An introduction to the absorption method

Alp Müyesser[†]

October 22, 2025

Abstract

Finding large transversals in Latin squares [Mon] and constructing designs [Kee14] constitute two landmark applications of the absorption method. In these notes, we will introduce the absorption method from scratch, beginning with the set-up of Dirac-type problems, and then build our way up to transversals and designs. These notes are work in progress.

1 What is the absorption method?

Suppose we are trying to construct an object satisfying a certain set of constraints. The absorption method gives us an angle of attack if the following two properties hold in our context.

- (A) It is significantly easier to construct some object satisfying 99% of the constraints.
- (B) There is a robust sense in which partial solutions can be *locally* modified to produce other partial solutions.

The above properties hold in a wide variety of contexts. For example, if the constraints come about in a structureless, uniform sort of way, a sensible approach towards (A) is simply *the probabilistic method*, i.e. considering a suitable notion of a randomly sampled object. If a random construction satisfies 100% of the constraints with positive probability¹, then of course there is no need for the absorption method. There are, however, several natural instances in which a random strategy gets us most of the way, and then gets stuck towards the end². This is where (B) comes in to somehow turn the approximate solution into an exact one.

When is (B) satisfied? Let's start with a non-example. Consider the task of constructing a proper 2-vertex-colouring of a cycle. Here, there is no local flexibility whatsoever: the effect of changing the colour of a vertex necessarily has to propagate through the whole cycle, and hence has *global* effects³. As for a positive example, we will see several throughout these notes, beginning with the following beautiful argument of Erdős from 1986 [Rei89], which appears to be the first application of the absorption method (to my knowledge), though the wide applicability of the method was not crystallised until pioneering work of Rödl, Ruciński, and Szemerédi [RRS06] from 2006.

Recall that a *tournament* is a complete graph, where each edge $\{i, j\}$ is assigned a direction $i \to j$ or $j \to i$. A tournament is transitive if its vertices can be ordered as (1, 2, ..., n) so that $i \to j$

[†]University of Oxford. email: alp.muyesser@new.ox.ac.uk

¹For example, as is the case whilst constructing an n-vertex graph with no cliques or independent sets of size $2\log_2 n$.

²As a first example, the reader may consider the puzzle of the *n*-queens problem, i.e. the task of placing *n* mutually non-attacking queens on an $n \times n$ chessboard (see, for example, [SL22])

³As it should — whether we succeed or fail is of course entirely contingent on a global property: the parity of the number of the vertices.

if and only if i < j (or equivalently, if a tournament is transitive if it contains no distinct i, j, k with $i \rightarrow j \rightarrow k \rightarrow i$).

Proposition 1.1 (Erdős, 1986). For every k, there exists an N so that for all n > N such that k divides n, the vertices of any n-vertex tournament can be partitioned into transitive sub-tournaments of size k.

We need to first recall that any sufficiently large tournament contains a large transitive tournament. This can be seen from Ramsey's theorem by constructing an auxiliary red-blue edge colouring, but the following direct argument gives an even better bound.

Observation 1.2. Suppose $n \ge 2^k$. Any n-vertex tournament contains a transitive sub-tournament on k vertices.

Proof. By induction, suppose the assertion holds for smaller values of k. Take some vertex v of the transitive tournament on n vertices, and notice v either has at least $n/2 \ge 2^{k-1}$ in-edges or out-edges, by the pigeonhole principle. Let's say v has many in-edges. Invoke the inductive hypothesis on the in-neighbourhood to find a transitive sub-tournament there of size k-1, and tack on v to the end of this tournament to find one of size k. The other case is of course symmetric.

Given the above, how should we approach Proposition 1.1? Let us first check (A). Say we took N = N(k) to be 100×2^k . Then, by greedily plucking transitive sub-tournaments of size k one by one, we may saturate all but 1% of the original tournament with transitive sub-tournaments of the same size. So it feels indeed easier to satisfy 99% of the constraints.

How about (B)? Now suppose we took $N = 100 \times 2^{2k}$. Then we can repeat the same argument with transitive sub-tournaments of size 2k saturating 99% of the original tournament. Each of transitive sub-tournament of size 2k splits into two disjoint ones of size k in a rich variety of ways, $\binom{2k}{k}$ ways to be exact. We can treat this as evidence as there being many partial solutions that can be obtained from one another by making "local toggles".

