Unsupervised Learning למידה לא מודרכת

עסקנו עד עתה בלמידה מודרכת (Supervised Learning). בלמידה מודרכת דוגמאות האימון מתוייגות. לדוגמא:

1 5/10/2018

Unsupervised Learning למידה לא מודרכת

עסקנו עד עתה בלמידה מודרכת (Supervised Learning). בלמידה מודרכת דוגמאות האימון מתוייגות. לדוגמא:

2 5/10/2018

- הדוגמאות אינן מתוייגות. או שלכולן אותו תיוג או שהתיוג לא
 ידוע.
- בהינתן קבוצת הנתונים, האם אפשר למצוא מבנה בנתונים?

לדוגמא, אלגוריתם לא מודרך (unsupervised) עשוי לקבץ
 את הנתונים לתת קבוצות (צבירים או clusters) באופן
 קוהרנטי.

- .Clustering algorithm אלגוריתם כזה נקרא •
- .Google news :clustering דוגמא לאלגוריתם המבצע •
- מבצע clustering של אלפי פריטי חדשות ממקורות שונים,
 ומקבץ אותם לפי הנושא לצבירים שכל אחד מהם מכיל
 פריטי חדשות דומים.
- https://news.google.com/

דוגמאות נוספות:

- 1. אירגון מחשבים ב- clustering. על-ידי clustering של מחשבים ב- מחשבים לעבוד יחד באותו מקום אפשר לחסוך.
 - 2. אנליזה של רשתות חברתיות
 - 3. אנליזה של נתונים אסטרונומיים.

- , אלגוריתם ה- K-means הוא האלגוריתם הפופולרי ביותר
 - בו משתמשים באופן הנרחב ביותר.

(אשכולות) clusters נניח שרוצים לקבץ את הנתונים לשני •

אלגוריתם ה- K-means

- מתחילים על-ידי בחירה של שתי נקודות הנקראות מרכזי
 clusters centroids הכובד (צנטרואידים) של האשכולות, או
 האלגוריתם מורכב משני צעדים.
- Cluster מאחד השיוך ל- Cluster assignment step המרחק הקצר ביותר מאחד הצנטרואידים. כלומר נשייך כל אחת מהנקודות לקבוצה 1 או 2 לפי המרחק הקצר ביותר של הנקודה לכל אחד מהצנטרואידים.
 - הצעד השני הוא צעד מציאת Group centroid step הצנטרואידים של הקבוצות החדשות שנוצרו בצעד השיוך. נזיז את הצנטרואידים לנקודות חדשות לפי הממוצע של כל הנקודות השייכות לאחת מהקבוצות.

8 5/10/2018

'אלגוריתם ה- K-means מקטין את השגיאה הריבועית

אפשר להראות כי אלגוריתם ה- K-means מקטין את השגיאה הריבועית הממוצעת מהצנטרואיד הקרוב, כלומר שואף להביא למינימום את הביטוי:

$$E = \frac{1}{n} \sum_{i=1}^{C} \sum_{j \in G_i} ||x_j - \mu_i||^2$$

$$||x||_{2}^{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad x \in \mathbb{R}^{n}$$
 באשר:

נראה כי כל אחד מהצעדים של האלגוריתם, כלומר סווג הדוגמאות לקבוצות לפי המרחק מהצנטרואידים, ומציאת הצנטרואידים ממזער את השגיאה ביחס למשתנים הנקבעים באותו צעד.

9 5/14/2018

'אלגוריתם ה- K-means מקטין את השגיאה הריבועית

הצעד הראשון: סווג הדוגמאות לצנטרואידים: עבור הצנטרואידים הידועים, אותם נסמן ב- μ_i סווג הדוגמאות לצנטרואידים ממזער את השגיאה על-פי הגדרת הצעד, כי

$$i = \arg\min_{i} \|x - \mu_i\|$$

:השגיאה בצעד זה היא

$$E = \sum_{k=1}^{n} \left(\min_{i} \|x_{k} - \mu_{i}\|_{2} \right)^{2}$$

10 5/15/2018

אלגוריתם ה- K-means מקטין את השגיאה הריבועית

$$\mu_i$$
, $i = 1, 2, ..., C$

בצעד השני יש למצוא •

$$E_i = \sum_{j \in G_i} \left(\left\| x_j - \mu_i \right\|_2 \right)^2$$
 : (2)

יהיה מינימלי.

