Перед тем, как изучать специальную теорию относительности, необходимо научиться мыслить в терминах пространства-времени, а также освоить некоторые вещи из линейной алгебры.

Соответственно сначала мы посмотрим на классическую теорию в терминах пространства-времени, затем изучим необходимые основы линейной алгебры и уже тогда перейдём к СТО.

Чтобы говорить о движении каких-либо объектов, нам нужно ввести систему координат. Обычно это три координаты в пространстве и одна координата — время. После того, как координаты введены, мы можем изучать динамику тел.

Далее возникает естественный вопрос: что произойдёт, если взять другую систему координат, ведь координаты в нашем пространстве-времени нельзя выбрать инвариантно, то есть не привязываясь к существующим там объектам. Так возникает понятие *инерциальной системы отсчёта*.

Выберем какую-нибудь систему координат (три пространственных координаты (x, y, z) и временную координату t). Эту систему координат будем называть системой отсчёта лаборатории. Системе отсчёта лаборатории всегда будет противопоставляться система отсчёта «ракеты». В ракете есть свои часы и своя метровая линейка, они были взяты из лаборатории перед стартом и не отличались от своих копий в лаборатории. С помощью этих часов и линейки мы можем найти координаты любого события в пространстве-времени в координатах ракеты.

В нашей ракете мы будем проводить ровно те же опыты, что в лаборатории. Мы постулируем, что результаты экспериментов, проведённых в лаборатории и ракете, подчиняются одним и тем же законам (этот постулат — результат множества проведённых экспериментов). Оказывается, для определения достаточно рассматривать опыты с равномерным движением.

Определение 1. Система отсчёта называет *инерциальной* в некоторой области пространства-времени, если во всей этой области с некоторой данной степенью точности любая первоначально покоившаяся частица сохраняет своё состояние покоя, а любая частица, изначально двигавшаяся, сохраняет своё движение без изменение величины и направления скорости.

Определение 2. Принцип относительности: все законы физики одинаковы во всех инерциальных системах отсчёта. Или по-другому, невозможно отличить одну инерциальную систему отсчёта от другой с помощью законов физики. Это не значит, что величины должны быть одинаковыми по своим *численным значениям* (например, время между событиями ровно 1 с), но должны удовлетворять тем же *законам*.

Задача 1. Для измерений будем использовать обыкновенную линейку и обыкновенный секундомер. Рассмотрим систему отсчёта, связанную с МКС (международной космической станцией). Приведите пример области пространства-времени, где эта система отсчёта заведомо инерциальна, и заведомо неинерциальна.

Итак, пространство с выбранными пространственными (не обязательно всеми тремя, возможно и с одной или двумя) и временной координатой будем называть npocmpancmeom-временем. Яблоко в момент времени 5 и координатами (2, -3, 10) будем описывать точкой (2, -3, 10, 5). Равноускоренное падение этого яблока вниз (вдоль третьей координаты) из этой точки — это множество точек $(2, -3, 10 - g\tau^2/2, 5 + \tau)$. Равномерное движение мотоциклиста — например, набор точек (30t, 40t, 150, t). Множество точек в пространстве-времени, соответствующих данной частице во все моменты времени, называется muposooi nunue0 частицы.

Задача 2. Опишите мировую линию а) покоящейся частицы;

- б) равномерно двигающейся частицы;
- в) Как выглядит в пространстве-времени покоящийся стержень?
- **г)** Равномерно без вращения двигающийся стержень;
- д) Вращающийся на месте стержень;

Соглашение 1. Для простоты будем считать, оси ракеты сонаправлены с осями лаборатории, начало координат ракеты (то есть сама ракета) движется вдоль первой оси со скоростью u, в момент времени 0 центры систем отсчёта ракеты и лаборатории совпадают.

Задача 3. а) Опишите мировую линию лаборатории (она находится в точке (0,0,0) в своей системе отсчёта) в координатах лаборатории и в координатах ракеты.

 $\vec{\mathbf{o}}$) В системе отсчёта ракеты табуретка летит со скоростью \vec{w} вдоль второй оси. Опишите мировую линию табуретки в системе отсчёта лаборатории и ракеты.

Задача 4. Опишите множество точек в пространстве-времени в координатах лаборатории и в координатах ракеты, которые соответствуют покоящемуся в лаборатории стержню длины 1 направленному вдоль **a)** оси Ox; **b)** оси Oy; **b)** лежащему в плоскости xOy под углом φ к оси Ox.

