

A Generalized Signal Quality Estimation Method for IoT Sensors

Arlene John, Barry Cardiff and Deepu John University College Dublin

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Context

- Current healthcare scenariosshift of care/ monitoring from hospitals to homes.
- Ambulatory healthcare monitoring-IoT sensors.
- Corrupted by noise.

Context

Signal quality analysis.

Confidence metric.

Research Gap

- No general definition of signal quality.
- Designed for a specific signal or noise scenario.
- Instantaneous signal quality assessment method not discussed.

- a. Any stage of signal acquisition and processing.
- b. Applicable to a number of signals and noise scenarios.
- c. Instantaneous signal quality.

A generalized signal quality indicator - any periodic or quasi-periodic signals.

Amount of noise contained in the signal.

A monotonically increasing function of SNR.

Based on the waveform morphology - curve SQI (cSQI).

Performance on ECG signals.

Generation of a single cycle template.

Methodology
- Template
Generation

Template generation use N cycles of clean data.

Example: ECG signals

Table 1: Algorithm for Template Generation

Setup:

- A. Signal sequence of interest x
- B. Signal vector X_n of length 2M+1 ≜ [x[n-M],...x[n],...x[n+M]] where M has been decided based on the time period.
- C. Let X_{n (c)} be the correlation Toeplitz matrix of X_n of dimensions (2M+1, 4M+1) where X_{n (c)=}

, where the k^{th} column of $\mathbf{X}_{n\ (c)}$ is indicated by $\mathbf{X}_{n\ (c)}^{\ (k)}$ where $k\in[0,4M]$

D. Let $\mathbf{X_n}^{(t)}$ be t^{th} circular shifted version of $\mathbf{X_n}$ ie., $\mathbf{X_n}^{(t)} = [\mathbf{x}[\mathbf{n}-\mathbf{M}+t] \ \mathbf{x}[\mathbf{n}-\mathbf{M}+t+1]...\mathbf{x}[\mathbf{n}+\mathbf{M}] \ \mathbf{x}[\mathbf{n}-\mathbf{M}+t+1]]$

Template Generation:

- Identify a signal segment containing N consecutive fiducial features of interest (From the time period or otherwise).
- Let n₀ be the center of the first segment of length 2M+1, Xn₀.
- 3. Initialize $T = Xn_0$.
- 4. For $\mathbf{i} = (M+1)$ to $(\mathbf{N}(2M+1)-M)$ in steps of 2M+1
 - a. Let $X_{n_0+i(c)}$ be the correlation Toeplitz matrix of X_{n_0+i}
 - b. Let $\mathbf{k} = \operatorname{argmax}_{j} \left[\left| \mathbf{T} \cdot \mathbf{X}_{\mathbf{n_0} + \mathbf{i} \, (\mathbf{c})}^{(j)} \right| \right]$
 - c. If $\mathbf{k} \approx \mathbf{n_0}$

$$T=T+X_{n_0+i}^{(k)}$$

End

End

Normalize T based on number of times condition 4.c was satisfied.

x[n-M]	x[n-M+1]		x[n]		x[n+M-1]	x[n+M]

x[n+M]	x[n+M-1]			X[n]	x[n-1]			x[n-M+1]	x[n-M]	0			0
0	x[n+M]	x[n+M-1]			x[n]	x[n-1]			x[n-M+1]	x[n-M]	0		0
					•								
•		•	•	•	•	•	•		•	•			
0	0		0	0				0	0	x[n+M]		x[n-M+1]	x[n-M]

Is the template T

T[-M+1]

T[-M]

T[M-1]

T[M]

Overlay of ECG cycles for averaging in template generation Fiducial point ECG data -50 -100 20 40 60 80 0 Samples Fig. 1

- 10 cycles.
- template length- 70% of the average time period.
- missed fiducial pointsegment discarded (condition 1).
- ECG- Q wave

Methodology- cSQI calculation

- Assigns quality value for each signal sample.
- Signal window centered at that sampled.
- cSQI $[t_0]$ -> inverse of the variance of the difference between the template and signal window centered at t_0 at the point of maximum correlation with the template.
- cSQI $[t_1]$ -> shifting the window.

