(7) Japanese Patent Application Laid-Open No. 2002-026149:"Non-Volatile Semiconductor Memory Device and Operating Method Thereof"

A sixth preferred embodiment relates to a non-volatile memory of isolation source line NOR type which facilitates two bit / cell writing. Fig. 22 is a circuit diagram of four cells of a memory cell array. Fig. 23 is a sectional view showing a structure of a memory cell transistor according to the sixth preferred embodiment. In the memory cell transistor shown in Fig. 23, both of gate insulating films 10a and 10b are spatially separated with an insulating film 14 which is a single layer on a channel central portion therebetween.

The gate insulating film 10a is composed of, upwardly from a lower layer, a bottom insulating film 11a (FN tunnel nitride film), a nitride film 12a, and a top insulating film 13a. Likewise, the insulating film 10b is composed of, upwardly from a lower layer, a bottom insulating film 11b (FN tunnel nitride film), a nitride film 12b, and a top insulating film 13b.

In the present preferred embodiment, a main distribution region (a first region R1 and a second region R2) of charge accumulating means (carrier trap) is spatially separated, and a region (a third region R3) therebetween is made of an insulating film of a single material.

As a method of forming this gate insulating film structure, firstly, a stacked layer film including a bottom insulating film (FN tunnel nitride film), a nitride film and a top insulating film is entirely formed, followed by removing the stacked layer film partially by etching on the channel central portion. Then, a thick oxide silicon film is entirely deposited and the oxide silicon film is etched back from its surface. Next, etching back is stopped at a step where an insulating film on the gate insulating films 10a and 10b is removed and the insulating film 14 fills between the gate insulating films 10a and 10b, whereby the gate insulating film structure is completed.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002—26149

(P2002-26149A) (43)公開日 平成14年1月25日(2002.1.25)

(51)Int.Cl. 7	識別記号	FΙ	テーマコード (参考)
HO1L 21/8247		H01L 29/78	,
29/788		G11C 17/00	611 G 5F001
29/792		H01L 27/10	434 5F083
G11C 16/02			
HO1L 27/115			
		審査請求	未請求 請求項の数37 OL (全27頁)
(21)出願番号	特願2000-180763(P2000-180763)	(71)出願人	000002185
			ソニー株式会社
(22)出願日	平成12年6月12日(2000.6.12)		東京都品川区北品川6丁目7番35号
		(72)発明者	藤原 一郎
(31)優先権主張番号	特願2000-138251(P2000-138251)		東京都品川区北品川6丁目7番35号 ソニ
(32)優先日	平成12年5月2日(2000.5.2)		一株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	100094053
			弁理士 佐藤 隆久

最終頁に続く

(54) 【発明の名称】不揮発性半導体記憶装置およびその動作方法

(57)【要約】

【課題】少ない電流で極めて高速に書き込みができ、かつスケーリング性に優れたMONOS型メモリを実現する。

【解決手段】基板(ウエルW)、チャネル形成領域、当該チャネル形成領域を挟んだ逆導電型半導体からなり、動作時にソースまたはドレインとなる第1および第2不純物領域SBLi,SBLi+1、チャネル形成領域上のゲート絶縁膜10a,10b,14およびゲート電極WL、チャネル形成領域に対向した面内および膜厚方向に離散化されてゲート絶縁膜10a,10b内に形成され、動作時にバンド間トンネル電流に起因したホットホールが不純物領域SBLiおよび/またSBLi+1から注入される電荷蓄積手段(キャリアトラップ)とを有する。

【特許請求の範囲】

【請求項1】基板と、

当該基板に設けられ第1導電型半導体からなるチャネル 形成領域と、

当該チャネル形成領域を挟んで上記基板に形成された第 2 導電型半導体からなり、動作時にソースまたはドレイ ンとなる第1および第2不純物領域と、

上記チャネル形成領域上に設けられたゲート絶縁膜と、 当該ゲート絶縁膜上に設けられたゲート電極と、

上記チャネル形成領域に対向した面内および膜厚方向に 10 離散化されて上記ゲート絶縁膜内に形成され、動作時に ホットホールが上記第1不純物領域および/または第2 不純物領域から注入される電荷蓄積手段とを有する不揮 発性半導体記憶装置。

【請求項2】上記ホットホールは、バンド間トンネル電 流に起因したホットホールである請求項1記載の不揮発 性半導体記憶装置。

【請求項3】上記ゲート絶縁膜は、上記第1不純物領域 からホットホールが注入される第1領域と、

上記第2不純物領域からホットホールが注入される第2 20 領域と、

上記第1,第2領域間に挟まれ、ホットホールが注入さ れない第3領域とを有する請求項1記載の不揮発性半導 体記憶装置。

【請求項4】上記電荷蓄積手段が上記第1,第2領域に 形成され、

電荷蓄積手段の分布領域が上記第3領域を介して空間的 に分離されている請求項3記載の不揮発性半導体記憶装 溍。

【請求項5】上記第1,第2領域が複数の膜を積層した 30 積層膜構造を有し、

上記第3領域が単一材料の絶縁膜からなる請求項4記載 の不揮発性半導体記憶装置。

【請求項6】上記第1および第2領域上に形成されたゲ ート電極と、

上記第3領域上に形成されたゲート電極とが空間的に分 離されている請求項4記載の不揮発性半導体記憶装置。

【請求項7】上記チャネル形成領域は、2つのメモリト ランジスタのチャネル形成領域と、その間の1つの選択 トランジスタのチャネル形成領域とが連結してなる請求 40 する請求項13記載の不揮発性半導体記憶装置。 項6記載の不揮発性半導体記憶装置。

【請求項8】上記第1,第2および第3領域上のゲート 電極に対しそれぞれ空間的に分離した、上記第1領域外 側の第1制御ゲートおよび上記第2領域外側の第2制御 ゲートをさらに有する請求項3記載の不揮発性半導体記 億装置。

【請求項9】上記チャネル形成領域、上記第1および第 2 不純物領域、上記ゲート絶縁膜および上記ゲート電極 を有するメモリトランジスタのゲート長が、上記第1, 第2不純物領域双方からホットホールを注入したとき、

上記第1不純物領域から注入されたホットホールの保持 領域と上記第2不純物領域から注入されたホットホール の保持領域との少なくとも一部が上記ゲート絶縁膜内で 合体するゲート長以下である請求項1記載の不揮発性半 導体記憶装置。

【請求項10】上記チャネル形成領域、上記第1および 第2不純物領域、上記ゲート絶縁膜および上記ゲート電 極を有するメモリトランジスタがワード方向とピット方 向とに複数配置され、

上記ゲート電極をワード方向に接続する複数のワード線

当該複数のワード線に接続され、動作対象のメモリトラ ンジスタが接続された選択ワード線に負電圧を印加し、 動作対象のメモリトランジスタが接続されていない非選 択ワード線に正電圧を印加するワード線駆動回路とをさ らに有する請求項1記載の不揮発性半導体記憶装置。

【請求項11】上記複数のメモリトランジスタは、

書き込み状態のしきい値電圧が消去状態のしきい値電圧 より低い請求項10記載の不揮発性半導体記憶装置。

【請求項12】上記第1導電型がp型であり、上記第2 導電型がn型である請求項1記載の不揮発性半導体記憶

【請求項13】上記チャネル形成領域、上記第1および 第2不純物領域、上記ゲート絶縁膜および上記ゲート電 極を有するメモリトランジスタが、ワード方向とビット 方向とに複数配置され、

複数のワード線と、

当該複数のワード線と電気的に絶縁された状態でそれぞ れ交差する複数の共通線とを更に有し、

上記複数のワード線それぞれに、上記ゲート電極が複数 接続され、

上記複数の共通線それぞれに、上記第1および/または 第2不純物領域が複数結合されている請求項1記載の不 揮発性半導体記憶装置。

【請求項14】上記ゲート電極をワード方向で共通に接 続するワード線と、

上記第1不純物領域をビット方向で共通に接続する第1 共通線と、

上記第2不純物領域を共通に接続する第2共通線とを有

【請求項15】上記第1共通線が、上記第1不純物領域 をビット方向で共通に接続する第1副線と、当該第1副 線をビット方向で共通に接続する第1主線とから構成さ

上記第2共通線が、上記第2不純物領域を共通に接続す る第2副線と、当該第2副線を共通に接続する第2主線 とから構成され、

上記第1副線と上記第2副線との間に、上記複数のメモ リトランジスタが並列接続されている請求項14記載の 50 不揮発性半導体記憶装置。

【請求項16】上記電荷蓄積手段は、すくなくとも外部 との間で電荷の移動がない場合に、上記チャネル形成領 域に対向する面全体としての導電性を持たない請求項1 記載の不揮発性半導体記憶装置。

【請求項17】上記ゲート絶縁膜は、上記チャネル形成 領域上のボトム絶縁膜と、

当該ボトム絶縁膜上の窒化膜または酸化窒化膜とを含む 請求項16記載の不揮発性半導体記憶装置。

【請求項18】上記ゲート絶縁膜は、上記チャネル形成 領域上のボトム絶縁膜と、

上記電荷蓄積手段としてボトム絶縁膜上に形成され互い に絶縁された小粒径導電体とを含む請求項16記載の不 揮発性半導体記憶装置。

【請求項19】上記小粒径導電体の粒径が10ナノメー タ以下である請求項18記載の不揮発性半導体記憶装 置。

【請求項20】基板と、

当該基板に設けられ第1導電型半導体からなるチャネル

当該チャネル形成領域を挟んで上記基板に形成された第 20 2 導電型半導体からなり、動作時にソースまたはドレイ ンとなる第1および第2不純物領域と、

上記チャネル形成領域上に設けられ、上記チャネル形成 領域に対向した面内および膜厚方向に離散化された電荷 蓄積手段を内部に含むゲート絶縁膜と、

当該ゲート絶縁膜上に設けられたゲート電極とを有する 不揮発性半導体記憶装置の動作方法であって、

書き込み時に、ホットホールを上記第1不純物領域およ び/または上記第2不純物領域から上記電荷蓄積手段に 注入する不揮発性半導体記憶装置の動作方法。

【請求項21】書き込み時に、バンド間トンネル電流に 起因したホットホールを上記第1不純物領域および/ま たは上記第2不純物領域から上記電荷蓄積手段に注入す る請求項20記載の不揮発性半導体記憶装置の動作方

【請求項22】書き込み時に、上記第1不純物領域から 上記ゲート絶縁膜の第1領域に上記ホットホールを注入

当該第1領域へのホットホール注入と独立に、上記第2 れた第2領域に上記ホットホールを注入する請求項20 記載の不揮発性半導体記憶装置の動作方法。

【請求項23】上記ゲート絶縁膜は、上記第1,第2領 域間にホットホールが注入されない第3領域を有し、 上記電荷蓄積手段が上記第1,第2領域に形成され、 電荷蓄積手段の分布領域が上記第3領域を介して空間的 に分離されている請求項22記載の不揮発性半導体記憶 装置の動作方法。

【請求項24】上記第1,第2領域が複数の膜を積層し た積層膜構造を有し、

上記第3領域が単一材料の絶縁膜からなる請求項23記 載の不揮発性半導体記憶装置の動作方法。

【請求項25】上記第1不純物領域から注入されたホッ トホールの保持領域と、上記第2不純物領域から注入さ れたホットホールの保持領域との少なくとも一部が、上 記電荷蓄積手段内で合体する請求項20記載の不揮発性 半導体記憶装置の動作方法。

【請求項26】上記チャネル形成領域、上記第1および 第2不純物領域、上記ゲート絶縁膜および上記ゲート電 10 極を有するメモリトランジスタのゲート長が、上記2つ のホットホール保持領域の少なくとも一部で合体が起こ るゲート長以下である請求項20記載の不揮発性半導体 記憶装置の動作方法。

【請求項27】上記チャネル形成領域、上記第1および 第2不純物領域、上記ゲート絶縁膜および上記ゲート電 極を有したメモリトランジスタがワード方向とビット方 向とに複数配置され、ワード方向の複数のメモリトラン ジスタごとに上記ゲート電極がワード線により共通に接 続されているメモリセルアレイに対する書き込みにおい て、

同一ワード線に接続した全てのメモリトランジスタに対 し、ホットホールを注入する上記第1,第2領域に対応 した全ての第1,第2不純物領域に所定の電圧を印加

ホットホール注入を行わない他の第1,第2領域に対応 した第1,第2不純物領域を電気的フォローティング状

上記同一ワード線に、上記第1,第2不純物領域に印加 する電圧との差が所定の書き込み電圧となる電圧を印加 30 し、

当該同一ワード線に接続した全てのメモリトランジスタ を1回の動作で並列に書き込む請求項22記載の不揮発 性半導体記憶装置の動作方法。

【請求項28】書き込み時に、上記第1および/または 第2不純物領域と上記ゲート電極との間に所定の書き込 み電圧を印加する請求項20に記載の不揮発性半導体記 憶装置の動作方法。

【請求項29】上記チャネル形成領域、上記第1および 第2不純物領域、上記ゲート絶縁膜および上記ゲート電 不純物領域から上記ゲート絶縁膜内で上記第1領域と離 40 極を有したメモリトランジスタがワード方向とビット方 向とに複数配置され、ワード方向の複数のメモリトラン ジスタごとに上記ゲート電極がワード線により共通に接 続されているメモリセルアレイに対する書き込みにおい て、動作対象のメモリトランジスタが接続されている選 択ワード線に負電圧を印加し、動作対象のメモリトラン ジスタが接続されていない非選択ワード線に正電圧を印 加する請求項28に記載の不揮発性半導体記憶装置の動 作方法。

