ASTRONOMISCHE NACHRICHTEN.

 $N_{=}^{o}$. 951.

Schreiben des Herrn Dr. Hornstein an den Herausgeber.

Ich nehme mir die Freiheit, Ihnen die Resultate meiner letzten Bahnbestimmung der Calliope für die Astronomischen Nachrichten mitzutheilen. Die Bahn ist aus sämmtlichen Beobachtungen der beiden ersten Erscheinungen abgeleitet, und ich habe dabei die nicht unbedeutende Vergrösserung der Arbeit nicht gescheut, die durch eine beträchtlichere Zahl von Normalorten hervorgerusen wird, um die gerechnete Bahn in möglichst vielen Puncten an die beobachtete anzudrücken. Ich glaube demnach eine gute Übereinstimmung mit dem Himmel erwarten zu dürsen. Von den störenden Planeten habe ich bloss Jupiter und Saturn berücksichtigt, was, wie ich denke, ausreichen wird, indem gewiss die Unsicherheiten in der Bahn, zufolge der Beobachtungsfehler, weit grösser sind, als der ganze Betrag der Marsstörungen. Bei der nächsten Verbesserung werde ich indessen auch die letzteren noch mitnehmen.

Wien 1855, Febr. 22.

Dr. Hornstein.

Über die Bahn der Calliope.

(Auszug aus den Sitzungsberichten der kaiserl. Akademie der Wissenschaften in Wien, Januarbeft 1855).

Ich habe aus den sämmtlichen Beobachtungen der Calliope, nämlich aus 150 Beobachtungen vom November 1852 bis Mai 1853, und aus 31 Beobachtungen während der zweiten Erscheinung vom Januar bis Mai 1854 mittelst Anbringung der Störungen durch Jupiter und Saturn folgende zwölf rein elliptische Normalorte gebildet:

		Geoc. Läng	e (1853,0)	Geoc, Breite.
I.	1852 Nov. 25,0	77°47'	46*6	+2°14′ 5246
11.	Dec. 10,0	74 22	39,1	3 38 46,0
III.	18,6	72 35	26,4	4 19 22,3
IV.	1853 Janr. 0,0	70 11	59,7·	5 15 48,8
V.	11,6	68 56	18,2	5 53 11,1
VI.	Febr. 14,0	70 14	27,3	7 0 25,4
VII.	März 26,0	79 36	25,4	7 33 15,7
VIII.	1854 Febr. 5,0	182 37	34,5	18 3 49,5
IX.	März 5,0	178 23	41,4 +	-19 17 22,3

	1853,0			
		Geoc. Länge.	Geoc. Breite.	
X.	1854 März 21,0	174°51′ 11″9	+19° 6′ 21″2	
XI.	April 18,0	169 54 56,2	17 14 5,1	
XII.	Mai 20,0	169 21 50,6	+14 7 27,3	

Ich habe dann durch den ersten und letzten Normalort eine Ellipse gelegt, welche auch die übrigen Normalorte möglichst gut darstellt, so dass nämlich die Summe der Quadrate der Abweichungen der herechneten und der eben angeführten beobachteten Normalorte zu einem Minimum wird. Auf diese Weise bin ich zu der folgenden Bahn gelangt:

 μ 714"9083. Die übrigbleibenden Fehler in den Normalorten stellen sich so:

	(Beob Rechnung)		
	$d\lambda$	$d\beta$	
I.	0"0	<u> </u>	
11.	1,0	+1,7	
111.	-2,4	-0,9	
IV.	-2,7	+0,7	
V.	-0.8	-1,7	
VI.	+0,9	1,2	
VII.	0 , 1	+0,6	
VIII.	+1,2	-1,4	
IX.	<u> 1,3</u>	-0,6	
X.	0,7	-0,5	
XI.	-7,1	-4,7	
XII.	0,0	0,0	

Der vorletzte Normalort ist nur aus wenigen, grösstentheils in Kremsmünster gemachten, der letzte gleichfalls nur aus fünf Washingtoner Beobachtungen gebildet. Nach diesen Elementen ist nun die nachstehende Ephemeride für die nächste Erscheinung berechnet, wobei die Störungen durch Jupiter und Saturn angebracht sind.

Ephemeride der Calliope für 0h mittl. Berl. Zeit.