Methodology- cSQI calculation

Table 2: Algorithm for cSQI calculation

Initialize and calculate c[0]:

- A. Let $T_{(c)}$ be the Toeplitz correlation matrix of the template T. $T_{(c)}[u]$ indicates u^{th} row of the matrix with $u \in [0, 2M]$
- B. Signal vector S_0 of length $2M+1 \triangleq [s[-M],...s[0],...s[M]]$ where M has been decided based on the time period, centered at s[0].
- C. Lag sequence L=[-M -M+1 ...0...M-1 M]
- D. Calculate $A' = S_0 X T$ where A' is the L-R flipped result of the correlation sequence
- E. Lag t=L[argmax(A)]
- F. $\mathbf{c}[0] = (\text{var}(\mathbf{S_0} \mathbf{T^{(t)}}))^{-1} \text{ and } \mathbf{b} = \mathbf{s}[-\mathbf{M}]$

Loop till no signal is read:

For i=1 to Z in steps of 1

- a. Window centered at s[i], S_i of length 2M+1.
- b. **NR**=s[i+M]. $T_{(c)}$ [2M] and **FR**=b. $T_{(c)}$ [0]
- c. Calculate L-R flipped correlation sequence A'=(A'-FR)(1)+NR
- d. Lag t=L[argmax(A)]
- e. $c[i] = (var(S_k-T^{(t)}))^{-1}$ and b=s[i-M]

End

cSQI= LPF(c), where the low pass filter could be a moving average filter to avoid rapid variations that can be attributed to edge effects of windowing. The block diagram of the algorithm for a circuit implementation is shown in Fig 1.

s	[-M] s[-N	1+1] .		s[0]		. s[[M]	*						
	T[n+M]	T[n+M-1]			T[n]	T[n-1]	·		T[n-M+1]	T[n-M]	0		·	0
	0	T[n+M]	T[n+M-1]			T[n]	T[n-1]	·		T[n-M+1]	T[n-M]	0		0
							·							
		·					·		r			·		
	0	0		0	0				0	0	T[n+M]		T[n-M+1]	T[n-M]
	$= A_0$	o' =	A[M]	A[M-1]	•	•	A[0]	•	•	A[-M+1]	A[-M]			
	=> /	4 ₀ =	A[-M]	A[-M+1]			A[0]			A[M-1]	A[M]			

For every subsequent c[i]:

To calculate, c[1] =

MethodologycSQI calculation

- cSQI corrupted by 5 dB Gaussian noise and when clean.
- The template generated (Fig. 1) is circularly rotated align with fiducial feature.
- Difference would correspond to noise.

Performance Evaluation

- cSQI
 - 50 Hz power line interference,
 - Baseline Wander,
 - Muscle Artifacts, and
 - Electrode Motion at -10 dB.
- For all noisy samples- cSQI lower than clean samples

Fig. 3.

Performance Evaluation

- The cSQI vs SNR plot
- SQI averaged over the entire signal
- cSQI- almost linear behavior in the medium SNR ranges

cSQI performance- records of CinC 2011 challenge.

Performance Evaluation

Validation set score - 0.938.

Test set score - 0.904 (Event 1)

Circuit Diagram

Complexity Evaluation

Operation	Count	Count for N=10, M=35 for F _s =125		
Multiplication	$N (8M^2+6M+1)$	100110		
Addition	N (8M ² +4M+1)	99410		

TABLE 3. Complexity of template generation

Operation	Count	Count for M=35 for F _s =125		
Multiplication	$8M^2 + 8M + 3$	10083		
Addition	$8M^2 + 6M + 1$	10011		

TABLE 4. Complexity of cSQI calculation for the first c[0]

- Low computational complexity.
- Smart Algorithm design.

Operation	Count	Count for M=35 for F _s =125
Multiplication	10M+3	353
Addition	12M+3	423

TABLE 5. Complexity of cSQI calculation for every subsequent sample after initialization

Novel generalized signal quality indicator

Any periodic or quasi-periodic signal- identifiable fiducial point.

A monotonically increasing function of SNR.

Low complexity- attractive option for edge IoT devices.

Conclusions

THANKYOU