ЗАДАЧИ ПО АНАЛИТИЧНА ГЕОМЕТРИЯ

I ЧАСТ: Афинни операции с вектори

1 зад. В четириъгълника ABCD точките M и N са средите съответно на страните AD и CB.

Да се докаже, че
$$\overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{CD} \right)$$

2 зад. В четириъгълника ABCD точките M и N са средите съответно на диагоналите AC и DB.

Да се докаже, че
$$\overrightarrow{MN} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{CD})$$
.

3 зад. Нека точките K, L, M и N са средите съответно на страните BC, CD, DE и EA на петоъгълника ABCDE, а точките P и Q са средите съответно на отсечките KM и LN. Докажете, че $\overrightarrow{QP} = \frac{1}{4}\overrightarrow{AB}$.

4 зад. В успоредника ABCD точките M и N са средите съответно на страните BC и CD. Точката P е такава, че AMPN е успоредник. Докажете, че точката P принадлежи на правата AC.

5 зад. В триъгълник *ABC CM* е медиана. Нека точките P и Q са такива, че $\overrightarrow{CP} = \frac{3}{4}\overrightarrow{CM}$ и $\overrightarrow{CQ} = \frac{3}{5}\overrightarrow{CB}$. Докажете, че точките A, P и Q са колинеарни.

6 зад. В четириъгълника ABCD точката P е средата на страната AB, а точката Q е средата на страната CD. Нека точките M и N са такива, че AMQD и NBCQ са успоредници. Докажете, че точката P е средата на отсечката MN.

7 зад. ABCD е произволен четириъгълник, в който точка M е средата на AB, точка K е средата на CD, точка D е средата на D е сре

II ЧАСТ: Линейна зависимост и независимост на вектори.

- 1 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \overrightarrow{a}$ и $\overrightarrow{CB} = \overrightarrow{b}$. Върху страните AC и BC са нанесени съответно точките M и N така, че CM:MA = 2:3 и CN:NB = 2:3.
 - а) Да се изразят векторите \overrightarrow{AN} , \overrightarrow{BM} , \overrightarrow{MN} и \overrightarrow{AB} чрез \overrightarrow{a} и \overrightarrow{b} . Да се покаже, че правите MN и AB са успоредни;
 - b) Да се докаже, че правите AN и BM имат точно една обща точка.
- 2 зад. Даден е успоредник ABCD, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$, а точката P е от страната BC такава, че BP:PC = 3:1.
 - а) Да се изразят векторите \overrightarrow{OC} , \overrightarrow{OB} , \overrightarrow{OP} чрез \vec{a} и \vec{b} ;
 - b) Ако точката Q е от страната AD такава, че AQ:QD=1:3, да се докаже, че точките P, Q и O са колинеарни.

