

326/497

FIG. 85A

GACATCTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGA
GAAAGAGTCAGTTCTCCTGCAGGGCCAGTCAGTCGTTGGCTCAAGC
ATCCACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCATA
AAGTATGCTCTGAGTCTATGTCTGGATCCCTCCAGGTTAGTGGC
AGTGGATCAGGGACAGATTACTCTTAGCATCACAACTGTGGAGTCT
GAAGATATTGCAGATTACTGTCAACAAAGTCATAGCTGGCCATT
ACGTTCGGCTCGGGACAAATTGGAAGTAAAAGAAGTGAAGCTTGA
GGAGTCTGGAGGAGGCTTGGTGCAACCTGGAGGATCCATGAAACTCT
CCTGTGTTGCCTCTGGATTCACTTCAGTAACCAGTGGATGAACGGG
TCCGCCAGTCTCCAGAGAAGGGGCTTGAGTGGGTGCTGAAATTAGA
TCAAAATCTATTAAATTCTGCAACACATTATGCGGAGTCTGTGAAAGGG
AGGTTCAACCCTCTCAAGAGATGATTCCAAAAGTGTCTACCTGCAA
ATGACCGACTTAAGAACTGAAGACACTGGCGTTATTACTGTTCCAGG
AATTACTACGGTAGTACCTACGACTACTGGGGCCAAGGCACCACTCTC
ACAGTCTCC

FIG. 85B

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly Glu Arg Val
Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser Ile His Trp Tyr Gln Gln
Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly
Ile Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn
Thr Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro
Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu Glu Ser
Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly
Phe Ile Phe Ser Asn His Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu
Glu Trp Val Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr
Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg
Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser

327/497

FIG. 86A

ATGGAGACAGACACACTCCTGTTATGGGTGCTGCTGCTCTGGGTTCCA
GGTTCCACTGGTGACGTCAAGCGAGGGCCCCGGAGCCTGCAGGGCAG
GGACGCGCCAGCCCCACGCCCTGCGTCCCAGGCGAGTGCTTCGACC
TGCTGGTCCGCCACTGCGTGGCCTGCGGGCTCTGCGCACGCCCGGC
CGAAACCGGCCGGGCCAGCAGCCTGCGCCCAGGACGGCGCTGCAG
CCGCAGGAGTCGGTGGGCCGGCGAGGCGGGCTGACA
AAACTCACACATGCCAACCGTGCCCAGCACCTGAACCTGGGGGA
CCGTCACTTCCCTTCCCCAAAACCCAAGGACACCCCTCATGATC
TCCCGGACCCCTGAGGTACATGCGTGGTGGACGTGAGCCACGA
AGACCCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC
ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACACGACGTA
CCGTGTGGTCAGCGTCCTCACCGTCTGCACCAGGACTGGCTGAATGG
CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCA
TCGAGAAAACCATCTCAAAGCCAAAGGGCAGCCCCGAGAACCCACAG
GTGTACACCCCTGCCCTCATCCGGATGAGCTGACCAAGAACCAAGGT
CAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATGCCGT
GGAGTGGAGAGCAATGGGCAGCCGGAGAACAAACTACAAGACCAAG
CCTCCCGTGTGGACTCCGACGGCTCCTCTACAGCAAGCTC
ACCGTGGACAAGAGCAGGTGGCAGCAGGGAACGTCTCATGCTC
CGTATGCATGAGGCTCTGCACAACCACTACACGCAGAACGCCTCT
CCCTGTCTCCGGAAATGA

328/497

FIG. 86B

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser
Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala
Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg His Cys Val Ala
Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro
Arg Thr Ala Leu Gln Pro Gln Glu Ser Val Gly Ala Gly Glu Ala Ala Val
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

329/497
FIG. 87

Asp Ile Gln Met Thr Gln Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys

FIG. 88

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ala

FIG. 89

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys

FIG. 90

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

FIG. 91

330/497

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys

FIG. 92

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Pro Gly

331/497

FIG. 93A

ATGGATTTCAGGTGCAGATTATCAGCTCCTGCTAATCAGTGCTTCA
GTCATAATGTCCAGAGGGCAAATTGTTCTCTCCCAGTCTCCAGCAATC
CTGTCTGCATCTCCAGGGAGAAGGTACAATGACTGCAGGCCAG
CTCAAGTGTAAAGTTACATCACTGGTCCAGCAGAAGCCAGGATCCTC
CCCCAAACCCCTGGATTATGCCACATCCAACCTGGCTTCTGGAGTCCC
TGTCGCTTCAGTGGCAGTGGGTCTGGACTTACTCTCTACAAT
CAGCAGAGTGGAGGCTGAAGATGCTGCCACTTAACTGCCAGCAGT
GGACTAGTAACCCACCCACGTTGGAGGGGGACCAAGCTGGAAATC
AAA

FIG. 93B

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser Val Ile Met Ser
Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu
Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile His Trp Phe Gln
Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser
Gly Val Pro Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn
Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys

