Supplement to "Multiscale Inference for Nonparametric Time Trends"

Marina Khismatullina University of Bonn

Michael Vogt University of Bonn

September 28, 2018

In this supplement, we provide the technical details and proofs that are omitted in the paper. In addition, we report the results of some robustness checks which complement the simulation exercises in Section 5 of the paper.

S.1 Proofs of the results from Section 3

In this section, we prove the theoretical results from Section 3. We use the following notation: The symbol C denotes a universal real constant which may take a different value on each occurrence. For $a, b \in \mathbb{R}$, we write $a_+ = \max\{0, a\}$ and $a \lor b = \max\{a, b\}$. For any set A, the symbol |A| denotes the cardinality of A. The notation $X \stackrel{\mathcal{D}}{=} Y$ means that the two random variables X and Y have the same distribution. Finally, $f_0(\cdot)$ and $F_0(\cdot)$ denote the density and distribution function of the standard normal distribution, respectively.

Auxiliary results using strong approximation theory

The main purpose of this section is to prove that there is a version of the multiscale statistic $\widehat{\Phi}_T$ defined in (3.4) which is close to a Gaussian statistic whose distribution is known. More specifically, we prove the following result.

Proposition S.1. Under the conditions of Theorem 3.1, there exist statistics $\widetilde{\Phi}_T$ for T = 1, 2, ... with the following two properties: (i) $\widetilde{\Phi}_T$ has the same distribution as $\widehat{\Phi}_T$ for any T, and (ii)

$$\left|\widetilde{\Phi}_T - \Phi_T\right| = o_p \left(\frac{T^{1/q}}{\sqrt{Th_{\min}}} + \rho_T \sqrt{\log T}\right),$$

where Φ_T is a Gaussian statistic as defined in (3.3).

Proof of Proposition S.1. For the proof, we draw on strong approximation theory for stationary processes $\{\varepsilon_t\}$ that fulfill the conditions (C1)–(C3). By Theorem 2.1 and Corollary 2.1 in Berkes et al. (2014), the following strong approximation result holds true: On a richer probability space, there exist a standard Brownian motion \mathbb{B} and a sequence $\{\widetilde{\varepsilon}_t : t \in \mathbb{N}\}$ such that $[\widetilde{\varepsilon}_1, \dots, \widetilde{\varepsilon}_T] \stackrel{\mathcal{D}}{=} [\varepsilon_1, \dots, \varepsilon_T]$ for each T and

$$\max_{1 \le t \le T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_s - \sigma \mathbb{B}(t) \right| = o(T^{1/q}) \quad \text{a.s.},$$
 (S.1)

where $\sigma^2 = \sum_{k \in \mathbb{Z}} \text{Cov}(\varepsilon_0, \varepsilon_k)$ denotes the long-run error variance. To apply this result, we define

$$\widetilde{\Phi}_T = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\widetilde{\phi}_T(u,h)}{\widetilde{\sigma}} \right| - \lambda(h) \right\},$$

where $\widetilde{\phi}_T(u,h) = \sum_{t=1}^T w_{t,T}(u,h)\widetilde{\varepsilon}_t$ and $\widetilde{\sigma}^2$ is the same estimator as $\widehat{\sigma}^2$ with $Y_t = m(t/T) + \varepsilon_t$ replaced by $\widetilde{Y}_t = m(t/T) + \widetilde{\varepsilon}_t$ for $1 \le t \le T$. In addition, we let

$$\Phi_T = \max_{(u,h)\in\mathcal{G}_T} \left\{ \left| \frac{\phi_T(u,h)}{\sigma} \right| - \lambda(h) \right\}$$

$$\Phi_T^{\diamond} = \max_{(u,h)\in\mathcal{G}_T} \left\{ \left| \frac{\phi_T(u,h)}{\widetilde{\sigma}} \right| - \lambda(h) \right\}$$

with $\phi_T(u,h) = \sum_{t=1}^T w_{t,T}(u,h)\sigma Z_t$ and $Z_t = \mathbb{B}(t) - \mathbb{B}(t-1)$. With this notation, we can write

$$\left|\widetilde{\Phi}_{T} - \Phi_{T}\right| \leq \left|\widetilde{\Phi}_{T} - \Phi_{T}^{\diamond}\right| + \left|\Phi_{T}^{\diamond} - \Phi_{T}\right| = \left|\widetilde{\Phi}_{T} - \Phi_{T}^{\diamond}\right| + o_{p}\left(\rho_{T}\sqrt{\log T}\right),\tag{S.2}$$

where the last equality follows by taking into account that $\phi_T(u,h) \sim N(0,\sigma^2)$ for all $(u,h) \in \mathcal{G}_T$, $|\mathcal{G}_T| = O(T^{\theta})$ for some large but fixed constant θ and $\tilde{\sigma}^2 = \sigma^2 + o_p(\rho_T)$. Straightforward calculations yield that

$$\left|\widetilde{\Phi}_T - \Phi_T^{\diamond}\right| \le \widetilde{\sigma}^{-1} \max_{(u,h) \in \mathcal{G}_T} \left|\widetilde{\phi}_T(u,h) - \phi_T(u,h)\right|.$$