1	2 a	2 6	2 B	2 Г	2 д	3 a	36	4 a	4 6	4 B

Задача 1. Как перелётным птицам проще лететь: по ветру или против ветра? (в каком смысле «проще» следует понять самостоятельно)

Задача 2. Астрономы считают, что все галактики разлетаются прямолинейно по направлениям от нашей со скоростями, пропорциональными расстояниям до них. Означает ли это, что наша галактика — центр вселенной?

Задача 3. Крючок безмена заменили на более тяжёлый и одновременно параллельно сдвинули вниз шкалу, так чтобы нуль совпал с новым положением стрелки. Будет ли безмен после этого правильно измерять вес?

Определение 1. Векторным пространством \mathbb{R}^n называется множество всевозможных наборов (x_1, \dots, x_n) действительный чисел вместе с операциями сложения $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$ и умножения на числа $\lambda (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$.

Определение 2. Отображение $\mathbb{R}^m \overset{f}{\longmapsto} \mathbb{R}^n$ называется линейным, если для всех векторов $x \in \mathbb{R}^m$, $y \in \mathbb{R}^m$ и всех чисел $\lambda, \mu \in \mathbb{R}$ выполняется равенство $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$. Отображение $\mathbb{R}^m \overset{g}{\longmapsto} \mathbb{R}^n$ называется аффинным, если существует $a \in \mathbb{R}^m$, такое что отображение $x \longmapsto g(x+a) - g(a)$ линейно. Будем опускать лишние скобки в выражении $f((x_1, \dots, x_m))$ и писать просто $f(x_1, \dots, x_m)$. Например, будем писать f(x) вместо f(x) для $x \in \mathbb{R}^1$, f(x,y) вместо f((x,y)) для $(x,y) \in \mathbb{R}^2$.

Задача 4. Являются ли следующие отображения аффинными или линейными?:

- a) $f: \mathbb{R}^1 \to \mathbb{R}^1$, f(x) = (0); 6) $f: \mathbb{R}^1 \to \mathbb{R}^1$, $f(x) = (x^2 + 1)$; B) $f: \mathbb{R}^1 \to \mathbb{R}^2$, f(x) = (57x, 179x + 57);
- $f: \mathbb{R}^2 \to \mathbb{R}^1, f(x_1, x_2) = -3(x_1 x_2);$ д) $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (x_2 x_1 1, x_1);$
- e) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (x_1, x_1 + x_2 + 1, x_1^2 + x_2^2)$?

Задача 5. Изменим в определении аффинного отображения фразу «существует $a \in \mathbb{R}^m$ » на фразу «для любого $a \in \mathbb{R}^m$ ». Будет ли новое определение эквивалентно исходному?

Задача 6. На плоскости фиксированы три точки: O, A и B. Нарисуйте множество точек $\lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$ при **a)** $\lambda + \mu = 1$; **б)** $\lambda, \mu > 0$.

Задача 7. Пусть линейное отображения $\mathbb{R}^2 \stackrel{f}{\longmapsto} \mathbb{R}^2$ переводит базисные векторы $e_1 = (1,0)$ и $e_2 = (0,1)$ в векторы (a,c) и (b,d) соответственно. Куда оно переведёт вектор (x,y)?

Задача 8. Опишите все линейные и все аффинные отображения

a)
$$\mathbb{R}^n \to \mathbb{R}^1$$

6)
$$\mathbb{R}^1 \to \mathbb{R}^n$$

B)
$$\mathbb{R}^2 \to \mathbb{R}^2$$

r)
$$\mathbb{R}^n \to \mathbb{R}^m$$

Задача 9. Докажите, что множество всех линейных отображений $f: \mathbb{R}^n \to \mathbb{R}^m$ образует коммутативную группу по сложению (то есть сложение коммутативно, ассоциативно и имеет обратный элемент).

Задача 10. Пусть задано некоторое биективное отображение $f \colon \mathbb{R}^m \to \mathbb{R}^m$. Известно, что точка в \mathbb{R}^m движется равномерно и прямолинейно тогда и только тогда, когда её образ движется равномерно и прямолинейно. Докажите, что преобразование f аффинно.

Задача 11. Докажите, что в классической механике преобразование координат между инерциальными системами отсчёта аффинно.

