Gewöhnliche Differentialgleichungen und Integration auf Mannigfaltigkeiten WS2018/19

Dozent: Prof. Dr. Friedemann Schuricht

6. November 2018

In halts verzeichnis

VIII Integration auf Mannigfaltigkeiten			2
29	Mann	igfaltigkeiten	2
	29.1	Relativ topologie auf Teilmengen $M\subset\mathbb{R}^n$	3
	29.2	Mannigfaltigkeiten	3
30	Integration auf Kartengebieten		10
31	Integral auf Mannigfaltigkeiten		18
32	Integr	ralsätze von Gauß und Stokes	24

Vorwort

Kapitel VIII

$Integration\ auf\ Mannigfaltigkeiten$

29. Mannigfaltigkeiten

Definition

Sei $\varphi \in C^q(V,\mathbb{R}^n), \ V \subset \mathbb{R}^d$ offen, $q \geq 1.$ φ heißt <u>regulär</u> in $x \in V$, falls

$$\varphi'(x): \mathbb{R}^d \to \mathbb{R}^n \text{ regulär}$$
 (1)

Falls φ regulär $\forall x \in V$ heißt φ regulär auf V bzw. reguläre C^q -Parametrisierung (auch C^q -Immersion). V heißt Parameterbereich und $\varphi(V)$ Spur von V.

Gleichung (1) impliziert

$$d \le n \tag{2}$$

und sei in Kapitel VIII stehts erfüllt. Folglich:

Gleichung (1)
$$\Leftrightarrow$$
 rang $\underbrace{\varphi'(x)}_{n \times d\text{-Matrix}} = d$ (1')

■ Beispiel 29.1

- 1) Reguläre Kurve: $\varphi \colon I \subset \mathbb{R} \to \mathbb{R}^n$, I offen, $\varphi'(x) \neq 0$ ($\varphi'(x)$ ist der Tangentialvektor)
- 2) $\varphi:(0,2\pi)\to\mathbb{R}^2, \ \varphi(t):=(\cos kt,\sin kt)^\mathsf{T},\ k\in\mathbb{N}_{\geq 2}$ (k-fach durchlaufener Einheitskreis)
- 3) $\varphi: (-\pi, \pi) \to \mathbb{R}^2$, $\varphi(t) = (1 + 2\cos t)(\cos t, \sin t)^\mathsf{T}$ mit den besonderen Werte

$$\varphi\left(\pm \frac{2}{3}\pi\right) = \begin{pmatrix} 0\\0 \end{pmatrix}, \quad \varphi(0) = \begin{pmatrix} 3\\0 \end{pmatrix}$$

Achtung: $\binom{1}{0}$ gehört <u>nicht</u> zur Kurve. φ ist regulär (ÜA)

- 4) $\varphi \colon (-1,1) \to \mathbb{R}^2$, $\varphi(t) = (t^3,\ t^2)^\mathsf{T}$ ist nicht regulär, da $\varphi'(0) = 0$.
- lacktriangle Beispiel 29.2 (Parametrisierung von Graphen)

Sei $f \in C^q(V, \mathbb{R}^{n-d}), V \subset \mathbb{R}^d$ offen.

Betrachte $\varphi \colon V \to \mathbb{R}^n \text{ mit } \varphi(x) := (x, f(x))$. Offenbar ist $\varphi \in C^q(V, \mathbb{R}^n) \text{ und } \varphi'(x) = (\mathrm{id}_{\mathbb{R}^d}, f'(x)) \in \mathbb{R}^{n \times d}$

 $\Rightarrow \varphi$ stets regulär.

29.1. Relativtopologie auf Teilmengen $M \subset \mathbb{R}^n$

Definition

 $U \subset M$ heißt offen bezüglich M genau dann wenn $\exists \tilde{U} \subset \mathbb{R}^n$ offen mit $U = \tilde{U} \cap M$.

 $U \subset M$ heißt Umgebung von $u \in M$ bezüglich M, falls $\exists U_0 \subset M$ offen bezüglich M mit $u \in U_0 \subset U$.

29.2. Mannigfaltigkeiten

Definition

 $M \subset \mathbb{R}^n$ heißt <u>d</u>-dimensionale C^q -Mannigfaltigkeit $(q \ge 1)$ falls $\forall u \in M$ existiert eine Umgebung U von u bezüglich M und $\varphi \colon V \subset \mathbb{R}^d \to \mathbb{R}^n$, V offen mit φ reguläre C^q -Parametrisierung und φ ist Homöomorphismus und $\varphi(V) = U$.

M heißt auch \mathbb{C}^q -Untermannigfaltigkeit. Verwende Mannigfaltigkeit statt \mathbb{C}^1 -Mannigfaltigkeit

Definition

 φ^{-1} bzw. (φ^{-1}, U) heißt Karte von M um $u \in M$. φ ist das zugehörige Kartengebiet , φ zugehörige Parameterisierung , V zugehöriger Parameterbereich .

Eine Menge $\{\varphi_{\alpha}^{-1} \mid \alpha \in A\}$ heißt Atlas von M, falls die zugehörigen Kartengebiete U_{α} die Mannigfaltigkeit überdecken (d.h. $\bigcup_{\alpha \in A} U_{\alpha} \supset M$).

Definition

Eine reguläre Parametrisierung $\varphi \colon V \subset \mathbb{R}^d \to U \subset \mathbb{R}^n$ heißt <u>Einbettung</u>, falls sie ein Homöomorphismus ist.

<u>Vereinbarung:</u> Parametrisierungen in Verbindung mit Mannigfaltigkeiten sind <u>immer</u> Homöomorphismen (also Einbettungen).

■ Beispiel 29.3

- 1) Der Kreis aus Beispiel 29.1 ist eine eindimensionale C^{∞} -Mannigfaltigkeit (d.h. C^q -Mannigfaltigkeit $\forall q \in \mathbb{N}_{>1}$, obwohl mehrfach durchlaufen). Ein Atlas benötigt mindestens zwei Karten.
- 2) Kurven aus Beispiel 29.1 3), 4) sind keine Mannigfaltigkeiten
- 3) $M \subset \mathbb{R}^n$ offen ist n-dimensionale C^{∞} -Mannigfaltigkeit, {id} ist der zugehörige Atlas.

■ Beispiel 29.4

M := graph f aus Beispiel 29.2.

Offenbar ist $\varphi \colon V \subset \mathbb{R}^d \to M \subset \mathbb{R}^n$ Homö
omorphismus und reguläre C^q -Parametrisierung $\Rightarrow M$ ist d-dimensionale C^q -Mannigfaltigkeit.

■ Beispiel 29.5

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}^{n-d}$, D offen, $f \in C^q$ $(q \ge 1)$, rang $f'(x) = n - d \ \forall u \in D$. Definiere

$$M := \{ u \in D \mid f(u) = 0 \} \tag{*}$$

Fixiere $\tilde{u} = (\tilde{x}, \tilde{y}) \in M$, wobei $\tilde{u} = (x_1, \dots, x_d, y_1, \dots, y_{n-d}) \in \mathbb{R}^n$.

 $\xrightarrow{\text{implizite}} \exists \text{ Umgebung } V \subset \mathbb{R}^d \text{ von } \tilde{x}, \text{ Umgebung } W \subset \mathbb{R}^{n-d} \text{ von } \tilde{y} \text{ und } \psi \in C^q(V, W) \text{ mit } (x, \psi(x)) \in M, \psi \colon V \to W$

- $\Rightarrow \varphi \colon V \subset \mathbb{R}^d \to \mathbb{R}^n$ mit $\varphi(x) := (x, \psi(x))$ ist reguläre C^q -Parametrisierung, Homöomorphismus und $\varphi(V)$ ist Umgebung von $\tilde{u} \in M$ bezüglich M
- $\Rightarrow M$ ist d-dimensionale C^q -Mannigfaltigkeit

Bemerkung: M = graph f und $M = \{f = 0\}$ sind grundlegende Konstruktionen von Mannigfaltigkeiten. Jede Mannigfaltigkeit hat – lokal – diese Eigenschaft.

Satz 29.6 (lokale Darstellung einer Mannigfaltigkeit als Graph)

Es gilt

 $M\subset\mathbb{R}^n$ ist d-dimensionale \Leftrightarrow $\forall u\in M$ \exists Umgebung U von u bezüglich $M,W\subset\mathbb{R}^d$ offen, $f\in C^q$ -Mannigfaltigkeit $f\in C^q(W,\mathbb{R}^{n-d})$ und Permutation Π von Koordinaten in \mathbb{R}^n , sodass $\psi(W)=U \text{ und } \psi(u)=\Pi(w,f(w)) \ \forall w\in W$

 $\psi(W) = U$ and $\psi(u) = \Pi(w, f(w)) \ \forall w \in W$ (d.h. U ist Graph von f).

Somit: M ist C^q -Mannigfaltigkeit genau dann wenn M lokal Graph einer C^{∞} -Funktion ist.

Beweis.

- (\Rightarrow) Klar nach z.B. Beispiel 29.2
- (\Leftarrow) Sei M Mannigfaltigkeit. Fixiere $\tilde{u} \in M$. Sei $\varphi \colon \tilde{V} \subset \mathbb{R}^d \to \tilde{U} \subset \mathbb{R}^n$ zugehörige C^q -Parametrisierung von $\tilde{u} = \varphi(\tilde{x})$.