Using summation by parts, we further obtain that

$$\left| \widetilde{\phi}_{T}(u,h) - \phi_{T}(u,h) \right| \leq W_{T}(u,h) \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{s} - \sigma \sum_{s=1}^{t} \left\{ \mathbb{B}(s) - \mathbb{B}(s-1) \right\} \right|$$

$$= W_{T}(u,h) \max_{1 \leq t \leq T} \left| \sum_{s=1}^{t} \widetilde{\varepsilon}_{s} - \sigma \mathbb{B}(t) \right|,$$

where

$$W_T(u,h) = \sum_{t=1}^{T-1} |w_{t+1,T}(u,h) - w_{t,T}(u,h)| + |w_{T,T}(u,h)|.$$

Standard arguments show that $\max_{(u,h)\in\mathcal{G}_T} W_T(u,h) = O(1/\sqrt{Th_{\min}})$. Applying the strong approximation result (S.1), we can thus infer that

$$\left|\widetilde{\Phi}_{T} - \Phi_{T}^{\diamond}\right| \leq \widetilde{\sigma}^{-1} \max_{(u,h) \in \mathcal{G}_{T}} \left|\widetilde{\phi}_{T}(u,h) - \phi_{T}(u,h)\right|$$

$$\leq \widetilde{\sigma}^{-1} \max_{(u,h) \in \mathcal{G}_{T}} W_{T}(u,h) \max_{1 \leq t \leq T} \left|\sum_{s=1}^{t} \widetilde{\varepsilon}_{s} - \sigma \mathbb{B}(t)\right| = o_{p}\left(\frac{T^{1/q}}{\sqrt{Th_{\min}}}\right). \tag{S.3}$$

Plugging (S.3) into (S.2) completes the proof.

Auxiliary results using anti-concentration bounds

In this section, we establish some properties of the Gaussian statistic Φ_T defined in (3.3). We in particular show that Φ_T does not concentrate too strongly in small regions of the form $[x - \delta_T, x + \delta_T]$ with δ_T converging to zero.

Proposition S.2. Under the conditions of Theorem 3.1, it holds that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\Big(|\Phi_T - x| \le \delta_T\Big) = o(1),$$

where $\delta_T = T^{1/q} / \sqrt{T h_{\min}} + \rho_T \sqrt{\log T}$.

Proof of Proposition S.2. The main technical tool for proving Proposition S.2 are anti-concentration bounds for Gaussian random vectors. The following proposition slightly generalizes anti-concentration results derived in Chernozhukov et al. (2015), in particular Theorem 3 therein.

Proposition S.3. Let $(X_1, \ldots, X_p)^{\top}$ be a Gaussian random vector in \mathbb{R}^p with $\mathbb{E}[X_j] = \mu_j$ and $\operatorname{Var}(X_j) = \sigma_j^2 > 0$ for $1 \leq j \leq p$. Define $\overline{\mu} = \max_{1 \leq j \leq p} |\mu_j|$ together with $\underline{\sigma} = \min_{1 \leq j \leq p} \sigma_j$ and $\overline{\sigma} = \max_{1 \leq j \leq p} \sigma_j$. Moreover, set $a_p = \mathbb{E}[\max_{1 \leq j \leq p} (X_j - \mu_j)/\sigma_j]$ and $b_p = \mathbb{E}[\max_{1 \leq j \leq p} (X_j - \mu_j)]$. For every $\delta > 0$, it holds that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\Big(\big|\max_{1 \le j \le p} X_j - x\big| \le \delta\Big) \le C\delta\Big\{\overline{\mu} + a_p + b_p + \sqrt{1 \vee \log(\underline{\sigma}/\delta)}\Big\},\,$$

where C > 0 depends only on σ and $\overline{\sigma}$.

The proof of Proposition S.3 is provided in the Supplementary Material. To apply Proposition S.3 to our setting at hand, we introduce the following notation: We write x = (u, h) along with $\mathcal{G}_T = \{x : x \in \mathcal{G}_T\} = \{x_1, \dots, x_p\}$, where $p := |\mathcal{G}_T| \leq O(T^{\theta})$ for some large but fixed $\theta > 0$ by our assumptions. Moreover, for $j = 1, \dots, p$, we set

$$X_{2j-1} = \frac{\phi_T(x_{j1}, x_{j2})}{\sigma} - \lambda(x_{j2})$$
$$X_{2j} = -\frac{\phi_T(x_{j1}, x_{j2})}{\sigma} - \lambda(x_{j2})$$

with $x_j = (x_{j1}, x_{j2})$. This notation allows us to write

$$\Phi_T = \max_{1 \le j \le 2p} X_j,$$

where $(X_1, \ldots, X_{2p})^{\top}$ is a Gaussian random vector with the following properties: (i) $\mu_j := \mathbb{E}[X_j] = -\lambda(x_{j2})$ and thus $\overline{\mu} = \max_{1 \leq j \leq 2p} |\mu_j| \leq C\sqrt{\log T}$, and (ii) $\sigma_j^2 := \operatorname{Var}(X_j) = 1$ for all j. Since $\sigma_j = 1$ for all j, it holds that $a_{2p} = b_{2p}$. Moreover, as the variables $(X_j - \mu_j)/\sigma_j$ are standard normal, we have that $a_{2p} = b_{2p} \leq \sqrt{2\log(2p)} \leq C\sqrt{\log T}$. With this notation at hand, we can apply Proposition S.3 to obtain that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\left(\left|\Phi_T - x\right| \le \delta_T\right) \le C\delta_T \left[\sqrt{\log T} + \sqrt{\log(1/\delta_T)}\right] = o(1)$$

with $\delta_T = T^{1/q} / \sqrt{T h_{\min}} + \rho_T \sqrt{\log T}$, which is the statement of Proposition S.2.