Определение 3. Набор векторов $\{v_1,\ldots,v_n\}\subset\mathbb{R}^m$ называется базисом, если для любого вектора $w\in\mathbb{R}^m$ найдётся единственный набор чисел $\{\lambda_1,\ldots,\lambda_n\}$ (который называется координатами вектора w в этом базисе) такой, что $w=\lambda v_1+\ldots+\lambda_n v_n.$

Задача 12. а) Опишите все базисы в \mathbb{R}^1 ; б) Докажите, что в любом базисе в \mathbb{R}^2 ровно два вектора. в)* Докажете, что в любом базисе в \mathbb{R}^m ровно m векторов.

1	2	3	4 a	4 6	4 B	4 г	4 д	4 e	5	6 a	6 6	7	8 a	8 6	8 B	8 Г	9	10	11	12 a	12 б	12 B

Определение 1. Набор векторов $\{e_1, \dots, e_n\} \subset \mathbb{R}^m$ называется базисом, если для любого вектора $w \in \mathbb{R}^m$ найдётся единственный набор чисел $\{w^1,\dots,w^n\}$ (который называется координатами вектора w в этом базисе) такой, что $w = w^1 v_1 + \ldots + w^n v_n$.

Определение 2. Матрицей называется произвольная прямоугольная таблица действительных чисел.

Соглашение 1. (Правило суммирования Эйнштейна) В физике и механике часто рассматривают различные суммы произведений. Например, если w^i — координаты вектора w в базисе $\{e_i\}$, то $w=\sum_{\alpha=1}^m w^\alpha e_\alpha$. В тех случаях, когда суммирование ведётся по одному нижнему и одному верхнему индексу, знак суммы может быть опущен: пишут просто $w^{\alpha}e_{\alpha}$, имея в виду сумму по всем осмысленным значениям параметра α . Таким образом могут быть коротко записаны довольно длинные суммы:

$$T^{\mu\nu}=rac{1}{\mu_0}\left[F^{\mu\alpha}F^{
u}{}_{\alpha}-rac{1}{4}\eta^{\mu
u}F_{\alpha\beta}F^{\alpha\beta}
ight]$$
— тензор натяжений Максвелла

Координаты вектора $w \in \mathbb{R}^m$ в стандартном базисе $\{e_i\}$ будем обозначать через w^1, \dots, w^m . Будем записывать координаты вектора w матрицей $m \times 1$ (то есть столбцом) его координат:

$$w = \begin{pmatrix} w^1 \\ \vdots \\ w^m \end{pmatrix} = w^1 e_1 + w^2 e_2 + \dots + w^m e_m = w^{\alpha} e_{\alpha}.$$

 $w = \binom{w^1}{\vdots} = w^1 e_1 + w^2 e_2 + \ldots + w^m e_m = w^\alpha e_\alpha.$ Задача 1. Докажите, что набор векторов $\{e_1,\ldots,e_m\} \in \mathbb{R}^m$, где $e_i = (0,\ldots,1_i,\ldots,0)$, образует базис \mathbb{R}^m . Будем называть его стандартным.

Задача 2. а) Пусть $f: \mathbb{R}^m \to \mathbb{R}^m$ — биективное линейное отображение. Докажите, что набор векторов $\{e_{1'}, \ldots, e_{m'}\}$, где $e_{i'} = f(e_i)$, образует базис \mathbb{R}^m .

б) Пусть линейное преобразование f переводит базис $\{e_1, \ldots, e_m\}$ в базис. Докажите, что оно биективно.

Задача 3. Пусть $f \colon \mathbb{R}^m \to \mathbb{R}^m$ — произвольное линейное отображение. Запишем координаты вектора $e_{i'} = f(e_i)$ в столбец: $\begin{pmatrix} c_{\mathbf{i}}^1 \\ c_{\mathbf{i}}^2 \\ \vdots \\ c_{\mathbf{m}} \end{pmatrix}$, а из этих столбцов составим квадратную таблицу $C := \begin{pmatrix} C_{\mathbf{1}}^1 & C_{\mathbf{2}}^1 & \cdots & C_{\mathbf{m}}^1 \\ C_{\mathbf{1}}^2 & C_{\mathbf{2}}^2 & \cdots & C_{\mathbf{m}}^2 \\ \vdots & \vdots & \ddots & \vdots \\ C_{\mathbf{1}}^m & C_{\mathbf{2}}^m & \cdots & C_{\mathbf{m}}^m \end{pmatrix}$

Эта таблица называется матрицей преобразования f в базисе $\{e_i\}$.