 $\varphi'(x)$ ist regulär $\Rightarrow \varphi_I'(\tilde{x}) \in \mathbb{R}^{d \times d}$ regulär für die Zerlegung von φ in

$$\varphi(x) = \Pi \begin{pmatrix} \varphi_{\mathrm{I}}(x) \\ \varphi_{\mathrm{II}}(x) \end{pmatrix}, \quad \varphi_{\mathrm{I}}(x) \in \mathbb{R}^{d}, \quad \varphi_{\mathrm{II}}(x) \in \mathbb{R}^{n-d}$$

Zerlege ebenso $u = \Pi(v, w), v \in \mathbb{R}^d, w \in \mathbb{R}^{n-d}$ (d.h. auch $\tilde{u} = \Pi(\tilde{v}, \tilde{w})$)

 $\begin{array}{l} \xrightarrow{\text{Inverse}} & \text{Damit existieren} \\ & - V \subset \tilde{V} \text{ offen, mit obigem } \tilde{x} \in V, W \subset \mathbb{R}^d \text{ offen, } \tilde{\nu} \in W \\ & - \varphi_{\mathrm{I}}^{-1} \colon W \to V \text{ als Hom\"oomorphismus, } C^q\text{-Abbildung, } \varphi_{\mathrm{I}}^{-1}(\tilde{\nu}) = \tilde{x} \\ & \text{Definiere } f(v) := \varphi_{\mathrm{II}} \big(\varphi^{-1}(v) \big) \ \forall v \in W. \text{ Offenbar ist } f \in C^q(W, \mathbb{R}^{n-d}) \text{ und damit} \\ & \psi(v) := \varphi \big(\varphi_{\mathrm{I}}^{-1}(v) \big) = \Pi \left[\varphi_{\mathrm{I}} \big(\varphi_{\mathrm{I}}^{-1}(v) \big), \varphi_{\mathrm{II}} \big(\varphi_{\mathrm{I}}^{-1}(v) \big) \right] = \Pi(v, f(v)) \\ & \Rightarrow \psi(\tilde{\nu}) = \Pi(\tilde{v}, \tilde{w}) = \tilde{u} \text{ und } \psi(W) = \varphi(V) \subset M \\ & \xrightarrow{\varphi \text{ Hom\"oomorphismus}} \varphi(V) \text{ ist offen in } M \end{array}$

 $\Rightarrow U := \psi(W)$ offen bezüglich M

 $\Rightarrow U$ ist Umgebung von \tilde{u} bezüglich M

Da \tilde{u} beliebig war, folgt die Behauptung.

Satz 29.7 (Charakterisierung von Mannigfaltigkeiten über umgebenden Raum) Es gilt:

 $M \subset \mathbb{R}^n$ ist d-dimensionale Man- $\Leftrightarrow \forall u \in M \exists$ Umgebung \tilde{U} von u bezüglich dem \mathbb{R}^n , $\tilde{V} \subset \mathbb{R}^n$ nigfaltigkeit offen sowie

 $\tilde{\psi} \colon \tilde{U} \to \tilde{V}$ mit $\tilde{\psi}$ ist C^q -Diffeomorphismus und

$$\tilde{\psi}(\tilde{U}\cap M) = \tilde{V}\cap(\underbrace{\mathbb{R}^d\times\{0\}}_{\in\mathbb{R}^n})$$

<u>Bemerkung:</u> Die Charakterisierung von Mannigfaltigkeiten benutzt den umgebenden Raum und wird häufig als Definition für Mannigfaltigkeiten angegeben.

Beweis.

- (\Leftarrow) $\tilde{\psi}$ eingeschränkt auf $\tilde{U} \cap M$ liefert Karten \Rightarrow Behauptung
- (⇒) Fixiere $\tilde{u} \in M$. Wähle $U \subset M$, $W \subset \mathbb{R}^d$ sowie $f \in C^q(W, \mathbb{R}^{n-d})$ gemäß Satz 29.6 und sei oBdA $\Pi = \mathrm{id}$. Zerlege nach dem Schema $u = (v, w) \in \mathbb{R}^d \times \mathbb{R}^{n-d}$ obiges $\tilde{u} = (\tilde{v}, f(\tilde{v}))$.

Definiere $\hat{U}:=W\times\mathbb{R}^{n-d}=:\hat{V}$ und $\tilde{\varphi}\colon\hat{V}\to\hat{U}$ mit $\tilde{\varphi}(v,w):=(v,f(v)+w)$

$$\Rightarrow \tilde{\varphi} \in C^q, \, \tilde{\varphi}'(\tilde{v},0) = \begin{pmatrix} \mathrm{id}_d & 0 \\ f'(v) & \mathrm{id}_{n-d} \end{pmatrix} \, \mathrm{ist} \, \mathrm{regul\ddot{a}r}$$

Folgerung 29.8

Sei $M\subset\mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit und $\varphi\colon V\subset\mathbb{R}^d\to U\subset M$ eine Parametrisierung von U

 $\Rightarrow \exists \tilde{U}, \ \tilde{V} \subset \mathbb{R}^n \text{ offen und } \tilde{\varphi} \colon \tilde{V} \to \tilde{U} \text{ mit } U \subset \tilde{U} \text{ und } V \times \{0\} \subset \tilde{V} \text{ sowie } \tilde{\varphi} \text{ ist } C^q\text{-} Diffeomorphismus mit } \tilde{\varphi}(x,0) = \varphi(x) \ \forall x \in V.$

Beweis. Folgt aus den Beweisen von Satz 29.6 und Satz 29.7.

Satz 29.9 (lokale Darstellung von Mannigfaltigkeiten als Niveaumenge)

Es gilt

 $M \subset \mathbb{R}^n$ ist d-dimensionale $\Leftrightarrow \forall u \in M \exists \text{ Umgebung } \tilde{U} \text{ von } u \text{ bezüglich dem } \mathbb{R}^n \text{ und } f \in M$ annigfaltigkeit $C^q(\tilde{U}, \mathbb{R}^{n-d})$ mit rang f'(u) = n - d und $\tilde{U} \cap M = \{\tilde{u} \in \tilde{U} \mid f(\tilde{u}) = 0\}.$

Somit: M ist C^q -Mannigfaltigkeit genau dann wenn M lokal Niveaumenge einer C^q -Funktion ist.

Definition

 $c \in \mathbb{R}^{n-d}$ heißt regulärer Wert von $f \in C^q(\tilde{U}, \mathbb{R}^{n-d})$, $\tilde{U} \subset \mathbb{R}^n$ offen, falls rang $f'(u) = n - d \ \forall u \in \tilde{U}$ mit f(u) = c.

Folglich ist $M = \{u \in \tilde{U} \mid f(u) = c\}$ d-dimensionale Mannigfaltigkeit falls c regulärer Wert von f ist.

П

Beweis.

- (\Leftarrow) Gemäß Beispiel 29.5 erhält man eine lokale Parametrisierung \Rightarrow Behauptung
- (\Rightarrow) Fixiere $\tilde{u} \in M$. Wähle $\tilde{U}, \tilde{V} \subset \mathbb{R}^n, \tilde{\psi} \colon \tilde{U} \to \tilde{V}$ gemäß Satz 29.7.

Sei
$$f := (\tilde{\psi}_{d+1}, \dots, \tilde{\psi}_n)$$
. Offenbar ist $f \in C^q(\tilde{U}, \mathbb{R}^{n-d})$.

Mit $\tilde{\varphi}$ aus Satz 29.7 folgt, dass $\tilde{\psi}'(\tilde{u}) = \varphi'(\tilde{v},0)^{-1}$ regulär ist

- $\Rightarrow f'(u)$ hat vollen Rang, d.h. rang f'(u) = n d
- \Rightarrow nach Konstruktion ist $\{\tilde{u} \in \tilde{U} \mid f(\tilde{u}) = 0\} = \tilde{U} \cap M$
- \Rightarrow Behauptung.

<u>Kartenwechsel:</u> Offenbar sind die Karten / der Atlas für Mannigfaltigkeiten nicht eindeutig, daher ist gelegentlich ein Wechsel der Karten sinnvoll.

Lemma 29.10 (Kartenwechsel)

Sei $M \subset \mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit und φ_1^{-1} , φ_2^{-1} Karten mit Kartengebieten $U_1 \cap U_2 \neq \emptyset$.

$$\Rightarrow \varphi_2^{-1} \circ \varphi_1 \colon \varphi_1^{-1}(U_1 \cap U_2) \to \varphi_2^{-1}(U_1 \cap U_2)$$
 ist C^q -Diffeomorphismus.

Beweis. Ersetzte φ_1 und φ_2 mit $\tilde{\varphi_1}$, $\tilde{\varphi_2}$ gemäß Folgerung 29.8. Einschränkung von $\varphi_2^{-1} \circ \varphi_1$ liefert die Behauptung.

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Ein Vektor $v \in \mathbb{R}^n$ heißt <u>Tangentialvektor</u> von $u \in M$, falls eine stetig differentierbare Kurve $\gamma \colon (-\delta, \delta) \to M$ $(\delta > 0)$ existiert mit $\gamma(0) = u$ und $\gamma'(0) = v$.

Die Menge aller Tangentialvektoren heißt Tangentialraum .

Satz 29.11

Sei $M \subset \mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit, $u \in M$, $\varphi \colon V \to M$ zugehörige Parametrisierung von u.

 $\Rightarrow T_u M$ ist d-dimensionale (\mathbb{R} -) Vektorraum und

$$T_u M = \underbrace{\varphi'(x) \cdot (\mathbb{R}^d)}_{\in L(\mathbb{R}^d, \mathbb{R}^n)}$$
(3)

mit $x := \varphi^{-1}(u)$, wobei $T_u M$ unabhängig von spezieller Parametrisierung φ ist.

Beweis. Sei $\gamma \colon (-\delta, \delta) \to M$ C^1 -Kurve mit $\gamma(0) = u$ $\Rightarrow g := \varphi^{-1} \circ \gamma$ ist C^1 -Kurve $g \colon (-\delta, \delta) \to \mathbb{R}^d$ mit g(0) = x und

$$\gamma'(0) = \varphi'(x) \cdot g'(0), \quad \varphi'(x) \text{ ist regulär.}$$
 (*)

Offenbar liefert jede C^1 -Kurve g im \mathbb{R}^d durch x eine C^1 -Kurve γ in M mit Gleichung (\star) . Die Menge aller Tangentialvektoren g'(0) von C^1 -Kurven g im \mathbb{R}^d ist offenbar \mathbb{R}^d .

