FIT9137 Introduction to Computer Architecture and Networks

Week 6: Workshop on Backbone Networks & Virtual LANs (VLANs)

Dr. Muhammed Esgin

www.shutterstock.com • 1322202464

Today: Week-6 Workshop

Wh	en	What?	Why?
15 m	ins	Backbone networks, VLAN's	Recap from pre-class activities and recorded videos
5 min	IS	Flux Q&A	Recap
15 m	ins	 ACTIVITY A: VLAN Tags 	 VLAN's Tags IEEE802.1Q
10 m	ins	Take-home message	Conclusion
10 m	ins	Feed-forward	
40 m	ins	ACTIVITY B: Inter VLAN Communications	Multiple VLAN's: Inter VLAN communications
10 m	ins	Take-home message	Conclusion

Backbone Networks

Backbone Networks

High speed links between LANs

- owned and operated by the company
- enables communication between different LANs
- provides connections to other backbones, MANs, WANs, and the Internet

Technology

- high-speed physical layer (often optical fiber)
- switches and/or routers

Switched Backbone

Routed Backbone

Virtual LANs

Virtual LANs (VLANs)

One switch - multiple subnets / VLANs

- subnets configured in software (switch OS)
- each port (network port) can be assigned to a particular subnet
- hundreds of computers connected to a single switch

Multiple switches - multiple subnets / VLANs

- switches connected with each other
- move packets between VLANs

Multi-switch VLANs

Multi-switch VLAN

VLAN - Broadcasting

VLAN advantages

Subnets organized by function

- servers can be placed in LANs even if they are in a different building
- when people move office, they can keep their IP addresses (just reconfigure the switch)

Limited broadcasting

- compared to switch-only backbones
- broadcasts are only sent to the same subnet

Efficient

faster, cheaper, easier to configure than routing

F119137

FLUX Question: Large Subnets

What is the **disadvantage** of large **switched backbones**?

- A. Since Ethernet uses a shared medium, all frames are delivered to all devices, increasing traffic.
- B. **Broadcasts** (such as ARP) have to be transmitted through the whole network, increasing traffic.
- C. **Servers** are placed in the same subnet as clients, which should never be done (remember last week).
- D. It's a **security risk**, because everyone is part of the same network.

To participate, go to

flux.qa/JSBJLK

https://flux.qa/JSBJLK

What is the valid range of VLAN Ids?

A. 0 - 4095

B. 1 - 4094

C. 0 - 2047

D. 1 - 2046

To participate, go to

flux.qa/JSBJLK

https://flux.qa/JSBJLK

ACTIVITY A

How does it work?

Switches insert IEEE802.1Q VLAN Tag

- tag contains 4 Bytes = 16-bit TagProtocolID, 3-bit PCP, 1-bit DEI, 12-bit VLAN ID
- VLAN ID is 12 bits (4096 VLANs)

Switch configuration

 network admin defines which VLANs span which switches, and how switches are connected (trunks)

Topics

Virtual LANs (VLANs)

FEED-FORWARD

About "Feed-Forward"

BIG THANK YOU TO EVERYONE FOR YOUR INPUT!

About "Feed-Forward"

- Some (contrary) requests
 - "Cover more theory/concepts" and "Do more practise"
 - "More reading activities" and "more videos" and "Less pre-class activities"
 - "more group activities" and "less of group activities"

About "Feed-Forward"

- Some (contrary) requests
 - "Cover more theory/concepts" and "Do more practise"
 - "More reading activities" and "more videos" and "Less pre-class activities"
 - "more group activities" and "less of group activities"
- (relatively) common requests:
 - "extend Applied", "speak slowly/loudly"
 Action for us: in discussion with CE and Faculty
 - "provide more reading"
 Reminder: (extended) reading materials available under "Additional Weekly Resources"
 - "more consultation", "more tutors in class"
 Action for you: Provide feedback to the Faculty

ACTIVITY B

Which of the following switch port can carry only single VLAN traffic?

- A. access port
- B. trunk port
- C. both access & trunk ports
- D. None of them

To participate, go to

flux.qa/JSBJLK

https://flux.qa/JSBJLK

Which of the following types of VLAN connections are supported by Switch?

- A. Access Link
- B. Trunk Link
- C. Both of Access & Trunk Links
- D. None of these options

To participate, go to

flux.qa/JSBJLK

https://flux.qa/JSBJLK

How switches identify which frames belong to which VLANs?

- A. Frame filtering.
- B. Mac filtering.
- C. Frame tagging.
- D. None of the above.

To participate, go to

flux.qa/JSBJLK

https://flux.qa/JSBJLK

A network configuration is as shown in Figure-2

- 1.
- Explain why having a layer 2 loop in a network will be problematic?
- Explain why layer 2 loops are used and how the problem is resolve?

Figure 2: Network Configuration of Talos Corp.

A network configuration is as shown in Figure-2

VLAN ID: 10; IP: 179.58.10.1 VLAN ID: 10 VLAN ID: 20; IP: 179.58.7.1 VLAN ID: 30; IP: 179.58.11.1 IP: 179.58.10.101 Zeus Router VLAN ID: 10 IP: 179.58.10.102 Trunk Bob Access Access VLAN ID: 10 **VLAN** IP: 179.58.10.103 Switch 2 Explain the process when Alice Trunk Access accesses a service on Zeus VLAN server? Switch 1 David Trunk Trunk VLAN ID: 20 IP: 179.58.7.55 Access Hera VLAN ID: 30 **VLAN** IP: 179.58.11.60 Switch 3 Craig VLAN ID: 10 IP: 179.58.10.50

Figure 2: Network Configuration of Talos Corp.

A network configuration is as shown in Figure-2

3.

Explain the process when Alice accesses a service on Hera server?

Figure 2: Network Configuration of Talos Corp.

A network configuration is as shown in Figure-2

3.

- Explain the process when Alice accesses a service on Hera server?
- Alice sends frame with <u>Hera's destination IP with</u> <u>MAC address of the Router in VLAN 10</u>.
- <u>Switch1 on access port in VLAN-10 finds the Routers</u>
 <u>MAC address</u> and outgoing port being trunk tags the frame with VLAN 10 and sends to Router.
- Router opens-up the frame routes it to VLAN 30 and the port being trunk tags it with VLAN 30 and sends out the frame.
- <u>switch1 finds the MAC address of Hera in its MAC</u>
 address table (or flood it if not found) and sends it
 out the trunk port to switch3. switch3 finds the MAC
 address of <u>Hera</u> in its MAC address table and the
 port being an access port removes the tag and send
 out the frame to Hera.

Figure 2: Network Configuration of Talos Corp.