נמצא את המינימום של Ei עבור i כלשהו על-ידי גזירה והשוואה ל-0, ונקבל כי הצנטרואיד המביא את השגיאה למינימום הוא הממוצע של הנקודות בקבוצה:

$$\mu_i = \frac{1}{|G_i|} \sum_{j \in G_i} x_j$$

5/15/2018

'אלגוריתם ה- K-means מקטין את השגיאה הריבועית

בשני צעדי הלימוד המינימום הוא הגלובלי ביחס למשתנים הנקבעים באותו צעד, כאשר המשתנים האחרים הם קבועים. בצעד הראשון – מתוך הגדרה.

בצעד השני – לפונקציית השגיאה נקודת קיצון אחת והיא נקודת המינימום המתקבלת.

הפונקציה ($E_i = \sum_{j \in G_i} \left(\left\| x_j - \mu_i \right\|_2 \right)^2$) היא ריבועית וקמורה.

למרות זאת לפונקציה $Eig(G_i,\mu_iig)$ מספר נקודות מינימום מקומיות, והאלגוריתם מתכנס לאחת מהן.

12 5/15/2018

א קביעת מספר הקבוצות K

כאשר לא ידוע מספר הקבוצות K, ומעוניינים לקבוע K נכון ו"טבעי" תוך כדי ריצת האלגוריתם. נגדיר את שגיאת ה- Clustering:

$$E = \frac{1}{n} \sum_{i=1}^{C} \sum_{j \in G_i} ||x_j - \mu_i||^2$$

5/15/2018

א קביעת מספר הקבוצות K

מה המשמעות של שגיאת ה- clustering?

עוברים על כל הקבוצות (אינדקס i), ובכל קבוצה מחשבים את סכום המרחקים מהצנטרואיד μ_i כלומר עוברים על כל ה- μ_i של אותה קבוצה.

מה קורה אם מגדילים את מספר הקבוצות K!

ככל שמגדילים את K – פחות איברים בקבוצה, כאשר אם מספר הקבוצות k=n כל אחת מנקודות המדידה הופכת לצנטרואיד. השגיאה E תהיה אפס, אך לא נרוויח מידע, המטרה היא לחלק לקבוצות.

 $\mathrm{E}(\mathrm{K})$ שיטה אפשרית להגדיל את K באופן הדרגתי, לחשב את באופן באופן הדרגתי, לחשב את באופן הדרגתי, לחשב את $\mathrm{E}(\mathrm{K})$

$$1 - \frac{E(k)}{E(k-1)} < \varepsilon$$

א קביעת מספר הקבוצות K

כאשר ההנחה היא שהשגיאה בצעד ה- K קטנה יותר מהשגיאה בצעד הקודם (ה-K-1), ולכן :

$$\frac{E(K)}{E(K-1)} < 1$$

 ± 1 נעשה גדול היחס ישאף ל- \mathbb{K}

$$\frac{E(K)}{E(K-1)} > 1 - \varepsilon$$

Microarray Data :דוגמא

- Microarray data are usually transformed into an intensity matrix (below)
- The intensity matrix allows biologists to make correlations between different genes (even if they are dissimilar) and to understand how genes functions might be related
- Clustering comes into play

Intensity (expression level) of gene at measured time

Time:	Time X	Time Y	Time Z
Gene 1	10	8	10
Gene 2	1 0	0	9
Gene 3	4	8.6	3
Gene 4	7	8	3
Gene 5	1	2	3