 \Rightarrow Gleichung (3) $\xrightarrow{\varphi'(x)} \underset{\text{regulär}}{\xrightarrow{\varphi'(x)}} \dim(T_u M) = d.$

Da Gleichung (*) für jede Parametrisierung gilt, ist T_uM unabhängig von φ .

Bemerkung: Man bezeichnet auch $(u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialraum und $TM := \bigcup_{u \in M} (u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialbündel.

■ Beispiel 29.12

Sei $M \subset \mathbb{R}^n$ offen $\Rightarrow M$ ist n-dimensionale Mannigfaltigkeit und $T_u M = \mathbb{R}^n \ \forall u \in M$.

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Vektoren $w \in \mathbb{R}^n$ heißen <u>Normalenvektor</u> in $u \in M$ an M, falls

$$\langle w, v \rangle = 0 \quad \forall v \in T_u M.$$

Die Menge aller Normalenvektoren $N_uM := (T_uM)^{\perp}$ heißt Normalenraum von M in u.

Satz 29.13

Sei $f \in C^1(V, \mathbb{R}^{n-d}), V \subset \mathbb{R}^n$ offen, $c \in \mathbb{R}^{n-d}$ regulärer Wert von f.

 $\Rightarrow M := \{u \in V \mid f(u) = c\}$ ist d-dimensionale Mannigfaltigkeit mit

$$T_u M = \{ v \in \mathbb{R}^n \mid f'(u) \cdot v = 0 \}$$
 (ker $f'(u)$) $\forall u \in M$

$$N_u M = \{ w \in \mathbb{R}^n \mid w = f'(u)^\mathsf{T} \cdot v, \ v \in \mathbb{R}^{n-d} \}$$
 $\forall u \in M$

d.h. die Spalten von $f'(u)^{\mathsf{T}}$ bilden eine Basis von $N_u M$.

■ Beispiel 29.14

Sei $f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \in C^1(\mathbb{R}^3, \mathbb{R}^2), \ 0 \in \mathbb{R}^2$ regulärer Wert von f.

 $\Rightarrow M:=\{u\in\mathbb{R}^3\mid f_1(u)=0=f_2(u)\}$ ist 1-dimensionale Mannigfaltigkeit.

Der Gradient $f'_i(u)^\mathsf{T}$ steht senkrecht auf $\{f_i = 0\}$.

- $\Rightarrow f_1'(u)^\mathsf{T}, f_2'(u)^\mathsf{T}$ sind Normalen zu M in u.
- $\Rightarrow f_i'(u)^\mathsf{T} \cdot v = 0, i = 1, 2$ für Tangentenvektor v.

 $Beweis.\ M$ ist d-dimensionale Mannigfaltigkeit, vgl. Satz 29.9.

Sei γ C^1 -Kurve auf M, $\gamma(0) = u$, $\gamma'(0) = v \Rightarrow f(\gamma(t)) = c \ \forall t$.

$$\Rightarrow f'(\gamma(0)) \cdot \gamma'(0) = f'(u) \cdot v = 0.$$

Wegen rang f'(u) = n - d folgt dim ker f'(u) = d

 \Rightarrow Behauptung für T_uM wegen dim $T_uM = d$.

Sei
$$w = f'(u)^{\mathsf{T}} \tilde{v}$$
 und $v \in T_u M \Rightarrow \langle w, v \rangle = \langle \tilde{v}, f(u)v \rangle = 0 \Rightarrow w \in N_u M$.
Da rang $f'(u)^{\mathsf{T}} = n - d$ und dim $N_u M = n - d$ folgt die Behauptung.

■ Beispiel 29.15

Sei $M:=O(n)=\{A\in\mathbb{R}^{n\times n}\mid A^\mathsf{T}A=\mathrm{id}\}$ die orthogonale Gruppe. Dann ist M eine $\frac{n(n-1)}{2}$ -dimensionale Mannigfaltigkeit von $\mathbb{R}^{n\times n}$ mit

$$T_{\mathrm{id}}M = \{B \in \mathbb{R}^{n \times n} \mid B + B^{\mathsf{T}} = 0\}, \quad \text{(schiefsymmetrische Matrizen)}$$

Beweis.

- Betrachte $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}_{\text{sym}}$ mit $f(A) = A^{\mathsf{T}}A$ $\Rightarrow f$ ist stetig differenzierbar mit $f'(A)B = A^{\mathsf{T}}B + B^{\mathsf{T}}A \in \mathbb{R}^{n \times n}_{\text{sym}} \ \forall B \in \mathbb{R}^{n \times n}$.
- id ist ein regulärer Wert von f, denn sei $f(A) = \operatorname{id}, S \in \mathbb{R}^{n \times n}_{\operatorname{sym}}$ $\Rightarrow f'(A)B = S$ hat die Lösung $B = \frac{1}{2}AS$, denn $\frac{1}{2}A^{\mathsf{T}}AS + \frac{1}{2}SA^{\mathsf{T}}A = S$, d.h. f'(A) hat vollen Rang $\xrightarrow{\operatorname{Satz}\ 29.9} M$ ist d-dimensionale Mannigfaltigkeit mit $d = \dim \mathbb{R}^{n \times n} - \dim \mathbb{R}^{n \times n}_{\operatorname{sym}} = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.
- $T_{id}M = \{B \in \mathbb{R}^{n \times n} \mid id^T B + B^T id = 0\}$

Bemerkung:

- $A \in O(n) \Rightarrow A$ erhält das Skalarprodukt: $\langle Ax, Ay \rangle = \langle A^{\mathsf{T}}Ax, y \rangle = \langle x, y \rangle$.
- auch $A^{\mathsf{T}} \in O(n)$, somit stehts $A^{-1} = A^{\mathsf{T}}$.

Definition

(n-1)-dimensionale Mannigfaltigkeit heißt Hyperfläche

Die Abbildung $\nu: M \to \mathbb{R}^n$, $M \subset \mathbb{R}$ Mannigfaltigkeit, heißt <u>Einheitsnormalenfeld</u>, falls $\nu(n) \in N_u M$, $\|\nu(u)\| = 1 \ \forall u \in M \ \text{und} \ \nu$ stetig auf M.

Lemma 29.16

Sei $M \subset \mathbb{R}^n$ zusammenhängende Hyperfläche

 \Rightarrow Es existiert kein Einheitsnormalenfeld oder genau 2.

Beweis.

- a) Falls ν Einheitsnormalenfeld auf M, dann auch $-\nu$.
- b) Seien ν , $\tilde{\nu}$ Einheitsnormalenfelder auf M

$$\Rightarrow s(u) := \langle \nu(u), \tilde{\nu}(\nu) \rangle = \pm 1.$$

Mit dim $N_u M = 1$, ν stetig auf M und M zusammenhängend

$$\Rightarrow s(u) = 1 \text{ oder } s(u) = -1 \ \forall u \in M$$

$$\Rightarrow \tilde{\nu} = \nu$$
oder $\nu = -\tilde{\nu}$

■ Beispiel 29.17

Das Möbius-Band: klebe die Enden eines 2d-Streifens verdreht zusammen

 \Rightarrow besitzt kein Einheitsnormalenfeld.

Definition

Eine Hyperfläche $M \subset \mathbb{R}^n$ heißt <u>orientierbar</u>, falls ein Einheitsnormalenfeld $\nu \colon M \to \mathbb{R}^n$ existiert. ν heißt Orientierung, (M, ν) orientierte Mannigfaltigkeit.

■ Beispiel 29.18

Konstruiere ein Einheitsnormalenfeld für Hyperfläche $M = \{f = 0\}.$

Sei $f \in C^1(V, \mathbb{R}), V \subset \mathbb{R}^n$, 0 regulärer Wert von f. Dann ist

$$M := \{ u \in V \mid f(u) = 0 \}$$

eine Hyperfläche.

Offenbar ist $\nu(u) = \frac{f'(u)}{|f'(u)|}$ Einheitsnormalenfeld auf M, denn der Gradient f'(u) steht senkrecht auf Niveaumengen von f.

Definition

Seien $a_1, \ldots, a_{n-1} \in \mathbb{R}^n$, $A = (a_1 | \ldots | a_{n-1}) \in \mathbb{R}^{n \times (n-1)}$ und $A_k \in \mathbb{R}^{(n-1) \times (n-1)}$ sei Matrix A ohne k-te Zeile. Dann heißt

$$a_1 \wedge \ldots \wedge a_{n-1} := \alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{R}^n$$

mit $\alpha_k := (-1)^{k-1} \det A_k$ <u>äußeres Produkt</u> von a_1, \ldots, a_{n-1} .

(später: $\alpha \perp \alpha_j \ \forall j, \ |\alpha| = \text{Volumen des von } \alpha_1, \ldots, \alpha_1 n - 1 \text{ aufgespannten Parallelisotops.}$)

■ Beispiel 29.19

Für n = 3 ist $a_1 \wedge a_2 = a_1 \times a_2$ das Kreuzprodukt.

Lemma 29.20

Seien $a_1, \ldots, a_{n-1} \in \mathbb{R}^n$.

$$\Rightarrow \langle b, a_1 \wedge \ldots \wedge a_{n-1} \rangle = \det(b \mid a_1 \mid \ldots \mid a_{n-1}) \quad \forall b \in \mathbb{R}^n$$

$$a_1 \wedge \ldots \wedge a_{n-1} \perp a_j \quad \forall j \in 1, \ldots, n-1$$

$$(4)$$

$$a_1 \wedge \ldots \wedge a_{n-1} = \begin{cases} = 0 & \text{falls } a_j \text{ linear abhängig,} \\ \neq 0, & \text{falls } a_j \text{ linear unabhängig} \end{cases}$$

Beweis. Für Gleichung (4) entwickle $\det(\dots)$ nach erster Spalte b. $b = a_j$ in Gleichung (4) liefert zweite Behauptung, (4) liefert auch 3. Behauptung.

