Séries entières de matrices

Ce problème est l'occasion de revoir quelques points de cours :

- espaces normés, suites, séries, ouverts, fermés, applications linéaires continues, compacité, espaces de Banach;
- polynôme d'interpolation de Lagrange;
- matrices nilpotentes, valeurs propres, rayon spectral, normes matricielles, diagonalisation, trigonalisation, décomposition de Dunford-Schwarz;
- calcul différentiel.

 \mathbb{C} désigne le corps des nombres complexes.

− I − Algèbres de Banach

Une algèbre de Banach unitaire E est un espace vectoriel normé $(E, \|\cdot\|)$ complexe muni d'une structure d'anneau unitaire et tel que $\|xy\| \leq \|x\| \|y\|$ pour tous x, y dans E (on dit que la norme est sous-multiplicative) et $\|1_E\| = 1$, en désignant par 1_E l'élément neutre pour la multiplication interne de E.

On rappelle qu'une série de terme général x_n est dite normalement convergente dans un espace normé $(E, \|\cdot\|)$ si la série réelle de terme général $\|x_n\|$ est convergente.

- 1. Soit $(E, \|\cdot\|)$ un espace vectoriel normé.
 - (a) Montrer qu'une suite de Cauchy dans $(E, \|\cdot\|)$ qui admet une sous-suite convergente est convergente.
 - (b) Montrer que $(E, \|\cdot\|)$ est complet si, et seulement si, toute série normalement convergente dans $(E, \|\cdot\|)$ est convergente.
- 2. Soit $(E, \|\cdot\|)$ une algèbre de Banach. Montrer que l'application $(x, y) \mapsto xy$ est continue de $E \times E$ dans E. En particulier, pour tout y fixé dans E, l'application $x \mapsto xy$ est continue de E dans E.
- 3. Soit $(E, \|\cdot\|)$ une algèbre de Banach unitaire et G(E) l'ensemble de tous les éléments inversibles (pour le produit) de E. On vérifie facilement que G(E) est un groupe multiplicatif.
 - (a) Montrer que pour tout $x \in E$ tel que ||x|| < 1, $1_E x$ est inversible d'inverse $\sum_{k=0}^{+\infty} x^k$.
 - (b) Montrer que G(E) est ouvert dans E.
 - (c) Montrer que l'application $x \mapsto x^{-1}$ est continue sur G(E).

- II - Rayon spectral des matrices complexes

 $\mathcal{M}_n(\mathbb{C})$ est l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{C} , $GL_n(\mathbb{C})$ est le groupe multiplicatif des matrices inversibles dans $\mathcal{M}_n(\mathbb{C})$.

Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est identifiée à l'endomorphisme de \mathbb{C}^n qu'elle définit dans la base canonique.

Une matrice diagonale de termes diagonaux $\lambda_1, \dots, \lambda_n$ est notée diag $(\lambda_1, \dots, \lambda_n)$.

On se donne une norme vectorielle $x \mapsto ||x||$ sur \mathbb{C}^n et on lui associe la norme matricielle induite sur $\mathcal{M}_n(\mathbb{C})$ définie par :

$$\forall A \in \mathcal{M}_n \left(\mathbb{C} \right), \ \|A\| = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{\|Ax\|}{\|x\|} = \sup_{\substack{x \in \mathbb{C}^n \\ \|x\| = 1}} \|Ax\|$$

Cette norme est une norme d'algèbre (vérification immédiate) et $\mathcal{M}_n(\mathbb{C})$ ainsi normé est une algèbre de Banach (puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie).

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on désigne par $\operatorname{sp}(A)$ l'ensemble de toutes les valeurs propres complexes de A et par :

$$\rho\left(A\right) = \max_{\lambda \in \operatorname{sp}(A)} |\lambda|$$

le rayon spectral de A.

On rappelle le résultat suivant.

Théorème 1 (Dunford-Schwarz) Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe un unique couple de matrices (D, V) tel que D soit diagonalisable, V soit nilpotente, D et V commutent et A = D + V. De plus D et V sont des polynômes en A et les valeurs propres de D sont celles de A avec les mêmes multiplicités.

On note:

$$\mathcal{U}_{n}\left(\mathbb{C}\right) = \left\{ A \in \mathcal{M}_{n}\left(\mathbb{C}\right) \mid U^{*}U = I_{n} \right\}$$

le sous groupe de $GL_n(\mathbb{C})$ formé des matrices unitaires, où $U^* = {}^t\overline{U}$ est la matrice adjointe de U. On rappelle qu'une matrice unitaire est la matrice de passage de la base canonique de \mathbb{C}^n à une

- 1. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et k un entier naturel.
 - (a) Montrer $\rho(A) \leq ||A||$, l'inégalité pouvant être stricte.

base orthonormée, où \mathbb{C}^n est muni de sa structure hermitienne canonique.