Clustering of Microarray Data

- Plot each datum as a point in Ndimensional space
- Make a distance matrix for the distance between every two gene points in the Ndimensional space
- Genes with a small distance share the same expression characteristics and might be functionally related or similar!
- Clustering reveal groups of functionally related genes

Clustering of Microarray Data (cont'd)

Time	1 hr	2 hr	3 hr		g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}
g_1	10.0	8.0	10.0	g_1	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	10.0	0.0	9.0	g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	$^{2.0}$	1.0
g_3	4.0	8.5	3.0	g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
g_4	9.5	0.5	8.5	94	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
g_5	4.5	8.5	2.5	g_5	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
g_6	10.5	9.0	12.0	96	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
97	5.0	8.5	11.0	97	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
g_8	2.7	8.7	2.0	g_8	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
g_9	9.7	2.0	9.0	99	6.1	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
g10	10.2	1.0	9.2	g10	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

(a) Intensity matrix, I

(b) Distance matrix, d.

Homogeneity and Separation Principles

- Homogeneity: Elements within a cluster are close to each other
- Separation: Elements in different clusters are further apart from each other
- ...clustering is not an easy task!

Bad Clustering

This clustering violates both Homogeneity and Separation

Good Clustering

This clustering exhibits both **good**Homogeneity and Separation

Clustering Techniques

- Agglomerative: Start with every element in its own cluster, and iteratively join clusters together
- Divisive: Start with one cluster and iteratively divide it into smaller clusters
- Hierarchical: Organize elements into a tree, leaves represent genes and the length of the branches represent the distances between genes. Similar genes lie within the same subtrees

Hierarchical Clustering

Hierarchical Clustering (cont'd)

- Hierarchical Clustering is often used to reveal evolutionary history
- Here is an example using the evolution of the primates

Hierarchical Clustering Algorithm

```
1.
     Hierarchical Clustering (d, n)
       Form n clusters each with one element
3.
       Construct a graph T by assigning an one vertex to each cluster
4.
      while there is more than one cluster
5.
         Find the two closest clusters C_1 and C_2
6.
         Merge C_1 and C_2 into new cluster C with /C_1/+/C_2/ elements
7.
         Compute distance from C to all other clusters
        Add a new vertex C to T and connect to vertices C_1 and C_2
8.
         Remove rows and columns of d corresponding to C_1 and C_2
9.
        Add a row and column for d for the new cluster C
10.
11.
       return T
```

The algorithm takes a *n*x*n* distance matrix *d* of pairwise distances between points

Hierarchical Clustering: Recomputing Distances

- Different ways to define distances between points/clusters may lead to different clusterings
- d_{min}(C, C*) = min d(x,y) for all elements x in C* and y in C
 - Distance between two clusters is the smallest distance between any pair of their elements
- $d_{avg}(C, C^*) = (1 / |C^*||C|) \sum d(x,y)$ for all elements x in C^* and y in C
 - distance between two clusters is the average distance between all pairs of their elements

	g ₁	g_2	g ₃	9 ₄	9 ₅	$g_{\scriptscriptstyle{6}}$	g ₇	g ₈	g_9	g ₁₀
g ₁	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g ₃	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
94	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
9 ₅	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
9 ₆	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
g ₇	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
g ₈	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
g ₉	6.4	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
g ₁₀	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

	g ₁	g_2
g ₁	0.0	8.1
g_2	8.1	0.0
9 ₄	7.7	0.9
9 ₆	2.3	9.5
g ₇	5.1	10.1
g ₈	10.2	12.8
g ₉	6.4	2.0
g ₁₀	7.0	1.0

g ₄
7.7
0.9
0.0
9.2
9.5
12.0
1.6
1.1

9 ₆	g ₇	g ₈	g ₉	g ₁₀
2.3	5.1	10.2	6.1	7.0
9.5	10.1	12.8	2.0	1.0
9.2	9.5	12.0	1.6	1.1
0.0	5.6	12.1	7.7	8.5
5.6	0.0	9.1	8.3	9.3
12.1	9.1	0.0	11.4	12.4
7.7	8.3	11.4	0.0	1.1
8.5	9.3	12.4	1.1	0.0