Proof of Theorem 3.1

To prove Theorem 3.1, we make use of the two auxiliary results derived above. By Proposition S.1, there exist statistics $\widetilde{\Phi}_T$ for $T=1,2,\ldots$ which are distributed as $\widehat{\Phi}_T$ for any $T\geq 1$ and which have the property that

$$\left|\widetilde{\Phi}_T - \Phi_T\right| = o_p \left(\frac{T^{1/q}}{\sqrt{Th_{\min}}} + \rho_T \sqrt{\log T}\right),$$
 (S.4)

where Φ_T is a Gaussian statistic as defined in (3.3). The approximation result (S.4) allows us to replace the multiscale statistic $\widehat{\Phi}_T$ by an identically distributed version $\widetilde{\Phi}_T$ which is close to the Gaussian statistic Φ_T . In the next step, we show that

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(\widetilde{\Phi}_T \le x) - \mathbb{P}(\Phi_T \le x) \right| = o(1), \tag{S.5}$$

which immediately implies the statement of Theorem 3.1. For the proof of (S.5), we use the following simple lemma:

Lemma S.4. Let V_T and W_T be real-valued random variables for T = 1, 2, ... such that $V_T - W_T = o_p(\delta_T)$ with some $\delta_T = o(1)$. If

$$\sup_{x \in \mathbb{R}} \mathbb{P}(|V_T - x| \le \delta_T) = o(1), \tag{S.6}$$

then

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}(V_T \le x) - \mathbb{P}(W_T \le x) \right| = o(1). \tag{S.7}$$

The statement of Lemma S.4 can be summarized as follows: If W_T can be approximated by V_T in the sense that $V_T - W_T = o_p(\delta_T)$ and if V_T does not concentrate too strongly

in small regions of the form $[x - \delta_T, x + \delta_T]$ as assumed in (S.6), then the distribution of W_T can be approximated by that of V_T in the sense of (S.7).

Proof of Lemma S.4. It holds that

$$\begin{aligned} & | \mathbb{P}(V_{T} \leq x) - \mathbb{P}(W_{T} \leq x) | \\ & = | \mathbb{E} \big[1(V_{T} \leq x) - 1(W_{T} \leq x) \big] | \\ & \leq | \mathbb{E} \big[\big\{ 1(V_{T} \leq x) - 1(W_{T} \leq x) \big\} 1(|V_{T} - W_{T}| \leq \delta_{T}) \big] | + | \mathbb{E} \big[1(|V_{T} - W_{T}| > \delta_{T}) \big] | \\ & \leq \mathbb{E} \big[1(|V_{T} - x| \leq \delta_{T}, |V_{T} - W_{T}| \leq \delta_{T}) \big] + o(1) \\ & \leq \mathbb{P} (|V_{T} - x| \leq \delta_{T}) + o(1). \end{aligned}$$

We now apply this lemma with $V_T = \Phi_T$, $W_T = \widetilde{\Phi}_T$ and $\delta_T = T^{1/q}/\sqrt{Th_{\min}} + \rho_T\sqrt{\log T}$: From (S.4), we already know that $\widetilde{\Phi}_T - \Phi_T = o_p(\delta_T)$. Moreover, by Proposition S.2, it holds that

$$\sup_{x \in \mathbb{R}} \mathbb{P}\Big(|\Phi_T - x| \le \delta_T\Big) = o(1). \tag{S.8}$$

Hence, the conditions of Lemma S.4 are satisfied. Applying the lemma, we obtain (S.5), which completes the proof of Theorem 3.1.

Proof of Proposition 3.2

To start with, we introduce the notation $\widehat{\psi}_T(u,h) = \widehat{\psi}_T^A(u,h) + \widehat{\psi}_T^B(u,h)$, where $\widehat{\psi}_T^A(u,h) = \sum_{t=1}^T w_{t,T}(u,h)\varepsilon_t$ and $\widehat{\psi}_T^B(u,h) = \sum_{t=1}^T w_{t,T}(u,h)m_T(\frac{t}{T})$. We further write $m_T(\frac{t}{T}) = m_T(u) + m_T'(\xi_{u,t,T})(\frac{t}{T}-u)$, where $\xi_{u,t,T}$ is an intermediate point between u and t/T. By assumption, there exists $(u_0,h_0) \in \mathcal{G}_T$ with $[u_0-h_0,u_0+h_0] \subseteq [0,1]$ such that $m_T'(w) \geq c_T \sqrt{\log T/(Th_0^3)}$ for all $w \in [u_0-h_0,u_0+h_0]$. (The case that $-m_T'(w) \geq c_T \sqrt{\log T/(Th_0^3)}$ for all w can be treated analogously.) Below, we prove that under this assumption,