> 【請求項30】書き込み時に、上記第1および第2不純 50 物領域に同一電圧を印加する請求項29に記載の不揮発

性半導体記憶装置の動作方法。

【請求項31】上記チャネル形成領域、上記第1および第2不純物領域、上記ゲート絶縁膜および上記ゲート電極を有したメモリトランジスタがワード方向とビット方向とに複数配置され、ビット方向の複数のメモリトランジスタごとに上記第1不純物領域が第1共通線により接続され、上記第2不純物領域が第2共通線により接続されているメモリセルアレイに対する書き込みにおいて、動作対象のメモリトランジスタが接続されている第1および第2共通線に正電圧を印加し、動作対象のメモリトランジスタが接続されていない第1および第2共通線に0Vを印加する請求項30に記載の不揮発性半導体記憶装置の動作方法。

【請求項32】消去時に、上記第1および/または第2 不純物領域からホットホールが注入されている上記電荷 蓄積手段に対して、直接トンネル効果またはFNトンネ ル効果を用いてチャネル全面より電子を注入する請求項 20に記載の不揮発性半導体記憶装置の動作方法。

【請求項33】上記第1導電型がp型であり、上記第2 導電型がn型である請求項20に記載の不揮発性半導体 20 記憶装置の動作方法。

【請求項34】上記電荷蓄積手段は、すくなくとも外部 との間で電荷の移動がない場合に、上記チャネル形成領 域に対向する面全体としての導電性を持たない請求項2 0に記載の不揮発性半導体記憶装置の動作方法。

【請求項35】上記ゲート絶縁膜は、上記チャネル形成 領域上のポトム絶縁膜と、

当該ボトム絶縁膜上の窒化膜または酸化窒化膜とを含む 請求項34に記載の不揮発性半導体記憶装置の動作方 注

【請求項36】上記ゲート絶縁膜は、上記チャネル形成領域上のボトム絶縁膜と、

上記電荷蓄積手段としてボトム絶縁膜上に形成され互い に絶縁された小粒径導電体とを含む請求項34に記載の 不揮発性半導体記憶装置の動作方法。

【請求項37】上記小粒径導電体の粒径が10ナノメータ以下である請求項36に記載の不揮発性半導体記憶装置の動作方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メモリトランジスタのチャネル形成領域とゲート電極との間のゲート絶縁膜の内部に、平面的に離散化された電荷蓄積手段(例えば、MONOS型やMNOS型における窒化膜内の電荷トラップ、トップ絶縁膜と窒化膜との界面近傍の電荷トラップ、或いは小粒径導電体等)を有し、当該電荷蓄積手段に対し電荷(電子またはホール)を電気的に注入して蓄積し又は引き抜くことを基本動作とする不揮発性半導体記憶装置と、その動作方法(魯き込み方法および消去方法)とに関する。

[0002]

【従来の技術】高度情報化社会、或いは高速,高域ネットワーク社会において、大容量のファイルメモリ,AV用途メモリに対するニーズは大きい。現在、1ギガバイト(GB)以上のデータを記憶する大容量メモリシステムとして、ハードディスクおよび光ディスクなどのディスクを記録媒体としたディスクメモリシステムが使用されている。この大きな市場を、不揮発性半導体メモリで置き換えようとする研究が近年、活発化している。また、将来大きな市場として期待されているネットワークに接続可能なモバイル情報端末においては、小型で信頼性が高いリムーバブルな記憶媒体が求められており、不揮発性半導体メモリがその第1の候補になっている。

6

【0003】ところが、不揮発性半導体メモリは、ハードウエアの小型化,軽量化のトレンドには合致しているものの、現状では未だ記憶容量が不足し、1ギガビット(Gb)以上の大容量を有する一括消去型の半導体メモリ(フラッシュメモリ)を実現するに至っていない。記憶容量不足に加え、ディスクメモリと比較して不揮発性半導体メモリのビットコスト低減が不十分であり、これらを解消するために不揮発性半導体メモリを高集積化することは重要である。

【0004】また、情報ネットワークの広帯域化とともにネットワークの伝送速度(たとえば搬送波周波数:100MHz)と同等の書き込み速度が不揮発性メモリにも要求されるようになってきている。これは、高速ネットワークを利用した情報の配信が近い将来発展すると予想されているためである。ネットワークからの高速ダウンロードを実現するには、不揮発性半導体メモリにおいても、従来のFG-NAND型フラッシュメモリの書き込み速度 $200\mu sec b 1$ 桁またはそれ以上の書き込み速度の向上が要求されている。

【0005】不揮発性半導体メモリは、電荷を保持する電荷蓄積手段(浮遊ゲート)が平面的に連続したFG(Floating Gate)型のほかに、電荷蓄積手段が平面的に離散化された、例えばMONOS(Metal-Oxide-Nitride-Oxide Semiconductor)型などがある。

【0006】MONOS型不揮発性半導体メモリでは、電荷保持を主体的に担っている窒化膜〔Six Ny (040 < x < 1、0 < y < 1)〕膜中またはトップ酸化膜と窒化膜との界面のキャリアトラップが空間的に(即ち、面方向および膜厚方向に)離散化して拡がっているために、電荷保持特性が、トンネル絶縁膜(ボトム絶縁膜)厚のほかに、Six Ny 膜中のキャリアトラップに捕獲される電荷のエネルギー的および空間的な分布に依存する。

【0007】このトンネル絶縁膜に局所的にリーク電流 パスが発生した場合、FG型では多くの電荷がリークパ スを通ってリークして電荷保持特性が低下しやすいのに 対し、MONOS型では、電荷蓄積手段が空間的に離散 化されているため、リークパス周辺の局所的な電荷がリークパスを通して局所的にリークするに過ぎず、記憶素子全体の電荷保持特性が低下しにくい。このため、MONOS型においては、トンネル絶縁膜の薄膜化による電荷保持特性の低下の問題はFG型ほど深刻ではない。

【0008】また、不揮発性半導体メモリの大容量化,高速化を実現するには、ゲート長のスケーリングが必須であるが、そのためにはトンネル絶縁膜厚のスケーリングが必要となる。FG型では、上記電荷保持特性の低下のためにトンネル絶縁膜厚のスケーリングが困難であり、これがそのままゲート長のスケーリングを困難なものとしている。これに対し、MONOS型では、トンネル絶縁膜厚を薄くできる分、ゲート長の微細化も進めやすい。すなわち、ゲート長が極めて短い微細メモリトランジスタにおけるトンネル絶縁膜のスケーリング性は、MONOS型の方がFG型よりも優れている。

【0009】 MONOS型不揮発性メモリで微細メモリセルを実現するにはディスターブ特性の改善が重要であり、そのためにはトンネル絶縁膜を通常の膜厚(1.6 $nm\sim2.0$ nm)より厚く設定する必要が生じている。トンネル絶縁膜を比較的厚膜化した場合、書き込み速度は $0.1\sim10$ msec qec qe

【0010】書き込み速度だけを考えると高速化も可能であるが、今度は信頼性および低電圧化が十分にできない。たとえば、チャネルホットエレクトロン(CHE)をソース側から注入するソースサイド注入型MONOSトランジスタが報告されたが(IEEE Electron Device Letter 19, 1998, pp153)、このソースサイド注入型MONOSトランジスタでは、動作電圧が書き込み時12V、消去時14Vと高いうえ、リードディスターブ特性およびデータ書換え特性などの信頼性が十分でない。

【0011】その一方、最近になって、従来のCHE注入方式によって電荷を離散的なトラップの一部に注入できることに着目して、電荷蓄積手段のソース側とドレイン側に独立に2値情報を書き込むことにより1メモリセルあたり2ビットを記録可能な技術が報告された。たと40えば"Extended Abstract of the 1999 International Conference on Solid State Devices and Materials, Tokyo,1999,pp.522-523"では、ソースとドレイン間の電圧印加方向を入れ換えて2ビット情報をCHE注入により書き込み、読み出し時には、書き込み時と逆方向に所定電圧をソースとドレイン間に印加する、いわゆる"リバースリード"方法によって書き込み時間が短く蓄積電荷量が少ない場合でも2ビット情報を確実に読み出すことを可能としている。また、消去はバンド間トンネ

技術によって、書き込み時間の高速化とビットコストの 大幅な低減が可能となった。

[0012]

【発明が解決しようとする課題】ところが、この従来の CHE注入タイプのMONOS型の不揮発性メモリで は、チャネル内を電子を加速して高エネルギー電子 (ホットエレクトロン)を発生させることから、ソースとドレイン間に酸化膜のバリア3.2 eVより大きな電圧、 実際には4.5 V程度の電圧印加が必要であり、このソ 10 ース・ドレイン間電圧を低減することは困難である。このため、書き込み時におけるパンチスルー効果が制限と なってゲート長のスケーリングが難しいという課題がある

【0013】また、CHE注入方式では、電子をチャネル内で加速させるため書き込み時に数百 μ Aの電流を必要とし、その結果、一括して並列書き込み可能なメモリセル数を大きくできないという課題もある。

【0014】さらに、CHE注入方式では、メモリトランジスタのチャネルに電流を流して書き込みを行うため、前記した2ビット記録を目的としてドレイン側とソース側に同時に書き込みを行うことができないという課題がある。

【0015】本発明の目的は、MONOS型など平面的に離散化されたキャリアトラップ等の電荷蓄積手段に電荷を蓄積させて基本動作するメモリトランジスタにおいて、パンチスルーを抑制しながら少ない電流で極めて高速に書き込みができ、かつ、ゲート長およびゲート絶縁膜厚のスケーリング性が良好な不揮発性半導体記憶装置と、その動作方法(書き込み方法および消去方法)を提供することである。

[0016]

【課題を解決するための手段】本発明の第1の観点に係る不揮発性半導体記憶装置は、基板と、当該基板に設けられ第1導電型半導体からなるチャネル形成領域と、当該チャネル形成領域を挟んで上記基板に形成された第2導電型半導体からなり、動作時にソースまたはドレインとなる第1および第2不純物領域と、上記チャネル形成領域上に設けられたゲート電極と、上記チャネル形成領域に対向した面内および膜厚方向に離散化されて上記ゲート絶縁膜内に形成され、動作時にホットホールが上記第1不純物領域および/または第2不純物領域から注入される電荷蓄積手段とを有する。好適に、上記ホットホールはバンド間トンネル電流に起因したホットホールである。

所定電圧をソースとドレイン間に印加する、いわゆる 【 0 0 1 7 】 本発明では 1 メモリセル当たりの記憶ビッ "リバースリード"方法によって書き込み時間が短く蓄 ト数は、2 ビット/セル、1 ビット/セルの何れでもよ 積電荷量が少ない場合でも 2 ビット情報を確実に読み出 い。前者の場合、上記ゲート絶縁膜は、好適に、上記第 1 不純物領域からホットホールが注入される第1領域 ル電流を利用したホール注入によって行っている。この 50 と、上記第2 不純物領域からホットホールが注入される

第2領域と、上記第1,第2領域間に挟まれ、ホットホ ールが注入されない第3領域とを有する。また、好適 に、上記電荷蓄積手段が上記第1,第2領域に形成さ れ、電荷蓄積手段の分布領域が上記第3領域を介して空 間的に分離されている。たとえば、MONOS型等の場 合、上記第1,第2領域が複数の膜を積層した積層膜構 造を有し、上記第3領域が単一材料の絶縁膜からなる。 さらに、好適に、上記第1および第2領域上に形成され たゲート電極と、上記第3領域上に形成されたゲート電 極とが空間的に分離されている。あるいは、上記第1, 第2および第3領域上のゲート電極に対しそれぞれ空間 的に分離した、上記第1領域外側の第1制御ゲートおよ び上記第2領域外側の第2制御ゲートをさらに有する。 第1および第2領域上のゲート電極と第3領域上のゲー ト電極が空間的に分離されている場合、2つのメモリト ランジスタのチャネル形成領域と、その間の選択トラン ジスタのチャネル形成領域とが直列に連結されている。 【0018】1ピット/セル記憶の場合、好適に、上記 チャネル形成領域、上記第1および第2不純物領域、上 記ゲート絶縁膜および上記ゲート電極を有するメモリト 20 ランジスタのゲート長が、上記第1,第2不純物領域双 方からホットホールを注入したとき、上記第1不純物領 域から注入されたホットホールの保持領域と上記第2不 純物領域から注入されたホットホールの保持領域との少 なくとも一部が上記ゲート絶縁膜内で合体するゲート長 以下である。

【0019】また、本発明では、好適に、上記チャネル形成領域、上記第1および第2不純物領域、上記ゲート総縁膜および上記ゲート電極を有するメモリトランジスタがワード方向とビット方向とに複数配置され、上記ゲート電極をワード方向に接続する複数のワード線と、当該複数のワード線に接続され、動作対象のメモリトランジスタが接続された選択ワード線に負電圧を印加し、動作対象のメモリトランジスタが接続されていない非選択ワード線に正電圧を印加するワード線駆動回路とをさらに有する。上記複数のメモリトランジスタは、書き込み状態のしきい値電圧が消去状態のしきい値電圧より低い。また、上記第1導電型がp型であり、上記第2導電型がn型である。

【0020】この不揮発性半導体記憶装置では、分離ソ 40 ース線型、仮想接地線型など、第1不純物領域(たとえば、ドレイン不純物領域)に接続された共通線と、第2 不純物領域(たとえば、ソース不純物領域)に接続された共通線とが独立に制御可能なNOR型メモリセル方式が好適である。分離ソース線型では、第1不純物領域が接続された共通線を第1共通線、第2不純物領域が接続された共通線を第2共通線という。その場合、第1および第2共通線がそれぞれ階層化されていてもよい。いわゆるAND型では、メモリブロック内の内部接続線としての第1および第2副線に対しメモリトランジスタが並 50