Задача 4. Выразите вектор $e_{i'}$ через базисные векторы $\{e_{\alpha}\}$ и элементы матрицы $\{C^p_{\mathfrak{a}}\}$ в короткой нотации.

Задача 5. а) Найдите координаты вектора f(w) в базисе $\{e_{1'}, \ldots, e_{m'}\}$.

- **б)** Найдите координаты вектора f(w) в базисе $\{e_1, \dots, e_m\}$.
- в) Придумайте привило умножения матрицы C на вектор-столбец координат вектора w так, чтобы работало правило $f(w) = C \cdot w$.

Задача 6. Вычислите: **a)** $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix};$ **б)** $\begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix};$ Что это за линейное преобразование? **в)** $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix};$ **г)** $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix};$ **д)** $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ -5 \end{pmatrix}.$

Задача 7. Пусть f и g — два биективных линейных отображения $\mathbb{R}^m \to \mathbb{R}^m$, а C и D — матрицы преобразований f и g в базисе $\{e_i\}$ соответственно.

- а) Найдите координаты $g(f(e_1))$ в базисе $\{e_i\}$. б) Найдите координаты g(f(w)) в базисе $\{e_i\}$.
- в) Придумайте правило умножения матриц так, чтобы для каждого вектора w

$$g(f(w)) = (D \cdot C) \cdot w.$$

Задача 8. Придумайте две матрицы C и D такие, что: **a)** CD = D; **б)** CD = DC; **в)** $CD \neq DC$.

Задача 9. Постройте биекцию между множеством всех линейных отображений (операторов) $\mathbb{R}^m \to \mathbb{R}^m$ и множеством матриц размера m на m.

Задача 10. а) Найдите такую матрицу E, что для любой матрицы C верно: EC = CE = C.

- б) Докажите, что такая матрица единственна.
- в) Пусть C матрица биективного линейного оператора. Докажите, что найдётся матрица D такая, что CD = DC = E.
- г) Докажите, что множество матриц биективных линейных операторов образуют группу относительно операции умножения.

Задача 11. Придумайте, как описать аффинные преобразования с помощью матриц, векторов, их сложения и умножения.

1	2	2 2 a 6	3	4	5 a	5 6	5 B	6 a	6 6	6 B	6 г	6 д	7 a	7 б	7 B	8 a	8 6	8 B	9	10 a	10 б	10 B	10 Г	11

Напоминание. Мы уже выяснили две основных вещи. Преобразование координат между двумя инерциальными системами отсчёта должно быть аффинно. Аффинное преобразование $f: \mathbb{R}^m \to \mathbb{R}^m$ может быть записано в координатах виде $f(\vec{x}) = A \cdot \vec{x} + \vec{w_0}$, где $A - \vec{x} + \vec{w_0}$ матрица линейного преобразования, а $\vec{w_0}$ — некоторый вектор.

Секунда и метр. Оказывается, что время и расстояния можно точно определить независимо от системы счисления. Так секунда есть время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, а метр равен расстоянию, которое проходит свет в вакууме за промежуток времени, равный $1/299\,792\,458$ секунды. Конечно, мы требуем, чтобы метр и секунда во всех системах отсчёта совпадали.

Преобразования Галилея. В классической теории мы не властны над временем. Это означает, что если f — преобразование координат между инерциальными системами отсчёта в классической теории (преобразование $\Gamma anunentering$), то $f(x,y,z,t)=(*,*,*,t+t_0)$.

Задача 1. (одномерный классический мир) Будем рассматривать одномерный мир: одна координата в пространстве и одна во времени. **a)** Докажите, преобразование имеет вид $f \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ t \end{pmatrix} + \begin{pmatrix} x_0 \\ t_0 \end{pmatrix};$ **б)** Покажите, что число a равно либо 1, либо -1; **в**) За что «отвечают» каждое из чисел

Задача 2. а) На обычной плоскости заданы два обычных вектора (x_1,y_1) и (x_2,y_2) . Докажите, что площадь параллелограмма, натянутого на эти вектора равна $x_1y_2 - x_2y_1$. Это число называется определителем матрицы $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$. Что происходит с определителем, если **б)** переставить строки или столбцы? **в)** умножить строку или столбец на число? г) к одной строке прибавить другую, умноженную на число?