■ Beispiel 29.21

Konstruiere ein Einheitsnormalenfeld mittels Parametrisierung φ . Sei $M = \varphi(V)$ Hyperfläche mit zugehöriger Parametrisierung $\varphi \colon V \subset \mathbb{R}^{n-1} \to \mathbb{R}^n$, V offen.

$$\Leftrightarrow \frac{\partial}{\partial x_i}\varphi(x) = \varphi'(x)e_j \in T_{\varphi(x)}M \ \forall x \in V, j = 1, \dots, n-1. \ (\text{beachte: } \varphi_{x_j}(x) \in \mathbb{R}^n)$$

$$\Rightarrow N(x) := \varphi_{x_j}(x) \wedge \ldots \wedge \varphi_{x_{n-1}}(x) \in N_{\varphi(x)}M \ \forall x \in V$$

$$\Rightarrow \nu(x) := \frac{N(x)}{|N(x)|}$$
ist Einheitsnormalenfeld auf M (beachte: φ' regulär $\forall x)$

30. Integration auf Kartengebieten

Frage: Oberflächeninhalt bzw. d-dimensionaler Inhalt auf Mannigfaltigkeit M?

Idee: Approximiere durch stückweise "ebene" Mannigfaltigkeit.

a) (d=2) Verbinde Punkte auf M zu Dreiecken (einbeschriebene Approximation).

Fläche $M=\sup\sum_{\triangle}$ Dreiecksflächen

 \to funktioniert nur für Kurven und nicht für d>1. Z.B. Zylinderoberfläche in $M\subset\mathbb{R}^3\Rightarrow$ Fläche $M=\infty$, siehe dazu auch Hildebrandt: Analysis 2, Kapitel 6.1 (Schwarz'scher Stiefel)

b) (d=2) Nehme tangentiale Parallelogramme (äußere Approximation).

Fläche
$$M = \lim_{\text{Feinheit} \to \infty} \sum_{j} \text{Fläche}(\varphi'(x_j)(Q_j)).$$

Hinweis: Eine allgemeine Theorie für den d-dimensionalen Inhalt liefert das Hausdorff-Maß \mathcal{H}^d .

Definition

Seien $a_1, \ldots, a_d \in \mathbb{R}^n \ (d \leq n)$. Dann heißt die Menge

$$P(a_1, \dots, a_d) := \left\{ \sum_{j=1}^n t_j a_j \mid t_j \in [0, 1], \ j = 1, \dots, d \right\}$$

das von a_1, \ldots, a_d aufgespannte Parallelotop (auch d-Spat).

Wiederhole: Lebesgue-Maß \mathcal{L}^n in \mathbb{R}^n .

Satz 30.1

Seien $a_1, \ldots, a_n \in \mathbb{R}^n$ und das Volumen $v(a_1, \ldots, a_n) := \mathcal{L}^n(p(a_1, \ldots, a_n))$.

- \Rightarrow i) $v(a_1, \dots, \lambda a_n, \dots, a_n) = |\lambda| v(a_1, \dots, a_n) \ \forall \lambda \in \mathbb{R}$
 - ii) $v(a_1,\ldots,a_k+a_j,\ldots,a_n)=v(a_1,\ldots,a_n)$ falls $k\neq j$ (Prinzip des Cavalieri)
 - iii) $v(a_1, \ldots, a_n) = 1$ falls $\{a_1, \ldots, a_n\}$ ein Orthonormalensystem im \mathbb{R}^n bilden
 - iv) $v(a_1, \ldots, a_n) = |\det A|$ wenn $A = (a_1 \mid \ldots \mid a_n) \in \mathbb{R}^{n \times n}$, d.h. die Determinante liefert das Volumen

beachte: Eigenschaften i) – iii) implizieren bereits iv) (argumentiere wie bei det)

Beweis.

- a) a_1, \ldots, a_n linear abhängig: $\Rightarrow P(a_1, \ldots, a_n)$ ist flach $\Rightarrow v(a_1, \ldots, a_n) = 0$ $\Rightarrow iv) \Rightarrow i)$, ii) richtig
- b) a_1, \ldots, a_n linear unabhängig: Sei $\{e_1, \ldots, e_n\}$ das Standard-Orthonormalensystem, damit ist iii) wahr nach der Defintion des Lebegue-Maßes.

Sei
$$U := P(e_1, \dots, e_n), V := P(a_1, \dots, a_n)$$

 \Rightarrow A: int $U \to \text{int } V$ ist Diffeomorphismus. Offenbar ist $A'(y) = A \ \forall y$.

$$\xrightarrow[\text{satz}]{\text{Trafo-}} \mathcal{L}(V) = \int_{V} dx = \int_{U} |\det A| \, dy = |\det A| \underbrace{\mathcal{L}(U)}_{=1} = |\det A|$$

$$\Rightarrow$$
 iv) \Rightarrow i), ii), iii) nach Eigenschaften der Determinante

Ziel: d-dimensionaler Inhalt $v_d(P(a_1, \ldots, a_n))$

<u>Idee</u>: Betrachte $P(a_1, ..., a_d)$ als Teilmenge eines d-dimensionalen Vektorraumes X und nehme d-dimensionales Lebesgue-Maß in X.

Somit sollte $v_d : \underbrace{\mathbb{R}^n \times \ldots \times \mathbb{R}^n}_{d\text{-tach}} \to \mathbb{R}$ folgende Eigenschaften innehaben:

- (V1) $v_d(a_1,\ldots,\lambda a_k,\ldots,a_d) = |\lambda|v_d(a_1,\ldots,a_d)$
- (V2) $v_d(a_1, ..., a_k + a_j, ..., a_d) = v_d(a_1, ..., a_d) \ \forall k \neq j$
- (V3) $v_d(a_1, \ldots, a_d) = 1$ falls a_1, \ldots, a_n orthonormal

Satz 30.2

 v_d ist eindeutig bestimmt und es gilt

$$v_d(a_1, ..., a_d) = \sqrt{\det(A^{\mathsf{T}}A)} \text{ mit } A = (a_1 \mid ... \mid a_d)$$
 (1)

▶ Bemerkung

- 1) Für d = n liefert (1) iv) in beweis 11
- 2) $A^{\mathsf{T}}A$ ist symmetrisch und positiv definit und somit auch $\det(A^{\mathsf{T}}A) \geq 0$
- 3) $v_d(a_1, \ldots, a_d) = 0 \Leftrightarrow a_1, \ldots, a_d$ linear abhängig

Beweis. Sei $\alpha_1 ij = \langle \alpha_i, \alpha_j \rangle$, dann ist

$$A^{\mathsf{T}}A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1d} \\ \vdots & & \vdots \\ \alpha_{d1} & \dots & \alpha_{dd} \end{pmatrix}.$$

Die Eigenschaften der Determinante implizieren, dass die rechte Seite in (1) (V1) bis (V3) erfüllt. Wie bei der Determinante zeigt man auch, dass (V1) bis (V3) v_d eindeutig bestimmen (Zurückführen von v_d auf eine Orthonormalbasis mittels i), ii) liefert eindeutigen Wert).

■ Beispiel 30.3

Sei
$$d = n - 1$$
. Seien $a_1, \ldots, a_{n-1} \in \mathbb{R}^n$, $a := a_1 \wedge \ldots \wedge a_{n-1}$
 $\Rightarrow v_{n-1}(a_1, \ldots, a_d) = |a|_2$ (2)

(d.h. euklidische Norm des äußeren Produktes liefert das Volumen)

Denn wegen $\langle a, a_i \rangle = 0$ und A wie in (1) folgt

$$\left(\frac{a^{\mathsf{T}}}{A^{\mathsf{T}}}\right) \cdot (a \mid A) = \begin{pmatrix} \langle a, a \rangle & 0\\ 0 & A^{\mathsf{T}} A \end{pmatrix}$$

$$\Rightarrow |a|^2 \cdot \det(A^{\mathsf{T}}A) = [\det(a \mid A)]^2 \stackrel{29.9}{=} |a|^4$$

$$\Rightarrow \det(A^{\mathsf{T}}A) = |a|^2$$

Frage: Für Mannigfaltigkeit M: Ist für die Transformation $v_d(\text{Quader}Q) \xrightarrow{\varphi'(A)} v_d(\text{Paralleltotop}P)$ für Quader $Q = P(b_1, \dots, b_d) \subset \mathbb{R}^d$ das $P(a_1, \dots, a_d) \subset T_u(M) \subset \mathbb{R}^n$ das zugehörige Parallelotop falls $a_j = \varphi'(x)b_j$ $j = 1, \dots, d$?

Satz 30.4

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit, φ Parametrisierung mit $\varphi(x) = u \ \forall u \in M$ und ist $Q = P(a_1, \dots, a_d) \subset \mathbb{R}^d$ Quader und $a_j := \varphi'(x) \cdot b_j$

$$\Rightarrow v_d(a_1, \dots, a_d) = \sqrt{\det(\varphi'(x)^\mathsf{T} \varphi'(x)) \cdot v_d(b_1, \dots, b_d)}$$
(3)

 $\varphi'(x)^{\mathsf{T}}\varphi'(x)$ heißt <u>Maßtensor</u> von φ in x und $g^{\varphi}(x) = \det(\varphi'(x)^{\mathsf{T}}\varphi'(x))$ heißt <u>Gram'sche Determinante</u> von φ in x.

Beweis. Sei
$$B = (b_1 \mid \dots \mid b_d), A = (a_1 \mid \dots \mid a_d)$$

$$\stackrel{(1)}{\Longrightarrow} v_d(a_1, \dots, a_d) = \sqrt{\det(A^{\mathsf{T}}A)} = \sqrt{\det\left((\varphi'(x)B)^{\mathsf{T}}(\varphi'(x)B\right)} = \sqrt{\det(\varphi'(x)^{\mathsf{T}}\varphi'(x)} \cdot \sqrt{\det(B^{\mathsf{T}}B)}$$

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit, $\varphi \colon V \to U$ lokale Parametrisierung, $f \colon U \to \mathbb{R}$ eine Funktion auf dem Kartengebiet U. Motiviert durch das Riemann-Integral

$$\sum f(U_i) \cdot v_d(P_i) = \sum f(\varphi(x_i)) \cdot \sqrt{g^{\varphi}(x)} \cdot v_d(Q_i)$$

setzt man

$$\int_{U} f \, \mathrm{d}a := \int_{V} f(\varphi(x)) \cdot \sqrt{g^{\varphi}(x)} \, \mathrm{d}x \tag{4}$$

als Integral von f über dem Kartengebiet U falls dieses existiert. f heißt dann integrierbar auf U.

