Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2022

EC3ES09 Engineering Materials

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

	- ()	,	, , , , , , , , , , , , , , , , , , , ,	
.1	i.	In which of the following Bravais lattices, not all axial angles are right angles?		
		(a) Tetragonal ((b) Rhombohedral	
		(c) Orthorhombic ((d) Cubic	
	ii.	Which of the following is the weakest bond?		
		(a) Ionic bonds ((b) Metallic bonds	
		(c) Covalent bonds ((d) Van der Waals forces	
	iii.	When does a ferromagnetic ma	aterial become paramagnetic material?	
		(a) At Curie temperature		
		(b) Below Curie temperature		
		(c) Above Curies temperature		
		(d) Never		
iv.		A paramagnetic material had a	magnetic field intensity of 10 ⁴ A/m. If	
		the susceptibility of the material at room temperature is 3.7×10^{-3} ,		
		calculate the magnetisation.		
		(a) 37A/m (b) 3.7A/m ((c) 370A/m (d) 0	
	v.	What is the basic property of e	lectrical conducting materials?	
		(a) Allows the passage of current through the materials		
		(b) Blocks the passage of current through the materials		
		(c) Leaks the current through the materials		
		(d) Reverses the direction of cu	arrent in the materials	
	vi.	The normal metal passes into s	super conducting state at	

(b) Low temperature

(d) No temperature

(a) High temperature

(c) Critical temperature

P.T.O.

	vii.	What type of material is obtained when an intrinsic semiconductor is doped with pentavalent impurity?		
			(b) Extrinsic semiconductor	
		(c) P-type semiconductor		
	viii.	The reciprocal of conductivit	y is	1
		(a) Viscosity	(b) Resistivity	
		(c) Turbidity	(d) None of these	
	ix.		n to occur, which condition must be	1
		satisfied?		
		(a) $N1 = N2$	(b) $N1 > N2$	
		(c) N1 < N2	(d) N1 x N2=1	_
	х.	_	example of optical pumping?	1
		(a) Ruby laser	(b) Helium-Neon laser	
		(c) Semiconductor laser	(d) Dye laser	
Q.2	i.	Calculate the miller indices to in a simple cubic unit cell.	for a plane which intercepts at a, b/3, 2c	2
	ii.	•	ters (a b c a B Y) for following crystal	3
	11.	Write down lattice parameters $(a,b,c,\alpha,\beta,\Upsilon)$ for following crystal structure:		3
		(a) Monolithic Crystal Struct	ure	
		(b) Orthorhombic		
		(c) Cubic		
	iii.	iii. Explain crystal imperfections. How are they classified?		5
OR	iv.	Explain following terms:		5
		(a) Primary bonds	(b) Coordination Number	
		(c) Polarisation	(d) Dielectric Parameters	
		(e) Ferroelectric Material		
Q.3	i.	Define relative permeability	y. Prove that $\mu_r=1+\chi$, where χ is the	2
		magnetic susceptibility.	, , , , ,	
	ii.	<u>-</u>	Why does it occur in ferromagnetic	3
		materials?		_
	iii.	What is magnetic anisotropy by magnetic annealing?	? Explain how anisotropy can be induced	5
		by magnetic anneaming.		

