upper brund Upper bound max f(x = X.) loner bound -) Amy feasible sol is a f(X)lower bound X < V feesibe region Example. Max X, + X2 $X_1 + X_2 \leq 2X_1 + X_2 + 4X_3 \leq 5$ S.t. 2x,+x2+4X1 < 3 obviously it is upper band. $X_1, X_2, X_3 \geq 0$ $U_1(2X_1+X_2+4X_3)+U_2(X_1+X_2-3X_3) \leq 3U_1+U_2$ (2U,+U2) X, +(U,+U2) X2 + (4U,-3U2) X3 ≤ 3U,+U2 best upper bound: min 3 u. + u. S.t. Zuituz 21 U1+U2 21. 44,-34,20 U1. U2 20 look and Strong duality. mex CTX (P) Sit. Ax & b His mxn X > 17

we can do above process for any linear program TUERM, UZO $U'Ax \leq U^Tb$ and-E-F $min U^T b \iff min b'U$ S.t. UTA > CT (D) S.t. ATU> C Theorem 12.1 (week duality) For any $x \in \mathbb{R}^n$ that is feasible for prince P, and any $U \in \mathbb{R}^m$ that is feasible for dual LP we have CTX & b'U Theorem 12.2 (Strong duality) If either (P) or (1) hers an opt solution, then so does the other, the objustues of opt solutions are equal.

Duality for any LP.
change first example:
Max X, + X2
S.t. $2X_1+X_2+4X_3 \leq 3$
$\begin{array}{c} X_1 + X_2 - \frac{1}{2} X_3 \leqslant 1 \\ X_1, X_2, X_3 \geqslant 0. \end{array}$
Unconstrained vars give us equality ("=")
constraint in dual LP.
12 x2 ? x2
($k \times 2$? $\times 2$) only when $k=1$ when can sure "?" is "="
want lower bounds: the relationship between
(P) and (D) is swapped.
The relationship between (P) and (D) is
Symmetric: if (1) is the dual of (P), then (P)
is the dual of (D).