БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	_ ot _	Председатель
Протокол №	_ ot _	Председатель
Протокол №	_ ot _	Председатель
Протокол №	_ ot _	Председатель
Протокол №	ОТ	Председатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №13

НАИМЕНОВАНИЕ РАБОТЫ: Построение доверительных интервалов для оценки генеральной средней и дисперсии нормального распределения.

ЦЕЛЬ РАБОТЫ: сформировать умения и навыки по построению доверительных интервалов для оценки генеральной средней и дисперсии нормального распределения.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Статистические оценки параметров распределения.
- 1.2. Несмещенные, эффективные и состоятельные оценки.
- 1.3. Точность оценки, доверительная вероятность (надежность). Доверительный интервал.

2. Работа в аудитории

2.1. Решение типовых заданий

Задание №1. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением $\sigma = 3$. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним x, если объем выборки n = 36 и задана надежность оценки $\gamma = 0.95$.

Решение.

Найдем t. Из соотношения $2\Phi(t) = 0.95$ получим $\Phi(t) = 0.475$. По таблице Лапласа находим t = 1.96. Найдем точность оценки:

$$\delta = \frac{t\sigma}{\sqrt{n}} = \frac{1,96 \cdot 3}{\sqrt{36}} = 0,98.$$

Доверительный интервал таков: $(\bar{x}-0.98; \bar{x}+0.98)$. Например, если $\bar{x}=4.1$, то доверительный интервал имеет следующие доверительные границы:

$$\bar{x}$$
 - 0.98 = 4.1 - 0.98 = 3.12; \bar{x} + 0.98 = 4.1 + 0.98 = 5.08.

Таким образом, значения неизвестного параметра a, согласующиеся с данными выборки, удовлетворяют неравенству 3.12 < a < 5.08.

Задание №2. Произведено 500 испытаний, в каждом из которых неизвестная вероятность p появления события А постоянна. Событие А появилось в 100 испытаниях. Найти доверительный интервал, покрывающий неизвестную вероятность p с надежностью 0,95.

Решение:

Найдем относительную частоту появления выигрыша:

$$\omega = \frac{100}{500} = \frac{1}{5}.$$

Найдем t из соотношения $2\Phi(t) = 0.95$. Получим $\Phi(t) = 0.475$. По таблице Лапласа находим t = 1.96.

Найдем точность оценки:

$$\delta = t\sqrt{\frac{\omega(1-\omega)}{n}} = 1.96 \cdot \sqrt{\frac{1/5(1-1/5)}{500}} = 0.0351.$$

Доверительный интервал таков: (0.2 - 0.0351; 0.2 + 0.0351), или (0.1649; 0.2351).

Ответ: (0,1649; 0,2351).

2.2. Выполните задания.

Уровень I

Задание №1. Найти доверительный интервал для оценки с надежностью γ неизвестного математического ожидания a нормально распределенного признака X генеральной совокупности, если генеральное среднее квадратическое отклонение равно σ , выборочная средняя x и объем выборки n.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
γ	0,95	0,99	0,99	0,95	0,99	0,95	0,95	0,99	0,95	0,95	0,99	0,95	0,99	0,95	0,99
n	25	225	49	16	100	400	196	100	25	64	121	144	100	625	400
$-\frac{1}{x}$	14,9	10,2	16,8	12,4	32,5	12,5	40,2	21,6	52,4	61,3	27,8	61,5	43,1	25,3	42,5
σ	2,1	1,2	0,8	0,4	3,1	1,4	2,5	1,6	4,3	4,8	2,6	5,2	2,1	1,9	3,4

Задание №2. Изготовлен экспериментальный игровой автомат, который должен обеспечить появление выигрыша в одном случае из 100 бросаний монеты в автомат. Для проверки пригодности автомата произведено n испытаний, причем выигрыш появился m раз. Найти доверительный интервал, покрывающий неизвестную вероятность появления выигрыша с надежностью γ .

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
γ	0,999	0,925	0,99	0,95	0,975	0,925	0,99	0,999	0,975	0,925	0,99	0,999	0,975	0,925	0,99
n	400	100	200	500	100	300	250	500	200	400	300	200	500	500	400
m	5	2	3	6	4	4	3	6	3	5	5	4	6	6	6

Уровень II

Задание №3. Найти минимальный объем выборки, при котором с надежностью γ точность оценки математического ожидания a генеральной совокупности по выборочной средней равна 0,3, если известно среднее квадратическое отклонение 1,2 нормально распределенной генеральной совокупности.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
γ	0,975	0,925	0,99	0,95	0,975	0,925	0,99	0,95	0,975	0,925	0,99	0,95	0,925	0,99	0,95
δ	0,3	0,2	0,5	0,1	0,3	0,6	0,7	0,4	0,5	0,6	0,3	0,2	0,5	0,4	0,3
σ	1,2	1,4	0,8	0,4	1,1	1,4	1,5	0,8	1,2	1,4	0,9	0,5	0,4	1,4	1,1

<u>Уровень III (</u>при выполнении задания значение N соответствует номеру варианта)

Задание №4. Из генеральной совокупности извлечена выборка:

x_i	N	N+1	N+3	N+4	N+5	N+7	N+8	N+9	N+10	N +12
n_i	2	1	2	4	2	2	1	3	1	2

Оценить с надежностью 0.95 математическое ожидание a нормально распределенного признака генеральной совокупности с помощью доверительного интервала.

Уровень IV

Задание №5. Что происходит с длиной доверительного интервала при увеличении: а) объема выборки n, б) доверительной вероятности γ? Ответ обоснуйте.

Контрольные вопросы:

- 1. Как вы понимаете «найти статистическую оценку неизвестного параметра»?
- 2. Какие оценки называют несмещенными, эффективными?
- 3. Что представляет собой надежность оценки?
- 4. Что представляет собой доверительный интервал? Как его найти?

Литература

Гмурман, В. Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/В. Е. Гмурман. — 9-е изд., стер. — М.: Высш. шк., 2003. — с.211 – 219.

Преподаватель В.П. Кошелева