OR	iv.	Explain domain theory of ferromagnetic materials? When a demagnetised ferromagnetic material is slowly magnetised by an applied magnetic field, what changes occur in the first domain structure?	5	
Q.4	i.	Compare the resistivity range of Conductor, Semi-conductor and Insulator.	2	
	ii.	What do you mean by thermal conductivity? Write expression for it.	3	
	iii.	What is critical field? Describe the effect of magnetic field on superconductors.	5	
OR	iv.	Show that the heat developed per m ³ per second in a conductor carrying a current density J as a result of an applied field E is given	5	
		by: $W=\sigma E^2$		
		Where σ is the conductivity of the conductor.		
Q.5	i.	Define direct & indirect band gap semiconductor with example.	2	
	ii.	The resistivity of intrinsic germanium at 300 K is 0.47 Ω -m. If the electron and hole mobilities are 0.38 and 0.18 m ² v ⁻¹ s ⁻¹ . Calculate the intrinsic carrier density at 300 K.		
	iii.	What do you understand by drift and diffusion current in case of a transistor? Deduct Einstein relation relating to these currents.	5	
OR	iv.	Explain the following: (with suitable diagram or graph)	5	
		(a) NPN Transistor (b) Zener Diode		
Q.6		Attempt any two:		
	i.	What is LASER? What are its main components? Explain the working	5	
	ii.	of Ruby laser with suitable diagram.	5	
	11.	What is meant by population inversion? Explain the operating principle of Nd-Yag laser.	3	
	iii.	What is the structure of an optical fibre? Explain the following term:	5	
	****	(a) Acceptance Angle (b) Numerical aperture	•	
		(c) Cut-Off parameters of a fibre.		
		. ,		

Marking Scheme EC3ES09 Engineering Materials

Q.1	i.	In which of the following Bravais lattices, not all axial angles are right angles? (b) Rhombohedral	1
	ii.	Which of the following is the weakest bond? (d) Van der Waals forces	1
	iii.	When does a ferromagnetic material become paramagnetic material? (c) Above Curies temperature	1
	iv.	A paramagnetic material had a magnetic field intensity of 10 ⁴ A/m. If the susceptibility of the material at room temperature is 3.7×10 ⁻³ , calculate the magnetisation. (a) 37A/m	1
	V.	What is the basic property of electrical conducting materials? (a) Allows the passage of current through the materials	1
	vi.	The normal metal passes into super conducting state at	1
	vii.	(c) Critical temperature What type of material is obtained when an intrinsic semiconductor is doped with pentavalent impurity?	1
	viii.	(a) N-type semiconductorThe reciprocal of conductivity is(b) Resistivity	1
	ix.	For total internal reflection to occur, which condition must be satisfied? (b) N1 > N2	1
	Χ.	Which of the following is an example of optical pumping? (a) Ruby laser	1
Q.2	i.	Procedure 1 Mark Ans= (2,6,1) 1 Mark	2
	ii.	:(a) Monolithic Crystal Structure 1 Mark (b) Orthorhombic 1 Mark (c) Cubic 1 Mark	3
	iii.	Definition 1 Mark Classification 1 Mark Description 3 Marks	5

OR	iv.	(a) Primary bonds	1 Mark	5
		(b) Coordination Number	1 Mark	
		(c) Polarisation	1 Mark	
		(d) Dielectric Parameters	1 Mark	
		(e) Ferroelectric Material	1 Mark	
Q.3	i.	Definition	1 Mark	2
		Prove	1 Mark	
	ii.	Definition	1 Mark	3
		Explain reason	2 Marks	
	iii.	Definition	2 Marks	5
		Explain reason	3 Marks	
OR	iv.	Definition	2 Marks	5
		Explain reason	3 Marks	
Q.4	i.	Compare	(As per	2
		explanation)	` •	
	ii.	Definition	1 Mark	3
		Expression	2 Marks	
	iii.	Definition	2 Marks	5
		Explain reason	3 Marks	
OR	iv.	Definition	2 Marks	5
		Reason	3 Marks	
sssQ.5	i.	Each definition	(1 Mark*2)	2
	ii.	Formula	1 Mark	3
		Procedure	1 Mark	
		Ans	1 Mark	
		$n_{i=2.37*10}^{19} m^{-3}$		
	iii.	Definition	2 Marks	5
		Explain derivatives	3 Marks	
OR	iv.	(a) NPN Transistor	2.5 Marks	5
		(b) Zener Diode	2.5 Marks	
Q.6		Attempt any two:		
	i.	Definition	1 Mark	5
		Component	1 Mark	
		Ruby Laser diagram	1 Mark	
		Explanation	2 Marks	
	ii.	Definition	2 Marks	5
		Diagram	1 Mark	
		Explanation	1 Mark	
	iii.	Structure of fibre	2 Marks	5

Each Definition (1 Mark*3)
