Optimal Transport for Machine Learning

Aude Genevay

CEREMADE (Université Paris-Dauphine) DMA (Ecole Normale Supérieure) MOKAPLAN Team (INRIA Paris)

Imaging in Paris - February 2018

Entropy Regularized OT

Applications in Imaging

"OT" for Machine Learning 1 Entropy Regularized OT

2 Applications in Imaging

3 Large Scale "OT" for Machine Learning

"OT" for Machine Learning

Shortcomings of OT

Two main issues when using OT in practice:

- Poor sample complexity : need a lot of samples from μ and ν to get a good approximation of $W(\mu, \nu)$
- Heavy computational cost : solving discrete OT requires solving an LP \rightarrow network simplex solver $O(n^3 log(n))$ [Pele and Werman '09]

Entropy Regularized

Entropy!

- Basically: Adding an entropic regularization smoothes the constraint
- Makes the problem easier :
 - yields an unconstrained dual problem
 - discrete case can be solved efficiently with iterative algorithm (more on that later)
- For ML applications, regularized Wasserstein is better than standard one
- In high dimension, helps avoiding overfitting

Large Scale
"OT" for
Machine
Learning

Entropic Relaxation of OT [Cuturi '13]

Add entropic penalty to Kantorovitch formulation of OT

$$\min_{\gamma \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\gamma(x, y) + \varepsilon \operatorname{\mathsf{KL}}(\gamma | \mu \otimes \nu)$$

where

$$\mathsf{KL}(\gamma|\mu\otimes \textcolor{red}{\nu}) \stackrel{\mathsf{\scriptscriptstyle def.}}{=} \int_{\mathcal{X}\times\mathcal{Y}} \big(\log\big(\frac{\mathrm{d}\gamma}{\mathrm{d}\mu\mathrm{d}\textcolor{red}{\nu}}(x,y)\big) - 1\big)\mathrm{d}\gamma(x,y)$$

Regularized OT

in Imaging

"OT" for Machine Learning

Dual Formulation

$$\max_{u \in C(\mathcal{X})v \in C(\mathcal{Y})} \int_{\mathcal{X}} u(x)d\mu(x) + \int_{\mathcal{Y}} v(y)d\nu(y)$$
$$-\varepsilon \int_{\mathcal{X} \times \mathcal{Y}} e^{\frac{u(x)+v(y)-c(x,y)}{\varepsilon}} d\mu(x)d\nu(y)$$

Constraint in standard OT u(x) + v(y) < c(x, y) replaced by a smooth penalty term.

Large Scale
"OT" for
Machine
Learning

Dual Formulation

Dual problem concave in u and v, first order condition for each variable yield :

$$\nabla_{u} = 0 \Leftrightarrow u(x) = -\varepsilon \log(\int_{\mathcal{Y}} e^{\frac{v(y) - c(x, y)}{\varepsilon}} d\nu(y))$$
$$\nabla_{v} = 0 \Leftrightarrow v(y) = -\varepsilon \log(\int_{\mathcal{X}} e^{\frac{u(x) - c(x, y)}{\varepsilon}} d\mu(x))$$

The Discrete Case

Dual problem:

$$\max_{u \in \mathbb{R}^m v \in \mathbb{R}^n} \qquad \sum_{i=1}^n u_i \mu_i + \sum_{j=1}^m v_j \underline{\nu}_j - \varepsilon \sum_{i,j=1}^{n,m} e^{\frac{u_i + v_j - c(x_i, y_j)}{\varepsilon}} \mu_i \nu_j$$

First order conditions for each variable:

$$\nabla_{u} = 0 \Leftrightarrow u_{i} = -\varepsilon \log \left(\sum_{j=1}^{m} e^{\frac{v_{j} - c(x_{i}, y_{j})}{\varepsilon}} \nu_{j} \right)$$

$$\nabla_{\mathbf{v}} = 0 \Leftrightarrow \mathbf{v}_{j} = -\varepsilon \log \left(\sum_{i=1}^{n} e^{\frac{u_{i} - c(\mathbf{x}_{i}, \mathbf{y}_{j})}{\varepsilon}} \mu_{i} \right)$$

⇒ Do alternate maximizations!