332/497

FIG. 94A

ATGGGTTGGAGCCTCATCTGCTCTCCTGTCGCTGTTGCTACCGCTG
TCCTGTCCCAGGTACAACGTGCAGCAGCCTGGGGCTGAGCTGGTGAAG
CCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTCTGGCTACACATT
ACCAGTTACAATATGCACTGGTAAAACAGACACCTGGTCGGGCCT
GGAATGGATTGGAGCTATTATCCCGGAAATGGTGATACTTCCTACAA
TCAGAACGTTCAAAGGCAAGGCCACATTGACTGCAGACAAATCCTCCA
GCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCG
GTCTATTACTGTGCAAGATCGACTTAACGGCGGTGACTGGTACTTC
AATGTCTGGGGCGCAGGGACCACGGTCACCGTCTTGCA

FIG. 94B

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val Leu Ser
Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys
Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys
Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp
Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser
Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly Ala Gly
Thr Thr Val Thr Val Ser Ala

FIG. 95A

333/497

GACGTCGGCCGCTCTAGGCCTCCAAAAAGCCTCCTCACTACTTCT
GGAATAGCTCAGAGGCCGAGGCAGGCCTCGGCCTCTGCATAAATAAAA
AAAAATTAGTCAGCCATGCATGGGCAGGAGAATGGGCAGGAACTGGCG
GAGTTAGGGCGGGATGGCGGAGTTAGGGCGGGACTATGGTGCT
GACTAATTGAGATGCATGCTTGCTACTTCTGCCTGCTGGGGAGCCT
GGGGACTTTCCACACCTGGTGCTGACTAATTGAGATGCATGCTTGCT
ATACTTCTGCCTGCTGGGGAGCCTGGGACTTTCCACACCCCTAACTGA
CACACATTCCACAGAATTAAATTCCCCTAGTTATTAAATAGTAATCAATT
ACGGGGTCATTAGTCATAGCCCATAATGGAGTTCCCGTACATAA
CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC
ATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAATAGGGA
CTTCCATTGACGTCAATGGGTGGACTATTACGGTAAACTGCCACT
TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACG
TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCT
TATGGGACTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA
TTACCATGGTGATGCGGTTTGGCAGTACATCAATGGCGTGGATAGC
GGTTGACTCACGGGGATTCCAAGTCTCCACCCATTGACGTCAATG
GGAGTTGTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGTA
ACAACCTCCGCCCAATTGACGCAAATGGCGGTAGGCGTGTACGGTGG
GAGGTCTATATAAGCAGAGCTGGTACGTGAACCGTCAGATGCCCTG
GAGACGCCATCACAGATCTCACCATGAGGGCCCCGCTCAGCTCCT
GGGGCTCTGCTCTGGCTCCAGGTGCACGATGTGATGGTACCAA
GGTGGAAATCAAACGTACGGTACCTGCTGCACCATCTGTCTTCATCTCCC
GCCATCTGATGAGCAGTTGAAATCTGGAACCTGCCTCTGTTGTGCGCT
GCTGAATAACTCTATCCCAGAGAGGCCAAAGTACAGTGGAAAGGTGG
ATAACGCCCTCCAATCGGTAACTCCCAGGAGAGTGTACAGAGCAG
GACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCTGACGCTGAG
CAAAGCAGACTACGAGAAACACAAAGTACGCTGCAGTACAGCAG
ATCAGGGCCTGAGCTCGCCGTACAAAGAGCTTCAACAGGGAGAG
TGTGAATTAGTCAGATCCGTTAACGGTACCAACTACCTAGACTGGATT
GTGACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTG
CCTCTAGTTGCCAGCCATCTGTTGTTGCCCTCCCCGTGCCTCCT
TGACCCCTGGAAGGTGCCACTCCACTGTCTTCTTAATAAAAATGAGG
AAATTGCATCGCATTGTCAGTAGGTGTCATTCTATTCTGGGGGGTG
GGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAG
GCATGCTGGGGATGCGGTGGCTCATGGAACCAAGCTGGGCTCGAC
AGCTATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGC
CCGCCTGGCATTATGCCAGTACATGACCTTATGGACTTCCCTACTT
GGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGT
TTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGA
TTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCAC

FIG. 95B

334/497

CAAAATCAACGGGACTTCCAAAATGTCGTAACAACACTCCGCCATTG
ACGCAAATGGCGGTAGGC GTACGGTGGGAGGTCTATATAAGCAG
AGCTGGGTACGT CCTCACATTCA GTGATCAGCACTGAACACAGACCC
GTCGACATGGGTGGAGCCTCATCTTGCTCTCCTGTCGCTGTTGCTA
CGCGT GTCGCTAGCACCAAGGGCCATCGGTCTTCCCCCTGGCACCC
CCTCCAAGAGCACCTCTGGGGCACAGCGGCCCTGGCTGCCTGGTC
AAGGACTACTCCCCGAACCGGTGACGGTGTGACCGTGGAACTCAGCGC
CCTGACCAGCGCGTGCACACCTCCGGCTGTCCTACAGTCCTCAGG
ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCTCCAGCAGCTGGG
CACCCAGACCTACATCTGCAACGTGAATACAAGCCCAGCAACACCA
AGGTGGACAAGAAAGCAGAGCCAAATCTTGTGACAAA ACTCACACA
TGCCCACCGTGCCCAGCACCTGAACCTCTGGGGGACCGTCAGTCTTC
CTCTCCCCC CAAACCC AAGGACACCCTCATGATCTCCGGACCC
GAGGTACATGCGTGGTGGACGTGAGCCACGAAGACCCCTGAGGT
CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA
CAAAGCCGCGGGAGGAGCAGTACAACACAGCACGTACCGTGTGGTCAGC
GTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA
GTGCAAGGTCTCCAACAAAGCCCTCCAGCCCCATCGAGAAAAACCA
TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAACAGGTGTACACCCTG
CCCCCATCCCGGGATGAGCTGACCAGGAACCAGGT CAGCCTGACCTG
CCTGGTCAAAGGCTCTATCCCAGCGACATGCCGTGGAGTGGAGA
GCAATGGGCAGCCGGAGAACAAACTACAAGACCACGCCTCCGTGCTG
GAECTCGACGGCTCTTCTCCTCTACAGCAAGCTCACCGTGGACAAG
AGCAGGTGGCAGCAGGGAACGTCTCTCATGCTCCGTGATGCATGA
GGCTCTGCACAACCAACTACACG CAGAAGAGCCTCTCCCTGTCTCCGGG
TAAATGAGGATCCGTTAACGGTACCAACTACCTAGACTGGATTG TG
ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTGACTGTGCCT
TCTAGTTGCCAGCCATCTGTTGTTGCCCTCCCCGTGCCCTCCTGA
CCCTGGAAGGTGCCACTCCACTGTCCTTCCTAATAAAATGAGGAAA
TTGCATCGCATTGTCGAGTAGGTGTCATTCTATTCTGGGGGGTGGGG
TGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAAATAGCAGGCA
TGCTGGGGATGCGGTGGCTATGGAACCAGCTGGGGCTCGACAGC
GCTGGATCTCCGATCCCCAGCTTGCTCTCAATTCTTATTGCATA
ATGAGAAAAAAAGGAAAATTAAATTAAACACCAATTCA GTAGTTGAT
TGAGCAAATGCGTTGCCAAAAGGATGCTTAGAGAGACAGTGTCT
GCACAGATAAGGACAAACATTATTCA GAGGGAGTACCCAGAGCTGAG
ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT
GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC
AATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCAT
ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTTGACATAG
TTGTGTTGGGAGCTGGATAGCTTGGACAGCTCAGG

335/497

FIG. 95C

GCTGCGATT CGGCCAAACTGACGGCAAT CCTAGCGTGAAGGGCTG
GTAGGATTTATCCCCGCTGCCATCATGGTTCGACCATTGAAC TGCA
CGTCCCGTGTCCC AAAAATATGGGGATTGGCAAGAACGGAGACCTAC
CCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCAAAGAACATGACC
ACAACCTCTCAGTGGAAAGGTAAACAGAAATCTGGTATTATGGGTAG
GAAAACCTGGTTCTCCATT CCTGAGAACAAATCGACCTTAAAGGACA
GAATTAAATATAGTTCTCAGTAGAGAACCTCAAAGAACCCACGAGGA
GCTCATTTCTGCCAAAAGTTGGATGATGCCTTAAGACTTATTGAA
CAACCGGAATTGGCAAGTAAAGTAGACATGGTTGGATAGTCGGAGG
CAGTTCTGTTACCAGGAAGCCATGAATCAACCAGGCCACCTTAGACT
CTTGACAAAGGATCATGCAGGAATTGAAAGTGACACGTTTCCC
AGAAATTGATTGGGGAAATATAAACTTCTCCCAGAATACCCAGGCG
TCCTCTGAGGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTGAA
GTCTACGAGAAGAAAGACTAACAGGAAGATGCTTCAAGTTCTGC
TCCCCTCCTAAAGTCATGCATT TATAAGACCATGGGACTTTGCTG
GCTTAGATCAGCCTCGACTGTGCCCTCTAGTTGCCAGCCATCTGTTGT
TTGCCCTCCCCGTGCCCTCCTGACCTGGAAGGTGCCACTCCAC
TGTCTTCTTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG
GTGTCATTCTATTCTGGGGGTGGGGCAGGACAGCAAGGGGG
AGGATTGGGAAGACAATAGCAGGCATGCTGGGATGCCGGTGGCTCT
ATGGAACCAAGCTGGGCTCGAGCTACTAGCTTCTCAATTCTT
ATTGCAATAATGAGAAAAAAAGGAAAATTAAATTAAACACCAATTCA
GTAGTTGATTGAGCAAATGCGTGCCTTCAAGGATGCTTAGAGACA
GTGTTCTGCACAGATAAGGACAAACATTATTCAAGAGGGAGTACCC
AGAGCTGAGACTCCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGA
AATATGCTTGTCAACCAGAACCTGATTCCGTAGAGGCCACACCTTGG
TAAGGGCAATCTGCTCACACAGGATAGAGAGGGCAGGAGGCCAGGG
CAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTC
TGACATAGTTGTTGGAGCTGGATCGATCCTCTATGGTGAACAA
GATGGATTGCACGCAGGTTCTCCGGCCGCTGGGTGGAGAGGGCTATT
GGCTATGACTGGGACAACAGACAATCGCTGCTGATGCCGCCGT
GTTCCGGCTGTCAGCGCAGGGCGCCGGTTCTTGTCAAGACCGA
CCTGTCCGGTGCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTAT
CGTGGCTGGCACGACGGCGTTCTGCGCAGCTGTGCTGACGTTG
TCACTGAAGCGGGAAAGGGACTGGCTGCTATTGGCGAAGTGCCGGGG
CAGGATCTCCTGTCATCTCACCTGCTCCTGCCAGAACAGTATCCATC
ATGGCTGATGCAATGCGCGGCTGCATACGCTGATCCGGCTACCTGC
CCATTGACCAACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCG
GATGGAAGCCGGTCTGTCGATCAGGATGATCTGGACGAAGAGCATC
AGGGGCTCGGCCAGCCGAACGTGTCGCCAGGCTCAAGGCGCGCATG
CCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCCTGCTGCCG

FIG. 95D

336/497

AATATCATGGTGGAAAATGGCCGCTTCTGGATTCACTCGACTGTGGC
CGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCG
TGATATTGCTGAAGAGCTTGGCGCGAATGGGCTGACCGCTTCCTCGT
GCTTACGGTATGCCGCTCCGATTGCAGCGCATGCCCTCTATC
GCCTTCTTGACGAGTTCTCTGAGCGGGACTCTGGGGTCGAAATGAC
CGACCAAGCGACGCCAACCTGCCATCACGAGATTTCGATTCCACCG
CCGCCTCTATGAAAGGTTGGCTCGGAATCGTTCCGGACGCCG
GCTGGATGATCCTCCAGCGCGGGATCTCATGCTGGAGTTCTCGCCC
ACCCCAACTGTTATTGCAGCTTATAATGGTACAAATAAAGCAATA
GCATCACAAATTCAAAATAAAGCATTTCACACTGCATTCTAGTT
GTGGTTGTCAAACCTCATCAATCTATCTATCATGCTGGATCGCGG
CCGCGATCCCGTCGAGAGCTTGGCGTAATCATGGTCATAGCTTTCC
TGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCG
AGCATAAAAGTGTAAAGCCTGGGGCCTAATGAGTGAGCTAACTCAC
ATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGAAACCTGTC
GTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGAGAGGCCG
TGCCTATTGGCGCTCTCCGCTCCCTCGCTCACTGACTCGCTGCGCTC
GGTCGTTGGCTGCCGAGCGGTATCAGTCACTCAAAGGCCGTA
TACGGTTATCCACAGAATCAGGGATAACGCAGGAAAGAACATGTGA
GCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC
TGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATC
GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC
CAGGCCTTCCCCCTGGAAGCTCCCTCGTGCCTCTCCTGTTCCGACC
CTGCCGCTTACCGGATACCTGTCCGCCCTTCTCCCTCGGAAGCGTG
GCGCTTCTCAATGCTCACGCTGTAGGTATCTCAGTCGGTAGGTC
GTTCGCTCCAAGCTGGCTGTGCACGAACCCCGTCAGCCGAC
CGCTGCGCCTATCCGTAACTATCGTCTGAGTCCAACCCGGTAAGA
CACGACTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG
AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTGAAGTGGTGGCCTA
ACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCCTCTGCTGA
AGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTGATCCGGAAA
CAAACCACCGCTGGTAGCGGTGGTTTTGCAAGCAGCAGATT
ACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTAC
GGGGTCTGACGCTCAGTGGAACGAAAACACGTTAACAGGATTGG
TCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTAAATTAAA
AATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTGGTCTG
ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATGTC
TATTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTAGATAACTAC
GATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGC
GAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAACCAGCCA
GCCGGAAGGCCGAGCGCAGAAGTGGTCTGCAACTTATCCGCCTC
CATCCAGTCTATTAATTGTTGCCGGAGCTAGAGTAAGTAGTCGC

