Homework #7

Student name: Clayton Curry

Course: Abstract Linear Algebra – Professor: Dr. Gregory Muller Due date: Oct 10, 2021

Problem 1

Let $T: \mathbb{P}_2(\mathbb{F}) \to \mathbb{P}_2(\mathbb{F})$ be the linear map defined by

$$T(p(x)) = p(1)x^{2} + p(2)x + p(-1)$$

- a) Find the trace, determinant, and characteristic polynomial of T.
- b) Find the eigenvalues of T.
- c) For each eigenvalue, find an eigenvector of T.

Answer. For any \mathbb{F} -linear vector space V and endomorphism $T:V\to V$, the trace and determinant of T can be deduced from the second and last coefficients of the characteristic polynomial $p_T\in\mathbb{P}(\mathbb{F})$ of T. The characteristic polynomial p_T may be calculated from the matrix A_T of T w.r.t. the basis $\mathcal{B}=(x^2,x,1)$ of $\mathbb{P}_2(\mathbb{F})$.

$$x^{2} \mapsto x^{2} + 4x + 1 \\ x \mapsto x^{2} + 2x + -1 \\ 1 \mapsto x^{2} + x + 1 \Longrightarrow A_{T} = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

The characteristic polynomial p_T is defined as the determinant,

$$\det(\lambda I d_v - A_T) = (\lambda - 1)(\lambda - 2)(\lambda - 1) + (-1) + (4) - ((\lambda - 2) + 4(\lambda - 1) + (-1)(\lambda - 1))$$

$$= (\lambda - 1)(\lambda - 2)(\lambda - 1) - 3(\lambda - 1) - (\lambda - 2) + 3$$

$$= (\lambda^3 - 4\lambda^2 + 5\lambda - 2) - (3\lambda - 3) - (\lambda - 2) + 3$$

$$= \lambda^3 - 4\lambda^2 + \lambda + 6$$

a) So
$$tr(T) = -(-4) = 4$$
 and $det(T) = (-1)^3(6) = -6$, and $p_T(\lambda) = (\lambda + 1)(\lambda - 2)(\lambda - 3)$

- b) The eigenvalues of T are characterized by the roots of p_T , $\{-1, 2, 3\}$
- c) Using elimination to compute bases for the kernels of the linear transformation defined as multiplication by $\lambda Id A_T$, the vectors in $\mathbb{P}_2(\mathbb{F})$ associated with each eigenvalue of T is spanned by the following vectors

$$\lambda = 3: -x^2 - 3x + 1$$
 $\lambda = 2: -x^2 - 5x + 4$ $\lambda = -1: -x^2 + x + 1$

1

Let $R: \mathbb{C}^3 \to \mathbb{C}^3$ be the linear map which acts like multiplication by

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

- a) Find the trace, determinant, and characteristic polynomial of R.
- b) Find the eigenvalues of R.
- c) For each eigenvalue, find an eigenvector of R.

Answer. .

a) The second-highest and lowest degree coefficients of the characteristic polynomial p_R indicate the trace and determinant of R. The characteristic polynomial of R is defined as the determinant,

$$\det(\lambda I d_v - [R]_{\mathcal{BB}}) = (\lambda - 1)^3 + 2^3 = \lambda^3 - 3\lambda^2 + 3\lambda - 9$$

So tr(R) = 3 and det(R) = 9, and

$$p_R(\lambda) = \lambda^3 - 3\lambda^2 + 3\lambda - 9 = (\lambda - 3)(\lambda - i\sqrt{3})(\lambda + i\sqrt{3})$$

- b) The eigenvalues of R are the roots of $p_R(\lambda)$: $\{3, i\sqrt{3}, -i\sqrt{3}\}$.
- c) Using elimination to compute bases for the kernels of the linear transformation defined as multiplication by $\lambda Id A_T$, the vectors in $\mathbb{P}_2(\mathbb{F})$ associated with each eigenvalue of T is spanned by the following vectors

$$\lambda = 3: (1, 1, 1)$$

$$\lambda = i\sqrt{3}: (-1 - i\sqrt{3}, -1 + i\sqrt{3}, 2)$$

$$\lambda = -i\sqrt{3}: (-1 + i\sqrt{3}, -1 - i\sqrt{3}, 2)$$

Let $\dim(V) < \infty$ and let $P: V \to V$ be an **idempotent** linear map; that is, $P^2 = P$. Assuming we know that P is not the zero map nor the identity map, find the minimal polynomial of P.

