

Support Vector Machines: a gentle introduction

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

Part 1: What are SVMs?

- The problem
- Separating Hyperplane
- The optimization problem
- Derivation of the dual problem and Support Vector Expansion
- The Soft-Margin optimization problem

What is all about?

Guess the best!

Separating Hyperplane

Separating Hyperplane

■ Scale problem

$$\forall c > 0, \{ \mathbf{w}^T \mathbf{x} + b = 0 \} \iff \{ c \mathbf{w}^T \mathbf{x} + cb = 0 \}$$

Canonical hyperplane

$$min_{x_i} jw^T x_i + bj = 1$$

Margin of the hyperplane

$$m = \frac{2}{||\mathbf{w}||}$$

The optimization problem

■ More formally the problem is:

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1 \quad \forall i$$

■ Is an optimization problem with inequality constraints...

Derivation of the dual problem

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

□ L has to minimized w.r.t. the **primal variables w** and b and maximized with respect to the **dual variables** $a_i >= 0$

$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial}{\partial b} \mathcal{L} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

Substitute both in L to get the dual problem

Support Vectors

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

where for all $i = 1, \dots, m$

$$\begin{cases} y_i(\mathbf{w}^T\mathbf{x}_i + b) > 1 & \alpha_i = 0 \Rightarrow x_i \text{ is irrilevant} \\ y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1 & \alpha_i \neq 0 \Rightarrow x_i \text{ is a } \underline{Support Vector} \end{cases}$$

The dual problem

 \Box The value of a_i can be found solving the following quadratic optimization problem (the dual optimization problem):

max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

Non-linearly Separable Problem

- ☐ In practice problem are not often linearly separable
- \square In this case we allow "error" ξ_i in classification:

Soft-Margin optimization problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1-\xi_i \quad \forall i$ $\xi_i>0 \quad \forall i$

- \Box ξ_i are "slack variables" in optimization
- C is a tradeoff parameter between error and margin

Part 2: SVMs in a non linear world

- Extension to non linear classification problem
- Mastering the Kernel Trick

Non-linearly separable problems

■ So far we considered only (almost) linearly separable problems

In practice we have to deal with non-linearly separable

The Kernel Trick

- <u>But</u> a suitable features space have often very high dimensionality (too expensive for computation)
- We use the Kernel trick! Recall the dual problem:

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

- We only need to know the dot product in the features space
- We define the kernel function as

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

$$\mathbf{x}_i^T \mathbf{x}_j \to K(\mathbf{x}_i, \mathbf{x}_j)$$

An Example for kernel

 \square Suppose $\varphi(.)$ is given as follows

$$\phi(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

An inner product in the feature space is

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

 \square So, if we define the kernel function as follows, there is no need to carry out $\varphi(.)$ explicitly

$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

■ In general even some high dimensional features space admit an easy to compute kernel!

Part 3: Why does SVMs work?

A naïve introduction to statistical learning (VC) theory:

- Risk Minimization
- Uniform convergence
- VC-dimension
- Structural Risk Minimization
- The VC theory and SVMs

Risk Minimization

- We want learn a decision function f: $X \rightarrow \{-1,+1\}$ from a set of samples $\{(x_1,y_1),...,(x_n,y_n)\}$ generated i.i.d. from P(x,y)
- ☐ The expected misclassification error on a test set will be:

$$R[f] = \int \frac{1}{2} |f(x) - y| \, dP(x, y)$$

- Our goal is the minimization of R[f] (Risk Minimization)
- \square But P(x,y) is unknown, we can only minimize the error on the training set (**Empirical Risk**):

$$R_{emp}[f] = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} |f(x) - y|$$

Does it converge?

■ At least we want to prove that:

$$\lim_{n\to\infty} R_{emp}[f] = R[f]$$

- Sketch of the proof
 - ► loss: $\gamma_i = \frac{1}{2} if(x_i) i y_i j$
 - $\triangleright \xi_i$ as independent Bernoulli trials
 - ▶ for the law of large numbers the empirical mean (the Empirical Risk) will converge to the expected value of ξ_i (the Risk, R[f])
 - Chernoff's Bound:

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-E[\xi]\right|\geq\varepsilon\right)\leq2e^{-2n\varepsilon^{2}}$$

The sad truth!

- \Box ξ_i are not independent if the function class is not fixed
- In a more general case we would need an uniform convergence
- ☐ How can we find a bound? Statistical Learning (VC) Theory

VC-dimension

- Vapnik-Chervonenkis introduced a measure of the flexibility (capacity) of a classifier, the VC-dimension
- VC-dimension is the maximal number of samples the classifier can always classify correctly without any error
- □ For example a linear classifier in a 2D space has VCdimension, h=3

Structural Risk Minimization

$$R[f] \le R_{emp}[f] + \phi\left(\frac{h}{n}\right)$$

What about SVMs?

