10

- 43. The composition of claim 34 wherein said porogen comprises polypropylene glycol monobutyl ether.
- 5 44. A precursor for stable nanoporous film formation comprising said composition of claim 35.
 - 45. A spin-on composition comprising said composition of claim 35.
 - 46. A film comprising said spin-on composition of claim 45.

47. A stable nanoporous film comprising silicon polymer and a metal-ion-free catalyst selected from the group consisting of onium compounds and nucleophiles.

- 48. The stable nanoporous film of claim 47 wherein said film has an average pore size diameter of less than or equal to about 10 nanometers.
 - 49. The stable nanoporous film of claim 47 wherein said film has an average pore size diameter of less than or equal to about 5 nanometers.
 - 50. The stable nanoporous film of claim 47 wherein said metal-ion-free catalyst is tetramethylammonium acetate.
- 51. The stable nanoporous film of claim 47 wherein said silicon containing pre-polymer comprises a combination of acetoxy-based leaving groups.
 - 52. The stable nanoporous film of claim 47 wherein said combination of acetoxy-based leaving groups comprises tetraacetoxysilane and methyltriacetoxysilane.

20

PCT/US02/15256

Replaced by ART 34 AMOT 53. A method of lowering the temperature at which a porous silica film forms comprising the step of adding onium ions or nucleophiles to a siliconcontaining prepolymer and porogen.

5