Задача 3. (двумерный классический мир) Будем рассматривать двумерный мир: две координаты в пространстве и одна во времени. **a)** Докажите, преобразование имеет вид $f \begin{pmatrix} x \\ y \\ t \end{pmatrix} = \begin{pmatrix} a & b & \alpha \\ c & d & \beta \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ t \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ t_0 \end{pmatrix};$

- **б)** За что «отвечают» числа α и β ?
- в) Из физических соображений покажите, что $a^2 + c^2 = 1$, $b^2 + c^2 = 1$ и ab + cd = 1;
- г) Докажите, что матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ имеет определитель, равный 1 или -1;
- д) Известно, что существует физический опыт, который позволяет вне зависимости от системы отсчёта определить вращение «по часовой стрелке». Покажите, что определитель из предыдущего пункта равен 1;
- e) Докажите, что матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ имеет вид $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$. Какой физический смысл числа φ ?

Гиперболические функции

Задача 4. Гиперболические функции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями. По определению ${\rm ch}\,\varphi=\frac{e^{\varphi}+e^{-\varphi}}{2}$ (гиперболический синус,

(uunyc), $\operatorname{sh}\varphi = \frac{e^{\varphi} - e^{-\varphi}}{2}$ (uunyc), $\operatorname{th}\varphi = \frac{\operatorname{sh}\varphi}{\operatorname{ch}\varphi}$, $\operatorname{cth}\varphi = \frac{\operatorname{ch}\varphi}{\operatorname{sh}\varphi}$.

- а) Нарисуйте графики гиперболических функций.
- **б)** (Основное соотношение) Докажите, что $\mathrm{ch}^2\,\varphi-\mathrm{sh}^2\,\varphi=1$;
- в) (Геометрическое определение) Как связаны гиперболические функции с гиперболой?
- г) (Формулы сложения) Выразите $\operatorname{sh}(x\pm y)$ и $\operatorname{ch}(x\pm y)$ через $\operatorname{sh} x$, $\operatorname{ch} x$, $\operatorname{sh} y$ и $\operatorname{ch} y$;
- д) Выразите $th(x \pm y)$ через th x и th y:
- е) (Производные) Найдите производные гиперболических функций;
- ж) (Обратные гиперболические функции) Обратные гиперболические функции обозначаются через Arsh, Arch, Arth и Arcth, и читаются как Apea-cunyc (от area), Apea-косинус и т.д.

Выразите $\operatorname{Arsh} x$, $\operatorname{Arch} x$ и $\operatorname{Arth} x$ через ln и x.

- $\mathbf{3}$)** (Связь с тригонометрическими функциями) Докажите, что $\mathrm{sh}\,x=-i\sin(ix),\ \mathrm{ch}\,x=$ $\cos(ix)$, th x = -i tg(ix).
- **и)**** (Функция Гудермана) Функция Гудермана определяется через интеграл: $gd(x) = \int \frac{dt}{\operatorname{ch} t}$. Докажите, что gd(x) = arctg(sh(x)), sh(x) = tg(gd(x)), sin(gd(x)) = th(x).

Задача 5. Пусть преобразование координат задаётся матрицей $A = \begin{pmatrix} \cosh \varphi & - \sinh \varphi \\ - \sinh \varphi & \cosh \varphi \end{pmatrix}$. **а)** Куда это преобразование переводит прямые $y=0,\ y=x/2,\ y=x,\ y=2x$ и x=0?

- **б)** Докажите, что преобразование A в области $y \geqslant x$ сохраняет uhmepean— величину $\sqrt{y^2 x^2}$.

1 a	1 б	1 в	2 a	2 6	2 B	2 г	3 a	3 6	З В	3 г	3 д	3 e	4 a	4 б	4 в	$\frac{4}{\Gamma}$	4 д	4 e	4 ж	4 3	4 и	5 a	5 6

Секунда и метр. Время и расстояния можно точно определить независимо от системы счисления даже в СТО (см. предыдущий листок). Конечно же, мы требуем, чтобы метр и секунда во всех системах отсчёта были «одинаковыми». Также мы будем требовать, чтобы сохранялось направление течения времени (например, следя за тем, чтобы распад частицы оставался распадом).

Опыты Майкельсона–Морли и Кеннеди–Торндайка показали, что скорость света «почти» не зависит от системы отсчёта. Если быть точнее, то было установлено, что скорости света во всех направлениях в двух системах отсчёта, двигающихся относительно друг друга со скоростью $60\,\mathrm{km/c}$, отличаются не более, чем на $2\,\mathrm{m/c}$. Позднее, постоянство скорости света было проверено множеством различных способов и с куда большей точностью.

