Cours 11

Logiques temporelles

Motivations

But : modéliser (puis vérifier) le comportement dynamique d'un système.

Plusieurs langages:

- ► LTL : Linear time temporal logic
- ► CTL : Computation tree logic
- ► CTL* : combine LTL et CTL

CTL*: syntaxe

 \mathbb{V} un ensemble dénombrable de variables propositionnelles. C ensemble fini de connecteurs propositionnels : $C = \{\land, \lor, \neg, \Rightarrow, \Leftrightarrow\}$ T ensemble fini de connecteurs temporelles : $T = \{X, F, G, U, A, E\}$

Définition (Formules CTL*)

L'ensemble des formules CTL^* est un langage sur $\mathbb{V} \cup C \cup T \cup \{(,)\}$ défini inductivement par :

- ▶ $\mathbb{V} \subset \mathsf{CTL}^*$
- si $\varphi_1, \varphi_2 \in CTL^*$, alors $\neg \varphi_1, (\varphi_1 \land \varphi_2), (\varphi_1 \lor \varphi_2), (\varphi_1 \Rightarrow \varphi_2), (\varphi_1 \Leftrightarrow \varphi_2) \in CTL^*$
- ▶ si $\varphi_1, \varphi_2 \in CTL^*$, alors $X\varphi, F\varphi, G\varphi, A\varphi, E\varphi, (\varphi_1U\varphi_2) \in CTL^*$

Remarque: cette définition inductive est non-ambiguë.

Sémantique : structures de Kripke

Les formules sont interprétés vis-à-vis d'un modèle particulier : les structures de Kripke.

Définition

Une *structure de Kripke* est un quadruplet $\langle S, R, q_0, L \rangle$ tel que

- S est un ensemble d'états,
- ▶ $R \subseteq S \times S$ est une relation de transition entre états,
- ▶ $q_0 \in S$ est un état initial,
- ► $L \in S \to \mathcal{P}(\mathbb{V})$ est une fonction de labélisation.

Remarque: nous nous restreignons au cas où tout état a au moins un successeur.

Sémantique : structures de Kripke

Définition

Un *chemin* dans une structure de Kripke est une séquence **maximale**

$$\pi = s_0, s_1, s_2, \ldots$$

telle que $(s_i, s_{i+1}) \in R$ pour tout $i \ge 0$.

Exemple:

$$\pi_1 = q_0, q_1, q_0, q_1, \dots$$

$$\pi_2 = q_0, q_1, q_2, q_0, \dots$$

$$\pi_3 = q_0, q_1, q_2, q_2, q_2 \dots$$

Sémantique de CTL*

Soit \mathcal{K} une structure de Kripke, π un chemin de \mathcal{K} , i un entier et φ une formule de CTL*.

 $\mathcal{K}, \pi, i \models \varphi$: au temps i du chemin π , φ est vraie

Définition : \mathcal{K} satisfait φ ($\mathcal{K} \models \varphi$) ssi \mathcal{K} , π , $0 \models \varphi$ pour tout chemin π de \mathcal{K} tel que $\pi(0) = q_O$.

Définition de \mathcal{K} , π , $i \models \varphi$:

$$\mathcal{K}, \pi, i \models p \text{ ssi } p \in L(\pi(i))$$

$$\mathcal{K}, \pi, i \models \neg \varphi \text{ ssi } \mathcal{K}, \pi, i \not\models \varphi$$

$$\mathcal{K}, \pi, i \models (\varphi_1 \land \varphi_2) \text{ ssi } \mathcal{K}, \pi, i \models \varphi_1 \text{ et } \mathcal{K}, \pi, i \models \varphi_2$$

