Lista de Exercícios 2ª Prova

Circuitos Digitais I

Prof. Fernando Passold (Problemas)

- 1) Use o CI 74LS138 (DEC 3/8) para montar um circuito decodificador de 1 até 32 (32 saídas).
- 2) Use o CI 74HC151 (MUX-8) para montar um circuito multiplexador de 16 entradas, usando apenas mais uma porta inversora e uma porta OR.
- 3) Use um CI Multiplexador para gerar o seguinte função lógica: Z = ABC + ABC + ABC
- 4) O CI Decodificador 7442 não possui uma entrada de ENABLE. Entretanto, podemos adaptá-lo para operar como um decodificador de 1-para-8 se não usarmos as portas \overline{O}_8 e \overline{O}_9 e se transformarmos a entrada D como um ENABLE. Mostre via circuito como o 7442 (DEC 1-para-10) pode ser arranjado para trabalhar como um DEC de 1-para-8 e explique como a entrada D vai habilitar ou desabilitar as saídas.
- 5) Como podemos usar o CI 74LS138 (DEC 1-para-8) para formar um Decodificador de 1-para-16?
- 6) Um técnico usando o circuito da figura abaixo descobriu que o circuito não está funcionando bem para alguns códigos de entrada que foram coletados na tabela ao lado. Examine esta tabela e determine a provável causa do defeito.

7) O circuito da figura abaixo usa 3 multiplexadores de 2 entradas. Determine a função de saída realizada por este circuito.

- 8) Use a mesma idéia do problema anterior (7) para arranjar alguns multiplexadores de 1-para-8 (74151) para formar um multiplexador de 1-para-64.
- 9) Mostre como 2 CIs 74157 ($4 \times MUX$ 1-para-4) e um CI 74151 (MUX 1-para-8) podem ser arranjados para formar um multiplexador sem necessidade de usar qualquer lógica adicional. Enumere as entradas de I_0 até I_{15} para mostrar como elas correspondem ao código de entrada.
- 10) Mostre como um CI 74151 (MUX de 1-para-8) pode ser usado para gerar a seguinte função lógica: Z = AB + BC + AC.
- 11) Mostre como um multiplexador de 16 entradas como o 74150 pode ser usado para gerar a função: $Z = \overline{ABCD} + BCD + A\overline{BD} + A\overline{BCD}$.

12) O circuito da figura à seguir mostra como um multiplexador de 8 entradas que pode ser usado para gerar uma função lógica de 4 entradas mesmo que o MUX possua apenas 3 pinos de seleção. Três das variáveis de entrada A, B e C são conectadas aos pinos de seleção. A quarta variável, D e sua inversa, D, são conectados de forma a selecionar os dados

de entrada deste multiplexador como requer a função lógica desejada para este circuito. As outras entradas de dados do MUX são conectadas em nível lógico ALTO ou BAIXO conforme requerido para desempenhar a função lógica desejada.

- a) Monte uma tabela verdade que mostre a saída Z referente as 16 possíveis combinações das variáveis de entrada;
 - Escreva uma expressão lógica na forma de soma-de-produtos para Z e simplifique esta expressão para perceber que:

$$Z = \overline{C}B\overline{A} + D\overline{C}\overline{B}A + \overline{D}C\overline{B}\overline{A}$$

- 13) O método usado pela figura anterior pode ser usado para gerar uma função lógica para 4 variáveis se forem seguidos os seguintes passos:
 - 1. Monte a tabele verdade para desempenhar a função lógica desejada tendo Z como a saída do circuito.
 - 2. Escreva a expressão para Z na forma de soma-de-produtos; não faça simplificações. Por exemplo, Z = DCBA + DCBA + DCBA + DCBA + DCBA + DCBA.
 - 3. Observe os termos onde ocorrem as mesmas combinações de C, B e A e fatore:

$$Z = DC\overline{B}A + CB\overline{A}(\overline{D} + D) + \overline{C}BA(\overline{D} + D) + \overline{D}\overline{C}\overline{B}A$$

$$Z = DC\overline{B}A + CB\overline{A} + \overline{C}BA + \overline{D}\overline{C}\overline{B}A$$

4. Considere aqueles termos que contenham somente C, B e A na forma normal ou complementada. Para cada um destes, conecte a respectiva entrada de dados do MUX no nível lógico ALTO:

 $CB\overline{A} \rightarrow \text{conecte ALTO para a entrada } I_6.$

 $\overline{CBA} \rightarrow \text{conecte ALTO para a entrada } I_3.$

5. Considere os termos que contenham a variável D. Conecte as variáveis D e D na entrada do MUX que corresponda às variáveis CBA:

 $DC\overline{B}A \rightarrow \text{conecte D para a entrada } I_5$.