It's not actually clear how we can use these properties (A) and (B) to our advantage to fully solve the problem. The reader may want to stop and think for a moment, before we reveal the brilliant strategy of Erdős.

Proof of Proposition 1.1. Given a large enough tournament T, let us first reserve $K := k2^{k-1}$ many disjoint transitive sub-tournaments T_i ($i \in [K]$) of size 2k-1. Let us keep plucking disjoint transitive sub-tournaments of size k in the remainder (this can be done as long as there are 2^k vertices remaining, but we will stop earlier). The leftover must stay at being multiples of k (as K also is a multiple of k), so at some point, the size of the leftover is exactly K, so we can choose to stop the process at that moment. Let us arbitrarily pair up the leftover vertices with the T_i . The key observation that concludes the proof is the following: for each leftover vertex v, $v + T_i$ can be split into two transitive sub-tournaments, as v has at least k-1 neighbours in T_i with the same orientation of edges (in fact k, but k-1 is what we need here).

The above proof consists of three steps that appear one way or another in most applications of the absorption method.

The absorption method

- **Step 1.** (Preparation) Find some flexible structure that satisfies the constraints in a rich variety of ways.
- Step 2. (99% solution) In the remainder, saturate most of the constraints.
- **Step 3.** (Absorption) Show that the leftover from Step 2 combines with the flexible structure from Step 1 to produce a construction that satisfies all of the constraints.

A motivated reader might want to think of the quantitative aspects of Proposition 1.1. The Erdős argument certainly requires $N \gg 2^{2k-1}$, and one cannot do better than $N \gg 2^k$ without improving on Observation 1.2. Can we improve on the constant factor in the exponent with a different argument and replace it with 1 + o(1)? See [BS21] for an answer.

2 Perfect matchings in (hyper-)graphs and a digression on the switching method

Both the study of transversals in Latin squares [Mon] and the constructions of designs [Kee14] turn out to be expressible in the language of *hypergraph perfect matchings*. In this section, we give an overview of hypergraph perfect matchings, starting with the graph case, where simple "switching-methods" give satisfying answers, and the hypergraph case, where the said methods fail. We also discuss how the absorption method can in some sense be thought as a more robust implementation of the switching method, relying only on "local variability" to engineer some "global variability".

A *spanning subgraph* of a graph G is a subgraph that has the same vertex set as G and an edge set that is contained in E(G). A decent chunk of extremal combinatorics seeks to characterise (hyper-)graphs that contain a certain kind of spanning subgraph. For example, a graph contains a tree as a spanning subgraph if and only if the graph is connected.

As a more substantial example, we have Hall's marriage theorem. Recall that if $S \subseteq V(G)$, the neighbourhood N(S) denotes elements of V(G) that are connected to some vertex in S.

Theorem 2.1 (Hall's marriage theorem). A bipartite graph G = (A, B) with |A| = |B| has a perfect matching if and only if the following condition holds.

```
(Hall's condition.) For every A' \subseteq A, |N(A')| \ge |A'|.
```

A direct corollary of Hall's marriage theorem is that it is always possible to give a short certificate that a bipartite graph does **not** contain a perfect matching⁴: one simply points to the set S with |N(S)| < |S|. This is very rare phenomenon in the study of spanning structures. For example, no analogous statement holds for spanning paths, or higher dimensional perfect matchings, subject to mainstream hypotheses in computer science.

To formalise this a bit more, a *tripartite hypergraph* H = (A, B, C) is a collection of triples $E(H) := (a, b, c) \in A \times B \times C$ which we view as being the (hyper-)edges of H, and A, B and C are assumed to be disjoint. The definition of a perfect matching hasn't changed, it still is a collection of vertex-disjoint edges that together cover the vertex-set $A \cup B \cup C$. We call a tripartite graph *balanced* if |A| = |B| = |C|, an obvious necessary condition for the existence of a perfect matching.

Existence of perfect matchings in tripartite hypergraphs is one of Karp's original 21 NP-complete problems. What this means for the working combinatorialist is that there almost certainly is no nice characterisation of tripartite hypergraphs with perfect matchings, and moreover, in general, we expect that it is hard to prove (or give a certificate) that a given tripartite hypergraph does **not** contain a perfect matching. That said, many problems in combinatorics can be expressed as a hypergraph matching problem including the existence of transversals in Latin squares and the existence of designs, the two subjects that we are trying to build our way into. So, we certainly wish for a better understanding of hypergraph matchings, no matter how weak.

