# 중간 발표

7조

박태현, 송준규, 양은주, 정하연

# 목차

- 1. Discover and Visualize the data
- 2. Prepare the data
- 3. Baseline Training

: LeNet-5, ResNet-50

4. Select the model

: 모델 선정, 추가 모델 선정

5. Plan

# 역할 분담

| 박태현                                   | 송준규                                  | 양은주                                        | 정하연                                    |
|---------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------|
| 다양한 CNN 모델 분석<br>최종 모델 선정<br>평가 지표 조사 | 데이터셋 분석 및 전처리<br>최종 모델 튜닝<br>중간발표자 1 | LeNet5 및 ResNet 구조<br>평가 지표 조사<br>최종 발표자 1 | 팀장<br>실험 및 분석 총괄<br>중간발표자 2<br>최종발표자 2 |

#### Discover and Visualize the Data

- EMNIST 논문을 읽으며 정확한 정보를 파악함
- Kaggle로부터 EMNIST를 다운로드
- 6가지 종류의 데이터셋을 Class별로 모두 plot 후 관찰







































Label: t

#### Discover and Visualize the Data

- EMNIST Balanced Dataset
  - Train: (94000, 28, 28)
  - Valid: (18799, 28, 28)
  - Test: (18799, 28, 28)
- 클래스 별 데이터 개수의 불균형에서 오는 성능 저하를 예방하기 위함
  - 모델 성능 개선 후 시간이 있다면, Confusion matrix를 참고하여 혼동이 있는 클래스들의 데이터셋을 보완할 예정





#### Prepare the data

- 모델마다 최소 input\_size가 다름
  - resize\_shape=(WIDTH, HEIGHT)를 지정하여 데이터셋을 준비할 수 있는 prepare\_datasets 함수 정의.
- Ex. ResNet-50의 input\_size는 (32, 32)







- 1. 배치 사이즈 변경
- 2. Learning Rate Scheduler
  - initial\_learning\_rate=0.0005
  - ReduceLROnPlateau
- 3. 활성화 함수 변경
  - LeakyReLU
- 4. regularization 추가
  - dropout
- 5. 데이터 증강(data augmentation)

1. 배치 사이즈 변경 : 256 → 2048



#### 2. Learning Rate Scheduler



#### 3. 활성화 함수 변경



4. regularization 추가: dropout



#### 5. 데이터 증강(data augmentation)



+. Zero\_padding을 추가하는 레이어로 수정



# Select the Model (모델 후보)

• EMNIST 데이터셋의 특성, 모델 구조 및 특성을 함께 고려하여 모델 후보 4개 선정

| LeNet-5                                                                  | VGG-16                                                                                                                                                      | MobileNet                                                            | ShuffleNet                                                      |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                    | 224 x 224 x 3 224 x 224 x 64  112 x 112 x 128  58 x 58 x 256  7 x 7 x 512  1x 1x 4096 1x 1x 1000  convolution+ReLU  max pooling  fully nected+ReLU  softmax | F F N F                                                              | Channels   K                                                    |
| C3 레이어에서 6개의 입력을 16개의<br>피처 맵으로 변환하여 연산량을<br>줄이고, 글로벌 피처를 효율적으로<br>만들어냄. | VGG-16은 모든 컨볼루션 레이어에서<br>3x3 필터를 사용하고, 층을 깊게 쌓아<br>높은 표현력을 유지.                                                                                              | Depth-wise와 Point-wise<br>컨볼루션을 사용하여 매개변수와 연산<br>요구량을 크게 줄임.         | Grouped Convolution과 채널<br>셔플링을 통해 연산 효율성을 높임.                  |
| 모델이 단순하고 연산량이 적어<br>EMNIST 데이터셋에 적합하며,<br>효율적으로 중요한 피처를 추출할 수<br>있음.     | EMNIST 데이터셋에서는 다각도<br>추출보다는 높은 정확도가 중요하므로,<br>깊은 네트워크 구조를 통해 높은<br>정확도를 달성할 수 있음.                                                                           | EMNIST 데이터셋에 많은 매개변수를<br>가진 모델을 적용하는 것이<br>비효율적이므로, 경량화된 모델이<br>적합함. | EMNIST 이미지에서 글씨의 선형성을<br>고려하여, 그룹화된 컨볼루션을 통해<br>효율적으로 학습할 수 있음. |

