Definition 1. Suppose we have a function f from \mathbb{R}^n to \mathbb{R}^m and || is the L_{∞}

For a number $\epsilon > 0$, K_{ϵ} is the smallest number such that for any $d \geq \epsilon$, any input x, y.

$$|x - y| \le d \implies |f(x) - f(y)| \le dK_{\epsilon}$$

Proposition 1. Continue above definition. Suppose for a number ϵ we have K_{ϵ} , then for any number $\epsilon N \leq d \leq \epsilon (N+1)$ for an integer $N \geq 1$, we have that

$$K_d \le K_\epsilon \frac{N+1}{N}$$
.

Proof. By assumption, $d \in [\epsilon N, \epsilon(N+1)]$.

For any x, y that $|x-y| \le d$, we have $|x-y| \le \epsilon(N+1)$. Then we can divide the line segment between x, y into N+1 pieces: $x_0 = x, x_1, x_2, \dots, x_{N+1} = y$ such that $|x_i - x_{i+1}| \le \epsilon$. Then we can apply the definition of K_{ϵ} for each pieces.

Therefore, we have that, for any two inputs x, y:

$$|x-y| \le d \implies |f(x)-f(y)| \le \epsilon(N+1)K_{\epsilon}$$

Hence by the definition, we have that

$$K_d <= \frac{\epsilon(N+1)K_{\epsilon}}{d} <= \frac{\epsilon(N+1)K_{\epsilon}}{\epsilon N} = K_{\epsilon} \frac{N+1}{N}.$$

This is what we want to show.

Corollary 1. 1. Continue the definition. Suppose for a number ϵ we have K_{ϵ} , then for any number $d \geq \epsilon N$ for an integer $N \geq 1$, we have that

$$K_d \le K_\epsilon \frac{N+1}{N}$$
.

- 2. If we care about ϵ and compute the Lipschitz constant of 0.5ϵ and get K,
- then we can use Lipschizt constant ≤ K²⁺¹/₂ for general larger ε.

 3. Similarly, if we compute Lipschitz constant for any ε and get K, then we can use Lipschitz constant K¹⁺¹/₁ for any larger ε.

Proof. All three are simply application of the proposition.

Proposition 2.