A widely useful criterion for when tripartite hypergraphs contain perfect matchings is given in the work of Aharoni–Haxell, and these results are interesting not least because they exemplify how topological methods can come into play for problems that seem entirely combinatorial in nature. Unfortunately, these methods and criteria have thus far not been very applicable in the study of transversals in Latin squares or designs, hence we will not say more about them here.

⁴In complexity-theoretic terms, the language of bipartite graphs with perfect matchings is in the class co-NP.

Let us set our targets a bit lower and consider the following (essentially trivial) corollary of Hall's marriage theorem.

Proposition 2.2. If G = (A, B) is a d-regular bipartite graph (each vertex is incident on exactly d-edges), then G has a perfect matching.

Proof. Observe |A| = |B| as e(G) (number of edges of G) is equal to both $|A| \cdot d$ and $|B| \cdot d$. Also, for all $A' \subseteq A$, e(A', N(A')) (number of edges between A' and its neighbourhood, N(A')) is equal to $d \cdot |A'|$, and is at most $|N(A')| \cdot d$, so $|N(A')| \ge |A'|$.

Most hypergraphs we consider here will be regular, so it would have been convenient to have any high-dimensional analogue of Proposition 2.2. Unfortunately, such a result cannot exist, even when we restrict our attention to *linear* hypergraphs, meaning those hypergraphs where any two vertices are contained in at most one common edge. In fact, such a result fails even when we restrict our attention to n-regular linear hypergraphs H = (A, B, C) where |A| = |B| = |C| = n, which can be interpreted as the counter-intuitive assertion that there is no analogue of $K_{n,n}$ having a perfect matching for linear tripartite hypergraphs.

Example 2.3. Consider a tripartite hypergraph H = (A, B, C) where A, B, C consist of disjoint copies of $\mathbb{Z}/n\mathbb{Z}$ where n is an even integer and (a, b, c) is an edge if and only if a + b + c = 0 (mod n).

Proof. If H had a perfect matching, summing over all edges of the matching we'd obtain $3 \cdot \sum_{x \in \mathbb{Z}/n\mathbb{Z}} x = 0 \pmod{n}$, but $3 \cdot \sum_{x \in \mathbb{Z}/n\mathbb{Z}} x \equiv 3 \cdot (n/2) \equiv n/2 \not\equiv 0 \pmod{n}$, assuming n is even.

Considering disjoint unions of the above construction when n=2, we can see that in general, a regular linear tripartite hypergraph can be quite far away from containing a perfect matching, the largest matching could miss half the vertices! We would expect though the situation would get less bad if the degrees of the hypergraph were larger. For example, any n-vertex d-regular graph (not necessarily bipartite) contains a matching covering all but O(n/d) vertices, as can be deduced from theorems of Vizing, or Tutte (and this is optimal, as the graph could consist of disjoint unions of O(n/d) odd-sized subgraphs).

A fundamental open problem of Alon–Kim–Spencer asks about the size of the largest matching in a general d-regular n-vertex linear hypergraph (of uniformity 3). Alon–Kim–Spencer showed that there is a matching covering all but $nd^{-1/2+o(1)}$ vertices (with techniques related to the Rödl nibble that we will discuss later on), but, in principle, it may be possible to find matchings covering all but O(n/d) vertices. Even when d=n, proving such a result was a topic of extensive study, culminating in Montgomery's tour de force work [Mon] proving the following.

Theorem 2.4 (Montgomery, 2023+). Any n-regular linear balanced tripartite hypergraph on 3n vertices contains a matching with n-1 edges.

A striking conjecture of Ryser is that if n is odd, n-1 can be replaced with n in the above, meaning constructions like Example 2.3 can only exist for even values of n.

We remark that linear tripartite hypergraphs H = (A, B, C) with n = |A| = |B| = |C| that are n-regular are often presented as $Latin\ squares$. An order n Latin square is an $n \times n$ array filled with n symbols so that no symbol repeats in any row or any column. Thinking of (A, B, C) as (rows, columns, symbols), and s being the symbol in row r and column c as (r, c, s) being an edge, we see that Latin squares and n-regular linear tripartite hypergraphs on 3n vertices are the same objects. Perfect matchings are often called t-ransversals in the Latin square language. We motivated the study of perfect matchings through the graph theoretic lens in the above, but there are also strong design-theoretic motivations to study transversals in Latin squares, as

they have applications in error-correcting codes and the design of actual scientific experiments where the goal is to minimise unwanted correlations.