- \square Recall that a linear separator in R² has VC-dimension, h=3
- □ In general a linear separator in R^N has VC-dimension, h = N+1
- A separating hyperplane in an high dimensional features space used can have a very high VC-dimension and thus generalizing bad
- Instead, large margin hyperplane <w,b> have a bounded VC-dimension:

h · R²jjwjj²

■ where R is the radius of the smallest sphere around the origin containing the training samples

Part 4: Advanced Topics

- ☐ Training SVM
- Multi-class SVM
- Regression

SVM Training

- □ Just solve the optimization problem to find a_i and b
- ... but it is very expensive: O(n³) where n is the size of training set
- Faster approaches:
 - Chunking
 - Osuna's methods
 - Sequential Minimal Optimization
- Online learning:
 - Chunking-based methods
 - Incremental methods

Chunking

- Solves iteratively a sub-problem (working set)
- Build the working set with current SVs and the M samples with the bigger error (worst set)
- Size of the working set may increase!
- Converges to optimal solution!

Osuna's Method

- Solves iteratively a sub-problem (working set)
- Replace some samples in the working set with missclassified samples in data set
- Size of the working set is fixed!
- Converges to optimal solution!

Sequential Minimal Optimization

- Works iteratively only on two samples
- Size of the working set is minimal and multipliers are found analytically
- Converges to optimal solution!

Online Learning

- Batch Learning
 - All the samples known in advance
 - Training at once
- Online Learning
 - One sample at each time step
 - Adaptive Training
- Applications
 - ▶ Huge Dataset
 - Data streaming (e.g. satellite, financial markets)
- Approaches
 - Chunking-based
 - Incremental

Online Learning (2)

Chunking-based methods

- Incremental methods
 - Adapting online the Lagrangian multipliers on the arrival of new samples
 - Recursive solution to the QP optimization problem
- Incremental methods are not widely used because they are too tricky and complex to implement

Multi-class SVM

☐ So far we considered two-classes problems:

☐ How does SVM deal with multi-class problems?

Multi-class SVM: the approaches

- Adapt the problem formulation to a multi-class problems
 - Complex
 - Poor performing
- Reduce a k-class problem to N of 2-class problems
 - Computationally expensive
 - Simple (based on usual SVMs)
 - Good performance
- The second solution is widely used and we focus on it

One-against-all

□ A k-class problem is decomposed in k binary (2-class) problems

- □ Training is performed on the entire dataset and involves k SVM classifiers
- Test is performed choosing the class selected with the highest margin among the k SVM classifiers

One-against-one

□ A k-class problem is decomposed in k(k-1)/2 binary (2-class) problems

- □ The k(k-1)/2 SVM classifiers are trained on subsets of the dataset
- Test is performed by applying all the k(k-1)/2 classifiers to the new sample and the most voted label is chosen

DAGSVM

- In DAGSVM, the k-class problem is decomposed in k(k-1)/2 binary (2-class) problems as in one-against-one
- Training is performed as in one-against-one
- But test is performed using a Direct Acyclic Graph to reduce the number of SVM classifiers to apply:

□ The test process involves only k-1 binary SVM classifiers instead of k(k-1)/2 as in one-against-one approach

Multi-class SVM: summary

- One-against-all
 - cheap in terms of memory requirements
 - expensive training but cheap test
- One-against-one
 - expensive in terms of memory requirements
 - expensive test but slightly cheap training
- DAGSVM
 - expensive in terms of memory requirements
 - slightly cheap training and cheap test
- One-against-one is the best performing approach, due to the most effective decomposition
- □ DAGSVM is a faster approximation of one-against-one

Regression

Regression

Part 5: Applications

- Handwriting recognition
- Face detection
- Learning to Drive

Handwriting recognition

MNIST Benchmark

- 60000 training samples
- 10000 test samples
- 28x28 pixel

Classifier	Test Error
Linear Classifier	8.4%
3-nearest-neighbour	2.4%
SVM	1.4%
LeNet4	1.1%
Boosted LeNet4	0.7%
Translation Invariant	
SVM	0.56%

Face Detection

Templates

Learn to drive

- TORCS is an open source racing game
- Can a SVM learn to drive imitating a human driver?
- □ Player modeling has many interesting application in computer games:
 - human-like opponents
 - improve opponents prediction capabilities
 - automatic testing and design

Summary

- SVM search for an optimal separating hyperplane
- With kernel trick, SVM extend to non-linear problems
- SVM have a strong theoretical background
- SVM are very expensive to train
- SVM can be extended to
 - Multi-class problems
 - Regression problems
- SVM have been successfully applied to many problems
- Pointers
 - http://www.kernel-machines.org/
 - http://videolectures.net/
 - ▶ LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)