Large Scal "OT" for Machine Learning

Sinkhorn's Algorithm

• Iterates $(a,b):=(e^{\frac{u}{\varepsilon}},e^{\frac{v}{\varepsilon}})$

Sinkhorn algorithm [Cuturi 13]

initialize
$$b \leftarrow \mathbb{1}_m$$
 $K \leftarrow (e^{-c_{ij}/\varepsilon}m_{ij})_{ij}$ repeat

$$\begin{aligned} \mathbf{a} &\leftarrow \mu \oslash \mathbf{K} \mathbf{b} \\ \mathbf{b} &\leftarrow \nu \oslash \mathbf{K}^{\mathsf{T}} \mathbf{a} \end{aligned}$$
 return $\gamma = \mathrm{diag}(\mathbf{a}) \mathbf{K} \mathrm{diag}(\mathbf{b})$

- each iteration O(nm) complexity (matrix vector multiplication)
- can be improved to $O(n \log n)$ on gridded space with convolutions [Solomon et al. '15]

Aude Genevay

Entropy Regularized OT

Applications in Imaging

Large Scal "OT" for Machine Learning

Sinkhorn - Toy Example

Marginals μ and ν

top : evolution of γ with number of iterations / bottom : evolution of γ with regularization parameter ε

Large Scal "OT" for Machine Learning

Sinkhorn - Convergence

Definition (Hilbert metric)

Projective metric defined for $x, y \in \mathbb{R}^d_{++}$ by

$$d_H(x,y) := \log \frac{\max_i (x_i/y_i)}{\min_i (x_i/y_i)}$$

Theorem

The iterates $(a^{(l)}, b^{(l)})$ converge linearly for the Hilbert metric.

Remark : the contraction coefficient deteriorates quickly when $\varepsilon \to 0$ (exponentially in worst-case)

Large Scal
"OT" for
Machine
Learning

Sinkhorn - Convergence

Constraint violation

We have the following bound on the iterates:

$$d_H(a^{(I)}, a^*) \leq \kappa d_H(\gamma \mathbb{1}_m, \mu)$$

So monitoring the violation of the marginal constraints is a good way to monitor convergence of Sinkhorn's algorithm

 $\|\gamma \mathbb{1}_m - \mu\|$ for various regularizations

Regularized OT

Applications in Imaging

Large Scale "OT" for Machine Learning

Color Transfer

Image courtesy of G. Peyré

Large Scal "OT" for Machine Learning

Barycenters [Solomon et al.]

Wasserstein Barycenters

$$\bar{\mu} = \operatorname*{arg\,min}_{\mu} W(\mu_k, \mu)$$

Large Scale "OT" for Machine Learning Consider entropy-regularized OT

$$\min_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \mathrm{d}\pi(x, y) + \varepsilon \, \mathsf{KL}(\pi | \mu \otimes \nu)$$

Regularized loss:

$$W_{c,\varepsilon}(\mu,
u) \stackrel{\mathsf{def.}}{=} \int_{\mathcal{XY}} c(x,y) d\pi_{\varepsilon}(x,y)$$

where π_{ε} solution of (15)

Large Scale "OT" for Machine Learning

$\begin{array}{c} {\sf Sinkhorn\ Divergences}:\\ {\sf interpolation\ between\ OT\ and}\\ {\sf MMD} \end{array}$

Theorem

The Sinkhorn loss between two measures μ, ν is defined as:

$$\bar{W}_{c,\varepsilon}(\mu,\nu) = 2W_{c,\varepsilon}(\mu,\nu) - W_{c,\varepsilon}(\mu,\mu) - W_{c,\varepsilon}(\nu,\nu)$$

with the following limiting behavior in ε :

1 as
$$\varepsilon \to 0$$
, $\bar{W}_{c,\varepsilon}(\mu,\nu) \to 2W_c(\mu,\nu)$

2 as
$$\varepsilon \to +\infty$$
, $\bar{W}_{c,\varepsilon}(\mu,\nu) \to \|\mu-\nu\|_{-c}$

where $\|\cdot\|_{-c}$ is the MMD distance whose kernel is minus the cost from OT.

Remark : Some conditions are required on c to get MMD distance when $\varepsilon \to \infty$. In particular, $c = \|\cdot\|_p^p$, 0 is valid.