2.1 A digression on the switching method

We provide the short proof of Hall's marriage theorem, as it allows us to expose a close cousin of the absorption method, namely, the switching method.

Proof of Theorem 2.1. Let M be a matching of G (not necessarily perfect), and let $F := E(G) \setminus M$ be the unmatched edges. An M-alternating path is a path of G whose edges alternately come from F and M. An M-alternating path is an M-augmenting path if it starts and ends with an F-edge. Given an augmenting path, we may swap the unmatched edges with matched edges, and find a matching M' with |M'| > |M|. So (the non-trivial direction of) Hall's marriage theorem reduces to showing that any non-perfect matching M in a graph G with Hall's condition has an M-augmenting path.

So let M be a matching of G and suppose $v \in A$ is unmatched. Consider the set of all vertices R_v that are reachable by an M-alternating path starting from v, and note that if R_v contains an unmatched vertex $w \in B$, we're done. Consider the sets $R_v \cap A$ and $R_v \cap B$. The key observation is that unless $R_v \cap B$ contains an unmatched vertex from B, it must be that $R_v \cap B$ and $R_v \cap A$ are in bijective correspondence with the pairing coming from M (the best way to see this is to draw a picture and track the iterative growth of R_v as we allow longer and longer alternating paths). Also, $R_v \cap B$ contains N(v), as well as $N(R_v \cap A)$, as any G-neighbour of v or v or

The above proof of Hall's marriage theorem belongs in a wider class of proof strategies, which can be summarised as follows.

The switching method

- **Step 1.** Find some object maximal with respect to some parameter which we are trying to optimize.
- **Step 2.** Show that unless the object satisfies all the constraints, it can be improved by performing a sequence of modifications.

In the context of structural graph theory, the switching method is studied under the guise of "Kempe changes" (for example, in the proof of Vizing's theorem on edge-colourings or the 5-colour-theorem), and in the context of extremal graph theory, the switching method often manifests itself as the study of "Posá rotations" (we will see an illustration in the next section).

The third step in the absorption method is often realised by performing a sequence of *local* modifications, so the absorption method can really be thought of as a special case of the switching method. The proof of Hall's marriage theorem features a basic application of the switching method that requires no preparation, nor the 99% solution step, mainly because there is a tractable way in which we can reason about the space of *global* modifications we can perform. Indeed, neither the length of the augmenting path nor the size of the matching *M* being augmented had any role in the argument.

The absorption method is necessitated by the fact that in many contexts, there is no known trackable way of reasoning about global modifications⁵, yet there is a way of reasoning about local modifications.

⁵And moreover, there are compelling philosophical reasons for why there ought to not be a way to think about such global modifications in a tractable way, with evidence coming from computational complexity theory.

The selling point of the absorption method is that if we play our cards right in the preparation step, and if we furthermore facilitate what we have to do in the "modification stage" of the proof by dealing with 99% of the constraints already, then we can also find a way to deal with the remaining 1%. "Playing our cards right" often entails chaining up local objects that display local variability together to produce a global object that displays global variability. We already saw a basic manifestation of this phenomenon in the proof of Proposition 1.1, and we will now turn our attention to slightly more involved examples.

3 Dirac-type theorems

We want to build our way up to understanding aspects of Montgomery's theorem (Theorem 2.4), but to get there, we will first build more intuition on the absorption method. The absorption method was first codified by Rödl, Ruciński, and Szemerédi [RRS06] to generalise a classical theorem of Dirac to hypergraphs, and the set-up of these kinds of problems serve as a great learning ground. In particular, here, we will develop the idea of a *reservoir* and also a *cover-down*, which will be quite important later on.

Theorem 3.1 (Dirac's theorem, 1950s). *If* G *is a n-vertex graph of minimum degree at least n/2, then* G *has a spanning (Hamilton) cycle, meaning a cycle that hits all vertices of the graph.*

Graphs with minimum degree less than n/2 need not even be connected, so Dirac's theorem is sharp, as far as sufficient conditions for Hamiltonicity in terms of the minimum degree go.

The proof of Dirac's theorem is fairly simple — just like the proof of Hall's marriage theorem, it makes use of switchings, adapted to the context of path-like structures, where they are often called *rotations*.

Proof of Dirac's theorem. As the minimum degree is at least n/2, and two vertices have at least one common neighbour, in particular, the graph is connected. We will show that for any maximal length path P, there is a cycle on the vertex set V(P). Connectivity then implies the existence of a spanning cycle (why?).