列接続されている。

【0021】本発明の第2の観点に係る不揮発性半導体 記憶装置の動作方法は、基板と、当該基板に設けられ第 1 導電型半導体からなるチャネル形成領域と、当該チャ ネル形成領域を挟んで上記基板に形成された第2導電型 半導体からなり、動作時にソースまたはドレインとなる 第1および第2不純物領域と、上記チャネル形成領域上 に設けられ、上記チャネル形成領域に対向した面内およ び膜厚方向に離散化された電荷蓄積手段を内部に含むゲ 10 一ト絶縁膜と、当該ゲート絶縁膜上に設けられたゲート 電極とを有する不揮発性半導体記憶装置の動作方法であ って、書き込み時に、ホットホールを上記第1不純物領 域および/または上記第2不純物領域から上記電荷蓄積 手段に注入する。好適に、このホットホールとして、バ ンド間トンネル電流に起因したホットホールを用いる。 【0022】この動作方法においても、2ピット/セル 記憶の場合と、1ビット/セル記憶の場合がある。前者 の場合、好適に、書き込み時に、上記第1不純物領域か ら上記ゲート絶縁膜の第1領域に上記ホットホールを注 入し、当該第1領域へのホットホール注入と独立に、上 記第2不純物領域から上記ゲート絶縁膜内で上記第1領 域と離れた第2領域に上記ホットホールを注入する。後 者の場合、好適に、上記第1不純物領域から注入された ホットホールの保持領域と、上記第2不純物領域から注 入されたホットホールの保持領域との少なくとも一部 が、上記電荷蓄積手段内で合体する。具体的に、たとえ ば、上記チャネル形成領域、上記第1および第2不純物 領域、上記ゲート絶縁膜および上記ゲート電極を有する メモリトランジスタのゲート長が、上記2つのホットホ ール保持領域の少なくとも一部で合体が起こるゲート長 以下である。

【0023】本発明では、第1,第2不純物領域がワー ド方向のセル間で分離している場合(分離ソース線NO R型)、あるいは、第1,第2不純物領域がワード方向 のセル間で共通の場合 (VG型) でも第1領域上のゲー ト電極と第2領域上のゲート電極が分離している場合 に、同一ワード線に接続されたメモリセルを1回の動作 で一括して書き込みできる。すなわち、上記チャネル形 成領域、上記第1および第2不純物領域、上記ゲート絶 縁膜および上記ゲート電極を有したメモリトランジスタ がワード方向とビット方向とに複数配置され、ワード方 向の複数のメモリトランジスタごとに上記ゲート電極が ワード線により共通に接続されているメモリセルアレイ に対する書き込みにおいて、同一ワード線に接続した全 てのメモリトランジスタに対し、ホットホールを注入す る上記第1,第2領域に対応した全ての第1,第2不純 物領域に所定の電圧を印加し、ホットホール注入を行わ ない他の第1,第2領域に対応した第1,第2不純物領 域を電気的フローティング状態とし、上記同一ワード線 に、上記第1,第2不純物領域に印加する電圧との差が 11

所定の書き込み電圧となる電圧を印加し、当該同一ワー ド線に接続した全てのメモリトランジスタを1回の動作 で並列に書き込む。

【0024】また、本発明では書き込み時に、上記第1 および/または第2不純物領域と上記ゲート電極との間 に所定の書き込み電圧を印加する。たとえば、上記チャ ネル形成領域、上記第1および第2不純物領域、上記ゲ ート絶縁膜および上記ゲート電極を有したメモリトラン ジスタがワード方向とビット方向とに複数配置され、ワ ード方向の複数のメモリトランジスタごとに上記ゲート 10 電極がワード線により共通に接続されているメモリセル アレイに対する書き込みにおいて、動作対象のメモリト ランジスタが接続されている選択ワード線に負電圧を印 加し、動作対象のメモリトランジスタが接続されていな い非選択ワード線に正電圧を印加する。好適に、書き込 み時に、上記第1および第2不純物領域に同一電圧を印 加する。この電圧印加方法は、2ビット/セル書き込み でも行うが、とくに1ビット/セル書き込みではホット ホール注入効率が向上し、望ましい。なお、片方よりホ ットホールを注入する場合には注入しない側の第1また 20 は第2不純物領域をオープンとするとよい。また、好適 に、上記チャネル形成領域、上記第1および第2不純物 領域、上記ゲート絶縁膜および上記ゲート電極を有した メモリトランジスタがワード方向とビット方向とに複数 配置され、ピット方向の複数のメモリトランジスタごと に上記第1不純物領域が第1共通線により接続され、上 記第2不純物領域が第2共通線により接続されているメ モリセルアレイに対する書き込みにおいて、動作対象の メモリトランジスタが接続されている第1および第2共 通線に正電圧を印加し、動作対象のメモリトランジスタ 30 が接続されていない第1および第2共通線に0Vを印加

【0025】消去時に、好適に、上記第1および/また は第2不純物領域からホットホールが注入されている上 記電荷蓄積手段に対して、直接トンネル効果またはFN トンネル効果を用いてチャネル全面より電子を注入す る。

【0026】この不揮発性半導体記憶装置およびその動 作方法は、電荷蓄積手段がチャネル形成領域に対向した 面内および膜厚方向に離散化された、たとえばMONO 40 S型、いわゆるナノ結晶などの小粒径導電体を有する微 細粒子型などに好適である。

【0027】本発明に係る不揮発性半導体記憶装置の動 作方法では、メモリトランジスタのチャネル導電型がn 型の場合、動作対象のメモリトランジスタが接続され選 択された第1,第2共通線(第1,第2不純物領域)に 所定の正電圧、たとえば5.0V~6.0Vを印加す る。また、動作対象のメモリトランジスタが接続され選 択されたワード線(ゲート電極)に所定の負電圧、たと えばー6.5V~-5.0Vを印加する。このとき、他 50 ル効果またはFNトンネル効果を用いて電荷蓄積手段に

の非選択ワード線に、たとえば0Vないし5V程度の正 電圧を印加し、また他の非選択な第1,第2共通線およ び基板に0Vを印加する。

【0028】第1,第2不純物領域の濃度を最適化する ことにより、この電圧印加条件下で、第1, 第2不純物 領域の表面が深い空乏状態となり、エネルギーバンドの 曲がりが急峻となる。このときバンド間トンネル効果に より電子が価電子帯より導電帯にトンネルし、第1,第 2 不純物領域側に流れる。その結果、ホールが発生し、 このホールの一部が電界加速されてホットホールとな る。第1,第2不純物領域端で発生した高エネルギー電 荷(ホットホール)は、その運動量(方向と大きさ)を 維持しながら殆ど運動エネルギーを失うことなく効率よ く、しかも高速に電荷蓄積手段(キャリアトラップ)に 注入される。第1,第2不純物領域からの電荷注入箇所 はそれそれ局所的であるが、ゲート長がたとえば100 nm以下と短い場合、電荷蓄積手段の分布面内で、第1 不純物領域側からの電荷注入領域と、第2不純物領域側 からの電荷注入領域が中央で少なくとも一部が合体し、 ほぼ全面に対し電荷注入が行われる。このため、当該メ モリトランジスタのしきい値電圧が大きく低下する。ホ ール電流自体は小さい (基板電流で2nA/セル)が、 このように電荷蓄積手段分布面内のほぼ全域に電荷が注 入されることから、必要なしきい値電圧変化を得るため の書き込み時間は、たとえば20µsec以下と、従来 の並列書き込みが可能なメモリセルと比較して1桁以上 短くなる。

【0029】一方、2ビット/セル書き込みに最適なメ モリトランジスタ構造としては、たとえば電荷蓄積手段 (キャリアトラップ等)を含むゲート絶縁膜をチャネル 方向両側に第1,第2領域に分離して、その間の第3領 域には電荷蓄積手段を含まない単一材料の絶縁膜とす る。この場合、中央の第3領域部分がMOSトランジス タとして機能する。この構造では、MOSトランジスタ のしきい値電圧を予め一定の範囲に制御しておくこと で、一定の電流で読み出しが行える。すなわち、このM OSトランジスタがない場合、ホットホール注入が過剰 に行われメモリトランジスタのしきい値電圧が大きく低 下すると、読み出し時の電流量がばらつく上、電流消費 も無駄が多い。ところが、本発明ではMOSトランジス タが存在するため、メモリトランジスタのしきい値電圧 が大きく低下し読み出し電流が増大しようとすると、M OSトランジスタがカットオフし、リミッタとして機能 する。このため、このメモリセルではMOSトランジス 夕のしきい値電圧が読み出し電流の上限が制御でき、無 駄な電流消費がない。

【0030】また、消去時には、たとえば第1または第 2不純物領域および基板を0 Vとした状態で、ワード線 に正電圧を印加し、チャネル全面より電子を直接トンネ

注入する。これにより、しきい値電圧が上昇して消去状 態となる。この消去方法では、何れのトンネル効果を用 いてもブロック一括消去が可能である。

[0031]

【発明の実施の形態】 第1実施形態

図1に、第1実施形態に係る不揮発性メモリ装置の要部 回路構成を示す。図2に、NOR型メモリセルアレイの 平面図を、図3に図2のB-B'線に沿った断面側から 見た鳥瞰図を示す。

【0032】この不揮発性メモリ装置では、ビット線 (第1共通線)が主ビット線(第1主線)と副ビット線 (第1副線) に階層化され、ソース線(第2共通線)が 主ソース線 (第2主線) と副ソース線 (第2副線) に階 層化されている。主ビット線MBL1に選択トランジス タS11を介して副ピット線SBL1が接続され、主ビ ット線MBL2に選択トランジスタS21を介して副ビ ット線SBL2が接続されている。また、主ソース線M SL1に選択トランジスタS12を介して副ソース線S SL1が接続され、主ソース線MSL2に選択トランジ スタS22を介して副ソース線SSL2が接続されてい 20 る。

【0033】副ピット線SBL1と副ソース線SSL1 との間に、メモリトランジスタM11~M1n(たとえ ば、 n=128) が並列接続され、副ピット線SBL2 と副ソース線SSL2との間に、メモリトランジスタM 21~M2nが並列接続されている。この互いに並列に 接続されたn個のメモリトランジスタと、2つの選択ト ランジスタ (S11とS12、又は、S21とS22) とにより、メモリセルアレイを構成する単位ブロックが

【0034】ワード方向に隣接するメモリトランジスタ M11, M21, …の各ゲートがワード線WL1に接続 されている。同様に、メモリトランジスタM12、M2 2,…の各ゲートがワード線WL2に接続され、また、 メモリトランジスタM1n, M2n, …の各ゲートがワ ード線WLnに接続されている。ワード方向に隣接する 選択トランジスタS11、…は選択線SG11により制 御され、選択トランジスタS21,…は選択線SG21 により制御される。同様に、ワード方向に隣接する選択 トランジスタS12,…は選択線SG12により制御さ 40 れ、選択トランジスタS22,…は選択線SG22によ り制御される。

【0035】この微細NOR型セルアレイでは、図3に 示すように、半導体基板SUBの表面にpウエルWが形 成されている。pウエルWは、トレンチに絶縁物を埋め 込んでなり平行ストライプ状に配置された素子分離絶縁 層ISOにより、ワード方向に絶縁分離されている。

【0036】 素子分離絶縁層 ISOにより分離された各 pウエル部分が、メモリトランジスタの能動領域とな

行ストライプ状にn型不純物が高濃度に導入され、これ により、副ピット線SBL1, SBL2 (以下、SBL と表記) および副ソース線SSL1, SSL2 (以下、 SSLと表記)が形成されている。副ピット線SBLお よび副ソース線SSL上に絶縁膜を介して直交して、各 ワード線WL1, WL2, WL3, WL4, … (以下、 WLと表記)が等間隔に配線されている。これらのワー ド線WLは、内部に電荷蓄積手段を含む絶縁膜を介して pウエルW上および素子分離絶縁層ISO上に接してい る。副ビット線SBLと副ソース線SSLとの間のpゥ エルWの部分と、各ワード線WLとの交差部分がメモリ トランジスタのチャネル形成領域となり、そのチャネル 形成領域に接する副ピット線部分がドレイン、副ソース 線部分がソースとして機能する。

【0037】ワード線WLの上面および側壁は、オフセ ット絶縁層およびサイドウォール絶縁層(本例では、通 常の層間絶縁層でも可)により覆われている。これら絶 縁層には、所定間隔で副ビット線SBLに達するビット コンタクトBCと、副ソース線SSLに達するソースコ ンタクトSCとが形成されている。これらのコンタクト BC、SCは、たとえば、ビット方向のメモリトランジ スタ128個ごとに設けられている。また、絶縁層上 を、ビットコンタクトBC上に接触する主ビット線MB L1, MBL2, … (以下、MBLと表記) と、ソース コンタクトSC上に接触する主ソース線MSL1, MS L2,…(以下、MSLと表記)が交互に、平行ストラ イプ状に形成されている。

【0038】この微細NOR型セルアレイは、第1共通 線(ビット線)および第2共通線(ソース線)が階層化 され、メモリセルごとにビットコンタクトBCおよびソ ースコンタクトSCを形成する必要がない。したがっ て、コンタクト抵抗自体のバラツキは基本的にない。ビ ットコンタクトBCおよびソースコンタクトSCは、た とえば128個のメモリセルごとに設けられるが、この プラグ形成を自己整合的に行わないときは、オフセット 絶縁層およびサイドウォール絶縁層は必要ない。すなわ ち、通常の層間絶縁膜を厚く堆積してメモリトランジス タを埋め込んだ後、通常のフォトリソグラフィとエッチ ングによりコンタクトを開口する。