Large Scale "OT" for Machine Learning

Sample Complexity

Sample Complexity of OT and MMD

Let μ a probability distribution on \mathbb{R}^d , and $\hat{\mu}_n$ an empirical measure from μ

$$W(\mu, \hat{\mu}_n) = O(n^{-1/d})$$

 $MMD(\mu, \hat{\mu}_n) = O(n^{-1/2})$

 \Rightarrow the number n of samples you need to get a precision η on the Wassertein distance grows exponentially with the dimension d of the space!

Large Scale "OT" for Machine Learning

Sample Complexity - Sinkhorn loss

Sample Complexity of Sinkhorn loss seems to improve as ε grows.

Large Scal "OT" for Machine Learning

Generative Models

Figure: Illustration of Density Fitting on a Generative Model

Large Scale
"OT" for
Machine
Learning

Density Fitting with Sinkhorn loss "Formally"

Solve $\min_{\theta} E(\theta)$

where
$$E(\theta) \stackrel{\text{def.}}{=} \bar{W}_{c,\varepsilon}(\mu_{\theta}, \frac{\nu}{\nu})$$

⇒ Issue : untractable gradient

Large Scale
"OT" for
Machine
Learning

Approximating Sinkhorn loss

- Rather than approximating the gradient approximate the loss itself
- Minibatches : $\hat{E}(\theta)$
 - sample x_1, \ldots, x_m from μ_{θ}
 - use empirical Wasserstein distance $W_{c,\varepsilon}(\hat{\mu}_{\theta},\hat{\nu})$ where $\hat{\mu}_{\theta} = \frac{1}{N} \sum_{i=1}^{m} \delta_{x_i}$
- Use L iterations of Sinkhorn's algorithm : $\hat{E}^{(L)}(\theta)$
 - compute L steps of the algorithm
 - use this as a proxy for $W(\hat{\mu}_{\theta}, \nu)$

Large Scale
"OT" for
Machine
Learning

Computing the Gradient in Practice

Figure: Scheme of the loss approximation

- Compute exact gradient of $\hat{E}^{(L)}(\theta)$ with autodiff
- Backpropagation through above graph
- Same computational cost as evaluation of $\hat{E}^{(L)}(\theta)$

Large Scal "OT" for Machine Learning

Numerical Results on MNIST (L2 cost)

```
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
```

Figure: Samples from MNIST dataset

Aude Genevay

Entropy Regularized OT

Applications in Imaging

Large Scale
"OT" for
Machine
Learning

Numerical Results on MNIST (L2 cost)

Figure: Fully connected NN with 2 hidden layers

Large Scal "OT" for Machine Learning

Numerical Results on MNIST (L2 cost)

Figure: Manifolds in the latent space for various parameters

Large Scal "OT" for Machine Learning

Learning the cost [Li et al. '17, Bellemare et al. '17]

- ullet On complex data sets, choice of a good ground metric c is not trivial
- Use parametric cost function $c_{\phi}(x,y) = \|f_{\phi}(x) f_{\phi}(y)\|_{2}^{2}$ (where $f_{\phi}: \mathcal{X} \to \mathbb{R}^{d}$)
- Optimization problem becomes minmax (like GANs)

$$\min_{ heta} \max_{\phi} ar{W}_{c_{\phi}, arepsilon}(\mu_{ heta},
u)$$

• Same approximations but alternate between updating the cost parameters ϕ and the measure parameters θ

Aude Genevay

Entropy Regularized

Applications in Imaging

"OT" for Machine Learning

Numerical Results on CIFAR (learning the cost)

Figure: Samples from CIFAR dataset

Entropy Regularized OT

Applications in Imaging

"OT" for Machine Learning

Numerical Results on CIFAR (learning the cost)

Deep convolutional GANs (DCGAN) [1511.06434]

Figure: Fully connected NN with 2 hidden layers

Large Scal
"OT" for
Machine
Learning

Numerical Results on CIFAR (learning the cost)

Figure: Samples from the generator trained on CIFAR 10 for MMD and Sinkhorn loss (coming from the same samples in the latent space)

Which is better? Not just about generating nice images, but more about capturing a high dimensional distribution... Hard to evaluate.