Take a maximal length path P, then, and suppose u and v are its endpoints. All $\geq n/2$ neighbours of u and v have to be on the path P by maximality, and if $u \sim v$, we are happy. Otherwise, we do a rotation argument as follows. By the pigeonhole principle, there exist consecutive vertices of P, x and y (where x is the vertex closer to u) such that $x \sim v$ and $y \sim u$. Traversing the cycle as $u \to y$, following P until v, $v \to x$ and following P until v again closes a cycle on the same vertex set, as desired.

There is a rich literature on higher-dimensional generalisations of Dirac's theorem in the literature, in terms of obtaining best-possible minimum degree conditions that imply the existence of a certain spanning subgraph. We will not attempt to give a survey of results, but a brief survey of the ideas that were generated as a result of this research programme.

As appealing as the proof of Dirac's theorem is, it unfortunately does not seem to generalise to higher dimensions, or at least, nobody has figured out a way to make such an argument work yet. Up until the absorption method became prevalent through works of Rödl, Rucińki and Szemerédi [RRS06], the mainstream method for proving higher-dimensional generalisations of Dirac's theorem were the regularity/blow-up method. This approach was pioneered by Komlós, Sarközy, and Szemerédi, and it entails working with a partition guaranteed by the Szemerédi regularity lemma, embedding most of the desired structure via a randomised algorithm, and then showing that there is a way to finish things off by reducing the remaining task to an application of Hall's marriage theorem. There exist hypergraph generalisations of the Szemerédi regularity lemma, and extensions of the blow-up method by Keevash, but such an approach quickly becomes prohibitively technical, and moreover, it does not generalise to the set-up of transversals or designs (as the corresponding hypergraphs here are fairly sparse, making Szemerédi-type regularity lemmas inapplicable), so we will not say more about the blow-up methods here.

The development of the absorption machinery has led to a fairly satisfying theory of sufficient conditions for Hamiltonicity in dense hypergraphs, see for example the recent work of Lang and Sanhueza-Matamala [LSM24]. This theory, very roughly speaking, goes as follows. We know that any Hamiltonian graph needs to be (1) connected, and depending on the parity of

the number of vertices, (2) the existence of a perfect matching⁶, and (3) an odd-sized cycle is also forced. It turns out that any graph satisfying (1-3) in a very robust sense has to be Hamiltonian. The robustness property is formalised by asserting that almost all small-sized subsets inherit the properties (1-3), which often holds in dense and quasirandom settings. A version of this theory adapted to hypergraphs can concisely capture many high-dimensional extensions of Dirac's theorem in the literature. Although this theory is powerful, it does not tell us much about how to ensure the properties (1-3), which in some cases yield fairly difficult problems in extremal hypergraph theory, many of which are still unsolved.

In the simple context of Dirac's theorem though, the three properties are fairly simple to establish, allowing us to give a straightforward absorption proof of the following asymptotic relaxation of Dirac's theorem.

Theorem 3.2. For every $\varepsilon > 0$, for n sufficiently large, any n-vertex graph G with $\delta(G) \ge (1 + \varepsilon)n/2$ has a Hamilton cycle.

Of course this is weaker than Dirac's theorem, and the proof will be more convoluted than the simple rotation argument we just gave. Our motivation is as follows:

- Minor changes to the proof actually establish the sufficiency of (1-3) discussed above⁷, which significantly extends the minimum degree set-up considered in Dirac's theorem.
- Often, one can find a way to turn asymptotic results as Theorem 3.2 into exact result, by performing what's called a *stability analysis*. In the set-up of Dirac's theorem, this in not particularly difficult, though in higher-dimensions this can get a bit tricky, though such a strategy was successfully pursued in many contexts.
- Recall that our real motivation is to learn the absorption method better, so that we can better understand transversals and designs, and the proof will demonstrate a transparent application of *the reservoir method*, which we will return to on several occasions.

To build some intuition for the proof, let us go back to (A) and (B), and see in what sense they hold in the context of Theorem 3.2, starting with (A).

3.1 99% solution

We have the following easy proposition.

Proposition 3.3. *If* G = (A, B) *is a bipartite graph with* |A| = |B| = n *of minimum degree at least n/2, then G has a perfect matching.*

Proof. This can be seen by checking Hall's condition, or directly by considering a largest matching as follows. Supposing there exists vertices u, v that are unmatched, their entire neighbourhood must be contained in the vertex set of the largest matching. By the pigeonhole principle, there must exist an edge of the matching that u and v are both adjacent to. This corresponds to an augmenting path on 3-edges, so performing a switch guarantees a larger matching, a contradiction.

