Mécanique quantique – L2

Soutien 1 :Ordres de grandeur, algèbre et probabilités

1 Ordres de grandeur

1.1 Effet photoélectrique sur les métaux

On envoie sur une photocathode en potassium une radiation ultraviolette (raie du mercure) de longueur d'onde $\lambda=253.7$ nm. On constate que l'énergie maximale des photoélectrons éjectés est 3.14 eV. Si on envoie une radiation visible jaune (raie du sodium) de longueur d'onde $\lambda=589$ nm. On constate que l'énergie maximale des photoélectrons éjectés est 0.36 eV.

- 1. Retrouver la valeur de la constante de Planck
- 2. Calculer l'énergie d'extraction minimale des électrons du potassium
- 3. Calculer la longueur d'onde maximale des radiations pouvant produire un effet photoélectrique sur le potassium

1.2 Flux de photons

- 1. Une antenne radio émet à la fréquence de 1 MHz, avec une puissance de 1 kW. Quel est le nombre de photons émis par seconde?
- 2. Une étoile de première grandeur émet un flux lumineux sur la Terre de $1.6^{-10}\,\mathrm{W\,m^{-2}}$ à une longueur d'onde moyenne de 556 nm. Combien de photons traversent la pupille de l'œil par seconde?
- 3. Une photodiode en silicium a une efficacité typique de 0.5 A/W. Donner le nombre de photoélectrons produits par photon incident ($\lambda = 740$ nm).

2 Espace de Hilbert - Opérateurs

Soit \mathcal{H} un \mathbb{C} -espace vectoriel dont on note $\langle \cdot | \cdot \rangle$ le produit hermitien. On rappelle que $\langle \varphi | \psi \rangle = \overline{\langle \psi | \varphi \rangle}$

Soit \widehat{A} un endomorphisme de \mathcal{H} . On définit \widehat{A}^{\dagger} tel que :

$$\langle \psi | \widehat{A}^{\dagger} | \varphi \rangle = \overline{\langle \varphi | \widehat{A} | \psi \rangle}$$

1. Montrer que:

(a) si
$$\lambda \in \mathbb{C}$$
, $(\lambda \widehat{A})^{\dagger} = \lambda^* \widehat{A}^{\dagger}$;

- (b) $(\widehat{A} + \widehat{B})^{\dagger} = \widehat{A}^{\dagger} + \widehat{B}^{\dagger}$;
- (c) $(\widehat{A} \circ \widehat{B})^{\dagger} = \widehat{B}^{\dagger} \circ \widehat{A}^{\dagger}$.
- 2. Une application \widehat{A} est dite hermitienne $ssi\ \widehat{A}^{\dagger} = \widehat{A}$. Montrer que les éléments diagonaux et les valeurs propres d'une application hermitienne sont réelles.
- 3. Une application \widehat{U} est dite unitaire ssi $\widehat{U}^{\dagger} = \widehat{U}^{-1}$. Montrer que les valeurs propres d'une application unitaire sont des nombres complexes de module 1.
- 4. Si \widehat{A} est hermitienne, montrer que $\forall t \in \mathbb{R}, \ \widehat{U} = e^{it\widehat{A}}$ est unitaire.

3 Espace de dimension finie

1. On se place dans l'espace $\mathcal{H}=\mathbb{C}^2$. Montrer que le polynôme caractéristique d'une matrice A s'écrit :

$$\chi(\lambda) = \det(A - \lambda \operatorname{Id}) = \lambda^2 - \operatorname{Tr}(A)\lambda + \det(A).$$

2. On note **u** le vecteur unitaire repéré par les coordonnées polaires (θ, ϕ) (θ étant l'angle de **u** avec (Oz)) et on considère $\sigma_u = \sigma_x u_x + \sigma_y u_y + \sigma_z u_z$. Donner l'expression de σ_u dans la base dans laquelle σ_z est diagonale. Calculer les vecteurs propres et les valeurs propres associées.

On donne l'expression des matrices de Pauli :

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

4 Attention aux probabilités conditionnelles

Soient \widehat{A} , \widehat{B} et \widehat{C} trois observables, de vecteurs propres respectifs $\{|u_n\rangle\}_n$, $\{|v_n\rangle\}_n$ et $\{|w_n\rangle\}_n$ (les valeurs propres sont supposées pour simplifier non dégénérées et suffisantes pour déterminer complètement l'état quantique).

- 1. Supposons que la mesure de \widehat{A} donne la valeur propre u_{α} . On mesure ensuite \widehat{C} . Quelle est la probabilité $P(\gamma|\alpha)$ de mesurer la valeur propre w_{γ} , connaissant le résultat de la mesure de \widehat{A} ?
- 2. On mesure maintenant successivement \widehat{A} , \widehat{B} et \widehat{C} . Quelle est la probabilité $P(\gamma, \beta | \alpha)$ de mesurer successivement v_{β} et w_{γ} , connaissant le résultat de la mesure de \widehat{A} ?
- 3. Quelle formule classique relie les $P(\gamma, \beta | \alpha)$ à $P(\gamma | \alpha)$? En écrire l'équivalent quantique, explicitant le passage du système de l'état $|u_{\alpha}\rangle$ à l'état $|w_{\gamma}\rangle$ par différents chemins.