

Wireless Ultrasound Probes: A New Frontier in Assessing Femoral Cartilage Health

Parmar AS¹, Grozier CD¹, Tolzman JE¹, Dima R², Winn B³, Hacihaliloglu I⁴, Fajardo R⁵, Harkey MS¹

Michigan State University¹, Western University², Nike Sport Research Lab³, University of British Columbia⁴, Lansing Radiology Associates⁵

INTRODUCTION

- Recent advancements in wireless ultrasound technology allows for point of care cartilage imaging
- However, validation between wireless and standard ultrasound units remains to be established for knee cartilage outcomes
- **Purpose**: Estimate agreement of articular cartilage thickness and echo-intensity between standard and wireless ultrasound

METHODS

Cross-sectional study: DI female athletes.

N	Height (cm)	Mass (kg)	Age (years)
71	171.7 ± 8.7	69.4 ± 11.0	20.0 ± 1.3

Knee Positioning

Supine; maximum knee flexion

Probe Placement

Transverse suprapatellar centered to the trochlear groove

Standard Ultrasound Unit

• GE LOGIQ P9 R3, Fixed Gain, 4cm depth

Wireless Ultrasound Unit

• Clarius L15, Auto Gain, 4cm depth

Segmentation

- Manual global segmentation
- Semi-automated region quantification

Pixel Normalization

 Image J's "Stack Normalizer" was used to perform a linear algebraic scaling of pixel values to the image maximum and minimum pixel values

Wireless Ultrasound <u>Agrees</u> With Standard Units In Cartilage <u>Thickness</u> But <u>Not In</u> Echo Intensity Measurements

in @ArjunParmar9

Standard Ultrasound Unit

@Ajparmar_

• Intraclass correlation coefficients (ICC $_{2,k}$) for absolute agreement

RESULTS

STATISTICS

<u>ltem</u>	<u>Standard</u>	<u>Wireless</u>	<u>ICC(2,k)</u>
Global			
Thickness	2.16 (0.36)	2.18 (0.34)	0.95
Raw Echo Intensity	41.55 (5.46)	34.61 (6.58)	0.57
Normalized Echo Intensity	35.61 (6.38)	38.90 (8.07)	0.45
Medial			
Thickness	2.11 (0.38)	2.15 (0.36)	0.88
Raw Echo Intensity	45.31 (6.64)	39.51 (8.36)	0.68
Normalized Echo Intensity	40.00 (8.18)	45.28 (9.90)	0.58
Middle			
Thickness	2.39 (0.45)	2.41 (0.46)	0.91
Raw Echo Intensity	34.59 (5.70)	29.60 (7.40)	0.68
Normalized Echo Intensity	27.66 (6.29)	33.48 (8.33)	0.48
Lateral			
Thickness	2.03 (0.36)	2.04 (0.34)	0.94
Raw Echo Intensity	44.24 (6.68)	34.31 (8.15)	0.43
Normalized Echo Intensity	38.75 (7.60)	39.18 (9.66)	0.50

DISCUSSION

- Cartilage <u>thickness</u> measurements demonstrate <u>strong</u> agreement
- Cartilage <u>echo-intensity</u> measurements demonstrate <u>poor</u> agreement
- Algebraic <u>pixel normalization did not</u> <u>improve</u> echo-intensity agreement or alter thickness
- Future studies should investigate the use of unnormalized channel data to minimize the effects of unit specific processing to create B-mode images

Preprint Article