337/497

FIG. 95E

CAGTTAATAGTTGCGAACGTTGTCATTGCCATTGCTACAGGCATCGTGG
TGTCAACGCTCGTCGTTGGTATGGCTTCATTAGCTCCGGTCCCAAC
GATCAAGGCGAGTTACATGATCCCCATGTTGTGCAAAAAAGCGGTT
AGCTCCTTCGGTCCTCCGATCGTTGTGAGAAGTAAGTTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCA
CATCCGTAAGATGCTTCTGTGACTGGTGAGTACTCAACCAAGTCAT
TCTGAGAATAGTGTATGCGGCCGACCGAGTTGCTCTGCCCGCGTCAA
TACGGGATAATACCGCGCCACATAGCAGAACTTAAAAGTGCTCATC
ATTGGAAAACGTTCTCGGGCGAAAACCTCTCAAGGATCTTACCGCTG
TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACGTGATCTCA
GCATCTTACTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGG
CAAAATGCCGAAAAAGGGAATAAGGGCGACACGGAAATGTTGAA
TACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTA
TTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAAACAA
AATAGGGGTTCCGCGCACATTCCCCGAAAAGTGCCACCT

FIG. 96A

338/497

GACGTCGGCCGCTCTAGGCCTCAAAAAAGCCTCCTCACTACTTCT
GGAATAGCTCAGAGGCCGAGGCAGGCCTCGGCCTCTGCATAAAATAAAA
AAAATTAGTCAGCCATGCATGGGCGGAGAATGGCGGAACCTGGCG
GAGTTAGGGCGGGATGGCGGAGTTAGGGCGGGACTATGGTGCT
GACTAATTGAGATGCATGCTTGCACTCTGCCTGCTGGGAGCCT
GGGGACTTCCACACACCTGGTGCTGACTATTGAGATGCATGCTTGCT
ATACTTCTGCCTGCTGGGAGCCTGGGACTTTCCACACCTTAACCTGA
CACACATTCCACAGAATTAAATTCCCTAGTTATTAAATAGTAATCAATT
ACGGGGTCATTAGTCATAGCCCATAATGGAGTCCCGCTTACATAA
CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCCGCC
ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA
CTTCCATTGACGTCAAATGGGTGGACTATTACGGTAAACTGCCACT
TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACG
TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCT
TATGGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA
TTACCATGGTGATGCGGTTTGGCAGTACATCAATGGCGTGGATACC
GGTTTGAUTACCGGGATTCCAAGTCTCCACCCATTGACGTCAATG
GGAGTTGTTGGCACCAAAATCAACGGACTTCCAAAATGTCGTA
ACAACCTCCGCCCAATTGACGCAAATGGCGGTAGGCGTGTACGGTGG
GAGGTCTATATAAGCAGAGCTGGTACGTGAACCGTCAGATGCCCTG
GAGACGCCATCACAGATCTCACTATGGATTTAGGTGCAGATTAT
CAGCTCCTGCTAATCAGTGTTCAGTCATAATGTCCAGAGGACAAAT
TGTTCTCTCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGAGAA
GGTCACAATGACTTGCAGGCCAGCTCAAGTGTAAAGTTACATCCACT
GGTCCAGCAGAACGCCAGGATCCTCCCCAAACCCCTGGATTATGCCA
CATCCAACCTGGCTCTGGAGTCCCTGTCGCTTCAGTGGCAGTGGGT
CTGGGACTTCTACTCTCTCACAAATCAGCAGAGTGGAGGGCTGAAGATG
CTGCCACTTAACTGCCAGCAGTGGACTAGTAACCCACCCACGTTCG
GAGGGGGGACCAAGCTGGAAATCAAACGTACGGTGGCTGCACCAC
GTCTTCATCTCCGCCATCTGATGAGCAGTTGAAATCTGGAACGTCC
TCTGTTGTGCCTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTA
CAAGTGGAAAGGTGGATAACGCCCTCCAATCGGGTAACCTCCAGGAGAG
TGTCAAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCA
CCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCC
TGCAGTACCCATCAGGCCCTGAGCTCGCCCGTCACAAAGAGCTT
CAACAGGGAGAGTGTGAATTAGCAGATCCGTTAACGGTTACCAACTA
CCTAGACTGGATTCTGACAAACATGCCCGTGTATCTACGTATGAT
CAGCCTCGACTGTGCCCTCTAGTTGCCAGCCATCTGTTGCCCCCTC
CCCCGTGCCTCCTGACCCTGGAAGGTGCCACTCCACTGTCCCTTCC