【0039】副線(副ビット線,副ソース線)を不純物 領域で構成した疑似コンタクトレス構造として無駄な空 間が殆どないことから、各層の形成をウエハプロセス限 界の最小線幅下で行った場合、8下 に近い非常に小さ いセル面積で製造できる。さらに、ビット線とソース線 が階層化されており、選択トランジスタS11又はS2 1が非選択の単位ブロックにおける並列メモリトランジ スタ群を主ビット線MBL1またはMBL2から切り離 すため、主ビット線の容量が著しく低減され、高速化、 低消費電力化に有利である。また、選択トランジスタS る。能動領域内の幅方向両側で、互いの距離をおいた平 50 12またはS22の働きで、副ソース線を主ソース線か

30

ら切り離して、低容量化することができる。なお、更な る高速化のためには、副ビット線SBLおよび副ソース 線SSLをシリサイドを張りつけた不純物領域で形成 し、主ビット線MBLおよび主ソース線MSLをメタル 配線とするとよい。

【0040】図4に、メモリトランジスタのワード方向 の拡大断面図を示す。図4において、副ビット線SBL と副ソース線SSLとの間に挟まれ、ワード線WLが交 差する部分が、当該メモリトランジスタのチャネル形成 領域となる。

【0041】チャネル形成領域上には、ゲート絶縁膜1 0を介してメモリトランジスタのゲート電極(ワード線 WL) が積層されている。ワード線WLは、一般に、p たポリシリコン(doped poly-Si)、又はdoped poly-Si と高融点金属シリサイドとの積層膜からなる。このワー ド線WLの実効部分、すなわちソース・ドレイン間距離 に相当するチャネル方向の長さ (ゲート長) は、0.1 μm以下、たとえば80nm~90nm程度である。

【0042】本実施形態におけるゲート絶縁膜10は、 下層から順に、ボトム絶縁膜11,窒化膜12,トップ 絶縁膜13から構成されている。ボトム絶縁膜11は、 たとえば、酸化膜を形成し、これを窒化処理して用い る。ボトム絶縁膜11の膜厚は、使用用途に応じて2. 5 nmから6.0 nmの範囲内で決めることができ、こ こでは2.7nm~3.5nmに設定されている。

【0043】窒化膜12は、たとえば6.0nmの窒化 シリコン (Six Ny (0<x<1,0<y<1))膜 から構成されている。この窒化膜12は、たとえば減圧 CVD(LP-CVD)により作製され、膜中にキャリ アトラップが多く含まれている。窒化膜12は、プール フレンケル型 (PF型) の電気伝導特性を示す。

【0044】トップ絶縁膜13は、窒化膜12との界面 近傍に深いキャリアトラップを高密度に形成する必要が あり、このため、例えば成膜後の窒化膜を熱酸化して形 成される。トップ絶縁膜13をHT〇 (High Temperatu re chemical vapor deposited Oxide)法により形成した SiO、膜としてもよい。トップ絶縁膜13がCVDで 形成された場合は熱処理によりこのトラップが形成され る。トップ絶縁膜13の膜厚は、ゲート電極(ワード線 40 WL) からのホールの注入を有効に阻止してデータ書換 可能な回数の低下防止を図るために、最低でも3.0 n m、好ましくは3.5nm以上が必要である。

【0045】このような構成のメモリトランジスタの製 造においては、まず、用意した半導体基板SUBに対し 索子分離絶縁層ISOおよびpウエルWを形成した後 に、副ビット線SBLおよび副ソース線SSLとなる不 純物領域をイオン注入法により形成する。また、しきい 値電圧調整用のイオン注入等を必要に応じて行う。

【0046】つぎに、半導体基板SUB上にゲート絶縁 50 る。このとき、選択線SG21,SG22を、電源電圧

膜10を成膜する。具体的に、たとえば、短時間高温熱 処理法 (RTO法) により1000℃, 10secの熱 処理を行い、酸化シリコン膜(ボトム絶縁膜11)を形 成する。つぎに、ボトム絶縁膜11上にLP-CVD法 により窒化シリコン膜(窒化膜12)を、最終膜厚が6 nmとなるように、これより厚めに堆積する。このCV Dは、たとえば、ジクロロシラン (DCS) とアンモニ アを混合したガスを用い、基板温度730℃で行う。形 成した窒化シリコン膜表面を熱酸化法により酸化して、 10 たとえば3.5nmの酸化シリコン膜(トップ絶縁膜1 3) を形成する。この熱酸化は、たとえばH。 O雰囲気 中で炉温度950℃で40分程度行う。これにより、ト ラップレベル (窒化シリコン膜の伝導帯からのエネルギ 一差)が2.0eV以下の程度の深いキャリアトラップ が約1~2×10''/cm' の密度で形成される。ま た、窒化膜12が1nmに対し熱酸化シリコン膜(トッ プ絶縁膜13)が1.5 nm形成され、この割合で下地 の窒化膜厚が減少し、窒化膜12の最終膜厚が6nmと

【0047】ゲート電極(ワード線WL)となる導電膜 とオフセット絶縁層 (不図示) との積層膜を積層させ、 この積層膜を一括して同一パターンにて加工する。続い て、図3のメモリセルアレイ構造とするために、サイド ウォール絶縁層とともに自己整合コンタクトを形成し、 自己整合コンタクトにより表出する副ピット線SBLお よび副ソース線SSL上に、ビットコンタクトBCおよ びソースコンタクトSCを形成する。その後、これらプ ラグ周囲を層間絶縁膜で埋め込み、層間絶縁膜上に主ビ ット線MBLおよび主ソース線MSLを形成した後、必 要に応じて行う層間絶縁層を介した上層配線の形成およ びオーバーコート成膜とパッド開口工程等を経て、当該 不揮発性メモリセルアレイを完成させる。

【0048】つぎに、このような構成の不揮発性メモリ の書き込み時のバイアス設定例および動作について、メ モリトランジスタM11にデータを書き込む場合を例に 説明する。図5は、書き込み時のバイアス設定条件を示 す回路図、図6は読み出し時のバイアス設定条件を示す 回路図、図7は消去時のバイアス設定条件を示す回路図 である。また、図8は書き込み動作を示す素子断面図、 図9は消去動作を示す素子断面図である。

【0049】書き込み時に、図5に示すように、選択ワ ード線WL1に所定の負電圧、例えば-6.0Vを印加 する。選択主ビット線MBL1,選択主ソース線MSL 1および選択線SG11, SG12に所定の正電圧、た とえば6.0V+ α (α :トランジスタS11,S12 のしきい値電圧)を印加する。また、非選択ワード線W L2~WLnに所定の書き込み禁止電圧、たとえば5V を印加し、非選択主ビット線MBL2, 非選択主ソース 線MSL2および基板(pウエルW)に0Vを印加す

V... で保持する。これにより、選択副ピット線SBL1および選択副ソース線SSL1に6Vが伝達され、非選択副ピット線SBL2および非選択副ソース線SSL2に0Vが伝達される。

17

【0050】この書き込み条件下、書き込み対象のメモリトランジスタM11において、選択ワード線WL1に印加された負電圧により、副ビット線SBL1および副ソース線SSL1をなすn型不純物領域の表面が深い空乏状態となり、エネルギーバンドの曲がりが急峻となる。このときバンド間トンネル効果により電子が価電子10帯より導電帯にトンネルし、n型不純物領域側に流れ、その結果、ホールが発生する。発生したホールは、チャネル形成領域の中央部側に若干ドリフトして、そこで電界加速され、その一部がホットホールとなる。このn型不純物領域端で発生した高エネルギー電荷(ホットホール)は、その運動量(方向と大きさ)を維持しながら殆ど運動エネルギーを失うことなく効率よく、しかも高速に電荷蓄積手段であるキャリアトラップに注入される。【0051】副ビット線SBL1をなすn型不純物領域

からの電荷注入、副ソース線SSL1をなす n型不純物 20 領域からの電荷注入は、それぞれ局所的である。ところが、本実施形態におけるメモリトランジスタのゲート長が100 nm以下と短いため、図8に示すように、電荷蓄積手段の分布面内で、SBL側からの電荷注入領域14bが中央で合体し、ほぼチャネル形成領域全面に対しホール注入が行われる。このため、当該メモリトランジスタM11のしきい値電圧が大きく低下し、書き込みがなされる。すなわち、本実施形態では、ゲート長が短いほど、電荷蓄積手段のチャネルに対向した全面に効率的にホールが注入 30 される。

【0052】一方、同じブロック内の非選択メモリトランジスタM12,…では、ゲートとソースまたはドレインとの間に1Vしか電圧がかからない。また、他のブロック内の非選択メモリトランジスタM21,M22,…では、ゲートとソースまたはドレインとの間に5Vまたは6V程度しか電圧がかからない。したがって、電荷蓄積手段にホールが注入されず、有効に書き込みが禁止される。

【0053】この書き込み方法では、電荷の電界加速方 40 【0058】これにより向と注入方向がほぼ一致するため、従来のCHE注入方式より電荷の注入効率が高い。また、チャネル自体は形成せずに書き込みを行うため、電流消費が少なくてす。ホール電流自体は小さいが、このように電荷蓄積手段の直接トンネル効果に設分布面内のほぼ全域に電荷が注入されることから、必要なしきい値電圧変化を得るための書き込み時間は、たとえば20 μ sec以下と従来より1桁以上短くなる。【0054】図10に、ゲート電圧Vg=-6V0場合の基板電流とゲート電流のV-ス/ドレイン(S/D)が懸念されるが、本発の近場を通過するの基板電流とゲート電流のV-ス/ドレイン(S/D)の表板電流とゲート電流のV-ス/ドレイン(S/D)るため、信頼性が高い。

6V, Vs=Vd=6V) 下の電流は約 $20nA/\mu m$ であり、ゲート幅を $10\mu m$ とすると、ビット当りの書き込み電流は $200nA/\tau \nu$ と非常に低い電流値を実現できた。

【0055】以上の書き込み動作では、書き込みをすべき選択セルを含むブロックと、書き込みを禁止すべきブロックをバイアス条件により設定した。本実施形態では、全てのブロックを選択し、ワード線WL1に連なるセルを一括してページ書き込みすることができる。その際、上記した注入効率の改善によってビット当たりの書き込み電流が桁違いに小さくなり、従来のCHE注入方式では1バイト(B)程度であった一括並列書き込み可能なセル数が、本実施形態では1キロバイト(kB)程度と格段に大きくなる。

【0056】読み出しでは、ページ読み出しを基本とする。図6に示すように、主ビット線MBL1,MBL12,…に所定のドレイン電圧、たとえば1.0Vを印加する。また、非選択ワード線WL2,WL3,…に所定の読み出し禁止電圧、たとえば-0.3Vを印加し、主ソース線MSL1,MSL2,および基板(pウエルW)に0Vを印加する。また、全ての選択線SG11,SG21,SG12,SG22を電源電圧 $V_{c,c}$ で保持する。この状態で、読み出し対象のワード線WL1に所定のゲート電圧、たとえば1.5V~2.0Vを印加する。これにより、ワード線WL1に接続されたメモリトランジスタM11,M21,…が書き込み状態に応じてオンまたはオフし、オンした場合のみ主ビット線電圧が変化する。この電圧変化を図示しないセンスアンプ等で増幅して読み出す。

【0057】消去は、モディファイドFN (MFN)トンネリングまたは直接トンネリングを用いてチャネル全面から電子を注入することにより行う。MFNトンネリングを用て全ブロックを一括消去する場合、たとえば図7に示すように、全てのワード線WL1,WL2,…に12V、全ての主ビット線MBL1,MBL2、全ての主ソース線MSL1,MSL2および基板(pウェルW)に0Vを印加する。このとき、全ての選択線SG11,SG21,SG12,SG22を電源電圧 $V_{\epsilon\epsilon}$ で保持する。

【0058】これにより、図9に示すように、基板側から電子が電荷蓄積手段であるキャリアトラップに注入され、しきい値電圧が上昇して消去が行われる。この電子注入による消去は0.4msec程度まで低減でき、従来の直接トンネル効果によるホール注入消去時間の典型値100msecに比べ1桁以上改善された。また、従来のホール注入による消去では、書き込みに比べ電荷がボトム絶縁膜を通過する時間が長いため絶縁膜質の劣化が懸念されるが、本発明では、ホットホール注入を電荷通過時間の短い書き込みに利用し消去は電子注入を用いるため、信頼性が高い。

【0059】図11に、ボトム絶縁膜厚2.9nm、ゲート長90nmのメモリトランジスタの書き込み特性を示す。書き込み条件は、ゲート電圧Vgを-6V、ソース電圧Vsおよびドレイン電圧V dを6Vとし、ウエル電圧を0Vとした。書き込み時間とともにしきい値電圧が低下するが、 20μ secでしきい値電圧が十分に低下していることが分かった。このことは、 20μ sで情報の書き込みが可能なことを示唆している。なお、消去条件としては、ゲート電圧Vgが12V、ソース電圧Vsおよびドレイン電圧Vdが0V、消去時間が0.3m10secを用いている。

【0060】図12に、ボトム絶縁膜厚2.55nm、ゲート長90nmのメモリトランジスタの書き込み特性を示す。書き込み条件は、ゲート電圧Vgを-6.5V、ソース電圧Vsおよびドレイン電圧Vdを5.5Vとし、ウエル電圧を0Vとした。時間とともにしきい値電圧が低下し、この場合も、20 μ secでしきい値電圧が十分に低下して高速に書き込みが行われていることが分かった。なお、消去条件としては、ゲート電圧Vgが12V、ソース電圧Vsおよびドレイン電圧Vdが0V、消去時間が0.2msecを用いている。