$$\widehat{\psi}_T^B(u_0, h_0) \ge \frac{\kappa c_T \sqrt{\log T}}{2},\tag{S.9}$$

where $\kappa = (\int K(\varphi)\varphi^2 d\varphi)/(\int K^2(\varphi)\varphi^2 d\varphi)^{1/2}$. Moreover, by arguments very similar to those for the proof of Proposition S.1, it follows that

$$\max_{(u,h)\in\mathcal{G}_T} |\widehat{\psi}_T^A(u,h)| = O_p(\sqrt{\log T}). \tag{S.10}$$

With the help of (S.9), (S.10) and the fact that $\lambda(h) \leq \lambda(h_{\min}) \leq C\sqrt{\log T}$, we can infer that

$$\widehat{\Psi}_T \ge \max_{(u,h) \in \mathcal{G}_T} \frac{|\widehat{\psi}_T^B(u,h)|}{\widehat{\sigma}} - \max_{(u,h) \in \mathcal{G}_T} \left\{ \frac{|\widehat{\psi}_T^A(u,h)|}{\widehat{\sigma}} + \lambda(h) \right\}$$

$$= \max_{(u,h)\in\mathcal{G}_T} \frac{|\widehat{\psi}_T^B(u,h)|}{\widehat{\sigma}} + O_p(\sqrt{\log T})$$

$$\geq \frac{\kappa c_T \sqrt{\log T}}{2\widehat{\sigma}} + O_p(\sqrt{\log T}). \tag{S.11}$$

Since $q_T(\alpha) = O(\sqrt{\log T})$ for any fixed $\alpha \in (0,1)$, (S.11) immediately yields that $\mathbb{P}(\widehat{\Psi}_T \leq q_T(\alpha)) = o(1)$, which is the statement of Proposition 3.2.

Proof of (S.9). Since the kernel K is symmetric and $u_0 = t/T$ for some t, it holds that $S_{T,1}(u_0, h_0) = 0$, which in turn implies that

$$w_{t,T}(u_0, h_0) \left(\frac{\frac{t}{T} - u_0}{h_0}\right)$$

$$= K \left(\frac{\frac{t}{T} - u_0}{h_0}\right) \left(\frac{\frac{t}{T} - u_0}{h_0}\right)^2 / \left\{\sum_{t=1}^T K^2 \left(\frac{\frac{t}{T} - u_0}{h_0}\right) \left(\frac{\frac{t}{T} - u_0}{h_0}\right)^2\right\}^{1/2} \ge 0.$$

From this and the assumption that $m'_T(w) \ge c_T \sqrt{\log T/(Th_0^3)}$ for all $w \in [u_0 - h_0, u_0 + h_0]$, we get that

$$\widehat{\psi}_{T}^{B}(u_{0}, h_{0}) \ge c_{T} \sqrt{\frac{\log T}{T h_{0}}} \sum_{t=1}^{T} w_{t,T}(u_{0}, h_{0}) \left(\frac{\frac{t}{T} - u_{0}}{h_{0}}\right). \tag{S.12}$$

Standard calculations exploiting the Lipschitz continuity of the kernel K show that for any $(u, h) \in \mathcal{G}_T$ and any given natural number ℓ ,

$$\left| \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{\frac{t}{T} - u}{h}\right) \left(\frac{\frac{t}{T} - u}{h}\right)^{\ell} - \int_{0}^{1} \frac{1}{h} K\left(\frac{w - u}{h}\right) \left(\frac{w - u}{h}\right)^{\ell} dw \right| \le \frac{C}{Th}, \tag{S.13}$$

where the constant C does not depend on u, h and T. With the help of (S.13), we obtain that for any $(u, h) \in \mathcal{G}_T$ with $[u - h, u + h] \subseteq [0, 1]$,

$$\left| \sum_{t=1}^{T} w_{t,T}(u,h) \left(\frac{\frac{t}{T} - u}{h} \right) - \frac{\sqrt{Th}}{\kappa} \right| \le \frac{C}{\sqrt{Th}}, \tag{S.14}$$

where the constant C does again not depend on u, h and T. (S.14) implies that $\sum_{t=1}^{T} w_{t,T}(u,h)(\frac{t}{T}-u)/h \geq \kappa \sqrt{Th}/2$ for sufficiently large T and any $(u,h) \in \mathcal{G}_T$ with $[u-h,u+h] \subseteq [0,1]$. Using this together with (S.12), we immediately obtain (S.9). \square

Proof of Proposition 3.3

In what follows, we show that

$$\mathbb{P}(E_T^+) \ge (1 - \alpha) + o(1).$$
 (S.15)

The other statements of Proposition 3.3 can be verified by analogous arguments. (S.15) is a consequence of the following two observations:

(i) For all $(u,h) \in \mathcal{G}_T$ with

$$\left| \frac{\widehat{\psi}_T(u,h) - \mathbb{E}\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \right| - \lambda(h) \le q_T(\alpha) \quad \text{and} \quad \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} - \lambda(h) > q_T(\alpha),$$

it holds that $\mathbb{E}[\widehat{\psi}_T(u,h)] > 0$.

