Post-Selection Inference

PS690 Computational Methods in Social Science

Jiawei Fu

Department of Political Science Duke University

September 2, 2025

Overview

- 1. Inference
- 2. Target of Inference
- 3. Inference on Population parameter with post-selected estimator
 - 3.1 Data Split
 - 3.2 De-biasing LASSO
- 4. Post-selection Inference on Submodel parameter
- 5. Summary

Classical Inference

• Consider the low-dimension linear regression model (p < n),

$$Y = X'\beta + e$$

- To make inference of the OLS estimator $\hat{\beta} = (\frac{1}{n} \sum_{i=1}^{n} X_i X_i')^{-1} (\frac{1}{n} \sum_{i=1}^{n} X_i Y_i)$, we derive the distribution of the estimator.
- Multiply be \sqrt{n} ,

$$\sqrt{n}(\hat{\beta} - \beta) = (\frac{1}{n} \sum_{i=1}^{n} X_i X_i')^{-1} (\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i e_i)$$

- By CLT, the second part $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}e_{i}\rightarrow_{d}N(0,\Omega)$, where $\Omega=\mathbb{E}[XX'e^{2}]$
- By WLLN, the first part $\frac{1}{n} \sum_{i=1}^{n} X_i X_i' \to_p \mathbb{E}[XX']$
- Therefore, $\sqrt{n}(\hat{\beta} \beta) \rightarrow_d N(0, V_\beta)$, where $V_\beta = \mathbb{E}[XX']^{-1}\Omega\mathbb{E}[XX']$

Two types of Inference revolving Post-Selection

- Assume a high-dimensional structural model: $Y = X\beta + \epsilon$.
- One natural target of inference is the *structural* (population) coefficient β_j (j^{th} component).
- Let \mathcal{M} denote the universe of all possible models. For $M \in \mathcal{M}$, we can also define the *submodel coefficient*, $\beta_{i\cdot M}$, which depends on the submodel M.
- In practice, researcher often use data to select a model, \widehat{M} , and obtain the corresponding estimator $\hat{\beta}_{\widehat{M}}$. Therefore \widehat{M} is random.
- We can use estimator $\hat{\beta}_{\widehat{M}}$ to construct CI for target $\beta_{\widehat{M}}$ (note it is random), which focus on the selected (random) model \widehat{M} , rather than the population parameter β_j .
- We can also use post-selected estimator $\hat{\beta}_{\widehat{M}}$ to conduct statistical inference for population parameter β_j . In this view, model selection is simply a kind of regularization which provide a lower dimensional estimator for the high dimensional parameter.

Example

- For example, let $M = \{1, 2, ..., p\}$ be the index set of all the predictors, and assume $Y = X\beta + \epsilon$.
- The structural parameter is β_M :

$$eta_M := \operatorname{argmin}_{eta \in \mathbb{R}^{|M|}} \mathbb{E}[(Y_i - X'_{i,M}eta)^2]$$

- Researchers use data to select some predictors (through different methods like forward stepwise regression and lasso), $\widehat{M} \subseteq M$; and we can get the submodel OLS estimator $\widehat{\beta}_{\widehat{M}} = (X'_{\widehat{M}}X_{\widehat{M}})^{-1}X_{\widehat{M}}Y$
- The target of this submodel OLS estimator is $\beta_{\widehat{M}}$: Hope to find confidence interval $\widehat{Cl}_{\widehat{M}}$ satisfying

$$\liminf_{n\to\infty}\mathbb{P}[\beta_{\widehat{M}}\in\widehat{\mathit{CI}}_{\widehat{M}}]\geq 1-\alpha$$

- Without selection, we know $\hat{\beta}_M$ behaves nicely: asymptotically normal at a \sqrt{n} -rate. (Recall the OLS estimator on page 3).
- However, for $\hat{\beta}_{\widehat{M}}$ with a data-driven choice of \widehat{M} , there is also some randomness through \widehat{M} .
- Due to data exploration, $\hat{\beta}_{\widehat{M}}$ generally does not have a normal distribution and can be quite biased, even asymptotically.

- Consider we select the model by forward stepwise regression.
- In the simulation, we create three predictors $X = (X_1, X_2, X_3)$, and the response Y is drawn from N(1,9), independent of X. Therefore, the true $\beta_M = 0$.

