Differentiable manifolds and the Stokes' Theorem

Jonathan Lau

March 5, 2023

Table of Contents

Manifolds

2 Tangent Space and differential forms

3 Integration of Differential *n*-Forms

Table of Contents

Manifolds

Tangent Space and differential forms

3 Integration of Differential *n*-Forms

Stokes' Theorem

Stokes' Theorem:

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Special cases:

$$\int_{\partial D} P dx + Q dy = \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$
$$\int_{\partial V} F \cdot dS = \int_{V} \text{div} F$$

Upper Half Space

The upper half space is $\mathcal{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \geq 0\}$. Its boundary is $\partial \mathcal{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n = 0\}$.

Charts

Manifolds

$$GL(n,\mathbb{R}), SL(n,\mathbb{R})$$
 e.g.

$$GL(2,\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc \neq 0 \right\}$$

 $SL(2,\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1 \right\}$

Boundary

Proposition: Boundary is manifold

Let M be a manifold with non empty boundary. Then, ∂M is a manifold with empty boundary.

proof: Let \mathcal{A} be an atlas on M. For each $(U, x_1, \ldots, x_n) \in \mathcal{A}$, we construct a chart on $(U \cap \partial M, x_1|_{\partial M}, \ldots, x_{n-1}|_{\partial M})$ on ∂M .

Table of Contents

Manifolds

2 Tangent Space and differential forms

Integration of Differential *n*-Forms

Tangent vectors

Tangent Space

Tangent Space

Smooth Functions

Differential

Wedge product

Example: $dx_1 \wedge dx_3((0,0,1),(2,2,2))$.

Table of Contents

Manifolds

2 Tangent Space and differential forms

3 Integration of Differential *n*-Forms

Partition of Unity

A partition of Unity on a manifold M is a collection of nonnegative smooth functions $\{\rho_\alpha:M\to\mathbb{R}\}_{\alpha\in A}$ such that

- $\bullet \quad \text{the collection of supports, } \{ \sup \rho_{\alpha} \}_{\alpha \in A} \text{, is locally finite,}$

Stokes' theorem

Stokes' theorem

Let M be an oriented n dimensional manifold with non empty boundary, and let ω be a differential (n-1)-form on M with compact support. Give ∂M the boundary orientation, and let $\iota:\partial M\to M$ be the inclusion map. Writing $\int_{\partial M}\iota^*\omega$ as $\int_{\partial M}\omega$,

$$\int_{\partial M}\omega=\int_{M}d\omega$$

Green's theorem

$$\oint_{\partial D} P dx + Q dy = \int_{D} (Q_{x} - P_{y}) dA$$