Randomized Algorithms and Probabilistic Techniques

September 15, 2021

1 08/24

This course will involve only a few techniques with a variety of applications. Many domains, such as Distributed Computing, Networks, etc., all depend on randomized algorithms.

We will focus on a few techniques that lead to understanding.

- 1. Union Bound
- 2. Linearity of Expectation
- 3. Markov's Inequality
- 4. Chernoff Bounds

These four things prove very useful in the design and understanding of algorithms.

1.1 Basic Definitions

Definition 1. A Sample Space is a set S whose elements consist of simple events (also called elementary events). When S is finite or countably infinite, we say it is a Discrete sample space.

Definition 2. An event in a sample space S is a subset of S.

Definition 3. A Probability Distribution on S is a function $\mathbb{P}: 2^S \to [0,1]$ that satisfies

- 1. $\mathbb{P}(S) = 1$
- 2. If E_1, E_2, \ldots are pairwise disjoint events (i.e., $E_i \cap E_j = \emptyset$ for all pairs i, j, also called mutually exclusive), indexed by some finite or countably infinite set I, then

$$\mathbb{P}\left(\bigcup_{i\in I} E_i\right) = \sum_{i\in I} \mathbb{P}(E_i)$$

1.2 Conditional Probability

The expression $\mathbb{P}(E_2 \mid E_1)$ is read "the probability of E_2 given E_1 ." For example, if we randomly select a person from Texas, we might write

 $E_1 = \text{person chosen is in Houston}$

 $E_2 = \text{person chosen is a UH student}$

in which case $\mathbb{P}(E_2 \mid E_1)$ is simply the probability that a randomly selected person from Texas is a UH student given that they are in Houston.

In general, the conditional probability $\mathbb{P}(E_2 \mid E_1)$ is defined

$$\mathbb{P}(E_2 \mid E_1) = \frac{\mathbb{P}(E_2 \cap E_1)}{\mathbb{P}(E_1)}$$

which intuitively can be thought of as taking the probability that E_2 and E_1 occur and "normalizing it" by dividing by the probability that E_1 occurs.

1.3 Independence

Two events, E_1 and E_2 , are independent if

$$\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1) \, \mathbb{P}(E_2)$$

or, equivalently, if

$$\mathbb{P}(E_1 \mid E_2) = \mathbb{P}(E_1)$$

For example, suppose C_1 and C_2 are the outcomes of two fair coin tosses. These are independent, since

$$\mathbb{P}(C_1 = H \cap C_2 = T) = \mathbb{P}(C_1 = H) \, \mathbb{P}(C_2 = T) = \frac{1}{4}$$

Independence is not always related to physical independence. For example, say we are given a fair die and let

$$E_1 = \text{roll}$$
 is even
 $E_2 = \text{roll}$ is less than or equal to 4

In this case, we can enumerate the sample space and explicitly determine $\mathbb{P}(E_1)$, $\mathbb{P}(E_2)$, $\mathbb{P}(E_1 \cap E_2)$, and $\mathbb{P}(E_1) \mathbb{P}(E_2)$, to see if the events are independent:

$$E_1 = \{2, 4, 6\}$$

$$E_2 = \{1, 2, 3, 4\}$$

$$E_1 \cap E_2 = \{2, 4\}$$

Then

$$\mathbb{P}(E_1) = \frac{3}{6} = \frac{1}{2}$$

$$\mathbb{P}(E_2) = \frac{4}{6} = \frac{2}{3}$$

$$\mathbb{P}(E_1 \cap E_2) = \frac{2}{6} = \frac{1}{3}$$

$$\mathbb{P}(E_1) \mathbb{P}(E_2) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$$

Thus, we see the events are independent. On the other hand, if E_2 is the event that the roll is *strictly less* than 4, we have

$$E_1 = \{2, 4, 6\}$$

$$E_2 = \{1, 2, 3\}$$

$$E_1 \cap E_2 = \{2\}$$

Then

$$\mathbb{P}(E_1) = \frac{3}{6} = \frac{1}{2}$$

$$\mathbb{P}(E_2) = \frac{3}{6} = \frac{1}{2}$$

$$\mathbb{P}(E_1 \cap E_2) = \frac{1}{6}$$

$$\mathbb{P}(E_1) \mathbb{P}(E_2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

and we see that the events are not independent.

1.4 The Inclusion-Exclusion Principle

A basic result in set theory is that

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

which can be generalized to an arbitrary finite union by

$$\bigcup_{i=1}^{n} A_{i} = \sum_{k=1}^{n} (-1)^{k+1} \left(\sum_{1 \le i_{1} < \dots < i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}| \right)$$

or equivalently

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{\emptyset \neq J \subseteq \{1,\dots,n\}} (-1)^{|J|+1} \left|\bigcap_{j \in J} A_j\right|$$

This yields the probability formulas

$$\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1 \cap E_2)$$

$$\mathbb{P}\left(\bigcup_{i=1}^n E_i\right) = \sum_{\emptyset \neq J \subseteq \{1,\dots,n\}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{j \in J} E_j\right)$$

1.5 Union Bound

In general

$$\mathbb{P}\Big(\bigcup E_i\Big) \le \sum \mathbb{P}(E_i)$$