行目 & EP, 291999, A	1-5
A	Lesley A. Brown, "Differential Regulation of Natriuretic Peptide Receptor Messenger RNAs during the Development of Cardiac Hypertrophy in the Rat", J. Postgrad. Med. Sch. Vol. 92, No. 6 (1993) P. 2702-2712	1-5
Y	Meihong Lin, "Cicletanine Inhibits Endothelin-1-Induced Hypertrophy of Rat Cardiomyocytes", Pharmacometrics, Vol. 51, No. 1 (1996) P. 1-6	1
Y	Chemical Abstracts, Vol. 122, Abstract Number: 72083 (1995) (Gardner, David G.) "Molecular biology of the natriuretic peptides", Vol. 4, No. 4 (1994) P. 159-164)	1