Answer. Let $\dim(V) = n$. Since P is idempotent, $P = P^2$, so P(P - Id) = 0.

$$\det P(P - Id) = 0$$

the Cayley-Hamilton Theorem implies p_P has the property,

$$p_P(P) = p_P(P^2) = 0$$

Since any matrix of a linear map on V must have exactly n entries along the diagonal,

$$p_P(P) = P^n + a_{n-1}P^{n-1} + \dots + a_2P^2 + a_1P^1 + a_0P^0$$

= $P^n - \operatorname{tr}(P)P^{n-1} + \dots + a_1P^1 + (-1)^n \det(P)Id$
= $P - \operatorname{tr}(P)P + \dots + a_1P + (-1)^n \det(P)Id$
= $P(-\operatorname{tr}(P)Id + \dots + a_1) + (-1)^n \det(P)Id$

Let $T: V \to V$ be an invertible linear map with $\dim(V) < \infty$.

a) Show that the characteristic polynomial of T^{-1} is

$$\frac{1}{p_T(0)}x^{\operatorname{\mathbf{dim}}(V)}p_T(x^{-1})$$

b) Show that there is a polynomial p(x) with $p(T) = T^{-1}$.

Answer. T invertible $\implies \ker(T) = 0 \implies Tv = 0$ only if $v = 0 \implies 0$ is not an eigenvalue of $T \implies 0$ is not a root of $p_T \implies 1/p_T(0)$ exists.

Goal: show that the eigenvalues of a linear transformation are always roots of the minimal polynomial.

Let $T: V \to V$ be a linear map with $\dim(V) < \infty$.

a) Let v be an eigenvector of T with eigenvalue λ . Show that, for every polynomial p(x),

$$p(T)v = p(\lambda)v$$

- b) Show that every eigenvalue is a root of the minimal polynomial of T.
- c) Show that, if T has $\dim(V)$ -many distinct eigenvalues $\lambda_1, \ldots, \lambda_{\dim(V)}$, then the characteristic polynomial of T equals the minimal polynomial of T.

Answer. .

a) If v is an eigenvector of T with eigenvalue λ . Then

$$p(T)v = (a_m T^m + a_{m-1} T^{m-1} + \dots + a_1 T^1 + a_0 T^0)v$$

$$= a_m T^m v + a_{m-1} T^{m-1} v + \dots + a_1 T^1 v + a_0 T^0 v$$

$$= a_m \lambda^m v + a_{m-1} \lambda^{m-1} v + \dots + a_1 \lambda^1 v + a_0 \lambda^0 v$$

$$= (a_m \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda^1 + a_0 \lambda^0)v$$

$$= p(\lambda)v$$

b) Let μ_T denote the minimal polynomial of T, λ_i denote the *i*'th eigenvalue of T, and $v_i \in V$ be the non-zero eigenvector associated with λ_i .

Since $\mu(T)v_i = \mu(\lambda_i)v_i = 0$, we have two cases $\mu(\lambda_i) = 0$ or $v_i = 0$, but we assumed v_i is a non-zero eigenvector, so λ_i must be a root of μ . Since i is arbitrary, all eigenvalues of T are roots of the minimal polynomial of T.

c) Let μ_T denote the minimal polynomial of T. Since the set of eigenvalues of $T, \lambda_1, \lambda_2, \ldots, \lambda_{\dim(V)}$ are the of roots of μ_T and p_T , we can factorize μ_T into the map defined by

$$\mu_T(z) = q(z)(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_{\dim(V)})$$

and p_T into the map defined by

$$p_T(z) = r(z)(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_{\operatorname{\mathbf{dim}}(V)})$$

Since $\operatorname{deg}(\mu_T) \leq \operatorname{deg}(p_T) = \operatorname{dim}(V)$ and μ_T and p_T is monic, the above factors $q(z) = r(z) = (-1)^{\operatorname{dim}(V)}$. Therefore, when T has $\operatorname{dim}(V)$ distinct eigenvalues, $\mu_T = p_T$.

Since the roots of the minimal polynomial are eigenvalues of T, any polynomial of the form g(T)=0 cannot have any roots other than the roots of p_T , Then λ is an eigenvalue of T with an associated eigenvector $v\neq 0$