FET - 2

Confronto

Figure 3.2. Measured MOSFET/transistor characteristic curves: A. VN0106 (similar to the popular 2N7000) n-channel MOSFET: $I_{\rm D}$ versus $V_{\rm DS}$ for various values of $V_{\rm GS}$. B. 2N3904 npn bipolar transistor: $I_{\rm C}$ versus $V_{\rm CE}$ for various values of $V_{\rm BE}$.

Famiglie

Figure 3.12. Important gate voltages and drain currents.

Regimi

$$I_{\rm D} = 2\kappa [(V_{\rm GS} - V_{\rm th})V_{\rm DS} - V_{\rm DS}^2/2]$$
 (linear region) (3.1)

$$I_{\rm D} = \kappa (V_{\rm GS} - V_{\rm th})^2$$
 (saturation region) (3.2)

Regimi - 2

Figure 3.15. Measured MOSFET saturation drain current versus gate-source voltage. For the VN01 the dotted curves are the extreme specimens, and the solid curve is the median, from a group of 20 MOSFETs.

Threshold

Figure 3.14. The "threshold voltage" $V_{\rm th}$ is found by extrapolating a square-root plot of $I_{\rm D}$ to zero drain current. The FET saturation drain current has a negative tempco in the high-current regime.

Resistenza e transconduttanza

$$\frac{1}{r_{\rm DS}} = 2\kappa \left[(V_{\rm GS} - V_{\rm th}) - \frac{V_{\rm DS}}{2} \right].$$

$$r_{\rm DS} \approx 1/[2\kappa(V_{\rm GS} - V_{\rm th})].$$

$$g_m(I_D) = i_d/v_{gs}$$
.

$$g_m = 2\kappa (V_{GS} - V_{th}) = 2\sqrt{\kappa I_D}$$
.

