# Control Theory Home Work 1

#### Utkarsh Kalra BS18-03

Varient g

# 1 Git repo

https://github.com/kalraUtkarsh/Control-Theory-Utkarsh-Kalra

# 2 TRANSFER FUNCTION CALCULATIONS



$$W1 = \frac{2}{s+5}$$

$$W2 = \frac{s+1}{s+1}$$

$$W3 = \frac{1}{s+0.25}$$

$$W4 = \frac{1}{2s+3}$$

#### 2.1 2(A)



$$(xW1 - yW4)W2 = y$$

$$xW1W2 - yW4W2$$

$$xW1W2 = y(1 + W4W2)$$

$$y = \frac{xW1W2}{1+W4W2}$$

$$W = \frac{W1 * W2 * W3}{1 + W4W2}$$

$$W = \frac{W1 * W2 * W3}{1 + W4W2}$$

$$W1 * W2 * W3 = \frac{2(s+1)}{(s+5)(s+0.5)(s+0.25)}$$

$$1 + W4W2 = \frac{s + 1 + (s + 0.5)(2s + 3)}{(s + 0.5)(2s + 3)}$$

$$finalW = \frac{32s^2 + 80s + 48}{16s^4 + 124s^3 + 250s^2 + 155s + 25}$$

#### 2.2 2(B)

#### 2.2.1 Plot with the step

(There are 3 lines in the graph: blue for the input and yellow and red for the 2 systems of transfer functions but they overlap)





#### 2.2.2 Plot with the frequency

(There are 3 lines in the graph: blue for the input and yellow and red for the 2 systems of transfer functions but they overlap)





#### 2.2.3 Plot with Impulse

(There are 3 lines in the graph: blue for the input and yellow and red for the 2 systems of transfer functions but they overlap)





#### 2.3 2(C)

# $2.3.1 \quad \text{Taking the step input and generating the bode plot and pole } \\ \text{zero plot}.$





#### The pole zero Plot:



The given System is Stable as the bode plot is converging and the Phase margins are positive.

#### 2.4 2(D): Analyzing the Bode plot, calculating the asymptotes and frequency breaks

$$\begin{aligned} & \text{our transfer function:} \frac{xW1W2}{1+W4W2} \\ & = \frac{\frac{2}{s+5}\frac{s+1}{s+0.5}\frac{1}{s+0.25}}{1+\frac{s+1}{s+0.5}\frac{1}{2s+3}} = \frac{48(s+1)(\frac{s}{1.5}+1)}{25(\frac{s}{5}+1)(\frac{s}{0.25}+1)(\frac{s}{\frac{5-\sqrt{5}}{5}+1})(\frac{s}{\frac{5+\sqrt{5}}{5}+1})} \end{aligned}$$

our transfer function:  $\frac{xW1W2}{1+W4W2} = \frac{\frac{2}{s+5}\frac{s+1}{s+0.5}\frac{1}{s+0.25}}{1+\frac{s+1}{s+0.5}\frac{1}{2s+3}} = \frac{48(s+1)(\frac{s}{1.5}+1)}{25(\frac{s}{5}+1)(\frac{s}{0.25}+1)(\frac{s}{\frac{5-\sqrt{5}}{4}+1})(\frac{s}{\frac{5+\sqrt{5}}{4}+1})}$  This shows that we have 2 zeroes at frequencies 1.5 and 1 and 4 poles at frequencies  $5,0.25,\frac{5-\sqrt{5}}{4}$  and  $\frac{5-\sqrt{5}}{4}$  Therefore there are 6 break frequencies. Asymptote 1 is a horizontal line through magnitude  $A_0 = 20log(48/25) \approx 5.57db$  As we know that we can state that the next asymptotes slopes increases or decreases know that we can state that the next asymptotes slopes increases or decreases slope \*  $\log(\frac{Wnext}{Wprev})$  + Aprev, we have the table of asymptotes for magnitude plot as below.

| Corner(point passed through) |               |                    |               |
|------------------------------|---------------|--------------------|---------------|
| Sr.                          | Slope(db/dec) | Frequency(rad/sec) | Magnitude(db) |
| 1                            | 0             | 0.25               | 5.57          |
| 1                            | -20           | 0.25               | 5.57          |
| 2                            | -40           | 0.69               | -3.25         |
| 3                            | -20           | 1                  | -9.7          |
| 4                            | 0             | 1.5                | -13.22        |
| 5                            | -20           | 1.81               | -13.22        |
| 6                            | -40           | 5                  | -22.05        |

As from the bode plot previously, we got gain crossover frequency of the system as 3.777rad/sec. So, the magnitude plot and frequency axis intersect at (3.777,0).