Sémantique de CTL*

$$\mathcal{K}, \pi, i \models X\varphi$$
 ssi $\mathcal{K}, \pi, i + 1 \models \varphi$
 $\mathcal{K}, \pi, i \models F\varphi$ ssi il existe $j \geqslant i$ tel que $\mathcal{K}, \pi, j \models \varphi$
 $\mathcal{K}, \pi, i \models G\varphi$ ssi pour tout $j \geqslant i$ on a $\mathcal{K}, \pi, j \models \varphi$
 $\mathcal{K}, \pi, i \models (\varphi_1 U \varphi_2)$ ssi il existe $j \geqslant i$ tel que $\mathcal{K}, \pi, j \models \varphi_2$ et pour tout k tel que $i \leqslant k < j$, $\mathcal{K}, \pi, k \models \varphi_1$
 $\mathcal{K}, \pi, i \models E\varphi$ ssi il existe π' tel que $\pi(0), \dots, \pi(i) = \pi'(0), \dots, \pi'(i)$ et $\mathcal{K}, \pi', i \models \varphi$
 $\mathcal{K}, \pi, i \models A\varphi$ ssi pour tout π' tel que $\pi(0), \dots, \pi(i) = \pi'(0), \dots, \pi'(i)$ on a $\mathcal{K}, \pi', i \models \varphi$

Les combinateurs temporel linéaires

Xφ : l'état suivant vérifie φ (neXt)

• π_1, π_2, π_3 vérifient XXerreur $\vee XXX$ ok

Fφ: un état futur vérifie φ (Futur)

 $\triangleright \mathcal{K} \models F(\text{ok} \lor \text{erreur})$

 $G\varphi$: tous les états futurs vérifient φ (Globally)

- $\mathcal{K} \models G(\text{chaud} \Rightarrow \text{ok})$
- $\mathcal{K} \models G(\text{chaud} \Rightarrow F\neg\text{chaud})$

 $\varphi_1 U \varphi_2 : \varphi_1$ vraie jusqu'à ce que φ_2 le soit (et φ_2 le sera un jour) (*Until*)

 $\triangleright \mathcal{K} \models (\text{ok } U (\text{chaud } \lor \text{erreur}))$

Les combinateurs temporel arborescents

On s'intéresse à tous les exécutions possibles à partir de l'instant présent.

- \triangleright *A*φ : toutes les exécutions à partir de l'instant présent satisfont φ (*All*).
- \triangleright *E*φ : il existe une exécution à partir de l'instant présent satisfont φ (*Exists*).

Il est utile de raisonner sur un dépliage d'une structure de Kripke : un arbre infinie représentant tous les chemins de la structure.

Exemple de dépliage

Logique du temps arborescent

Equivalences sémantiques

Définition

Deux formules φ_1 et φ_2 sont *équivalentes* $(\varphi_1 \equiv \varphi_2)$ ssi pour toute structure de Kripke \mathcal{K} ,

$$\mathfrak{K}\models\phi_1\,ssi\,\mathfrak{K}\models\phi_2$$

Exemple:

$$F\varphi \equiv \neg G \neg \varphi$$

$$E\varphi \equiv \neg A \neg \varphi$$

Expliquer la différence d'expressivité entre les deux formules *AGFp* et *AGEFp*.

Restrictions de CTL*

LTL : on enlève A et E, on ne peut alors plus raisonner sur les différents chemins possibles

CTL : les quantificateurs X, F, G, U doivent être directement sous la portée de A ou E.

$$\varphi ::= p \mid \neg \varphi \mid \cdots \mid AX\varphi \mid EX\varphi \mid AF\varphi \mid EF\varphi \mid AX\varphi \mid EX\varphi \mid A[\varphi U\varphi] \mid E[\varphi U\varphi]$$

Avantages de ces logiques : moins expressives, mais plus efficace pour la vérification.

Pour chacune des formules de CTL* suivantes, indiquer celles qui sont satisfaites par la structure de Kripke ci-contre.

- ▶ Xp
- \triangleright EX($p \land AGFp$)
- ▶ $AG(q \Rightarrow XXp)$
- ► *AXA*(*pUq*)
- $\rightarrow A(\neg q U q)$

Donner deux structures de Kripke qui ne sont pas distinguables par une formule de LTL, mais qui le sont par une formule de CTL.

Démontrer l'équivalence

$$\varphi_1 U \varphi_2 \equiv (\varphi_2 \vee (\varphi_1 \wedge X(\varphi_1 U \varphi_2)))$$

pour toutes formules φ_1 , φ_2 de CTL*.