Probabilités III

MINES ParisTech

6 décembre 2021 (#bb7c938)

Question 1	Soient $X \sim \mathcal{E}($	λ), $\lambda > 0$, et	$Y \sim \mathcal{B}(1/2)$	deux variables	aléatoires
réelles indéper	ndantes, et $Z =$	XY + (1 - Y)	(λ)) La dens	sité $f_{Z Y=1}$ est	égale à

- $\Box A : \frac{\lambda}{2} \exp(-\lambda z)$ $\Box B : \lambda \exp(-\lambda z)$
- \square C : Z n'admet pas de densité
- \square D : $Z = \lambda$ p.s.

Question 2 (réponses multiples) Avec les hypothèses précédentes, on a

Question 3 Soient X et Y deux variables aléatoires de densité jointe $f_{X,Y}(x,y) = \frac{1}{x} \mathbb{1}_{[0,x]}(y) \lambda \exp(-\lambda x), \ \lambda > 0.$ Quelle est la densité de Y|X=x?

- \square A: $\exp(-y)$

- $\Box \ \mathbf{B} : \mathbf{1}_{[0,x]}(y)$ $\Box \ \mathbf{C} : \frac{1}{x} \mathbf{1}_{[0,x]}(y)$ $\Box \ \mathbf{D} : \lambda \exp(-\lambda x)$

Question 4 En déduire la valeur de $\mathbb{E}(Y)$:

- $\Box A : 1/2$

- $\Box \mathbf{B} : x/2$ $\Box \mathbf{C} : \frac{1}{2\lambda}$ $\Box \mathbf{D} : \lambda^2$

Question 5 Soit (X,Y) un vecteur gaussien d'espérance (μ_X,μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de X|Y vaut :