FIG. 96B

339/497

TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCAATTCT
ATTCTGGGGGGTGGGGTGGGCAGGACAGCAAGGGGGAGGATTGGG
AAGACAATAGCAGGCATGCTGGGATGCGGTGGCTCTATGGAACCA
GCTGGGGCTCGACAGCTATGCCAAGTACGCCCTATTGACGTCAATG
ACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGACCTTATGGG
ACTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT
GGTGATGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTG
ACTCACGGGGATTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTT
TGTTTGGCACCAAATCAACGGACTTCCAAAATGCGTAACAAC
CCGCCCTATTGACGCAAATGGCGGTAGGCAGTACGGTGGAGGTC
TATATAAGCAGAGCTGGTACGTCTCACATTCAAGTACATGAGCACTGA
ACACAGACCGTCGACATGGGTTGGAGCCTCATCTGCTCTCCTTGT
CGCTGTTGCTACGCGTGTCTGTCCCAGGTACAACACTGCAGCAGCCTGG
GGCTGAGCTGGTGAAGCCTGGGCCTCAGTGAAGATGTCCTGCAAGG
CTTCTGGCTACACATTACCAAGTTACAATATGCACTGGTAAAACAGA
CACCTGGTCGGGCCTGGAATGGATTGGAGCTATTATCCCGGAAAT
GGTGATACTCCTACAATCAGAACGTTCAAAGGCAAGGCCACATTGAC
TGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGA
CATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACG
GCGGTGACTGGTACTTCAATGTCTGGGCAGGGACCACGGTCACC
GTCTCTGCAGCTAGCACCAAGGGCCATCGGTCTCCCCCTGGCACCC
TCCTCCAAGAGCACCTCTGGGGCACAGCGGCCCTGGCTGCCTGGT
CAAGGACTACTCCCCGAACCGGTGACGGTGTGGAACTCAGGCG
CCCTGACCAGCGCGTGCACACCTCCGGCTGTCTACAGTCCTCAG
GAECTACTCCCTCAGCAGCGTGGTACCGTGCCTCCAGCAGCTTGG
GCACCCAGACCTACATCTGCAACGTGAATACAAGCCCAGCAACACC
AAGGTGGACAAGAAAGCAGAGCCCCAAATCTTGTGACAAAACACTCACAC
ATGCCCAACCGTCCCAGCACCTGAACCTCTGGGGGACCGTCAGTCTT
CCTCTCCCCCAAAACCAAGGACACCCCTCATGATCTCCGGACCC
TGAGGTCACATGCGTGGTGGACGTGAGCCACGAAGACCCGTGAGG
TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCAATGCCAAG
ACAAAGCCCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG
CGTCCTCACCGTCTGCACCAAGGACTGGCTGAATGGCAAGGAGTACA
AGTGCAAGGTCTCAAACAAAGCCCTCCCAGCCCCATCGAGAAAACC
ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCCACAGGTGTACACCC
GCCCCCATCCGGGATGAGCTGACCAAGAACCCAGGTAGCCTGACCT
GCCTGGTCAAAGGCTCTATCCCAGCGACATGCCGTGGAGTGGAG
AGCAATGGGAGCCGGAGAACAAACTACAAGACCACGCCCTCCCGTGC
GGACTCCGACGGCTCTTCTTCTACAGCAAGCTACCGTGGACAA
GAGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTATGCATG
AGGCTCTGCACAACCAACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG
GTAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTG

FIG. 96C

340/497

GACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCC
TTCTAGTTGCCAGCCATCTGTTGCCCTCCCCGTGCCTCCTG
ACCTGGAAAGGTGCCACTCCACTGTCCTTCCTAATAAAATGAGGAA
ATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGG
GTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC
ATGCTGGGGATGCGGTGGGCTCATGGAACCAGCTGGGCTGACAG
CGCTGGATCTCCGATCCCAGCTTGCTCTCAATTCTTATTGCAT
AATGAGAAAAAAAAGGAAAATTAAATTAAACACCAATTCACTAGTAGTTGA
TTGAGCAAATGCGTTGCCAAAAGGATGCTTAGAGACAGTGTCTCT
GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG
ACTCCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT
GTCATCACCGAACGCCTGATTCCGTAGAGCCACACCTGGTAAGGGCC
AATCTGCTCACACAGGATAGAGAGAGGGCAGGAGCCAGGGCAGAGCAT
ATAAGGTGAGGTAGGAATCAGTTGCTCCTCACATTGCTCTGACATAG
TTGTGTTGGAGCTGGATAGCTTGACAGCTCAGGGCTGCGATTTCG
CGCCAAACTTGACGGCAATCCTAGCGTAAGGCTGGTAGGGATTTCATC
CCCGCTGCCATCATGGTTGACCATTAAGTCACTGCATCGTGCCTGTCC
CAAAATATGGGATTGGCAAGAACGGAGACCTACCCCTGGCCTCCGCT
CAGGAACGAGTTCAAGTACTTCAAAGAACGACACAACCTCTTCAG
TGGAAAGGTAAACAGAATCTGGTATTATGGTAGGAAACCTGGTTC
TCCATTCTGAGAAGAACGACCTTAAAGGACAGAATTAAATAGTT
CTCAGTAGAGAACTCAAAGAACACCACGAGGGAGCTCATTCTG
CAAAAGTTGGATGATGCCTTAAGACTTATTGAACAAACCGGAATTGG
CAAGTAAAGTAGACATGGTTGGATAGTCGGAGGCAGTCTGTTACC
AGGAAGCCATGAATCAACCAGGCCACCTAGACTCTTGACAAAGG
ATCATGCAGGAATTGAAAGTGACACGTTTCCCAGAAATTGATTG
GGGAAATATAAAACTCTCCCAGAATACCCAGGCGCTCTCTGA
GGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTGAAGTCTACGAGA
AGAAAGACTAACAGGAAGATGCTTCAAGTTCTGCTCCCTCTAA
AGCTATGCATTCTATAAGACCATGGACTTTGCTGGCTTAGATCA
GCCTCGACTGTGCCTCTAGTTGCCAGCCATCTGTTGTTGCCCTCCC
CCGTGCCTCTTGACCCCTGGAAAGGTGCCACTCCACTGTCCTTCTA
ATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTAT
TCTGGGGGGTGGGTGGGCAGGACAGCAAGGGGGAGGATTGGGAA
GACAATAGCAGGCATGCTGGGATGCGGTGGCCTATGGAACCA
TGGGGCTCGAGCTACTAGCTTGCTCTCAATTCTTATTGCATAATG
AGAAAAAAAAGGAAAATTAAATTAAACACCAATTCACTAGTAGTTGATTGA
GCAAATGCGTTGCCAAAAGGATGCTTAGAGACAGTGTCTCTGCA
CAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAGACT
CCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTTGT
ATCACCGAACGCTGATTCCGTAGAGGCCACACCTGGTAAGGGCCAAT
CTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCATATA
AGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTCTGACATAGTTG

FIG. 96D

341/497

TGTTGGGAGCTTGGATCGATCCTCTATGGTTGAACAAGATGGATTGCA
CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGGCTATCGCTATGACTG
GGCACACAACAGACAATCGGCTGCTGTGATGCCGCCGTGTCCGGCTGTC
AGCGCAGGGCGCCCGGTTCTTTGTCAAGACCGACCTGTCCGGTGC
CCTGAATGAACACTGCAGGACGAGGCAGCGCGCTATCGTGGCTGGCCA
CGACGGGCGTTCTGCAGCTGTGCTCGACGTTGTCACTGAAGCGG
GAAGGGACTGGCTGCTATTGGCGAAGTGCCGGGGCAGGAATCTCCTG
TCATCTCACCTGCTCCTGCCAGAGAAAGTATCCATCATGGCTGATGCA
ATGCGGCGGCTGCATACGCTTGATCCGGTACCTGCCATTGACCCAC
CAAGCGAAACATCGCATCGAGCGAGCACGACTCGGATGGAAGCCGG
TCTTGTGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGCGC
CAGCCGAACGTTCGCCAGGCTCAAGGCGCGATGCCGACGGCGAG
GATCTCGTGTGACCCATGGCGATGCCCTGCTGCCGAATATCATGGTG
GAAAATGGCCGCTTCTGGATTCACTGACTGTGGCCGGCTGGGTGTG
GCGGACCGCTATCAGGACATAGCGTTGGTACCCGTGATATTGCTGA
AGAGCTTGGCGGCGAATGGGCTGACCGCTTCCCTCGTGTGCTTACGGTAT
CGCCGCTCCGATTGCAGCGCATGCCCTCTATGCCCTCTGACGA
GTTCTCTGAGCGGGACTCTGGGTTGAAATGACCGACCAAGCGAC
GCCCAACCTGCCATCACGAGATTGCGATTCCACCGCCGCTTCTATGA
AAGGTTGGGCTTCGGAATCGTTCCGGACGCCGGCTGGATGATCCT
CCAGCGCGGGGATCTCATGCTGGAGTTCTGCCAACCCAACTTGT
TATTGAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATT
CACAAATAAAGCATTTCACTGCATTCTAGTTGTGGTTGTCAA
ACTCATCAATCTATCTATCATGCTGGATCGCGCCGCGATCCCGTC
GAGAGCTTGGCGTAATCATGGTCATAGCTGTTCTGTGTGAAATTGT
TATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTG
TAAAGCCTGGGTGCTTAATGAGTGAGCTAACTCACATTAATTGCGTT
GCGCTCACTGCCGCTTCCAGTCGGAAACCTGCGTGCAGCTGCA
TTAATGAATCGGCCAACGCGCGGGAGAGGGCGTTGCGTATTGGC
GCTCTCCGCTTCCCGCTCACTGACTCGCTGCGCTCGGTGCTCGGCT
GCGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAACGGTTATCCA
CAGAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA
GCAAAAGGCCAGGAACCGTAAAAAGGCCGCTGCTGGCGTTTCC
ATAGGCTCCGCCCCCTGACGAGCATCACAAAAATGACGCTCAAGT
CAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCCTTCC
CCCTGGAAGCTCCCTCGTGCCTCCTGTTCCGACCCCTGCCGCTTAC
CGGATACCTGTCCGCCCTTCTCCCTCGGGAAAGCGTGGCGCTTCTCA
ATGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTGTTGCTCCAA
GCTGGGCTGTGACGAACCCCGTTAGCCGACCGCTGCCCTT
ATCCGGTAACATCGTCTTGAGTCAACCCGGTAAGACACGACTTATC