Our proof will rely on relatively small subsets of *G* containing perfect matchings if $\delta(G) \ge (1+\varepsilon)n/2$.

⁶We could also work with fractional perfect matchings here, which are weight functions on the edge set so that the sum of weights along the edges incident on any vertex is exactly 1.

⁷One should note that for higher-dimensional generalisations of this theory, one needs to work harder, in particular our argument does not generalise straightforwardly to higher dimensions, but the argument should still give a good introduction to start reading the work of Lang and Sanhueza-Matamala [LSM24]

Proposition 3.4. Let v have $(1+\varepsilon)|G|/2$ neighbours in G, and let $S \subseteq V(G)$ be a subset of size C, sampled uniformly at random. Then, with probability $1 - \exp(-\Omega(\varepsilon C))$, v has at least $(1+\varepsilon/2)|S|/2$ neighbours in S.

Proof. This is essentially direct by Chernoff's bound, though a slight nuance is that we consider a *hypergeometric distribution*, meaning *S* is sampled not independently, but subject to having a certain size. As one might expect, tail-bounds do not change much in this set-up, as one can formally show by applying Azuma's inequality or related tools. For example, a result of McDiarmid says that if a random variable is a function of a randomly sampled subset of a ground set of a certain size, and the value of the random variable changes only a little bit if an element of the input subset is interchanged, then we get strong concentration bounds as claimed above, see [LW17, Lemma 6.1] for a formal statement and the derivation from the classical Azuma martingale inequality.

Using the above and a union bound, we get the following corollary.

Corollary 3.5. Let A, B be disjoint and random subsets of V(G) each of size C where $\delta(G) \geq (1 + \varepsilon)n/2$. With probability $\geq 1 - 2C \exp(-\Omega(\varepsilon C))$, there exists a perfect matching between A and B.

Let us imagine $C = (\log n)^2$, and that C divides n. In this case, given a n-vertex G with $\delta(G) \geq (1+\varepsilon)n/2$, we may partition V(G) randomly into sets of size C as $A_1, A_2, \ldots, A_{n/C}$, and invoke Corollary 3.5 between every pair $G' = (A_i, A_{i+1})$ to find a perfect matching between the specified sets (the choice of $C = (\log n)^2$ allows us to comfortably take a union bound over all (A_i, A_{i+1}) (check this!)). Taking a union of all the perfect matchings, we have managed to cover G with $\log^2 n$ paths, or in another perspective, we found a Hamilton cycle, minus $(\log n)^2$ edges, which feels like good enough progress to say that (A) holds in the context of Theorem 3.2. We can go even further, and chain up these paths into a cycle that is almost spanning. First, we need a simple lemma stating we can set aside a random set through which all pairs of vertices are well-connected.

Proposition 3.6 (Reservoir exists). *Let* G *have minimum degree* $\geq (1+\varepsilon)|G|/2$, *and let* $S \subseteq V(G)$ *be a subset of size* C, *sampled uniformly at random. Then, with probability* $1-|G|^2 \exp(-\Omega(\varepsilon C))$, *the following property holds:*

P Every $u, v \in V(G)$ have at least $(\varepsilon/4)|S|$ common neighbours in S.

Proof. Observe that any two vertices $u, v \in V(G)$ has at least $(\varepsilon/2)|G|$ common neighbours in G. The assertion about the random set S picking up an appropriate number of common neighbours for each pair of vertices then comes from a concentration and a union bound argument, same as the one we just saw before.

We will think of S as a "reservoir" of vertices that we can use to stitch up the paths we obtain in the argument spelled out after Corollary 3.5. With a bit of foresight, we prove a lemma that also takes as input two vertices u, v that are to be endpoints of a long path covering all vertices outside of S. As the reader might guess, we remark that the specific choice of the parameters is not particularly important, only the relationship between the parameters, and that they are at least polylogarithmic (so that a union-bound can be taken).

Lemma 3.7 (Cover-down step). Let G have minimum degree $\geq (1+\varepsilon)n/2$ where n:=|G| and let $S \subseteq V(G)$ be of size $C:=n^{1/100}$ satisfying P. With probability $1-o_n(1)$, the following holds. For any $u,v \in V(G) \setminus S$, there exists a path P with endpoints $\{u,v\}$, and $V(G) \setminus S \subseteq V(P)$.

