

Student Satellite Project Indian Institute of Technology, Bombay Powai, Mumbai - 400076, INDIA

Website: www.aero.iitb.ac.in/satlab

README - q-Davenport Algorithm

Guidance, Navigation and Controls Subsystem

es_main_qdp.m

Code Type: MATLAB - Script Code author: Shashank Singh Created on: 29/04/2020 Last modified: -/-/---

Reviwed by: NOT YET REVIEWED!

Description:

This is the main script, which runs the q-Davenport Algorithm.

Formula & References:

Reference: Chapter 5, Fundamentals of Spacecraft Attitude Determination and Control Authors:

Markley, F. Landis, Crassidis, John L.

Input parameters:

The input arguments to the function are read from the **Input** folder. Here N refers to the number of input stars.

- 1. es_input.mat: The contents of which are-
 - st_op_bi : ((N, 4) Matrix) The body-frame vectors (X,Y,Z), of the matched stars
 - **st_op_ri**: ((N, 4) Matrix) The inertial-frame vectors (X,Y,Z), of the corresponding matched stars
 - st_N_Match: (Integer) The number of stars matched by Star Matching

Output:

Writes the final estimated quaternion using q-Davenport into es_q_bi.csv file in the Output folder.

es_qdp.m

Code Type: MATLAB - Function Code author: Shashank Singh Created on: 29/04/2020

Last modified: -/-/---

Reviwed by: NOT YET REVIEWED!

Description:

This is the main and the only function in the Q-Davenport algorithm. It calculates the final esti-

mated quaternion.

Formula & References:

Reference: **Chapter 5**, Fundamentals of Spacecraft Attitude Determination and Control Authors:

Markley, F. Landis, Crassidis, John L.

Input parameters: Here N refers to the number of input stars.

- 1. **b_m**: ((N, 3) Matrix) The body-frame vectors (X,Y,Z), of the matched stars
- 2. **m_r**: ((N, 3) Matrix) The inertial-frame vectors (X,Y,Z), of the corresponding matched stars
- 3. $\mathbf{v}_{-\mathbf{a}}$: ((N, 1) Vector) The weights of the corresponding matched stars

Output:

q_bi: ((4,1) - Vector) - The final estimated quaternion, using q-Davenport algorithm.