

Regression vs. Classification

Moriya Bitton

What is Regression Machine Learning?

אלגוריתמי רגרסיה מנבאים <u>ערך רציף</u> בהתאם למשתני הקלט.

בעיות רגרסיה מעריכות פונקציית מיפוי בהתאם למשתני הקלט והפלט.

Different types of regression algorithms:

- 1. Simple linear regression
- 2. Multiple linear regression
- 3. Polynomial regression

1. Simple linear regression

ניתן להעריך את הקשר בין משתנה בלתי תלוי אחד למשתנה תלוי אחר באמצעות **קו ישר**, בהינתן ששני המשתנים הם כמותיים.

2. Multiple linear regression

הרחבה של Simple linear regression.

יכולה לחזות את הערכים של משתנה תלוי בהתבסס על הערכים של **שני** משתנים בלתי תלויים או **יותר**.

3. Polynomial regression

ליצור מודל, או למצוא קשר לא לינארי בין משתנים תלויים ובלתי תלויים.

What is Classification Machine Learning?

מודל חיזוי שמעריך פונקציית מיפוי ממשתני הקלט לזיהוי משתני פלט נפרדים (labels, categories)

פונקציית המיפוי אחראית לניבוי ה-label או ה-category של משתני הקלט הנתונים, דורשת לפחות שתי מחלקות לסיווג.

Different types of classification algorithms:

- 1. Decision tree classification
- 2. Random forest classification
- 3. K-nearest neighbor

1. Decision tree classification

באלגוריתם זה נוצר מודל סיווג על ידי בניית עץ החלטות, כך שכל **צומת** בעץ היא מקרה "מבחן" עבור **תכונה** וכל **ענף** שמגיע מהצומת הוא ערך **סיווג** אפשרי עבור אותה תכונה.

2. Random forest classification

training dataset- קבוצה של עצי החלטה שנבחרים באופן אקראי מתוך תת קבוצה של ה

אלגוריתם זה קובע את החיזוי הסופי בהתאם לתוצאות כל תתי עצים.

אלגוריתם זה **מדויק יותר** מכל אחד מעצי ההחלטה הבודדים שהוא מכיל.

3. K-nearest neighbor

יוצא מנקודת הנחה ש-sample **דומים** ימצאו **קרובים** במרחב.

משתמש בדמיון תכונה לחיזוי ערכים ו"מקבץ" samples דומים יחד ע"פ קרבתם.

האלגוריתם קובע: כמה סביר עבור sample ספציפי, להיות חלק מהקבוצה הספציפית.

Code

Understanding the Difference

רגרסיה עוזרת לחזות כמות רציפה, סיווג מנבא תוצאות מחלקות נפרדות.

Example – Regression

נאמר שנרצה לחזות את גובהו של סטודנט באוניברסיטת אריאל על סמך משקל ומין.

נשתמש ברגרסיה כיוון שגובה זו כמות מתמשכת- אינסוף ערכים אפשריים לגובהו של אדם.

Example - Classification

נרצה לסווג דואר אלקטרוני להודעות Spam ו-Not Spam. בהתאם לתוכן ההודעה ולכתובת השולח.

Example - Both:

Regression

ישמש לחזות טמפרטורה ביום הבא.

Regression

What is the temperature going to be tomorrow?

PREDICTION 84° 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

Classification

יסווג את היום הבא ל"קר" ו"חם" בהתאם לטמפרטורה שחזה מודל הרגרסיה.

The End