# Select the Model (모델 후보)

• EMNIST 데이터셋의 특성, 모델 구조 및 특성을 함께 고려하여 모델 후보 4개 선정

| LeNet-5                                                                  | VGG-16                                                                                                                                                         | MobileNet                                                            | ShuffleNet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                    | 224 x 224 x 3 224 x 224 x 64  112 x 112 x 128  55 x 56 x 256  7 x 7 x 512  1x 1x 4096 1x 1x 1000  convolution + ReLU  max pooling fully nected + ReLU  softmax |                                                                      | Type Min Charries N M |
| C3 레이어에서 6개의 입력을 16개의<br>피처 맵으로 변환하여 연산량을<br>줄이고, 글로벌 피처를 효율적으로<br>만들어냄. | VGG-16은 모든 컨볼루션 레이어에서<br>3x3 필터를 사용하고, <b>층을 깊게 쌓아</b><br><b>높은 표현력을 유지</b> .                                                                                  | Depth-wise와 Point-wise<br>컨볼루션을 사용하여 매개변수와 연산<br>요구량을 크게 줄임.         | Grouped Convolution과 채널<br>셔플링을 통해 연산 효율성을 높임.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 모델이 단순하고 연산량이 적어<br>EMNIST 데이터셋에 적합하며,<br>효율적으로 중요한 피처를 추출할 수<br>있음.     | EMNIST 데이터셋에서는 <b>다각도 추출보다는 높은 정확도가 중요</b> 하므로,<br>깊은 네트워크 구조를 통해 높은<br>정확도를 달성할 수 있음.                                                                         | EMNIST 데이터셋에 많은 매개변수를<br>가진 모델을 적용하는 것이<br>비효율적이므로, 경량화된 모델이<br>적합함. | EMNIST 이미지에서 글씨의 선형성을<br>고려하여, 그룹화된 컨볼루션을 통해<br>효율적으로 학습할 수 있음.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

• 교재 + tensorflow 제공 모델 + α (**출시 연도** 기준 정렬)

| 모델                  | 출시 연도 | 크기 (MB) | 파라미터 수 | Top-1 정확도 | Top-5 정확도 | GPU(ms) | 주요 특징                                  |
|---------------------|-------|---------|--------|-----------|-----------|---------|----------------------------------------|
| LeNet-5             | 1998  | -       | 60K    | -         | -         | -       | 초기 CNN 모델, 손글씨 숫자 인식                   |
| AlexNet             | 2012  | 240     | 60M    | 62.50%    | 83.00%    | -       | ImageNet 우승, ReLU, 드롭아웃, LRN 도입        |
| GoogLeNet           | 2014  | 27      | 6.8M   | 74.80%    | 92.20%    | -       | 인셉션 모듈, 계산 효율성 향상                      |
| VGG16               | 2014  | 528     | 138M   | 71.50%    | 89.80%    | -       | 단순하고 깊은 구조, 3x3 컨볼루션 사용                |
| Inception v3        | 2015  | 92      | 23.9M  | 77.90%    | 93.70%    | 6.9     | 병렬 컨볼루션, 차원 축소                         |
| ResNet50            | 2015  | 98      | 25.6M  | 76.00%    | 93.00%    | 4.4     | 잔차 연결, 깊은 네트워크                         |
| Inception-ResNet v2 | 2016  | 215     | 55.9M  | 80.30%    | 95.30%    | 10      | Inception + ResNet 결합                  |