(ii) For all $(u, h) \in \mathcal{G}_T$ with $[u - h, u + h] \subseteq [0, 1]$, $\mathbb{E}[\widehat{\psi}_T(u, h)] > 0$ implies that m'(v) > 0 for some $v \in [u - h, u + h]$.

Observation (i) is trivial, (ii) can be seen as follows: Let (u, h) be any point with $(u, h) \in \mathcal{G}_T$ and $[u - h, u + h] \subseteq [0, 1]$. It holds that $\mathbb{E}[\widehat{\psi}_T(u, h)] = \widehat{\psi}_T^B(u, h)$, where $\widehat{\psi}_T^B(u, h)$ has been defined in the proof of Proposition 3.2. There, we have already seen that

$$\widehat{\psi}_T^B(u,h) = \sum_{t=1}^T w_{t,T}(u,h) \left(\frac{\frac{t}{T} - u}{h}\right) hm'(\xi_{u,t,T}),$$

where $\xi_{u,t,T}$ is some intermediate point between u and t/T. Moreover, $S_{T,1}(u,h) = 0$, which implies that $w_{t,T}(u,h)(\frac{t}{T}-u)/h \geq 0$ for any t. Hence, $\mathbb{E}[\widehat{\psi}_T(u,h)] = \widehat{\psi}_T^B(u,h)$ can only take a positive value if m'(v) > 0 for some $v \in [u-h, u+h]$.

From observations (i) and (ii), we can draw the following conclusions: On the event

$$\left\{\widehat{\Phi}_T \le q_T(\alpha)\right\} = \left\{ \max_{(u,h) \in \mathcal{G}_T} \left(\left| \frac{\widehat{\psi}_T(u,h) - \mathbb{E}\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \right| - \lambda(h) \right) \le q_T(\alpha) \right\},\,$$

it holds that for all $(u, h) \in \mathcal{A}_T^+$, m'(v) > 0 for some $v \in I_{u,h} = [u - h, u + h]$. We thus obtain that $\{\widehat{\Phi}_T \leq q_T(\alpha)\} \subseteq E_T^+$. This in turn implies that

$$\mathbb{P}(E_T^+) \ge \mathbb{P}(\widehat{\Phi}_T \le q_T(\alpha)) = (1 - \alpha) + o(1),$$

where the last equality holds by Theorem 3.1.

Proof of Proposition S.3

The proof makes use of the following three lemmas, which correspond to Lemmas 5–7 in Chernozhukov et al. (2015).

Lemma S.5. Let $(W_1, \ldots, W_p)^{\top}$ be a (not necessarily centred) Gaussian random vector in \mathbb{R}^p with $\operatorname{Var}(W_j) = 1$ for all $1 \leq j \leq p$. Suppose that $\operatorname{Corr}(W_j, W_k) < 1$ whenever $j \neq k$. Then the distribution of $\max_{1 \leq j \leq p} W_j$ is absolutely continuous with respect to

Lebesgue measure and a version of the density is given by

$$f(x) = f_0(x) \sum_{j=1}^p e^{\mathbb{E}[W_j]x - \mathbb{E}[W_j]^2/2} \mathbb{P}(W_k \le x \text{ for all } k \ne j \mid W_j = x).$$

Lemma S.6. Let $(W_0, W_1, \dots, W_p)^{\top}$ be a (not necessarily centred) Gaussian random vector with $Var(W_j) = 1$ for all $0 \le j \le p$. Suppose that $\mathbb{E}[W_0] \ge 0$. Then the map

$$x \mapsto e^{\mathbb{E}[W_0]x - \mathbb{E}[W_0]^2/2} \mathbb{P}(W_j \le x \text{ for } 1 \le j \le p \mid W_0 = x)$$

is non-decreasing on \mathbb{R} .

Lemma S.7. Let $(X_1, \ldots, X_p)^{\top}$ be a centred Gaussian random vector in \mathbb{R}^p with $\max_{1 \leq j \leq p} \mathbb{E}[X_j^2] \leq \sigma^2$ for some $\sigma^2 > 0$. Then for any r > 0,

$$\mathbb{P}\Big(\max_{1 \le j \le p} X_j \ge \mathbb{E}\Big[\max_{1 \le j \le p} X_j\Big] + r\Big) \le e^{-r^2/(2\sigma^2)}.$$

The proof of Lemmas S.5 and S.6 can be found in Chernozhukov et al. (2015). Lemma S.7 is a standard result on Gaussian concentration whose proof is given e.g. in Ledoux (2001); see Theorem 7.1 therein. We now closely follow the arguments for the proof of Theorem 3 in Chernozhukov et al. (2015). The proof splits up into three steps.