	g ₁	g ₂	9 ₄	g ₆	g ₇	g ₈	g ₉	g ₁₀	c₁(g₃g₅)
g ₁	0.0	8.1	7.7	2.3	5.1	10.2	6.1	7.0	9.2
g_2	8.1	0.0	0.9	9.5	10.1	12.8	2.0	1.0	12.0
g ₄	7.7	0.9	0.0	9.2	9.5	12.0	1.6	1.1	11.2
g ₆	2.3	9.5	9.2	0.0	5.6	12.1	7.7	8.5	11.1
g ₇	5.1	10.1	9.5	5.6	0.0	9.1	8.3	9.3	8.1
g ₈	10.2	12.8	12.0	12.1	9.1	0.0	11.4	12.4	1.0
g ₉	6.4	2.0	1.6	7.7	8.3	11.4	0.0	1.1	10.5
g ₁₀	7.0	1.0	1.1	8.5	9.3	12.4	1.1	0.0	11.5
c₁(g₃g₅)	9.2	12.0	11.2	11.1	8.1	1.0	10.5	11.5	0.0

	g ₁
g ₁	0.0
g ₆	2.3
g ₇	5.1
g ₈	10.2
g ₉	6.4
g ₁₀	7.0
c₁(g₃g₅)	9.2

g ₆	g ₇	g ₈	g ₉	g ₁₀	c₁(g₃g₅)
2.3	5.1	10.2	6.1	7.0	9.2
0.0	5.6	12.1	7.7	8.5	11.1
5.6	0.0	9.1	8.3	9.3	8.1
12.1	9.1	0.0	11.4	12.4	1.0
7.7	8.3	11.4	0.0	1.1	10.5
8.5	9.3	12.4	1.1	0.0	11.5
11.1	8.1	1.0	10.5	11.5	0.0

	g ₁	g_6	g ₇	g ₈	g ₉	g ₁₀	c₁(g₃g₅)	c ₂ (g ₂ g ₄)
g ₁	0.0	2.3	5.1	10.2	6.1	7.0	9.2	7.7
g ₆	2.3	0.0	5.6	12.1	7.7	8.5	11.1	9.2
g ₇	5.1	5.6	0.0	9.1	8.3	9.3	8.1	9.5
g ₈	10.2	12.1	9.1	0.0	11.4	12.4	1.0	12.0
g ₉	6.4	7.7	8.3	11.4	0.0	1.1	10.5	1.6
g ₁₀	7.0	8.5	9.3	12.4	1.1	0.0	11.5	1.0
c₁(g₃g₅)	9.2	11.1	8.1	1.0	10.5	11.5	0.0	11.2
c ₂ (g ₂ g ₄)	7.7	9.2	9.5	12.0	1.6	1.0	11.2	0.0

	g ₁	g_6	g ₇
g ₁	0.0	2.3	5.1
g ₆	2.3	0.0	5.6
g ₇	5.1	5.6	0.0
g ₉	6.4	7.7	8.3
g ₁₀	7.0	8.5	9.3
c ₂ (g ₂ g ₄)	7.7	9.2	9.5

g ₉	g ₁₀	c ₂ (g ₂ g ₄)
6.1	7.0	7.7
7.7	8.5	9.2
8.3	9.3	9.5
0.0	1.1	1.6
1.1	0.0	1.0
1.6	1.0	0.0

	g ₁	g ₆	g ₇	g ₉	g ₁₀	c ₂ (g ₂ g ₄)	c ₃ (g ₃ g ₅ g ₈)
g ₁	0.0	2.3	5.1	6.1	7.0	7.7	9.2
g ₆	2.3	0.0	5.6	7.7	8.5	9.2	11.1
g ₇	5.1	5.6	0.0	8.3	9.3	9.5	8.1
g ₉	6.4	7.7	8.3	0.0	1.1	1.6	10.5
g ₁₀	7.0	8.5	9.3	1.1	0.0	1.0	11.5
C ₂ (g ₂ g ₄)	7.7	9.2	9.5	1.6	1.0	0.0	11.2
c ₃ (g ₃ g ₅ g ₈)	9.2	11.1	8.1	10.5	11.5	11.2	0.0