▶ Bemerkung

- Die rechte Seite in (4) ist Lebesgue-Integral im \mathbb{R}^d .
- Damit definiert (4) sinnvoll ist, sollte die rechte Seite unabhängig von φ sein.
- Mittels des Hausdorff-Maßes \mathcal{H}^d kann $\int_U f da$ vollkommen analog zum Lebesgue-Integral definiert werden.
- Für n-dimensionale Mannigfaltigkeit $M \subset \mathbb{R}^n$: $\int_U f da$ = Lebesgue-Integral $\int_U f dx$.

Satz 30.5

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit, $U \subset M$ ein Kartengebiet und $f \colon U \to \mathbb{R}$ sowie $\varphi \colon V_i \to U \ (i=1,2)$ seien zugehörige Parametrisierungen

$$\Rightarrow \int_{V_1} f(\varphi_1(x)) \sqrt{g^{\varphi_1}(x)} \, \mathrm{d}x = \int_{V_2} f(\varphi_2(x)) \sqrt{g^{\varphi_2}(x)} \, \mathrm{d}x$$

 \Rightarrow Somit: (4) unabhängig von φ :

$$f(\cdot)$$
 integrierbar auf $U \Leftrightarrow f(\varphi(\cdot))\sqrt{g^{\varphi}(x)}$ integrierbar auf V (5) für eine Parametrisierung $\varphi \colon U \to V$

$$\begin{array}{l} \textit{Beweis.} \;\; \psi \colon \varphi_1^{-1} \circ \varphi_2 \colon V_2 \to V_1 \;\; \text{ist Diffeomorphismus nach Lemma 29.10} \\ \xrightarrow[\text{satz}]{\text{Trafo-}} \;\; \int_{V_1} f(\varphi_1(x)) \sqrt{g^{\varphi_1}(x)} \; \mathrm{d}x = \int_{V_2} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y))\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')} = \sqrt{\det((\varphi_1'\psi')^\mathsf{T}(\varphi_1\psi))}} \mathrm{d}y \\ &= \sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')} \end{aligned}$$

Wegen
$$\varphi_2(y) = \varphi_1(\psi(y)) \xrightarrow{\text{Ketten}} \varphi_2'(y) = \varphi_1'(\psi(y)) \cdot \psi'(y)$$

Definition

Falls f=1 integrierbar über einem Kartengebiet $U\subset M$ ist, dann heißt

$$v_d(U) = \int_U 1 da \tag{6}$$

der d-dimensionale Inhalt von U. $\sqrt{g^{\varphi}(x)}$ heißt Flächenelement von U bezüglich U.

▶ Bemerkung

- 1) $v_d(U) = \mathcal{H}^d(U)$, d.h. der d-dimensionale Inhalt stimmt für Kartengebiete mit dem Hausdorff-Maß überein.
- 2) Nach (4): $v_d(U) = 0 \Leftrightarrow \mathcal{L}^d \varphi^{-1}(U) = 0$

■ Beispiel 30.6

Sei $M:=\{u=(u_1,u_2,u_3)\in\mathbb{R}^3\mid |u|=r,u_1>0\}$ (Halbsphäre mit Radius r). Berechne $\int_M f\mathrm{d}a$.

Parametrisierung von M (Kugelkoordinaten):

$$\varphi(x_1, x_2) = r \cdot \begin{pmatrix} \cos x_2 \cdot \cos x_1 \\ \cos x_2 \cdot \sin x_1 \\ \sin x_2 \end{pmatrix}$$

für
$$(x_1, x_2) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = V.$$

Offenbar ist $\varphi \colon V \to M \in C^1$, regulär und Homöomorphismus.

 $\Rightarrow \varphi$ ist Parametrisierung von M, d.h. M ist Mannigfaltigkeit und M auch Kartengebiet.

$$\varphi'(x) = r \cdot \begin{pmatrix} -\cos x_2 \cdot \sin x_1 & -\sin x_2 \cdot \cos x_1 \\ \cos x_2 \cdot \cos x_1 & -\sin x_2 \cdot \sin x_1 \\ 0 & \cos x_2 \end{pmatrix}$$
$$\varphi'(x)^\mathsf{T} \cdot \varphi(x) = r^2 \begin{pmatrix} \cos^2 x_2 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sqrt{g^{\varphi}(x)} = \cos^2 x_2$$

Damit lässt sich dann obiges Integral berechnen:

$$\int_{M} f da = r^{2} \int_{V} f(\varphi(x)) \cdot \cos^{2} x_{2} dx = r^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x_{2} \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\varphi(x_{1})) dx_{1} dx_{2}$$

z.B. mit $f(u) = u_1^2 + u_2^2$:

$$\int_{M} u_{1}^{2} + u_{2}^{2} da = r^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3} x_{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx_{1} dx_{2} = \pi r^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3} x_{2} dx_{2} = \left[\sin x_{2} - \frac{1}{3} \sin^{3} x_{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \pi r^{4} \left(1 - \frac{1}{3} \right) \cdot 2 = \frac{4}{3} \pi r^{4},$$

z.B. für f = 1:

$$v_d(U) = \int_M \mathrm{d}a = \pi r^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x_2 = \pi r^2 [\sin x_2]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2\pi r^2 \quad \Rightarrow \quad \text{Kugeloberfläche im } \mathbb{R}^3 \colon \ 4\pi r^2$$

Satz 30.7 (Integration über n-1-dimensionale Graphen)

Sei $g \colon V \subset \mathbb{R}^{n-1} \to \mathbb{R}$ stetig differenzierbar, V offen, $\Gamma = \{(x, g(x)) \in \mathbb{R}^n \mid x \in V\}.$

$$\Rightarrow$$
 für $f: \Gamma \to \mathbb{R}$ gilt: $\int_{\Gamma} f \, da = \int_{V} f(x, g(x)) \sqrt{1 + (g'(x))^2} \, dx$, falls die rechte Seite ex. (7)

Beweis. Γ ist (n-1)-dimensionale Mannigfaltigkeit und auch Kartengebiet bezüglich der Parametrisierung $\varphi \colon V \to \Gamma$ mit $\varphi(x) = (x, g(x))$.

Offenbar ist
$$\gamma = \sqrt{\det(\varphi'(x)^{\mathsf{T}} \cdot \varphi'(x)} \stackrel{(1)}{=} v_{n-1}(\varphi_{x_1}(x), \dots, \varphi_{x_{n-1}}(x)) \stackrel{(2)}{=} |\varphi_{x_1} \wedge \dots \wedge \varphi_{x_{n-1}}(x)|$$

Wegen
$$\varphi_{x_1}(x) \wedge \ldots \wedge \varphi_{x_{n-1}}(x) = (-1)^n {g'(x) \choose -1} \in \mathbb{R}^n$$

$$\Rightarrow \gamma = \sqrt{1 + |g'(x)|^2} \text{ (euklidische Norm)} \xrightarrow{(4)} \int_{\Gamma} f da = \int_{V} f(\varphi(x)) \cdot \sqrt{1 + |g'(x)|^2} dx$$

Flächeninhalt: von Γ ist somit

$$v_{n-1}(\Gamma) = \int_{V} \sqrt{1 + |g'(x)|^2} \, \mathrm{d}x$$
 (8)

■ Beispiel 30.8

Halbspähre $S^{n-1}_+ = \{x \in \mathbb{R}^n \mid |x| = 1, x_4 > 0\}.$

Offenbar ist S^{n-1}_+ Graph von $g(x) = \sqrt{1 - |x|^2} \ \forall x \in B_1(0)$ $\Rightarrow x + (S^{n-1}) = \int \int \frac{1}{1 + \frac{|x|^2}{2}} dx = \int \frac{1}{1 + \frac{1}{2}} dx$

$$\Rightarrow v_{n-1}(S_+^{n-1}) = \int_{B_1(0)} \sqrt{1 + \frac{|x|^2}{1 - |x|^2}} \, \mathrm{d}x = \int_{B_1(0)} \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

 $f(x) = \sqrt{\frac{1}{1-|x|^2}}$ ist rotationssymmetrisch auf $B_1(0)$, d.h. $f(x) = \tilde{f}(x)$ für $\tilde{f} : [0, \infty] \to \mathbb{R}$.

