网关控制器

+位置
 充框图
· 祝述
· 60 年 · · · · · · · · · · · · · · · · · ·
T诊断流程(
长及外围电路
AN1 主节点
AN2 主节点
CAN 主节点
Γ1
눈1

零件位置

CA-2 网关控制器

系统框图

TPMS

(5*6*)

常电 W

G

子网

- 常电 - -

右盲区监测模块。

(6*)

IG1 - Q

关(*3*6*)

V

常电 -

系统概述

由于车载总线中存在三个网络,这些网络之间需要进行通讯, 网关正是一个维系这些网络联系的一个中间体。 网关控制器主要有以下3个功能:

1. 报文路由:

- (a) 网关具有转发报文的功能,并对总线报文状态进行诊断:
- 2. 信号路由:
 - (a) 实现信号在不同报文间的映射;
- 3. 网络管理:
 - (a) 网络状态监测与统计,错误处理、休眠唤醒等。

诊断流程

1 车辆送入维修车间

下一步

2 客户故障分析检查和症状检查

下一步

3 检查蓄电池电压

标准电压:

11 至 14V

如果电压低于 11V, 在转至下一步前对蓄电池充电或更换蓄电池。

下一步

4 故障症状确认

下一步

5 检查网关及外围电路

下一步

6 检查各网络主节点终端电阻

下一步

终端诊断

1. 检查网关控制器引脚

- (a) 断开网关控制器 G19 连接器。
- (b) 检查线束端各端子电压和电阻。

标准电压

G19-1 -车身搭铁	В	信号地	始终	小于 1Ω
端子号 (符号)	配线颜色	端子描述	条件	规定状态
准电阻				
G19-7-车身搭铁	R/L	IG1 供电	ON 档电	11 至 14V
G19-5 -车身搭铁	R	蓄电池正极	始终	11 至 14V
端子号 (符号)	配线颜色	端子描述	条件	规定状态

(c) 重新接上 G19 连接器,从连接器后端引线,检查各端 子电压。

标准电压

端子号(符号)	配线颜色	端子描述	条件	规定状态
G19-2 -车身搭铁	Р	B-CANH2	始终	2.5 V
G19-3 -车身搭铁	V	B-CANL2	始终	2.5 V
G19-4 -车身搭铁	P	B-CANH1	始终	2.5 V
G19-6 -车身搭铁	Р	F-CANH	始终	2.5 V
G19-10-车身搭铁	V	B-CANL1	始终	2.5 V
G19-11-车身搭铁	В	屏蔽线	始终	2.5 V
G19-12-车身搭铁	V	F-CANL	始终	2.5 V

全面诊断流程

网关及外围电路

电路图:

检查步骤:

1

CA

1 检查电源

- (a) 断开网关控制器 G19 连接器。
- (b) 检查线束端连接器各端子电压和电阻。

标准电压

端子号(符号)	条件	规定状态
G19-5-车身搭铁	始终	11 至 14V
G19-7-车身搭铁	ON 档电	11 至 14V

标准电阻

端子号 (符号)	条件	规定状态
G19-1-车身搭铁	始终	小于 1Ω

正常

跳到第3步

异常

2 检查配电盒

- (a) 从仪表板配电盒 G2I、G2J 连接器后端引线。
- (b) 检查两端子分别与车身搭铁间电压。

标准电压

端子号(符号)	条件	规定状态
G2I-33-车身搭铁	ON 档电	11 至 14V
G2J-4-车身搭铁	始终	11 至 14V

异常

配电盒故障

正常

线束故障(仪表板配电盒-网关控制器)

3 检查 CAN 通信线路

- (a) 断开网关控制器 G19 连接器, 断开 TCU A96 连接器,
- (b) 检查线束端连接器各端子间电阻。

标准电阻

端子号 (符号)	条件	规定状态
G19-6-A96-11	始终	小于 1Ω
G19-12-A96-12	始终	小于 1Ω
G19-6-G19-12	始终	大于 10kΩ

异常

动力网主线断路或短路, 更换线束

(a) 断开网关控制器 G19 连接器,断开前舱配电盒 B1I、仪表板配电盒 K01 连接器,检查线束端连接器各端子间电阻。

标准电阻

端子号 (符号)	条件	规定状态
B1I-2-G19-4	始终	小于 1Ω
B1I-1-G19-10	始终	小于 1Ω
G19-4-G19-10	始终	大于 10kΩ
K01-1-G19-4	始终	小于 1Ω
K01-17-G19-10	始终	小于1Ω

