Московский Физико-Технический Институт

Кафедра общей физики

Лабораторная работа №3.2.2

Резонанс напряжений.

Автор:

Глеб Уваркин 615 группа Преподаватель:

Андрей Александрович Заболотных

Цель работы:

Изучение последовательной цепи переменного тока, наблюдение резонанса напряжений.

В работе используются:

Регулировочный автотрансформатор, катушка индуктивности с выдвижным сердечником, магазин ёмкостей, реостат, резистор, амперметр, три вольтметра, ваттметр, осциллограф, универсальный мост.

1 Теоретические сведения.

Рис. 1: Схема установки для изучения закона Ома в цепи переменного тока.

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансом $Z_L=r_L+i\Omega L$, последовательно подключённых к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω (рис 1).

Обозначим через U_R напряжение на резисторе, через U_L – напряжение на катушке и через U_{R+L} – суммарное напряжение на катушке и на резисторе. Для этих напряжений справедливы комплексные соотношения:

$$\widehat{U}_R = \widehat{I}R, \ \widehat{U}_L = \widehat{I}(r_L + i\omega L), \ \widehat{U}_{R+L} = \widehat{I}(R + r_L + i\Omega L)$$
 (1)

где r_L – активное сопротивление катушки, которое характеризует суммарные потери энергии в катушке, в том числе потери в её ферромагнитном сердечнике.

Переходя к модулям и фазам токов и напряжений, найдём из (1):

$$U_R = I \cdot R, \quad tg\psi_1 = 0 \tag{2}$$

$$U_L = I \cdot \sqrt{r_L^2 + (\Omega L)^2}, \quad tg\psi_2 = \frac{\Omega L}{r_L}$$
(3)

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2}, \quad tg\psi_3 = \frac{\Omega L}{R+r_L}.$$
 (4)

В этих формулах U и I обозначают эффективные значения напряжений и токов (показания приборов), как принято в электротехнике.

Измеряя с помощью трёх вольтметров значения U_R , U_L и U_{R+L} и зная сопротивление резистора R, нетрудно вычислить, пользуясь формулами (2), (3) и (4), силу тока в цепи, активное сопротивление катушки r_L , её индуктивность L, мощность P_L , выделяемую на катушке, и сдвиг фаз между током и напряжением на катушке.

Рассчитаем мощность переменного тока, выделяемую в катушке. Мгновенное значение мощности равно

$$P = U(t) \cdot I(t).$$

Средняя мощность за период T определяется формулой

$$\overline{P} = \frac{1}{T} \int_{0}^{T} U(t) \cdot I(t) dt$$

Полагая $I(t) = I\sqrt{2}\cos\Omega t,\ U(t) = U\sqrt{2}\cos(\Omega t + \psi),$ получим после интегрирования:

$$P_L = U_L \cdot I \cos \psi = I^2 \cdot r_L. \tag{5}$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется, таким образом, действительной частью её импеданса.

Активное сопротивление катушки r_L можно определить, если включить её в последовательный колебательный контур с известными параметрами – сопротивлением R и ёмкостью C (рис.2). В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частоту контура и внешняя совпадают: $\omega_0 = \Omega$), реактивные сопротивления индуктивности и ёмкости одинаковы:

$$\omega_0 L = \frac{1}{\omega_0 C}.\tag{6}$$

Определив каким-либо экспериментальным способом добротность этого контура, можно рассчитать полное сопротивление контура R_{\sum} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (7)

Резонансное сопротивление контура R_{\sum} включает в себя известное сопротивление резистора R и активное сопротивление катушки r_L :

$$R_{\sum} = R + r_L. \tag{8}$$

2 Экспериментальная установка.

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R_1 \simeq 100$ Ом и катушки L с выдвижным сердечником, подключена к автотрансформатору, выходное напряжение которого можно менять от 0 до 127 В. Напряжение на каждом из элементов и суммарное напряжение цепи измеряются тремя вольтметрами: V_R , V_L , и V_{R+L} . Амперметр A измеряет ток в цепи, а ваттметр P – мощность, выделяющуюся на катушке.