Königsberger 2:

$$\int_{B_r(0)} f(x) dx = n \cdot \kappa_n \int_0^r \tilde{f}(\gamma) \gamma^{n-1} d\gamma$$
(9)

$$\begin{array}{l}
\text{für } B_r(0) \subset \mathbb{R}^n, \, \kappa_n = \mathcal{L}^n(B_1(0)) \\
\xrightarrow[\text{statt } n]{n-1} v_{n-1}(S^{n-1}_+) = (n-1)\kappa_{n-1} \int_0^1 \frac{r^{n-2}}{\sqrt{1-r^2}} \, \mathrm{d}r = (n-1)\kappa_{n-1} \int_0^1 r^n \frac{1}{r^2 \sqrt{1-r^2}} \, \mathrm{d}r \\
\xrightarrow[\text{Int.}]{\text{part.}} v_{n-1}(S^{n-1}_+) = (n-1)\kappa_{n-1} \int_0^1 r^{n-2} \, \mathrm{d}r = (n-1)\kappa_{n-1} \int_0^1 r^n \frac{1}{r^2 \sqrt{1-r^2}} \, \mathrm{d}r \\
\xrightarrow[\text{Int.}]{\text{part.}} v_{n-1}(S^{n-1}_+) = (n-1)\kappa_{n-1} \int_0^1 r^{n-2} \, \mathrm{d}r = (n-1)\kappa_{n-1} \int_0^1 r^n \frac{1}{r^2 \sqrt{1-r^2}} \, \mathrm{d}r \\
\xrightarrow[\text{Int.}]{\text{part.}} v_{n-1}(S^{n-1}_+) = (n-1)\kappa_{n-1} \int_0^1 r^{n-2} \, \mathrm{d}r = (n-1)\kappa_{n-1} \int_0^1 r^n \frac{1}{r^2 \sqrt{1-r^2}} \, \mathrm{d}r
\end{array}$$

$$=\sum_{n=1}^{n}\kappa_{n}$$
 Sei $\omega_{n}=v_{n-1}(S_{n-1})=2v_{n-1}(S_{+}^{n-1})$ Oberfläche, dann gilt
$$\omega_{n}=n\cdot\kappa_{n}, \tag{10}$$

z.B.

n=2:
$$2\pi = 2 \cdot \pi$$

n=3: $4\pi = 3 \cdot \frac{4}{2}\pi$

<u>Hinweis:</u> $v_n(B_r(0)) = \mathcal{L}^n(B_r(0)) = r^n \kappa_n$ (verwende Trafosatz), $v_{n-1}(\partial B_r(0)) = r^{n-1} \omega_n = r^{n-1} n \kappa_n$ (Beispiel 30.8 mit $B_r(0)$ statt $B_1(0)$)

■ Beispiel 30.9 (Kurvenintegral)

Betrachte Kurve $\varphi \colon I \subset \mathbb{R} \to \mathbb{R}^n$, I offenes Intervall, sodass $C := \varphi(I)$ 1-dimensionale Mannigfaltigkeit ist (beachte: φ regulär für $\varphi'(x) \neq 0$).

Offenbar ist $\det(\varphi'(t)^{\mathsf{T}}\varphi'(t)) = |\varphi'(t)|^2$. Für $f: C \to \mathbb{R}^n$ ist (falls es existiert)

$$\int_{C} f da = \int_{a}^{b} f(\varphi(t)) |\varphi'(t)| dt.$$
(11)

Das Integral heißt Kurvenintegral von f über C. Der 1-dimensionale Inhalt

$$v_1(C) = \int_a^b |\varphi'(t)| \, \mathrm{d}t \tag{12}$$

heißt Bogenlänge der Kurve C.

Falls $|\varphi'(t)| = 1 \ \forall t \in I$ heißt φ Bogenlänge-Parametrisierung von C (denn: $v_1(\varphi(t_2 - t_1)) = t_2 - t_1$, d.h. die Parameter liefern die Bogenlänge).

Mit

$$\sigma(s) := \int_{a}^{b} |\varphi'(t)| \mathrm{d}t \tag{*}$$

ist $\psi \colon (0, v_1(C)) \to \mathbb{R}^n$ mit $\psi(I) = \varphi(\sigma^{-1}(I))$ stets die Bogenlängenparametrisierung von C. Denn: Offenbar ist $\sigma \in C^1$ und streng monoton wachsend $\Rightarrow \sigma^{-1} \in C^1$ existiert.

$$\Rightarrow |\psi'(\tau)| = |\psi'(\sigma^{-1}(\tau)) \cdot (\sigma^{-1})'(\tau)| = |\varphi'(\sigma^{-1}(\tau))| \cdot \frac{1}{|\sigma'(\sigma^{-1}(\tau))|} \stackrel{(\star)}{=} 1,$$

d.h. ohne Beschränkung der Allgemeinheit kann man die Kurve stets als Bogenlängenparametrisierung angeben.

Definition

Eine beliebige stetige Kurve $\varphi: [a,b] \to \mathbb{R}^n$, $C = \varphi([a,b])$, heißt rektifizierbar, falls

$$l(C) := \sup_{Z} \left\{ \sum_{j=1}^{k} |\varphi(t_j) - \varphi(t_{j-1})| \mid \{t_0, \dots, t_k\} \in Z \right\} < \infty,$$

wobei Z die Menge der Zerlegungen $a = t_0 < t_1 < \ldots < t_k = t_1, k \in \mathbb{N}$ ist.

Satz 30.10 (Rektifizierbare Kurven)

Sei $\varphi \colon [a,b] \to \mathbb{R}^n$ stetig differenzierbar. Dann:

- 1) φ ist rektifizierbar
- 2) $C:=\varphi([a,b])$ sei 1-dimensionale Mannigfaltigkeit mit Parametrisierung φ $\Rightarrow l(C)=v_d(C)$

Beweis.

zu 1)
$$\varphi$$
ist Lipschitz-stetig auf $[a,b]$ mit Lipschitz-Konstante $L = \max_{t \in [a,b]} |\varphi'(t)|$

$$\Rightarrow \sum_{j=1}^{k} |\varphi(t_j) - \varphi(t_{j-1})| \le L \sum_{j=1}^{k} |t_j - t_{j-1}| = L|b-a| \text{ für jede Zerlegung } \{t_0, \dots, t_k\} \in Z$$

$$\Rightarrow l(\varphi([a,b])) < L(b-a)$$

 $\Rightarrow \varphi$ rektifizierbar

zu 2) Für beliebige Zerlegung $\{t_0, \ldots, t_k\}$ gilt

$$\sum_{j=1}^{k} |\varphi(t_j) - \varphi(t_{j-1})| = \sum_{j=1}^{k} \left| \int_{t_{j-1}}^{t_j} \varphi'(t) dt \right| \le \sum_{j=1}^{k} \int_{t_{j-1}}^{t_j} |\varphi'(t)| dt = \int_a^b |\varphi'(t)| dt$$

$$\Rightarrow tl(C) \le \int_a^b |\varphi'(t)| dt = v_1(C) \tag{**}$$

Sei $l(t):=l(\varphi([a,b]))\; \forall t\in [a,b]$ und sei $h\in\mathbb{R},\, t+h\in [a,b]$

$$\stackrel{h>0}{\Longrightarrow} \left| \int_t^{t+h} \varphi'(\tau) d\tau \right| = |\varphi(t+h) - \varphi(t)| \le \underbrace{l(t+h) - l(t)}_{l(\varphi([t,t+h]))} \stackrel{(\star\star)}{\le} \int_t^{t+h} |\varphi'(\tau)| d\tau \qquad \left| \cdot \frac{1}{h} \right|$$

 \Rightarrow l ist differenzierbar mit $l'(t) = |\varphi'(t)|$

$$\Rightarrow l(b) = \int_a^b l'(t) dt = \int_a^b |\varphi'(t)| dt = v_1(C)$$

■ Beispiel 30.11 (Umfang des Einheitskreises)

Betrachte $\varphi \colon (-\pi, \pi) \to \mathbb{R}^2$ mit $\varphi(t) = \binom{\cos t}{\sin t}$. Dann ist $C := \varphi((-\pi, \pi))$ eine 1-dimensionale Mannigfaltigkeit (der Einheitskreis ohne den Punkt $(-1 \mid 0)$).

$$v_1(C) = \int_{-\pi}^{\pi} |\varphi'(t)| dt = \int_{-\pi}^{\pi} \left| \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \right| dt = \int_{-\pi}^{\pi} dt = 2\pi$$

(beachte: φ ist Bogenlängenparametrisierung)

Satz 30.12 (Eigenschaften des Integrals)

Seien $f, g, f_k \colon U \to \mathbb{R}, U$ Kartengebiet der Mannigfaltigkeit $M \subset \mathbb{R}^n$. Dann:

- 1) f integrierbar auf $U\Leftrightarrow |f|$ integrierbar auf $M\Leftrightarrow f^+$ und f^- integrierbar auf U
- 2) f, g integrierbar, $c \in \mathbb{R} \Leftrightarrow \int_{U} cf \pm g da = c \int_{U} f da \pm \int_{U} g da$
- 3) f, g integrierbar auf U, g beschränkt auf $U \Rightarrow g$ integrierbar auf U
- 4) f, g integrierbar, $f \leq g$ auf $U \Rightarrow \int_U f da \leq \int_U g da$
- 5) (Monotone Konvergenz)

Seien f_k integrierbar auf $U, f_1 \leq f_2 \leq \dots$, Folge $\int_U f_k da$ beschränkt und $f(u) = \lim_{k \to \infty} f_k(u)$ $\forall u \in U$

- $\Rightarrow f$ integrierbar auf U mit $\int_U f da = \lim_{k \to \infty} \int f_k da$
- 6) (Majorisierte Konvergenz)

Seien f_k , g integrierbar auf U, $|f_k| \leq g \ \forall k$, $f(u) = \lim_{k \to \infty} f_k(u) \ \forall u \in U$ $\Rightarrow f$ ist integrierbar auf U mit $\int_U f \, da = \lim_{k \to \infty} \int_U f_k \, da$

Beweis. Sei $\varphi \colon V \to U$ Parametrisierung des Kartengebiets U. Somit:

- f integrierbar auf $U \Leftrightarrow f(\varphi(\cdot))\sqrt{g^{\varphi}(\cdot)}$ integrierbar auf V, und
- $f \leq g$ auf $U \Leftrightarrow f(\varphi(\cdot))\sqrt{g^{\varphi}(\cdot)} \leq g(\varphi(\cdot))\sqrt{g^{\varphi}(\cdot)}$ auf V,
- $f(u) = \lim_{k \to \infty} f_k(u) \in U \Leftrightarrow f(\varphi(x)) = \lim_{k \to \infty} f_k(x) \ \forall x \in V$,

somit folgen die Behauptungen direkt aus den Eigenschaften des Lebesgue-Integrals (Kapitel 22). \Box

31. Integral auf Mannigfaltigkeiten

Frage: $\int_M f \, \mathrm{d}a$ für Mannigfaltigkeit M?

<u>Idee:</u> Überdecke M mit Kartengebieten U_{β} ($\beta \in \xi$) und suche Integrale $\int_{U_{\beta}} f \, da$ geeignet zusammen.

Problem: U_{β} überlappen sich im Allgemeinem

<u>Ausweg:</u> Zerlege die Funktion $\alpha = 1$ geeignet als $1 = \sum_{j=1}^{\infty} \alpha_j$.