异常

舒适网1主线断路或短路,更换线束

(a) 断开网关控制器 G19 连接器, 断开组合仪表 G01 连接器, 检查线束端连接器各端子间电阻。

标准电阻

端子号(符号)	条件	规定状态
G19-2-G01-4	始终	小于 1Ω
G19-3-G01-5	始终	小于 1Ω
G19-2- G19-3	始终	大于 10kΩ

异常

舒适网 2 主线断路或短路, 更换线束

正常

4

更换网关控制器

L-CAN1 主节点

电路图:

检查步骤:

1 检查网关终端电阻

- (a)断开网关控制器 G19 连接器。
- (b)检查板端 4 脚与 10 脚之间电阻。

标准电阻

端子号 (符号)	条件	规定状态
4 - 10	始终	约 120 Ω

异常

更换网关控制器

正常

2 检查前舱配电盒终端电阻

(b) 检查板端 56 脚与 57 脚之间电阻。

标准电阻

端子号(符号)	条件	规定状态
56 - 57	始终	约 120 Ω

异常

更换前舱配电盒

正常

3 检查 L-CAN 1 主线线束

- (a)断开网关控制器 G19 连接器。
- (b)断开前舱配电盒 B1B 连接器。
 - (c)检查线束端连接器各端子间电阻。

标准电阻

端子号(符号)	条件	规定状态
G19-10-B1B-56	V	小于 1Ω
G19-4-B1B-57	Р	小于 1Ω
G19-10-G19-4	V-P	大于 1MΩ

异常

更换线束

正常

L-CAN2 主节点

CA

检查步骤:

1 检查网关终端电阻

- (a) 断开网关控制器 G19 连接器。
- (b) 检查板端 2 脚与 3 脚之间电阻。

标准电阻

端子号(符号)	条件	规定状态
2 - 3	始终	约 120 Ω

异常

更换网关控制器

正常

2 检查组合仪表终端电阻

- (a) 断开组合仪表 G01 连接器。
- (b) 检查板端 4 脚与 5 脚之间电阻。

标准电阻

端子号(符号)	条件	规定状态
4 - 5	始终	约 120 Ω

异常

更换组合仪表

正常

3

检查 L-CAN 2 主线线束

- (a) 断开网关控制器 G19 连接器。
- (b) 断开组合仪表 G01 连接器。
- (c) 检查线束端连接器各端子间电阻。

标准电阻

端子号 (符号)	条件	规定状态
G19-2-G01-4	P	小于 1Ω
G19-3-G01-5	V	小于1Ω
G19-2-G19-3	P-V	大于 1MΩ

异常

更换线束

正常

H-CAN 主节点

电路图:

检查步骤:

1 检查网关终端电阻

- (a) 断开网关控制器 G19 连接器。
- (b) 检查板端 12 脚与 6 脚之间电阻。

标准电阻

端子号(符号)	条件	规定状态
12 - 6	始终	约 120 Ω

异常

更换网关控制器

CA

CA-14

网关控制器

正常

2 检查 ECM 终端电阻

(a) 断开 ECM A01 连接器。

(b) 检查板端 11 脚与 12 脚之间电阻。

标准电阻

端子号(符号)	条件	规定状态
101- 109	始终	约 120 Ω

异常

更换 ECM

正常

3 检查 H-CAN 主线线束

- (a) 断开网关控制器 G19 连接器。
- (b) 断开 ECM A01 连接器。
- (c) 检查线束端连接器各端子间电阻。

标准电阻

		- 29
端子号(符号)	条件	规定状态
G19-12-A01-101	V	小于 1Ω
G19-6-A01-109	Р	小于 1Ω
G19-12-G19-6	V-P	大于 1MΩ

异常

更换线束

正常

拆卸

- 1. 拆卸杂物盒
- 2. 拆卸网关控制器
 - (a) 断开接插件
 - (b) 用 10#套筒拆卸 1 个螺栓。
 - (c) 取下网关控制器。

安装

- 1. 安装网关控制器
 - (a) 将网关控制器对准安装孔。
 - (b) 安装 1 个固定螺栓。
 - (c) 接上接插件。

2. 安装杂物盒