Estimating the Hourly Solar NIR Irradiance for Sustainable Building Engineering

Qiuhua Duan, Yanxiao Feng, Julian Wang*

Pennsylvania State University

Outline

- Introduction
- Methodology
 - Data Collection
 - Data Processing
- Results and Discussion
- Conclusions

Introduction

- Spectral solar radiation data

 Solar architecture design
 - UV + VIS + NIR
- Measuring spectral solar radiation
 - Difficult
 - Expensive

Methodology

- Data Collection
 - Selected from the SRRL BMS database of the NREL Solar Radiation Research Laboratory
 - Meteorological measurements (TMY3) and outdoor solar spectra data (WISER) were selected
 - o Date: 1/1/2018 ~ 12/31/2019
 - o Time: 7am ~ 8 pm
 - o Variables: GHI, DNI, DHI, cloud coverage, dry-bulb temperature, dewpoint, relative humidity, and wind speed etc., NIR

Methodology

- Data Processing
 - Clearness index K_t

extraterrestrial horizontal global irradiance

solar radiation

$$K_t = \frac{GHI}{I_0 \cos(\zeta)}$$
 solar zenith angle

• Cloud transmittance T_{cld}

$$T_{cld} = \underbrace{\frac{(1-0.1T_{opq})(1-0.1T_{tot}+0.1T_{opq})}{1-0.05T_{tot}}}_{\text{opaque sky cover transmittance}} = \underbrace{\frac{(1-0.1T_{opq})(1-0.1T_{trn})}{1-0.05T_{tot}}}_{\text{total sky cover transmittance}}$$

- Predictor variables:
- Dependent variable NIR/GHI

translucent sky

cover transmittance

Results and Discussion

• CART results for the NIR/GHI fraction

Figure 1. Cross-validation error plot for the *NIR/GHI* tree

0.417 100.0%

Kt < 0.415 - no

Figure 2. Regression tree model for *NIR/GHI*

Pruned Regression Tree for NIR/GHI

Figure 3. Pruned regression tree model for *NIR/GHI*

Results and Discussion

• Estimation performance evaluation

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2} \qquad MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Table 1 Comparison of RMSE and MAE by Models

	NIR/GHI	
Regression Tree	Model 1	Model 2
Tree size	10	3
RMSE	0.0391	0.0388
MAE	0.0213	0.0216

Conclusions

- The proposed regression tree models for hourly *NIR/GHI* has excellent prediction performance.
- This research provides a statistical method to covert broadband solar irradiance data in weather files into NIR solar component for building energy and performance-related studies.

Next step

- The affects of other atmospheric parameters on NIR components.
- VIS component modelling based on conventional weather dataset.
- The other statistical modelling for VIS, NIR components.

Thank You!

Questions?

This project is supported by the NSF award:#1847024: CAREER: Understanding the Thermal and Optical Behaviors of the Near Infrared (NIR)-Selective Dynamic Glazing Structures