- 3 зад. Даден е успоредник ABCD, за който $\overrightarrow{AB} = \overrightarrow{a}$ и $\overrightarrow{AD} = \overrightarrow{b}$, точката $O = AC \cap BD$. Точките P и Q са определени от равенствата: $\overrightarrow{DP} = \frac{1}{3}$. \overrightarrow{DC} и $\overrightarrow{QB} = \frac{1}{3}$. \overrightarrow{AB} .
 - а) Да се изразят векторите \overrightarrow{PQ} и \overrightarrow{OQ} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се докаже, че точките P, Q и O са колинеарни;
 - с) Да се докаже подточка b), ако $\overrightarrow{DP} = \frac{1}{n}.\overrightarrow{DC}$ и $\overrightarrow{QB} = \frac{1}{n}.\overrightarrow{AB}, n \in \mathbb{R}^+.$
- 4 зад. Даден е успоредник ABCD, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$. Точките M и N са медицентровете съответно на триъгълник ABD и триъгълник ABC.
 - а) Да се изразят векторите \overrightarrow{AN} , \overrightarrow{BM} , \overrightarrow{MN} и \overrightarrow{AB} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се покаже, че правите MN и AB са успоредни.
- 5 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките A_1 , C_1 и O_1 са медицентровете съответно на триъгълниците: BOC, AOB и ABC.
 - а) Да се изразят медианите на тетраедъра $\overrightarrow{AA_1}$, $\overrightarrow{CC_1}$, $\overrightarrow{OO_1}$ чрез \vec{a} , \vec{b} и \vec{c} ;
 - b) Да се докаже, че векторите $\overrightarrow{AA_1}$ и $\overrightarrow{CC_1}$ са линейно независими;
 - с) Да се докаже, че векторите $\overrightarrow{AA_1}$, $\overrightarrow{CC_1}$ и \overrightarrow{AC} са линейно зависими, т.е. четирите точки A, C, A_I и C_I лежат в една равнина. От двете подусловия b) и c) следва, че двете прави AA_I и CC_I се пресичат в единствена точка M;
 - d) Да се докаже, че намерената по-горе точка M лежи и на третата медиана OO_1 и да се намерят отношенията, в които т. M дели всяка от медианите.
- 5 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ и $\overrightarrow{OC} = \overrightarrow{c}$. Точките M, N, P и Q са медицентровете съответно на триъгълниците: AOB, BOC, ABC и AOC. Да се докаже, че следните прави са две по две успоредни: MN и AC, MQ и BC, QN и AB, MP и OC, NP и OA, PQ и OB.

III ЧАСТ: Скаларно произведение на два вектора

- 1 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \overrightarrow{a}$ и $\overrightarrow{CB} = \overrightarrow{b}$. Нека $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, $∢(\overrightarrow{a}, \overrightarrow{b}) = \frac{\pi}{3}$. Дадени са точките F и D, съответно от страните AB и CB на триъгълника, такива че: AF:FB = 1:3 и CD:DB = 1:3.
 - а) Да се изразят векторите \overrightarrow{CF} и \overrightarrow{AD} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се намерят дължините на векторите \overrightarrow{CF} и \overrightarrow{AD} ;
 - с) Да се намери косинусът на ъгъла между векторите \overrightarrow{CF} и \overrightarrow{AD} .
- 2 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 2$, $|\vec{b}| = 3$, $\sphericalangle(\vec{a}, \vec{b}) = \gamma$. Медианите AA_1 и BB_1 на триъгълника са взаимно перпендикулярни. Да се определи $\cos \gamma$.

Упътване: Да се изразят векторите $\overrightarrow{AA_1}$ и $\overrightarrow{BB_1}$ чрез \vec{a} и \vec{b} , и да се пресметне скаларното им произведение.

- 3 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 3$, $|\vec{b}| = \sqrt{2}$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{4}$. Отсечката CH е височина в триъгълника, т. $H \in AB$. Да се изрази вектора \overrightarrow{CH} чрез \vec{a} и \vec{b} .
- 4 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Нека $|\vec{a}| = 2$, $|\vec{b}| = 2$, $|\vec{c}| = 1$ и трите вектора са два по два перпендикулярни. Построена е височината OH на тетраедъра, $\overrightarrow{T} \cdot H \in (ABC)$ и $OH \perp (ABC)$. Да се изрази вектора \overrightarrow{CH} чрез \vec{a} , \vec{b} и \vec{c} .
- 5 зад. Спрямо ОКС K = Oxy са дадени точките: A(2, -1), B(-1, 0) и C(2, 3). Да се докаже, че трите точки образуват триъгълник. Да се намерят:
 - а) Координатите на медицентъра M на триъгълник ABC и разстоянието от т.M до върха C;
 - b) Координатите на петите на трите височини на триъгълника, спуснати от върховете A, B и C.
- 6 зад. Спрямо ОКС K = Oxyz са дадени точките: A(1, -1, 2), B(2, 1, 1), C(1, 1, 2)и D(-3, 2, -1). Да се докаже, че четирите точки не лежат в една равнина. Да се намерят:
 - а) Да се намерят дължините на страните на триъгълник *ABC*;
 - b) Косинусите на ъглите на триъгълник ABC;
 - с) Координатите на медицентъра G на триъгълник ABD и дължината на вектора \overline{CG} ;
 - d) Координатите на точката H: $\tau.H \in (ABC)$ и $DH \perp (ABC)$.

