DISTRIBUTIONAL REINFORCEMENT LEARNING

SPRING 2024

Hyunin Lee

Ph.D. student UC Berkeley hyunin@berkeley.edu

Contents

1	Chapter 2		
	1.1	Random Variables and Their Probability Distributions	3
	1.2	Markov Decision Processes	3
	1.3	The Pinball Model	3
	1.4	The Return	3
	1.5	Properties of the Random Trajectory	4
	1.6	The Random-Variable Bellman Equation	4
	1.7	From Random Variables to Probability Distributions	4
		1.7.1 Mixing	4

1 Chapter 2

1.1 Random Variables and Their Probability Distributions

1.2 Markov Decision Processes

Definition 1.1 (Transition dynamics). We define transition dynamics $P: \mathcal{X} \times \mathcal{A} \to \mathscr{P}(\mathbb{R} \times \mathcal{X})$ that provides the joint probabiltiy distirbuiotn of R_t and X_{t+1} in erths of state X_t and action A_t .

$$R_t, X_{t+1} \sim \boldsymbol{P}(\cdot, \cdot | X_t, A_t)$$

Definition 1.2 (Reward distribution). $R_t \sim P_{\mathcal{R}}(\cdot \mid X_t, A_t)$

Definition 1.3 (Transition kernel). $X_{t+1} \sim P_{\mathcal{X}}(\cdot \mid X_t, A_t)$

Definition 1.4 (Markov Decision Process (MDP)). MDP is a tuple $(\mathcal{X}, \mathcal{A}, \xi_0, \mathbf{P}_{\mathcal{X}}, \mathbf{P}_{\mathcal{R}})$

Definition 1.5 (Policy). A policy is a mapping $\pi : \mathcal{X} \to \mathscr{P}(\mathcal{A})$ rom state to probabilty distributions over actions.

$$A_t \sim \pi(\cdot|X_t)$$

1.3 The Pinball Model

1.4 The Return

Definition 1.6 (Return G). $G = \sum_{t=0}^{\infty} \gamma^t R_t$

The return is a sum of scaled, real-valued random variables and is therefore itself a random variable.

Assumption 1.7. For each state $x \in \mathcal{X}$ and action $a \in \mathcal{A}$, the reward distribution $P_{\mathcal{R}}(\cdot \mid x, a)$ has finite first moment. This is if $R \sim P_{\mathcal{R}}(\cdot \mid x, a)$, then

$$\mathbb{E}[|R|] < \infty.$$

Proposition 1.8. Under Assumption 1.7, the random return G exists and is finite with proabbility 1, in the sense that

$$\mathbb{P}_{\pi}\left(G\in(-\infty,\infty)\right)=1.$$

1.5 Properties of the Random Trajectory

Definition 1.9 (Probablity distribution of random variable Z). We denote $\mathcal{D}(Z)$ as the probability distribution of random variable Z. When Z is real-valued, then for $S \in \mathbb{R}$, we have

$$\mathcal{D}(Z)(S) = \mathbb{P}(Z \in S)$$

Also, we denote $\mathcal{D}_{\pi}(Z)$ as

$$\mathcal{D}_{\pi}(Z)(S) = \mathbb{P}_{\pi}(Z \in S)$$

1.6 The Random-Variable Bellman Equation

Definition 1.10 (Return-variable function).
$$G^{\pi} = \sum_{t=0}^{\infty} \gamma^{t} R_{t}, X_{0} = x.$$

Formally, G^{π} is a collection of random variables indexed by an initial state x, each generated by a random trajectory $(X_t, A_t, R_t)_{t\geq 0}$ under the distribution $\mathbf{P}(\cdot|X_0=x)$.

Proposition 1.11 (The random-variable Bellman equation). Let G^{π} be the return-variable function of policy π . For a sample transition (X = x, A, R, X'), it holds that for any state $x \in \mathcal{X}$,

$$G^{\pi}(x) \stackrel{\mathcal{D}}{=} R + \gamma G^{\pi}(X')$$

1.7 From Random Variables to Probability Distributions

Recall the notation that for a real-valued cariable Z with probability distribution $\nu \in \mathscr{P}(\mathbb{R})$, we define

$$\nu(S) = \mathbb{P}(Z \in S), \ S \subseteq \mathbb{R}.$$

In a same way, for each state $x \in \mathcal{X}$, let us denote the distribution of the random variable $G^{\pi}(x)$ by $\eta^{\pi}(x)$. Using this notation ,we have

$$\eta^{\pi}(x)(S) = \mathbb{P}(G^{\pi}(x) \in S), S \subseteq \mathbb{R}.$$

We call the collection of these per-state distribution the return-distirbution function. Note that $\eta^{\pi}(x) \in \mathscr{P}(\mathbb{R})^{\mathcal{X}}$.

1.7.1 Mixing

Recall that for return-variable G^{π} and return-distribution function η^{π} , we have defined

$$\mathcal{D}_{\pi}(G^{\pi}(X')|X=x)(S) \stackrel{\text{def}}{=} \mathbb{P}_{\pi}(G^{\pi}(X') \in S|X=x).$$

Now, let's take a look at \mathbb{P}_{π} term.

$$\mathcal{D}_{\pi}(G^{\pi}(X')|X=x)(S) \stackrel{\text{def}}{=} \mathbb{P}_{\pi}(G^{\pi}(X') \in S|X=x)$$

$$= \sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x) \mathbb{P}_{\pi}(G^{\pi}(X') \in S|X'=x', X=x)$$

$$= \sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x) \mathbb{P}_{\pi}(G^{\pi}(x') \in S)$$

$$= \left(\sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x) \eta^{\pi}(x')\right)(S)$$

Therefore, we can conclude that

$$\mathcal{D}_{\pi}(G^{\pi}(X')|X=x)(S) = \sum_{x'\in\mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x)\eta^{\pi}(x')$$
$$= \mathbb{E}_{\pi} \left[\eta^{\pi}(X') \mid X=x\right]$$

hte indexing step also has a implse expression in terms of cumulative distribution functions