

Gymnasium

Customizing OpenAi Gym Environment With Sable Baselines Reinforcement Learning Agents

Grupo W

André Sousa 202108571 David Scarin 202108314 Paulo Silva 202107359

Environment Description

id (for v2, v3, v4)	body part		
0	worldBody (note: all values are constant 0)		
1	torso		
2	lwaist		
3	pelvis		
4	right_thigh		
5	right_sin		
6	right_foot		
7	left_thigh		
8	left_sin		
9	left_foot		
10	right_upper_arm		
11	right_lower_arm		
12	left_upper_arm		
13	left_lower_arm		

id (for v2, v3, v4)	joint
0	root
1	root
2	root
3	root
4	root
5	root
6	abdomen_z
7	abdomen_y
8	abdomen_x
9	right_hip_x
10	right_hip_z

11	right_hip_y
12	right_knee
13	left_hip_x
14	left_hiz_z
15	left_hip_y
16	left_knee
17	right_shoulder1
18	right_shoulder2
19	right_elbow
20	left_shoulder1
21	left_shoulder2
22	left_elfbow

Action Space	Box(-0.4, 0.4,	(17,), float32)
Observation Space	Box(-inf, inf,	(376,), float64)

Environment Description

Rewards

The reward consists of three parts:

- healthy_reward: Every timestep that the humanoid is alive (see section Episode Termination for definition), it gets a reward of fixed value healthy_reward
- forward_reward: A reward of walking forward which is measured as <code>forward_reward_weight</code> * (average center of mass before action average center of mass after action)/dt. dt is the time between actions and is dependent on the frame_skip parameter (default is 5), where the frametime is 0.003 making the default dt = 5 * 0.003 = 0.015. This reward would be positive if the humanoid walks forward (in positive x-direction). The calculation for the center of mass is defined in the <code>.py</code> file for the Humanoid.
- ctrl_cost: A negative reward for penalising the humanoid if it has too large of a control force. If there are nu actuators/controls, then the control has shape nu x 1. It is measured as ctrl_cost_weight * sum(control²).
- contact_cost: A negative reward for penalising the humanoid if the external contact force is too large. It is calculated by clipping contact_cost_weight * sum(external contact force²) to the interval specified by contact_cost_range.

The total reward returned is **reward** = healthy_reward + forward_reward - ctrl_cost - contact_cost and info will also contain the individual reward terms

forward_reward_weight	float	1.25	Weight for <i>forward_reward</i> term (see section on reward)
ctrl_cost_weight	float	0.1	Weight for <i>ctrl_cost</i> term (see section on reward)
contact_cost_weight	float	5e-7	Weight for <i>contact_cost</i> term (see section on reward)
healthy_reward	float	5.0	Constant reward given if the humanoid is "healthy" after timestep

Developed Work

Name	Вох	Discrete	MultiDiscrete	MultiBinary	Multi Processing
ARS ¹	✓	✓	×	×	✓
A2C	✓	✓	✓	✓	✓
DDPG	✓	×	×	×	✓
DQN	×	✓	×	×	✓
HER	✓	✓	×	×	✓
PPO	✓	✓	✓	✓	✓
QR-DQN ¹	×	✓	×	×	✓
RecurrentPPO ¹	✓	✓	✓	✓	✓
SAC	✓	×	×	×	✓
TD3	✓	×	×	×	✓
TQC ¹	✓	×	×	×	✓
TRPO ¹	✓	✓	✓	✓	✓
Maskable PPO ¹	×	✓	✓	✓	✓

Untrained Agent

Developed Work

- Separate training into 2 phases
- Split of 65/35 between first and second phases

```
print(f"Starting 1st phase of training")
agent = PPO('MlpPolicy', wrapped_env_train_1, verbose=0, tensorboard_log="./logs_changed")
agent.learn(total_timesteps=700000,progress_bar=True, tb_log_name="PPO_1_"+str(seed), reset_num_timesteps=False)
agent.save("agent_changed_1_"+str(seed))
del agent
env_train_1.close()

print(f"Starting 2nd phase of training")
agent = PPO.load("agent_changed_1_"+str(seed), env = wrapped_env_train_2)
agent.learn(total_timesteps=1300000,progress_bar=True, tb_log_name="PPO_2_"+str(seed), reset_num_timesteps=False)
agent.save("agent_changed_2_"+str(seed))
del agent
env_train_2.close()
```

Developed Work

Testing environment

```
env_test = gym.make("Humanoid-v4", healthy_z_range=(0.9,2.0))
```

2 training phases with different weights

First phase of training with changed rewards

Training curves

Reward Analysis

Test Results

statistic: 10.696914047665128

degrees of freedom: 5955.495487925635

pvalue: 1.82772614587155e-26

Comparing Results

Agent trained on default environment

Agent trained on changed environment

Conclusions and Future Work

Test Results

statistic: 10.696914047665128

degrees of freedom: 5955.495487925635

pvalue: 1.82772614587155e-26

The results return a very low p-value, indicating that there is indeed a significant difference in the means of the two sets of rewards.

Therefore, we can state that there is a difference in the agent trained with or without the custom changes to the environment.

We verify that the agent trained with the default reward settings achieved a better performance for this number of timesteps in training.

However, we can see from the training curves that our changed agent appears to converge faster, so it would be a worthwhile experiment to further train our agents for more timesteps.

Another possible option is to attempt to finetune our learning algorithm by changing parameters such as learning rate and optimizer or even the architecture of the network.