| SqueezeNet          | 2016  | 1.3     | 1.2M   | 57.50%    | 80.30%    | -       | 모델 크기 축소, 'Fire' 모듈 사용                 |
| DarkNet             | 2016  | -       | 23M    | -         | -         | -       | YOLO 백본 모델, 다양한 크기의 필터 사용              |
| DenseNet121         | 2017  | 33      | 8M     | 74.90%    | 92.20%    | -       | 밀집 연결, 특성 재사용                          |
| NASNetLarge         | 2017  | 343     | 88.9M  | 82.70%    | 96.20%    | -       | NAS 알고리즘 설계, 고성능                       |
| NASNetMobile        | 2017  | 23      | 5.3M   | 74.40%    | 91.90%    | 6.7     | NAS 알고리즘 설계, 고성능                       |
| MobileNet           | 2017  | 16      | 4.3M   | 70.40%    | 89.50%    | 3.4     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| Xception            | 2017  | 88      | 22.9M  | 79.00%    | 94.50%    | -       | 깊이별 분리 컨볼루션 확장, 효율적인 성능                |
| SENet               | 2017  | 115     | 115M   | 82.70%    | 95.40%    | -       | Squeeze-and-Excitation 블록, 채널별 중요도 재조정 |
| ShuffleNet          | 2017  | 5       | 1.3M   | 70.90%    | -         | -       | 경량화 모델, 채널 셔플 사용                       |
| MobileNetV2         | 2018  | 14      | 3.5M   | 71.30%    | 90.10%    | 3.8     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| EfficientNetB0      | 2019  | 29      | 5.3M   | 77.10%    | 93.30%    | 4.9     | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB1      | 2019  | 31      | 7.9M   | 79.10%    | 94.40%    | 5.6     | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB2      | 2019  | 36      | 9.2M   | 80.10%    | 94.90%    | 6.5     | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB3      | 2019  | 48      | 12.3M  | 81.60%    | 95.70%    | 8.8     | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB4      | 2019  | 75      | 19.5M  | 82.90%    | 96.40%    | 15.1    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB5      | 2019  | 118     | 30.6M  | 83.60%    | 96.70%    | 25.3    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB6      | 2019  | 166     | 43.3M  | 84.00%    | 96.80%    | 40.4    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB7      | 2019  | 256     | 66.7M  | 84.30%    | 97.00%    | 61.6    | 균형 잡힌 네트워크 스케일링                        |
| CSPNet              | 2019  | -       | -      | -         | -         | -       | 스테이지 간 특징 맵 부분 연결, 학습 효율성 최적화          |
| RegNet              | 2020  | -       | 11.2M  | 77.00%    | -         | -       | 규칙적인 네트워크 구조, 다양한 모델 크기                |
| ConvNeXtBase        | 2021  | 328     | 88M    | 82.90%    | -         | -       | Transformer 기법에서 영감, 다양한 크기로 구현 가능     |
|                     |       |         |        |           |           |         |                                        |

