BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI HYDERABAD CAMPUS SECOND SEMESTER 2019-2020

Course handout (Part II)

Date: 6/01/2020

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : IS F311

Course Title : Computer Graphics Instructor-in-charge : Prof. Tathagata Ray

Scope and Objective of the Course

The course mainly covers Graphics I/O hardware, Generation of dot, lines, conics, curves, surfaces & polygons; Filling closed regions, 2D & 3D Graphics & Transformations, Windowing, Viewing & Clipping, Efficient algorithms, Solid Modeling, Color Models & Dithering, Visible surface detection, Rendering, Animation Techniques, Advanced modeling and Future directions.

The objective of the course is to

- Able to compute all the transformations used in a graphics pipeline.
- Able to compute all the required algorithms used in every phase of the graphics pipeline.
- Able to implement it in OpenGL.
- Able to implement and compute basic geometric modeling constructs.
- Able to calculate lighting models.

Text Book

T1: James D. Foley, A. Van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics: Principles and Practice in C, 2nd edition Pearson education.

Reference Books

- R1: Rogers B., "Mathematical elements of Computer Graphics", Tata McGraw Hill, 2002.
- R2: D. Hearn and M.P. Baker, Computer Graphics: C Version, Pearson Education, 2002.
- R3: N Krishnamurthy, "Introduction to Computer Graphics", 1st Ed., TMH, 2002.

Course Plan

L.No.	Learning	Topics to be covered	Chapter in
	Objectives	-	the Text
	J		Book
01-03	Definition	Overview of graphics systems – What, Why &	Ch 1
	Why to study	Where about Graphics, Hardware & Software, Input	Ch 4.4
	Applications	& Output Technology, Mathematical complexity	Class
	I/O Devices	involved - Demonstration through some examples	Notes
04-07	Fast algorithms to	Raster Graphics Algorithms for Drawing 2D	Ch 3.1-3.9
	draw Lines, Conic,	objects: Lines, Circle, Ellipse, Parabola, Hyperbola,	
	And filled regions	Polygon & Filled Closed Objects	
08-10	Concepts of 3D and	Introduction to 3D- Graphics & 3D Coordinate	Class
	OpenGL	Geometry and Introduction of OpenGL	Notes

	0 1		01 - 4 - 0			
11-13	How & why to	2D & 3D Scaling, Translation, Rotation, Shear,				
	manipulate objects	Reflection, Projection and Composite	Ch 5.5-5.8			
		Transformations				
14-16	Mapping 2D from	Viewing & Clipping in 2D (Cohen's and Parametric	Ch 5.4			
	World to Screen	Line Methods)	Ch 3.11-3.12			
17-20	Mapping 3D from	Viewing & Clipping in 3D (Perspective & Parallel	Ch 6			
	World to Screen,	projection, Clipping against a Canonical View				
	and Foreshortening	Volume, Clipping in Homogeneous Coordinates,				
	0	and Mapping into a View-port				
		11 0 1				
21-25	Drawing Smooth		Ch 11			
	Curves & Surfaces	Surfaces Rational Cubic Polynomial Curves &				
		Quadric Surfaces)				
26-28	Representation of	Solid Modeling (Representations, Operations,	Ch 12			
	Solid Objects	Geometry, and Interface)				
29-33	Detection of	Visible Surface Detection (Need & Algorithms, Ray	Ch 15			
	Hidden portions	Tracing) and Hidden Line elimination				
34-35	Perception of light	Light & Color Models (Light, half-toning, Color	Ch 13			
	and Color,	Models, Color Conversion & Interpolation,				
	Dithering	Dithering Matrix)				
36-38	How to shade	Rendering (Models, Physics, Shading Polygons &	Ch 16			
	surfaces and solids	Surface, & Shadows)				
39-40	How to show	Animation (Languages, Techniques, Control, Basic	Ch 21			
	graphics in motion Rules & Problems)					
41-	Research Agenda	Applications of 3D Graphics in Visualization	Class			
42		rr	Notes			
			1.000			

Evaluation Scheme:

E.C.NO	Evaluation	Duration	Weightage	Date & time	Nature of
	Component	(minute)	(%)		component
01	Midterm	90	20	4/3 9.00 - 10.30AM	Closed
					Book
02	In Class Quizzes		10	Each quiz is 1% worth and will	Closed
				be conducted in class. Almost 1	Book
				quiz/week. No makeups.	
03	Project		10	Will be announced in class	Open Book
03	Coding Assignments	_	20	Will be announced in class	Open Book
					(take home)
04	Comprehensive	180	40	06/05 AN	Closed book
	_				

Chamber Consultation Hour: TBA

Notices: Will be displayed only on the CS&IS notice board and announced in class.

Makeup Policy: Makeup is highly discouraged for this course. Makeup will be given only in genuine cases and that too with prior notification only (following ID rules). In any case, the discretion to give makeup for any component except Comprehensive Exam lies with IC entirely.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor- in-charge Tathagata Ray