Step 1. Pick any $x \ge 0$ and set

$$W_j = \frac{X_j - x}{\sigma_j} + \frac{\overline{\mu} + x}{\underline{\sigma}}.$$

By construction, $\mathbb{E}[W_j] \geq 0$ and $\operatorname{Var}(W_j) = 1$. Defining $Z = \max_{1 \leq j \leq p} W_j$, it holds that

$$\mathbb{P}\Big(\Big|\max_{1\leq j\leq p} X_j - x\Big| \leq \delta\Big) \leq \mathbb{P}\Big(\Big|\max_{1\leq j\leq p} \frac{X_j - x}{\sigma_j}\Big| \leq \frac{\delta}{\underline{\sigma}}\Big) \\
\leq \sup_{y\in\mathbb{R}} \mathbb{P}\Big(\Big|\max_{1\leq j\leq p} \frac{X_j - x}{\sigma_j} + \frac{\overline{\mu} + x}{\underline{\sigma}} - y\Big| \leq \frac{\delta}{\underline{\sigma}}\Big) \\
= \sup_{y\in\mathbb{R}} \mathbb{P}\Big(|Z - y| \leq \frac{\delta}{\underline{\sigma}}\Big).$$

Step 2. We now bound the density of Z. Without loss of generality, we assume that $\operatorname{Corr}(W_j,W_k)<1$ for $k\neq j$. The marginal distribution of W_j is $N(\nu_j,1)$ with $\nu_j=\mathbb{E}[W_j]=(\mu_j/\sigma_j+\overline{\mu}/\underline{\sigma})+(x/\underline{\sigma}-x/\sigma_j)\geq 0$. Hence, by Lemmas S.5 and S.6, the random variable Z has a density of the form

$$f_p(z) = f_0(z)G_p(z), \tag{S.16}$$

where the map $z \mapsto G_p(z)$ is non-decreasing. Define $\overline{Z} = \max_{1 \leq j \leq p} (W_j - \mathbb{E}[W_j])$ and

set $\overline{z} = 2\overline{\mu}/\underline{\sigma} + x(1/\underline{\sigma} - 1/\overline{\sigma})$ such that $\mathbb{E}[W_j] \leq \overline{z}$ for any $1 \leq j \leq p$. With these definitions at hand, we obtain that

$$\int_{z}^{\infty} f_{0}(u)du G_{p}(z) \leq \int_{z}^{\infty} f_{0}(u)G_{p}(u)du = \mathbb{P}(Z > z)$$

$$\leq P(\overline{Z} > z - \overline{z}) \leq \exp\left(-\frac{(z - \overline{z} - \mathbb{E}[\overline{Z}])_{+}^{2}}{2}\right),$$

where the last inequality follows from Lemma S.7. Since $W_j - \mathbb{E}[W_j] = (X_j - \mu_j)/\sigma_j$, it holds that

$$\mathbb{E}[\overline{Z}] = \mathbb{E}\Big[\max_{1 \le j \le p} \Big\{ \frac{X_j - \mu_j}{\sigma_j} \Big\} \Big] =: a_p.$$

Hence, for every $z \in \mathbb{R}$,

$$G_p(z) \le \frac{1}{1 - F_0(z)} \exp\left(-\frac{(z - \overline{z} - a_p)_+^2}{2}\right).$$
 (S.17)

Mill's inequality states that for z > 0,

$$z \le \frac{f_0(z)}{1 - F_0(z)} \le z \frac{1 + z^2}{z^2}.$$

Since $(1+z^2)/z^2 \le 2$ for $z \ge 1$ and $f_0(z)/\{1-F_0(z)\} \le 1.53 \le 2$ for $z \in (-\infty, 1)$, we can infer that

$$\frac{f_0(z)}{1 - F_0(z)} \le 2(z \lor 1) \quad \text{for any } z \in \mathbb{R}.$$

This together with (S.16) and (S.17) yields that

$$f_p(z) \le 2(z \vee 1) \exp\left(-\frac{(z - \overline{z} - a_p)_+^2}{2}\right)$$
 for any $z \in \mathbb{R}$.

Step 3. By Step 2, we get that for any $y \in \mathbb{R}$ and u > 0,

$$\mathbb{P}(|Z - y| \le u) = \int_{y - u}^{y + u} f_p(z) dz \le 2u \max_{z \in [y - u, y + u]} f_p(z) \le 4u(\overline{z} + a_p + 1),$$

where the last inequality follows from the fact that the map $z \mapsto ze^{-(z-a)^2/2}$ (with a > 0) is non-increasing on $[a+1,\infty)$. Combining this bound with Step 1, we further obtain that for any $x \ge 0$ and $\delta > 0$,

$$\mathbb{P}\left(\left|\max_{1\leq j\leq p} X_j - x\right| \leq \delta\right) \leq 4\delta \left\{\frac{2\overline{\mu}}{\sigma} + |x|\left(\frac{1}{\sigma} - \frac{1}{\overline{\sigma}}\right) + a_p + 1\right\} / \underline{\sigma}.$$
 (S.18)