• 교재 + tensorflow 제공 모델 + α (**파라미터 수** 기준 정렬)

| 모델                  | 출시 연도 | 크기 (MB) | 파라미터 수 | Top-1 정확도 | Top-5 정확도 | GPU(ms) | 주요 특징                                  |
|---------------------|-------|---------|--------|-----------|-----------|---------|----------------------------------------|
| LeNet-5             | 1998  | -       | 60K    | -         | -         | -       | 초기 CNN 모델, 손글씨 숫자 인식                   |
| SqueezeNet          | 2016  | 1.3     | 1.2M   | 57.50%    | 80.30%    | -       | 모델 크기 축소, 'Fire' 모듈 사용                 |
| ShuffleNet          | 2017  | 5       | 1.3M   | 70.90%    | -         | -       | 경량화 모델, 채널 셔플 사용                       |
| MobileNetV2         | 2018  | 14      | 3.5M   | 71.30%    | 90.10%    | 3.8     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| MobileNet           | 2017  | 16      | 4.3M   | 70.40%    | 89.50%    | 3.4     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| NASNetMobile        | 2017  | 23      | 5.3M   | 74.40%    | 91.90%    | 6.7     | NAS 알고리즘 설계, 고성능                       |
| EfficientNetB0      | 2019  | 29      | 5.3M   | 77.10%    | 93.30%    | 4.9     | 균형 잡힌 네트워크 스케일링                        |
| GoogLeNet           | 2014  | 27      | 6.8M   | 74.80%    | 92.20%    | -       | 인셉션 모듈, 계산 효율성 향상                      |
| EfficientNetB1      | 2019  | 31      | 7.9M   | 79.10%    | 94.40%    | 5.6     | 균형 잡힌 네트워크 스케일링                        |
| DenseNet121         | 2017  | 33      | 8M     | 74.90%    | 92.20%    | -       | 밀집 연결, 특성 재사용                          |
| EfficientNetB2      | 2019  | 36      | 9.2M   | 80.10%    | 94.90%    | 6.5     | 균형 잡힌 네트워크 스케일링                        |
| RegNet              | 2020  | -       | 11.2M  | 77.00%    | -         | -       | 규칙적인 네트워크 구조, 다양한 모델 크기                |
| EfficientNetB3      | 2019  | 48      | 12.3M  | 81.60%    | 95.70%    | 8.8     | 균형 잡힌 네트워크 스케일링                        |
| Inception v3        | 2015  | 92      | 23.9M  | 77.90%    | 93.70%    | 6.9     | 병렬 컨볼루션, 차원 축소                         |
| DarkNet             | 2016  | -       | 23M    | -         | -         | -       | YOLO 백본 모델, 다양한 크기의 필터 사용              |
| ResNet50            | 2015  | 98      | 25.6M  | 76.00%    | 93.00%    | 4.4     | 잔차 연결, 깊은 네트워크                         |
| Xception            | 2017  | 88      | 22.9M  | 79.00%    | 94.50%    | -       | 깊이별 분리 컨볼루션 확장, 효율적인 성능                |
| EfficientNetB4      | 2019  | 75      | 19.5M  | 82.90%    | 96.40%    | 15.1    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB5      | 2019  | 118     | 30.6M  | 83.60%    | 96.70%    | 25.3    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB6      | 2019  | 166     | 43.3M  | 84.00%    | 96.80%    | 40.4    | 균형 잡힌 네트워크 스케일링                        |
| Inception-ResNet v2 | 2016  | 215     | 55.9M  | 80.30%    | 95.30%    | 10      | Inception + ResNet 결합                  |
| EfficientNetB7      | 2019  | 256     | 66.7M  | 84.30%    | 97.00%    | 61.6    | 균형 잡힌 네트워크 스케일링                        |
| AlexNet             | 2012  | 240     | 60M    | 62.50%    | 83.00%    | -       | ImageNet 우승, ReLU, 드롭아웃, LRN 도입        |
| ConvNeXtBase        | 2021  | 328     | 88M    | 82.90%    | -         | -       | Transformer 기법에서 영감, 다양한 크기로 구현 가능     |
| NASNetLarge         | 2017  | 343     | 88.9M  | 82.70%    | 96.20%    | -       | NAS 알고리즘 설계, 고성능                       |
| SENet               | 2017  | 115     | 115M   | 82.70%    | 95.40%    | -       | Squeeze-and-Excitation 블록, 채널별 중요도 재조정 |
| VGG16               | 2014  | 528     | 138M   | 71.50%    | 89.80%    | -       | 단순하고 깊은 구조, 3x3 컨볼루션 사용                |
| CSPNet              | 2019  | -       | -      | -         | -         | -       | 스테이지 간 특징 맵 부분 연결, 학습 효율성 최적화          |

