Produit Mixte ou Determinant dans \mathbb{R}^3

Soient \overrightarrow{u} , \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^3$. Cette semaine on a defini une nouvelle operation qui s'appelle produit mixte:

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] := \langle \overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w} \rangle$$

Exercice 1. (Produit mixte)

- (a) Montrer que $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] := \langle \overrightarrow{u}, \overrightarrow{v} \times \overrightarrow{w} \rangle$.
- (b) Expliquer géometriquement ce que le produit mixte mesure.
- (c) Determiner si $\overrightarrow{u} = (2,1,3)$, $\overrightarrow{u} = (1,4,-1)$ et $\overrightarrow{w} = (1,-3,4)$ sont coplanaires en utilisant le produit mixte.

Exercice 2. (Determinant) Un autre nom pour le produit mixte dans \mathbb{R}^3 est determinant.

(a) Montrer que le determinant est une application multilineaire et alternée.

Soit $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = c$. Soient $\alpha, \beta \in \mathbb{R}$. Calculer

- (b) $\det(\alpha \overrightarrow{u}, \alpha \overrightarrow{v}, \alpha \overrightarrow{w})$
- (c) $\det(\alpha \overrightarrow{u} + \beta \overrightarrow{v}, \overrightarrow{v}, \overrightarrow{w})$
- (d) $\det(\overrightarrow{v}, \alpha \overrightarrow{u} + \beta \overrightarrow{v}, \overrightarrow{w})$

Exercice 3. (Mesures géometriques) Soient $\overrightarrow{u} = (2, 1, -2), \overrightarrow{v} = (3, -2, 4).$

- (a) Calculer l'aire du parallelograme determiné par \overrightarrow{u} et \overrightarrow{v} .
- (b) Sans faire de calcul, determiner le volume du parallelepipede determiné par \overrightarrow{u} , \overrightarrow{v} et $\frac{\overrightarrow{u} \times \overrightarrow{v}}{||\overrightarrow{u} \times \overrightarrow{v}||}$.

Exercice 4. (Bonus) Trouver l'équation d'un plan dans \mathbb{R}^3 .

 $GS\ddot{U}$ 1 26.04.2024