- (b) Montrer que sp $(A^k) = \{\lambda^k \mid \lambda \in \operatorname{sp}(A)\}$.
- (c) Montrer $\rho(A^k) = \rho(A)^k$.
- 2. Soient $A \in \mathcal{M}_n(\mathbb{C})$.
 - (a) Montrer que :

$$\forall k \ge 1, \ \rho(A) \le \left\| A^k \right\|^{\frac{1}{k}}$$

(b) On suppose ici que A est diagonalisable. Montrer qu'il existe une constante réelle $\alpha>0$ telle que :

$$\forall k \ge 1, \ \|A^k\|^{\frac{1}{k}} \le \alpha^{\frac{1}{k}} \rho(A)$$

et en déduire que :

$$\rho(A) = \lim_{k \to +\infty} \left(\left\| A^k \right\|^{\frac{1}{k}} \right).$$

(c) En utilisant la décomposition de Dunford-Schwarz A=D+V, montrer qu'il existe une constante réelle $\beta>0$ telle que :

$$\forall k \ge n, \ \left\| A^k \right\| \le \beta k^n \left\| D^{k-n} \right\|$$

et en déduire que :

$$\rho\left(A\right) = \lim_{k \to +\infty} \left(\left\|A^{k}\right\|^{\frac{1}{k}} \right) = \inf_{k \in \mathbb{N}^{*}} \left(\left\|A^{k}\right\|^{\frac{1}{k}} \right) \tag{1}$$

(formule de I. Guelfand).

- 3. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a $\rho(A) = \lim_{k \to +\infty} \left(N\left(A^k\right)^{\frac{1}{k}} \right)$ où $A \mapsto N(A)$ est une norme quelconque sur $\mathcal{M}_n(\mathbb{C})$ (non nécessairement induite par une norme vectorielle).
- 4. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que la série $\sum A^k$ est convergente dans $\mathcal{M}_n(\mathbb{C})$ si, et seulement si, $\rho(A) < 1$. En cas de convergence de $\sum A^k$, montrer que $I_n A$ est inversible d'inverse $\sum_{k=0}^{+\infty} A^k$.

- 5. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\lim_{k \to +\infty} A^k = 0$ si, et seulement si, $\rho(A) < 1$.
- 6. Montrer que $\mathcal{U}_n(\mathbb{C})$ est compact dans $\mathcal{M}_n(\mathbb{C})$.
- 7. Montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe une matrice unitaire $U \in \mathcal{U}_n(\mathbb{C})$ telle que U^*AU soit triangulaire supérieure, ce qui revient à dire que A se trigonalise dans une base orthonormée (théorème de Schur).
- 8. On se propose de montrer que l'application ρ qui associe à toute matrice de $\mathcal{M}_n(\mathbb{C})$ son rayon spectral est continue, ce qui revient à montrer que si $(A_k)_{k\in\mathbb{N}}$ est une suite de matrices qui converge vers la matrice A dans $\mathcal{M}_n(\mathbb{C})$, alors la suite $(\rho(A_k))_{k\in\mathbb{N}}$ converge vers $\rho(A)$. dans \mathbb{R} .
 - (a) Montrer le résultat pour une suite $(T_k)_{k\in\mathbb{N}}$ de matrices triangulaires supérieures qui converge vers une matrice T.
 - (b) Montrer qu'une suite réelle est convergente si, et seulement si, elle est bornée et n'a qu'une seule valeur d'adhérence.
 - (c) Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices qui converge vers la matrice A dans $\mathcal{M}_n(\mathbb{C})$.
 - i. Montrer que la suite $(\rho(A_k))_{k\in\mathbb{N}}$ est bornée dans \mathbb{R} .
 - ii. Montrer que la suite $(\rho(A_k))_{k\in\mathbb{N}}$ admet $\rho(A)$ pour unique valeur d'adhérence et conclure.
- 9. Montrer que, pour tout réel R > 0, l'ensemble $\{A \in \mathcal{M}_n(\mathbb{C}) \mid \rho(A) < R\}$ est un ouvert de $\mathcal{M}_n(\mathbb{C})$.

10.

- (a) Montrer que, pour toute matrice $P \in GL_n(\mathbb{C})$, l'application $x \mapsto ||x||_P = ||P^{-1}x||$ définit une norme sur \mathbb{C}^n .
- (b) Montrer que la norme induite sur $\mathcal{M}_n(\mathbb{C})$ par $x \mapsto ||x||_P$ est $A \mapsto ||A||_P = ||P^{-1}AP||$.
- (c) Pour tout réel $\delta > 0$, on note :

$$D_{\delta} = \operatorname{diag}\left(1, \delta, \delta^{2}, \cdots, \delta^{n-1}\right)$$

Montrer que pour toute matrice triangulaire supérieure $T=((t_{ij}))_{1\leq i,j\leq n}\in\mathcal{M}_n\left(\mathbb{C}\right)$, on a:

$$\lim_{\delta \to 0} D_{\delta}^{-1} T D_{\delta} = \operatorname{diag} (t_{11}, t_{22}, \cdots, t_{nn})$$

- (d) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe une suite de matrices $(P_k)_{k \in \mathbb{N}^*}$ dans $GL_n(\mathbb{C})$ telle que $\lim_{k \to +\infty} P_k^{-1} A P_k = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.
- (e) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ et tout réel $\varepsilon > 0$, il existe une norme d'algèbre N sur $\mathcal{M}_n(\mathbb{C})$ telle que $N(A) < \rho(A) + \varepsilon$.