• 교재 + tensorflow 제공 모델 + α (**GPU 속도** 기준 정렬)

| 모델                  | 출시 연도 | 크기 (MB) | 파라미터 수 | Top-1 정확도 | Top-5 정확도 | GPU(ms) | 주요 특징                                  |
|---------------------|-------|---------|--------|-----------|-----------|---------|----------------------------------------|
| MobileNet           | 2017  | 16      | 4.3M   | 70.40%    | 89.50%    | 3.4     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| MobileNetV2         | 2018  | 14      | 3.5M   | 71.30%    | 90.10%    | 3.8     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| ResNet50            | 2015  | 98      | 25.6M  | 76.00%    | 93.00%    | 4.4     | 잔차 연결, 깊은 네트워크                         |
| EfficientNetB0      | 2019  | 29      | 5.3M   | 77.10%    | 93.30%    | 4.9     | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB1      | 2019  | 31      | 7.9M   | 79.10%    | 94.40%    | 5.6     | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB2      | 2019  | 36      | 9.2M   | 80.10%    | 94.90%    | 6.5     | 균형 잡힌 네트워크 스케일링                        |
| NASNetMobile        | 2017  | 23      | 5.3M   | 74.40%    | 91.90%    | 6.7     | NAS 알고리즘 설계, 고성능                       |
| Inception v3        | 2015  | 92      | 23.9M  | 77.90%    | 93.70%    | 6.9     | 병렬 컨볼루션, 차원 축소                         |
| EfficientNetB3      | 2019  | 48      | 12.3M  | 81.60%    | 95.70%    | 8.8     | 균형 잡힌 네트워크 스케일링                        |
| Inception-ResNet v2 | 2016  | 215     | 55.9M  | 80.30%    | 95.30%    | 10      | Inception + ResNet 결합                  |
| EfficientNetB4      | 2019  | 75      | 19.5M  | 82.90%    | 96.40%    | 15.1    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB5      | 2019  | 118     | 30.6M  | 83.60%    | 96.70%    | 25.3    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB6      | 2019  | 166     | 43.3M  | 84.00%    | 96.80%    | 40.4    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB7      | 2019  | 256     | 66.7M  | 84.30%    | 97.00%    | 61.6    | 균형 잡힌 네트워크 스케일링                        |
| LeNet-5             | 1998  | -       | 60K    | -         | -         | -       | 초기 CNN 모델, 손글씨 숫자 인식                   |
| SqueezeNet          | 2016  | 1.3     | 1.2M   | 57.50%    | 80.30%    | -       | 모델 크기 축소, 'Fire' 모듈 사용                 |
| ShuffleNet          | 2017  | 5       | 1.3M   | 70.90%    | -         | -       | 경량화 모델, 채널 셔플 사용                       |
| DenseNet121         | 2017  | 33      | 8M     | 74.90%    | 92.20%    | -       | 밀집 연결, 특성 재사용                          |
| GoogLeNet           | 2014  | 27      | 6.8M   | 74.80%    | 92.20%    | -       | 인셉션 모듈, 계산 효율성 향상                      |
| NASNetLarge         | 2017  | 343     | 88.9M  | 82.70%    | 96.20%    | -       | NAS 알고리즘 설계, 고성능                       |
| SENet               | 2017  | 115     | 115M   | 82.70%    | 95.40%    | -       | Squeeze-and-Excitation 블록, 채널별 중요도 재조정 |
| Xception            | 2017  | 88      | 22.9M  | 79.00%    | 94.50%    | -       | 깊이별 분리 컨볼루션 확장, 효율적인 성능                |
| RegNet              | 2020  | -       | 11.2M  | 77.00%    | -         | -       | 규칙적인 네트워크 구조, 다양한 모델 크기                |
| AlexNet             | 2012  | 240     | 60M    | 62.50%    | 83.00%    | -       | ImageNet 우승, ReLU, 드롭아웃, LRN 도입        |
| DarkNet             | 2016  | -       | 23M    | -         | -         | •       | YOLO 백본 모델, 다양한 크기의 필터 사용              |
| CSPNet              | 2019  | -       | -      | -         | -         | -       | 스테이지 간 특징 맵 부분 연결, 학습 효율성 최적화          |
| ConvNeXtBase        | 2021  | 328     | 88M    | 82.90%    | -         | -       | Transformer 기법에서 영감, 다양한 크기로 구현 가능     |
| VGG16               | 2014  | 528     | 138M   | 71.50%    | 89.80%    | -       | 단순하고 깊은 구조, 3x3 컨볼루션 사용                |

• 교재 + tensorflow 제공 모델 + α (**Top-5 정확도** 기준 정렬)

