Math 143 Set 10

1. Plot these polar functions:

a.
$$r = \theta$$
 for $\theta \in [-\pi, \pi]$,

b.
$$r = \sin \theta$$
 for $\theta \in [0, \pi]$.

c.
$$r = 1 - 2\cos\theta \text{ for } \theta \in [0, 2\pi].$$

2. Find the equation of the line tangent to the polar curve at the given point:

a.
$$r = 2 \sin 2\theta$$
 at $\theta = 3\pi/4$.

b.
$$r = 1/\theta$$
 at the x, y coordinate $(0, 2/\pi)$.

3. Find the points on the polar curve where the tangent line has a horizontal or a vertical tangent:

a.
$$r = 1 + \cos \theta$$
.

b.
$$r = 4$$

4. Find the area swept out by the polar equation $r = \sqrt{\theta}$ for $\theta \in [0, 2\pi]$.

5. Find the area enclosed by the graph of $r = \sin(2\theta)$ but outside the graph of $r = \cos(2\theta)$:

6. Find the exact length of the polar curve

a.
$$r = 3 \sin \theta$$
 for $\theta \in [0, \pi/3]$.

b.
$$r = e^{2\theta}$$
 for $\theta \in [0, 2\pi]$.

c.
$$r = \cos \theta + \sin \theta$$
 for $\theta \in [0, \pi]$.