 $\overline{D}\overline{C}\overline{B}A \to \text{conecte } \overline{D}$ para a entrada I_1 .

- 6. Conecte as entradas restantes do MUX para o nível lógico BAIXO.
 - (a) Verifique o circuito da figura do problema anterior usando este método.
 - (b) Use este método para implementar a função que produza nível lógico ALTO apenas quando as 4 variáveis de entrada estejam no mesmo nível lógico ou quando as variáveis B e C estejam em níveis lógicos diferentes.
- 14) Para cada declaração abaixo, indique quando esta se refere a um Decodificador, Codificador, um MUX ou um DEMUX:
 - (a) Possui mais entradas que saídas.
 - (b) Usa entradas de Seleção (SELECT).
 - (c) Pode ser usado para conversão paralelo-para-série.
 - (d) Produz um código binário nas suas saídas.
 - (e) Somente uma de suas saídas pode estar ativa a cada instante de tempo.
 - (f) Pode ser usado para direcionar um sinal de entrada para uma de várias saídas.
 - (g) Pode ser utilizado para gerar funções lógicas arbitrárias.
- 15) Mostre como o CI Decodificador 7442 pode ser usado como um DEMUX de 1-para-8.

16) Considere as formas de onda aplicadas na entrada do 74LS138 (DEC 3/8) como segue:

Os pinos \overline{E}_1 e \overline{E}_2 são conectados à nível BAIXO. Desenhe as formas de onda para as saídas $\overline{O}_0, \overline{O}_3, \overline{O}_6$ e \overline{O}_7 .

- 17) Usando apenas 2 CIs 74154 (DEC 4/16), monte um Decodificador de 32 saídas.
- 18) Usando apenas 2 CIs 74154 (DEC 4/16), monte um DEMUX de 32 saídas (ver Pág. 8)
- 19) Use o 74154 (DEC 4/16) para gerar a seguinte função lógica: $F_{a,b,c,d} = \sum_{m} (1,3,6,7,10)$. Necessita de porta lógica adiconal.
- 20) Monte um MUX de 16 canais usando apenas CIs 74151 (MUX-8), sem usar portas lógicas adicionais.
- 21) Mostre como montaria um DEMUX para 2 bits de saída, para selecionar linha de dados de 2 palavras de 8 bits, usando apenas 2 CIs 74151 (MUX-8).
- 22) Analisando os circuitos abaixo, identifique o tipo de função que este estão realizando.

23) O circuito da figura abaixo cumpre que função lógica?

24) Comprove que os dois circuitos à seguir executam a mesma função lógica.

24) Continuação:

- 25) Como montar um MUX de 16 canais de entrada usando apenas CIs de Multiplexador de 8 canais de entrada?
- 26) Monte um circuito usando MUX de 8 canais que gere a seguinte tabela verdade:

ABC	S ₁	S ₂
000	0	0
001	1	0
010	1	0
011	0	1
100	1	0
101	0	1
110	0	1
111	0	1

28) Monte um circuito usando portas lógicas básicas capaz de executar a seguinte função lógica dada pela tabela abaixo (Gerador de paridade Par):

I ₃	I ₂	I ₁	I ₀	P
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	0 1 0 1 0	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	Q	0
1	0	0	1	1
1	0	1	0	1
1	0 0 0 1 1 1 1 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1	1	0
1	1	0	0	1
0 0 0 0 0 0 0 0 1 1 1 1 1	1	0	1 0 1 0 1 0 1 0 1	1001011001001
1	1	1	0	0
1	1	1	1	1

27) Identifique o tipo de função lógica executado pelo circuito abaixo:

Ainda sobre Mapas de Karnaugh:

- 29) Usando Mapas de Karnaug e portas lógicas básicas, obtenha os circuitos para:
 - (a) Um decodificador de código BCD 8421 para Excesso 3. A tabela com os códigos é mostrada à seguir.
 - (b) Um decodificador de código Excesso-3 para código 8421.
 - (c) Um decodificador de código "2 entre 5" para código BCD 8421. (d) Um decodificador de código BCD 8421 para código Gray.