| 모델                  | 출시 연도 | 크기 (MB) | 파라미터 수 | Top-1 정확도 | Top-5 정확도 | GPU(ms) | 주요 특징                                  |
|---------------------|-------|---------|--------|-----------|-----------|---------|----------------------------------------|
| EfficientNetB7      | 2019  | 256     | 66.7M  | 84.30%    | 97.00%    | 61.6    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB6      | 2019  | 166     | 43.3M  | 84.00%    | 96.80%    | 40.4    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB5      | 2019  | 118     | 30.6M  | 83.60%    | 96.70%    | 25.3    | 균형 잡힌 네트워크 스케일링                        |
| EfficientNetB4      | 2019  | 75      | 19.5M  | 82.90%    | 96.40%    | 15.1    | 균형 잡힌 네트워크 스케일링                        |
| NASNetLarge         | 2017  | 343     | 88.9M  | 82.70%    | 96.20%    | -       | NAS 알고리즘 설계, 고성능                       |
| SENet               | 2017  | 115     | 115M   | 82.70%    | 95.40%    | •       | Squeeze-and-Excitation 블록, 채널별 중요도 재조정 |
| EfficientNetB3      | 2019  | 48      | 12.3M  | 81.60%    | 95.70%    | 8.8     | 균형 잡힌 네트워크 스케일링                        |
| Inception-ResNet v2 | 2016  | 215     | 55.9M  | 80.30%    | 95.30%    | 10      | Inception + ResNet 결합                  |
| EfficientNetB2      | 2019  | 36      | 9.2M   | 80.10%    | 94.90%    | 6.5     | 균형 잡힌 네트워크 스케일링                        |
| Xception            | 2017  | 88      | 22.9M  | 79.00%    | 94.50%    | -       | 깊이별 분리 컨볼루션 확장, 효율적인 성능                |
| EfficientNetB1      | 2019  | 31      | 7.9M   | 79.10%    | 94.40%    | 5.6     | 균형 잡힌 네트워크 스케일링                        |
| Inception v3        | 2015  | 92      | 23.9M  | 77.90%    | 93.70%    | 6.9     | 병렬 컨볼루션, 차원 축소                         |
| EfficientNetB0      | 2019  | 29      | 5.3M   | 77.10%    | 93.30%    | 4.9     | 균형 잡힌 네트워크 스케일링                        |
| ResNet50            | 2015  | 98      | 25.6M  | 76.00%    | 93.00%    | 4.4     | 잔차 연결, 깊은 네트워크                         |
| GoogLeNet           | 2014  | 27      | 6.8M   | 74.80%    | 92.20%    | -       | 인셉션 모듈, 계산 효율성 향상                      |
| DenseNet121         | 2017  | 33      | 8M     | 74.90%    | 92.20%    | -       | 밀집 연결, 특성 재사용                          |
| NASNetMobile        | 2017  | 23      | 5.3M   | 74.40%    | 91.90%    | 6.7     | NAS 알고리즘 설계, 고성능                       |
| MobileNetV2         | 2018  | 14      | 3.5M   | 71.30%    | 90.10%    | 3.8     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| MobileNet           | 2017  | 16      | 4.3M   | 70.40%    | 89.50%    | 3.4     | 경량화된 아키텍처, 깊이별 분리 컨볼루션 사용              |
| VGG16               | 2014  | 528     | 138M   | 71.50%    | 89.80%    | -       | 단순하고 깊은 구조, 3x3 컨볼루션 사용                |
| ShuffleNet          | 2017  | 5       | 1.3M   | 70.90%    | -         | -       | 경량화 모델, 채널 셔플 사용                       |
| AlexNet             | 2012  | 240     | 60M    | 62.50%    | 83.00%    | -       | ImageNet 우승, ReLU, 드롭아웃, LRN 도입        |
| SqueezeNet          | 2016  | 1.3     | 1.2M   | 57.50%    | 80.30%    | -       | 모델 크기 축소, 'Fire' 모듈 사용                 |
| LeNet-5             | 1998  | -       | 60K    | -         | -         | -       | 초기 CNN 모델, 손글씨 숫자 인식                   |
| DarkNet             | 2016  | -       | 23M    | -         | -         | -       | YOLO 백본 모델, 다양한 크기의 필터 사용              |
| RegNet              | 2020  | -       | 11.2M  | 77.00%    | -         | -       | 규칙적인 네트워크 구조, 다양한 모델 크기                |
| CSPNet              | 2019  | -       | -      | -         | -         | -       | 스테이지 간 특징 맵 부분 연결, 학습 효율성 최적화          |
| ConvNeXtBase        | 2021  | 328     | 88M    | 82.90%    | -         | -       | Transformer 기법에서 영감, 다양한 크기로 구현 가능     |

