Bootstrap Your Own Latent A New Approach to Self-Supervised Learning (BYOL)

Contrastive learning

-당시 contrastive learning method를 이용하여 feature extractor를 학습시킨 많은 논문이 좋은 성능을 보여주었다.

Contrastive learning-limitations

(b) Impact of progressively removing transformations

-negative pairs를 적절히 가져오고 처리해서 사용해야 한다 – large batch size, memory bank, customized mining strategy 사용, augmentation 방식에 큰 영향

-negative pairs 없이 similarity만 학습할 경우, collapsed representation을 학습할 수 있다.

Idea- Two networks instead of two images

BYOL

-Downstream task에 사용될 representation을 만들 수 있는 좋은 encoder를 만드는 것이 목적

BYOL- Model

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}}$$

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta,\xi}^{\text{BYOL}}, \eta),$$

$$\xi \leftarrow \tau \xi + (1 - \tau)\theta,$$
Target network

Exponential moving average, L2 batch normalization, MSE

-Target network의 weight은 loss를 minimum하는 방향으로 나아가지 않고 target과 online의 loss가 같이 loss에 대해 학습하지 않으므로 collapsed representation을 학습하지 않는다.

BYOL- Algorithm

loss function

Algorithm 1: BYOL: Bootstrap Your Own Latent

```
Inputs:
                                   \mathcal{D}, \mathcal{T}, and \mathcal{T}'
                                                                          set of images and distributions of transformations
                                   \theta, f_{\theta}, g_{\theta}, and g_{\theta}
                                                                          initial online parameters, encoder, projector, and predictor
                                                                          initial target parameters, target encoder, and target projector
                                   \xi, f_{\xi}, g_{\xi}
                                                                          optimizer, updates online parameters using the loss gradient
                                   optimizer
                                    K and N
                                                                          total number of optimization steps and batch size
                                    \{\tau_k\}_{k=1}^K \text{ and } \{\eta_k\}_{k=1}^K
                                                                          target network update schedule and learning rate schedule
                              1 for k=1 to K do
                                       \mathcal{B} \leftarrow \{x_i \sim \mathcal{D}\}_{i=1}^N
                                                                                                                                                     // sample a batch of N images
                                    for x_i \in \mathcal{B} do
                             4   t \sim \mathcal{T} \text{ and } t' \sim \mathcal{T}'

5   z_1 \leftarrow g_{\theta}(f_{\theta}(t(x_i))) \text{ and } z_2 \leftarrow g_{\theta}(f_{\theta}(t'(x_i)))

z'_1 \leftarrow g_{\xi}(f_{\xi}(t'(x_i))) \text{ and } z'_2 \leftarrow g_{\xi}(f_{\xi}(t(x_i)))
                                                                                                                                                   // sample image transformations
                                                                                                                                                                    // compute projections
symmetrization<sub>6</sub>
                                                                                                                                                      // compute target projections
                                        l_i \leftarrow -2 \cdot \left( \frac{\langle q_{\theta}(z_1), z_1' \rangle}{\|q_{\theta}(z_1)\|_2 \cdot \|z_1'\|_2} + \frac{\langle q_{\theta}(z_2), z_2' \rangle}{\|q_{\theta}(z_2)\|_2 \cdot \|z_2'\|} \right)
                                                                                                                                                             // compute the loss for x_i
                              8
                                       end
                                     \delta \theta \leftarrow \frac{1}{N} \sum_{i=1}^{N} \partial_{\theta} l_{i}
                                                                                                                            // compute the total loss gradient w.r.t. \theta
                                      \theta \leftarrow \text{optimizer}(\theta, \delta\theta, \eta_k)
                                                                                                                                                           // update online parameters
                                      \xi \leftarrow \tau_k \xi + (1 - \tau_k)\theta
                                                                                                                                                           // update target parameters
                            12 end
                                 Output: encoder f_{\theta}
```

BYOL- Performance

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

(a) ResNet-50 encoder.

BYOL- Performance

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

-ImageNet에서 학습시킨 encode를 다른 data set에 Transfer learning 했을 때 많은 항목에서 Supervised model에 비해서도 좋은 성능을 보였다.

BYOL- Predictor

-	Method	Predictor	Target network	β	Top-1	
-	BYOL	✓	✓	0	72.5	
	-	✓	✓	1	70.9	
	_		✓	1	70.7	
	SimCLR			1	69.4	
	-	✓		1	69.1	
	-	✓		0	0.3	
Mean Teacher ->	-		✓	0	0.2	
	_			0	0.1	

(b) Intermediate variants between BYOL and SimCLR.