ADITYA ENGINEERING COLLEGE

TEAM ID: 24002

BAJA 2020

TEAM ID	CAR NO	ENDURANCE SCORE	TOTAL SCORE	POSITION
20014	2	248.5	596.9	8

BAJA 2023

TEAM ID	CAR NO	ENDURANCE SCORE	TOTAL SCORE	POSITION
23004	87	-	163.24	-

SUBSYSTEMS FLAWS OF PREVIOUS VEHICLE LESSONS LEARNT The front bracing member should have Fbm should become **ROLL CAGE** been the primary member but became

secondary member

SUSPENSION

BRAKING

STREERING

TRANSMISSION

accurtely

BREAKDOWN AND FAILURES

- No proper design for splash shield arrangement

- Issue in fixing the CVT and disk wheel casing

No gusset between RHO & RRH

Less camber control because of u arms

Less brake performance at rear wheels

Occurance of brakages in hoses.

LESSONS LEARNT FROM 2023 VEHICLE

- The ability to align the wheels not - No precise alignment

Less traction & limited torque distribution.

To required power to all 4 wheels

primary and continuous

according to rule book

Should be available

gusset secondary

A-arms tend to offer more

adjustability, To fine-tune

the suspension settings for

specific driving conditions.

Due to Y – split

Because of non-

metallic liners.

4WD **MODIFICATIONS DONE**

Decrease the height of engine bed

- Upgraded the braking system to handle the increased power

IMPROVEMENT

primary

FBM completely replaced with

Damper position changed

U- arms are replaced with

Installing X- split braking

Using metallic brake liners

to upper arm

A-arms

circuit

- Using sliding pair

COMPARISION OF OLD AND PROPOSED VEHICLE **OLD PARAMETER RULEBOOK PROPOSED WEIGHT ANALYSIS OLD** Maximum Length 108 inch 72 inch 79.26 inch 64 inch Maximum Width 50 inch 51 inch 3% 51 & 52 inch Track width (front & rear)

53.01 kmph

4m@ 45 Kmph

175 & 65 kg

15.82 inch

Y - split F/R

170 Kg

240 kg

 5.09 m/s^2

45 & 44 inch 50 inch

12 inch

54 inch

12 inch 53 Kmph

 6.7 m/s^2 70%

4.5 m@ 60 Kmph 280 kg

Maximum Acceleration

Wheel Base

Gradability

Ground Clearance

Maximum Speed

Gear box reduction

Stopping distance

Sprung & unsprung mass

Gross weight

CG height

Kerb weight

Braking circuit

- 60 Kmph

8m@ 45-60 Kmph

- 63.89 % 11.1:1
 - - - 10:1

230 & 50 kg

X - split F/R

15.5 inch

210 kg

- - Roll cage steering braking
- Fastners ■ Miscelleneous Wheel asssembley suspension

powertrain ■ fastners

240 kg

Rollcage ■ Steering

■ Wheel assembly

ROLL CAGE FEATURES

ROLLCAGE DESIGN PROCESS- ERGONOMICS

SIDE VIEW

PARAMETER		VA	LUE	PARAMETER	ALLOWABLE VALUE	DESIGN VALUE
Total no.of joints 94			Maximum vehicle width	64"	50"	
Total weld length 5.9 m) m	Maximum vehicle length	108"	72"	
Total tubing length		50 m		Minimum firewall width of the	> 29"	30"
Roll cage weight 4:		41.	.3 kg	RRH 27" above seat		
PARAMETER	OUTE	R	THICKNESS	Material used	Steel alloy with properties > 365 Mpa	AISI 4130
Primary	31.75	;	1.6 mm	Vertical distance of SIM from seat (inches)	8"- 14"	12"