【0061】ゲート長が90nmと短いメモリトランジスタに対し、ソース・ドレイン両側からホットホールの局所注入を行った場合、十分なしきい値電圧の低下が得られることが分かった。ゲート長が180nmと長い場合、この条件で中心部にホールの注入が行われないためしきい値電圧は不十分であった。このため、ゲート長が90nmと短くすることでホール注入領域が電荷蓄積手段のチャネル対向面全域に及ぶことが、しきい値電圧の低下に大きく寄与していると推測される。以上より、ゲ30ート長が90nmのMONOSトランジスタで、書き込み速度20μsecが達成された。

【0062】書き込み状態、消去状態のメモリトランジスタの電流-電圧特性について検討した。この結果、ドレイン電圧1.0Vでの非選択セルからのオフリーク電流値は、読み出し時に非選択ワード線を-0.3V程度にバイアスしているため、約1nAと小さかった。この場合の読み出し電流は1μA以上であるため、非選択セルの誤読み出しが生じることはない。したがって、ゲート長90nmのMONOS型メモリトランジスタにおいて読み出し時のパンチスルー耐圧のマージンは十分あることが分かった。また、ゲート電圧1.5Vでのリードディスターブ特性も評価したが、3×10'sec以上時間経過後でも読み出しが可能であることが分かった。

【0063】図13に、ボトム絶縁膜厚2.9nmのメモリトランジスタのデータ書き換え特性を示す。書き込みおよび消去条件は、図11と同じとした。この図より10万回までのしきい値電圧差のナローイング(narrowing)は小さく、書き換え回数10万回を満足していることが分かった。図14に、ボトム絶縁膜厚2.55nm

のメモリトランジスタのデータ書き換え特性を示す。書き込み条件は、バイアス電圧が図11と同じで、書き込み時間を 10μ secと短くした。消去条件は、バイアス電圧が図12と同じで、消去時間を0.4msecと長くした。この図より、書き換え回数10万回を満足していることが分かり、ボトム絶縁膜厚が異なる場合も、同様な高信頼性が得られることが分った。なお、以上の何れの場合も、書き換え回数100万回までは十分なしきい値電圧差が維持されていることを確認した。

0 【0064】また、データ保持特性は1×10°回のデータ書換え後で85℃、10年を満足した。

【0065】以上より、ゲート長90nmのMONOS型不揮発性メモリトランジスタとして十分な特性が得られていることを確かめることができた。

【0066】以下、第2~第5実施形態に、第1実施形態のメモリセルアレイの構成およびパターンの変更例について説明する。

【0067】第2実施形態

る。

図15は、第2実施形態に係る分離ソース線NOR型の 不揮発性半導体メモリのメモリセルアレイの概略構成を 示す回路図である。

【0068】この不揮発性メモリ装置では、NOR型メ モリセルアレイの各メモリセルがメモリトランジスタ 1 個で構成されている。図15に示すように、メモリトラ ンジスタM11~M22が行列状に配置され、これらト ランジスタ間がワード線、ビット線および分離型ソース 線によって配線されている。すなわち、ビット方向に隣 接するメモリトランジスタM11およびM12の各ドレ インがビット線BL1に接続され、各ソースがソース線 SL1に接続されている。同様に、ビット方向に隣接す るメモリトランジスタM21およびM22の各ドレイン がビット線BL2に接続され、各ソースがソース線SL 2に接続されている。また、ワード方向に隣接するメモ リトランジスタM11とM21の各ゲートがワード線W L1に接続され、同様に、ワード方向に隣接するメモリ トランジスタM12とM22の各ゲートがワード線WL 2に接続されている。メモリセルアレイ全体では、この ようなセル配置およびセル間接続が繰り返されている。 【0069】図16は、第2実施形態に係る微細NOR 型セルアレイの概略平面図である。また、図17は、図 16のA-A'線に沿った断面側から見た鳥瞰図であ

【0070】この微細NOR型メモリセルアレイでは、図17に示すように、p型半導体基板SUB (pウエルでも可)の表面にトレンチまたはLOCOSなどから素子分離絶縁層ISOが形成されている。素子分離絶縁層ISOは、図16に示すように、ビット方向(図15の縦方向)に長い平行ストライプ状に配置されている。素子分離絶縁層ISOにほぼ直交して、各ワード線WL

とが分かった。図14に、ボトム絶縁膜厚2.55nm 50 1, WL2, WL3, WL4, …が等間隔に配線されて

いる。このワード線は、第1実施形態と同様、ボトム絶 縁膜,窒化膜,トップ絶縁膜からなるゲート絶縁膜上に **積層したポリシリコン等のゲート電極から構成されてい** る。

【0071】各素子分離絶縁層ISOの間隔内の能動領 域において、各ワード線の離間スペースに、基板SUB と逆導電型の不純物が高濃度に導入されてソース不純物 領域Sとドレイン不純物領域Dとが交互に形成されてい る。このソース不純物領域Sとドレイン不純物領域D は、その大きさがワード方向(図15の横方向)には素 10 子分離絶縁層ISOの間隔のみで規定され、ビット方向 にはワード線間隔のみで規定される。したがって、ソー ス不純物領域Sとドレイン不純物領域Dは、その大きさ と配置のばらつきに関しマスク合わせの誤差が殆ど導入 されないことから、極めて均一に形成されている。

【0072】ワード線の上部および側壁は、絶縁層で覆 われている。すなわち、ワード線WL1,WL2,…の 上部に同じパターンにてオフセット絶縁層が配置され、 オフセット絶縁層、その下のゲート電極(ワード線)お よびゲート絶縁膜からなる積層パターンの両側壁に、サ 20 イドウォール絶縁層が形成されている。このオフセット 絶縁層およびサイドウォール絶縁層により、各ワード線 同士のスペース部分に、ワード線に沿って細長い自己整 合コンタクトホールが開口されている。

【0073】ソース不純物領域Sまたはドレイン不純物 領域Dに一部重なるように、自己整合コンタクトホール 内に導電性材料が互い違いに埋め込まれ、これによりビ ットコンタクトBCおよびソースコンタクトSCが形成 されている。これらコンタクトBC、SCの形成では、 自己整合コンタクトホール全域を埋め込むように導電材 30 料を堆積し、その上に、エッチングマスク用のレジスト パターンを形成する。このとき、レジストパターンを自 己整合コンタクトホールの幅より一回り大きくし、ま た、一部を素子分離絶縁層IS〇に重ねる。そして、こ のレジストパターンをマスクとしてレジストパターン周 囲の導電材料をエッチングにより除去する。これによ り、2種類のコンタクトBC, SCが同時に形成され

【0074】図示しない絶縁膜でコンタクト周囲の凹部 が埋め込まれている。この絶縁膜上を、ビットコンタク トBC上に接触するビット線BL1, BL2, …と、ソ ースコンタクトSC上に接触するソース線SL1,…が 交互に、平行ストライプ状に形成されている。

【0075】この微細NOR型セルアレイは、そのビッ ト線またはソース線に対するコンタクト形成が、自己整 合コンタクトホールの形成と、プラグの形成により達成 される。自己整合コンタクトホールの形成では、ワード 線との絶縁分離が達成されるとともに、ソース不純物領 域Sまたはドレイン不純物領域Dの表出面が均一に形成 ンタクトSCの形成は、この自己整合コンタクトホール 内のソース不純物領域Sまたはドレイン不純物領域Dの 表出面に対して行う。したがって、各プラグの基板接触 面は、そのビット方向のサイズがほぼ自己整合コンタク トホールの形成により決められ、その分、コンタクト面 積のバラツキは小さい。

【0076】ビットコンタクトBCまたはソースコンタ クトSCと、ワード線との絶縁分離が容易である。すな わち、ワード線形成時に一括してオフセット絶縁層を形 成しておき、その後、絶縁膜の成膜と、全面エッチング (エッチバック)を行うだけでサイドウォール絶縁層が 形成される。また、ビットコンタクトBCとソースコン タクトSC、さらに、ビット線とソース線が同一階層の 導電層をパターンニングして形成されるため、配線構造 が極めて簡素であり、工程数も少なく、製造コストを低 く抑えるのに有利な構造となっている。しかも、無駄な 空間が殆どないことから、各層の形成をウエハプロセス 限界の最小線幅下で行った場合、8下に近い非常に小 さいセル面積で製造できる。

【0077】第2実施形態に係るMONOS型メモリト ランジスタの素子構造は、基本的な構造は第1実施形態 と同様である。ただし、この第2実施形態におけるメモ リトランジスタでは、ソース不純物領域Sとドレイン不 純物領域Dとの対向方向(チャネル方向)とワード線W Lの配線方向が直交する。したがって、ゲート長は、ほ ぼワード線幅で決まる。

【0078】このような構成のメモリトランジスタの製 造においては、ソースとドレインとなる不純物領域S, Dの形成をワード線の形成後に行うことが、第1実施形 態と大きく異なる。すなわち、第1実施形態と同様に、 素子分離絶縁層ISO、ゲート絶縁膜10およびゲート 電極膜の成膜と加工を行った後に、形成したパターンと 自己整合的にソース不純物領域Sおよびドレイン不純物 領域Dを、イオン注入法により形成する。

【0079】続いて、図17のメモリセルアレイ構造と するために、サイドウォール絶縁層とともに自己整合コ ンタクトホールを形成し、自己整合コンタクトホールに より表出するソースおよびドレイン不純物領域S,D上 にビットコンタクトBCおよびソースコンタクトSCを 形成する。その後、これらコンタクト周囲を層間絶縁膜 で埋め込み、層間絶縁膜上にビット線およびソース線を 形成した後、必要に応じて行う層間絶縁層を介した上層 配線の形成およびオーバーコート成膜とパッド開口工程 等を経て、当該不揮発性メモリセルアレイを完成させ る。

【0080】第1実施形態では、副ビット線SBLおよ び副ソース線SSLに選択トランジスタを介してトラン ジスタのソース・ドレイン不純物領域に伝達した。本実 施形態では、第1実施形態で副ビット線SBLおよび副 される。そして、ビットコンタクトBCおよびソースコ 50 ソース線SSLに伝達した電圧を、ビット線BLおよび

ソース線SLに直に印加する。これにより、第1実施形 態と同様な動作、すなわち書き込み、読み出しおよび消 去が可能となる。各トランジスタにおける電荷の注入等 のされ方は第1実施形態と同様であり、ここでの説明は 省略する。

【0081】なお、本実施形態の変形として、ソース線 および/またはビット線を第1実施形態と同様にして半 導体不純物領域から構成し、32~128個のメモリセ ルごとにコンタクトを介して、この不純物領域をそれぞ れメタル配線に接続させた場合でも、第1実施形態と同 10 様な効果が得られる。

【0082】第3実施形態

第3実施形態は、上記した第2実施形態のメモリセルア レイ構造の変形に関する。図18は、自己整合技術と蛇 行ソース線を用いた微細NOR型メモリセルアレイの概 略平面図である。

【0083】このNOR型セルアレイでは、図示せぬn ウェルの表面に縦帯状のトレンチまたはLOCOSなど 素子分離絶縁層ISOが等間隔でビット方向(図18の 縦方向) に配置されている。素子分離絶縁層ISOにほ 20 が実現できる。 ぼ直交して、各ワード線WLm-2, WLm-1, WLm, WLm+1 が等間隔に配線されている。このワード線構造 は、前述の実施形態と同様に、ボトム絶縁膜、窒化膜、 トップ絶縁膜及びゲート電極の積層膜から構成されてい

【0084】各素子分離絶縁層の間隔内の能動領域にお いて、各ワード線の離間スペースに、例えばn型不純物 が高濃度に導入されてソース不純物領域Sとドレイン不 純物領域Dとが交互に形成されている。このソース不純 ド方向 (図18の横方向) には素子分離絶縁層ISOの 間隔のみで規定され、ビット方向にはワード線間隔のみ で規定される。したがって、ソース不純物領域Sとドレ イン不純物領域Dは、その大きさと配置のばらつきに関 しマスク合わせの誤差が殆ど導入されないことから、極 めて均一に形成されている。

【0085】各ワード線の周囲は、サイドウォール絶縁 層を形成するだけで、ソース不純物領域Sとドレイン不 純物領域Dとに対し、ビット線接続用のコンタクトホー ルとソース線接続用のコンタクトホールとが2度のセル 40 フアラインコンタクト技術を同時に転用しながら形成さ れる。しかも、上記プロセスはフォトマスクが不要とな る。したがって、先に述べたようにソース不純物領域S とドレイン不純物領域Dの大きさや配置が均一な上に、 これに対して2次元的に自己整合して形成されるビット 線またはソース線接続用のコンタクトホールの大きさも 極めて均一となる。また、上記コンタクトホールはソー ス不純物領域Sとドレイン不純物領域Dの面積に対し、 ほぼ最大限の大きさを有している。

【0086】その上でビット方向に配線されているソー 50 は、ソース線が共通化されているため、一般に、ワード

ス線SLn-1, SLn, SLn+1 (以下、SLと表記) は、ドレイン不純物領域Dを避けながら素子分離絶縁層 ISO上とソース不純物領域S上に蛇行して配置され、 上記ソース線接続用のコンタクトホールを介して、下層 の各ソース不純物領域Sに接続されている。ソース線S L上には、第2の層間絶縁膜を介してビット線BLn-1 ,BLn ,BLn+1 (以下、BLと表記)が等間隔で 配線されている。このビット線BLは、能動領域上方に 位置し、ビット線接続用のコンタクトホールを介して、 下層の各ドレイン不純物領域Dに接続されている。

【0087】このような構成のセルパターンでは、上記 したように、ソース不純物領域Sとドレイン不純物領域 Dの形成がマスク合わせの影響を受けにくく、また、ビ ット線接続用のコンタクトホールとソース線接続用のコ ンタクトホールが、2度のセルフアライン技術を一括転 用して形成されることから、コンタクトホールがセル面 積縮小の制限要素とはならず、ウエハプロセス限界の最 小線幅Fでソース配線等ができ、しかも、無駄な空間が 殆どないことから、6 F' に近い非常に小さいセル面積

