Úlohy na cvičenia pre 3. týždeň semestra

1. Na rozohriatie: Hod mincou

Budeme hádzať mincou pomocou príkazu *rbinom()*. Testujte postupne situáciu pri 10 hodoch, pri 100, 1000, 10000, 100000 hodoch, aká je pravdepodobnosť, že hodíte "hlavu".

Fyzické sčítanie pozitívnych výsledkov realizujte minimálne 5-timi rôznymi spôsobmi (aspoň jeden cyklus, aspoň dva spôsoby cez funkčné programovanie).¹

Sledujte aká časová a pamätová náročnosť pri každom spôsobe, ktorý ste naprogramovali je potrebná. Sledujte ako sa jednotlivé programátorské štýly správajú v tomto a aj v nasledujúcich algortimoch. Sledujte, kde sú ich slabé a silné stránky.

2. "Priemer" kladných hodnôt

Vytvorte vektor náhodne generovaných **celých čísel z intervalu 0 až 10 s normálnym rozdelením** (napr. *rnorm()*) – opäť postupne s dĺžkou 100 – 1 000 000 čísel. Vypočítajte aritmetický, geometrický, harmonický a kvadratický priemer z týchto čísel. Vymyslite aspoň 5 spôsobov, ako túto úlohu zrealizovať (napr. *mean()*, cyklus, funkčné programovanie) pre každý z priemerov. Najmä pri väčšom dátovom objeme sledujte, či je z časového hľadiska lepšie vygenerovať celú množinu, uložiť ju, alebo ju generovať a počítať po dávkach – samozrejme s ohľadom na použitý algoritmus. Identifikujte slabé a silné stránky všetkých postupov.²

Aritmetický priemer-
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
,

Geometrický priemer
$$\overline{x}_G = \sqrt[n]{x_1 . x_2x_n}$$

Je zrejmé, že geometrický priemer má zmysel iba pre dáta, v ktorých sú všetky hodnoty kladné čísla. Geometrický priemer sa na rozdiel od aritmetického priemeru používa na koeficienty, napr. na výpočet priemerného rastu: ak rast cien bol postupne 20 %, 10 %, potom 15 % pokles a 10 % rast, tak priemerný rast sa rovná ($\sqrt[4]{1,20\cdot 1,10\cdot 0,85\cdot 1,10}\cong 1,054$ čiže priemerný rast je približne 5,4 %. Toto číslo vyjadruje, že výsledná cena by bola taká istá aj v prípade, ak by rast bol konštantný, každý rok 5,4 %

¹ Pre úplnosť – termín "rôzny spôsob" sa chápe ako myšlienkovo úplne iný prístup ku danému problému. Do tejto kategórie nespadá postup, že použijem inú knižnicu a mierne iné príkazy na zrealizovanie toho istého zadania. Chápe sa tým procedurálne programovanie, objektové programovanie, funkcionállny prístup, conditional functions, pure functions, anonymous functions

² Zdroj http://math.ku.sk/data/portal/data/zbornik2007/Articles/Kulcar_Ladislav.pdf

Asi to veľmi rýchlo zistíte, že väčšej dátovej množine rýchlo narazíte na limity aritmetických operácií, takže jeden z možných nápadov pre veľké dátové množiny - pri použití logaritmov možno súčiny zmeniť na súčty a umocňovanie na súčin,

$$\exp\left[\frac{1}{n}\sum_{i=1}^n \ln x_i\right]$$

Harmonický priemer
$$\overline{x}_H = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Harmonický priemer sa používa na určenie stredu variability takého znaku, ktorý cez určitú konštantnú hodnotu je v nepriamom vzťahu s iným znakom. Súčet takýchto hodnôt znaku nedáva logický zmysel. Harmonický priemer sa používa na charakterizovanie hodnôt, ktoré predstavujú napríklad výkonové limity – teda dosiahnuť u každej osoby ten istý výkon pri rôznom čase alebo rôzny výkon za jednotku času (1. osoba urobí prácu za hod, teda jej hodinový výkon je, ...,atď.) V prípade rôznych vzdialeností a rovnakých časov sa však musí použiť aritmetický priemer.

Kvadratický priemer $\overline{x}_K = \sqrt{\frac{{x_1}^2 + {x_2}^2 + \ldots + {x_n}^2}{n}}$. Kvadratický priemer sa obyčajne používa vo fyzike, kde sa často označuje ako efektívna hodnota.

- **3.** Zopakujte úlohu 2 **pre vektor náhodne generovaných reálnych čísel z intervalu** (0,1). Kedy a v ktorých prípadoch budete pozorovať výraznú zmenu oproti predchádzajúcemu prípadu (spotreba pamäte, čas potrebný na výpočet...) Ako overíte, či sa sa na vypočítaný výsledok môžete spoľahnúť?
- 4. RMSD root mean square deviation s podmienkou

Opäť vytvorte vektor náhodne generovaných reálnych čísel z intervalu (-1,1) s normálnym rozdelením – opäť postupne s dĺžkou $100-1\,000\,000$ čísel. Naučte sa v tomto príklade používať funkcionálnu podmienku! To znamená, že vymyslíte aspoň 5 spôsobom (jeden cyklus, aspoň dva rôzne funkcionálne prístupy) ako z vami vygenerovanej dátovej množiny vyberiete len kladné čísla (len záporné čísla, len čísla z nejakého intervalu ...) a pre tento výber vypočítate aká bude RMSD

$$RMSD = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

Pre každý prístup (každý naprogramovaný spôsob) a každú dĺžku vektora testujte aj pamätové aj časové nároky a overte hraničné limity použitia jednotlivých programátorských štýlov.

5. Trochu genomiky - (práca s typom char)

Stiahnite si z drivu kompletnú genetickú informáciu pre covid 19 (NCBI Reference Sequence: NC_045512.2)³ a urobte jeho analýzu pre jednoduché základné úlohy. Pre každú úlohu (ako obvykle) aspoň 5 rôznych spôsobov ako sa to dá naprogramovať a minimálne dva (tri?) funkcionálne

- Zistite, koľko obsahuje písmeno A, C, T, G.
- Zistite koľko krát sa v reťazci vyskytujú všetky základné aminokyseliny (Jednotlivé dusikaté bázy – písmená – navzájom utvárajú trojice. Každá trojica predstavuje kodón – jednu aminokyselinu. Spájaním kodónov, aminokyselín, vznikajú kódy gény - pre funkčné bielkoviny.

	U	С	A	G	
-	fenylalanin	serín	tyrozín	cystein	υ
Ü	fenylalanin	serin	tyrozín	cystein	С
ľ	leucín	serin	"koniec reťazca"	"koniec reťazca"	А
L	leucín	serín	"zač. reťazca"	tryptofán	G
	leucín	prolin	histidin	arginín	U
C	leucín	prolín	histidín	arginin	c
200	leucín	prolín	glutamín	arginin	А
	leucín	prolín	glutamín	arginín	G
na n	izoleucín	treonín	asparagán	serín	U
A	izoleucín	treonin	asparagán	serín	С
	izoleucín	treonín	lyzín	arginín	A
	metionín "zač.reť."	treonin	lyzin	arginin	G
	valín	alanín	kys. asparágová	glycín	U
G	valín	alanín	kys. asparágová	glycín	С
300	valín	alanín	kys. glutámová	glycín	A
	valín "zač. reťazca"	alanín	kys. glutámová	glycín	G
	U	С	A	G	

³ Ak vás zaujíma iná (nie základná mutácia, stiahnite si dáta z databázy https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049, klik na meno, potom vľavo hore formát FASTA a vpravo hore sent to file