Рис. 2: Схема установки для наблюдения резонанса напряжений.

Схема установки для изучения резонанса напряжений изображена на рис.2. Последовательно соединены резистор $R_2\simeq 5$ Ом, катушка L и магазин ёмкостей C. Амперметр A измеряет ток в цепи, вольтметр V_C – напряжение на ёмкости, вольтметр V_{\sum} – суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y – напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию.

Резонансные напряжения на контуре $U_{\sum,\mathrm{pes}}$ и на ёмкости $U_{C,\mathrm{pes}}$ равны соответственно

$$U_{\sum,\text{pes}} = I_{\text{pes}} R_{\sum}, \quad U_{C,\text{pes}} = \frac{I_{\text{pes}}}{\Omega C}$$
 (9)

Сравнивая (7) и (9), получим

$$Q = \frac{U_{C,\text{pe3}}}{U_{\sum,\text{pe3}}} \tag{10}$$

Формула (10) показывает, что добротность контура может быть найдена по измеренным значениям напряжений на контуре и на конденсаторе при резонансе. Зная добротность контура и ёмкость C, можно рассчитать R_{\sum} по формуле (7), а затем определить r_L .

3 Обработка результатов.

3.1 Закон Ома в цепи переменного тока.

Перемещая сердечник шагами по 2 м, снимем зависимость тока I, напряжений U_R , U_L , U_{R+L} и мощности P_L от координаты сердечника x. По результатам измерений P_L и I вычислим значение r_L по формуле (5), а также, зная частоту сети $\nu_0=50$ Гц, определим L с помощью (3):

x , MM σ_x , MM	3	5	7	9	10	11 0.5	13	15	17	19	21
$ \begin{array}{c} I \cdot 10^{-1}, \ A \\ \sigma_I \cdot 10^{-1}, \ A \end{array} $	5.25	7.25	8.50	9.00	9.25	9.50 0.25	9.75	10.00	10.13	10.25	10.50
P_L , Вт σ_{P_L} , Вт	15.75	13	11.25	10.50	10.25	9.75 0.25	9.00	8.75	8.25	8	7.75
$r_L, \; OM \ \sigma_{r_L}, \; OM$	57.1 3.9	24.7 1.3	15.6 0.7	12.9 0.6	11.9 0.5	10.8 0.5	9.47 0.4	8.8 0.4	8.0 0.4	7.6 0.4	7.0 0.3
$U_L,\; \mathrm{B} \ \sigma_{U_L},\; \mathrm{B}$	102	87	71	69	63	61 1	58	54	51	49	46
$L \cdot 10^{-2}, \; \Gamma_{\rm H} \ \sigma_L \cdot 10^{-2}, \; \Gamma_{\rm H}$	59.1 5.0	37.4 2.4	26.1 1.5	24.1 1.3	21.4 1.2	20.2 1.1	18.7 1.0	16.9 0.9	15.8 0.9	15.0 0.8	13.8 0.8

Таблица 1: Определение r_L и L.

Построим графики зависимостей L и r_L от положения сердечника и определим по ним значения L и r_L , соответствующее среднему (резонансному) положению сердечника.

Рис. 3: Зависимость L и r_L от положения сердечника.

$$L \simeq (214 \pm 12)$$
 мГн ($\varepsilon \simeq 5.6\%$), $r_L \simeq (11.9 \pm 0.5)$ Ом ($\varepsilon \simeq 4.2\%$)

Для среднего положения сердечника построим векторную диаграмму напряжений. Отложим на диаграмме активную ($U_{L, \text{ акт}}$) и реактивную ($U_{L, \text{ реакт}}$) составляющие напряжения на катушке и рассчитаем по ним значения L и r_L .

Таблица 2: Показания вольтметров и амперметра при среднем положении сердечника.

U_R , B	U_{R+L} , B	$\mid U_L, \; B$	I, A	
83	114	63	0.925	

Рис. 4: Векторная диаграмма.