IV ЧАСТ: Векторно и смесено произведение на вектори

- 1 зад. Спрямо ОКС K = Oxyz са дадени векторите $\vec{a}(1,0,2)$, $\vec{b}(2,-1,3)$ и $\vec{c}(1,-1,0)$. Да се намерят координатите на неизвестния вектор \vec{x} от уравненията: $(\vec{a}\vec{b}\vec{x}) = 1$, $(\vec{b}\vec{c}\vec{x}) = 2$, $(\vec{c}\vec{a}\vec{x}) = 0$.
- 2 зад. Дадени са векторите \vec{a} и \vec{b} . Нека $|\vec{a}|=3, |\vec{b}|=2, \sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$. Да се определи неизвестния вектор \vec{p} от равенствата : $(\vec{a}\vec{p})=-18, (\vec{b}\vec{p})=12, (\vec{a}\vec{b}\vec{p})=-12$.
- 3 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} . Нека $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ и

$$\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}, \sphericalangle(\vec{a}, \vec{c}) = \frac{\pi}{3}, \sphericalangle(\vec{c}, \vec{b}) = \frac{\pi}{3}.$$

- $(\vec{a}\vec{b}\vec{c})$ и да се пресметне смесеното произведение $(\vec{a}\vec{b}\vec{c})$ и да се докаже, че трите вектора са линейно независими;
- b) Нека OABC е тетраедър като: $\overrightarrow{OA} = (\vec{c} + \vec{b})$, $\overrightarrow{OB} = (\vec{c} + \vec{a})$ и $\overrightarrow{OC} = (\vec{a} + \vec{b})$. Да се намери обема на тетраедъра OABC.
- 4 зад. Дадени са векторите \vec{a} и \vec{b} . Нека $|\vec{a}|=2$, $|\vec{b}|=1$, $\sphericalangle(\vec{a},\vec{b})=\frac{2\pi}{3}$. В триъгълника OAB $\overrightarrow{OA}=(\vec{a}\times\vec{b})\times\vec{a}$, а $\overrightarrow{OB}=\vec{b}\times(\vec{a}\times\vec{b})$.
 - а) Да се намерят периметъра и лицето на триъгълника;
 - *b*) Ако т.M е медицентърът на триъгълник OAB, да се изрази вектора \overrightarrow{OM} чрез \overrightarrow{a} и \overrightarrow{b} , и да се пресметне дължината му.
- 5 зад. Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}|=|\vec{b}|=1$, $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{3}$.

Нека $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = (\vec{a} \times \vec{b})$, $\overrightarrow{OC} = \vec{b} \times (\vec{a} \times \vec{b})$. Да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} са линейно независими и да се намери обема на тетраедъра OABC.

6 зад. Спрямо ОКС K = Oxyz са дадени точките: A(5, -2, 1), B(1, 1, -2), C(1, 0, 5) и D(1, 1, 1).

- а) Да се намери лицето на триъгълник ABC;
- b) Да се намери обема на тетраедъра *ABCD*.

7 зад. Спрямо ОКС K = Oxy в равнината са дадени точките: A(1, -1), B(-3, 2), C(5, 1). Да се намери лицето на триъгълник ABC.

ОБЩИ ЗАДАЧИ - ВЕКТОРИ

- 1 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}| = 2$, $|\vec{b}| = 1$, $|\vec{c}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{c}) = \sphericalangle(\vec{c}, \vec{b}) = \frac{\pi}{2}$. Нека $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Нека т.Н е петата на височината през върха О на тетраедъра OABC. Да се изрази вектора \overrightarrow{OH} като линейна комбинация на \vec{a} , \vec{b} и \vec{c} , и да се намери дължината му.
- 2 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}|=1$, $|\vec{b}|=1$, $|\vec{c}|=2$, $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$, $\sphericalangle(\vec{c},\vec{b})=\frac{\pi}{2}$. Нека OABC е тетраедър, за който $\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OB}=\vec{b}$ и $\overrightarrow{OC}=\vec{c}$.
 - а) Да се намери обема на тетраедъра ОАВС;

