Chapter 15: Model Quality and the Bias-Variance Tradeoff

Modern Clinical Data Science Chapter Guides Bethany Percha, Instructor

How to Use this Guide

- Read the corresponding notes chapter first
- Try to answer the discussion questions on your own
- Listen to the chapter guide (should be 30 min, max) while following along in the notes

Loss function:

A measurement of model error over an entire dataset (training or test).

Our goal is to create models that will fit our training data well (goodness of fit)

AND

perform well on new test data (generalizability).

Ways to reduce bias:

- Change the model
- Add more features or combinations of features
- Ensure training data is representative of test situation (e.g. is it biased in favor of a particular group?)
- Tune hyperparameters, if available

Ways to reduce variance:

- Add training data increases signal to noise
- Try ensemble methods

Also consider irreducible error:

- Do you have the right features to capture the relationship in the first place?
- Does a true relationship even exist?

Question 15.3

Here we see three decision boundaries for KNN with different values of K (the number of neighbors considered in making a prediction). The data are for the two-class classification problem first discussed in Chapter 2. From left to right, K = 50, 15, and 3. What are the tradeoffs in moving from left to right in terms of (a) training error/goodness of fit and (b) test error/generalizability?

Figure from: An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Each dot is one tree trained on a slightly different dataset, making a prediction on a single test example.

Which column represents boosting and which represents a random forest?

Error in survival analysis: Harrell's Concordance Index

Patient	Follow-up Time	Observed?	Model 1 Score	Model 2 Score
1	8.3	1	4.6	5.2
2	6.5	0	2.3	7.1
3	2.7	1	0.6	6.7
4	7.4	1	4.7	6.6

First Patient	Second Patient	Usable	Model 1 Consistent	Model 2 Consistent
1	2			
1	3			
1	4			
2	3			
2	4			
3	4			

Error in survival analysis: Harrell's Concordance Index

Patient	Follow-up Time	Observed?	Model 1 Score	Model 2 Score
1	8.3	1	4.6	5.2
2	6.5	0	2.3	7.1
3	2.7	1	0.6	6.7
4	7.4	1	4.7	6.6

First Patient	Second Patient	Usable	Model 1 Consistent	Model 2 Consistent
1	2	no	-	-
1	3	yes	1	0
1	4	yes	0	0
2	3	yes	1	1
2	4	no	-	-
3	4	yes	1	0