【0088】第4実施形態

第4実施形態は、いわゆる仮想接地型と称される、共通 ソース線NOR型の不揮発性メモリ装置に関する。図1 9は、仮想接地NOR型のメモリセルアレイ構成を示す 回路図である。また、図20は、仮想接地NOR型のメ モリセルアレイの概略平面図である。

【0089】このメモリセルアレイでは、図15のよう にソース線が分離されておらず、共通化されている。こ の共通化されたソース線は隣りのメモリセルを動作させ 物領域Sとドレイン不純物領域Dは、その大きさがワー 30 るときはビット線として機能する。したがって、このメ モリセルアレイでは、ビット方向の配線は全て"ビット 線"と称する。各ピット線BL1~BL3は、図20に 示すように、半導体の不純物領域からなる拡散層配線 (副ビット線SBL1, SBL2, …)と、図示しない ビットコンタクトを介して各副ビット線SBL1, SB L2,…に接続されたメタル配線(主ビット線MBL 1, MBL2, …) とからなる。このメモリセルアレイ のパターンでは、素子分離絶縁層ISOが全くなく、そ の分、第1~第3実施形態のメモリセルアレイよりセル 面積が縮小されている。なお、その1本おき、たとえば ビット線BL1とBL3を、図示しないビットコンタク トを介して上層のメタル配線に接続させてもよい。

> 【0090】本実施形態では、第1実施形態で副ピット 線SBLおよび副ソース線SSLに伝達した電圧を、主 ビット線MBLおよび主ソース線SLに直に印加する。 これにより、第1実施形態と同様な動作、すなわち書き 込み、読み出しおよび消去が可能となる。各トランジス タにおける電荷の注入等のされ方は第1実施形態と同様 であり、ここでの説明は省略する。仮想接地NOR型で

20

26

方向に隣接したメモリトランジスタへの誤書き込みが問題となる。しかし、本発明では、ソース側とドレイン側 双方から電荷注入して初めて大きなしきい値電圧変化となることから、ワード方向に隣接した非選択メモリトランジスタは誤書き込みされにくいという利点がある。

【0091】第5実施形態

第5実施形態は、いわゆるFG型におけるHiCR型と 同様の、共通ソース線NOR型の不揮発性メモリ装置に 関する。図21は、第5実施形態に係わるメモリセルア レイの概略平面図である。なお、メモリセルアレイの回 10 路図は、第4実施形態と同様であり図19が適用され る。

【0092】このメモリセルアレイでは、図21のように、ワード方向に隣接する2つのメモリトランジスタ間でソース線(主ソース線MSLおよび副ソース線SSL)が共通に設けられている。したがって、素子分離絶縁層ISOは、副線(副ビット線SBLn, SBLn+1および副ソース線SSL)3本ごとに設けられている。このメモリセルアレイのパターンでは、第1~第3実施形態と比較すると素子分離絶縁層ISOが少なく、その分、第1~第3実施形態のメモリセルアレイよりセル面積が縮小されている。

【0093】本実施形態では、第1実施形態で副ビット線SBLおよび副ソース線SSLに伝達した電圧を、主ビット線MBLおよび主ソース線SLに直に印加する。これにより、第1実施形態と同様な動作、すなわち書き込み、読み出しおよび消去が可能となる。各トランジスタにおける電荷の注入等のされ方は第1実施形態と同様であり、ここでの説明は省略する。また、仮想接地NOR型と同様、ソース側とドレイン側双方から電荷注入し30て初めて大きなしきい値電圧変化となることから、ワード方向に隣接した非選択メモリトランジスタは誤書き込みされにくいという利点がある。

【0094】以下、2ビット/セル書き込みに適した構造のメモリセルを有する実施形態を説明する。

【0095】第6実施形態

第6実施形態は、2ビット/セル書き込みが容易な分離ソース線NOR型の不揮発性メモリに関する。図22に、メモリセルアレイの4セル分の回路図を示す。なお、このメモリセルアレイは、図1のメモリセルアレイの要部を拡大して示すものである。また、図23に、第6実施形態に係るメモリトランジスタの構造を断面図により示す。

【0096】図23に示すメモリトランジスタは、その 膜10a,10b上の絶縁膜が除去され、ゲート絶縁膜 ゲート絶縁膜が、副ピット線SBLi側のゲート絶縁膜 10aと、副ピット線SBLi+1側のゲート絶縁膜1 パックを停止すると、当該ゲート絶縁膜構造が完成す 0bとから構成されている。両ゲート絶縁膜10a,1 る。なお、このエッチバック時のオーバエッ0チングを 0bは、チャネル中央部上の単層の絶縁膜14を挟んで 空間的に分離されている。両ゲート絶縁膜10a,10 サングストッパ膜、たとえば窒化シリコン膜を薄く形 bそれぞれが、第1実施形態におけるゲート絶縁膜10 50 成してもよい。その後は、第1実施形態と同様にしてワ

と同様の膜構造を有する。すなわち、ゲート絶縁膜10 aは、下層から順に、ボトム絶縁膜11a(FNトンネル窒化膜),窒化膜12a,トップ絶縁膜13aから構成されている。同様に、ゲート絶縁膜10bは、下層から順に、ボトム絶縁膜11b(FNトンネル窒化膜),窒化膜12b,トップ絶縁膜13bから構成されている。ボトム絶縁膜11a,11b,窒化膜12a,12b,トップ絶縁膜13a,13bそれぞれは、第1実施形態におけるボトム絶縁膜11,窒化膜12,トップ絶縁膜13と同様の材料、膜厚で、同様の成膜法により形成される。

【0097】ここで、ゲート絶縁膜10bの窒化膜12bを中心とした領域を"第1領域R1"、ゲート絶縁膜10aの窒化膜12aを中心とした領域を"第2領域R2"、絶縁膜14部分を"第3領域R3"という。本実施形態では、電荷蓄積手段(キャリアトラップ)の主分布領域(第1領域R1および第2領域R2)が空間的に分離され、その間の領域(第3領域R3)が単一材料の絶縁膜からなる。このため、互いに離れた2つのメモリ領域を有するメモリトランジスタと、その2つのメモリ領域間に形成され、メモリトランジスタとゲート電極が共通なMOSトランジスタが一体的に集積化された素子構造となっている。

【0098】この構造の利点は種々ある。その一つは、電荷注入範囲が限定されることで、過剰の電荷注入がされにくいことにある。また、他の利点は、詳細は後述するが、可変しきい値電圧素子であるメモリトランジスタのほかに、しきい値電圧が一定なMOSトランジスタによりチャネルのON/OFFが制御できる点にある。さらに、高温保持時に、蓄積電荷が横方向に拡散しないので信頼性に優れる点も大きな利点である。

【0099】両ゲート絶縁膜10a,10b間の絶縁膜14は、たとえばCVD法により形成した酸化シリコン膜からなり、両ゲート絶縁膜間を埋め込むように形成されている。

【0100】このゲート絶縁膜構造の種々ある形成方法の一例では、まず、第1実施形態と同様に全面にボトム絶縁膜(FNトンネル窒化膜),窒化膜,トップ絶縁膜の積層膜を形成した後、チャネル中央部上で、この積層膜を一部エッチングにより除去する。これにより、ゲート絶縁膜10a,10bが空間的に分離して形成される。全面に酸化シリコン膜を厚く堆積させ、酸化シリコン膜を厚く堆積させ、が一ト絶縁膜10a,10b上の絶縁膜が除去され、ゲート絶縁膜10a,10b上の絶縁膜14で埋まった段階でエッケバックを停止すると、当該ゲート絶縁膜構造が完成する。なお、このエッチバック時のオーバエッ0チングを防止すため、ゲート絶縁膜10a,10b上に予めにエッチングストッパ膜、たとえば窒化シリコン膜を薄く形成してもよい。その後は、第1実施形態と同様にして

ード線WLの形成工程等を経て、当該メモリトランジス 夕を完成させる。

【0101】つぎに、このような構成の不揮発性メモリ の動作について、ワード線WL1に接続された複数のメ モリトランジスタM11, M21, …を例に説明する。 図24(A)は、書き込み時のバイアス設定条件を示す 回路図、図24(B)は書き込み動作を示す素子断面 図、図25 (A), (B) は読み出し時のパイアス設定 条件を示す回路図、図26 (A) は消去時のバイアス設 定条件を示す回路図、図26(B)消去動作を示す素子 10 断面図である。

【0102】書き込みは、同一ワード線(ここでは、W L1) に連なるメモリセルに対し並列に一括して行う。 図24に示すように、メモリトランジスタの第1,第2 領域R1,R2のどちらに書き込みを行うかによって、 副ピット線SBL1, SBL2, …および副ソース線S SL1, SSL2, …の電圧印加の設定パターンを決め る。すなわち、図24の例では、メモリトランジスタM 11の第1領域R1と、メモリトランジスタM21の第 1, 第2領域R1, R2とにホットホール注入を行うこ ととし、それに対応して副ピット線SBL1, SBL2 と副ソース線SSL2に、所定の正電圧、たとえば5~ 6 V程度の電圧を印加する。ホットホール注入を行わな い残りの副線、ここでは副ソース線SSL1はオープン とし、電気的フローティング状態とする。また、選択ワ ード線WL1に所定の負電圧、たとえば-6Vを印加 し、他の非非選択ワード線WL2~WLnに所定の書き 込み禁止電圧、たとえば0Vを印加し、基板(pウエル W) に0 Vを印加する。

【0103】この書き込み条件下、書き込み対象行の複 30 数のメモリトランジスタにおいて、選択ワード線WL1 に印加された負電圧により、所定の正電圧(5~6V) が印加された副ビット線SBL1, SBL2および副ソ ース線SSL2をなすn型不純物領域の表面が深い空乏 状態となり、エネルギーバンドの曲がりが急峻となる。 このときバンド間トンネル効果により電子が価電子帯よ り導電帯にトンネルし、n型不純物領域側に流れ、その 結果、ホールが発生する。発生したホールは、チャネル 形成領域の中央部側に若干ドリフトして、そこで電界加 速され、その一部がホットホールとなる。この n型不純 40 物領域端で発生した高エネルギー電荷(ホットホール) は、その運動量(方向と大きさ)を維持しながら殆ど運 動エネルギーを失うことなく効率よく、しかも高速に電 荷蓄積手段であるキャリアトラップに注入される。この 結果、メモリトランジスタしきい値電圧が、消去状態の Vthe 2.0~2.5 Vから低下して、書き込み状態の Vthp (≦0.5V) に変化する。

【0104】一方、非選択行のメモリトランジスタM1 2, 22, …では、ゲートとソースまたはドレインとの 間に5~6Vしか電圧がかからない。したがって、電荷 50 ジスタがない第1実施形態のトランジスタ構造では、ホ

蓄積手段にホットホールが注入されず、有効に書き込み が禁止される。

【0105】この書き込み方法では、電荷の電界加速方 向と注入方向がほぼ一致するため、従来のCHE注入方 式より電荷の注入効率が高い。また、チャネル自体は形 成せずに書き込みを行うため、電流消費が少なくてす む。ホール電流自体は小さいが、このように電荷蓄積手 段分布面内のほぼ全域に電荷が注入されることから、必 要なしきい値電圧変化を得るための書き込み時間は、た とえば20μsec以下と従来より1桁以上短くなる。 また、この書き込みでは、副ビット線SBL1をなすn 型不純物領域からの電荷注入、副ソース線SSL1をな すn型不純物領域からの電荷注入は、それぞれ局所的で ある。すなわち、本実施形態では、電荷を注入できる領 域が第1領域R1または第2領域R2に限定されるた め、過剰の書き込みが防止できる。

【0106】さらに、副線SBL, SSLへの印加電圧 の組合せを設定しワード線を立ち下げるだけの1回の動 作でページ書き込みができる。その際、上記した注入効 率の改善によってビット当たりの書き込み電流が桁違い に小さくなり、従来のCHE注入方式では1バイト

(B) 程度であった一括並列書き込み可能なセル数が、 本実施形態では1キロバイト(kB)程度と格段に大き くなる。なお、ページ書き込みを行わない場合は、書き 込みをすべき選択セル列と、書き込みを禁止すべき非選 択セル列をバイアス条件により区別し、その選択セル列 のみに対する書き込みも可能である。

【0107】読み出しでは、ページ読み出しを基本とす る。第2領域R2のビットを読み出す場合、図25

(A) に示すように、副ピット線SBL1, SBL2, …に所定のドレイン電圧、たとえば1.5 Vを印加し、 副ソース線SSL1、SSL2、…および基板にOVを 印加する。また、非選択ワード線WL2, WL3, …に 所定の読み出し禁止電圧、たとえば0Vを印加する。こ の状態で、読み出し対象のワード線WL1に所定の読み 出しゲート電圧、たとえば4Vを印加する。これによ り、ワード線WL1に接続されたメモリトランジスタM 21,…の第2領域R2が書き込み状態の場合、そのメ モリトランジスタM21がオンし、読み出し電流 I,が 図のように流れて副ピット線電圧が変化する。一方、第 2領域R2が書き込み状態でないメモリトランジスタM 11は、しきい値電圧が高いままでありオフ状態を維持 する。その後、オンしたメモリトランジスタを介してプ リチャージ電荷がソース線に流れた副ピット線SBL2 等の電圧変化を、図示しないセンスアンプ等で増幅して 読み出す。第1領域R1の読み出しは、ドレイン電圧 1. 5 Vを上記とは逆方向に印加することで達成され