	g ₁	$g_{\scriptscriptstyle{6}}$	g ₇	g_9
g ₁	0.0	2.3	5.1	6.1
g ₆	2.3	0.0	5.6	7.7
g ₇	5.1	5.6	0.0	8.3
g ₉	6.4	7.7	8.3	0.0
c ₃ (g ₃ g ₅ g ₈)	9.2	11.1	8.1	10.5

c ₃ (g ₃ g ₅ g ₈)
9.2
11.1
8.1
10.5
0.0

	g ₁	g ₆	g ₇	g ₉	c ₃ (g ₃ g ₅ g ₈)	c ₄ (g ₁₀ c ₂)
g ₁	0.0	2.3	5.1	6.1	9.2	7.0
g_6	2.3	0.0	5.6	7.7	11.1	8.5
g ₇	5.1	5.6	0.0	8.3	8.1	9.3
g ₉	6.4	7.7	8.3	0.0	10.5	1.1
c ₃ (g ₃ g ₅ g ₈)	9.2	11.1	8.1	10.5	0.0	11.2
c ₄ (g ₁₀ c ₂)	7.0	8.5	9.3	1.1	11.2	0.0

	g ₁	g ₆	g ₇
g ₁	0.0	2.3	5.1
g ₆	2.3	0.0	5.6
g ₇	5.1	5.6	0.0
c ₃ (g ₃ g ₅ g ₈)	9.2	11.1	8.1

c ₃ (g ₃ g ₅ g ₈)
9.2
11.1
8.1
0.0

	g ₁	g_6	g ₇	c ₃ (g ₃ g ₅ g ₈)	c ₅ (g ₉ c ₄)
g ₁	0.0	2.3	5.1	9.2	6.1
g ₆	2.3	0.0	5.6	11.1	7.7
g ₇	5.1	5.6	0.0	8.1	8.3
c ₃ (g ₃ g ₅ g ₈)	9.2	11.1	8.1	0.0	10.5
c ₅ (g ₉ c ₄)	6.1	7.7	8.3	10.5	0.0

g ₇
c ₃ (g ₃ g ₅ g ₈)
c ₅ (g ₉ c ₄)

g ₇	c ₃ (g ₃ g ₅ g ₈)	c ₅ (g ₉ c₄)
0.0	8.1	8.3
8.1	0.0	10.5
8.3	10.5	0.0

	g ₇	c ₃ (g ₃ g ₅ g ₈)	c ₅ (g ₉ c ₄)	c ₆ (g ₁ g ₆)
g ₇	0.0	8.1	8.3	5.1
c ₃ (g ₃ g ₅ g ₈)	8.1	0.0	10.5	9.2
c ₅ (g ₉ c ₄)	8.3	10.5	0.0	6.1
c ₆ (g ₁ g ₆)	5.1	9.2	6.1	0.0

c ₃ (g ₃ g ₅ g ₈)
c ₅ (g ₉ c ₄)

c ₃ (g ₃ g ₅ g ₈)	c ₅ (g ₉ c ₄)
0.0	10.5
10.5	0.0

	c ₃ (g ₃ g ₅ g ₈)	c ₅ (g ₉ c ₄)	c ₇ (g ₇ c ₆)
c ₃ (g ₃ g ₅ g ₈)	0.0	10.5	8.1
c ₅ (g ₉ c ₄)	10.5	0.0	6.1
c ₇ (g ₇ c ₆)	8.1	6.1	0.0