The bimodal distributions are expected because X_1 is selected by the variable selection strategy only when it has a reasonably large coefficient in absolute value.

Figure: [Kuchibhotla et al., 2022]

• See another example of LASSO. Here, we look at the t statistics: $T_{j \cdot \widehat{M}} = \frac{\hat{\beta}_{j \cdot \widehat{M}} - \beta^0}{sd(\hat{\beta}_{j \cdot \widehat{M}})}$ and $T_{j \cdot \widehat{M}} = \frac{\hat{\beta}_{j \cdot \widehat{M}}}{sd(\hat{\beta}_{i \cdot \widehat{M}})}$.

Figure: [Zhang et al., 2022]

• Let us also check the coverage of the confidence interval.

Empirical coverage probabilities of 95% naïve confidence intervals for the true non-zero β_j^0 's.

	Empirical coverage probabilities				
Model Selector + Estimation	eta_1^0	eta_3^0	eta_4^0	eta_5^0	eta_7^0
LASSO + OLS	.691	.486	.695	.736	.560
Elastic net $+$ OLS	.749	.493	.815	.867	.619
SCAD + OLS	.362	.736	.682	.727	.723

Figure: [Zhang et al., 2022]

Data Split

- Now, let us look at some methods that target the population parameter β_j .
- The key problem of post-selection inference is that we use the same data select model and do inference.
- A natural idea is to split the data so that select the model on one half and estimate the coefficient given the model on the second half.
- For the second half, the model is given; therefore, the traditional inference works here.
- For LASSO, we assume the sparsity true model. In the first half, we select non-zero predictors S. In the second half, if n/2 > |S| we just run linear regression and obtain the traditional OLS estimator.
- For those $j \notin S$, we set p = 1 for test $H_{0,j} : \beta_{j \cdot M} = 0$

Data Split

- One issue of the single-sample-splitting method is its sensitivity with respect to the choice of splitting the entire sample: sample splits lead to wildly different p-values.
- Similarly to cross-validation K, we can do multiple sample splits.
- Sample splitting is invalid for dependent data. It inherently assumes independence of observations in the data
- Note: Data Split can also be used to conduct post-selection inference.

De-biasing LASSO

- Recall OLS estimator, we can write it as $\hat{\beta}_j^{ols} = \frac{Y'X_j^{\perp}}{X_j'X_j^{\perp}}$, where X_j^{\perp} is the residual in the regression of X_j on X_{-j} . (Recall Frisch–Waugh–Lovell theorem).
- Put in Y, we get $\frac{Y'X_j^{\perp}}{X_j'X_j^{\perp}} = \beta_j + \frac{\epsilon'X_j^{\perp}}{X_j'X_j^{\perp}}$
- We obtain: $\sqrt{n}(\hat{\beta}_j^{ols} \beta_j) = \frac{n^{-1/2}\epsilon' X_j^{\perp}}{n^{-1}X_i' X_j^{\perp}}$, which is asymptotically normal.
- In LASSO, we use a lasso regression with a regularization parameter λ to get X_i^{\perp} .
- Algebra shows that

$$\frac{Y'X_j^{\perp}}{X_j'X_j^{\perp}} = \beta_j + \sum_{k \neq j} P_{jk}\beta_j + \frac{\epsilon'X_j^{\perp}}{X_j'X_j^{\perp}}$$

where
$$P_{jk} = rac{X_k' X_j^{\perp}}{X_i' X_i^{\perp}}$$

• The middle part is the bias. Naturally, we can correct for this term.

De-biasing LASSO

- Consider the estimator $\hat{b}_j = rac{Y'X_j^\perp}{X_j'X_j^\perp} \sum_{k
 eq j} P_{jk} \hat{\beta}_j$
- Similarly, we obtain

$$\sqrt{n}(\hat{b}_j - \beta_j) = \frac{n^{-1/2} \epsilon' X_j^{\perp}}{n^{-1} X_j' X_j^{\perp}} + \sum_{k \neq j} \sqrt{n} P_{jk} (\beta_k - \hat{\beta}_k)$$

- The first term converges normal. The second term is negligible under some regular conditions.
- This implies that we can conduct valid inference under normal distribution (asymptotically).
- Implementation: R package hdi, by [Dezeure et al., 2015]

