Math 611 Homework 2

Paul Hacking

September 25, 2019

Reading: Dummit and Foote, Sections 2.1, 2.2, 3.1, 3.2, 3.5, 4.1, 4.2, 4.3. Justify your answers carefully (complete proofs are expected).

(1) (Optional) Suppose given a group G and an action of G on a set X. Then we have a partition of X given by the orbits of the action, and the action of G on X is given by a transitive action of G on each orbit.

Let $x \in X$ be a point. Show that there is a bijection $f: G/G_x \stackrel{\sim}{\to} \mathcal{O}_x$ from the set G/G_x of left cosets of the stabilizer G_x of x to the orbit \mathcal{O}_x of x that is compatible with the G-actions, i.e., $f(g \cdot a) = g \cdot f(a)$. (Here, the action of G on the set of left cosets G/H of a subgroup H of G is defined by $g \cdot aH = gaH$.)

In particular, any action of G can be understood in terms of the action of G on the set of left cosets of H for various subgroups H of G.

- (2) Let G be a finite group of order p^n for some prime p and $n \in \mathbb{N}$. (We say G is a p-group.) Suppose G acts on a finite set X such that |X| is not divisible by p. Show that there is a fixed point for the action, that is, a point $q \in X$ such that $g \cdot q = q$ for all $g \in G$.
- (3) (Optional) Let G be a group. Recall we say two elements $a, b \in G$ are *conjugate* if there is a $g \in G$ such that $b = gag^{-1}$. Consider the two matrices

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Are A and B conjugate in $GL_2(\mathbb{R})$? Are A and B conjugate in $SL_2(\mathbb{R})$? (Recall that $SL_n(\mathbb{R})$ denotes the normal subgroup of $GL_n(\mathbb{R})$ consisting of matrices with determinant 1.)

- (4) Let G be a group and $a \in G$ an element. Determine the centralizer Z(a) of a in G and the size of the conjugacy class C(a) of a in G in the following cases.
 - (a) $(123) \in S_5$.
 - (b) $(123)(456) \in S_7$.
 - (c) $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \in GL_2(\mathbb{Z}/5\mathbb{Z}).$
 - (d) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z}/3\mathbb{Z}).$
- (5) A group G of order 21 contains a conjugacy class C(x) of size 3. What is the order of x in G?
- (6) (Optional) Determine the conjugacy classes in the group

$$G = \langle a, b \mid a^3 = b^4 = e, \quad ba = a^{-1}b \rangle.$$

(That is, G is the group generated by two elements a and b subject to the given relations.) Here you may assume without proof that |G| = 12 so that the elements of G can be expressed uniquely as $a^i b^j$ for $0 \le i < 3$ and $0 \le j < 4$.

- (7) Enumerate all the normal subgroups of the symmetric group S_4 .
- (8) (Optional)
 - (a) Determine the conjugacy classes in the alternating group A_4 . Check your answer using the fact that the order of a conjugacy class divides the order of the group.
 - (b) Show that A_4 does not have a subgroup of order 6.
- (9) Let G be a p-group. In class we used the class equation to show that the center of G is non-trivial $(Z(G) \neq \{e\})$. As a corollary we showed that any group of order p^2 is abelian. In this question we will study a non-abelian group G of order p^3 (the *Heisenberg group*).

Let G be the subgroup of $GL_3(\mathbb{Z}/p\mathbb{Z})$ consisting of upper triangular matrices with all diagonal entries equal to 1.

- (a) Determine the center Z(G) of G.
- (b) Construct an isomorphism from G/Z(G) to a standard group.
- (10) Classify finite groups G with at most 3 conjugacy classes.
- (11) (Optional) Let G be a finite group and H a proper subgroup of G.
 - (a) Show that the union of the conjugate subgroups of H is not equal to G.
 - (b) Deduce that there is a conjugacy class which is disjoint from H.
- (12) For each of the following statements, give a proof or a counterexample.
 - (a) If $H \triangleleft G$ and $K \triangleleft H$ then $K \triangleleft G$.
 - (b) If $H \triangleleft G$ and $K \leq G$ then $H \cap K \triangleleft K$.
- (13) (Optional) Let G be a finite group and $H \triangleleft G$ a normal subgroup. Let $a \in H$ be an element. Let $C_H(a)$ denote the conjugacy class of a in H and $C_G(a)$ the conjugacy class of a in G. Let $Z_H(a)$ denote the centralizer of a in H and $Z_G(a)$ the centralizer of a in G. (Then $Z_H(a) = Z_G(a) \cap H$.) Let $q: G \to G/H$ be the quotient homomorphism.
 - (a) Show that $gC_H(a)g^{-1} = C_H(gag^{-1})$ for all $g \in G$.
 - (b) Show that $C_G(a)$ is a union of $[G/H:q(Z_G(a))]$ distinct conjugacy classes in H of equal size (the orbit of the conjugacy class $C_H(a)$ under conjugation by elements of G).
 - (c) Now suppose $G = S_n$, the symmetric group on n objects $(n \ge 2)$, and $H = A_n$, the alternating group. Deduce that if $Z_{S_n}(a)$ is not contained in A_n then $C_{S_n}(a) = C_{A_n}(a)$, while if $Z_{S_n}(a)$ is contained in A_n then $C_{S_n}(a) = C_{A_n}(a) \cup C_{A_n}((12)a(12))$ is a union of two distinct conjugacy classes in A_n . Give examples showing that both cases occur.

Hints:

- 7 What is the class equation of S_4 ?
- 8b Recall that a subgroup of index 2 is necessarily normal.
- 10 Consider the class equation of G. The order of a conjugacy class divides the order of the group.
- 11a Establish an upper bound for the cardinality of the union of the conjugate subgroups.