		Sch. AR.	Sch. Decl.	Log. d. Entf. von d. Erde.
1855	Mai 0	16h 55m 17*85	-21°54′ 20"4	0,36787
1000	1	54 43,99	56 31,1	0,36628
	2	54 8,83	-21 58 41,0	0,36473
	3	53 32,42	-22 0 50,0	0,36322
	4	52 54,78	2 58,1	0,36175
	5	52 15,96	5 5,1	0,36030
	6 7	51 35,93	7 11,1	0,35891
	8	50 54,7 1 50 12,41	9 15,9 11 19,6	0,35755 0,35625
	9	49 29,01	13 22,0	0,35498
	10	48 44,51	15 23,0	0,35375
	11	47 58,98	17 22,8	0,35258
	12	47 12,44	19 21,1	0,35146
	13	46 24,96	21 18,1	0,35037
	14	45 36,55	23 13,5	0,34933
	15	44 47,25	25 7,4	0,34835
	16	43 57,10 43 6,17	26 59,7	0,34743
	17 18	43 6,17 42 14,49	28 50,4 30 39,5	0,34655 0,34572
	19	41 22,11	32 27,0	0,34495
	20	40 29,08	34 12,7	0,34424
	21	39 35,46	35 56,9	0,34358
	22	38 41,29	37 39,3	0,34297
	23	37 46,61	39 20,0	0,34242
	24	36 51,49	40 59,0	0,34191
	25	35 55,97	42 36,2	0,34147
	26	35 0,11	44 11,7	0,34108
	27	34 3,95	45 45,4	0,34076
	28 29	33 7,55 32 10,96	47 17,4 48 47,7	0,34049 0,34028
	30	31 14,23	50 16,2	0,34012
	31	30 17,42	51 43,0	0,34002
	Juni 1	29 20,58	53 8,1	0,33998
	2	28 23,76	54 31,7	0,34000
	3	27 27,00	55 53,5	0,34007
	4	26 30,37	57 13,7	0,34020
	5	25 33,90	58 32,4	0,34038
	6	24 37,65	-22 59 49,7	0,34063
	7 8	23 41,68 22 46,04	-23 1 5,4 2 19,7	0,34093 0,34129
	9	22 46,04 21 50,79	3 32,8	0,34170
	10	20 55,96	4 44,6	0,34217
	11	20 1,62	5 55,2	0,34269
	12	19 7,83	7 4,7	0,34327
	13	18 14,63	8 13,3	0,34391
	14	17 22,04	9 21,0	0,34461
	15	16 30,16	10 27,9	0,34534
	16	15 39,01	11 34,1	0,34614
	17	14 48,65	12 39,7	0,34697
	18 19	13 59,08 13 10,39	13 44,8 14 49,5	0,34787 0,34882
	20	12 22,62	14 49,5 15 54,0	0,34981
	21	11 35,80	16 58,3	0,35084
	22	10 49,93	18 2,5	0,35193
	28	10 5,10	19 6,7	0,35305
	24	9 21,32	20 11,0	0,35423
	25	16 8 38,62	-23 21 15,6	0,35545

	Sch. AR.	Sch. Decl.	Log. der Entf. von der Erde.
1855 Juni 26	16h 7m57*01	$-23^{\circ}22'20''5$	0,35672
27	7 16,55	23 25,8	0,35801
28		24 31,6	0,35936
29		25 37,9	0,36074
30	5 22,24	26 45,0	0,36216
Juli 1	4 46,56	27 52,8	0,36361
2	4 12,14	29 1,5	0,36510
3	3 38,99	30 11,2	0,36663
4		31 21,8	0,36820
5		32 33,6	0,36979
6	2 7,32	33 46,7	0,37142
7		35 1,0	0,37307
8		36 16,6	0,37476
ç		37 33,8	0,37647
10		38 52,5	0,37821
11		40 12,9	0,37997
12		41 34,9	0,38177
13		42 58,7	0,38358
14		44 24,4	0,38542
15	58 46,04	45 51,9	0,38727
16	58 30,72	47 21,4	0,38916
17		48 53,0	0,39106
18	58 4,41	50 26,6	0,39298
19	57 53,42	52 2,3	0,39490
20	57 43,85	53 40,0	0,39685
21	57 35,71	55 20,0	0,39882
22		57 2,1	0,40079
23		-23 58 46,5	0,40279
24	57 19,90	-24 0 33,1	0,40480
25	57 17,47	2 21,9	0,40681
26		4 12,9	0,40884
27		6 6,3	0,41087
28		8 1,8	0,41292
29		9 59,6	0,41497
30	57 26,27	11 59,6	0,41703
31	15 57 32,17	-24 14 1,8	0,41909

Man kann wohl erwarten, dass die hier gegebene Ephemeride keine beträchtliche Abweichung vom Himmel zeigen werde. Die bedeutende Ausdehnung der Beohachtungen über einen Zeitraum von anderthalb Jahren und die grosse Zahl derselben berechtigen zu dieser Erwartung. Um indessen eine etwaige Abweichung wegschaffen zu können, habe ich Correctionsformeln für die Ephemeride berechnet, die ich hier folgen lasse.