Definition

Die Menge der stetigen Funktionen $\alpha_j \colon M \to [0,1], j \in \mathbb{N}$ heißt Zerlegung der Eins (ZdE) auf $M \subset \mathbb{R}^n$, falls

i)
$$\sum_{j=1}^{\infty} \alpha_j(u) = 1 \ \forall u \in M$$

ii) Zerlegung ist lokal-endlich, d.h. $\forall u \in M$ existiert eine Umgebung U(u) bezüglich M mit

$$\alpha_j = 0$$
 auf $U(u)$ für f.a. $j \in \mathbb{N}$

Definition

Sei \mathcal{U} eine bezüglich M offene Überdeckung von $M \subset \mathbb{R}^n$. Die Zerlegung der Eins $\{\alpha_j\}$ ist \mathcal{U} untergeordnet, falls $\forall j \; \exists U_j \in \mathcal{U}$: supp $\alpha_j \subset U_j$. supp $\alpha_j := \overline{\{u \in M \mid \alpha_j(u) \neq 0\}}$ ist der <u>Träger</u> von α_j .

Satz 31.1 (Existenz der Zerlegung der Eins)

Sei $M \subset \mathbb{R}^n$ und sei \mathcal{U} eine bezüglich M offene Überdeckung von M

 \Rightarrow es existiert eine Zerlegung der Eins $\{\alpha_j\}$ von M, die \mathcal{U} untergeordnet ist.

▶ Bemerkung

- Betrachte später die Überdeckung \mathcal{U} einer Mannigfaltigkeit M mit Kartengebieten
- α_i in Wahrheit in C^{∞}

Beweis. Sei $\mathcal{U} = \bigcup_{\alpha \in A} U_{\alpha}$.

- a) $U_{\alpha} \in \mathcal{U}$ offen bezüglich $M \Rightarrow \exists W_{\alpha} \subset \mathbb{R}^n : U_{\alpha} = W_{\alpha} \cap M$. Setzte $W = \bigcup_{\alpha \in A} W_{\alpha}$ offen im \mathbb{R}^n . Sei $K_j := \{u \in W \mid \operatorname{dist}_{W^{\complement}} u \geq \frac{1}{j}\} \cap \overline{B_j(0)}$. Offenbar sind die K_j kompakt $\Rightarrow K_j \subset K_{j+1} \ \forall j \in \mathbb{N} \ \operatorname{und} \ \bigcup_{i \in \mathbb{N}} K_j = W$. $(\{K_j\} \text{ heißt kompakte Ausschöpfung von } W)$.
- b) Sei $u \in K_{j+1} \setminus \text{int } K_{j+1}$ (kompakt) $\subset \text{int } K_{j+2} \setminus K_{j-1}$ (offen)
 - $\Rightarrow \exists \alpha \in A : u \in W_{\alpha}$
 - $\Rightarrow \exists \text{ Kugel } B_r(u), \text{ offen im } \mathbb{R}^n \ (r>0): B_r(u) \subset W_\alpha \cap (\text{int } K_{j+2} \setminus K_{j-1})$
 - $\Rightarrow K_{j+1} \setminus \operatorname{int} K_j$ wird von endlich vielen Kugel
n $B_r(u)$ überdeckt
 - ⇒ ∃ Folge $\{u_j\}$ in W mit $\bigcup_{j=1}^{\infty} B_{r_j}(u_j) = W$ und für $u \in W$ gilt: ∃ Umgebung U mit $U \cap B_{r_j}(u_j) \neq \emptyset$ nur für endlich viele j

c) Betrachte $\gamma_j \colon W \to [0,1]$ mit

$$\gamma_j(v) := \begin{cases} e^{\frac{1_j}{|v - u_j| - v_j}}, & \text{für } |v - u_j| \le r_j, \\ 0, & \text{sonst} \end{cases}$$

Offenbar gilt $\gamma_j(r) > 0$ auf $B_{r_j}(u_j)$, $\gamma_j \in C^{\infty}(W)$. Setzte $\gamma(u) = \sum_{j=1}^{\infty} \gamma_j(u)$, $\alpha_j(u) := \frac{\gamma_j(u)}{\gamma(u)} \ \forall u \in W$. Offenbar ist $\{\alpha_j\}$ eine Zerlegung der Eins von W, damit auch von M und ist offenbar \mathcal{U} untergeordnet. \square

Definition

Sei $M \subset \mathbb{R}^n$, $f: M \to \mathbb{R}^n$, supp $f \subset U \subset M$, U Kartengebiet von M.

f heißt integrierbar auf M, falls die Einschränkung $f|_U$ integrierbar auf Kartengebiet U und

$$\int_{M} f da := \int_{U} f|_{U} da \tag{1}$$

heißt Integral von f auf M.

Lemma 31.2 (Kriterium für Integrierbarkeit)

Sei $M \subset \mathbb{R}^n$ eine Mannigfaltigkeit, $f: M \to \mathbb{R}$, supp $f \subset U \subset M$, U Kartengebiet von M und sei $\{x_j\}$ eine Zerlegung der Eins auf M. Dann:

f integrierbar auf M

$$\Leftrightarrow \quad \begin{array}{ll} \text{i)} & f_{x_j} \text{ integrierbar auf } M \ \forall j \in \mathbb{N} \\ & \text{ii)} & \sum_{j=1}^{\infty} \int_m |f| \alpha_j \, \mathrm{d} a < \infty \end{array}$$

$$\Rightarrow \sum_{M} f da = \sum_{i=1}^{\infty} \int_{M} \alpha_{j} da$$
 (2)

Beweis.

a) Sei f integrierbar auf $M \stackrel{30.12}{\Longrightarrow}$ i) und

$$\sum_{i=1}^{\infty} \int_{M} |f| \alpha_{i} \, \mathrm{d}a = \lim_{k \to \infty} \sum_{j=1}^{k} \int |f| \alpha_{i} \, \mathrm{d}a \le \int_{M} |f| \, \mathrm{d}a < \infty \tag{3}$$

$$\Rightarrow$$
 ii) $\xrightarrow{\text{majorisierte}}$ (2)

b) gelten i) und ii)
$$\frac{\text{majorisierte}}{\text{Konvergenz}} |f|$$
 integrierbar $\Rightarrow f$ integrierbar

Definition

Sei $M \subset \mathbb{R}^n$ eine Mannigfaltigkeit und \mathcal{U} eine offene Überdeckung bezüglich M von M mit Kartengebieten.

 $f: M \to \mathbb{R}$ heißt integrierbar auf Mannigfaltigkeit M, falls die Zerlegung der Eins $\{\alpha_j\}$ auf M existiert, die \mathcal{U} untergeordnet ist, sodass

- i) $f\alpha_i$ integrierbar $\forall j \in \mathbb{N}$ (auf M)
- ii) $\sum_{j=1}^{\infty} \int_{M} |f| \alpha_j \, \mathrm{d}a < \infty$

und damit definiere sich

$$\int_{M} f da = \sum_{j=1}^{\infty} \int_{M} f \alpha_{j} da, \tag{4}$$

und heißt Integral von f auf M .

Satz 31.3 (Rechtfertigung des Integralbegriffs)

f ist integrierbar auf M und $\int_M f da$ sind unabhängig von konkreter Überdeckung \mathcal{U} und Zerlegung der Eins $\{\alpha_j\}$.

Beweis. Sei : $M \to \mathbb{R}$ integrierbar auf M mit $\{\alpha_j\}$, \mathcal{U} gemäß Definition. Sei $\{\tilde{\alpha}_j\}$ eine weitere Zerlegung der Eins, die einer Überdeckung $\tilde{\mathcal{U}}$ durch Kartengebiete untergeordnet ist. Dann sind zu zeigen:

- i') $f\tilde{\alpha}_i$ ist integrierbar auf $M \, \forall j$ und
- ii') $\sum_{j=1}^{\infty} \int_{M} |f| \alpha_{j} da < \infty$ und
- iii') $\sum_{j=1}^{\infty} \int_{M} f \alpha_{j} da = \sum_{j=1}^{\infty} \int_{m} f \tilde{\alpha}_{j} da.$
- zu i') $f\alpha_j$ sind integrierbar auf Mnach Voraussetzung
 - $\stackrel{30.12}{\Longrightarrow} f \tilde{\alpha}_k \alpha_j$ ist integrierbar auf $M \ \forall k,j \in \mathbb{N}$ und

$$\sum_{i=1}^{\infty} \int_{M} |f \tilde{\alpha}_{k}| \alpha_{j} \, \mathrm{d}a \leq \sum_{i=1}^{\infty} |f| \alpha_{j} \, \mathrm{d}a < \infty$$

- $\stackrel{31.2}{\Longrightarrow} f\tilde{\alpha}_k$ und $|f\tilde{\alpha}_k|$ integrierbar auf $M \ \forall k$
 - \Rightarrow i') und

$$\int_{M} f \tilde{\alpha}_{k} \, da = \int_{j=1}^{\infty} \int_{M} f \tilde{\alpha}_{j} \, da \quad \text{bzw.}$$

$$\int_{M} |f| \tilde{\alpha}_{k} \, da = \int_{j=1}^{\infty} \int |f| \tilde{\alpha}_{k} \alpha_{j} \, da \quad (\star)$$

zu ii') $f\alpha_i$ integrierbar auf M nach Voraussetzungen

$$\xrightarrow{31.2} \int_M f\alpha_j \, \mathrm{d}a = \sum_{k=1}^{\infty} \int_M f\alpha_j \tilde{\alpha}_k \, \mathrm{d}a \quad \forall j$$
 (***)

und analog für |f|

$$\Rightarrow \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \int_{M} |f| \alpha_{j} \alpha_{k} \, \mathrm{d}a = \sum_{j=1}^{\infty} \int_{m} |f| \alpha_{j} \, \mathrm{d}a \stackrel{\mathrm{ii}}{<} \infty$$
 (#)

Doppelreihensatz, $(\star\star)$ mit |f| und ii) eerlauben die Vertauschung der Summation in (#)

$$\stackrel{(\star)}{\Longrightarrow} \sum_{k=1}^{\infty} \int_{M} |f| \tilde{\alpha}_{k} \, \mathrm{d}a = \sum_{j=1}^{\infty} \int_{M} |f| \alpha_{j} \, \mathrm{d}a$$

$$\Rightarrow \mathrm{ii'})$$

$$(+)$$

zu iii') Analog erhält man (+) mit f statt $|f| \Rightarrow$ iii')

Definition

Sei $M \subset \mathbb{R}^n$, M Mannigfaltigkeit, $A \subset M$ Teilmenge. Die Funktion $f \colon A \to \mathbb{R}$ heißt <u>integrierbar</u> auf A, falls

$$f_A := \begin{cases} f, & \text{auf } A, \\ 0, & \text{sonst} \end{cases}$$

integrierbar auf M ist. $A \subset M$ heißt (endlich) <u>messbar</u> in M falls die Funktion $f = \equiv 1$ auf A integrierbar ist.

$$v_d(A) = \int_A \mathrm{d}a$$

heißt d-dimensionaler Inhalt (d-dimensionales Maß) von A

<u>beachte:</u> Für $A \subset \mathbb{R}^n$ Lebesgue-messbar ist $\lambda^n(A) = \infty$ möglich. Hier ist $v_d(A) < \infty$ für $A \subset M$ messbar.