FIG. 96E 342/497

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG
TAGGC GG TG CT ACAG AG TT CTT GA AG TGGTGGCCTA ACTAC GGGCTAC
ACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGGCCAGTTACC
TTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGC
TGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCGCAGAAA
AAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGC
TCAGTGGAACGAAAACACGTTAAGGGATTGGTATGAGATTATC
AAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAA
ATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATG
CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTGTTCATCC
ATAGTTGCCTGACTCCCCGTCGTAGATAACTACGATAACGGGAGGG
CTTACCATCTGGCCCCAGTGCTGCAATGATAACCGCGAGACCCACGCTC
ACCGGCTCCAGATTATCAGCAATAAACAGCCAGCCGGAAGGGCCG
AGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAGTCTATT
ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGC
GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTTCACGCTCGT
TTGGTATGGCTTCATTGCTCCGGTCCAACGATCAAGGCGAGTTA
CATGATCCCCCATGTTGCAAAAAAGCGGTTAGCTCCTCGGTCTC
CGATCGTTGTCAGAAGTAAGTTGCCCGCAGTGTATCAGTCAAGGTTA
TGGCAGCACTGCATAATTCTCTACTGTCACTGCCATCCGTAAGATGCT
TTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAAATAGTGT
TGC CGCG ACC GAG TTGCTCTGCCCGCGTCAATACGGGATAATACC
GCGCCACATAGCAGAACTTAAAAGTGCTCATATTGGAAAACGTTCT
TCGGGGCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTTG
ATGTAACCCACTCGTCACCCA ACT GTATCTCAGC ATCTT TACTT CA
CCAGCGTTCTGGGTGAGCAAAAACAGGAAGGCAAATGCCGAAAA
AAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTCCT
TTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG
ATACATATTGAATGTATTAGAAAAATAACAAATAGGGTCCGC
GCACATTCCCCGAAAAGTGCCACCT

343/497

FIG. 97A

344/497

FIG. 97B

345/497

FIG. 97C

346/497

FIG. 98A

347/497

FIG. 98B

348/497

FIG. 98C

349/497

FIG. 99A

350/497

FIG. 99B

351/497

FIG. 99C

352/497

FIG. 99D

353/497

FIG. 100A

354/497

FIG. 100B

356/497

FIG. 100D

357/497

FIG. 101A

358/497

FIG. 101B

359/497

FIG. 101C

360/497

FIG. 102A

361/497

FIG. 102B

362/497

FIG. 102C

363/497

FIG. 103A

364/497

FIG. 103B

365/497

FIG. 103C

366/497

FIG. 103D

367/497

FIG. 104A

368/497

FIG. 104B

369/497

FIG. 104C

370/497

FIG. 105A

371/497

FIG. 105B

372/497

FIG. 105C

373/497

FIG. 106A

374/497

FIG. 106B

375/497

FIG. 106C

376/497

FIG. 106D

377/497

FIG. 107A

378/497

FIG. 107B

379/497

FIG. 107C

380/497

FIG. 108A

381/497

F1 G · 10^{8B}

382/497

FIG. 108C

383/497

FIG. 109A

384/497

FIG. 109B

385/497

FIG. 109C

386/497

FIG. 109D

387/497

FIG. 110A

388/497

FIG. 110B

389/497

FIG. 110C

390/497

FIG. 111A

391/497

FIG. 111B

392/497

FIG. 111C

393/497

FIG. 112A

394/497

FIG. 112B

395/497

FIG. 112C

396/497

FIG. 112D

397/497

FIG. 113A

398/497

FIG. 113B

399/497

Minutes

FIG. 113C

400/497

FIG. 114A

401/497

FIG. 1¹₄B

402/497

IG. 1 ^{14}C
F

403/497

FIG. 115A

404/497

FIG. 115B

405/497

FIG. 115C

406/497

FIG. 115D

407/497

FIG. 116A

408/497

FIG. 116B

409/497

FIG. 116C

410/497

FIG. 117A

411/497

FIG. 117B

412/497

FIG. 117C

413/497

FIG. 118A

FIG. 118B

414/497

FIG. 118C

FIG. 118D

415/497

FIG 118E

416/497

FIG. 119

417/497

FIG. 120

418/497

FIG. 121

419/497

FIG. 122
Pre +SA +F TP20
TP21

420/497

FIG. 123

421/497

FIG. 124

422/497

FIG. 125A

423/497

FIG. 125B

424/497

FIG. 126

425/497

426/497

F|G. 128

427/497

FIG. 129

428/497

429/497

430/497

FIG. 132

431/497

FIG. 133

432/497

433/497

FIG. 135

434/497

FIG. 136

435/497

FIG. 137

436/497

FIG. 138

437/497

FIG. 139A

438/497

FIG. 139B

439/497

FIG. 140

440/497

FIG. 141

441/497

FIG. 142

442/497

FIG. 143A

443/497

FIG. 143B

444/497

FIG. 144A

445/497

FIG. 144B

446/497

FIG. 145

447/497

FIG. 146

448/497

FIG. 147

449/497

FIG. 148

450/497

FIG. 149

451/497

FIG. 150

452/497

FIG. 151

453/497

FIG. 152

454/497

FIG. 153

455/497

FIG. 154

456/497

FIG. 155

457/497

FIG. 15 6
22