Chapitre 2

Caractéristation inertielle des solides Savoirs et compétences :

- ☐ Mod2.C13: centre d'inertie
 ☐ Mod2.C14: opérateur d'inertie
 ☐ Mod2.C15: matrice d'inertie

Volants d'inertie d'un vilebrequin

1	Masse et centre de masse (centre d'ineme)	_
1.1	Masse d'un solide indéformable	2
1.2	Centre d'inertie d'un solide	2
1.3	Centre d'inertie d'un ensemble de solides encastrés entr	е
	eux	2
2	Matrice d'inertie d'un solide	2
2.1	Opérateur et matrice d'inertie	2
2.2	Déplacement d'une matrice d'inertie	3
2.3	Détermination de la matrice d'inertie d'un solide	3
2.4	Compléments	3
2.5	Matrice d'inertie de solides usuels	3

1 Masse et centre de masse (centre d'inertie)

1.1 Masse d'un solide indéformable

Définition On peut définir la masse totale d'un solide S par : $M = \int\limits_{P \in S} \mathrm{d} m$. Si de plus l'ensemble est fait d'un matériau homogène de masse volumique μ , on a $M = \mu \int\limits_{P \in S} \mathrm{d} V$.

1.2 Centre d'inertie d'un solide

Définition La position du centre d'inertie G d'un solide S est définie par $\int_{P \in S} \overrightarrow{GP} dm = \overrightarrow{0}$.

Pour déterminer la position du centre d'inertie d'un solide S, on passe généralement par l'origine du repère associé à S. On a alors $\int\limits_{P\in S}\overrightarrow{GP}\,\mathrm{d}m=\int\limits_{P\in S}\left(\overrightarrow{GO}+\overrightarrow{OP}\right)\mathrm{d}m=\overrightarrow{O}\Longleftrightarrow\int\limits_{P\in S}\overrightarrow{OG}\,\mathrm{d}m=\int\limits_{P\in S}\overrightarrow{OP}\,\mathrm{d}m\Longleftrightarrow M\overrightarrow{OG}=\int\limits_{P\in S}\overrightarrow{OP}\,\mathrm{d}m.$

Méthode Pour déterminer les coordonnées (x_G, y_G, z_G) du centre d'inertie G du solide S dans la base $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$, on a donc :

$$\begin{cases}
Mx_G = \mu \int\limits_{P \in S} x_P \, dV \\
My_G = \mu \int\limits_{P \in S} y_P \, dV \\
Mz_G = \mu \int\limits_{P \in S} z_P \, dV
\end{cases}$$
 avec dV volume élémentaire du solide S.

Pour simplifier les calculs, on peut noter que le centre d'inertie appartient au(x) éventuel(s) plan(s) de symétrie du solide.

1.3 Centre d'inertie d'un ensemble de solides encastrés entre eux

Méthode Soit un solide composé de n solides élémentaires dont la position des centres d'inertie G_i et les masses M_i sont connues. On note $M = \sum_{i=1}^n M_i$. La position du centre d'inertie G de l'ensemble S est donné par :

$$\overrightarrow{OG} = \frac{1}{M} \sum_{i=1}^{n} M_i \overrightarrow{OG_i}.$$

2 Matrice d'inertie d'un solide

2.1 Opérateur et matrice d'inertie

Définition Soient :

- un solide *S* de masse *m* en mouvement par rapport à un repère $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$;
- $\Re_S = (O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ le repère lié au solide S;
- P un point de S tel que $\overrightarrow{OP} = x_p \overrightarrow{x} + y_p \overrightarrow{y} + z_p \overrightarrow{z}$;
- \overrightarrow{u} un vecteur unitaire du solide S.

On appelle opérateur d'inertie l'application linéaire définie par :

$$\overrightarrow{u} \to \overrightarrow{J_{(O,S)}(\overrightarrow{u})} = \int_{O} \overrightarrow{OP} \wedge (\overrightarrow{u} \wedge \overrightarrow{OP}) dm$$

On appelle matrice d'inertie du solide S en O, $I_O(S)$, l'image de cette application linéaire : $\overrightarrow{I_{(O,S)}(u)} = I_O(S)\overrightarrow{u}$.

Définition — **Matrice d'inertie**. La matrice d'inertie s'écrit ainsi :

$$I_{O}(S) = \begin{pmatrix} \int_{S} \left(y_{p}^{2} + z_{p}^{2} \right) dm & -\int_{S} \left(x_{p} y_{p} \right) dm & -\int_{S} \left(x_{p} z_{p} \right) dm \\ -\int_{S} \left(x_{p} y_{p} \right) dm & \int_{S} \left(x_{p}^{2} + z_{p}^{2} \right) dm & -\int_{S} \left(y_{p} z_{p} \right) dm \\ -\int_{S} \left(x_{p} z_{p} \right) dm & -\int_{S} \left(y_{p} z_{p} \right) dm & \int_{S} \left(x_{p}^{2} + y_{p}^{2} \right) dm \end{pmatrix}_{\Re_{S}} = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{\Re_{S}}.$$

On appelle moments d'inertie par rapport aux axes (O, \overrightarrow{x}) , (O, \overrightarrow{y}) et (O, \overrightarrow{z}) les termes A, B et C. On appelle produit d'inerties par rapport aux axes (O, \overrightarrow{y}) et (O, \overrightarrow{z}) , (O, \overrightarrow{x}) et (O, \overrightarrow{z}) , (O, \overrightarrow{x}) et (O, \overrightarrow{y}) les termes D, E et F.

Propriété	🔲 La matrice d'inertie est une matrice symétrique. Il existe une base dans laquelle elle est diagonali-
sable.	Cette base est appelée base principale d'inertie.

- Si $(O, \overrightarrow{x}, \overrightarrow{y})$ est un plan de symétrie du solide, D et E sont nuls.

 Si $(O, \overrightarrow{z}, \overrightarrow{x})$ est un plan de symétrie du solide, D et E sont nuls.

 Si $(O, \overrightarrow{y}, \overrightarrow{z})$ est un plan de symétrie du solide, E et E sont nuls.
- ☐ Si un solide admet 2 plans de symétrie, alors *D*, *E* et *F* sont nuls.

Déplacement d'une matrice d'inertie - Théorème de Huygens

Théorème — **Théorème de Huygens.** Soit S un solide de centre d'inertie G, de masse m, d'inertie $I_G(S)$ et d'inertie $I_O(S)$ avec $\overrightarrow{OG} = a \overrightarrow{x} + b \overrightarrow{y} + c \overrightarrow{z}$. Les matrices $I_O(S)$ et $I_O(S)$ exprimées dans la base $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ sont liées

$$\begin{pmatrix} A_O & -F_O & -E_O \\ -F_O & B_O & -D_O \\ -E_O & -D_O & C_O \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} A_G & -F_G & -E_G \\ -F_G & B_G & -D_G \\ -E_G & -D_G & C_G \end{pmatrix}_{\mathcal{B}} + \begin{pmatrix} m\left(b^2+c^2\right) & -mab & -mac \\ -mab & m\left(a^2+c^2\right) & -mbc \\ -mac & -mbc & m\left(a^2+b^2\right) \end{pmatrix}_{\mathcal{B}}.$$

2.3 Détermination de la matrice d'inertie d'un solide

- **Compléments** 2.4
- Matrice d'inertie de solides usuels 2.5

Références

- [1] Emilien Durif, Introduction à la dynamique des solides, Lycée La Martinière Monplaisir, Lyon.
- [2] Florestan Mathurin, Correction des SLCI, Lycée Bellevue, Toulouse, http://florestan.mathurin.free.fr/.