# 3 Total transfer function of the given loop

$$W(s) = \frac{2}{s^2 + 2}$$
$$M(s) = \frac{s + 2}{2s + 3}$$



By the formula given in the lab:



$$x = \frac{g(t)W(s) + f(t)M(s)}{1 + W(s)}$$

$$x = \frac{g(t)\frac{2}{s^2+2} + f(t)\frac{s+2}{2s+3}}{1 + \frac{2}{s^2+2}}$$

### 4 Finding the Transfer Function from the State Space Representation

(g) 
$$A = \begin{pmatrix} 3 & 1 \\ -2 & 2 \end{pmatrix}$$
,  $B = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ ,  $C = \begin{pmatrix} 1 & 3 \end{pmatrix}$ ,  $D = \begin{pmatrix} 1 \end{pmatrix}$ 

As given in the lab for converting from the State Space to Transfer function the following is used:

# SS to TF

Laplace transform with x(0)=0

$$\begin{cases} sX(s) - x(0) &= AX(s) + BU(s) \\ Y(s) &= CX(s) + DU(s) \end{cases}$$

$$\Rightarrow \begin{cases} X(s) = (sI - A)^{-1}BU(s) & \text{Memorize this!} \\ Y(s) &= CX(s) + DU(s) \end{cases}$$

$$\Rightarrow Y(s) = \underbrace{\begin{cases} C(sI - A)^{-1}B + D \\ E(s) \end{cases}} U(s)$$

$$= :G(s)$$

so for our given Matrices:

$$\begin{bmatrix}1 & 3\end{bmatrix} \begin{pmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -2 & 2 \end{bmatrix} - 1 * \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix}$$
 By using the ss2tf function in

```
matlab we get:

A = [3 1 ;-2 2];

B = [2 ; 0];

C = [1 3];

D = 1;

[b,a] = ss2tf(A,B,C,D);

disp([b,a])

when to MATLAB? See resources for Getting Started.

1.0000 -3.0000 -8.0000

>> hw2_1_1

1.0000 -3.0000 -8.0000

Therefore the Transfer funtion is:

TF = \frac{s^2 - 3s - 8}{s^2 - 5s + 8}
```

### 5 Finding the Transfer function from the given State Space Representation

(g) 
$$A = \begin{pmatrix} 5 & 1 \\ 0 & -2 \end{pmatrix}$$
,  $B = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$ ,  $C = \begin{pmatrix} 1 & 1 \end{pmatrix}$ ,  $D = \begin{pmatrix} 1 & 6 \end{pmatrix}$ 

As the given D Matrix has two columns this means that there will be Two tranfer functions as there are Two inputs

And to convert SS to TF the formula is:

# SS to TF

# Laplace transform with x(0)=0

$$\begin{cases} sX(s) - x(0) &= AX(s) + BU(s) \\ Y(s) &= CX(s) + DU(s) \end{cases}$$

$$\longrightarrow \begin{cases} X(s) &= (sI - A)^{-1}BU(s) & \text{Memorize this!} \\ Y(s) &= CX(s) + DU(s) \end{cases}$$

$$\longrightarrow Y(s) = \underbrace{\begin{cases} C(sI - A)^{-1}B + D \\ =: G(s) \end{cases}} U(s)$$

So for our given matrices:  $\begin{bmatrix} 1 & 1 \end{bmatrix}$  (  $\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$  -  $\begin{bmatrix} 5 & 1 \\ 0 & -2 \end{bmatrix}$  ) - 1 \*  $\begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$  +  $\begin{bmatrix} 1 & 6 \end{bmatrix}$ 



# 

So the TF for this input is:  $TF = \frac{6s^2 - 13s - 68}{s^2 - 3s - 10}$ 

# 6 Simplifying the system step by step for both the Inputs x and f



Step 1 
1. Consecutive  $W_7$  and  $W_4$  will be multiplied  $W_1 \longrightarrow W_5 \longrightarrow W_6 \longrightarrow W_7W_4 \longrightarrow W_2 \longrightarrow W_3$ 