По теореме косинусов получаем:

$$\cos \theta = -\frac{U_R^2 + U_L^2 - U_{R+L}^2}{2U_R U_L} \simeq 0.204 \pm 0.004$$

Отсюда имеем:

$$\begin{split} U_{L, \ {\rm akt}} &= U_L \cos \theta \simeq (12.85 \pm 0.32) \ {\rm B} \\ U_{L, \ {\rm peakt}} &= U_L \sqrt{1 - \cos^2 \theta} \simeq (61.68 \pm 1.56) \ {\rm B}. \\ U_{L, \ {\rm akt}} &= I \cdot r_L \ \Rightarrow \ r_L = \frac{U_{L, \ {\rm akt}}}{I} \simeq (13.89 \pm 0.51) \ {\rm Om} \ (\varepsilon \simeq 3.7\%) \\ U_{L, \ {\rm peakt}} &= I \Omega L \ \Rightarrow \ L = \frac{U_{L, \ {\rm peakt}}}{I \Omega} \simeq (212.4 \pm 7.9) \ {\rm M} \Gamma {\rm H} \ (\varepsilon \simeq 3.7\%). \end{split}$$

Рассчитаем $\cos \theta$ по формуле (5):

$$\cos \theta = \frac{P_L}{U_L \cdot I} \simeq 0.176 \pm 0.007.$$

Значения $\cos \theta$, полученное с помощью векторной диаграммы и рассчитанное по формуле (5), очень близки.

С помощью векторной диаграммы по теореме косинусов рассчитаем мощность P_L , выделяемую на катушке, через напряжения U_R , U_L , U_{R+L} и сопротивление $R_1=98$ Ом (метол трёх вольтметров).

$$P_L = U_L I \cos \theta = U_L \frac{U_R}{R_1} \cos \theta \simeq (10.88 \pm 0.30)$$
 Вт.

3.2 Резонанс напряжений.

Рассчитаем активное сопротивление катушки r_L через ток и напряжение на контуре (формулы (8) и (9)).

$$r_L = \frac{U_{\sum, \text{ pe3}}}{I_{\text{pe3}}} - R_2 = \frac{31}{3.05} - 5.6 = (4.56 \pm 0.10) \text{ Om } (\varepsilon \simeq 2.2\%)$$

<u>MIPT</u>

Рассчитаем L и r_L через добротность (формулы (10), (6), (7), (8)):

$$Q = \frac{U_{C, \text{ pes}}}{U_{\sum, \text{ pes}}} = \frac{230}{31} \simeq 7.42 \pm 0.14$$

$$r_L = \frac{1}{Q\omega_0 C} - R_2 = \frac{1}{7.42 \cdot 2\pi \cdot 50 \cdot 42.6 \cdot 10^{-6}} - 5.6 \simeq (4.48 \pm 0.24) \text{ Om } (\varepsilon \simeq 5.4\%)$$

$$L = \frac{(r_L + R_2)Q}{\omega_0} = \frac{10.07 \cdot 7.42}{2\pi \cdot 50} \simeq (238 \pm 14) \text{ мГн } (\varepsilon \simeq 5.9\%).$$

Занесём результаты в таблицу:

Таблица 3: Полученные значения.

	Мост Е7-	График	Вект.диагр	$f(I_{\text{pes}},U_{\sum,\text{pes}})$	f(Q)
r_L , Om	4.86	11.9 ± 0.5	13.9 ± 0.5	4.56 ± 0.10	4.48 ± 0.24
L , м Γ н	202	214 ± 12	212 ± 8	-	238 ± 14

4 Вывод.

Значения индуктивности катушки, полученные разными способами, практически совпадают, а значения активного сопротивления катушки, измеренные с помощью разных цепей (в рамках одной цепи значения близки), различаются. Это может быть связано с тем, что в цепи, изображенной на рис.(1) сила тока была около 1 A, а в цепи, изображенной на рис.(2) – 3 A, а, как известно, активное сопротивление катушки зависит от частоты и амплитуды тока.