- III - Séries matricielles

On rappelle qu'une fonction φ définie sur un ouvert non vide \mathcal{O} d'un espace normé E et à valeurs dans un espace normé F est dite différentiable en $a \in \mathcal{O}$ s'il existe une forme linéaire continue L de E dans F (en dimension finie, linéaire suffit) telle que :

$$\varphi\left(a+h\right) = \varphi\left(a\right) + L\left(h\right) + o\left(\left\|h\right\|\right)$$

pour tout h dans un voisinage de 0 (ce qui signifie que $\lim_{h\to 0}\frac{1}{\|h\|}\left(\varphi\left(a+h\right)-\varphi\left(a\right)-L\left(h\right)\right)=0$). On note alors $d\varphi\left(a\right)=L$.

On désigne par $\sum_{k=0}^{\infty} a_k z^k$ une série entière à coefficients complexes de rayon de convergence R > 0 et on note $f(z) = \sum_{k=0}^{+\infty} a_k z^k$ sa somme pour $z \in \mathbb{C}$ tel que |z| < R.

- 1.
- (a) Soit $A \in \mathcal{M}_n(\mathbb{C})$ diagonalisable de valeurs propres $\lambda_1, \dots, \lambda_n$ distinctes ou confondues dans \mathbb{C} . Montrer que si $\rho(A) < R$, la série $\sum a_k A^k$ est alors convergente et sa somme, $f(A) = \sum_{k=0}^{+\infty} a_k A^k$, est diagonalisable de valeurs propres $f(\lambda_1), \dots, f(\lambda_n)$.
- (b) Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice $r \geq 1$. Montrer que la série $\sum a_k A^k$ est convergente.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\rho(A) < R$ et A = D + V sa décomposition de Dunford-Schwarz avec D diagonalisable qui commute à V nilpotente d'indice $r \ge 1$.
 - i. Montrer que, pour tout entier $j \geq 0$, la série $\sum_{k=j}^{+\infty} a_k \frac{k!}{(k-j)!} D^{k-j}$ est convergente. On notera $f^{(j)}(D)$ sa somme.
 - ii. Montrer que la série $\sum a_k A^k$ est convergente de somme :

$$f(A) = \sum_{k=0}^{+\infty} a_k A^k = \sum_{j=0}^{r-1} \frac{1}{j!} f^{(j)}(D) V^j$$

- iii. Montrer que la matrice f(A) est un polynôme en A (dont les coefficients dépendent de A).
- iv. Peut-on trouver un polynôme $R \in \mathbb{C}[X]$ tel que f(A) = R(A) pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$?
- (d) Montrer que si $A \in \mathcal{M}_n(\mathbb{C})$ est telle que $\rho(A) > R$, la série $\sum a_k A^k$ est alors divergente.
- 2. En utilisant la formule (1) de Guelfand, montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\rho(A) < R$, la série $\sum a_k A^k$ est normalement convergente.
- 3. Soit $D \in \mathcal{M}_n(\mathbb{C})$ diagonalisable telle que $\rho(D) > R$. Montrer qu'il existe un polynôme $R \in \mathbb{C}_{n-1}[X]$ (qui dépend de D) tel que f(D) = R(D).
- 4.
- (a) Montrer que l'application $f: A \mapsto f(A) = \sum_{k=0}^{+\infty} a_k A^k$ est continue sur l'ouvert $\mathcal{D}_R = \{A \in \mathcal{M}_n(\mathbb{C}) \mid \rho(A) < R\}$.
- (b) Montrer que la fonction f est différentiable en 0 avec $df(0) = a_1 I_d$.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{C})$.
 - (a) Montrer que si $\rho(A) = 0$, la fonction $\varphi : t \mapsto f(tA)$ est alors de classe \mathcal{C}^{∞} sur $I = \mathbb{R}$ et préciser sa dérivée.
 - (b) Montrer que si $0 < \rho(A) < R$, la fonction $\varphi : t \mapsto f(tA)$ est alors de classe \mathcal{C}^{∞} sur $I = \left] -\frac{R}{\rho(A)}, \frac{R}{\rho(A)} \right[$ et préciser sa dérivée.