Zero knowledge

Co když Alice nevěří Bobovi?

Alice chce dokázat Bobovi, že $x \in L$ tak, aby Bob uvěřil, ale nebyl schopen důkaz replikovat.

Alice má N=pq a chce dokázat, že je složené, tak, aby Bob nevěděl p a q (crypto aplikace) Kde je Waldo (Wally)?

Položíme knížku na stůl a překryjeme dostatečně velkým papírem s okénkem. Buď v okénku najdeme Wallyho, nebo pod papírem knížku, ale nemáme informaci o tom, kde se Wally na stránce nachází.

Interaktivní protokoly

Alice, Bob, interaktivní TS mají společný vstup x a sdílejí komunikační pásky interakce probíhá po kolech

Exekuce je dvojice

$$(V_A, V_B) = ((x, z_1, r_1, M_a), (x, z_2, r_2, M_B)),$$

kde x je vstup, z anxiliary input, r mince a M_A zprávy od Boba (podobně M_B). Platí:

$$M_a = \{m_A^1, m_A^2, \dots\}, M_B = \{m_B^1, m_B^2, \dots\}, x, r_i, z_i \in \{0, 1\}^*.$$

Interakci mezi TM(A, B) značíme $A(r_1, z_1) \leftrightarrow B(r_2, z_2)$ a mějme odpovídající náhodné proměnné (pokud $r_1, r_2 \in \{0, 1\}^k$): V_A je view A, podobně V_B je view B, out $_x(e), x \in \{A, B\}$ výstup příslušného stroje a m_A^i je itá zpráva od Boba

Interactive proof

P prover, V verifier

Dvojice interaktivních TS A a B je interaktivní důkaz pro jazyk L, pokud V je PPT a platí:

1. Completeness . . . $x \in L \ \exists y \in \{0,1\}^* \ \text{t.\check{z}}. \ \forall z \in \{0,1\}^* :$

$$\Pr[\mathrm{out}_V[P(x,y) \leftrightarrow V(x,z)] = 1] = 1$$

2. Soundness ... $\exists \operatorname{reg}! z$ t.ž. $\forall x \notin L$, $\forall PPT P^*$ a $\forall z \in \{0,1\}^* (|x| = n)$:

$$\Pr[\operatorname{out}_V[P^*(x) \leftrightarrow V(x,z)] = 1] \le \epsilon(n)$$

(Tady může mít prover informaci y v sobě zakódovanou)

Buď IP třída jazyků, které mají interaktivní důkaz (NP ⊂ IP)

Shamir: IP=PSPACE

Interaktivní důkaz pro neizomorfismus grafů

 $G_0 = (V_0, E_0), G_1 = (V_1, E_1)$ (oba na n vrcholech), definuji izomorfismus $\exists \sigma \in S_n$ t.ž. $\sigma(G_0) = G_1$. Izomorfismus grafů $L_{\text{ISO}} \subset \text{NP}$, neizomorfismus grafů $L_{\text{NISO}} \subset \text{coNP}$.

Protokol pro $L_{\rm NISO}$

Společný vstup je $X = (G_0, G_1)$

- 1. Verifier V(X) zvolí náhodně bit b a permutaci σ .
- 2. Pošle proverovi $H = \sigma(G_b)$.

- 3. Prover najde b' t.ž. $H \sim G_{b'}$.
- 4. Pošle b' verifierovi.
- 5. Verifier vrátí 1, pokud b = b'

Opakuj nkrát.

Tvrzení: (P, V) je interaktivní důkaz pro L_{NISO} .

Důkaz: Completeness: $x \in L_{NISO} \Rightarrow P$ vždy najde b' = b

Soundness: $x \in L_{\rm ISO} \Rightarrow {\rm pst.}$ úspěchu v jednom pokusu je právě 1/2

Najít si: zero cash, měny s anonymitou, prakticky použitelné aplikace pro kryptografické problémy Pro přirozené jazyky v NP program dává nějakou hodnotu na vstupu

Exektivní interaktivní důkaz pro G.ISOMORFISMUS

Společný vstup $X = (G_0, G_1), |V_0| = |V_1|$

svědkem pro P je σ t.ž. $\sigma(G_1) = G_0$.

Prover zvolí $\pi \leftarrow S_n$, $H = \pi(G_0)$ a pošle V graf H.

V zvolí bit b a pošle proverovi

Pokud b=0, P pošle π , jinak pošle $\pi'=\pi\circ\sigma$ (tedy $H=\pi'(G_1)$)

Verifier ověří, že dostal správný izomorfismus.

Opakujeme nkrát.

Tvrzení: (P, V) je interaktivní důkaz pro $L_{\rm ISO}$.

Důkaz: Completeness: Jsou-li grafy izomorfní, prover umí pro oba případy odpovědět.

Soundness: Nejsou-li izomorfní, v jednom pokusu umí prover odpovědět nejvýš s pravděpodobností 1/2, neboť H může být izomorfní jen jednomu grafu.

Zero knowledge: V se z protokolu nedozví vůbec nic.

Definice: (Honest verifier zero knowledge)

Nechť P_V je interaktivní důkaz pro jazyk $L \in NP$ se svědeckou relací R_L . Bere svědecké relace a vrací 0 nebo 1.

Řekneme, že (P,V) je Honest verifier zero knowledge, pokud existuje PPT simulátor t.ž. \forall PPT distinguishery $D \exists$ negligible $\varepsilon : \forall x \in L, y \in R_L(x)$ a $z \in \{0,1\}^*$ D rozliší následující distribuce s pravděpodobností nejvýše $\varepsilon(|x|)$:

$$\{\operatorname{view}_V[P(x,y)\leftrightarrow V(x,z)]\}\ \text{vs. }\{S(x,z)\}$$

Definice: (Zero knowledge)

 $\forall PPT \ P^* \ \exists \ expected \ PPT \ (očekávaný polynomiální čas) simulátor$

$$S: \{ \text{view}_{V^*}[P(x,y) \leftrightarrow V^*(x,y)] \}$$

Tvrzení: (P, V) je zero knowledge důkaz pro $L_{\rm ISO}$

Důkaz: simulátor $S(x,z) \ \forall V^*$ pro jednu iteraci

- 1. vyber bit b', π in S_n : $H = \pi(G_b)$
- 2. emuluj V_r^* se vstupem x,z pro $r \leftarrow \{0,1\}^k$ na vstupu H pro k dostaneme $b = V_r^*(x,z,H)$
- 3. pokud b = b', vrať view_{V*} (x, z, r, H, b, π) , jinak se vrať do 2. a opakuj
- a) S pracuje v očekávaném poly čase, distribuce jsou stejné
- b) při exekuci S(x,z) má H stejnou distribuci jako $\pi(G_0)$ a $\Pr[b'=b]=\frac{1}{2}$

když g_0, G_1 jsou izomorfní, pak $\{\pi(G_0)\}$ a $\{\pi(G_1)\}$ jsou stejné \Rightarrow distribuce $H, \pi(G_0)$ jsou stejné. distribuce H, b' jsou nezávislé $\Rightarrow V^*$ má na vstupu pouze H, které nezávisí na b', protože b' je rovnoměrně rozdělené

- a) z lemmatu, protože očekávaný počet iterací jsou 2 a jednotlivé iterace jsou PPT
- b) H nezávisí na b', π nezávisí na b' \Rightarrow distribuce π se nezmění