| 모델                  | top-5 정확도 | 정규화  | 모델                  | GPU(ms) | 정규화  | 모델                  | 파라미터 수 | 정규화된 값 | 모델                  | 합산 점수 |
|---------------------|-----------|------|---------------------|---------|------|---------------------|--------|--------|---------------------|-------|
| EfficientNetB7      | 97.00%    | 1    | MobileNet           | 3.4     | 1    | LeNet-5             | 60K    | 1      | EfficientNetB1      | 2.74  |
| EfficientNetB6      | 96.80%    | 0.99 | MobileNetV2         | 3.8     | 0.99 | SqueezeNet          | 1.2M   | 0.99   | EfficientNetB2      | 2.74  |
| EfficientNetB5      | 96.70%    | 0.98 | ResNet50            | 4.4     | 0.98 | ShuffleNet          | 1.3M   | 0.99   | EfficientNetB0      | 2.71  |
| EfficientNetB4      | 96.40%    | 0.96 | EfficientNetB0      | 4.9     | 0.97 | MobileNetV2         | 3.5M   | 0.97   | EfficientNetB3      | 2.71  |
| NASNetLarge         | 96.20%    | 0.95 | EfficientNetB1      | 5.6     | 0.96 | MobileNet           | 4.3M   | 0.97   | Inception v3        | 2.58  |
| SENet               | 95.40%    | 0.92 | EfficientNetB2      | 6.5     | 0.94 | NASNetMobile        | 5.3M   | 0.96   | MobileNetV2         | 2.55  |
| EfficientNetB3      | 95.70%    | 0.9  | NASNetMobile        | 6.7     | 0.94 | EfficientNetB0      | 5.3M   | 0.96   | ResNet50            | 2.56  |
| Inception-ResNet v2 | 95.30%    | 0.9  | Inception v3        | 6.9     | 0.94 | GoogLeNet           | 6.8M   | 0.95   | MobileNet           | 2.52  |
| EfficientNetB2      | 94.90%    | 0.87 | EfficientNetB3      | 8.8     | 0.9  | EfficientNetB1      | 7.9M   | 0.94   | NASNetMobile        | 2.59  |
| Xception            | 94.50%    | 0.85 | Inception-ResNet v2 | 10      | 0.88 | DenseNet121         | 8M     | 0.94   | EfficientNetB4      | 2.62  |
| EfficientNetB1      | 94.40%    | 0.84 | EfficientNetB4      | 15.1    | 0.8  | EfficientNetB2      | 9.2M   | 0.93   | EfficientNetB5      | 2.37  |
| Inception v3        | 93.70%    | 0.8  | EfficientNetB5      | 25.3    | 0.61 | RegNet              | 11.2M  | 0.92   | Inception-ResNet v2 | 2.38  |
| EfficientNetB0      | 93.30%    | 0.78 | EfficientNetB6      | 40.4    | 0.34 | EfficientNetB3      | 12.3M  | 0.91   | EfficientNetB6      | 2.02  |
| ResNet50            | 93.00%    | 0.76 | EfficientNetB7      | 61.6    | 0    | Inception v3        | 23.9M  | 0.84   | EfficientNetB7      | 1.52  |
| GoogLeNet           | 92.20%    | 0.71 | LeNet-5             | -       | 0    | DarkNet             | 23M    | 0.84   |                     |       |
| DenseNet121         | 92.20%    | 0.71 | SqueezeNet          | -       | 0    | ResNet50            | 25.6M  | 0.82   |                     |       |
| NASNetMobile        | 91.90%    | 0.69 | ShuffleNet          | -       | 0    | Xception            | 22.9M  | 0.84   |                     |       |
| MobileNetV2         | 90.10%    | 0.59 | DenseNet121         | -       | 0    | EfficientNetB4      | 19.5M  | 0.86   |                     |       |
| MobileNet           | 89.50%    | 0.55 | GoogLeNet           | -       | 0    | EfficientNetB5      | 30.6M  | 0.78   |                     |       |
| VGG16               | 89.80%    | 0.57 | NASNetLarge         | -       | 0    | EfficientNetB6      | 43.3M  | 0.69   |                     |       |
| ShuffleNet          | -         |      | SENet               | -       | 0    | Inception-ResNet v2 | 55.9M  | 0.6    |                     |       |
| AlexNet             | 83.00%    | 0.16 | Xception            | -       | 0    | AlexNet             | 60M    | 0.57   |                     |       |
| SqueezeNet          | 80.30%    | 0    | RegNet              | -       | 0    | EfficientNetB7      | 66.7M  | 0.52   |                     |       |
| LeNet-5             | -         |      | AlexNet             | -       | 0    | ConvNeXtBase        | 88M    | 0.36   |                     |       |
| DarkNet             | -         |      | DarkNet             | -       | 0    | NASNetLarge         | 88.9M  | 0.35   |                     |       |
| RegNet              | -         |      | CSPNet              | -       | 0    | SENet               | 115M   | 0.18   |                     |       |
| CSPNet              | -         |      | ConvNeXtBase        | -       | 0    | VGG16               | 138M   | 0      |                     |       |
| ConvNeXtBase        | -         |      | VGG16               | -       | 0    | CSPNet              | -      | 0      |                     |       |

#### Plan

- 1. 최종 모델 선정 → 통계적 가설검정
- 2. 하이퍼파라미터
  - 1. 배치 사이즈 변경
  - 2. Learning Rate Scheduler
  - 3. 활성화 함수 변경 → 더 다양한 함수 활용
  - 4. Regularization 추가 → 더 다양한 규제 방법 활용
  - 5. 데이터 증강(data augmentation) → 더 다양한 augmentation 방법 활용
  - 6. optimizer 변경
  - 7. batchnormalization 추가
  - 8. 네트워크 깊이 및 폭 변경: 블록 수 변경, 각 블록의 필터 수 변경

감사합니다