MA 16200: Plane Analytic Geometry and Calculus II

Lecture 5: The Shell Method

Zachariah Pence

Purdue University

Sections Covered: 6.4

9) Bowl (Hemisphere) Radius R
Filled W/a depth of h anches from the bottom
y Fund Volume
$$Y = \int TT (R^2 - X^2) dX$$

 $Y = \int TT (R^2 - X^2) dX$
 $Y = \int TT (R^2 - X^2) dX$

What happens when we try to revolve R about the y-axis and find the volume of the solid of revolution using Disk/Washers?

Can we find a way to revolve around the y-axis, but integrate w.r.t. x?

Motivation and Definition

Volume of a Cylindrical Shell

Motivation and Definition

Motivation and Definition

Definition 1

Motivation and Definition

Let f and g be continuous functions with $f(x) \geq g(x)$ on [a, b]. If R is the region bounded by the curves y = f(x) and y = g(x)between the lines x = a and x = b, the volume of the solid generated when R is revolved about the y-axis is: (ircumference

$$V=\int_a^b 2\pi x (f(x)-g(x)) \ dx$$
 When R is bounded by the x-axis $(g(x)\equiv 0)$, then

$$V = \int_a^b 2\pi x \ f(x) \ dx$$

Example

Problem 2

Let R be the region bounded by $y = x^2 - x^3$ and the x-axis. Find the volume of the solid when R is revolved around the y-axis. Draw the region and a typical shell.

7. Pence

Example

Problem 3

Let R be the region bounded by $f(x) = \sin x^2$, $x = \sqrt{\pi/2}$, and the x-axis. Find the volume of the solid when R is revolved around the y-axis. Draw the region and a typical shell.

$$= \pi [0 - (-1)] = \pi$$

Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$. Draw the region and a typical shell.

Example

Problem 5

A cylindrical hole with radius r is drilled symmetrically through the center of a sphere with radius a, where $0 \le r \le a$. What is the volume of the remaining material?

7. Pence

$$= -2\pi \frac{3}{3} \left[(a^{2} - x^{2})^{\frac{3}{2}} \right]_{r}^{a}$$

$$= -4\pi \left[0 - (a^{2} - r^{2})^{\frac{3}{2}} \right]_{r}^{a}$$

$$= -4\pi \left[0 - (a^{2} - r^{2})^{\frac{3}{2}} \right] = 4\pi \left[(a^{3} - r^{3})^{\frac{3}{2}} \right]$$

Formulas for Rotating about the x-axis

Definition 6

Let p and q be continuous functions with $p(y) \ge q(y)$ on [c, d]. If R is the region bounded by the curves x = p(y) and x = q(y)between the lines y = c and y = d, the volume of the solid generated when R is revolved about the x-axis is:

$$V = \int_c^d 2\pi y (p(y) - q(y)) \ dy$$

When R is bounded by the y-axis $(q(y) \equiv 0)$, then

$$V = \int_{c}^{d} 2\pi y p(y) \ dy$$

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1. Draw the region and a typical shell.

Radius:
$$\frac{1}{4} - x = 1 - y^2$$

Height: $1 - x = 1 - y^2$
 $V = \int_{0}^{2} 2\pi y (1 - y^2) dy$
 $= 2\pi \int_{0}^{2} (y - y^3) dy$

Z. Pence

Let R be the region in the first quadrant bounded by the graph of $y = \sqrt{x-2}$ and the line y = 2. Find the volume of the solid generated when R is revolved about the x-axis Draw the region and a typical shell.

Extra Space
$$V = 2\pi \left[\frac{1}{4} y^4 + y^2 \right]_0^2 = 2\pi \left[\frac{1}{4} (a)^4 + (a)^2 \right]$$

$$= 2\pi \left[4 + 4 \right] = 16\pi$$

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the x-axis. Draw the region and a typical shell.

MA 16200: Plane Analytic Geometry and Calculus II

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y = 4x^2$ and 2x + y = 6 about the x-axis. Draw the region and a typical shell.

Z. Pence

MA 16200: Plane Analytic Geometry and Calculus II

 $= \pi \left[\frac{2}{5} y^{\frac{5}{2}} - \frac{1}{3} y^{3} + 3y^{2} \right]_{4}^{9} = \frac{866\pi}{15} \frac{128\pi}{15} \frac{866\pi}{15}$

$$= \pi \int y(4y - y + 6) dy = \pi \int (y^{\frac{3}{2}} - y^{2} + 6y) dy$$

X(1-K) 些 ⇒ X=0小

Problem 11

Find the volume of the solid obtained by rotating the region bounded by $y = x - x^2$ and y = 0 about the line x = 2.

Extra Space
$$V = 2\pi \int_{0}^{1} (2x - 3x^{2} + x^{3}) dx = 2\pi \left[x^{2} - x^{3} + \frac{1}{4}x^{3}\right]$$

$$= 2\pi \left[1 - 1 + \frac{1}{4}\right] = 2\pi \left[\frac{1}{4}\right] = \frac{\pi}{2}$$

Let R be the region bounded by the curve $y = \sqrt{x-1}$, the line y = 0, and x = 5. Use the shell method to find the volume of the solid generated when R is revolved about the line y = 3.

$$V = a\pi \int_{0}^{2} (12 - 3y^{2} - 4y + y^{3}) dy$$

$$= a\pi \left[12y - y^{3} - 2y^{2} + 4y^{4} \right]_{0}^{2}$$

$$= 2\pi \left[24 - 8 - 8 + 4 \right] = 24\pi$$

Example (if time allows)

Problem 13

Let R be the region bounded by the curve $y = \sqrt{x}$, the line y = 1, and the y-axis. Use the shell method to find the volume of the solid generated when R is revolved about the line $x = -\frac{1}{2}$.

$$V = 2\pi \int_{0}^{2} (x - x^{\frac{3}{2}} + \frac{1}{2} - \frac{1}{2} x^{\frac{1}{2}}) dx$$

$$= 2\pi \left[\frac{1}{2} x^{2} - \frac{2}{5} x^{\frac{5}{2}} + \frac{1}{2} x - \frac{1}{3} \cdot \frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{2}$$

$$= 2\pi \left[\frac{1}{2} - \frac{2}{5} + \frac{1}{2} - \frac{1}{3} \right] = 2\pi \left[\frac{2}{5} - \frac{1}{3} \right]$$

$$= 2\pi \left[\frac{4}{15} \right] = \frac{8\pi}{15}$$

Z. Pence

Example (if time allows)

Problem 14

Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.

$$x = \sqrt{\sin y}$$
; $0 \le y \le \pi$; $x = 0$; about $y=4$

MA 16200: Plane Analytic Geometry and Calculus II

Summary

Disk/washer method about the y-axis Disks/washers are perpendicular to the y-axis.

$$\int_{c}^{d} \pi \underbrace{(p(y)^{2} - q(y)^{2})}_{\text{outer}} dy$$

$$\underbrace{q(y)^{2}}_{\text{inner}} dy$$

$$\underbrace{q(y)^{2}}_{\text{radius}} dy$$

Shell method about the x-axis Shells are parallel to the x-axis.

$$\int_{c}^{d} \frac{2\pi y (p(y) - q(y))}{\text{shell}} dy$$
ircumference height