This inequality also holds for x < 0 by an analogous argument, and hence for all $x \in \mathbb{R}$. Now let $0 < \delta \leq \underline{\sigma}$ and define $b_p = \mathbb{E} \max_{1 \leq j \leq p} \{X_j - \mu_j\}$. For any $|x| \leq \delta + \overline{\mu} + b_p + \overline{\mu}$ $\overline{\sigma}\sqrt{2\log(\underline{\sigma}/\delta)}$, (S.18) yields that

$$\mathbb{P}\left(\left|\max_{1\leq j\leq p} X_{j} - x\right| \leq \delta\right) \leq \frac{4\delta}{\underline{\sigma}} \left\{\overline{\mu} \left(\frac{3}{\underline{\sigma}} - \frac{1}{\overline{\sigma}}\right) + a_{p} + \left(\frac{1}{\underline{\sigma}} - \frac{1}{\overline{\sigma}}\right) b_{p} + \left(\frac{\overline{\sigma}}{\underline{\sigma}} - 1\right) \sqrt{2\log\left(\frac{\underline{\sigma}}{\delta}\right)} + 2 - \frac{\underline{\sigma}}{\overline{\sigma}}\right\} \\
\leq C\delta \left\{\overline{\mu} + a_{p} + b_{p} + \sqrt{1 \vee \log(\underline{\sigma}/\delta)}\right\} \tag{S.19}$$

with a sufficiently large constant C > 0 that depends only on $\underline{\sigma}$ and $\overline{\sigma}$. For $|x| \ge \delta + \overline{\mu} + b_p + \overline{\sigma} \sqrt{2 \log(\underline{\sigma}/\delta)}$, we obtain that

$$\mathbb{P}\left(\left|\max_{1\leq j\leq p} X_j - x\right| \leq \delta\right) \leq \frac{\delta}{\sigma},\tag{S.20}$$

which can be seen as follows: If $x > \delta + \overline{\mu}$, then $|\max_j X_j - x| \leq \delta$ implies that $|x| - \delta \leq \max_j X_j \leq \max_j \{X_j - \mu_j\} + \overline{\mu}$ and thus $\max_j \{X_j - \mu_j\} \geq |x| - \delta - \overline{\mu}$. Hence, it holds that

$$\mathbb{P}\left(\left|\max_{1\leq j\leq p} X_j - x\right| \leq \delta\right) \leq \mathbb{P}\left(\max_{1\leq j\leq p} \left\{X_j - \mu_j\right\} \geq |x| - \delta - \overline{\mu}\right). \tag{S.21}$$

If $x < -(\delta + \overline{\mu})$, then $|\max_j X_j - x| \le \delta$ implies that $\max_j \{X_j - \mu_j\} \le -|x| + \delta + \overline{\mu}$. Hence, in this case,

$$\mathbb{P}\left(\left|\max_{1\leq j\leq p} X_{j} - x\right| \leq \delta\right) \leq \mathbb{P}\left(\max_{1\leq j\leq p} \left\{X_{j} - \mu_{j}\right\} \leq -|x| + \delta + \overline{\mu}\right) \\
\leq \mathbb{P}\left(\max_{1\leq j\leq p} \left\{X_{j} - \mu_{j}\right\} \geq |x| - \delta - \overline{\mu}\right), \tag{S.22}$$

where the last inequality follows from the fact that for centred Gaussian random variables V_j and v > 0, $\mathbb{P}(\max_j V_j \le -v) \le \mathbb{P}(V_1 \le -v) = P(V_1 \ge v) \le \mathbb{P}(\max_j V_j \ge v)$. With (S.21) and (S.22), we obtain that for any $|x| \ge \delta + \overline{\mu} + b_p + \overline{\sigma}\sqrt{2\log(\underline{\sigma}/\delta)}$,

$$\mathbb{P}\Big(\Big|\max_{1\leq j\leq p} X_j - x\Big| \leq \delta\Big) \leq \mathbb{P}\Big(\max_{1\leq j\leq p} \left\{X_j - \mu_j\right\} \geq |x| - \delta - \overline{\mu}\Big)$$

$$\leq \mathbb{P}\Big(\max_{1\leq j\leq p} \left\{X_j - \mu_j\right\} \geq \mathbb{E}\Big[\max_{1\leq j\leq p} \left\{X_j - \mu_j\right\}\Big] + \overline{\sigma}\sqrt{2\log(\underline{\sigma}/\delta)}\Big) \leq \frac{\delta}{\sigma},$$

the last inequality following from Lemma S.7. To sum up, we have established that for any $0 < \delta \leq \underline{\sigma}$ and any $x \in \mathbb{R}$,

$$\mathbb{P}\left(\left|\max_{1\leq i\leq p} X_j - x\right| \leq \delta\right) \leq C\delta\left\{\overline{\mu} + a_p + b_p + \sqrt{1 \vee \log(\underline{\sigma}/\delta)}\right\}$$
 (S.23)

with some constant C > 0 that does only depend on $\underline{\sigma}$ and $\overline{\sigma}$. For $\delta > \underline{\sigma}$, (S.23) trivially follows upon setting $C \ge 1/\underline{\sigma}$. This completes the proof.