 135°

1320

10⁰

700

DESIGN VALUE

Max 20⁰

FRONT VIEW

pipes mm 25.4 Secondary

mm

STD.VALUE

125⁰ - 140⁰

120⁰ - 150⁰

 8° - 15°

 $90^{\circ} - 65^{\circ}$

pipes

PARAMETER

Elbows angle

Knee angle

Back angle

Steering angle

SUSPENSION SPRING DESIGN **FRONT REAR PARAMETER MATERIAL** Chromium vanadium steel Double wish bone H - arm Suspension system Modulus of rigidity 8000 mpa Natural frequency 2.3 Hz 2.5 Hz Wire diameter 9 mm Spring stifness 6.942 N/mm 16.147 N/mm Eye to eye distance 480 mm 19.315 Nm/deg 22.28 Nm/deg Roll rate No.of active coils 15 Bump - 6" Bump -4"Suspension travel Droop - 4" Droop - 2"Nominal diameter 81 mm 5.8" 6.2" Damper stroke LINKAGE DESIGN Damping force 956.456 N 1103.52 N **PARAMETER**` **VALUE** 3410.77 N.s/m Damping coefficient 2940.53 N.s/m STEERING GEOMETRY CG height 15.5" 1.08 10.7 Damping ratio **PARAMETER FRONT** REAR 12" Ground

clearance

Roll center

Motion ratios

height

2"

0"

0"

0 mm

0 deg

2"

2"

ጸ"

22 mm

2 deg

Camber

Scrub radius

Caster

KPI

TOE

FAW 12.52"

RAW 12.49"

REAR - 1.33

FRONT -

0.53

6" (4"

bump,2"

droop)

Helical

suspension

10"-

6"bump,4"droop

FOX FLOAT -

3EVOL

Wheel rate

Shock absorber

STEERING

STEERING SYSTEM

PARAMETER	VALUE
Steering condition	Over steer
Ackerman percentage	106 %
Outer angle	24.049
Inner angle	38.09
Turning circle radius	2.5 m

STEERING WHEEL

PARAMETER	VALUE
Wheel diameter	304 mm
Wheel torque	6.6 N-m

STEERING GEAR- RACK & PINION

PARAMETER	VALUE
LHD OR RHD	Central drive
Rack travel	20.165 mm
Lock to lock turns	1.5 rev
Streering ratio	9:1
OBJ center distance	18.68 "
IBJ center distance	10 "
Length of the rod	10.44"

STEERING COLUMN

PARAMETER	VALUE		
Column type	collapsible		
Without power assist			

BRAKING

BRAKE CACULATIONS

COMPONENT	SPECIFICATION	
Circuit type	F/R	
Master cylinder	BOSCHTMC Bore- 19.05 mm	
Brake disk	F&R-170 mm	
Brake caliper (double piston)	F&R- 25.4 mm	
Brake caliper pad – mean breaking radius; area and friction coefficient	150mm, 351 mm ² , 0.4	
Brake fluid	DOT-3	

PARAMETER	VALUE
Weight transfer at 40 kmph to 0 kmph	123.8 kg
Static rolling radius for tire	11.21"
Coefficient of friction for road	0.7
Braking torque required per wheel	F-168 N-m R- 64 N-m
Expected brake performance	F- 427.7N-m R- 162 N-m

PERFORMANCE

PARAMETER	VALUE
Stopping distance	4.5 m
Pedal force	300 N
Pedal travel	5.2 cm

BRAKE INSTALLATION PROBLEMS

PROBLEM	ACTION
Bleeding	Remove air bubbles, renewing brake fluid.
Unbalance circuit	Proportionating valves using flexible hoses.

