Q1 In the circuit shown, determine $i_L(0^+)$, $i_c(0^+)$, $\frac{di_L(0^+)}{dt}$, $\frac{di_C(0^+)}{dt}$, $i_L(\infty)$, $i_C(\infty)$, also for t > 0 find damping ratio and comment on the kind of damping the circuit will experience.

Q 2 If the voltage across and current through a series combination of resistance and an unknown energy storage element are

$$v(t) = 15 \cos(10^6 t + 66.87^\circ) \text{ V}$$
 and $i(t) = 3 \cos(10^6 t + 30^\circ) \text{ mA}$

Find the resistance and unknown element. Also comment on the type of filter implemented through this circuit and find the cutoff frequency as well.

- **Q3** A series RLC circuit has = 100Ω , $L = 50\mu H$ and C = 2nF. Find ω_0 , Q, BW, ω_L , ω_H . Find ω_1 and ω_2 at which I_m reduces to 25% of its max.
- **Q 4** A parallel RLC circuit has = $1K\Omega$, $L = 250\mu H$ and C = 4nF. Find ω_0 , Q, BW, ω_L , ω_H . Find ω_1 and ω_2 at which V_m reduces to 25% of its max.
- **Q 5** A band pass series RLC circuit is required with $f_0 = 1$ MHz and BW = 10KHz, given L = 40mH find appropriate values of R and C.
- **Q 6** A series RC circuit is driven by a 100KHz 24V peak ac source. Find the appropriate values of R and C that result in $I_m = 9.39$ mA and $\phi = 38.5^{\circ}$