【0108】ところで、チャネル中央部にMOSトラン

29

ットホール注入が過剰に行われメモリトランジスタのし きい値電圧が大きく低下すると、読み出し時の電流量が ばらつく上、電流消費も無駄が多い。

【0109】本実施形態のようにチャネル中央部(第3 領域R3)にMOSトランジスタが形成された構造で は、第3領域R3におけるMOSトランジスタのしきい 値電圧 V th (MOS) が、たとえば 0.5~0.6 V 程度に 予め設定されている。このため、メモリトランジスタに 過剰書き込みがされている場合でも、その影響を読み出 し時に受けない。なぜなら、メモリトランジスタのしき 10 い値電圧が大きく低下し読み出し電流が増大しようとす ると、MOSトランジスタがカットオフしリミッタとし て機能するからである。したがって、このメモリセルで はMOSトランジスタのしきい値電圧制御を通して読み 出し電流の上限が制御でき、無駄な電流消費がないとい う利点がある。

【0110】消去は、モディファイドFN(MFN)ト ンネリングまたは直接トンネリングを用いてチャネル全 面から電子を注入することにより行う。MFNトンネリ ングを用て全ブロックを一括消去する場合、たとえば図 20 26 (A) に示すように、全てのワード線WL1, WL 2, …に11~12V、全ての副ピット線SBL1, S BL2, …、全ての副ソース線SSL1, SSL2, … および基板(pウエルW)に0Vを印加する。

【0111】これにより、図26(B)に示すように、 基板側から電子が電荷蓄積手段であるキャリアトラップ に注入され、しきい値電圧が上昇して消去が行われる。 この電子注入による消去は0.4msec程度まで低減 でき、従来の直接トンネル効果によるホール注入消去時 間の典型値100msecに比べ2桁以上改善された。 また、従来のホール注入による消去では、書き込みに比 べ電荷がボトム絶縁膜を通過する時間が長いため絶縁膜 質の劣化が懸念されるが、本発明では、ホットホール注 入を電荷通過時間の短い書き込みに利用し消去は電子注 入を用いるため、信頼性が高い。

【0112】以上の書き込み、読み出しおよび消去のオ ペレーションを用いて、メモリセルの信頼性データを調 べた。この結果、データ書き換え特性、データ保持特性 およびリードディスターブ特性に関して、データ書き換 え10万回以上、データ保持が10年、リードディスタ ーブ特性が10年は保証できることが分かった。また、 データ保持特性は、10万回のデータ書き換え後でも8 5℃, 10年を満足した。

【0113】第7実施形態

第7実施形態は、2ビット/セル書き込みが容易な仮想 接地NOR型の不揮発性メモリに関する。

【0114】図27は、第7実施形態に係るメモリセル アレイの構成例を示す回路図である。このメモリセルア レイは、基本的には、第4実施形態と同様の仮想接地N OR型のメモリセルアレイである。だだし、このメモリ 50 R2に書き込みを行うか否かは、選択トランジスタのコ

セルアレイでは、各メモリトランジスタに、ソース・ド レイン不純物領域側からチャネル形成領域に一部重なる ようにコントロールゲートが設けられている。そして、 ビット方向に連なるメモリトランジスタM11, M1 2,…の一方のコントロールゲートを共通接続する制御 線CL1a,他方のコントロールゲートを共通接続する 制御線CL1b、他の列に属しビット方向に連なるメモ リトランジスタM21, M22, …の一方のコントロー ルゲートを共通接続する制御線CL2a,他方のコント ロールゲートを共通接続する制御線CL2b, …が設け られている。各制御線は、ワード線とは独立に制御され

【0115】図27においては、各制御線がチャネル形 成領域に一部重なることによって、中央のメモリトラン ジスタをはさんで両側にMOS構造の選択トランジスタ が形成されている。

【0116】図28に、第7実施形態に係るトランジス 夕構造の例を示す。このメモリトランジスタにおいて、 チャネル形成領域の中央部に、下層からボトム絶縁膜1 1,窒化膜12,トップ絶縁膜13からなるゲート絶縁 膜10を介してメモリトランジスタのゲート電極15が 積層されている。このゲート電極15は、図示しないワ ード線WLをなす上層配線層に接続され、ワード方向の メモリセル間で共通に接続されている。

【0117】一方、メモリトランジスタのチャネル方向 両側の副ピット線SBLi, SBLi+1上に、選択ト ランジスタのゲート絶縁膜16aが形成されている。そ のゲート絶縁膜16a上に、コントロールゲートCGが 形成されている。コントロールゲートCGとゲート電極 15との間は、スペーサ絶縁層16bにより絶縁分離さ れている。

【0118】このメモリトランジスタの形成では、たと えば、ゲート絶縁膜10とゲート電極15となる導電膜 を全面に形成した後、ゲート電極のパターンニング時 に、ゲート絶縁膜10を上層から順次加工する。つぎ に、このパターンをゲート絶縁膜16aで覆う。スペー サ絶縁膜16 bをゲート絶縁膜16 aより厚くする場合 は、さらに同種の絶縁膜を積み増しした後、異方性エッ チングする。これにより、ゲート電極の側壁側にスペー 40 サ絶縁層16 bが形成される。コントロールゲートCG となる導電膜を堆積し、この導電膜を異方性エッチング して、サイドウォール状に残し、これにより、コントロ ールゲートCGを形成する。

【0119】このようにして形成されたトランジスタの 書き込み動作では、第6実施形態と同様にページ書き込 みを行う。バイアス条件は、基本的に第6実施形態と同 様である。ただし、この第7実施形態では、ビット線が ワード方向に隣接した2メモリセル間で共通となってい るため、メモリトランジスタの第1領域R1,第2領域

ントロールゲートCGの電圧により制御する。すなわ ち、ビット線BL1, BL2, …は全て5~6 Vの電圧 を印加しておき、書き込みを行う側のコントロールゲー トCGのみ、選択ワード線 (ゲート電極15) に印加す る負電圧、たとえばー8Vを印加する。これにより、こ の負電圧印加のコントロールゲートCG下では、n型不 純物領域が深い空乏状態となり、エネルギーバンドの曲 がりが急峻となる。このときバンド間トンネル効果によ り電子が価電子帯より導電帯にトンネルし、n型不純物 領域側に流れ、その結果、ホールが発生する。発生した 10 ホールは、チャネル形成領域の中央部側に若干ドリフト して、そこで、より強電界を及ぼしているゲート電極1 5により電界加速され、その一部がホットホールとな る。このn型不純物領域端で発生した高エネルギー電荷 (ホットホール)は、その運動量(方向と大きさ)を維 持しながら殆ど運動エネルギーを失うことなく効率よ く、しかも高速に電荷蓄積手段であるキャリアトラップ に注入される。この結果、メモリトランジスタしきい値 電圧が、消去状態のVthe 2.0~2.5 Vから低下し て、書き込み状態のVthp (≦0.5V)に変化する。 【0120】一方、書き込みを行いたくない側のコント ロールゲートCGは、0Vまたは最大5~6V程度の正 電圧を印加する。このコントロールゲートCG下のn型 不純物領域は、エネルギーバンドの曲がりが急峻となら ず、したがってホットホールが発生し得ず、有効に書き 込みが禁止される。

【0121】この書き込み方法では、第6実施形態と同様の効果、すなわちページ書き込みを、電荷の注入効率が高くて高速に、しかも少ない電流消費で達成できる。

【0122】読み出しでは、ページ読み出しを基本と し、基本的な印加バイアス値、すなわちドレイン側に 1.5 V、ソース側に0 V、そしてゲートに4 Vを印加 する事自体は第6実施形態と同様である。ただし、本実 施形態では、このビット方向の共通線(ビット線BL BL2, …) がワード方向に隣接した2メモリセル 間で共通化されている。このため、第6実施形態と同様 に、ビット方向の共通線に対し1.5Vと0Vを交互に 印加すると、1.5 Vを印加した共通線(ビット線) に、これに接続した2メモリセル分のデータが読み出さ れてしまいデータ判別が不可能となってしまう。そこ で、一方のメモリセルは、コントロールゲートCGをオ ンさせてチャネルをカットフしておく必要がある。すな わち、1回の読み出し動作で、1列ごとにしか読み出せ ない。第1領域R1,第2領域R2の読み出しで2回の 動作を必要とするため、結局、1ページの読み出しに4 回の動作サイクルを要することなる。

【0123】消去は、第1および第6実施形態と同様、 モディファイドFN (MFN) トンネリングまたは直接 トンネリングを用いてチャネル全面から電子を注入する ことにより行う。

【0124】第8実施形態

第8実施形態は、2ビット/セル書き込みが容易な分離 ソース線NOR型の他のメモリ素子例に関する。

【0125】図29は、第8実施形態に係るメモリセルアレイの構成例を示す回路図である。このメモリセルアレイでは、各メモリセルにおいて、中央がワード線WL1,W2,…に接続されたMOS構造の選択トランジスタとなっており、その両側それぞれに、ゲートがワード制御線WCL1,WCL2,…に接続されたメモリトランジスタが形成されている。

【0126】図30に、第8実施形態に係るトランジスタ構造の例を示す。このトランジスタ構造は、第6実施形態(図23)に示すトランジスタ構造と比べると、第1〜第3領域R1,R2,R3ごとにゲート電極が分離して設けられている。すなわち、チャネル形成領域中央部上に形成されワード線WLに接続されたゲート電極15と、ゲート電極15と絶縁分離され、チャネル方向両側に設けられ、ワード制御線WCLに接続されたコントロールゲートCGとを有する。ゲート電極15は、ソース側とドレイン側で空間的に分離された2つのコントロールゲートCGとゲート絶縁膜10aまたは10bとの積層パターンの間に、絶縁膜17を介して埋め込まれている。

【0127】このメモリトランジスタの種々ある形成法 の一例においては、たとえば、ゲート絶縁膜10とコン トロールゲートCGとなる導電膜を全面に形成した後、 2つのコントロールゲートCGのパターンニング時に、 ゲート絶縁膜10a,10bを一括して加工する。これ により、副ピット線SBLi側と、副ピット線SBLi +1側に空間的に分離して、2つのコントロールゲート CGとゲート絶縁膜10a,10bの積層パターンが形 成される。その後、全面に絶縁膜17とゲート電極15 となる導電膜とを堆積し、これらの膜をエッチバックす る。これにより、2つのコントロールゲートCGとゲー ト絶縁膜10a,10bの積層パターン間に、絶縁膜1 7とゲート電極15が埋め込まれるように形成される。 【0128】このように形成されたメモリトランジスタ では、第6実施形態同様に過剰書き込みの影響を低減す るために、チャネル形成領域中央部に、ワード線に接続 されたMOSトランジスタが形成されている。このMO Sトランジスタのしきい値電圧は、たとえば0.5~ 0.6 Vに設定される。また、ビット線BLi, BLi +1をなす不純物領域上に、電荷蓄積手段を含む 0 N O 膜タイプのゲート絶縁膜10a、10bを介してコント ロールゲートCGが配置され、これによりメモリトラン ジスタが形成されている。

【0129】このようにして形成されたトランジスタの 書き込み動作では、第6実施形態と同様にページ書き込 みを行う。パイアス条件は、基本的に第6実施形態と同 50様である。この第8実施形態では、第6実施形態と同 様、ビット線がワード方向に隣接した2メモリセル間で 分離しており、メモリトランジスタの第1領域R1,第 2領域R2に書き込みを行うか否かは、ビット線電圧を 5~6 Vとするか、オープンとするかにより制御する。 最初に全てのコントロールゲートCG(ワード制御線W CL) に $-5\sim-6$ Vの電圧を印加しておき、書き込み を行う側のビット線のみ、オープン状態から、たとえば 5 V程度の所定の正電圧を印加する。これにより、負電 圧印加のコントロールゲートCG下では、5Vを印加し た n型不純物領域が深い空乏状態となり、エネルギーバ 10 ンドの曲がりが急峻となる。このときバンド間トンネル 効果により電子が価電子帯より導電帯にトンネルし、n 型不純物領域側に流れ、その結果、ホールが発生する。 発生したホールは、チャネル形成領域の中央部側に若干 ドリフトして、そこで、より強電界を及ぼしているゲー ト電極15により電界加速され、その一部がホットホー ルとなる。このn型不純物領域端で発生した高エネルギ ー電荷 (ホットホール) は、その運動量 (方向と大き さ)を維持しながら殆ど運動エネルギーを失うことなく 効率よく、しかも高速に電荷蓄積手段であるキャリアト 20 ラップに注入される。この結果、メモリトランジスタし きい値電圧が、消去状態のVthe 2.0~2.5 Vから 低下して、書き込み状態のVthp (≦0.5V)に変化 する。

【0130】一方、書き込みを行いたくない側のコントロールゲートCGはオープンとなっているため、このコントロールゲートCG下のn型不純物領域は、エネルギーバンドの曲がりが急峻とならず、したがってホットホールが発生し得ず、有効に書き込みが禁止される。また、選択ゲート15は所定の正電圧が印加されていることから、n型不純物領域(副ビット線SBLi,SBLi+1)から伸びる空乏層を抑制して、チャネル中央部が空乏化されない。このため、本第8実施形態では、第6実施形態と比較してパンチスルー耐性が強くなっている。

【0131】この書き込み方法では、第6実施形態と同様の効果、すなわちページ書き込みを、電荷の注入効率が高くて高速に、しかも少ない電流消費で達成できる。 また、電荷注入が局所的に行え、過剰書き込みが防止できる。

【0132】読み出しは、第6実施形態と同様に、ページ読み出しを基本とし、基本的な印加バイアス値、すなわちドレイン側に1.5V、ソース側に0V、そしてゲートに4Vを印加することで達成できる。

【0133】なお、この読み出しにおいても、第6実施 形態と同様、MOSトランジスタを設けたことにより、 そののしきい値電圧制御を通して読み出し電流の上限が 制御でき、無駄な電流消費がないという利点がある。