 - с) Нека точката G е медицентърът на ΔABC . Да се докаже, че т.G е медицентърът и на ΔMNP .
- 3 зад. Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}|=\left|\vec{b}\right|=\frac{1}{\sqrt{2}}$ и $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$. Нека $\overrightarrow{OA}=2\vec{a}-\vec{b}$, $\overrightarrow{OB}=\vec{a}+\vec{b}$, $\overrightarrow{OC}=\vec{a}\times\vec{b}$.
 - а) Да се намери обема на тетраедъра ОАВС;
 - b) Ако точките A_1 , B_1 и O_1 са средите на страните на триъгълник OAB, да се намерят обиколката и лицето на триъгълник $A_1B_1O_1$.
- 4 зад. Дадени са векторите $\overrightarrow{CA} = \vec{a} \times (\vec{b} \times \vec{a}), \overrightarrow{CB} = \vec{a} + \vec{b}, \overrightarrow{CD} = \vec{a} \times \vec{b}$, като $|\vec{a}| = 1, |\vec{b}| = 2,$ $\angle (\vec{a}, \vec{b}) = \frac{\pi}{3}.$
 - а) Нека точка H е петата на височината на Δ ABC, спусната от върха A към страната BC. Да се изрази \overrightarrow{AH} като линейна комбинация на \overrightarrow{a} и \overrightarrow{b} . Да се намери дължината на \overrightarrow{AH} .
 - b) Да се намерят лицето на триъгълник *ABC* и обема на тетраедъра *ABCD*.
- 5 зад. Дадени са векторите \vec{a} и \vec{b} като $|\vec{a}|=1$, $|\vec{b}|=2$, $\sphericalangle(\vec{a}, \vec{b})=\alpha$. $\overrightarrow{CA}=\vec{a}\times(\vec{b}\times\vec{a}), \overrightarrow{CB}=\vec{b}, \overrightarrow{CD}=\vec{a}\times\vec{b}$.
 - а) Нека точката H е петата на височината през върха A на триъгълник ABC. Да се изрази векторът \overrightarrow{AH} като линейна комбинация на \overrightarrow{a} и \overrightarrow{b} . Да се намери $\sphericalangle(\overrightarrow{a}, \overrightarrow{b})$, ако $|\overrightarrow{AH}| = 1$.
 - b) При каква стойност на ъгъла α векторите \overrightarrow{CA} , \overrightarrow{CB} и \overrightarrow{CD} са линейно независими?
 - c) При $\sphericalangle(\vec{a}, \ \vec{b}\) = \frac{\pi}{6}$, да се намери обема на тетраедъра *ABCD*.
- 6 зад. Дадени са векторите \vec{a} и \vec{b} като $|\vec{a}|=2, |\vec{b}|=3, \sphericalangle(\vec{a},\vec{b})=\frac{\pi}{3}$. Даден е успоредника ABCD, за който $\overrightarrow{AB}=\vec{a}$, $\overrightarrow{AD}=\vec{b}$. Нека точката M е средата на страната AB, а точките N, P и Q са медицентровете съответно на ΔAMD , ΔMCB и ΔCDM .
 - а) Да се изразят векторите \overrightarrow{NQ} , \overrightarrow{QP} и \overrightarrow{PN} чрез \vec{a} и \vec{b} и да се докаже, че правите PN и CD са успоредни;
 - b) Да се намерят лицето и обиколката на ΔNPQ ;
 - c) Ако $\overrightarrow{AS} = \overrightarrow{a} \times \overrightarrow{b}$, да се намери обема на паралелепипеда с ръбове \overrightarrow{AB} , \overrightarrow{AD} и \overrightarrow{AS} .