Definition

 $A\subset M$ heißt
 $\underline{d\text{-Nullmenge}}$, falls $v_d(A)=0.$

beachte: d-Nullmengen auf M entsprechend \mathcal{L}^d -Nullmengen im Parameterbereich.

Satz 31.4

Sei $M\subset\mathbb{R}^n$ eine Mannigfaltigkeit, $A\subset M$ kompakt bezüglich $M,\,f\colon A\to\mathbb{R}$ stetig

 $\Rightarrow f$ integrierbar auf A

Hinweis:

- $A \subset M$ ist kompakt bezüglich M, z.B. $A = \varphi(U)$ für Parametrisierung und $U \subset \mathbb{R}^n$ kompakt
- somit sind alle kompakten $A \subset M$ messbar

Beweis.

a) Sei $A \subset U$ für ein Kartengebiet $U \subset M$ mit zugehöriger Parametrisierung $\varphi \colon V \subset \mathbb{R}^d \to U$ $\Rightarrow B := \varphi^{-1}(A)$ kompakt im \mathbb{R}^d (da φ Homöomorphismus) Da $f(\varphi(\cdot))\sqrt{g^{\varphi}(\cdot)}$ stetig auf B

 \Rightarrow auch integrierbar auf $B \Rightarrow f$ integrierbar auf A

b) (allgemeiner Fall)

Sei $\{\alpha_j\}$ eine Zerlegung der Eins zur Mannigfaltigkeit M. $\forall v \in A \exists$ Umgebung $U(v) \subset M$: $\alpha_j = 0$ auf U(v) für fast alle $j \in \mathbb{N}$.

 $\{U(v)\}_{v\in A}$ ist eine offene Überdeckung von A.

 \Rightarrow bereits endlich viele überdecken kompaktes A

$$\Rightarrow \forall m \in \mathbb{N}: \alpha_i = 0 \text{ auf } A \ \forall j > m$$

$$\Rightarrow f_A(u) = \sum_{j=1}^m f_A(u)\alpha_j \ \forall u \in M$$

 $\operatorname{supp} f_A \alpha_j$ ist abgeschlossene Teilmenge der kompakten Menge $A \Rightarrow \operatorname{selbst}$ kompakt

 $\stackrel{\text{a)}}{\Rightarrow} f_A \alpha_j$ integrierbar auf $M \ \forall j$

Wegen

$$\sum_{j=1}^{\infty} \int_{M} |f_A| \alpha_j \, \mathrm{d}a = \sum_{j=1}^{m} \int |f_A| \alpha_j \, \mathrm{d}a < \infty$$

 $\Rightarrow f_A$ integrierbar auf M

Übertragung der Eigenschaften aus Satz 30.12:

Satz 31.5 (Eigenschaften des Integrals)

Sei $M \subset \mathbb{R}^n$ Mannigfaltigket und $f, g, f_k \colon M \to \mathbb{R}$. Dann:

- 1) f integrierbar auf $M \Leftrightarrow |f|$ integrierbar auf $M \Leftrightarrow f^+$ und f^- integrierbar auf M
- 2) f, g integrierbar auf $M, c \in \mathbb{R}$

$$\Rightarrow \int_{M} cf \pm g da = c \int_{M} f da \pm \int_{M} g da$$

- 3) f, g integrierbar auf M, g beschränkt auf M
 - $\Rightarrow f \cdot g$ integrierbar auf M
- 4) (Monotone Konvergenz)

Seien $f_1 \leq f_2 \leq \ldots$ auf M, alle f_k integrierbar auf M. Die Folge $\int_M f_k da$ sei beschränkt, $f(u) := \lim_{k \to \infty} dk \leq M$

$$\Rightarrow f$$
 integrier
bar auf M mit $\int_M f da = \lim_{k \to \infty} \int_M f_k da$

5) (Majorisierte Konvergenz)

Seien k, g integrierbar auf M, $|f_k| \leq g$ auf $M \ \forall k$ und $f(u) := \lim_{k \to \infty} f_k(u) \ \forall u \in M$

$$\Rightarrow f$$
 integrier
bar auf M mit $\int_M f da = \lim_{k \to \infty} \int_M f_k da$

Beweis. Sei $\{\alpha_j\}$ eine Zerlegung der Eins zu M.

<u>beachte:</u> f ist integrierbar auf $M \stackrel{\text{Def.}}{\Longrightarrow} f\alpha_j$ ist integrierbar auf einem Kartengebiet $U_j \subset M$ Damit folgen (1) – (3) leicht aus Satz 30.12.

zu 4) ähnlich zu 5)

zu 5) Fixiere ein $j \in \mathbb{N}$. $f_k \alpha_j$ ist integrierbar auf einem Kartenbegiet $\forall U$,

$$\lim_{k \to \infty} f_k(u)\alpha_j(u) = f(u)\alpha_j(u)$$

Mit $|f_k \alpha_j| \leq g \alpha_j \xrightarrow{30.12} f \alpha_j$ integrierbar und

$$\lim_{k \to \infty} \int_{M} f_{k} \alpha_{j} da = \int_{M} f \alpha_{j} da \tag{*}$$

Wegen $|f\alpha_j| \leq g\alpha_j \ \forall j$:

$$\sum_{j=1}^{\infty} \int_{M} |f\alpha_{j}| \, \mathrm{d}a \leq \sum_{j=1}^{\infty} \int_{M} g\alpha_{j} \, \, \mathrm{d}a \overset{g \text{ intbar}}{<} \infty$$

 $\Rightarrow f$ integrierbar auf M mit

$$\int_{M} f da = \sum_{j=1}^{\infty} \int_{M} f \alpha_{j} da$$

Sei $\varepsilon > 0$, dann existiert ein $m \in \mathbb{N}$ mit

$$\left| \sum_{i=m+1}^{\infty} \int_{M} f \alpha_{i} \, \mathrm{d}a \right| < \varepsilon$$

und es existiert ein $k_0 \in \mathbb{N}$ mit

$$\left| \int_{M} f \alpha_{j} \, da - \int_{M} f_{k} \alpha_{j} \, da \right| < \frac{\varepsilon}{m} \quad \forall j = 1, \dots, m \, \forall k \ge k_{0} \quad \text{(nach } (\star))$$

$$\Rightarrow \left| \int_{M} f da - \int_{M} f_{k} da \right| \leq \left| \sum_{j=1}^{m} \left(\int_{M} f \alpha_{j} da - \int_{M} f_{k} \alpha_{j} da \right) \right| + \left| \sum_{j=m+1}^{\infty} \int_{M} f \alpha_{j} da \right| + \left| \sum_{j=m+1}^{\infty} \int_{M} g \alpha_{j} da \right|$$

$$\leq \frac{\varepsilon}{m} \cdot m + \varepsilon + \varepsilon = 3\varepsilon \quad \forall k \geq k_{0}$$

$$\stackrel{\varepsilon > 0}{\underset{\text{bel}}{\Longrightarrow}} \lim_{k \to \infty} \int_{M} f_{k} \, \mathrm{d}a = \int_{M} f \, \mathrm{d}a.$$

32. Integralsätze von Gauß und Stokes

Index

A	Kartengebiet, 3			
äußeres Produkt, 9	Kurvenintegral, 15			
Atlas, 3				
В	\mathbf{M}			
Bogenlänge, 15	Maßtensor, 12			
Bogenlänge-Parametrisierung, 15	messbar, 21			
	N			
C	Normalenraum, 7			
C^q -Parametrisierung, 2	Normalenvektor, 7			
D				
d -dimensionale C^q -Mannigfaltigkeit, 3	О			
d-dimensionale Inhalt von U , 13	orientierbar, 8			
d-dimensionaler Inhalt, 21	orientierte Mannigfaltigkeit, 8			
d-Nullmenge, 21	Orientierung, 8			
E				
Einbettung, 3	P			
Einheitsnormalenfeld, 8	Parallelotop, 10			
Elimenshormalemett, o	Parameterbereich, 2, 3			
\mathbf{F}	Parametrisierung, 3			
Flächenelement, 13	R			
G	regulär, 2			
Gram'sche Determinante, 12	regulär auf V , 2			
Grain sone Bosermanio, 12	regulärer Wert, 5			
Н	rektifizierbar, 16			
Hyperfläche, 8	rekemzierskii, re			
I	\mathbf{S}			
Integral, 19	Spur, 2			
Integral von f auf M , 20				
integrierbar, 12	${f T}$			
integrierbar auf A , 21	Tangentialraum, 6			
integrierbar auf M , 19	Tangentialvektor, 6			
integrierbar auf Mannigfaltigkeit $M,20$	Träger, 18			
K	${f Z}$			
Karte, 3	Zerlegung der Eins, 18			