【0134】消去は、第1および第6実施形態と同様、 モディファイドFN (MFN) トンネリングまたは直接 50

トンネリングを用いてチャネル全面から電子を注入する ことにより行う。

【0135】以下、第9、第10実施形態に、第1~第 8実施形態のメモリトランジスタ構造の変形例を示す。 【0136】第9実施形態

第9実施形態は、メモリトランジスタの電荷蓄積手段としてゲート絶縁膜中に埋め込まれ例えば10ナノメータ以下の粒径を有する多数の互いに絶縁されたSiナノ結晶を用いた不揮発性半導体記憶装置(以下、Siナノ結晶型という)に関する。

【0137】図31は、このSiナノ結晶型メモリトランジスタの素子構造を示す断面図である。本実施形態のSiナノ結晶型不揮発性メモリでは、そのゲート絶縁膜20が、ボトム絶縁膜21、その上の電荷蓄積手段としてのSiナノ結晶22、およびSiナノ結晶22を覆う酸化膜23とからなる。その他の構成、即ち半導体基板、チャネル形成領域、ウエルW、ソース線MSL、SSL、ビット線BL、MSL、SBL、ワード線WLは、第1~第8実施形態と同様である。

【0138】Siナノ結晶22は、そのサイズ(直径)が、好ましくは10nm以下、例えば4.0nm程度であり、個々のSiナノ結晶同士が酸化膜23で空間的に、例えば4nm程度の間隔で分離されている。本例におけるボトム絶縁膜21は、電荷蓄積手段(Siナノ結晶22)が基板側に近いこととの関係で、第1実施形態よりやや厚く、使用用途に応じて2.6nmから5.0nmまでの範囲内で適宜選択できる。ここでは、4.0nm程度の膜厚とした。

【0139】このような構成のメモリトランジスタの製 造では、ボトム絶縁膜21の成膜後、例えばLP-CV D法でボトム絶縁膜21の上に、複数のSiナノ結晶2 2を形成する。また、Siナノ結晶22を埋め込むよう に、酸化膜23を、例えば7nmほどLP-CVDによ り成膜する。このLP-CVDでは、原料ガスがDCS とN、 Oの混合ガス、基板温度が例えば700℃とす る。このときSiナノ結晶22は酸化膜23に埋め込ま れ、酸化膜23表面が平坦化される。平坦化が不十分な 場合は、新たに平坦化プロセス(例えばСМР等)を行 うとよい。その後、ワード線となる導電膜を成膜し、ゲ 40 一ト積層膜を一括してパターンニングする工程を経て、 当該Siナノ結晶型メモリトランジスタを完成させる。 【0140】このように形成されたSiナノ結晶22 は、平面方向に離散化されたキャリアトラップとして機 能する。そのトラップレベルは、周囲の酸化シリコンと のバンド不連続値で推定可能で、その推定値では約3. 1 e V程度とされる。この大きさの個々のSiナノ結晶 22は、数個の注入電子を保持できる。なお、Siナノ 結晶22を更に小さくして、これに単一電子を保持させ

【0141】第10実施形態

第10実施形態は、メモリトランジスタの電荷蓄積手段 として絶縁膜中に埋め込まれ互いに分離した多数の微細 分割型フローティングゲートを用いた不揮発性半導体記 憶装置(以下、微細分割FG型という)に関する。

【0142】図32は、この微細分割FG型メモリトラ ンジスタの素子構造を示す断面図である。本実施形態の 微細分割 F G型不揮発性メモリでは、メモリトランジス タがSOI基板に形成され、そのゲート絶縁膜30が、 ボトム絶縁膜31、その上の電荷蓄積手段としての微細 分割型フローティングゲート32、および微細分割型フ 10 ローティングゲート32を埋め込む酸化膜33とからな る。この微細分割フローティングゲート32は、第6実 施形態のSiナノ結晶22とともに本発明でいう"小粒 径導電体"の具体例に該当する。

【0143】SOI基板としては、酸素イオンをシリコ ン基板に高濃度にイオン注入し基板表面より深い箇所に 埋込酸化膜を形成したSIMOX (Separation by Impl anted Oxygen) 基板や、一方のシリコン基板表面に酸化 膜を形成し他の基板と張り合わせた張合せ基板などが用 いられる。このような方法によって形成され図23に示 20 e) 膜なるMNOS型であっても本発明が適用できる。 したSOI基板は、半導体基板SUB、分離酸化膜34 およびシリコン層35とから構成され、シリコン層35 内に、副ソース線SSL (ソース不純物領域S)、副ビ ット線SBL (ドレイン不純物領域D) が設けられてい る。両不純物領域間がチャネル形成領域となる。なお、 半導体基板SUBに代えて、ガラス基板、プラスチック 基板、サファイア基板等を用いてもよい。

【0144】微細分割フローティングゲート32は、通 常のFG型のフローティングゲートを、その高さが例え

ば5.0 nm程度で、直径が例えば8 nmまでの微細な ポリSiドットに加工したものである。本例におけるボ トム絶縁膜31は、第1実施形態よりやや厚いが、通常 のFG型に比べると格段に薄く形成され、使用用途に応 じて2.5nmから4.0nmまでの範囲内で適宜選択 できる。ここでは、最も薄い2.5 nmの膜厚とした。 【0145】このような構成のメモリトランジスタの製 造では、SOI基板上にポトム絶縁膜31を成膜した 後、例えばLP-CVD法で、ボトム絶縁膜31の上に ポリシリコン膜(最終膜厚:5nm)を成膜する。この LP-CVDでは、原料ガスがDCSとアンモニアの混 40 合ガス、基板温度が例えば650℃とする。つぎに、例 えば電子ビーム露光法を用いて、ポリシリコン膜を直径 が例えば8nmまでの微細なポリSiドットに加工す る。このポリSiドットは、微細分割型フローティング ゲート32 (電荷蓄積手段) として機能する。その後、 微細分割型フローティングゲート32を埋め込むよう に、酸化膜33を、例えば9nmほどLP-CVDによ り成膜する。このLP-CVDでは、原料ガスがDCS とN、Oの混合ガス、基板温度が例えば700℃とす

化膜33に埋め込まれ、酸化膜33表面が平坦化され る。平坦化が不十分な場合は、新たに平坦化プロセス (例えばCMP等)を行うとよい。その後、ワード線W Lとなる導電膜を成膜し、ゲート積層膜を一括してパタ ーンニングする工程を経て、当該微細分割FG型メモリ トランジスタを完成させる。

【0146】このようにSOI基板を用い、フローティ ングゲートが微細に分割されることについては、素子を 試作して特性を評価した結果、予想通りの良好な特性が 得られることを確認した。

【0147】変形例

以上述べてきた第1~第10実施形態において、さらに 種々の変形が可能である。

【0148】とくに図示しないDINOR型など、他の NOR型セルに対し本発明が適用できる。

【0149】本発明における"平面的に離散化された電 荷蓄積手段"は、窒化膜バルクのキャリアトラップおよ び酸化膜と窒化膜界面付近に形成されたキャリアトラッ プを含むことから、ゲート絶縁膜がNO(Nitride-Oxid

【0150】本発明は、スタンドアロン型の不揮発性メ モリのほか、ロジック回路と同一基板上に集積化したエ ンベデッド型の不揮発性メモリに対しても適用可能であ

[0151]

【発明の効果】本発明に係る不揮発性半導体記憶装置お よびその動作方法によれば、書き込み時にバンド間トン ネル電流に起因したホットホールによって、効率よく、 しかも高速に平面的に離散化された電荷蓄積手段に電荷 を注入することができる。この書き込みはチャネルを形 成せずに行うため、従来のCHE注入のようにパンチス ルーの発生が要因でゲート長を短くできないという不利 益は解消する。むしろ、この書き込みでは、ゲート長を 短くすればするだけ大きなしきい値電圧変化が得られ、 より高速書き込みが可能となる。

【0152】一方、2ビット/セル記憶の場合は、電荷 注入箇所が局所的で過剰書き込みが防止でき、また高温 での電荷拡散が防止でき、信頼性が高い。また、チャネ ルを形成しないで書き込みを行うため、いわゆるAND 型、仮想接地型などの各種NOR型メモリセルアレイに おいて、ページ書き込みが1回の動作サイクルで完了す る。

【0153】以上より、本発明によって、ゲート長10 0 nm以下でスケーリング性に優れた高速で、大容量の 不揮発性半導体記憶装置を実現することができる。

【図面の簡単な説明】

【図1】第1実施形態に係る不揮発性メモリ装置のメモ リセルアレイ構成を示す回路図である。

【図2】第1実施形態に係るNOR型メモリセルアレイ る。この時、微細分割型フローティングゲート32は酸 50 の平面図である。

【図3】第1実施形態に係るNOR型メモリセルアレイについて、図2のB-B'線に沿った断面側から見た鳥瞰図である。

【図4】第1実施形態に係るメモリトランジスタのワード方向の拡大断面図である。

【図5】第1実施形態に係るメモリトランジスタの書き 込み時のバイアス条件を示す回路図である。

【図6】第1実施形態に係るメモリトランジスタの読み出し時のバイアス条件を示す回路図である。

【図7】第1実施形態に係るメモリトランジスタの消去 10 時のバイアス条件を示す回路図である。

【図8】第1実施形態に係るメモリトランジスタの書き 込み動作を示すワード方向の拡大断面図である。

【図9】第1実施形態に係るメモリトランジスタの消去動作を示すワード方向の拡大断面図である。

【図10】第1実施形態に係るメモリトランジスタにおける基板電流とゲート電流のS/Dバイアス依存性を示すグラフである。

【図11】第1実施形態に係るメモリトランジスタのゲ 【図28】第7実施形態 ート絶縁膜2.9nmにおける書き込み特性を示すグラ 20 造を示す断面図である。 フである。 【図29】第8実施形態

【図12】第1実施形態に係るメモリトランジスタのゲート絶縁膜2.55nmにおける書き込み特性を示すグラフである。

【図13】第1実施形態に係るメモリトランジスタのゲート絶縁膜2.9 nmにおけるデータ書き換え特性を示すグラフである。

【図14】第1実施形態に係るメモリトランジスタのゲート絶縁膜2.55nmにおけるデータ書き換え特性を示すグラフである。

【図15】第2実施形態に係る不揮発性メモリ装置のメモリセルアレイ構成を示す回路図である。

【図16】第2実施形態に係る分離ソース線NOR型メモリセルアレイの平面図である。

【図17】第2実施形態に係る分離ソース線NOR型メモリセルアレイについて、図16のA-A 線に沿った断面側から見た鳥瞰図である。

【図18】第3実施形態に係る分離ソース線NOR型メモリセルアレイの平面図である。

【図19】第4実施形態に係る不揮発性メモリ装置のメモリセルアレイ構成を示す回路図である。

【図20】第4実施形態に係る共通ソース線NOR型メ

モリセルアレイの平面図である。

【図21】第5実施形態に係る共通ソース線NOR型メモリセルアレイの平面図である。

【図22】第6実施形態に係る分離ソース線NOR型メモリセルアレイを4セル分示す回路図である。

【図23】第6実施形態に係るメモリトランジスタの構造を示す断面図である。

【図24】(A)は第6実施形態に係るメモリセルアレイの書き込み時のバイアス設定条件を示す回路図、

) (B)は書き込み動作を示す素子断面図である。

【図25】(A),(B)は、第6実施形態に係るメモリセルアレイの読み出し時のバイアス設定条件を示す回路図である。

【図26】(A)は第6実施形態に係るメモリセルアレイの消去時のバイアス設定条件を示す回路図、(B)消去動作を示す素子断面図である。

【図27】第7実施形態に係る仮想接地NOR型メモリセルアレイの構成を示す等価回路図である。

【図28】第7実施形態に係るメモリトランジスタの構造を示す断面図である。

【図29】第8実施形態に係る仮想接地NOR型メモリセルアレイの構成を示す等価回路図である。

【図30】第8実施形態に係るメモリトランジスタの構造を示す断面図である。

【図31】第9実施形態に係るSiナノ結晶型メモリトランジスタのワード方向の断面図である。

【図32】第10実施形態に係る微細分割FG型メモリトランジスタのワード方向の断面図である。

【符号の説明】

30

10,20,30…ゲート絶縁膜、11,21,31…ボトム絶縁膜、12…窒化膜、13…トップ絶縁膜、22…Siナノ結晶、23,33…酸化膜、32…微細分割型フローティングゲート、34…分離酸化膜、35…シリコン層、SUB…半導体基板、W…pウエル、S…ソース不純物領域、D…ドレイン不純物領域、ISO…素子分離絶縁層、M11等…メモリトランジスタ、S11等…選択トランジスタ、BL1等…ビット線、SBL1等…リース線、MSL1等…シース線、SSL1等…副ソース線、MSL1等…主ソース線、SG11等…選択線、BC…ビットコンタクト、SC…ソースコンタクト。

【図5】

【図6】

【図7】

【図10】

[図18]

【図14】

MONOS データ書換特性 (Lg = 90nm, Tox = 2.55nm)

[図22]

【図20】

[図26]

【図21】

[図27]

【図28】

[図24]

【図25】

【図31】

【図32】

フロントページの続き

F ターム(参考) 5B025 AA04 AA07 AB01 AC01 AE05

AE06 AE08

5F001 AA14 AC02 AD41 AD51 AE02

AE03 AE08 AF10 AF20 AG02

5F083 EP09 EP17 EP18 EP22 EP32

EP77 ER03 ER05 ER06 ER09

ER11 ER14 ER15 ER16 ER22

ER30 GA01 GA05 GA09 KA01

KA06 KA12 LA12 LA16 MA02

MA06 MA19 MA20 PR13 PR36

ZA21