Artificial Intelligence Assignment 3

CSI4108-02 Spring, 2018

1. Introduction

We will do MNIST classification by constructing LeNet.

<MNIST dataset>

2. Detail-Code

- Framework: You can use Tensorflow or PyTorch. Also if you have GPU, you can use it.
- MNIST data: You can get MNIST data using below way
 - Tensorflow(https://www.tensorflow.org/versions/r1.2/get_started/)

```
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
```

• PyTorch(https://pytorch.org/docs/master/torchvision/datasets.html#mnist)

class torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None,
download=False)

2. Detail-Code

- Network: You must follow the structure of LeNet presented below.(size of conv, number of filters, Non-linear activations, stride, etc...)
 - LeNet

2. Detail-Code

 Output: For each Epoch, Print the average Loss and Learning rate for the train set. And after training, print the average Loss and Accuracy for the test set.(on standard output)

```
Train set: Epoch: 1, Average Loss: 1.803760, lr: 1.00e-02
Train set: Epoch: 2, Average Loss: 1.653157, lr: 1.00e-02
Train set: Epoch: 3, Average Loss: 1.586098, lr: 1.00e-02
Train set: Epoch: 4, Average Loss: 1.580281, lr: 1.00e-02
Train set: Epoch: 5, Average Loss: 1.491629, lr: 1.00e-02
Train set: Epoch: 6, Average Loss: 1.484734, lr: 1.00e-02
Train set: Epoch: 7, Average Loss: 1.482435, lr: 1.00e-02
Train set: Epoch: 8, Average Loss: 1.480637, lr: 1.00e-02
Train set: Epoch: 9, Average Loss: 1.479552, lr: 1.00e-02
Train set: Epoch: 10, Average Loss: 1.478573, lr: 1.00e-02
Train set: Average loss: 1.4813, Accuracy: 9800/10000 (98.00%)
```

<Example output>

2. Detail-Report

- Report: It should contain the contents below.
 - Environment ex) OS, Framework, versions(pytorch, tensorflow, python, cuda, etc...), etc...
 - Detail description of each line of code (You should write a description of each function definition and role. For example, if you use MSELoss then you should explain about MSELoss)
 - Screenshot result output
 - Analysis of training process and result
 - Other information (If you want)

3. Detail

Summary

We will do MNIST classification using machine learning framework. The network structure uses LeNet.

Print the training process and test result on standard output.

Write a report with the necessary contents.

4. Submission

- Deliverables: 2013147xxx_3.zip (studentNumber_3.zip)
- Must include
 - main.py
 - Other codes (If you necessary)
 - report.pdf

(Your code with detail comments)

5. Grading environment & Directions

- Language: Python
- We grade your score in Linux(Ubuntu 16.04)
- Python3 (>= 3.5.2)
- This is an individual project
- You should follow the output format
- Never copy code
- You will get 0 points if you cheat
- Do not manipulate the results.
- If the result is manipulated, you will get 0 points.

6. Grading policy

- Code : 50pts
 - Import MNIST data
 - Implement LeNet
 - Train and test are well
- Report : 50pts
 - Contain necessary contents

7. Due Date

- Due Date: 7/June/2018 23:59:00 KST
- Delay Policy: -15pts per day

Pleae use YSCEC Q&A board to leave your question.