PoSI

- Previous methods target population β_i in the structural model: $Y = X\beta + \epsilon$.
- [Berk et al., 2013] argues that we should focus on the submodel $\beta_{i\cdot\widehat{M}}.$
- Given a submodel \widehat{M} selected by a generic model selection procedure, we consider the following CI s.t.

$$CI_{j\cdot\widehat{M}}(K) = (\hat{\beta}_{j,\widehat{M}} - K\hat{\sigma}\sqrt{[(X_{\widehat{M}}'X_{\widehat{M}})^{-1}]_{jj}}, \hat{\beta}_{j,\widehat{M}} + K\hat{\sigma}\sqrt{[(X_{\widehat{M}}'X_{\widehat{M}})^{-1}]_{jj}})$$

- If $K = t(n |\widehat{M}|, 1 \alpha/2)$, we obtain the naive confidence interval, which ignores the uncertainty from model selection; The CI is too short.
- Therefore, we hope to find a large K so that the CI is wider and the coverage be at least $1-\alpha$.

PoSI

- To do this, we first construct simultaneous confidence intervals for all possible selected model (i.e. regardless of model selection procedures and selected models.):
- In other words, we hope to find CI s.t.

$$\mathbb{P}[\beta_{j\cdot M} \in \mathit{Cl}_{j\cdot M}(K), \forall j \in M, M \in \mathcal{M}] \geq 1 - \alpha$$

- If this is true, it implies that $\mathbb{P}[\beta_{j\cdot\widehat{M}}\in Cl_{j\cdot\widehat{M}}(K), \forall j\in M]\geq 1-\alpha$ and $\mathbb{P}[\beta_{j\cdot\widehat{M}}\in Cl_{j\cdot\widehat{M}}(K)]\geq 1-\alpha$.
- To obtain simultaneous control over all possible submodels, we need to find the largest value of *K*.
- Note that $\beta_{j\cdot\widehat{M}}\in Cl_{j\cdot\widehat{M}}(K)$ is equivalent to $|\frac{\hat{\beta}_{j\cdot\widehat{M}}-\beta_{j\cdot\widehat{M}}}{\hat{\sigma}\sqrt{[(X'_{\widehat{M}}X_{\widehat{M}})^{-1}]_{jj}}}|\leq K$. We use $t_{j\cdot\widehat{M}}$ to denote that ratio.
- [Berk et al., 2013] propose the following K_{PoSI} such that

$$\mathit{K}_{\mathit{PoSI}} = \min\{\mathit{K} \in \mathbb{R} | \mathbb{P}[\max_{\mathit{M} \in \mathcal{M}} \max_{j \in \widehat{\mathit{M}}} | t_{j \cdot \widehat{\mathit{M}}} | \leq \mathit{K}] \geq 1 - \alpha\}$$

Advantages and Disadvantages

- Advantages: We can get the correct coverage regardless of the selection method.
- It can be applied to dependent data as well.
- Disadvantage:Because it is safeguarded against all possible selected submodels, it is necessarily conservative.

Conditional Selective Inference

- The previous PoSI method considers the simultaneous control.
- In some cases, we can derive the condition distribution of $\hat{\beta}_{\widehat{M}}$ giving \widehat{M} .
- For example, [Lee et al., 2016] shows that, under some conditions, the conditional distribution of the LASSO estimator is essentially a (univariate) truncated Gaussian.

Further Methods

- Given time constraints, we do not cover many other popular methods, for example, among others,
 - 1. Bayesian inference
 - 2. Bootstrap
 - 3. Methods from optimization theory
- We will cover inference on the treatment effects when using lasso in the later lectures.

References

Dezeure, R., Bühlmann, P., Meier, L., and Meinshausen, N. (2015). High-dimensional inference: confidence intervals, p-values and r-software hdi. *Statistical science*, pages 533–558.

Kuchibhotla, A. K., Kolassa, J. E., and Kuffner, T. A. (2022). Post-selection inference.

Annual Review of Statistics and Its Application, 9:505–527.

Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2016). Exact post-selection inference, with application to the lasso. *The Annals of Statistics*.

Zhang, D., Khalili, A., and Asgharian, M. (2022). Post-model-selection inference in linear regression models: An integrated review. *Statistic Surveys*, 16:86–136.