

Software Diversification for WebAssembly

JAVIER CABRERA-ARTEAGA

Doctoral Thesis in Computer Science Supervised by Benoit Baudry and Martin Monperrus

Stockholm, Sweden, 2023

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science
Division of Software and Computer Systems
TRITA-EECS-AVL-2020:4
SE-10044 Stockholm
ISBN 100-Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av Teknologie doktorexamen i elektroteknik i .

© Javier Cabrera-Arteaga , date

Tryck: Universitetsservice US AB

Abstract

Keywords: Lorem, Ipsum, Dolor, Sit, Amet

Sammanfattning

LIST OF PAPERS

WebAssembly Diversification for Malware Evasion
 Javier Cabrera-Arteaga, Tim Toady, Martin Monperrus, Benoit Baudry
 Computers & Security, Volume 131, 2023, 17 pages
 https://www.sciencedirect.com/science/article/pii/S01674048230
 02067

2. Wasm-mutate: Fast and Effective Binary Diversification for WebAssembly

Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, Benoit Baudry

Under review, 17 pages

https://arxiv.org/pdf/2309.07638.pdf

3. Multi-Variant Execution at the Edge

Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit Baudry

Moving Target Defense (MTD 2022), 12 pages

https://dl.acm.org/doi/abs/10.1145/3560828.3564007

4. CROW: Code Diversification for WebAssembly

Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry, Martin Monperrus

Measurements, Attacks, and Defenses for the Web (MADWeb 2021), 12 pages https://doi.org/10.14722/madweb.2021.23004

5. Superoptimization of WebAssembly Bytecode

Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Satabin, Benoit Baudry, Martin Monperrus

Conference Companion of the 4th International Conference on Art, Science, and Engineering of Programming (Programming 2021), MoreVMs, 4 pages https://doi.org/10.1145/3397537.3397567

6. Scalable Comparison of JavaScript V8 Bytecode Traces
Javier Cabrera-Arteaga, Martin Monperrus, Benoit Baudry
11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (SPLASH 2019), 10 pages
https://doi.org/10.1145/3358504.3361228

ACKNOWLEDGEMENT

Contents

List of Papers Acknowledgement					
					Cont
ΙΊ	hesis		2		
1 In	ntroduct	ion	3		
1.1	The risk	ks of WebAssembly monoculture	5		
1.2	Problen	ns statements	7		
1.3		e Diversification	7		
1.4		ry of research papers			
2 B	ackgrou	nd and state of the art	11		
2.1	WebAss	sembly	11		
	2.1.1	From source code to WebAssembly			
	2.1.2	WebAssembly's binary format	. 15		
	2.1.3	WebAssembly's runtime	. 16		
	2.1.4	WebAssembly's control-flow	. 18		
	2.1.5	Security and Reliability for WebAssembly	. 19		
	2.1.6	Open challenges	. 20		
2.2	Softwar	e diversification	21		
	2.2.1	Generation of Software Variants	. 21		
	2.2.2	Equivalence Checking	. 24		
	2.2.3	Variants deployment	. 25		
	2.2.4	Software Diversification Asssessment	. 26		
	2.2.5	Offensive Diversification	. 27		
	2.2.6	Open challenges	. 28		

2 CONTENTS

3 A	utomatic Software Diversification for WebAssembly	29
3.1	CROW: Code Randomization of WebAssembly	30
	3.1.1 Enumerative synthesis	31
	3.1.2 Constant inferring	32
	3.1.3 Exemplifying CROW	33
3.2	MEWE: Multi-variant Execution for WebAssembly	35
	3.2.1 Multivariant call graph	36
	3.2.2 Exemplifying a Multivariant binary	36
3.3	WASM-MUTATE: Fast and Effective Binary Diversification for	
	WebAssembly	39
	3.3.1 WebAssembly Rewriting Rules	40
	3.3.2 E-Graphs traversals	41
	3.3.3 Exemplifying WASM-MUTATE	42
3.4	Comparing CROW, MEWE, and WASM-MUTATE	44
	3.4.1 Security applications	47
4 E	xploiting Software Diversification for WebAssembly	49
4.1	Offensive Diversification: Malware evasion	49
	4.1.1 Cryptojacking defense evasion	50
	4.1.2 Methodology	51
	4.1.3 Results	53
4.2	Defensive Diversification: Speculative Side-channel protection $$. $$.	
	4.2.1 Threat model: speculative side-channel attacks	58
	4.2.2 Methodology	58
	4.2.3 Results	60
5 C	onclusions and Future Work	65
5.1	Summary of technical contributions	65
5.2	Summary of empirical findings	66
5.3	Future Work	67
II In	cluded papers	70
Super	eoptimization of WebAssembly Bytecode	72
CRO	W: Code Diversification for WebAssembly	73
Multi	-Variant Execution at the Edge	74
WebA	Assembly Diversification for Malware Evasion	75

CONTENTS	3
----------	---

Wasm-mutate: Fast and Effective Binary Diversification for WebAssembly	7 6
Scalable Comparison of JavaScript V8 Bytecode Traces	77

Part I

Thesis