S.2 Proofs of the results from Section 4

S.3 Robustness checks and implementation details for the simulations in Section 5

Robustness checks for Section 5.3

Table 1: Mean values and standard deviations of S=1000 simulated values of the estimator \tilde{a}_q for different values of q. The simulation design is as in Section 5.3, where we consider the linear trend with $\beta=1$.

		q = 10	q = 15	q = 20	q = 25	q = 30	q = 35	q = 40
a = -0.95	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	T = 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
a = -0.75	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	T = 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
a = -0.5	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	T = 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
a = -0.25	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	T = 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
a = 0.25	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	T = 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
a = 0.5	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	/TI F00	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	T = 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	T	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
a = 0.75	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	T = 500	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$
	I = 500	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
0.05	TI 050	` ,	` ′	` /	` /	` ′	, ,	` /
a = 0.95	T = 250	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	T = 500	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$	$(0.000) \\ 0.000$
	T = 900	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

Table 2: Mean values and standard deviations of S=1000 simulated values of the estimator \hat{a} for different values of \bar{r} . To compute \hat{a} , we use \tilde{a}_q with q=20 as a first step estimator. The simulation design is as in Section 5.3, where we consider the linear trend with $\beta=1$.

		$\overline{q} = 5$	$\overline{q} = 10$	$\overline{q} = 15$
a = -0.95	T = 250	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
	T = 500	$0.000 \ (0.000)$	$0.000 \ (0.000)$	$0.000 \ (0.000)$
a = -0.75	T = 250	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
	T = 500	$0.000 \ (0.000)$	$0.000 \ (0.000)$	$0.000 \ (0.000)$
a = -0.5	T = 250	$0.000 \ (0.000)$	$0.000 \ (0.000)$	$0.000 \ (0.000)$
	T = 500	$0.000 \ (0.000)$	0.000 (0.000)	0.000 (0.000)
a = -0.25	T = 250	$0.000 \ (0.000)$	$0.000 \ (0.000)$	$0.000 \ (0.000)$
	T = 500	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
a = 0.25	T = 250	$0.000 \ (0.000)$	$0.000 \ (0.000)$	$0.000 \ (0.000)$
	T = 500	0.000(0.000)	0.000(0.000)	0.000(0.000)
a = 0.5	T = 250	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
	T = 500	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
a = 0.75	T = 250	0.000 (0.000)	0.000 (0.000)	$0.000 \ (0.000)$
	T = 500	0.000(0.000)	0.000(0.000)	0.000(0.000)
a = 0.95	T = 250	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
	T = 500	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)

Implementation of SiZer in Section 5.2

Step 1: Calculate $\gamma(k) = \frac{\sigma_{\eta}^2}{1-a_1^2} \cdot a_1^{|k|}$.

Step 2: Calculate $\operatorname{Var}(\bar{Y}) = \frac{\gamma(0)}{T} + \frac{2}{T} \sum_{k=1}^{T-1} (1 - \frac{k}{T}) \gamma(k)$.

Step 3: Calculate $T^* = \frac{\gamma(0)}{\operatorname{Var}(\bar{Y})}$.

Step 4: For each location $i=1/T,2/T,\ldots,1$ and each bandwidth $h=3/T,8/T,\ldots,1/4+3/T$, calculate the following values:

- $ESS(i,h) = \frac{\frac{1}{h} \sum_{t=1}^{T} K\left(\frac{i-t/T}{h}\right)}{\frac{1}{h} K(0)};$
- $ESS^*(i,h) = \frac{T^*}{T} \cdot ESS;$
- $l(i,h) = \frac{T}{ESS^*(i,h)};$
- $q(i,h) = \Phi^{-1}\left(\frac{1 + (1-\alpha)^{\frac{1}{l(i,h)}}}{2}\right);$
- $(X^TWX)^{-1}X^TW$, where $W = \{diag(\frac{1}{h}K(\frac{i-t/T}{h}))\}$ and

$$X = \begin{pmatrix} 1 & (1/T - i) \\ 1 & (2/T - i) \\ \vdots & \vdots \\ 1 & (1 - i) \end{pmatrix};$$

• $sd(\widehat{m}'_h(i)) = \sqrt{\left((X^TWX)^{-1}(X^T\Sigma X)(X^TWX)^{-1}\right)_{2,2}}$, where Σ is the kernel weighted covariance matrix of errors with generic element

$$\sigma_{kl} = \gamma(|k-l|) \frac{1}{h} K\left(\frac{i-k/T}{h}\right) \frac{1}{h} K\left(\frac{i-l/T}{h}\right).$$

Step 5: Discard all pairs of location and bandwidth (i, h) where $ESS^* < 5$.

Step 6: Based on the grid from Step 5:, calculate Gaussian quantile for our method.

Step 7:

References

Berkes, I., Liu, W. and Wu, W. B. (2014). Komlós-Major-Tusnády approximation under dependence. *Annals of Probability*, **42** 794–817.

CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2015). Comparison and anticoncentration bounds for maxima of Gaussian random vectors. *Probability Theory and Related Fields*, **162** 47–70.

LEDOUX, M. (2001). Concentration of Measure Phenomenon. American Mathematical Society.