Tafel zur Verbesserung der Ephemeride.

$\mathbf{O}_{\boldsymbol{p}}$	Corr. in AR.		Corr. in Decl.	
1855 Mai 0	-0.89x	-10'85 y	$+2^{\prime\prime}6x$	+51"6 y
8	0,92	11,21	3,2	5514
16	0,87	11,41	3,6	59,5
24	-0.82	-11.46	+4.1	+62,6

0μ	Corr. in AR.		Corr. in Decl.	
				$\overline{}$
1855 Juni 1	$-0^{\circ}76 x$	$-11'33\gamma$	+4''4x	$+65''9\gamma$
9	0,70	11,11	4,9	68,8
17	0,63	10,79	5,3	. 70,9
25	0,56	10,36	5,6	71,9
Juli 3	0,49	9,92	5,5	72,1
11	0,44	9,49	5,5	71,5
19	0,40	9,13	5,6	70,4
27	0,38	8,81	5,8	69,4
Aug. 4	-0,37	- 8,55	+6,0	+68,3

Sobald man eine Beobachtung des Planeten erhalten, giebt die Vergleichung derselben mit der Ephemeride die Fehler $d\alpha$ und $d\delta$ derselben, in dem Sinne Beob.—Rechngenommen. Nennt man nun die für das entsprechende Datum aus vorstehender Tabelle genommenen Correctionen in AR. und Decl.

$$\lambda x + \mu y \text{ und } \eta x + \theta y$$

so hat man nur die beiden Gleichungen

$$\lambda x + \mu y = d\alpha$$
$$\eta x + \theta \gamma = d\delta$$

aufzustellen, deren Auflösung die Unbekannten x und y bestimmen wird. Die Werthe dieser Unbekannten, in der vorstehenden Tabelle eingesetzt, geben dann die Correctionen

der Ephemeride für die ganze Dauer der Sichtbarkeit des Planeton.

Sollte der letzte Normalort, in welchem nur wenige (Washingtoner) Beobachtungen zusammengefasst werden konnten, nicht erheblich unrichtig sein, so hoffe ich, dass mit Benutzung sämmtlicher Beobachtungen von 1855 zur Auffindung von x und y, die Verbesserung der Elemente aus der Erscheinung 1855 mit grosser Leichtigkeit sich wird bewerkstelligen lassen. Die Verbesserungen der Elemente (der oben angeführten wahrscheinlichsten Ellipse nämlich) findet man, sobald x und y bekannt sind, aus den Gleichungen:

$$\delta M = -220''65 x - 166''14y
\delta \varpi = +272,27 x + 178,09 y
\delta \Omega = + 0,96 x + 0,24 y
\delta i = - 0,11 x + 0,56 y
\delta (log.a) = + 574 x + 828 y
\delta e = -398 x + 1564 y$$

 $\delta(\log a)$ und δc erscheinen in Einheiten der 7. Decimale ausgedrückt.

Wien 1855, Febr. 20.

Dr. Carl Hornstein.

Beobachtungen, Elemente und Ephemeride des Colla - Dien - Winnecke'schen Cometen, von Herrn Dr. Oudemans.

Mittlere Örter der Vergleichsterne, 1855,0:

Febr. 16. Comet wegen der Dämmerung ausserordentlich schwach. Mittelmässige Beobachtung.

Febr. 17. Gute Beobachtung. Der Comet sieht aus wie ein schwacher runder Nebel von 1 bis 2 Minuten Durchmesser. — Ein Kern ist nicht zu unterscheiden.

Bei sehr strenger Kälte, -12°6 und -11°1 R., war die Lust an beiden Tagen aussergewöhnlich heiter.

Elemente,

abgeleitet aus Berlin Januar 15, Kremsmünster Jan. 28 und Leiden Febr. 17.