	c ₃ (g ₃ g ₅ g ₈)	c ₈ (c ₅ c ₇)
c ₃ (g ₃ g ₅ g ₈)	0.0	8.1
c ₈ (c ₅ c ₇)	8.1	0.0

Algorithm: Hierarchical, Distance Metric: Correlation

	Α	В	С	D	E
Α	-	0.23	0.00	0.95	-0.63
В	-	-	0.91	0.56	0.56
С	-	-	-	0.32	0.77
D	-	-	-	-	-0.36
Е	-	-	-	-	-

Algorithm: Hierarchical, Distance Metric: Correlation

	AD	В	С	Е
AD	-	0.37	0.16	-0.52
В	-	-	0.91	0.56
С	-	-	-	0.77
E	-	-	-	-

Algorithm: Hierarchical, Distance Metric: Correlation

	AD	ВС	E
AD	-	0.27	-0.52
BC	-	-	0.68
Е	-	-	-

Tree View

Eisen et al. (1998) PNAS 95: 14863-14868

genes

Hierarchical Clustering Summary

Advantages

- Easy
- Very Visual
- Flexible (mean, median, etc.)

Disadvantages

- Unrelated Genes Are Eventually Joined
- Hard To Define Clusters
- Manual Interpretation
 Often Required

K-Means Clustering

 Configure K clusters to enclose all the data points, which minimizes the mean squared distance from each data point to its cluster center, or d(V,X):

Squared Distortion Error

$$d(\mathbf{V}, \mathbf{X}) = \sum d(\mathbf{V}_i, \mathbf{X})^2 / n \qquad 1 \le i \le n$$

• Note $d(v_i, X)$ refers to Euclidean Distance between the data point v_i and the center of gravity of the corresponding cluster

K-Means Clustering Problem: Formulation

- Input: A set, V, consisting of n points and a parameter k
- Output: A set X consisting of k points (cluster centers) that minimizes d(V,X) over all possible choices of X

This problem is NP-complete.

An efficient heuristic method for K-Means clustering is the Lloyd algorithm

K-Means Clustering: Lloyd Algorithm

- 1. Lloyd Algorithm
- 2. Arbitrarily assign the k cluster centers
- 3. while the cluster centers keep changing
- 4. Assign each data point to the cluster C_i corresponding to the closest cluster representative (center) x_i (1 $\leq i \leq k$)
- 5. After the assignment of all *n* data points, compute new cluster representatives according to the center of gravity of each existing cluster, that is, the new cluster representative is

 $\Sigma v \setminus /C/$ for all v in C for every cluster C

^{*}This may lead to merely a locally optimal clustering.

Conservative K-Means Algorithm – cont.

- Assume that every partition P of the nelement set into k clusters has an associated clustering cost(P) – measures the partition's quality.
- Example for cost(P): the squared error distortion

$$d(\mathbf{V},\mathbf{X}) = \sum d(vi,\mathbf{X})2 / n \qquad 1 \le i \le n$$

Conservative K-Means Algorithm – cont.

- A partition P is given, a cluster C within P, and an element i outside C.
- i → C the partition obtained by moving i to C
- Improve cost(P) only if

$$\Delta(i \to C) = \cos t(P) - \cos t(P_{i \to C}) > 0$$

- (The smaller the cost, the better the clustering is)
- The following <u>ProgressiveGreedyK-Means</u> searches for the best move in each step, for every C and for all i outdise C

K-Means"Greedy" Algorithm

```
ProgressiveGreedyK-Means(k)
     Select an arbitrary partition P into k clusters
3.
     while forever
4.
       bestChange ← 0
5.
       for every cluster C
6.
         for element i not in C
7.
          if moving i to cluster C reduces its clustering cost
8.
            if (cost(P) - cost(P_{i \rightarrow C}) > bestChange
              bestChange \leftarrow (cost(P) - cost(P_{i \rightarrow C})
9.
10.
              i^* \leftarrow I
11.
              C^* \leftarrow C
       if bestChange > 0
12.
         Change partition P by moving i* to C*
13.
14.
       else
15.
         return P
```