Proof. We know *S* satisfies **P**, so every pair of points have at least $\varepsilon n^{1/100}/4$ common neighbours in *S*)

Let us suppose for simplicity that $n = n^{1/100} + (\log n)^2 \cdot t$ for some integer $t \sim n/(\log n)^2$.

Partition $V(G) \setminus S$ further into disjoint random sets A_1, \ldots, A_t of size $(\log n)^2$ each (noting the graph restricted to the complement of S has minimum degree $(1 + \varepsilon/2)|G|/2$). , and with high probability Corollary 3.5 holds for each pair $(A, B) = (A_i, A_{i+1})$ simultaneously by a union bound.

Fix now an outcome of the random sampling satisfying these properties. We can then find a perfect matching in each $G = (A_i, A_{i+1})$ $(1 \le i \le t-1)$, yielding a collection of $(\log n)^2$ vertex-disjoint paths partitioning $V(G) \setminus S$ (henceforth called spanning path forest). At the cost of increasing the number of paths to $(\log n)^2 + 2$, we can ensure that u and v are both endpoints of a *distinct* path in the spanning path forest, let's call it \mathcal{P} .

Let $\{x_i, y_i\}_{i \in I}$ be a pairing of the endpoints of \mathcal{P} except for u and v, so that if we "merge" each of the endpoints $\{x_i, y_i\}$, the resulting object would be a path with endpoints u and v (convince yourself such a pairing exists!). Now, we claim that there exists a collection of vertex disjoint paths $\{P_i\}_{i \in I}$, each on two edges, with endpoints $\{x_i, y_i\}_{i \in I}$ and the unique internal vertex in S. That $\{P_i\}_{i \in I}$ exists follows from the property of S: for each $\{x_i, y_i\}$, we can find a common neighbour that wasn't previously used on a "connecting path", as there are $\leq (\log n)^2$ connecting paths and $\geq \varepsilon n^{1/100}/4$ common neighbours, one can always find the next required connecting path.

The statement of Lemma 3.7 contains a fairly important "cover-down" idea that will be reoccur both whilst studying transversals, and existence of designs. Applying the Lemma with $u \sim v$ being an arbitrary edge of G, we see that we can find a cycle that covers all but a few vertices of G, and moreover, the leftover vertices are restrained to a small subset that was pre-defined. We will later see a bootstrapping variation on this idea called "iterative absorption".

3.2 Absorption

How about (B)? This is where the odd-cycles come in. In the setting of Theorem 3.2 we indeed have many odd-cycles, even triangles. Indeed, any vertex x must be contained in several triangles if the minimum degree is slightly more than half. We call a subgraph $T \subseteq G$ with $u,v \in V(T)$ a $(\{u,v\},x)$ -absorber if T contains a spanning path, and T+x contains a spanning path, and both spanning paths have $\{u,v\}$ as its endpoints. Observe that for any triangle with vertices u,v,x, the edge $\{u,v\}$ is a $(\{u,v\},x)$ -absorber. $(\{u,v\},x)$ -absorbers being plentiful across G for any $x \in V(G)$ is the key "local variability" property we will use in the proof. We recommend the reader the challenge of constructing more delicate $(\{u,v\},x)$ absorbers that contain no triangles, in fact, no short cycles at all.

Exercise 3.8. Show that for every k there exists a graph T and vertices u, v, x so that T is a $(\{u, v\}, x)$ -absorber, T has at most $O(k^2)$ vertices, and the shortest cycle in T has length at least k.

The motivation for the above exercise is to justify our assertion that odd-cycles being abundant and connectivity being inherited by typical small induced subgraphs is all that is necessary to find Hamilton cycles (in addition to the perfect matchings).

Putting the individual local absorbers together, we can obtain a global absorber for a large reservoir. In general, chaining up local absorbers to obtain such a global property won't be so easy, but in the set-up of Dirac's theorem, it is fairly transparent how this takes place.

Definition 3.9. We call a subgraph $T \subseteq G$ with $u, v \in V(T)$ a $(\{u, v\}, S)$ -absorber where $S \subseteq V(G)$ if $G[T \cup S']$ contains a spanning path for each $S' \subseteq S$, and each such spanning path has

 $\{u,v\}$ as its endpoints.