Velocity vs distance

ENGINE SPECIFICATION

BRIGGS & STRATTON 10 HP OHV – VANGUARD MODEL 20

PARAMETER	VALUE
Max. diameter	189.36 mm
Min. diameter	180.03 mm
Pulley center distance	257 mm
Length of the belt	927 mm
Pulley groove angle	32 deg
Max. power	7.457 KW
Max . torque	18.75 N-m

TYRE SIZE

Diameter	23 inch		
Width	7 inch		
Height	10 inch		

POWER TRAIN

GEAR BOX SPECIFICATION

PARAMETER`	VALUE
Gear train	Double compound Gear train
Gear Reduction ratios	10: 1
Casing material	Aluminium alloy 6065
Gear material	EN 19
Engine : CVT : Gearbox	18.75:3: 10:1

PERFORMANCE

PARAMETER	VALUE
Maximun speed	53 Kmph
Acceleration	6.7 m/s
Gradeability	70 %
Vehicle required torque	780 N-m

POWER TRAIN

PARAMETER	VALUE			
Throttle pedal force	190 N			
Pedal travel	65 mm			

Output ratio of engine to the wheel rpm is 6.97

CAE ANALYSIS

POWER TRAIN LAYOUT

Noise vibrations & Harshness considerations

* Using aluminium Brush

* Using Rubber Damper

VEHICLE TRAVELS ON A SLOPE CONDITION

the driver due to impacts strength more than 3 Steering To ensure the directional stability failure 8 3 3 72 Steering arm is design maximum load conditions are to becomes 8 5 6 240 Connections are to becomes	DESIGN & PROCESS FAILURE MODE EFFECT ANALYSIS							
the driver due to impacts strength more than 3 Steering To ensure the directional stability failure Steering arm failure Steering arm strength more than 3 To ensure the directional stability failure Steering arm steering arm is designed maximum load conditions are to becomes Steering arm is designed at transmission To provide torque to all its wheels Steering arm steering arm steering arm is designed to steering arm steering arm is designed to steering arm steering arm steering arm is designed to steering arm steering	PART	FUNCTION		S	0	D	RPN	REMEDY
directional stability failure maximum load condition transmission To provide torque to all its wheels becomes 8 5 6 240 Connections are to be keenly checked in ea	Rollcage	·		8	4	3	96	Using Steel Alloys of yield strength more than 365 M
all its wheels becomes keenly checked in ea	Steering			8	3	3	72	Steering arm is designed for maximum load conditions
simultaneously inoperatable every phase	transmission	· •		8	5	6	240	Connections are to be keenly checked in each and every phase

guard from sudden failures according to spring constant shock and rollover Circuit failure 9 5 180 9 3 2 To inhibits motion by 4 Bleeding of Vehicle Brakes

D-DETECTION

Brakes absorbing energy due to leakage before every run and & Worn out replacement of required from moving system

Brake pads

O - OCCURRENCE

S - SERVERITY

Maintaining balance 105 Choose material and Suspension Spring to vehicle and to safe machining sequence fractures and

RPN – RISK PRIORITY NUMBER

parts

9

8

and

S

8

0 D

2

2 2

5 3

2 4

2

RPN

32

36

135

64

54

DESIGN VALIDATION PLAN

SYSTEM	PARAMETER	CHECKING METHODOLOGY	DESIGN VALUE
ROLLCAGE	Sustainability crashes	Using ANSYS software	FOS: 2
SUSPENSION	Wheel Travel	Vehicle is lifted by using jack, wheel is removed and hub travel is noted with respect to center position.	Bump : 6 inch Droop : 4 inch
STEERING	Turning Radius	To be tested in the figure of:- 8	Based on physical performance
POWER TRAIN	Top Speed	Vehicle is driven at full throttle up to a distance of 200ft and note the speed and also time taken to cover the distance is noted using sensors	Based on physical performance
BRAKING	Stopping distance	Driver starts braking at minimum speed (45kmph) while crossing a reference line. Maximum force is applied on the brake pedal, there by checking all wheels lock simultaneously or not and distance is measured from the line to the front tires.	Based on physical performance

TEAM COMPOSITION

TEAM TACHYON 6.0

■ New members

Faculty advisor

COLLEGE WORKSHOP FACILITIES