Таким образом возникает основной постулат СТО: скорость света постоянна во всех системах отсчёта. Скорость света обозначается через $c.~(c\approx 299\,792,458\,\mathrm{m/c})$ Преобразование пространства-времени \mathbb{R}^4 , сохраняющие 1 метр, 1 секунду и скорость света называются преобразованиями *Лоренца*. Предполагается, что ничто не способно двигаться в пространствевремени быстрее, чем со скоростью света.

Для удобства будем измерять время в метрах $_{6}$ (и писать м $_{6}$). м $_{6}$ — время, за которое свет пролетает один метр. Это удобно потому, что скорость света становится равной 1 м/ м $_{6}$. Преобразования координат между инерциальными системами отсчёта в СТО называются преобразованиями Лоренца.

Одномерный мир

Задача 1. (Парадокс поезда) Пусть на поезде, движущемся со скоростью, близкой к скорости света (такой поезд, видимо, стоит ожидать раньше всего в Японии (если где-нибудь ещё не научатся значительно влиять на скорость света)), едут три человека: A в голове, O — в середине и B — в хвосте поезда. На земле около пути стоит четвёртый человек O'. В тот самый момент, когда O проезжает мимо O', сигналы ламп от A и B достигают O и O'. Покажите, что на вопрос «Кто раньше включил фонарь?» наблюдатели O и O' дадут различные ответы.

Задача 2. Найдите все возможные мировые линии света в одномерном мире \mathbb{R}^2 .

Задача 3. Изобразите в \mathbb{R}^2 и \mathbb{R}^3 множество точек: **a)** в которые можно попасть из данной (это множество называется *конусом будущего*); **б)** в которые можно посветить из данной; **в)** из которых можно попасть в данную (*конус прошлого*). Какой физический смысл конуса будущего и прошлого?

Задача 4. Преобразования Лоренца будучи аффинным имеют вид $f \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ t \end{pmatrix} + \begin{pmatrix} x_0 \\ t_0 \end{pmatrix}$.

- а) Покажите, что |a+b| = |c+d| и |b-a| = |d-c|;
- **б)** Покажите, что матрица $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ имеет вид либо $\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$, либо $\begin{pmatrix} -\alpha & -\beta \\ \beta & \alpha \end{pmatrix}$;
- в) Покажите, что определитель матрицы A должен быть равен ± 1 ;
- г) Покажите, что $\alpha = \operatorname{ch} \varphi$, а $b = \operatorname{sh} \varphi$ для некоторого φ . Число φ называется при этом napamempom cкорости или быстротой.

Задача 5. Фраза «перейти в систему отсчёта ракеты» означает перейти в такую систему отсчёта, в которой мировая линия ракеты является прямой $(0,t), t \in \mathbb{R}$.

а) Преобразование координат для перехода в систему отсчёта ракеты задаётся матрицей $\binom{\operatorname{ch} \varphi \ \operatorname{sh} \varphi}{\operatorname{sh} \varphi \ \operatorname{ch} \varphi}$). С какой скоростью летит ракета? **б**) Ракета движется в системе отсчёта лаборатории со скоростью u. Найдите преобразование, позволяющее перейти в систему отсчёта ракеты, а также преобразование, которое позволяет из системы отсчёта ракеты перейти в систему отсчёта лаборатории.

Задача 6. (Эффект Допплера) Ракета движется в системе отсчёта лаборатории со скоростью u. Каждую секунду в точке с координатой 0 в лаборатории моргает лампочка. С каким интервалом на ракете наблюдаются вспышки?

- **Задача 7. а)** Докажите, что для любой пары различных событий найдётся ракета, в системе которой события либо одновременны (говорят, что интервал между ними *пространственноподобный*), либо происходят в одной и той же точке пространства (интервал временноподобный), либо принадлежат мировой линии света (интервал *светоподобный*).
- **б)** Пускай одно из событий находится в начале координат. Найдите множество точек пространствавремени, для которых интервал пространственно-, временно- и светоподобный.

Задача 8. В системе отсчёта лаборатории два события происходят одновременно а) в одной и той же точке; б) в разных точках. В каких ещё системах отсчёта эти события также будут одновременными? в) Докажите, что для любых событий, соединяемых пространственноподобным интервалом, найдётся две ракеты такие, что в системе одной первое событие происходит раньше, а в системе другой — наоборот.