Lemma 3.10. Let G have minimum degree $\geq (1+\varepsilon)n/2$ where n := |G| and let $S \subseteq V(G)$ be of size $\leq \gamma n$ where $\gamma \leq \varepsilon/100$. Then, there exists a subgraph T that is a $(\{u,v\},S)$ -absorber for some $u,v \in V(G)$ where $|T| \leq 5|S|$.

Proof. First find a collection of disjoint triangles where each triangle contains a unique element of *S*. Then connect the appropriate pairs of vertices with paths of length two so that the shape in Figure 1 emerges. The simple details are left to the reader.

Figure 1: The construction of the $(\{u,v\},S)$ -absorber. The reader should check that such an object exists under the specified minimum-degree condition whenever S is a subset of size at most $(\varepsilon/100)n$.

The reader should also check that for each subset $S' \subseteq S$ in the above, there exists the desired spanning path "absorbing" S'.

3.3 Putting things together

Proof of Theorem 3.2. Set aside a set S of size $C := n^{1/100}$ with the property P, the existence of S is guaranteed by Proposition 3.6. By Lemma 3.10, there exists a subgraph T of size at most S that is a $(\{u,v\},S)$ -absorber for some u,v. Applying Lemma 3.7 with the graph S with vertices of S deleted (observing this does not meaningfully change the minimum degree of S), and with S0, we find a path S1 with endpoints S2, fully saturating S3 and using some vertices of S3. The unused vertices of S4, meaning S5 is S6. W(S7), combine with S7 to find a S8 path S9 path S9. Pi is then the desired Hamilton path.

3.4 Historical aside

The reservoir/cover-down style of absorption is not how the absorption method was originally popularised by Rödl, Ruciński, and Szemerédi (RRS) [RRS06]. They had a different notion of an "absorbing path", which can absorb vertices coming from anywhere along the graph, as opposed to just a predefined reservoir, as long as the set of vertices to be absorbed is small enough, compared to the size of the absorber. On the other hand, in the above construction, our absorber could absorb any subset of vertices, although they had to live in the reservoir. The reservoir perspective will be more useful later on, but obtaining a RRS-style absorber also isn't too difficult in the setting of Dirac's theorem.

Definition 3.11. Given an ambient graph G, we call a subpath P to be a γ -absorber if for all subsets S of $\leq \gamma |G|$ vertices, $S \cup P$ has a spanning path with the same endpoints as those of P.

Exercise 3.12. Let G be a graph of minimum degree $(1 + \varepsilon)|G|/2$. Show that there exists a $\gamma := \gamma(\varepsilon)$ so that G contains a γ -absorber path P of size at most $\varepsilon|G|/2$.

Hint: Sample a set of $f(\varepsilon)|G|$ random edges, check that for every vertex, some edges that form triangles with that vertex were sampled. Delete the edges around vertices of degree > 2, and chain up the remainder into a path.

References

- [BS21] MATIJA BUCIC and BENNY SUDAKOV (2021). Tight ramsey bounds for multiple copies of a graph. *arXiv* preprint arXiv:2108.11946. ↑3
- [Kee14] PETER KEEVASH (2014). The existence of designs. arXiv preprint arXiv:1401.3665. \uparrow 1,
- [LSM24] RICHARD LANG and NICOLÁS SANHUEZA-MATAMALA (2024). A hypergraph bandwidth theorem. *arXiv preprint arXiv:*2412.14891. ↑8, 9
- [LW17] ANITA LIEBENAU and NICK WORMALD (2017). Asymptotic enumeration of graphs by degree sequence, and the degree sequence of a random graph. $arXiv\ preprint\ arXiv:1702.08373$. $\uparrow 10$
- [Mon] R. MONTGOMERY. A proof of the Ryser-Brualdi-Stein conjecture for large even n ArXiv preprint 2310.19779. \uparrow 1, 4, 5
- [Rei89] K. B. Reid (1989). Three problems on tournaments. *Graph Theory and its Applications: East and West, Annals of the New York Academy of Sciences*, vol. 576, 466–473. ↑1
- [RRS06] VOJTĚCH RÖDL, ANDRZEJ RUCIŃSKI, and ENDRE SZEMERÉDI (2006). A Dirac-type theorem for 3-Uniform hypergraphs. *Combinatorics, Probability and Computing* **15**(1-2), 229–251. ↑1, 8, 12
- [SL22] MICHAEL SIMKIN and ZUR LURIA (2022). A lower bound for the n-queens problem. *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2185–2197 (SIAM). ↑1