- 7 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките M, N и P са медицентровете съответно на триъгълниците: AOB, BOC и AOC.
 - а) Да се изразят векторите \overrightarrow{MN} , \overrightarrow{NP} и \overrightarrow{PM} като линейни комбинации на \vec{a} , \vec{b} и \vec{c} ;
 - b) Да се докаже, че следните прави са две по две успоредни: MN и AC, PM и BC, NP и AB:
 - с) Ако $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ и $\sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$, да се намери периметъра на триъгълник MNP.
- 8 зад. Дадени са векторите \vec{a} и \vec{b} , за които $|\vec{a}| = \sqrt{2}, |\vec{b}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{4}$. Нека ABCD е успоредник, като $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$. Точката M е средата на AB, а точките P и Q са медицентровете съответно на ΔAMD и ΔCDM .
 - а) Да се изразят векторите \overrightarrow{MQ} , \overrightarrow{QP} и \overrightarrow{PM} като линейни комбинации на \overrightarrow{a} и \overrightarrow{b} . Да се докаже, че $PQ \parallel AC$;
 - b) Намерете дължината на \overrightarrow{QP} и лицето на ΔMPQ .
- 9 зад. Дадени са векторите \vec{a} и \vec{b} , за които $|\vec{a}|=3, |\vec{b}|=2, \sphericalangle(\vec{a},\vec{b})=\varphi, \ \varphi \in (0,\pi).$ Нека $\overrightarrow{OA}=\vec{a}+\vec{b}, \ \overrightarrow{OB}=\vec{a}-\vec{b}$ и $\overrightarrow{OC}=\vec{a}\times\vec{b}$. Намерете ъгъла φ така, че обемът на тетраедъра OABC да е равен на 9.
- 10 зад. Дадени са векторите \vec{a} и \vec{b} , за които $|\vec{a}|=3, |\vec{b}|=2, \sphericalangle(\vec{a}, \vec{b})=\frac{\pi}{3}$. Нека $\overrightarrow{OA}=\vec{a}+\vec{b}, \ \overrightarrow{OB}=\vec{a}-\vec{b}$ и $\overrightarrow{OC}=\vec{a}\times\vec{b}$.
 - а) Ако съществува тетраедър ОАВС, намерете неговият обем;
 - b) Нека точките A_1 , B_1 и G са медицентровете съответно на ΔOBC , ΔOAC и ΔABC . Да се изразят векторите $\overline{A_1G}$, $\overline{B_1G}$ и $\overline{B_1A_1}$ като линейни комбинации на \vec{a} и \vec{b} и да се намери лицето на ΔA_1B_1G .
- 11 зад. Дадени са векторите $\overrightarrow{CA} = \vec{a} \times (\vec{b} \times \vec{a})$, $\overrightarrow{CB} = \vec{a} + \vec{b}$, $\overrightarrow{CD} = \vec{a} \times \vec{b}$, като $|\vec{a}| = 1$, $|\vec{b}| = 2$, $\angle (\vec{a}, \vec{b}) = \frac{\pi}{3}$.
 - а) Нека точка H е петата на височината на Δ ABC, спусната от върха A към страната BC. Да се изрази \overrightarrow{AH} като линейна комбинация на \overrightarrow{a} и \overrightarrow{b} . Да се намери дължината на \overrightarrow{AH} .
 - b) Да се намерят лицето на триъгълник ABC и обема на тетраедъра ABCD.
- 12 зад. Дадени са векторите $\overrightarrow{OA} = (\vec{a} \times \vec{b}) \times \vec{b}$, $\overrightarrow{OB} = \vec{a} \times \vec{b}$, $\overrightarrow{OC} = \vec{a} + \vec{b}$, като $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{4}$.
 - а) Нека точка H е петата на височината на Δ OAC, спусната от върха O към страната AC. Да се изрази \overrightarrow{OH} като линейна комбинация на \overrightarrow{a} и \overrightarrow{b} . Да се намери дължината на \overrightarrow{OH} .
 - b) Да се намерят лицето на триъгълник *OAC* и обема на тетраедъра *OABC*.