1 2	3 a	3 6	3 B	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 a	56	6	7 a	7 б	8 a	8 6	8 B

Пока мы по-прежнему считаем мир одномерным. Все ракеты в этом листке летят вдоль оси x со скоростью u.

Задача 1. (*сокращение Лоренца*) **а)** Пусть ракета снабжена метровым стержнем, который наблюдается из лаборатории. Какова его наблюдаемая длина в лаборатории? **б)** В начале и в конце стержня закреплены часы, которые в ракете показывают одинаковое время. Какое время будет наблюдаться в лаборатории?

- **Задача 2.** (*замедление времени*) Пусть ракета снабжена настенными часами, которые наблюдаются из лаборатории. С какой скоростью идут эти часы при наблюдении из лаборатории?
- **Задача 3.** (*сложение скоростве*й) Пусть ракета снабжена табуреткой, двигающейся со скоростью v относительно ракеты. С какой скоростью летит табуретка относительно лаборатории?
- Задача 4. (*парадокс шеста и сарая*) Возьмём шест длины 10 м и сарай длиной также 10 м. Запустим шест так, чтобы в системе отсчёта сарая из-за лоренцева сокращения он имел длину 2 м. Тогда в некоторый момент он полностью поместится в сарае. С другой стороны, с системе шеста сарай имеет длину 2 м, и шест туда никак не может поместиться. Парадокс.
- Задача 5. (бетон и машина времени) Зальём бетоном сарай так, чтобы оставался только вход. Возьмём шест длиной 20 м и разгоним до сокращения до 2 м. Как только шест влетит в сарай, зальём бетоном вход (у нас на это будет время точно не меньшее $\frac{8M}{3\cdot 10^8 M/c}$). В системе шеста вся наша затея выглядит комично. Парадокс.
- Задача 6. (непригодность ньютоновской механики для космических полётов) Как должна зависеть скорость ракеты и параметр скорости от времени, чтобы наблюдатель в ракете всё время испытывал ускорение g? Через какое время ракета разгонится до 0,9 скорости света? А что предсказывает Ньютоновская механика?
- Задача 7. (парадокс близнецов) а) Близнецы А и Б расстались в тот день, когда им было по 21 году. А двигался от Земли со скоростью 0,96 скорости света в течении 7 лет (своего времени) в одну сторону и столько же обратно. Насколько моложе он будет своего брата Б по возвращении? б) Однако в системе отчёта близнеца Б Земля улетала от него со скоростью 0,96, а потом летела к нему со скоростью 0,96. Поэтому по возвращению близнец А должен быть моложе. Парадокс.

Этот трёхмерный мир.

- **Задача 8.** (*Лоренцево сокращение 2*) Придумайте мысленный опыт, подтверждающий, что шест, расположенный перпендикулярно направлению движения, не изменяет своей наблюдаемой длины.
- **Задача 9.** (*инвариантный интервал*) Придумайте мысленный опыт, подтверждающий, что во всех системах отсчёта сохраняется число $(\Delta t)^2 (\Delta x)^2 (\Delta y)^2$ (время в м_в). Это число называется *интервалом* между событиями.
- **Задача 10.** (преобразование углов) Метровый стержень в ракете прибит под углом φ' к оси x'. Под каким углом к оси x стержень наблюдается в лаборатории?
- Задача 11. (преобразование направлений движения) Пусть табуретка летит со скоростью v' под углом φ' к оси x' внутри ракеты. Под каким углом к оси x наблюдается движение табуретки в лаборатории? Чем эта задача отличается от предыдущей?
- Задача 12. (эффект «прожектора») а) Табуретка из предыдущей задачи на проверку оказалась фотоном, то есть двигается со скоростью света. Под каким углом к оси x распространяется этот фотон в лаборатории?
- **б)** Частица, двигающая с большой скоростью, испускает свет в переднюю полусферу с своей системе отсчёта. Покажите, что в системе лаборатории свет сконцентрируется в узкий конус.
- **Задача 13.** (сложение скоростей 2) Фотон из предыдущей задачи на проверку оказался табуретом, летящим в ракете вдоль оси y' со скоростью v'. С какой скоростью он движется в системе лаборатории?

1 a	1 6	2	3	4	5	6	7 a	7 6	8	9	10	11	12 a	12 6	13