As tabelas referentes aos códigos são apresentadas à seguir.

BC	D 8	421		Exc	esso	3	18.000
A	В	С	D	S3	S ₂	S 1	S ₀
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0 .	1	1
1	0	0	1	1	1	0	0
1	0	1	0	ø	ø	ø	ø
1	0	1	1	ø	ø ø	ø	ø ø
1	1	0	0	ø	ø	ø	ø
1	1	0	1	& & & &	ø	ø	ø
1	1	1	0		ø	ø	ø
1	1	1	1	ø	ø	ø	ø

BCD 8421			Gray				
A	В	С	D	S ₃	s ₂	s_1	s o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	ō
1	1	0	0	1	0	1	0
1	1	0	1	1	0	ī	1
1	1	1	0	1	0	ō	ī
1	1	1	1	1	Ō	Ö	ō

2	ent	re	5		Cóć	ligo	BCD	842	1
A	В	С	D	E	S 8	S 4	0.000	s ₁	
0	0	0	0	0	ø	ø	ø	ø	
0	0	0	0	1	ø	ø	ø	ø	
0	0	0	1	0	ø	ø	ø	ø	
0	0	0	1	1		0	0	0	
0	0	1	0	0	ø 0 0	ø	ø	ø 1	
0	0	1	0	1	0	0	0	1	
0	0	1	1	0		0	1	0	
0	0	1	1	1	ø	ø	ø	ø	
0	1	0	0	0	ø	ø	ø	ø	
0	1	0	0	1	0	0	1	1	
0	1	0	1	0	0	1	0	0	
0	1	0	1	1	ø	ø. 1	ø	ø	
0	1	1	0	0	0	1	0	1	
0	1	1	0	1	ø	ø	ø	ø	
0	1	1	1	0	ø	ø	ø	ø	
0	1	1	1	1	ø	ø	ø	ø	
1	0	0	0	0	ø	ø 1	ø	ø	
1	0	0	0	1	0	1	1	0	
1	0	0	1	0	0	1	1	1	
1	0	0	1	1	ø 1	ø	ø	ø	
1	0	1	0	0	1		0	0	
1	0	1	0	1	ø	ø.	ø	ø	
1	0	1	1	0	ø	ø	ø	ø	
1	0	1	1	1	ø	ø	ø	ø	
1	1	0	0	0	1	0	0	1	
1	1	0	0	1	ø	ø	ø	ø	
1	1	0	1	0	ø	ø	ø	ø	
1	1	0	1	1	ø	ø	ø	ø	
1	1	1	0	0	ø	ø	ø	ø	
1	1	1	0	1	ø	ø	ø	ø	
1	1	1	1	0	ø	ø	ø	ø	
1	1	1	1	1	ø	ø	ø	ø	594

Obs: Usando Decodificador como DEMUX:

Uso do decodificador como demux

Até mesmo os decodificadores que não possuem entrada tipo enable podem ser usados como demultiplexadores se seguirmos o procedimento abaixo:

- No caso de decodificadores com N entradas, considere a entrada mais significativa do decodificador como entrada de dados;
- 2) Considere as demais entradas do decodificador como entradas de seleção do demux;
- Das 2^N saídas do decodificador, considere as primeiras 2^{N-1} saídas menos significativas como saídas do demux

A Figura 4.29 apresenta o uso do circuito decodificador 7442 como demultiplexador, conforme procedimento sugerido.

Uso do CI 7442 como demux.

Outros exemplos:

O circuito decodificador 74154, que já é nosso conhecido, pode também ser usado como um demultiplexador com 16 saídas. Neste caso, as entradas tipo *strobe* (G1 e G2) devem ser usadas conforme uma das sugestões abaixo:

- 1) A entrada de dados deve coincidir com as entradas strobe interligadas (Figura 4,26a);
- 2) Reserve uma das entradas strobe como entrada strobe do demultiplexador e a outra entrada strobe como entrada de dado (Figura 4.26b).

Uso do CI 74154 como demultiplexador.